Algèbre 1

 $Hugo \ SALOU$

Preuve. \triangleright L'unicité à unique isomorphisme près est formelle (c.f. preuve des sommes/produits directs).

 \triangleright On va démontrer l'existence, pour n=2, et on procède par récurrence immédiate pour montrer pour tout n. On donne deux méthodes.

Méthode rapide

Soit (e_1, \ldots, e_n) une base de E_1 . Soit (f_1, \ldots, f_m) une base de E_2 . On considère $E_1 \otimes E_2$ le \mathbb{k} -espace vectoriel de base indexée par $\{1, \ldots, n\} \times \{1, \ldots, m\}$ (c'est à dire $\mathbb{k}^n \times \mathbb{k}^m$). On notera $e_i \otimes f_j$ l'élément de la base correspondante à l'indice (i, j).

Remarquons que, plus abstraitement, on a considéré

$$\bigoplus_{(i,j)\in[\![1,n]\!]\times[\![1,m]\!]} \mathbb{k}(e_i\otimes e_j).$$

On définit alors l'application

$$\pi: E_1 \times E_2 \longrightarrow E_1 \otimes E_2$$
$$(e_i, f_j) \longmapsto e_i \otimes f_j,$$

étant étendue par linéarité.

Justifions que la propriété universelle voulue est satisfaite.

Soit $\phi: E_1 \times E_2 \to F$. On définit l'application linéaire

$$\bar{\phi}: E_1 \otimes E_2 \longrightarrow F$$
 $e_i \otimes e_j \longmapsto \bar{\phi}(e_i, e_j),$

étendue par linéarité.

Observation. $\phi = \bar{\phi} \circ \pi$.

. Clair.

L'unicité de $\bar{\phi}$ est claire, car elle doit prendre les valeurs $\left(\phi(e_i, f_j)\right)_{i,j}$ sur $(e_i \otimes e_j)_{i,j}$, qui est une base de $E_1 \otimes E_2$.

Méthode « M1 Maths »

On définit le produit tensoriel par un quotient de relation. C'est une construction qui sera utilisée notamment en M1 avec les modules.

On définit 1 :

$$E_1 \otimes E_2 := \frac{\bigoplus_{e \in E_1, f \in E_2} \mathbb{k}(e \otimes f)}{\langle (\lambda e + \lambda' e') \otimes (\mu f + \mu' f') = \lambda \mu e \otimes f + \lambda \mu' e \otimes f' + \lambda' \mu e' \otimes f + \lambda' \mu' e' \otimes f' \rangle}.$$

On définit alors

$$\pi: E_1 \times E_2 \longrightarrow E_1 \otimes E_2$$
$$(e, f) \longmapsto \overline{e \otimes f},$$

qui est étendue par bilinéarité puis construction.

(Exercice) Le couple $(E_1 \otimes E_2, \pi)$ satisfait la propriété universelle recherchée.

Définition 0.1. Soient E_1, \ldots, E_n des \mathbb{k} -espaces vectoriels. Pour $(e_1, \ldots, e_n) \in E_1 \times \cdots \times E_n$, on note

$$e_1 \otimes \cdots \otimes e_n := \pi(e_1, \dots, e_n).$$

Terminologie. Les éléments de cette forme sont appelés tenseurs simples (ou pures). Un élément de $E_1 \otimes \cdots \otimes E_n$ est appelé tenseur.

^{1.} Cette définition n'a qu'un intérêt théorique : on pose l'espace comme ceci mais, pour pouvoir le calculer, cette définition n'est pas très utile.

Observation. Les tenseurs simples engendrent $E_1 \otimes \cdots \otimes E_n$. Clair avec les deux constructions données.

Attention! Un tenseur quelconque n'est en général pas simple.

Pour bien insister sur le corollaire de la construction :

Corollaire 0.1. Soient E_1, \ldots, E_n des \mathbb{k} -espaces vectoriels. Soit également $(e_{i_k})_{i_k \in I_k}$ une base de E_k pour $k \in [1, n]$.

Alors, $(e_{i_1} \otimes \cdots \otimes e_{i_n})_{(i_1,\dots,i_n) \in I_1 \times \cdots \times I_n}$ est une base de $E_1 \otimes \cdots \otimes E_n$.

En particulier,

$$\dim(E_1 \otimes E_n) = \prod_{i=1}^n \dim(E_i).$$

Preuve. Cela par la construction donnée.

On a les règles de calculs suivantes :

1.
$$\lambda \cdot (e_1 \otimes \cdots \otimes e_n) = (\lambda \cdot e_1) \otimes e_2 \otimes \cdots \otimes e_n = \cdots = e_1 \otimes \cdots \otimes e_{n-1} \otimes (\lambda \cdot e_n)$$
.

