

R V College of Engineering Department of Computer Science and Engineering CIE 1: Scheme

Subject:	Natural La	anguage Processing (Group	B)	Semester: 5th BE
(Code)		(IS355TBC)		
Date:		Duration: 120 minutes	Staff: D	r.Sindhu D V
Name:		USN:	Section	: A

512

Q. No	Part-A	Mar ks	Le vel	CO	
1	True	1 1	2	2	
		1	2		
2	Transformers model the textual context but not in a sequential manner. Given a word in the input, it prefers to look at all the words around it and represent each word with respect to its context.	1	1	1	
3	NLTK	2	3	2	
4	Because of aspects like ambiguity, the need for contextual information, and idioms	1	1	1	
5	The number of times a word appears in a document	2	3	1	
6	[A-Za-z0-9%+-]+@[A-Za-z0-9]+\.[A-Za-z]{2,}	2	2	1	
7	idioms The number of times a word appears in a document			1	

Q. No	Answer all questions	Mar ks	Le vel	СО
1a	Despite such tremendous success, DL is still not the silver bullet for all NLP tasks when it comes to the industrial applications. Some of the key reasons for this are as follows: Overfitting on small datasets Few-shot learning and synthetic data generation Domain adaption Interpretable models Common sense and world knowledge.	5	2	3
1b	Speech Recognition Speech Synthesis 1. Speech recognition 2. Natural Language Understanding 3. Dialog management 4. Response generation 5. Speech synthesis	5	2	1
2	Data is a heart of any ML system. In most of the industrial projects, it is often the data becomes the bottleneck. Use public dataset Scrape data Product intervention Data augmentation Synonym replacement Back translation Bigram flipping Replacing entities Adding noise to data	10	4	2
3	Machine Translation	2m×	2	1

	2. Sentimental analysis	5=1		
		0		
4a	import nltk	6	1,2	1
	from nltk.corpus import stopwords			
	from nltk.tokenize import word_tokenize			
	import string			
	# Ensure necessary resources are downloaded			
	nltk.download('punkt')			
	nltk.download('stopwords')			
	# Define the function			
	def load_and_clean_corpus(file_path):			
	# Load the corpus from a file			
	with open(file_path, 'r') as file:			
	text = file.read()			
	# Tokenize the text into words			
	tokens = word_tokenize(text)			
	# Convert to lowercase			
	tokens = [word.lower() for word in tokens]			
	# Remove punctuation			
	tokens = [word for word in tokens if word.isalnum()]			
	# Remove stopwords			
	stop_words = set(stopwords.words('english'))			
	cleaned_tokens = [word for word in tokens if word not in stop_words]			
	return cleaned_tokens			
	# Test the function			
	file_path = "sample_corpus.txt" # Replace with your file's path			
	cleaned_corpus = load_and_clean_corpus(file_path)			
	print("Cleaned Tokens:", cleaned_corpus)			
4b	There are two approaches	4	3	3
	1. A classical NLP			
	2. DL pipeline			
L		1		


```
from sklearn.feature_extraction.text import CountVectorizer
# Initialize CountVectorizer
vectorizer = CountVectorizer()
# Transform reviews into a Bag of Words representation
X = vectorizer.fit_transform(processed_reviews)
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
# Sample labels (1 for positive, 0 for negative)
# In a real-world scenario, these would be obtained through manual labeling or
pre-labeled data.
labels = [1 if 'good' in review or 'excellent' in review else 0 for review in
processed_reviews]
# Split the data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2,
random_state=42)
# Train Naive Bayes classifier
classifier = MultinomialNB()
classifier.fit(X_train, y_train)
# Test the classifier
y_pred = classifier.predict(X_test)
# Evaluate the model
print(classification_report(y_test, y_pred))
```

Marks	Particulars		CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	28	19	13		6	26	18	10		

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks