

Licences Mathématiques et Informatique 3ème année - Formation Initiale et par Apprentissage

Bases de données relationnelles Polycopié de cours - Calcul relationnel à Variable nuplet

Maude Manouvrier

La reproduction de ce document par tout moyen que ce soit est interdite conformément aux articles L111-1 et L122-4 du code de la propriété intellectuelle.

Table des matières

4 C	Calcul re	elationnel à variable nuplet
4.	.1 Défi	nition
	4.1.1	Prédicats
	4.1.2	2 Quantificateurs
	4.1.3	B Équivalence logique et expression saine
4.	.2 Exp	ression des opérateurs algébriques en calcul relationnel à variable nuplet
	4.2.1	Sélection
	4.2.2	Projection
	4.2.3	B Union
	4.2.4	Différence
	4.2.5	Produit cartésien
	4.2.6	Jointure
	4.2.7	7 Division
4.	.3 Con	traintes
4.	.4 Con	clusion et points à retenir

Chapitre 4

Calcul relationnel à variable nuplet

Le Calcul Relationnel est un langage non-procédural (déclaratif) : on décrit sous forme logique ce que l'on veut obtenir comme résultat de requête, mais pas comment on l'obtient (par quelles opérations), contrairement à l'Algèbre Relationnelle qui exprime comment on calcule le résultat de la requête (sous la forme d'opérations ensemblistes sur les nuplets).

En calcul relationnel à variable nuplet, on manipule des variables qui représentent des nuplets.

4.1 Définition

Une requête en calcul relationnel à variable nuplet s'exprime de la manière suivante :

$$\{t \mid P(t)\}$$

indiquant que la requête renvoie l'ensemble des nuplets t tels que le prédicats P(t) est vrai.

Ce langage se base sur la logique de prédicats avec comme hypothèses:

- Soit Tout ce qui est dans la base de données est vraie et tout ce qui n'est pas dans la base est faux.
- Soit Tout ce qui est dans la base de données est vraie. Pour le reste, on ne sait pas. Cette hypothèse est plus réaliste.

4.1.1 Prédicats

Les prédicats peuvent être de la forme :

- $r_1(t)$ ou $t \in r_1$ qui signifie que t est un nuplet de r_1 .
- $t.att_1 = valeur_1$ qui signifie que l'attribut att_1 du nuplet t a pour valeur $valeur_1$, sachant que l'on a précisé avant à quelle relation appartient t.
- $t_1.att_1 > t_2.att_2$ qui compare les attributs att_1 des nuplets t_1 et t_2 , en ayant précisé avant de quelles relations sont issus t_1 et t_2 .
- N'importe quelle combinaison des formules précédentes.

Par exemple, si on veut les étudiants habitant Paris et qui ont plus de deux années d'université:

$$\{t \mid Etudiant(t) \land (t.Ville = 'Paris') \land (t.NumAnnee \ge 2)\}$$

On indique ici que la requête contient l'ensemble des nuplets t de Etudiant tels que (t.Ville = 'Paris') et $(t.NumAnnee \ge 2)$.

On peut spécifier les attributs que l'on souhaite dans le résultats :

$$\{t.Nom, t.Prenom \mid Etudiant(t) \land (t.Ville = 'Paris') \land (t.NumAnnee \ge 2)\}$$

On indique ici que la requête contient l'ensemble des attributs Nom et Prenom des nuplets t de Etudiant tels que (t.Ville =' Paris') et $(t.NumAnnee \ge 2)$.

4.1.2 Quantificateurs

On peut utiliser les quantificateurs \forall et \exists .

• $\exists t \ (P(t))$ vraie signifie qu'il existe un nuplet t dans la base de données qui vérifie le prédicat P(t).

