Package 'plotFPOP'

October 25, 2017

Description

Simulating a one-dimenstional segmentation with a given number of segments

2 dataG2

Usage

```
dataG1(mean = c(0.5, 0, -0.5, 0), tau = c(0.25, 0.5, 0.75, 1), sigma = 1, n = 100)
```

Arguments

mean	Vector of means (mean of consecutive segments)
tau	relative position (between 0 and 1) of the changepoints (the last position is always 1) $ \\$
sigma	A positive number: the value (unique) of the standard deviation for all the Gaussian laws in the simulation
n	The number of data point to simulate

Value

A vector of data of length n generated by the simulated segmentation

Examples

```
data <- dataG1(sigma = 0.05, n=20)
plot(1:20,data)</pre>
```

dataG2

Two-dimensional gaussian segmentation

Description

Simulating a two-dimenstional segmentation with a given number of segments

Usage

```
dataG2(mean1 = c(0, 1, 1, 0), mean2 = c(0, 0, 1, 1), tau = c(0.25, 0.5, 0.75, 1), sigma = 1, n = 100)
```

Arguments

mean1	Vector of means for the first dimension
mean2	Vector of means for the second dimension
tau	relative position (between 0 and 1) of the changepoints (the last position is always 1) $$
sigma	A positive number: the value (unique) of the standard deviation for all the Gaussian laws in the simulation #' @param n The number of data point to simulate
n	The number of data point to simulate

fpop1d 3

Value

A matrix of data of dimension 2 x n generated by the simulated segmentation

Examples

```
data <- dataG2(sigma = 0.05, n=50)
max = max(data);min = min(data)
plot(1:50,data[1,],ylim = c(min,max))
par(new = TRUE)
plot(1:50,data[2,],ylim = c(min,max),col=2)
par(new = FALSE)</pre>
```

fpop1d

Functional cost 1d display

Description

Displaying the functional cost at consecutive times

Usage

```
fpop1d(data1, beta, nb = 2000, order = FALSE)
```

Arguments

data1	Vector of data
beta	penalty coefficient, positive number
nb	An integer: the number of elements in the vector for the x-axix of the plot
order	a boolean. If true,it displays the labels on the real line from left to right

Value

plots of the functional cost (in the plot window) and the present labels (in the console) at consecutive times. The vertical gray line shows the position of the current added data on the real line

Examples

```
data <- dataG1(sigma = 0.5, n=15)
fpop1d(data,1)</pre>
```

4 fpop2d

fpop2d	Functional cost 2d display at level beta
1 popza	1 unetional cost 2a display at level bela

Description

Displaying the functional cost at consecutive times

Usage

```
fpop2d(data2, beta, nb = 300, circle = FALSE)
```

Arguments

data2 matrix of data of dimension 2 x n

beta penalty coefficent, positive number

nb An integer: the number of rows in the matrix used for the plots

circle A boolean to decide to draw the circles of intersection (green if the region stays,

red otherwise)

Value

Plots of the functional cost (in the plot window) and the present labels (in the console) at consecutive times

Examples

```
data <- dataG2(mean1 = 0, mean2 = 0, tau = 1, sigma = 0.5, n=10) fpop2d(data, n = 300, 1, circle = TRUE)
```

Index

- dataG1, 1dataG2, 2
- fpop1d, 3 fpop2d, 4