УДК.:004.71:519.254:621.31

С.М. Acaнoвa, a_sm07@kstu.kg

Кыргызский государственный технический университет им. И.Раззакова, 720044, **Кыргызстан**, г. Бишкек, пр. Мира, 66.

РАЗВИТИЕ СЕТЕЙ ПЕТРИ ДЛЯ РАЗРАБОТКИ САМООРГАНИЗУЮЩИХСЯ МНОГОКОМПОНЕНТНЫХ ВЫЧИСЛИТЕЛЬНЫХ АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ ЭЛЕКТРОЭНЕРГЕТИКИ

В работе дается определение самоорганизующемуся алгоритму, а также краткое описание расширения сетей Петри – вычислительных сетей Петри, которые являются средством построения таких алгоритмов. Приводится графическое представление и описываются вычислительные возможности сетей Петри. Также дано обоснование необходимости разработки эффективного инструмента для построения самоорганизующихся многокомпонентных (структурно-подобных) вычислительных алгоритмов для решения задач электроэнергетики. Разработка эффективного инструмента, т.е. вычислительных сетей Петри, позволяющих строить такие алгоритмы для анализа топологии, оптимизации структуры, расчета и моделирования динамики в сложных электроэнергетических системах, является весьма актуальной. Эффективность его использования объясняется прежде всего тем, что он позволяет достаточно простыми средствами строить структурно-подобные исследуемым объектам и удобные с позиции реализации на ЭВМ модели динамических систем с параллельно функционирующими и асинхронно взаимодействующими компонентами.

Ключевые слова: сети Петри, самоорганизующийся многокомпонентный вычислительный алгоритм, математическая модель, дискретные и непрерывные системы, электроэнергетические системы.

Введение

Современные технические системы, в частности системы электроэнергетики, относятся к классу сложных систем, которые обладают следующими свойствами: большое количество компонентов и сложные связи между ними; переменная структура системы, т.е. количество компонентов и связи между ними могут меняться во время ее функционирования; компоненты могут быть непрерывными, дискретными или непрерывно-дискретными (гибридными) и могут иметь различную физическую природу; между компонентами могут быть как физические, так и информационные связи, и т.д.

Получить единую математическую модель сложных систем и процессов, учитывающую вышеперечисленные свойства, часто не удается. Если даже удается ее както получить, то она, как правило, обладает большой размерностью (вычислительной трудоемкостью), и в ней с трудом угадывается структура исследуемых объектов, что приводит к значительным трудностям при получении правильной интерпретации результатов вычислений.

Одним из мощных средств, применяемых для построения структурно-подобных и удобных с позиций интерпретации и реализации на ЭВМ моделей сложных систем и процессов, является аппарат сетей Петри (СП) [1,2]. Моделирующие возможности СП и эффективность их применения в приложениях объясняется прежде всего тем, что СП – это интеграция графа и дискретной динамической системы, она может служить одновременно и статической, и динамической моделью описываемого ею объекта и является едва ли не самым удобным и многообещающим инструментом, позволяющим достаточно простыми средствами строить структурно подобные и удобные с позиции программирования модели дискретных объектов с параллельно функционирующими и асинхронно взаимодействующими компонентами.

Однако моделирующие возможности этих расширений СП [1,2] все же не позволяют получить эффективные сети Петри, реализующие сложные дискретные и дискретнонепрерывные вычислительные алгоритмы и алгоритмы обработки символьно-цифровой информации, возникающие при решении задач анализа статической топологической структуры, построения математической модели, моделирования и управления сложными распределенными системами, какими являются, например, крупные электроэнергетические системы, системы электроснабжения технологических установок сложных дискретных и дискретно-непрерывных производств, ирригационные и гидроэнергетические системы и т.д.

В связи с вышеуказанным, в работах[3] предложена расширенная сетевая модель – модель вычислительной сети Петри (ВСП), являющаяся дальнейшим развитием и обобщением вышеперечисленных расширений аппарата сетей Петри.

Ниже приводятся некоторые дополнения к ВСП и дается определение самоорганизующимуся алгоритму, т.е. приводится графическое представление и описываются вычислительные возможности ВСП, а также обсуждаются вопросы, связанные с применением ВСП для решения задач электроэнергетики. Отметим, что применение ВСП в приложениях, как станет ясно ниже при ее изложении, существенно расширяет круг решаемых задач моделирования в сравнении с существующими расширениями [1,2].

