Volnys Borges Bernal Volnys.bernal@usp.br

Sérgio Takeo Kofuji kofuji@lsi.usp.br

Sumário

- Sistemas operacionais tradicionais
- Virtualização
- Virtualização ao nível da linguagem de programação
- Virtualização ao nível de biblioteca
- Virtualização ao nível do sistema operacional
- Virtualização ao nível de hardware
- Virtualização ao nível do conjunto de instruções
- Resumo das técnicas de virtualização
- Sistemas de virtualização de servidores
- Estudo de caso:
 - Xen
 - VMware
 - VirtualBox
 - Microsoft Hiper-V

Multiprogramação

- Simula de um ambiente operacional no qual cada aplicação possui um processador
- Sistemas operacionais multiprogramados
 - Criação da abstração de processo
 - Cada processo possui a disposição uma máquina virtual de alto nível
 - Suporte do hardware:
 - Controlador temporizador
 - Modos de operação do processador (usuário/supervisor)
 - Memória virtual

Virtualização

- "Virtualização é um arcabouço ou metodologia de divisão de recursos de um computador em múltiplos ambientes de execução, através da aplicação de uma ou mais técnicas como particionamento de software e hardware, time-sharing, simulação parcial ou completa de máquina, emulação, qualidade de serviço e muitas outras".
 - SINGH [5]

A virtualização pode ocorrer em diferentes níveis:

- Nível da linguagem de programação
 - Interpretação de uma linguagem ou instruções virtuais
- Nível de biblioteca
 - User level API
- Nível do sistema operacional
 - Chamadas ao sistema (system calls)
- Nível de abstração de hardware
 - HAL (Hardware Abstraction Layer)
- Nível do conjunto de instruções
 - ISA (Instruction Set Architecture)

Característica

- Aplicação:
 - Codificada em uma linguagem interpretada, ou
 - Compilada para um conjunto de instruções virtuais interpretadas
- Maquina virtual
 - Interpreta uma linguagem de programação / instruções virtuais
 - Simula uma máquina virtual com instruções, registradores, memória e dispositivos

Vantagens

- Altamente portável
- Propicia independência de ambiente operacional
 - Independência de hardware
 - Independência de sistema operacional
- Facilita isolamento do ambiente operacional (sw e hw)
- Facilita mobilidade da aplicação

Desvantagens

- Limita o controle do ambiente operacional (sw e hw)
- Causa certa sobrecarga de processamento

Exemplos

Java Virtual Machine (JVM)

Exemplo: Java Virtual Machine (JVM)

- Responsável pela execução das instruções virtuais ("Java byte codes")
- Oferece uma máquina virtual contendo:
 - Processador virtual e seus registradores
 - Áreas de memória (código, heap e pilha de execução)
- Java Runtime Environment (JRE)
 - Inclui a JVM e tudo o necessário para execução em um determinado ambiente.
- Acesso ao hardware através do sistema operacional hospedeiro.

Característica

- Interceptação de API de biblioteca
- Implementação parcial ou completa da API sobre outro ambiente de execução

Vantagens

 Possibilidade de execução de aplicações de outros ambientes operacionais sobre o mesmo ISA

Desvantagens

- Sua implementação, dependendo do sistema, pode ser complexa
- Razoável sobrecarga de processamento:
 - Troca de contexto;
 - Troca de mensagens / chamadas ao sistema

Exemplos

- WindowsNT (W2K)
 - Subsistema Win32
 - Subsistema POSIX
 - Subsistema OS/2
- WINE (Win32 API, para Unix, open source)
- LxRun (Linux API, para SCO e Solaris)

Exemplo: WindowsNT

- Nativamente possui os seguintes subsistemas:
 - Subsistema Win32
 - Subsistema POSIX Para aplicações UNIX
 - Subsistema OS/2 Para aplicações OS/2
- Subsistemas realizam tradução de pedidos de serviço para chamadas WindowsNT ("executivo" - núcleo WindowsNT)

Exemplo: WINE

- WINE = "Wine Is Not an Emulator"
- Implementação open source da API do subsistema Win32 para UNIX
- Permite a execução de aplicações Win32 sobre
 - Linux
 - BSD
 - Solaris
 - Mac OS X
 - etc.
- Limitações
 - Não inclui ainda todas funcionalidades
 - Apresenta problemas na execução de várias aplicações Windows
 - Não suporta aplicações Windows 64 bits

Fonte: http://www.winehq.org/site/docs/winedev-guide/x2584

Wine

Interface de chamadas ao sistema

<u>Interface de hardware</u> (ISA-Instruction Set Architecture)

Exemplo: LxRun

- Implementação open source de mapeamento da API das chamadas ao sistema Linux para SCO e Solaris
- Permite a execução de executáveis Linux Intel em ambiente SCO Intel e Solaris Intel
- Implementado inteiramente em modo usuário, ou seja, não necessita nenhuma modificação do sistema operacional hospedeiro.
- Técnica utilizada
 - Remapeamento das chamadas ao sistema em tempo de execução
- Detalhamento
 - Chamada ao sistema no Linux é realizada através da instrução "int 0x80". Esta interrupção não é mapeada no SCO, gerando um sinal SIGSEGV.
 - LxRun intercepta este sinal e trata a interrupção, direcionando da forma apropriada para a chama ao sistema correspondente no sistema hospedeiro.

Exemplo:

LxRun

Interface de chamadas ao sistema

Interface de hardware (ISA-Instruction Set Architecture)

- Virtualização do sistema operacional fornecida pelo próprio sistema operacional
- As instâncias de máquinas virtuais compartilham:
 - Sistema operacional hospedeiro
 - Hardware
- Objetivo:
 - Particionar do espaço de usuário em vários ambientes de execução isolados
- Permite a execução de múltiplas instâncias virtuais do sistema operacional isoladas
- Do ponto de vista da aplicação, cada instância corresponde a um sistema operacional próprio.
- Instância =
 - Containers (Solaris, Docker)
 - Zones (Solaris),
 - Virtual private servers (OpenVZ),
 - Partitions,
 - Virtual environments (VEs),
 - Virtual kernel (DragonFly BSD),
 - Jails (FreeBSD jail or chroot jail)

Técnica utilizada

- Extensão do núcleo do sistema operacional e inclusão de novas chamadas ao sistema
- Formas de implementação em UNIX:
 - Sistema chroot (para sistema de arquivos) + novas chamada ao sistema para isolar processos e outros recursos

Vantagens

- Muito baixa sobrecarga, pois o programa utiliza a interface tradicional de chamadas ao sistema.
- Não necessita de recursos avançados de hardware para virtualização.

Desvantagens

- Necessita modificação do núcleo do sistema operacional
- Não permite hospedar um sistema operacional diferente do utilizado.

Exemplos

- Docker
- FreeBSD Jail
- Solaris Containers (permite emular Linux sobre solaris)
- Virtual Private Server VPS (patch ao kernel Linux)
- Ensim´s Virtual Private Server Ensim´s VPS (produto comercial para sistemas WEB, para Linux, utiliza VPS)

- Virtualização ao nível de Hardware Abstraction Layer (HAL)
- Disponibiliza uma máquina virtual que corresponde a:
 - Instruction Set Architecture (ISA) +
 - Virtualização dos dispositivos, processador e memória

Características

Host hóspede e hospedeiro utilizam o mesma ISA (*Instruction Set Architecture*)

Técnica utilizada

- Mapeamento recursos virtuais sobre os recursos físicos
- Máquina virtual:
 - Processamento (aplicações e sistema operacional) é realizado diretamente sobre o processador físico
 - Instruções privilegiadas: são tratadas pelo sistema de virtualização
 - Acesso a dispositivos: intermediado pelo sistema de virtualização

Tipos de sistemas de virtualização

- Hosted
 - A virtualização é realizada com o auxílio de um sistema operacional hospedeiro
- Stand alone (ou Bare Metal)
 - A virtualização é realizada sem auxílio de um sistema operacional hospedeiro

