PSTAT220A Homework 2

Due 10/26/2025

Problem 1 (35 pt)

The dataset Salaries in library carData concerns the salaries for Professors in 2008-2009. Please read the Salaries documentation for a full description of the data.

- a) Make a numerical and graphical summary of the data, commenting on any features that you find interesting
- b) Fit a linear regression model with the salary as the response. Which variables, if any, are significantly associated with salary?
- c) Compute LS estimates in R using the matrix solution to the least squares problem and confirm you get the same estimates as those in (b). To generate the covariates matrix it may help to use the model.matrix function.
- d) What percentage of variation in the response is explained by the covariates? Explain whether you use the unadjusted or adjusted measure in your answer and why.
- e) Which observation has the largest absolute residual (give the row number)?
- f) Report separate 99% confidence intervals for the coefficients associated with yrs.since.phd and yrs.service.
- g) Plot a 95% confidence region for the coefficients associated with yrs.since.phd and yrs.service. Comment on the resulting shape and why this makes sense.
- h) Construct pointwise and simultaneous 95% confidence band for the prediction of future mean response and the prediction of future observations
- i) Compute the partial coefficient of determination for yrs.since.phd. Interpret the meaning of this quantity.
- j) Construct the EHW heteroskedasticity-consistent standard errors for the regression coefficients. Comment on the comparison between these standard errors to those returned by 1m. In you response, reference any evidence for (or against) heteroskedasticity.
- k) What are the highest leverage and highest influence points?

l) Are the residuals approximately normally distributed? If not suggest a transformation of the outcome that might improve the model ift.

Part (a): Numerical and Graphical Summary

\$ sex : Factor w/ 2 levels "Female", "Male": 2 2 2 2 2 2 2 2 1 ...

\$ yrs.service : int 18 16 3 39 41 6 23 45 20 18 ...

\$ salary : int 139750 173200 79750 115000 141500 97000 175000 147765 119250 129000 .

summary(Salaries)

```
rank
               discipline yrs.since.phd
                                         yrs.service
                                                           sex
AsstProf: 67
               A:181
                         Min. : 1.00
                                        Min.
                                              : 0.00
                                                       Female: 39
AssocProf: 64
               B:216
                         1st Qu.:12.00 1st Qu.: 7.00
                                                       Male :358
                         Median :21.00 Median :16.00
Prof
       :266
                         Mean :22.31
                                        Mean :17.61
                         3rd Qu.:32.00 3rd Qu.:27.00
                         Max. :56.00
                                        Max.
                                              :60.00
   salary
```

Min.: 57800 1st Qu.: 91000 Median: 107300 Mean: 113706 3rd Qu.: 134185 Max.: 231545

Summary statistics by categorical variables:

```
aggregate(salary ~ rank, data=Salaries,
          FUN=function(x) c(mean=mean(x), median=median(x), sd=sd(x)))
       rank salary.mean salary.median salary.sd
1 AsstProf
              80775.985
                            79800.000
                                        8174.113
2 AssocProf
              93876.438
                            95626.500 13831.700
       Prof 126772.109
                           123321.500 27718.675
aggregate(salary ~ discipline, data=Salaries,
          FUN=function(x) c(mean=mean(x), median=median(x), sd=sd(x)))
  discipline salary.mean salary.median salary.sd
               108548.43
                             104350.00 30538.15
1
                             113018.50 29459.14
               118028.69
aggregate(salary ~ sex, data=Salaries,
          FUN=function(x) c(mean=mean(x), median=median(x), sd=sd(x)))
     sex salary.mean salary.median salary.sd
1 Female
           101002.41
                         103750.00 25952.13
   Male
           115090.42
                         108043.00 30436.93
par(mfrow=c(2,3))
hist(Salaries$salary, breaks=30, col="lightblue", main="Distribution of Salary",
     xlab="Salary ($)", prob=TRUE)
lines(density(Salaries$salary), col="red", lwd=2)
boxplot(salary ~ rank, data=Salaries, col=c("lightblue", "lightgreen", "pink"),
        main="Salary by Rank", ylab="Salary ($)", las=2)
boxplot(salary ~ discipline, data=Salaries, col=c("lightblue", "lightgreen"),
        main="Salary by Discipline", ylab="Salary ($)")
boxplot(salary ~ sex, data=Salaries, col=c("lightblue", "pink"),
        main="Salary by Sex", ylab="Salary ($)")
plot(Salaries$yrs.since.phd, Salaries$salary, col=as.factor(Salaries$rank),
     pch=19, xlab="Years Since PhD", ylab="Salary ($)",
     main="Salary vs Years Since PhD")
legend("topleft", legend=levels(Salaries$rank), col=1:3, pch=19, cex=0.8)
```


par(mfrow=c(1,1))

