Study Material - Youtube

Document Information

• Generated: 2025-08-20 19:25:00

• Source: Based on IITM GenAI Curriculum W1L3

Platform: Academic ContentWord Count: 2,650 words

• Estimated Reading Time: ~12 minutes

• Number of Chapters: 3

• Transcript Available: No (compiled from academic sources)

Table of Contents

1. f-Divergence: The Mathematical Foundation for Generative Models

2. Key Takeaways from This Lecture

3. Self-Assessment for This Lecture

Video Overview

This lecture, "W1L3: f-Divergence," introduces the mathematical framework that underlies most modern generative models. f-Divergence provides a unified way to measure the "distance" between probability distributions, which is essential for training generative models. This lecture covers the general definition of f-divergence, explores important special cases like KL divergence and Jensen-Shannon divergence, and demonstrates their applications in generative adversarial networks (GANs) and variational autoencoders (VAEs).

Learning Objectives

Upon completing this lecture, a student will be able to: * **Define f-Divergence:** Understand the general mathematical formulation and properties of f-divergence measures. * **Identify Key Examples:** Recognize important special cases including KL divergence, reverse KL divergence, and Jensen-Shannon divergence. * **Apply to Generative Models:** Understand how different divergences are used in GANs, VAEs, and other generative frameworks. * **Compare Divergence Properties:** Analyze symmetry, boundedness, and computational properties of different divergences. * **Practical Implementation:** Compute divergences numerically and understand their optimization characteristics.

Prerequisites

To fully understand the concepts in this lecture, students should have: * **Probability Theory:** Solid understanding of probability distributions, probability density functions, and expectations. * **Information Theory:** Basic concepts of entropy and mutual information. * **Calculus:** Integration, differentiation, and optimization fundamentals. * **Convex Analysis:** Understanding of convex functions and Jensen's inequality. * **Machine Learning Basics:** Familiarity with loss functions and optimization objectives.

Key Concepts Covered

- f-Divergence Definition and Properties
- Kullback-Leibler (KL) Divergence
- Jensen-Shannon (JS) Divergence
- Total Variation Distance
- ²-Divergence
- Applications in Generative Models

f-Divergence: The Mathematical Foundation for Generative Models

Introduction to Statistical Divergences

In generative modeling, we need to measure how different two probability distributions are. For example: - How close is our generated data distribution p_{θ} to the true data distribution p_{data} ? - How can we quantify the "distance" between distributions mathematically? - What properties should a good distance measure have?

f-Divergence provides a unified mathematical framework for answering these questions.

General Definition of f-Divergence

Mathematical Formulation

For two probability distributions P and Q with densities p(x) and q(x), the **f-divergence** is defined as:

$$D_f(P\|Q) = \int q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

where $f:(0,\infty)\to\mathbb{R}$ is a **convex function** with f(1)=0.

Alternative Discrete Formulation

For discrete distributions:

$$D_f(P\|Q) = \sum_i q_i f\left(\frac{p_i}{q_i}\right)$$

Key Properties

- 1. Non-negativity: $D_f(P||Q) \ge 0$ for all P, Q
- 2. **Identity:** $D_f(P||Q) = 0$ if and only if P = Q
- 3. Convexity: D_f is convex in both arguments
- 4. Invariance: Invariant under measure-preserving transformations

The Role of the Generator Function f

The choice of the convex function f determines the specific divergence: - **Domain:** $f:(0,\infty)\to\mathbb{R}$ - **Convexity:** Ensures non-negativity via Jensen's inequality - **Normalization:** f(1)=0 ensures $D_f(P\|P)=0$

Important Special Cases

1. Kullback-Leibler (KL) Divergence

Generator Function: $f(t) = t \log t$

Definition:

$$D_{KL}(P\|Q) = \int p(x) \log \frac{p(x)}{q(x)} dx = \mathbb{E}_{x \sim P} \left[\log \frac{p(x)}{q(x)} \right]$$

Discrete Version:

$$D_{KL}(P\|Q) = \sum_{i} p_i \log \frac{p_i}{q_i}$$

Key Properties: - Asymmetric: $D_{KL}(P\|Q) \neq D_{KL}(Q\|P)$ in general - Unbounded: Can take values in $[0,\infty)$ - Information-theoretic interpretation: Expected log-likelihood ratio - Used in: Variational inference, VAEs, maximum likelihood estimation

Practical Interpretation: KL divergence measures the expected number of extra bits needed to encode samples from P when using a code optimized for Q.

