Nested Graph Conditions as String Diagrams

Filippo Bonchi¹, Andrea Corradini¹, and Arend Rensink²

- ¹ University of Pisa, Italy, filippo.bonchi@unipi.it
- ² University of Pisa, Italy, andrea.corradini@unipi.it
- ³ University of Twente, Netherlands, arend.rensink@utwente.nl

1 Definitions

- An interface type is a number $n \in \mathbb{N}$. For any $n \in \mathbb{N}$ we use I_n as a canonical discrete graph with n nodes.
- An interface I is a discrete graph; we say that I has type $\tau I = |V_I|$. The only canonical interface of type n is I_n .
- An open graph is an arrow $g: I \to G$ where I is a discrete graph; we say that g has $type \ \tau g = \tau I$, $interface \ I_g$ and $core \ \underline{G_g} = G$. g is called canonical if I_g is canonical.
- We will only work with canonical interfaces and open graphs.
- An interface morphism f from I to J is a graph morphism $f: I \to J$.
- An open graph g shifted back over an interface morphism $f: J \to I_g$ is the open graph f; g with type τJ .
- An open graph morphism from g to h with $\tau g = \tau h$ is a graph morphism $a: G_g \to G_h$ such that h = g; a.
- An open graph g shifted forward over a graph morphsm $a: G_g \to H$ is the open graph g; a with type $\tau \mathcal{G}$ and core H.

A condition tree is a tuple $(V, E, P, \{g_v\}_{v \in V}, \{u_e\}_{e \in E})$ such that

- -V is a set of nodes;
- $-E \subseteq V \times V$ is a set of edges, such that one $v \in P$ (the *root*) has no incoming edge and all other elements of V have exactly one incoming edge (from its parent);
- for all $v \in V$, g_v is an open graph;
- for all $e = (v, w) \in E$, u_e is an open graph (thought of as an upward-pointing arrow, hence u) such that $G_{u_e} = G_{g_v}$ and $\tau u_e = \tau g_w$. In words, d_e connects the interface of g_w to the core of g_v .

For convenience we also denote $I_v = I_{g_v}$ and $G_v = G_{g_v}$. The root of a tree \mathcal{T} is denoted $\top_{\mathcal{T}}$.

Satisfaction is defined for open graphs, on a node-by-node basis. (Actually, here the node is regarded as the root of its subtree.) $g \models v$ if there is an open graph morphism $a: g_v \to g$ such that for all edges $e = (v, w) \in E$, $u_e; a \not\models w$.

Given two condition trees \mathcal{T}, \mathcal{U} , a condition tree morphism is a pair $(R, \{a_p\}_{p \in R})$ such that (assuming $V_{\mathcal{T}}$ and $V_{\mathcal{U}}$ to be disjoint, and using $E = E_{\mathcal{T}} \cup E_{\mathcal{U}}$):

AC: what about defining concretely $I_n = \{1, 2, ..., n\}$? And handling it (ambiguously) as a set?

AC: I don't like core. Body?

Is this acceptable?

AC: function?

AC: P is also two lines above, but not defined. Here should it be V?

What is d_e ? I think that it is lighter to define an edge u_e as a graph morphism $u_e: I_{g_w} \to G_{g_v}$

- $-R \subseteq V_{\mathcal{T}} \times V_{\mathcal{U}} \cup V_{\mathcal{U}} \times V_{\mathcal{T}}$ is a relation between \mathcal{T} -nodes and \mathcal{U} -nodes and vice versa, such that $(\top_{\mathcal{T}}, \top_{\mathcal{U}}) \in R$.
- For all $p = (v, v') \in R$, $a_p : G_v \to G_{v'}$ is a graph morphism.
- For all $(v, v') \in R$ and all $(v, w) \in E$, one of the following holds:
 - There is a $(v',w') \in E$ such that (i) $(w',w) \in R$, and (ii) there is a $k:I_{w'} \to I_w$ such that $u_{(v',w')} = k; u_{(v,w)}; a_{(v,v')}$ and $k; g_w = g_{w'}; a_{(w',w)}$.
 there is a $(w,x) \in E$ such that (i) $(x,v') \in R$, and (ii) $u_{v,w} = id_{G_v}$,
 - there is a $(w,x) \in E$ such that (i) $(x,v') \in R$, and (ii) $u_{v,w} = id_{G_v}$, $u_{w,x} = id_{G_w}$ and g_w is epi, with $a_{(v,v')} = g_w$; $a_{(x,v')}$.

AC: too complex to spell out...