

华为GSM掉话统计机制及 参数优化研究

杨少林 钟榕光 林燕波 陆南昌

广东移动揭阳分公司网络优化中心 广东移动网络优化中心

【摘 要】文章主要结合华为BSC的A接口、Abis接口信令跟踪功能,通过详细的优化试验,总结出华为GSM设备在掉话统 计机制方面的原理,并分析其对通话流程以及用户感知的影响,总结出掉话相关参数的设置建议值。

【关键词】华为GSM设备 掉话统计机制 掉话相关参数 TCH SDCCH

1 前言

对于日常维护中的掉话问题优化手段,各个厂家之 间大同小异。中国移动广东公司部署华为GSM设备的时 间相对爱立信设备较短,缺少对华为掉话统计机制及相 关参数设置的研究。本文通过多次优化试验,总结出华 为设备掉话发生机制、统计机制以及掉话相关参数的设 置建议,可辅助开展日常的掉话优化。

2 掉话统计分类分析

华为掉话统计分为"稳态掉话"和"切换掉话"两 类,具体的各类掉话触发机制如表1所示:

表1 掉话实现机制

一级 指标	二级指标	实现机制
稳态掉话	CM3300:业务信道稳态掉话次数(错误指示)	Abis口信令触发
	CM3301:业务信道稳态掉话次数(连接失败)	Abis口信令触发
	CM3302:业务信道稳态掉话次数(释放指示)	Abis口信令触发
	CM332: 业务信道长期无MS测量报告掉话次数	内部判决
	CM333:业务信道Abis接口地面链路故障掉话次数	内部判决
	CM334: 业务信道设备故障掉话次数	内部判决
	CM335: 业务信道强制切换掉话次数	内部判决
切换 掉话	CM331:业务信道切换无线口掉话次数	内部判决

本次研究主要通过华为BSC网管终端自带的A接口、 Abis接口的信令跟踪功能来分析无线口掉话的统计机 制。

所有原因值引起的掉话,表现都是BSC向MSC上 报Clear Request, 因此通过A接口跟踪获取对应小区的 掉话统计。由无线环境引起的"连接失败"、"错误指 示"和"释放指示"等3种原因导致的无线口掉话,可通 过Abis口观察。

掉话统计机制分析

通过现网基站和模拟测试站的多次信令跟踪和模

拟掉话测试发现,在Abis口上报"连接 失败"、"错误指示"和"释放指示" 等3种原因时, BSC不会立即上报Clear Request, 而是等待6秒, 超时后才上报并 统计为一次掉话。经研究,确认目前华为 BSC6000 (版本: V900R008C12)内部 存在一个掉话保护定时器,在BSC判决出 现掉话后启动时长为6秒的定时器,超时后 才上报。

为评估该定时器对通话以及用户感知 的影响,我们将通话流程分为3个阶段来进

行分析:接入阶段、保持阶段、释放阶段。

收稿日期: 2010-01-19

(1)接入阶段

若ERROR_IND、Connect Fail等信令上报后的6秒内,收到Assignment Complete,即指配流程结束,MS从SDCCH转移到TCH,同时定时器置0,不上报Clear Request,不统计为SDCCH掉话。

案例如下:

图1 接入阶段信令跟踪图

BTS在11:11:37时上报ERROR_IND,而11:11:40时开始指配流程,到11:11:43时指配成功,之后释放原占用的SDCCH,没有超过6秒,因此不上报Clear Request,不统计为SDCCH掉话。

分析结论:接入阶段6秒的保护可避免直接掉话,对接入有一定的帮助。同时,由于用户尚未开始通话,并不会对用户感知造成影响。

(2)保持阶段

若ERROR_IND、Connect Fail等信令上报后的6秒内,收到MSC下发的Clear Command,则进入正常释放阶段,BSC不再上报Clear Request,定时器置0,不统计为TCH掉话。

案例如图2。从图2可见,BTS在10:46:19上报 ERROR_IND,达到BSC等待6秒的保护时间后, BSC在10:46:25下发REL_REQ(对应A接口的Clear Request)。因此本次掉话,将统计为由于"错误指示"

