TRAVAUX DIRIGÉS: Compléments d'algèbre linéaire

Calcul matriciel

Exercice 1: Rang d'une matrice (Solution)

Déterminer le rang des matrices suivantes. Donner leur inverse lorsqu'elles sont

1.
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 3 & -1 \\ 1 & 2 & 4 \end{pmatrix}$$

1.
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 3 & -1 \\ 1 & 2 & 4 \end{pmatrix}$$
 2. $B = \begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 4 \\ 1 & 4 & 3 \end{pmatrix}$.

Exercice 2: Puissances classiques (Solution)

- 1. (a) Soit $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Calculer J^p pour tout $p \in \mathbb{N}$.
 - (b) On généralise. Soit $J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

Calculer J^p pour tout $p \in \mathbb{N}$.

(c) Soit
$$M = \begin{pmatrix} \alpha & 1 & \dots & 1 \\ 1 & \alpha & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & \alpha \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Déduire de ce qui précède M^p pour tout $p \in \mathbb{N}$.

2. (a) Soit
$$B = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 \\ 0 & 0 & & & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & & 0 & 0 \\ 1 & 0 & \dots & 0 & 1 \end{pmatrix}$$
. Calculer B^p pour tout $p \in \mathbb{N}$.

(b) Soit
$$A = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 \\ 2 & 0 & \dots & 0 & 1 \\ 0 & 1 & & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & & 1 & 0 \\ 1 & 0 & \dots & 0 & 2 \end{pmatrix}$$
. Calculer A^p pour tout $p \in \mathbb{N}$.

Exercice 3: Puissances et inverses (*) (Solution)

Pour $\alpha, \beta \in \mathbb{R}^2$, on considère la matrice

$$M(\alpha,\beta) = \begin{pmatrix} \alpha & \beta & \dots & \dots & \beta \\ \beta & \alpha & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \beta \\ \beta & \dots & \dots & \beta & \alpha \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- 1. Calculer $M(\alpha, \beta)^p$ pour tout $p \in \mathbb{N}$.
- 2. Déterminer une condition nécessaire et suffisante sur α, β pour que $M(\alpha, \beta)$ soit inversible et donner son inverse le cas échéant.

Exercice 4: Puissances de matrice (Solution)

Le but est de déterminer les puissances de la matrice $A = \begin{pmatrix} 3 & 1 & -2 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1. Changement de base : diagonalisation.
 - (a) On note \mathscr{B} la base canonique de \mathbb{R}^3 .

Soit f l'endomorphisme canoniquement associé à la matrice A.

Déterminer une base des espaces

$$E_1 = \ker(f - id_{\mathbb{R}^3})$$
 et $E_2 = \ker(f - 2id_{\mathbb{R}^3})$.

Montrer que $\mathbb{R}^3 = E_1 \oplus E_2$ et que $\mathscr{B}' = ((1,0,1),(-1,1,0),(2,0,1))$ est une base de \mathbb{R}^3 .

- (b) Justifier que E_1 et E_2 sont stables par $f: f(E_1) \subset E_1$ et $f(E_2) \subset E_2$. Déterminer la matrice de f dans \mathscr{B}' .
- (c) En déduire A^n pour tout $n \in \mathbb{N}$.
- (d) Montrer que $Mat_{\mathscr{B}'}(f)$ et A sont inversibles. En déduire alors $(A^{-1})^n$ pour tout $n \in \mathbb{N}$.
- 2. Polynôme annulateur.
 - (a) Montrer que $A^2 3A + 2I_3 = 0_3$.
 - (b) Montrer par récurrence qu'il existe deux suites de nombres réels $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, A^n = a_n A + b_n I_3.$$

(c) Déterminer a_n et b_n en fonction de $n \in \mathbb{N}$ puis donner A^n en fonction de n, A, I_3 puis comparer au résultat obtenu à la question 1.(c).

- (d) Déterminer le reste de la division euclidienne de X^n par (X-1)(X-2). Retrouver directement $A^n, n \in \mathbb{N}$, et comparer au résultat 1(c), 2.(c).
- (e) En utilisant le polynôme annulateur de la question (a), justifier que A est inversible et donner A^{-1} .

3. Formule du binôme.

- (a) Soit $B = A 2I_3$. Donner pour tout $n \in \mathbb{N}$, B^n en fonction de B.
- (b) Déterminer A^n en fonction de n, A, I_3 en utilisant la formule du binôme.

Exercice 5: Matrices nilpotentes (Solution)

On dit que $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente s'il existe $k \in \mathbb{N}$ tel que $A^k = 0$. On appelle indice de nilpotence d'une matrice nilpotente l'entier $p \in \mathbb{N}^*$ tel que $A^{p-1} \neq 0$ et $A^p = 0$.

1. Montrer que $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ sont nilpotentes.

Donner leur indice de nilpotence.

- 2. Soit $M = \begin{pmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix}$. Calculer M^p pour tout $p \in \mathbb{N}$.
- 3. Montrer que la matrice $M=\left(\begin{array}{ccccc} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & 0 \end{array}\right)$ est nilpotente.
- 4. Montrer que si A et B sont nilpotentes et commutent alors A+B et AB sont nilpotentes.
- 5. Montrer qu'en général la somme de matrices nilpotentes n'est pas nilpotente.
- 6. Montrer que si A est nilpotente d'indice de nilpotence p alors la matrice $\sum_{k=0}^{p-1} A^k$ est inversible et donner son inverse.

Exercice 6: Transposons (Solution)

On considère la matrice $M = \begin{pmatrix} -3 & 2 & 5 \\ -6 & 4 & 10 \\ 3 & -2 & -5 \end{pmatrix}$.

- 1. Déterminer le rang de la matrice M.
- 2. Montrer qu'il existe deux matrices colonnes $U, V \in \mathcal{M}_{3,1}(\mathbb{R})$ telles que $M = U^t V$.
- 3. En déduire M^2 puis M^n pour tout $n \in \mathbb{N}$.

Exercice 7: Suites (Solution)

Soient $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$ des suites définies par $(a_0,b_0,c_0)\in\mathbb{R}^3$ et

$$\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = 2a_n + 3c_n \\ b_{n+1} = b_n \\ c_{n+1} = -a_n + 2b_n - 2c_n \end{cases}$$

1. Déterminer une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$,

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = A \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}.$$

- 2. Déterminer une base des espaces $E_1=\{X\in\mathcal{M}_{3,1}(\mathbb{R}):AX=X\}$ et $E_{-1}=\{X\in\mathcal{M}_{3,1}(\mathbb{R}):AX=-X\}.$ A-t-on $M_{3,1}(\mathbb{R})=E_1\oplus E_{-1}$?
- 3. On considère $P = \begin{pmatrix} -3 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Montrer que P est inversible et donner P^{-1} .

- 4. Calculer $T = P^{-1}AP$ puis calculer T^n pour tout $n \in \mathbb{N}$.
- 5. En déduire A^n pour tout $n \in \mathbb{N}$ et exprimer a_n, b_n, c_n en fonction de $n \in \mathbb{N}$.

Exercice 8: Puissances par blocs (Solution)

Soit
$$M = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
. Calculer M^n pour tout $n \in \mathbb{Z}$.

2 Espaces vectoriels

Exercice 9: Espaces vectoriels (Solution)

On peut définir un sous-espace vectoriel de \mathbb{K}^n par la donnée :

— d'un système d'équations cartésiennes

$$A = \left\{ (x, y, z, t) \in \mathbb{R}^4 : \left\{ \begin{array}{rcl} x + y - z - t & = & 0 \\ x + 2z & = & 0 \end{array} \right\} \right.$$

— d'un paramétrage

$$B = \{(2a - b + 2c, 3a + 2b - c, -b + c, c) : (a, b, c) \in \mathbb{R}^3\}$$

— d'une famille génératrice

$$C = Vect((0, -1, 2, 1), (1, 2, 1, 0))$$

Écrire chacun des espaces A, B, C sous ces trois formes.

Exercice 10: Espaces vectoriels (Solution)

Montrer que l'ensemble des solutions de l'équation différentielle y'' + y' + y = 0 est un espace vectoriel et en donner une base.

Exercice 11: Famille génératrice (Solution)

Déterminer l'ensemble des valeurs du paramètre $\lambda \in \mathbb{R}$ telles que

$$(\lambda, 1, \lambda) \in Vect((1, 1, 1)(1, \lambda, -1)).$$

Exercice 12: Familles libres (Solution)

Soit (e_1, \ldots, e_n) une famille libre d'un \mathbb{K} espace vectoriel E.

- 1. Montrer que la famille $(f_i)_{i \in [1,n]}$ avec $f_i = e_1 + \cdots + e_i$ est libre.
- 2. Montrer que la famille $(g_i)_{i \in [\![1,n]\!]}$ avec $g_i = g_i g_{i+1}$ pour $i \in [\![1,n-1]\!]$ et $g_n = e_n$ est libre.

Exercice 13: Supplémentaires (Solution)

Déterminer un supplémentaire des sous-espaces suivants :

- 1. $F = \{(x, y, z, t) \in \mathbb{R}^4 : x + y z = 0, x y + z + 2t = 0\}$ dans \mathbb{R}^4 .
- 2. $F = \{P \in \mathbb{R}_3[X] : P(1) = P'(1) = 0\} \text{ dans } \mathbb{R}_4[X].$
- 3. $F = \{ f \in \mathcal{C}^1(\mathbb{R}) : f(0) = f'(0) = 0 \} \text{ dans } \mathcal{C}^1(\mathbb{R}).$

Exercice 14: Sur les hyperplans (Solution)

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 2$.

- 1. Soient H_1, H_2 des hyperplans distincts de E. Montrer que dim $H_1 \cap H_2 = n - 2$.
- 2. Soit F un sous-espace vectoriel de E, distinct de E.
 - (a) Montrer que si H est un hyperplan de E ne contenant pas F alors $\dim(F\cap H)=\dim F-1.$
 - (b) Montrer que F est l'intersection d'un nombre fini d'hyperplans.

Exercice 15: Supplémentaire en dimension infinie (Solution)

Soit $E = \mathcal{C}^0([-2, 2], \mathbb{R})$ et $F = \{ f \in E : \forall k \in [-2, 2], f(k) = 0 \}.$

- 1. Montrer que F est un espace vectoriel. Est-il de dimension finie?
- 2. Montrer que l'ensemble des fonctions polynomiales définies sur [-2;2] et de degré au plus 4 est un supplémentaire de F dans E.

3 Applications linéaires

Exercice 16: Noyau image en dimension finie (Solution)

Soit (e_1, e_2, e_3) une base de \mathbb{R}^3 et $\lambda \in \mathbb{R}$.

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ définie par $f(e_1) = e_1 + e_2$, $f(e_2) = e_1 - e_2$ et $f(e_3) = e_1 + \lambda e_3$.

- 1. Écrire la matrice de f dans \mathcal{B} . Déterminer l'image d'un vecteur $u \in \mathbb{R}^3$ quelconque par f
- 2. Déterminer les valeurs du paramètre λ pour lesquelles f est surjective. Pour quelles valeurs de λ l'application f est-elle injective?

Exercice 17: Noyaux en somme directe (Solution)

Soit f l'application définie par

$$\forall (x, y, z) \in \mathbb{R}^3 : f(x, y, z) = (4x + y - z, 2x + 3y - z, 2x + y + z).$$

- 1. Montrer que f est une application linéaire et donner sa matrice dans la base canonique de \mathbb{R}^3 .
- 2. Déterminer deux scalaires $\lambda, \mu \in \mathbb{R}$ tels que $f \lambda i d_{\mathbb{R}^3}$ et $f \mu i d_{\mathbb{R}^3}$ ne sont pas des automorphismes.
- 3. Montrer que $E = \ker(f \lambda i d_{\mathbb{R}^3}) \oplus \ker(f \mu i d_{\mathbb{R}^3})$.
- 4. Déterminer la matrice de f dans une base à adaptée à cette somme directe.

Exercice 18: Endomorphisme et polynômes (Solution)

Soit $n \in \mathbb{N}$ et $\varphi : \mathbb{R}_n[X] \to \mathbb{R}[X]$ définie par $\varphi(P) = P(X+1) - P(X)$.

- 1. Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. (a) Soit $P \in \mathbb{R}_n[X]$ de degré $d \leq n$. Déterminer le degré de $\varphi(P)$.
- (b) Déterminer $\operatorname{Im}(\varphi)$ et $\ker(\varphi)$.
- 3. Soit $P \in \mathbb{R}[X]$ de degré n. Montrer que $(P, \varphi(P), \varphi^2(P), \dots, \varphi^n(P))$ est une base de $\mathbb{R}_n[X]$.
- 4. (a) Soit $Q \in \mathbb{R}_{n-1}[X]$. Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ vérifiant P(X+1) P(X) = Q(X) et P(0) = 0.
 - (b) Déterminer un tel polynôme pour Q=X(X+1)(X+2) et en déduire une expression simplifiée de $\sum_{k=0}^n k(k+1)(k+2)$.

