Universidade do Algarve Faculdade de Ciências e Tecnologia

Física I

Licenciaturas em Engenharia Informática e Bioengenharia 1º ano, 2º semestre

Série de problemas nº 8 Energia Potencial e Conservação da Energia

Cap. 8 do Halliday & Resnick, 10^a Ed.

José Mariano Ano lectivo de 2024/2025

Figura 8-28 Pergunta 11.

- O número de pontos indica o grau de dificuldade do problema.
- Informações adicionais disponíveis em *O Circo Voador da Física*, de Jearl Walker, LTC, Rio de Janeiro, 2008.

Módulo 8-1 Energia Potencial

- •1 Qual é a constante elástica de uma mola que armazena 25 J de energia potencial ao ser comprimida 7,5 cm?
- •2 Na Fig. 8-29, um carro de montanha-russa, de massa m = 825 kg, atinge o cume da primeira elevação com uma velocidade $v_0 = 17,0$ m/s a uma altura h = 42,0 m. O atrito é desprezível. Qual é o trabalho realizado sobre o carro pela força gravitacional entre este ponto e (a) o ponto A, (b) o ponto B e (c) o ponto C? Se a energia potencial gravitacional do sistema carro-Terra é tomada como nula em C, qual é o seu valor quando o carro está (d) em B e (e) em A? (f) Se a massa m é duplicada, a variação da energia potencial gravitacional do sistema entre os pontos A e B aumenta, diminui ou permanece a mesma?

Figura 8-29 Problemas 2 e 9.

·3 Você deixa cair um livro de 2,00 kg para uma amiga que está na calçada, a uma distância D=10,0 m abaixo de você. Se as mãos estendidas da sua amiga estão a uma distância d=1,5 m acima do solo (Fig. 8-30), (a) qual é o trabalho W_g realizado sobre o livro pela força gravitacional até o livro cair nas mãos da sua amiga? (b) Qual é a variação ΔU da energia potencial gravitacional do sistema livro-Terra durante a queda? Se a energia potencial gravitacional U do sistema é considerada nula no nível do solo, qual é o valor de U (c) quando você deixa cair o livro e (d) quando o livro chega às mãos da sua amiga? Suponha agora que o valor de U é 100 U ao nível do solo e calcule novamente (e) U (g) U no

ponto do qual você deixou cair o livro e (h) *U* no ponto em que o livro chegou às mãos da sua amiga.

Figura 8-30 Problemas 3 e 10.

•4 A Fig. 8-31 mostra uma bola, de massa m=0.341 kg, presa à extremidade de uma haste fina de comprimento L=0.452 m e massa desprezível. A outra extremidade da haste é articulada, de modo que a bola pode se mover em uma circunferência vertical. A haste é mantida na posição horizontal, como na figura, e depois recebe um impulso para baixo com força suficiente para que a bola passe pelo ponto mais baixo da circunferência e continue em movimento até chegar ao ponto mais alto com velocidade nula. Qual é o trabalho realizado sobre a bola pela força gravitacional do ponto inicial até (a) o ponto mais baixo, (b) o ponto mais alto, (c) o ponto à direita na mesma altura que o ponto inicial? Se a energia potencial gravitacional do sistema bola-Terra é tomada como zero no ponto inicial, determine o seu valor quando a bola atinge (d) o ponto mais baixo, (e) o ponto mais alto e (f) o ponto à direita na mesma altura que o ponto inicial. (g) Suponha que a haste tenha recebido um impulso maior e passe pelo ponto mais alto com uma velocidade diferente de zero. A variação ΔU_g do ponto mais baixo ao ponto mais alto é maior, menor ou a mesma que quando a bola chegava ao ponto mais alto com velocidade zero?

Figura 8-31 Problemas 4 e 14.

•5 Na Fig. 8-32, um floco de gelo de 2,00 g é liberado na borda de uma taça hemisférica com 22,0 cm de raio. Não há atrito no contato do floco com a taça. (a) Qual é o trabalho realizado sobre o floco pela

força gravitacional durante a descida do floco até o fundo da taça? (b) Qual é a variação da energia potencial do sistema floco-Terra durante a descida? (c) Se a energia potencial é tomada como nula no fundo da taça, qual é seu valor quando o floco é solto? (d) Se, em vez disso, a energia potencial é tomada como nula no ponto onde o floco é solto, qual é o seu valor quando o floco atinge o fundo da taça? (e) Se a massa do floco fosse duplicada, os valores das respostas dos itens de (a) a (d) aumentariam, diminuiriam ou permaneceriam os mesmos?

Figura 8-32 Problemas 5 e 11.

··6 Na Fig. 8-33, um pequeno bloco, de massa m = 0,032 kg, pode deslizar em uma pista sem atrito que forma um loop de raio R = 12 cm. O bloco é liberado a partir do repouso no ponto P, a uma altura h = 5,0R acima do ponto mais baixo do loop. Qual é o trabalho realizado sobre o bloco pela força gravitacional quando o bloco se desloca do ponto P para (a) o ponto Q e (b) o ponto mais alto do loop? Se a energia potencial gravitacional do sistema bloco-Terra é tomada como zero no ponto mais baixo do loop, qual é a energia potencial quando o bloco se encontra (c) no ponto P, (d) no ponto Q e (e) no ponto mais alto do loop? (f) Se, em vez de ser simplesmente liberado, o bloco recebe uma velocidade inicial para baixo ao longo da pista, as respostas dos itens de (a) a (e) aumentam, diminuem ou permanecem as mesmas?

Figura 8-33 Problemas 6 e 17.

 $\cdot\cdot\cdot$ 7 A Fig. 8-34 mostra uma haste fina, de comprimento L=2,00 m e massa desprezível, que pode girar

em torno de uma das extremidades para descrever uma circunferência vertical. Uma bola, de massa $m=5,00\,$ kg, está presa na outra extremidade. A haste é puxada lateralmente até fazer um ângulo $\theta_0=30,0^\circ$ com a vertical e liberada com velocidade inicial $\vec{v}_0=0$. Quando a bola desce até o ponto mais baixo da circunferência, (a) qual é o trabalho realizado sobre a bola pela força gravitacional e (b) qual é a variação da energia potencial do sistema bola-Terra? (c) Se a energia potencial gravitacional é tomada como zero no ponto mais baixo da circunferência, qual é seu valor no momento em que a bola é liberada? (d) Os valores das respostas dos itens de (a) a (c) aumentam, diminuem ou permanecem os mesmos se o ângulo θ_0 é aumentado?

Figura 8-34 Problemas 7, 18 e 21.

••8 Uma bola de neve de 1,50 kg é lançada de um penhasco de 12,5 m de altura. A velocidade inicial da bola de neve é 14,0 m/s, 41,0° acima da horizontal. (a) Qual é o trabalho realizado sobre a bola de neve pela força gravitacional durante o percurso até um terreno plano, abaixo do penhasco? (b) Qual é a variação da energia potencial do sistema bola de neve-Terra durante o percurso? (c) Se a energia potencial gravitacional é tomada como nula na altura do penhasco, qual é o seu valor quando a bola de neve chega ao solo?

Módulo 8-2 Conservação da Energia Mecânica

- •9 No Problema 2, qual é a velocidade do carro (a) no ponto A, (b) no ponto B e (c) no ponto C? (d) Que altura o carro alcança na última elevação, que é alta demais para ser transposta? (e) Se o carro tivesse uma massa duas vezes maior, quais seriam as respostas dos itens (a) a (d)?
- •10 (a) No Problema 3, qual é a velocidade do livro ao chegar às mãos da sua amiga? (b) Se o livro tivesse uma massa duas vezes maior, qual seria a velocidade? (c) Se o livro fosse arremessado para baixo, a resposta do item (a) aumentaria, diminuiria ou permaneceria a mesma?
- •11 (a) No Problema 5, qual é a velocidade do floco de gelo ao chegar ao fundo da taça? (b) Se o floco de gelo tivesse o dobro da massa, qual seria a velocidade? (c) Se o floco de gelo tivesse uma velocidade inicial para baixo, a resposta do item (a) aumentaria, diminuiria ou permaneceria a mesma?

- •12 (a) No Problema 8, usando técnicas de energia em vez das técnicas do Capítulo 4, determine a velocidade da bola de neve ao chegar ao solo. Qual seria essa velocidade (b) se o ângulo de lançamento fosse mudado para 41,0° *abaixo* da horizontal e (c) se a massa fosse aumentada para 2,50 kg?
- •13 Uma bola de gude de 5,0 g é lançada verticalmente para cima usando uma espingarda de mola. A mola deve ser comprimida 8,0 cm para que a bola apenas toque um alvo 20 m acima da posição da bola de gude na mola comprimida. (a) Qual é a variação ΔU_g da energia potencial gravitacional do sistema bola de gude-Terra durante a subida de 20 m? (b) Qual é a variação ΔU_s da energia potencial elástica da mola durante o lançamento da bola de gude? (c) Qual é a constante elástica da mola?
- •14 (a) No Problema 4, qual deve ser a velocidade inicial da bola para que ela chegue ao ponto mais alto da circunferência com velocidade escalar zero? Nesse caso, qual é a velocidade da bola (b) no ponto mais baixo e (c) no ponto à direita na mesma altura que o ponto inicial? (d) Se a massa da bola fosse duas vezes maior, as respostas dos itens (a) a (c) aumentariam, diminuiriam ou permaneceriam as mesmas?
- •15 Na Fig. 8-35, um caminhão perdeu os freios quando estava descendo uma ladeira a 130 km/h e o motorista dirigiu o veículo para uma rampa de emergência, sem atrito, com uma inclinação $\theta = 15^{\circ}$. A massa do caminhão é $1,2 \times 10^4$ kg. (a) Qual é o menor comprimento L que a rampa deve ter para que o caminhão pare (momentaneamente) antes de chegar ao final? (Suponha que o caminhão pode ser tratado como uma partícula e justifique essa suposição.) O comprimento mínimo L aumenta, diminui ou permanece o mesmo (b) se a massa do caminhão for menor e (c) se a velocidade for menor?

