Datenanalyse mit R

Liebe Teilnehmerinnen und Teilnehmer,

in diesem vollständig digitalisierten Selbstlernkurs erwarten Sie praktische Lehrvideos (E), angeleitete Do-It-Yourself-Tutorials (I), grundlegende Textbausteine (I) und zielführende Musterlösungen (Q). Die verwendeten Lehrmaterialien sind zu 100% mit den Inhalten meiner Präsenzveranstaltungen an der Universität zu Köln (ProfessionalCenter) sowie der RWTH Aachen (Lehrerbildungscentrum) als externer Lehrbeauftragter identisch und ermöglichen somit eine orts- und zeitunabhängige Wiederholung aller relevanten Inhalte. Einfach auf die entsprechenden Icons klicken und Sie gelangen direkt zu den Lehrmaterialien.

Ihnen viel Spaß beim Einstieg in die Datenanalyse mit R!

Dennis Klinkhammer

Icons anklicken und los geht es...

(I) GRUNDLAGEN

Zeit	Inhalt	Link (YouTube)	Link (GitHub)
20 Min	Zum Start gibt es eine Einführung in die wissenschaftlichen Gütekriterien, welche auf einen adäquaten Datenumgang vorbereiten sollen.		
11 Min	Das erste Video ermöglicht den Einstieg in R als Programmiersprache und stellt die Grundlagen der grafischen Benutzeroberfläche von RStudio vor.		R
08 Min	Der TREES Datensatzes ist ein erstes Beispiel einer quantitativen Datenanalyse , ohne dass statistische Vorkenntnisse erforderlich sind.		R
30 Min	In dieser Übungsaufgabe werden erste Befehle zum Umgang mit Daten und zur Auswahl von relevanten Fällen vorgestellt.		(1) × × × × × × × × × × × × × × × × × × ×
05 Min	Komplexere quantitative Datenanalysen erfordern sogenannte Analysemodelle , welche in R bspw. mit DiagrammeR angelegt werden können.		R
12 Min	Der SWISS Datensatz verdeutlicht die Bedeutung theoretisch fundierter Analysemodelle hinsichtlich der Interpretation von statistischen Befunden.		R
30 Min	Die zweite Übungsaufgabe widmet sich dem MTCARS Datensatz, in dem die Analyseschritte aus dem vorherigen Video wiederholt werden können.		(
20 Min	Die zu berücksichtigenden Herausforderungen bei der Datengewinnung sollen die Komplexität bei der weiteren Datenanalyse verdeutlichen.		

(II) FORMELSAMMLUNG

Zeit	Inhalt	Link (YouTube)	Link (GitHub)
	Eine praktische Übersicht über die in den		
05Min	nachfolgenden Lehrvideos und Do-It-Yourself-		
	Tutorials ausgewiesenen statistischen Formeln .		

Datenanalyse mit R

(III) DATENANALYSE

Zeit	Inhalt	Link (YouTube)	Link (GitHub)
	Für ein besseres Verständnis der statistischen		
20 Min	Formeln empfiehlt sich vorab ein Blick auf die		
	unterschiedlichen Skalenniveaus.		
	In diesem Video werden im Rahmen der	TITI	
12 Min	univariaten Statistik die Lagemaße und die		
	Streuungsmaße vorgestellt.		71
	Die Standardabweichung ermöglicht die		
20 Min	sogenannte z-Transformation zur Überführung von		
	Rohwerten in vergleichbare Normwerte.		
	Die bivariate Statistik fokussiert über	TITI	
19 Min	Korrelationen, Chi-Quadrat-Tests und t-Tests den		
	Zusammenhang zwischen jeweils zwei Variablen.		71
	Der Chi-Quadrat-Test lässt sich von Hand		لرها
30 Min	ausrechnen, wofür ein passendes Beispiel im		<u>=</u> ×
	Rahmen der dritten Übungsaufgabe bereitsteht.		×
	Zur Wiederholung des t-Tests wird in dieser		لرها
30 Min	Übungsaufgabe wieder auf R und den		=×
	ToothGrowth Datensatz zurückgegriffen.		×
	Ausgehend von der linearen Regression wird im	TITT	
14 Min	Rahmen der multivariaten Statistik ebenfalls die		œ
-	logistische Regression vorgestellt.		T
	Die Faktorenanalyse und die Clusteranalyse zählen	TITT	
18 Min	zu den komplexitätsreduzierenden Verfahren und		
	fassen Variablen bzw. Fälle strukturiert zusammen.		71
	Die fünfte Übungsaufgabe greift auf den BFI		لى
30 Min	Datensatz zurück, um die Befunde der Korrelation		=×
	mit denen der Faktorenanalyse abzugleichen.		×

(IV) MACHINE LEARNING

Zeit	Inhalt	Link (YouTube)	Link (GitHub)
	In der Einführung zum Machine Learning werden		
20 Min	das Supervised Machine Learning und		
	Unsupervised Machine Learning vorgestellt.		
	Einführung in das maschinelle Lernen und die	77777	
06 Min	Erstellung von Trainings- und Validierungs-		
	datensätzen am Beispiel des TREES Datensatzes.		T
	Analyse des IRIS Datensatzes mittels Machine	TITT	
12 Min	Learning Algorithmen aus dem Classification and		B
	Regression Training – Caret Package .		71
	Die letzte Übungsaufgabe wiederholt die Schritte		لرها
30 Min	aus dem Video und ermöglicht einen Abgleich mit		<u>=</u> ×
	den Ergebnissen aus der ersten Übungsaufgabe.		×
	Resampling präzisiert nicht nur einzelne Parameter	TITT	
10 Min	im Rahmen der Statistik, sondern ist auch Grund-		
	lage für ein belastbares Machine Learning .		71
	Übersicht über gängige Herausforderungen in der		
20 Min	Anwendung von Machine Learning Algorithmen		
	und Handlungsempfehlungen für die Praxis.		