

	Sl. 11.6. Dvoplošni eliptički hiperboloid $ \text{Sl. 11.6. Dvoplošni eliptički hiperboloid} $ Dvoplošni u imenu plohe dolazi od toga što se ploha sastoji od dva odvojena dijela, kako je vidljivo sa slike. Opravdajmo tu sliku. Uzmimo ravninu $z=h$ i potražimo njezin presjek s plohom. Dobivamo jednadžbu $ \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} - 1. $ Vidimo da je presjek prazan skup, ukoliko je $-c < h < c$. Zato u pojasu $-c < z < c$ ploha nema svojih točaka. Za $z > c$ dobivamo gornji dio plohe, za $z < -c$ njezin donji dio. Iz iste jednadžbe vidimo da je za $ z > c$ presjek elipsa. Točke $(0,0,\pm c)$ su tjemena plohe.
	Izaberemo li ravnine $x=h$ ili pak $y=h$, za presjek ćemo dobiti hiperbole čija je realna os paralelna s osi Oz . Tako na primjer $y=h$ daje $-\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1 + \frac{h^2}{b^2}.$ 4. Eliptički stožac . To je ploha s jednadžbom $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$ Ona je neograničena, simetrična s obzirom na koordinatne ravnine i s obzirom na ishodište koordinatnog sustava. Često u nazivu izostavljamo riječ 'eliptički'.
	Sl. 11.7. Eliptički stožac
	Presjek s ravninom $z=h$ daje elipsu, presjeci s ravninama $x=h$ i $y=h$ su hiperbole. Ako je $a=b$, tad dobivamo kružni stožac.
	Ova činjenica omogućava jednu zanimljivu interpretaciju nastanka ovih triju ploha. Postoji <i>neprekidna deformacija</i> (koja odgovara mijenjanju vrijednosti parametra h i koja jednoplošni hiperboloid pretvara najprije u stožac, a zatim u dvoplošni hiperboloid. Napišimo jednadžbu $u = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2}.$ Ona predstavlja jednadžbu trodimenzionalnog tijela u četiridimenzionalnom prostoru opisanom varijablama (x, y, z, u) ! Fiksiramo li vrijednost varijable u , pa stavimo na primjer $u = h$ dobivamo presjek tog tijela s trodimenzionalnim prostorom paralelnim s 'našim' prostorom $Oxyz$. Postupak je sličan gore opisanim presjecima ploha s ravninama paralelnim koordinatnoj ravnini xOy . Projekcija tog presjeka u naš trodimenzionalni prostor daje gore navedenu jednadžbu. Mijenjanjem parametra h koji preko nule prelazi u negativne vrijednosti, ti se presjeci neprekidno transformiraju iz jednoplošnog preko stošca u dvoplošni hiperboloid. Tako se mijenjanjem parametra h dobiva efekt $prodora$ četiridimenzionalne plohe kroz naš trodimenzionalni prostor.
	neke, poput sljedećeg. 6. Prazan skup. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} + 1 = 0. \tag{16}$ B. Jedna svojstvena vrijednost matrice jednaka nuli (rang matrice jednak 2). 1. Eliptički paraboloid. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz. \tag{17}$ To je ploha simetrična s obzirom na koordinatne ravnine xOz , yOz . Neograničena je. Ako je $p > 0$, pripadaju joj točke samo unutar poluprostora $z > 0$, slično za $p < 0$. Točka $(0,0,0)$ je tjeme plohe.
	Presjeci plohe s ravninama $z = h$ su elipse, presjeci s ravninama $x = h$ ili $y = h$ parabole — odatle ime plohi. 2. Hiperbolički paraboloid. To je ploha s jednadžbom $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz. \tag{18}$ Ona je neograničena, simetrična s obzirom na koordinatne ravnine xOz i yOz .
	Presjeci s ravninama $z=h$ su hiperbole $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2ph.$ U ovisnosti o predznaku broja h , realna se os ovih hiperbola mijenja. U graničnom slučaju, za $h=0$ presjek čine dva $pravca$ $\frac{x}{a} = \pm \frac{y}{b}$, koja se sijeku u ishodištu. Ta su dva pravca ujedno asimptote tih hiperbola. Presjeci s ravninama $x=h$ i $y=h$ su parabole. Sama ploha naziva se još $sedlasta$ $ploha$. Točka $(0,0,0)$ je $sedlo$. $ $
	 2pz = x²/a² - y²/b² mi opisujemo njezin prodor kroz dvodimenzionalni prostor (ravninu z = h). Stvar je gledanja da li ćemo zamisliti da putuje ravnina z = h ili pak da ravnina miruje, a da kroz nju prodire ploha. Kao presječne krivulje dobivamo familiju hiperbola koje se neprekidno deformiraju na način da im se tjemena približavaju ishodištu, prelaze u dva pravca i potom u drugu familiju hiperbola. Sl. 11.10. Familije hiperbola dobivene prodorom hiperboličkog paraboloida kroz ravn paralelnu s xOy ravninom 3. Eliptički cilindar. To je ploha s jednadžbom
	Simetrična je s obzirom na sve koordinatne osi i s obzirom na ishodište. Sl. 11.11. Eliptički cilindar Presjeci s ravninom $z = h$ su elipse. Njihova je jednadžba $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (koju dobivamo uvrštavajući $z = h$ u (19)!). Riječ je o identičnim jednadžbama, svi su ti presjeci sukladne elipse (koje leže u različitim ravninama).