Figura 8-35 Problema 15.

- ••16 Um bloco de 700 g é liberado, a partir do repouso, de uma altura h_0 acima de uma mola vertical com constante elástica k = 400 N/m e massa desprezível. O bloco se choca com a mola e para momentaneamente depois de comprimir a mola 19,0 cm. Qual é o trabalho realizado (a) pelo bloco sobre a mola e (b) pela mola sobre o bloco? (c) Qual é o valor de h_0 ? (d) Se o bloco fosse solto de uma altura $2,00h_0$ acima da mola, qual seria a máxima compressão da mola?
- ••17 No Problema 6, qual é o módulo da componente (a) horizontal e (b) vertical da força *resultante* que atua sobre o bloco no ponto *Q*? (c) De que altura *h* o bloco deveria ser liberado, a partir do repouso, para ficar na iminência de perder contato com a superfície no alto do loop? (*Iminência de perder o contato* significa que a força normal exercida pelo loop sobre o bloco é nula nesse instante.) (d) Plote o módulo da força normal que age sobre o bloco no alto do loop em função da altura inicial *h*, para o

- intervalo de h = 0 a h = 6R.
- ••18 (a) No Problema 7, qual é a velocidade da bola no ponto mais baixo? (b) A velocidade aumenta, diminui ou permanece a mesma se a massa aumenta?
- ••19 A Fig. 8-36 mostra uma pedra de 8,00 kg em repouso sobre uma mola. A mola é comprimida 10,0 cm pela pedra. (a) Qual é a constante elástica da mola? (b) A pedra é empurrada mais 30 cm para baixo e liberada. Qual é a energia potencial elástica da mola comprimida antes de ser liberada? (c) Qual é a variação da energia potencial gravitacional do sistema pedra-Terra quando a pedra se desloca do ponto onde foi liberada até a altura máxima? (d) Qual é a altura máxima, medida a partir do ponto onde a pedra foi liberada?

Figura 8-36 Problema 19.

- •••20 Um pêndulo é formado por uma pedra de 2,0 kg oscilando na extremidade de uma corda de 4,0 m de comprimento e massa desprezível. A pedra tem velocidade de 8,0 m/s ao passar pelo ponto mais baixo da trajetória. (a) Qual é a velocidade da pedra quando a corda forma um ângulo de 60° com a vertical? (b) Qual é o maior ângulo com a vertical que a corda assume durante o movimento da pedra? (c) Se a energia potencial do sistema pêndulo-Terra é tomada como nula na posição mais baixa da pedra, qual é a energia mecânica total do sistema?
- ••21 A Fig. 8-34 mostra um pêndulo de comprimento L = 1,25 m. O peso do pêndulo (no qual está concentrada, para efeitos práticos, toda a massa) tem velocidade v_0 quando a corda faz um ângulo $\theta_0 = 40,0^{\circ}$ com a vertical. (a) Qual é a velocidade do peso quando está na posição mais baixa se $v_0 = 8,00$ m/s? Qual é o menor valor de v_0 para o qual o pêndulo oscila para baixo e depois para cima (b) até a posição horizontal e (c) até a posição vertical com a corda esticada? (d) As respostas dos itens (b) e (c) aumentam, diminuem ou permanecem as mesmas se θ_0 aumentar de alguns graus?
- •••22 ••••22 ••••• Um esquiador de 60 kg parte do repouso a uma altura H = 20 m acima da extremidade de uma rampa para saltos de esqui (Fig. 8-37) e deixa a rampa fazendo um ângulo $\theta = 28^{\circ}$ com a horizontal. Despreze os efeitos da resistência do ar e suponha que a rampa não tem atrito. (a) Qual é a altura máxima h do salto em relação à extremidade da rampa? (b) Se o esquiador aumentasse o próprio peso colocando uma mochila nas costas, h seria maior, menor ou igual?

Figura 8-37 Problema 22.

••23 A corda da Fig. 8-38, de comprimento L = 120 cm, possui uma bola presa em uma das extremidades e está fixa na outra extremidade. A distância d da extremidade fixa a um pino no ponto P é 75,0 cm. A bola, inicialmente em repouso, é liberada com o fio na posição horizontal, como mostra a figura, e percorre a trajetória indicada pelo arco tracejado. Qual é a velocidade da bola ao atingir (a) o ponto mais baixo da trajetória e (b) o ponto mais alto depois que a corda encosta no pino?

Figura 8-38 Problemas 23 e 70.

••24 Um bloco, de massa m = 2.0 kg, é deixado cair de uma altura h = 40 cm sobre uma mola de constante elástica k = 1960 N/m (Fig. 8-39). Determine a variação máxima de comprimento da mola ao ser comprimida.

Figura 8-39 Problema 24.

••25 Em t=0, uma bola de 1,0 kg é atirada de uma torre com $\vec{v}=(18 \text{ m/s})\hat{i}+(24 \text{ m/s})\hat{j}$ Quanto é ΔU do sistema bola-Terra entre t=0 e t=6,0 s (ainda em queda livre)?

••26 Uma força conservativa \vec{F} = (6, 0x − 12) \hat{i} N, em que x está em metros, age sobre uma partícula que se move ao longo de um eixo x. A energia potencial U associada a essa força recebe o valor de 27 J em x = 0. (a) Escreva uma expressão para U como uma função de x, com U em joules e x em metros. (b) Qual é o máximo valor positivo da energia potencial? Para que valor (c) negativo e (d) positivo de x a energia potencial é nula?

••27 Tarzan, que pesa 688 N, salta de um penhasco, pendurado na extremidade de um cipó com 18 m de comprimento (Fig. 8-40). Do alto do penhasco até o ponto mais baixo da trajetória, ele desce 3,2 m. O cipó se romperá se for submetido a uma força maior que 950 N. (a) O cipó se rompe? Se a resposta for negativa, qual é a maior força a que é submetido o cipó? Se a resposta for afirmativa, qual é o ângulo que o cipó está fazendo com a vertical no momento em que se rompe?

Figura 8-40 Problema 27.

••28 A Fig. 8-41*a* se refere à mola de uma espingarda de rolha (Fig. 8-41*b*); ela mostra a força da mola em função do alongamento ou compressão da mola. A mola é comprimida 5,5 cm e usada para impulsionar uma rolha de 3,8 g. (a) Qual é a velocidade da rolha se ela se separa da mola quando esta passa pela posição relaxada? (b) Suponha que, em vez disso, a rolha permaneça ligada à mola e a mola sofra um alongamento de 1,5 cm antes de ocorrer a separação. Qual é, nesse caso, a velocidade da rolha no momento da separação?

Figura 8-41 Problema 28.

••29 Na Fig. 8-42, um bloco, de massa m = 12 kg, é liberado a partir do repouso em um plano inclinado, sem atrito, de ângulo $\theta = 30^\circ$. Abaixo do bloco há uma mola que pode ser comprimida 2,0 cm por uma força de 270 N. O bloco para momentaneamente após comprimir a mola 5,5 cm. (a) Que distância o bloco desce ao longo do plano da posição de repouso inicial até o ponto em que para momentaneamente? (b) Qual é a velocidade do bloco no momento em que ele entra em contato com a mola?

Figura 8-42 Problemas 29 e 35.

••30 Uma caixa de pão, de 2,0 kg, em um plano inclinado, sem atrito, de ângulo $\theta = 40^{\circ}$, está presa, por

uma corda que passa por uma polia, a uma mola de constante elástica k = 120 N/m, como mostra a Fig. 8-43. A caixa é liberada a partir do repouso quando a mola se encontra relaxada. Suponha que a massa e o atrito da polia sejam desprezíveis. (a) Qual é a velocidade da caixa após percorrer 10 cm? (b) Que distância o bloco percorre do ponto em que foi liberado até o ponto em que para momentaneamente? (c) Qual é o módulo e (d) qual é o sentido (para cima ou para baixo ao longo do plano) da aceleração do bloco no instante em que ele para momentaneamente?

Figura 8-43 Problema 30.

••31 Um bloco, de massa m = 2,00 kg, está apoiado em uma mola em um plano inclinado, sem atrito, de ângulo $\theta = 30,0^{\circ}$ (Fig. 8-44). (O bloco não está preso à mola.) A mola, de constante elástica k = 19,6 N/cm, é comprimida 20 cm e depois liberada. (a) Qual é a energia potencial elástica da mola comprimida? (b) Qual é a variação da energia potencial gravitacional do sistema bloco-Terra quando o bloco se move do ponto em que foi liberado até o ponto mais alto que atinge no plano inclinado? (c) Qual é a distância percorrida pelo bloco ao longo do plano inclinado até atingir a altura máxima?

Figura 8-44 Problema 31.

••32 Na Fig. 8-45, uma corrente é mantida em uma mesa, sem atrito, com um quarto do comprimento total pendendo para fora da mesa. Se a corrente tem um comprimento L = 28 cm e uma massa m = 0.012 kg, qual é o trabalho necessário para puxar a parte pendurada para cima da mesa?

Figura 8-45 Problema 32.

•••33 Na Fig. 8-46, uma mola com k = 170 N/m está presa no alto de um plano inclinado, sem atrito, de ângulo $\theta = 37,0^{\circ}$. A extremidade inferior do plano inclinado fica a uma distância D = 1,00 m da extremidade inferior da mola quando esta se encontra relaxada. Uma lata de 2,00 kg é empurrada contra a mola até esta ser comprimida 0,200 m e depois liberada. (a) Qual é a velocidade da lata no instante em que a mola retorna ao comprimento relaxado (que é o momento em que a lata perde contato com a mola)? (b) Qual é a velocidade da lata ao atingir a extremidade inferior do plano inclinado?

Figura 8-46 Problema 33.

 \cdots 34 Um menino está inicialmente sentado no alto de um monte hemisférico de gelo de raio R=13,8 m. Ele começa a deslizar para baixo com uma velocidade inicial tão pequena que pode ser desprezada (Fig. 8-47). Suponha que o atrito com o gelo é desprezível. Em que altura o menino perde contato com o gelo?

Figura 8-47 Problema 34.

···35 Na Fig. 8-42, um bloco de massa m = 3,20 kg desliza para baixo, a partir do repouso, percorre uma distância d em um plano inclinado, de ângulo $\theta = 30,0^{\circ}$, e se choca com uma mola de constante elástica 431 N/m. Quando o bloco para momentaneamente, a mola fica comprimida 21,0 cm. (a) Qual é a

distância *d* e (b) qual é a distância entre o ponto do primeiro contato do bloco com a mola e o ponto onde a velocidade do bloco é máxima?

 \cdots 36 Duas meninas estão disputando um jogo no qual tentam acertar uma pequena caixa, no chão, com uma bola de gude lançada por um canhão de mola montado em uma mesa. A caixa está a uma distância horizontal D = 2,20 m da borda da mesa; veja a Fig. 8-48. Lia comprime a mola 1,10 cm, mas o centro da bola de gude cai 27,0 cm antes do centro da caixa. De quanto Rosa deve comprimir a mola para acertar a caixa? Suponha que o atrito da mola e da bola com o canhão é desprezível.

Figura 8-48 Problema 36.

···37 Uma corda uniforme com 25 cm de comprimento e 15 g de massa está presa horizontalmente em um teto. Mais tarde, é pendurada verticalmente, com apenas uma das extremidades presa no teto. Qual é a variação da energia potencial da corda devido a essa mudança de posição? (*Sugestão*: Considere um trecho infinitesimal da corda e use uma integral.)

Módulo 8-3 Interpretação de uma Curva de Energia Potencial

••38 A Figura 8-49 mostra um gráfico da energia potencial U em função da posição x para uma partícula de 0,200 kg que pode se deslocar apenas ao longo de um eixo x sob a influência de uma força conservativa. Três dos valores mostrados no gráfico são U_A = 9,00 J, U_C = 20,00 J e U_D = 24,00 J. A partícula é liberada no ponto em que U forma uma "barreira de potencial" de "altura" U_B = 12,00 J, com uma energia cinética de 4,00 J. Qual é a velocidade da partícula (a) em x = 3,5 m e (b) em x = 6,5 m? Qual é a posição do ponto de retorno (c) do lado direito e (d) do lado esquerdo?

Figura 8-49 Problema 38.

••39 A Fig. 8-50 mostra um gráfico da energia potencial U em função da posição x para uma partícula de 0,90 kg que pode se deslocar apenas ao longo de um eixo x. (Forças dissipativas não estão envolvidas.) Os três valores mostrados no gráfico são U_A = 15,0 J, U_B = 35,0 J e U_C = 45,0 J. A partícula é liberada em x = 4,5 m com uma velocidade inicial de 7,0 m/s, no sentido negativo do eixo x. (a) Se a partícula puder chegar ao ponto x = 1,0 m, qual será sua velocidade nesse ponto? Se não puder, qual será o ponto de retorno? (b) Qual é o módulo e (c) qual a orientação da força experimentada pela partícula quando ela começa a se mover para a esquerda a partir do ponto x = 4,0 m? Suponha que a partícula seja liberada no mesmo ponto e com a mesma velocidade, mas o sentido da velocidade seja o sentido positivo de x. (d) Se a partícula puder chegar ao ponto x = 7,0 m, qual será sua velocidade nesse ponto? Se não puder, qual será o ponto de retorno? (e) Qual é o módulo e (f) qual a orientação da força experimentada pela partícula quando ela começa a se mover para a direita a partir do ponto x = 5,0 m?

Figura 8-50 Problema 39.

••40 A energia potencial de uma molécula diatômica (um sistema de dois átomos, como H₂ ou O₂) é dada por

$$U = \frac{A}{r^{12}} - \frac{B}{r^6},$$

em que r é a distância entre os átomos da molécula e A e B são constantes positivas. Essa energia potencial está associada à força de ligação entre os dois átomos. (a) Determine a *distância de equilíbrio*, ou seja, a distância entre os átomos para a qual a força a que os átomos estão submetidos é nula. A força é repulsiva ou atrativa se a distância é (b) menor e (c) maior que a distância de equilíbrio?

•••41 Uma única força conservativa F(x) age sobre uma partícula de 1,0 kg que se move ao longo de um eixo x. A energia potencial U(x) associada a F(x) é dada por

$$U(x) = -4xe^{-x/4}J,$$

em que x está em metros. Em x = 5,0 m, a partícula possui uma energia cinética de 2,0 J. (a) Qual é a energia mecânica do sistema? (b) Faça um gráfico de U(x) em função de x para $0 \le x \le 10$ m e plote, no mesmo gráfico, a reta que representa a energia mecânica do sistema. Use o gráfico do item (b) para determinar (c) o menor valor de x que a partícula pode atingir e (d) o maior valor de x que a partícula pode atingir. Use o gráfico do item (b) para determinar (e) a energia cinética máxima da partícula e (f) o valor de x para o qual a energia cinética atinge esse valor. (g) Escreva uma expressão para F(x), em newtons, em função de x, em metros. (h) F(x) = 0 para que valor (finito) de x?

Módulo 8-4 Trabalho Realizado por uma Força Externa sobre um Sistema

- •42 Um operário empurra um caixote de 27 kg, com velocidade constante, por 9,2 m, em um piso plano, com uma força orientada 32° abaixo da horizontal. Se o coeficiente de atrito cinético entre o bloco e o piso é 0,20, (a) qual é o trabalho realizado pelo operário e (b) qual é o aumento da energia térmica do sistema bloco-piso?
- •43 Um collie arrasta a caixa de dormir em um piso, aplicando uma força horizontal de 8,0 N. O módulo da força de atrito cinético que age sobre a caixa é 5,0 N. Quando a caixa é arrastada por uma distância de 0,7 m, qual é (a) o trabalho realizado pela força do cão e (b) qual o aumento de energia térmica da caixa e do piso?
- ••44 Uma força horizontal de módulo 35,0 N empurra um bloco, de massa 4,00 kg, em um piso no qual o coeficiente de atrito cinético é 0,600. (a) Qual é o trabalho realizado pela força sobre o sistema blocopiso se o bloco sofre um deslocamento de 3,00 m? (b) Durante o deslocamento, a energia térmica do bloco aumenta de 40,0 J. Qual é o aumento da energia térmica do piso? (c) Qual é o aumento da energia cinética do bloco?
- ••45 Uma corda é usada para puxar um bloco de 3,57 kg com velocidade constante, por 4,06 m, em um piso horizontal. A força que a corda exerce sobre o bloco é 7,68 N, 15,0° acima da horizontal. Qual é (a) o trabalho realizado pela força da corda, (b) qual o aumento na energia térmica do sistema bloco-piso e (c) qual o coeficiente de atrito cinético entre o bloco e o piso?

Módulo 8-5 Conservação da Energia

- •46 Um jogador de beisebol arremessa uma bola com uma velocidade escalar inicial de 81,8 mi/h. Imediatamente antes de um outro jogador segurar a bola na mesma altura, a velocidade da bola é 110 pés/s. Qual foi a redução da energia mecânica do sistema bola-Terra, em pés-libras, produzida pela força de arrasto do ar? (A massa de uma bola de beisebol é de 9,0 onças.)
- •47 Um disco de plástico de 75 g é arremessado de um ponto 1,1 m acima do solo, com uma velocidade escalar de 12 m/s. Quando o disco atinge uma altura de 2,1 m, sua velocidade é 10,5 m/s. Qual é a redução da E_{mec} do sistema disco-Terra produzida pela força de arrasto do ar?
- •48 Na Fig. 8-51, um bloco desliza para baixo em um plano inclinado. Enquanto se move do ponto A para o ponto B, que estão separados por uma distância de 5,0 m, uma força \vec{F} com módulo de 2,0 N e dirigida para baixo ao longo do plano inclinado, age sobre o bloco. O módulo da força de atrito que age sobre o bloco é 10 N. Se a energia cinética do bloco aumenta de 35 J entre A e B, qual é o trabalho realizado pela força gravitacional sobre o bloco enquanto ele se move de A até B?

