## Sistemas Digitais 2ª Lista de exercicios

Dupla: abhner adriel Printóvas Silva e Maria Carolina Bantos Berrafato

| ROW | 0   | DI | E  | F  |             |
|-----|-----|----|----|----|-------------|
| 0   | 00  | 0  | 0  | 7  | Foo (E) = E |
| 2   | 00  | 2  | 10 | 00 | Fox (t)= 0. |
| 4   | 1   | 6  | 0  | 7  | F.10(E)= 1E |
| 5   | 1 1 | 13 | 10 | 1  | F12 (E)= 1E |
| 7   | 12  | 7  | 12 | 10 |             |

| CD         |
|------------|
| L          |
| ET MUX F   |
| 16 7 4 1-1 |
| IE -       |
| Figura 1   |
| right      |
|            |

| Row !                    | c         | a    | E       | F      |
|--------------------------|-----------|------|---------|--------|
| 0,1<br>2,3<br>4,5<br>6,7 | 7 7 0 0 0 | 0401 | × × × × | E O IE |

| Row    | ωĬ   | ×   | 4)    | 2     | F   | $D_{r} = 0$         |
|--------|------|-----|-------|-------|-----|---------------------|
| 8      | 0 1  | 0   | 00    | 00    | 0   | $D_0 = O$           |
| 9      | 01   | 00  | 00    | 7     | 00  | $D^7 = 0$           |
|        |      | 0   | 3     | 00    | 00  | D2 = 0              |
| 20     | 10   | 0   | 7     | 7     | 00  | $D_3 = 0$           |
| 3      | 0    | 0   | 7     | 1     | 0   | $D_3 = 0$ $D_4 = 1$ |
| 24     | 0 1  | 7 7 | 00    | 0     | 1   | _                   |
| 12     | 10   | 1 2 | 00    | 2     | 0   | D5=1W               |
| 13     | 3    | 1 3 | 1 2   | 0     | 00  | D6=0                |
| 6      | 1-1- |     | 11    | 1     | 1   | D2 = 1              |
| ر<br>7 | 5    | 1   | L \ . | L \ . | 1 1 | D==7                |
|        | 1    |     |       |       | 1   |                     |

IEN=0; A=Z, B=Y, C=X

## 15 Letra A

ose S=0:

ose S=J:

~> 5 funciona como uma variavel de seleção, escolhendo qual entrada ina à saída. Como são 2 Canais de informação e 1 saída, então é um MUX 2-para-1.



Dra depender se A é o bit mais significative (MSB) ou o bit menes significative (LSB).

Se A for MSB: Falmo Se A for LSB: Verdadeino

$$\begin{array}{c} 10000000 \\ 0) 110000101 \\ + 1721 \\ \hline 110101010 \\ \end{array}$$

2. fáque os lxits de seleção são ambios 0, então a saída rai ser Soo = Eo, que vale 1. Portanto, a afirmação é rerdadeira (ALTERNATIVA A)

| 4. | W | X | 1 y | F | G  |
|----|---|---|-----|---|----|
|    | 0 | 0 | 0   | 0 | 0  |
|    | 0 | 0 | 1   | 1 | 0  |
|    | 0 | 1 | 0   | 0 | 1  |
|    | 0 | 1 | 1   | 1 | 1  |
|    | 1 | 0 | 0   | 0 | 11 |
|    | 1 | 0 | 1   | 1 | 0  |
|    | 1 | 1 | 0   | 1 | 0  |
|    | 1 | 1 | 1   | 0 | 1  |

(F): 
$$F_{00}(W) = 0$$
 (LINHAS 0,4)  
 $F_{01}(W) = 1$  (LINHAS 1,5)  
 $F_{10}(W) = W$  (LINHAS 2,6)  
 $F_{11}(W) = \overline{W}$  (LINHAS 3,7)

(G): 
$$G_{00}(W) = W$$
 (LINHAS 0,4)  
 $G_{01}(W) = 0$  (LINHAS 1,5)  
 $G_{10}(W) = \overline{W}$  (LINHAS 2,6)  
 $G_{11}(W) = 1$  (LINHAS 3,7)

