Les données sont D¹

Étude de méthodes de compression sans pertes

Thomas BAGREL

Lycée Henri Poincaré, Nancy

TIPE session 2018

Aperçu

Régularités et gains Théorie zıp recursif

Composantes de la compression

Codage

Problème résolu Codage d'Huffman Codage arithmétique Inefficacité de HUFFMAN seul - pourquoi

Modèles généraux

BITWISE ENCODER et PPM

BITWISE PPM et BITWISE PPM FLAT

Impact de la transformée вwт régularise nos données La вwт en action

Théorie

Analogie : sources de données ↔ fonctions

Théorie

Analogie : sources de données ↔ fonctions Compression des données sans pertes

Théorie

Analogie : sources de données ↔ fonctions Compression des données sans pertes

exploiter les régularités des données

Théorie

Analogie : sources de données ↔ fonctions Compression des données sans pertes

- exploiter les régularités des données
- données aléatoires : pas de gain

Théorie

Analogie : sources de données ↔ fonctions Compression des données sans pertes

- exploiter les régularités des données
- données aléatoires : pas de gain

Théorème. (Entropie de Shannon)

$$H(S) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

H(S) : nb. de bits moyen par symbole de la source

Théorie

Analogie : sources de données ↔ fonctions Compression des données sans pertes

- exploiter les régularités des données
- données aléatoires : pas de gain

Théorème. (Entropie de Shannon)

$$H(S) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

H(S) : nb. de bits moyen par symbole de la source

 une fois les données compressées (dérivées) une fois, plus aucune régularité

ZIP recursif

Composantes de la compression

(Transformée)

Composantes de la compression

Composantes de la compression

Problème résolu

Le codage, contrairement aux apparences, est un problème résolu

Problème résolu

Le codage, contrairement aux apparences, est un problème résolu

ightharpoonup Si les p_i sont connus, la limite de compression théorique est donnée par Shannon

Problème résolu

Le codage, contrairement aux apparences, est un problème résolu

- Si les p_i sont connus, la limite de compression théorique est donnée par Shannon
- ► Huffman permet d'approcher cette limite

Problème résolu

Le codage, contrairement aux apparences, est un problème résolu

- Si les p_i sont connus, la limite de compression théorique est donnée par Shannon
- ► Huffman permet d'approcher cette limite
- ► Le codage arithmétique l'atteint

Codage d'Huffman

Codage d'Huffman

Codage d'Huffman

Codage d'Huffman

Codage d'Huffman

Codage arithmétique
$$p(\mathbf{X}_n = \mathbf{0}) = 0.65$$

$$(b_n - a_n) \times p(\mathbf{X}_n = \mathbf{0}) \longrightarrow 0$$

$$0 = a_0 \quad a_{n+1} \qquad b_{n+1} \qquad b_n \ b_0 = 1$$

$$a_n \qquad a_{n+1} \qquad b_{n+1} \longrightarrow 0$$

$$(b_n - a_n) \times p(\mathbf{X}_n = \mathbf{1})$$

Codage arithmétique

Codage arithmétique
$$p(\mathbf{X}_n = \mathbf{0}) = 0.65$$

ightharpoonup Sous-intervalles proportionnels aux p_i

Codage arithmétique
$$p(\mathbf{X}_n = \mathbf{0}) = 0.65$$

$$(b_n-a_n)\times p(\mathbf{X}_n=\mathbf{0}) \\ 0=a_0 \quad a_{n+1} \qquad b_{n+1} \qquad b_n \ b_0=1 \\ \hline \qquad | \qquad \qquad \\ a_n \qquad \qquad a_{n+1} \qquad b_{n+1} \\ (b_n-a_n)\times p(\mathbf{X}_n=\mathbf{1})$$

- ightharpoonup Sous-intervalles proportionnels aux p_i
- ▶ En pratique, avec des p_i non fixes, gérer plus de quelques symboles est compliqué

