

Teoretická informatika (TIN)

3. domácí úloha

1. úkol Vyjádřete funkci počítající odmocninu

Nejdříve definujeme pomocné funkce isZero(x) a squared(x) následovně:

$$isZero(x) = \begin{cases} 1 & x = 0 \\ 0 & jinak \end{cases}$$

 $squared(x) = x^2$

vyjádřené pomocí počátečních funkcí

$$isZero(x) = eq \circ (\pi_1^1 \times \xi)$$

 $squared(x) = mult \circ (\pi_1^1 \times \pi_1^1)$

Dále rekurzivně vyjádříme výpočet odmocniny:

$$sqrt(0) = \xi()$$

$$sqrt(y+1) = plus \circ (sqrt \circ y \times isZero \circ monus \circ ((squared \circ \sigma \circ sqrt \circ y) \times (\sigma \circ y)))$$

2. úkol Dokažte, že $O(g(n)) \subset O(f(n))$

$$\begin{split} f(n) &= \sqrt{2}n^3 \\ g(n) &= 10\ 000n^2 + 500n + 211 \end{split}$$

$$O(f(n)) = O(n^3)$$
$$O(g(n)) = O(n^2)$$

a)
$$O(g(n)) \subseteq O(f(n))$$

1.
$$O(n^2) \subseteq O(n^3)$$

2. Zkoumejme
$$\lim_{n\to\infty} \frac{O\left(n^3\right)}{O(n^2)}$$

3.
$$\lim_{n \to \infty} \frac{O\left(n^3\right)}{O(n^2)} = \lim_{n \to \infty} \frac{n^3}{n^2} = \lim_{n \to \infty} n = \infty$$

4. n^3 roste rychleji než n^2 a ted
y $f(n) \geq g(n)$ pro $\forall n \in \mathbb{N}$

b)
$$O\left(g\left(n\right)\right) \neq O\left(f\left(n\right)\right)$$

Důkaz sporem:

1. Předpoklad
$$O(n^2) = O(n^3)$$

2.
$$n^2 = n^3$$

3.
$$n = 0$$

4. Z principu
$$O()$$
 vyplývá, že $n > 0$

5. Došli jsme ke sporu a tudíž
$$O\left(n^{2}\right)\neq O\left(n^{3}\right)$$

3. úkol Dokažte, že problém je NP-úplný

NP-úplnost problému tety Květy (*TK problém*) dokážeme redukcí z varianty problému s batohem:

Máme batoh s omezenou nosností N a množinu věcí s cenou P a hmotností M. Hledáme takový seznam věcí, aby $\sum p_i$ byla co největší a $\sum m_i < N$.

Redukci NP-úplného problému batohu redukujeme na TK problém následovně:

- nosnost batohu N převedeme na obnos O
- \bullet hmotnost předmětu M převedeme na obsah vitamínu $\mathbb C$ v zelenině $\mathbb C$.

Hledáme tedy hodnoty $x_i \in \mathbb{R}$, kde x_i představuje množství zeleniny i v kilogramech, v problému

$$\max \sum x_i \cdot c_i$$

$$\sum x_i \cdot p_i \le O$$

Celý problém navíc komplikuje podmínka na minimální celkové množství vitamínu C a brokolice zdarma. Ale i bez toho je problém NP-úplný, tudíž pokud zvýšíme složitost problému, nenarušíme tím jeho důkaz náležitosti do množiny NP problémů.

TK problém pak zapíšeme následovně:

$$b = 0.1 \cdot floor\left(\sum x_i\right)$$
$$\max\left(\sum x_i \cdot c_i + b \cdot B\right)$$
$$\sum x_i \cdot p_i \le O \land \sum x_i \cdot c_i + b \cdot B \ge C$$

kde *floor* značí zaokrouhlení dolů na celé číslo a b představuje množství brokolice zdarma.

Alanův stroj

Alan rozhodně nemůže v reálném světě sestrojit stroj s nekonečnou páskou, protože podle současného vědění je ve vesmíru omezené množství hmoty.

Pokud budeme tuto skutečnost ignorovat, tak by řešení TK problému "za chvíli" znamenalo, že umíme vyřešit i jiné NP-úplné problémy v polynomiálním čase. To by mohlo mít dalekosáhlé následky. Spousta teoretiků by musela předělat své teorie a předpoklady, ušetřilo by se ohromné množství elektrické energie spotřebované na výpočty a dokonce by mohl být i levnější chleba, jelikož by pekárny mohli optimalizovat jeho rozvoz díky vyřešení problému obchodního cestujícího.

4. úkol Namalujte Petriho síť

Pro přehlednost jsem síť rozdělil na dva obrázky, kde místa se stejnými názvy jsou v rámci výsledné sítě totožná. Prvotní rozmístění značek jsem pro přehlednost zakreslil pouze na obrázek 1.

Obrázek 1: Převoz z levého břehu na pravý

Obrázek 2: Převoz z pravého břehu na levý

Formální zápis