Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niezmiennik krzywych

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba¹

2013

¹Uniwersytet im. Adama Mickiewicza, kalmar@amu.edu.pl

Wykład 3

Niezmienniki krzywych

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niezmienniki krzywych

10127 11121

lors

Wzory Frenet

/zory ogólne

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niezmienniki krzywych

Krzywizi

Torsja

Wzory Freneta

Vzory ogólne

Niezmienniki krzywych

Krzywizna

Torsja

Wzory Freneta

Wzory ogólne

Definicja

Niech α : $(a,b) \to \mathbb{R}^3$ będzie (regularną) krzywą unormowaną. Dla każdego $t \in (a,b)$ **krzywiznę** definiujemy jako funkcję κ : $(a,b) \to \mathbb{R}$

$$\kappa(t) \stackrel{\text{def.}}{=} \|T'(t)\| = \|\alpha''(t)\|$$

Zauważmy, że krzywizna jest zawsze nieujemna, $\kappa(t) \geqslant 0$.

Zmiana koloru w zależności od krzywizny

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niezmienni krzywych

Krzywizna

Torsja

Wzory Freneta

zory ogólne

Dla regularnych krzywych nieunormowanych możemy posłużyć się odpowiednią reparametryzacją:

Definicja

Niech $\alpha:(a,b)\to\mathbb{R}^3$ będzie krzywą regularną, oraz niech $\beta=\alpha\circ h:(c,d)\to\mathbb{R}^3$ będzie jej reparametryzacją unormowaną $(h:(c,d)\to(a,b))$. Wówczas

$$\kappa_{\alpha}(t) \stackrel{\text{def.}}{=} \kappa_{\beta}(h^{-1}(t))$$

Czy definicja jest niezależna od wyboru parametryzacji?

Dla regularnych krzywych nieunormowanych możemy posłużyć się odpowiednią reparametryzacją:

Definicja

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną, oraz niech $\beta = \alpha \circ h$: $(c,d) \to \mathbb{R}^3$ będzie jej reparametryzacją unormowaną (h: $(c,d) \to (a,b))$. Wówczas

$$\kappa_{\alpha}(t) \stackrel{\text{def.}}{=} \kappa_{\beta}(h^{-1}(t))$$

Czy definicja jest niezależna od wyboru parametryzacji?

Dla regularnych krzywych nieunormowanych możemy posłużyć się odpowiednią reparametryzacją:

Definicja

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną, oraz niech $\beta = \alpha \circ h$: $(c,d) \to \mathbb{R}^3$ będzie jej reparametryzacją unormowaną (h: $(c,d) \to (a,b))$. Wówczas

$$\kappa_{\alpha}(t) \stackrel{\text{def.}}{=} \kappa_{\beta}(h^{-1}(t))$$

Czy definicja jest niezależna od wyboru parametryzacji?

Niech $\alpha:(a,b)\to\mathbb{R}^3$ będzie krzywą regularną i niech $\alpha\circ h_1$ oraz $\alpha\circ h_2$ będą dwiema reparametryzacjami unormowanymi, gdzie $h_1:(c_1,d_1)\to (a,b)$, oraz $h_2:(c_2,d_2)\to (a,b)$ są dyfeomorfizmami. Jeśli κ_1 i κ_2 oznaczają krzywizny krzywych odpowiednio $\alpha\circ h_1$ oraz $\alpha\circ h_2$, wtedy

$$\kappa_1(h_1^{-1}(t)) = \kappa_2(h_2^{-1}(t))$$

 $dla\ wszystkich\ t\in(a,b).$

Wniosek

Definicja krzywizny dla krzywej nieunormowanej nie zależy od wyboru parametryzacji.

Niech α :(a, b) $\rightarrow \mathbb{R}^3$ *będzie krzywą regularną i niech* $\alpha \circ h_1$ oraz $\alpha \circ h_2$ będą dwiema reparametryzacjami unormowanymi, gdzie $h_1:(c_1,d_1)\to (a,b)$, oraz $h_2:(c_2,d_2)\to (a,b)$ są dyfeomorfizmami. Jeśli κ_1 i κ_2 oznaczają krzywizny krzywych odpowiednio $\alpha \circ h_1$ oraz $\alpha \circ h_2$, wtedy

$$\kappa_1(h_1^{-1}(t)) = \kappa_2(h_2^{-1}(t))$$

dla wszystkich $t \in (a, b)$.

Wniosek

Definicja krzywizny dla krzywej nieunormowanej nie zależy od wyboru parametryzacji.

Dowód:

$$h_2^{-1} \circ h_1 : (c_1, d_1) \to (c_2, d_2)$$

$$(h_2^{-1} \circ h_1)(t) = \pm t + C,$$

$$1 = \|(\alpha \circ h_i)'(t)\| = \|\alpha'(h_i(t))\||h_i'(t)|$$

Dowód:

Najpierw pokażemy, że h_1 i h_2 (funkcje reparametryzujące do krzywych unormowanych) mogą się różnić jedynie znakiem i przesunięciem, tj. pokażemy, że złożenie

$$h_2^{-1} \circ h_1 : (c_1, d_1) \to (c_2, d_2)$$

jest równe

$$(h_2^{-1} \circ h_1)(t) = \pm t + C,$$

dla pewnej stałej $C \in \mathbb{R}$.

Dla obu indeksów i = 1, 2 i wszystkich $t \in (c_i, d_i)$ mamy

$$1 = \|(\alpha \circ h_i)'(t)\| = \|\alpha'(h_i(t))\||h_i'(t)|$$

Najpierw pokażemy, że h_1 i h_2 (funkcje reparametryzujące do krzywych unormowanych) mogą się różnić jedynie znakiem i przesunięciem, tj. pokażemy, że złożenie

$$h_2^{-1} \circ h_1 : (c_1, d_1) \to (c_2, d_2)$$

jest równe

$$\left(h_2^{-1}\circ h_1\right)(t)=\pm t+C,$$

dla pewnej stałej $C \in \mathbb{R}$.

$$1 = \|(\alpha \circ h_i)'(t)\| = \|\alpha'(h_i(t))\||h_i'(t)|$$

Dowód:

Najpierw pokażemy, że h_1 i h_2 (funkcje reparametryzujące do krzywych unormowanych) mogą się różnić jedynie znakiem i przesunięciem, tj. pokażemy, że złożenie

$$h_2^{-1} \circ h_1 : (c_1, d_1) \to (c_2, d_2)$$

jest równe

$$\left(h_2^{-1}\circ h_1\right)(t)=\pm t+C,$$

dla pewnej stałej $C \in \mathbb{R}$.

Dla obu indeksów i = 1, 2 i wszystkich $t \in (c_i, d_i)$ mamy

$$1 = \|(\alpha \circ h_i)'(t)\| = \|\alpha'(h_i(t))\||h_i'(t)|.$$

$$h_{1}'(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)].$$

Możemy teraz policzyć pochodną funkcji wewnętrznej

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$
$$h_1(t) = h_2(\pm t + C)$$
$$h_2^{-1}(t) = h_1^{-1}(\pm t) + C$$

Opracowanie: Marek Kaluba

Niezmienniki krzywych

Krzywizna

Waaru Eronoto

zory ogólne/

ioisja ...

Vzory ogólne

$$\begin{split} h_1'(t) &= \frac{\pm 1}{\|\alpha'(h_1(t))\|} = \frac{\pm 1}{\|\alpha'\left(h_2\left(h_2^{-1}\left[h_1(t)\right]\right)\right)\|} = \\ &= \pm h_2\left[\left(h_2^{-1} \circ h_1\right)(t)\right]. \end{split}$$

Możemy teraz policzyć pochodną funkcji wewnętrznej:

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$
$$h_1(t) = h_2(\pm t + C)$$
$$h_2^{-1}(t) = h_1^{-1}(\pm t) + C$$

Wanni Eronot

Wzory ogólne

 $h_{1}'(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)].$

Możemy teraz policzyć pochodną funkcji wewnętrznej:

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

 $(h_2^{-1} \circ h_1)(t) = \pm t + C$ $h_1(t) = h_2(\pm t + C)$ $h_2^{-1}(t) = h_2^{-1}(\pm t) + C$

$$\begin{split} h_1'(t) &= \frac{\pm 1}{\|\alpha'(h_1(t))\|} = \frac{\pm 1}{\|\alpha'\left(h_2\left(h_2^{-1}\left[h_1(t)\right]\right)\right)\|} = \\ &= \pm h_2\left[\left(h_2^{-1} \circ h_1\right)(t)\right]. \end{split}$$

Możemy teraz policzyć pochodną funkcji wewnętrznej:

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$

 $h_1(t) = h_2(\pm t + C)$
 $h_2^{-1}(t) = h_1^{-1}(\pm t) + C$

$$h'_{1}(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)].$$

Możemy teraz policzyć pochodną funkcji wewnętrznej:

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$

 $h_1(t) = h_2(\pm t + C)$
 $h_2^{-1}(t) = h_1^{-1}(\pm t) + C$

Opracowanie: Marek Kaluba

Niezmiennik krzywych

Krzywizna

Wanni Eronot

Vzorv ogólne

$$h_{1}'(t) = \frac{\pm 1}{\|\alpha'(h_{1}(t))\|} = \frac{\pm 1}{\|\alpha'(h_{2}(h_{2}^{-1}[h_{1}(t)]))\|} = \\ = \pm h_{2}[(h_{2}^{-1} \circ h_{1})(t)].$$

