D' Cont

wherein

A represents a hydrogen atom,

B means a hydrogen atom,

 R^1 stands for a group of the formula $-\left(CH_2\right)_n-CO-\left(CH_2\right)_m-R, \text{ wherein}$

R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein

 R^3 and R^4 mean, independently, a hydrogen atom, a C_{3-6} cycloalkyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted

D' C't by a phenyl group which latter is optionally substituted by 1 to 3 substituent(s), wherein the substituent consists of a C_{1-4} alkoxy group, or

 R^3 and R^4 form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,

n has a value of 0, 1 or 2,

m has a value of 0, 1 or 2, or

A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case R^1 represents a group of the formula $-CO-(CH_2)_p-R^6$, wherein

- \mathbb{R}^6 stands for a halo atom, a phenoxy group, a $\mathbb{C}_{1\text{-}4}$ alkoxy group or a group of the formula $-\mathbb{NR}^7\mathbb{R}^8$, wherein
- R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, a C_{3-6} cycloalkyl group or a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and

E out

comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

 R^7 and R⁸ form together with the adjacent nitrogen atom, an oxopyrrolidinyl group, a phthalimido group, or a \saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by 3 ideatical different orselected from substituent(s) the consisting of a hydroxy group, a phenyl group, a phenoxy group, a phenyl(c_{1-4} alkyl) group or a phenoxy(C_{1-4} alkyl) group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by 1 to 3 identical or different substituen t (s), wherein the substituent is a halo atom or \grave{a} C_{1-4} alkoxy group, and, in case of the phenoxy(c_{1-4} alkyl)

East P

group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

- p has a value of 0, 1 or 2,
- R^2 stands for a nitro group, an amino group or a $(C_{1-4}$ alkanoyl) amino group, with the proviso that
 - 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,
 - 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,
 - 3) if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-4} alkyl group, and
 - 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of \mathbb{R}^3 and \mathbb{R}^4 stands for a hydrogen atom or a \mathbb{C}_{1-14} alkyl group, then the other of \mathbb{R}^3 and

exting 2000 for 1000 for 10000 for 10000 for 10000 for 10000 for 100

 R^4 is different from a hydrogen atom or a C_{1-4} alkyl group,

- 5) R is other than a chlorine atom; and with the further proviso that
- 6) R³ and R⁴ cannot form with the adjacent nitrogen atom a pyrrolidine group,

and pharmaceutically suitable acid addition salts thereof.

- 2. (Twice Amended) A 1,3-dioxolo-[4,5-h][2,3] benzodiazepine compound as claimed in claim 1, wherein
 - A represents a hydrogen atom,
 - B means a hydrogen atom,
 - R¹ stands for a group of the formula $^{\prime}$ $(CH_2)_n$ -CO- $(CH_2)_m$ -R, wherein
 - R represents a pyridyl group or a group of the formula $-NR^3R^4$, wherein
 - R^3 and R^4 mean, independently, a hydrogen atom, a cyclopropyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two methyl group(s), or a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3

P'

nitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and the heterocyclic group is optionally substituted by a phenyl group which latter is optionally substituted by 1 to 3 methoxy groups, or

R³ and R⁴ form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 methoxy groups,

n has a value of 0, 1 or 2

m has a value of 0, 1 or 2,

 ${\ensuremath{\mathsf{R}}}^2$ stands for a nitro group or an amino group, with the proviso that

- 1) if n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-4} alkyl group,
- 2) if n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-4} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-4} alkyl group, and

 R^3 and R^4 cannot form with the adjacent nitrogen atom a pyrrolidine group,

and pharmaceutically suitable acid addition salts

D2 Person

9. (Twice Amended) A pharmaceutical composition comprising a 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I

wherein

A represents a hydrogen atom,

B means a hydrogen atom,

 R^1 stands for a group of the formula $-(CH_2)_n-CO-(CH_2)_m-R$, wherein

R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein

 R^3 and R^4 mean, independently, a hydrogen atom, a $C_{3\text{-}6}$ cycloalkyl group, a $C_{1\text{-}4}$ alkoxy group, an amino group, a phenyl group optionally substituted by

