Evaluating Search Engines

CISC489/689-010, Lecture #10

Monday, March 16th

Ben Carterette

IR Basics in 2 Minutes

- Indexing:
 - Parsing, tokenizing, stopping, stemming
 - Compression
 - Inverted lists, vocabulary, collection
- Retrieval:
 - Query processing
 - Retrieval models and scoring documents
- Once the documents are scored and ranked, how do we know whether the system is any good?

Evaluation

- Evaluation is key to building effective and efficient search engines
 - measurement usually carried out in controlled laboratory experiments
- Two types of evaluation:
 - User studies: bring in users to interact with engine, measure their responses
 - System-based: have assessors judge the relevance of documents, use judgments to calculate effectiveness measures

Relevance Judgments

- An engine returns a list of documents ranked by score
 - The documents it "thinks" are relevant
- How do we know which are actually relevant and which are not?
 - The person that posed the original query should judge them
 - Indicate whether each document is relevant and how relevant it is

Precision and Recall

Non-Relevant

 $\overline{A} \cap B$

 $\overline{A} \cap \overline{B}$

A is set of relevant documents, B is set of retrieved documents

$$Recall = \frac{|A \cap B|}{|A|}$$

$$recision = \frac{|A \cap B|}{|B|}$$

Classification Errors

- False Positive (Type I error)
 - a non-relevant document is retrieved

$$Fallout = \frac{|\overline{A} \cap B|}{|\overline{A}|}$$

- False Negative (Type II error)
 - a relevant document is not retrieved
 - 1- Recall
- Precision is used when probability that a positive result is correct is important

F Measure

• Harmonic mean of recall and precision

$$F = \frac{1}{\frac{1}{2}(\frac{1}{R} + \frac{1}{P})} = \frac{2RP}{(R+P)}$$

- harmonic mean emphasizes the importance of small values, whereas the arithmetic mean is affected more by outliers that are unusually large
- More general form

$$F_{\beta} = (\beta^2 + 1)RP/(R + \beta^2 P)$$

 $-\beta$ is a parameter that determines relative importance of recall and precision

Interpolation

 To average graphs, interpolate precision at recall level R:

$$P(R) = \max\{P' : R' \ge R \land (R', P') \in S\}$$

- where S is the set of observed (R,P) points
- Defines precision at any recall level as the maximum precision observed in any recallprecision point at a higher recall level
 - produces a step function
 - defines precision at recall 0.0
- Why maximum? Why not minimum or average?

Summarizing a Ranking

- Average precision values over particular ranks or recall points
 - Recall and precision at fixed rank positions
 - Precision at standard recall levels, from 0.0 to 1.0
 - requires interpolation
 - Averaging the precision values from the rank positions where a relevant document was retrieved
 - i.e. rank positions at which recall increases

R-Precision • Precision at rank |A| - |A| = the total number of relevant documents Ranking #1 Recall 0.17 0.17 0.33 0.5 0.67 0.83 0.83 0.83 1.0 Precision 1.0 0.5 0.67 0.75 0.8 0.83 0.71 0.63 0.56 0.6 Ranking #2 Recall 0.0 0.17 0.17 0.17 0.33 0.5 0.67 0.67 0.63 0.56 0.6 Reprecision 0.0 0.5 0.33 0.25 0.4 0.5 0.57 0.5 0.56 0.6 Rank |A| = 6

Focusing on Top Documents

- Users tend to look at only the top part of the ranked result list to find relevant documents
- Some search tasks have only one relevant document
 - e.g., navigational search: "google" → google.com
- Recall not appropriate
 - instead need to measure how well the search engine does at retrieving relevant documents at very high ranks

Focusing on Top Documents

- Precision at Rank k
 - k typically 5, 10, 20
 - easy to compute and understand
 - not sensitive to rank positions less than k
- Reciprocal Rank
 - reciprocal of the rank at which the first relevant document is retrieved
 - very sensitive to rank position

Discounted Cumulative Gain

- Popular measure for evaluating web search and related tasks
- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant document
 - the lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined

Discounted Cumulative Gain

- Uses graded relevance as a measure of the usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks
- Typical discount is 1/log (rank)
 - With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

Discounted Cumulative Gain

 DCG is the total gain accumulated up to a particular rank p:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

• Alternative formulation:

$$DCG_p = \sum_{i=1}^p \frac{2^{rel_i}-1}{\log(1+i)}$$
 gain discount

- used by some web search companies
- emphasis on retrieving highly relevant documents

DCG Example

• 10 ranked documents judged on 0-3 relevance scale:

• discounted gain:

• DCG:

3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

Normalized DCG

- DCG numbers are averaged across a set of queries at specific rank values
 - e.g., DCG at rank 5 is 6.89 and at rank 10 is 9.61
- DCG values are often normalized by comparing the DCG at each rank with the DCG value for the perfect ranking
 - makes averaging easier for queries with different numbers of relevant documents

NDCG Example

- Perfect ranking:
 - 3, 3, 3, 2, 2, 2, 1, 0, 0, 0
- ideal DCG values:
 - 3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10
- NDCG values (divide actual by ideal):
 - 1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88
 - NDCG ≤ 1 at any rank position

Using Preferences

• Two rankings described using preferences can be compared using the *Kendall tau coefficient* (τ) :

 $au = rac{P-Q}{P+Q}$

- P is the number of preferences that agree and Q is the number that disagree
- For preferences derived from binary relevance judgments, can use BPREF

