C. SMTP

QUESTION BANK

BSC301 - Data Warehousing and Mining Question Bank

Part A – Multiple choice questions
1 is a subject-oriented, integrated, time-variant, nonvolatile collection of data
in support of management decisions.
A. Data Mining
B. Data Warehousing
C. Web Mining
D. Text Mining
2. The data Warehouse is
A. Read only
B. Write only
C. Read write only
D. None
3. Expansion for DSS in DW is
A. Decision Support system
B. Decision Single System
C. Data Storable System
D. Data Support System
4. The important aspect of the data warehouse environment is that data found within the
data warehouse is
A. Subject-oriented
B. Time-variant
C. Integrated
D. All of the above
5. The time horizon in Data warehouse is usually
A. 1-2 years
B. 3-4years
C. 5-6 years
D. 5-10 years
6. The data is stored, retrieved & updated in
A. OLAP
B. OLTP

D. FTP
7describes the data contained in the data warehouse.
A. Relational data
B. Operational data
C. Metadata
D. Informational data
8predicts future trends & behaviors, allowing business managers to make
proactive, knowledge-driven decisions.
A. Data warehouse.
B. Data mining
C. Datamart
D. Metadata
9 is the heart of the warehouse.
A. Data mining database servers
B. Data warehouse database servers
C. Data mart database servers
D. Relational data base servers
10 is the specialized data warehouse database.
A. Oracle
B. DBZ
C. Informix
D. Redbrick
11defines the structure of the data held in operational databases and
used by operational applications.
A. User-level metadata
B. Data warehouse metadata
C. Operational metadata
D. Data mining metadata
12 is held in the catalog of the warehouse database system.
A. Application level metadata
B. Algorithmic level metadata
C. Departmental level metadata
D. Core warehouse metadata

13.	maps the core warehouse metadata to business concepts, familiar and useful
	to end users.
Α. Δ	Application level metadata
	Jser level metadata
C. I	Enduser level metadata
D. (Core level metadata
14.	consists of formal definitions, such as a COBOL layout or a database schema.
A. (Classical metadata
В. Т	Fransformation metadata
C. I	Historical metadata
D. S	Structural metadata
15.	consists of information in the enterprise that is not in classical form.
A. I	Mushy metadata
	Differential metadata
C. I	Data warehouse
D. I	Data mining
16.	databases are owned by particular departments or business groups.
A. 1	nformational
В. (Operational
C. I	Both informational and operational
D. l	Flat
17.	The star schema is composed of fact table.
Α. (one
B. t	wo
C. t	hree
D. 1	our
18.	The time horizon in operational environment is
A. 3	30-60 days
В. 6	50-90 days
C. 9	00-120 days
D. 1	20-150 days
19.	The key used in operational environment may not have an element of
A. 7	Гіте
В. (Cost

D. Quality 20. Data can be updated inenvironment. A. Data warehouse B. Data mining C. Operational D. Informational 21. Record cannot be updated in A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational C. Summary
A. Data warehouse B. Data mining C. Operational D. Informational 21. Record cannot be updated in A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
A. Data warehouse B. Data mining C. Operational D. Informational 21. Record cannot be updated in A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
A. Data warehouse B. Data mining C. Operational D. Informational 21. Record cannot be updated in A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
C. Operational D. Informational 21. Record cannot be updated in A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
C. Operational D. Informational 21. Record cannot be updated in A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
D. Informational 21. Record cannot be updated in A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
21. Record cannot be updated in A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
A. OLTP B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
B. Files C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
C. RDBMS D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
D. Data warehouse 22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains
22. The source of all data warehouse data is the A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains
A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains
A. Operational environment B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains
B. Informal environment C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
C. Formal environment D. Technology environment 23. Data warehouse contains data that is never found in the operational environment. A. Normalized B. Informational
D. Technology environment 23. Data warehouse contains
23. Data warehouse containsdata that is never found in the operational environment. A. Normalized B. Informational
environment. A. Normalized B. Informational
environment. A. Normalized B. Informational
A. Normalized B. Informational
B. Informational
C. Dullillai v
D. Denormalized
B. Denormanzed
24. The modern CASE tools belong to category.
A. Analysis
B. Development
C. Coding
D. Delivery
D. Delivery
25. Bill Inmon has estimatedof the time required to build a data warehouse, is
consumed in the conversion process.
A. 10 percent
B. 20 percent
C. 40 percent
D. 80 percent