Możemy teraz policzyć pochodną funkcji wewnętrznej:

$$(h_2^{-1} \circ h_1)'(t) = (h_2^{-1})' [h_1(t)] h_1'(t) = \frac{h_1'(t)}{h_2'(h_2^{-1} \circ h_1(t))} = \pm 1$$

Całkując obie strony równości otrzymujemy

$$(h_2^{-1} \circ h_1)(t) = \pm t + C$$
$$h_1(t) = h_2(\pm t + C)$$
$$h_2^{-1}(t) = h_1^{-1}(\pm t) + C.$$

Opracowanie: Marek Kaluba

krzywych

Krzywizna

Wzory Freneta

/zory ogólne

Wzory Freneta

ory ogolne

Podstawiając przedostatnią równość do α mamy

$$(\alpha \circ h_1)(t) = (\alpha \circ h_2)(\pm t + C),$$

więc zachodzi również $\kappa_1(t)=\kappa_2(\pm t+C)$. Podstawiając teraz $t=h_1^{-1}(s)$ otrzymujemy

$$\kappa_1(h_1^{-1})(s) = \kappa_2(h_1^{-1}(s) + C) = \kappa_2(h_2^{-1}(s))$$

Podstawiając przedostatnią równość do α mamy

$$(\alpha \circ h_1)(t) = (\alpha \circ h_2)(\pm t + C),$$

więc zachodzi również $\kappa_1(t)=\kappa_2(\pm t+C)$. Podstawiając teraz $t=h_1^{-1}(s)$ otrzymujemy

$$\kappa_1(h_1^{-1})(s) = \kappa_2(h_1^{-1}(s) + C) = \kappa_2(h_2^{-1}(s)).$$

Podstawiając przedostatnią równość do α mamy

$$(\alpha \circ h_1)(t) = (\alpha \circ h_2)(\pm t + C),$$

więc zachodzi również $\kappa_1(t)=\kappa_2(\pm t+C)$. Podstawiając teraz $t=h_1^{-1}(s)$ otrzymujemy

$$\kappa_1(h_1^{-1})(s) = \kappa_2(h_1^{-1}(s) + C) = \kappa_2(h_2^{-1}(s)).$$

Opracowanie: Marek Kaluba

Niezmienniki krzywych

Krzywizna

....,...

/zory ogólne

Dowód:

prostą.

Bez straty ogólności możemy założyć, że α jest krzywą unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$\frac{T'(t)}{|T'(t)|} = N(t) = (0, 0, 0)$$

Całkując to równanie otrzymujemy

$$T(t) = \int T'(t) dt = \left(\int T'_1(t) dt, \int T'_2(t) dt, \int T'_3(t) dt \right) =$$

$$= \left(\int 0 dt, \int 0 dt, \int 0 dt \right) = (c_1, c_2, c_3) = v = \text{const.}$$

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ *będzie krzywą regularną. Wektor* normalny do α jest zerowy wtedy i tylko wtedy, gdy α jest prostą.

Dowód:

Bez straty ogólności możemy założyć, że α jest krzywa unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$\frac{T'(t)}{|T'(t)|} = N(t) = (0, 0, 0)$$

$$T(t) = \int T'(t) dt = \left(\int T'_1(t) dt, \int T'_2(t) dt, \int T'_3(t) dt \right) =$$

$$= \left(\int 0 dt, \int 0 dt, \int 0 dt \right) = (c_1, c_2, c_3) = v = \text{const.}$$

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ *będzie krzywą regularną. Wektor* normalny do α jest zerowy wtedy i tylko wtedy, gdy α jest prostą.

Dowód:

Bez straty ogólności możemy założyć, że α jest krzywa unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$\frac{T'(t)}{|T'(t)|} = N(t) = (0, 0, 0).$$

$$T(t) = \int T'(t) dt = \left(\int T'_1(t) dt, \int T'_2(t) dt, \int T'_3(t) dt \right) =$$

$$= \left(\int 0 dt, \int 0 dt, \int 0 dt \right) = (c_1, c_2, c_3) = v = \text{const.}$$

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ *będzie krzywą regularną. Wektor* normalny do α jest zerowy wtedy i tylko wtedy, gdy α jest prostą.

Dowód:

Bez straty ogólności możemy założyć, że α jest krzywa unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$\frac{T'(t)}{|T'(t)|} = N(t) = (0, 0, 0).$$

Całkując to równanie otrzymujemy

$$T(t) = \int T'(t) dt = \left(\int T'_1(t) dt, \int T'_2(t) dt, \int T'_3(t) dt \right) =$$

$$= \left(\int 0 dt, \int 0 dt, \int 0 dt \right) = (c_1, c_2, c_3) = v = \text{const.}$$

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ *będzie krzywą regularną. Wektor* normalny do α jest zerowy wtedy i tylko wtedy, gdy α jest prostą.

