Atténuation passive d'oscillations auto-entretenues à l'aide d'absorbeurs dynamiques non linéaires de type NES

Approches analytiques et numériques

Baptiste Bergeot1

Collaborateurs : Sergio Bellizzi² et Sébastien Berger¹

¹INSA Centre Val de Loire, LaMé (EA 7494), Blois, France ²Laboratoire de Mécanique et d'Acoustique (LMA), CNRS AMU ECM, Marseille

Séminaire du CNAM - 12 octobre 2022

Plan

1. Introduction

2. État de l'art

- 2.1. Rappels, définitions et articles de références
- 2.2. Description de l'analyse à l'ordre zéro

3. Prédiction améliorée de la limite de fonctionnement

- 3.1. Introduction
- 3.2. Résultats : loi d'échelle et nouvelle prédiction de la limite de fonctionnement
- 3.3. Conclusions et perspectives

4. Un seul NES pour atténuer un cycle limite créé par deux modes instables

- 4.1. Introduction
- 4.2. System under study
- 4.3. Asymptotic analysis
- 4.4. Comparison with numerical simulations
- 4.5. Conclusion and perspectives

5. Conclusions et perspectives

Plan

1. Introduction

- 2. État de l'ar
- 3. Prédiction améliorée de la limite de fonctionnemen
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
- 5. Conclusions et perspectives

12 octobre 2022

► En anglais, *Nonlinear Energy Sink* : NES

- ► En anglais, Nonlinear Energy Sink : NES
- ▶ Oscillateurs à raideur purement non linéaire, **généralement cubique** et amortissement linéaire :

$$\ddot{h} + \mu \dot{h} + \alpha h^3 = 0$$

- ▶ En anglais, Nonlinear Energy Sink : NES
- ▶ Oscillateurs à raideur purement non linéaire, généralement cubique et amortissement linéaire :

$$\ddot{h} + \mu \dot{h} + \alpha h^3 = 0$$

- ▶ Couplés à un système primaire (SP), ils ont la capacité :
 - d'adapter leur fréquence à celle du SP (relation amplitude/fréquence)
 - d'absorber l'énergie du SP de manière irréversible (sous conditions)

- ▶ En anglais, Nonlinear Energy Sink : NES
- Oscillateurs à raideur purement non linéaire, généralement cubique et amortissement linéaire :

$$\ddot{h} + \mu \dot{h} + \alpha h^3 = 0$$

- ▶ Couplés à un système primaire (SP), ils ont la capacité :
 - d'adapter leur fréquence à celle du SP (relation amplitude/fréquence)
 - d'absorber l'énergie du SP de manière irréversible (sous conditions)

Pompage Énergétique

(Targeted Energy Transfer - TET)

- ▶ En anglais, Nonlinear Energy Sink : NES
- Oscillateurs à raideur purement non linéaire, généralement cubique et amortissement linéaire :

$$\ddot{h} + \mu \dot{h} + \alpha h^3 = 0$$

- ► Couplés à un système primaire (SP), ils ont la capacité :
 - d'adapter leur fréquence à celle du SP (relation amplitude/fréquence)
 - d'absorber l'énergie du SP de manière irréversible (sous conditions)

Pompage Énergétique

(Targeted Energy Transfer - TET)

- ▶ Moyen de contrôle passif de vibrations de systèmes mécaniques et acoustiques :
 - Vibrations libres
 - Vibrations forcées
 - Vibrations auto-entretenues

Plan

- 1. Introduction
- 2. État de l'art
 - 2.1. Rappels, définitions et articles de références
 - 2.2. Description de l'analyse à l'ordre zéro
- 3. Prédiction améliorée de la limite de fonctionnemen
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
- 5. Conclusions et perspectives

Plan

- 1. Introduction
- 2. État de l'art
 - 2.1. Rappels, définitions et articles de références
 - 2.2. Description de l'analyse à l'ordre zéro
- 3. Prédiction améliorée de la limite de fonctionnemen
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
- 5. Conclusions et perspectives

Oscillations auto-entretenues

Génération et maintien d'un mouvement périodique (cycle limite) par une source d'énergie dépourvue de toute périodicité

Oscillations auto-entretenues

Génération et maintien d'un mouvement périodique (cycle limite) par une source d'énergie dépourvue de toute périodicité

Oscillateur de Van der Pol (VDP)

$$\ddot{x} + \epsilon \rho \dot{x} \left(x^2 - 1 \right) + x = 0$$

 ρ : paramètre de bifurcation

Oscillations auto-entretenues

Génération et maintien d'un mouvement périodique (cycle limite) par une source d'énergie dépourvue de toute périodicité

Oscillateur de Van der Pol (VDP)

$$\ddot{x} + \epsilon \rho \dot{x} \left(x^2 - 1 \right) + x = 0$$

p: paramètre de bifurcation

Oscillations auto-entretenues

Génération et maintien d'un mouvement périodique (cycle limite) par une source d'énergie dépourvue de toute périodicité

Oscillateur de Van der Pol (VDP)

$$\ddot{x} + \epsilon \rho \dot{x} \left(x^2 - 1 \right) + x = 0$$

p: paramètre de bifurcation

12 octobre 2022

900

Oscillateur de Van der Pol couplé à un NES

Oscillateur de Van der Pol couplé à un NES

Équations du mouvement adimensionnées

NES léger
$$\Rightarrow \boxed{0 < \epsilon \ll 1}$$

$$\ddot{x} + \epsilon \rho \dot{x} (x^2 - 1) + x + \epsilon \mu (\dot{x} - \dot{h}) + \epsilon \alpha (x - h)^3 = 0$$
$$\epsilon \ddot{h} + \epsilon \mu (\dot{x} - \dot{h}) + \epsilon \alpha (x - h)^3 = 0$$

Diagramme de bifurcation

Amplitude du régime établi en fonction du paramètre de bifurcation ρ

Diagramme de bifurcation

Amplitude du régime établi en fonction du paramètre de bifurcation ρ

(effet linéaire)

Régimes quasi-périodiques (SMR) (effet non linéaire)

Diagramme de bifurcation

Amplitude du régime établi en fonction du paramètre de bifurcation ρ

Régimes quasi-périodiques (SMR) (effet non linéaire)

9/45

Diagramme de bifurcation

Amplitude du régime établi en fonction du paramètre de bifurcation ρ

 ρ^* : limite de fonctionnement

Régimes quasi-périodiques (SMR) (effet non linéaire)

Prédiction théorique de la limite de fonctionnement

Articles de référence

Analyse à l'ordre 0

Prédiction théorique de la limite de fonctionnement dans le cas limite où $\epsilon=0$

O. V. GENDELMAN et T. BAR:

Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. *Physica D*, 239(3-4):220–229, février 2010.

