Control Systems

G V V Sharma*

CONTENTS			1 Mason's Gain Formula		
1	Mason's Gain Formula		1	2 Bode Plot	
-			-	2.1 Introduction	
2	Bode I	Plot	1	2.2 Example	
	2.1	Introduction	1	3 Second order System	
	2.2	Example	1	3.1 Damping	
3	Second	l order System	1	3.2 Example	
	3.1	Damping	1	4 ROUTH HURWITZ CRITERION	
	3.2	Example	1	4.1 Routh Array	
4	Routh	Hurwitz Criterion	1	4.2 Marginal Stability	
	4.1	Routh Array	1	4.3 Stability	
	4.2	Marginal Stability	1	5 State-Space Model	
	4.3	Stability	1	5.1 Controllability and Observability	
5	State-S	Space Model	1	5.2 Second Order System	
	5.1	Controllability and Observability	1	6 Nyquist Plot	
	5.2	Second Order System	1	7 Phase Margin	
6	Nyquis	st Plot	1	8 Gain Margin	
				9 Compensators	
7	Phase	Margin	1	9.1 Phase Lead	
8	Gain N	Margin	1	10 Oscillator	
9	Compensators 9.1 Phase Lead		10. 1 1	.0.1. A unity feedback control system is characterised by the open-loop transfer function	
10	Oscilla		1	$G(S) = \frac{2(s+1)}{s^3 + ks^2 + 2s + 1} $ (10.0.1.1)	
				Find the value of the k for which the syster	

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

oscillates at 2 rad/s. Verify your result through a program.

Solution: Fig. ?? models the equivalent closed loop system.

The characteristic equation is

$$1 + G(s) = 0 (10.0.1.2)$$

$$\implies 1 + \frac{2(s+1)}{s^3 + ks^2 + 2s + 1} = 0 \quad (10.0.1.3)$$

or,
$$s^3 + ks^2 + 4s + 3 = 0$$
 (10.0.1.4)

Constructing the routh array for (10.0.1.4)

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} \begin{vmatrix} 1 & 4 \\ k & 3 \\ \frac{3-4k}{k} & 0 \\ 3 & 0 \end{vmatrix}$$
 (10.0.1.5)

For the system to oscillate, poles should lie on the imaginary axis.

$$\implies \frac{3-4k}{k} = 0$$
, or, $k = \frac{3}{4}$ (10.0.1.6)

Substituting in (10.0.1.4),

$$s^{3} + \frac{3}{4}s^{2} + 4s + 3 = 0$$
 (10.0.1.7)
$$\implies s = \frac{-3}{4}, \pm 2j$$
 (10.0.1.8)

$$\implies s = \frac{-3}{4}, \pm 2j$$
 (10.0.1.8)

The following code verifies the result.

codes/ee18btech11030/ee18btech11030.py

10.0.2. Sketch the impulse response of the closed loop system.

Solution: The closed loop response

$$G_m(s) = \frac{G(s)}{1 + G(s)} = \frac{2(s+1)}{s^3 + \frac{3}{4}s^2 + 4s + 3}$$

$$= \frac{8}{73(s + \frac{3}{4})} + \frac{-8s + 152}{73(s^2 + 4)}$$
(10.0.2.2)

$$\implies g_m(t) = \frac{8}{73}e^{-\frac{3t}{4}}u(t) - \left(\frac{8}{73}\right)\sin(2t) + \left(\frac{152}{73}\right)\cos(2t)$$
(10.0.2.3)

The following code

codes/ee18btech11030/ee18btech11030 1.py

plot Fig. 10.0.2. This shows that system oscillates at 2 rad/sec.

Fig. 10.0.2