# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Сибирский государственный университет телекоммуникаций и информатики»

## Электронный конспект лекций по дисциплине «Вычислительная математика»

факультет: ИВТ группа: ИП-511

студент: Долгополова В.В. преподаватель: Рубан А.А.

Котлярова В.Б.

## Тема 1: Основные понятия курса

## П.1 Характеристики алгоритмов:

- Погрешность
- Трудоемкость
- Требование памяти

## П.2 Абсолютная и относительная погрешности:

 $\chi$  - приближенное значение некоторой величины

 $\chi_0$  - точное

$$\Delta x = \left| x - x_0 \right|$$
 - абсолютная погрешность

$$\delta x = \frac{\Delta x}{\left|x_0\right|} = \frac{\Delta x}{x_0}$$
 - относительная погрешность (должна быть <<1)

## П.3 Изменение абсолютной и относительной погрешностей при арифметических операциях:

## **Теорема 1.1:**

При сложении и вычитании приближенных величин абсолютные погрешности складываются (абсолютная погрешность суммы (разницы) не превосходит суммы абсолютных погрешностей).

## Доказательство:

$$x = x_0 + \Delta x$$

$$y = y_0 + \Delta y$$

$$x + y = (x_0 + y_0) \pm (\Delta x + \Delta y)$$
приближенное значение значение суммы суммы

абсолютная погрешность суммы

#### *Теорема 1.2:*

При перемножении (делении) приближенных величин относительные погрешности складываются (т.е. относительная погрешность произведения (частного) не превышает суммы относительных погрешностей).

## Доказательство:

$$x = x_0 + \Delta x = x_0 (1 \pm \frac{\Delta x}{x}) = x_0 (1 \pm \delta x)$$

$$x = x_0 (1 \pm \delta x)$$

$$y = y_0 (1 \pm \delta y)$$

$$x \cdot y = x_0 \cdot y_0 (1 \pm \delta x \pm \delta y \pm \delta x \delta y)$$

Деление – доказать самостоятельно

$$\frac{x}{y} = \frac{x_0}{y_0} \left( \frac{1 \pm \delta x}{1 \pm \delta y} \right)$$

## П.4 Изменение погрешности при вычислении функции:

## <u>Теорема 1.3:</u>

$$f(x) = f(x_0 \pm \Delta x) = f(x_0) \pm f'(x_0) \Delta x$$

При вычислении функции абсолютная погрешность умножается на  $|f'(x_0)|$ 

#### Следствие 1.4:

При вычислении степенной функции (  $f(x) = x^{\alpha}$  ) относительная погрешность умножается в  $|\alpha|$  раз.

<u>Доказательство:</u>

$$f(x) = x^{\alpha}$$

$$f'(x) = \alpha \cdot x^{\alpha - 1}$$

$$f(x) = f(x_0) \pm \alpha \cdot x^{\alpha - 1} \Delta x = x_0^{\alpha} (1 \pm \alpha \frac{\Delta x}{x_0})$$

#### Следствие 1.5:

При вычислении экспоненты

$$f(x) = e^{x}$$

$$f'(x) = e^{x}$$

$$f(x) = f(x_0) \pm f'(x_0) \Delta x = e^{x_0} \pm e^{x_0} \Delta x = e^{x_0} (1 \pm \Delta x)$$

относительная погрешность результата равна абсолютной погрешности аргумента.

## Замечание 1.6:

Если многократно суммировать приближенные величины одного порядка, то абсолютная погрешность будет увеличиваться не в n paз, а в  $\sqrt{n}$  paз (так как количество "+" и "-" примерно равно (n слагаемых)).

#### П.5 Источники погрешности:

- ❖ Исходные данные
- Округление чисел при машинном вычислении
- Погрешность вычислительных методов

## Тема 2: Методы решения СЛАУ

#### П.1 Точные и приближенные методы решения СЛАУ:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = b_k \end{cases}$$

В дальнейшем будем считать n=k

$$\mathbf{A}\mathbf{x}=\mathbf{b} \qquad \qquad \mathbf{A}= \begin{pmatrix} \mathbf{a}_{11} & \dots & \mathbf{a}_{1\mathbf{n}} \\ \dots & \dots & \dots \\ \mathbf{a}_{\mathbf{k}1} & \dots & \mathbf{a}_{\mathbf{k}\mathbf{n}} \end{pmatrix} \quad , \qquad \mathbf{b}= \begin{pmatrix} b_1 \\ \dots \\ b_k \end{pmatrix}$$

## Методы решения СЛАУ делятся на 2 группы: точные и приближенные

- о Точные (т.е. методы, которые дают точное решение за конечное число шагов при условии, что все действия выполняются абсолютно точно).
- Приближенные (итерационные)
   При применении этих методов точное решение никогда не будет получено, оно является пределом последовательности приближенных решений.

Точные методы: метод Гаусса, метод Крамера, метод обратной матрицы,... Приближенные методы: метод простых итераций, метод Зейделя,...

## 1. Метод Гаусса:

Основная идея: привести исходную матрицу А к треугольному виду с помощью элементарных преобразований строк, после чего СЛАУ легко решается.

Метод состоит из двух частей:

1-ая часть – прямой ход: приведение матрицы к треугольному виду.

2-ая часть – обратный ход: решение СЛАУ с треугольной матрицей.

## Прямой ход:

......

3) 
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_1 \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} & b_2 \\ 0 & 0 & a_{33} & \cdots & a_{3n} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & b_{n-1} \\ 0 & 0 & \cdots & 0 & a_{nn} & b_n \end{pmatrix}$$

$$x_{n} = \frac{b_{n}}{a_{nn}}$$

$$x_{n-1} = \frac{b_{n-1} - a_{(n-1)n} x_{n}}{a_{(n-1)(n-1)}}$$

. . . . . . . .

#### Нюансы метода Гаусса:

Если ведущий элемент (на диагонали) на каком либо этапе обратного хода равен нулю — переставим строки (строки смотрим ниже диагонали) так, чтобы ведущий элемент не был равен нулю. Если это невозможно, т.е. в j-ом столбце все строки с j -ой и вниз нулевые, тогда матрица A вырожденная.

## 2. Модификация метода Гаусса:

Метод Гаусса с выбором ведущего элемента.

Единственное отличие модифицированного метода Гаусса от обычного состоит в том, что на каждом этапе прямого хода на место ведущего элемента ставим максимальный по модулю среди возможных, то есть среди элементов столбца, который находится не выше главной диагонали.

## Пример решения СЛАУ модифицированным методом Гаусса:

Необходимо поменять строки местами таким образом, чтобы ведущим элементом был максимальный по модулю среди элементов данного столбца ниже главной диагонали.

В данном примере вторую строку нужно поставить на место первой.

$$\begin{pmatrix} -2 & 1 & -3 & -8 \\ 3 & 1 & -6 & -9 \\ 1 & -1 & 2 & 5 \end{pmatrix}$$

После перестановки строк имеем:

$$\begin{pmatrix} 3 & 1 & -6 & | & -9 \\ 1 & -1 & 2 & | & 5 \\ -2 & 1 & -3 & | & -8 \end{pmatrix} (2) - \frac{1}{3}(1) = \begin{pmatrix} 3 & 1 & -6 & | & -9 \\ 0 & -\frac{4}{3} & 4 & | & 8 \\ 0 & 5/3 & -7 & | & -14 \end{pmatrix} (3) + \frac{5}{4}(2)$$
$$= \begin{pmatrix} 3 & 1 & -6 & | & -9 \\ 0 & -\frac{4}{3} & 4 & | & 8 \\ 0 & 0 & -2 & | & -4 \end{pmatrix}$$

$$\begin{cases} -2x_3 = -4 \\ \frac{-4}{3}x_2 + 4x_3 = 8 \\ 3x_1 + x_2 - 6x_3 = -9 \end{cases} = \begin{cases} x_3 = 2 \\ \frac{-4}{3}x_2 + 8 = 8 \\ 3x_1 + x_2 - 12 = -9 \end{cases} = \begin{cases} x_3 = 2 \\ \frac{-4}{3}x_2 = 0 \\ 3x_1 + x_2 - 12 = -9 \end{cases} = \begin{cases} x_3 = 2 \\ x_2 = 0 \\ 3x_1 + 0 - 12 = -9 \end{cases} = \begin{cases} x_3 = 2 \\ x_2 = 0 \\ 3x_1 = 3 \end{cases} = \begin{cases} x_3 = 2 \\ x_2 = 0 \\ x_1 = 1 \end{cases}$$

Otbet: 
$$\begin{cases} x_3 = 2 \\ x_2 = 0 \\ x_1 = 1 \end{cases}$$

Замечания: метод Гаусса с выбором ведущего элемента работает лучше (точнее) чем обычный метод Гаусса (т.е. его точность выше). Погрешности при реализации метода Гаусса возникают при машинном округлении чисел, модифицированный метод Гаусса позволяет решать с той же точностью.

## 3. Трудоемкость метода Гаусса:

Прямой ход: три вложенных цикла

j от 1 до n-1 - по столбцу

i от j+1 до n - по строке

k от j+1 до n+1

Итого трудоемкость прямого хода  $T(n) = n^3$ 

Обратный ход: два цикла

 $T(n) = n^2$ 

## П.2 Приближенные методы решения СЛАУ:

• В приближенных методах точные решения получаются как предел бесконечной последовательности приближений, который мы в некоторый момент времени обрываем (когда достигается заданная точность).

## 1. Справочный материал. Нормы векторов и матриц:

Пусть x - n-мерный вектор.

Нормой вектора называется число, удовлетворяющее следующим свойствам (аксиомам и нормам):

5

- 1)  $||x|| \ge 0$ ,  $||x|| = 0 \Leftrightarrow x = 0$  Норма неотрицательна и равна нулю  $\Leftrightarrow$  когда вектор равен нулю.
- $2) \|\alpha x\| = |\alpha| \cdot \|x\|$
- 3)  $||x + y|| \le ||x|| + ||y||$

Примеры норм:  $x = (x_1, ..., x_n)$ 

$$||x||_1 = \sum_{i=1}^n |x_i|$$
 - первая норма

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
 - вторая норма

• 
$$\|x\|_{\infty} = \max_{i=1,\dots,n} \left( |x_i| \right)$$
 - бесконечная норма

#### Замечания:

- а) Фактически норма вектора есть ни что иное, как его длина.
- б) Мы живем в пространстве с нормой 2, но на практике обычно удобнее использовать 1-ую или бесконечную нормы.

Определение: Нормой матрицы А называется число, которое определяется таким образом:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

#### Теорема 2.1:

Норма произведения не превосходит произведения норм.

