

Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria

prof. Luca Breveglieri prof. Gerardo Pelosi prof.ssa Donatella Sciuto prof.ssa Cristina Silvano

AXO – Architettura dei Calcolatori e Sistemi Operativi SECONDA PARTE – mercoledì 8 febbraio 2023

Cognome_	Nome
Matricola_	Firma

Istruzioni

Si scriva solo negli spazi previsti nel testo della prova e non si separino i fogli.

Per la minuta si utilizzino le pagine bianche inserite in fondo al fascicolo distribuito con il testo della prova. I fogli di minuta se staccati vanno consegnati intestandoli con nome e cognome.

È vietato portare con sé libri, eserciziari e appunti, nonché cellulari e altri dispositivi mobili di comunicazione. Chiunque fosse trovato in possesso di documentazione relativa al corso – anche se non strettamente attinente alle domande proposte – vedrà annullata la propria prova.

Non è possibile lasciare l'aula conservando il tema della prova in corso.

Tempo a disposizione 1 h: 30 m

Valore indicativo di domande ed esercizi, voti parziali e voto finale:

esercizio	1	(4	punti)	
esercizio	2	(5	punti)	
esercizio	3	(5	punti)	
esercizio	4	(2	punti)	
		•	. ,	
voto fina	le: (16	punti)	

esercizio n. 1 - programmazione concorrente

Si consideri il programma C seguente (gli "#include" e le inizializzazioni dei *mutex* sono omessi, come anche il prefisso pthread delle funzioni di libreria NPTL):

```
pthread mutex t mars, venus
sem t sun
int global = 0
void * war (void * arg) {
   sem wait (&sun)
   mutex lock (&venus)
   sem post (&sun)
   global = 1
                                                    /* statement A */
   mutex unlock (&venus)
   qlobal = 2
   mutex lock (&mars)
   sem wait (&sun)
   mutex_unlock (&mars)
   return (void *) 3
} /* end war */
void * peace (void * arg) {
   mutex lock (&venus)
   sem wait (&sun)
   mutex unlock (&venus)
   global = 4
                                                    /* statement B */
   sem post (&sun)
   sem wait (&sun)
   mutex lock (&mars)
   qlobal = 5
   sem post (&sun)
  mutex unlock (&mars)
                                                    /* statement C */
   return NULL
/* end peace */
void main ( ) {
   pthread t th 1, th 2
   sem init (&sun, 0, 1)
   create (&th 1, NULL, war, NULL)
   create (&th 2, NULL, peace, NULL)
   join (th 1, &global)
                                                    /* statement D */
   join (th 2, NULL)
   return
} /* end main */
```

Si completi la tabella qui sotto **indicando lo stato di esistenza del** *thread* nell'istante di tempo specificato da ciascuna condizione, così: se il *thread* **esiste**, si scriva ESISTE; se **non esiste**, si scriva NON ESISTE; e se può essere **esistente** o **inesistente**, si scriva PUÒ ESISTERE. Ogni casella della tabella va riempita in uno dei tre modi (non va lasciata vuota).

Si badi bene alla colonna "condizione": con "subito dopo statement X" si chiede lo stato che il *thread* assume tra lo statement X e lo statement immediatamente successivo del *thread* indicato.

condizione	thread				
Contaizione	th_1 – <i>war</i>	th_2 - peace			
subito dopo stat. A					
subito dopo stat. B					
subito dopo stat. C					
subito dopo stat. D					

Si completi la tabella qui sotto, **indicando i valori delle variabili globali** (sempre esistenti) nell'istante di tempo specificato da ciascuna condizione. Il **valore** della variabile va indicato così:

- intero, carattere, stringa, quando la variabile ha un valore definito; oppure X quando è indefinita
- se la variabile può avere due o più valori, li si riporti tutti quanti
- il semaforo può avere valore positivo o nullo (non valore negativo)
- si supponga che il mutex valga 1 se occupato, e valga 0 se libero

Si badi bene alla colonna "condizione": con "subito dopo statement X" si chiede il valore (o i valori) che la variabile ha tra lo statement X e lo statement immediatamente successivo del *thread* indicato.

condizione	variabili globali					
Condizione	mars	venus	sun			
subito dopo stat. B						
subito dopo stat. C						
subito dopo stat. D						