Sistema tipo *hosted*

Aplicação
Aplicação
Aplicação
Aplicação
Sistema operacional
hóspede
HAL (Máquina virtual)
HAL (Máquina virtual)

Sistema operacional hospedeiro

Monitor de maquina virtual (hipervisor)

Interface de hardware

(ISA-Instruction Set Architecture)

Controladores de dispositivos

Hardware

Processador, MMU e memória

D spositivos e interfaces de comunicação

Sistema tipo
 Stand Alone
 (ou Bare Metal)

Aplicação Aplicação

Sistema operacional hóspede

HAL (Máquina virtual)

Aplicação

Aplicação

Sistema operacional hóspede

HAL (Máquina virtual)

Monitor da máquina virtual (hipervisor)

Interface de hardware

(ISA-Instruction Set Architecture)

Hardware

Controladores de dispositivos

Processador, MMU e memória

Dispositivos e interfaces de comunicação

Vantagens

- Pouca sobrecarga (rápido)
- Isolamento e independência dos hosts hóspedes
- Possibilidade de utilização de diferentes sistemas operacionais nos hosts hóspedes

Motivações para virtualização

- Consolidação de servidores
- Ambientes de teste e homologação de sistemas
- Depuração de aplicações complexas e do sistema operacional
- Migração de sistemas

Exemplos

- VMware
- Xen
- VirtualBox
- Microsoft Hiper-V (Windows Server Virtualization)

Virtualização ao nível de conjunto de instruções

Virtualização ao nível de conjunto de instruções

Nível de conjunto de instruções

- Nível de ISA Instruction Set Architecture
- Técnicas utilizadas
 - Emulação de instruções do processador em software
 - Tradução de instruções para instruções do host hospedeiro
- Desvantagens
 - Ineficiente
- Aplicabilidade
 - Depuração
- Exemplos
 - Bochs (emulador x86, open source)
 - Crusoe (emulador x86, transmeta)
 - QEMU (x86, ARM, PowerPC, Sparc)

Virtualização ao nível de conjunto de instruções

Resumo das técnicas de virtualização

Resumo das técnicas de virtualização

	Linguagem de programação	Biblioteca	Sistema operacional	HAL	ISA
Desempenho	**	***	****	****	*
Flexibilidade	**	**	**	***	****
Facilidade de implementação	**	**	***	*	**
Grau de isolação	***	**	**	****	***

Fonte: NANDA [2]

Virtualização HAL

- Utilizam a técnica de virtualização HAL
- Motivações para a virtualização
 - Garantia de disponibilidade
 - Elasticidade (ajuste de capacidade de processamento)
 - Consolidação de servidores (conj. mínimo de servidores físicos)
 - Compatibilização de aplicações com diferentes sist. operacionais
 - Ambiente de homologação / ambiente de teste
 - Recuperação de desastres

Requisitos desejáveis

Sistema de armazenamento compartilhado (storage)

Funcionalidades adicionais

Virtualização de componentes de rede

Exemplos

- VMware
- Xen
- VirtualBox
- Microsoft Hiper-V (Windows Server Virtualization)

Terminologia

- Tipos de virtualização HAL
 - Virtualização total
 - Paravirtualização
- Sistema operacional hóspede e hospedeiro
- Máquina Virtual (MV)
- Hypervisor ou monitor de máquina virtual (MMV)

Virtualização total

- A virtualização ocorre sem a inclusão de otimizações ao Sistema Operacional para virtualização
- Gera certa quantidade de sobrecarga pois o Monitor de Máquina virtual deve oferecer à Máquina Virtual uma imagem semelhante a um sistema real, incluindo:
 - BIOS virtual
 - Espaço de memória virtual
 - Gerenciamento de memória virtual
 - Dispositivos virtuais

Para-virtualização

- Técnica de virtualização onde o sistema operacional hóspede é modificado para otimizar o desempenho.
- A máquina virtual HAL é similar, porém não idêntica àquela do hardware real.
- Possibilita
 - Simplificar o Monitor de Máquina Virtual
 - Tornar mais eficiente a execução na máquina virtual

