Class 8: Breast Cancer Mini Project

James Garza (PID: A16300772)

Before we get stuck into project work we will have a quick look at applying PCA to some examole RNASeq data (tail end of lab 7)

Read the data (detailed in lab 7):

```
url2 <- "https://tinyurl.com/expression-CSV"</pre>
  rna.data <- read.csv(url2, row.names=1)</pre>
  head(rna.data)
       wt1 wt2 wt3 wt4 wt5 ko1 ko2 ko3 ko4 ko5
gene1 439 458
                408 429 420 90 88 86
                                         90 93
gene2 219 200
                204 210 187 427 423 434 433 426
gene3 1006 989 1030 1017 973 252 237 238 226 210
      783 792
                829 856 760 849 856 835 885 894
                204 244 225 277 305 272 270 279
      181 249
gene6
      460 502 491 491 493 612 594 577 618 638
    Q. How many genes are in this dataset?
  nrow(rna.data)
[1] 100
  ## Again we have to take the transpose of our data
  pca <- prcomp(t(rna.data), scale=TRUE)</pre>
```

Simple un polished plot of pc1 and pc2

plot(pca\$x[,1], pca\$x[,2], xlab="PC1", ylab="PC2")

summary(pca)

```
Importance of components:
```

```
PC2
                                         PC3
                                                 PC4
                                                         PC5
                          PC1
                                                                 PC6
                                                                         PC7
Standard deviation
                       9.6237 1.5198 1.05787 1.05203 0.88062 0.82545 0.80111
Proportion of Variance 0.9262 0.0231 0.01119 0.01107 0.00775 0.00681 0.00642
Cumulative Proportion 0.9262 0.9493 0.96045 0.97152 0.97928 0.98609 0.99251
                           PC8
                                   PC9
                                            PC10
Standard deviation
                       0.62065 0.60342 3.457e-15
Proportion of Variance 0.00385 0.00364 0.000e+00
Cumulative Proportion 0.99636 1.00000 1.000e+00
```

```
# WE have 5 wt and 5 ko samples
mycols <- c(rep("blue",5), rep("red", 5))
mycols</pre>
```

[1] "blue" "blue" "blue" "blue" "red" "red" "red" "red" "red" plot(pca\$x[,1], pca\$x[,2], xlab="PC1", ylab="PC2", col=mycols)

I could examine which genes contribute most to this first PC

pca\$rotation[,1]