Il sistema può andare in stallo (deadlock), con uno o più thread che si bloccano, in (almeno) QUATTRO casi diversi. Si chiede di precisare il comportamento dei thread in TRE casi, indicando gli statement dove avvengono i blocchi e i possibili valori della variabile global:

caso	th_1 - <i>war</i>	th_2 - peace	global
1			
2			
3			
4			

esercizio n. 2 - processi e nucleo

prima parte - gestione dei processi

```
programma main.c
sem t second
char strP [9] = "P-hello!"
void * cat (void * arg)
                                    void * dog (void * arg)
   char str [4] = \{0\}
                                       char str [4] = "dog"
   sem wait (&second)
                                       sem wait (&second)
   read (stdin, str, 3)
                                       write (stderr, str,
                                                            3)
   return NULL
                                       return NULL
 //
    end
                                         end
int main ( ) { // codice eseguito da P
   sem init (&second,
   pid t pidQ = fork ( )
   if (pid == 0)
                                      codice eseguito da Q
      pthread t TH 1, TH 2
      pthread create (&TH 1, NULL, cat,
                                         NULL)
                              NULL,
      pthread create (&TH 2,
                                    dog,
                                         NULL)
      pthread join (TH 1, NULL)
      sem post (&second)
      pthread join (TH 2, NULL)
      exit (1)
                                   // codice esequito da P
   } else {
      sem post (&second)
      write (stdout, strP,
      sem post (&second)
      exit (0)
     // end if pid
     end main
```

Un processo **P** esegue il programma main.c e crea un processo figlio **Q**, che a sua volta crea i due thread **TH_1** e **TH_2**. Si simuli l'esecuzione dei vari processi completando tutte le righe presenti nella tabella così come risulta dal codice dato, dallo stato iniziale e dagli eventi indicati. **NB: la parte finale della simulazione va sviluppata in due casi diversi.**

Si completi la tabella seguente riportando:

- (PID, TGID) di ciascun processo (normale o thread) che viene creato
- (evento oppure identificativo del processo-chiamata di sistema / libreria) nella prima colonna, dove necessario e in funzione del codice proposto (le istruzioni da considerare sono evidenziate in grassetto)
- in ciascuna riga lo stato dei task al termine dell'evento o della chiamata associata alla riga stessa; si noti che la prima riga della tabella potrebbe essere solo parzialmente completata

TABELLA DA COMPILARE

identificativo simbolico del processo		idle	P	Q	TH_1	TH_2
evento oppure	PID	1	2			
processo-chiamata	TGID	1	2			
P – fork	0	pronto	esec	pronto	NE	NE
	1					
	2					
	3					
	4					
	5					
	6					
	7					
	8					
	9					
	10		pronto			esec

caso 1: sequenza finale qualora *TH_2* <u>non</u> termini

	11			
P – exit	12			

caso 2: sequenza finale qualora *TH_2 termini*

	11			
	12			
	13			
P – exit	14			

seconda parte - moduli di kernel

Si consideri uno scenario dove sono presenti (oltre al processo **Idle**) tre processi **P**, **Q** e **R**. Il processo **P** ha già creato il processo figlio **Q** e ora si mette in attesa della terminazione di **Q**, con conseguente ripresa dell'esecuzione del processo **R**. Il processo **R** è in stato di pronto a seguito del risveglio per completamento di una **read** da *stdin*. Nel sistema non ci sono altri processi.

Mostrare le **invocazioni** di tutti i moduli (ed eventuali relativi ritorni) eseguiti nel contesto del processo **P** e del processo **R** (fino a quando il processo **R** sarà tornato in esecuzione a codice utente in modo U) per ottenere lo scenario descritto.

Si specifichino anche i **punti dove la variabile** globale di nucleo TIF_NEED_RESCHED viene **modificata** o **controllata**.

processo	modo	modulo (numero di righe non significativo)
Р	U	> waitpid
•		> Waitpia

PAGINA BIANCA DI ALLII	NEAMENTO – us	sabile per contin	uazione o brutta o	copia

esercizio n. 3 – memoria e file system

prima parte – gestione dello spazio di memoria

È dato un sistema di memoria caratterizzato dai seguenti parametri generali:

MAXFREE = 3 MINFREE = 2

situazione iniziale (esistono un processo P e un processo R)

```
VMA:
       C 000000400, 2 , R , P , M , <XX, 0>
       K 000000600, 1 , R , P , M , <XX, 2>
       S 000000601, 1 , W , P , M , \langle XX, 3 \rangle
       P 7FFFFFF9, 6, W, P, A, <-1, 0>
   PT: <c0 :- -> <c1 :1 R> <k0 :- -> <s0 :- -> <p0 :2 W>
      <p1 :7 R> <p2 :s2 R> <p3 :4 R> <p4 :6 W> <p5 :- ->
   process P - NPV of PC and SP: c1, p1
VMA: C 000000400,
                   2 , R , P , M , <XX, 0>
       K 000000600, 1 , R , P , M , <XX, 2>
       S 000000601, 1, W , P , M , <XX, 3>
       P 7FFFFFF9, 6, W, P, A, <-1, 0>
   PT: <c0 :- -> <c1 :1 R> <k0 :- -> <s0 :- -> <p0 :3 R>
      <p1 :7 R> <p2 :s2 R> <p3 :4 R> <p4 :5 D W> <p5 :- ->
   process R - NPV of PC and SP: c1, p4
  MEMORIA FISICA (pagine libere: 2)
    00 : <ZP>
                            01 : Pc1 / Rc1 / <XX, 1> ||
                          02 : Pp0
                          03 : Rp0
                                                  05 : Rp4 D
    04 : Pp3 / Rp3
                          06 : Pp4
                          || 07 : Pp1 / Rp1
                                                  | |
                          11 09: ----
    08: ----
                                                  | |
  STATO del TLB
                     || Pp0 : 02 - 1: 1:
    Pc1 : 01 - 0: 1:
                                                 Pp1 : 07 - 0: 1:
                         \Box
    Pp3 : 04 - 1: 0:
                         || Pp4 : 06 - 1: 0:
                                                 ____
                          II
         Rp0, Pp1/Rp1, Pp2/Rp2, ----, ----,
SWAP FILE:
LRU ACTIVE:
          PP1, PP0, PC1
LRU INACTIVE: pp4, pp3, rp4, rp3, rc1, rp0, rp1
```

evento 1: read (Pc1) - write (Pp2) - 4 kswapd

		PT del processo: P		
p0:	p1:	p2:	p3:	p4:

process P	NPV of PC :	NPV of SP :
p. 0 0 0 0 0	111 1 01 1 01	

		PT del proc	esso: R		
p0:	p1:	p2:	p3:	p4:	

			MEI	MORIA FISIC	A				
00: <	ZP>			01: F	c1 /	Rc1 /	/ <xx,< th=""><th>, 1></th><th></th></xx,<>	, 1>	
02:				03:					
04:				05:					
06:				07:					
08:				09:					
				1 00:					
			!	SWAP FILE					
s0: R	p0			s1: P	p1 /	Rp1			
s2:				s3:					
s4:				s5:					
LRU AC	ACTIVE:	nmap (0x 000				_		_	
	re	ead (Pm11, P	m02)			·			
AREA		NPV iniziale		dimensione	R/W	P/S	M/A	nome file	offset
МО								THE	
M1									
			PT	del processo: I)				
p2:		p3:	p4		_		T	m00:	
m01:		m02:		.0:	m11			m12:	
11101.		11102.	1111		111111	•		11112 •	
			MEI	MORIA FISIC	A				
00: <	ZP>			01: F	c1 /	Rc1 /	/ <xx.< th=""><th>. 1></th><th></th></xx.<>	. 1>	
02:	= -			03:	/	/		, <u></u> :	
04:				05:					
06:				07:					
08:				09:					
001				03.					
				SWAP FILE					
s0: R	p0				p1 /	Rp1			
s2:	<u> </u>			s3:	<u> </u>	- 10 -			
s4:				s5:					
31.				33.					
LRU AC	TIVE:								
	ACTIVE:								
FKO 1141	ACITVE.								
(continua	a sulla pros	sima pagina)							

evento 3: *read* (Pm11, Pp1, Pc1) – *write* (Pm02) – *4 kswapd*

process P	NPV of PC :	NPV of SP :
p. 00000 .	141 1 01 1 0 1	111 7 01 01 1

STATO DEL TLB				
Pc1:	01 - 0 : 1	Pp0: 02 -		
Pp1:	07 -	Pp2: 05 –		
Pm02:	04 -			
Pm11:	03 -			

LRU ACTIVE:	
LRU INACTIVE:	

evento 4: write (Pm11)

		PT del processo: P		
m01:	m02:	m10:	m11:	m12:

MEMORIA FISICA				
00: <zp></zp>	01: Pc1 / Rc1 / <xx, 1=""></xx,>			
02:	03:			
04:	05:			
06:	07:			
08:	09:			

PAGINA BIANCA DI ALLINEAMENT	「O − usabile per	continuazione o	brutta copia

seconda parte - file system

È dato un sistema di memoria caratterizzato dai seguenti parametri generali:

MAXFREE = 2 MINFREE = 1

Si consideri la seguente situazione iniziale: è presente un unico processo P, in esecuzione

```
PROCESSO: P ********************************
   VMA : C 000000400, 2 , R ,
                               Ρ
        S 000000600, 2, W
                               Ρ
                                  , M , \langle X, 2 \rangle
        D 000000602, 2, W, P, A, <-1, 0>
        P 7FFFFFFC, 3, W
                            , P
                                 , A , <-1, 0>
   PT: <c0 :1 R>
                <c1 :- -> <s0 :- -> <s1 :- ->
       <d0 :- -> <d1 :- ->
       <p0 :2 W> <p1 :- -> <p2 :- ->
   process P - NPV of PC and SP: c0, p0
   MEMORIA FISICA (pagine libere: 5)
     00 : <ZP>
                              01 : Pc0 / < X, 0 >
                           02 : Pp0
                           \prod
                               03: ----
                                                      04: ----
                              05 : ----
                            | |
     06: ----
                           11 07 : ----
                                                      STATO del TLB
     Pc0 : 01 - 0: 1:
                               Pp0 : 02 - 1: 1:
                            | |
```

LRU ACTIVE: PPO, PCO

LRU INACTIVE:

Per le informazioni relative a apertura/accesso/chiusura dei file si utilizzano le usuali tabelle.

