Aritmética

Ejercicio 1. Encuentra los sistemas o bases de numeración, si existe alguno, para los que se verifica cada una de las siguientes igualdades:

- 1. $3 \times 4 = 22$,
- $2.41 \times 14 = 1224,$
- 3. $52 \times 25 = 1693$,
- 4. $25 \times 13 = 51$,
- $5. 13^4 = 14641$

Ejercicio 2. Da la expresión en bases 4, 8 y 16 de los naturales que en base 2 se escriben:

- 1. 1011011000100110101111,
- 2. 10001000000100110,
- 3. 1011101111011111

Ejercicio 3. Sean $x = 48572)_{16}$ e $y = 95883)_{16}$. Expresa el valor de x + y en base 8.

Ejercicio 4. Un número escrito en base b tiene 64 cifras. ¿Cuántas cifras tiene el mismo número expresado en base b³?.

Ejercicio 5. Dado un número natural $n \ge 10$, definimos el número natural P(n) como el número que resulta de colocar la cifra de las unidades a la izquierda (por ejemplo, si n = 3148 entonces P(n) = 8314). Calcula un número n que termine en 6 y que verifique que 4n = P(n).

Ejercicio 6. Enumera los divisores positivos de 120, y calcula cuántos divisores tiene el número 118800.

Ejercicio 7. Determina la factorización como producto de números primos de 10! y 15!. ¿Cuántos divisores tiene cada uno de ellos?

Ejercicio 8. Encuentra el valor máximo de n tal que 2ⁿ divide a 25!.

Ejercicio 9. ¿Cuántos ceros tiene al final el número 100!?.

Ejercicio 10. Encuentra todas las soluciones enteras de $x^2 - y^2 = 32$.

Ejercicio 11. Encuentra todas las parejas de números a, b tales que mcd(a, b) = 210 y mcm(a, b) = 840.

Ejercicio 12. Sean $a, b \in \mathbb{N}$ tal que b es divisor de a y a + 2. Demuestra que b = 1 ó b = 2.

Ejercicio 13. Sean $a,b\in\mathbb{Z}$ primos relativos. Demuestra que si a|c y b|c entonces ab|c. Estudia que pasa si $mcd(a,b)\neq 1$.

Ejercicio 14. Dado un número entero n, demuestra que mcd(8n + 3, 5n + 2) = 1.

Ejercicio 15. Sea $\alpha \in \mathbb{Z}$. Demuestra que el máximo común divisor de $35\alpha + 57$ y $45\alpha + 76$ vale 1 ó 19. ¿Para que valores de α es este máximo común divisor igual a 19?.

Ejercicio 16. Demuestra que si p es un número primo, entonces \sqrt{p} es un número irracional. Concluye que $\sqrt{75}$ es irracional.

Ejercicio 17. Estudia si las siguientes afirmaciones son verdaderas o falsas. En ellas, α y b denotan un número entero cualquiera, y p un número primo. Razona la respuesta.

- 1. Si $mcd(a, p^2) = p$ entonces $mcd(a^2, p^2) = p^2$.
- 2. Si $mcd(a, p^2) = p$ y $mcd(b, p^2) = p^2$ entonces $mcd(ab, p^4) = p^4$.
- 3. Si $mcd(a, p^2) = p$ y $mcd(b, p^2) = p$ entonces $mcd(ab, p^4) = p^2$.
- 4. Si $mcd(a, p^2) = p$ entonces $mcd(a + p, p^2) = p$.

Ejercicio 18. En \mathbb{Z}_{300} realiza, si es posible, los siguientes cálculos:

- **25** · 60.
- 127 · (−100).
- **237**⁻¹.
- $13 50 \cdot 101^{-1}$.
- Encuentra $x \neq 0$ tal que $111 \cdot x = 0$.
- Encuentra x tal que 13x + 25 = 32x 50.
- Encuentra x tal que 11x 100 = 45x + 12.

