Produits scalaires

Exercice 1 ★★★

Soit $(E, \|\cdot\|)$ un espace vectoriel normé. On dit que $\|\cdot\|$ est une norme *euclidienne* s'il existe un produit scalaire $\langle \cdot, \cdot \rangle$ sur E tel que $\|x\|^2 = \langle x, x \rangle$ pour tout $x \in E$.

Montrer que $\|\cdot\|$ est euclidienne si et seulement si elle vérifie l'identité du parallélogramme :

$$\forall (x, y) \in \mathbf{E}^2, \ \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$$

Bases orthonormales

Exercice 2 ★★

Produit mixte et produit vectoriel

Soit E un espace euclidien orienté de dimension $n \ge 1$.

- 1. Soient \mathcal{B} et \mathcal{B}' deux bases orthonormées directes de E. Montrer que $\det_{\mathcal{B}}(\mathcal{B}') = 1$.
- **2.** En déduire que $\det_{\mathcal{B}} = \det_{\mathcal{B}'}$.
- 3. Soient x_1, \dots, x_{n-1} n-1 vecteurs de E. Montrer que l'application

$$x \in E \mapsto \det_{\mathcal{B}}(x_1, \dots, x_{n-1}, x)$$

est une forme linéaire sur E.

4. En déduire qu'il existe un unique vecteur $u \in E$ tel que

$$\forall x \in E, \det_{\mathcal{B}}(x_1, \dots, x_{n-1}, x) = \langle u, x \rangle$$

On appelle u le produit vectoriel des vecteur x_1, \dots, x_{n-1} et on note

$$u = x_1 \wedge x_2 \wedge ... \wedge x_{n-1}$$

5. Montrer que l'application

$$(x_1, \dots, x_{n-1}) \in \mathbf{E}^{n-1} \mapsto x_1 \wedge x_2 \wedge \dots \wedge x_{n-1}$$

est une application n-1-linéaire alternée.

Exercice 3 ***

1. Soient $n \in \mathbb{N}$ et $a \in \mathbb{R}$. Montrer que l'application $\langle \cdot, \cdot \rangle$ de $\mathbb{R}_n[X]^2$ dans \mathbb{R} définie par

$$\forall (P,Q) \in \mathbb{R}_n[X]^2, \ \langle P,Q \rangle = \sum_{k=0}^n \frac{P^{(k)}(a)Q^{(k)}(a)}{(k!)^2}$$

est un produit scalaire sur $\mathbb{R}_n[X]$.

2. Donner sans calcul une base orthonormale de $\mathbb{R}_n[X]$.

Exercice 4 ***

Soient E un espace euclidien de dimension $n \in \mathbb{N}^*$ et e_1, \dots, e_n des vecteurs de E tels que

$$\forall x \in E, \ \|x\|^2 = \sum_{k=1}^n \langle x \mid e_k \rangle^2$$

1. Montrer que

$$\forall (x, y) \in E^2, \ \langle x \mid y \rangle = \sum_{i=1}^{n} \langle x \mid e_i \rangle \langle y \mid e_i \rangle$$

2. En déduire que

$$\forall x \in E, \ x = \sum_{i=1}^{n} \langle x \mid e_i \rangle e_i$$

3. Etablir que $(e_k)_{1 \le k \le n}$ est une base orthonormée de E.

Exercice 5 ★★

Formule de Parseval

Soit $(e_n)_{n\in\mathbb{N}}$ une base orthonormale totale d'un espace préhilbertien réel E. Montrer que

$$\forall x \in E, \ \|x\|^2 = \sum_{n=0}^{+\infty} \langle x, e_n \rangle^2$$

Sous-espaces orthogonaux

Exercice 6 ★★

Montrer que $s: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathrm{M} & \longmapsto & \mathrm{M}^\top \end{array} \right.$ est une symétrie orthogonale pour le produit scalaire sur $\mathcal{M}_n(\mathbb{R})$ pour le produit scalaire défini par $\langle \mathrm{A}, \mathrm{B} \rangle = \mathrm{tr}(\mathrm{A}^\top \mathrm{B})$ pour $\mathrm{A}, \mathrm{B} \in \mathcal{M}_n(\mathbb{R})$.

Exercice 7 ★★

Soient F et G deux sous-espaces vectoriels d'un espace préhilbertien réel E.

- 1. Montrer que $F \subset G \implies G^{\perp} \subset F^{\perp}$ et que, si F et G sont de dimension finie, $G^{\perp} \subset F^{\perp} \implies F \subset G$.
- **2.** Montrer que $(F + G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- 3. Montrer que $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$ et que, si E est de dimension finie, $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Exercice 8 **

Orthogonal et topologie

Soit F un sous-espace vectoriel d'un espace préhilbertien réel E que l'on munit de sa norme euclidienne.

- **1.** Montrer que pour tout $y \in E$, $\varphi_y : x \in E \mapsto \langle x, y \rangle$ est continue.
- **2.** Montrer que F^{\perp} est fermé dans E.
- 3. Montrer que de manière générale, $\overline{F} \subset (F^{\perp})^{\perp}$.

