CS2349 – Spring 2022 – Homework 2

Manish Yadav

Solution 1:

a)

Implementation of Two-stack PDA for the language $a^n b^n c^n$:

- 1. Push "a" on stack first whenever we see an "a".
- 2. Pop "a" from stack first and push "b" on stack two when you see "b".
- 3. Pop b from stack two when you see "c".
- 4. Accept if both stacks are empty at the end of this process.

We can define 2-PDA as

$$M = (Q, \Sigma, \Gamma_1, \Gamma_2, \delta, q_0, Z_1, Z_2, F)$$

here,

$$\begin{split} Q &= \{q_{0}, q_{1}, q_{2}, q_{3}\} \\ \Sigma &= \{a, b, c\} \\ \Gamma_{1} &= \{a, Z_{1}\} \\ \Gamma_{2} &= \{b, X\} \\ Z_{1} &= \{Z_{1}\} \\ Z_{2} &= \{X\} \\ F &= \{q_{3}\} \end{split}$$
 {stack2}

Transition Table:

	State	Input	Transition Function	Stack(leftmost symbol is the top symbol of the stack)	State after transition
1	$q_{_{0}}$	aabbcc		Z , X	$q_{_{0}}$
2	$q_{0}^{}$	_ aabbcc	$\delta(q_0, a, Z, X) = (q_0, a, aZ, X)$	aZ , X	$q_{0}^{}$
3	$q_{0}^{}$	aabbcc	$\delta(q_0, a, a, X) = (q_0, aa, X)$	aaZ , X	$q_{0}^{}$
4	q_{0}	aa b bcc	$\delta(q_0, b, a, X) = (q_1, \varepsilon, bX)$	aZ , bX	$q_{_1}$
5	$q_{_1}$	aab b cc	$\delta(q_1, b, a, b) = (q_1, \varepsilon, bb)$	Z , bbX	$q_{_1}$
6	$q_{_1}$	aabbcc	$\delta(q_1, c, Z, b) = (q_2, Z, \varepsilon)$	Z , bX	q_{2}

7	q_{2}	aabbcc	$\delta(q_2, c, Z, b) = (q_2, Z, \varepsilon)$	Z , X	q_{2}
8	$q_2^{}$	€	$\delta(q_{2'} \varepsilon, Z , X) = (q_{3'} Z , X)$	Z , X	$q_{_{3}}$

Automation Diagram:

Considering the above table, numbering below depicts the rows of the table.

This language is recursive and Turing recognizable as there exists a Turing machine that can recognize it. We can simulate the Turing machine by replacing a with another symbol (p) and erasing a matching c from the tape. Further, erase the matching p and b from the tape. The string will be accepted if there is nothing left on the tape.

b)

Implementation of non-deterministic PDA for the language ww^R :

- Read the input in the string and push it on the stack.
- At each character, check if you've reached halfway in the input string.
- Once reaching the midpoint, pop characters from the stack if input characters match with it.
- Accept if every character matches and nothing is left on the stack at the end.

Transition Table:

	State	Transition Function	State after transition
1	$q_{_{0}}$	$\delta(q_0, 0, Z) = (q_0, 0Z)$	$q_{_0}$
2	$q_{0}^{}$	$\delta(q_0, 0, 0) = (q_0, 00)$	$q_{_0}$
3	$q_{_{0}}$	$\delta(q_0, 1, Z) = (q_0, 1Z)$	$q_{_0}$
4	$q_{_{0}}$	$\delta(q_0, 1, 1) = (q_0, 11)$	$q_{_0}$
5	$q_{_{0}}$	$\delta(q_0, 1, 0) = (q_0, 10)$	q_{0}^{\dagger}
6	$q_{_{0}}$	$\delta(q_0, 0, 1) = (q_0, 01)$	q_{0}

7	q_{0}	$\delta(q_0, 0, 0) = (q_1, \varepsilon)$	$q_{_1}$
8	q_{0}	$\delta(q_0, 1, 1) = (q_1, \varepsilon)$	$q_{1}^{}$
9	$q_{_1}$	$\delta(q_1, 0, 0) = (q_1, \varepsilon)$	$q_{1}^{}$
10	$q_{_1}$	$\delta(q_1, 1, 1) = (q_1, \varepsilon)$	$q_{_1}$
11	$q_{_1}$	$\delta(q_1, \varepsilon, Z) = (q_2, \varepsilon)$	q_{2}

Automation Diagram:

This language is Turing recognizable as string is accepted only if it reaches into the accepting state. We can define the Turing machine as well which recognize this language.