Dowód:

Bez straty ogólności możemy założyć, że α jest krzywa unormowaną. Załóżmy, że wektor normalny do α jest zerowy,

$$\frac{T'(t)}{|T'(t)|} = N(t) = (0, 0, 0).$$

Całkując to równanie otrzymujemy

$$T(t) = \int T'(t) dt = \left(\int T'_1(t) dt, \int T'_2(t) dt, \int T'_3(t) dt \right) =$$

$$= \left(\int 0 dt, \int 0 dt, \int 0 dt \right) = (c_1, c_2, c_3) = v = \text{const.}$$

$$\alpha(t)=vt+w,$$

gdzie v, $w \in \mathbb{R}^3$ są ustalonymi wektorami, czyli α jest prostą.

Załóżmy teraz, że α jest prostą. Mamy wtedy (postać parametryczna prostej) $\alpha(t)=vt+w$, gdzie $v,w\in\mathbb{R}^3$. Wtedy oczywiście

$$T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|} = \frac{v}{\|v\|}$$

$$\alpha(t) = vt + w$$
,

gdzie $v, w \in \mathbb{R}^3$ są ustalonymi wektorami, czyli α jest prostą. Załóżmy teraz, że α jest prostą. Mamy wtedy (postać parametryczna prostej) $\alpha(t) = vt + w$, gdzie $v, w \in \mathbb{R}^3$. Wtedy oczywiście

$$T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|} = \frac{v}{\|v\|}$$

$$\alpha(t)=vt+w,$$

gdzie $v, w \in \mathbb{R}^3$ są ustalonymi wektorami, czyli α jest prostą. Załóżmy teraz, że α jest prostą. Mamy wtedy (postać parametryczna prostej) $\alpha(t) = vt + w$, gdzie $v, w \in \mathbb{R}^3$. Wtedy

oczywiście

$$T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|} = \frac{v}{\|v\|}$$

$$\alpha(t) = vt + w$$
,

gdzie $v, w \in \mathbb{R}^3$ są ustalonymi wektorami, czyli α jest prostą. Załóżmy teraz, że α jest prostą. Mamy wtedy (postać parametryczna prostej) $\alpha(t) = vt + w$, gdzie $v, w \in \mathbb{R}^3$. Wtedy oczywiście

$$T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|} = \frac{v}{\|v\|},$$

Definicja

Niech $\alpha:(a,b)\to\mathbb{R}^3$ będzie krzywą regularną, oraz załóżmy, że dla wszystkich $t \in (a, b)$ zachodzi $N(t) \neq 0$. Torsję krzywej α w punkcie t definiujemy jako funkcję

$$\tau(t) \stackrel{\text{def.}}{=} \langle B'(t), N(t) \rangle.$$

- Podobnie jak w przypadku krzywizny mamy

Niech $\alpha:(a,b)\to\mathbb{R}^3$ będzie krzywą regularną, oraz załóżmy, że dla wszystkich $t \in (a, b)$ zachodzi $N(t) \neq 0$. Torsję krzywej α w punkcie t definiujemy jako funkcję

$$\tau(t) \stackrel{\text{def.}}{=} \langle B'(t), N(t) \rangle.$$

Uwaga

- Torsja jest funkcją gładką (wynika to z gładkości iloczynu skalarnego).
- Podobnie jak w przypadku krzywizny mamy

Definicja

Niech $\alpha:(a,b)\to\mathbb{R}^3$ będzie krzywą regularną, oraz załóżmy, że dla wszystkich $t \in (a, b)$ zachodzi $N(t) \neq 0$. **Torsję** krzywej α w punkcie t definiujemy jako funkcję

$$\tau(t) \stackrel{\text{def.}}{=} \langle B'(t), N(t) \rangle.$$

Uwaga

- Torsja jest funkcją gładką (wynika to z gładkości iloczynu skalarnego).
- Podobnie jak w przypadku krzywizny mamy $|\tau(t)| = ||B'(t)||$, jednak torsja może mieć wartości ujemne.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niezmiennil krzywych

10124 11121

Torsja

zory ogólne

Uwaga

Dla wygody od teraz będziemy opuszczać argument t jeśli nie będzie to prowadziło do niejednoznaczności.

Niech $\alpha:(a,b)\to\mathbb{R}^3$ będzie unormowaną krzywą regularną, różną od stałej i prostej (tj. $N(t) \neq 0$ dla wszystkich $t \in (a, b)$). Wówczas zachodzą następujące równości.

$$T' = \kappa N \tag{3.1}$$

$$N' = -\kappa T + \tau B \tag{3.2}$$

$$B' = -\tau N \tag{3.3}$$

$$\begin{pmatrix} T \\ N \\ B \end{pmatrix}' = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}$$

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Wzory Freneta

Twierdzenie (Wzory Freneta)

Niech α : $(a,b) \to \mathbb{R}^3$ będzie unormowaną krzywą regularną, różną od stałej i prostej (tj. $N(t) \neq 0$ dla wszystkich $t \in (a,b)$). Wówczas zachodzą następujące równości.

