

SEQUENCE LISTING

<110> Levy, Gary

Clark, David A.

<120> Methods of Modulating Immune Coagulation

<130> 9579-14

<140> US 09/442,143

<141> 1999-11-15

<150> US 60/046,537

<151> 1997-05-17

<150> US 60/061,684

C27 <151> 1997-10-10

<160> 53

<170> PatentIn version 3.1

<210> 1

<211> 4630

<212> DNA

<213> Homo sapiens

<400> 1
gatcttaggtt tggaaagccag gtctcctgag tatgcgagaa taaatacagt catggaagtg 60
taaagagtct gccaacattt tgagaatgtg aataggattt ggctaaaatt aaggggatat 120
acagaaaaagt catagggaaat caggtaaag acataaaatat gagataggct acagagtgtt 180
ttaagtaata caataaaaca ttttagatttt tgcccatgtc agtcattttg aaattatttt 240
taaagcaaaa aaaccctttt taaacaagaa atcttatgag atgtcaatat gcaaaacaaa 300
ttaaaaggag gtggtttctc taactgaagc tgccctctt tcctgccttc agcctctgaa 360
gagaaagtta gaaaactatt atcattaatg ctacatgttt tgaacaagct gatataccaa 420
gtggcccaaga gaggcagtag aagaaccagc gtggagacag aaagcaagag gccccctgc 480

(2)

cagggctacc	tgcagaaaaga	aaggcggaaag	atgctgttagg	caagagaagt	tcaggacaga	540
cactggcata	gctcaaagat	tcacattga	gcagctgtgg	aagatgacag	tacaattacc	600
aaaatgtcga	aggcggaaagg	aggcagctac	tggtttgat	gaaagacaat	tatgtccctt	660
taaatgggtc	ttagacattt	agacatttat	atacactatg	ctacggacaa	aggaatagaa	720
atgcaatag	tcagaaagct	gtactttgtt	acacttagaa	acttctaaaa	gtgcttaaga	780
tttcaccta	gaatccaaca	tgaagaaaat	acaggctccc	caatgccca	ttctaagaag	900
aaaaaaggac	cattttcatt	ttagtaacgt	ttctgttcta	tagacagttt	ggataactag	960
ctcttactt	ttatcttaa	aaactgtttt	tccagtgaag	ttacgtataa	ttatcttactt	1020
caagcgtagt	ataccaaatt	acttttagaaa	tgcaagactt	ttcttataact	tcataaaata	1080
cattatgaaa	gtgaatctt	ttggctgtgt	acatttgact	ataataattt	caatgcata	1140
tatcttatt	gagagtaagt	tacagttttt	ggcaaaactgc	gtttgatgag	ggctatctcc	1200
tcttcctgt	cgtttctaaa	acttgtgatg	caaacgc	cacccttcc	tggaaacaca	1260
gaaagcctga	ctcaggccat	ggccgcattt	aaagcagctc	cagccctgcg	cactccctgc	1320
tggggtgagc	agcactgtaa	agatgaagct	ggctaactgg	tactggctga	gctcagctgt	1380
tcttgccact	tacggttttt	tggttgtggc	aaacaatgaa	acagaggaaa	ttaaagatga	1440
aagagcaaag	gatgtctgcc	cagtggact	agaaagcaga	gggaaatgcg	aagaggcagg	1500
ggagtgc	taccaggtaa	gcctgc	cttgcattt	cagctccgaa	agcaattcag	1560
caggatcgag	gaggtgttca	aagaagtcca	aaacctaag	gaaatcgtaa	atagtctaaa	1620
gaaatcttgc	caagactgca	agctgcaggc	tgatgacaac	ggagaccag	gcagaaacgg	1680
actgttgtt	cccagtacag	gagccccgg	agaggttggt	gataacagag	ttagagaatt	1740
agagagttag	gttaacaagc	tgtcctctga	gctaaagaat	gccaaagagg	agatcaatgt	1800
acttcatgg	cgccctggaga	agctgaatct	tgtaaatatg	aacaacatag	aaaattatgt	1860
tgacagcaaa	gtggcaaattc	taacattgt	tgtcaatagt	ttggatggca	aatgttcaaa	1920
gtgtcccgac	caagaacaaa	tacagtacg	tccaggtatg	tataataatg	ttttcttatac	1980
atatgttcat	aaatgttata	cagtcagaga	tgtatctaaa	agattaacct	gagtcagtaa	2040
gtttaataga	tgacagatta	agtctttat	ttatcaaggt	gcacaggaaa	aaataaaatat	2100
cttctcaaatt	atgaccacat	aaatatgacc	taattacaaa	atcatagtt	gttctgtatc	2160
cactggaaat	cactttcaat	tttaagatct	tatgtttttaa	tgccagac	acttgcaagc	2220
agagattaga	ggtccttct	gctttataac	attaggttct	tcttgtgagg	ccttaagcat	2280
ttactaaaca	ccttcaagta	agtttagtaa	agtttcatta	ctgcccattga	ttcaattatc	2340

