

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/692,885	10/20/2000	Kenneth R. Owens	069116.0169	6112
5073	7590	09/30/2005	EXAMINER	
BAKER BOTTS L.L.P. 2001 ROSS AVENUE SUITE 600 DALLAS, TX 75201-2980				WONG, WARNER
		ART UNIT		PAPER NUMBER
		2661		

DATE MAILED: 09/30/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/692,885	OWENS ET AL.	
	Examiner	Art Unit	
	Warner Wong	2661	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 01 July 2005.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-24 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-24 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 20 October 2000 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date: _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date: _____ | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

Claim Objections

1. Claim 1 is objected to because of the following informalities: From the phrase "destined for another switch in the first data path different from the second switch" (lines 13-14), the meaning is unclear whether if 'another switch is different from the second switch' or 'the first data path is different from the second switch path'. Appropriate correction is required.

Claim Rejections - 35 USC § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

3. Claims 1, 3-9, 11, 13, 14, and 17-23 are rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 5,138,615, Lamport et al. (Lamport) in view of U.S. Patent 6,167,025, Hsing et al. (Hsing).

In regard to claim 1, Lamport discloses, "in a data network comprised of a plurality of data switches interconnected to form a plurality of data paths forming a mesh configuration of data switches, a method of re-routing data messages around a data switch comprised of the steps of:

sending at least a first data message (fig. 3, #126 sending data) over a first data path (fig. 3, P2) from a first switch (fig. 3, #126) to a second switch (figure 3, #140);

Art Unit: 2661

receiving at said first switch one or more switch status messages from said second switch (col. 37, lines 15-48, where the keep-alive messages are status messages used to indicate the functionality of a given switch);

inhibiting generation of a switch status message (keep alive message in col. 37, lines 15-48) at said first switch destined for another switch (fig. 3, #124) in the first data path upon not receiving switch status messages from said second switch ("col. 37, lines 45-48, lines 54-57, "If acknowledgement is still not received,.. the link is declared to be DEAD..")

However, Lamport lacks what Hsing discloses, "...to initiate redirection of subsequent data messages over an alternate path through said data network" (Hsing, col. 14, lines 46-58 where clearly if there is a switch that has not necessarily failed but is in the failed path, that switch will be avoided)."

It would have been obvious to one of ordinary skill in the art at the time of invention to include the re-directing of data messages over an alternate data path as taught by Hsing with the rest of the Lamport's method. The motivation for restoring the virtual connections is " to offering a wide degree of flexibility in terms of the degree of protection offered to individual users and/or applications preferably on a per connection or per session basis," (Hsing, col. 4, lines 1-4).

In regards to claim 11, Lamport discloses, "in a data network comprised of a plurality of data switches interconnected to form a plurality of data paths forming a mesh configuration of data switches, a method of re-routing data messages around a data switch comprised of the steps of:

receiving at least a first data message (fig. 3, #140 receiving data) over a first data path (fig. 3, P2) sent from a first switch (fig. 3, #126) to a second switch (figure 3, #140);

sending at least a first data message (fig. 3, #126 sending data) from said second switch to a third switch (fig. 3, #124);

receiving at said second switch one or more switch status messages indicating the functionality of said third switch (col. 37, lines 15-48 where the keep-alive messages are status messages used to indicate the functionality of a given switch);

inhibiting generation of a switch status message (keep alive message in col. 37, lines 15-48) at said second switch destined for said first switch upon not receiving said switch status messages at said second switch from said third switch (col. 37, lines 42-57 where if it is determined the link is DEAD, then there will be no more keep-alive messages sent)."

However, Lamport lacks what Hsing discloses, "wherein inhibiting generation of a switch status message at said second switch .. initiates redirection of subsequent data messages away from said second and third switches via a second data path through said data network (col. 14, lines 46-58 where clearly if there is a switch that has not necessarily failed but is in the failed path, that switch will be avoided)."