2. Reverse KL Divergence

Generator Function: $f(t) = -\log t$

Definition:

$$D_{KL}(Q||P) = \int q(x) \log \frac{q(x)}{p(x)} dx$$

Key Difference from Forward KL: - Forward KL $D_{KL}(P||Q)$: Mode-seeking, avoids placing mass where Q has little - Reverse KL $D_{KL}(Q||P)$: Mode-covering, prefers to cover all modes of P

3. Jensen-Shannon (JS) Divergence

Generator Function: $f(t) = -(t+1)\log \frac{t+1}{2} + t\log t$

Definition:

$$D_{JS}(P\|Q) = \frac{1}{2}D_{KL}(P\|M) + \frac{1}{2}D_{KL}(Q\|M)$$

where $M = \frac{P+Q}{2}$ is the average distribution.

Key Properties: - Symmetric: $D_{JS}(P\|Q) = D_{JS}(Q\|P)$ - Bounded: $D_{JS}(P\|Q) \in [0, \log 2]$ (using natural logarithm) - Square root metric: $\sqrt{D_{JS}(P\|Q)}$ is a true metric - Used in: Original GANs, distribution comparison

4. Total Variation Distance

Generator Function: $f(t) = \frac{1}{2}|t-1|$

Definition:

$$D_{TV}(P\|Q) = \frac{1}{2} \int |p(x) - q(x)| dx = \frac{1}{2} \|P - Q\|_1$$

Key Properties: - Symmetric: $D_{TV}(P\|Q) = D_{TV}(Q\|P)$ - Bounded: $D_{TV}(P\|Q) \in [0,1]$ - Interpretation: Maximum difference in probability assigned to any event - Metric: Satisfies triangle inequality

5. ²-Divergence (Pearson ²)

Generator Function: $f(t) = (t-1)^2$

Definition:

$$D_{\chi^2}(P\|Q) = \int \frac{(p(x)-q(x))^2}{q(x)} dx$$

Key Properties: - Asymmetric: $D_{\chi^2}(P\|Q) \neq D_{\chi^2}(Q\|P)$ - Unbounded: Can take values in $[0,\infty)$ - Statistical connection: Related to 2 -test for goodness of fit

Variational Representation of f-Divergences

Fenchel-Legendre Conjugate

Every f-divergence has a variational representation based on the Fenchel-Legendre conjugate:

$$D_f(P\|Q) = \sup_T \left\{ \mathbb{E}_{x \sim P}[T(x)] - \mathbb{E}_{x \sim Q}[f^*(T(x))] \right\}$$

where f^* is the convex conjugate of f:

$$f^*(t) = \sup_u \{tu - f(u)\}$$

Example: KL Divergence Variational Form

For KL divergence $(f(t) = t \log t, f^*(t) = e^{t-1})$:

$$D_{KL}(P\|Q) = \sup_{T} \left\{ \mathbb{E}_{x \sim P}[T(x)] - \mathbb{E}_{x \sim Q}[e^{T(x)-1}] \right\}$$

This variational form is crucial for training GANs and other implicit generative models.

Applications in Generative Models

Generative Adversarial Networks (GANs)

Original GAN Objective: The original GAN paper showed that the optimal discriminator minimizes the Jensen-Shannon divergence:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D(G(z)))]$$

Connection to JS Divergence: At the optimal discriminator, this becomes:

$$\min_{G} 2 \cdot D_{JS}(p_{\text{data}} \| p_g) - 2 \log 2$$

f-GAN Framework

The f-GAN framework generalizes GANs to arbitrary f-divergences:

$$\min_{G} D_f(p_{\text{data}} \| p_g) = \min_{G} \sup_{T} \left\{ \mathbb{E}_{x \sim p_{\text{data}}}[T(x)] - \mathbb{E}_{x \sim p_g}[f^*(T(x))] \right\}$$

Different choices of f yield different GAN variants: - KL-GAN: Forward KL divergence - Reverse-KL GAN: Reverse KL divergence (mode-seeking) - ²-GAN: Least-squares GAN objective - Total Variation GAN: Wasserstein-like objective

Variational Autoencoders (VAEs)

VAEs optimize a variational lower bound that involves KL divergence:

$$\log p(x) \geq \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x) \| p(z))$$

The KL term acts as a regularizer, encouraging the approximate posterior to stay close to the prior.

Computational Considerations

Numerical Implementation

KL Divergence (Discrete):

```
def kl_divergence(p, q, epsilon=1e-10):
# Add small epsilon to avoid log(0)
q_safe = np.maximum(q, epsilon)
return np.sum(p * np.log(p / q_safe))
```

Jensen-Shannon Divergence:

```
def js_divergence(p, q):
m = 0.5 * (p + q)
return 0.5 * kl_divergence(p, m) + 0.5 * kl_divergence(q, m)
```

Optimization Properties

KL Divergence: - Forward KL: Mode-seeking, prefers sharp distributions - Reverse KL: Mode-covering, prefers broad distributions - Asymmetry affects optimization behavior

Jensen-Shannon Divergence: - Symmetric: More balanced optimization - Bounded: Stable gradients - Can suffer from vanishing gradients when distributions are far apart

Total Variation: - Provides uniform upper bound on all probability differences - Can be difficult to optimize directly

Relationships Between Divergences

Pinsker's Inequality

$$D_{TV}(P\|Q) \leq \sqrt{\frac{1}{2}D_{KL}(P\|Q)}$$

This connects KL divergence to total variation distance.

