

University of Bordeaux 1 - Science and Technology

MOBILITY MODELS FOR UAV GROUP RECONNAISSANCE APPLICATIONS

Erik Kuiper & Simin Nadjm-Tehrani IEEE lecture 2006

By Paziewski Hayley, Etcheverry Jérémy, Tessier Alexis, Testa Mickaël, Castagnet Florian

22/01/2014

Responsible of Directed Works:

CHAUMETTE Serge and AUTEFAGE Vincent

Study and Research Project

2013-2014

Plan

- Context
- Problematic
- Study of existing
- Our article
- Models of our study
- Experiments
- Comparison of 2 models
- Our Implementation
- Conclusion

Context

- UAV
- Swarm of UAVs
- Mobility models
- → How do they move ?

Problematic

Figure 1 . Source : "http://www.swiss-uav.com"

How well scan an area?

As much and as quickly possible, in a limited time and at least, once every hour.

Figure 2. Source: "http://technorati.com"

Master 2 – Computer Science – Authors : fcastagn, jetcheve, hpaziews, altessie & mtesta

Study of existing

Existing Models

Random Walk

Random WayPoint

[1] : Result pattern of Random Walk

[2] : Result pattern of Random Walk

Study of existing

City Section

[3]:(b) Region B: Street scenario corresponding to a square area of size 1900 m×1900 m

Distributed Pheromone Repel

[4] : Attractive and Repulsive Pheromones For Surveillance

Blue: repulsive

Green: attractive

Our Article

Introduction

- MANET
 - Mobile Ad Hoc Network
 - Networks of mobile entities
 - Collect, process and transmit data
- UAV
 - Application of mobility models with UAVs
- 2 differents mobilities models
 - Random Waypoint
 - Distributed Pheromone Repel

Random Waypoint model

- Each drones are independant
- No backup position
- Random target

Random Waypoint model

Table 1. UAV random action table.

	Probability of action		
Last action	Turn left	Straight ahead	Turn right
Straight ahead	10%	80%	10%
Turn left	70%	30%	0%
Turn right	0%	30%	70%

From : "Mobility Models for UAV Group Reconnaissance Applications"

By: E. Kuiper and S. Nadjm-Tehrani.

Distributed Pheromone Repel model

- Coordination of UAVs thanks to pheromones
- Dynamic UAV

Distributed Pheromone Repel model

- One pheromone map per UAV
- Marks the areas when they have been scanned
- Broadcast regularly a local area pheromone map (when a distance is inferior to 8 km)

Distributed Pheromone Repel model

Figure 2. Pheromone search pattern

Table 2. UAV pheromone action table.

Probability of action			
Turn left Straight ahead Turn			
(Total – Left) /	(Total – Center) /	(Total – Right) /	
(2 * Total)	(2 * Total)	(2 * Total)	

From : "Mobility Models for UAV Group Reconnaissance Applications"

By: E. Kuiper and S. Nadjm-Tehrani.

Experiments

Scenarios for the 2 models

- Characteristics
 - Square with a side length of 30 Km
 - o 10 UAVs per run
 - Fixed wing aircraft
- Requirements
 - Data must be returned to the C&C
 - No excessive use of bandwidth (communication of 1 message/s/UAV)

Experiments

Expected results:

Obtained results:

Scan the area in 40 min

Mobilities Models	RandomWayPoint	Pheromone
Time to scan the area	80% of the area in 120 min	90% of the area in 50 min
Connectivity	Low	Low

Experiments

Limitations

- Speed and shift (direction)
- Coverage and connectivity of communications are two conflicting objectives.
- Absolutely unrealistic !!!!!!

Comparison of 2 models

Scan characteristic

Both models manage quite well to avoid rescanning a recently scanned area.

Table 3. Never scanned area

	Max	Median	Min
Random	16.2%	3.2%	0.5%
Pheromone	0.21%	0.03%	0.01%

From: "Mobility Models for UAV Group Reconnaissance Applications"

By: E. Kuiper and S. Nadjm-Tehrani.

All models

- Everything was done
- 10 nodes/models
- Margin calculation
- Percentage of scan
- Tracking display

Pheromone model

- Presence of C&C does not move
- Communication

JBotSim

Pheromone model

JBotSim

Random Walk model

JBotSim

Random Waypoint model

🤼 Problems 🍳 Javadoc 😉 Declaration 📮 Consol Main (1) [Java Application] /usr/lib/jvm/jdk-7-oracle-x64/b Scan : 35.72395833333336% during 2 min 0 sec Scan : 35.7243923611111114% during 2 min 0 sec Scan : 35.7248263888888886% during 2 min 0 sec Scan : 35.725260416666664% during 2 min 0 sec Scan : 35.725260416666664% during 2 min 0 sec Scan : 35.72569444444444 during 2 min 0 sec Scan : 35.72612847222222% during 2 min 0 sec Scan : 35.72612847222222% during 2 min 0 sec Scan : 35.7265625% during 2 min 0 sec Scan : 35.72699652777778% during 2 min 0 sec Scan : 35.72743055555556% during 2 min 0 sec Scan : 35.72743055555556% during 2 min 0 sec Scan : 35.727864583333336% during 2 min 0 sec Scan : 35.727864583333336% during 2 min 0 sec

Interpretation of results

- At the beginning, Random model more efficiency
- Pheromone : sharp increase because of C&C communication
- At the end, random models are stable
- Pheromone model is more effective that the others models to reach 100% of scan.

Comparison with article

0.8 0.6 0.4 0.2 0.1000 2000 3000 4000 2000 6000 7000 Time (seconds)

Figure 3. Random mobility coverage

Figure 4. Pheromone mobility coverage.

Importance of the Mobility Model choosen

Mobility Model Scenarios	Semi- Random- Circular- Movement	Distributed Pheromone Repel	Smooth turn
Scan Coverage	X	X	
Airborne Networks			X

Master 2 – Computer Science – Authors : fcastagn, jetcheve, hpaziews, altessie & mtesta

Conclusion

- Good model for scan coverage and reconnaissance scenario.
- Absolutely unrealistic
- Possiblity amelioration is to temporary storage data and relax the limited bandwidth.

Figure 4. Source: "http://fr.depositphotos.com"

Figure 3. Source: "http://www.vikingaero.com"

Figure 5. Source : " http://titanaerospace.com "

DO YOU HAVE ANY QUESTIONS ?

Figure 6.

Ressources

• E. Kuiper and S. Nadjm-Tehrani.

Mobility models for uav group reconnaissance applications. In Wireless and Mobile Communications, 2006. ICWMC '06. International Conference on, page 33, July 2006.

"http://dept-info.labri.fr/~desbarat/PER/sujets/Autefage1-article.pdf"

[1] && [2]: A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, S. Suri. Towards Realistic Mobility Models for Mobile Ad Hoc Networks. 9th annual International Conference on Mobile Computing and Networking. September 2003. ACM Press

[3] A. K. Saha, D. B. Johnson. Modeling Mobility for Vehicular Ad Hoc Networks. First ACM Workshop on Vehicular Ad Hoc Networks. October 2004. ACM Press

[4] J. A. Sauter, R. Matthews, H. V. D. Parunak, S. A.Brueckner. Performance of Digital Pheromones for Swarming Vehicle Control. Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems. July, 2005. ACM Press