L3: Analyse matricielle

TD 7

Exercice 1

Soit $n \in \mathbb{N}^*$. On considère la matrice symétrique carrée de dimension n définie par $A = (a_{ij})$ avec $a_{ii} = 2$ pour tout $i \in \{1, \dots, n\}$, $a_{i,i+1} = -1$ pour tout $i \in \{1, \dots, n-1\}$ et $a_{i,j} = 0$ pour j > i+1.

On rappelle que l'on a établi dans le TD 3 que cette matrice est symétrique définie positive.

On se propose de calculer les valeurs propres et vecteurs propres de la matrice A. Pour $k \in \{1, \dots, n\}$, on note u^k le k ième vecteur propre de A, et pour $i \in \{1, \dots, n\}$, u_i^k la ième composante du vecteur u^k .

Soit λ_k la valeur propre associé au vecteur propre u^k . On pose $u^k_0=0$ et $u^k_{n+1}=0$ pour tout k.

1. Montrer que $(u_i^k)_{1 \leq i \leq n}$ satisfait la relation de récurrence

$$u_{i+2}^k = -u_i^k + (2 - \lambda_k)u_{i+1}^k$$

- 2. Montrer que $\lambda_k \in]0,4[$.
- 3. Calculer u_i^k , $1 \le i \le n$.
- 4. En déduire λ_k , $1 \le k \le n$.

Exercice 2

Soit A une matrice diagonalisable et λ une valeur propre de cette matrice. On considère le nombre $\tilde{\lambda}$ satisfaisant

$$\tilde{\lambda} \neq \lambda \quad \text{et} \quad |\tilde{\lambda} - \lambda| < |\tilde{\lambda} - \mu| \quad \forall \ \mu \in \{ \text{sp}(A) - \{ \lambda \} \}.$$

Soient u_0 un vecteur non contenu dans le sous-espace engendré par les vecteurs propres correspondant aux valeurs propres différentes de λ et $\|.\|$ une norme vectorielle quelconque.

On considère la méthode itérative définie de la façon suivante :

$$(A - \tilde{\lambda}I)u_{k+1} = u_k, \quad k \ge 0, \quad u_0 \in \mathbb{R}^n.$$

1. Justifier que (u_k) est bien définie.

Soient μ_i $1 \leq i \leq m$ les valeurs propres de la matrice A différentes de λ et q_i

les vecteurs propres correspondants linéairement indépendants.

2. Montrer que l'on peut écrire u_0 sous la forme

$$u_0 = \tilde{q} + \sum_{i=1}^{m} \alpha_i q_i,$$

le vecteur \tilde{q} étant un vecteur propre correspondant à la valeur propre λ .

3. Montrer que

$$u_k = \frac{1}{(\lambda - \tilde{\lambda})^k} \tilde{q} + \sum_{i=1}^m \frac{\alpha_i}{(\mu_i - \tilde{\lambda})^k} q_i.$$

4. En déduire qu'il existe (δ_k) telle que $\lim_{k\to+\infty} \delta_k = 0$ et

$$(\lambda - \tilde{\lambda})^k u_k = \tilde{q} + \delta_k$$

puis qu'il existe (ϵ_k) telle que $\lim_{k\to+\infty} \epsilon_k = 0$ satisfaisant

$$|\lambda - \tilde{\lambda}|^k ||u_k|| = ||\tilde{q}|| + \epsilon_k.$$

5. En déduire que la suite $(\frac{(\lambda - \tilde{\lambda})^k u_k}{|\lambda - \tilde{\lambda}|^k ||u_k||})$ converge vers un vecteur propre unitaire associé à la valeur propre λ .

Exercice 3

Soit A une matrice diagonalisable, dont les valeurs propres sont données par

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$$
.

Soient u_i $(1 \le i \le n))$ une base orthonormée constituée de vecteurs propres de A associés aux valeurs propres $\lambda_1, \lambda_2, ..., \lambda_n$.

On considère la suite de vecteurs (x_k) définie par $x_{k+1} = Ax_k$. On suppose que $(x_0, u_1) \neq 0$.

1. Montrer que $R_k := \frac{(x_{k+1}, x_k)}{\|x_k\|_2^2}$ converge vers λ_1 et la vitesse de convergence est égale $(\frac{\lambda_2}{\lambda_1})^2$.

On suppose à présent que

$$|\lambda_1| > |\lambda_2| > \cdots > \lambda_n$$
.

On pose

$$B = A - \lambda_1 \frac{u_1^t u_1}{\|u_1\|^2}.$$

- 2. Déterminer les valeurs propres de B, puis montrer que l'on peut calculer λ_2 .
- 3. Montrer que l'on peut calculer toutes les valeurs propres de B.