We begin by re writing the system of equations as mating
multiplication (dust let kappa = L)
$m \times_1 = (-K - L) \times_1 + L \times_2$
m x2 = (-K-L) x2 + L X,
is enceded by
$ \frac{\partial^2 \left[x_i \right]}{\partial t^2 \left[x_2 \right]} = \left[-K - L \right] \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right] $
We then make the ansatz that
(x,C+) = (A) ert; thus
$m r^{2} \begin{bmatrix} A \cdot J - \begin{bmatrix} -K - L & L \\ A - K - L \end{bmatrix} \begin{bmatrix} A \cdot J \\ A - J \end{bmatrix} (1)$
and thus this substitution works if
M=[-K-L] has eigenvector [A,] and eigenvalue mr2
We can find the eigenvalues by solving
0 et ([-K-L-X]) = 0
for X's
$(-k-L-\chi)^2-L^2=0$
Implies
7-1-1-1-1-2
X L N I MI L - K, JK-ZL
therefor for an atz to hold, we must provide that
Oysetting that
Therder for our and atz to hold, we must provide that by setting that mt2-12 2 7 = i \(\frac{k}{n} \) or v = \(\frac{K+2L}{n} \)
m a m

	Plugging in there r into (1), we get that [1-1][1] = 0 > 2 - K > eigenvector[1] and for 2=10 - L-1 - 1 [4] = [4] 0 > eigenvector[1]
-	
_	,
-	
-	
i	~