

Assignment problem for MAS

Siarhei Dymkou

Temasek Laboratories

National University of Singapore

T-Lab Building 5A, Engineering Drive 1,05-02 Singapore 117411

Introduction

The pool of UAVs would loiter above the area of operations and await service requests. Upon receiving a request, the best-suited UAV is deployed to provide the service to the user. At the end of serving the request, the UAV would return to the pool to serve another request:

Request info:

- Locations
- Number UAVs
- Time windows
- Duration

Introduction

Starting conditions: The MAS is located at airbases and receives multiple requests for service including:

Location to visit;

- Latest time of 1-st visit;
- Number of air-vehicles required;
- Minimum duration per visit;

Earliest time of 1-st visit;

Maximum interval between visits.

Mission Objective:

Air-vehicle(s) to be assigned to request and the corresponding paths to take to the service request; (variations to requests with minimal change if it cannot be met.)

That:

Maximize the number of service requests that can be serviced.

Constraints:

Air-vehicle performance and dynamics.

Benchmark problem

Benchmark problemAssignment problem

- Heuristics approach
- Optimization approach LP methods, MIP methods, Graph network methods, Dynamical programming methods, and other.

Dynamical assignment (objectives)

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t + \Delta - h_i), i = 1, ..., k;$$

$$b_j(t + \Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t - h_i + t_{ij}) + \sum_{i=1}^k x_{ij}(t - t_{ij}), \ j = 1, ..., l;$$

$$a_i(t) + \sum_{j=1}^{l} x_{ij}(t) = a_i, \ i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^{k} x_{ij}(t - t_{ij}) = b_j, \ j = 1, ..., l.$

- 1. The total service time for multiple zones
- 2. The total number of UAVs "circles": $J_2(x) = \sum_{t=0}^{\nu} x_{ij}(t)$
- 3. The total unobservable time for multiple zones: $J_3(x) = H J_1(x)$

ynamical assignment (constraints)

$$J_1(x) = \sum_{t=0}^{\nu} x_{ij}(t)(h_i - 2t_{ij}) \to \max_{x_{ij}(t), t=0, \Delta, 2\Delta, \dots, \nu}$$

$$a_i(t + \Delta) = a_i(t) - \sum_{j=1}^{l} x_{ij}(t) + \sum_{j=1}^{l} x_{ij}(t + \Delta - h_i), i = 1, ..., k;$$

$$b_j(t+\Delta) = b_j(t) - \sum_{i=1}^k x_{ij}(t-h_i+t_{ij}) + \sum_{i=1}^k x_{ij}(t-t_{ij}), \ j=1,...,l;$$

$$a_i(t) + \sum_{j=1}^l x_{ij}(t) = a_i, i = 1, ..., k;$$
 $b_j(t) + \sum_{i=1}^k x_{ij}(t - t_{ij}) = b_j, j = 1, ..., l.$

The number of UAYs at A_i and at B_j at the next moment $t + \Delta$ is composed by:

- UAVs at the previous moment t
- UAVs that are returned during the period $[t,t+\Delta]$
- →UAVs were send to zones at the moment t
- UAV working at zone at moment t with sufficient flight h;
- UAVs that are reached zone in $[t, t + \Delta];$
 - UAVs that should leave

 $Hard\ to\ solve$

Formal problem statement

3 airbases located:

- Changi(3);
- Jurong West(3);
- Woodlands(1).

Service requests from:

- Raffles Place(2);
- Jurong Island(2);
- Sentosa(3).

Notations:

 $t_{B_i}^f; t_{B_i}^l$ - earliest and latest time for visit zone $B_i, i=1,2,3$

 c_{ij} -the benefit of sending the UAV from i-th aerobase to j-th zone. In particular, this benefit can be given in the form $c_{ij}=rac{d_{ij}}{v_{ij}}$ that means the flight time from $A_i o B_j$:

	B_1	B_2	B_3
A_1	433	1000	600
A_2	533	300	566
A_3	700	666	766

LP assignment problem

$$F = \sum_{i=1}^{k} \sum_{j=1}^{l} c_{ij} x_{ij} \to \min_{x_{ij}}$$

$$\sum_{i=1}^{3} x_{ij} = b_j, \quad j = 1, 2, 3$$

$$\sum_{j=1}^{3} x_{ij} = a_i, \ i = 1, 2, 3$$

$$\sum_{i=1}^{k} a_i = \sum_{j=1}^{l} b_j, x_{ij} \ge 0, x_{ij} \in \mathbb{N}.$$

The most of methods include the following basic steps:

- **D** To find initial plan x_{ij} ;
- Check optimality condition for that plan;
- Construct the improved plan in case of nonoptimality.