Interesting features:

- 1. The salary distribution is right-skewed with some high earners
- 2. Clear salary differences across ranks: Full Professors earn the most
- 3. Positive relationship between years since PhD and salary
- 4. Years since PhD and years of service appear highly correlated (multicollinearity concern)

Part (b): Linear Regression Model

```
model <- lm(salary ~ rank + discipline + yrs.since.phd + yrs.service + sex,</pre>
           data=Salaries)
summary(model)
Call:
lm(formula = salary ~ rank + discipline + yrs.since.phd + yrs.service +
    sex, data = Salaries)
Residuals:
   Min
          1Q Median
                        3Q
                             Max
-65248 -13211 -1775 10384 99592
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                         4588.6 14.374 < 2e-16 ***
              65955.2
(Intercept)
rankAssocProf 12907.6
                         4145.3 3.114 0.00198 **
                         4237.5 10.635 < 2e-16 ***
rankProf
              45066.0
disciplineB
              14417.6
                         2342.9 6.154 1.88e-09 ***
yrs.since.phd 535.1
                           241.0 2.220 0.02698 *
                          211.9 -2.310 0.02143 *
yrs.service
             -489.5
sexMale
               4783.5
                         3858.7 1.240 0.21584
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 22540 on 390 degrees of freedom
Multiple R-squared: 0.4547,
                              Adjusted R-squared: 0.4463
F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16
```

The significantly associated variables (p < 0.05) are: rank, discipline, yrs.since.phd, and sex. Notably, yrs.service is not significant, likely due to multicollinearity with yrs.since.phd.

Part (c): Matrix Solution to LS

```
beta_hat_matrix <- solve(t(X) %*% X) %*% t(X) %*% y

data.frame(
   lm_estimates = coef(model),
   matrix_estimates = as.vector(beta_hat_matrix),
   difference = coef(model) - as.vector(beta_hat_matrix)
)</pre>
```

	${\tt lm_estimates}$	${\tt matrix_estimates}$	difference
(Intercept)	65955.2324	65955.2324	2.910383e-09
${\tt rankAssocProf}$	12907.5879	12907.5879	-2.237357e-09
rankProf	45065.9987	45065.9987	-2.051820e-09
disciplineB	14417.6256	14417.6256	-1.728040e-10
<pre>yrs.since.phd</pre>	535.0583	535.0583	-7.958079e-13
yrs.service	-489.5157	-489.5157	9.833911e-12
sexMale	4783.4928	4783.4928	-2.492925e-09

The estimates match perfectly, confirming the matrix solution.

Part (d): Percentage of Variation Explained

```
r_squared <- summary(model)$r.squared
adj_r_squared <- summary(model)$adj.r.squared

c(R_squared = r_squared, Adjusted_R_squared = adj_r_squared)

R_squared Adjusted_R_squared</pre>
```

We should use the **adjusted R²** (0.4463) because:

0.4546766

- 1. We have multiple predictor variables
- 2. Adjusted R² penalizes for model complexity
- 3. It provides a more honest estimate of predictive performance

Conclusion: The model explains approximately 44.63% of the variation in salary.

0.4462870

Part (e): Largest Absolute Residual

Part (f): 99% Confidence Intervals

```
confint(model, parm=c("yrs.since.phd", "yrs.service"), level=0.99)

0.5 % 99.5 %

yrs.since.phd -88.75365 1158.87021

yrs.service -1038.11487 59.08344
```

Observation 44 has the largest absolute residual of $\$9.959203 \times 10^4$.

Part (g): 95% Confidence Region

```
main="95% Confidence Region for Two Coefficients")
points(beta_est[1], beta_est[2], pch=19, col="red", cex=1.5)
abline(h=0, v=0, lty=2, col="gray")
grid()
```

95% Confidence Region for Two Coefficients

Shape interpretation: The ellipse is tilted/elongated, indicating negative correlation between the two coefficient estimates. This makes sense because yrs.since.phd and yrs.service are highly correlated (multicollinearity). When one coefficient estimate increases, the other tends to compensate in the opposite direction to maintain a similar fit.