O. V. GENDELMAN, A. F. VAKAKIS, L. A. BERGMAN et D. M. McFarland:

Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. *SIAM Journal on Applied Mathematics*, 70(5):1655–1677, 2010.

B. Bergeot et S. Bellizzi:

Steady-state regimes prediction of a multi-degree-of-freedom unstable dynamical system coupled to a set of nonlinear energy sinks.

Mechanical Systems and Signal Processing, 131:728-750, 2019.

Plan

- 1. Introduction
- 2. État de l'art
 - 2.1. Rappels, définitions et articles de référence
 - 2.2. Description de l'analyse à l'ordre zéro
- 3. Prédiction améliorée de la limite de fonctionnemen
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
- 5. Conclusions et perspectives

▶ Équations de mouvement en *x* (VDP) et *h* (NES)

- ▶ Équations de mouvement en *x* (VDP) et *h* (NES)
- ▶ Coordonnées barycentriques $u_1 = x + \epsilon h$ et $u_2 = x h$

- \blacktriangleright Équations de mouvement en x (VDP) et h (NES)
- Coordonnées barycentriques $|u_1 = x + \epsilon h|$ et $|u_2 = x h|$
- ⇒ Hypothèse de résonance 1 : 1
 - → Obtention de la dynamique moyennée (ou flot lent) par un méthode de Moyennisation :

- Équations de mouvement en x (VDP) et h (NES)
- Coordonnées barycentriques $u_1 = x + \epsilon h$ et $u_2 = x h$
- Hypothèse de résonance 1 : 1
 - → Obtention de la dynamique moyennée (ou flot lent) par un méthode de Moyennisation :

$$\dot{r} = \epsilon f(r, s, \Delta)$$

$$\dot{s} = \tilde{g}_1(r, s, \Delta, \epsilon)$$

$$\dot{\Delta} = \tilde{g}_2(r, s, \Delta, \epsilon)$$

r: amplitude de u_1 s: amplitude de u_2

 Δ : différence de phase entre u_2 et u_1

- Équations de mouvement en x (VDP) et h (NES)
- Coordonnées barycentriques $u_1 = x + \epsilon h$ et $u_2 = x h$
- Hypothèse de résonance 1 : 1
 - → Obtention de la dynamique moyennée (ou flot lent) par un méthode de Moyennisation :

$$\dot{r} = \epsilon f(r, s, \Delta)$$

$$\dot{s} = \tilde{g}_1(r, s, \Delta, \epsilon)$$

$$\dot{\Delta} = \tilde{g}_2(r, s, \Delta, \epsilon)$$

r: amplitude de u_1 s: amplitude de u_2

 Δ : différence de phase entre u_2 et u_1

Dynamique moyennée \equiv système lent-rapide : 1 variable lente r et 2 variables rapides s et Δ

Le profil temporel des variables possède des phases rapides et des phases lentes

Méthode des échelles de temps multiples

Dynamique moyennée ≡ Système lent-rapide

- Le profil temporel de ses variables possède des phases rapides et des phases lentes
- Analysé par une méthode aux échelles de temps multiples

Méthode des échelles de temps multiples

Dynamique moyennée ≡ Système lent-rapide

- ▶ Le profil temporel de ses variables possède des phases rapides et des phases lentes
- Analysé par une méthode aux échelles de temps multiples

Dynamique moyennée à l'échelle de temps rapide t

$$\dot{r} = \epsilon f(r, s, \Delta)$$

$$\dot{s} = \tilde{q}_1(r, s, \Delta, \epsilon)$$

$$\dot{\Delta} = \tilde{q}_2(r, s, \Delta, \epsilon)$$

Dynamique moyennée à l'échelle de temps lente $\tau = \epsilon t$

$$r' = f(r, s, \Delta)$$

$$\epsilon s' = \tilde{g}_1(r, s, \Delta, \epsilon)$$

$$\epsilon \Delta' = \tilde{g}_2(r, s, \Delta, \epsilon)$$

Méthode des échelles de temps multiples

Dynamique moyennée ≡ Système lent-rapide

- Le profil temporel de ses variables possède des phases rapides et des phases lentes
- Analysé par une méthode aux échelles de temps multiples

Dynamique moyennée à l'échelle de temps rapide t

$$\dot{r} = \epsilon f(r, s, \Delta)$$

$$\dot{s} = \tilde{q}_1(r, s, \Delta, \epsilon)$$

$$\dot{\Delta} = \tilde{g}_2(r, s, \Delta, \epsilon)$$

quand $\epsilon = 0$ on a :

$$\dot{r} = 0$$

$$\dot{s} = \tilde{g}_1 (r, s, \Delta, 0)$$
$$\dot{\Delta} = \tilde{g}_2 (r, s, \Delta, 0)$$

décrit les phases rapides

Dynamique moyennée à l'échelle de temps lente $\tau = \epsilon t$

$$r' = f(r, s, \Delta)$$

$$\epsilon s' = \tilde{g}_1(r, s, \Delta, \epsilon)$$

$$\epsilon \Delta' = \tilde{g}_2(r, s, \Delta, \epsilon)$$

quand $\epsilon = 0$ on a

$$r' = f(r, s, \Delta)$$

$$r' = f(r, s, \Delta)$$
$$0 = \tilde{g}_1(r, s, \Delta, 0)$$

$$0=\tilde{g}_{2}\left(r,s,\Delta,0\right)$$

décrit les phases lentes

Variété critique

$$\mathcal{M}_0 = \left\{ \left. (r,s,\Delta) \, \right| \, \tilde{g}_1(r,s,\Delta,0) = 0 \, , \, \, \tilde{g}_2(r,s,\Delta,0) = 0 \right\}$$

$$r = H(s)$$
 et $\Delta = G(s)$

La variété critique \mathcal{M}_0 est constituée d'une partie attractive et d'une partie répulsive :

- en dehors de la VC : évolution à l'échelle de temps rapide (sous-système rapide) vers une branche attractive de la variété critique
- sur de la VC : évolution à l'échelle de temps lente (sous-système lent)

Variété critique

$$\mathcal{M}_0 = \left\{ (r, s, \Delta) \, \middle| \, \tilde{g}_1(r, s, \Delta, 0) = 0 \; , \; \tilde{g}_2(r, s, \Delta, 0) = 0 \right\}$$

$$r = H(s)$$
 et $\Delta = G(s)$

La variété critique \mathcal{M}_0 est constituée d'une partie attractive et d'une partie répulsive :

- ▶ en dehors de la VC : évolution à l'échelle de temps rapide (sous-système rapide) vers une branche attractive de la variété critique
- sur de la VC : évolution à l'échelle de temps lente (sous-système lent)

s

Points fixes

- ▶ Points fixes (PF) \equiv solution de $|\dot{r}=0, \dot{s}=0, \dot{\Delta}=0|$. Ils sont stables ou instables
- \Rightarrow Analyse à l'ordre $0 : PF \text{ sur } \mathcal{M}_0 \Rightarrow |s' = F(s)| \Rightarrow PF \text{ solutions de } F(s) = 0$

