Rafael Alves Bonfim de Queiroz

Universidade Federal de Juiz de Fora Programa de Pós-Graduação em Modelagem Computacional

- Elemento de fluido que se desloca com o escoamento
- A massa é constante $\delta m = \rho(\delta x)(\delta y)$, que no limite $\delta x, \delta y \to 0$, $dm = \rho dx dy$
- As forças e as acelerações dos elementos de fluido serão decompostas ao longo das respectivas direções x e y

- Elemento de fluido que se desloca com o escoamento
- A massa é constante $\delta m = \rho(\delta x)(\delta y)$, que no limite $\delta x, \delta y \to 0$, $dm = \rho dx dy$
- As forças e as acelerações dos elementos de fluido serão decompostas ao longo das respectivas direções x e y

- Elemento de fluido que se desloca com o escoamento
- A massa é constante $\delta m = \rho(\delta x)(\delta y)$, que no limite $\delta x, \delta y \to 0$, $dm = \rho dxdy$
- As forças e as acelerações dos elementos de fluido serão decompostas ao longo das respectivas direções x e y

- Elemento de fluido que se desloca com o escoamento
- A massa é constante $\delta m = \rho(\delta x)(\delta y)$, que no limite $\delta x, \delta y \to 0$, $dm = \rho dxdy$
- As forças e as acelerações dos elementos de fluido serão decompostas ao longo das respectivas direções x e y

- Considera-se inicialmente a direção x do escoamento, componente da velocidade é u=u(x,y,t)
- A variação da velocidade entre dois pontos do escoamento:

$$\delta u = \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y + \frac{\partial u}{\partial t} \delta t$$

$$\frac{\delta u}{\delta t} = \frac{\partial u}{\partial x} \frac{\delta x}{\delta t} + \frac{\partial u}{\partial y} \frac{\delta y}{\delta t} + \frac{\partial u}{\partial t}$$

No limite, obtém-se a aceleração do elemento de fluido na direção x:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

A aceleração do elemento de fluido é a derivada substantiva de u:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

em que
$$\mathbf{V} = (u, v)$$

- Considera-se inicialmente a direção x do escoamento, componente da velocidade é u=u(x,y,t)
- A variação da velocidade entre dois pontos do escoamento:

$$\delta u = \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y + \frac{\partial u}{\partial t} \delta t$$

$$\frac{\delta u}{\delta t} = \frac{\partial u}{\partial x} \frac{\delta x}{\delta t} + \frac{\partial u}{\partial y} \frac{\delta y}{\delta t} + \frac{\partial u}{\partial t}$$

No limite, obtém-se a aceleração do elemento de fluido na direção x:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

A aceleração do elemento de fluido é a derivada substantiva de u:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

em que $\mathbf{V} = (u, v)$

- Considera-se inicialmente a direção x do escoamento, componente da velocidade é u=u(x,y,t)
- A variação da velocidade entre dois pontos do escoamento:

$$\delta u = \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y + \frac{\partial u}{\partial t} \delta t$$

$$\frac{\delta u}{\delta t} = \frac{\partial u}{\partial x} \frac{\delta x}{\delta t} + \frac{\partial u}{\partial y} \frac{\delta y}{\delta t} + \frac{\partial u}{\partial t}$$

No limite, obtém-se a aceleração do elemento de fluido na direção x

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

A aceleração do elemento de fluido é a derivada substantiva de u:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

em que
$$\mathbf{V} = (u, v)$$

- Considera-se inicialmente a direção x do escoamento, componente da velocidade é u=u(x,y,t)
- A variação da velocidade entre dois pontos do escoamento:

$$\delta u = \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y + \frac{\partial u}{\partial t} \delta t$$

$$\frac{\delta u}{\delta t} = \frac{\partial u}{\partial x} \frac{\delta x}{\delta t} + \frac{\partial u}{\partial y} \frac{\delta y}{\delta t} + \frac{\partial u}{\partial t}$$

• No limite, obtém-se a aceleração do elemento de fluido na direção x:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

A aceleração do elemento de fluido é a derivada substantiva de u:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

em que $\mathbf{V} = (u, v)$

- Considera-se inicialmente a direção x do escoamento, componente da velocidade é u=u(x,y,t)
- A variação da velocidade entre dois pontos do escoamento:

$$\delta u = \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y + \frac{\partial u}{\partial t} \delta t$$

$$\frac{\delta u}{\delta t} = \frac{\partial u}{\partial x} \frac{\delta x}{\delta t} + \frac{\partial u}{\partial y} \frac{\delta y}{\delta t} + \frac{\partial u}{\partial t}$$

No limite, obtém-se a aceleração do elemento de fluido na direção x:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

• A aceleração do elemento de fluido é a derivada substantiva de u:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$
,

em que $\mathbf{V} = (u, v)$.