D2 Eart one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl group which is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by a phenyl group which is optionally substituted by 1 to 3 substituent(s), wherein the substituent consists of a C_{1-4} alkoxy group, or

R³ and R⁴ form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C₁₋₄ alkoxy group,

n has a value of 0, 1 or 2,

m has a value of 0, 1 or 2, or

A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case

 R^1 represents a group of the formula $-CO-(CH_2)_p-R^6$, wherein

P2 Earl R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein

and R⁸ mean, independently, a hydrogen atom, a R7 guanyl group, a C₃₋₆ cycloalkyl group or a C₁₋₄ alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3\identical or different substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

and R⁸ form together with the adjacent nitrogen atom, an oxopyrrolidinyl group, a phthalimido group which is optionally substituted, or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by 1 to 3 identical or different substituent(s) selected from the group consisting of a hydroxy group, a phenyl

De Cont

group, a phenoxy group, a phenyl (C_{1-4} alkyl) group or a phenoxy(C_{1-4} alkyl) group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a halo atom or a C_{1-4} alkoxy group, and, in case of the phenoxy(C_{1-4} alkyl) group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

- p has a value of 0, 1 α r 2,
- R^2 stands for a nitro group, an amino group or a $(C_{1\text{-}4} \text{ alkanoyl})$ amino group, with the proviso that
- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,
- 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,

D2 Ent

- 3) if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-4} alkyl group,
- 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-4} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-14} alkyl group, and
- 5) R^3 and R^4 cannot form with the adjacent nitrogen atom a pyrrolidine group,

or a pharmaceutically suitable acid addition salt thereof as the active ingredient and one or more conventional carrier(s).

- 10. (Thrice Amended) A pharmaceutical composition as claimed in Claim 9 comprising a 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I, wherein_
 - A represents a hydrogen atom,
 - B means a hydrogen atom,
 - R^1 stands for a group of the formula $-(CH_2)_n-CO-(CH_2)_m-R$, wherein

R represents a pyridyl group or a group of the formula $-NR^3R^4$, wherein

R³ and R⁴ mean, independently, a hydrogen atom, a cyclopropyl group, a C₁₋₄ alkoxy group, an amino group, a phenyl group optionally substituted by one or two methyl group(s), or a C₁₋₄ alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by a phenyl group which latter is optionally substituted by 1 to 3 methoxy groups, or

R³ and R⁴ form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 methoxy groups,

n has a value of 0, 1 or 2,

m has a value of 0, 1 or 2,

 ${\ensuremath{\mathsf{R}}}^2$ stands for a nitro group or an amino group, with the proviso that

P

- 1) if n and m have a value of 0, then one of \mathbb{R}^3 and \mathbb{R}^4 represents a hydrogen atom, and the other of \mathbb{R}^3 and \mathbb{R}^4 is different from a hydrogen atom, a phenyl group or a C_{1-4} alkyl group,
- 2) if n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-4} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-4} alkyl group, and
- 3) R^3 and R^4 cannot form with the adjacent nitrogen atom a pyrrolidine group,

or a pharmaceutically suitable acid addition salt thereof as the active ingredient.

الرام المرام وع 16. (Thrice Amended) A method of treatment in which a patient suffering from epilepsy or being in a state after stroke is treated with a non-toxic dose of a 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I,

D3
cont

wherein

- A represents a hydrogen atom,
- B means a hydrogen atom,
- R^1 stands for a group of the formula $-(CH_2)_n-CO-(CH_2)_m-R$, wherein
 - represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein
 - R³ and R⁴ mean, independently, a hydrogen atom, a C₃₋₆ cycloalkyl group, a C₁₋₄ alkoxy group, an amino group, a phenyl group optionally substituted by one or two C₁₋₄ alkyl group(s), a C₁₋₄ alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted

by a phenyl group which latter is optionally substituted by 1 to 3 substituent(s), wherein the substituent consists of a C_{1-4} alkoxy group, or

