CHEMISTRY PRACTICAL SOLUTIONS.

COMMON PRACTICALS

- 1. VOLUMETRIC ANALYSIS
- 2. RATE OF CHEMICAL REACTION AND EQUILIBRIUM
- 3. QUALITATIVE ANALYSIS

SUBJECT HANDOUT

Prepared by Gir. Donny Company

A) Volumetric analysis

Practical 01

You are provide with the following

Solution G containing 0.05 M sulphuric acids

Solution H containing 2 g of XOH in 500cm³ of the solution

Solution F, methyl orange indicator

Determine the atomic mass of X in XOH

Procedure:

Put solution G in the burette. Pipette 20cm³ or (25cm³) of solution H into the conical flask. Add two or three drops of methyl orange indicator. Titrate solution H against solution G from the burette until a colour change is observed. Note the burette reading. Repeat the procedure to obtain three more readings,

- a) Record your results in a table as shown below,
- i) Burette readings

Titration	Pilot	1	2	3
Final				
reading(cm ³)				
Initial				
reading (cm ³)				
Volume used				
(cm ³)				

- iii) Calculate the mean titre volume
- iv) The volume of solution H needed for complete neutralization of.......cm³ of solution G was......cm³
- **b**) Write a balanced chemical equation for the reaction between solution G and H.
- c) Calculate the
- i) Molarity of H
- ii) Concentration of H in g/dm³
- iii) Molar mass of XOH
- iv) Atomic mass of X in compound XOH

Solution

(a) (i) burette reading (data from the laboratory)

Titration	Pilot	1	2	3
Final	25.20	25.10	24.90	25.00
reading(cm ³)				
Initial	0.00	0.00	0.00	0.00
reading (cm ³)				
Volume used	25.20	25.10	24.90	25.00
(cm ³)				

- (ii) The volume of pipette used was 25cm³
- (iii)The mean titre volume = $\frac{25.10 + 24.90 + 25.00}{3}$

$$=\frac{75.00}{3}$$

$$= 25.00 \text{cm}^3$$

- (iv) The volume of solution H needed for complete neutralization of 25cm³ of solution G was
- 25.00cm³

(b) Balanced chemical equation for the reaction between solution G and H

$$\mathrm{H_{2}SO_{4_{(aq)}}} + 2\mathrm{XOH_{(aq)}} \ \rightarrow \ \mathrm{X_{2}SO_{4_{(aq)}}} + 2\mathrm{H_{2}O_{(l)}}$$

(c) i) Molarity of H

From
$$\frac{\text{mava}}{\text{mbnb}} = \frac{\text{na}}{\text{nb}}$$

Given that

Ma=molarity of acid

Na = number of moles of acid

Nb=number of moles of base

Va=volume of acid

Vb=volume of base

Mb=molarity of base

$$\frac{0.05}{mb} x \frac{25.00}{25.00} = \frac{1}{2}$$

$$Mb = \frac{0.05 \times 25 \times 2}{25}$$

- : Molarity of H = 0.1M
- ii) Concentration of H in g/dm3

$$=\frac{2 \times 1000 \, \text{cm}^3}{500 \, \text{cm}^3}$$

 $=4 \text{ g/dm}^3$

iii) Molar mass of XOH

= 40g/mol.

iv) Atomic mass of X in Compound XOH

: Atomic mass of X = 23g.

Practical 02

Your are provided with the following:-

- i) Solution Y: containing 3.575g of pure hydrated sodium. Carbonate (Na₂CO₃.ZH2O) per 0.25dm³ of the solution.
- ii) Solution X: Obtained diluting 250cm³ of 0.4M hydrochloric acid to 1000cm³ of the solution with distilled water
- **iii**) Methyl orange indicator labeled S.

Procedure:

Put solution X in the burette 20cm³ (or 25cm³) of solution Y into titration flask. Titrate solution X from burette against solution Y in the titration flask until the colour change is observed. Note the burette reading. Repeat the procedure to obtain three more readings and record your results in a table a shown below.

Experiment	Pilot	1	2	3
Final				
reading(cm ³)				
Initial				
reading (cm ³)				
Volume used				
(cm ³)				

- i) The colour change at the end point was fromto......
- ii)cm3 of solution X required...........cm3 of solution Y for completed reaction
- iii) Determine the concentration of solution Y in mols dm⁻³ and in gdm⁻³
- iv) Determine the molar mass of the hydrated sodium carbonate (Na₂CO₃.ZH₂O)
- v) Calculate the value of Z and percentage water of crystallization in the formula Na₂CO₃ .ZH₂O

Solution

Table of results

Experiment	Pilot	1	2	3
Final	25.20	25.10	24.90	25.00
reading(cm ³)				
Initial	0.00	0.00	0.00	0.00
reading (cm ³)				
Volume used	25.20	25.10	24.90	25.00
(cm ³)				

- Volume of pipette used was = 25cm³
- Average volume of solution $x = \frac{25.00+25.00+25.00}{3}$

$$=\frac{75.00}{3}$$

$$= 25.00 \text{cm}^3$$

- i) The colour change at the end point was from yellow to orange/pink
- ii) 25.00cm3 of solution X required 25cm3 of solution Y for complete reaction.
- iii) Concentration of solution Y mols ${\rm dm^{-3}}$ and ${\rm ingdm^{-3}}$.

From
$$M_1V_1 = M_2V_2$$

Where

M₁ = molarity of conc. acid

 V_1 = volume of conc. acid

 M_2 = molarity diluted acid.

 V_2 = volume of diluted acid.

= molarity x mwt

$$M_2 = \frac{M_1 V_1}{V_2}$$

$$= \frac{0.4 \times 250}{1000}$$

- Molarity of HCl (X) = 0.1 moldm⁻³
- Molarity of soln X (HCl) in g/dm³

 $= 0.1 \text{ moldm}^{-3} \times 36.5 \text{gmol}^{-1}$

 $= 3.65 \text{ g/dm}^3$

: Concentration of solution Y in g/dm3

Equation for the reaction

$$\mathrm{Na_2\,CO_{3_{(aq)}}} + 2\mathrm{HCl_{(aq)}} \, \rightarrow 2\mathrm{NaCl_{(aq)}} + \mathrm{H_2O_{(l)}} + \mathrm{CO_{2_{(g)}}}$$

Mole ratio 1:2

$$From, \frac{mbvb}{mava} = \frac{nb}{na}$$

Where

Mb=molarity of base

Ma= molarity of acid

Va=volume of acid

Vb = volume of base

Na=number of moles of acid

Nb=number of moles of base.

$$Mb = \frac{MaVaNb}{VbNa}$$
$$= \frac{0.1x25x1}{25x2}$$
$$= 0.05M$$

Mass concentration of base

$$=\frac{3.575 gdm^{-8}}{0.25 dm^{8}}$$

$$= 14.3 \text{gdm}^{-3}$$

iv. Molar mass of the hydrated $\,$ sodium carbonate (Na $_2\,{\rm CO}_3.\,{\rm ZH}_2{\rm O})$

$$= \frac{\text{mass concetration}}{\text{molarity}}$$

$$= \frac{14.3 \text{gdm}^{-3}}{0.05 \text{moldm}^{-3}}$$

$$= 286 \text{g/mol}$$

v. The value (No.) of molecules of water of crystallization

From, molar mass of Na_2CO_3 . $ZH_2O = 286$

We have,

$$18Z=286-106$$

$$Z = \frac{180}{18}$$

$$=10$$

Then it becomes Na2 CO3. 10H2 O

% of water of crystallization

$$= \frac{10H_2 O}{Na_2 CO_{8}, 10H_2 O}$$

$$=\frac{180}{286}$$
 x100

Also alternative method is acceptable.

Practical 03

Your are provided with the following

AA A solution of 0.2M nitric acid (HNO₃)

BB A solution of 4.2g NaxC03 per 0.5 dm³ of solution

MO is methyl orange indicator

Procedure

Put solution AA into the burette. Pipette 20cm³ or 25cm³ of solution BB in a titration flask. Add two drops of methyl orange4 indicator into the titration flask.

Titrate solution BB against A A until the end point is reached. Record the burette reading. Repeat the procedure to obtain three more reading and record your results in a tabular form.

Questions

- a)(i) Calculate the average titre volume
- (ii) Summary cm³ of solution BB required.....cm³ of solution AA for complete reaction.
- b) If the mole ratio for the reaction is 1:1 find
- i) Concentration of NaxCO3 in mol/dm3 and g/dm3
- ii) Molecular mass of NaxCO3
- iii) Atomic mass of x and replace it in the reaction in this experiment.
- c) Write a balanced chemical equation for the reaction in this experiment.
- d) What is the significance of the indicator in this experiment?
- e) Why is there a colour change enough acid has been added to the base?

Solution

Table of results

e of resums				
Titration	Pilot	1	2	3
Final	10.20	20.30	30.30	40.20
reading(cm ³)				
Initial	0.00	10.20	20.30	30.30
reading (cm ³)				
Titre volume	10.20	10.10	10.00	9.90
(cm ³)				

The volume of pipette used was 20.00cm³

- (i) Average titre volume = $\frac{10.10 + 10.00 + 9.90}{3} = \frac{30.00}{3}$ = 10.00cm^3
- (ii) Summary 20 cm³ of solution BB required 10.00cm³ of solution AA for complete reaction.
- (b) If the mole ratio for the reaction was 1:1

Then, concentration of NaxCO3 will be?

Given that

$$V_a = 10 \text{cm}^3$$

$$V_{\rm b} = 20 \, {\rm cm}^3$$

$$M_a = 0.2M$$

$$M_b = ?$$

(i) Concentration of NaxCO3

From the relation

Where

n_a Is the number of moles of acid?

n_b Is the number of moles of bases?

Ma Is molarity of acid?

M_b Molarity of acid

Va Volume of acid

V_b Volume of base

$$\frac{n_a}{n_a} = \frac{m_a v_a}{n_a}$$

$$\frac{1}{n_b} - \frac{1}{m_b v_b}$$

$$\frac{1}{1} = \frac{0.2 \times 10}{m_b \times 20}$$

$$m_b = \frac{0.2x10}{20}$$

∴ Concentration mol/dm⁻³ = 0.1mol/dm⁻³

Concentration in g/dm³

$$=4.2g\equiv0.5dm^3$$

$$X \equiv 1.0 dm^3$$

$$=\frac{4.2x1}{0.5}$$

- $\therefore Conc in g/dm^3 = 8.4g/dm^3$
- (ii) Molar mass of NaxCO₃ = molarity x conc. g/dm³

 $(Molecular\ mass) = 0.1 mol/dm^{-3}\ x\ 8.4 gdm^3$

- = 84g/mol
- (iii) Atomic mass of x in the formula NaxCO3

Given, NaxCO₃ = 84

(iii) Atomic mass of x in the formula NaxCO3

$$23 + x + 12 + (16x3) = 84$$

$$23 + x + 60 = 84$$

$$83 + x = 84$$

$$X = 84 - 83$$

$$=1g/mo1$$

: Atomic mass of 1g/mol

And this is probably hydrogen atom.

(c) Balanced chemical equation for the reaction

$$\mathrm{HNO_{3}}_{(\mathrm{aq})} + \mathrm{NaHCO_{3}}_{(\mathrm{aq})} \rightarrow \mathrm{NaNO_{3}}_{(\mathrm{aq})} + \mathrm{CO_{2}}_{(\mathrm{g})} + \mathrm{H_{2}O_{(l)}}$$

(d) The indicator in this experiment signifies or it indicates the end point of the reaction between the acid solution AA and the base solution BB.

(It is acting as a referee between acid and base reaction)

(e) There is a colour change when acid has been added to the base due to the Ph change of the indicator used.

Practical 04

In an experiment, 0.1 MHC1 was titrated against hydrated sodium carbonate ($Na_2CO_3\ XH_2O$) solution of concentration $14.3\ g/dm^3$. The volume of pipette used was $20 cm^3$ and the burette readings were recorded as shown in the table below.

Burette readings

Experiment	Pilot	1	2
Final reading (cm ³)	22,.00	40.90	21.95
Initial reading (cm ³)	01.00	21.00	02.00
Titer volume(cm ³)			

Table 1

- a) Complete the table by filling in the values of titer volume of each column
- **b)** Calculate the mean titer volume.
- c) Write a balanced chemical equation for the reaction. Which took place during the titration of sodium carbonate solution and hydrochloric acid?
- d) Calculate the
- i) Molarity of sodium carbonate
- ii) concentration in g/dm³ of sodium carbonate.
- iii) Number of water of crystallization, x in Na₂CO₃ XH₂O

Solution

(a) Table 1 (table of results)

Experiment	Pilot	1	2
Final reading (cm ³)	22,.00	40.90	21.95
Initial reading (cm ³)	01.00	21.00	02.00
Titer volume(cm ³)	21.00	19.00	19.95

(b) The mean titer volume

$$=\frac{38.95}{2}$$

$$= 19.475$$

≈ 19.50cm³

(c) Balanced chemical equation

$$Na_2CO_3(aq) + 2HC1(aq) \rightarrow Nacl(aq) + Co_2(g) + H_2O(g)$$

(d) (i) Calculation for the Molarity of sodium carbonate.

Molarity of acid (Ma) = 0.1M

Volume of Acid $(V_a) = 19.50 \text{cm}^3$

Volume of base (Vb) = 20.00cm³

Molarity of base (Mb) =?

Mole ration acid = base

2:1

From $\frac{Mara}{Mb\,Vb} = \frac{na}{nb}$ where na is number of moles of acid

 $\frac{0.1\times19.50}{mb\times20.00}=\frac{2}{1}$ nb is the number of moles of base.

$$\begin{aligned} Mb &= \frac{0.1 \times 19.50 \times 1}{20.00 \times 2} \\ &= \frac{1.95}{40} \end{aligned}$$

$$= 0.04875$$

Molarity of Na₂CO₃ ≈ 0.05M

(ii) Concentration in g/dm3 of sodium carbonate.

Concentration (g/dm
3
) = Molarity (moldm $^{-3}$) x molar mass = 0.05 x 106

$$= 5.3 \text{ g/dm}^3$$

(iii) Calculation for the number of water of crystallization x in Na₂CO₃xH₂O From the formula.

$$Molarity = \frac{conc.in g/dm^3}{molar mass}$$

Then, molar mass =
$$\frac{\text{conc.in g/dm}^3}{\text{Molarity}}$$

$$= \frac{14.3g/dm^3}{0.05Mol/dm^3}$$

=286g/mol

But molar mass = 286

$$Na_2CO_3xH_2O = 286$$

$$106 + 18x = 286$$

$$18x = 180$$

$$X = 10$$

: The number of water of crystallization in Na₂CO_{3.}XH₂O = 10

Practical 05

You are provided with

- a: Solution KK containing 5.3 g/dm³ of A₂CO₃
- b: Solution NN containing 0.1 M HCL per dm3
- c: Methyl orange indicator used.

