Marcus, Ch. 2 Selected Problems

Andrew Tindall

June 12, 2020

Problem 8. (a) Let $\omega = e^{2\pi i p}$, p an odd prime. Show that $\mathbb{Q}[\omega]$ contains \sqrt{p} if $p \equiv 1 \pmod{4}$, and $\sqrt{-p}$ if $p \equiv -1 \pmod{4}$. Express $\sqrt{-3}$ and $\sqrt{-5}$ as polynomials in the appropriate ω .

Proof. It is hinted for the first half of this problem that we want to use the fact, proven in Marcus, ch. 2, that $\operatorname{disc}(\omega) = \pm p^{p-2}$, with + holding iff $p \equiv 1 \pmod{4}$. Another useful fact is that

$$\operatorname{disc}(\omega) = \prod_{1 \le r \le s \le n} (\omega^r - \omega^s)^2.$$

We also note that p is assumed to be an odd prime: therefore, p-3 is even and nonnegative: let k=(p-3)/2, so that $p^{p-2}=p(p^k)^2$. Putting all of these facts together, we have

$$\left(\prod_{1 \le r \le s \le n} (\omega^r - \omega^s)\right)^2 = \pm p(p^k)^2.$$

So, it must be true that

$$\left(\frac{\prod_{1 \le r < s \le n} (\omega^r - \omega^s)}{p^k}\right)^2 = \pm p,$$

So indeed the field $\mathbb{Q}[\omega]$ must contain $\sqrt{\pm p}$, with + holding if and only if $p \equiv 1 \pmod{4}$.

Since this proof is constructive, we can use it to get a formula for $\sqrt{\pm p}$ in any given cyclotomic field. However, the term $\prod_{1 \le r < s \le n} (\omega^r - \omega^s)$ grows quickly with the degree of the given cyclotomic field. For example, for ω_3 a primitive 3rd root of unity, it is a polynomial of degree 8 in ω_3 , before reducing to a quadratic polynomial. However, using $\omega_3 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, it is not too hard to find

$$\omega_3 - \omega_3^2 = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$$
$$= \sqrt{3}i$$
$$= \sqrt{-3}$$

In the case of ω_5 a primitive root of unity, it is not as easy to find a polynomial formula for $\sqrt{5}$ in terms of ω_5 . For example, one primitive 5th root of unity is

$$\omega_5 = \frac{\sqrt{5} - 1}{4} + \frac{\sqrt{10 + 2\sqrt{5}}}{4}i$$

Instead, we will use the formula derived above. First, we can simplify $\prod_{1 \le r < s \le 5} (\omega_5^r - \omega_5^s)$:

$$\prod_{1 \leq r < s \leq 5} (\omega_5^r - \omega_5^s) = \prod_{1 \leq r < s \leq 5} \omega_5^r (1 - \omega_5^{s-r}).$$

There are 4 terms where r is equal to 1, 3 where it is equal to 2, 2 where it is 3, and 1 where it is 4. So, we can factor out $\omega_5^{4+3\cdot2+2\cdot3+4} = \omega_5^{20}$, which is equal to 1, leaving us with

$$\prod_{1 \le r < s \le 5} (1 - \omega_5^{s-r}).$$

There are 4 ways to choose $1 \le r < s \le 5$ such that r - s = 1, 3 ways to choose them such that r - s = 2, and so on. So, we can rewrite this as

$$\prod_{1 \le r < s \le 5} (1 - \omega_5^{s-r}) = (1 - \omega_5)^4 (1 - \omega_5^2)^3 (1 - \omega_5^3)^2 (1 - \omega_5^4).$$

Here, we can rewrite

$$(1 - \omega_5^4) = (1 - \omega_5^2)(1 + \omega_5^2),$$

$$(1 - \omega_5^3) = (1 - \omega_5)(1 + \omega_5 + \omega_5^2), \text{ and}$$

$$(1 - \omega_5^2) = (1 - \omega_5)(1 + \omega_5).$$

So, we end up with

$$(1 - \omega_5)^4 (1 - \omega_5^2)^3 (1 - \omega_5^3)^2 (1 - \omega_5^4) = (1 - \omega_5)^7 (1 + \omega_5)^2 (1 + \omega_5 + \omega_5^2) (1 + \omega_5^2)^2 (1$$

(b) Show that the 8th cyclotomic field contains $\sqrt{2}$.

