

Analyzing the Potential of Source Sentence Reordering in Statistical Machine Translation

Teresa Herrmann, Jochen Weiner, Jan Niehues, Alex Waibel

Institute of Anthropomatics, Interactive Systems Lab

Introduction

- Word Reordering is one of the main issues in Machine Translation
- Popular Approach:
 - Reordering the source sentence before translation
- Analyze the potential
- Oracle experiments
 - 1 How good can we get with an optimally reordered sentence?
 - 2 How well does the model approximate the optimally reordered sentence?
 - 3 How good are we at finding the best reordering?

Outline

- Reordering approach
 - Rule types
 - Training and application
- Reordering oracles
 - Optimally reordered source
 - Best model approximation of optimally reordered sentence
- Experiments
 - 1 Potential of reordering the source sentence
 - 2 Restriction of the search space
 - 3 Ranking different word orders

Reordering Approach

- POS-based reordering model
 - Short-range rules (Rottmann and Vogel, 2007)
 - Long-range rules (Niehues and Kolss, 2009)
- Tree-based reordering model (Herrmann et al., 2013)
- Rules for reordering the source sentence
 - automatically learned
 - non-deterministic
 - reordering variants stored in a lattice
- General rule
 - LHS: sequence of POS / constituents
 - RHS: indexed representation of target order for tokens
 - rule probability based on frequency of occurrence

Rule Types

- Short-range rules
 - continuous POS sequences
- Long-range rules
 - discontinuous POS sequences with placeholders
- Tree-based rules
 - head + sequence of children in syntactic parse tree constituents

Rule Type	Example Rule	
Short	VVIMP VMINF PPER	→ 2 1 0
Long	VAINF * VVPP	→ 0 2 1
Tree	VP PTNEG NP VVPP	→ 0 2 1

Learning and Applying Reordering Rules

- Requirements
 - parallel training corpus with POS tags / parse trees for source side
 - word alignment
- Training
 - search for changes in word order between source and target sentences
 - if alignment links cross
 - monotonize alignment
 - extract rule that rearranges source words in the order of aligned target words
- Application
 - apply reordering rules to source sentence
 - store all produced reordering variants in the lattice
 - include original source sentence
 - edges are assigned transition probabilities based on the rule probability

Scoring Reordered Paths

- (Reordered) sentence
 - path in the reordering lattice
- Probability for given path
 - product of transition probabilities of traversed edges
- Highest scoring path should represent best reordering for the sentence
- Reordering lattice is one model in the log-linear model of translation system
- Model score is optimized with MERT

Outline

- Reordering approach
 - Rule types
 - Training and application
- Reordering oracles
 - Optimally reordered source
 - Best model approximation of optimally reordered sentence
- Experiments
 - 1 Potential of reordering the source sentence
 - 2 Restriction of the search space
 - 3 Ranking different word orders

Oracle Reordering

- Investigate the impact of source reordering on translation quality
 - upper bound of the pre-ordering approach
 - upper bound of restriction of the search space by our reordering model
 - decoder performance at finding a good path
- Compare the actual system performance with two oracles
 - Optimally reordered sentence
 - Oracle path

Optimally Reordered Sentence

- alignment of source and reference sentence
- create reordering of the source sentence (Birch et al., 2010)
 - source words are assigned the position of their aligned target word

source: wir haben nicht künstliche Szenarien gewählt

target: we didn't choose artificial scenarios

reordered source: wir haben nicht gewählt künstliche Szenarien

- optimally reordered sentence according to the alignment
- → oracle reordering of input sentence

Oracle Path

decoder search space is restricted by applied reordering rules

- find the "best" path in the lattice
 - oracle reordering
 - closest path to oracle reordering
- calculate Kendall's tau distance
 - reordering = permutation
 - transform one permutation into another
 - number of swaps between two adjacent symbols
- → oracle path: path with smallest distance to oracle reordering

Outline

- Reordering approach
 - Rule types
 - Training and application
- Reordering oracles
 - Optimally reordered source
 - Best model approximation of optimally reordered sentence
- Experiments
 - 1 Potential of reordering the source sentence
 - 2 Restriction of the search space
 - 3 Ranking different word orders

Experiments

- System
 - Phrase-based MT system
 - no optimization between translations using different rule types
 - no additional reordering in the decoder allowed
- Translation directions
 - German-English
 - English-German
- Domains
 - News texts
 - TED talks

Potential of Reordering the Source Sentence

- Compare 3 translation results
 - no reordering
 - monotone translation of source sentence
 - oracle reordering
 - translation of optimally reordered sentence
 - system performance
 - reordering lattices, decision during decoding

German-English

Reordering Type	News	TED
Monotone	20.23	27.18
Lattice Reordering	22.45	30.87
Oracle	25.42	33.39

English-German

Reordering Type	News	TED
Monotone	15.91	24.22
Lattice Reordering	16.34	24.95
Oracle	18.84	28.77

Potential of Reordering the Source Sentence

- gap between actual performance and oracle reordered translation
- possible reasons
 - lattice-based reordering
 - reordering variant not in the lattice
 - decoder search
 - in the lattice but decoder does not choose it
- → deeper analysis of those two aspects

