Chapitre 1 Introduction & Concepts de Base

- Mécanique des fluides (MF) → étude l'équilibre d'un fluide & la loi de son mouvement
- → Fluide = substance dont les particules se déplacent aisément & changent leur position relative ⇒ substance se déformant continuellement sous l'action de contrainte de cisaillement.

Comportement d'une petite pièce rectangulaire solide et fluide sous l'action de contrainte de cisaillement

- → Fluide = Gaz ou liquide
- ▶ Liquides (et solides) non compressibles : volume fini
- → Gaz : facilement comprimés, leur masse volumique dépend de la pression & température
- → Volume des liquides limité par forme de surface récipient et surface libre
- Masse volumique liquides beaucoup +> que celle des gaz (1030 kg/m³ comparativement à 1.23 kg/m³)
- Différence entre fluides & solides due à l'intensité de forces retenant les molécules entre elles pour former une pièce cohérente de matériau ⇒ forces faibles dans les fluides
- → Fluides peuvent se transformer en solides et *vice versa* dépendamment de l'énergie potentielle des forces intermoléculaires & l'énergie cinétique du mouvement thermique (température & pression du milieu environnant)
- → Fluides vus sous aspect macroscopique (sens de vue et toucher) ou microscopique (structure moléculaire de la matière)

- → Importance apparente de MF avec son rôle vital dans la vie de tous les jours :
 - Tourner un robinet active l'écoulement dans un réseau hydraulique complexe de tuyau, valves et pompes
 - Écoulement du sang dans nos veines & artères
 - Majorité des masses dans l'univers sont fluides (atmosphère, océans : Problème de pollution de l'eau & de l'air)
 - Scientifiques & Ingénieurs étudient et exploitent la MF (améliorer la condition humaine : transport, production et conversion d'énergie, traitement et fabrication des matériaux, production alimentaire, infrastructure civile, ...)

1.2 CLASSIFICATION DES ÉCOULEMENTS

- ◆ Écoulement visqueux versus non visqueux
 - Viscosité causée les forces cohésives (liquides) & collisions moléculaires (gaz)
 - Écoulements avec effets de frottement significatifs ⇒ écoulements visqueux
 - Dans certaines régions, forces visqueuses sont négligeables (régions loin de surfaces solides) comparées aux forces d'inertie ou de pression ⇒ régions à écoulement non visqueux simplifient grandement l'analyse.
- ◆ Écoulement interne versus écoulement externe
 - Écoulement externe : écoulement confiné dans un canal ou sur une surface (écoulement de l'air sur une balle)
 - Écoulement interne : écoulement complètement limité par des surfaces solides (écoulement de l'eau dans un tuyau)
 - Écoulement des liquides dans une conduite = écoulement dans un canal ouvert → conduite partiellement rempli de liquide & existence d'une surface libre (eau dans les rivières ou canaux d'irrigation).

1.2 CLASSIFICATION DES ÉCOULEMENTS

- ◆ Écoulement compressible *versus* écoulement incompressible
 - Compressibilité et incompressibilité dépendent du niveau de variation de masse volumique pendant l'écoulement
 - Écoulement incompressible ⇒ masse volumique demeure constante durant l'écoulement
 - Masses volumiques des liquides essentiellement constantes ⇒ liquides = substances incompressibles)
 - Gaz sont hautement compressibles
 - Vitesse d'écoulement souvent exprimée en termes du nombre de Mach :

$$Ma = \frac{V}{c} = \frac{\text{Speed of flow}}{\text{Speed of sound}}$$

- Écoulement incompressible : Ma = 0
- Écoulement sonique : Ma = 1
- Écoulement subsonique : 0 < Ma < 1
- Écoulement transsonique : 0.8 < Ma < 1.2
- Écoulement supersonique : Ma > 1
- Écoulement hypersonique : Ma > 3

1.2 CLASSIFICATION DES ÉCOULEMENTS

- → Célérité du son
 - Vitesse de propagation du son = vitesse acoustique = vitesse du son = célérité du son
 - Vitesse du son est fonction de ratio des capacités calorifiques, pression & masse volumique

$$c = \sqrt{\frac{\gamma p}{\rho}}$$

Processus isentropique (perturbation faible, transfert de chaleur négligeable) :

$$c = \sqrt{\gamma r T}$$

- Vitesse du son dans l'air ≈ 340 m/s à 0 °C
- Dans l'air, vitesse augmente avec T : 0.6 m/s pour une augmentation de 1 °C
- Vitesses & températures absolues sont reliées par :

$$\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$$

Exemple 1.1

Calculer la vitesse du son dans l'hélium (M = 4 kg/kmol) à 700 °C et à une pression de 2.3 atm. Pour l'hélium, $\gamma = 1.66$. Que représente cette vitesse par rapport à la vitesse du son dans l'air et quelle est sa nature ? Vitesse du son dans l'air : 330 m/s à 0 °C.