Procedure

Put solution NN into the burette; pipette 20cm³ of solution KK into a flask. Add two drops of methyl orange indicator. Titrate solution KK against solution NN until a colour change is observed. Repeat the procedure to obtain three more readings and record your results in a tabular form as shown below:-

(a) Table of results

Titration

Titration number	Pilot	1	2	3
Initial reading (cm ³)				
Final reading (cm ³)				
Titre volume (cm³)				

- (i) Complete the table and calculate the mean titre.
- (ii) _____ cm³ of solution KK require _____ cm³ of solution NN for complete reaction.
- (iii) What is the colour change?
- (b) Write a balanced chemical equation of the reaction between solution KK and NN.
- (c) (i) Calculate the Molarity of solution KK
 - (ii) Calculate the molar mass of solution KK
 - (iii) Calculate the atomic mass of element A
 - (iv) Identify and name element A.
 - (v) Write the formula of solution KK.

Solution

a) Table of results;

Titration number	Pilot	1	2	3
Initial reading (cm³)	20.20	40.30	20.00	39.90
Final reading (cm ³)	0.00	20.20	0.00	20.00
Titre volume (cm ³)	20.20	20.10	20.00	19.90

Mean titre =
$$\frac{20.10 + 20.00 + 19.90}{3}$$
$$= \frac{60.00}{3}$$

- ii) 20.00cm³ of solution KK required 20.00cm³ of solution NN for complete reaction
- iii) The colour changed from yellow to orange
- b). Balanced chemical equation; A₂CO₃ + 2HCl → 2ACl + H₂O + CO₂
- c i) Molarity of solution KK

Applying the formula,
$$\frac{MaVa}{MbVb} = \frac{na}{nb}$$
, Then

Molarity of base (Mb) = $\frac{MaVanb}{Vbna}$

= $\frac{0.1Moldm^{-2} \times 20.00cm3 \times 1}{20.00cm3 \times 2}$
= 0.05moldm^{-3}

 \therefore The Molarity of solution KK = 0.05moldm⁻³

ii) Molar mass of base solution KK =
$$\frac{Conc.in\ gdm-3\ of\ KK}{Molarity\ of\ KK}$$
 = $\frac{5.3gdm-3}{0.05Moldm-3}$ = 106gmol^{-1}

∴ The Molar mass of solution KK = 106gmol⁻¹

iii) Atomic mass of element A can be calculated as follows:

Since, Molar mass of
$$A_2CO_3=106$$
, then
$$A\times 2+(12+48)=106,$$

$$2A+60=106 (Subtracting 60 on both sides)$$

$$2A=46 (Dividing by two on both sides), we get$$

$$A=23g$$

- iv) Element A is most likely Sodium (Na)
- v) Formula for base solution KK becomes Na₂CO₃

Practical 06

You are provided with the following:

- (i) Solution D Containing 6.90 g of T2 CO3 per 0.50 dm3 of solution.
- (ii) Solution N Containing 1.55 g of hydrochloric acid per 200 cm³ of solution.
- (iii) Phenolphthalein indicator solution.

PROCEDURE:

Put the acid solution in the burette. Pipette 20 cm³ (or 25 cm³) of D into a titration flask. Add a few drops of phenolphthalein indicator. Titrate solutions D against the acid solution until an endpoint is reached. Record your titration results in a table as shown below. Repeat the titration procedure until you obtain three or four other titre values.

a) Table of results (burette readings)

Titration	Pilot	1	2	3
Final reading/cm ³				
Initial reading/cm ³				
Volume used.cm ³				

The volume of the pipette used	wascm ³
The volume of the burette used	

Summary:cm³ of solution N was the volume used.

- b) The colour change at the end-point was from.....to....
- **d)** The balanced equation for the above neutralization reaction is:

$$T_2CO_3 + 2HCI \longrightarrow 2TCL + H_2O_2$$

Calculate:

- (i) The molarity of acid solution N
- (ii) The molarity of the base solution D
- (iii) The molecular weight of T2CO3
- (iv) The atomic mass of element T
- (e) Element T is most probably

Solution

(a) Table of results (Burette readings)

Titration	Pilot	1	2	3
Final reading	19.20	19.10	19.00	18.90
(cm ³)				
Initial reading	0.00	0.00	0.00	0.00
(cm ³)				
Volume used	19.20	19.10	19.00	18.90
(cm ³)				

Governing equation: $HCl + T_2CO3 \rightarrow 2TCl + H_2O + CO_2$

O Average volume of solution N (acid)
$$= \frac{19.10 + 19.00 + 18.90}{3}$$
$$= \frac{57.00}{3}$$

$$= 19.00 \text{cm}^3$$

- o The volume of pipette used was 20.00cm3
- The volume of burette used was 50.00cm³
- o Summary: 19.00cm3 of acid solution N was used
- (b) The colour change at the end-point was from pink to colourless
- (c) The volume of acid solution N used for complete neutralisation was 19.00cm³
- (d) (i) Molarity of acid solution N;

Given that,
$$1.55g \equiv 200cm3$$
, then
$$?g \equiv 1000cm^3 \text{ (Cross multiplication), we get}$$

Conc. in gdm⁻³ =
$$\frac{1.55g \times 1000cm3}{200cm3}$$

= 7.75gdm⁻³

Therefore, molarity
$$= \frac{Conc.in gdm-3}{Molar mass of acid HCl}$$

$$= \frac{7.75gdm-3}{36.5gmol-1}$$

$$= 0.2123$$

$$\simeq 0.21 Moldm-3$$

(ii) Molarity of base solution;

Applying the formula
$$,\frac{MaVa}{MbVb} = \frac{na}{nb},$$
 Then

Molarity of base (Mb) = $\frac{MaVanb}{Vbna}$

= $\frac{0.21Moldm-3 \times 19.00cm3 \times 1}{20.00cm3 \times 2}$

= 0.09975
 $\simeq 0.1 moldm^{-3}$

(iii) Molecular weight of T₂CO₃;

Given that
$$6.90g = 0.50dm3$$

? $g = 1.0dm3$,
Then we get = $\frac{6.90g \times 1.0dm3}{0.50dm3}$,
= $13.8gdm^{-3}$

Molecular weight of
$$T_2CO_3 = \frac{Conc.in gdm-3 of T2CO3}{Molarity of T2CO3}$$
,
$$= \frac{13.8}{0.1}$$

(iv) Atomic mass of element T;

Since, Molecular weight of $T_2CO_3 = 138$, Then

$$T \times 2 + (12 + 48) = 138$$

 $2T + 60 = 138$ (Deducting 60 on both sides), then
 $2T = 138-60$
 $2T = 78$ (Dividing by 2 on both sides), so

Atomic mass of T = 39

(e) Element T is most probably Potassium

Practical 07

You are provided with the following:

Solution AA containing 2.0g of Sodium hydroxide in 0.5dm³ of the solution.

Solution BB containing 3.15g of hydrated oxalic acid (COOH)₂. XH₂O in 0.25dm³ of the solution Phenolphthalein indicator.

Procedure:

Pipette 25cm³ or 20cm³ of solution AA into the conical flask. Add two drops of phenolphthalein indicator and titrate it against BB from the burette to the end point.

Note the reading of the burette.

Repeat the procedure to obtain three more readings and record your results in a tabular form as shown below.

Table of results

(a) (i) burette readings

Titration	Pilot	1	2	3
Final				
reading(cm ³)				
Initial				
reading (cm ³)				
Volume used				
(cm ³)				

- (iii) Determine the mean titre volume
- (b) i. The colour change at the end point was fromto
 - ii. Write a balanced chemical equation for the reaction between AA and BB.
- (c) Calculate the
 - Concentration of AA in mol dm³
 - ii. Concentration of BB in mol dm3
 - iii. Molar mass of BB
- (d) Find the value of X in (COOH)2. XH2O
 - Concentration of AA in mol dm³
 - ii. Concentration of BB in mol dm3
 - iii. Molar mass of BB
- (d) Find the value of X in (COOH)2. XH2O

Solution

(a) (i) Table of results.

Burette readings

Titration	Pilot	1	2	3
Final reading (cm ³)	12.70	25.20	37.70	12.50
Initial reading (cm ³)	0.00	12.70	25.20	0.00
Volume used (cm ³)	12.70	12.50	12.50	12.50

- (ii) Volume of pipette used was 25.000cm3
- (iii) The mean titre volume = $\frac{12.50 + 12.50 + 12.50}{3}$ $= \frac{37.50}{3}$ $= 12.50 \text{cm}^3$
- (iv) 12.50cm³ of solution BB required 25.00cm³ of solution AA for complete neutralization.
- (b) (i) The colour change at the end point was from pink to colourless
 - (ii) Balanced chemical equation for the reaction between AA and BB

$$2NaOH + H_2C_2O_4 \rightarrow Na_2C_2O_4 + H_2O$$

- (c) (i) Concentration of AA in mol dm³ = $\frac{Conc.in \ gdm-3}{Molar \ mass \ of \ AA}$ $= \frac{4.0 \ gdm-3}{40 \ gmol-1}$ = 0.1 Moldm⁻³
 - (ii) Concentration of BB in mol dm3,

Referring this relation;
$$\frac{MaVa}{MbVb} = \frac{na}{nb}$$
, Then,

Concentration of BB in moldm⁻³ (Ma) =
$$\frac{MbVbna}{Vanb}$$

= $\frac{0.1Moldm-3 \times 25cm3 \times 1}{12.50cm3 \times 2}$
= $0.1Moldm^{-3}$

(iii) Molar mass of BB =
$$\frac{Concentration\ of\ hydrated\ oxalic\ acid\ in\ gdm-3}{Molarity\ of\ hydrated\ oxalic\ acid}$$
$$= \frac{12.6gdm-3}{0.1Moldm-3}$$
$$= 126gmol^{-1}$$

(d) Find the value of X in (COOH)2. XH2O

Since,
$$H_2C_2O_4.xH_2O = 126gmol^{-1}$$
 Then,
 $90 + 18x = 126$ (Deducting 90 on both sides)
 $18x = 36$ (Dividing by 18 on both sides), So
 $x = 2$

Practical 08

- 1. You are provided with the following:
- 1.1 Solution AA prepared by diluting 100cm³ of 1M hydrochloric acid to 1000cm³ with distilled water.
- **1.2** Solution BB is sodium hydroxide
- 1.3 Phenolphthalein indicator Procedure

Pipette 20cm³ (or 25cm³) of solution BB into a titration flask. Add two drops of POP indicator. Titrate solution BB against solution AA from the burette until a colour change is observed. Note the burette reading. Repeat the procedure to obtain three more readings. Record your results as shown below.

a) Table of results.

(i) Burette readings

Titration	Pilot	1	2	3
number		1	2	
Final				
readindem ³				
Initial				
readingem ³				
Volume used cm ³				

- (ii) The volume of pipette used was --cm³
- (iii) The colour change at the end point was from -- to --
- (iv) --cm3 of solution AA was required to neutralize--cm3 of solution BB.
- v) Write a balanced chemical equation for the neutralization of sodium hydroxide by hydrochloric acid.
 - (c) Calculate the:
 - (i) Molarity of solution AA
 - (ii) Concentration in moles/dm3 of solution BB
 - (iii) Concentration in g/dm3 of solution BB

Solution

(a) (i) Table of results

(-) (-)					
Titration number	Pilot	1	2	3	
Final	21.20	41.40	20.10	40.10	
reading(cm ³)					
Initial	0.00	21.20	0.00	20.10	
reading(cm ³)					
Volume used	21.20	20.20	20.10	20.00	
(cm ³)					

Average volume of acid solution
$$=\frac{20.20+20.10+20.00}{3}$$

 $=\frac{60.30}{3}$
 $=20.10 \text{cm}^3$

- i) Volume of pipette used was 20.00cm³
- ii) The colour change at the end-point was from pink to colourless.
- iii) 20.10cm³ of AA were required to neutralize 20.00cm³ of BB.
- b) Required equation; NaOH +HCl → NaCl +H2O
- c) (i) From dilution formula McVc =MdVd,

where Mc is Molarity of conc. Acid

Vc is Volume of conc. Acid

Md is Molarity of diluted acid and

Vd is final volume (volume of diluted acid)

Then we have Md=Mc×Vc/Vd

 $=1 \times 100 \text{cm}^3 / 1000 \text{cm}^3$

=0.1Moles/dm3

ii) Molarity of base (Mb);

This can be calculated using the following relationship:-

$$\frac{MaVa}{MbVb} = \frac{na}{nb}$$

where ma is molarity of acid,

va is volume of acid.

na is number of moles of acid

mb is molarity of base,

vb is volume of base.

nb is number of moles of base

Since mole ratio na: nb is 1:1,

Therefore
$$\mathbf{Mb} = \frac{mavanb}{Vbna}$$

=0.1moles/dm³×20.10cm³×1/20.00cm³×1

=0.1moles/dm3

iii). Concentration in g/dm3 of solution BB;

From the formula, Molarity of base (mb) = conc.in gdm-3/Molecular weight

Then, Concentration in $g/dm^3 = Molarity \times Molecular$ weight

 $= 0.1 \frac{\text{mole}}{\text{dm}^3 \times 40 \text{g/mole}}$

 $=4.0g/dm^3$

Practical 09

You are provided with the following solutions:

Solution WW containing 4.38 g of pure hydrochloric acid per dm^3 of solution Solution ZZ containing 14.30 g of hydrated sodium carbonate [Na₂CO₃.XH₂O]

Methyl orange indicator

Procedure:

Put solution WW in the burette. Pipette 20cm³ (or 25 cm³) of solution ZZ into a titration flask. Add about three to four drops of methyl orange indicator into the titration flask. Titrate solution WW against solution ZZ until the end point is reached. Note the burette reading. Repeat the procedure to obtain three more readings. Record your results as shown in the following Table.

- a) Table of results
- (i) Burette readings

Sir. Donny Company Resourceful Learning Centre

Titration	Pilot	1	2	3
Final reading (cm ³)				
Initial reading (cm ³)				
Volume used (cm ³)				

- iii) The volume solution WW needed for complete neutralization was......
- iv) The color change at the end point was from.....to.....
- b) Write down a balanced chemical equation for the reaction between solution ZZ and WW.
- c) Calculate the morality of
- i) Solution WW
- ii) Solution ZZ.
- d) Calculate the value of x in the formula Na2CO₃.XH₂O

Solution

(i) Burette readings

Titration	Pilot	1	2	3
Final reading (cm ³)	21.00	41.90	20.80	41.60
Initial reading (cm ³)	0.00	21.00	0.00	20.80
Volume used (cm ³)	21.00	20.90	20.80	20.80

(ii) The volume of pipette used was 25 cm³

Average volume of WW =
$$\frac{20.90+20.80+20.80}{3}$$

$$= \frac{62.50}{3}$$

= 20.833
\approx 20.83 \text{ cm}^3

The volume of sodium WW needed for complete neutralization was 20.83 cm³ (iv) The color change at the end point was from yellow to orange.

