Assignment problems: Chapter 3

3.3 Find the currents i_1 through i_4 and the voltage v_o in the following circuit.

3.7: Apply nodal analysis to solve for $V_{\boldsymbol{x}}$ in the following circuit.

3.9: Determine I_b in the circuit below using nodal analysis

3.10: Find i_0 in the following circuit.

3.11: Find $V_{\rm o}\,$ and the power dissipated in all the resistors in the following circuit.

3.12: Using nodal analysis, determine V_o in the following circuit.

3.13: Calculate v_1 and v_2 in the following circuit, using nodal analysis.

3.15: Apply nodal analysis to find i_0 and the power dissipated in each resistor in the following circuit.

3.16: Determine voltages v_1 through v_3 in the following circuit, using nodal analysis.

3.19: Use nodal analysis to find v_1 , v_2 , and v_3 in the following circuit.

$\textbf{3.23} \hbox{: Use nodal analysis to find V_o.}$

3.26: Calculate the node voltages v_1 , v_2 , and v_3 .

3.31: Find the node voltages.

3.67: Obtain the node-voltage equations and then solve for V_o .

3.69: Write the node voltage equations by inspection.

3.77: Solve for V_1 and V_2 .

