OPTYMALIZACIA PROJEKT ZALICZENIOWY NR 1

W poniższej tabeli zaprezentowaliśmy liczbę kroków wykonanych przez metodę sympleks z użyciem zaimplementowanych zasad.

	lexi_min	lexi_max	max_wsp	min_wsp	los	max_wzrost	min_wzrost	gradient
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	2	6	2	2	1	2	2	2
4	0	0	0	0	0	0	0	0
5	2	2	2	2	2	2	2	2
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
8	16	14	13	13	10	6	13	6
9	2	2	2	2	2	2	2	2
10	12	2	6	6	9	3	6	7

gdzie:

- 1. AmericanSteelProblem.lp
- 2. BeerDistributionProblem.lp
- 3. ColonellBlotto.lp
- 4. ComputerPlantProblem.lp
- 5. Furniture.lp
- 6. Gams10a.lp
- 7. SpongeRollProblem.lp
- 8. Szach.lp
- 9. WhiskasModel.lp
- 10. WhiskasModel2.lp

Zaimplementowane zasady:

- **lexi_min** wybór zmiennej o najmniejszym leksykograficznie indeksie
- lexi_max wybór zmiennej o największym leksykograficznie indeksie
- max_wsp wybór zmiennej o największym współczynniku funkcji celu
- min_wsp wybór zmiennej o najmniejszym współczynniku funkcji celu
- los wybór losowego wierzchołka (wyniki uśrednione)
- max_wzrost wybór zmiennej, która prowadzi do największego wzrostu funkcji celu
- min_wzrost wybór zmiennej, która prowadzi do najmniejszego wzrostu funkcji celu
- gradient wybór zmiennej, która prowadzi do wierzchołka w kierunku najbliższym gradientowi funkcji celu

Wyniki optymalizacji są takie same niezależnie od wybranej reguły (z pominięciem liczby kroków) i wynoszą dla poszczególnych problemów:

 Rozwiązanie problemu: AmericanSteelProblem.lp Wartość funkcji celu - 0 Optymalne rozwiązanie - brak

 Rozwiązanie problemu: BeerDistributionProblem.lp Wartość funkcji celu - 0 Optymalne rozwiązanie - brak

Rozwiązanie problemu: ColonellBlotto.lp
 Wartość funkcji celu - 0.0
 Optymalne rozwiązanie - (1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

 Rozwiązanie problemu: ComputerPlantProblem.lp Wartość funkcji celu - 0 Optymalne rozwiązanie - brak

 Rozwiązanie problemu: Furniture.lp Wartość funkcji celu - 32000000.0 Optymalne rozwiązanie - (8.0, 16.0)

 Rozwiązanie problemu: Gams10a.lp Wartość funkcji celu - 0 Optymalne rozwiązanie - brak

 Rozwiązanie problemu: SpongeRollProblem.lp Wartość funkcji celu - 0 Optymalne rozwiązanie - brak

Rozwiązanie problemu: Szach.lp
 Wartość funkcji celu - 30000
 Optymalne rozwiązanie - (1/2, 1/2, 0, 1/2, 0, 1/2, 1/2, 1/2, 0)

 Rozwiązanie problemu: WhiskasModel.lp Wartość funkcji celu - -4800.0 Optymalne rozwiązanie - (0.0, 60.0)

Rozwiązanie problemu: WhiskasModel2.lp
 Wartość funkcji celu - -4800.0
 Optymalne rozwiązanie - (0.0, 0.0, 0.0, 0.0, 60.0, 0.0)