Ejercicio 19. Calcula, si es posible, 1392^{-1} en \mathbb{Z}_{7585} .

Ejercicio 20. Calcula el resto de dividir 4225¹⁸⁵⁰ entre 1234.

Ejercicio 21. Demuestra que:

- 1. Un número escrito en base 10 es par si, y sólo si, su última cifra es par.
- 2. Un número escrito en base 10 es un múltiplo de 3 si, y sólo si, la suma de sus cifras es un múltiplo de 3.
- 3. Un número escrito en base 10 es múltiplo de 4 si, y sólo si, su última cifra más dos veces la penúltima es múltiplo de 4.
- 4. Un número escrito en base 10 es un múltiplo de 9 si, y sólo si, la suma de sus cifras es un múltiplo de 9.
- 5. Un número escrito en base 10 es un múltiplo de 5 si acaba en 0 o en 5.
- 6. Si $a_n a_{n-1} \cdots a_2 a_1 a_0$ es la expresión decimal de un número x, entonces x es múltiplo de 7 si, y sólo si, el número $y = a_n a_{n-1} \cdots a_2 a_1 2 \cdot a_0$ es múltiplo de 7 (es decir, x es múltiplo de 7 si, y sólo si, (x quo 10) $-2 \cdot (x \mod 10)$ es múltiplo de 7). Comprueba que $x \equiv 3y \pmod{7}$.
- 7. Un número escrito en hexadecimal es múltiplo de 4 si, y sólo si, termina en 0, 4, 8 ó C.

- 8. Un número escrito en base 10 es múltiplo de 11 si, y sólo si, la suma de las cifras que ocupan un lugar par menos la suma de las cifras que ocupan posiciones impares es un múltiplo de 11.
- 9. Un número escrito en base 8 es un múltiplo de 7 si, y sólo si, la suma de sus cifras es un múltiplo de 7.

Ejercicio 22. Un número entero m se dice que está escrito en *forma ternaria equilibrada* si lo tenemos expresado como

$$m = e_n \cdot 3^n + e_{n-1} \cdot 3^{n-1} + \dots + e_1 \cdot 3 + e_0$$

donde e_i vale -1, $0 {\circ} 1$.

- 1. Calcula una expresión ternaria equilibrada de los números 5, -12, 35, 121, 123456.
- 2. Demuestra que todo número entero distinto de cero admite una única expresión ternaria equilibrada en la que $e_n \neq 0$.

Ejercicio 23. Sin realizar el cálculo, halla las cifras que faltan en los siguientes números:

- 1. $2^3 \cdot 3^2 \cdot 5^2 \cdot 7^3 = 61 4 0$
- 2. $2^5 \cdot 3^3 \cdot 5^3 \cdot 7^3 \cdot 11 = -07 84 00$
- 3. 17! = 35 6874 8096000

Ejercicio 24. Prueba que dado un número entero cualquiera m se verifica una de las siguientes posibilidades:

- 1. $m^2 \equiv 0 \pmod{8}$,
- 2. $m^2 \equiv 1 \pmod{8}$,
- 3. $m^2 \equiv 4 \pmod{8}$

Concluye que si m es impar, entonces $m^2 - 1$ es múltiplo de 8.

Ejercicio 25. Calcula los números que hay entre 20000 y 30000 que terminen en 39, al escribirlos en base 4 terminan en 33, y al escribirlos en base 8 acaban en 37.

Ejercicio 26. Resuelve las siguientes congruencias:

- 1. $3x \equiv 2 \pmod{5}$,
- 2. $17x \equiv 45 \pmod{92}$,
- 3. $3276x \equiv 1239 \pmod{531}$.

