Lecture 17 Unsupervised Learning Supervised problem: I have both X ad Y and some trains duta to learn the rel, botun X od Y un-supericed problem's I only have an X - find symmarize patterns in the data Ex, (1) dimensionality reduction: represent the data using femer variables P covariates my 9 covariates

9 covariates clustering!

group data into similar "clusters"

clusters

Principal Components Analysis (PCA) Technique fer dimension reduction. unsupervised setting! Visvalize. Reduction: can I get away up fewer dims up losing too much.

PCA operates by projecting data ento a lower-dimensional subspace.

Ne	el to find basis of this subspace
	W,,We,, Wg
'H. 1	$2 = Xwi = wi, \chi, +wiz \chi_z + wi3 \chi_z + \cdots wip \chi_p$
Coordi	rate" (Zi=LC of Xis
Subspa	15 16 - 75
	PCA! Firel LCs of my Xs that
	PCA! First LCs of my Xs that maximize the variona of Zs
	Subject to the Zs being uncorrelated
	ad the Wis are unit vectors.
nather	afeally
	$Z = X W$ $W = [w, w_2 \dots w_g]$
	í.l. Zi=Xwi
Wan	t to find W to
	(1) maximize total varionce of Z
	Tot Var $(7) = 2 \text{ Ver}(7)$
	1=1
	Subject to (i) Cor(Zi,Zj) = 0 (2) wi to be unit vectors

Review:
$$\chi = (\chi_1, ..., \chi_N)$$
 then

 $\overline{\chi} = \frac{1}{N} \sum_{i=1}^{N} \chi_i = \frac{1}{N} \prod_{i=1}^{N} \chi_i$

If $\overline{\chi} = 0$ (in PCA we're going to mean-coater)

Var(χ) = $\frac{1}{N} \sum_{i=1}^{N} (\chi_i - \overline{\chi})^2 = \frac{1}{N-1} \sum_{i=1}^{N} \chi_{i}^2 = \frac{1}{N-1} ||\chi_i||^2$
 $\chi = 0$ or $\overline{\gamma} = 0$
 $\chi = 0$ or $\overline{\gamma} = 0$
 $\chi = 0$
 χ