Quinto Relatório de Lab de Circuitos

Henrique da Silva hpsilva@proton.me

8 de outubro de 2022

Sumário

T	IIIUI	odução
2		lise dos circuitos Segundo circuito
3		lições no laboratório
	3.1	Primeiro circuito
		3.1.1 Grafico do comportamento
		do circuito
	3.2	Segundo circuito
		3.2.1 Grafico do comportamento
		do circuito \dots

1 Introdução

Neste relatório vamos discutir novamente o Amp Op. Desta vez em uma configuração que tenha um capacitor no circuito, e veremos que ele se comporta como um circuito RC.

Todos arquivos utilizados para criar este relatório, é o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/labcircuitos

2 Análise dos circuitos

Capacitor em paralelo na realimentação

Podemos fazer a seguinte análise no nosso circuito:

$$V_c = Va - V_0 \tag{1}$$

Porém V_a está em curto virtual com o terra do circuito. Então $V_a=0$

$$V_c = -V_0 \tag{2}$$

Daqui faremos análise nodal para determinar a EDO que precisaremos resolver.

$$\frac{-V_i}{R_1} + \frac{-V_0}{R_2} + C \frac{dV_c}{dt} = 0$$

$$\frac{dV_c}{dt} + \frac{V_0}{R_2C} = \frac{\frac{-V_iR_2}{R_1}}{CR_2}$$

$$V_0(t) = V_0e^{\frac{-t}{A}} + B(1 - e^{\frac{-t}{A}})$$

$$I_c = C \frac{dV_c}{dt}$$

$$A = CR_2, B = \frac{-V_iR_2}{R_1}$$
(3)

Então por fim obtemos uma equação que Comportamento no carregamento: rege o comportamento da tensão no capacitor:

$$V_0(t) = V_0 e^{\frac{-t}{CR_2}} + \frac{-V_i R_2}{R_1} (1 - e^{\frac{-t}{CR_2}})$$
 (4)

Segundo circuito 2.1

Neste teremos um capacitor em série com a resistência de entrada R_1 .

Similarmente o amp op deixará o no V_a em curto virtual então teremos:

$$\frac{-V_0}{R_2} + I_c = 0
-V_0 = C \frac{dV_c}{dt}
V_0(0) = R2 * I_c
I_c = \frac{V_r}{R_1} = \frac{V_i - V_c}{R_1}
V_i = R_1 C \frac{dV_c}{dt} + V_c
\frac{dV_0}{dt} + \frac{V_0}{CR_1} = 0
A = CR_1, B = 0$$
(5)

Neste caso, muito convenientemente nosso B é zero, a equação que rege a tensão no tempo fica:

$$V_0(t) = V_0 e^{\frac{-t}{CR_1}} \tag{6}$$

Medições no laboratório 3

Utilizaremos as seguintes resistências tensões na montagem dos circuitos:

$$R_1 = 32.37k\Omega$$

$$R_2 = 46.70k\Omega$$

$$V_{c0} = -7.25V$$

$$V_1 = 5V$$

$$C = 100nf$$

Primeiro circuito 3.1

Para o primeiro circuito haviamos concluído que a constante de tempo era CR_2 , logo:

$$f = \frac{1}{15 * CR_2} = \frac{1}{0.0705} = 14.2Hz \tag{7}$$

Porcentagem	Tensao	Tempo
90%	-6.525V	10.5ms
36.8%	-2.668V	2.0ms
10%	-0.725	0.5ms

Comportamento no descarregamento:

Porcentagem	Tensao	Tempo
90%	-6.525V	0.35ms
36.8%	-2.668V	2.10ms
10%	-0.725	10.50ms

Grafico do comportamento do cir-3.1.1 cuito

3.2 Segundo circuito

Para o segundo circuito haviamos concluído que a constante de tempo era CR_1 , logo seguindo a mesma lógica para achar a frequência que vamos utilizar, obtemos 20Hz.

Comportamento no carregamento:

Porcentagem	Tensao	Tempo
90%	4.5V	7.4ms
36.8%	3.16V	3.1ms
10%	0.5	0.5ms

Comportamento no descarregamento:

Porcentagem	Tensao	Tempo
90%	-6.525V	0.35ms
36.8%	-2.668V	3.20ms
10%	-0.725	7.45ms