Codage arithmétique
$$p(X_n = \mathbf{0}) = 0.65$$

$$(b_n-a_n)\times p(\mathbf{X}_n=\mathbf{0}) \\ 0=a_0 \quad a_{n+1} \qquad b_{n+1} \qquad b_n \ b_0=1 \\ \hline \qquad | \qquad \qquad \\ a_n \qquad \\ (b_n-a_n)\times p(\mathbf{X}_n=\mathbf{1})$$

- ightharpoonup Sous-intervalles proportionnels aux p_i
- ▶ En pratique, avec des p_i non fixes, gérer plus de quelques symboles est compliqué
- ▶ Implémenté avec des entiers pour représenter [0;1[

Inefficacité de HUFFMAN seul - pourquoi

HUFFMAN seul

Inefficacité de HUFFMAN seul - pourquoi

Huffman seul

En pratique, efficacité de 32 %

Inefficacité de Huffman seul - pourquoi

Huffman seul

En pratique, efficacité de 32 %

En appliquant directement Shannon aux fréquences d'apparition, on commet des erreurs

Inefficacité de Huffman seul - pourquoi

Huffman seul

En pratique, efficacité de 32 %

En appliquant directement Shannon aux fréquences d'apparition, on commet des erreurs

un symbole n'est pas indépendant des précédents

Inefficacité de Huffman seul - pourquoi

HUFFMAN seul

En pratique, efficacité de 32 %

En appliquant directement Shannon aux fréquences d'apparition, on commet des erreurs

- un symbole n'est pas indépendant des précédents
- ▶ par exemple, en Français, q→u est plus fréquent que q→z

Inefficacité de HUFFMAN seul - pourquoi

HUFFMAN seul

En pratique, efficacité de 32 %

En appliquant directement Shannon aux fréquences d'apparition, on commet des erreurs

- un symbole n'est pas indépendant des précédents
- ▶ par exemple, en Français, q→u est plus fréquent que q→z
- en quelque sorte, on oublie le caractère lipschitzien de nos données

Inefficacité de Huffman seul - pourquoi

Huffman seul

En pratique, efficacité de 32 %

En appliquant directement Shannon aux fréquences d'apparition, on commet des erreurs

- un symbole n'est pas indépendant des précédents
- ▶ par exemple, en Français, q→u est plus fréquent que q→z
- en quelque sorte, on oublie le caractère lipschitzien de nos données

Il faut donc un modèle

Modèles généraux

BITWISE ENCODER et PPM

PPM

Modèles généraux

BITWISE ENCODER et PPM

PPM

Le contexte est constitué des N symboles précédents

Modèles généraux

BITWISE ENCODER et PPM

PPM

- ▶ Le contexte est constitué des N symboles précédents
- ightharpoonup Un jeu de p_i pour chaque contexte différent

BITWISE ENCODER et PPM

PPM

- ▶ Le contexte est constitué des N symboles précédents
- \blacktriangleright Un jeu de p_i pour chaque contexte différent
- ► Si le contexte n'a jamais été rencontré, on retombe sur un contexte d'ordre N – 1 (order fallback) etc.

BITWISE ENCODER et PPM

PPM

- ► Le contexte est constitué des N symboles précédents
- \blacktriangleright Un jeu de p_i pour chaque contexte différent
- ► Si le contexte n'a jamais été rencontré, on retombe sur un contexte d'ordre N – 1 (order fallback) etc.
- ► Codage arithmétique

BITWISE ENCODER et PPM

PPM

- ► Le contexte est constitué des N symboles précédents
- \blacktriangleright Un jeu de p_i pour chaque contexte différent
- ► Si le contexte n'a jamais été rencontré, on retombe sur un contexte d'ordre N 1 (order fallback) etc.
- Codage arithmétique,