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

- (V · ∇)u: aceleração convectiva, pois decorre da passagem do elemento de fluido por regiões em que o escoamento possui diferentes valores de u
- $\frac{\partial u}{\partial t}$: fornece a variação temporal da velocidade de um elemento de fluido em um ponto fixo do espaço (aceleração local)
- $\frac{Du}{Dt}$: indica a variação da velocidade entre dois pontos do escoamento fornece a aceleração do elemento de fluido propriamente dita
- Nos escoamentos estacionários, temos que $\frac{\partial u}{\partial t} = 0$, uma vez que a velocidade é constante em cada ponto
- ullet Mesmo nos escoamentos estacionários, em geral, a aceleração $rac{Du}{Dt}
 eq 0$

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

- $(\mathbf{V}\cdot\nabla)u$: aceleração convectiva, pois decorre da passagem do elemento de fluido por regiões em que o escoamento possui diferentes valores de u
- $\frac{\partial u}{\partial t}$: fornece a variação temporal da velocidade de um elemento de fluido em um ponto fixo do espaço (aceleração local)
- Du/Dt: indica a variação da velocidade entre dois pontos do escoamento fornece a aceleração do elemento de fluido propriamente dita
- Nos escoamentos estacionários, temos que $\frac{\partial u}{\partial t} = 0$, uma vez que a velocidade é constante em cada ponto
- ullet Mesmo nos escoamentos estacionários, em geral, a aceleração $rac{Du}{Dt}
 eq 0$

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

- $(\mathbf{V}\cdot\nabla)u$: aceleração convectiva, pois decorre da passagem do elemento de fluido por regiões em que o escoamento possui diferentes valores de u
- $\frac{\partial u}{\partial t}$: fornece a variação temporal da velocidade de um elemento de fluido em um ponto fixo do espaço (aceleração local)
- Du/Dt: indica a variação da velocidade entre dois pontos do escoamento fornece a aceleração do elemento de fluido propriamente dita
- Nos escoamentos estacionários, temos que $\frac{\partial u}{\partial t} = 0$, uma vez que a velocidade é constante em cada ponto
- ullet Mesmo nos escoamentos estacionários, em geral, a aceleração $rac{Du}{Dt}
 eq 0$

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

- (V·∇)u: aceleração convectiva, pois decorre da passagem do elemento de fluido por regiões em que o escoamento possui diferentes valores de u
- $\frac{\partial u}{\partial t}$: fornece a variação temporal da velocidade de um elemento de fluido em um ponto fixo do espaço (aceleração local)
- $\frac{Du}{Dt}$: indica a variação da velocidade entre dois pontos do escoamento, fornece a aceleração do elemento de fluido propriamente dita
- Nos escoamentos estacionários, temos que $\frac{\partial u}{\partial t} = 0$, uma vez que a velocidade é constante em cada ponto
- ullet Mesmo nos escoamentos estacionários, em geral, a aceleração $rac{Du}{Dt}
 eq 0$

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

- $(\mathbf{V}\cdot\nabla)u$: aceleração convectiva, pois decorre da passagem do elemento de fluido por regiões em que o escoamento possui diferentes valores de u
- $\frac{\partial u}{\partial t}$: fornece a variação temporal da velocidade de um elemento de fluido em um ponto fixo do espaço (aceleração local)
- $\frac{Du}{Dt}$: indica a variação da velocidade entre dois pontos do escoamento, fornece a aceleração do elemento de fluido propriamente dita
- Nos escoamentos estacionários, temos que $\frac{\partial u}{\partial t}=0$, uma vez que a velocidade é constante em cada ponto
- ullet Mesmo nos escoamentos estacionários, em geral, a aceleração $rac{Du}{Dt}
 eq 0$

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (\mathbf{V} \cdot \nabla)u$$

