

Designing a Lightweight Edge-Guided Convolutional Neural Network for Segmenting Mirrors and Reflective Surfaces

Mark Edward M. Gonzales mark_gonzales@dlsu.edu.ph

Joel P. Ilao joel.ilao@dlsu.edu.ph

Lorene C. Uy lorene_c_uy@dlsu.edu.ph

github.com/memgonzales/ mirror-segmentation

Problem and Motivation

 Existing computer vision systems have difficulty detecting mirrors and reflective surfaces (Park & Park, 2021)

Park, D., and Park, Y.H. Identifying reflected images from object detector in indoor environment utilizing depth information. IEEE Robotics and Automation Letters, 6, 2, pp. 635-642, 2021.

Problem and Motivation

- Presence of mirrors and reflective surfaces complicate tasks such as robot navigation (Anderson *et al.*, 2018) and 3D scene reconstruction (Zhang *et al.*, 2018)

Anderson, P. et al. Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3674-3683, 2018.

Zhang, Y., Ye, M., Manocha, D., and Yang, R. 3D reconstruction in the presence of glass and mirrors by acoustic and visual fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 8, pp. 1785-1798, 2018.

Problem and Motivation

 Mirrors pose potential hazards to autonomous driving and driving assistance systems (Zendel et al., 2017)

Glare Spots

Distorted Reflections

Infinite Reflections

Zendel, O., Honauer, K., Murschitz, M., Humenberger, M., and Domínguez, G. Analyzing computer vision data - the good, the bad and the ugly. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6670-6680, 2017.

A Challenging CV Task

Semantic and instance segmentation?

 General object segmentation frameworks are unable to distinguish the reflection from the actual object (He et al., 2017)

Salient object detection?

- Mirrors are not necessarily salient (Yang et al., 2019)

Image

Salient Object

Ground Truth

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980- 2988, 2017.

Yang, X. et al. Where is my mirror? Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8809-8818, 2019.

GitHub

A Challenging CV Task

Semantic and instance segmentation?

 General object segmentation frameworks are unable to distinguish the reflection from the actual object (He et al., 2017)

Salient object detection?

- Mirrors are not necessarily salient (Yang et al., 2019)

Image

Salient Object

Ground Truth

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980- 2988, 2017.

Yang, X. et al. Where is my mirror? Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8809-8818, 2019.

Mirror Detection Models

Model	Cues	Backbone	# Parameters
MirrorNet (Yang et al., 2019)	Contextual contrasted features	ResNeXt-101	121.77M
PMDNet (Lin et al., 2020)	Relational contextual contrasted features, edge features	ResNeXt-101	147.66M
SANet (Guan et al., 2022)	Semantic associations	ResNeXt-101	105.84M

Yang, X. et al. Where is my mirror? Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8809-8818, 2019. Lin, J., Wang, G., and Lau, R.H. Progressive mirror detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3694-3702, 2020.

Guan, H., Lin, J., and Lau, R.W.H. Learning semantic associations for mirror detection. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5931-5940, 2022.

Gaps / Limitations	Our Contributions	
Datasets are mostly limited to clear mirrors found in indoor scenes	Dataset consisting of outdoor mirrors and reflective surfaces (e.g., tinted car windows and building façades)	
Designing lightweight mirror segmentation models remains an unexplored direction	Lightweight edge-guided CNN for segmenting mirrors and reflective surfaces	

Gaps / Limitations	Our Contributions
Datasets are mostly limited to clear mirrors found in indoor scenes	Dataset consisting of outdoor mirrors and reflective surfaces (e.g., tinted car windows and building façades)
Designing lightweight mirror segmentation models remains an unexplored direction	Lightweight edge-guided CNN for segmenting mirrors and reflective surfaces

- **Dataset of outdoor mirrors and reflective surfaces** with 454 images and their corresponding ground-truth masks
- Modified the architecture of PMDNet (Lin et al., 2020) and extensively tested different backbones and edge-related modules to guide segmentation
- **Pruned best-performing edge-guided CNN**, resulting in a lightweight model that performs competitively with PMDNet but with 78.20× fewer FLOPS and 238.16× fewer parameters

