一、选择题

布,则空间各处的 \bar{B} 的大小与场点到圆柱中心轴线的距离 r 的关系定性地如图所示。正确的图是 B_{lack} (A) B_{lack} (B) B_{lack} (C) B_{lack} (D)

在一圈形电流 Ib所在的平面内a 选取一个同心圆形钢合回路 L,则由

安培环路定理可知

(D)

Γ

$$\oint \vec{B} \cdot d\vec{l} = 0$$
(A) \vec{L} , 且环路上任意一点 $\vec{B} = 0$

 $\oint \vec{B} \cdot d\vec{l}$

120°

(B) ,且环路上任意一点 $B\neq 0$

$$\oint \vec{B} \cdot d\vec{l} \neq 0$$
(C) L , 且环路上任意一点 $B \neq 0$

 $\oint B \cdot d\bar{l} \neq 0$ 路上任意一点

9. 2047: 如图,两根直导线 ab 和 cd 沿半径方向被接到一个截面处处相等的铁环上,

稳恒电流 I 从 a 端流入而从 d 端流出,则磁感强度 \bar{B} 沿图中闭合路径 L 的积分 L

Γ

- (A) 只要速度大小相同, 粒子所受的洛伦兹力就相同
- (B) 在速度不变的前提下,若电荷 q 变为-q,则粒子受力反向,数值不变
- (C) 粒子进入磁场后, 其动能和动量都不变
- (D) 洛伦兹力与速度方向垂直, 所以带电粒子运动的轨迹必定是圆
- 11. 2062: 按玻尔的氢原子理论,电子在以质子为中心、半径为 r的圆形轨道上运动。 如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与 B 垂直,如图所示,则在 r不变的情况下, 电子轨道运动的角速度将:
 - (A) 增加 (B) 减小
 - (C) 不变
 - (D) 改变方向 12. 2373: 一运动电荷 q,质量为 m,进入均匀磁场中,
 - (A) 其动能改变,动量不变 (B) 其动能和动量都改变
- (C) 其动能不变, 动量改变 (D) 其动能、 ٦
- 13. 2575: A、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动。A 电子的 速率是 B 电子速率的两倍。设 R_A , R_B 分别为 A 电子与 B 电子的轨道半径; T_A , T_B 分别为它 们各自的周期。则

(A)
$$R_A : R_B = 2$$
, $T_A : T_B = 2$ (B) $R_A : R_B = \frac{1}{2}$, $T_A : T_B = 2$

(C)
$$R_A : R_B = 1$$
, $T_A : T_B = \frac{1}{2}$ (D) $R_A : R_B = 2$, $T_A : T_B = 1$

14. 2451: 一铜条置于均匀磁场中,铜条中电子流的方向如图所示。试问下述哪一种情 况将会发生?

- (A) 在铜条上 a、b 两点产生一小电势差,且 $U_a > U_b$
- (B) 在铜条上 a、b 两点产生一小电势差,且 $U_a < U_b$
- (C) 在铜条上产生涡流
- (D) 电子受到洛伦兹力而减速

后,											
	. ,	M 的左端出现		. ,							
		0 的右端出现]		
		2608: 磁介					们各自日	的特性时	t,		
		顺磁质 $\mu_r > 0$	•		•						
		顺磁质 $\mu_r > 1$	•								
		顺磁质 $\mu_r > 1$	-		-			*.		_	
_	(D)		质 μ_r <	0,	抗磁	质	u_r <1	,钐	き 磁 /	贞 μ_r	>0
				/ N. 17 M		- J)/.) //.	1 41.15	1 / D	-A 1 .
 >-		2609: 用细-									
允冻		対磁导率为μ _r			线圈 甲氧	或有 稳化	旦电流 I ,	则官甲	仕意一点	点的	
		磁感强度大	•								
		磁感强度大	•								
		磁场强度大力			_	.I. 2	· .		3.77	,	,
г	(D)		汤 强	度	大	小	为 I	<i>H</i> =	NI	/	l
	26]	加兵的形只	च् <i>रं</i>							
		2736: 顺磁			古穴的	磁巴索	ш⁄z →				
		比真空的磁量		(B) 比				+ エ	古穴位	5 张巳	4
Γ	(C)	远 小 于]	共 工 叫	烟 寸 =		(1	J) LL	入 1	真空的	」 版 寸	平
L	27	2145: 两根	工阻 上 亚 ⁄ ɔ	古巳纶刦	6 左 七 小	、扣竿士	白相巨	始由海 1	光夕 [1]	AI /A+ f	九市
化弦		2143: 网似 长,一矩形线					刊作区	19 电机 1	,开合り	$\mathbf{u}_{I} / \mathbf{u}_{I} =$	沙文
化守		、		1 囲い(3	如图),	火小:		I			
	. ,	线圈中感应时		针方向							
	` ′	线圈中感应的线圈中感应的						I	<u>_</u>		
	(D)		图 中		应	h ·	流		」	确	定
[(D)		<u> </u>	NEW .)-7-		<i>и</i> п /:	1.3	– / ·	11/11	Æ
L	28	2147: 一块钉	同板 垂 首 干 4	游场方向	放在磁	咸品度	正在増力	こ的磁场	中时, 铜	板中出	见的
涡沼		2117:	111/1/11	L'I ECTOPA	AA III FAA		ш ш-н/	CH J PAA-9J	1 10 1 7 M.	питше	/LH J
11 3 01		加速铜板中位	磁场的增加	(B)	减缓镇	同板 中磁	磁场的增	hп			
		对磁场		` /	777-221	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			板中石	蕨 场 反	向
[(0)]	1 / 11 / 1.	•			(2)	12 113		MAA + 93 /2	. 1 3
_	29.		: 圆线圈在均	匀磁场。	中运动,	能使事	其中产生	感应电流	充的一种	情况是	
		线圈绕自身					• • • • • • • • • • • • • • • • • • • •		11	, > 0, 0	
	` ′	线圈绕自身」									
	` /	线圈平面垂〕									
	(D)	线 圏 平		行 于			凸 垂	直磁	场 方	向 平	移
[]									
	30.	2493: 如图原	听示,一载?	流螺线管	的旁边	有一圆	形线圈,	欲使线	圈产生图	示方向的	的感
应电	l流 i	,下列哪一和	忡情况可以 做	汝到?							
	(A)	载流螺线管	可线圈靠近	Ĺ				\vdash	$\wedge \wedge \wedge$	\rightarrow if	
	(B)	载流螺线管	离开线圈							/ (+
	(C)	载流螺线管	中电流增大	<u> </u>				$\overline{\nu}$	V V V	7	
	(D)	•	载 流	螺	线	管	中	插	入	4 铁	芯
]									
	31.	2123: 如图	所示,导体	棒 <i>AB</i> 在	均匀磁	场 B 中	绕通过	<i>C</i> 点的	垂直于棒	长且沿码	兹场
								1		0.	i

