Робастные варианты метода анализа сингулярного спектра

Третьякова Александра Леонидовна

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Голяндина Н.Э. Рецензент: к.ф.-м.н. Пепелышев А.Н.

Санкт-Петербург, 2020

Постановка задачи

Рассмотрим вещественнозначный временной ряд ${\sf X}=(x_1,\dots,x_N)$, где N — длина ряда.

Предполагаем, что $x_i = s_i + r_i$, $i = 1, \dots, N$, где r_i — шум.

Задача

Разложение временного ряда на интерпретируемые аддитивные составляющие:

$$X = S + R$$
,

S — сигнал,

R — шум.

Метод: «Гусеница»-SSA (Singular Spectrum Analysis) [Analysis of Time Series Structure: SSA and Related Techniques, Golyandina N., Nekrutkin V., Zhigljavsky A., 2001].

Постановка задачи

Рис.: График ряда с выделяющимся наблюдением и модуль ошибок восстановления сигнала в присутствии выброса и без него.

Задача: предложить устойчивые к выбросам модификации метода анализа сингулярного спектра и сравнить их между собой.

Постановка задачи

Задачи:

- Обзор и структурирование устойчивых вариантов метода SSA,
- Предложение модификации для нестационарного шума,
- Сравнение рассмотренных методов по трудоемкости,
- Сравнение рассмотренных методов по точности на примерах.

Метод SSA для выделения сигнала ранга, не превосходящего $\it r$

```
Ряд X = (x_1,\dots,x_N). Пусть 0 < L < N — длина окна. K = N - L + 1. Обозначим \mathcal{M} — пространство матриц L \times K, \mathcal{M}_{\mathcal{H}} — пространство ганкелевых матриц L \times K, \mathcal{M}_r — множество матриц ранга, не превосходящего r.
```

 $\mathsf{P}\mathsf{яд} \mapsto \mathsf{траекторная} \ \mathsf{матрица} \ \mathbf{X}$:

$$\mathbf{X} = [X_1 : \dots : X_K] = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ x_3 & x_4 & x_5 & \dots & x_{K+2} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & x_{L+2} & \dots & x_N \end{pmatrix}$$

- ullet Оператор вложения $\mathcal{T}: \mathbb{R}^N o \mathcal{M}_{\mathcal{H}}: \mathcal{T}(\mathsf{X}) = \mathbf{X}$.
- ullet $\Pi_r: \mathcal{M} o \mathcal{M}_r$ проектор на множество матриц ранга, не превосходящего r.
- ullet $\Pi_{\mathcal{H}}: \mathcal{M} o \mathcal{M}_{\mathcal{H}}$ проектор на пространство ганкелевых матриц.

Структура сигнала S: ранг траекторной (ганкелевой) матрицы $\mathcal{T}(\mathsf{S})$ равен r.

В результате получаем оценку сигнала:

$$\tilde{\mathsf{S}} = \mathcal{T}^{-1} \Pi_{\mathcal{H}} \Pi_r \mathcal{T}(\mathsf{X}),$$

где проекторы можно строить по различным нормам.

Будем рассматривать следующие варианты:

- ullet Проекторы Π_r и $\Pi_{\mathcal{H}}$ по норме в \mathbb{L}_2 (стандартный L2-SSA),
- Проекторы Π_r и $\Pi_{\mathcal{H}}$ по норме в \mathbb{L}_1 (L1-SSA),
- ullet Проекторы Π_r и $\Pi_{\mathcal{H}}$ по взвешенной норме в \mathbb{L}_2 (WL2-SSA).

L2-SSA. Вид проекторов по норме в \mathbb{L}_2

Определение

Пусть \mathbf{A} — матрица $L \times K$.

Норма в пространстве \mathbb{L}_2 (норма Фробениуса): $\|\mathbf{A}\|_{\mathrm{F}} = \sqrt{\sum\limits_{i=1}^{L}\sum\limits_{j=1}^{K}a_{ij}^2}.$

- $\Pi_{\mathcal{H}}$ проектор на множество ганкелевых матриц по норме Фробениуса посредством усреднения элементов на диагоналях $i+j=\mathsf{const}\colon \|\mathbf{X}-\mathbf{Y}\|_{\mathrm{F}}^2 \longrightarrow \min_{Y\in\mathcal{M}_{\mathcal{H}}}.$
- ullet Π_r проектор на множество матриц ранга r по норме Фробениуса: $\|\mathbf{X}-\mathbf{Y}\|_{\mathrm{F}}^2 \longrightarrow \min_{Y \in \mathcal{M}_r}$, $\mathbf{Y} = \sum_{i=1}^r \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}$.