- **Dataset of outdoor mirrors and reflective surfaces** with 454 images and their corresponding ground-truth masks
- Modified the architecture of PMDNet (Lin et al., 2020) and extensively tested different backbones and edge-related modules to guide segmentation
- **Pruned best-performing edge-guided CNN**, resulting in a lightweight model that performs competitively with PMDNet but with 78.20× fewer FLOPS and 238.16× fewer parameters

- Dataset of outdoor mirrors and reflective surfaces with 454 images and their corresponding ground-truth masks
- Modified the architecture of PMDNet (Lin et al., 2020) and extensively tested different backbones and edge-related modules to guide segmentation
- **Pruned best-performing edge-guided CNN**, resulting in a lightweight model that performs competitively with PMDNet but with 78.20× fewer FLOPS and 238.16× fewer parameters

Datasets

Publicly Available Datasets

4018 images

Yang, X. et al. Where is my mirror? Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8809-8818, 2019.

Progressive Mirror Detection (PMD) Dataset

6016 images

De La Salle University – Outdoor Mirrors & Reflective Surfaces (DLSU-OMRS)

- 454 images scraped from Shutterstock using the key phrases outdoor mirror and street mirror
- Ground-truth masks produced via manual segmentation
- Average structural similarity index: 28.67%

De La Salle University – Outdoor Mirrors & Reflective Surfaces (DLSU-OMRS)

Most mirrors are located near the center

De La Salle University – Outdoor Mirrors & Reflective Surfaces (DLSU-OMRS)

Most mirrors occupy up to 20% of the image

De La Salle University – Outdoor Mirrors & Reflective Surfaces (DLSU-OMRS)

The color contrast of most images is below 40%

De La Salle University – Outdoor Mirrors & Reflective Surfaces (DLSU-OMRS)

	# Images
One Mirror	338
Multiple Mirrors	116

By Shape	# Mirrors
Triangle	4
Quadrilateral	258
Polygonal	9
Round/Elliptical	160
Irregular	355

By Presence of Occlusions	# Mirrors
Present	192
Not Present	594

Model Architecture

Base Model

Lin, J., Wang, G., and Lau, R.H. Progressive mirror detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3694-3702, 2020.

Changing the Feature Extraction Backbone

- 1. ResNet-50 (He et al., 2016)
- 2. Xception-65 (Chollet, 2017)
- 3. VoVNet-39 (Lee et al., 2019)
- 4. MobileNetV3 (Howard et al., 2019)
- 5. EfficientNetLite4 (Tan & Le, 2019)
- 6. EfficientNet-Edge-Large (Pruned) (Tan & Le, 2019)
- 7. EfficientNetV2-Medium (Tan & Le, 2019)

Chollet, F. Xception: Deep learning with depthwise separable convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800-1807, 2017.

Lee, Y., Hwang, J.W., Lee, S., Bae, Y., and Park, J. An energy and GPU-computation efficient backbone network for real-time object detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 752-760, 2019.

Howard, A. et al. Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1314-1324, 2019.

Tan, M., and Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning, 97, pp. 6105-6114, 2019.

PMDNet Ours

Low-Level Edge Features

We connect the side-output of the lowest-level backbone to a boundary extraction module with **four parallel conv. layers**, adapted from GDNet (Mei et al., 2022)

Mei, H. et al. Large-field contextual feature learning for glass detection. IEEE Transactions on Pattern Analysis & Machine Intelligence, 01, pp. 1-17, 2022

High-Level Edge Features

We share PMDNet's approach of using a **convolutional block attention module** (Woo et al., 2018), a lightweight module that infers spatial and channel attention maps

Woo, S., Park, J., Lee, J., Lee, J., and Kweon, I.S. CBAM: Convolutional block attention module. Proceedings of the European Conference on Computer Vision (ECCV), pp. 3-19, 2018.

Edge Prediction Block

Original: 3×3 conv. layer

Ours: 1×1 conv. layer with BN and ReLU connected to a 3×3 conv. layer

Model Training

Model Training

- **Library**: PyTorch

- Training Dataset

Training partition of split PMD dataset (5096 images)

Data Preprocessing and Augmentation

- Resized to 352 x 352
- Random horizontal flipping
- Jittering the brightness, contrast, saturation, and hue

Model Training

- Initial Learning Rate: 1 x 10⁻³
 - Update: Polynomial (power = 0.9)
- Optimizer: SGD
 - Weight Decay: 5 x 10⁻⁴
 - **Momentum:** 0.9

Loss Functions

Our Proposed Compound Loss Function

$$L = oxed{\sum_{i=1}^{4} w_{mirror} \cdot L_{mirror}ig(\hat{M}_i, Mig)} + oxed{w_{edge} \cdot L_{edge}ig(\hat{E}, Eig)} + oxed{w_{output} \cdot L_{output}ig(\hat{M}, Mig)}$$

Mirror Maps

JoU Joss

- Laplacian-based
- boundaries

Boundary Map Final Mirror Map

- Weighted IoU + BCE
- For emphasizing Draws the model to a larger receptive field

Our Proposed Compound Loss Function

$$L = oxed{\sum_{i=1}^{4} w_{mirror} \cdot L_{mirror}ig(\hat{M}_i, Mig)}} + oxed{w_{edge} \cdot L_{edge}ig(\hat{E}, Eig)} + oxed{w_{output} \cdot L_{output}ig(\hat{M}, Mig)}$$

Mirror Maps

JoU Joss

- Laplacian-based
- boundaries

Boundary Map Final Mirror Map

- Weighted IoU + BCE
- For emphasizing Draws the model to a larger receptive field

Zhao, T., and Wu, X. Pyramid feature attention network for saliency detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3080-3089, 2019.

Our Proposed Compound Loss Function

$$L = oxed{\sum_{i=1}^{4} w_{mirror} \cdot L_{mirror} \Big(\hat{M}_i, M \Big)} + oxed{w_{edge} \cdot L_{edge} \Big(\hat{E}, E \Big)} + oxed{w_{output} \cdot L_{output} \Big(\hat{M}, M \Big)}$$

Mirror Maps

loU loss

Boundary Map

- Laplacian-based
- For emphasizing boundaries

Final Mirror Map

- Weighted IoU + BCE
- Draws the model to a larger receptive field

Zhao, T., and Wu, X. Pyramid feature attention network for saliency detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3080-3089, 2019.

Wei, J., Wang, S., and Huang, Q. F³Net: Fusion, feedback and focus for salient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 34, pp.12321-12328, 2020.

Model Compression

Filter Pruning via Geometric Median (FPGM)

- One-shot structured pruning technique (He et al., 2019)
- We applied FPGM on the convolutional and linear layers
- Sparsity level: 10%
- **Learning rate rewinding** (Renda et al., 2020) for 20 epochs was done to retrain unpruned weights from their final values

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. Filter pruning via geometric median for deep convolutional neural networks acceleration. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4335-4344, 2019.

Renda, A., Frankle, J., and Carbin, M. Comparing rewinding and fine-tuning in neural network pruning. International Conference on Learning Representations, 2020.

Model Evaluation

Test Datasets

- MSD (955 images)
- Test partition of split PMD dataset (571 images)
- DLSU-OMRS (454 images)

Metrics

- Maximum F-measure
$$F_{\beta} = \frac{(1+\beta^2) \cdot \operatorname{precision} \cdot \operatorname{recall}}{\beta^2 \cdot \operatorname{precision} + \operatorname{recall}}$$

- Mean absolute error
$$MAE = \frac{1}{w \cdot h} \sum_{x=1}^{w} \sum_{y=1}^{h} |\hat{Y}(x,y) - Y(x,y)|$$

Results and Analysis

Model	Computational	l Complexity	MSD		PMD		DLSU-OMRS	
Wiodel	GFLOPS ↓	# Params ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓
VST (Liu et al., 2021)	46.36	44.48M	0.4290	0.2739	0.1317	0.261	0.5730	0.2274
PMDNet (Lin et al., 2020)	118.86	147.66M	0.8350	0.0816	0.8011	0.0324	0.8423	0.0878
Ours – Compound Loss (CL) + Edge	e Extraction (EE)							
ResNet + CL + EE	116.46	130.12M	0.7695	0.1098	0.7524	0.0409	0.8042	0.1025
MobileNet + CL + EE	6.61	20.76M	0.7515	0.1153	0.7508	0.0427	0.8256	0.1006
EfficientNetLite + CL + EE	6.99	15.54M	0.7909	0.1027	0.7769	0.0387	0.8178	0.1048
EfficientNet + CL + EE	24.79	53.35M	0.8483	0.0800	0.8117	0.0313	0.8388	0.1032
EfficientNet + CL + EE + Pruned	1.52	0.62M	0.8498	0.0813	0.7902	0.0364	0.8456	0.0955

Liu, N., Zhang, N., and Wan, K., Shao, L., and Han, J. Visual saliency transformer. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4722-4732, 2021.

