

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : G01N 22/00	A1	(11) International Publication Number: WO 98/58243 (43) International Publication Date: 23 December 1998 (23.12.98)
(21) International Application Number: PCT/SE98/01153		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 16 June 1998 (16.06.98)		
(30) Priority Data: 9702320-4 18 June 1997 (18.06.97) SE		
(71)(72) Applicants and Inventors: KARLSTRÖM, Anders [SE/SE]; Älegårdsvägen 230, S-431 50 Mölndal (SE). GRUNDSTRÖM, Görgen [SE/SE]; Strandvägen 12, S-435 35 Mölnlycke (SE).		Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. In English translation (filed in Swedish).
(74) Agents: GRAUDUMS, Valdis et al. ; Albihns Patentbyrå Göteborg AB, P.O. Box 142, S-401 22 Göteborg (SE).		
(54) Title: METHOD FOR MEASURING THE CONCENTRATION OF CELLULOSE MATERIAL IN A WATER SUSPENSION DURING BEATING OF WOOD CHIPS AND ARRANGEMENT FOR PERFORMING THE METHOD		
(57) Abstract		
The invention relates to a method for measuring for the concentration of cellulose material in a water suspension during beating of wood chips. The method is characterized in that the measuring is performed during the beating process itself by means of the phase displacement of microwaves in relation to a reference curve during the penetration by the microwaves of a certain distance in the suspension.		

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	MW	Malawi	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Mexico	US	United States of America
CA	Canada	IT	Italy	MX	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

5 TITLE: Method for measuring the concentration of cellulose
material in a water suspension during beating of wood chips
and arrangement for performing the method.

TECHNICAL FIELD:

10 The present invention relates to a method for measuring the
concentration of cellulose material in a water suspension
and/or steam suspension when beating wood chips and the
invention comprises an arrangement for performing the
method. The invention is particularly related to beating
wood chips in a refiner, preferably a disc refiner.

15

PRIOR ART:

20 When wood chips are beaten in a refiner for the production
of cellulose fibres, the wood chips are fed in a water
suspension in between two usually vertical discs which
rotate in relation to each other and which carry out the
actual beating. The flow of medium between the discs occurs
from the centre and out towards the periphery. Also other
kinds of refiners comprising a cone which rotates within a
second cone are known. These and other types of refiners
25 are known within the cellulose industry.

30 To achieve a desired result of the beating, it is necessary
that the decisive parameters in the beating process can be
regulated in the desired way. These parameters are,
according to prior art, the feed velocity of chips/pulp
suspension and the concentration of chips/pulp therein, the
distance between the beating discs which influences the
pressure of the pulp suspension between the discs, the
temperature in the pulp suspension during different stages
35 of the beating process, the rotation speed of the beating
discs in relation to each other, etc. To be able to

regulate the beating process depending on these different parameters, pressure and temperature sensors have been arranged, according to the prior art, in one of the beating discs along its radius. These sensors may be arranged in a 5 radial row or be radially displaced in relation to each other and be screwed into or in some other way secured in one of the beating discs or the back piece in which the discs are fastened. They can also be arranged on a radial bar which is mounted on or between the beating segments.

10 The electric wires which must go from the sensors to some indicating apparatus or computer are usually collected in a cable on the rear side of one of the beating discs. Such arrangements are for example described in the American patent specification 4148439 and the international patent application WO 96/14156 as well as the Swedish patent 15 9701625-7.

20 A further factor which contributes to the quality of the refined pulp is the concentration of the pulp during the grinding process. However, no such continuous measurement of this concentration has been carried out previously in industrial context. The concentration has been measured only after the refining has been completed.

25 THE TECHNICAL PROBLEM:

The measuring of the above-mentioned parameters and the equipment for this measuring has functioned well but to give a complete picture of the beating process it is also necessary to measure the concentration of the cellulose 30 fibre pulp along the route of the pulp through the beating equipment. This concentration has previously been measured after the completed refining process, i.e. outside the refiner, but this measurement has therefore only been a control measurement since at this stage the refinement of 35 the pulp has been completed. Measurement of the concentration of the cellulose-containing material in the

suspension at different stages during the refinement has turned out to be very difficult and it has not been possible to carry out this measurement by known methods.