L1-SSA. Вид проекторов по норме в \mathbb{L}_1

Определение

Пусть ${f A}$ — матрица L imes K. Норма в пространстве ${\Bbb L}_1: \|{f A}\|_1 = \sum\limits_{i,j} |a_{ij}|.$

Замечание

Tак как $\operatorname*{argmin}_a \mathbb{E} |\xi - a| = \mathrm{med} \xi$, то $\Pi_{\mathcal{H}}$ строится посредством выбора медианы значений на диагоналях i+j= const.

Для построения проектора на множество матриц ранга r в \mathbb{L}_1 будем рассматривать последовательный метод.

L1-SSA. Реализация. Последовательный метод

В R-пакете pcaL1 [Jot et al., 2017] имеется реализация последовательного метода решения задачи $\|\mathbf{Y}-\mathbf{U}\mathbf{V}^{\mathrm{T}}\|_1 \longrightarrow \min_{\mathbf{U},\mathbf{V}}.$

Алгоритм | 1pca [Brooks J. P., Jot S., 2013]:

- lacktriangle Инициализация $\mathbf{U}(0) \in \mathbb{R}^{L imes r}$, нормировка столбцов $\mathbf{U}(0)$,
- 2 t := t + 1,
- $\mathbf{3} \ \mathbf{V}(t) = \underset{\mathbf{V} \in \mathbb{R}^{K \times r}}{\operatorname{argmin}} \| \mathbf{Y} \mathbf{U}(t-1)\mathbf{V}^{\mathrm{T}} \|_{1}$

Задача разбивается на K независимых подзадач вида $\mathbf{v}_i = \operatorname*{argmin}_{\mathbf{x}} \|Y_i - \mathbf{U}(t-1)\mathbf{x}\|_1$, где $Y_i \in \mathbb{R}^L$ — столбцы \mathbf{Y} , $\mathbf{v}_i \in \mathbb{R}^r$ — строки \mathbf{V} , $i=1,\ldots,K$,

- $oldsymbol{\mathbf{0}} \ \mathbf{U}(t) = \mathop{
 m argmin}_{\mathbf{U} \in \mathbb{R}^{L imes r}} \| \mathbf{Y} \mathbf{U} \mathbf{V}^{
 m T}(t) \|_1$ (решается аналогично п.3)
- lacksquare Нормировка столбцов $\mathbf{U}(t)$,
- $oldsymbol{0}$ if $\mathbf{U}(t)
 eq \mathbf{U}(t-1)$ (по крит. остановки) then Go to Step 2 else $\mathbf{U}:=\mathbf{U}(t); \ \mathbf{V}:=\mathbf{V}(t).$

Крит. остановки: $\max_{i=1,...,L,i=1,...,r}|u_{ij}(t)-u_{ij}(t-1)|>arepsilon$ или $t>N_{\mathsf{iter}}$.

Решаем задачу, меняя на каждой итерации ${f U}$ и ${f V}$ и разбивая исходную задачу на линейные подзадачи.

WL2-SSA. Вид проекторов по взвешенной норме в \mathbb{L}_2

Определение

Пусть ${f A}$ — матрица L imes K, ${f W}$ — матрица весов L imes K.

Норма в пространстве
$$\mathbb{L}_2$$
 с весами \mathbf{W} : $\|\mathbf{A}\|_{\mathrm{W}} = \sqrt{\sum\limits_{i=1}^{L}\sum\limits_{j=1}^{K}w_{ij}a_{ij}^2}$.

Утверждение (Zvonarev, Golyandina, 2015)

Для построения проекции $\Pi_{\mathcal{H}}\mathbf{Y} = \widehat{\mathbf{Y}} = \{\widehat{y}_{ij}\}_{i,j=1}^{L,K}$ необходимо суммировать элементы на диагоналях i+j= const c весами и нормировать на сумму весов: $\widehat{y}_{ij} = \frac{\sum\limits_{l,k:l+k=i+j}^{w_{lk}y_{lk}} w_{lk}}{\sum\limits_{l,k:l+k=i+j}^{w_{lk}} w_{lk}}$.

Замечание: В случае ганкелевой матрицы весов ${\bf W}$ проектор на пространство ганкелевых матриц по взвешенной норме в \mathbb{L}_2 совпадает с проектором на пространство ганкелевых матриц по норме в \mathbb{L}_2 .

