|Sols HW6|
|P1|
|a)
$$P_{n}(x) \in R[x]$$
, $m \in \mathbb{Z}_{\geq -s}$, $P_{-s} = 0$, $P_{o} = 1$
| First rule that $P_{m+s} - x P_{m} \in R_{m}[x]$ (Since P_{o} 's are mornic)

So, we are write

$$P_{m+s} - x P_{m} = \sum_{l=0}^{m} a_{l} P_{l} , \quad a_{l} \in R$$

take the product (\cdot, P_{s}) with $s \in \{p_{1...}, m-2\}$, we see Q_{s} the the product (\cdot, P_{s}) with $s \in \{p_{1...}, m-2\}$, we see Q_{s} then, $Q_$

$$-\langle P_m, x P_m \rangle = a_{mn} \langle P_m, P_m \rangle \Rightarrow a_m = -\frac{\langle P_m, x P_m \rangle}{\langle P_m, P_m \rangle}$$

So
$$P_{m+1} = \left(x - \frac{\langle P_m, x P_m \rangle}{\langle P_m, P_m \rangle}\right) P_m - \frac{\langle P_m, P_m \rangle}{\langle P_{m-1}, P_{m-2} \rangle} P_{m-1}$$

which is what we wanted

Note: alternatively, we could have considered $f = P_{m+1} - (x-\alpha_m)P_m + \beta_m P_{m-1}$ and show that, adjust chaosing α_m and β_m appropriately $\langle f, P_2 \rangle = 0$ for $\ell=0,...,m$ and $\ell=0,...,m$ and $\ell=0$.

b) we consider
$$y = e^{-x^2/2} \cdot u$$
, so $\frac{dy}{dx^2} = \frac{d}{dx} \left(-x e^{-x^2/2} u + e^{-x^2/2} \frac{du}{dx} \right)$

$$= e^{-x^2/2} \left(x^2 \cdot u - 2x \frac{du}{dx} - u + \frac{d^2u}{dx^2} \right)$$

Replacing back into the Schrödinger eq.:

$$\frac{d^2u}{dx^2} - 3 \times \frac{du}{dx} + (2\varepsilon - 1)u = 0 \quad (*)$$

We try the amoty
$$u = Z_{i=0}^{\infty} C_{i} \times i$$
, we $\frac{du}{dx} = Z_{i}^{\infty} i C_{i} \times i^{-1}$

$$\frac{d^2u}{dx^2} = \sum_{i=0}^{\infty} i(i-1)C_i x^{i-2}$$

Putting this in (*), we get

$$\sum_{i=0}^{\infty} \left[i(i-1)C_{i} \times^{i-2} - 2iC_{i} \times^{i} + (2\xi-1)C_{i} \times^{i} \right] = 0$$

we look at the coeff. of Xi and get:

$$(i+1)(i+2)C_{i+2} - 2iC_i + (2E-1)C_i = 0 = C_{i+2} = C_i \cdot \frac{(2i+1-2E)}{(i+1)(i+2)}$$

So, for arbitrary & 3 & IR, there rolutions are infinite series.

Let's write some of the terms on this recursion relation, to see if we can truncate them for special values of E:

$$C_2 = C_0(1-2\varepsilon)$$

$$C_3 = C_1 \cdot \underbrace{(3-2\varepsilon)}_{6}$$

$$C_{4} = C_{2} \frac{(5-2\epsilon)}{12}$$

$$C_5 = C_3 (157 - 28)$$

$$C_6 = C_4 (9-2E)$$

and no on. Clearly, C_K with K odd are related between them and some for K even. So, in order for the series to trumcate, we need $E = \frac{2l+1}{2} = l+\frac{1}{2}$ with l = 0,1,2,... This & will set $C_K = 0$ for $C_K = 0$ for $C_K = 0$ for all certain $C_K = 0$ for all odd or even $C_K = 0$ for all equations for the $C_K = 0$ for all even or odd $C_K = 0$ for all equations for the $C_K = 0$ for all selections and by setting only a finite number of them $C_K = 0$ for the $C_K = 0$ for the

Let's de examples The eq. looks like then:

$$\frac{d^2u}{dx^2} - 2 \times \frac{du}{dx} + 2 \times 2 \cdot u = 0 \qquad \ell = 0, 1, 2, \dots$$

Lat's write some of the solutions we found:

$$\ell=0$$
, $\ell=\frac{1}{Z}$ \Rightarrow $\ell=1$ (only $\ell_0\neq 0$, we mountainly $\ell=1$)

$$\ell=1, \ \ell=3_2 \Rightarrow \mathcal{U}=\times \ (\text{only } C_1\neq 0 \text{, we set } C_0=C_2=C_4=..=0 \text{, and mininge}$$
 to make it monic)

$$l=2, \ell=\frac{5}{2}$$
 $\mathcal{U}=\mathcal{C}_0 \mathcal{U}-2 \times^2 \mathcal{C}_0 \xrightarrow{\text{make it}} \mathcal{U}=-\frac{1}{2}+\times^2$

$$\ell=3, \ \ell=\frac{\pi}{2} \Rightarrow u=-\frac{3}{2}x+x^3$$

$$\ell = 4, \ \ell = \frac{9}{2} \Rightarrow \ u = \frac{3}{4} - 3x^2 + x^4$$

a) Suppose $\lambda \in \sigma(A)$, then $\exists v \neq 0 \text{ s.t. } Av = \lambda v$, always we can assume k is st. $A^{k} = 0$ and $A^{k-1} \neq 0$, no we have