77

W7

aaactgctt tgtacatata aagaattctt cagatgcgt gtttctatta acaagatcca 2400
atgccttcct tttatccc cttcagttca acatctaata tataaagatt gctctgacta 2460
ctacgcaata ggcaaaagaa gcagtgagac ctacagagtt acacctgatc ccaaaaatag 2520
tagcttgaa gtttactgtg acatggagac catggggga ggctggacag tgctgcaggc 2580
acgtctcgat gggagcacca acttcaccag aacatggcaa gactacaaag caggcttgg 2640
aacacctcaga aggaaatttt ggctgggaa cgataaaatt catcttctga ccaagagtaa 2700
ggaaatgatt ctgagaatag atcttgaaga cttaatggt gtcgaactat atgccttgc 2760
tgatcagtt tatgtggcta atgagttct caaatatcgt ttacacgtt gtaactataa 2820
tggcacagct ggagatgcat tacgttcaa caaacattac aaccacgatc tgaagtttt 2880
caccactcca gataaagaca atgatcgata tccttctggg aactgtggc tgtactacag 2940
ttcaggctgg tggttgatg catgtcttc tgcaaactta aatggcaaatttattacca 3000
aaaatacaga ggtgtccgta atgggatttt ctggggtacc tggcctggtg taagtggc 3060
acaccctggc ggctacaagt ctccttcaa agaggctaag atgatgatca gaccaagca 3120
ctttaagcca taaatcactc tgttcattcc tccaggtatt cgttatctaa tagggcaatt 3180
aattccttgt ttcataatttt tcatacgtaa aaaatgatgt ctgacggcta ggttctttag 3240
ctacacagca tttgaaataa agctaaaaaa caatgcattt taaaggagtc ctttgggtt 3300
atgctgttat ccaatgaaca cttgcaagca attagcaata ttgagaatta tacattagat 3360
ttacaattct ttaatttct attgaaactt tttctattgc ttgtattact tgctgtat 3420
aaaaaataat tggggctgg gtgtggtagc tcacgcctgt aatcccagca ctttggatg 3480
tcaaggcagg cagatcactt gaggtcagga gtttgagacc agcctggcca aacatgtgaa 3540
acgctgtctc tattaaaaat acaaaaatta gccgggcatg gtggtacatg cctgtaatca 3600
acgctgttta ttaaaaatac aaaaattagc cgggcatggt ggacatgcct gtaatcctag 3660
tacttggag gctgaggcag gagaatcgct tgaacctgag aggaagaggt tgcaatgagc 3720
caagaatgag ccactgcact ccagcatggg tgacagagaa aactctgtct caaacaaaaa 3780
aataataaaa ttatttcatg aggtggattc tacacaaagt aatctgtatt tggccatga 3840
tttaagcaca tctgaaggta tattttctt ttctggctat aattatttgg gtaatcttca 3900
ttctggagaca aacttaatct atatcattt ctttgcaca gaacaaccct acagcatttt 3960
ggttccaga ctaagggAAC taatatctat ataattaaac ttgttcattt atcattcatg 4020
aaatataaaa tacttgcattttaaaccgtt taaaatgtg gtagcataat gtcaccccaa 4080
aaagcattca gaaagcaatg taactgtgaa gaccagggtt taaaggtat tcattttatag 4140
tttataactc ctttagatgtt tgatgtgaa aactgcttta acatgaaaat tatcttcctc 4200
tgctctgtgt gaacaatagc ttttaatttta agattgctca ctactgtact agactactgg 4260

hK

C

taggtttttt tggggggggg tgggtaggga tatgtggta atgaagcatt tacttacagg 4320
ctatcatact ctgaggccaa ttttatctcc aaagcaataa tatcattaag tgattcactt 4380
catagaaggc taagtttctc taggacagat agaaaacatg aattttgaaa tatatagaac 4440
agtagttaaa atactatata tttcaaccct ggctggtaga ttgcttattt tactatcaga 4500
aactaaaaga tagattttta cccaaacaga agtatctgta attttataa ttcatcaatt 4560
ctggaatgct atatataata tttaaaagac tttttaatg ttttaattt catcatcgta 4620
aaaaggatc 4630

<210> 2

<211> 439

<212> PRT

<213> Homo sapiens fgl2

CJ?

<400> 2

Met Lys Leu Ala Asn Trp Tyr Trp Leu Ser Ser Ala Val Leu Ala Thr
1 5 10 15

Tyr Gly Phe Leu Val Val Ala Asn Asn Glu Thr Glu Glu Ile Lys Asp
20 25 30

Glu Arg Ala Lys Asp Val Cys Pro Val Arg Leu Glu Ser Arg Gly Lys
35 40 45

Cys Glu Glu Ala Gly Glu Cys Pro Tyr Gln Val Ser Leu Pro Pro Leu
50 55 60

Thr Ile Gln Leu Pro Lys Gln Phe Ser Arg Ile Glu Glu Val Phe Lys
65 70 75 80

Glu Val Gln Asn Leu Lys Glu Ile Val Asn Ser Leu Lys Lys Ser Cys
85 90 95

Gln Asp Cys Lys Leu Gln Ala Asp Asp Asn Gly Asp Pro Gly Arg Asn
100 105 110

Gly Leu Leu Leu Pro Ser Thr Gly Ala Pro Gly Glu Val Gly Asp Asn
115 120 125

Arg Val Arg Glu Leu Glu Ser Glu Val Asn Lys Leu Ser Ser Glu Leu
130 135 140

176

11.

Lys Asn Ala Lys Glu Glu Ile Asn Val Leu His Gly Arg Leu Glu Lys
145 150 155 160

Leu Asn Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Ser Lys
165 170 175

Val Ala Asn Leu Thr Phe Val Val Asn Ser Leu Asp Gly Lys Cys Ser
180 185 190

Lys Cys Pro Ser Gln Glu Gln Ile Gln Ser Arg Pro Val Gln His Leu
195 200 205

Ile Tyr Lys Asp Cys Ser Asp Tyr Tyr Ala Ile Gly Lys Arg Ser Ser
210 215 220

Glu Thr Tyr Arg Val Thr Pro Asp Pro Lys Asn Ser Ser Phe Glu Val
225 230 235 240

Tyr Cys Asp Met Glu Thr Met Gly Gly Trp Thr Val Leu Gln Ala
245 250 255

Arg Leu Asp Gly Ser Thr Asn Phe Thr Arg Thr Trp Gln Asp Tyr Lys
260 265 270

Ala Gly Phe Gly Asn Leu Arg Arg Glu Phe Trp Leu Gly Asn Asp Lys
275 280 285

Ile His Leu Leu Thr Lys Ser Lys Glu Met Ile Leu Arg Ile Asp Leu
290 295 300

Glu Asp Phe Asn Gly Val Glu Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr
305 310 315 320

