

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Docket No.:

Serial No.:

Group Art Unit:

Filing Date:

Examiner:

For:

DECLARATION OF SHERMAN FONG, Ph.D. UNDER 37 C.F.R. § 1.132

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

I, Sherman Fong, Ph.D. declare and say as follows: -

1. I was awarded a Ph.D. in Microbiology by the University of California at Davis, CA in 1975.
2. After postdoctoral training and holding various research positions at Scripps Clinic and Research Foundation, La Jolla, CA, I joined Genentech, Inc., South San Francisco, CA in 1987. I am currently a Senior Scientist at the Department of Immunology/Discovery Research of Genentech, Inc.
3. My scientific Curriculum Vitae is attached to and forms part of this Declaration.
4. I am familiar with the Mixed Lymphocyte Reaction (MLR) assay, which has been used by me and others under my supervision, to test the immune stimulatory or immune inhibitory activity of novel polypeptides discovered in Genentech's Secreted Protein Discovery Initiative project.
5. The MLR assay is a well known and widely used proliferative assay of T-cell function, the basic protocols of which are described, for example, in Current Protocols in Immunology Vol. 1, Richard Coico, Series Ed., John Wiley & Sons, Inc., 1991, Unit 3.12. (Exhibit A). This publication is incorporated by reference in the description of the MLR protocol in the present application.

6. The T-lymphocytes or "T-cells" of our immune system can be induced to proliferate by a variety of agents. The MLR assay is designed to study a particularly important induction mechanism whereby responsive T-cells are cultured together (or "mixed"), with other lymphocytes that are "allogeneic", e.g. lymphocytes that are taken from different individuals of the same species. In the MLR protocol of the present application, a suspension of PBMCs that includes responder T-cells, is cultured with allogeneic PBMCs that predominantly contain dendritic cells. According to the protocol, the allogeneic "stimulator" PBMCs are irradiated at a dose of 3000 Rad. This irradiation is done in order to create a sample of cells that has mainly dendritic cells. It is known that the dendritic cell population among the PBMCs are differentially affected by irradiation. At low doses (500-1000 Rad), the proliferation of most cells, including the B cells in the PBMCs, is preserved, however, at doses above 2000 Rad, this function of B cells is abolished. Dendritic cells on the other hand, maintain their antigen presentation function even at a 3000 Rad dose of radiation. (See, e.g. Current Protocols in Immunology, supra, at 3.12.9). Accordingly, under the conditions of the MLR assay used to test the PRO polypeptides of the present invention, the stimulator PBMCs remaining after irradiation are essentially dendritic cells.
7. Dendritic cells are the most potent antigen-presenting cells, which are able to "prime" naive T cells *in vivo*. They carry on their surface high levels of major histocompatibility complex (MHC) products, the primary antigens for stimulating T-cell proliferation. Dendritic cells provide the T-cells with potent and needed accessory or costimulatory substances, in addition to giving them the T-cell maturing antigenic signal to begin proliferation and carry out their function. Once activated by dendritic cells, the T-cells are capable of interacting with other antigen presenting B cells and macrophages to produce additional immune responses from these cells. For further details about the properties and role of dendritic cells in immune-based therapies see, e.g. Steinman, Drug News Perspect. 13(10):581-586 (Exhibit B).
8. The MLR assay of the present application is designed to measure the ability of a test substance to "drive" the dendritic cells to induce the proliferation of T-cells that are activated, or co-stimulated in the MLR, and thus identifies immune stimulants that can boost the immune system to respond to a particular antigen that may not have been immunologically active previously.

9. Such immune stimulants find important clinical applications. For example, IL-12 is a known immune stimulant, which has been shown to stimulate T-cell proliferation in the MLR assay. IL-12 was first identified in just such an MLR [Gubler et al. PNAS 88, 4143 (1991) (Exhibit C)]. In a recent cancer vaccine trial, researchers from the University of Chicago and Genetics Institute (Cambridge, MA) have demonstrated the efficacy of the approach, relying on the immune stimulatory activity of IL-12, for the treatment of melanoma. [Peterson et al. Journal of Clinical Oncology 21 (12). 2342-48 (2003) (Exhibit D)] They extracted circulating white blood cells carrying one or more markers of melanoma cells, isolated the antigen, and returned them to the patients. Normally patients would not have an immune response to his or her own human antigens. The patients were then treated with different doses of IL-12, an immune stimulant capable of inducing the proliferation of T cells that have been co-stimulated by dendritic cells. Due to the immune stimulatory effect of IL-12, the treatment provided superior results in comparison to earlier work, where patients' own dendritic cells were prepared from peripheral blood mononuclear cells (PBMCs), treated with antigens, then cultured *in vitro* and returned to the patient to stimulate anti-cancer response. [Thurner et al. J. Exp. Med. 190 (11), 1669-78 (1999) (Exhibit E)].
10. It is my considered scientific opinion that a PRO polypeptide shown to stimulate T-cell proliferation in the MLR assay of the present invention with an activity at least 180% of the control, as specified in the present application, is expected to have the type of activity as that exhibited by IL-12, and would therefore find practical utility as an immune stimulant. Some PRO polypeptides do the reverse, and give inhibition of T-cell proliferation in the MLR assay. It is my considered scientific opinion that a PRO polypeptide shown to inhibit T-cell proliferation in the MLR assay where the activity is observed as 80% or less of the control, as specified in the present application, would be expected to find practical utility when an inhibition of the immune response is desired, such as in autoimmune diseases.

Dated: 6/14/04

By: Sherman Fong

Sherman Fong, Ph.D.