(b) Balanced chemical equation for the reaction between solution ZZ and WW

$$Na_2CO_{(aq)}^3 + 2HCl_{(aq)} \rightarrow 2Nacl_{(aq)} + CO_{(g)}^2 + H_2O_{(l)}$$

c)i) Morality of solution WW

$$\begin{aligned} \text{Morality} &= \frac{\text{conc.in g/dm}^3}{\text{molar Mass}} \\ &= \frac{4.38 \, \text{g/dm}^2}{36.5 \, \text{g/mol}} \\ &= 0.12 \, \text{Mol/dm}^3 \end{aligned}$$

ii) Morality of solution ZZ

From relation, where,
$$\frac{Ma \, Va}{mb \, Vb} = \frac{na}{nb}$$

$$Then, \frac{0.12 \, x \, 20.83}{mb \, x} = \frac{2}{1}$$

$$Ma = Molarity of acid
Va = Volume of acid
na = number of moles of acid
Mb = Molarity of base
Vb = Volume of base
nb = number of moles of base$$

$$Mb = \frac{0.12 \times 20.83}{25 \times 2}$$

= 0.049992

- ∴ Molarity(ZZ) ≈ 0.05M
- d) Value of x in the formula (Na2CO3 x H3O)

Given that: Conc. in/dm3ofNa2CO3.XH2O = 14.30

Then, from

$$Molarity = \frac{conc.in g/dm^3}{Molecular Weight}$$

$$0.05 = \frac{14.30}{\text{Molecular Weight}}$$

$$Molecular Weight = \frac{4.30}{0.05}$$

$$=286g/mol$$

$$But 286 = Na_2CO_3.XH_2O$$

$$286 = 106 + 18x$$

$$286 - 106 = 18x$$

$$180 = 18x$$
, (divide by 18)

$$\frac{180}{18} = \frac{18x}{18}$$
$$10 = x$$

 \therefore The value of x in the formular Na₂CO₃.XH₂O = 10

$$x = 10$$

Practical 10

You are provided with the following:

PP: Solution containing 3.65 g of HCI per dm³ of the solution

VV: Solution containing 7.15 g of hydrated sodium carbonate (Na₂CO_{3.x}H₂O) in 0.5 dm³ of the solution.

MO: Methyl orange indicator.

Questions:

- (a) (i) Determine the average titre volume.
 - (ii) _____ cm³ of solution VV required _____ cm³ of solution PP for complete reaction.
 - (iii) State one indicator other than methyl orange which would be suitable in this experiment and state Why do you think it is suitable.
- (b) Predict the effect if each of the following conditions were applicable in this Experiment:
 - (i) The pipette used was not rinsed with sodium carbonate.
 - (ii) The air space at the burette tip was not removed before titration.

- (c) Write a balanced chemical equation of the reaction between solution PP and VV.
- (d) (i) Calculate the concentration of PP in moles/dm³.
 - Find Molarity of solution VV.
- (e) Deduce the value of x in Na₂CO₃xH₂O.

Solution

Table of results;

Titration	Pilot	1	2	3
Final reading	20.10	40.10	20.00	40.00
(cm ³)				
Initial reading	0.00	20.10	0.00	20.00
(cm ³)				
Titre volume	20.10	20.00	20.00	20.00
(cm ³)				

(a) (i) Average titre volume =
$$\frac{20.00+20.00+20.00}{3}$$

= $\frac{60.00}{3}$
= 20.00 cm³

- (ii) 20.00cm3 of solution VV required 20.00cm3 of solution PP for complete neutralization
- (iii) POP indicator would be suitable indicator other than MO the reaction is btn strong acid against strong base; so either of the two indicators would be suitable
- (b) (i) If pipette was not rinsed with base solution might affect the concentration of base solution, usually we rinse the pipette but in either case, it is to make sure no water is left in the apparatus which would dilute titration resulting to errors in readings. Normally the pipette is rinse with water and then the solution to be titrated. If there is still extra water in the pipette and the solution was sucked, it might decrease the concentration of the solution (more water). So if the pipette is wet; rinse it with the sample being tested.
- (ii) If the air space at the burette tip was not removed before titration might lead to errors, air space will be filled first before dropping on the acid solution (which will deduct a few volumes from the reading in the burette). The scale on the burette considers the area in the tip of the burette, so if there was no acid and the titration was done to endpoint the result will overstate the amount of acid you really used for the titration. Burette measurements are very precise so air bubbles will interfere this exact volume of the titrant (acid)

The measure of volume used in the titration will be inaccurate, because there will appear to be more titrate used than has actually been dispensed and the air space will add error to the measurement.

- (c) Balanced chemical equation; 2HCl+Na₂CO₃ → 2NaCl+H₂O+CO₂
- (d) (i) Concentration of acid HCl in moldm-3;

Since, Molarity =
$$\frac{conc.in g/dm3}{Molar mass}$$
, then
$$= \frac{3.65g/dm3}{36.5g/mole}$$
$$= 0.10 \text{moldm}^{-3}$$

ii) Molarity of base solution (VV) Na2CO3;

From the relation;
$$\frac{MaVa}{MbVb} = \frac{na}{nb}$$
 Then,

$$\mathbf{Mb} = \frac{MaVanb}{Vbna}$$

$$= \frac{0.1moldm - 3 \times 20.00cm3 \times 1}{20.00cm3 \times 2}$$

$$= 0.05moldm^{-3}$$

e) The value of x in Na₂CO_{3.xH₂O}

Molarity =
$$\frac{Conc.in\ gdm-3}{Molecular\ weight\ of\ hydrated\ Na2CO_3}$$
 'then

Molecular weight of hydrated Na2CO_3 = $\frac{Conc.in\ gdm-3}{Molarity}$

= $\frac{14.3\ gdm-3}{0.05Moldm-3}$

= $286\ gmol^{-1}$

So, Na2CO_3.xH_2O = 286
 $106+18x=286\ (deducting\ 106\ on\ both\ sides)$, we have

 $18x=180\ (dividing\ by\ 18\ on\ both\ sides)$, we have

Practical 11

You are provided with the following:

x = 10

Solution M containing 9.0 g of H2X per of the solution

Solution N containing 4.91 g of sodium hydroxide of the solution

Solution P is phenolphthalein indicator.

Procedure:

Put solution M into the burette. Pipette 25 of solution N into a titration flask. Put two to three drops of P into the titration flask. Titrate solution M from the burette against solution N in the titration flask until a color change is observed. Note the burette reading. Repeat the procedure to obtain three more readings. Record your results as shown in the following Table.

Results

Table 1: Burette readings

Titration	Pilot	1	2	3
Final reading (cm ³)				
Initial reading (cm ³)				
Volume used (cm ³)				

- a) Give the volume of the pipette used.
- b) Give the volume of solution M needed for complete neutralization of solution N
- c) Tell the color change of the indicator at the end point of the titration.
- d) Write the balanced chemical equation for the reaction between solution M and N
- e) Calculate the
- i) Morality of solution M
- ii) Molar mass of H_2X
- iii) Mass of X in H_2X

Solution

Burette readings

Titration	Pilot	1	2	3
Final reading (cm ³)	12.50	24.90	37.20	12.20
Initial reading (cm ³)	0.00	12.50	24.90	0.00
Volume used (cm ³)	12.50	12.40	12.30	12.20

- a) The volume of pipette used was 20 cm³
 - b) The volume of solution M need for complete neutralization of solution N was:-

$$= \frac{12.40 + 12.30 + 12.20}{3}$$
$$= 12.30 \, \text{cm}^3$$

- c) The color change of the indicator at the end point of the titration was form pink to colorless.
- d) Balanced chemical equation for the reaction between solution M and N

$$H_2X_{(aq)} + 2NaoH_{(aq)} \rightarrow Na_2X_{(aq)} + 2H_2O_{(l)}$$

- e) i Molarity of solution M (Ma)
 - We must first the Molarity of N i.e. Molarity of solution N

$$= \frac{\text{conc. in g/dm}^3}{\text{Molar Mass of N}}$$

$$= \frac{4.91 \text{ g dm}^{-3}}{40 \text{ gmol}^{-1}}$$

$$= 0.12275 \text{ M}$$

$$\approx 0.123 \text{ M}$$

From the relation

$$\frac{\text{MaVa}}{\text{mbVb}} = \frac{\text{na}}{\text{nb}}$$

$$\frac{\text{Ma x } 12.30}{0.123 \times 20} = \frac{1}{2}$$

$$\text{Ma} = \frac{0.123 \times 20 \times 11}{2.30 \times 2}$$

$$= 0.1 \text{ M}$$

- \therefore Molarity of solution M (Ma) = 0.1M
- ii Molar Mass of H_2X But, Molar Mass $= \frac{\text{conc.in g/dm}^3}{\text{Molarity (Mol dm}^{-3})}$

_	$9.0 \mathrm{g} \mathrm{dm}^{-3}$
_	0.1 mol dm ⁻³

Since, Molar Mass of

$$H_2X = 90$$

2 + x = 90

$$x = 90 - 2$$

Then, Mass of x = 88g.

Practical 12

You are provided with the following:

- 1.1 Solution X containing 1.55 g of hydrated sodium carbonate (Na₂CO_{3.n}H₂0) per 250 cm³ of the solution
- 1.2 Solution Y prepared by diluting 250 cm³ of 0.4 M hydrochloric acid to 1000 cm³ of the solution with distilled water.
- 1.3 Methyl orange indicator labelled Z.

Procedure:

Put solution Y into the burette. Pipette 20 cm³ (or 25 cm³) of solution X into a titration flask

Put two to three drops of Z into the titration flask. Titrate solution Y from the burette against solution X in the titration flask until a colour change is observed. Note the burette reading. Repeat the procedure to obtain three more readings and record your results in a table as shown below

- (a) Table of results.
 - (i) Burette readings.

Titration number	Pilot	1	2	3
Final reading (cm ³)				
Initial reading (cm ³)				
Volume used (cm ³)				

- (ii) The volume of pipette used was _____ cm³.
- (iii) The colour change at the end point was from ______ to _____
- (iv) Summary:

____cm³ of solution Y required_____cm³ of solution X for complete reaction.

- (b) Write a balanced chemical equation for the reaction between solutions X and Y.
- (c) Calculate the
- Molarity of solution Y.
- (ii) Molarity of solution X
- (iii) Mass of anhydrous sodium carbonate.

(iv) The mass of water of crystallization in 1.55 g hydrated sodium carbonate.

Solution

a) (i) Burette readings

Titration number	Pilot	1	2	3
Final reading	25.20	25.10	25.00	49.90
(cm ³)				
Initial	0.00	0.00	0.00	25.00
reading(cm ³)				
Volume	25.20	25.10	25.00	24.90
used(cm ³)				

Average volume used =
$$\frac{25.10+25.00+24.90}{3}$$

= $\frac{75.00}{3}$

$$= 25.00 \text{cm}^3$$

- (ii) The volume of pipette used was 25.00cm3
- (iii) The colour change at the end-point was from yellow to orange
- (iv) Summary:

25.00cm3 of solution Y required 25.00cm3 of solution X for complete reaction

- b) Balanced chemical equation; Na₂CO₃ + 2HCl → 2NaCl+ H₂O + CO₂
- c) (i) Calculation for the molarity of acid solution Y;

By using dilution formula, Mc × Vc = Md × Vd, Where Mc is molarity of Conc. acid = 0.4Moldm⁻³ Vc is volume of conc. acid = 250cm3

Md is molarity of diluted acid and =?

Vd is final volume or diluted volume = 1000cm3

$$Md = \frac{McVc}{Vd}$$
$$= \frac{0.4 \times 250}{1000}$$

Therefore, Molarity of diluted acid Y (Md) = 0.1Moldm⁻³

ii) Molarity of base solution X;

Applying the formula
$$\frac{MaVa}{MbVb} = \frac{na}{nb}$$
, Then

Molarity of base (Mb) =
$$\frac{MaVanb}{Vbna}$$

= $\frac{0.1 \times 25.00 \times 1}{25.00 \times 2}$

$$= 0.05$$
Moldm⁻³

iii) Mass of anhydrous Na2CO3;

From the relation, Molarity =
$$\frac{Conc.in\ gdm-3}{Molecular\ weight}$$
, Then

Conc. in gdm⁻³ = Molarity × Molecular weight

=
$$0.05$$
moldm⁻³ × 106 gmol⁻¹
= 5.3 gmol⁻³

From the relation:

$$Molarity = \frac{Conc.in gdm-3}{Molar mass of hydrated Na2CO3}, then$$

Molar mass of hydrated Na₂CO₃ =
$$\frac{Conc.in \ gdm-3 \ of \ hydrated \ Na2CO3}{Molarity}$$

$$= \frac{6.2}{0.05}$$

$$= 124 gmol^{-1}$$
Since, Na₂CO₃ .nH₂O = 124

Then 106 + 18n = 124(Deducting 106 on both sides), we have

18n = 18 (Dividing by 18 on both sides)

iv) Therefore n = 1, and the mass of water of crystallization is 18g

Practical 13

Solution P contains 4.0g of sodium hydroxide solid per litre of solution.

Solution Q contains 12.6g of hydrated oxalic acid H₂C₂O₄.XH₂O Solid per litre of solution

Put the acid solution in the burette and titrate equal portions of the base solution using phenolphthalein indicator provided. The following procedure should help you in recording and processing of your experimental results.

(a) Table of results (burette readings)

Titration No.	Pilot	1	2	3
Final reading				
Initial reading				
Volume used				

- (c) The colour change at the end / point was from.....to.....
- (e) Given the equation for the reaction:

$$H_2C_2O_4 \ + 2NaOH \quad \longrightarrow \quad Na_2C_2O_4 + H_2O$$

Calculate:-

- (i) The molarity of the acid solution Q.
- (ii) Concentration of acid solution Q in g/dm3.
- (iii) The value of X.

