= 1 "I'm sin odp = 1 1 1 (1-cos 29)dp (W=11,15) Anay Houldedhod. The above graphical multiod is very good way of = Im [1 1da - 1 cos20 da] finding rms vollage of a alternating wardown that I non-sinusoidal in nature. = Im [Q - SIn20] =- when dealing with pure sinusidal warriom we can make ble a little bit equier by wing an analytical or mathematical way of finding the ms value : 票(町 Consider sinusidal varing alternating current - <u>In</u> and square of this current as shown in ly. Hence Root mean Iguar value is ms value can be calculated as The current I = Im sing while T2= 72m SIZE Ims - Im Average value of square of current over heil cyclein = Area of come over hall cycle
Length of box over hall cycle Ims = 0,707 Im

II 2

Ims = Mean or Average of Jayare of Lyment

This relation shows that mis value of AC is

about 70.7 4. of its peak value. Similarly: Yms= 0.707 Vm

A.C. Through Series R-C Circust From the tongle. $\mathcal{M}_{\mathcal{H}}$ $Y = \int (V_R)^2 + (V_C)^2 = \int (I_R)^2 + (I_R)^2$ = I J(R)2+(XC)2 where - Ymsinwt [R2+(xc)2 is the impedance of the circu The Jeries combination is connected across 4.6. Jupply ghen by *Impedance: 7 = Jusinwt Similar, in R-C. Out in this case also, the impedance Cincit draws a current I , then there are two Is nothing but opposition to the flow of alternating voltage drops current. R= VR 1) ·VR = I. R. Vc = IXc Xc=Vc 2TT FC Z-¥ According Kircholl Vollage law V = VR +VC X-component of impedance is R and is given by V = IR + IXC RED R = Zcos 0 and Y component of impedance u Xc and given by BUNITA case of resultance, vollage and current are Xc = Zsin O. in Phase But , as direction of the XC is the negative Y direction In case of capacitance, current leads the voltage the reactangular form of the impedance is denoted as by goile voltage lags current by go. VR=IR Z-R-JXc whilein Polar form 290 Yc . Ve= IXc Z= . 121 /- O. 37/48 2016 MA

	· · · -			
* Similarity:	9.6	_		
Electric Cinut	Magnetic Circuit.			
		ᆚ	Electric Circuit	Magnetic Grays.
Path traved by the current	Path traved by magnetic [lux		- 0.5 0.1 ° A	
Di called as electric circuit	U called as majoretic circuit.	>	In electric circuit the current	Actually magnetic flux
			actually flow ie there u	do not slow it exists.
E.M.F is the driving force	M.M.F is the driving force		movement of electrons.	
in electric arent, which is	in majnetic unwit which			
measured in vold (V).	i measured in ampertumy	2	Number of good electrical.	2) No perfect magnetic
1 1 1 1	(AT).	_	insulators are available.	insulator exists.
7.0	1			
(unrent (I) in electric	3. Flux (b) in the magnetic	3>	Energy must be supplied to	3) Energy is required to
Unt measured in ampers	cht measured in Webers.	_		create the magnetic
			maintain the flow of	flux; but not required.
Routance oppose the flow	4. Keluciance is opposed by		current.	to maintain it.
of concept ont in opul(v)	magnetic pain to the Ilux.			
	Unit's Amper tum/weber	4>	At normal conditions no . &	> Flux can exists in
		1		argap even at
R=P1	S = 1		the air gape to the	nomal condition.
4	H. Hrq		7	
	4	5)		The reluctance, permeance
I = emi	0 = m·m·f	_	are independent of current of	and permeability are
Rustand	reluctane '.	00		ependent on 114x
() () ()	77 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 4		lensity.
(unent density (d) = 1 A/m	The 14x denily (B) = 1 Wolm	12	to electric circuit it is 6>3	in magnetic Circuit it
		1'	possible to point out 1	dillicult to find out
Conductane =	Permeanu=	1	where emf is alting. ex	actly where the mml tr
13.	3	_	· · · · · · · · · · · · · · · · · · ·	Ung.
Kirchell Current and vollage	Kirchoff mm! law and flux			
law is applicable to electric of	law is applicable to 12016	1		
	magnetic chil)		