COMP0017 Computability and Complexity Theory

Fabio Zanasi http://www0.cs.ucl.ac.uk/staff/F.Zanasi/

Lecture nine

Previously on COMP0017

We discussed the concept of a universal Turing machine (UTM) and constructed one.

A key idea of the UTM is that a Turing machine may take other Turing machines as input data.

We used these insights to show that there exists an **undecidable** problem (the Halting problem) and an **unrecognisable** problem (the complement of the Halting problem).

One more example

We give one more example of an undecidable problem.

The *empty tape halting problem* (*ETH*) is defined by the following language.

 $ETH = \{ x \in \Sigma^* \mid x = \text{code}(\mathcal{M}) \text{ and } \mathcal{M} \text{ halts on } \varepsilon. \}$

Theorem ETH is undecidable.

ETH is undecidable

Proof We reason by contradiction. Suppose *ETH* was decidable, say by a TM \mathcal{M}_{ETH} . We now show how we can use \mathcal{M}_{ETH} to construct a TM \mathcal{M}_{H} deciding *HALT*.

 \mathcal{M}_{H} is defined as follows.

On input (y,x):

- If $y \neq code(\mathcal{M})$ for all \mathcal{M} , reject.
- If $y = code(\mathcal{M})$, construct $\mathcal{M}_{\mathcal{M},x}$ as follows:
 - 1. $\mathcal{M}_{\mathcal{M},x}$ enters a loop on any non-empty string.
 - 2. On input ε , write x on tape and simulate \mathcal{M} on x.
- Accept if \mathcal{M}_{ETH} accepts $code(\mathcal{M}_{\mathcal{M},x})$, otherwise reject.

ETH is undecidable

We conclude the proof by verifying that \mathcal{M}_H decides the Halting problem.

But we know that the Halting problem is undecidable, contradiction. So, the machine \mathcal{M}_{ETH} that we used to construct \mathcal{M}_{H} , cannot exist, meaning that ETH is undecidable.

A pattern emerges

Last lecture we saw:

Theorem *HALT* is unrecognisable.

Proof If *HALT* was recognisable, *HALT* would be decidable.

This lecture we saw:

Theorem ETH is undecidable.

Proof If ETH was decidable, HALT would be decidable.

A pattern emerges

In each case, we reduce the decidability/recognisability of a problem *L* to the decidability of another problem (*HALT*).

 $HALT = \{ \langle y, x \rangle \in \Sigma^* x \Sigma^* \mid y = \text{code}(\mathcal{M}) \text{ and } \mathcal{M} \text{ halts on } x. \}$

Proof outline: suppose a TM \mathcal{M}' deciding L exists.

Then there exists a TM deciding HALT:

If $y = code(\mathcal{M})$ and \mathcal{M} halts on x.

Otherwise.

In more abstract terms

In order to prove that a problem L is undecidable:

- 1. Start with a problem L'that you know is undecidable.
- 2. Show that if you could decide *L* then you could decide *L*'.
- 3. Conclude that you cannot decide L.

(The same argument works with ``recognise' in place of decide.)

The key step is 2: showing that deciding *L'* **reduces** to deciding *L*.

In the next lecture we will turn this kind of reduction argument into a proof strategy, which shows undecidability of problems much more straightforwardly.