Projet final

Adopté par le réseau des doyens des Facultés des Sciences à Marrakech, le 16 novembre 2013

de la

Filière Licence Fondamentale Sciences de la Matière Chimie SMC 2014

Décembre 2013

DESCRIPTIF DU PROGRAMME DES ENSEIGNEMENTS

FILIERE SCIENCES DE LA MATIERE : CHIMIE (SMC)

LICENCE D'ETUDES FONDAMENTALES

Accréditation 2014

Maquette de la filière SMC

Tronc commun national SMC (S1-S5) et S6 (2 modules)

S ₁	<u>M1</u>	<u>M2</u>	<u>M3</u>	<u>M4</u>	<u>M5</u>	<u>M6</u>	<u>M7</u>
SMPC	Mécanique	Thermodynamique 1	Atomistique	Thermochimie	Analyse 1	Algèbre 1	LT I
	du point						
S ₂	<u>M8</u>	<u>M9</u>	<u>M10</u>	<u>M11</u>	<u>M12</u>	<u>M13</u>	M14
SMPC	Electrostatique	Optique	Liaisons	Chimie des	Analyse 2	Algèbre 2	LT II
	et Electrocinétique	géométrique	chimiques	solutions			
	<u>M15</u>	<u>M16</u>	<u>M17</u>	<u>M18</u>	<u>M19</u>	<u>M20</u>	
S 3	Chimie organique	Chimie descriptive I		Chimie			
SMC	générale	Diagrammes de	Electromagnétisme	expérimentale	Chimie des	Mathématiques pour la	
		phases		(TP)	électrolytes	chimie	
	<u>M21</u>	<u>M22</u>	<u>M23</u>	<u>M24</u>	<u>M25</u>	<u>M26</u>	
S4	Hydrocarbures	Cristallographie	Thermodynamique	Mécanique		Probabilités Statistiques	
SMC	et fonctions	géométrique et	chimique	quantique	Informatique		
	monovalentes	cristallochimie I					
	<u>M27</u>	<u>M28</u>	<u>M29</u>	<u>M30</u>	<u>M31</u>	<u>M32</u>	
S5	Chimie organique	Radiocristallograph	Cinétique et	Chimie	Electrochimie	Techniques	
SMC	fonctionnelle	ie et cristallochimie	catalyse	théorique		spectroscopiques	
		II				d'analyse	
						(UV-IR; RMN 1H, masse)	
	<u>M33</u>	M34	<u>M35</u>	<u>M36</u>	<u>M37</u>	<u>M38</u>	
	Les grandes classes	Chimie descriptive					
S6	des réactions	II et chimie de	Module	Module	PT	PT	
SMC	organiques	coordination	optionnel	optionnel			

^{* &}lt;u>Mx</u> : Modules communs SMC/SMP

^{*} Semestre 6: semestre optionnel dont 2 modules communs

MODULES DU SEMESTRE 1

MODULE 1: MECANIQUE DU POINT (Cours: 21H, TD: 21H)

- Rappels mathématiques (Opérations sur les vecteurs, Opérateurs différentiels.)
- Systèmes de coordonnées (Cartésiennes, cylindriques et sphériques)
- Cinématique du point matériel sans et avec changement de référentiel.
- Dynamique du point matériel.
- Travail, énergie, théorème de l'énergie cinétique.
- Les forces centrales : application à la mécanique céleste.
- Système de deux particules, les chocs.
- Les oscillateurs harmoniques.

MODULE 2: THERMODYNAMIQUE 1 (Cours: 21H, TD: 21H)

- Outils mathématiques pour la thermodynamique.
- Définitions et concepts de bases (travail et chaleurs, thermométrie et calorimétrie, changements d'état).
- 1^{er} principe et applications.
- 2^{éme} principe et applications.
- Introduction aux cycles thermodynamiques et machines thermiques.
- Potentiels thermodynamiques.

MODULE 3: ATOMISTIQUE (Cours: 21H, TD: 21H)

Structure des atomes

Structures, numéro atomique, nombre de masse, isotope, masse atomique.

– Modèle classique :

Modèle de Rutherford - Modèle de Bohr – Spectre atomique d'émission.

Modèle quantique :

Equation de Schrödinger(Résolution) : nombres quantiques, Configuration électronique d'un atome : Principe de Pauli, Règles de Klechklowski et de Hund.

- Tableau périodique des éléments chimiques: classification, périodes, groupes et familles, énergie d'ionisation, affinité électronique, électronégativité.
- Constituants du noyau et radioactivité
 - Radioactivité naturelle
 - Radioactivité artificielle
 - Applications

MODULE 4: THERMOCHIMIE (21H Cours, 21H TD)

- Définitions préliminaires : Description d'un système, Etat d'équilibre thermodynamique,
 Echange d'un système avec l'environnement, Echange thermique, Echange mécanique.
- 1^{er} Principe de la thermodynamique: Enoncé du principe, Application aux transformations thermomécaniques.
- Applications du 1^{er} Principe: Système de constitution constante, Transformations physico-chimiques isothermes, Réactions chimiques non isothermes.
- 2^{ème} Principe de la Thermodynamique: Fonction enthalpie et le 2^{ème} Principe, Entropie,
 Energie libre, Enthalpie libre.
- Équilibres chimiques.
- Équilibres de phases.

