МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

28.05.2021 г. – Вариант 1

МОДУЛ 1

Време за работа – 90 минути

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

- **1.** Кое от числата $a = 6\sqrt{3}$, $b = \sqrt{74}$, $c = 5\sqrt{4}$, $d = \frac{1}{2^{-2}}\sqrt{60}$ е най-малко?
- **A)** *a*
- **Б)** b

- **B)** *c*
- Γ) d

- **2.** Стойността на израза $(\sqrt{2} + \sqrt{4} + \sqrt{8})^2$ е:
- **A)** 14

- **B)** $2+3\sqrt{2}$ **B)** $22+6\sqrt{2}$ **Г)** $22+12\sqrt{2}$
- **3.** Множеството от допустимите стойности на израза $\sqrt{x+2} \sqrt[3]{\frac{1}{x}} 1$ е:
- **A)** (0;1]
- **B)** $[-2;0) \cup (0;\infty)$ **B)** $(-\infty;0) \cup (0;\infty)$ Γ) $[-2;\infty)$

- **4.** Решенията на неравенството $\frac{x^2-4}{x-2} > 2-x$ са:

- **A)** $x \in (0;2) \cup (2;\infty)$ **B)** $x \in (-\infty;0) \cup (2;\infty)$ Γ) $x \in (0;2)$
- 5. Ако $a = \log_4 8$ и $b = \log_{0.5} \sqrt{2}$, то разликата a b е равна на:
 - **A)** 1

Б) 1,5

B) 2

- **Γ)** 2,5
- 6. Всички корени на уравнението $x^4 6x^2 + 5 = 0$ са от интервала:
- A) $\left[-\sqrt{5};\sqrt{5}\right]$
- **Б**) [-1;1]
- **B**) $\left[0,\sqrt{5}\right]$
- **Γ**) [0;1]

7. Коя от наредените двойки е решение на системата	$\begin{vmatrix} x(x+y) - 2x = 8 \\ x = 3 - y \end{vmatrix}$?
--	--

- **A)** (4;-1) **B)** (-1;10)
- **B**) (1;2)
- Γ) (8;-5)

8. Намерете мярката на ъгъл α , ако $tg(90^{\circ} + \alpha) = -1$ и $\alpha \in (0^{\circ};180^{\circ})$.

- **A)** 180°
- **Б**) 135°
- **B**) 60°
- Γ) 45°

9. В $\triangle ABC$ през точката M от страната BC са построени правите $MN \parallel AB (N \in AC)$ и $MK \parallel AC (K \in AB)$. Ако AC = 25 cm, MK = 20 cm и $S_{\Delta ABC} = 100$ cm², то лицето на четириъгълника *АКМN* е:

- A) 4 cm^2
- Б) 32 cm²

- B) 64 cm²
- Γ) 68 cm²

10. В правоъгълния △ABC ($\angle ACB = 90^{\circ}$) и $\sin \angle CAB = \frac{5}{13}$. Вярно е, че:

- A) $\frac{CA}{AB} = \frac{12}{13}$ B) $\frac{CA}{AB} = \frac{5}{13}$ F) $\frac{BC}{CA} = \frac{5}{13}$

11. Разстоянието от върха на параболата, графика на функцията $y = x^2 + 4x + 5$, до ординатната ос на правоъгълна координатна система хОу е:

A) -2

Б) 1

B) 2

 Γ) $\sqrt{5}$

12. Дадени са числовите редици $a_n = \left(-1\right)^n.2n, \ n \in \mathbb{N}$ и $b_n = 2^{-n}, \ n \in \mathbb{N}$. Колко от твърденията са верни?

- (1) Числовата редица с общ член $a_n = (-1)^n . 2n$ е растяща;
- (2) Числовата редица с общ член $b_n = 2^{-n}$ е намаляваща;
- (3) Разликата $b_{\scriptscriptstyle n}-a_{\scriptscriptstyle n}>0,$ за всяко $n\in\mathbb{N}$.
- **А)** нула
- Б) едно
- **В)** две
- Γ) три

13. Шестият член на аритметична прогресия е -1. Сумата на първите 11 члена на прогресията е:

- **A)** -11
- **Б**) −2

B) 10

Г) 11

14. Спрямо правоъгълна координатна система xOy са дадени точките A(-2;2) и B(2;2). Стойността на израза $tg \not< ABO - cos \not< BAO$ е:

- **A)** $-\frac{2-\sqrt{2}}{2}$
- **b**) $-\frac{\sqrt{2}}{2}$
- **B)** 0

 $\Gamma) \frac{2-\sqrt{2}}{2}$

15. Кое от числата НЕ може да е вероятност на случайно събитие?

- **A)** $lg \frac{2}{3}$
- **b**) $\log_2 \sqrt{2}$
- **B)** sin 150°
- Γ) cos 60°

16. В един клас има 8 момичета и 10 момчета. Колко състезателни отбора от по 5 ученици могат да се формират, като във всеки отбор има момичета и те са четен брой?

- **A)** 148
- **Б)** 700
- **B)** 3360
- Γ) 4060

17. Точка H е ортоцентър в $\triangle ABC$, в който $\angle ACB = \gamma$. В кой от посочените случаи радиусите на описаните окръжности около $\triangle AHB$ и $\triangle ABC$ са равни?

A) Само ако $\gamma = 90^{\circ}$

- **Б)** Само ако $\gamma = 60^{\circ}$
- B) Само ако $\triangle ABC$ е равностранен
- Γ) Независимо от мярката на γ

18. В $\triangle ABC$ отсечките CM = 5 cm и CH = 4 cm са съответно медиана и височина, а H е средата на AM. Дължината на страната BC е:

- A) $\sqrt{73}$ cm
- **Б**) $\sqrt{97}$ cm
- **B)** 10 cm
- Γ) $\sqrt{241}$ cm

19. В успоредника ABCD $AD = BD = \sqrt{2}$ cm, а страната AB = 2 cm. Мярката на $\angle ABC$ e:

- **A)** 45°
- **Б)** 60°
- **B)** 120°
- **Γ**) 135°

20. Дължината на основата на равнобедрен триъгълник е 5 cm. Медианата към бедрото е 5 cm. Да се намери дължината на бедрото (в cm).

- **A)** $\frac{5\sqrt{2}}{2}$
- Б) 5

- **B)** $5\sqrt{2}$
- Γ) 50

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\,,\;\;a\neq 0$$
 $D=b^2-4ac$ $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

$$\begin{array}{l} \sqrt[2k]{a^{2k}} = \left|a\right| & \sqrt[2k+1]{a^{2k+1}} = a \quad \text{при} \quad k \in \mathbb{N} \\ \frac{1}{a^m} = a^{-m}, \ a \neq 0 & \sqrt[n]{a^m} = a^{\frac{m}{n}} \ \sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a} & \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \ \text{при} \quad a \geq 0, k \geq 2, n \geq 2 \ \text{и} \quad m, n, k \in \mathbb{N} \\ a^x = b \Leftrightarrow \log_a b = x & a^{\log_a b} = b & \log_a a^x = x \quad \text{при} \quad a > 0, b > 0 \ \text{и} \quad a \neq 1 \end{array}$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$c^2 = a^2 + b^2$$

$$S = \frac{1}{2}ab = \frac{1}{2}ch_c$$

$$a^2 = a_1 c$$

$$b^2 = b_1 c$$

$$h_c^2 = a_1 b_1$$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\operatorname{tg} \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$

$$m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$$

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$

$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:

$$S = \frac{1}{2}ch_c$$

$$S = \frac{1}{2}ab\sin\gamma$$

$$S = \frac{1}{2}ch_c$$
 $S = \frac{1}{2}ab\sin\gamma$ $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = pr$$

$$S = pr$$
 $S = \frac{abc}{AR}$

Успоредник:

$$S = ah_a$$

$$S = ab \sin \alpha$$

$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°-α	90°+α	180° – α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-tg\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	tg α	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} \sin\left(\alpha\pm\beta\right) &= \sin\alpha\cos\beta\pm\cos\alpha\sin\beta & \cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ tg\left(\alpha\pm\beta\right) &= \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} & \cos\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cos\beta\mp\sin\alpha\sin\beta}{\cot\beta\pm\cot\beta} \\ \sin2\alpha &= 2\sin\alpha\cos\alpha & \cos2\alpha &= \cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1 = 1 - 2\sin^2\alpha \\ tg\,2\alpha &= \frac{2tg\,\alpha}{1-tg^2\,\alpha} & \cot 2\alpha &= \frac{\cot^2\alpha-1}{2\cot\beta\alpha} \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \sin\beta &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \sin\beta &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ 1-\cos\alpha &= 2\sin^2\frac{\alpha}{2} & 1+\cos\alpha &= 2\cos^2\frac{\alpha}{2} \\ \sin\alpha\sin\beta &= \frac{1}{2}(\cos(\alpha-\beta) - \cos(\alpha+\beta)) & \cos\alpha\cos\beta &= \frac{1}{2}(\cos(\alpha-\beta) + \cos(\alpha+\beta)) \\ \sin^2\alpha &= \cos^2\alpha - \sin^2\alpha - \cos^2\alpha -$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ

ПО МАТЕМАТИКА

28.05.2021 г. - Вариант 1

МОДУЛ 2

Време за работа – 150 минути

Отговорите на задачите от 21. до 25. включително запишете в свитъка за свободните отговори!

- **21.** Пресметнете стойността на израза $\left(2^3 + 2.7^{\frac{1}{2}}\right)^{\frac{1}{2}} 6.\left(\sqrt{7} + 1\right)^{-1}$.
- **22.** Намерете корените на уравнението $\sqrt{x^2 4x 5} + \sqrt{x + 1} = 0$.
- 23. Третият член на геометрична прогресия е $\frac{8}{7}$, а шестият ѝ член е $-\frac{64}{7}$. Намерете сумата от първите десет члена на тази прогресия.
- **24.** Към реда 3, 5, 8, 15, 17, 23, 27 е добавено число X така, че средноаритметичната стойност на новия ред е равна на медианата му. Определете възможно най-голямата стойност на X.
- **25.** В равнобедрен трапец ABCD $(AB \parallel CD)$ е построена полуокръжност с диаметър AD, която пресича основата AB в точка H, като AH = 3 cm, а $\triangle BHC$ е равностранен. Намерете лицето на трапеца.

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. включително</u> запишете в свитъка за свободните отговори!

- **26.** Дадени са функциите $f(x) = x^2 6x + 8$ и $g(x) = \frac{1}{x}$.
- а) Решете системата $\begin{vmatrix} f(x) > 0 \\ g(x) > 1 \end{vmatrix}$;
- б) Определете дали числото $A = \frac{1}{45} f \left(-\frac{1}{2} \right) \sqrt{2} g \left(\sqrt{2} \right)$ е от множеството от решения на системата от подточка а).
- 27. Намерете мярката на ъгъл α , за който $2\cos\alpha = A$, където $A = \sqrt{3} \text{tg}17^{\circ} \text{tg}13^{\circ} + 3 \left(\text{tg}17^{\circ} + \text{tg}13^{\circ} \right)$ и $\alpha \in \left(0^{\circ};180^{\circ} \right)$.
- **28.** Четириъгълникът ABCD е вписан в окръжност с диаметър AC и в него може да се впише окръжност.
- а) Докажете, че AB = AD и CB = CD.
- б) Ако $\angle BCD = 120^\circ$ и дължината на радиуса на вписаната в четириъгълника ABCD окръжност е 2 cm, то намерете лицето му.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\,,\;\;a\neq 0$$
 $D=b^2-4ac$ $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

$$\begin{array}{l} \sqrt[2k]{a^{2k}} = \left|a\right| & \sqrt[2k+1]{a^{2k+1}} = a \quad \text{при} \quad k \in \mathbb{N} \\ \frac{1}{a^m} = a^{-m}, \ a \neq 0 & \sqrt[n]{a^m} = a^{\frac{m}{n}} \ \sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a} & \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \ \text{при} \quad a \geq 0, k \geq 2, n \geq 2 \ \text{и} \quad m, n, k \in \mathbb{N} \\ a^x = b \Leftrightarrow \log_a b = x & a^{\log_a b} = b & \log_a a^x = x \quad \text{при} \quad a > 0, b > 0 \ \text{и} \quad a \neq 1 \end{array}$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$c^2 = a^2 + b^2$$

$$S = \frac{1}{2}ab = \frac{1}{2}ch_c$$

$$a^2 = a_1 c$$

$$b^2 = b_1 c$$

$$h_c^2 = a_1 b_1$$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\operatorname{tg} \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$

$$m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$$

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$

$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:

$$S = \frac{1}{2}ch_c$$

$$S = \frac{1}{2}ab\sin\gamma$$

$$S = \frac{1}{2}ch_c$$
 $S = \frac{1}{2}ab\sin\gamma$ $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = pr$$

$$S = pr$$
 $S = \frac{abc}{AR}$

Успоредник:

$$S = ah_a$$

$$S = ab \sin \alpha$$

$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°-α	90°+α	180° – α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-tg\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	tg α	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} \sin\left(\alpha\pm\beta\right) &= \sin\alpha\cos\beta\pm\cos\alpha\sin\beta & \cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ tg\left(\alpha\pm\beta\right) &= \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} & \cos\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cos\beta\mp\sin\alpha\sin\beta}{\cot\beta\pm\cot\beta} \\ \sin2\alpha &= 2\sin\alpha\cos\alpha & \cos2\alpha &= \cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1 = 1 - 2\sin^2\alpha \\ tg\,2\alpha &= \frac{2tg\,\alpha}{1-tg^2\,\alpha} & \cot 2\alpha &= \frac{\cot^2\alpha-1}{2\cot\beta\alpha} \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \sin\beta &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \sin\beta &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ 1-\cos\alpha &= 2\sin^2\frac{\alpha}{2} & 1+\cos\alpha &= 2\cos^2\frac{\alpha}{2} \\ \sin\alpha\sin\beta &= \frac{1}{2}(\cos(\alpha-\beta) - \cos(\alpha+\beta)) & \cos\alpha\cos\beta &= \frac{1}{2}(\cos(\alpha-\beta) + \cos(\alpha+\beta)) \\ \sin^2\alpha &= \cos^2\alpha - \sin^2\alpha - \cos^2\alpha -$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ

ПО МАТЕМАТИКА

28.05.2021 г. - Вариант 1

Ключ с верните отговори

No	Отговор	Брой точки
1	Б	2
2	Γ	2
3	Б	2
4	A	2
5	В	2
6	A	2
7	Γ	2
8	Γ	2
9	Б	2
10	A	2
11	В	3
12	Б	3
13	A	3
14	Γ	3
15	A	3
16	Γ	3
17	Γ	3
18	Б	3
19	Γ	3
20	В	3
21	2	4
22	-1	4
23	$S_{10} = -\frac{682}{7} = -97\frac{3}{7}$	4
24	X = 30	4
25	$18\sqrt{3}$ cm ²	4
26	a) $x \in (0;1)$	10
	б) не принадлежи	

27	$\alpha = 30^{\circ}$	10
28	$S_{ABCD} = \frac{24 + 16\sqrt{3}}{3}$	10

Задача 26. Решение.

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

$\begin{vmatrix} x^2 - 6x + 8 > 0 \\ \frac{1}{x} > 1 \\ \Rightarrow \begin{vmatrix} (x-2)(x-4) > 0 \\ \frac{1-x}{x} > 0 \\ x \neq 0 \end{vmatrix} \Rightarrow x \in (0;1)$ $\begin{vmatrix} (x-2)(x-4) > 0 \\ (1-x)x > 0 \\ x \neq 0 \end{vmatrix} \Rightarrow x \in (0;1)$	6 точки
6) 3a $f\left(-\frac{1}{2}\right) = \frac{1}{4} + 3 + 8 = 11\frac{1}{4}$	1 точка
$3a g\left(\sqrt{2}\right) = \frac{\sqrt{2}}{2}$	1 точка
Следователно $A = \frac{1}{45} f\left(-\frac{1}{2}\right) - \sqrt{2}g\left(\sqrt{2}\right) = \frac{1}{45} \frac{45}{4} - \sqrt{2}\frac{\sqrt{2}}{2} = -\frac{3}{4}$	1 точка
Числото $A = -\frac{3}{4} \notin (0;1)$	1 точка

Задача 27. Решение.