#### Следствие 2.2:

Норма к-ой степени

$$||A^k|| \leq ||A||^k$$

Следующая цель – эффективно научиться считать нормы матрицы.

## <u>Теорема 2.3:</u>

Легко вычисляются

$$||A||_1 = \max_{x \neq 0} \frac{||Ax||_1}{||x||_1} = \max_j \sum_i |a_{ij}| \quad (2.1)$$

максимальная сумма модулей элементов матрицы по столбцам.

$$||A||_{\infty} = \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \max_{i} \sum_{j} |a_{ij}|$$
 (2.2)

максимальная сумма модулей элементов матрицы по строкам.

#### Доказательство формулы 2.2:

$$\begin{split} \|A\|_{\infty} &= \max_{x \neq 0} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} = \max_{x \neq 0} \frac{\max_{i} \|Ax_{i}\|}{\max_{i} \|x_{i}\|} = \max_{x \neq 0} \frac{\max_{i} \left\|\sum_{j} a_{ij} x_{j}\right\|}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\max_{i} \left\|\sum_{j} a_{ij} \|x_{j}\|\right\|}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|} \leq \max_{x \neq 0} \frac{\left(\max_{i} \sum_{j} |a_{ij}| |x_{i}|\right)}{\max_{i} \|x_{i}\|}$$

Итак, мы доказали неравенство  $\|A\|_{\infty} \leq \max_{i} \sum_{i} |a_{ij}|$ 

для полного доказательства теоремы необходимо доказать второе неравенство (для этого достаточно определить вектор  $\hat{x} \neq 0$ , которого выполняется  $\|\hat{A}x\|_{\infty} = \|A\| \cdot \|\hat{x}\|$  (\*) ).

если для некоторого вектора выполняется такое равенство, то:  $\|A\|_{\infty} = \max_{x \neq 0} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} = \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}}$ 

для окончательного доказательства остается определить вектор x, для которого выполняется искомое равенство (\*).

Для того чтобы определить искомый вектор x со свойством (\*), рассмотрим ту строку матрицы, в которой достигается максимальная сумма модулей элементов. Пусть это строка

$$i_0: \sum_{j} |a_{i_0 j}| = \max_{i} \sum_{j} |a_{i_0 j}|$$

тогда положим соответствующую координату х

$$\hat{x} = \begin{cases} +1, a_{i_0 j} \ge 0 \\ -1, a_{i_0 j} < 0 \end{cases}$$

Тогда координата с номером 0 получается умножением  $i_0$  на столбец.

$$||A\hat{x}||_{\infty} \ge |(A\hat{x})| = |\sum_{i} a_{i_0 j} \cdot \hat{x}| = |\sum_{i} a_{i_0 j}|$$

 $||x||_{\infty} = 1$ , с учетом этого факта получили искомое соотношение (\*), что и доказывает формулу 2.2. Формулу 2.1 предлагается доказать самостоятельно.

#### 2. Метод простых итераций (МПИ):

Пусть дана СЛАУ с квадратной невырожденной матрицей А, проделаем с ней следующие преобразования: поделим каждую строку матрицы на диагональный элемент (предполагается что все элементы не нулевые). Данное преобразование называется приведением матрицы к виду удобному для итерации.

После данных преобразований по диагонали получаются единицы:

разобьем матрицу А на сумму матриц Е и С, где матрица Е – единичная матрица и матрица С – по диагонали нули.

A=E+C

$$E = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & 0 & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & 0 & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & 0 \end{pmatrix}$$

(где элементы матрицы С :  $a_{ii}$  - и есть элементы матрицы А)

Исходное СЛАУ преобразовано таким образом:

$$Ax=b (E+C)=b x+Cx=b \Rightarrow x=b-Cx (2.3)$$

СЛАУ приведенное к виду удобному для итераций.

Рассмотрим итерационный процесс (2.4)

$$x^{(k+1)} = b - Cx^{(k)}$$

Из вектора  $x^{(k)}$  - получаем следующий вектор  $x^{(k+1)}$ 

Стартовый вектор  $x^{(0)}$  - обычный нулевой вектор.

## **Теорема 2.4:**

Если итерационный процесс (2.4) сходится, то есть существует

 $x^{(\infty)} = \lim_{k \to \infty} x^{(k)}$ , то этот предельный вектор  $x^{(\infty)}$  и будет точным решением исходного СЛАУ (2.3)

## Доказательство:

Рассмотрим формулу (2.4)
$$\lim_{k \to \infty} x^{(k+1)} = \lim_{k \to \infty} (b - Cx^{(k)}) = b - Cx^{(\infty)}$$

Необходимо исследовать важный вопрос: когда итерационный процесс (2.4) – сходится? Ответ дает теорема 2.5

## Теорема 2.5(достаточное условие сходимости):

Если ||C|| < 1, то итерационный процесс 2.4 сходится, и скорость его сходимости геометрическая прогрессия со знаменателем ||С||.

Доказательство:

$$\begin{split} x^{(1)} &= b - Cx^{(0)} \\ x^{(2)} &= b - Cx^{(1)} = b - C(b - Cx^{(0)}) = b - Cb + C^2x^{(0)} \\ x^{(3)} &= b - Cx^{(2)} = b - C(b - Cb + C^2x^{(0)}) = b - Cb + C^2b - C^3x^{(0)} \\ x^{(4)} &= b - Cx^{(3)} = b - C(b - Cb + C^2b - C^3x^{(0)}) = b - Cb + C^2b - C^3b + C^4x^{(0)} \end{split}$$

.....

$$x^{(k)} = b - Cb + C^{2}b - C^{3}b + \dots - C^{k-1}b + C^{k}x^{(0)}$$

Для того чтобы доказать, что данная последовательность сходится, докажем, что норма разности  $||x^{(k)} - x^{(l)}|| \to 0$ , считаем, что k > 1

$$\|x^{(k)} - x^{(l)}\| = \|b - Cb + C^{2}b - C^{3}b + \dots + (-1)^{k-1}C^{k-1}b + (-1)^{k}C^{k-1}x^{0} - (b - Cb + C^{2}b + \dots + (-1)^{l-1}C^{l-1}b + (-1)^{l}C^{l}x^{0})\| = \|(-1)^{l}C^{l}b + (-1)^{l+1}C^{l+1}b + \dots + (-1)^{k-1}C^{k-1}b + (-1)^{k}C^{k}x^{0} - (-1)^{l}C^{l}x^{0}\| \le \|C^{l}b\| + \|C^{l+1}b\| + \dots + \|C^{k-1}b\| + \|C^{l}x^{0}\| \le \|C^{l}\|b\| + \|C^{l+1}\|b\| + \dots + \|C^{k+1}\|b\| + \dots + \|C^{k-1}b\| + \|C^$$

$$\frac{\|C\|^{l} \|b\| - \|C\|^{k} \|b\|}{1 - \|C\|^{k} \|b\|} + \|C\|^{k} \|x^{0}\| + \|C\|^{l} \|x^{0}\|$$
(2.5)

## Следствие 2.6:

Если  $\|C\| < 1$ , то  $x^{(k)} \to x^{(\infty)}$  - точное решение исходного СЛАУ (сходится со скоростью геометрической прогрессии со знаменателем  $q = \|C\|$ ), а именно, если взять стартовый

BEKTOP 
$$x^{(0)} = 0$$
,  $mo \quad ||x^{(k)} - x^{(\infty)}|| \le \frac{||C||^k}{1 - ||C||}$ . (2.6)

**Следствие 2.7**(оценка необходимого числа шагов для достижения заданной точности): Если заданна погрешность  $\mathcal{E}$ , то, сделав N шагов, мы получим решение с заданной

точностью, т. е. 
$$\|x^{(n)} - x^{(\infty)}\| < \varepsilon$$

#### Доказательство:

Решаем неравенство из формулы (2.6):

$$\frac{\|C\|^{k}}{1 - \|C\|} \|b\| < \varepsilon; \qquad k \ge \log_{\|C\|} \frac{\varepsilon(1 - \|C\|)}{\|b\|} = \ln \frac{\ln(\frac{\varepsilon(1 - \|C\|)}{\|b\|})}{\ln \|C\|}; \qquad N = \left| \frac{\ln(\frac{\varepsilon(1 - \|C\|)}{\|b\|})}{\ln \|C\|} \right| + 1$$

## Пример СЛАУ, решенной МПИ:

$$\begin{cases} 5x_1 - x_2 - x_3 = 3 \\ -x_1 - 3x_2 = -7 \\ x_1 + x_2 + 4x_3 = 3 \end{cases} \quad \varepsilon = 10^{-1}$$

Матрица А имеет вид:

$$\begin{pmatrix} 5 & -1 & -1 & 3 \\ -1 & -3 & 0 & -7 \\ 1 & 1 & 4 & 3 \end{pmatrix}$$
:5 (приводим к виду удобному для итераций - делим каждую строку матрицы так, чтобы получить единицы по главной диагонали)

Получаем матрицу:

$$\begin{pmatrix} 1 & -1/5 & -1/5 & 3/5 \\ 1/3 & 1 & 0 & 7/3 \\ 1/4 & 1/4 & 1 & 3/4 \end{pmatrix}$$

Разбиваем матрицу A на сумму матриц E и C:

$$A = E + C$$

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & -1/5 & -1/5 \\ 1/3 & 0 & 0 \\ 1/4 & 1/4 & 0 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 3/5 \\ 7/3 \\ 3/4 \end{pmatrix}$$

$$||C||_{\infty} = \max(1/5 + 1/5; 1/3; 1/4 + 1/4) = 1/2$$

$$||B||_{\infty} = \max(3/5;7/3;3/4) = 7/3$$

Первый шаг по МПИ (начальный вектор X - нулевой):

$$X^{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad X^{1} = \begin{pmatrix} 3/5 \\ 7/3 \\ 3/4 \end{pmatrix} - \begin{pmatrix} 0 & -1/5 & -1/5 \\ 1/3 & 0 & 0 \\ 1/4 & 1/4 & 0 \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 7/3 \\ 3/4 \end{pmatrix}$$

Второй шаг МПИ:

$$X^{2} = \begin{pmatrix} 3/5 \\ 7/3 \\ 3/4 \end{pmatrix} - \begin{pmatrix} 0 & -1/5 & -1/5 \\ 1/3 & 0 & 0 \\ 1/4 & 1/4 & 0 \end{pmatrix} \bullet \begin{pmatrix} 3/5 \\ 7/3 \\ 3/4 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 7/3 \\ 3/4 \end{pmatrix} - \begin{pmatrix} -37/60 \\ 3/15 \\ 11/15 \end{pmatrix} = \begin{pmatrix} 73/60 \\ 32/15 \\ 1/60 \end{pmatrix}$$

количество шагов 
$$N = \left(\frac{\ln(\frac{10^{-3}(1-1/2)}{7/3})}{\ln 1/2}\right) + 1 = \frac{\ln(0,0002)}{\ln 0,5} + 1 = \frac{-8,52}{-0,69} + 1 \approx 13,3$$

#### Замечание 2.8:

Заметим, что условие  $\|C\|_{\infty} < 1$  для матрицы C, полученной из матрицы A с помощью стандартной процедуры приведения к виду удобному для итераций, равносильно тому, что для исходной матрицы A выполняется условие диагонального преобразования по строкам, т.е. в каждой строке диагональный элемент строго больше суммы модулей.