MODULE 5: ALGEBRE 1 (Cours: 21H, TD: 21H)

- Espace vectoriel euclidien

Famille libre, famille génératrice, base canonique, base orthonormée, changement de base, formes linéaires, automorphismes orthogonaux, symétries orthogonales

Espace affine de dimension finie

Repères, sous espaces affines, intersection de sous espaces affines, barycentres

Géométrie dans le plan R²

Coordonnées cartésiens, coordonnées polaires, équation d'une droite, équation d'un cercle, équation d'une ellipse

Géométrie dans l'espace R³

Coordonnées cartésiens, coordonnées cylindriques, coordonnées sphériques, équation d'une droite, équation d'un plan, équation d'une sphère

Applications affines dans le plan R² et dans l'espace R³

Composition, isométrie, translations, homothéties, projections, symétries

Le corps C des nombres complexes

Opérations arithmétiques, conjugaison et module, exponentielle complexe, racine nième de l'unité, similitudes complexes

Fonctions polynomiales

Racines, dérivation, factorisation, formule de Taylor pour les polynômes, polynômes Irréductibles dans R et C,

- Fractions rationnelles dans R et C

Pôles et zéros, décomposition en éléments simples

MODULE 6: ANALYSE 1 (Cours: 21H, TD: 21H)

Suites réelles

Convergence, limites, suites arithmétiques, suites géométriques, suites monotones, suites adjacentes, opérations sur les suites.

Fonctions numériques d'une variable réelle

Calcul des limites, continuité, théorème des valeurs intermédiaires.

Fonctions dérivables

Dérivée première, dérivées successives, sens de variation, Théorème de Rolle et théorème des accroissements finis

Fonctions convexes

Définition, fonction convexes dérivables, inégalité de convexité

Fonctions monotones

Définition, fonction réciproque, fonction réciproques des fonctions circulaires et des fonctions hyperboliques

- Fonctions équivalentes et développements limités

Formule de Taylor, polynômes d'interpolation et calcul approché

Courbes paramétré planes

Définition, tangentes, points réguliers, points stationnaires, branches infinies, représentation en coordonnées polaires, exemples de courbes polaires.

M7: Langue et Terminologie I

Contenu en phase d'élaboration par la sous commission langue de la commission MT issue de la CPU.

MODULES DU SEMESTRE 2

MODULE 8: Electrostatique et Electrocinétique (Cours: 21H, TD: 21H)

-Partie 1: Electrostatique

Chapitre I: Charges électriques -loi de Coulomb

Chapitre II : Champ électrostatique - potentiel électrostatique

Théorème de Gauss - Conducteurs électriques en équilibre – Phénomène d'influence- Etude des condensateurs - Energie électrostatique- Energie d'un conducteur- Energie de systèmes de conducteurs - Energie des condensateurs

-Partie 2: Electrocinétique

Chapitre I: Courant électrique - densité de courant - conductivité, mobilité et résistivité d'un conducteur - loi d'Ohm microscopique - résistance électrique -Loi d'Ohm - générateurs et récepteurs

Chapitre II: - Etude des réseaux électriques : loi de Pouillet - Lois de Kirchhoff- théorème de Thévenin - théorème de Norton - théorème de superposition - Transformation étoile triangle.

MODULE 9: OPTIQUE GEOMETRIQUE (Cours: 21H, TD: 21H)

- Notions fondamentales de l'optique géométrique (postulats, indice d'un milieu, rayon lumineux, espace objet, espace image, principe de Fermat, lois de Snell-Descartes, stigmatisme, approximation de Gauss).
- Miroirs et Dioptres (plans et sphériques, prisme).
- Fibres optiques.
- Systèmes centrés (éléments cardinaux, lentilles, ...).
- Associations des systèmes centrés.
- Etudes de quelques instruments d'optique (lunette astronomique, télescope, loupe, microscope....).

MODULE 10: LIAISONS CHIMIQUES (Cours: 21H, TD: 21H)

I- Liaison covalente

Lewis et règle de l'octet

- II- Théorie des orbitales moléculaires (Approximation LCAO)
 - i. Molécule diatomique mono électronique H₂⁺
 - ii. Molécule diatomique di électronique H₂
 - iii. Molécule diatomique poly électronique de type A₂ (avec et sans interaction s-p)
 - iv. Molécule diatomique poly électronique de type AB
 - v. Molécule poly atomique AX_n
 - Théorie de l'hybridation
 - Hybridations sp sp² et sp³
 - Théorie de la répulsion des paires électroniques des couches de valence (V.S.E.P.R.) – Règle de GILLESPIE
 - Autres types d'hybridation

III- Liaison ionique

- i. Rayon ionique (méthode de Pauling)
- ii. Théorie de la liaison ionique
- iii. Energie de la liaison ionique
- iv. Energie réticulaire d'un cristal ionique
- v. Détermination expérimentale de l'énergie réticulaire par le cycle de BORN-HABER (Cycle thermochimique)

IV- Liaison métallique

- i. les structures métalliques
- ii. le modèle des charges positives dans un nuage d'électron

V- Liaisons intermoléculaires (liaisons physiques)

- i. Liaisons de Van Der Waals
 - Force d'orientation (Keesom)
 - Force d'induction (Debye)
 - Force de dispersion (London)
- ii. Liaison hydrogène

MODULE 11: CHIMIE DES SOLUTIONS (Cours: 21H, TD: 21H)

I - LES REACTIONS ACIDO-BASIQUES

- Equilibres acido-basiques en milieu aqueux :
 Couples acide-base :- Acides et bases selon Bronsted Effet nivelant ou différenciant d'un solvant
- Relations quantitatives:
 pH d'une solution aqueuse d'un acide (base) fort(e)- pH d'une solution aqueuse d'un acide (base) faible- pH d'une solution aqueuse d'un sel- pH d'une solution d'ampholyte- pH d'une solution tampon- pH d'un mélange de deux acides
- -Titrage acido-basique

II- LES REACTIONS DE COMPLEXATION

- Généralités et définitions :- Complexe- Constante de Stabilité ou de formation- Constante de dissociation
- Complexes Successifs: Constantes de dissociation partielles et globales- Constantes de formation conditionnelles ou apparente
- Domaine de prédominance
- Prévision Qualitative des réactions Cas d'un seul atome central (1 cation) et plusieurs ligands- Cas d'un ligand et de deux cations