Projection orthogonale

Exercice 9 ★★

Soit u un vecteur unitaire d'un espace euclidien E. On note U le vecteur colonne représentant u dans une base orthonormée $\mathcal B$ de E. Déterminer la matrice de la projection orthogonale sur vect(u) dans $\mathcal B$.

Exercice $10 \star \star \star$ ENS MP

Soient $n \in \mathbb{N}^*$ et (e_1, \dots, e_n) une base orthogonale de \mathbb{R}^n .

- **1.** Montrer qu'il existe un vecteur u de \mathbb{R}^n non nul tel que les projetés orthogonaux de e_1, \dots, e_n sur vect(u) aient la même norme.
- **2.** Montrer que cette norme commune est indépendante du vecteur u choisi et l'exprimer en fonction de $||e_1||, \ldots, ||e_n||$.

Exercice 11 ★★

Caractérisations des projections orthogonales

Soient E un espace euclidien et p une projection de E. Etablir l'équivalence des trois propriétés suivantes :

- **1.** *p* est orthogonale;
- **2.** $\forall x, y \in E$, $\langle p(x)|y \rangle = \langle x|p(y) \rangle$;
- 3. $\forall x \in E, \|p(x)\| \le \|x\|.$

Exercice 12 ***

Soit E un espace vectoriel normé de dimension finie. Soit $u \in O(E)$.

- 1. Montrer que $E = Ker(Id_E u) \oplus Im(Id_E u)$.
- 2. Soit $x \in E$. Pour $n \in \mathbb{N}^*$, on pose $x_n = \frac{1}{n} \sum_{k=0}^{n-1} u^k(x)$. Montrer que (x_n) converge vers la projection de x sur $\text{Ker}(\text{Id}_E u)$ parallèlement à $\text{Im}(\text{Id}_E u)$.

Exercice 13

CCINP (ou CCP) MP 2021

Soit $E = \mathbb{R}[X]$.

- 1. Montrer que $(P, Q) \mapsto \int_0^{+\infty} P(t)Q(t)e^{-t} dt$ est un produit scalaire sur E.
- 2. Calculer $\int_0^{+\infty} t^n e^{-t} dt$ pour tout $n \in \mathbb{N}$.
- **3.** Donner une base orthonormée de $F = \mathbb{R}_2[X]$.
- **4.** Déterminer le projeté orthogonal de X³ sur F.
- **5.** Montrer que :

$$\forall P \in E, \left| \int_0^{+\infty} P(t)e^{-t} dt \right| \le \sqrt{\int_0^{+\infty} P^2(t)e^{-t} dt}$$

Exercice 14 ★★

CCINP (ou CCP) MP 2021

Soient
$$n \ge 3$$
, $M = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix}$ et f l'endomorphisme de \mathbb{R}^n canoniquement associé à

M.

- **1.** Donner le rang de M.
- 2. Déterminer les valeurs propres de M et les sous-espaces propres associés.
- **3.** Donner la matrice du projecteur orthogonal sur Im f dans la base canonique de \mathbb{R}^n .

Optimisation

Exercice 15 ***

Calculer le minimum de
$$\phi$$
: $\mathbb{R}^2 \to \mathbb{R}$
$$(a,b) \mapsto \int_0^{\pi} (\sin x - ax^2 - bx)^2 dx$$

Exercice 16 ***

Soient $m, n \in \mathbb{N}^*$. On munit $\mathcal{M}_{m,1}(\mathbb{R})$ (resp. $\mathcal{M}_{n,1}(\mathbb{R})$) du produit scalaire $(X, Y) \mapsto X^T Y$. On se donne $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et $B \in \mathcal{M}_{m,1}(\mathbb{R})$. On pose $E = \{\|AX - B\|^2, X \in \mathcal{M}_{n,1}(\mathbb{R})\}$ et $K = \inf E$.

- 1. Justifier l'existence de K.
- **2.** On considère le système linéaire (S): AX = B. On appelle *pseudo-solution* de S tout élément Y de $\mathcal{M}_{n,1}(\mathbb{R})$ tel que $||AY B||^2 = K$. Montrer que si (S) admet une solution, les pseudo-solutions de (S) sont les solutions de (S).
- **3.** On associe à (S) le système (S'): $A^TAX = A^TB$. Montrer qu'un élément X de $\mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (S) si et seulement si il est solution de (S').
- **4.** Montrer que rg $A^TA = rg A$.
- **5.** Montrer que si rg A = n, (S) admet une unique pseudo-solution.

Exercice 17 ★★★

ENS MP 2010

Soient E un espace euclidien et x_1, \ldots, x_p des vecteurs de E. Pour $x \in E$, on pose $f(x) = \sum_{i=1}^p \|x - x_i\|^2$. Montrer que f atteint son minimum en un unique point que l'on précisera.

Exercice 18 ***

Soient E un espace euclidien et x_1, \dots, x_p des vecteurs de E. Pour $x \in E$, on pose $f(x) = \sum_{i=1}^p \|x - x_i\|^2$. Montrer que f atteint son minimum en $m = \frac{1}{p} \sum_{i=1}^p x_i$.

