Chatpter 01 소프트웨어 공학 소개

^{쉽게 배우는} 소프트웨어 공학 01 소프트웨어의 이해

02 공학과 소프트웨어 공학의 이해

03 소프트웨어 개발 단계의 소개

요약

연습문제

1. 프로그램과 소프트웨어

■ 프로그램

■ 원시코드source code

■ 소프트웨어

- 원시코드source code
- 모든 산출물(모델링 결과, DB구조, 테스트 결과 등)
- 각 단계마다 생산되는 문서
- 설치 매뉴얼, 사용자 매뉴얼
- → 프로그램 뿐만 아니라 그 이상의 것도 포함하는 매우 포괄적인 개념

2. 소프트웨어의 특징

■ 제조가 아닌 개발

- 제조: 정해진 틀에 맞춰 일정하게 생산하는 것으로, 많은 인력이 필요하고 능력별 결과물 차이가 근소함
- 개발: 개인 능력 별 결과물 차이가 매우 큼

3. 소프트웨어 개발의 어려움(1)

■ 개집 짓기

- 필요 도구: 망치, 톱, 줄자 등
- 설계 도면 필요 없음, 머릿속 구상만으로도 충분
- 혼자 가능, 만드는 과정 단순

그림 1-4 개집 짓기

3. 소프트웨어 개발의 어려움(2)

■ 단독주택 짓기

- 필요 도구: 레미콘과 같은 장비, 시멘트 등의 수 많은 자재
- 설계 도면, 건축 설계사 필요
- 많은 사람 참여, 만드는 공정 과정 필요

그림 1-5 단독주택 짓기

3. 소프트웨어 개발의 어려움(3)

■ 대형 빌딩 짓기

- 필요 도구: 레미콘뿐만 아니라 크레인과 같은 대형 장비
- 설계 도면, 건축 설계사뿐만 아니라 내진 설계 필요
- 많은 사람이 참여할 뿐만 아니라 통제와 조정할 수 있는 조직(부서)이 필요
- 하중 문제 등 고려 사항이 많음

그림 1-6 대형 빌딩 짓기

3. 소프트웨어 개발의 어려움(4)

개발 과정이 복잡하다

무엇이든지 복잡하면 문제가 많이 발생할 수 있는데 소프트웨어 개발도 예외가 아니다. 그래서 소프트웨어 공학에서는 개발의 복잡함을 줄이기 위한 방법과 기술을 제시한다.

참여 인력이 많다

인력이 많으면 의사소통 경로가 많아져 의사 결정 과정도 복잡할 것이다. 또한 협력도 쉽지 않다. 그리고 중간에 이 직하는 사람, 새로 투입되는 사람 등 변화도 많이 발생한다. 그래서 소프트웨어 공학에서는 개발에 참여하는 팀을 구성하고 관리하는 효율적인 방법을 제시한다.

개발 기간이 길다

개발 기간이 길면 프로젝트 진행 상황을 파악하기 쉽지 않고 개발 비용 산정도 어렵다. 그래서 소프트웨어 공학에서 는 프로젝트를 효율적으로 관리하기 위한 프로젝트관리지식체계 PMBOK를 소개한다.

그림 1-7 대규모 소프트웨어 개발의 어려움과 소프트웨어 공학

Section 02 공학과 소프트웨어 공학의 이해

1. 공학

■ 공학의 사용 예

■ 전기공학과, 건축공학과, 토목공학과 등의 대학교에서 학과 명으로 사용

■ 공학의 특성

- 제약 사항: 정해진 기간, 주어진 비용
 - → 과학적 지식을 활용하여 문제를 해결하는데 한정된 기간과 비용의 제약을 받음

■ 소프트웨어 공학

- 소프트웨어 + 공학
- 취지: '소프트웨어 개발 과정에 공학적인 원리를 적용하여 소프트웨어를 개발'
- 목적:
 - S/W 개발의 어려움 해결
 - 효율적 개발을 통한 생산성 향상
 - 고품질 소프트웨어 제품

2. 소프트웨어 개발 과정

- 소프트웨어 개발 생명주기(SDLC Software Development Life Cycle)
 - 계획 단계에서 유지보수 단계에 이르기까지 일어나는 일련의 과정

그림 1-8 소프트웨어 개발 생명주기 SDLC: Software Development Life Cycle

3. 소프트웨어 공학

■ 정의

품질 좋은 소프트웨어를 경제적으로 개발하기 위해 계획을 세우고, 개발하며, 유지 및 관리하는 전 과정에서 공학, 과학 및 수학적 원리와 방법을 적용하여 필요한 이론과 기술 및 도구들에 관해 연구하는 학문

■ 목표

- 개발 과정에서의 생산성 향상
- 고품질의 소프트웨어 생산 → 사용자 만족

Section 03 소프트웨어 개발 단계의 소개

1. 소프트웨어 개발 단계

■ 소프트웨어 개발 프로세스

■ 1단계 : 계획

■ 2단계 : 요구분석

■ 3단계 : 설계

■ 4단계 : 구현

■ 5단계 : 테스트

• 6단계 : 유지보수

2. 계획/요구분석 단계

■ 1단계 : 계획

- 개발 비용 산정: COCOMO모델, 기능점수(FP)모델 사용
- 일정 계획: 작업분할구조도WBS, CPM 사용
- 위험 관리

■ 2단계 : 요구분석

- 기존 시스템의 문제점 파악 → 새로운 요구사항 도출 → 다이어그램 작성
- 개발 방법론에 따른 표현 도구
 - 구조적 방법론: DFD, DD, Mini Spec
 - 정보공학 방법론: E-R 다이어그램
 - 객체지향 방법론: UML의 유스케이스 다이어그램

3. 설계/구현 단계

■ 3단계 : 설계

- 설계 원리: 분할과 정복, 추상화, 단계적 분해, 모듈화, 정보은닉
- 소프트웨어 아키텍처, 객체지향 설계
- 적합한 디자인 패턴 적용

■ 4단계 : 구현

- 간략한 프로그래밍 언어의 역사
- 표준 코딩 규칙

4. 테스트/유지보수 단계

■ 5단계 : 테스트

- 테스트의 절차
- 개발자 또는 사용자 시각에 따른 분류
- 사용되는 목적에 따른 분류
- 품질 특성에 따른 분류
- 소프트웨어 개발 단계에 따른 분류

■ 6단계: 유지보수

- 수정 유지보수
- 적응 유지보수
- 기능보강 유지보수
- 예방 유지보수