

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 5/10, 5/16, 7/01, 15/00, 15/09, 15/10, 15/11, 15/12, 15/16, 15/63, C07H 21/00, 21/04, C07K 14/00, 14/705, 14/72

(11) International Publication Number:

WO 95/21245

(43) International Publication Date:

10 August 1995 (10.08.95)

(21) International Application Number:

PCT/US95/01469

A1

(22) International Filing Date:

3 February 1995 (03.02.95)

(30) Priority Data:

08/192,288

3 February 1994 (03.02.94)

us

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/192,288 (CIP) 3 February 1994 (03.02.94)

(71) Applicant (for all designated States except US): SYNAPTIC PHARMACEUTICAL CORPORATION [US/US]; 215 College Road, Paramus, NJ 07652 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GERALD, Christophe [FR/US]; 204-B Union Street, Ridgewood, NJ 07450 (US). WALKER, Mary, W. [US/US]; 9 Spruce Street, Elmwood Park, NJ 07407 (US). BRANCHEK, Theresa [US/US]; 518 Standish Road, Teaneck, NJ 07666 (US). WEINSHANK, Richard [US/US]; 302 West 87th Street, New York, NY 10024 (US).

(74) Agent: WHITE, John, P.; Cooper & Dunham L.L.P., 1185 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

With international search report.

(54) Title: NUCLEIC ACID ENCODING NEUROPEPTIDE Y/PEPTIDE YY (Y2) RECEPTORS AND USES THEREOF

(57) Abstract

This invention provides isolated nucleic acid molecules encoding Y2 receptors, an isolated, purified Y2 receptor protein, vectors comprising isolated nucleic acid molecules encoding Y2 receptors, mammalian, insect, bacterial and yeast cells comprising such vectors, antibodies directed to the Y2 receptors, nucleic acid probes useful for detecting nucleic acid encoding Y2 receptors, antisense oligonucleotides complementary to unique sequences of a nucleic acid molecule which encodes a Y2 receptor, pharmaceutical compounds related to the Y2 receptors, and nonhuman transgenic animals which express nucleic acid encoding a normal or mutant Y2 receptor. This invention further provides methods for determining ligand binding, detecting expression, drug screening, and methods of treatment involving Y2 receptors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland .	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TĐ	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		•		

NUCLEIC ACID ENCODING NEUROPEPTIDE Y/PEPTIDE YY (Y2) RECEPTORS AND USES THEREOF

Background of the Invention

- 5 This application is a continuation-in-part of U.S. Serial No. 08/192,288, filed February 3, 1994, the contents of which are hereby incorporated by reference into the subject application.
- Throughout this application, various publications are referenced in parenthesis by number. Full citations for these references may be found at the end of the specification immediately preceding the claims. The disclosure of these publications is hereby incorporated by reference into this application to describe more fully the art to which this invention pertains.

Neuropeptides are small peptides originating from large precursor proteins synthesized by peptidergic neurons and endocrine/paracrine cells. They hold promise for treatment of neurological, psychiatric, and endocrine disorders (46). Often the precursors contain multiple biologically active peptides. There is great diversity of neuropeptides in the brain caused by alternative splicing of primary gene transcripts and differential precursor processing. The neuropeptide receptors serve to discriminate between ligands and to activate the appropriate signals.

Neuropeptide Y (NPY), a 36-amino acid peptide, is the most abundant neuropeptide to be identified in mammalian brain. NPY is an important regulator in both the central and peripheral nervous systems (47) and influences a diverse range of physiological parameters, including effects on psychomotor activity, food intake, central endocrine secretion, and vasoactivity in the

2

cardiovascular system. High concentrations of NPY are found in the sympathetic nerves supplying the coronary, cerebral, and renal vasculature and have contributed to vasoconstriction. NPY binding sites have been identified in a variety of tissues, including spleen (48), intestinal membranes, brain (49), aortic smooth muscle (50), kidney, testis, and placenta (2). In addition, binding sites have been reported in a number of rat and human cell lines (e.g. Y1 in SK-N-MC, MC-IXC, CHP-212, and PC12 cells; Y2 in SK-N-Be(2), CHP-234, and SMS-MSN) (51,5).

Neuropeptide Y (NPY) receptor pharmacology is currently defined by structure activity relationships within the 15 pancreatic polypeptide family (1, 2). This family includes NPY, which is synthesized primarily in neurons; peptide YY (PYY), which is synthesized primarily by endocrine cells in the gut; and pancreatic polypeptide (PP), which is synthesized primarily by endocrine cells 20 in the pancreas. These 36 amino acid peptides have a compact helical structure involving a "PP-fold" in the middle of the peptide. Specific features include a polyproline helix in residues 1 through 8, a β -turn in residues 9 through 14, an α -helix in residues 15 through 30, an outward-projecting C-terminus in residues 30 25 through 36, and a carboxyl terminal amide which appears to be critical for biological activity (3). The peptides have been used to define at least four receptor subtypes known as Y1, Y2, Y3, and PP. Y1 receptor recognition by NPY involves both N- and C-terminal regions of the peptide; exchange of Gln^{34} with Pro^{34} is fairly well tolerated (3, 4, 5). Y2 receptor recognition by NPY depends primarily upon the four C-terminal residues of the peptide (Arg33- Gln34-Arg35- Tyr36-NH2) preceded by an amphipathic α -helix (3, 6, 7); exchange of Gln^{34} with Pro^{34} is not well tolerated (4, 5). Y3 receptor recognition is characterized by a strong preference for NPY over PYY

3

(8). Exchange of Gln³⁴ in NPY with Pro³⁴ is reasonably well tolerated by the Y3 receptor but PP, which also contains Pro³⁴, does not bind well (8). The PP receptor is reported to bind tightly to PP, less so to [Leu³¹,Pro³⁴]NPY, and even less so to NPY (3, 9). The only NPY receptor which has been cloned to date is the Y1 receptor gene, from mouse (12), rat (52), and human (10). One of the key pharmacological features which distinguish Y1 and Y2 is the fact that the Y1 receptor (and not the Y2 receptor) responds to an analog of NPY modified at residues 31 and 34 ([Leu31,Pro34]NPY), whereas the Y2 receptor (and not the Y1 receptor) has high affinity for the NPY peptide carboxyl-terminal fragment NPY-(13-36) (53,4).

15

Receptor genes for the other two structurally related peptides, peptide YY (PYY) and pancreatic polypeptide (PP), also have not been cloned. Peptide YY occurs mainly in endocrine cells in the lower gastrointestinal tract (54). Receptors for PYY were first described in the rat small intestine (55). This receptor has been defined as PYY-preferring because it displays a 5-10 fold higher affinity for PYY than for NPY (55,56). Recently, a cell line, PKSV-PCT, derived from the proximal tubules of kidneys, has been described to express receptors for PYY (57).

In the last few years only the rat and human Y1 cDNAs have been cloned (10, 11). This success was based on 0 identifying the randomly cloned FC5 "orphan receptor" (12). We now report the isolation by expression cloning of a human hippocampal Y2 cDNA clone and two rat Y2 clones and their pharmacological characterization.

summary of the Invention

This invention provides an isolated nucleic acid molecule encoding a Y2 receptor.

5

This invention also provides an isolated protein which is a Y2 receptor.

This invention provides a vector comprising nucleic acid encoding a Y2 receptor.

This invention also provides vectors such as plasmids comprising nucleic acid encoding a Y2 receptor, adapted for expression in a bacterial cell, a yeast cell, an insect cell or a mammalian cell which additionally comprise the regulatory elements necessary for expression of the nucleic acid in the bacterial, yeast, insect or mammalian cells operatively linked to the nucleic acid encoding the Y2 receptor as to permit expression thereof.

20

This invention provides a cell transfected with and expressing nucleic acid encoding a Y2 receptor.

This invention provides a nucleic acid probe comprising 25 a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a unique sequence included within the sequence of a nucleic acid molecule encoding a Y2 receptor.

30 This invention provides an antisense oligonucleotide having a sequence capable of specifically hybridizing with any sequences of an mRNA molecule which encodes a Y2 receptor so as to prevent translation of the mRNA molecule.

35

This invention provides an antibody directed to a Y2 receptor.

5

This invention provides a transgenic nonhuman mammal expressing nucleic acid encoding a Y2 receptor. This invention further provides a transgenic nonhuman mammal whose genome comprises antisense DNA complementary to DNA encoding a Y2 receptor so placed as to be transcribed into antisense mRNA which is complementary to mRNA encoding a Y2 receptor and which hybridizes to mRNA encoding a Y2 receptor thereby reducing its translation.

10 This invention further provides a transgenic nonhuman mammal comprising a homologous recombination knockout of the native Y2 receptor.

This invention provides a method for determining whether
15 a ligand can bind specifically to a Y2 receptor which
comprises contacting a cell transfected with and
expressing nucleic acid encoding the Y2 receptor with the
ligand under conditions permitting binding of ligands to
such receptor, and detecting the presence of any such
20 ligand bound to the Y2 receptor, thereby determining
whether the ligand binds specifically to a Y2 receptor.

This invention also provides a method for determining whether a ligand is a Y2 receptor agonist which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with the ligand under conditions permitting the activation of a functional Y2 receptor response from the cell, and detecting, by means of a bioassay, such as a second messenger assay, an increase in Y2 receptor activity, thereby determining whether the ligand is a Y2 receptor agonist.

This invention further provides a method for determining whether a ligand is a Y2 receptor antagonist which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with the ligand in the presence of a known Y2 receptor agonist,

6

such as NPY, under conditions permitting the activation of a functional Y2 receptor response, and detecting, by means of a bioassay, such as a second messenger assay, a decrease in Y2 receptor activity, thereby determining whether the ligand is a Y2 receptor antagonist.

This invention further provides a method of screening drugs to identify drugs which specifically bind to a Y2 receptor on the surface of a cell which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with a plurality of drugs under conditions permitting binding of drugs to the Y2 receptor, and determining those drugs which bind to the Y2 receptor, thereby identifying drugs which specifically bind to a Y2 receptor.

This invention also provides a method of screening drugs to identify drugs which act as agonists of a Y2 receptor on the surface of a cell which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with a plurality of drugs under conditions permitting the activation of a functional Y2 receptor response, and determining those drugs which activate the Y2 receptor, using a bioassay, such as a second messenger assay, thereby identifying drugs which act as Y2 receptor agonists.

This invention also provides a method of screening drugs to identify drugs which act as antagonists of a Y2 receptor on the surface of a cell which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with a plurality of drugs in the presence of a known Y2 receptor agonist, such as NPY, under conditions permitting the activation of a functional Y2 receptor response, and determining those drugs which inhibit the activation of the Y2 receptor, using a bioassay, such as a second messenger assay,

7

thereby identifying drugs which act as Y2 receptor antagonists.

This invention also provides a method of detecting expression of a Y2 receptor by a cell by detecting the presence of mRNA coding for the Y2 receptor which comprises obtaining total mRNA from the cell and contacting the mRNA so obtained with a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a unique sequence included within the sequence of a nucleic acid molecule encoding the Y2 receptor under hybridizing conditions, and detecting the presence of mRNA hybridized to the probe, thereby detecting the expression of a Y2 receptor by the cell.

This invention provides a method of determining the physiological effects of expressing varying levels of Y2 receptors which comprises producing a transgenic nonhuman 20 mammal expressing nucleic acid encoding a Y2 receptor whose levels of Y2 receptor expression are varied by use of an inducible promoter which regulates Y2 receptor expression.

This invention also provides a method of determining the physiological effects of expressing varying levels of Y2 receptors which comprises producing a panel of transgenic nonhuman animals each expressing nucleic acid encoding a Y2 receptor expressing nucleic acid and expressing a different amount of Y2 receptor.

This invention provides a method for diagnosing a predisposition to a disorder associated with the activity of a specific Y2 receptor allele which comprises: a.

35 obtaining nucleic acid of subjects suffering from the disorder; b. performing a restriction digest of the nucleic acid with a panel of restriction enzymes; c.

8

electrophoretically separating the resulting nucleic acid fragments on a sizing gel; d. contacting the resulting gel with a nucleic acid probe capable of specifically hybridizing to nucleic acid encoding a Y2 receptor and 5 labeled with a detectable marker; e. detecting labeled bands which have hybridized to the nucleic acid encoding a Y2 receptor labelled with a detectable marker to create a unique band pattern specific to the nucleic acid of subjects suffering from the disorder; f. preparing 10 nucleic acid obtained for diagnosis by steps a-e; and g. comparing the unique band pattern specific to the nucleic acid of subjects suffering from the disorder from step e and the nucleic acid obtained for diagnosis from step f to determine whether the patterns are the same or different and to diagnose thereby predisposition to the disorder if the patterns are the same.

invention provides a method of preparing an purified isolated, Y2 receptor which comprises 20 constructing a vector adapted for expression in a cell which comprises the regulatory elements necessary for the expression of nucleic acid in the cell operatively linked to the nucleic acid encoding a Y2 receptor as to permit expression thereof, wherein the cell is selected from the 25 group consisting of bacterial cells, yeast cells, insect cells and mammalian cells; inserting the vector of the previous step in a suitable host cell; incubating the cells under conditions allowing the expression of a Y2 receptor; recovering the receptor so produced and purifying the receptor so recovered.

9

Brief Description of the Drawings

Figure 1

5 Nucleotide sequence of the human hippocampal Y2 cDNA clone (SEQ. I.D. No. 1). Initiation and stop codon are indicated in bold. Only partial 5' and 3' untranslated sequences are shown.

10 Figure 2

Deduced amino acid sequence of the human hippocampal Y2 cDNA clone encoded by the nucleotide sequence in Figure 1 (SEQ. I.D. No. 2).

15 Figure 3-1 through Figure 3-4

Comparison of coding nucleotide sequences between human hippocampal Y2 (top row) and Y1 human cDNA clones (bottom row) (48.5% nucleotide identity).

20 Figure 4-1 and Figure 4-2

Comparison of amino acid sequences between hippocampal Y2 (top row) and Y1 human cDNA clones (bottom row). (31% overall identity and 41% in the transmembrane domains).

25 Figure 5A

Equilibrium binding of ¹²⁵I-PYY to membranes from COS-7 cells transiently expressing CG-13 (*) and human Y1 (0) receptors. Membranes were incubated with ¹²⁵I-PYY for the times indicated, in the presence or absence of 100 nM of the times. Specific binding, B, was plotted against time, t, to obtain the maximum number of equilibrium binding sites, B, and B, and observed association rates, Kobsi and Kobsi, according to the equation, B = B, * (1 - e (kobsi * t)) + B, * (1 - e (kobsi * t)). Binding is shown as the percentage of total equilibrium binding, B, + B, determined by nonlinear regression analysis. Data are

representative of three independent experiments, with

10

each point measured in triplicate.

Figure 5B

Equilibrium binding of ¹²⁵I-PYY to membranes from COS-7 cells transiently expressing CG-13 (•) and human Y1 (°) receptors using the same conditions as in Figure 5A except for a prolonged time course of up to 180 minutes.

Figure 6

10 Saturable equilibrium binding of ¹²⁵I-PYY to membranes from COS-7 cells transiently expressing CG-13 receptors. Membranes were incubated with ¹²⁵I-PYY ranging in concentration from 0.003 nM to 2 nM, in the presence or absence of 100 nM human NPY. Specific binding, B, was plotted against the free ¹²⁵I-PYY concentration, [L], to obtain the maximum number of saturable binding sites, B_{max}, and the ¹²⁵I-PYY equilibrium dissociation constant, K_d, according to the binding isotherm, B = B_{max}[L]/([L] + K_d). Specific binding is shown. Data are representative of three independent experiments, with each point measured in triplicate.

Figure 7A

Competitive displacement of $^{125}\text{I-PYY}$ on membranes from COS-7 cells transiently expressing Human Y1 receptors. Membranes were incubated with $^{125}\text{I-PYY}$ and increasing concentrations of peptide competitors. IC₅₀ values corresponding to 50% displacement were determined by nonlinear regression analysis and converted to K_i values according to the equation, $K_i = \text{IC}_{50}/(1 + [\text{L}]/\text{K}_d)$, where [L] is the $^{125}\text{I-PYY}$ concentration and K_d is the equilibrium dissociation constant of $^{125}\text{I-PYY}$. Data are representative of at least two independent experiments, with each point measured once or in duplicate. Rank orders of affinity for these and other compounds are listed separately in Table 2.

11

Figure 7B

Competitive displacement of $^{125}\text{I-PYY}$ on membranes from COS-7 cells transiently expressing human Y2 receptors. Membranes were incubated with $^{125}\text{I-PYY}$ and increasing 5 concentrations of peptide competitors. IC₅₀ values corresponding to 50% displacement were determined by nonlinear regression analysis and converted to K_i values according to the equation, $K_i = \text{IC}_{50}/(1 + [\text{L}]/\text{K}_d)$, where [L] is the $^{125}\text{I-PYY}$ concentration and K_d is the equilibrium dissociation constant of $^{125}\text{I-PYY}$. Data are representative of at least two independent experiments, with each point measured once or in duplicate. Rank orders of affinity for these and other compounds are listed separately in Table 2.

15

Figure 8 Nucleotide sequence (SEQ. I.D. No. 3) and deduced amino acid sequence (SEQ. I.D. No. 4) of the rat Y2 receptor encoded by rs5a. Nucleotides are presented in the 5' to 3' orientation and the coding region is numbered starting from the putative initiating methionine and ending in the termination codon. Deduced amino acid sequence by translation of a long open reading frame is shown using one-letter symbols.

25 Figure 9 Nucleotide sequence (SEQ. I.D. No. 5) and deduced amino acid sequence (SEQ. I.D. No. 6) of the rat Y2 receptor encoded by rs26a. Nucleotides are presented in the 5' to 3' orientation and the coding region is numbered starting from the putative initiating methionine and ending in the termination codon. Deduced amino acid sequence by translation of a long open reading frame is shown using one-letter symbols.

Figure 10 Alignment of rat and human Y2 receptors: 35 nucleotide sequences. Nucleotide sequences of the coding regions of the human Y2 receptor (HumY2) and the rat Y2 receptors encoded by rs5a (RatY2a) and rs26a (RatY2b) are

12

shown; the nucleotide sequence of rs26a (RatY2b) is identical to rs5a (RatY2a) except where shown. Rat and human Y2 nucleotide sequences exhibit ~86% identity in the coding region.

5

Figure 11 Alignment of rat and human Y2 receptors: amino acid sequences. Complete predicted amino acid sequences of the human Y2 receptor (Hum Y2) and the rat Y2 receptor encoded by rs5a (Rat Y2a) are shown; the amino acid sequence of RatY2b encoded by rs26a is identical to RatY2a except where shown. Rat and human Y2 amino acid sequences are ~94% identical overall and ~98% identical in the transmembrane domains (bracketed). Single letter abbreviations for amino acids are shown.

15

Figure 12 Localization of Rat Y2 mRNA in the rat central nervous system. Schematic diagrams of half-coronal sections through the rat brain showing the distribution of neuropeptide Y Y2 receptor mRNA obtained with radiolabelled oligonucleotide probes and in situ hybridization histochemistry. The stars show the location of labeled neuronal populations, and are not indicative of the number of cells observed in each area.

25

Figure 13 Effects of Gpp(NH)p on radio ligand binding to Y2 receptors. Binding data were generated from competitive displacement assays in the absence (•) or presence (0) of 100 μM Gpp(NH)p. The maximum specific binding detected under control conditions (in the absence of Gpp(NH)p) was used to normalize the data. A) Human Y2 receptor transiently expressed in COS-7 cells. B) Rat Y2a receptor transiently expressed in COS-7 cells.

35 <u>Figure 14</u> Inhibition of forskolin-stimulated cAMP accumulation in intact cells stably expressing the human Y2 receptor. Functional data were derived from

radioimmunoassay of cAMP in 293 cells stimulated with 10 μM forskolin over a 5 min period. Human PYY was tested for agonist activity over the same period. Data were fit to a four parameter logistic equation by nonlinear regression. Data generated from stably transfected 293 cells (*) and from stably transfected NIH-3T3 cells (*). Data shown are representative of ten (*) and two (*) independent experiments.

- 10 Figure 15 Stimulation of intracellular free calcium concentration in intact 293 cells stably expressing the human Y2 receptor. A) Time course. Functional data were from Fura-2/AM fluorescence in 293 stimulated with 1 μM human PYY at the time indicated by B) Time course. Cells were stimulated with 15 the arrow. 1 μM human PYY as in A except that 1 mM EGTA was included the extracellular solution. C) Concentration/response curve for PYY-dependent mobilization of intracellular calcium in 293 cells stably 20 transfected with the human Y2 receptor. Data were fit to logistic equation by four parameter regression. Data shown are representative of at least two independent experiments.
- Figure 16. Northern analysis of various human brain areas. Hybridization was done under conditions of high stringency, as described in Experimental Details. The probe was a ³²P-labeled DNA fragment (specific activity 3 x 10⁹ cpm/μg) corresponding to the entire coding region (30 as shown in Figure 10) of the human NPY Y2 recepotr. The BRL RNA ladder was used as molecular weight markers.

Figure 17. Southern analysis of genomic DNA encoding the human NPY Y2 receptor subtype. Hybridization was done
 35 under conditions of high stringency, as described in Experimental Details. The probe was a ³²P-labeled DNA fragment (specific activity 2.5 x 10⁹ cpm/μg)

corresponding to the TM1-TM5 region of the human NPY Y2 receptor (as shown in Figure 11). Hind III digested λ DNA was used as molecular weight markers.

5 Figure 18. Photomicrographs showing some of the controls used for NPY Y2 oligonucleotide probe specificity (A, B), and tissue distribution of the hybridization signal in rat brain (C, D). A. Darkfield photomicrograph of the hybridization signal obtained using the radiolabeled 10 antisense probe on COS-7 cells transfected with the rat Hybridization signal obtained following Y2 DNA. hybridization with the radiolabeled sense probe, also on transfected COS-7 cells. Only the antisense probes hybridize to the transfected cells. c. Brightfield 15 photomicrograph of the hybridization signal observed in the CA3 region of the rat hippocampus. Silver grains are found over neuronal cell bodies (arrows) in the pyramidal cell layer (sp), but not over the stratum lucidum (slu) or stratum radiatum (sr). D. Hybridization signal 20 observed over neurons (arrows) in the arcuate nucleus of the hypothalamus. The darkly stained ependymal lining of the third ventricle can be seen to the left of the micrograph (asterisk).

PCT/US95/01469

15

Detailed D scription f the Invention

Throughout this application, the following standard abbreviations are used to indicate specific nucleotide 5 bases:

C = cytosine A = adenineT = thymine G = guanine

This invention provides isolated nucleic acid molecules

10 which encode Y2 receptors. In one embodiment, the Y2
receptor encoded is a human Y2 receptor. In another
embodiment, the Y2 receptor encoded is a rat Y2 receptor.
As used herein, the term Y2 receptor encompasses any
amino acid sequence, polypeptide or protein having

15 substantially the same pharmacology provided for the
subject human Y2 receptor as shown in Tables 2-4 and
Figures 5A-7B. As described herein our cloned receptor
has a Y2 pharmacological profile that differs from the
NPY receptor subtypes Y1 and Y3, PYY receptor, and PP

20 receptor, and is therefore designated as the Y2 receptor.

The only NPY receptor which has been cloned to date is the Y1 receptor gene, from mouse (Eva et al., 1992), rat (Eva et al., 1990), and human (Larhammar et al., 1992).

The human Y2 receptor's greatest homology with any known receptor disclosed in the Genbank/EMBL databases is a 42% overall amino acid identity with the human Y1 receptor.

This invention provides isolated nucleic acid molecules encoding Y2 receptors. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. As used herein, the term "isolated nucleic acid molecule" means a nucleic acid molecule that is a molecule in a form which does not occur in nature. Examples of such an isolated nucleic acid molecule are an RNA, cDNA, or isolated genomic DNA molecule encoding a Y2 receptor. The human Y2 receptor

16

has an amino acid sequence substantially the same as the deduced amino acid sequence shown in Figure 2 and any human receptor having substantially the same amino acid sequence as the amino acid sequence shown in Figure 2 is 5 by definition a human Y2 receptor. The rat Y2 receptor has an amino acid sequence substantially the same as the deduced amino acid sequences shown in Figure 8 or Figure One means of isolating another Y2 receptor is to probe a genomic library with a natural or artificially 10 designed DNA probe, using methods well known in the art. DNA probes derived from the human and the rat receptor Y2 gene are particularly useful probes for this purpose. DNA and cDNA molecules which encode Y2 receptors may be used to obtain genomic DNA, cDNA or RNA from human, 15 mammalian or other animal sources, or to isolate related cDNA or genomic clones by the screening of cDNA or genomic libraries by methods described in more detail Transcriptional regulatory elements from the 5' untranslated region of the isolated clones, and other 20 stability, processing, transcription, translation, and tissue specificity-determining regions from the 3' and 5' untranslated regions of the isolated genes are thereby Examples of a nucleic acid molecule are an RNA, cDNA, or isolated genomic DNA molecule encoding a Y2 25 receptor. Such molecules may have coding sequences substantially the same as the coding sequences shown in Figures 1, 8 and 9. The DNA molecule of Figure 1 encodes the sequence of the human Y2 receptor gene. molecules of Figures 8 and 9 encode the sequence of two 30 rat Y2 receptor genes.

This invention further provides DNA molecules encoding Y2 receptors having coding sequences substantially the same as the coding sequences shown in Figures 1, 8 and 9.

These molecules are obtained by the means described above.

WO 95/21245

PCT/US95/01469

This invention also provides an isolated nucleic acid molecule encoding a Y2 receptor wherein the nucleic acid molecule encodes a receptor being characterized by an amino acid sequence in the transmembrane region, which 5 amino acid sequence has 60% homology or higher to the amino acid sequence in the transmembrane region of the human Y2 receptor as shown in Figure 11.

This invention also provides purified isolated proteins 10 which are Y2 receptors. In one embodiment, the Y2 receptor protein is a human Y2 receptor protein. another embodiment, the Y2 receptor protein is a rat Y2 receptor protein. As used herein, the term "isolated protein means a protein molecule free of other cellular 15 components. Examples of such proteins are isolated proteins having substantially the same amino acid sequence as the amino acid sequences shown in Figures 2, 8, and 9, which are a human Y2 receptor and two rat Y2 receptors, respectively. One means for obtaining an 20 isolated Y2 receptor is to express DNA encoding the receptor in a suitable host, such as a bacterial, yeast, insect or mammalian cell, using methods well known in the art, and recovering the receptor protein after it has been expressed in such a host, again using methods well 25 known in the art. The receptor may also be isolated from cells which express it, in particular from cells which have been transfected with the expression vectors described below in more detail.

30 This invention provides vectors comprising nucleic acid molecules such as DNA, RNA, or cDNA encoding Y2 receptors. In one embodiment, the nucleic acid encodes a human Y2 receptor. In another embodiment, the nucleic acid encodes a rat Y2 receptor. Examples of vectors are viruses such as bacteriophages (such as phage lambda), animal viruses (such as Herpes virus, Murine Leukemia virus, and Baculovirus), cosmids, plasmids (such as

WO 95/21245

PCT/US95/01469

pUC18, available from Pharmacia, Piscataway, NJ), and other recombination vectors. Nucleic acid molecules are inserted into vector genomes by methods well known in the For example, insert and vector DNA can both be 5 exposed to a restriction enzyme to create complementary ends on both molecules which base pair with each other then ligated together with a Alternatively, linkers can be ligated to the insert DNA which correspond to a restriction site in the vector DNA, 10 which is then digested with the restriction enzyme which cuts at that site. Other means are also available. Specific examples of such plasmids are: a plasmid comprising cDNA having a coding sequence substantially the same as the coding sequence shown in Figure 1 and 15 designated clone CG-13 (Seq. I.D. No. 1); or a plasmid comprising genomic DNA having а coding sequence substantially the same as the coding sequence shown in Figure 8 and designated clone rS5a (Seq. I.D. No. 3), or the coding sequence shown in Figure 9 and designated 20 clone rS26a (Seq. I.D. No. 5).

This invention also provides vectors comprising nucleic acid molecules encoding Y2 receptors, adapted expression in a bacterial cell, a yeast cell, an insect 25 cell or a mammalian cell which additionally comprise the regulatory elements necessary for expression of the nucleic acid in the bacterial, yeast, insect or mammalian cells operatively linked to the nucleic acid encoding a Y2 receptor as to permit expression thereof. Nucleic acid 30 having coding sequences substantially the same as the coding sequence shown in Figure 1 may be usefully inserted into the vectors to express human Y2 receptors. Nucleic acid having coding sequences substantially the same as the coding sequences shown in Figures 8 and 9 may 35 be usefully inserted into vectors to express rat Y2 receptors. Regulatory elements required for expression include promoter sequences to bind RNA polymerase and

transcription initiation sequences for ribosome binding. For example, a bacterial expression vector includes a promoter such as the lac promoter and for transcription initiation the Shine-Dalgarno sequence and the start 5 codon AUG (Maniatis, et al., Molecular Cloning, Cold Spring Harbor Laboratory, 1982). Similarly, a eukaryotic expression vector includes a heterologous or homologous promoter for RNA polymerase II, a downstream polyadenylation signal, the start codon AUG, 10 termination codon for detachment of the ribosome. Furthermore, an insect expression vector, such as recombinant baculovirus, uses the polyhedron expression signals for expression of the inserted gene in insect cells. Such vectors may be obtained commercially 15 or assembled from the sequences described by methods well known in the art, for example the methods described above for constructing vectors in general. Expression vectors are useful to produce cells that express the receptor. Certain uses for such cells are described in more detail 20 below.

This invention further provides a plasmid adapted for expression in a bacterial cell, a yeast cell, an insect cell, or, in particular, a mammalian cell which comprises 25 a nucleic acid molecule encoding a Y2 receptor and the regulatory elements necessary for expression of the nucleic acid in the bacterial, yeast, insect, mammalian cell operatively linked to the nucleic acid encoding the Y2 receptor as to permit expression thereof. 30 In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. Some plasmids adapted for expression in a mammalian cell are pSVL (available from Pharmacia, Piscataway, NJ) and pcEXV-3 (73). One specific example 35 of such a plasmid is a plasmid adapted for expression in a mammalian cell comprising cDNA having a coding sequence substantially the same as the coding sequence shown in

Figure 1 and the regulatory elements necessary for expression of the DNA in the mammalian cell which is designated pcEXV-hY2, deposited on January 27, 1994 under ATCC Accession No. 75659. Other specific examples of 5 such plasmids are plasmids adapted for expression in a mammalian cell comprising genomic DNA having coding sequences substantially the same as the coding sequences shown in Figures 8 and 9 and the regulatory elements necessary for expression of the DNA in the mammalian cell 10 which are designated pcEXV-rY2a, deposited on January 25, 1995 under ATCC Accession No. 97035; and pcEXV-rY2b, deposited on January 25, 1995 under ATCC Accession No. 97036, respectively. Those skilled in the art will readily appreciate that numerous plasmids adapted for 15 expression in a mammalian cell which comprise DNA encoding Y2 receptors and the regulatory elements necessary to express such DNA in the mammalian cell may be constructed utilizing existing plasmids and adapted as appropriate to contain the regulatory elements necessary 20 to express the DNA in the mammalian cell. The plasmids may be constructed by the methods described above for expression vectors and vectors in general, and by other methods well known in the art.

The deposits discussed <u>supra</u>, and the other deposits discussed herein, were made pursuant to, and in satisfaction of, the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852.

This invention provides a cell transfected with and expressing nucleic acid encoding a Y2 receptor. In one 35 embodiment the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. An example of such a cell is a mammalian cell transfected

21

with a plasmid adapted for expression in a mammalian cell, which comprises nucleic acid encoding a Y2 receptor, and the regulatory elements necessary for expression of the nucleic acid in the mammalian cell operatively linked 5 to the nucleic acid encoding a Y2 receptor as to permit expression thereof; the protein encoded thereby expressed on the cell surface. Numerous mammalian cells may be used as hosts, including, for example, the mouse fibroblast cell NIH-3T3, CHO cells, HeLa cells, LM(tk-) 10 cells, etc. Expression plasmids such as that described supra may be used to transfect cells by methods well known in the art such as calcium phosphate precipitation. or DNA encoding these Y2 receptors may be otherwise introduced into cells, e.g., by microinjection, to obtain mammalian cells which comprise nucleic acid, e.g., cDNA or a plasmid, encoding a Y2 receptor. A specific example of such cells is a cell comprising the pcEXV-hY2 plasmid adapted for expression in a mammalian cell comprising cDNA encoding the Y2 receptor and the 20 regulatory elements necessary for expression of the DNA in the mammalian cell, which is designated 293-hY2-10 and deposited on January 27, 1994 under ATCC Accession No. 11837. Another specific example of such cells is a cell comprising the pcEXV-hY2 plasmid adapted for expression 25 in a mammalian cell comprising cDNA encoding the Y2 receptor and the regulatory elements necessary for expression of the DNA in the mammalian cell, which is designated N-hY2-5 and deposited on January 25, 1995 under ATCC Accession No. CRL-11825.

30

This invention provides a method for determining whether a ligand can bind specifically to a Y2 receptor which comprises contacting a cell transfected with and expressing nucleic acid encoding a Y2 receptor, the protein encoded thereby is expressed on the cell surface, with the ligand under conditions permitting binding of ligands known to bind to the Y2 receptor, and detecting

22

the presence of any of the ligand bound to the Y2 receptor, thereby determining whether the ligand binds specifically to the Y2 receptor. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

This invention further provides a method for determining whether a ligand can bind specifically to a Y2 receptor, which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with the ligand under conditions permitting binding of ligands to such receptor, and detecting the presence of any such ligand bound to the Y2 receptor, wherein the Y2 receptor is characterized by an amino acid sequence in the transmembrane region, such amino acid sequence having 60% homology or higher to the amino acid sequence in the transmembrane region of the Y2 receptor shown in Figure 11. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

This invention provides a method for determining whether a ligand can bind specifically to a Y2 receptor which comprises preparing a cell extract from cells transfected with and expressing nucleic acid encoding a Y2 receptor, isolating a membrane fraction from the cell extract, contacting the ligand with the membrane fraction from the cell extract under conditions permitting binding of ligands to such receptor, and detecting the presence of any ligand bound to the Y2 receptor, thereby determining whether the compound is capable of binding specifically to a Y2 receptor. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

35

This invention also provides a method for determining whether a ligand is a Y2 receptor agonist. As used

WO 95/21245 PO

•

23

PCT/US95/01469

herein, the term "agonist" means any ligand capable of increasing Y2 receptor functional activity. This comprises contacting a cell transfected with and expressing nucleic acid encoding a Y2 receptor with the ligand under conditions permitting the activation of a functional Y2 receptor response from the cell, and detecting, by means of a bioassay, such as a second messenger assay, an increase in Y2 receptor activity, thereby determining whether the ligand acts as a Y2 receptor agonist. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

This invention further provides a method for determining whether a ligand is a Y2 receptor agonist which comprises preparing a cell extract from cells transfected with and expressing nucleic acid encoding a Y2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction of the extract with the ligand under conditions permitting the activation of a functional Y2 receptor response, and detecting, by means of a bioassay, such as a second messenger assay, an increase in Y2 receptor activity, thereby determining whether the ligand is a Y2 receptor agonist. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

This invention also provides a method for determining whether a ligand a Y2 receptor antagonist. As used herein, the term "antagonist" means any ligand capable of decreasing Y2 receptor functional activity. This comprises contacting a cell transfected with and expressing nucleic acid encoding a Y2 receptor with the ligand in the presence of a known Y2 receptor agonist such as NPY, under conditions permitting the activation of a functional Y2 receptor response, and detecting, by means of a bioassay, such as a second messenger assay, a

24

decrease in Y2 receptor activity, thereby determining whether the ligand is a Y2 receptor antagonist. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

5

This invention also provides a method for determining whether a ligand is a Y2 receptor antagonist which comprises preparing a cell extract from cells transfected with and expressing nucleic acid encoding a Y2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction of the extract with the ligand in the presence of a known Y2 receptor agonist, such as NPY, under conditions permitting the activation of a functional Y2 receptor response, and detecting, by means of a bioassay, such as a second messenger assay, a decrease in Y2 receptor activity, thereby determining whether the ligand is a Y2 receptor antagonist. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

In one embodiment, the second messenger assays referred to comprise measurement of intracellular cAMP. In another embodiment, the second messenger assays comprise measurement of intracellular calcium mobilization.