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

#### Доказательство:

Заметим, что:

$$\begin{split} C_{ij} = & \begin{cases} \frac{a_{ij}}{a_{ii}} &, \ j \neq i \\ 0 &, \ j = i \end{cases} \\ & \left\| C \right\|_{\infty} < 1 &, \forall i \sum_{j \neq i} |C_{ij}| = \sum_{j \neq i} \left| \frac{a_{ij}}{a_{ii}} \right| < 1 \end{split}$$

## П.3 Модификация МПИ – метод Зейделя.

Рассмотрим не матричную, а формальную запись МПИ:  $x^{(k+1)} = b - Cx^{(k)}$ 

$$\begin{pmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ \dots \\ x_n^{(k+1)} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix} - \begin{pmatrix} 0 & C_{12} & C_{13} & \dots & C_{1n} \\ C_{21} & 0 & C_{23} & \dots & C_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ C_{n1} & C_{n2} & C_{n3} & \dots & 0 \end{pmatrix} \bullet \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \dots \\ x_n^{(k)} \end{pmatrix}$$

Итак, получаем следующие формулы для МПИ:

$$x_{1}^{(k+1)} = b_{1} - (0 \cdot x_{1}^{(k)} + C_{12} \cdot x_{2}^{(k)} + C_{13} \cdot x_{3}^{(k)} + \dots + C_{1n} \cdot x_{n}^{(k)})$$

$$x_{2}^{(k+1)} = b_{2} - (C_{21} \cdot x_{1}^{(k)} + 0 \cdot x_{2}^{(k)} + C_{23} \cdot x_{3}^{(k)} + \dots + C_{2n} \cdot x_{n}^{(k)})$$

$$x_{3}^{(k+1)} = b_{3} - (C_{31} \cdot x_{1}^{(k)} + C_{32} \cdot x_{2}^{(k)} + 0 \cdot x_{3}^{(k)} + \dots + C_{3n} \cdot x_{n}^{(k)})$$
(2.7)

.....

$$x_n^{(k+1)} = b_n - (C_{n1} \cdot x_1^{(k)} + C_{n2} \cdot x_2^{(k)} + C_{n3} \cdot x_3^{(k)} + \dots + 0 \cdot x_n^{(k)})$$

В методе Зейделя в отличие от МПИ при вычислении координат вектора  $x^{(k+1)}$  будем использовать не только лишь координаты вектора  $x^{(k)}$  с предыдущего шага, но и уже найденные координаты вектора  $x^{(k+1)}$ .

$$\begin{cases} x_{1}^{(k+1)} = b_{1} - (0 \cdot x_{1}^{(k)} + C_{12} \cdot x_{2}^{(k)} + C_{13} \cdot x_{3}^{(k)} + \dots + C_{1n} \cdot x_{n}^{(k)}) \\ x_{2}^{(k+1)} = b_{2} - (C_{21} \cdot x_{1}^{(k+1)} + 0 \cdot x_{2}^{(k)} + C_{23} \cdot x_{3}^{(k)} + \dots + C_{2n} \cdot x_{n}^{(k)}) \\ x_{3}^{(k+1)} = b_{3} - (C_{31} \cdot x_{1}^{(k+1)} + C_{32} \cdot x_{2}^{(k+1)} + 0 \cdot x_{3}^{(k)} + \dots + C_{3n} \cdot x_{n}^{(k)}) \\ \dots \\ x_{n}^{(k+1)} = b_{n} - (C_{n1} \cdot x_{1}^{(k+1)} + C_{n2} \cdot x_{2}^{(k+1)} + C_{n3} \cdot x_{3}^{(k+1)} + \dots + 0 \cdot x_{n}^{(k)}) \end{cases}$$

Метод Зейделя сходится при условии  $\|C\|_{\infty} < 1$  (как и МПИ). Сходится немного быстрее, но в целом скорость сходимости, как и в МПИ, не хуже геометрической прогрессии со знаменателем  $q = \|C\|$ 

Можно также использовать формулу из следствия 2.7.

## Оценка трудоемкости решения СЛАУ различными методами:

Сравним метод Гаусса и МПИ:

 $\Gamma \text{aycc} - T = Cn^3$ 

МПИ -  $T = Cn^2N$ , где n – размер матрицы, N – количество итераций.

Если N велико, а n — мало, то метод Гаусса выгоднее.

Если же N — не очень большое, а n — велико (размер матрицы большой, но сходится довольно быстро), тогда выгоднее итерационный метод.

## Замечание:

на практике метод Гаусса очень плохо работает с матрицами больших размеров, а итерационные методы одинаково успешно справляются с матрицами любых размеров. С другой стороны метод Гаусса работает всегда, а МПИ работает при условии  $\|C\| < 1$ , т.е. применим не для всех СЛАУ.

**<u>Вывод</u>**: для решения некоторых СЛАУ выгоднее использовать точные методы (метод Гаусса), а для некоторых – приближенные.

## <u>Тема 3. Методы решения нелинейных уравнений (НУ) и систем нелинейных уравнений (СНУ).</u>

#### П.1 НУ и СНУ.

Будем рассматривать только системы, где количество уравнений совпадает с количеством неизвестных (как и в СЛАУ).

## П.2 Простейшие методы решения НУ – метод половинного деления (МПД) или метод биссекций.

### <u>Алгоритм МПД:</u>

1. Находим интервал a, b на котором функция меняет свой знак:

f(a)\*f(b)<0 (имеет хотя бы один корень)

2. Делим интервал пополам точкой c:

$$c = \frac{a \pm b}{2}$$

3. Из 2-х полученных интервалов([a,c] и [c,b]) выбираем тот, на котором происходит смена знака:

$$f(a)*f(c)<0$$
 -  $[a,c]$   
 $f(c)*f(b)<0$  -  $[c,b]$ 

4. Повторить пункт 2, если не достигли наперед заданной точности  $\frac{|b-a|}{2} < \varepsilon$ , иначе, если

$$\frac{|b-a|}{2} \le \varepsilon$$
, то идем на пункт 5.

5. В качестве точного решения берём  $\frac{|b+a|}{2}$  (середина последнего интервала). От этой

точки x расстояние до любой другой точки отрезка не превосходит  $\varepsilon = \frac{|b-a|}{2}$ .

#### Замечание:

В предложенном выше методе мы контролируем точность по x ( $|x-x_{moчноe}|<\varepsilon$ ). Иногда, вместо этого требуется достигнуть заданной точности по y, т.е.  $|f(x)|<\varepsilon$ , но обычно, под точностью понимается точность по x.

## П.З.Модификация МПД – Метод Хорд (МХ).

В отличие от МПД в МХ отрезок мы делим не пополам, а на отрезки, пропорциональные f(a) и f(b).



т.е. искомая точка С — точка пересечения прямой, проходящей через т. a и b, c Ох. Уравнение прямой, проходящей через точки ( $x_0, y_0$ ) и ( $x_1, y_1$ ):

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$$
$$\frac{x - a}{b - a} = \frac{y - f(a)}{f(b) - f(a)}$$

Пересечем эту прямую с Ох:

$$\frac{x-a}{b-a} = \frac{-f(a)}{f(b)-f(a)}$$

$$(x-a)(f(b)-f(a)) = (b-a)(-f(a))$$

$$x = \frac{(b-a)(-f(a))}{f(b)-f(a)} + a = \frac{(b-a)(-f(a)) + af(b) - af(a)}{f(b)-f(a)} = \frac{-bf(a) + af(a) + af(b) - af(a)}{f(b)-f(a)} = \frac{af(b)-bf(a)}{f(b)-f(a)}$$

$$(3.1)$$

Из 2-х новых интервалов([a,c] и [c,b]) выбираем тот, на котором происходит смена знака (как и в МПД).



Как мы видим из рисунка, в МПД длина интервала уменьшается вдвое и стремится к нулю, в МХ этого не происходит — длина интервала не стремится к нулю. Один край интервала стоит на месте, а второй двигается к точному решению.

Критерий прерывания из МПД в МХ не работает, поэтому берем универсальный критерий прерывания:

Если  $|C^{(n)} - C^{(n-1)}| < \varepsilon$ , то прекращаем вычисления. В качестве приближенного значения берём  $x = C^{(n)}$ .

В принципе, универсальный критерий прерывания можно использовать не только при решении MX, но и при использовании других методов (в  $M\Pi Д$ , в итерационных методах решения CЛAY). Недостаток — мы не можем гарантировать:

$$\mid C^{(n)} - C^{(n-1)} \mid < \varepsilon \quad \Rightarrow \quad \mid x_{\textit{movenoe}} - C^{(n)} \mid < \varepsilon$$

и поэтому, если есть возможность избежать использования этого критерия прерывания, выгоднее использовать другой. Но, если ничего не остается, применяем универсальный критерий прерывания.

12

## П.4 Метод Ньютона (метод касательных).



## <u>Алгоритм МН:</u>

- 1) В качестве начального приближения  $x^{(0)}$  берем точку, достаточно близкую к точному решению.
- 2) В этой точке проводим касательную к графику функций до пересечения с Ox- получаем  $x^{(1)}$  и т.д.
- 3) Процедура повторяется, пока не будет достигнута заданная точность (универсальный критерий прерывания).

## Формула метода Ньютона:

уравнение касательной  $y = f(x_0) + f'(x_0)(x - x_0)$ , находим точку пересечения с Ох

$$f(x^{(0)}) + f'(x^{(0)})(x - x^{(0)}) = 0$$

$$x = -\frac{f(x^{(0)})}{f'(x^{(0)})} + x^{(0)}$$
(3.2)

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f(x^{(k)})}$$

## П.5 Скорости сходимости МПД, МХ, МН:

## 1) Скорость сходимости МПД:

На каждом шаге длина интервала уменьшается вдвое. Таким образом, через k шагов достигается точность -  $\frac{|b-a|}{2^{k+1}}$ , решаем неравенство  $\frac{|b-a|}{2^{k-1}} < \varepsilon$ 

Необходимое число шагов: 
$$N = \left| \log_2 \frac{b-a}{2} \right| + 1$$

То есть, МПД сходится со скоростью геометрической прогрессии со знаменателем  $\frac{1}{2}$  (для добавления одного верного десятичного знака – 3 шага).