Val Ala Asn Glu Phe Leu Lys Tyr Arg Leu His Val Gly Asn Tyr Asn
325 330 335

Gly Thr Ala Gly Asp Ala Leu Arg Phe Asn Lys His Tyr Asn His Asp
340 345 350

Leu Lys Phe Phe Thr Pro Asp Lys Asn Asp Arg Tyr Pro Ser
355 360 365

Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly Trp Trp Phe Asp Ala Cys
370 375 380

Leu Ser Ala Asn Leu Asn Gly Lys Tyr Tyr His Gln Lys Tyr Arg Gly
385 390 395 400

Val Arg Asn Gly Ile Phe Trp Gly Thr Trp Pro Gly Val Ser Glu Ala
405 410 415

His Pro Gly Gly Tyr Lys Ser Ser Phe Lys Glu Ala Lys Met Met Ile
420 425 430

Arg Pro Lys His Phe Lys Pro
435

<210> 3

<211> 5403

<212> DNA

<213> Murine

C27
<400> 3
cataaggcgt gtctgacaaa ttcttcatac acacatttcc cctttgcaca ttcagtctgt 60
ataggttatt tctataggag aaaaaaaata ttcaaattcc ttgtgcactg gtaacaggca
tgaaggctca gcaaagccaa tacgtttat gtccagttgg agacagtgcc agggccaaca 120
ttccagactt ctcagataga aagtgcgcct gcctgcccctg ctctgagaat ttgaagagag 180
tagttcagtt agaattaaga ggcagtagag aaaagtcttg ggaaatctgg ttagagatat 240
aaatatgaga actggacatg gtgg tacaca cctgtgatct ctgtgtttag gagggagagg 300
cagagagatc aggagttcaa ggccagccctg agctacttga gacccagtct aaataaataa 360
gagatagatt acagagtgcc tttaactagt acagagaaag aatttgggtt tatctgtgtc 420
agttacgctg aaataattt taagtaataa aatcccttt aataagaaac cttatgaggt 480
cagtatgcac aatgaactta agagagaccc ccagtcctg agctgagtga tggggaagga 540
cagccactgc ctgtgatgtg tgagtgacgt gcttccaagt gtttaacca ctgacgattt 600
catagcctgc acagtca gaaaacagcc gtattctctg ccagttctt tccctttac 660
aaacagatga gagacacaca cagagaatcc attaaagag cggaccttg ttctgattag 720
gggcaatttt aagtacttaa gagttcacac aaagtcttagc cttcaaaaag aaaacaggtt 780
cccaaactag ggaggaaaca gaatcatttc cattttggtg acattttagt ggaagaagct 840
cacagacatt tagacgttcc aactcttcc ccactgtgg accaagtata taatatggta 900
tctttggc actggattt caactgtttt taaaacaaaa gactttcctt gtgcatttact 960
aaaaaccag acggtaatc ttgaatacaa tgcgtggcac ccacggcagg cattctattt 1020
tgcatagttt tgactgacag gagatgacag catttggctg gctgcgttg ctgaggaccc 1080
1140

tctcctccctg tgtggcgctc gagactgtga tgcaaatgcg cccgccctt tctggaaact 1200
cagaacgcct gagtcaggcg gcgggtggcta ttaaagcgcc tggtcaggct gggctgccgc 1260
actgcaagga tgaggcttcc tggttggttg tggctgagtt ctgcccgtcct cgctgcctgc 1320
cgagcggtgg aggagcacaa cctgactgag gggctggagg atgccagcgc ccaggctgcc 1380
tgccccgcga ggctggaggg cagcgggagg tgcgagggga gccagtgccc cttccagctc 1440
accctgccc a c g c t g a c c a t c c c g c g g c a g c t t g g c a g c a t g g a g g t g c t c 1500
aaagaagtgc ggaccctcaa ggaagcagtg gacagtctga agaaatcctg ccaggactgt 1560
aagttgcagg ctgacgacca tcgagatccc ggcgggaatg gagggaatgg agcagagaca 1620
gccgaggaca gtagagtcca ggaactggag agtcaggtga acaagctgtc ctcagagctg 1680
aagaatgcaa aggaccagat ccaggggctg caggggcgcc tggagacgct ccattctggta 1740
aatatgaaca acattgagaa ctacgtggac aacaaagtgg caaatctaac cgttgtggtc 1800
aacagttgg atggcaagtg ttccaagtgt cccagccaag aacacatgca gtcacagccg 1860
ggttaggtgta atgagggtca tacagttgt tcatgaaagc tgtatagcca gatagtggcc 1920
ataaacatta acccgaggga gcataagttt gtcagacttt cacctgttaa gttatggcag 1980
gagaaacaag tggggctca aatgagacaa cagaaatggt aaatgatcca cgtacaaaaaa 2040
tccttattgt tgtactcggtt agagaccgtc acttgcaagt ctctagaccc tccctgctag 2100
gtcgaccaac agacgagcag aaacagattc ctcccgaaat ctgaacacat atttgaacac 2160
aggacaggtt tggcaagggtt cctggctctg cttgcttagg tccctggaa tcagatctt 2220
ggtggctgat gggctttata aggcttcac aaacaatctg ctgtgcttagg ttctcaaata 2280
tctagtgaga atgggagatt tttatacatg gaagcatctc tccctctctc tccctctctc 2340
ctctctcttc tctctctctc tctctctctc tctctctctc tctctctctc tctctctctc 2400
ctccctccct ccctctctctc ctctttgtgt gcgtgtgtgg tggggatgag gacacgtgta 2460
gaacttcggg ggtttagact tagtgcatac gcattccac cattccagtt agtgaatgtt 2520
aacactatTT aaggtcacAG acctaACAGC cttctgtgtc cggattcctg gattccttagg 2580
acctttgtgg atgggttgcc acaccctctg tggatcatcct gactgtgagg tcgatgggac 2640
atagtaggga taactttcat ttggatctc tagagatggt aggtcatcat gtcataagat 2700
gttatcacta atgaccaaga tagacactca tggatagag acatcacaag gtgtatatta 2760
aatatgacat ggcataataac ttgtatgac aaaaaat tctgttaccc actttctcc 2820
taaaagcttggactctcca gagttctaaa tacatgcaaa cagattattt tggatcatcct 2880
gaatcttata ttgaactttc ttacactgac tcaatttta taaaattaa ctggaaacaa 2940
atagttggtc tctaattctct aaaaaacca ccaaattgatt acactgagca taattataat 3000
caccctgctg ctacgtctag aaacccaaact gtggaaatatt ggctgactgt atacccctt 3060