$$T' = \kappa N$$
 (3.1)

$$N' = -\kappa T + \tau B \tag{3.2}$$

$$B' = -\tau N \tag{3.3}$$

co można zapisać w postaci wektorowej

$$\begin{pmatrix} T \\ N \\ B \end{pmatrix}' = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}$$

Wzór 3.1 na T' wynika z przyjętych definicji κ i N. Ponieważ wektory z repera Freneta są jednostkowe, więc N' jest prostopadły do N. Ponieważ jednak T, N, B tworzy bazę przestrzeni \mathbb{R}^3 , więc N' musi być kombinacją liniową wektorów T i B

$$N' = aT + bB.$$

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa},$$

zatem $a=\langle N',T\rangle=-\kappa$. Ponieważ $\langle N,B\rangle=0$, w podobny sposób możemy stwierdzić, że $\langle N',B\rangle=-\tau$. Pozostawiamy to jako zadanie domowe.

Ponieważ wektory z repera Freneta są jednostkowe, więc N' jest prostopadły do N. Ponieważ jednak T, N, B tworzy bazę przestrzeni \mathbb{R}^3 , więc N' musi być kombinacją liniową wektorów T i B.

$$N' = aT + bB.$$

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa}$$

zatem $a=\langle N',T\rangle=-\kappa$. Ponieważ $\langle N,B\rangle=0$, w podobny sposób możemy stwierdzić, że $\langle N',B\rangle=-\tau$. Pozostawiamy to jako zadanie domowe.

wektorów T i B.

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa}$$

zatem $a=\langle N',T\rangle=-\kappa$. Ponieważ $\langle N,B\rangle=0$, w podobny sposób możemy stwierdzić, że $\langle N',B\rangle=-\tau$. Pozostawiamy to jako zadanie domowe.

Opracowanie: Marek Kaluba

Niezmienniki krzywych

Krzywizna

Wzorv Freneta

Vzory ogólne

Wzory ogólne

Wzór 3.1 na T' wynika z przyjętych definicji κ i N. Ponieważ wektory z repera Freneta są jednostkowe, więc N' jest prostopadły do N. Ponieważ jednak T, N, B tworzy bazę przestrzeni \mathbb{R}^3 , więc N' musi być kombinacją liniową wektorów T i B,

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$).

Wyliczenie *a* rozpocznijmy od równości $0 = \langle N, T \rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa}$$

zatem $a = \langle N', T \rangle = -\kappa$. Ponieważ $\langle N, B \rangle = 0$, w podobny sposób możemy stwierdzić, że $\langle N', B \rangle = -\tau$. Pozostawiamy to jako zadanie domowe.

Wzory Freneta

Wzór 3.1 na T' wynika z przyjętych definicji κ i N. Ponieważ wektory z repera Freneta są jednostkowe, wiec N'jest prostopadły do N. Ponieważ jednak T, N, B tworzy bazę przestrzeni \mathbb{R}^3 , więc N' musi być kombinacją liniową wektorów T i B.

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a = \langle N', T \rangle$ (odpowiednio $b = \langle N', B \rangle$). Wyliczenie *a* rozpocznijmy od równości $0 = \langle N, T \rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa}$$

Wzór 3.1 na T' wynika z przyjętych definicji κ i N. Ponieważ wektory z repera Freneta są jednostkowe, więc N'jest prostopadły do N. Ponieważ jednak T, N, B tworzy bazę przestrzeni \mathbb{R}^3 , więc N' musi być kombinacją liniową wektorów T i B.

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a = \langle N', T \rangle$ (odpowiednio $b = \langle N', B \rangle$). Wyliczenie *a* rozpocznijmy od równości $0 = \langle N, T \rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa},$$

wektorów T i B.

Wzór 3.1 na T' wynika z przyjętych definicji κ i N. Ponieważ wektory z repera Freneta są jednostkowe, więc N' jest prostopadły do N. Ponieważ jednak T, N, B tworzy bazę przestrzeni \mathbb{R}^3 , więc N' musi być kombinacją liniową

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa},$$

zatem $a = \langle N', T \rangle = -\kappa$. Ponieważ $\langle N, B \rangle = 0$, w podobny sposób możemy stwierdzić, że $\langle N', B \rangle = -\tau$. Pozostawiamy to jako zadanie domowe.

Wzory ogólne

Wzór 3.1 na T' wynika z przyjętych definicji κ i N. Ponieważ wektory z repera Freneta są jednostkowe, więc N' jest prostopadły do N. Ponieważ jednak T, N, B tworzy bazę przestrzeni \mathbb{R}^3 , więc N' musi być kombinacją liniową wektorów T i B,

$$N' = aT + bB$$
.

