International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN(P): 2249-6955; ISSN(E): 2249-8060 Vol. 4, Issue 2, Apr 2014, 69-74

© TJPRC Pvt. Ltd.

TRANS
STELLAR
Journal Publications · Research Consultancy

ON (P, S)-RESIDUE SYSTEM MODULO N

M. GANESHWAR RAO

Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Andhra Pradesh, India

ABSTRACT

In this paper we generalize the notion of reduced residue system (mod n) using direct factor sets and regular divisor of n.

2000 Mathematics Subject Classification: Primary: 11A07 Secondary: 11A25

KEYWORDS: Direct Factor Set, (P,S) - System (Mod N), S-Convolution

1. INTRODUCTION

A non empty set P of positive integers is called a *direct factor set* if for n_1 , n_2 with $\gcd(n_1, n_2) = 1$ we have $n_1 n_2 \in P \Leftrightarrow n_1 \in P$ and $n_2 \in P$. A pair P and Q of direct factor sets is said to form a *conjugate pair* if every positive integer n can be written uniquely as n = ab, where $a \in P$ and $b \in Q$. For such a pair note that $P \cap Q = \{1\}$. As example of conjugate pairs of direct factor sets we have (i) $P = \{1\}$, Q = N (set of all natural numbers) and (ii) $P = \{1\}$ set of all k-free integers (that is, the integers not divisible by the k-power of any prime) and $Q = \{1\}$ the set of all k-free integers. For any integer n > 1, n0 denotes a set of positive divisors of n1. The elements of a complete residue system (mod n1) such that n1 or simply a n2 where n3 denotes the greatest divisor of n3. In case n4 in n5 system (mod n5) are system (mod n6) or simply a n5 system (mod n7). In case n6 and n7, the set of all positive divisors of n8, we note that a n6 system (mod n6) is the P-reduced residue system (mod n8) defined by Eckford Cohen [2].

The number of elements in a (P,S)-system (modn) is denoted by $\varphi_{P,S}(n)$ and it is called the (P,S)-totient function. Further it may be observed that in the case $P=\{1\}$ the totient $\varphi_{P,S}(n)$ reduces to $\varphi_S(n)$, the S-analogue of the Euler totient function discussed by P. J. McCarthy[4] and others.

The purpose of this paper is study this function $\varphi_{P,S}(n)$.

2. PRELIMINARY RESULTS

For any integer n > 1, let S_n be a nonempty set of positive divisors of n. Let A be the class of all arithmetic functions. For $f, g \in A$ their S-convolution, $f(\overline{S})g$, is defined by

www.tjprc.org editor@tjprc.org

70 M. Ganeshwar Rao

$$(f \ \overline{S} \ g)(n) = \sum_{d \in S_n} f(d)g\left(\frac{n}{d}\right),\tag{2.1}$$

Where the sum is over all elements of d of S_n .

Observe that if $S_n = D_n$ (the set of all positive divisors of n) then $(f \, \overline{D} g)(n) = (f * g)(n)$, where * is the classical Dirichlet convolution. Also if $S_n = U_n$ (the set of all unitary divisors of n (recall d is a unitary divisor of n if $d \mid n$ and $\gcd \left(d, \frac{n}{d} \right) = 1$) we have $(f \, \overline{U} g)(n) = (f \circ g)(n)$, where \circ is the unitary convolution studied by Eckford Cohen[3].

Introducing S-convolutions, Narkiewicz [5] has obtained a set of necessary and sufficient conditions on the set S_n , so that the following holds:

- $(A, +, \overline{s})$ is a commutative ring with unity (in which \mathcal{E} given by $\mathcal{E}(n) = 1$ or 0 according as n = 1 or n > 1 is the unity)
- $f \overline{S} g$ is multiplicative whenever f and g are.
- The arithmetic function u(n)=1 for all n has inverse $\mu_s \in A$ relative to \overline{s} (that is, $u\,\overline{s}\,\mu_s = \varepsilon$) and $\mu_s(n)=0$ or -1 when n is a prime power. μ_s is called the S-analogue of the Mobius function μ .