26. Detail data in single fact table is otherwise known as
A. Monoatomic data
B. Diatomic data
C. Atomic data
D. Multiatomic data
27test is used in an online transactional processing environment.
A. MEGA
B. MICRO
C. MACRO
D. ACID
28 is a good alternative to the star schema.
A. Star schema
B. Snowflake schema
C. Fact constellation
D. Star-snowflake schema
29. The biggest drawback of the level indicator in the classic star-schema is that it
limits
A. Quantify
B. Qualify
C. Flexibility
D. Ability
D. Hollity
30. A data warehouse is
A. Updated by end users
B. Contains numerous naming conventions and formats
C. Organized around important subject areas
D. Contains only current data
31. An operational system is
A. Used to run the business in real time and is based on historical data
B. Used to run the business in real time and is based on current data
C. Used to support decision making and is based on current data
D. Used to support decision making and is based on historical data
32. The generic two-level data warehouse architecture includes
A. At least one data mart

B . 1	Data that can extracted from numerous internal and external sources
C . 3	Near real-time updates
D.	Far real-time updates
33.	The active data warehouse architecture includes
Α.	At least one data mart
В.]	Data that can extracted from numerous internal and external sources
C . 3	Near real-time updates
D	All of the above
34.	Reconciled data is
A.	Data stored in the various operational systems throughout the organization
B.	Current data intended to be the single source for all decision support systems
C.	Data stored in one operational system in the organization
D.	Data that has been selected and formatted for end-user support applications
	Transient data is
A.	Data in which changes to existing records cause the previous version of the records
	to be eliminated
B.	Data in which changes to existing records do not cause the previous version of the records to be eliminated
C.	Data that are never altered or deleted once they have been added
D.	Data that are never deleted once they have been added
36.	The extract process is
A.	Capturing all of the data contained in various operational systems
	Capturing a subset of the data contained in various operational systems
C.	Capturing all of the data contained in various decision support systems
	Capturing a subset of the data contained in various decision support systems
37.	Data scrubbing is
A.	A process to reject data from the data warehouse and to create the necessary indexes
B.	A process to load the data in the data warehouse and to create the necessary indexes
C.	A process to upgrade the quality of data after it is moved into a data warehouse
D.	A process to upgrade the quality of data before it is moved into a data warehouse
38.	The load and index is
A.	A process to reject data from the data warehouse and to create the necessary indexes
B.	A process to load the data in the data warehouse and to create the necessary indexes
\mathbf{C}	A process to ungrade the quality of data after it is moved into a data warehouse

D.	A process to upgrade the quality of data before it is moved into a data warehouse
39.	Data transformation includes
A.	A process to change data from a detailed level to a summary level
	A process to change data from a summary level to a detailed level
	Joining data from one source into various sources of data
D.	Separating data from one source into various sources of data
40.	is called a multifield transformation.
A.	Converting data from one field into multiple fields
B.	Converting data from fields into field
C.	Converting data from double fields into multiple fields
D.	Converting data from one field to one field
41.	The type of relationship in star schema is
A.	Many-to-many
B.	One-to-one
C.	One-to-many
D.	Many-to-one
	Fact tables are
	Completely demoralized
	Partially demoralized
	Completely normalized
D.	Partially normalized
43.	
	To explain some observed event or condition
	To confirm that data exists.
	To analyze data for expected relationships.
D.	To create a new data warehouse.
44.	Business Intelligence and data warehousing is used for
A.	Forecasting
B.	Data Mining
C.	Analysis of large volumes of product sales data
D.	All of the above

45.	The data administration subsystem helps you perform all of the following,
	except
	Backups and recovery
	Query optimization
	Security management
Д.	Create, change, and delete information
46.	The most common source of change data in refreshing a data warehouse is
A.	Queryable change data
B.	Cooperative change data
C.	Logged change data
D.	Snapshot change data
47.	are responsible for running queries and reports against data warehouse tables.
	Hardware
B.	Software
C.	End users
D.	Middle ware
10	Query tool is meant for
	Data acquisition
	Information delivery
	Information exchange
	Communication
υ.	Communication
	Classification rules are extracted from
	Root node
	Decision tree
	Siblings
D.	Branches
50.	Dimensionality reduction reduces the data set size by removing
A.	Relevant attributes
B.	Irrelevant attributes
C.	Derived attributes
D.	Composite attributes
51.	is a method of incremental conceptual clustering.
	CORBA
	OLAP

C.	COBWEB
D.	STING
52.	Effect of one attribute value on a given class is independent of values of other attribute is
	called
A.	Value independence
B.	Class conditional independence
C.	Conditional independence
D.	Unconditional independence
53.	The main organizational justification for implementing a data warehouse is to provide
A.	Cheaper ways of handling transportation
B.	Decision support
C.	Storing large volume of data
D.	Access to data
	Multidimensional database is otherwise known as
	RDBMS
	DBMS
	EXTENDED RDBMS
D.	EXTENDED DBMS
	Data warehouse architecture is based on
	DBMS
	RDBMS
	Sybase
D.	SQL Server
	Source data from the warehouse comes from
	ODS
	TDS
	MDDB
D.	ORDBMS
57	is a data transformation and asso
	is a data transformation process.
	Comparison
	Projection Selection
ν.	Filtering

58.	The technology area associated with CRM is
A.	Specialization
B.	Generalization
C.	Personalization
D.	Summarization
59.	SMP stands for
A.	Symmetric Multiprocessor
B.	Symmetric Multiprogramming
C.	Symmetric Metaprogramming
D.	Symmetric Microprogramming
60.	are designed to overcome any limitations placed on the warehouse by the
	nature of the relational data model.
	Operational database
B.	Relational database
	Multidimensional database
D.	Data repository
61.	are designed to overcome any limitations placed on the warehouse by the
	nature of the relational data model.
	Operational database
	Relational database
	Multidimensional database
D.	Data repository
	MDDB stands for
	Multiple Data Doubling
	Multidimensional Databases
	Multiple Double Dimension
D.	Multi-dimension Doubling
-0	
63.	
	Metadata Misuradata
	Microdata
	Minidata
D.	Multidata

64.	is an important functional component of the metadata.
A.	Digital directory
B.	Repository
C.	Information directory
D.	Data dictionary
65	EIS stands for
	Extended Interface System
	Executive Interface System Executive Interface System
	Executive Information System
	Extendable Information System
	is data collected from natural systems.
	MRI scan
	ODS data
	Statistical data
D.	Historical data
67.	is an example of application development environments.
	Visual Basic
	Oracle
	Sybase
	SQL Server
68.	The term that is not associated with data cleaning process is
A.	Domain consistency
B.	Deduplication
C.	Disambiguation
D.	Segmentation
	are some popular OLAP tools.
A.	Metacube, Informix
B.	Oracle Express, Essbase
	HOLAP
D.	MOLAP
70.	Capability of data mining is to build models.
	Retrospective
	Interrogative
	Predictive

D.	Imperative
71.	is a process of determining the preference of customer's majority.
A.	Association
B.	Preferencing
C.	Segmentation
D.	Classification
72.	Strategic value of data mining is
	Cost-sensitive
B.	Work-sensitive
C.	Time-sensitive
D.	Technical-sensitive
73.	proposed the approach for data integration issues.
A.	Ralph Campbell
B.	Ralph Kimball
C.	John Raphlin
D.	James Gosling
74.	The terms equality and roll up are associated with
A.	OLAP
B.	Visualization
C.	Data mart
D.	Decision tree
75.	Exceptional reporting in data warehousing is otherwise called as
A.	Exception
B.	Alerts
C.	Errors
D.	Bugs
76.	is a metadata repository.
Α.	Prism solution directory manager
B.	CORBA
C.	STUNT
	COBWEB
77.	is an expensive process in building an expert system.
A.	Analysis

C.	Study Design Information collection
78.	The full form of KDD is
A.	Knowledge database
B.	Knowledge discovery in database
C.	Knowledge data house
D.	Knowledge data definition
79.	The first International conference on KDD was held in the year
A.	1996
B.	1997
C.	1995
D.	1994
80.	Removing duplicate records is a process called
A.	Recovery
B.	Data cleaning
C.	Data cleansing
D.	Data pruning
81.	contains information that gives users an easy-to-understand perspective of
	the information stored in the data warehouse.
	Business metadata
	Technical metadata
	Operational metadata
D.	Financial metadata
82.	
	warehousing system.
	Business directory
В.	Information directory
C.	Data dictionary
D.	Database
83.	Discovery of cross-sales opportunities is called
	Segmentation
	Visualization
C.	Correction