Part (h): Confidence and Prediction Bands

```
new_data <- data.frame(</pre>
  yrs.since.phd = seq(min(Salaries$yrs.since.phd),
                       max(Salaries$yrs.since.phd), length=100),
  yrs.service = median(Salaries$yrs.service),
  rank = "Prof",
  discipline = "A",
  sex = "Male"
pred conf <- predict(model, newdata=new data, interval="confidence", level=0.95)</pre>
pred_pred <- predict(model, newdata=new_data, interval="prediction", level=0.95)</pre>
n <- nrow(Salaries)</pre>
p <- length(coef(model))</pre>
W \leftarrow sqrt(p * qf(0.95, p, n-p))
pred_se <- predict(model, newdata=new_data, se.fit=TRUE)$se.fit</pre>
simul_conf_lower <- pred_conf[,"fit"] - W * pred_se</pre>
simul_conf_upper <- pred_conf[,"fit"] + W * pred_se</pre>
plot(new_data$yrs.since.phd, pred_conf[,"fit"], type="l", lwd=2,
     ylim=range(c(pred_pred)),
     xlab="Years since PhD", ylab="Salary ($)",
     main="95% Confidence and Prediction Bands")
lines(new_data$yrs.since.phd, pred_conf[,"lwr"], lty=2, col="blue", lwd=2)
lines(new_data$yrs.since.phd, pred_conf[,"upr"], lty=2, col="blue", lwd=2)
lines(new_data$yrs.since.phd, simul_conf_lower, lty=2, col="darkgreen", lwd=2)
lines(new_data$yrs.since.phd, simul_conf_upper, lty=2, col="darkgreen", lwd=2)
lines(new_data$yrs.since.phd, pred_pred[,"lwr"], lty=2, col="red", lwd=2)
lines(new_data$yrs.since.phd, pred_pred[,"upr"], lty=2, col="red", lwd=2)
legend("topleft",
       legend=c("Fitted", "Pointwise 95% CI", "Simultaneous 95% CI", "95% PI"),
       col=c("black", "blue", "darkgreen", "red"),
       lty=c(1,2,2,2), lwd=2, cex=0.8)
```

95% Confidence and Prediction Bands

The plot shows three types of bands: pointwise confidence intervals (blue), simultaneous confidence bands using Working-Hotelling method (green), and prediction intervals (red). The simultaneous bands are wider to account for multiple comparisons.

Part (i): Partial Coefficient of Determination

[1] 0.01248159

Interpretation: After controlling for rank, discipline, yrs.service, and sex, yrs.since.phd explains an additional 1.25% of the remaining variation in salary. This represents the unique contribution of yrs.since.phd beyond what the other variables already explain.

Part (j): EHW Heteroskedasticity-Consistent Standard Errors

```
ols_results <- coeftest(model)
ols_results</pre>
```

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
              65955.23
                          4588.60 14.3737 < 2.2e-16 ***
rankAssocProf 12907.59
                          4145.28 3.1138 0.001983 **
rankProf
              45066.00
                          4237.52 10.6350 < 2.2e-16 ***
disciplineB
                          2342.88 6.1538 1.878e-09 ***
              14417.63
                           240.99 2.2202 0.026979 *
yrs.since.phd
                535.06
yrs.service
               -489.52
                           211.94 -2.3097 0.021425 *
sexMale
               4783.49
                          3858.67 1.2397 0.215841
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
ehw_results <- coeftest(model, vcov=vcovHC(model, type="HCO"))</pre>
ehw_results
```

t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         2870.19 22.9794 < 2.2e-16 ***
             65955.23
rankAssocProf 12907.59
                         2186.14 5.9043 7.71e-09 ***
rankProf
                         3255.99 13.8409 < 2.2e-16 ***
             45066.00
disciplineB
                         2295.80 6.2800 9.04e-10 ***
             14417.63
yrs.since.phd
                          309.70 1.7277
                                           0.08484 .
               535.06
                          304.10 -1.6097
                                           0.10827
yrs.service
              -489.52
sexMale
              4783.49
                         2374.70 2.0144
                                           0.04466 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
se comparison <- data.frame(</pre>
  Parameter = names(coef(model)),
  OLS_SE = ols_results[, "Std. Error"],
  EHW_SE = ehw_results[, "Std. Error"],
  Ratio = ehw_results[, "Std. Error"] / ols_results[, "Std. Error"],
  Difference_Pct = (ehw_results[, "Std. Error"] - ols_results[, "Std. Error"]) /
                    ols_results[, "Std. Error"] * 100
se_comparison
                  Parameter
                               OLS_SE
                                         EHW_SE
                                                     Ratio Difference_Pct
(Intercept)
                (Intercept) 4588.6009 2870.1932 0.6255051
                                                               -37.449491
rankAssocProf rankAssocProf 4145.2783 2186.1421 0.5273813
                                                               -47.261874
rankProf
                   rankProf 4237.5233 3255.9927 0.7683716
                                                               -23.162838
disciplineB
                disciplineB 2342.8753 2295.7952 0.9799050
                                                                -2.009498
yrs.since.phd yrs.since.phd 240.9941 309.6959 1.2850764
                                                                28.507635
yrs.service
                yrs.service 211.9376 304.1022 1.4348671
                                                                43.486705
sexMale
                    sexMale 3858.6684 2374.7035 0.6154205
                                                               -38.457954
bp_test <- bptest(model)</pre>
bp_test
    studentized Breusch-Pagan test
data: model
BP = 65.055, df = 6, p-value = 4.205e-12
par(mfrow=c(2,2))
plot(fitted(model), residuals(model),
     xlab="Fitted values", ylab="Residuals",
     main="Residuals vs Fitted Values", pch=19, col=rgb(0,0,1,0.5))
abline(h=0, lty=2, col="red", lwd=2)
lines(lowess(fitted(model), residuals(model)), col="darkred", lwd=2)
plot(fitted(model), sqrt(abs(rstandard(model))),
     xlab="Fitted values", ylab=expression(sqrt("|Standardized residuals|")),
     main="Scale-Location Plot", pch=19, col=rgb(0,0,1,0.5))
lines(lowess(fitted(model), sqrt(abs(rstandard(model)))), col="darkred", lwd=2)
plot(Salaries$yrs.since.phd, residuals(model),
     xlab="Years since PhD", ylab="Residuals",
```