This is not hard to see if we take the primitive 8th root of unity ω_8 to be

$$\omega_8 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i.$$

From this, we see that

$$\omega_8 + \omega_8^7 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i + \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$
$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$$
$$= \sqrt{2}.$$

(c) Show that every quadratic field is contained in a cyclotomic field: in fact, $\mathbb{Q}[\sqrt{m}]$ is contained in the dth cyclotomic field, where $d = \operatorname{disc}(\mathbb{A} \cap \mathbb{Q}[\sqrt{m}])$.

Proof. incomplete

Problem 11. (a) Suppose all roots of a monic polynomial $f \in \mathbb{Q}[x]$ have absolute value 1. Show that the coefficient of x^r has absolute value $\leq \binom{n}{r}$, where n is the degree of f and $\binom{n}{r}$ is the binomial coefficient.

Proof. Since all roots of f must exist in \mathbb{C} , in $\mathbb{C}[x]$ we can write f as

$$f(x) = \prod_{1 \le i \le n} (x - \alpha_i),$$

Where α_i are the roots of f in \mathbb{C} . The coefficients of f can be calculated from the α_i s: by Vieta's formulas, the coefficient a_r of x^r in a monic polynomial with roots $\alpha_1, \ldots, \alpha_n$ is

$$a_r = (-1)^r \sum_{1 \le i_1 < i_2 < \dots < i_r < n} \left(\prod_{j=1}^r \alpha_{i_j} \right)$$

Since all terms $-1, \alpha_1, \ldots, \alpha_i$ in this expression have absolute value 1 in \mathbb{C} , we see that

$$|a_r| = \left| (-1)^r \sum_{1 \le i_1 < i_2 < \dots < i_r < n} \left(\prod_{j=1}^r \alpha_{i_j} \right) \right|$$

$$\leq \sum_{1 \le i_1 < i_2 < \dots < i_r} \left| \prod_{j=1}^r \alpha_{i_j} \right|$$

$$= \sum_{1 \le i_1 < i_2 < \dots < i_r} 1$$

$$= \binom{n}{r}$$

(b) Show that there are only finitely many algebraic integers α of fixed degree n, all of whose conjugates (including α) have absolute value 1.

Proof. An algebraic integer α of degree n, all of whose conjugates have absolute value 1, has an irreducible polynomial of the kind discussed in part (a); since all the roots of f in \mathbb{C} have absolute value 1, the coefficients of f must have absolute value $\leq \binom{n}{r}$. However, since the coefficients of f all lie in \mathbb{Z} , there are only $2\binom{n}{r}+1$ possibilities for each coefficient a_r of f:

$$-\binom{n}{r}, -\binom{n}{r} + 1, \dots, -1, 0, 1, \dots, \binom{n}{r} - 1, \binom{n}{r}$$

3

Therefore, there are only

$$\prod_{1 \le r \le n} \left(2 \binom{n}{r} + 1 \right)$$

possible minimal polynomials. Since only n algebraic integers $\alpha_1, \ldots, \alpha_n$ can share the same minimal polynomial f, there can be no more than

$$n \prod_{1 \le r \le n} \left(2 \binom{n}{r} + 1 \right)$$

algebraic integers of degree n, all of whose conjugates have absolute value 1. \Box

(c) Show that α (as in (b)) must be a root of 1. (Show that its powers are restricted to a finite set.)

Proof. Let α be an algebraic integer of degree n, all of whose conjugates have absolute value 1. If α_i is a conjugate of α , then α_i^k is a conjugate of α^k , for any $k \geq 1$ - this shows that each algebraic integer in the sequence $\alpha, \alpha^2, \alpha^3, \ldots$ has absolute value 1, and also each of its conjugates has absolute value 1, since

$$\left|\alpha^{k}\right| = \left|\alpha\right|^{k} = 1$$
, and

$$\left|\alpha_i^k\right| = \left|\alpha_i\right|^k = 1.$$

But as we have seen, the set of all algebraic integers whose conjugates all have absolute value 1 is finite. As a subset of this set, the set $\{\alpha, \alpha^2, \alpha^3, \dots\}$ is also finite: $\alpha^j = \alpha^k$ for some $j \neq k$ - assume WLOG that j < k. Then $\alpha^j (1 - \alpha^{k-j}) = 0$, showing that α is a (k-j)th root of unity.

Problem 12. Now we can prove Kummer's lemma on units in the *p*th cyclotomic field, as stated before exercise 26, chapter 1: Let $\omega = e^{2\pi i/p}$, p an odd prime, and suppose u is a unit in $\mathbb{Z}[\omega]$.

(a) Show that u/\overline{u} is a root of 1. (Use 11(c)) above and observe that complex conjugation is a member of the Galois group of $\mathbb{Q}[\omega]$ over \mathbb{Q} .) Conclude that $u/\overline{u} = \pm \omega^k$ for some k.

Proof. Because u is a unit in $\mathbb{Z}[\omega]$, so is \overline{u} , and so u/\overline{u} is a well-defined member of $\mathbb{Z}[\omega]$. We know already that $|u/\overline{u}| = 1$, as this holds for every number. What we want to show is that this holds for each conjugate $\sigma_i(u/\overline{u})$ of u/\overline{u} , for each embedding of $\mathbb{Q}[\omega]$ in \mathbb{C} .

Since complex conjugation is a member of the Galois group of $\mathbb{Q}[\omega]$ over \mathbb{Q} , we know it also corresponds to an embedding σ_j of $\mathbb{Q}[\omega]$ in \mathbb{C} . It is shown in Marcus, Ch. 2, that

the Galois group of $\mathbb{Q}[\omega]$ over \mathbb{Q} is isomorphic to \mathbb{Z}_p^* . In particular, it is commutative, so $\sigma_i \circ \sigma_j = \sigma_j \circ \sigma_i$. So, we have

$$\sigma_i(u/\overline{u}) = \sigma_i(u/\sigma_j(u))$$

$$= \sigma_i(u)/\sigma_i(\sigma_j(u))$$

$$= \sigma_i(u)/\sigma_j(\sigma_i(u))$$

$$= \sigma_i(u)/\overline{\sigma_i(u)}$$

So, every conjugate of u/\overline{u} also has absolute value 1, and it fulfills the hypothesis of problem 11. As we showed there, this implies that it is a root of unity. The only roots of unity in $\mathbb{Q}[\omega]$ are the pth roots of unity, and these are exactly $\pm \omega^k$ for $1 \leq k \leq p$. \square

(b) Show that the + sign holds: Assuming $u/\overline{u} = -\omega^k$, we have $u^p = -\overline{u^p}$; whow that this implies that u^p is divisible by p in $\mathbb{Z}[\omega]$. But this is impossible since u^p is a unit.

Proof. Assume we did have $u/\overline{u} = -\omega^k$: then $u = -\overline{u}\omega^k$, and

$$u^{p} = (-\overline{u}\omega^{k})^{p}$$
$$= (-1)^{p}\overline{u}^{p}\omega^{pk}$$
$$= -(\overline{u}^{p})$$

Incomplete - why does this imply that $p \mid u^p$?

Problem 13. Show that 1 and -1 are the only units in the ring $\mathbb{A} \cap \mathbb{Q}[\sqrt{m}]$, m squarefree, $m < 0, m \neq -1, -3$. What if m = -1 or -3?