#### 2) Скорость сходимости МХ:

#### Теорема 3.1:

Если на интервале [a,b] функция f – непрерывна и дифференцируема, ее производная на этом интервале имеет постоянный знак, т.е. f – либо монотонно убывает, либо монотонно возрастает на всем интервале, то верна следующая оценка:

$$|x_{mov_{HOe}} - x^{(k)}| \le \frac{M_1 - m_1}{m_1} |x^{(k)} - x^{(k-1)}|$$
 (3.3)

где  $x^{(k)}$  - решение, найденное на k-ом шаге,

$$M_1 = \max_{t \in [a,b]} |f'(t)|$$
  $m_1 = \min_{t \in [a,b]} |f'(t)|$ 

## Следствие 3.2:

Если  $M_1 \leq 2 \cdot m_1$ , то если  $\mid x^{(k-1)} - x^{(k)} \mid < \varepsilon \implies \mid x_{\text{movinoe}} - x^{(k)} \mid < \varepsilon \pmod{\frac{M_1 - m_1}{m_1}} < 1$  ),

т.е. универсальный критерий прерывания работает корректно.

#### Теорема 3.3:

Скорость сходимости в MX не хуже геометрической прогрессии со знаменателем

$$q = rac{M_1 - m_1}{m_1}$$
 , а именно имеет следующая оценка |  $x^{(k)} - x_{moveoe}$  |  $< \left(rac{M_1 - m_1}{m_1}
ight)^k \cdot const$ 

## Комментарии:

Если  $M_1$  и  $m_1$  очень близки друг к другу, например -  $M_1 < 1.1 m_1$ , то тогда

$$q = \frac{M_1 - m_1}{m_1} < 0.1\,$$
 и скорость сходимости МХ будет выше, чем скорость сходимости МПД.

Итак, выгодно, чтобы  $M_1$  и  $m_1$  были близки друг к другу, это будет так, если длина интервала будет стремиться к нулю, но в МХ это не так, это происходит в МПД, поэтому выгодно комбинировать МХ и МПД.

## 3) Скорость сходимости МН:

## **Теорема 3.4:**

Если функция f(x) дважды непрерывна и дифференцируема на [a,b] и f, и f на нем не меняет свои знаки, т.е. монотонно возрастает или убывает и при этом не меняет характера выпуклости. Имеет место неравенство:

$$|x^{(k+1)} - x_{mov_{HOe}}| \le \frac{1}{2} \frac{M_2}{m_1} |x^{(k)} - x_{mov_{HOe}}|^2$$
 (3.4)

$$M_{2} = \max_{t \in [a,b]} |f''(t)|$$
 ;  $m_{1} = \min_{t \in [a,b]} |f'(t)|$ 

## Комментарии:

Квадрат обеспечивает удваивание числа верных знаков после каждой итерации. Таким образом, метод Ньютона работает гораздо быстрее, нежели МПД или МХ. МН имеет гипергеометрическую скорость сходимости.

## Тонкие места МН:

1) Какую из 2-х точек интервала [a,b] выбрать в качестве начального приближения  $x_0$ .



В качестве стартовой точки  $x^{(0)}$  выгоднее брать точку, в которой знак 2-ой производной совпадает со знаком функции.

14

2) В отличие от МПД и МХ – МН сходится не всегда.



МН может и не сходится(\*)

будет сходиться, когда  $x^{(0)}$  близко к корню, если  $x^{(0)}$  выбрано неудачно (далеко от корня). **П.6 Многомерный вариант метода Ньютона:** 

МПД и МХ применимы только для решения НУ, метод Ньютона может быть легко видоизменен, и его можно применять для решения СНУ.

Рассмотрим СНУ n на n (n – уравнений, n – неизвестных):

$$\begin{cases} f_1(x_1, x_2, ..., x_n) = 0 \\ f_2(x_1, x_2, ..., x_n) = 0 \\ .... \\ f_n(x_1, x_2, ..., x_n) = 0 \end{cases}$$

$$F = \begin{pmatrix} f_1 \\ f_2 \\ ... \\ f_n \end{pmatrix}$$

F(X)=0,  $X=(x_1,x_2,...,x_n)$ .

При решении СНУ поступаем таким же образом, как и при решении НУ.

- 1) Выбираем стартовую точку  $x^{(0)}$ , достаточно близкую к корню.
- 2)В одномерном варианте мы заменяли функцию на касательную и приравнивали её к нулю. Аналогичным образом поступаем и для функции многих переменных, только там заменяем f на дифференциал, т.е.:

Решаем данное уравнение относительно X:

$$F(X^{(0)}) + \partial F\Big|_{X^{(0)}} \cdot (X - X^{(0)}) = 0$$
$$\partial F\Big|_{X^{(0)}} \cdot (X - X^{(0)}) = -F(X^{(0)})$$

W — матрица частных производных (матрица Якоби) умножим на матрицу обратную матрице W слева:

$$X - X^{(0)} = -W^{-1}\Big|_{X^{(0)}} \cdot F(X^{(0)})$$
 (3.5)

Окончательный вид формулы многомерного варианта метода Ньютона:

$$X^{(k+1)} = X_{X^{(k)}}^{(k)} - W^{-1} \Big|_{X^{(k)}} \cdot F(X^{(0)})$$

$$Y^{(k)}$$
(3.6)

#### Замечание:

есть 2 варианта реализации вычисления по формуле (3.6):

а) Явно вычислить обратную матрицу (например, с помощью присоединенной матрицы)

б) Заметим, что вектор  $Y^{(k)}$  есть ни что иное, как решение СЛАУ

(3.7)  $W^{-1}\big|_{X^{(k)}} \cdot Y^{(k)} = F(X^{(k)})$ , поэтому мы можем не вычислять обратную матрицу, а только решить СЛАУ (3.7) (например методом Гаусса) и решение этой матрицы подставить в (3.76)  $X^{(k+1)} = X^{(k)} - Y^{(k)}$ .

Пример решения СНУ методом Ньютона:

$$\begin{cases} x^2 + y^2 + z^2 = 1\\ 2x^2 + y^2 - 4z = 0\\ 3x^2 - 4y + z^2 = 0 \end{cases}$$

Приводим к виду F(X)=0:

$$\begin{cases} x^2 + y^2 + z^2 - 1 = 0 \\ 2x^2 + y^2 - 4z = 0 \\ 3x^2 - 4y + z^2 = 0 \end{cases}$$

$$F = \begin{pmatrix} x^2 + y^2 + z^2 - 1 \\ 2x^2 + y^2 - 4z \\ 3x^2 - 4y + z^2 \end{pmatrix} W = \begin{pmatrix} 2x & 2y & 2z \\ 4x & 2y & -4 \\ 6x & -4 & 2z \end{pmatrix},$$
 в качестве стартовой точки возьмем  $X^{(0)} = \begin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \end{pmatrix}$ 

Сделаем один шаг по многомерному методу Ньютона:

$$F(X^{(0)}) = \begin{pmatrix} -0.25 \\ -1.25 \\ -1 \end{pmatrix} W\Big|_{X^{(0)}} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -4 \\ 3 & -4 & 1 \end{pmatrix} \qquad W^{-1}\Big|_{X^{(0)}} = \begin{pmatrix} 3/8 & 1/8 & 4/8 \\ 7/20 & 4/20 & -3/20 \\ 11/40 & -7/40 & 1/40 \end{pmatrix}$$

$$X^{(1)} = X^{(0)} - W^{-1} \Big|_{X^{(0)}}$$

$$F(X^{(0)}) = \begin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \end{pmatrix} - \begin{pmatrix} 3/8 & 1/8 & 4/8 \\ 7/20 & 4/20 & -3/20 \\ 11/40 & -7/40 & 1/40 \end{pmatrix} \cdot \begin{pmatrix} -0.25 \\ -1.25 \\ -1 \end{pmatrix} = \begin{pmatrix} 7/8 \\ 1/2 \\ 3/8 \end{pmatrix}$$

$$\parallel_{X^{(1)}}$$

Затем находим  $X^{(2)}$ и т.д., пока не будет достигнута заданная точность:  $\parallel X^{(k)} - X^{(k-1)} \parallel < \varepsilon$ 

## П.7 Вариации метода Ньютона:

#### 7.1 Комбинированный метод (сочетание МН и МХ):

МН быстро сходится, но, увы, не всегда. МХ всегда сходится, но не быстро. Комбинируя оба метода, получаем метод, обладающий достоинствами МХ и МН, а именно – сходится всегда и очень быстро (со скоростью МН).

На каждом шаге КМ проводим и хорду, и касательную, получаем новый интервал.

## 7.2 Видоизмененный метод Ньютона:

Иногда вычисление производной функции вызывает большие проблемы и чтобы на каждом шаге не вычислять производные, мы вычисляем производную один раз в точке  $X^{(0)}$  и используем формулу видоизмененного MH:

$$X^{(k+1)} = X^{(k)} - \frac{F(X^{(k)})}{F(X^{(0)})} \quad (3.8)$$

Видоизмененный МН сходится хуже, чем обычный МН – со скоростью геометрической прогрессии. Эффекта удваивания числа верных знаков после каждой итерации в нем нет.

## П.8 Метод итераций, решение НУ и СНУ:

## 8.1 Одномерный вариант МИ.

Предполагается, что НУ приведено к виду удобному для итераций.

$$x = u(x) \quad (3.9)$$

Запускаем итерационный процесс (3.10):

$$x^{(k+1)} = u(x^{(k)})$$
 (3.10)

## Теорема 3.5:

Если итерационный процесс сходится, то сходится к точному решению НУ (3.9), при условии непрерывности функции u.

## Доказательство:

в формуле (3.10) переходим к пределу

$$\lim_{k\to\infty} x^{(k+1)} = \lim_{k\to\infty} u(x^{(k)})$$

предел заносим внутрь, используя непрерывность функции и.

$$x^{(\infty)} = \lim_{k \to \infty} u(x^{(k)}) = u\left(\lim_{k \to \infty} x^{(k)}\right) = u(x^{(\infty)})$$

## Рассмотрим пример решения НУ:

 $x^{2} - 2 = 0$  приводим к виду удобному для итераций, добавим x с обеих сторон:

$$x = x^2 + x - 2 = u(x)$$

$$x^{(0)} = 1$$

$$x^{(1)} = u(x^{(0)}) = 0$$
 процесс зациклился – не сходится

$$x^{(2)} = -2$$

$$x^{(3)} = 0$$

Попробуем по-другому: перед тем, как прибавить x, разделим на 2.

$$x = \frac{x^2 + x}{2} + x = u(x)$$

запускаем итерационный процесс для данной функции и:

$$x^{(0)} = 1$$

$$x^{(4)} = -1.453$$

$$x^{(1)} = 1/2$$

$$x^{(5)} = -1.397$$

$$x^{(2)} = -3/8$$

$$x^{(6)} = -1.421$$

$$x^{(3)} = -1.304$$

данный итерационный процесс сходится к -  $\sqrt{2} = x^{\infty}$ .

