Problem Set 4 Math 410, Fall 2024

- 1. (Textbook 3.4)
 (Decide irreducibility of five polynomials)
- 2. (Textbook 3.5) (Decide irreducibility of three polynomials)
- 3. (Textbook 3.12) (Some true/false questions about factoring polynomials)
- 4. Prove, as claimed in class, that if ν is a discrete valuation on a field K, and $a, b \in K$ have $\nu(a) \neq \nu(b)$, then $\nu(a+b) = \min\{\nu(a), \nu(b)\}.$
- 5. Let ν be a discrete valuation on a field K. Extend ν from K to K[t] with the following definition:

$$\nu(a_0 + a_1t + \dots + a_dt^d) = \min\{\nu(a_0), \nu(a_1), \dots, \nu(a_d)\}.$$

Prove that for all $f, g \in K[t]$, $\nu(fg) = \nu(f)\nu(g)$.

Hint First, prove that $\nu(fg) \geq \nu(f)\nu(g)$. Then, to show that equality holds, it suffices to exhibit a single coefficient with the desired valuation.

- 6. Let $\alpha \in \mathbb{C}$ be an algebraic number, with minimal polynomial $m \in \mathbb{Q}[t]$. Let $d = \deg_{\mathbb{Q}}(\alpha)$, which we have seen is also equal to ∂m .
 - (a) Prove that m is *separable*, as defined in the previous problem set, and therefore has d distinct roots.
 - (b) Let $\alpha_1, \dots, \alpha_d \in \mathbb{C}$ be the distinct roots of m; as mentioned in class, these are called the *conjugates* of α . Prove that all the conjugates α_i have the same minimal polynomial m.
 - (c) Denote by $N_{\mathbb{Q}}(\alpha)$ the product of all the conjugates, i.e. $\alpha_1\alpha_2\cdots\alpha_d$. Prove that $N_{\mathbb{Q}}(\alpha)\in\mathbb{Q}$.
 - (d) Determine a formula for $N_{\mathbb{Q}}(a+b\sqrt{d})$. Here, assume $a,b,d\in\mathbb{Z},\ d$ is squarefree, and $b\neq 0$.
- 7. Using the same notation as the previous problem:
 - (a) Prove that for each conjugate α_i , there is a unique field homomorphism $\phi_i: \mathbb{Q}(\alpha) \to \mathbb{C}$ such that $\phi_i(\alpha) = \alpha_i$.

Hint Use the isomorphism $\mathbb{Q}(\alpha) \cong \mathbb{Q}[t]/\langle m \rangle$, and apply the first isomorphism theorem for rings to reduce the problem to classifying certain homomorphisms $\mathbb{Q}[t] \to \mathbb{C}$.

(b) Prove that in any nonzero field homomorphism $\phi : \mathbb{Q}(\alpha) \to \mathbb{C}$, $\phi(\alpha)$ must be one of the conjugates of α . Conclude that there exist exactly d nonzero homomorphisms $\mathbb{Q}(\alpha) \to \mathbb{C}$.

Note This is yet possible way to define the degree of an algebraic number, and another point of view on "conjugates:" they are other avatars of α under different choices of embedding of $\mathbb{Q}(\alpha)$ in \mathbb{C} .