Tree Records

For an array of N positive integers A, we define $\operatorname{Records}(A)$ as an array N positive integers where $\operatorname{Records}(A)[i] = A[i]$ if A[j] < A[i] for all $1 \le j < i$, otherwise 0. For example, if A = [2,1,2,4], then $\operatorname{Records}(A) = [2,0,0,4]$.

You are given a tree of N nodes numbered from 1 to N and a positive integer B. Let P(u,v) denote the sequence of nodes on the path from u to v, and $R(u,v) = \operatorname{Records}(P(u,v))$.

Find the value of the following expression modulo 998 244 353:

$$\sum_{u=1}^{N} \sum_{v=1}^{N} \sum_{i=1}^{|R(u,v)|} R(u,v)[i] \cdot B^{i-1}$$

Input

Read the input from the standard input in the following format:

- line 1: *N B*
- line 1 + i $(1 \le i < N)$: u v, denoting an edge between node u and v.

Output

Write the output to the standard output in the following format:

• line 1: the answer to the expression modulo $998\,244\,353$.

Constraints

- $1 \le N \le 100\,000$
- $1 \le B < 998244353$

Subtasks

- 1. (9 points) $N \le 2000$
- 2. (13 points) B = 1
- 3. (18 points) Every node of the tree has degree at most 2. In other words, the tree is a line.
- 4. (23 points) If the tree is rooted at node N, each node will have an index lower than its parent's index.

5. (37 points) No further constraints.

Examples

Example 1

4 1

1 2

2 3

3 4

The correct output is:

70

The tree looks like this:

This is the contribution of each path to the answer:

$u \backslash v$	1	2	3	4
1	1	3	6	10
2	2	2	5	9
3	3	3	3	7
4	4	4	4	4

Example 2

4 2

1 2

2 3

3 4

The correct output is:

144

The tree looks like this:

This is the contribution of each path to the answer:

$u \backslash v$	1	2	3	4
1	1	5	17	49
2	2	2	8	24
3	3	3	3	11
4	4	4	4	4

Example 3

5 998244352

1 2

1 3

3 4

3 5

The correct output is:

69

The tree looks like this:

Consider the path (4,5) for example. P(4,5)=[4,3,5] and R(4,5)=[4,0,5]. So, the contribution by this path is, $4\cdot 998\ 244\ 352^0+0\cdot 998\ 244\ 352^1+5\cdot 998\ 244\ 352^2\equiv 4+0+5\equiv 9\mod 998\ 244\ 353$