Exercice 19: Endomorphisme et polynômes (Solution)

Soit $n \in \mathbb{N}$ et φ l'application définie sur $\mathbb{R}_n[X]$ par $\varphi(P) = (X+1)P(X) - XP(X+1)$.

- 1. Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Déterminer le noyau de φ . L'endomorphisme φ est-il injectif?
- 3. Déterminer $\operatorname{Im} \varphi.$ L'endomorphisme φ est-il surjectif?

Exercice 20: Composition, noyaux et images (Solution)

Soient E un \mathbb{K} -espace vectoriel et $f, g \in \mathcal{L}(E)$.

- 1. Montrer que $\ker(f) \subset \ker(g \circ f)$ et $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$.
- 2. Montrer que $f(\ker(g \circ f)) = \ker(g) \cap \operatorname{Im}(f)$.

Exercice 21: Composition, stabilité (Solution)

Soient f,g des endomorphismes d'un \mathbb{K} -espace vectoriel E qui commutent : $g\circ f=f\circ g.$

Montrer que $\ker f$ et $\operatorname{Im} f$ sont stables par g.

Exercice 22: Automorphismes réciproques, dimension finie (Solution)

Soient E, F des \mathbb{K} -espace vectoriels de dimension finie n et $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, E)$ tels que $g \circ f = id_E$.

Montrer que f est injective, g surjective et conclure.

Exercice 23: noyaux, images, somme directe (Solution)

Soient E, F, G des K-espaces vectories et $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, G)$.

- 1. Montrer que $\ker(g \circ f) = \ker(f) \iff \ker(g) \cap \operatorname{Im}(f) = \{0_F\}.$
- 2. Montrer que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g) \iff \ker(g) + \operatorname{Im}(f) = F$.
- 3. En déduire que si $f\in \mathscr{L}(E)$ est un endomorphisme et E un \mathbb{K} -espace vectoriel de dimension finie alors :

$$\ker(f) = \ker(f^2) \iff \operatorname{Im}(f) = \operatorname{Im}(f^2) \iff E = \ker(f) \oplus \operatorname{Im}(f).$$

Exercice 24: changement de base (Solution)

On considère $E = \mathbb{R}^3$ et on note $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de E. Soit $f \in \mathscr{L}(E)$ non nul tel que $f^3 + f = 0_{\mathscr{L}(E)}$.

- 1. On suppose que f est injective.
 - (a) Montrer que $f^2 = -id_E$.
 - (b) En déduire que $(e_1, f(e_1))$ est une famille libre.
 - (c) En considérant une base du type $(e_1, f(e_1), u)$ trouver une contradiction.

En déduire que $\ker(f) \neq \{0_E\}$.

- 2. Justifier alors que dim $ker(f) \in \{1, 2\}$.
- 3. Montrer que $E = \ker(f) \oplus \ker(f^2 + id_E)$.
- 4. On pose $F = \ker(f^2 + id_E)$ et on note u un vecteur non nul de F.
 - (a) Montrer que $f(u) \in F$ et que (u, f(u)) est libre.
 - (b) En déduire que dim $\ker(f^2 + id_E) = 2$ et dim $\ker(f) = 1$.
 - (c) Soit v un vecteur non nul de ker(f). Montrer que (v, u, f(u)) est une base de E.
 - (d) Déterminer $Mat_{\mathscr{B}'}(f)$.

Exercice 25: noyau, image, rang (Solution)

Soit E un espace de dimension finie 2p avec $p \geqslant 1$ et $\varphi \in \mathcal{L}(E)$. Montrer l'équivalence entre les propriétés :

- 1. $\varphi^2 = 0$ et $rg(\varphi) = p$.
- 2. $\operatorname{Im}(\varphi) = \ker(\varphi)$.
- 3. Il existe une matrice $A \in GL_p(\mathbb{K})$ telle que $\begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}$ soit la matrice de φ dans une certaine base.

Exercice 26: Endomorphismes nilpotents (Solution)

Soit E un \mathbb{K} -espace vectoriel de dimension finie n.

Soit $f \in \mathcal{L}(E)$, endomorphisme tel que $f^p = 0_{\mathcal{L}(E)}$ et $f^{p-1} \neq 0_{\mathcal{L}(E)}$ avec $p \geqslant 1$.

- 1. Montrer qu'il existe $x_0\in E$ tel que la famille $\mathscr{F}=(x_0,f(x_0),\ldots,f^{p-1}(x_0))$ est libre. En déduire que $p\leqslant n$.
- 2. Soit $\mathcal B$ une base de E obtenue en complétant la famille $\mathcal F$. Déterminer la forme de la matrice de f dans cette base.
- 3. Que peut-on dire de la suite $(rg(f^k))_{k\in\mathbb{N}}$?

4 Projecteurs et symétries vectoriels

Exercice 27: Projecteurs et symétries (Solution)

1. Soient f,g les endomorphismes de \mathbb{R}^3 canoniquement associés aux matrices

$$P = \frac{1}{4} \begin{pmatrix} 4 & 2 & 4 \\ 0 & 2 & -4 \\ 0 & -1 & 2 \end{pmatrix} \quad \text{et} \quad S = \begin{pmatrix} 3 & 4 & 4 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix}.$$

Montrer que f est une projection vectorielle et g une symétrie vectorielle. Déterminer leurs caractéristiques géométriques.

2. On considère dans \mathbb{R}^3 le plan \mathcal{P} et la droite \mathcal{D} d'équations cartésiennes respectives :

$$\mathcal{P}: x + y + z = 0$$
 et $\mathcal{D}: \left\{ \begin{array}{ccccc} x & - & y & + & z & = & 0 \\ x & + & y & + & 2z & = & 0 \end{array} \right.$

Déterminer dans la base canonique :

- La matrice de la projection sur $\mathcal P$ parallèlement à $\mathcal D$.
- La matrice de la symétrie par rapport à \mathcal{P} parallèlement à \mathcal{D} .

Exercice 28: Projecteurs (Solution)

Soient E un \mathbb{K} -espace vectoriel de dimension n et f,g des endomorphismes de E tels que $f+g=id_E$ et $rg(f)+rg(g)\leqslant n$.

- 1. Montrer que ker(g) = Im(f).
- 2. Que peut-on en déduire sur $g \circ f$?
- 3. Montrer que f et g sont des projecteurs.

Exercice 29: Somme de projecteurs (Solution)

Soient p, q deux projecteurs d'un \mathbb{K} -espace vectoriel E.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q + q \circ p = 0_{\mathscr{L}(E)}$.
- 2. En déduire que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0_{\mathscr{L}(E)}$.

Exercice 30: Projecteurs (Solution)

Soient p,q des projecteurs d'un K-espace vectoriel de E tels que $p\circ q=0.$ Soit $r=p+q-q\circ p.$

- 1. Montrer que r est un projecteur.
- 2. Montrer $\ker r = \ker p \cap \ker q$.
- 3. Montrer que $\operatorname{Im}(r) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$.

Exercice 31: Projecteurs (Solution)

Soient E un \mathbb{K} -espace vectoriel et p,q des projecteurs de E qui commutent i.e. $p \circ q = q \circ p$.

- 1. Montrer que $p \circ q$ est un projecteur.
- 2. Montrer que $\operatorname{Im}(p \circ q) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$.
- 3. Montrer que $\ker(p \circ q) = \ker(p) + \ker(q)$.

SOLUTIONS TRAVAUX DIRIGÉS: Compléments d'algèbre linéaire

Solution Exercice 1.

1. On applique la méthode du pivot de Gauss-Jordan

$$\left(\begin{array}{ccc} 1 & -1 & 2 \\ -1 & 3 & -1 \\ 1 & 2 & 4 \end{array}\right) \left| \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \right|$$

$$\iff (L_1) \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ (L_3 - L_1) \begin{pmatrix} 0 & 2 & 1 \\ 0 & 3 & 2 \end{pmatrix} \middle| \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$\iff (L_1) \\ (L_2) \\ (2L_3 - 3L_2) \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \middle| \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{pmatrix}$$

$$\iff \begin{array}{c} (L_1 - 2L_3) \\ \iff (L_2 - L_3) \\ (L_3) \end{array} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| \begin{pmatrix} 11 & 6 & -4 \\ 6 & 4 & -2 \\ -5 & -3 & 2 \end{pmatrix} \quad (*)$$

$$\iff (L_1 - 2L_3) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ (L_3) & 0 & 1 \end{pmatrix} \begin{vmatrix} 11 & 6 & -4 \\ 3 & 2 & -1 \\ -5 & -3 & 2 \end{vmatrix}$$

$$\iff \begin{array}{c} (L_1 + L_2) \\ \iff (L_2/2) \\ (L_3) \end{array} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| \begin{pmatrix} 14 & 8 & -5 \\ 3 & 2 & -1 \\ -5 & -3 & 2 \end{pmatrix}.$$

La matrice réduite obtenue à l'étape (*) montre que la matrice $\begin{pmatrix} 1 & -1 & 2 \\ -1 & 3 & -1 \\ 1 & 2 & 4 \end{pmatrix}$ est de rang 3 donc inversible.

La méthode de Gauss-Jordan montre que

$$\begin{pmatrix} 1 & -1 & 2 \\ -1 & 3 & -1 \\ 1 & 2 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} 14 & 8 & -5 \\ 3 & 2 & -1 \\ -5 & -3 & 2 \end{pmatrix}.$$

2. On applique la méthode du pivot de Gauss-Jordan :

$$\begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 4 \\ 1 & 4 & 3 \end{pmatrix} \iff \begin{pmatrix} (L_1) \\ (L_1 + 2L_1) \\ (L_3 - L_1) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{pmatrix}$$
$$\iff \begin{pmatrix} (L_1) \\ (L_2) \\ (L_3 - 2L_2) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ainsi, la matrice $\begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 4 \\ 1 & 4 & 3 \end{pmatrix}$ est de rang 2 < 3 donc non inversible.

Solution Exercice 2.

1. (a) On calcule $J^2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} = 3J.$

On démontre alors par récurrence que pour tout $k \ge 1$, $J^k = 3^{k-1}J$.

On vient de démontrer cette formule au rang k=1. Si elle est vraie au rang k, alors

$$J^{k+1} = J^k J = 3^{k-1} J J = 3^{k-1} J^2 = 3^{k-1} 3J = 3^k J = 3^{(k+1)-1} J$$

On conclut par récurrence.

(b) On démontre par récurrence, de manière analogue à la question précédente, que pour tout $k \in \mathbb{N}, J^k = n^{k-1}J$.

(c) On a
$$M = \begin{pmatrix} \alpha & 1 & \dots & 1 \\ 1 & \alpha & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & \alpha \end{pmatrix} = (\alpha - 1)I_n + J.$$

Les matrices $(\alpha - 1)I_n$ et $J: (\alpha - 1)I_nJ = (\alpha - 1)J = J(\alpha - 1)I_n$.

Par la formule du binôme :

$$M^{p} = \sum_{k=0}^{p} \binom{p}{k} (\alpha - 1)^{p-k} I_{n}^{p-k} J^{k} = (\alpha - 1)^{p} I_{n} + \sum_{k=1}^{k} \binom{p}{k} (\alpha - 1)^{p-k} J^{k}$$

$$= (\alpha - 1)^{p} I_{n} + \sum_{k=1}^{p} \binom{p}{k} (\alpha - 1)^{p-k} n^{k-1} J$$

$$= (\alpha - 1)^{p} I_{n} + \frac{1}{n} \left(\sum_{k=0}^{p} \binom{p}{k} (\alpha - 1)^{p-k} n^{k} - (\alpha - 1)^{p} \right) J$$

$$= (\alpha - 1)^{p} I_{n} + \frac{1}{n} \left[((\alpha - 1) + n)^{p} - (\alpha - 1)^{p} \right] J$$

$$= (\alpha - 1)^{p} I_{n} + \frac{1}{n} \left[(\alpha - 1 + n)^{p} - (\alpha - 1)^{p} \right] J;$$

2. (a) Soit
$$B = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 \\ 0 & 0 & & & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & & 0 & 0 \\ 1 & 0 & \dots & 0 & 1 \end{pmatrix}$$
.

On montre par récurrence que pour tout $p\in\mathbb{N}^*,\,B^p=2^{p-1}B.$

Cette formule est vraie au rang 1 et si elle est vraie au rang \boldsymbol{p} alors

$$B^{p+1} = BB^p = B2^{p-1}B = 2^{p-1}B^2 = 2^{p-1}2B = 2^pB = 2^{(p+1)-1}B.$$

(b) Soit
$$A = \begin{pmatrix} 2 & 0 & \dots & 0 & 1 \\ 0 & 1 & & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & & 1 & 0 \\ 1 & 0 & \dots & 0 & 2 \end{pmatrix} = I_n + B.$$

On calcule en utilisant la formule du binôme de Newton, les matrices I_n et B commutent donc :

$$A^{p} = \sum_{k=0}^{p} {p \choose k} I_{n}^{p-k} B^{k} = I_{n} + \sum_{k=1}^{p} {p \choose k} I_{n}^{p-k} 2^{k-1} B$$

$$= I_{n} + \frac{1}{2} \left(\sum_{k=1}^{p} {p \choose k} 2^{k} - 1 \right) B$$

$$= I_{n} + \frac{1}{2} \left((1+2)^{p} - 1 \right) B$$

$$= I_{n} + \frac{3^{p} - 1}{2} B.$$

Solution Exercice 3.

1. On constate que $M(\alpha, \beta) = \alpha I_n + \beta M$ où

$$M = \begin{pmatrix} 0 & 1 & \dots & \dots & 1 \\ 1 & 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \dots & \dots & 1 & 0 \end{pmatrix}.$$

Les matrices I_n et M commutent donc αI_n et βM également.

Par la formule du binôme de Newton,

$$M(\alpha,\beta)^p = \sum_{k=0}^p \binom{p}{k} \alpha^{n-k} I_n^{n-k} \beta^k M^k = \sum_{k=0}^p \binom{p}{k} \alpha^{p-k} \beta^k M^k.$$

Calculons M^k pour tout $k \in \mathbb{N}$. On a

$$M^{2} = \begin{pmatrix} 0 & 1 & \dots & \dots & 1 \\ 1 & 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \dots & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & \dots & \dots & 1 \\ 1 & 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \dots & \dots & 1 & 0 \end{pmatrix}$$

$$M^{2} = \begin{pmatrix} n-1 & n-2 & \dots & n-2 \\ n-2 & n-1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & n-2 \\ n-2 & \dots & n-2 & n-1 \end{pmatrix}$$

On montre par récurrence que pour tout $k \ge 0$, il existe $(a_k, b_k) \in \mathbb{R}^2$ tel que

$$M^{k} = \begin{pmatrix} a_{k} & b_{k} & \dots & \dots & b_{k} \\ b_{k} & a_{k} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & b_{k} \\ b_{k} & \dots & \dots & b_{k} & a_{k} \end{pmatrix}$$

La propriété est vraie au rang k = 0 avec $(a_0, b_0) = (1, 0)$.

Si elle est vérifiée au rang k alors ${\cal M}^{k+1} = {\cal M} {\cal M}^k$ est égale à

$$M^{k+1} = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \dots & & 1 & 0 \end{pmatrix} \begin{pmatrix} a_k & b_k & \dots & b_k \\ b_k & a_k & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & b_k \\ b_k & \dots & & b_k & a_k \end{pmatrix}$$

$$= \begin{pmatrix} a_{k+1} & b_{k+1} & \dots & \dots & b_{k+1} \\ b_{k+1} & a_{k+1} & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots$$

avec

$$\begin{cases}
 a_{k+1} = (n-1)b_k \\
 b_{k+1} = a_k + (n-2)b_k
\end{cases}$$

Le propriété est donc démontrée par récurrence et on a obtenu au passage que pour tout $k \ge 0$,

$$b_{k+2} = a_{k+1} + (n-2)b_{k+1} = (n-1)b_k + (n-2)b_{k+1}.$$

La suite $(b_k)_{k\in\mathbb{N}}$ est une suite récurrente linéaire d'ordre 2.

On résout l'équation caractéristique $r^2 = (n-2)r + (n-1)$.

Le trinôme $r^2 - (n-2)r - (n-1)$ a pour discriminant

$$\Delta = (n-2)^2 + 4(n-1) = n^2.$$

On obtient deux racines réelles $r_1 = \frac{(n-2)+n}{2} = n-1$ et $r_2 = -1$.

Il existe donc $(A, B) \in \mathbb{R}^2$ tel que pour tout $k \in \mathbb{N}$,

$$b_k = A(-1)^k + B(n-1)^k$$
.

En utilisant $b_0 = 0$ et $b_1 = 1$, on obtient

$$\begin{cases} A + B = 0 \\ -A + (n-1)B = 1 \end{cases}$$

$$\iff \begin{cases} A + B = 0 \quad (L_1) \\ nB = 1 \quad (L_1 + L_2) \end{cases}$$

$$\iff \begin{cases} A = -\frac{1}{n} \\ B = \frac{1}{n} \end{cases}$$

Ainsi, pour tout $k \in \mathbb{N}$, $b_k = -\frac{1}{n}(-1)^k + \frac{1}{n}(n-1)^k$.

En utilisant alors $a_k = b_{k+1} - (n-2)b_k$ on obtient

$$a_k = \left(-\frac{1}{n}(-1)^{k+1} + \frac{1}{n}(n-1)^{k+1}\right) - (n-2)\left(-\frac{1}{n}(-1)^k + \frac{1}{n}(n-1)^k\right)$$

$$= \left(\frac{1}{n}(-1)^k + \frac{1}{n}(n-1)^{k+1}\right) + (n-2)\left(\frac{1}{n}(-1)^k - \frac{1}{n}(n-1)^k\right)$$

$$= \frac{(-1)^k}{n}\left(1 + (n-2)\right) + \frac{(n-1)^k}{n}\left((n-1) - (n-2)\right)$$

$$= \frac{(-1)^k(n-1)}{n} + \frac{(n-1)^k}{n}.$$

On peut maintenant calculer

$$M(\alpha, \beta)^{p} = \sum_{k=0}^{p} \binom{p}{k} \alpha^{p-k} \beta^{k} M^{k}$$

$$= \sum_{k=0}^{p} \binom{p}{k} \alpha^{p-k} \beta^{k} \begin{pmatrix} a_{k} & b_{k} & \dots & b_{k} \\ b_{k} & a_{k} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ b_{k} & \dots & \dots & b_{k} & a_{k} \end{pmatrix}$$

$$= \begin{pmatrix} s_{p} & t_{p} & \dots & t_{p} \\ t_{p} & s_{p} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ t_{p} & \dots & \dots & t_{p} & s_{p} \end{pmatrix}$$

avec

$$\begin{split} s_p &= \sum_{k=0}^p \binom{p}{k} \alpha^{p-k} \beta^k a_k = \sum_{k=0}^p \binom{p}{k} \alpha^{p-k} \beta^k \left((-1)^k \frac{(n-1)}{n} + \frac{(n-1)^k}{n} \right) \\ &= \frac{n-1}{n} \sum_{k=0}^p \binom{p}{k} \alpha^{p-k} (-\beta)^k + \frac{1}{n} \sum_{k=0}^p \binom{p}{k} \alpha^{p-k} ((n-1)\beta)^k \\ &= \frac{n-1}{n} (\alpha - \beta)^p + \frac{1}{n} (\alpha + (n-1)\beta)^p. \end{split}$$

et

$$t_{p} = \sum_{k=0}^{p} \binom{p}{k} \alpha^{p-k} \beta^{k} b_{k} = \sum_{k=0}^{p} \binom{p}{k} \alpha^{p-k} \beta^{k} \left(-\frac{1}{n} (-1)^{k} + \frac{(n-1)^{k}}{n} \right)$$

$$= -\frac{1}{n} \sum_{k=0}^{p} \binom{p}{k} \alpha^{p-k} (-\beta)^{k} + \frac{1}{n} \sum_{k=0}^{p} \binom{p}{k} \alpha^{p-k} ((n-1)\beta)^{k}$$

$$= -\frac{1}{n} (\alpha - \beta)^{p} + \frac{1}{n} (\alpha + (n-1)\beta)^{p}.$$

2. On échelonne la matrice $M(\alpha, \beta)$ avec la méthode du pivot de Gauss afin de déterminer son rang.

On effectue les mêmes opérations sur les lignes de la matrice identité afin d'obtenir, lorsque $M(\alpha, \beta)$ est inversible, $M(\alpha, \beta)^{-1}$.

On commence par remplacer la première ligne par la somme de toutes les lignes $L_1 \leftarrow L_1 + \cdots + L_n$:

- Si $\alpha + (n-1)\beta = 0$, la matrice obtenue est de rang au plus n-1 donc $M(\alpha,\beta)$ est non inversible.
- Dans la suite $\alpha + (n-1)\beta$ est supposé non nul.

Dans ce cas, on divise la première ligne par $\alpha + (n-1)\beta \neq 0$, on obtient

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ \beta & \alpha & \beta & & \beta \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \beta \\ \beta & \dots & \dots & \beta & \alpha \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{\alpha + (n-1)\beta} & \frac{1}{\alpha + (n-1)\beta} & \dots & \dots & \frac{1}{\alpha + (n-1)\beta} \\ 0 & 1 & 0 & & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & & \dots & \dots & 0 & 1 \end{pmatrix}$$

puis on effectue les opérations suivantes : $L_i \leftarrow L_i - \beta L_1$ pour $i \in [2, n]$:

$$\begin{pmatrix} 1 & 1 & \dots & \dots & 1 \\ 0 & \alpha - \beta & 0 & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & \alpha - \beta \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{\alpha + (n-1)\beta} & \frac{1}{\alpha + (n-1)\beta} & \dots & \dots & \frac{1}{\alpha + (n-1)\beta} \\ \frac{-\beta}{\alpha + (n-1)\beta} & \frac{1}{\alpha + (n-1)\beta} & \dots & \dots & \frac{1}{\alpha + (n-1)\beta} \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & & \ddots & & \vdots \\ \frac{-\beta}{\alpha + (n-1)\beta} & \dots & \dots & \frac{\alpha + (n-2)\beta}{\alpha + (n-1)\beta} & \frac{-\beta}{\alpha + (n-1)\beta} \\ \frac{-\beta}{\alpha + (n-1)\beta} & \dots & \dots & \frac{-\beta}{\alpha + (n-1)\beta} & \frac{\alpha + (n-2)\beta}{\alpha + (n-1)\beta} \end{pmatrix}$$

car

$$1 - \frac{\beta}{\alpha + (n-1)\beta} = \frac{\alpha + (n-1)\beta - \beta}{\alpha + (n-1)\beta} = \frac{\alpha + (n-2)\beta}{\alpha + (n-1)\beta}$$

- Si $\alpha \beta = 0$, la matrice obtenue est de rang 1 < n donc n'est pas inversible.
- Dans la suite, on suppose que $\alpha \beta \neq 0$.

On simplifie chaque ligne L_2, \ldots, L_n par $\alpha - \beta \neq 0$, on obtient :

$$\begin{pmatrix}
1 & 1 & \dots & \dots & 1 \\
0 & 1 & 0 & & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & & \ddots & \ddots & 0 \\
0 & \dots & \dots & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{1}{\alpha + (n-1)\beta} & \frac{1}{\alpha + (n-1)\beta} & \dots & \dots & \frac{1}{\alpha + (n-1)\beta} \\
\gamma & & \delta & \gamma & & \gamma \\
\vdots & & & \ddots & & \vdots \\
\vdots & & & \delta & \gamma \\
\gamma & & \dots & \dots & \gamma & \delta
\end{pmatrix}$$

avec

$$\begin{cases} \gamma = \frac{-\beta}{(\alpha - \beta)(\alpha + (n-1)\beta)} \\ \delta = \frac{\alpha + (n-2)\beta}{(\alpha - \beta)(\alpha + (n-1)\beta)} \end{cases}.$$

Les opérations $L_1 \leftarrow L_1 - L_n, \dots, L_1 \leftarrow L_1 - L_2$ conduisent alors à

$$\begin{pmatrix}
1 & 0 & \dots & \dots & 0 \\
0 & 1 & 0 & & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & & \ddots & \ddots & 0 \\
0 & \dots & \dots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
D & C & \dots & \dots & C \\
\gamma & \delta & \gamma & & \gamma \\
\vdots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \delta & \gamma \\
\gamma & \dots & \dots & \gamma & \delta
\end{pmatrix}$$

avec

$$D = \frac{1}{\alpha + (n-1)\beta} - (n-1)\gamma$$

$$= \frac{\alpha - \beta}{(\alpha - \beta)(\alpha + (n-1)\beta)} + \frac{(n-1)\beta}{(\alpha - \beta)(\alpha + (n-1)\beta)}$$

$$= \frac{\alpha + (n-2)\beta}{(\alpha - \beta)(\alpha + (n-1)\beta)}$$

$$= \delta$$

et après un rapide calcul:

$$C = \frac{1}{\alpha + (n-1)\beta} - \delta - (n-2)\gamma = \gamma.$$

En conclusion:

la matrice $M(\alpha, \beta)$ est inversible si et seulement si $(\alpha - \beta)(\alpha + (n-1)\beta) \neq 0$ et dans ce cas

$$M(\alpha, \beta)^{-1} = M(\delta, \gamma)$$

avec

$$\begin{cases} \gamma = \frac{-\beta}{(\alpha - \beta)(\alpha + (n-1)\beta)} \\ \delta = \frac{\alpha + (n-2)\beta}{(\alpha - \beta)(\alpha + (n-1)\beta)} \end{cases}.$$

Solution Exercice 4. Soit $A = \begin{pmatrix} 3 & 1 & -2 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1. Changement de base : diagonalisation.
 - (a) On note \mathcal{B} la base canonique de \mathbb{R}^3 .

