Finding Similar Sets (part 2)

Applications
Shingling

Minhashing

Locality-Sensitive Hashing

MinHashing

Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

MinHashing

Data as Sparse Matrices
Jaccard Similarity Measure
Constructing Signatures

From Sets to Boolean Matrices

- ◆ Rows = **elements** of the universal set
- ◆ Columns = sets
- ◆ 1 in row e and column S if and only if element e is a member of set S
- Column similarity is the Jaccard similarity of the sets of their rows with 1: intersction/union of sets
- ◆ Typical matrix is sparse (many 0 values)
 - May not really represent the data by a boolean matrix
 - > Sparse matrices are usually better represented by the list of non-zero values (e.g., triples)
 - But the matrix picture is conceptually useful.

	Exa	ampl	e 3. 6	\wedge
Element	S_1	$\mid S_2 \mid$	S_3	$oxedsymbol{S_4}$
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

- Universal set: {a, b, c, d, e}
- Matrix represents sets chosen from universal set
- \bullet S1 = {a, d}, S2 = {c}, S3 = {b, d, e} and S4 = {a, c, d}
- Example: rows are products and columns are customers, represented by set of items they bought
- ◆ Jacquard similarity of S1, S4: intersection/union = 2/3.

Example: Jaccard Similarity of Columns

```
1 1 * * Sim (C_1, C_2) =
                   2/5 = 0.4
1 1 * *
```

Outline: Finding Similar Columns

- Compute signatures of columns = small summaries of columns
- 2. Examine **pairs of signatures** to find similar signatures
 - Essential: similarities of signatures and columns are related
- 3. Optional: check that columns with similar signatures are really similar.

Warnings

- Comparing all pairs of signatures may take too much time, even if not too much space
 - A job for Locality-Sensitive Hashing

2. These methods can produce false negatives, and even false positives (if the optional check is not made).

Signatures

- Key idea: "hash" each column C to a small signature Sig(C), such that:
 - Sig (C) is small enough that we can fit a signature in main memory for each column
 - 2. Sim (C_1, C_2) is the same as the "similarity" of Sig (C_1) and Sig (C_2) .

Four Types of Rows

lacktriangle Given columns C_1 and C_2 , rows may be classified as:

$$\begin{array}{ccccc}
 & C_1 & C_2 \\
 & C_1 & C_2 \\
 & C_2 & C_2 \\
 & C_3 & C_4 \\
 & C_4 & C_5 \\
 & C_5 & C_6 \\
 & C_6 & C_6 \\
 & C_6 & C_6 \\
 & C_7 & C_7 \\
 & C_7 &$$

- lacktriangle Also, a = # rows of type a, etc.
- ◆ Note Sim $(C_1, C_2) = a / (a + b + c)$
 - > Jacquard similarity: intersection/union
 - > a is intersection, a+b+c is union

Minhashing

- To minhash a set represented by a column of the matrix, pick a random permutation of the rows
- 2. Define "hash" function h (C) = the number of the first (in the permuted order) row in which column C has 1
- 3. Use several (e.g., 100) independent hash functions to **create a signature**.

Minhashing Example (3.7)

Element	S_1	S_2	S_3	S_4		Element	S_1	S_2	S_3	S_4
\overline{a}	1	0	0	1		6	0	0	1	0
b	0	0	1	0		e	0	0	1	0
c	0	1	0	1		a	1	0	0	1
d	1	0	1	1	Permute	d	1	Û	1	1
e	0	0	1	0	remute	c	0	1	0	1

- To minhash a set represented by a column of the characteristic matrix, pick a permutation of the rows
- 2. The **minhash value** of any column is the number of first row, in permuted order, in which column **has a 1**
- 3. For set S1, first 1 appears in row a, so:

Minhashing Example (3.7)

Element	S_1	S_2	S_3	S_4		Element	S_1	S_2	S_3	S_4
$\overline{}$	1	0	0	1		b	0	0	1	0
b	0	0	1	0		e	0	0	1	0
c	0	1	0	1		\boldsymbol{a}	1	0	0	1
d	1	0	1	1	Permute	d	1	0	1	1
e	0	0	1	0	remuce	c	0	1	0	1

- To minhash a set represented by a column of the characteristic matrix, pick a permutation of the rows
- 2. The **minhash value** of any column is the number of first row, in permuted order, in which column **has a 1**
- 3. For set S1, first 1 appears in row a, so:

•
$$h(S1) = a$$

•
$$h(S2) = c$$

•
$$h(S3) = b$$

•
$$h(S4) = a$$

Minhashing Example

Input matrix

2	4		4	
3	1	0	1	0
4	1	0	0	1
7	0	1	0	1
6	0	1	0	1
1	0	1	0	1
2	1	0	1	0
5	1	0	1	0

Signature matrix M

Minhashing Example

Signature matrix M

2	1	2	1
2	1	4	1

Minhashing Example

Input matrix

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Surprising Property: Connection between Minhashing and Jaccard Similarity

- The probability that minhash function for a random permutation of rows produces same value for two sets equals Jaccard similarity of those sets
 - \triangleright Probability that $h(C_1) = h(C_2)$ is the same as Sim (C_1, C_2)
- Recall four types of rows:

	C ₁	C ₂
a	1	1
b	1	0
С	0	1
d	0	0

- Sim(C₁, C₂) for both Jacquard and Minhash are a/(a+b+c)!
 - Why? Look down the permuted columns C₁ and C₂ until we see a 1
 - If it's a type-a row, then $h(C_1) = h(C_2)$. If a type-b or type-c row, then not. (Don't count the *type-d* rows).