RESPOSTA: ALTERNATIVA B

6. ALTERNATIVA B (DEMULTIPLEXATORI-PARA-2 DE 2 BITS), pois além de "emitir" apenas duas saída saúda para cada entrada (S10 e S11 para D1 e S20 e S21 para D2), cada porta de saída seculte somente duas impormações (uma da variavel E e outra de um único input), ou seja, E funciona co
8. X | Y | Z | F

| X | y | Z | F |                |             |
|---|---|---|---|----------------|-------------|
| 0 | 0 | 0 | 0 | mo             |             |
| 0 | 0 | 1 | 0 | $m_4$          | -(0,05)     |
| 0 | 1 | 0 | 1 | m2             | m(2,4,5)    |
| 0 | 1 | 1 | 0 | m <sub>3</sub> | ALTERNATIVA |
| 1 | 0 | 0 | 1 | M4             |             |
| 1 | 0 | 1 | 1 | m5             |             |
| 1 | 1 | 0 | 0 | m <sub>6</sub> |             |
| 1 | 1 | 1 | 0 | m7             |             |

40.c) (4101001)2 para lease 10

4 Salvendo que n= 7, então:

d) (72) s para Irare 16

4 Convertendo para decimal:

41.



14. c) Connortendo para brinário:

Representando com 8 bits:

\$100000000 + 10001

fazendo o complemento de 2: 11101110 +1 = 11101111

Calculando 23-17 = 6:

11101111 + 10111 100000110

ende 110 no sistema decemal é 6, assim como 23-17.

4 OVERFLOW

d) Connentendo para bimário:

$$\begin{array}{c|c}
40 & 2 \\
-40 & 35 & 2 \\
\hline
0 & 34 & 41 & 2 \\
\hline
1 & 46 & 8 & 2 \\
\hline
1 & 9 & 4 & 2 & 2 \\
\hline
0 & 4 & 2 & 2 & 1
\end{array}$$

Apenos para cenferência

38 2

-38 19 12

0-18 9 12

1-8 4 12

1-4 2 12

0-2 1

Representação

complemento de 2:011001+1=

## 14. d) Continuação: Representando com 8 luito: → Representação do -70 100000000 fazendo o complemento de 2: 10111001+1=10111010 1000110 101000110 Calculardo 32-70 = -38: 10111010 Resposta: 11011010 11011010 } = -38 100000 SINAL Resposta: 6,4375 15.a) (00110,0111) para trave 10 Parte interia: 00110: 0.24+0.23+1.22+1.21+0.20=6 Parte decimal: 0111: 1.2 4 1.2 3 + 1.2 + 0.2 = 0,0625 + 0,125 + 0,25 = 0,4375 (111001,0111)2 para lase 16 Resporta: 397 Parte interra: 411001: 11 1001 = 3 9 Parte decimal: 0111: 7 17. O erro é que o enable habilita duas entradas diferentes para um mesmo valor. Pertante as <del>olternaturas</del> A e D apresentam soluções réalidas para resolver esse pro-Irlema. 20. a) Para X: m(0,1,4,5,6,7,8,9,11,12,14,15) Para y: m(0,1,4,5,8,10,11,12,14,15) BLOCO (CE-C=0 A=0,1 C=0 10 LULAS 0,1,4,5): D=0 B=0.1 D=0 00 4 00 1 1 A=0 C=0 A=1 C=1 C=0,1 B=0,1 D=0,1 1 4 0 01 1 B=0,1 D=0,1 B=0 D=1 BLOCO (CÉLULAS 0,1,5,4): 0 1 Logo, tem-se: 44 0 A = 0,11 A=0 B=0,1 C=0 D=0,1 X=ABD+AC+CD+BC B=1 10 0 10 20098: Y = AC + CD + AC D=0.1 Para Z: m (0,1,3,4,5,7,9,11,15) Dessa forma, tem-se 14 40 04 A=1 C=0,1 ABD + AC + BC + CD + AC + CD + AC + ABD + AC + CD 0 BLOCO (CELULAS 0,1,4,5): Por tautologia: 4 C=0 A=0 B=0,1 D=0,1 ABD+AC+BC+CD+CD+AC 11 200go, tem-se: 10 £ = ABD + AC+CD

20.6)



LEMBRANDO QUE:

 $X = A\overline{B}D + \overline{A}\overline{C} + \overline{C}\overline{D} + BC$ 

 $Y = \overline{AC} + \overline{CD} + AC$   $Z = A\overline{BD} + \overline{AC} + CD$ 

FUNÇÕES X, Y, Z: OUTPUTS