(10:46:19) Tick:22	Abis	- 81	4	Up -	BTS->RSC MEAS RES
(10:46:19) Tick:49	Abis	81	4	Up	BTS->BSC ERROR_IND
(10:46:19) Tick 69	Abis	- 81	4	Up	DTS >BSC MEAS_RES
(10:46:20) Tick:16	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:48:20) Tick:16	Abis	81	4	Down	BSC->BTS MS_POWER_CONTROL
(10:46:20) Tick:63	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:48:21) Tick:10	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:46:21) Tick:57	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:46:21) Tick:57	Abis	81	4	Down	BSC->BTS MS_POWER_CONTROL
(10:46:22) Tick: 4	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:46:22) Tick:51	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:46:22) Tick:98	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:48:22) Tick:98	Abis	81	4	Down	BSC->BTS MS_POWER_CONTROL
(10:46:23) Tick:45	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:46:23) Tick:92	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:45:24) Tick:39	Abis	81	4	Up	BTS->BSC MEAS RES
(10:46:24) Tick:39	Abis	81	4	Down	BSC->BTS MS_POWER_CONTROL
(10:46:24) Tick:87	Abis	81	4	Up	BTS->BSC NEAS_RES
(10:46:25) Tick:34	Abis	81	4	Up	BTS->BSC MEAS_RES
(10:46:25) Tick:63	Abis	81	4	Bown	BSC >BTS DEACTIVATE SACCH
(10:46:25) Tick:63	Abis	81	4	Down	BSC->BTS REL REQ
(10:46:25) Tick:63	Abis	- 01	4	Down	BSC BIS RF CHAN REL

图2 保持阶段信令跟踪图

导致的掉话。

分析结论:对于一些由于无线环境突然恶化的通话,6秒定时器可起到挽救掉话的作用。但由于等待时间较长,会对用户感知造成一定的影响。

(3)释放阶段

在MSC下发Clear Command后,若有ERROR_IND、Connect Fail等信令上报,仍继续原来的正常释放流程,而不再上报Clear Request,也不统计TCH掉话。

案例如下:

图3 释放阶段信令跟踪图

从图3可见,在位置更新流程中,BTS在10:56:28上报ERROR_IND,随后位置更新流程结束,在10:56:30时MSC下发Clear Command进行正常释放;因此BSC不再等待6秒掉话定时器,而直接进行正常释放流程,也不会计入掉话。

分析结论:进入释放阶段后,由于用户已挂机,不 影响用户感知。

4 掉话相关参数试验

本次专题试验对象为一个BSC下所带的掉话TOP10 小区,对掉话影响相关的主要指标进行了调整验证。

(1) 呼叫重建禁止、TREESTABLISH

表2 呼叫重建禁止、TREESTABLISH试验

调整参数	默认值	12月9日	12月11日	12月14日
呼叫重建禁止	是	否	否	否
TREESTABLISH (毫秒)	15000	5000	15000	30000

调整前后的掉话变化趋势如图4.

图4 调整前后指标变化图

从图4可见,在12月9日关闭"呼叫重建禁止"以后,除12~14日有突发上升外,其余各阶段TCH掉话都比关闭前要少;而且TREESTABLISH设置越长,TCH掉话越少,可见该参数对TCH掉话的改善有明显效果。由于该参数只对TCH稳态呼叫时起作用,因此对SDCCH掉话无明显影响。

但要注意,在目前的呼叫中先等待无线链路计时器、SACCH复帧数超时,然后才启动呼叫重建并等待TREESTABLISH;整个过程等待的时间较长,用户可能会在呼叫重建流程完成前就挂机,对用户感知改善有限。

设置建议:在需要优化TCH掉话时可关闭"呼叫重建禁止",同时TREESTABLISH设置为5000(即5秒)。TREESTABLISH建议不要设置过大,以免占用信道资源时间过长,影响信道资源的利用率。

(2)无线链路失效计数器、SACCH复帧数

表3 无线链路失效计数器、SACCH复帧数试验

调整参数	默认值	12月9日	12月11日	12月14日
无线链路失效计数器	52	32	52	64
SACCH复帧数	32	30	50	63

调整前后的掉话变化趋势如图5:

图5 调整前后指标变化图

从图5可见,当无线链路失效计数器、SACCH复帧数设置越大,TCH掉话、SDCCH掉话越少,这两个参数的调整对TCH掉话、SDCCH掉话都有明显的影响。

设置建议:在需要优化TCH掉话时可增大无线链路 失效计数器、SACCH复帧数,要注意无线链路失效计数 器(下行)与SACCH复帧数(上行)应同时调整,且前 者应略大于后者。

(3) T200

表4 T200试验

7C1 1200 pt 94						
调整参数	默认值	12月9日	12月11日	12月14日		
T200 SDCCH(5毫秒)	60	60	200	60		
T200 SACCH SDCCH (10毫秒)	60	60	200	60		
T200 SDCCH SAPI3 (5毫秒)	60	60	200	60		
T200 FACCH/全速率 (5毫秒)	50	50	50	250		
T200 FACCH/半速率 (5毫秒)	50	50	50	250		
T200 SACCH TCH SAPI0 (10毫秒)	150	150	150	250		
T200 SACCH TCH SAPI3 (10毫秒)	200	200	200	250		

调整前后的掉话变化趋势如下:将SDCCH信道的相 关T200 (T200 SDCCH、T200 SACCH SDCCH、T200 SDCCH SAPI3)增大之后,SDCCH掉话明显减少,同时TCH掉话略有上升。主要是由于手机在较差的无线环境下接入时,若将T200调大,由于手机占用SDCCH时间较短,在T200超时前手机已指配到TCH,避免了在SDCCH上的掉话,但在TCH上则因为无线环境太差而导致TCH掉话。

将TCH信道的相关T200(T200 FACCH/全速率、T200 FACCH/半速率、T200 SACCH TCH SAPI0、T200 SACCH TCH SAPI3)增大之后,TCH掉话明显减少,对SDCCH掉话无影响。

设置建议: 1) SDCCH信道的相关T200(T200 SDCCH、T200 SACCH SDCCH、T200 SDCCH SAPI3)应同时进行调整,TCH信道的相关T200(T200 FACCH/全速率、T200 FACCH/半速率、T200 SACCH TCH SAPI0、T200 SACCH TCH SAPI3)也是如此; 2) 在需要优化SDCCH掉话、提高接入成功率时可增大 SDCCH信道的相关T200,但会使TCH掉话增多; 3)在需要优化TCH掉话时可增大TCH信道的相关T200,对 SDCCH掉话无影响。

(4) N200

表5 N200试验

调整参数	默认值	12月9日	12月11日	12月14日
LAPDm N200参数开关	否	是	是	是
N200 of Establish	5	20	20	20
N200 of Release	5	20	20	20
N200 of SACCH	5	5	20	20
N200 of SDCCH	23	23	50	23
N200 of FACCH/半速率	29	29	29	50
N200 of FACCH/全速率	34	34	34	50

调整前后的掉话变化趋势如下: N200的增大,使 SDCCH掉话明显减少,而对TCH掉话影响不大,其影响 效果与T200基本相同。

设置建议: 1)在实际网络中,当数据链路层传输出现异常,手机等待时间超过T200×(N200+1)时,上报ERROR_INDICATION。因此T200、N200的设置需要同时关注,两者调大都起到延长定时器的作用,一般

调整时,只需调整其中一个即可;2)SDCCH信道的相 关N200(N200 of Establish、N200 of Release、N200 of SACCH、N200 of SDCCH)应同时进行调整,TCH 信道的相关N200(N200 of FACCH/半速率、N200 of FACCH/全速率、N200 of SDCCH)也是如此;3)在需 要优化SDCCH掉话、提高接入成功率时可增大SDCCH 信道的相关N200,但注意会使TCH掉话增多;4)在 需要优化TCH掉话时可增大TCH信道的相关N200,对 SDCCH掉话无影响。★

【作者简介】

杨少林:本科毕业于西安交通大学 信息工程系,现任职于广东移动揭 阳分公司网络优化中心,从事网络 优化工作。

沈继亮:本科毕业于北京邮电大学 无线通信专业,现任职广东移动揭 阳分公司网络优化中心总经理。

钟榕光:本科毕业于华南师范大学 行政管理专业,现任职广东移动揭 阳分公司网络优化中心副总经理。