Ejercicio 27. Resuelve los siguientes sistemas de ecuaciones en congruencias:

1. $\begin{cases} x \equiv 1 \pmod{2} \\ 6x \equiv 3 \pmod{9} \\ 3x \equiv 3 \pmod{5} \end{cases}$

2. $\begin{cases} x \equiv 123 \pmod{371} \\ x \equiv 331 \pmod{644} \end{cases}$

3. $\begin{cases} 28x \equiv 59 \pmod{69} \\ 62x \equiv 26 \pmod{74} \\ 57x \equiv 1 \pmod{92} \end{cases}$

Ejercicio 28. Resuelve la congruencia 1211^{399} n $\equiv 20 \pmod{17}$.

Ejercicio 29. Resuelve el siguiente sistema de congruencias:

$$\begin{cases} 17834x &\equiv 1870 & (\text{m\'od } 21989) \\ 89710x &\equiv 10489 & (\text{m\'od } 8147) \\ 10022x &\equiv 81984 & (\text{m\'od } 20984) \\ 20987x &\equiv 10002 & (\text{m\'od } 11090) \\ 4094x &\equiv n & (\text{m\'od } 56271) \end{cases}$$

Donde n es el número formado por las cinco últimas cifras de tu DNI (es decir, si D es tu DNI, entonces $n=D \mod 100000$).

Ejercicio 30. Determina el número de enteros entre 1500 y 2500 tales que

- (a) sus dos últimas cifras en base dos son 11,
- (b) sus dos últimas cifras en base tres son 00 y
- (c) sus dos últimas cifras en base cinco son 12.

Ejercicio 31. ¿Cuántos números hay entre 60000 y 90000 que terminen en 45, y que su triple dé resto 97 al dividirlos por 122?

Ejercicio 32. Dado un número natural n, denotaremos por S(n) a la suma de sus cifras.

- 1. Demuestra que para cualquier n se tiene que $n \equiv S(n)$ (mód 9).
- 2. Calcula los divisores de 2010.
- 3. Enuentra todos los números naturales para los que n(S(n) 1) = 2010.

Ejercicio 33. Calcula las soluciones enteras de cada una de las siguientes ecuaciones diofánticas:

- 1. 2x + 3y = 7.
- 2. 6x + 10y = 16.
- 3. 232x 341y = 17.

Ejercicio 34. ¿Cuántas soluciones tiene la ecuación diofántica

$$210x - 91y = 77$$

que verifiquen que $-500 \le x, y \le 500$?

Ejercicio 35. Calcula 5 soluciones enteras de la ecuación

$$3761373923x + 472926384y = 382734927$$

Ejercicio 36. 1. Calcula una solución entera de la ecuación

$$79257x + 78610y = 1$$

- 2. Encuentra el inverso (para el producto) de 79257 en \mathbb{Z}_{78610} .
- 3. Encuentra 78610^{-1} en \mathbb{Z}_{79257} .
- 4. Calcula todas las soluciones de la ecuación

$$79257x + 78610y = 10$$

Ejercicio 37. Calcula todas las soluciones en \mathbb{Z} de las ecuaciones:

- 1. 6x + 9y + 15z = 7.
- 2. 6x + 10y + 15z = 7.
- 3. 35x + 45y + 55z = 60.

Ejercicio 38. Encuentra $a, b, c \in \mathbb{Z}$ tales que 31 sea múltiplo de 5a + 7b + 11c. Demuestra que si x, y, z son números enteros tales que 5x + 7y + 11z es múltiplo de 31, también lo son 21x + 17y + 9z y 6x + 27y + 7z.

Ejercicio 39. Calcula el cociente y el resto de dividir $2x^4 + 3x^3 + x^2 + 6x + 1$ entre $3x^2 + 1$ en $\mathbb{Z}_7[x]$ y en $\mathbb{Z}_{10}[x]$.

Ejercicio 40. Comprueba que $x^4 + 1$ es reducible en $\mathbb{Z}_p[x]$ para p = 2, 3, 5, 7, 11, 13, 17.

En general se tiene que x^4+1 es reducible en $\mathbb{Z}_p[x]$ para cualquier número primo.

- $\blacksquare \quad \text{Si α es tal que α^2} \equiv -1 \pmod{p} \text{ entonces } (x^2+\alpha)(x^2-\alpha) \text{ es una factorización de x^4+1 en $\mathbb{Z}_p[x]$.}$
- $\blacksquare \quad \text{Si α es tal que α^2} \equiv \ 2 \ \ (\text{m\'od p}) \ \text{entonces} \ (x^2 + \alpha x + 1)(x^2 \alpha x + 1) \ \text{es una factorizaci\'on de $x^4 + 1$ en \mathbb{Z}_p [x]}.$
- Si α es tal que $\alpha^2 \equiv -2 \pmod{p}$ entonces $(x^2 + \alpha x 1)(x^2 \alpha x 1)$ es una factorización de $x^4 + 1$ en $\mathbb{Z}_p[x]$.

Y se tiene que para cualquier primo p, hay en \mathbb{Z}_p una raíz cuadrada de -1, de 2 o de -2.

Ejercicio 41. Sean $p(x) = x^4 + 2x^2 + 2x + 1$, y $q(x) = x^3 + 2x^2 + x + 2$ dos polinomios con coeficientes en \mathbb{Z}_3 . Sean $r(x) = p(x) \mod q(x)$ y $s(x) = q(x) \mod r(x)$.

- Calcula todos los divisores de p(x) (hay 8 en total, cuatro de ellos mónicos), de q(x) (también hay 8) de r(x) (en total 6) y s(x) (hay 4).
- Calcula todos los divisores comunes de p(x) y q(x); de q(x) y r(x); y de r(x) y s(x).
- Calcula el mínimo común múltiplo de p(x) y q(x).

Ejercicio 42. Calcula un máximo común divisor de a(x) y b(x) en los siguientes casos:

- 1. $a(x) = x^4 + 2x^2 + 1$, $b(x) = x^4 1$ en $\mathbb{Z}_5[x]$.
- 2. $a(x) = x^4 + 2x^2 + 1$, $b(x) = x^2 + 2$ en $\mathbb{Z}_3[x]$.

Ejercicio 43. Calcula las raíces en \mathbb{Z}_5 del polinomio $x^2 + x + 4$.

Ejercicio 44. Calcula en $\mathbb{Z}_7[x]$ el resto de dividir

- 1. $x^7 + x^2 + 1$ entre x 1.
- 2. $x^n + 1$ entre x 1.

Ejercicio 45. Calcula en $\mathbb{Z}_5[x]$ el resto de dividir $x^n + 2$ entre x + 4.

Ejercicio 46. Calcula el resto de dividir el polinomio $x^{1321} + 5$ por el polinomio x + 3 en el anillo $\mathbb{Z}_7[x]$.

Ejercicio 47. Calcula el cociente y el resto de la división para las siguientes parejas de polinomios considerados en los anillos, $\mathbb{Z}_5[x]$ y $\mathbb{Z}_7[x]$.

- 1. $p(x) = x^4 x^2 + 1$, $q(x) = 2x^2 + 1$.
- 2. $p(x) = x^5 x^3 + 3x 5$, $q(x) = x^2 + 5$.
- 3. $p(x) = x^8 + x^4 + 1$, $q(x) = x^2 x + 1$.

4.
$$p(x) = x^5 - x^3 + 3x - 5$$
, $q(x) = x^2 + 7$.

Ejercicio 48. Encuentra todos los números primos p tales que $x^2 + 2$ sea un divisor de $x^5 - 10x + 12$ en $\mathbb{Z}_p[x]$.

Ejercicio 49. Halla un máximo común divisor y un mínimo común múltiplo en $\mathbb{Z}_3[x]$, $\mathbb{Z}_5[x]$ de las siguientes parejas de polinomios:

1.
$$p(x) = x^2 - 1$$
, $q(x) = x^3 - 3x^2 + 6x - 4$.

2.
$$p(x) = x^2 + 2x + 1$$
, $q(x) = x^3 + 7x^2 + 15x + 9$.