Prédiction de la limite de fonctionnement

Condition initiale
 Points fixes stables
 Points fixes instables
 Points-col
 Points d'arrivée

Pas d'atténuation

Prédiction de la limite de fonctionnement

- Condition initiale
- Points fixes stables
 Points fixes instables
- Points-col
- Points d'arrivée

SMR

Pas d'atténuation

Estimation du point d'arrivé

$$(s^{\mathrm{a}}, r^{\mathrm{a}}) = (s^{\mathrm{U}}, r^{\mathrm{CG}})$$

Prédiction de la limite de fonctionnement

- Points fixes **stables** Points fixes **instables** Points-col Condition initiale
- Points d'arrivée

Pas d'atténuation

Estimation du point d'arrivé

$$(s^{\mathrm{a}}, r^{\mathrm{a}}) = (s^{\mathrm{U}}, r^{\mathrm{CG}})$$

Limite de fonctionnement (analyse à l'ordre 0)

Valeur du paramètre de bifurcation ρ (notée ρ_0^*) solution de :

r [plus grand point fixe instable] = $r^{a} = r^{CG}$

Plan

- 1. Introduction
- 2. État de l'art
- 3. Prédiction améliorée de la limite de fonctionnement
 - 3.1. Introduction
 - 3.2. Résultats : loi d'échelle et nouvelle prédiction de la limite de fonctionnement
 - 3.3. Conclusions et perspectives
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
- 5. Conclusions et perspectives

Plan

- 1. Introduction
- 2. État de l'art
- 3. Prédiction améliorée de la limite de fonctionnement
 - 3.1. Introduction
 - 3.2. Résultats : loi d'échelle et nouvelle prédiction de la limite de fonctionnement
 - 3.3. Conclusions et perspectives
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
- 5. Conclusions et perspectives

Résultats présentés

Limitations de la prédiction à l'ordre 0

- lacksquare Analyse à l'ordre : cas limite où $\epsilon=0$
- \Rightarrow Perd son pouvoir prédictif pour les « grandes » valeurs de ϵ
- \Rightarrow Ne décrit pas l'évolution de la limite de fonctionnement en fonction de ϵ

Résultats présentés

Limitations de la prédiction à l'ordre 0

- Analyse à l'ordre : cas limite où $\epsilon = 0$
- \Rightarrow Perd son pouvoir prédictif pour les « grandes » valeurs de ϵ
- \Rightarrow Ne décrit pas l'évolution de la limite de fonctionnement en fonction de ϵ

Résultats présentés (Loi d'échelle)

- ▶ Loi d'échelle de la dynamique lente au voisinage du point-col gauche de la variété critique
- \Rightarrow Prédiction théorique de la limite de fonctionnement qui prend en compte la valeur de ϵ

B. Bergeot:

Scaling law for the slow flow of an unstable mechanical system coupled to a nonlinear energy sink. *Journal of Sound and Vibration*, 503:116109, 2021.

Analyse à l'ordre 0 de la dynamique moyennée Limitations de l'analyse à l'ordre 0

— simulation numérique de la dynamique moyennée pour $\epsilon = 0.015$

Analyse à l'ordre 0 de la dynamique moyennée Limitations de l'analyse à l'ordre 0

— simulation numérique de la dynamique moyennée pour $\epsilon = 0.015$

Pour les « grandes » valeurs de ϵ :

- Sous-estimation du point d'arrivée
- ⇒ Sur-estimation de la limite de fonctionnement

 μ : coefficient d'amortissement du NES

Plan

- 3. Prédiction améliorée de la limite de fonctionnement

 - 3.2. Résultats : loi d'échelle et nouvelle prédiction de la limite de fonctionnement
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables

Au niveau du point-col gauche $(r^{\rm CG}, s^{\rm CG}, \Delta^{\rm CG})$ on réduit la dynamique moyennée

$$r' = f(r, s, \Delta)$$

$$\epsilon s' = \tilde{g}_1(r, s, \Delta, \epsilon)$$

$$\epsilon \Delta' = \tilde{g}_2(r, s, \Delta, \epsilon)$$

Au niveau du point-col gauche $(r^{\rm CG}, s^{\rm CG}, \Delta^{\rm CG})$ on réduit la dynamique moyennée

$$r' = f(r, s, \Delta)$$

$$\epsilon s' = \tilde{g}_1(r, s, \Delta, \epsilon)$$

$$\epsilon \Delta' = \tilde{g}_2(r, s, \Delta, \epsilon)$$

à la forme normale d'une bifurcation col-nœud dynamique :

$$v' = 1$$

$$\hat{\epsilon} q_a' = q_a^2 + v$$

v : liée à la variable lente r

 q_a : liée aux variables rapides s et Δ

 $\hat{\epsilon}$: lié à ϵ

21 / 45

Au niveau du point-col gauche $(r^{\rm CG}, s^{\rm CG}, \Delta^{\rm CG})$ on réduit la dynamique moyennée

$$r' = f(r, s, \Delta)$$

$$\epsilon s' = \tilde{g}_1(r, s, \Delta, \epsilon)$$

$$\epsilon \Delta' = \tilde{g}_2(r, s, \Delta, \epsilon)$$

à la forme normale d'une bifurcation col-nœud dynamique :

$$v' = 1$$

$$\hat{\epsilon} q_a' = q_a^2 + v$$

v : liée à la variable lente r

 q_a : liée aux variables rapides s et Δ

 $\hat{\epsilon}$: lié à ϵ

⇒ Possède une solution analytique

Au niveau du point-col gauche $(r^{CG}, s^{CG}, \Delta^{CG})$ on réduit la dynamique moyennée

$$r' = f(r, s, \Delta)$$

$$\epsilon s' = \tilde{g}_1(r, s, \Delta, \epsilon)$$

$$\epsilon \Delta' = \tilde{g}_2(r, s, \Delta, \epsilon)$$

à la forme normale d'une bifurcation col-nœud dynamique :

$$v' = 1$$

$$\hat{\epsilon} q'_a = q_a^2 + v$$

v: liée à la variable lente r

 q_a : liée aux variables rapides s et Δ

 $\hat{\epsilon}$: lié à ϵ

⇒ Possède une solution analytique

Loi d'échelle (forme normale)

Expression analytique de q_a en fonction v et $\hat{\epsilon}$:

$$q_a^{\star}(v) = \hat{\epsilon}^{1/3} \frac{\operatorname{Ai}'\left(-\hat{\epsilon}^{-2/3}v\right)}{\operatorname{Ai}\left(-\hat{\epsilon}^{-2/3}v\right)}$$

Ai : function de Airy

Loi d'échelle (dynamique moyennée)

