Serial No. 10/797,455 Atty. Doc. No. 2004P02559US

- 8. (Original) The combustor of claim 6. wherein the second catalytic stage further comprises a catalytic material selected from the group consisting of perovskite, zeolite, and hexaaluminate.
- 9. (Original) The combustor of claim 6. wherein the second catalytic stage further comprises a first region comprising a first catalytic material, and a second region disposed downstream of the first region and comprising a second catalytic material different from the first catalytic material.
 - 10. (Original) The combustor of claim 6, further comprising:
- a first catalytic material disposed on a metallic support in the first catalytic stage; and
- a second catalytic material, different from the first catalytic material, disposed on a ceramic support in the second catalytic stage.
- 11. (Original) The combustor of claim 6, wherein the second catalytic stage further comprises a metallic support comprising a metal alloy selected from the group consisting of molybdenum dislicide, iron-chromium-aluminum, and iron aluminide.
- 12. (Original) The combustor of claim 6, wherein the second catalytic stage further comprises a catalytic material disposed on a ceramic reticulated foam catalyst support.

13. (Cancelled)

14. (Currently Amended) The combustor of claim 43 6, wherein the separate catalytic elements comprise ceramic reticulated foam catalyst supports comprising different pore size grades.

15. (Cancelled)

PAGE 5/13 * RCVD AT 1/2/2008 3:14:02 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-5/13 * DNIS:2738300 * CSID:4079267720 * DURATION (mm-55):02-32

Serial No. 10/797,455 Atty. Doc. No. 2004P02559US

16. (Currently Amended) The combustor of claim 43 <u>6</u>, wherein the separate catalytic elements comprise different catalytic materials.

17. (Cancelled)

- 18. (Currently Amended) The combustor of claim 43 6, wherein each catalytic element is spaced apart from an adjacent catalytic element along the flow axis.
- 19. (Original) The combustor of claim 6, wherein the second catalytic stage further comprises a tubular catalyst support coated with a catalytic material on an outside surface and an inside surface.
- 20. (Original) The combustor of claim 6, wherein the second catalytic stage further comprises a plurality of catalytic material coated plates defining longitudinal passageways.
- 21. (Original) The combustor of claim 6, wherein the second catalytic stage further comprises a catalyst support selected from the group consisting of a honeycomb structure, a tower packing structure, and a packed particle structure.
- 22. (Original) The combustor of claim 6, wherein the first catalytic stage comprises a rich catalytic stage.

23. (Cancelled)

Serial No. 10/797,455 Atty. Doc. No. 2004P02559US

24. (Currently Amended) A catalytic combustor comprising:

an upstream pressure boundary comprising a catalytic surface disposed thereinfor receiving a fuel/oxidizer mixture and discharging a partially oxidized fuel/oxidizer mixture;

a downstream pressure boundary defining a pressure boundary crosssectional flow area for receiving the partially oxidized fuel/oxidizer mixture;

a catalyst-coated reticulated foam support disposed within the second pressure boundary for receiving a first portion of the mixture and presenting a support cross-sectional flow area less than the second pressure boundary cross-sectional flow area to define a bypass passageway for allowing a second portion of the fuel/oxldlzer mixture to bypass the foam support; and

a transition pressure boundary disposed between the upstream pressure boundary and the downstream pressure boundary, the transition pressure boundary comprising a narrowed flow area region effective to generate a venturi effect disposed between an inlet end receiving the oxidized fuel/oxidizer mixture from the upstream pressure boundary and an outlet end discharging the partially oxidized fuel/oxidizer mixture into the downstream pressure boundary, wherein the transition pressure boundary is configured to substantially limit combustion of the partially oxidized fuel/oxidizer mixture from the upstream pressure boundary.

- 25. (Original) The catalytic combustor of claim 24, wherein the reticulated foam support comprises a cross-section sized to bypass from 25% to 80% of the mixture past the foam support element.
- 26. (Original) The catalytic combustor of claim 24, wherein the reticulated foam support defines a plurality of separate passageways within the pressure boundary.
- 27 (Original) The catalytic combustor of claim 24, wherein the passageway is disposed around a portion of a perimeter of the reticulated foam support.

Serial No. 10/797,455 Attv. Doc. No. 2004P02559US

- 28. (Original) The catalytic combustor of claim 24 wherein the reticulated foam support comprises a cruciform cross-section.
- 29. (Original) The catalytic combustor of claim 24 wherein the reticulated foam support comprises a donut-shaped cross-section.
- 30. (Original) The catalytic combustor of claim 24 wherein the reticulated foam support comprises a cross-section perimeter smaller than an internal perimeter of the pressure boundary, the foam support supported against the internal perimeter by spaced apart standoffs.
- 31. (Original) The catalytic combustor of claim 24 wherein the reticulated foam support comprises a ceramic material.
- 32. (Previously Presented) The catalytic combustor of claim 1, wherein the narrowed flow region is configured for generating a venturi effective to protect the first catalytic stage from heat generated in the second catalytic stage.
- 33. (Previously Presented) The catalytic combustor of claim 6, wherein the narrowed flow region is configured for generating a venturi effective to limit flashback into the first catalytic stage.
- 34. (New) The catalytic combustor of claim 1, wherein the transition stage is configured to substantially limit combustion of the partially oxidized fuel/oxidizer mixture from the first catalytic stage.
- 35. (New) The catalytic combustor of claim 6, wherein the transition stage is configured to substantially limit combustion of the partially oxidized fuel/oxidizer mixture from the first catalytic stage.