Exercice 19 ★★

CCINP (ou CCP) MP 2021

Pour $n \in \mathbb{N}$, on pose $A_n = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} t^n e^{-t^2} dt$. On rappelle que $A_0 = 1$. Pour tous $P, Q \in \mathbb{R}[X]$, on pose $\langle P, Q \rangle = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} P(t)Q(t)e^{-t^2} dt$.

- **1.** Vérifier que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.
- 2. Calculer A_n en distinguant deux cas selon la parité de n.
- **3.** Trouver une base orthonormée de $\mathbb{R}_2[X]$.
- **4.** Calculer $d(X^3, \mathbb{R}_2[X])$.

Isométries vectorielles et matrices orthogonales

Exercice 20 ★★★

Soient H et K deux hyperplans d'un espace euclidien E. On note s_H et s_K les réflexions par rapport à H et K. Montrer que s_H et s_K commutent si et seulement si H = K ou $H^{\perp} \subset K$.

Exercice 21 ★★

Soit E un espace euclidien orienté de dimension 3.

1. Trouver les $f \in \mathcal{L}(E)$ tels que

$$\forall u, v \in E, \ f(u \wedge v) = f(u) \wedge f(v)$$

2. Trouver les $f \in \mathcal{L}(E)$ tels que

$$\forall u, v \in E, \ f(u \wedge v) = -f(u) \wedge f(v)$$

Exercice 22 ★★

Déterminer la matrice de la symétrie orthogonale par rapport au plan d'équation x + 2y - 3z = 0 dans la base canonique de \mathbb{R}^3 .

Exercice 23 **

Déterminer les réels a, b, c pour que $A = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & a \\ \frac{1}{\sqrt{3}} & 0 & b \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & c \end{pmatrix}$ soit la matrice d'une rotation.

Exercice 24 ***

Soit E un espace euclidien de dimension 2.

- 1. On sait que la matrice d'une réflexion de E dans une base orthonormée est de la forme $\begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$. Quelle est l'interprétation géométrique de θ ?
- **2.** Déterminer une condition portant sur l'angle entre leurs axes pour que la *somme* de deux réflexions soit encore une réflexion.

Exercice 25 ★★

Petites Mines 2009

Soit u une isométrie vectorielle d'un espace euclidien E. On pose $v = \mathrm{Id}_{\mathrm{E}} - u$. Montrer que $\mathrm{Im}\,v$ et $\mathrm{Ker}\,v$ sont orthogonaux et supplémentaires.

Exercice 26 ★★

Soit E le sous-espace vectoriel de $\mathcal{C}(\mathbb{R})$ engendré par la famille (e_1,e_2,e_3) où

$$e_1: t \mapsto \frac{1}{\sqrt{2}}$$
 $e_2: t \mapsto \cos(2\pi t)$ $e_3: t \mapsto \sin(2\pi t)$

- 1. Montrer que Φ : $(f,g)\mapsto 2\int_0^1 f(t)g(t) \;\mathrm{d}t$ est un produit scalaire sur E.
- 2. Montrer que (e_1, e_2, e_3) est une base orthonormée de E.
- 3. Pour tout réel x, on définit l'application τ_x qui à tout élément f de E associe g tel que

$$\forall t \in \mathbb{R}, \ g(t) = f(x - t)$$

- **a.** Montrer que τ_x est un endomorphisme de E. Donner sa matrice relativement à \mathcal{B} .
- **b.** Montrer que τ_x est une isométrie vectorielle de E.
- **c.** Caractériser géométriquement τ_x .

Exercice 27 ★★

Déterminer l'image de la droite d'équation $\begin{cases} x=0\\ y=0 \end{cases}$ par la rotation d'angle $\frac{\pi}{6}$ et d'axe dirigé par $\vec{a}(1,1,1)$.

Exercice 28 ★★

Soit $E = \mathbb{R}^3$ muni de sa structure euclidienne canonique.

- 1. Déterminer la matrice dans la base canonique de E de la réflexion s_1 par rapport au plan d'équation x + y 2z = 0.
- 2. Quelle est la nature de l'endomorphisme f de E dont la matrice dans la base canonique est $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Donner ses éléments caractéristiques.
- **3.** Trouver les réflexions s_2 et s_3 telles que $s_1 \circ s_2 = f$ et $s_3 \circ s_1 = f$. Préciser leur plan de réflexion.

Exercice 29 ★

Soient E un espace euclidien et $f \in \mathcal{L}(E)$. On note A la matrice de f dans une base orthonormale \mathcal{B} de E. Montrer que f est une symétrie orthogonale si et seulement si A est une matrice orthogonale symétrique.

Exercice 30 **

Mines MP 2011

Soient E un espace euclidien de dimension 3 ainsi que deux éléments f et g de SO(E) tels que $f \circ g = g \circ f$.

Montrer que f et g sont soit deux rotations de même axe soit des symétries par rapport à des droites orthogonales entre elles.

Exercice 31 ★★

Banque Mines-Ponts MP 2018

Soit f une isométrie vectorielle d'un espace euclidien E.

- 1. Montrer que $Ker(f Id_E) = Im(f Id_E)^{\perp}$.
- 2. En déduire que $(f Id_E)^2 = 0 \implies f = Id_E$.