Optimal solution

	B_1	B_2	B_3	a_i
A_1	2	√ 0	1	3
A_2	√ 0	2	1	3
$\overline{A_3}$	√ 0	√ 0	1	1
b_j	2	2	3	

$$F = \sum_{i=1}^{k} \sum_{j=1}^{l} c_{ij} x_{ij} \to \min_{x_{ij}}$$

$$\sum_{i=1}^{3} x_{ij} = b_j, \quad j = 1, 2, 3$$

$$\sum_{j=1}^{3} x_{ij} = a_i, \quad i = 1, 2, 3$$

$$\sum_{i=1}^{k} a_i = \sum_{j=1}^{l} b_j, x_{ij} \ge 0, x_{ij} \in \mathbb{N}.$$

Optimal solution

(F = 56, 6 minutes):

$$x_{11} = 2; x_{13} = 1;$$

$$x_{22} = 2; x_{23} = 1;$$

$$x_{33} = 1.$$

Timing constraints(case 1)

$$F = \sum_{i=1}^{k} \sum_{j=1}^{l} c_{ij} x_{ij} \to \min_{x_{ij}}$$

$$\sum_{i=1}^{3} x_{ij} = b_j, \quad j = 1, 2, 3$$

$$\sum_{j=1}^{3} x_{ij} = a_i, \quad i = 1, 2, 3$$

$$\sum_{i=1}^{k} a_i = \sum_{j=1}^{l} b_j, x_{ij} \ge 0, x_{ij} \in \mathbb{N}.$$

Time "windows":

$$\begin{split} t_{B_1}^f &= 650sec, \quad t_{B_1}^l = 1650sec; \\ t_{B_2}^f &= 1050sec, \quad t_{B_2}^l = 2050sec; \\ t_{B_3}^f &= 1250sec, \quad t_{B_3}^l = 2250sec. \end{split}$$

Solution procedure

Time "windows":

$$\begin{split} t_{B_1}^f &= 650sec, \quad t_{B_1}^l = 1650sec; \\ t_{B_2}^f &= 1050sec, \quad t_{B_2}^l = 2050sec; \\ t_{B_3}^f &= 1250sec, \quad t_{B_3}^l = 2250sec. \end{split}$$

Divide our problem by considering the assignments problem on the following 5 periods:

Period1: [650, 1050] - 1 problem for B_1 to assign 2 UAVs (i.e. $B_1(2)$);

Period2: [1050, 1250] - 2 problems for B_1 and B_2 (4 UAVs – $B_1(2)$, $B_2(2)$);

Period3: [1250, 1650] - 3 problems for $B_1(2)$, $B_2(2)$ and $B_3(3)$;

Period4: [1650, 2050] - 2 problems for $B_2(2)$ and $B_3(3)$;

Period5 : [2050, 2250] - 1 problem for zone $B_3(3)$.

Solution

Time schedular for each UAV in the table form:

		B_1		B_2		B_3	
		Departure time (D/T)	Arrival time (A/T)	D/T	A/T	D/T	A/T
A_1	UAV 1	217	2083	-		-	-
	UAV 2	217	2083	1	1	1	-
	UAV 3	-	-	1	1	650	2850
A_2	UAV 4	-	-	750	2350	1	-
	UAV 5	-	-	750	2350	1	-
	UAV 6	-	-	-	-	684	2816
A_3	UAV 7	-	-	-	-	484	3016

The total service time performed by all UAVs takes an optimal value

$$T^{service} = \sum_{i=1}^{7} h_i - 2 \min_{x_{ij}} \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{d_{ij}}{v_{ij}} x_{ij} - \sum_{i=1}^{7} T_i^{zone} =$$

$$= 7 * 3600 - 2 * 3398 - 7 * 1000 sec.$$
(1)

Flight schedular plan

$$F = \sum_{i=1}^{k} \sum_{j=1}^{l} c_{ij} x_{ij} \to \min_{x_{ij}}$$

$$\sum_{i=1}^{3} x_{ij} = b_j, \quad j = 1, 2, 3$$

$$\sum_{j=1}^{3} x_{ij} = a_i, \quad i = 1, 2, 3$$

$$\sum_{j=1}^{k} a_i = \sum_{j=1}^{l} b_j, x_{ij} \ge 0, x_{ij} \in \mathbb{N}.$$

$$B = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{c} x = \\ (x_{11}, x_{12}, x_{13}, ..., x_{32}, x_{33}) \\ c = \\ (c_{11}, c_{12}, c_{13}, ..., c_{32}, c_{33}) \\ d = (a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}) \\ \end{array}$$

$$x = (x_{11}, x_{12}, x_{13}, ..., x_{32}, x_{33})$$

$$c = (c_{11}, c_{12}, c_{13}, ..., c_{32}, c_{33})$$

$$d = (c_{11}, c_{12}, c_{13}, ..., c_{32}, c_{33})$$

$$c^T x \to \min x$$

$$Bx = d$$

$$x \ge 0$$

$$B = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$C = (c_{11}, c_{12}, c_{13}, ..., c_{32}, c_{33})$$

$$d = (a_1, a_2, a_3, b_1, b_2, b_3)$$

$$F = c^T x \to \max$$

$$Bx = a$$

$$f_{*i} \le x_i \le f_i^*,$$

$$i = 1, 2, ..., k, k + 1, ..., k + r.$$

$$I = \{1, 2, ..., m\}, \quad J = \{1, 2, ..., k+r\}, \quad x = (x_1, ..., x_{k+r}) = x(J) = (x_j, j \in J),$$