Inconvénients et solutions

BITWISE ENCODER et PPM

PPM

- ► Le contexte est constitué des N symboles précédents
- \blacktriangleright Un jeu de p_i pour chaque contexte différent
- ► Si le contexte n'a jamais été rencontré, on retombe sur un contexte d'ordre N – 1 (order fallback) etc.
- ► Codage arithmétique

Inconvénients et solutions

► Encoder 256 symboles avec des p_i variables est dur à implémenter sans pertes

BITWISE ENCODER et PPM

PPM

- ▶ Le contexte est constitué des N symboles précédents
- \blacktriangleright Un jeu de p_i pour chaque contexte différent
- ► Si le contexte n'a jamais été rencontré, on retombe sur un contexte d'ordre N 1 (order fallback) etc.
- ► Codage arithmétique

Inconvénients et solutions

- ▶ Encoder 256 symboles avec des p_i variables est dur à implémenter sans pertes
- On pourrait donc encoder bit par bit au lieu de symbole par symbole

BITWISE PPM et BITWISE PPM FLAT

BITWISE PPM et BITWISE PPM FLAT

BITWISE PPM

▶ Idée personnelle

BITWISE PPM et BITWISE PPM FLAT

- ▶ Idée personnelle
- Utiliser une PPM (d'ordre max. 3 octets) avec un encodage bit par bit

BITWISE PPM et BITWISE PPM FLAT

- ▶ Idée personnelle
- ► Utiliser une PPM (d'ordre max. 3 octets) avec un encodage bit par bit
- ▶ 49 % d'efficacité!

BITWISE PPM et BITWISE PPM FLAT

- ▶ Idée personnelle
- ► Utiliser une PPM (d'ordre max. 3 octets) avec un encodage bit par bit
- 49 % d'efficacité!
- Mais l'order fallback occasionne des pertes évitables...

BITWISE PPM et BITWISE PPM FLAT

BITWISE PPM

- Idée personnelle
- ► Utiliser une PPM (d'ordre max. 3 octets) avec un encodage bit par bit
- 49 % d'efficacité!
- Mais l'order fallback occasionne des pertes évitables...

BITWISE PPM FLAT

BITWISE PPM et BITWISE PPM FLAT

BITWISE PPM

- Idée personnelle
- ► Utiliser une PPM (d'ordre max. 3 octets) avec un encodage bit par bit
- 49 % d'efficacité!
- Mais l'order fallback occasionne des pertes évitables...

BITWISE PPM FLAT

► On retire seulement l'order fallback en utilisant à la place des probabilités neutres (0.5 : 0.5)

BITWISE PPM et BITWISE PPM FLAT

BITWISE PPM

- ► Idée personnelle
- ► Utiliser une PPM (d'ordre max. 3 octets) avec un encodage bit par bit
- 49 % d'efficacité!
- Mais l'order fallback occasionne des pertes évitables...

BITWISE PPM FLAT

- ➤ On retire seulement l'order fallback en utilisant à la place des probabilités neutres (0.5 : 0.5)
- Performances améliorées : 63 % d'efficacité!

BITWISE PPM et BITWISE PPM FLAT

BITWISE PPM

- ► Idée personnelle
- ► Utiliser une PPM (d'ordre max. 3 octets) avec un encodage bit par bit
- 49 % d'efficacité!
- Mais l'order fallback occasionne des pertes évitables...

BITWISE PPM FLAT

- ► On retire seulement l'order fallback en utilisant à la place des probabilités neutres (0.5 : 0.5)
- Performances améliorées : 63 % d'efficacité!
- Simplement un bitwise encoder d'ordre fixe (0 - 28 bits) (existait déjà)