CJ1

CD⁷

70
8

aaataataaa ttcaggataa cattgccata ttattggaga acccccccct ccctttaaa	3120
actggaatca ttttatgtca atctcaggtg aaatacgaat gggttcaga acagtgcgt	3180
gcactgaagg ctgacattta gaacatat aacgatttct gtaaaagtctg ctgtaacaat	3240
tgctgattgt atcctaggag acttggactc ctctcaacgt taaggcagag gaatataatg	3300
gttatgagag taaaactctc tgtcaggtac atctggctt ctgtcccagc tctgtcactt	3360
aacacttagt tgcggggaa aaactccctg atcttccggg agactaagta actgtataag	3420
caagctggcc gtgatatacca cgtcgtaagg ctgctgtgt ggttcagtga aaactgttac	3480
agtgattggc agagttctg gaggtcattt accctcatta aaccttgcac acacttattc	3540
ttactactct ttgctgttag tggccaccaggattgcca ttcaaggcag tcctgtatac	3600
ttgataaacac cagttggttc tgaggccta gttagcatct gttagcctgg ttcaggagag	3660
tgtatcagag ccaggttcct ctatcacata aactgtAACG caagtgaatt gtccaaattgc	3720
tggtgagtct gagagtcctt gaggtgcata gctttgacta ataaatcccc atgctttat	3780
gctttccctt cctccctt ccagttcaac atctaataaa caaagattgt tccgaccact	3840
acgtgctagg aaggagaagc agtggggcct acagagttac ccctgatcac agaaacagca	3900
gctttgaggt ctactgtgac atggagacca tgggtggagg ctggacggcgtc ctgcaggc	3960
gccttgatgg cagcaccaac ttcaccagag agtggaaaga ctacaaagcc ggctttggaa	4020
accttgaacg agaattttgg ttggcaacg ataaaattca tcttctgacc aagagtaagg	4080
aatgatttt gagaatagat cttgaagact ttaatggctc cacactttat gccttgtatg	4140
atcagttta tggctaat gaatttctca aataccgatt acacatcggt aactacaatg	4200
gcacggcagg ggatgcctt cgtttcagtc gacactacaa ccatgacccctt aggttttca	4260
caacccaga cagagacaac gatcggtacc cctctggaa ctgtggcgtc tattacagct	4320
caggctggcgtt gtttattca tggctctctg ccaattttaa tggcaaatat taccaccaga	4380
aatacaaagg tggccgtaat gggattttctt gggcacctg gcctggata aaccaggcac	4440
agccaggtgg ctacaagtcc tccttcaaacc agggcaagat gatgatttttccaaagaatt	4500
tcaagccata aattgcttagt gttcatctct ctggcactc actatctaag aggacgtga	4560
attccttcag ccctttacca tatgtctcag tttatattcc tttcctatgg ctaaacattt	4620
cctttaaagc ttacagctt ttagaataaa gctgaaaaga tctaaaaaga ctcctatgtt	4680
gctgttatgactt gaggatgct tgaaagcact ggaaatattt acaattatac attataattt	4740
caaaacccat cattttattt agttgaaaag tttcctaata tttttattt ttttataata	4800
aaaactaaat tattcagcaa gctagattct atatacgcaa gttttatattt cactaggcgt	4860
aaatatacac atttgagaat ataccagtcc ttccaggtac aactgaaagc caagaactgt	4920

82

74
9

agtattatct ttcgtctaag aagaactaa agcattttag ttctcaagaa gaagggcagg 4980
gatgggattg gggccaggg acaatatgtt tagctaaatg tattcatcta atgcaaaata 5040
tggcattaaa atacctaaaa atgtggtagc ataatatatg tctcttcctt ctccaattga 5100
aaaataatgt tacccctgttag actttggttt agtgtaatt cacttactgt ttatagcctg 5160
ttagaccgcg atacaaaagc tgctttatcc tctccctctg ctctctgtgc acaatggttt 5220
gtgatgttaag gtgcttagact actgttaaggt ttccctgggg aaaggcatgg taaggaaaa 5280
cacactggtt tatatttga aagccaatcc taatccaaa gcaatactgt tgtcgaggag 5340
tcaacgttct aggaagctga cttttctaga acaaatgtat ttattaggat gaatttggga 5400
att 5403