Figura 8-51 Problemas 48 e 71.

- •49 Um urso de 25 kg escorrega, a partir do repouso, 12 m para baixo em um tronco de pinheiro, movendo-se com uma velocidade de 5,6 m/s imediatamente antes de chegar ao chão. (a) Qual é a variação da energia potencial gravitacional do sistema urso-Terra durante o deslizamento? (b) Qual é a energia cinética do urso imediatamente antes de chegar ao chão? (c) Qual é a força de atrito média que age sobre o urso enquanto ele está escorregando?
- •50 Um esquiador de 60 kg deixa uma rampa de salto com uma velocidade de 24 m/s, fazendo um ângulo de 25° para cima com a horizontal. Devido à força de arrasto do ar, o esquiador toca a neve com uma velocidade de 22 m/s, em um ponto 14 m abaixo da extremidade da rampa. De quanto a energia mecânica do sistema esquiador-Terra foi reduzida pela força de arrasto do ar durante o salto?
- •51 Durante uma avalanche, uma pedra de 520 kg desliza a partir do repouso, descendo a encosta de uma montanha que tem 500 m de comprimento e 300 m de altura. O coeficiente de atrito cinético entre a pedra e a encosta é 0,25. (a) Se a energia potencial gravitacional U do sistema rocha-Terra é nula na base da montanha, qual é o valor de U imediatamente antes de começar a avalanche? (b) Qual é energia transformada em energia térmica durante a avalanche? (c) Qual é a energia cinética da pedra ao chegar à base da montanha? (d) Qual é a velocidade da pedra nesse instante?
- ••52 Um biscoito de mentira, deslizando em uma superfície horizontal, está preso a uma das extremidades de uma mola horizontal de constante elástica k = 400 N/m; a outra extremidade da mola está fixa. O biscoito possui uma energia cinética de 20,0 J ao passar pela posição de equilíbrio da mola. Enquanto o

biscoito desliza, uma força de atrito de módulo 10,0 N age sobre ele. (a) Que distância o biscoito desliza a partir da posição de equilíbrio antes de parar momentaneamente? (b) Qual é a energia cinética do biscoito quando ele passa de volta pela posição de equilíbrio?

··53 Na Fig. 8-52, um bloco de 3,5 kg é acelerado a partir do repouso por uma mola comprimida, de constante elástica 640 N/m. O bloco deixa a mola quando esta atinge seu comprimento relaxado e se desloca em um piso horizontal com um coeficiente de atrito cinético μ_k = 0,25. A força de atrito faz com que o bloco pare depois de percorrer uma distância D = 7,8 m. Determine (a) o aumento da energia térmica do sistema bloco-piso, (b) a energia cinética máxima do bloco e (c) o comprimento da mola quando estava comprimida.

Figura 8-52 Problema 53.

•••54 Uma criança que pesa 267 N desce em um escorrega de 6,1 m que faz um ângulo de 20° com a horizontal. O coeficiente de atrito cinético entre o escorrega e a criança é 0,10. (a) Qual é a energia transformada em energia térmica? (b) Se a criança começa a descida no alto do escorrega com uma velocidade de 0,457 m/s, qual é sua velocidade ao chegar ao chão?

••55 Na Fig. 8-53, um bloco de massa m = 2,5 kg desliza de encontro a uma mola de constante elástica k = 320 N/m. O bloco para após comprimir a mola 7,5 cm. O coeficiente de atrito cinético entre o bloco e o piso é 0,25. Para o intervalo em que o bloco está em contato com a mola e sendo levado ao repouso, determine (a) o trabalho total realizado pela mola e (b) o aumento da energia térmica do sistema blocopiso. (c) Qual é a velocidade do bloco imediatamente antes de se chocar com a mola?

Figura 8-53 Problema 55.

••56 Você empurra um bloco de 2,0 kg contra uma mola horizontal, comprimindo-a 15 cm. Em seguida, você solta o bloco, e a mola o faz deslizar em uma mesa. O bloco para depois de percorrer 75 cm a partir do ponto em que foi solto. A constante elástica da mola é 200 N/m. Qual é o coeficiente de atrito cinético entre o bloco e a mesa?

··57 Na Fig. 8-54, um bloco desliza ao longo de uma pista, de um nível para outro mais elevado,

passando por um vale intermediário. A pista não possui atrito até o bloco atingir o nível mais alto, onde uma força de atrito faz com que o bloco fique em repouso depois de percorrer uma distância d. A velocidade inicial v_0 do bloco é 6,0 m/s, a diferença de altura h é 1,1 m e μ_k é 0,60. Determine o valor de d.

Figura 8-54 Problema 57.

- ••58 Um pote de biscoitos está subindo um plano inclinado de 40°. Em um ponto a 55 cm de distância da base do plano inclinado (ao longo do plano), o pote possui uma velocidade de 1,4 m/s. O coeficiente de atrito cinético entre o pote e o plano inclinado é 0,15. (a) Qual é a distância adicional percorrida pelo pote até parar momentaneamente antes de começar a descer? (b) Qual é a velocidade do bloco ao chegar novamente à base do plano inclinado? (c) As respostas dos itens (a) e (b) aumentam, diminuem ou permanecem as mesmas quando o coeficiente de atrito cinético é reduzido (sem alterar a velocidade e a posição do pote)?
- ••59 Uma pedra que pesa 5,29 N é lançada verticalmente, a partir do nível do solo, com uma velocidade inicial de 20,0 m/s e o arrasto do ar sobre ela é de 0,265 N durante todo o percurso. Determine (a) a altura máxima alcançada pela pedra e (b) a velocidade da pedra imediatamente antes de se chocar com o solo.
- ••60 Um pacote de 4,0 kg começa a subir um plano inclinado de 30° com uma energia cinética de 128 J. Que distância o pacote percorre antes de parar se o coeficiente de atrito cinético entre o pacote e o plano é 0,30?
- ••61 Quando um besouro salta-martim está deitado de costas, ele pode pular encurvando bruscamente o corpo, o que converte em energia mecânica a energia armazenada em um músculo, produzindo um estalo audível. O videoteipe de um desses pulos mostra que um besouro de massa $m = 4,0 \times 10^{-6}$ kg se desloca 0,77 mm na vertical durante um salto e consegue atingir uma altura máxima h = 0,30 m. Qual é o valor médio, durante o salto, (a) do módulo da força externa exercida pelo piso sobre as costas do besouro e (b) do módulo da aceleração do besouro em unidades de g?
- •••62 Na Fig. 8-55, um bloco desliza em uma pista sem atrito até chegar a um trecho de comprimento L=0.75 m, que começa a uma altura h=2.0 m em uma rampa de ângulo $\theta=30$ °. Nesse trecho, o coeficiente de atrito cinético é 0,40. O bloco passa pelo ponto A com uma velocidade de 8,0 m/s. Se o bloco pode

chegar ao ponto *B* (onde o atrito acaba), qual é sua velocidade neste ponto? Se não pode, qual é a maior altura que ele atinge acima de *A*?

Figura 8-55 Problema 62.

•••63 O cabo do elevador de 1800 kg da Fig. 8-56 se rompe quando o elevador está parado no primeiro andar, com o piso a uma distância d = 3,7 m acima de uma mola de constante elástica k = 0,15 MN/m. Um dispositivo de segurança prende o elevador aos trilhos laterais, de modo que uma força de atrito constante, de 4,4 kN, passa a se opor ao movimento. (a) Determine a velocidade do elevador no momento em que ele se choca com a mola. (b) Determine a máxima redução x do comprimento da mola (a força de atrito continua a agir enquanto a mola está sendo comprimida). (c) Determine a distância que o elevador sobe de volta no poço. (d) Usando a lei de conservação da energia, determine a distância total aproximada que o elevador percorre até parar. (Suponha que a força de atrito sobre o elevador é desprezível quando o elevador está parado.)

Figura 8-56 Problema 63.

•••64 Na Fig. 8-57, um bloco é liberado, a partir do repouso, a uma altura d = 40 cm, desce uma rampa sem atrito e chega a um primeiro trecho plano, de comprimento d, em que o coeficiente de atrito cinético é 0,50. Se o bloco ainda está se movendo, desce uma segunda rampa sem atrito, de altura d/2, e chega a um segundo trecho plano, em que o coeficiente de atrito cinético também é 0,50. Se o bloco ainda está se movendo, ele sobe uma rampa sem atrito até parar (momentaneamente). Onde o bloco para? Se a parada

final é em um trecho plano, diga em qual deles e calcule a distância L que o bloco percorre a partir da extremidade esquerda desse platô. Se o bloco alcança a rampa, calcule a altura H acima do trecho plano mais baixo onde o bloco para momentaneamente.

Figura 8-57 Problema 64.

•••65 Uma partícula pode deslizar em uma pista com extremidades elevadas e uma parte central plana, como mostra a Fig. 8-58. A parte plana tem comprimento L = 40 cm. Os trechos curvos da pista não possuem atrito, mas na parte plana o coeficiente de atrito cinético é $\mu_k = 0,20$. A partícula é liberada a partir do repouso no ponto A, que está a uma altura L/2. A que distância da extremidade esquerda da parte plana a partícula finalmente para?