Such a S-convolution is called a *regular convolution*. Note that both Dirichlet convolution and Unitary convolution are regular.

V. Siva Rama Prasad and M. Ganeshwar Rao [6] have introduced a generalized Mobius function $\mu_{P,S}$ and it is defined by

$$\mu_{P,S}(n) = \sum_{d \in S_- \cap P} \mu_S\left(\frac{n}{d}\right) \tag{2.2}$$

Where $\mu_{\scriptscriptstyle S}$ is the S-analogue μ . Note that

$$\mu_{P,S}(n) = (\chi_P \bar{s} \mu_S) \tag{2.3}$$

Where χ_P is the characteristic function of P (that is, $\chi_P(n) = 1$ or 0 according as $n \in P$ or $n \notin P$). In fact

$$\mu_{P,S}(n) = \sum_{d \in S_n \cap P} \mu_S\left(\frac{n}{d}\right)$$
$$= \sum_{d \in S_n \cap P} \chi_P(d) \mu_S\left(\frac{n}{d}\right)$$

$$= (\chi_P \overline{S} \mu_S)(n).$$

Also they have established a generalized inversion formula given below:

Let P, Q be a conjugate pair of direct factor sets. Then for $f, g \in A$

$$g(n) = \sum_{d \in S_{-} \cap O} f\left(\frac{n}{d}\right) \Leftrightarrow f(n) = \sum_{d \in S_{-}} g(d) \mu_{P,S}\left(\frac{n}{d}\right)$$
 (2.4)

Remark: In Case $S_n = D_n$, (2.4) gives the inversion formula proved by Eckford Cohen [2]. Also if $S_n = U_n$, P = the set of all k-free integers and Q = the set of all k^{th} power of positive integers the inversion formula due to Suryanarayana [7] is obtained from (2.4).

3. THE FUNCTION

 $\varphi_{P,S}$

In all that follows P and Q form a conjugate pair of direct factor sets. Also \overline{S} is a regular convolution on the class A of all arithmetic functions.

3.1. Theorem: Suppose $d \in S_n \cap Q$ and for each d, let X ranges over the elements of a (P,S)-system $\left(\operatorname{mod} \frac{n}{d} \right)$. Then the set dX forms a complete residue system $\left(\operatorname{mod} n \right)$.

Proof: For any fixed $d \in S_n \cap Q$, let $C_d = \{0 < a \le n, (a,n)_s = de, e \in P\}$. Then any a with $0 < a \le n$ lies exactly in one class C_d . Hence the union $\bigcup_{d \in S_n \cap Q} C_d$ contains all the integers 1,2,3,...,n. Also for a fixed $d \in S_n \cap Q$ the elements dX makes the set C_d if and only if $\left(X, \frac{n}{d}\right)_S \in P$, $1 \le x \le \frac{n}{d}$. That is, $dX \in C_d$ if and only if X is in a minimal (P,S)-system $\left(\text{mod}\,\frac{n}{d}\right)$. Replacing the particular (P,S)-system $\left(\text{mod}\,\frac{n}{d}\right)$ by any arbitrary (P,S)-system $\left(\text{mod}\,\frac{n}{d}\right)$ we get the theorem.

3.2. Theorem:
$$\sum_{d \in S_n \cap Q} \varphi_{P,S} \left(\frac{n}{d} \right) = n.$$

Proof: Let C_d be as defined in the proof of Theorem 3.1. Then each C_d has $\varphi_{P,S}\left(\frac{n}{d}\right)$ elements; any two C_d 's are disjoint and their union is the set $\{1,2,3,...,n\}$

www.tjprc.org editor@tjprc.org

72 M. Ganeshwar Rao

Hence
$$\sum_{d \in S_n \cap Q} \varphi_{P,S} \left(\frac{n}{d} \right) = n.$$

3.3. Corollary: ([2], Theorem 5).

If P is a direct factor set and $\varphi_P(n)$ is the P-totient function of n then

$$\sum_{\substack{d \in Q \\ d \mid n}} \varphi_p \left(\frac{n}{d} \right) = n..$$

Proof: Taking $S_n = D_n$ in Theorem 3.2, we get corollary 3.3.

