Name: Soham Belurgikar

Roll No.: 2019130006

Course: DA (Data Analytics)

Experiment No.: 5

Name of the Experiment: Apriori Algorithm and Association rule mining with

WEKA

Objective: Apply Apriori Algorithm to given dataset

Association Rule Mining with WEKA

Implementation:

Task: https://colab.research.google.com/drive/1sANAFvw-

k3ia1lqGNKGDzb5E7ZDdy0IF?usp=sharing

Exercise 1:

Transaction	A	В	C	D	Е	K
T1	1	1	0	1	0	1
T2	1	1	1	1	1	0
T3	1	1	1	0	1	0
T4	1	1	0	1	0	0

Minimum support of 60% => item has to occur in at least 3 transactions

Item sets containing 1 item:

A 4, 100%

B 4, 100%

C 2, 50%

D 3, 75%

E 2, 50%

K 1, 25%

Item sets containing 2 items:

We only take the item sets from the previous phase whose support is 60% or more.

AB4, 100%

AD 3, 75%

BD 3,75%

Item sets containing 3 items:

We only take the item sets from the previous phase whose support is 60% or more.

ABD3

Form the rules and calculate their confidence (c). We only take the item sets from the previous phases whose support is 60% or more.

Rules:

 $A \rightarrow B P(B|A) = |B \cap A| / |A| = 4/4, c: 100\%$

B -> A c: 100%

A -> D c: 75%

D -> A c: 100%

B -> D c: 75%

D -> B c: 100%

AB -> D c: 75%

D -> AB c: 100%

AD -> B c: 100%

B - > AD c: 75%

BD -> A c: 100%

A -> BD c: 75%

The rules with a confidence measure of 75% are pruned, and we are left with the following rule set:

 $A \rightarrow B$

 $B \rightarrow A$

 $D \rightarrow A$

 $D \rightarrow B$

 $D \rightarrow AB$

AD -> B

 $DB \rightarrow A$

Exercise 2:

Input file: test.arff

```
test.arff U X
test.arff
       @relation exercise
       @attribute exista {TRUE, FALSE}
       @attribute existb {TRUE, FALSE}
       @attribute existc {TRUE, FALSE}
       @attribute existd {TRUE, FALSE}
       @attribute existe {TRUE, FALSE}
       @attribute existk {TRUE, FALSE}
 10
       @data
       TRUE, TRUE, FALSE, TRUE, FALSE, TRUE
 11
       TRUE, TRUE, TRUE, TRUE, FALSE
 12
       TRUE, TRUE, FALSE, TRUE, FALSE
 13
       TRUE, TRUE, FALSE, TRUE, FALSE, FALSE
 14
```

Weka configuration file:

Output:

This output is consistent with the manual solution in Exercise 1. The file format used was .arff.

Exercise 3:

Exercise 4:

Exercise 5:

Conclusion:

- Because it relies on prior knowledge about frequent itemset properties, the algorithm is called Apriori. We employ an iterative strategy, often known as level-wise search, in which we use k-frequent itemsets to find k+1 itemsets.
- Association rule mining finds interesting associations and relationships among large sets of data items. This rule shows how frequently a itemset occurs in a transaction.
- In exercise 4, most of the generated rules have similar confidence and lift levels. None of the rules in the default output involve Class = republican. This is because of the lack of significant number of members belonging to republican party in the chosen dataset.