

Status Update Presentation

Hand Gesture Recognition

Team Members: Samuel Oncken, Steven Claypool Sponsors: Stavros Kalafatis, Pranav Dhulipala



# **Project Summary**

#### What is our goal?

- Test viability of using virtual data to train a hand gesture recognition neural network
- Provide large amounts of diverse data (skin tones, hand sizes, accessories, etc.)
- Achieve similar recognition accuracy when tested against real, benchmark datasets

#### How?

- Replicate multiple existing real datasets using the Leap Motion Controller (LMC) and Unity software
- Test hand gesture recognition neural network with purely real benchmark data, purely virtual data, and various compositions of each









## **Subsystem Overview**





## **Gesture Data Collection Subsystem - Update**

Last presentation I discussed the process of recording a gesture

 Leap Šervice Provider script, "Hand Binder" script, Unity Recorder, FBX Exporter

#### Progress:

- Determined real datasets we will be replicating
- Completed Cambridge hand gesture dataset replication
- Completed ASL for numbers replication
- ASL Alphabet replication in progress
- In order to achieve high recognition accuracy when testing a model, we must have accurate recordings.









## **Gesture Data Collection Subsystem - Update**

#### Problem:

- Tracking accuracy from LMC
  - → Very miniscule details such as thumb placement alter the meaning of a gesture in ASL

#### Solution ideas:

- Change mounting position of the LMC
- Build animation in Blender by positioning fingers manually and recording frames















### **Human Model Generation Subsystem - Update**

#### Problem:

 MakeHuman's Massproduce plugin lacked customization for assets, rigging, and exporting

#### Progress:

- Downloaded and added additional assets for hand variation (gloves, nails, etc.)
- Currently trying to add default rig to models and choose the export location

#### Next Steps:

- Script sequential spawning to Unity environment
- Finish altering Makehuman code



| Allow | Allowed full body dothes:     |          |          |      |  |  |  |  |  |
|-------|-------------------------------|----------|----------|------|--|--|--|--|--|
|       | Clothes                       | Mixed    | Female   | Male |  |  |  |  |  |
| 11    | fingernails elegant           | <b>3</b> | <b>E</b> |      |  |  |  |  |  |
| 12    | fingernails elegant           | ×        | <b>⊠</b> |      |  |  |  |  |  |
| 13    | gloves hand                   | ×        | ×        | ×    |  |  |  |  |  |
| 14    | gloves hand                   | <b>3</b> | ×        | ×    |  |  |  |  |  |
| 15    | longfingernails bluebutterfly | ×        | ×        |      |  |  |  |  |  |
| 16    | longfingernails bluebutterfly | ×        | <b>X</b> |      |  |  |  |  |  |



## **Model Animation Subsystem - Update**

Last presentation I discussed how each animation is applied to a fresh MakeHuman model in Unity

 Animator, animation controller with proper animation clip selected.
 Scripting to automate this.



#### Progress:

- Testing each recorded animation clip on freshly imported model
- Began looking into C# scripting for placement of components on each imported model
- Before I can move forward, it is necessary for me to complete the data collection subsystem.









## Data Capturing/Collection Subsystem - Update

### Progress:

 Taken images at regular intervals through Unity camera

### Next Steps:

- Script the recording to start when an animation is loaded onto a model
- Script organizing and exporting of taken images or videos







### **Training Set Testing - Update**

#### Progress:

 Trained CNN with benchmark dataset for ASL digits dataset

#### **Next Steps:**

- Test ASL digits dataset on other models
- Download and test CamGes
   Dataset with benchmark CNN
- Test with virtual dataset and different dataset compositions after completing the system

```
413/413 [=============] - 16s 39ms/step - loss: 1.6755 - accuracy: 0.4170 - val loss: 0.7570 - val accuracy:
Epoch 2/16
413/413 [=
       -----: 0.8066 - val_loss: 0.4503 - val_accuracy: 0.8066 - val_loss: 0.4503 - val_accuracy:
      0.9039
413/413 [
                   - 18s 43ms/step - loss: 0.2666 - accuracy: 0.9146 - val_loss: 0.2347 - val_accuracy:
0.9258
0.9330
Enoch 6/19
Epoch 7/18
413/413 [==
       0.9433
Epoch 8/10
413/413
          ========] - 15s 36ms/step - loss: 0.0943 - accuracy: 0.9700 - val loss: 0.1921 - val accuracy:
0.9442
Epoch 9/16
        413/413 [
0.9494
Epoch 10/16
0.9533
```