Mnożąc tę równość skalarnie przez wektor T (odpowiednio B) otrzymujemy $a=\langle N',T\rangle$ (odpowiednio $b=\langle N',B\rangle$). Wyliczenie a rozpocznijmy od równości $0=\langle N,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle N', T \rangle + \langle N, T' \rangle = \langle N', T \rangle + \underbrace{\langle N, \kappa N \rangle}_{=\kappa},$$

zatem $a=\langle N',T\rangle=-\kappa$. Ponieważ $\langle N,B\rangle=0$, w podobny sposób możemy stwierdzić, że $\langle N',B\rangle=-\tau$. Pozostawiamy to jako zadanie domowe.

$$B' = aT + bN$$
.

Musimy więc policzyć $a=\langle B',T\rangle$ i $b=\langle B',N\rangle$. Wyliczenie a rozpocznijmy od równości: $0=\langle B,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle B', T \rangle + \langle B, T' \rangle = \langle B', T \rangle + \langle B, \kappa N \rangle = \langle B', T \rangle$$

Tak więc B' jest współliniowy z N i równość 3.3 charakteryzująca B' wynika z definicji torsji τ .

Podobnie B' jest prostopadły do B, $\langle B, B' \rangle = 0$, więc

$$B' = aT + bN$$
.

Musimy więc policzyć $a=\langle B',T\rangle$ i $b=\langle B',N\rangle$. Wyliczenie a rozpocznijmy od równości: $0=\langle B,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle B', T \rangle + \langle B, T' \rangle = \langle B', T \rangle + \langle B, \kappa N \rangle = \langle B', T \rangle.$$

Tak więc B' jest współliniowy z N i równość 3.3 charakteryzująca B' wynika z definicji torsji τ .

Podobnie B' jest prostopadły do B, $\langle B, B' \rangle = 0$, więc

$$B' = aT + bN$$
.

Musimy więc policzyć $a=\langle B',T\rangle$ i $b=\langle B',N\rangle$. Wyliczenie a rozpocznijmy od równości: $0=\langle B,T\rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle \mathit{B}', \mathit{T} \rangle + \langle \mathit{B}, \mathit{T}' \rangle = \langle \mathit{B}', \mathit{T} \rangle + \langle \mathit{B}, \kappa \mathit{N} \rangle = \langle \mathit{B}', \mathit{T} \rangle.$$

Tak więc B' jest współliniowy z N i równość 3.3 charakteryzująca B' wynika z definicji torsji τ .

Opracowanie:

Wzory Freneta

Podobnie B' jest prostopadły do B, $\langle B, B' \rangle = 0$, więc

B' = aT + bN

Musimy więc policzyć $a = \langle B', T \rangle$ i $b = \langle B', N \rangle$. Wyliczenie a rozpocznijmy od równości: $0 = \langle B, T \rangle$. Różniczkując obie strony otrzymujemy

$$0 = \langle \textit{B}', \textit{T} \rangle + \langle \textit{B}, \textit{T}' \rangle = \langle \textit{B}', \textit{T} \rangle + \langle \textit{B}, \kappa \textit{N} \rangle = \langle \textit{B}', \textit{T} \rangle.$$

Tak więc B' jest współliniowy z N i równość 3.3 charakteryzująca B' wynika z definicji torsji τ .

Niech α : $(a, b) \rightarrow \mathbb{R}^3$ *będzie krzywą unormowaną oraz niech* $N(t) \neq 0$ dla każdego $t \in (a, b)$. Następujące warunki są równoważne.

Niech α :(a, b) $\rightarrow \mathbb{R}^3$ *będzie krzywą unormowaną oraz niech* $N(t) \neq 0$ dla każdego $t \in (a, b)$. Następujące warunki są równoważne.

- 1. Zbiór $\alpha(a,b)$ (tj. wykres α) jest zawarty w pewnej płaszczyźnie.

Niech α : $(a, b) \to \mathbb{R}^3$ będzie krzywą unormowaną oraz niech $N(t) \neq 0$ dla każdego $t \in (a, b)$. Następujące warunki są równoważne.

- 1. Zbiór $\alpha(a,b)$ (tj. wykres α) jest zawarty w pewnej płaszczyźnie.
- 2. B jest wektorem stałym.

Wzory Freneta

Vzory ogólne

Lemat

Niech α : $(a, b) \to \mathbb{R}^3$ będzie krzywą unormowaną oraz niech $N(t) \neq 0$ dla każdego $t \in (a, b)$. Następujące warunki są równoważne.

- 1. Zbiór $\alpha(a, b)$ (tj. wykres α) jest zawarty w pewnej płaszczyźnie.
- 2. B jest wektorem stałym.
- 3. $\tau \equiv 0$.

Uwaga

Krzywą spełniającą jeden z tych warunków nazywamy **krzywą płaską**.

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą unormowaną oraz niech $N(t) \neq 0$ dla każdego $t \in (a,b)$. Następujące warunki są równoważne.