III- LES REACTIONS DE PRECIPITATION

- Définition- Exemples de calcul de Ks et de S.
- Précipitation Conditions thermodynamiques de précipitation Composition d'une solution après précipitation - Effet de l'ion Commun- Effet d'un agent complexant- Effet du pH

IV- LES REACTIONS D'OXYDO-REDUCTION

- Généralités Définitions
- Réactions électrochimiques
- Conditions standard- Potentiel zéro
- Les piles électrochimiques: Pile Daniell- Polarité des électrodes- Loi de faraday -Électrolyse
- Prévision des Réactions d'Oxydoréduction
 - Prévision quantitative : Relation entre la force électromotrice et la constante d'équilibre
 - Prévision qualitative : Règle থায়া
- Potentiel apparent: Potentiel d'oxydoréduction et pH- Potentiel d'oxydoréduction et réaction de précipitation- Potentiel d'oxydoréduction et réaction de complexassions.

MODULE 12: ALGEBRE 2 (Cours: 21H, TD: 21H)

Espaces vectoriels

Famille libre, famille génératrice, rang d'une famille de vecteurs, sous espaces engendrés, somme de deux sous espaces, intersection de deux sous espaces,

- Applications linéaires et endomorphismes

Applications linéaires, noyau d'une application linéaire, rang d'une application linéaire, isomorphismes, formes linéaires et hyperplans, homothéties vectorielle, projections vectorielle, symétries vectorielle.

- Calcul matriciel

Matrice d'une application linéaire, somme, produit, transposition, rang d'une matrice, matrices inversibles

- Déterminants

Déterminant d'une base, déterminant d'un endomorphisme, formules de Cramer,

Changement de base

Matrice de passage

- Diagonalisation et trigonalisation

Polynôme caractéristique, valeurs propres et vecteurs propres, diagonalisation et trigonalisation

- Application aux systèmes linéaires

MODULE 13: ANALYSE 2 (Cours: 21H, TD: 21H)

Les séries

Séries numériques, séries entières, série trigonométriques et série de Fourier, critères de convergence, rayon de convergence.

Calcul intégral

Notion d'intégrale, calcul des primitives, intégration par partie, intégration par changement de variables, intégration des fractions rationnelles, intégral dépendant d'un paramètre.

Intégrale généralisée

Intégrale généralisée, critères de convergence.

Equations différentielles

Equations différentielles linéaire du 1^{er} ordre, équations différentielles du 2^{ème} ordre

- Elément de calcul différentiel

Fonctions à plusieurs variables, dérivées partielles du 1^{er} ordre, dérivées partielles d'ordre supérieur, fonction de classe C¹, extremum, plan tangent à une surface dans R³

Intégrales doubles

Intégrale double d'une fonction continue bornée, propriétés de l'intégrale double, formules de Fubini, changement de variables, extension aux intégrales triples.

Suites et séries de fonctions

Suites de fonctions, série de fonctions, critères de convergence, série entières, rayon de convergence, dérivation, intégration, fonctions analytiques.

M14: Langue et Terminologie II

Contenu en phase d'élaboration par la sous commission langue de la commission MT issue de la CPU.

MODULES DU SEMESTRE 3

MODULE 15: CHIMIE ORGANIQUE GENERALE (Cours: 21H, TD: 21H)

- Eléments de nomenclature : nomenclature des hydrocarbures, nomenclature des composés fonctionnels.
- Isomérie constitutionnelle
- Stéréo-isomérie :
 - Représentations conventionnelles;
 - Stéréo-isomérie conformationnelle : chaîne ouverte, conformations des cycles
 - Stéréo-isomérie configurationnelle: chiralité, énantiomérie; diastéréoisomérie; classification séquentielle de Cahn Ingold Prelog. Configurations absolues et configurations relatives.
- Effets électroniques:
 - Effet inductif
 - Effet Mésomère résonance
 - Aromaticité
- Généralités sur la réaction :
 - Les intermédiaires réactionnels: carbocations, carbanions, radicaux
 - Nucléophilie et électrophilie.

MODULE 16: CHIMIE DESCRIPTIVE I ET DIAGRAMME DE PHASES

(Cours: 21H, TD: 21H)

I- Chimie descriptive I:

-Propriétés physico-chimiques des principaux éléments chimiques des blocs s et p de la classification périodique et leurs dérivées : hydrogène - composés d'hydrogène (hydrures) - oxygène - soufre - alcalins- halogènes - azote - phosphore - carbone.

II- Diagrammes de phases

- Règle de phases
- Diagrammes unaires
- Equilibre solide liquide, solubilité totale/partielle, insolubilité totale Existence et définition du mélange eutectique et péritectique.
- Analyse thermique, Analyse de pression
- Diagramme de Tamman
- Composés définis à point de fusion congruente et non congruente, point de transition
- Elaboration des diagrammes binaires (courbes de refroidissement)
- Notions préliminaires sur les diagrammes ternaires.

