5.1 Esercizi

Esercizio 5.1 Sia G l'insieme $\{\mathbb{R} \mid x \neq -1\}$ con l'operazione $x \cdot y = x + y + xy$. Dimostrare che f(x) = x - 1 é un isomorfismo tra \mathbb{R}^* e G.

Esercizio 5.2 Dimostrare i seguenti fatti.

- 1. Il gruppo (\mathbb{R}/\mathbb{Z} , +) é isomorfo al gruppo (S^1 , ·), dove S^1 é l'insieme dei numeri complessi di modulo unitario;
- 2. Sia $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$, n > 1 l'insieme delle radici n-esime dell'unitá. Allora U_n é un sottogruppo di S^1 isomorfo a \mathbb{Z}_n ;
- 3. Sia $u \in U_n$, $n \ge 3$ e $u \ne 1$ e siano $r, s \in \operatorname{Aut}(\mathbb{C}^*)$ definiti come r(z) = uz e $s(z) = \bar{z}$ per ogni $z \in \mathbb{C}^*$. Dimostrare che il gruppo diedrale D_n é isomorfo al sottogruppo di $\operatorname{Aut}(\mathbb{C}^*)$ generato da r e s.

Esercizio 5.3 Sia $S^3 = \{(\alpha, \beta) \in \mathbb{C}^2 \mid |\alpha|^2 + |\beta|^2 = 1\}$ e sia

$$: S^3 \times S^3 \to S^3, ((\alpha, \beta), (\gamma, \delta)) \mapsto (\alpha, \beta) \cdot (\gamma, \delta) = (\alpha \gamma - \beta \bar{\delta}, \alpha \delta + \beta \bar{\gamma}).$$

- 1. Dimostrare che (S^3, \cdot) é un gruppo non abeliano;
- 2. Dimostrare che

$$SU(2) = \left\{ A = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \in GL_2(\mathbb{C}) \mid \det A = 1 \right\}$$

é un sottogruppo di $GL_2(\mathbb{C})$ isomorfo a (S^3, \cdot) .

Esercizio 5.4 Dimostrare che \mathbb{Z} non é isomorfo a \mathbb{Q} .

Esercizio 5.5 Dimostrare che:

- $(\mathbb{Q}, +)$ non è isomorfo a (\mathbb{Q}^*, \cdot) ;
- $(\mathbb{R}, +)$ non è isomorfo a (\mathbb{R}^*, \cdot) ;
- $(\mathbb{R}, +)$ é isomorfo a (\mathbb{R}^+, \cdot) ;
- $(\mathbb{Q}, +)$ non é isomorfo a (\mathbb{Q}^+, \cdot) .

Esercizio 5.6 Dedurre dagli Esercizi 4.8, 4.9 e 4.10 che:

5.1. ESERCIZI 87

1. $\operatorname{Inn}(S_n) \cong S_n$, per $n \geq 3$ e $\operatorname{Aut}(S_3) = \operatorname{Inn}(S_3) \cong S_3$ (Curiositá: in generale si dimostra che $\operatorname{Aut}(S_n) \cong S_n$ per $n \neq 2$, 6. Per maggiori informazioni, consulta la pagina di Wikipedia su *Automorphisms of the symmetric and alternating groups*).

- 2. $Inn(A_n) \cong A_n$, per $n \geq 3$.
- 3. $Inn(D_n) \cong D_n$, se n é dispari.

Esercizio 5.7 Siano G e H due gruppi e sia X un insieme di generatori di G. Se per ogni coppia di omomorfismi $f,g:G\to H$ si ha che f(x)=g(x) per ogni $x\in X$, si dimostri che f=g.

Esercizio 5.8 Siano G e H gruppi finiti e $f:G\to H$ un omomorfismo. Si dimostri che:

- 1. per ogni $x \in G$ si ha che o(f(x)) divide o(x);
- 2. se o(f(x)) = o(x) per ogni $x \in G$, allora f é iniettivo.

Dedurre da (1) che se N é un sottogruppo normale di un gruppo G allora o(xN) divide o(x), per ogni $x \in G$.

Esercizio 5.9 Sia $\langle \pi \rangle$ il sottogruppo di (\mathbb{R}^*, \cdot) generato da π . Dimostrare che nel quoziente $\mathbb{R}^*/\langle \pi \rangle$ ci sono $\phi(n)$ elementi di ordine n se n é dispari e $2\phi(n)$ elementi di ordine n se n é pari, dove $\phi(n)$ é la funzione di Eulero. (Suggerimento: poniamo $N = \langle \pi \rangle$ e sia $xN \in \mathbb{R}^*/N$ un elemento di ordine n. Allora $x^n = \pi^m$, per un certo numero naturale m. Dimostrare che si puó supporre m < n e che m non divide n).

Esercizio 5.10 Dimostrare che il sottogruppo di S_4 generato da $\{(13), (1234)\}$ é isomorfo al gruppo diedrale D_4 . Dedurre che S_4 non é generato da $\{(13), (1234)\}$ (cfr. Esercizio 3.9 del Capitolo 3). (Curiositá: si dimostra che S_n é generato da $\{(ab), (12...n)\}$ se solo se b-a é coprimo con n. Lo studente interessato potrá consultare: https://kconrad.math.uconn.edu/blurbs/grouptheory/genset.pdf per dettagli e altri risultati collegati).