Topology and Analysis Class Notes

Alexander Richardson

1 Definitions

Topology: Let X be a set, then a topology τ on X is a collection of open subsets such that:

- 1. \emptyset and X are open. Or, \emptyset , $X \in \tau$.
- 2. A finite intersection of open sets is open; i.e. for $U_1,\ldots,U_n\in\tau$

$$\bigcap_{i=1}^{n} U_i \in \tau$$

3. An arbitrary union of open sets is open; i.e. $\forall U \in \tau$

$$\bigcup_{U \in \tau} U \in \tau$$

in any topological space, the closed sets satisfy the following.

- 1. \varnothing and X are closed. Or, $\varnothing, X \in \tau^c$.
- 2. A finite union of closed sets is closed; i.e. for $A_1, \ldots, A_n \in \tau^c$

$$\bigcup_{i=1}^{n} A_i \in \tau^c$$

3. An arbitrary intersection of closed sets is closed; i.e. $\forall A \in \tau^c$

$$\bigcap_{A \in \tau^c} A \in \tau^c$$

Discrete Space: A space with the discrete topology; that is, the topology on a set X where each $U \subseteq X$ is declared open, in particular each $\{x\} \in X$ is open.

Ordinary Topology: Let $X=\mathbb{R}$ then a subset $U\subseteq\mathbb{R}$ is open if $\forall\ x\in U\ \exists\ J=(a,b)$ such that $x\in J\subseteq U$.

Normed Vector Space: A normed vector space V over \mathbb{R} is a vector space with a mapping

$$V \to \mathbb{R}$$
$$v \mapsto ||v||$$

such that

- 1. $||v|| \ge 0$ and $||v|| = 0 \iff v = 0$.
- 2. If $c \in \mathbb{R}$ and $v \in V$, then $||cv|| = |c| \cdot ||v||$.
- 3. If $v, u \in V$, then

$$||v + u|| \le ||v|| + ||u||$$

denoted $(V, ||\cdot||)$.

Cauchy Sequence: let $\{x_n\}_{n\in\mathbb{N}}$ be any sequence in a normed vector space $(V, ||\cdot||)$. The sequence is cauchy if $\forall \epsilon > 0 \exists N$ such that $\forall n, m \geq N$ we have

$$||x_n - x_m|| < \epsilon$$

Converge: let $\{x_n\}_{n\in\mathbb{N}}$ be any sequence in a normed vector space $(V, ||\cdot||)$. The sequence converges to $v \in V$ if $\forall \epsilon > 0 \exists N$ such that $\forall n \geq N$ we have

$$||v - x_n|| < \epsilon$$

Sup Norm: Let S be a set. A map

$$f: S \to (V, ||\cdot||)$$

into a normed vector space V is bounded if $\exists c \in \mathbb{R}$ with c > 0 such that $||f(x)|| \le c \ \forall \ x \in S$. If f is bounded, define

$$||f||_S := \sup_{x \in S} ||f(x)||$$

called the sup norm.

L¹-Norm: Let C([0,1]) be the space of continuous functions on [0,1]. For $f \in C([0,1])$ define

$$||f||_1 = \int_0^1 |f(x)| dx$$

then $||\cdot||_1$ is a norm on C([0,1]) called the L^1 -norm.

Uniformly Cauchy Map: A sequence of maps $\{f_n\}_{n\in\mathbb{N}}$ with $f_n: S \to (V, ||\cdot||)$ is uniformly cauchy on a set S if given $\epsilon > 0 \exists N$ such that $\forall n, m \geq N$ we have

$$||f_n - f_m||_S < \epsilon$$

Uniformly Convergent Map: A sequence of maps $\{f_n\}_{n\in\mathbb{N}}$ with

$$f_n: S \to (V, ||\cdot||)$$

is uniformly convergent to a map f, if given $\epsilon > 0 \exists N$ such that $\forall n \geq N$ we have

$$||f_n - f||_S < \epsilon$$

Uniformly Continuous:

$$f:(X,d_X)\to (Y,d_Y)$$

is uniformly continuous if $\forall \epsilon > 0, \exists \delta > 0$ such that

$$d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \epsilon$$

Continuous:

$$f:(X,d_X)\to (Y,d_Y)$$

is continuous at $x_0 \in X$ if $\forall \epsilon > 0, \exists \delta > 0$ such that

$$d_X(x,x_0) < \delta \implies d_Y(f(x),f(x_0)) < \epsilon$$

f is continuous on X if it is continuous at x_0 for all $x_0 \in X$.

Metric Space: Let X be a set, a metric on X is map d with

$$d: X \times X \to \mathbb{R}$$
$$(x, y) \mapsto d(x, y)$$

such that

- 1. $d(x,y) \ge 0 \ \forall \ x,y \in X \text{ and } d(x,y) = 0 \iff x = y$.
- 2. $\forall x, y \in X$ we have d(x, y) = d(y, x).
- 3. $\forall x, y, z \in X$ we have

$$d(x,z) \le d(x,y) + d(y,z)$$

a set with a metric is a metric space (X, d).

If $U\subseteq X$ such that $U\neq\varnothing$ then we can define $(U,d|_{U\times U})$ as a metric subspace.

For a normed vector space $(V, ||\cdot||)$, the norm $||\cdot||$ induces a metric

$$d(v, u) := ||v - u||$$

If $A, B \subseteq V$ then

$$d(A, B) = \inf ||a - b||$$
, such that $a \in A, b \in B$

Semi-Metric space: Let X be a set, a semi-metric on X is map d with

$$d: X \times X \to \mathbb{R}$$
$$(x, y) \mapsto d(x, y)$$

such that

- 1. $d(x,y) \ge 0 \ \forall \ x,y \in X$ and d(x,x) = 0. The distinction here being $d(x,y) = 0 \Rightarrow x = y$
- 2. $\forall x, y \in X$ we have d(x, y) = d(y, x).
- 3. $\forall x, y, z \in X$ we have

$$d(x,z) \le d(x,y) + d(y,z)$$

a set with a semi-metric is a semi-metric space (X, d).

Isometric: For metric spaces (X, d_X) and (Y, d_Y) a map

$$f: X \to Y$$

is isometric if

$$d_X(v, w) = d_Y(f(v), f(w)) \quad \forall \ v, w \in X$$

if in addition f is surjective, then f is an **Isometric Isomorphism**.

Lipschitz: A function

$$f:(X,d_X)\to (Y,d_Y)$$

is Lipschitz if $\exists C \geq 0$ with $C \in \mathbb{R}$, such that

$$d_Y(f(x), f(y)) \le Cd_X(x, y) \quad \forall \ x, y \in X$$

the smallest such

$$C := L(f)$$

is the Lipschitz constant.

Complete: A metric space X is complete if every Cauchy sequence converges to a point in X; i.e. $\forall \{x_i\}_{i=1}^{\infty} \in X, x_i \to x \in X$.

Completion: For (X, d) a metric space, the completion of (X, d) is a complete metric space (X_{\sim}, d_{\sim}) together with an isometric function

$$f: X \to X_{\sim}$$

where $f(X) \subseteq X_{\sim}$ is dense in X_{\sim} .

Profinite Topology: Let G be a group, then $U \subseteq G$ is open if $\forall x \in U \exists$ a subgroup H of G, of finite index, such that $xH \subseteq U$.

Ideal Topology: Let R be a commutative ring with unity, then $U \subseteq R$ is open if $\forall x \in U \exists$ an ideal I of R such that $x + I \subseteq U$.

Zariski Topology: An algebraic topology. For instance let $X = \mathbb{R}^n$ and

$$f: \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \to \mathbb{R}$$

be a polynomial in n variables, $\mathbf{a} \in \mathbb{R}^n$ is a zero of f if $f(\mathbf{a}) = \mathbf{0}$, then a subset $S \subseteq \mathbb{R}^n$ is closed if \exists a family $\{f_i\}_{i \in I}$ of polynomials in n variables such that S is the zero set of $\{f_i\}_{i \in I}$. That is

$$S = \{ \mathbf{a} \in \mathbb{R}^n : f_i(\mathbf{a}) = \mathbf{0} \ \forall \ i \in I \}$$

Boundary Point: Let (X, τ) be a topological space and $S \subseteq X$ a subset of X, then $x \in X$ is a boundary point of S if $\forall U \in \tau$ such that $x \in U$ we have $x \neq s \in S$ and $y \notin S$ such that $s, y \in U$. That is, U contains both a point in S, and a point not in S.

Dense: Let (X, τ) be a topological space and $S \subseteq X$, then S is dense in X if $\overline{S} = X$.

equivalently, S is dense iff for each open $U\subseteq X$ such that $U\neq\varnothing$ there is some $s\in S$ such that $s\in U$.

In terms of metrics, this is $\forall x \in X$ and $\epsilon > 0$, $\exists s \in S$ such that $d(x,s) < \epsilon$

Base: A collection $\mathcal{B} = \{B_{\alpha} : \alpha \in I\} \subseteq X$ of open subsets is a base for the topology on X if for every $U \subseteq X$ open, we have $U = \bigcup_{B_{\alpha} \in \mathcal{B}} B_{\alpha}$ for some $\alpha \in I$.

If X is a set and \mathcal{B} a collection of subsets of X satisfying

$$1.) X = \bigcup_{B \in \mathcal{B}} B$$

2.) if
$$B_1, B_2 \in \mathcal{B}, x \in B_1 \cap B_2 \implies \exists B_3 \in \mathcal{B} \text{ such that } x \in B_3 \subseteq B_1 \cap B_2$$

Then the collection of all unions of elements in $\mathcal B$ is a unique topology on X generated by base $\mathcal B$

Sub-Base: If S is a collection of subsets of X such that

$$\bigcup_{V \in \mathcal{S}} V = X$$

and the finite intersection of elements of $\mathcal S$ is a base for X, then $\mathcal S$ is a sub-base for τ .

Refinement: let X be a set and τ, σ topologies on X then σ is a refinement of τ if for each $U \in \tau$ we also have $U \in \sigma$.

This can also be stated as τ is coarser than σ .

Coarse: Let X be a topological space and let τ_1, τ_2 be two topologies for X. If $\tau_1 \subseteq \tau_2$ then τ_1 is coarser than τ_2 .

Fine: Let X be a topological space and let τ_1, τ_2 be two topologies for X. If $\tau_1 \subseteq \tau_2$ then τ_2 is finer than τ_1 .

Quotient Topology: If X is a topological space, Y is a set, and $\pi: X \to Y$ is a surjective map, the Quotient Topology on Y determined by π is defined by declaring a subset $U \subseteq Y$ to be open iff $\pi^{-1}(U) \subseteq X$ is open in X. or

$$\tau_Y = \{ U \subseteq Y : \pi^{-1}(U) \in \tau_X \}$$

we need the surjectiveness here otherwise if $y \notin \pi(X)$, then $\pi^{-1}(\{y\}) = \emptyset \implies \{y\}$ is open.

equivalently if we define $x_1 \sim x_2$ iff $\pi(x_1) = \pi(x_2)$ then for $Y = X/\sim$ we have

$$\pi: X \to X/\sim$$

is the quotient topology determined by π .

Final Topology: Given $\{(X_{\alpha}, \tau_{\alpha})\}_{{\alpha} \in \Lambda}$ and a set Y the final topology is the finest topology on Y such that the family

$$\mathcal{F} = \{ f_{\alpha} : X_{\alpha} \to Y : \alpha \in \Lambda \}$$

is continuous $\forall \alpha$; i.e. $U \in \tau_Y$ iff $f_{\alpha}^{-1}(U) \in \tau_{\alpha} \ \forall \ \alpha$.

Weak Topology: Let Y be a topological space and let \mathcal{F} be a family of mappings

$$f: X \to Y$$

let

$$\tau_X = \{ f^{-1}(W) \subseteq X : W \subseteq Y \text{ is open } ; f \in \mathcal{F} \}$$

then τ_X is the weak topology on X determined by \mathcal{F} and is the coarsest topology on X such that each $f \in \mathcal{F}$ is continuous.

equivalently, let X be a set and $\{Y_{\alpha}\}$ a family of topological spaces. For each α , let

$$f_{\alpha}: X \to Y_{\alpha}$$

be a map. The weak topology on X is the corsest topology making each f_{α} continuous.

Note: the sub-base for the weak topology has all sets of the form $f_{\alpha}^{-1}(U)$ where $U \subseteq Y_{\alpha}$ is open.

Relative Topology: If (X, τ) is a topological space and $S \subseteq X$ is arbitrary, the relative topology is defined by declaring $U \subseteq S$ to be open iff $\exists V \in \tau$ such that $U = V \cap S$.

Hausdorff: Suppose X is a topological space. If for every pair of distinct points $x,y\in X$ \exists $U,V\subset X$ open, such that $U\cap V=\varnothing$ and $x\in U,\ y\in V$, then X is hausdorff.

Separable: A topological (X, τ) space is separable if it has a countable base.

If (X, d) is a metric space, and has a countable dense subset, then X is separable; i.e. if $A \subset X$ is a countable dense subset then X is separable.

Continuous Map: Let X,Y be topological spaces, a map $f:X\to Y$ is continuous if \forall open $V\subseteq Y$ we have $f^{-1}(V)\subseteq X$ is open.

Note, that if $U \subseteq X$ is open, then $f(U) \subseteq Y$ may not be open.

Product Topology: Let $\{X_i\}_{i\in I}$ be a family of topological spaces and let

$$X = \prod_{i \in I} X_i$$

a topology on X is determined by declaring $U \subseteq X$ to be open if $\forall x \in U, \exists$ a finite number of indices $i_1, \ldots i_n$ and open subsets $U_{i_j} \subseteq X_{i_j}$ for $i \leq j \leq n$ such that

$$x \in U_{i_1} \times \cdots \times U_{i_n} \times \prod_{i \neq i_1, \dots i_n} X_i \subseteq U$$

that is the product topology has as base all sets of the form

$$U_{i_1} \times \cdots \times U_{i_n} \times \prod_{i \neq i_1, \dots i_n} X_i$$

which is to say, arbitrary open sets at a finite number of components and the full space in all other components.

The product topology is the coarsest topology on X such that each projection map

$$\pi_i: X \to X_i$$

is continuous.

Regular: Suppose that one-point sets are closed in (X, τ) . Then X is said to be regular if for each pair consisting of a point x and a closed set $A \subset X$ such that $A \cap x = \emptyset$, there exist $U, V \in \tau$ where $U \cap V = \emptyset$, such that

$$x \in U$$
, and $A \subset V$

i.e. for closed $A \subseteq X$ with $x \notin A$, \exists disjoint $U, V \in \tau$ with $x \in U$ and $A \subseteq V$.

Normal: Suppose that one-point sets are closed in (X, τ) . Then X is normal if for $A, B \subset X$ closed such that $A \cap B = \emptyset$, $\exists U, V \in \tau$ with $U \cap V = \emptyset$, such that

$$A \subset U$$
, and $B \subset V$

Banach Space: A complete normed vector space.

Topological Convergence: A sequence $\{x_n\}$ in a topological space X is said to converge to $x \in X$, denoted $x_n \to x$, iff for each neighborhood U_x of x, there is some positive integer $N \in \mathbb{N}$ such that $n > N \implies x_n \in U_x$. In this case, we say $\{x_n\}$ is eventually in U_x .

Directed Set: A set Λ is a directed set iff there is a relation \leq on Λ satisfying:

- 1. $\lambda \leq \lambda$, for each $\lambda \in \Lambda$.
- 2. If $\lambda_1 \leq \lambda_2$ and $\lambda_2 \leq \lambda_3$ then $\lambda_1 \leq \lambda_3$.
- 3. If $\lambda_1, \lambda_2 \in \Lambda$ then there is some $\lambda_3 \in \Lambda$ with $\lambda_1 \leq \lambda_3$ and $\lambda_2 \leq \lambda_3$.

Net: A net in a set X is a function

$$\Lambda \to X \\
\lambda \to x_{\lambda}$$

where Λ is some directed set.

If $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ is a net in X, then $x_{\lambda}\to x$ if for each neighborhood U_x there is some $\lambda_0\in\Lambda$ such that

$$\lambda \ge \lambda_0 \implies x_\lambda \in U_x$$

so $x_{\lambda} \to x$ if for every neighborhood U of x we have x_{λ} is eventually in U.

Cover: Let X be a topological space. A cover of X is a collection \mathcal{U} of subsets of X whose union is X; i.e.

$$\bigcup_{U \in \mathcal{U}} U = X$$

a subcover is a subcollection of \mathcal{U} that is still a cover, i.e. $\mathcal{U}' \subset \mathcal{U}$ where

$$\bigcup_{U \in \mathcal{U}'} U = X$$

 \mathcal{U} is an open cover if each $U \in \mathcal{U}$ is open.

Compact: A topological space X is compact if every open cover; i.e. $\bigcup_{U \in \mathcal{U}} U = X$, has a finite subcover.

A compact subset $S \subseteq X$ of a topological space X, is one that is a compact space in the relative topology.

Finite Intersection Property: Let X be a topological space, and $\{A_{\alpha}\}_{{\alpha}\in I}$ a family of nonempty subsets of X. Then $\{A_{\alpha}\}_{{\alpha}\in I}$ has the finite intersection property if every finite subcollection of $\{A_{\alpha}\}_{{\alpha}\in I}$ has nonempty intersection; i.e. $\{A_{i_1},\ldots,A_{i_n}\}\subset \{A_{\alpha}\}_{{\alpha}\in I}$ gives

$$\bigcap_{j=1}^{i_n} A_{i_j} \neq \emptyset$$

for all subsets such that $|\{A_{i_1},\ldots,A_{i_n}\}| < \infty$.

Disconnected: A topological space X is disconnected if it has 2 disjoint nonempty open subsets whose union is X; i.e. $U, V \subset X$ open, such that

$$U \neq \emptyset$$
, $V \neq \emptyset$, where $U \cap V = \emptyset$, and $U \cup V = X$

Connected: A topological space X is connect if it is not disconnected. Equivalently it is connected iff its' only subsets which are both open and closed are: \emptyset , and X itself.

A connected subset of X is a subset that is a connected space when endowed with the subspace topology.

Axiom of Choice: For any collection \mathcal{C} of non-empty sets, there's is a set that contains exactly one element for each $A \in \mathcal{C}$.

Partially Ordered Set: A pair (P, \leq) such that.

- 1. $x \le x \ \forall \ x \in P$.
- 2. $x \le y$ and $y \le z \implies x \le z$.
- 3. If $x \leq y$ and $y \leq x$, then x = y

a totally ordered set also satisfies: $\forall x, y \in P$

$$x \le y \text{ or } y \le x$$

.

Chain: A chain in P is a subset C of P that is totally ordered in the partial order of P.

Inductively Ordered: Say that P is inductively ordered if for any chain \mathcal{C} in P there is an $a \in P$, possibly in \mathcal{C} , such that $c \leq a \, \forall \, c \in \mathcal{C}$ so a is an upper bound for \mathcal{C} .

i.e. a partially ordered set P is inductively ordered if every chain has an upper bound.

Maximal: $m \in P$ is a maximal element if $a \ge m \implies a = m$. Not unique, can have many maximal elements.

Zorn's Lemma: if a partially ordered set P is inductively ordered then P has at least one maximal element.

Bounded: let (X, d) be a metric space. A subset $A \subseteq X$ is bounded if $\exists C \in \mathbb{R}^+$ such that

$$d(x,y) \le C \quad \forall \ x,y \in A$$

if X is a set and (Y, d) a metric space, then

$$f: X \to Y$$

is bounded if $f(X) \subseteq Y$ is bounded.

Equicontinuous: let (X, τ) be a topological space and (Y, d) a metric space, and let $\mathcal{F} \subseteq C(X, Y)$. Then \mathcal{F} is equicontinuous at x if $\forall \epsilon > 0 \; \exists \; O_x \in \tau$ such that $\forall f \in \mathcal{F}$ and any $y \in O_x$ we have

$$d(f(x), f(y)) < \epsilon$$

 \mathcal{F} is equicontinuous if it is equicontinuous at $x, \ \forall \ x \in X$.

Totally Bounded: let (X, d) be a metric space a subset A is totally bounded if $\forall \epsilon > 0$, A can be covered by a finite number of open ϵ -balls; i.e.

$$A \subseteq \bigcup_{i=1}^{n} B_{\epsilon}^{i}$$

Any subset of a totally bounded set is totally bounded.

Pointwise Totally Bounded: let (X, τ) be a topological space and (Y, d) a metric space. Given $\epsilon > 0$ and $x \in X$ if $\exists g_j \in C_B(X, Y)$ such that

$$d(f(x), g_j(x)) < \epsilon$$

Then $\{B_{\epsilon}(g_j(x))\}_{i=1}^n$ covers $\{f(x): f \in \mathcal{F}\}$ and so \mathcal{F} is pointwise totally bounded.

Locally Compact: let (X, τ) be a topological space. then X is locally compact if $\forall x \in X, \exists O \in \tau$ with $x \in O$ such that \overline{O} is compact.

Ring: Let X be a set, a nonempty collection of subsets $\mathcal{R} \subseteq \mathcal{P}(X)$ is a ring if

- 1. $E, F \in \mathcal{R} \implies E \cup F \in \mathcal{R}$. Closure under set union.
- 2. $E, F \in \mathcal{R} \implies E \setminus F \in \mathcal{R}$. Closure under set difference. This also implies that \mathcal{R} is closed under intersection as

$$E \setminus (E \setminus F) = E \setminus (E \cap F^c)$$

$$= E \cap (E \cap F^c)^c$$

$$= E \cap (E^c \cup F)$$

$$= (E \cap E^c) \cup (E \cap F)$$

$$= \varnothing \cup (E \cap F)$$

$$= (E \cap F)$$

This also implies, by induction, that a ring \mathcal{R} is closed under finite unions and intersections; i.e. if $E_1, \ldots, E_n \in \mathcal{R}$ then

$$\bigcup_{i=1}^{n} E_i \in \mathcal{R}$$

and

$$\bigcap_{i=1}^{n} E_i \in \mathcal{R}$$

as well as $\emptyset \in \mathcal{R}$. Since if $E \in \mathcal{R}$ then

$$E \setminus E = \emptyset \in \mathcal{R}$$

If, in addition, $X \in \mathcal{R}$, then \mathcal{R} is a **Field** or **Algebra**.

σ-Ring: Let X be a set, a nonempty collection of subsets $S \subseteq \mathcal{P}(X)$ is a σ-ring if it is a ring and, in addition, is closed under countable unions; i.e. if $E_1, E_2, \dots \in S$ then

$$\bigcup_{i=1}^{\infty} E_i \in \mathcal{S}$$

where this also implies closure under countable intersection since if $F = \bigcup_{i=1}^{\infty} E_i$ then

$$\bigcap_{i=1}^{\infty} E_i = F \setminus \left(\bigcup_{i=1}^{\infty} (F \setminus E_i) \right)$$

If, in addition, $X \in \mathcal{S}$, then \mathcal{S} is a σ -Field or σ -Algebra.

σ-Algebra: Let X be a set, a collection of subsets $A \subseteq \mathcal{P}(X)$ is a σ-algebra in X if it satisfies

- 1. Nonemptiness: $A \neq \emptyset$.
- 2. Closure under Compliments: If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.
- 3. Closure under Countable Unions: If $A_1, A_2 \cdots \in \mathcal{A}$, then

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$$

this also implies closure under countable intersection as

$$\bigcap_{i=1}^{\infty} A_i = \left(\bigcup_{i=1}^{\infty} A_i^c\right)^c \in \mathcal{A}$$

Generated σ -Algebra: Let X be a set and \mathcal{S} a collection of subsets of X, then the σ -algebra generated by \mathcal{S} is the intersection of all σ -algebras containing \mathcal{S} denoted $\sigma(\mathcal{S})$; that is

$$\sigma(\mathcal{S}) = \bigcap_{\mathcal{S} \subset \mathcal{A}} \mathcal{A}$$

Borel Sets: Let (X, τ) be a topological space, then $\sigma(\tau)$ is the σ -ring of Borel sets of X.

Measure: Let X be a set with σ -ring \mathcal{R} . A measure is a function

$$\mu: \mathcal{R} \to [0, \infty]$$

satisfying

- 1. $\mu(\emptyset) = 0$.
- 2. Countable Additivity: If $E_1, E_2, \dots \in \mathcal{R}$ are mutually disjoint; i.e. $E_i \cap E_j = \emptyset$ whenever $i \neq j$. Then

$$\mu\left(\bigsqcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)$$

this also holds for finite additivity; i.e. for $E_1, \ldots E_n \in \mathcal{R}$ mutually disjoint we have $\mu(\bigsqcup_{i=1}^n E_i) = \sum_{i=1}^n \mu(E_i)$ by simply setting $E_k = \emptyset \ \forall \ k > n$.