2.
$$(e_1 + e'_1) \otimes e_2 \otimes \cdots \otimes e_n = e_1 \otimes \cdots \otimes e_n + e'_1 \otimes \cdots \otimes e_n$$
,

$$e_1 \otimes \cdots \otimes e_{n-1} \otimes (e_n + e'_n) = e_1 \otimes \cdots \otimes e_n + e_1 \otimes \cdots \otimes e'_n.$$

Ceci est vrai par bilinéarité de π .

0.1Morphismes et produits tensoriels.

Dans cette section, on traitera le cas n=2.

On a le théorème suivant.

Théorème 0.1. Soient E, E', F, F' quatre \mathbb{k} -espaces vectoriels de

dimension finie. Il y a un isomorphisme canonique

$$\operatorname{Hom}(E,E') \otimes \operatorname{Hom}(F,F') \xrightarrow{\sim} \operatorname{Hom}(E \otimes F, E' \otimes F')$$
$$u \otimes v \longmapsto \begin{vmatrix} E \otimes F & \to & E' \otimes F' \\ x \otimes y & \mapsto & u(x) \otimes u(y) \end{vmatrix}.$$

Convention. Lorsqu'on écrit « $u \otimes v$ », on l'interprète comme étant un élément de $\text{Hom}(E \otimes F, E' \otimes F')$.

Preuve. On considère le morphisme Φ défini par :

$$\Phi: \operatorname{Hom}(E,E') \times \operatorname{Hom}(F,F') \xrightarrow{\sim} \operatorname{Hom}(E \otimes F, E' \otimes F')$$

$$(u,v) \longmapsto \left| \begin{array}{ccc} E \otimes F & \to & E' \otimes F' \\ x \otimes y & \mapsto & u(x) \otimes u(y) \end{array} \right.$$

Observation. Φ est bien définie.

. Ceci découle du fait que

$$E \times F \longrightarrow E' \otimes F'$$
$$(x,y) \longmapsto E \times u(x) \otimes v(y)$$

est bilinéaire, donc unicité de l'application linéaire $E\otimes F\to E'\otimes F'$ (propriété universelle).

Observation. L'application Φ est bilinéaire.

. Clair.

Ainsi Φ induit, par propriété universelle, l'application linéaire

$$\bar{\Phi}: \operatorname{Hom}(E, E') \otimes \operatorname{Hom}(F, F') \to \operatorname{Hom}(E \otimes F, E' \otimes F').$$

Observation. $\bar{\Phi}$ est surjective

. Il suffit de montrer que l'on peut atteindre les morphismes de la forme

$$e_i \otimes f_j \longmapsto e'_k \otimes f'_\ell$$

 $e_r \otimes f_s \longmapsto 0 \text{ si } (r, s) \neq (i, j)$

où $(e_i)_i$ est une base de E, $(f_j)_j$ est une base de F, $(e'_k)_k$ est une base de E' et $(f'_\ell)_\ell$ est une base de F'.

Et, pour ce faire, on définit

$$u: e_i \longmapsto e'_k$$

 $e_r \longmapsto 0 \text{ si } r \neq i$

puis

$$v: f_j \longmapsto f'_j$$

 $f_s \longmapsto 0 \text{ si } s \neq j.$

On conclut puisque

$$\dim(\operatorname{Hom}(E, E') \otimes \operatorname{Hom}(F, F')) = \dim(\operatorname{Hom}(E \otimes F, E' \otimes F')).$$

On a alors la règle de calculs étendue.

Proposition 0.1. Si $u: E \to E', u': E' \to E'', v: F \to F'$ et $v': F' \to F''$ quatre applications linéaires, alors

$$(u' \otimes v') \circ (u \otimes v) = (u' \circ u) \otimes (v' \circ v).$$

Preuve. Il suffit d'observer que ces deux applications prennent même valeurs sur les tenseurs simples. On conclut car ceux-ci engendrent $E \otimes F$.

Interprétation matricielle (du théorème précédent)

Soit $\mathfrak{B}_E = (e_i)$ une base de E, $\mathfrak{B}_F = (f_j)$ une base de F, $\mathfrak{B}_{E'} = (e'_k)$ une base de E' et $\mathfrak{B}_{F'} = (f'_\ell)$ une base de F'. Notons $A := \operatorname{Mat}_{\mathfrak{B}_E,\mathfrak{B}_F}(u)$ et $B := \operatorname{Mat}_{\mathfrak{B}_{E'},\mathfrak{B}_{F'}}(v)$. Notons aussi $\mathfrak{B}_{E\otimes F} = (e_i \otimes f_j)$ base de $E \otimes F$ et $\mathfrak{B}_{E'\otimes F'} = (e'_k \otimes f'_\ell)$ base de $E' \otimes F'$. Alors,

$$\operatorname{Mat}_{\mathfrak{B}_{E\otimes F},\mathfrak{B}_{E'\otimes F'}} = \begin{pmatrix} a_{11}B & \dots & a_{1,m}B \\ \vdots & \ddots & \vdots \\ a_{n,1}B & \dots & a_{n,m}B \end{pmatrix}$$
 (*).

On peut en déduire que (exercice) le corolaire suivant.

Corollaire 0.2. Si $u \in \mathcal{L}(E)$ et $v \in \mathcal{L}(F)$ alors

- 1. $\operatorname{Tr}(u \otimes v) = \operatorname{Tr}(u) \cdot \operatorname{Tr}(v)$;
- 2. $\det(u \otimes v) = (\det u)^{\dim F} \cdot (\det v)^{\dim E}$;

et si $u \in \mathcal{L}(E, E')$ et $v \in \mathcal{L}(F, F')$ alors

3. $\operatorname{rg}(u \otimes v) = (\operatorname{rg} u) \cdot (\operatorname{rg} v)$.

Preuve. On applique l'interprétation matricielle, et on applique les résultats usuels sur les matrices. \Box

Remarque 0.1. La formule (*) permet de définir le produit tensoriel de matrices. On montrerait alors

- 1. $(A + A') \otimes B = A \otimes B + A' \otimes B$
- 2. $(AA')\otimes (BB')=(A\otimes B)(A'\otimes B')$ (par les règles de calculs)
- 3. $(A \otimes B) \otimes C = A \otimes (B \otimes C)$ (par l'interprétation terme à terme des morphismes).

0.2 Quelques isomorphismes canoniques et règles de calculs

0.2.1 Isomorphisme canonique.

Proposition 0.2. Soient E et F deux \mathbb{k} -espaces vectoriels de dimension finie. Alors, canoniquement on a $Hom(E, F) \cong E^* \otimes F$.

Preuve. On considère

$$\phi: E^* \times F \longrightarrow \operatorname{Hom}(E, F)$$
$$(\ell, y) \longmapsto (x \mapsto \ell(x) y).$$

Observation. ϕ est bilinéaire.

Elle induit donc $\bar{\phi}: E^* \otimes F \to \operatorname{Hom}(E, F)$.

La surjectivité se montre comme à la sections 3, et on conclut par égalité des dimensions. $\hfill\Box$

0.2.2 Isomorphismes canoniques et règles de calculs.

Proposition 0.3. Si E, F sont deux k-espaces vectoriels, alors

$$E \otimes F \longrightarrow F \otimes E$$
$$e \otimes f \longmapsto f \otimes e.$$

Preuve. On pose

$$u: E \times F \longrightarrow F \otimes E$$

 $(e, f) \longmapsto f \otimes e,$

bilinéaire et il induit donc un morphisme

$$\bar{u}: E \otimes F \to F \otimes E.$$

On construit de même l'inverse.

Proposition 0.4. Si E_1, E_2, F sont trois k-espaces vectoriels, alors il y a un isomorphisme canonique

$$u: (E_1 \oplus E_2) \otimes F \longrightarrow (E_1 \otimes F) \oplus (E_2 \otimes F)$$

 $(x \oplus y) \otimes z \longmapsto (x \otimes z) \oplus (y \otimes z).$

Preuve. On considère, pour $i \in \{1, 2\}$, l'application $p_i : E_1 \otimes E_2 \to E_i$ la projection canonique.

Observation. $u = (p_1 \otimes id_F, p_2 \otimes id_F)$

. Clair

On peut construire l'inverse. Soit, pour $i \in \{1, 2\}$, l'injection canonique

$$j_i: E_i \hookrightarrow E_1 \oplus E_2$$
.

On considère alors, pour $i \in \{1, 2\}$,

$$j_i \otimes \mathrm{id}_F : E_i \otimes F \to (E_1 \oplus E_2) \otimes F$$
.

Ainsi, $v = j_1 \oplus j_2$ est un inverse pour u.

Proposition 0.5. Si E et F sont deux k-espaces vectoriels de dimension fini, alors il existe un isomorphisme canonique

$$\bar{\phi}: E^* \otimes F^* \longrightarrow (E \otimes F)^*$$
$$\mu \otimes \nu \longmapsto (x \otimes y \mapsto \mu(x) \cdot \nu(y)).$$

Preuve. 1. L'application $\bar{\phi}$ est bien définie.

