Liaisons chimiques

Agrégation 2020

De l'atome aux molécules

Réprésentation d'un atome

Cristaux (Diamant et graphite)

Eau en phase liquide

Liaisons covalente

Gilbert N. Lewis (liaison covalente : 1916)

Formule de Lewis d'une molécule

Gilbert N. Lewis

Représentation des atomes qui la constituent et de ses électrons de valence regroupés en doublets qui son représentés par des tirets.

On distingue : - les doublets liants (électrons partagés entre deux atomes)

- les doublets non liants qui sont des pairs d'électrons de valence ne servant pas aux liaisons (appartiennent uniquement à l'atome sur lequel ils sont situés)

Formule de Lewis : Règles à respecter

Règle de l'octet : Les édifices moléculaire sont plus stables lorsque les atomes des périodes 2 et 3 sont entourés de 8 électrons.

Règle du duet : L'hydrogène et l'hélium chercherons à être entouré de 2 électrons de valence

Energie de liaison et structure moléculaire

Diagramme énergétique du dihydrogène

Energie de liaisons

Liaison	Énergie de liaison E_{ℓ} (kJ·mol $^{-1}$)		
с—н	413		
c—c	348		
c—o	360		
0=0	496		
о—н	463		
c=o	804		
C = C	614		

Combustion du méthane

Combustion du méthane

Combustion du méthane

Combustion du méthane

Liaison polarisée

Définition liaison polarisée : Une liaison covalente entre deux atomes A et B est polarisée si la différence d'électronégativité est suffisamment importante.

Définition molécule polaire : Une molécule est polaire si les positions moyennes des charges partielles positives et négatives ne sont pas confondues. Le cas contraire, elle est apolaire.

Cristaux de sel

De l'atome à la molécule et au solide ionique ...

Solide ionique

Molécule d'eau

De l'atome à la molécule et au solide ionique ...

Solide ionique

Vapeur d'eau

...et de la molécule aux phases condensées

Solide ionique

Diiode solide

Comment expliquer que le diiode existe à l'état solide Que l'eau existe à l'état solide et liquide?

Eau à l'état solide et liquide

...et de la molécule aux phases condensées

Solide ionique

Diiode solide

Eau à l'état solide et liquide

Vapeur d'eau

Pattes du Gecko

Évolution des températures d'ébullition pour les atomes contenus dans la 6^e colonne

http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/chimie/01/04-Chimie_descriptive/co/module_04-Chimie_descriptive_12.html

Évolution des températures d'ébullition de molécules composées d'atomes contenus dans la 6^e colonne

http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/chimie/01/04-Chimie descriptive/co/module 04-Chimie descriptive 12.html

Liaisons hydrogènes pour l'eau

<u>Définition</u>: Une liaison hydrogène est une interaction attractive établie entre un atome d'hydrogène (lié à un atome A très électronégatif) et à un atome B très électronégatif et porteur d'un doublet d'électrons non liant.

Acide maléique et fumarique

Acide maléique

Acide fumarique

Au laboratoire : Utilisation d'un Banc Kofler

Liaisons hydrogènes- ADN

Chimie PCSI, Tout-en-un SCHOTT

Ponts hydrogène : Kevlar®

$$\begin{array}{c|c} & & & & \\ & &$$

Bilan sur les énergies

Type de liaison		Exemple	Énergie molaire typique
Liaison covalente	Liaison simple	C—C	300 kJ/mol
	Liaison double	C=O	600 kJ/mol
	Liaison triple	N≡N	900 kJ/mol
Liaison ionique		NaCl	700–1000 kJ/mol
Liaison de Van der Waals		gecko	20 kJ/mol
Liaison hydrogène		glace	50 kJ/mol

Le graphite

Carbone graphite