Semiring: Let X be a set, a collection of subsets $S \subseteq \mathcal{P}(X)$ is a semiring if

- 1. $\emptyset \in \mathcal{S}$.
- 2. If $E, F \in \mathcal{S} \implies E \cap F \in \mathcal{S}$.
- 3. If $E, F \in \mathcal{S}$ then $\exists E_1, \ldots, E_n \in \mathcal{S}$ such that

$$E \setminus F = \bigsqcup_{i=1}^{n} E_i$$

Premeasure: Let S be a semiring, then the function

$$\mu_0: \mathcal{S} \to [0, \infty]$$

is a premeasure if it is countably additive.

Monotone: If \mathcal{C} is any collection of subsets of a set X, and if $\mu : \mathcal{C} \to \mathbb{R}^+$ is any function, we say that μ is monotone if whenever $E, F \in \mathcal{C}$ and $E \subseteq F$, then $\mu(E) \leq \mu(F)$

Countable Sub-Additive: Let \mathcal{C} be a family of subsets of X and $\mu: \mathcal{C} \to \mathbb{R}^+$ a mapping. We say that μ is countably sub-additive if whenever $E \subseteq \bigcup_{j=1}^{\infty} F_j$ not necessarily disjoint with $E, \{F_j\}_{j=1}^{\infty} \in \mathcal{C}$, then

$$\mu(E) \le \sum_{j=1}^{\infty} \mu(F_j)$$

Countably Covered: Let \mathcal{S} be a collection of subsets of the set X. Then $A \subset X$ is countably covered by \mathcal{S} if $\exists \{E_i\}_{i=1}^{\infty} \in \mathcal{S}$ such that

$$A \subseteq \bigcup_{i=1}^{\infty} E_i$$

Let $\mathcal{H}(S)$ be the collection of all sets countably covered by S, then $\mathcal{H}(S)$ is a σ -ring and is **Hereditary** meaning if $E \in \mathcal{H}(S)$ and $F \subseteq E$ then $F \in \mathcal{H}(S)$.

Outer Measure: Let \mathcal{H} be a hereditary σ -ring of subsets of X, then

$$\mu^*: \mathcal{H} \to [0, \infty]$$

is an outer measure if

- 1. $\mu^*(\emptyset) = 0$
- 2. μ^* is monotone; i.e. if $F \subseteq E$ and $E \in \mathcal{H}$, then

$$\mu^*(F) \le \mu^*(E)$$

3. μ^* is countably subadditive; i.e. if $F \subseteq \bigcup_{i=1}^{\infty} E_i$ where $E_i \in \mathcal{H}$, then

$$\mu^*(F) \le \sum_{i=1}^{\infty} \mu^*(E_i)$$

If S is a semiring and μ_0 a premeasure on S, and μ^* the outer measure on $\mathcal{H}(S)$ determined by μ_0 then

1. $\mu^*|_{\sigma(S)}$ is a measure on the σ -ring generated by S which extends μ_0 .

2. $\mu^*|_{M(\mu^*)}$ is a complete measure on the σ -ring $M(\mu^*)$ which extends $\mu^*|_{\sigma(S)}$ and hence μ_0 .

Measurable: Given a hereditary σ -ring \mathcal{H} and an outer measure μ^* on \mathcal{H} , $E \in \mathcal{H}$ is μ^* -measurable if for every $A \in \mathcal{H}$ we have

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E)$$

the collection of all μ^* -measurable sets is denoted $M(\mu^*)$.

Note: by the subadditivity of μ^* we always have $\mu^*(A) \leq \mu^*(A \cap E) + \mu^*(A \cap E^c)$

Complete Measure: Let \mathcal{R} be a σ -ring and μ a measure on \mathcal{R} . Then μ is complete if whenever $E \in \mathcal{R}$ and $\mu(E) = 0$, then for all $F \subseteq E$ we have $F \in \mathcal{R}$ and $\mu(F) = 0$

σ-Finite: Let \mathcal{S} be a collection of subsets of X, and let $\mu: \mathcal{S} \to [0, \infty]$ be a set function. Then $E \subseteq X$ is σ-finite if $\exists \{F_i\} \in \mathcal{S}$ such that $E \subseteq \bigcup_{i=1}^{\infty} F_i$ and $\mu(F_i) < \infty \, \forall i$.

If each $E \in \mathcal{S}$ is σ -finite, then μ is σ -finite.

If X is σ -finite, then μ is **Totally** σ -Finite.

Simple S-Measurable Function: Let X be a set and S a σ -ring of subsets of X, and B a Banach Space. Then a function

$$f: X \to B$$

is a simple S-measurable function if

- 1. $Im(f) = \{b_1, ..., b_n\} \in B$ is finite.
- 2. For each $b_i \in B$ such that $b_i \neq 0$ we have $f^{-1}(b_i) = E_i \in \mathcal{S}$.

the family $\mathcal F$ of B-valued simple $\mathcal S$ -measurable functions are functions of the form

$$f = \sum_{i=1}^{n} b_i \chi_{E_i}, \text{ with } \chi_{E_i}(x) = \begin{cases} 1, & x \in E_i \\ 0, & \text{otherwise} \end{cases}$$

where the b_i 's are distinct and the E_i 's $\in \mathcal{S}$ are disjoint.

Note: simple \mathcal{S} -measurable \Longrightarrow simple μ -measurable.

S-Measurable Function: Let X be a set and S a σ -ring of subsets of X, and B a Banach Space. Then a function

$$f: X \to B$$

is a S-measurable function if $\exists \{f_n\}_{n\in\mathbb{N}}$ of simple S-measurable functions such that $f_n \to f$ pointwise; i.e. $\forall x \in X$ we have $f_n(x) \to f(x)$.

Note: S-measurable $\implies \mu$ -measurable.

Null-Set: Let X be a set, S a σ -ring of subsets of X, and μ a measure on S. A subset $E \subset X$ is a null-set with respect to μ if $\exists F \in S$ such that $E \subseteq F$ and $\mu(F) = 0$. The null-sets form a hereditary σ -ring denoted $N(\mu)$.

that is E is contained in some set of S of measure zero.

Almost Everywhere: Let X be a set, S a σ -ring of subsets of X, and μ a measure on S. A property P on X is said to hold almost everywhere if $\exists N(\mu)$ such that P is true $\forall x \in X \setminus N(\mu)$.

Simple μ -Measurable: Let X be a set, S a σ -ring of subsets of X, μ a measure on S, and let B be a Banach space. Then a function

$$f: X \to B$$

is a simple μ -measurable function if f is a simple $(S \sqcup N(\mu))$ -measurable function. where

$$S \sqcup N(\mu) = \{E \sqcup F : E \in S, F \in N(\mu)\}$$

 μ -Measurable: Let X be a set, S a σ -ring of subsets of X, μ a measure on S, and let B be a Banach space. Then a function defined almost everywhere on X

$$f: X \setminus N(\mu) \to B$$

is a μ -measurable function if $\exists \{f_n\}_{n\in\mathbb{N}}$ of simple μ -measurable functions such that $f_n \to f$ pointwise; i.e. $\forall x \in X \setminus N(\mu)$ we have $f_n(x) \to f(x)$.

Carrier: Let X be a set and let B be a Banach space. For any function

$$f: X \to B$$

the carrier of f denoted

$$car(f) = \{x \in X : f(x) \neq 0 \in B\}$$

similar to the support.

Almost Uniformly: Let (X, \mathcal{S}, μ) be a measure space, let $\{f_n\}$ be a sequence of μ -measurable functions, and let $E \in \mathcal{S}$. Then $f_n \to f$ almost uniformly on E, if $\forall \epsilon > 0 \; \exists \; F \in \mathcal{S}$ such that $F \subseteq E$ where

$$\mu(E \setminus F) < \epsilon$$

and $f_n \to f$ uniformly on F.

By Egoroff's Theorem, if we have a sequence $\{f_n\}$ of μ -measurable functions such that $f_n \to f$ pointwise on a set of finite measure, then $f_n \to f$ almost uniformly; i.e. if $\forall x \in E \setminus N(\mu)$ we have $f_n(x) \to f(x)$, then $f_n \to f$ almost uniformly on E.

Almost Uniformly Cauchy: Let (X, S, μ) be a measure space, let B a Banach space, let $\{f_n\}$ be a sequence of μ -measurable functions, and let $E \in S$. Then $f_n \to f$ almost uniformly cauchy on E, if $\forall \epsilon > 0 \exists F \in S$ such that $F \subseteq E$ where

$$\mu(E \setminus F) < \epsilon$$

such that $\{f_n\}$ is uniformly cauchy on F; i.e. $\forall \delta > 0 \exists N$ such that

$$m, n \ge N \implies ||f_m(x) - f_n(x)||_B < \delta \quad \forall \ x \in F$$

Converges in Measure: Let (X, \mathcal{S}, μ) be a measure space with $E \in \mathcal{S}$, let B a Banach space, and let $\{f_n\}$ be a sequence of \mathcal{S} -measurable B-valued functions, then $\{f_n\}$ converges in measure on E to $f \in \mathcal{S}$ -measurable if $\forall \epsilon > 0$

$$\mu(\lbrace x \in E : ||f(x) - f_n(x)|| \ge \epsilon \rbrace) \to 0 \text{ as } n \to \infty$$

Note: when dealing with these sets we must have

$$\{x \in E : ||f(x) - g(x)||_B > \epsilon\}$$

$$\subseteq \left\{x \in E : ||f(x)||_B > \frac{\epsilon}{2}\right\} \cup \left\{x \in E : ||g(x)||_B > \frac{\epsilon}{2}\right\}$$

and NOT

$$\{x \in E : ||f(x) - g(x)||_B > \epsilon \}$$

$$\subseteq \{x \in E : ||f(x)||_B > \epsilon \} \cup \{x \in E : ||g(x)||_B > \epsilon \}$$

consider

$$|a|<\frac{\epsilon}{2} \text{ and } |b|<\frac{\epsilon}{2} \implies |a+b| \leq |a|+|b|<\epsilon$$

then taking the negation we have

$$|a+b| \ge \epsilon \implies |a| \ge \frac{\epsilon}{2} \text{ or } |b| \ge \frac{\epsilon}{2}$$

for a concrete example in our case note that if $f(x) = \frac{\epsilon}{2}$ and $g(x) = -\frac{\epsilon}{2}$, then

$$f(x) - g(x) = \epsilon \implies x \in \{x \in E : ||f(x) - g(x)||_B > \epsilon\}$$

yet

$$x \notin \{x \in E : ||f(x)||_B > \epsilon\}$$
 and $x \notin \{x \in E : ||g(x)||_B > \epsilon\}$

and so

$${x \in E : ||f(x) - g(x)||_B > \epsilon} \supset {x \in E : ||f(x)||_B > \epsilon} \cup {x \in E : ||g(x)||_B > \epsilon}$$

Cauchy in Measure: Let (X, S, μ) be a measure space with $E \in S$, let B a Banach space, and let $\{f_n\}$ be a sequence of S-measurable B-valued functions, then $\{f_n\}$ is cauchy in measure on E if $\forall \epsilon > 0$

$$\mu(\{x \in E : ||f_m(x) - f_n(x)|| \ge \epsilon\}) \to 0 \text{ as } n, m \to \infty$$

Simple Integrable Function: Let X be a set and S a σ -ring of subsets of X, and B a Banach Space. Then a function

$$f: X \to B$$

if it is a simple S-measurable function and the preimage of each $b \in \text{Im}(f)$ has finite measure; i.e. for each $f^{-1}(b) = E \in \mathcal{S}$ we have $\mu(E) < \infty$. Then the integral of $f = \sum_{i=1}^{n} b_i \chi_{E_i}$ is

$$\int f d\mu = \sum_{i=1}^{n} b_i \mu(E_i)$$

 L^1 Semi-norm: Let (X, \mathcal{S}, μ) be a measure space and let B a Banach Space. Then a function

$$f: X \to B$$

that is a simple integrable function, has semi-norm $||\cdot||_1$ defined by

$$||f||_1 = \int ||f(x)||_B d\mu(x)$$

Mean Cauchy: Let (X, \mathcal{S}, μ) be a measure space and let B a Banach Space. Then a sequence $\{f_n\}$ of simple integrable functions is mean cauchy if it is a cauchy sequence with respect to $||\cdot||_1$; i.e.

$$\lim_{n,m} ||f_n - f_m||_1 = 0$$

 μ -integrable: Let f be a S-measurable B-valued function, then f is μ -integrable if it satisfies one, and hence all, of the conditions.

- 1. There is a mean cauchy sequence $\{f_n\}$ of ISFs that converge in measure to f.
- 2. There is a mean cauchy sequence $\{f_n\}$ of ISFs such that $f_n \to f$ almost uniformly.
- 3. There is a mean cauchy sequence $\{f_n\}$ of ISFs such that $f_n \to f$ pointwise almost everywhere.

with the μ -integral of f defined by

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

 $\mathcal{L}^1(X, \mathcal{S}, \mu, B)$: The vector space of μ -integrable B-valued functions; i.e. if $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$, then \exists a mean cauchy sequence $\{f_n\}$ of simple integrable functions such that $f_n \to f$ in measure, almost uniformly, and pointwise almost everywhere.

If $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$ then $x \mapsto ||f(x)||_B \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$.

Convergence in Mean: Let (X, \mathcal{S}, μ) be a measure space and let B a Banach Space. Then a sequence $\{f_n\}$ of simple integrable functions converges in mean to a μ -integrable function f if

$$\lim_{n} ||f - f_n||_1 = 0$$

 $L^1(X, \mathcal{S}, \mu, B)$: The complete normed vector space defined by

$$L^1(X, \mathcal{S}, \mu, B) = \mathcal{L}^1(X, \mathcal{S}, \mu, B) / \sim$$

where \sim is the equivalence class of simple integrable functions which are mean cauchy.

Indefinite Integral: Let (X, \mathcal{S}, μ) be a measure space and let B a Banach Space. for $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$ and $E \in \mathcal{S}$ the indefinite integral of f is

$$\mu_f(E) = \int_E f(x)d\mu(x) = \int f\chi_E d\mu$$

L^p-Norm: Let (X, S, μ) be a measure space and let B a Banach Space. For $0 the space of <math>\mu$ -measurable, B-valued functions f such that $||f(\cdot)||^p$ is μ -integrable is denoted $\mathcal{L}^p(X, S, \mu, B)$, then the function

$$||\cdot||_p: \mathcal{L}^p(X,\mathcal{S},\mu,B) \to \mathbb{R}$$

defined by

$$||f||_p = \left(\int ||f(x)||^p d\mu(x)\right)^{1/p}$$

is the L^p -norm.

Note: if $f \in \mathcal{L}^p(X, \mathcal{S}, \mu, B)$, then $x \mapsto ||f(x)||^p \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$.

2 Notes

Equality of topologies. If τ, τ' are two topologies on X, then they are equal iff

• $\forall x \in X$; $U \in \tau$ with $x \in U$, $\exists U' \in \tau'$ such that $x \in U' \subseteq U$.

• $\forall x \in X$; $U' \in \tau'$ with $x \in U'$, $\exists U \in \tau$ such that $x \in U \subseteq U'$.

Two norms $|\cdot|_1$ and $|\cdot|_2$ are equivalent on a vector space V iff $\exists c_1, c_2 > 0$, such $\forall v \in V$ we have

$$c_1|v|_1 \le |v|_2 \le c_2|v|_1$$

Proposition 1.1: Let X,Y be normed vector spaces and let $f:X\to Y$ be a map. Then f is continuous iff the usual (ϵ,δ) definition is satisfied at every point of X.

<u>Proposition 1.2:</u> Let X be a metric space (or a subset of a normed vector space) and let $f: X \to Y$ be a map into a normed vector space Y. Then f is continuous iff the following condition is satisfied. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X converging to a point $x \in X$. Then $(f(x_n))_{n\in\mathbb{N}}$ converges to $f(x) \in Y$.

Proposition 1. Proposition 2.12. Let (X,d) be a pseudometric space. If members x and y of X are called equivalent whenever d(x,y)=0, then the result is an equivalence relation. Denote by [x] the equivalence class of x and by $X \setminus \sim$ the set of all equivalence classes. The definition $d_{\sim}([x],[y]) = d(x,y)$ consistently defines a function

$$d_{\sim}: (X \setminus \sim) \times (X \setminus \sim) \to \mathbb{R}$$

and $(X \setminus \sim, d_{\sim})$ is a metric space. A subset $U \subseteq X$ is open if and only if two conditions are satisfied: U is a union of equivalence classes; i.e $U = \bigcup_{i \in I} [x_i]$, and the set $U_{\sim} = \{[x_{i_1}], \ldots, \}$ of such classes is an open subset of $X \setminus \sim$.

Proof. The reflexive, symmetric, and transitive properties of \sim are immediate from the defining properties of a metric.

Next let $x, x' \in [x]$ and $y, y' \in [y]$ then

$$d(x,y) \le d(x,x') + d(x',y') + d(y',y)$$

= 0 + d(x',y') + 0
= d(x',y')

similarly $d(x', y') \leq d(x, y)$ and thus, d(x', y') = d(x, y) and so d_{\sim} is well defined, where d_{\sim} inherits the properties of a metric from d.

Next $x \in X$ be arbitrary, suppose $U \subseteq X$ is open such that $x \in U$ and let $x' \sim x$. Since U is open $\exists B_r(x) \subseteq U$, since $x' \sim x$ we also have d(x, x') = 0 and hence $x' \in B_r(x) \implies x' \in U$ that is $[x] \in U$, since x was arbitrary we conclude that $U = \bigcup_{i \in I} [x_i]$.

Now let $U = \bigcup_{i \in I} [x_i]$ and $U_{\sim} = \{[x_{i_1}], \ldots, \}$, if $x \in U$ then for all $y \in [x]$ we have $U_{\sim} \supseteq B_r([x]) = B_r(x) \subseteq U$, and so $U \subseteq X$ is open iff $U_{\sim} \subseteq X \setminus \infty$ is open.

Proposition 2. Proposition 2.22. If (X, d) is a metric space, then

(a) for any subset U of X and limit point x of U, there exists a sequence in $U \setminus \{x\}$ converging to x.

(b) Any convergent sequence in X with limit $x \in X$ either has infinite image, with x as a limit point of the image, or else is eventually constantly equal to x

Proof.

(a) Let $U \subseteq X$ and let x be a limit point of U, then for each $n \ge 1$

$$B_{\frac{1}{n}}(x)$$

is an open neighborhood of x, and since x is a limit point of U, $\exists x_n \in U$ such that $x_n \in B_{\frac{1}{n}}(x)$. Then

$$d(x_n, x) = \frac{1}{n}$$

thus, we have $(x_n)_{n\in\mathbb{N}}\in U\setminus\{x\}$ where $x_n\to x$.

(b) Suppose $x_n \to x$ and has infinite image. So

$$\{x_n\}_{n\in\mathbb{N}}\setminus \{x_i: x_i=x\} := \{x_{n_k}\}$$

is a subsequence such that $x_{n_k} \to x$. If U_x is an open neighborhood of x, then $\{x_{n_k}\}$ is eventually in U_x , by the assumption of convergence. Since by construction $\nexists x_{n_i} \in \{x_{n_k}\}$ such that $x_{n_i} = x$ and so $x_{n_i} \in \{x_{n_k}\} \subseteq \{x_n\}$ where $x \neq x_{n_i} \in U_x$, since U_x was arbitrary we conclude x is a limit point of $\{x_n\}$, or x is a limit point of the image of $\{x_n\}$.

Next suppose that $x_n \to x$, yet has finite image, say $\{p_1, \ldots, p_i\}$, meaning the sequence repeats values as n ranges over $\mathbb N$. If for some particular index j we have $x_n = p_j$ for infinitely many n, then \exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to p_j$. Yet, since $x_n \to x$, every convergent subsequence must also converge to x and thus $p_j = x$. So, for $m \neq j$ there are only finitely many $x_n = p_m$, since the image of $\{x_n\}$ is finite, and so $\{x_n\}$ must eventually be $p_j = x$ constantly.

Corollary 3. Corollary 2.23. If (X, d) is a metric space, then a subset A of X is closed if and only if every convergent sequence in A has its limit in A.

Proof. Suppose that A is closed and that $(x_n)_{n\in\mathbb{N}}\in A$ such that x is a limit point of (x_n) . Then by Proposition 2 (b) either $x\in (x_n)\in A$ or $x_n\to x\in A$ as a closed subset contains all of its limit points. Therefore, the limit of any convergent sequence $(x_n)_{n\in\mathbb{N}}\in A$ also belongs to A.

Next suppose that every convergent sequence $(x_n)_{n\in\mathbb{N}}\in A$ also has its limit in A. If x is a limit point of A, then by Proposition 2 (a) $\exists (x_n) \in A \setminus \{x\}$ such that $x_n \to x$, and by assumption $x \in A$ and therefore A contains all its limit points and thus, is closed.

Proposition 4. Isometries are injective and uniformly continuous.

Proof. Let

$$f:(X,d_X)\to (Y,d_Y)$$

be an isometric map between metric spaces and let $\epsilon > 0$ be given. Select $\delta = \epsilon > 0$, then for any $x, y \in X$ such that $d_X(x, y) < \delta$ gives

$$d_Y(f(x), f(y)) = d_X(x, y) < \delta = \epsilon$$

and therefore f is uniformly continuous.

Next, take $a, b \in X$ such that f(a) = f(b), then

$$d_X(a,b) = d_Y(f(a), f(b)) = 0 \implies a = b$$

and so f is injective.

Proposition 5. If

$$f:(X,d_X)\to (Y,d_Y)$$

is an isometry, then

$$f^{-1}: (f(X), d_Y) \rightarrow (X, d_X)$$

is an isometry.

Proof. Let f be an isometry and let $x, y \in f(X)$, then $\exists a, b \in X$ such that

$$f(a) = x \text{ and } f(b) = y \implies a = f^{-1}(x) \text{ and } b = f^{-1}(y)$$

then

$$d_Y(x,y) = d_Y(f(a), f(b))$$

$$= d_X(a,b) f is an isometry$$

$$= d_X(f^{-1}(x), f^{-1}(y))$$

and hence, f^{-1} is an isometry.

Proposition 6. If (M_1, d_1) and (M_2, d_2) are metric spaces, then Lipschitz continuous implies uniformly continuous.

Proof. Let (M_1, d_1) and (M_2, d_2) be metric spaces and $f: M_1 \to M_2$ a lipschitz continuous map. Since f is lipschitz $\exists L(f) \in \mathbb{R}^+$ such that for any $x, y \in M_1$ we have

$$d_2(f(x), f(y)) \le L(f) \cdot d_1(x, y)$$

if y = x then $d_2(f(x), f(x)) = 0$ as well as $d_1(x, x) = 0$ so that for any $\epsilon > 0, \exists \delta > 0$ where we have

$$d_1(x,x) = 0 < \delta \implies L(f)d_2(f(x),f(x)) = 0 < \epsilon$$

so let $y \neq x$, then $d_1(x, y) \neq 0$, so for $\delta(\epsilon) > 0$ such that $d_1(x, y) < \delta(\epsilon)$, selecting $\delta(\epsilon) = \frac{\epsilon}{L(f)} > 0$ we have

$$d_2(f(x), f(y)) \le L(f) \cdot d_1(x, y) < L(f) \cdot \delta(\epsilon) = L(f) \cdot \frac{\epsilon}{L(f)} = \epsilon$$

and so

$$d_1(x,y) < \delta(\epsilon) \implies d_2(f(x),f(y)) < \epsilon$$

and so f is uniformly continuous.

Proposition 7.

$$f:(X,d_X)\to (Y,d_Y)$$

is continuous iff

$$x_n \to x \implies f(x_n) \to f(x)$$

Proof. First suppose f is continuous and that $x_n \to x \in X$. Let $\epsilon > 0$ be given and $B_{\epsilon}(f(x)) \subseteq Y$ be open such that $f(x) \in B_{\epsilon}(f(x))$. Then since f is continuous $f^{-1}(B_{\epsilon}(f(x))) \subseteq X$ is open and contains x. Then, since $x_n \to x, \forall \delta > 0 \exists N \in \mathbb{N}$ such that $n \geq N \implies d_X(x_n, x) < \delta$ which implies

$$B_{\delta}(x) \subseteq f^{-1}\Big(B_{\epsilon}\big(f(x)\big)\Big) \implies x_n \in f^{-1}\Big(B_{\epsilon}\big(f(x)\big)\Big)$$
$$\implies f(x_n) \in B_{\epsilon}\big(f(x)\big)$$
$$\implies d_Y\big(f(x_n), f(x)\big) < \epsilon$$

and so $f(x_n) \to f(x)$.

Next suppose $x_n \to x \implies f(x_n) \to f(x)$. And assume, for contradiction, that f is not continuous. Then $\forall \epsilon > 0$ with $\delta = \frac{1}{n}$ we have

$$d_X(x_n, x) < \frac{1}{n}$$

yet,

$$d_Y(f(x_n), f(x)) \ge \epsilon$$

and doing this for each n we have $d(x_n, x) \to 0$ while $d_Y(f(x_n), f(x)) \ge \epsilon \ \forall \ n \Rightarrow \Leftarrow$. And so f must be continuous.