Solution

(a) Table of results:

Titration number	Pilot	1	2	3
Final reading	10.20	20.30	30.30	40.20
(cm ³)				
Initial reading	0.00	10.20	20.30	30.30
(cm ³)				
Volume	10.20	10.10	10.00	9.90
used(cm3)				

Mean titre value =
$$\frac{10.10 + 10.00 + 9.90}{3} = \frac{30}{3} = 10.00 \text{cm}^3$$

- b) Volume of pipette actually used = 20.00cm³
- c) The colour change at the end-point was from pink to colourless
- d) The volume of acid solution Q needed for complete neutralization was 10.00cm3
- e) (i) Molarity of acid solution Q can be calculated from the formula below:-

From the relation, Molarity =
$$\frac{Conc.in\ gdm-3\ of\ NaOH}{Molar\ mass\ of\ NaOH}$$

$$=\frac{4.0gdm-3}{40gmol-1}$$

$$=0.1 \text{Moldm}^{-3}, \text{ Then by applying this formula}$$

$$\frac{MaVa}{MbVb}=\frac{na}{nb},$$

Molarity of acid solution Q (Ma) =
$$\frac{MbVbna}{Vanb}$$

= $\frac{0.1Moldm-3 \times 20.00cm3 \times 1}{10.00cm3 \times 2}$
= $0.1Moldm^{-3}$

ii) Conc. of acid solution Q in gdm-3 = Molarity of acid × Molar mass of anhydrous acid H2C2O4

=
$$0.1 \text{mol} \text{dm}^{-3} \times 90 \text{gmol}^{-1}$$

= 9gdm^{-3}

iii) The value of x can be calculated as follows:-

Since, Molarity =
$$\frac{Conc.in \ gdm-3 \ of \ hydrated \ Oxalic \ acid}{Molecular \ weight \ of \ hydrated \ Oxalic \ acid},$$

Then, Molecular weight of hydrated oxalic acid = $\frac{Conc.in\ gdm-3\ of\ hydrated\ Oxalic\ acid}{Molarity\ of\ Oxalic\ acid}$

$$H_2C_2O_4.xH_2O = \frac{12.6}{0.1}$$

$$90 + 18x = 126 \text{ (Deducting 90 on both sides)}$$

$$18x = 36 \text{ (dividing by 18 on both sides), so}$$

$$x = 2$$

Alternatively,

You may apply this formula;

$$\frac{mass\ of\ anhydrous\ acid}{mass\ of\ hydrated\ acid} = \frac{Molar\ mass\ of\ anhyrous\ acid}{Molar\ mass\ of\ hydrated\ acid}$$

i.e.
$$\frac{9.0}{12.6} = \frac{90}{90 + 18x}$$
 (Cross multiplication)
 $9(90 + 18x) = 12.6 \times 90$
 $810 + 162x = 1134$ (Deducting 810 on both sides),
 $162x = 324$ (Dividing by 162 on both sides),

Practical 14

x = 2

You are provided with the following solutions:

H: Containing 6.3 g of hydrated oxalic acid, $(COOH)_2.XH_2O$ in $1dm^3$ of the solution.

M: Containing 1.4 g of potassium hydroxide in $0.5 dm^3$ of the solution phenolphthalein indicator.

Questions

- a) Titrate the aid (in a burette) against the base (in a conical flask) using two drops of the indicator and obtain three titre values.
- - (ii) The color change at the end point was from to......
 - (iii) Is the use of methyl orange indicator in this experiment as suitable as the use of phenolphthalein? Give a reason for your answer.
- c) Showing your procedures clearly, determine the value of X in the formula (COOH)_{2(aq)} + 2KOH_(aq) → (COOK)_{2(aq)} + 2H₂O_(l).

Solution

Solutions:

$$H = N(COOH)_2 \times H_2O$$

$$M = KOH$$

Indicator phenolphthalein

Acidic

$$6.3g \rightarrow 1dm^3$$

Base

$$1.4g \rightarrow 0.5dm^3$$

a)	PILOT	PILOT	1	2	3
	Final volume	25.00	25.00	25.00	25.00
	(cm ³)				
	Initial volume	00.00	00.00	00.00	00.00
	(cm³)				
	Volume	25.00	25.00	25.00	25.00

- b) (i) $25cm^3$ of M required $25cm^3$ of H for complete reaction.
 - (ii) Pink to yellow
 - (iii) It's not suitable for methyl orange because weak acid is merely detecting color change for the small drop. It needs huge drops addition to detect color that can cause over exceeding and point.

c) Solution

Morality =
$$\frac{Conc.}{Molar\ Mass}$$

Mr of KOH = $\frac{40g}{mol}$

$$1.4g \rightarrow 0.5dm^3$$

$$X \leftarrow 1dm^3$$

$$X = \frac{1.4g}{0.5dm^3} = \frac{2.8}{dm^3}$$

Morality of NaOH (B) =
$$\frac{2.8g}{40g}_{mol} = 0.07M$$

From molar ration

$$M_a V_a n_b = M_a V_a n_b$$

$$M_a = \frac{M_a \ x \ V_a \ x \ n_a}{V_a \ x \ n_b}$$

But
$$n_a = 1$$
, $n_b = 2$

$$Ma = \frac{0.07M \times 25cm^3 \times 1}{25cm^3 \times 2} = 0.014M$$

But

$$Mr = \frac{Conc.}{Molarity}$$

$$Mr = \frac{\frac{6.3g}{d_{m}^3}}{0.014^{mol}/d_{m}^3} = \frac{450g}{mol}$$

But

(COOH). $X(H_2O)$

$$45 + X (18) = 450$$

$$X \frac{(18)}{18} = \frac{450}{18} = 22.5$$

$$X = 22.5$$

Practical 15

You are provided with the following:

- Solution W containing 3.00g of acetic acid (CH₃CCOOH) per 0.5dm³ of solution
- ii. Solution Q containing 2.20g of impure sodium bicarbonate per $0.25dm^3$
- iii. Methyl orange indicator solution.

Put the acid solution in the burette. Pipette 20cm³ (or 25cm³) of solution Q into a titration flask. Add few drops of MO indicator. Titrate the sodium hydrogen carbonate solution against the acid solution until an end-point is reached. Record your titre results a table. Repeat the titration to obtain three more readings.

a) Table of results (Burette readings)

Titration	Pilot		
Final			
reading(cm ³)			
Initial reading			
(cm ³)			
Volume used			
(cm ³)			

- (b) The colour change at the end point was from to -
 - (c) The volume of acid solution W needed for complete neutralization wascm³
 - (d) The balanced chemical equation the above neutralization reaction is

Calculate:-

- i. The molarity of the acid solution W
- ii. The molarity of the base solution Q
- The concentration of NaHCO₃ in solution q in g/dm3.
- (e) The impurity in the sodium hydrogen carbonate does not react with the acetic acid. Calculate the percentage by weight of the unreactive material (impurity) in the sodium bicarbonate solution.

Solution

(a) Table of results:

Titration	Pilot	1	2	3
Final reading (cm ³)	20.40	40.70	20.20	40.30
Initial reading (cm ³)	0.00	20.40	0.00	20.20
Volume used (cm ³)	20.40	20.30	20.20	20.10

So, Average volume of acid used
$$= \frac{20.30 + 20.20 + 20.10}{3}$$
$$= \frac{60.60}{3}^{3}$$
$$= 20.20 \text{cm}^{3}$$

Volume of pipette used was 20.00cm³

- b) The colour change at the end-point was from yellow to orange
- c) The volume of acid solution needed for complete neutralization was 20.20cm³
- d) Given that, $NaHCO_{3(aq)} + CH_3COOH_{(aq)} \rightarrow CH_3COONa_{(aq)} + H_2O_{(l)} + CO_{2(g)}$
 - (i) Molarity of acid solution; Given that 3.0g are in 0.5dm3

i.e.
$$3.0g \equiv 0.5 dm^3$$

?\equiv 1.0dm3

Then applying cross multiplication, we have $3.0g \times 1.0dm3 / 0.5dm3 = 6.0g/dm^3$ Therefore by using the formula,

(ii) Molarity of base solution; from the relation

Mava/mbvb =na/nb,
Then, molarity of base (Mb) = Mavanb/Vbna
=
$$0.1 \text{moldm}^{-3} \times 20.20 \text{cm} 3 \times 1/20 \text{cm} 3 \times 1$$

= 0.101
 $\simeq 0.1 \text{moldm}^{-3}$

(iii) Concentration of NaHCO3 in solution Q in g/dm3; Now from the formula,

So, Conc. in
$$gdm^{-3} = molarity$$
 of base \times Molecular mass $= 0.1 \frac{mol}{mol} dm^{-3} \times 84 \frac{mol}{mol}$

= 8.40gdm⁻³(pure material)

e) Percentage of unreactive material (impurity) in base solution;

Given that 2.20 are in 0.25dm3

ie.
$$2.20g \equiv 0.25 dm3$$

? $\equiv 1.0 dm^{-3}$, by cross multiplication we get
$$= 2.20g \times 1.0 dm3/0.25 dm^{-3}$$

= 8.80gdm⁻³(impure material)
But percentage (%) of impurity

$$= \frac{conc.in\ gdm-3\ of\ impure\ material-conc.in\ gdm-3\ of\ pure\ material}{Conc.in\ gdm-3\ of\ impure\ materia} \times 100$$

$$= \frac{8.80gdm-3 - 8.40gdm-3}{8.80gdm-3)} \times 100$$
$$= 4.55\%$$

Practical 16

You are provided with the following:

- (i) Solution E containing 3.65 g of hydrochloric acid per dm³ of solution.
- (ii) Solution K containing 3.575 g of pure hydrated sodium carbonate, Na₂CO₃. X H₂O per 0.25 dm³ of solution.
- (iii) Methyl orange indicator solution.

Put the acid solution in the burette. Pipette 20 cm³ (or 25 cm³) of solution K into a titration flask. Add a few drops of methyl orange indicator. Titrate this base solution against the acid solution until an end-point is reached. Record your titre results. Repeat the titration and record your titre results in a tabular form as follows:

(a) Table of titre results:

Volume of pipette used was _____cm³.

Titration	Pilot	1	2	3
Final reading / cm ³				
Initial reading / cm ³				
Volume used / cm ³				

- (b) The colour change at the end-point was from ______to ____
- (c) The Volume of acid solution E needed for complete neutralization was _____cm³.
- (d) Write down the balanced equation for the reaction.
- (e) Calculate:
 - (i) The molarity of acid solution E
 - (ii) The molarity of base solution K
 - (iii) The concentration of Na2CO3 in solution K in g/dm3.
- (f) What is the value of x?

Solution

(a) Table of results:

Volume of pipette used was 25.00cm3

Titration	Pilot	1	2	3
Final reading (cm ³)	25.10	25.00	25.00	25.00
Initial reading (cm ³)	0.00	0.00	0.00	0.00
Volume used (cm ³)	25.10	25.00	25.00	25.00

Average titre value =
$$\frac{25.00 + 25.00 + 25.00}{3}$$

= $\frac{75.00}{3}$

$$= 25.00 \text{cm}^3$$

- b) The colour change at the end-point was from yellow to orange
- c) The volume of acid solution E needed for complete neutralization was 25.00cm3
- d) Balanced equation; $Na_2CO_{3(aq)} + 2HCl_{(aq)} \rightarrow 2NaCl_{(aq)} + H_2O_{(l)} + CO_{2(g)}$
- e) (i) Molarity of acid solution E;

It is known that Molarity = conc. in gdm-3/molecular weight

$$= 3.65 \text{gdm}^{-3}/36.5 \text{gmol}^{-1}$$

= 0.10moldm^{-3}

ii) Calculation for the molarity of base solution K;

From the relation:
$$\frac{mava}{mbvb} = \frac{na}{nb}$$

Then we have, molarity of base (Mb) =
$$\frac{mavanb}{vbna}$$

= 0.10moldm⁻³ × 25.00em³ × 1/25.00em³ ×2
= 0.05 moldm⁻³

- iii) Conc. of Na₂CO₃ in solution K in gdm⁻³; = Molarity \times Molecular mass = 0.05moldm⁻³ \times 106gmol⁻¹ = 5.3gdm⁻³
- f) Calculating value of x; Given that 3.575g are in 0.25dm³

i.e.
$$3.575g \equiv 0.25dm3$$

 $?g \equiv 1.0dm^3$

Then we have, by cross multiplication = $3.575g \times 1.0dm^3/0.25dm^3$ = $14.30gdm^{-3}$ (hydrated mass of Na₂CO₃),

Therefore by using the relation;

 $\frac{mass\ conc.in\ gdm-3\ of\ anhydrous\ Na_2CO_3}{Molar\ mass\ of\ anhydrous\ Na_2CO_3}\ =\ \frac{mass\ Conc.in\ gdm-3\ of\ hydrated\ Na_2CO_3}{Molar\ mass\ of\ hydrated\ Na_2CO_3}$

$$\frac{5.3}{106} = \frac{14.3}{106+18x}$$

Then by cross multiplication we get,

$$\Rightarrow$$
5.3(106+18x) = 106×14.30

$$\Rightarrow$$
561.80 +95.40x = 1515.80

$$\Rightarrow x = 10$$

Alternatively;

Molarity = conc. in gdm⁻³/Molecular weight of hydrated Na₂CO₃

So, Molecular weight = Conc. in gdm⁻³/ Molarity

$$= 14.3/0.05$$

So,
$$Na_2CO_3.XH_2O = 286$$

$$106+18X = 286$$
 (Deducting 106 on both sides)

$$18x = 286 - 106$$

$$18x/18 = 180/18$$

$$X = 10$$

Practical 17

You are provided with the following solutions:

- 1.1 Solution P containing 28.60 g per litre of impure sodium carbonate.
- 1.2 Solution Q containing 0.20 mole of hydrochloric acid in a litre of solution.
- 1.3 Methyl orange as an indicator.

Procedure

Put the acid solution in a burette. Pipette 25 cm³ (or 20 cm³) of P into a titrating flask. Add a few drops of methyl orange indicator in the titrating flask containing solution P. Titrate solution P against the acid solution, until the end point is reached. Repeat this procedure until three titre values are obtained and record your titration results in a tabular form as shown below.

(a) Table of results:

TITRATION	PILOT	1	2	3
FINAL READING (cm ³)				
INITIAL READING (cm ³)				
VOLUME USED (cm ³)				

(i) Volume of pipette used

(::) m		c	- 2
(III) The mean	1 fifre ic	C	m-

Z:::>	~
(1111)	Summary

cm ³ of solution P requiredcm ³	of solution () for complete	reaction
---	---------------	----------------	----------

- (b) Write balanced equation for the above neutralization reaction.
- (c) Calculate the molarity of P
 - (i) In moles per litre
 - (ii) In grams per litre.
- (d) (i) Calculate the amount of impurity in g per litre.
 - (ii) If this impurity was due to water of crystallization in the salt, calculate the number of moles of water in one mole of sodium carbonate crystals.

Solution

(a) Table of results;

Titration	Pilot	1	2	3
Final reading (cm ³)	20.10	40.10	20.00	40.00
Initial reading(cm ³)	0.00	20.10	0.00	20.00
Volume used(cm ³)	20.10	20.00	20.00	20.00

- i) Volume of pipette used was 20.00cm3
- ii) The mean titre is = $\frac{20.00+20.00+20.00}{3}$

$$=\frac{60.00}{3}$$

$$= 20.00 \text{cm}^3$$

iii) Summary:

20.00cm3 of solution P required 20.00cm3 of solution Q for complete reaction.