MODULE 17: ELECTROMAGNETISME DANS LE VIDE (Cours : 21H, TD : 21H)

- Magnétostatique: Champ d'induction, Propriétés de l'induction magnétiques, Loi de Laplace, Théorème d'Ampère, potentiel vecteur, loi de Biot et Savard, application (étude des symétries et calcul de l'induction magnétique, Effet Hall).
- Courant alternatif : comportant des composants résistifs, capacitifs et inductifs-énergie des circuits.
- Equations de Maxwell dans le vide: Induction magnétique, potentiels scalaire et vectoriel « en jauge de Lorentz ».
- Ondes électromagnétiques dans le vide: Equations locales, Intégrales et relations de passage, énergie magnétique

MODULE 18 : Chimie expérimentale : Travaux pratiques ; 48H

- Chimie en solution (12H):
 - 1- Manganimétrie
 - 2- Dosages acido-basiques
 - 3- pH-métrie.
 - 4- Oxydoréduction
- Chimie organique (12H):
 - 1- Méthodes de purification
 - 2- Méthodes de séparation et d'extraction
 - 3- Modèle moléculaire
- Chimie minérale (12 H):
 - 1- Gravimétrie
 - 2- Complexométrie
 - 3- Synthèse et analyse d'un composé minérale.;
 - 4- Etalonnage d'un thermocouple et tracé d'un diagramme de phases
- Chimie des électrolytes (12H). :
 - 1- Conductimétrie (dosage d'une base forte par un acide fort, dosage d'une base faible par un acide et dosage d'un polyacide par une base forte)
 - 2- Vérification de la loi de Nernst et dosage potentiométrique
 - 3- Tracé d'un diagramme Potentiel-pH (exemple du E-pH de fer)

MODULE 19: CHIMIE DES ELECTROLYTES (Cours: 21H, TD: 21H)

CHAPITRE I: CONDUCTIBILITE ELECTRIQUE DES ELECTROLYTES

- Résistivité électrolytique et conductivité
- Mobilité d'un ion
- Nombre de transport
- Conductivité : Conductivité équivalente d'un ion Conductivité équivalente limite d'un ion -Conductivité équivalente d'un électrolyte - Conductivité équivalente limite d'un électrolyte Effet de la température - Effet de la concentration.
- Loi d'additivité de Kohlrausch
- Applications des mesures de conductivité
- Correction due à l'eau

CHAPITRE II- THEORIE DES ELECTROLYTES

- Solution idéale
- Electrolytes forts
- Electrolytes faibles
- Activité d'une solution électrolytique
- Calcul de Debye et Hückel : électrolytes fort peu soluble en solution saturée Electrolytes faibles - Cas d'électrolytes faibles dilués

CHAPITRE III: EQUILIBRE AUX ELECTRODES

- Notions générales : Définition d'une électrode L'électrode normale à hydrogène Mesure du potentiel d'électrode - Potentiel de jonction
- Classification des électrodes: Electrodes de première espèce Electrode de seconde espèce - Electrodes de troisième espèce ou rédox - Electrodes spécifiques (électrode de verre (mesure de pH)...)
- Cellules électrochimiques : Cellules Galvaniques Cellules d'électrolyse Relations entre paramètres électriques et chimiques dans une cellule (Lois de Faraday ; Relation de Nernst)

CHAPITRE IV: INFLUENCE DES REACTIONS CHIMIQUES SUR LES REACTIONS D'OXYDOREDUCTION

- Prévisions des réactions d'oxydoréduction et présentation du Diagramme de Frost
- Oxydoréduction et Acidité
- Oxydoréduction et Complexation
- Oxydoréduction et Précipitation
- Diagramme E-pH (Pourbaix)
- Diagramme E-pL

CHAPITRE V: DIFFERENTS TYPES DE PILES

- Générateurs de première espèce (piles commerciales)
- Générateurs de deuxième espèce (accumulateurs)
- Générateurs de troisième espèce (piles à combustible)

MODULE 20: MATHEMATIQUES (Cours: 21H, TD: 21H)

- Arithmétique, division euclidienne
- Ecriture en base b, PGDC
- Calcul modulaire, génération de nombres aléatoires
- Théorie des groupes
- Régression : méthodes de moindres carrées
- Méthodes d'interpolation, extrapolation
- Calculs itératifs
- Intégrales généralisées
- Séries numériques-Suites et séries de fonctions Séries entières Séries de Fourier.

MODULES DU SEMESTRE 4

MODULE 21: HYDROCARBURES ET FONCTIONS MONOVALENTES (Cours: 18H, TD: 18H, TP: 12H)

I- Différents types de mécanismes réactionnels :

-Réaction de substitution, d'élimination et d'addition

II- Hydrocarbures

- **Alcanes**: Substitution radicalaire
- Alcènes : Addition électrophile ; Oxydations ; Substitution allylique
- **Alcynes**: Additions; Propriétés des alcynes vrais
- **Composés aromatiques** (cas du benzène): Substitution et poly-substitution électrophile; Applications en synthèse organique

III- Fonctions monovalentes

- Dérivés halogénés:
 - Substitution nucléophile
 - SN2 Influence des différents facteurs (substrat, nucléofuge, nucléophile, effet du solvant)
 - SN1 (même étude) Réarrangement des carbocations, participation des groupes voisins
 - Compétition SN1 SN2.
 - Réaction d'élimination
 - E2 (même étude pour SN2)
 - E1 (même étude pour SN1)
 - Compétition SN1/E1 et SN2/E2
- Organomagnésiens : propriétés chimiques
- **Alcools**: caractère acide (alcoolate); caractère nucléophile; oxydation chromique, Estérification, étherification, acétalisation; déshydratation, halogénation (SOCl₂).
- Phénols: caractère acide; propriétés nucléophiles,
- **Ethers-Epoxydes** : coupure des éthers ; ouverture des époxydes (en milieu acide et basique, stéréochimie)

Travaux pratiques:

- Oxydation de la chaîne latérale d'un noyau benzenique
- Deshydratation d'un alcool
- Oxydation d'un alcool
- Synthese d'un organomagnesien

(Cours: 18H, TD:

MODULE 22: CRISTALLOGRAPHIE ET CRISTALLOCHIMIE I

18H; TP: 12H)

Cristallographie géométrique

- Notions de mailles
- Rangées, plans, Indices de Miller
- Réseaux de Bravais
- Réseau réciproque
- symétries d'orientation et de position
- les 32 classes cristallines et les groupes espaces
- Introduction à la diffraction X (loi de Bragg).

