ÁCIDOS E BASES

O CONCEITO DE ARRHENIUS PARA ÁCIDOS E BASES

- Apresentado pelo químico, físico e matemático sueco Svante August Arrhenius (1859-1927) em 1887.
 - **Ácidos** são substâncias que, quando dissolvidas em água, aumentam a concentração de íons H⁺(aq) na solução.

$$HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)$$

100% ionizado = ácido forte (eletrólito forte)

• **Bases** são substâncias que, quando dissolvidas em água, aumentam a concentração de íons OH-(aq) na solução.

NaOH(
$$aq$$
) → Na⁺(aq) + OH⁻(aq)
100% dissociado = base forte (eletrólito forte)

O CONCEITO DE ARRHENIUS PARA ÁCIDOS E BASES

- A reação entre um ácido forte e uma base forte, produz sal e água e é chamada de **Reação de Neutralização**.
 - **Sal** é todo composto iônico cujo cátion provem de uma base e cujo ânion provem de um ácido.

• O conceito de Ahrrenius para ácidos e bases, embora tenha contribuído para explicar um grande número de fenômenos, mostrou-se restrito a água.

O CONCEITO DE BRONSTED-LOWRY PARA ÁCIDOS E BASES

- Apresentado, independentemente, pelos químicos J.N.
 Brönsted e T.M. Lowry, em 1923.
 - **Ácidos** são substâncias capazes de doar um próton a outras substâncias.

$$HNO_3(aq) + H_2O(l) \rightarrow NO_3^-(aq) + H_3O^+(aq)$$

ácido base

• **Bases** são substâncias capazes de aceitar um próton de outras substâncias.

$$NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$$

base ácido

O CONCEITO DE BRONSTED-LOWRY PARA ÁCIDOS E BASES

Bronsted

Bronsted

O CONCEITO DE BRONSTED-LOWRY PARA ÁCIDOS E BASES

$$HNO_3(aq) + H_2O(l) \rightarrow NO_3^-(aq) + H_3O^+(aq)$$
base de Bronsted

$$NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$$

ácido de Bronsted A água é uma substância **anfiprótica**: capaz de se comportar como um ácido ou base de Bronsted

ÍON HIDRÔNIO

• Um íon H⁺, o núcleo de um átomo de hidrogênio, não é capaz de existir separadamente em água. H⁺ combina-se com a água formando o íon hidrônio, H_3O^{+} , ou outros aglomerados, tais como $H_5O_2^+$ e $H_9O_4^+$.

ÍON HIDRÔNIO

1 H₃O⁺

Structure 4-1

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

O CONCEITO DE BRONSTED-LOWRY PARA ÁCIDOS E BASES: PARES ÁCIDO-BASE CONJUGADOS

• Todas as reações entre um ácido e uma base de Bronsted envolvem a transferência de um próton e tem dois pares ácido-base conjugados.

• HCO₃-/CO₃²-, H₂O/H₃O⁺ e NH₃/NH₄⁺ são pares ácido-base conjugados.

O CONCEITO DE BRONSTED-LOWRY PARA ÁCIDOS E BASES: PARES ÁCIDO-BASE CONJUGADOS

 A Tabela abaixo mostra alguns exemplos de pares ácido-base conjugados.

Substância	Ácido	Base conjugada	
Ácido clorídrico	HCI	Cl ⁻	
Ácido acético	CH ₃ COOH	CH₃COO⁻	
Ácido nítrico	HNO ₃	NO ₃ -	
Ácido perclórico	HClO ₄	ClO ₄ -	
Água	H ₂ O	OH ⁻	
Íon hidrônio	H ₃ O ⁺	H ₂ O	
Íon bicarbonato	HCO ₃ -	CO ₃ ²⁻	
Cloreto de amônio	NH₄Cl	NH ₃	

• Os pares ácido-base conjugados diferem entre si apenas em um próton.