Exercice 32 ★★

Soient E un plan vectoriel euclidien orienté, r une rotation de E et s une réflexion. Calculer $s \circ r \circ s$ et $r \circ s \circ r$.

Exercice 33 ★★★

Soit O = $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ une matrice orthogonale réelle de taille n où A et D sont deux blocs carrés de tailles respectives p et q. Montrer que $(\det A)^2 = (\det D)^2$.

Exercice 34 ★

Soient A et B les matrices, dans deux bases orthonormales, d'un endomorphisme d'un espace euclidien. Montrer que $tr(A^TA) = tr(B^TB)$.

Exercice 35 ★★

- **1.** Soit X une matrice colonne réelle de taille n. Montrer que $X^TX \in \mathbb{R}_+$ et que $X^TX = 0$ implique X = 0.
- **2.** Soit M une matrice antisymétrique réelle de taille n. Montrer que $I_n + M$ est inversible.
- 3. On pose $A = (I_n M)(I_n + M)^{-1}$. Montrer que A est orthogonale.

Exercice 36 ***

ENS MP 2010

Soit $n \in \mathbb{N}^*$. Déterminer toutes les matrices de $O_n(\mathbb{R})$ laissant stable $(\mathbb{R}_+)^n$.

Exercice 37 ***

Soient $n \in \mathbb{N} \setminus \{0, 1, 2\}$ et $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que A = com(A) si et seulement si A = 0 ou $A \in SO(n)$.

Adjoint

Exercice 38 ★★

Soient $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. On pose

$$\forall f \in \mathcal{L}(E), \ |||f||| = \sup_{x \in E, ||x|| = 1} ||f(x)||$$

Montrer que

$$\forall f \in \mathcal{L}(\mathbf{E}), \ |||f||| = |||f^*|||$$

Exercice 39 ★★

Soit u un endomorphisme d'un espace euclidien E.

- **1.** Montrer que $Ker(u^* \circ u) = Ker(u)$.
- **2.** En déduire que $rg(u) = rg(u^*) = rg(u^* \circ u) = rg(u \circ u^*)$.

Exercice 40 ***

X PC 2012

Soit u un endomorphisme d'un espace euclidien E tel que $\operatorname{Im} u = \operatorname{Ker} u$. Montrer que $u + u^*$ est inversible.

Exercice 41 ★

Autour de l'adjoint

Soient E un espace euclidien et f un endomorphisme de E tel que ${\rm Im}(f)\subset {\rm Ker}(f)$. Etablir que

$$Ker(f + f^*) = Ker(f) \cap Ker(f^*)$$

Exercice 42 **

On munit $\mathcal{M}_n(\mathbb{R})$ de son produit scalaire usuel. On pose pour $A \in \mathcal{M}_n(\mathbb{R})$, $g_A : M \in \mathcal{M}_n(\mathbb{R}) \mapsto AM$. Calculer l'adjoint de g_A .

Exercice 43 ★★

Soit u un endomorphisme d'un espace euclidien E.

- **1.** Montrer que Ker $u^* = (\operatorname{Im} u)^{\perp}$ et que $\operatorname{Im} u^* = (\operatorname{Ker} u)^{\perp}$.
- **2.** En déduire que $rg(u) = rg(u^*)$.

Exercice 44 ★★★

Soient $(\alpha, \beta) \in \mathbb{R}^2$, E un espace euclidien et $u \in \mathcal{L}(E)$ tel que

$$u^* \circ u + \alpha u + \beta u^* = 0$$

- **1.** On suppose $\alpha \neq \beta$. Montrer qu'il existe $\lambda \in \mathbb{R}$ et p un projecteur orthogonal de E tels que $u = \lambda p$.
- **2.** On suppose $\alpha = \beta$. Montrer que Im(u) et Ker(u) sont orthogonaux.

Exercice 45 ★★

Soit E un espace euclidien. Montrer que $(f,g) \in \mathcal{L}(E)^2 \mapsto \operatorname{tr}(f^* \circ g)$ est un produit scalaire sur $\mathcal{L}(E)$.

Exercice 46 **

Soit f un endomorphisme d'un espace euclidien E.

- **1.** Montrer que $tr(f) = tr(f^*)$.
- **2.** Montrer que $det(f) = det(f^*)$.
- **3.** Montrer que $\chi_f = \chi_{f^*}$.
- **4.** Montrer que $Sp(f) = Sp(f^*)$.
- 5. Montrer que pour tout $\lambda \in \operatorname{Sp}(f)$, $\dim E_{\lambda}(f) = \dim E_{\lambda}(f^*)$.

Exercice 47 ★★★★

Endomorphismes normaux

Soit u un endomorphisme d'un espace euclidien E. On suppose que u est un endomorphisme normal, c'est-à-dire que $u^* \circ u = u \circ u^*$.

- 1. On suppose dans cette question uniquement que dim E = 2 et que χ_u est irréductible. Soit \mathcal{B} une base orthonormée de E. Montrer que la matrice de u dans la base \mathcal{B} est de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ avec $(a,b) \in \mathbb{R} \times \mathbb{R}^*$.
- **2.** Soit F un sous-espace vectoriel de E stable par u. Montrer que F^{\perp} est également stable par u et que les restrictions u_F et $u_{F^{\perp}}$ de u à F et F^{\perp} sont des endomorphismes normaux de F et F^{\perp} .

