AULA 4 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS

- 1 Considere uma sequência (*array*) de n elementos inteiros, ordenada por **ordem não decrescente**. Pretende-se determinar se a sequência é uma **progressão aritmética de razão 1**, i.e., a[i+1] a[i] = 1.
- Implemente uma função **eficiente** (utilize um algoritmo em lógica negativa) e **eficaz** que verifique se uma sequência com n elementos (n > 1) define uma sequência contínua de números. A função deverá devolver 1 ou 0, consoante a sequência verificar ou não essa propriedade.

Depois de validar o algoritmo apresente-o no verso da folha.

• Determine experimentalmente a **ordem de complexidade do número de adições/subtrações** efetuadas pelo algoritmo e envolvendo elementos da sequência. Considere as seguintes 10 sequências de 10 elementos inteiros, todas diferentes, e que cobrem as distintas situações possíveis de execução do algoritmo. Determine, para cada uma delas, se satisfaz a propriedade e qual o número de operações de adição/subtração efetuadas pelo algoritmo.

1	3	4	5	5	6	7	7	8	9	Resultado	N° de operações
1	2	4	5	5	6	7	8	8	9	Resultado	N° de operações
1	2	3	6	8	8	8	9	9	9	Resultado	N° de operações
1	2	3	4	6	7	7	8	8	9	Resultado	N° de operações
1	2	3	4	5	7	7	8	8	9	Resultado	N° de operações
1	2	3	4	5	6	8	8	9	9	Resultado	N° de operações
1	2	3	4	5	6	7	9	9	9	Resultado	N° de operações
1	2	3	4	5	6	7	8	8	9	Resultado	N° de operações
1	2	3	4	5	6	7	8	9	9	Resultado	N° de operações
1	2	3	4	5	6	7	8	9	10	Resultado	N° de operações

Depois da execução do algoritmo responda às seguintes questões:

• (L ua	l e a sequencia	(ou as s	sequencias)	que	correspond	ie(m) ao	melho	or caso	do a	lgoritn	10:
-----	-------------	-----------------	----------	-------------	-----	------------	------	------	-------	---------	------	---------	-----

• (11121	P 2 C	equencia	າ (011.20	CAC	11000126	۱ (1110	COTTES	nand	വ വ	า\ว	0 101	Or.	Caso	dc	10	COTI	tmo	12
• (2 uai	Cas	cquencia	a (Ou as	ocq	uciicias	, –	luc.	COLLEG	pond	C(1)	1) a	o pr	$O_{\mathbf{I}}$	Caso	uc	, a	gon	JIII.	<i>)</i> :

- Determine o número de adições efetuadas no caso médio do algoritmo (para n = 10).
- Qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo nas situações do melhor caso, do pior caso e do caso médio, considerando uma sequência de tamanho n. Tenha em atenção que deve obter expressões matemáticas exatas e simplificadas. <u>Faça as análises no verso da folha.</u>
- Calcule o valor das expressões para n = 10 e compare-os com os resultados obtidos experimentalmente.

Nome: N° Mec:

	Apresentação do Algoritmo	
A	ANÁLISE FORMAL DO ALGORITMO	
MELHOR CASO - $B(N) =$		
Prop Case W(s) =		
PIOR CASO - $W(N) =$		
CASO MÉDIO - A(N) =		
Nome:		N° MEC:

- **2** Considere uma sequência (array) não ordenada de n elementos inteiros. Pretende-se eliminar os elementos repetidos existentes na sequência, sem fazer uma pré-ordenação e sem alterar a posição relativa dos elementos. Por exemplo, a sequência { 1, 2, 2, 2, 3, 3, 4, 5, 8, 8 } com 10 elementos será transformada na sequência { 1, 2, 3, 4, 5, 8 } com apenas 6 elementos. Por exemplo, a sequência { 1, 2, 2, 2, 3, 3, 3, 3, 8, 8 } com 10 elementos será transformada na sequência { 1, 2, 3, 8 } com apenas 4 elementos. Por exemplo, a sequência { 1, 2, 3, 2, 1, 3, 4 } com 7 elementos será transformada na sequência { 1, 2, 3, 4 } com apenas 4 elementos. Mas, a sequência { 1, 2, 5, 4, 7, 0, 3, 9, 6, 8 } permanece inalterada.
- Implemente uma função **eficiente** e **eficaz** que elimina os elementos repetidos numa sequência com n elementos (n > 1). A função deverá ser *void* e alterar o valor do parâmetro indicador do número de elementos efetivamente armazenados na sequência (que deve ser passado por referência). **Depois de validar o algoritmo apresente-o no verso da folha.**
- Determine experimentalmente a **ordem de complexidade do número de comparações** e **do número de deslocamentos** envolvendo elementos da sequência. Considere as sequências anteriormente indicadas de 10 elementos e outras à sua escolha. Determine, para cada uma delas, a sua configuração final, bem como o número de comparações e de deslocamentos efetuados.

Depois da execução do algoritmo responda às seguintes questões:

Quai e o nume	ero de d	lesloc	amen	itos (i.e	e., cópi	ias) d	le ele	nento	s efetu	iado	s?	
Inicial									Ν°	de	comparações	
Final									Ν°	de	cópias	
Indique uma comparações	sequêne efetuad	<u>cia ir</u> las. Q	nicial Qual é	com a <u>sequ</u>	ência f	<u>inal</u> c	btida	Qua	al é o n	úme	pior caso do r ero de comparaçõe	
Indique uma comparações	sequêne efetuad	<u>cia ir</u> las. Q	nicial Qual é	com a <u>sequ</u>	ência f	<u>inal</u> c	btida	Qua	al é o n	úme	ero de comparaçõe	
-	sequêne efetuad	<u>cia ir</u> las. Q	nicial Qual é	com a <u>sequ</u>	ência f	<u>inal</u> c	btida	Qua	al é o n os efetu	úme iado	ero de comparaçõe	

• Determine formalmente a ordem de complexidade do algoritmo nas situações do **melhor caso** e do **pior caso**, considerando uma sequência de tamanho n. Tenha em atenção que deve obter expressões matemáticas exatas e simplificadas. **Faça as análises no verso da folha.**

Nome: N° MEC:

GUIÃO DAS AULAS PRÁTICAS DE ALGORITMOS E COMPLE	EXIDADE	18
APRESE	ENTAÇÃO DO ALGORITMO	
Análisi	E FORMAL DO ALGORITMO	
N° DE COMPARAÇÕES		
Melhor Caso - B(N) =		
Pior Caso - $W(N) =$		
N° de Deslocamentos de Elemento	os	
Melhor Caso - B(n) =		
Pior Caso - W(N) =		
• •		

Nome: N° MEC: