CosmoGold

University of Edinburgh

Impacts of variable depth on weak-lensing covariance

Chieh-An Lin (Linc)

June 28th, 2019 Institut d'Astrophysique de Paris

3×2pt analysis

- · Galaxy position: biased tracer of matter
- · Galaxy shape: noisy tracer of projected matter

State of the art

KiDS Collaboration (van Uitert et al. 2018)

DES Collaboration (2018)

3x2pt: better constraints

Hildebrandt et al. (2019), Hendrik's talk

Maria Cristina's talk

Systematics

(a reminder for Elisabeth's talk)

- Redshift distributions
- Intrinsic alignment
- Shape measurement
- Galaxy bias

Asgari et al. in prep., Marika's talk

Systematics

- Baryon feedbacks or scale cuts
- Survey effects (this talk)
- etc.

Covariance is (one of) the key(s)

Estimation from data

Analytical formalism

N-body simulations

Covariance is (one of) the key(s)

Estimation from data

· Risky if subsamples are correlated

Analytical formalism

· Challenging to include survey effects

N-body simulations

- Missing large modes: box size
- Missing small modes: particle mass
- Time consuming

Survey effect 1: mask geometry

(KiDS-1000 data, preliminary)

Redshift distributions n(z), source density $n_{\rm eff}$, and shape noise σ_{ϵ} vary with r-band magnitude limit $r_{\rm lim}$.

Survey effect 2: variable depth

Challenges

What is the impact of survey footprints on the weak-lensing covariance?

Methodology

FLASK (Xavier et al. 2016)
Fast Gaussian/lognormal simulations

Methodology

- Compute C_{ℓ} from input parameters
- Generate density & lensing maps
- Apply survey effects
- Sample galaxies
- Compute correlation functions

Test case with 2 lens bins & 2 source bins

Comparisons with theory

Comparisons with theory

Diagonal (std)

Off-diagonal (correlations)

Preliminary results

Are crosscorrelations negligible?

Preliminary results

Are crosscorrelations negligible?

Yes

\sim 1% effect on mean \sim 5% effect on covariance

Preliminary results

Summary

- Variable depth of weak-lensing sources affects the likelihood analysis.
- KiDS-like survey: ~1% bias on mean and ~5% on covariance.
- Will be significant as statistical errors decrease for future surveys.

Benjamin Joachimi Marika Asgari Catherine Heymans Tilman Tröster among others

Backup slides

Comparisons with theory

Covariance

$$C_{\rm tot} = \langle SS \rangle + \langle SN \rangle + \langle NN \rangle$$
 cosmic term mixed term noise term
$$\langle SS \rangle = C_{\rm G} + C_{\rm NG} + C_{\rm SS}$$
 Gaussian non-Gaussian super-sample term term term

Clustering: impacts from Limber & slicing

B 3