Scheduling Examples

Nachiket Kapre nachiket@uwaterloo.ca

Outline

- Scheduling under Area-Time Tradeoff Scenarios
- Scheduling with Xilinx DSP blocks (simplified)

Area-Time Tradeoffs

- Developers must Hold resources accountable for their inclusion
 - Resources cost area on a chip = \$\$\$
 - ls it worth the silicon cost to include a particular hardware resource?
- Two extremes:
 - Fully sequential (one resource of each type) is bare minimum, slow and cheap
 - Fully spatial (parallel) is the best performing, most expensive
- Intermediate cases possible, use extra resources wisely! \rightarrow analysis and optimizations required

Polynomial $f = a \cdot x^3 + b \cdot y^2 + c \cdot z + d$

- Each input is an 8-bit unsigned number. Addition does overflow (extra output bit necessary)
- Expression has 3 additions and 6 multiplications!
 - Constraint: We are using 2-input add and 2-input multiply primitives
- ► Fully sequential design requires one multiplier + one adder
 - ► Latency = 9 cycles
 - ightharpoonup Throughput $=\frac{1}{0}$
- ► Fully parallel design requires 3 adders and 6 multipliers
 - ▶ Latency = 4 cycles
 - ► Throughput = 1

Fully Spatial (Parallel) Design

- ► Throughput=1, Latency=4
- ► Clock Period=max(T_{*8} , T_{*16} , T_{*24} , T_{+17} , T_{+25} , T_{+33})

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow $t2 <= t2 \times y$
- ▶ 6th Cycle \rightarrow $t3 <= c \times z$
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow t3 <= t3 + t2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow $t2 <= t2 \times y$
- ▶ 6th Cycle \rightarrow *t*3 <= *c* × *z*
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow t3 <= t3 + t2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow *t*2 <= *t*2 × *y*
- ▶ 6th Cycle \rightarrow $t3 <= c \times z$
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow t3 <= t3 + t2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow *t*2 <= *t*2 × *y*
- ▶ 6th Cycle \rightarrow $t3 <= c \times z$
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow t3 <= t3 + t2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow $t2 <= t2 \times y$
- ▶ 6th Cycle \rightarrow $t3 <= c \times z$
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow *t*3 <= *t*3 + *t*2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow *t*2 <= *t*2 × *y*
- ▶ 6th Cycle \rightarrow $t3 <= c \times z$
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow t3 <= t3 + t2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow $t2 <= t2 \times y$
- ▶ 6th Cycle \rightarrow $t3 <= c \times z$
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow t3 <= t3 + t2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow *t*2 <= *t*2 × *y*
- ▶ 6th Cycle \rightarrow $t3 <= c \times z$
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow *t*3 <= *t*3 + *t*2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow *t*2 <= *t*2 × *y*
- ▶ 6th Cycle \rightarrow $t3 <= c \times z$
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow t3 <= t3 + t2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

- ▶ 1st Cycle $\rightarrow t1 <= a \times x$
- ▶ 2nd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 3rd Cycle \rightarrow $t1 <= t1 \times x$
- ▶ 4th Cycle \rightarrow $t2 <= b \times y$
- ▶ 5th Cycle \rightarrow $t2 <= t2 \times y$
- ▶ 6th Cycle \rightarrow $t3 <= c \times z$
- ▶ 7th Cycle \rightarrow t3 <= t3 + d
- ▶ 8th Cycle \rightarrow *t*3 <= *t*3 + *t*2
- ▶ 9th Cycle \rightarrow f <= t3 + t1

Intermediate Design Points

- ightharpoonup Often, we can afford to allocate more resources \rightarrow where to spend this resource?
- lackbox Consider design alternatives ightarrow add more multipliers, and/or adders, and/or registers
- ▶ Among alternatives, pick the one that most improves throughput (or latency, if that is the designer constraint)

Generic design template

Schedule Table for one multiplier, one adder

Cycle	Operators	11
	add_0	mult ₀
0	-	$a \cdot x$
1	-	$a \cdot x^2$
2	-	$a \cdot x^3$
3	$a \cdot x^3 + d$	$b \cdot y$
4	-	$b \cdot y^2$
5	$a \cdot x^3 + b \cdot y^2 + d$	$c \cdot z$
6	$a \cdot x^3 + b \cdot y^2 + c \cdot z + d$	-

- ▶ Latency = 7 cycles, Throughput = $\frac{1}{7}$
- ▶ Problem: Lot of wasted cycles on the adder!
- Efficiency = Useful Cycles/Total Cycles = $\frac{9}{14}$