$$c = (c_1, ..., c_{k+r}) = c(J) = (c_j, j \in J), \quad a = \{a_i, ..., a_m\} = a(I) = (a_i, i \in I)$$

$$f^* = (d_1^*, ..., d_{k+r}^*) = f^*(J) = (f_j^*, j \in J), \quad f_* = (d_{1*}, ..., d_{(k+r)*}) = f_*(J) = (f_{j*}, j \in J),$$

$$B = \begin{pmatrix} b_{11} & \dots & b_{1(k+r)} \\ \dots & \dots & \dots \\ b_{m1} & \dots & b_{m(k+r)} \end{pmatrix} = B(I,J) = \begin{pmatrix} b_{i,j}, & i \in I, \\ & j \in J \end{pmatrix}$$

$$F = c^T x \rightarrow \max$$

$$Bx = a$$

$$f_{*i} \le x_i \le f_i^*,$$

$$i = 1, 2, ..., k, k + 1, ..., k + r.$$

Denote by $X = \{x \in R^{k+r} : Bx \neq a, f_* \le x \le f^* \}$

 $\forall x \in X$ are called the feasible points, and the set X- is admissible set.

 $x^o \in X$ optimal solution if the objective function achieves the maximal value at this point.

From index set I of matrix B(I,J) select \forall subset I_{supp} ,

```
From index set I of matrix B(I, J) select \forall subset I_{supp},
From index set J of matrix B(I, J) select \forall subset J_{supp}. \Downarrow
```

From index set I of matrix B(I,J) select \forall subset I_{supp} , From index set J of matrix B(I,J) select \forall subset J_{supp} . \Downarrow the number $|I_{supp}| = |J_{supp}|$

Then by pair

$$K_{supp} = \{I_{supp}, J_{supp}\}$$

$$B_{supp} = B(I_{supp}, J_{supp})$$

From index set I of matrix B(I,J) select \forall subset I_{supp} , From index set J of matrix B(I,J) select \forall subset J_{supp} . $\Downarrow the \ number \ |I_{supp}| = |J_{supp}|$

Then by pair

$$K_{supp} = \{I_{supp}, J_{supp}\} - Support$$

$$B_{supp} = B(I_{supp}, J_{supp}) - Support \ matrix(\det B_{supp} \neq 0)$$

From index set I of matrix B(I,J) select \forall subset I_{supp} , From index set J of matrix B(I,J) select \forall subset J_{supp} . \Downarrow the number $|I_{supp}| = |J_{supp}|$

What does the support means physically?

Then by pair

$$K_{supp} = \{I_{supp}, J_{supp}\} - Support$$

$$B_{supp} = B(I_{supp}, J_{supp}) - Support \ matrix(\det B_{supp} \neq 0)$$

Introduce the vector ("the intensity of pump") z = Bx, where

$$B = \begin{pmatrix} B_{supp} & B_{supp,N} \\ B_{N,supp} & B_{N,N} \end{pmatrix}$$

$$B_{supp} = B(I_{supp}, J_{supp}),$$

$$B_{supp,N} = B(I_{supp}, J_N), B_{N,supp} = B(I_N, J_{supp})$$

$$B_{N,N} = B(I_N, J_N), I_N = I \setminus I_{supp}.$$

then support components $z(I_{supp})$ of vector z:

$$z_{supp} = B_{supp} x_{supp} + B_{supp,N} x_N$$

$$\downarrow since \det B_{supp} \neq 0$$

$$x_{supp} = B_{supp}^{-1} z_{supp} + B_{supp}^{-1} B_{supp,N} x_N$$

support component of the feasible point $x_{supp} = x(J_{supp})$

$$B = \begin{pmatrix} B_{supp} & B_{supp,N} \\ B_{N,supp} & B_{N,N} \end{pmatrix}$$

$$B_{supp} = B(I_{supp}, J_{supp}),$$

$$B_{supp} = B(I_{supp}, J_{supp}),$$

$$B_{supp}, N = B(I_{supp}, J_N), B_{N,supp} = B(I_N, J_{supp})$$

$$B_{N,N} = B(I_N, J_N), \ I_N = I \setminus I_{supp}.$$
 components $z(I_{supp})$ of vector z :

$$B_{N,N}=B(I_N,J_N),\ I_N=I\smallsetminus I_{supp}.$$

then support components (I_{supp}) of vector z:

$$z_{supp} = B_{supp} x_{supp} + B_{supp,N} x_N$$

$$\Downarrow$$
 since $\det B_{supp} \neq 0$

$$z_{supp} = B_{supp} x_{supp} + B_{supp,N} x_{N}$$

$$\downarrow since \det B_{supp} \neq 0$$

$$x_{supp} = B_{supp}^{-1} z_{supp} + B_{supp}^{-1} B_{supp,N} x_{N}$$

non-support component of the feasible point $x_N = x(J_N)$

Support- is pair of indices sets $K(I_{supp}, J_{supp})$, such that:

 $\forall z_{supp}$

 $\forall x_N$

 \Downarrow we can find the support component x_{supp} of \forall feasible point $x=(x_{supp},x_N)$ such that :

$$z_{supp} = B_{supp} x_{supp} + B_{supp,N} x_N$$

holds.