Soit f l'endomorphisme canoniquement associé à la matrice A.

— Déterminons $E_1 = \ker(f - id_{\mathbb{R}^3})$ $x \in E_1 \iff f(x) = x \iff AX = X \text{ où } X = Mat_{\mathscr{B}}(x).$ $AX = X \iff (A - I_3)X = 0_3.$ On échelonne la matrice $A - I_3$:

$$\begin{pmatrix} 2 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \iff \begin{pmatrix} L_1 \\ (L_2) \\ (2L_3 - L_1) \end{pmatrix} \begin{pmatrix} 2 & 1 & -2 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

En notant
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, $AX = X$ est donc équivalent

$$\begin{cases} 2x + y - 2z = 0 \\ y = 0 \iff \begin{cases} x = z \\ y = 0 \end{cases}$$

On obtient $E_1 = Vect((1,0,1))$.

— Déterminons $E_2 = \ker(f - 2id_{\mathbb{R}^3})$. $x \in E_2 \iff f(x) = 2x \iff AX = 2X$. $AX = 2X \iff (A - 2I_3)X = 0_3$.

On échelonne la matrice $A - 2I_3$:

$$\begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 1 & 1 & -2 \end{pmatrix} \iff \begin{pmatrix} L_1 \\ (L_2) \\ (L_3 - L_1) \end{pmatrix} \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

En notant
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, $AX = 2X$ est donc équivalent

On obtient $E_2 = Vect((-1, 1, 0), (2, 0, 1)).$

- $-\dim E_1 + \dim E_2 = 1 + 2 = 3 = \dim \mathbb{R}^3.$
- Enfin, $E_1 \cap E_2 = \{(0,0,0)\}$ car

$$x \in E_1 \cap E_2 \Rightarrow f(x) = x \text{ et } f(x) = 2x \Rightarrow 2x = x \Rightarrow x = 0.$$

On en déduire que $\mathbb{R}^3 = E_1 \oplus E_2$

Par conséquent, la concaténation d'une base de E_1 et d'une base de E_2 de \mathbb{R}^3 .

 $\mathcal{B}' = ((1,0,1), (-1,1,0), (2,0,1))$ est donc une base de \mathbb{R}^3 .

(b) — E_1 est stable par f car si $x \in E_1$ alors $f(x) \in E_1$.

En effet, on a f(x) = x donc $f(f(x)) = f(x) = x : f(x) \in E_1$.

- E_2 est stable par f.
 - Si $x \in E_2$ alors $f(x) = 2x \in E_2$: en effet:

$$f(f(x)) = f(2x) = 2f(x) = 4x = 2(2x) = 2f(x) \in E_2.$$

On en déduit la matrice de f dans la base \mathscr{B}' :

$$Mat_{\mathscr{B}'}(f) = \begin{pmatrix} f(1,0,1) & f(-1,1,0) & f(2,0,1) \\ (1,0,1) & 1 & 0 & 0 \\ (-1,1,0) & 0 & 2 & 0 \\ (2,0,1) & 0 & 0 & 2 \end{pmatrix}$$

(c) On utilise la formule du changement de base avec la matrice de passage

$$P_{\mathscr{B} \to \mathscr{B}'} = \left(\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right).$$

$$Mat_{\mathscr{B}}(f) = PMat_{\mathscr{B}'}(t)P^{-1}.$$

On note $D = Mat_{\mathscr{B}'}(f)$.

Avec cette notation, on obtient $A = PDP^{-1}$.

On montre alors par récurrence que pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.

La formule est vraie au rang n = 0 car

$$A^0 = I_3$$
 et $PD^0P^{-1} = PI_3P^{-1} = PP^{-1} = I_3$.

Si elle est vérifiée au rang n alors

$$A^{n+1} = A^n A = PD^n P^{-1} PDP^{-1} PD^n I_3 DP^{-1} = PD^{n+1} P^{-1}.$$

La formule est donc démontrée par récurrence et on obtient alors

$$A^{n} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} 2^{n+1} - 1 & 2^{n} - 1 & -2^{n+1} + 2 \\ 0 & 2^{n} & 0 \\ 2^{n} - 1 & 2^{n} - 1 & -2^{n} + 2 \end{pmatrix}.$$

(d) La matrice $D = Mat_{\mathscr{B}'}(f)$ est inversible car diagonale, de coefficients diagonaux tous non nuls.

Par produit de matrices inversibles, on en déduit que $A=PDP^{-1}$ est inversible et que

$$A^{-1} = (PDP^{-1})^{-1} = (P^{-1})^{-1}D^{-1}P^{-1} = PD^{-1}P^{-1},$$

puis par récurrence, pour tout $n \in \mathbb{N}$,

$$(A^{-1})^n = P(D^{-1})^n P^{-1}$$

$$= \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2^n} & 0 \\ 0 & 0 & \frac{1}{2^n} \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} \frac{2}{2^n} - 1 & \frac{1}{2^n} - 1 & -\frac{2}{2^n} + 2 \\ 0 & \frac{1}{2^n} & 0 \\ \frac{1}{2^n} - 1 & \frac{1}{2^n} - 1 & -\frac{1}{2^n} + 2 \end{pmatrix}$$

2. Polynôme annulateur.

(a) On peut calculer A^2 puis retrancher 3A et ajouter $2I_3$. Mais il est plus rapide de remarquer que $A^2 - 3A + 2I_3 = (A - I_3)(A - 2I_3)$

et de calculer le produit matriciel

$$(A - I_3)(A - 2I_3) = \begin{pmatrix} 2 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

On en déduit que $A^2 - 3A + 2I_3 = 0_3$.

(b) Montrons par récurrence qu'il existe deux suites de nombres réels $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, A^n = a_n A + b_n I_3.$$

- Notons que $A^0 = I_3 = 0_A + 1I_2$, donc $a_0 = 0$ et $b_0 = 1$ conviennent.
- De manière analogue, $A = 1A + 0I_3$, donc $a_1 = 1$ et $b_1 = 0$ conviennent.
- Supposons qu'il existe $a_n, b_n \in \mathbb{R}$ tels que $A^n = a_n A + b_n I_3$. On obtient alors par hypothèse de récurrence,

$$A^{n+1} = AA^n = A(a_nA + b_nI_3)$$

$$= a_nA^2 + b_nA$$

$$= a_n(3A - 2I_3) + b_nA$$

$$= (3a_n + b_n)A - 2a_nI_3.$$

Par conséquent $a_{n+1} = 3a_n + b_n$ et $b_{n+1} = -2a_n$ conviennent.

(c) On remarque que pour tout $n \in \mathbb{N}$,

$$a_{n+2} = 3a_{n+1} + b_{n+1} = 3a_{n+1} - 2a_n.$$

La suite $(a_n)_{n\in\mathbb{N}}$ est donc une suite récurrente linéaire d'ordre 2.

On résout l'équation caractéristique :

$$r^2 = 3r - 2 \Longleftrightarrow r^2 - 3r + 2 = 0 \Longleftrightarrow r \in \{1, 2\}.$$

Il existe donc $(A, B) \in \mathbb{R}^2$ tel que pour tout $n \in \mathbb{N}$,

$$a_n = A + B2^n.$$

Mais $a_0 = 0$ donc A + B = 0.

Et
$$a_1 = 1$$
 donc $A + 2B = 1$.

Ainsi,
$$A = -1$$
 et $B = 1$.

On obtient pour tout $n \in \mathbb{N}$, $a_n = -1 + 2^n$.

En utilisant $b_n = a_{n+1} - 3a_n$ on trouve :

$$b_n = -1 + 2^{n+1} + 3 - 3 \cdot 2^n = 2 + 2^n(2-3) = 2 - 2^n.$$

En conclusion pour tout $n \in \mathbb{N}$,

$$A^{n} = a_{n}A + b_{n}I_{3} = (-1+2^{n})A + (2-2^{n})I_{3}$$

$$= (-1+2^{n})\begin{pmatrix} 3 & 1 & -2 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix} + (2-2^{n})\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2^{n+1} - 1 & 2^{n} - 1 & -2^{n+1} + 2 \\ 0 & 2^{n} & 0 \\ 2^{n} - 1 & 2^{n} - 1 & -2^{n} + 2 \end{pmatrix}.$$

Remarques

- On retrouve bien sûr, le même résultat qu'à la question 1.(c).
- La méthode que nous avons utilisée pour déterminer le réel a_n puis le réel b_n (à partir des relations de récurrence qu'ils vérifient) est à retenir.

Il était néanmoins possible, dans ce cas précis, de remarquer que pour tout $n \in \mathbb{N}$,

$$a_{n+1} + b_{n+1} = (3a_n + b_n) - 2a_n = a_n + b_n.$$

La suite $(a_n + b_n)_{n \in \mathbb{N}}$ est donc constante égale à son premier terme $a_0 + b_0 = 0 + 1 = 1$.

On en déduit que $a_{n+1}=3a_n+b_n=2a_n+(a_n+b_n)=2a_n+1$: $(a_n)_{n\in\mathbb{N}}$ est une suite arithmético-géométrique.

On détermine le point fixe : $c = 2c + 1 \iff c = -1$ et on montre classiquement que la suite $(a_n+1)_{n\in\mathbb{N}}$ est géométrique de raison 2.

Ainsi pour tout $n \in \mathbb{N}$, $a_n + 1 = 2^n(a_0 + 1) = 2^n$ soit $a_n = 2^n - 1$ (et on retrouve comme ci-dessus b_n).

(d) Par le théorème de la division euclidienne, il existe un unique couple $(Q,R)\in\mathbb{R}^2[X]$ tel que

$$X^n = (X-1)(X-2)Q(X) + R(X) \quad \text{avec } \deg(R) < \deg((X-1)(X-2)) = 2.$$

On écrit R(X) = aX + b, $(a, b) \in \mathbb{R}^2$:

$$X^{n} = (X - 1)(X - 2)Q(X) + aX + b.$$

On substitue 1 et 2 à X ce qui conduit à

$$\begin{cases} a + b = 1 \\ 2a + b = 2^n \end{cases} \iff \begin{cases} a + b = 1 \\ - b = 2^n - 2 \end{cases} (L_1)$$
$$\iff \begin{cases} a = 2^n - 1 \\ b = 2 - 2^n \end{cases} (L_2 - 2L_1)$$

Par conséquent, pour tout $n \in \mathbb{N}$,

$$A^n = (-1 + 2^n)A + (2 - 2^n)I_3.$$

On retrouve le résultat des questions 1.(c),2.(c).

(e) On a montré que $A^2 - 3A + 2I_3 = 0$ donc $A(A - 3I_3) = -2I_3$. Ainsi, $A(\frac{1}{2}(3I_3 - A)) = I_3$. Donc A est inversible et $A^{-1} = \frac{1}{2}(3I_3 - A)$.

3. Formule du binôme.

(a) On calcule $B = A - 2I_3 = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 1 & 1 & -2 \end{pmatrix}$.

Le calcul des premières puissances font apparaitre que

$$B^{2} = \begin{pmatrix} -1 & -1 & 2 \\ 0 & 0 & 0 \\ -1 & -1 & 2 \end{pmatrix} = -B, \quad B^{3} = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 1 & 1 & -2 \end{pmatrix} = B.$$

On montre alors par récurrence que pour tout $n \in \mathbb{N}^*$, $B^n = (-1)^{n-1}B$. La formule est vraie au rang n = 1 car $B = (-1)^{1-1}B$ et si et elle est vérifiée au rang n alors

$$B^{n+1} = B^n B = (-1)^{n-1} B^2 = (-1)^{n-1} (-B) = (-1)^n B = (-1)^{(n+1)-1} B.$$

- (b) Déterminer A^n en fonction de n, A, I_3 en utilisant la formule du binôme.
- (c) Les matrices B et $2I_3$ commutent car $B(2I_3) = 2B = (2I_3)B$. Par la formule du binôme :

$$A^{n} = (2I_{3} + B)^{n} = \sum_{k=0}^{n} \binom{n}{k} 2^{n-k} I_{3}^{n-k} B^{k}$$

$$= 2^{n} B^{0} + \sum_{k=1}^{n} \binom{n}{k} 2^{n-k} B^{k}$$

$$= 2^{n} I_{3} + \sum_{k=1}^{n} \binom{n}{k} 2^{n-k} (-1)^{k-1} B$$

$$= 2^{n} I_{3} - \left(\sum_{k=1}^{n} \binom{n}{k} 2^{n-k} (-1)^{k}\right) B$$

$$= 2^{n} I_{3} - \left(\sum_{k=0}^{n} \binom{n}{k} 2^{n-k} (-1)^{k} - 2^{n}\right) B$$

$$= 2^{n} I_{3} - ((-1+2)^{n} - 2^{n}) B$$

$$= 2^{n} I_{3} - (1-2^{n}) B$$

Solution Exercice 5.

1. Un calcul simple donne $A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $A^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$.

Ainsi, A est nilpotente d'indice p = 3.

On a, au passage, démontré que la matrice $B=\begin{pmatrix}0&0&1\\0&0&0\\0&0&0\end{pmatrix}$ est nilpotente d'indice p=2.

2. Soit
$$M = \begin{pmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix}$$
.

On décompose
$$M = \alpha I_3 + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \alpha I_3 + A.$$

Les matrices αI_3 et A commutent : $A(\alpha I_3) = \alpha A = (\alpha I_3)A$.

Par la formule du binôme :

$$\begin{split} M^p &= \sum_{k=0}^p \binom{p}{k} \alpha^{p-k} I_3^{p-k} A^k \\ &= \binom{p}{0} \alpha^p I_3^p A^0 + \binom{p}{1} \alpha^{p-1} I_3^{p-1} A^1 + \binom{p}{2} \alpha^{p-2} I_3^{p-2} A^2 + \sum_{k=2}^p \binom{p}{k} \alpha^{p-k} I_3^{p-k} A^k \end{split}$$

Les puissances A^k pour $k\geqslant 3$ sont nulles car A est nilpotente d'indice de nilpotence 3.

On obtient donc pour tout $p \ge 0$:

$$M^{p} = \alpha^{p} I_{3} + p \alpha^{p-1} A + \frac{p(p-1)}{2} \alpha^{p-2} A^{2}$$

$$= \alpha^{p} I_{3} + p \alpha^{p-1} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \frac{p(p-1)}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha^{p} & p \alpha^{p-1} & \frac{p(p-1)}{2} \alpha^{p-2} \\ 0 & \alpha^{p} & p \alpha^{p-1} \\ 0 & 0 & \alpha^{p} \end{pmatrix}$$

3. Montrons que la matrice
$$M = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & 0 \end{pmatrix}$$
 est nilpotente.

La démonstration rigoureuse nécessite de raisonner par récurrence.

On peut démontrer par exemple la diagonale de 1 de la matrice M^k se décale vers la droite à chaque fois que l'on multiple par M.

Pour une preuve plus précise, on va raisonner sur l'endomorphisme f canoniquement associé à $M = Mat_{\mathscr{B}}(f)$ où \mathscr{B} est la base canonique.

Notons que $\operatorname{Im}(f) = Vect(e_1, \dots, e_{n-1}).$

On démontre par récurrence que $\forall k \in [1, n-1], \operatorname{Im}(f^k) = \operatorname{Vect}(e_1, \dots, e_{n-k}).$

La propriété est vraie au rang k=1 d'après ce qui précède.

Supposons qu'elle est vraie au rang $k \in [1, n-2]$.

Alors

$$Im(f^{k+1}) = f^{k+1}(E) = f(f^k(E)) = f(Vect(e_1, \dots, e_{n-k}))$$

$$= Vect(f(e_1), f(e_2), \dots, f(e_{n-k})) = Vect(0, e_1, \dots, e_{n-k-1})$$

$$= Vect(e_1, \dots, e_{n-(k+1)}).$$

La récurrence est achevée.

En particulier, $\operatorname{Im}(f^{n-1}) = \operatorname{Vect}(e_1, \dots, e_{n-(n-1)}) = \operatorname{Vect}(e_1)$.

Alors
$$\operatorname{Im}(f^n) = \operatorname{Vect}(f(e_1)) = \operatorname{Vect}(0) = \{0\}.$$

L'application f^n est donc l'application nulle et par conséquent

$$0 = Mat_{\mathscr{B}}(f^n) = Mat_{\mathscr{B}}(f)^n = M^n.$$

La matrice M est donc nilpotente d'indice p = n.

- 4. On note p,q les indices de nilpotences respectifs de A, B.
 - Si $r = \min(p, q)$ alors puisque les matrices A, B commutent, on a

$$(AB)^r = A^r B^r = 0.$$

— Si $s = \max(p, q)$ alors par la formule du binôme :

$$(A+B)^{2s} = \sum_{k=0}^{2s} {2s \choose k} A^k B^{2s-k}.$$

- * Si $k \in [0, s]$, $B^{2s-k} = 0$ car $2s k \ge 2s s = s = \max(p, q) \ge q$.
- * Si $k \in [s, 2s]$, $A^k = 0$ car $k \geqslant s = \max(p, q) \geqslant p$.

Ainsi, $(A + B)^{2s}$ est nulle comme somme de 2s + 1 matrices nulles.

- 5. Les matrice $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ sont nilpotentes. Pourtant $A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ n'est pas nilpotente. On démontre par récurrence que $(A+B)^{2p}=I_2$ et $(A+B)^{2p+1}=A+B$.
- 6. L'idée est d'adapter la formule $\sum_{k=0}^{p-1} x^k = \frac{1-x^p}{1-x}$ valable pour tout $x \neq 1$ qui donne pour tout $x \in \mathbb{R}$, $(1-x)\sum_{k=0}^{p-1} x^k = 1$. On calcule le produit :

$$(I_n - A) \sum_{k=0}^{p-1} A^k = \sum_{k=0}^{p-1} A^k - \sum_{k=0}^{p-1} A^{k+1}$$

$$= \sum_{k=0}^{p-1} A^k - \sum_{k=1}^p A^k$$

$$= I_n + \sum_{k=1}^{p-1} A^k - \sum_{k=1}^{p-1} A^k - A^p$$

$$= I_n.$$

Ainsi, la matrice $\sum_{k=1}^{n} A^{k}$ est inversible et

$$\left(\sum_{k=0}^{p-1} A^k\right)^{-1} = I_n - A.$$

Solution Exercice 6.

- 1. La matrice $M = \begin{pmatrix} -3 & 2 & 5 \\ -6 & 4 & 10 \\ 3 & -2 & -5 \end{pmatrix}$ est de rang 1 car
 - La deuxième ligne de M est le double de la première.
 - La troisième ligne de M est l'opposé de la première.
- 2. On cherche des matrices $U = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ et $V = \begin{pmatrix} d \\ e \\ f \end{pmatrix}$ telles que

$$U^{t}V = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} d & e & f \end{pmatrix} = \begin{pmatrix} -3 & 2 & 5 \\ -6 & 4 & 10 \\ 3 & -2 & -5 \end{pmatrix}$$

Les observations de la question 1 montrent que b=2a et c=-a. La recherche se précise : on cherche $(a,d,e,f)\in\mathbb{R}^4$ tel que

$$\begin{pmatrix} a \\ 2a \\ -a \end{pmatrix} \begin{pmatrix} d & e & f \end{pmatrix} = \begin{pmatrix} -3 & 2 & 5 \\ -6 & 4 & 10 \\ 3 & -2 & -5 \end{pmatrix}$$

soit

$$\begin{pmatrix} ad & ae & af \\ 2ad & 2ae & 3af \\ -ad & -ae & -af \end{pmatrix} = \begin{pmatrix} -3 & 2 & 5 \\ -6 & 4 & 10 \\ 3 & -2 & -5 \end{pmatrix}$$

ce qui conduit à ad = -3, ae = 2, af = 5.

Les nombres a = 1, d = -3, e = 2, f = 5 conviennent.

3. On a $M^2 = (U^t V)(U^t V) = U(t^t V U)^t V$ donc

$$M^{2} = U \left(\begin{pmatrix} -3 & 2 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \right)^{t} V$$
$$= U(-4)^{t} V = -4U^{t} V = -4M.$$

On montre alors par récurrence que pour tout $n \in \mathbb{N}^*$, $M^n = (-4)^{n-1}M$. Attention, $M^0 = I_3$ la formule précédente n'est pas valable pour n = 0.

Solution Exercice 7.

$$\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = 2a_n + 3c_n \\ b_{n+1} = b_n \\ c_{n+1} = -a_n + 2b_n - 2c_n \end{cases}$$

- 1. La matrice $A = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 1 & 0 \\ -1 & 2 & -2 \end{pmatrix}$ convient.
- 2. **Déterminons** E_1 . $AX = X \iff (A - I_3)X = 0$. On échelonne la matrice $A - I_3$.

$$A - I_3 = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 0 & 0 \\ -1 & 2 & -3 \end{pmatrix} \iff \begin{pmatrix} L_1 \\ (L_2) \\ (L_3 + L_1) \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$

En notant
$$X=\begin{pmatrix}x\\y\\z\end{pmatrix}, AX=X$$
 équivaut donc à
$$\begin{cases}x&+&3z&=&0\\&2y&&=&0\end{cases}\Longleftrightarrow\begin{cases}x&&=&-3z\\&y&&=&0\end{cases}$$
 Ainsi, $E_1=Vect\begin{pmatrix}-3\\0\\1\end{pmatrix}$. **Déterminons** E_{-1}

Déterminons E_{-1} $AX = -X \iff (A + I_3)X = 0.$ On échelonne la matrice $A + I_3$.

$$A + I_3 = \begin{pmatrix} 3 & 0 & 3 \\ 0 & 2 & 0 \\ -1 & 2 & -1 \end{pmatrix} \iff \begin{pmatrix} L_1 \\ (L_2) \\ (L_3 + \frac{1}{3}L_1) \end{pmatrix} \begin{pmatrix} 3 & 0 & 3 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$

En notant $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, AX = -X équivaut donc à

$$\begin{cases} 3x & + 3z = 0 \\ 2y & = 0 \\ 2y & = 0 \end{cases} \iff \begin{cases} x & = -z \\ y & = 0 \end{cases}$$

Ainsi,
$$E_{-1} = Vect \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
.

Ona dim E_1 + dim E_{-1} = 2 < 3. Ainsi, \mathbb{R}^3 ne se décompose pas comme la somme directe $E_1 \oplus E_{-1}$.

3. On considère $P = \begin{pmatrix} -3 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

La méthode du pivot de Gauss-Jordan montre que P est de rang 3 et que

$$P^{-1} = \left(\begin{array}{ccc} -\frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 & \frac{3}{2} \\ 0 & 1 & 0 \end{array}\right).$$

4. On effectue le produit matriciel et on trouve

$$T = P^{-1}AP = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & 1 \end{array}\right).$$

On montre par récurrence que pour tout $n \in \mathbb{N}$,

$$T^{n} = \begin{pmatrix} 1 & 0 & -n \\ 0 & (-1)^{n} & \frac{3}{2}(1 - (-1)^{n}) \\ 0 & 0 & 1 \end{pmatrix}.$$

La formule est vraie au rang 0 et si elle est vraie au rang n alors

$$T^{n+1} = TT^{n} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -n \\ 0 & (-1)^{n} & \frac{3}{2}(1 - (-1)^{n}) \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & -(n+1) \\ 0 & (-1)^{n+1} & \frac{3}{2}(1 - (-1)^{n+1}) \\ 0 & 0 & 1 \end{pmatrix}.$$

5. On a $A = PTP^{-1}$.

On montre alors classiquement par récurrence que pour tout $n \in \mathbb{N}$, $A^n = PT^nP^{-1}$.

On calcule

$$A^{n} = \begin{pmatrix} -3 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -n \\ 0 & (-1)^{n} & \frac{3}{2}(1 - (-1)^{n}) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 & \frac{3}{2} \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -3 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -n & -\frac{1}{2} \\ \frac{(-1)^{n}}{2} & \frac{3}{2}(1 - (-1)^{n}) & \frac{3}{2}(-1)^{n} \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{2} - \frac{(-1)^{n}}{2} & 3n - \frac{3}{2}(1 - (-1)^{n}) & \frac{3}{2}(1 - (-1)^{n}) \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{2} - \frac{(-1)^{n}}{2} & 3n - \frac{3}{2}(1 - (-1)^{n}) & \frac{3}{2}(1 - (-1)^{n}) \\ 0 & 1 & 0 \end{pmatrix}$$

On montre alors par récurrence que pour tout $n \in \mathbb{N}$,

$$\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = A^n \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix}.$$

La formule est vraie au rang n = 0 car

$$\begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} = I_3 \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} = A^0 \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix}.$$

Si la formule est vraie au rang n alors

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = A \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = AA^n \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} = A^{n+1} \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix}.$$

Ainsi.

$$\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \begin{pmatrix} \frac{3}{2} - \frac{(-1)^n}{2} & 3n - \frac{3}{2}(1 - (-1)^n) & \frac{3}{2}(1 - (-1)^n) \\ 0 & 1 & 0 \\ \frac{1}{2}((-1)^n - 1) & -n + \frac{3}{2}(1 - (-1)^n) & -\frac{1}{2} + \frac{3}{2}(-1)^n \end{pmatrix} \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix}.$$

On obtient pour tout $n \in \mathbb{N}$,

$$a_n = \frac{3}{2}(a_0 - b_0 + c_0) + \frac{(-1)^n}{2}(-a_0 + 3b_0 - 3c_0) + 3nb_0,$$

$$b_n = b_0,$$

$$c_n = \frac{1}{2}(-a_0 + 3b_0 - c_0) + \frac{(-1)^n}{2}(a_0 - 3b_0 + 3c_0) - nc_0.$$

Solution Exercice 8. Soit $M = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$.