Proof. Let us first split into cases for the value of m modulo 4. If $m \equiv 0$ or 3 (mod 4), then $\mathbb{A} \cap \mathbb{Q}[\sqrt{m}]$ is equal to

Problem 14. Show that $1 + \sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$, but not a root of 1. Use the powers of $1 + \sqrt{2}$ to generate infinitely many solutions to the diophantine equation $a^2 - 2b^2 = \pm 1$.

Proof. We see that the element $-\overline{(1+\sqrt{2})} = -1 + \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ is an inverse to $1+\sqrt{2}$:

$$(1+\sqrt{2})(-1+\sqrt{2}) = -1 + (\sqrt{2})^2$$
$$= -1 + 2$$
$$= 1$$

However, it is not a root of unity, as its absolute value, $1 + \sqrt{2}$, is greater than 1 - any root of unity must be of absolute value 1 in \mathbb{C} .

Therefore, we see that the numbers $\alpha_1, \alpha_2, \ldots$, where $\alpha_i = (1 + \sqrt{2})^i$, form an infinite set, and also that they are all units. Also, because $\alpha_1^{-1} = -\overline{\alpha_1}$, we have

$$\alpha_i^{-1} = (-1)^i \overline{\alpha_i}.$$

If we write $\alpha_i = a_i + b_i \sqrt{2}$ for some $a_i, b_i \in \mathbb{Z}$, we have

$$a_i^2 - 2b_i^2 = (a_i + b_i\sqrt{2})(a_i - b_i\sqrt{2})$$

= $(-1)^n \alpha_i \alpha_i^{-1}$ = ± 1 ,

With + holding iff $i = 0 \pmod{2}$. So, there are an infinite number of solutions to both Diophantine equations $a - 2b^2 = 1$ and $a - 2b^2 = -1$.

Problem 15. (a) Show that $\mathbb{Z}[\sqrt{-5}]$ contains no element whose norm is 2 or 3.

Proof. Let $\alpha = a + b\sqrt{-5}$ be an arbitrary element of $\mathbb{Z}[\sqrt{-5}]$, and write $N(\alpha)$ for $N^{\mathbb{Q}[\sqrt{-5}]}$. Then $N(\alpha)$ is equal to

$$\alpha \cdot \overline{\alpha} = (a + b\sqrt{-5})(a - b\sqrt{-5})$$
$$= (a^2 + 5b^2).$$

Therefore $N(\alpha)$ (mod 5) is equal to a^2 . The quadratic residues modulo 5 are 0, 1 and 4, so there is no way that $N(\alpha) \equiv 2$ or 3 (mod 5). So, $N(\alpha) \neq 2$ or 3.

(b) Verify that $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ is an example of non-unique factorization in the number ring $\mathbb{Z}[\sqrt{-5}]$.

Proof.

$$(1+\sqrt{-5})(1-\sqrt{-5}) = 1+5$$

= 6
= 2 · 3

However, the elements $1 + \sqrt{-5}$, $1 - \sqrt{-5}$, 2, and 3 are all irreducible in $\mathbb{Z}[\sqrt{-5}]$:

The norm of $1+\sqrt{-5}$ is 6, so if it could be factored as two nonunits $a \cdot b = 1+\sqrt{5}$, then we would have $N(a) \cdot N(b) = N(\alpha) = 6$. Assuming $N(a) \leq N(b)$, we would have either N(a) = 1 and N(b) = 6, or N(a) = 2 and N(b) = 3. We have seen that the second is impossible, and we also know that N(a) = 1 only if $a = \pm 1$, and we have assumed it is not a unit. So, $1 + \sqrt{-5}$ is irreducible, as is $1 - \sqrt{-5}$ by the same argument.

Similarly, 2 must be irreducible because its norm is 4; if it could be factored into two nonunits a and b, with $N(a) \leq N(b)$, then either N(a) = N(b) = 2, which is impossible, or N(a) = 1, so it is a unit. Finally, 3 is irreducible, since its norm is 9, and the norms of its nonunit factors would have to be 3 and 3 or 1 and 9, which is also impossible. So, 6 has non-unique factorization into irreducibles in $\mathbb{Z}[\sqrt{-5}]$.

