

图 1

三、解答题: 共70分,第 $17\sim21$ 题为必考题,第 $22\sim23$ 题为选考题,考生根据要求作答。

(一) 必考题: 共 60 分。

17. (12分)

如图,长方体 $ABCD-A_1B_1C_1D_1$ 的底面是正方形,点 E 在棱 AA_1 上, $BE \perp EC_1$.

- (1) 证明: $BE \perp$ 平面 EB_1C_1 ;
- (2) 若 $AE = A_1E$, AB = 3, 求四棱锥 $E-BB_1C_1C$ 的体积.

18. (12分)

已知 $\{a_n\}$ 是各项均为正数的等比数列, $a_1 = 2$, $a_3 = 2a_2 + 16$.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \log_2 a_n$, 求数列 $\{b_n\}$ 的前 n 项和.

19. (12分)

某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业第一季度相对于前一年第一季度产值增长率 *y* 的频数分布表.

y 的分组	[-0.20, 0)	[0, 0.20)	[0.20, 0.40)	[0.40, 0.60)	[0.60, 0.80)
企业数	2	24	53	14	7

- (1) 分别估计这类企业中产值增长率不低于 40% 的企业比例、产值负增长的企业比例;
- (2) 求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用改组区间的中点值为代表). (精确到 0.01)

附: $\sqrt{74} \approx 8.602$.

20. (12分)

已知点 F_1 , F_2 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的两个焦点,P 为 C 上的点,O 为坐标原点.

- (1) 若 $\triangle POF_2$ 为等边三角形, 求 C 的离心率;
- (2) 过如果存在点 P,使得 $PF_1 \perp PF_2$,且 $\triangle F_1 PF_2$ 的面积等于 16,求 b 的值和 a 的取值范 用.

21. (12分)

已知函数 $f(x) = (x-1) \ln x - x - 1$. 证明:

- (1) f(x) 存在唯一的极值点;
- (2) f(x) = 0 有且仅有两个实根,且两个实根互为倒数.

(二)选考题: 共 10 分。请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分。

22. [选修 4-4: 坐标系与参数方程] (10 分)

在极坐标系中,O 为极点,点 $M(\rho_0,\theta_0)(\rho_0>0)$ 在曲线 $C:\rho=4\sin\theta$ 上,直线 l 过点 A(4,0) 且与 OM 垂直,垂足为 P.

- (1) 当 $\theta_0 = \frac{\pi}{3}$ 时,求 ρ_0 及 l 的极坐标方程;
- (2) 当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.

23. [选修 4-5: 不等式选讲] (10 分)

己知 f(x) = |x - a|x + |x - 2|(x - a).

(1) 当 a = 1 时, 求不等式 f(x) < 0 的解集;