Schedule Table for two multipliers, one adder

Cycle	Operators					
	add_0	$mult_0$	$mult_1$			
0	-	a·x	b · y			
1	-	$a \cdot x^2$				
2	$b \cdot y^2 + d$	$a \cdot x^3$	$c \cdot z$			
3	$a \cdot x^3 + b \cdot y^2 + d$	-	-			
4	$a \cdot x^3 + b \cdot y^2 + c \cdot z + d$	-	-			

- ► Latency = 5 cycles, Throughput = $\frac{1}{5}$
- Efficiency = $\frac{9}{15}$

Schedule Table for three multipliers, one adder

Cycle	Operators					
	add_0	$mult_0$	$mult_1$	$mult_2$		
0	-	a·x	b · y	$c \cdot z$		
1	$c \cdot z + d$	$a \cdot x^2$	$b \cdot y^2$	-		
2	$b \cdot y^2 + c \cdot z + d$	$a \cdot x^3$	-	-		
3	$a \cdot x^3 + b \cdot y^2 + c \cdot z + d$	-	-	-		

- ► Latency = 4 cycles, Throughput = $\frac{1}{4}$
- Efficiency = $\frac{9}{16}$

Area-Time Tradeoff Visualization

- ► **Assumption**: Area of multiplier = 3*Area of adder
 - ightharpoonup A = one multiplier + one adder = 4 units
 - ightharpoonup B = two multipliers + one adder = 7 units
 - ightharpoonup C =three multipliers + one adder = 10 units
 - ightharpoonup D = six multipliers + three adders = 21 units

Scheduling with Variable Resource Constraints

- Area-Time tradeoffs are at the heart of hardware design → every piece of hardware must justify its existence → millions of dollars of manufacturing!
- Aggressively schedule to minimize latency, boost throughput
- ▶ Always check if replicating cheap block is a possibility?

Replication Scenarios – Good

- Replicate A to fit the area occupied by C
 - ightharpoonup Area(C) = 10 units, Area(A) = 4 units.
 - Area(two copies of A) = 4 units \times 2 = 8 units
 - \triangleright Thus, we can easily fit $2 \times A$ in area of one C
- Check throughputs:
 - Throughput of A = ½
 Throughput of C = ½

 - Throughput of two copies of A = 2 × ¹/₇ = ¹/_{3.5}
 Thus, Throughput(two copies of A) > Throughout(C)
 - - $\frac{1}{25} > \frac{1}{5}$
- ▶ What this means? If you can afford to pay for C, just implement instances of A instead!

Replication Scenarios – Bad

- Replicate A to fit the area occupied by D
 - ightharpoonup Area(D) = 21 units, Area(A) = 4 units
 - ▶ Area(five copies of A) = 4 units \times 5 = 20 units
 - ▶ Thus, we can easily fit $5 \times A$ in area of one C
- Check throughputs:
 - ► Throughput of A = $\frac{1}{7}$
 - ▶ Throughput of D = 1
 - ▶ Throughput of five copies of A = $5 \times \frac{1}{7} = \frac{5}{7}$
 - ▶ Thus, Throughput(five copies of A) < Throughout(D)</p>
 - $\frac{5}{7} < 1$
- ▶ What this means? If you can afford to pay for D, just implement D instead of being a cheapskate and replicating A!

Scheduling with Fixed-Function Units

- Modern FPGAs contain add-multiply blocks that can be programmed to suite customer requirements
- Embedded FPGA blocks are fast structures → more on FPGA architecture after midterm

Scheduling with Fixed-Function Units

- ▶ Three arithmetic units →
 - ightharpoonup pre-adder (i1 + i2)
 - ightharpoonup multiplier ($i0 \times (i1 + i2)$)
 - accumulator $(o0 = o0 + i0 \times (i1 + i2) + i3)$
- Programmable ce and sel inputs to steer and control data inside the DSP

Computational Folding over FPGA DSPs

- ▶ Time multiplexing of a DSP block is an example of scheduling
- ightharpoonup Another word for it ightharpoonup computational folding
 - ▶ Why? Because computational origami was taken
- Split your input expression into multiple DSP operations
- lacktriangle Precision of adders and multipliers determine how to slice up operations o for this lecture, assume sufficient

Highly flexible datapath

Cycle	Intra-DSP Operations			Output
	preadd(p)	mult(m)	accum	o0 = accum
0	a + 0	$p \cdot x$	m + 0 + 0	a·x
1	$a \cdot x + 0$	$p \cdot x$	m + 0 + 0	$a \cdot x^2$
2	b+0	$p \cdot x$	m + o0 + 0	$a \cdot x^2 + b \cdot x$
3	0 + 0	$p \cdot x$	m + o0 + c	$a \cdot x^2 + b \cdot x + a$

