Colles - Semaine 7

Série 1

Question de cours

Démontrer l'inégalité de Cauchy-Schwarz et son cas d'égalité.

Exercice

Soit a un nombre réel tel que 0 < a < 1 et b un nombre réel strictement positif. On considère un couple (X,Y) de variables aléatoires à valeurs dans \mathbb{N}^2 , dont la loi de probabilité est donnée par :

$$\mathbb{P}([X = i] \cap [Y = j]) = \begin{cases} 0 & \text{si } i < j \\ \frac{b^i e^{-b} a^j (1 - a)^{i - j}}{j! (i - j)!} & \text{si } i \geqslant j \end{cases}$$

- 1. Déterminer la loi de probabilité de X. Déterminer, si elles existent, son espérance et sa variance.
- 2. Déterminer la loi de probabilité de Y.
- 3. Les variables X et Y sont-elles indépendantes?
- 4. Soit Z la variable aléatoire Z = X Y. Déterminer sa loi.
- 5. Les variables Y et Z sont-elles indépendantes?

Série 2

Question de cours

Démontrer que le produit scalaire canonique sur l'ensemble des matrices carrées est bien un produit scalaire

Exercice

Soit $n \in \mathbb{N}^*$ et E l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n.

1. Montrer qu'on définit sur E un produit scalaire en posant :

$$\forall (P,Q) \in E^2, \langle P,Q \rangle = \int_0^{+\infty} P(t)Q(t)e^{-t} dt$$

On note ||.|| la norme associée.

- 2. Montrer qu'il existe une base $Q = (Q_0, Q_1, \dots, Q_n)$ orthonormée de E, pour ce produit scalaire, telle que pour tout $k \in [0, n]$, $\deg(Q_k) = k$.
- 3. a) Que dire de l'ensemble $F = \{P \in E, P(0) = 0\}$?
 - b) En déterminer une base à l'aide des éléments de Q.
- 4. Soit $U = Q_0 + \sum_{j=1}^n Q_j(0) \ Q_j$. Justifier que : $\forall \ V \in F, \langle V, U \rangle = 0$.
- 5. Montrer que, pour tout $k \in [1, n]$, on a : $\langle Q_k, Q'_k \rangle = 0$.
- 6. Soit $k \in [\![1,n]\!].$ En calculant de deux façons :

$$I_k = \int_0^{+\infty} \frac{d}{dt} \left[-\left(Q_k(t)\right)^2 e^{-t} \right] dt$$

déterminer la valeur de $(Q_k(0))^2$.

7. On note $F^{\perp} = \{P \in E \mid \forall \ V \in F, \ \langle P, V \rangle = 0\}$. On admettra que : $F^{\perp} = \text{Vect}(U)$. Calculer $\delta = \min\{\|Q_0 - P\|, \ P \in F^{\perp}\}$ et $d = \min\{\|Q_0 - P\|, \ P \in F\}$.

Série 3

Question de cours

Soit X une v.a.r. à densité. Soit $(a,b) \in \mathbb{R}^2$. Que vaut $\mathbb{V}(aX+b)$? Démontrer ce résultat.

Exercice

Toutes les variables aléatoires de cet exercice sont définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- 1. Soit Z une variable aléatoire à valeurs dans \mathbb{N} . Montrer que la variable aléatoire 2^{-Z} admet une espérance. On la note r(Z). On suppose dans la suite de l'exercice que pour tout $n \in \mathbb{N}$, $\mathbb{P}([Z=n]) = \left(\frac{1}{2}\right)^{n+1}$.
- 2. a) Montrer que l'on définit ainsi une loi de probabilité et calculer r(Z).
 - **b)** Montrer que pour tout $(n,q) \in \mathbb{N}^2$, $\sum_{k=0}^n \binom{k+q}{q} = \binom{n+q+1}{q+1}$.
 - c) Soit $(X_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes de même loi que Z et pour tout entier $q\geqslant 1$, on pose $S_q=\sum_{i=1}^q X_i$.

 Montrer que la loi de S_q est définie par :

$$\forall n \in \mathbb{N}, \quad \mathbb{P}([S_q = n]) = \binom{n+q-1}{q-1} \left(\frac{1}{2}\right)^{n+q}$$

d) Calculer $r(S_q)$. En déduire que

$$\sum_{n=0}^{+\infty} {n+q-1 \choose q-1} \left(\frac{1}{4}\right)^n = \left(\frac{4}{3}\right)^q$$

3. On suppose dans cette question que Z représente le nombre de lionceaux devant naître en 2014 d'un couple de lions. Chaque lionceau a la probabilité $\frac{1}{2}$ d'être mâle ou femelle, indépendamment des autres. On note F la variable aléatoire représentant le nombre de femelles devant naître en 2014. Déterminer la loi de F.

3