• On commence par déterminer les puissances positives de M. Soit f l'endomorphisme canoniquement associé à $M = Mat_{\mathscr{Z}}(f)$.

(on a noté $\mathscr{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4).

On a $\mathbb{R}^4 = F \oplus G$ avec $F = Vect(e_1, e_2)$ et $G = Vect(e_3, e_4)$.

De plus, la matrice M montre que F et G sont stables par f.

On montre alors par récurrence que F, G sont stables par $f^n, n \in \mathbb{N}$.

En effet, pour n = 0, $f^0(F) = id_E(F) \subset F$.

Si $f^n(F) \subset F$ alors $f^{n+1}(F) = f(f^n(F)) \subset f(F) \subset F$.

Ce qui achève la récurrence. De même pour G.

On considère alors les endomorphismes induits $f_{|_{\mathcal{F}}}^n \in \mathcal{L}(F)$ et $f_{|_{\mathcal{F}}}^n \in \mathcal{L}(G)$.

Dans la base adaptée $\mathscr{B}_F \cup \mathscr{B}_G = (e_1, e_2, e_3, e_4)$ à $\mathbb{R}^4 = F \oplus G$,

$$Mat_{\mathscr{B}}(f)^{n} = Mat_{\mathscr{B}}(f^{n}) = \begin{cases} f^{n}(e_{1}) & f^{n}(e_{2}) & f^{n}(e_{3}) & f^{n}(e_{4}) \\ e_{1} & a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & e & f \\ 0 & 0 & g & h \end{cases}$$

$$= \begin{pmatrix} Mat_{\mathscr{B}_{F}}(f_{|F}^{n}) & 0_{2} \\ 0_{2} & Mat_{\mathscr{B}_{G}}(f_{|G}^{n}) \end{pmatrix}$$

$$= \begin{pmatrix} Mat_{\mathscr{B}_{F}}(f_{|F})^{n} & 0_{2} \\ 0_{2} & Mat_{\mathscr{B}_{G}}(f_{|G}^{n})^{n} \end{pmatrix}.$$

Tout se ramène donc au calcul des puissances des matrices

$$A = Mat_{(e_1, e_2)}(f_{|_F}) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \text{ et } B = Mat_{(e_3, e_4)}(f_{|_G}) = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}.$$

- On a
$$A = I_2 + N_1$$
 avec $N_1 = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$.
Les matrices I_2 et N_1 commutent.
La formule du binôme donne donc
$$A^n = (I_2 + N_1)^n = I_2 + nN_1 + 0 = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix},$$

$$\operatorname{car} N_1^2 = 0 \operatorname{donc} N_1^k = 0 \operatorname{pour} \operatorname{tout} k \geqslant 2.$$
- On a $B = -I_2 + N_2$ avec $N_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
Les matrices I_2 et N_2 commutent.
La formule du binôme donne donc
$$B^n = (-I_2 + N_2)^n = (-1)^n I_2 + (-1)^{n-1} n N_2 = \begin{pmatrix} (-1)^n & (-1)^{n-1} n \\ 0 & (-1)^n \end{pmatrix}$$

 $\operatorname{car} N_2^2 = 0 \text{ donc } N_2^k = 0 \text{ pour tout } k \geqslant 2.$ — On en déduit que pour tout $n \in \mathbb{N}$

$$M^{n} = \begin{pmatrix} 1 & -n & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & (-1)^{n} & (-1)^{n-1}n \\ 0 & 0 & 0 & (-1)^{n} \end{pmatrix}.$$

• Déterminons maintenant M^{-1} et $(M^{-1})^n$.

L'endomorphisme $f_{|_E}$ est de rang 2.

En effet, $Im(f_{|F}) = Vect(f(e_1), f(e_2)) = Vect(e_1, -e_1 + e_2)$

Donc $rg(f_{|_F}) = \dim \operatorname{Im}(f_{|_F}) = 2$

(on pouvait aussi constater que $A = Mat_{(e_1,e_2)}(f_{|F})$ est de rang 2)

On en déduit que $f_{|_F}: F \to F$ est surjective

Par conséquent $f_{|_F}$ est bijective, car F est de dimension finie.

Ainsi, $f_{|_{F}}^{-1} \in \mathcal{L}(F)$.

On montre de même que $f_{|_G}$ est bijective et que $f_{|_G}^{-1} \in \mathcal{L}(G)$.

Dans la base (e_1, e_2, e_3, e_4) adaptée à la décomposition $\mathbb{R}^4 = F \oplus G$:

$$f^{-1}(e_1) \quad f^{-1}(e_2) \quad f^{-1}(e_3) \quad f^{-1}(e_4)$$

$$Mat_{\mathscr{B}}(f)^{-1} = Mat_{\mathscr{B}}(f^{-1}) = \begin{cases} e_1 \\ e_2 \\ e_3 \\ e_4 \end{cases} \begin{pmatrix} \alpha & \beta & 0 & 0 \\ \gamma & \delta & 0 & 0 \\ 0 & 0 & \varepsilon & \zeta \\ 0 & 0 & \eta & \theta \end{pmatrix}$$

$$= \begin{pmatrix} Mat_{\mathscr{B}_F}(f_{|_F}^{-1}) & 0_2 \\ 0_2 & Mat_{\mathscr{B}_G}(f_{|_G}^{-1}) \end{pmatrix}$$

$$= \begin{pmatrix} Mat_{\mathscr{B}_F}(f_{|_F})^{-1} & 0_2 \\ 0_2 & Mat_{\mathscr{B}_G}(f_{|_G})^{-1} \end{pmatrix}.$$

Tout se ramène donc au calcul des puissances A^{-n} et B^{-n} avec $n \in \mathbb{N}$ avec

$$A = Mat_{(e_1, e_2)}(f_{|_F}) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \text{ et } B = Mat_{(e_3, e_4)}(f_{|_G}) = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}.$$

On rappelle que $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R}) \iff ad - bc \neq 0.$

Dans ce cas $M^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

- On obtient $A^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $(A^{-1})^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ par la formule du binôme.
- De même, $B^{-1} = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$ et $(B^{-1})^n = \begin{pmatrix} (-1)^n & (-1)^n n \\ 0 & (-1)^n \end{pmatrix}$.
- On en déduit que pour tout $n \in \mathbb{N}$,

$$(M^{-1})^n = \begin{pmatrix} 1 & n & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & (-1)^n & (-1)^n n \\ 0 & 0 & 0 & (-1)^n \end{pmatrix}$$

On peut enfin homogénéiser les deux formules établies

$$\forall p \in \mathbb{Z}, M^p = \begin{pmatrix} 1 & -p & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & (-1)^p & (-1)^p (-p)\\ 0 & 0 & 0 & (-1)^p \end{pmatrix}$$

Solution Exercice 9.

 $-- A = \{(x, y, z, t) \in \mathbb{R}^4 : x + y - z - t = 0, x + 2z = 0\}.$

$$(x,y,z,t) \in A \iff \begin{cases} x + y - z - t = 0 \\ x + 2z = 0 \end{cases}$$

$$\iff \begin{cases} x + y - z - t = 0 & (L_1) \\ - y + 3z + t = 0 & (L_1 - L_2) \end{cases}$$

$$\iff \begin{cases} x = -y + z + t & (L_1) \\ y = 3z + t & (L_1 - L_2) \end{cases}$$

$$\iff \begin{cases} x = -2z & (L_1) \\ y = 3z + t & (L_1 - L_2) \end{cases}$$

Ainsi, $A = \{(-2z, 3z + t, z, t) : (z, t) \in \mathbb{R}^2\} = Vect((-2, 3, 1, 0), (0, 1, 0, 1)).$ $-B = \{(2a - b + 2c, 3a + 2b - c, -b + c, c) : (a, b, c) \in \mathbb{R}^3\}$ B = Vect((2, 3, 0, 0), (-1, 2, -1, 0), (2, -1, 1, 1)).Soit $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$.

Alors $(\alpha, \beta, \gamma, \delta) \in B$ si et seulement s'il existe $(x, y, z) \in \mathbb{R}^4$ tel que

 $(\alpha,\beta,\gamma,\delta)=x(2,3,0,0)+y(-1,2,-1,0)+z(2,-1,1,1),$ c'est-à-dire, si et seulement si le système suivant admet des solutions :

$$\begin{cases} 2x - y + 2z = \alpha \\ 3x + 2y - z = \beta \\ - y + z = \gamma \\ z = \delta \end{cases}$$

$$\iff \begin{cases} 2x - y + 2z = \alpha & (L_1) \\ 7y - 8z = 2\beta - 3\alpha & (2L_2 - 3L_1) \\ - y + z = \gamma & (L_3) \\ z = \delta & (L_4) \end{cases}$$

$$\iff \begin{cases} 2x - y + 2z = \alpha & (L_1) \\ 7y - 8z = 2\beta - 3\alpha & (L_2) \\ - z = 7\gamma + 2\beta - 3\alpha & (7L3 + L2) \\ z = \delta & (L_4) \end{cases}$$

$$\iff \begin{cases} 2x - y + 2z = \alpha & (L_1) \\ - z = 7\gamma + 2\beta - 3\alpha & (L_2) \\ - z = 7\gamma + 2\beta - 3\alpha & (L_2) \\ - z = 7\gamma + 2\beta - 3\alpha & (L_3) \\ - z = 7\gamma + 2\beta - 3\alpha & (L_3) \\ - z = 7\gamma + 2\beta - 3\alpha & (L_4 + L_3) \end{cases}$$

Si $-3\alpha + 2\beta + 7\gamma + \delta \neq 0$, le système est incompatible donc n'admet pas de solutions.

Si $-3\alpha + 2\beta + 7\gamma + \delta = 0$ alors le système est compatible (et admet une unique solution car de Cramer, puisque de rang 3).

Ainsi, $B = \{(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4 : -3\alpha + 2\beta + 7\gamma + \delta = 0\}.$

-C = Vect((0, -1, 2, 1), (1, 2, 1, 0))

 $C = \{(b, -a + 2b, 2a + b, a) : (a, b) \in \mathbb{R}^2\}.$

Soit $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$.

Alors $(\alpha, \beta, \gamma, \delta) \in C$ si et seulement s'il existe $(x, y) \in \mathbb{R}^2$ tel que $(\alpha, \beta, \gamma, \delta) = x(0, -1, 2, 1) + y(1, 2, 1, 0)$, c'est-à-dire, si et seulement si le

sytème suivant admet des solutions :

$$\begin{cases} & y = \alpha \\ -x + 2y = \beta \\ 2x + y = \gamma \\ x = \delta \end{cases}$$

$$\iff \begin{cases} x = \delta & (L_1 \leftrightarrow L_4) \\ -x + 2y = \beta \\ 2x + y = \gamma \\ y = \alpha & (L_4 \leftrightarrow L_1) \end{cases}$$

$$\iff \begin{cases} x = \delta & (L_1) \\ 2y = \beta + \delta & (L_1 + L_2) \\ y = \gamma - 2\delta & (L_3 - 2L_1) \\ y = \alpha & (L_4) \end{cases}$$

$$\iff \begin{cases} x = \delta & (L_1) \\ 2y = \beta + \delta & (L_1 + L_2) \\ y = \alpha & (L_4) \end{cases}$$

$$\iff \begin{cases} x = \delta & (L_1) \\ 0 = 2\gamma - 4\delta - \beta - \delta & (2L_3 - L_2) \\ 0 = 2\alpha - \beta - \delta & (2L_4 - L_2) \end{cases}$$

On en déduit que

$$C = \left\{ (\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4 : \left\{ \begin{array}{cccc} 2\alpha & - & \beta & & - & \delta & = & 0 \\ & - & \beta & + & 2\gamma & - & 5\delta & = & 0 \end{array} \right\}$$

Solution Exercice 10.

— La fonction nulle est solution de l'équation différentielle (E): y'' + y' + y = 0. Si y_1 et y_2 sont solutions alors pour tout $\lambda \in \mathbb{R}$,

$$(\lambda y_1 + y_2)'' + (\lambda y_1 + y_2)' + (\lambda y_1 + y_2) = \lambda (y_1'' + y_1' + y_1) + (y_2'' + y_2' + y_2) = 0.$$

— On résout l'équation caractéristique $x^2 + x + 1 = 0$.

$$\Delta = 1 - 4 = -3 = (\sqrt{3}i)^2$$
.