5 THE SOLUTION:

It has therefore for long been a desire to be able to carry out such a concentration measurement and according to the present invention a method for measuring the concentration of cellulose material in a water suspension during beating
10 of wood chips has been obtained, which method is characterized in that the measurement is carried out during the beating process itself by means of the phase displacement of microwaves in relation to a reference curve during the penetration by the microwaves of a certain
15 distance in the suspension.

According to the invention, it is suitable that the frequency of the microwaves is preferably 5-25 GHz, suitably 5-10 GHz.

20 According to the invention, the pulp concentration should lie in the region 2-50 weight percent, typically 35-45 weight percent.

25 According to the invention, the measurement is suitably carried out during the beating in a refiner.

30 The measuring of the concentration in a refiner should, according to the invention, be combined with measuring of the distance between the beating discs and measuring of the electrical conductivity in the suspension, as well as the temperature. The temperature and dielectricum are used to compensate for changes.

35 The invention also comprises an arrangement for performing a method for measuring the concentration of cellulose

material in a water suspension during beating of wood chips, which arrangement is characterized by a transmitting antenna for transmitting microwaves through the suspension of cellulose material, a receiver antenna for receiving the transmitted microwaves at a certain distance from the transmitting antenna and an electronic unit comprising a generator for producing microwaves and a detector for detecting the phase displacement of the microwaves that have passed through the suspension in relation to a phase curve for microwaves which have penetrated a reference suspension with known concentration, and which arrangement is characterized in that the transmitter and the receiver antennas are arranged on a radial bar in one of the beating discs in a refiner.

According to the invention, it is suitable that the bar on that side which faces the pulp is wave- or sawtooth-shaped and that the transmitter antenna is arranged in an inward bend with the main ray directed towards the opposing beating disc in such a way that the reflection therefrom passes over the nearest outward bend in relation to the transmitter antenna and hits the receiver antenna at a point further away, so that the leakage of microwaves is hindered by the nearest outward bend. According to the invention the transmitter and receiver antennas can also be arranged directly opposite each other on each beating disc.

It is also suitable according to the invention that the arrangement comprises a distance gauge for measuring the distance between the beating discs and possibly a gauge for measuring the conductivity for electric current in the suspension.

FIGURE DESCRIPTION:

The invention will in the following be described more in detail with reference to the enclosed drawings in which:

- Fig. 1 schematically shows the arrangement of the sensors according to a first embodiment of the invention, in which
- 5 Fig. 2 shows the arrangement of the sensors and a distance gauge according to a second embodiment of the invention, and where
- 10 Fig. 3 shows an embodiment of the invention similar to the one in Fig. 2.

DETAILED DESCRIPTION:

The measurement of the concentration according to the present invention depends on the fact that the dielectric constant for a suspension of the kind in question changes with the concentration of cellulose-containing material in the suspension. Therefore, when microwaves are transmitted from one antenna and are to be received by another antenna, which microwaves shall penetrate the suspension, it will take different lengths of time for the waves to spread out and reach the receiver antenna for different concentrations. This is shown if a phase curve is drawn up wherein it can be seen that the phase curve for a dispersion having a certain concentration is displaced in relation to the phase curve for a second concentration or for pure water or steam. According to the present invention, a phase diagram for microwaves with zero concentration of cellulose-containing material is initially drawn up and thereafter a corresponding phase curve for a water suspension and/or steam suspension containing cellulose-containing material is drawn up, and the phase displacement is measured. Different concentrations have different phase displacement and reference curves which show known concentrations can therefore be drawn up and compared with curves for concentrations which are to be measured.

The phase curves can be influenced by and are dependent on many factors, for example the construction of the apparatus, but the phase displacement can nevertheless be measured accurately by first drawing up a reference curve
5 for only steam, which reference curve automatically appears at the start when only steam flows through the apparatus. Other factors which are significant to the form of the curve are the distance between the beating discs, leakage or damping of the microwaves and the electric conductivity
10 in the suspension.

