Homework: Week 2

Joseph Ismailyan

Math 100

Due: October 13, 2017

Professor Boltje MWF 9:20a-10:25a

Section 1.6

6.

Section 1.7

 $\overline{A \cup B}$

 $\overline{A} \cap \overline{B}$

Answer: From the two diagrams above, we can see that the sets are equal.

Section 1.8

6(a).

Answer: $\bigcup_{i\in\mathbb{N}}[0,i+1]=[0,\infty)$

6(b).

Answer: $\bigcap_{i\in\mathbb{N}}[0,i+1]=[0,2]$

Section 2.1

6.

Question: Some sets are finite.

Answer: It is statement because it can be proven definitely true or false.

14.

Question: Call me Ishmael.

Answer: It is a sentence because it isn't a mathematical expression.

Section 2.2

8.

Question: At least one of the numbers x and y equals 0.

P: x is equal to 0. Q: x is equal to 0.

Answer: $P \vee Q$

Section 2.3

2.

Problem: Convert the following sentences to be in the form $P \implies Q P$: A function is differentiable.

Q: A function is continuous.

Answer: $P \implies Q$

Section 2.4

4.

Problem: Convert to the form "P if and only if Q".

 $P:a\in\mathbb{Q}\\Q:5a\in\mathbb{Q}$

Answer: $P \Leftrightarrow Q$ $a \in \mathbb{Q}$ if and only if $5a \in \mathbb{Q}$

Section 2.5

4.

Problem: Write a truth table for the logical problem: $\sim (P \vee Q) \vee \sim (P)$

P	Q	$\sim (P \vee Q)$	$\sim (P)$	$\sim (P \lor Q) \lor \sim (P)$
\overline{T}	T	F	F	F
T	F	F	F	F
F	T	F	T	T
F	F	T	T	\mid T

Section 2.5 cont.

8.

Problem: Write a truth table for the logical problem: $P \lor (Q \lor \sim R)$

			$(Q \lor \sim R)$	$P \vee (Q \vee \sim R)$
	T		T	T
	T		T	T
	F		F	T
	F		T	T
F	T	T	T	T
F	T	F	T	T
F	F	T	F	F
F	F	F	T	T

10.

Problem: Suppose the statement $((P \land Q) \lor R) \Longrightarrow (R \lor S)$ is false. Find the truth values of P,Q,R and S.

Asnwer: Suppose A and B are statements. The only way that $(A \Longrightarrow B) = False$ is if A = True and B = False. Therefore $((P \land Q) \lor R)$ must be True and $(R \lor S)$ must be False. For $(R \lor S)$ to be False, both R and S must be False. Since R is false, the statement $(P \land Q) \lor R$ relies on $(P \land Q)$ to be true so both P and Q must be true. In conclusion:

$$\begin{array}{c|c|c|c} P & Q & R & S \\ \hline T & T & F & F \end{array}$$

Section 2.6

2.

Problem: Show that the following statements are logically equivalent.

$$a: P \vee (Q \wedge R)$$

$$b: (P \vee Q) \wedge (P \vee R)$$

P	Q	R	$(Q \wedge R)$	$P \lor (Q \land R)$
\overline{T}	T	T	T	T
T	T	F	F	T
T	F	T	F	T
T	F	F	F	T
F	$\mid T \mid$	T	T	T
F	T	F	F	F
F	F	T	F	F
\overline{F}	F	F	F	F

P	Q	R	$(P \vee Q)$	$(P \vee R)$	$(P \vee Q) \wedge (P \vee R)$
\overline{T}	T	T	T	T	T
T	T	F	T	T	T
T	F	T	T	T	T
T	F	F	T	T	T
F	T	T	T	T	T
F	T	F	T	F	F
F	F	T	F	T	F
F	F	F	F	F	F

10.

Decide whether the following statements are logically equivalent:

$$a. \quad (P \implies Q) \vee R$$

$$b. \sim ((P \land \sim Q) \land \sim R)$$

1)
$$(P \implies Q) \lor R = (\sim P \lor Q) \lor R$$

by definition of implication

$$2) \quad (\sim P \vee Q) \vee R = \\ \sim ((\sim P \vee Q) \vee R)$$

by DeMorgan's Laws

3)
$$\sim ((\sim P \lor Q) \lor R) = \sim (\sim P \lor Q) \land \sim R$$

by DeMorgan's Laws

$$4) \sim (\sim P \lor Q) \land \sim R = (P \land \sim Q) \land \sim R$$

by DeMorgan's Laws

5)
$$(P \land \sim Q) \land \sim R =$$

 $\sim ((P \land \sim Q) \land \sim R) = b$

 $\therefore a \equiv b$, they're logically equivalent.