Demographic Modeling: A Primer

Matthew Aiello-Lammens
Pace University

What is demographic modeling?

Integration of ecological knowledge and a little math to answer questions in applied ecology

Why model?

Assess vulnerability

Assess human impacts

Evaluate management options

Assess invasion risk

Lots of 'assessing' – but ultimately we model to help us understand ecological processes and inform decisions

Individual Based

Very Flexible

Can Incorporate
Many Realistic
Factors (e.g.
Genetics, Behavior)

Why they're good

Individual Based

Data Intensive!

Very sensitive to assumptions

Easy to make numerical and logical mistakes

Why they're not so good

Age- or Stage-Based Flexible and realistic

Few implicit assumptions

Why they're good

Age- or Stage-Based Date intensive

Numerical errors possible

Difficult to add individual characteristics (e.g. genetics or behavior)

Why they're not so good

A simple model of population growth

$$N(t+1) = N(t) + B - D + I - E$$

A simple model of population growth

$$N(t+1) = N(t) + B - D + I - E$$

A *very* simple model of population growth

$$N(t+1) = B$$

A <u>very</u> simple model of population growth

Each individual produces foffspring during it's life, so Births = N * fand Pop. Size Next Year = N * f

$$N(t+1) = N(t) * f$$

A little more complicated – a *long-lived* species Births **Deaths Population Population** size this size next year year

$$N(t+1) = N(t) + B - D$$

$$N(t+1) = N(t) + N(t)*f - (1-s)*N(t)$$

A slide of algebra

Pop. Next Year = N + B - D

Pop. Next Year =
$$N + f*N - (1-s)*N$$

Pop. Next Year = N + f*N - N + s*N

Pop. Nex Year = (f+s)*N

Another slide of algebra

N(t+1) = R*N(t) is the basis for geometric growth and we call R the 'replacement', or growth rate

Multiple time steps – geometric growth

$$N(t=1) = R*N(t=0)$$

 $N(t=2) = R*\{N(t+M(t=0))\}$

This recursive relationship yields the following general relationship: $N(t) = R^t N(0)$

Multiple time steps

Plot of geometric growth: $N(t) = R^t N(0)$

Exponential growth

$$N(t+1) = N(t) + B - D$$

$$\Delta N = N(t+1) - N(t) = b*N - d*N$$
Let ΔN be very small
$$dN/dt = (b - d)*N = r*N$$
Solve the differential equation
$$N(t) = N(0)*e^{rt}$$

Why go over this?

Exponential growth is a basic demographic model, and usually a good place to start!

Often our data is in annual time steps

Many plants have a discrete growing season

Many plants have a discrete reproduction period (e.g. fruiting)

Assume discrete annual growth

Thus, we focus on R (and not r)

Five seasons of census data

$$N(t+1) = R*N(t)$$

$$R = N(t+1) / N(t)$$

Year	Estimate for R
2001 - 2002	1.035
2002 - 2003	1.014
2003 - 2004	1.060
2004 - 2005	1.033
Geometric Average	1.036
Standard Deviation	0.019

Because discrete-time population growth is a multiplicative process, use *Geometric Mean*

Variability can have great impacts on population dynamics

Without Demographic Stochasticity R = 1.03

With Demographic Stochasticity R = 1.03

Without Environmental Stochasticity R = 1.03

With Environmental Stochasticity R = 1.03 (SD = 0.019)

Without Stochasticity R = 1.03

With Both Environmental and Demographic Stochasticity $R = 1.03 \; (SD = 0.019)$

Deterministic

Stochastic

Deterministic

Stochastic

Deterministic

Stochastic

Deterministic

Stochastic

In case we missed that!

Variability can have great impacts on population dynamics

This does *not* mean that models are inherently uncertain

Plant ecology complicates model outcomes

Stage (Age) structured models - adding ecological realism

Incorporating the effects of age can increase ecological realism of our models

Stage (Age) structured models - adding ecological realism

Age Matters

S_{Seedling}

$$F_{seedling} = 0$$

S_{Adult}

$$F_{adult} = 22.5$$

Incorporating the effects of age can increase ecological realism of our models

Age Matters

Age Distribution
The number of
individuals in in each
age category can
vary (e.g. seeds vs.
seedlings vs. adults)

OK, what does one of these models look like?

Stage structured model for Camelina sativa

Stage structured model for *Camelina sativa* **Parameter Estimation**

Parameter	Meaning	Data	Estimate
F _{Emerg}	Seed emergence from Fall (Autumn) seedbank	Counts of emergence from marked plots (Fig 2,3)	0.024 ± 0.02

Stage structured model for *Camelina sativa* **Calculations and Simulation**

$$\begin{bmatrix} SBa(t+1) \\ Sdl(t+1) \\ A(t+1) \end{bmatrix} = \begin{bmatrix} SBa(t) * F_{Emerg} \\ SBa \end{bmatrix} \xrightarrow{F_{Emerg}} Sdl \xrightarrow{S_t} A$$

$$SBa(t+1)$$

$$Sdl(t+1)$$

$$A(t+1)$$

$$SBa$$

$$\begin{bmatrix} SBa(t+1) \\ Sdl(t+1) \\ A(t+1) \end{bmatrix} = \begin{bmatrix} A(t) * S_{pp} + SBa(t) * (1-F_{emerg})S_S \\ SBa(t) * F_{Emerg} \\ Sdl(t) * S_t \end{bmatrix}$$

$$\begin{bmatrix} SBa(t+1) \\ Sdl(t+1) \end{bmatrix} = \begin{bmatrix} A(t) * S_{pp} + SBa(t) * (1-F_{emerg})S_S \\ SBa(t) * F_{Emerg} \\ Sdl(t) * S_t \end{bmatrix}$$

Stage structured model for *Camelina sativa* **Calculations and Simulation**

Stage Matrix

This type of demographic model is often called a *matrix model*, or a *matrix projection model*

This type of demographic model is often called a *matrix model*, or a *matrix projection model*

This type of demographic model is often called a *matrix model*, or a *matrix projection model*