Также дается определение самоорганизующемуся алгоритму и краткое описание расширения сетей Петри – вычислительных сетей Петри, которые являются средством построения таких алгоритмов.

О пределение. Алгоритм A, решающий некоторую задачу Z, называется самоорганизующимся, если он обладает следующими свойствами:

Рисунок 1 — Структура i-й компоненты A_i алгоритма A

- 1) Алгоритм A состоит из n-компонент $\{A_1, A_2, ..., A_n\}$, информационные выводы которых взаимосвязаны друг с другом через множество позиций X, при этом в тексте алгоритма A его компоненты расположены в произвольном порядке. Множество компонент алгоритма A, взаимосвязанные через множество позиций X, образуют начальную статическую структуру данного алгоритма A. Структура i-й компоненты A_i показана на рис. 1, где прямоугольником обозначен вычислительный модуль алгоритма A_i ; $X_{ex}^i \subseteq X$ множество входных позиций; $X_{ebix}^i \subseteq X$ множество выходных позиций; $X_1^i \subseteq X$ множество управляющих позиций, и $X_2^i \subseteq X$ множество информационных позиций.
- 2) На каждом m-м такте функционирования алгоритма A срабатывают только активные компоненты из множества компонент $\{A_I,\,A_2,\,...,\,A_n\}$, образуя, таким образом, параллельно-последовательную вычислительную структуру. Активность или пассивность каждого i-го компонента A_i определяется на основе информации о состоянии множества управляющих позиций X_1^i . При срабатывании активного компонента A_i , на основе информации о состоянии множества информационных позиций X_2^i модифицируется состояние множества входных X_{gx}^i и выходных X_{gox}^i позиций.
- 3) В процессе функционирования многокомпонентного алгоритма A, в зависимости от состояния определенных позиций из множества X, может меняться структура определенных компонент A_i за счет изменения множеств и(или) входных $X_{ex}^i(m) \subseteq X$,

и(или) выходных $X^i_{\text{вых}}(m) \subseteq X$, и(или) информационных $X^i_2(m) \subseteq X$ позиций на каждом m-м такте его функционирования (рис.1).

Из-за ограниченности вычислительных возможностей существующего аппарата сетей Петри (СП) и их расширений для решения задач вышеуказанного характера в работах [3] предложено новое расширение СП — вычислительная сеть Петри (ВСП), являющаяся обобщением и дальнейшим развитием существующих СП (алгебраических и самомодифицируемых) и обладающая универсальной вычислительной возможностью для обработки символьно-числовой информации. Определены вычислительные компоненты, язык (коды) их описания и правило их функционирования, позволяющие набору вычислительных компонент, построенных для решения той или иной задачи, структурно и логически самоорганизовываться в процессе их функционирования для получения решения поставленных задач.

Сетевая структура ВСП, отражающая как статическую, так и динамическую структуру исследуемого процесса или системы, формально определяется как набор: $C = ((P, \Lambda, \Psi, T, E), D, \Omega, \Phi, W, \mu, \gamma)$.

В этом наборе (условно-графическое обозначение компонентов ВСП, их теоретикомножественное описание и наименование приведены в таблице 1, а векторная функциональная схема сетевой структуры ВСП показана на рис. 2:

Рисунок 2 – Векторная функциональная схема сетевой структуры ВСП

- 1) P множество позиций, предназначенных для моделирования состояния сети (табл. 1, п.1): $P = P_p \cup P_q \cup P_s$, где $P_p = \{p_i \mid i \in I_p\}$ множество дискретных (целочисленных) позиций p_i ; $P_q = \{q_i \mid i \in I_q\}$ множество непрерывных (вещественных) позиций q_i ; $P_s = \{s_i \mid i \in I_s\}$ множество символьных позиций s_i .
- 2) Λ двухэлементное множество позиций логических констант (табл. 1, п.2): $\Lambda = \{\lambda_0, \, \lambda_1\}$, где $\lambda_0 = 0$ «ложь»; $\lambda_1 = 1$ «истина».
- 3) Ψ множество позиций-указателей (табл. 1, п.3): $\Psi = \Psi_p \cup \Psi_q \cup \Psi_s$, где $\Psi_p = \{\&\ s_i \ |\ s_i \in S_p \subset P_s\}$, $\Psi_q = \{\&\ s_i \ |\ s_i \in S_q \subset P_s\}$, $\Psi_s = \{\&\ s_i \ |\ s_i \in S_s \subset P_s\}$ множества указателей, соответственно, на дискретные $p_i \in P_p$, непрерывные $q_i \in P_q$ и символьные $s_i \in P_s$ позиции; $\&\ s_i$ формула указателя, s_i символьная позиция, моделирующая память указателя, а $\&\$ операция макроподстановки, осуществляющая подстановку содержимого x памяти s_i в качестве позиции x вместо самого указателя $\&\ s_i$, иначе говоря, указатель $\&\ s_i$ превращается в позицию с именем x.
- 4) T множество переходов, предназначенных для моделирования событий в сети (табл. 1, п. 4): $T = \{t_i \mid j \in I_T\}, \quad I_T = \{1, 2, ..., n_T\}$.