- (V·∇)u: aceleração convectiva, pois decorre da passagem do elemento de fluido por regiões em que o escoamento possui diferentes valores de u
- $\frac{\partial u}{\partial t}$: fornece a variação temporal da velocidade de um elemento de fluido em um ponto fixo do espaço (aceleração local)
- $\frac{Du}{Dt}$: indica a variação da velocidade entre dois pontos do escoamento, fornece a aceleração do elemento de fluido propriamente dita
- Nos escoamentos estacionários, temos que $\frac{\partial u}{\partial t}=0$, uma vez que a velocidade é constante em cada ponto
- ullet Mesmo nos escoamentos estacionários, em geral, a aceleração $rac{Du}{Dt}
 eq 0$

 Pela segunda lei de Newton, a componente da força resultante F na direção x que age sobre o elemento fluido:

$$(\rho dxdy)\frac{Du}{Dt} = F_x$$

Taxa de variação temporal do momento de uma partícula Resultantes das forças que agem sobre essa partícula

- Forças de campo: agem sobre a massa de fluido como um todo, isto é, sobre cada ponto de um elemento de fluido
 - Exemplos dessas forças: gravidade, eletromagnética
 - Tem a forma geral pf dxdy, em que f é um vetor que representa a força exercida no elemento de fluido por unidade de massa (aceleração)
 - Adicionadas como termos auxiliares (fontes) das equações de momento
- Forças de superfície: agem sobre a superfície do elemento de fluido

- Forças de campo: agem sobre a massa de fluido como um todo, isto é, sobre cada ponto de um elemento de fluido
 - Exemplos dessas forças: gravidade, eletromagnética
 - Iem a forma geral pt dxdy, em que t è um vetor que representa a torça exercida no elemento de fluido por unidade de massa (aceleração)
 - Adicionadas como termos auxiliares (fontes) das equações de momento
- Forças de superfície: agem sobre a superfície do elemento de fluido

- Forças de campo: agem sobre a massa de fluido como um todo, isto é, sobre cada ponto de um elemento de fluido
 - Exemplos dessas forças: gravidade, eletromagnética
 - Tem a forma geral $\rho \mathbf{f} dx dy$, em que \mathbf{f} é um vetor que representa a força exercida no elemento de fluido por unidade de massa (aceleração)
- Forças de superfície: agem sobre a superfície do elemento de fluido

- Forças de campo: agem sobre a massa de fluido como um todo, isto é, sobre cada ponto de um elemento de fluido
 - Exemplos dessas forças: gravidade, eletromagnética
 - Tem a forma geral $\rho \mathbf{f} dx dy$, em que \mathbf{f} é um vetor que representa a força exercida no elemento de fluido por unidade de massa (aceleração)
 - Adicionadas como termos auxiliares (fontes) das equações de momento
- Forças de superfície: agem sobre a superfície do elemento de fluido

- Forças de campo: agem sobre a massa de fluido como um todo, isto é, sobre cada ponto de um elemento de fluido
 - Exemplos dessas forças: gravidade, eletromagnética
 - Tem a forma geral $\rho \mathbf{f} dx dy$, em que \mathbf{f} é um vetor que representa a força exercida no elemento de fluido por unidade de massa (aceleração)
 - Adicionadas como termos auxiliares (fontes) das equações de momento
- Forças de superfície: agem sobre a superfície do elemento de fluido
 - Decorrem da pressão exercida sobre o fluido por um elemento exterior
 - Decorrem também das tensões viscosas normais e de cisalhamento devido ao atrito com os elementos de fluido adjacentes em movimento
 - Intrínsecas ao fluido, elas aparecem como termos constitutivos das equações de momento

- Forças de campo: agem sobre a massa de fluido como um todo, isto é, sobre cada ponto de um elemento de fluido
 - Exemplos dessas forças: gravidade, eletromagnética
 - Tem a forma geral $\rho \mathbf{f} dx dy$, em que \mathbf{f} é um vetor que representa a força exercida no elemento de fluido por unidade de massa (aceleração)
 - Adicionadas como termos auxiliares (fontes) das equações de momento
- Forças de superfície: agem sobre a superfície do elemento de fluido
 - Decorrem da pressão exercida sobre o fluido por um elemento exterior

