

Business Intelligence

Knowledge Discovery in Databases

Prof. Leandro Guerra

E-mail: leandro.guerra@outspokenmarket.com.br IG: @leandrowar

Business Intelligence Nível de Maturidade

Relembrar é viver...

Ele é constituído de seis etapas

- Entendimento do Negócio
- Entendimento dos Dados
- Preparação dos Dados
- Modelagem
- Avaliação
- Entrega

Business Intelligence& Data Mining

^{*}Introduction to KDD and data mining - http://www.mimuw.edu.pl/~son/datamining/DM/1-intro.pdf

Knowledge Discovery in Databases

"É o processo de descobrir conhecimento útil de uma ou mais bases de dados. É um processo amplamente utilizado, que inclui preparação dos dados, hieginação, seleção e técnicas de data mining para encontrar padrões que possam ser interpretados e transformado em conhecimento, auxiliando o processo de tomada de decisão"

^{*}Etapas dos processo de KDD (Fayyad et. al. 1996)

KDD Etapas

1 – Entendimento do Negócio

3 – Data *cleaning* e pré-processamento

- Tratamento de outliers
- Tratamento de missings

5 – Escolha da tarefa de data mining

- Classificação
- Regressão
- Agrupamento (Clustering)
- Associação

6 – Escolha do algoritmo

2 – Entendimento e escolha dos dados

4 - Featuring Engineering e Feature Selection

7 - Execução

8 – Interpretação dos resultados

Etapa 5 – Escolha da tarefa de data mining

Exemplo: Customer Churn

Valor da Fatura

Etapa 5 – Escolha da tarefa de data mining

Exemplo: Regressão Linear

Valor da Fatura

Etapa 5 – Escolha da tarefa de data mining

Exemplo: Classificação Linear

Valor da Fatura

Etapa 5 – Escolha da tarefa de data mining

Exemplo: Classificação Não-Linear

Valor da Fatura

Etapa 5 – Escolha da tarefa de data mining

Exemplo: Clustering – K-Means

Valor da Fatura

Clustering no R K-Means – Demonstração do Algoritmo

1) k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

 k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

Demonstration of the standard algorithm

 The centroid of each of the k clusters becomes the new mean.

 Steps 2 and 3 are repeated until convergence has been reached.

```
#Selecionando o diretorio de trabalho
source('C:/Users/Leandro/Google Drive/FMU/kmeans.R')
**********
### Preparação dos dados ###
**********
#Limpando o environment
rm(list=ls())
#Limpando os NAs
base <- na.omit(iris)</pre>
#Padronizando as variáveis
base2 <- data.frame(scale(base[,1:4]))</pre>
base2$Species <- base$Species
base <- base2
#Determinando o número de clusters
wss <- (nrow(base)-1) *sum(apply(base[,1:4],2,var))
#15 será o número de Cluster máximo para teste
for (i in 2:15) {
      wss[i] <- sum(kmeans(base[,1:4],centers=i)$withinss)
#Cria o gráfico mostrando o número de clusters x erro
plot(1:15, wss, type="b", xlab="Número de Clusters",
     ylab="Soma dos quadradados - Erro", main = "Clusters x Erro")
```

Clusters x Erro

> table(base\$kmedias.cluster,base\$Species)

	setosa	versicolor	virginica
1	0	11	36
2	0	39	14
3	50	0	0

Cluster - Espécies

Component 1 These two components explain 94.19 % of the point variability.

Clustering no R Dendograma

```
**********************
### Criando um Dendograma ###
**********************
#Base mtcars
#Limpando os NAs
base mtcars <- na.omit(mtcars)</pre>
#Padronizando as variáveis
base mtcars <- scale(base mtcars)
#Cria uma clusterização hierarquica
#Cria a matriz de distâncias
distancia <- dist(base mtcars, method = "euclidean")
dendo <- hclust(distancia, method="ward.D")
#Plota o dendograma
plot (dendo)
#Divide o dendograma em 5 grupos
grupos <- cutree (dendo, k=5)
#Desenha uma borda azul
rect.hclust(dendo, k=8, border="blue")
```

Clustering no R Dendograma

Cluster Dendrogram

distancia hclust (*, "ward.D")

Clustering no R Dendograma

distancia hclust (*, "ward.D")

Voltando ao Kaggle... Otto Group Product Classification Challenge

Voltando ao Kaggle... **Otto Group Product Classification Challenge**

896

Leandro Guerra

0.55719

Sat, 04 Apr 2015 12:46:45

Your Best Entry ↑

You improved on your best score by 0.03766.

You just moved up 178 positions on the leaderboard.

1054

Leandro Guerra

0.59485

Fri, 03 Apr 2015 19:22:33

Your Best Entry ↑

You improved on your best score by 14.72112.

You just moved up 597 positions on the leaderboard.

Por onde começar? Árvore de Decisão?

Rattle 2015-mar-29 12:36:03 Leandro

Random Forest Uma floresta?

Random forest Decision Trees Ensemble

Random forest Observações

Prós

Contras

Business Intelligence