On pourra considérer la matrice de *u* dans une base adaptée.

3. A l'aide d'un raisonnement par récurrence, montrer qu'il existe une base orthonormée de E dans laquelle la matrice est diagonale par blocs avec des blocs diagonaux de la forme $\begin{pmatrix} \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{R}$ ou $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ avec $(a,b) \in \mathbb{R} \times \mathbb{R}^*$.

Exercice 48 ***

Endomorphismes normaux

Soit u un endomorphisme d'un espace euclidien E tel que $u^* \circ u = u \circ u^*$.

- 1. Montrer que u et u^* ont les mêmes éléments propres.
- 2. Montrer que les sous-espaces propres de u dont deux à deux orthogonaux.

Endomorphismes auto-adjoints et matrices symétriques

Exercice 49 ★★★

Mines-Ponts MP 2016

Soit E un espace euclidien de dimension finie. On considère des vecteurs unitaires a et b de E formant une famille libre.

Réduire l'endomorphisme

$$\phi : \left\{ \begin{array}{ccc} \mathrm{E} & \longrightarrow & \mathrm{E} \\ x & \longmapsto & \langle a, x \rangle a + \langle b, x \rangle b \end{array} \right.$$

Exercice 50 **

CCP MP 2016

Soit (u_1, \dots, u_n) une base de E. On pose $f(x) = \sum_{k=1}^n \langle x, u_k \rangle u_k$ pour $x \in E$.

- 1. Montrer que f est un endomorphisme auto-adjoint défini positif.
- **2.** Montrer qu'il existe $g \in \mathcal{L}(E)$ auto-adjoint, défini positif telle que $g^2 = f^{-1}$.
- 3. Montrer que $(g(u_1), \dots, g(u_n))$ est une base orthonormale de E.

Exercice 51 ★★ Racine carrée d'un endomorphisme auto-adjoint positif

Soit f un endomorphisme auto-adjoint positif d'un espace euclidien E. Montrer qu'il existe un endomorphisme auto-adjoint g de E tel que $f = g^2$.

Exercice 52 ★

Soit f un endomorphisme auto-adjoint d'un espace euclidien E. Montrer que $\operatorname{Ker} f = (\operatorname{Im} f)^{\perp}$.

Exercice 53 ★★

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et f un endomorphisme auto-adjoint de E. Montrer que les trois propriétés suivantes sont équivalentes :

- (i) $\forall x \in E, \langle f(x), x \rangle \ge 0.$
- (ii) Il existe $g \in \mathcal{L}(E)$ tel que $f = g^* \circ g$.
- (iii) Il existe $h \in \mathcal{L}(E)$ tel que $h^* = h$ et $f = h^2$.

Exercice 54 ★★★

Soient $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et f un endomorphisme auto-adjoint de E. On note $X = \{x \in E, \langle f(x), x \rangle \leq 1\}$. Montrer que X est compacte si et seulement si f est défini positif.

Exercice 55 $\star\star\star$

ENS MP 2010

Montrer que $\Phi: \mathcal{S}_n(\mathbb{R}) \to \mathbb{R}$ qui à une matrice associe sa plus grande valeur propre est une application convexe.

Exercice 56 ***

ENS MP 2010

Soient $A \in \mathcal{S}_n(\mathbb{R})$ et $B = \begin{pmatrix} A & I_n \\ \hline I_n & A \end{pmatrix}$. Trouver les valeurs propres de B.

Exercice 57 ***

Soient A, B deux matrices réelles symétriques positives de taille n et $k \in \mathbb{N}^*$.

- 1. Montrer que tout vecteur propre de A^k est vecteur propre de A.
- **2.** Montrer que si $A^k = B^k$, alors A = B.
- 3. Que se passe-t-il sans l'hypothèse A, B symétriques positives?

Exercice 58 ★★★

Soient A et B deux matrices symétriques positives de $\mathcal{M}_n(\mathbb{R})$. Montrer que tr(AB) ≥ 0 .

Exercice 59 ★★

Pour $A \in \mathcal{M}_{n,p}(\mathbb{R})$, on pose

$$N(A) = \sqrt{\max Sp(A^{\mathsf{T}}A)}$$

- **1.** Montrer que N est une norme sur $\mathcal{M}_{n,p}(\mathbb{R})$.
- **2.** Montrer que si n = p, N est une norme d'algèbre sur $\mathcal{M}_n(\mathbb{R})$.

