Chapter 3: IP: INTERNET PROTOCOL

Network & System Lab, NSYSU

1

IP: Internet Protocol

- □ Introduction
 - Unreliable
 - Connectionless
- □ IP header
- □ IP routing
- Subnetting

IP Header

Recommended Values for TOS Field

Application	Minimize delay	Maximize throughput	Maximize reliability	Minimize monetary cost	Hex value
Telnet/Rlogin FTP control data any bulk data TFTP SMTP	1 1 0 0	0 0 1 1 0	0 0 0 0	0 0 0 0	0X10 0X10 0X08 0X08 0X10
command phase data phase DNS	1 0	0 1	0	0 0	0X10 0x08
UDP query TCP query zone transfer ICMP	1 0 0	0 0 1	0 0 0	0 0 0	0X10 0X00 0X08
error query any IGP SMNP BOOTP	0 0 0 0	0 0 0 0	0 0 1 1	0 0 0 0	0X00 0X00 0X04 0X04 0X00
NNTP	0	0	0	1	0X00 0X02

TOS Precedence Field

- □ Precedence
 - ❖ 111: Network Control
 - ❖ 110: Internetwork Control
 - ❖ 101: CRITIC/ECP
 - ❖ 100: Flash Override
 - ❖ 011: Flash
 - ❖ 010: Immediate
 - 001: Priority
 - ❖ 000: Routine

Network & System Lab, NSYSU

E

3-Bit Flag Field

- □ Bit 0:
 - * reserved, must be zero
- □ Bit 1:
 - ❖ 0 = may fragment, 1 = cannot fragment
- □ Bit 2:
 - ❖ 0 = last fragment, 1 = more fragment

0 1 2

Routing Table

- □ Destination IP address
- □ IP address of a *next-hop router* or the IP address of a directly connected network.
- □ Flags
 - Specifies whether the destination IP address is the address of a network or the address of a host.
 - Say whether the next-hop router field is really a next-hop router or a directly connected interface.
- □ Specification of which network interface the datagram should be passed to for transmissions.

Network & System Lab, NSYSU

7

IP Routing Actions

- □ Search the routing table for an entry that matches the complete destination IP address (matching network ID and host ID).
- □ Search the routing table for an entry that matches just the destination network ID.
- □ Search the routing table for an entry labeled "default".
- □ Remarks:
 - A complete matching host address is searched for before a matching network ID.
 - Another fundamental feature of IP routing:
 - Only to specify a route to a network, rather than specifying a route to every host.

8

Path from bsdi to ftp.uu.net (192.48.96.9)

Subnetting a Class B Address

- ☐ The host ID portion is divided into a subnet ID and a host ID.
- □ The subnet boundary for a class A or class B address is NOT necessary on a byte boundary.
- □ Subnetting hides the detail of internal network organization to external routers.
- □ Comparing 30 class C addresses to a single class B address with 30 subnets:
 - Subnetting reduces the size of the Internet's routing tables.
- □ Subnetting is not transparent to routers within the subnet.

	16 bits	8 bits	8 bits	
Class B	netid = 140.252	subnetid	hostid	

12

Subnet Mask

Comparison of Two Class B Addresses

Network & System Lab, NSYSU

15

Special Case IP Addresses

IP address		Can appears as		Description		
net ID	subnet ID	host ID	source ?	destination?	Восоприон	
0		0	OK	never	this host on this net (see restrictions below	
0		hostid	ОК	never	Specified host on this net (see restrictions below)	
127		anything	ОК	ок	loopback address (Section 2.7)	
-1		-1	never	ОК		
netid		-1	never	OK		
netid	subnetid	-1	never	OK		
netid	-1	-1	never	ОК		

A Subnet Example

author's subnet:140.252.13

Network & System Lab, NSYSU

17

Variable-Length Subnet

mask:

IP Addresses on Textbook

Host	IP address	Subnet mask	Net ID / Subnet ID	Host ID	Comment
sun	140.252.1.29 140.252.13.33	255.255.255.0 255.255.255.254	140.252.1 140.252.13.32	29 1	on subnet 1 on author's Ethernet
svr4	140.252.13.34	255.255.255.224	140.252.13.32	2	
bsdi	140.252.13.35 140.252.13.66	255.255.255.224 255.255.255.224	140.252.13.32 140.252.13.64	3 2	on Ethernet point-to-point
slip	140.252.13.65	255.255.255.224	140.252.13.64	1	point-to-point
	140.252.13.63	255.255.255.224	140.252.13.32	32	broadcast addr on Ethernet

Network & System Lab, NSYSU

40

3 Problems with IP

- □ Over half of all Class B addresses have already been allocated.
- □ 32-bit IP addresses in general are inadequate for the predicted long-term growth of the Internet.
- □ Routing structure is not hierarchical, but flat, requiring one routing table entry per network.

Solutions

- □ SIP, the Simple Internet Protocol.
 - ❖ 64-bit IP address and a different header format
- □ PIP.
- □ TUBA, "TCP and UDP with Bigger Addresses"
- □ TP/IX: RFC 1475.

Network & System Lab, NSYSU

21