- Forças de campo: agem sobre a massa de fluido como um todo, isto é, sobre cada ponto de um elemento de fluido
 - Exemplos dessas forças: gravidade, eletromagnética
 - Tem a forma geral $\rho \mathbf{f} dx dy$, em que \mathbf{f} é um vetor que representa a força exercida no elemento de fluido por unidade de massa (aceleração)
 - Adicionadas como termos auxiliares (fontes) das equações de momento
- Forças de superfície: agem sobre a superfície do elemento de fluido
 - Decorrem da pressão exercida sobre o fluido por um elemento exterior
 - Decorrem também das tensões viscosas normais e de cisalhamento devido ao atrito com os elementos de fluido adjacentes em movimento
 - Intrinsecas ao fluido, elas aparecem como termos constitutivos das equações de momento

- Forças de campo: agem sobre a massa de fluido como um todo, isto é, sobre cada ponto de um elemento de fluido
 - Exemplos dessas forças: gravidade, eletromagnética
 - Tem a forma geral $\rho \mathbf{f} dx dy$, em que \mathbf{f} é um vetor que representa a força exercida no elemento de fluido por unidade de massa (aceleração)
 - Adicionadas como termos auxiliares (fontes) das equações de momento
- Forças de superfície: agem sobre a superfície do elemento de fluido
 - Decorrem da pressão exercida sobre o fluido por um elemento exterior
 - Decorrem também das tensões viscosas normais e de cisalhamento devido ao atrito com os elementos de fluido adjacentes em movimento
 - Intrínsecas ao fluido, elas aparecem como termos constitutivos das equações de momento

Nomenclatura das tensões viscosas au_{ij}

- Tensão τ_{ij} : os índices i e j indicam que a tensão age na direção j sobre a superfície normal à direção i
- Exemplo: tensão au_{yx} age na direção x sobre a superfície normal à direção y
- As tensões na direção positiva dos eixos x e y terão sinal positivo;
 caso contrário, serão negativas

Nomenclatura das tensões viscosas au_{ij}

- Tensão τ_{ij} : os índices i e j indicam que a tensão age na direção j sobre a superfície normal à direção i
- Exemplo: tensão au_{yx} age na direção x sobre a superfície normal à direção y
- As tensões na direção positiva dos eixos x e y terão sinal positivo; caso contrário, serão negativas

Nomenclatura das tensões viscosas au_{ij}

- Tensão τ_{ij} : os índices i e j indicam que a tensão age na direção j sobre a superfície normal à direção i
- Exemplo: tensão au_{yx} age na direção x sobre a superfície normal à direção y
- As tensões na direção positiva dos eixos x e y terão sinal positivo;
 caso contrário, serão negativas

- Tensões normais tendem a esticar ou comprimir o elemento de fluido
 - Proporcionais à variação temporal do volume do elemento

 Tensões de cisalhamento: tendem a deformar o elemento, sendo proporcionais sua taxa de deformação

- Tensões normais tendem a esticar ou comprimir o elemento de fluido
 - Proporcionais à variação temporal do volume do elemento

 Tensões de cisalhamento: tendem a deformar o elemento, sendo proporcionais sua taxa de deformação

- Tensões normais: a pressão p
- Forças que agem sobre o elemento de fluido, multiplicam-se as tensões pelas respectivas áreas sobre as quais elas agem e soma-se os resultado algebricamente

- Tensões normais: a pressão p
- Forças que agem sobre o elemento de fluido, multiplicam-se as tensões pelas respectivas áreas sobre as quais elas agem e soma-se os resultado algebricamente

Efeitos das tensões sobre um elemento de fluido

Dois escoamentos paralelos A e B de um mesmo fluido com velocidades médias distintas

- Moléculas da região A pentram na região B, redução de velocidade de uma molécula de B
 - Natureza das tensões normais
- B para A, aumento da velocidade de uma molécula de A
 - Efeito análogo ao causado pelas tensões de cisalhamento, só que ocorre na direção perpendicular ao escoamento

Efeitos das tensões sobre um elemento de fluido

Dois escoamentos paralelos A e B de um mesmo fluido com velocidades médias distintas

- Moléculas da região A pentram na região B, redução de velocidade de uma molécula de B
 - Natureza das tensões normais
- B para A, aumento da velocidade de uma molécula de A
 - Efeito análogo ao causado pelas tensões de cisalhamento, só que ocorre na direção perpendicular ao escoamento

