

Symmetric Mortrius Additional Notes IF matrix A=AT, then A is symmetric D: (; ;) x L> A=(2) B=(010) C=(00)x ls If a matrix is symmetric, it must be square Common Example: ATA is always symmetric La If a matrix is sopere and diagonal, it is symmetric 4 If A and C are nxn motives, x ER and C is symmetric - Which of the following are symmetric? $^{1}) AA^{T} \rightarrow (AA^{T})^{T} = (A^{T})^{T}A^{T} = AA^{T} \checkmark$ 2) x x → x x , ✓ 3) (2 → c1c, v Orthogonal Diagonalization If A is symmetric, eigenvectors vi and viz (corresponding to 2 eigenvalues) are orthogonal Geigenspaces to distinct eigenvalues one orthogonal subspaces lucking orthogonal, use arthonormal eigenvalues Diagonalise A using orthogonal matrix, P Grand-Schmidt if not $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \lambda_{2} = 1, 1 \longrightarrow \lambda_{2} = 1 : A = (-1) I \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{x_{3} = 1} frue, \begin{cases} 3 & v_{1} = \begin{pmatrix} -1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ If P is an orthogonal n x n matrix, then P-1 = PT Spectrum of A -> set of eigenvalues for a matrix 4 Symmetric Motrices: 4 Symmetric matrices can be disapprelized as POPT be $P^{-1}=P^{T}$

Grand Schmidt many be needed if there on reported eigenvalues (to make a full set of orthonormal eigenvectors) GIF A=PDPT, then A is symmetric S If A = POPT, then A is also diagonalizable

Spectral Decomposition of a Symmetric Motrix Expansions to approximate matrices

Sum of terms uniqued by eigen values

Construct a spectral decomposition for A:

Quadratic Forms

Quadratic Form: Function Q: R^-, Rm, given by Q(x) = x+Ax=(x, x2 ... xn) (... ... xn)

ls Uses a symmetric metrix to analyze quadratic functions

Compute quadratic from $Q = \overline{x}^T A \overline{x}$ using $\overline{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ $Cross-Product, contains <math display="block">A = \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow 4x^2 + 3y^2$ both variables

 $A = \begin{pmatrix} u & 1 \\ 1 & -3 \end{pmatrix} \rightarrow (x + y) \begin{pmatrix} 4 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow 4x^2 - 3y^2 + 2xy$ Transform \$ - Ax; squard leigh of vector Ax is a quedrate form: ||Axi|| = (Ax) · (Ax) = \$TATAX

Symptoic matrices can be used to characterize linear transforms

 $\begin{array}{c} (\Rightarrow A \text{ is a symmetric mentric (orthogonal diagonalization)} \\ (\Rightarrow A = PDP^T = (\overrightarrow{u}_1, ...\overrightarrow{u}_n) \begin{pmatrix} \lambda_1 ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & \lambda_n \end{pmatrix} \rightarrow A = \lambda_1 \overrightarrow{u}_1 u_1^T + ... + \lambda_n \overrightarrow{u}_n \overrightarrow{u}_n^T = \sum_{i=1}^n \lambda_i \overrightarrow{u}_i u_1^T \\ \vdots & \vdots & \vdots \\ 0 & ... & \lambda_n \end{array}$ $A = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1/A_2 & -1/A_2 \\ 1/A_2 & 1/A_3 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} \begin{pmatrix} 1/A_2 \\ -1/A_2 \\ 1/A_3 \end{pmatrix}$ Spectral Decomposition

Express $Q = x^2 - 6xy + 9y^2$ in the form $Q = \overline{x}^T A \overline{x}$, $x \in R^2$ and $A = A^T$ $Q = (x + y) \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$, $Q = |x^2 - 6xy + 9y^2 \rightarrow A = \begin{pmatrix} 1 \\ 1 \\ 9 \end{pmatrix}$ Write Q(x)= 5x2-x2+3x3+6x,x3-12x2x3 in terms of xTAx $Q = (x_1 x_2 x_3) \left(\begin{array}{c} \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} \\ A = \begin{pmatrix} 5 & 0 & 3 \\ 3 & 1 & 3 \end{pmatrix} \right)$

GAII eigenvalues of A are real

GA = PDPT, where Pis orthogonal

La Fach column is a multiple of u;

(all)
Eigenspoors are mutually orthogonal

Fact term in sum hitti ui is an nx n matrix with make

Ordering eigenvalues large - small (in orbsolute value),

 $|\lambda_i| \ge |\lambda_i + 1|$ upo one able to function the cum to aget rid of small beautin order to a percentant matrix A

Change of Variable					
Given Q=\$TAZ, where \$ER^ is a va	riable vector and A is a num	symmetric metric , A=PD	pτ		
Lo A change of variable can be represent					
La Quadratic form becomes Q= x T F					
	= पु TPTAPg				
	= ¾ ^T Oq				
If A is a symmetric matrix then 1	here exists an orthogonal	change of variable \$ = P\$	that transforms \$ TAX to 3	TD with no cross-product terms	
Compute the quadratic form Q=xTA	$4\bar{x}$ for $A = \begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}$ and identify	for a chance of variable 11	not removed the cross-product	tern	
$\lambda_1 = q$, $\lambda_2 = q$, $\vec{v}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rightarrow \vec{x}$					
	?= *TA x = gTDg=9y; +4y;				
	(4, 72) (9, 9) (4,)				
Quadratic Surfaces					
		16 1 1	. 4 (- 4 4	- = 1 A = 1 . L	
Suppose $Q(\vec{x}) = \vec{x}^T A \vec{x}$, when A Ly $Q = x^T \binom{2}{1} 2 \vec{x} = 2x^2 + 2y^2 + 2x^2$	rus l	$z = x^2 + y^2 = \vec{x}^T \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \vec{x}$	Set of x that satisfies C $Q = -4x^2 - 2y^2$	$Q = 4x^2 + 2xy - 2y^2$	
	Y 1	ATT TO			
	thought C charges t size of ellipse		Q -100	Q 0	
(s) When C is varied continuously, a			-4 -2 0 2 4 -5 y	-1 -2 0 2 1 -5 y	
Loz = Q(x) = xTAx, where A					
A quadratic form Q is positive defin			te if Q≥O for all \$	→ indefinite if Q takes on	
	all eigenvalues are positive		ite if Q≤Oforall x	positive and negative values for \$ 9	
	te if Q <o all="" for="" o<="" td="" x="" ≠=""><td></td><td></td><td>(> Also when at least I eigen</td><td>:he</td></o>			(> Also when at least I eigen	:he
La when all e	eigenvalues are negative			is negative and at least 1 is pe	sitiv
Constrained Optimiz	lation Problem				
Surface of a unit sphre: $1 = x_1^2 + x_2^2 +$	x3 =	Max §	Q(式): 式 =13=9, and max Q(式): 式 =13=3, and mix	occurs at $\vec{x} = \begin{pmatrix} x \\ 0 \end{pmatrix}$	
(Q is a quentity (such as a temp) t	that is optimized $\Rightarrow Q = 9x_1^2$	+ 4 X + 2X = 1			
G Identify largest/smallest values	of a future they are locate		c and Min values of Q were corresponding eigenvectors w		
1) I dentify largest value of Q Q	1= 式で(0 일 일) 求 = 9 x; + 4 x;	43×3	some a surge construction of		
ei	genvalue (= 9 x ₁ ² + 9 x ₂ ² = 9 (x ₁ ² + x ₂ ² = 9 x ²	+9x3			
	= 9 (1 x 11 x 11 x 12 x 12 x 12 x 12 x 12 x	, , le			
Contracted Dallace About Polley Co			0.0000 11311-1		
Constrained Optimization Roblem — Fin				+ · · · · · ·	
J If Q = XTAX, A is a real nxn s		ilves 1= 12 = 11 and a	2200 ONTES TOTALIZES ENGINEE	νας ω ₁ ,ω ₂ ,,ω _n	
Ly Max of Q(x); s & largest Ly Min of Q(x) is hin, when	₹ = ±u,				
Ly Min of Q(x) is hin, when	₹ = ± α _n				