2. C'est bien un isomorphisme (on montre que c'est surjectif et égalité des dimensions).

Proposition 0.6. Si E, F et G sont trois \Bbbk -espaces vectoriels alors il y a un isomorphisme canonique

$$(E \otimes F) \otimes G \longrightarrow E \otimes (F \otimes G)$$
$$(x \otimes y) \otimes z \longmapsto x \otimes (y \otimes z).$$

Preuve. Exercice.

1 Représentation linéaires des groupes (finis, complexes).

1.1 Notions de base.

Dans cette section, on considère un corps k est un groupe G.

1.1.1 Définitions.

Définition 1.1. Une représentation linéaire de G sur \Bbbk est la donnée de

- $\triangleright V$ un \Bbbk -espace vectoriel de dimension finie;
- $\triangleright \rho: G \to \mathrm{GL}(V)$ morphisme de groupes.

Autrement dit, c'est une action de G sur V par automorphismes linéaires.

Notation. On note (ρ, V) , souvent abrégé en simplement V (ρ étant sous-entendu).

Terminologie.

- \triangleright Le degré de (ρ, V) est la dimension de V.
- \triangleright La représentation est *fidèle* si ρ est injectif.

1.1.2 Sous-représentation (et irréductibilité)

Définition 1.2. Si (ρ, V) une représentation linéaire de G alors un sous-espace vecotirel $W\subseteq V$ est une sous-représentation linéaire

de V si W est stable par G, *i.e.*

$$\forall g \in G, g \cdot W \subseteq W$$
.

Observation. La donnée de

$$\left(W, \begin{array}{ccc} G & \to & \mathrm{GL}(W) \\ g & \mapsto & \rho(g)_{|W} \end{array}\right)$$

est alors évidemment une représentation linéaire de G.

Exemple 1.1.

$$V^G := \{v \in V \mid \forall g \in G, g \cdot v = v\}$$

est une sous-représentation (qui est triviale).

Définition 1.3. On dit qu'une représentation linéaire (ρ, V) est irréductible si

- \triangleright son degré est ≥ 1 ;
- \triangleright et ses seuls sons-représentations sont $\{0\}$ et V, *i.e.* (ρ, V) n'admet pas de sous-représentations non triviales.

1.1.3 Morphismes de représentations.

Définition.

Définition 1.4. Soient (ρ, V) et (σ, W) deux représentations linéaires de G. Un morphisme de représentation de V à W est la donnée de

$$f: F \to W$$

linéaire telle que

$$\forall g \in G, \forall v \in V, \qquad f(g \cdot v) = g \cdot f(v),$$

Hugo Salou – L3 ens lyon

i.e.,

$$f(\rho(g) v) = \sigma(g) f(v).$$

Notation. On note $\operatorname{Hom}_G(V,W)$ l'ensemble des morphismes de représentation linéaire. C'est un \mathbb{k} -espace vectoriel.

Terminologie. Les éléments de $\text{Hom}_G(V, W)$ sont appelés les *morphismes G-équivariants*.

Exercice 1.1. L'inclusion d'une sous-représentation est un morphisme de représentations.

Observation. Si $f \in \text{Hom}_G(V, W)$ alors

- \triangleright ker f est une sous-représentation de V;
- \triangleright im f est une sous-représentation de W.

. Si $v \in \ker f$, alors $f(g \cdot v) = g \cdot f(v) = 0$. Si $w \in f(v) \in \operatorname{im} f$ alors $g \cdot w = g \cdot f(v) = f(g \cdot v) \in \operatorname{im} f$.

Structure de représentation linéaire sur Hom(V, W)

On fait agir G par conjugaison :

$$G \longrightarrow \operatorname{Aut}(\operatorname{Hom}(V, W))$$

 $g \longmapsto (f \mapsto g \cdot f \cdot g^{-1}).$

Observation. Cela fait de $\operatorname{Hom}(V,W)$ une représentation linéaire de G.

On a alors la proposition suivante.

Proposition 1.1. $\operatorname{Hom}_G(V, W) = \operatorname{Hom}(V, W)^G$.

Preuve. C'est un jeu d'écriture :

$$\begin{split} f \in \operatorname{Hom}(V,W)^G &\iff g \cdot f \cdot g^{-1} = f \\ &\iff g \cdot f = f \cdot g \\ &\iff f \in \operatorname{Hom}_G(V,W). \end{split}$$