Lin, J., Wang, G., and Lau, R.H. Progressive mirror detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3694-3702, 2020.

Model	Computational	Complexity	MSD		PMD		DLSU-OMRS	
Wiodei	GFLOPS ↓	# Params ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓
VST (Liu et al., 2021)	46.36	44.48M	0.4290	0.2739	0.1317	0.261	0.5730	0.2274
PMDNet (Lin et al., 2020)	118.86	147.66M	0.8350	0.0816	<u>0.8011</u>	0.0324	0.8423	0.0878
Ours – Compound Loss (CL) + Edge	e Extraction (EE)							
ResNet + CL + EE	116.46	130.12M	0.7695	0.1098	0.7524	0.0409	0.8042	0.1025
MobileNet + CL + EE	<u>6.61</u>	20.76M	0.7515	0.1153	0.7508	0.0427	0.8256	0.1006
EfficientNetLite + CL + EE	6.99	15.54M	0.7909	0.1027	0.7769	0.0387	0.8178	0.1048
EfficientNet + CL + EE	24.79	53.35M	0.8483	0.0800	0.8117	0.0313	0.8388	0.1032
EfficientNet + CL + EE + Pruned	1.52	0.62M	0.8498	0.0813	0.7902	0.0364	0.8456	0.0955

Our model that uses **EfficientNet** as a backbone and employs our compound loss function and edge extraction and prediction module **performed competitively with PMDNet**. It also has **4.79× fewer FLOPS** and **2.77× fewer parameters**

Model	Computational	Complexity	MSD		PMD		DLSU-OMRS	
Woder	GFLOPS ↓	# Params ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓
VST (Liu et al., 2021)	46.36	44.48M	0.4290	0.2739	0.1317	0.261	0.5730	0.2274
PMDNet (Lin <i>et al.</i> , 2020)	118.86	147.66M	0.8350	0.0816	0.8011	0.0324	0.8423	0.0878
Ours – Compound Loss (CL) + Edge	e Extraction (EE)							
ResNet + CL + EE	116.46	130.12M	0.7695	0.1098	0.7524	0.0409	0.8042	0.1025
MobileNet + CL + EE	6.61	20.76M	0.7515	0.1153	0.7508	0.0427	0.8256	0.1006
EfficientNetLite + CL + EE	6.99	15.54M	0.7909	0.1027	0.7769	0.0387	0.8178	0.1048
EfficientNet + CL + EE	24.79	53.35M	0.8483	0.0800	0.8117	0.0313	0.8388	0.1032
EfficientNet + CL + EE + Pruned	1.52	0.62M	0.8498	0.0813	0.7902	0.0364	0.8456	0.0955

The **pruned version** of this model also **performed competitively with PMDNet** and slightly outperformed it on MSD and DLSU-OMRS in terms of F_{β} score. It also has **78.20× fewer FLOPS** and **238.16× fewer parameters**

Model	Computational	l Complexity	MSD		PMD		DLSU-OMRS	
Wiodei	GFLOPS ↓	# Params ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓
VST (Liu et al., 2021)	46.36	44.48M	0.4290	0.2739	0.1317	0.261	0.5730	0.2274
PMDNet (Lin et al., 2020)	118.86	147.66M	0.8350	0.0816	0.8011	0.0324	0.8423	0.0878
Ours – Compound Loss (CL) + Edge	e Extraction (EE)							
ResNet + CL + EE	116.46	130.12M	0.7695	0.1098	0.7524	0.0409	0.8042	0.1025
MobileNet + CL + EE	6.61	20.76M	0.7515	0.1153	0.7508	0.0427	0.8256	0.1006
EfficientNetLite + CL + EE	6.99	15.54M	0.7909	0.1027	0.7769	0.0387	0.8178	0.1048
EfficientNet + CL + EE	24.79	53.35M	0.8483	0.0800	0.8117	0.0313	0.8388	0.1032
EfficientNet + CL + EE + Pruned	1.52	0.62M	0.8498	0.0813	0.7902	0.0364	0.8456	0.0955