We can realize the support general constraints Bx = zusing Support (namely support component x_{supp} of feasible point)

Support- is pair of indices sets $K(I_{supp}, J_{supp})$, such that:

$$\forall z_{supp} \\ \forall x_N$$

$$z_{supp} = B_{supp} x_{supp} + B_{supp,N} x_N$$

holds.

The pair
$$(x, K_{supp})$$
 - support feasible (SF) point $\forall x, \forall K_{supp}$

Support- is pair of indices sets $K(I_{supp}, J_{supp})$, such that:

$$\forall z_{supp}$$
 $\forall x_N$

 \Downarrow we can find the support component x_{supp} of \forall feasible point $x=(x_{supp},x_N)$ such that :

$$z_{supp} = B_{supp} x_{supp} + B_{supp,N} x_N$$

holds.

Increment formula

Let (x, K_{supp}) arbitrary SF point.

Consider another feasible point \bar{x} .

We set $\Delta x = \bar{x} - x$ and calculate the increment of the objective value:

$$\Delta F(x) = c^T \bar{x} - c^T x = c^T \Delta x$$

Increment formula

Let (x, K_{supp}) arbitrary SF point.

Consider another feasible point \bar{x} .

We set $\Delta x = \bar{x} - x$ and calculate the increment of the objective value:

$$\Delta F(x) = c^T \bar{x} - c^T x = c^T \Delta x$$

↓ construct the convenient formula for increment calculation.

Consider the support components of the "intensity vector" z_{supp} on two feasible points:

 \boldsymbol{x}

 \bar{x}

Let (x, K_{supp}) arbitrary SF point.

Consider another feasible point \bar{x} .

We set $\Delta x = \bar{x} - x$ and calculate the increment of the objective value:

$$\Delta F(x) = c^T \bar{x} - c^T x = c^T \Delta x$$

U construct the convenient formula for increment calculation.

Consider the support components of the "intensity vector" z_{supp} on two feasible points:

$$z_{supp} = B_{supp} x_{supp} + B_{supp,N} x_N$$

$$\bar{z}_{supp} = B_{supp}\bar{x}_{supp} + B_{supp,N}\bar{x}_N$$

Let (x, K_{supp}) arbitrary SF point.

Consider another feasible point \bar{x} .

We set $\Delta x = \bar{x} - x$ and calculate the increment of the objective value:

$$\Delta F(x) = c^T \bar{x} - c^T x = c^T \Delta x$$

Consider the support components of the "intensity vector" z_{supp} on two feasible points:

$$\Delta z_{supp} = \bar{z}_{supp} - z_{supp} = B_{supp} \Delta x_{supp} + B_{supp,N} \Delta x_N$$

Let (x, K_{supp}) arbitrary SF point.

Consider another feasible point \bar{x} .

We set $\Delta x = \bar{x} - x$ and calculate the increment of the objective value:

$$\Delta F(x) = c^T \bar{x} - c^T x = c^T \Delta x$$

↓ construct the convenient formula for increment calculation.

Consider the support components of the "intensity vector" z_{supp} on two feasible points:

$$\Delta z_{supp} = \bar{z}_{supp} - z_{supp} = B_{supp} \Delta x_{supp} + B_{supp,N} \Delta x_N$$

$$\Delta x_{supp} = B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_N$$

Let (x, K_{supp}) arbitrary SF point.

Consider another feasible point \bar{x} .

We set $\Delta x = \bar{x} - x$ and calculate the increment of the objective value:

$$\Delta F(x) = c^T \bar{x} - c^T x = c^T \Delta x$$

Consider the support components of the "intensity vector" z_{supp} on two feasible points:

$$\Delta z_{supp} = \bar{z}_{supp} - z_{supp} = B_{supp} \Delta x_{supp} + B_{supp,N} \Delta x_N$$

$$\Delta x_{supp} = B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_N$$

Let (x, K_{supp}) arbitrary SF point.

Consider another feasible point \bar{x} .

We set $\Delta x = \bar{x} - x$ and calculate the increment of the objective value:

$$\Delta F(x) = c^T \bar{x} - c^T x = c^T \Delta x$$

Consider the support components of the "intensity vector" z_{supp} on two feasible points:

$$\Delta z_{supp} = \bar{z}_{supp} - z_{supp} = B_{supp} \Delta x_{supp} + B_{supp,N} \Delta x_N$$

$$\Delta x_{supp} = B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_N$$

$$\Delta F(x) = c^{T} x = c_{supp}^{T} \Delta x_{supp} + c_{N}^{T} x_{N}$$

Let (x, K_{supp}) arbitrary SF point.

Consider another feasible point \bar{x} .