Constrained Optimi	ization with o	Repeated	Figenvalue	
Calculate max and min of QCX) =	· ズTAズ, 文ER3, subject	+ to x =1 →	$Q(x) = x_1^2 + 2x_2x_3$	
(A = (0 0 0)) \ \lambda \ = 1 → (0 0 0)	(°) → v' =(°) v' +	-(i), max wive	e=1 in span of u, and uz	
$\lambda_1 : -1 \longrightarrow \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$	") → V3 = +5 (-1),	min value = -1	at ± V3	
Orthogonality Const	traints			
		eigenvectors $\vec{u_1}$. Un, subject to constraints (x = ad x. U.	=0
G Max value of Q(x) = 1, afform				
Cabulate max value of Q(x) = xTA	x,x623, x =1 md	₹. ū,=0, idratify	a max point	
(3 (2(x) = x12 + 2x2x3 , U,=(%)				
4 (= xTAx = xT (000) x,	$\lambda = \pm 1 \longrightarrow if \lambda = 1$,	A-I = (0 - 1 - 1), $u_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $u_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \frac{1}{\sqrt{2}} \Rightarrow$ may value	of Q is +1, at ± uz
Singular Values				
Singular Values - square roots o	of the eigenventures of 1	4 ^T A		
La Cinear Transformations - Standard	A metrix is $A = \frac{1}{\sqrt{2}}$	1 1) (2 15)	$=\begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}$	
4 What unit vector maximizes				
$ \begin{array}{c} \text{Max} AvI \rightarrow \text{Max} \text{ also} \\ \text{Light of } A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 0 & 2 \end{pmatrix} $	occurs Avil = vTATAV			
$G_{A}^{T} = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 2 \end{pmatrix}$) → λ=8,2		1	
		neutor for $\lambda=8$, f	ATA - AI = (00) => U, =(6)	
min (AVII ² = 2, so min 11 A distances the origin to pts				
distances blue origin to pts 6, = 1/1, = 18, 6, = 1/2	= 12			
All eigenvalues of ATA are				
4 Singular Values, 6;, are all re		n one ordered	6, = 1/2, 2 6, = 1/2	
4 Singular Values are lengths				
Singular Vectors	01 00000			
For any AERMX1, orthogonal com	plement of Row A is 1	NullA, orthogonal	complement of ColA is NUIAT	
G if vi are the n orthogonal eigen				
			Jz Vr 3 is an orthogonal basis for Row A	rakA=r
→ \ Av, Av, Av, 3 ar an orth				
If i are orthonormal eigenvectors for			6: = [[A7:1]	
			12x4 Matrix with 3 singular values, CT/F)	
GV w sis an orthonormal	basis for -> Nul A		For GIA: Av, Av, Av, Av, √	
	Col M		for NuIA: VI, V2, V3 X	
left singular vectors → vectors & va		7		
right singular vectors -> vectors & Vi				
I Idu Shaha Accinis -> Accious SAL	J 1			

SVO A has $o_i \leq ... o_n$ and $m \geq n \rightarrow 1$ has the singular value decomposition $A = U \leq V^T$ where: 4) If m < n, then Z = (D On, n-m) with everything else the some Procedum - Suppose A is mxn and has rank r: 1) Compute squared singular values of ATA, oi, construct & 2) Compute unit singular values of ATA, Vi, construct V 3) Compute orthonormal basis for ColA using $\vec{u}_i = \frac{1}{6}, A\vec{v}_i$, i=1,2,3...r

If needed, expand
$$\xi \vec{u}_i \vec{3}$$
 to form orthonormal basis for R^M and use the basis to construct U astruct the SVD for $A = \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$

 $A^{T}A = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} \rightarrow \lambda_{1} = 9, \lambda_{2} = 4, so 6, = 3, 6, = 2$ (S) Construct ≤ 1 : $6_1 = 3$, $6_2 = 2 \rightarrow \begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$

$$A^{T}A - \lambda_{1} I = \begin{pmatrix} -5 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow \vec{V}_{1} = \begin{pmatrix} 0 \\ 1 & 0 \end{pmatrix}$$

$$eigenvector \rightarrow \vec{v}_{1}$$

$$A^{T}A - \lambda_{2} I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow \vec{V}_{2} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix}$$

$$(alredy normalised)$$

SVD of 3×2 Matrix with Ronk 1

Construct SVD for
$$A : \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

 $L_{3} A^{T} B : \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} \rightarrow \lambda_{1} : [8, \lambda_{2} : 0 \rightarrow 6, = \sqrt{18}, 6_{2} : 0]$

$$L_{3} A^{T} B : \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} \rightarrow \lambda_{1} : [8, \lambda_{2} : 0 \rightarrow 6, = \sqrt{18}, 6_{2} : 0]$$

$$L_{3} A^{T} B : \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} \rightarrow \lambda_{1} : [8, \lambda_{2} : 0 \rightarrow 6, = \sqrt{18}, 6_{2} : 0]$$

$$L_{3} A^{T} B : \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} \rightarrow \lambda_{1} : [8, \lambda_{2} : 0 \rightarrow 6, = \sqrt{18}, 6_{2} : 0]$$

$$L_{3} A^{T} B : \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} \rightarrow \lambda_{1} : [8, \lambda_{2} : 0 \rightarrow 6, = \sqrt{18}, 6_{2} : 0]$$