Expression analytique de s en fonction r:

$$s^{\star}(r) = s^{\text{CG}} + \epsilon^{1/3} K_1 \frac{\text{Ai'}\left(-\epsilon^{-2/3} K_2 \left(r - r^{\text{CG}}\right)\right)}{\text{Ai}\left(-\epsilon^{-2/3} K_2 \left(r - r^{\text{CG}}\right)\right)}$$

 K₁ et K₂: constantes dépendant des paramètres du modèle

Loi d'échelle (dynamique moyennée)

Expression analytique de s en fonction r:

$$s^{\star}(r) = s^{\mathrm{CG}} + \epsilon^{1/3} K_{1} \frac{\mathrm{Ai'} \left(-\epsilon^{-2/3} K_{2} \left(r - r^{\mathrm{CG}} \right) \right)}{\mathrm{Ai} \left(-\epsilon^{-2/3} K_{2} \left(r - r^{\mathrm{CG}} \right) \right)}$$

 K₁ et K₂: constantes dépendant des paramètres du modèle

Loi d'échelle (dynamique moyennée)

Expression analytique de s en fonction r:

$$s^{\star}(r) = s^{\text{CG}} + \epsilon^{1/3} K_1 \frac{\text{Ai}' \left(-\epsilon^{-2/3} K_2 \left(r - r^{\text{CG}}\right)\right)}{\text{Ai} \left(-\epsilon^{-2/3} K_2 \left(r - r^{\text{CG}}\right)\right)}$$

 K₁ et K₂: constantes dépendant des paramètres du modèle

Loi d'échelle (dynamique moyennée)

Expression analytique de s en fonction r:

$$s^{\star}(r) = s^{\mathrm{CG}} + \epsilon^{1/3} K_{1} \frac{\mathrm{Ai'} \left(-\epsilon^{-2/3} K_{2} \left(r - r^{\mathrm{CG}} \right) \right)}{\mathrm{Ai} \left(-\epsilon^{-2/3} K_{2} \left(r - r^{\mathrm{CG}} \right) \right)}$$

 K₁ et K₂: constantes dépendant des paramètres du modèle

Nouvelle estimation du point d'arrivée (s^a, r^a)

$$r^0 < r^a < r^\infty$$

 r^0 : défini tel que $s^*(r) = s^{CG}$

⇒ premier zéro de la dérivée de la fonction de Airy

 r^{∞} : défini tel que $s^{\star}(r) \to \infty$

⇒ premier zéro de la fonction de Airy

Limite de fonctionnement (analyse à l'ordre 0)

Valeur de ρ (notée ρ_0^*) solution de :

r [plus grand point fixe instable] = $r^{a} = r^{CG}$

Limite de fonctionnement (analyse à l'ordre 0)

Valeur de ρ (notée ρ_0^*) solution de :

$$r$$
 [plus grand point fixe instable] = $r^{a} = r^{CG}$

Limite de fonctionnement (borne inférieure)

Valeur de ho (notée $\rho_{\epsilon, \inf}^*$) solution de :

$$r$$
 [plus grand point fixe instable] = $r^{a} = r^{\infty}$

Limite de fonctionnement (borne supérieure)

Valeur de ho (notée $\overline{
ho_{\epsilon, \sup}^*}$) solution de :

$$r$$
 [plus grand point fixe instable] = $r^a = r^0$

23 / 45

Limite de fonctionnement (analyse à l'ordre 0)

Valeur de ρ (notée ρ_0^*) solution de :

r [plus grand point fixe instable] = $r^{a} = r^{CG}$

Limite de fonctionnement (borne inférieure)

Valeur de ho (notée $\overline{
ho_{\epsilon, \mathsf{inf}}^*}$) solution de :

r [plus grand point fixe instable] = $r^{a} = r^{\infty}$

Limite de fonctionnement (borne supérieure)

Valeur de ho (notée $ho^*_{\epsilon, ext{sup}}$) solution de :

r [plus grand point fixe instable] = $r^a = r^0$

En fonction de μ pour $\epsilon = 0.015$:

Limite de fonctionnement (analyse à l'ordre 0)

Valeur de ρ (notée ρ^*) solution de :

r [plus grand point fixe instable] = $r^{a} = r^{CG}$

Limite de fonctionnement (borne inférieure)

Valeur de ho (notée $\overline{
ho_{\epsilon, \mathsf{inf}}^*}$) solution de :

r [plus grand point fixe instable] = $r^{\rm a} = r^{\infty}$

Limite de fonctionnement (borne supérieure)

Valeur de ho (notée $ho^*_{\epsilon, ext{sup}}$) solution de :

r [plus grand point fixe instable] = $r^a = r^0$

En fonction de ϵ pour $\mu = 0.4$:

Plan

- 1. Introduction
- 2. État de l'art
- 3. Prédiction améliorée de la limite de fonctionnement
 - 3.1. Introduction
 - 3.2. Résultats : loi d'échelle et nouvelle prédiction de la limite de fonctionnemen
 - 3.3. Conclusions et perspectives
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
- 5. Conclusions et perspectives

Conclusions

- ▶ Loi d'échelle au niveau du point-col gauche de la dynamique moyennée d'un oscillateur auto-entretenu couplé à un NES
 - Fait intervenir des exposants fractionnaires 1/3 et 2/3 en ϵ
 - Permet l'amélioration de la prédiction théorique de la limite de fonctionnement du NES

Conclusions

- Loi d'échelle au niveau du point-col gauche de la dynamique moyennée d'un oscillateur auto-entretenu couplé à un NES
 - Fait intervenir des exposants fractionnaires 1/3 et 2/3 en ϵ
- Permet l'amélioration de la prédiction théorique de la limite de fonctionnement du NES
- Généralisation à un système primaire à plusieurs DDL ne possédant qu'un mode instable
 - Application à une instabilité aéroélastique d'aile d'avion :

B. Bergeot:

Scaling law for the slow flow of an unstable mechanical system coupled to a nonlinear energy sink.

Journal of Sound and Vibration, 503:116109, 2021.

Conclusions

- Loi d'échelle au niveau du point-col gauche de la dynamique moyennée d'un oscillateur auto-entretenu couplé à un NES
 - Fait intervenir des exposants fractionnaires 1/3 et 2/3 en ϵ
- Permet l'amélioration de la prédiction théorique de la limite de fonctionnement du NES
- Généralisation à un système primaire à plusieurs DDL ne possédant qu'un mode instable
 - Application à une instabilité aéroélastique d'aile d'avion :

B. Bergeot:

Scaling law for the slow flow of an unstable mechanical system coupled to a nonlinear energy sink.

Journal of Sound and Vibration, 503:116109, 2021.