It would have been obvious to one of ordinary skill in the art at the time of invention to include the re-directing of data messages over an alternate data path as taught by Hsing with the rest of the Lamport's method. The motivation for restoring the virtual connections is "to offering a wide degree of flexibility in terms of the degree of protection offered to individual users and/or applications preferably on a per connection or per session basis," (col. 4, lines 1-4).

In regard to claims 3 and 13, Lamport and Hsing disclose the method of claims 1 and 11. However, Lamport lacks "said data switches are asynchronous transfer mode switches." Hsing however, further discloses "said data switches are asynchronous transfer mode switches (figure 1)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the ATM switches with the method of claims 1 and 11 for the same reasons and motivation as in claims 1 and 11.

In regard to claims 4 and 14, Lamport and Hsing disclose the method of claims 1 and 11. However, Lamport and Hsing lack "said data switches are IP routers." Although Lamport and Hsing disclose ATM switches and not IP routers, it would have been obvious to one with ordinary skill in the ad at the time of invention to choose IP routers instead of ATM switches because the choice is dependent on the type of network the switches operate in. If it is an ATM network, the switches need to be able to handle ATM traffic; and if the network is IP, the routers need to be able to handle IP traffic. Thus the choice of IP routers versus ATM switches is a matter of design choice. The motivation for choosing IP routers is to ensure the routers work properly within their network.

In regard to claims 5 and 17, Lamport and Hsing disclose the method of claims 5 and 11. However, Hsing lacks "said switch status messages are comprised of a predetermined format, (that of a) switch liveness message." Lamport however, further discloses "said switch status messages are comprised of a predetermined format, [that of a] switch liveness message (col. 37, lines 15-48 where the ACK messages are the status messages and it is known in the art that ACK messages have a predetermined format; an ACK message is the functional equivalent of a liveness message because it allows the receiving switch to know that there isn't a failure in the link of the sending switch)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the predetermined format message with the method of claims 1 and 11 for the same reasons and motivation as in claims 1 and 11.

In regard to claims 6 and 18, Lamport and Hsing disclose the method of claims 1 and 11. However, Lamport lacks "at least one of said switches maintains a table of incoming link and path identifiers and of outgoing link and path identifiers." Hsing however, further discloses "at least one of said switches maintains a table of incoming link and path identifiers and of outgoing link and path identifiers (figures 2, 3A, 3B, and 3C where element 212 will contain information on the incoming and outgoing calls which will contain path identifiers as seen in figures 3A, 3B, and 3C)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the link table with the method of claims 1 and 11 for the same reasons and motivation as in claims 1 and 11.

Art Unit: 2661

In regard to claims 7 and 19, Lamport and Hsing disclose the method of claims 1 and 11. However, Lamport lacks "said first data message represents speech information." Hsing however, further discloses "said first data message represents speech information (col. 3, lines 8-10 represent some of the types of communications that can benefit from the fault protection system, teleconferencing (which includes voice) can be one of those options)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the speech information with the method of claims 1 and 11 for the same reasons and motivation as in claims 1 and 11.

In regard to claims 8 and 20, Lamport and Hsing disclose the method of claims 1 and 11. However, Lamport lacks "said first data message represents computer data." Hsing however, further discloses "said first data message represents computer data (col. 3, lines 8-10 represent some of the types of communications that can benefit from the fault protection system, World Wide Web applications is computer data)" It would have been obvious to one with ordinary skill in the art at the time of invention to include the computer data with the method of claims 1 and 11 for the same reasons and motivation as in claims 1 and 11.

In regard to claims 9 and 21, Lamport and Hsing disclose the method of claims 1 and 11. However, Lamport lacks "sending subsequent data messages to a fourth data switch (col. 14, lines 44-46 implying that in a communication system the only way to determine which switch failed is to communicate the information by sending messages between switches, which can include a third data switch)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the re-directing to a

Art Unit: 2661

third switch with the method of claims 1 and 11 for the same reasons and motivation as in claims 1 and 11.