方向的轴 OO' 转动(角速度 \vec{o} 与 \vec{B} 同方向),BC 的长度为棒长的 $\vec{3}$,则 \vec{A} (C) A 点比 B 点电势低 (D) 有稳恒电流从 A 点流向 B 点 \vec{b} 。 $\vec{b$

8. 5310: 若把氢原子的基态电子轨道看作是圆轨道,已知电子轨道半径 $r=0.53\times10$ -10 m,绕核运动速度大小 $v=2.18\times108$ m/s,则氢原子基态电子在原子核处产生的磁感强度 \bar{B} 的大小为_____。

- 38. 2525: 一自感线圈中,电流强度在 0.002 s 内均匀地由 10 A 增加到 12 A,此过程中线圈内自感电动势为 400 V,则线圈的自感系数为 L=
- 39. 2338: 真空中两只长直螺线管 1 和 2,长度相等,单层密绕匝数相同,直径之比 $d_1/d_2=1/4$ 。当它们通以相同电流时,两螺线管贮存的磁能之比为W/W=
- 40. 5149: 无限长密绕直螺线管通以电流 I,内部充满均匀、各向同性的磁介质,磁导率为 μ 。管上单位长度绕有 n 匝导线,则管内部的磁感强度为______,内部的磁能密度为_____。
 - 41. 2339: 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为

$$\oint_{S} \vec{D} \cdot d\vec{S} = \int_{V} \rho \, dV \qquad \qquad \oint_{L} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \qquad \qquad \textcircled{2}$$

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0 \qquad \qquad \oint_{L} \vec{H} \cdot d\vec{l} = \int_{S} (\vec{J} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S} \qquad \textcircled{4}$$

试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的。将你确定的方程式用代号填在相应结论后的空白处

- (1) 变化的磁场一定伴随有电场; ____
- (2) 磁感线是无头无尾的; _____
- (3) 电荷总伴随有电场。
- 42. 5160: 在没有自由电荷与传导电流的变化电磁场中, 沿闭合环路 l(设环路包围的

面积为
$$S$$
), \vec{l} = $\vec{E} \cdot d\vec{l} =$ $\vec{E} \cdot d\vec{l} =$

43. 0323: 图示为一圆柱体的横截面,圆柱体内有一均匀电场 \vec{E} , 其方向垂直纸面向内, \vec{E} 的大小随时间 t 线性增加,P 为柱体内与轴线相距为 r 的一点则: (1) P 点的位移电流密度的方向为_____; (2) P 点感生磁场的方息

44. 5161: 一平行板空气电容器的两极板都是半径为 R 的圆形导体片,在充电时,板间 电场强度的变化率为 dE/dt。若略去边缘效应,则两板间的位移电流为

三、计算题

1. 2251: 有一条载有电流 I 的导线弯成如图示 abcda 形状。其中 ab、cd 是直线段,其余为圆弧。两段圆弧的长度和半径分别为 l_1 、 R_1 和 l_2 、 R_2 ,两段圆弧共面共心。 l_2 求圆心 O 处的磁感强度 \bar{B} 的大小。

2. 2253: 一线电荷密度为 λ 的带电正方形闭合线框绕过其中心并垂直于其平面的轴以角速度 ω 旋转,试求正方形中心处的磁感强度的大小

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2})$$
 2251 图

3. 0313: 如图所示,电阻为 R、质量为 m、宽为 l 的矩形导电回路。从所画的静止位置开始受恒力 \bar{F} 的作用。在虚线右方空间内有磁感强度为 \bar{B} 且垂直于图面的 均匀磁场。忽略回路自感。求在回路左边未进入磁场前,作为时间函数的速度表示式。

4. 2653: 假设把氢原子看成是一个电子绕核作匀速圆周运动的带电系统。已如来面轨道的半径为r,电子的电荷为e,质量为 m_e 。将此系统置于磁感强度为 \bar{B}_0 的均匀外磁场中,

