Vortragender: Clemens Weber

Vorlesung 5

Vom 13.12.2023

Vorbereitung zur Aufnahme auf das Studienkolleg

Themen-Gebiete Gesamt

- Vereinfachung von Bruchtermen
- o Polynomdivision
- Wurzelgleichungen Ungleichungen
- o Exponentialgleichungen & Logarithmusgleichungen
- o Trigonometrischen Funktionen
- o Erkennen von Funktionsgraphen
- Geometrie; vor allem Satzgruppe des Pythagoras, Strahlensätze, Kreisberechnungen, Flächen- und Volumenberechnungen

Organisation

	Januar 2024 Kalender pedia Informationen zum Kalender												
1	Montag	Dienstag 2	Mittwoch	Donnerstag 4	Freitag 5	Samstag 6	Sonntag 7						
2	8	9	10	11	12	13	14						
3	15	16	17	18	19	20	21						
4	22	23	24	25	26	27	28						
5	29 Gerpedia® www.kalende	30	31	1.: Neujahrstag	2	3	4. Angaben ohns Gewähr						

- O Nächste Woche Montag Unterricht um 14.30 Uhr
- & Letzte Woche vor den Weihnachtsferien
- Ab Januar Mittwochs Präsenz in ASL-Schule (+Online Hybrid)
- O Weiter Infos folgen
- Montags weiterhin Online
- o 16.00 bis 17.30 Uhr
- o Material auf:

https://github.com/ClemWeber/ASL-MatheKurs

Vorlesung 5

- oFragen zu Aufgaben?
- oTrigonometrie Fortsetzung
 - oSinus- & Cosinus- Satz
 - Satz des Thales
- oÜbung:
 - Trigonometrie
 - oFunktionsgraphen erkennen

Feedback Runde

Zu viel/wenig?

Zu leicht/schwer?

Welche Aufgabe konnte ich nicht lösen?

Was soll nochmal erklärt werden?

Wiederholung Sinus & Cosinus

Trigonometrische Funktionen

Trigonometrische Funktionen

- o Längste Seite = Hypotenuse
- o liegt gegenüber des größten Winkels

Hier: c & γ

$$Sinus(alpha) = sin(\alpha) = \frac{Gegenkathete \, von \, alpha}{Hypotenuse}$$

Cosinus
$$(alpha) = \cos(\alpha) = \frac{Ankathete \, von \, alpha}{Hypotenuse}$$

Tangens
$$(alpha) = \tan(\alpha) = \frac{Cos(\alpha)}{Sin(\alpha)} = \frac{Ankathete}{Gegenkathete}$$

Hypotenuse

Summe aller Winkel: $a+\beta + \gamma = 180$ °

Satz des Pythagoras für Dreiecke mit Rechtem Winkel (90 Grad)

$$a^2 + b^2 = c^2$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

Annimation:

https://www.youtube.com/watch?v=w-hXOYZ2gpo

$$Sin^2(a) = 1 - Cos^2(a)$$

Wertetabelle:

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

$$Sin^2(a) = 1 - Cos^2(a)$$

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin(a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
a°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Sinus-Satz

OBeziehung zwischen den Winkeln eines allgemeinen Dreiecks und den gegenüberliegenden Seiten.

$$\sin lpha = rac{h_c}{b}$$

$$\sin eta = rac{h_c}{a}$$

$$a \cdot \sin \beta = b \cdot \sin \alpha$$

Sinus-Satz

• Gilt in **jedem** Dreieck

$$\sin lpha = rac{h_c}{b}$$

$$\sin eta = rac{h_c}{a}$$

$$a \cdot \sin \beta = b \cdot \sin \alpha$$

Sinus-Satz

• Gilt in **jedem** Dreieck

Cosinus-Satz

O Beziehung zwischen den Winkeln eines allgemeinen Dreiecks und den Seiten.

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$$

$$h^2=b^2-e^2$$
 (Satz des Pythagoras für das rechte Teildreieck) $d^2=(a-e)^2=a^2-2\cdot a\cdot e+e^2$ (binomische Formel)

Cosinus-Satz Herleitung Ansatz

Cosinus-Satz

 Beziehung zwischen den Winkeln eines allgemeinen Dreiecks und den Seiten.

$$a^2 = b^2 + c^2 - 2bc \, \cos lpha$$
 $b^2 = c^2 + a^2 - 2ca \, \cos eta$ $c^2 = a^2 + b^2 - 2ab \, \cos \gamma$

Trigonomerischer Zusammenhang

o Lernspruch:

o Sinus: SiCo CoSi

Cosinus: CoCo SiSi

$$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y^{[4]}$$

 $\cos(x \pm y) = \cos x \cdot \cos y \mp \sin x \cdot \sin y^{[4]}$

Satz des Thales

O Halb-Kreis = Thaleskreis

o Alle von einem <u>Halbkreis</u> umschriebenen <u>Dreiecke</u> sind <u>rechtwinklig</u>.

Satz des Thales

o Alle von einem <u>Halbkreis</u> umschriebenen <u>Dreiecke</u> sind <u>rechtwinklig</u>.

O Geometrischer Beweis mit Rechteck.

Satz des Thales

o Anwendungs Beispiel:

 $\circ \alpha + \beta = 90^{\circ}$

O Alpha gegeben

o Gamma bestimmen

o Viele weitere

E

O Mittelpunktswinkel eines Kreisbogens ist doppelt so groß wie einer der zugehörigen Umfangsvinkel.

$$\circ \mu = 2\varphi$$

$$2 \times M = 100$$

$$2 + M = 100$$

O Mittelpunktswinkel eines Kreisbogens ist doppelt so groß wie einer der zugehörigen Umfangswinkel.

$$0 \mu_1 = 2 \varphi_1$$

$$\circ \mu_2 = 2\varphi_2$$

O Mittelpunktswinkel eines Kreisbogens ist doppelt so groß wie einer der zugehörigen Umfangswinkel.

$$0 \mu_1 = 2 \varphi_1$$

$$\circ \mu_2 = 2\varphi_2$$

$$02\alpha + \gamma = 180^{\circ}$$

$$\circ \gamma + \delta = 180^{\circ}$$

$$\circ 2\alpha = \delta$$

$$\circ \mu_2 = 2\varphi_2$$

O Mittelpunktswinkel eines Kreisbogens ist doppelt so groß wie einer der zugehörigen Umfangswinkel.

$$0 \mu_1 = 2 \varphi_1$$

$$\circ \mu_2 = 2\varphi_2$$

O Mittelpunktswinkel eines Kreisbogens ist doppelt so groß wie einer der zugehörigen Umfangswinkel.

$$\circ \mu_1 = 2\varphi_1$$

$$\circ \mu_2 = 2\varphi_2$$

Sehnen-Tangenten-Satz

Sehnentangentenwinkelsatz:

<u></u>

Da $\triangle ABM$ gleichschenklig ist gilt:

$$lpha_2=rac{180^\circ-2\gamma}{2}=90^\circ-\gamma$$

Zusammen mit $lpha_2+\delta=90^\circ$ folgt:

$$\delta=90^\circ-lpha_2=90^\circ-(90^\circ-\gamma)=\gamma$$

Sehnen-Tangenten-Satz

Sehnentangentenwinkelsatz:

ш

Da $\triangle ABM$ gleichschenklig ist gilt:

$$lpha_2=rac{180^\circ-2\gamma}{2}=90^\circ-\gamma$$

Zusammen mit $lpha_2+\delta=90^\circ$ folgt:

$$\delta=90^\circ-lpha_2=90^\circ-(90^\circ-\gamma)=\gamma$$

Übungsaufgaben:

- https://de.serlo.org/mathe/30680/aufgaben-zum-sinus-kosinus-und-tangens-imrechtwinkligen-dreieck
- o https://www.maths2mind.com/schluesselwoerter/graph-einer-funktion

Ziel der Veranstaltung:

Ihr besteht ALLE den Aufnahmetest für das Studienkolleg :)

Aus den letzten Vorlesungen

E-Funktion Exponential Funktion

o Natürliche e-Funktion

$$oe = 2.7182...$$

Besondere Eigenschaft:

Steigung = Wert der Fkt

An jedem Punkt!

e-Funktion Erklärung und Beis

Natürliche Logarithmus: ln(x)

$$\ln(e^x) = x = e^{\ln(x)}$$

$$b^{x} = (e^{\ln(b)})^{x} = e^{\ln(b) \cdot x}$$

Logarithmus Gesetze

8.1 Formeln für Logarithmen:

$$b^x = y \iff x = \log_b y$$

$$(y \in IR^+ \text{ und } b \in IR^+ \text{ohne } \{1\})$$

z. B.
$$0.5^x = 3 \iff x = \log_{0.5} 3 = \frac{\lg 3}{\lg 0.5}$$

Der dekadische Logarithmus: $\log_{10} a =: \lg a; \lg 1 = 0; \lg 10 = 1; \lg 100 = 2;$

Der natürliche Logarithmus: $\log_e x =: \ln x$; $\ln 1 = 0$; $\ln e = 1$; (e = 2,71828... heißt Eulersche Zahl)

Logarithmus Rechengesetze

Rechengesetze für Logarithmen (u, v > 0)

$$\log_b(u \cdot v) = \log_b u + \log_b v$$

$$\log_b \left(\frac{u}{v}\right) = \log_b u - \log_b v$$

$$\log_b u^n = n \cdot \log_b u ,$$

$$\log_b 1 = 0$$

$$\log_b b^n = n$$

$$b^{\log_b n} = n$$

$$\log_c a = \frac{\log_b a}{\log_b c}$$
 die Basisumrechnungsformel

$$(a > 0 \text{ und } b, c \in IR \text{ ohne } \{1\})$$

Logarithmus als Umkerhfunktion der Exponentialfunktion

Trigonometrische Funktionen

Trigonometrische Funktionen

- o Längste Seite = Hypotenuse
- o liegt gegenüber des größten Winkels

Hier: c & γ

$$Sinus(alpha) = sin(\alpha) = \frac{Gegenkathete \, von \, alpha}{Hypotenuse}$$

Cosinus
$$(alpha) = \cos(\alpha) = \frac{Ankathete \, von \, alpha}{Hypotenuse}$$

Tangens
$$(alpha) = \tan(\alpha) = \frac{Cos(\alpha)}{Sin(\alpha)} = \frac{Ankathete}{Gegenkathete}$$

Hypotenuse

Summe aller Winkel: $a+\beta + \gamma = 180$ °

Satz des Pythagoras für Dreiecke mit Rechtem Winkel (90 Grad)

$$a^2 + b^2 = c^2$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

Annimation:

https://www.youtube.com/watch?v=w-hXOYZ2gpo

$$Sin^2(a) = 1 - Cos^2(a)$$

Wertetabelle:

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

$$Sin^2(a) = 1 - Cos^2(a)$$

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin(a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
a°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Ziel der Veranstaltung:

Ihr besteht ALLE den Aufnahmetest für das Studienkolleg :)

Kommutativ Gesetz

$$a + b = b + a$$
$$a * b = b * a = ba$$

Distributiv Gesetz

$$oldsymbol{o} a(b+c) = ab + ac$$

$$o(b+c)/a = b/a + c/a$$

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

$$a + a = a + c = a +$$

Binomische Formeln

Binomische Formeln:

$$(a+b)(c+d) = ac+ad+bc+bd$$

$$(a+b)^2 = (a+b) \cdot (a+b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b = a^2 + 2 \cdot a \cdot b + b^2$$

 $(a-b)^2 = (a-b) \cdot (a-b) = a \cdot a - a \cdot b - b \cdot a + b \cdot b = a^2 - 2 \cdot a \cdot b + b^2$
 $(a+b) \cdot (a-b) = a \cdot a - a \cdot b + b \cdot a - b \cdot b = a^2 - b^2$

Dritter Ordnung:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Erste Binomische Formel

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

Zweite Binomische Formel

$$(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

Dritte Binomische Formel

$$a^2 - b^2 = (a+b) \cdot (a-b)$$

Kopfrechen Tricks

Trick mit den Binomischen Formel:

$$37^2 = (30+7)^2 = 30^2 + 2 \cdot 30 \cdot 7 + 7^2 = 900 + 420 + 49 = 1369$$

ler

$$37^2 = (40 - 3)^2 = 40^2 - 2 \cdot 40 \cdot 3 + 3^2 = 1600 - 240 + 9 = 1369$$

Kopfrechen Tricks

Addition und Subtraktion der Wurzel:

$$\sqrt{a} + \sqrt{b} = \sqrt{\left(\sqrt{a} + \sqrt{b}\right)^2} = \sqrt{a + b + 2\sqrt{ab}}$$

Mitternachtsformel

$$ax^2 + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Auswendig lernen!