	Riječ cilindar govori da je ova ploha cilindrična. Cilindrične su plohe plohe različitih oblika, okarakterizirane time da im se u jednadžbi <i>ne pojavljuje</i> neka od nepoznanica, poput nepoznanice z u gornjoj jednadžbi. Kao posljedicu toga imamo sljedeću činjenicu: ako točka $(x, y, 0)$ leži u plohi (zadovoljava njezinu jednadžbu), tad tu istu jednadžbu zadovoljavaju i sve točke (x, y, z) , za bilo koju vrijednost nepoznanice z . Stoga je cilindrična ploha unija pravaca paralelnih s osi Oz (nazivamo ih <i>izvodnicama</i>), koji prolaze kroz neku krivulju u xOy ravnini — zvanu $ravnalica$ plohe. U ovom je slučaju ta ravnalica elipsa. 4. Prazan skup. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0. \tag{20}$ 5. Pravac. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0. \tag{21}$ 6. Hiperbolički cilindar. To je cilindrična ploha s jednadžbom $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. \tag{22}$ Niena je izvodnica hiperbola u Oxy ravnini identične jednadžbe. Presjeci s
11.4.	Njena je izvodnica hiperbola u Oxy ravnini, identične jednadžbe. Presjeci s ravninama $z=h$ su sukladne hiperbole. Sl. 11.12. Hiperbolički cilindar 7. Par ravnina koje se sijeku. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0. \tag{23}$
	C. Dvije svojstvene vrijednosti matrice jednake nuli (rang matrice jednak 1). 1. Parabolički cilindar $x^2 = 2py$. (24) To je cilindrička ploha čija je izvodnica parabola.
	Sl. 11.13. Parabolički cilindar 2. Prazan skup. $x^2 + a^2 = 0. \tag{25}$ 3. Par paralelnih ravnina. $x^2 - a^2 = 0. \tag{26}$ 4. Jedna ravnina. $x^2 = 0. \tag{27}$ Time smo naveli sve moguće slučajeve. Pritom smo izdvojili samo jedan mogući izbor nepoznanica. Mijenjajući imena varijablama, mijenjamo i položaj nacrtanih ploha, no to će čitatelj sam lako zaključiti. Pozitivnost kvadratne forme
	 Među svojstvima koje nas zanimaju kod neke kvadratne forme f (x) svakako spada i problem njezine pozitivnosti. Promatramo li vrijednosti koje ona može poprimiti za različite izbore vektora x, moguće je navesti pet različitih situacija. Uz osnovnu definiciju navest ćemo odmah i kada će se dogoditi ta mogućnost. Kriterij nam je predznak svojstvenih vrijednosti. Pozitivnost kvadratne forme Svaka se kvadratna forma može napisati (nakon zamjene varijabli) u kanonskom obliku f (y1,, yn) = λ1y1 + + λnyn gdje su λ1,, λn svojstvene vrijednosti pripadne matrice. 1. f (x) > 0 za svaki x ≠ 0. Tad kažemo da je forma pozitivno definitna. Ovaj će se slučaj zbiti kad su sve svojstvene vrijednosti pozitivne. 2. f (x) ≥ 0, ali postoje vektori za koje je f (x) = 0. kažemo da je forma pozitivno semidefinitna. Tu su svojstvene vrijednosti pozitivne osim pekoliko njih koje su jednake nuli
	mo da je forma pozitivno semidefinitna . Tu su svojstvene vrijednosti pozitivne, osim nekoliko njih koje su jednake nuli. 3. f(x) < 0 za svaki x ≠ 0. Forma je negativno definitna , sve svojstvene vrijednosti manje su od nule. 4. f(x) ≤ 0 i postoji x za koji je f(x) = 0. Forma je negativno semidefinitna . Svojstvene vrijednosti su manje od nule, osim nekoliko njih koje su jednake nuli. 5. f(x) mijenja znak. Forma je indefinitna . Među svojstvenim vrijednostima postoje neke različitog predznaka. Cilj nam je odgovoriti na pitanje koje je vrste neka forma, a da ju ne svodimo na kanonski oblik. Time izbjegavamo računanje svojstvenih vrijednosti ili neki drugi postupak dijagonalizacije kvadratne forme. Opišimo prvi kriterij. Jacobijev kriterij . Izvodimo ga iz poznate veze definitnosti i svojstvenih vrijednosti. Karakteristični polinom matrice A koja odgovara kvadratnoj formi napišimo u obliku
Тео	Silvesterov kriterij. Pozitivnost kvadratne forme može se utvrditi čak i bez računanja karakterističnog polinoma. Vrijedi sljedeći (Silvester) Kvadratna forma je pozitivna onda i samo onda ako su sve glavne minore odgovarajuće matrice pozitivne: $\Delta_1 := a_{11} > 0, \Delta_2 := \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \Delta_3 := \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} > 0, \dots,$ $\Delta_n := \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} > 0.$
	Slična tvrdnja vrijedi i za negativnu definitnost. Forma je negativno definitna onda i samo onda ako vrijedi $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, \dots , (-1)^n \Delta_n > 0.$ Ponovo je jedan smjer teorema (nužnost) jednostavno pokazati, kroz vezu determinanti sa svojstvenim vrijednostima koje moraju biti pozitivne. Obratna tvrdnja — iz pozitivnosti minora slijedi pozitivna definitnost forme — mnogo je složenija. Njezin dokaz izlazi izvan okvira ovoga udžbenika 1 .