CLASSE : MPSI NOM :	PRENOM:
Exercice 1 a) Quelle instruction permet d'obtenir le résultat de 13 ²¹ ?	Donner le code utilisé :
Quel est le chiffre des centaine dans le résultat obtenu?	
Quelle est la valeur obtenue?	
$2^{31} - 1$ est-il multiple de 3?	Exercice 4 Ecrire une <u>fonction</u> arithmetico_geom(a,q,r,N) prenant en paramètre 4 nombres a,q,r et un entier N et qui retourne le terme de rang N u_N de la suite arithmético
Exercice 2 a) Quelle est l'écriture en binaire du nombre 107?	géométrique définie par : $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = q.u_n + r.$ Code de la fonction :
	b) Quel est la valeur du terme u_{10} de rang 10 de la suite arithmetico-géométrique définie par $: u_0 = 1$, et $\forall n \in \mathbb{N}, u_{n+1} = 3.u_n - 1$?
a) Quelle est le PGCD des nombre 7112 et 195 902? Ecrire le code utilisé:	Exercice 5 Ecrire une <u>fonction</u> syracuse() qui prend en paramètre un entier n et que retourne la liste des $n+1$ premiers termes u_0, u_1, \ldots, u_n de la suite $(u_n)_n$ définie par la relation de récurrence :
	$u_0 = 7 \qquad \forall n \in \mathbb{N}, \ u_{n+1} = \begin{cases} \frac{u_n}{2} & \text{si } u_n \text{ est pair} \\ 3u_n + 1 & \text{si } u_n \text{ est impair} \end{cases}$
	a) Donner le code de la fonction :
Exercice 3 Déterminer le plus petit entier naturel N tel que $\sum_{k=1}^{N} \frac{1}{k} \ge 5$:	

						•				•				 	 	 		•	•								 	 						•		•			 							•	 		
			•	•		•		•				•		 	 	 			•	•	•	•				 	 	 	 			•	•	•			•	 	 		•		•						•
										•				 	 	 		•	•								 	 	 							•			 				•						
	•			•				•				•		 	 	 											 	 	 										 										

b) Quelle est la valeur de u_{100} ?

Exercice 6

On cherche les solutions de l'équation diophantienne :

$$(x, y, z) \in N^3, \ 0 < x, y, z \le 100, \ x^2 + y^2 = z^2 \quad (*)$$

a) A l'aide d'une compréhension de liste créer la liste L constituée de toutes les listes [x,y,z] pour lesquelles (x,y,z) est solution de l'équation (*).

......

Exercice 7

Pour un entier naturel $n \in \mathbb{N}^*$ le n-ième nombre de Catalan C_n est le nombre de façon de décomposer un polygône régulier ayant n+2 côtés en triangles en le découpant le long de diagonales. On peut aussi définir la suite $(C_n)_{n \in \mathbb{N}}$ par la relation de récurrence :

$$C_0 = 1, \quad \forall n \in \mathbb{N}, \quad C_{n+1} = \sum_{k=0}^{n} C_k \cdot C_{n-k}$$

Exemple: $C_3 = 5$ (voir la figure suivante).

a) Ecrire une fonction catalan() prenat en paramètre un entier n et qui retourne la liste des nombres de Catalan de C_0 à C_N .

Code de la fonction :

 	 		 	•	 	 	•					•								 	•			 		 		
 	 		 		 	 						•								 	•			 		 		
 	 		 		 	 					 	•								 	•			 		 		

b) Quel est le résultat de l'appel de catalan(10)?
