Ch 4 Summary:

3 parts: @ Absolute / local min/max, concavity of y=f(x) · Look at signs of f'(x), f'(x).

(2) Optimization problems

· Convert word problems to finding min/max.

3 L'Hospitals rule

- Finding limits of a)
$$\frac{0}{6}$$
, $\frac{\infty}{\infty}$

Review: L'Hospitals Rule:

· $\frac{\infty}{\infty}$, $\frac{0}{0}$ < in such cases apply & Hospital's Rule

$$= \lim_{\chi \to \infty} \frac{\chi^{-1}}{\chi^{-1/2} \cdot (V_2)}$$

$$= \lim_{\chi \to \infty} \chi^{-1} \left(\frac{1}{2}, 2 \right)$$

$$= \lim_{\chi \to \infty} \chi^{-1/2}.2$$

- · Definitions
- . Fundamental theorem of calculus
- · Computations (u-substition)
- . Applications.

· 3.9 Anti-derivatives

Def: A function F(x) is called an anti-derivative of f(x) of F'(x) = f(x).

$$\frac{eg}{\pi} : (\sin \pi) = \cos x$$

hence

(sinx is the anti-derivative of cosx)

· the anti-derivative of corn is sinn.

we do this later: if F(n) is anti-derivative of f(n)

then $F(x) = \int f(x) dx$.

A. Guess

O. How to find anti-derivatives?

F(x)

Guess

anti-derivative

F(x) antiderivative x+c for any c. b) (05 x sin x

Theorem/Fact: If F(n) is an anti-derivative of f(n), then so is F(x)+c for any constant c.

> So, we always leave an unknown constant when finding anti-derivatives.

. For guessing, we must know anti-derivatives of Standard functions.

· usually, the difficulty in finding anti-derivatives is with the constants.

Check:
$$ln(2x) = \frac{1}{2x} \cdot 2$$
 by chain Rule

$$=\frac{1}{x}$$
 \times

Check:
$$\left(\frac{\ln x}{2}\right) = \frac{1}{2} \cdot \frac{1}{x}$$

$$= \frac{1}{2x}$$

anti-derivative of cos (2x).

Guess: sin (2x)

check: $(\sin(2\pi))' = \cos(2\pi).2$

Check: $\left(\frac{\sin(2x)}{2}\right) = \frac{1}{2} \cdot \cos(2x) \cdot 2$

 $\frac{Am}{2}$: $\frac{\sin(2x)}{2} + c$.

eg: anti-denirative of x + sin (2x).

GHHAM / anti-derivative

Guess: 1 x2

anti derivative of

Guess: 1 cos (2x)

Check: $\left(\frac{1}{2}x^2\right)' = \frac{1}{2} \cdot 2x$ Check: $\left(\frac{1}{2} \cdot \cos(2x)\right)'$ = x $= \frac{1}{2} \cdot \left(-\sin(2n)\right) \cdot 2$

Combining the two:

anti-derivative of x+sin(2x) Guess: -1 cos (2n)

 $\frac{\chi^2}{2} - \frac{1}{2} \cdot \sec(2\chi) + C$ Check: is

= $-\sin(2x)$

$$4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

$$= 4\sin x + \frac{2x^5}{x} - \frac{\sqrt{x}}{x}$$

$$= 4 \sin x + 2x^4 - x^{-1/2}$$

$$= A \cdot \sin x$$

$$=2.x^4$$

anti-derivatives:

Guess:
$$-4\cos x$$
 Guess; $2x^{5}$ Guess: $x^{1/2}$ power by

Check: $(-4\cos x)'$ Check: $(\frac{2}{5}x^{5})'$ Check: $(x^{1/2})'$ (because $= -4.(-\sin x)$)