WL2-SSA. Метод с итеративным обновлением весов

Пусть $\mathbf{Y} \in \mathbb{R}^{L \times K}$ — траекторная матрица ряда, $\widehat{\mathbf{Y}} = \mathbf{U}\mathbf{V}^{\mathrm{T}} = \{\widehat{y}_{ij}\}_{i,j=1}^{L,K}$. Решаем задачу

$$\left\|\mathbf{W}^{1/2}\odot(\mathbf{Y}-\mathbf{U}\mathbf{V}^{\mathrm{T}})\right\|_{F}^{2}\longrightarrow\min_{\mathbf{U},\mathbf{V}},$$

где $\odot-$ поэлементное умножение, $\mathbf{W}^{1/2}-$ поэлементное взятие корня, веса $w_{ij}=w(rac{y_{ij}-\hat{y}_{ij}}{\sigma_{ij}})$ вычисляются по формуле

$$w(x) = \begin{cases} (1 - (\frac{|x|}{\alpha})^2)^2, & |x| \le \alpha \\ 0, & |x| > \alpha \end{cases}.$$

Значения lpha и $\{\sigma_{ij},\; i=1,\ldots,L,\; j=1,\ldots,K\}$ — параметры.

Рис.: График функции w(x).

WL2-SSA. Метод с итеративным обновлением весов. Реализация

Задача:

$$\left\| \mathbf{W}^{1/2} \odot (\mathbf{Y} - \mathbf{U}\mathbf{V}^{\mathrm{T}}) \right\|_{F}^{2} \longrightarrow \min_{\mathbf{U}, \mathbf{V}}.$$

Алгоритм решения задачи взвешенной аппроксимации для фиксированной матрицы весов \mathbf{W} :

 $oldsymbol{0}$ Вычисление матрицы $\mathbf{U} \in \mathbb{R}^{L imes r}$ с помощью решения задачи

$$(y_i - \mathbf{V}u_i)^{\mathrm{T}}\mathbf{W}_i(y_i - \mathbf{V}u_i) \to \min_{u_i}, \quad i = 1, \dots L,$$
 (1)

где $\mathbf{W}_i = \mathrm{diag}(w_i) \in \mathbb{R}^{K imes K}$ составлена из i-ой строки \mathbf{W} . Задача решается с помощью QR-разложения матрицы $\mathbf{V}^{\mathrm{T}} \mathbf{W}_i \mathbf{V}$.

 $oldsymbol{2}$ Вычисление матрицы $oldsymbol{V} \in \mathbb{R}^{K imes r}$ с помощью решения задачи

$$(Y_j - \mathbf{U}v_j)^{\mathrm{T}} \mathbf{W}^j (Y_j - \mathbf{U}v_j) \to \min_{v_j}, \quad j = 1, \dots K,$$
 (2)

где $\mathbf{W}^j = \mathrm{diag}(W_j) \in \mathbb{R}^{L \times L}$ составлена из j-го столбца \mathbf{W} . Задача решается с помощью QR-разложения матрицы $\mathbf{U}^{\mathrm{T}}\mathbf{W}^j\mathbf{U}$.

Овторяем шаги 1-2, пока не выполнен критерий сходимости

$$\left\| \mathbf{W}^{1/2} \odot (\mathbf{Y} - \mathbf{U} \mathbf{V}^{\mathrm{T}}) \right\|_F^2 \le \varepsilon$$

или не достигнуто максимальное число итераций $N_{lpha}.$

WL2-SSA. Метод с итеративным обновлением весов. Реализация

Алгоритм IRLS (параметры α и σ) [Chen K., Sacchi M., 2015]:

- ① Инициализация $\mathbf{U} \in \mathbb{R}^{L \times r}$ и $\mathbf{V} \in \mathbb{R}^{K \times r}$ (например, с помощью сингулярного разложения матрицы \mathbf{Y}),
- ② Выбор параметра α (величина, начиная с которой точку ряда считать выбросом),
- $oldsymbol{3}$ Вычисление матрицы остатков $\mathbf{R} = \{r_{ij}\}_{i,j=1}^{L,K} = \mathbf{Y} \mathbf{U}\mathbf{V}^{\mathrm{T}}$,
- lacktriangledown Обновление параметра σ_{ij} (нормировка для остатков),
- $lackbox{f 0}$ Вычисление матрицы весов ${f W}=\{w_{ij}\}_{i,j=1}^{L,K}=\{w(rac{r_{ij}}{\sigma_{ij}})\}_{i,j=1}^{L,K}$, используя

$$w(x) = \begin{cases} (1 - (\frac{|x|}{\alpha})^2)^2, & |x| \le \alpha \\ 0, & |x| > \alpha \end{cases},$$