II- Cristallochimie I

- Empilements
- Empilements compacts (cubique faces centrées, hexagonal compact)
- Empilements semi-compacts
- Structures ioniques
- Structures ioniques de type MX(CsCl, NaCl,.)
- Structures de type MX2 : fluorine CaF2 et antifluorine, rutile TiO2....
- structure en couche: type CdCl2, Cdl2.

Travaux pratiques:

- Structure des cristaux covalents
- La symétrie cristalline (quatorze réseaux de Bravais)
- Modèles métalliques
- Modèles ioniques

MODULE 23: THERMODYNAMIQUE CHIMIQUE (Cours: 18H, TD: 18H; TP: 12H)

- **Corps pur** : variance, condition d'équilibre entre phases, équation de Clapeyron
- Grandeurs molaires partielles : principales relations, procédures de détermination,
 Grandeurs de mélange
- Potentiel chimique : définition et signification, Influence de la pression P et de la température
- Fugacité des gaz réels : définition, intérêt, détermination, Variation de la fugacité avec la température et la pression, la fugacité et la loi d'action de masse
- Solutions idéales : Équilibre liquide-vapeur, loi de Raoult, grandeurs de mélanges des solutions idéales, potentiel chimique d'un constituant dans un mélange idéal, diagramme de phases des systèmes binaires
- Solutions réelles : Déviations par rapport à l'idéalité, Loi des solutions diluées, activité et coefficient d'activité, états de référence, grandeurs de mélanges, grandeurs d'excès
- Notions sur la distillation : distillation d'un mélange binaire idéal, les colonnes à distiller, distillation d'un mélange avec azéotropie, miscibilité partielle ou nulle
- Équilibre solide pur-solution : Étude thermodynamique dans le cas générale, Cas des solutions idéales
- **Propriétés colligatives** : Cryoscopie, Ébullioscopie, Osmomètre.

MODULE 24: MECANIQUE QUANTIQUE (Cours: 21H, TD: 21H)

– Introduction :

Dualité ondes corpuscules ; Corps noir ; Effets photoélectrique et Compton ; Principe d'indétermination d'Heisenberg ; Grandeur de mesure en mécanique quantique

- Puits de potentiels et systèmes quantiques :

Equation de Schrödinger; Barrière de Potentiel; Puits de Potentiel;

Outils mathématiques :

Espace des fonctions d'ondes d'une particule ; Espace des états. Notations de Dirac ; Représentation dans l'espace des états ; Equation aux valeurs propres, observables ; Ensemble Complet d'Observables Commutables

- Les postulats de la mécanique quantique :

Introduction ; Enoncé des postulats ; Interprétation physique des postulats sur les observables et leur mesure ; Principe de superposition et prévisions physiques ; Oscillateur harmonique quantique à une dimension

MODULE 25: INFORMATIQUE: Contenu non encore défini

MODULE 26: PROBABILITE ET STATISTIQUE (Cours: 21H, TD: 21H)

|- PROBABILITE

- Généralités sur les Probabilités
- Les Modèles Probabilistes Discrets
- Les Lois Probabilistes Continues
- L'échantillonnage.

II- STATISTIQUE

- Statistique de la mesure : rappels de métrologie (erreurs, propagation d'erreurs),
 estimation de composantes de variance par analyse de la variance (répétabilité,
 reproductibilité'), estimation de droites d'étalonnage, cartes de contrôle.
- Planification expérimentale dans le développement de produits et procédés :
 Méthodologie, régression multiple et optimisation multi réponses, plans factoriels et
 dérivés, plans de criblage, plans pour l'estimation de surfaces de réponses, plans de
 mélange, plans optimaux.
- Utilisation de méthodes statistiques multi variées en chimie: analyse en composantes principales, moindres carrés partiels (PLS), clustering, analyse discriminante et application à la calibration multi variée en chimie analytique.

MODULES DU SEMESTRE 5

MODULE 27: CHIMIE ORGANIQUE FONCTIONNELLE

(Cours: 18H, TD:18H, TP: 12H))

Chapitre I: LES COMPOSES AZOTES: AMINES, IMINES ET ENAMINES

- I.- Généralités.
- II-. Réactivité des amines aliphatiques
 - Propriétés acides et basiques
 - Propriétés nucléophiles :
 - Alkylation d'Hofmann; Elimination d'Hofmann; Acylation d'amines;
 Sulfonylation (ou sulfonation); Nitrosation
 - Réactions avec les composés carbonylés: synthèse des imines; énamines; et oximes

III- Réactivité des amines aromatiques

- Diazotation de l'aniline
 - Réactions des sels de diazonium sans départ d'azote : Réactions de couplage diazoïque
 - Réactions avec départ d'azote : Réactions de Sandmeyer

IV- Exemples de méthodes de préparation des amines : méthode de Gabriel

Chapitre II: LES ALDEHYDES ET CETONES.