Par exemple si l'on veut les étudiants de même nom qu'un enseignant :

 $\{t.Nom, t.Prenom \mid Etudiant(t) \land (\exists s (Enseignant(s)) \land (s.Nom = t.Nom))\}$

On indique ici que la requête contient l'ensemble des nuplets t de Etudiant tels qu'il existe un nuplet s dans Enseignant avec mes mêmes valeurs que t sur les attributs Nom et Prenom.

• $\forall t \ (P(t))$ signifie que pour tous les nuplets de la base, P(t) est vrai avec P(t) de la forme $A(t) \Longrightarrow B(t)$.

Attention : la requête avec un \forall doit être bien formée.

Par exemple, la requête $\forall t \ (Etudiant(t) \land (t.Ville =' Paris'))$ n'est pas bien formée car elle signifie que tous les nuplets de la base de données sont des nuplets de Etudiant et sont tels que (t.Ville =' Paris').

En revanche, si la base de données ne contient dans la relation Etudiant que des nuplets correspondant à des étudiants parisiens, alors la requête suivante est bien formée :

 $\forall t \; Etudiant(t) \Longrightarrow (t.Ville =' Paris')$ car elle signifie que pour tous les nuplets de la base, s'il s'agit de nuplets de Etudiant alors ils vérifient (t.Ville =' Paris').

Une variable quantifiée (i.e. précédée d'un \exists ou d'un \forall) est dite **variable liée**, sinon il s'agit d'une **variable libre**.

4.1.3 Equivalence logique et expression saine

Pour rappel, en logique on a les équivalences suivantes :

- $P_1 \wedge P_2$ est équivalent à $\neg [\neg (P_1) \vee \neg (P_2)]$
- $\forall t \ P(t)$ est équivalent à $\neg(\exists t \ (\neg P(t)))$

Il faut faire attention car de telles expressions peuvent générer un nombre infini de nuplets et donc être non saines. Une expression saine en calcul relationnel à variable nuplet peut s'exprimer par une requête équivalente (i.e. donnant le même résultat) en algèbre relationnelle.

Par exemple, l'expression $\{t \mid (\neg Etudiant(t))\}$ n'est pas saine car cela signifie que l'on veut tous les nuplets qui n'appartiennent pas à la relation Etudiant.

4.2 Expression des opérateurs algébriques en calcul relationnel à variable nuplet

4.2.1 Sélection

 $\sigma_{\theta}(r)$ s'exprime en en calcul relationnel à variable nuplet par : $\{t \mid r(t) \land \theta(t)\}$ Par exemple, si on veut les étudiants habitant Paris et qui ont plus de deux années d'université :

$$\{t \mid Etudiant(t) \land (t.Ville = 'Paris') \land (t.NumAnnee \ge 2)\}$$

4.2.2 Projection

 $\Pi_{A_1,A_2,\dots,A_n}(r)$ s'exprime en en calcul relationnel à variable nuplet par :

$$\{t.A_1, t.A_2, ..., t.A_n \mid r(t)\}$$

Par exemple, si on veut les noms et prénoms des étudiants : $\{t.Nom, t.Prenom \mid Etudiant(t)\}$

4.2.3 Union

 $r_1 \cup r_2$ s'exprime en en calcul relationnel à variable nuplet par : $\{t \mid r_1(t) \lor r_2(t)\}$

Par exemple, si on veut les noms et prénoms des enseignants et des étudiants :

$$\{t.Nom, t.Prenom \mid Enseignant(t) \lor Etudiant(t) \}$$

4.2.4 Différence

 $R_1 - R_2$ s'exprime en en calcul relationnel à variable nuplet par :

$$\{t \mid r_1(t) \land \neg [\exists \ u \ s(u) \land (t.A_1 = u.B_1) \land \dots \land (t.A_n = u.B_n)]\}$$

avec r de schéma $R(A_1,...A_n)$ et s de schéma $S(B_1,...B_n)$, schéma-compatibles.

