Sequences

Contents

L	Summations														1						
	1.1	0	Arithmetic Series														 				1
	1.2	A	Geometric Series																		1

1 Summations

1.1 • Arithmetic Series

Let $(a_i)_{i\geq 0}$ be an arithmetic sequence with common difference d. Then for some $n\in\mathbb{N}$,

$$\sum_{i=0}^{n} a_i = \frac{(n+1)(a_0 + a_n)}{2}.$$

 $Proof. \exists - Real.Arithmetic.sum_recursive_closed$

1.2 • Geometric Series

Let $(a_i)_{i\geq 0}$ be a geometric sequence with common ratio $r\neq 1$. Then for some $n\in\mathbb{N}$,

$$\sum_{i=0}^{n} a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$

Proof. \exists – Real.Geometric.sum_recursive_closed