- b) Balanced chemical equation; Na₂CO₃ +2HCl→ 2NaCl+ H₂O + CO₂
- c) (i) Molarity of base (P); From the relation MaVa/MbVb = na/nb

Then Molarity of base (Mb) = mavanb/vbna

=
$$0.20 \text{moldm} - 3 \times 20.00 \text{cm}^3 \times 1/20.00 \text{cm}^3 \times 2$$

 $= 0.10 \text{mldm}^{-3}$

d) (i) Amount of impurity in g/litre;

Given that amount of pure Na₂CO₃ = 10.60g/litre and

The amount of impure Na₂CO₃ = 28.60g/litre

Thus, the amount of impurity in g/litre may be calculated as follows; = Amount of impure

-Amount of pure = 28.60g/litre - 10.60g/litre

(Amount of impurity in g/litre) = 18.00g/litre

ii) Number of moles of water of crystallization in one mole of Na₂CO₃;

By referring this relation,

$$\frac{\textit{Amount of pure Na2CO3 in glitre-1}}{\textit{Amount of impure Na2CO3 in glitre-1}} = \frac{\textit{Molecular mass of pur Na}_2\textit{CO}_3}{\textit{Molecular mass of impure Na}_2\textit{CO}_3}$$

$$\frac{10.60}{\textit{Molecular mass of impure Na}_2\textit{CO}_3}$$

$$\frac{10.60}{28.6} = \frac{106}{106 + 18n}$$

So,
$$\Rightarrow 10.60(106 + 18n) = 28.6 \times 106$$

$$\Rightarrow 1123.60 + 190.80n = 3031.60$$

$$190.80n = 3031.60 - 1123.60$$

190.80n = 1908.00(dividing by 190.80 on both sides)

$$\frac{190.80n}{190.80} = \frac{1908.00}{190.80}$$

$$n = 10$$

(B) Rate of chemical reaction with equilibrium

Practical 18

You are provided with the following materials

TT: A solution of 0.13M Na₂S₂O₃ (Sodium thiosuphate)

HH: A solution of 2MHC1;

Distilled water:

Stopwatch

Procedure:

- i) Using 10cm³ measuring cylinder. Measure 20cm³ of solution TT and put into 100 cm³ beaker.
- **ii**) Use different measuring cylinder to measure 10cm^3 of HH and pour it into the beaker containing solution TT. Immediately start the stop watch. Swirl the beaker twice.
- iii) Place the beaker with contents on top of a piece of paper marked X
- **iv**) Look down vertically through the month of the beaker so as to see the cross at the bottom of the beaker. Stop the clock when the letter X is invisible.
- v) Record the time taken for the letter X to disappear completely.
- vi) Repeat the experiment as shown in table 1.
- vii) Record your results in tabular form as shown in table 1.

Table 1: Table of results

Exp.No.	Vol. of HH (cm ³)	Vol. of TT (cm ³)	Vol. of Distilled water (cm ³)	Time (sec)	$\frac{1}{t}(s^1)$
1	10	20	0		
2	10	15	5		
3	10	10	10		
4	10	5	15		

Questions:

- a) Complete filling the table of results (Table 1)
- **b**) Write a balanced equation for reaction between TT and HH
- c) What is the reaction product which causes the solution to could the letter X?
- **d)** How was the factor of concentration varied in this experiment?
- e) Plot a graph of 1/t against the volume of the thiosulphate.
- f) Use the graph to explain how variation of concentration affects the rate of chemical reaction.

Solution

b) Balanced equation for the reaction between TT and HH

$$\mathrm{Na_2S_2O_3}_{(\mathrm{aq})} + 2\mathrm{HCl}_{(\mathrm{aq})} \rightarrow 2\mathrm{NaCl}_{(\mathrm{aq})} + \mathrm{H_2O_{(l)}} + \mathrm{S_{(s)}} + \mathrm{SO_2}_{(\mathrm{g})}$$

- c) The reaction which causes the solution to cloud the letter X was sulphur (i.e. predicated sulphur caused the solution to cloud letter X)
- a) Table 1: table of results

Exp.No.	Vol. of HH (cm ³)	Vol. of TT (cm ³)	Vol. of Distilled water (cm ³)	Time (sec)	$\frac{1}{t}(s^1)$
1	10	20	0	20	0.05
2	10	15	5	24	0.04
3	10	10	10	34	0.03
4	10	5	15	50	0.02

- d) The factor of concentration varied in this experiment in such a way that as concentration of sodium thiosuolphate decreases the rate of chemical reaction also decreases or as concentration increases the rate also increases.
 - e) A GRAPH OF ¹/_t AGAINST THE VOLUME OF THIOSULPHATE

f) As the concentration of sodium thiosulphate was decreased, the rate of chemical reaction was also decreased and or as the concentration increases, the rate of reaction also increases.

Volume of thiosulphate

You are provided with the following materials:-

Al: A solution of 0.2m, Na₂S₂O₃

A2: A solution of 0.1MHC1

Distilled water

Stop watch

Procedure:-

- i) Using 50cm³ measuring cylinder measure 30cm³ of solution Al and put it into 250cm³ beakers. Using the same cylinder add 20cm³ of distilled water in the beaker containing Al.
- **ii**) Using the same cylinder, measure 50cm^3 of solution A2 and pour it into the beaker con training solution A1 and immediately start the stop watch. Stir the beaker twice and place it with the contents on top of a piece of paper marked X using ball pen.
- **iii)** Look down vertically through the mouth of beaker so as to see the cross x at the bottom of beaker. Stop the clock when the cross x is invisible.
- iv) Record the times taken for the cross X to disappear completely.
- v) Repeat the experiment as shown in the table 1 below
- vi) Record your results in tabular form as indicated

Table 1. Results

Exp.No	Volof A2(cm ³)	Vol of Al (cm ³)	Vol of distilled water (cm ³)	Conc.Of Al in (mols dm-3)	Time taken for the cross to dis (t) (sec)	1/t (sec-1)
1	50	30	20			
2	50	25	25			
3	50	20	30			
4	50	15	35			
5	50	10	40			

Ouestions:-

- a) Complete filling the table of results (Table 1) showing your working for the fifth column (i.e. cone, of A1 in molsdm⁻³).
- **b**) Write a balanced equation for the reaction between A1 and A2. Simplify the balanced equation into a net ionic equation.
- c) Briefly explain the smell and colour observed as the reaction takes place
- **d**) Plot a graph of against cone, (in mols)
- e) From the graph plotted, explain how concentration changes effects the rate of chemical reaction.

Solution

Table of results

Exp.No	Vol of A2(cm ³)	Vol of A1 (cm ³)	Vol of distilled water (cm ³)	Conc.Of A1 in (mols dm-3)	Time taken for the cross to dis (t) (sec)	1/t (sec-1)
1	50	30	20	0.12	37	2.7x10 ⁻²
2	50	25	25	0.10	61	1.6x10 ⁻²
3	50	20	30	0.08	96	1.04x10 ⁻²
4	50	15	35	0.06	133	7.5x10 ⁻³
5	50	10	40	0.04	242	4.13x10 ⁻³

a. Concentration of A1:

Expt 1:
$$0.2 \times 30$$

= $M_2 \times 50$

$$M_2 = 0.12M$$

Expt 2:
$$0.2 \times 25$$

= $M_2 \times 50$

$$M_2 = 0.10M$$

Expt 3:
$$0.2 \times 20$$

= $M_2 \times 50$

$$M_2 = 0.06M$$

$$= M_2 \times 50$$

$$M_2 = 0.06M$$

$$= M_2 \times 50$$

$$M_2 = 0.04M$$

b.
$$Na_2S_2$$
, $O_{3(aq)} + 2HCl_{(aq)} \rightarrow 2NaCl_{(aq)} + H_2O_{(1)} + SO_2 + S_{(s)}$

Net Ionic Equation

$$2\text{Na}^{+} + \text{S}_{2}\text{O}^{2-}_{3} + 2\text{H}^{+} + 2\text{CL}^{-} \rightarrow 2\text{Na}^{+} + 2\text{Cl}^{-} + \text{H}_{2}\text{O} + 2 + \text{s}$$

$$\text{S}_{2}\text{O}^{2-}_{3(\text{aq})} + 2\text{H}^{+}_{(\text{aq})} \rightarrow \text{H}_{2}\text{O} + \text{SO}_{2(\text{g})} + \text{S}_{(\text{s})}$$

c) The smell experienced as the experiment proceeds is due to the formation (production) of Sulphur dioxide $(S0_2)$ which has chocking irritating /metallic taste

The colour (creamy) seen is due to formation/precipitation of sulphur as the reaction proceeds.

e. Increase in concentration of sodium thiosulphate increases the rate of the chemical reaction, and vice verse.

Practical 20

You are provided with the following:

P: Sodium thiosulphate solution (32.24g/dm³)

Q: 2MHC1 solution

-Stopwatch, thermometer

Procedure

- Measure 50cm³ of solution P into a 250cm³ conical flask.
- (ii) Place the flask on top of gauze on a tripod stand. Heat the flask with a gentle Bunsen burner flame.
- (iii)Draw a cross on a piece of a white paper. Stir the solution in the conical flask until the temperature reaches 30°C.
- (iv) Stand the flask on to paper above the cross and immediately add 5cm³ of solution Q. At the same time start the stop clock. Stir the mixture with the thermometer.
- (v) Observe the cross through the mouth of the flask as before. Stop the clock immediately as soon as the cross is obscured. Record the time. Read the temperature again and record this temperature in a table.
- (vi) Repeat the experiment three more time with starting temperature of 40 °C, 50 °C and 60 °C each time use 5cm³ of solution Q.

Table of results

Temperature(°C)	Time ,t, for the cross to disappear(s)	Rate of reaction i/t(s ⁻¹)
30		
40		
50		
60		
70		

Questions

- a) Plot the graph of temperature(y-axis) against rate(x-axis)
- b) Is the graph a straight line or a curve?
- c) Did the time until the cross disappeared increase or decrease as the temperature was raised?
- d) Did the rate or reaction until the cross disappeared increase or decrease as the temperature was raised?

Solution

Table of results

Temperature(°C)	Time ,t, for the cross to disappear(s)	Rate of reaction i/t(s ⁻¹)
30	30	0.03
40	14	0.07
50	12	0.08
60	8	0.13
70	6	0.17

a) A graph of temperature against time

- b) The graph is straight line
- c) As the temperature was raised the time for the cross to disappear decreases
- d) Like ways as the temperature was raised the rate or reaction also increases.

You are provided with the following materials:

RR: A solution of 0.2M Na₂S₂O₃ (sodium thiosulphate)

GG: A solution of 0.1M HCl; Stopwatch; Distilled water.

Procedure:

- **a)** Using 10cm measuring cylinder, measure 2cm of RR and 8cm3 of water and pour the content into the 100cm beaker.
- **b)** Use different measuring cylinder to measure 10cm3 of GG and pour it into the beaker containing RR and distilled water and immediately start the stopwatch. Swirl the beaker twice.
- c) Place the with the contents on top of a piece of paper marked X with blue pen or black pen.
- **d**) Look down vertically through the mouth of the beaker so as to see the cross at the bottom of the beaker. Stop the clock when the letter x is invisible.
- e) Record the time taken when the letter X disappear completely.
- **f**) Repeat the experiment as shown in a table below
- **g**) Record your results in a tabular form as shown below.

Exp.No	Volume of GG(cm ³)	Volume of RR(cm ³)	Volume of dist. Water(cm ³)	Time(s)	i/t(s ⁻¹)
1	10	2	8		
2	10	4	6		
3	10	6	4		
4	10	8	2		
5	10	10	0		

Questions

- a) Complete filling the table of results (above table)
- b) Write a balanced chemical equation for the reaction btn RR and GG
- c) What is the product which causes the solution to cloud the letter X?
- d) Plot a graph of i/t against the volume of thiosulphate.
- e) Use the graph to explain how variation of concentration affects the rate of chemical reaction.

Exp.No	Volume	Volume of	Volume of dist.	Time(s)	i/t(s ⁻¹)
	of	RR(cm ³)	Water(cm ³)		
	GG(cm ³)				
1	10	2	8	40	0.025
2	10	4	6	35	0.029
3	10	6	4	30	0.033
4	10	8	2	25	0.040
5	10	10	0	20	0.050

- Balanced chemical equation: Na₂S₂O₃ +2HCl → 2NaCl+H₂O +S +SO₂
- c) The product which causes the solution to cloud the letter X is Sulphur
- d) A graph of 1/time against Volume of sodium thiosulphate RR

e) As concentration of the reactant(s) increases the rate of chemical reaction also increases

Practical 22

You are provided with the following solutions

M: 0.1M Solution of Sodium thiosulphate

N: IM HC1 solution

Carry out the following experiment and answer the questions.

Procedure:

- i) Label six beakers as follows: P,Q, R, S, T, and U
- ii) Pour 0.1M sodium thiosulphate solution to the six beakers so that 30cm³, 25 cm³, 20 cm³, 15 cm³, 10 cm³, and 5 cm³ portions go to the beakers respectively.
- iii) Pour distilled water to the six beakers so that 0 cm^3 , 5 cm^3 , 10 cm^3 , 15 cm^3 , 20 cm^3 and 25 cm^3 portions go to the beakers respectively.
- i) Draw a cross X on six white papers using a pen and place under each of the six beakers.
- ii) Add 10 cm³ of IM HCl solution into the beakers on the paper with X and at the same time start the stopwatch.
- iii) Swirl well the mixtures and place the beaker over the cross
- **iv**) Look through the mixture from above. Stop the stopwatch when the X immediately disappeared from the sight and record the times it takes for the cross X to disappear.
- v) Repeat the procedure with the remaining five solutions.
- vi) Record the results in a tabular form as shown below.

Experiment	Volume of	Volume of H ₂ O	Volume of HCl	Time for the
	$Na_2S_2O_3$ (cm ³)	(CM ³)	(cm ³)	cross to
				disappear(s)
1	30	0	10	
2	25	5	10	
3	20	10	10	
4	15	15	10	
5	10	20	10	
6	5	25	10	

- (i) Plot the graph of Volume of Na₂S₂O₃(y-axis) against time(x-axis)
- (ii) What does the shape for the graph indicate?
- (iii) Write the chemical equation for the reaction btn Na₂S₂O₃ and HCl solution
- (iv) Why did the cross disappear?

Solution

Table of results.