设 $ar{B}_0$ 的方向与轨道平面平行,求此系统所受的力矩 $ar{M}$ 。

- 5. 2054: 图所示为两条穿过 y 轴且垂直于 x-y 平面的平行长直导线的正视图,两条导线皆通有电流 I,但方向相反,它们到 x 轴的距离皆为 a。
 - (1) 推导出 x 轴上 P 点处的磁感强度 $\bar{B}(x)$ 的表达式:
 - (2) 求 P 点在 x 轴上何处时,该点的 B 取得最大值。

- 6. 2252: 绕铅直轴作匀角速度转动的圆锥摆,摆长为1,摆球所带电荷为189 水角速度 ω 为何值时90分,带电摆球在轴上悬点为1处的0点产生的磁感强度沿竖直方向的分量值最大。
- 7. 2269: 有一闭合回路由半径为 a 和 b 的两个同心共面半圆连接而成,如图。其上均匀分布线密度为 λ 的电荷,当回路以匀角速度 ω 绕过 O 点垂直于回路平面的轴转动时,求圆心 O 点处的磁感强度的大小。
- 8. 2569: 半径为 R 的薄圆盘均匀带电,总电荷为 q。令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为 ω ,求轴线上距盘心 x 处的磁感强度的大小。

[积分公式
$$\int \frac{x^3}{(a^2 + x^2)^{3/2}} dx = \frac{x^2 + 2a^2}{(x^2 + a^2)^{1/2}} + C$$

- 9. 2139: 如图所示,真空中一长直导线通有电流 $I(t) = I_0 e^{-\lambda t}$ (式中 I_0 、 λ 为常量,t 为时间),有一带滑动边的矩形导线框与长直导线平行共面,二者相距 a。矩形线框的滑动边与长直导线垂直,它的长度为 b,并且以匀速 \bar{v} (方向平行长直导线)滑动。若忽略线框中的自感电动势,并设开始时滑动边与对边重合,试求任意时刻 t 在矩形线框 ϵ 内的感应电动势 ϵ i 并讨论 ϵ i 方向。
- 10. 2150: 如图所示,两条平行长直导线和一个矩形导线框共面。且导线框的一个边与长直导线平行,他到两长直导线的距离分别为 r_1 、 r_2 。已知两导线中电流都为 $I=I_0\sin\omega t$,其中 I_0 和 ω 为常数,t为时间。导线框长为 a 宽为 b,求导线框中的感应电动势。
- 11. 2407: 如图所示,一电荷线密度为 λ 的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率 v=v(t)沿着其长度方向运动,正方形线圈中的总电阻为 R,求 t 时刻方形线圈中感应电流 i(t)的大小(不计线圈自身的自感)。

- 12.9 2409: 如图所示,半半径为 r_2 电荷线密度为2的均匀带电圆环,里边有一半径为 r_1 总电阻为 R 的导体环,两环共面同心 $(r_2>>r_1)$,2407、以变角速度 $\omega=\omega(t)$ 绕业里平环面的中心轴旋转时,求小环中的感应电流。其方向如何?
- 13. 2499: 无限长直导线,通以常定电流 I。有一与之共面的直角三角形线圈 ABC。已知 AC 边长为 b,且与长直导线平行,BC 边长为 a。若线圈以垂直于导线方向的速度 $\bar{\nu}$ 向右平移,当 B 点与长直导线的距离为 d 时,求线圈 ABC 内的感应电动势的大小和感应电动势的方向。

- 14. 2743: 一边长为 a 及 b 的矩形导线框,它的边长为 b 的边与一载有电流为 I 的长直导线平行,其中一条边与长直导线相距为 c , c >a , 如图所示。今线框以此边为轴以角速度 ω 匀速旋转,求框中的感应电动势 ε 。
- 15. 5554: 半径为 R 的长直螺线管单位长度上密绕有 n 匝线圈。在管外有一包围着螺线管、面积为 S 的圆线圈,其平面垂直于螺线管轴线。螺线管中电流 i 随时间作周期为 T 的变化,如图所示。求圆线圈中的感生电动势 \mathcal{E} 。画出 \mathcal{E} t 曲线,注明时间坐标。