We set $\Delta x = \bar{x} - x$ and calculate the increment of the objective value:

$$\Delta F(x) = c^T \bar{x} - c^T x = c^T \Delta x$$

Consider the support components of the "intensity vector" z_{supp} on two feasible points:

$$\Delta z_{supp} = \bar{z}_{supp} - z_{supp} = B_{supp} \Delta x_{supp} + B_{supp,N} \Delta x_N$$

$$\Delta x_{supp} = B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_N$$

$$\Delta F(x) = c^T x = c_{supp}^T \Delta x_{supp} + c_N^T x_N$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp} + (c_{N}^{T} - c_{supp}^{T} B_{supp}^{-1} B_{supp,N}) \Delta x_{N}$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp}, N \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1}}_{u_{supp}^{T}} \Delta z_{supp} + (c_{N}^{T} - c_{supp}^{T} B_{supp}^{-1} B_{supp}, N) \Delta x_{N}$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp}, N \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1}}_{u_{supp}^{T}} \Delta z_{supp} + (c_{N}^{T} - c_{supp}^{T} B_{supp}^{-1} B_{supp}, N) \Delta x_{N}$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp}, N \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp} + (c_{N}^{T} - u_{supp}^{T} B_{supp}, N) \Delta x_{N}}_{U_{supp}^{T}}$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp}, N \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp}}_{U_{supp}^{T}} \Delta z_{supp} + \underbrace{(c_{N}^{T} - u_{supp}^{T} B_{supp}, N)}_{\Delta_{N}^{T}} \Delta x_{N}$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp}, N \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp}}_{U_{supp}^{T}} \Delta z_{supp} + \underbrace{(c_{N}^{T} - u_{supp}^{T} B_{supp}, N)}_{\Delta_{N}^{T}} \Delta x_{N}$$

$$\Delta F(x) = u_{supp}^{T} \Delta z_{supp} + \Delta_{N}^{T} \Delta x_{N} = \sum_{i \in I_{supp}} u_{i} \Delta z_{i} + \sum_{j \in J_{N}} \Delta_{j} \Delta x_{j}$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp}, N \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp}}_{U_{supp}^{T}} \Delta z_{supp} + \underbrace{(c_{N}^{T} - u_{supp}^{T} B_{supp}, N)}_{\Delta_{N}^{T}} \Delta x_{N}$$

$$\downarrow \downarrow$$

$$\Delta F(x) = u_{supp}^{T} \Delta z_{supp} + \Delta_{N}^{T} \Delta x_{N} = \sum_{i \in I_{supp}} u_{i} \Delta z_{i} + \sum_{j \in J_{N}} \Delta_{j} \Delta x_{j}$$

$$u_N = u(J_N) = 0$$

$$\Delta_{supp}^T = c_{supp}^T - c_{supp}^T B_{supp}^{-1} B_{supp} = 0$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp}}_{U_{supp}^{T}} \Delta z_{supp} + \underbrace{(c_{N}^{T} - u_{supp}^{T} B_{supp,N})}_{\Delta_{N}^{T}} \Delta x_{N}$$

Vector of potentials

Vector of estimates

$$\Delta F(x) = u_{supp}^{T} \Delta z_{supp} + \Delta_{N}^{T} \Delta x_{N} = \sum_{i \in I_{supp}} u_{i} \Delta z_{i} + \sum_{j \in J_{N}} \Delta_{j} \Delta x_{j}$$

$$u_N = u(J_N) = 0$$

$$\Delta_{supp}^T = c_{supp}^T - c_{supp}^T B_{supp}^{-1} B_{supp} = 0$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp}}_{U_{supp}^{T}} \Delta z_{supp} + \underbrace{(c_{N}^{T} - u_{supp}^{T} B_{supp,N})}_{\Delta_{N}^{T}} \Delta x_{N}$$

$$u(I) = (u(I_{supp}), u(I_N)) = (u_{supp}, 0)$$
 $\Delta(J) = (\Delta(J_{supp}, \Delta(J_N))) = (0, \Delta_N)$

$$\Delta F(x) = u_{supp}^{T} \Delta z_{supp} + \Delta_{N}^{T} \Delta x_{N} = \sum_{i \in I_{supp}} u_{i} \Delta z_{i} + \sum_{j \in J_{N}} \Delta_{j} \Delta x_{j}$$

$$u_N = u(J_N) = 0$$

$$\Delta_{supp}^T = c_{supp}^T - c_{supp}^T B_{supp}^{-1} B_{supp} = 0$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp}, N \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp}}_{U_{supp}^{T}} \Delta z_{supp} + \underbrace{(c_{N}^{T} - u_{supp}^{T} B_{supp}, N)}_{\Delta_{N}^{T}} \Delta x_{N}$$

reduced gradient of the cost function by z

$$\Delta F(x) = u_{supp}^{T} \Delta z_{supp} + \Delta_{N}^{T} \Delta x_{N} = \sum_{i \in I_{supp}} u_{i} \Delta z_{i} + \sum_{j \in J_{N}} \Delta_{j} \Delta x_{j}$$

$$u_N = u(J_N) = 0$$

$$\Delta_{supp}^T = c_{supp}^T - c_{supp}^T B_{supp}^{-1} B_{supp} = 0$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp}}_{U_{supp}^{T}} \Delta z_{supp} + \underbrace{(c_{N}^{T} - u_{supp}^{T} B_{supp,N})}_{\Delta_{N}^{T}} \Delta x_{N}$$