Experiment	Volume of		Volume of HCl	Time for the
	$Na_2S_2O_3$ (cm ³)	(cm ³)	(cm ³)	cross to
				disappear(s)
1	30	0	10	35
2	25	5	10	43
3	20	10	10	57
4	15	15	10	78
5	10	20	10	120
6	5	25	10	380

(i) Graph of Volume of Na₂S₂O₃(y-axis) against time(x-axis)

- (ii) The shape of the graph indicate that as the volume of sodium thiosulphate decreases the time taken for the cross to disappear increases
- (iii) Balanced chemical equation; Na₂S₂O₃ +2HCl → 2NaCl +H₂O +S +SO₂
- (iv) The cross disappear due to precipitation or formation of sulphur

Practical 23

To determine the effect of concentration on the rate of reaction between Na₂S₂CO₃ and HC1 Materials: Na₂S₂CO₃ 5H₂O(32.24g/dm³), 2M HC1, Conical flask, two measuring cylinders, white piece of paper,

black ink **Procedure:**

- (a) Mark a cross on piece of paper with black ink
- (b) Measure 50cm³ of Na₂S₂O₃ solution and pour it into a conical flask.
- (c) Measure 10cm³ of HC1 solution using different measuring cylinder. Start a stopwatch as soon as you pour HC1 solution into a conical flask.
- (d) Stand the conical flask on the paper above the cross. Look down vertically through the mouth of the conical flask and make sure you can see the cross at the bottom of the flask.
- (e) Swirl the flask while keep on observing the cross until the cross disappears. Record the time in the table.
- (f) Throw away the contents of the conical flask, and rinse it.
- (g) Repeat the whole procedure using 40cm^3 , 30cm^3 , 20cm^3 and finally 10cm^3 of HC1 solution. In each experiment use 10cm^3 of HC1 solution. Always record the time at which the cross disappears. Always to up $Na_2S_2CO_3$ with distilled water to make 50cm^3 before adding the acid solution. Table of results

Table of results

Volume of	Volume of	Concentration of	Time,t, for the	Rate of
Na ₂ S ₂ O ₃ (cm ³)		Na ₂ S ₂ O ₃ after	cross to	reaction,1/t
	CM^3)	adding	disappear (s)	(s ⁻¹)
		water(moldm ⁻³)		
50	0	0.130		
40	10			
30	20			
20	30			
10	40			

- a) Plot the graph of time (y-axis) against concentration of $Na_2S_2CO_3$ (x-axis)
- **b**) Plot the graph of rate(y-axis) against concentration of Na₂S₂CO₃ (x-axis)
- c) Which of the two graphs is:- i)a curve? ii) a straight line?
- d) What conclusion can you draw from the results of this experiment

Solution

Table of results

Volume of	Volume of	Concentration of	Time, t, for the	Rate of
Na ₂ S ₂ O ₃ (cm ³)		Na ₂ S ₂ O ₃ after	cross to	reaction,1/t
	CM^3)	adding	disappear (s)	(s ⁻¹)
		water(moldm ⁻³)		
50	0	0.130	20	0.05
40	10	0.104	24	0.04
30	20	0.078	34	0.03
20	30	0.052	50	0.02
10	40	0.026	110	0.01

Note: Concentration of Na₂S₂O₃ decreases after adding water as shown in the below dilution formula:

McVc = MdVd.

where Mc is Molarity of conc. Acid

Vc is Volume of conc. Acid

Md is Molarity of diluted acid and

Vd is final volume (volume of diluted acid)

Then we have Md=
$$\frac{\text{Mc}\times\text{Vc}}{\text{Vd}}$$
, If Mc= 0.13M, Vc= 40cm^3 , Vd= 50cm^3
= $\frac{0.13\times40}{50}$
= 0.104Moldm^{-3} ,

Therefore like ways you trill obtain other values of Concentration of Na2S:03 as you keep on adding water, a) A graph of time (seconds) against concentration

b) A graph of rate against Concentration

- c).i) Graph number (i) or (a) is a curve while graph number (ii) or (b) is a straight line starting from the origin.
- d). Conclusion, as concentration of the solution or reactant decreases the time taken for the reaction to complete increases like ways as concentration increases the rate of chemical

You are provided with the following:

Solution **Z** containing 1 M sodium thiosulphate $(Na_2S_2O_3)$;

Solution T containing 0.1 M nitric acid (HNO3);

Distilled water:

Piece of water marked X;

Stop - watch.

Procedure

- Using measuring cylinder, measure 5cm³ of solution Z and put 100 cm³ beaker.
- ii) Measure 5 cm³ of solution T and put into 100 cm³ beaker containing solution
 Z. and immediately start the stop watch.
- iii) Swirl the contents in the mixture from the above observe changes.
- iv) Switch off the stop watch when the mark X disappears.
- v) Record the times taken for the letter X to disappear.
- vi) Repeat procedures (i) to (v) using the data shown in Table 1.

Table 1.

Experiment	Vol. of T (cm ³)	Vol. of Z (cm³)	Vol. of Distilled water (cm ³)	Time (s)
1	5	5	0	
2	5	4	1	
3	5	3	2	
4	5	2	3	

Question

- a) Complete Table 1.
- b) Write a balanced equation for reaction between T and Z
- c) What substance was produced during the reaction which obscured letter X?
- d) Plot the graph of volume of $Na_2S_2O_3$ solution against time (s).
- e) What conclusion can you draw from this experiment?

Solution

a) The completed Table 1

EXPERIMENT	VOL. of T	VOL. of	VOL. of DISTILLED	TIME (s)
	(cm ³)	$\mathbf{Z}(cm^3)$	WATER (cm ³)	
1	5	5	0	50
2	5	4	1	61
3	5	3	2	128
4	5	2	3	213

- b) $Na_2S_2O_{3(aq)} + 2HNO_{3(aq)} \rightarrow 2NaNO_{3(aq)} + H_2O_{(l)} + SO_{2(g)} + S_{(s)}$
- c) The letter X obscured by solid sulphur deposit.

e) From the graph a reaction depend on concentration of each reaction; where by decreasing of concentrate is the increasing of time of reaction.

Practical 25

The study of the rate of evolution of hydrogen from magnesium ribbon of uniform width with excess dilute hydrochloric acid was done in a certain school laboratory-. The results obtained were recorded as shown in the table below.

Length of magnesium ribbon in (cm)	1.0	2.0	3.0	4.0	5.0	6.0	7.0
Rate of evolution of hydrogen in (cm ³)/min	1.1	2.0	2.9	3.8	4.8	5.6	6.6

- a) Write the equation of reaction between magnesium ribbons and dilute hydrochloric acid
- **b)** Why was excess hydrochloric acid used in the experiment?
- c) How did the rate of evolution of hydrogen gas vary with the length of magnesium ribbon?
- **d**) What would be the effect on the rate of evolution of hydrogen if
- i) The temperature was increased?
- ii) Magnesium powder was used?
- iii) A catalyst was used?
- iv) A more diluted hydrochloric acid was used?

Solution

a) The equation for the reaction between magnesium ribbon and dilute hydrochloric acid.

 $Mg(s) + 2Hcl(aq) \rightarrow MgCl_{2(aq)} + H_{2(g)}$

- **b**) The excess hydrochloric acid was used in this experiment simply because one mole of magnesium ribbon requires two moles of hydrochloric acid to complete the reaction.
- c) The rate of evolution of hydrogen gas (cm³/ min) varies directly proportional with the length of magnesium ribbon, in other words we say, as the length of magnesium ribbon was increased the rate of evolution of hydrogen gas was also increased.
- **d**) (i) If the temperature was increased the rate of evolution of hydrogen gas would also increases. At higher temperatures reactant particles move faster and collide more often and more violently.
- **ii**) If magnesium powder was used instead of magnesium ribbon the reaction becomes faster and hence increases the rate of evolution of hydrogen.
- **iii**) If the catalyst was used, the rate of chemical reaction normally increases, likewise as the catalyst was used the rate of evolution of hydrogen also increases.
- **iv**) If more dilute hydrochloric acid was used in this experiment, the reaction will stop because the excess hydrochloric acid will be left over, unable to react as there are no more magnesium ribbon and hence the rater of evolution of hydrogen gas will be zero. i.e. will stop evolving.

(C) Qualitative analysis

Practical 26

Sample S is a simple salt containing one cation and one anion. Carry out the experiments describe below. Record your observations and inferences as shown in table 2.

Table 2: Experiments results

Table 2: Experiments results

Experiment	Observation	Inference
Observe the appearance of sample S Place a spoonful of		
Sample S in a test tube. Add water and shake to dissolve.		
Put a spatulaful of Sample S in a test tube and heat		
Add three drops of sodium hydroxide solution to the solid		
sample in a test		
Put a spatulaful of sample S in a dry test tube and add		
concentrated sulphuric acid. Warm the mixture and test for		
any gas evolved.		
Put a spatulaful of sample S in a dry test tube and add		
concentrated sulphuric acid and manganese dioxide. Warm		
the mixture and test for any gas evolved.		
To a portion of the solution from (f) add aqueous silver		
nitrate followed by aqueous ammonia.		
	Observe the appearance of sample S Place a spoonful of Sample S in a test tube. Add water and shake to dissolve. Put a spatulaful of Sample S in a test tube and heat Add three drops of sodium hydroxide solution to the solid sample in a test Put a spatulaful of sample S in a dry test tube and add concentrated sulphuric acid. Warm the mixture and test for any gas evolved. Put a spatulaful of sample S in a dry test tube and add concentrated sulphuric acid and manganese dioxide. Warm the mixture and test for any gas evolved. To a portion of the solution from (f) add aqueous silver	Observe the appearance of sample S Place a spoonful of Sample S in a test tube. Add water and shake to dissolve. Put a spatulaful of Sample S in a test tube and heat Add three drops of sodium hydroxide solution to the solid sample in a test Put a spatulaful of sample S in a dry test tube and add concentrated sulphuric acid. Warm the mixture and test for any gas evolved. Put a spatulaful of sample S in a dry test tube and add concentrated sulphuric acid and manganese dioxide. Warm the mixture and test for any gas evolved. To a portion of the solution from (f) add aqueous silver

Conclusion

- a) The cation present in S is.....and the anion is.....
- **b)** The name of sample S is.....
- c) Write a balanced chemical equation for the reactions taking place in experiments (c) and (d)

Solution

Table 2: Experiment results:

S/a	Experiment	Observation	Inference
a)	Observe the appearance of sample S	-White crystalline substance was	Absence of transition
		observed	elements
			$(e.g.Fe^{2+}, Fe^{3+}, Cu^{2+}, etc)$
	Spoonful of Sample S was placed in a test	-Sample completely dissolved in	-Insoluble salts was absent
b)	tube, followed by water and mixture was	water (soluble in water)	
	then shaken		
c)	A spatulaful of Sample S in a test tube and	-White sublimate was formed on the	NH ₄ ⁺ may present or NH ₄ ⁺
	heated	cooler port of the test tube and	
		ammonia gas was defected.	
d)	Three drops of sodium hydroxide solution	- Smell of ammonia -Ammonia gas	NH ₄ ⁺ present confirmed
	to the solid sample in a test tube was	evolved that turns litmus paper from	
	added.	red to blue	
e)	A spatulaful of sample S in a dry test tube,	-Colourless gas which gives white	Cl ⁻ was present
	followed by addition concentrated	fumes with ammonia (HCL gas was	
	sulphuric warmed and the gas was	evolved)	
f)	A spatulaful of sample S was put in a dry	-Greenish yellow gas with pungent	Cl was present confirmed
	test tube, followed by addition of	small was given out (Cl ₂) which	
	concentrated sulphuric acid and	turns moist KI starch paper blue.	
	manganese dioxide. Mixture was then		
	warmed and gas evolved		
g)	To a portion of the solution from (f)	- White precipated (ppt)was formed	Cl ⁻ was present confirmed
	aqueous silver nitrate solution was added	but soluble in ammonia solution	
	followed by aqueous ammonia.		
	1	ı	l .

- a) The cation present in S was NH4 the anion Cl-
- b) The name of sample S was Ammonium chloride
- c) -Balanced chemical equation for the reaction taking place in experiment
 NH₄Cl_(g) = HCl_(g) + NH_{3(p)}
- balanced chemical equation for the reaction taking place in experiment (d).

$$\mathrm{NH_4Cl_{(s)}} + \mathrm{NaOH_{(aq)}} \rightarrow \mathrm{NaCl_{(aq)}} + \mathrm{H_2O_{(l)}} + \mathrm{NH_{3_{(g)}}}$$

Practical 27

Sample \mathbf{Q} is a simple salt containing one cation and one anion. Carry out the experiments described below. Record carefully your observations, inferences and finally identify the anion and cation present in sample \mathbf{Q} .

S/n	Experiment	Observation	Inference
(a)	Observe the appearance of sample \mathbf{Q} .		
(b)	Dissolve a little sample Q in distilled water in a test tube, stir and then boil.		
(c)	Put a spatulaful of sample Q in a test tube then add concentrated sulphuric acid and warm.		
(d)	Put a spatulaful of sample Q in a test tube and then add dilute nitric acid. Divide the resulting solution into three portions and add the following: i. NaOH solution till in excess to the first portion. ii. KI solution till in excess to the		
	second portion. $AgNO_3$ solution followed by dilute HNO_3 and then NH_3 solution to the third portion.		

Conclusion

- i) The cation in sample Q is
- ii) The anion in sample Q is
- iii) The formula of the compound Q is
- iv) The name of compound Q is

S/n	Experiment	Observation	Inference
(a)	Observe the appearance of sample \mathbf{Q} .	White crystal salt	Absence of
			transitional metals
(b)	Dissolve a little sample Q in distilled	The sample is soluble in	$CL^{-},NO_{3},SO4^{2-}$ may
	water in a test tube, stir and then boil.	water	be present
(c)	Put a spatulaful of sample Q in a test	Colorless gas evolved out	CL-, may present
	tube then add concentrated sulphuric	which give white fumes	
	acid and warm.	with Ammonia mean that	
		Ha gas evolved	
(d)	Put a spatulaful of sample Q in a test	White ppt insoluble in	Pb ²⁺ may present
	tube and then add dilute nitric acid.	excess Ammonia, then	
	Divide the resulting solution into three	disappear whin NaOH is	
	portions and add the following:	added	
	i. NaOH solution till in excess to		
	the first portion.		
	ii. KI solution till in excess to the	Yellow ppt is formed and	Pb ²⁺ is confirmed
	second portion.	disappear when heating	
	AgNO ₃ solution followed by dilute	White ppt insoluble in	CL-, confirmed
	HNO_3 and then NH_3 solution to the	HNO ₃	
	third portion.		

- i) The cation is Pb^{2+}
- ii) The anion is CL-
- iii) The formural Pbcl2
- iv) Lead chloride

Practical 28

Sample B is a simple salt containing one cation and one anion. Carry out carefully the experiments described below and record all your observations and appropriate inferences. Identify the cation and anion present in sample

Experiment	Observation	Inference
(a) Appearance of sample B		
(b) To half a spatulaful of sample B in a test tube, add concentrated sulphuric acid and warm.		
(c) To a spatulaful of sample B in a test tube, and 10cm^3 of distilled water and stir to obtain a stock solution then divide it into three portions.		

(d) The first portion of the stock solution, add sodium hydroxide till excess.	
(e) To the second portion of the stock solution, add barium chloride solution.	
(f) To the third portion of the stock solution, add freshly prepared acidified ferrous sulphate solution followed by concentrated sulphuric acid added slowly along the walls of the test tube.	
(g) Perform a flame test on sample B.	

Experiment	Observation	Inference
(a) Appearance of sample B	Blue crystals was observed	Cu ²⁺ was suspected
(b) To half a spatulaful of sample B in a test tube conc. sulphuric acid was added and warmed.	Brown fumes which intensifies on addition of copper tumings (No ₂ was evolved)	NO ₃ was suspected
(c) To a spatulaful of sample B in a test tube, 10cm ³ of distilled water was added and stirred to obtain a stock solution, then the stock solution was divided into three portions.	Soluble in distilled water, forming blue solution	Insoluble salt was absent.

(d) To the first portion of	Blue precipitate (ppt)	Cu ²⁺ was suspected
_		cu was suspected
the stock solution, sodium	Insoluble in excess was	
hydroxide solution was	observed.	
added till excess.	Ppt turns black on heating	
(e) To the second portion of	No precipitate was formed	SO ₄ ²⁻ was absent
the stock solution, barium		
chloride solution was		
added.		
(f) To the third portion of	Brown ring was formed	NO3 Present confirmed.
the stock solution, freshly		
prepared acidified ferrous		
sulphate solution was added		
followed by concentrated		
sulphuric acid added slowly		
along the walls of the test		
tube.		
(g) A flame test was	Blue/green or dark green	Cu ²⁺ was suspected
performed	flame was observed.	

Sample N is a simple salt containing one cation and one anion. Using systematic qualitative analysis procedures carry out tests on the sample and make appropriate observations and inferences to identify the cation and anion in simple.

Experiment	Observation	Inference
(a) Appearance of sample N		
(b) A spatulaful of a solid sample N was put		
in a dry test tube and heated strongly, gas		
evolved were		
(c) Action of dil. Acid (s) on a solid sample		
(N)		
(d)To a sample solid N in a test tube, cone,		
sulphuric acid was added.		
(e)To a sample solution N, sodium		
hydroxide solution was added till in excess		
(f)Toa sample solution N in a test tube,		
aqueous ammonia was added until in		

(g)To a sample solutionN potassium	
ferrocyanide solution till in excess	
(h) To a sample solution (N) silver nitrate	
(AgN0 ₃) solution was added followed by	
dil. HN0 ₃ solution then excess ammonia	
solution.	

cred			1 .1			
The cation	nresent in N	And	1 the	anton	18	
The canon	prosent mr.		* 1110	union	13	 •

Solution

Data from the laboratory

Experiment	Observation	Inference
(a) Appearance of sample N	While crystalline substance was observed	Transition elements was absent (Fe ²⁺ ,Fe ³⁺ ,Cu ²⁺)
(b) A spatulaful of a solid sample N was put in a dry test tube and heated strongly, gas evolved were tested.	Yellow residue was formed when hot and white when cold Colourless liquid forming droplet on the cooler part of a test tube.	Zn ²⁺ was suspected Hydrated salt was suspected.
(c) Action of dil. Acid (s) on a solid sample (N)	No effervescence was observed but sample dissolved completely in mineral acids	CO ₃ ²⁺ orHCO ₃ ⁻ was absent
(d)To a sample solid N in a test tube, cone, sulphuric acid was added.	Colourless gas that give white fumes with ammonia was observed (HC1 gas was	Cl ⁻ was suspected
(e) To a sample solution N, sodium hydroxide solution was added till in excess	A white precipitate (ppt) which is soluble in excess was observed.	Pb ²⁺ ,Zn ²⁺ Was suspected.
(f)Toa sample solution N in a test tube, aqueous ammonia was added until in excess	White gelatinous precipitate (ppt) was formed soluble in	Zn ²⁺ was suspected
KOLLO a sample solution N potassium	Bluish white ppt was formed insoluble in excess potassium ferrocyanide	Zn ²⁺ present, confirmed
(h) To a sample solution (N) silver nitrate (AgN0 ₃) solution was added followed by dil. HN0 ₃ solution then excess ammonia solution.	White precipitate (ppt) insoluble in dil. HN0 ₃ but soluble in ammonia solution.	Cl ⁻ was present, confirmed
Conclusion		

Conclusion

The cation present in N was Zn²⁺ and anion was Cl⁻

Sample X contains one cation and one anion. Carry out guide experiment to described below carefully and record the observation made and inferences. Identify the cation and anion in the salt X.

		Observation	Inference
a A	Appearance of sample X		
	Put about a spatula full of x in		
	a dry test tube and heat.		
	Γο a little amount of X in a		
	test tube add conc. H ₂ SO ₄ .		
	Warm gently followed by the		
	addition of small pieces of		
	copper metal.		
	Carry out flame test of sample		
	K.		
	To a sample solution X add NaOH solution drop wise till		
	-		
	excess.		
	To a sample solution X add		
	ammoa solution drop wise till		
,	excess. Fo a sample solution X add		
	reshly prepared ferrous		
s	sulphate followed by conc.		
I	H ₂ SO ₄ along the sides of the		
	est tube while at slanted		
p	oosition.		
h T	Γο a sample solution X add		
p	ootassium ferrocyanide		
	solution		

- i) The cation in the sample X is.....
- ii) The anion in the sample X is
- iii) The formula of sample X is.....
- iv) Write the chemical equation for reaction which took place in experiment b.

Exper	iment	Observation	Inference
a)	Appearance of sample X	Blue deliquescent crystals were observed.	Cu ²⁺ may be present
		Reddish brown gas evolved	
b)	About a spatulaful of	and the residue formed was	Na ₃ may be present
	x was put in a dry test	black.	Cu ²⁺ may be present
	tube and heated.		
c)	To a little amount of	Reddish brown gas was	
	X in a test tube add	evolved; the gas turned	
	$conc_{c}H_{2}SO_{4}$. Was	dark brown on addition of	NO ₃ was suspected
	added and Warmed	copper turnings.	
	gently followed by		
	the addition of small		
	pieces of copper		
	metal.		
d)	Flame test of sample	Bluish green flame was	Cu ²⁺ was present
	x.	observed	
e)	To a sample solution	Blue precipitate (ppt) was	Cu ²⁺ was suspected
	X NaOH solution was	formed.	
	added drop wise till		
	excess.		
f)	To a sample solution	Blue ppt which turns into	Cu ²⁺ may be present
	X in test tube,	deep blue solution in	
	ammonia solution	excess ammonia.	
	was added drop wise		
	till excess.		

g)	To a sample solution	Brown ring was formed	NO ₃ was present and
	X in test tube, freshly	and observed	confirmed
	prepared ferrous		
	sulphate solution was		
	added followed by		
	addition of conc.		
	$\rm H_2SO_4$ along the		
	sides of the test tube		
	while at slanted		
	position.		
h)	To a sample solution	Reddish brown gelatinous	Cu ²⁺ was present and
	X add potassium	ppt was a formed, soluble	confirmed.
	ferrocyanide solution	in aqueous ammonia but	
		insoluble in mineral acids.	

- i) The cation in the sample X was Cu2+
- ii) The anion in the sample X was Na₃
- iii) The formulary of sample X was Cu(No3)2
- iv) The chemical equation took place in experiment b:

$$2\mathsf{Cu}(\mathsf{NO_3})_{2_{(\mathtt{g})}} \underbrace{\hspace{1.5cm} \Delta \hspace{1.5cm}} 2\mathsf{CuO}_{(\mathtt{g})} + 4\mathsf{NO}_{2_{(\mathtt{g})}} + \mathsf{O}_{2_{(\mathtt{g})}}$$

Sample M is a simple sail containing one cation and one anion. Carry out carefully the experiments described in the following table. Research all your observations and appropriate inferences to identify the ions present in M.

S/N		Experiment	Observation	Inference
	a.	Appearances of sample M		
	Ъ.	Place a spatulaful of sample		
		M in a test-tube and heat		
	c.	Place a spatulaful of sample		
		Min a test tube and add		
		hydrochloric acid. Test for		
		any gas (es) evolved. Add		
		more of the acid until the test		
		tube s half full. Divide the		
		solution into three portions		
		and then do the following;		
		 i) Add sodium 		
		hydroxide solution		
		drop wise and then in		
		excess to the first		
		portion.		

ii) Add a few drops of potassium iodide solution to the second portion.	
iii) Add ammonium hydroxide solution drop wise till excess to the third portion.	

The cation in sample M isand the anion is.....

S/N	Experiment	Observation	Inference
	Appearances of sample M	White powder substance was observed	- Absence of transition elements (eg. Fe ²⁺ , Fe ³⁺ , Cu ²⁺)
	Place a spatulaful of sample M in a test-tube and heat	- Colorless gas which turns lime water – milky (Co ₂ das evolved) was observed - Residue reddish brown when hot, yellow when cold.	 Co²⁻₃ was present Pb²⁺ may be present
	Place a spatulaful of sample Min a test tube and add hydrochloric acid. Test for any gas (es) evolved. Add more of the acid until the test tube s half full. Divide the solution into three portions and then do the following; i. Add sodium hydroxide solution drop wise and then in excess to the first portion.	Effervescence was observed and gas evolved turned lime water milky (Co ₂ das evolved) Sample M dissolved completely in excess acid White precipate (ppt) soluble in excess was observed.	 HCO⁻₃ or CO²⁻₃ was present Pb²⁺ or Zn²⁺ present
	ii. Add a few drops of potassium iodide solution to the second portion.	Yellow precipitate (ppt) was formed, soluble on heating, but reappears on cooling.	Pb ²⁺ Present, confirmed.

iii. Add	White precipitate (ppt)	 Ca²⁺, Pb²⁺ Present.
ammonium	soluble in excess	
hydroxide		
solution drop		
wise till excess		
to the third		
portion.		

The cation in sample M was Pb^{2+} and anion was $C0_3^{2-}$

Practical 32

Substance V is a simple salt containing one cation and one anion. Using systematic qualitative analysis procedures carry one tests on V and make appropriate observations and inferences to identify cation in V. record your experiments, observations and inferences as shown in the following table:

Experiment	Observation	Inference

Conclusion

Experiment	Observation	Inference
(a) Appearance of sample V	- Blue / green crystals was observed	Cu ²⁺ present
(b) Action of heat on solid sample V	- colored liquid forming droplets on the cooler part of the test tube	Hydrated salt of Cu ²⁺ present
	- brown gas which turns litmus paper from blue to red (No ₂ das evolved).	• No ⁻ 3 present
	- Blue salt that turns black and remain as black residue on heating.	• Cu²+ present
(c) Action of dil.acid HCl on sample V	- No effervescence occurred.	NO-3 present
(d) Action of conc. sulphuric acid on solid sample V	Brown fumes that intensifies an addition of copper turning (No ₂ das evolved)	No Co ²⁻ ₃ or HCo ⁻ ₃ (Absent)

(e) Action of sodium hydroxide solution on a solution of V in a test tube. (f) Action of aqueous	Blue precipitate (ppt) insoluble in excess was formed. The ppt turns black on heating Pale blue precipitate	Cu ²⁺ was present Cu ²⁺ present
ammonia on a solution of sample V in a test tube	(ppt) soluble in excess forming a deep blue solution	
(g) Solubility of sample V .in distilled water	Sample was soluble in distilled water forming blue solution	Soluble salts of Cu ²⁺ present
(h) Potassium ferrocyanide solution was added to a solution of V	Reddish Brown gelatinous ppt was formed soluble aqueous ammonia but insoluble in aqueous mineral acids	Cu ²⁺ present confirmed
(i) Flame test; A glass was dipped in conc. Hcl and touched with solid sample V and burnt on a Bunsen burner flame.	Blue / green flame was observed	Cu ²⁺ present
(j) A freshly prepared ferrous Sulphate solution was added to a solution of V followed of Conc. H ₂ SO ₄ along the side of the test tube	Brown ring was formed	NO-3 Present confirmed.

The cation in sample V was Cu²⁺ and the anion was No₃

Practical 33

Substance W is a simple salt which contains one cation and one anion. Carry out the experiments described below. Records carefully your observations and make appropriate inferences and hence identify the anion and cation present in sample W.

S/n	Experiment	Observation	Inference
1	Observe the appearance of sample W		
2	Put a very little amount of W in a test tube then add water to about half-full test tube, if it did not dissolve heat or warm it. Divide the resulting solution into three portions.		
	a)To the 1 st part, add potassium chromate solution		

	b)To the 2 nd part add potassium iodide solution	
	c)To the 3 rd part, add AgNo3 solution followed by dil.HNO3 then excess ammonia solution	
3	Heat a little amount of W in a dry test tube	
4	To little solid sample W, add conc.H ₂ SO ₄ acid drop wise then heat/warm the mixture	

- I. The cation in sample W is _______

 II. The anion in sample W is ______
- III The chemical formula of W is
- IV The name of compound W is _____

S/n	Experiment	Observation	Inference
1	Observe the appearance of sample W	-White powder	-Absence of transition elements.eg(Cu ²⁺ ,Fe ²⁺ ,Fe ³⁺)
2	Put a very little amount of W in a test tube then add water to about half-full test tube, if it did not dissolve heat or warm it. Divide the resulting solution into three portions.	-Sparingly soluble in cold water but soluble in hot water	-Either PbCl ₂ , CaSO ₄ ,or Ca(OH) ₂ may be present
	a)To the 1 st part, add potassium chromate solution	Yellow ppt formed soluble in sodium hydroxide but insoluble in ammonia solution	Pb ²⁺ present, confirmed
	b)To the 2 nd part add potassium iodide solution	Yellow ppt formed soluble in potassium iodide or on heating but reappears on cooling	Pb ²⁺ present, confirmed
	c)To the 3 rd part, add AgNo ₃ solution followed by dil.HNO ₃ then excess ammonia solution	White ppt insoluble in dil. HNO3 but soluble in ammonia solution	C1- present, confirmed
3	Heat a little amount of W in a dry test tube		
4	To little solid sample W, add conc.H ₂ SO ₄ acid drop wise then heat/warm the mixture	Greenish —yellow gas with pungent smell (Cl ₂) is given out which turns moist KI- starch paper blue	C1 ⁻ present, confirmed

- I. The cation in sample W is $\mathbf{P}\mathbf{b^{2+}}$
- II. The anion in sample W is Cl
- III. The chemical formula of W is PbCl2
- IV. The name of compound W is Lead II chloride

Practical 34

Sample D is a simple salt containing one cation and one anion. Carry out carefully the experiments described below recording all your observations and appropriate inferences as shown in Table 2 to identify the cation and anion present in D.

