Final Project

Online Random Forests (and where to find them)

Team Overhit

Mikhail Sidorenko Andrey Demidov

Anton Myshak Alexey Topolnitsky

What is Online Learning*

Training Offline Online Real-time On-demand Online Web Service Learning **Prediction** Batch Auto ML Forecast Forecasting Static Dynamic

Frameworks for Online Learning

Algorithms

- One-layer NN
- Naive Bayes
- OLS
- Ridge
- Lasso

Online Random Forests*

Online Bagging

Fit every tree in the ensemble with each new sample \mathbf{k} times, where \mathbf{k} is drawn from Poisson (1)

Building trees in online mode

Non-recursive procedure. A node is split only after it saw sufficient amount of samples **alpha** to make statistically significant split

Online adaptation

Randomly delete trees in the ensemble with small OOB error

```
Algorithm 1 On-line Random Forests
Require: Sequential training example \langle x, y \rangle
Require: The size of the forest: T
Require: The minimum number of samples: \alpha
Require: The minimum gain: \beta
 1: // For all trees
 2: for t from 1 to T do
        k \leftarrow Poisson(\lambda)
        if k > 0 then
           // Update k times
           for u from 1 to k do
              j = \text{findLeaf}(x).
              updateNode(j, \langle x, y \rangle).
              if |\mathcal{R}_i| > \alpha and \exists s \in \mathcal{S} : \Delta L(\mathcal{R}_i, s) > \beta then
                  Find the best test:
10:
                  s_i = \arg\max_{s \in \mathcal{S}} \Delta L(\mathcal{R}_i, s).
                  createLeftChild(\mathbf{p}_{ils})
11:
                  createRightChild(\mathbf{p}_{irs})
12:
              end if
13:
           end for
14:
        else
15:
           Estimate OOBE_t \leftarrow updateOOBE(\langle x, y \rangle)
        end if
18: end for
19: Output the forest \mathcal{F}.
```

Mondrian Forests*

Start with data points a and b

Adding new data point *c*: update range

Mondrian Forests*

Adding new data point *c*: introduce new split above existing one

Adding new data point d: traverse to left child and update range

Mondrian Forests*

Adding new data point *d*: extend the existing split to new range

Adding new data point d: split leaf further

Introduction Related works Data Experiments Results References

Datasets

Handwritten digits USPS dataset

Dataset consists of 16x16 images of digits

Source: https://www.kaggle.com/bistaumanga/usps-dataset

Letter recognition dataset

Dataset consists of parameters of handwritten letters from English alphabet

Source: https://archive.ics.uci.edu/ml/datasets/letter+recognition

Poisson mushrooms recognition dataset

Dataset consists of characteristics of different specious of mushrooms

Source: https://archive.ics.uci.edu/ml/datasets/mushroom

Datasets

Dataset	# Train	# Test	# Class	# Feat
USPS	7291	2007	10	256
Letters	14000	6000	26	16
Mushrooms	5686	2438	2	112

Introduction Related works Data Experiments Results References

Experimental Setup

Quality Metric: Accuracy

Algorithms: offline Random Forest, online Random Forest, Mondrian Forest (all algorithms were implemented from scratch and are available in <u>GitHub repo</u>)

Performance of algorithms

Performance of algorithms

Performance of algorithms

Time complexity of algorithms

	RF-1	RF-2	RF-3	ORF	MRF
USPS	636.11 s	204.36 s	42.53 s	66.6 s	14.1 s
Letters	307.79 s	111.61 s	34.9 s	31.71 s	24.65 s
Mushrooms	32.87 s	14.66 s	9.0 s	3.3 s	2.61 s

- 1. N. Oza and S. Russell, 2001. Online bagging and boosting. In *Proceedings Artificial Intelligence and Statistics*, pages 105–112
- 2. A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1393–1400. IEEE, 2009
- 3. B. Lakshminarayanan, D.M. Roy, and Teh, Y. W. The. Mondrian Forests: Efficient Online Random Forests. Advances in Neural Information Processing Systems 27, 2014
- 4. E. Utgoff, N. Bergman, and J. Clouse. Decision tree induction based on efficient tree restructuring. *Machine Learning*, 1997.

Thank you for your attention!

Any questions?