- 1. Zbiór $\alpha(a, b)$ (tj. wykres α) jest zawarty w pewnej płaszczyźnie.
- 2. B jest wektorem stałym.
- 3. $\tau \equiv 0$.

Uwaga

Krzywą spełniającą jeden z tych warunków nazywamy **krzywą płaską**.

- 1 ⇒ 2 Jeśli krzywa leży w jednej płaszczyźnie to leżą w niej wektory styczny i normalny (dlaczego?), więc jest to płaszczyzna ściśle styczna. Wtedy kierunek prostopadły do tej płaszczyzny jest współliniowy z B. Zatem B nie zmienia ani zwrotu ani długości.
- 2 ⇔ 3 wynika ze wzoru Freneta (3.3)

$$B' = -\tau N$$

Dowód:

- 1 ⇒ 2 Jeśli krzywa leży w jednej płaszczyźnie to leżą w niej wektory styczny i normalny (dlaczego?), więc jest to płaszczyzna ściśle styczna. Wtedy kierunek prostopadły do tej płaszczyzny jest współliniowy z B. Zatem B nie zmienia ani zwrotu ani długości.
- 2 ⇔ 3 wynika ze wzoru Freneta (3.3)

$$B' = -\tau N$$

Dowód:

- 1 ⇒ 2 Jeśli krzywa leży w jednej płaszczyźnie to leżą w niej wektory styczny i normalny (dlaczego?), więc jest to płaszczyzna ściśle styczna. Wtedy kierunek prostopadły do tej płaszczyzny jest współliniowy z B. Zatem B nie zmienia ani zwrotu ani długości.
- 2 ⇔ 3 wynika ze wzoru Freneta (3.3)

$$B' = -\tau N$$

1 ⇒ 2 Jeśli krzywa leży w jednej płaszczyźnie to leżą w niej wektory styczny i normalny (dlaczego?), więc jest to płaszczyzna ściśle styczna. Wtedy kierunek prostopadły do tej płaszczyzny jest współliniowy z B. Zatem B nie zmienia ani zwrotu ani długości.

$$B' = -\tau N$$

Dowód:

- 1 ⇒ 2 Jeśli krzywa leży w jednej płaszczyźnie to leżą w niej wektory styczny i normalny (dlaczego?), więc jest to płaszczyzna ściśle styczna. Wtedy kierunek prostopadły do tej płaszczyzny jest współliniowy z B. Zatem B nie zmienia ani zwrotu ani długości.
- $2 \Leftrightarrow 3$ wynika ze wzoru Freneta (3.3):

$$B' = -\tau N$$

Wzorv Freneta

Wzory ogólne

2 ⇒ 1 Niech $p \in (a, b)$ będzie punktem z dziedziny α .

Rozważmy funkcję

$$f(t) = \langle \alpha(t) - \alpha(p), B(t) \rangle.$$

Przy założeniu, że B(t) = B jest wektorem stałym, pokażemy, że funkcja f jest tożsamościowo równa 0, z czego wynika, że krzywa α w całości leży w płaszczyźnie normalnej do B i zawierającej punkt $\alpha(p)$.

2 ⇒ 1 Niech $p \in (a, b)$ będzie punktem z dziedziny α .

Rozważmy funkcję

$$f(t) = \langle \alpha(t) - \alpha(p), B(t) \rangle.$$

Przy założeniu, że B(t) = B jest wektorem stałym, pokażemy, że funkcja f jest tożsamościowo równa 0, z czego wynika, że krzywa α w całości leży w płaszczyźnie normalnej do B i zawierającej punkt α(p).

Wzory Freneta

 $2 \Rightarrow 1$ Niech $p \in (a, b)$ będzie punktem z dziedziny α .

Rozważmy funkcję

$$f(t) = \langle \alpha(t) - \alpha(p), B(t) \rangle.$$

Przy założeniu, że B(t) = B jest wektorem stałym, pokażemy, że funkcja f jest tożsamościowo równa 0, z czego wynika, że

- 2 ⇒ 1 Niech $p \in (a, b)$ będzie punktem z dziedziny α .
 - Rozważmy funkcję

$$f(t) = \langle \alpha(t) - \alpha(p), B(t) \rangle.$$

Przy założeniu, że B(t) = B jest wektorem stałym, pokażemy, że funkcja f jest tożsamościowo równa 0, z czego wynika, że krzywa α w całości leży w płaszczyźnie normalnej do B i zawierającej punkt $\alpha(p)$.

Różniczkowa

Obliczmy

$$f'(t) = \frac{d}{dt} (\langle \alpha(t) - \alpha(p), B(t) \rangle) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=(T(t), B(t)) = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest staly}} = 0$$

Wzorv Freneta

Vzory ogólne

Obliczmy

$$f'(t) = \frac{d}{dt} \left(\langle \alpha(t) - \alpha(p), B(t) \rangle \right) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=\langle T(t), B(t) \rangle = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest staly}} = 0$$

▶ Zatem f jest funkcją stałą. Jeśli podstawimy t = p otrzymamy f(p) = 0, więc f jest tożsamościowo równa 0.