Experiment a. Observe the appearance of salt D. b. Put a little solid sample D in a clean and dry test tube and heat c. Put a spatulaful of sample D in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add suppose to be solution of sample D in a test tube add suppose to solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H)	anion present in D.			
salt D. b. Put a little solid sample D in a clean and dry test tube and heat c. Put a spatulaful of sample D in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H)	E	Experiment	Observation	Inference
b. Put a little solid sample D in a clean and dry test tube and heat c. Put a spatulaful of sample D in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H)	a.	Observe the appearance of		
a clean and dry test tube and heat c. Put a spatulaful of sample D in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H)		salt D.		
c. Put a spatulaful of sample D in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H)	b.	Put a little solid sample D in		
c. Put a spatulaful of sample D in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		a clean and dry test tube and		
in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		heat		
in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
in a test tube and add distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed	C.	Put a spatulaful of sample D		
distilled water. Stir and divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
divide the obtained solution into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
into four portions in different test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
test tubes. To the i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
i) First portion of the solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		_		
solution of sample D in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
in a state tube add aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
aqueous ammonia slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		_		
slowly till excess. ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
ii) Second portion of the solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		I		
solution of sample D in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		slowly till excess.		
in a test tube add suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		ii) Second portion of the		
suppose to be NaOH slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
slowly till excess iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
iii) Third portion of the solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
solution of sample D in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		_		
in a test tube add potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		_		
potassium hexaeyanoferrate (H) iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		_		
iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed				
iv) Fourth portion of the solution of sample D in a test tube add dilute HCl followed		potassium		
solution of sample D in a test tube add dilute HCl followed		hexaeyanoferrate (H)		
solution of sample D in a test tube add dilute HCl followed				
in a test tube add dilute HCl followed		iv) Fourth portion of the		
dilute HCl followed		solution of sample D		
		in a test tube add		
by BaCl ₂ solution		dilute HCl followed		
		by BaCl ₂ solution		

Conclusion	
The cation in sample D isand the anion is	
The molecular formula of salt D is	

S/N	Experiment	Observation	Inference
	A ppearance of salt D	- Blue crystals was	Cu ²⁺ was present
		observed	
	A little sample D was put in a	 Colored liquid 	 Hydrated salt
	clean and dry test tube and	forming droplets on	was suspected
	heated	the cooler part of the	
		test tube liquid turned	
		anhydrous CuSO ₄ blue	
		- Blue solid turned	
		white when conc.	
			- TI14-1
		H_2SO_4 was added even without heating.	Hydrated
		- Blue salt turned black	copper salt was
		and remain as black	suspected
		residue even after	
		cooling.	• Cu ²⁺ was
	A spatulaful of sample D in a test	Sample D dissolved	suspected • Soluble salts
	tube and add distilled water. Stir	completely id distilled water	of Cu ²⁺ was
	and divide the obtained solution	forming blue solution.	suspected.
	into four portions in different test	Torming orde sordaon.	suspecteu.
	tubes:- To the		
	tabes. To ale		
	i. First portion of	- Pale blue precipitate	• Cu ²⁺ was
	the solution of	(ppt) soluble in excess	suspected.
	sample D in a	forming a deep blue	suspected.
	state tube add	solution	
	aqueous ammonia	Soldion	
	slowly till excess.		
	ii. To the Second	White precipitate (ppt)	Cu ²⁺ was
	portion of the	soluble in excess	Suspected.
	solution of sample		•
	D in a test tube		
	aqueous sodium		
	hydroxide was		
	added slowly till		
	excess		
	iii. Third portion of	- Reddish brown	• Cu ²⁺ was
	the solution of	gelatinous precipitate	confirmed.
	sample D in a test	was formed soluble in	
	tube potassium	aqueous ammonia but	
	hexacyanoferrate	insoluble in aqueous	
	-	_	
	(II) was added	mineral acids	

iv. Fourth portion of the solution of sample D in a test tube add dilute HCl was added followed by addition of BaCl ₂ solution	- While precipitate (ppt) insoluble in dil. HCl was formed	• SO ²⁻ ₄ Present, confirmed.
---	--	---

The cation in sample D was Cu²⁺ and anion was SO²⁻4

The Molecular formula of salt D was CuSO4

Practical 35

Substance Y is a simple salt containing one anion and one cation. Using systematic qualitative analysis procedures carry out tests on Y and make appropriate observations and inferences to identify cation in and anion present in sample Y.

Experiment	Observation	Inference

Conclusion

The cation in sample Y is......and the anion is.....

Experiment	Observation	Inference
(a) Appearance of sample Y	- White crystalline crystals was observed	transition elements (Fe ²⁺ , Fe ³⁺ , absent
(b) A little solid sample Y was put in a clean and dry test tube and heated	 colored liquid forming droplets on the cooler part of the test tube was observed 	Hydrated salt was suspected
(c) A glass rod was dipped in conc. HCl and then it was touched with a solid sample Y and then it was burnt on Bunsen burner flame.	- Brick red color was observed.	Ca ²⁺ was suspected
(d) A spatulaful of sample Y was put in a test tube and then, distilled water was added and stirred properly.	Sample Y was soluble in distilled water farming clear solution	Absence of insoluble salts.

(e) Action of aqueous ammonia on a solution of sample Y in a test tube. (f) Action of sodium hydroxide solution on a solution of sample Y in a test tube	White precipitate (ppt) was observed but soluble in excess White precipitate (ppt) insoluble in excess NaOH was formed	Ca ²⁺ ,Pb ²⁺ was suspected Ca ²⁺ was suspected
(g) A little solid sample Y was put in a dry test tube followed by addition of Conc. H ₂ SO ₄ . (h) To a sample solution Y,	Colorless gas which gives white dense fume with ammonia was observed (HCl gas was evolved). White ppt insoluble in acetic acid but soluble	Cl Was suspected. Ca ²⁺ present confirmed
ammonium oxalate solution was added	in mineral acid was observed	
(i) To a sample solution Y AgNo ₃ solution was added, followed by dil. HNO ₃ solution then in excess ammonia solution	White ppt insoluble in dil. HNO ₃ but soluble in ammonia solution	Cl ⁻ present, confirmed

Use the information given under the experiment and inference columns in table 2 below to complete the observation column.

Experiment	Observation	Inferences.
(a) Appearance of sable Z		Probably Fe ² or Cu ² present.
(b) To a portion of solid Z in a		C1 present
test tube. Concentrated		
sulphiric acid was added and		
the gas given off was tested.		
c) To another portion of Z in a		Cl confirmed
test tube. MnO2 was added		
followed by concentrated		
H ₂ SO ₃ . The gas evolved was		
passed over moist litmus paper		
(d) Sample Z was dissolved in		Soluble salts of Cu ² suspected
distilled water.		

(e) Excess sodium hydroxide	Residue is CuO thus Cu2 is
solution was added to the	present.
solution of sample ${f Z}$ and	
heated.	
(f) Ammonium hydroxide	Cu ² confirmed.
solution was added to a	
solution of Z until excess.	

Table 2

Conclusion

The cation is sample Z is _____ and the anion is _____

Solution

Experiment	Observation	Inferences.
(a) Appearance of sable Z	Blue or green crystals	Probably Fe ² or Cu ² present.
(b) To a portion of solid Z in a	Colorless gas which gives	Cl- present
test tube. Concentrated	white fumes with ammonia	
sulphiric acid was added and	(Hcl gas) evolved	
the gas given off was tested.		
c) To another portion of Z in a	Greenish – yellow gas with	Cl- confirmed
test tube. MnO2 was added	pungent smell (Cl2) is given	
followed by concentrated	out which turns KI starch	
H ₂ SO ₃ . The gas evolved was	paper blue.	
passed over moist litmus paper		
(d) Sample Z was dissolved in	Blue/green solution was	Soluble salts of Cu ² suspected
distilled water.	formed.	
	Soluble in water.	
(e) Excess sodium hydroxide	• Blue PPT insoluble in	Residue is CuO thus Cu2 is
solution was added to the	excess. The precipitate	present.
solution of sample ${f Z}$ and	(PPT) turns black on	
heated.	heading.	
(f) Ammonium hydroxide	Pale blue PPT soluble in	Cu ²⁺ confirmed.
solution was added to a	access forming a deep blue	
solution of Z until excess.	solution.	

Conclusion

The cation in sample Z is Cu²⁺ and the anion is Cl⁻

Sample X is a Salt containing one cation and one anion. Carry out carefully all experiments listed below. Record all your observations and make appropriate inferences to identify the ions in sample X.

S/N Ex	xperiments	Observations	Inferences
Ap	ppearance of sample X		
Pla	ace a spatula full of X in a dry test tube		
ado	dconc. Sulphuric acid and warm gently		
wit	th copper turnings or small pieces of		
coj	pper		
То	a solution of X add ammonia solution		
dro	op wise till no further change.		
То	another solution of X add potassium		
fet	trocyanide solution		
То	another solution of X add freshly		
pre	epared iron (II) sulphate solution		
fol	llowed by concentrated sulphuric acid		
do	wn the side of testtube.		
То	a solution of X add potassium		

\sim	4			
Cor	าต	11181	on	ľ

The cation in sample X is	
The anion in sample X is	

The compound is

thiocyanite solution

Solution

S/N	Experiments	Observations	Inferences			
	Appearance of sample X	Yellow/ golden yellow	Fe ³⁺ may be present			
	Place a spatula full of X in a dry test tube add conc. Sulphuric acid and warm gently with copper turnings or small pieces of copper	Brown fumes which intensified on addition of copper turning- NO ₂ gas is evolved				
	To a solution of X add ammonia solution drop wise till no further change.	Reddish brown ppt insoluble in excess is formed	Fe ³⁺ may be present			
	To another solution of X add potassium ferrocyanide solution	Blue ppt formed	Fe ³⁺ present, confirmed			
	To another solution of X add freshly prepared iron (II) sulphate solution followed by concentrated sulphuric acid down the side of test tube.	Brown ring is formed	NO ₃ -present, confirmed			
	To a solution of X add potassium thiocyanite solution	Deep red solution is observed	Fe ³⁺ present, confirmed			

Conclusion:

The cation in sample X is Fe^{3+}

The anion in sample X is NO3-

The compound is Fe (NO₃)₃

Substance H is a simple salt which contains one cation and one anion. Carry out the experiments described below. Record your observations and make appropriate inferences and hence identify the cation and anion present in sample H.

S/n	Experiments	Observation	Inferences
a	Observe the appearance of sample		
	Н		
b	Put a spatula-full of sample H in		
	attest tub, then heat until no further		
	change occurs		
c	To a little sample H in attest tube		
	add dilute hydrochloric acid		
d	To a little solid of sample H add		
	few drops of cone. H ₂ SO ₄		
e	Flame test on sample H		
f	Dissolve sample H in distilled		
	water. Divide the resulting solution		
	into four portions and then add the		
	following		
	i. To the first portion add NaOH		
	solution drop wise then in excess		
	ii. To the second portion add		
	NH4OH solution drop wise then in		
	excess		
	iii. To the third portion add Barium		
	Chloride solution followed by dilute	,	
	hydrochloric acid.		
	iv. To the forth portion add		
	potassium ferrocyanide.		

-	~			-					
(`'	1	n	c1	111	IC1	10	n	٠

The Cotion	mussant in	commis II	:-	
The Cauon	Diesem m	Sample n	18	

Compound H is

S/n	Experiments	Observation	Inferences
a	Observe the appearance of sample H	Blue crystals	Transition elements(CU ²⁺ ,Fe ²⁺) may be present
b	Put a spatula-full of sample H in attest tub, then heat until no further change occurs	Blue solid turns white and water droplets were observed at the cooler part of the test tube	Hydrated CU ²⁺ may be present
С	To a little sample H in attest tube add dilute hydrochloric acid	No effervescence observed, No ppt observed	Absence of HCO ₃ ⁻ or CO ₃ ² -
d	To a little solid of sample H add few drops of conc. H ₂ SO ₄	Blue solid turns white	Hydrated CU ²⁺ may be present
e	Flame test on sample H	Blue-green flame was observed	CU ²⁺ may be present

The Anion present in sample H is.....

f	1	ve sample H in distilled	The salt dissolved	Insoluble salts
*	water. Divide the resulting		completely in water	absent
	solutio	on into four portions and	forming blue solution	
	then a	dd the following		
	i.	To the first portion add		CU ²⁺ may be
		NaOH solution drop wise	insoluble in excess of	present
		then in excess	NaOH solution.	
	ii.	To the second portion add	Pale blue ppt soluble	CU ²⁺ may be
		NH4OH solution drop wise	in excess of NH4OH	present
		then in excess	solution	
	iii.	To the third portion add	White ppt was formed	SO ₄ ²⁻ present,
		Barium Chloride solution	insoluble in HCl	confirmed
		followed by dilute		
		hydrochloric acid.		
	iv.	To the forth portion add	Reddish-brown	CU ²⁺ present,
		potassium ferrocyanide.	gelatinous ppt was	confirmed
			formed	

The Cation present in sample H is CU2+

The Anion present in sample H is SO₄2-

Compound H is CUSO4

Practical 39

Sample M is a simple salt containing one cation and one anion. Carry out experiments described below. Record carefully your observations and appropriate inferences and hence identify the cation and anion present in the sample.

S/n	Experiment	Observation	Inferences
(a)	Appearance of sample M		
(b)	Heat a little amount of M in a dry test tube		
(c)	To a little M in a test tube add dilute HCl		
(d)	To a little M in a test tube add distilled water and stir it		
(e)	To a solution of sample M add KOH solution and warm it.		
(f)	To the solution of sample M add MgSO ₄ solution		

		4				
C	on	C	п	121	O	n

The cation in sample M isand the anion is

The molecular formula of salt M is

Table of Results

S/n	Experiment	Observation	Inferences
(a)	Appearance of sample M	-White crystalline substance	-Transition elements (Fe ²⁺ ,Fe ³⁺ ,Cu ²⁺) absent
(b)	Heat a little amount of M in a dry test tube	-White sublimate and ammonia gas detected	-NH4 ⁺ may be present
(c)	To a little M in a test tube add dilute HCl	-Effervescence and gas evolve which turn lime water milky- CO ₂ gas evolved	-HCO ₃ - or CO ₃ ² - may be present
(d)	To a little M in a test tube add distilled water and stir it	-Soluble in water	-Insoluble salts absent
(e)	To a solution of sample M add KOH solution and warm it.	-Gas with chocking smell and which turn damp litmus paper blue on warming,NH3 gas evolves	-NH4 ⁺ may be present
(f)	To the solution of sample M add MgSO ₄ solution	-White ppt was formed	-CO ₃ ²⁻ present, confirmed

Conclusion:

The cation in sample M is NH₄⁺ and the anion is CO₃²-

The molecular formula of salt M is $(NH_4)_2 CO_3$