BPREF

 For a query with R relevant documents, only the first R non-relevant documents are considered

$$BPREF = \frac{1}{R} \sum_{d_r} (1 - \frac{N_{d_r}}{R})$$

- $-d_r$ is a relevant document, and N_{dr} gives the number of non-relevant documents
- · Alternative definition

$$BPREF = \frac{P}{P+Q}$$

Evaluation Measures Summary

- Precision at rank k
- Recall at rank k
- F at rank k
- Precision-recall curve
 - Interpolated precision-recall curve
- Average precision
- R-precision
- Reciprocal rank
- Discounted cumulative gain (DCG)
 - Normalized version (NDCG)

Averaging Over Queries

- What if the query I am evaluating is "easy"?
 - i.e. every engine would do well on it
- Or if it's "hard"?
 - i.e. every engine would do poorly
- What if I intentionally pick a query that's easy for one engine and hard for another?
 - Is that a valid comparison?
- Instead, evaluate over a set of gueries
- Calculate evaluation measures for each query and average over the set

Averaging

- Mean Average Precision (MAP)
 - summarize rankings from multiple queries by averaging average precision
 - most commonly used measure in research papers
 - assumes user is interested in finding many relevant documents for each query
 - requires many relevance judgments in text collection
- Recall-precision graphs are also useful summaries

MAP

Precision 0.0 0.5 0.33 0.25 0.4 0.33 0.43 0.38 0.33 0.3

average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53

Average Precision at Standard Recall Levels

Recall	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Ranking 1	1.0	1.0	1.0	0.67	0.67	0.5	0.5	0.5	0.5	0.5	0.5
Ranking 2	0.5	0.5	0.5	0.5	0.43	0.43	0.43	0.43	0.43	0.43	0.43
Average	0.75	0.75	0.75	0.59	0.47	0.47	0.47	0.47	0.47	0.47	0.47

 Recall-precision graph plotted by simply joining the average precision points at the standard recall levels

Efficiency Metrics

Metric name	Description
Elapsed indexing time	Measures the amount of time necessary to build a
	document index on a particular system.
Indexing processor time	Measures the CPU seconds used in building a document index. This is similar to elapsed time, but does not count time waiting for I/O or speed gains from parallelism.
Query throughput	Number of queries processed per second.
Query latency	The amount of time a user must wait after issuing a query before receiving a response, measured in milliseconds. This can be measured using the mean, but
	is often more instructive when used with the median or a percentile bound.
Indexing temporary space	Amount of temporary disk space used while creating an index.
Index size	Amount of storage necessary to store the index files.

Two Types of Evaluation

- System-based
 - Bring in people to judge the relevance of retrieved documents
 - Use those judgments to calculate measurements about system performance
- User-based
 - Bring in people to try out the search engine
 - Ask them whether they liked it, or measure their performance on some task

User versus System Evaluation

User-Based

- More expensive: every system change requires a new user study to evaluate
- More realistic: users are actually using the engine; provide real feedback
- More variance: users are not all able to use engines equally well
- More valid: if set up correctly, users can't bias results
- Harder

System-Based

- Less expensive: after changing the system, use the same judgments
- Less realistic: no users involved; have to trust judgments
- Less variance: variance only comes from queries; can easily be decreased
- Less valid: researcher or developer can bias results
- Easier

Online Testing

- Test using live traffic on a search engine
- Benefits:
 - real users, less biased, large amounts of test data
- Drawbacks:
 - noisy data, can degrade user experience
- Often done on small proportion (1-5%) of live traffic
- A "happy medium" between user- and systembased evaluations

Query Logs

- Used for both tuning and evaluating search engines
 - also for various techniques such as query suggestion
- Typical contents
 - User identifier or user session identifier
 - Query terms stored exactly as user entered
 - List of URLs of results, their ranks on the result list, and whether they were clicked on
 - Timestamp(s) records the time of user events such as query submission, clicks

Query Logs

- · Clicks are not relevance judgments
 - although they are correlated
 - biased by a number of factors such as rank on result list
- Can use clickthough data to predict preferences between pairs of documents
 - appropriate for tasks with multiple levels of relevance, focused on user relevance
 - various "policies" used to generate preferences

Example Click Policy

- Skip Above and Skip Next
 - click data

 d_1 d_2 d_3 (clicked) d_4

- generated preferences

 $d_3 > d_2$ $d_3 > d_1$ $d_3 > d_4$

Query Logs

- Click data can also be aggregated to remove noise
- Click distribution information
 - can be used to identify clicks that have a higher frequency than would be expected
 - high correlation with relevance
 - e.g., using *click deviation* to filter clicks for preference-generation policies

Filtering Clicks

 Click deviation CD(d, p) for a result d in position p:

$$CD(d, p) = O(d, p) - E(p)$$

O(d,p): observed click frequency for a document in a rank position p over all instances of a given query E(p): expected click frequency at rank p averaged across all queries

Drawbacks of Log-Based Evaluation

- Difficult to evaluate recall-based measures
 - Users only click on high-ranked documents
 - Difficult to discover relevant documents that the engine is not currently ranking highly
- Difficult to evaluate "tail queries"
 - 40% of queries only appear once in the log
 - No information to aggregate over
- Interdependence between items on a page complicates analysis
 - Ads vs. search results; quality of result at rank 2 versus quality of result at rank 1; etc.