Evidence for/against Heteroskedasticity:

- Breusch-Pagan test: $p = 4.2 \times 10^{-12}$ reject homoskedasticity (evidence of heteroskedasticity).
- **Residual plots:** Residuals vs Fitted shows changing spread (fan-out) with fitted values; Scale–Location trend is non-flat.

• **SE comparison:** EHW robust SEs are generally larger than OLS (avg diff 31.5%).

Conclusion: There is evidence of heteroskedasticity; report EHW robust standard errors for inference.

Part (k): Leverage and Influence

```
h <- hatvalues(model)
high_lev <- which.max(h)

cooks <- cooks.distance(model)
high_cook <- which.max(cooks)

# Display results
cat("Highest leverage point: Observation", high_lev, "with h =", round(h[high_lev], 4), "\n"

Highest leverage point: Observation 195 with h = 0.0608

cat("Highest influence point: Observation", high_cook, "with Cook's D =", round(cooks[high_cook])
Highest influence point: Observation 331 with Cook's D = 0.0611

# Simple diagnostic plot
par(mfrow=c(1,2))
plot(h, ylab="Leverage", main="Leverage Values", pch=19, col="blue")
points(high_lev, h[high_lev], col="red", pch=19, cox=2)

plot(cooks, ylab="Cook's Distance", main="Influence", pch=19, col="blue")
points(high_cook, cooks[high_cook], col="red", pch=19, cox=2)</pre>
```


par(mfrow=c(1,1))

Part (I): Residual Normality


```
par(mfrow=c(1,1))

sw_test <- shapiro.test(residuals(model))
sw_test</pre>
```

Shapiro-Wilk normality test

```
data: residuals(model)
W = 0.96857, p-value = 1.555e-07
```

The Shapiro-Wilk test has p-value = 0. If p < 0.05, the residuals are not normally distributed.

Residuals - log(salary)

```
par(mfrow=c(1,1))
shapiro.test(residuals(model_log))
```

Shapiro-Wilk normality test

data: residuals(model_log)
W = 0.9915, p-value = 0.02242

Suggested transformation: If normality is violated (right skewness), try log(salary) transformation to improve model fit.

Problem 2 (25 pt)

A series of n+1 observations y_i $(i=1,\ldots,n+1)$ are taken from a normal distribution with unknown variance σ^2 . After the first n observations it is suspected that there is a sudden change in the mean of the distribution. That is, assume the first n observations are iid $y_1,\ldots,y_n\sim N(\mu,\sigma^2)$ the $y_{(n+1)}\sim N(\mu+\delta,\sigma^2)$.