gene1	gene2	gene3	gene4	gene5	gene6
-0.103666005	0.103514749	-0.103761385	0.075320862	0.087428334	0.099670829
gene7	gene8	gene9	gene10	gene11	gene12
0.103609009	0.100759370	-0.085460936	0.103783379	-0.103719665	-0.102001924
gene13	gene14	gene15	gene16	gene17	gene18
-0.103399591	0.102478762	0.099993193	0.103598474	-0.103013773	-0.103774699
gene19	gene20	gene21	gene22	gene23	gene24
-0.103390599	0.103121803	0.103787935	0.102725125	0.103681565	-0.098284250
gene25	gene26	gene27	gene28	gene29	gene30
-0.103302326	-0.085745836	-0.103374849	0.103638752	-0.102739689	0.103044435
gene31	gene32	gene33	gene34	gene35	gene36
-0.101768804	-0.100677376	0.103592988	0.103525731	0.102382706	0.103412422
gene37	gene38	gene39	gene40	gene41	gene42
0.100467583	0.102080752	-0.103744482	-0.102003831	0.103716818	-0.098746675
gene43	gene44	gene45	gene46	gene47	gene48
-0.092001819	-0.103504699	0.103840183	-0.096571619	0.103502386	0.103682769
gene49	gene50	gene51	gene52	gene53	gene54
-0.103188532	-0.103743341	-0.103265591	0.102519795	-0.103245619	-0.103584153

```
gene56
                                               gene58
                                                             gene59
      gene55
                                 gene57
                                                                          gene60
0.103695870 \ -0.103783479 \ -0.103703675 \ -0.103503980 \ -0.103607438 \ \ 0.103805515
      gene61
                   gene62
                                 gene63
                                               gene64
                                                             gene65
                                                                          gene66
-0.103308945 0.103713893
                           0.101468649 -0.078643996 -0.094219475
                                                                    0.103845454
                   gene68
                                 gene69
                                               gene70
                                                            gene71
                                                                          gene72
      gene67
0.103453646 0.103839510 0.048197107 -0.101365212
                                                      0.095664760
                                                                    0.102347342
                                 gene75
                                                            gene77
      gene73
                   gene74
                                               gene76
                                                                          gene78
0.102001050 \quad 0.101747637 \quad -0.103592371 \quad 0.103514464 \quad -0.097473626 \quad -0.100499426
      gene79
                   gene80
                                 gene81
                                               gene82
                                                             gene83
                                                                          gene84
-0.103639415 -0.093476477 -0.100659777 -0.103481127
                                                       0.066065263 -0.009263882
                    gene86
                                 gene87
                                               gene88
                                                             gene89
                                                                          gene90
0.103698370 -0.102122719 -0.103448562 0.098226585
                                                       0.100038548
                                                                     0.103777744
      gene91
                   gene92
                                 gene93
                                               gene94
                                                             gene95
                                                                          gene96
-0.103698408
              0.092534408
                            0.102950950 -0.102692869
                                                       0.102142492 -0.096658194
      gene97
                    gene98
                                 gene99
                                              gene100
0.100787961 0.103837190 0.103649598 0.103870820
  head(sort(abs(pca$rotation[,1]), decreasing = T))
 gene100
             gene66
                        gene45
                                  gene68
                                             gene98
0.1038708 0.1038455 0.1038402 0.1038395 0.1038372 0.1038055
```

Analkysis of Breast Cancer FNA (fine needle aspirations) data.

```
[556] B B B B B B B M M M M M M B
```

Levels: B M

Now I want to make sure I remove that column from my dataset for analysis

```
# We can use -1 here to remove the first column
wisc.data <- wisc.df[,-1]
head(wisc.data)
```

	radius_mean to	exture_mean	perimet	er_mean	area_mean	smooth	ness_mean
842302	17.99	10.38		122.80	1001.0		0.11840
842517	20.57	17.77		132.90	1326.0		0.08474
84300903	19.69	21.25		130.00	1203.0		0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0		0.10030
843786	12.45	15.70		82.57	477.1		0.12780
	compactness_m	ean concavit	ty_mean	concave.	points_me	an symme	etry_mean
842302	0.27	760	0.3001		0.147	10	0.2419
842517	0.078	864	0.0869		0.070	17	0.1812
84300903	0.15	990	0.1974		0.127	90	0.2069
84348301	0.28	390	0.2414		0.105	20	0.2597
84358402	0.13	280	0.1980		0.104	30	0.1809
843786	0.17	000	0.1578		0.080	89	0.2087
	fractal_dimen	sion_mean ra	adius_se	texture	_se perim	eter_se	area_se
842302		0.07871	1.0950	0.9	9053	8.589	153.40
842517		0.05667	0.5435	0.7	'339	3.398	74.08
84300903		0.05999	0.7456	0.7	'869	4.585	94.03
84348301		0.09744	0.4956	1.1	.560	3.445	27.23
84358402		0.05883	0.7572	0.7	'813	5.438	94.44