In one embodiment, the nucleic acid in the cells referred to above encodes a Y2 receptor having an amino acid sequence substantially the same as the amino acid sequence shown in Figure 2. In another embodiment, the nucleic acid in the cells referred to above encodes a Y2 receptor having an amino acid sequence substantially the same as the amino acid sequences shown in Figure 8 or Figure 9. In one embodiment, the cell is a mammalian cell. Preferably, the mammalian cell is non-neuronal in origin. An example of a nonneuronal mammalian cell is a COS-7 cell. Other examples of a non-neuronal mammalian

cells that can be used for functional assays with Y2 receptors are the 293 human embryonic kidney cells, mouse embryonic fibroblast NIH-3T3 cells, and LM(tk-) cells.

5 The preferred method for determining whether a ligand is capable of binding specifically to a Y2 receptor comprises contacting a transfected nonneuronal mammalian cell (i.e. a cell that does not naturally express any type of NPY, PP, or PYY receptor, and thus will only 10 express such a receptor if it is transfected into the cell) expressing a Y2 receptor on its surface, or contacting a membrane preparation derived from such a transfected cell, with the ligand under conditions which are known to prevail, and thus to be associated with, in vivo binding of the ligand to and/or activation of a Y2 15 receptor, and detecting the presence of any of the ligand being tested bound to the Y2 receptor on the surface of the cell, or detecting activation of the Y2 receptor, thereby determining whether the ligand binds to, 20 activates or inhibits the activation of the Y2 receptor. Activation of a Y2 receptor may be detected by means of a second messenger assay. Such a response system is obtained by transfection of nucleic acid into a suitable host cell containing the desired second messenger system 25 such as phospholipase C, adenylate cyclase, guanylate A suitable host cell can be cyclase or ion channels. isolated from pre-existing cell lines, generated by inserting appropriate components of second messenger systems into existing cell lines. 30 transfected cell provides a complete response system for investigation or assay of the activity of Y2 receptors with ligands as described above. Transfection systems are useful as living cell cultures for competitive binding assays between known or candidate drugs and 35 ligands which bind to the receptor and which are labeled radioactive, spectroscopic or other Membrane preparations containing the receptor isolated

26

from transfected cells are also useful for Y2 receptor activity and competitive binding assays. Functional assays of signal transduction pathways in transfection systems determine a ligand's efficacy of activating the 5 receptor. A transfection system constitutes a "drug discovery system" useful for the identification of natural or synthetic compounds with potential for drug development that can be further modified or used directly as therapeutic compounds to activate or inhibit the 10 natural functions of the Y2 receptor. The transfection system is also useful for determining the affinity and efficacy of known drugs at the Y2 receptor sites.

This invention provides a pharmaceutical composition 15 comprising an effective amount of the Y2 receptor agonist determined by the methods described above and a pharmaceutically acceptable carrier. As used herein, the term "pharmaceutically acceptable carrier" encompasses any of the standard pharmaceutical carriers, such as a 20 phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. In a further 25 embodiment, the Y2 receptor agonist is not previously known.

This invention further provides a pharmaceutical composition comprising an effective amount of the Y2 receptor antagonist determined by the methods described above and a pharmaceutically acceptable carrier. In one embodiment the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. In a further embodiment, the Y2 receptor antagonist is not previously known.

This invention also provides a method of screening drugs

27

to identify drugs which specifically bind to a Y2 receptor on the surface of a cell which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with a plurality of drugs under conditions permitting binding of drugs to the Y2 receptor, and determining those drugs which bind specifically to the cell, thereby identifying drugs which specifically bind to a Y2 receptor. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

This invention also provides a method of screening drugs to identify drugs which specifically bind to a Y2 receptor on the surface of a cell which comprises preparing a cell extract from the cells transfected with and expressing nucleic acid encoding the Y2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with a plurality of drugs under conditions permitting binding of drugs to the Y2 receptor, and determining those drugs which bind specifically to the transfected cell, thereby identifying drugs which bind specifically to a Y2 receptor. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

25

This invention also provides a method of screening drugs to identify drugs which act as Y2 receptor agonists which comprises contacting a cell transfected with and expressing nucleic acid encoding a Y2 receptor with a plurality of drugs under conditions permitting the activation of a functional Y2 receptor response, and determining those drugs which activate such Y2 receptor, using a bioassay, such as a second messenger assay, thereby identifying drugs which act as Y2 receptor agonists. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment the Y2 receptor is a rat Y2 receptor. In a further embodiment, the Y2

28

receptor agonist is not previously known.

This invention provides a method of screening drugs to identify drugs which act as agonists of a Y2 receptor 5 which comprises preparing a cell extract from cells transfected with and expressing nucleic acid encoding a Y2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with a plurality of drugs under conditions permitting the 10 activation of a functional Y2 receptor response, and determining those drugs which activate such receptor, using a bioassay, such as a second messenger assay, thereby identifying drugs which act as Y2 receptor agonists. In one embodiment, the Y2 receptor is a human 15 Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. In a further embodiment, the Y2 receptor agonist is not previously known.

This invention also provides a method of screening drugs 20 to identify drugs which as Y2 receptor antagonists which comprises contacting a cell transfected with and expressing nucleic acid encoding a Y2 receptor with a plurality of drugs in the presence of a known Y2 receptor agonist such as NPY under conditions permitting the 25 activation of a functional Y2 receptor response, and determining those drugs which inhibit the activation of the receptor, using a bioassay, such as a second messenger assay, thereby identifying drugs which act as Y2 receptor antagonists. In one embodiment, the Y2 30 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. In a further embodiment, the Y2 receptor antagonist is not previously known.

35 This invention provides a method of screening drugs to identify drugs which act as Y2 receptor antagonists which comprises preparing a cell extract from cells transfected

29

with and expressing nucleic acid encoding a Y2 r ceptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with a plurality of drugs in the presence of a known Y2 receptor agonist, such as NPY, under conditions permitting the activation of a functional Y2 receptor response, and determining those drugs which inhibit the activation of the receptor using a bioassay, such as a second messenger assay, thereby identifying drugs which act as Y2 receptor antagonists. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. In a further embodiment, the Y2 receptor antagonist is not previously known.

15 In one embodiment of the above described methods, the second messenger assay comprises measurement of intracellular cAMP. In another embodiment, the second messenger assay comprises measurement of intracellular calcium mobilization.

20

The nucleic acid in the cells of the methods described above may have a coding sequence substantially the same as the coding sequences shown in Figures 1, 8 and 9. Preferably, the mammalian cell is nonneuronal in origin.

25 An example of a nonneuronal mammalian cell is an COS-7

- cell. Other examples of a non-neuronal mammalian cell to be used for functional assays are 293 human embryonic kidney cells, mouse embryonic fibroblast NIH-3T3 cells and LM(tk-) cells. Drug candidates are identified by choosing chemical compounds which bind with high affinity to the expressed Y2 receptor protein in transfected cells, using radioligand binding methods well known in the art, examples of which are shown in the binding assays described herein. Drug candidates are also screened for selectivity by identifying compounds which
- 35 screened for selectivity by identifying compounds which bind with high affinity to the Y2 receptor but do not bind with high affinity to any other NPY receptor subtype

30

or to any other known receptor site. Because selective, high affinity compounds interact primarily with the target Y2 receptor site after administration to the patient, the chances of producing a drug with unwanted side effects are minimized by this approach.

This invention provides a pharmaceutical composition comprising an effective amount of a drug identified by the methods described above and a pharmaceutically 10 acceptable carrier.

As used herein, an "effective amount" is an amount of the drug effective to produce the desired result in a subject when administered in accordance with the chosen regimen. 15 Once the candidate drug has been shown to be adequately following particular route bio-available а administration, for example orally or by injection (adequate therapeutic concentrations must be maintained at the site of action for an adequate period to gain the 20 desired therapeutic benefit), and has been shown to be non-toxic and therapeutically effective in appropriate disease models, the drug may be administered to patients by that route of administration determined to make the drug bio-available, in an appropriate solid or solution 25 formulation, to gain the desired therapeutic benefit.

This invention also provides a method of treating an abnormality in a subject, wherein the abnormality is alleviated by activation of a Y2 receptor which comprises administering to a subject an effective amount of the pharmaceutical composition described above, thereby treating the abnormality. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

35

As used herein, the term "effective amount" means that amount of a drug which is able to produce the desired

31

result in a subject when administered in accordance with the chosen regimen. Typically, an effective amount is an amount from about 0.01 mg per subject per day to about 500 mg per subject per day. More typically this amount 5 is an amount from about 0.1 mg per subject per day to about 60 mg per subject per day. Most typically, this amount is an amount from about 1 mg per subject per day to about 20 mg per subject per day. Optimal dosages to be administered may be determined by those skilled in the 10 art, and will vary with the particular drug in use, the strength of the preparation, the mode of administration, and the advancement of the disease condition. Additional factors depending on the particular subject being treated will result in a need to adjust dosages, including 15 subject age, weight, gender, diet, and time administration.

This invention provides a method of treating an abnormality in a subject wherein the abnormality is alleviated by activation of a Y2 receptor which comprises administering to a subject an effective amount of a Y2 receptor agonist determined by the methods described above, thereby treating the abnormality. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

This invention further provides a method of treating an abnormality in a subject, wherein the abnormality is alleviated by decreasing the activity of a Y2 receptor which comprises administering to a subject an effective amount of the pharmaceutical composition described above, thereby treating the abnormality. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

35

This invention also provides a method of treating an abnormality in a subject, wherein the abnormality is

alleviated by decreasing the activity of a Y2 receptor which comprises administering to the subject an effective amount of a Y2 receptor antagonist determined by the methods described above, thereby treating the abnormality. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor.

This invention provides a nucleic acid probe comprising 10 a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a unique sequence included within the sequence of a nucleic acid molecule encoding a Y2 receptor, for example with a coding sequence included within the sequences shown in 15 Figures 1, 8 and 9. As used herein, the phrase "specifically hybridizing" means the ability of a nucleic acid molecule to recognize a nucleic acid sequence complementary to its own and to form double-helical segments through hydrogen bonding between complementary 20 base pairs. As used herein, a "unique sequence" is a sequence specific to only the nucleic acid molecules encoding the Y2 receptor. In one embodiment the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. Nucleic acid probe 25 technology is well known to those skilled in the art who will readily appreciate that such probes may vary greatly in length and may be labeled with a detectable label, such as a radioisotope or fluorescent dye, to facilitate detection of the probe. Detection of nucleic acid 30 encoding Y2 receptors is useful as a diagnostic test for any disease process in which levels of expression of the corresponding Y2 receptor is altered. DNA probe molecules are produced by insertion of a DNA molecule which encodes Y2 receptor or fragments thereof into 35 suitable vectors, such as plasmids or bacteriophages, followed by insertion into suitable bacterial host cells and replication and harvesting of the DNA probes, all

using methods well known in the art. For example, the DNA may be extracted from a cell lysate using phenol and ethanol, digested with restriction enzymes corresponding to the insertion sites of the DNA into the vector 5 (discussed above), electrophoresed, and cut out of the resulting gel. Examples of such DNA molecules are shown in Figures 1, 8 and 9. The probes are useful for 'in situ' hybridization or in order to locate tissues which express this gene family, or for other hybridization 10 assays for the presence of these genes or their mRNA in various biological tissues. In addition, synthesized oligonucleotides (produced by a DNA synthesizer) complementary to the sequence of a DNA molecule which encodes a Y2 receptor are useful as probes for these 15 genes, for their associated mRNA, or for the isolation of related genes by homology screening of genomic or cDNA libraries, or by the use of amplification techniques such Polymerase Chain Reaction. Synthesized oligonucleotides as described may also be used to 20 determine the cellular localization of the mRNA produced by the Y2 gene by in situ hybridization.

This invention also provides a method of detecting expression of a Y2 receptor by detecting the presence of 25 mRNA coding for a Y2 receptor which comprises obtaining total mRNA from the cell using methods well known in the art and contacting the mRNA so obtained with a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence included within the sequence of a nucleic acid molecule encoding the Y2 receptor under hybridizing conditions, and detecting the presence of mRNA hybridized to the probe, thereby detecting the expression of the Y2 receptor by the cell. In one embodiment, the Y2 receptor 35 is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. Hybridization of probes to target nucleic acid molecules such as mRNA molecules

PCT/US95/01469

employs techniques well known in the art. In one possible means of performing this method, nucleic acids are extracted by precipitation from lysed cells and the mRNA is isolated from the extract using a column which binds the poly-A tails of the mRNA molecules. The mRNA is then exposed to radioactively labelled probe on a nitrocellulose membrane, and the probe hybridizes to and thereby labels complementary mRNA sequences. Binding may be detected by autoradiography or scintillation counting.

10 However, other methods for performing these steps are well known to those skilled in the art, and the discussion above is merely an example.

This invention provides an antisense oligonucleotide 15 having a sequence capable of specifically hybridizing to an mRNA molecule which encodes a Y2 receptor so as to prevent translation of the mRNA molecule. The antisense oligonucleotide may have a sequence capable specifically hybridizing with the cDNA molecule whose sequence is shown in Figure 1, or with the genomic DNA molecule whose sequences are shown in Figures 8 and 9. A particular example of an antisense oligonucleotide is antisense oligonucleotide comprising chemical analogues of nucleotides.

25

WO 95/21245

This invention also provides a pharmaceutical composition comprising an amount of the oligonucleotide described above effective to decrease activity of a Y2 receptor by passing through a cell membrane and specifically hybridizing with mRNA encoding a Y2 receptor in the cell so as to prevent its translation and a pharmaceutically acceptable carrier capable of passing through a cell membrane. The oligonucleotide may be coupled to a substance which inactivates mRNA, such as a ribozyme.

35 The pharmaceutically acceptable carrier capable of passing through cell membranes may also comprise a

structure which binds to a receptor specific for a

35

selected cell type and is thereby taken up by cells of the selected cell type. The structure may be part of a protein known to bind a cell-type specific receptor, for would an insulin molecule, which target 5 pancreatic cells. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. DNA molecules having coding sequences substantially the same as the coding sequences shown in Figures 1, 8 and 9 may be used as the 10 oligonucleotides of the pharmaceutical composition.

This invention also provides a method of treating an abnormality in a subject wherein the abnormality is alleviated by decreasing the activity of a Y2 receptor which comprises administering to the subject an effective amount of the pharmaceutical composition described above, thereby treating the abnormality. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. Several examples of such abnormalities are hypertension, gastrointestinal disorders, epilepsy, sleep disorders, and cognitive disorders, (58-80).

Antisense oligonucleotide drugs inhibit translation of 25 mRNA encoding these receptors. Synthetic oligonucleotides, or other antisense chemical structures are designed to bind to mRNA encoding the Y2 receptor and inhibit translation of mRNA and are useful as drugs to inhibit expression of Y2 receptor genes in patients. 30 This invention provides a means to therapeutically alter levels of expression of Y2 receptors by the use of a synthetic antisense oligonucleotide drug (SAOD) which inhibits translation of mRNA encoding these receptors. Synthetic oligonucleotides, or other antisense chemical 35 structures designed to recognize and selectively bind to mRNA, are constructed to be complementary to portions of the nucleotide sequences shown in Figures 1, 8, and 9 of

DNA, RNA or of chemically modified, artificial nucleic The SAOD is designed to be stable in the blood stream for administration to patients by injection, or in laboratory cell culture conditions, for administration to 5 cells removed from the patient. The SAOD is designed to be capable of passing through cell membranes in order to enter the cytoplasm of the cell by virtue of physical and chemical properties of the SAOD which render it capable of passing through cell membranes (e.g. by designing small, hydrophobic SAOD chemical structures) or by virtue of specific transport systems in the cell which recognize and transport the SAOD into the cell. In addition, the SAOD can be designed for administration only to certain selected cell populations by targeting the SAOD to be 15 recognized by specific cellular uptake mechanisms which binds and takes up the SAOD only within certain selected cell populations. For example, the SAOD may be designed to bind to a receptor found only in a certain cell type, as discussed above. The SAOD is also designed to 20 recognize and selectively bind to the target mRNA sequence, which may correspond to a sequence contained within the sequences shown in Figures 1, 8, and 9 by virtue of complementary base pairing to the mRNA. Finally, the SAOD is designed to inactivate the target 25 mRNA sequence by any of three mechanisms: 1) by binding to the target mRNA and thus inducing degradation of the mRNA by intrinsic cellular mechanisms such as RNAse I digestion, 2) by inhibiting translation of the mRNA target by interfering with the binding of translation-30 regulating factors or of ribosomes, or 3) by inclusion of other chemical structures, such as ribozyme sequences or reactive chemical groups, which either degrade or chemically modify the target mRNA. Synthetic antisense oligonucleotide drugs have been shown to be capable of 35 the properties described above when directed against mRNA targets (74,75). In addition, coupling of ribozymes to antisense oligonucleotides is a promising strategy for

37

inactivating target mRNA (76). An SAOD serves as an effective therapeutic agent if it is designed to be administered to a patient by injection, or if the patient's target cells are removed, treated with the SAOD in the laboratory, and replaced in the patient. In this manner, an SAOD serves as a therapy to reduce receptor expression in particular target cells of a patient, in any clinical condition which may benefit from reduced expression of Y2 receptors.

10

This invention provides an antibody directed to a Y2 receptor, for example, a monoclonal antibody directed to an epitope of a Y2 receptor present on the surface of a cell and having an amino acid sequence substantially the 15 same as an amino acid sequence for a cell surface epitope of the Y2 receptor included in the amino acid sequences shown in Figures 2, 8 and 9 (Seq. I.D. Nos. 2, 4, and 6, respectively). In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 20 receptor is a rat Y2 receptor. Amino acid sequences may be analyzed by methods well known in the art to determine whether they produce hydrophobic or hydrophilic regions in the proteins which they build. In the case of cell membrane proteins, hydrophobic regions are well known to 25 form the part of the protein that is inserted into the lipid bilayer which forms the cell membrane, while hydrophilic regions are located on the cell surface, in an aqueous environment. Therefore antibodies to the hydrophilic amino acid sequences shown in Figures 2, 8, 30 and 9 will probably bind to a surface epitope of a Y2 receptor, as described. Antibodies directed to Y2 receptors may be serum-derived or monoclonal and are prepared using methods well known in the art. monoclonal antibodies are prepared example, using hybridoma technology by fusing antibody producing B cells from immunized animals with myeloma cells and selecting the resulting hybridoma cell line producing the desired

WO 95/21245

PCT/US95/01469

antibody. Cells such as COS-7 cells, LM(tk-) cells, NIH-3T3 cells or 293 human embryonic cells comprising DNA encoding the Y2 receptor and thereby expressing the Y2 receptor may be used as immunogens to raise such an Alternatively, synthetic peptides may be 5 antibody. prepared using commercially available machines and the amino acid sequences shown in Figures 2, 8, and 9 (Seq. I.D. Nos. 2, 4, and 6, respectively). As a still further alternative, DNA, such as a cDNA or a fragment thereof, 10 may be cloned and expressed and the resulting polypeptide recovered and used as an immunogen. These antibodies are useful to detect the presence of Y2 receptors encoded by the isolated DNA, or to inhibit the function of the receptors in living animals, in humans, or in biological 15 tissues or fluids isolated from animals or humans.

This invention provides a pharmaceutical composition which comprises an amount of an antibody directed to a Y2 receptor effective to block binding of ligands to the Y2 receptor, and a pharmaceutically acceptable carrier. A monoclonal antibody directed to an epitope of a Y2 receptor present on the surface of a cell and having an amino acid sequence substantially the same as an amino acid sequence for a cell surface epitope of the Y2 receptor included in the amino acid sequences shown in Figures 2, 8 and 9 are useful for this purpose.

This invention also provides a method of treating an abnormality in a subject, wherein the abnormality is alleviated by decreasing the activity of a Y2 receptor which comprises administering to the subject an amount of the pharmaceutical composition described above effective to block binding of ligands to the Y2 receptor, thereby treating the abnormality. In a one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. Binding of the antibody to the receptor prevents the receptor from

functioning, thereby neutralizing the effects of activity of the receptor. The monoclonal antibodies described above are both useful for this purpose. Some examples of such abnormalities are hypertension, gastrointestinal disorders, epilepsy, sleep disorders, and cognitive disorders (58-72).

This invention provides a method of detecting the presence of a Y2 receptor on the surface of a cell which 10 comprises contacting the cell with an antibody directed to the Y2 receptor, under conditions permitting binding of the antibody to the receptor, and detecting the presence of the antibody bound to the cell, thereby detecting the presence of a Y2 receptor on the surface of 15 the cell. Such a method is useful for determining whether a given cell is defective in expression of Y2 receptors on the surface of the cell. Bound antibodies are detected by methods well known in the art, for example by binding fluorescent markers to the antibodies and examining the cell sample under a fluorescence microscope to detect fluorescence on a cell indicative of antibody binding. The monoclonal antibodies described above are useful for this purpose.

This invention provides a transgenic nonhuman mammal 25 expressing nucleic acid encoding a Y2 receptor. embodiment, the Y2 receptor is a human Y2 receptor. another embodiment, the Y2 receptor is a rat Y2 receptor. This invention also provides a transgenic nonhuman mammal 30 comprising a homologous recombination knockout of the native Y2 receptor. This invention also provides a transgenic nonhuman mammal whose genome comprises antisense nucleic acid complementary to nucleic acid encoding a Y2 receptor so placed as to be transcribed 35 into antisense mRNA which is complementary to mRNA encoding a Y2 receptor and which hybridizes to mRNA encoding a Y2 receptor thereby reducing its translation.

40

The nucleic acid may additionally comprise an inducible promoter or additionally comprise tissue specific regulatory elements, so that expression can be induced, or restricted to specific cell types. Examples of nucleic acid are DNA or cDNA molecules having a coding sequence substantially the same as the coding sequences shown in Figures 1, 8, and 9. An example of a transgenic animal is a transgenic mouse. Examples of tissue specificity-determining regions are the metallothionein promotor (77) and the L7 promotor (78).

Animal model systems which elucidate the physiological and behavioral roles of Y2 receptors are produced by creating transgenic animals in which the activity of a Y2 15 receptor is either increased or decreased, or the amino acid sequence of the expressed Y2 receptor protein is altered, by a variety of techniques. Examples of these techniques include: 1) Insertion of normal or mutant versions of nucleic acid encoding a Y2 receptor or 20 homologous animal versions of these genes, microinjection, retroviral infection or other means well known to those skilled in the art, into appropriate fertilized embryos in order to produce a transgenic animal (79). 2) Homologous recombination (80, 81) of 25 mutant or normal, human or animal versions of these genes with the native gene locus in transgenic animals to alter the regulation of expression or the structure of these Y2 receptors. The technique of homologous recombination is well known in the art. It replaces the native gene with 30 the inserted gene and so is useful for producing an animal that cannot express native receptor but does express, for example, an inserted mutant receptor, which has replaced the native receptor in the animal's genome by recombination, resulting in underexpression of the 35 receptor. Microinjection adds genes to the genome, but does not remove them, and so is useful for producing an animal which expresses its own and added receptors,

resulting in overexpression of the receptor. One means available for producing a transgenic animal, with a mouse as an example, is as follows: Female mice are mated, and the resulting fertilized eggs are dissected out of 5 their oviducts. The eggs are stored in an appropriate medium such as M2 medium (79). DNA or cDNA encoding a Y2 receptor is purified from a vector (such as plasmid pcEXV-hY2, pcEXV-rY2a or pcEXV-rY2b described above) by methods well known in the art. Inducible promoters may be 10 fused with the coding region of the nucleic acid to provide an experimental means to regulate expression of the trans-gene. Alternatively, or in addition, tissue specific regulatory elements may be fused with the coding region to permit tissue-specific expression of the trans-The nucleic acid, in an appropriately buffered solution, is put into a microinjection needle (which may be made from capillary tubing using a pipet puller) and the egg to be injected is put in a depression slide. needle is inserted into the pronucleus of the egg, and 20 the nucleic acid solution is injected. The injected egg is then transferred into the oviduct of a pseudopregnant mouse (a mouse stimulated by the appropriate hormones to maintain pregnancy but which is not actually pregnant), where it proceeds to the uterus, implants, and develops 25 to term. As noted above, microinjection is not the only method for inserting nucleic acid into the egg cell, and is used here only for exemplary purposes.

Since the normal action of receptor-specific drugs is to activate or to inhibit the receptor, the transgenic animal model systems described above are useful for testing the biological activity of drugs directed against these Y2 receptors even before such drugs become available. These animal model systems are useful for predicting or evaluating possible therapeutic applications of drugs which activate or inhibit these Y2 receptors by inducing or inhibiting expression of the

42

native or trans-gene and thus increasing or decreasing activity of normal or mutant Y2 receptors in the living Thus, a model system is produced in which the biological activity of drugs directed against these Y2 5 receptors are evaluated before such drugs available. The transgenic animals which over or under produce the Y2 receptor indicate by their physiological state whether over or under production of the Y2 receptor is therapeutically useful. It is therefore useful to evaluate drug action based on the transgenic model One use is based on the fact that it is well system. known in the art that a drug such as an antidepressant acts by blocking neurotransmitter uptake, and thereby increases the amount of neurotransmitter in the synaptic The physiological result of this action is to stimulate the production of less receptor by the affected leading eventually to decreased activity. Therefore, an animal which has decreased receptor activity is useful as a test system to investigate whether the actions of such drugs which result in decreased activity are in fact therapeutic. Another use is that if increased activity is found to lead to abnormalities, then a drug which down-regulates or acts as an antagonist to a Y2 receptor is indicated as worth 25 developing, and if a promising therapeutic application is uncovered by these animal model systems, activation or inhibition of the Y2 receptor is achieved therapeutically either by producing agonist or antagonist drugs directed against these Y2 receptors or by any method which 30 increases or decreases the activity of these Y2 receptors in humans or other mammals.

This invention provides a method of determining the physiological effects of expressing varying levels of Y2 receptors which comprises producing a transgenic nonhuman animal whose levels of Y2 receptor expression are varied by use of an inducible promoter which regulates Y2

١.

43

receptor expression. This invention also provides a method of determining the physiological effects of expressing varying levels of Y2 receptors which comprises producing a panel of transgenic nonhuman animals each expressing a different amount of Y2 receptor. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. Such animals may be produced by introducing different amounts of nucleic acid encoding a Y2 receptor into the oocytes from which the transgenic animals are developed.

This invention also provides a method for identifying a Y2 receptor antagonist capable of alleviating abnormality is a subject, wherein the abnormality is 15 alleviated by decreasing the acitivity of a Y2 receptor which comprises administering the antagonist to a transgenic nonhuman mammal described above and antagonist alleviates determining whether the the physical and behavioral abnormalities displayed by the 20 transgenic nonhuman mammal as a result of the activity of a Y2 receptor, thereby identifying a Y2 antagonist. one embodiment, the Y2 receptor is a human Y2 receptor, In another embodiment, the Y2 receptor is a rat Y2 receptor. This invention further provides an antagonist 25 identified by the method described above. Examples of nucleic acid molecules are DNA or cDNA molecules having a coding sequence substantially the same as the coding sequences shown in Figures 1, 8, and 9.

This invention provides a pharmaceutical composition comprising an amount of the antagonist described supra effective to alleviate an abnormality wherein the abnormality is alleviated by decreasing the activity of a Y2 receptor and a pharmaceutically acceptable carrier.

35

This invention further provides a method for treating an abnormality in a subject wherein the abnormality is

44

alleviated by decreasing the activity of a Y2 receptor which comprises administering to the subject an effective amount of the pharmaceutical composition described above, thereby treating the abnormality.

5

This invention provides a method for identifying a Y2 receptor agonist capable of alleviating an abnormality wherein the abnormality is alleviated by activation of a Y2 receptor which comprises administering the agonist to the transgenic nonhuman mammal described above and determining whether the agonist alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal, thereby identifying a Y2 receptor agonist. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, the Y2 receptor is a rat Y2 receptor. This invention further provides an agonist identified by the method described above.

This invention also provides a pharmaceutical composition comprising an effective amount of a Y2 receptor agonist identified by the method described above and a pharmaceutically acceptable carrier.

This invention further provides a method for treating an abnormality in a subject wherein the abnormality is alleviated by activation of a Y2 receptor which comprises administering to the subject an effective amount of the pharmaceutical composition described above, thereby treating the abnormality.

30

This invention provides a method for diagnosing a predisposition to a disorder associated with the expression of a specific Y2 receptor allele which comprises: a) obtaining nucleic acid of subjects suffering from the disorder; b) performing a restriction digest of the nucleic acid with a panel of restriction enzymes; c) electrophoretically separating the resulting

45

nucleic acid fragments on a sizing gel; d) contacting the resulting gel with a nucleic acid probe capable of specifically hybridizing to nucleic acid encoding a Y2 receptor and labelled with a detectable marker; e) 5 detecting labelled bands which have hybridized to the nucleic acid encoding a Y2 receptor labelled with a detectable marker to create a unique band pattern specific to the nucleic acid of subjects suffering from the disorder; f) preparing nucleic acid obtained for 10 diagnosis by steps a-e; and g) comparing the unique band pattern specific to the nucleic acid of subjects suffering from the disorder from step e and the nucleic acid obtained for diagnosis from step f to determine whether the patterns are the same or different and 15 thereby to diagnose predisposition to the disorder if the patterns are the same. This method may also be used to diagnose a disorder associated with the expression of a specific Y2 receptor allele. In one embodiment, the Y2 receptor is a human Y2 receptor. In another embodiment, 20 the Y2 receptor is a rat Y2 receptor.

This invention provides a method of preparing the purified Y2 receptor which comprises a) constructing a vector adapted for expression in a cell 25 which comprises the regulatory elements necessary for the expression of nucleic acid in the cell operatively linked to the nucleic acid encoding a Y2 receptor as to permit expression thereof, wherein the cell is selected form the group consisting of bacterial cells, yeast cells, insect 30 cells and mammalian cells; b) inserting the vector of step (a) in a suitable host cell; c) incubating the cells of step (b) under conditions allowing the expression of a Y2 receptor; d) recovering the receptor so produced; and e) purifying the receptor so recovered. 35 of an isolated Y2 receptor is an isolated protein having substantially the same amino acid sequence as the amino acid sequences shown in Figures 2, 8 and 9.

WO 95/21245

46

example, cells can be induced to express receptors by exposure to substances such as hormones. The cells can then be homogenized and the receptor isolated from the homogenate using an affinity column comprising, for example, PYY or NPY or another substance which is known to bind to the receptor. The resulting fractions can then be purified by contacting them with an ion exchange column, and determining which fraction contains receptor activity or binds anti-receptor antibodies.

10

The above described method for preparing a Y2 receptor uses recombinant DNA technology methods well known in the art. For example, isolated nucleic acid encoding Y2 receptor is inserted in a suitable vector, such as an expression vector. A suitable host cell, such as a bacterial cell, or a eukaryotic cell such as a yeast cell, is transfected with the vector. Y2 receptor is isolated from the culture medium by affinity purification or by chromatography or by other methods well known in the art.

This invention identifies for the first time a new receptor protein, its amino acid sequence, its human gene and its rat homologue. Furthermore, this invention 25 describes a previously unrecognized group of receptors within the definition of a Y2 receptor. The information and experimental tools provided by this discovery are useful to generate new therapeutic agents, and new therapeutic or diagnostic assays for this new receptor 30 protein, its associated mRNA molecule or its associated genomic DNA. The information and experimental tools provided by this discovery will be useful to generate new therapeutic agents, and new therapeutic or diagnostic assays for this new receptor protein, its associated mRNA 35 molecule, or its associated genomic DNA.

Specifically, this invention relates to the first

47

isolation of a human genomic clone encoding a Y2 receptor. A new human gene for the receptor identified herein as Y2 has been identified and characterized. In addition, the human Y2 receptor has been expressed in 293 human embryonic kidney cells. The pharmacological binding properties of the protein encoded have been determined, and these binding properties classify this protein as a novel human NPY/PYY receptor which we designate as a human Y2 receptor. Mammalian cell lines expressing this human Y2 receptor at the cell surface have been constructed, thus establishing the first well-defined, cultured cell lines with which to study this Y2 receptor.

15 This invention will be better understood by reference to the Experimental Details which follow, but those skilled in the art will readily appreciate that the specific experiments detailed are only illustrative of the invention as described more fully in the claims which 20 follow thereafter.

48

EXPERIMENTAL DETAILS

cDNA Cloning

Total RNA was prepared by a modification of the guanidine 5 thiocyanate method (13), from 6 grams of hippocampus. Poly A*RNA was purified with a FastTrack kit (Invitrogen Corp., San Diego, CA). Double stranded (ds) cDNA was synthesized from 4 μ g of poly A⁺ RNA according to Gubler and Hoffman (14), except that ligase was omitted 10 in the second strand cDNA synthesis. The resulting DS cDNA was ligated to BstxI/EcoRI adaptors (Invitrogen the Corp.), excess of adaptors was removed chromatography on Sephacryl 500 HR (Pharmacia-LKB) and the ds-cDNA size selected by chromatography on Sephacryl 15 1000 (Pharmacia-LKB). High molecular weight fractions were ligated in pcEXV.BS (An Okayama and Berg expression vector) cut by BstxI as described by Aruffo and Seed The ligated DNA was electroporated in E. coli MC 1061 (Gene Pulser, Biorad). A total of 2.2 \times 10⁶ 20 independent clones with an insert mean size of 3 kb could The library was plated on Petri dishes be generated. (Ampicillin selection) in pools of 0.4 to 1.2 \times 10⁴ independent clones. After 18 hours amplification, the bacteria from each pool were scraped, resuspended in 4 mL 25 of LB media and 1.5 mL processed for plasmid purification by the alkali method (16). 1 mL aliquots of each bacterial pool were stored at -85°C in 20% glycerol.

Isolation of a cDNA clone encoding a human hippocampal Y2 30 receptor.