Variational Distance Relationships

For distributions that are not too far apart:

$$D_{TV}(P\|Q) \leq D_{JS}(P\|Q) \leq \frac{1}{2}D_{KL}(P\|Q)$$

f-Divergence Ordering

Different f-divergences can be ordered by their discriminatory power:

$$D_{TV} \le D_{JS} \le D_{KL}$$

(under appropriate conditions)

Choosing the Right Divergence

Factors to Consider

- 1. Symmetry Requirements:
 - Use JS or TV for symmetric comparison
 - Use KL when asymmetry is desired
- 2. Boundedness:
 - Bounded divergences (JS, TV) provide stable optimization
 - Unbounded divergences (KL) can provide stronger gradients
- 3. Computational Efficiency:
 - KL divergence is often easier to compute
 - Some divergences have closed-form solutions for specific distributions
- 4. Mode-Seeking vs. Mode-Covering:
 - Forward KL: mode-seeking
 - Reverse KL: mode-covering
 - JS: balanced behavior

Application-Specific Guidelines

For GANs: - JS divergence: Balanced training, can suffer from vanishing gradients - Wasserstein distance: More stable training, requires constraints

For VAEs: - KL divergence: Natural choice due to variational inference framework - -VAE: Weighted KL for disentanglement

For Model Selection: - Cross-entropy (related to KL): Standard choice for classification - JS divergence: Fair comparison of generative models

Key Takeaways from This Lecture

- Unified Framework: f-Divergence provides a mathematical foundation for measuring distances between probability distributions, unifying many important divergences under a single framework.
- **Generator Function:** The choice of the convex generator function f determines the specific divergence properties, including symmetry, boundedness, and optimization characteristics.
- Key Examples: Important special cases include KL divergence (asymmetric, unbounded, information-theoretic), Jensen-Shannon divergence (symmetric, bounded, used in GANs), and Total Variation distance (symmetric, bounded, metric).
- Variational Representation: All f-divergences can be expressed as variational optimization problems using Fenchel conjugates, enabling their use in adversarial training frameworks like GANs.
- Generative Model Applications: Different divergences lead to different generative model behaviors: KL divergence in VAEs for regularization, JS divergence in original GANs for balanced training, and f-GAN framework for exploring various divergences.
- Optimization Properties: The choice of divergence significantly affects training dynamics, with symmetric divergences providing more balanced optimization and bounded divergences ensuring stable gradients.
- Practical Considerations: Implementation requires careful handling of numerical stability, and the choice of divergence should be based on the specific requirements of symmetry, boundedness, and desired optimization behavior.

Self-Assessment for This Lecture

- 1. **Mathematical Definition:** Write the general definition of f-divergence and explain the role of the generator function f. What properties must f satisfy?
- 2. Divergence Computation: Calculate the KL divergence between two discrete distributions: P = [0.7, 0.2, 0.1] and Q = [0.3, 0.4, 0.3]. Then compute $D_{KL}(Q||P)$ and compare.
- 3. **Jensen-Shannon Derivation:** Show that the Jensen-Shannon divergence can be written as $D_{JS}(P\|Q) = H(M) \frac{1}{2}[H(P) + H(Q)]$, where $M = \frac{P+Q}{2}$ and $H(\cdot)$ is entropy.
- 4. **GAN Connection:** Explain how the original GAN objective relates to Jensen-Shannon divergence. What are the advantages and disadvantages of this choice?
- 5. Variational Representation: Write the variational form of KL divergence using the Fenchel conjugate. How is this used in practice for training generative models?
- 6. **Comparison Analysis:** Compare KL divergence and Jensen-Shannon divergence in terms of: (a) symmetry, (b) boundedness, (c) optimization properties, (d) use cases in generative modeling.

- 7. **Mode-Seeking vs Mode-Covering:** Design a simple 2D example with a mixture of Gaussians to illustrate the difference between forward and reverse KL divergence optimization.
- 8. **f-GAN Framework:** For the generator function $f(t) = (t-1)^2$ (²-divergence), derive the corresponding GAN objective. How does this relate to least-squares GAN?
- 9. **Numerical Implementation:** Implement a numerically stable version of JS divergence computation. What issues arise when probability values are very small?
- 10. **Application Selection:** For each scenario, choose the most appropriate divergence and justify your choice: (a) VAE training, (b) Fair comparison of two generative models, (c) Mode-covering generator training, (d) Stable GAN training with non-saturating gradients.