學號:B05502145 系級: 電機三 姓名:林禹丞

1. (2%) 請說明你實作的 CNN model,其模型架構、訓練參數和準確率為何?並請用與上述 CNN 接近的參數量,實做簡單的 DNN model,同時也說明其模型架構、訓練參數和準確率為何?並說明你觀察到了什麼?

(Collaborators: None)

CNN 的模型架構:

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	46, 46, 64)	640
batch_normalization_1 (Batch	(None,	46, 46, 64)	256
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None,	23, 23, 64)	0
dropout_1 (Dropout)	(None,	23, 23, 64)	0
conv2d_2 (Conv2D)	(None,	21, 21, 128)	73856
batch_normalization_2 (Batch	(None,	21, 21, 128)	512
<pre>max_pooling2d_2 (MaxPooling2</pre>	(None,	11, 11, 128)	0
dropout_2 (Dropout)	(None,	11, 11, 128)	0
conv2d_3 (Conv2D)	(None,	9, 9, 512)	590336
batch_normalization_3 (Batch	(None,	9, 9, 512)	2048
max_pooling2d_3 (MaxPooling2	(None,	5, 5, 512)	0
dropout_3 (Dropout)	(None,	5, 5, 512)	0
conv2d_4 (Conv2D)	(None,	3, 3, 512)	2359808
batch_normalization_4 (Batch	(None,	3, 3, 512)	2048
max_pooling2d_4 (MaxPooling2	(None,	2, 2, 512)	0
dropout_4 (Dropout)	(None,	2, 2, 512)	0
flatten_1 (Flatten)	(None,	2048)	0
dense_1 (Dense)	(None,	512)	1049088
batch_normalization_5 (Batch	(None,	512)	2048
dropout_5 (Dropout)	(None,	512)	0
dense_2 (Dense)	(None,	512)	262656
	(NOITE)		

batch_normalization_6 (Batch	(None,	512)	2048
dropout_6 (Dropout)	(None,	512)	0
dense_3 (Dense)	(None,	7)	3591

Total params: 4,348,935
Trainable params: 4,344,455
Non-trainable params: 4,480

DNN 的模型架構:

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	512)	1180160
batch_normalization_1 (Batch	(None,	512)	2048
dropout_1 (Dropout)	(None,	512)	0
dense_2 (Dense)	(None,	512)	262656
batch_normalization_2 (Batch	(None,	512)	2048
dropout_2 (Dropout)	(None,	512)	0
dense_3 (Dense)	(None,	512)	262656
batch_normalization_3 (Batch	(None,	512)	2048
dropout_3 (Dropout)	(None,	512)	0
dense_4 (Dense)	(None,	1024)	525312
batch_normalization_4 (Batch	(None,	1024)	4096
dropout_4 (Dropout)	(None,	1024)	0
dense_5 (Dense)	(None,	1024)	1049600
batch_normalization_5 (Batch	(None,	1024)	4096
dropout_5 (Dropout)	(None,	1024)	0
dense_6 (Dense)	(None,	1024)	1049600
batch_normalization_6 (Batch	(None,	1024)	4096
dropout_6 (Dropout)	(None,	1024)	0
dense_7 (Dense)	(None,	7)	7175

Total params: 4,355,591
Trainable params: 4,346,375

CNN 準確率:

Private Score	Public Score
0.69267	0.68821

DNN 準確率:

Private Score	Public Score
0.41264	0.43466

我們可以發現儘管 CNN 和 DNN 參數量差不多, DNN 在 training set 上的準確率 很明顯比較低。

這個問題的主要原因是因為 CNN 可以抽取 feature,例如人的臉偏左邊和偏右邊一樣可以被 CNN 抽出 feature,而 DNN 是以每個 pixel 硬記的概念去 train,導致 DNN 沒辦法在影像辨識中有良好的結果。

2. (1%) 承上題,請分別畫出這兩個 model 的訓練過程 (i.e., loss/accuracy v.s. epoch) (Collaborators: None)

CNN & DNN 的 training accuracy v.s. epoch.:

CNN & DNN 的 training loss v.s. epoch.:

3. (1%) 請嘗試 data normalization, data augmentation,說明實作方法並且說明實行前後對準確率有什麼樣的影響? (Collaborators: None)

Model1(no normalize & no augmentation):

Model2 (normalize & no augmentation):

Model3: normalize & augmentation

由上面三張圖我們可以發現,有無 normalize 對 training 和準確率影響不大。而 data augmentation 對準確率有大量的提升(epoch 到 300 之後可以發現和 Model1 準確率可以 差到 5%)

關於 normalize 的實作方法,我們直接將 48*48*1 的 nparray 除以 255

關於 data augmentation 的實作方法,我們利用 keras 的 ImageDataGenerator,可以隨機對圖片進行旋轉、縮放、翻轉等。

4. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析]

(Collaborators: None)

答:

由 confusion matrix 可以看出:傷心(Sad)很容易被便認為中立(Neutral)和;而開心 (Happy)則比較少被誤認為其他類別