Perspectives

- ▶ Optimisation des paramètres du NES dans le but de maximiser sa limite de fonctionnement
- ▶ Influence du bruit sur la limite de fonctionnement (quelques résultats en annexes)

Plan

- 1. Introduction
- 2. État de l'art
- 3. Prédiction améliorée de la limite de fonctionnement
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
 - 4.1. Introduction
 - 4.2. System under study
 - 4.3. Asymptotic analysis
 - 4.4. Comparison with numerical simulations
 - 4.5. Conclusion and perspectives
- 5. Conclusions et perspectives

Plan

- 1. Introduction
- 2. État de l'art
- 3. Prédiction améliorée de la limite de fonctionnemen
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
 - 4.1. Introduction
 - 4.2. System under studu
 - 4.3. Asymptotic analysis
 - 4.4. Comparison with numerical simulations
 - 4.5. Conclusion and perspectives
- 5. Conclusions et perspectives

Résultats présentés

State of the art

The NES can be used for passive mitigation of unwanted vibrations caused by dynamics instabilities in mechanical systems with one unstable mode (\equiv the corresponding eigenvalue has a positive real part)

Résultats présentés

State of the art

The NES can be used for passive mitigation of unwanted vibrations caused by dynamics instabilities in mechanical systems with one unstable mode (\equiv the corresponding eigenvalue has a positive real part)

Presented work

▶ Analysis of the behavior of a N-DOFs Primary system with two unstable modes + 1 NES

B. Bergeot, S. Bellizzi et S. Berger:

Dynamic behavior analysis of a mechanical system with two unstable modes coupled to a single nonlinear energy sink.

Communications in Nonlinear Science and Numerical Simulation, 95:105623, 2021.

Plan

- 1. Introduction
- 2. État de l'art
- 3. Prédiction améliorée de la limite de fonctionnemen
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
 - 4.1. Introduction
 - 4.2. System under study
 - 4.3. Asymptotic analysis
 - 4.4. Comparison with numerical simulations
 - 4.5. Conclusion and perspectives
- 5. Conclusions et perspectives

29 / 45

The model

Phenomenological Model of breaking system undergoing multi-instabilities

[Denimal et al., Shock and Vibration, 2016]

A 4-DOF friction system with displacements x_1, x_2, x_3, x_4 coupled to 1 NES with displacement h

The model

Phenomenological Model of breaking system undergoing multi-instabilities

[Denimal et al., Shock and Vibration, 2016]

A 4-DOF friction system with displacements x_1, x_2, x_3, x_4 coupled to 1 NES with displacement h

The 4-DOF primary system unstable system has <u>two</u> unstable modes

⇒ Dynamics reduction (bi-normal transformation), keeping only the two unstable modes

Dynamic reduction of the primary system

Bi-normal transformation

Primary system in the space-state :
$$\underbrace{\underbrace{(x_1,\dot{x}_1,x_2,\dot{x}_2,x_3,\dot{x}_3,x_4,\dot{x}_4)}_{\text{state variables}}} \quad \Rightarrow \quad \underbrace{\underbrace{(q_1,q_1^*,q_2,q_2^*,q_3,q_3^*,q_4,q_4^*)}_{\text{bi-normal variables}}}$$

- (q_1, q_1^*) and (q_2, q_2^*) correspond to the **two unstable modes** : kept
- (q_3, q_3^*) and (q_4, q_4^*) correspond to the **two stable modes** : **ignored**

Dynamic reduction of the primary system

Bi-normal transformation

Primary system in the space-state :
$$\underbrace{(x_1,\dot{x}_1,x_2,\dot{x}_2,x_3,\dot{x}_3,x_4,\dot{x}_4)}_{\text{state variables}} \quad \Rightarrow \quad \underbrace{(q_1,q_1^*,q_2,q_2^*,q_3,q_3^*,q_4,q_4^*)}_{\text{bi-normal variables}}$$

- (q_1, q_1^*) and (q_2, q_2^*) correspond to the **two unstable modes** : kept
- (q_3, q_3^*) and (q_4, q_4^*) correspond to the **two stable modes** : **ignored**

The reduced dynamics

Assumption: mass of the NES very smaller than the mass of PS \Rightarrow $0 < \epsilon \ll 1$

After rescaling through ϵ , the reduced dynamics takes the following form :

$$\begin{split} \dot{q}_1 &= \lambda_1 q_1 + \epsilon f_1 \left(q_1, q_1^*, q_2, q_2^*, w, \dot{w}, \ddot{w} \right) \\ \dot{q}_2 &= \lambda_2 q_2 + \epsilon f_2 \left(q_1, q_1^*, q_2, q_2^*, w, \dot{w}, \ddot{w} \right) \\ g \left(q_1, q_1^*, q_2, q_2^*, w, \dot{w}, \ddot{w} \right) &= 0 \end{split}$$

- \triangleright λ_1 and λ_2 : eigenvalues of the two unstable modes
- $w = x_1 h$: relative displacements between the PS and the NES

12 octobre 2022

Plan

- 1. Introduction
- 2. État de l'art
- 3. Prédiction améliorée de la limite de fonctionnemen
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
 - 4.1. Introduction
 - 4.2. System under studu
 - 4.3. Asymptotic analysis
 - 4.4. Comparison with numerical simulations
 - 4.5. Conclusion and perspectives
- Conclusions et perspectives

32/45

Computation of the slow flow

The eigenvalues of the unstable modes :
$$\lambda_1 = \rho_1 + j\omega_1$$
 and $\lambda_2 = \rho_2 + j\omega_2$

$$\lambda_1 = \rho_1 + j\omega_1$$

$$\lambda_2 = \rho_2 + j\omega_2$$

 $\Rightarrow \rho_1 > 0$ and $\rho_2 > 0$ and ω_1 and ω_2 are incommensurable

Computation of the slow flow

The eigenvalues of the unstable modes :
$$\lambda_1 = \rho_1 + j\omega_1$$
 and $\lambda_2 = \rho_2 + j\omega_2$ $\Rightarrow \rho_1 > 0$ and $\rho_2 > 0$ and ω_1 and ω_2 are incommensurable

▶ Assumption 1:1:1-1:1 resonance capture between the NES and the two unstable modes \Rightarrow only two frequency components are retained : ω_1 and ω_2

Computation of the slow flow

The eigenvalues of the unstable modes : $\lambda_1 = \rho_1 + j\omega_1$ and $\lambda_2 = \rho_2 + j\omega_2$ $\Rightarrow \rho_1 > 0$ and $\rho_2 > 0$ and ω_1 and ω_2 are incommensurable

- ► Assumption 1 : 1 : 1 1 : 1 resonance capture between the NES and the two unstable modes \Rightarrow only two frequency components are retained : ω_1 and ω_2
- ▶ Assumption 2 : q_1 contains only the frequency component ω_1 , q_2 contains only the frequency component ω_2 and the variable w contains only the two frequency components ω_1 and ω_2