Figura 8-58 Problema 65.

Problemas Adicionais

- 66 Uma preguiça, de 3,2 kg, está pendurada em uma árvore, 3,0 m acima do solo. (a) Qual é a energia potencial gravitacional do sistema preguiça-Terra, se tomamos o ponto de referência y = 0 como o nível do solo? Se a preguiça cai da árvore e o arrasto do ar é desprezível, determine (b) a energia cinética e (c) a velocidade da preguiça no momento em que o animal chega ao solo.
- 67 Uma mola (k = 200 N/m) está presa no alto de um plano inclinado, sem atrito, de ângulo $\theta = 40^{\circ}$ (Fig. 8-59). Um bloco de 1,0 kg é lançado para cima ao longo do plano, de uma posição inicial que está a uma distância d = 0,60 m da extremidade da mola relaxada, com uma energia cinética inicial de 16 J. (a) Qual é a energia cinética do bloco no instante em que ele comprime a mola 0,20 m? (b) Com que energia cinética o bloco deve ser lançado ao longo do plano para ficar momentaneamente parado depois de comprimir a mola 0,40 m?

Figura 8-59 Problema 67.

68 Um projétil de 0,55 kg é lançado da borda de um penhasco com uma energia cinética inicial de 1550 J. A maior distância vertical que o projétil atinge acima do ponto de lançamento é 140 m. Qual é a componente (a) horizontal e (b) vertical da velocidade de lançamento? (c) No instante em que a componente vertical da velocidade é 65 m/s, qual é o deslocamento vertical em relação ao ponto de lançamento?

69 Na Fig. 8-60, a polia tem massa desprezível, e tanto ela como o plano inclinado não possuem atrito. O bloco A tem massa de 1,0 kg, o bloco B tem massa de 2,0 kg e o ângulo θ é de 30°. Se os blocos são liberados a partir do repouso com a corda esticada, qual é a energia cinética total após o bloco B ter descido 25 cm?

Figura 8-60 Problema 69.

- 70 Na Fig. 8-38, a corda tem um comprimento $L=120\,\mathrm{cm}$ e possui uma bola presa em uma das extremidades, enquanto a outra está fixa. Existe um pino no ponto P. Liberada a partir do repouso, a bola desce até a corda tocar o pino; em seguida, a bola sobe e começa a girar em torno do pino. Qual é o menor valor da distância d para que a bola dê uma volta completa em torno do pino? (Sugestão: A bola deve ainda estar se movendo no ponto mais alto da volta. Você sabe por quê?)
- **71** Na Fig. 8-51, um bloco é lançado para baixo, em uma rampa sem atrito, com uma velocidade inicial diferente de zero. A velocidade do bloco nos pontos A e B é 2,00 m/s e 2,60 m/s, respectivamente. Em seguida, é novamente lançado para baixo, mas dessa vez a velocidade no ponto A é 4,00 m/s. Qual é então a velocidade do bloco no ponto B?
- 72 Dois picos nevados estão H = 850 m e h = 750 m acima do vale que os separa. Uma pista de esqui,

com um comprimento total de 3,2 km e uma inclinação média q = 30°, liga os dois picos (Fig. 8-61). (a) Um esquiador parte do repouso no cume do monte mais alto. Com que velocidade chega ao cume do monte mais baixo se não usar os bastões para dar impulso? Ignore o atrito. (b) Qual é o valor aproximado do coeficiente de atrito cinético entre a neve e os esquis para que o esquiador pare exatamente no cume do monte mais baixo?

Figura 8-61 Problema 72.

73 A temperatura de um cubo de plástico é medida enquanto o cubo é empurrado 3,0 m em um piso, com velocidade constante, por uma força horizontal de 15 N. As medidas revelam que a energia térmica do cubo aumentou 20 J. Qual foi o aumento da energia térmica do piso ao longo do qual o cubo deslizou?

74 Uma esquiadora que pesa 600 N passa pelo alto de um morro circular, sem atrito, de raio R = 20 m (Fig. 8-62). Suponha que os efeitos da resistência do ar são desprezíveis. Na subida, a esquiadora passa pelo ponto B, em que o ângulo é $\theta = 20^{\circ}$, com uma velocidade de 8,0 m/s. (a) Qual é a velocidade da esquiadora no alto do morro (ponto A) se ela esquia sem usar os bastões? (b) Qual a menor velocidade que a esquiadora deve ter em B para conseguir chegar ao alto do monte? (c) As respostas dos itens anteriores serão maiores, menores ou iguais, se o peso da esquiadora for 700 N em vez de 600 N?

Figura 8-62 Problema 74.

75 Para formar um pêndulo, uma bola de 0,092 kg é presa em uma das extremidades de uma haste de 0,62 m de comprimento e massa desprezível; a outra extremidade da haste é montada em um eixo. A haste é levantada até a bola ficar verticalmente acima do eixo, e então liberada a partir do repouso. Quando a bola atinge o ponto mais baixo, (a) qual é a velocidade da bola e (b) qual a tração da haste? Em seguida, a haste é colocada na horizontal e liberada a partir do repouso. (c) Para que ângulo em relação à vertical

a tração da haste é igual ao peso da bola? (d) Se a massa da bola aumenta, a resposta do item (c) aumenta, diminui ou permanece a mesma?

76 Uma partícula se desloca ao longo de um eixo x, primeiro para fora, do ponto x = 1,0 m até o ponto x = 4,0 m, e depois para dentro, de volta ao ponto x = 1,0 m, enquanto uma força externa age sobre a partícula. A força é paralela ao eixo x e pode ter valores diferentes no caso de deslocamentos para fora e para dentro. A tabela a seguir mostra os valores (em newtons) em quatro situações, com x em metros:

Para fora	Para dentro
(a) +3,0	-3,0
(b) +5,0	+5,0
(c) +2.0x	-2.0x
$(d) +3.0x^2$	$+3,0x^{2}$

Determine o trabalho total realizado sobre a partícula pela força externa *durante a viagem de ida e volta* nas quatro situações. (e) Em que situações a força externa é conservativa?

77 Uma força conservativa F(x) age sobre uma partícula de 2,0 kg que se move ao longo de um eixo x. A energia potencial U(x) associada a F(x) está plotada na Fig. 8-63. Quando a partícula está em x = 2,0 m, a velocidade é -1,5 m/s. Qual é (a) o módulo e (b) qual o sentido de F(x) nessa posição? Entre que posições (c) à esquerda e (d) à direita a partícula se move? (e) Qual é a velocidade da partícula em x = 7,0 m?

Figura 8-63 Problema 77.

78 Em uma fábrica, caixotes de 300 kg são deixados cair verticalmente de uma máquina de empacotamento em uma esteira transportadora que se move a 1,20 m/s (Fig. 8-64). (A velocidade da esteira é mantida constante por um motor.) O coeficiente de atrito cinético entre a esteira e cada caixote é 0,400. Após um pequeno intervalo de tempo, deixa de haver deslizamento entre a esteira e o caixote, que passa a se mover com a mesma velocidade que a esteira. Para o intervalo de tempo no qual o caixote está deslizando sobre a esteira, calcule, tomando como referência um sistema de coordenadas em repouso em relação à fábrica, (a) a energia cinética total fornecida ao caixote, (b) o módulo da força de atrito cinético que age sobre o caixote e (c) a energia total fornecida pelo motor. (d) Explique por que as respostas dos itens (a) e (c) são diferentes.

Figura 8-64 Problema 78.

79 Um carro de 1500 kg começa a descer, a 30 km/h, uma ladeira com inclinação de 5,0°. O motor do carro está desligado e as únicas forças presentes são a força de atrito exercida pela estrada e a força gravitacional. Após o veículo ter se deslocado 50 m, a velocidade é 40 km/h. (a) De quanto a energia mecânica do carro foi reduzida pela força de atrito? (b) Qual é o módulo da força de atrito?

80 Na Fig. 8-65, um bloco de granito de 1400 kg é puxado para cima por um cabo, em um plano inclinado, com velocidade constante de 1,34 m/s. As distâncias indicadas são d_1 = 40 m e d_2 = 30 m. O coeficiente de atrito cinético entre o bloco e o plano inclinado é 0,40. Qual é a potência desenvolvida pela força aplicada pelo cabo?

Figura 8-65 Problema 80.

81 Uma partícula pode se mover apenas ao longo de um eixo x, sob a ação de forças conservativas (Fig. 8-66 e tabela). A partícula é liberada em x = 5,00 m com uma energia cinética K = 14,0 J e uma energia

potencial U = 0. Se a partícula se move no sentido negativo do eixo x, qual é o valor (a) de K e (b) de U em x = 2,00 m e qual o valor (c) de K e (d) de U em x = 0? Se a partícula se move no sentido positivo do eixo x, qual é o valor (e) de K e (f) de U em x = 11,0 m, qual o valor (g) de K e (h) de U em x = 12,0 m e qual o valor (i) de K e (j) de U em x = 13,0 m? (k) Plote U(x) em função de x para o intervalo de x = 0 a x = 13,0 m.

Figura 8-66 Problemas 81 e 82.

A partícula é liberada a partir do repouso em x = 0. Qual é (l) a energia cinética em x = 5,0 m e (m) qual o valor máximo de x, $x_{máx}$, atingido pela partícula? (n) O que acontece com a partícula após atingir $x_{máx}$?

Intervalo	Força
0 a 2,00 m	$\vec{F}_1 = +(3.00 \text{ N})\hat{i}$
2,00 m a 3,00 m	$\vec{F}_2 = +(5.00\text{N})\hat{i}$
3,00 m a 8,00 m	F = 0
8,00 a 11,0 m	$\vec{F}_3 = +(4,00\text{N})\hat{\mathbf{i}}$
11,0 a 12,0 m	\vec{F}_4 =+(1,00 N) $\hat{\mathbf{i}}$
12,0 a 15,0 m	F = 0

- 82 Com o arranjo de forças do Problema 81, uma partícula de 2,00 kg é liberada em x = 5,00 m, com uma velocidade de 3,45 m/s, no sentido negativo do eixo x. (a) Se a partícula pode chegar ao ponto x = 0 m, qual é a velocidade da partícula nesse ponto? Se não pode, qual é o ponto de retorno? Suponha que a partícula se move no sentido positivo de x quando é liberada em x = 5,00 m com velocidade de 3,45 m/s. (b) Se a partícula pode chegar ao ponto x = 13,0 m, qual é a velocidade da partícula nesse ponto? Se não pode, qual é o ponto de retorno?
- 83 Um bloco de 15 kg sofre uma aceleração de 2,0 m/s² em uma superfície horizontal sem atrito que faz sua velocidade aumentar de 10 m/s para 30 m/s. Qual é (a) a variação da energia mecânica do bloco e (b) qual a taxa média com que a energia é transferida para o bloco? Qual é a taxa instantânea de transferência de energia quando a velocidade do bloco é (c) 10 m/s e (d) 30 m/s?
- 84 Suponha que uma mola $n\tilde{a}o$ obedece à lei de Hooke. A força (em newtons) que a mola exerce quando está alongada de um comprimento x (em metros) tem módulo de $52,8x + 38,4x^2$ e o sentido oposto ao da

força responsável pelo alongamento. (a) Calcule o trabalho necessário para alongar a mola de x = 0,500 m para x = 1,00 m. (b) Com uma extremidade da mola fixa, uma partícula de massa 2,17 kg é presa à outra extremidade quando a mola está alongada de x = 1,00 m. Se a partícula é liberada a partir do repouso, qual é a velocidade da partícula no instante em que o alongamento da mola é x = 0,500 m? (c) A força exercida pela mola é conservativa ou não conservativa? Justifique sua resposta.

- **85** A cada segundo, 1200 m³ de água passam por uma queda d'água de 100 m de altura. Três quartos da energia cinética que foi ganha pela água ao cair são transformados em energia elétrica por um gerador hidrelétrico. A que taxa o gerador produz energia elétrica? (A massa de 1 m³ de água é 1000 kg.)
- 86 Na Fig. 8-67, um pequeno bloco parte do ponto A com velocidade de 7,0 m/s. O percurso é sem atrito até o trecho de comprimento L=12 m, em que o coeficiente de atrito cinético é 0,70. As alturas indicadas são $h_1=6,0$ m e $h_2=2,0$ m. Qual é a velocidade do bloco (a) no ponto B e (b) no ponto C? (c) O bloco atinge o ponto D? Caso a resposta seja afirmativa, determine a velocidade do bloco nesse ponto; caso a resposta seja negativa, calcule a distância que o bloco percorre na parte com atrito.

Figura 8-67 Problema 86.

87 Uma haste rígida de massa desprezível e comprimento L possui uma bola de massa m presa a uma das extremidades (Fig. 8-68). A outra extremidade está presa a um eixo de tal forma que a bola pode se mover em uma circunferência vertical. Primeiro, suponha que não existe atrito no eixo. A bola é lançada para baixo a partir da posição horizontal A, com velocidade v_0 , e para exatamente no ponto D. (a) Escreva uma expressão para v_0 em função de L, m e g. (b) Qual é a tração da haste quando a bola passa pelo ponto B? (c) Coloca-se um pouco de areia no eixo para aumentar o atrito. Depois disso, a bola chega apenas ao ponto C quando é lançada a partir de A com a mesma velocidade de antes. Qual é o decréscimo de energia mecânica quando a bola finalmente entra em repouso no ponto B após várias oscilações?

Figura 8-68 Problema 87.

- 88 Uma bola de aniversário, cheia d'água, com uma massa de 1,50 kg, é lançada verticalmente para cima com uma velocidade inicial de 3,00 m/s. (a) Qual é a energia cinética da bola no momento em que é lançada? (b) Qual é o trabalho realizado pela força gravitacional sobre a bola durante a subida? (c) Qual é a variação da energia potencial gravitacional do sistema bola-Terra durante a subida? (d) Se a energia potencial gravitacional é tomada como nula no ponto de lançamento, qual é seu valor quando a bola chega à altura máxima? (e) Se a energia potencial gravitacional é considerada nula na altura máxima, qual é seu valor no ponto do lançamento? (f) Qual é a altura máxima?
- 89 Uma lata de refrigerante de 2,50 kg é lançada verticalmente para baixo de uma altura de 4,00 m, com uma velocidade inicial de 3,00 m/s. O efeito do ar sobre a lata é desprezível. (a) Qual é a energia cinética da lata quando ela chega ao solo no final da queda e (b) quando se encontra a meio caminho do solo? (c) Qual é a energia cinética da lata e (d) qual é a energia potencial gravitacional do sistema lata-Terra 0,200 s antes de a lata chegar ao solo? Tome o ponto de referência y = 0 como o solo.
- 90 Uma força horizontal constante faz um baú de 50 kg subir 6,0 m em um plano inclinado de 30° com velocidade constante. O coeficiente de atrito cinético entre o baú e o plano inclinado é 0,20. (a) Qual é o trabalho realizado pela força e (b) qual é o aumento da energia térmica do baú e do plano inclinado?
- 91 Dois blocos, de massas M = 2.0 kg e 2M, estão presos a uma mola de constante elástica k = 200 N/m que tem uma das extremidades fixa, como mostra a Fig. 8-69. A superfície horizontal e a polia não possuem atrito e a polia tem massa desprezível. Os blocos são liberados, a partir do repouso, com a mola na posição relaxada. (a) Qual é a energia cinética total dos dois blocos após o bloco que está pendurado ter descido 0,090 m? (b) Qual é a energia cinética do bloco que está pendurado depois de descer 0,090 m? (c) Qual é a distância que o bloco pendurado percorre antes de parar momentaneamente pela primeira vez?

Figura 8-69 Problema 91.

- 92 Uma nuvem de cinzas vulcânicas está se movendo horizontalmente em solo plano quando encontra uma encosta com uma inclinação de 10°. A nuvem sobe 920 m antes de parar. Suponha que os gases aprisionados fazem as cinzas flutuarem, tornando assim desprezível a força de atrito exercida pelo solo; suponha também que a energia mecânica da nuvem é conservada. Qual era a velocidade inicial da nuvem?
- 93 Um escorrega de parquinho tem a forma de um arco de circunferência com 12 m de raio. A altura do escorrega é h = 4,0 m e o chão é tangente à circunferência (Fig. 8-70). Uma criança de 25 kg escorrega do alto do brinquedo, a partir do repouso, e ao chegar ao chão está com uma velocidade de 6,2 m/s. (a) Qual é o comprimento do escorrega? (b) Qual é a força de atrito média que age sobre a criança? Se, em vez do solo, uma reta vertical passando pelo *alto do escorrega* é tangente à circunferência, qual é (c) o comprimento do escorrega e (d) qual a força de atrito média que age sobre a criança?

Figura 8-70 Problema 93.

- 94 O transatlântico de luxo *Queen Elizabeth 2* possui uma central elétrica a diesel com uma potência máxima de 92 MW a uma velocidade de cruzeiro de 32,5 nós. Que força propulsora é exercida sobre o navio a essa velocidade? (1 nó = 1,852 km/h.)
- 95 Um operário de uma fábrica deixa cair acidentalmente um caixote de 180 kg que estava sendo mantido em repouso no alto de uma rampa de 3,7 m de comprimento inclinada 39° em relação à horizontal. O coeficiente de atrito cinético entre o caixote e a rampa e entre o caixote e o piso horizontal da fábrica é

- 0,28. (a) Qual é a velocidade do caixote ao chegar ao final da rampa? (b) Que distância adicional o caixote percorre no piso? (Suponha que a energia cinética do caixote não se altera com a passagem da rampa para o piso.) (c) As respostas dos itens (a) e (b) aumentam, diminuem ou permanecem as mesmas, se a massa do caixote é reduzida à metade?
- 96 Se um jogador de beisebol, de 70 kg, chega a uma base depois de escorregar pelo chão com uma velocidade inicial de 10 m/s, (a) qual é o decréscimo da energia cinética do jogador e (b) qual é o aumento da energia térmica do corpo do jogador e do chão no qual ele escorrega?
- 97 Uma banana de 0,50 kg é arremessada verticalmente para cima com uma velocidade inicial de 4,0 m/s e alcança uma altura máxima de 0,80 m. Qual é a variação da energia mecânica do sistema banana-Terra causada pela força de arrasto do ar durante a subida?
- 98 Uma ferramenta de metal é pressionada contra uma pedra de amolar giratória por uma força de 180 N para ser amolada. As forças de atrito entre a pedra de amolar e a ferramenta removem pequenos fragmentos da ferramenta. A pedra de amolar tem raio de 20,0 cm e gira a 2,50 revoluções/s. O coeficiente de atrito cinético entre a pedra de amolar e a ferramenta é 0,320. A que taxa a energia está sendo transferida do motor, que faz a pedra girar, para a energia térmica da pedra, e da ferramenta e para a energia cinética dos fragmentos removidos da ferramenta?
- 99 Um nadador se desloca na água a uma velocidade média de 0,22 m/s. A força de arrasto média é 110 N. Que potência média o nadador está desenvolvendo?
- **100** Um automóvel com passageiros pesa 16.400 N e está se movendo a 113 km/h quando o motorista pisa bruscamente no freio, bloqueando as rodas. A força de atrito exercida pela estrada sobre as rodas tem módulo de 8230 N. Determine a distância que o automóvel percorre até parar.
- **101** Uma bola de 0,63 kg, atirada verticalmente para cima com velocidade inicial de 14 m/s, atinge uma altura máxima de 8,1 m. Qual é a variação da energia mecânica do sistema bola-Terra durante a subida da bola até a altura máxima?
- 102 O cume do Monte Everest está 8850 acima do nível do mar. (a) Qual seria a energia gasta por um alpinista de 90 kg para escalar o Monte Everest a partir do nível do mar, se a única força que tivesse que vencer fosse a força gravitacional? (b) Quantas barras de chocolate, a 1,25 MJ por barra, supririam essa energia? A resposta mostra que o trabalho usado para vencer a força gravitacional é uma fração muito pequena da energia necessária para escalar uma montanha.
- **103** Um velocista que pesa 670 N corre os primeiros 7,0 m de uma prova em 1,6 s, partindo do repouso e acelerando uniformemente. Qual é (a) a velocidade e (b) qual a energia cinética do velocista ao final dos 1,6 s? (c) Qual é a potência média desenvolvida pelo velocista durante o intervalo de 1,6 s?
- 104 Um objeto de 20 kg sofre a ação de uma força conservativa dada por $F = -3.0x 5.0x^2$, com F em newtons e x em metros. Tome a energia potencial associada a essa força como nula quando o objeto está em x = 0. (a) Qual é a energia potencial associada à força quando o objeto está em x = 2.0 m? (b) Se o

- objeto possui uma velocidade de 4,0 m/s no sentido negativo do eixo x quando está em x = 5,0 m, qual é a velocidade do objeto ao passar pela origem? (c) Quais são as respostas dos itens (a) e (b) se a energia potencial do sistema é tomada como 28,0 J quando o objeto está em x = 0?
- 105 Uma máquina puxa um tronco de árvore, com velocidade constante, 2,0 m para cima em uma rampa de 40°, com a força da máquina paralela à rampa. O coeficiente de atrito cinético entre o tronco e a rampa é 0,40. (a) Qual é o trabalho realizado sobre o tronco pela força da máquina e (b) qual é o aumento da energia térmica do tronco e da rampa?
- 106 A mola de uma espingarda de brinquedo tem uma constante elástica de 700 N/m. Para atirar uma bola, a mola é comprimida e a bola é introduzida no cano da espingarda. O gatilho libera a mola, que empurra a bola. A bola perde contato com a mola exatamente ao sair do cano. Quando a espingarda é inclinada para cima, de um ângulo de 30° com a horizontal, a bola, de 57 g, atinge uma altura máxima de 1,83 m acima da ponta do cano. Suponha que o efeito do ar sobre a bola é desprezível. (a) A que velocidade a mola lança a bola? (b) Supondo que o atrito da bola dentro do cano da pistola é desprezível, determine a compressão inicial da mola.
- **107** A única força que age sobre uma partícula é a força conservativa \vec{F} . Se a partícula está no ponto A, a energia potencial do sistema associada a \vec{F} e à partícula é 40 J. Se a partícula se desloca do ponto A para o ponto B, o trabalho realizado por \vec{F} sobre a partícula é +25 J. Qual é a energia potencial do sistema com a partícula no ponto B?
- 108 Em 1981, Daniel Goodwin escalou 443 m pela *fachada* do Edifício Sears, em Chicago, com o auxílio de ventosas e grampos de metal. (a) Estime a massa do alpinista e calcule a energia biomecânica (interna) transferida para a energia potencial gravitacional do sistema Goodwin-Terra durante a escalada. (b) Que energia seria preciso transferir se ele tivesse subido até a mesma altura pelo interior do prédio, usando as escadas?
- **109** Uma artista de circo de 60,0 kg escorrega 4,00 m a partir do repouso, descendo do alto de um poste até o chão. Qual é a energia cinética da artista ao chegar ao chão se a força de atrito que o poste exerce sobre ela (a) é desprezível (ela irá se machucar) e (b) tem um módulo de 500 N?
- 110 Um bloco de 5,0 kg é lançado para cima em um plano inclinado de 30° com velocidade de 5,0 m/s. Que distância o bloco percorre (a) se o plano não possui atrito e (b) se o coeficiente de atrito cinético entre o bloco e o plano é 0,40? (c) No segundo caso, qual é o aumento da energia térmica do bloco e do plano durante a subida do bloco? (d) Se o bloco desce de volta submetido à força de atrito, qual é a velocidade do bloco ao chegar ao ponto de onde foi lançado?
- 111 Um projétil de 9,40 kg é lançado verticalmente para cima. O arrasto do ar diminui a energia mecânica do sistema projétil-Terra de 68,0 kJ durante a subida do projétil. Que altura a mais o projétil teria alcançado se o arrasto do ar fosse desprezível?
- 112 Um homem de 70,0 kg pula de uma janela e vai cair em uma rede de salvamento dos bombeiros, 11,0 m abaixo da janela. Ele para momentaneamente, após a rede ter esticado 1,50 m. Supondo que a energia

- mecânica é conservada durante o processo e que a rede se comporta como uma mola ideal, determine a energia potencial elástica da rede quando está esticada 1,50 m.
- 113 Uma bala de revólver de 30 g, movendo-se com uma velocidade horizontal de 500 m/s, penetra 12 cm em uma parede antes de parar. (a) Qual é a variação da energia mecânica da bala? (b) Qual é a força média exercida pela parede para fazer a bala parar?
- 114 Um carro de 1500 kg parte do repouso em uma estrada horizontal e adquire uma velocidade de 72 km/h em 30 s. (a) Qual é a energia cinética do carro no fim dos 30 s? (b) Qual é a potência média desenvolvida pelo carro durante o intervalo de 30 s? (c) Qual é a potência instantânea no fim do intervalo de 30 s, supondo que a aceleração seja constante?
- 115 Uma bola de neve, de 1,5 kg, é atirada para cima em um ângulo de 34,0° com a horizontal e com uma velocidade inicial de 20,0 m/s. (a) Qual é a energia cinética inicial da bola? (b) De quanto varia a energia potencial gravitacional do sistema bola-Terra quando a bola se move do ponto de lançamento até o ponto de altura máxima? (c) Qual é a altura máxima?
- 116 Um paraquedista de 68 kg cai com uma velocidade terminal constante de 59 m/s. (a) A que taxa a energia potencial gravitacional do sistema Terra-paraquedista está sendo reduzida? (b) A que taxa a energia mecânica do sistema está sendo reduzida?
- 117 Um bloco de 20 kg em uma superfície horizontal está preso a uma mola horizontal de constante elástica k = 4,0 kN/m. O bloco é puxado para a direita até a mola ficar alongada 10 cm em relação ao comprimento no estado relaxado, e então liberado a partir do repouso. A força de atrito entre o bloco em movimento e a superfície tem um módulo de 80 N. (a) Qual é a energia cinética do bloco após ter se movido 2,0 cm em relação ao ponto em que foi liberado? (b) Qual é a energia cinética do bloco no instante em que volta pela primeira vez ao ponto no qual a mola está relaxada? (c) Qual é a máxima energia cinética atingida pelo bloco enquanto desliza do ponto em que foi liberado até o ponto em que a mola está relaxada?
- 118 A resistência ao movimento de um automóvel é constituída pelo atrito da estrada, que é quase independente da velocidade, e o arrasto do ar, que é proporcional ao quadrado da velocidade. Para um carro com um peso de 12 000 N, a força de resistência total F é dada por $F = 300 + 1,8v^2$, com F em newtons e v em metros por segundo. Calcule a potência (em horsepower) necessária para acelerar o carro a 0,92 m/s² quando a velocidade é 80 km/h.
- 119 Uma bola de 50 g é lançada de uma janela com uma velocidade inicial de 8,0 m/s e um ângulo de 30° acima da horizontal. Usando a lei de conservação da energia, determine (a) a energia cinética da bola no ponto mais alto da trajetória e (b) a velocidade da bola quando está 3,0 m abaixo da janela. A resposta do item (b) depende (c) da massa da bola ou (d) do ângulo de lançamento?
- 120 Uma mola com uma constante elástica de 3200 N/m é alongada até que a energia potencial elástica seja 1,44 J. (U = 0 para a mola relaxada.) Quanto é ΔU se o alongamento muda para (a) um alongamento de 2,0 cm, (b) uma compressão de 2,0 cm e (c) uma compressão de 4,0 cm?

