What is claimed is:

1	1.	A system for securely authenticating a data exchange session with
2	an implantable	e medical device, comprising:
3	a crypt	o key uniquely associated with an implantable medical device to
4	authenticate da	ata during a data exchange session; and
5	an exte	ernal source to establish a secure connection with a secure key
6	repository to s	ecurely maintain the crypto key, and to authenticate authorization to
7	access data on	the implantable medical device by securely retrieving the crypto
8	key from the secure key repository.	
1	2.	A system according to Claim 1, wherein the external source
2	transacts a dat	a exchange session using the crypto key to authenticate the data.
1	3.	A system according to Claim 2, further comprising:
2	an auth	nentication component to employ the crypto key during the data
3	exchange sessi	ion, comprising at least one of:
4		a command authenticator to authenticate commands exchanged
5	through the ex	ternal source with the implantable medical device and;
6		a data integrity checker to check the integrity of the data received
7	by and transmi	itted from the external source; and
8		a data encrypter to encrypt the data received by and transmitted
9	from the extern	nal source.
1	4.	A system according to Claim 1, further comprising:
2	a short	range interface logically defining a secured area around the
3	implantable m	edical device in which to establish the secure connection; and
4	a long	range interface logically defining a non-secured area extending
5	beyond the sec	cured area in which to transact the data exchange session.
1	5.	A system according to Claim 1, further comprising:
2	a key g	enerator to statically generate the crypto key, and to persistently
3	store the crypt	o key in the secure key repository.

0328.US.UTL.ap5 - 23 -

1	6.	A system according to Claim 5, wherein the crypto key is stored on
2	at least one of	f the implantable medical device, a patient designator, a secure
3	database, a pl	nysical token, and a repeater.

- 7. A system according to Claim 5, wherein the crypto key is securely retrieved from the secure key repository through a programmer.
- 8. A system according to Claim 1, further comprising:
 a key generator to dynamically generate the crypto key.
- 9. A system according to Claim 8, wherein the crypto key is stored on at least one of the implantable medical device, a patient designator, and a repeater.
- 1 10. A system according to Claim 8, wherein the crypto key is securely retrieved from the secure key repository through at least one of a programmer and a repeater.
- 1 11. A system according to Claim 1, wherein the crypto key is 2 maintained on the implantable medical device, further comprising:
- a short range telemetry interface retrieving the crypto key through short
 range telemetry.
- 1 12. A system according to Claim 11, wherein the short range telemetry 2 comprises inductive telemetry.
- 1 13. A system according to Claim 11, wherein the external source 2 comprises a programmer.
- 1 14. A system according to Claim 13, wherein the crypto key is 2 provided from the programmer to a repeater.
- 1 15. A system according to Claim 11, wherein the external source 2 comprises a patient designator.

0328.US.UTL.ap5 - 24 -

1	16. A system according to Claim 15, wherein the crypto key is
2	provided from the patient designator to at least one of a programmer and a
3	repeater.
1	17. A system according to Claim 1, further comprising:
2	a secure database to maintain the crypto key; and
3	a secure server providing the crypto key through a secure connection.
1	18. A system according to Claim 17, wherein the secure connection
2	comprises at least one of a serial or hardwired connection and a secure network
3	connection.
1	19. A system according to Claim 17, wherein the external source
2	comprises a programmer.
1	20. A system according to Claim 19, wherein the crypto key is
2	provided from the programmer to a repeater.
1	21. A system according to Claim 1, further comprising:
2	a physical token to maintain the crypto key; and
3	a reader to retrieve the crypto key by accessing the physical token.
1	22. A system according to Claim 21, further comprising:
2	a physical label to specify the crypto key on the physical token.
_	a physical facel to specify the crypto key on the physical token.
1	23. A system according to Claim 22, wherein the physical label
2	comprises at least one of alphanumeric text, bar coding, and an outwardly-

A system according to Claim 21, further comprising:

internal storage to specify the crypto key on the physical token.

0328.US.UTL.ap5 - 25 -

3

1 2 appearing indication.

24.

1	25. A system according to Claim 24, wherein the internal storage	
2	comprises at least one of a transistor, a memory circuit, an electronically readable	
3	storage medium, and a magnetically readable storage medium.	
1	26. A system according to Claim 21, wherein the physical token is	
2	accessed using magnetic, optical, serial, and physical reading.	
1	27. A system according to Claim 1, wherein the crypto key comprises	
2	at least one of a 128-bit crypto key and a symmetric crypto key.	
1	28. A system according to Claim 1, wherein the crypto key comprises	
2	at least one of a statically generated and persistently stored crypto key,	
3	dynamically generated and persistently stored crypto key, a dynamically	
4	generated and non-persistently stored session crypto key.	
1	29. A system according to Claim 1, wherein implantable medical	
2	device comprises at least one of an implantable cardiac device, neural stimulation	
3	device, and drug therapy dispensing device.	
1	30. A method for securely authenticating a data exchange session with	
2	an implantable medical device, comprising:	
3	defining a crypto key uniquely associated with an implantable medical	
4	device to authenticate data during a data exchange session;	
5	establishing a secure connection from an external source with a secure ke	
6	repository securely maintaining the crypto key; and	
7	authenticating authorization to access data on the implantable medical	
8	device by securely retrieving the crypto key from the secure key repository.	
1	31. A method according to Claim 30, further comprising:	
2	transacting a data exchange session through the external source using the	
3	crypto key to authenticate the data.	

A method according to Claim 31, further comprising:

0328.US.UTL.ap5 - 26 -

1

32.

2	employing the crypto key during the data exchange session, comprising at	
3	least one of:	
4	authenticating commands exchanged through the external source	
5	with the implantable medical device and;	
6	checking the integrity of the data received by and transmitted from	
7	the external source; and	
8	encrypting the data received by and transmitted from the external	
9	source.	
1	33. A method according to Claim 30, further comprising:	
2	logically defining a secured area around the implantable medical device in	
3	which to establish the secure connection; and	
4	logically defining a non-secured area extending beyond the secured area i	
5	which to transact the data exchange session.	
1	34. A method according to Claim 30, further comprising:	
2	statically generating the crypto key; and	
3	persistently storing the crypto key in the secure key repository.	
1	35. A method according to Claim 34, wherein the crypto key is stored	
2	on at least one of the implantable medical device, a patient designator, a secure	
3	database, a physical token, and a repeater.	
1	36. A method according to Claim 35, further comprising:	
2	securely retrieving the crypto key from the secure key repository through	
3	programmer.	
1	37. A method according to Claim 30, further comprising:	
2	dynamically generating the crypto key.	
1	38. A method according to Claim 37, wherein the crypto key is stored	
2	on at least one of the implantable medical device, a patient designator, and a	
3	repeater.	

0328.US.UTL.ap5 - 27 -

1	39. A method according to Claim 37, further comprising:	
2	securely retrieving the crypto key from the secure key repository through	
3	at least one of a programmer and a repeater.	
1.	40. A method according to Claim 30, further comprising:	
2	maintaining the crypto key on the implantable medical device; and	
3	retrieving the crypto key through short range telemetry.	
1	41. A method according to Claim 40, wherein the short range	
2	telemetry comprises inductive telemetry.	
1	42. A method according to Claim 40, wherein the external source	
2	comprises a programmer.	
1	43. A method according to Claim 42, further comprising:	
2	providing the crypto key from the programmer to a repeater.	
1	44. A method according to Claim 40, wherein the external source	
2	comprises a patient designator.	
1	45. A method according to Claim 44, further comprising:	
2	providing the crypto key from the patient designator to at least one of a	
3	programmer and a repeater.	
1	46. A method according to Claim 30, further comprising:	
2	maintaining the crypto key in a secure database; and	
3	retrieving the crypto key through a secure connection.	
1	47. A method according to Claim 46, wherein the secure connection	
2	comprises at least one of a serial or hardwired connection and a secure network	
3	connection.	
1	48. A method according to Claim 46, wherein the external source	
2	comprises a programmer.	

0328.US.UTL.ap5 - 28 -

1	49. A method according to Claim 48, further comprising:	
2	providing the crypto key from the programmer to a repeater.	
1	50. A method according to Claim 30, further comprising:	
2	maintaining the crypto key on a physical token; and	
3	retrieving the crypto key by accessing the physical token.	
1	51. A method according to Claim 50, further comprising:	
2	specifying the crypto key on the physical token using a physical label.	
1	52. A method according to Claim 51, wherein the physical label	
2	comprises at least one of alphanumeric text, bar coding, and an outwardly-	
3	appearing indication.	
1	53. A method according to Claim 50, further comprising:	
2	specifying the crypto key on the physical token using internal storage.	
1	54. A method according to Claim 53, wherein the internal storage	
2	comprises at least one of a transistor, a memory circuit, an electronically readab	ılε
3	storage medium, and a magnetically readable storage medium.	
1	55. A method according to Claim 50, further comprising:	
2	accessing the physical token using magnetic, optical, serial, and physical	1
3	reading.	
1	56. A method according to Claim 30, wherein the crypto key	
2	comprises at least one of a 128-bit crypto key and a symmetric crypto key.	
1	57. A method according to Claim 30, wherein the crypto key	
2	comprises at least one of a statically generated and persistently stored crypto ke	у,
3	dynamically generated and persistently stored crypto key, a dynamically	
4	generated and non-persistently stored session crypto key.	

0328.US.UTL.ap5 - 29 -

1	58.	A method according to Claim 30, wherein implantable medical
2	device compr	ises at least one of an implantable cardiac device, neural stimulation
3	device, and d	rug therapy dispensing device.
1	59.	An apparatus for securely authenticating a data exchange session
2	with an impla	intable medical device, comprising:
3	means	for defining a crypto key uniquely associated with an implantable
4	medical device	e to authenticate data during a data exchange session;
5	means	s for establishing a secure connection from an external source with a
6	secure key re	pository securely maintaining the crypto key; and
7	means	for authenticating authorization to access data on the implantable
8	medical device	ee by means for securely retrieving the crypto key from the secure
9	key repositor	y.
1	60.	A system for securely transacting a data exchange session with an
2	implantable n	nedical device, comprising:
3	a shor	t range interface to provide communication with an implantable
4	medical device	ee by authenticating access to a securely maintained crypto key;
5	a long	range interface to commence a data exchange session upon
6	successful acc	cess authentication with the implantable medical device, and to
7	transact the d	ata exchange session using the crypto key.
1	61.	A system according to Claim 60, wherein the patient health
2	information in	n maintained in an encrypted form.
1	62.	A system according to Claim 60, wherein the authenticating with
2	the implantab	le medical device is through short range telemetry, further
3	comprising:	
4	a short range telemetric connection with the implantable medical device;	
5	a short range telemetric device to request the crypto key from the	
6	implantable medical device, and to receive the crypto key from the implantable	
7	medical device	

0328.US.UTL.ap5 - 30 -

1	63. A system according to Claim 60, wherein the authenticating with	
2	the implantable medical device is through a patient designator, further	
3	comprising:	
4	a short range telemetric connection with the implantable medical device;	
5	a patient designator to request the crypto key from the implantable	
6	medical device, and to receive the crypto key from the implantable medical	
7	device.	
1	64. A system according to Claim 60, wherein the authenticating with	
2	the implantable medical device is by using a physical token, further comprising:	
3	a physical token; and	
4	a reader to receive the crypto key from the physical token.	
1	65. A system according to Claim 60, wherein the patient health	
2	information is maintained in the implantable medical device in unencrypted form	
3	and is accessible in the unencrypted form exclusively through a short range	
4	telemetric connection.	
1	66. A system according to Claim 65, wherein the authenticating with	
2	the implantable medical device is through short range telemetry, further	
3	comprising:	
4	a short range telemetric connection with the implantable medical device;	
5	an external source to send a session crypto key to the implantable medical	
6	device; and	
7	an encrypter to encrypt the patient health information maintained in the	
8	implantable medical device.	
1	67. A system according to Claim 60, wherein the authenticating with	
2	the implantable medical device is through a patient designator, further	
3	comprising:	