<210> 4

<211> 432

<212> PRT

CJN
<213> Murine fg12

<400> 4

Met Arg Leu Pro Gly Trp Leu Trp Leu Ser Ser Ala Val Leu Ala Ala
1 5 10 15

Cys Arg Ala Val Glu Glu His Asn Leu Thr Glu Gly Leu Glu Asp Ala
20 25 30

Ser Ala Gln Ala Ala Cys Pro Ala Arg Leu Glu Gly Ser Gly Arg Cys
35 40 45

Glu Gly Ser Gln Cys Pro Phe Gln Leu Thr Leu Pro Thr Leu Thr Ile
50 55 60

Gln Leu Pro Arg Gln Leu Gly Ser Met Glu Glu Val Leu Lys Glu Val
65 70 75 80

Arg Thr Leu Lys Glu Ala Val Asp Ser Leu Lys Lys Ser Cys Gln Asp
85 90 95

Cys Lys Leu Gln Ala Asp Asp His Arg Asp Pro Gly Gly Asn Gly Gly
100 105 110

Asn Gly Ala Glu Thr Ala Glu Asp Ser Arg Val Gln Glu Leu Glu Ser
115 120 125

SJF

72

10

Gln Val Asn Lys Leu Ser Ser Glu Leu Lys Asn Ala Lys Asp Gln Ile
130 135 140

Gln Gly Leu Gln Gly Arg Leu Glu Thr Leu His Leu Val Asn Met Asn
145 150 155 160

Asn Ile Glu Asn Tyr Val Asp Asn Lys Val Ala Asn Leu Thr Val Val
165 170 175

Val Asn Ser Leu Asp Gly Lys Cys Ser Lys Cys Pro Ser Gln Glu His
180 185 190

Met Gln Ser Gln Pro Val Gln His Leu Ile Tyr Lys Asp Cys Ser Asp
195 200 205

His Tyr Val Leu Gly Arg Arg Ser Ser Gly Ala Tyr Arg Val Thr Pro
210 215 220

C²¹

Asp His Arg Asn Ser Ser Phe Glu Val Tyr Cys Asp Met Glu Thr Met
225 230 235 240

Gly Gly Gly Trp Thr Val Leu Gln Ala Arg Leu Asp Gly Ser Thr Asn
245 250 255

Phe Thr Arg Glu Trp Lys Asp Tyr Lys Ala Gly Phe Gly Asn Leu Glu
260 265 270

Arg Glu Phe Trp Leu Gly Asn Asp Lys Ile His Leu Leu Thr Lys Ser
275 280 285

Lys Glu Met Ile Leu Arg Ile Asp Leu Glu Asp Phe Asn Gly Leu Thr
290 295 300

Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr Val Ala Asn Glu Phe Leu Lys
305 310 315 320

Tyr Arg Leu His Ile Gly Asn Tyr Asn Gly Thr Ala Gly Asp Ala Leu
325 330 335

Arg Phe Ser Arg His Tyr Asn His Asp Leu Arg Phe Phe Thr Thr Pro
340 345 350

Asp Arg Asp Asn Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr
355 360 365

Ser Ser Gly Trp Trp Phe Asp Ser Cys Leu Ser Ala Asn Leu Asn Gly
370 375 380

65

Lys Tyr Tyr His Gln Lys Tyr Lys Gly Val Arg Asn Gly Ile Phe Trp
385 390 395 400

Gly Thr Trp Pro Gly Ile Asn Gln Ala Gln Pro Gly Gly Tyr Lys Ser
405 410 415

Ser Phe Lys Gln Ala Lys Met Met Ile Arg Pro Lys Asn Phe Lys Pro
420 425 430

<210> 5

<211> 592

<212> DNA

<213> Murine

<400> 5
atgaggcttc ctggttggtt gtggctgagt tctgccgtcc tcgctgcctg ccgagcggtg 60

CJ

gaggagcaca acctgactga ggggctggag gatgccagcg cccaggctgc ctgccccgcg 120

aggctggagg gcagcgggag gtgcgagggg agccagtgcc ccttccagct caccctgccc 180

acgctgacca tccagctccc gcggcagctt ggcagcatgg aggaggtgt caaagaagtg 240

cggaccctca aggaagcagt ggacagtctg aagaaatcct gccaggactg taagttgcag 300

gctgacgacc atcgagatcc cggcgggaaat ggagggaaatg gagcagagac agccgaggac 360

atitagagtcc aggaactgga gagtcaggtg aacaagctgt cctcagagct gaagaatgca 420

aaggaccaga tccaggggct gcagggcgc ctggagacgc tccatcttgt aaatatgaac 480

aacattgaga actacgtgga caacaaatgt gcaaataa ccgttgttgt caacagttt 540

gatggcaagt gttccaagtg tcccagccaa gaacacatgc agtcacagcc gg 592

<210> 6

<211> 613

<212> DNA

<213> Homo sapiens

<400> 6
atgaagctgg ctaactggta ctggctgagc tcagctgttc ttgccactta cggttttttg 60

gttgtggcaa acaatgaaac agagggaaatt aaagatgaaa gagcaaagga tgtctgccc 120

gtgagactag aaagcagagg gaaatgcgaa gaggcagggg agtgccctta ccaggttaagc 180

ctgccccct tgactattca gctcccgaag caattcagca ggatcgagga ggtgttcaaa 240

4.1.

gaagtccaaa acctcaagga aatcgtaaat agtctaaaga aatcttgcca agactgcaag	300
ctgcaggctg atgacaacgg agacccaggc agaaacggac tttgttacc cagtacagga	360
gccccgggag aggttggtga taacagagtt agagaattag agagtgggtt taacaagctg	420
tccctctgagc taaagaatgc caaagaggag atcaatgtac ttcatggtcg cctggagaag	480
ctgaatcttg taaatatgaa caacatagaa aattatgttgc acagcaaagt ggcaaata	540
acatttggc tcaatagttt ggatggcaaa tgttcaaagt gtcccagcca agaacaata	600
cagtcacgca cag	613