- 5) E отношение инцидентности позиций, указателей и переходов, т.е. множество дуг сети (табл. 1, п. 5-9): $E = E_\Lambda \cup E^{(+)} \cup E^{(-)}$, $E_\Lambda \subseteq \Lambda \times T$, $E^{(+)} \subseteq (P \cup \Psi) \times T$, $E^{(-)} \subset T \times (P \cup \Psi)$.
- 6) D множество позиций, предназначенных для хранения предметных констант (табл. 1, п.10): $D = D_p \cup D_q \cup D_s$.

Таблица 1 – Условно-графические обозначения компонентов сетевой структуры ВСП

	Условно- графическое обозначение	Теоретико-множественное описание	Наименование
1	<i>x</i> O	$x \in P = P_p \cup P_q \cup P_s$	Позиция х
2	<i>x</i> •	$x \in \Lambda$	Позиция <i>х</i> -логических констант
3	$\& \bigcup_{\mathcal{C}S_i} \underbrace{\mathbf{O}}_{X}$	& $s_i \in \Psi$, $s_i \in S \subset P_s$, $x \in P$	Указатель & s_i на позиции $x \in P$
4	t _{j.}	$t_j \in T$	Переход (событие)
5	$x \longleftrightarrow t_i$	$(x,t_j){\in}E_{\Lambda}{\subset}E^{(+)},$ где $x{\in}\Lambda,t_j{\in}T$	Логическая дуга (x, t_j) —входная
6	$x \longrightarrow t_i$	$(x,t_j) \in E^{(+)},$ где $x \in P$, $t_j \in T$	Входная дуга (x, t_j)
7	t _i	$(t_j,x){\in}E^{(-)},$ где $x{\in}P,t_j{\in}T$	Выходная дуга (t_j, x)
8	$\&\underline{s}_i$ O) t_i	$(\&s_i,t_j){\in}E^{(+)},$ где $\&s_i{\in}\Psi,t_j{\in}T$	Входная дуга — указатель $(\&s_i, t_j)$
9	<i>t</i> _j ├─($(t_{j},\&s_{i})\!\in E^{(-)},$ где $t_{j}\!\in\!T,\&s_{i}\!\in\!\Psi$	Выходная дуга — указатель $(t_j, \& s_i)$
10	d O	$d \in D = D_p \bigcup D_q \bigcup D_s$	Позиция для хранения констант
11	o	$\omega \in \Omega$	Знак функции
12	x_1 x_i x_i	$(\omega, x_1,, x_i,, x_k) \in \Phi$	Структура интерпретируемых формул (функция разметки дуги)
13	$x \xrightarrow{y} y$ $x_1 \xrightarrow{x_i} y$	$((x, y), (\omega, x_1,, x_i,, x_k)) \in W$ $(x, y) \in E, (\omega, x_1,, x_i,, x_k) \in \Phi$ $\omega \in \Omega, x_i \in (P \cup \Psi \cup D), \forall i$	Структура вычислительного элемента $V(x, y)$ дуги (x, y)

7) Ω — множество знаков стандартных и собственных функций (арифметических, логических, предикатных и т.д., табл.1, п.11):

$$\Omega = \Omega_{\Lambda} \bigcup \Omega_p \bigcup \Omega_q \bigcup \Omega_s$$
.