 $oldsymbol{0}$ Решение задачи взвешенной аппроксимации (обновление матриц ${f U}$ и ${f V})$

$$\left\| \mathbf{W}^{1/2} \odot (\mathbf{Y} - \mathbf{U}\mathbf{V}^{\mathrm{T}}) \right\|_{F}^{2} \longrightarrow \min_{\mathbf{U}, \mathbf{V}}.$$

Повторяем шаги 3-6, пока не выполнен критерий сходимости

$$\left\|\mathbf{W}^{1/2}\odot(\mathbf{Y}-\mathbf{U}\mathbf{V}^{\mathrm{T}})\right\|_{F}^{2}\leq\varepsilon$$

или не достигнуто максимальное число итераций N_{IRLS}

WL2-SSA. Метод с итеративным обновлением весов. Выбор параметров. Параметр σ

Проблема 1: Нормировка остатков на константный параметр $\sigma_{ij} = \sigma \ \, \forall i,j$ в случае шума с непостоянной дисперсией приводит к неправильной идентификации точек с выбросами. Если шум растет к концу ряда, то веса у всех значений на конце ряда некорректно занижаются.

Рис.: График модуля остатков. Постоянная дисперсия шума.

Рис.: График модуля остатков. Гетероскедастичный шум.

Решение: Будем рассматривать матрицу $\mathbf{\Sigma} = \{\sigma_{ij}\}_{i,j=1}^{L,K}$ ганкелевой, что соответствует приписыванию весов элементам ряда. Обозначим параметр $\boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_N)^{\mathrm{T}}$. Будем задавать параметр $\boldsymbol{\sigma}$ как тренд (мат. ожидание) ряда, состоящего из модулей остатков.

WL2-SSA. Выбор параметров. Параметр α

Проблема 2: Непонятно, как задавать параметр lpha, влияющий на то, какие точки считать выбросами, а какие — нет.

Решение: Выведем вероятностную формулу для параметра α .

Модель ряда: $x_i = s_i + \varepsilon_i, i = 1, ..., N$. Ганкелизуем матрицу остатков

 $\mathbf{R} = \mathbf{Y} - \mathbf{U}\mathbf{V}^{\mathrm{T}}$, получим ряд $\mathsf{R} = \{r_i\}_{i=1}^N$. В предположении точной отделимости сигнала от шума, ряд $\mathsf{R} = \{ \varepsilon_i \}_{i=1}^N$. Будем задавать вероятность γ :

$$\mathrm{P}(r^*\in(0,lpha))=\gamma$$
, где $r^*=rac{|arepsilon|}{\sigma}$, $oldsymbol{\sigma}=(\sigma_1,\ldots,\sigma_N)$ — тренд из ряда $|\mathsf{R}|$.

Определение

Если
$$r\sim N(0,\sigma^2)$$
, то $|r|\sim N_H(\sigma^2)$ — полунормальное распределение с параметром σ^2 , ф.р. $F_H(x;\sigma^2)=\frac{2}{\sqrt{\pi}}\int\limits_0^{x/\sqrt{2}\sigma^2}e^{-z^2}dz=\text{eff}(\frac{x}{\sqrt{2}\sigma^2}).$

Утверждение

Пусть $arepsilon \sim N(0,\sigma_arepsilon^2)$, $\sigma={\sf E}|arepsilon|$. Тогда $r^*=rac{|arepsilon|}{\sigma}$ имеет полунормальное распределение $N_H(\frac{\pi}{2})$, среднее $Er^*=1$, дисперсия $Dr^*=\frac{\pi}{2}-1$.

Получаем выражение для α :

$$\alpha = \frac{\sqrt{2}\pi}{2} \operatorname{erf}^{-1}(\gamma).$$

Замечание: В предположении нормальности шума и точной отделимости сигнала от шума формула верна и для нестационарного шума.