On obtient les solutions complexes conjuguées :

$$r_1 = \frac{-1 + \sqrt{3}i}{2}, r_2 = \frac{-1 - \sqrt{3}i}{2}.$$

L'ensemble des solutions de l'équation différentielle (E) est donc l'ensemble des fonctions

$$x \mapsto \left(\lambda \sin \frac{\sqrt{3}}{2} x + \mu \cos \frac{\sqrt{3}}{2} x\right) e^{-\frac{1}{2}x}, (\lambda, \mu) \in \mathbb{R}^2.$$

L'ensemble des solutions de (E) est donc engendré par (f_1, f_2) ,

$$S = Vect\left(\underbrace{x \mapsto e^{-\frac{1}{2}x} \sin \frac{\sqrt{3}}{2}x}, \underbrace{x \mapsto e^{-\frac{1}{2}x} \cos \frac{\sqrt{3}}{2}x}\right).$$

La famille (f_1, f_2) est libre.

En effet, si $\lambda, \mu \in \mathbb{R}$ vérifient $\lambda f_1 + \mu f_2$ alors pour tout $x \in \mathbb{R}$, $\lambda f_1(x) + \mu f_2(x)$. Avec x = 0, on obtient $\mu = 0$.

On obtient alors immédiatement $\lambda = 0$.

La famille (f_1, f_2) est donc libre et génératrice.

Il s'agit d'une base de l'ensemble des solutions de (E).

L'espace des solutions est donc de dimension 2.

Solution Exercice 11.

 $(\lambda,1,\lambda)\in Vect((1,1,1)(1,\lambda,-1))$ si et seulement s'il existe $(x,y)\in\mathbb{R}^2$ tel que $x(1,1,1)+y(1,\lambda,-1)=(\lambda,1,\lambda)$, autrement si le système suivant admet des solutions :

$$\begin{cases} x+y &= \lambda \\ x+\lambda y &= 1 \\ x-y &= \lambda \end{cases} \iff \begin{cases} x+y &= \lambda \\ (\lambda-1)y &= 1-\lambda & (L_2-L_1) \\ 2y &= 0 & (L_1-L_3) \end{cases}$$

Ce système est compatible si et seulement si y=0 et $\lambda=1$. Il admet dans ce cas une unique solution (x,y)=(1,0).

Solution Exercice 12.

1. Soient $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que $\lambda_1 f_1 + \cdots + \lambda_n f_n = 0_E$. En utilisant la définition des vecteurs f_i , on obtient

$$\lambda_1 e_1 + \lambda_2 (e_1 + e_2) + \dots + \lambda_n (e_1 + \dots + e_n) = 0_E$$

$$\iff (\lambda_1 + \dots + \lambda_n) e_1 + (\lambda_2 + \dots + \lambda_n) e_2 + \dots + \lambda_n e_n = 0_E.$$

La famille (e_1, e_2, \dots, e_n) étant libre, on obtient

$$(\mathcal{S}): \left\{ \begin{array}{cccccccc} \lambda_1 & + & \lambda_2 & + & \dots & + & \lambda_n & = & 0 \\ & & \lambda_2 & + & \dots & + & \lambda_n & = & 0 \\ & & & \ddots & & & \vdots \\ & & & & \lambda_n & = & 0 \end{array} \right.$$

La matrice des coefficients de ce système $\begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 1 & \dots & 1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \end{pmatrix}$ est de rang

n donc le sytème (S) est de Cramer et admet comme unique solution $(\lambda_1, \ldots, \lambda_n) = (0, \ldots, 0)$.

La famille $(f_i)_{i \in [1,n]}$ est libre.

2. Soient $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ tel que $\lambda_1 g_1 + \lambda_2 g_2 + \cdots + \lambda_{n-1} g_{n-1} + \lambda_n g_n = 0_E$. En utilisant la définition des vecteurs g_i , on obtient

$$\lambda_1(e_1 - e_2) + \lambda_2(e_2 - e_3) + \dots + \lambda_{n-1}(e_{n-1} - e_n) + \lambda_n e_n = 0_E$$

soit:

$$\lambda_1 e_1 + (\lambda_2 - \lambda_1) e_2 + \dots + (\lambda_n - \lambda_{n-1}) e_n = 0_E.$$

La famille (e_1, \ldots, e_n) étant libre, on obtient

$$(S): \begin{cases} \lambda_1 & = 0 \\ \lambda_2 - \lambda_1 & = 0 \\ \vdots & \vdots \\ \lambda_n - \lambda_{n-1} & = 0 \end{cases}$$

Ce système triangulaire est aisément résolu, on obtient successivement $\lambda_1 = 0, \lambda_2 = 0, \dots, \lambda_n = 0$.

La famille $(g_i)_{i \in [1,n]}$ est libre.

Solution Exercice 13.

1. Les vecteurs $(x, y, z, y) \in F$ sont les les vecteurs solutions du système :

$$\begin{cases} x + y - z & = 0 \\ x - y + z + 2t & = 0 \end{cases}$$

$$\iff \begin{cases} x + y - z & = 0 \\ -2y + 2z + 2t & = 0 & (L_2 - L_1) \end{cases}$$

$$\iff \begin{cases} x + y - z & = 0 \\ y - z - t & = 0 & (L_2 - L_1) \end{cases}$$

$$\iff \begin{cases} x + y - z & = 0 \\ y & = z + t & (L_2 - L_1) \end{cases}$$

$$\iff \begin{cases} x & = -t \\ y & = z + t \end{cases}$$

Ainsi, $F = \{(-t, z + t, z, t) : (z, t) \in \mathbb{R}^2\} = Vect((-1, 1, 0, 1), (0, 1, 1, 0)).$

Pour construire un supplémentaire de F dans \mathbb{R}^4 , on complète la famille ((-1,1,0,1),(0,1,1,0)) en une base de \mathbb{R}^4 .

La famille $\mathscr{B} = ((-1,1,0,1),(0,1,1,0),(0,0,1,0),(0,0,0,1))$ est de cardinal 4 et génératrice car de rang 4 :

$$rg\left(\begin{array}{cccc} -1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 \end{array}\right) = 4.$$

 \mathscr{B} est donc une base de \mathbb{R}^4 et par conséquent $\mathbb{R}^4 = F \oplus G$ avec G = Vect((0,0,1,0),(0,0,0,1)) un supplémentaire de F dans \mathbb{R}^4 .

2. $P \in F$ si et seulement si P(1) = P'(1) c'est-à-dire si et seulement si 1 est racine au moins double de P.

Autrement dit, puisque $F \subset \mathbb{R}_3[X]$,

$$P \in F \iff (X-1)^2 | P(X) \iff \exists Q(X) \in \mathbb{R}_1[X], P(X) = (X-1)^2 Q(X)$$
$$\iff \exists (a,b) \in \mathbb{R}^2, P(X) = (X-1)^2 (a+bX)$$
$$\iff \exists (a,b) \in \mathbb{R}^2, P(X) = a(X-1)^2 + bX(X-1)^2.$$

Ainsi, $F = Vect((X - 1)^2, X(X - 1)^2)$.

Pour construire un supplémentaire de F dans $\mathbb{R}_4[X]$, on complète la famille $((X-1)^2, X(X-1)^2)$ en une base de $\mathbb{R}_4[X]$.

La famille $\mathscr{B}=(1,X,(X-1)^2,X(X-1)^2,X^4)$ est de cardinal 4.

De plus, la famille ${\mathcal B}$ est libre car échelonnée en degrés et composée de polynômes non nuls.

 \mathcal{B} est donc une base de $\mathbb{R}_4[X]$.

On en déduit que $\mathbb{R}_4[X] = F \oplus G$ avec $G = Vect(1, X^3, X^4)$ un supplémentaire de F dans $\mathbb{R}_4[X]$.

- 3. Montrons qu'un supplémentaire de $F = \{ f \in \mathcal{C}^1(\mathbb{R}) : f(0) = f'(0) = 0 \}$ est donné par l'espace des fonctions affines $G = \{ f : x \mapsto ax + b, (a, b) \in \mathbb{R}^2 \}$.
 - Si $f \in F \cap G$ alors :

il existe $(a, b) \in \mathbb{R}^2$, tel que pour tout $x \in \mathbb{R}$, f(x) = ax + b car $f \in F$. De plus, 0 = f(0) = a + b et 0 = f'(0) = a car $f \in G$.

On en déduit a = b = 0 et par conséquent, f est la fonction nulle : $F \cap G = \{0\}.$

- De plus, toute fonction $\varphi \in \mathscr{C}^1(\mathbb{R})$, s'écrit $\varphi = f + g$, avec
 - * avec $f: x \mapsto \varphi(x) \varphi(0) \varphi'(0)x : f \in F$ car f(0) = 0 et $f'(0) = \varphi'(0) - \varphi'(0) = 0$
 - * $g: x \mapsto \varphi'(0)x + \varphi(0)$ affine: $g \in G$.
- On en déduit que $\mathscr{C}^1(\mathbb{R}) = F \oplus G$ avec G l'espace des fonctions affines.

Solution Exercice 14.

- 1. L'intersection de 2 hyperplans est de dimension au moins n-2.
 - $H_1 \cap H_2 \subset H_1$ donc est de dimension au plus n-1.
 - $H_1 \cap H_2$ ne peut être de dimension n-1. Sinon, on aurait $H_1 \cap H_2 = H_1$ et on en déduirait $H_1 = H_2$ ce qui n'est pas.
- 2. (a) H est un hyperplan de E donc dim H = n 1.

On note $\mathscr{B}_H = (e_1, \dots, e_{n-1})$ une base de H.

On complète cette famille en une base $\mathscr{B} = (e_1, \ldots, e_{n-1}, e_n)$ de E.

 ${\cal F}$ est un sous-espace vectoriel dinstinct de ${\cal E}.$

On peut extraire de \mathscr{B} , une base \mathscr{B}_F de F.

On note $d = \dim F$. On a $d \le n - 1$.

Ainsi, $F = Vect(e_{k_1}, \ldots, e_{k_d})$ avec e_{k_i} certains vecteurs de la famille \mathscr{B} . L'hyperplan H ne contient pas F. Ainsi, l'un des vecteurs e_{k_i} est égal à e_n (sinon $F = Vect(e_{k_i}) \subset Vect(e_1, \ldots, e_{n-1}) = H$).

Pour simplifier, on suppose que $e_{k_d} = e_n$.

Ainsi, $F = Vect(e_{k_1}, \dots, e_{k_{d-1}}, e_n)$.

On en déduit que $F \cap H = Vect(e_{k_1}, \dots, e_{k_{d-1}})$ est de dimension $d-1 = \dim F - 1$.

(b) On note d = n - p avec $p \ge 1$ la dimension de F.

Par le cours, F est l'intersection de p = n - d hyperplans.

Solution Exercice 15.

1. — La fonction nulle est continue sur [-2;2] et s'annule en chacun des entiers -2,-1,0,1,2 de cet intervalle : $0 \in F$. Si f,g sont continues et s'annulent en $k \in [\![-2,2]\!]$ alors pour tout $\lambda \in \mathbb{R}$, $\lambda f + g$ est continue sur [-2;2] et

$$(\lambda f + q)(k) = \lambda f(k) + q(k) = 0.$$

F est donc un sous-espace vectoriel de E.

— Cet espace n'est pas de dimension finie.

En effet, la famille $\left(x \mapsto \prod_{i=-2}^{2} (x-i)^{k}\right)_{k \in \mathbb{N}^{*}}$ est une famille de F libre

car échelonnée en degrés et composée de polynômes non nuls.

Elle est infinie. F ne peut donc pas être de dimension finie.

- 2. Soit G l'ensemble des fonctions polynomiales de degré au plus 4.
 - Si $f \in F \cap G$ alors f est polynomiale, de degré au plus 4 et possède au moins les 5 racines -2, -1, 0, 1, 2.

Ainsi, f est nulle : $F \cap G = \{0\}$.

- De plus, si φ est une fonction continue, on va écrire $\varphi \in E$ comme la somme $\varphi = f + g$ d'une fonction s'annulant en chaque $k \in [-2, 2]$ et d'un polynôme de degré au plus 4.
 - $\ast\,$ On définit la fonction polynomiale g comme suit :

$$\forall x \in [-2,2], \ g(x) = \sum_{k=-2}^2 \varphi(k) \prod_{i \in \llbracket -2,2 \rrbracket \backslash \{k\}} \frac{x-i}{k-i}.$$

Ainsi, g est polynomiale de degré au plus 4 et pour tout $k \in [-2, 2]$. $g(k) = \varphi(k)$.

* On pose $\forall x \in [-2, 2], f(x) = \varphi(x) - g(x)$. Alors $f(k) = \varphi(k) - g(k) = 0$ pour tout $k \in [-2, 2]$.

— On a $\varphi = (f - g) + g$. Ainsi, E = F + G et l'intersection des sous-espaces $F \cap G = \{0_E\}$ étant nulle, on obtient $E = F \oplus G$.

Remarques

La fonction polynomiale g ainsi construite est le polynôme d'interpolation de Lagrange de la fonction φ aux points $k \in \llbracket -2, 2 \rrbracket$.

Solution Exercice 16.