- **121** Uma locomotiva com uma potência de 1,5 MW pode acelerar um trem de uma velocidade de 10 m/s para 25 m/s em 6,0 min. (a) Calcule a massa do trem. Determine, em função do tempo (em segundos), (b) a velocidade do trem e (c) a força que acelera o trem durante o intervalo de 6,0 min. (d) Determine a distância percorrida pelo trem durante esse intervalo.
- 122 Um disco de shuffleboard de 0,42 kg está em repouso quando um jogador usa um taco para imprimir ao disco uma velocidade de 4,2 m/s com aceleração constante. A aceleração ocorre em uma distância de 2,0 m, ao final da qual o taco perde contato com o disco. O disco desliza uma distância adicional de 12 m antes de parar. Suponha que a pista de shuffleboard é plana e que a força de atrito sobre o disco é constante. Qual é o aumento da energia térmica do sistema disco-pista (a) para a distância adicional de 12 m e (b) para a distância total de 14 m? (c) Qual é o trabalho realizado pelo taco sobre o disco?
- **123** Uma corredeira em um rio envolve uma descida de 15 m. A velocidade da água é 3,2 m/s no início da corredeira e 13 m/s no final. Que porcentagem da energia potencial gravitacional do sistema água-Terra é transferida para energia cinética durante a descida da água? (*Sugestão*: Considere a descida de, por exemplo, 10 kg de água.)
- **124** O módulo da força gravitacional entre uma partícula de massa m_1 e uma partícula de massa m_2 é dado por

$$F(x) = G \frac{m_1 m_2}{x^2},$$

em que G é uma constante e x é a distância entre as partículas. (a) Qual é a função energia potencial U(x)? Suponha que $U(x) \to 0$ quando $x \to \phi \infty$ e que x é positivo. (b) Qual é o trabalho necessário para aumentar a distância entre as partículas de $x = x_1$ para $x = x_1 + d$?

- **125** Aproximadamente 5,5 × 10⁶ kg de água caem das Cataratas do Niágara por segundo. (a) Qual é o decréscimo da energia potencial gravitacional do sistema água-Terra por segundo? (b) Se toda essa energia pudesse ser convertida em energia elétrica (o que não é possível), a que taxa a energia elétrica seria produzida? (A massa de 1 m³ de água é 1000 kg.) (c) Se a energia elétrica fosse vendida a 1 centavo de dólar/kW·h, qual seria a receita anual?
- 126 Para fazer um pêndulo, uma bola de 300 g é presa a uma das extremidades de uma corda com 1,4 m de comprimento e massa desprezível. (A outra extremidade da corda está fixa.) A bola é puxada para um lado até a corda fazer um ângulo de 30,0° com a vertical; em seguida (com a corda esticada) a bola é liberada a partir do repouso. Determine (a) a velocidade da bola quando a corda faz um ângulo de 20,0° com a vertical e (b) a velocidade máxima da bola. (c) Qual é o ângulo entre a corda e a vertical quando a velocidade da bola é igual a um terço do valor máximo?
- 127 Em um número de circo, um palhaço de 60 kg é disparado por um canhão com uma velocidade inicial de 16 m/s e um ângulo desconhecido acima da horizontal. Após um curto intervalo de tempo, o palhaço cai em uma rede cuja altura excede em 3,9 m a altura da posição inicial do palhaço. Despreze o arrasto

- do ar. Qual é a energia cinética do palhaço ao cair na rede?
- 128 Um bombeiro de 70 kg escorrega 4,3 m para baixo, a partir do repouso, em um poste vertical. (a) Se o bombeiro segura o poste de leve, o que torna a força de atrito exercida pelo poste desprezível, qual é sua velocidade imediatamente antes de atingir o solo? (b) Se o bombeiro segura o poste com força e a força de atrito média é 500 N, dirigida verticalmente para cima, qual é sua velocidade imediatamente antes de atingir o solo?
- 129 Os Estados Unidos continentais têm uma área de aproximadamente 8 × 10⁶ km² e uma altitude média de 500 m (em relação ao nível do mar). A precipitação média anual é 75 cm. A fração da água de chuva que retorna à atmosfera por evaporação é 2/3; o resto vai para o oceano. Se o decréscimo de energia potencial gravitacional do sistema água-Terra associado à parcela de água que vai para o oceano pudesse ser totalmente convertido em energia elétrica, qual seria a potência média? (A massa de 1 m³ de água é 1000 kg.)
- 130 Uma mola cuja constante elástica é k=200 N/m está suspensa verticalmente, com a extremidade superior fixa no teto e a extremidade inferior na posição y=0. Um bloco de 20 N de peso é preso à extremidade inferior da mola, mantido nessa posição por um momento e depois liberado. Determine (a) a energia cinética K, (b) a variação (a partir do valor inicial) da energia potencial gravitacional ΔU_g , e (c) a variação da energia potencial elástica ΔU_e do sistema bloco-mola quando o bloco está em y=-5,0 cm. Determine (d) K, (e) ΔU_g e (f) ΔU_e para y=-10 cm, (g) K, (h) ΔU_g e (i) ΔU_e para y=-15 cm e (j) K, (k) ΔU_g e (l) ΔU_e para y=-20 cm.
- **131** Prenda uma das extremidades de uma mola vertical no teto, prenda um repolho na outra extremidade e baixe o repolho lentamente até que a força para cima exercida pela mola sobre o repolho equilibre a força gravitacional que atua sobre ele. Mostre que a perda de energia potencial gravitacional do sistema repolho-Terra é igual a duas vezes o ganho de energia potencial da mola. Por que as duas grandezas não são iguais?
- 132 A maior força que podemos exercer sobre um objeto com um dente molar é cerca de 750 N. Suponha que, quando você morde gradualmente um caramelo, o caramelo resiste à compressão exercida por um dos dentes agindo como uma mola para a qual $k = 2,5 \times 10^5$ N/m. Determine (a) a compressão do caramelo e (b) o trabalho realizado pelo seu dente sobre o caramelo durante a compressão. (c) Plote o módulo da sua força em função da compressão. (d) Se existe uma energia potencial associada a esta compressão, desenhe um gráfico da energia potencial em função da compressão.

Na década de 1990, marcas profundas de dentadas foram descobertas na pelve do fóssil de um dinossauro *Triceratops*. A forma das marcas sugeria que tinham sido feitas por um dinossauro *Tiranossauro rex*. Para testar a ideia, os cientistas fabricaram a réplica de um dente de um *T. rex* feita de bronze e alumínio e usaram uma prensa hidráulica para introduzir gradualmente a réplica em um osso de vaca até a profundidade observada no osso do *Triceratops*. A Fig. 8-71 mostra a força empregada em função da profundidade de penetração em um dos ensaios; a força aumenta com a profundidade porque, à

medida que o dente aproximadamente cônico penetra no osso, uma parte maior do dente entra em contato com o osso. (e) Qual foi o trabalho realizado sobre o osso pela prensa hidráulica (e presumivelmente pelo *T. rex*) nesse ensaio? (f) Existe uma energia potencial associada a esse ensaio? (A grande força da mordida e o alto consumo de energia atribuídos ao *T. rex* por essa pesquisa sugerem que o animal foi um predador e não um saprófago.)

Figura 8-71 Problema 132.

133 Uma força conservativa F(x) age sobre uma partícula que se move ao longo de um eixo x. A Fig. 8-72 mostra a variação da energia potencial U(x) associada a F(x) com a posição da partícula. (a) Plote F(x) no intervalo 0 < x < 6 m. (b) Se a energia mecânica E do sistema é 4,0 J, plote a energia cinética E(x) da partícula no gráfico da Fig. 8-72.

Figura 8-72 Problema 133.

134 A Fig. 8-73a mostra uma molécula composta por dois átomos de massas m e M (com m << M) separados por uma distância r. A Fig. 8-73b mostra a energia potencial U(r) da molécula em função de r.

Descreva o movimento dos átomos (a) se a energia mecânica total E do sistema de dois átomos for maior que zero (como E_1) e (b) se E for menor que zero (como E_2). Para $E_1 = 1 \times 10^{-19}$ J e r = 0,3 nm, determine (c) a energia potencial do sistema, (d) a energia cinética total dos átomos e (e) a força (módulo e orientação) que atua sobre cada átomo. Para que valores de r a força é (f) repulsiva, (g) atrativa e (h) nula?

Figura 8-73 Problema 134.

135 Repita o Problema 83 supondo que o bloco está subindo uma rampa que faz um ângulo de 5,0° com a horizontal.

136 Uma mola de constante elástica k = 620 N/m é mantida na posição vertical, com a extremidade inferior sustentada por uma superfície horizontal. A extremidade superior é comprimida 25 cm, e um bloco com peso de 50 N é colocado sobre a mola, e o sistema é liberado. Supondo que a energia potencial gravitacional U_g do bloco é zero no ponto (y = 0) em que o sistema é liberado, determine a energia cinética K do bloco para y igual a (a) 0, (b) 0,050 m, (c) 0,10 m, (d) 0,15 m, (e) 0,20 m. (f) Calcule também o valor de y para a altura máxima atingida pelo bloco.