Welcome to Week 1

We'll learn about crucial fundamentals that will prepare you for machine learning techniques.

Introduction to Data Science

Why Data Science?

- Lifelong learning
- Opportunity to be a detective
- Ability to directly impact business strategy
- Relevant across so many industries:
 - Diagnosing cancer
 - Fighting global warming
 - Annoying ads
 - City planning
 - The list goes on....

Why Data Science?

Current demand 10,845 "data scientist" positions on Indeed.com 1/2020

The idea of moving to a "data-driven" or "data-centric" business is a hot topic (with huge revenue potential) and requires data scientists.

Exciting! The amount of data is increasing at a rapid pace, and the tools are constantly being created and to manage this!

As a data scientist I have always felt respected, my opinion valued, and the work fulfilling. Reasonable working conditions/flexibility.

Introduction to Data Science

What is Data Science?

Term "data scientist" was coined in 2008.

It continues to evolve as tools advance. (8 years ago you might have trained a neural net over the weekend, and that might now take an hour to train, this obviously changes what the day to day job looks like)

What is Data Science?

My definition: It is the understanding and utilization of tools, data and methodologies that enable you to effectively solve problems utilizing data

What is Data Science?

People who have different strengths can all be data scientists. Industry is realizing that "unicorns" do not exist. Data Science is a multidisciplinary field combining math, stats, programming, analysis and business acumen.

Summary

Data Science is the understanding and utilization of tools, data and methodologies that enable you to effectively solve problems utilizing data

Introduction to Data Science

- Tools will change over time
- Data Lakes were cool, now they're considered "Data Swamps"
- Julia and other languages are gaining in popularity as well. It's important that you learn a language. You do not need to learn all of them.

SQL

R/Python

Github/Git

Big Data Technologies

- Query language for relational databases
- Oracle, Postgres, MySQL, SQLite,
 Microsoft SQL Server
- You don't need to learn them all
- Hive is also similar to SQL

SQL

R/Python

Github/Git

Big Data Technologies

- Should I learn Python or R?
- The answer is "Yes". You should learn
 Python or R, or another language with
 similar capabilities.
- 55% of job description for "Data Scientist" titles list "Python or R" in the description.

SQL

R/Python

Github/Git

Big Data Technologies

- Versioning is imperative in being able to collaborate on code.
- No one wants to see file names with _v45.xlsx on the end of them.
- No more emailing people code or a query, you'll be sure to have the most recent version in Github.

SQL

R/Python

Github/Git

Big Data Technologies

Summary

Python for Data Science

Week 1: Introduction to Data Science

Introduction to Data Science

Data Science Pipeline & Project Lifecycle

Most pipelines in blogs/online leave out the first step and the last two.

Don't let the straight diagram fool you, there is often plenty of back and forth between steps in this process.

- The tools are required to implement these different techniques.
- People often ask "how important is statistics?" or "how important is it to know how to code?" No one will be an expert in every area.

Data Cleaning

Feature Engineering

Analysis

Statistics

Modeling

- Data cleansing (or data cleaning) and is the first step in data
 preprocessing (data preprocessing is the term for bringing you from step
 1 i.e. data cleaning to a training set that is ready for modeling)
- Validating accuracy Does the data match the column label? Are there
 negatives for entries that should be positive? String entries in columns
 that should be numeric? Etc.
- Are there duplicate rows?
- Handling missing data

Data Cleaning

Feature Engineering

Analysis

Statistics

Modeling

- Using domain knowledge to create new columns (called features) that are relevant and useful for machine learning
- Example: You have a customer that has purchased 400 times and another customer that has purchased 20 times. Would I put this directly into the model? I'd probably want to scale it by how long the person has been a customer #purchases/Length tenure. This would be a new feature.
- One hot-encoding or aggregating data in a particular way based on the context. When you aggregate data you lose some information, but if I had a categorical variable with 4,000 categories it may be easier to pick up significance in a model if I grouped them (or some of them) logically.

Data Cleaning

Feature Engineering

Analysis

Statistics

Modeling

- Analysis is breaking a complex topic or dataset into smaller parts to make sense of it. Can be really deep or can be a simpler more high-level analysis
- Being able to answer a question effectively leveraging data. Typically,
 visualizations and charts that tell the story of the data.
- The "A" in EDA;)
- Finding the root cause of errors that are present in your data

Data Cleaning

Feature Engineering

Analysis

Statistics

Modeling

- Data scientists can be the subject matter experts on designing, scoping and analyzing hypothesis tests in their organization (if that is their skillset).
 Consistency across the organization is important!
- Understanding the appropriate methods for determining statistical significance helps to drive decision making
- Just as important, an understanding of statistics allows you to determine when a method or algorithm is NOT appropriate

Data Cleaning

Feature Engineering

Analysis

Statistics

Modeling

- There is no end to the number of algorithms you could learn. This is a lifelong learning process. You may gain a foundation in modeling, and then get into an industry that goes really deep in one particular area.
- New algorithms are being introduced
- When modeling, simple is preferred over complex if the simple solution performs well and is more interpretable

Data Cleaning

Feature Engineering

Analysis

Statistics

Modeling

Summary

Python for Data Science

Week 1: Introduction to Data Science

Introduction to Data Science

- Do not underestimate the importance of the soft skills.
- Cultural fit and ability to communicate effectively are crucial to both landing a job and then being successful in that role.

Ask Questions

Communicate Effectively Balance Accuracy with Incremental ROI

- Data science is a constant collaboration with the business and a series of questions and answers that allow you to deliver the analysis/model/data product that the business has in their head.
- There are questions to be asked at every step in the process.

Ask Questions

Communicate Effectively Balance Accuracy with Incremental ROI

- Yes, you're going to build models. However, the audience you're presenting to may be nontechnical. Being able to communicate results in a way that your business colleagues will understand is imperative in being effective as a data scientist.
- This can truly differentiate you as a data scientist.

Ask Questions

Communicate Effectively Balance Accuracy with Incremental ROI

- Knowing when to spend 3 weeks on an analysis or 30 minutes is a skill.
- This can truly differentiate you as a data scientist.

Summary

Python for Data Science

Week 1: Introduction to Data Science

Introduction to Data Science

Collaboration

Data science is a team effort collaborating with stakeholders and other members of analytics.

Reproducibility

Allows you to show others that those were your true results. You wouldn't want to have someone ask how you arrived at that number and your response be "well, I can't replicate it"

Promotes collaboration and working as a team. If another project becomes higher priority, you'd be able to offload your project to a teammate without as much disruption.

Integrity -> Ethics

Integrity: Your data will always contain some element of bias. However, being fully educated on how to minimize these biases and properly do analysis will help you to be a data scientist with integrity. (if you don't know how to do something properly, you can easily be led down the wrong path or provide inaccurate results).

Data integrity: Preserving the validity and accuracy of your data through checking, validation, and following up on errors you find in your data.

Summary

Collaboration Reproducibility Ethics