- 8) Ф множество структур интерпретируемых формул (табл.1, п.12): $\Phi \subseteq \Omega \times [\bigcup_{k=1}^a (P \bigcup \Psi \bigcup D)^k].$
- 9) $W = W_{\Lambda} \cup W^{(+)} \cup W^{(-)}$ однозначное отображение, сопоставляющее каждой дуге $(x,y) \in E$ вполне определенную (единственную) структуру из множества структур интерпретируемых формул Φ для установки зависимости разметки данной дуги от состояния сети: $W: E \to \Phi$, здесь элементы множества W представляют собой код (кортеж), описывающий структуру вычислительного элемента (ВЭ) V(x,y) дуги (x,y): $((x,y),(\omega,x_{i_1},x_{i_2},...,x_{i_k})) \in W$, $(x,y) \in E$, $(\omega,x_{i_1},x_{i_2},...,x_{i_k}) \in \Phi$ (табл.1,п. 13).

При этом $((x,t),(\omega,x_{i_1},x_{i_2},...,x_{i_k}))\in W^{(+)},$ $((t,y),(\omega,x_{i_1},x_{i_2},...,x_{i_k}))\in W^{(-)}$ и $((\lambda,t),(\omega_\Lambda,x_{i_1},x_{i_2},...,x_{i_k}))\in W_\Lambda$ — структуры, соответственно, входных, выходных ВЭ и ВЭ для проверки активности перехода t. Набор ВЭ V(x,y) дуг (x,y), у которых или x=t, или y=t, а противоположными их концами являются соответствующие им позиции из множества $P\bigcup\Psi$, образуют вычислительный модуль (ВМ) V(t) перехода t. ВСП состоит из определенного набора вычислительных модулей V(t), $\forall t\in T$, взаимосвязанных через соответствующие позиции из $P\bigcup\Psi$.

10) μ — маркировка позиций P (моделирование состояния позиций сети):

 $\mu = \mu_p \cup \mu_q \cup \mu_s$, $\mu_p : P_p \to N$, $N = \{0, 1, 2, ...\}$, $\mu_q : P_q \to R$, $R = (-\infty, +\infty)$, $\mu_s : P_s \to A^*$, где A^* — множество всех цепочек (слов) над алфавитом $A = \{A, B, C, ..., a, b, c, ..., 0, 1, 2, ..., 9, ...\}$, включая пустую цепочку ε . Модификацию состояния $\mu(x)$ позиций $x \in P$ производят соответствующие им ВЭ V(t,x), V(x,t) переходов $t \in T$ в результате их срабатывания.

11) γ – маркировка переходов T (моделирование состояния переходов сети):

 $\gamma: T \to \{0,1\}$. Здесь γ является функциональным отображением, сопоставляющим каждому переходу $t_j \in T$ однозначно определенный элемент из двухэлементного множества $\{0,1\}$. При $\gamma(t)=1$ переход t — активный, в результате чего срабатывает ВМ V(t). Иначе, т.е. при $\gamma(t)=0$, переход t — пассивный, и ВМ V(t) не срабатывает. Модификацию состояния $\gamma(t)$ перехода t производит ВЭ $V(\lambda,t)$ следующим образом: если $\lambda = \omega_{\Lambda}(x_{i_1}, x_{i_2}, ..., x_{i_k})$, то $\gamma(t)=1$, иначе $\gamma(t)=0$. При срабатывании ВМ V(t) активного перехода t срабатывают все ее ВЭ, в результате чего модифицируется состояние $\mu(x)$ всех позиций $x \in P$, соответствующих срабатываемым ВЭ по определенным правилам, в зависимости от типов функций $\omega(x_{i_1}, x_{i_2}, ..., x_{i_k})$ разметок дуг этих ВЭ.

12) Указатель & $s_i \in \Psi$ называется указателем на позицию $x \in P$, т.е. & $s_i = x$, если состояние $\mu_s(s_i)$ памяти $s_i \in S$ данного указателя & s_i равно имени x указываемой позиции, т.е. $\mu_s(s_i) = x$, $x \in P \subset A^*$, $P = P_p \bigcup P_q \bigcup P_s$, $s_i \in S \subset P_s$.