- Généralités
- II- Réactivité:
 - Additions nucléophiles.
 - Réactions d'addition nucléophile en catalyse basique
 - Addition de carbanions : organométalliques ion cyanure diazomethane
 - Réactions d'addition nucléophile en catalyse acide
 - Addition d'alcools ; Addition d'amines primaires et de leurs dérivés : Z-NH₂
 - Réaction d'oxydoréduction
 - Réaction d'oxydation
 - Réactions de réduction : NaBH₄; LiALH₄; Wolff-Kischner ; Clemmensen.
 - Réactions liées à la mobilité des H en ② du carbonyle
 - En milieu basique : aldolisaiton ; Cétolisation ; Crotonisation
 - Réaction de Cannizzaro
 - Halogénation sur le carbone en 22 du carbonyle en milieu acide et en milieu basique
 - Réactions des aldéhydes et cétones 2222-éthyléniques.
 - Addition nucléophile 1,2 et 1,4 : réaction de Michaël
- III- Exemples de méthodes de préparation des composés carbonylés

Chapitre III: LES ACIDES CARBOXYLIQUES ET DERIVES

- I- Généralités
- II- Réactivité:
 - Décarboxylation ; Déshydratation
 - Additions nucléophiles sur le carbonyle
 - Réduction
 - Réactions au voisinage du carbonyle
- III- Exemples de méthodes de préparation des acides carboxyliques

Chapitre IV: LES DERVES D'ACIDE

- Généralités
- II- Réactivité:
 - Propriétés communes à tous composés RCOZ (Z=Cl, OR, OCOR, NR₂, SR)
 - Propriétés particulières des dérivés d'acide :
 - **Chlorures d'acide** : Réaction avec le diazométhane
 - Esters : Réduction (LiAlH₄; diisobutylaluminium) Réaction avec les organomagnésiens ; Saponification.- Réactions au voisinage du carbonyle (Claisen ; Dieckmann ; condensation malonique ; Doebner-Knoevenagel).
 - Amides : Réduction; Nitrosation
 - Nitriles : Hydrolyse ; réduction ; Réactions avec les organométalliques
- III- Inter conversion entre dérivés d'acide.

Chapitre V: NOTIONS DE STEREOCHIMIE DYNAMIQUE-

Travaux pratiques:

- Réaction de Cannizzaro ; Préparation de l'acide benzoïque et de l'alcool benzylique
- Synthèse d'une oxime
- Synthèse de Reimer et Tiemann : préparation d'aldéhyde salicylique
- Réaction de nitrosation; Préparation de la N-niroso-diphénylamine
- Réaction de l'aniline sur du chlorure d'acétyle ; Synthèse d'un amide

MODULE M28: RADIOCRISTALLOGRAPHIE ET CRISTALLOCHIMIE II (Cours: 18H, TD: 18H; TP: 12H))

PARTIE I: Radiocristallographie

I- Les rayons X

- Introduction
- Généralités sur les Rayons X
- Production des Rayons X
- Absorption des Rayons X
- Interactions Rayons X / Matière
- Détection des Rayons X
- Méthodes d'investigation utilisant les Rayons X

II- Diffraction des rayons x par la matière cristallisée :

Conditions d'interférences constructives - loi de Bragg - remarques pratiques importantes sur la relation de Bragg : $2d_{hkl}sin\theta = n\lambda$ - Amplitude diffractée - facteur de structure- Extinctions systématiques- Extinctions dues au mode de réseau- Extinctions dues aux éléments de symétrie translatoire- Interprétation géométrique dans l'espace réciproque - domaines de diffraction - Formule de l'intensité diffractée par les plans (hkl) d'un élément de cristal.

III- Diffractogrammes de poudres expérimentaux

- Poudres cristallines
- Identification de phases et autres applications
- Chambre de Debye-Scherrer
- Diffractomètre en géométrie Bragg-Brentano

III- Diffractogrammes sur cristaux expérimentaux

- Monocristaux
- Technique de résolution de structure
- Analyse chimique par fluorescence X

PARTIE II: CRISTALLOCHIMIE II

I- Structures complexes

- -Composés de type MO3
- -Composés de type AMO3: Corindon M2O3; Pérovskite AMO3
- -Composés de type AM2O4 Spinelle
- II- Non stœchiométrie : cristal parfait, cristal réel, défauts
- III- **Solutions solides :** solution solides de substitution, solution solides d'insertion, loi de Vegard

Travaux pratiques:

- Diffraction des Rayons X sur poudre : Méthode de Debye Scherrer, Méthode du compteur (traitement de données par ordinateur)
- Etude de quelques solutions solides et d'une phase non stœchiométrique
- Identification de substances à l'aide des Fiches PDF
- Etude de transformation de phases

(Cours: 18H, TD:

MODULE M29: CINETIQUE ET CATALYSE

18H;TP:12H))

Partie I: CINETIQUE

CHAPITRE 1: FACTEURS CINETIQUES

I- La vitesse d'une réaction chimique

- 1- La réaction chimique et son avancement
- 2- Obtention expérimentale des courbes cinétiques et définitions des vitesses
- 3- Facteurs cinétiques

II- Le facteur cinétique température, loi d'Arrhenius

III- Le facteur cinétique concentration, détermination expérimentale de l'ordre d'une réaction chimique

- 1- Deux situations initiales particulières
- 2- La méthode différentielle
- 3- La méthode intégrale
- 4- La méthode des temps de demi-réaction

CHAPITRE 2: REACTIONS COMPOSEES

I- Écriture des équations différentielles

- 1- Cas général de réactions simultanées
- 2- Cas des mécanismes réactionnels : composition d'actes élémentaires

II- Réactions renversables

- 1- Écriture des équations différentielles et résolution
- 2- Représentation graphique
- 3- Établissement d'un équilibre chimique

III- Réactions successives

- 1- Écriture des équations différentielles et résolution
- 2- Représentation graphique
- 3- Étape cinétiquement déterminante (ecd)
- 4- Approximation de l'état quasi stationnaire (AEQS)

IV- Résolution de problèmes grâce à l'AEQS : l'exemple des réactions en chaîne

- 1- Caractéristiques d'une réaction en chaîne
- 2- Méthode de résolution d'un mécanisme

V- Réactions jumelles (ou parallèles)

- 1- Écriture des équations différentielles
- 2- Représentation graphique
- 3- Conclusions ; contrôle cinétique et contrôle thermodynamique

CHAPITRE 3- THEORIES CINETIQUES:

- théorie de collisions
- théorie du complexe activé
- Application à la prédiction des paramètres cinétique