Exercice 60 ***

ENS MP 2006

Soit $(a, b, c, A, B, C) \in \mathbb{R}^6$ tel que

$$\forall x \in \mathbb{R}, \ |ax^2 + bx + c| \le |Ax^2 + Bx + C|$$

Montrer que

$$|b^2 - 4ac| \le |B^2 - 4AC|$$

Exercice 61

ENS PSI 2016

Soit $M \in \mathcal{M}_{n,p}(\mathbb{R})$. Montrer que

$$Sp(M^TM) \setminus \{0\} = Sp(MM^T) \setminus \{0\}$$

Exercice 62 ***

Banque Mines-Ponts MP 2021

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$. Montrer l'équivalence entre les deux propositions suivantes :

- (i) $A \in S_n(\mathbb{R})$ et $\forall (\lambda, \mu) \in Sp(A)^2$, $\lambda + \mu \neq 0$;
- (ii) $\forall B \in \mathcal{S}_n(\mathbb{R}), \exists ! M \in \mathcal{S}_n(\mathbb{R}), AM + MA = B.$

Exercice 63 ***

Résoudre dans $\mathcal{M}_n(\mathbb{R})^2$ le système

$$\begin{cases} \mathbf{X}^{\mathsf{T}} \mathbf{Y} \mathbf{X} = \mathbf{I}_n \\ \mathbf{Y}^{\mathsf{T}} \mathbf{X} \mathbf{Y} = \mathbf{I}_n \end{cases}$$

Exercice 64 ***

Banque Mines-Ponts MP 2021

Soit $S \in \mathcal{S}_n(\mathbb{R})$ une matrice symétrique dont les coefficients diagonaux sont nuls et D une matrice diagonale.

Montrer que S + D est semblable à D si, et seulement si, S est nulle.

Exercice 65 **

Racine carrée d'une matrice symétrique positive

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$.

- **1.** Montrer qu'il existe $B \in \mathcal{S}_n(\mathbb{R})$ telle que $B^2 = A$.
- **2.** Montrer qu'il existe une unique matrice $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $B^2 = A$.

Exercice 66

CCINP (ou CCP) PC 2019

Soit $A \in \mathcal{M}_n(\mathbb{R})$ tel que $M^n = 0$.

- **1.** Montrer que si M est symétrique, alors M = 0.
- **2.** Montrer que si $M^TM = MM^T$, alors M = 0.

Exercice 67 ★★★★

Décomposition polaire

- **1.** Soit $A \in GL_n(\mathbb{R})$. Montrer qu'il existe une matrice $S \in \mathcal{S}_n^{++}(\mathbb{R})$ telle que $A^TA = S^2$.
- **2.** Montrer qu'il existe un couple $(Q, S) \in O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R})$ tel que A = QS.
- 3. Montrer l'unicité du couple (Q, S) de la question précédente.
- **4.** On se donne maintenant $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe un couple $(Q, S) \in O_n(\mathbb{R}) \times \mathcal{S}_n^+(\mathbb{R})$ tel que A = QS. On pourra utiliser des arguments topologiques. A-t-on encore unicité du couple (Q, S)?

Exercice 68 ★★

Montrer que $\mathcal{S}_n^+(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$.

Exercice 69 **

Décomposition en valeurs singulières

Pour une matrice diagonale D et $\alpha \in \mathbb{R}$, on notera D^{α} la matrice diagonale dont les coefficients diagonaux sont les puissances $\alpha^{\text{èmes}}$ de ceux de D. Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$.

- **1.** Justifier que $A^TA \in \mathcal{S}_n^+(\mathbb{R})$.
- **2.** On pose $r = rg(A^TA)$. Justifier qu'il existe une matrice $V \in O_n(\mathbb{R})$ et une matrice $D \in \mathcal{M}_r(\mathbb{R})$ diagonale à coefficients diagonaux strictement positifs telles que

$$V^{\mathsf{T}} A^{\mathsf{T}} A V = \begin{pmatrix} D & 0 \\ \hline 0 & 0 \end{pmatrix}$$

- **3.** On pose $V = (V_1, V_2)$ avec $V_1 \in \mathcal{M}_{n,r}(\mathbb{R})$ et $V_2 \in \mathcal{M}_{n,n-r}(\mathbb{R})$. Montrer que $AV_2 = 0$.
- **4.** On pose $U_1 = AV_1D^{-1/2}$. Montrer qu'il existe $U_2 \in \mathcal{M}_{m,r-m}(\mathbb{R})$ telle que $U = (U_1, U_2) \in O_m(\mathbb{R})$.
- 5. Vérifier que $A = U\Sigma V^{\mathsf{T}}$ avec $\Sigma = \begin{pmatrix} D^{1/2} & 0 \\ 0 & 0 \end{pmatrix}$.

Exercice 70

Mines Télécom MP 2022

Soit $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique et semblable à une matrice réelle triangulaire supérieure.

- 1. Déterminer le spectre de A.
- **2.** Montrer que $A^n = 0$.
- 3. Montrer que $A^2 = 0$.
- **4.** Montrer que A = 0.

Exercice 71 ★★

CCINP (ou CCP) MP 2022

Soit $n \ge 2$, $A \in \mathcal{M}_n(\mathbb{R})$ la matrice avec des 1 sur la diagonale, sur la première colonne et sur la première ligne, puis des 0 partout ailleurs.

- 1. Montrer que A est diagonalisable.
- **2.** Cas n = 2: calculer les éléments propres de A.
- **3.** Cas $n \neq 2$:
 - a. Montrer que 1 est une valeur propre de A.
 - **b.** Montrer que si λ est une valeur propre de A autre que 1, alors $(\lambda 1)^2 = n 1$.
 - c. Expliciter les éléments propres de A.
 - **d.** Calculer le déterminant de A en fonction de *n*.

