Agata Gadomska, 253939 Karol Gzik, 253923 Tester programista, czwartek 10¹⁵

> Algorytmy Numeryczne Zadanie 2

TREŚĆ ZADANIA, CEL SPRAWOZDANIA:

Zadanie polega na implementacji metody Gaussa (podstawowej oraz z wyborem pełnym i częściowym elementu podstawowego). Motywacją prowadzonych doświadczeń jest badanie wpływu metod obliczeniowych na precyzyjność i czas obliczeń przeprowadzonych dla typów float, double i zaimplementowanych przez nas ułamków – fraction.

UWAGI:

Do implementacji generycznych algorytmów, macierzy i wykonywanych na nich operacji używamy języka C#. Wektor X traktowany jest jako rozwiązanie wzorcowe układu równań, gdzie wektor $B:=A\cdot X$ i wektor A są parametrami obliczanego równania. Za miarę dokładności rozwiązania przyjmujemy normę różnicy $\left\|\bar{X}-\tilde{X}\right\|_2$, gdzie wektor \tilde{X} to otrzymane przez nas wyniki, a \bar{X} – oczekiwane rezultaty. Testy prowadzimy dla różnych rozmiarów macierzy kwadratowych $n\times n$. Sprzęt (Intel® CoreTM i5-7200U CPU @ 2.71 GHz; .NET Core 2.2; domyślne opcje kompilacji) i czas jakim dysponujemy umożliwił nam wygenerowanie 30 różnych rozmiarów, gdzie największy to n=1750 dla zmiennych double i float oraz n=225 dla fraction.

POPRAWNOŚĆ:

Wszystkie operacje zostały przetestowane za pomocą unit testów (framework *NUnit*), które przechowujemy w *GaussianEliminationTests*.

HIPOTEZY:

H1: Dla dowolnego ustalonego rozmiaru macierzy czas działania metody Gaussa w kolejnych wersjach (G, PG, FG) rośnie.

Przebieg badania hipotezy:

Porównujemy ze sobą wygenerowane przez nasz program wyniki.

Wyniki:

W metodzie *FG* niezależnie od typu zmiennych, czas wyraźnie rośnie. Natomiast w pozostałych metodach różnice sa niewielkie.

Wnioski:

Na podstawie naszych danych nie jesteśmy w stanie zweryfikować poprawności hipotezy.

H2: Dla dowolnego ustalonego rozmiaru macierzy błąd uzyskanego wyniku metody Gaussa w kolejnych wersjach (G, PG, FG) maleje.

Przebieg badania hipotezy:

Porównujemy ze sobą wygenerowane przez nasz program wyniki.

<u>Wyniki:</u>

Wyniki przedstawiają wykresy 2.1, 2.2, 2.3.

Wnioski:

Hipoteza jest prawdziwa; niezależnie od typu zmiennej, metoda G obarczona jest największym błędem, metoda PG błędem stosunkowo mniejszym, a najbardziej poprawne wyniki gwarantuje metoda FG.

H3: Użycie własnej arytmetyki na ułamkach zapewnia bezbłędne wyniki niezależnie od wariantu metody Gaussa i rozmiaru macierzy.

Przebieg badania hipotezy:

Porównujemy ze sobą wyniki zwrócone przez metody działające na naszych ułamkach. Wyniki:

Wyniki opisuje $wykres\ 2.3$, na którym niezależnie od rozmiaru macierzy i metody Gaussa, błąd zawsze przyjmuje wartość zerową.

Wnioski:

Hipoteza jest prawdziwa.

PYTANIA, OBSERWACJE:

Q1: Jak zależy dokładność obliczeń (błąd) od rozmiaru macierzy dla dwóch wybranych przez Ciebie wariantów metody Gaussa gdy obliczenia prowadzone są na typie podwójnej precyzji (TD)?

Wniosek:

Dokładność obliczeń maleje wraz ze wzrostem rozmiaru macierzy w obu przypadkach (metoda G, PG).

Q2: Jak przy wybranym przez Ciebie wariancie metody Gaussa zależy czas działania algorytmu od rozmiaru macierzy i różnych typów?

Wniosek:

Czas działania algorytmu dla podstawowej metody Gaussa wydłuża się wraz ze wzrostem rozmiaru macierzy. Operacje na typach *double* i *float* przeprowadzane są w zbliżonym czasie. Na podstawie pojedynczych wyników można jednak przypuszczać, że im precyzyjniejsze wyniki tym bardziej wydłużony czas działania.

E1: Podaj czasy rozwiązania układu równań uzyskane dla macierzy o rozmiarze 500 dla 9 testowanych wariantów.

<u>Uwagi:</u>

Pomiary czasu dla zmiennej fraction oszacowaliśmy na podstawie dostępnych nam danych (czas Gaussa dla rozmiaru 500, czas Gaussa/Partial Gaussa/Full Gaussa dla rozmiaru 350).