Comparison of IFS Similarity Measures - Report

 $IFSSimReporter\ 1.0.6250.29793$

February 10, 2017

1 Experiment Settings

1.1 Similarity Measures

The following similarity measures for intuitionistic fuzzy sets were used through the experiment: AoD ([1]), VB-0.5 ([2]), H3D ([3]), E-3D ([3]), GGeo-3D-2 ([4]), GGeo-3D-1 ([4]), GGeo-3D-4 ([4]), X17-2 ([4]), X17-0.5 ([4]), X19 ([4]), X21 ([4]), CC ([5]), Ch ([6]), HK ([7]), HY15 ([8]), HY16 ([8]), BA-1-2 ([9]), BA-2-4 ([9]), N26 ([10]), XY19 ([11]), COS ([12]), SK1-2D ([13]), SK2-2D ([13]), SK3-2D ([13]), SK4-2D ([13]), XVB-0-0.05 ([1]), XVB-0-0.1 ([1]), XVBr-1-10 ([1]), XVBr-0.5-10 ([1]), XVBr-0-10 ([1]), XVBr-1-5 ([1]), XVBr-0.5-5 ([1]), XVBr-0-5 ([1]), XVBr-0.5 ([1]), XVBr-0.5

1.2 Testing Data

The following categories from the RCV1 data set were used in the experiment: E11, ECAT, GJOB.

2 Results

Table 1: Linear models and m-indices for each SM-vs.-OP representing the relationship between the averages levels that result from the (configuration of) similarity measure SM and the percentage of opposites OP.

	SM-vsOP (linear model: $y = ax + b$)			
Similarity Measure (SM)	slope (a)	intercept (b)	R^2	m-index
VB-0.5	-0.0125	0.9982	0.9093	0.0137
H3D	-0.0108	0.9870	0.1718	0.0022
E-3D	-0.0150	0.9862	0.2697	0.0048
GGeo-3D-2	-0.0150	0.9862	0.2697	0.0048
GGeo-3D-1	-0.0108	0.9870	0.1718	0.0022
GGeo-3D-4	-0.0226	0.9818	0.3303	0.0089
X17-2	-0.0114	0.9896	0.2758	0.0038
X17-0.5	-0.0099	0.9806	0.0676	0.0008
X19	-0.0212	0.9748	0.1756	0.0044
X21	0.0008	0.9867	0.0008	0.0000
CC	-0.0005	0.9928	0.0012	0.0000
Ch	-0.0125	0.9982	0.9093	0.0137
HK	-0.0113	0.9944	0.5724	0.0078
HY15	-0.0119	0.9908	0.3386	0.0049
HY16	-0.0187	0.9857	0.3395	0.0076
BA-1-2	-0.0123	0.9977	0.8803	0.0131
BA-2-4	-0.0165	0.9954	0.7991	0.0160
N26	0.0011	0.9883	0.0021	0.0000
XY19	-0.3832	0.6050	0.5080	0.1430
COS	0.0008	0.9860	0.0009	0.0000
SK1-2D	-0.7594	0.8745	0.7993	0.6446
SK2-2D	-0.7543	0.7624	0.7327	0.5116
SK3-2D	-0.7410	0.6101	0.5450	0.2992
SK4-2D	-0.7574	0.7929	0.7623	0.5559
XVB-0-0.05	-0.6674	0.7550	0.7045	0.4311
XVB-0-0.1	-0.5599	0.8770	0.8428	0.5026
XVBr-1-10	-0.7516	0.9457	0.7676	0.6626
XVBr-0.5-10	-0.7876	0.8907	0.8468	0.7214
XVBr-0-10	-0.7580	0.7959	0.7659	0.5612
XVBr-1-5	-0.7943	0.8970	0.8516	0.7368
XVBr-0.5-5	-0.7943	0.8970	0.8516	0.7368
XVBr-0-5	-0.7668	0.7498	0.7327	0.5115
XVBr-1	-0.7516	0.8177	0.7704	0.5749
XVBr-0.5	-0.8171	0.8992	0.8873	0.7916
XVBr-0	-0.7753	0.9231	0.8183	0.7112
AoD	-0.9005	0.9446	0.9682	1.0000

2.1 Charts

Figure 1: Averages of the similarity levels per scenario versus the percentage of opposites included in each scenario (Part 1).

Figure 1: Averages of the similarity levels per scenario versus the percentage of opposites included in each scenario (Part 2).

2.2 Linear models

References

- Loor, M., De Tré, G.: In a Quest for Suitable Similarity Measures to Compare Experience-Based Evaluations. In: Computational Intelligence: International Joint Conference, IJCCI 2015 Lisbon, Portugal, November 12-14, 2015, Revised Selected Papers pp. 291-314 (2017)
- [2] M. Loor and G. De Tré, "Vector Based Similarity Measure for Intuitionistic Fuzzy Sets," in Modern Approaches in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics: Volume I: Foundations, K. T. Atanassov, M. Baczyński, J. Drewniak, J. Kacprzyk, M. Krawczak, E. Szmidt, M. Wygralak, and S. Zadrożny, Eds. SRI-PAS, 2014, pp. 105–127.
- [3] E. Szmidt and J. Kacprzyk, "Distances between intuitionistic fuzzy sets," Fuzzy Sets and Systems, vol. 114, no. 3, pp. 505–518, Sep. 2000.
- [4] Z. Xu, "Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making," Fuzzy Optimization and Decision Making, vol. 6, no. 2, pp. 109–121, 2007.

Figure 2: AoD - Linear model

Figure 3: VB-0.5 - Linear model

- [5] S.-M. Chen, S.-H. Cheng, and T.-C. Lan, "A novel similarity measure between intuitionistic fuzzy sets based on the centroid points of transformed fuzzy numbers with applications to pattern recognition," *Information Sciences*, vol. 343–344, pp. 15 40, 2016.
- [6] S.-M. Chen et al., "Similarity measures between vague sets and between elements," IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBER-NETICS PART B-CYBERNETICS, vol. 27, no. 1, pp. 153–158, 1997.
- [7] D. H. Hong and C. Kim, "A note on similarity measures between vague sets and between elements," *Information Sciences*, vol. 115, no. 1, pp. 83 96, 1999.
- [8] W.-L. Hung and M.-S. Yang, "Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance," *Pattern Recognition Letters*, vol. 25, no. 14, pp. 1603 1611, 2004.
- [9] F. E. Boran and D. Akay, "A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition," *Information Sciences*, vol. 255, pp. 45 57, 2014.

Figure 4: H3D - Linear model

Figure 5: E-3D - Linear model

- [10] H. Nguyen, "A novel similarity/dissimilarity measure for intuitionistic fuzzy sets and its application in pattern recognition," *Expert Systems with Applications*, vol. 45, pp. 97 107, 2016.
- [11] Z. Xu and R. R. Yager, "Intuitionistic and interval-valued intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group," Fuzzy Optimization and Decision Making, vol. 8, no. 2, pp. 123–139, 2009.
- [12] "Geometric similarity measures for the intuitionistic fuzzy sets," in 8th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13). Atlantis Press, 2013, pp. 840–847.
- [13] E. Szmidt and J. Kacprzyk, "A concept of similarity for intuitionistic fuzzy sets and its use in group decision making," in *IEEE International Conference on Fuzzy Systems*, 2004, pp. 1129–1134.

Figure 6: GGeo-3D-2 - Linear model

Figure 7: GGeo-3D-1 - Linear model

Figure 8: GGeo-3D-4 - Linear model

Figure 9: X17-2 - Linear model

Figure 10: X17-0.5 - Linear model

Figure 11: X19 - Linear model

Figure 12: X21 - Linear model

Figure 13: CC - Linear model

Figure 14: Ch - Linear model

Figure 15: HK - Linear model

Figure 16: HY15 - Linear model

Figure 17: HY16 - Linear model

Figure 18: BA-1-2 - Linear model

Figure 19: BA-2-4 - Linear model

Figure 20: N26 - Linear model

Figure 21: XY19 - Linear model

Figure 22: COS - Linear model

Figure 23: SK1-2D - Linear model

Figure 24: SK2-2D - Linear model

Figure 25: SK3-2D - Linear model

Figure 26: SK4-2D - Linear model

Figure 27: XVB-0-0.05 - Linear model

Figure 28: XVB-0-0.1 - Linear model

Figure 29: XVBr-1-10 - Linear model

Figure 30: XVBr-0.5-10 - Linear model

Figure 31: XVBr-0-10 - Linear model

Figure 32: XVBr-1-5 - Linear model

Figure 33: XVBr-0.5-5 - Linear model

Figure 34: XVBr-0-5 - Linear model

Figure 35: XVBr-1 - Linear model

Figure 36: XVBr-0.5 - Linear model

Figure 37: XVBr-0 - Linear model