

CHAPTER 1: HOW TO SOUND LIKE A DATA SCIENTIST

- WHAT IS DATA SCIENCE?
- THE DATA SCIENCE VENN DIAGRAM
- PYTHON PRACTICES
- EXAMPLE OF BASIC PYTHON
- DOMAIN KNOWLEDGE
- SOME MORE TERMINOLOGY
- DATA SCIENCE CASE STUDIES

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

INTRODUCTION	WHAT & WHY	VENN	THE MATH	PYTHON	MORE	CASE STUDIES
INTRODUCTION	WIIAI & WIII	DIAGRAM	IIIEWAIII	PROGRAMMING	TERMINOLOGY	CASE STODIES

Introduction

- No matter which industry you work in, IT, fashion, food, or finance, there is no doubt that **data** affects your life and work.
- At some point every day, you will either have or hear a conversation about data.
- News outlets are covering more and more stories about data leaks, cybercrimes, and how data can give us a glimpse into our lives.
- But why now? What makes this era such a hotbed for data-related industries?

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

5

INTRODUCTION	WHAT & WHY	VENN	THE MATH	PYTHON	MORE	CASE STUDIES
INTRODUCTION	WHATAWHI	DIAGRAM	IHEMAIH	PROGRAMMING	TERMINOLOGY	CASE STUDIES

Introduction

- In the 19th century, the world was in the grip of the industrial age.
- By the **20th century**, we were quite skilled at making huge machines; the goal now was to make them smaller and faster. The industrial age was over and was replaced by what we refer to as the **information age**.
- This left us with a problem in the **21st century, so much data**; what we refer to as the **data age**.
 - About 1.8 trillion gigabytes of data in 2011 (take a moment to just think about how much that is).
 - Just one year later, in 2012, we created over 2.8 trillion gigabytes of data!
 - This number is only going to explode further to hit an estimated 40 trillion gigabytes of data creation in just one year by 2020.

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES
Intr	oduction	1				
		on Microsoft \		/ tweet, post on send their mom		
	consuming it phone user u	at an accelera	ted pace as w B of data a m	recedented rate vell. In 2013, the onth. Today, tha	e average cell	SO

BY DR. SALHA ALZAHRANI

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH			
The	book					
te vo	napter 1: will rminology an ocabulary of t ata scientist. Basic termino science The three dor science The basic Pytl	he modern logy of data mains of data	What is data scien Basic terminology Why data science Example – Sigma The data science of the math Example – spawner Computer prograt Why Python? Python practices Example of basic P Domain knowledg Some more termin Data science case Case study – aute Fire all humans, rigi Case study – mar	Technologies /enn diagram -recruit models mming ython je lology studies omating government paper		1 3 3 5 5 6 8 8 10 10 11 12 14 15 16 16 16 18 18 20 23
CH1: HOW TO SO	UND LIKE A DATA S	SCIENTIST	BY DE	R. SALHA ALZAHRANI		8

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

INTRODUCTION	WHAT & WHY	VENN	THE MATH	PYTHON	MORE	CASE STUDIES
INTRODUCTION	WHATAWHI	DIAGRAM	IHEMAIH	PROGRAMMING	TERMINOLOGY	CASE STUDIES

What is data?

- Whenever we use the word "data", we refer to a collection of information in either an organized or unorganized format:
 - Organized data: This refers to data that is sorted into a row/column structure, where every row represents a single observation, and the columns represent the characteristics of that observation.
 - Unorganized data: This is the type of data that is in the free form, usually texts, images, videos, or raw audio/signals that must be parsed further to become organized.

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

INTRODUCTION WHAT & WHY DIAGRAM THE MATH	PYTHON MORE PROGRAMMING TERMINOLOGY CASE STUDIES
--	--

What is data science?

- Data science is the art and science of acquiring knowledge through data.
- What a small definition for such a big topic, and rightfully so! Data science covers so many things that it would take pages to list it all out.
- Data science is all about how we take data, use it to acquire knowledge, and then use that knowledge to do the following:
 - Make decisions
 - Predict the future
 - Understand the past/present
 - Create new industries/products

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

11

INTRODUCTION	WHAT & WHY	VENN	THE MATH	PYTHON	MORE	CASE STUDIES
INTRODUCTION	WHATAWHI	DIAGRAM	THEMATH	PROGRAMMING	TERMINOLOGY	CASE STUDIES

Why data science?

- In this data age, it's clear that we have a surplus of data. **But why should** that necessitate an entire new set of vocabulary? What was wrong with our previous forms of analysis?
 - For one, the sheer volume of data makes it literally impossible for a human to parse it in a reasonable time.
 - Data is collected in various forms and from different sources, and often comes in very unorganized forms.
 - Data can be missing, incomplete, or just flat out wrong.
 - Often, we have data on very different scales and that makes it tough to compare.
 - One of the main goals of data science is to make explicit practices and procedures to discover and apply these relationships in the data.

