THE QUADRATIC FORMULA

#27

You have used factoring and the Zero Product Property to solve quadratic equations. You can solve <u>any</u> quadratic equation by using the **QUADRATIC FORMULA.**

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

For example, suppose $3x^2 + 7x - 6 = 0$. Here a = 3, b = 7, and c = -6. Substituting these values into the formula results in:

$$x = \frac{-(7) \pm \sqrt{7^2 - 4(3)(-6)}}{2(3)}$$
 $\Rightarrow x = \frac{-7 \pm \sqrt{121}}{6}$ $\Rightarrow x = \frac{-7 \pm 11}{6}$

Remember that non-negative numbers have both a positive and negative square root. The sign \pm represents this fact for the square root in the formula and allows us to write the equation <u>once</u> (representing two possible solutions) until later in the solution process.

Split the numerator into the two values:
$$x = \frac{-7 + 11}{6}$$
 or $x = \frac{-7 - 11}{6}$

Thus the solution for the quadratic equation is:
$$x = \frac{2}{3}$$
 or -3.

Example 1

Solve $x^2 + 3x - 2 = 0$ using the quadratic formula.

First, identify the values for a, b, and c. In this case they are 1, 3, and -2, respectively. Next, substitute these values into the quadratic formula.

$$x = \frac{-(3) \pm \sqrt{3^2 - 4(1)(-2)}}{2(1)} \Rightarrow x = \frac{-3 \pm \sqrt{17}}{2}$$

Then split the numerator into the two values: $x = \frac{-3 + \sqrt{17}}{2}$ or $x = \frac{-3 - \sqrt{17}}{2}$

Using a calculator, the solution for the quadratic equation is: x = 0.56 or -3.56.

Example 2

Solve $4x^2 + 4x = 3$ using the quadratic formula.

To solve any quadratic equation it must first be equal to zero. Rewrite the equation as $4x^2 + 4x - 3 = 0$. Identify the values for a, b, and c: 4, 4, and -3, respectively.

Substitute these values into the quadratic formula.

$$x = \frac{-(4) \pm \sqrt{4^2 - 4(4)(-3)}}{2(4)}$$
 $\Rightarrow x = \frac{-4 \pm \sqrt{64}}{8}$ $\Rightarrow x = \frac{-4 \pm 8}{8}$

Split the numerator into the two values: $x = \frac{-4+8}{8}$ or $x = \frac{-4-8}{8}$, so $x = \frac{1}{2}$ or $-\frac{3}{2}$.

Use the quadratic formula to solve each of the following equations.

1.
$$x^2 - x - 6 = 0$$

3.
$$x^2 + 13x + 42 = 0$$

5.
$$x^2 + 5x + 4 = 0$$

7.
$$5x^2 - x - 4 = 0$$

9.
$$6x^2 - x - 15 = 0$$

11.
$$3x^2 + 5x - 28 = 0$$

13.
$$4x^2 - 9x + 4 = 0$$

15.
$$20x^2 + 20x = 1$$

17.
$$7x^2 + 28x = 0$$

19.
$$8x^2 - 50 = 0$$

2.
$$x^2 + 8x + 15 = 0$$

$$4 \quad x^2 - 10x + 16 = 0$$

6.
$$x^2 - 9x + 18 = 0$$

8.
$$4x^2 - 11x - 3 = 0$$

10.
$$6x^2 + 19x + 15 = 0$$

12.
$$2x^2 - x - 14 = 0$$

14.
$$2x^2 - 5x + 2 = 0$$

16.
$$13x^2 - 16x = 4$$

18.
$$5x^2 = -125x$$

20.
$$15x^2 = 3$$

Answers

1.
$$x = -2, 3$$

2.
$$x = -5, -3$$

1.
$$x = -2, 3$$
 2. $x = -5, -3$ 3. $x = -7, -6$ 4. $x = 2, 8$

4.
$$x = 2.8$$

5.
$$x = -4, -1$$

6.
$$x = 3, 6$$

5.
$$x = -4, -1$$
 6. $x = 3, 6$ 7. $x = -\frac{4}{5}, 1$ 8. $x = -\frac{1}{4}, 3$

8.
$$x = -\frac{1}{4}$$
, 3

9.
$$x = -\frac{3}{2}, \frac{5}{3}$$

10.
$$x = -\frac{3}{2}, -\frac{5}{3}$$

11.
$$x = -4, \frac{7}{3}$$

9.
$$x = -\frac{3}{2}, \frac{5}{3}$$
 10. $x = -\frac{3}{2}, -\frac{5}{3}$ 11. $x = -4, \frac{7}{3}$ 12. $x = \frac{1 \pm \sqrt{113}}{4}$

13.
$$x = \frac{9 \pm \sqrt{17}}{8}$$

14.
$$x = 2, \frac{1}{2}$$

13.
$$x = \frac{9 \pm \sqrt{17}}{8}$$
 14. $x = 2, \frac{1}{2}$ 15. $x = \frac{-20 \pm \sqrt{480}}{40} = \frac{-5 \pm \sqrt{30}}{10}$

16.
$$x = \frac{16 \pm \sqrt{464}}{26} = \frac{8 \pm 2\sqrt{29}}{13}$$

17.
$$x = -4$$
, (

17.
$$x = -4, 0$$
 18. $x = -25, 0$

19.
$$x = -\frac{5}{2}, \frac{5}{2}$$

19.
$$x = -\frac{5}{2}, \frac{5}{2}$$
 20. $x = \frac{\pm \sqrt{5}}{5}$