DNA from pools of \approx 5000 independent clones was transfected into COS-7 cells by a modification of the DEAE-dextran procedure (17). COS-7 cells were grown in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal calf serum, 100 U/mL of penicillin, 100 μ g/mL of streptomycin, 2mM L-glutamine (DMEM-C) at 37°c in 5% CO₂. The cells were seeded one day before transfection at

PCT/US95/01469 WO 95/21245

49

a density of 30,000 cells/cm2 in 6 well plates (Becton Dickinson, Lincoln Park, NJ). On the next day, cells were washed twice with Phosphate Buffer Saline (PBS), 400 μl of transfection cocktail was added containing 1/10 of 5 the DNA from each pool and DEAE-dextran (500 μ g/mL) in PBS. After a 30 min. incubation at 37°C, 1.6 mL of chloroquine (80 μ M in DMEM-C) was added and the cells incubated a further 2.5 hours at 37°C. The media was aspirated from each well and 1 mL of 10% DMSO in DMEM-C After 2.5 min. incubation at room temperature, the media was aspirated, each well washed once with 1 mL PBS and the cells incubated 24 hours in DMEM-C. cells were then trypsinized and seeded on Lab-Tek chamber slides (1 chamber, Permanox slide from Nunc Inc., Naperville, IL), incubated in 2 ml DMEM-C for another 24 hours and the binding assay was performed on the slides.

After two washes with PBS, positive pools were identified by incubating the cells with 1 nM (3x106 cpm per slide) of porcine [125]-PYY (New England Nuclear; activity=2200Ci/mmol) in 20 mM Hepes-NaOH pH 7.4, CaCl, 1.26 mM, MgSO4 .81 mM, KH2PO4 .44 mM, KCl 5.4, NaCl 10mM, .1% bovine serum albumin, .1% bacitracin for 1 hour at room temperature. After six washes (five seconds each) in binding buffer without ligand, the monolayers were fixed in 2.5% glutaraldehyde in PBS for five minutes, washed twice two minutes in PBS, dehydrated in ethanol baths for two minutes each (70, 80, 95, 100%) and air dried.

30

15

The slides were then dipped in 100% photoemulsion (Kodak type NTB2) at 42°C and exposed in the dark for 48 hours at 4°C in light proof boxes containing drierite. Slides were developed for three minutes in Kodak D19 developer 35 (32 g/l of water), rinsed in water, fixed in Kodak fixer for 5 minutes, rinsed in water, air dried and mounted with Aqua-Mount (Lerner Laboratories, Pittsburgh, PA).

Slides were screened at 25x total magnification.

A single clone, CG-13, was isolated by sib selection as described (18). DS-DNA was sequenced with a Sequenase kit (US Biochemical, Cleveland, OH) according to the manufacturer. Nucleotide and peptide sequences analysis were performed with GCG programs (Genetics Computer group, Madison, WI).

10 Northern Blot

A multiple tissue Northern blot (MTN blot, Contech, Palo Alto, CA) carrying mRNA purified from various human brain areas was hybridized at high stringency according to the manufacturer's specifications. The probe was a 1.15 kb DNA fragment corresponding to the entire coding region of the human Y2 receptor as shown in Figure 10.

Southern Blot:

A Southern blot (Geno-Blot, Clontech, Palo Alto, CA)

20 containing human genomic DNA cut with five different enzymes (8 μg DNA per lane) was hybridized at high stringency according to the manufacturer's specifications. The probe was a DNA fragment corresponding to the TM1-TM5 coding region of the human

25 Y2 receptor, as shown in Figure 11.

Cloning and Expression of Two Isoforms of the Rat NPY/PYY (Y2) Receptor

To obtain the rat homologue of the human NPY/PYY (Y2)

30 receptor, we designed and synthesized oligonucleotide probes derived from the nucleotide sequences corresponding approximately to the transmembrane (TM) regions of the amino acid sequence of the human Y2 receptor (TM 1 - 7) as shown in Figure 11. The overlapping oligomers used were as follows:

(TM1: nts. #190-257, (+) strand/5'-

5

TM2: nts. #301-370, (+) strand/5'TTTTTCATTGCCAATCTGGCTGTGGCAGATCTTTTGGTGAACACT-3' (Seq.
I.D. No. 9) and (-) strand/5'AGGTAAGAGTGAACGGTAGACACAGAGTGTTCACCAAAAGATCTG-3' (Seq.

10 I.D. No. 10).

TM3: nts. #411-480, (+) strand/5'-CCACCTGGTGCCCTATGCCCAGGGCCTGGCAGTACAAGTATCCAC-3' (Seq. I.D. No. 11) and (-) strand/5'-

15 CAGGGCAATTACTGTCAAGGTGATTGTGGATACTTGTACTGCCAG-3' (Seq. I. D. No. 12).

TM4: nts. #531-600, (+) strand/5'
AATCAGCTTCCTGATTATTGGCTTGGCCTGGGGCATCAGTGCCCT-3' (Seq.
20 I.D. No. 13) and (-) strand/5'
GAAGATGGCCAGGGGACTTGCCAGCAGGGCACTGATGCCCCAGGC-3' (Seq.

I.D. No. 14)

TM5: nts. #691-760, (+) strand/5'-

- 25 ACTGTCTATAGTCTTTCTTCCTTGTTGATCTTGTATGTTTTGCCT-3' (Seq. I.D. No. 15) and (-) strand/5'TGTAGGAAAATGATATAATGCCCAGAGGCAAAACATACAAGATCA-3' (Seq. I.D. No. 16)
- TM6: nts. #850-919, (+) strand/5'
 CTGGTGTGTGTGGTGGTGTTTTGCGGTCAGCTGCCTCTC-3' (Seq.
 I.D. No. 17) and (-) strand/5'
 TGTCAACGGCAAGCTGGAAGGCATGGAGAGGCAGCCAGCTGACCG-3' (Seq.
 I.D. No. 18)

35

TM7: NTS. #955-1028, (+) strand/5'CTCATCTTCACAGTGTTCCACATCATCGCCATGTGCTCCACTTTTGC-3' (Seq.

52

I.D. No. 19) and (-) strand/5'TTCATCCAGCCATAGAGAGGGGATTGGCAAAAGTGGAGCACATGGC-3' (Seq.
I.D. No. 20).

5 The probes were labeled with [32P]-ATP and [32p]-CTP by synthesis with the large fragment of DNA polymerase.

Hybridization was performed at 40°C in a solution containing 25% formamide, 10% dextran sulfate, 5X SSC (1X SSC is 0.15 M sodium chloride, 0.015 M sodium citrate), 1X Denhardt's (0.02% polyvinylpyrrolidone, 0.02% Ficoll, 5 and 0.02% bovine serum albumin), and 100 μ g/ml of sonicated salmon sperm DNA. The filters were washed at 40°C in 0.1X SSC containing 0.1% sodium dodecyl sulfate (SDS) and exposed at -70°C to Kodak XAR film in the presence of one intensifying screen. Lambda phage 10 hybridizing to the probes were plaque purified by successive plating and rescreening. A genomic clone hybridizing with six out of seven TM probes, designated rs5a, was isolated using this method. A 4.0 kb EcoRI fragment of rs5a was subcloned into the eukaryotic 15 expression vector EXJ.RH modified from pcEXV-3 (73) for sequence analysis and expression studies. The nucleotide sequence of the fragment in EXJ.RH was analyzed on both Sanger dideoxy nucleotide strands by the termination method (82) using Sequenase (U.S. Biochemical 20 Corp., Cleveland, Ohio).

A second genomic clone, termed rs26a, was also isolated using the hybridization conditions described above and exhibited the same hybridization profile with TM probes.

25 In contrast with rs5a, however, rs26a contained an internal EcoRI restriction enzyme site not present in the other clone. To further investigate potential differences between the two clones, a 3.9 kb SalI/KpnI fragment of rs26a was subcloned into the expression vector EXJ.HR for sequence analysis and expression studies. The nucleotide sequence of the fragment was analyzed on both strands by the Sanger dideoxy nucleotide chain-termination method as described above.

35 Cell Culture

COS-7 cells were grown on 150 mm plates in Dulbecco's Modified Eagle Medium (DMEM) with supplements (10% bovine

calf serum, 4 mM glutamine, 100 units/ml penicillin/100 μ g/ml streptomycin) at 37 °C, 5% CO₂. Stock plates of COS-7 cells were trypsinized and split 1:6 every 3-4 days.

5 Human embryonic kidney cells 293 cells were grown on 150 mm plates in Dulbecco's Modified Eagle Medium (DMEM) with supplements (10% bovine calf serum, 4 mM glutamine, 100 units/ml penicillin/100 μ g/ml streptomycin) at 37 °C, 5% CO₂. Stock plates of 293 cells were trypsinized and split 1:6 every 3-4 days.

Mouse embryonic fibroblast NIH-3T3 cells were grown on 150 mm plates in Dulbecco's Modified Eagle Medium (DMEM) with supplements (10% bovine calf serum, 4 mM glutamine, 100 units/ml penicillin/100 μg/ml streptomycin) at 37 °C, 5% CO₂. Stock plates of NIH-3T3 cells were trypsinized and split 1:15 every 3-4 days.

SK-N-Be(2) human neuroblastoma cells were grown similarly in 225 cm² flasks using 50% Eagle's Modified Essential Media, 50% Ham's Nutrient Mixture F-12, 15% fetal bovine serum, 2 mM glutamine, 100 units/ml penicillin/80 units/ml streptomycin, and 1% non-essential amino acids. Stock flasks of SK-N-Be(2) cells were trypsinized and split 1:10 every 7 days.

DNA Transfection for Pharmacological Characterization
All cloned receptor subtypes studied (human Y1, human
Y2, human Y4, rat Y2a and rat Y2b) were transiently
transfected into COS-7 cells by the DEAE-dextran method,
using 1 µg of DNA/106 cells (17). The cDNA corresponding
to the cloned Y4 receptor was disclosed in U.S. patent
application 08/176,412 filed on December 28, 1993,
currently pending.

Membrane Preparation

35

Membranes were harvested from COS-7 cells 48 hours after

transfection and from SK-N-Be(2) seven days after splitting. Adherent cells were washed twice in ice-cold phosphate buffered saline (138 mM NaCl, 8.1 mM Na, HPO, 2.5 mM KCl, 1.2 mM KH,PO,, 0.9 mM CaCl,, 0.5 mM MgCl, pH 5 7.4) and lysed by sonication in ice-cold hypotonic buffer (20 mM Tris-HCl, 5 mM EDTA, pH 7.7). Large particles and debris were cleared by low speed centrifugation (200 x g, 20 min, 4 °C). Membranes were collected from the supernatant fraction by high speed centrifugation 10 (32,000 x g, 18 min, 4 °C), washed with ice-cold hypotonic buffer, and collected again by high speed centrifugation (32,000 x g, 18 min, 4 $^{\circ}$ C). The final membrane pellet was resuspended by sonication into a small volume (~500 μ l) of ice-cold binding buffer (10 mM NaCl, 20 mM HEPES, 0.22 15 mM KH,PO,, 1.26 mM CaCl,, 0.81 mM MgSO,, pH 7.4). Protein concentration was measured by the Bradford method (19) using Bio-Rad Reagent, with bovine serum albumin as a standard.

20 Radioligand Binding to Membrane Suspensions

Membrane suspensions were diluted in binding buffer supplemented with 0.1% bovine serum albumin and 0.1% bacitracin to yield membrane protein concentrations of ~ 0.02 mg/ml for human Y1 receptors, ~ 0.003 mg/ml for CG-25 13 receptors, and ~ 0.25 mg/ml for SK-N-Be(2) (under these assay conditions, non-specific binding of 125I-PYY to membranes was less than 10%). 125I-PYY and non-labeled peptide competitors were also diluted to desired concentrations supplemented in binding 30 Individual samples were then prepared in 96-well polypropylene microliter plates by mixing membrane suspensions (200 ul), 125I-PYY (25 ul), and non-labeled peptides or supplemented binding buffer (25 ul). Samples were incubated in a 30 °C water bath with 35 constant shaking for 120 min. Incubations were terminated by filtration over Whatman GF/C filters (precoated with 0.5% polyethyleneimine and air-dried before

56

use). Filter-trapped membranes were counted for ¹²⁵I in a gamma counter. Non-specific binding was defined by 100 nM human NPY. Specific binding in time course and competition studies was typically 80%; most non-specific binding was associated with the filter. Binding data were analyzed using nonlinear regression and statistical techniques available in the GraphPAD InPlot package (San Diego, CA).

٤

Ţ

10 Creation Of A Stably Expressing Cell Line

pcEXV-hY2 DNA was transfected into the 293 embryonic kidney cell line by the calcium phosphate transfection method. The 293 cells were grown in minimal essential medium (MEM) with Hank's salts, plus 2 mM 15 glutamine, 100 international units of penicillin, streptomycin at 100 ug/ml, and 10% fetal calf serum, in 5% CO, at 37°C. Stably transfected cells were selected for two weeks in media containing G-148 (1 mg/ml) and screened for the ability to bind 125I-PYY. Several clones 20 were selected based on preliminary measurements of cell density. One positive clone, designated 293-hY2-10, was chosen for further characterization in binding and functional assays. This clone displayed saturable binding of ^{125}I -porcine PYY in membrane preparations: B_{max} 25 = 880 fmol/mg membrane protein, $K_d = 3 \text{ pM}$, (n=3). incubated with various concentrations of human PYY, it а concentration-dependent inhibition forskolin-stimulated cAMP accumulation as determined by radioimmunoassay. Clone 293-hY2-10 also elicited a 30 concentration-dependent increase in free intracellular calcium as determined by Fura-2 florescence. The calcium response, which probably reflects mobilization intracellular calcium stores. inhibited was pretreatment of cells with pertussis toxin. EC₅₀ values 35 for both the cAMP and the calcium response are currently under investigation.

57

pcEXV-hY2 DNA was also transfected into the mouse embryonic NIH-3T3 cell line using the methods described above to create another cell line stably expressing human Y2 receptors. A clone designated N-hY2-5 was selected and characterized as above.

Tissue Localization and Gene Expression: Reverse Transcriptase PCR

Human tissues obtained from National Disease Research 10 Interchange were homogenized and total RNA extracted using guanidine isothiocyanate/CsCl cushion method. was treated with DNase to remove any contaminating genomic DNA. cDNA was prepared from total RNA with random hexanucleotide primers using the 15 transcriptase Superscript II (BRL, Gaithersburg, MD). An aliquot of the first strand cDNA (250ng of total RNA) was amplified in a 50 μ l PCR reaction mixture (200 μ M dNTPs final concentration) containing 1.2U of Tag polymerase in the buffer supplied by the manufacturer (Perkin-Elmer 20 Corporation), and 1 μ M of primers, using a program consisting of 30 cycles of 94°C./2', 68°C./2', 72°C./3', with a pre- and post-incubation of 95°C./5' and 72°C./10', respectively. PCR primers for human Y2 were designed against the human Y2 sequence in the third 25 intracellular loop and carboxyl terminal regions: 5'-GGGAGTATTCGCTGATTGAGATCAT-3' (SEQ. I.D. No. 21) and 5'-GCCTTGAATGTCACGGACACCTC-3' (SEQ. I.D. No. 22), respectively.

- 30 The PCR products were run on a 1.5% agarose gel and transferred to charged nylon membranes (Zetaprobe GT, BioRad), and analyzed as Southern blots. Hybridization probes corresponding to the receptor region flanked by PCR primers were prepared
- 35 (5'-CTGATGGTAGTGGTCATTTGCAGCTCCAGGACTGACATGGTTCTT-3')
 (SEQ. I.D. No. 23) and pre-screened for the absence of cross-reactivity with human Y1 and Y4 receptor subtypes.

58

Filters were hybridized with the phosphorylated probes and washed under high stringency. Labeled PCR products were visualized on X-ray film. Similar PCR and Southern blot analyses were conducted with primers and probe directed to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (Clontech, Palo Alto, CA), and demonstrated that equal amounts of cDNA from the different tissues were being assayed for Y2 receptor expression.

1

10

Localization of NPY Y2 messenger RNA in the rat central nervous system

The distribution of NPY Y2 mRNA in the rat brain was determined using in situ hybridization histochemistry. 15 Male Sprague-Dawley rats were euthanized with CO2, decapitated and the brains rapidly removed and frozen in Coronal sections were cut at 11 μm on a isopentane. cryostat and thaw-mounted onto poly-L-lysine coated slides and stored at -80° C until use. Prior to 20 hybridization, tissues were fixed in 4% paraformaldehyde, treated with 5 mM dithiothreitol, acetylated in 0.1 M triethanolamine containing 0.25% acetic anhydride, delipidated with chloroform, and dehydrated in graded ethanols.

25

The oligonucleotide probes employed to characterize the distribution of the NPY Y2 mRNA were synthesized using a Cyclone Plus DNA synthesizer (Milligen/Biosearch) and gel-purified. The probes used and their sequences are given in Table 7. Probe specificity was established by performing the *in situ* hybridization protocol described below on cells transfected with the rat NPY Y2 DNA (supra), or on nontransfected control cells. In addition, both sense and antisense probes were employed on cells and rat tissues.

Probes were 3'-end labeled with 35S-dATP (1200 Ci/mmol,

New England Nuclear, Boston, MA) to a specific activity of 10^9 dpm/ μ g using terminal deoxynucleotidyl transferase (Boehringer Mannheim; Indianapolis, IN). radiolabeled probes purified Biospin were on 5 chromatography columns (Bio-Rad; Richmond, diluted in hybridization buffer to a concentration of 1.5 x 10^4 cpm/ μ l. The hybridization buffer consisted of 50% formamide, 4X sodium citrate buffer (1X SSC = 0.15 M NaCl and 0.015 M sodium citrate), 1X Denhardt's solution (0.2% 10 polyvinylpyrrolidine, 0.2% Ficoll, 0.2% bovine serum albumin), 50 mM dithiothreitol, 0.5 mg/ml salmon sperm DNA, 0.5 mg/ml yeast tRNA, and 10% dextran sulfate. hundred μ l of the diluted probe was applied to each section, which was then covered with a Parafilm 15 coverslip. Hybridization was carried out overnight in humid chambers at 40 to 55°C. The following day the sections were washed in two changes of 2X SSC for one hour at room temperature, in 0.1% SSC for 30 min at 50-60°C, and finally in 0.1% SSC for 30 min at room 20 temperature. Tissues were dehydrated in graded ethanols and apposed to Kodak XAR-5 film for 3 days to 6 weeks at -20°C, then dipped in Kodak NTB3 autoradiography emulsion diluted 1:1 with 0.2% glycerol water. After exposure at 4°C for 2 to 8 weeks, the slides were developed in Kodak 25 D-19 developer, fixed, and counterstained hematoxylin and eosin.

Functional Assay: Radioimmunoassay of cAMP

Stably transfected cells were seeded into 96-well
microliter plates and cultured until confluent. To reduce
the potential for receptor desensitization, the serum
component of the media was reduced to 1.5% for 4 to 16
hours before the assay. Cells were washed in Hank's
buffered saline, or HBS (150 mM NaCl, 20 mM HEPES, 1 mM
CaCl₂, 5 mM KCl, 1 mM MgCl₂, and 10 mM glucose)
supplemented with 0.1% bovine serum albumin plus 5 mM
theophylline and pre-equilibrated in the same solution

60

for 20 min at 37 °C in 5% CO₂. Cells were then incubated 5 min with 10 μM forskolin and various concentrations of receptor-selective ligands. The assay was terminated by the removal of HBS and acidification of the cells with 100 mM HCl. Intracellular cAMP was extracted and quantified with a modified version of a magnetic beadbased radioimmunoassay (Advanced Magnetics, Cambridge, MA). The final antigen/antibody complex was separated from free ¹²⁵I-cAMP by vacuum filtration through a PVDF filter in a microliter plate (Millipore, Bedford, MA). Filters were punched and counted for ¹²⁵I in a Packard gamma counter. Binding data were analyzed using nonlinear regression and statistical techniques available in the GraphPAD Prism package (San Diego, CA).

É

15

Functional Assay: Intracellular Calcium Mobilization

The intracellular free calcium concentration was measured microspectroflourometry using the fluorescent indicator dye Fura-2/AM. Stably transfected cells were 20 seeded onto a 35 mm culture dish containing a glass coverslip insert. Cells were washed with HBS loaded with 100 μ l of Fura-2/AM (10 μ M) for 20 to 40 min. After washing with HBS to remove the Fura-2/AM solution, cells were equilibrated in HBS for 10 to 20 min. Cells 25 were then visualized under the 40X objective of a Leitz Fluovert FS microscope and fluorescence emission was determined at 510 nM with excitation wave lengths alternating between 340 nM and 380 nM. Raw fluorescence data were converted to calcium concentrations using 30 standard calcium concentration curves and analysis techniques.

Reagents

Cell culture media and supplements were from Specialty
35 Media (Lavallette, NJ). Cell culture plates (150 mm)
were from Corning (Corning, NY). Cell culture flasks
(225 cm²) and polypropylene microliter plates were from

61

Co-star (Cambridge, MA). Porcine 125I-PYY was from New England Nuclear (Boston, MA). NPY and related peptide analogs were from either Bachem California (Torrance, CA) or Peninsula (Belmont, CA). Whatman GF/C filters were Brandel (Gaithersburg, MD). Bio-Rad Reagent was from Bio-Rad (Hercules, CA). Bovine serum albumin and bacitracin were from Sigma (St. Louis. MO). All other materials were reagent grade.

62

RESULTS

Isolation of a cDNA clone encoding a human hippocampal Y2 receptor

\$

:

5 In order to clone a human NPY receptor subtype (Y2), we used an expression cloning strategy in COS-7 cells (20, 21, 22). This strategy was chosen for its extreme sensitivity since it allows detection of a single "receptor positive" cell by direct microscopic 10 autoradiography.

Since the Y2 receptor is described as a presynaptic receptor, it is difficult to locate cell bodies that actually contain this specific mRNA in restricted brain 15 areas. We reasoned that human hippocampus was a good source of mRNA since it contains both a large number of interneurons and has been shown to carry a particularly dense population of Y2 receptors (23, 24, 25, 26). A human hippocampal cDNA library of 2.2 x 10⁶ independent recombinants with a 3 kb average insert size was fractionated into 440 pools of ≈5000 independent clones. From the first 200 pools tested, three gave rise to positive cells in the screening assay (#145 ,158 and 189). The last 220 pools tested were all negative.

25

Since both Y1 and Y2 receptor subtypes are expressed in the hippocampus (2), we analyzed the DNA of positive pools by PCR with Y1 specific primers. Pools #145 and #158 turned out to contain cDNAs encoding an Y1 receptor, 30 but pool #189, negative by PCR (data not shown), likely contained a cDNA encoding a human hippocampal NPY receptor that was not Y1. Pool #189 was subdivided in 20 of 1000 clones each, and а preliminary pharmacological characterization was run on COS-7 cells 35 transfected with DNA prepared from the secondary pools. This preliminary analysis revealed that a 100 fold excess of cold [Leu³¹-Pro³⁴]NPY totally inhibited binding of ¹²⁵I-

63

PYY to control COS-7 cells transfected with the Y1 gene. In contrast, no significant inhibition of binding was observed when the same experiment was performed on COS-7 cells transfected with secondary pool #189-17 (data not shown). This is consistent with pool #189 containing a cDNA encoding a human hippocampal Y2 receptor. The sib selection was therefore pursued on pool #189 until a single clone was isolated (designated CG-13).

10 The isolated clone carries a 4.2 kb cDNA. This cDNA contains an open reading frame between nucleotides 1002 and 2147 that encodes a 381 amino acid protein (SEQ. I.D. No. 2). The unusually long 5' untranslated region could be involved in the regulation of translation efficiency or mRNA stability. The flanking sequence around the putative initiation codon conforms to the Kozak consensus sequence for optimal translation initiation (27, 28).

The hydrophobicity plot displayed seven hydrophobic, putative membrane spanning regions which makes the human hippocampal Y2 receptor a member of the G-protein coupled superfamily. The nucleotide and deduced amino acid sequences are shown in Figure 1 and Figure 2, respectively.

25

Like most G-protein coupled receptors, the Y2 receptor contains a consensus sequence for N-linked glycosylation, in the amino terminus (position 11) involved in the proper expression of membrane proteins (29). The Y2 receptor carries two highly conserved cysteine residues in the first two extracellular loops that are believed to form a disulfide bond stabilizing the functional protein structure (30). The Y2 receptor shows 7 potential phosphorylation sites for protein kinase C in positions 11, 27, 64, 145, 188, 250 and 340, 2 casein kinase sites in positions 174 and 358, and 2 cAMP- and cGMP-dependent protein kinase phosphorylation sites in positions 146 and

64

350. It should be noted that 7 of those 11 potential phosphorylation sites are located in intra-cellular loops 1, 2 and 3 as well as in the carboxyl terminus of the receptor and therefore could play a role in regulating functional characteristics of the Y2 receptor (30). A potential palmitoylation site is present in the sequence at the cysteine found in position 326. A large number of G-protein coupled receptors carry a cysteine in the same position and O'Dowd et al. have speculated that it plays an important role in the functional coupling of the human β₂-adrenergic receptor (31). The formation of this additional cytosolic loop may influence the mobility of the receptor across the membrane (32).

3

:

15 When compared to the published human Y1 cDNA clone (10, 11) the Y2 sequence shows surprisingly low homology both at the nucleotide level, 48.1% (Figure 3) and overall amino acid level, 31% (Figure 4). The transmembrane domain identity of the human hippocampal Y2 receptor with 20 other 7 TM receptors is shown in Table 1. The low TM identity with other G-protein coupled receptor families, with other peptide receptors and especially with the Y1 subtype raises the possibility that Y2 receptor subtypes belong to a new distinct sub-family of 7 TM peptide 25 receptors. Conversely, NPY receptor subtypes could form a sub-family where members show unusually low levels of overall homology. Applicants have also cloned the human Y4 receptor, and this receptor also exhibits a low degree of homology with the human Y2 receptor (Table 1). 30 interesting to observe that the mouse orphan receptor MUSGIR (mouse glucocorticoid induced receptor, 33) shows the highest TM identity (42%, Table 1) with our human Y2 The same comparison between human Y1 (or Y4) receptor. and Y2 TM regions only gives a score of 41% identity. we were comparing the human Y2 receptor sequence with the human homolog of the MUSGIR receptor, the level of identity might even be higher. Therefore the MUSGIR

receptor could be related to the NPY receptors and bind members of the pancreatic polypeptide ligand family. A full pharmacological evaluation of the human GIR homolog with NPY, PYY and PP related ligands is now underway to verify this hypothesis.

Using the human Y2 probe, northern hybridizations reveal a unique band at 4.3 kb in human brain after a three-day exposure (Figure 16). This is in good agreement with the 4.2 kb cDNA that we isolated by expression cloning and indicates that our cDNA clone is full-length. The mRNA encoding the human Y2 receptor is present in significant amounts in amygdala, corpus callosum, hippocampus, and subthalamic nucleus. A faint band is detectable in caudate nucleus, hypothalamus and substantia nigra. No signal could be detected in thalamus. It should be noted that Clontech's MTN blot does not carry any mRNA from cortex or brain stem.

20 Southern hybridizations to human genomic DNA followed by high stringency washes (Figure 17) suggest that the human genome contains a single Y2 receptor gene (single band with EcoRI, HindIII, BamHI and PstI). The faint bands at 9 and 12 kb observed with BglII can be explained by the 25 presence of two BglII restriction sites in the coding region of the human Y2 sequence and are also consistent with a single Y2 receptor gene.

Pharmacology of the transiently expressed human Y2 30 receptor

The Y2-like pharmacology of CG-13, originally identified by whole cell autoradiographic techniques, was further defined by membrane binding assays. The gene for the human hippocampal Y2 receptor was transiently expressed in COS-7 cells for full pharmacological evaluation. 125I-PYY bound specifically to membranes from COS-7 cells transiently transfected with the CG-13 construct. The

66

1

:

time course of specific binding was measured in the presence of 0.06 nM 125I-PYY (Figure 5). The association curve was biphasic, with approximately 55% of the specific binding occurring during an initial rapid phase 5 and 45% following a slower time course. For the rapid phase, the observed association constant (K_{obs}) was 1.28 \pm 0.02 min⁻¹ and t_{1/2} was 0.5 min; equilibrium binding was 95% complete within 2 min and 100% complete within 5 min (n = 3). For the slow phase, K_{obs} was 0.02 \pm 0.00 min⁻¹ 10 and $t_{1/2}$ was 37 min; equilibrium binding was 90% complete within 120 min, 95% complete within 160 min and 100% complete within 280 min (n = 3). Total equilibrium binding, composed of both phases, was 95% complete within 120 min and 100% complete within 240 min. The biphasic 15 association curve may reflect a complex pattern of receptor surface binding followed by access to deepseated binding sites, as has been suggested by Schwartz and co-workers for Y2 receptors (34). For comparison, we also measured the time course of binding to human Y1 20 receptors transiently expressed in COS-7 cells (Figure The association curve was monophasic, with a $K_{\rm obs}$ of $0.06 \pm 0.02 \text{ min}^{-1}$ and a $t_{1/2}$ of 12 min; equilibrium binding was 95% complete within 51 min and 100% complete within 90 min (n = 3). The different patterns of association 25 for CG-13 and human Y1 receptors suggest novel mechanisms of receptor/ligand interaction.

Saturation binding data for ¹²⁵I-PYY were fit to a one-site model with an apparent K_d of 0.069 ± 0.009 nM and an apparent B_{max} of 7.8 ± 0.4 pmol/mg membrane protein, corresponding to approximately 7.5 x 10⁵ receptors/cell (n = 3; Figure 6). Given that the transfection efficiency was 20-30% (data not shown), the receptor density on transfected cells was probably closer to 3 x 10⁶/cell. Membranes from mock-transfected cells, when prepared and analyzed in the same way as those from CG-13-transfected cells, displayed no specific binding of

67

¹²⁵I-PYY. We conclude that the ¹²⁵I-PYY binding sites observed under the described conditions were derived from the CG-13 construct.

5 Y2 receptor recognition is thought to depend primarily upon the four C-terminal residues of NPY (Arg33- Gln34- Arg^{35} - Tyr^{36} -NH₂) preceded by an amphipathic α -helix (M4, M5); exchange of Gln^{34} with Pro^{34} is not well tolerated (4, 5). We therefore chose several C-terminal fragments and 10 C-terminal modified peptides for competition binding studies. The rank order of affinity for selected compounds was derived from competitive displacement of 125I-PYY (Fig. 7 and Table 3). The CG-13 receptor was compared with two model systems: 1) the cloned human Y1 15 receptor (10, 11) transiently expressed in COS-7 cells, and 2) the Y2-like receptor population expressed by human SK-N-Be(2) neuroblastoma cells (2, 8). knowledge, no models for human Y3 and human PP receptors have been described.

20

CG-13 bound with high affinity to human NPY $(K_i = 0.69)$ nM) and even more so to human PYY $(K_i = 0.39 \text{ nM})$. The K_i values are in agreement with numerous reports of pharmacologically defined Y2 receptors studied in NPY 25 binding and functional assays (2). The opposite rank order was observed with human Y1 receptors, combined with stronger receptor/binding interactions ($K_i = 0.049$ and 0.085 nM for human NPY and human PYY, respectively). It is interesting in this regard that CG-13 bound 125I-PYY (Kd 30 = 0.069 nM) with higher affinity than PYY $(K_i = 0.39 \text{ nM})$, that iodination stabilize suggesting may receptor/ligand complex. The human Y1 receptor, in contrast, bound both $^{125}I-PYY$ ($K_d = 0.062 + 0.010 \text{ nM}, n =$ 3, data not shown) and PYY ($K_i = 0.085 \text{ nM}$) with comparable 35 affinity. The fact that CG-13 and the human Y1 receptor bound NPY, PYY and 125I-PYY with different magnitudes and rank orders of affinity most likely reflects distinct

68

mechanisms of peptide recognition which could potentially be exploited for the development of subtype-selective non-peptide ligands.

5 CG-13 also bound with high affinity to porcine NPY (K; = 0.86 nM), which differs from human NPY by containing Leu¹⁷ in the PP-fold rather than Met¹⁷. CG-13 was relatively insensitive to N-terminal deletion of NPY and PYY; the affinity for porcine NPY_{22.36} was only 5-fold less than that for full length porcine NPY. Extreme deletion of α-helical structure was less well tolerated; the affinity for porcine NPY₂₆₋₃₆ was 240-fold less than that for full length porcine NPY. Human [Leu³¹, Pro³⁴]NPY and human PP, both having Pro³⁴ rather than Glu³⁴, did not bind well (K; > 300 nM). Hydrolysis of the carboxyl terminal amide to free carboxylic acid, as in NPY free acid, also disrupted binding affinity for CG-13 (K; > 300 nM). The terminal amide appears to be a common structural requirement for pancreatic polypeptide family/receptor interactions.

20

The competitive displacement data indicate that CG-13 binds PYY with equal or greater affinity than NPY. The C-terminal region of NPY is the primary pharmacophore. CG-13 does not tolerate exchange of Gln³⁴ with Pro³⁴, as revealed by low affinity interactions with human [Leu³¹, Pro³⁴]NPY and human PP. The binding profile, which is shared by SK-N-Be(2) cell receptors but not by human Y1 receptors, is characteristic of the pharmacologically defined Y2 receptor (refs. 2, 8; see also Table 2). The membrane binding studies therefore confirm and extend our assessment that CG-13 encodes a human Y2 receptor.

The pharmacological profile of the human Y2 receptor was further investigated using peptide analogs related to NPY, PYY, and PP (Table 4). CG-13 did not discriminate human and frog analogs of NPY ($K_i = 0.74$ and 0.87 nM, respectively), human and porcine analogs of NPY₂₋₃₆ ($K_i = 0.74$).

:

69

2.0 and 1.2 nM, respectively), human and porcine analogs of [Leu³¹, Pro³⁴]NPY (K > 130 and > 540 nM, respectively), or human NPY and human [Tyr-O-Me21]NPY (K, = 0.74 and 1.6 nM, respectively). This last derivative 5 was tested based on the proposal that it was selective for central vs. peripheral NPY receptors, with high binding affinity in rat CNS but low potency in rat vas deferens relative to NPY (83). For the receptors under investigation, however, [Tyr-O-Me²¹]NPY and human NPY 10 yielded highly similar binding profiles. The NPY derivative with greatest selectivity for CG-13 was C2-NPY, a C^2 to C^{27} disulfide-stabilized derivative of NPY with an 8-amino-octanoic linker replacing NPY_{5-24} ($K_i = 3.5$ nM, \geq 20-fold selective for CG-13 over Y1 and Y4 15 receptors). C2-NPY has been described as a Y2-selective compound (3).

Three additional PYY derivatives yielded distinctive binding profiles. CG-13 bound with highest affinity and greatest selectivity to human PYY_{3.36} (K_i = 0.70 nM, ≥ 20-fold selective for CG-13 over Y1 and Y4 receptors). PYY₃₋₃₆ is a major form of PYY-like immunoreactivity in blood and could therefore mediate CG-13-dependent processes in vivo (84, 85). Porcine PYY was relatively nonselective and similar in binding affinity to human PYY (K_i = 0.35 nM and 0.36 nM, respectively). Human [Pro³⁴]PYY was lacking in binding affinity for CG-13 (K_i > 310), further supporting the argument that Pro³⁴ is disruptive for high affinity peptide binding to the CG-13 receptor.

30.

