

Department of Electrical Engineering and Computer Science

CIS 465 Multimedia Fall 2021

Assignment 2

(Due date: 10/04/21)

1. Construct the Huffman code of the source whose symbol probabilities are defined below. [3 points]

r _k	$p_r(r_k)$			
$r_0 = 0$	0.11			
$r_1 = 1/7$	0.01			
$r_2 = 2/7$	0.09			
$r_3 = 3/7$	0.17			
$r_4 = 4/7$	0.23			
$r_5 = 5/7$	0.07			
$r_6 = 6/7$	0.17			
$r_7 = 1$	0.15			

2. Consider the simple 7×7 , 8-bit image: [6 points]

77	122	111	0	0	255	255
0	111	111	77	111	77	77
111	111	0	111	111	0	255
122	0	111	111	122	255	0
111	111	77	111	111	255	255
49	49	3	49	49	3	3
3	122	111	200	122	111	111

- **a.** Compress the image using Huffman coding.
- **b.** Compute the compression achieved and the effectiveness of Huffman coding.

Department of Electrical Engineering and Computer Science

3. Write programs to perform the following transformations on the grayscale images (you may *pick any image*). **Display** the output images along with the respective input images. [11 points]

$$g(x,y) = \begin{cases} 0 & \text{if } f(x,y) < t \\ L - 1 & \text{if } f(x,y) \ge t \end{cases} \text{ where } t = 70 \text{ and } 170$$

$$g(x,y) = \begin{cases} 0 & \text{if } f(x,y) < t1 \\ f(x,y) & \text{if } t1 \le f(x,y) \le t2 \\ 0 & \text{if } f(x,y) > t2 \end{cases} \text{ where } t1 = 70 \text{ and } t2 = 170$$

$$s = c \log \left(1 + |r| \right)$$

$$s = c r^{\eta}$$

What to turn in:

Submit your work through **Blackboard** as **one single** folder including:

- An HTML file called index.html that links to the overall summary of your answers (screenshot of part 1 output).
- A folder called CIS_465 that includes all files, program codes along with the supported files, dataset needed to reproduce your code (if any), etc.

Notes:

- Please make sure that your program runs successfully at other machines!
- Late submissions will receive a penalty of 10% per day up to two days.
- No material will be accepted after two days past the deadline.
- Email submissions will not be accepted.