Queuing Theory

Project: Queuing Model Simulation

Chi-Yu Li (2023 Fall)
Computer Science Department
National Yang Ming Chiao Tung University

Goal

 Understand how to simulate queuing models on real-world scenarios and compare the corresponding results with the theoretical ones

- You will learn how to
 - □ simulate queuing models
 - □ calculate the theoretical results of queuing models
 - □ confirm the correctness of simulation based on the comparison between simulated and theoretical results

Tasks

• Simulating queuing modes modeled from two practical scenarios

Obtaining the theoretical results of the queuing models

Comparing the simulated and theoretical results for each scenario

Scenario I

- Consider a network service with
 - 1 server, infinite queue size, and infinite number of packets
 - \Box Packet arrivals in a Poisson process (λ)
 - \Box Service times with an exponential distribution (μ)
- What are its waiting and system time distributions?
 - Please draw CDF figures based on their theoretical results
 - □ Please draw CDF figures by simulating the network service
 - Compare the simulated and theoretical results by calculating their MSEs (Mean Square Errors)

Scenario I (cont.)

Example Results

Mean Squared Error: 1.05

Mean Squared Error: 1.03

Scenario I (cont.)

- Consider the following two cases
 - \square Case I: $\lambda = 2$ packets/ms, $\mu = 10$ packets/ms
 - \square Case II: $\lambda = 8$ packets/ms, $\mu = 10$ packets/ms

Scenario II

- Consider the service of a tiny bank branch with
 - □ 1 bank teller
 - Dealing with 2 different businesses, A and B
 - Handling A and B with average service times $\frac{1}{\lambda}$ and $\frac{1}{2\lambda}$, respectively
 - ☐ Infinite queue size and infinite number of customers
 - \square Packet arrivals in a Poisson process (λ)
 - \Box Consider $\lambda = 10$ customers/sec

Scenario II (cont.)

- What are its waiting and system time distributions?
 - Please draw CDF figures based on their theoretical results
 - Please draw CDF figures by simulating the network service
 - □ Compare the simulated and theoretical results by calculating their MSEs (Mean Square Errors)

Scenario II (cont.)

• Example Results

Mean Squared Error: 0.75

Mean Squared Error: 0.84

Scenario II (cont.)

- Consider the following two cases from history statistics
 - □ Case I: 50% of customers request service A, whereas 50% of customers do service B
 - □ Case II: 25% of customers request service A, whereas 75% of customers do service B

Project Report

- Item I: please describe how you get the theoretical distribution (30%)
 - Briefly explain the steps and the derivation detail is not needed
- Item II: please plot figures for two scenarios, each with two cases (40%)
 - □ Totally, there are 8 figures
- Item III: please compare simulation and theoretical results for each case (30%)
 - ☐ You can use MSEs to observe the difference between two distributions

Demo Video

- You should prepare a demo video, which includes
 - □ showing how you simulate each scenario (using one of two cases)
 - □ showing how you execute your program
 - □ showing how you plot the CDF figure
- Submission
 - ☐ giving the URL in a file, called demo_video.txt, for accessing your demo video

Project Submission

- Due date: 2024/1/2 11:55pm
- Submission rules
 - □ Put all your files into a directory and name it using your student ID(s)
 - □ Zip the directory and upload the zip file to E3
 - □ A sample of the zip file: 01212112.zip
 - scenario1.py
 - scenario2.py
 - report.pdf
 - demo_video.txt
 - **....**

Hints

- You can leverage the P-K transform equation to get the theoretical distribution
- You can use any language for your programs
 - □ Python, MATLAB, etc.
 - All the third-party packages are all accepted
- You can use any kind of tool to draw the CDF figures
 - Including but not limited to Matplotlib for Python

Questions?