## Графическая интерпретация МИ:



итерационный процесс сходится и сходится монотонно (рис.1)



итерационный процесс расходится монотонно (рис.2)



сходится не монотонно, по спирали (рис.3)



расходится не монотонно, по спирали (рис.4)

## Заметим закономерности:

1) Если u(x) возрастает, то итерационный процесс всегда ведет себя монотонно, при этом он может и сходится и расходится.

Если же u(x) убывает, то итерационный процесс ведёт себя не монотонно, идет по спирали, при этом он может, как сходиться, так и расходиться.

2) Если ||u'(x)|| < 1 то итерационный процесс сходится (рис.1 и рис.3).

Если же ||u'(x)|| > 1, то итерационный процесс расходится (рис.2 и рис.4)

Метод итераций может применяться не только для решения НУ, но и для решения СНУ. Все происходит точно так же, т.е. СНУ приводим к виду удобному для итераций. X – вектор M – вектор функция

$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \qquad U = \begin{pmatrix} u_1(x_1, \dots, x_n) \\ \dots \\ u_n(x_1, \dots, x_n) \end{pmatrix}$$
$$X^{(k+1)} = U(X^{(k+1)}) \qquad (3.10)$$

Если итерационный процесс (3.10) то он сходится к точному решению -  $x^{\infty}$ . Наша задача выяснить условия, при которых итерационный процесс сходится. Ответ на этот вопрос даёт теорема 3.6.

#### Теопема 3 6.

Итерационный процесс 3.10 сходится, если отображение U – сжимающее, т.е. для любых X,  $Y \parallel U(X) - U(Y) \parallel < C \cdot \parallel X - Y \parallel$  (3.11), где C – const, C < 1 (коэффициент сжатия).

докажем  $\parallel X^{(k)} - X^{(l)} \parallel \to 0$ , при  $k, l \to \infty$  тем самым покажем, что итерационный процесс сходится.

= (по формуле геометрической прогрессии со знаменателем 
$$C$$
)= 
$$\frac{(C^k - C^l) \cdot \|X^{(1)} - X^{(0)}\|}{C - 1}$$

$$=\frac{(C^{l})(C^{k})}{(L^{l})(C^{k})} \|X^{(1)} - X^{(0)}\| \to 0 , (k, l \to \infty)$$

Как нетрудно заметить, мы попутно оценили скорость сходимости МИ. Сходится со скоростью геометрической прогрессии со знаменателем C, где C — коэффициент сжатия отображения U.

Теперь наша задача научиться оценивать C – коэффициент сжатия. Ответ на этот важный вопрос даёт теорема (3.7)

## **Теорема 3.7:**

$$C \le \max_{x \in D} \|W(X)\|$$

Для области D коэффициент сжатия отображения u — максимум нормы матрицы Якоби — матрицы частных производных отображения u.

$$C = \max_{x \in D} \| \left( \frac{\partial (u_i)}{\partial x_j} \right)_{i,j} \|$$

Таблица сравнительных характеристик методов решения НУ и СНУ:

| <u> гаолица сравнительных характеристик методов решения ну и Сну:</u> |                                                                                                   |                                                                                              |                                                                                        |                                                                                                            |  |  |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                       | МПД                                                                                               | MX                                                                                           | MH                                                                                     | МИ                                                                                                         |  |  |  |  |  |  |
| Всегда ли                                                             | Да                                                                                                | Да                                                                                           | Нет (сходится, когда                                                                   | Нет (сходится, если                                                                                        |  |  |  |  |  |  |
| работает (сходится)                                                   |                                                                                                   |                                                                                              | $X^{(0)}$ близко к $X^{(\infty)}$ )                                                    | u'  < 1или $  W   < 1$ )                                                                                   |  |  |  |  |  |  |
| Скорость сходимости                                                   | Геометрическа я прогрессия со знаменателем $q=1/2$ $ x^{(k)}-x^{(\infty)}  < \frac{b-a}{2^{k+1}}$ | Геометрическая прогрессия со знаменателем $q=1/2$ $ x^{(k)}-x^{(\infty)}  < const \cdot q^k$ | Сходится быстрее других методов после каждой итерации число верных знаков удваивается. | Геометрическая прогрессия со знаменателем C,<br>где $C = \max_{x \in D}  u'(x) $ $= \max_{x \in D}  W(X) $ |  |  |  |  |  |  |
| Можно ли решить СНУ многомерным аналогом                              | Нет                                                                                               | Нет                                                                                          | Да                                                                                     | Да                                                                                                         |  |  |  |  |  |  |
| Критерий прерывания                                                   | $\frac{b-a}{2} < \varepsilon$                                                                     | Универсальный критерий прерывания $ X^{(k)} - X^{(k-1)}  < \varepsilon$                      |                                                                                        |                                                                                                            |  |  |  |  |  |  |

#### Замечания:

- 1) На самом деле во всех методах имеется конструктивная оценка скорости сходимости, с помощью которой мы можем вычислить N необходимое количество шагов. Но на практике пользоваться этими оценками очень не удобно (т.к. приходится находить максимум и минимум производных). Поэтому в 3-х последних методах (МХ, МН, МИ) мы применяем универсальный критерий прерывания.
- 2) Во всех методах, кроме МН, скорость сходимости есть геометрическая прогрессия, поэтому для достижения одного верного десятичного знака нам потребуется  $\log_{1/C} 10$  шагов, где C знаменатель геометрической прогрессии. МН сходится быстрее, в нем число верных знаков примерно удваивается с каждым шагом.

## Тема 4: Интерполяция.

## П.1 Постановка задачи интерполяции, общий подход к её решению:

Пусть имеются точки  $x_0 < x_1 < ... < x_n \ (n+1 \ {
m toчкa}),$  в которых нам известны значения функции  $y_i = f(x_i), \quad i = \overline{0,n}$  .

Задачи интерполяции: научиться вычислять значение функции в любой наперед заданной точке.

Комментарии: интерполяция иногда делится на два вида:

- 1)  $x \in [x_0, x_n]$  собственная интерполяция.
- 2)  $x \notin [x_0, x_n]$  экстраполяция.

Геометрическая интерпретация:



## Общая идея интерполяции:

Заменяем неизвестную нам функцию f, на некоторую интерполирующую в узлах  $x_i$   $g(x_i)$  (т.е.  $g(x_i) = f(x_i) = y_i$ ), которая легко вычисляется, т.е. функция g должна обладать двумя свойствами:

1. 
$$g(x_i) = f(x_i) = y_i$$

2. g – легко вычисляется в любой наперед заданной точке x.

## Для этого поступаем следующим образом:

Фиксируем класс функций N, среди которых будем подбирать искомую функцию g. При этом класс N должен быть достаточно большим, чтобы g нашлась, но с другой стороны — достаточно маленьким, чтобы g была бы там единственной.

В зависимости от класса N интерполируемых функций будем говорить об интерполяции:

- а) полиномами
- б) сплайнами
- в) тригонометрическими функциями

## П.2 Интерполяция многочленами.

## **2.1** Формула Лагранжа, интерполяционный многочлен: *Теорема 4.1:*

Для любых  $x_0 < x_1 < x_2 ... < x_n$  и  $y_0, y_1, y_2 ...$   $y_n$  существует единственный многочлен  $p \in p_n$  (т.е. многочлен p в степени  $\leq n$ ) такой, что  $p(x_i) = y_i, i = \overline{0,n}$ 

## Доказательство:

Докажем сначала единственность многочлена  $\underline{p}$ . Предположим, что существует два интерполирующих многочлена  $p_1$  и  $p_2$ . Имеем  $p_1(x_i) = y_i$ 

 $p_2(x_i)=y_j$ , где i=0,n. Рассмотрим многочлен  $h=p_1-p_2$ , очевидно его степень не выше n, с другой стороны он имеет как минимум (n+1) корней. Как известно из алгебры, у ненулевого многочлена степени n не более n корней, а наш многочлен n имеет n+10 корней, следовательно он тождественно равен n0. n=00 и  $n=p_2$  Докажем теперь существование многочлена n2: рассмотрим для этого следующий набор многочленов

20

$$p_n(x_j) = \sum_{i=0}^n y_i q_i(x_j)$$
 (4.2a)

где 
$$q_i(x) = \frac{(x - x_0)(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}$$
 (4.2b)

Заметим, что все  $q_i$  многочлены степени n, следовательно,  $p_n(x)$  будет многочлен степени не выше n. Докажем, что  $p_n(x)$  искомый, т.е.  $p_n(x_i) = y_i$  для этого подсчитаем  $q_i$  в точках  $x_i$  Заметим, что

$$q_i(x_j) = \begin{cases} 0, j \neq i \\ 1, j = i \end{cases}$$
 (\*)

Так как один из сомножителей в числителе занулится. Учитывая (\*) приходим к выводу

$$p_n(x_j) = \sum_{i=0}^n y_i q_i(x_j) = 0 + 1 \cdot y_j + 0 \dots + 0 = y_j$$
, т.е. для данного многочлена (4.2) выполняется

свойство интерполяции. Осталось заметить, что степень многочлена из формулы (4.2) не выше п.

## Частные случаи интерполяционного многочлена Лагранжа:

n=1 (интерполируем по двум точкам)

$$p_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

n=2 (интерполируем по трем точкам)

$$p_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

n=3 (интерполируем по четырем точкам)

$$p_{3}(x) = y_{0} \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} + y_{1} \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} + y_{2} \frac{(x - x_{0})(x - x_{1})(x - x_{3})}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} + y_{3} \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})}$$

#### Замечание:

Интерполяционный многочлен из формулы (4.2) называют интерполяционным многочленом Лагранжа. Вообще говоря, интерполяционный многочлен единственен, как доказано в теореме 4.1, но вариантов для вычисления этого многочлена (формул) существует много. Все они выдадут в одной точке один и тот же результат, но вариантов для вычисления будет много. Каждый из этих вариантов имеет свои достоинства и недостатки.

Рассмотрим следующий вариант вычисления интерполяционного многочлена.