Lattice-based restriction of the search space

- Lattice-based reordering
 - restriction of the search space of possible reorderings by the lattice
 - how much does this influence the drop in performace
- best translation reachable with reordering lattice: oracle path
- translations of oracle paths in lattices produced with different rule types
- compare to translation of oracle reordering

Lattice-based Restriction of the Search Space

- Translation of oracle path
 - German-English

Reordering Type	News BLEU	Size	TED BLEU	Size
Monotone	20.23		27.18	
Short	21.37	193K	29.98	68K
Short+Long	21.41	255K	30.66	163K
Tree	22.28	249K	30.22	82K
Short+Long+Tree	22.65	538K	31.12	213K
Oracle	25.42 + 2.8		33.39 + 2.3	

Lattice-based Restriction of the Search Space

- Translation of oracle path
 - English-German

Reordering Type	News BLEU	Size	TED BLEU	Size
Monotone	15.91		24.22	
Short	16.31	186K	25.83	76K
Short+Long	16.70	383K	25.99	170K
Tree	16.60	727K	25.49	237K
Short+Long+Tree	17.07	1M	26.38	373K
Oracle	18.84 1.8		28.77 + 2.4	

- how good is the search
- decoder's search for the best path depends on
 - path probability
 - influence of the reordering model
 - interaction with other models
- reordering lattices produced by different rule types
- real decoding to find the path
- compare with oracle path and oracle reordering

- Decoder Performance
 - German-English News

Reordering Type	DecoderPath BLEU	OraclePath BLEU	
Monotone		20.23	
Short	21.59	21.37	
Short+Long	21.35	21.41	
Tree	22.10	22.28	
Short+Long+Tree	22.45	22.65	+ 0.
Oracle		25.42	

- Decoder Performance
 - German-English News

Reordering Type	DecoderPath BLEU	OraclePath BLEU
Monotone		20.23
Short	21.59	21.37
Short+Long	21.35	21.41
Tree	22.10	22.28
Short+Long+Tree	22.45	22.65
Oracle	+ 3.0	25.42

- Decoder Performance
 - German-English TED

Reordering Type	DecoderPath BLEU	OraclePath BLEU	
Monotone		27.18	
Short	30.00	29.98	
Short+Long	30.73	30.66	
Tree	29.96	30.22	
Short+Long+Tree	30.87	31.12	+ 0
Oracle		33.39	

- Decoder Performance
 - German-English TED

Reordering Type	DecoderPath BLEU	OraclePath BLEU
Monotone		27.18
Short	30.00	29.98
Short+Long	30.73	30.66
Tree	29.96	30.22
Short+Long+Tree	30.87	31.12
Oracle	+ 2.5	33.39

- Decoder Performance
 - English-German News

Reordering Type	DecoderPath BLEU	OraclePath BLEU	
Monotone		15.91	
Short	16.27	16.31	
Short+Long	16.31	16.70	
Tree	16.18	16.60	
Short+Long+Tree	16.34	17.07	+ 0.7
Oracle		18.84	

- Decoder Performance
 - English-German News

Reordering Type	DecoderPath BLEU	OraclePath BLEU
Monotone		15.91
Short	16.27	16.31
Short+Long	16.31	16.70
Tree	16.18	16.60
Short+Long+Tree	16.34	17.07
Oracle	+ 2.5	18.84

- Decoder Performance
 - English-German TED

Reordering Type	DecoderPath BLEU	OraclePath BLEU	
Monotone		24.22	
Short	24.83	25.83	
Short+Long	24.87	25.99	
Tree	24.50	25.49	
Short+Long+Tree	24.95	26.38	+ 1.4
Oracle		28.77	

- Decoder Performance
 - English-German TED

Reordering Type	DecoderPath BLEU	OraclePath BLEU
Monotone		24.22
Short	24.83	25.83
Short+Long	24.87	25.99
Tree	24.50	25.49
Short+Long+Tree	24.95	26.38
Oracle	+ 3.8	28.77

Conclusions

- analysis of the potential of a common reordering approach
- German-English, English-German
- translation of News text and TED talks
- oracle reordering
 - improves the translation by up to 6.2 BLEU points
- search space restriction
 - best approximation of oracle reordering when more complex and complementary reordering rules are applied
 - gap between best oracle path and oracle reordering
 - German-English: 2.5 3.0 BLEU points
 - English-German: 2.5 3.8 BLEU points
 - need for better reordering rules

Conclusions

- decoder performance
 - German-English
 - decoder path quite close to oracle path
 - 0.2 0.3 BLEU points difference
 - English-German:
 - finding best path more difficult
 - 0.7 1.4 BLEU points difference
 - need for better ranking of reordering variants
- oracle experiments confirmed benefit of source reordering for translation quality
- potential improvements by up to 3.0 3.8 BLEU points
 - better rules
 - better ranking of reordering quality

Thank you!

teresa.herrmann@kit.edu

http://isl.anthropomatik.kit.edu