D. Component Key

D.	Association
84.	Data marts that incorporate data mining tools to extract sets of data are called
	Independent data mart
	Dependent data marts
	Intra-entry data mart
	Inter-entry data mart
85.	can generate programs itself, enabling it to carry out new tasks.
	Automated system
	Decision making system
	Self-learning system
	Productivity system
86.	The power of self-learning system lies in
A.	Cost
B.	Speed
C.	Accuracy
D.	Simplicity
87.	Building the informational database is done with the help of
A.	Transformation or propagation tools
B.	Transformation tools only
C.	Propagation tools only
D.	Extraction tools
88.	How many components are there in a data warehouse?
A.	Two
B.	Three
C.	Four
D.	Five
89.	Which of the following is not a component of a data warehouse?
A.	Metadata.
B.	Current detail data
C.	Lightly summarized data

90.	is data that is distilled from the low level of detail found at the current
	detailed level.
A.	Highly summarized data
B.	Lightly summarized data
C.	Metadata
D.	Older detail data
01	Highly summarized data is
	Compact and easily accessible
	Compact and expensive
	Compact and hardly accessible
	Compact
υ.	Compact
92.	A directory to help the DSS analyst locate the contents of the data warehouse is seen in
	·
A.	Current detail data
B.	Lightly summarized data
	Metadata
D.	Older detail data
93.	Metadata contains atleast
A.	The structure of the data
B.	The algorithms used for summarization
C.	The mapping from the operational environment to the data warehouse
D.	All of the above
94.	Which of the following is not a old detail storage medium?
A.	Phot optical storage
B.	Raid
C.	Microfinche
D.	Pen drive
95.	The data from the operational environment enter of data warehouse.
	Current detail data
B.	Older detail data
C.	Lightly summarized data
D.	Highly summarized data

96.	. The data in current detail level resides till event occurs.
A.	Purge
B.	Summarization
C.	Archieved
D.	All of the above
07	. The dimension tables describe the
	Entities
	Facts
	Keys
	Units of measures
υ.	Olitis of incustres
98.	The granularity of the fact is the of detail at which it is recorded.
	Transformation
B.	Summarization
C.	Level
D.	Transformation and summarization
99.	. Which of the following is not a primary grain in analytical modeling?
A.	Transaction
B.	Periodic snapshot
C.	Accumulating snapshot
D.	All of the above
100	3
	Number of parts to a key
	Granularity of those parts
	Both A and B
D.	None of the above
10	
	dependent on the entire primary key of the entity.
	Additivity
	Granularity
	Functional dependency
	Dimensionality
102	· —————
	It is additive over every dimension of its dimensionality
	Additive over atleast one but not all of the dimensions
U.	Not additive over any dimension

D. None of the above		
103. A fact is said to be partially additive if		
A. It is additive over every dimension of its dimensionality		
B. Additive over atleast one but not all of the dimensions		
C. Not additive over any dimension		
D. None of the above		
104. A fact is said to be non-additive if		
A. It is additive over every dimension of its dimensionality		
B. Additive over atleast one but not all of the dimensions		
C. Not additive over any dimension		
D. None of the above		
Non-additive measures can often combined with additive measures to create new		
A. Additive measures		
B. Non-additive measures		
C. Partially additive		
D. All of the above		
106. A fact representing cumulative sales units over a day at a store for a product is a		
A. Additive fact		
A. Additive fact B. Fully additive fact		
A. Additive fact B. Fully additive fact C. Partially additive fact		
A. Additive fact B. Fully additive fact		
A. Additive fact B. Fully additive fact C. Partially additive fact		
A. Additive fact B. Fully additive fact C. Partially additive fact D. Non-additive fact		
A. Additive fact B. Fully additive fact C. Partially additive fact D. Non-additive fact 107 of data means that the attributes within a given entity are fully		
A. Additive fact B. Fully additive fact C. Partially additive fact D. Non-additive fact 107 of data means that the attributes within a given entity are fully dependent on the entire primary key of the entity.		
A. Additive fact B. Fully additive fact C. Partially additive fact D. Non-additive fact 107 of data means that the attributes within a given entity are fully dependent on the entire primary key of the entity. A. Additivity		
A. Additive fact B. Fully additive fact C. Partially additive fact D. Non-additive fact 107 of data means that the attributes within a given entity are fully dependent on the entire primary key of the entity. A. Additivity B. Granularity		
A. Additive fact B. Fully additive fact C. Partially additive fact D. Non-additive fact 107 of data means that the attributes within a given entity are fully dependent on the entire primary key of the entity. A. Additivity B. Granularity C. Functional Dependency D. Dependency		
A. Additive fact B. Fully additive fact C. Partially additive fact D. Non-additive fact 107 of data means that the attributes within a given entity are fully dependent on the entire primary key of the entity. A. Additivity B. Granularity C. Functional Dependency D. Dependency 108. Which of the following is the other name of Data mining?		
A. Additive fact B. Fully additive fact C. Partially additive fact D. Non-additive fact 107 of data means that the attributes within a given entity are fully dependent on the entire primary key of the entity. A. Additivity B. Granularity C. Functional Dependency D. Dependency D. Dependency 108. Which of the following is the other name of Data mining? A. Exploratory data analysis		
A. Additive fact B. Fully additive fact C. Partially additive fact D. Non-additive fact 107 of data means that the attributes within a given entity are fully dependent on the entire primary key of the entity. A. Additivity B. Granularity C. Functional Dependency D. Dependency 108. Which of the following is the other name of Data mining?		