Par exemple, si on veut les noms et prénoms des enseignants qui ne sont pas étudiants :

$$\{t.Nom, t.Prenom \mid Enseignant(t) \land \neg \exists u \ Etudiant(u) \land (t.Nom = u.Nom) \land (t.Prenom = u.Prenom)\}\}$$

On veut dans le résultat de la requête les valeurs des attributs Nom et Prenom des nuplets t de Enseignant tels qu'il n'existe pas un nuplet u dans Etudiant avec les mêmes valeurs que t sur les attributs Nom et Prenom.

4.2.5 Produit cartésien

r * s, avec r de schéma R ayant pour attributs A_1 à A_n et s de schéma S ayant pour attributs B_1 à B_m , s'exprime en calcul relationnel à variable nuplet par :

$$\{t \mid \exists u, v \ r(u) \land s(v) \land (t.A_1 = u.A_1) \land \dots \land (t.A_n = u.A_n) \land (t.B_1 = v.B_1) \land \dots \land (t.B_m = v.B_m)\}$$

En effet, le nuplet t n'appartient à aucune instance de relation, mais est construit à partir d'un nuplet u de r et d'un nuplet v de s.

On peut également écrire la requête ainsi (ce qui sera plus proche de la requête que l'on écrira en SQL) :

$$\{u.A_1, ..., u.A_n, v.B_1, ..., v.B_m \mid r(u) \land s(v)\}$$

4.2.6 Jointure

 $r \bowtie s$, avec r de schéma R ayant pour attributs A_1 à A_n et C_1 à C_p et s de schéma S ayant pour attributs B_1 à B_m et C_1 à C_p , la jointure se faisant par exemple sur les attributs de même nom C_1 à C_p , s'exprime en calcul relationnel à variable nuplet par :

$$\{t \mid \exists \ u, v \ r(u) \land s(v) \land (t.A_1 = u.A_1) \land \dots \land (t.A_n = u.A_n) \land (t.B_1 = v.B_1) \land \dots \land (t.B_m = v.B_m) \land (u.C_1 = v.C_1) \land (t.C_1 = u.C_1) \land \dots \land (u.C_p = v.C_p) \land (t.C_p = u.C_p) \}$$

On peut également écrire la requête ainsi (ce qui sera plus proche de la requête que l'on écrira en SQL) :

$$\{u.A_1,...,u.A_n,u.C_1,...,u.C_p,v.B_1,...,v.B_m \mid r(u) \wedge s(v) \wedge (u.C_1 = v.C_1) \wedge (t.C_1 = u.C_1) \wedge ... \wedge (u.C_p = v.C_p) \wedge (t.C_p = u.C_p) \}$$

Par exemple si on veut les noms et prénoms et le nom du département de chaque enseignant :

$$\{t.Nom, t.Prenom, u.NomDepartement \mid Enseignant(t) \land Department(u) \land (t.DepartmentID = u.DepartmentID)]\}$$

On indique que le résultat de la requête contient les valeurs des attributs Nom et Prenom des nuplets t de Enseignant et les valeurs de l'attribut NomDepartement de nuplets u de Department tels que t et u aient la même valeur pour l'attribut DepartmentID.

4.2.7 Division

Expression en calcul en utilisant \forall et \Longrightarrow :

Soient deux relations r, de schéma R ayant pour attributs A_1 à A_n et C_1 à C_p , et s de schéma S ayant pour attributs C_1 à C_p . $r \div s$ signifie que l'on souhaite obtenir les morceaux de nuplets t de r (i.e. de schéma $A_1, ...A_n$) tels que pour tous les nuplets u de s, il existe un nuplet v, dans r, ayant même valeur que u pour les attributs C_1 à C_p et même valeur que t pour les attributs A_1 à A_n .

$$\{t \mid r(t) \land [\forall u \ s(u) \Longrightarrow (\exists v \ r(v) \land (u.C_1 = v.C_1) \land \dots \land (u.C_p = v.C_p) \land (t.A_1 = v.A_1) \land \dots \land (t.A_n = v.A_n)) \mid \}$$