3.
$$p(x) = x^5 + x^4 + 4x^3 + 3x^2 + 2x - 1$$
, $q(x) = x^3 - 3x^2 + 2x - 1$.

Encuentra en cada caso polinomios u(x) y v(x) tales que

$$p(x) \cdot u(x) + q(x) \cdot v(x) = mcd(p(x), q(x)).$$

Ejercicio 50. Encuentra todas las raíces de $x^2 - 1 \in \mathbb{Z}_8[x]$. Da dos factorizaciones distintas de $x^2 - 1$ como producto de polinomios mónicos.

Ejercicio 51. Comprueba que los polinomios $x^3 + x^2 + x + 1$ y $x^2 + 2x + 1$ determinan la misma aplicación $f: \mathbb{Z}_3 \to \mathbb{Z}_3$.

Ejercicio 52. El polinomio $x^4 - 1$ puede factorizarse en factores lineales en $\mathbb{Z}_5[x]$. Encuentra dicha factorización.

Ejercicio 53. Descompón como producto de irreducibles el polinomio $x^6 - 1$ en $\mathbb{Z}_3[x]$, $\mathbb{Z}_5[x]$ y $\mathbb{Z}_7[x]$.

Ejercicio 54. Sea $A = \mathbb{Z}_2[x]_{x^3+1}$.

- Calcula las unidades de A, y da, en cada caso, su inverso. ¿Es la suma de dos unidades una unidad?
 ¿Y el producto?
- 2. Calcula los divisores de cero. Para cada uno de ellos, encuentra un elemento no nulo de A que al multiplicarlo por él de cero. ¿Es la suma de dos divisores de cero un divisor de cero? ¿Y el producto?.

Ejercicio 55. Sea $A = \mathbb{Z}_5[x]_{x^3+3}$, y $\alpha = [x] \in A$.

- Comprueba que $3\alpha^2 + 4\alpha + 1$ y $2\alpha + 3$ son unidades y calcula sus inversos.
- Comprueba que $3\alpha^2 + 3$ y $4\alpha^3 + \alpha^2 + 3\alpha + 1$ son divisores de cero. Multiplícalos por un elemento no nulo de A para que de cero.

Ejercicio 56. ¿Cuántos elementos tiene $\mathbb{Z}_3[x]_{x^4+x^2+x+1}$? ¿Cuántos de ellos tienen inverso?

Ejercicio 57. Sean $K_1 = \mathbb{Z}_2[x]_{x^4+x+1}$ y $K_2 = \mathbb{Z}_2[x]_{x^4+x^3+x^2+x+1}$. Sean $\alpha = [x]$ y $\beta = [x]$, tomadas respectivamente en K_1 y K_2 .

Calcula todas las potencias de α y β , y encuentra un isomorfismo $K_2 \to K_1$.

Ejercicio 58. Demuestra que $x^2 + 1$ es irreducible en $\mathbb{Z}_3[x]$ y que $x^3 + x + 1$ es irreducible en $\mathbb{Z}_2[x]$. Describe todos los elementos, y la aritmética de $\mathbb{Z}_3[x]_{x^2+1}$ y $\mathbb{Z}_2[x]_{x^3+x+1}$.

Preguntas test

Ejercicio 59. Dado el sistema de congruencias

$$\begin{cases} 23x \equiv 54 \pmod{60} \\ 12x \equiv 21 \pmod{35} \end{cases}$$

- a) Tiene una solución en el intervalo [1000, 2000].
- b) Tiene más de una solución en el intervalo [1000, 2000].
- c) Tiene infinitas soluciones, pero ninguna en el intervalo [1000, 2000].
- d) No tiene solución, pues $mcd(60, 35) \neq 1$.

Ejercicio 60. La clase del 28 módulo 75

- a) Tiene un inverso.
- b) No tiene inverso porque ni 4 ni 15 son primos.
- c) Tiene dos inversos.
- d) Es un divisor de cero.