Computation of the slow flow

The eigenvalues of the unstable modes : $\lambda_1 = \rho_1 + j\omega_1$ and $\lambda_2 = \rho_2 + j\omega_2$ $\Rightarrow \rho_1 > 0$ and $\rho_2 > 0$ and ω_1 and ω_2 are incommensurable

- ► Assumption 1 : 1 : 1 1 : 1 resonance capture between the NES and the two unstable modes \Rightarrow only two frequency components are retained : ω_1 and ω_2
- Assumption 2: q_1 contains only the frequency component ω_1 , q_2 contains only the frequency component ω_2 and the variable w contains only the two frequency components ω_1 and ω_2
- ▶ A harmonic balance method is used to obtain the slow flow

Computation of the slow flow

The eigenvalues of the unstable modes : $\lambda_1 = \rho_1 + j\omega_1$ and $\lambda_2 = \rho_2 + j\omega_2$ $\Rightarrow \rho_1 > 0$ and $\rho_2 > 0$ and ω_1 and ω_2 are incommensurable

- ► Assumption 1:1:1-1:1 resonance capture between the NES and the two unstable modes \Rightarrow only two frequency components are retained: ω_1 and ω_2
- ▶ Assumption 2 : q_1 contains only the frequency component ω_1 , q_2 contains only the frequency component ω_2 and the variable w contains only the two frequency components ω_1 and ω_2
- ▶ A harmonic balance method is used to obtain the slow flow

Final form of the slow flow in real domain

$$\begin{split} \dot{\mathbf{r}} &= \epsilon \mathbf{f} \left(\mathbf{r}, \mathbf{s}, \Delta \right) \\ \dot{\mathbf{s}} &= \mathbf{g}_1 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right) \\ \dot{\Delta} &= \mathbf{g}_2 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right) \end{split}$$

The slow flow is a (4, 2)-fast-slow system with :

2 slow variables:

$$\mathbf{r} = (r_1, r_2)^T$$
 amplitudes of q_1 and q_2

4 fast variables:

 $\mathbf{s} = (s_1, s_2)^T$ amplitudes the two frequency components of \mathbf{w} $\mathbf{\Delta} = (\Delta_1, \Delta_2)^T$: phase differences

Computation of the slow flow

The eigenvalues of the unstable modes : $\lambda_1 = \rho_1 + j\omega_1$ and $\lambda_2 = \rho_2 + j\omega_2$ $\Rightarrow \rho_1 > 0$ and $\rho_2 > 0$ and ω_1 and ω_2 are incommensurable

- ► Assumption 1:1:1-1:1 resonance capture between the NES and the two unstable modes \Rightarrow only two frequency components are retained: ω_1 and ω_2
- ► Assumption 2 : q_1 contains only the frequency component ω_1 , q_2 contains only the frequency component ω_2 and the variable w contains only the two frequency components ω_1 and ω_2
- ▶ A harmonic balance method is used to obtain the slow flow

Final form of the slow flow in real domain

$$\begin{split} \dot{\mathbf{r}} &= \epsilon \mathbf{f} \left(\mathbf{r}, \mathbf{s}, \Delta \right) \\ \dot{\mathbf{s}} &= \mathbf{g}_1 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right) \\ \dot{\Delta} &= \mathbf{g}_2 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right) \end{split}$$

The slow flow is a (4, 2)-fast-slow system with :

2 slow variables:

 $\mathbf{r} = (r_1, r_2)^T$ amplitudes of q_1 and q_2

4 fast variables:

 $\mathbf{s} = (s_1, s_2)^T$ amplitudes the two frequency components of \mathbf{w} $\mathbf{\Delta} = (\Delta_1, \Delta_2)^T$: phase differences

The time evolution of this kind of slow-fast system is characterized by possible succession fast epochs and slow epochs.

Prediction of the steady-state regimes

The dynamic behavior of the system is investigated by means of multiple time scales analysis of the slow flow within the zeroth-order approximation

Prediction of the steady-state regimes

The dynamic behavior of the system is investigated by means of multiple time scales analysis of the slow flow within the zeroth-order approximation

slow flow at the **fast time scale** *t*

$$\dot{\mathbf{r}} = \epsilon \mathbf{f} (\mathbf{r}, \mathbf{s}, \Delta)$$

 $\dot{\mathbf{s}} = \mathbf{g}_1 (\mathbf{r}, \mathbf{s}, \Delta, \epsilon)$

$$\dot{\Delta} = \mathbf{g}_2 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right)$$

$$\mathbf{r}' = \mathbf{f}(\mathbf{r}, \mathbf{s}, \Delta)$$

 $\epsilon \mathbf{s}' = \mathbf{g}_1(\mathbf{r}, \mathbf{s}, \Delta, \epsilon)$
 $\epsilon \Delta' = \mathbf{g}_2(\mathbf{r}, \mathbf{s}, \Delta, \epsilon)$

Prediction of the steady-state regimes

The dynamic behavior of the system is investigated by means of multiple time scales analysis of the slow flow within the zeroth-order approximation

slow flow at the **fast time scale** *t*

$$\dot{\mathbf{r}} = \epsilon \mathbf{f} (\mathbf{r}, \mathbf{s}, \Delta)$$

$$\dot{s}=g_{1}\left(r,s,\Delta,\varepsilon\right)$$

$$\dot{\Delta} = q_2 (r, s, \Delta, \epsilon)$$

when $\epsilon = 0$ that leads to

$$\dot{r} = 0$$

$$\dot{s}=g_1\left(r,s,\Delta,0\right)$$

$$\dot{\Delta}=g_{2}\left(r,s,\Delta,0\right)$$

 \hookrightarrow fast subsystem

slow flow at the slow time scale $\tau = \epsilon t$

$$\mathbf{r}' = \mathbf{f}(\mathbf{r}, \mathbf{s}, \Delta)$$

$$\epsilon s' = g_1(r, s, \Delta, \epsilon)$$

$$\epsilon \Delta' = \mathbf{g}_2 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right)$$

when $\epsilon = 0$ that leads to

$$\mathbf{r}' = \mathbf{f}(\mathbf{r}, \mathbf{s}, \Delta)$$

$$0=g_1\left(r,s,\Delta,\epsilon\right)$$

$$\mathbf{0} = \mathbf{g}_2 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right)$$

$$\begin{split} \dot{r} &= 0 \\ \dot{s} &= g_1 \left(r, s, \Delta, 0 \right) \\ \dot{\Delta} &= g_2 \left(r, s, \Delta, 0 \right) \end{split}$$

$$\mathbf{r}' = \mathbf{f}(\mathbf{r}, \mathbf{s}, \Delta)$$

 $\mathbf{0} = \mathbf{g}_1(\mathbf{r}, \mathbf{s}, \Delta, \epsilon)$
 $\mathbf{0} = \mathbf{g}_2(\mathbf{r}, \mathbf{s}, \Delta, \epsilon)$

