

Alexander Neuwirth

ZO Resonanz

ZO-Resonanz
Amander Research

wissen,leben

2018-11-

-Gliederung └─Gliederung

Z0 Resonanz

Historischer Überblick

Gliederung

Gliederung

Historischer Überblick

Theorie

Alexander Neuwirth

Experimentelle Untersuchung

Zusammenfassung

Z0 Resonanz –Historischer Überblick

Historischer Überblick

Historischer Überblick

ZO Resonanz
—Historischer Überblick
—Historischer Überblick

Historischer Überblick

ZO Resonanz
Historischer Überblick
Historischer Überblick

Historischer Überblick

Z0 Resonanz
Historischer Überblick

Historischer Überblick

Historischer Überblick

ZO Resonanz

Historischer Überblick

Historischer Überblick

Theorie

Einordnung im Standardmodell der Elementarteilchen

Elektroschwache Vereinheitlichung Zerfallsbreite

ZO Resonanz

└─Theorie Einordnung im Standardmodell der Elementarteilchen

Einordnung im Standardmodell der Elementarteilchen

Standardmodell[4]

Alexander Neuwirth 5

Z0 Resonanz
—Theorie
—Einordnung im Standardmodell der
Elementarteilchen
—Einordnung im Standardmodell der

- Fichboson und Flementarteilchen
- schwache WW
- eigenes Antiteilchen
- W+- => elek. Teilchen WW (beta Zerfall)
- Z0 => auch neutral Teilchen WW (Neutrino)

Elektroschwache Vereinheitlichung

Steven Weinberg, Sheldon Glashow und Abdus Salam[3]

► more

Z0 Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Zusammenfassung schwache + elektrom. WW
- Steven Weinberg, Sheldon Glashow und Abdus Salam
- 1979 Nobelpreis

Elektroschwache Vereinheitlichung Austauschteilchen

ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung

ZO Resonanz └─Theorie -Elektroschwache Vereinheitlichung Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung

▶ Photon → elektromagnetische Wechselwirkung

- 1. Kräfte durch Austauschteilchen
- 2. Higgs
- 3. experimentelle Bestimmung

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung
 ▶ W,Z-Boson → schwache Wechselwirkung

- 1. Kräfte durch Austauschteilchen
- 2. Higgs
- 3. experimentelle Bestimmung

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung
- ► Gluon → starke Wechselwirkung

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung
 ▶ W.Z-Boson → schwache Wechselwirkung
 ▶ Gluon → starke Wechselwirkung

- 1. Kräfte durch Austauschteilchen
- 2. Higgs
- 3. experimentelle Bestimmung

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$ ${\rm e_R}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}$ μ_{R}	$ \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\rm L} $ $ \tau_{\rm R} $	
Quarks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\begin{pmatrix} t \\ b' \end{pmatrix}_L$,) _L
Qu	u_{R}	c_{R}	$\mathrm{t_R}$	R
	d_{R}	\mathbf{s}_{R}	b_{R}	R

Schwacher Isospin[1]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fer	mionmultiple	T		
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\mathrm{L}}$	1/2	
Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	
Quarks	$\left(\begin{array}{c} u \\ d' \end{array} \right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	
Que	u_{R}	c_{R}	t_{R}	0	
	d_{R}	s_{R}	b_{R}	0	

Schwacher Isospin[1]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{ au} \\ au \end{array}\right)_{ ext{L}}$	1/2	$+1/2 \\ -1/2$	
Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	
Quarks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	$+1/2 \\ -1/2$	
Qua	u_{R}	c_{R}	t_{R}	0	0	
	d_{R}	\mathbf{s}_{R}	b_{R}	0	0	

Schwacher Isospin[1]

Z0 Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Schwacher Isospin

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\mathrm{L}}$	1/2	$^{+1/2}_{-1/2}$	$0 \\ -1$
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
Quarks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\begin{pmatrix} t \\ b' \end{pmatrix}_{L}$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
	u_{R}	c_{R}	t_{R}	0	0	+2/3
	d_{R}	$s_{\rm R}$	$b_{\rm R}$	0	0	-1/3

Schwacher Isospin[1]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Schwacher Isospin

Elektroschwache VereinheitlichungAustauschteilchen

 β -Zerfall[2]

ZO Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

 β -Zerfall[2]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

► T₃ soll erhalten bleiben

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

 β -Zerfall[2]

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung
Austauschteilchen

> T₃ soll erhalten bleiben
> W: T₃ = -1

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

- MORALEA

Elektroschwache VereinheitlichungAustauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

$$W^+: T_3 = 1$$

 β -Zerfall[2]

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ T_3 soll erhalten bleiben ▶ W^- : $T_3 = -1$ ▶ W^+ : $T_3 = 1$