O CONCEITO DE BRONSTED-LOWRY PARA ÁCIDOS E BASES

A reação entre o cloreto de hidrogênio e a amônia pode ocorrer na ausência de solvente.

$$NH_3(g) + HCl(g) \Longrightarrow NH_4Cl(s)$$

Segundo Brönsted – Lowry, o processo de neutralização, é aquele em que ocorre uma transferência de prótons entre dois pares ácido/base conjugados.

O CONCEITO DE BRONSTED-LOWRY PARA ÁCIDOS E BASES: FORÇAS RELATIVAS DE ÁCIDOS E BASES

As reações descritas anteriormente, ocorrem na direção da formação das espécies mais fracas. Em cada par conjugado, o ácido mais forte e a base mais forte reagem para formar o ácido e a base mais fracos.

$$\mathrm{HClO_4}(aq) + \mathrm{H_2O}(l) \rightarrow \mathrm{H_3O^+}(aq) + \mathrm{ClO_4^-}(aq)$$

 $HClO_4$ é um ácido mais forte que H_3O^+ e ClO_4^- é uma base mais fraca que a água.

TABELA: FORÇAS RELATIVAS DE ÁCIDOS E BASES

Ácido		Base	
ácido perclórico	HCIO ₄	íon perclorato	CIO ₄ -
ácido sulfúrico	H ₂ SO ₄	íon hidrogenossulfato	HSO ₄ -
ácido clorídrico	HCI	íon cloreto	Cl ⁻
ácido nítrico	HNO ₃	íon nitrato	NO ₃ -
íon hidrônio	H ₃ O ⁺	água	H ₂ O
íon hidrogenossulfato	HSO ₄ -	íon sulfato	SO ₄ ²⁻
ácido sulfuroso	H ₂ SO ₃	íon hidrogenossulfito	HSO ₃ -
ácido fosfórico	H ₃ PO ₄	íon diidrogenofosfato	H ₂ PO ₄ -
ácido nitroso	HNO ₂	íon nitrito	NO ₂ -
ácido fluorídrico	HF	íon fluoreto	F ⁻
ácido acético	CH ₃ COOH	íon acetato	CH ₃ COO-
ácido carbônico	H_2CO_3	íon hidrogenocarbonato	HCO ₃ -
ácido sulfídrico	H ₂ S	íon hidrogenossulfeto	HS ⁻
íon hidrogenossulfito	HSO ₃ -	íon sulfito	SO ₃ ²⁻
íon amônio	NH ₄ ⁺	amônia	NH ₃
ácido cianídrico	HCN	íon cianeto	CN ⁻
íon hidrogenocarbonato	HCO ₃ -	íon carbonato	CO ₃ ²⁻
água	H ₂ O	íon hidróxido	OH-
íon hidrogenossulfeto	HS ⁻	íon sulfeto	S ²⁻
amônia	NH ₃	íon amideto	NH ₂ -
íon hidróxido	OH-	íon óxido	O ²⁻

FORÇAS RELATIVAS DE ÁCIDOS E BASES

- Ao observar a posição dos ácidos HClO₄, H₂SO₄, HCl e HNO₃ na Tabela, verificamos que eles estão acima do íon H₃O⁺ e que têm maior tendência em doar prótons do que o íon H₃O⁺.
- Portanto, em solução aquosa, o íon H_3O^+ é o ácido mais forte que pode existir.
- Paralelamente, qualquer base mais forte do que o OH- reage completamente com a água, formando OH-.
- Portanto, *em solução aquosa*, o íon OH⁻ é a base mais forte que pode existir.

FORÇAS RELATIVAS DE ÁCIDOS E BASES

- Como em solução aquosa HClO₄, H₂SO₄, HCl e HNO₃ estão totalmente ionizados, podemos dizer que são todos igualmente fortes e que o solvente, no caso **a água, exerce um** *efeito nivelador* sobre suas forças.
- Como o ácido acético pode distinguir as forças destes ácidos, ele é chamado um solvente diferenciador. HClO₄ > H₂SO₄ > HCl > HNO₃