4. Claims 2, 10, and 12 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lamport and Hsing as applied to claims 1, 11 and 23 above, and further in view of McGill (U.S. Patent 5,436,886).

In regard to claims 2 and 12, Lamport and Hsing disclose the method of claims 1 and 11. However, Lamport and Hsing lack "said alternate data path is a protection path through said network." McGill however, discloses "said alternate data path is a protection path through said network (figure 5, where the primary path from SFO is broken, thus the protection path from SF1 is activated and used as can be read in col. 6, lines 12-17)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the protection path with the method of claims 1 and 11 for the purpose of having an alternate path should the primary path not transmit or fail. The motivation being increased reliability in data transmission.

In regard to claim 10, Lamport and Hsing disclose the method of claims 1 and 11. However, Lamport and Hsing lack "said first data switch is a protection switch element." McGill however, discloses "said first data switch is a protection switch element (figure 5, where the primary switch, SFO, is no longer able to transmit data, therefore the protection switch SF1 is activated and used as can be read in col. 6, lines 12-17)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the protection path with the method of claims 1 and 11 for the

Art Unit: 2661

purpose of having an alternate path should the primary path not transmit or fail. The motivation being increased reliability in data transmission.

5. Claims 15 and 16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lamport and Hsing as applied to claim 11 above, and further in view of Shew et al. (U.S. Patent 6,530,032 B1).

In regard to claim 15, Lamport and Hsing disclose the method of claim 11. However, Lamport and Hsing lack "said data switches are digital cross connect switches controlled by MPLS." Shew however, discloses "said data switches are digital cross connect switches controlled by MPLS (col. 2, lines 8-11 where electrical is taken to be digital; col. 2, lines 28-32 identifies the MPLS controller)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the digital switches and MPLS control with the method claim 11 for the purpose of re-routing data with greater ease. The motivation being shorter delays in re-routing data when failures occur (Shew, col. 1, lines 19-28, col. 5, lines 31-36).

In regard to claim 16, Lamport and Hsing disclose the method of claim 11. However, Lamport and Hsing lack "said data switches are optical cross connects and switches controlled by MPLS." Shew however, discloses "said data switches are optical cross connects and switches' controlled by MPLS (col. 2, lines 8-11 ; col. 2; lines 28-32 identifies the MPLS controller)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the optical switches and MPLS control with the method claim 11 for the purpose of re-routing data with greater ease. The motivation

being shorter delays in re-routing data when failures occur (col. 1, lines 19-28., col. 5, lines 31-36).

6. Claim 22 and 23 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lamport and further in view of Olson (U.S. Patent 5,245,616) and Hsing.

In regard to claim 22, Lamport discloses a data network comprised of a plurality of data switches (fig. 3, #124, 126, 140, 142) interconnected to form a plurality of data paths (fig. 3, P1, P2) form a mesh configuration of data switches, a method of rerouting data messages between first (fig. 3, #126) and second (fig. 3, #140) data switches comprised of the steps of:

Sending at least a first data message (fig. 3, #140 switch sending data) over a first data path (fig. 3, P2) from said first switch to said second switch;

However, Lamport lacks what Olson discloses "sending a switch status message to said first switch in response to not receiving (receive error) said first data message from said first switch" (col. 1, lines, 20-26, "The NAK signal can indicate that there is an error in the receive data").

It would have been obvious to one with ordinary skill in the art at the time of invention to include the NAK status message of Olson to Lamport's data network in responding to data not being received. The motivation is "reduced transmission of unneeded duplicate message packets." (Olson, col. 2, lines 27-28).

However, the combined system of Lamport and Olson lacks what Hsing discloses "initiate redirection of subsequent data messages over an alternate data path

Art Unit: 2661

through said data network (col. 14, lines 46-58 where clearly if there is a switch that has not necessarily failed but is in the failed path, that switch will be avoided)."

