

Name:	Laboratory Section:
Date:	Score/Grade:

LAB EXERCISE

Temperature Concepts

Scan to view the Pre-Lab video

Lab Exercise and Activities

SECTION 1

Temperature Concepts, Terms, and Measurements

1. Using the given conversion formulas, complete the following temperature conversions. The first answer is provided for you in bracketed italics.

*
$$\{^{\circ}F = [(25^{\circ} \times 1.8) + 32^{\circ}] = (45^{\circ} + 32^{\circ}) = 77^{\circ} F\}$$

2. Using the given conversion formulas, complete the following degree conversions.

- 3. What temperature is it as you work on this lab exercise? *personal answers*
 - °C a) Outdoor temperature? ____

- **b)** Indoor temperature? _
- ۰F
- 4. Using a physical geography text, an atlas, an encyclopedia, or the Internet, answer the following. Be sure to list temperature record, date, and place.
 - a) Highest natural temperature recorded on Earth (where and value)?

Highest natural temperature recorded in North America, July 10, 1913, Death Valley, California, 57°C (134°F). Causative factors are interior Basin and Range continentality, high pressure system, continental air mass, and descending air heated by compression in below sea-level valley.

b) Lowest natural temperature recorded on Earth (where and value)?

Lowest natural temperature recorded on Earth, July 21, 1983, Vostok, Antarctica, -89°C (-129°F). Causative factors are polar high pressure, dry, cold, stable Antarctic air mass (AA) and continentality.

- c) Lowest natural temperature recorded for the Northern Hemisphere?
 - Lowest natural temperature recorded for the Northern Hemisphere, February 7, 1892, Verkhoyansk, Russia, -68°C (-90°F). Causative factors are Siberian high pressure system (modified polar high), cold, dry air and extreme continentality.
- d) Highest natural temperature recorded for the Southern Hemisphere?
 - Highest natural temperature recorded in the Southern Hemisphere , January 2, 1960, Oodnadatta, Australia, 50.7°C (123°F).

SECTION 2

The Temperatures We Feel

1. Use the wind chill chart in Figure 7.1 to determine the wind chill temperature for each of the following examples:

		$^{\circ}\mathbf{C}$	(°F)	
a)	Wind speed: 24 kmph, air temperature: -34 °C = wind-chill temp:	-50° C	(−58°F)	
b)	Wind speed: 48 kmph, air temperature: -7° C = wind-chill temp:	-17°C	(1°F)	
c)	Wind speed: 8 kmph, air temperature: $+ 4^{\circ}C = \text{wind-chill temp:}$	2 ° C	(36°F)	
d)	Wind speed: 56 kmph, air temperature: -23°C = wind-chill temp:	-41°C	(-41°F)	

- 2. Competitive downhill ski racers are subjected to severe wind chill, and so are average skiers and snow-boarders, to a lesser degree. Assuming a downhill racer is going 80 kmph (50 mph), which is coasting on some runs, and the air temperature is -18° C (0°F), what is the wind chill the skier is feeling on any exposed skin?
 - $-35^{\circ}C(-31^{\circ}F)$

What is the skier's time to experience frostbite, given these conditions?

10 minutes

3. Use the heat index chart in Figure 7.2 to determine the heat index temperature for each of the following examples:

		$^{\circ}\mathbf{C}$	(°F)	
a)	Air temperature: 37.8°C, relative humidity 5% = heat index temp:	33.3°C	(92°F)	
b)	Air temperature: 32.2°C, relative humidity 80% = heat index temp: _	43.3°C	(110°F)	
c)	Air temperature: 32.2°C, relative humidity 90% = heat index temp: _	54.4°C	(130°F)	
d)	Air temperature: 43.3°C, relative humidity 10% = heat index temp: _	40.5°C	(105°F)	

29

Applied Physical Geography: Geosystems in the Laboratory

4. List the temperatures and heat index categories you would experience if the temperature stayed a constant 35°C (95°F) but the relative humidity dropped from 90% down to 10%. List the temperatures and heat index categories at each drop of 10% relative humidity (90%, 80%, 70%...).

```
90% 130°+ Category I,
80% 130° Category I,
70% 125° Category II,
60% 110° Category II,
50% 105° Category III,
40% 100° Category III,
20% 93° Category III,
10% 90° Category IV,
0% 86° Category IV
```

SECTION 3

Temperature Readings Personal answers for Section 3.

Copyright © 2018 Pearson Education, Inc.