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

$\sqrt{3} \frac{\sin 17^{\circ} \sin 13^{\circ}}{\cos 17^{\circ} \cos 13^{\circ}} + 3 \left(\frac{\sin 17^{\circ}}{\cos 17^{\circ}} + \frac{\sin 13^{\circ}}{\cos 13^{\circ}} \right)$	1 точка
$\sqrt{3} \cdot \frac{1}{2} \cdot (\cos 4^{\circ} - \cos 30^{\circ}) \cdot \frac{1}{\cos 17^{\circ} \cos 13^{\circ}} + 3 \cdot \frac{\sin 30^{\circ}}{\cos 17^{\circ} \cos 13^{\circ}}$	1 точка
$\frac{\sqrt{3}}{2} \cdot \frac{\cos 4^{\circ}}{\cos 17^{\circ} \cos 13^{\circ}} + \frac{3}{4} \cdot \frac{1}{\cos 17^{\circ} \cos 13^{\circ}}$	2 точки
$\frac{\sqrt{3}}{2} \cdot \left(\frac{\cos 4^{\circ}}{\cos 17^{\circ} \cos 13^{\circ}} + \frac{\frac{\sqrt{3}}{2}}{\cos 17^{\circ} \cos 13^{\circ}} \right)$	2 точки
$\frac{\sqrt{3}}{2} \left(\frac{\cos 4^{\circ} + \cos 30^{\circ}}{\cos 17^{\circ} \cos 13^{\circ}} \right) = \frac{\sqrt{3}}{2} \left(\frac{\cos 4^{\circ} + \cos 30^{\circ}}{\frac{1}{2} (\cos 4^{\circ} + \cos 30^{\circ})} \right) = \sqrt{3}$	2 точки

$\cos\alpha = \frac{\sqrt{3}}{2}$	1 точка
$\alpha(0^{\circ};180^{\circ}) \Rightarrow \alpha = 30^{\circ}$	1 точка

Задача 28. Решение.

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

Нека $AB = a, BC = b, CD = c, DA = d$.	1 точка
В четириъгълника АВСО може да се	
впише окръжност $\Rightarrow a+c=b+d$	
$A \xrightarrow{2 \cdot i} C$ B	
AC е диаметър на описаната окръжност около $ABCD$	1 точка
$\Rightarrow \angle ABC = \angle CDA = 90^{\circ} \Rightarrow a^2 + b^2 = c^2 + d^2$	
$\begin{vmatrix} a+c=b+d \\ a^2+b^2=c^2+d^2 \end{vmatrix} \Rightarrow a-c=d-b \Rightarrow a=d \text{ M } c=b$	1 точка
Четириъгълникът <i>АВСD</i> е вписан в окръжност и	1 точка
$\ll BCD = 120^{\circ} \Rightarrow \ll BAD = 60^{\circ}$, но $a = d \Rightarrow \triangle BAD$ е равностранен	
$\Rightarrow BD = a$	
От косинусова (или синусова) теорема за равнобедрения	1 точка
$\triangle BCD(\angle BCD = 120^{\circ}) \Rightarrow a = \sqrt{3}b$	
Нека O е центъра на вписаната окръжност в $ABCD$. $O \in AC$, защото	1 точка
$AC \equiv S_{BD}$ и $O = AC \cap l_{\prec ABC}$	
За намиране на $a = 2\sqrt{3} + 2$	2 точки
За намиране на лицето	2 точки
$S_{ABCD} = pr = 2(a+b) = \frac{2\sqrt{3}}{3}(\sqrt{3}+1)a = \frac{4\sqrt{3}(\sqrt{3}+1)^2}{3} = \frac{24+16\sqrt{3}}{3}$	