Cycle	Intra-DSP Operations			Output
	preadd(p)	mult(m)	accum	o0 = accum
0	a + 0	$p \cdot x$	m + 0 + 0	a·x
1	$a \cdot x + 0$	$p \cdot x$	m + 0 + 0	$a \cdot x^2$
2	b+0	$p \cdot x$	m + o0 + 0	$a \cdot x^2 + b \cdot x$
3	0 + 0	$p \cdot x$	m + o0 + c	$a \cdot x^2 + b \cdot x + c$

Cycle	Intra-DSP Operations			Output
	preadd(p)	mult(m)	accum	o0 = accum
0	a + 0	$p \cdot x$	m + 0 + 0	a·x
1	$a \cdot x + 0$	$p \cdot x$	m + 0 + 0	$a \cdot x^2$
2	b+0	$p \cdot x$	m + o0 + 0	$a \cdot x^2 + b \cdot x$
3	0+0	$p \cdot x$	m + o0 + c	$a \cdot x^2 + b \cdot x + a$

Cycle	Intra-DSP Operations			Output
	preadd(p)	mult(m)	accum	o0 = accum
0	a + 0	$p \cdot x$	m + 0 + 0	a·x
1	$a \cdot x + 0$	$p \cdot x$	m + 0 + 0	$a \cdot x^2$
2	b+0	$p \cdot x$	m + o0 + 0	$a \cdot x^2 + b \cdot x$
3	0 + 0	$p \cdot x$	m + o0 + c	$a \cdot x^2 + b \cdot x + c$

Cycle	Intra-DSP Operations			Output
	preadd(p)	mult(m)	accum	o0 = accum
0	a + 0	$p \cdot x$	m + 0 + 0	a·x
1	$a \cdot x + 0$	$p \cdot x$	m + 0 + 0	$a \cdot x^2$
2	b+0	$p \cdot x$	m + o0 + 0	$a \cdot x^2 + b \cdot x$
3	0 + 0	$p \cdot x$	m + o0 + c	$a \cdot x^2 + b \cdot x + a$

Cycle	IO Table			
	i0	i1	i2	i3
0	X	а	0	0
1	X	$a \cdot x$	0	0
2	X	Ь	0	0
3	0	-	0	С

Cycle	Selection sel ce	
0	0	1
1	0	1
2	1	1
3	1	1

- \triangleright $y0 = a \cdot x$
- \triangleright $y1 = a \cdot x^2$
- $y2 = a \cdot x^2 + b \cdot x$
- $y = a \cdot x^2 + b \cdot x + c$

Cycle	Intra-DSP Operations			Output
	preadd(p)	mult(m)	accum	o0 = accum
0	a + 0	$p \cdot x$	m + 0 + b	
1	$(a\cdot x+b)+0$	$p \cdot x$	m+0+c	$(a \cdot x + b) \cdot x + c$

Cycle	Intra-D	Intra-DSP Operations		
	preadd(p)	mult(m)	accum	o0 = accum
0	a + 0	$p \cdot x$	m + 0 + b	$a \cdot x + b$
1	$(a\cdot x+b)+0$	$p \cdot x$	m+0+c	$\begin{vmatrix} a \cdot x + b \\ (a \cdot x + b) \cdot x + c \end{vmatrix}$

Cycle	Intra-DSP Operations			Output
	preadd(p)	mult(m)	accum	o0 = accum
0	a + 0	$p \cdot x$	m + 0 + b	
1	$(a\cdot x+b)+0$	$p \cdot x$	m+0+c	$(a \cdot x + b) \cdot x + c$

Cycle	IO Table			
	i0	i1	<i>i</i> 2	i3
0	X	а	0	Ь
1	X	$a \cdot x + b$	0	С

Cycle	Selection		
	sel	ce	
0	0	1	
1	0	1	

- \triangleright $y0 = a \cdot x + b$
- $y = (a \cdot x + b) \cdot x + c$

Mapping Technique

- Different ways to perform algebraic factorization
- ► Core DSP computes $o0 = (i1 + i2) \cdot i0 + i3 + o0$
- Attempt to extract this expression from your application
- Use as many multiplier and adder blocks in same cycle
- External feedback sometimes necessary!
- ► Minimize the number of cycles

Class Wrapup

- ► Area-Time tradeoffs fundamental aspect of hardware design
- Resources must be introduced carefully with high utilization
- ▶ Reduce the number of cycles, and enhance utilization of hardware resources
- ► FPGAs today ship with DSP blocks that contain fast multiply and addition blocks
 - ightarrow scheduling is needed to use them properly.