《高等微积分1》第五次作业

- 1 给定多项式 $f(x) = x^{2n} + a_{2n-1}x^{2n-1} + ... + a_1x + a_0$. 证明: 如果 $a_0 < 0$, 则 f(x) = 0 至少有两个实数根.
- 2 设 $f \in C(\mathbf{R})$ 且 $\lim_{x \to \infty} f(x) = +\infty$. 证明: f 在 \mathbf{R} 上有最小值, 即存在 $x_0 \in \mathbf{R}$, 使得对任何 $x \in \mathbf{R}$ 都有 $f(x_0) \leq f(x)$.
- 3 设 $P(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ 是实数系数的多项式. 证明: P(x) 在 **R** 上有最小值, 即存在 $x_0 \in \mathbf{R}$, 使得对任何 $x \in \mathbf{R}$ 都有 $P(x) \geq P(x_0)$.
- 4 给定实数 α , 设 $f(x) = x^{\alpha}$. 试确定 f 在区间 $[1, +\infty)$ 上是否一致连续.
- 5 当 x → +∞ 时, 如下五个函数都是无穷大. 请将它们按照阶的高低排序, 并说明理由.

$$x^{\alpha}(\alpha > 0), \quad a^{x}(a > 1), \quad \ln x, \quad [x]!, \quad x^{x},$$

其中 [x]! 表示 x 的整数部分的阶乘.

- 6 设函数 *f* : [0,1] → [0,1] 严格单调递增, 且满足:
 - (1) 对任何实数 $b \ge 1$, 有 $f(\frac{1}{b}) < \frac{1}{b+1}$;
 - (2) 对任何 t>1, 存在 $M\geq 1$, 使得当 $b\geq M$ 时, 总有 $f(\frac{1}{b})>\frac{1}{b+t}$. 定义数列 $\{a_n\}_{n=1}^{\infty}$ 为

$$0 < a_1 < 1, \quad a_{n+1} = f(a_n), \quad \forall n \ge 1.$$

证明: $\lim_{n\to\infty} na_n = 1$.