Fig. 1 shows schematically an embodiment of the invention in a disc refiner. A stationary disc 1 and a rotating disc 2 are arranged opposite each other. The discs are seen from
15 above and the disc rotates in the direction shown by the arrow. The distance d between the discs is in the region of 0,2-1 mm. Between the discs a water suspension of cellulose-containing material the concentration in which of this material is to be measured is present. At a desired
20 point on the stator 1 one or more transmitter antennas 3 with a radiation direction towards the rotating disc 2 is (are) mounted. On the rotating disc 2 a receiver antenna 4 is arranged, which of course can also be several in number. It is possible to mount transmitter and receiver antennas
25 in the opposite way. In the present case, the microwaves radiate in the direction shown by the arrow from the transmitter antenna 3 to the receiver antenna 4 and are registered in a not shown electronic unit as described above. This is a simple embodiment of the present invention
30 but since the transmitter and receiver antennas are each arranged on a separate beating disc, a slip ring for the electrical connection must be arranged on the rotating disc.

The transmitter and receiver antennas 3 and 4 may be of a conventional type but are preferably so-called microstrip antennas which are described in the Swedish patent 9504520-0. In the figure the antennas 3 and 4 are shown only by symbols.

The temperature which exists between the discs 1 and 2 is usually between 150-200°C often 170-180°C and the pressure is a number of bars, for example 6 bars.

10

The concentrations which it is suitable to measure according to the present invention are in the area of 10-50 weight percent, usually 35-45 weight percent.

15

The frequency of the microwaves should suitably be below 25GHz and they are preferably in the range of 5-10 GHz. The reason for choosing this frequency range is that at higher frequencies the costs for the measuring instrument are increased.

20

According to the invention, it is suitable that the receiver and transmitter antennas are arranged at the radially outer parts of the beating discs since measuring of the concentration before the so-called pressure peak, i.e. in the central parts of the refiner where chips and water are fed in, usually is of less interest.

30

Fig. 2 shows a second embodiment of the present invention where both the transmitter antenna 3 and the receiver antenna 4 are arranged on the stator 1. To make it possible for the receiver antenna 4 to receive any signals from the transmitter antenna 3, it is therefore necessary that the signals are reflected from the rotating disc. In this way, a longer route for the microwaves to go through the suspension is also obtained, which gives a more distinct phase displacement. The drawing also shows a distance gauge

35

5 which measures the distance d between the discs. This
distance gauge 5 may also be of a conventional kind and is
suitably a magnetic gauge of a known kind. The distance
measurement is then carried out by means of a permanent
5 magnet which is attached to the rotating part and a coil on
the stationary part. Changes in the magnetic field are
detected in a suitable way. The signals from the distance
gauge are directly proportional to the distance between the
discs 1 and 2. Such a magnetic distance gauge is suitable
10 in that the temperature is high and the environment
generally is difficult for electronic measuring. In those
cases where conventional distance measuring already exists
in the beating zone this can possibly be used. However, it
should be noted that such a method does not solve the local
15 distance measurement since the distance between discs does
not necessarily have to be the same along the radius.

Fig. 3 shows how the transmitter antenna 3 and the receiver
antenna 4 can be mounted on a bar 6 which is arranged on
20 the stator 1. This bar 6, which is partly countersunk in
the stator 1, is shown somewhat exaggeratedly protruding
therefrom. Besides the transmitter and receiver antennas 3
and 4 for microwaves, the bar 6 can also include sensors
for measuring pressure, temperatures, etc. It is described
25 in the Swedish patent 9701625-7. The advantage with
arranging the transmitter and receiver antennas 3 and 4 on
this bar is that the leakage of microwaves which spreads
out can be minimized by arranging the transmitter antenna
3 on a sloping side of the arc- or sawtooth-shaped bar 6
30 and by mounting the receiver antenna 4 on another wave or
a hock which slopes towards the slope where the transmitter
antenna 3 is arranged and on a slope which does not lie
closest to this. When the ray from the transmitter antenna
3 to its main part is directed in a suitable way towards
35 the rotating disc 2 so that the reflection of the ray hits
the receiver antenna 4, then the weaker leakage of the

microwaves will hit the projection between the sides which slope towards each other and have the antennas 3 and 4 and consequently reduce the disturbances to the receiver antenna 4.