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

INTRODUCTION	AATTO AATTO	VENN	THE MARTIN	PYTHON	MORE	CASE STUDIES
INTRODUCTION	WHAT & WHY	DIAGRAM	THE MATH	PROGRAMMING	TERMINOLOGY	CASE STUDIES

Example – Sigma Technologies

- Ben Runkle, CEO, Sigma Technologies, is trying to resolve a huge problem. The company is consistently losing long-time customers. He does not know why they are leaving, but he must do something fast. He is convinced that in order to reduce his churn, he must create new products and features, and consolidate existing technologies. To be safe, he calls in his chief data scientist, Dr. Jessie Hughan.
- However, she is not convinced that new products and features alone will save the company. Instead, she turns to the transcripts of recent customer service tickets. She shows Runkle the most recent transcripts and finds something surprising:
 - ".... Not sure how to export this; are you?"
 - "Where is the button that makes a new list?"
 - "Wait, do you even know where the slider is?"
 - "If I can't figure this out today, it's a real problem..."

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

13

INTRODUCTION	WHAT & WHY	VENN	THE MATH	PYTHON	MORE	CASE STUDIES
INTRODUCTION	WHATAWHI	DIAGRAM	IHEMAIH	PROGRAMMING	TERMINOLOGY	CASE STUDIES

Example - Sigma Technologies

- It is clear that customers were having problems with the existing UI/UX, and upset due to a lack of features. Runkle and Hughan <u>organized a mass UI/UX overhaul and their sales have never been better</u>. Of course, the science used in the last example was minimal, but it makes a point.
- We tend to call people like Runkle, a **driver**. Today, CEO wants to make all decisions quickly and iterate over solutions until something works. Dr. Hughan is much more **analytical**. She wants to solve the problem just as much as Runkle, but she turns to **user-generated data** instead of her gut feeling for answers.
- Data science is about applying the skills of the analytical mind and using them as a driver would.
 Both of these mentalities have their place in today's enterprises; however, it is Hughan's way of thinking that dominates the ideas of data science—using data generated by the company as her source of information rather than just picking up a solution and going with it.

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES
)	HE DATA		
CH1: HOW TO SOL	UND LIKE A DATA SO	CIENTIST	BY D	R. SALHA ALZAHRANI		15

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES
	e math					
•	and probability models. A data model reusually meant to Essentially, we see Between the the domain.	. We will use thes efers to an organia to simulate a real - will use math in ouree areas of data the theory allows	e subdomains o zed and formal r -world phenome order to formaliz science, math is	ded for data science f mathematics to contact the delationship between non. The relationships between the second that we built a contact that we built delations are second to the delationships between the delationships betwee	ereate what are case en elements of da ween variables . I move from dom	alled ata,
CH1: HOW TO SO	UND LIKE A DATA S	CIENTIST	BY DI	R. SALHA ALZAHRANI		18

NTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	'	THON PAMMING	MORE TERMINOLOGY	CASE STUDIE
Exai	mple – s	pawner-	recruit	mod	els		
			350				
spaw	ner-recruit model	, ,	300				
relati	onship between t l	pecies. It is a basic ne number of health			: :	•	
	ntal units of a spec units in the group	ies and the number of animals.	of sping 200			• • •	
• In a r	oublic dataset of th	ne number of salmo					
spaw	ners and recruits,	the graph was form					
		iship between the nere definitely is sor		,			
	of positive relation ses the other).	ship (as one goes u	0, 50	100	200 300 spawne		600
55 45	, , , , , , , , , , , , , , , , , , , ,			The	spawner-recruit mo	del visualized	

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES		
Example – spawner-recruit models								
	• But how can we formalize this relationship? For example, if we knew the number of spawners in a population, could we predict the number of recruits that group would obtain, and vice versa?							
	Essentially, models	allow us to plug in on	e variable to get the	other. Consider the fol	lowing example:			
		Re	ecruits = 0.5 * Spawners	+60				
	In this example, let's say we knew that a group of salmons had 1.15 (in thousands) of spawners. Then, we would have the following: $Recruits = 0.5 * 1.15 + 60$							
		Reci	vits = 60.575 (in thou					
	This result can be very beneficial to estimate how the health of a population is changing.							
If we can create these models, we can visually observe how the relationship between the two variables can change.								
CH1: HOW TO SOUND LIKE A DATA SCIENTIST BY DR. SALHA ALZAHRANI 20								

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES			
Computer programming									
 Computer languages are how we communicate with the machine and tell it to do our bidding. A computer speaks many languages and, like a book, can be written in many languages; 									
 similarly, data science can also be done in many languages. Python, Julia, and R are some of the many languages available to us. This book will focus exclusively on using Python. 									
CH1: HOW TO SO	UND LIKE A DATA S	CIENTIST	BY DI	R. SALHA ALZAHRANI		22			

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES	
Wh	y Pythor	า?					
•	Python is an ext	for a variety of re remely simple la vill make future e	nguage to read a	and write, even if y ingest and read.	ou've never code	d	
• It is one of the most common languages, both in production and in the academic setting (one of the fastest growing, as a matter of fact)							
	The language's online community is vast and friendly. This means that a quick Google search should yield multiple results of people who have faced and solved similar (if not						

• Python has prebuilt data science modules that both the novice and the veteran data scientist can utilize

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

exactly the same) situations.

BY DR. SALHA ALZAHRANI

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES
•	are not only po will be very con o pandas o sci-kit learr o seaborn o numpy/scip o requests (t	ably the biggest r werful, but also e nfortable with the	asy to pick up. Bese modules. Son the Web)	cus on Python. The y the end of the fi me of these modul	rst few chapters, y	
CH1: HOW TO SO	UND LIKE A DATA S	CIENTIST	BY DI	R. SALHA ALZAHRANI		24

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES
	hon pra	ctices variables that are	placeholders fo	r objects.		-,
	float (a decimal boolean (either o The statemen o The statemen string (text or w o "I love hambu o "Matt is awes o A Tweet is a st	t, Sunday is a weeken t, Friday is a weekend t, pi is exactly the rati ords made up of rgers" (by the way, w ome"	4159, 2.71, -0.3dd, is True d, is False io of a circle's circum characters) ho doesn't?)	4567 nference to its diameter	r, is True (crazy, right?)	

INTRODUCTION WHAT &	\ \A / A T \ \	VENN	THE MARTI	PYTHON	MORE	CASE STUDIES
	WHAI & WHY	DIAGRAM	THE MATH	PROGRAMMING	TERMINOLOGY	CASE STUDIES

Example of basic Python

- In Python, we use **spaces/tabs** to denote operations that belong to other lines of code.
- Note that the following list variable, my_list, can hold multiple types of objects. This one has an int, a float, boolean, and string inputs (in that order):
 - my_list = [1, 5.7, True, "apples"]
 - len(my list) == 4 # 4 objects in the list
 - my_list[0] == 1 # the first object
 - my_list[1] == 5.7 # the second object

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

BY DR. SALHA ALZAHRANI

6

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES
Dor	nain kno	wledge				
• [nalyst working or boking at worldwi Does that mean th lata scientists can	stock market data de adoption rates, at if you're not a do apply their skills to	, you have a lot of you might benefit octor, you can't wo o any area, even if	vorking on. For example domain knowledge. trom consulting an ork with medical data they aren't fluent in	If you are a journa expert in the field. Of course not! Grait. Data scientists c	ist
• <i>A</i> F Y ii	on big part of doma now you present y ou can predict the mpossible to exec	in knowledge is pre our findings. Your r e movement of the	esentation. Deper results are only as market with 99.9 ill go unused. Like	neir analysis is compl nding on your audien good as your vehicle 9% accuracy, but if y wise, if your vehicle	ce, it can greatly made of communication our program is	

BY DR. SALHA ALZAHRANI

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES
Some more terminology						

- Machine learning: refers to giving computers the ability to learn from data without explicit "rules" being given by a programmer. We have seen the concept of machine learning earlier in this chapter as the union of someone who has both coding and math skills. Here, we are attempting to formalize this definition. Machine learning combines the power of computers with intelligent learning algorithms in order to automate the discovery of relationships in data and create of powerful data models.
- Speaking of data models, we will concern ourselves with the following two basic types of data models:
 - Probabilistic model: refers to using probability to find a relationship between elements that includes a degree of randomness.
 - Statistical model: refers to taking advantage of statistical theorems to formalize relationships between data elements in a (usually) simple mathematical formula.

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

29

INTRODUCTION	WHAT & WHY	VENN DIAGRAM	THE MATH	PYTHON PROGRAMMING	MORE TERMINOLOGY	CASE STUDIES
Some more terminology						

- Exploratory data analysis (EDA) refers to preparing data in order to standardize results and gain quick insights. EDA is concerned with data visualization and preparation. This is where we turn unorganized data into organized data and also clean up missing/incorrect data points. During EDA, we will create many types of plots and use these plots to identify key features and relationships to exploit in our data models.
- Data mining is the process of finding relationships between elements of data. Data mining is the
 part of data science where we try to find relationships between variables (think spawn-recruit
 model).

CH1: HOW TO SOUND LIKE A DATA SCIENTIST

BY DR. SALHA ALZAHRANI