It would have been obvious to one of ordinary skill in the art at the time of invention to include the re-directing of data messages over an alternate data path as from the NAK status message of the combined method of Lamport and Olson. The motivation being that by restoring the virtual connections is "to offering a wide degree of flexibility in terms of the degree of protection offered to individual users and/or applications preferably on a per connection or per session basis," (Hsing, col. 4, lines 1-4).

In regard to claim 23, Lamport discloses "in a data network comprised of a plurality of data switches interconnected to form a plurality of data paths forming a mesh configuration of data switches, a method of re-routing data messages around a data switch comprised of the steps of:

sending at least a first data message (fig. 3, #140 switch sending data) over a first data path (fig. 3, P2) from a first switch (fig. 3, #140) to a second switch (fig. 3, #140);

sending said at least first data message from said second switch to a third switch (fig. 3, #124));

However, Lamport lacks what Olson discloses "sending a switch status message to at least one of said first and second switches in response to not receiving (receive error) said first data message from said first switch" (col. 1, lines, 20-26, "The NAK signal can indicate that there is an error in the receive data").

It would have been obvious to one with ordinary skill in the art at the time of invention to include the NAK status message of Olson to Lamport's data network in responding to data not being received. The motivation is "reduced transmission of unneeded duplicate message packets." (Olson, col. 2, lines 27-28).

However, the combined system of Lamport and Olson lacks what Hsing discloses "initiating redirection of subsequent data messages away from said second and third switch via another data path through said data network (col. 14, lines 46-58 where clearly if there is a switch that has not necessarily failed but is in the failed path, that switch will be avoided)."

It would have been obvious to one of ordinary skill in the art at the time of invention to include the re-directing of data messages over an alternate data path as taught by Hsing from the NAK status message of the combined method of Lamport and Olson. The motivation being that by restoring the virtual connections is "to offering a wide degree of flexibility in terms of the degree of protection offered to individual users and/or applications preferably on a per connection or per session basis," (Hsing, col. 4, lines 1-4).

7. Claim 24 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lamport, Olson and Hsing as applied to claim 23 above, and further in view of McGill.

In regard to claim 24, Lamport, Olson and Hsing disclose the method of claim 23. However, Lamport, Olson and Hsing lack "said first data switch is a protection switch element." McGill however, discloses "said first data switch is a protection switch

element (figure 5, where the primary switch, SFO, is no longer able to transmit data, therefore the protection switch SF1 is activated and used as can be read in col. 6, lines 12-17)." It would have been obvious to one with ordinary skill in the art at the time of invention to include the protection path with the method of claims 1 and 11 for the purpose of having an alternate path should the primary path not transmit or fail. The motivation being increased reliability in data transmission.

Response to Arguments

8. **Claim objections on claims 7 and 11** are withdrawn since they are being amended accordingly.

9. Applicant's arguments filed 1 July 2005 have been considered but they are not persuasive.

Regarding claims 1-21, the applicant argues that Lamport and Hsing does not inhibit their keep alive (switch status) messages as required by the claimed invention (Remarks, p. 9, lines 4-7, 9-14, 17-19). The examiner respectfully disagrees.

The examiner understood that the invention of Lamport resending the original keep alive message several times upon not receiving an acknowledgement record (col. 37, lines 42-45). However, the examiner also understands and cites that Lamport inhibits generation of keep alive messages within a reasonable timeframe: "If acknowledgement is still not received,.. the link is declared to be DEAD.. A keep alive

Art Unit: 2661

message is not sent over links that are DEAD." (col. 37, lines 45-48, lines 54-57). Thus, the combined system of Lamport and Hsing disclose the argued claim limitations.

Applicant's arguments, with respect to **claims 22-24** have been considered but are moot in view of new ground(s) of rejection.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Warner Wong whose telephone number is 571-272-8197. The examiner can normally be reached on 6:00AM - 3:00PM, M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Chau Nguyen can be reached on 571-272-3126. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Warner Wong
Examiner
Art Unit 2661

WW

Chau T. Nguyen
CHAU NGUYEN
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2600