Sistema operacional hóspede

 Sistema operacional que executa sobre uma máquina virtual

Sistema operacional hospedeiro

- Sistema operacional que executa diretamente sobre a máquina real
- Utilizado como infra-estrutura para criação das máquinas virtuais

Máquina Virtual (ou Domínio)

 Ambiente que é virtualizado, correspondendo ao sistema operacional e aplicações deste sistema operacional

Monitor de Máquina Virtual (Hypervisor)

 Responsável pelas atividades de gerenciamento dos recursos da máquina virtual

Principais motivações para virtualização

- Consolidação de servidores
 - Agrupar vários servidores virtuais em um conjunto reduzido de servidores físicos.
- Consolidação de aplicações
- Ambientes de teste e homologação de sistemas
- Execução de aplicações que utilizam diferentes sistemas operacionais
- Migração de sistemas
- Provisionamento de servidores
- Recuperação de desastres

- Desenvolvido originalmente na Universidade de Cambridge (UK)
- Primeira versão em 2003
- Disponível para o kernel Linux (XenLinux)
- Tipos de virtualização de hardware suportados
 - Virtualização total
 - Na arquitetura x86, somente com processadores:
 - Intel Virtualization Technology (Intel-VT)
 - AMD Virtualization (AMD-V)
 - Para-virtualização

Domínio 0 (máquina virtual 0)

- Somente neste domínio é permitido acesso à interface de controle do Monitor de Máquina Virtual (MMV).
- No domínio 0 são executados os softwares de gerencia da virtualização Xen

CPU

- Modos de operação do processador Intel usados por um sistema operacional tradicional
 - Ring 0 modo supervisor sistema operacional
 - Ring 1
 - Ring 2
 - Ring 3 modo usuário aplicações
- Modos de operação do processador Intel usados pelo Xen
 - Ring 0 MMV
 - Ring 1 Sistema operacional hóspede
 - Ring 2
 - Ring 3 Aplicações
- Isto possibilita que o Monitor de Máquina Virtual (MMV) execute no maior privilégio, aumentando a segurança e isolamento das máquinas virtuais.

E/S

- Virtualização total
 - Dispositivos são emulados
- Para-virtualização
 - Intermediada pelo sistema operacional do domínio 0
 - Otimizada (memória compartilhada entre domínios, ...)

Empresa

- VMware Inc.
- Fundada em 1998
- Acionistas principais: EMC / Dell

Produtos

- VMware Workstation player:
 - Aplicativo de virtualização simples e gratuita de uso pessoal para execução de um segundo sistema operacional sobre Windows ou Linux em computadores x64, para uso não comercial.
- VMWare Workstation Pro:
 - Aplicativo de virtualização para execução de vários sistemas operacionais no Windows e no Linux.
- VMware Fusion:
 - Aplicativo de virtualização Hipervisor para Macintosh Intel x86-64
- VMware ESXi:
 - Sistema hipervisor para virtualização.
- VMware vSphere:
 - Conjunto de ferramentas para infraestrutura de computação em núvem que utiliza o sistema de virtualização VMware ESXi.

Arquiteturas suportadas:

- IA-32: Intel Arquitecture 32 bits
- X86-64: x64, x86 64, AMD64 e Intel 64 bits

Encapsulamento do servidor (MV)

- Estado da Máquina Virtual
 - (Memória, imagens de disco, E/S, estado dispositivo)
- Estado da Máquina Virtual pode ser salvo em um arquivo
- Possibilita reuso ou transferência completa da máquina virtual com uma cópia de arquivo

Provisionamento de servidor

- Similar à cópia de um arquivo
- Migração de servidor
 - Similar à uma migração de dados
- Técnicas de gerenciamento de dados podem ser utilizadas para:
 - Cópia (clone) de servidores
 - Controle de versionamento
 - Disponibilidade do servidor

