e) $[\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3] = B_4$, donde $\{\mathbf{u}_1, \ \mathbf{u}_2, \ \mathbf{u}_3\}$ es la base obtenida al aplicar el proceso de Gram-

Schmidt a
$$\left\{ \begin{pmatrix} -1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\2\\4 \end{pmatrix} \right\}$$
.

- 11. a) Verifique que cada una de las siguientes matrices es ortogonal. B_1B_2 , B_1B_3 , B_2B_4 y B_3B_4 , donde B_1 , B_2 , B_3 y B_4 son las matrices del problema 10 anterior.
 - b) (Lápiz y papel) Trabaje el problema 16 de esta sección de MATLAB.
- **12.** *a*) Encuentre la inversa de cada matriz en el problema 10 anterior y verifique que las inversas son ortogonales.
 - b) (Lápiz y papel) Pruebe que la inversa de una matriz ortogonal es una matriz ortogonal.
- **13.** *a*) Encuentre el determinante de cada matriz en el problema 10. Formule una conclusión sobre el determinante de una matriz ortogonal.
 - b) (Lápiz y papel) Pruebe su conclusión.
 - c) Revise (o resuelva) el problema 2 de MATLAB 4.4. Suponga que \mathbf{u} , \mathbf{v} y \mathbf{w} son vectores en \mathbb{R}^3 que forman un paralelepípedo. Si Q es una matriz ortogonal de 3×3 , explique por qué $Q\mathbf{u}$, $Q\mathbf{v}$ y $Q\mathbf{w}$ forman un paralelepípedo con el mismo volumen que el formado por \mathbf{u} , \mathbf{v} y \mathbf{w} .
- 14. Matrices ortogonales: longitud y ángulo Recuerde que si θ es el ángulo entre u y w, entonces cos $(\theta) = \frac{\mathbf{u} \cdot \mathbf{w}}{|\mathbf{u}||\mathbf{w}|}$.
 - a) Sea Q la matriz ortogonal B₁ en el problema 10 anterior. Elija dos vectores aleatorios u y w. Calcule y compare la longitud de v y la longitud de Qv. Calcule y compare el coseno del ángulo entre v y w y el coseno del ángulo entre Qv y Qw. Repita para un total de tres pares de vectores elegidos v y w.
 - **b)** Repita el inciso a) para otra matriz ortogonal del problema 10. Repita el inciso a) para Q = orth(2*rand(5)-1) (verifique primero que esta Q es ortogonal). Escriba una interpretación de sus observaciones de los incisos a) y b).
 - c) Sea Q = orth (2 * rand (6) 1). Verifique que Q es una matriz ortogonal y por ende que las columnas de Q forman una base ortonormal para \mathbb{R}^6 .

Sean x y z dos vectores aleatorios de $6 \times l$. Encuentre xx, las coordenadas de x respecto a la base dada por las columnas de Q. Encuentre zz, las coordenadas de z respecto a esta misma base.

Compare $|\mathbf{x} - \mathbf{z}|$ con $|\mathbf{x}\mathbf{x} - \mathbf{z}\mathbf{z}|$. Repita para otro par de vectores \mathbf{x} y \mathbf{z} y describa sus observaciones.

- d) El inciso c) tiene algunas ramificaciones importantes. En cualquier cálculo o medición se introducen errores. Un aspecto importante al diseñar algortimos numéricos hace referencia a los errores compuestos o acumulados. Se puede interpretar |x z| como un error; por ejemplo, x puede representar los valores teóricos y z una aproximación. Explique cómo puede verse en las observaciones del inciso c) que el cambio del proceso a las coordenadas de una base ortonormal no acumula (incrementa) un error que ya está presente. ¿Por qué el cambio de regreso a coordenadas estándar tampoco aumenta el error?
- e) (Lápiz y papel) Si Q es una matriz ortogonal y v y w son vectores, pruebe que $Q\mathbf{v} \cdot Q\mathbf{w} = \mathbf{v} \cdot \mathbf{w}$. Utilice esta demostración para probar que $|Q\mathbf{v}| = |\mathbf{v}|$ y que el coseno del ángulo entre $Q\mathbf{v}$ y $Q\mathbf{w}$ es igual al coseno del ángulo entre \mathbf{v} y \mathbf{w} .
- f) (Lápiz y papel) Pruebe sus observaciones en el inciso c) (explique primero por qué al encontrar las coordenadas de un vector \mathbf{x} respecto a las columnas de Q se obtiene lo mismo que al multiplicar \mathbf{x} por una matriz ortogonal).