- 16.0310: 如**图**州默,一长直导线通有电流 I,其旁共面地放置一匀质金属梯**形线 烟** abcda,已知: da=ab=bc=L,两斜边与下底边夹角均为**310** 图 d 点与导线相距 l。今线框从静止开始自由下落 H 高度,且保持线框平面与长直导线始终共面,求:
 - (1) 下落高度为 H 的瞬间,线框中的感应电流为多少?
 - (2) 该瞬时线框中电势最高处与电势最低处之间的电势差为多少?
- 17. 2327: 一无限长竖直导线上通有稳定电流 I,电流方向向上。导线旁有一与导线共面、长度为 L 的金属棒,绕其一端 O 在该平面内顺时针匀速转动,如图所示。转动角速度为 ω ,O 点到导线的垂直距离为 r_0 ($r_0 > L$)。试求金属棒转到与水平面成 θ 角时,棒内感应电动势的大小和方向。
- 18. 2769: 由质量为 m、电阻为 R 的均匀导线做成的矩形线框,宽为 b,在 t =0 时由静止下落,这时线框的下底边在 y =0 平面上方高度为 h 处(如图所示)。 y =0 平面以上没有磁场; y =0 平面以下则有匀强磁场 \bar{B} ,其方向在图中垂直纸面向里。现已知在时刻 t = t₁ 和 t = t₂,线框位置如图所示,求线框速度 v 与时间 t 的函数关系 (不计空气阻力,且忽略线框自感)。
- 19. 2509: 如图所示,一根长为L的金属细杆 ab 绕竖直轴 O_1O_2 以角速度 ω 在水平面内旋转。 O_1O_2 在离细杆 a 端 L /5 处。若已知地磁场在竖直方向的分量为 \bar{B} 。求 ab 两端间的电势 \bar{B} 。求 ab 两端间的电势 \bar{B} 。
- 20. 2742: 在半径为 R 的圆柱形空间内,存在磁感强度为 B 的均匀磁场, \bar{B} 的方向与圆柱的轴线平行。有一无限长直导线在垂直圆柱中心轴线的平面内,两线相距为 a, a > R, 如图所示。已知磁感强度随时间的变化率为 dB /dt,求长直导线中的感应电动势 \mathcal{E} ,并说明其方向。


```
一、选择题
     1. 5666: D; 2. 2020: A; 3. 2353: E; 4. 2354: D; 5. 5468: C; 6. 5470: C;
     7. 2003: B; 8. 2046: B; 9. 2047: D; 10. 2060: B; 11. 2062: A; 12. 2373: C;
     13. 2451: A; 14. 2575: D; 15. 2784: C; 16. 2090: C; 17. 2381: A; 18. 2466:
     19. 2016; D; 20. 2049; B; 21. 2292; B; 22. 2398; C; 23. 2400; B; 24. 2608;
C;
     25. 2609; D; 26. 2736; B; 27. 2145; B; 28. 2147; B; 29. 2404; B; 30. 2493;
В;
     31. 2123: A; 32. 2504: D; 33. 2156: C; 34. 2417: C; 35. 2421: D; 36. 2752:
C;
     37. 5138: D; 38. 5141: C; 39. 5159: C; 40. 2183: D; 41. 2790: A;
二、填空题
                   1.26 \times 10^{-5} \text{ Wb}
     1. 2549:
                     0.5 T; y 轴正方向 5.00×10<sup>-5</sup> T
     2. 5303:
     3. 2023:
                     6.67 \times 10^{-7} \,\mathrm{T}; \qquad 7.20 \times 10^{-7} \,\mathrm{A} \cdot \mathrm{m}^2
     4. 2026:
                   \frac{\mu_0 I}{4} (\frac{1}{R_2} - \frac{1}{R_1}) \ ; \quad \text{ } \underline{\pm} \underline{\text{ }}\underline{\text{ }}\underline{\text{ }}\underline{\text{ }}\underline{\text{ }}\underline{\text{ }}\underline{\text{ }}\underline{\text{ }}\underline{\text{ }}\underline{\text{ }}}, \quad \frac{\mu_0 I}{4} (\frac{1}{R_1^2} - \frac{1}{R_2^2})^{1/2} \ ; \quad \frac{1}{2} \pi + \operatorname{arctg} \frac{R_2}{R_1}
     5.2043:
                    \mu_0 I/(4a)
     6. 2562:
                      qv\sin\alpha .
                                       运动电荷速度矢量与该点磁感强度矢量所组成的平面
     7. 2665:
     8. 5310:
                     12.4 T
                      \mu_0 I
                      4\pi R
     9. 5481:
     10. 2652:
                                     不同
                      相同;
                       \mu_0ih
                       2\pi R
     11. 2710:
                      02分; 0
     12. 0361:
                      1:2; 1:2
     13. 2065:
                       匀速直线; 匀速率圆周; 等距螺旋线
     14. 2066:
                       3.08 \times 10^{-13} \text{ J}
     15. 2235:
                       R_1/R_2=\sqrt{2}
     16. 2457:
                       4.48 \times 10^{-10} \,\mathrm{A}
     17. 2581:
     18. 2096:
                       9.34 \times 10^{-19} \,\mathrm{Am}^2
     19. 2103:
```

 $B_0 Ba^3 / (\sqrt{\pi} \mu_0)$

垂直纸面向里 23. 5125:

24. 2109: 0.226 T; 300 A/m

20. 2387:

25. 2401: $I/(2\pi r)$; $\mu I/(2\pi r)$

26. 2676:
$$=0$$
 ; <0
27. 5134: 铁磁质 ; 顺磁质 ; 抗磁质
28. 2128: $ADCBA$ 绕向 ; $ADCBA$ 绕向
29. 2615: $-\mu_0 n I_m \pi a^2 \omega \cos \omega t$
30. 2616: 3.14×10^6 C
31. 2134: 1.11×10^5 V ; A 端
32. 2144: 相同(或 $\frac{1}{2}B\omega R^2$) ; 沿曲线由中心向外
33. 2508: $\frac{5}{2}B\omega R^2$; O 点
 $\frac{-\mu_0 I g}{2\pi} t \ln \frac{a+l}{a}$
35. 2159: 小于 ; 有关
 $\int \vec{D} \cdot d\vec{S} = \int \rho dV$
 $\int \vec{E} \cdot d\vec{l} = -\int_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$
 $\int \vec{B} \cdot d\vec{S} = 0$
36. 2180: $\int \vec{B} \cdot d\vec{l} = \int_S (\vec{J} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S}$
 $\int \vec{B} \cdot d\vec{S} = 0$
37. 2521: 答案见图
38. 2525: 0.400 H
39. 2338: 1:16
40. 5149: $\mu n I$; $\mu n^2 I^2 / 2$
41. 2339: ② ; ③ ; ①
$$\int \int_S \frac{\partial}{\partial t} \vec{D} \cdot d\vec{S}$$
 $\vec{g} \cdot d\Phi_D / dt$; $\vec{g} \cdot d\Phi_D / dt$; $\vec{g} \cdot d\Phi_D / dt$; $\vec{g} \cdot d\Phi_D / dt$;