Exercice 72 ★★★

Signature d'une matrice symétrique

- **1.** Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$. On dit que B est *congruente* à A s'il existe $P \in GL_n(\mathbb{R})$ telle que $B = P^TAP$. Montrer que la congruence est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{R})$.
- **2.** Soit $A \in \mathcal{S}_n(\mathbb{R})$. On appelle *signature* de A le couple (p,q) où p est le nombre de valeurs propres strictement positives de A (comptées avec multiplicité) et q est le nombre de valeurs propres strictement négatives de A (comptées avec multiplicité).
 - **a.** Soit $A \in \mathcal{S}_n(\mathbb{R})$ de signature (p,q). Montrer que A est congruente à $\begin{pmatrix} I_p & 0 & 0 \\ 0 & -I_q & 0 \\ 0 & 0 & 0 \end{pmatrix}.$
 - **b.** En déduire que si A et B ont même signature, alors elles sont congruentes.
- **3.** Soit $S \in \mathcal{S}_n(\mathbb{R})$ de signature (p, q).
 - **a.** Démontrer qu'il existe trois sous-espaces vectoriels E_+ , E_- et E_0 de $\mathcal{M}_{n,1}(\mathbb{R})$ tels que
 - $\forall X \in E_+ \setminus \{0\}, X^T SX > 0;$
 - $\forall X \in E_{-} \setminus \{0\}, X^{\mathsf{T}}SX < 0;$
 - $\forall X \in E_0, X^T S X = 0$;
 - $\mathcal{M}_{n,1}(\mathbb{R}) = \mathcal{E}_+ \oplus \mathcal{E}_- \oplus \mathcal{E}_0$;
 - $\dim E_{+} = p$, $\dim E_{-} = q$.
 - **b.** On suppose qu'il existe trois sous-espaces vectoriels F, G et H de $\mathcal{M}_{n,1}(\mathbb{R})$ tels que
 - $\forall X \in F \setminus \{0\}, X^TSX > 0$;
 - $\forall X \in G \setminus \{0\}, X^T S X < 0;$
 - $\forall X \in H, X^T S X = 0;$
 - $\mathcal{M}_{n,1}(\mathbb{R}) = F \oplus G \oplus H$.

Montrer que dim F = p et dim G = q.

4. En déduire que deux matrices symétriques congruentes ont même signature.

Exercice 73 ★★

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\varphi : (X,Y) \in \mathcal{M}_{n,1}(\mathbb{R})^2 \mapsto X^TAY$ est un produit scalaire si et seulement si $A \in \mathcal{S}_n^{++}(\mathbb{R})$.

Exercice 74 ★★★

Réduction simultanée

Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n(\mathbb{R})$. Montrer qu'il existe $P \in GL_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telles que

$$P^{\mathsf{T}}AP = I_n$$
 et $P^{\mathsf{T}}BP = D$

Exercice 75 ★★★

- **1.** Soit $A \in \mathcal{S}_n(\mathbb{R})$. Montrer que $\exp(A) \in \mathcal{S}_n^{++}(\mathbb{R})$.
- **2.** Soit $B \in \mathcal{S}_n^{++}(\mathbb{R})$. Montrer qu'il existe $A \in \mathcal{S}_n(\mathbb{R})$ telle que $B = \exp(A)$. Cette matrice A est-elle unique?

Exercice 76 ★★

Déterminant de Gram

Soit (f_1, \dots, f_n) une famille de vecteurs d'un espace préhilbertien E. On note $\mathbf{A} = \left(\langle f_i, f_j \rangle\right)_{1 \leq i, j \leq n}$

- **1.** Montrer que $A \in \mathcal{S}_n^+(\mathbb{R})$.
- 2. Montrer que det(A) = 0 si et seulement si la famille (f_1, \dots, f_n) est liée.

Exercice 77 ★★

Montrer que les coefficients diagonaux d'une matrice symétrique positive sont positifs.

Polynômes orthogonaux

Exercice 78 ***

On pose $Q_n = (X^2 - 1)^n = (X + 1)^n (X - 1)^n$ pour $n \in \mathbb{N}$.

- **1.** Montrer que φ : $(P,Q) \mapsto \int_{-1}^{1} P(t)Q(t) dt$ est un produit scalaire sur $\mathbb{R}_n[X]$. On notera $\varphi(P,Q) = \langle P,Q \rangle$ par la suite.
- **2.** Soit *n* et *k* deux entiers tels que $0 \le k < n$. Montrer que $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$.
- **3.** On pose $P_n = Q_n^{(n)}$ pour $n \in \mathbb{N}$. Montrer que $(P_k)_{0 \le k \le n}$ est une base orthogonale de $\mathbb{R}_n[X]$.
- **4.** Soit L: $P \in \mathbb{R}_n[X] \mapsto (X^2 1)P'' + 2XP'$. Montrer que L est un endomorphisme auto-adjoint de $\mathbb{R}_n[X]$.
- **5.** Montrer que pour tout $k \in [0, n]$, P_k est un vecteur propre de L.

