

Introduction to **Digital Design**

Week 2: Number System

Yao Zheng Assistant Professor University of Hawai'i at Mānoa Department of Electrical Engineering

Converting from Binary to Decimal

- Just add weights
 - 1₂ is just 1*2⁰, or 1₁₀.
 - 110_2 is $1^*2^2 + 1^*2^1 + 0^*2^0$, or 6_{10} . We might think of this using base ten weights: 1*4 + 1*2 + 0*1, or 6.
 - -10000_2 is 1*16 + 0*8 + 0*4 + 0*2 + 0*1, or 16₁₀.
 - 10000111₂ is $1*128 + 1*4 + 1*2 + 1*1 = 135_{10}$. Notice this time that we didn't bother to write the weights having a 0 bit.
 - 00110_2 is the same as 110_2 above the leading 0's don't change the value.

Useful to know powers of 2:

2⁹ 2⁸ 2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰ 512 256 128 64 32 16 8 4 2 1

Practice counting up by powers of 2:

512 256 128 64 32 16 8 4 2 1

Converting from Decimal to Binary

- Put 1 in leftmost place without sum exceeding number
- Track sum
- Desired decimal Current number: 12 16 > 12, too big; 0 16 8 4 2 1 Put 0 in 16's place 8 <= 12, so put 0 1 4 2 1 1 in 8's place, current sum is 8 8+4=12 <= 12, so put $\frac{0}{16} \frac{1}{8} \frac{1}{4} \frac{1}{2} \frac{1}{1}$ 1 in 4's place. current sum is 12 Reached desired 12, $\frac{0}{16}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{0}{2}$ $\frac{0}{1}$ so put 0s in remaining

Converting from Decimal to Binary

Example using a more compact notation

Example: DIP-Switch Controlled Channel

- Ceiling fan should be set in factory to respond to channel "73" Convert 73 to binary, set DIP switch accordingly
- sum: -- 64 --- 72if (InA = InB) Out = 1 else Ceiling fan Out = 0

Base Sixteen: Another Base Used by Designers

- Nice because each position represents four base-two positions Compact way to write binary numbers
- Known as hexadecimal, or just hex

Q: Write 11110000 in hex

Q: Convert hex A01 to binary

1010 0000 0001

Decimal to Hex

· Easy method: convert to binary first, then binary to hex

Convert 99 base 10 to hex

First convert to binary:

Then binary to hex: $\frac{0 \quad 1 \quad 1 \quad 0}{128 64 32 \quad 16} \quad 8 \quad 4 \quad 2 \quad 1}{6 \quad 3}$

(Quick check: 6*16 + 3*1 = 96+3 = 99)

Converting To/From Binary by Hand: Summary

Example Video: Convert from Hex to Binary

Video link.

10

Divide-By-2 Method Common in Automatic Conversion

 Repeatedly divide decimal number by 2, place remainder in current binary digit (starting from 1s column)

Example Video: Convert from Decimal to Binary

Video link.

12

Bytes, Kilobytes, Megabytes, and More

- Byte: 8 bits
- · Common metric prefixes:
 - kilo (thousand, or 10³), mega (million, or 10⁵), giga (billion, or 10⁵), and tera (trillion, or 10¹²), e.g., kilobyte, or KByte
- · BUT, metric prefixes also commonly used inaccurately
 - 216 = 65536 commonly written as "64 Kbyte"
 - Typical when describing memory sizes
- · Also watch out for "KB" for kilobyte vs. "Kb" for kilobit

13

Addition and Subtraction of Nondecimal Numbers

• Addition

101111000

X 190 10111110

Y 141 10001101

+

X+Y 331 101001011

Cin/bin	X	Y	Cout	S	Bout	D
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	1	0	1
0	1	1	1	0	0	0
1	0	0	0	1	1	1
1	0	1	1	0	1	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

14

Binary Arithmetic Operations: Addition

- Follow same rules as in decimal addition, with the difference that when sum is 2 indicates a carry (not a 10)
- Learn new carry rules
 - 0+0 = 0c0 (sum 0 with carry 0)
 - 0+1 = 1+0 = 1c0
 - 1+1 = 0c1
 - 1+1+1 = 1c1

Carry	1	1	1	1	1	0
Augend	0	0	1	0	0	1
Addend	0	1	1	1	1	1
Result	1	0	1	0	0	0

15

Binary Arithmetic Operations: Addition (cont.)

- "Half addition" (rightmost bit position, aka LSB): only 2 bits are added, yielding a sum and a carry
- "Full addition" (remaining positions): three bits are added, yielding a sum and a carry
- In Chapter 8, we'll see many different hardware implementations of half-adders and full-adders

...

Binary Arithmetic Operations: Subtraction

- Learn new borrow rules
 - 0-0 = 1-1 = 0b0 (result 0 with borrow 0)
 - 1-0 = 1b0
 - 0-1 = 1b1
 - **.**..

Borrow	1	1	0	0	
Minuend	1	1	0	1	1
Subtrahend	0	1	1	0	1
Result	0	1	1	1	0

• Binary subtraction: (borrow, difference bits)

B_{out} 001111100
Minuend X 229 11100101
Subtrahend Y 46 00101110

Difference X-Y 183 10110111

Use binary subtraction to compare numbers. If X-Y produces a borrow out at the most significant bit, then X is less than Y.

18

Representation of Negative Numbers

- · Signed-Magnitude System/Representation:
 - MSB: sign bit, 0: plus, 1: minus $01010101_2 = +85_{10}$ 11010101₂ = -85₁₀ $011111111_2 = +127_{10}$ $111111111_2 = -127_{10}$ $00000000_2 = +0_{10}$ $10000000_2 = -0_{10}$
 - n-bit signed integer lies within –(2ⁿ⁻¹-1) through +(2ⁿ⁻¹ 1-1) with two representations of zero.

- · Signed-magnitude adder
 - If signs are same

add magnitudes, sign is same

else

compare magnitudes, subtract smaller from the larger, sign is sign of larger

- · Signed-magnitude subtractor
 - Change the sign of subtrahend, perform addition

Complement Number Systems

- · Taking the complement is more difficult than changing the sign, but in complement system add/subt are easier.
- Radix complement of D: (-D) = rⁿ − D where D is an n-digit number
 - If D is between 1 and rn-1

then D complement is between r^{n-1} and r^{n-1} (r^{n-1}) = 1

- When D=0, D complement is rn, which is (n+1) digits, hence D complement is also 0.

Two's Complement

Radix complement for binary numbers D: n bit binary number $(-D) = 2^n - D = (2^n-1) - D + 1$

- The range of representable numbers: -(2ⁿ⁻¹) (2ⁿ⁻¹-1) A number is negative iff MSB is 1.
- Zero (0) is positive, one extra negative number.
- Decimal equivalent of two's complement number is computed in the same way for unsigned except MSB is (-2^{n-1}) , not (2^{n-1}) .
- Sign extension property: extend MSB for (n+1) bit number from n bit number: 0110 = 00110 (5 bit), 1010 = 11010 (5

One's Complement Representation

· One's complement of D -D = 2ⁿ - 1 - D

17₁₀ = 00010001₂

 $111011110_2 = -17_{10}$

Two's complement addition

-2 1110 -1 1111 -3 1101 0001 0001 0001 1110 1111 0 10000

- Subtract n (add –n)
 - Add 16-n
- 16-n is 4-bit two's complement of n, that is (-n).

Two's complement subtraction

```
1 c<sub>in</sub>
  +4 0100 0100
                             +3 0011 0011
<u>- +3 0011 1100</u>
                            --4 1100 <u>0011</u>
  +1
             10001
                                          0111
 Overflow
   - If the result exceeds the range of the number system
  +5 0101
                      Overflow rule:
++6 0110
                      Addn: if the sign of the addends' are same
 +11 1011 = -5
                      and the sign of the sum is different from
                      addends' sign.
```

Binary Multiplication

· Unsigned binary multiplication

- Shift and add multiplication

10001111

Two's complement multiplication

Shift and two's complement addition except for the last step. Remember MSB represent (-2ⁿ⁻¹)

-5 1011 x -3 1101 0000 initial partial product, which is zero. 11011 partial product 0000

111011 partial product 1011 11100111 ____0101 shifted-and-negated 1 00001111

Binary division

- · Shift and subtract with unsigned numbers
- · No other easy way.
- So for signed numbers, take care of signs and perform shift-and-subtract

BCD: Binary-Coded Decimal

- 0-9 encoded with their 4-bit unsigned binary representation (0000 - 1001). The codewords (1010 - 1111) are not used.
- · 8-bit byte represent values from 0 to 99.
- · BCD Addition:

lion.		+			
	Carry	1		1	
448		0100	01	þо	1000
+489		0100) 10	00	1001
937	Sum	100	1 1	01	10001
	Add 6	١	+ 01	10	+ 0110
	BCD sum		1 00	11	1 0111
	BCD result	1001	00	11	0111

GRAY CODES

- · As we count up and down using binary codes, the number of bits that change from one to another varies.
- For Gray Codes, only 1 bit changes.

Decimal	8,4,2,1	Gray
0	0000	0000
1	0001	0100
2	0010	0101
3	0011	0111
4	0100	0110
5	0101	0010
6	0110	0011
7	0111	0001
8	1000	1001
0	1001	1000

Summary

- Number systems use 0s and 1s
 Conversion between different number system
 - Binary Arithmetic