三、计算题 $B_1=\frac{\mu_0 I\ l_1}{4\pi R_1^2}\ ,\quad B_2=\frac{\mu_0 I\ l_2}{4\pi R_2^2}\ .----4$ 1. 2251: 解: 两段圆弧在 O 处产生的磁感强度为:

垂直 OP 连线向下

分 两段直导线在 O 点产生的磁感强度为:

垂直纸面向里;

 $\varepsilon_0 \pi R^2 dE/dt$

43. 0323:

44. 5161:

$$= \frac{\mu_0 I}{4\pi R_1 \cos \frac{l_1}{2R_1}} \left[-\sin \frac{l_1}{2R_1} + \sin \frac{l_2}{2R_2} \right]$$

$$B_3 = B_4$$

$$B = B_1 + B_3 + B_4 - B_2$$

$$= \frac{\mu_0 I}{2\pi R_1 \cos \frac{l_1}{2R_1}} \left[-\sin \frac{l_1}{2R_1} + \sin \frac{l_2}{2R_2} \right] + \frac{\mu_0 I}{4\pi} \left(\frac{l_1}{R_1^2} - \frac{l_2}{R_2^2} \right) - 1$$

2. 2253: 解: 设正方形边长为 1, 则旋转的正方形带电框等效于一个半径为 的带有均匀面电流的圆带。圆带中半径为 r, 宽度为 dr 的圆环在中心产生的磁场为:

$$dB = \frac{\mu_0 dI}{2r}$$

$$dI = \frac{8\lambda\omega \, dx}{2\pi}$$

$$r = \left[(\frac{1}{2}l)^2 + x^2 \right]^{1/2}$$

$$B = \int_0^{l/2} \frac{8\lambda\omega\mu_0 / 2\pi}{2[(\frac{1}{2}l)^2 + x^2]^{1/2}} \, dx$$

$$= \frac{4\lambda\omega\mu_0}{2\pi} \ln(x + \sqrt{(\frac{1}{2}l)^2 + x^2}) \Big|_0^{l/2} = \frac{2\lambda\omega\mu_0}{\pi} \ln(1 + \sqrt{2})$$

3. 0313: 解: 当线圈右边进入均匀磁场后,产生感生电流,因而受到一磁力F',方向 向左。

$$F' = IBl = (1/R)B^2l^2dx/dt = (1/R)B^2l^2v$$
_____4

由
$$\vec{F} = m\vec{a}$$
 得: $F - F' = mdv/dt$ ______2 分
$$F - (B^2 l^2/R)v = mdv/dt$$

$$\int \frac{dv}{F/m - [B^2 l^2 / (Rm)]v} = \int dt \implies \ln(\frac{F}{m} - \frac{B^2 l^2 v}{Rm}) = -\frac{B^2 l^2}{Rm}t + C$$

积分得:

所以:

$$\ln(\frac{F}{m} - \frac{B^2 l^2 v}{Rm}) - \ln\frac{F}{m} = -\frac{B^2 l^2}{Rm}t$$

可得:
$$v = \frac{FR}{B^2 l^2} (1 - e^{-bt}),$$

4. 2653: 解:电子在 x_Z 平面内作速率为 v 的圆周运动(如图),则:

$$\upsilon = \frac{e}{\sqrt{4\pi\varepsilon_0 r m_e}}$$

$$2\pi r 2\pi r \sqrt{4\pi\varepsilon_0 r m_e}$$

电子运动的周期:

$$T = \frac{2\pi r}{\upsilon} = \frac{2\pi r \sqrt{4\pi\varepsilon_0 r m_e}}{e}$$

$$p_m = IS = \frac{e}{T} \pi r^2 = \frac{e^2}{4} \sqrt{\frac{r}{\pi\varepsilon_0 m_e}}$$

$$\vdots$$

$$p_m = IS = \frac{e}{T} \pi r^2 = \frac{e^2}{4} \sqrt{\frac{r}{\pi \varepsilon_0 m_e}}$$
 -----3 \(\frac{r}{\tau}\)

则原子的轨道磁矩:

$$\bar{p}_m$$
的方向与 y 轴正向相反------1 分

设
$$\vec{B}_0$$
方向与 x 轴正向平行,则系统所受力矩 $\vec{M}=\vec{p}_m \times \vec{B}_0=\frac{e^2B_0}{4}\sqrt{\frac{r}{\pi\varepsilon_0m_e}}\vec{k}$ ______3

5. 2054: 解: (1) 利用安培环路定理可求得 1 导线在 P 点产生的磁感强度的大小为:

2 导线在 P 点产生的磁感强度的大小为:

 \bar{B}_1 、 \bar{B}_2 的方向如图所示。P点总场:

的方向如图所示。
$$P$$
 点总场: $B_x = B_{1x} + B_{2x} = B_1 \cos \theta + B_2 \cos \theta$ $B_y = B_{1y} + B_{2y} = 0$