- a) Write this model in the matrix form $y = X\beta + \epsilon$
- b) Derive the LS estimates of μ and δ
- c) Derive a test statistic for testing the hypothesis that the (n + 1)st observation has the same population mean as the previous observations, that is, the two mean parameters are equal.

d) Assume that $\sigma^2 = 1$ and $\delta = 2$. Simulate the distribution of the test statistic under this alternative hypothesis and compute the power of the test to detect $\delta \neq 0$ by counting the fraction of times the test statistic rejects. Assume you design your test with Type I error of 5% and are conducting a 2-sided test.

Part (a): Matrix Form

The model can be written as $y = X\beta + \epsilon$ where:

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \\ y_{n+1} \end{pmatrix}, \quad X = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} \mu \\ \delta \end{pmatrix}, \quad \epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \\ \epsilon_{n+1} \end{pmatrix}$$

where $\epsilon_i \sim N(0, \sigma^2)$ independently.

The first column of X corresponds to the intercept μ , and the second column is an indicator for the (n+1)st observation, corresponding to the shift δ .

Part (b): LS Estimates

The least squares estimates are given by:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

First, compute X^TX :

$$X^T X = \begin{pmatrix} n+1 & 1 \\ 1 & 1 \end{pmatrix}$$

The inverse is:

$$\begin{pmatrix} n+1 & 1 \\ 1 & 1 \end{pmatrix}^{-1} = \frac{1}{n} \begin{pmatrix} 1 & -1 \\ -1 & n+1 \end{pmatrix}$$

Next, compute X^Ty :

$$X^T y = \begin{pmatrix} \sum_{i=1}^{n+1} y_i \\ y_{n+1} \end{pmatrix}$$

Therefore:

$$\hat{\beta} = \frac{1}{n} \begin{pmatrix} 1 & -1 \\ -1 & n+1 \end{pmatrix} \begin{pmatrix} \sum_{i=1}^{n+1} y_i \\ y_{n+1} \end{pmatrix} = \frac{1}{n} \begin{pmatrix} \sum_{i=1}^{n+1} y_i - y_{n+1} \\ -\sum_{i=1}^{n+1} y_i + (n+1)y_{n+1} \end{pmatrix}$$

Simplifying:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y}_n$$

$$\hat{\delta} = \frac{1}{n} \left(-\sum_{i=1}^n y_i - y_{n+1} + (n+1)y_{n+1} \right) = \frac{1}{n} \left(ny_{n+1} - \sum_{i=1}^n y_i \right) = y_{n+1} - \bar{y}_n$$

Part (c): Test Statistic

We want to test $H_0: \delta = 0$ vs $H_1: \delta \neq 0$.

Under H_0 , the test statistic is:

$$t = \frac{\hat{\delta}}{\hat{\sigma}\sqrt{(X^TX)_{22}^{-1}}}$$

where $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n+1} (y_i - \hat{y}_i)^2$ is the residual variance.

From part (b), $(X^T X)_{22}^{-1} = \frac{n+1}{n}$.

Therefore:

$$t = \frac{y_{n+1} - \bar{y}_n}{\hat{\sigma}\sqrt{\frac{n+1}{n}}}$$

Under H_0 , $t \sim t_{n-1}$ (with n-1 degrees of freedom, since we have n+1 observations and 2 parameters).

Part (d): Power Simulation

```
# Simulation parameters
n <- 30
sigma_true <- 1
delta_true <- 2
nsim <- 10000
alpha <- 0.05

# Critical value for two-sided test under H0
critical_value <- qt(1 - alpha/2, df = n - 1)

# Store test statistics and rejection decisions
t_stats <- numeric(nsim)
rejections <- logical(nsim)</pre>
```

```
for (i in 1:nsim) {
  # Generate data under alternative hypothesis
  y <- c(rnorm(n, mean = 0, sd = sigma_true),
         rnorm(1, mean = delta_true, sd = sigma_true))
  # Compute estimates
  y_{ar_n} \leftarrow mean(y[1:n])
  delta_hat <- y[n+1] - y_bar_n
  # Compute residual standard error
  # Fitted values
  y_fitted <- c(rep(y_bar_n, n), y_bar_n + delta_hat)</pre>
  residuals <- y - y_fitted
  sigma_hat <- sqrt(sum(residuals^2) / (n - 1))</pre>
  # Compute test statistic
  se_delta <- sigma_hat * sqrt((n+1)/n)</pre>
  t_stats[i] <- delta_hat / se_delta
  # Check if we reject HO
  rejections[i] <- abs(t_stats[i]) > critical_value
# Compute power
power <- mean(rejections)</pre>
# Plot distribution of test statistics
hist(t stats, breaks=50, prob=TRUE, col="lightblue",
     main="Distribution of Test Statistic under H1",
     xlab="t-statistic", ylim=c(0, 0.4))
curve(dt(x, df = n-1), add=TRUE, col="red", lwd=2, lty=2)
abline(v=c(-critical_value, critical_value), col="darkred", lwd=2, lty=2)
legend("topright",
       legend=c("Simulated", "t-distribution under HO", "Critical values"),
       col=c("lightblue", "red", "darkred"),
       lty=c(1, 2, 2), lwd=c(10, 2, 2))
```

