Observe as funções f e g, com interseção em x = a:

Suas tangentes em x = a têm equação:

$$f: \quad y-0=f'(a)(x-a) \quad \Rightarrow \quad y=f'(a)(x-a)$$

$$g: y-0=g'(a)(x-a) \Rightarrow y=g'(a)(x-a)$$

Se dermos um 'zoom' em direção ao ponto (a,0), o gráfico das curcas começarão a parecer retas, ou seja, começariam a parecer com com suas tangentes no ponto.

https://www.geogebra.org/calculator/aumt5s7q

Assim, na vizinhança do ponto x = a, podemos dezer que

$$\frac{f(x)}{g(x)} \cong \frac{f'(a)(x-a)}{g'(a)(x-a)} = \frac{f'(a)}{g'(a)}$$

Ou seja, tomando o limite

$$\lim_{x \to a} \frac{f(x)}{g(x)} \cong \lim_{x \to a} \frac{f'(a)}{g'(a)}$$

Mas veja que isso só foi possível porque tanto f(x) quanto g(x) vão para zero em "a". Mas de fato, esse limites são iguais! Isso é que garante a chamada Regra de l'Hôspital. E isso também vale se os limites vão para infinito no ponto.

Regra de l'Hôspital Suponha que f e g sejam deriváveis e $g'(x) \neq 0$ em um intervalo aberto I que contém a (exceto possivelmente em a). Suponha que

$$\lim_{x \to a} f(x) = 0 \qquad \qquad \text{e} \qquad \lim_{x \to a} g(x) = 0$$

$$\lim_{x \to a} f(x) = \pm \infty \qquad \text{e} \qquad \lim_{x \to a} g(x) = \pm \infty$$

(Em outras palavras, temos uma forma indeterminada do tipo $\frac{0}{0}$ ou ∞/∞ .) Então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

se o limite do lado direito existir (ou for ∞ ou $-\infty$).

OBSERVAÇÃO 1 A Regra de l'Hôspital diz que o limite de uma função quociente é igual ao limite dos quocientes de suas derivadas, desde que as condições dadas estejam satisfeitas. É especialmente importante verificar as condições relativas aos limites de f e g antes de usar a Regra de l'Hôspital.

OBSERVAÇÃO 2 A Regra de l'Hôspital é válida também para os limites laterais e para os limites no infinito ou no infinito negativo; isto é, " $x \to a$ " pode ser substituído por quaisquer dos símbolos a seguir: $x \to a^+$, $x \to a^-$, $x \to \infty$ ou $x \to -\infty$.

EXEMPLO 1 Encontre $\lim_{x \to 1} \frac{\ln x}{x - 1}$.

EXEMPLO 2 Calcule $\lim_{x\to\infty} \frac{e^x}{x^2}$.

EXEMPLO 5 Encontre $\lim_{x \to \pi^-} \frac{\sin x}{1 - \cos x}$.

Produtos Indeterminados

Se $\lim_{x\to a} f(x) = 0$ e $\lim_{x\to a} g(x) = \infty$ (ou $-\infty$), então não está claro que valor de $\lim_{x\to a} [f(x)g(x)]$, se houver algum. Há uma disputa entre f e g. Se f ganhar a resposta é 0; se g vencer, a resposta será ∞ (ou $-\infty$). Ou pode haver um equilíbrio, e então a resposta é um número finito diferente de zero. Esse tipo de limite é chamado **forma indeterminada do tipo** $\mathbf{0} \cdot \infty$. Podemos lidar com ela escrevendo o produto fg como um quociente:

$$fg = \frac{f}{1/g}$$
 ou $fg = \frac{g}{1/f}$

Isso converte o limite dado na forma indeterminada do tipo $\frac{0}{0}$ ou ∞/∞ , de modo que podemos usar a Regra de l'Hôspital.

EXEMPLO 6 Calcule $\lim_{x\to 0^+} x \ln x$.
EXEMPLO 9 Encontre $\lim_{x\to 0^+} x^x$.
x→0 '