Proposition 8. If S is dense in X, and

$$f, g: X \to Y$$

are continuous maps such that $f(s) = g(s) \ \forall \ s \in S$, then f = g on X.

Proof. Let $x \in X \setminus S = S^c$ and let $\epsilon > 0$ be given. Then by continuity of f and $g, \exists \delta > 0$ and by density of $S, \exists s \in S$ such that

$$d_X(x,s) < \delta \implies d_Y \left(f(x), f(s) \right) < \frac{\epsilon}{2} \text{ and } d_Y \left(g(x), g(s) \right) < \frac{\epsilon}{2}$$

then

$$d_Y(f(x), g(x)) \le d_Y(f(x), f(s)) + d_Y(f(s), g(s)) + d_Y(g(s), g(x))$$

$$< \frac{\epsilon}{2} + 0 + \frac{\epsilon}{2}$$

$$= \epsilon$$

and thus f(x) = g(x). Since $x \in S^c$ was arbitrary we conclude f = g on S^c , and we are given that f = g on S, and since $X = S \cup S^c$ we conclude that f = g on X.

Proposition 9. If $f: X \to Y$ is uniformly continuous, and $\{x_n\} \in X$ is a cauchy sequence, then $\{f(x_n)\}$ is a cauchy sequence in Y.

Proof. Since $f: X \to Y$ is uniformly continuous, $\forall \epsilon > 0, \exists \delta > 0$ such that

$$d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \epsilon$$

so for any cauchy sequence $\{x_n\} \in X$, $\exists N \text{ such that } n, m > N \implies d_X(x_n, x_m) < \delta$, yet this then gives

$$d_Y(f(x_n), f(x_m)) < \epsilon$$

by uniform continuity, and so $\{f(x_n)\}\$ is cauchy in Y.

Lemma 10. If $\{s_n\}, \{t_n\} \in X$ are cauchy sequences, then $\{d(s_n, t_n)\}$ converges in \mathbb{R}

Proof. Let $\{s_n\}, \{t_n\}$ be cauchy sequences in X, then $\forall \epsilon > 0, \exists N_s, N_t$ such that

$$n_s, m_s \ge N_s \implies d(s_{n_s}, s_{m_s}) < \frac{\epsilon}{2}$$

 $n_t, m_t \ge N_t \implies d(t_{n_t}, t_{m_t}) < \frac{\epsilon}{2}$

so let $N = \max\{N_s, N_t\}$ then

$$n, m \ge N \implies d(s_n, t_n) \le d(s_n, s_m) + d(s_m, t_m) + d(t_m, t_n)$$
$$\implies \left| d(s_n, t_n) - d(s_m, t_m) \right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

with a symmetric argument giving

$$\left| d(s_m, t_m) - d(s_n, t_n) \right| < \epsilon$$

and so $\{d(s_n, t_n)\} \in \mathbb{R}$ is cauchy, and since \mathbb{R} is complete we can conclude that $\{d(s_n, t_n)\}$ converges in \mathbb{R} .

Lemma 11. Cauch(X) has $\{s_n\} \sim \{t_n\}$ iff $d(s_n, t_n) \to 0$.

Proof.

Reflexive: Trivially, $d(s_n, s_n) \to 0$, so $\{s_n\} \sim \{s_n\}$

Symmetric: If $d(s_n, t_n) \to 0$, then $d(s_n, t_n) = d(t_n, s_n) \to 0$. Giving $\{s_n\} \sim \{t_n\}$.

Transitive: Suppose $d(s_n, r_n) \to 0$ and $d(r_n, t_n) \to 0$, then $\forall n \in \mathbb{R}$

$$d(s_n, t_n) \le d(s_n, r_n) + d(r_n, t_n) \to 0$$

and so $\{s_n\} \sim \{t_n\}$.

Lemma 12. If $X_{\sim} = \operatorname{Cauch}(X)/\sim \operatorname{then}$

$$d_{\sim}: X_{\sim} \to [0, \infty), \text{ by } d_{\sim}(\{s_n\}, \{t_n\}) = \lim_{n \to \infty} d(s_n, t_n)$$

is a metric on X_{\sim} .

Proof. First, since $\{d(s_n, t_n)\}$ converges in \mathbb{R} , we have that d_{\sim} is always defined. To see that d_{\sim} is well defined, let $\alpha, \beta \in X_{\sim}$ with $\{x_n\}, \{s_n\} \in \alpha$ and $\{y_n\}, \{t_n\} \in \beta$. Then

$$\lim_{n \to \infty} d(x_n, s_n) = \lim_{n \to \infty} d(y_n, t_n) = 0$$

and so $\forall \ \epsilon > 0, \ \exists N \in \mathbb{N}$ such that

$$n \ge N \implies d(x_n, s_n) < \frac{\epsilon}{2} \text{ and } d(y_n, t_n) < \frac{\epsilon}{2}$$

then for n > N we have

$$d(s_n, t_n) \le d(s_n, x_n) + d(x_n, y_n) + d(y_n, t_n)$$

$$\implies |d(s_n, t_n) - d(x_n, y_n)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

 $\therefore \lim_{n\to\infty} d(s_n, t_n) = \lim_{n\to\infty} d(x_n, y_n), \text{ or }$

$$d_{\sim}(\alpha, \beta) = \lim_{n \to \infty} d(s_n, t_n) = \lim_{n \to \infty} d(x_n, y_n)$$

and so d_{\sim} is well-defined.

To see that d_{\sim} it is a metric, for symmetry we have

$$d_{\sim}(\alpha,\beta) = \lim_{n \to \infty} d(s_n, t_n) = \lim_{n \to \infty} d(t_n, s_n) = d_{\sim}(\beta, \alpha)$$

now for $\alpha, \beta, \gamma \in X_{\sim}$ with $\{x_n\} \in \alpha, \ \{y_n\} \in \beta, \ \{z_n\} \in \gamma$, then $\forall \ n$

$$d(x_n, y_n) \le d(x_n, z_n) + d(z_n, y_n)$$

$$\implies \lim_{n \to \infty} d(x_n, y_n) \le \lim_{n \to \infty} d(x_n, z_n) + \lim_{n \to \infty} d(z_n, y_n)$$

$$\implies d_{\sim}(\alpha, \beta) \le d_{\sim}(\alpha, \gamma) + d_{\sim}(\gamma, \beta)$$

and so satisfies the triangle inequality.

Next, if $d_{\sim}(\alpha, \beta) = 0$, then $\forall \{x_n\} \in \alpha, \{y_n\} \in \beta$ we have

$$\implies \lim_{n \to \infty} d(x_n, y_n) = 0$$

and so $\{x_n\} \sim \{y_n\} \implies \{y_n\} \in \alpha$ and thus $\alpha = \beta$.

Proposition 13. The uniform limit of continuous functions is continuous.

Proof. Let $\epsilon > 0$, and $x, y \in X$, then $\forall n$ we have

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$$

then. by uniform continuity $\exists N \in \mathbb{N}$ such that

$$n \ge N \implies \left| f(x) - f_n(x) \right| < \frac{\epsilon}{3} \quad \forall \ x \in X$$

and by continuity $\forall \ \epsilon > 0, \exists \ \delta > 0$ such that

$$|x-y| < \delta \implies |f_n(x) - f_n(y)| < \frac{\epsilon}{3}$$

and thus $\forall x, y \in X$ such that $|x - y| < \delta$ and $n \ge N$ we have

$$|f(x) - f(y)| \le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

and so f is continuous.

Theorem 14. C([0,1]) is complete for $||\cdot||_{\infty}$.

Proof. Let $\{f_n\} \in C([0,1])$ be a cauchy sequence, then $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that

$$n, m \ge N \implies ||f_n - f_m||_{\infty} < \epsilon$$

Now, for each fixed $x \in [0, 1]$ we have

$$|f_n(x) - f_m(x)| < \epsilon \quad \forall \ n, m \ge N$$

and this implies $\{f_n(x)\}\$ is cauchy in \mathbb{R} . Since \mathbb{R} is complete $\{f_n(x)\}\$ converges, so set

$$f(x) = \lim_{n \to \infty} f_n(x)$$

now, since $\{f_n\} \in C([0,1])$ is cauchy $\exists N$ such that

$$|f_n(x) - f_m(x)| < \epsilon \quad \forall \ n, m \ge N$$

$$\implies |f(x) - f_m(x)| < \epsilon \quad \forall \ m \ge N; \ x \in [0, 1]$$

and this in turn implies that $f_m \to f$ uniformly. Since f is the uniform limit of continuous functions, f is continuous; that is $f_n \to f \in C([0,1])$, and so C([0,1]) is complete.

Proposition 15. Let $(X, d_X), (Y, d_Y)$ be metric spaces. Then a map

$$f: X \to Y$$

is continuous at $x_0 \in X$ if $\forall \epsilon > 0, \exists \delta > 0$ such that

$$f(B_{\delta}(x_0)) \subseteq B_{\epsilon}(f(x_0))$$

Proof. Let $f(x) \in B_{\epsilon}(f(x_0))$ for some $x \in X$, and let

$$\epsilon' = \epsilon - d(f(x), f(x_0)) > 0$$

then $B_{\epsilon'}(f(x)) \subseteq B_{\epsilon}(f(x_0)) \implies \exists \delta' > 0$ such that

$$f(B_{\delta'}(x)) \subseteq B_{\epsilon'}(f(x)) \subseteq B_{\epsilon}(f(x_0))$$

if $x_1 \in f^{-1}(B_{\epsilon'}(f(x)))$ then $\exists B_{\delta'}(x_1)$ such that

$$B_{\delta'}(x_1) \subseteq f^{-1}(B_{\epsilon'}(f(x))) \subseteq X$$

and so is open.

Proposition 16. Let (X, τ_X) and (Y, τ_Y) be topological spaces, then a map

$$f: X \to Y$$

is continuous iff for a base, or sub-base $\mathcal{B}_Y \subseteq \tau_Y$ we have

$$f^{-1}(B) \subseteq \tau_X \quad \forall \ B \in \mathcal{B}_Y$$

Proof. First suppose f is continuous. Then $\forall B \in \mathcal{B}_Y$ since \mathcal{B}_Y is a base we have $B \in \tau_Y$ and so is open, then $f^{-1}(B) \in \tau_X$ by continuity.

Next suppose that $f^{-1}(B) \subseteq \tau_X \ \forall \ B \in \mathcal{B}_Y$, and let $V \in \tau_Y$. Since $\mathcal{B}_Y = \{B_i : i \in I\}$ is a base we have

$$V = \bigcup_{B_i \in \mathcal{B}_Y} B_i \quad \text{for some } i \in I$$

then

$$f^{-1}(V) = f^{-1}\left(\bigcup_{B_i \in \mathcal{B}_Y} B_i\right) = \bigcup_{B_i \in \mathcal{B}_Y} f^{-1}(B_i) \in \tau_X$$

and so f is continuous.

Proposition 17. Let X be a topological space. If $A \subseteq X$ is closed and $C \subseteq A$ is closed in the relative topology of A, then C is closed in X.

Proof. Since $A \setminus C = A \cap C^c$ is open in the relative topology of A, then $\exists \ U \in \tau$ such that

$$A \cap C^c = A \cap U \implies C = A \cap U^c$$

is closed in X.

Proposition 18. Consider

$$f_i: X \to Y_i \quad \text{for } i \in I$$

let τ_X be the initial/weak topology on X, let (Z, τ_Z) be a topological space and

$$g: Z \to X$$

then g is continuous iff

$$f_i \circ g$$

is continuous $\forall i$.

Proof. First suppose $f_i \circ g$ is continuous $\forall i$. It suffices to check on a sub-base, so let $U \in \tau_i$ for some i, then

$$(f_i \circ g)^{-1}(U)$$

is open by the continuity if $f_i \circ g$, yet

$$(f_i \circ g)^{-1}(U) = g^{-1}(f_i^{-1}(U))$$

and so $g^{-1}(f_i^{-1}(U)) \subseteq Z$ is open, and since the topology on X implies that $f_i^{-1}(U)$ is open in X, we then have that the preimage under g of an open set is open, and so g must be continuous.

Next suppose that g is continuous. Then by the continuity of g and the f_i 's we have for any $i \in I$ and $U \in \tau_i$ that

$$g^{-1}(f_i^{-1}(U)) = (f_i \circ g)^{-1}(U)$$

is open and thus $f_i \circ g$ is continuous for each i.

Proposition 19. Every metrizable topological space is normal.

Proof. It suffices to consider a metric space (M, d). Let $C_1, C_2 \subseteq M$ be closed and disjoint. For each $x \in C_1$ choose $\epsilon_x > 0$ such that

$$B_{\epsilon_x}(x) \subseteq C_2^c$$

and for each $y \in C_2$ choose $\epsilon_y > 0$ such that

$$B_{\epsilon_n}(y) \subseteq C_1^c$$

let

$$O_1 = \bigcup_{x \in C_1} B_{\frac{\epsilon_x}{3}}(x)$$
 and $O_2 = \bigcup_{y \in C_2} B_{\frac{\epsilon_y}{3}}(y)$

then O_1,O_2 are open as arbitrary unions of open sets, and since $C_1\cap C_2=\varnothing\implies C_1\subseteq C_2^c$ and $C_2\subseteq C_1^c$ so that

$$C_1 \subseteq O_1$$
 and $C_2 \subseteq O_2$

so suppose, for contradiction, that $O_1 \cap O_2 \neq \emptyset \implies \exists z \in O_1 \cap O_2$. Then $\exists x' \in C_1$ and $y' \in C_2$ such that $z \in B_{\frac{\epsilon_{x'}}{2}}(x')$ and $z \in B_{\frac{\epsilon_{y'}}{2}}(y')$, then

$$d(x', y') \le d(x', z) + d(z, y')$$

$$< \frac{\epsilon_{x'}}{3} + \frac{\epsilon_{y'}}{3}$$

$$\le \frac{2}{3} \max\{\epsilon_{x'}, \epsilon_{y'}\} \quad \Rightarrow \Leftarrow$$

as this implies $z \in C_1 \cap C_2 = \emptyset$. Thus $O_1 \cap O_2 = \emptyset$, and so M is normal. \square

Lemma 20. If (X, τ) is normal, $C \subset X$ is closed and $O \subseteq X$ is open and $C \subseteq O$, then $\exists U$ open with

$$C \subseteq U \subseteq \overline{U} \subseteq O$$

Proof. Since O is open, then O^c is closed and $C \subset O$ gives $O^c \cap C = \emptyset$. So, by normality, \exists open U, V where $U \cap V = \emptyset$ such that $C \subseteq U$, and $O^c \subseteq V$. Then $O^c \subseteq V \implies V^c \subseteq O$, and since $U \cap V = \emptyset$ we must have $U \subseteq V^c$ where V^c is closed. So $\overline{U} \subseteq \overline{V^c} = V^c$. Then

$$C \subseteq U \subseteq \overline{U} \subseteq O$$

Lemma 21 (Urysohn's Lemma). Let (X, τ) be normal, and let C_0, C_1 be disjoint closed subsets. Then $\exists f: X \to [0,1]$ continuous such that $f(C_0) = \{0\}, f(C_1) = \{1\}$

Proof. Set $O_1 = X \setminus C_1 = C_1^c$ which is open as C_1 is closed in X. And since $C_0 \cap C_1 = \emptyset$ we have $C_0 \subseteq O_1$. Then, by Lemma 20 \exists open O_0 such that

$$C_0 \subseteq O_0 \subseteq \overline{O}_0 \subseteq O_1$$

Then, by Lemma 20 \exists open $O_{1/2}$ with

$$C_0 \subseteq O_0 \subseteq \overline{O}_0 \subseteq O_{1/2} \subseteq \overline{O}_{1/2} \subseteq O_1$$

so by Lemma 20 \exists open $O_{1/4}, O_{3/4}$ so that

$$C_0 \subseteq O_0 \subseteq \overline{O}_0 \subseteq O_{1/4} \subseteq \overline{O}_{1/4} \subseteq O_{1/2} \subseteq \overline{O}_{1/2} \subseteq O_{3/4} \subseteq \overline{O}_{3/4} \subseteq O_1$$

So by Lemma 20 \exists open $O_{1/8}, O_{3/8}, O_{5/8}, O_{7/8}$ such that

$$C_0 \subseteq O_0 \subseteq \overline{O}_0 \subseteq O_{1/8} \subseteq \overline{O}_{1/8} \subseteq O_{1/4} \subseteq \overline{O}_{1/4} \subseteq O_{3/8} \subseteq \overline{O}_{3/8} \subseteq \cdots$$

so by induction, for each dyadic rational

$$\left\{\frac{m}{2^n}: 1 \le m \le 2^n - 1; n, m \in \mathbb{N}\right\} =: \Delta$$

we get open $O_{\frac{m}{2^n}}$ such that if $r, s \in \Delta$, with r < s then $\overline{O}_r \subseteq O_s$ and $C_0 \subseteq O_r \ \forall \ r$. Define $f: X \to [0, 1]$ by

$$f(x) = \inf\{r \in \Delta : x \in O_r\} \text{ for } x \in O_1$$

$$f(x) = 1 \text{ for } x \in C_1$$

Then if $x \in C_0$, then $x \in O_r \ \forall \ r \in \Delta$ including r = 0, so we have f(x) = 0. To check continuity, use as a sub-base

$$\{(-\infty, a) : a \in \mathbb{R}\} \cup \{(b, \infty) : b \in \mathbb{R}\}$$

If $a \in \mathbb{R}$, then

$$f^{-1}((-\infty, a)) = \begin{cases} \varnothing, & a \le 0 \\ X, & a > 1 \end{cases}$$

Suppose $0 < a \le 1$. If $x \in X$ and $f(x) < a \exists r \in \Delta$ such that f(x) < r < a and so $x \in O_r$ and thus $f^{-1}((-\infty, a)) = \bigcup_{r < a} O_r$ which is the union of open sets and hence is open.

If f(x) > b then

$$f^{-1}((b,\infty)) = \begin{cases} X, & b < 0 \\ \varnothing, & b \ge 1 \end{cases}$$

for $0 \le b < 1$ we claim $f^{-1}((b, \infty)) = \bigcup_{r>b} \overline{O}_r^c$.

If f(x) > b, then $\exists s \in \Delta$ with $f(x) > s > b \implies x \notin O_s$. Then $\exists r \in \Delta$ such that s > r > b where $\overline{O_r} \subseteq O_s$ with $x \notin \overline{O_r} \implies x \in \overline{O_r^c}$ which is open, and so $f^{-1}((b,\infty)) = \bigcup_{r>b} \overline{O_r^c}$ which is open as the union of open sets. And so in all cases we see that f is continuous.

Proposition 22. If $(V, ||\cdot||)$ is a banach space, then $(B(X, V), ||\cdot||_{\infty})$ is a banach space. Where B(X, V) is the set of all bounded functions from X to V.

Proof. Let $\{f_n\} \in B(X, V)$ be a cauchy sequence. For each $x \in X$, $\{f_n(x)\}$ is cauchy in V, and by the completeness of V converges in V, say $f_n(x) \to f(x)$. Let $\epsilon > 0$ be given, since $\{f_n\}$ is cauchy $\exists N_1 \in \mathbb{N}$ such that

$$n, m \ge N_1 \implies ||f_n - f_m||_{\infty} < \frac{\epsilon}{2}$$

so for $x \in X$ and $n, m \ge N$ we have $||f_n(x) - f_m(x)|| < \frac{\epsilon}{2}$, so for fixed m > N we have

$$||f_m(x) - f(x)|| = \lim_{n \to \infty} ||f_m(x) - f_n(x)|| < \frac{\epsilon}{2}$$

and so f is bounded. Next, fix $x \in X$ then since $f_n(x) \to f(x) \exists N_2 \in \mathbb{N}$ such that

$$n \ge N_2 \implies ||f_n(x) - f(x)||_{\infty} < \frac{\epsilon}{2}$$

so for $n > \max\{N_1, N_2\}$ we have

$$||f_n - f||_{\infty} \le ||f_n - f_{n+1}||_{\infty} + ||f_{n+1} - f||_{\infty}$$

 $\le ||f_n - f_{n+1}||_{\infty} + ||f_{n+1}(x) - f(x)||$
 $< \frac{\epsilon}{2} + \frac{\epsilon}{2}$
 $= \epsilon$

and so $f_n \to f \in B(X, V)$, and hence is complete.

Proposition 23. Let (X, τ) be a topological space and Y a metric space. Then $C_B(X, Y)$ is a closed subset of $(B(X, Y), ||\cdot||_{\infty})$.

Proof. Let $\{f_n\} \in C_B(X,Y)$ be a cauchy sequence such that $f_n \to f \in B(X,Y)$ under $||\cdot||_{\infty}$. We wish to show that $f \in C_B(X,Y)$. So let $\epsilon > 0$ and be given and $x_0 \in X$ be arbitrary. Then $\exists N \in \mathbb{N}$ such that

$$n \ge N \implies ||f - f_n||_{\infty} < \frac{\epsilon}{3}$$

Then since $f_n \in C_B(X,Y)$ is continuous \exists open $B_{\delta}(x_0) \ni x_0$ such that if $y \in B_{\delta}(x_0)$ then $||f_n(y) - f_n(x_0)|| < \frac{\epsilon}{3}$ and so

$$||f(y) - f(x_0)|| \le ||f(y) - f_n(y)|| + ||f_n(y) - f_n(x_0)|| + ||f_n(x_0) - f(x_0)||$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

and thus we have $f \in C_B(X,Y)$; that is $C_B(X,Y) \subset (B(X,Y), ||\cdot||_{\infty})$ is closed.

Theorem 24 (**Tietze Extension Theorem**). Let (X, τ) be a normal topological space and let $A \subset X$ be closed, and $f : A \to \mathbb{R}$ be continuous. Then $\exists F : X \to \mathbb{R}$ continuous, where $F|_A = f$. If $f(A) \subseteq [a, b]$ then we can arrange $F(X) \subseteq [a, b]$.

Proof. First, suppose that

$$f:A \rightarrow [-1,1]$$

and let

$$A_1 = \left\{ x \in A : f(x) \ge \frac{1}{3} \right\} = f^{-1} \left(\left[\frac{1}{3}, 1 \right] \right)$$

$$B_1 = \left\{ x \in A : f(x) \le -\frac{1}{3} \right\} = f^{-1} \left(\left[-1, -\frac{1}{3} \right] \right)$$

where by the continuity of f we have B_1, A_1 are closed in A where $B_1 \cap A_1 = \emptyset$, and thus are also closed and disjoint in X. So by Urysohn's lemma we have that there exists continuous

$$f_1: X \to \left[-\frac{1}{3}, \frac{1}{3}\right]$$

such that

$$f_1(A_1) = \frac{1}{3}$$
, and $f_1(B_1) = -\frac{1}{3}$

Thus, for any $x \in A$ we have $|f(x) - f_1(x)| \leq \frac{2}{3}$ so that

$$g_1 := f - f_1 : A \to \left[-\frac{2}{3}, \frac{2}{3} \right]$$

and let

$$A_2 = \left\{ x \in A : g_1(x) \ge \frac{1}{3} \left(\frac{2}{3} \right) \right\} = g_1^{-1} \left(\left[\frac{2}{9}, \frac{2}{3} \right] \right)$$

$$B_2 = \left\{ x \in A : g_1(x) \le -\frac{1}{3} \left(\frac{2}{3} \right) \right\} = g_1^{-1} \left(\left[-\frac{2}{3}, -\frac{2}{9} \right] \right)$$

where by the continuity of g_1 we have B_2 , A_2 are closed in A where $B_2 \cap A_2 = \emptyset$, and thus are also closed and disjoint in X. So by Urysohn's lemma we have that there exists continuous

$$f_2: X \to \left[-\frac{2}{9}, \frac{2}{9}\right]$$

such that

$$f_2(A_2) = \frac{2}{9}$$
, and $f_2(B_2) = -\frac{2}{9}$

Thus, for any $x \in A$ we have $|f(x) - f_1(x) - f_2(x)| \le \left(\frac{2}{3}\right)^2$ so that

$$g_2 := f - f_1 - f_2 : A \to \left[-\frac{4}{9}, \frac{4}{9} \right]$$

continuing inductively we can construct a sequence of continuous functions f_1, f_2, \ldots such that

$$\left| f(x) - \sum_{i=1}^{n} f_i(x) \right| \le \left(\frac{2}{3}\right)^n \to 0, \text{ as } n \to \infty$$

on A, so defining $F:=\sum_{i=1}^{\infty}f_i$, then by construction we have $F|_A=f$. For continuity let $\epsilon>0$ and $x\in X$ be given, then pick $N\in\mathbb{N}$ such that $\sum_{i=N+1}^{\infty}\left(\frac{2}{3}\right)^i<\frac{\epsilon}{2}$. Then, since each Urysohn function f_i is continuous on X for $1\leq i\leq N$ select $U_i\in\tau$ such that $x\in U_i$ where

$$y \in U_i \implies |f_i(x) - f_i(y)| < \frac{\epsilon}{2N}$$

then

$$U := \bigcap_{j=1}^{N} U_j$$

is open as the finite intersection of open sets and $y \in U$ implies

$$|F(x) - F(y)| \le \sum_{i=1}^{N} |f_i(x) - f_i(y)| + \sum_{i=N+1}^{\infty} \left(\frac{2}{3}\right)^i$$

$$< \frac{\epsilon}{2N} \sum_{i=1}^{N} 1 + \frac{\epsilon}{2}$$

$$= \frac{\epsilon}{2N} \cdot N + \frac{\epsilon}{2}$$

$$= \epsilon$$

and so F is continuous as x, since $x \in X$ was arbitrary we conclude that F is continuous on X.

Now for the case when f is not bounded, since \mathbb{R} is homeomorphic to (-1,1) via the mapping

$$\frac{2}{\pi}\tan^{-1}: \mathbb{R} \to (-1,1)$$

so let us consider

$$f: A \to (-1,1) \subset [-1,1]$$

Then from above there exists continuous $\widetilde{f}:X\to [1,-1]$ such that $\widetilde{f}|_A=f.$ So, let

$$B = \widetilde{f}^{-1}(\{1\}) \cup \widetilde{f}^{-1}(\{-1\})$$

where by the continuity of \widetilde{f} we have that $B \subset X$ is closed as the union of singletons which are closed, and since

$$\widetilde{f}(A) = f(A) \subseteq (-1,1)$$

we have that $A \cap B = \emptyset$. So by Urysohn's lemma there exists continuous

$$g: X \to [0, 1]$$

such that

$$g(A) = 1$$
, and $g(B) = 0$

so define

$$F := g \cdot \widetilde{f} : X \to (-1, 1)$$

Then F is continuous as the product of two continuous functions, and for any $x \in A$ we have

$$F(x) = g(x) \cdot \widetilde{f}(x) = 1 \cdot \widetilde{f}(x) = f(x)$$

so $F|_A = f$. For $y \in B$ we have

$$F(y) = g(y) \cdot \widetilde{f}(y) = 0 \cdot \widetilde{f}(y) = 0$$

and for $z \notin A \cup B$, then since $|\widetilde{f}(z)| < 1$ we have

$$|F(z)| \le 1 \cdot |\widetilde{f}(z)| < 1$$

and so Im(F) = (-1, 1), and F is an extension of f.

Proposition 25 (Equivalent Definition of Compact).

- (a) X is compact if every open cover of X has a finite subcover.
- (b) Every collection $\{K_{\alpha}\}_{{\alpha}\in I}$ of closed sets with the finite intersection property, has nonempty intersection; i.e. $\bigcap_{{\alpha}\in I}K_{\alpha}\neq\varnothing$.

Proof. $(a) \implies (b)$

Let X be compact, and let $\{K_{\alpha}\}_{{\alpha}\in I}$ be a collection of closed sets with the finite intersection property, and assume for contradiction, that $\bigcap_{{\alpha}\in I}K_{\alpha}=\varnothing$. Then for each K_{α} we have $X\setminus K_{\alpha}=K_{\alpha}^c$ is open. So,

$$\bigcap_{\alpha \in I} K_{\alpha} = \emptyset$$

$$\Longrightarrow \left(\bigcap_{\alpha \in I} K_{\alpha}\right)^{c} = \emptyset^{c}$$

$$\Longrightarrow \bigcup_{\alpha \in I} K_{\alpha}^{c} = X$$

That is $\bigcup_{\alpha \in I} K_{\alpha}^{c}$ is an open cover for X, and since X is compact, it admits a finite subcover, giving

$$\bigcup_{i=1}^{n} K_{\alpha}^{c} = X$$

$$\Longrightarrow \left(\bigcup_{i=1}^{n} K_{\alpha}^{c}\right)^{c} = X^{c}$$

$$\bigcap_{i=1}^{n} K_{\alpha} = \emptyset \quad \Rightarrow \Leftarrow$$

A contradiction to our assumption that for finite K_{α} we have $\bigcap_{i=1}^{n} K_{\alpha} \neq \emptyset$. And therefore me must have $\bigcap_{\alpha \in I} K_{\alpha} \neq \emptyset$.

$$(b) \implies (a)$$

Let X be a topological space, and suppose that for every collection $\{K_{\alpha}\}_{{\alpha}\in I}$ of closed sets with the finite intersection property, we have $\bigcap_{{\alpha}\in I}K_{\alpha}\neq\varnothing$. Next let $\mathcal U$ be an open cover of X and assume, for contradiction, that $\mathcal U$ has no finite subcover of X. That is

$$\bigcup_{j=1}^{i_n} U_{i_j} \neq X$$

so we must have at least one $p \in X$ such that

$$p \notin \bigcup_{j=1}^{i_n} U_{i_j}$$

$$\implies p \in \left(\bigcup_{j=1}^{i_n} U_{i_j}\right)^c$$

$$= \bigcap_{j=1}^{i_n} U_{i_j}^c$$

$$\implies \varnothing \neq \bigcap_{j=1}^{i_n} U_{i_j}^c$$

where each $U_{i_k}^c$ is closed in X, and since this is true for each finite subcollection of \mathcal{U} , we have the family $\{X \setminus U\}_{U \in \mathcal{U}} = \{U^c\}_{U \in \mathcal{U}}$ satisfies the finite intersection property. Where by our assumption we have

$$\bigcap_{U \in \mathcal{U}} U^c \neq \varnothing$$

$$\Longrightarrow \left(\bigcap_{U \in \mathcal{U}} U^c\right)^c \neq \varnothing^c$$

$$\Longrightarrow \bigcup_{U \in \mathcal{U}} U \neq X \quad \Rightarrow \Leftarrow$$

A contradiction to the assumption that \mathcal{U} was an open cover for X. Thus, we conclude that \mathcal{U} must admit a finite subcover of X.

Since \mathcal{U} was an arbitrary open cover for X, we conclude that every open cover of X admits a finite subcover, and therefore X is compact.

Proposition 26. A topological space X is connected if and only if every continuous map of X into a discrete space having at least two elements is constant.

Proof. First assume that X is connected, and that $f: X \to Y$ is a continuous map, where Y is a discrete space with at least 2 elements. WLOG suppose $Y = \{y, y'\}$.

If $f(X) \neq \text{constant}$, then f(x) = y and f(x') = y' where $y, y' \in Y$ are disjoint and open by the discrete topology, yet this implies that for $U_x, U_{x'} \in X$ we have

$$f(U_x) \cap f(U_{x'}) = \emptyset$$

where $f(U_x), f(U_{x'}) \neq \emptyset$ and so form a separation of Y, which contradicts the continuity of f, since the image of a connected set under a continuous map must be connected.

Next suppose that X is not connected; i.e. $X = U \cup V$ where $V, U \neq \emptyset$ are open and $U \cap V = \emptyset$. Then let $p \neq q$ and endow $\{p,q\}$ with the discrete topology. If we define

$$f: X \to \{p, q\}, \text{ by } \begin{cases} f(U) = \{p\} \\ f(V) = \{q\} \end{cases}$$

then f is continuous and non-constant.

Proposition 27. If a topological space (X, τ) is compact, and $A \subseteq X$ is closed, then A is compact.

Proof. Let $\mathcal{U} \subseteq \tau$ be an open cover of A, then since $A \subseteq X$ is closed, we have $A^c \subseteq X$ is open, and so

$$\mathcal{U} \cup A^c$$

is an open cover for X. Since X is compact, it admits a finite subcover which must contain A.

Proposition 28. Properties of maximal FIP family \mathcal{F}^*

- (a) \mathcal{F}^* is closed/stable under finite intersections.
- (b) If $B \subseteq X$ and $B \cap A \neq \emptyset$, $\forall A \in \mathcal{F}^*$ then $B \in \mathcal{F}^*$.

Proof.

(a) Given $B, C \in \mathcal{F}^*$, then taking finite $A_1, \ldots, A_k \in \mathcal{F}^*$ we have by FIP,

$$(B \cap C) \bigcap (A_1 \cap \cdots \cap A_k) \neq \emptyset$$

and so $\mathcal{F}^* \cup \{B \cap C\}$ is an FIP family, yet by the maximality of \mathcal{F}^* we must have

$$\mathcal{F}^* = \mathcal{F}^* \cup \{B \cap C\}$$

and so $B \cap C \in \mathcal{F}^*$, and \mathcal{F}^* is stable under finite intersections.

(b) Consider $\mathcal{F}^{'} = \mathcal{F}^* \cup \{B\}$. Then, $\mathcal{F}^{'}$ has FIP, as any finite subcollection of $\mathcal{F}^{'}$ is either of the form

$$A_1,\ldots,A_n$$

which has nonempty intersection, or

$$B, A_1, \ldots, A_n$$

where

$$B\bigcap \left(\bigcap_{j=1}^{\in\mathcal{F}^*} A_j\right) \neq \varnothing$$

and thus by maximality $\mathcal{F}^* = \mathcal{F}'$, otherwise \mathcal{F}' would be a larger set with the FIP property and \mathcal{F}^* would not be maximal. Thus, $B \in \mathcal{F}^*$.

Theorem 29 (Tychonoff's Theorem). Let I be some index set. For each $i \in I$ let (X_i, τ_i) be a topological space. If all the (X_i, τ_i) 's are compact then

$$X = \prod_{i \in I} X_i$$

with the product topology is compact. (Need the axiom of choice)

Proof. First, given a set $X \neq \emptyset$ and some FIP family of closed subsets \mathcal{S} on X, consider as a partially ordered set

$$\mathcal{W} := \{ \mathcal{F} \subseteq \mathcal{P}(X) : \mathcal{S} \subseteq \mathcal{F}; \mathcal{F} \text{ is an FIP family on } X \}$$

with the partial ordering on W given by set inclusion, and note that $S \in W \implies W \neq \emptyset$. Now let C be a non-empty chain in W, so that C is a collection of FIP families in W and is totally ordered by inclusion. Let us set

$$\mathcal{F}_0 = \bigcup_{\mathcal{F} \in \mathcal{C}} \mathcal{F}$$

so let $n \in \mathbb{N}$ and A_1, \ldots, A_n be subsets of X such that $A_1, \ldots, A_n \in \mathcal{F}_0$. Since \mathcal{F}_0 is the union of elements in \mathcal{C} , for $A_i \in \mathcal{F}_0$ we must have $A_i \in \mathcal{F}$ for some $\mathcal{F} \in \mathcal{C}$, and so, for each $i \in \{1, \ldots, n\} \exists \mathcal{F}_i \in \mathcal{C}$ such that $A_i \in \mathcal{F}_i$ for each i. Then, in particular,

$$\{\mathcal{F}_1,\ldots,\mathcal{F}_n\}\in\mathcal{C}$$

and hence is totally ordered by set inclusion, and so one of $\{\mathcal{F}_1, \dots, \mathcal{F}_n\}$ must be maximal, let this be \mathcal{F}_j so that

$$\mathcal{F}_i \supseteq \mathcal{F}_i$$
, for $1 \le i \le n$

and thus $A_1, \ldots, A_n \in \mathcal{F}_j$, and since \mathcal{F}_j is an FIP family we have

$$\bigcap_{i=1}^{n} A_i \neq \emptyset$$

and since each $\mathcal{F}\supseteq\mathcal{S}$ we trivially have that $\mathcal{F}_0\supseteq\mathcal{S}$ and so $\mathcal{F}_0\in\mathcal{W}$ and $\mathcal{F}_0=\bigcup_{\mathcal{F}\in\mathcal{C}}\mathcal{F}$ is an upper bound for the chain \mathcal{C} .

Since the chain $C \in W$ was arbitrary we conclude that every chain in W has an upper bound in W, and hence W is inductively ordered.

Thus, by Zorn's Lemma W has a maximal element \mathcal{F}^* which contains \mathcal{S} .

Now, for each $i \in I$ consider

$$\mathcal{F}_i = \{ \pi_i(A) : A \in \mathcal{F}^* \}$$

then $\mathcal{F}_i \subseteq \mathcal{P}(X_i)$, now for $A_1, \ldots, A_n \in \mathcal{F}^*$ we have

$$\bigcap_{j=1}^{n} A_j \neq \emptyset$$

which implies that there exists at least one $x \in \bigcap_{i=1}^n A_i$, and so

$$\pi_i(x) \in \pi_i \left(\bigcap_{j=1}^n A_j\right) \subseteq \bigcap_{j=1}^n \pi_i(A_j)$$

and so \mathcal{F}_i is an FIP family on X_i , and since each $\pi_i(A_j) \subseteq \overline{\pi_i(A_j)}$ we also have that

 $\left\{\overline{\pi_i(A)}: A \in \mathcal{F}^*\right\}$

is an FIP family on X_i of closed subsets, and since X_i is compact we have that

$$\bigcap_{A\in\mathcal{F}^*}\overline{\pi_i(A)}\neq\varnothing$$

and so by the axiom of choice we may select $x_i \in \bigcap_{A \in \mathcal{F}^*} \overline{\pi_i(A)} \subseteq X_i$ and set

$$x = (x_i) \in \prod_{i \in I} X_i$$

and let O_x be an open neighbourhood of x in X. It suffices to consider O_x as a basis element of X so that

$$x \in O_x = \prod_{i_j \neq \{i_1, \dots, i_k\}} X_{i_j} \times \prod_{j=1}^k U_{i_j}$$

or. equivalently

$$x \in O_x = \bigcap_{j=1}^k \pi_{i_j}^{-1}(U_{i_j})$$

and note for each $j \in \{1, \ldots, k\}$ we have $x_{i_j} \in U_{i_j}$ and by construction $x_{i_j} \in \bigcap_{A \in \mathcal{F}^*} \overline{\pi_{i_j}(A)}$ and since $U_{ij} \subseteq X_{i_j}$ is open and contains x_{i_j} by the definition of a limit point we must have that $U_{i_j} \cap \pi_{i_j}(A) \neq \emptyset$ for each $A \in \mathcal{F}^*$ and hence

$$\pi_{i_j}^{-1}(U_{i_j}) \cap A \neq \emptyset, \quad \forall \ A \in \mathcal{F}^*$$

and hence $\pi_{i_j}^{-1}(U_{i_j}) \in \mathcal{F}^*$ by maximality for each $j \in \{1, \dots, k\}$. Where maximality then gives

$$\bigcap_{j=1}^k \pi_{i_j}^{-1}(U_{i_j}) = O_x \in \mathcal{F}^*$$

and therefore $O_x \cap A \neq \emptyset$, $\forall A \in \mathcal{F}^*$, and in particular since $S \subseteq \mathcal{F}^*$ we have that $O_x \cap A \neq \emptyset$, $\forall A \in S$ and hence

$$\bigcap_{A \in \mathcal{S}} A \neq \emptyset$$

and thus, X is compact.

Theorem 30. Tychonoff's Theorem implies the Axiom of Choice.

Proof. Let $\{X_i\}_{i\in I}$ be a non-empty family and let

$$X = \prod_{i \in I} X_i$$

let ω be some set not in X.

Next, for each i set $Y_i = X_i \cup \{\omega\}$ and define

$$\tau_{Y_i} = \{Y_i, X_i, \{\omega\}, \varnothing\}$$

then (Y_i, τ_{Y_i}) is finite and hence compact. So let

$$Y = \prod_{i \in I} Y_i$$

which is then compact by Tychonoff's Theorem.

Since $\omega \in Y_i$ is open, this implies $\omega^c = X_i$ is closed in Y_i , and hence is clopen. So by the continuity of the projection maps π_i we have

$$\pi_i^{-1}(X_i) \subseteq Y$$

is closed for each i. To see that $\{\pi_i^{-1}(X_i)\}$ has FIP, let $\pi_{i_1}^{-1}(X_{i_1}), \ldots, \pi_{i_n}^{-1}(X_{i_n}) \subset \{\pi_i^{-1}(X_i)\}$ be given and note that $\exists x_{i_j} \in X_{i_j} \ \forall i_j$, so define $y \in Y$ by

$$y_i = \begin{cases} x_{i_j}, & i = i_j \\ \omega, & i \neq i_j \ \forall \ j \end{cases}$$

then

$$y \in \bigcap_{j=i}^{n} \pi_{i_j}^{-1}(X_{i_j}) \implies \{\pi_i^{-1}(X_i)\} \text{ is FIP}$$

then since $\{\pi_i^{-1}(X_i)\}$ is an FIP family and Y is compact this gives

$$\bigcap_{i\in I} \pi_i^{-1}(X_i) \neq \varnothing$$

so let $z \in \bigcap_{i \in I} \pi_i^{-1}(X_i)$, then $z \in X_i$ for each i and therefore

$$z \in \prod_{i \in I} X_i$$

Proposition 31. If (X, τ) is compact and Hausdorff, then it is normal.

Proof. Let $A, B \subseteq X$ be closed and disjoint. Since X is compact and A, B are closed subsets of a compact space we have that A, B are also compact. Since X is Hausdorff, it is regular. Thus, for $x \in A \exists U_x, V_x \in \tau$ disjoint with

$$x \in U_x$$
 and $B \subseteq V_x$

then $\{U_x\}_{x\in A}$ is an open cover for A, and by compactness of A admits a finite subcover giving

$$A \subseteq \bigcup_{i=1}^{n} U_{x_i} =: U$$

and

$$V := \bigcap_{i=1}^{n} V_{x_i} \supseteq B$$

which are both open as the union and finite intersection of open sets, where $U \cap V = \emptyset$. Hence, X is normal.

Theorem 32. If (X, τ_X) is compact and (Y, τ_Y) is Hausdorff, and if

$$f: X \to Y$$

is continuous, injective and surjective. Then f is a homeomorphism.

Proof. Since f is continuous, injective and surjective, we have

$$f^{-1}: Y \to X$$

exists, so let $A \subseteq X$ be closed, then A is compact as the closed subset of a compact space, and by the continuity of f we also have that $F(A) \subseteq Y$ is compact. Since Y is Hausdorff f(A) is closed as a compact set in a Hausdorff space. Since f is injective and surjective we also have

$$f(A)^c = Y \setminus f(A) = f(X) \setminus f(A) = f(X \setminus A) = f(A^c)$$

where $f(a)^c = f(A^c)$ is open in Y and so

$$f^{-1}(f(A^c)) = A^c \subseteq X$$

is open and thus f^{-1} is continuous. Therefore, f is a homeomorphism.

Proposition 33. let (X,d) be a metric space and $A \subseteq X$ be totally bounded, then \overline{A} is totally bounded.

Proof. Let $\epsilon > 0$ be given, since A is totally bounded $\exists x_i, \ldots, x_n \in A$ such that $\{B_{\frac{\epsilon}{2}}(x_i)\}_{i=1}^n$ cover A. For each $z \in \overline{A} \exists y \in A$ such that $z \in B_{\frac{\epsilon}{2}}(y)$, by the definition of a limit point, and there is some j such that $y \in B_{\frac{\epsilon}{2}}(x_j)$ since the $B_{\frac{\epsilon}{2}}(x_j)$'s cover A and so

$$d(z, x_j) \le d(z, y) + d(y, x_j) \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

and so $z \in B_{\epsilon}(x_j)$ and hence $\{B_{\epsilon}(x_i)\}_{i=1}^n$ cover \overline{A} .

Proposition 34. let (X,d) be a metric space. If X is compact, then it is complete.

Proof. Let $\{x_n\} \in X$ be a cauchy sequence and suppose, for contradiction, that X is not complete. Then $\{x_n\}$ does not converge in X. So $\forall x \in X \exists \epsilon_x > 0$ such that $\forall N \in \mathbb{N} \exists n \geq N$ where $d(x, x_n) \geq \epsilon_x$.

Then since $\{x_n\}$ is cauchy $\exists M \in \mathbb{N}$ such that

$$n, m > M \implies d(x_n, x_m) < \epsilon_x$$

pick $M_x > M$ such that $n_x \ge M_x$ gives $d(x, x_{n_x}) \ge \epsilon_x$. So for $n > M_x$ we have $d(x, x_n) \ge \frac{\epsilon_x}{2}$. Thus, $\forall x \in X$, $B_{\epsilon_x}(x)$ contains at most finite $x_i \in \{x_n\}$. Now $\{B_{\epsilon_x}(x)\}_{x \in X}$ cover X, yet it does not admit a finite subcover, contradicting the compactness of X.

Theorem 35. let (X,d) be a complete metric space. If X is totally bounded, then it is compact.

Proof. Let \mathcal{U} be an open cover of X, and since X is totally bounded let $\overline{B}_1^1, \ldots, \overline{B}_n^1$ be a finite cover of X by closed balls of radius 1. Suppose, for contradiction, that X is not compact. So at least one ball say A^1 has no finite subcover and let $\overline{B}_1^2, \ldots, \overline{B}_{n_2}^2$ be closed balls of radius $\frac{1}{2}$ covering A^1 , then at least one, say B_*^2 has no finite subcover so let

$$A^2 = A^1 \cap B^2$$

let $\overline{B}_1^3, \ldots, \overline{B}_{n_3}^3$ be closed balls of radius $\frac{1}{4}$ covering A^2 , then at least one has no finite subcover, say B_*^3 so let

$$A^3 = A^2 \cap B^3$$

continuing inductively we get a sequence $\{A^n\}$ such that

$$A^{n+1} \subseteq A^n \quad \forall \ n$$

and

$$\operatorname{diam}(A^n) \to 0$$

and each A^n is not finitely covered.

For each n select $x_n \in A^n$, then $\{x_n\}$ is cauchy, and by the completeness of X, $\exists x \in X$ such that $x_n \to x$. Since \mathcal{U} covers X there exists $U \in \mathcal{U}$ such that $x \in U$, then given $\epsilon > 0 \exists B_{\epsilon}(x) \subseteq U$. So choose n such that $\operatorname{diam}(A^n) < \epsilon$ then

$$A^n \subset B_{\epsilon}(x) \subseteq U \quad \Rightarrow \Leftarrow$$

contradicting the assumption that A^n was not finitely covered.

Theorem 36 (Arzela-Ascoli). Let (X, τ) be a compact topological space, (Y, d) be a metric space, and let $\mathcal{F} \subseteq C_B(X, Y)$ be pointwise totally bounded and equicontinuous, then \mathcal{F} is totally bounded for d_{∞} .

Proof. let $\epsilon > 0$ be given. Since \mathcal{F} is equicontinuous $\forall x \in X, \exists O_x \ni x$ such that

$$y \in O_x \implies d(f(x), f(y)) < \epsilon \quad \forall f \in \mathcal{F}$$

since X is compact $\exists x_1, \ldots, x_n \in X$ such that

$$X \subseteq \bigcup_{i=1}^{n} O_{x_i}$$

for each j, since \mathcal{F} is pointwise totally bounded, we have $\{f(x_j): f \in \mathcal{F}\}$ is totally bounded. Let

$$S_j \subseteq \{f(x_j) : f \in \mathcal{F}\} \subseteq Y$$

be a finite subset such that

$$\bigcup_{y \in S_i} B_{\epsilon}(y) \supseteq \{ f(x_j) : f \in \mathcal{F} \}$$

and let

$$S = \bigcup_{j=1}^{n} S_j$$

also let

$$\Psi = \{\psi : \{1, \dots, n\} \to S\}$$

which is finite and set

$$B_{\psi} = \left\{ f \in \mathcal{F} : d(f(x_j), \psi(j)) < \epsilon \ \forall \ j \right\}$$

then

$$\mathcal{F} = \bigcup_{\psi \in \Psi} B_{\psi}$$

So let $\psi \in \Psi$ be given and let $f, g \in B_{\psi}$, and $x \in X$ be such that $x \in O_{x_j}$ for some j, then

$$d(f(x), g(x)) \leq d(f(x), f(x_j)) + d(f(x_j), g(x_j)) + d(g(x_j), g(x))$$

$$\leq d(f(x), f(x_j)) + d(f(x_j), \psi(j)) + d(\psi(j), g(x_j)) + d(g(x_j), g(x))$$

$$= \epsilon + \epsilon + \epsilon + \epsilon$$

$$- A\epsilon$$

and therefore

$$B_{\psi} \subseteq \bigcup_{y \in B_{\psi}} B_{4\epsilon}(y)$$

and since Ψ is finite, \mathcal{F} is totally bounded.

Corollary 37. Let (X, τ) be a compact topological space, (Y, d) be a complete metric space, and let $\mathcal{F} \subseteq C_B(X, Y)$. Then \mathcal{F} is compact iff it is pointwise totally bounded, equicontinuous, and closed in $C_B(X, Y)$.

Proposition 38. Let (X, τ) be a locally compact topological space, and let $C \subseteq X$ be compact. Then $\exists O \in \tau$ such that $C \subseteq O$ where \overline{O} is compact.

Proof. $\forall x \in C$, by local compactness $\exists O_x \in \tau$ with $x \in O_x$ such that \overline{O}_x is compact. Then $\{O_x\}_{x \in C}$ is an open cover for C, and since C is compact it admits a finite subcover and so

$$C\subseteq \bigcup_{i=1}^n O_{x_i}\subseteq \bigcup_{i=1}^n \overline{O}_{x_i}\subseteq \overline{\bigcup_{i=1}^n O_{x_i}}$$

which is compact as the finite union of compact sets.

Proposition 39. Let (X, τ) be a locally compact Hausdorff space. Then every $x \in X$ has a neighborhood base consisting of compact neighborhoods; i.e. $\forall x \in O_x \exists U \in \tau$, with $x \in U$ such that $\overline{U} \subseteq O_x$ where \overline{U} is compact.

Proof. Given $x \in O_x$, let $V \in \tau$ with $x \in V$ where \overline{V} is compact by local compactness. Then we can replace O_x with

$$O = O_x \cap V \subseteq V$$

so that \overline{O} is compact as a closed subset of a compact set. Let

$$\partial O := \overline{O} \setminus O$$

which is closed in the relative topology of \overline{O} , since $O \notin \partial O \implies x \notin \partial O$. Since \overline{O} is compact Hausdorff, it is normal, and hence regular. So $\exists U, W$ relatively open in \overline{O} such that $U \cap W = \emptyset$ with

$$x \in U$$
 and $\partial O \subseteq W$

then

$$U \cap W = \varnothing \implies W^c = \overline{O} \setminus W \supset U$$

and since $W \supseteq \partial O \implies W^c \subseteq \partial O^c$, which then implies that $W^c \subseteq O$ Now $\overline{O} \setminus W$ is relatively closed in \overline{O} , which gives

$$\overline{U}\subseteq \overline{O}\setminus W=W^c\subseteq O$$

so $\overline{U} \subseteq O$ and hence is compact as a closed subset of a compact set. \square

Proposition 40. Let (X, τ) be a locally compact Hausdorff space, and let $C \subseteq X$ be compact, and $O \in \tau$ with $C \subseteq O$. Then \exists open U such that

$$C\subseteq U\subseteq \overline{U}\subseteq O$$

with \overline{U} compact.

Proof. Since X is a locally compact hausdorff space and $C \subseteq X$ is compact we can find $V \in \tau$ such that $C \subseteq V$ with \overline{V} compact. Then we have both $C \subseteq V$ and $C \subseteq O$ so let

$$W = V \cap O$$

then $C \subseteq W$ and since

$$V \cap O \subseteq V \implies W \subseteq V$$

and so $\overline{W} \subseteq \overline{V}$ which tells us that \overline{W} is compact as the closed subset of a compact set. Then ∂W is closed in the relative topology of \overline{W} and since $\partial W = \overline{W} \setminus W$ we have that $C \not\subseteq \partial W$, and since X is Hausdorff, \overline{W} is compact Hausdorff, and so it is normal. Then as $C, \partial W$ are closed and disjoint, by normality \exists disjoint $U, Q \in \tau$ such that

$$C \subseteq U$$
, and $\partial W \subseteq Q$

then since $U \cap Q = \emptyset$ we have $Q^c \supseteq U$ and also

$$U \subseteq Q^c \cap \overline{W}$$

which implies

$$\overline{U} \subseteq \overline{Q^c \cap \overline{W}} = Q^c \cap \overline{W}$$

since both Q^c , \overline{W} are closed, and the intersection of closed sets is closed. Next we note that $Q^c \cap \overline{W} \subseteq Q^c$ and $\partial W^c \supseteq Q^c$, and in the relative topology of \overline{W} we have

$$\partial W^c = \left(\overline{W} \cap W^c\right)^c \cap \overline{W} = \left(\overline{W}^c \cup W\right) \cap \overline{W} = W$$

and so we have

$$\overline{U} \subseteq Q^c \subseteq \partial W^c = W$$

and so \overline{U} will be compact as the closed subset of compact \overline{W} . And so we have

$$C \subseteq U \subseteq \overline{U} \subseteq W \subseteq O$$

and hence

$$C\subseteq U\subseteq \overline{U}\subseteq O$$

Proposition 41 (Urysohn for Locally Compact Hausdorff). Let (X, τ) be a locally compact Hausdorff space, and let $C \subseteq X$ be compact, and $O \in \tau$ with $C \subseteq O$. Then \exists continuous $f: X \to [0,1]$ such that $f(C) = \{1\}$, and $\sup (f) = \{x: f(x) \neq 0\} \subseteq O$ is compact.

Proof. Since X is locally compact Hausdorff and $C\subseteq X$ is compact, we may choose $U\in \tau$ such that

$$C\subseteq U\subseteq \overline{\overline{U}}\subseteq O$$

where $C, \partial U$ are closed and disjoint in compact \overline{U} , so by Urysohn's Lemma \exists continuous $g: \overline{U} \to [0,1]$ with $g(C) = \{1\}$ and $g(\partial U) = \{0\}$. So set

$$f: X \to [0,1], \text{ by } f(x) = \begin{cases} g(x), & x \in \overline{U} \\ 0, & x \notin \overline{U} \end{cases}$$

then $\operatorname{supp}(f) \subseteq \overline{U}$ and is compact as the closed subset of a compact set. So we need to check that f is continuous on X. f is continuous on \overline{U} and continuous on \overline{U}^c , if $x \in \partial U$, then f(x) = g(x) = 0. Now $[0, \epsilon)$ is open in [0, 1], where the continuity of g tells us that $g^{-1}([0, \epsilon))$ is open in \overline{U} . And so

$$f^{-1}([0,\epsilon)) = g^{-1}([0,\epsilon)) \cup \overline{U}^c$$

is open as the union of open sets, and so f is continuous.

Proposition 42. The intersection of any collection of rings/fields/ σ -algebras/ σ -rings on a set X is a ring/field/ σ -algebra/ σ -ring on X.

Proof. We give a proof for rings with the proofs for the others being similar.

Let $\{\mathcal{R}_i\}_{i\in I}$ be a collection of rings on X where I is an indexing set and let

$$\mathcal{R} = \bigcap_{i \in I} \mathcal{R}_i$$

so if $E, F \in \mathcal{R}$, then $E, F \in \mathcal{R}_i$, $\forall i \in I$ and since each \mathcal{R}_i is a ring we have

$$E \cup F \in \mathcal{R}_i, \quad \forall i \in I$$

and

$$E \setminus F \in \mathcal{R}_i, \quad \forall i \in I$$

and thus $E \cup F, E \setminus F \in \mathcal{R}$, and so \mathcal{R} is a ring.

Theorem 43. Let $\mathcal{P} = \{[a,b) : a < b; a,b \in \mathbb{R}\}$ and let $\alpha : \mathbb{R} \to \mathbb{R}$ be a non-decreasing left continuous function and define

$$\mu_{\alpha}: \mathcal{R} \to \mathbb{R}$$
, by $\mu_{\alpha}([a,b)) = \alpha(b) - \alpha(a)$

then μ_{α} is countably additive.

Proof. Given $[a_0, b_0) \in \mathcal{P}$ such that

$$[a_0, b_0) = \bigsqcup_{i=1}^{\infty} [a_i, b_i)$$

we note that for the (\geq) direction it suffices to show that for each $n\in\mathbb{N}$ we have

$$\mu_{\alpha}([a_0,b_0)) \ge \sum_{i=1}^n \mu_{\alpha}([a_i,b_i))$$

Given any n, re-index the intervals so that $a_i < a_{i+1} \ \forall \ 1 \le i \le n-1$. Since the intervals are disjoint, we have that $b_i < a_{i+1}$. Now since

$$a_0 \leq a_i, b_i \leq b_0 \quad \forall i$$

we have

$$\alpha(b_0) - \alpha(a_0) \ge \alpha(b_n) - \alpha(a_1)$$

then

$$\sum_{i=1}^{n} \mu_{\alpha}([a_{i}, b_{i})) = \sum_{i=1}^{n} (\alpha(b_{i}) - \alpha(a_{i}))$$

$$= \alpha(b_{1}) - \alpha(a_{1}) + \alpha(b_{2}) - \alpha(a_{2}) + \dots + \alpha(b_{n}) - \alpha(a_{n})$$

$$= \alpha(b_{n}) - \alpha(a_{1}) + \alpha(b_{1}) - \alpha(a_{2}) + \dots + \alpha(b_{n-1}) - \alpha(a_{n})$$

$$= \alpha(b_{n}) - \alpha(a_{1}) + \sum_{i=1}^{n-1} (\alpha(b_{i}) - \alpha(a_{i+1}))$$

and since each $b_i < a_{i+1}$ and α is non-decreasing we have that $\sum_{i=1}^{n-1} (\alpha(b_i) - \alpha(a_{i+1})) \le 0$ and therefore

$$\mu_{\alpha}([a_0,b_0)) = \alpha(b_0) - \alpha(a_0) \ge \alpha(b_n) - \alpha(a_1) \ge \sum_{i=1}^n \mu_{\alpha}([a_i,b_i))$$

Next, let $\epsilon > 0$ be given and choose $b'_0 < b_0$ such that

$$\alpha(b_0') \ge \alpha(b_0) - \frac{\epsilon}{2}$$

and by the left continuity of α for each i choose $a'_i < a_i$ such that

$$\alpha(a_i') \geq \alpha(a_i) - \epsilon_i$$

where each $\epsilon_i > 0$ such that $\sum_{i=1}^{\infty} \epsilon_i = \frac{\epsilon}{2}$. Then we have

$$[a_0, b'_0] \subseteq [a_0, b_0) = \bigsqcup_{i=1}^{\infty} [a_i, b_i) \subseteq \bigcup_{i=1}^{\infty} (a'_i, b_i)$$

then, since $\bigcup_{i=1}^{\infty} (a'_i, b_i)$ is an open cover of $[a_0, b'_0]$ which is compact, we know that $[a_0, b'_0]$ admits a finite subcover, so that

$$[a_0, b_0'] \subseteq \bigcup_{i=1}^m (a_i', b_i)$$

then re-indexing the intervals so that

$$a_0 \in (a'_1, b_1)$$
 and $b_1 \in (a'_2, b_2), \dots, b'_0 \in (a'_m, b_m)$

then

$$\alpha(b_0) - \alpha(a_0) \leq \alpha(b'_0) + \frac{\epsilon}{2} - \alpha(a_0)$$

$$\leq \alpha(b_m) - \alpha(a'_1) + \frac{\epsilon}{2}$$

$$\leq \alpha(b_m) - \alpha(a'_1) + \frac{\epsilon}{2} + \sum_{i=1}^{m-1} \left(\alpha(b_i) - \alpha(a'_{i+1})\right)$$

$$b_i \geq a'_{i+1}$$

$$= \sum_{i=1}^{m} \left(\alpha(b_i) - \alpha(a'_i)\right) + \frac{\epsilon}{2}$$

$$\leq \sum_{i=1}^{m} \left(\alpha(b_i) - (\alpha(a_i) - \epsilon_i)\right) + \frac{\epsilon}{2}$$

$$= \sum_{i=1}^{m} \left(\alpha(b_i) - \alpha(a_i) + \epsilon_i\right) + \frac{\epsilon}{2}$$

$$\leq \sum_{i=1}^{m} \left(\alpha(b_i) - \alpha(a_i)\right) + \sum_{i=1}^{\infty} \epsilon_i + \frac{\epsilon}{2}$$

$$= \sum_{i=1}^{\infty} \left(\alpha(b_i) - \alpha(a_i)\right) + \epsilon$$

and since ϵ was arbitrary we conclude

$$\mu_{\alpha}([a_0, b_0)) = \alpha(b_0) - \alpha(a_0) \le \sum_{i=1}^{\infty} (\alpha(b_i) - \alpha(a_i)) = \sum_{i=1}^{\infty} \mu_{\alpha}([a_i, b_i))$$

and thus we conclude that $\mu_{\alpha}([a_0,b_0)) = \sum_{i=1}^{\infty} \mu_{\alpha}([a_i,b_i))$. And so μ_{α} is countably additive.

Lemma 44. Let S be a semiring. If $E, E_1, \ldots, E_n \in S$, then $\exists F_1, \ldots, F_k \in S$ such that

$$((\ldots(E\setminus E_1)\setminus E_2)\setminus\ldots)\setminus E_n)=\bigsqcup_{i=1}^k F_i$$

Proof. By induction. Base case: if n = 1 then $E \setminus E_1 = \bigsqcup_{i=1}^k F_i$ with $F_1, \ldots, F_k \in \mathcal{S}$ by the definition of semiring.

So suppose the result holds for n-1 with n>1. Then $\exists G_1, \ldots G_m$ such

that

$$((\dots(E \setminus E_1) \setminus E_2) \setminus \dots) \setminus E_{n-1}) \setminus E_n) = E \setminus \bigsqcup_{i=1}^n E_i$$

$$= \left(E \setminus \bigsqcup_{i=1}^{n-1} E_i\right) \setminus E_n$$

$$= \left(\bigsqcup_{i=1}^m G_i\right) \setminus E_n$$

$$= \bigsqcup_{i=1}^m (G_i \setminus E_n)$$

$$= \bigsqcup_{i=1}^m \bigsqcup_{j=1}^l G_{ij}$$

where by the definition of a semiring we have that each $G_{ij} \in \mathcal{S}$.

Lemma 45. Let S be a semiring, μ_0 a premeasure on S, and let $E, F_i \in S$ such that $E \subseteq \bigsqcup_{i=1}^{\infty} F_i$ then

$$\mu_0(E) \le \sum_{i=1}^{\infty} \mu_0(F_i)$$

Proof. First we note that it is sufficient to show that

$$\mu_0(E) \le \sum_{i=1}^n \mu_0(F_i)$$

for each finite n, that is for each $n \in \mathbb{N}$. Then

$$\bigsqcup_{i=1}^{n} F_i = E \sqcup \left(\bigsqcup_{i=1}^{n} F_i \setminus E\right) = E \sqcup \left(\bigsqcup_{i=1}^{n_1} \bigsqcup_{j=1}^{n_2} G_{ij}\right)$$

where each $G_{ij} \in \mathcal{S}$ and are disjoint by the previous Lemma, and by construction E and $\bigsqcup_{i=1}^{n_1} \bigsqcup_{j=1}^{n_2} G_{ij}$ are disjoint, so we have

$$\sum_{i=1}^{n} \mu_0(F_i) = \mu_0(E) + \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mu_0(G_{ij}) \ge \mu_0(E)$$

Lemma 46. Let S be a semiring, μ_0 a premeasure on S, then μ_0 is countably subadditive; i.e. if $E, F_i \in S$ such that $E \subseteq \bigcup_{i=1}^{\infty} F_i$ then

$$\mu_0(E) \le \sum_{i=1}^{\infty} \mu_0(F_i)$$

Proof. First note that

$$E = \bigcup_{i=1}^{\infty} (E \cap F_i)$$

letting $H_i = E \cap F_i$ where by definition we have that each $H_i \in \mathcal{S}$, so that by $E \setminus \bigsqcup_{i=1}^n E_i = \bigsqcup_{i=1}^k F_i$ we have

$$\begin{split} E &= \bigcup_{i=1}^{\infty} H_i \\ &= H_1 \sqcup (H_2 \setminus H_1) \sqcup \cdots \sqcup \left(H_m \setminus \bigcup_{j=1}^{m-1} H_j \right) \sqcup \ldots \\ &= H_1 \sqcup \left(\bigsqcup_{i=1}^{n_1} G_{2_i} \right) \sqcup \cdots \sqcup \left(\bigsqcup_{i=1}^{n_m} G_{m_i} \right) \sqcup \ldots \end{split}$$

then

$$\mu_0(E) = \mu_0(H_1) + \sum_{i=1}^{n_1} \mu_0(G_{2_i}) + \sum_{i=1}^{n_m} \mu_0(G_{m_i}) + \dots$$

yet,

$$\bigsqcup_{i=1}^{n_m} G_{m_i} \subseteq E \overset{=H_m}{\cap} F_m \subseteq F_m$$

so that $\sum_{i=1}^{n_m} \mu_0(G_{m_i}) \leq \mu_0(F_m)$, and therefore,

$$\mu_0(E) \le \sum_{i=1}^{\infty} \mu_0(F_i)$$

Theorem 47. Let S be a semiring and μ_0 a premeasure on S, then defining

$$\mu^*: \mathcal{H}(\mathcal{S}) \to [0, \infty]$$

by

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(E_i) : A \subseteq \bigcup_{i=1}^{\infty} E_i; E_i \in \mathcal{S} \right\}$$

then μ^* is an outer measure which extends μ_0 ; i.e. $\mu^*|_{\mathcal{S}} = \mu_0$.

Proof. First, since $\emptyset \in \mathcal{S}$, so setting $E_i = \emptyset \ \forall i$ gives

$$\mu^*(\varnothing) \le \sum_{i=1}^{\infty} \mu_0(\varnothing) = 0$$

and so $\mu^*(\varnothing) = 0$.

Now, if $A \subseteq B$ then $B \subseteq \bigcup_{i=1}^{\infty} E_i \implies A \subseteq \bigcup_{i=1}^{\infty} E_i$. So

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(E_i) : A \subseteq \bigcup_{i=1}^{\infty} E_i; E_i \in \mathcal{S} \right\}$$

$$\leq \inf \left\{ \sum_{i=1}^{\infty} \mu_0(E_i) : B \subseteq \bigcup_{i=1}^{\infty} E_i; E_i \in \mathcal{S} \right\}$$

$$= \mu^*(B)$$

and so μ^* is monotone.

Next, given $\epsilon > 0$, and $A \subseteq \bigcup_{i=1}^{\infty} E_i$ for each E_i choose $E_{ij} \in \mathcal{S}$ for each $j \in \mathbb{N}$ such that $E_i \subseteq \bigcup_{j=1}^{\infty} E_{ij}$ and

$$\sum_{i=1}^{\infty} \mu_0(E_{ij}) \le \mu^*(E_i) + \frac{\epsilon}{2^i}$$

then

$$A \subseteq \bigcup_{i=1}^{\infty} E_i \subseteq \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} E_{ij}$$

and

$$\mu^*(A) \le \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu_0(E_{ij})$$
$$\le \sum_{i=1}^{\infty} \left[\mu^*(E_i) + \frac{\epsilon}{2^i} \right]$$
$$\le \sum_{i=1}^{\infty} \mu^*(E_i) + \epsilon$$

Since ϵ was arbitrary we conclude that $\mu^*(A) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$ and μ^* is countably subadditive.

Now let $E \in \mathcal{S}$, by the definition of μ^* we have that

$$\mu^*(E) \le \mu_0(E)$$

now if $E \subseteq \bigcup_{i=1}^{\infty} F_i$ for $F_i \in \mathcal{S}$, then by countable subadditivity we have

$$\mu_0(E) \le \sum_{i=1}^{\infty} \mu_0(F_i)$$

and in particular this holds for the infimum and so

$$\mu_0(E) \le \inf \left\{ \sum_{i=1}^{\infty} \mu_0(F_i) : E \subseteq \bigcup_{i=1}^{\infty} F_i; F_i \in \mathcal{S} \right\} = \mu^*(E)$$

and thus $\mu^*|_{\mathcal{S}} = \mu_0$

Theorem 48 (Caratheodory's Theorem). Let μ^* be an outer measure on a hereditary σ -ring \mathcal{H} . Let $M(\mu^*)$ be the set of μ^* -measurable sets in \mathcal{H} . Then $M(\mu^*)$ is a σ -ring and $\mu^*|_{M(\mu^*)}$ is a measure.

Proof. First we show that $M(\mu^*)$ is a ring, so let $E, F \in M(\mu^*)$, and $A \in \mathcal{H}$ be arbitrary. Then

$$\mu^* \big(A \cap (E \cup F) \big) + \mu^* \big(A \cap (E \cup F)^c \big)$$

$$= \mu^* \big((A \cap E) \cup (A \cap F) \big) + \mu^* \big(A \cap E^c \cap F^c \big)$$

$$= \mu^* \big((A \cap E) \cup ((A \setminus E) \cap F) \big) + \mu^* \big((A \setminus E) \cap F^c \big)$$

$$\leq \mu^* \big(A \cap E \big) + \mu^* \big((A \setminus E) \cap F \big) + \mu^* \big((A \setminus E) \cap F^c \big)$$

$$= \mu^* \big(A \cap E \big) + \mu^* \big(A \setminus E \big)$$

$$= \mu^* (A)$$

$$F \mu^* \text{-measurable}$$

$$= \mu^* (A)$$

$$E \mu^* \text{-measurable}$$

that is $\mu^*(A \cap (E \cup F)) + \mu^*(A \cap (E \cup F)^c) \le \mu^*(A)$ and since we always have $\mu^*(A \cap (E \cup F)) + \mu^*(A \cap (E \cup F)^c) \ge \mu^*(A)$ by the subadditivity of μ^* , we have

$$\mu^*(A) = \mu^* \big(A \cap (E \cup F) \big) + \mu^* \big(A \cap (E \cup F)^c \big)$$

and so $E \cup F \in M(\mu^*)$.

Next we check set difference where we have

$$\mu^* \big(A \cap (E \setminus F) \big) + \mu^* \big(A \cap (E \setminus F)^c \big)$$

$$= \mu^* \big(A \cap (E \cap F^c) \big) + \mu^* \big(A \cap (E \cap F^c)^c \big)$$

$$= \mu^* \big(A \cap E \cap F^c \big) + \mu^* \big(A \cap (E^c \cup F) \big)$$

$$= \mu^* \big((A \cap E) \setminus F \big) + \mu^* \big((A \cap E^c) \cup (A \cap F) \big)$$

$$= \mu^* \big((A \cap E) \setminus F \big) + \mu^* \big((A \cap E^c) \cup ((A \setminus E^c) \cap F) \big)$$

$$\leq \mu^* \big((A \cap E) \setminus F \big) + \mu^* \big(A \cap E^c \big) + \mu^* \big(A \cap E \cap F \big)$$

$$= \mu^* \big(A \cap E \big) + \mu^* \big(A \cap E^c \big)$$

$$= \mu^* (A)$$

$$F \mu^*\text{-measurable}$$

$$= \mu^* (A)$$

that is $\mu^*(A \cap (E \setminus F)) + \mu^*(A \cap (E \setminus F)^c) \le \mu^*(A)$ and thus

$$\mu^*(A) = \mu^*(A \cap (E \setminus F)) + \mu^*(A \cap (E \setminus F)^c)$$

and so $E \setminus F \in M(\mu^*)$.

And so $M(\mu^*)$ is a ring.

Now we note that if $E, F \in M(\mu^*)$ are disjoint that

$$\mu^*(A \cap (E \sqcup F)) = \mu^*((A \cap E) \sqcup (A \cap F)) = \mu^*(A \cap E) + \mu^*(A \cap F)$$

since $F \sqcup E$ is μ^* -measurable and $A \cap (E \sqcup F) \in \mathcal{H}$ so that

$$\mu^*(A\cap (E\sqcup F))$$

$$= \mu^* \Big(\big(A \cap (E \sqcup F) \big) \cap E \Big) + \mu^* \Big(\big(A \cap (E \sqcup F) \big) \cap E^c \Big)$$
 measurability
$$= \mu^* \Big(A \cap \big((E \cap E) \sqcup (F \cap E) \big) \Big) + \mu^* \Big(A \cap \big((E \cap E^c) \sqcup (F \cap E^c) \big) \Big)$$

$$= \mu^* \Big(A \cap \big(E \sqcup \varnothing \big) \Big) + \mu^* \Big(A \cap \big(\varnothing \sqcup F \big) \Big)$$

$$= \mu^* \big(A \cap E \big) + \mu^* \big(A \cap F \big)$$

Next suppose $E = \bigcup_{i=1}^{\infty} E_i$ where each $E_i \in M(\mu^*)$ defining $F_1 = E_1$ and $F_k = E_k \setminus \bigcup_{i=1}^{k-1} E_i$ for each k > 1 we see that

$$E = \bigcup_{i=1}^{\infty} E_i = \bigsqcup_{i=1}^{\infty} F_i$$

where each $F_i \in M(\mu^*)$ since $M(\mu^*)$ is a ring, and we note

$$E \supseteq \bigsqcup_{i=1}^{n} F_i \implies E^c \subseteq \left(\bigsqcup_{i=1}^{n} F_i\right)^c$$

Then for any $A \in \mathcal{H}$

$$\mu^*(A) = \mu^* \left(A \cap \bigsqcup_{i=1}^n F_i \right) + \mu^* \left(A \cap \left(\bigsqcup_{i=1}^n F_i \right)^c \right)$$

$$\geq \mu^* \left(A \cap \bigsqcup_{i=1}^n F_i \right) + \mu^* \left(A \cap E^c \right)$$
subadditivity
$$= \sum_{i=1}^n \mu^* (A \cap F_i) + \mu^* \left(A \cap E^c \right)$$

where only the RHS depends on n to taking the limit to infinity gives

$$\mu^*(A) \ge \sum_{i=1}^{\infty} \mu^*(A \cap F_i) + \mu^*(A \cap E^c)$$

$$\ge \mu^* \left(\bigsqcup_{i=1}^{\infty} (A \cap F_i) \right) + \mu^*(A \cap E^c)$$
 subadditivity
$$= \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

and therefore we have that $E \in M(\mu^*)$ and so $M(\mu^*)$ is closed under countable unions, and thus $M(\mu^*)$ is a σ -ring.

Now we note from

$$\mu^*(A) \ge \sum_{i=1}^{\infty} \mu^*(A \cap F_i) + \mu^*(A \cap E^c) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

yet we always have $\mu^*(A) \leq \mu^*(A \cap E) + \mu^*(A \cap E^c)$, so that we actually have

$$\mu^*(A) = \sum_{i=1}^{\infty} \mu^*(A \cap F_i) + \mu^*(A \cap E^c)$$

Then since this holds for any $A \in \mathcal{H}$ letting $A = E = \bigsqcup_{i=1}^{\infty} F_i$ where each $F_i \in M(\mu^*)$ gives

$$\mu^*|_{M(\mu^*)} \left(\bigsqcup_{i=1}^{\infty} F_i \right) = \sum_{j=1}^{\infty} \mu^* \left(\bigsqcup_{i=1}^{\infty} (F_i \cap F_j) \right) + \mu^*(\varnothing)$$
$$= \sum_{j=1}^{\infty} \mu^*(F_i)$$

and thus $\mu^*|_{M(\mu^*)}$ is a measure on the σ -ring $M(\mu^*)$.

Proposition 49. Let μ^* be an outer measure on a hereditary σ -ring \mathcal{H} . Then $\mu^*|_{M(\mu^*)}$ is a complete measure, if $M(\mu^*) \neq \emptyset$.

Proof. It suffices to show that if $\mu^*(E) = 0$ then $E \in M(\mu^*)$. So let $A \in \mathcal{H}$, then since $A \cap E \subseteq E$ monotonicity gives $\mu^*(A \cap E) = 0$ and $A \cap E^c \subseteq A$ so again by monotonicity we get

$$\mu^*(A \cap E) + \mu^*(A \cap E^c) = 0 + \mu^*(A \cap E^c) \le \mu^*(A)$$

and thus

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

and so E is μ^* -measurable and hence $E \in M(\mu^*)$. And therefore $\mu^*|_{M(\mu^*)}$ is complete.

Theorem 50. If μ_0 is a premeasure on a semiring \mathcal{S} , and if μ^* is the outer measure on $\mathcal{H}(\mathcal{S})$ determined by μ_0 , then $\mathcal{S} \subseteq M(\mu^*)$.

Proof. We must show this if $E \in \mathcal{S}$, then $E \in M(\mu^*)$; that is, $\forall A \in \mathcal{H}(\mathcal{S})$

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

If $\mu^*(A) = \infty$ then $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$ and we are done.

So let us assume that $\mu^*(A) < \infty$. Given $\epsilon > 0$, since $A \in \mathcal{H}(S)$, we may select $F_i \in S$ such that $A \subseteq \bigcup_{i=1}^{\infty} F_i$ and

$$\sum_{i=1}^{\infty} \mu_0(F_i) \le \mu^*(A) + \epsilon$$

now $F_i = (F_i \cap E) \sqcup (F_i \setminus E)$, and since S is a semiring $\exists G_{ij} \in S$ such that $F_i \setminus E = \bigsqcup_{j=1}^{n_j} G_{ij}$ so that

$$\sum_{i=1}^{\infty} \mu_0(F_i) = \sum_{i=1}^{\infty} \mu_0 \left((F_i \cap E) \sqcup \bigsqcup_{j=1}^{n_j} G_{ij} \right)$$

$$= \sum_{i=1}^{\infty} \left[\mu_0(F_i \cap E) + \sum_{j=1}^{n_j} \mu_0(G_{ij}) \right]$$

$$= \sum_{i=1}^{\infty} \mu_0(F_i \cap E) + \sum_{i=1}^{\infty} \sum_{j=1}^{n_j} \mu_0(G_{ij})$$

and $A \subseteq \bigcup_{i=1}^{\infty} F_i$ implies

$$A \cap E \subseteq \bigcup_{i=1}^{\infty} (F_i \cap E)$$
 and $A \setminus E \subseteq \bigcup_{i=1}^{\infty} (F_i \setminus E) = \bigcup_{i=1}^{\infty} \bigsqcup_{j=1}^{n_j} G_{ij}$

and thus we have

$$\mu^*(A) + \epsilon \ge \sum_{i=1}^{\infty} \mu_0(F_i)$$

$$= \sum_{i=1}^{\infty} \mu_0(F_i \cap E) + \sum_{i=1}^{\infty} \sum_{j=1}^{n_j} \mu_0(G_{ij})$$

$$\ge \inf \left\{ \sum_{i=1}^{\infty} \mu_0(F_i \cap E) : A \cap E \subseteq \bigcup_{i=1}^{\infty} (F_i \cap E); F_i \cap E \in \mathcal{S} \right\}$$

$$+ \inf \left\{ \sum_{i=1}^{\infty} \sum_{j=1}^{n_j} \mu_0(G_{ij}) : A \setminus E \subseteq \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{n_j} G_{ij}; G_{ij} \in \mathcal{S} \right\}$$

$$= \mu^*(A \cap E) + \mu^*(A \setminus E)$$

and since ϵ is arbitrary we conclude that $\mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \setminus E)$ giving

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E)$$

and so E is μ^* -measurable and thus $E \in M(\mu^*)$. And therefore $S \subseteq M(\mu^*)$. \square

Proposition 51. Let μ_0 be a premeasure on a semiring \mathcal{S} , and μ^* the outer measure on $\mathcal{H}(\mathcal{S})$ determined by μ_0 . Then $\mathcal{H}(\mathcal{S}) = \mathcal{H}(M(\mu^*))$ and if $E \in \mathcal{H}(\mathcal{S})$ then

$$\mu^*(E) = \inf \left\{ \mu^*|_{\sigma(S)}(F) : E \subseteq F; F \in \sigma(S) \right\} = \inf \left\{ \mu^*|_{M(\mu^*)}(F) : E \subseteq F; F \in M(\mu^*) \right\}$$

which is to say that $\mu^*|_{\sigma(S)} = \mu^* = \mu^*|_{M(\mu^*)}$

Proof. First since

$$S \subseteq M(\mu^*) \subseteq \mathcal{H}(S)$$

we have $\mathcal{H}(S) = \mathcal{H}(M(\mu^*))$.

Next, let $E \in \mathcal{H}(\mathcal{S})$ then

$$\mu^{*}(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu_{0}(F_{i}) : E \subseteq \bigcup_{i=1}^{\infty} F_{i}; F_{i} \in \mathcal{S} \right\}$$
 def of μ^{*}

$$\geq \inf \left\{ \mu^{*}|_{\sigma(\mathcal{S})}(F) : E \subseteq F; F \in \sigma(\mathcal{S}) \right\}$$
 countable subadditivity of μ^{*}

$$\geq \inf \left\{ \mu^{*}|_{M(\mu^{*})}(F) : E \subseteq F; F \in M(\mu^{*}) \right\}$$
 $M(\mu^{*}) \supseteq \sigma(\mathcal{S})$

$$\geq \mu^{*}(E)$$
 monotonicity of μ^{*}

and thus the inner inequalities must be equalities.

Theorem 52 (Uniqueness of Extensions). If μ_0 is a σ -finite premeasure on a semiring \mathcal{S} , and if \mathcal{R} is a σ -ring such that $\mathcal{S} \subseteq \mathcal{R} \subseteq M(\mu^*)$, and if ν is a non-negative extension of μ_0 to a measure on \mathcal{R} , then $\nu = \mu^*|_{\mathcal{R}}$.

Proof. If $E \in \mathcal{R}$, and $E \subseteq \bigcup_{i=1}^{\infty} F_i$ where each $F_i \in \mathcal{S}$, then

$$\nu(E) \leq \sum_{i=1}^{\infty} \nu(F_i)$$
 non-negative measures are countably subadditive
$$= \sum_{i=1}^{\infty} \mu_0(F_i) \qquad \qquad \nu \text{ an extension of } \mu_0 \text{ and } F_i \in \mathcal{S}$$

and thus $\nu(E) \leq \mu^*(E) \ \forall \ E \in \mathcal{R}$, so it remains to show that $\nu(E) \geq \mu^*(E) \ \forall \ E \in \mathcal{R}$

Case 1: Suppose $E \in \mathcal{R}$, and that $\exists F \in \mathcal{S}$ such that $E \subseteq F$, and $\mu_0(F) < \infty$. Then, since

$$F = (F \cap E) \sqcup (F \setminus E) = E \sqcup (F \setminus E)$$

we have, by the measurability of E

$$\nu(F) = \nu(E) + \nu(F \setminus E)$$

$$\leq \mu^*(E) + \mu^*(F \setminus E)$$

$$= \mu^*(F)$$

$$= \mu_0(F)$$

$$= \nu(F)$$

and thus

$$\nu(E) + \nu(F \setminus E) = \mu^*(E) + \mu^*(F \setminus E)$$

yet,

$$\nu(E) \le \mu^*(E) < \infty$$
 and $\nu(F \setminus E) \le \mu^*(F \setminus E) < \infty$

and thus we must have $\mu^*(E) = \nu(E)$

Case 2: Let $E \in \mathcal{R}$ be arbitrary. Then, since μ_0 is assumed to be σ -finite. $\exists \{F_i\}_{i=1}^{\infty} \in \mathcal{S} \text{ such that } \mu_0(F_i) < \infty \text{ for each } i \text{ and } E \subseteq \bigcup_{i=1}^{\infty} F_i, \text{ since } E \in \mathcal{R} \subseteq M(\mu^*) \subseteq \mathcal{H}(\mathcal{S}) \text{ and } \mathcal{H}(\mathcal{S}) \text{ is defined to be the collection of all sets countably covered by elements of } \mathcal{S}.$ Then disjointizing we get $\{G_{ij}\} \in \mathcal{S} \text{ such that } \mu_0(G_{ij}) < \infty \ \forall i,j, \text{ with } E \subseteq \bigcup_{i,j\geq 1} G_{ij} \text{ and } E = \bigcup_{i,j\geq 1} (E \cap G_{ij}). \text{ Then since } E \cap G_{ij} \subseteq G_{ij} \text{ so Case 1 gives}$

$$\nu(E) = \sum_{i,j \ge 1} \nu(E \cap G_{ij})$$
$$= \sum_{i,j \ge 1} \mu^*(E \cap G_{ij})$$
$$= \mu^*(E)$$

and hence, $\mu^*(E) = \nu(E)$.

and therefore we conclude that $\nu = \mu^*|_{\mathcal{R}}$.

Proposition 53. Let (X, \mathcal{S}, μ) be a measure space and B a Banach space. A function f defined almost everywhere, i.e. defined on $X \setminus N(\mu)$, is μ -measurable iff $\exists \{f_n\}$ of simple \mathcal{S} -measurable such that $f_n \to f$ pointwise almost everywhere; i.e. $\forall x \in X \setminus N(\mu)$ we have $f_n(x) \to f(x)$.

Proof. Suppose that f is μ -measurable, then $\exists \{f_n\}$ of simple μ -measurable functions and a null-set $N_0(\mu)$, such that $\forall x \in X \setminus N_0(\mu)$ we have $f_n(x) \to f(x)$. Since each f_n is simple μ -measurable we have for each n that

$$f_n = \sum_{i=1}^{k_n} b_i^n \chi_{F_i^n}$$

where each $b_i^n \in B$ and each $F_i^n \in \mathcal{S} \sqcup N(\mu)$, that is

$$F_i^n = E_i^n \sqcup N_i^n$$
, where $E_i^n \in \mathcal{S}$, $N_i^n \in N(\mu)$

so let

$$N = N_0(\mu) \cup \left(\bigcup_{n,i} N_i^n\right)$$

then N is a null-set, and letting

$$\varepsilon_n = \sum_{i=1}^{k_n} b_i^n \chi_{E_i^n}$$

then each ε_n is a simple S-measurable function.

Then since $\varepsilon_n|_{X\setminus N}=f_n$, then $\forall x\in X\setminus N$ we have $\varepsilon_n(x)\to f(x)$.

Conversely, if $\exists \{f_n\}$ of simple S-measurable functions such that $\forall x \in X \setminus N(\mu)$ we have $f_n(x) \to f(x)$, then f is S-measurable on $X \setminus N(\mu)$. Then since S-measurable implies μ -measurable we have that f is μ -measurable.

Proposition 54. Let (X, \mathcal{S}, μ) be a measure space and B a Banach space. If f, g are simple \mathcal{S} -measurable functions, then f + g is a simple \mathcal{S} -measurable function.

Proof. First suppose $f = \sum_{i=1}^n b_i \chi_{E_i}$, and $g = c \chi_F$, to get F contained in the E_i 's let us set $E_{n+1} = F \setminus \bigsqcup_{i=1}^n E_i$ and $b_{n+1} = 0$, then

$$F \subseteq \bigsqcup_{i=1}^{n+1} E_i \implies F = \bigsqcup_{i=1}^{n+1} (F \cap E_i)$$

and

$$f = \sum_{i=1}^{n+1} b_i \chi_{E_i} = \sum_{i=1}^{n+1} b_i \left(\chi_{E_i \cap F} + \chi_{E_i \setminus F} \right)$$
$$g = \sum_{i=1}^{n+1} c \chi_{E_i \cap F}$$

and so

$$f + g = \sum_{i=1}^{n+1} (b_i + c) \chi_{E_i \cap F} + \sum_{i=1}^{n+1} b_i \chi_{E_i \setminus F}$$

and so f+g is a simple S-measurable function. The general case follows inductively.

Proposition 55. Let (X, \mathcal{S}, μ) be a measure space and B a Banach space. Let

$$f, g: X \to B$$

be \mathcal{S} -measurable/ μ -measurable functions, and let c be a scalar. Then $f+g,cf,||f(\cdot)||$ are \mathcal{S} -measurable/ μ -measurable functions. If f is scalar valued, then fg is \mathcal{S} -measurable/ μ -measurable. If f and g are \mathbb{R} valued functions, then $\max(f,g)$ and $\min(f,g)$ are \mathcal{S} -measurable/ μ -measurable functions.

Proof. If $\{f_n\}, \{g_n\}$ are sequences of simple S-measurable such that $\forall x \in X$

$$f_n(x) \to f(x)$$

 $g_n(x) \to g(x)$

then $\forall x \in X$ we have

$$(f_n + g_n)(x) = f_n(x) + g_n(x) \to f(x) + g(x) = (f+g)(x)$$

the next follows as $\{cf_n\} = c\{f_n\}$, and if $f_n \to f \ \forall \ x \in X$, then $||f_n(x)|| = \sum_{i=1}^n ||b_i||\chi_{E_i}(x) = ||b_i|| = ||f(x)||$. Then fg follows from cf

the last two follow from the first 4 and the fact that

$$\max(f,g) = \frac{f+g+|f-g|}{2}$$
$$\min(f,g) = \frac{f+g-|f-g|}{2}$$

Lemma 56. If $\{f_n\}$ is a sequence of functions from a set X to a Banach space B which converge to f pointwise, and if for any open set $U \subseteq B$ we define

$$U_n = \{ y \in U : d(y, U^c) > \frac{1}{n} \}$$

then

$$f^{-1}(U) = \bigcup_{n=1}^{\infty} \bigcup_{K=1}^{\infty} \bigcap_{k=K}^{\infty} f_k^{-1}(U_n)$$

for all open $U \subseteq B$.

Proof.

$$x \in f^{-1}(U) \iff f(x) \in U$$

$$\iff \exists n, K \in \mathbb{N} \text{ such that}$$

$$f_k(x) \in U_n \ \forall \ k \ge K$$

$$\iff \exists n, K \in \mathbb{N} \text{ such that}$$

$$x \in f_k^{-1}(U_n) \ \forall \ k \ge K$$

$$\iff \exists \ n, K \in \mathbb{N} \text{ such that}$$

$$x \in \bigcap_{k=K}^{\infty} f_k^{-1}(U_n)$$

$$\iff x \in \bigcup_{n=1}^{\infty} \bigcup_{K=1}^{\infty} \bigcap_{k=K}^{\infty} f_k^{-1}(U_n)$$

$$\iff x \in \bigcup_{n=1}^{\infty} \bigcup_{K=1}^{\infty} \bigcap_{K=K}^{\infty} f_k^{-1}(U_n)$$

Theorem 57. Let X be a set, S a σ -ring of subsets of X, B be a Banach space, and let

$$f: X \to B$$

be a function, then f is S-measurable if

- 1. $f(X) \subseteq B$ is separable.
- 2. $f^{-1}(U) \cap \operatorname{car}(f) \in \mathcal{S}$ for all open $U \subseteq B$.

Proof. Suppose that f is S-measurable, then $\exists \{f_n\}$ of simple S-measurable functions such that $\forall x \in X$ we have $f_n(x) \to f(x)$. Since each f_n is simple S-measurable its range is finite so for each n let

$$Im(f_n) = \{b_1^n, \dots, b_{k_n}^n\}$$

and let

$$R = \overline{\bigcup_{n=1}^{\infty} \operatorname{Im}(f_n)}$$

so given $\epsilon > 0$, then

$$b \in \text{Im}(f) \iff \exists \ x \in X \text{ such that } f(x) = b$$

 $\iff f_n(x) \to f(x) = b$
 $\iff \exists \ n \in \mathbb{N} \text{ such that } ||f_n(x) - b|| < \epsilon$

and therefore $B_{\epsilon}(b) \cap R \neq \emptyset$. Since $b \in \text{Im}(f)$ was arbitrary we conclude that $\forall b \in \text{Im}(f)$ there is a ball containing b which has nonempty intersection with R, and so $f(X) \subseteq R$. And for each n there is some $A_n \subseteq B$ such that $A_n \subseteq \text{Im}(f_n)$ is countably dense in the range of f_n , then

$$\bigcup_{n=1}^{\infty} A_n \subseteq \bigcup_{n=1}^{\infty} \operatorname{Im}(f_n)$$

is countably dense, and so $\bigcup_{n=1}^{\infty} \operatorname{Im}(f_n)$ is separable, and hence so is R, thereby making $\operatorname{Im}(f) = f(X)$ separable as the subset of a separable set.

Now let $U \subseteq B$ be any open set, then since

$$f^{-1}(U)\cap\operatorname{car}(f)=f^{-1}\bigl(U\setminus\{0\}\bigr)$$

it suffices to show that if U is any open set such that $U \not\ni 0$, then $f^{-1}(U) \in \mathcal{S}$, then with

$$U_n = \left\{ y \in U : d\left(y, (U \setminus \{0\})^c\right) > \frac{1}{n} \right\}$$

we will have each $U_n \not\ni 0$ and

$$f^{-1}(U) = \bigcup_{n=1}^{\infty} \bigcup_{K=1}^{\infty} \bigcap_{k=K}^{\infty} f_k^{-1}(U_n)$$

by the previous lemma, and since the f_k 's are simple S-measurable there preimages $f_k^{-1}(U_n) \in S$, and as S is a σ -ring, it is closed under countable unions and intersections, and so $f^{-1}(U) \in S$.

Conversely, suppose that f is such that $f(X) \subseteq B$ is separable and $f^{-1}(U) \in \mathcal{S}$. So we may choose a sequence $\{b_i\} \in B$ which is dense in f(X) since f(X) is separable. So let

$$C_{ij} = \left\{ x \in X : x \in \text{car}(f); \ ||f(x) - b_i|| < \frac{1}{j} \right\} = f^{-1} \left(B_{\frac{1}{j}}(b_i) \setminus \{0\} \right)$$

for all $i, j \in \mathbb{N}$, and since each $B_{\frac{1}{j}}(b_i) \setminus \{0\} \in B$ is open, by hypothesis we have that $f^{-1}\left(B_{\frac{1}{j}}(b_i) \setminus \{0\}\right) \in \mathcal{S}$. Then, ordering the pairs (i, j) lexicographically; that is

$$(i,j) \le (k,n)$$
 if $\begin{cases} i < k \\ i = k, \text{ and } j < n \end{cases}$

so for each fixed n defining

$$E_{ij}^n = C_{ij} \setminus \bigcup \{C_{kl} : (i,j) < (k,l) \le (n,n)\}$$

then the sets E_{ij}^n are disjoint and $E_{ij}^n \subseteq C_{ij} \ \forall i, j$. So let

$$f_n = \sum_{i,j=1}^n b_i \chi_{E_{ij}^n}$$

and suppose we are given $\epsilon > 0$ and $x \in X$. If $x \notin \operatorname{car}(f)$, then f(x) = 0 and so $f_n(x) = 0 \,\forall n$ and we are done. So suppose that $x \in \operatorname{car}(f)$. Choose j_0 such that $\frac{1}{j_0} < \epsilon$, and choose i_0 so that

$$||f(x) - b_{i_0}|| < \frac{1}{i_0}$$

next we note that

$$x \in C_{i_0 j_0} = f^{-1} \left(B_{\frac{1}{j_0}}(b_{i_0}) \setminus \{0\} \right)$$

by the definition of j_0 and i_0 . So setting $N = \max\{i_0, j_0\}$, then if n > N we have $x \in E_{kl}^n$ where

$$(k,l) = \max\{(i,j) : x \in C_{ij}; (i_0,j_0) \le (i,j) \le (n,n)\}$$

then

$$||f(x) - b_k|| < \frac{1}{l} \le \frac{1}{j_0} < \epsilon$$

and by construction we have

$$f_n(x) = \sum_{i,j=1}^n b_i \chi_{E_{ij}^n}(x) = b_k$$

so that

$$||f(x) - b_k|| = ||f(x) - f_n(x)|| < \epsilon$$

and so $f_n \to f$ pointwise, and thus f is S-measurable.

Proposition 58. If $\{f_n\}$ is a sequence of S-measurable/ μ -measurable functions which converge to a function f pointwise/almost everywhere pointwise; i.e. $\forall x \in X/\forall x \in X \setminus N(\mu)$ we have $f_n(x) \to f(x)$. Then f is S-measurable/ μ -measurable.

Proof. Since S-measurable $\implies \mu$ -measurable we will prove the case with S-measurable functions.

Since $\{f_n\}$ are S-measurable, for each n we have that $f_n(X) \subset B$ is separable. Since the closure of a separable set is separable we also have that $\overline{\bigcup_{n=1}^{\infty} f_n(X)} \subseteq B$ is separable, and

$$f(X) \subseteq \overline{\bigcup_{n=1}^{\infty} f_n(X)}$$

and so f(X) is separable as the subset of a separable set.

Then since for any open $U \subseteq B$ we have

$$f^{-1}(U) = \bigcup_{n=1}^{\infty} \bigcup_{K=1}^{\infty} \bigcap_{k=K}^{\infty} f_k^{-1}(U_n)$$

where

$$U_n = \left\{ y \in U : d\left(y, (U \setminus \{0\})^c\right) > \frac{1}{n} \right\}$$

and since the f_k 's are S-measurable there preimages $f_k^{-1}(U_n) \in S$, and as S is a σ -ring, it is closed under countable unions and intersections, and so $f^{-1}(U) \in S$.

Then since f(X) is separable, and for each open set $U \subset B$ we have $f^{-1}(U) \in \mathcal{S}$, we can conclude that f is \mathcal{S} -measurable.

Theorem 59 (**Egoroff**). Let (X, S, μ) be measure space and B a Banach space, if $E \in S$ such that $\mu(E) < \infty$ and if $\{f_n\}$ is a sequence of μ -measurable functions such that $\forall x \in E \setminus N(\mu)$ we have $f_n(x) \to f(x)$. Then for every $\epsilon > 0 \exists$ measurable $F \subseteq E$, and so $F \in S$, such that

$$\mu(E \setminus F) < \epsilon$$

and $f_n \to f$ uniformly on F; i.e. given $\delta > 0$, $\exists N$ such that

$$n \ge N \implies ||f(x) - f_n(x)|| < \delta \quad \forall \ x \in F$$

Proof. For any k and m, let

$$G_m^k = \left\{ x \in E : ||f(x) - f_k(x)|| > \frac{1}{m} \right\} \in \mathcal{S}$$

$$F_m^n = \bigcup_{k \ge n} G_m^k = \left\{ x \in E : \exists \ k \ge n; ||f(x) - f_k(x)|| > \frac{1}{m} \right\} \in \mathcal{S}$$

for fixed m, as $n \to \infty$, since $f_n \to f$, we have $F_m^n \to \emptyset$ and therefore

$$\mu(F_m^n) \to \mu(\varnothing) = 0$$

Let $\epsilon > 0$ be given and for each m choose n_m such that

$$\mu(F_m^{n_m}) < \frac{\epsilon}{2^m}$$

let $H = \bigcup_m F_m^{n_m}$, then

$$\mu(H) = \mu\left(\bigcup_{m} F_{m}^{n_{m}}\right) \le \sum_{m} \mu(F_{m}^{n_{m}}) < \sum_{m} \frac{\epsilon}{2^{m}} = \epsilon$$

let $F = E \setminus H$, then

$$\mu(E \setminus F) = \mu(E \cap F^c)$$

$$= \mu(E \cap (E \cap H^c)^c)$$

$$= \mu(E \cap (E^c \cup H))$$

$$= \mu(\varnothing \cup (E \cap H))$$

$$= \mu(H)$$

$$< \epsilon$$

so let $\delta > 0$ be given, and choose m_0 such that $\frac{1}{m_0} < \delta$. Then $\forall x \in F$ by the definition of F we must have $x \notin H$, and in particular we have $x \notin F_{m_0}^{n_{m_0}}$. Thus, for all $k \geq n_{m_0}$ we also have that $x \notin G_{m_0}^k$ which is to say

$$||f(x) - f_k(x)|| \le \frac{1}{m_0} < \delta$$

and since this is independent of $x \in F$ we have that $f_n \to f$ uniformly on F. \square

Proposition 60. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $\{f_n\}$ is a sequence of μ -measurable functions such that $f_n \to f$ almost uniformly on $E \in \mathcal{S}$, then $f_n \to f$ pointwise on $E \setminus N(\mu)$.