Six additional PP derivatives were investigated. Those peptides which resemble human PP in that they contain Pro^{34} (bovine, rat, avian, and frog PP) displayed no activity in the CG-13 binding assay. High affinity binding was detected only for salmon PP ($K_i = 0.17 \text{ nM}$), which is distinguished by containing Gln^{34} . When the Cterminus of human PP was modified to more closely

70

resemble human NPY, as in $[Ile^{31}, Gln^{34}]PP$, the binding affinity for CG-13 was increased dramatically $(K_i = 20 \text{ nM})$. It has been reported previously that $[Ile^{31}, Gln^{34}]PP$ was more active than PP in Y2 binding assays, while exhibiting decreased potency for putative PP receptors in rat vas deferens (86).

3

Several proposed NPY antagonists were analyzed for their ability to bind to CG-13 receptors. These include PYX-1 and PYX-2, C-terminal derivatives of NPY reported to antagonize NPY-mediated feeding and neurotransmitter release (87, 88, 89). Neither synthetic peptide bound to CG-13 with high affinity or selectivity (K_i = 684 for PYX-1 and K_i > 1000 nM for PYX-2). [D-Trp³²]NPY is an NPY derivative reported to regulate feeding behavior when injected into the hypothalamus of rats (90); this analog was inactive in the CG-13 binding assay. Another inactive compound was NPY₁₋₂₄ amide, a peptide reported to antagonize NPY in the rat vas deferens (83).

20

Human tissue Y2 receptor macrolocalization: PCR

Human Y2 mRNA was detected by PCR techniques in a broad range of human tissues (Table 5). Relatively intense hybridization signals were detected in total brain, thoracic artery, coronary artery, and penis, with more moderate levels in frontal brain, ventricle, mesentery, stomach and ileum. Relatively low levels were detected in nasal mucosa and pancreas. Several other tissues were negative for Y2 mRNA as measured by this technique, including atrium, liver, and uterus.

Cloning and Expression of Two Isoforms of the Rat NPY/PYY (Y2) Receptor

Two rat genomic clones homologous to the human Y2 receptor were isolated, termed rs5a (Figure 8) and rs26a (Figure 9). The nucleotide sequence of rs5a is 86.5% identical in the coding region to that of the human Y2

71

receptor (Figure 10), and can encode a 381 amino acid protein with 94.5% identity to the human Y2 amino acid sequence (Figure 11). In the putative transmembrane domains (TMs), the protein predicted by rs5a exhibits 5 98.2% amino acid identity with the human Y2 receptor (Figure 11). This high degree of primary sequence identity is often observed for species homologues, and strongly suggests that the receptor encoded by rs5a is the rat Y2 receptor. However, even a single amino acid 10 substitution can influence the functional properties of a receptor; thus, even species homologues exhibiting a high level of sequence identity may display different pharmacological properties (infra), underscoring the importance of obtaining both rat and human receptors for 15 use in drug development.

Sequence analysis of the second genomic clone revealed that rs26a also encoded a full-length rat Y2 receptor; however, rs26a contains two nucleotide changes when 20 compared with the sequence of rs5a. Both nucleotide changes result in amino acid substitutions in the predicted rat Y2 receptor protein. With two (2) amino acid changes, the protein encoded by rs26a is 99.7% identical to that of rs5a. Compared with the human Y2 25 receptor, the nucleotide sequence identity of rs26a is 85.2% and the amino acid sequence identity is 98.2%. This clone therefore encodes an isoform of the rat Y2 receptor distinct from that encoded by rs5a. locations of the amino acid substitutions (N-terminus and 30 5/6 loop; see Figure 3) suggest that they could influence receptor function. The potentially receptors encoded by rs5a and rs26a are likely to represent allelic variants at the same gene locus; however, rs26a could represent a second rat Y2 gene. 35 Accordingly, we have designated the isoform encoded by rs5a as the rat Y2a receptor, and designated the isoform encoded by rs26a as the rat Y2b receptor.

;

:

The primary sequences of rat and human Y2 receptors, while highly related, show distinct patterns of sequence motifs for N-linked glycosylation, N-myristoylation, and 5 protein phosphorylation. For example, the rat Y2a differs from the rat Y2b in that it contains an additional site for phosphorylation by protein kinase C. Further, the human Y2 differs from both rat Y2 isoforms containing two additional sites for N-linked 10 glycosylation, two additional sites for cAMP- and cGMPdependent protein phosphorylation, an additional site for casein kinase II phosphorylation, one additional site for protein kinase C phosphorylation, and two fewer sites for N-myristoylation. These sites could mediate differences 15 in the function or regulation of the three receptors. The isolation of two rat homologues of the Y2 receptor provides the means to compare the pharmacological properties of the rat and human Y2 receptors (see below) in relation to their observed differences in primary 20 structures. These data will be critical to the design and testing of human therapeutic agents acting at these sites.

Binding Studies with Rat Y2 Homologs

The DNA corresponding to the rat Y2a homolog was transiently expressed in COS-7 cells for membrane binding studies. The binding of $^{125}\text{I-PYY}$ to the rat Y2a receptor was saturable over a radioligand concentration of 0.5 pM to 2.5 nM. Binding data were fit to a one-site model with an apparent $K_d = 0.26$ nM and a receptor density of 5100 fmol/mg membrane protein. As determined by using peptide analogs within the pancreatic polypeptide family, the rat Y2a pharmacological profile resembles that for the human Y2 receptor (Table 6). Each receptor analog is relatively tolerant of N-terminal ligand deletion (the human apparently more so than the rat) and intolerant of any peptide containing Pro^{34} or a modified C-terminus (as

73

in NPY free acid or [D-Trp32]NPY).

The rat Y2b clone, which differs from rat Y2a by two amino acid changes one in the N-terminal tail (from Leu²⁰ 5 to Phe20) and another in the third intracellular loop (from Thr²⁶⁶ to Met²⁶⁶), has been subjected only to a preliminary investigation. Membranes from COS-7 cells transiently transfected with the rat Y2b receptor were incubated with 0.08 nM 125I-PYY and analyzed for specific 10 binding after incubation at 30 °C for 120 min. Membranes from transfected cells bound 310 fmol 125I-PYY/ mg membrane protein, whereas membranes from mock-transfected cells (receiving vector without receptor cDNA insert) bound only 3 fmol 125I-PYY/ mg membrane protein. 15 remains to be determined whether there exist pharmacological or functional differences between the ratY2a and rat Y2b receptors.

Localization of NPY Y2 messenger RNA in the rat central 20 nervous system

In control experiments, hybridization signals for rat NPY Y2 mRNA were seen only with the antisense probes (probe sequences shown in Table 7), and only over cells which had been transfected with the rat Y2 DNA (Figure 18).

25 The probes were designed to recognize both rat Y2a and rat Y2b. Neither mock transfected cells nor cells transfected with rat NPY Y1 mRNA exhibited hybridization signals. On rat brain sections, no hybridization signals were obtained with the sense probes, only with the 30 antisense probes.

The distribution of NPY Y2 mRNA observed in coronal sections through the rostrocaudal extent of rat brain is shown in Figure 12 and Table 8. Hybridization signals were seen over many areas of the rat brain (Figure 12), which, at the microscopic level, were confined to the cytoplasm of neuronal profiles (data not shown). In the

74

telencephalon, the most intense hybridization signals were observed over the CA3 region of the hippocampus (Figure 12B-E) and over the anteroventral aspect of the medial nucleus of the amygdala (Figure 12C, D). Less intense signals were found over the olfactory tubercle, the lateral septal nucleus (Figure 12A), and over the basomedial nucleus and posteromedial cortical nucleus of the amygdala (Figure 12D, E). Scattered neurons with hybridization signal were also seen in the central amygdaloid nucleus. In cortex, silver grains were seen over large neurons in the piriform region.

;

•

Among diencephalic structures, the arcuate nucleus of the hypothalamus exhibited the most intense hybridization In this area, 15 signal for NPY Y2 mRNA (Figure 12D, E). most of the neurons appeared to be labelled, and many neurons were also labelled in the region of the tuber cinereum lateral to the arcuate nucleus. In addition, both the dorsomedial and ventromedial hypothalamic nuclei 20 contained appreciable hybridization signals subpopulations of neurons (Figure 12C, D). In the dorsal and ventral premammillary nuclei, hybridization signal was seen over many neurons (Figure 12E). neurons in the centromedial nucleus were labelled (Figure 12C, D), while a smaller, less intensely 25 labelled group of cells was visible paraventricular nucleus (Figure 12D).

In the mesencephalon, medulla, and pons, few structures were labelled with the antisense oligonucleotide probe. Those exhibiting a moderate level of hybridization signal were the dorsal and caudal linear raphe (Figure 12F), the pontine nucleus, and the posterior dorsal tegmental nucleus (Figure 12G). In the spinal cord, labelling was observed over scattered large neurons in lamina 9 (Figure 12H). Silver grains were also found over a few large neurons in the dorsal root ganglion.

75

Recept r/G pr tein Interactions: Effects f Guanine Nucleotides

For a given G protein-coupled receptor, a portion of the receptor population in a membrane homogenate typically 5 exists in the high affinity ligand binding state as a receptor/G protein complex. The binding of GTP or a nonhydrolyzable analog to the G protein conformational change in the receptor which favors a low affinity ligand/binding state (110). We investigated 10 whether the non-hydrolyzable GTP analog, Gpp(NH)p, would alter the binding of human NPY or 125I-PYY to Y2 receptors transiently expressed in COS-7 cells. The competition curve produced by human NPY was evaluated in the absence and presence of 100 μ M Gpp(NH)p. The human Y2 receptor 15 was relatively insensitive to the Gpp(NH)p compared to the rat Y2a receptor (Figure 13). The IC₅₀ for human NPY binding to the human Y2 receptor was increased from 2.2 nM to 3.3 nM; specific binding of 125I-PYY was decreased by only 4% (n = 5). The IC_{50} for human NPY binding to the 20 rat Y2a receptor was altered very little (from 0.7 nM to 1.2 nM, n = 2); specific binding of $^{125}I-PYY$, however, was 23% (n = 2). A similar pattern of decreased by sensitivity to Gpp(NH)p was reported for 125I-PYY binding to rat brain (91). The difference between the rat and 25 human Y2 receptor clones could be explained by several factors, including 1) the types of G proteins available in COS-7 cells, 2) the level of receptor reserve in COS-7 cells (note that human Y2 receptor density was greater than that of the rat Y2a receptor), and 3) the efficiency 30 of receptor/G protein coupling (92; 93).

Stable Expression Systems: Characterization in Binding Assays

Untransfected 293 and NIH-3T3 cells were pre-screened for specific 125I-PYY binding and found to be negative (data not shown). After co-transfection with the human Y2 cDNA plus a G-418-resistant gene and selection with G-418,

surviving colonies were screened for specific binding of 125I-PYY. Two positive clones were identified and isolated for further study (293 clone #10 and NIH-3T3 clone #5). The binding of 125I-PYY to membranes from the 293 stable 5 clone was saturable over a radioligand concentration range of 0.5 pM to 2.5 nM. Binding data were fit to a one-site binding model with an apparent K_d of 3 \pm 1 pM and a receptor density of 880 \pm 50 fmol/mg membrane protein (mean \pm s.e.m., n = 3). Membranes from stably 10 transfected NIH-3T3 cells displayed similar binding properties, with an apparent K_d of 8 \pm 2 pM and a receptor density of 160 \pm 60 fmol/mg membrane protein (mean \pm s.e.m., n = 2). Membranes from both stable clones were incubated with 0.08 nM 125 I-PYY in the presence or absence 15 of 100 μ M Gpp(NH)p. Specific binding of $^{125}I-PYY$ to Y2 receptors in 293 cell membranes was reduced 32% in the presence of the guanine nucleotide, whereas specific binding to Y2 receptors in NIH-3T3 cell membranes was reduced only 6% under the same conditions. The data 20 serve to emphasize that the receptor/G interactions for a given receptor clone can vary depending upon the resident G proteins in the host cell line (93). Additional factors such as receptor density and receptor reserve can also play a role (92).

25

Functional Assay: camp

Activation of all Y-type receptors described thus far is thought to involve coupling to G-proteins which are inhibitory for adenylate cyclase activity (G, or G) (1). 30 Based on these prior observations, we investigated the ability of PYY to inhibit forskolin-stimulated cAMP accumulation in 293 cells stably expressing the human Y2 receptor. Incubation of intact cells with 10 μМ forskolin produced 10-fold a increase 35 accumulation over a 5 minute period, as determined by radioimmunoassay. Simultaneous incubation with human PYY decreased the forskolin-stimulated cAMP accumulation by

:

77

71% in stably transfected 293 cells (Figure 14) but not in untransfected cells (data not shown). The NPY-mediated response was concentration-dependent (EC₅₀ = 0.25 nM). We conclude that human Y2 receptor activation can result in decreased cAMP accumulation, very likely through inhibition of adenylate cyclase activity. Similar results were obtained for NIH-3T3 cells stably transfected with the human Y2 receptor, in which human NPY decreased forskolin-stimulated cAMP accumulation by 50% in transfected cells with an EC₅₀ of 0.21 nM (Figure 14).

Peptides selected for their ability to bind to the transiently expressed human Y2 receptor were further 15 investigated for functional activity using stably transfected 293 cells (Table 9). All peptides with measurable binding affinity were able to mimic the effects of PYY on cAMP accumulation. EC50 values were generally within a 10-fold range of K, values, often lower 20 in magnitude (Table 9). We also investigated the functional activity of the reported feeding behavior modulator [D-Trp32]NPY. Consistent with this peptide's low binding affinity for the human Y2 receptor, we detected no functional activity at concentrations up to 25 0.3 μ M, or when tested at 0.3 μ M for antagonism of the functional response (data not shown). The reported NPY receptor antagonists PYX-1 and PYX-2 were also inactive when tested under the same paradigm.

The intracellular free calcium Mobilization
The intracellular free calcium concentration was increased in 293 cells stably transfected with the human Y2 receptor after application of 1 μM human PYY (Δ [Ca²+];
= 80 nM; Figure 15). The PYY-mediated response was concentration-dependent, with EC₅₀ = 39 nM, n = 2 (Figure 15). PYY-induced calcium mobilization was relatively maintained in the presence of 1 mM extracellular EGTA (Δ

78

[Ca²⁺]; = 64 nM for 1 μM human PYY), suggesting that intracellular calcium stores are the primary source of the transient calcium flux. Pretreatment with pertussis toxin (100 ng/ml for 24 hours) decreased the response to 300 nM human PYY by 93%, thereby supporting a G protein-linked signal transduction pathway. Untransfected 293 cells did not respond to human PYY (data not shown). The calcium mobilization assay provides a second pathway through which Y2 receptor activation can be measured.

2

10

DISCUSSION

Attempts to isolate the NPY Y2 receptor subtype based on 15 sequence homology with the Y1 receptor have not been successful so far. Therefore, we chose an expression cloning approach where a functional receptor is actually detected with exquisite sensitivity on the surface of transfected cells, using a highly specific iodinated 20 ligand. Using this strategy, we have identified a human cDNA encoding the pharmacologically defined Y2 receptor. The fact that we had to screen 2.2 x 106 independent clones with a 3 kb average insert size to find one clone reveals either a very strong bias against Y2 cDNA cloning 25 in the cDNA library construction procedure, or the Y2 mRNA is expressed at very low levels in human hippocampal The longest reading frame in the cDNA encodes a 381 amino acid protein with an estimated molecular weight of 42 kD. Given the fact that there is an N-30 linked glycosylation site in the amino terminus, the apparent molecular weight could be slightly higher and in good agreement with published data on the molecular weight of the human hippocampal Y2 receptor at 50 kD The Y2 receptor carries a large number of (36).35 potential phosphorylation sites which could be involved in the regulation of its functional characteristics.

79

The nucleotide and amino acid sequence analysis both reveal low identity levels with all 7-TM receptors including the human Y1 and Y4 receptors. The highest transmembrane amino acid identity is found with the mouse 5 MUSGIR receptor. A pharmacological profile on the human GIR homolog will be established with NPY, PYY and pancreatic polypeptide related ligands to find out if orphan receptor belongs to pharmacologically defined neuropeptide Y receptor subfamily. The human Y2 receptor shares very low amino acid identity with the previously cloned human Y1 receptor (31% overall and 41% in transmembrane regions). human Y2 receptor also displays a unique pharmacological profile and a unique time course of association with 125I-15 PYY. The dramatic differences in sequence pharmacological profile between the human Y1 and Y2 receptors suggest that they might be encoded by two unrelated genes whose products have evolved into binding the same family of ligands. Conversely, they could have 20 diverged from a common ancestor very early in evolution and undergone multiple mutations leading to distinct pharmacological characteristics.

Northern analysis reveals a 4.3 kb band in human brain and demonstrates that our 4.2 kb Y2 cDNA is full-length. Southern analyses are consistent with the human genome containing a single Y2 receptor gene.

The pharmacological binding profile established in our initial characterization served primarily to establish the CG-13 as a human Y2 receptor. The additional data included here reflect an increased understanding of receptor ligand/interactions. We now know, for example, that C2-NPY and PYY3-36 can be used to compete for Y2 receptor sites with greater affinity and selectivity than the C-terminal fragments of NPY originally described. We also know that certain peptides which are thought to

80

antagonize NPY-dependent effects, such as [D-Trp³²]NPY, PYX-1, and PYX-2, are unable to compete for binding of the human Y2 receptor clone described here. Our evidence does not therefore support the cloned Y2 receptor as the molecular target of these particular peptides <u>in vivo</u> or <u>in vitro</u>.

3

:

Human Y2 receptor mRNA was detected by PCR techniques in a broad range of human tissues (Table 5). 10 intense hybridization signals were detected in total brain, thoracic artery, coronary artery, and penis, with more moderate levels in frontal brain, ventricle, and mesentery. This distribution is consistent with evidence for Y2 receptor localization and receptor-dependent 15 effects CNS, in cardiovascular, and reproductive physiology (94). Moderate hybridization signals were also detected in stomach and ileum, consistent with evidence for Y2-mediated effects on chief cell cAMP accumulation (95) and also intestinal electrolyte flux Relatively low levels were detected in nasal 20 (61; 96). mucosa and pancreas, two tissues in which Y2-like receptors have been reported to regulate vasoconstriction and pancreatic secretion, respectively (97, 98, 99). more definitive localization of the Y2 receptor mRNA and 25 receptor expression (i.e., whether on neurons, enterocytes, vascular smooth muscle cell's, etc.) attainable through in situ hybridization and receptor autoradiography techniques.

30 The distribution of NPY Y2 mRNA described here in rat brain has a number of potential implications, and raises a number of important questions. Among these are; 1) how does the distribution of this mRNA correlate with that of NPY itself; 2) how does the Y2 mRNA distribution relate to the putative autoradiographic localization of Y2 receptors described by previous investigators; and 3) what are the functional implications of the Y2 mRNA

81

distribution?

Correlation with NPY immunoreactivity

Neuropeptide Y is one of the most abundant and widely 5 distributed peptides in the mammalian brain (100). some areas, NPY Y2 mRNA appears to be co-distributed with NPY-immunoreactive (NPYir) neurons, colocalization in the same neuron(s) remains to be established. In both the arcuate nucleus of the 10 hypothalamus and the medial nucleus of the amygdala, the distribution of Y2 mRNA overlaps with the distribution of NPYir neurons demonstrated by immunocytochemical studies (100, 101). In addition, both areas contain moderate plexuses of NPYir axons. These observations leave open 15 the question of presynaptic/postsynaptic nature of the Y2 receptor. In most other areas of the brain, the Y2 mRNA does not appear to be co-distributed with NPYir neurons, but instead correlates better with the distribution of NPYir terminal fields, suggesting a postsynaptic 20 localization.

Comparison with receptor autoradiography

A number of investigators have described the distribution on the NPY receptors based autoradiographic localization of radiolabelled NPY ligands, among them [1251]NPY and [1251]peptide YY (PYY), in combination with subtype-selective displacers. The Y2 receptor has been localized by combining [125] PYY with the Y2-selective mask NPY₁₃₋₃₆ (94). The results of such studies suggest that 30 the Y2 receptor is widely distributed in rat brain, being most abundant in the hippocampus, olfactory bulb, and hypothalamus. We have seen no NPY Y2 mRNA in the olfactory bulb, but both hippocampus and hypothalamus contain **Y2** mRNA. However, the pharmacological 35 characterization of NPY receptor subtypes is incomplete at present, and some of the Y2-like binding may be attributable to the so-called atypical Y1 receptor, or to

82

2

other undiscovered NPY receptor subtypes.

situ results suggest that the autoradiographic characterization of the Y2 receptor is likely to be accurate for some areas. The projection 5 fields of neurons containing the Y2 mRNA are important in this respect. Thus the pyramidal neurons of the CA3 region of the hippocampus, which contain relatively **Y2** hybridization signals, project topographic fashion to the lateral septum (102), an area 10 which supposedly contains a high proportion of Y2 receptors (103, 23, 94). Similarly, the olfactory bulb appears to contain mainly NPY receptors of the While there is no Y2 mRNA in the olfactory bulb, the piriform cortex contains many neurons which are 15 labelled with the Y2 antisense probe, and provides a major source of olfactory bulb afferents. The localization of NPY Y2 mRNA in the arcuate nucleus of the hypothalamus is particularly interesting, neurons in this nucleus provide the NPY innervation of 20 much of the hypothalamus, including the paraventricular and dorsomedial nuclei (104, 105). It is unclear at present which receptor subtype(s) predominate in the paraventricular nucleus, but based on our results with the Y2 mRNA, and those of Mikkelsen and colleagues with 25 the Y1 mRNA (106, 107), both Y1 and Y2 should be present. Similar arguments can be pursued for most of the regions which contain Y2 mRNA, however a definitive profile of Y2 receptor localization awaits the introduction of Y2 selective ligands.

30

Functional considerations

Neuropeptide Y is involved in a number of physiological functions, including the regulation of food intake, neuronal excitability, cardiovascular regulation, and circadian rhythms. With regard to food intake, the paraventricular nucleus of the hypothalamus is one site which has been intensively investigated, and has been

83

demonstrated to be a prominent locus of action for the orexigenic effects of NPY. The localization of NPY Y2 mRNA in the arcuate nucleus, and the projections of the arcuate to the paraventricular nucleus, suggest the involvement of this receptor in feeding.

In the hippocampus, NPY immunoreactivity is found mainly in interneurons which innervate pyramidal cells. Here, NPY has been demonstrated to reduce synaptic excitation in areas CA1 and CA3. This has been assumed to be mediated by a Y2 receptor (108), as C-terminal fragments of NPY are effective in the assay. The localization of Y2 mRNA in pyramidal cells of CA3 indicates that this receptor may be involved in the termination of convulsive activity, such as in epilepsy.

The rat Y2a and Y2b receptor analogs represent essential pharmaceutical drug development. for candidates screened primarily against human receptors 20 must also be characterized at the rat (or other relevant species analog) so that data generated from in vivo models can be interpreted accurately. While the current panel of peptides revealed no major differences pharmacological profile between the human Y2 and rat Y2a 25 receptor analogs, even a single amino acid difference between receptors displaying high sequence similarity could have dramatic effects on ligand binding affinity The rat Y2b receptor represents an additional opportunity to evaluate species-dependent differences in 30 ligand binding. It remains to be determined whether the rat Y2b receptor plays a singular role in rat Y2 receptor due either to unique ligand binding pharmacology, properties or to distinctive localization patterns.

35 We established functional assays for human Y2 receptor activation in both 293 and NIH-3T3 cells based on receptor-dependent inhibition of forskolin-stimulated

PCT/US95/01469 WO 95/21245

84

cAMP accumulation (Table 9). The EC_{50} values for peptides in these assays were generally smaller than the corresponding K, values, suggesting that receptor activation occurs through a high affinity state of the 5 receptor which is not predominantly represented under the conditions of the binding assay. Such a scenario would be consistent with the weak effect of Gpp(NH)p on radioligand binding to the human Y2 receptor in membrane homogenates.

\$

:

10

25

Our characterization of the Y2 receptor stably expressed in 293 cells also shows definitively that the Y2 receptor can couple simultaneously to both cAMP regulation and calcium mobilization in a single cell type. The calcium mobilization in 293 cells, at least, appears to occur through a pertussis toxin-sensitive G protein. the human PYY-mediated calcium response significantly larger than that for the cAMP response in the same host cell (39 nM vs. 0.31 nM, respectively), 20 suggesting that calcium mobilization requires promiscuous coupling of the receptor to a G protein other than that involved in cyclase regulation. The exact identities of the G proteins mediating these receptor activation events, whether G_i, G_o, G_o, or another type, remain to be determined.

We now have several Y2 receptor expression systems from which to choose, each uniquely suited to different uses. The transient expression system in COS-7, for example, allows us to generate sufficient quantities of membranes for routine structure/activity relationship measurements. We can also produce mutant receptors by site-directed mutagenesis or related enzymatic techniques and express transiently COS-7 in for a comparison pharmacological properties with those of the wild-type receptor. In this way, we can gain insight into receptor binding pockets, ligand binding domains, and mechanisms

85

of activation. The stable expression system in 293 and NIH-3T3 cells offers the convenience of a single transfection followed by routine passaging techniques. The stable expression system also offers the opportunity to select for optimum receptor expression levels, G protein populations, and signal transduction pathways, all of which are critical elements for in vitro functional assays. Such assays can be used to determine agonist or antagonist activity in receptor-selective compounds, thereby generating critical information for drug design.

The expression cloning of a human Y2 receptor allows, for the first time, the ability to develop NPY-receptor 15 subtype specific drugs and represents a major advance in ability to analyze NPY-mediated physiological Pharmacologically defined Y2 receptors have processes. a widespread anatomical distribution (2). They represent the predominant NPY receptor in brain, with the highest 20 density in hippocampus and relatively high expression in almost all other areas including olfactory bulb, basal ganglia, amygdaloid complex, thalamic and hypothalamic nuclei, pituitary, pineal gland, cerebellum, brainstem. This distribution is consistent with northern blot analysis, which shows that the Y2 MRNA is present in amygdala, candate nucleus, corpus callosum, hippocampus, hypothalamus, substantia nigra and subthalamic nucleus. Peripheral localization includes sympathetic neurons, dorsal root ganglia, stomach chief cells, intestinal enterocytes, kidney proximal tubule, trachea, vascular smooth muscle. Y2 receptors are therefore in a position to potentially regulate a variety physiological functions including cognitive enhancement, circadian rhythm, EEG synchronization, body temperature, locomotor activity, neuroendocrine 35 blood pressure, release, sympathetic activation, sensory transmission, gastrointestinal function, intestinal secretion, renal

86

absorption, and cardiovascular function (1, 2).

Y2 receptors are attractive targets for drug design (1). Y2 receptor regulation may be useful in the treatment of 5 several pathophysiological conditions (1, 2) including memory loss (111), epileptic seizure (72), pain (64), depression, hypertension, locomotor problems, disturbances, eating disorders, sexual/reproductive disorders, nasal congestion (97), and diarrhea (112). A 10 rigorous investigation of Y2-related pathophysiology has been hindered by the absence of suitable non-peptide ligands. The chemical synthesis of subtype selective agonists and antagonists as potential drug candidates will be greatly accelerated by screening against a 15 homogeneous population of cloned human Y2 receptors. As more specific pharmacological tools become available for probing receptor function, additional therapeutic indications are likely to be discovered.

:

20 We do not know whether the human and rat Y2 receptors we have discovered account for all of the pharmacological Y2 receptors so far described, or whether the Y2 receptor population is further divided into distinct receptor Indeed, there is some suggestion of receptor 25 heterogeneity within the Y2 receptor population (2). These are issues which can now be resolved using nucleotide sequence from the human Y2 receptor as the basis for in situ localization, anti-sense strategies, homology cloning, and related techniques. 30 approaches will enable us to investigate the existence of potentially novel NPY receptor subtypes, in humans and with additional pharmacologic species, other and therapeutic significance.

TABLE 1: % aminoacid TM identity of the NPY-2 receptor with other 7 TM Receptors

m MUSGIR	42	h Y-1	41	
m MODGIN	76			
		h Y-4	41	
•				
h 5HT1A	28	h Adenosine A2b	28	h
Substance K	33			
h 5HT2	31	h Adenosine Al	29	, h
Substance P	32			
h α-adrenergic-1b	34	h Dopamine D1	31	h
Neurokinin-3	33			
		b Di D2	22	
h α-adrenergic-2a	34	h Dopamine D2	32	h
Interleukin-8 33				
h β-adrenergic-1	35	bov Hist Hl	25	h
Angiotensin,	33			
migrocciistin	33	h Hist H2	28	h
		n hist hz	20	11
Angiotensin,	27			
=				m
Thyrotropin				
infrectobin				
releasing hormone	27			
			•	h
Bradykinin	25			
				r
	20			_
mas oncogene	20			

TABLE 2: Pharmacologically defined receptors for NPY and related pancreatic polypeptides.

Rank orders of affinity are based on published reports of binding and functional data (M9, M24, M3, M10). Missing peptides in the series reflect a lack of published information.

	,		7		
	9 >		[Leu ³¹ , Pro ³⁴]NPY PP	PYY	NPY
-PEC ₅₀)	8 to 7 7 to 6	đã			
(-pK1 or -pEC50)	8 to 7	NPY ₁₃₋₃₆		NPY ₁₃₋₃₆ PP	
Affinity	9 to 8	NPY ₂₋₃₆	NPY 13-36	[Pro ³⁴]NPY	[Leu ³¹ , Pro ³⁴]NPY
	10 to 9		PYY NPY NPY ₂₋₃₆	NPY	
	11 to 10	NPY PYY			đđ
Receptor		Y1	¥2	¥3	đđ

PCT/US95/01469

TABLE 3: Pharmac logical profil f the C -13 receptor.

Binding data reflect competitive displacement of $^{125}I-PYY$ from membranes of COS-7 cells transiently expressing CG-13 receptors. Peptides were tested at concentrations ranging from 0.001 nM to 100 nM. IC_{50} values corresponding to 50% displacement were determined by nonlinear regression analysis and converted to K_i values according to the equation, $K_i = IC_{50}/(1+[L]/K_d)$, where [L] is the $^{125}I-PYY$ concentration and K_d is the equilibrium dissociation constant of $^{125}I-PYY$. The data shown are representative of at least two independent experiments.

Competitor	Human Y1, K _i (nM)	CG-13, K; (nM)	SK-N- Be(2), K; (nM)
human PYY	0.085 <u>+</u> 0.021	0.39 ± 0.05	0.11 <u>+</u> 0.02
human NPY	0.049 <u>+</u> 0.009	0.69 ± 0.14	0.13 <u>+</u> 0.02
porcine NPY ₂₋₃₆	1.4 ± 0.2	0.78 ± 0.13	0.41 ± 0.09
porcine NPY	0.049 <u>+</u> 0.001	0.86 ± 0.13	0.28 ± 0.04
porcine PYY ₁₃₋₃₆	32 ± 7	1.5 ± 0.2	0.86 <u>+</u> 0.14
porcine NPY ₁₈₋₃₆	28 <u>+</u> 5	1.5 ± 0.2	2.1 ± 0.5
porcine NPY ₁₃₋₃₆	51 ± 16	2.4 ± 0.4	1.8 ± 0.4
porcine NPY ₂₀₋₃₆	62 <u>±</u> 6	3.4 ± 0.3	3.1 ± 0.6
porcine NPY ₁₆₋₃₆	45 ± 4	3.8 ± 0.7	5.0 <u>+</u> 0.5
porcine NPY ₂₂₋₃₆	170 ± 30	4.6 ± 0.1	3.2 ± 0.6

Competition William VI CC 10 V CV V D. (0)					
Competitor	Human Y1, K ₁ (nM)	CG-13, K ₁	SK-N-Be(2 K, (nM)		
porcine NPY ₂₆₋₃₆	> 300	210 ± 60	70 ± 7		
human NPY free acid	> 300	> 300	280 ± 12		
human PP	200 ± 70	> 300	> 300		
human [Leu ³¹ , Pro ³⁴] NPY	0.13 ± 0.02	> 300	> 300		

PCT/US95/01469

5

10

15

:

TABLE 4: Extended pharmac logical binding profile f the human Y2 receptor vs. other Y-type receptors cloned from human.

Binding data reflect competitive displacement of $^{125}\text{I-PYY}$ from membranes of COS-7 cells transiently expressing human Y1, human Y2, and human Y4 receptors. IC₅₀ values corresponding to 50% displacement were determined by nonlinear regression analysis and converted to K; values according to the equation Chang-Prusoff equation, $K_i = \text{IC}_{50}/(1 + [\text{L}]/\text{K}_d)$, where [L] is the $^{125}\text{I-PYY}$ concentration and K_d is the equilibrium dissociation constant of $^{125}\text{I-PYY}$. Any peptide not included in initial characterization shown in previous tables is referred to as a "new peptide". Data shown are representative of at least two independent experiments.

	Peptide	Yl	¥2	¥4	Comments
	NPY, human	0.08	0.74	2.2	
20	NPY, porcine	0.07	0.81	1.1	
	NPY, frog (melanostat in)	0.07	0.87	1.2	new peptide
25	O-Me-Tyr ²¹ - NPY, human	0.12	1.6	6.1	new peptide
	C2-NPY, porcine	73	3.5	120	new peptide
	NPY ₂₋₃₆ , human	3.6	2.0	16	new peptide
30	NPY ₂₋₃₆ , porcine	2.4	1.2	5.6	
	NPY _{13:36} , porcine	70	2.5	38	
35	NPY _{16:36} , porcine	41	3.6	54	
	NPY _{18:36} , porcine	70	4.2	> 300	
	NPY ₂₀₋₃₆ , porcine	63	3.6	120	
40	NPY _{22:36} , porcine	> 1000	18	> 990	
	NPY ₂₆₋₃₆ , porcine	> 1000	380	300	

:

	Table 4 cont	inued					
	Peptide	Yl	Y2	¥4	Comments		
5	[Leu ³¹ , Pro ³⁴]NPY, human	0.15	> 130	1.1			
	[Leu ³¹ , Pro ³⁴]NPY, porcine	0.15	> 540	1.5	new peptide		
10	NPY free acid, human	490	> 1000	> 1000			
	NPY ₁₋₂₄ amide, human	> 1000	> 1000	> 1000	new peptide		
15	[D- Trp ³²]NPY, human	> 1000	> 1000	> 1000	new peptide		
	PYY, human	0.19	0.36	0.87			
	PYY,	0.14	0.35	1.3	new		
	porcine				peptide		
20	PYY ₃₋₃₆ , human	45	0.70	14	new peptide		
					peperde		
	porcine	33	1.5	46			
	[Pro ³⁴]PYY,	0.14	> 310	0.12	new		
25	human				peptide		
	PP, human	77	> 1000	0.06			
	PP, bovine	240	> 830	0.05	new peptide		
	PP, rat	460	> 1000	0.18	new peptide		
30	PP, avian	400	> 1000	7.0	new peptide		
	PP, frog	98	> 1000	61	new peptide		
	PP, salmon	0.20	0.17	3.2	new peptide		

Table 4 co	ntinued			
Peptide	Yı	Y2	У 3	Comments
[Ile ³¹ , Gln ³⁴)PP, human	> 86	20	0.09	new peptide
PYX-1	507	684	794	new peptide
PYX-2	> 1000	> 1000	> 1000	new peptide

94

TABLE 5: Macrolocalization of human Y2 re eptor mRNA in human tissues by PCR.