 $\hookrightarrow slow \ subsystem$

$$\begin{split} \dot{r} &= 0 \\ \dot{s} &= g_1 \left(r, s, \Delta, 0 \right) \\ \dot{\Delta} &= g_2 \left(r, s, \Delta, 0 \right) \end{split}$$

$$\begin{aligned} \mathbf{r}' &= \mathbf{f} \left(\mathbf{r}, \mathbf{s}, \Delta \right) \\ \mathbf{0} &= \mathbf{g}_1 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right) \\ \mathbf{0} &= \mathbf{g}_2 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right) \end{aligned}$$

Critical manifold

$$\mathcal{M}_{0}:=\left\{\left.\left(r,s,\Delta\right)\in\mathbb{R}^{2+2+2}\;\right|\;g_{1}\left(s,r,\Delta,0\right)=0,\;g_{2}\left(r,s,\Delta,0\right)=0\right\}$$

$$r_1 = H_1(s_1, s_2), r_2 = H_2(s_1, s_2)$$
 and $\Delta_1 = G_1(s_1, s_2), \Delta_2 = G_2(s_1, s_2)$

- Two dimensional parametric surface of \mathbb{R}^{2+2+2}
- On the critical manifold: slow evolution of the slow flow described by the slow subsystem
- Outside the critical manifold: fast evolution of the slow flow described by the fast subsystem \Rightarrow points of \mathcal{M}_0 are fixed points of the fast subsystem

35 / 45

$$\begin{split} \dot{r} &= 0 \\ \dot{s} &= g_1 \left(r, s, \Delta, 0 \right) \\ \dot{\Delta} &= g_2 \left(r, s, \Delta, 0 \right) \end{split}$$

$$\begin{aligned} r' &= f\left(r, s, \Delta\right) \\ 0 &= g_1\left(r, s, \Delta, \epsilon\right) \\ 0 &= g_2\left(r, s, \Delta, \epsilon\right) \end{aligned}$$

Critical manifold

$$\mathcal{M}_{0}:=\left\{\left.\left(r,s,\Delta\right)\in\mathbb{R}^{2+2+2}\;\right|\;g_{1}\left(s,r,\Delta,0\right)=0,\;g_{2}\left(r,s,\Delta,0\right)=0\right\}$$

$$r_1 = H_1(s_1, s_2), r_2 = H_2(s_1, s_2)$$
 and $\Delta_1 = G_1(s_1, s_2), \Delta_2 = G_2(s_1, s_2)$

- ▶ Two dimensional parametric surface of \mathbb{R}^{2+2+2}
- ▶ On the critical manifold : slow evolution of the slow flow described by the slow subsystem
- ▶ Outside the critical manifold : fast evolution of the slow flow described by the fast subsystem \Rightarrow points of \mathcal{M}_0 are fixed points of the fast subsystem

Fixed points of the slow subsystem

The fixed points of the slow flow are assumed to be on \mathcal{M}_0

Analysis of the slow subsystem (the slow dynamics)

$$\begin{aligned} \mathbf{r}' &= \mathbf{f} \left(\mathbf{r}, \mathbf{s}, \Delta \right) \\ 0 &= \mathbf{g}_1 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right) \\ 0 &= \mathbf{g}_2 \left(\mathbf{r}, \mathbf{s}, \Delta, \epsilon \right) \end{aligned}$$

Fixed points of the slow flow:

$$F(s) = 0$$

- stables fixed points
- unstable fixed points

$$\nearrow \diagup \nearrow$$
 stream plot of $F(s)$

$$\mathbf{r}' = \mathbf{f}(\mathbf{r}, \mathbf{s}, \Delta) \Rightarrow \underbrace{\begin{bmatrix} r_{1,2} = H_{1,2}(s_1, s_2) \end{bmatrix} \Delta_{1,2} = G_{1,2}(s_1, s_2)}_{\text{Critical manifold}} \Rightarrow \mathbf{s}' = \mathbf{F}(\mathbf{s})$$

Analysis of the **fast subsystem** (the fast dynamics)

$$\begin{split} \dot{\mathbf{r}} &= 0 \\ \dot{\mathbf{s}} &= \mathbf{g}_1 \left(\mathbf{r}, \mathbf{s}, \Delta, 0 \right) \\ \dot{\Delta} &= \mathbf{g}_2 \left(\mathbf{r}, \mathbf{s}, \Delta, 0 \right) \end{split}$$

← fast subsystem

To obtain the:

- Stability domains of the Critical Manifold
- Arrival curves

stable part of the the CM and :

unstable parts of the the CM

- The CM is regular
 - ⇒ impossible jumps
- Fold curves : the CM is singular
 - ⇒ possible jumps

Analysis of the fast subsystem (the fast dynamics)

$$\begin{split} \dot{\mathbf{r}} &= 0 \\ \dot{\mathbf{s}} &= \mathbf{g}_1 \left(\mathbf{r}, \mathbf{s}, \Delta, 0 \right) \\ \dot{\Delta} &= \mathbf{g}_2 \left(\mathbf{r}, \mathbf{s}, \Delta, 0 \right) \end{split}$$

 \hookrightarrow fast subsystem

To obtain the :

- Stability domains of the Critical Manifold
- Arrival curves

- The CM is regular
 - \Rightarrow impossible jumps
- Fold curves : the CM is singular
 - ⇒ possible jumps
- Arrival curves

Plan

- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables

 - 4.4. Comparison with numerical simulations

Review of the observed regimes

Remark

Linear Primary Structure: unstable \equiv exponential growth of the amplitude (unbounded regimes) \Rightarrow Bounded regimes observed \equiv Mitigation regimes (the NES acts)

Review of the observed regimes

Remark

Linear Primary Structure: unstable ≡ exponential growth of the amplitude (unbounded regimes) \Rightarrow Bounded regimes observed \equiv Mitigation regimes (the NES acts)

Response regimes

	One unstable mode	Two unstable modes
The trivial solution is reached	Stabilization	Stabilization
A non trivial fixed point of the slow flow is reached	Mitigation through periodic regimes	Mitigation through (quasi-)periodic regimes
Relaxation oscillations of the slow flow	Mitigation through SMR (one possible scenario)	Mitigation through SMR (several and more complex possible scenarios)
Exponential growth	No mitigation	No mitigation
Stable limit cycles of the slow subsystem	Not possible	Mitigation through quasi-periodic regimes

Review of the observed regimes

Remark

Linear Primary Structure: unstable ≡ exponential growth of the amplitude (unbounded regimes)

 \Rightarrow Bounded regimes observed \equiv Mitigation regimes (the NES acts)