Proof. For each m choose $F_m \subseteq E$ such that

$$\mu(E \setminus F_m) < \frac{1}{m}$$

and $f_m \to f$ uniformly on F_m . Let $G = \bigcup_{m=1}^{\infty} F_m$, then

$$E \setminus G \subseteq E \setminus F_m \quad \forall \ m$$

which implies

$$\mu(E \setminus G) = 0$$

yet $f_m \to f$ uniformly on each $F_m \Longrightarrow f_m \to f$ pointwise on each F_m and so $f_m \to f$ pointwise on $\bigcup_{m=1}^{\infty} F_m = G$ and hence on E almost everywhere. \square

Proposition 61. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $\{f_n\}$ is a sequence of μ -measurable functions which are almost uniformly Cauchy on $E \in \mathcal{S}$, then $\exists f$ such that $f_n \to f$ almost uniformly on E.

Proof. Given $\epsilon > 0$, then since $\{f_n\}$ is almost uniformly Cauchy on $E, \exists F \in \mathcal{S}$ such that $F \subseteq E, \mu(E \setminus F) < \epsilon$, and $\{f_n\}$ is uniformly Cauchy on F.

Since $\{f_n\}$ is uniformly Cauchy on F, $\forall x \in F$ we have $\{f_n(x)\}$ is cauchy in B. Since B is a Banach space it is complete, and so $\{f_n(x)\}$ converges in B, so define

$$f: E \to B$$
, by $f(x) = \begin{cases} \lim f_n(x), & x \in F \\ 0, & x \in E \setminus F \end{cases}$

to show that $f_n \to f$ uniformly on F, we note that since $\{f_n\}$ is uniformly Cauchy on F, for any $\delta > 0$, $\exists N_1$ such that

$$n, m \ge N_1 \implies ||f_m(x) - f_n(x)||_B < \frac{\delta}{2} \quad \forall \ x \in F$$

in addition, for each $x \in F$ since $f_n(x) \to f(x)$, $\exists N_2$ such that

$$n \ge N_2 \implies ||f_n(x) - f(x)||_B < \frac{\delta}{2}$$

so letting $N = \max\{N_1, N_2\}$, and fixing m > N, we have for any $n \geq N$ that

$$||f(x) - f_n(x)||_B \le ||f(x) - f_m(x)||_B + ||f_m(x) - f_n(x)||_B$$

 $\le \frac{\delta}{2} + \frac{\delta}{2}$
 $= \delta$

and so $f_n \to f$ uniformly on F, and thus almost uniformly on E.

Proposition 62. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $\{f_n\}$ is a sequence of μ -measurable functions such that $f_n \to f$ almost uniformly on $E \in \mathcal{S}$, then $\{f_n\}$ converges to f in measure.

Proof. Let $\epsilon > 0$ and $\delta > 0$ be given. Since $f_n \to f$ almost uniformly on E, choose $F \subseteq E$ such that

$$\mu(E \setminus F) < \delta$$

and $f_n \to f$ uniformly on F. Since B is a Banach space it is complete, and so $\{f_n(x)\}$ converges in B, say to $f(x) = \lim f_n(x)$, for each $x \in F$. So $\exists N$ such that

$$n \ge N \implies ||f_n(x) - f(x)||_B < \epsilon$$

then for $n \geq N$ we have

$$\{x \in E : ||f(x) - f_n(x)||_B > \epsilon\} \subseteq E \setminus F$$

$$\mu\Big(\{x \in E : ||f(x) - f_n(x)||_B > \epsilon\}\Big) \le \mu(E \setminus F) < \delta \to 0$$

and so $\{f_n\}$ converges in measure to f.

Proposition 63. Let (X, S, μ) be measure space and B a Banach space and let $E \in S$. If $\{f_n\}$ is a sequence of S-measurable functions such that $\{f_n\}$ converges to f in measure on E, and $\{f_n\}$ converges to g in measure in E, then f = g almost everywhere on E.

Proof. By the triangle inequality we have

$$||f(x) - g(x)||_B \le ||f(x) - f_n(x)||_B + ||f_n(x) - g(x)||_B$$

and so for any $\epsilon > 0$ we have

$$\{x \in E : ||f(x) - g(x)||_{B} > \epsilon \}$$

$$\subseteq \left\{ x \in E : ||f(x) - f_{n}(x)||_{B} > \frac{\epsilon}{2} \right\} \cup \left\{ x \in E : ||f_{n}(x) - g(x)||_{B} > \frac{\epsilon}{2} \right\}$$

$$\Longrightarrow \mu \left(\left\{ x \in E : ||f(x) - g(x)||_{B} > \epsilon \right\} \right)$$

$$\le \mu \left(\left\{ x \in E : ||f(x) - f_{n}(x)||_{B} > \frac{\epsilon}{2} \right\} \right) + \mu \left(\left\{ x \in E : ||f_{n}(x) - g(x)||_{B} > \frac{\epsilon}{2} \right\} \right)$$

then since $\{f_n\}$ converges to f in measure on E, and $\{f_n\}$ converges to g in measure in E we have

$$\mu\left(\left\{x \in E : ||f(x) - f_n(x)||_B > \frac{\epsilon}{2}\right\}\right) \to 0 \text{ as } n \to \infty$$
$$\mu\left(\left\{x \in E : ||f_n(x) - g(x)||_B > \frac{\epsilon}{2}\right\}\right) \to 0 \text{ as } n \to \infty$$

and hence $\mu\Big(\{x\in E:||f(x)-g(x)||_B>\epsilon\}\Big)\to 0;$ i.e.

$$\mu\Big(\{x\in E: f(x)\neq g(x)\}\Big)\to 0$$

so that f = g almost everywhere on E.

Theorem 64 (Riesz-Weyl). Let (X, S, μ) be measure space and B a Banach space and let $E \in S$. If $\{f_n\}$ is a sequence of S-measurable B-valued functions which are cauchy in measure on E, then there is a subsequence $\{f_{n_k}\}$ that is almost uniformly cauchy.

Proof. Defining the integers n_k inductively, which we may do since $\{f_n\}$ is cauchy in measure, by $n_1=1$ and for k>1 choosing n_k such that $n_k>n_{k-1}$, and so that

$$m, n \ge n_k \implies \mu \left(\left\{ x \in E : ||f_m(x) - f_n(x)||_B \ge \frac{1}{2^k} \right\} \right) \le \frac{1}{2^k}$$

given $\epsilon > 0$ select K such that

$$\sum_{k=K}^{\infty} \frac{1}{2^k} < \epsilon$$

and let

$$F = E \setminus \bigcup_{k=K}^{\infty} \left\{ x \in E : ||f_{n_k}(x) - f_{n_{k+1}}(x)||_B \ge \frac{1}{2^k} \right\}$$

so by constructions we have

$$\mu(E \setminus F) = \mu \left(E \cap \left(\bigcup_{k=K}^{\infty} \left\{ x \in E : ||f_{n_k}(x) - f_{n_{k+1}}(x)||_B \ge \frac{1}{2^k} \right\} \right)^c \right)^c$$

$$= \mu \left(E \cap \left(\bigcup_{k=K}^{\infty} \left\{ x \in E : ||f_{n_k}(x) - f_{n_{k+1}}(x)||_B \ge \frac{1}{2^k} \right\} \right) \right) \right)$$

$$= \mu \left(\varnothing \cup \left(\bigcup_{k=K}^{\infty} \left\{ x \in E : ||f_{n_k}(x) - f_{n_{k+1}}(x)||_B \ge \frac{1}{2^k} \right\} \right) \right)$$

$$\leq \sum_{k=K}^{\infty} \mu \left(\left\{ x \in E : ||f_{n_k}(x) - f_{n_{k+1}}(x)||_B \ge \frac{1}{2^k} \right\} \right)$$

$$\leq \sum_{k=K}^{\infty} \frac{1}{2^k}$$

$$\leq \epsilon$$

to see that $\{f_{n_k}\}$ is uniformly cauchy on F, let $\delta > 0$ be given, and choose N > K such that

$$\sum_{n=N}^{\infty} \frac{1}{2^n} < \delta$$

then for any $x \in F$ and k > l > N we have

$$||f_{n_{k}}(x) - f_{n_{l}}(x)||_{B} \leq ||f_{n_{k}}(x) - f_{n_{k-1}}(x)||_{B} + ||f_{n_{k-1}}(x) - f_{n_{k-2}}(x)||_{B}$$

$$+ \dots + ||f_{n_{l+1}}(x) - f_{n_{l}}(x)||_{B}$$

$$= \sum_{m=l}^{k-1} ||f_{n_{m+1}}(x) - f_{n_{m}}(x)||_{B}$$

$$\leq \sum_{m=l}^{k-1} \frac{1}{2^{m}}$$

$$\leq \sum_{m=N}^{\infty} \frac{1}{2^{m}}$$

$$\leq \delta$$

and therefore $\{f_{n_k}\}$ is almost uniformly cauchy on E.

Proposition 65. Let (X, \mathcal{S}, μ) be measure space and B a Banach space and let $E \in \mathcal{S}$. If $\{f_n\}$ is a sequence of function which are cauchy in measure on E such that some subsequence $\{f_{n_k}\}$ converges almost uniformly to f on E, then $\{f_n\}$ converges in measure to f.

Proof. Given $\epsilon > 0$, note that

$$\{x \in E : ||f(x) - f_n(x)||_B > \epsilon \}$$

$$\subseteq \left\{ x \in E : ||f(x) - f_{n_k}(x)||_B > \frac{\epsilon}{2} \right\} \cup \left\{ x \in E : ||f_{n_k}(x) - f_n(x)||_B > \frac{\epsilon}{2} \right\}$$

and since $f_{n_k} \to f$ almost uniformly on E, given $\delta > 0$, $\exists N_1$ such that

$$n_k \ge N_1 \implies \mu\left(\left\{x \in E : ||f(x) - f_{n_k}(x)||_B > \frac{\epsilon}{2}\right\}\right) < \frac{\delta}{2}$$

then as $\{f_n\}$ are cauchy in measure on $E, \exists N_2$ such that

$$n_k, n \ge N_2 \implies \mu\left(\left\{x \in E : ||f_n(x) - f_{n_k}(x)||_B > \frac{\epsilon}{2}\right\}\right) < \frac{\delta}{2}$$

so letting $N = \max\{N_1, N_2\}$, and fix $n_k > N$, then for any $n \geq N$ we have

$$\mu\Big(\{x \in E : ||f(x) - f_n(x)||_B > \epsilon\}\Big)$$

$$\leq \mu\Big(\{x \in E : ||f(x) - f_{n_k}(x)||_B > \frac{\epsilon}{2}\}\Big) + \mu\Big(\{x \in E : ||f_{n_k}(x) - f_n(x)||_B > \frac{\epsilon}{2}\}\Big)$$

$$< \frac{\delta}{2} + \frac{\delta}{2}$$

$$= \delta \to 0$$

and so $\{f_n\}$ converges in measure on E to f.

Proposition 66. If f, g are simple integrable functions then f+g is simple integrable function and

$$\int (f+g)d\mu = \int fd\mu + \int gd\mu$$

Proof. First suppose $f = \sum_{i=1}^n b_i \chi_{E_i}$, and $g = c \chi_F$, to get F contained in the E_i 's let us set $E_{n+1} = F \setminus \bigsqcup_{i=1}^n E_i$ and $b_{n+1} = 0$, then

$$F \subseteq \bigsqcup_{i=1}^{n+1} E_i \implies F = \bigsqcup_{i=1}^{n+1} (F \cap E_i)$$

and

$$f = \sum_{i=1}^{n+1} b_i \chi_{E_i} = \sum_{i=1}^{n+1} b_i \left(\chi_{E_i \cap F} + \chi_{E_i \setminus F} \right)$$
$$g = \sum_{i=1}^{n+1} c \chi_{E_i \cap F}$$

and so

$$f + g = \sum_{i=1}^{n+1} (b_i + c) \chi_{E_i \cap F} + \sum_{i=1}^{n+1} b_i \chi_{E_i \setminus F}$$

and so f+g is a simple S-measurable function. The general case follows inductively. Where we then have

$$\int (f+g)d\mu = \sum_{i=1}^{n+1} (b_i + c)\mu(E_i \cap F) + \sum_{i=1}^{n+1} b_i\mu(E_i \setminus F)$$

$$= \sum_{i=1}^{n+1} b_i \Big[\mu(E_i \cap F) + \mu(E_i \setminus F) \Big] + \sum_{i=1}^{n+1} c\mu(E_i \cap F)$$

$$= \int f d\mu + \int g d\mu$$

Proposition 67. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If f, g are simple integrable functions then

$$||f + g||_1 \le ||f||_1 + ||g||_1$$

Proof. First note that for all $x \in X$ we have

$$||f(x) + g(x)||_B \le ||f(x)||_B + ||g(x)||_B$$

and therefore

$$||f + g||_1 = \int ||f(x) + g(x)||_B d\mu(x)$$

$$\leq \int (||f(x)||_B + ||g(x)||_B) d\mu(x)$$

$$= \int ||f(x)||_B d\mu(x) + \int ||g(x)||_B d\mu(x)$$

$$= ||f||_1 + ||g||_1$$

Proposition 68. Let (X, \mathcal{S}, μ) be measure space and let $\{f_n\}$ be a sequence of simple integrable functions that is cauchy for $||\cdot||_1$. Then $\{f_n\}$ is cauchy in measure.

Proof. Since $\{f_n\}$ is cauchy for $||\cdot||_1$ we have

$$||f_n - f_m||_1 = \int ||f_n(x) - f_m(x)||_B d\mu(x) \to 0 \text{ as } n, m \to \infty$$

let $\epsilon > 0$ be given and let

$$E_{mn}^{\epsilon} = \{ x \in E : ||f_m(x) - f_n(x)|| \ge \epsilon \}$$

then

$$\chi_{E_{mn}^{\epsilon}} \leq \frac{||f_m(x) - f_n(x)||_B}{\epsilon}$$

SC

$$\mu(E_{mn}^\epsilon) = \int \chi_{E_{mn}^\epsilon} d\mu(x) \leq \int \frac{||f_m(x) - f_n(x)||}{\epsilon} d\mu(x) \to 0 \text{ as } m, n \to \infty$$

and so $\{f_n\}$ is cauchy in measure on E.

Proposition 69. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $\{f_n\}, \{g_n\}$ are sequences of simple integrable functions which are equivalent under $||\cdot||_1$; i.e.

$$||f_n - g_n||_1 \to 0 \text{ as } n \to \infty$$

and if $\{f_n\}$ converges to f is measure, then $\{g_n\}$ also converges to f in measure.

Proof. Given $\epsilon > 0$, note that

$$\{x \in X : ||f(x) - g_n(x)||_B > \epsilon \}$$

$$\subseteq \left\{ x \in X : ||f(x) - f_n(x)||_B > \frac{\epsilon}{2} \right\} \cup \left\{ x \in X : ||f_n(x) - g_n(x)||_B > \frac{\epsilon}{2} \right\}$$

and since $\{f_n\}$ converges to f in measure we have

$$\mu\left(\left\{x \in X : ||f(x) - f_n(x)||_B > \frac{\epsilon}{2}\right\}\right) \to 0 \text{ as } n \to \infty$$

additionally since $\{f_n\}, \{g_n\}$ are equivalent under $||\cdot||_1$, we have

$$\mu\left(\left\{x \in X : ||f_n(x) - g_n(x)||_B > \frac{\epsilon}{2}\right\}\right) = \int \chi_{\left\{x \in X : ||f_n(x) - g_n(x)||_B > \frac{\epsilon}{2}\right\}} d\mu(x)$$

$$\leq 2\int \frac{||f_n(x) - g_n(x)||_B}{\epsilon} d\mu(x) \to 0 \text{ as } n \to \infty$$

and so

$$\mu\Big(\big\{x\in X:||f(x)-g_n(x)||_B>\epsilon\big\}\Big)$$

$$\leq \mu\Big(\big\{x\in X:||f(x)-f_n(x)||_B>\frac{\epsilon}{2}\big\}\Big)+\mu\Big(\big\{x\in X:||f_n(x)-g_n(x)||_B>\frac{\epsilon}{2}\big\}\Big)$$

$$\to 0 \text{ as } n\to\infty$$

and so $\{g_n\}$ also converges to f in measure.

Lemma 70. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $\{f_n\}$ is a mean cauchy sequence of simple integrable functions such that $f_n \to 0$ almost uniformly, then

$$||f_n||_1 \to 0$$

Proof. Let $\epsilon > 0$ be given. Then since $\{f_n\}$ is mean cauchy, choose $N \in \mathbb{N}$ such that

$$n, m \ge N \implies ||f_n - f_m||_1 < \epsilon$$

and let

$$E = \{x \in X : f_N(x) \neq 0\} = \operatorname{car}(f_N)$$

and since f_N is simple integrable we have $\mu(E) < \infty$. Now for $n \geq N$ we have

$$\int_{E^{c}} ||f_{n}(x)||_{B} d\mu(x) = \int_{E^{c}} ||f_{n}(x) - 0||_{B} d\mu(x)$$

$$= \int_{E^{c}} ||f_{n}(x) - f_{N}(x)||_{B} d\mu(x) \quad f_{N}(x) = 0 \text{ for } x \in E^{c}$$

$$\leq \int_{X} ||f_{n}(x) - f_{N}(x)||_{B} d\mu(x)$$

$$= ||f_{n} - f_{N}||_{1}$$

$$< \epsilon$$

Now since $f_n \to 0$ almost uniformly, $\exists F \in \mathcal{S}$ such that $F \subseteq E$ where

$$\mu(E \setminus F) < \frac{\epsilon}{1 + ||f_N||_{\infty}}$$

and $f_n \to 0$ uniformly on F. And so we may choose M > N such that for n > M and $x \in F$ we have

$$||f_n(x)||_B < \frac{\epsilon}{1 + \mu(F)}$$

and so

$$\int_{F} ||f_{n}(x)||_{B} d\mu(x) \leq \int_{F} \frac{\epsilon}{1 + \mu(F)} d\mu(x)$$

$$= \frac{\epsilon}{1 + \mu(F)} \cdot \mu(F)$$

$$< \epsilon$$

and lastly, using the triangle inequality

$$\begin{split} \int_{E \backslash F} ||f_{n}(x)||_{B} d\mu(x) &\leq \int_{E \backslash F} ||f_{n}(x) - f_{N}(x)||_{B} d\mu(x) + \int_{E \backslash F} ||f_{N}(x)||_{B} d\mu(x) \\ &\leq \int_{X} ||f_{n}(x) - f_{N}(x)||_{B} d\mu(x) + \int_{E \backslash F} ||f_{N}(x)||_{B} d\mu(x) \\ &\leq ||f_{n} - f_{N}||_{1} + ||f_{N}||_{\infty} \int_{E \backslash F} d\mu(x) \qquad ||f_{N}(x)||_{B} \leq ||f_{N}||_{\infty} \\ &= ||f_{n} - f_{N}||_{1} + ||f_{N}||_{\infty} \mu(E \backslash F) \\ &< \epsilon + ||f_{N}||_{\infty} \frac{\epsilon}{1 + ||f_{N}||_{\infty}} \\ &< 2\epsilon \end{split}$$

then putting all the piece together we get for n > M

$$||f_n||_1 = \int_X ||f_n(x)||_B d\mu(x)$$

$$= \int_{E^c} ||f_n(x)||_B d\mu(x) + \int_{E \setminus F} ||f_n(x)||_B d\mu(x) + \int_F ||f_n(x)||_B d\mu(x)$$

$$< \epsilon + 2\epsilon + \epsilon$$

$$= 4\epsilon$$

and so $||f_n||_1 \to 0$.

Proposition 71. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $\{f_n\}$ and $\{g_n\}$ are mean cauchy sequences of simple integrable functions, such that $f_n, g_n \to h$ is measure, then $\{f_n\}$ and $\{g_n\}$ are equivalent cauchy sequences; i.e.

$$\lim_{n \to \infty} ||f_n - g_m||_1 = 0$$

Proof. Since $\{f_n\}, \{g_m\}$ converge in measure to h and are mean cauchy, Riesz-Weyl says that \exists subsequences $\{f_{n_k}\}, \{g_{m_k}\}$ that converge to h are almost uniformly. So it suffices to show that

$$\lim_{k \to \infty} ||f_{n_k} - g_{m_k}||_1 = 0$$

So define

$$h_k = f_{n_k} - g_{m_k}$$

then $\{h_n\}$ is a mean cauchy sequence of simple integrable functions such that $h_n \to 0$ almost uniformly, and from the previous Lemma we then have

$$||h_k||_1 \to 0$$

and therefore

$$\lim_{k \to \infty} ||f_{n_k} - g_{m_k}||_1 = 0$$

and so $\{f_n\}$ and $\{g_m\}$ are equivalent cauchy sequences.

Theorem 72. Let f be a S-measurable B-valued function, then the following are equivalent

- 1. There is a mean cauchy sequence $\{f_n\}$ of ISFs that converge in measure to f.
- 2. There is a mean cauchy sequence $\{f_n\}$ of ISFs such that $f_n \to f$ almost uniformly.
- 3. There is a mean cauchy sequence $\{f_n\}$ of ISFs such that $f_n \to f$ pointwise almost everywhere.

f is μ -integrable if it satisfies one, and hence all, of these conditions.

Proof.
$$(1) \implies (2)$$
.

Riezs-Weyl gives a subsequence that converges almost uniformly.

$$(2) \implies (3).$$

Riezs-Weyl gives a subsequence that converges almost uniformly, and hence pointwise.

$$(3) \implies (1).$$

Since $\{f_n\}$ is mean cauchy we know that $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that

$$n, m \ge N \implies ||f_n - f_m||_1 = \int_X ||f_n - f_m||_B d\mu(x) < \epsilon$$

and hence, for any $\delta > 0$

$$n, m \ge N \implies ||f_n - f_m||_1 = \int_X ||f_n - f_m||_B d\mu(x) < \epsilon \delta$$

so suppose, for contradiction, that $\{f_n\}$ is not cauchy in measure, this implies that $\exists \epsilon, \delta$ such that $\forall N \in \mathbb{N}$ there exists $m, n \geq N$ where

$$\mu(x \in X : ||f_n(x) - f_m(x)||_B \ge \epsilon) \ge \delta$$

let $A \subset X$ be the set of points which satisfy $||f_n(x) - f_m(x)||_B \ge \epsilon$. Then

$$\int_{X} ||f_{n} - f_{m}||_{B} d\mu(x) \ge \int_{A} ||f_{n} - f_{m}||_{B} d\mu(x)$$

$$\ge \int_{A} \epsilon d\mu(x)$$

$$= \epsilon \mu(A)$$

$$> \epsilon \delta \implies \Leftarrow$$

and so we can conclude that $\{f_n\}$ is cauchy in measure. Then Riesz-Weyl says $\exists \{f_{n_k}\}$ which converges almost uniformly, and hence almost everywhere and in measure, to an \mathcal{S} -measurable function g. Yet, $f_n \to f$ pointwise almost everywhere and thus $f_{n_k} \to f$ pointwise almost everywhere, and so f = g almost everywhere. That is $\{f_{n_k}\}$ converges in measure to f.

Theorem 73. $\mathcal{L}^1(X, \mathcal{S}, \mu, B)$ is a vector space.

Proof. Let $f, g \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$, then \exists sequences $\{f_n\}, \{g_n\}$ of simple integrable functions which are mean cauchy such that $f_n \to f$ and $g_n \to g$ pointwise almost everywhere. Then $\{f_n + g_n\}$ is a sequence of simple integrable functions which is mean cauchy and $f_n + g_n \to f + g$ pointwise almost everywhere and so

$$\int (f+g)d\mu = \lim_{n \to \infty} \int (f_n + g_n)d\mu$$
$$= \lim_{n \to \infty} \int f_n d\mu + \lim_{n \to \infty} \int g_n d\mu$$
$$= \int f d\mu + \int g d\mu$$

and so $f + g \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$.

