INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT125Quad buffer/line driver; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

Quad buffer/line driver; 3-state

74HC/HCT125

FEATURES

· Output capability: bus driver

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT125 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT125 are four non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable input ($\overline{\text{NOE}}$). A HIGH at $\overline{\text{NOE}}$ causes the outputs to assume a HIGH impedance OFF-state.

The "125" is identical to the "126" but has active LOW enable inputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STWIBOL	PARAWEIER	CONDITIONS	нс	нст	UNII
t _{PHL} / t _{PLH}	propagation delay nA to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	9	12	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	22	24	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

C_I = output load capacitance in pF

V_{CC} = supply voltage in V

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Quad buffer/line driver; 3-state

74HC/HCT125

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 4, 10, 13	1 OE to 4 OE	outputs enable inputs (active LOW)
2, 5, 9, 12	1A to 4A	data inputs
3, 6, 8, 11	1Y to 4Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

Fig.5 Logic diagram (one buffer).

FUNCTION TABLE

INP	OUTPUT				
nOE	nA	nY			
L	L	L			
L	Н	Н			
Н	Х	Z			

Note

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

Philips Semiconductors Product specification

Quad buffer/line driver; 3-state

74HC/HCT125

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									WAVEFORMS
STWIDOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	VAVEI OKWO
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _{PHL} / t _{PLH}	propagation delay		30	100		125		150	ns	2.0	Fig.6
	nA to nY		11	20		25		30		4.5	
			9	17		21		26		6.0	
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY		41	125		155		190	ns	2.0	Fig.7
			15	25		31		38		4.5	
			12	21		26		32		6.0	
t _{PHZ} / t _{PLZ}	3-state output disable time		41	125		155		190	ns	2.0	Fig.7
	nOE to nY		15	25		31		38		4.5	
			12	21		26		32		6.0	
t _{THL} / t _{TLH}	output transition time		14	60		75		90	ns	2.0	Fig.6
			5	12		15		18		4.5	
			4	10		13		15		6.0	

Philips Semiconductors Product specification

Quad buffer/line driver; 3-state

74HC/HCT125

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA, n OE	1.00

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)							LINUT	TEST CONDITIONS	
SYMBOL		74HCT									WAVEFORMS
STINIBUL		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING	
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay nA to nY		15	25		31		38	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY		15	28		35		42	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time nOE to nY		15	25		31		38	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6

Quad buffer/line driver; 3-state

74HC/HCT125

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".