$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \qquad \int f(x)^{\alpha} f'(x) dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + C$$

$$\int e^x dx = e^x + C \qquad \int e^{f(x)} f'(x) dx = e^{f(x)} + C$$

$$\int a^x \ln a dx = a^x + C \qquad \int a^{f(x)} f'(x) \ln a dx = a^{f(x)} + C$$

$$\int \frac{1}{x} dx = \ln|x| + C \qquad \int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

$$\int \frac{1}{x \ln a} dx = \log_a |x| + C \qquad \int \frac{f'(x)}{f(x) \ln a} dx = \log_a |f(x)| + C$$

$$\int \cos x dx = \sin x + C \qquad \int \cos[f(x)] f'(x) dx = \sin[f(x)] + C$$

$$\int \sin x dx = -\cos x + C \qquad \int \sin[f(x)] f'(x) dx = -\cos[f(x)] + C$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + C \qquad \int \frac{f'(x)}{\cos^2[f(x)]} dx = \tan[f(x)] + C$$

Funções Elementares

Funções Compostas

$$(x^{\alpha})' = \alpha x^{\alpha - 1} \qquad [f(x)^{\alpha}] = \alpha f(x)^{\alpha - 1} f'(x)$$

$$(e^{x})' = e^{x} \qquad [e^{f(x)}]' = e^{x} f'(x)$$

$$(a^{x})' = a^{x} \ln a \qquad [a^{f(x)}]' = a^{f(x)} f'(x) \ln a$$

$$(\ln x)' = \frac{1}{x} \qquad [\ln f(x)]' = \frac{f'(x)}{f(x)}$$

$$(\log_{a} x)' = \frac{1}{x \ln a} \qquad [\log_{a} f(x)]' = \frac{f'(x)}{f(x) \ln a}$$

$$(\tan x)' = \frac{1}{\cos^{2} x} \qquad [\tan f(x)]' \frac{f'(x)}{\cos^{2} [f(x)]}$$

$$(\tanh x)' = \frac{1}{\cosh^{2} x} \qquad [\tanh f(x)]' \frac{f'(x)}{\cos^{2} h[f(x)]}$$

Linearidade da Primitiva

$$f(x) \pm g(x)]' = f'(x) \pm g'(x) \qquad \int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$$
$$[cf(x)]' = cf'(x) \qquad \int cf(x)dx = c \int f(x)dx$$

Derivada do Produto e do Quociente Primitivação por Partes

$$(fg)'=f'g+fg' \qquad (\frac{f}{g})'=\frac{f'g-fg'}{g^2} \qquad \int [f(x)+g(x)]dx=\int f(x)dx+\int g(x)dx$$

A função $\cos(x)$ é estritamente decrescente em $[0,\pi]$ e estritamente crescente em $[\pi,2\pi]$

$$f(x) = \cos(x) : \mathbb{R} \to [-1, 1]$$
 $g(x) = f(x)_{|[0,\pi]} \to [-1, 1]$

A função $\arccos(x)$ é contínua e estritamente decrescente. É

derivável em]-1,1[

$$f(x) = \arccos(x) : [-1, 1] \to [0, \pi]$$

$$\arccos'(x) : -\frac{1}{\sqrt{1-x^2}}(-1 < x < 1)$$

A função $\sin(x)$ é estritamente crescente em $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ e estritamente decrescente em $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$

$$f(x) = \sin(x) : \mathbb{R} \to [-1, 1]$$
 $g(x) = f(x)_{|[-\frac{\pi}{2}, \frac{\pi}{2}]} \to [-1, 1]$

A função $\arcsin(x)$ é contínua e estritamente crescente. É derivável

em]-1,1[

$$f(x) = \arcsin(x) : [-1, 1] \rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$\arcsin'(x) : \frac{1}{\sqrt{1-x^2}}(-1 < x < 1)$$

A função $\tan(x)$ é impar, estritamente crescente em] $-\frac{\pi}{2},\frac{\pi}{2}[$

$$f(x) = \tan(x) : \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi | k \in \mathbb{Z}\} \qquad g(x) = f(x)_{||-\frac{\pi}{2}, \frac{\pi}{2}[} \to \mathbb{R}$$

A função $\arctan(x)$ é derivável e estritamente crescente

$$f(x) = \arctan(x) : \mathbb{R} \to] - \frac{\pi}{2}, \frac{\pi}{2}[$$

$$\arctan'(x) : \frac{1}{1+x^2}(x \in \mathbb{R})$$

$$f(x) = \operatorname{arccot}(x) :]0, \pi[\to \mathbb{R}$$

A função $\cot(x)$ é impar, estritamente decrescente em $]0,\pi[$

$$f(x) = \cot(x) : \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\}$$
 $g(x) = f(x)_{[0,\pi[} \to \mathbb{R}$

$$f(x) = \operatorname{arccot}(x) :]0, \pi[\to \mathbb{R}$$

A função sinh(x) é impar, continua e estritamente crescente.

$$f(x) = \sinh(x) : \mathbb{R} \to \mathbb{R}$$

$$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$$

A função $\cosh(x)$ é par, contínua e estritamente decrescente em $]-\infty,0]$, e estritamente crescente em $[0,+\infty[$ e imagem $[1,+\infty[$

$$f(x) = \cosh(x) : \mathbb{R} \to \mathbb{R}$$

$$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$$

A função tanh(x) é impar, contínua e estritamente crescente. A

$$f(x) = \tanh(x) : \mathbb{R} \to \mathbb{R}$$

 $\cosh^2 x - \sinh^2 x = 1$ $\cosh x + \sinh x = e^x$

 $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$$
 $1 - \tanh^2 x = \frac{1}{\cosh^2 x}$

Teorema do valor intermédio

Foreign $[a,b] \to \mathbb{R}$ uma função contínua e c um real compreendido entre f(a) e f(b). Então existe pelo menos um $x \in [a,b]$ tal que f(x) = c.

Teorema do valor intermédio

Corolário 2: Teorema do ponto fixo

Seja $f:[a,b] \to [a,b]$ uma função contínua. Então existe pelo menos um $x \in [a,b]$ tal que f(x)=x.

A segunda regra de l'Hospital aplica-se a cálculos de limites que apresentam uma indeterminação do tipo $\frac{\infty}{\infty}$:

Sejam $f_0: |a,b| \to \mathbb{R}$ duas funções deriváveis tais que para todo o $x \in [a,b], \ g(x) \neq 0$ e $g'(x) \neq 0$ ($a \in \mathbb{R}$ ou $a = -\infty, \ b \in \mathbb{R}$ ou $b = +\infty$). Se

$$\left\{ \begin{array}{ll} \bullet & \lim_{x \to a} g(x) = \infty \\ \bullet & \lim_{x \to a} \frac{f'(x)}{g'(x)} & \text{existe (finito ou infinito),} \end{array} \right.$$

então
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$
.

As duas regras de l'Hospital permanecem válidas se substituirmos $x \to a$ por $x \to b$. Por conseguinte, as regras permanecem válidas se considerarmos domínios da forma $]c,a[\cup]a,b[$.

Teorema do valor intermédio

Corolário I: Teorema de Bolzano Seja $f:[a,b] \to \mathbb{R}$ uma função contínua tal que $f(a)f(b) \leq 0$. Então existe pelo menos um $x \in [a,b]$ tal que f(x) = 0.

A função $f\colon [-1,0]\to \mathbb{R},\, f(x)=x^7+x+1$ admite um zero. Com efeito, f(-1)=-1 e f(0)=1. Como f é contínua e f(-1) e f(0) it efin sinais opostos, pelo Teorema de Bolzano, existe $x\in [-1,0]$ tal que f(x)=0.

Seja f uma função bijectiva definida num intervalo I. Se f for derivável em $x \in I$ e $f'(x) \neq 0$, então a função inversa f^{-1} é derivável em y = f(x) e

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$$

A fórmula para a derivada da função inversa pode ser encontrada derivando a relação $f(f^{-1}(y))=y$:

$$\begin{array}{rcl} (f(f^{-1}(y)))' & = & y' \\ f'(f^{-1}(y))(f^{-1})'(y) & = & 1 \\ (f^{-1})'(y) & = & \frac{1}{f'(f^{-1}(y))} \end{array}$$

A primeira regra de l'Hospital aplica-se a cálculos de limites que apresentam uma indeterminação do tipo $\frac{0}{0}$:

Sejam $f,g:]a,b[\rightarrow \mathbb{R}$ duas funções deriváveis tais que para todo o $x\in]a,b[,g(x)\neq 0$ e $g'(x)\neq 0$ ($a\in \mathbb{R}$ ou $a=-\infty,\,b\in \mathbb{R}$ ou $b=+\infty$). Se

$$\begin{cases} \bullet & \lim_{x\to a} f(x) = 0 \\ \bullet & \lim_{x\to a} g(x) = 0 \\ \bullet & \lim_{x\to a} \frac{f'(x)}{g'(x)} & \text{existe (finito ou infinito),} \end{cases}$$

então
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$
.

Teorema de Rolle

Seja f contínua em [a,b] e derivável em [a,b]. Se f(a)=f(b), então existe pelo menos um $c\in]a,b[$ tal que f'(c)=0.

Teorema de Lagrange

Se f for contínua em [a,b] e derivável em]a,b[, então existe pelo menos um $c\in]a,b[$ tal que $f'(c)=\frac{f(b)-f(a)}{b-a}.$

Funções compostas

Proposição 2

Sejam E um conjunto não majorado, $f:D\to E$ e $g:E\to F$ duas funções e a um ponto de acumulação de D. Suponhamos que $\lim_{y\to +\infty} g(y)$ existe (finito ou infinito) e que $\lim_{x\to a} f(x) = +\infty$. Então

$$\lim_{x\to a}g(f(x))=\lim_{y\to +\infty}g(y).$$

Exemplo

Temos
$$\lim_{x\to 0} 2^{\frac{1}{x^2}} = \lim_{y\to +\infty} 2^y = +\infty.$$

Funções compostas

Sejam $f\colon A\to B$ e $g\colon B\to C$ duas funções, a um ponto de acumulação de A e b um ponto de acumulação de B tais que

- b ∉ B;
- $\blacksquare \lim_{x \to a} f(x) = b;$
- $\lim_{y\to b} g(y) = +\infty \ (-\infty).$

Então $\lim_{x\to a} g(f(x)) = +\infty \ (-\infty).$

Exemplo

Pretende-se calcular $\lim_{x \to \frac{\pi}{2}} \log_2 \cos x$. Consideremos as funções $f\colon]-\frac{\pi}{2},\frac{\pi}{2}[\to]0,+\infty[$, $f(x)=\cos x$ e $g\colon]0,+\infty[\to \mathbb{R},$ $g(y)=\log_2 y$ e os pontos de acumulação $\frac{\pi}{2}$ de $]-\frac{\pi}{2},\frac{\pi}{2}[$ e 0 de $]0,+\infty[$. Como $0\notin]0,+\infty[$. $\lim_{x \to \frac{\pi}{2}} \cos x=0$ e $\lim_{y \to 0} \log_2 y=-\infty$,

temos

$$\lim_{x \to \frac{\pi}{2}} \log_2 \cos x = -\infty.$$

Corolário 1

Seja f contínua em [a,b] e derivável em]a,b[. Se f'(x)=0 para todo o $x \in]a,b[$, então f é constante em [a,b].

Nota Se $f\colon D\to \mathbb{R}$ é constante, então f'=0. Com efeito, para qualquer $a \in D$,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{f(a) - f(a)}{x - a} = 0.$$

Corolário 2 Seja f contínua em]a,b[e seja $c\in]a,b[.$ Sefé derivável em $]a,b[\setminus \{c\}$ e se existe um número real L tal que $\lim_{x \to c} f'(x) = L$, então f é derivá- $\mathrm{vel}\;\mathrm{em}\;c\;\mathrm{e}\;f'(c)=L.$

Funções compostas

Proposição 1

SejamDum conjunto não majorado e $f:D\to E$ e $g:E\to F$ duas

(a) Seja $L\in E$ tal que $\lim_{x\to +\infty}f(x)=L$. Se g for contínua em L, então $\lim_{x\to +\infty}g(f(x))=g(L)$.

(b) Se $\lim_{x\to +\infty} f(x) = +\infty$, então $\lim_{x\to +\infty} g(f(x)) = \lim_{y\to +\infty} g(y).$

(c) Se
$$\lim_{x\to +\infty} f(x) = -\infty$$
 , então $\lim_{x\to +\infty} g(f(x)) = \lim_{y\to -\infty} g(y).$

(i) Como $\lim_{x\to +\infty}\frac{1}{x}=0$ e sen é contínua, $\lim_{x\to +\infty}\sin\frac{1}{x}=\sin 0=0$.

(ii) Como
$$\lim_{x \to +\infty} -x = -\infty$$
, $\lim_{x \to +\infty} 2^{-x} = \lim_{y \to -\infty} 2^y = 0$.

Composição de funções

Sejam X,Y e Z subconjuntos de $\mathbb R$ e $f:X\to Y$ e $g:Y\to Z$ duas funções. A função $g\circ f:X\to Z$ definida por

$$(g\circ f)(x)=g(f(x))$$

denomina-se função composta de g e f.

Exemplo

Consideremos a função $f:\mathbb{R}\to [0,+\infty[$ dada por $f(x)=x^2$ e a função $g:[0,+\infty[\to\mathbb{R}$ dada por $g(y)=\sqrt{y}.$ A função composta $g\circ f:\mathbb{R}\to\mathbb{R}$ é dada por

$$(g \circ f)(x) = \sqrt{x^2} = |x|.$$