## **Execution Plan**

|                                     | October 12th                                                                                    | October 26th                                                                              | November 9th                                                                                                | November 23rd                                                                                                                                | November 30th                                                                               |
|-------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Gesture Data Collection             | Choose real datasets to replicate     Complete hand mapping configurations                      | - Complete gesture<br>animation recording<br>according to chosen<br>datasets to replicate |                                                                                                             |                                                                                                                                              |                                                                                             |
| Human Model<br>Generation           | - Produce 6 models into<br>Unity for animation<br>testing                                       | - Mass produce models into Unity environment sequentially                                 |                                                                                                             |                                                                                                                                              |                                                                                             |
| Model Animation                     | - Apply recorded test gesture to a single model                                                 | - Randomly apply a recorded gesture to any model                                          |                                                                                                             |                                                                                                                                              |                                                                                             |
| Data Capture/Collection             | - Place at least 5 virtual cameras in Unity environment to face model hand from multiple angles | - Record and store<br>images of gesture<br>performed on any model                         |                                                                                                             |                                                                                                                                              |                                                                                             |
| Training Set Completion/<br>Testing |                                                                                                 | Completion of training set creation system.     Testing process begins                    | - Preprocess each training set - Create new training sets ranging in composition of real and synthetic data | - Train each neural<br>network with new training<br>sets and record the<br>metric used in the real<br>dataset paper for proper<br>comparison | - Evaluate results after comparison and prepare system and outcomes for final presentation. |



# **Validation Plan**

| Test Name                                        | Success Criteria                                                                                                     | Methodology                                                                                                                                             | Status        | Responsible Engineer(s) |  |  |  |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|--|--|--|--|--|
| Benchmark Dataset Training                       | Gesture recognition neural network can run on our home computer and train using the real dataset. Results quantified | Download the benchmark data set and the code for the CNN. Run the code and confirm similar accuracy to benchmark logs provided.                         | TESTED - Pass | Steven Claypool         |  |  |  |  |  |
| Virtual Dataset Training                         | Gesture recognition neural network can train using our built dataset and provide accuracy results                    | Take a final virtual dataset modeled after a real benchmark dataset and use it to train the same CNN as the benchmark. Ensure similar accuracy results. | UNTESTED      | All                     |  |  |  |  |  |
| Gesture Recognition Accuracy                     | Accuracy of gesture recognition is within 5% of benchmark accuracy using our virtual dataset                         | Train gesture recognition neural network using real and synthetic sets and compare accuracy                                                             | UNTESTED      | All                     |  |  |  |  |  |
| Unity Hand Mapping                               | Real hand movement is mapped in Unity                                                                                | Set up Unity, install Ultraleap plug-ins, map hand motion.                                                                                              | TESTED - Pass | Samuel Oncken           |  |  |  |  |  |
| Import Rigged MakeHuman Model                    | A fully rigged MakeHuman model is imported into Unity                                                                | Import model into Unity and confirm appearance and functionality.                                                                                       | TESTED - Pass | Steven Claypool         |  |  |  |  |  |
| Virtual Model Unity Hand Mapping                 | Map hand motion onto an imported MakeHuman model.                                                                    | Use Hand Binder component/configure settings. Confirm natural motion.                                                                                   | IN PROGRESS   | Samuel Oncken           |  |  |  |  |  |
| Mounting Stability                               | Head mounted LMC remains in place during head motion                                                                 | Mount LMC and plug the device into the computer. Rotate head in all directions and shake head left to right.                                            | UNTESTED      | Samuel Oncken           |  |  |  |  |  |
| Apply Example Animation to Model                 | MakeHuman model is able to perform an imported full body gesture accurately.                                         | Import an animation .fbx and apply the animation to the rigged human model. Confirm that motion is as expected.                                         | TESTED - Pass | Samuel Oncken           |  |  |  |  |  |
| Apply Recorded Gesture Animation to Model        | Rigged MakeHuman model can perform a recorded gesture animation.                                                     | After recording an animation, apply it to an imported MakeHuman model using the Animator component.                                                     | TESTED - Pass | Samuel Oncken           |  |  |  |  |  |
| Mass Produce Rigged MakeHuman<br>Models to Unity | Minimum 100 MakeHuman models can be generated and imported into Unity                                                | Use MakeHuman "mass produce" function to generate unique character models, each fit with a "Default" rig, with 20% edge cases                           | IN PROGRESS   | Steven Claypool         |  |  |  |  |  |
| Data Capture Output and File Type                | Virtual camera outputs image data as a .png file or video data as mp4 (TBD from neural networks used).               | Record images/videos of gesture, validate that the data is stored, organized, and is of the desired file type.                                          | UNTESTED      | Steven Claypool         |  |  |  |  |  |
| Final System Validation                          | With the press of a button, a large, diverse virtual training set is produced                                        | Run system and validate in output files that each gesture has at least 500 images of performance on differing human models from numerous angles         | UNTESTED      | All                     |  |  |  |  |  |