Distribution of Test Statistic under H1

Results:

• Critical value (two-sided, = 0.05): ± 2.045

• Power of the test: 0.4764 (47.64%)

• Number of rejections: 4764 out of 10⁴

Interpretation: The power of 47.64% indicates that when $\delta = 2$ and $\sigma^2 = 1$ with n = 30, we correctly reject the null hypothesis (detect the mean shift) about 47.64% of the time. This is relatively high power, suggesting the test is effective at detecting this magnitude of shift.

Problem 3 (25 pt)

In this problem we'll conduct a simulation to confirm and explore some important theoretical results.

a) Use simulation to confirm that $\frac{\hat{\beta}_i-\beta_i}{\hat{\sigma}\sqrt{(X^TX)_{ii}^{-1}}}\sim t_{n-p}.$

b) Compute the coverage of the associated confidence intervals for parameters. Do they have the desired coverage?

21

- c) Evaluate the performance of hypothesis tests of parameters. Discuss type I errors and powers.
- d) Repeat a)-c) assuming that the Gaussianity assumption is violated by generating non-Gaussian random error. Run one set of simulations with symmetric but heavy-tailed residual distribution and another with a skewed residual distribution. How did these violations influence your results? Which violation appeared worse (heavy-tailed or skewed)?

Part (a): Verify t-distribution

We simulate data from a linear regression model and verify that the standardized coefficient estimates follow a t-distribution.

```
set.seed(220)
n < -50
p < -4
nsim <- 10000
beta_true <- c(2, -1, 3, 0.5)
simulate regression <- function(n, beta true, error dist = "normal") {</pre>
  p <- length(beta_true)</pre>
  X \leftarrow cbind(1, matrix(rnorm(n * (p-1)), n, p-1))
  if (error_dist == "normal") {
    epsilon \leftarrow rnorm(n, mean = 0, sd = 2)
  } else if (error_dist == "heavy_tailed") {
    epsilon \leftarrow rt(n, df = 3) * 2
  } else if (error dist == "skewed") {
    epsilon \leftarrow (rchisq(n, df = 2) - 2) * sqrt(2)
  }
  y <- X %*% beta_true + epsilon
  fit <-lm(y \sim X - 1)
  beta_hat <- coef(fit)</pre>
  se_beta <- summary(fit)$coefficients[, "Std. Error"]</pre>
  t_stats <- (beta_hat - beta_true) / se_beta
  ci <- confint(fit, level = 0.95)</pre>
  coverage <- (ci[,1] <= beta_true) & (beta_true <= ci[,2])</pre>
```


Part (b): Confidence Interval Coverage

```
coverage_matrix <- sapply(results_normal, function(x) x$coverage)
coverage_rates <- rowMeans(coverage_matrix)

coverage_df <- data.frame(
   Parameter = paste0(" ", 0:(p-1)),
   True_Value = beta_true,
   Coverage_Rate = coverage_rates,
   Target = 0.95
)
coverage_df</pre>
```

Parameter True_Value Coverage_Rate Target

X1	0	2.0	0.9496	0.95
X2	1	-1.0	0.9493	0.95
ХЗ	2	3.0	0.9519	0.95
X4	3	0.5	0.9491	0.95

Analysis: The coverage rates for all parameters are very close to the nominal 95% level (within 0.19%), confirming that the confidence intervals have the desired coverage under normal errors.

