<u>דף תרגילים 10 באלגברה לינארית ב'</u>

. אופרטור עליו. F הינו מרחב וקטורי ממימד סופי $1 \geq 1$, מעל השדה V

בא: האופרטור הלינארי על \mathbb{R}^3 עבורו המטריצה המייצגת לפי הבסיס הסטנדרטי היא: 1.

$$\begin{pmatrix}2&0&0\\1&2&0\\0&0&3\end{pmatrix}$$

עבורו $v\in W$ וכי אין אף וקטור $(T-2l)e_1\in W$ עבורו .W=ket(T-2l) יהי

. הסק כי
$$W$$
 אינו $T-2I$ ים אינו ($T-2I$ ים אינו - $T-2I$ ים.

ב. נניח בשלילה כי לW יש משלים T-שמור U, מה הפולינום המינימלי שלT על U בהתחשב בפולינום המינימלי של T? הסק כי גם בדרך זו כי לW אין משלים T-שמור.

ב. תהיA המטריצה הממשית הבאה:

$$\begin{pmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{pmatrix}$$

. מצא מטריצה P עבורה $P^{-1}AP$ בעלת צורה רציונלית

3. יהי $\Delta(x) = x^4(x-1)(x-2)$. מצא רשימה מינימלית של מטריצות $\Delta(x) = x^4(x-1)(x-2)$. פולינום אופייני $\Delta(x)$ דומה למטריצה יחידה ב

4. יהי f פולינום אי פריק (מעל F) ונניח $f(x)=m_T(x)=m_T(x)$. הוכח כי לכל תת מרחב לא $\Delta_T(x)=m_T(x)=m_T(x)$ שמור. T-שמור אין משלים T-שמור.

'רמז: העזר ב1ב

. נניח כי T לכסין. הוכח כי לכל מרחב T-שמור יש משלים T-שמור.

רמז: ניתן להתבונן ברכיבים הפרימריים.