<210> 7
<211> 707
<212> DNA
<213> Murine

C27

<400> 7
ttcaacatct aatacataaaa gattgttccg accactacgt gctaggaagg agaagcagtg 60
gggcctacag agttaccctt gatcacagaa acagcagctt tgaggctac tgtgacatgg 120
agaccatggg tggaggctgg acggtgctgc aggctcgct tgatggcagc accaacttca 180
ccagagagtg gaaagactac aaagccggct ttggaaacct tgaacgagaa ttttggttgg 240
gcaacgataa aattcatctt ctgaccaaga gtaaggaaat gatttgaga atagatctt 300
aagactttaa tggtctcaca ctttatgcct tgtatgatca gtttatgtg gctaataaat 360
ttctcaaata ccgattacac atcggtaact acaatggcac ggcagggat gccttcgtt 420
tcagtcgaca ctacaaccat gacctgaggt ttttccaaac cccagacaga gacaacgatc 480
ggtacccttc tgggaactgt gggctctatt acagctcagg ctggtggtt gattcatgtc 540
tctctgccaa cttaaatggc aaatattacc accagaaata caaagggtgtc cgtaatggga 600
ttttctgggg cacctggcct ggtataaacc aggcacagcc aggtggctac aagtccctcct 660
tcaaacagggc caagatgtat attaggccca agaatttcaa gccataa 707

```
<210> 8  
<211> 707  
<212> DNA  
<213> Homo sapiens
```

<400> 8

ttcaacatct aatatataaa gattgctctg actactacgc aataggcaaa agaagcagtg	60
agacctacag agttcacacct gatccaaaa atagtagctt tgaagttac tgtgacatgg	120
agaccatggg gggaggctgg acagtgcgc aggcacgtct cgatggagc accaacttca	180
ccagaacatg gcaagactac aaagcaggct ttggaaacct cagaaggaa tttggctgg	240
ggaacgataa aattcatctt ctgaccaaga gtaaggaaat gattctgaga atagatcttg	300
aagactttaa tggtgtcgaa ctatatgcct ttttatgtca gtttatgtg gctaattgagt	360
ttctcaaata tcgtttacac gttggtaact ataatggcac agctggagat gcattacgtt	420
tcaacaaaca ttacaaccac gatctgaagt ttttcaccac tccagataaa gacaatgatc	480
gatatccttc tggaactgt gggctgtact acagttcagg ctgggggtt gatgcattgtc	540
tttctgcaaa cttaaatggc aaatattatc accaaaaata cagaggtgtc cgtaatggga	600
ttttctgggg tacctggcct ggtgttaagtg aggcacaccc tggggctac aagtccctcct	660
tcaaagaggc taagatgtatc agcactttaa gccataa	707

21

<210> 9
<211> 1052
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature .
<222> (384)..(384)
<223> n is any nucleic acid

<220>
<221> misc_feature
<222> (468)..(468)
<223> n is any nucleic acid

<220>
<221> misc_feature
<222> (470)..(470)
<223> n is any nucleic acid

28

11

<220>
<221> misc_feature
<222> (505)..(505)
<223> n is any nucleic acid

<220>
<221> misc_feature
<222> (524)..(524)
<223> n is any nucleic acid

<220>
<221> misc_feature
<222> (668)..(668)
<223> n is any nucleic acid

C21

<400> 9
atcactctgt tcattcctcc aggtattcgt tatctaata ggcattaat tccttcagca 60
ctttagaata tgccttggtt catattttc atagctaaaa aatgccttgt ttcatattt 120
tcatacgctaa aaaatgtatgt ctgacggcta ggttcttatg ctacacagca tttgaaataa 180
agctgaaaaaa caatgcattt taaaggagtc ctttgggtt atgctgttat ccaatgaaca 240
cttgcaagca attagcaata ttgagaatta tacattagat ttacaattct tttatattct 300
attgaaactt tttctattgc ttgttattact tgctgtatTTT aaaaaataat tgttggctgg 360
gtgtggtagc tcacgcctgt aatnccagca ctttggatg tcaaggcagg cagatcactt 420
gaggtcagga gtttgagacc agcctggcca aacatgtgaa acgctgtntn tattaaaaat 480
acaaaaatta gccgggcatg gtggncatg cctgtaatcc tagtacttg ggaggctgag 540
gcaggagaat cgcttgaacc tgagaggaag aggttgcagt gagccaagaa tgagccactg 600
cactccagca tgggtgacag agaaaaactct gtctcaaaca aaaaaataat aaaatattt 660
cagtaggntg gattctacac aaagtaatct gtatTTGGC catgattaa gcacatctga 720
aggtatatca ctctttcag gctataatTA tttggtaat cttcattctg agacaaactt 780
aatctatatac atttactttg caacagaaca accctacagc attttggttc ccagactaag 840
ggaactaata tctatataat taaaacttggtt catttatcat tcatgaaata taaaataactt 900

84

gtcatttaaa ccgtttaaaa atgtggtagc ataatgtcac cccaaaaagc attcagaaaag 960
caatgtaact gtgaagacca gggtttaaag gtaattcatt tatagtttat aactccttag 1020
atgttgatg ttgaaaactg cttaacatg aa 1052