Ejercicio 61. Las dos últimas cifras del número 37129373222227⁵²⁴⁵²⁵²⁷³⁰¹⁰ son

- a) 27.
- b) 49.
- c) 91.
- d) 63.

Ejercicio 62. Sea p un número primo. La congruencia $\alpha x \equiv 1 \pmod{p^2}$

- a) No tiene solución, pues p² no es primo.
- b) Tiene solución si, y sólo si, $ax \equiv 1 \pmod{p}$ tiene solución.
- c) Tiene solución, ya que $mcd(a, 1)|p^2$.
- d) Tiene solución salvo que a sea múltiplo de p².

Ejercicio 63. El número de unidades de \mathbb{Z}_{123} es

- a) 0
- b) 40
- c) 80
- d) 122

Ejercicio 64. Disponemos de 45 billetes de 20 euros, y 18 billetes de 50 euros. ¿De cuántas formas distintas podemos conseguir 1110 euros?

- (a) 7.
- (b) 11.
- (c) 9.
- (d) 5.

Ejercicio 65. Sea $\alpha = 24^{1234}$. La congruencia $\alpha x \equiv 6 \mod 11$ tiene como solución a:

- 1. x = 3.
- 2. x = 7.
- 3. x = 10.
- 4. x = 2.

Ejercicio 66. ¿Cuál de los siguientes anillos es un cuerpo?

- a) $\mathbb{Z}_7[x]$.
- b) $\mathbb{Z}_5[x]_{x^2-1}$.
- c) $\mathbb{Z}_2[x]_{x^2+1}$.
- d) $\mathbb{Z}_3[x]_{x^2+1}$.

Ejercicio 67. ¿Cuál de los siguientes grupos de polinomios de $\mathbb{Z}_7[x]$ es múltiplo de $x^2 - 1$?

- a) $x^{2n} + 1$ para $n \ge 1$.
- b) $x^{4n} + x^{2n} 2$ para $n \ge 1$.
- c) $x^{2n} x^n 1$ para $n \ge 1$.
- d) $x^{2n} 2x^n + 1$ para $n \ge 1$.

Ejercicio 68. Dados $p(x) = x^4 + x^3 + x^2 + x$ y $q(x) = x^5 + x^2 + x + 1$ dos polinomios con coeficientes en \mathbb{Z}_2 , el máximo común divisor de p(x) y q(x) vale:

- a) $x^2 + 1$.
- b) $x^2 + x$.
- c) $x^4 + x^3 + x^2 + x$.
- d) 1.

Ejercicio 69. Sea $A = \mathbb{Z}_5[x]_{x^4+3x^3+3x^2+x+2}$, y sea $p(x) = x^2 + 1 \in A$. Entonces:

- a) p(x) no tiene inverso en A, pues $x^4 + 3x^3 + 3x^2 + x + 2$ tiene a x = 1 como raíz.
- b) p(x) no tiene inverso en A, pues $x^2 + 1$ no es irreducible.
- c) p(x) tiene inverso en A y vale $2x^3 + x^2 + 4x + 1$.
- d) p(x) tiene inverso en A y vale $x^3 + x^2 + 4x + 2$.

Ejercicio 70. Determina cuál de los siguientes anillos es un cuerpo:

- 1. $\mathbb{Z}_3[x]_{x^2+1}$.
- 2. $\mathbb{Z}_5[x]_{x^2+1}$.
- 3. $\mathbb{Z}_{11}[x]_{x^2+1}$.
- 4. $\mathbb{Z}_{13}[x]_{x^2+1}$.

Ejercicio 71. Sea $A = \mathbb{Z}_2[x]_{x^4+x+1}$, y $p(x) = x^3 + x^2 + x + 1 \in A$. Entonces:

- a) p(x) no tiene inverso, ya que no es irreducible.
- b) p(x) tiene inverso, y vale $x^3 + x + 1$.
- c) p(x) no tiene inverso, pues p(1) = 0.
- d) p(x) tiene inverso y vale x^3 .