109	. Which of the following is a predictive model?
A.	Clustering
B.	Regression
C.	Summarization
D.	Association rules
110	
	Classification
	Regression
	Sequence discovery
D.	Association rules
111	
	Descriptive
	Predictive
	Regression
D.	Time series analysis
110	
112	
	Current data
	Historical data
	Both A and B
D.	Assumptions
113	maps data into predefined groups.
	Regression
	Time series analysis
	Prediction
	Classification
D.	Ciassification
114	is used to map a data item to a real valued prediction variable.
	Regression
	Time series analysis
	Prediction
	Classification
υ .	Ciassification
115	. In, the value of an attribute is examined as it varies over time.
	Regression
	Time series analysis

C. Sequence discovery
D. Prediction
116. In the groups are not predefined.
A. Association rules
B. Summarization
C. Clustering
D. Prediction
117. Link Analysis is otherwise called as
A. Affinity analysis
B. Association rules
C. Both A and B
D. Prediction
118 is a the input to KDD.
A. Data
B. Information
C. Query
D. Process
The output of KDD is
A. Data
B. Information
C. Query
D. Useful information
120. The KDD process consists of steps.
A. Three
B. Four
C. Five
D. Six
121. Treating incorrect or missing data is called as
A. Selection
B. Preprocessing
C. Transformation

122	2. Converting data from different sources into a common format for processing is
	called as
A.	Selection
B.	Preprocessing
C.	Transformation
D.	Interpretation
123	3. Various visualization techniques are used in step of KDD.
A.	Selection
B.	Transformaion
C.	Data mining
D.	Interpretation
124	4. Extreme values that occur infrequently are called as
	Outliers
	Rare values
C.	Dimensionality reduction
D.	All of the above
125	
	Graphical
	Geometric
	Icon-based
D. Pixel-based	
126	
	information.
	Induction
	Compression
	Approximation
D.	Substitution
127. Describing some characteristics of a set of data by a general model is viewed as	
A.	Induction
B.	Compression
	Approximation
	Summarization

123	8 helps to uncover hidden information about the data.	
A.	A. Induction	
B.	3. Compression	
C.	Approximation	
D.	Summarization	
129	9 are needed to identify training data and desired results.	
A.	Programmers	
B.	Designers	
C.	Users	
D.	Administrators	
130	O. Overfitting occurs when a model	
A.	Does fit in future states	
B.	Does not fit in future states	
C.	Does fit in current state	
D.	Does not fit in current state	
13	1. The problem of dimensionality curse involves	
A.	The use of some attributes may interfere with the correct completion of a data mining	
	task	
B.	The use of some attributes may simply increase the overall complexity	
C.	Some may decrease the efficiency of the algorithm	
D. All of the above		
132	2. Incorrect or invalid data is known as	
A.	Changing data	
B.	Noisy data	
C.	Outliers	
D.	Missing data	
133. ROI is an acronym of		
A. Return on Investment		
B.	Return on Information	
C.	C. Repetition of Information	
D.	Runtime of Instruction	

134	4. The of data could result in the disclosure of information that is
	deemed to be confidential.
A.	Authorized use
B.	Unauthorized use
C.	Authenticated use
D.	Unauthenticated use
13:	5 data are noisy and have many missing attribute values.
A.	Preprocessed
B.	Cleaned
C.	Real-world
D.	Transformed
130	6. The rise of DBMS occurred in early
A.	1950's
B.	1960's
C.	1970's
D.	1980's.
13′	7. Which of the following is not a data mining metric?
A.	Space complexity
	Time complexity
C.	ROI
D.	All of the above
138	8. Reducing the number of attributes to solve the high dimensionality problem is called as
A	Dimensionality curse
	Dimensionality reduction
	Cleaning
	Overfitting
139	
	Missing data
	Changing data
	Irrelevant data
	Noisy data