Localization data reflect PCR-based amplification of human Y2 cDNA derived from mRNA extracts of human tissues. Southern blots of the PCR products were prepared and hybridized with ³²P-labeled oligonucleotide probes selective for Y-type receptor subtypes. The labeled products were recorded on X-ray film and the relative signal density was determined by visual inspection. In this rating scheme, + = faint signal, + + = moderate signal,

:

+ + + = intense signal.

	Human tissues	Human Y2 PCR Product
15	total brain	+ + +
	frontal brain	+ +
	ventricle (heart)	+ +
	atrium (heart)	(-)
	thoracic aorta	+ + +
20	coronary artery	+ + ½
	nasal mucosa	+
	mesentery	+ +
	stomach	+ +
	ileum	+ +
25	pancreas	+
	liver	(-)
	kidney	+
	bladder	+ ½
	penis	+ + +
30	testes	not determined
	uterus (endometrium)	(-)
	uterus (myometrium)	(-)

35

5

10

TABLE 6: P ptide binding pr file . f the rat Y2a receptor vs. the human Y2 receptor.

Binding data reflect competitive displacement of $^{125}I-PYY$ from membranes of COS-7 cells transiently expressing rat Y2a and human Y2 receptors. IC_{50} values corresponding to 50% displacement were determined by nonlinear regression analysis and converted to K_i values according to the equation Chang-Prusoff equation, $K_i = IC_{50}/(1 + [L]/K_d)$, where [L] is the $^{125}I-PYY$ concentration and K_d is the equilibrium dissociation constant of $^{125}I-PYY$. Data shown are representative of at least two independent experiments.

15	Peptide	Rat Y2a	Human Y2
	NPY, human	1.3	0.74
	NPY ₂₋₃₆ , human	2.2	1.2
	NPY ₁₃₋₃₆ , human	31	2.5
	NPY ₂₀₋₃₆ , porcine	93	3.6
20	NPY ₂₆₋₃₆ , porcine	> 830	380
,	NPY free acid, human	> 980	> 1000
	[Leu ³¹ , Pro ³⁴]NPY, human	. > 1000	> 130
25	[D-Trp ³²]NPY, human	> 830	> 1000
•		•	
	PYY, porcine	0.28	0.35
	PYY ₁₃₋₃₆ , porcine	1.5	28
30			
	PP, human	> 1000	> 1000
	PP ₃₁₋₃₆ , human	> 10 000	> 10 000
	PP, salmon	0.17	0.17
٠	PP, bovine	> 1000	> 825
35	PP, rat	> 1000	> 1000

Table 7. Oligonucleotide probe sequences used for $\underline{\text{in}}$ $\underline{\text{situ}}$ hybridization

	Probe	Sequence	Location	<u>Orientation</u>
5	KS972	5'-GGC CCA TTA GGT GCA GAG GCA GAT GAG AAT CAA ACT GTA GAA GTG- 3'	NH ₂ - terminus	sense
	KS974	5'-CAC TTC TAC AGT TTG ATT CTC ATC TGC CTC TGC ACC TAA TGG GCC- 3'	NH ₂ - terminus	antisense
	KS973	5'-CGG AGG TGT CCA TGA CCT TCA AGG CTA AAA AGA ACC TGG AAG TCA- 3'		sense
	KS975	5'-TGA CTT CCA GGT TCT TTT TAG CCT TGA AGG TCA TGG ACA CCT CCG- 3'		antisense

97

Table 8. Distribution of NPY Y2 mRNA in the rat CNS. Positive hybridization signals are indicated by "+" signs, no signal by "-", and a low signal by "+/-".

5	Region Hybridizat: Cortex	lon	Region	Hybridizatio	n
	layer 2	-	Hypothalam	us, cont.	
	layer 6	_	tubera		+
	piriform	+			
10	entorhinal	-	Thalamus		
	cingulate	_	anteri	or nuclei	_
			parave	entricular n.	+
	Olfactory bulb	-	rhombo		_
	Anterior olfactory n.	-	reunie	ens n.	_
15	-		mediod	lorsal n.	_
	Basal ganglia		ventra	l nuclei	-
	caudate-putamen	+/-	reticu	ılar n.	-
	n. accumbens	-	centro	olateral n.	-
	olfactory tubercle	+	centro	medial n.	+
20	globus pallidus	-		.ncerta	-
	islands of Calleja	-		l posterior n.	_
				l dorsal n.	-
	Septal area		•	cior n.	_
	lateral septum	+		geniculate n.	_
25	medial septum	-		lateral gen.	-
	septohippocampal	-		l lateral gen.	_
	diagonal band n.	-	habenu	ıla	-
	Claustrum	_	Hippocampu	ıs	
30			CA1		-
	Dorsal endopiriform	-	CA2		-
			CA3		+
	Hypothalamus		subicu		-
	anterior	-		iculum	-
35	paraventricular	+		biculum	-
	dorsomedial	+	Dentate gy		
	ventromedial	+		e cell layer	-
	arcuate	+	polymo	orph layer	-
	lateral	-			
40	mammillary	+			

45

	Table 8 (conti	nued	from	Region	Hybridiza	ation
5	Region Hyb	ridiza	tion	Pons/medul dorsal hypogl	vagus	NA NA
	Amygdala					
	anterior		_ `	Cerebellum	l .	
	medial		+	granul	e cell layer	-
	cortical		+	molecu	lar layer	_
10	amygdalohipp	٠.	-		je cells	-
	basomedial		+	deep nu	clei	-
	basolateral		-	-		
	lateral		_	Spinal cor	d	
	central		+	dorsal	horn	_
15	bed nucleus		_	ventra	l horn	+
				interm	ediolateral	_
	Midbrain					
	superior col	liculu	ıs -	Dorsal roo	t ganglia	+
	inferior col	liculu	ıs –			
20	mes. trigemi		_			
	dorsal raphe		+			
	caudal linea	r raph	ne +			
	median raphe	:	_			
	raphe magnu					
25	substantia n		-			
	central gray	, –	-			
	Pons/medulla					
	locus coerul		_			
30	subcoeruleus		-			
	parabrachial	n.	_			
	facial n.		-			
	pontine n.	-	+			
~-	pontine ret.		-			
35	reticulotegm	entai	+			
	A5		-			
	A7	3	-			
	gigantocellu		_			
• •	lateral reti					
40	motor trigem	Tugi	NA			
	spinal trige medial vesti	minai	NA			
		DULAR	~			
	solitarius		NA			

99

Abbreviations spinal cord laminae 1-9 Arc arcuate n. hypothalamus BMP posterior basomedial n. amygdala 5 CA3 field CA3 of the hippocampus central canal caudal linear raphe n. CC Cli centromedial n. thalamus dorsomedial n. hypothalamus CM DMH 10 DR dorsal raphe n. LSV lateral septum, ventral Me medial n. amygdala
MeAV medial n. amygdala, anteroventral division
PDTg posterior dorsal tegmental n. 15 Pir piriform cortex PMD dorsal premammillary n. PMCo posterior medial cortical n. amygdala Pn pontine n. paraventricular n. hypothalamus paraventricular n. thalamus PVH PVT 20 TC tuber cinereum TuO olfactory tubercle VMH ventromedial n. hypothalamus

5

10

TABLE 9: Functi nal activation of th human Y2 receptor and inhibition of cAMP accumulation.

 K_i values were derived from binding assays as described in Table 1. Peptides were evaluated for binding affinity and then analyzed for functional activity. Functional data were derived from radioimmunoassay of cAMP accumulation in stably transfected 293 cells stimulated with 10 μ M forskolin. The maximum inhibition of cAMP accumulation relative to that produced by human NPY (E_{max}) and the concentration producing a half-maximal effect (EC_{50}) were determined by nonlinear regression. Data shown are representative of at least two independent experiments.

15	Peptide	Binding	Function	
		K, (nM)	EC ₅₀ (nM)	E _{max}
	NPY, human	0.74	0.25	100 %
	NPY, porcine	0.81	0.20	113%
	C2-NPY, porcine	3.5	0.14	116 %
20	NPY ₂₋₃₆ , human	2.0	0.35	94%
	NPY ₂₋₃₆ , porcine	1.2	1.2	96%
	NPY ₁₃₋₃₆ , porcine	2.5	1.7	110 %
25	NPY _{16:36} , porcine	3.6	1.8	92 %
	NPY _{18:36} , porcine	4.2	2.1	92 %
30	NPY ₂₀₋₃₆ , porcine	3.6	3.2	77 %
	NPY _{22:36} , porcine	18	2.3	88 %
35	[Leu ³¹ , Pro ³⁴]NPY, human	> 130	> 3000	not determined
	[Leu ³¹ , Pro ³⁴]NPY, porcine	> 540	> 3000	not determined
40	[D-Trp ³²]NPY, human	> 1000	> 3000	not determined
	PYY, human	0.36	0.31	100 %

PCT/US95/01469

Table 9 continued					
Peptide	Binding Fu		nction		
	K ₁ (nM)	Ec ₅₀ (nM)	E _{max}		
PYY, porcine	0.35	0.16	103 %		
PYY ₃₋₃₆ , human	0.70	0.22	99 %		
PYY ₁₃₋₃₆ , porcine	1.5	0.13	102 %		
[Pro ³⁴]PYY, human	> 310	> 120	not determined		
PP, salmon	0.17	0.07	79 %		
PYX-1	684	> 3000	not determined		
PYX-2	> 1000	> 3000	not determined		

5

•

WO 95/21245

102

PCT/US95/01469

:

٠,

REFERENCES

1. Wahlestedt, C., and D.J. Reis. (1993). Neuropeptide Y-Related Peptides and Their Receptors--Are the Receptors Potential Therapeutic Targets? Ann. Rev. Pharmacol. Tox., 32, 309-352.

- Dumont, Y., J.-C. Martel, A. Fournier, S. St-Pierre, and R. Quirion. (1992). Neuropeptide Y and neuropeptide Y receptor subtypes in brain and peripheral tissues. Progresss in Neurobiology, 38, 125-167.
- 3. Schwartz, T.W., J. Fuhlendorff, L.L. Kjems, M.S.
 Kristensen, M. Vervelde, M. O'Hare, J.L.
 Krstenansky, and B. Bjornholm. (1990). Signal
 epitopes in the three-dimensional structure of
 neuropeptide Y. Ann. N.Y. Acad. Sci., 611, 35-47.
- Fuhlendorff, J., U. Gether, L. Aakerlund, N. Langeland-Johansen, H. Thogersen, S.G. Melberg, U. B. Olsen, O. Thastrup, and T.W. Schwartz. (1990). [Leu³¹, Pro³⁴]Neuropeptide Y: A specific Y₁ receptor agonist. Proc. Natl. Acad. Sci. USA, 87, 182-186.
- 5. Grundemar, L., J.L. Krstenansky, and R. Hakanson. (1992). Activation of neuropeptide Y1 and neuropeptide Y2 receptors by substituted and truncated neuropeptide Y analogs: identification of signal epitopes. Eur. J. Pharmacol., 232, 271-278.
- 6. Beck, A.G., G. Jung, W. Gaida, H. Koppen, R. Lang, and G. Schnorrenberg. (1989). Highly potent and small neuropeptide Y agonist obtained by linking NPY₁₋₄ via a spacer to alphahelical NPY₂₅₋₃₆. FEBS Lett., 244, 119-122.
- 7. Beck-Sickinger, A.G., W. Gaida, G. Schnorrenberg, R. Lang, and G. Jung. (1990). Neuropeptide Y:

 Identification of the binding site. Int. J. Peptide Protein Res., 36, 522-530.
- 8. Wahlestedt, C., Regunathan, S., and D.J. Reis. (1991). Identification of cultured cells selectively expressing Y1-, Y2-, or Y3-type receptors for neuropeptide Y/peptide YY. Life Sciences, 50, PL-7 PL-12.
- 9. Schwartz, T.W., S.P. Sheikh, and M.M.T. O'Hare.
 50 (1987). Receptors on phaeochromocytoma cells for two
 members of the PP-fold family--NPY and PYY. FEBS
 Lett., 255, 209-214
- 10. Larhammar, D., A.G. Blomqvist, F. Yee, E. Jazin, H. Yoo, and C. Wahlestedt. (1992). Cloning and functional expression of a human neuropeptide

Y/peptide YY receptor of the Y1 type. J. Biol. Chem., 267, 10935-10938.

11. Herzog, H., Y.J. Hort, H.J. Ball, G. Hayes, J. Shine, and L. Selbie. (1992). Cloned human neuropeptide Y receptor couples to two different second messenger systems. Proc. Natl. Acad. Sci. USA, 89, 5794-5798.

•

÷

7,

- 10 12. Eva, C., Keinanen, K., Monyer, H., Seeburg, P., and Sprengel, R. (1990). Molecular cloning of a novel G protein-coupled receptor that may belong to the neuropeptide receptor family. FEBS Lett., 271, 80-84.
- 13. Chirgwin, J.M., A.E. Przybyla, R.J. MacDonald, and W.J. Rutter. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry, 18, 5294-5299.
- 20 14. Gubler, U abd B.J. Hoffman. (1983). A simple and very efficient method for generating cDNA libraries. Gene, 25, 263-269
- 25 15. Aruffo, A. and Seed, B. (1987). Molecular cloning of a CD28 cDNA by a high efficiency COS Cell expression system. Proc. Natl. Acad. Sci. USA, 84, 8573-8577.
- 30 16. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989).
 Molecular cloning: a laboratory manual (Cold Spring
 Harbor Laboratory Press, Cold Spring Harbor, NY),
 2nd Ed.
- 35 17. Warden, D. and H.V. Thorne. (1968). Infectivity of polyoma virus DNA for mouse embryo cells in presence of diethylaminoethyl-dextran. J. Gen. Virol., 3, 371.
- 40 18. Mc Cormick, M. (1987). Sib Selection. Methods in Enzymology, 151, 445-449.
- 19. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254.
- 20. Gearing, D.P., King, J.A., Gough, N.M. and Nicola N.A. (1989). Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J., 8, 3667-3676.
- 21. Kluxen, F.W., Bruns, C. and Lubbert H. (1992).
 Expression cloning of a rat brain somatostatin
 receptor cDNA. Proc. Natl. Acad. Sci., 89, 46184622.

5

10

55

104

22. Kieffer, B., Befort, K., Gaveriaux-Ruff, C. and Hirth, C.G. (1992). The δ-opioid receptor: Isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl. Acad. Sci., 89, 12048-12052.

- 23. Dumont, Y., A. Fournier, S. St.-Pierre, Schwartz, T.W. and R. Quirion. (1990). Differential distribution of neuropeptide Y1 and Y2 receptors in the rat brain. Eur. J. Pharmacol., 191, 501-503.
- 24. Aicher, S.A., Springston, M., Berger, S.B., Reis, D.J and Wahlestedt, C. (1991). Receptor selective analogs demonstrate NPY/PYY receptor heterogeneity in rat brain. Neurosci. lett., 130, 32-36.
 - 25. Wei Li and T.D. Hexum. (1991). Characterization of neuropeptide Y (NPY) receptors in human hippocampus. Brain Research., 553, 167-170.
- 26. Bayer, S.A.. (1985). Hippocampal Region, in The rat nervous system, Vol.I, p335-352. (Acad. Press, George Paxinos Ed.).
- 25 27. Kozak, M. (1989). The scanning model for translation: an update. J. Cell Biol. 108, 229-241.
- 28. Kozak, M. (1991). Structural features in eukaryotic mRNAs that modulate the initiation of translation.
 30 J. Biol. Chem., 266, 19867-19870.
 - 29. Kornfeld, R. and Kornfeld, S. (1985). Assembly of asparagine linked oligosaccharides. Annu. Rev. Biochem., 54, 631-664.
- 35
 30. Probst, W.C., Snyder, L.A., Schuster, D.I., Brosius, J and Sealfon, S.C. (1992). Sequence alignment of the G-protein coupled receptor superfamily. DNA and Cell Bio., 11, 1-20.
- 40
 31. O'Dowd, B.F., M. Hantowich, M.G. Caron, R.J. Lefkowitz and M. Bouvier. Palmitoylation of the human β_2 -adrenergic receptor. J.B.C., 264, 7564-7569 (1989).
- 32. Findlay, J. and Eliopoulos, E. (1990). Three dimensional modelling of G protein-linked receptors. Science, 11, 492-499.
- 50 33. Harrigan, M.T., Faith Campbell N. and Bourgeois S. (1991). Identification of a gene induced by glucocorticoids in murine T-cells: A potential G protein-coupled receptor. Molecular Endocrinology, 5, 1331-1338.
 - 34. Fuhlendorff, J., A.G. Beck-Sickinger, A. Holm, M.

5

10

45

7

•

•

105

Barfoed, K. Borch, H. Lund, B. Lundt, N. L. Johansen, H. Thogersen, and T.W. Schwartz.(1993). Membrane association of NPY--a prerequisite for receptor binding. Neuropeptide Y Conference Abstracts, Cambridge. B40.

- 35. Sheikh, S.P., M. M. T. O' Hare, O. Tortora, and T.W. Schwartz. (1989). Binding of monoiodinated neuropeptide Y to hippocampal membranes and human neuroblastoma cell lines. J. Biol. Chem., 264, 6648-6654.
- 36. Li, W. and T.D. Hexum. (1991). Characterization of neuropeptide Y (NPY) receptors in human hippocampus.

 Brain Research, 553, 167-170.
- 37. Colmers, W.F., G.J. Klapstein, A. Fournier, S. St-Pierre, and K.A. Treherne. (1991). Presynaptic inhibition by neuropeptide Y in rat hippocampal slice in vitro is mediated by a Y2 receptor. Br. J. Pharmacol., 102, 41-44.
- 38. Stanley, B.G., W. Magdalin, A. Seirafi, M. M. Nguyen, and S. F. Leibowitz. (1992). Evidence for neuropeptide Y mediation of eating produced by food deprivation and for a variant of the Y₁ receptor mediating this peptide's effect. Peptides, 13, 581-587.
- 30 39. Rimland, J., W. Xin, P. Sweetnam, K. Saijoh, E.J. Nestler, and R.S. Duman. (1991). Sequence and expression of a neuropeptide Y receptor cDNA. Mol. Pharmacol., 40, 869-875.
- 35 40. Li, X.-J., Y.-N. Wu, R.A. North, and M. Forte. (1992). Cloning, functional expression, and developmental regulation of a neuropeptide Y receptor from drosophila melanogaster. J. Biol. Chem., 267, 9-12.
 - 41. Jazin, E.E., Yoo, H., Blomqvist, A.G., Yee, F., Weng, G., Walker, M.W., Salon, J., Larhammar, D., and Wahlestedt, C. (1993). A proposed bovine neuropeptide Y (NPY) receptor cDNA clone, or its human homologue, confers neither NPY binding sites nor NPY responsiveness on transfected cells. Reg. Peptides, 47, 247-258.
- 42. Herzog, H., Y.J. Hort, J. Shine, and L.A. Selbie.
 50 (1993). Molecular cloning, characterization, and localization of the human homolog to the reported bovine NPY Y3 receptor: lack of NPY binding and activation. DNA and Cell Biology, 12, 465-471.
- 55 43. Wahlestedt, C., Grundemar, L., Hakanson, R., Heilig, M., Shen, G.H., Zukowska-grojec, Z. and Reis, D.J.

106

(1990). Neuropeptide Y receptor subtypes, Y1 and Y2. Ann. NY Acad. Sci., 611, 7-26.

:

۲,

ĭ

- 44. Unden, A. and Bartfai, T. (1984). Regulation of neuropeptide Y (NPY) binding by guanine nucleotide in rat cerebral cortex. FEBS Lett., 177, 125-128.
- 45. Michel, M.C. (1991). Receptors for neuropeptide Y: multiple subtypes and multiple second messengers.

 Trends Pharmacol. Sci., 12, 389-394.
 - 46. De Wied, D. In: Neuropeptides: Basics and Perspectives (Elsevier, Amsterdam-New York-Oxford), 1990.
- 47. Heilig, M. and E. Widerlov. Neuropeptide Y: an overview of central distribution, functional aspects, and possible involvement of neuropsychiatric illnesses. Acta Psychiatr. Scand., 82, 95-114 (1990).
- 48. Lundberg, J.M., A. Hemsen, O. Larsson, A. Rudehill, A. Saria, and B. Fredholm. Neuropeptide Y receptor in pig spleen: binding characteristics, reduction of cyclic AMP formation and calcium antagonist inhibition of vasoconstriction. Eur. J. Pharmacol., 145, 21-29 (1988).
- 49. Hinson, J., C. Rauh, and J. Coupet. Neuropeptide Y stimulates inositol phospholipid hydrolysis in rat brain microprisms. Brain Res., 446, 379-382 (1988).
- 50. Mihara, S., Y. Shigeri, and M. Fujimoto.
 Neuropeptide Y-induced intracellular Ca²⁺ increase in vascular smooth muscle cells. FEBS Lett., 259, 79-82 (1989).
- 51. Aakerlund, L., U. Gether, J. Fuhlendorff, T. W.

 Schwartz, and O. Thastrup. Y1 receptors for neuropeptide Y are coupled to mobilization of intracellular calcium and inhibition of adenylate cyclase. FEBS Lett., 260, 73-78 (1990).
- 52. Eva, C., A. Oberto, R. Sprengel, and E. Genazzani. The murine NPY-1 receptor gene: structure and delineation of tissue specific expression. FEBS Lett., 314, 285-288 (1992).
- 50 53. Wahlestedt, C., N. Yanaihara, and R. Hakanson. Evidence for different pre- and postjunctional receptors for neuropeptide Y and related peptides. Regul. Pept., 13, 307-318 (1986).
- 55 54. Bottcher, G., K. Sjolund, E. Ekblad, R. Hakanson, T.W. Schwartz, and F. Sundler. Co-existence of

107

peptide YY in glic ntin immunoreactivity in endocrine cells of the gut. Regul. Pept., 8, 261-273 (1984).

- 5 55. Laburthe, M., B. Chenut, C. Rouyer-Fessard, K. Tatemoto, A. Couvineau, A. Servin, and B. Amiranoff. Interaction of peptide YY with rat intestinal epithelial plasma membranes: binding of the radioiodinated peptide. Endocrinology, 118, 1910-1917 (1986).
- 56. Laburthe, M. Peptide YY and neuropeptide Y in the gut: Availability, biological actions, and receptors. Trends Endocrinol. Metab., 1, 168-174 (1990).
- 57. Voisin, T., M. Bens, F. Cluzeaud, A. Vandewalle, and M. Laburthe. Peptide YY receptors in the proximal tubule PKSV-PCT cell line derived from transgenic mice: relation with cell growth. J. Biol. Chem., 268, 20547-20554 (1993).
- 58. McDermott, B.J., Millar, B.B., and Piper, H.M.
 Cardiovascular effects of neuropeptide Y: receptor
 interactions and cellular mechanisms.
 Cardiovascular Research, 27, 893-905 (1993).
- 59. Westfall, T.C., Han, S.P., Kneupfer, M., Martin, J., Chen, X., Del Valle, Ciarleglio, A., and Nass, L. (1990). Neuropeptides in Hypertension: Role of Neuropeptide Y and Calcitonin Gene Related Peptide. Brit. J. Clin. Pharmacol., 30, 755-825 (1990).
- 60. Tsuda, K., Tsuda, S., Goldstein. M., and Masauyama,
 Y. Effects of Neuropeptide Y on Norepinephrine
 Release in Hypothtalmic Slices of Spontaneously
 Hypertensive Rats. Eur. J. Pharmacol., 182, 175-179
 (1990).
- 40 61. Friel, D.D., Miller, R.J., an Walker, M.W. Neuropeptide Y: a powerful modulator of epithelial ion transport. Brit. J. Pharmacol., 88, 425-431 (1986).
- 45 62. Playford, R.J., Domin, J., Beecham, J., Parmark, K.I., Tatemoto, K., Bloom, S.R., and Calam, J. Peptide YY: A natural defense against diarrhoea. Lancet, 335, 1555-1557 (1990).

:

- 50 63. Colmers, W.F., Klapstein, G.J., Fournier, A., St-Pierre, S., and Treherne, K.A. Presynaptic Inhibition by neuropeptide Y in rat hippocampal slice in vitro is mediated by a Y2 receptor. Brit. J. Pharmacol., 102, 41-44 (1991).
- 55 64. Hua, X.Y., Boublik, J.H., Spicer, M.A., Rivier,

5

10

55

108

J.E., Brown, M.R., and Yaksh, T.L. The antinociceptive effects of spinally administered Neuropeptide Y in the rat: systematic studies on structure-activity relationship. J. Pharmacol. Exp. Ther., 258, 243-253 (1991).

÷

•

:

- 65. Calza, L., Giardino, L., Zanni, M., Velardo, A., Parchi, P., and Marrama, P. Daily changes of Neuropeptide Y-like immunoreactivity in the Suprachiamsmatic Nucleus of the rat. Regul. Pept., 27, 127-137 (1990).
- 66. Flood, J.F., Hernandez, E.N., and Morley, J.E. Modulation of memory processing by Neuropeptide Y. Brain Res., 421, 280-290 (1987).
- 67. Lacroix, J.S.; Auberson, S., Morel, D.R. Theodorsson, E., Hokfelt, T. and Lundberg, J.M. Vascular control of the pig nasal mucosa: distribution and effect of somatostatin in relation to noradrenaline and Neuropeptide Y. Regul. Pept., 40 (3), 373-87 (1992).
- 68. Modin, A., Pernow, J., and Lundberg, J.M. Evidence for two Neuropeptide Y receptors mediating vasoconstriction. Eur. J. Pharmacol. 203, 2, 165-171 (1991).
- 69. Lundberg, J.M., Franco-Cereceda, A., Lacroix, J.S., 30 and Pernow, J. Neuropeptide Y and sympathetic neurotransmission. Ann. N.Y. Acad. Sci., 611, 166-174 (1990).
- 70. Lundberg, J.M. Peptidergic control of the autonomic regulation system in the orofacial region. Proc. Finn. Dent. Soc., 85, 4-5, 239-250 (1989).
- 71. Lacroix, J.S., Angg.ANG.ard, A., Hokfelt, T., O'Hare, M.M., Fahrenkrug, J. and Lundberg, J.M.

 Neuropeptide Y: presence in sympathetic and parasympathetic innervation of the nasal mucosa. Dept. of Pharm., Karolinska Institutet, Stockholm (1993).
- 72. Rizzi, M., Monno, A., Samanin, R., Sperk, G., and Vezzani, A., Electrical kindling of the hippocampus in association with functional activation of Neuropeptide Y containing neurons. Euro. J. Neurosci., 5, 1534-1538 (1993).
 - 73. Miller J. and Germain R.N., Efficient cell surface expression of class II MHC molecules in the absence of associated invariant chain, J. Exp. Med., 164, 1478 (1986).
 - 74. J.S. Cohen, Trends in Pharm. Sci., 10, 435 (1989).

109

- 75. H.M. Weintraub, Sci. Am. January (1990) p. 40.
- 76. N. Sarver et al., Science, 247, 1222 (1990).
- 5 77. Low, M.J., Lechan, R.M., Hammer, R.E. et al. Science, 231, 1002-1004 (1986).
 - 78. Oberdick, J., Smeyne, R.J., Mann, J.R., Jackson, S. and Morgan, J.I. Science, 248, 223-226 (1990).
- 79. Hogan B. et al. Manipulating the Mouse Embryo, A Laboratory Manual, Cold Spring Harbor Laboratory (1986).
- 15 80. Capecchi M.R. Science, 244, 1288-1292 (1989).

:

•

- 81. Zimmer, A. and Gruss, P. Nature, 338, 150-153 (1989).
- 20 82. Sanger, S. (1977) Proc. Natl. Acad. Sci. USA 74:5463-5467.
- 83. Martel, J.C., Fournier, A., St-Pierre, S., Dumont, Y., Forest, M., and Quirion R. (1990). Comparative structural requirements of branin neuropeptide Y binding sites and vasdeferens neuropeptide Y receptors. Molec. Pharmac. 38, 494-502.
- 84. Grandt, D., Schimiczek, M., Beglinger, Ch., Layer, P., Goebell, H., Eysselein, V. E., and Reeve Jr., J.R. (1994a). Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY₁₋₃₆ and PYY 3-36. Regulatory Peptides 51: 151-159.
- 85. Grandt, D., Schimiczek, M., Struk, K., Shively, J., Eysselein, V.E., Goebell, H., and Reeve Jr., J.R. (1994b). Characterization of two forms of peptide YY, PYY (1-36) AND PYY (3036), in the rabbit. Peptides 15: 815-820.
- 86. Jorgensen, J.C., Fuhlendorff, J., and Schwartz, T.W. (1990). Structure-function studies on neuropeptide Y and pancreatic polypeptide: evidence for two PP-fold receptors in vas deferens. Eur. J. Pharmac. 186: 105-114.
- 87. Tatemoto, K., Mann, M.J., and Shimizu, M. (1992) Synthesis of receptor antagonists of neuropeptide Y. Proc. Natl. Acad. Sci USA 89: 1174-1178.
- 88. Leibowitz, S.F., Zuereb, M., and Kim, T. (1992)
 Blockade of naturla and neuropeptide Y-induced
 carbohydrate feeding by a receptor antagonist PYX-2.
 Neuroreport 3: 1023-1026.

5

10

15

110

89. Besecke, L.M., Wolfe, A.M., Pierce, M.E., Takahashi, H.S. and Levine, J.E. (1994). Nwuropeptide Y stimulates luteinizing horomone-releasing hormone release from superfused hypothalamic GT1-7 cells.

-

:

۲.

90. Balasubramaniam, A., Sheriff, S., Johnson, M.E., Prabhakaran, M., Huang, Y., Fischer, J.E., and Chance, W.T. (1994) [D-Trp³²] Neuropeptide Y: A competitive antagonist of NPY in rat hypothalamus. J. Med. Chem. 37: 811-815 (1994).

- 91. Walker, M.W., and Miller, R.J. (1988) 1251neuropeptide Y and 1251-peptide YY bind to multiple
 receptor sites in rat brain. Mol. Pharmac. 34:
 779-792.
- 92. Adham, N., Ellerbrock, B., Hartig, P., Weinshank, R.L., and Brandchek, T. (1993). Receptor reserve masks partial agonist activity of drugs in a cloned rat 5-hydroxytryptamine, receptor expression system.

 Mol. Pharmacol. 43: 427-433.
- 93. Larhammar, D., Blomqvist, A.G>, and Wahlestedt, C. (1993). The receptor revolution--multiplicity of G-protein coupled receptrs. Drug design and discovery 9: 179-188.
- 94. Dumont, Y., A. Fournier, S. St-Pierre, and R. Quirion (1993) Comparative characterization and autoradiographic distribution of neuropeptide Y receptor subtypes in the rat brain. J.Neurosci. 13:73-76.
- 95. Singh, G., Singh, L., and Raufman, J.-P. (1992). Y2
 receptors for peptide YY and neuropeptide Y on
 dispersed chief cells from guinea pig stomach. Am.
 J. Physiol. 262: G756-G762.
- 96. Cox, H. M., Cuthbert, A.W., Hakanson, R., and
 40 Wahlestedt, C. (1988). The effect of neuropeptide
 Y and peptdie Yy on electrogenic ion transport in
 rat intestinal epithelia. J. Physiol. Lond. 398:
 65-80.
- 97. Lacroix, J.S., Stjarne, P., Angaard, a., and Lundberg, J.M. (1988). Sympathetic vascular control of the pig nasal mucosa (2): reserpine-resistant, non-Oadrenergic nervous response in relation to neuropeptide Y and ATP. Acta Physiol. Scand. 133: 183-197.
- 98. Lacroix, J.S., Angaard, A., Hokfelt, T., O' Hare, M.M., Fahrenkrug, J., and Lundberg, J.M. (1990).
 Neuropeptide Y: presence in sympathetic and parasympathetic innervation of the nasal mucosa.
 Cell Tissue Res. 259: 119-128.

ţ.

•

•

30

50

111

99. Haung, S.C., and Tsai, M.-F. (1994). Receptors for peptide YY and neuropeptide Y on guinea pig pancreatic acinin. Peptides 15: 405-410.

- 5 100. De Qindt, M.E. and P.C. Emson (1986) Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system-II. Immunohistochemical analysis. Neurosci. 18:545-618.
- 10 101. Gustafson, E.L., J.P. Card, and R.Y. Moore (1986)
 Neuropeptide Y localization in the rat amygdaloid
 complex. J. Comp. Neuro. 251:349-362.
- 102. Siegel, A. H. Edinger, and S. Ohgami (1974) the topographic organization of the hippocampal projection to the septal area: A coparative neuronatomical analysis in the gerbil, rat, rabbit, and cat. J. Comp. Neuro. 157:359-378.
- 20 103. Lynch, D.R., M.W. Walker, R.J. Miller, and S.H. Snyder (1989) Neuropeptide Y receptor binding sites in rat brain: Differential autoradiographic localizations with 125I-peptide YY and 125I-neuropeptide Y imply receptor heterogeneity. J. Neurosci. 9:2607-2619.
 - 104. Bai, F.L., M. Yamano, Y. Shiotani, P.C. Emson, A.D. Smith, J.F. Powell, and M. Tohyama (1985) An arcuato-paraventricular and -dorsomedial hypothalamic neuropeptide Y-containing system with lacks noradrenaline in the rat. Brain Res. 331:172-175.
- 105. Gustafson, E.L. and R.Y. Moore (1987) Noradrenaline 35 and neuropeptide Y innervation of the rat hypothalamus are differentially affected by 6hydroxydopamine. Neurosci.Lett. 83:53-58.
- 106. Mikkelsen, J.D. and P.J. Larsen (1992) A high concentration of NPY (Y1) -receptor mRNA-expressing cells in the rat arcuate nucleus. Neurosci.Lett. 148:195-198.
- 107. Larsen. P.J., S.P. Sheikh, C.R. Jakobsen, T.W.
 Schwartz, and J.D. Mikkelsen (1993) Regional distribution of putative NPY Y₁ receptors and neurons expressing Y₁ mRNA in forebrain areas of the rat central nervous system. Eur.J. Neurosci. 5:1622-1637.
 - 108. Colmers, W.F. and D. Bleakman (1994) Effects of neuropeptide Y on the electrical properties of neurons. Trends Neurosci. 17:373-379.
- 55 109. Hall, J.M., Caulfield, M.P., Watson, S.P., and Guard, S. (1993) Receptor subtypes or species

112

homologues: relevance to drug discovery, Trends Pharmacol. 14: 376-383.

:

- 110. Birnbaumer, L. (1990) Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so...FASEB J. 4: 3178-3188.
- 111. Morley, J.E. and Flood, J.F. (1991). Neuropeptide
 Y and memory processing. Ann. N.Y. Acad. Sci. 611:
 226-231.
- 112. Cox, H. and Cuthbert, A.W. (1990) The effects of neuropeptide Y and its fragments upon basal and electrically stimulated ion secretion in rat jejunum mucosa. Br. J. Pharmac. 101: 247-252.