Similarity for Signatures

- Sets represented by characteristic matrix M
- ◆ To represent sets: pick at random some number n of permutations of the rows of M
 - > 100 permutations or several hundred
- Call **minhash** functions determined by these permutations $h_1, h_2, ..., h_n$
- From column representing set S, construct minhash signature for S:
 - \triangleright vector $[h_1(S), h_2(S), ..., h_n(S)]$, usually represented as column
- Construct a signature matrix: ith column of M replaced by minhash signature for ith column
- ◆ The *similarity of signatures* is the fraction of the hash functions in which they agree.

Min Hashing – Example

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Input matrix

Signature matrix M

Similarities:

3/4	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0
2/3			19	

Min Hashing – Example

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

_	Δ				_
1	0	1		0	
1	0	C)	1	
0	1	C)	1	
0	1	C)	1	
0	1	C)	1	
1	0	1		0	
1	0	1		0	

Input matrix

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

20

Min Hashing – Example

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1 Duc matrix							
		μ		1		0	
1		0		0		1	
0		1		0		1	
0		1		0		1	
0		1		0		1	
1		0		1		0	
1		0		1		0	

Input matrix

Signature matrix M

Similarities:

	1-3	2-4	1-2	3-4
Col/Col		0.75	0	0
Sig/Sig	0.67	1.00	0	0

Minhash Signatures

- ◆ Pick (say) **100 random** permutations of the rows
- Think of Sig (C) as a column vector
- **◆** Let *Sig* (C)[i] =

according to the *i* th permutation, the number of the first row that has a **1** in column *C*.

Implementation – (1)

- Not feasible to permute a large characteristic matrix explicitly
 - Suppose 1 billion rows
 - Hard to pick a random permutation from 1...billion
 - > Representing a random permutation requires 1 billion entries
 - Accessing rows in permuted order leads to thrashing
- Can simulate the effect of a random permutation by a random hash function
 - Maps row numbers to as many buckets as there are rows
 - May have collisions on buckets
 - Not important as long as number of buckets is large.

Implementation – (2)

- A good approximation to permuting rows: pick around 100 hash functions
- For each:
 - column c (set representing a document)
 - \triangleright hash function h_i
- Keep a "slot" in signature matrix M (i,c)
- Intent: M(i,c) will become the smallest value of $h_i(r)$ for which column c has 1 in row r
 - \rightarrow $h_i(r)$ gives order of rows for i^{th} permuation.

Implementation – (3)

```
for each row r

for each column c

if c has 1 in row r

for each hash function h_i do

if h_i(r) is a smaller value than M(i, c) then

M(i, c) := h_i(r);
```

Computing Minhash Signatures: Example 3.8

Row	S_1	S_2	S_3	$ S_4 $	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0		1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Two hash functions give permutations of rows:

$$h1 = x+1 \mod 5$$
, $h2 = 3x +1 \mod 5$

	$ S_1 $	S_2	S_3	S_4
h_1	∞	∞	∞	∞
h_2	∞	∞	∞	∞

Initial signature matrix

For row 0: Replace existing signature values with lower hash values for S1 and S4, since both have 1 in row

Computing Minhash Signatures: Example 3.8 (part 2)

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
	0	0	1	0	2	4
$\bigcirc 2$	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

	$\mid S_1 \mid$	S_2	S_3	S_4
h_1	1	∞	2	1
h_2	1	∞	4	1

For row 1: replace h1 and h2 values for S3, since row has a 1 and values are lower

For row 2: replace values for S2 since set has a 1 value. Do not replace values for S4, because existing values are lower 27

Computing Minhash Signatures: Example 3.8 (part 3)

Row	S_1	S_2	S_3	$ S_4 $	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
\triangleleft	1	0	1	1	4	0
4	0	0	1	0	0	3

	$ S_1 $	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

For row 3: don't replace h1 values--all are below 4; replace h2 values with 0 for S1, S3, S4

For row 4: replace h1 value for S3, don't replace h2 value since current value is lower

Note: result is same as ₂₈ permutations to find first 1

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from similar documents

Exar	nple		Sig1	Sig2
		h(1) = 1 $g(1) = 3$	1 3	-
Row C1 1 1 2 0	C2 0	h(2) = 2 $g(2) = 0$	1	2
3 1 4 1	1 0	h(3) = 3 g(3) = 2	1 2	2
5 0	1	h(4) = 4 $g(4) = 4$	1 2	2
$h(x) = x \bmod g(x) = 2x+1$		h(5) = 0 $g(5) = 1$	1 2	0