Response regimes

	One unstable mode	Two unstable modes
The trivial solution is reached	Stabilization	Stabilization
A non trivial fixed point of the slow flow	Mitigation through periodic	Mitigation through
is reached	regimes	(quasi-)periodic regimes
Relaxation oscillations of the slow flow	Mitigation through SMR (one possible scenario)	Mitigation through SMR (several and more complex possible scenarios)
Exponential growth	No mitigation	No mitigation
Stable limit cycles of the slow subsystem	Not possible	Mitigation through quasi-periodic regimes

Simultaneous stable attractors (fixed points, relaxation oscillations, limit cycles)

⇒ Competition between these attractors is observed

Example

Competition between two kinds of sustained relaxation oscillations (scenario 1)

First set of initial conditions : $(s_1(0), s_2(0)) = (0.05, 0.05)$

Observation: extinction of the second frequency component ($s_2 = 0$)

Example

Competition between two kinds of sustained relaxation oscillations (scenario 1)

Observation: extinction of the second frequency component ($s_2 = 0$)

Example

Competition between two kinds of sustained relaxation oscillations (scenario 2)

$$(s_1(0), s_2(0)) = (0.05, 0.15)$$

Observation: oscillations of the fast dynamics (bursting oscillations)

Plan

- 1. Introduction
- 2. État de l'art
- 3. Prédiction améliorée de la limite de fonctionnemen
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
 - 4.1. Introduction
 - 4.2. System under study
 - 4.3. Asymptotic analysis
 - 4.4. Comparison with numerical simulations
 - 4.5. Conclusion and perspectives
- 5. Conclusions et perspectives

Major results

Study of a linear unstable mechanical system with 2 unstable modes coupled to 1 NES

- ▶ The single NES can produce mitigated (bounded) regimes
- ▶ Multiple time scale analysis
- ⇒ Understanding of the of the steady regimes obtained by numerical simulations
- ⇒ 2 dimensional Critical manifold : prediction impossible without knowing the basins of attraction

Major results

Study of a linear unstable mechanical system with 2 unstable modes coupled to 1 NES

- ▶ The single NES can produce mitigated (bounded) regimes
- Multiple time scale analysis
- Understanding of the of the steady regimes obtained by numerical simulations
- 2 dimensional Critical manifold: prediction impossible without knowing the basins of attraction

Perspectives

- Global bifurcation (basins of attraction) to predict which regime will actually be reached
- More than 2 unstable modes
- Forced systems with multiple resonance

43 / 45

Plan

- 1. Introduction
- 2. État de l'ar
- 3. Prédiction améliorée de la limite de fonctionnemen
- 4. Un seul NES pour atténuer un cycle limite créé par deux modes instables
- 5. Conclusions et perspectives

12 octobre 2022

Conclusion

▶ 2 résultats théoriques récents permettant la prédiction et la compréhension du comportement dynamique d'un système non linéaire instable couplé à un NES

Conclusion

▶ 2 résultats théoriques récents permettant la prédiction et la compréhension du comportement dynamique d'un système non linéaire instable couplé à un NES

Perspectives

▶ NES et récupération d'énergie à l'aide de patchs piézoélectriques (partenariat LaMé et GREMAN)

Annexes

Analyse à l'ordre 0 de la dynamique moyennée Prédiction des régimes d'oscillations

Condition initiale
 Points fixes stables
 Points fixes instables
 Points-col
 Points d'arrivée

Stabilisation

Points-col

Analyse à l'ordre 0 de la dynamique moyennée Prédiction des régimes d'oscillations

Points d'arrivée

Analyse à l'ordre 0 de la dynamique moyennée Prédiction des régimes d'oscillations

Analyse à l'ordre 0 de la dynamique moyennée Prédiction des régimes d'oscillations

Nouvelle prédiction théorique de la limite de fonctionnement

Limite de fonctionnement « physique » : $\ddot{x} + \epsilon \rho \dot{x} (x^2 - 1) + x = 0$

$$ho_{\mathsf{th}}^* = \{ oldsymbol{
ho}_{\mathsf{0}}^*,
ho_{\epsilon,\mathsf{inf}}^*, oldsymbol{
ho}_{\epsilon,\mathsf{sup}}^* \}$$

Van der Pol oscillator with stochastic forcing and coupled to an NES

 $\Rightarrow \xi$: Gaussian white noise

 $\Rightarrow \epsilon \nu$: noise level

Van der Pol oscillator with stochastic forcing and coupled to an NES

 $\Rightarrow \xi$: Gaussian white noise

 $\Rightarrow \epsilon v$: noise level

Dimensionless equations of motion

NES léger
$$\Rightarrow \boxed{0 < \epsilon \ll 1}$$

$$\ddot{x} + \epsilon \rho \dot{x} \left(rx^2 - 1 \right) + x + \epsilon \mu (\dot{x} - \dot{h}) + \epsilon \alpha (x - h)^3 = \epsilon \nu \xi(t)$$
$$\epsilon \ddot{h} + \epsilon \mu (\dot{x} - \dot{h}) + \epsilon \alpha (x - h)^3 = 0$$

Van der Pol oscillator with stochastic forcing and coupled to an NES

 $\Rightarrow \xi$: Gaussian white noise

 $\Rightarrow \epsilon v$: noise level

Dimensionless equations of motion

NES léger
$$\Rightarrow \boxed{0 < \epsilon \ll 1}$$

$$\ddot{x} + \epsilon \rho \dot{x} (rx^2 - 1) + x + \epsilon \mu (\dot{x} - \dot{h}) + \epsilon \alpha (x - h)^3 = \epsilon \nu \xi(t)$$
$$\epsilon \ddot{h} + \epsilon \mu (\dot{x} - \dot{h}) + \epsilon \alpha (x - h)^3 = 0$$

Stochastic slow flow dynamics

Obtained by means of the standard stochastic averaging method

Examples of simulations

▶ Deterministic case : SMR (mitigation)

Examples of simulations

- ▶ Deterministic case : **SMR** (mitigation)
- Stochastic case (example de 2 samples) :

Examples of simulations

 $ho <
ho^*$

- Deterministic case : SMR (mitigation)
- ▶ Stochastic case (example de 2 samples) :

0.2

0.4

0.8 1.0

 $\rho > \rho^*$

- Deterministic case : no mitigation
- ▶ Stochastic case (example de 2 samples) :

0.8 1.0

0.2 0.4

0.0

Probability of being in a mitigation regime

Definition

The **probability of being in a mitigation regime**, denoted $p_{h,n}$, is the probability for the system of being in a mitigation regime after a given number n of full cycles of relaxation oscillations.

Probability of being in a mitigation regime

Definition

The probability of being in a mitigation regime, denoted $|p_{h,n}|$, is the probability for the system of being in a mitigation regime after a given number n of full cycles of relaxation oscillations.

Figure – $p_{h,0}$ vs ρ obtained using Monte Carlo method with the stochastic slow flow (σ : noise level)