PARTIE II: CATALYSE HOMOGENE

- I- Introduction et Généralités
- II- Catalyse acido-basique
- III- Catalyse enzymatique.
 - a- Enzymes, généralités
 - b- Classes de réaction
 - c- Applications en synthèse organique
- IV- Organocatalyse
 - a- Aldolisation
 - b- Réaction de Knoevenagel
- V- Hydrogénation catalytique
 - a- Palladium ou platine supporté
 - b- Hydrogénation asymétrique (Ru, Rh)
- VI- Applications industrielles
 - a- Synthèse de l'ammoniac
 - b- Réaction de Fischer Tropsch
 - c- Hydroformylation/Hydrocarboxylation
- VII- Introduction à la Catalyse hétérogène

Travaux pratiques:

- Suivi d'une réaction chimique d'ordre 1 par titrage
- Suivi d'une réaction par spectrofluorescence
- Réaction catalysée. Etude de la cinétique en solution tampon. Détermination d'ordre de réactions et de constantes de vitesses. Cette étude est menée par spectroscopie UV.
- Etude bibliographique d'une réaction de s-complexation.
- Détermination de constantes de vitesse et approche de l'aspect catalytique de cette réaction.

MODULE M30: CHIMIE THEORIQUE (Cours: 18H, TD: 18H; TP: 12H))

1- Rappels sur les axiomes de la mécanique quantique

Opérateurs et propriétés – Le moment cinétique.

II- L'atome hydrogénoïde

Orbitales atomiques - Equation de Schrödinger et son interprétation - Les méthodes d'approximation (variation et perturbation) – Spin électronique et effet Zeeman.

III- L'atome poly électronique

Principe de Pauli - Déterminant de Slater - Orbitales de Slater.

Termes spectraux - Modèle de Russell- Saunders - Interaction spin- orbite - Transitions optiques - Règles de sélection – Action d'un champ externe sur un atome - Effet Zeeman normal et normal –.

IV- La molécule

Les molécules et l'approximation orbitale – Les molécules et l'approximation LCAO - Liaison chimique - Méthode de Hückel généralisée – Méthode des fragments – Introduction aux théories de la réactivité chimique

V- Initiation à la symétrie moléculaire

Eléments de symétrie - opération de symétrie - classe d'opération de symétrie - groupe ponctuels de symétrie - Tableaux de caractères représentation réductible et irréductible en coordonnées cartésiennes - Dénombrement des modes normaux des molécules éthylène, cis et trans butadiène.

MODULE M31: ELECTROCHIMIE (Cours: 18H, TD: 18H; TP: 12H)

I- Thermodynamique électrochimique

Piles et accumulateurs

- Généralités : définitions, thermodynamique des piles
- Piles chimiques complexes
- Accumulateurs
- Piles de concentration
- Piles à combustibles

II- Cinétique électrochimique :

Courbes de polarisation

- Processus d'électrodes, vitesse de réaction électrochimique.
- Courbes de polarisation: systèmes rapide et lent, domaine d'électro activité, polarisation des électrodes, mécanismes des réactions électrochimiques, types de surtension.

Lois fondamentales de la cinétique électrochimique

- Théorie de la surtension d'activation
- Expressions dérivées de l'équation courant -potentiel
- Cinétique sous contrôle de transfert de charge, loi de Tafel

- Transport de matière

- Modes de transport de masse
- Processus de migration, diffusion et convection

Cinétique électrochimique en régime de diffusion et en régime mixte.

- Transport de masse à l'état stationnaire
- Régime pur de diffusion
- Surtension de diffusion
- Cinétique en régime mixte : Correction de la diffusion

III- Applications

Coulométrie - Titrages potentiométriques et ampérométriques - Notions de corrosion - Diagramme d'Evans - Piles et accumulateurs - Biocapteurs - Electrochimie en milieu non aqueux.

Travaux pratiques:

Polarisation des électrodes -- Etude de la formation d'hydrogène sur différents métaux Potentiométrie: détermination de constantes d'équilibre - Etude de la surtension et détermination de vitesse de corrosion - Utilisation d'électrodes spécifiques

MODULE M32: TECHNIQUES SPECTROSCOPIQUES D'ANALYSE (Cours: 21H, TD: 18H; TP: 9H))

CHAPITRE 1: SPECTROSCOPIE DE L'ULTRAVIOLET ET DU VISIBLE

- Interaction de la lumière avec les molécules
- Spectres électroniques ; Origine des absorptions en relation avec les O.M.
- Etude des différents chromophores
- Loi de BEER LAMBERT ; Validité de la loi de BEER LAMBERT
- Spectrophotomètre UV Visible et Applications

CHAPITRE 2: SPECTROSCOPIE INFRA - ROUGE

- Domaine de longueur d'onde
- Origine de l'absorption dans le moyen infra rouge
- Théorie classique des transitions vibrationnelles
- Théorie quantique des vibrations dans l'I. R.; Spectre de raie et spectre de bande
- Absorptions caractéristiques des composés organiques
- Instrumentation en spectroscopie infra rouge

CHAPITRE 3: RESONANCE MAGNETIQUE NUCLEAIRE DU PROTON

- Moment cinétique et moment magnétique. Etude du spin 1/2
- Appareil de résonance magnétique nucléaire
- Théorie de la RMN du ¹H
- Champ magnétique haute fréquence, Champ radio fréquence. Signal RMN (FID)
- Influence de l'environnement d'un spin sur les conditions de résonance. Déplacement Chimique d.
- Interaction spin-spin et couplage scalaire J
- Interprétation des spectres RMN ¹H
- Présentation d'un autre spin ½: le ¹³C. Spectres caractéristiques du ¹³C

CHAPITRE 4: SPECTROMETRIE DE MASSE

- Principe et théorie de la spectrométrie de masse
- Différentes méthodes d'ionisation (IE, IC...)
- Spectromètres de masse (magnétique, quadripôle, simple et double focalisation)
- Mécanismes de fragmentation
- Interprétation de spectres et applications.