Таким образом, как сказано в [3] ВСП имеет, в сравнении с существующими СП, следующие дополнительные вычислительные возможности:

• наличие позиций различных типов, т.е. числовых (дискретных P_p , непрерывных P_q) $P_p \cup P_q$ и символьных P_s , а также наличие среди набора функций разметки дуг функции возврата имени позиции и функций символьных обработок, позволяет осуществлять обработку символьно-числовой информации и эффективно решать задачи анализа топологии сложных систем;

- наличие указателей на различные типы позиций позволяет реализовать задачи, связанные с произвольной выборкой позиций из заданного множества, и за счет этого моделировать системы с перестраиваемой структурой;
- наличие позиций логических констант, дуг логического типа и предикатных функций разметки дуг логического типа, введенных для проверки активности переходов, позволяет достаточно легко разрешать проблемы конфликтов между ВМ ВСП и организовывать ситуационно управляемые параллельно-последовательные вычислительные процессы в зависимости от состояния их позиций.

Применение ВСП для решения задач электроэнергетики

Вышеперечисленный набор возможностей ВСП позволяет решать, например, следующие сложные актуальные задачи электроэнергетики:

- машинный анализ топологической структуры графа сложнозамкнутой электрической сети и построение ее математической модели (постановка задачи в [4]);
 - решение задач на графах электрической сети;
- определение оптимальных мест размыкания сети (т.е. выбор оптимальной конфигурации сети), обеспечивающих минимум сезонных потерь электрической энергии [5];
 - расчет надежности электрических сетей;
- управление технологией дискретного производства с целью равномерного потребления электрической энергии и обеспечения спроса рынка сбыта (постановка задачи в [6]);
- проектирование интеллектуальных автономных распределенных гибридных энергокомплексов с возобновляемыми источниками энергии (методика проектирования в работе [7]) и т.д.

Заключение

Таким образом, в данной работе внесено дополнение к расширению сетей Петри со усиленной моделирующей возможностью, получившее название вычислительная сеть Петри, являющаяся обобщением и дальнейшим развитием самомодифицируемых, алгебраических сетей, обладающая универсальной вычислительной возможностью для обработки символьно-числовой информации и позволяющая строить самоорганизующиеся, многокомпонентные, структурно-подобные и удобные с позиций реализации на ЭВМ и интерпретации результатов вычислений модели сложных дискретных, непрерывных и дискретно-непрерывных систем, какими являются системы электроэнергетики, а также преодолевать проблемы, связанные с размерностью исследуемых систем, за счет возможности распараллеливания вычислительных процессов.

При этом ВСП, как было сказано ранее в работе [3], обладает следующими достоинствами: возможностью автоматизации формирования структурированных, легко интерпретируемых вычислительных алгоритмов; возможностью организации последовательно-параллельных вычислений, что существенно повышает быстродействие вычислительных процессов; коды ВСП являются одновременно и моделью, и алгоритмом, и программой реализации на ЭВМ; располагать вычислительные модули в текстах вычислительных алгоритмов в произвольном порядке, поскольку эти модули структурно и логически самоорганизовываются соответствующим образом, взаимодействуя через состояние позиций в процессе функционирования ВСП.

Литература:

- 1. Котов В.Е. Сети Петри. М.: Наука. Главная редакция физикоматематической литературы, 1984.
- 2. Лескин А.А., Мальцев П.А., Спиридонов А.М. Сети Петри в моделировании и управлении. Л.: Наука. 1989 г.

- 3. М.С. Асанов. Структурная модель вычислительных сетей Петри / М.С. Асанов, С.М. Асанова, К.А. Сатаркулов. // Известия КГТУ. 2008. №13. С. 78 85.
- 4. Асанова С.М. Моделирующий комплекс для оценки оптимального количества информации о текущем состоянии электроэнергетических систем. Известия КГТУ им. И.Раззакова. Материалы МНТК «Инновации в образовании, науке и технике». Т. І, №9. Бишкек. 2006. С. 440 447.
- 5. Asanov M., Kokin S.,Satarkulov K., Asanova S.M., Dmitriev S., Safaraliev M.The use of Petri computing networks for optimization of the structure of distribution networks to minimize power losses. <u>Energy Reports</u>, <u>Vol. 6</u>, <u>Supplement 9</u>, December 2020, 1337–1343.
- 6. Арфан аль Хакам, Асанов М.С., Бримкулов У.Н. Организация технологии дискретного производства с целью равномерного потребления электрической энергии. Наука и новые технологии №1. Бишкек. 2002. С. 56-62.
- 7. Методика проектирования интеллектуальных автономных распределенных гибридных энергокомплексов с возобновляемыми источниками энергии / С. М. Асанова, С. М. Суеркулов, А. Б. Бакасова [и др.] // Проблемы автоматики и управления. 2022. № 1(43). С. 21-32. EDN VBMNSS.