Różniczkowa

Obliczmy

$$f'(t) = \frac{d}{dt} \left(\langle \alpha(t) - \alpha(p), B(t) \rangle \right) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=\langle T(t), B(t) \rangle = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest staly}} = 0.$$

 \triangleright Zatem f jest funkcją stałą. Jeśli podstawimy t = p

Wzorv Freneta

Wzory ogólne

wzory ogoine

Obliczmy

$$f'(t) = \frac{d}{dt} \left(\langle \alpha(t) - \alpha(p), B(t) \rangle \right) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=\langle T(t), B(t) \rangle = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest staly}} = 0.$$

▶ Zatem f jest funkcją stałą. Jeśli podstawimy t = p otrzymamy f(p) = 0, więc f jest tożsamościowo równa 0

Obliczmy

$$f'(t) = \frac{d}{dt} \left(\langle \alpha(t) - \alpha(p), B(t) \rangle \right) =$$

$$= \underbrace{\langle \alpha'(t), B(t) \rangle}_{=\langle T(t), B(t) \rangle = 0} + \underbrace{\langle \alpha(t) - \alpha(p), B'(t) \rangle}_{=0 \text{ bo } B(t) \text{ jest staly}} = 0.$$

▶ Zatem f jest funkcją stałą. Jeśli podstawimy t = p otrzymamy f(p) = 0, więc f jest tożsamościowo równa 0.

Т

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|} \tag{3.8}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niezmiennik rzywych

Krzywizna

orsja

Wzory ogólne

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|} \tag{3.8}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niezmiennik rzywych

V----i---

Torsia

Wzory Freneta

Wzory ogólne

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną różną od prostej (tj. $N(t) \neq 0$ dla każdego $t \in (a,b)$). Wówczas zachodzą następujące wzory:

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|}$$
 (3.8)

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|} \tag{3.8}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

liezmienniki

V----i---

Torsia

Wzory Freneta

Wzory ogólne

Lemat (Wzory ogólne)

Niech α : $(a,b) \to \mathbb{R}^3$ będzie krzywą regularną różną od prostej $(tj.\ N(t) \neq 0$ dla każdego $t \in (a,b)$). Wówczas zachodzą następujące wzory:

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|} \tag{3.8}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

liezmienniki .

.. .

. .

Wzory Freneta

Wzory ogólne

Lemat (Wzory ogólne)

Niech α : $(a, b) \to \mathbb{R}^3$ będzie krzywą regularną różną od prostej $(tj. \ N(t) \neq 0 \ dla \ każdego \ t \in (a, b))$. Wówczas zachodzą następujące wzory:

$$T = \frac{\alpha'}{\|\alpha'\|} \tag{3.4}$$

$$B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|} \tag{3.5}$$

$$N = B \times T \tag{3.6}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \tag{3.7}$$

$$\tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|}$$
 (3.8)

Dowód:

Dowód polega na przeliczeniu odpowiednich pochodnych bez zakładania, że α jest krzywą unormowaną. Pozostawiamy go jako ćwiczenie.

Uwaga

Powyższy lemat pozwala liczyć trójnóg Freneta, krzywiznę i torsję nie odwołując się do żadnej unormowanej parametryzacji. Dowodzi to, że T, N, B, κ i τ są funkcjami tylko i wyłącznie punktów na krzywej (rozumianej jako obraz wykresu w \mathbb{R}^3) i nie zależą od parametryzacji.

Wanni Erono

Wzory ogólne

Dowód:

Dowód polega na przeliczeniu odpowiednich pochodnych bez zakładania, że α jest krzywą unormowaną. Pozostawiamy go jako ćwiczenie.

Uwaga

Powyższy lemat pozwala liczyć trójnóg Freneta, krzywiznę i torsję nie odwołując się do żadnej unormowanej parametryzacji. Dowodzi to, że T, N, B, κ i τ są funkcjami tylko i wyłącznie punktów na krzywej (rozumianej jako obraz wykresu w \mathbb{R}^3) i nie zależą od parametryzacji.

Wzory ogólne

Dowód:

Dowód polega na przeliczeniu odpowiednich pochodnych bez zakładania, że α jest krzywą unormowaną. Pozostawiamy go jako ćwiczenie.

Uwaga

Powyższy lemat pozwala liczyć trójnóg Freneta, krzywiznę i torsję nie odwołując się do żadnej unormowanej parametryzacji. Dowodzi to, że T, N, B, κ i τ są funkcjami tylko i wyłącznie punktów na krzywej (rozumianej jako obraz wykresu w \mathbb{R}^3) i nie zależą od parametryzacji.