843786		0.07613 0.	3345	0.8902	2.2	17 27.19
	${\tt smoothness_se}$	compactness_se	concavit	ty_se con	cave.poin	ts_se
842302	0.006399	0.04904	0.0	05373	0.0	01587
842517	0.005225	0.01308	0.0	01860	0.0	01340
84300903	0.006150	0.04006	0.0	03832	0.0	02058
84348301	0.009110	0.07458	0.0	05661	0.0	01867
84358402	0.011490	0.02461	0.0	05688	0.0	01885
843786	0.007510	0.03345	0.0	03672	0.0	01137
	symmetry_se fr	_	_	ius_worst	texture_	worst
842302	0.03003	0.00	6193	25.38	3	17.33
842517	0.01389	0.00	3532	24.99)	23.41
84300903	0.02250	0.00)4571	23.57	· :	25.53
84348301	0.05963	0.00	9208	14.91	. :	26.50
84358402	0.01756	0.00)5115	22.54	:	16.67
843786	0.02165	0.00	5082	15.47	· :	23.75
	perimeter_wors	t area_worst s	moothness	s_worst c	compactness	s_worst
842302	184.6	0 2019.0		0.1622		0.6656
842517	158.8	0 1956.0		0.1238		0.1866
84300903	152.5	0 1709.0		0.1444		0.4245
84348301	98.8	7 567.7		0.2098		0.8663
84358402	152.2	0 1575.0		0.1374		0.2050
843786	103.4	0 741.6		0.1791		0.5249
	concavity_wors	t concave.poir	nts_worst	symmetry	_worst	
842302	0.711	9	0.2654		0.4601	
842517	0.241	6	0.1860		0.2750	
84300903	0.450	4	0.2430		0.3613	
84348301	0.686	9	0.2575		0.6638	
84358402	0.400	0	0.1625		0.2364	
843786	0.535	5	0.1741		0.3985	
	fractal_dimens	ion_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

Q1. How many observations are in this dataset?

nrow(wisc.data)

[1] 569

There are 569 patients in this dataset

```
length(wisc.data)
```

[1] 30

There are 30 columns they are looking at.

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

B M 357 212

There are 212 malignant individuals

Q3. How many variables/features in the data are suffixed with _mean?

colnames(wisc.data)

```
[1] "radius_mean"
                                "texture_mean"
 [3] "perimeter_mean"
                                "area_mean"
 [5] "smoothness_mean"
                                "compactness_mean"
 [7] "concavity_mean"
                                "concave.points_mean"
 [9] "symmetry_mean"
                                "fractal_dimension_mean"
[11] "radius_se"
                                "texture_se"
[13] "perimeter_se"
                                "area_se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
[21] "radius_worst"
                                "texture_worst"
[23] "perimeter_worst"
                                "area_worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
                                "fractal_dimension_worst"
[29] "symmetry_worst"
```

```
length(grep("_mean", colnames(wisc.data)))
```

There are 10 columns with the name "_mean" in them.

Principla Component Analysis (PCA)

Here we will use prcomp() on the wisc.data object - the one without the diagnosis column.

First we have to decide whether to use the scale=TRUE argument when we run prcomp(). We can look at the means and sd of each column. If they are similar then we are all good to go. IOf not we should use scale=TRUE.

Check column means and standard deviations
colMeans(wisc.data)

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	smoothness_mean	compactness_mean
6.548891e+02	9.636028e-02	1.043410e-01
concavity_mean	concave.points_mean	symmetry_mean
8.879932e-02	4.891915e-02	1.811619e-01
fractal_dimension_mean	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
smoothness_worst	compactness_worst	concavity_worst
1.323686e-01	2.542650e-01	2.721885e-01
<pre>concave.points_worst</pre>	symmetry_worst	${\tt fractal_dimension_worst}$
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

radius_mean	texture_mean	perimeter_mean
3.524049e+00	4.301036e+00	2.429898e+01

compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	fractal_dimension_mean
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	fractal_dimension_se	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst
5.693570e+02	3.360254e+01	6.146258e+00
concavity_worst	${\tt compactness_worst}$	smoothness_worst
2.086243e-01	1.573365e-01	2.283243e-02
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
1.806127e-02	6.186747e-02	6.573234e-02

These are very different so we should scale=TRUE.

```
# Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                                                PC11
                           PC8
                                  PC9
                                         PC10
                                                         PC12
                                                                 PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                                                   PC20
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                         PC24
                                                 PC25
                                                         PC26
                          PC22
                                  PC23
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
```