Tensões na direção x sobre um elemento de fluido

- Tensões normais e tangenciais na direção x
- Tensões na direção positiva dos eixos x e y terão sinal positivo; casc contrário, serão negativas

Tensões na direção x sobre um elemento de fluido

- Tensões normais e tangenciais na direção x
- Tensões na direção positiva dos eixos x e y terão sinal positivo; caso contrário, serão negativas

• Força resultante nas faces esquerda e direita:

$$\left(-\frac{\delta p}{\delta x} + \frac{\delta \tau_{xx}}{\delta x}\right) \delta x \delta y$$

• Força resultante nas faces superior e inferior: $\delta \tau_{yx} \lesssim \xi_{yx} \delta_{yy}$

• Força de superfície resultante na direção x é:

$$\left(-\frac{\delta p}{\delta x} + \frac{\delta \tau_{xx}}{\delta x}\right) \delta x \delta y + \frac{\delta \tau_{yx}}{\delta y} \delta x \delta y$$

• Força resultante nas faces esquerda e direita:

$$\left(-\frac{\delta p}{\delta x} + \frac{\delta \tau_{xx}}{\delta x}\right) \delta x \delta y$$

• Força resultante nas faces superior e inferior:

$$\frac{\delta \tau_{yx}}{\delta y} \delta x \delta y$$

• Força de superfície resultante na direção x é:

• Força resultante nas faces esquerda e direita:

$$\left(-\frac{\delta p}{\delta x} + \frac{\delta \tau_{xx}}{\delta x}\right) \delta x \delta y$$

• Força resultante nas faces superior e inferior:

$$\frac{\delta \tau_{yx}}{\delta y} \delta x \delta y$$

• Força de superfície resultante na direção x é:

$$\left(-\frac{\delta p}{\delta x} + \frac{\delta \tau_{xx}}{\delta x}\right) \delta x \delta y + \frac{\delta \tau_{yx}}{\delta y} \delta x \delta y$$

• A força de superfície resultante na direção x é:

$$\left(-\frac{\delta p}{\delta x} + \frac{\delta \tau_{xx}}{\delta x}\right) \delta x \delta y + \frac{\delta \tau_{yx}}{\delta y} \delta x \delta y$$

• No limite $\delta x, \delta y \to 0$, essa força na direção x vale

$$F_{x} = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{yx}}{\partial y} dxdy$$

• A força de superfície resultante na direção x é:

$$\left(-\frac{\delta p}{\delta x} + \frac{\delta \tau_{xx}}{\delta x}\right) \delta x \delta y + \frac{\delta \tau_{yx}}{\delta y} \delta x \delta y$$

• No limite $\delta x, \delta y \to 0$, essa força na direção x vale

$$F_x = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{yx}}{\partial y} dxdy$$

• A força de superfície resultante na direção x é:

$$F_{x} = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{yx}}{\partial y} dxdy$$

Escrevendo a segunda lei de Newton na direção x

$$(\rho dxdy)\frac{Du}{Dt} = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{xy}}{\partial y} dxdy + \rho f_x dxdy$$

ullet Conservação de momento linear na direção x

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x$$

• A força de superfície resultante na direção x é:

$$F_{x}=\left(-rac{\partial p}{\partial x}+rac{\partial au_{xx}}{\partial x}
ight)dxdy+rac{\partial au_{yx}}{\partial y}dxdy$$

• Escrevendo a segunda lei de Newton na direção x:

$$(\rho dxdy)\frac{Du}{Dt} = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{xy}}{\partial y} dxdy + \rho f_x dxdy$$

- Força de superfície: $\left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{xy}}{\partial y} dxdy$
- Força de campo: $\rho f_x dx dy$
- Conservação de momento linear na direção x:

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x$$

• A força de superfície resultante na direção x é:

$$F_{x}=\left(-rac{\partial p}{\partial x}+rac{\partial au_{xx}}{\partial x}
ight)dxdy+rac{\partial au_{yx}}{\partial y}dxdy$$

Escrevendo a segunda lei de Newton na direção x:

$$(\rho dxdy)\frac{Du}{Dt} = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{xy}}{\partial y} dxdy + \rho f_x dxdy$$

- Força de superfície: $\left(-\frac{\partial p}{\partial x}+\frac{\partial au_{xx}}{\partial x}\right)dxdy+\frac{\partial au_{xy}}{\partial y}dxdy$
- Força de campo: $\rho f_x dxdy$
- Conservação de momento linear na direção x:

$$\rho \frac{Du}{Dt} = -\frac{\partial \rho}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_{x}$$