Since
$$v \neq 0 \Rightarrow \lambda^{k} = 0 \Rightarrow \lambda = 0$$

$$\lambda^{k} \cdot v = \lambda^{k} \cdot v = \lambda^{k} \cdot v = 0$$

$$Q = \begin{pmatrix} A & D \\ 0 & B \end{pmatrix} \text{ if } Q \in \mathcal{M}_{m,m}(F) \text{ then so if the block}$$

A has dimension K (i.e. A & M_K, K (F)) then B & M_M-K, M-K (F)

and DE MK, m-K (F) (and the block marked as O, is of dimension

then we can write (where 1 e "is the identity of dimension e)

$$det(Q - \lambda \cdot 1_m) = det\begin{pmatrix} A - \lambda \cdot 1_k & D \\ 0 & B - \lambda \cdot 1_{m-k} \end{pmatrix} = det((A - \lambda \cdot 1_k) \cdot (B - \lambda \cdot 1_{m-k}))$$

= $det(A-\lambda \cdot 1_{\kappa}) det(B-\lambda \cdot 1_{m-\kappa})$

We did this one in the lettere. Up to row reor Y_{ℓ} we write $v_{\ell}V$ as $v=\sum_{i=1}^{m}a_{i}v_{i}$, then

 $Qv = \sum_{i=1}^{m} a_i Qv_i = \sum_{i=1}^{k} a_i \lambda_i v_i + \sum_{l=k+1}^{m} a_l MQ_{l} \sum_{j=1}^{m} M(Q)_{j \in J}$

and for
$$l = k+1, ..., m$$

MRQ: $v_{i} = \sum_{j=1}^{m} \mathcal{M}(R)_{j,k} v_{j}$

then, from (1):

 $\mathcal{M}(R)_{ij} = \begin{cases} \lambda_{i} & i=j \\ 0 & \text{otherwise} \end{cases}$

where $\lambda_{i} = ... = \lambda_{i} = \lambda_{i}$

 $\mathcal{M}(Q)_{ej} = 0$ for $l \in \{k+s, \dots, m\}$ $j \in \{l, \dots, k\}$ and for the rest of composents of $\mathcal{M}(Q)$ we connect may amything, but this is enough to write: $\mathcal{M}(Q) = \begin{pmatrix} \lambda \cdot 1_k D \end{pmatrix}$ $\mathcal{M}(Q) = \mathcal{M}(Q)$ $\mathcal{M}(Q) = \mathcal{M}(Q)$ $\mathcal{M}(Q) = \mathcal{M}(Q)$ $\mathcal{M}(Q) = \mathcal{M}(Q)$ $\mathcal{M}(Q) = \mathcal{M$

d) Suppose Q has an eigenvalue $\lambda \in \sigma(Q)$, then denote $\{V_1,...,V_K\}^a$ basis of the space $\bigvee_{\lambda} \subseteq \bigvee_{\lambda} , \text{ so } K = \dim V_{\lambda} = \text{multigeom.}(\lambda)$ (geometric multiplicity of λ). Then, in this basis we can write (from c)):

$$M(Q) = \begin{pmatrix} \lambda \cdot 1_k & D \\ 0 & B \end{pmatrix}$$

Now, we consider the characteristic polymerial of Q (that doesn't defend on the

 $p(\lambda') = \text{dit} (Q - \lambda' \cdot 1) = \text{dit} (M(Q) - \lambda' \cdot 1) = (\lambda - \lambda')^{k} \text{det} (B - \lambda' \cdot 1) \in \mathbb{F}[\lambda']$ As λ is a root of $p(\lambda')$ of multiplicity (algebraic multiplicity) $\geq k$ An example is $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ where $\dim V_{\lambda=1} = 1$ and $\operatorname{multiplicity}(\lambda=1) = 2$

P3]

a) Clearly,
$$0 \in V$$
, we we have to show that given $p(x)$, $q(x) \in V$ and $x/p \in R$, then $x/p = pq \in V$.