Par exemple si on veut les noms et prénoms des enseignants qui interviennent dans les cours de tous les masters :

$$\{t.Nom, t.Prenom \mid Enseignant(t) \land [\forall u \ Master(u) \Longrightarrow (\exists v \ Cours(v) \land (t.EnseignantID = v.EnseignantID) \land (u.MasterID = v.MasterID)]\}$$

On indique que le résultat de la requête contient les valeurs des attributs Nom et Prenom des nuplets t de Enseignant tels pour tous les nuplets u, si c'est un nuplet de Master alors il existe un nuplet

v dans la relation Cours ayant la mêmes valeur que t sur l'attribut EnseignantID et la mêmes valeur que u sur l'attribut MasterID.

Expression en calcul en utilisant \forall , \vee et \neg :

En logique, l'expression $\forall t \ A(t) \Longrightarrow B(t)$ est équivalente à $\forall t \ \neg(A(t)) \lor B(t)$. En effet, $\forall t \ A(t) \Longrightarrow B(t)$ signifie que pour tous les nuplets t si A(t) est vérifié alors B(t) l'est aussi. $\forall t \ \neg(A(t)) \lor B(t)$ signifie que, pour tous les nuplets t, soit A(t) n'est pas vérifié, soit (donc implicitement A(t) est vérifié) B(t) est vérifié.

```
On peut donc écrire la division r \div s en calcul relationnel à variable nuplet de la manière suivante : \{t \mid r(t) \land [\forall u \neg (s(u)) \lor (\exists v \ r(v) \land (u.C_1 = v.C_1) \land \dots \land (u.C_p = v.C_p) \land (t.A_1 = v.A_1) \land \dots \land (t.A_n = v.A_n) )]\}
```

Par exemple si on veut les noms et prénoms des enseignants qui interviennent dans tous les masters :

```
 \{t.Nom, t.Prenom \mid Enseignant(t) \land [\forall u \neg (Master(u)) \lor (\exists v \ Cours(v) \land (t.EnseignantID) = v.EnseignantID) \land (u.MasterID = v.MasterID)] \}
```

On indique que le résultat de la requête contient les valeurs des attributs Nom et Prenom des nuplets t de Enseignant tels pour tous les nuplets u, soit ce n'est un nuplet de Master, soit (u est un nuplet de Master et) il existe un nuplet v dans la relation Cours ayant la mêmes valeur que t sur l'attribut EnseignantID et la mêmes valeur que u sur l'attribut MasterID.

4.3 Contraintes

Les contraintes d'intégrité de la base de données peuvent être exprimées en calcul relationnel à variable nuplet. Par exemple, supposons que nous ayons la base de données suivante :

```
Agence(nom_banque,ville ...)
Emprunt(nom_banque,num_client, montant ...)
Compte(nom_banque,num_client,num_compte,solde ...)
```

En calcul relationnel à variable nuplet, la contrainte "Chaque emprunteur possède un compte en banque dans l'agence dont le solde est au minimum égal à la moitié de son emprunt" s'exprime de la manière suivante :

```
\neg [\exists e \ Emprunt(e) \mid \neg (\exists c \ Compte(c) \land (c.num\_client = e.num\_client) \land (c.nom\_banque = e.nom\_banque) \land (c.solde >= (e.montant \land 2))]
```

Ce qui signifie qu'il n'est pas possible de trouver un nuplet e dans Emprunt (donc il n'existe pas de nuplet e dans Emprunt) pour lequel il n'existe pas de nuplet c dans Compte avec le même identifiant de banque et de client et un montant inférieur au solde.

4.4 Conclusion et points à retenir

- Au lieu de décrire comment réaliser la requête, le calcul relationnel décrit les nuplets de la relation résultat de la requête.
- Les variables du calcul à variable nuplet prennent leurs valeurs dans les nuplets des instances de la base de données.
- Toute requête en algèbre relationnelle peut être exprimée en calcul relationnel.