• A força de superfície resultante na direção x é:

$$F_{x}=\left(-rac{\partial p}{\partial x}+rac{\partial au_{xx}}{\partial x}
ight)dxdy+rac{\partial au_{yx}}{\partial y}dxdy$$

• Escrevendo a segunda lei de Newton na direção x:

$$(\rho dxdy)\frac{Du}{Dt} = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{xy}}{\partial y} dxdy + \rho f_x dxdy$$

- Força de superfície: $\left(-\frac{\partial p}{\partial x}+\frac{\partial au_{xx}}{\partial x}\right)dxdy+\frac{\partial au_{xy}}{\partial y}dxdy$
- Força de campo: $\rho f_x \dot{d}x dy$
- Conservação de momento linear na direção x:

$$\rho \frac{Du}{Dt} = -\frac{\partial \rho}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_{x}$$

• A força de superfície resultante na direção x é:

$$F_{x} = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{yx}}{\partial y} dxdy$$

Escrevendo a segunda lei de Newton na direção x:

$$(\rho dxdy)\frac{Du}{Dt} = \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{xy}}{\partial y} dxdy + \rho f_x dxdy$$

- Força de superfície: $\left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x}\right) dxdy + \frac{\partial \tau_{xy}}{\partial y} dxdy$
- Força de campo: $\rho f_x \dot{d}x dy$
- Conservação de momento linear na direção x:

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x$$

Exercício: obtenha a equação de conservação de momento linear na direção *y*.

$$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho f_y$$

Forma conservativa da equação do momento linear na direção x:

Forma não conservativa da equação do momento linear na direção x:

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_{x}$$

• Forma conservativa da equação do momento linear na direção x

$$\rho \frac{\partial u}{\partial t} + u \left[\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} \right] = \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho u v)}{\partial y} = \frac{\partial (\rho u)}{\partial t} + \nabla \cdot (\rho u \mathbf{V})$$

$$\implies \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho u v)}{\partial y} = -\frac{\partial \rho}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x$$

Forma conservativa da equação do momento linear na direção x:

• Forma não conservativa da equação do momento linear na direção x:

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x$$

• Forma conservativa da equação do momento linear na direção x:

$$\rho \frac{Du}{Dt} + u \left[\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} \right] = \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho u v)}{\partial y} = \frac{\partial (\rho u)}{\partial t} + \nabla \cdot (\rho u \mathbf{V})$$

$$\implies \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho u v)}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x$$

Forma conservativa da equação do momento linear na direção *y*

Forma não conservativa da equação do momento linear na direção y:

$$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho f_y$$

 Exercício: obtenha a forma conservativa da equação do momento linear na direcão v:

$$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho v^2)}{\partial x} + \frac{\partial(\rho uv)}{\partial x} = -\frac{\partial \rho}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho f_y$$

Forma conservativa da equação do momento linear na direção *y*

Forma não conservativa da equação do momento linear na direção y:

$$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho f_y$$

 Exercício: obtenha a forma conservativa da equação do momento linear na direção y:

$$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho v^2)}{\partial x} + \frac{\partial(\rho uv)}{\partial x} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho f_y$$

Conservação de momento linear

Forma não conservativa da equação do momento linear

$$\begin{split} \rho \frac{Du}{Dt} &= \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x \\ \rho \frac{Dv}{Dt} &= \rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho f_y \end{split}$$

Forma conservativa da equação do momento linear

$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u^2)}{\partial x} + \frac{\partial(\rho uv)}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x$$

$$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho v^2)}{\partial x} + \frac{\partial(\rho uv)}{\partial x} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho f_y$$

Conservação de momento linear

• Forma não conservativa da equação do momento linear

$$\begin{split} \rho \frac{Du}{Dt} &= \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = - \frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x \\ \rho \frac{Dv}{Dt} &= \rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = - \frac{\partial p}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho f_y \end{split}$$

Forma conservativa da equação do momento linear

$$\begin{array}{l} \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho u v)}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x \\ \frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho v^2)}{\partial x} + \frac{\partial (\rho u v)}{\partial x} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho f_y \end{array}$$