

Authentication and access control

Module 2, Information Security, 7,5 ECTS

Erik Bergström erik.bergstrom@ju.se

Overview of module 2

- Authentication
- Access control

Identification and authentication

• The terms and concepts identification and authentication are often mixed or confused.

- Identification is the act of indicating a person or thing's identity
- Authentication is the act of proving that a user is who she says she is

- Identity is often public
- Authentication should be private

Identification

Establishes the identity of an individual

- Identities are often well-known, predictable, or guessable.
 - Email-addresses
 - Usernames
 - 3 first letters from the surname + 3 first from the first name
- What is my identity@JU? What is Sonnys?

Erik Bergström

Lecturer

Department of Computer Science and Informatics, School of Engineering

Authentication

The act of proving that a user is who she says she is

- Mechanisms:
 - Something the user *knows*
 - Something the user is
 - Something the user *has*

• Can be combined, i.e. two-factor or multi-factor authentication

Security Questions.

Select three security questions below. These questions will help us verify your

Security Question	What was the name of your first pet? ▼
Answer	
Security Question	What is your dream job? ▼
Answer	
Security Question	In what city did your parents meet?
Answer	
	Continue
)	

Something the user knows - passwords

- Passwords
 - Most common method
 - For each user, the system stores both the username and hashed password
 - The hash is non-reversible:
 - HP=hash(password) is easy to compute on any input From hash(password), password is (extremely) difficult to compute
 - Must be easy to remember and hard to guess ;-)
- Security questions
 - Don't use too much info is available online.
 - Better to rely on other techniques

- Password authentication is used for anything/everything
- How do we attack?
 - Online
 - Repeated manual or automatic entering of passwords
 - Servers can block and deny access after repeated failures
 - Offline
 - Require access to the hashed password(s)
 - Old Unix: /etc/passwd
 - New Unix /etc/shadow only readable by root
 - Windows: stored in registry hive in binary format (but still accessible). Hash from SAM file or AD or interception when sent over network
 - Check as much as you want
 - Must be made expensive

- Old (1998) but still relevant list of steps for an attacker to try, in order, to determine a password:
 - no password
 - the same as the user ID
 - is, or is derived from, the user's name
 - on a common word list (for example; password, secret, private) plus common names and patterns (e.g. qwerty, aaaaaa,123, 123456)
 - contained in a short college dictionary
 - contained in a complete English word list
 - contained in common non-English-language dictionaries
 - contained in a short college dictionary with capitalizations (PaSsWorD) or substitutions (digit 0 for letter O, and so forth)
 - contained in a complete English dictionary with capitalizations or substitutions
 - contained in common non-English dictionaries with capitalization or substitutions
 - obtained by brute force, trying all possible combinations of alphabetic characters
 - obtained by brute force, trying all possible combinations from the full character set
- The last step will always work but time/CPU is limited
- Brute force is systematic but inefficient

- Dictionary attacks
 - Trying all the strings in a pre-arranged listing derived from lists
 - More efficient than brute force since we tend to use names, places,...
 - Many password recovery (/cracking) tools exist, e.g.:
 - Dictionary attacks are best suited for passwords that are not too long
- Guessing attack
 - Exploits human nature to use easy to remember passwords
 - Trial-and-error

- Brute force, dictionary and guessing attacks use clear text passwords as input
 - Run the password through the system online or the algorithm offline
 - Hence a slow hashing mechanism wastes time!
- Rainbow tables (simplified here and in the book)
 - Generally an offline attack
 - Uses precomputed lists of hashes
 - Rainbow tables are a compromise between pre-computation and low memory usage

Password salt

- Same password will generate same hash password salt is used to overcome this problem
 - Salt can be random or generated from clock, process identifier...
 - Salt is 8bytes in UNIX/Linux
 - Salt is stored in the password table with the password and the username

HP=hash (password | | salt)