Part (c): Hypothesis Test Performance

We test two scenarios: 1. **Type I error:** Test $H_0: \beta_j = \beta_{\text{true},j}$ (should reject 5% of the time) 2. **Power:** Test $H_0: \beta_j = 0$ when $\beta_{\text{true},j} \neq 0$

```
p_values_matrix <- sapply(results_normal, function(x) x$p_values)</pre>
type1_errors <- rowMeans(p_values_matrix < 0.05)</pre>
power_results <- replicate(nsim, {</pre>
  X \leftarrow cbind(1, matrix(rnorm(n * (p-1)), n, p-1))
  epsilon \leftarrow rnorm(n, mean = 0, sd = 2)
  y <- X %*% beta_true + epsilon
  fit <-lm(y \sim X - 1)
  coef_summary <- summary(fit)$coefficients</pre>
  p_vals <- coef_summary[, "Pr(>|t|)"]
  return(p_vals)
}, simplify = TRUE)
power_rates <- rowMeans(power_results < 0.05)</pre>
test_performance <- data.frame(</pre>
  Parameter = paste0(" ", 0:(p-1)),
  True_Value = beta_true,
  Type_I_Error = type1_errors,
  Power_vs_Zero = power_rates
test_performance
```

ХЗ	2	3.0	0.0481	1.0000
X4	3	0.5	0.0509	0.3904

Analysis:

- Type I errors: All close to 5%, as expected under the null hypothesis
- Power: Higher for parameters with larger true values (e.g., $\beta_0 = 2$, $\beta_2 = 3$) and lower for smaller values (e.g., $\beta_3 = 0.5$)

Part (d): Non-Gaussian Errors

Now we repeat the analysis with non-normal errors: heavy-tailed (t-distribution) and skewed (chi-square).

Normal Errors: ß1

Heavy-Tailed Errors: ß1


```
par(mfrow = c(1, 1))
```

```
xlab = "t-statistic", xlim = c(-5, 5), ylim = c(0, 0.45))

curve(dt(x, df = n - p), add = TRUE, col = "red", lwd = 2)
```

Normal Errors: ß1

Skewed Errors: ß1


```
par(mfrow = c(1, 1))
```

```
comparison_df <- data.frame(
   Parameter = paste0(" ", 0:(p-1)),
   Coverage_Normal = coverage_rates,
   Coverage_Heavy = coverage_heavy,
   Coverage_Skewed = coverage_skewed,
   Type1_Normal = type1_errors,
   Type1_Heavy = type1_heavy,
   Type1_Skewed = type1_skewed
)
comparison_df</pre>
```

Parameter Coverage_Normal Coverage_Heavy Coverage_Skewed Type1_Normal

X1	0	0.9496	0.9524	0.9348	0.0504
Х2	1	0.9493	0.9504	0.9522	0.0507
ХЗ	2	0.9519	0.9446	0.9470	0.0481
X4	3	0.9491	0.9507	0.9502	0.0509
	Type1_Heavy Ty	pe1_Skewed			
X1	0.0476	0.0652			
Х2	0.0496	0.0478			
ХЗ	0.0554	0.0530			
Х4	0.0493	0.0498			

Summary: Heavy-tailed errors (symmetric) show minimal impact on coverage and Type I error rates, while skewed errors cause larger deviations from nominal levels. **Conclusion:** Skewness is more problematic than heavy tails for regression inference.

Problem 4 (15 pts)

This problem concerns the divusa data in the faraway library.

- a) Make a well-constructed visualization showing how divorce rate is changing over time. Does it appear to be steady, going up, or going down?
- b) Fit a regression model with divorce as the response and remaining variables as covariates. Interpret the coefficient on year (include units). How can you reconcile this result with the answer to the previous part?
- c) Why might observations be correlated? Make two graphical checks for correlated errors. What do you conclude?
- d) Conduct a statistical test the presence of autocorrelation.

Part (a): Visualization of Divorce Rate Over Time

```
library(faraway)
data(divusa)
str(divusa)
                77 obs. of 7 variables:
'data.frame':
 $ year
                    1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 ...
             : num 8 7.2 6.6 7.1 7.2 7.2 7.5 7.8 7.8 8 ...
 $ divorce
 $ unemployed: num 5.2 11.7 6.7 2.4 5 3.2 1.8 3.3 4.2 3.2 ...
 $ femlab
                   22.7 22.8 22.9 23 23.1 ...
             : num
                    92 83 79.7 85.2 80.3 79.2 78.7 77 74.1 75.5 ...
 $ marriage
             : num
 $ birth
             : num 118 120 111 110 111 ...
```

```
$ military : num 3.22 3.56 2.46 2.21 2.29 ...
```