4	a patient designator to establish a short range telemetric connection with	
5	the implantable medical device, and to send a session crypto key to the	
6	implantable medical device; and	
7	an encrypter to encrypt the patient health information maintained in the	
8	implantable medical device.	
1	CO A sustant according to Obside CO substitute languages into the second	
1	68. A system according to Claim 60, wherein the long range interface	
2	is augmented using one or more repeaters.	
1	69. A method for securely transacting a data exchange session with an	
2	implantable medical device, comprising:	
3	providing communication with an implantable medical device by	
4	authenticating access to a securely maintained crypto key using a short range	
5	interface;	
6	commencing a data exchange session by transitioning to long range	
7	interface upon successful access authentication with the implantable medical	
8	device; and	
9	transacting the data exchange session using the crypto key.	
1	70. A method according to Claim 69, wherein the patient health	
2	information in maintained in an encrypted form.	
1	71. A method according to Claim 69, wherein the authenticating with	
2	the implantable medical device is through short range telemetry, further	
3	comprising:	
4	establishing a short range telemetric connection with the implantable	
5	medical device;	
6	requesting the crypto key from the implantable medical device; and	
7	receiving the crypto key from the implantable medical device.	
1	72. A method according to Claim 69, wherein the authenticating with	
2	the implantable medical device is through a patient designator, further	
3	comprising:	

0328.US.UTL.ap5 - 32 -

4	establishing a short range telemetric connection between the implantable	
5	medical device and the patient designator;	
6	requesting for the crypto key from the implantable medical device; and	
7	receiving the crypto key from the implantable medical device.	
1	73. A method according to Claim 69, wherein the authenticating with	
2	the implantable medical device is by using a physical token, further comprising:	
3	accessing the physical token; and	
4	receiving the crypto key from the physical token.	
1	74. A method according to Claim 69, wherein the patient health	
2	information is maintained in the implantable medical device in unencrypted form	
3	and is accessible in the unencrypted form exclusively through a short range	
4	telemetric connection.	
1	75. A method according to Claim 74, wherein the authenticating with	
2	the implantable medical device is through short range telemetry, further	
3	comprising:	
4	establishing a short range telemetric connection with the implantable	
5	medical device;	
6	sending a session crypto key to the implantable medical device; and	
7	encrypting the patient health information maintained in the implantable	
8	medical device.	
1	76. A method according to Claim 69, wherein the authenticating with	
2	the implantable medical device is through a patient designator, further	
3	comprising:	
4	establishing a short range telemetric connection with the implantable	
5	medical device through the patient designator;	
6	sending a session crypto key to the implantable medical device; and	
7	encrypting the patient health information maintained in the implantable	
8	medical device	

0328.US.UTL.ap5 - 33 -

1	77. A method according to Claim 69, wherein the long range interface
2	is augmented using one or more repeaters.
1	78. An apparatus for securely transacting a data exchange session with
2	an implantable medical device, comprising:
3	means for providing communication with an implantable medical device
4	by means for authenticating access to a securely maintained crypto key using a
5	short range interface;
6	means for commencing a data exchange session by means for transitioning
7	to long range interface upon successful access authentication with the implantable
8	medical device; and
9	means for transacting the data exchange session by accessing patient
10	health information stored on the implantable medical device using the crypto key.
1	79. A system for securely transacting a data exchange session with an
2	implantable medical device through secure lookup, comprising:
3	a secure server to provide identification of and authentication to access an
4	implantable medical device by authenticating access to a securely maintained
5	crypto key;
6	a secure external source to request the crypto key via a secure connection
7	based on the identification of and authentication to access the implantable medical
8	device, and to receive the crypto key; and
9	a long range interface to commence a data exchange session upon
10	successful access authentication with the implantable medical device, and to
11	transact the data exchange session using the crypto key.
1	80. A method for securely transacting a data exchange session with an
2	implantable medical device through secure lookup, comprising:
3	providing identification of and authentication to access an implantable
4	medical device by authenticating access to a securely maintained crypto key;
5	requesting the crypto key via a secure connection based on the
6	identification of and authentication to access the implantable medical device; and

0328.US.UTL.ap5 - 34 -

7	receiving the crypto key;
8	commencing a data exchange session by transitioning to long range
9	interface upon successful access authentication with the implantable medical
10	device; and
11	transacting the data exchange session using the crypto key.
1	81. An apparatus for securely transacting a data exchange session with
2	an implantable medical device through secure lookup, comprising:
3	means for providing identification of and authentication to access an
4	implantable medical device by means for authenticating access to a securely
5	maintained crypto key;
6	means for requesting the crypto key via a secure connection based on the
7	identification of and authentication to access the implantable medical device; and
8	means for receiving the crypto key;
9	means for commencing a data exchange session by means for transitioning
10	to long range interface upon successful access authentication with the implantable
11	medical device; and
12	means for transacting the data exchange session using the crypto key.

0328.US.UTL.ap5 - 35 -