MODULES DU SEMESTRE 6 (optionnel)

Modules du tronc commun:

-Module 33 : les grandes classes de réactions organiques

-Module 34 : chimie descriptive II et chimie de coordination

MODULE 33: LES GRANDES CLASSES DE REACTIONS ORGANIQUES

(cours: 18, TD: 18H, TP: 12H)

- |- Introduction: effets des solvants
- II- Réactions de condensation :
 - a- Mécanisme général des réactions de condensation de composés carbonylés
 - b- Condensation aldolique en milieu acide et en milieu basique
 - c- Réaction aldolique mixte : réaction de Claisen-Schmidt.-Influence du pH ; Stéréo sélectivité de la crotonisation
 - d- Réactions aldoliques intramoléculaires : Réaction de Michael, Annelation de Robinson
 - e- Condensation sur des imines, des iminiums et des enamines : Aminométhylation de Mannich ; Réaction de Storck
 - f- Réactions analogues à la condensation aldolique : Réaction de Knoevenagel, condensation malonique Réaction de condensation de Claisen et Réaction de Claisen mixte
 - Condensation de Claisen intramoléculaire (Cyclisation de Dieckmann) Benzoination des aldéhydes ; Réarrangement benzylique
 - g- Réactions impliquant des ylures
 - -Ylures au phosphore : Réaction de Wittig ; Réaction de Wittig-Horner
 - Ylures au soufre : Réaction de Corey
- III- **Réactions de catalyse par transfert de phase :** réaction d'alkylation (C, O, N, S).
- IV- Réactions d'oxydation et de réduction
 - -Oxydation : Généralités- Elimination d'atomes d'hydrogène-Rupture d'une liaison (C-C) Substitution d'un hydrogène par un oxygène-Addition d'un atome d'oxygène-Réactions de couplage oxydant
 - Réduction: Généralités-Substitution d'un oxygène (ou un halogène) par un hydrogène-Elimination d'atomes d'oxygène-Addition d'atomes d'hydrogène-Rupture de liaison-Couplages réducteurs
- V- Réactions pericycliques:
 - Les cycloadditions.:

Cycloadditions [4+2]; Cycloadditions dipolaires-1,3, Cycloadditions [2+2]

- Les réarrangements (réactions) électrocycliques
- Les réarrangements (migrations) sigmatropiques :

Réarrangement [3,3] de Cope et de Claisen ; Réarrangement [2,3] d'ylures ; Réarrangement [5,5] benzidine.

VI- Réarrangements moléculaires

Réarrangement Wagner-Meerwein.- Réarrangement pinacolique - Réarrangement Réarrangement semipinacolique - Réarrangement benzylique -Réarrangement de Wolf-Réarrangement de Schmidt des acides carboxyliques - Réarrangement de Beckman - Réarrangement de Schmidt modifié (d'aldéhydes et de cétones) - Réarrangement de Baeyer-Villiger

VII- Réactions radicalaires

Réactions de substitution radicalaire, Réactions d'addition radicalaire, Réactions de polymérisation.

Travaux pratiques

Condensation de CLAISEN SCHMIDT - Condensation de Knoevennagel - Synthèse de la dibenzylacétone - Réduction d'une cétone à un alcool par le Zinc ou par l'isopropylate d'aluminium - Réaction de Diels Alders -Transposition de Beckmann – Transposition Pinnacolique -.

MODULE 34: CHIMIE DESCRIPTIVE II ET CHIMIE DE COORDINATION (cours : 18, TD : 18H, TP : 12H)

Partie I: CHIMIE DESCRIPTIVE II

Chimie descriptive du bloc d et f

- --Rappels concernant la classification périodique des éléments.
- -- Propriétés générales des éléments de transition.
- —Etudes des différents groupes des éléments de transition (états d'oxydation, obtention des éléments, propriétés générales et principales réactions).
 - Groupe de Scandium.-Groupe du Titane.
 - Groupe du Vanadium.
 - Groupe du Chrome.
 - Groupe du Manganèse.
 - Groupe du Fe, Co, Ni (1^{ère} Triade).
 - Groupe du Platine (2^{ème} et 3^{ème} Triades).
 - Groupe du Cuivre.
 - Groupe du Zinc.
- Etudes de quelques éléments du bloc f
 - Groupe des Lanthanides.
 - Groupe des Actinides.

Partie II-CHIMIE DE COORDINATION

1- Les complexes des éléments de transition.

- -Propriétés générales des éléments de transition- Complexes de coordination-
- -Nomenclature-Géométrie-Isomérie-Stabilité-Application aux dosages
- II- Théorie de la liaison de valence

III- Théorie du champ cristallin

- Champ octaédrique ; Champ octaédrique déformé ; Champ tétraédrique ; plan carré
- L'énergie de stabilisation du champ cristallin
- Les facteurs qui influent sur la grandeur Δ

IV- Applications de la théorie du champ cristallin.

- Stabilité relative des structures
- Effet Jahn-Teller
- Couleurs et introduction aux propriétés optiques et magnétiques.

V- Théorie des orbitales moléculaires(LCAO).

- Théorie du champ des ligands pour quelques géométries (octaédrique etc.)
- Influence des liaisons 22 donneurs
- Influence des liaisons, 2 donneurs et 2 accepteurs.

Travaux pratiques:

- Détermination de la formule d'un phosphate
- Préparation et analyse d'un alun de chrome
- Complexes stabilité couleur dosages complexometriques.
- Synthèse et analyse du ferrite de zinc de structure spinelle