head(divusa)

```
year divorce unemployed femlab marriage birth military
1 1920
           8.0
                      5.2 22.70
                                     92.0 117.9
                                                  3.2247
2 1921
           7.2
                     11.7 22.79
                                     83.0 119.8
                                                  3.5614
3 1922
           6.6
                      6.7 22.88
                                     79.7 111.2
                                                 2.4553
4 1923
           7.1
                      2.4 22.97
                                     85.2 110.5
                                                 2.2065
           7.2
                      5.0 23.06
5 1924
                                     80.3 110.9
                                                  2.2889
6 1925
          7.2
                      3.2 23.15
                                     79.2 106.6
                                                  2.1735
plot(divusa$year, divusa$divorce, type = "b", pch = 19, col = "darkblue",
     xlab = "Year", ylab = "Divorce Rate (per 1000)",
    main = "U.S. Divorce Rate Over Time",
    lwd = 2)
lines(lowess(divusa$year, divusa$divorce, f = 0.3), col = "red", lwd = 2, lty = 2)
grid()
legend("topleft",
       legend = c("Observed", "Lowess Smoother"),
       col = c("darkblue", "red"),
       lty = c(1, 2), pch = c(19, NA), lwd = 2)
```

U.S. Divorce Rate Over Time

Observation: The divorce rate appears to show an overall **increasing trend** from the 1950s, peaking around the late 1970s to early 1980s, followed by a **decline** in more recent years. The pattern is not linear - it's more of an inverted U-shape with considerable year-to-year variation.

Part (b): Regression Model

```
model_div <- lm(divorce ~ year + unemployed + femlab + marriage + birth + military,</pre>
               data = divusa)
summary(model_div)
Call:
lm(formula = divorce ~ year + unemployed + femlab + marriage +
    birth + military, data = divusa)
Residuals:
    Min
            1Q Median
                            30
                                   Max
-2.9087 -0.9212 -0.0935 0.7447 3.4689
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 380.14761
                       99.20371 3.832 0.000274 ***
                        0.05333 -3.809 0.000297 ***
year
            -0.20312
                        0.05378 -0.917 0.362171
unemployed
            -0.04933
femlab
             0.80793
                        0.11487 7.033 1.09e-09 ***
             0.14977
                        0.02382 6.287 2.42e-08 ***
marriage
            -0.11695
                        0.01470 -7.957 2.19e-11 ***
birth
            -0.04276
                        0.01372 -3.117 0.002652 **
military
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.513 on 70 degrees of freedom
Multiple R-squared: 0.9344,
                              Adjusted R-squared: 0.9288
F-statistic: 166.2 on 6 and 70 DF, p-value: < 2.2e-16
```

Interpretation: The year coefficient is -0.2031 per 1000 population per year (or -2.031 per 1000 over 10 years), holding other variables constant.

Reconciliation with Part (a): The linear coefficient may differ from the visual inverted-U pattern due to confounding variables (unemployment, female labor force, marriage/birth rates) and the model's inability to capture non-linear trends.

Part (c): Checking for Correlated Errors

Why might observations be correlated? Time series data exhibit autocorrelation due to temporal persistence of social trends and slowly-changing omitted variables (cultural attitudes, economic conditions).

Conclusions:

- 1. **Residuals vs. Time:** Shows clear patterns and runs of positive/negative residuals, suggesting temporal correlation
- 2. Lag-1 Plot: Positive slope indicates that consecutive residuals are correlated when one residual is positive, the next tends to be positive as well
- 3. **ACF Plot:** Multiple significant autocorrelations (beyond the dashed blue lines) at various lags, confirming substantial serial correlation
- 4. **PACF Plot:** Helps identify the order of autoregressive structure

Overall: Strong evidence of correlated errors, violating the independence assumption of OLS regression.

Part (d): Statistical Test for Autocorrelation

```
library(lmtest)
dw_test <- dwtest(model_div)</pre>
dw_test
    Durbin-Watson test
data: model_div
DW = 0.37429, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0
bg_test <- bgtest(model_div, order = 3)</pre>
bg_test
    Breusch-Godfrey test for serial correlation of order up to 3
data: model_div
LM test = 54.414, df = 3, p-value = 9.158e-12
box_test <- Box.test(resids, lag = 10, type = "Ljung-Box")</pre>
box_test
    Box-Ljung test
data: resids
X-squared = 110.62, df = 10, p-value < 2.2e-16
Test Results:
```

- **Durbin-Watson:** DW = 0.3743, p = 0 significant autocorrelation
- Breusch-Godfrey: LM = 54.4137, p = 0 significant autocorrelation
- Box-Ljung: $^2 = 110.6194$, p = 0 significant autocorrelation

Conclusion: Strong evidence of autocorrelation; OLS standard errors are underestimated and inference is unreliable. Consider time series methods (GLS, ARIMA).