ST 352 | Lab Assignment 2

Walmart vs Fred Meyer: Which is cheaper to shop at?

Brian Cervantes Alvarez

2024-10-08

Reminder of the honor code:

Lab assignments are to be completed individually!

Additional Reminder: The approach below reflects my methodology. Be sure to use your own data to create the correct plots and draw accurate conclusions.

Data Collection

For Lab Assignment 2, I collected data from two grocery stores: **Walmart** and **Fred Meyer**. The goal is to compare the prices of 15 identical items between the two stores to determine if there is a significant difference in average prices. Below are the data I compared:

Product	${\bf WalmartPrice}$	${\bf Fred Meyer Price}$
Coca-Cola 24pk	\$12.98	\$14.99
Scrub Daddy 1pk	\$3.88	\$4.99
First Response Pregnancy Test 2pk	\$8.98	\$11.99
Oreo Family Pack 18.12oz	\$4.88	\$4.99
Stella Rosa Black 750ml	\$10.98	\$12.99
Tillamook Medium Cheddar Block 32oz	\$12.48	\$13.99
Samsung 65in Crystal HDR 4K TV	\$468.00	\$499.00
Enfamil NeuroPro Baby Formula 27.4oz	\$52.00	\$54.99
Maseca Corn Masa Flour 4lbs	\$3.98	\$4.29
Cacique Ranchero Queso Fresco 10oz	\$3.68	\$3.69
Purina One Dry Dog Food 16.5lb	\$30.28	\$31.99
Bounty Paper Napkins 200ct	\$3.48	\$4.29
Luna Lemonzest Nutrition Bars 12ct	\$14.46	\$15.99
Coleman Cooler 52qt	\$49.99	\$39.99
Corona Heavy-Duty Weeding Hoe	\$62.57	\$77.51

Once you have your data, decide whether a two-sample t-test or paired t-test is appropriate based on how you collected your data. For my comparison, I will use a **paired t-test** since the products are identical at both stores.

Here's how I would tackle this

1. Hypothesis Test

Hint:

We are using a paired t-test since the products are identical across both stores. Use this test to check whether there is a significant difference in average prices.

```
# Load Correct Libraries
library(readr)
library(mosaic) # Note I do not use this package
# Want to mess around with my data? Use this link and code below to mess around with it!
# "https://raw.githubusercontent.com/bcervantesalvarez/MS-Statistics/refs/heads
# /main/Academic-Year-2024-2025/Fall%202024/ST-352-Labs/Lab2/storePrices.csv"
# Download Data Remotely
url <- "https://raw.githubusercontent.com/bcervantesalvarez/MS-Statistics/refs/heads/main/Academiload.file(url, "storePrices.csv")
# Import the dataset from the CSV file
products <- read_csv("storePrices.csv")</pre>
```

[1] "Product" "WalmartPrice" "FredMeyerPrice"

#	A tibble: 6 x 3		
	Product	WalmartPrice	${\tt FredMeyerPrice}$
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Coca-Cola 24pk	13.0	15.0
2	Scrub Daddy 1pk	3.88	4.99
3	First Response Pregnancy Test 2pk	8.98	12.0
4	Oreo Family Pack 18.12oz	4.88	4.99
5	Stella Rosa Black 750ml	11.0	13.0
6	Tillamook Medium Cheddar Block 32oz	12.5	14.0

2. Hypotheses

The hypotheses for the paired t-test:

- $H_0: \mu_{\text{diff}} = 0$ (No difference in average prices between Walmart and Fred Meyer)
- $H_1: \mu_{\text{diff}} \neq 0$ (There is a difference in average prices between Walmart and Fred Meyer)

```
# Calculate the price differences between Walmart and Fred Meyer
products$Difference <- products$WalmartPrice - products$FredMeyerPrice
products$Difference</pre>
```

```
[1] -2.01 -1.11 -3.01 -0.11 -2.01 -1.51 -31.00 -2.99 -0.31 -0.01
[11] -1.71 -0.81 -1.53 10.00 -14.94
```

3. Appropriateness of t-Methods

Check if the price differences follow a roughly normal distribution by plotting a histogram:

Histogram of Price Differences

Price Difference (Walmart – Fred Meyer)

4. T-Statistic and P-Value

Perform the paired t-test to get the t-statistic and p-value.

```
# Perform paired t-test
t_test_result <- t.test(products$WalmartPrice, products$FredMeyerPrice, paired = TRUE)
# Output t-statistic, p-value, and degrees of freedom
t_test_result$statistic  # T-statistic</pre>
```

t -1.523479

```
t_test_result$p.value  # P-value
```

[1] 0.1499046

```
t_test_result$parameter  # Degrees of freedom
```

df

14

5. Conclusion

Based on the p-value, we will determine whether to reject the null hypothesis.

```
# Conclusion
if(t_test_result$p.value < 0.05) {
   conclusion <- "Reject the null hypothesis: There is a significant difference in prices."
} else {
   conclusion <- "Fail to reject the null hypothesis: No significant difference in prices."
}
conclusion</pre>
```

[1] "Fail to reject the null hypothesis: No significant difference in prices."

6. Confidence Interval

Compute the 95% confidence interval for the mean price difference.

```
# Confidence interval
t_test_result$conf.int

[1] -8.517266 1.442600
attr(,"conf.level")
[1] 0.95
```

7. Store Preference

Based on the mean price difference, decide which store is cheaper overall.

```
# Store preference
if(mean(t_test_result$conf.int) > 0) {
   store_preference <- "Fred Meyer is generally cheaper"
} else {
   store_preference <- "Walmart is generally cheaper"
}
store_preference</pre>
```

[1] "Walmart is generally cheaper"