第二章历年期末试题

- **1**. (**2020** 年) 当 $x \to 0^+$ 时,若 $\ln^{\alpha}(1+2x)$, $(1-\cos x)^{\frac{1}{\alpha}}$, 均是比 x 高阶无穷小量,则 α 的取值范围是().
 - **(A)** $(2, +\infty)$ **(B)** (1,2)

- (C) $(\frac{1}{2}, 1)$ (D) $(0, \frac{1}{2})$
- 2. (2020年) 函数 $f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} e)}$ 在 $[-\pi, \pi]$ 上的第一类间断点是 x = ().
 - **(A)** 0
- $(\mathbf{C}) \frac{\pi}{2} \qquad \qquad (\mathbf{D}) \frac{\pi}{2}$
- 3. (2018年) 下列极限中, 极限不为 0 的是 ().
 - **(A)** $\lim_{x \to \infty} \frac{\arctan x}{x}$

(B) $\lim_{x \to \infty} \frac{2\sin x + 3\cos x}{x}$ **(D)** $\lim_{x \to 0} \frac{x^3}{x^5 + x^3}$

(C) $\lim_{x\to 0} x^2 \sin \frac{1}{x}$

- 4. (2017年) 下列运算正确的是 (
 - (A) $\lim_{x \to 0} \left(\sin x \cdot \cos \frac{1}{x} \right) = 0 \cdot \lim_{x \to 0} \cos \frac{1}{x} = 0$
 - **(B)** $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{x x}{x^3} = 0$
 - (C) $\lim_{x \to \infty} \frac{\sin x + 2}{x} = \lim_{x \to \infty} \frac{\sin x}{x} + \lim_{x \to \infty} \frac{2}{x} = 0$ (D) $\lim_{x \to \pi} \frac{\tan 3x}{\sin 5x} = \lim_{x \to \pi} \frac{3x}{5x} = \frac{3}{5}$
- 5. (2017年) 设函数 $f(x) = \frac{x \ln x^2}{|x-1|}$,则 f(x)有().
 - (A) 两个可去间断点

(B) 一个可去间断点, 一个跳跃间断

(C) 两个无穷间断点

- (D) 一个可去间断点,一个无穷间断点
- **6.** (2016年) 当 $x \to 0$ 时, $\sqrt{2+x^3} \sqrt{2}$ 与 x^2 比较是 ().
- (A) 高阶无穷小量 (B) 等价无穷小量 (C) 低阶无穷小量 (D) 同阶无穷小量

7 . (2015年) 函数 j	$f(x) = \frac{\sin(x-1)}{x^2 - 1}$ 的复	第二类间断点是 ().	
(A) $x = 1$	(B) $x = -1$	(C) $\frac{1}{2}$		(D) $-\frac{1}{2}$

8. (2014年) 函数
$$f(x) = \frac{x}{\cos x}$$
 的第一类间断点个数是 () (A) 0 (B) 1 (C) 2 (D) 3

9. (2013 年) 函数
$$f(x) = \frac{x}{\tan x}$$
 的第一类间断点是 (). (A) $x = 2\pi$ (B) $x = -\pi$ (C) $x = 0$ (D) $x = \pi$

10. (2012 年) 当 x → 0 时, x - sin x 是比 x² 的 ()
 (A) 低阶无穷小
 (B) 高阶无穷小
 (C) 等价无穷小
 (D) 同阶但非等价无穷小

11.
$$(2012 \, \text{#}) \lim_{x \to 1} \frac{\sin(1 - x^2)}{x - 1} = ($$
)

(A) $-\frac{1}{2}$ (B) 2 (C) -2 (D) $\frac{1}{2}$

12. (2012年) 下列函数在其定义域内连续的是()

(A)
$$f(x) = \frac{1}{x}$$
 (B)
$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

(C)
$$f(x) = \begin{cases} \frac{1}{|x|} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 (D) $f(x) = \begin{cases} \sin x & x \neq 0 \\ \cos x & x = 0 \end{cases}$

- **13**. (2011年) 若 $\lim_{x \to x_0} f(x) = a$, 则必有 ().
 - (A) f(x) 在点 x_0 的某一个去心领域内有定义;
 - (B) f(x) 仕点 x_0 处有定义;
 - (C) f(x) 在点 x_0 的任意一个去心领域内有定义;
 - **(D)** $a = f(x_0)$.

14. (2011 年) 函数 $f(x) = \frac{x}{\sin x}$ 的第一类间断点是 (). (A) $x = \frac{\pi}{2}$; (B) $x = -\pi$; (C) x = 0; (D) $x = \pi$.

15. (2017年) 设函数
$$f(x) = \begin{cases} (1 - \frac{3x}{2})^{\frac{1}{x}}, & x \neq 0 \\ A, & x = 0 \end{cases}$$
 在点 $x = 0$ 处连续,则 $A =$ _____.

16. (2015年) 当
$$x \to 0$$
 时, $1 - \cos kx$ 与 x^2 是等价无穷小量,则 $k =$ _____.

17. (2014年)设
$$f(x) = x \sin \frac{3}{x} + \frac{\sin x}{x}$$
,则 $\lim_{x \to \infty} f(x) =$ _____.

18.
$$(2014 \, \text{f}) \lim_{x \to 0} \frac{x}{e^x - e^{-x}} = \underline{\hspace{1cm}}.$$

19.
$$(2013 \, \text{#}) \lim_{x \to 0} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right) = \underline{\hspace{1cm}}$$

20. (2012年) 若
$$\lim_{x\to\infty} \left(\frac{x+1}{x-1}\right)^{kx} = 9$$
,则 $k =$ _____.

21. (2011 年)
$$\lim_{x \to \infty} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right)$$
等于_____.

22. (2013年) 求极限
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
.

23. (2011 年) 求极限
$$\lim_{n\to\infty} (1-\frac{1}{n})^{\sqrt{n}}$$
.