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung Austauschteilchen

 T_3 soll erhalten bleiben

$$W^-: T_3 = -1$$

$$W^+: T_3 = 1$$

$$W^0$$
: $(T = 1, T_3 = 0)$

$$\triangleright B^0$$
: $(T=0, T_3=0)$

 β -Zerfall[2]

ZO Resonanz —Theorie -Elektroschwache Vereinheitlichung -Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

- > 7, soll erhalten bleiber W⁻: T₂ = −1
- V^0 : $(T = 1, T_1 = 0)$ $B^0: (T = 0, T_1 = 0)$

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\rm W} |B^0\rangle + \sin\theta_{\rm W} |W^0\rangle$$

 $|Z^0\rangle = -\sin\theta_{\rm W} |B^0\rangle + \cos\theta_{\rm W} |W^0\rangle$

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung

 $|\gamma\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m 7}} pprox 0.88$$

Elektroschwache Vereinheitlichung

 $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$ $\cos\theta_W = \frac{M_W}{M_Z} \approx 0.88$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung

2018-13

Z0 Resonanz

Experimentelle Untersuchung

Erzeugung LEP am CERN

Experimentelle Untersuchung

Erzeugung LEP am CERN

11

Erzeugung

Z0 Resonanz
Experimentelle Untersuchung
Erzeugung
Erzeugung

- feynman diagram
- bei passender Energie dominiert Z^0

Erzeugung

Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91,6 \text{ GeV}$

1. 1989 am Stanford Linear Collider

└─Erzeugung

Erzeugung

Experimentelle Untersuchung

Z0 Resonanz

2. 1996 am LEP

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \, \text{GeV}$
- $ightharpoonup e^+ + e^-
 ightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2 M_{
 m W} c^2 pprox 160,8\,{
 m GeV}$

ZO Resonanz Experimentelle Untersuchung Erzeugung —Erzeugung

Erzeugung

► Schwerpunktsenergie $\sqrt{s} = 2E_x \ge M_2c^2 \approx 91.6 \text{ GeV}$ $e^+ + e^- \rightarrow W^+ + W^-$ benötlet $\sqrt{s} > 2M_ec^2 \approx 160.8 \text{ GeV}$

- 1. 1989 am Stanford Linear Collider
- 2. 1996 am LEP

Z0 Resonanz —Zusammenfassung 2018-11-1

Alexander Neuwirth

Zusammenfassung

- ▶ Weinberg winkel
- ▶ Zerfallsbreite
- ► Neutrino generation

- 1. WEinberg winkel aus ... 2. hihi3

Zusammenfassung

3. hihi3

Quellen I

Povh et al. Teilchen und Kerne. Springer Spektrum, 2014.

Beta-Decay. URL: https://de.wikipedia.org/wiki/Betastrahlung (besucht am 12.11.2018).

Sheldon Glashow, Abdus Salam and Steven Weinberg, URL: http://thescientificodyssey.libsyn.com/episode-225putting-the-puzzle-together (besucht am 12.11.2018).

Standardmodel. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).

Z0 Resonanz Zusammenfassung 2018--Quellen

Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Beta-Decay, usu:

Sheldon Glashow, Abdus Salam and Steven Weinberg, upp.

Standardmodel, ugu:

16

Folien-Überschrift

Hier kommt Text!

Ein "normaler" Block

Inhalt hier.

itemize und enumerate:

- ► Ein Punkt
 - ► Ein Unterpunkt
- Noch ein Punkt
- Noch em run
- 1. Ein Punkt
- 1.1 Ein Unterpunkt
- 2. Noch ein Punkt

Z0 Resonanz
—Zusammenfassung
—Folien-Überschrift

Follow-Derschrift
tiler kommt Fasti
lin sofomster Block
inhalt Ner.
tten ize und exumerate:

b lin Pankt
b lin lutsrpunkt
b Noch ein Pankt
1. lin Pankt

2. Noch ein Punkt

ZO Resonanz

2018-11-

Zusammenfassung

└─Ein Alert-Block

Ein Alert-Block Ein Folien-Untertitel

Hier kommt Rot ins Spiel!

Ein Alert-Block Ein Folien-Untertitel

Achtung!

Hier kommt Rot ins Spiel!

18

2018-11-

Z0 Resonanz Zusammenfassung

└─Ein Example-Block

Ein Example-Block

Hier kommt Grün ins Spiel!

Ein Example-Block

Alexander Neuwirth

Hier kommt Grün ins Spiel!

Z0 Resonanz └─Zusamme

-Zusammenfassung

Waht the noch Franco?

https://www.uni-muenster.de/Physik.FSPHYS

Vielen Dank für eure Aufmerksamkeit!

Habt ihr noch Fragen?

https://www.uni-muenster.de/Physik.FSPHYS

20