reduced gradient of the cost function by x

$$\Delta F(x) = u_{supp}^{T} \Delta z_{supp} + \Delta_{N}^{T} \Delta x_{N} = \sum_{i \in I_{supp}} u_{i} \Delta z_{i} + \sum_{j \in J_{N}} \Delta_{j} \Delta x_{j}$$

$$u_N = u(J_N) = 0$$

$$\Delta_{supp}^T = c_{supp}^T - c_{supp}^T B_{supp}^{-1} B_{supp} = 0$$

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp}}_{u_{supp}^{T}} \Delta z_{supp} + \underbrace{(c_{N}^{T} - u_{supp}^{T} B_{supp,N})}_{\Delta_{N}^{T}} \Delta x_{N}$$

Since $\Delta = c - B^T u \implies$, it easy to see that we can get Δ from c by correction $B^T u$ which depends on general constraints. And correcting multiplier u constructed with Support help.

$$c^{T} \Delta x = c_{supp}^{T} (B_{supp}^{-1} \Delta z_{supp} - B_{supp}^{-1} B_{supp,N} \Delta x_{N}) + c_{N}^{T} \Delta x_{N} =$$

$$= \underbrace{c_{supp}^{T} B_{supp}^{-1} \Delta z_{supp}}_{U_{supp}^{T}} \Delta z_{supp} + \underbrace{(c_{N}^{T} - u_{supp}^{T} B_{supp,N})}_{\Delta_{N}^{T}} \Delta x_{N}$$

Since $\Delta = c - B^T u \implies$, it easy to see that we can get Δ from c by correction $B^T u$ which depends on general constraints. And correcting multiplier u constructed with help of support.

 Δ - is support gradient of the cost function

Optimality criteria

Let x be a feasible point.

Question: is it optimal point?

Optimality criteria

Let x be a feasible point.

Question: is it optimal point?

Use the support K_{supp} and calculate the support gradient.

Optimality criteria

Let x be a feasible point.

For the optimality of a feasible point x it is sufficient and, in the case of non-degeneracy of SF-point $\{x, K_{supp}\}$, also necessary, that the following conditions:

$$\begin{cases} u_i \leq 0 \text{ for } z_i = a_{*i}, \\ u_i \geq 0 \text{ for } z_i = a_i^*, \\ u_i = 0 \text{ for } a_{*i} \leq x_i \leq a_i^*, i \in I_{supp}; \end{cases}$$

$$\begin{cases} & \Delta_j \geq 0 \text{ for } x_j = f_{*j}, \\ & \Delta_j \leq 0 \text{ for } x_j = f_j^*, \\ & \Delta_j = 0 \text{ for } f_{*j} \leq x_j \leq f_j^*, \ j \in J_N \end{cases}$$

Independent variables:

$$x_j, \qquad j \in I_N$$

Dependent variables:

$$x_j, \quad j \in J_{supp}$$

Independent variables:

$$x_j, \quad j \in I_N$$
 $z_i, \quad i \in I_{supp}$

Dependent variables:

$$x_j, \quad j \in J_{supp}$$

$$z_i, \quad i \in I_N$$

Independent variables:

Dependent variables:

$$x_j, \quad j \in J_{supp}$$

$$z_i, \quad i \in I_N$$

Independent variables:

Independent variables:

In this case by optimality criteria $\Rightarrow u_i \leq 0$ holds.

Independent variables:

 \Downarrow Hence the variation of the z_i can not increase the value of the cost function (since $u_i \Delta z_i \leq 0$)

Independent variables:

 \Downarrow Hence the variation of the z_i can not increase the value of the cost function (since $u_i \Delta z_i \leq 0$)

By analogy can be explained the signs of other variables in optimality criteria.

Maximum principle

The optimality condition can be rewritten in maximum principle form.

by intensity vector z:

Maximum principle

The optimality condition can be rewritten in maximum principle form.

by intensity vector z:

$$u_i z_i = \max_{a_{*i} \le \zeta_i \le a_i^*} u_i \zeta_i \quad i \in I_{supp}$$

$$\Delta_j x_j = \max_{f_{*j} \le \omega_j \le f_j^*} \Delta_j \omega_j \quad j \in J_N$$

Maximum principle

The optimality condition can be rewritten in maximum principle form.

by intensity vector z:

$$u_i z_i = \max_{a_{*i} \le \zeta_i \le a_i^*} u_i \zeta_i \quad i \in I_{supp}$$

$$\Delta_j x_j = \max_{f_{*j} \le \omega_j \le f_j^*} \Delta_j \omega_j \quad j \in J_N$$

Consider the SF point $\{x, K_{supp}\}$ and corresponding vector z, u, Δ then the $\varepsilon - maximum$ condition is: by vector z:

Consider the SF point $\{x, K_{supp}\}$ and corresponding vector z, u, Δ then the $\varepsilon - maximum$ condition is: by vector z:

$$u_i z_i = \max_{a_{*i} \le \zeta_i \le a_i^*} u_i \zeta_i - \varepsilon_{zi} \quad i \in I_{supp}$$

$$\Delta_j \chi_j = \max_{f_{*j} \le \omega_j \le f_j^*} \Delta_j \omega_j - \varepsilon_{xj} \quad j \in J_N$$

Consider the SF point $\{x, K_{supp}\}$ and corresponding vector z, u, Δ then the $\varepsilon - maximum$ condition is: by vector z:

$$u_i z_i = \max_{a_{*i} \le \zeta_i \le a_i^*} u_i \zeta_i - \varepsilon_{z_i} \quad i \in I_{supp}$$
$$\varepsilon_{z_i} = u_i (\xi_i - z_i) \quad i \in I_{supp}$$

$$\Delta_{j}\chi_{j} = \max_{f_{*j} \leq \omega_{j} \leq f_{j}^{*}} \Delta_{j}\omega_{j} - \varepsilon_{xj} \quad j \in J_{N}$$
$$\varepsilon_{xj} = \Delta_{j}(\chi_{j} - x_{j}) \quad j \in J_{N}$$

Consider the SF point $\{x, K_{supp}\}$ and corresponding vector z, u, Δ then the $\varepsilon - maximum$ condition is: by vector z:

$$u_i z_i = \max_{a_{*i} \le \zeta_i \le a_i^*} u_i \zeta_i - \varepsilon_{zi} \quad i \in I_{supp}$$
$$\varepsilon_{zi} = u_i (\xi_i - z_i) \quad i \in I_{supp}$$

$$\Delta_{j}\chi_{j} = \max_{f_{*j} \leq \omega_{j} \leq f_{j}^{*}} \Delta_{j}\omega_{j} - \varepsilon_{xj} \quad j \in J_{N}$$
$$\varepsilon_{xj} = \Delta_{j}(\chi_{j} - x_{j}) \quad j \in J_{N}$$

$$c^{T}x^{o} - c^{T}x^{\varepsilon} \leq \max_{a_{*} \leq \bar{z}_{supp} \leq a^{*}, \atop f_{*} \leq x_{N} \leq f^{*}} c_{T}(\bar{x} - x^{\varepsilon}) = \alpha_{*} \leq \bar{z}_{supp} \leq a^{*},$$

$$f_{*} \leq x_{N} \leq f^{*}$$

$$= \beta(x^{\varepsilon}, K_{supp}) \leq \varepsilon = \sum_{i \in I_{supp}} \varepsilon_{zi} + \sum_{j \in J_{N}} \varepsilon_{xj}.$$

Consider the SF point $\{x, K_{supp}\}$ and corresponding vector z, u, Δ then the $\varepsilon - maximum$ condition is:

For a feasible point x to be ϵ -optimal it is sufficient that there exists a support K_{supp} such that

$$\beta(x, K_{supp}) \leq \epsilon.$$

by vector z:

$$u_i z_i = \max_{a_{*i} \le \zeta_i \le a_i^*} u_i \zeta_i - \varepsilon_{zi} \quad i \in I_{supp}$$
$$\varepsilon_{zi} = u_i (\xi_i - z_i) \quad i \in I_{supp}$$

$$\Delta_{j}\chi_{j} = \max_{f_{*j} \leq \omega_{j} \leq f_{j}^{*}} \Delta_{j}\omega_{j} - \varepsilon_{xj} \quad j \in J_{N}$$
$$\varepsilon_{xj} = \Delta_{j}(\chi_{j} - x_{j}) \quad j \in J_{N}$$

- ullet Select the initial support Q_{supp}
 - a)Calculate the coefficients μ_i ;
 - b) Construct the matrix and check the support criteria:

$$G_{supp} = \left(g_{si}, s \in I_{\Sigma supp}, i \in I_{\Delta supp}\right)$$

$$g_{si} = \sum_{k \in I_{\Delta(i)} \cup I_{\Sigma(s)}} \mu_k a_{ik}, s \in I_{\Sigma supp}, i \in_{\Delta supp}.$$

The collection $Q_{supp} = \{I_{\Delta supp}, I_{\Sigma supp}\}$ is called the support of the network S if $|I_{\Delta supp}| = |I_{\Sigma supp}|$ and $\det G_{supp} \neq 0$.

- Support flow $\{z, Q_{supp}\}$
- Verify the optimality criteria for the support flow
- lacksquare Changing the flow z o ar z
- lacksquare The second part of the iteration $Q_{supp}
 ightarrow \overline{Q}_{supp}$
- Complete iteration $\{z,Q_{supp}\} \rightarrow \{\bar{z},\bar{Q}_{supp}\}$
- The suboptimality estimation

- ullet Select the initial support Q_{supp}
- **Support flow** $\{z, Q_{supp}\}$

formed by the flow z, corresponding to the initial admissible input flow

$$z = \{x_i, i \in I_{\Delta}; x_{ij}, (i, j) \in U_*; f\}.$$

- Verify the optimality criteria for the support flow
- lacksquare Changing the flow $z
 ightarrow ar{z}$
- lacksquare The second part of the iteration $Q_{supp}
 ightarrow \overline{Q}_{supp}$
- Complete iteration $\{z, Q_{supp}\} \rightarrow \{\bar{z}, \bar{Q}_{supp}\}$
- The suboptimality estimation

