Лабораторная работа

«Исследование электронных ламп диода и триода»

1) Снятие статической характеристики диода

На лампу было подано напряжение, к клеммам подключены вольтметр и амперметр. Меняя величину напряжения, мы фиксировали силу тока. Полученные данные представлены в таблице ниже:

U,B	I, MA
2	3,62
4	9,25
6	15,74
8	21,85
10	31,16
12	39,3
14	47,9
16	60,28
18	71,36
20	83
22	90,4

Для вычисления кривизны вольт-амперной характеристики, воспользуемся приближенной формулой:

 $S pprox rac{\Delta I}{\Delta V}$ Производя расчёты по участкам 10-12, 12-14, 14-16 и усредняя получаем:

$$S = (4.85 * 10^{-3})0m^{-1}$$

2) Снятие статических характеристик триода

Сначала определим максимально допустимую мощность лампы.

Пользуясь соотношением $P_{amax} = U_a I_a = const = 2,5 \ \mathrm{BT}$

Построим график максимально допустимого тока от напряжения:

Далее было снято семейство анодных характеристик при различных величинах сеточного напряжения:

Uc, B	0	Uc, B	-2	Uc, B	-4	Uc, B	2
Ua, B	Іа, мА						
2	0,46	40	0,42	80	0,48	2	3,2
6	0,8	50	1	90	0,9	4	3,3
10	1,1	60	1,7	100	1,6	6	3,6
20	1,9	70	2,5	110	2,4	8	3,9
30	2,8	80	3,5	120	3,2	10	4,3
40	3,8	90	4,5	130	4,2	20	5,7
50	4,9	100	5,6	140	5,3	30	7
60	6	110	6,8	150	6,4		
70	7,3	120	8	160	7,6		
80	8,6	130	9,4	170	8,9		
90	9,9	140	10,7	180	10,2		
100	11,3	150	12,2	190	11,6		
110	12,7	160	13,6				
120	14,3	170	15,2				
130	15,8						
140	17,5	_		_			_
150	19,1						

Семейство анодных характеристик

Можем рассчитать внутреннее сопротивление Ri, как величину обратную k S. Рассчитывая его по последнему промежутку для кривых, соответствующих Uc = 0, 2, -4 B и усредняя, получаем

Ri = 6,69 кОм

После чего аналогично было снято семейство сеточных характеристик, при нескольких значениях анодного напряжения:

Ua, B	60	Ua, B	80	Ua, B	100
Uc, B	Іа, мА	Uc, B	Іа, мА	Uc, B	Ia, MA
-2,9	0,55	-3	1,5	-2,8	3,7
-2,4	1	-2,8	2	-2,5	4,4
-2,1	1,5	-2,5	2,5	-2	5,6
-1,5	2,5	-2,2	3	-1,5	6,9
-1	3,7	-1,5	4,7	-1	8,2
-0,5	4,8	-1	5,8	-0,5	9,6
0	6	-0,5	7,3	0	11,4
0,5	7,4	0	8,6	0,5	12,8
1	8,5	0,5	9,9	1	14,4
1,5	9,8	1	11,3	1,5	15,7
2	11	1,5	12,6	2	17,5
2,5	12,3	2	14	2,5	18,8
3	13,8	2,5	15,6	3	20,5
3,5	15	3	16,8	3,5	21,7
4	16,5	3,5	18,6	4	23,6
4,5	17,9	4	19,9	4,5	25,2
		4,5	21,5		

Аналогично предыдущей серии опыта, найдем S, беря для каждого семейства средний участок и усредняя. Получим:

$$S = (2.73 * 10^{-3}) \,\mathrm{Om}^{-1}$$

Теперь рассчитаем коэффициент усиления µ:

$$\mu = Ri * S = 18,26$$

3) Определение коэффициента усиления

На вход осциллографа был подан сигнал с частотой 1 кГц и амплитудой 100 мВ. Далее в цепь был подключён усилитель, через который проходил сигнал и выходил снова на осциллограф. После чего была снята зависимость коэффициента усиления от частоты и от сопротивления на грузки:

R, кОм	f, кГц	K	f, кГц	R, кОм	K
18	0,1	18	1	0,5	0,85
	1	18		1	1,48
	23	16,8		3	2,62
	80	12		5	6
	100	10,6		10	9,8
	200	6,6		12	11,25
	400	3,8		15	16
	500	2,56		18	17,6
	600	2,2		200	18,8
				300	18,4
				1000	17,4

Сравнивая полученные данные с теорией, видим, что при «низких» сопротивлениях в несколько десятков кОм и высоких (свыше 500 кОм) полученные данные достаточно близки к теоретической кривой. На изгибе наблюдается отклонения, которое скорее всего связано с тем, что коэффициенты в уравнении кривой определялись приближённо и сильно зависели от выбора рассматриваемых точек.