WL2-SSA. Метод с итеративным обновлением весов. Реализация

Алгоритм IRLS (параметры α и σ) [Chen K., Sacchi M., 2015]:

- ① Инициализация $\mathbf{U} \in \mathbb{R}^{L \times r}$ и $\mathbf{V} \in \mathbb{R}^{K \times r}$ (например, с помощью сингулярного разложения матрицы \mathbf{Y}),
- ② Выбор параметра α (величина, начиная с которой точку ряда считать выбросом),
- $oldsymbol{3}$ Вычисление матрицы остатков $\mathbf{R} = \{r_{ij}\}_{i,j=1}^{L,K} = \mathbf{Y} \mathbf{U}\mathbf{V}^{\mathrm{T}}$,
- lacktriangledown Обновление параметра σ_{ij} (нормировка для остатков),
- $lackbox{f 0}$ Вычисление матрицы весов ${f W}=\{w_{ij}\}_{i,j=1}^{L,K}=\{w(rac{r_{ij}}{\sigma_{ij}})\}_{i,j=1}^{L,K}$, используя

$$w(x) = \begin{cases} (1 - (\frac{|x|}{\alpha})^2)^2, & |x| \le \alpha \\ 0, & |x| > \alpha \end{cases}$$

 $oldsymbol{0}$ Решение задачи взвешенной аппроксимации (обновление матриц ${f U}$ и ${f V})$

$$\left\|\mathbf{W}^{1/2}\odot(\mathbf{Y}-\mathbf{U}\mathbf{V}^{\mathrm{T}})\right\|_{F}^{2}\longrightarrow\min_{\mathbf{U},\mathbf{V}}.$$

Повторяем шаги 3-6, пока не выполнен критерий сходимости

$$\left\|\mathbf{W}^{1/2}\odot(\mathbf{Y}-\mathbf{U}\mathbf{V}^{\mathrm{T}})\right\|_{F}^{2}\leq\varepsilon$$

или не достигнуто максимальное число итераций N_{IRLS}

WL2-SSA. Метод с итеративным обновлением весов. Модификация

Модификация 5-ого пункта алгоритма IRLS:

- 5.а Ганкелизация матрицы ${f R}$ и получение ряда длины N из остатков: ${f R}={\cal T}^{-1}\Pi_{\cal H}({f R})=(r_1,\ldots,r_N)^{
 m T}$,
- 5.b Пусть $\mathsf{R}_+ = (|r_1|, \dots, |r_N|)^\mathrm{T}$ вектор из модулей остатков. Вычисление $\pmb{\sigma} = (\sigma_1, \dots, \sigma_N)^\mathrm{T}$ как оценки мат. ожидания $\mathbb{E}(\mathsf{R}_+)$ некоторым выбранным методом,
- 5.с Вычисление ряда $|\sigma^{-1}\mathsf{R}|=(rac{|r_1|}{\sigma_1},\dots,rac{|r_N|}{\sigma_N})^\mathrm{T}$ и получение матрицы $\mathbf{R}^*=\{r_{ij}^*\}_{i,j=1}^{L,K}=\mathcal{T}(|\sigma^{-1}\mathsf{R}|)$,
- 5.d Вычисление матрицы весов $\mathbf{W}=\{w_{ij}\}_{i,j=1}^{L,K}=\{w(r_{ij}^*)\}_{i,j=1}^{L,K},$ используя

$$w(x) = \begin{cases} (1 - (\frac{|x|}{\alpha})^2)^2, & |x| \le \alpha \\ 0, & |x| > \alpha \end{cases}.$$

Сравнение теоретических трудоемкостей

Ряд $\mathbf{X}=(x_1,\dots,x_N)$ длины N, матрица $\mathbf{Y}\in\mathbb{R}^{L imes K}$ — траекторная матрица ряда $\mathbf{X}.$ Ранг траекторной матрицы сигнала равен r.

• Трудоемкость последовательного метода:

$$T_{l1pca} = O(LK \log(2LK + Lr)N_{iter}),$$

где N_{iter} — общее кол-во итераций для сходимости метода (по выбранному критерию сходимости).

• Трудоемкость метода с обновлением весов:

$$T_{IRLS} = O(LKr^2N_{\alpha}N_{IRLS}),$$

где N_{α} и N_{IRLS} — общее кол-во итераций для решения задач (1), (2) и сходимости метода (по выбранному критерию сходимости).

Число итераций в статьях предполагается фиксированным. Однако предположение о достаточности фиксированного числа итераций не верно. В предположении, что число итераций не растет с увеличением длины ряда, так как зависит от разделимости, метод с итеративным обновлением весов оказывается менее трудоемким.