PC29 PC30

Standard deviation 0.02736 0.01153 Proportion of Variance 0.00002 0.00000 Cumulative Proportion 1.00000 1.00000

- Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?
- 44.27% is captured by the first PC
 - Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?
- 3 PCs are needed to get 70% of the variance
 - Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?
- 7 PCs are needed to get 90% of the variance
 - Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

What stands out to me is that it is very difficult to understand because it is designed for small datasets and ours is too big.

biplot(wisc.pr)

We need to make our own plot.

```
wisc.pr$x[, 1]
```

```
library(ggplot2)

pc <- as.data.frame(wisc.pr$x)

ggplot(pc) +
   aes(PC1, PC2, col=diagnosis)+
   geom_point()</pre>
```


Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

There are still two clear groupins between the benign and malignant samples between PC1 and PC3.

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean",1]
```

[1] -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
tbl <- summary(wisc.pr)
which(tbl$importance[3,] > 0.8)[1]
```

PC5

5

5 PCs are needed to explain 80% of the variation in the dataset

Hierarchical clustering

The main function for Hierarchical clustering is called hclust(). It takes a distance matrix as inpiut.

```
d <- dist( scale(wisc.data))
wisc.hclust <- hclust(d)
plot(wisc.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "complete")

```
plot(wisc.hclust)
abline(h=20, col="purple")
```

Cluster Dendrogram

d hclust (*, "complete")

```
grps <- cutree(wisc.hclust, h=20)
table(grps)</pre>
```

grps 1 2 3 4 177 7 383 2

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

At height 20 there are 4 clusters.

Come back here later to see how our cluster grps correspond to M or B groups.

```
table(grps)
```

grps 1 2 3 4 177 7 383 2

Combining Methods

Here we will perform Clustering PCA Results rather than the original data.

In other words we will cluster using wisc.pr\$x - our new better variables or PCs. We can choose as many or as few PCs to use as we like. It is your call!

```
d.pc <- dist (wisc.pr$x[,1:3] )
wisc.pr.hclust <- hclust(d.pc, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d.pc hclust (*, "ward.D2")

```
plot(wisc.pr.hclust)
abline(h=80, col="red")
```

Cluster Dendrogram

d.pc hclust (*, "ward.D2")

```
grps <- cutree(wisc.pr.hclust, h=80)
table(grps)</pre>
```

grps 1 2 203 366

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

We can use table() function to make a cross-table as well as just a count table.

```
table(diagnosis)
```

diagnosis B M 357 212

```
table(grps, diagnosis)

diagnosis
grps B M
1 24 179
2 333 33
```

Write a note here about how to read this cross-table result. The results indicate that our cluster 1 mostly captures cancer (M) and our cluster 2 mostly captures our healthy (B) from samples/individuals.

7. Prediction

```
#url <- "new_samples.csv"</pre>
  url <- "https://tinyurl.com/new-samples-CSV"</pre>
  new <- read.csv(url)</pre>
  npc <- predict(wisc.pr, newdata=new)</pre>
  npc
           PC1
                     PC2
                                 PC3
                                            PC4
                                                       PC5
                                                                  PC6
                                                                              PC7
     2.576616 -3.135913
                          1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                       0.8193031
            PC8
                      PC9
                                 PC10
                                           PC11
                                                      PC12
                                                                PC13
                                                                          PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                  PC17
                                              PC18
                                                           PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549
                                                    0.25591230 -0.4289500
           PC21
                      PC22
                                  PC23
                                             PC24
                                                          PC25
[1,] 0.1228233 0.09358453 0.08347651 0.1223396
                                                   0.02124121
                                                               0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
             PC27
                         PC28
                                       PC29
                                                     PC30
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
And plot this up
  plot(wisc.pr$x[,1:2], col=grps)
  points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
```


Q18. Which of these new patients should we prioritize for follow up based on your results?

We should follow up with patients that are benign but are near cluster 1 because that indicates that they would be best suited for follow ups because they are have similar data to those with malignancy which suggests that they deserve a second look at their respective cancer cases.