Autour des diagrammes de décision quantiques

Malo Leroy

Parcours recherche – CentraleSupélec

23 mai 2024

Les besoins en puissance de calcul croissent rapidement

Les algorithmes classiques sont parfois inefficaces

Les besoins en puissance de calcul croissent rapidement

Les algorithmes classiques sont parfois inefficaces Les **algorithmes quantiques** permettent de résoudre certains problèmes plus efficacement Les machines quantiques sont en développement

11

Il y a un besoin d'outils de développement et vérification d'algorithmes quantiques

Les machines quantiques sont en développement

 $\downarrow \downarrow$

Il y a un besoin d'outils de développement et vérification d'algorithmes quantiques

Cela nécessite une structure de données adaptée

État de l'art

- Interprétation abstraite
- Arithmétique des intervalles réels
- Diagrammes de décision quantiques

État de l'art

- Interprétation abstraite
- Arithmétique des intervalles réels
- Diagrammes de décision quantiques

Solution: diagrammes additifs abstraits

L'interprétation abstraite permet de déterminer des propriétés ou d'accélérer des calculs

Exemple : signe d'une expression $e = (3+2) \times (-5)$

$$signe(e) = (signe(3) + signe(2)) \times signe(-5)$$

$$= (\oplus + \oplus) \times \ominus$$

$$= \oplus \times \ominus$$

$$= \ominus$$

L'interprétation abstraite est applicable aux intervalles réels

$$[1,2] * [-1,1] = [-2,2]$$

 $[1,2] + [-1,1] = [0,3]$
 $[1,2] \wedge [-1,1] = [1,1]$
 $[1,2] \vee [-1,1] = [-1,2]$

Les diagrammes de décision permettent de représenter des fonctions booléennes

Les diagrammes de décision permettent de représenter des fonctions booléennes

Un état quantique est une superposition d'états incompatibles

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
 (un qubit)

Un **état quantique** est une superposition d'états incompatibles

$$|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$$
 (un qubit)
 n qubits $\Rightarrow 2^n$ états incompatibles

On note les états sous forme de vecteurs

$$x |01\rangle + y |11\rangle = \begin{pmatrix} 0 \\ x \\ 0 \\ y \end{pmatrix}$$

On peut représenter des états avec des diagrammes de décision quantiques

Retour sur l'état de l'art

- ✓ Interprétation abstraite
- ✓ Arithmétique des intervalles réels
- ✓ Diagrammes de décision quantiques

On va utiliser ces concepts ensemble, avec une nouveauté : l'additivité

Retour sur l'état de l'art

- ✓ Interprétation abstraite
- ✓ Arithmétique des intervalles réels
- √ Diagrammes de décision quantiques
- + Nouveauté : additivité

Solution : diagrammes additifs abstraits

Objectifs

- Modèle formel de diagrammes de décision additifs abstraits
- Implémentation du modèle

Méthodologie

(Ici, exemple d'un diagramme abstrait additif)

(Ici, réduction du précédent diagramme)

Modèle

- ✓ Intervalles de C cartésiens & polaires
- ✓ Diagrammes
- ✓ Approximation locale, globale
- √ Fusion forcée
- √ Algorithmes de réduction

Implémentation

- ✓ Intervalles de ℂ cartésiens & polaires
- ✓ Diagrammes : construction, évaluation
- ✓ Diagrammes aléatoires
- ✓ Fusion forcée
- ~ Algorithmes de réduction

L'avantage en nombre de nœuds est **exponentiel** pour le *proof of concept*

Suite

- Ajustements
 - Fonctions d'erreur
 - Algorithmes de réduction
- Nouveaux concepts
 - Multi-valuation
 - Carte locale inversible

Cadre du projet Formation future

Encadrant : Renaud Vilmart

Équipe : QuaCS

■ Laboratoire : Laboratoire Méthodes Formelles

Continuer la formation en informatique théorique

Électifs

- Génie logiciel orienté objet
- Informatique théorique
- Calcul haute performance
- Modèles et sys. pour la gestion de données

Complément scientifique : métaheuristiques

S8 envisagés

- Digital Tech Year
- S8 à CentraleSupélec
 - Continuité du projet
- Mobilité internationale

Dominantes / mentions

- Informatique et numérique
 - Sciences du logiciel
 - Architecture des systèmes informatiques
- Physique et nanotechnologies
 - Quantum engineering

Conclusion

Questions

Complément sur les césures

- Digital Tech Year
 - Semestre au Paris Digital Lab
 - Semestre en entreprise à l'international
- Stage
 - Entreprise
 - Laboratoire
 - France ou à international
- Stage en laboratoire
 - En France ou à l'international

Technologies utilisées

- Code
 - Langage C++
 - CMake
 - GNU C Compiler
- Versionnage
 - Git
 - GitHub
- Tests
 - Google Test
 - GitHub Actions
- Documentation Doxygen