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte

ATTENZIONE: è presente la colonna "processo" dove specificare il nome/i del/i processo/i a cui si riferiscono le informazioni "f_pos" e "f_count" (campi di struct file) relative al file indicato.

ATTENZIONE: il numero di pagine lette o scritte di un file è cumulativo, ossia è la somma delle pagine lette o scritte su quel file da tutti gli eventi precedenti oltre a quello considerato. Si ricorda inoltre che la primitiva close scrive le pagine dirty di un file solo se f_{count} diventa = 0.

Per ciascuno degli eventi seguenti, compilare le tabelle richieste con i dati relativi al contenuto della memoria fisica, delle variabili del FS relative ai file aperti e al numero di accessi a disco in lettura e in scrittura.

evento 1: fd1 = open(F) - read(fd1, 13000)

MEMORIA FISICA				
00: <zp></zp>	01: Pc0 / <x, 0=""></x,>			
02:	03:			
04:	05:			
06:	07:			

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte

evento 2: fd1 = write(fd1, 7000) - fork(Q) - context switch(Q)

MEMORIA FISICA				
00: <zp></zp>	01: Pc0 / Qc0 / <x, 0=""></x,>			
02:	03:			
04:	05:			
06:	07:			

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte

evento 3: fd2 = open (G) - write (fd2, 8500)

MEMORIA FISICA						
00: <zp></zp>	01: Pc0 / Qc0 / <x, 0=""></x,>					
02:	03:					
04:	05:					
06:	07:					

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte

evento 4: write (fd1, 3000)

MEMORIA FISICA						
00: <zp></zp>	01: Pc0 / Qc0 / <x, 0=""></x,>					
02:	03:					
04:	05:					
06:	07:					

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte

evento 5: close (fd1) - close (fd2)

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte

esercizio n. 4 - tabella delle pagine

Date le VMA di un processo P sotto riportate, definire:

- 1. la scomposizione degli indirizzi virtuali dello NPV iniziale di ogni area secondo la notazione **PGD:PUD:PMD:PT**
- 2. il numero di pagine necessarie in ogni livello della gerarchia e il numero totale di pagine necessarie per rappresentare la Tabella delle Pagine (TP) del processo
- 3. il numero di pagine virtuali occupate dal processo
- 4. il rapporto tra l'occupazione della TP e la dimensione virtuale del processo in pagine
- 5. la dimensione virtuale massima del processo in pagine, senza dovere modificare la dimensione della TP
- 6. il rapporto relativo

VMA del processo P							
AREA	NPV iniziale	dimensione	R/W	P/S	M/A	nome file	offset
С	000000400	3	R	Р	М	Х	0
К	000000600	2	R	Р	М	Х	3
S	000000602	6	W	Р	М	Х	5
D	000000608	4	W	Р	Α	-1	0
MØ	000010000	2	W	S	М	G	0
M1	000020000	1	R	S	М	G	4
M2	000030000	1	W	Р	М	F	2
М3	000050000	1	W	Р	Α	-1	0
T2	7FFFF77F8	2	W	Р	Α	-1	0
T1	7FFFF77FB	2	W	Р	Α	-1	0
Т0	7FFFF77FE	2	W	Р	Α	-1	0
Р	7FFFFFFC	3	W	Р	А	-1	0

1. Scomposizione degli indirizzi virtuali:

		PGD:	PUD :	PMD :	PT
С	000000400	0	0	2	0
K	000000600	0	0	3	0
S	000000602				
D	000000608				
M0	000010000	0	0	128	0
M1	000020000				
M2	000030000				
М3	000050000	0	1	128	0
T2	7FFFF77F8				
T1	7FFFF77FB				
ТО	7FFFF77FE	255	511	443	510
Р	7FFFFFFC				

2.	2. Numero di pagine necessarie:								
#	pag PGD:	# pag PUD:							
#	pag PMD:	# pag PT:							
#	# pag totali:								
3.	. Numero di pagine virtuali occupate dal processo:								
4.	Rapporto di occupazione:								
5.	Dimensione massima del processo in pagine virtuali:								
6.	Rapporto di occupazione con dimensione massima:								

spazio libero per brutta	copia o continuazio	ne	