(2) 当
$$\frac{dB(x)}{dx} = 0$$
, $\frac{d^2B(x)}{dx^2} < 0$ 时, $B(x)$ 最大。由此可得: $x = 0$ 处, B 有最大值-----3

6. 2252: 解: 圆锥摆在 O 处产生的磁感强度沿竖直方向分量 B 相当于圆电流在其轴上

一点产生的B,故:

$$I = \frac{q\omega}{2\pi} \,, \quad R = l\sin\theta \,, \quad R^2 = l^2\sin^2\theta = l^2(1-\cos^2\theta) \,, \quad x = l(1-\cos\theta) \,...$$

$$\pi \cos \theta = \frac{g}{\omega^2 l} \, \text{代入上式}$$

$$B = \frac{\mu_0 q(l\omega^2 + g)}{4\pi (2l^2)^{3/2} (l\omega^2 - g)^{1/2}}$$

$$\therefore \qquad B = \frac{\mu_0 q(l\omega^2 + g)}{4\pi (2l^2)^{3/2} (l\omega^2 - g)^{1/2}}$$

$$\frac{dB}{d\omega} = \frac{\mu_0 q (l^2 \omega^3 - 3l \omega g)}{4\pi (2l^2)^{3/2} (l\omega^2 - g)^{3/2}}$$

7. 2269: 解: $B = B_1 + B_2 + B_3$, B_1 、 B_2 分别为带电的大半圆线圈和小半圆线圈转动 产生的磁感强度, B_3 为沿直径的带电线段转动产生的磁感强

$$I_1 = \frac{\pi \lambda \omega b}{2\pi}, \quad B_1 = \frac{\mu_0 I_1}{2b} = \frac{\mu_0 \pi \lambda \omega b}{2b \cdot 2\pi} = \frac{\mu_0 \lambda \omega}{4}$$

$$I_2 = \frac{\pi \lambda \omega a}{2\pi}, \quad B_2 = \frac{\mu_0 I_2}{2a} = \frac{\mu_0 \pi \lambda \omega a}{2a \cdot 2\pi} = \frac{\mu_0 \lambda \omega}{4}$$

$$dI_3 = 2\lambda \omega \, dr/(2\pi)$$

$$B_{3} = \int_{a}^{b} \frac{\mu_{0} \lambda \omega}{2\pi} \cdot \frac{\mathrm{d} r}{r} = \frac{\mu_{0} \lambda \omega}{2\pi} \ln \frac{b}{a}$$

$$B = \frac{\mu_{0} \lambda \omega}{2\pi} (\pi + \ln \frac{b}{a}) \qquad (4 \%)$$

8. 2569: 解: 圆盘每秒转动次数为 $\omega/2\pi$,圆盘上电荷面密度为 $\sigma=q/\pi R^2$,在圆盘上取一半径为r,宽度为 dr 的环带,此环带所带电荷: $dq=\sigma\cdot 2\pi r dr$

此环带转动相当于一圆电流,其电流大小为 $dI=\omega dq/2\pi$ _____2分

的磁感强度为. $dB = \frac{\mu_0 r^2 dI}{2(r^2 + x^2)^{3/2}} = \frac{\mu_0 \sigma \omega}{2} \cdot \frac{r^3}{(r^2 + x^2)^{3/2}} dr$

它在 x 处产生的磁感强度为:

故 P 点处总的磁感强度大小为: $B = \frac{\mu_0 \sigma \omega}{2} \int_0^R \frac{r^3}{(r^2 + x^2)^{3/2}} \, \mathrm{d} \, r$

$$=\frac{\mu_0 q}{2\pi R^2} \left[\frac{R^2 + 2x^2}{(R^2 + x^2)^{1/2}} - 2x \right] \omega$$

9. 2139: 解:线框内既有感生又有动生电动势。设顺时针绕向为 \mathcal{E}_i 的正方向。由 $\mathcal{E}_i = -\frac{d\Phi}{dt}$ 出发,先求任意时刻t的 $\Phi(t)$ I(t)

$$dt$$
 出发,先求任意时刻 t 的 $\Phi(t)$

$$\Phi(t) = \int \vec{B} \cdot d\vec{S} = \int_{a}^{a+b} \frac{\mu_0 I(t)}{2\pi y} x(t) dy$$

$$= \frac{\mu_0}{2\pi} I(t) x(t) \ln \frac{a+b}{a}$$

$$= \frac{\mu_0}{2\pi} I(t) x(t) \ln \frac{a+b}{a}$$

再求 $\Phi(t)$ 对 t 的导数: $\frac{\mathrm{d}\Phi(t)}{\mathrm{d}t} = \frac{\mu_0}{2\pi} (\ln \frac{a+b}{b}) (\frac{\mathrm{d}I}{\mathrm{d}t}x + I \frac{\mathrm{d}x}{\mathrm{d}t}) = \frac{\mu_0}{2\pi} I_0 \mathrm{e}^{-\lambda t} v (1-\lambda t) \ln \frac{a+b}{a}$

$$\varepsilon_{i} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = \frac{\mu_{0}}{2\pi} v I_{0} e^{-\lambda t} (\lambda t - 1) \ln \frac{a + b}{a}$$
4 \(\frac{\gamma}{t}\)

