Introduction to Program Synthesis (WS 2024/25)

Chapter 3.2 - Traditional Methodologies (Exemplification and Problems)

Dr. rer. nat. Roman Kalkreuth

Chair for Al Methodology (AIM), Department of Computer Science, RWTH Aachen University, Germany

Exemplification and problem domains

- lacktriangle Search spaces in program synthesis ightarrow Prone to combinatorial explosion
 - Naive approach with brute-force search or random walk is a dead end
- Popular deterministic algorithmic paradigms to efficiently tackle combinatorial problems
 - Backtracking
 - Divide and conquer
 - ► Branch and bound
 - lacktriangle Dynamic programming ightarrow Memoization, Tabulation
- Popular heuristic methods:
 - ▶ Local search
 - ► Greedy search
- ► Commonly used either base ("vanilla") or extended form in combinatorial optimization

Traditional Methodologies Exemplification and problem domains

- Practical demonstration and application of such techniques to combinatorial problems
- ightharpoonup Problems from games ightarrow Chess
- ightharpoonup Common problem domains of program synthesis ightarrow Symbolic regression, logic synthesis, algorithm design

Exemplification and problem domains: Knights Tour Problem (KTP)

- Classic puzzle in chess where the goal is to visit every field on a chessboard
 - → Combinatorial problem
 - → Each square is exactly visited once
 - → The knight must make a legal move in L shape

Figure: Examples of valid knight moves (Source: Wikimedia

Figure: Example of open knight tours (Source: G. Mann, 120 neue Rösselsprünge, 1859)

Exemplification and problem domains: Knights Tour Problem (KTP)

- A tour is called closed if the end square of the knight is one knight move away from the start square
 - \sim Otherwise the path is called open
- ► Finding a closed tour → Similar instance of the Hamiltonian cycle problem
- ► Determining whether a directed or undirected graph *G* contains a Hamiltonian cycle
 - → NP-Complete problem
 - → However, KTP can be solved in linear time
- ▶ Hamiltonian cycle on the *knight graph*

Figure: Example of a Hamiltonian cycle)

Exemplification and problem domains: Knights Tour Problem (KTP)

Definition (Hamiltonian Path)

A **Hamiltonian path** is a path between two vertices v_1 , v_2 of a graph G that visits each vertex **exactly once**. If endpoints of a Hamiltonian path are **adjacent**, then the resulting cycle is called a **Hamiltonian cycle**. Let G = (V, E) a graph with |V| = n vertices and |E| = m edges. G is hamiltonian if there exists a cycle in G that contains all vertices of V. If G has Hamiltonian paths but no Hamiltonian cycle, G is called semi-hamiltonian

Exemplification and problem domains: Knights Tour Problem (KTP)

- ▶ A knight's tour exists on an $n \times n$ board iff $n \ge 5$
- ► Number of possible knight moves grows exponentially as the board size increases

	Board size	Number of tours
	5×5	1,728
	6×6	6,637,920
	7×7	165,575,218,320
I	8x8	19,591,828,170,979,904

Exemplification and problem domains: Symbolic Regression (SR)

- lacktriangle Symbolic regression o type of regression analysis
 - Located in the wider domain of statistical learning
- ▶ Regression analysis → statistical processes that estimates relationships between dependent and independent variables
- Popular representatives:
 - \sim Linear regression \rightarrow Predicting responses to data in linear correlated data
 - ightharpoonup Logistic regression ightharpoonup Prediction of probabilities based on a logistic function
 - → Symbolic regression

Figure: Linear Regression (Source: Wikimedia)

Exemplification and problem domains: Symbolic Regression (SR)

- $\blacktriangleright \ \ \textbf{Regression} \ \ \textbf{Model} \rightarrow \text{applied to parameter estimation}$
- Regression models typically consists of
 - \sim Unknown parameters $\rightarrow \beta$
 - \sim Independent variables (known) $\to X$
 - ightarrow Dependent variables (known) ightarrow Y
 - ightarrow Error terms or residuals (unobserved) $ightarrow \epsilon$
- lacktriangle The regression model can be considered as a function ightarrow

$$Y_i = f(X_i, \beta) + \epsilon_i$$

 \sim Reformulation as an optimization problem that minimizes the error terms: $\epsilon = Y_i - f(X_i, \beta)$

Figure: Least squares fitting (Source: Wikimedia)

Exemplification and problem domains: Symbolic Regression (SR)

- ▶ Let $Y \approx \beta_0 + \beta_1 * X + \epsilon$ be a linear regression model and let $T = \{y_i, x_i\}_{i=1}^n$ a dataset
- ▶ Corresponding minimization problem $\epsilon = Y \beta_0 + \beta_1 * X$
- lacktriangle Cost function ightarrow residual sum of squares (RSS)
 - $ightharpoonup \mathsf{RSS} = \epsilon_1^2 + \epsilon_2^2, ..., \epsilon_n^2 = \sum_{i=1}^n \epsilon_i^2$
 - \rightarrow Residual calculation $\rightarrow \epsilon_i = Y_i \hat{Y}$
 - \rightarrow Parameter estimation \rightarrow (linear) least-squares method
 - → Minimization of the sum of squared residuals

Exemplification and problem domains: Symbolic Regression (SR)

- \blacktriangleright Symbolic regression needs a representation for a symbolic model \rightarrow expression trees
- Fitting a symbolic expression that can predict responses to a given dataset
- Corresponding mathematical expression is obtained
 - lacktriangle Can fit slopes and curves ightarrow applicable to linear and non-linear regression

Figure: Expression tree representing a mathematical expression (Source: Wikimedia)

Exemplification and problem domains: Symbolic Regression (SR)

► Training dataset generation → Random points are drawn from uniform distribution

$$\rightarrow \mathcal{X} = \{x | x \sim U(a, b), x \in \mathbb{R}\}$$

lacktriangleright ${\cal X}$ is applied to the objective function ${\cal F}$

$$\rightarrow \hat{\mathcal{Y}} = {\hat{y}|\hat{y} = \mathcal{F}(x), \forall x \in \mathcal{X}}$$

▶ Candidate expression tree t is evaluated against $\hat{\mathcal{Y}}$ with $t(\mathcal{X}) \mapsto \mathcal{Y}$

→ Measure is needed to obtain the distance to the global optimum

→ Various distance metrics are used as cost function in SR:

Mean squared error	MSE	$\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$
Root mean squared error	RMSE	$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$
Mean absolute error	MAE	$\frac{1}{n}\sum_{x=1}^{n} y_i-\hat{y}_i $

Exemplification and problem domains: Symbolic Regression (SR)

- **Cost function** $\mathcal{C} \to \mathsf{performance}$ evaluation of candidate models
 - lacktriangle Candidate models ightarrow locally sampled expression trees
- **Loss function** $\mathcal{L} \to \mathsf{Comparison}$ of actual (target) and predicted output values
 - ▶ Distance metric that is applied to each data point

Definition (Symbolic Regression)

Let t be an expression tree in tree space \mathcal{T} . Find $t(\mathcal{X}) \mapsto \mathcal{C}_{min}$. $t_{min} = \operatorname*{argmin} \mathcal{C}(t) := \{ t \in \mathcal{T} \mid \mathcal{C}_{min}(t) \} := \{ t_1 \in \mathcal{T} : \mathcal{C}(t_2) \geq \mathcal{C}(t_1) \ \forall t_2 \in \mathcal{T} \}.$

Exemplification and problem domains: Symbolic Regression (SR)

▶ Neighbourhood function \mathcal{N} → replace a leaf node with a randomly generated subtree: $\mathcal{N}(\Psi) \mapsto \Psi'$

- ► Stochastic hill climbing with restart is used as a search algorithm:
 - $ightharpoonup \mathcal{R} o \mathbf{Replacement\ function}$: Selects a neighbour with better cost value uniformly at random
 - ▶ If no neighbour has a better cost value \rightarrow Return and keep $\mathcal P$ (no replacement occurs)