- Don't use the same salt or too short salt
 - Long salt counter rainbow tables

Salt example

Without salt

Username	Password	Hashed value (MD5)	Hashed value (SHA-256)	
user1	MySuperPassw0rd	e746e64b281f03f09d5623d97eef5869	95210fefc572ea43e1bee40c52140066a9e0d6f5ebebabd8f920140856d1b017	
user2	MySuperPassw0rd e746e64b281f03f09d5623d97eef5869		95210fefc572ea43e1bee40c52140066a9e0d6f5ebebabd8f920140856d1b017	

• With salt

Username	Password	Salt (in hex)	String to hash	Hashed value (SHA-256)
user1	MySuperPassw0rd	436f4e7665727431	MySuperPassw0rd436f4e7665727431	fd0cc86c33bd00092270eff52fd6eb9fc36a245fd07c21e25b64ccf8a2c288dc
user2	MySuperPassw0rd	c3b6c3a4c3a5706f	MySuperPassw0rdc3b6c3a4c3a5706f	4626ed723087c03251b431d18b080fa00fb08ee34542a4bc06c0a518d4a69926

How to choose a good password (Pfleeger)

- Use characters other than just a–z
 - a-z is only 26 possibilities. A-Z+a-z+0-9 = 62 possibilities
- Choose long passwords
- Avoid actual names or words
- Use a string you can remember
 - Please do not throw sausage pizza away for real = PdN75pa4r
- Use variants for multiple passwords
 - Like above plus concatenate e.g. fab for Facebook (PdN75pa4rfab)
- Change the password regularly
- Don't write it down
- Don't tell anyone else
- Don't use CorrectHorseBatteryStaple ;-)

~ 44 BITS OF ENTROPY

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

https://xkcd.com/936/

How to choose a good password

- Need to be hard to guess (dictionary, rainbow tables...)
- Should be easy to remember (otherwise shoulder-surfing, social engineering...)
- Reasonable length
- Bit random
- Not used everywhere
- Password managers are helpful
 - Use as few, good passwords as possible, and let the manager generate different passwords for different services

https://correcthorsebatterystaple.net/

Part of https://xkcd.com/792/

Something the user is - biometrics

- Many different techniques:
 - Fingerprint
 - Hand geometry (shape and size of fingers)
 - Retina and iris (parts of the eye)
 - Voice
 - Handwriting, signature, hand motion
 - Typing characteristics
 - Blood vessels in the finger or hand
 - Face
 - Facial features, such as nose shape or eye spacing

- Fairly new technologies
 - Some find them intrusive
 - Some are expensive
 - Single point of failure
 - Sampling error
 - False readings
 - Speed
 - Need to be accurate but not slow
 - Forgery
 - E.g. fingerprints made by gelatin

Something the user *has*

Active and passive tokens

Static and dynamic tokens

Identity management

- Complicated to keep track of all identities (for users and staff)
- Users use several systems at the same time —> many authentications
- Distributed, heterogeneous domain that needs authentication within an organization
- Solutions include:
 - Federated identity manager
 - Single sign-on

Federated identity manager (FIdM/FIM)

- One profile is used
- Unifies the identification and authentication process for a group of systems
- Authentication is performed in one place
- Systems share access to the central authentication database

Single sign-on (SSO)

- Single sign-on lets a user log on once per session
 - But access to many different applications/systems
- Often works in conjunction with federated identity management
 - SSO is a subset of FIdM
 - The federated identity provider acts as the source of authentication for all the applications

Access control

Access control: limiting who can access what, and in what ways

- Access control has two components:
 - Authentication
 - Authorization
 - (Sometimes also audit/accounting)

Access control

- A subject is permitted to access an object in a particular mode, and only such authorized accesses are allowed
 - Subjects
 - Objects
 - Access modes

Access policies

- Goals:
 - Check every access
 - Enforce least privilege
 - Verify acceptable usage

Access policies

Track users' access

Enforce at appropriate granularity

Use audit logging to track accesses

How do we implement access control? More soon =)

JÖNKÖPING UNIVERSITY

School of Engineering