113

SEQUENCE LISTING

_	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Synaptic Pharmaceutical Corporation
10	(ii) TITLE OF INVENTION: NUCLEIC ACID ENCODING NEUROPEPTIDE Y/PEPTIDE YY (Y2) RECEPTORS AND USES THEREOF
10	(iii) NUMBER OF SEQUENCES: 23
15	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Cooper & Dunham LLP (B) STREET: 1185 Avenue of the Americas (C) CITY: New York (D) STATE: New York (E) COUNTRY: U.S.A. (F) ZIP: 10036
20	(v) COMPUTER READABLE FORM:
25	 (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release \$1.0, Version \$1.30
30	(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
	(viii) ATTORNEY/AGENT INFORMATION:
35	(A) NAME: White, John P.(B) REGISTRATION NUMBER: 28,678(C) REFERENCE/DOCKET NUMBER: 44742-A-PCT/JPW/MAT
40	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 212-278-0400 (B) TELEFAX: 212-391-0525
	(2) INFORMATION FOR SEQ ID NO:1:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1280 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: cDNA
55	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 431185
	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
60	GACTCTTGTG CTGGTTGCAG GCCAAGTGGA CCTGTACTGA AA ATG GGT CCA ATA 54 Met Gly Pro Ile
	1
65	GGT GCA GAG GCT GAT GAG AAC CAG ACA GTG GAA GAA ATG AAG GTG GAA
	Gly Ala Glu Ala Asp Glu Asn Gln Thr Val Glu Glu Met Lys Val Glu

:

	5					10					15					20
	CAA 1		GGG	CCA	CAA	ACA	ACT	CCT	AGA	GGT	GAA	CTG	GTC	CCT	GAC	CCT
5	Gln	-	Gly	Pro	Gln 25	Thr	Thr	Pro	Arg	Gly 30	Glu	Leu	Val	Pro	Asp 35	Pro
	GAG (GAG	CTT	ATA	GAT	AGT	ACC	AAG	CTG	ATT	GAG	GTA	CAA	GTT	GTT
10	Glu I	Pro	Glu	Leu 40	Ile	ysb	Ser	Thr	Lys 45	Leu	Ile	Glu	Val	Gln 50	Val	Val
	CTC 2		TTG	GCC	TAC	TGC	TCC	ATC	ATC	TTG	CTT	GGG	GTA	ATT	GGC	AAC
15	Leu 1		Leu 55	Ala	Tyr	Сув	Ser	Ile 60	Ile	Leu	Leu	Gly	Val 65	Ile	Gly	Asn
	TCC 1		GTG	ATC	CAT	GTG	GTG	ATC	AAA	TTC	AAG	AGC	ATG	CGC	ACA	GTA
20	Ser I	70	Val	Ile	His	Val	Val 75	Ile	Lys	Phe	Lys	Ser 80	Met	Arg	Thr	Val
	ACC F		TTT	TTC	ATT	GCC	AAT	CTG	GCT	GTG	GCA	GAT	CTT	TTG	GTG	AAC
25	Thr A		Phe	Phe	Ile	Ala 90	Asn	Leu	Ala	Val	Ala 95	Asp	Leu	Leu	Val	Asn 100
	ACT C		TGT	CTA	CCG	TTC	ACT	CTT	ACC	TAT	ACC	TTA	ATG	GGG	GAG	TGG
30	Thr I	eu	Cys	Leu	Pro 105	Phe	Thr	Leu	Thr	Tyr 110	Thr	Leu	Met	Gly	Glu 115	Trp
	AAA A		GGT	CCT	GTC	CTG	TGC	CAC	CTG	GTG	ccc	TAT	GCC	CAG	GGC	CTG
35	Lys M	let	Gly	Pro 120	Val	Leu	Сув	His	Leu 125	Val	Pro	Tyr	Ala	Gln 130	Gly	Leu
	GCA 6		CAA	GTA	TCC	ACA	ATC	ACC	TTG	ACA	GTA	ATT	GCC	CTG	GAC	CGG
40	Ala V		Gln 135	Val	Ser	Thr	Ile	Thr 140	Leu	Thr	Val	Ile	Ala 145	Leu	Asp	Arg
	CAC A		TGC	ATC	GTC	TAC	CAC	CTA	GAG	AGC	AAG	ATC	TCC	AAG	CGA	ATC
45	His A	.50	Сув	Ile	Val	Tyr	His 155	Leu	Glu	Ser	Lys	11e 160	Ser	Lys	Arg	Ile
	AGC 1		CTG	ATT	ATT	GGC	TTG	GCC	TGG	GGC	ATC	AGT	GCC	CTG	CTG	GCA
50	Ser F 165	he	Leu	Ile	Ile	Gly 170	Leu	Ala	Trp	Gly	Ile 175	Ser	Ala	Leu	Leu	Ala 180
	AGT C		CTG	GCC	ATC	TTC	CGG	GAG	TAT	TCG	CTG	ATT	GAG	ATC	ATC	CCG
55	Ser P	,ro	Leu	Ala	11e 185	Phe	Arg	Glu	Tyr	Ser 190	Leu	Ile	Glu		Ile 195	Pro
	GAC 1 678		GAG	ATT	GTG	GCC	TGT	ACT	GAA	AAG	TGG	CCT	GGC	GAG	GAG	AAG
60	Asp P	he		11e 200	Val	Ala	Сув	Thr	Glu 205	Lys	Trp	Pro	_	Glu 210	Glu	Lys
	AGC A		TAT	GGC	ACT	GTC	TAT	AGT	CTT	TCT	TCC	TTG	TTG	ATC	TTG	TAT
65	Ser I		Tyr	Gly	Thr	Val	Tyr	Ser	Leu	Ser	Ser	Leu	Leu	Ile	Leu	Tyr

115

	GTT T	TG	CCT	CTG	GGC	ATT	ATA	TCA	TTT	TCC	TAC	ACT	CGC	ATT	TGG	AGT
_	Val L	eu 30	Pro	Leu	Gly	Ile	Ile 235	Ser	Phe	Ser	Tyr	Thr 240	Arg	Ile	Trp	Ser
5	AAA T	TG	AAG	AAC	CAT	GTC	AGT	CCT	GGA	GCT	GCA	AAT	GAC	CAC	TAC	CAT
	822 Lys Lo 245	eu	Lys	Asn	His	Val 250	Ser	Pro	Gly	Ala	Ala 255	Asn	Asp	His	Tyr	His 260
10	CAG CO	GA	AGG	CAA	AAA	ACC	ACC	AAA	ATG	CTG	GTG	TGT	GTG	GTG	GTG	
	Gln A	rg .	Arg	Gln	Lys 265	Thr	Thr	Lys	Met	Leu 270	Val	Сув	Val	Val	Val 275	Val
15	TTT G	CG	GTC	AGC	TGG	CTG	CCT	CTC	CAT	GCC	TTC	CAG	CTT	GCC		GAC
	918 Phe A	la	Val	Ser 280	Trp	Leu	Pro	Leu	His 285	Ala	Phe	Gln	Leu	Ala 290	Val	Asp
20	ATT G	AC .	AGC	CAG	GTC	CTG	GAC	CTG	AAG	GAG	TAC	AAA	СТС	ATC	TTC	ACA
	966 Ile As		Ser 295	Gln	Val	Leu	Asp	Leu 300	Lys	Glu	Tyr	Lys	Leu 305	Ile	Phe	Thr
25	GTG T			ATC	ATC	GCC	ATG		TCC	ACT	TTT	GCC		ccc	CTT	CTC
	1014 Val Pi	he 1	His	Ile	Ile	Ala	Met 315	Cys	Ser	Thr	Phe	Ala 320	Asn	Pro	Leu	Leu
30	TAT GO		ጥሮር	ATC	ממ	A GC		ጥልሮ	AGA	AAG			CTC	ጥሮር	ccc	ጥጥር
	1062 Tyr G															
35	325	- 1	P		non	330	non	TYL	nry	гур	335	FIIE	Leu	SEL	nta	340
	CGC TC	GT	GAG	CAG	CGG	TTG	GAT	GCC	ATT	CAC	TCT	GAG	GTG	TCC	GTG	ACA
	Arg Cy	ув (Glu	Gln	Arg 345	Leu	Asp	Ala	Ile	His 350	Ser	Glu	Val	Ser	Val 355	Thr
40	TTC A	AG	GCT	AAA	AAG	AAC	CTG	GAG	GTC	AGA	AAG	AAC	AGT	GGC	ccc	AAT
	1158 Phe Ly	ys i	Ala	Lys 360	Lys	Asn	Leu	Glu	Val 365	Arg	Lys	Asn	Ser		Pro	Asn
45	GAC TO	CT ·	TTC		GAG	GCT	ACC	AAT		TAAC	GAAG	CT (TGG	370 rgtg:	A.A.	
	1205 Asp Se	er :	Phe					Asn								
50	> > mcm		375 22 7		nm 0.mc			380							a. a.	
	1265	ATG(3A 1	GAA	rrere	A C	CAGAC	CTAT	GA	TCTC	3GTT	GAT	3 GCG(scr (CACA	AGTGAA
55	AACTGA 1280	ATT	rc c	CATI	•											
	(2) IN	(FO	RMAT	ION	FOR	SEQ	ID N	0:2:								
60		(:	i) S	(A) (B)	LEN TYP TOP	GTH: E: a	381 minc	ami aci	no a d		•					
65		(i	i) M	OLEC	ULE	TYPE	: pr	otei	n							

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

	Met 1	Gly	Pro	Ile	Gly 5	Ala	Glu	Ala	Asp	Glu 10	Asn	Gln	Thr	Val	Glu 15	Glu	
5	Met	Lys	Val	Glu 20	Gln	Tyr	Gly	Pro	Gln 25	Thr	Thr	Pro	Arg	Gly 30	Glu	Leu	
	Val	Pro	Авр 35	Pro	Glu	Pro	Glu	Leu 40	Ile	Asp	Ser	Thr	Lys 45	Leu	Ile	Glu .	
10	Val	Gln 50	Val	Val	Leu	Ile	Leu 55	Ala	Tyr	Сув	Ser	Ile 60	Ile	Leu	Leu	Gly	
15	Val 65	Ile	Gly	Asn	Ser	Leu 70	Val	Ile	His	Val	Val 75	Ile	Lys	Phe	Lys	Ser 80	
	Met	Arg	Thr	Val	Thr 85	Asn	Phe	Phe	Ile	Ala 90	Asn	Leu	Ala	Val	Ala 95	Asp	
20	Leu	Leu	Val	Asn 100	Thr	Leu	Сув	Leu	Pro 105	Phe	Thr	Leu	Thr	Tyr 110	Thr	Leu	
	Met	Gly	Glu 115	Trp	Lys	Met	Gly	Pro 120	Val	Leu	Сув	His	Leu 125	Val	Pro	Tyr	
25	Ala	Gln 130	Gly	Leu	Ala	Val	Gln 135	Val	Ser	Thr	Ile	Thr 140	Leu	Thr	Val	Ile	
30	Ala 145	Leu	Asp	Arg	His	Arg 150	Сув	Ile	Val	Tyr	His 155	Leu	Glu	Ser	Lys	11e 160	
	Ser	Lys	Arg	Ile	Ser 165	Phe	Leu	Ile	Ile	Gly 170	Leu	Ala	Trp	Gly	Ile 175	Ser	
35	Ala	Leu	Leu	Ala 180	Ser	Pro	Leu	Ala	Ile 185	Phe	Arg	Glu	Tyr	Ser 190	Leu	Ile	
	Glu	Ile	Ile 195	Pro	Asp	Phe	Glu	11e 200	Val	Ala	Сув	Thr	Glu 205	Lys	Trp	Pro	
40	Gly	Glu 210	Glu	Lys	Ser	Ile	Tyr 215	Gly	Thr	Val	Tyr	Ser 220	Leu	Ser	Ser	Leu	
45	Leu 225	Ile	Leu	Tyr	Val	Leu 230	Pro	Leu	Gly	Ile	11e 235	Ser	Phe	Ser	Tyr	Thr 240	
	Arg	Ile	Trp	Ser	Lys 245	Leu	Lys	Asn	His	Val 250	Ser	Pro	Gly	Ala	Ala 255	Asn	
50			Tyr	260		_			265					270		_	
			Val 275					280	J				285				
55		290	Val	-		•	295				-	300	-		-		
50	305		Phe			310					315	_				320	
			Leu		325					330					335		
55			Ala	340	_	_			345		_			350			
	Val	Ser	Val	Thr	Phe	Lys	Ala	Lys	Lys	Asn	Leu	Glu	Val	Arg	Lys	Asn	

117

355 . 360 Ser Gly Pro Asn Asp Ser Phe Thr Glu Ala Thr Asn Val 375 5 (2) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1556 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: DNA (genomic) 15 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 20 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 211..1353 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: GTTGTTAACA GACTCGTGTA AAGGATTTGC TTTATGGAGC TTTTATGAGA TCTGTGGTGT 30 GATGAATCAG AACACAGCTA CGCAGAGGAG CTCAGCCTAA ACTAAATCAA CCCCTTTAGG ATGGTTCTCT GTTTCACTAA CTTTTTTTAA TGTCGTTTTC TGTTATAGAT TCTTGTGCTA 35 TCTGCAGGCC AAATTGGAAC TGAGGTGAAG ATG GGC CCA TTA GGT GCA GAG GCA Met Gly Pro Leu Gly Ala Glu Ala 40 GAT GAG AAT CAA ACT GTA GAA GTG AAA GTG GAA CTC TAT GGG TCG GGG Asp Glu Asn Gln Thr Val Glu Val Lys Val Glu Leu Tyr Gly Ser Gly 45 CCC ACC ACT CCT AGA GGT GAG TTG CCC CCT GAT CCA GAG CCG GAG CTC Pro Thr Thr Pro Arg Gly Glu Leu Pro Pro Asp Pro Glu Pro Glu Leu 50 ATA GAC AGC ACC AAA CTG GTT GAG GTG CAG GTG GTC CTT ATA CTG GCC Ile Asp Ser Thr Lys Leu Val Glu Val Gln Val Leu Ile Leu Ala 55 TAT TGT TCC ATC ATC TTG CTG GGC GTA GTT GGC AAC TCT CTG GTA ATC Tyr Cys Ser Ile Ile Leu Leu Gly Val Val Gly Asn Ser Leu Val Ile 60 CAT GTG GTG ATC AAA TTC AAG AGC ATG CGC ACA GTA ACC AAC TTT TTT His Val Val Ile Lys Phe Lys Ser Met Arg Thr Val Thr Asn Phe Phe 65 ATT GCC AAC CTG GCT GTG GCG GAT CTT TTG GTG AAC ACC CTG TGC CTG

•

118

:

	522														
	Ile Ala 90		Leu	Ala	Val	Ala 95	Asp	Leu	Leu	Val	Asn 100	Thr	Leu	Сув	Leu
5	CCA TTC 570	ACT	CTT	ACC	TAT	ACC	TTG	ATG	GGG	GAG	TGG	AA.	AATO	GG1	CCA
	Pro Phe 105	Thr	Leu	Thr	Tyr 110	Thr	Leu	Met	Gly	Glu 115	Trp	Lys	Met	Gly	Pro 120
10	GTT TTG 618	TGC	CAT	TTG	GTG	ccc	TAT	GCC	CAG	GGI	CTG	GC	A GT	CA	A GTG
	Val Leu	Сув	His	Leu 125	Val	Pro	Tyr	Ala	Gln 130	_	Leu	Ala	Val	Gln 135	Val
15	TCC ACA 666	ATA	ACT	TTG	ACA	GTC	ATT	GCT	TTG	GAC	CGA	CAT	CG1	TGC	CATT
	Ser Thr	Ile	Thr 140	Leu	Thr	Val	Ile	Ala 145	Leu	Asp	Arg	His	Arg 150	Cys	Ile
20	GTC TAC 714	CAC	CTG	GAG	AGC	AAG	ATC	TCC	AAG	CAA	ATC	AGC	TTC	CTC	ATT :
	Val Tyr	His 155	Leu	Glu	Ser	Lys	Ile 160	Ser	Lys	Gln	Ile	Ser 165	Phe	Leu	Ile
25	ATT GGC 762	CTG	GCG	TGG	GGT	GTC	AGC	GCT	CTG	CTG	GCA	AGI	ccc	CTI	C GCC
	Ile Gly 170	Leu	Ala	Trp	Gly	Val 175	Ser	Ala	Leu	Leu	Ala 180	Ser	Pro	Leu	Ala
30	ATC TTC 810	CGG	GAG	TAC	TCA	CTG	ATT	GAG	ATT	ATT	CCT	GAC	TTI	GAG	ATT
	Ile Phe 185	Arg	Glu	Tyr	Ser 190	Leu	Ile	Glu	Ile	Ile 195	Pro	Asp	Phe	Glu	Ile 200
35	GTA GCC 858	TGT	ACT	GAG	AAA	TGG	ccc	GGG	GAG	GAG	AAG	AGI	GTG	TAC	GGT
	Val Ala	Сув	Thr	Glu 205	Lys	Trp	Pro	Gly	Glu 210	Glu	Lys	Ser	Val	Tyr 215	Gly
40	ACA GTC 906	TAC	AGC	CTT	TCC	ACC	CTG	CTA	ATC	CTC	TAC	GTI	TTG	CCI	CTG
	Thr Val	Tyr	Ser 220	Leu	Ser	Thr	Leu	Leu 225	Ile	Leu	Tyr	Val	Leu 230	Pro	Leu
45	GGC ATC 954	ATA	TCT	TTC	TCC	TAC	ACC	CGG	ATC	TGG	AGT	AAG	CTA	AAG	AAC
	Gly Ile	11e 235	Ser	Phe	Ser	Tyr	Thr 240	Arg	Ile	Trp	Ser	Lys 245	Leu	Lys	Asn
50	CAC GTT 1002	AGT	CCT	GGA	GCT	GCA	AGT	GAC	CAT	TAC	CAT	CAG	CGA	AGG	CAC
	His Val 250	Ser	Pro	Gly	Ala	Ala 255	Ser	Asp	His	Tyr	His 260	Gln	Arg	Arg	His
55	AAA ACG 1050														
	Lys Thr 265	Thr	Lys	Met	Leu 270	Val	Сув	Val	Val	Val 275	Val	Phe	Ala	Val	Ser 280
60	TGG CTG 1098	ccc	CTC	CAT	GCC	TTC	CAA	CTT	GCT	GTG	GAC	ATC	GAC	AGC	CAT
	Trp Leu	Pro	Leu	His 285	Ala	Phe	Gln	Leu	Ala 290	Val	Asp	Ile	Asp	Ser 295	His
65	GTC CTG 1146	GAC	CTG	AAG	GAG	TAC	AAA	CTC	ATC	TTC	ACC	GTG	TTC	CAC	ATT
	Val Leu	Asp	Leu	Lys	Glu	Tyr	Lys	Leu	Ile	Phe	Thr	Val	Phe	His	Ile

				300					305					310		
	ATT		ATG	TGC	TCC	ACC	TTC	GCC	AAC	ccc	CTT	CTC	TAT	GGC	TGG	ATG
5	Ile	Ala	Met 315	Cys	Ser	Thr	Phe	Ala 320	Asn	Pro	Leu	Leu	Tyr 325	Gly	Trp	Met
	AAC 12		AAC	TAC	AGA	AAA	GCT	TTC	CTC	TCA	GCC	TTC	CGC	TGI	GAG	CAG
LO			Asn	Tyr	Arg	Lys	Ala 335	Phe	Leu	Ser	Ala	Phe 340	Arg	Сув	Glu	Gln
	AGG		GAT	GCC	ATT	CAC	TCG	GAG	GTG	TCC	ATG	ACC	TTC	AAG	GCI	AAA
15	Arg 345	Leu	Asp	Ala	Ile	His 350	Ser	Glu	Val	Ser	Met 355	Thr	Phe	Lys	Ala	Lys 360
	AAG 13:		CTG	GAA	GTC	AAA	AAG	AAC	AAT	GGC	CTC	ACT	GAC	TCI	TTT	TCA
20			Leu	Glu	Val 365	Lув	Lys	Asn	Asn	Gly 370	Leu	Thr	Asp	Ser	Phe 375	Ser
	GAG 139		ACC	AAC	GTG	TAA	GAAT	GCT (GTGA	AAGT.	AC G	TGGG	TAAA	T TG	CGAC	CAGA
25			Thr	280 380	Val											
	GTTC 14		ACC :	rggt	Paga	SA A	GGTT	rtct(G GC	TAGT	GCAT	GCC	acct	ccc	ATTG	TATTGA
30	CCC		AGC 1	ATCAC	SAGTO	G A	AGCC	CCAG	C GG	TATT	GTTC	CTG	GAAA	ACT	GGCT	GGAAGA
15	ATG/ 15!		GAA A	\ATA	ACAC	A T	rgcto	TGG	GC#	AACGT	TCT	GAT				
	(2)	INFO	ORMAI	MOI	FOR	SEQ	ID i	10:4:								
10		((i) S	(A) (B)	LEN	GTH:	RACTE : 381 emino EY: 1	ami aci	.no a .d		3	,				
15		(:	Li) N	OLEC	ULE	TYPE	e: pı	otei	.n							
		(2	(i) S	EQUE	ENCE	DESC	CRIPT	: NOI	SEÇ	ID	NO: 4	ł:				
50	Met 1	Gly	Pro	Leu	Gly 5	Ala	Glu	Ala	Asp	Glu 10	Asn	Gln	Thr	Val	Glu 15	Val
	Lys	Val	Glu	Leu 20	Tyr	Gly	Ser	Gly	Pro 25	Thr	Thr	Pro	Arg	Gly 30	Glu	Leu
55	Pro	Pro	Asp 35	Pro	Glu	Pro	Glu	Leu 40	Ile	Ąsp	Ser	Thr	Lys 45	Leu	Val	Glu
- 0	Val	Gln 50	Val	Val	Leu	Ile	Leu 55	Ala	Tyr	Сув	Ser	Ile 60	Ile	Leu	Leu	Gly
50	Val 65	Val	Gly	Asn	Ser	Leu 70	Val	Ile	His	Val	Val 75	Ile	Lys	Phe	Lys	Ser 80
55	Met	Arg	Thr	Val	Thr 85	Asn	Phe	Phe	Ile	Ala 90	Asn	Leu	Ala	Val	Ala 95	Asp
	T.ou	Lou	V=1) an	Thr	Len	Cva	T.ou	Pro	Dha	ም ክም	ī.eu	Thr	Tvr	Thr	T.e.11

120

				100					105					110)	
5	Met	Gly	Glu 115	Trp	Lys	Met	Gly	Pro 120	Val	Leu	Сув	His	Leu 125		Pro	Tyr
J	Ala	Gln 130	Gly	Leu	Ala	Val	Gln 135	Val	Ser	Thr	Ile	Thr 140		Thr	Val	Ile
10	Ala 145	Leu	Asp	Arg	His	Arg 150	Сув	Ile	Val	Tyr	His 155		Glu	Ser	Lys	Ile 160
	Ser	Lys	Gln	Ile	Ser 165	Phe	Leu	Ile	Ile	Gly 170	Leu	Ala	Trp	Gly	Val 175	Ser
15	Ala	Leu	Leu	Ala 180	Ser	Pro	Leu	Ala	Ile 185	Phe	Arg	Glu	Tyr	Ser 190	Leu	Ile
20	Glu	Ile	Ile 195	Pro	yab	Phe	Glu	11e 200	Val	Ala	Сув	Thr	Glu 205	Lys	Trp	Pro
	Gly	Glu 210	Glu	Lys	Ser	Val	Tyr 215	Gly	Thr	Val	Tyr	Ser 220	Leu	Ser	Thr	Leu
25	Leu 225	Ile	Leu	Tyr	Val	Leu 230	Pro	Leu	Gly	Ile	Ile 235	Ser	Phe	Ser	Tyr	Thr 240
	Arg	Ile	Trp	Ser	Lys 245	Leu	Lys	Asn	His	Val 250	Ser	Pro	Gly	Ala	Ala 255	Ser
30	Asp	His	Tyr	Нів 260	Gln	Arg	Arg	His	Lys 265	Thr	Thr	Lys	Met	Leu 270	Val	Сув
35	Val	Val	Val 275	Val	Phe	Ala	Val	Ser 280	Trp	Leu	Pro	Leu	His 285	Ala	Phe	Gln
	Leu	Ala 290	Val	Asp	Ile	Asp	Ser 295	His	Val	Leu	Asp	Leu 300	Lys	Glu	Tyr	Lys
40	Leu 305	Ile	Phe	Thr	Val	Phe 310	His	Ile	Ile	Ala	Met 315	Сув	Ser	Thr	Phe	Ala 320
	Asn	Pro	Leu	Leu	Tyr 325	Gly	Trp	Met	Asn	Ser 330	Asn	Tyr	Arg	Lys	Ala 335	Phe
45	Leu	Ser	Ala	Phe 340	Arg	Сув	Glu	Gln	Arg 345	Leu	Asp	Ala	Ile	His 350	Ser	Glu
50	Val	Ser	Met 355	Thr	Phe	Lys	Ala	Lys 360	Lys	Asn	Leu	Glu	Val 365	Lys	Lys	Asn
	Asn	Gly 370	Leu	Thr	Asp	Ser	Phe 375	Ser	Glu	Ala		Asn 380	Val			
55	(2)		RMAT													
		(+)	(B) LE	NGTH PE:	: 12 nucl	00 b eic	ase acid	pair	s						
60			(D) TO	RAND POLO	GY:	line	ar								
		(ii)	MOL	ECUL	E TY	PE:	geno	mic	DNA							

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

PCT/US95/01469 WO 95/21245

121

/ix\	FEATURE:

•

:

(A) NAME/KEY: CDS (B) LOCATION: 55..1200

5		(xi)	SEÇ	QUENC	E DE	SCRI	PTIC	on: S	SEQ I	D NO):5:					
10	TTTC 5	TGTI 7	AT I	AGATT	CTT	T G	CTATO	CTGC	A GG	CCAA	attg	GAA	CTGA	GGT (GAAG	ATG
																Met 1
15	GGC 10		TTA	GGT	GCA	GAG	GCA	GAT	GAG	AAT	CAA	ACT	GTA	GAA	GTG	AAA
	Gly	Pro	Leu	Gly 5	Ala	Glu	Ala	yab	Glu 10	Asn ,	Gln	Thr	Val	Glu 15	Val	ГÀВ
20	GTG 15		TTC	TAT	GGG	TCG	GGG	ccc	ACC	ACT	CCT	AGA	GGT	GAG	TTG	ccc
	Val	Glu	Phe 20	Tyr	Gly	Ser	Gly	Pro 25	Thr	Thr	Pro	Arg	Gly 30	Glu	Leu	Pro
25	CCT 20		CCA	GAG	CCG	GAG	CTC	ATA	GAC	AGC	ACC	AAA	CTG	GTT	GAG	GTG
	Pro .	_	Pro	Glu	Pro	Glu	Leu 40	Ile	Asp	Ser	Thr	Lув 45	Leu	Val	Glu	Val
30	CAG		GTC	CTT	ATA	CTG	GCC	TAT	TGT	TCC	ATC	ATC	TTG	CTG	GGC	GTA
30	Gln 50	-	Val	Leu	Ile	Leu 55	Ala	Tyr	Сув	Ser	Ile 60	Ile	Leu	Leu	Gly	Val 65
35	GTT 29		AAC	TCT	CTG	GTA	ATC	CAT	GTG	GTG	ATC	AAA	TTC	AAG	AGC	ATG
	Val		Asn	Ser	Leu 70	Val	Ile	His	Val	Val 75	Ile	Lys	Phe	Lys	Ser 80	Met
40	CGC 34	_	GTA	ACC	AAC	TTT	TTT	ATT	GCC	AAC	CTG	GCT	GTG	GCG	GAT	CTT
	Arg		Val	Thr 85	Asn	Phe	Phe	Ile	Ala 90	Asn	Leu	Ala	Val	Ala 95	Asp	Leu
45	TTG 39		AAC	ACC	CTG	TGC	CTG	CCA	TTC	ACT	CTT	ACC	TAT	ACC	TTG	ATG
	Leu	_	Asn 100	Thr	Leu	Сув	Leu	Pro 105	Phe	Thr	Leu	Thr	Tyr 110	Thr	Leu	Met
50	GGG 44		TGG	AAA	ATG	GGT	CCA	GTT	TTG	TGC	CAT	TTG	GTG	CCC	TAT	GCC
	Gly		Trp	Lys	Met	Gly	Pro 120	Val	Leu	Сув	His	Leu 125	Val	Pro	Tyr	Ala
55	CAG 48	_	CTG	GCA	GTA	CAA	GTG	TCC	ACA	ATA	ACT	TTG	ACA	GTC	ATT	GCT
	Gln 130	-	Leu	Ala	Val	Gln 135	Val	Ser	Thr	Ile	Thr 140	Leu	Thr	Val		Ala 145
60	TTG 53		CGA	CAT	CGT	TGC	ATT	GTC	TAC	CAC	CTG	GAG	AGC	AAG	ATC	TCC
•	Leu		Arg	His	Arg 150	Сув	Ile	Val	Tyr	His 155		Glu	Ser	Lys	Ile 160	Ser
65	AAG 58		ATC	AGC	TTC	CTG	ATT	ATT	GGC	CTG	GCG	TGG	GGT	GTC	AGC	GCT
	Lys			Ser	Phe	Leu	Ile		Gly 170		Ala	Trp	Gly	Val 175	Ser	Ala

122

	CTG CTG	GCA	AGT	CCC	СТТ	GCC	ATC	ም ሞር	CGG	GAG	, אר	TCA	CTG	: ልሞባ	' GAG
	633 Leu Leu														
_	Ted Ted	180		FEO	red	urq	185	rne	arg	GIU	TÄL	190	⊥eu	116	GLU
5	ATT ATT 681	CCT	GAC	TTT	GAG	ATT	GTA	GCC	TGT	ACT	GAG	AAA	TGG	ccc	GGG
	Ile Ile	Pro	Asp	Phe	Glu		Val	Ala	Сув	Thr		Lys	Trp	Pro	Gly
10	195				_	200					205				
	GAG GAG 729	AAG	AGT	GTG	TAC	GGT	ACA	GTC	TAC	AGC	CTI	TCC	ACC	CTG	CTA
15	Glu Glu 210	Lys	Ser	Val	Tyr 215	Gly	Thr	Val	Tyr	Ser 220	Leu	Ser	Thr	Leu	Leu 225
	ATC CTC	TAC	GTT	TTG	CCT	CTG	GGC	ATC	ATA	TCT	TTC	TCC	TAC	ACC	CGG
20	Ile Leu	Tyr	Val	Leu 230	Pro	Leu	Gly	Ile	Ile 235	Ser	Phe	Ser	Tyr	Thr 240	Arg
20	ATC TGG 825	AGT	AAG	CTA	AAG	AAC	CAC	GTT	AGT	CCT	GGA	GCT	GCA	AGT	GAC
25	Ile Trp	Ser	Lys 245	Leu	Lys	Asn	His	Val 250	Ser	Pro	Gly	Ala	Ala 255	Ser	Asp
25	CAT TAC 873	CAT	CAG	CGA	AGG	CAC	AAA	ATG	ACC	AAA	ATG	CTC	GTG	TGC	GTG
20	His Tyr	His 260	Gln	Arg	Arg	His	Lys 265	Met	Thr	Lys	Met	Leu 270	Val	Сув	Val
30	GTA GTG	GTG	TTT	GCA	GTC	AGC	TGG	CTG	ccc	CTC	CAT	GCC	TTC	CAA	CT,T
	921 Val Val 275	Val	Phe	Ala	Val	Ser 280	Trp	Leu	Pro	Leu	His 285	Ala	Phe	Gln	Leu
35	GCT GTG	GAC	ATC	GAC	ACC		ርጥጦ	CITIC	GAC	CTC		GAG	ጥልሶ	222	כיזיכי
	969														
40	Ala Val 290	два	TIE	wab	295	nıs	AST	ren	Asp	300	гÀв	GIU	TYT	тÅв	105
40	ATC TTC 1017	ACC	GTG	TTC	CAC	ATT	ATT	GCG	ATG	TGC	TCC	ACC	TTC	GCC	AAC
	Ile Phe	Thr	Val	Phe 310	His	Ile	Ile	Ala	Met 315	Сув	Ser	Thr	Phe	Ala 320	Asn
45	CCC CTT	CTC	TAT		TGG	ATG	AAC	AGC		TAC	AGA	AAA	GCT		CTC
	1065 Pro Leu	Leu	Tyr	Gly	Trp	Met	Asn	Ser	Asn	Tyr	Arg	Lys	Ala	Phe	Leu
50			325	-	-			330		-	-	-	335		
	TCA GCC 1113	TTC	CGC	TGT	GAG	CAG	AGG	TTG	GAT	GCC	ATT	CAC	TCG	GAG	GTG
	Ser Ala	Phe 340	Arg	Сув	Glu	Gln	Arg 345	Leu	Asp	Ala	Ile	His 350	Ser	Glu	Val
55	ጥርር አጥር		առ	226	GCT	222		220	C mc	CAA	G TT C		220	220	224
	TCC ATG														
60	Ser Met 355	Thr	Phe	Lys	Ala	Lув 360	rås	Asn	Leu	Glu	Val 365	Lys	Lys	Asn	Asn
60	GGC CTC	ACT	GAC	TCT	TTT	TCA	GAG	GCC	ACC	AAC	GTG	TAA			
	1200 Gly Leu	Thr	Asp	Ser	Phe	Ser	Glu	Ala	Thr	Asn	Val	*			
65	37Ô		-		375					380					

1

(2) INFORMATION FOR SEQ ID NO:6:

123

(i)	SEQUENCE	CHARACTE	RISTICS	S:
	(A) LEN	NGTH: 382	amino	acids
		PE: amino		
	(D) TOP	POLOGY: 1	inear	

(ii) MOLECULE TYPE: protein

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

		()	KI) :	SEQUI	SNCE	DESC	CRIP.	LION	: SE	ם דם	NO:	5 :				
10	Met 1	Gly	Pro	Leu	Gly 5	Ala	Glu	Ala	Asp	Glu 10	Asn	Gln	Thr	Val	Glu 15	Val
15	Lys	Val	Glú	Phe 20	Tyr	Gly	Ser	Gly	Pro 25	Thr	Thr	Pro	Arg	Gly 30	Glu	Leu
	Pro	Pro	Asp 35	Pro	Glu	Pro	Glu	Leu 40	Ile	Asp	Ser	Thr	Lys 45	Leu	Val	Glu
20	Val	Gln 50	Val	Val	Leu	Ile	Leu 55	Ala	Tyr	Сув	Ser	Ile 60	Ile	Leu	Leu	Gly
	Val 65	Val	Gly	Asn	Ser	Leu 70	Val	Ile	His	Val	Val 75	Ile	Lys	Phe	Lys	Ser 80
25	Met	Arg	Thr	Val	Thr 85	Asn	Phe	Phe	Ile	Ala 90	Asn	Leu	Ala	Val	Ala 95	Asp
30				Asn 100			_		105					110		
	Met	Gly	Glu 115	Trp	Lys	Met	Gly	Pro 120	Val	Leu	Сув	His	Leu 125	Val	Pro	Tyr
35	Ala	Gln 130	Gly	Leu	Ala	Val	Gln 135	Val	Ser	Thr	Ile	Thr 140	Leu	Thr	Val	Ile
	Ala 145	Leu	Asp	Arg	His	Arg 150	Сув	Ile	Val	Tyr	His 155	Leu	Glu	Ser	Lys	11e 160
40		_		Ile	165					170				_	175	
45				Ala 180					185					190		
			195	Pro	-			200			-		205	-		
50		210		Lys			215	_			-	220				
	225			Tyr		230			Ī		235				_	240
55				Ser	245		_			250					255	
60	_		_	His 260		_			265					270		
			275	Val				280					285			
65		290		ysb			295					300				
	Leu	Ile	Phe	Thr	Val	Phe	His	Ile	Ile	Ala	Met	Сув	Ser	Thr	Phe	Ala