$$\begin{array}{c}
C_{1} A^{T} A_{1} = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \rightarrow \lambda_{1} = \begin{pmatrix} 18 & \lambda_{2} = 0 \rightarrow 6_{1} = \sqrt{18} & 6_{2} = 0 \\
C_{2} & 6_{1} = \sqrt{18} & 6_{2} = 0 \rightarrow \begin{pmatrix} 478 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 342 & 0 \\ 0 & 0 \end{pmatrix} = \underbrace{5} \\
C_{3} & 6_{1} = \sqrt{18} & 6_{2} = 0 \rightarrow \begin{pmatrix} 478 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} = \underbrace{5} \\
C_{4} & -1 & 0 \end{pmatrix} = \underbrace{5}_{1} & \underbrace{5}_{1}$$

 $\bigcup_{i} \vec{U}_{i} = \frac{1}{6} \vec{A} \vec{V}_{i} \rightarrow \vec{U}_{i} = \frac{1}{16} \begin{pmatrix} 1 & -1 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \frac{1}{16} \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$

Ly What about u_2 and u_3 ? \rightarrow two orthogonal vectors are: $\vec{x}_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and $\vec{x}_3 = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$ Ly vi, E COIA, so these two vectors are in (COIA)

Ly Solution: (1/md-schmidt!

Ly
$$\vec{u}_2 = \vec{x}_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
, $\vec{u}_3 = \vec{x}_3 - \frac{\vec{x}_3 \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_3} \frac{\vec{u}_2}{\vec{u}_2} \frac{\vec{u}_3}{\vec{u}_3} \frac$

 $\vec{U}_1 = \frac{1}{6} A v_1 = \frac{1}{3} \begin{pmatrix} \frac{1}{6} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1$ $\vec{\mathsf{U}}_{2} = \frac{1}{62} \mathsf{Av}_{2} = \frac{1}{2} \begin{pmatrix} \frac{1}{2} - \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{6} \end{pmatrix} = \begin{pmatrix} \frac{1}{6} \\ \frac{1}{6} \end{pmatrix}$ have to be orthogonal to u, and uz AND be wit length

SVD and the Condition Number of Mate	ńx							
Condition Number - If A is an invertible nxn metrix, the ratio	61 is the condition number of A							
(s) Describes the sensitivity that any approach to solutions to At-1 has enous								
Lo The larger the condition number, the more scriptive the system is to coors								
SVD and Spectral Decomposition								
Spectral Decomposition for any matrix with rank (To approximate non-symmetric	c matrices)							
() A = \(\frac{1}{2} \) 6; \(\vec{u}, \vec{v}, \vec{v} \)								
A has the following SVD: Spectral Decomposition:	(6) (00) (10)							
$A = \begin{pmatrix} 2 & 0 \\ 0 & -3 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad A = \sum_{s=1}^{r} 6_s \vec{u}_s \vec{v}_s^{r} = 3 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$2\binom{\binom{0}{0}}{0}C1 0 = 3\binom{\binom{0}{0}}{\binom{0}{0}} + 2\binom{\binom{0}{0}}{\binom{0}{0}}{\binom{0}{0}} + 2\binom{\binom{0}{0}}{\binom{0}{0}}$							
SVD and the Four Fundamental Subspaces								
If \vec{v}_i are orthonormal eigenvectors for A^TA and $\vec{u}_i = \frac{1}{6i}A\vec{v}_i$ for $i \le 1$	ry = cork A 6: - 11 07:11							
Ly Then, we have the following bones for any mxn matrix:	Given SVD of A, find rank (A), and bases for Nul A and ColA							
 	$ \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix} \begin{pmatrix} 5 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ \end{pmatrix} \begin{pmatrix} 0 & 0 & \sqrt{0.8} & 0 & -\sqrt{0.2} \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ \end{pmatrix} $							
VVr is an orthonormal basis for RouA 3 Right-Singular vectors Virgi,Vn is an orthonormal basis for NulA	$A = U \Sigma V^T = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 5 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & \sqrt{0.8} & 0 & -\sqrt{0.2} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{0.8} & 0 & \sqrt{0.2} \end{pmatrix}$							
UI, Ur is an orthonormal basis for COLA Left- Singular vectors	43 non-zero singular values -> ranke A = 3							
Wray In is an orthonormal basis for NVIAT	Lifirst 3 rows of VT = RowA = NulAL							
Cs b/c U is an arthogran. I busis	Ly Last 2 rows of VT = NulA							
	G First 3 columns of U=COIA							
	(> Last 2 columns of 0 = Nol AT							