 ε_i 方向: $\lambda t < 1$ 时,逆时针; $\lambda t > 1$ 时,顺时针------2 分

10. 2150: 解:两个载同向电流的长直导线在如图坐标 x 处所产生的磁场为:

$$B = \frac{\mu_0}{2\pi} \left(\frac{1}{x} + \frac{1}{x - r_1 + r_2} \right)$$
 -----2 \(\frac{\frac{1}{x}}{x} + \frac{1}{x - r_1 + r_2} \)

选顺时针方向为线框回路正方向,则:

$$\Phi = \int B dS = \frac{\mu_0 I a}{2\pi} \left(\int_{r_1}^{r_1+b} \frac{\mathrm{d} x}{x} + \int_{r_1}^{r_1+b} \frac{\mathrm{d} x}{x - r_1 + r_2} \right)$$

$$= \frac{\mu_0 I a}{2\pi} \ln \left(\frac{r_1 + b}{r_1} \cdot \frac{r_2 + b}{r_2} \right)$$

$$= \frac{\mathrm{d} \Phi}{\mathrm{d} t} = -\frac{\mu_0 a}{2\pi} \ln \left[\frac{(r_1 + b)(r_2 + b)}{r_1 r_2} \right] \frac{\mathrm{d} I}{\mathrm{d} t} = -\frac{\mu_0 I_0 a \omega}{2\pi} \ln \left[\frac{(r_1 + b)(r_2 + b)}{r_1 r_2} \right] \cos \omega t$$

$$\vdots$$

11. 2407: 解: 长直带电线运动相当于电流 $I=\upsilon(t)\cdot\lambda$ _____2 分

正方形线圈内的磁通量可如下求出:
$$\mathbf{d}\boldsymbol{\varPhi} = \frac{\mu_0}{2\pi} \cdot \frac{I}{a+x} a \, \mathbf{d} \, x$$
 ______2 分

$$\Phi = \frac{\mu_0}{2\pi} Ia \int_0^a \frac{\mathrm{d} x}{a+x} = \frac{\mu_0}{2\pi} Ia \cdot \ln 2$$

$$\left| \mathcal{E}_{i} \right| = \left| -\frac{\mathrm{d} \Phi}{\mathrm{d} t} \right| = \frac{\mu_{0} a}{2\pi} \left| \frac{\mathrm{d} I}{\mathrm{d} t} \right| \ln 2 = \frac{\mu_{0}}{2\pi} \lambda a \left| \frac{\mathrm{d} \upsilon(t)}{\mathrm{d} t} \right| \ln 2$$

12. 2409: 解: 大环中相当于有电流:
$$I = \omega(t) \cdot \lambda r_2$$
 ______2 分

 $B = \mu_0 I / (2r_2) = \frac{1}{2} \mu_0 \omega(t) \lambda$ -----2 \(\frac{1}{2}\) 这电流在 0 点处产生的磁感应强度大小:

以逆时针方向为小环回路的正方向,

13. 2499: 解:建立坐标系,长直导线为y轴,BC边为x轴,原点在长直导线上,则 y = (bx/a) - br/a斜边的方程为:

式中r是t时刻B点与长直导线的距离。三角形中磁通量

$$\Phi = \frac{\mu_0 I}{2\pi} \int_r^{a+r} \frac{y}{x} dx = \frac{\mu_0 I}{2\pi} \int_r^{a+r} (\frac{b}{a} - \frac{br}{ax}) dx = \frac{\mu_0 I}{2\pi} (b - \frac{br}{a} \ln \frac{a+r}{r})$$

$$\varepsilon = -\frac{d\Phi}{dt} = \frac{\mu_0 Ib}{2\pi a} (\ln \frac{a+r}{r} - \frac{a}{a+r}) \frac{dr}{dt}$$

 $\varepsilon = \frac{\mu_0 Ib}{2\pi a} \left(\ln \frac{a+d}{d} - \frac{a}{a+d} \right) v$ 3 \(\frac{\phi}{2}\)

当 r = d 时, 方向: ACBA(即顺时针) ------

如图所示,设 t=0 时线圈与长直导线共面,且活动的 b 边与长直导线相距最远,则在

时刻 t,该边与长直导线的距离为: $d = \sqrt{a^2 + c^2 + 2ac\cos \omega t}$ _________3 分

线圈中的磁通量:

$$\varepsilon = -\mathrm{d}\Phi/\mathrm{d}t = \frac{\mu_0 Ib}{2\pi} \frac{ac\omega\sin\omega t}{a^2 + c^2 + 2ac\cos\omega t}$$

15. 5554: 解: 螺线管中的磁感强度: $B = \mu_0 ni$ ______2 分

 $\Phi = \mu_0 n \pi R^2 i$ 通过圆线圈的磁通量:

取圆线圈中感生电动势的正向与螺线管中电流正向相同,有:

$$\begin{split} \varepsilon_i &= -\frac{\mathrm{d}\,\Phi}{\mathrm{d}\,t} = -\mu_0 n\pi R^2 \, \frac{\mathrm{d}\,i}{\mathrm{d}\,t} \\ &= \frac{\mathrm{d}\,i}{T \,/\,4} = \frac{I_{_m}}{T} \, , \ \varepsilon_i = -\mu_0 n\pi R^2 = \frac{4I_{_m}}{T} = -4\pi \, \mu_0 nR^2 I_{_m} / T \\ &\circlearrowleft \end{split}$$