 $= \frac{2}{5}.5.x^{4}$ Guess: $x^{1/2}$ rule)

$$= 1 \cdot 2^{-1/2}$$

$$= 2.x^4 \qquad Guest: \frac{x^{1/2}}{1/2}$$

Check:
$$\left(\frac{\chi^{1/2}}{1/2}\right)^{-\frac{1}{2}}$$

$$= \frac{1}{2} \cdot \frac{\bar{x}^{1/2}}{\sqrt{2}}$$

$$= \bar{x}^{1/2}$$
Ans: $\frac{x^{1/2}}{\sqrt{2}} = 2x^{1/2}$

anti-derivative

$$\frac{1}{2}=x^{-1}$$
 \longrightarrow $\ln x$

$$\begin{array}{ccc}
\chi^{n} & \longrightarrow & \chi^{n+1} \\
(n & is) & & \\
not & -1
\end{array}$$

eg:
$$\chi^{-1/2} \longrightarrow \frac{\chi^{-1/2+1}}{-\frac{1}{2}+1} = \frac{\chi^{1/2}}{\frac{1}{2}}$$

. We can find the unknown constant "C" if we are given more information about f(x)

eg: Given
$$F(x) = \frac{1}{x^2+1}$$
 and $F(0) = 2$

Find F(x).

Ans:
$$F'(x) = \frac{1}{x^2+1}$$

anti-derivative:

$$F(x) = \arctan x + C$$

=)
$$\arctan(0)+c=2$$
 (Plug in $x=0$)

$$|f(x)| = \arctan(x) + 2$$

Note:

Very important:

antiderivative F(x) F'(x) Inx +C x n+1 + C x", n = -1 arctanx + c

arcsin x + C

Be careful with the algebra

Given .

 $F'(x) = \frac{1}{x^2}$ F(1) = 3

F'(2) = 4and

F(x). find

 $F''(x) = \frac{1}{x^2} = x^2$

Finding the antiderivative

 $\Rightarrow f(x) = \frac{x^{-2+1}}{x^{-2+1}} + c \quad (Power rule)$

 $=\frac{x^{-1}}{1}+c$

 $F'(x) = -\frac{1}{x} + C$

(3)

$$f'(2) = -\frac{1}{2} + C$$

$$\Rightarrow \boxed{C = 4 + \frac{1}{2} = \frac{9}{2}}$$

=)
$$f'(x) = -\frac{1}{x} + \frac{9}{2}$$

Finding the anti-derivative again

$$F(x) = -\ln x + \frac{9}{2}x + c'$$

$$F(i) = -\ln 1 + \frac{9}{2} \cdot 1 + c'$$

$$=) \int F(x) = -\ln x + \frac{9}{2}x + 3 - \frac{9}{2}$$

Appendix E:

- . Goal: Define integrals eventually.
- · Sigma notation: (need this to define integrals)

of numbes

Given a Sequence : 1, 2, 3, 4, ..., n.

constant

we want to find the sum 1+2+3+...+n.

. Sigma notation is a way to denote the sum more consisely

 $1+2+\cdots+n = \sum_{i}$

Summation from i=1 to n

= Sigma

$$f(i) = f(a) + f(a+i) + \cdots + f(b)$$

eg:
$$\sum_{i=1}^{n} (i) = 1 + 2 + 3 + \dots + n$$

$$\sum_{i=1}^{4} 2i = 2+4+6+8$$

eg:
$$\sum_{i=3}^{5} (2i-1)$$

To find
$$2i-1=9$$

the endpoint $=$ $2i=10$
 $=$ $i=5$

- The actual goal is to find these sums
 - . But they are hard and beyond the scope of this course.

Most problems are simple problems (for us)

eg: find
$$\sum_{i=5}^{6} \left(\frac{2i+1}{3}\right)$$

$$\frac{AM}{2}$$
: = $\frac{2.5+1}{3}$ + $\frac{2.6+1}{3}$

$$=\frac{11}{3}+\frac{13}{3}$$

$$= \frac{24}{3}$$

$$Ans: = |+|+|+|+| = 6$$

$$5 6 7 8 9 10$$

$$\sum_{i=1}^{1000} (i^3 - (i+1)^3)$$

Am: =
$$(1^3 - 2^3) + (2^3 - 3^3) + (3^3 - 4^3) + \dots + (1000^3 - (1001)^3)$$

$$Ans = f(a) - f(b+1)$$