- R^3 and R^4 form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,
- n has a value of 0, 1 or 2
- m has a value of 0, 1 or 2, or
- A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case
- R^1 represents a group of the formula $-CO-(CH_2)_p-R^6$, wherein
 - R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein
 - R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, a C_{3-6} cycloalkyl group or a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and

comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

 R^7 and R⁸ form together with the adjacent nitrogen atom, an oxopy rolidinyl group, a phthalimido group, or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the \heteroatom, and said heterocyclic group is optionally substituted by identidal or different substituent(s) selected \from the group consisting of a hydroxy group \setminus a phenyl group, a phenoxy group, a phenyl(C_{1-4} alkyl) group or a phenoxy(C_{1-4} alkyl) group, wherein in case of the substituents listed the phenyl\or phenoxy group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a halo atom or a C_{1-4} alkoxy group, and, in case of the phenoxy(C_{1-4} alkyl)

group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

- p has a value of 0, 1 or 2,
- R^2 stands for a nitro group, an amino group or a $(C_{1-4} \text{ alkanoyl})$ amino group, with the proviso that
- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,
- 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,
- 3) if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-14} alkyl group,
- 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of R³ and R⁴ stands for a

23 Cont Dis cont

hydrogen atom or a C_{1-14} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-4} alkyl group,

- 5) R³ and R⁴ cannot form with the adjacent nitrogen atom a pyrrolidine group, and
- 6) R is other than a chlorine atom; or a pharmaceutically suitable acid addition salt thereof.
- 17. (Thrice Amended) A process for preparing a pharmaceutical composition suitable for the treatment of epilepsy or a state after stroke, characterized in that a 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I,

wherein

- A represents a hydrogen atom,
- B means a hydrogen atom,
- R¹ stands for a group of the formula

-(CH_2)_n-CO-(CH_2)_m-R, wherein

R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein

and R4 mean, independently, a hydrogen atom, a R^3 C_{3-6} dycloalkyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by a phenyl group which latter is optionally substituted by 1 to 3 substituent(s), wherein the substituent consists of a $C_{1,4}$ alkoxy group, or

 R^3 and R^4 form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,

n has a value of 0, 1 or 2,

83: Cont P^3

h has a value of 0, 1 or 2, or

A forms together with B a valence bond between carbon atoms in positions 8 and 9, and in this ca

R¹ represents a group of the formula

-CO- $(CH_2)_p$ -R⁶, wherein

 R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein

R⁷ and R⁸ mean, independently, a hydrogen atom, a guanyl group, a C₃₋₆ cycloalkyl group or a C₁₋₄ alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C₁₋₄ alkoxy group, or

R⁷ and R⁸ form together with the adjacent nitrogen atom, an oxopyrrolidinyl group, a phthalimido group, or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an

exygen atom as the heteroatom, and said hederocyclic group is optionally substituted by to identical ordifferent substituent(s) selected from the group consisting of a hydroxy group, a phenyl group, a phenoxy \dot{g} roup, a phenyl(C_{1-4} alkyl) group or a phenoxy(C_{1-1} \) alkyl) group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a halo atom or a C_{1-4} alkoxy group, and, in case of $\$ the phenoxy(C_{1-4} alkyl) group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

- p has a value of 0, 1 or 2,
- R^2 stands for a nitro group, an amino group or a $(C_{1-4} \ alkanoyl)$ amino group, with the proviso that
- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,
- 2) if A forms together with B a valence bond, \mathbb{R}^2 stands for a nitro group or an amino group, p

has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,

- 3) if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-14} alkyl group,
- 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-4} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-4} alkyl group,
- 5) R is other than a chlorine atom; and with the further proviso that
- R^3 and R^4 cannot form with the adjacent nitrogen atom a pyrrolidine group,

or a pharmaceutically suitable acid addition salt thereof, together with one or more conventional carrier(s), is converted to a pharmaceutical composition.