De la combinatoire aux graphes (HLIN201) – L1 Graphes I : définitions de bases

Sèverine Bérard

Université de Montpellier

2e semestre 2017-18

Graphes I : définitions de bases

- Introduction
- Définitions et notations de base
 - Version orientée
 - Version non orientée
- Graphes associés à un graphe
 - Version orientée
 - Version non orientée
- Isomorphismes de graphes
 - Version orientée
 - Version non orientée

Prédateur proie

Plan des pistes cyclables

Graphe orienté « Plan des pistes cyclables »

Graphe non orienté « Plan des pistes cyclables »

Source

Puit

FIGURE – Un graphe $G_1 = (X, U)$ orienté

- X les sommets, U les arcs.
- L'ordre (nb sommets) n = |X|,
- Le nb d'arcs m = |U|.
- Origine, extrémité d'un arc.
- Boucle.
- Ensemble Succ(x), Pred(x).
- Sommet isolé, source, puits.
- Arcs entrants, sortants. Demi degrés, degré.

$$m = \sum_{x \in X} d^{-}(x)$$
$$m = \sum_{x \in X} d^{+}(x)$$
$$2m = \sum_{x \in X} d(x)$$

Définitions alternatives d'un graphe orienté

FIGURE – Un graphe $G_1 = (X, U)$ orienté

 G_1 est défini alternativement par la donnée de $X = \{1, 2, ..., 10\}$ et celle de **Succ**: $X \longrightarrow \mathcal{P}(X)$ telle que :

- $Succ(1) = \{3\}$
- $Succ(2) = \{1, 3, 4, 5\}$
- $Succ(3) = \{2, 5\}$
- ...
- $Succ(5) = \{4, 5\}$
- $Succ(6) = \{6\}$
- $Succ(7) = \emptyset$
- ..

On a la définition analogue avec la fonction *Pred*.

Définition alternative d'un graphe orienté

G₁ est défini alternativement par la donnée de $X = \{1, 2, ..., 10\}$ et celle della matriceld'adjatentes: 9 10

Graphe et relation binaire

Un graphe orienté est exactement le graphe d'une relation binaire.

Il peut donc avoir les caractérisations usuelles :

- réflexif
- symétrique
- antisymétrique
- transitif

5, 4, 2 et 3 sont les voisins à distance 1 de 5

5 et 4 sont voisins à distance 2 de 1 8 est son propore voisin en 3

FIGURE – Un graphe $G_2 = (X, E)$ non orienté

- X les sommets, E les arêtes.
- l'ordre n, m = |E|.
- Les extrémités d'une arête.
- Boucle.
- Ensemble Voisins(x).
- Sommet isolé.
- Degré d'un sommet. Attention aux boucles.

$$2m = \sum_{x \in X} d(x)$$

Définitions alternatives d'un graphe non orienté

FIGURE – Un graphe $G_2 = (X, E)$ non orienté

 G_2 est défini alternativement par la donnée de $X = \{1, 2, ..., 10\}$ et celle de **Voisins :** $X \longrightarrow \mathcal{P}(X)$ telle que :

- $Voisins(1) = \{2,3\}$
- $Voisins(2) = \{1, 3, 4, 5\}$
- $Voisins(3) = \{1, 2, 5\}$
- ...
- $Voisins(5) = \{2, 3, 4, 5\}$
- $Voisins(6) = \{6\}$
- Voisins(7) = ∅
- ...

Définition alternative d'un graphe non orienté

FIGURE – Un graphe $G_2 = (X, E)$ non orienté

 G_1 est défini alternativement par la donnée de $X = \{1, 2, ..., 10\}$ et celle de la *matrice d'adjacence* symétrique A:

Sous-graphe d'un graphe orienté

Un graphe orienté G = (X, U)

On enlève quelques arrêtes et quelques sommets

 $G_1 = (X_1, U_1)$ est **un** sous-graphe de G s'il vérifie :

$$X_1 \subseteq X$$
 et $U_1 \subseteq U \cap (X_1 \times X_1)$

 U_1 est un sous-ensemble de U tel que l'origine et l'extrémité de chaque arc de U_1 sont dans X_1 .

Sous-graphe induit par une partie des sommets d'un graphe orienté

Un graphe orienté G = (X, U)

On enlève des sommets et leurs arrêtes associés uniquement

 $X_2 \subseteq X$. $G_2 = (X_2, U_2)$ est **le** sousgraphe de *G* induit par X_2 si :

$$U_2 = \{(x, y) \in U \mid x \in X_2 \text{ et } y \in X_2\}$$

En d'autres termes, $U_2 = U \cap (X_2 \times X_2)$

 G_2 est entièrement défini par G et X_2 . On le note $G_2 = G(X_2)$.

Sous-graphe couvrant un graphe orienté

Un graphe orienté G = (X, U)

On enlève uniquement des arrêtes

 $G_3 = (X, U_3)$ est **un** sous-graphe couvrant G.

Il a le même ensemble de sommets que G, et c'est un sous-graphe de G.

En conclusion, mêmes sommets, certains arcs.

Graphe non orienté sous-jacent à un graphe orienté

Un graphe orienté G = (X, U)

La notion de graphe non orienté sous-jacent à un graphe orienté consiste à supprimer l'orientation des arcs pour définir les arêtes.

Sous-graphe d'un graphe non orienté

Un graphe non orienté H = (X, E) $H_1 = (X_1, E_1)$ est **un** sous-graphe de H s'il vérifie :

$$X_1 \subseteq X$$
 et $E_1 \subseteq E \cap \mathcal{P}(X_1)$

 E_1 est un sous-ensemble de E tel que les extrêmités de chaque arête de E_1 sont dans X_1 .

Sous-graphe induit par une partie des sommets d'un graphe non orienté

Un graphe orienté H = (X, E)

 $X_2 \subseteq X$. $H_2 = (X_2, E_2)$ est **le** sousgraphe de H induit par X_2 si :

$$E_2 = \{ \{x, y\} \in E \mid x \in X_2 \text{ et } y \in X_2 \}$$

En d'autres termes $E_2 = E \cap \mathcal{P}(X_2)$

 H_2 est entièrement défini par H et X_2 . On le note $H_2 = H(X_2)$.

Sous-graphe couvrant un graphe non orienté

certaines arêtes.

Isomorphismes de graphes orientés

Définition

G = (X, U) et H = (Y, V) sont isomorphes si et seulement s'il existe une bijection $f: X \longrightarrow Y$ conservant les arcs

Isomorphismes de graphes non orientés

Définition

G = (X, E) et H = (Y, F) sont isomorphes si et seulement s'il existe une bijection $f: X \longrightarrow Y$ conservant les arêtes

Isomorphe

Non isomorphe, on le voit directement car ils n'ont même pas le même nombre de liaison