140.	are effective tools to attack the scalability problem.
A. Samp	oling.
B. Paral	lelization
C. Both	A and B
D. None	of the above
141.	Market-basket problem was formulated by
A. Agra	wal et al.
B. Steve	et al.
C. Toda	et al.
D. Simo	n et al.
142.	Data mining helps in
A. Inven	ntory management
B. Sales	promotion strategies
C. Mark	reting strategies
D. All of	f the above
143.	The proportion of transaction supporting X in T is called
A. Confi	idence
B. Supp	ort
C. Supp	ort count
D. All of	f the above
144.	The absolute number of transactions supporting X in T is called
A. Confi	idence
B. Supp	ort
C. Supp	oort count
D. None	of the above
145.	The value that says that transactions in D that support X also support Y is called
A. Conf	idence
B. Supp	
C. Supp	
	of the above

140	6. If T consist of 500000 transactions, 20000 transaction contain bread, 30000 transaction contain jam, 10000 transaction contain both bread and jam. Then the support of bread and jam is 2%
	20%
	3%
	30%
14'	7. If T consist of 500000 transactions, 20000 transaction contain bread, 30000 transaction contain jam, 10000 transaction contain both bread and jam. Then the confidence of buying bread with jam is
A.	33.33%
B.	66.66%
	45%
D.	50%
148	8. The left hand side of an association rule is called
A.	Consequent
B.	Onset
	Antecedent
D.	Precedent
149	9. The right hand side of an association rule is called
A.	Consequent
B.	Onset
	Antecedent
D.	Precedent
150	O. Which of the following is not a desirable feature of any efficient algorithm?
A.	To reduce number of input operations
B.	To reduce number of output operations
C.	To be efficient in computing
D.	To have maximal code length
15	1. All set of items whose support is greater than the user-specified minimum support
	are called as
A.	Border set
	Frequent set
	Maximal frequent set
D.	Lattice

152. If a set is a frequent set and no superset of this set is a frequent set, then it is
called
A. Maximal frequent set
B. Border set
C. Lattice
D. Infrequent sets
153. Any subset of a frequent set is a frequent set. This is
A. Upward closure property
B. Downward closure property
C. Maximal frequent set
D. Border set
154. A priori algorithm is otherwise called as
A. Width-wise algorithm
B. Level-wise algorithm
C. Pincer-search algorithm
D. FP growth algorithm
155. The A Priori algorithm is a
A. Top-down search
B. Breadth first search
C. Depth first search
D. Bottom-up search
The first phase of A Priori algorithm is
A. Candidate generation
B. Itemset generation
C. Pruning
D. Partitioning
157. The second phaase of A Priori algorithm is
A. Candidate generation
B. Itemset generation
C. Pruning
D. Partitioning

158	3. The step eliminates the extensions of (k-1)-itemsets which are not found
	to be frequent, from being considered for counting support.
A.	Candidate generation
B.	Pruning
C.	Partitioning
D.	Itemset eliminations
159	· · · · · · · · · · · · · · · · · · ·
	Upward
	Downward
	Breadthwise
D.	Both upward and downward
160	After the pruning of a priori algorithm, will remain.
A.	Only candidate set
B.	No candidate set
C.	Only border set
D.	No border set
161	. The number of iterations in a priori
A.	Increases with the size of the maximum frequent set
B.	Decreases with increase in size of the maximum frequent set
C.	Increases with the size of the data
D.	Decreases with the increase in size of the data
162	
	with them.
	Dashed
	Circle
	Box
D.	Solid
163	3. The goal of is to discover both the dense and sparse regions of a data set.
A.	Association rule
B.	Classification
C.	Clustering
D.	Genetic Algorithm

164	4. Which of the following is a clustering algorithm?
A.	A priori
B.	CLARA
C.	Pincer-Search
D.	FP-growth
165	
	with each cluster having only one record.
A.	Agglomerative
B.	divisive
C.	Partition
D.	Numeric
166	6 clustering techniques starts with all records in one cluster and then
	try to split that cluster into small pieces.
A.	Agglomerative
B.	Divisive
C.	Partition
D.	Numeric
167	7. Which of the following is a data set in the popular UCI machine-learning
	repository?
A.	CLARA
	CACTUS
	STIRR
	MUSHROOM
168	3. In algorithm each cluster is represented by the center of gravity of the
	cluster.
A.	K-medoid
В.	K-means
C.	STIRR
D.	ROCK
169	9. In each cluster is represented by one of the objects of the cluster
	located near the center.
A.	K-medoid
B.	K-means
C.	STIRR
D.	ROCK