Although our model with an **EfficientNet-Lite** backbone was not able to outperform PMDNet, its F_{β} scores across all three benchmark datasets were **consistently** within 0.06 points of the highest scores

Salient object detection models may not necessarily tag mirrors as salient

G

H

K

M

E

В

some cases that may be challenging even for a state-of-the-art model (column C)

These success cases (column K) include images where the **object occludes the mirror** and, alongside its reflection, occupies a **large portion of the image**

G

H

K

M

E

A

В

F

color to the mirror's frame

and reflective surfaces are present

В

A

Image

E

F

G

H

K

M

Our pruned version was able to segment irregularly shaped mirror shards (row 5)

However, it has some **difficulty** handling cases where the **object and reflection occupy the majority of the image** (rows 1 and 2)

Charaity	MS	SD	PN	/ID	DLSU-OMRS		
Sparsity	F _B ↑	MAE ↓	$F_{_{eta}}$ \uparrow	MAE ↓	F _B ↑	MAE ↓	
40%	0.6267	0.4633	0.6006	0.4790	0.6876	0.1485	
30%	0.7695	0.0970	0.7566	0.0410	0.7963	0.1039	
20%	0.8073	0.0905	0.7795	0.0352	0.8211	0.0940	
10%	0.8498	0.0813	0.7902	0.0364	0.8456	0.0955	
0%	0.8483	0.0800	0.8117	0.0313	0.8388	0.1032	

Performance of the Pruned Model

	MSD		PN	ИD	DLSU-OMRS		
	F _B ↑	MAE ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓	
Unpruned	0.8483	0.0800	0.8117	0.0313	0.8388	0.1032	
Before Retraining	0.8505	0.4185	0.7858	0.4585	0.8432	0.4407	
After Retraining	0.8498	0.0813	0.7902	0.0364	0.8456	0.0955	

Performance of the Pruned Model

	MSD		PN	ИD	DLSU-OMRS		
	F _B ↑	MAE ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓	
RCCL	0.8052	0.0957	0.7957	0.0332	0.8300	0.0956	
RCCL + EDF	0.8224	0.0949	0.8001	0.0335	0.8389	0.0918	
Ours	0.8483	0.0800	0.8117	0.0313	0.8388	0.1032	

Performance of Ablated Models

Lana	Ms	SD	PN	ID	DLSU-OMRS		
Loss	F _B ↑	MAE ↓	F _B ↑	MAE ↓	F _B ↑	MAE ↓	
BCE + IoU	0.8352	0.0949	0.8038	0.0320	0.8314	0.0969	
BCE + Weighted	0.8163	0.0967	0.8073	0.0319	0.8470	0.0995	
Laplace + IoU	0.8148	0.0950	0.7989	0.0302	0.8553	0.0881	
Ours	0.8483	0.0800	0.8117	0.0313	0.8388	0.1032	

Performance Under Different Loss Functions

Ours

Ours

Truth

Failure Case: Contextual features inside and outside the mirror appear continuous

Failure Case: Available contextual features are inadequate

Failure Case: Sharp discontinuities are present within the mirror

Failure Case: Small mirrors in the background may be challenging to recognize

Failure Case: Heavily tinted reflective surfaces may be challenging to recognize

Failure Case: Some cases are challenging even for human observers

- We propose DLSU-OMRS, a dataset of 454 outdoor mirrors and reflective surfaces not well represented in existing mirror datasets
- We modified PMDNet architecture with different feature extraction backbones and edge-related modules to guide segmentation

- Our best-performing model uses **EfficientNetV2-Medium** as its backbone
- Low-level edge features are captured via parallel convolutional layers
- High-level edge features are captured via a lightweight convolutional block attention module