<210> 10

<211> 1339

<212> DNA

<213> Murine

C27

<400> 10
tcggtttggga tatcatggga tggaatgaga agggaaagta ggagccccgag agtgcggtaa 60
gacaaggcat aaggcgtgtc tgacaaattc ttcatacaca cattttccctt ttgcacattc 120
agtctgtata ggttatttct ataggagaaa aaaaatattc aaattcccttg tgcaactggta 180
acaggcatga aggctcagca aagccaatac gtgttatgtc cagttggaga cagtgccagg 240
gccaaacattc cagacttctc agatagaaaag tgccctgccc tgccctgctc tgagaatttg 300
aagagagtag tttagttttaga attaagaggc agtagagaaa agtcttggga aatctggta 360
gagatataaa tatgagaact ggacatggtg gtacacacct gtgatctctg tgtttaggag 420
ggagaggcag agagatcagg agttcaaggc cagcctgagc tacttgagac ccagtctaaa 480
taaataagag atagattaca gagtgccctt aactagtaca gagaaagaat ttgggtttat 540
ctgtgtcagt tacgctgaaa taattttaa gtaataaaat cccttttaat aagaaacctt 600
atgaggtcag tatgcacaat gaacttaaga gagaccccca gtcctgagc tgagtgtatgg 660
ggaaggacag ccactgcctg tgatgtgtga gtgacgtgct tccaagtgtt ttaaccactg 720
acgattacat agcctgcaca gtcaggagaa aacagccgta ttctctgcca gttctttcc 780
cttttacaaa cagatgagag acacacacag agaatccatt taaagagcgg acctttgttc 840
tgattagggg caatTTAAG tacttaagag ttcacacaaa gtctagcctt caaaaagaaa 900
acaggttccc aaacttaggga ggaaacagaa tcatttccat ttgggtgaca ttttagtggg 960
agaagctcac agacatTTAG acgttccaaac tctttccca ctagtggacc aagtatataa 1020
tatggtatct tttgggcact ggtattacaa ctgtttttta aacaaaagac tttccttgc 1080
ctttactaaa aacccagacg gtgaatcttgc aatacaatgc gtggcacccca cggcaggcat 1140
tctattgtgc atagtttgc ctgacaggag atgacagcat ttggctggct gcgcttgc 1200
aggaccctct cctcctgtgt ggcgtctgag actgtgtatgc aaatgcggcc gcccTTTCT 1260
gggaactcag aacgcctgag tcaggcggcg gtggcttatta aagcgcctgg tcaggctggg 1320
ctgcccact gcaaggatg 1339

<210> 11
<211> 1338
<212> DNA
<213> Homo sapiens

<400> 11
tagggttgga agccagggtct cctgagtgatg cgagaataaa tacagtcatg gaagtgtaaa 60
gagtctgccca acattttgag aatgtgaata ggatttggct aaaattaagg gatatatacag 120
aaaagtgcata gggaaatcagg ttaaagacat aaatatgaga taggctacag agtgtttaa 180
gtaatacaat aaaacattta gatTTTGCCT catgtcagtc atttgaaat tattttaaa 240
gcaaaaaaac ccttttaaa caagaaatct tatgagatgt caatatgcaa aacaaattaa 300
aaggaggtgg ttctctaac tgaagctgtt cctcttcct gccttcagcc tctgaagaga 360
aagttagaaa actattatca ttaatgtac atgtttgaa caagctgata taccagg 420
cccagagagc aggtagaaga accagcgtgg agacagaaag caagaggccc gcctgccagg 480
gctacctgca gaaagaaaagg gcaaagatgc tgtaggcaag agaagttcag gacagacact 540
ggcatacgctc aaagattcac atttgagcag ctgtggaa tgacagtaca ataccaaaat 600
gtcgaaggc aaaggaggca gctactggtt ttgatgaaag acaattatgt cctttaaaat 660
gggtcttaga catttagaca tttatataca ctatgtacg gacaaaggaa tagaaagtag 720
cactttttc tccactagtt ttcttcctt ttcaagtag atgaagcaaa agtcaactgc 780
aatagtcaga aagctgtact ttgttacact tagaaacttc taaaagtgt taagatttc 840
cctgaaagtc caacatgaag aaaatacagg ctccccatg ccccattcta agaagaaaaa 900
ggaccatTTT catttagta acgtttctgt tctatagaca gtttggataa ctagctctta 960
cttttatct taaaaactg ttttccagt gaagttacgt ataattattt acttcaagcg 1020
tagtatacca aattactta gaaatgcaag actttctta tacttcataa aatacattat 1080
gaaagtgaat cttgtggct gtgtacattt gactataata atttcaatgc atattatttc 1140
tattgagagt aagttacagt ttttggaaa ctgcgttga tgagggctat ctcctttcc 1200
tgtgcgttcc taaaacttgt gatgcaaacg ctcccaccct ttccctggaa cacagaaagc 1260
ctgactcagg ccatggccgc tattaaagca gctccagccc tgccactcc ctgctgggtg 1320
agcagcactg taaagatg 1338

<210> 12
<211> 1339

67

61

<212> DNA

<213> Homo sapiens

<400> 12
tagggttgga agccaggctc cctgagtatg cgagaataaa tacagtcatg gaagtgtaaa 60
gagtctgcc acaaaaaatggat aatgtgaata ggatttggct aaaattaagg gatatatacag 120
aaaagtcata gggaaatcagg ttaaagacat aaatatgaga taggctacag agtgtttaa 180
gtaatacaat aaaacattt aaaaaaaaaaaaaatgccc catgtcagtc attttgaat tattttaaa 240
gcaaaaaaac ctttttaaa caagaaatct tatgagatgt caatatgcaa aacaaattaa 300
aaggaggtgg tttctctaac tgaagctgtt cctcttcct gccttcagcc tctgaagaga 360
aagttagaaa actattatca ttaatgctac atgtttgaa caagctgata taccaagtgg 420
ccccagagagc aggtagaaga accagcgtgg agacagaaaag caagaggccc gcctgccagg 480
gctacactgca gaaagaaaagg gcaaagatgc tgtaggcaag agaagttcag gacagacact 540
ggcatacgctc aaagattcac atttgagcag ctgtggaaaga tgacagtaca attaccaaaa 600
tgtcgaaggg caaaggaggc agctactggt tttgatgaaa gacaattatg tcctttaaa 660
tgggtcttag acattnagac atttatatac actatgctac ggacaaagga atagaaaagta 720
gcactttttt ctccactagt tttcttcct tttcaagta gatgaagcaa aagtcaactg 780
ccaatagtca gaaagctgta ctttgttaca cttagaaaact tctaaaagtg cttaagattt 840
cacctgaaac gccaacatga agaaaataca ggctccccaa tgccccattc taagaagaaa 900
aaggaccatt ttcattttag taacgtttct gttctataga cagtttggat aactagctct 960
tacttttat cttaaaaaac tgttttcca gtgaagttac gtataattat ttacttcaag 1020
cgttagtatac caaattactt tagaaatgca agactttct tatacttcataaaaatcattt 1080
atgaaagtga atcttgtgg ctgtgtacat ttgactataa taatttcaat gcatattatt 1140
tctattgaga gtaagttaca gttttggca aactgcgttt gatgagggct atctcctctt 1200
cctgtgcgtt tctaaaactt gtgatgcaaa cgctcccacc ctttcctggg aacacagaaa 1260
cgctactcag gcacgtgccg gtattaaagc agctccagcc ctgcgcactc cctgctgggt 1320
gagcagcact gtaaagatg 1339

