Lect 04 Number System, Gates, Boolean Algebra

CS221: Digital Design

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

<u>Outline</u>

- Gates in Digital System
 - Basic Gates (AND, OR & NOT)
 - Universal Gates (NAND & NOR)
 - Others : XOR, XNOR
- Boolean Algebra
 - –Axioms
- Boolean Functions

Boolean Algebra

How to prove 2+2=5?

We know 2+2=4

$$2 + 2 = 4 - \frac{9}{2} + \frac{9}{2} = \sqrt{(4 - \frac{9}{2})^2} + \frac{9}{2}$$

$$= \sqrt{16 - 2.4.\frac{9}{2} + (\frac{9}{2})^2 + \frac{9}{2}}$$

$$= \sqrt{-20 + (\frac{9}{2})^2} + \frac{9}{2} = \sqrt{25 - 45 + (\frac{9}{2})^2} + \frac{9}{2}$$

$$= \sqrt{5^2 - 2.4.\frac{9}{2} + (\frac{9}{2})^2} + \frac{9}{2} = \sqrt{(5 - \frac{9}{2})^2} + \frac{9}{2}$$

=
$$5 - \frac{9}{2} + \frac{9}{2} = 5$$
 Where is the mistake?

 $\sqrt{x^2}$ =x is true only when x≥0

Boolean Algebra

- Computer hardware using binary circuit greatly simply design
- George Boole (1813-1864): developed a mathematical structure in **1847**
 - -To deal with binary operations with just two values
- Binary circuits: To have a conceptual framework to manipulate the circuits algebraically
 - -Claude Shannon: 1937, Master Thesis

Basic Gates in Binary Circuit

- Element 0: "FALSE". Element 1: "TRUE".
- '+' operation "OR", '*' operation "AND" and ' operation "NOT".

OR	0	1
0	0	1
1	1	1

AND	0	1
0	0	0
1	0	1

NOT	
0	1
1	0

OR Gate

• '+' operation "OR"

OR	0	1
0	0	1
1	1	1

X	Y	R=X OR Y R= X + Y
0	0	0
0	1	1
1	0	1
1	1	1

$$1 + Y = 1$$

AND Gate

• '*' operation "AND"

AND	0	1
0	0	0
1	0	1

X	Y	R=X AND Y R= X * Y
0	0	0
0	1	0
1	0	0
1	1	1

$$0 * Y = 0$$

NOT Gate

• 'operation "NOT" or use BAR

• R=
$$\overline{X}$$

X	R=X' R= NOT X
0	1
1	0

• Boolean Algebra B: 5-tuple

$${B, +, *, ', 0, 1}$$

- + and * are binary operators,
- is a *unary* operator.

• Axiom #1: Closure

If a and b are Boolean

• Axiom #2: Cardinality/Inverse

if a is Boolean then a' is Boolean

• Axiom #3: Commutative

$$(\mathbf{a} + \mathbf{b}) = (\mathbf{b} + \mathbf{a})$$

$$(a * b) = (b * a)$$

•Axiom #4: Associative: If a and b are Boolean

$$(a + b) + c = a + (b + c)$$

 $(a * b) * c = a * (b * c)$

•Axiom #6: Distributive

$$a * (b + c) = (a * b) + (a * c)$$

 $a + (b * c) = (a + b) * (a + c)$

2nd one is Not True for Decimal numbers System 5+(2*3) ≠ (5+2)*(5+3) 11 ≠ 56

- •Axiom #5: Identity Element:
 - B has identity to + and *
 - 0 is identity element for +: a + 0 = a
 - 1 is identity element for *: a * 1 = a
- •Axiom #7: Complement Element

$$a + a' = 1$$

$$a * a' = 0$$

Terminology

Juxtaposition implies * operation:

$$ab = a * b$$

Operator order of precedence is:

() > ' > * > +
$$a+bc = a+(b*c) \neq (a+b)*c$$

$$ab' = a(b') \neq (a*b)'$$

Named Theorems

Idempotent	a + a = a	a * a = a
Boundedness	a + 1 = 1	a * 0 = 0
Absorption	a + (a*b) = a	a*(a+b) = a
Associative	(a+b)+c=	(a*b)*c=
	a+(b+c)	a*(b*c)

Involution	(a')' = a	
DeMorgan's	(a+b)' = a' * b'	(a*b)'=a' + b'

<u>Simplification Theorem</u>

• Uniting:

$$XY + XY' = X$$
 $X(Y+Y')=X.1=X$ $X(Y+Y')=X+X(Y+Y')+0=X$

Absorption:

$$X + XY = X$$
 $X(1+Y)=X.1=X$ $X(X + Y) = X$ $XX+XY=X+XY=X$

Adsorption

$$(X + Y')Y = XY, XY' + Y = X + Y$$
 $XY+YY'=XY+0=XY$

Principle of Duality

- Dual of a statement S is obtained
 - By interchanging * and +
 - By interchanging 0 and 1
- Dual of (a*1)*(0+a') = 0 is (a+0)+(1*a') = 1

Duality examples

•
$$x + 0 = x$$

$$x.1=x$$

•
$$z + x' = 1$$

$$x.x'=0$$

$$A. (B'+C)$$

$$(A'+B').(A+B)$$

Consensus Theorem

Consensus (collective opinion) of X.Y and X'.Z is Y.Z

•
$$(X + Y)(X' + Z)(Y + Z) = (X + Y)(X' + Z)$$

Shannon Expansion

• $F(A,B) = A' \cdot F(0,B) + A \cdot F(1,B)$

Example:

$$F(A,B) = A'.B+A.B'$$

= A'.(1.B+0.B')+A.(0.B+1B')
= A'B+AB'

Shannon Expansion

• $F(X, Y, Z) = X \cdot F(1,Y,Z) + X' \cdot F(0, Y, Z)$

Example:

$$=X. (1.Y+0.Z+YZ) + X' (0.Y+1.Z+YZ)$$

$$=X.(Y+YZ)+X'(Z+YZ)$$

$$=XY+XYZ+X'Z+X'YZ$$

$$= XY(1+Z)+X'Z+YZ(X'+X)$$

$$=XY+X'Z+YZ$$