Exercice 79 ★★★

Soient $n \in \mathbb{N}$ et $E = \mathbb{R}_n[X]$. Pour tout $P \in E$, on pose L(P) = P'' - 2XP'. Pour tous $P, Q \in E$, on note

$$\langle P, Q \rangle = \int_{-\infty}^{+\infty} P(t)Q(t)e^{-t^2} dt$$

- **1.** Vérifier que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E
- 2. Montrer que L est diagonalisable. On précisera ses valeurs propres.
- **3.** Montrer que L est auto-adjoint pour $\langle \cdot, \cdot \rangle$.
- **4.** Montrer que l'orthonormalisée de Gram-Schmidt de la base canonique de E diagonalise L i.e. est une base de vecteurs propres de L.

Divers

Exercice 80 ★★

Soit E un espace euclidien de dimension $n \ge 2$. Une application $u : E \to E$ est dite antisymétrique si

$$\forall (x, y) \in E^2, \langle x, u(y) \rangle + \langle y, u(x) \rangle = 0$$

On note A(E) l'ensemble des applications antisymétriques de E.

Remarque. Rien à voir avec les applications *multilinéaires* antisymétriques!

- **1.** Soit $u \in A(E)$. Montrer que u est linéaire.
- **2.** Soit $u : E \to E$. Démontrer l'équivalence entre les propositions suivantes :
 - (i) u est linéaire et $\forall x \in E, \langle u(x), x \rangle = 0$;
 - (ii) *u* est antisymétrique;
 - (iii) u est linéaire et sa matrice dans une base orthonormée est antisymétrique.
- **3.** Montrer que A(E) est un \mathbb{R} -espace vectoriel et déterminer sa dimension.
- **4.** Soit $u \in A(E)$. Montrer que Im u est l'orthogonal de Ker u.
- **5.** Montrer que si F est un sous-espace vectoriel de E stable par u alors F^{\perp} est également stable par u.

Exercice 81 ★★★

Montrer que le rang d'une matrice antisymétrique réelle est pair.

Exercice 82 ***

Banque Mines-Ponts MP 2018

Soit n un entier naturel supérieur ou égal à 2. Soit \mathcal{E} l'ensemble des matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que $A^T = A^2 + A - I_n$.

On appelle a l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

- **1.** Décrire a si A est symétrique, avec $A \in \mathcal{E}$.
- **2.** Décrire a si on ne suppose plus A symétrique, avec $A \in \mathcal{E}$.

Exercice 83 ★★★

CCINP (ou CCP) MP 2021

Soit E un espace euclidien de dimension n et u un endomorphisme de E vérifiant :

$$\forall x \in E, \langle u(x), x \rangle = 0$$

- 1. Montrer que la matrice de u dans une base orthonormale de E est antisymétrique.
- **2.** Montrer que $(\operatorname{Ker} u)^{\perp}$ est stable par u.
- 3. Montrer qu'il existe une base orthonormale de E dans laquelle la matrice de u est de la forme $\begin{pmatrix} 0 & 0 \\ 0 & N \end{pmatrix}$ avec N inversible.
- **4.** Montrer que le rang de *u* est pair.

Exercice 84 ★★★

Soit $n \in \mathbb{N}^*$. On travaille dans l'espace des matrices $\mathcal{M}_n(\mathbb{R})$.

- **1.** Montrer que l'application $(A, B) \mapsto tr(A^T B)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. Que peut-on dire de la base canonique de $\mathcal{M}_n(\mathbb{R})$.
- **2.** Montrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on a $|\operatorname{tr}(A)| \leq \sqrt{n} ||A||$.
- **3. a.** Quel est l'orthogonal de l'espace $\mathcal{S}_n(\mathbb{R})$ des matrices symétriques?
 - **b.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Exprimer la distance de A à $S_n(\mathbb{R})$ en fonction des coefficients de A?
- **4.** Soit $U \in \mathcal{O}_n(\mathbb{R})$. Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, $\|UA\| = \|AU\| = \|A\|$.
- 5. Montrer que pour A, B $\in \mathcal{M}_n(\mathbb{R})$, $||AB|| \leq ||A|| ||B||$

Exercice 85 ★★★

Soit E un espace euclidien de dimension n et u_1, \ldots, u_{n+1} des vecteurs non nuls de E faisant un angle constant α_n (non nul) deux à deux. Que vaut α_n ?

Exercice 86 ★★★

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Montrer que $rg(A^TA) = rg(AA^T) = rg A$.

Exercice 87 ★★★

1. Montrer qu'on définit un produit scalaire sur $\mathbb{R}[X]$ en posant

$$\langle \mathbf{P}, \mathbf{Q} \rangle = \sum_{n=0}^{+\infty} a_n b_n$$

pour P =
$$\sum_{n=0}^{+\infty} a_n X^n$$
 et Q = $\sum_{n=0}^{+\infty} b_n X^n$.

- **2.** On pose $F = \text{vect}(1 + X^n, n \in \mathbb{N}^*)$. Montrer que F est un hyperplan de $\mathbb{R}[X]$.
- 3. Montrer que $F^{\perp} = \{0\}$. Conclusion?