1

Assignment 1

Addagalla Satyanarayana

Abstract—This document explains how to find a line perpendicular to 2 lines and passing through a point.

Download the python code from

https://github.com/AddagallaSatyanarayana/AI5006/tree/master/Assignment1

and latex-tikz codes from

https://github.com/AddagallaSatyanarayana/AI5006/tree/master/Assignment1/Assignment1.tex

1 Problem

Find the vector equation of the line passing through the point $\begin{pmatrix} 1\\2\\-4 \end{pmatrix}$ and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$

2 Solution

Equation of a line **l** passing through the point **a** and parallel to the line **n** is given by:

$$\mathbf{l} = \mathbf{a} + L\mathbf{n} \tag{2.0.1}$$

where L is some constant. Since the line passes through $\begin{pmatrix} 1\\2\\-4 \end{pmatrix}$, $\mathbf{a} = (1\ 2\ -4)\mathbf{x}$

Let \mathbf{n} be the normal vector to both lines. If $\mathbf{m_1}$ and $\mathbf{m_2}$ are the direction vectors of the lines, then

$$\mathbf{m_1}^T \mathbf{n} = 0 \tag{2.0.2}$$

$$\mathbf{m_2}^T \mathbf{n} = 0 \tag{2.0.3}$$

Let
$$\mathbf{n} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
; $\mathbf{m_1} = \begin{pmatrix} 3 \\ -16 \\ 7 \end{pmatrix}$; $\mathbf{m_2} = \begin{pmatrix} 3 \\ 8 \\ -5 \end{pmatrix}$

Since \mathbf{n} is perpendicular to \mathbf{m}_1 and \mathbf{m}_2

$$3x - 16y + 7z = 0 ag{2.0.4}$$

$$3x + 8y - 5z = 0 ag{2.0.5}$$

Solving the equations,

$$\frac{x}{2} = \frac{y}{3} = \frac{z}{6} = K \tag{2.0.6}$$

$$x = 2K, y = 3K, z = 6K$$
 (2.0.7)

$$\mathbf{n} = K(236)\mathbf{x} \tag{2.0.8}$$

So the equation of the required line is

$$\mathbf{l} = (124)\mathbf{x} + L(236)\mathbf{x} \tag{2.0.9}$$

where L is any constant.

$$\mathbf{l} = \begin{pmatrix} 1\\2\\-4 \end{pmatrix} + L \begin{pmatrix} 2\\3\\6 \end{pmatrix} \tag{2.0.10}$$

Fig. 0: Perpendicular Line