- EfficientNetV2-Medium + Compound Loss + Edge Extraction
 - F_{β} : 0.8483 (MSD), 0.8117 (PMD), 0.8388 (DLSU-OMRS)
- Compressed model by filter pruning via geometric median
 - F_{β} : 0.8498 (MSD), 0.7902 (PMD), 0.8456 (DLSU-OMRS)
 - 78.20× fewer FLOPS
 - 238.16× fewer parameters

Designing a Lightweight Edge-Guided Convolutional Neural Network for Segmenting Mirrors and Reflective Surfaces

Mark Edward M. Gonzales mark_gonzales@dlsu.edu.ph

Joel P. Ilao joel.ilao@dlsu.edu.ph

Lorene C. Uy lorene_c_uy@dlsu.edu.ph

github.com/memgonzales/ mirror-segmentation

Model	Cues	Backbone	Limitations				
MirrorNet (Yang <i>et al.</i> , 2019)	Contextual contrasted features	ResNeXt-101	 Blurry boundaries for some masks Difficulty in handling cases with insufficient contextual contrast between objects and reflection 				
PMDNet (Lin <i>et al.</i> , 2020)	Relational contextual contrasted features, multi-scale edge features	ResNeXt-101	 Blurry boundaries for some masks Difficulty in handling cases with insufficient correlational features inside and outside the mirror 				
PDNet (Mei et al., 2021)	Color and depth discontinuities and correlations	ResNet-50	 False flagging of doorways as mirrors Difficulty in handling cases where discontinuities are hard to discern 				

Yang, X. et al. Where is my mirror? Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8809-8818, 2019. Lin, J., Wang, G., and Lau, R.H. Progressive mirror detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3694-3702, 2020.

Mei, H. et al. Depth-aware mirror segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3044-3053, 2021.

Model	Cues	Backbone	Limitations				
SANet (Guan <i>et al.</i> , 2022)	Semantic associations	ResNeXt-101	 Inability to detect mirrors if semantic association labels are inadequate Reliant on semantic annotations, which may not be readily available all the time 				
VCNet (Tan <i>et al.</i> , 2022)	Visual chirality	ResNeXt-101	 Difficulty in identifying boundaries of occluding objects with complex structures or shapes Difficulty in excluding small occluding objects 				

Guan, H., Lin, J., and Lau, R.W.H. Learning semantic associations for mirror detection. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5931-5940, 2022.

Tan, X. et al. Mirror detection with the visual chirality cue. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-13, 2022.

Model	Computation	nal Complexity	M	MSD		MD	DLSU-OMRS	
Wiodei	GFLOPS ↓	# of Params ↓	$F_{\beta} \uparrow$	MAE ↓	$F_{\beta} \uparrow$	MAE ↓	$F_{\beta} \uparrow$	MAE↓
VST [Liu21]	46.36	44.48M	0.4290	0.2739	0.1317	0.261	0.5730	0.2274
PMDNet [Lin20a]	118.86	147.66M	0.8350	0.0816	0.8011	0.0324	0.8423	0.0878
Ours (Compound I	oss)	39			30-			
ResNet-50	105.47	129.04M	0.7548	0.1119	0.7650	0.0403	0.7874	0.1011
Ours (Compound L	oss + Edge E.	xtraction)					y 181,200 o a 1810 o a 1	
ResNet-50	116.46	130.12M	0.7695	0.1098	0.7524	0.0409	0.8042	0.1025
Xception-65	75.28	129.12M	0.7800	0.0973	0.7566	0.0401	0.7643	0.1164
VoVNet-39	98.25	61.90M	0.7014	0.1196	0.7578	0.0412	0.7868	0.1088
MobileNetV3	6.61	20.76M	0.7515	0.1153	0.7508	0.0427	0.8256	0.1006
EfficientNet-Lite	6.99	15.54M	0.7909	0.1027	0.7769	0.0387	0.8178	0.1048
EfficientNet-	17.02	10.42M	0.7682	0.1082	0.7831	0.0349	0.8035	0.1044
Edge-Large (Pruned)								
EfficientNetV2-	24.79	53.35M	0.8483	0.0800	0.8117	0.0313	0.8388	0.1032
Medium							100	
Ours (Compound L	oss + Edge E	xtraction + FPG	M Prunin	g)	707		7	
EfficientNetV2-	1.52	0.62M	0.8498	0.0813	0.7902	0.0364	0.8456	0.0955
Medium								