Вычислительный эксперимент. Структура исследования

Пусть длина ряда N=240. Рассмотрим следующие примеры:

1
$$x_n = e^{n/N} + \sin(2\pi n/120 + \pi/6) + \varepsilon_n$$
, $\varepsilon_n \sim N(0, 1)$, $r = 3$,

Выбросы: в случайно выбранных точках ряда x_i значение заменяется на $x_i + \delta x_i$, где δ — заданная константа.

сов, Пр. 2: 1% выбросов, $5x_i$. выброс размера $5x_i$.

20

20

Пр. 3: 1% выбросов, выброс размера $1.5x_i$.

Пр. 1: 1% выбросов, выброс размера $5x_i$.

200

Вычислительный эксперимент. Структура исследования

Временной ряд X = (x_1,\ldots,x_N) , $x_i=s_i+\varepsilon_i$, $i=1,\ldots,N$. Обозначим S = $(s_1,\ldots,s_N)^{\rm T}$ — сигнал.

Выбросы: в случайно выбранных точках ряда x_i значение заменяется на $x_i + \delta x_i$, где δ — заданная константа. Будем сравнивать результаты при отсутствии (0%) выбросов, при 1% и 5% выделяющихся наблюдений.

На каждой реализации ряда случайными являются шум и местоположения выбросов.

Сравнения проводятся по величине ошибки, согласованной с \mathbb{L}_2 (MSE) и ошибки, согласованной с \mathbb{L}_1 (MAD):

$$\mathsf{MSE}(\widetilde{\mathsf{S}},\mathsf{S}) = \mathbb{E}\left(\frac{1}{N}\sum_{i=1}^N (s_i - \tilde{s}_i)^2\right), \quad \mathsf{MAD}(\widetilde{\mathsf{S}},\mathsf{S}) = \mathbb{E}\left(\frac{1}{N}\sum_{i=1}^N |s_i - \tilde{s}_i|\right),$$

где S — сигнал, \widetilde{S} — его оценка. Будем вычислять RMSE = $\sqrt{\mathrm{MSE}}$.

Вычислительный эксперимент. Результаты

Таблица: Оценки RMSE для трех примеров для M=30 реализаций ряда.

	Пример 1		Пример 2		Пример 3	
Method	0%	5%	0%	5%	0%	5%
Basic SSA	0.184	0.653	2.16	5.96	0.215	459.6
1pca	0.217	0.250	2.45	2.87	0.256	21.11
IRLS (orig.)	0.184	0.206	3.52	3.61	0.216	398.2
IRLS (loess)	0.196	0.204	2.31	2.39	0.227	303.2
IRLS (median)	0.210	0.223	2.84	2.86	0.256	38.21
IRLS (lowess)	0.206	0.211	2.59	2.63	0.243	0.301

В каждом столбце выделен наилучший метод (красным) и незначимо отличающиеся от него (синим) при уровне значимости $\alpha=0.05$. Выводы:

- Для первого примера наиболее устойчивыми являются оригинальный метод IRLS и его модификации с loess и lowess.
- Для ряда с гетероскедастичным шумом наиболее устойчивый метод модификация IRLS с использованием локальной регрессии.
- В случае быстрорастущей амплитуды ряда модификация с использованием взвешенной локальной регрессии оказывается наиболее устойчивой.

Реальный пример

Рассмотрим ряд — импорт товаров в США из Кувейта с ноября 1993 г. по ноябрь 2012 г.. Имеются данные за каждый месяц. Длина ряда N=229. Возьмем длину окна L=60, будем восстанавливать сигнал по 5 компонентам.

Выбросы находятся в точках x_{83} и x_{222} . В качестве истинного сигнала будем брать результат восстановления сигнала стандартным SSA для ряда с поставленными на места выбросов и впоследствии заполненными пропусками.

Основные результаты,

Результаты:

- Структурированы устойчивые модификации по используемым в проекторах, входящих в алгоритм, нормам.
- Предложена новая модификация метода для рядов с нестационарным шумом, в которой нормировка для определения весов не константа, а определяется на основе тренда модуля ряда остатков.
- Рассматриваемые устойчивые модификации SSA были реализованы на R.
- Исследованы теоретические трудоемкости рассмотренных методов, проведено сравнение по трудоемкости. Метод с итеративным обновлением весов оказался менее трудоемким.
- Проведено сравнение методов по точности на модельных примерах и на реальном ряде. Сравнение методов по точности на примерах подтвердило, что предложенная модификация оказывается лучше в случае нестационарного шума. Также сравнение позволило дать рекомендации по использованию методов.