雲端架構技術的理論與實踐

企業架構科實習生吳旻聖(Akira)/高聖哲(Jerry)

目錄(TABLE OF CONTENTS)

1

自我介紹

2

RD技術研究

- 技術趨勢學習
- Gartner文章閱讀
- RD分享會

3

專案內容

- 專案發想
- 使用情境
- 軟體架構流程
- Demo

4

心得分享。

自我介紹

........

名字:高聖哲(Jerry)

學校:清華大學

系所:通訊工程所(升碩一)

國泰金控 企業架構科 實習生

自我介紹

名字:吳旻聖(Akira)

學校:清華大學

系所:電機工程系碩士班

國泰金控 企業架構科 實習生

RD技術研究分享

Microservice Serverless Service Mesh APM

技術學習

4個技術

8篇Gartner文章

2場分享會

技術研究與學習

Microservice

Serverless

Service Mesh

APM

Gartner文章閱讀研究

Gartner	文章主題
Microservice	 How to Design Microservices for Agile Architecture Microservice Patterns
Serverless	 Decision Point for Selecting Virtualized Compute: VMs, Containers or Serverless How to Build Cloud-Native Applications Using Serverless PaaS
Service Mesh	 Assessing Service Mesh for Use in Microservices Architectures Service Mesh Ultimate Guide
АРМ	 Assessing Application and Infrastructure Monitoring for Containers Use Monitoring for SaaS Despite it Limitation

RD技術分享會

實習專案内容

Lambda應用OpenCV去背軟體

2

專案發想

使用情境

Lambda 簡介

- 是AWS上一種無伺服器 (Serverless) 運算服務,執行程式碼時無需佈建或管理 伺服器
- 設定好觸發程式的條件,平台才會啟動運行程式並收取費用,減少額外資源浪費
- 支援 Java、Go、PowerShell、Node.js、C#、Python 和 Ruby 程式碼

Lambda 運行三元素

設置

根據會使用到的 套件進行layer 的增加

演算法

欲在Lambda上 運行的演算法

trigger

Lambda 執行條件

OpenCV

一個跨平台的 電腦視覺庫

Scipy

演算法庫和數學 工具包

Lambda是利用新增Layer的方式來處理會使用到的套件,因此會由以下步驟進行

使用EC2安裝 套件並打包成 package

設定IAM role權限允許S3權限

將Package儲 存至放置S3中 建立lambda函數 將S3 package 引入 layer層

Step1

ubuntu@ip-172-31-44-92:~\$ mkdir -p build/python/lib/python3.6/site-packages
ubuntu@ip-172-31-44-92:~\$ pip3 install opencv-python -t build/python/lib/python3
.6/site-packages

Collecting opency-python

Downloading https://files.pythonhosted.org/packages/37/49/874d119948a5a084a7eb e98308214698ef3471d76ab74200f9800efeef15/opencv_python-4.0.0.21-cp36-cp36m-manyl inux1 x86 64.whl (25.4MB)

使用EC2·並在環境中建立需要使用的package,同時安裝所需要的套件(opency)

將package打包成壓縮檔

Step2

將剛剛所建立的IAM新增至 EC2當中

Step3

lubuntu@ip-172-31-44-92:~/build\$ aws s3 cp package.zip s3://layers-opencv
upload: ./package.zip to s3://layers-opencv/package.zip

擁有IAM role S3權限.後 Package.zip檔即可新增 至S3儲存空間

Step4

在Lambda layer設定中上 傳剛剛S3當中的Package

Layer層即新增完成,在撰寫Lambda function即可引入需要的套件

Lambda 運行三元素

設置

根據會使用到的 套件進行layer 的增加

演算法

欲在Lambda上 運行的演算法

trigger

Lambda 執行條件

三大去背演算法

使用兩張圖片進行去背 (人像+純背景)

透過對比分析背景

缺點

情境不適用、麻煩

Alpha

透過畫出背景與人的區 域去背

缺點

需要在前端做一個畫背景的物件,時間不太夠

Deep Learning

類似透過兩張照片,但可以支援到影片

缺點

資源用量極大 不太適用於無伺服器服務

最後選擇

使用Alpha去背法,但因為開發時間的關係,使用固定的遮罩來進行去背

Alpha去背法示意圖

固定遮罩

Lambda 運行三元素

設置

根據會使用到的 套件進行layer 的增加

演算法

欲在Lambda上 運行的演算法

trigger

Lambda 執行條件

API Gateway 簡介

- 是一個伺服器
- 負責接收請求、轉發
- 可以提供api給使用者做使用

Big Picture

用戶的請求會先進到API Gateway 後再發到需要呼叫的服務

軟體架構圖-version1

流程1 Frontend

流程2上傳圖片至S3

上傳S3的流程

在上傳S3之前,要先做以下事項

- 創好給user用的cognito identity pool
- 設定好S3的權限(隱私、CORS)

Amazon Cognito

Amazon S3

流程3&4 觸發無伺服器服務

遭遇問題

- Lambda function trigger的問題
 - 解決方法: 取消用s3作為lambda function的trigger, 改採用API的方式
- API gateway timeout:超過可以容許的回應時間
 - o 解決辦法:了解自己演算法的bottle neck,並做改善
- API 的部分雖可以用curl去測試,但在debug時資訊量不夠
 - 解決方法:可以透過cloudwatch去看log

流程5&6 連結S3及運算

流程7儲存運算結果

流程8返回結果至前端

遇到問題

■ 版控

就算可以直接在Lambda上改, 但要記得copy一份到地端

開發時間

目標明確、善用資源

Demo time

軟體架構圖 2.0

Future Improvement

Front end ^{增加去背效果}

Algorithm

加快服務效率

ML/DL #WhatifWeCould

實習心得

What if we could

4

THANK YOU