#### 2.2 Схема Эйткена:

## *Теорема 3.2:*

если (1)  $p_{x_0,x_1...x_{n-1}}(x)$  - многочлен, интерполирующий функцию f в точках  $x_0...x_{n-1}$  (степени не выше n-1), а (2)  $p_{x_1,x_2...x_n}(x)$  - многочлен, интерполирующий функцию в точках  $x_1...x_n$  (степени не выше n-1), то многочлен  $p_{x_0,x_1...x_n}(x)$  - многочлен, интерполирующий функцию в точках  $x_0...x_n$  (степени не выше n) может быть вычислена по формуле:

$$p_{x_0, x_1 \dots x_n}(x) = \frac{p_{x_0, x_1 \dots x_{n-1}}(x)(x - x_n) - p_{x_1, x_2 \dots x_n}(x)(x - x_0)}{x_0 - x_n}$$
(4.3)

#### Доказательство:

Заметим, что многочлен  $p_{x_0,x_1...x_n}(x)$  имеет степень не выше n, так как каждый из многочленов (1) и (2) имел степень не больше чем (n-1), мы домножали на многочлен первой степени.

Осталось проверить, что данный многочлен в узлах интерполяции задает значения  $y_i$ .  $p_{x_0,x_1...x_n}(x_i) = y_i, i = \overline{0,n}$ 

Рассмотрим три возможности:

1. Проверим, что свойства интерполяции выполняются в крайних точках  $x_0$  и  $x_n$ :

a) 
$$p_{x_0,x_1...x_n}(x_0) = \frac{p_{x_0,x_1...x_{n-1}}(x_0)(x_0-x_n)-p_{x_1,x_2...x_n}(x_0)(x_0-x_0)}{x_0-x_n} = \frac{y_0(x_0-x_n)-p_{x_1...x_n}(x_0)*0}{x_0-x_n} = y_0$$

6) 
$$p_{x_0,x_1...x_n}(x_n) = \frac{p_{x_0,x_1...x_{n-1}}(x_n)(x_n - x_n) - p_{x_1,x_2...x_n}(x_n)(x_n - x_0)}{x_0 - x_n} = y_n$$

2. Проверим, что (4.3)-интерполирующий, если i – не крайние точки:

$$p_{x_0, x_1 \dots x_n}(x_i) = \frac{p_{x_0, x_1 \dots x_{n-1}}(x_i)(x_i - x_n) - p_{x_1, x_2 \dots x_n}(x_i)(x_i - x_0)}{x_0 - x_n} = \frac{y_i((x_i - x_n) - (x_i - x_0))}{x_0 - x_n} = y_i$$

#### Замечание:

В теореме 4.2 приведем другой способ вычисления интерполяционного многочлена, существование и единственность которого были доказаны в теореме 4.1. В теореме 4.1 была формула Лагранжа, в теореме 4.2 схема Эйткена.

Обобщим формулу из теоремы 4.2:

$$p_{x_k, x_1 \dots x_l}(x) = \frac{p_{x_k, x_1 \dots x_{l-1}}(x)(x - x_l) - p_{x_{k+1}, x_2 \dots x_l}(x)(x - x_k)}{x_k - x_l}$$
(4.4)

На основании (4.4) и очевидного наблюдения  $p_{x_i}(x) = y_i$  (т.к. мы должны подобрать многочлен 0-ой степени, значение которого в т.  $x_i = y_i$ ), приходим к следующей картине для вычисления интерполяционного многочлена:

$$y_{0} = p_{x_{0}}(x)$$

$$y_{1} = p_{x_{1}}(x)$$

$$y_{2} = p_{x_{2}}(x)$$

$$y_{3} = p_{x_{3}}(x)$$

$$p_{x_{0}x_{1}}(x)$$

$$p_{x_{0}x_{1}x_{2}}(x)$$

$$p_{x_{0}x_{1}x_{2}}(x)$$

$$p_{x_{1}x_{2}x_{3}}(x)$$

$$p_{x_{1}x_{2}x_{3}}(x)$$

$$p_{x_{0}x_{1}x_{2}x_{3}}(x)$$

(4.5) – схема Эйткена вычисления интерполяционного многочлена, все слияния производятся по формуле (4.4).

Оценим трудоёмкость вычисления интерполяционного многочлена по формуле Лагранжа и по схеме Эйткена:

1) Формула Лагранжа:

(n+1) слагаемых, в каждом 2n умножений +1 деление +2n (+/-). Итого  $\tau \approx 2n^2$  (умножений)  $+2n^2$  (+/-) +n (делений)

2) Схема Эйткена:

Слияний на первом этапе -(n-1), на втором (n-2), ..., итого (n-1)+(n-2)+...+2+1

В каждом действии 4(+/-) + 2(\*) + 1(/) таким образом,  $\frac{n^2}{2}$  действий.

$$aupprox n^2(y$$
множений) +  $2n^2(+/-)$  +  $\frac{n^2}{2}$ (делений)  $pprox 3.5n^2$ 

С одной стороны в формуле Лагранжа количество операций немного больше, но в схеме Эйткена на порядок больше делений.

1. Главное достоинство схемы Эйткена состоит в том, что вычисления по этой схеме можно оборвать в любой момент, при этом мы получим многочлен, который интерполирует функцию не во всех точках, а лишь в некоторых, но его значение будет близко к И.М. В формуле Лагранжа прерывать вычисления раньше времени нельзя.

2. Схема Эйткена более устойчива к вычислительным погрешностям. Поэтому можно прибавлять по одному узлу интерполяции слева и справа, пока не достигнем заданной точности (универсальный критерий прерывания).

## 2.3 Погрешности интерполяционного многочлена:

При интерполировании возникает два типа погрешностей:

- 1. Погрешность усечения (возникает из-за замены функции на интерполирующий многочлен);
- 2. Погрешность округления (возникает из-за того, что значения интерполируемой функции f в узлах интерполяции известны не точно, а приближенно, с некоторой погрешностью  $\eta$ ) Обычно возникает из-за того, что значения функции в точках  $x_i$  округляются.

Замечание: если мы округляем до 4-х знаков, то погрешность

## <u>Теорема 4.3</u>(оценка $arepsilon_{yceq}$ при интерполировании многочлена):

 $\varepsilon_{yceq}$  с учетом знака для интерполирующего многочлена (остаточный член И.М.)  $r_n(x) = f(x) - p_n(x)$ , может быть вычислен по формуле

$$r_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)...(x-x_n)$$
, где  $f(x)$  - точное значение,  $p_n(x)$  -

приблизительное значение,  $f^{(n+1)}$  - (n+1) производная, c некоторая точка  $\in [(x_0, x_n), x]$  наименьший интервал, который содержит все узлы интерполяции и точку x. Функция f должна быть (n+1) раз непрерывно дифференцируема.

#### <u>Доказательство:</u>

Рассмотрим  $\Pi(x) = (x-x_0)...(x-x_n)$  со старшим коэффициентом, равным 1. Введем функцию  $u(x)=r_n(x)-k\Pi(x)$ , где k некоторая const подобранная специальным образом, для этого фиксируем точку x, не совпадающую ни с одним узлом интерполяции

$$k = \frac{r_n(x)}{\Pi(\overline{x})}$$
 , то есть подбираем  $k$  так, чтобы  $u(\overline{x}) = 0$ 

$$u(x) = f(x) - p_n(x) - \frac{r_n(x)}{\Pi(x)} \Pi(x)$$

$$u(x_i) = f(x_i) - p_n(x_i) - k * 0 = 0$$
  $i = \overline{0, n}$ 

$$u(\bar{x}) = r_n(\bar{x}) - \frac{r_n(\bar{x})}{\Pi(\bar{x})} \Pi(\bar{x}) = 0$$

Следовательно, функция u на интервале  $[x_0, x_n, x]$  обращается в 0, как минимум (n+2) раза. Тогда, ее производная u' обращается в 0, как минимум (n+1) раз. u'' как минимум n раз. Следовательно,  $u^{(n+1)}$  обращается на этом интервале хотя бы один раз в 0, т.е. существует

$$c \in [(x_0, x_n), \bar{x}]$$

$$u^{(n+1)}(c) = 0$$

$$u^{(n+1)}(c) = (f(c) - p_n(c))^{n+1} - k(\Pi(\overline{x}))^{n+1} = f^{(n+1)}(c) - p_n(c)^{n+1} - k(n+1)! = 0$$
  $k(n+1)!$  - т.к. этот многочлен степени  $(n+1)$  от.к.  $(n+1)$  производная равна  $0$ 

$$0$$
 т.к.  $(n+1)$  производная равна  $0$ 

$$f^{(n+1)}(c) = \frac{r_n(x)}{\prod_{i=1}^{n}} (n+1)!$$

$$r_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \Pi(x)$$

Заменим  $\bar{x}$  на x и получим формулу.

#### Следствие 4.4:

$$\varepsilon_{yce^{q_{.}}} = |\mathbf{r}_{n}(\mathbf{x})| \leq \frac{M_{n+1}}{(n+1)!} |(x-x_{0})...(x-x_{n})|$$

$$\varepsilon \partial e \quad M_{n+1} = \max_{\mathbf{x} \in I} |f^{(n+1)}(\mathbf{x})|$$
(4.7)

#### Замечание:

(4.7) – удобна тем, что в ней нет точки c, местоположение которой мы не знаем.

## Пример:

Вычисление интерполяционного многочлена и оценка  $\varepsilon_{\text{усеч}}$  в узлах  $x_0=100$ ,  $x_1=121$ ,  $x_2=144$ ,  $y_0=10$ ,  $y_1=11$ ,  $y_2=12$ .

Найдем  $\sqrt{115}$  , используя интерполяцию по трем точкам.

$$p_2(115) = 10 \frac{(115 - 121)(115 - 144)}{(100 - 121)(100 - 144)} + 11 \frac{(115 - 100)(115 - 144)}{(121 - 100)(121 - 144)} + 12 \frac{(115 - 121)(115 - 100)}{(144 - 100)(144 - 121)} = 10.7228$$

$$\varepsilon_{peaльнoe}$$
=1 · 10<sup>-3</sup>

Оценим 
$$\varepsilon_{\text{усеч}}$$
:  $\varepsilon_{\text{усеч}} \leq \frac{M_3}{3!} \left| (115 - 100)(115 - 121)(115 - 144) = 2 * 10^{-3} \right|$ 

$$f''' = \frac{3}{8}x^{-\frac{5}{2}}$$

$$M_3 = \max \left| \frac{3}{8} x^{-5/2} \right| = \frac{3}{8} 10^{-5}$$

 $\varepsilon_{o\kappa p} = 0$ , т.к. значения функции в узлах интерполяции были известны точно.

$$\varepsilon_{peanbhoe} = 10^{-3} \le \varepsilon_{yceq} + \varepsilon_{okp} = 2*10^{-3}$$

#### Замечание:

Заметим, что с увеличением числа узлов интерполяции  $arepsilon_{\scriptscriptstyle OKD}$  быстро стремится к  $\infty$  , а



Необходимо, чтобы  $\varepsilon_{yceq} + \varepsilon_{o\kappa p}$  были бы малы. Для этого число узлов интерполяции должно быть не слишком маленьким (т.к.  $\varepsilon_{yceq}$  будет велико), но и не слишком большим (т.к.  $\varepsilon_{o\kappa p}$  будет велико).