Where $p = \sum_{i=0}^{m} a_i x^i$, $a_i = a_{m-i}$
 $q = \sum_{i=0}^{m} b_i x^i$, $b_i = b_{m-i}$

As $x/p + pq = \sum_{i=0}^{m} (a_{i}a_{i} + \beta b_{i}) x^{i} = \sum_{i=0}^{m} c_{i}x^{i}$

and $C_{i} = \alpha a_{i} + \beta b_{i} = \alpha a_{m-i} + \beta b_{m-i} = C_{m-i}$, we sup $ap + pq \in V$

b) Consider $p \in V$, then write $m = 2m$, we so what the constraints on the cultivator, $a_0 = a_{2m}$, $a_1 \cdot a_{2m-1}$, ..., $a_m = a_m$ and we have the constraints on the cultivator, $a_0 = a_{2m}$, $a_1 \cdot a_{2m-1}$, ..., $a_m = a_m$ and we have $a_{m-1} x^{m+1} + a_{m-2} x^{m+2} + a_{m-1} x^{m+1} + a_{m-2} x^{m+2} + a_{m-2} x^{m+2} + a_{m-1} x^{m+1} + a_{m-2} x^{m+2} + a_{m-1} x^{m+1} + a_{m-2} x^{m+2} + a_{m-1} x^{m+1} + a_{m-2} x^{m+2} + a_{m-2} x^{m+2} + a_{m-1} x^{m+1} + a_{m-2} x^{m+2} + a_{m-1} x^{m+1} + a_{m-2} x^{m+2} + a_{m-2} x^{m+2} + a_{m-1} x^{m+1} + a_{m-2} x^{m+2} + a_{m-2} x^{m+$

9) we know that dim $\mathbb{F}_{m-1}[x] = m$ and $\dim V = m+1$ (from b)), so we need to show $V \cap \mathbb{F}_{m-1}[x] = \{0\}$ since $\dim (V + \mathbb{F}_{m-1}[x]) = \dim V + \dim \mathbb{F}_{m-1}[x] - \dim (V \cap \mathbb{F}_{m-1}[x])$

Comider $P = \sum_{i=0}^{m} a_i \times^i \in \mathbb{F}_{m-n}[\times] \cap V$

Since $P \in \mathcal{F}_{m-1}[X] \Rightarrow P = \sum_{i=0}^{m-1} a_i X^i$ and $a_m = a_{m+1} = \dots = a_{2m} = 0$

Since also $p \in V$, $a_i = a_{zm-i}$ for $i = 0, ..., m \Rightarrow a_o = a_{m} = 0$ $a_1 = a_{zm-1} = a_{zm-1} = 0$

 $a_{m-1} = a_{m+1} = 0$

=> P=0 No VOF_n=[x]={0}

d) if $P = \sum_{i=0}^{m} a_i x_i \in V$ $\Rightarrow a_m = a_{zm-m} = a_{m-m} = -a_m \Rightarrow a_m = 0$

hence a general element of V' can be written as

 $P = \sum_{i=0}^{m-1} a_i x^i - \sum_{i=0}^{m-1} a_i x^{2m-i} = \sum_{i=0}^{m-1} a_i (x^i - x^{m-i})$

by an analogous argument than b) ? We can show dim' = m als is very clear that $V \cap V' = \{0\}$ (Since $P \in V \cap V' \Rightarrow a_i = -a_i \forall i$)

· · * Fm[x] = V&V'

```
a) A is a symmetric matrix, so we can diagonalize A in the form A = P^{\#}DP^{t}
    where P is a matrix made out of an orthonormal basis of eigenvectors of A.
   the characteristic phynomial of A is given by
                \det(A-\lambda \mathbf{1}) = (\lambda-2)\lambda((2-\lambda)^2-\mathbf{1}) = \lambda^2(Z-\lambda)^2
   So we have eigenvalues \lambda_1 = 0 and \lambda_2 = 2
   Vy has a orthogonal basis \left\{ \begin{pmatrix} 9 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, we manufixe the vectors and
   V_{\lambda_1} = Spom \left\{ \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \right\}
   Some for \lambda_2 gives \sqrt{\lambda_2} = \text{Spom} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} | \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}
   No A = PDP^{t} with P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & -1/2 \\ 0 & 1/2 & 0 & 1/2 \end{pmatrix} and D = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}
b) First let's show ze is eigenvector of C:
                   C \cdot z_1 = M \cdot z_1 + z_1(z_1^{\dagger} z_1) = (\lambda_1 + 1) z_1
 So, is eigenveils with eigenvalue \lambda_1 + 1. For the rest (i > 1)
```

 $(\cdot \vec{z}_i = M \cdot \vec{z}_i + \vec{z}_1(\vec{z}_i^t \cdot \vec{z}_i) = \lambda_i \vec{z}_i$ 0''

P5/

a) uEU => uE KenT No Tu = O EU

b) Consider u & U, then Tu & YmageT CU => Tu & U

c) Consider $v \in KerS$, then z=Tv and Sz=STv=TSv=018 $z \in KerS$ $v \in KerS$

d) Consider $v \in \mathcal{Y}_{mage}S$, no we can write $v = S \cdot u$, for some $u \in U$, then $Tv = TS \cdot u = STu = S(Tu) \in \mathcal{Y}_{mage}S$