- ullet Select the initial support Q_{supp}
- **Support flow** $\{z, Q_{supp}\}$
- Verify the optimality criteria for the support flow

a)Calculate the potencials y_i and estimation Δ ;

The nondegenerate support flow $\{z, Q_{supp}\}$ is optimal iff:

$$\Delta_{i} \geq 0 \quad at \quad x_{i} = d_{*i}; \quad \Delta_{i} \leq 0 \quad at \quad x_{i} = d_{i}^{*}$$

$$\Delta_{i} = 0 \quad at \quad d_{*i} < x_{i} < d_{i}^{*}, \quad i \in I_{\Delta nsupp}$$

$$\Delta_{ij} \geq 0 \quad at \quad x_{ij} = d_{*ij}, \quad \Delta_{ij} \leq 0 \quad at \quad x_{ij} = d_{ij}^{*};$$

$$\Delta_{ij} = 0 \quad at \quad d_{*ij} < x_{ij} < d_{ij}^{*}, \quad (i, j) \in U_{nsupp}.$$

- Changing the flow $z
 ightarrow ar{z}$
- lacksquare The second part of the iteration $Q_{supp}
 ightarrow \overline{Q}_{supp}$
- **●** Complete iteration $\{z, Q_{supp}\} \rightarrow \{\bar{z}, \bar{Q}_{supp}\}$
- The suboptimality estimation

- Select the initial support Q_{supp}
- **Support flow** $\{z, Q_{supp}\}$
- Verify the optimality criteria for the support flow
- Changing the flow $z o \bar{z}$

$$\overline{z} = z + \theta_0 \Delta z$$
,

where the improvement direction is θ_0 , and

$$\Delta z = (\Delta x_i, \ i \in I_{\Delta}; \ \Delta x_{ij}, \ (i,j) \in U_*; \ \Delta f)$$

- lacksquare The second part of the iteration $Q_{supp}
 ightarrow \overline{Q}_{supp}$
- Complete iteration $\{z, Q_{supp}\} \rightarrow \{\bar{z}, \bar{Q}_{supp}\}$
- The suboptimality estimation

- lacksquare Select the initial support Q_{supp}
- **Support flow** $\{z, Q_{supp}\}$
- Verify the optimality criteria for the support flow
- Changing the flow $z
 ightarrow ar{z}$
- The second part of the iteration $Q_{supp} \to \overline{Q}_{supp}$ This are realized on the basis of dual theory.
- Complete iteration $\{z, Q_{supp}\} \rightarrow \{\bar{z}, \bar{Q}_{supp}\}$
- The suboptimality estimation

- lacksquare Select the initial support Q_{supp}
- **Support flow** $\{z, Q_{supp}\}$
- Verify the optimality criteria for the support flow
- lacksquare Changing the flow $z
 ightarrow ar{z}$
- lacksquare The second part of the iteration $Q_{supp}
 ightarrow \overline{Q}_{supp}$
- Complete iteration $\{z, Q_{supp}\} \rightarrow \{\bar{z}, \bar{Q}_{supp}\}$

 $\downarrow \downarrow$

Here the iteration of the optimization method is complete.

The suboptimality estimation

- lacksquare Select the initial support Q_{supp}
- **Support flow** $\{z, Q_{supp}\}$
- Verify the optimality criteria for the support flow
- lacksquare Changing the flow $z
 ightarrow ar{z}$
- lacksquare The second part of the iteration $Q_{supp}
 ightarrow \overline{Q}_{supp}$
- Complete iteration $\{z, Q_{supp}\} \rightarrow \{\bar{z}, \bar{Q}_{supp}\}$
- The suboptimality estimation

The suboptimality estimation of the new support flow is

$$\beta(\overline{z}, \overline{Q}_{supp}) =$$

$$(1 - \theta_0)\beta(z, Q_{supp}) + v_0\sigma_{i_{(1)}} + \sum_{k=1}^{\nu-1} v_k(\sigma_{i_{k+1}} - \sigma_{i_{(k)}})$$

$$\leq \beta(z, Q_{supp}).$$

Short summary

Comparison of the proposed adaptive method with classical LP methods.

- The basic "instrument" of the adaptive method support quite flexible react on a different situation during the solution process.
- Simplex methods start from a specified basis. The support lets us satisfy the general constraints initially and later.
- Nonsupport (nonbasic) variables need not be zero—they may have any value satisfying the bounds.
- The adaptive method allows to use any priory information about feasible solution.

- The new principle used on iteration of the adaptive method.
- The method equipped with stop criteria.
- The primal adaptive method significantly uses the ideas of the dual theory.(dual step in second procedure)
- The dual adaptive method is much more effective then traditional dual simplex methods due to the long step rule.
-provide sensitivity analisys

By these reasons the method called adaptive since its properties of using the all the initial and current information for effective construction of suboptimal feasible solution.

The end

Thank you!