Next if $c \in \mathbb{R}$, then $\{cf_n\}$ is a sequence of simple integrable functions which are mean cauchy such that $cf_n \to cf$ pointwise almost everywhere, then

$$\int cf d\mu = c \int f = c \lim_{n \to \infty} \int f_n d\mu = \lim_{n \to \infty} \int cf_n d\mu$$

thus $cf \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$.

Finally if $\{O_n\}$ is a sequence of simple integrable functions which are mean cauchy such that $O_n \to 0$ pointwise almost everywhere, then

$$0 = \int 0d\mu = \lim_{n \to \infty} \int O_n d\mu$$

and so $0 \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$.

 $\mathcal{L}^1(X, \mathcal{S}, \mu, B)$ is a vector space.

Lemma 74. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $\{f_n\}$ is a mean cauchy sequence of simple integrable functions such that $f_n \to f$ in measure, or almost uniformly, or pointwise almost everywhere, then $f_n \to f$ in mean

Proof. For each fixed $n\{f_m-f_n\}$ is a mean cauchy sequence of simple integrable functions such that

$$f_m - f_n \to f - f_n$$

in measure, or almost uniformly, or pointwise almost everywhere, so that

$$||f - f_n||_1 = \int ||f(x) - f_n(x)||_B d\mu(x)$$

$$= \lim_{m \to \infty} \int ||f_m(x) - f_n(x)||_B d\mu(x)$$

$$= \lim_{m \to \infty} ||f_m - f_n||_1$$

Given $\epsilon > 0$ choose $N \in \mathbb{N}$ such that

$$n, m > N \implies ||f_m - f_n||_1 < \epsilon$$

that is for n > N we have

$$||f - f_n||_1 < \epsilon$$

and so $f_n \to f$ in mean.

Proposition 75. If $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$, then $\operatorname{car}(f)$ is σ -finite.

Proof. Since $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$, \exists a mean cauchy sequence $\{f_n\}$ of simple integrable functions such that $f_n \to f$ pointwise almost everywhere. Let

$$E_n = \operatorname{car}(f_n)$$

then since the f_n 's are simple integrable functions we have

$$\mu(E_n) < \infty$$

then

$$\operatorname{car}(f) \subseteq \bigcup_{n=1}^{\infty} \operatorname{car}(f_n) < \infty$$

and so car(f) is σ -finite.

Proposition 76. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$, then $\forall \epsilon > 0, \exists E \in \mathcal{S}$ such that

$$\mu(E) < \infty$$

and

$$\left\| \int_{X \setminus E} f(x) d\mu(x) \right\|_{B} < \epsilon$$

Proof. Since f is μ -integrable, and from Lemma 74 this implies convergence in mean so from our mean cauchy sequence $\{f_n\}$ of simple integrable functions choose f_n such that

$$||f - f_n||_1 = \int ||f(x) - f_n(x)||_B d\mu(x) < \epsilon$$

since f_n is a simple integrable function we have

$$\mu(\operatorname{car}(f_n)) < \infty$$

so let $E = \operatorname{car}(f_n)$, then since $f_n(x) = 0 \ \forall \ x \in X \setminus E = E^c$ we have

$$\left\| \int_{X \setminus E} f(x) d\mu(x) \right\|_{B} = \left\| \int_{X \setminus E} f(x) d\mu(x) - 0 \right\|_{B}$$

$$= \left\| \int_{X \setminus E} \left(f(x) - f_{n}(x) \right) d\mu(x) \right\|_{B}$$

$$\leq \int_{X \setminus E} \left| \left| f(x) - f_{n}(x) \right| \left|_{B} d\mu(x) \right|$$

$$\leq \int_{X} \left| \left| f(x) - f_{n}(x) \right| \left|_{B} d\mu(x) \right|$$

$$= \left| \left| f - f_{n} \right| \right|_{1}$$

$$< \epsilon$$

Proposition 77 (Absolute Continuity). Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$, then $\forall \epsilon > 0, \; \exists \; \delta > 0$ such that if

$$\mu(E) < \delta$$

then

$$||\mu_f(E)||_B < \epsilon$$

Proof. Let $\epsilon > 0$ be given and choose a simple integrable function g such that

$$||f-g|| < \frac{\epsilon}{2}$$

and select $\delta = \frac{\epsilon}{2||g||_{\infty}}$ that is

$$\mu(E) < \frac{\epsilon}{2||g||_{\infty}}$$

then

$$\begin{aligned} ||\mu_{f}(E)||_{B} &= ||\mu_{f}(E) - \mu_{g}(E) + \mu_{g}(E)||_{B} \\ &\leq ||\mu_{f}(E) - \mu_{g}(E)||_{B} + ||\mu_{g}(E)||_{B} \\ &= \left| \left| \int_{E} f(x) d\mu(x) - \int_{E} g(x) d\mu(x) \right| \right|_{B} + \left| \left| \int_{E} g(x) d\mu(x) \right| \right|_{B} \\ &\leq \int_{E} ||f(x) - g(x)||_{B} d\mu(x) + \int_{E} ||g(x)||_{B} d\mu(x) \\ &\leq \int_{X} ||f(x) - g(x)||_{B} d\mu(x) + \int_{E} ||g||_{\infty} d\mu(x) \\ &\leq \int_{X} ||f(x) - g(x)||_{B} d\mu(x) + \int_{E} ||g||_{\infty} d\mu(x) \\ &\leq \frac{\epsilon}{2} + ||g||_{\infty} \frac{\epsilon}{2||g||_{\infty}} \\ &= -\epsilon \end{aligned}$$

Proposition 78. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. If $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$, then μ_f is a B-valued measure on \mathcal{S} .

Proof. To do this we must show that μ_f is countably additive. First we note that for any $g, f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$ and any $E \in \mathcal{S}$ we have

$$\begin{aligned} \left| \left| \mu_f(E) - \mu_g(E) \right| \right|_B &= \left| \left| \int_E f(x) d\mu(x) - \int_E g(x) d\mu(x) \right| \right|_B \\ &\leq \int_E \left| \left| f(x) - g(x) \right| \right|_B d\mu(x) \\ &\leq \int_X \left| \left| f(x) - g(x) \right| \right|_B d\mu(x) \\ &= \left| \left| f - g \right| \right|_1 \end{aligned}$$

let $E \in \mathcal{S}$ such that $\mu(E) < \infty$ and $\epsilon > 0$ be given, and let

$$E = \bigsqcup_{i=1}^{\infty} E_i$$

since f is μ -integrable, by Lemma 74 this implies convergence in mean so from our mean cauchy sequence $\{f_n\}$ of simple integrable functions choose f_n such that

$$||f - f_n||_1 = \int ||f(x) - f_n(x)||_B d\mu(x) < \frac{\epsilon}{3}$$

since f_n is a simple integrable function μ_{f_n} is countably additive, so choose $N \in \mathbb{N}$ such that

$$m > N \implies \left\| \mu_{f_n}(E) - \mu_{f_n} \left(\bigsqcup_{i=1}^m E_i \right) \right\|_{B} < \frac{\epsilon}{3}$$

and so for m > N we have

$$\begin{split} & \left\| \mu_{f}(E) - \mu_{f} \left(\bigsqcup_{i=1}^{m} E_{i} \right) \right\|_{B} \\ & \leq \left\| \left| \mu_{f}(E) - \mu_{f_{n}}(E) \right| \right\|_{B} + \left\| \mu_{f_{n}}(E) - \mu_{f_{n}} \left(\bigsqcup_{i=1}^{m} E_{i} \right) \right\|_{B} + \left\| \mu_{f_{n}} \left(\bigsqcup_{i=1}^{m} E_{i} \right) - \mu_{f} \left(\bigsqcup_{i=1}^{m} E_{i} \right) \right\|_{B} \\ & = \left\| \int_{E} f(x) d\mu(x) - \int_{E} f_{n}(x) d\mu(x) \right\|_{B} + \left\| \mu_{f_{n}}(E) - \mu_{f_{n}} \left(\bigsqcup_{i=1}^{m} E_{i} \right) \right\|_{B} \\ & + \left\| \int_{\bigsqcup_{i=1}^{m} E_{i}} f_{n}(x) d\mu(x) - \int_{\bigsqcup_{i=1}^{m} E_{i}} f(x) d\mu(x) \right\|_{B} \\ & < \int_{E} \left\| f(x) - f_{n}(x) \right\|_{B} d\mu(x) + \frac{\epsilon}{3} + \int_{\bigsqcup_{i=1}^{m} E_{i}} \left\| f_{n}(x) - f(x) \right\|_{B} d\mu(x) \\ & \leq \int_{X} \left\| f(x) - f_{n}(x) \right\|_{B} d\mu(x) + \frac{\epsilon}{3} + \int_{X} \left\| f_{n}(x) - f(x) \right\|_{B} d\mu(x) \\ & < \| f - f_{n} \|_{1} + \frac{\epsilon}{3} + \| f_{n} - f \|_{1} \\ & < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\ & = \epsilon \end{split}$$

Theorem 79 (Lebesgue Dominated Convergence). Let (X, \mathcal{S}, μ) be measure space and B a Banach space, and let $\{f_n\} \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$; i.e. a sequence of μ -integrable functions, that converge pointwise almost everywhere to a function f. Suppose there $\exists g \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$ such that

$$||f_n(x)||_B \le g(x)$$

for all n and for all x, or almost everywhere for each n. Then $\{f_n\}$ is a mean cauchy sequence. And so $\{f_n\}$ converges to f in mean, $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$, and

$$\int f d\mu = \lim \int f_n d\mu$$

Proof. Let $\epsilon > 0$ be given, then since $g \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$ Proposition 76 says $\exists E \in \mathcal{S}$ such that

$$\mu(E) < \infty \text{ and } \left| \int_{X \setminus E} g(x) d\mu(x) \right| < \frac{\epsilon}{6}$$

then $\forall n, m$ we have

$$\begin{split} \int_{X\backslash E} \left| \left| f_m(x) - f_n(x) \right| \right|_B d\mu(x) &\leq \int_{X\backslash E} \left(\left| \left| f_m(x) \right| \right|_B + \left| \left| f_n(x) \right| \right|_B \right) d\mu(x) \\ &= \int_{X\backslash E} \left| \left| f_m(x) \right| \right|_B d\mu(x) + \int_{X\backslash E} \left| \left| f_n(x) \right| \right|_B d\mu(x) \\ &\leq \int_{X\backslash E} g(x) d\mu(x) + \int_{X\backslash E} g(x) d\mu(x) \quad \text{ since } ||f_n(x)||_B \leq g(x) \,\,\forall \,\, n \\ &= 2 \int_{X\backslash E} g(x) d\mu(x) \\ &< 2 \frac{\epsilon}{6} \\ &= \frac{\epsilon}{3} \end{split}$$

Next, since $g \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$ we also have that the indefinite integral μ_g is absolutely continuous, so we may choose $\delta > 0$ such that for any $G \in \mathcal{S}$

$$\mu(G) < \delta \implies \left| \mu_g(G) \right| = \left| \int_G g(x) d\mu(x) \right| < \frac{\epsilon}{6}$$

Now, since $f_n \to f$ pointwise almost everywhere and $\mu(E) < \infty$, Egoroff's Theorem then says that $f_n \to f$ almost uniformly on E. Therefore we may choose $F \in \mathcal{S}$ with $F \subseteq E$ such that

$$\mu(E \setminus F) < \delta$$

and $f_n \to f$ uniformly on F. Then $\forall n, m$ we have

$$\begin{split} \int_{E\backslash F} \big| \big| f_m(x) - f_n(x) \big| \big|_B d\mu(x) &\leq \int_{E\backslash F} \Big(\big| \big| f_m(x) \big| \big|_B + \big| \big| f_n(x) \big| \big|_B \Big) d\mu(x) \\ &= \int_{E\backslash F} \big| \big| f_m(x) \big| \big|_B d\mu(x) + \int_{E\backslash F} \big| \big| f_n(x) \big| \big|_B d\mu(x) \\ &\leq \int_{E\backslash F} g(x) d\mu(x) + \int_{E\backslash F} g(x) d\mu(x) \quad \text{ since } ||f_n(x)||_B \leq g(x) \; \forall \; n \\ &= 2 \int_{E\backslash F} g(x) d\mu(x) \\ &= 2 \mu_g(E \backslash F) \\ &< 2 \frac{\epsilon}{6} \\ &= \frac{\epsilon}{3} \end{split}$$

Finally, since $f_n \to f$ uniformly on F we may choose $N \in \mathbb{N}$ such that

$$n, m \ge N \implies \left| \left| f_m(x) - f_n(x) \right| \right|_B < \frac{\epsilon}{3\mu(F)}$$

then $\forall x \in F$ and $\forall n, m > N$ we have

$$\int_{F} \left| \left| f_m(x) - f_n(x) \right| \right|_{B} d\mu(x) < \int_{F} \frac{\epsilon}{3\mu(F)} d\mu(x) = \frac{\epsilon}{3\mu(F)} \mu(F) = \frac{\epsilon}{3}$$

and so, for all n, m > N we get

$$||f_{n} - f_{m}||_{1} = \int_{X} ||f_{m}(x) - f_{n}(x)||_{B} d\mu(x)$$

$$= \int_{X \setminus E} ||f_{m}(x) - f_{n}(x)||_{B} d\mu(x) + \int_{E \setminus F} ||f_{m}(x) - f_{n}(x)||_{B} d\mu(x)$$

$$+ \int_{F} ||f_{m}(x) - f_{n}(x)||_{B} d\mu(x)$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

And thus, $\{f_n\}$ is a mean cauchy sequence.

Now, since $\{f_n\}$ is a mean cauchy sequence of simple integrable functions such that $f_n \to f$ pointwise almost everywhere then f is μ -integrable, or $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$ and

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

where Lemma 74 then says that $\{f_n\}$ converges to f in mean.

Proposition 80. Let (X, \mathcal{S}, μ) be measure space and B a Banach space, and let f be a μ -measurable B-valued function. If $\exists g \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$ such that

$$||f(x)||_B \leq g(x)$$

almost everywhere, then $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$; i.e. f is μ -integrable.

Proof. Since f is μ -measurable, $\exists \{f_n\}$ of simple S-measurable such that $f_n \to f$ almost everywhere. For each n choose

$$E_n = \left\{ x \in X : 2g(x) - \left| \left| f_n(x) \right| \right|_B \ge 0 \right\}$$

and define

$$h_n(x) = \begin{cases} f_n(x), & ||f_n(x)||_B \le 2g(x) \\ 0, & \text{otherwise} \end{cases}$$

then

$$h_n = f_n \chi_{E_n}$$

since $g \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$ we have $\operatorname{car}(g)$ is σ -finite, and so, by construction, for each E_n we have

$$\mu(E_n) < \infty$$

and so each h_n is a simple integrable function, and $\{h_n\} \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$. And note, since $f_n \to f$ almost everywhere, and the h_n 's are defined in terms of the f_n 's this implies that $h_n \to f$ almost everywhere, or pointwise almost everywhere. Then since

$$||h_n(x)||_B \le 2g(x)$$

for all n and for all x, Lebesgue Dominated Convergence says that $\{h_n\}$ is a mean cauchy sequence of simple integrable functions and therefore the limit function $f \in \mathcal{L}^1(X, \mathcal{S}, \mu, B)$.

Theorem 81 (Monotone Convergence Theorem). Let (X, \mathcal{S}, μ) be measure space, and let $\{f_n\} \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$ such that $f_n \geq 0$ and is non-decreasing; i.e.

$$f_{n+1} \ge f_n \quad \forall \ n$$

if $\exists C \in \mathbb{R}$ such that

$$||f_n||_1 = \int f_n(x)d\mu(x) < C \quad \forall \ n$$

then $\{f_n\}$ is a mean cauchy sequence and $\exists f \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$ such that $f_n \to f$ pointwise almost everywhere. That is

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

Proof. Since $f_n \leq f_{n+1} \ \forall \ n$ we have

$$\int f_n(x)d\mu \le \int f_{n+1}(x)d\mu \quad \forall \ n$$

and since

$$\int f_n(x)d\mu(x) < C \quad \forall \ n$$

we have $\{\int f_n d\mu\}$ is a sequence which converges and so is cauchy.

Let $\epsilon > 0$ be given, then $\exists N \in \mathbb{N}$ such that

$$n, m > N \implies \left| \int f_n(x) d\mu - \int f_m(x) d\mu \right| < \epsilon$$

so let n > m, then since $f_k > 0 \ \forall k$ we have

$$\left| \int f_n(x)d\mu - \int f_m(x)d\mu \right| = \left| \int \left(f_n(x) - f_m(x) \right) d\mu \right|$$

$$= \int |f_n(x) - f_m(x)| d\mu$$

$$= ||f_n - f_m||_1$$

$$< \epsilon$$

and so $\{f_n\}$ is mean cauchy. Then since $\mathcal{L}^1(X,\mathcal{S},\mu,\mathbb{R})$ is complete, $\exists f \in \mathcal{L}^1(X,\mathcal{S},\mu,\mathbb{R})$ such that

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$$

Theorem 82 (More general Monotone Convergence Theorem). Let (X, \mathcal{S}, μ) be measure space with Banach space \mathbb{R} , and let $\{f_n\} \in \mathcal{S}$ satisfying

$$0 \le f_1(x) \le f_2(x) \le \cdots f_n(x) \le \cdots \quad \forall \ x \in X$$

let

$$f(x) = \lim_{n \to \infty} f_n(x)$$

then $\lim_{n\to\infty} \int f_n d\mu$ and $\int f d\mu$ both exist and

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

Proof. First, since f is the pointwise limit of measurable functions and

f is measurable and

$$\int f d\mu$$

exists in $\mathbb{R} \setminus \{0\}$.

Since $\{f_n(x)\}\$ is a monotone increasing sequence and each $f_n \geq 0$, the same is true for $\{\int f_n d\mu\}$, and so

$$\lim_{n\to\infty} \int f_n d\mu$$

exists in $\mathbb{R} \setminus \{0\}$. Moreover we have

$$\int f_n d\mu \le \int f_{n+1} d\mu \le \int f d\mu \quad \forall \ n$$

and so

$$\lim_{n \to \infty} \int f_n d\mu \le \int f d\mu$$

For the reverse inequality let

$$g: X \to [0, \infty)$$

be a simple measurable function such that

$$0 \le g \le f$$

and fix 0 < t < 1. Then defining

$$E_n = \left\{ x \in X : f_n(x) \ge tg(x) \right\}$$

we have an increasing sequence of measurable sets such that

$$E_1 \subseteq E_2 \subseteq \cdots \subseteq X$$

Then, for any $x \in X$ if

$$f(x) = 0 \implies f_n(x) = 0 \ \forall \ n$$

and since $g \leq f$ we also have

$$tg(x) = 0 \implies x \in E_n \ \forall \ n$$

if f(x) > 0, then

$$f(x) \ge g(x) \implies f(x) > tg(x)$$
 since $0 < t < 1$

and since $f_n \to f$ monotonically $f_n(x) > tg(x)$ eventually, thus $x \in E_n$ for some n. And so, for any $x \in X$ we have that

$$x \in \bigcup_{n=1}^{\infty} E_n \implies \bigcup_{n=1}^{\infty} E_n = X$$

then for every n we have

$$\int_X f_n d\mu \ge \int_{E_n} f_n d\mu \ge t \int_{E_n} g d\mu$$

and since $\int_{E_n} g d\mu = \mu_g(E_n)$ where μ_g is a measure and hence countably additive, so disjointizing the E_n 's if necessary, and by the simplicity of $g = \sum_{i=1}^N c_i \chi_{A_i}$ we have

$$\lim_{n \to \infty} \mu_g(E_n) = \lim_{n \to \infty} \sum_{i=1}^N c_i \mu(A_i \cap E_n) \to \sum_{i=1}^N c_i \mu(A_i \cap X)$$
$$= \sum_{i=1}^N c_i \mu(A_i)$$
$$= \int_X g d\mu$$

giving

$$\lim_{n\to\infty}\int_X f_n d\mu \geq \lim_{n\to\infty} t \int_{E_n} g d\mu = t \int_X g d\mu$$

then since $t \in (0,1)$ is arbitrary we conclude that

$$\lim_{n \to \infty} \int_X f_n d\mu \ge \int_X g d\mu$$

and since $g \leq f$ is an arbitrary simple function, taking

$$\sup_{g} \{ g \in \mathcal{S} : 0 \le g \le f \}$$

we get

$$\lim_{n\to\infty}\int_X f_n d\mu \geq \int_X f d\mu$$

and thus we can conclude

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

Lemma 83 (Fatou's Lemma). Let (X, \mathcal{S}, μ) be measure space, and let $\{f_n\} \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$ such that $f_n \geq 0 \ \forall \ n$. Then

$$\int \liminf \{f_n\} d\mu \le \liminf \int f_n d\mu$$

Proof. Set

$$g_n(x) = \inf\{f_i(x) : n \le i < \infty\}$$

then

$$\lim_{n \to \infty} g_n(x) = \liminf f_n(x)$$

and since $g_1(x) \leq g_2(x) \leq \cdots$ we have $\{g_n\}$ is non-decreasing, or monotonic, and so the general version of the Monotone Convergence Theorems says

$$\int \liminf_{n \to \infty} f_n(x) d\mu = \int \lim_{n \to \infty} g_n(x) d\mu = \lim_{n \to \infty} \int g_n(x) d\mu$$

yet, since $g_n(x) \leq f_n(x)$ pointwise $\forall n$ we then have

$$\int g_n(x)d\mu \le \int f_n(x)d\mu \quad \forall \ n$$

and thus,

$$\lim \inf \int f_n(x) d\mu \ge \lim_{n \to \infty} \int g_n(x) d\mu = \int \liminf_{n \to \infty} f_n(x) d\mu$$

and so we have

$$\int \liminf\{f_n\}d\mu \leq \liminf \int f_n d\mu$$

Theorem 84. Let (X, \mathcal{S}, μ) be measure space and B a Banach space. For $1 \le p \le \infty$, if $f, g \in \mathcal{L}^p(X, \mathcal{S}, \mu, B)$ then $f+g \in \mathcal{L}^p(X, \mathcal{S}, \mu, B)$, and so $\mathcal{L}^p(X, \mathcal{S}, \mu, B)$ is a vector space of functions.

Proof.

$$\begin{aligned} ||f(x) + g(x)||^p &\leq (||f(x)|| + ||g(x)||)^p \\ &\leq (2 \max\{f(x), g(x)\})^p \\ &\leq 2^p (||f(x)||^p + ||g(x)||^p) \in \mathcal{L}^1 \end{aligned}$$

and so $||f(x) + g(x)||^p$ is dominated by an integrable function and so must also be integrable by Lebesgue Dominated Convergence Theorem.

Proposition 85. Let (X, \mathcal{S}, μ) be measure space with Banach space \mathbb{R} , and let $f \in \mathcal{L}^2(X, \mathcal{S}, \mu, \mathbb{R} \text{ or } \mathbb{C})$. Then

$$x \mapsto |f(x)|^2 \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$$

and $\mathcal{L}^2(X, \mathcal{S}, \mu, \mathbb{R} \text{ or } \mathbb{C})$ satisfies Cauchy-Schwartz; i.e. for $f, g \in \mathcal{L}^2(X, \mathcal{S}, \mu, \mathbb{R} \text{ or } \mathbb{C})$

$$|\langle f, g \rangle| \le ||f||_2 ||g||_2$$

Proof. For $r, s \in \mathbb{R} \setminus \{0\}$

$$0 \le (r-s)^2 = r^2 - 2rs + s^2$$

$$\implies 2rs \le r^2 + s^2$$

which implies

$$2\left|f(x)\overline{g(x)}\right| \le |f(x)|^2 + |g(x)|^2 \in \mathcal{L}^1(X, \mathcal{S}, \mu, \mathbb{R})$$

and so by Lebesgue Dominated Converge $x\mapsto \left|f(x)\overline{g(x)}\right|\in\mathcal{L}^1(X,\mathcal{S},\mu,\mathbb{R})$. So set

$$\langle f, g \rangle := \int f(x) \overline{g(x)} d\mu(x)$$

then

$$2|\left< f,g \right>| \leq \int |f(x)|^2 d\mu(x) + \int |g(x)|^2 d\mu(x) = ||f||_2^2 + ||g||_2^2$$

if, in addition, $||f||_2 = 1$ and $||g||_2 = 1$, then

$$|\langle f, g \rangle| \le 1$$

so for any $f, g \in \mathcal{L}^2(X, \mathcal{S}, \mu, \mathbb{R} \text{ or } \mathbb{C})$ scale by setting $f = \frac{f}{||f||_2}$ and $g = \frac{g}{||g||_2}$, then

$$\begin{aligned} &\frac{|\langle f, g \rangle|}{||f||_2||g||_2} \le 1 \\ &\Longrightarrow |\langle f, g \rangle| \le ||f||_2||g||_2 \end{aligned}$$