Virtualização tipo hosted

- VMware Workstation
- VMware Fusion

Arquitetura hosted

Aplicação

VMware App

Interface de

chamadas ao sistema

Sistema operacional hospedeiro

VMware driver

Aplicação

Aplicação

Sistema operacional hóspede

Máquina virtual

Aplicação

Aplicação

Sistema operacional hóspede

Máquina virtual

VMM – Virtual Machine Monitor

Interface de hardware

(ISA-Instruction Set Architecture)

Controladores de dispositivos

Dispositivos e

interfaces de comunicação

Hardware

Processador, MMU e memória

- Virtualização tipo stand alone (bare metal)
 - VMware ESXi

Arquitetura stand alone (bare metal)

Aplicação Aplicação Aplicação Aplicação Sistema operacional Sistema operacional hóspede hóspede Máquina virtual Máquina virtual Monitor da máquina virtual **Device drivers** Interface de hardware (ISA-Instruction Set Architecture) **Hardware** Processador, MMU Controladores de dispositivos e memória

> Dispositivos e interfaces de comunicação

VMware Vmotion

- Permite a migração de máquinas virtuais, entre servidores físicos, enquanto estão sendo executadas
- Vantagens
 - Balanceamento de carga de processamento dos servidores físicos
 - Possibilidade de execução de manutenção programada no servidor físico

VMWare Vmotion

VMware Networking

- Cada máquina virtual
 - Endereço MAC: único
 - Endereço IP: único, estático ou DHCP
- Componentes virtuais de interconexão
- ESX resource management
 - Permite restringir banda (média, pico, rajada)

- Exemplo de combinação de níveis de virtualização
 - Virtualização a nível de hardware + virtualização a nível de sistema operacional

VirtualBox

- Adquirido pela Oracle em 2010.
- Oracle VM VirtualBox é um sistema de virtualização tipo hosted (hosted hypervisor) livre e de código aberto (opensource) para arquiteturas x86.
- Pode ser instalado em sistemas operacionais Windows, macOS, Linux, Solaris, OpenSolaris, dentre outros sistemas.
- Suporta a criação e gerenciamento de máquinas virtuais hóspedes executando os sistemas Windows, Linux, BSD, OS/2, Solaris, Haiku, and OSx86, dentre outros sistemas.
- Para alguns sistemas operacionais hóspedes, para melhoria do desempenho, fornece um pacote de device drivers denominado"Guest Additions".

Arquitetura:

Virtualização de hardware hosted

Arquitetura hosted

Aplicação
Aplicação
Aplicação
Aplicação
Aplicação
Sistema operacional
hóspede
HAL (Máquina virtual)
HAL (Máquina virtual)

Sistema operacional hospedeiro

VirtualBox Desktop (hipervisor)

Interface de hardware

(ISA-Instruction Set Architecture)

Controladores de dispositivos

Hardware

Processador, MMU e memória

D spositivos e interfaces de comunicação

Microsoft Hiper-V

Microsoft Hiper-V

Arquitetura

Referências Bibliográficas

Referências Bibliográficas

- [1] NANDA, SUZANA; CHIUEH, TZI-CKER;
 A survey on virtualization technologies. White paper.
- [2] NANDA, SUZANA; A survey on virtualization technologies. Apresentação.
- [2] SMITH, JAMES; NAIR, RAVI; Virtual Machines. Morgan Kaufmann, 2005.
- [3] SIQUEIRA, LUCIANO; BRENDEL, JENS-CHRISTOPH; Virtualização. Linux New Media. São Paulo, 2007. 96p.
- [4] SINGH, AMIT; An introduction to virtualization. (www.kernelthread.com/publications/virtualization/)
- [5] VMWARE; Virtualization overview. VMWare white paper.
- [6] ABELS, TIM; DHAWAN, PUNNET, CHANDRASEKARAN, B.; An overview of Xen virtualization. 2005

Obrigado

Volnys Borges Bernal Volnys.bernal@usp.br

Sérgio Takeo Kofuji kofuji@lsi.usp.br