BITWISE PPM FLAT

BWT régularise nos données

BWT

BWT régularise nos données

BWT

▶ Tranformation bijective

BWT régularise nos données

BWT

- Tranformation bijective
- ► Tend à placer côte-à-côte les mêmes symboles

BWT régularise nos données

BWT

- Tranformation bijective
- ► Tend à placer côte-à-côte les mêmes symboles

```
|turlututu
|lututu|tur
turlututul
|turlututu
ulturlutut
                      rlututu|tu
tu | turlutu
                      tu|turlutu
utu|turlut
               sort
                      turlututul
tutu|turlu
                      tutu|turlu
ututu|turl
                      u | turlutut
lututu | tur
                      urlututu | t
rlututultu
                      utulturlut
urlututult
                      ututulturl
```

BWT régularise nos données

BWT

- ▶ Tranformation bijective
- ► Tend à placer côte-à-côte les mêmes symboles

```
|turlututu
|lututu|tur
turlututul
|turlututu
u | turlutut
                       rlututu | tu
tu | turlutu
                       tu|turlutu
utu|turlut
                sort
                       turlututul
tutu|turlu
                       tutu|turlu
ututu|turl
                       u | turlu<u>tut</u>
lututu | tur
                       urlututu|t
rlututultu
                       utulturlut
urlututult
                       ututulturl
```

► BWT(turlututu) = uruu|utttl

BWT régularise nos données

BWT

- ▶ Tranformation bijective
- ► Tend à placer côte-à-côte les mêmes symboles

```
|turlututu
|lututu|tur
turlututul
|turlututu
u | turlutut
                      rlututu|tu
tu | turlutu
                      tu|turlutu
utu|turlut
               sort
                      turlututul
tutu|turlu
                      tutu|turlu
ututu|turl
                      u | turlutut
lututu | tur
                      urlututu|t
rlututultu
                      utulturlut
urlututult
                      ututulturl
```

- ► BWT(turlututu) = uruu|utttl
- ▶ Transforme C_m^0 en C^0

La BWT en action

Avec la RLE

La BWT en action

Avec la RLE

► Très simple : uruu | utttl devient 1u 1r 2u 1 | 1u 3t 11

La BWT en action

Avec la RLE

- ► Très simple : uruu | utttl devient 1u1r2u1 | 1u3t1l
- ► Efficacité de 41 %!

La BWT en action

Avec la RLE

- ► Très simple : uruu | utttl devient 1u1r2u1 | 1u3t11
- ► Efficacité de 41 %!

Avec bitwise PPM FLAT

La BWT en action

Avec la RLE

- ► Très simple : uruu | utttl devient 1u1r2u1 | 1u3t11
- ► Efficacité de 41 %!

Avec bitwise PPM FLAT

 On gagne (seulement) 2 % d'efficacité supplémentaire

La BWT en action

Avec la RLE

- ► Très simple : uruu|utttl devient 1u1r2u1|1u3t11
- ► Efficacité de 41 %!

Avec bitwise PPM FLAT

- On gagne (seulement) 2 % d'efficacité supplémentaire
- Permet d'atteindre mon record personnel : 65 % d'efficacité facteur de compression 2,85x
 35 % de la taille initiale

La BWT en action

Avec la RLE

- ► Très simple : uruu|utttl devient 1u1r2u1|1u3t11
- ► Efficacité de 41 %!

Avec bitwise PPM FLAT

- On gagne (seulement) 2 % d'efficacité supplémentaire
- Permet d'atteindre mon record personnel : 65 % d'efficacité facteur de compression 2,85x 35 % de la taille initiale
 - ZIP: 3.06x | record (ZPAQ): 5.43x

BWT + RLE

BITWISE PPM FLAT seul (déjà vu)

BWT + BITWISE PPM FLAT

Conclusion

Merci pour votre attention!

Sources principales

- Data Compression Explained, Matt MAHONEY mattmahoney.net/dc/dce.html
- Suffix Array by Induced Sorting (pour la BWT),
 G. NONGS. ZHANG, W. H. CHAN
 code.google.com/archive/p/ge-nong/

Tout le dossier disponible

▶ https://github.com/tbagrel1/tipe

Thomas Bagrel - Lycée Henri Poincaré, Nancy