<210> 13

<211> 328

<212> DNA

<213> Homo sapiens

(2)

(1)

1

-
18

<220>
<221> misc_feature
<222> (265)..(265)
<223> n is any nucleic acid

<400> 13
ccaagtatat aatatggtat cttttggca ctggtattac aactgtttt taaacaaaag 60
actttccttg tgctttacta aaaacccaga cggtgaatct tgaatacaat gcgtggcacc 120
cacggcaggc attctattgt gcatagttt gactgacagg agatgacagc atttggctgc 180
gtgcgccttgc tgaggaccct ctccctctgt gtggcgtctg agactgtgat gcaaatgcgc 240
ccgcctttt ctgggaactc agaangcctg agtcaggcgg cggtggctat taaagcgcct 300
ggtcaggctg ggctgccgca ctccaagg 328

CJ7

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer
<400> 14
caaaagaagc agtgagacct aca 23

<210> 15
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer
<400> 15
ttatctggag tggtaaaaaa ctt 23

<210> 16

CJ8

<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 16
gcaaacaatg aaacagagga aa

22

<210> 17

<211> 24

<212> DNA

<213> Artificial Sequence

C27

<220>

<223> Primer

<400> 17
attgccctat tagataacga atac

24

<210> 18

<211> 15

<212> PRT

<213> Homo sapiens

<400> 18

Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly
1 5 10 15

<210> 19

<211> 7

<212> DNA

<213> Artificial Sequence

<220>

C27

11

20

<223> API motif
<220>
<221> misc_feature
<222> (4)..(4)
<223> n is G or C

<400> 19
tgantca
<210> 20
<211> 22
<212> DNA
<213> Artificial Sequence

7

C27

<220>
<223> Primer
<400> 20
gaaatacataaa aaccgcagaa gg
<210> 21
<211> 21
<212> DNA
<213> Artificial Sequence

22

<220>
<223> Primer
<400> 21
tcttggaaaa tctggtaga g
<210> 22
<211> 21
<212> DNA
<213> Artificial Sequence

21

<220>

(15)

<223> Primer

<400> 22

gagctgagtg atggggagg a

21

<210> 23

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 23

gggcactggt attacaactg t

21

<210> 24

C27

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 24

ctcctcctgt gtggcgctg a

21

<210> 25

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 25

ggataaggag ggcagggtga a

21

<210> 26

66

66

<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 26
acagttgtaa taccagtgcc c

21

<210> 27

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

C27

<223> Primer

<400> 27
aacggagacc caggcagaaa c

21

<210> 28

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 28
cttcgggagc tgaatagtca a

21

<210> 29

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

(17)

(C)

<223> Primer

<400> 29

gacagcaaag tggcaaatct a

21

<210> 30

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 30

ttctggtgaa gttggtgctc c

21

<210> 31

C21 <211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 31

caaaaagaagc agtgagacct aca

23

<210> 32

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 32

tgacccaagag taaggaaatg a

21

<210> 33

58

4

<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 33
tgactgtatt tttttttggc tg

22

<210> 34

<211> 21

<212> DNA

<213> Artificial Sequence

C27

<220>

<223> Primer

<400> 34
ttctggaaac tgtggctgt a

21

<210> 35

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 35
ccagcttcat ctttacagt

19

<210> 36

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

(16)

3

<223> Primer

<400> 36

aatcaactctg ttcattcctc c

21

<210> 37

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 37

gaaaataatat gcattgaaa

19

<210> 38

C27
<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 38

aacgcacagg aagaggaga

19

<210> 39

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 39

ttgacatcct ttgagatat

19

<210> 40

100
25

<211> 17
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 40
atggggcatt ggggagc

17

<210> 41

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 41
ggctatatctcc tcttcctgt

19

<210> 42

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 42
tgagctatgc cagtgtctgt

20

<210> 43

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

101

3

<223> Primer

<400> 43

caagcgtagt ataccaaat

19

<210> 44

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 44

aaggcaggaa agaggaac

18

<210> 45

C27 <211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 45

gacaaaggaa tagaaagttag c

21

<210> 46

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 46

cagggcaaaa atctaaatg

19

<210> 47

|07

C

<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer

<400> 47
gcccagagag caggtagaa

19

<210> 48

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

C27 <223> Primer

<400> 48
ccagccaggg ttgaaata

18

<210> 49

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 49
gccctgtcag tcattttg

18

<210> 50

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

|DB

<223> Primer

<400> 50

aaaaaacctac cagtagtct

19

<210> 51

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 51

ttggggtgac attatgc

17

C29
<210> 52

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 52

tgagcagcac tgtaaagatg

20

<210> 53

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 53

gtggcttaaa gtgcttgggt

20

104