170. Pick out a K-medoid algoithm.				
A. DBSCAN				
B. BIRCH				
C. PAM				
D. CURE				
171 Piele and a biancocking about aire also side of				
171. Pick out a hierarchical clustering algorithm.				
A. DBSCAN B. BIRCH.				
C. PAM.				
D. CURE.				
172. CLARANS stands for				
A. Clara net server				
B. Clustering large application range network search				
C. Clustering large applications based on randomized search				
D. Clustering Application Randomized Search				
173. The cluster features of different subclusters are maintained in a tree called				
A. CF tree				
A. CF tree B. FP tree				
B. FP tree				
B. FP treeC. FP growth tree				
B. FP treeC. FP growth tree				
B. FP treeC. FP growth treeD. B tree				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are normally very few in number compared to the set of all itemsets. 				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are normally very few in number compared to the set of all itemsets. A. A priori 				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are normally very few in number compared to the set of all itemsets. A. A priori B. Clustering 				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are normally very few in number compared to the set of all itemsets. A. A priori B. Clustering C. Association rule 				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are normally very few in number compared to the set of all itemsets. A. A priori B. Clustering C. Association rule 				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are normally very few in number compared to the set of all itemsets. A. A priori B. Clustering C. Association rule D. Partition 175. The partition algorithm uses scans of the databases to discover all frequent sets. 				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are normally very few in number compared to the set of all itemsets. A. A priori B. Clustering C. Association rule D. Partition 175. The partition algorithm uses scans of the databases to discover all frequent sets. A. Two 				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are normally very few in number compared to the set of all itemsets. A. A priori B. Clustering C. Association rule D. Partition 175. The partition algorithm uses scans of the databases to discover all frequent sets. A. Two B. Four 				
 B. FP tree C. FP growth tree D. B tree 174. The algorithm is based on the observation that the frequent sets are normally very few in number compared to the set of all itemsets. A. A priori B. Clustering C. Association rule D. Partition 175. The partition algorithm uses scans of the databases to discover all frequent sets. A. Two 				

170	6. The basic idea of the apriori algorithm is to generate item se particular size & scans the database.	ts of a					
A.	Candidate						
	Primary						
	2. Secondary						
D.	Superkey						
17′	7data consists of sample input data as well as the classificat	ion					
	assignment for the data.						
A.	Missing						
B.	Measuring						
C.	Non-training						
D.	Training						
178	8. Rule based classification algorithms generate rule to perform classification.	the					
Α.	If-then						
B.	While						
C.	Do while						
D.	Switch						
179	9 displays of data such as maps, charts and other graphical						
	representation allow data to be presented compactly to the users.						
A.	Hidden						
	Visual						
C.	Obscured						
D.	Concealed						
	Part B – Descriptive Questions						
1.	Define Data mining? Explain about data mining on what kind of data?	10 M					
2.	a) What is KDD? Explain about data mining as a step in the process of knowledge discovery.	6 M					
	b) How to classify data mining systems? Discuss	4 M					
3.	Discuss about the following						
	a) What motivated Data mining? Explain	5 M					
	Data mining as a step in the process of knowledge discovery	5 M					

4.	Discuss about Data Mining Task primitives with examples?	10 M
5.	Explain in detail about Data mining functionalities?	10 M
6.	Write a note on statistical description of data.	10 M
7.	Describe about Major issues in Data mining.	10 M
8.	Define the following,	
	 a) Data cleaning b) Data integration c) Data reduction d) Data transformation e) Data discretization 	2M 2 M 2 M 2 M 2 M
9.	a) Why do we preprocess the data? Discuss?	5 M
	Write in brief about Data cleaning?	5 M
10.	Explain the following?	
	a) Data Integration	5 M
	Data Transformation methods	5 M
11.	What is Data reduction? Discuss in detail?	10 M
12.	a) Describe about Data discretization?	5 M
	b) Write about Dimensionality reduction methods?	5 M
11.	a) Define Data warehouse? Discuss Design principles.	5 M
	b) Write in brief about schemas in multidimensional data model.	5 M
12.	Explain about the Three-tier data warehouse architecture with a neat diagram.	10 M
13.	Discuss the following	
	a) Star schema	3 M
	b) Snow Flake schema	3 M
	c) Fact constellation schema	4 M
14.	a) What are steps in designing the data warehouse? Explain.	5 M
	b) Compare OLTP and OLAP.	5 M