1.2 CLASSIFICATION DES ÉCOULEMENS

- ◆ Écoulement laminaire versus écoulement turbulent
 - Écoulement laminaire : mouvement de fluide avec couches lisses et ordonnées
 - Écoulement turbulent : mouvement de fluide hautement désordonné ayant lieu à des vitesses élevées (vitesse de l'air à des vitesses élevées avec faible viscosité
 - Écoulement entre laminaire & turbulent ⇒ écoulement transitoire
 - Régime d'écoulement déterminé par le nombre de Reynolds (Re)
- ◆ Écoulement naturel (non forcé) versus écoulement forcé
 - Écoulement forcé : fluide est forcé à s'écouler sur une surface ou dans un tuyau par l'intervention d'une pompe
 - Écoulement naturel : mouvement de fluide dû aux facteurs naturels tel que l'effet de flottabilité
- ◆ Écoulement permanent versus écoulement non permanent
 - Écoulement permanent : aucun changement (vitesse, charge, débit) en un point avec le temps
 - Écoulement non permanent (transitoire) : un des paramètres change avec le temps
 - Écoulement uniforme : aucun changement avec le temps et dans l'espace

1.2 CLASSIFICATION D'ÉCOULEMENT DES FLUIDES

- ◆ Écoulement en 1D, 2D & 3D
 - Un champ d'écoulement est caractérisé par une distribution de vitesses : vitesses d'écoulement varient en une, deux ou trois dimensions
 - Variation de vitesse dans une direction peut être faible par rapport à la variation dans les 2 autres directions; et par conséquent, peut être négligée

1.3 SYSTÈME & VOLUME DE CONTRÔLE

→ Système : quantité de matière ou région de l'espace choisie pour analyse/étude.

SYSTEM

→ Masse ou région en dehors du système = extérieur (environnement)

◆ Surface réelle ou fictive séparant un système de son environnement = frontière, qui peut être fixe ou mobile surroundings

Système peut être :

Fermé (masse de contrôle) : quantité fixe de masse, aucune masse ne peut traverser la frontière; seule l'énergie (E) sous forme de chaleur ou travail peut traverser la frontière; son volume n'est pas supposé être fixe. Si E ne peut pas traverser la frontière ⇒ système isolé.

1.3 SYSTÈME & VOLUME DE CONTRÔLE

◆ Système peut être :

 Ouvert (volume de contrôle) : une région de l'espace proprement sélectionnée, qui inclut souvent un dispositif qui implique un écoulement de masse tels que compresseur, turbine, radiateur de véhicule; masse & énergie peuvent traverser la frontière d'un volume de contrôle

1.4 SYSTÉMES D'UNITÉS ET DIMENSIONS

- → Toute quantité physique caractérisée par une dimension à laquelle une magnitude, appelée unité, est accordée
- Dimensions primaires ou fondamentales : masse (m), longueur (L), temps (t), température
 (T)
- → Dimensions secondaires ou dérivées (exprimées en termes de dimensions primaires) : vitesse (v), énergie (E), volume (V)
- ◆ Système Internationale d'Unités (SI) : masse (kilogramme : kg), longueur (mètre : m), temps (seconde : s), température (degré Kelvin : K), intensité du courant électrique (ampère : A), quantité de lumière (candela : cd), quantité de matière (mole : mol)
- ◆ Opérations effectuées sur des grandeurs de même dimension

1.4 SYSTÉMES D'UNITÉS ET DIMENSIONS

→ Préfixes dans le SI d'unités

Préfixe	Symbole	Facteur	Préfixe	Symbole	Facteur
yotta	Y	10^{24}	déci	d	10 ⁻¹
zetta	Z	10^{21}	centi	С	10 ⁻²
exa	Е	10^{18}	milli	m	10 ⁻³
peta	Р	10 ¹⁵	micro	μ	10 ⁻⁶
tera	T	1012	nano	n	10-9
giga	G	109	pico	р	10^{-12}
méga	M	10^6	femto	f	10 ⁻¹⁵
kilo	k	10^{3}	atto	a	10 ⁻¹⁸
hecto	h	10 ²	zepto	Z	10 ⁻²¹
deca	da	10^{1}	yocto	у	10 ⁻²⁴

1.5 EXACTITUDE, PRÉCISION & CHIFFRES SIGNIFICATIFS

- ➤ Exactitude (erreur d'exactitude) : valeur donnée moins la vraie valeur ⇒ répétabilité : erreurs fixes
- ◆ Précision (erreur de précision): valeur donnée moins la moyenne de toutes les valeurs ⇒ non répétables : erreurs aléatoires
- → Chiffres significatifs : chiffres pertinents et significatifs

		Number of
	Exponential	Significant
Number	Notation	Digits
12.3	1.23×10^{1}	3
123,000	1.23×10^{5}	3
0.00123	1.23×10^{-1}	-3 3
40,300	4.03×10^{4}	3
40,300.	4.0300×10^{4}	5
0.005600	5.600×10^{-1}	⁻³ 4
0.0056	5.6×10^{-1}	-3 2
0.006	$6. \times 10^{-1}$	⁻³ 1