Problem 21. Let α be an algebraic integer and let f be a monic polynomial over \mathbb{Z} (not necessarily irreducible) such that $f(\alpha) = 0$. Show that $\operatorname{disc}(\alpha)$ divides $N^{\mathbb{Q}[\alpha]}f'(\alpha)$.

Proof. Let g be the minimal polynomial of α . It is a theorem in Marcus, Ch. 2, that $\operatorname{disc}(\alpha) = N^{\mathbb{Q}[\alpha]}(g'(\alpha))$. Because $f(\alpha) = 0$, it must have g as a factor: say f = gh, for some polynomial $h \in \mathbb{Z}[x]$. Then f' = g'h + gh', by the product rule. So, calculating:

$$\begin{split} N^{\mathbb{Q}[\alpha]}(f'(\alpha)) &= N^{\mathbb{Q}[\alpha]}(g'(\alpha)h(\alpha) + g(\alpha)h'(\alpha)) \\ &= N^{\mathbb{Q}[\alpha]}(g'(\alpha)h(\alpha) + 0) \\ &= N^{\mathbb{Q}[\alpha]}(g'(\alpha))N^{\mathbb{Q}[\alpha]}(h(\alpha)) \\ &= \mathrm{disc}(\alpha) \cdot N^{\mathbb{Q}[\alpha]}(h(\alpha)) \end{split}$$

So, we do see that $\operatorname{disc}(\alpha)$ divides $N^{\mathbb{Q}[\alpha]}(f'(\alpha))$.

Problem 22. Let K be a number field of degree n over \mathbb{Q} and fix algebraic integers $\alpha_1, \ldots, \alpha_n \in K$. We know that $d = \operatorname{disc}(\alpha_1, \ldots, \alpha_n)$ is in \mathbb{Z} ; we will show that $d \equiv 0$ or $1 \pmod{4}$. Letting $\sigma_1, \ldots, \sigma_n$ denote the embeddings of K in \mathbb{C} , we know that d is the square of the determinant $|\sigma_i(\alpha_j)|$. This determinant is a sum of n! terms, one for each permutation of $\{1, \ldots, n\}$. Let P denote the sum of the terms corresponding to even permutations, and let N denote the sum of the terms (without negative signs) corresponding to odd permutations. Thus $d = (P - N)^2 = (P + N)^2 - 4PN$. Complete the proof by showing that P + N and PN are in \mathbb{Z} .

In particular we have $\operatorname{disc}(\mathbb{A} \cap K) \equiv O$ or 1 (mod 4). This is known as *Stickelberger's criterion*.

Problem 23. Just as with the trace and norm, we can define the relative discriminant disc_K^L of an *n*-tuple, for any pair of number fields $K \subset L$, [L:K] = n.

(a) Generalize Theorems 6-8 and the corollary to Theorem 6.

Proof.
$$j++j$$

(b) Let $K \subset L \subset M$ be number fields, [L:K] = n, [M:L] = m and let $[\alpha_1, \ldots, \alpha_n]$ and $[\beta_1, \ldots, \beta_m]$ be bases for L over K and M over L, respectively. Establish the formula

$$\operatorname{disc}_{K}^{M}(\alpha_{1}\beta_{1},\ldots,\alpha_{n}\beta_{m})=(\operatorname{disc}_{K}^{L}(\alpha_{1},\ldots,\alpha_{n}))^{m}N_{K}^{L}\operatorname{disc}_{L}^{M}(\beta_{1},\ldots,\beta_{m}).$$

Proof.
$$j++j$$

(c) Let K and L be number fields satisfying the conditions of Corollary 1, Theorem 12. Show that $(\operatorname{disc} T) = (\operatorname{disc} R)^{[L:Q]}(\operatorname{disc} S)^{[K:\mathbb{Q}]}$. (This can be used to obtain a formula for $\operatorname{disc}(\omega)$, $\omega = e^{2\pi i/m}$)