15. Describe in brief about Data warehouse implementation.10 M16. Explain the following in OLAP

a) Roll up operation

2 M
b) Drill down operation

2 M
c) Slice operation

2 M
d) Dice operation

2 M
e) Pivot operation

17. Explain about the Apriori algorithm for finding frequent item sets with an example.

18. You are given the transaction data shown in the Table below from a fast food restaurant. There are 9 distinct transactions (order: 1 – order: 9) and each transaction involves between 2 and 4 meal items. There are a total of 5 meal items that are involved in the transactions. For simplicity we assign the meal items short names (M1 – M5) rather than the full descriptive names (e.g., Big Mac).

Meal Item	Item IDs	Meal Item	Item IDs
Order: 1	M1, M2, M5	Order: 6	M2, M3
Order: 2	M2, M4	Order: 7	M1, M3
Order: 3	M2, M3	Order: 8	M1, M2, M3, M5
Order: 4	M1, M2, M4	Order: 9	M1, M2, M3
Order: 5	M1, M3		

10 M

For all of the parts below the minimum support is 2/9 (.222) and the minimum confidence is 7/9 (.777). Note that you only need to achieve this level, not exceed it. Show your work for full credit (this mainly applies to part a).

- a. Apply the Apriori algorithm to the dataset of transactions and identify all frequent k itemset.
- **b.** Find all strong association rules of the form: X ^ Y ^ Z and note their confidence values. Hint: the answer is not 0 so you should have at least one frequent 3-frequent itemset.
- 19. a) What are the drawbacks of Apriori Algorithm? Explain.
 5 M
 b) Write the FP Growth Algorithm.
 5 M
 20. Discuss about the pattern evaluation methods.
 10 M

21.	Can we design a method that mines the complete set of frequent item sets	10 M
	without candidate generation? If yes, explain with an example	10 101
22.	What are the various Constraints in Constraint based Association rule	10 M
	mining? Explain.	10 11
23.	List and explain the steps involved in decision tree classification	10 M
	algorithm	I O IVI
24	Go through the given data and do the following,	

Outlook	Temperature	Humidity	Wind	Play
Sunny	79	High	Weak	No
Sunny	56	High	Strong	No
Overcast	79	High	Weak	Yes
Rain	60	High	Weak	No
Rain	88	Normal	Weak	Yes
Rain	64	Normal	Strong	No
Overcast	88	Normal	Strong	Yes
Sunny	78	High	Weak	No
Sunny	66	Normal	Weak	Yes
Rain	68	Normal	Weak	Yes

	a) Construct the ruleb) Draw the decision tree pattern based on that rule	5 M 5 M
25.	What are splitting indices? Explain different splitting indices.	10 M
2 6.	Describe the data classification process with a neat diagram. How does the Naive Bayesian classification works? Explain.	10 M
27.	a) What is Bayes theorem? Explain.	5 M
	b) Discuss about Naïve Bayesian Classification.	5 M
28.	14 days of information is given in the table. With respect to that information calculate the following	

Day	Outlook	Temperature	Humidity	Wind	Play	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	5 M
D3	Overcast	Hot	High	Weak	Yes	3 M
D4	Rain	Mild	High	Weak	No	3 1/1
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	2 M
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Sunny	Cool	High	Strong	No	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

- f) Calculate the probability and conditional probability.
- g) Calculate the play status for the condition,

Outlook = Overcast

Temperature = Mild

Humidity = Normal

Wind = Weak

h) Calculate the normalized probability values for the answers found in question b).

<mark>29</mark> .	Describe in detail about Rule based Classification.	10 M
30.	Write a note on model selection and evaluation with an example.	10 M
31.	a) What is prediction? Explain about Linear regression method.b) Discuss about Accuracy and Error measures.	5 M 5 M
32.	Define Clustering? Explain about Types of Data in Cluster Analysis?	10 M
33.	a) What is outlier detection? Explain distance based outlier detectionb) Write partitioning around mediods algorithm.	5 M 5 M
34.	a) Write a note on K-means clustering algorithm.b) Write the key issue in hierarchical clustering algorithm.	5 M 5 M
35.	What are outliers? Discuss the methods adopted for outlier detection	10 M
36.	Discuss in detail about Data mining Applications.	10 M