5

Through the present invention a method and an arrangement for measuring in a continuous and simple way the concentration of a material dispersed in a liquid or steam have been brought about. This is of great importance for 10 pulp production in a refiner since the concentration is one of the parameters for achieving a desired quality of the pulp. The concentration which rises along the radius of the beating discs represents weight percent cellulosecontaining material in relation to water. This 15 water exists mostly in the form of steam close to the saturation point but may also probably exist in the form of liquid and then mostly bound in the fibres.

The invention is not limited to the embodiment examples 20 shown and it can be varied in different ways within the scope of the claims.

CLAIMS:

5

1.. Method for measuring the concentration of cellulose material in a water suspension during beating of wood chips, characterized in that the measuring is performed during the beating process by means of the phase displacement of microwaves in relation to a reference curve during the penetration by the microwaves of a certain distance in the suspension.

10 15 2. Method according to claim 1, characterized in that the frequency of the microwaves preferably is 5-25 GHz, suitably 5-10 GHz.

20 25 3. Method according to claim or 1 or 2, characterized in that the pulp concentration is in the range of 2-50 weight percent, typically 35-45 weightpercent.

4. Method according to any one of claims 1-3, characterized in that the measuring is carried out during beating in a refiner.

30 35 5. Method according to claim 4, characterized in that the measuring of the concentration is combined with measuring of the distance between the beating discs and the electrical conductivity in the suspension as well as the temperature.

40 6. Arrangement for performing a method for measuring the concentration of cellulose material in a water suspension during beating of wood chips comprising a transmitter antenna (3) for transmitting microwaves through the suspension of cellulose material, a receiver antenna(4) for receiving the transmitted microwaves and an electronic unit comprising a generator for producing the microwaves and a detector for detecting the displacement of the microwaves

that have passed through the suspension in relation to a phase curve for microwaves which have passed through a reference suspension with known concentration,
5 characterized in that the transmitter and receiver antennas (3, 4) are arranged on a radial bar (6) in one of the beating discs (1, 2) in a refiner.

7. Arrangement according to claim (6),
10 characterized in that the bar (6) on that side which faces the pulp is wave- or sawtooth-formed and that the transmitter antenna (3) is arranged in an inward bend with the main ray directed towards the opposing beating disc so that the reflection therefrom passes over the nearest outward bend in relation to the transmitter antenna
15 (3) and hits the receiver antenna (4) at a point further away so that leakage of microwaves is hindered by the nearest outward bend.

8. Arrangement according to claims 6 or 7,
20 characterized in that the transmitter and receiver antennas (3, 4) are arranged directly opposite each other on either beating disc (1, 2).

9. Arrangement according to any of the claims (6-8),
25 characterized in that it comprises a distance gauge (5) for measuring the distance between the beating disc (1, 2) and possibly a gauge for measuring the conductivity for electric current in the suspension.

1 / 1

FIG. 1

FIG. 2

FIG. 3

INTERNATIONAL SEARCH REPORT

1

International application No.

PCT/SE 98/01153

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: G01N 22/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: G01N, D21D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0619485 A1 (KABUSHIKI KAISHA TOSHIBA), 12 October 1994 (12.10.94) --	1-9
A,P	Derwent's abstract, No 97-516566/48, week 9748, ABSTRACT OF JP, 9243575 (TOSHIBA KK), 19 Sept 1997 (19.09.97), abstract -----	1-9

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

*'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*'&' document member of the same patent family

Date of the actual completion of the international search 19 October 1998	Date of mailing of the international search report 20 -10- 1998
Name and mailing address of the ISA Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Facsimile No. + 46 8 666 02 86	Authorized officer Ulf Nyström Telephone No. + 46 8 782 25 00

INTERNATIONAL SEARCH REPORT
Information on patent family members

27/07/98

International application No.

PCT/SE 98/01153

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0619485 A1	12/10/94	CN 1105123 A JP 6288937 A US 5502393 A	12/07/95 18/10/94 26/03/96

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.