3.4. Corollary

If $\varphi_s(n)$ is the S-analogue of the Euler totient function

$$\sum_{d \in S_n} \varphi_{S}(d) = n.$$

Proof: Taking $P = \{1\}$ we find Q = N, the set of all natural numbers and $\varphi_{P,S}(n) = \varphi_S(n)$. Hence by Theorem 3.2, we get $\sum_{d \in S_n} \varphi_S\left(\frac{n}{d}\right) = n$. Since $d \in S_n$ implies $\frac{n}{d} \in S_n$, the sum on the left is equal to $\sum_{d \in S_n} \varphi_S(n)$, proving the corollary.

3.5 Theorem:
$$\varphi_{P,S}(n) = \sum_{d \in S} d \mu_{P,S}\left(\frac{n}{d}\right)$$

Proof: We have by Theorem 3.2 that

$$\sum_{d \in S_n \cap Q} \varphi_{P,S} \left(\frac{n}{d} \right) = N(n) \tag{3.6}$$

Where N(n) = n for all n.

Using (2.4) and (3.6) we have

$$\varphi_{P,S}(n) = \sum_{d \in S_n} N(d) \mu_{P,S}\left(\frac{n}{d}\right)$$
$$= \sum_{d \in S_n} d \mu_{P,S}\left(\frac{n}{d}\right),$$

Proving the theorem.

3.7 Theorem:
$$\varphi_{P,S}(n) = \sum_{d \in S_n \cap P} \varphi_S\left(\frac{n}{d}\right)$$

Where $\varphi_{S}(n)$ is the S-analogue of the Euler function

Proof: By Theorem 3.5, (2.1) and (2.3)

$$\varphi_{P,S}(n) = (N \overline{S} \mu_{P,S})(n)$$

$$= \{N\overline{S} (\mu_S \overline{S} \chi_P)\}(n)$$

$$= \{(N \overline{S} \mu_S) \overline{S} \chi_P\}(n)$$

$$= (\varphi_S \overline{S} \chi_P)(n),$$

Which gives the theorem.

3.8. Corollary: ([3], Theorem 8).

$$\varphi_P(n) = \sum_{\substack{d \mid n \ d \in P}} \varphi\left(\frac{n}{d}\right)$$

Proof: In the case $S_n = D_n$ we have $\varphi_P(n) = \varphi(n)$, the Euler totient function. Now, the corollary follows from Theorem 3.7, taking $S_n = D_n$.

We thank Professor V. Siva Rama Prasad for his helpful suggestions in the preparation of this paper.

REFERENCES

- Apostol, T.M., Introduction to Analytic Number Theory, Springer International student Edition, Narosa Publishing House, New Delhi, 1998
- 2. Cohen, Eckford, A class of residue system (mod n) and related arithmetic functions I a generalization of Mobius function, Pacific J. Maths., 9(1959),13-23
- 3. Cohen, Eckford, Arithmetical function associated with unitary divisors of an integer, Math. Zeit., 74(1960), 66-80
- 4. McCarthy, P.J., Regular arithmetic convolutions, Portugaliae Math., 27(1968), 1-13.
- 5. Narkiewicz, W. On a class of arithmetical convolutions, Colloq. Math., 10(1963), 81-94.
- Siva Rama Prasad, V. and M. Ganeshwar Rao, A generalized Mobius inversion, Indian J. Pure appl. Math., 25(12): 1229-1232, December 1994
- 7. Suryanarayana, D. A property of unitary analogue of Ramanujan's sum. Elem. Math., 25/5 (1970), 114

www.tjprc.org editor@tjprc.org