	305					310					315					320	
5	Asn	Pro	Leu	Leu	Tyr 325	Gly	Trp	Met	Asn	Ser 330	Asn	Tyr	Arg	Lys	Ala 335	Phe	
5	Leu	Ser	Ala	Phe 340	Arg	Сув	Glu	Gln	Arg 345	Leu	Asp	Ala	Ile	His 350	Ser	Glu	:
10	Val	Ser	Met 355	Thr	Phe	Lys	Ala	Lys 360	ГÀв	Asn	Leu	Glu	Val 365	Lys	Lys	Asn	:
	Asn	Gly 370	Leu	Thr	Asp	Ser	Phe 375	Ser	Glu	Ala	Thr	Asn 380	Val	*			
15	(2)	INFO	ORMAT	CION	FOR	SEQ	ID P	NO: 7	:								
20		(<u>1</u>)	() (1 ()	A) LI 3) Ti 2) Si	CE CHENGTH (PE: (PANI (POLO	i: 50 nucl	bas leic SSS:	se pa acio sino	airs 1								
		(ii)	MOI	ECUI	LE TY	PE:	DNA	(ge	nomic	=)							
25		(iii)	HYI	POTHE	TIC!	T: I	10										
		(iv)) ANT	ri-si	ense :	NO											
30		(xi)) SEÇ	QUENC	CE DI	ESCR	PTIC	on: s	SEQ :	D NO):7:						
		GTTGT 50	rtc :	CAT	ATTGO	GC C	PACTO	CTC	C AT	CATC!	rtgc	TTG	GGT:	TAA			
35	(2)	INFO	ORMA?	MOI	FOR	SEQ	ID 1	8:07	:							•	
40		(i)	() (E	A) LI 3) Ti C) Si	CE CHENGTH (PE: (RANI (POLC	nucl) bas leic ESS:	e pa acio sino	airs 1								
		(ii)	MOI	LECUI	E TY	PE:	DNA	(gei	nomic	=)							
45	1	(iii)	HYI	POTHE	ETIC	L: I	10										
		(iv)) ANT	ri-si	ense :	NO.											
50		(xi)) SEÇ	QUENC	E DE	SCR	PTIC	on: S	SEQ I	D NC	:8:						
		ACCAC	CAT C	GATO	CACC	LA GO	SAGT	rgcci	A AT	PACCO	CAA	GCAI	AGAT	GAT			
55	(2)	INFO	DRMAT	MOI	FOR	SEQ	ID N	10:9	:								
60		(i)	(<i>I</i> (E	A) LE B) TY C) ST	CE CHENGTH PE: TRANI OPOLO	nucl	bas eic SS:	e pa acio sino	irs 1		-						•
		(ii)	MOI	ECUI	E TY	PE:	DNA	(ger	nomic	:)							
65	((iii)	HYE	OTHE	TICA	L: N	10							٠			
		(iv)	ANT	i-se	ENSE:	NO											

•

	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
5	TTTTTCATTG CCAATCTGGC TGTGGCAGAT CTTTTGGTGA ACACT 45
	(2) INFORMATION FOR SEQ ID NO:10:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: DNA (genomic)
	(iii) HYPOTHETICAL: NO
20	(iv) ANTI-SENSE: NO
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
	AGGTAAGAGT GAACGGTAGA CACAGAGTGT TCACCAAAAG ATCTG 45
30	(2) INFORMATION FOR SEQ ID NO:11:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
40 .	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
45	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
50	CCACCTGGTG CCCTATGCCC AGGGCCTGGC AGTACAAGTA TCCAC 45
	(2) INFORMATION FOR SEQ ID NO:12:
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
60	(ii) MOLECULE TYPE: DNA (genomic)
	(iii) HYPOTHETICAL: NO
65	(iv) ANTI-SENSE: NO

126

:

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
         CAGGGCAATT ACTGTCAAGG TGATTGTGGA TACTTGTACT GCCAG
             45
  5
         (2) INFORMATION FOR SEQ ID NO:13:
               (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid
10
                     (C) STRANDEDNESS: single
                     (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: DNA (genomic)
15
             (iii) HYPOTHETICAL: NO
              (iv) ANTI-SENSE: NO
20
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
         AATCAGCTTC CTGATTATTG GCTTGGCCTG GGGCATCAGT GCCCT
25
             45
         (2) INFORMATION FOR SEQ ID NO:14:
30
               (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 45 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
35
              (ii) MOLECULE TYPE: DNA (genomic)
             (iii) HYPOTHETICAL: NO
40
              (iv) ANTI-SENSE: NO
45
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
         GAAGATGGCC AGGGGACTTG CCAGCAGGGC ACTGATGCCC CAGGC
         (2) INFORMATION FOR SEQ ID NO:15:
50
               (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 46 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
55
                     (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: DNA (genomic)
60
            (iii) HYPOTHETICAL: NO
              (iv) ANTI-SENSE: NO
65
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
```

	ACTGTCTATA GTCTTTCTTC CTTGTTGATC TTGTATGTTT TGCCT 45
_	(2) INFORMATION FOR SEQ ID NO:16:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid
10	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
15	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
20	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
25	TGTAGGAAAA TGATATAATG CCCAGAGGCA AAACATACAA GATCA 45
	(2) INFORMATION FOR SEQ ID NO:17:
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: DNA (genomic)
33	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
40	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
45	CTGGTGTGT TGGTGGTGGT GTTTGCGGTC AGCTGGCTGC CTCTC 45
	(2) INFORMATION FOR SEQ ID NO:18:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
55	(ii) MOLECULE TYPE: DNA (genomic)
	(iii) HYPOTHETICAL: NO
60	(iv) ANTI-SENSE: NO
65	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
	TGTCAACGGC AAGCTGGAAG GCATGGAGAG GCAGCCAGCT GACCG

128

;

	(2) INFO	RMATION FOR SEQ ID NO:19:
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10	(ii)	MOLECULE TYPE: DNA (genomic)
	(iii)	HYPOTHETICAL: NO
15	(iv)	ANTI-SENSE: NO
20	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:19:
	CTCATCTTC 47	CA CAGTGTTCCA CATCATCGCC ATGTGCTCCA CTTTTGC
25	(2) INFO	RMATION FOR SEQ ID NO:20:
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: DNA (genomic)
35	(iii)	HYPOTHETICAL: NO
	(iv)	ANTI-SENSE: NO
40		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:20:
45	TTCATCCAC 47	GC CATAGAGAAG GGGATTGGCA AAAGTGGAGC ACATGGC
=0	, O	
50		RMATION FOR SEQ ID NO:21: SEQUENCE CHARACTERISTICS:
55	(1)	(A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: DNA (genomic)
60	(iii)	HYPOTHETICAL: NO
	(iv)	ANTI-SENSE: NO
65		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:21:

PCT/US95/01469

129

	GGGAGTATTC GCTGATTGAG ATCAT 25
5	(2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid
10	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
15	(iii) HYPOTHETICAL: NO
15	(iv) ANTI-SENSE: NO
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
25	GCCTTGAATG TCACGGACAC CTC 23
25	(2) INFORMATION FOR SEQ ID NO:23:
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: DNA (genomic)
33	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
40	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

CTGATGGTAG TGGTCATTTG CAGCTCCAGG ACTGACATGG TTCTT 45

\$

130

What is claimed is:

An isolated nucleic acid molecule encoding a Y2
 receptor.

 An isolated nucleic acid molecule of claim 1, wherein the nucleic acid molecule is a DNA molecule. ;

١

10

- 3. An isolated DNA molecule of claim 2, wherein the DNA molecule is a cDNA molecule.
- 4. An isolated DNA molecule of claim 2, wherein the DNA molecule is a genomic DNA molecule.
 - 5. An isolated nucleic acid molecule of claim 1, wherein the nucleic acid molecule is a RNA molecule.

20

- 6. An isolated nucleic acid molecule of claim 1 wherein the nucleic acid molecule encodes a human Y2 receptor.
- 7. An isolated nucleic acid molecule of claim 6 wherein the nucleic acid molecule encodes a receptor being characterized by an amino acid sequence in the transmembrane region, which amino acid sequence has 60% homology or higher to the amino acid sequence in the transmembrane region of the human Y2 receptor shown in Figure 11.

8. An isolated nucleic acid molecule of claim 6 wherein the human Y2 receptor has substantially the same amino acid sequence as shown in Figure 2.

9. An isolated nucleic acid molecule of claim 6 wherein

131

the human Y2 receptor has the amino acid sequence as shown in Figure 2.

10. An isolated nucleic acid molecule of claim 1 wherein the nucleic acid molecule encodes a rat Y2 receptor.

11. An isolated nucleic acid molecule of claim 10 wherein the rat Y2 receptor has substantially the same amino acid sequence as shown in Figure 8.

10

- 12. An isolated nucleic acid molecule of claim 10 wherein the rat Y2 receptor has the amino acid sequence shown in Figure 8.
- 13. An isolated nucleic acid molecule of claim 10 wherein the rat Y2 receptor has substantially the same amino acid sequence as shown in Figure 9.
- 14. An isolated nucleic acid molecule of claim 10
 20 wherein the rat Y2 receptor has the amino acid
 sequence shown in Figure 9.
 - 15. An isolated, purified Y2 receptor protein.
- 25 16. A vector comprising the nucleic acid molecule of claim 1.
 - 17. A vector comprising the nucleic acid molecule of claim 6.

30

- 18. A vector comprising the nucleic acid molecule of claim 10.
- 19. A vector of claim 16 adapted for expression in a bacterial cell which comprises the regulatory elements necessary for expression of the nucleic acid in the bacterial cell operatively linked to the

132

nucleic acid encoding the Y2 receptor as to permit expression thereof.

۲.

.

20. A vector of claim 16 adapted for expression in a yeast cell which comprises the regulatory elements necessary for expression of the nucleic acid in the yeast cell operatively linked to the nucleic acid encoding the Y2 receptor as to permit expression thereof.

10

5

- 21. A vector of claim 16 adapted for expression in an insect cell which comprises the regulatory elements necessary for expression of the nucleic acid in the insect cell operatively linked to the nucleic acid encoding the Y2 receptor as to permit expression thereof.
 - 22. A vector of claim 21 wherein the vector is a baculovirus.

20

- 23. A vector of claim 16 adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the nucleic acid in the mammalian cell operatively linked to the nucleic acid encoding the Y2 receptor as to permit expression thereof.
- 24. A vector of claim 17 adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the nucleic acid in the mammalian cell operatively linked to the nucleic acid encoding the Y2 receptor as to permit expression thereof.
- 35 25. A vector of claim 24 wherein the vector is a plasmid.

133

26. The plasmid of claim 25 designated pcEXV-hY2 (ATCC Accession No. 75659).

27. A vector of claim 18 adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the nucleic acid in the mammalian cell operatively linked to the nucleic acid encoding the Y2 receptor as to permit expression thereof.

10

5

- 28. A vector of claim 27 wherein the vector is a plasmid.
- 29. The plasmid of claim 28 designated pcEXV-rY2a (ATCC Accession No. 97035).
 - 30. The plasmid of claim 28 designated pcEXV-rY2b (ATCC Accession No. 97036).
- 20 31. A cell comprising the vector of either of claims 24 or 28.
 - 32. The cell of claim 31 wherein the cell is a mammalian cell.

- 33. The cell of claim 32 wherein the mammalian cell is non-neuronal in origin.
- 34. The cell of claim 33 wherein the mammalian cell nonneuronal in origin is a COS-7 cell.
 - 35. The cell of claim 33 wherein the mammalian cell nonneuronal in origin is a NIH-3T3 cell.
- 36. A NIH-3T3 cell of claim 36 designated N-hY2-5 (ATCC Accession No. CRL-11825).

134

37. The cell of claim 33 wherein the mammalian cell nonneuronal in origin is a 293 human embryonic kidney cell.

Ÿ

:

5 38. A 293 human embryonic kidney cell of claim 37 designated 293-hY2-10 (ATCC Accession No. 11837).

- 39. A nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a unique sequence included within the sequence of a nucleic acid molecule encoding a Y2 receptor.
- 40. The nucleic acid probe of claim 39 wherein the nucleic acid is DNA.
 - 41. The nucleic acid probe of claim 39 wherein the nucleic acid encodes a human Y2 receptor.
- 20 42. The nucleic acid probe of claim 39 wherein the nucleic acid encodes a rat Y2 receptor.
- 43. An antisense oligonucleotide having a sequence capable of specifically hybridizing to an mRNA molecule encoding a Y2 receptor so as to prevent translation of the mRNA molecule.
- 44. An antisense oligonucleotide having a sequence capable of specifically hybridizing to the cDNA molecule of claim 3.
 - 45. An antisense oligonucleotide of either of claims 43 or 44 comprising chemical analogues of nucleotides.
- 35 46. An antibody directed to a Y2 receptor.
 - 47. An antibody of claim 46, wherein the Y2 receptor is

135

a human Y2 receptor.

48. An antibody of claim 46 wherein the Y2 receptor is a rat Y2 receptor.

5

- 49. An antibody of claim 46, wherein the antibody is a monoclonal antibody.
- 50. A monoclonal antibody of claim 49 directed to an epitope of a Y2 receptor present on the surface of a Y2 receptor expressing cell.
- 51. A pharmaceutical composition comprising an amount of the oligonucleotide of claim 43 effective to decrease activity of a Y2 receptor by passing through a cell membrane and binding specifically with mRNA encoding a Y2 receptor in the cell so as to prevent its translation and a pharmaceutically acceptable carrier capable of passing through a cell membrane.
 - 52. A pharmaceutical composition of claim 51, wherein the oligonucleotide is coupled to a substance which inactivates mRNA.

- 53. A pharmaceutical composition of claim 52, wherein the substance which inactivates mRNA is a ribozyme.
- 54. A pharmaceutical composition of claim 51, wherein the pharmaceutically acceptable carrier comprises a structure which binds to a receptor on a cell capable of being taken up by cells after binding to the structure.
- 55. A pharmaceutical composition of claim 54, wherein the structure of the pharmaceutically acceptable carrier is capable of binding to a receptor which is

136

specific for a selected cell type.

10

25

30

35

56. A pharmaceutical composition comprising an amount of the antibody of claim 46 effective to block binding of a ligand to a Y2 receptor and a pharmaceutically acceptable carrier.

57. A transgenic nonhuman mammal expressing nucleic acid encoding a Y2 receptor.

:

÷

58. A transgenic nonhuman mammal comprising a homologous recombination knockout of the native Y2 receptor.

- A transgenic nonhuman mammal whose genome comprises 59. antisense nucleic acid complementary to nucleic acid 15 encoding a Y2 receptor so placed as to transcribed into antisense mRNA which is complementary to mRNA encoding a Y2 receptor and which hybridizes to mRNA encoding a Y2 receptor 20 thereby reducing its translation.
 - 60. The transgenic nonhuman mammal of either of claims 57 or 59, wherein the nucleic acid encoding a Y2 receptor additionally comprises an inducible promoter.
 - 61. The transgenic nonhuman mammal of either of claims 57 or 59, wherein the nucleic acid encoding a Y2 receptor additionally comprises tissue specific regulatory elements.
 - 62. A transgenic nonhuman mammal of any of claims 57, 58 or 59, wherein the transgenic nonhuman mammal is a mouse.
 - 63. A method for determining whether a ligand can bind specifically to a Y2 receptor which comprises

•

5

35

137

contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with the ligand under conditions permitting binding of ligands to such receptor, and detecting the presence of any such ligand bound specifically to the Y2 receptor, thereby determining whether the ligand binds specifically to a Y2 receptor.

- 64. A method of claim 63 wherein the Y2 receptor is a human Y2 receptor.
 - 65. A method of claim 63 wherein the Y2 receptor is a rat Y2 receptor.
- 15 A method for determining whether a ligand can bind specifically to a Y2 receptor, which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with the ligand under conditions permitting binding of 20 ligands to such receptor, and detecting the presence of any such ligand specifically bound to the Y2 receptor, thereby determining whether the ligand binds specifically to a Y2 receptor, wherein the Y2 receptor is characterized by an amino acid sequence in the transmembrane region, such amino acid 25 sequence having 60% homology or higher to the amino acid sequence in the transmembrane region of the Y2 receptor shown in Figure 11.
- 30 67. A method of claim 66 wherein the Y2 receptor is a human Y2 receptor.
 - 68. A method of claim 66 wherein the Y2 receptor is a rat Y2 receptor.
 - 69. A method for determining whether a ligand can bind specifically to a Y2 receptor which comprises

138

preparing a cell extract from cells transfected with and expressing nucleic acid encoding the Y2 receptor, isolating a membrane fraction from the cell extract, contacting the ligand with the membrane fraction under conditions permitting binding of ligands to such receptor, and detecting the presence of any ligand bound to the Y2 receptor, thereby determining whether the compound is capable of specifically binding to a Y2 receptor.

;

10

5

- 70. A method of claim 69 wherein the Y2 receptor is a human Y2 receptor.
- 71. A method of claim 69 wherein the Y2 receptor is a rat Y2 receptor.
 - 72. A method of any of claims 63, 64, 65, 66, 67, 68, 69, 70, or 71 wherein the ligand is not previously known.

- 73. A ligand determined by the method of claim 72.
- 74. A method for determining whether a ligand is a Y2 receptor agonist which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with the ligand under conditions permitting the activation of a functional Y2 receptor response from the cell, and detecting by means of a bioassay, such as a second messenger assay, an increase in Y2 receptor activity, thereby determining whether the ligand is a Y2 receptor agonist.
- 75. A method for determining whether a ligand is a Y2
 receptor agonist which comprises preparing a cell
 extract from cells transfected with and expressing
 nucleic acid encoding the Y2 receptor, isolating a

139

membrane fraction from the cell extract, contacting the membrane fraction of the extract with the ligand under conditions permitting the activation of a functional Y2 receptor response, and detecting by means of a bioassay, such as a second messenger assay, an increase in Y2 receptor activity, thereby determining whether the ligand is a Y2 receptor agonist.

- 76. A method of either of claims 74 or 75 wherein the Y2 receptor is a human Y2 receptor.
 - 77. A method of either of claims 74 or 75 wherein the Y2 receptor is a rat Y2 receptor.

15

20

25

5

•

- 78. A method for determining whether a ligand is a Y2 receptor antagonist which comprises contacting a cell transfected with and expressing nucleic acid encoding a Y2 receptor with the ligand in the presence of a known Y2 receptor agonist, such as NPY, under conditions permitting the activation of a functional Y2 receptor response, and detecting by means of a bioassay, such as a second messenger assay, a decrease in Y2 receptor activity, thereby determining whether the ligand is a Y2 receptor antagonist.
- 79. A method for determining whether a ligand is a Y2 receptor antagonist which comprises preparing a cell extract from cells transfected with and expressing nucleic acid encoding the Y2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction of the extract with the ligand in the presence of a known Y2 receptor agonist, such as NPY, under conditions permitting the activation of a functional Y2 receptor response, and detecting by means of a bioassay, such as a second messenger

140

assay, a decrease in Y2 receptor activity, thereby determining whether the ligand is a Y2 receptor antagonist.

:

:

ř

5 80. A method of either of claims 78 or 79 wherein the Y2 receptor is a human Y2 receptor.

81. A method of either of claims 78 or 79 wherein the Y2 receptor is a rat Y2 receptor.

82. A method of any of claims 74, 75, 78, or 79 wherein the second messenger assay comprises measurement of intracellular cAMP.

10

25

35

15 83. A method of any of claims 74, 75, 78, or 79 wherein the second messenger assay comprises measurement of intracellular calcium mobilization.

84. A method of any of claims 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, or 81 wherein the cell is a mammalian cell.

85. A method of claim 84 wherein the mammalian cell is nonneuronal in origin.

86. A method of claim 85, wherein the mammalian cell is nonneuronal in origin is a COS-7 cell.

87. A method of claim 85, wherein the mammalian cell nonneuronal in origin is a 293 human embryonic kidney cell.

88. The cell of claim 87 designated 293-hY2-10 (ATCC Accession No. 11837).

89. A method of claim 85, wherein the mammalian cell nonneuronal in origin is a LM(tk-) cell.

`

20

25

- 90. A method of claim 85, wherein the mammalian cell nonneuronal in origin is a NIH-3T3 cell.
- 91. A cell of claim 90 designated N-hY2-5 (ATCC Accession No. CRL-11825).
 - 92. A ligand detected by the method of any of claims 74, 75, 76, 77, 78, 79, 80, or 81.
- 10 93. A ligand of claim 92 wherein the ligand is not previously known.
- 94. A pharmaceutical composition comprising an amount of a Y2 receptor agonist determined by the method of either of claims 74 or 75 effective to activate a Y2 receptor and a pharmaceutically acceptable carrier.
 - 95. A pharmaceutical composition of claim 94 wherein the Y2 receptor agonist is not previously known.
 - 96. A pharmaceutical composition which comprises an amount of a Y2 receptor antagonist determined by the method of either of claims 78 or 79 effective to decrease activity of a Y2 receptor and a pharmaceutically acceptable carrier.
 - 97. A pharmaceutical composition of claim 96 wherein the Y2 receptor antagonist is not previously known.
- 30 98. A method of screening drugs to identify drugs which specifically bind to a Y2 receptor on the surface of a cell which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with a plurality of drugs under conditions permitting binding of drugs to the Y2 receptor, and determining those drugs which bind specifically to the transfected cell, thereby identifying drugs

142

÷

which bind specifically to a Y2 receptor.

99. A method of screening drugs to identify drugs which bind specifically to a Y2 receptor on the surface of a cell which comprises preparing a cell extract from cells transfected with and expressing nucleic acid encoding the Y2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with a plurality of drugs under conditions permitting binding of drugs to the Y2 receptor, and determining those drugs which bind specifically to the transfected cell, thereby identifying drugs which bind specifically to a Y2 receptor.

15

10

- 100. A method of either of claims 98 or 99 wherein the Y2 receptor is a human Y2 receptor.
- 101. A method of either of claims 98 or 99 wherein the Y2 receptor is a rat Y2 receptor.
- 102. A method of screening drugs to identify drugs which act as agonists of a Y2 receptor which comprises contacting a cell transfected with and expressing nucleic acid encoding the Y2 receptor with a plurality of drugs under conditions permitting the activation of a functional Y2 receptor response, and determining those drugs which activate such receptor using a bioassay, such as a second messenger assay, thereby identifying drugs which act as agonists of a Y2 receptor.
- 103. A method of screening drugs to identify drugs which act as agonists of a Y2 receptor which comprises preparing a cell extract from cells transfected with and expressing nucleic acid encoding the Y2 receptor, isolating a membrane fraction from the

5

30

35

143

cell extract, contacting the membrane fraction with a plurality of drugs under conditions permitting the activation of a functional Y2 receptor response, and determining those drugs which activate such receptor using a bioassay, such as a second messenger assay, thereby identifying drugs which act as agonists of a Y2 receptor.

- 104. A method of either of claims 102 or 103 wherein the 10 Y2 receptor is a human Y2 receptor.
 - 105. A method of either of claims 102 or 103 wherein the Y2 receptor is a rat Y2 receptor.
- 15 106. A method of screening drugs to identify drugs which act as antagonists of Y2 receptors which comprises contacting a cell transfected with and expressing nucleic acid encoding a Y2 receptor with a plurality of drugs in the presence of a known Y2 receptor agonist such as NPY under conditions permitting the activation of a functional Y2 receptor response, and determining those drugs which inhibit the activation of the receptor using a bioassay, such as a second messenger assay, thereby identifying drugs which act as antagonists of Y2 receptors.
 - 107. A method of screening drugs to identify drugs which act as antagonists of Y2 receptors which comprises preparing a cell extract from cells transfected with and expressing nucleic acid encoding the Y2 receptor, isolating a membrane fraction from the cell extract, contacting the membrane fraction with a plurality of drugs in the presence of a known Y2 receptor agonist such as NPY under conditions permitting the activation of a functional Y2 receptor response, and determining those drugs which inhibit the activation of the receptor using a

144

bioassay, such as a second messenger assay, thereby identifying drugs which act as antagonists of Y2 receptors.

=

:

ř

5 108. A method of either of claims 106 or 107 wherein the Y2 receptor is a human Y2 receptor.

109. A method of either of claims 106 or 107 wherein the Y2 receptor is a rat Y2 receptor.

110. A method of any of claims 102, 103, 106 or 107 wherein the second messenger assay comprises measurement of intracellular cAMP.

10

25

35

15 111. A method of any of claims 102, 103, 106, or 107 wherein the second messenger assay comprises measurement of intracellular calcium mobilization.

- 112. A method of any of claims 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, or 109 wherein the cell is a mammalian cell.
 - 113. A method of claim 112 wherein the mammalian cell is nonneuronal in origin.
 - 114. The method of claim 113 wherein the mammalian cell nonneuronal in origin is a Cos-7 cell.
- 115. The method of claim 113 wherein the mammalian cell
 30 nonneuronal in origin is a 293 human embryonic kidney cell.
 - 116. The cell of claim 115 designated 293-hY2-10 (ATCC Accession No. 11837).
 - 117. The method of claim 113 wherein the mammalian cell nonneuronal in origin is a LM(tk-) cell.

٠.

•

5

10

15

20

25

30

145

118. The method of claim 113 wherein the mammalian cell nonneuronal in origin is a NIH-3T3 cell.

- 119. The cell of claim 118 designated N-hY2-5 (ATCC Accession No. CRL-11825).
 - 120. A pharmaceutical composition comprising an effective amount of a drug identified by the method of either of claims 102 or 103 and a pharmaceutically acceptable carrier.
 - 121. A pharmaceutical composition comprising an effective amount of a drug identified by the method of either of claims 106 or 107 and a pharmaceutically acceptable carrier.
 - 122. A method of detecting expression of a Y2 receptor by a cell by detecting the presence of mRNA coding for a Y2 receptor which comprises obtaining total mRNA from the cell and contacting the mRNA so obtained with the nucleic acid probe of claim 39 under hybridizing conditions, and detecting the presence of mRNA hybridized to the probe, thereby detecting the expression of Y2 receptor by the cell.
- 123. A method of treating an abnormality in a subject, wherein the abnormality is alleviated by activation of a Y2 receptor which comprises administering to a subject an effective amount of the pharmaceutical composition of either of claims 94 or 120, thereby treating the abnormality.
- 124. A method of treating an abnormality in a subject, wherein the abnormality is alleviated by activation of a Y2 receptor which comprises administering to a subject an effective amount of Y2 receptor agonist determined by any of claims 74, 75, 102, or 103,

146

thereby treating the abnormality.

- 125. A method of treating an abnormality in a subject, wherein the abnormality is alleviated by decreasing the activity of a Y2 receptor which comprises administering to a subject an effective amount of the pharmaceutical composition of either of claims 96 or 121, thereby treating the abnormality.
- 10 126. A method of treating an abnormality in a subject, wherein the abnormality is alleviated by decreasing the activity of a Y2 receptor which comprises administering to the subject an effective amount of a Y2 receptor antagonist determined by the methods of any of claims 78, 79, 106, or 107, thereby treating the abnormality.
 - 127. The method of either of claims 125 or 126 wherein the abnormality is a cognitive disorder.
 - 128. The method of either of claims 125 or 126 wherein the abnormality is a gastrointestinal disorder.

20

- 129. The method of either of claims 125 or 126 wherein the abnormality is sleeping disorder.
 - 130. The method of either of claims 125 or 126 wherein the abnormality is epilepsy.
- 30 131. The method of either claims 125 or 126 wherein the abnormality is hypertension.
 - 132. The method of either of claims 123 or 124 wherein the abnormality is memory loss.
 - 133. The method of either of claims 123 or 124 wherein the abnormality is diarrhea.

147

- 134. The method of either of claims 123 or 124 wherein the abnormality is nasal congestion.
- 135. The method of either of claims 123 or 124 wherein the abnormality is pain.
 - 136. A method of treating an abnormality in a subject, wherein the abnormality alleviated by decreasing the activity of a Y2 receptor which comprises administering to the subject an amount of the pharmaceutical composition of claim 56 effective to block binding of ligands to the Y2 receptor, thereby treating the abnormality.

10

- 137. A method of treating an abnormality in a subject, wherein the abnormality is alleviated by decreasing the activity of a Y2 receptor which comprises administering to the subject an effective amount of the pharmaceutical composition of claim 51, thereby treating the abnormality.
 - 138. The method of either of claims 136 or 137 wherein the abnormality is a cognitive disorder.
- 25 139. The method of either of claims 136 or 137 wherein the abnormality is a gastrointestinal disorder.
 - 140. The method of either of claims 136 or 137 wherein the abnormality is epilepsy.
 - 141. The method of either of claims 136 or 137 wherein the abnormality is hypertension.
- 142. The method of either of claims 136 or 137 wherein the abnormality is sleeping disorder.
 - 143. A method of detecting the presence of a Y2 receptor

148

on the surface of a cell which comprises contacting the cell with the antibody of claim 46 under conditions permitting binding of the antibody to the receptor, and detecting the presence of the antibody bound to the cell, thereby detecting the presence of a Y2 receptor on the surface of the cell.

•

.

144. A method of determining the physiological effects of expressing varying levels of Y2 receptors which comprises producing a transgenic nonhuman mammal of claim 55 whose levels of human Y2 receptor expression are varied by use of an inducible promoter which regulates Y2 receptor expression.

15 145. A method of determining the physiological effects of expressing varying levels of Y2 receptors which comprises producing a panel of transgenic nonhuman mammals of claim 55 each expressing a different amount of Y2 receptor.

20

25

30

5

- 146. A method for identifying a Y2 receptor antagonist capable of alleviating an abnormality in a subject, wherein the abnormality is alleviated by decreasing the activity of a Y2 receptor which comprises administering the antagonist to a transgenic nonhuman mammal of any of claims 57, 58, or 59 and determining whether the antagonist alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal as a result of activity of a Y2 receptor, thereby identifying a Y2 antagonist.
 - 147. An antagonist identified by the method of claim 146.
- 35 148. A pharmaceutical composition comprising an effective amount of an antagonist identified by the method of claim 146 and a pharmaceutically acceptable carrier.

5

25

30

149

149. A method for treating an abnormality in a subject wherein the abnormality is alleviated by decreasing the activity of a Y2 receptor which comprises administering to the subject an effective amount of the pharmaceutical composition of claim 148, thereby treating the abnormality.

- 150. A method for identifying a Y2 receptor agonist capable of alleviating an abnormality wherein the abnormality is alleviated by activation of a Y2 receptor which comprises administering the agonist to the transgenic nonhuman mammal of any of claims 57, 58, or 59 and determining whether the agonist alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal, thereby identifying a Y4 receptor agonist.
- 20 151. An agonist identified by the method of claim 150.
 - 152. A pharmaceutical composition comprising an effective amount of an agonist identified by the method of claim 150 and a pharmaceutically acceptable carrier.

153. A method for treating an abnormality in a subject wherein the abnormality is alleviated by activation of a Y2 receptor which comprises administering to the subject an effective amount of the pharmaceutical composition of claim 152, thereby treating the abnormality.

- 154. A method for diagnosing a predisposition to a disorder associated with the activity of a specific Y2 receptor allele which comprises:
 - a. obtaining nucleic acid of subjects

150

suffering from the disorder;

	b.	performing a restriction digest of the nucleic acid with a panel of
5		restriction enzymes;
	c.	electrophoretically separating the resulting nucleic acid fragments on a sizing gel;
10		•
	d.	contacting the resulting gel with a nucleic acid probe capable of specifically hybridizing to nucleic acid encoding a Y2 receptor and
15		labelled with a detectable marker;
	e.	detecting labelled bands which have hybridized to the nucleic acid encoding a Y2 receptor labelled with a
20		detectable marker to create a unique band pattern specific to the nucleic acid of subjects suffering from the disorder;
25	f.	preparing nucleic acid obtained for diagnosis by steps a-e; and
	g.	comparing the unique band pattern specific to the nucleic acid of
30		subjects suffering from the disorder from step e and the nucleic acid obtained for diagnosis from step f to determine whether the patterns are the same or different and to diagnose
35		thereby predisposition to the disorder if the patterns are the same.

151

155. The method of claim 154 wherein a disorder associated with the expression of a specific Y2 receptor allele is diagnosed.

- 5 156. A method of preparing the isolated, purified Y2 receptor of claim 15 which comprises:
- a. constructing a vector adapted for expression in a cell which comprises the regulatory elements necessary for the expression of nucleic acid in the cell operatively linked to the nucleic acid encoding a Y2 receptor as to permit expression thereof, wherein the cell is selected from the group consisting of bacterial cells, yeast cells, insect cells and mammalian cells;
- 20 b. inserting the vector of step (a) in a suitable host cell;
- c. incubating the cells of step (b) under conditions allowing the expression of a Y2'receptor;
 - d. recovering the receptor so produced;
 - e. purifying the receptor so recovered.

30

ŧ

FIGURE 1

-	GACTCTTGTGCTGGTTGCAGGCCAAGTGGACCTGTACTGAAAATGGGTCCAATAGGTGCA	9
61	GAGGCTGATGAGAACCAGACAGTGGAAGAAATGAAGGTGGAACAATACGGGCCACAAACA	120
121	ACTCCTAGAGGTGAACTGGTCCCTGACCCTGAGCCAGAGCTTATAGATAG	180
181	ATTGAGGTACAAGTTGTTCTCATATTGGCCTACTGCTCCATCATCTTGCTTG	240
241	GGCAACTCCTTGGTGATCCATGTGGTGATCAAATTCAAGAGCATGCGCACAGTAACCAAC	300
301	TTTTTCATTGCCAATCTGGCTGTGGCAGATCTTTTGGTGAACACTCTGTGTCTACCGTTC	360
361	ACTCTTACCTATACCTTAATGGGGGAGTGGAAAATGGGTCCTGTCCTGTGCCACCTGGTG	420
421	CCCTATGCCCAGGGCCTGGCAGTACAAGTATCCACAATCACCTTGACAGTAATTGCCCTG	480
481	GACCGGCACAGGTGCATCGTCTACCACCTAGAGAGCAAGATCTCCAAGCGAATCAGCTTC	540
541	CTGATTATTGGCTTGGCCTGGGGCATCAGTGCCCTGCTGGCAAGTCCCCTGGCCATCTTC	009
601	CGGGAGTATTCGCTGATTGAGATCATCCCGGACTTTGAGATTGTGGCCTGTACTGAAAAG	099
661	TGGCCTGGCCAGGAGAGAGAGATCTATGGCACTGTCTATAGTCTTTCTT	720
721	TTGTATGTTTTGCCTCTGGGCATTATATCATTTTCCTACACTCGCATTTGGAGTAAATTG	780
781	AAGAACCATGTCAGTCCTGGAGCTGCAAATGACCACTACCATCAGCGAAGGCAAAAAACC	840
841	ACCAAAATGCTGGTGTGTGGTGGTGTTTGCGGTCAGCTGCCTGC	006
901	TTCCAGCTTGCCGTTGACATTGACAGCCAGGTCCTGGACCTGAAGGAGTACAAACTCATC	096
961	TTCACAGTGTTCCACATCATCGCCATGTGCTCCACTTTTGCCAATCCCCTTCTCTATGGC	1020
1021	TGGATGAACAGCAACTACAGAAAGGCTTTCCTCTCGGCCTTCCGCTGTGAGCAGCGGTTG	1080
1081	GATGCCATTCACTCTGAGGTGTCCGTGACATTCAAGGCTAAAAAGAACCTGGAGGTCAGA	1140
1141	AAGAACAGTGGCCCCAATGACTCTTTCACAGGGCTACCAATGTCTTAAGGAAGCTGTGGT	1200
1201	GTGAAAATGTATGGATGAATTCTGACCAGAGCTATGAATCTGGTTGATGGCGGCTCACAA	1260
1261	GTGAAAACTGATTTCCCATT 1280	

ら QK し T V P A S T E L X K H L V R V エタで対しるによなままでの人はよらま 口はこれでとれているとにはこれに らとしじれして まり ちょう ひょうしょう アメル **MANNASONIA ON CHANNAN** BUPOHAHAHOHEOUAFEX **XUMPOUFOUFOUFAUFOXX** MEKKYLS EADTFDFVSLFE 日中国の人口の日の日の日本日内日本工内の日本工内日本工人の 出のなり これの まままま ちり 対 丸 Viu ロムなままへのののほめんママでは风へよ ひむしまりむしまれまれむりひりまりはれ と 宜 中 V V ひ ひ 口 口 耳 B S V Y H N S D H O X I O K O K O K O I A F O H O STNATMHASTRYTASLYC **田ですらまずらしたないはとずすらよれる**

FIGURE 2

•		1	Ç
(į		Š
1	ı	1	ı
1	ĺ	1	ζ
1)
1	ĺ	1)
1	l		

1002	1002 ATGGGTCCAATAGGTGCAGAGGCTGATGAGAACCAGACAGTGGAAGAAAT 1051	1051
197		216
1052	GA	1101
217	CCAGGTTGAAAATCATTCAGTCCACTCTAATTTCTCAGAGAAGAATGCCC 266	992
1102	1102 CTGACCCTGAGCCAGAGCTTATAGATAGTACCAAGCTGATTGAGGTACAA 1151	1151
267		316
1152	GTTGTTCTCATATTGGCCTACTGCTCCATCATCTTGCGTAATTGG	1201
317	317 TTTACCTTAGCTCTTATGGAGCTGTGATCATTCTTGGTGTCTCTGG	366
1202	1202 CAACTCCTTGGTGATCCATGTGGTGATCAAATTCAAGAGCATGCGCACAG	1251
367	AAACCTGGCCTTGATCATCATCTTGAAACAAAAGGAGATGAGAAATG	416
1252	TAACCAACTTTTCATTGCCAATCTGGCTGTGGCAGATCTTTGGTGAAC 1301	1301
417	417 THE TOTAL TOTA	466

FIGURE 3B

1302	1302 ACTCTGTGTCTACCGTTCACTCTTACCTTAATGGGGGGGG	1351
467	ATCATGTGTCTCCCCTTTACATTTGTCTACACATTAATGGACCACTGGGT	516
1352	AATGGGTCCTGTCCTGCTGGTGCCCTATGCCCCAGGGCCTGGCAG 1401	1401
517		266
1402	1402 TACAAGTATCCACAATCACCTTGACAGTAATTGCCCTGGACCGGCACAGG 1451	1451
567		616
1452	1452 TGCATCGTCTACCACCTAGAGAGCAAGATCTCCAAGCGAATCAGCTTCCT 1501	1501
617	617 CTGATAATCAACCTCGAGGGTGGAGACCAAATAATAGACATGCTTATGT 666	999
1502	GATTATTGGC	1551
299		714
1552	1552 CCATCTTCCGGGAGTATTCGCTGATTGAGATCATCCCGGACTTTGAGATT 1601	1601
715		763

FIGURE 3C

1602	1602 GTGGCCTGTACTGAAAAGTGGCCTGGCGAGGAGAAGAGCAT 1642	1642
764		813
1643	CTATGGCACTGTCTATAGTCTTTCTTCTTGT	1692
814		863
1693	CTCTGGGCA	1734
864		913
1735	1735 AATTGAAGAACCATGTCAGTCCTGGAGCTGCAAATGACCACTACCATCAG	1784
914		963
1785	CGAAGGCAAAA. AACCACCAAAATGCTGGTGTGTGTGTGTGTGTGTTTG	1833
964		1013
1834	TCCATGCCTTCCAGCTTGCCGTTGACATTGAC	1883
1014		1063

٠,

FIGURE 3D

1884	AGCCAGGTCCTGGACCTGAAGGAGTACAAACTCATCTTCACAGTGTTCCA	1933
1064	1064 CATCAGATCATTGCTACCTGCAACCACAATCTGTTATTCCTGCTCTGCCA 1113	1113
1934	CATCATCGCCATGTGCTCCACTTTTGCCAATCCCCTTCTATGGCTGGA 1983	1983
1114		1163
1984	<u>-</u>	2030
1164	TGAACAAAAACTTCCAGAGACTTGCAGTTCTTCTTCAACTTTTGTGAT 1213	1213
2031	2031 CAGCGGTTGGATGCCATTCACTCTGAGGTGTCCGTGACATTCAAG	2075
1214	Trecegretegeargatratgaaacaatagecatgtecacgatgea 1263	1263
2076		2115
1264	CACAGATGTTTCCAAAACTTCTTTGAAGCAAGCAAGCCCAGTCGCATTTA 1313	1313
2116	2116 ATGACTCTTTCACAGAGGCTACCAATGTCTAA 2147	
1314		

FIGURE 4A

FIGURE 4A FIGURE 4B

150 189 200 VVLILAYCSIILLGVIGNSLVIHVVIKFKSMRTVTNFFIANLAVADLLVN 100 .:|||||:.||||:.|| :|-:|-| |:.|-:: ||.:.|-:||::||.
IMCLPFTFVYTLMDHWVFGEAMCKINPFVQCVSITVSIFSLVLIAVERHQ 140 50 TLCLPFTLTYTLMGEWKMGPVLCHLVPYAQGLAVQVSTITLTVIALDRHR MGPIGAEADENQTVEEMKVEQYGPQTTPRGELVPDPEPELIDSTKLIEVQ FTLALAYGAVIILGVSGNLALIIILKQKEMRNVTNILIVNLSFSDLLVA LIINPRGWRPNNRHAYVGIAVIWVLAVASSLPFLIYQVMT.DEPFQNVTL MNSTLFSQVENHSVH....SNFSEKNAQLLAFEND.....DCHLPLAMI CIVYHLESKISKRISFLIIGLAWGISALLASPLAIFREYSLIEIIPDFEI • 51 91 141 41 101 151

FIGURE 4B

6	Times	
385	336 NFCDFRSRDDDYETIAMSTMHTDVSKTSLKQASPVAFKKINNNDDNEKI*	33
376	337 LSAFRCEORLDAIHSEVSVT.FKAKKNLEVRK.NSGPNDSFT 376	33
335	286 FDWNHQIIATCNHNLLFLLCHLTAMISTCVNPIFYGFLNKNFQRDLQFFF	28
336	291 VDIDSQVLDLKEYKLIFTVFHIIAMCSTFANPLLYGWMNSNYRKAF	29
285	236 IRLKRRNNMMDKMRDNKYRSSETKRINIMLLSIVVAFAVCWLPLTIFNTV	23
290	244 SKLKNHVSPGAANDHYHQRRQKTTK.MLVCVVVVFAVSWLPLHAFQLA 290	24
235	::: : :: : : : :: :: :: :: ::	19
747	201 VACTERWPGEERSIYGIVISDSSDD1DIVDPDG11SFSYIKIW 243	7

9/35 FIGURE 5A

FIGURE 5B

FIGURE 6

11/35

FIGURE 8A	FIGURE 8A FIGURE 8B FIGURE 8C FIGURE 8D FIGURE 8D FIGURE 8D
-200 -180	-160
• GTTGTTAACAGACTCGTGTAAAGGATTTGCTTTATGGAGCTTTTATGAGATCTGTGGTGT	ATGGAGCTTTTATGAGATCTGTGGTGT
-140	-100
GATGAATCAGAACACAGCTACGCAGAGGAGCTCAGCCTAAACTAAATCAACCCTTTAGG	AGCCTAAACTAAATCAACCCCTTTAGG
09-	-40
ATGGTTCTCTGTTTCACTATTTTTTTAATGTCGTTTTTCTGTTATAGATTCTTGTGCTA	cgttttctgttatagattcttgtgcta
-20 1	20
TCTGCAGGCCAAATTGGAACTGAGGTGAAGATGGGCCCATTAGGTGCAGAGGCAGATGAG M G P L G A E A D E	G P L G A E A D E
40 60	08
AATCAAACTGTAGAAGTGGAACTCTATGGGTCGGGGCCCACCACTCCTAGAGGT N Q T V E V K V E L Y G S G P T T P R G	GGGTCGGGCCCACCACTCCTAGAGGT

140	caccaaactggttgaggtgcag T K L V E V Q	200	GGGCGTAGTTGGCAACTCTCTG G V V G N S L	260	AGTAACCAACTTTTTTTTGCC V T N F F I A	320
120	GGAGCTCATAGACAGC E L I D S	180	TTCCATCATCTTGCTG S I I L L	240	CAAGAGCATGCGCACP KSMRT	300
100	GAGTIGCCCCCTGATCCAGAGCCCCATAGACAGCACCACCAAACTGGTTGAGGTGCAG E L P P D P E P E L I D S T K L V E V Q	160	GTGGTCCTTATACTGGCCTATTGTTCCATCATCTTGCTGGGCGTAGTTGGCAACTCTCTG V V L I L A Y C S I I L L G V V G N S L	220	GTAATCCATGTGGTGATCAAATTCAAGAGCATGCGCACAGTAACCAACTTTTTTTT	280

FIGURE 8B

ACCTTGATGGGGAGTGGAAAATGGGTCCAGTTTTGTGCCATTTTGGTGCCCTATGCCCAG 380 360

[2]

G

а

3

回

ບ

A

>

Н

臼

089

099

640

FIGURE 8C

۲.

14/35

400 GETCTGGCAGTACAAGTGTCCACAATAACTTTGACAGTCATTGCTTTGGACCGACATCGT G L A V Q V S T I T L T V I A L D R H R	4. A	400 CAGT	ACA Q	AGT V	GTC	CAC	AAT I	420 AACT	O TTTT L	GAC	AGT V	CAT	TGC A	TTT	440 GGA(SCG R	ACA H	TCGT R
	4	460						480	0						500			
TGCATTGTCTACCACCTGGAGGAGCAAGCAAATCAGCTTCCTGATTATTG(C I V Y H L E S K I S K Q I S F L I I G	GT(CTA	CCA	CCT	GGA E	GAG	CAA	GAT	CTC	CAA K	GCA	AAT I	CAG S	CTT	CCT	GAT I	TAT I	TGCATTGTCTACCACCTGGAGAGCAAGCAAATCAGCTTCCTGATTATTGGC
	Ŋ	520						540	0						560			
CTGGCGTGGGGTGTCAGCGCTGGCAAGTCCCCTTGCCATCTTCCGGGAGTACTCA	ĭŢĞ W		TGT V	CAG S	cgc A	TCT	GCT	GGC	AAG	TCC	CCT	TGC A	CAT	CTT	CCG	GGA	GTA	CTCA
	ιζ	280						009	0						620			
CTGATTGAGATTATTCCTGACTTTGAGATTGTAGCCTGTACTGAGAAATGGCCCGGGGAG	'GA	GAT	TAT	TCC	TGA	CTT	TGA	GAT	TGT	AGC	CTG	TAC	TGA	GAA	ATG	ညည	990	GGAG

GAGAAGAGTGTACGGTACAGCCTTTCCACCCTGCTAATCCTCTACGTTTTG E K S V Y G T V Y S T C T T

FIGURE 8D

4

15/35

	CCTCTGGGCATCATATCTTCTCCTACACCCGGATCTGGAGTAAGCTAAAGAACCACGTT	>		AGTCCTGGAGCTGCAAGTGACCATTACCATCAGCGAAGGCACAAAACGACCAAAATGCTC	ᄀ		GTGTGCGTGGTAGTGCTGTTTGCAGTCAGCTGCCTGCCCTCCATGCCTTCCAACTTGCT	Ø	
	CCA(H		AAT(Σ		ACT.	ы	
	3AA(z		CAA	×		CCAZ	ŏ	
740	AAA(P L G I I S F S Y T R I W S K L K N H V	800	GAC	S P G A A S D H Y H Q R R H K T T K M L	860	CTT(V C V V V F A V S W L P L H A F Q L A	920
	GCT	ı		AAC	딛		IGC	Ø	
	I'AA	ĸ		CAA	×		CCA	# .	
	GAG	လ		GCA(н		CCT	ы	
	CTG	M		AAG	~		SC GC GC	ы	
	GAT	Н		gce	~		CT	ы	
0	900	~	0	TCA	O	0	CTG	3	0
720	CAC	E	780	CCA	Ξ	840	CAG	တ	900
	CTA	>		TTA	>		AGT	>	
	CTC	လ		CCA	Ħ		IGC	Æ	
	TTT	[z.,		TGA	Ω		GTT	[zı	
	ATC	လ		AAG	လ		GGT	> .	
	CAT	Н		IGC	A		AGT	>	
700	CAT	 1	160	AGC	A	820	GGT	>	880
_	999	G	7	TGG	ტ	80	CGT	>	Φ
	TCT	П		TCC	ы		ĞTĞ	<u>ی</u>	
	ည	Д		AG	ഗ		GT	>	

GTGGACATCGACATGTCCTGGACCTGAAGGAGTACAAACTCATCTTCACCGTGTTC V D I D S H V L D L K E Y K L I F T V F CACATTATTGCGATGTGCTCCACCTTCCTTCTTATGGCTGGATGAACAGCH I I A M C S T F A N P L L Y G W M N S 980 960

FIGURE 8E

4

CCATTAGGTGCAGAGGCAGAATCAAACTGTAGAAGTGAAAGTGGAATTCTATGGG AGCACCAAACTGGTTGAGGTGCAGGTGGTCCTTATACTGGCCTATTGTTCCATCATCTTG TTTCTGTTATAGATTCTTGTGCTATCTGCAGGCCAAATTGGAACTGAGGTGAAGATGGGC TCGGGGCCCACCACTCCTAGAGGTGAGTTGCCCCTGATCCAGAGCCGGAGCTCATAGACS G P T T P R G E L P P D P E P E L I D CTGGGCGTAGTTGGCAACTCTGGTAATCCATGTGGTGATCAAATTCAAGAGCATGCGC ტ FIGURE 9C FIGURE 9A FIGURE 9B Σ -10 50 170 230 FIGURE 9A -30 30 150 90 Z G -50 190 70

FIGURE 9B	

290

250

CAAATCAGCTTCCTGATTATTGGCCTGGCGTGTCAGCGCTCTGCTGGCAAGTCCC GTCATTGCTTTGGACCGACATCGTTGCATTGTCTACCACCTGGAGGGCAAGATCTCCAAG 530 ഥ Ж 490

470

450

FIGURE 9C

	CTTGCCATCTTCCGGGAGTACTCACTGACTTTGAGATTGTAGCC L A I F R E Y S L I E I I P D F E I V A		TGTACTGAGAAATGGCCCGGGGAGAGAGAGTGTGTACGGTACAGTCTACAGCCTTTCC C T E K W P G E E K S V Y G T V Y S L S		ACCCTGCTAATCCTCTACGTTTTGCCTCTGGGCATCATATCTTTCTCCTACACCCGGATC		TGGAGTAAGCTAAAGAACCACGTTAGTCCTGGAGCTGCAAGTGACCATTACCATCAGCGA W S K L K N H V S P G A A S D H Y H Q R	
0	ACT	0	CAG1	0	TCTC	0	ACCI H	0
590	CTG D	650	STA T	710	TT	770	3TG D	830
	TC(P		ອິ		AT(S		AA(S	
	TAT I		GTA		'CAT I		TGC	
	GAT		rgi V		CAT		AGC A	
	TGA(E		GAG' S		9999		TGG, G	
	GAT' I		GAA K		${f TCT}^{f '}$		TCC	•
0	ACT	0	GGA	0	GCC P	0	TAG S	0
570	CTC	630	GGA	069	${f TTT}$	750	CGT	810
	GTA Y		၅၅၁		CGT		CCA H	
	GGA E		OCC P		CTA Y		GAA N	
	CCG		ATG W		CCT L		AAA K	
	CTT		GAA K		AAT I		GCT	
	CAT		rga E		GCT		TAA K	
550	rgc(A	610	rac' T	019	CCT	730	GAG	790
Š	CT	9	TG	9	AC	7	∄ ™	7

FIGURE 9D

FIGURE 10A

50	100	150	200	250	300	350
50	100	150	200	250	300	350
50	100	150	200	250	300	350
ATGGGTCCAATAGGTGCAGAGGCTGATGAGAACCAGACAGTGGAAGAAAT ATGGGCCCATTAGGTGCAGAGGCAGATGAGAATCAAACTGTAGAAGTGAA ATGGGCCCATTAGGTGCAGAGGCAGATGAGAATCAAACTGTAGAAGTGAA	GAAGGTGGAACTACGGGCCACAAACAACTCCTAGAGGTGAACTGGTCC AGTGGAACTCTATGGGTCGGGGCCCACCACTCCTAGAGGTGAGTTGCCCC AGTGGAATTCTATGGGTCGGGGCCCACCACTCCTAGAGGTGAGTTGCCCC	CTGACCCTGAGCCAGAGCTTATAGATAGTACCAAGCTGATTGAGGTACAA 1 CTGATCCAGAGCCGGAGCTCATAGACAGCACCAAACTGGTTGAGGTGCAG 1 CTGATCCAGAGCCGGAGCTCATAGACAGCACCAAACTGGTTGAGGTGCAG 1	GTTGTTCTCATATTGGCCTACTGCTCCATCATCTTGCTTG	CAACTCCTTGGTGATCCATGTGGTGATCAAATTCAAGAGCATGCGCACAG CAACTCTCTGGTAATCCATGTGGTGATCAAATTCAAGAGCATGCGCACAG CAACTCTCTGGTAATCCATGTGGTGATCAAATTCAAGAGCATGCGCACAG	TAACCAACTTTTTCATTGCCAATCTGGCTGTGGCAGATCTTTTGGTGAAC TAACCAACTTTTTTATTGCCAACCTGGCTGTGGCGGATCTTTTGGTGAAC TAACCAACTTTTTTTTTGCCAACCTGGCTGTGGCGGATCTTTTGGTGAAC	ACTCTGTGTCTACCGTTCACTCTTACCTATACCTTAATGGGGGGGG
Y2	Y2	Y2	Y2	Y2	Y2	Y2
Y2a	Y2a	Y2a	Y2a	Y2a	Y2a	Y2a
Y2b	Y2b	Y2b	Y2b	Y2b	Y2b	Y2b
Hum	Hum	Hum	Hum	Hum	Hum	Hum
Rat	Rat	Rat	Rat	Rat	Rat	Rat
Rat	Rat	Rat	Rat	Rat	Rat	Rat

FIGURE 10B

400	450	500	550	009	650	700
400	450	500	550		650	700
400	450	500	550		650	700
AATGGGTCCTGTCCTGTGCCACCTGGTGCCCTATGCCCCAGGGCCTGGCAG AATGGGTCCAGTTTTGTGCCATTTGGTGCCCTATGCCCCAGGGTCTGGCAG AATGGGTCCAGTTTTGTGCCATTTGGTGCCCTATGCCCAGGGTCTGGCAG	TACAAGTATCCACAATCACCTTGACAGTAATTGCCCTGGACCGGCACAGG TACAAGTGTCCACAATAACTTTGACAGTCATTGCTTTGGACCGACATCGT TACAAGTGTCCACAATAACTTTGACAGTCATTGCTTTGGACCGACATCGT	TGCATCGTCTACCACCTAGAGAGCAAGATCTCCAAGCGAATCAGCTTCCT TGCATTGTCTACCACCTGGAGAGCAAGATCTCCAAGCAAATCAGCTTCCT TGCATTGTCTACCACCTGGAGAGCAAGATCTCCAAGCAAATCAGCTTCCT	GATTATTGGCCTTGGCGCATCAGTGCCCTGCTGGCAAGTCCCCTGG GATTATTGGCCTGGCGTGTGGGGTTCAGCGCTCTGCTGGCAAGTCCCCTTG GATTATTGGCCTGGCGTGGGGTGTCAGCGCTCTGCTGGCAAGTCCCCTTG	CCATCTTCCGGGAGTATTCGCTGATTGAGATCATCCCGGACTTTGAGATT CCATCTTCCGGGAGTACTCACTGATTGAGATTATTCCTGACTTTGAGATT CCATCTTCCGGGAGTACTCACTGATTGAGATTATTCCTGACTTTGAGATT	GTGGCCTGTACTGAAAAGTGGCCTGGCGAGGAGAAGAGCATCTATGGCAC GTAGCCTGTACTGAGAAATGGCCCGGGGAGGAGAAGAGTGTGTACGGTAC GTAGCCTGTACTGAGAAATGGCCCGGGGAGGAGAAGAGTGTGTACGGTAC	TGTCTATAGTCTTTCTTCCTTGTTGATCTTGTATGTTTTGCCTCTGGGCA AGTCTACAGCCTTTCCACCCTGCTAATCCTCTACGTTTTGCCTCTGGGCA AGTCTACAGCCTTTCCACCCTGCTAATCCTCTACGTTTTGCCTCTGGGCA
Y2	Y2	Y2	Y2	Y2	Y2	Y2
Y2a	Y2a	Y2a	Y2a	Y2a	Y2a	Y2a
Y2b	Y2b	Y2b	Y2b	Y2b	Y2b	Y2b
Hum	Hum	Hum	Hum	Hum	Hum	Hum
Rat	Rat	Rat	Rat	Rat	Rat	Rat
Rat	Rat	Rat	Rat	Rat	Rat	Rat
				·		

FIGURE 10C

750 750 750	800	850 850 850	006	950 950 950	1000 1000 1000	1050 1050 1050
TTATATCATTTTCCTACACTCGCATTTGGAGTAAATTGAAGAACCATGTC TCATATCTTTCTCCTACACCCGGATCTGGAGTAAGCTAAAGAACCACGTT TCATATCTTTCTCCTACACCCGGATCTGGAGTAAGCTAAAGAACCACGTT	AGTCCTGGAGCTGCAAATGACCACTACCATCAGCGAAGGCCAAAAAGCACAAAAACAAAAAAAA	CAAAATGCTGGTGTGTGTGGTGGTGTGTTTTGCGGTCAGCTGGCTG	TCCATGCCTTCCAGCTTGCCGTTGACATTGACAGCCAGGTCCTGGACCTG TCCATGCCTTCCAACTTGCTGTGGACATCGACAGCCATGTCCTGGACCTG	AAGGAGTACAAACTCATCTTCACAGTGTTCCACATCATCGCCATGTGCTC AAGGAGTACAAACTCATCTTCACCGTGTTCCACATTATTGCGATGTGCTC	CACTTTTGCCAATCCCCTTCTCTATGGCTGGATGAACAGCAACTACAGAA CACCTTCGCCAACCCCCTTCTCATGGCTGGATGAACAGCAACTACAGAA	AGGCTTTCCTCTCGGCCTTCCGCTGTGAGCAGCGGTTGGATGCCATTCAC AAGCTTTCCTCTCAGCCTTCCGCTGTGAGCAGGGTTGGATGCCATTCAC AAGCTTTCCTCTCAGCCTTCCGCTGTGAGCAGGGTTGGATGCCATTCAC
Y2 Y2a Y2b	Y2 Y2a Y2b	Y2 Y2a Y2b	Y2 Y2a Y2b	Y2 Y2a Y2b	Y2 Y2a Y2b	Y2 Y2a Y2b
Hum Rat Rat	Hum Rat Rat	Hum Rat Rat	Hum Rat Rat	Hum Rat Rat	Hum Rat Rat	Hum Rat Rat

FIGURE 10D

TCTGAGGTGTCCGTGACATTCAAGGCTAAAAAGAACCTGGAGGTCAGAAA 1100 a TCGGAGGTGTCCATGACCTTCAAGGCTAAAAAGAACCTGGAAGTCAAAAA 1100 o TCGGAGGTGTCCATGACCTTCAAGGCTAAAAAGAACCTGGAAGTCAAAAA 1100	Hum Y2 GAACAGTGGCCCCAATGACTCTTTCACAGAGGCTACCAATGTCTAA 1146 Rat Y2a GAACAATGGCCTCACTGACTCTTTTTCAGAGGCCACGACGTGTAA 1146 Rat Y2h GaacaarggCCTCACTGACTCTTTTTTAGAGGCCACCAACGTGTAA 1146
Hum Y2 Rat Y2a Rat Y2b	Hum Y2 Rat Y2a
Hun Rat Rat	Hum Rat

FIGURE 11A

			IIA		
Hum Y2	¥2	LKEYKL IF	FVFHIIAMCSTFANPLLYGWM		349
Rat Y2a	Y2a	LKEYKL IF	IVEHIIAMCSTFANPLLYGWM	LKEYKL IFTVFHIIAMCSTFANPLLYGWM NSNYRKAFLSAFRCEÖRLDAI 3	349
Rat Y2b	Y2b	LKEYKL IF	TVFHIIAMCSTFANPLLYGWM	LKEYKL IFTVFHIIAMCSTFANPLLYGWM NSNYRKAFLSAFRCEORLDAI 34	349
Hum	1 Y2	HSEVSVTFK?	HSEVSVTFKAKKNLEVRKNSGPNDSFTEATNV		
Rat Y2a	Y2a	HSEVSMTFK	HSEVSMTFKAKKNLEVKKNNGLTDSFSEATNV	NV 381	
Dat Voh	V2h	HCFVCMFFK	HOFVOMPEKAKKNI FVKKNNGI TOGFOFANV		

FIGURE 11B

27/35

..

29/35

FIGURE 12G

FIGURE 12H

Cervical Spinal Cord

WO 95/21245 PCT/US95/01469

31/35

FIGURE 14

32/35

WO 95/21245 PCT/US95/01469

33/35

FIGURE 16

Amygdala
Caudate Nucleus
Corpus Callosum
Hippocampus
Hypothalamus
Substantia Nigra
Substantia Nigra
Subthalamic Nucleus
Thalamus

9.5 **-**7.5 **-**

2.4 -

1.4-

SUBSTITUTE SHEET (RULE 26)

WO 95/21245 PCT/US95/01469

34/35

FIGURE 17

35/35

SUBSTITUTE SHEET (RULE 26)

International application No.

		PC1/0393/01469			
A. CLASSIFICATION OF SUBJECT MATTER IPC(6) : Please See Extra Sheet. US CL : Please See Extra Sheet. According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum d	ocumentation searched (classification system followe	d by classification symbols)			
U.S. : 435/69.1, 70.1, 70.3, 71.1, 172.1, 240.1, 240.2, 320.1; 536/23.1, 23.5, 24.31; 530/350					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
APS; STI	•	ame of data base and, where practicable, search terms used) arch terms include: neuropeptide Y, NPY, Y1, Y2 (all with			
C. DOC	UMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages Relevant to claim No.			
Y	Annals of the New York Academy of Sciences, Volume 611, issued 15 November 1990, A. Inui et al, "Peptide YY Receptors in Mammalian and Avian Brains", pages 350-352, see entire document.				
Y	Neuroscience Letters, Volume 140 et al, "Intracerebroventricularly Ad Blocks the Central Vasopressor Ac 36) in the Awake Unrestrained M see entire document.	ministered Pertussis Toxin tion of Neuropeptide Y(13-			
X Furth	ner documents are listed in the continuation of Box C	. See patent family annex.			
_	ecial categories of cited documents: cument defining the general state of the art which is not considered	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
to be of particular relevance "E" carlier document published on or after the international filing date		"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step			
*L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		"Y" document of particular relevance; the claimed invention cannot be			
O do	coint reason (as specified) cument referring to an oral disclosure, use, exhibition or other ann	considered to involve an inventive step when the document is considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art			
	cument published prior to the international filing date but later than priority date claimed	"&" document member of the same patent family			
Date of the	actual completion of the international search	Date of mailing of the international search report 16MAY1995			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		Authorized officer Allang Feigen fr			
Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196			

Facsimile No. (703) 305-3230
Form PCT/ISA/210 (second sheet)(July 1992)*

pct/US95/01469

	and the second s	Delement to alaim Ma
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	Brain Research, Volume 596, issued 1992, C. Blasquez et al, "Neuropeptide Y Inhibits α -MSH Release from Rat Hypothalamic Slices Through a Pertussis Toxin-sensitive G Protein", pages 163-168, see entire document.	1-42, 122, 156
Y	Life Sciences, Volume 50, issued 1991, C. Wahlestedt et al, "Identification of Cultured Cells Selectively Expressing Y1-, Y2-, or Y3-Type Receptors for Neuropeptide Y/Peptide YY", pages PL-7-PL-12, see entire document.	1-42, 122, 156
Y	Journal of Biological Chemistry, Volume 266, Number 35, issued 15 December 1991, S. Sheikh et al, "Solubilization and Affinity Purification of the Y ₂ Receptor for Neuropeptide Y and Peptide YY from Rabbit Kidney", pages 23959-23966, see entire document.	1-42, 122, 156
Y	Annals of the New York Academy of Sciences, Volume 611, issued 15 November 1990, C. Wahlestedt et al, "Neuropeptide Y Receptor Subtypes, Y1 and Y2", pages 7-25, see pages 12-16 and 19-21.	1-42, 122, 156
	· ·	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

International application No. PCT/US95/01469

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1. Claims Nos.: because they relate to subject matter not required to be searched by this Autho	rity, namely:				
·					
Claims Nos.: because they relate to parts of the international application that do not comply will an extent that no meaningful international search can be carried out, specifically					
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the secondance with the secondance.	nd and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of	first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:					
Please See Extra Sheet.					
	I				
	-1				
As all required additional search fees were timely paid by the applicant, this interclaims.	national search report covers all searchable				
As all searchable claims could be searched without effort justifying an additional of any additional fee.	fee, this Authority did not invite payment				
3. As only some of the required additional search fees were timely paid by the applied only those claims for which fees were paid, specifically claims Nos.:	cant, this international search report covers				
No required additional search fees were timely paid by the applicant. Conserver restricted to the invention first mentioned in the claims; it is covered by claims 1-42, 122 and 156					
Remark on Protest					
No protest accompanied the payment of additional se	arch fees.				

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

International application No. PCT/US95/01469

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C12N 5/10, 5/16, 7/01, 15/00, 15/09, 15/10, 15/11, 15/12, 15/16, 15/63; C07H 21/00, 21/04; C07K 14/00, 14/705, 14/72

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

435/69.1, 70.1, 70.3, 71.1, 172.1, 240.1, 240.2, 320.1; 536/23.1, 23.5, 24.31; 530/350

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-42, 122 and 156, drawn to nucleic acids, probes and corresponding proteins, classified in U.S. Class 435, subclass 69.1, for example.

Group II, claims 43-45 and 51-55, drawn to antisense oligonucleotides, classified in U.S. Class 536, subclass 23.1; Class 514, subclass 44.

Group III, claims 46-50 and 56, drawn to antibodies, classified in U.S. Class 530, subclass 387.1.

Group IV, claims 57-62, drawn to transgenic animals, classified in U.S. Class 800, subclass 2.

Group V, claims 63-72, 74-87, 89-90, 98-115 and 117-118, drawn to binding assays, classified in U.S. Class 436, subclass 501.

Group VI, claims 73, 92 and 93, drawn to ligands, classified in U.S. Class 532, subclass 1, for example.

Group VII, claims 88, 91, 116 and 119, drawn to cells, classified in U.S. Class 435, subclass 240.1.

Group VIII, claims 94-95, 151 and 152, drawn to agonists, classified in U.S. Class 514, subclass 1.

Group IX, claims 96-97, 147 and 148, drawn to antagonists, classified in U.S. Class 514, subclass 1.

Group X, claims 120-121, drawn to drugs, classified in U.S. Class 514, subclass 1.

Group XI, claims 123-124, and 153, drawn to methods of treatment with agonists, classified in U.S. Class 514, subclass 1.

Group XII, claims 125-126, 149 and/or 127-135, drawn to methods of treatment with antagonists, classified in U.S. Class 514, subclass 1.

Group XIII, claim 136 and/or claims 138-142, drawn to methods of treatment with antibodies, classified in U.S. Class 424, subclass 85.8.

Group XIV, claim 137 and/or claims 138-142, drawn to methods of treatment with antisense oligonucleotides, classified in U.S. Class 514, subclass 44.

Group XV, claim 143, drawn to method of detection using antibodies, classified in U.S. Class 436, subclass 501.

Group XVI, claims 144-145, drawn to methods of determining physiological effects using transgenic animals, classified in U.S. Class 424, subclass 9.

Group XVII, claims 154-155, drawn to methods of diagnosis using nucleic acid probes, classified in U.S. Class 435, subclass 6.

Form PCT/ISA/210 (extra sheet)(July 1992)*

International application No.
PCT/US95/01469

Group XVIII, claim 146, drawn to method for identifying antagonists using transgenic animals, classified in U.S. Class 424, subclass 9.

Group XIX, claim 150, drawn to method for identifying agonists using transgenic animals, classified in U.S. Class 424, subclass 9.

The inventions listed as Groups I-XIX do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features; i.e., the claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept, for the following reasons:

Groups I-IV and VI-X are materially distinct compositions of matter that are distinguished, each from the other, by their special technical features:

The polynucleotides and polypeptides of Group I, the antisense oligonucleotides of Group II, the antibodies of Group III, the transgenic animals of Group IV, the ligands of Group VI, the cells of Group VII, the agonists of Group VIII, the antagonists of Group XIX, and the drugs of Group X have materially different structures and functions.

The compositions of Groups I-IV and VI-X are not restricted for use in the methods of Groups V and XI-XIX, but can be used for materially different purposes, or at least for a single method from among those listed in Groups V and XI-XIX.

Groups V and XI-XIX are materially distinct methods which are distinguished, each from the other, by their process steps. The process steps accomplish materially distinct purposes and these special technical features do not link the methods as to form a single inventive concept.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be examined, the appropriate additional examination fees must be paid. The species are as follows:

Drugs; agonists; antagonists; antibodies; and antisense oligonucleotides.

The claims are deemed to correspond to the species listed above in the following manner:

Claim 124: method employing agonist; Claim 126: method employing antagonist; Claim 136: method employing antisense oligonucleotides; Claim 137: method employing antibodies.

The following claims are generic: 123 (claiming either of the species of drugs or agonists); 125 and 127-135 (claiming either of the species of drugs or antagonists); 138-142 (claiming either of the species of antibodies or antisense oligonucleotides).

The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: The drugs, agonists, antagonists, antipodies and antisense oligonucleotides are materially different compositions of matter that are distinguished, each from the other, by their special technical features, including their materially different structures and functions.

Accordingly, the claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept.

Form PCT/ISA/210 (extra sheet)(July 1992)*