Если же узлов много, то возьмем ближайшие значения, а остальные откинем.

## 2. 4. Конечные разности.

Формулы Ньютона интерполяционного многочлена.

Конечной разностью функции y=f(x) называется функция  $\Delta f(x) = f(x+h) - f(x)$ , где h- фиксированный шаг. Конечные разности иногда называются конечными разностями первого порядка.

Функция обозначается:  $\Delta^k f(x) = \Delta(\Delta^{k-1} f(x))$ 

Принимаем  $\Delta^0 f(x) = f(x)$ 

Считаем:

$$\Delta^{2} f(x) = \Delta(\Delta f(x)) = \Delta(f(x+h) - f(x)) = f(x+2h) - f(x+h) - (f(x+h) + f(x)) =$$

$$= f(x+2h) - 2f(x+h) + f(x)$$

$$\Delta^{3} f(x) = \Delta(\Delta(\Delta f(x))) = \Delta(f(x+2h) - 2f(x+h) + f(x)) =$$

$$\Delta^{n} f(x) = \sum_{k=0}^{n} C_{n}^{k} f(x+n-k)h$$

## Таблица конечных разностей:

Если функция f(x) задана своими значениями  $y_i$  в равноотстоящих узлах  $x_i$  с шагом h,  $x_i = x_0 + ih$ ,  $i = \overline{0, n}$ , то конечные разности в точках  $x_i$  удобно вычислять с помощью таблицы конечных разностей.

Рассмотрим функцию  $f(x) = 2x^3 - 2x^2 + 3x - 1$ 

 $x_i = x_0 + ih = 0 + i*1, i = \overline{0.5}$ 

| X | Y   | Δy  | $\Delta^2 y$ | $\Delta^3$ y | $\Delta^4 y$ | $\Delta^5 y$ |
|---|-----|-----|--------------|--------------|--------------|--------------|
| 0 | -1  | 3   | 8            | 12           | 0            | 0            |
| 1 | 2   | 11  | 20           | 12           | 0            |              |
| 2 | 13  | 31  | 32           | 12           |              |              |
| 3 | 44  | 63  | 44           |              |              |              |
| 4 | 107 | 107 |              |              |              |              |
| 5 | 214 |     |              |              |              |              |

## Наблюдения:

- 1. Каждый раз длина столбца уменьшается на 1, при n=5 доходим до  $\Delta^5$ .
- 2. Конечная разность похожа на производную, в нашем случае многочлен третей степени, поэтому  $\Delta^3$  не нулевые (следующие нулевые)

## Теорема 4.4 (о связи между конечной разностью и производной):

Если функция f, n – раз непрерывно дифференцируема, то

$$\Delta^n f(x) = h^n f^n(\xi)$$
, где точка  $\xi \in [x_0, x_n]$ 

#### Комментарии:

При n=1 это в чистом виде теорема Лагранжа из курса мат.анализа.

Удобно записывать формулу интерполяционного многочлена через конечные разности (1-ую и 2-ую формулы Ньютона интерполяционного многочлена)

## Первая формула Ньютона ИМ:

(4.9) 
$$P_n(x) = y_0 + \frac{\Delta y_0}{1!} q + \frac{\Delta^2 y_0}{2!} q(q-1) + \dots + \frac{\Delta^n y_0}{n!} q(q-1) \dots (q-n+1)$$
, где  $q = \frac{x - x_0}{h}$ 

## Вторая формула Ньютона ИМ:

$$(4.10) P_n(x) = y_n + \frac{\Delta y_{n-1}}{1!} q + \frac{\Delta^2 y_{n-2}}{2!} q(q+1) + \dots + \frac{\Delta^n y_0}{n!} q(q+1) \dots (q+n-1), \quad \text{ede} \quad q = \frac{x - x_n}{h}$$

у – убывает, т.к. столбец уменьшается.

## Комментарии:

- 1. В 1-ой формуле Ньютона  $\Delta$  берем из нулевой строки таблицы конечных разностей.
- 2. Во 2-ой формуле Ньютона  $\Delta$  берем из нижней побочной диагонали в таблице конечных разностей.
- 3. И 1-ая и 2-ая формулы Ньютона могут быть оборваны, если мы возьмем в 1-ой формуле Ньютона не (n+1) слагаемых, а (k+1) (до  $\Delta^k$ ), то мы получим интерполяционный многочлен, который интерполирует функцию в (k+1) крайних точках (от  $x_0$  до  $x_k$ ).

Аналогичным образом и со 2-ой формулой Ньютона (т.е. возьмем не (n+1) слагаемых, а (k+1) (до  $\Delta^k$ ), то мы получим интерполяционный многочлен, который интерполирует функцию в (k+1) крайних точках (от  $x_n$  до  $x_{n-k}$ )).

4. И в том и в другом случае мы можем оборвать вычисления раньше времени, используя универсальный критерий прерывания.

5. При добавлении одного нового слагаемого, в 1-ой формуле Ньютона мы добавляем один новый узел интерполяции, двигаясь слева направо, а во 2-ой формуле Ньютона – справа налево.

## Погрешности формул Ньютона ИМ:

Т.к. формула Ньютона один из вариантов вычисления ИМ, то формулы для  $\varepsilon_{vcey}$  и  $\varepsilon_{onn}$ можем взять прежние.

$$\varepsilon_{o \kappa p} \leq 2^{n-1} \eta$$

По теореме 4.3:

$$\varepsilon_{\text{yver}} = \frac{f^{(n+1)}(C)}{(n+1)!} (x-x_0)...(x-x_n) = \begin{cases} \frac{x-x_0}{h} = q \\ x-x_0 = hq \\ x-x_1 = h(q-1) \end{cases} = \frac{f^{(n+1)}(C)}{(n+1)!} hq \cdot h(q-1)...h(q-n) = \frac{h^{(n+1)}(C)}{(n+1)!} q(q-1)...(q-n) = \frac{h^{(n+1)}(C)}{(n+1)!} q(q-1)...(q-n) \quad \text{where } q = \frac{x-x_0}{h}$$
 (4.11)

## Комментарии:

Как мы видим из формулы (4.11)  $\varepsilon_{_{vceq}}$  в формуле Ньютона есть ничто иное как первое отбрасываемое слагаемое. Таким образом, при вычислении по формуле Ньютона, мы постоянно оцениваем  $\varepsilon_{vcey}$  и в нужный момент мы можем прервать вычисления.

## 2.5. Центральные формулы для интерполяционного многочлена – формулы Бесселя и Стирлинга.

Формулы Ньютона (4.9), (4.10) – односторонние, а Бесселя и Стирлинга – центральные, т.е. в этих формулах, при добавлении новых слагаемых, узлы интерполяции добавляются справа и слева от точки  ${
m X}$ , поэтому удобны при практическом вычислении.

В формуле Стирлинга интерполяция проходит по (2n+1) точке:

$$(X_{-n}, X_{-n+1}, ... X_0, X_1, ... X_n)$$

$$\begin{split} p_{2n}(x) &= y_0 + \frac{q}{1!} \frac{\Delta y_{-1} + \Delta y_0}{2} + \frac{q^2}{2!} \Delta^2 y_{-1} + \frac{q(q^2 - 1^2)}{3!} \frac{\Delta^3 y_{-2} + \Delta^3 y_{-1}}{2} + \frac{q^2(q^2 - 1^2)}{4!} \Delta^4 y_{-2} + \\ &+ \frac{q(q^2 - 1^2)(q^2 - 2^2)}{5!} \frac{\Delta^5 y_{-3} + \Delta^5 y_{-2}}{2} + \frac{q(q^2 - 1^2)(q^2 - 2^2)}{6!} \Delta^6 y_{-3} + \ldots + \\ &+ \frac{q(q^2 - 1^2)(q^2 - 2^2) \ldots (q^2 - (n - 1)^2)}{(2n - 1)!} \frac{\Delta^{2n - 1} y_{-n} + \Delta^{2n - 1} y_{-n + 1}}{2} + \frac{q(q^2 - 1^2) \ldots (q^2 - (n - 1)^2)}{(2n)!} \Delta^{2n} y_{-n}, \\ &= \partial e \quad q = \frac{x - x_0}{h} \\ &= \Delta \theta \text{ ормуле Бесселя интерполяция проходит по } (2n + 2) \text{ точкам:} \\ &= (x_{-n}, x_{-n + 1}, \ldots x_0, x_1, \ldots x_n, x_{n + 1}) \end{split}$$

$$(x_{-n}, x_{-n+1}, \dots x_0, x_1, \dots x_n, x_{n+1})$$

$$p(x) = \frac{y_0 + y_1}{2} + p\Delta y_0 + \frac{p^2 - (1/2)^2}{2!} \frac{\Delta^2 y_{-1} + \Delta^2 y_0}{2} + \frac{p(p^2 - (1/2)^2)}{3!} \Delta^3 y_{-1} + \frac{(p^2 - (1/2)^2)(p^2 - (3/2)^2)}{4!} \Delta^4 y_{-2} + \Delta^4 y_{-1} + \frac{p(p^2 - (1/2)^2)(p^2 - (3/2)^2)}{5!} \Delta^5 y_{-2} + \frac{(p^2 - (1/2)^2)(p^2 - (3/2)^2)(p^2 - (5/2)^2)}{6!} \Delta^6 y_{-3} + \Delta^6 y_{-2} + \frac{p(p^2 - (1/2)^2)(p^2 - (3/2)^2)(p^2 - (5/2)^2)}{7!} \Delta^7 y_{-3} + \frac{(p^2 - (1/2)^2)(p^2 - (3/2)^2)...(p^2 - ((2n-1)/2)^2)}{2n!} \Delta^{2n} y_{-n} + \Delta^{2n} y_{-n+1} + \frac{p(p^2 - (1/2)^2)(p^2 - (3/2)^2)...(p^2 - ((2n-1)/2)^2)}{2n!} \Delta^{2n+1} y_{-n}$$

$$(4.13)$$

$$p = \frac{(x - (x_0 + x_1)/2)}{h}$$

## Комментарии:

В формулах Бесселя и Стирлинга слагаемые добавляются попарно, при добавлении новой пары, добавляются два новых узла интерполяции: 1 слева и 1 справа, поэтому вычисления по этим формулам можно обрывать раньше времени.