O CONCEITO DE BRONSTED-LOWRY PARA ÁCIDOS E BASES: FORÇAS RELATIVAS DE ÁCIDOS E BASES

- A força relativa de um ácido ou de uma base pode ser expressa quantitativamente com uma constante de equilíbrio.
- K_a é uma constante de equilíbrio para um ácido em água.
- Para um ácido fraco, $K_a < 1$.
- O valor de K_a aumenta a medida que aumenta a força do ácido, ou seja, a medida que o ácido ioniza-se em maior extensão.

$$HA(aq) + H_2O(l) \implies A^-(aq) + H_3O^+(aq) \quad K_a = [A^-][H_3O^+]/[HA]$$

O CONCEITO DE BRONSTED-LOWRY PARA ÁCIDOS E BASES: FORÇAS RELATIVAS DE ÁCIDOS E BASES

• Do mesmo modo, podemos escrever a constante de equilíbrio para uma base, K_b .

$$B(aq) + H_2O(l) \Longrightarrow BH^+(aq) + OH^-(aq) K_b = [BH^+][OH^-]/[B]$$

- A Tabela a seguir mostra alguns ácidos e bases ordenados em função de sua capacidade de doar ou aceitar prótons e seus respectivos valores de K_a e K_b .
- Observa-se que quanto mais fraco é ácido, mais forte é sua base conjugada. Ou seja, quanto menor o valor de K_a , maior o valor de K_b correspondente.

CONSTANTES DE IONIZAÇÃO DE ALGUNS ÁCIDOS E SUAS BASES CONJUGADAS (25 °C)

Ácido	K _a	Base conjugada	K _b
HClO ₄	grande	ClO ₄ -	muito pequena
H ₃ O ⁺	1,0	H ₂ O	1,0 x 10 ⁻¹⁴
H_2SO_3	1,0 x 10 ⁻²	HSO ₃ -	8,3 X 10 ⁻¹³
H_3PO_4	7,5 X 10 ⁻³	H ₂ PO ₄ -	1,3 X 10 ⁻¹²
HF	7,2 X 10 ⁻⁴	F ⁻	1,4 X 10 ⁻¹¹
H_2CO_3	4,2 X 10 ⁻⁷	HCO ₃ -	2,4 X 10 ⁻⁸
NH ₄ ⁺	5,6 X 10 ⁻¹⁰	NH ₃	1,8 X 10 ⁻⁵
HCN	4,0 X 10 ⁻¹⁰	CN⁻	2,5 X 10 ⁻⁵
H ₂ O	1,0 X 10 ⁻¹⁴	OH-	1,0

A ÁGUA E A ESCALA DE pH

$$2H_2O(aq) \Longrightarrow H_3O^+(aq) + OH^-(aq)$$

auto-ionização da água

```
Kw = [H<sub>3</sub>O<sup>+</sup>][OH<sup>-</sup>]

Kw = 1,0 x 10<sup>-14</sup> (a 25 °C)

[H<sub>3</sub>O<sup>+</sup>] = [OH<sup>-</sup>]= 1,0 x 10<sup>-7</sup> (solução

neutra)

[H<sub>3</sub>O<sup>+</sup>]>[OH<sup>-</sup>] (solução ácida)

[H<sub>3</sub>O<sup>+</sup>]<[OH<sup>-</sup>] (solução básica)
```

pH = -log [H₃O⁺]
pOH = -log [OH⁻]
Em água pura, a 25 °C
pH = pOH⁻ = 7,0

O CONCEITO DE LEWIS PARA ÁCIDOS E BASES

- Apresentado por **Gilbert Newton Lewis** (1875-1946), em 1916, mas aceito apenas a partir de 1923.
 - **Ácidos** são substâncias capazes de aceitar um par de elétron de outros átomos para formar uma nova ligação.
 - **Bases** são substâncias capazes de doar um par de elétron a outro átomo para formar uma nova ligação.

$$A + :B \rightarrow A:B$$

$$BF_3 + :NH_3 \rightarrow H_3N:BF_3$$

$$H-N: + H^{+}$$
 $H-N: + H^{+}$
 $H-N: + H^{+}$