Total No. of Questions: 8]	

SEAT No.:		
[Total	No. of Pages : 2	2

P-7592

[6180]-107

T.E. (E & T.C Engineering)

ELECTROMAGNETIC FIELD THEORY

(2019 Pattern) (Semester - I) (304182)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data if necessary.
- 4) Use of a calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary
- Q1) a) For a parallel plate capacitor, area of plate $A = 120 \text{cm}^2$, spacing between plates d = 5 mm, separated by dielectric of cr = 12, connected t_0 40V battery. Find
 - i) Capacitance
 - ii) E
 - iii) D
 - iv) Energy stored in Capacitor
 - b) Derive boundary conditions that exist between two different magnetic materials. [10]

OR

- Q2) a) Derive an expression for capacitance parallel plate apacitor. [8]
 - b) A boundary exists at Z = 0 between two dielectrics crl=2.5 in region Z<0 and cr2=4 in region Z>0. The field in the region crl is $E=30a_x + 50a_y + 70a_z$ v/m. Find [10]
 - i) Normal Component of E₁
 - ii) Tangential Component of E₁
 - iii) Angle α, between E, and normal to surface
 - iv) Normal Component of D,
 - v) Tangential Component of D₂
 - vi) Angle α_2 between D_2 and normal to surface

	b)	v) versely of signal in killingee
		 i) Characteristic Impedance Z₀ ii) Attenuation Constant a Np/km iii) Phase Constant β radians/km iv) Wave Length λ in km
Q 8)	a)	OR A transmission line cable has following primary constants $R = 11 \Omega/\text{km G} = 0.8 \mu\text{mho/km L} = 0.00367 \text{H/km C} = 8.35 \text{nF/km at}$ a signal of 1khz calculate: [10]
	b)	impedance of dissipation less line. [10]
Q 7)	a)	A generator of IV, 1KHz supplies power to 100 km long transmission line, terminated in Zo and having following parameters. $R = 10.4 \Omega/km$, $L = 0.00367 \text{ H/km}$, $G = 0.8 \times 10^{-6} \text{ mho/km}$ and $C = 0.00835 \times 10^{-6} \text{ F/km}$. Calculate characteristics impedance, propagation constant,
	b)	For uniform plane waves explain the term Snell's Law. [8]
Q6)		OR For uniform plane waves explain Depth of penetration. [8]
	b)	
Q 5)	a)	for static electric field. [10] Find the skin depth of frequency of 1.6MHz in aluminium whose
<i>Q4</i>)	a)b)	Given H=H _m e ^{j(wt+βz)} a a/m in free space. Find E using Maxwell equation. [8] Write Maxwell equation for free space in point form and integral form
	b)	current density is given by $J_d = \partial D/\partial t$. [10]
Q 3)	a)	State and prove Poynting theorem State significance of Poynting Vector. [8]