## Сравнительный анализ различных формул вычисления ИМ.



Так происходит интерполяция по 1-ой формуле Ньютона, при добавлении слагаемого, добавляется 1 узел интерполяции (слева направо).



Вторая формула Ньютона добавляется по одному узлу – справа налево.





Формула Бесселя.

Достоинство всех картинок объединяет в себе схема Эйткена – в ней узлы интерполяции мы можем добавлять как угодно.

## П.З Интерполяция кубическими сплайнами.

## 3.1. Определение кубического Сплайна.

Кубическим сплайном на сетке  $x_0, x_1, ... x_n$  называется функция s(x), которая обладает следующими свойствами:

- 1. на каждом интервале  $[x_{i-1} \ x_i]$ , где  $1 \le i \le n$ , функция s(x) является кубическим многочленом (на каждом интервале свой многочлен).
- 2. на всем интервале  $[x_0, x_n] s(x)$  дважды непрерывно дифференцируемая функция
- 3. на краях интервала вторая производная обращается в ноль (краевое условие).  $s''(x_0)=s''(x_n)=0$
- 3'. для периодических кубических сплайнов.  $s''(x_0)=s''(x_n)=0$ ;  $s'(x_0)=s'(x_n)=0$

<u>Исследуем вопрос:</u> любую ли функцию можно проинтерполировать кубическим сплайном и всегда ли это можно сделать единственным образом?

Имеем п участков интерполяции, на каждом — свой кубический многочлен, который задается четырьмя коэффициентами. Итого, имеем 4n коэффициентов, которые нам необходимо найти, для этого нам потребуется столько же уравнений (т.е. 4n. уравнений).

Исходя из условий кубического сплайна:

(подсчет уравнений, которых нам дают условия кубического сплайна) n участков  $[x_{i-1}, x_i]$ , на границах должны выполнятся условия интерполяции  $s(x_{i-1}) = s_i(x_{i-1}) = y_{i-1}$ ;  $s(x_i) = s_i(x_i) = y_i$  - на каждом участке 2 условия, итого получаем 2n

Вспомним второе условие кубического сплайна, т.е. наша функция дважды непрерывно дифференцируема. Внутри участков это, очевидно, выполняется (т.к.  $s = s_i$  - кубический многочлен). Необходимо проверить непрерывность s, s и s только лишь на границах интервалов, т.е. рассмотрим точку  $x_i$  - в ней стыкуются два интервала:  $[x_{i-1}, x_i]$  и  $[x_i, x_{i+1}]$  соответственно кубические сплайны:  $s_i$  и  $s_{i+1}$ 

Предел слева должен быть равен пределу справа для s, s' и s", т.е.

 $s_i(x_i) = s_{i+1}(x_i)$  - не пишем т.к. оно уже было посчитано в условии интерполяции.

$$S'_{i}\left(x_{i}\right)=S'_{i+1}\left(x_{i}\right)$$

$$s''_{i}(x_{i}) = s''_{i+1}(x_{i})$$

+ два условия из пункта 3. Итого, 4*n* условий.

## 3.2. Свойства кубического Сплайна <u>Теорема 4.5:</u>

Среди всех функций, интерполирующих функцию f в точках  $x_i$ , где  $i = \overline{0,n}$  именно кубический сплайн обладает наименьшей энергией изгиба, т.е. для него достигается

минимум интеграла энергии. 
$$I(y) = \int_{x_0}^{x_n} (y''(x))^2 dx$$
 - интеграл энергии.

#### Следствие 4.6

Из математического анализа известно, что радиус кривизны функции y(x):

$$R(x) = \left[\frac{y''(x)}{(1+(y'(x)^2))^{3/2}}\right]^{-1} = k(x)^{-1} (k(x) -$$
кривизна изгиба). Как известно из физики,

энергия изгиба гибкой линейки, принявшей очертание графика функций y(x), вычисляется

по формуле: 
$$I(y) = \int_{X_0}^{X_n} \frac{\gamma(x)k^2(x)}{2} dx = c \int_{X_0}^{X_n} k^2(x) dx = c \int_{X_0}^{X_n} \frac{(y")^2}{(1+(y')^2)^3} dx \approx c \int_{X_0}^{X_n} (y")^2 dx$$

γ - коэффициент жесткости линейки

(предположим  $y' \approx 0$ )

Таким образом, энергия изгиба линейки 
$$\approx c \int_{x_0}^{x_n} (y'')^2 dx = I(y)$$
.

Как мы знаем из физики, любая физическая система, в том числе и линейка, стремится минимизировать свою энергию, следовательно, гибкая линейка, пропущенная через точки  $(x_i, y_i)$   $i = \overline{0,n}$ , (теорема 4.5) примет очертание кубического сплайна. Отсюда и происходит само слово сплайн (spline — рейка, которую используют чертежники).

Очевидно, что кривизна линейки есть функция непрерывная, следовательно, s, s' и s" непрерывны — это условие 2 из определения кубического сплайна. Также понятно, что на краях кривизна линейки будет нулевая — отсюда берется условие 3.

#### 3.3. Формулы для вычисления кубического сплайна.

С одной стороны мы можем составить 4n уравнений для 4n коэффициента кубического многочлена (см. пункт 3.1).

На практике подобный подход не используется, выгоднее идти другим путём (уравнений и неизвестных будет меньше).

## Другой вариант вычисления кубического сплайна.

Введём следующие моменты:  $s''(x_i)=M_i$   $i=\overline{0,n}$ , с помощью их и будем вычислять кубический сплайн.

$$M_0 = M_n = 0$$
 из 3-го условия.

Т.к. s(x) кусочно-кубический многочлен, то s''(x) – кусочно-линейная функция, которая при этом непрерывна.



Очевидно, что на *i*-ом участке  $x \in [x_{i-1}, x_i]$ 

$$S_{i}(x) = \frac{x - x_{i}}{x_{i-1} - x_{i}} M_{i-1} + \frac{x - x_{i-1}}{x_{i} - x_{i-1}} M_{i} = M_{i-1} \frac{x_{i} - x}{h_{i}} + M_{i} \frac{x - x_{i-1}}{h_{i}}, \quad h_{i} = x_{i} - x_{i-1} \quad (4.14)$$

 $h_i$  - длина i-ого интервала.

Чтобы получить  $s_i(x)$  проинтегрируем  $s_i$  ''(x) дважды:

$$s_{i}(x) = -M_{i-1} \frac{(x_{i} - x)^{2}}{2h_{i}} + M_{i} \frac{(x - x_{i-1})^{2}}{2h_{i}} + c_{1}$$

$$s_i''(x) = M_{i-1} \frac{(x_i - x)^3}{6h} + M_i \frac{(x - x_{i-1})^3}{6h} + c_1 x + c_2$$

Осталось только подставить константы интегрирования -  $c_1$  и  $c_2$ . Для этого необходимо вспомнить условия интерполяции на краях участков.

$$\begin{cases} s_i(x_{i-1}) = -y_{i-1} \\ s_i(x_i) = y_i \end{cases}$$

Подставив эти условия в формулу для  $s_i$ , получим 2 уравнения для констант  $c_1$  и  $c_2$ , решив систему, подставим в формулу и получим:

$$s_{i}(x) = M_{i-1} \frac{(x_{i} - x)^{3}}{6h_{i}} + M_{i} \frac{(x - x_{i-1})^{3}}{6h_{i}} + \left(y_{i-1} - \frac{M_{i-1}h_{i}^{2}}{6}\right) \frac{x_{i} - x}{h_{i}} + \left(y_{i} - \frac{M_{i}h_{i}^{2}}{6}\right) \frac{x - x_{i-1}}{h_{i}}$$
(4.15)

Теперь для расчета кубического сплайна необходимо найти неизвестные моменты  $M_i$ .

Мы уже знаем  $M_0 = M_n = 0$ , остается найти моменты  $M_1,...,M_{n-1}$ . Для этого необходимо ограничения 1,2,3, налагаемые на кубический сплайн.

Условие интерполяции использовали при нахождении констант  $c_1$  и  $c_2$  (оно же непрерывность s). Непрерывность s" мы тоже уже использовали, когда писали формулы для кусочно-линейной функции s". Остается использовать условие непрерывности s, т.е.

$$s'_{i}(x_{i}) = s'_{i+1}(x_{i})$$
  $i = \overline{1, n+1}$  (4.16)

Получим (n-1) недостающее уравнение для (n-1) неизвестного (для  $M_1,...,M_{n-1}$ ).

Как нетрудно убедиться, эти условия превращаются в СЛАУ (4.17) для нахождения M:

$$CM = d$$
 (4.17), где

$$M = egin{pmatrix} M_1 \\ M_2 \\ \dots \\ M_{n-1} \end{pmatrix}$$
 - столбец неизвестных.

$$C = \begin{pmatrix} \frac{h_1 + h_2}{3} & \frac{h_2}{6} & 0 & \dots & 0 \\ \frac{h_2}{6} & \frac{h_2 + h_3}{3} & \frac{h_3}{6} & \dots & 0 \\ 0 & \frac{h_3}{6} & \frac{h_3 + h_4}{3} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \frac{h_{n-1}}{6} & \frac{h_{n-1} + h_n}{3} \end{pmatrix} \quad \text{- квадратная матрица.}$$

квадратная трёх диагональная матрица.

Элементы матрицы С вычисляются по формуле:

$$C_{ij} = egin{cases} rac{h_i + h_{i+1}}{3} & i = j & \ rac{h_{i+1}}{6} & j = i+1 & \ rac{h_i}{6} & j = i-1 & \ 0 & |i-j| > 1 \end{cases}$$
 (главная диагональ)

$$d_i = rac{y_{i+1} - y_i}{h_{i+1}} - rac{y_i - y_{i-1}}{h_i}$$
 ,  $(i = \overline{1, n-1})$  - вектор правых частей.

Таким образом, для вычисления кубического сплайна необходимо:

- 1. Составить СЛАУ по формуле (4.17) (размером (n-1)x(n-1))
- 2. Решить эту СЛАУ, находя моменты  $M_1,...,M_{n-1}$ , добавить к ним  $M_0=M_n=0$ .
- 3. Найдя моменты  $M_i$ , подставить их в формулу (4.15) для нахождения кубического сплайна (перед этим нужно найти i-номер интервала, в котором лежит точка x, т.е.  $x_{i-1} \le x \le x_i$ ).

#### Замечание:

При интерполяции кубическими сплайнами сетка не обязана быть равностоящей, как требуется, например, в формуле Ньютона И.М., но весьма желательно  $\frac{h_{\max}}{h_{\min}} \leq 4$