Question	Answer	Marks	Guidance
(a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6\left(-1\right)^2 - \frac{4}{\left(-1\right)^3} > 0 \therefore \text{ minimum or } \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 10 \therefore \text{ minimum}$	B1	Sub $x = -1$ into $\frac{d^2y}{dx^2}$, correct conclusion. WWW
		1	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 + \frac{2}{x^2} [+c]$	*M1	Integrating $\frac{d^2 y}{dx^2}$ (at least one term correct).
	0 = -2 + 2 + c leading to $c = [0]$	DM1	Substituting $x = -1$, $\frac{dy}{dx} = 0$ (need to see) to evaluate c . DM0 if simply state $c = 0$ or omit $+c$.
		4.4 7770	
	$y = \frac{1}{2}x^4 - \frac{2}{x} + (their c)x + k$	A1 FT	Integrated. FT <i>their</i> non-zero value of <i>C</i> if DM1 awarded.
	$\frac{9}{2} = \frac{1}{2} + 2 + k$ leading to $k = [2]$	DM1	Substituting $x = -1$, $y = \frac{9}{2}$ to evaluate k (dep on *M1).
	$y = \frac{1}{2}x^4 - \frac{2}{x} + 2$	A1	OE e.g. $2x^{-1}$ or $\frac{4}{2}$.
			A0 (wrong process) if c not evaluated but correct answer obtained.
		5	
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 + \frac{2}{x^2} = 0$	M1	Their $\frac{dy}{dx} = 0$.
	Leading to $x^5 = -1$	M1	Reaching equation of the form $x^5 = a$.
	So only stationary point is when $x = -1$	A1	x = -1 and stating e.g. 'only' or 'no other solutions.
		3	

Question	Answer	Marks	Guidance
(d)	$At x = 1, \frac{dy}{dx} = [4]$	*M1	Substituting $x = 1$ into their $\frac{dy}{dx}$.
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{4} \times 5$	DM1	OE Using chain rule correctly SOI.
	$\frac{5}{4}$	A1	OE e.g. 1.25.
		3	