16. 0310: 解: (1)由于线框垂直下落,线框所包围面积内的磁通量无变化,故感应电流:

$$I_i = 0$$
------2 分

(2) 设 dc 边长为 l',则由图可见: $l' = L + 2L\cos 60^\circ = 2L$ 取 $d \rightarrow c$ 的方向为 dc 边内感应电动势的正向,则:

$$\varepsilon_{dc} = \int_{d}^{c} (\vec{\mathbf{v}} \times \vec{B}) \cdot d\vec{l} = \int_{d}^{c} \mathbf{v} B \, dl = \int_{0}^{l'} \sqrt{2gH} \cdot \frac{\mu_{0} I}{2\pi (r+l)} \, dr$$

$$= \frac{\mu_{0} I}{2\pi} \sqrt{2gH} \ln \frac{l'+l}{l} = \frac{\mu_{0} I}{2\pi} \sqrt{2gH} \ln \frac{l+2L}{l}$$
------3 $\frac{1}{2}$

 $\varepsilon_{dc} > 0$, 说明 cd 段内电动势的方向由 $d \rightarrow c$ ------2 分

因为 c 点电势最高,d 点电势最低,故: V_{cd} 为电势最高处与电势最低处之间的电势差-----1分

17. 2327: 解: 棒上线元 dl 中的动生电动势为:

$$d\varepsilon = (\vec{v} \times \vec{B}) \cdot d\vec{l} = \omega l \frac{\mu_0 I}{2\pi (r_0 + l \cos \theta)} dl$$
.....3 \(\frac{\psi}{2}\)

金属棒中总的感生电动势为:

$$\varepsilon = \int_{0}^{L} d\varepsilon = \int_{0}^{L} \frac{\omega \mu_{0} I l \cos \theta}{2\pi \cos^{2} \theta(r_{0} + l \cos \theta)} d(l \cos \theta)$$

$$= \int_{0}^{L} \frac{\omega \mu_{0} I}{2\pi \cos^{2} \theta} (1 - \frac{r_{0}}{r_{0} + l \cos \theta}) d(l \cos \theta)$$

$$= \frac{\omega \mu_{0} I L}{2\pi \cos \theta} - \frac{\omega \mu_{0} I r_{0}}{2\pi \cos^{2} \theta} [\ln(r_{0} + L \cos \theta) - \ln r_{0}]$$

$$= \frac{\omega \mu_{0} I}{2\pi \cos \theta} [L - \frac{r_{0}}{\cos \theta} \ln(\frac{r_{0} + L \cos \theta}{r_{0}})]$$

$$= \frac{\omega \mu_{0} I}{2\pi \cos \theta} [L - \frac{r_{0}}{\cos \theta} \ln(\frac{r_{0} + L \cos \theta}{r_{0}})]$$

方向由 O 指向另一端------2 分

18. 2769: 解: (1) 在线框进入磁场之前(0 $\leq t \leq t_1$)线框作自由落体运动: v=gt 当 $t=t_1=\sqrt{2h/g}$ 計 $v=v_1=\sqrt{2hg}$ ______2 分

(2) 线框底边进入磁场后,产生感应电流,因而受到一磁力:

$$F = IbB = \frac{1}{R} \frac{\mathrm{d}\Phi}{\mathrm{d}t} bB = \frac{B^2b^2}{R} \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{B^2b^2}{R} v \ , \qquad (方向向上)-----2 分$$
 线框运动的微分方程为:
$$mg - \frac{B^2b^2}{R} v = m \frac{\mathrm{d}v}{\mathrm{d}t} \ .-----1 分$$

(3) 当线框全部进入磁场后($t > t_2$),通过线框的磁通量不随时间变化,线框回路不存在 感生电流,磁力为零. 故线框在重力作用下作匀加速下落, $v=v_2+g(t-t_2)$

即
$$v = \frac{1}{K} [g - (g - Kv_1)e^{-K(t_2 - t_1)}] + g(t - t_2)$$
 ($t \ge t_2$)------3分

19. 2509: \overline{Ob} 间的动生电动势:

b 点电势高于 O 点

$$\overline{Oa}$$
 间的动生电动势:
$$\varepsilon_2 = \int_0^{L/5} (\vec{\mathbf{v}} \times \vec{B}) \cdot d\vec{l} = \int_0^{L/5} \omega B l \, dl = \frac{1}{2} \omega B (\frac{1}{5} L)^2 = \frac{1}{50} \omega B L^2$$
 -----4

a 点电势高于 O 点

$$U_a - U_b = \varepsilon_2 - \varepsilon_1 = \frac{1}{50} \omega B L^2 - \frac{16}{50} \omega B L^2 = -\frac{15}{50} \omega B L^2 = -\frac{3}{10} \omega B L^2$$
.....2

20. 2742: 解: 由问题的轴对称性和轴向的无限长条件可知, 感生涡漩电场的场强 E 在 垂直轴线的平面内,且与径向相垂直-----3分

如图所示,选取过轴线而平行给定的无限长直导线的一条无限长直导线,与给定的无限 长直导线构成闭合回路(在无限远闭合),则在过轴线的长直导线上,因 $ar{E}$ 处处与之垂直, $oldsymbol{\cdot}$: 电动势为零.

又在无限远处 $\bar{E}=0$,故此回路中的电动势就是给定的无限长直导线中的电动势 \mathcal{E} ---3 分

$$arepsilon=-\mathrm{d}oldsymbol{arPhi}/\mathrm{d}\,t=-rac{1}{2}\pi R^2\,\mathrm{d}\,B/\mathrm{d}\,t$$
由电磁感应定律有:

