Eletricidade e Circuitos para Computação I

7^a. Lista de Exercícios Indutância

6.46 Determine v_C , i_L e a energia armazenada no capacitor e indutor no circuito da Figura 6.69 em condições de CC.

Figura 6.69 Esquema para o Problema 6.46.

6.47 Para o circuito da Figura 6.70, calcule o valor de R que fará a energia armazenada no capacitor ser a mesma que aquela armazenada no indutor em CC.

Figura 6.70 Esquema para o Problema 6.47.

6.49 Determine a indutância equivalente do circuito na Figura 6.72. Suponha que todos os indutores sejam de 10 mH.

Figura 6.72 Esquema para o Problema 6.49.

6.50 Um circuito armazenador de energia é formado por indutores conectados em série de 16 mH e 14 mH associados em paralelo com indutores conectados em série de 24 mH e 36 mH. Calcule a indutância equivalente.

6.51 Determine a L_{eq} nos terminais a-b do circuito da Figura 6.73.

Figura 6.73 Esquema para o Problema 6.51.

6.53 Determine a $L_{\rm eq}$ nos terminais do circuito da Figura 6.75.

Figura 6.75 Esquema para o Problema 6.53.

6.54 Determine a indutância equivalente olhando pelos terminais do circuito da Figura 6.76.

Figura 6.76 Esquema para o Problema 6.54.

6.56 Determine a $L_{\rm eq}$ no circuito da Figura 6.78.

Figura 6.78 Esquema para o Problema 6.56.

Prof. Mardson F. Amorim

6.60 No circuito da Figura 6.82, $i_o(0) = 2$ A. Determine $i_o(t)$ e $v_o(t)$ para $\underline{t} > 0$.

Figura 6.82 Esquema para o Problema 6.60.