THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial 10 (Week 12)

MATH2068/2988: Number Theory and Cryptography

Semester 2, 2017

Web Page: http://www.maths.usyd.edu.au/u/UG/IM/MATH2068/

Lecturer: Dzmitry Badziahin

More difficult questions are marked with either * or **. Those marked * are at the level which MATH2068 students will have to solve in order to be sure of getting a Credit, or to have a chance of a Distinction or High Distinction. Those marked ** are mainly intended for MATH2988 students.

Tutorial Exercises:

- 1. Solve the congruences $x^2 \equiv 2 \pmod{17}$, $x^2 \equiv 2 \pmod{19}$ and $x^2 \equiv 2 \pmod{23}$.
- **2.** Given that $1081 = 23 \times 47$, solve the congruence $x^2 \equiv 2 \pmod{1081}$.
- **3.** Bob, a user of Rabin's cryptosystem, posts the public key 826277. Alice sends Bob the single-letter ciphertext 43792. Use Fermat's factorization method to find the prime factors of 826277, and hence find the four possibilities for Alice's message before encryption.
- **4.** Let p be an odd prime and d an odd divisor of p-1. As seen in lectures, the set $X = \{a \in \{1, \dots, p-1\} \mid a^d \equiv 1 \pmod{p}\}$ has exactly d elements. Show that the function $f: X \to X$ defined by letting f(x) be the residue of x^2 modulo p is invertible.
- 5. The aim of this question is to solve the congruence $x^2 \equiv 20 \pmod{41}$, following the procedure given in lectures for finding square roots modulo a prime congruent to 1 modulo 4.
 - (a) The first step is to check that 20 is a quadratic residue modulo 41. Do this by repeatedly squaring and reducing modulo 41 to find the residues of 20^2 , 20^4 , 20^8 and 20^{16} modulo 41, then conclude that $20^{20} \equiv 1 \pmod{41}$ as required.
 - (b) The next step is to find an element b of $\{1, 2, \dots, 40\}$ which has order 8 modulo 41 (where 8 is relevant because it is the highest power of 2 dividing 40). For this, use the information that $3^{20} \equiv -1 \pmod{41}$.
 - (c) We then must have $b^{2j} \equiv 20^5 \pmod{41}$ for some $j \in \{0, 1, 2, 3\}$. Find j.
 - (d) Finally, use this information to solve $x^2 \equiv 20 \pmod{41}$.
- **6.** Let p be an odd prime, $k \ge 2$ an integer, and a an integer such that gcd(a, p) = 1. This question concerns the solutions of the congruence $x^2 \equiv a \pmod{p^k}$.
 - (a) Take p = 3 and a = 7. Solve $x^2 \equiv 7 \pmod{3^k}$ for k = 2, 3, 4.

- *(b) Show that $x^2 \equiv a \pmod{p^k}$ either has no solutions or has exactly two solutions up to congruence mod p^k .
- **(c) Show that $x^2 \equiv a \pmod{p^k}$ has solutions if and only if $x^2 \equiv a \pmod{p}$ has solutions.

Extra Exercises:

- 7. Given that 29647 = pq for distinct primes p and q, and that 2577 is a square root of 1 modulo 29647, find p and q.
- **8.** Suppose that p is a prime such that $p \equiv 7 \pmod{9}$, and a is an integer such that $\gcd(a,p)=1$. Show that if the congruence $x^3 \equiv a \pmod{p}$ has solutions, then $x=a^{(p+2)/9}$ is one solution.
- **9.** Use the facts that $3^{36} \equiv 1 \pmod{73}$ and $\operatorname{ord}_{73}(10) = 8$ to solve $x^2 \equiv 3 \pmod{73}$.
- *10. In this exercise we work modulo the prime 941. Note that (941-1)/4 = 235.
 - (a) Use the following table of selected powers of 6 (reduced mod 941) to solve $x^2 \equiv 6 \pmod{941}$.

(b) Use the following table of selected powers of 3 (reduced mod 941) to solve $x^2 \equiv -1 \pmod{941}$.

(c) Given that $228^{235} \equiv -1 \pmod{941}$ and that $228^{117} \equiv 267 \pmod{941}$, solve $x^2 \equiv 228 \pmod{941}$. (Hint: consider $(267x)^2$.)

Selected numerical answers:

1.
$$x \equiv \pm 6 \pmod{17}$$
, $x \equiv \pm 5 \pmod{23}$ **2.** $x \equiv \pm 87, \pm 557 \pmod{1081}$