1. On note $A = Mat_{\mathscr{B}}(f)$:

$$A = \begin{pmatrix} f(e_1) & f(e_2) & f(e_3) \\ (e_1) & 1 & 1 & 1 \\ (e_2) & 1 & -1 & 0 \\ (e_3) & 0 & \lambda \end{pmatrix}.$$

Soit $u = xe_1 + ye_2 + ze_3 \in \mathbb{R}^3$.

On peut calculer l'image de u à l'aide du calcul matriciel.

Si $X = Mat_{\mathscr{B}}(u)$ et $Y = Mat_{\mathscr{B}}(f(u))$ alors Y = AX:

$$Y = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x-y \\ \lambda z \end{pmatrix}.$$

Ainsi, $f(u) = f(xe_1 + ye_2 + ze_3) = (x + y + z)e_1 + (x - y)e_2 + \lambda ze_3$.

2. L'application f est injective si et seulement si elle est surjective car f est un endomorphisme de E qui est de dimension finie.

On pour suit : f est surjective (donc bijective) si et seulement si rg(f)=3. Mais $rg(f)=rg(Mat_{\mathscr{B}}(f))$.

On échelonne la matrice A:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & \lambda \end{pmatrix} \iff \begin{pmatrix} L_1 \\ L_2 - L_1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & \lambda \end{pmatrix}.$$

Si $\lambda=0$ alors $rg(f)=rg(Mat_{\mathscr{B}}(f))=2<3$: l'application f n'est ni injective, ni surjective.

Si $\lambda \neq 0$ alors rg(f) = 3: f est injective et surjective.

Remarques

On rappelle que f est injective si et seulement si $\ker(f) = \{0_E\}$. On pouvait donc également déterminer le noyau de f via, par exemple, la recherche des vecteurs colonnes $X \in \mathcal{M}_{3,1}(\mathbb{R})$ tels que AX = 0. Tout revient alors à nouveau à échelonner la matrice A. Si $\lambda \neq 0$, on trouve $\ker(f) = \{0_E\}$: f est injective (et donc surjective, bijective).

Si
$$\lambda \neq 0$$
, $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$ si et seulement si

$$\begin{cases} x + y + z = 0 \\ -2y - z = 0 \\ \lambda z = 0 \end{cases} \iff \begin{cases} x + y + z = 0 \\ -2y - z = 0 \\ 0 = 0 \end{cases}$$

On trouve alors $\ker(f) = \left\{ -\frac{z}{2}e_1 - \frac{z}{2}e_2 + ze_3 : z \in \mathbb{R} \right\} \neq \{0_E\} : f \text{ n'est ni injective, ni surjective.}$

Solution Exercice 17.

1. La vérification que f est une application linéaire est immédiate.

On note $A = Mat_{\mathscr{B}}(f)$ avec \mathscr{B} la base canonique de \mathbb{R}^3 :

$$A = \begin{pmatrix} f(e_1) & f(e_2) & f(e_3) \\ e_1 & 4 & 1 & -1 \\ 2 & 3 & -1 \\ e_3 & 2 & 1 & 1 \end{pmatrix}$$

Soit $x \in \mathbb{R}$.

L'application $f-xid_{\mathbb{R}^3}$ est un automorphisme si et seulement si sa matrice $A-xI_3$ dans la base canonique est inversible.

 $A - xI_3$ est inversible si et seulement si $rq(A - xI_3) = 3$.

On échelonne $A-xI_3$ avec la méthode du pivot de Gauss :

$$A - xI_3 = \begin{pmatrix} 4 - x & 1 & -1 \\ 2 & 3 - x & -1 \\ 2 & 1 & 1 - x \end{pmatrix} \iff L_2 \begin{pmatrix} 2 & 1 & 1 - x \\ 2 & 3 - x & -1 \\ L_3 \leftrightarrow L_1 \begin{pmatrix} 4 - x & 1 & -1 \end{pmatrix}$$

$$\iff L_1 \leftrightarrow L_3 \\ L_2 - L_1 \\ 2L_3 - (4-x)L_1 \leftrightarrow L_1 \begin{pmatrix} 2 & 1 & 1-x \\ 0 & 2-x & x-2 \\ 0 & x-2 & -2-(4-x)(1-x) \end{pmatrix}$$

$$\iff L_1 \leftrightarrow L_3 \qquad \begin{pmatrix} 2 & 1 & 1-x \\ 0 & 2-x & x-2 \\ L_3L_2 \leftrightarrow L_1 & 0 & 0 & P(x) \end{pmatrix} \quad (*),$$

avec $P(x) = -2 - (4 - 5x + x^2) + (x - 2) = -(x^2 - 6x + 8) = -(x - 2)(x - 4)$. Ainsi, $rq(A) = 3 \iff x \in \mathbb{R} \setminus \{2, 4\}$.

Si x = 2, rg(A) = 1 < 3.

Si x = 4, rg(A) = 2 < 3.

En conclusion $f-2id_{\mathbb{R}^3}$ et $f-4id_{\mathbb{R}^3}$ ne sont pas des automorphismes.

2. On a $rg(f-2id_{\mathbb{R}^3})=1$. Par le théorème du rang : $\dim \ker(f-2id_{\mathbb{R}^3})=\dim \mathbb{R}^3-rg(f-2id_{\mathbb{R}^3})=3-1=2$.

On a $rg(f-4id_{\mathbb{R}^3})=2.$ Par le théorème du rang

 $\dim \ker(f - 4id_{\mathbb{R}^3}) = 3 - 2 = 1.$

Ainsi,

 $\dim \ker(f - 2id_{\mathbb{R}^3}) + \dim \ker(f - 2id_{\mathbb{R}^3}) = 2 + 1 = 3 = \dim \mathbb{R}^3.$

De plus,

$$\ker(f - 2id_{\mathbb{R}^3}) \cap \ker(f - 4id_{\mathbb{R}^3}) = \{(0, 0, 0)\}.$$

En effet, si $x \in \ker(f - 2id_{\mathbb{R}^3}) \cap \ker(f - 4id_{\mathbb{R}^3})$ alors f(x) = 2x et f(x) = 4x donc 2x = 4x soit $x = 0_{\mathbb{R}^3}$.

En conclusion $\mathbb{R}^3 = \ker(f - 2id_{\mathbb{R}^3}) \oplus \ker(f - 4id_{\mathbb{R}^3}).$

3. Il faut prolonger le raisonnement de la question précédente et déterminer une base de chacun des noyaux $\ker(f-2id_{\mathbb{R}^3})$, $\ker(f-4id_{\mathbb{R}^3})$ respectivement de dimensions 2, 1.

—
$$\ker(f - 2id_{\mathbb{R}^3})$$
.
 $x \in \ker(f - 2id_{\mathbb{R}^3}) \iff f(x) = 2x \iff AX = 2X \iff (A - 2I_3)X = 0$.
En reprenant les calculs laissés en $(*)$:

$$A - 2I_3 \iff \begin{pmatrix} 2 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ainsi, $(A - 2I_3)X = 0$ si et seulement si

$$\begin{cases} 2x + y - z = 0 \\ 0 = 0 \iff \begin{cases} x = \frac{1}{2}(-y+z) \end{cases}$$

On en déduit que $\ker(f - 2id_{\mathbb{R}^3}) = Vect((1, -2, 0), (1, 0, 2)).$

 $-- \ker(f - 4id_{\mathbb{R}^3}).$

 $x \in \ker(f - 4id_{\mathbb{R}^3}) \iff f(x) = 4x \iff AX = 4X \iff (A - 4I_3)X = 0.$ En reprenant les calculs laissés en (*):

$$A - 4I_3 \Longleftrightarrow \left(\begin{array}{ccc} 2 & 1 & -3 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{array}\right).$$

Ainsi, $(A - 4I_3)X = 0$ si et seulement si

$$\begin{cases} 2x + y - 3z = 0 \\ -2y + 2z = 0 \\ 0 = 0 \end{cases} \iff \begin{cases} x = z \\ y = z \end{cases}$$

On en déduit que $\ker(f - 4id_{\mathbb{R}^3}) = Vect((1, 1, 1))$.

— Puisque $\mathbb{R}^3 = \ker(f - 2id_{\mathbb{R}^3}) \oplus \ker(f - 4id_{\mathbb{R}^3})$, on en déduit que $\mathscr{B}' = ((1, -2, 0)(1, 0, 2), (1, 1, 1))$ est une base de \mathbb{R}^3 adaptée à la décomposition en somme directe $\mathbb{R}^3 = \ker(f - 2id_{\mathbb{R}^3}) \oplus \ker(f - 4id_{\mathbb{R}^3})$. Dans cette base \mathscr{B}' ,

$$Mat_{\mathscr{B}'}(f) = \begin{pmatrix} f(1,-2,0) & f(1,0,2) & f(1,1,1) \\ (1,-2,0) & 2 & 0 & 0 \\ (1,0,2) & 0 & 2 & 0 \\ (1,1,1) & 0 & 0 & 4 \end{pmatrix}.$$

Solution Exercice 18.

1. Si $P \in \mathbb{R}_n[X]$ alors $\varphi(P) = P(X+1) - P(X)$ est un polynôme de degré au plus par somme de polynômes de degrés au plus n.

De plus, si $P, Q \in \mathbb{R}_n[X]$ et si $\lambda \in \mathbb{R}$, alors,

$$\varphi(\lambda P + Q) = (\lambda P + Q)(X + 1) - (\lambda P + Q)(X)$$
$$= \lambda(P(X + 1) - P(X)) + (Q(X + 1) - Q(X))$$
$$= \lambda\varphi(P) + \varphi(Q).$$

- 2. (a) Soit $P \in \mathbb{R}_n[X]$ de degré $d \leq n$.
 - Si d=1, alors il existe $(a,b)\in\mathbb{R}^2$ tel que P(X)=aX+b. Dans ce cas, $\varphi(aX+b)=(a(X+1)+b)-(aX+b)=a\neq 0.$ $\varphi(aX+b)$ est de degré d-1=0.
 - si d = 0, P est constant et son image est le polynôme nul.

Remarques

Si P est le polynôme nul, son image est le polynôme nul.

On suppose maintenant $d \ge 2$.

On écrit
$$P(X) = \sum_{k=0}^{d} a_k X^k$$
 avec $a_d \neq 0$.

Alors

$$P(X+1) - P(X) = \sum_{k=0}^{d} a_k (X+1)^k - \sum_{k=0}^{d} a_k X^k$$

$$= \sum_{k=0}^{d} a_k ((X+1)^k - X^k) = \sum_{k=1}^{d} a_k ((X+1)^k - X^k)$$

$$= \sum_{k=1}^{d} a_k (X+1-X) \sum_{\ell=0}^{k-1} (X+1)^{\ell} X^{k-1-\ell}$$

$$= \sum_{k=1}^{d} a_k \sum_{\ell=0}^{k-1} (X+1)^{\ell} X^{k-1-\ell}$$

$$= a_d \sum_{\ell=0}^{d-1} (X+1)^{\ell} X^{d-1-\ell} + \sum_{k=1}^{d-1} a_k \sum_{\ell=0}^{k-1} (X+1)^{\ell} X^{k-1-\ell}.$$

$$= \underbrace{a_d \sum_{\ell=0}^{d-1} (X+1)^{\ell} X^{d-1-\ell}}_{Q(X)} + \underbrace{\sum_{k=1}^{d-1} a_k \sum_{\ell=0}^{k-1} (X+1)^{\ell} X^{k-1-\ell}}_{R(X)}.$$

- Q(X) est de degré d-1. En effet, pour tout $\ell \in [0, d-1]$, $(X+1)^{\ell} X^{d-1-\ell}$ est un polynôme de degré $\ell + d 1 \ell = d 1$, de coefficient dominant 1.
- R(X) est de degré au plus d-2. En effet, pour tout $k \in [1, d-1]$, $(X+1)^{\ell}X^{k-1-\ell}$ est de degré $\ell+k-1-\ell=k-1\leqslant d-1-1+d-2$.
- (b) $\operatorname{Im}(\varphi)$.

 $\mathscr{B} = (1, X, \dots, X^n)$ est une base de $\mathbb{R}_n[X]$.

Ainsi,

$$Im(\varphi) = Vect(\varphi(1), \varphi(X), \dots, \varphi(X^n))$$

= $Vect(0, \varphi(X), \dots, \varphi(X^n))$
= $Vect(\varphi(X), \dots, \varphi(X^n))$

La famille $\mathscr{C} = (\varphi(X), \dots, \varphi(X^n))$ est composée de n polynômes échelonnée en degrés $0 < 1 < \dots < n-1$.

C'est donc une base de $\mathbb{R}_{n-1}[X]$: $\operatorname{Im}(\varphi) = \mathbb{R}_{n-1}[X]$.

(c) $\ker(\varphi)$ est l'ensemble des polynômes $P \in \mathbb{R}_n[X]$ tels que

$$P(X+1) - P(X) = 0 : \forall x \in \mathbb{R}, P(x+1) = P(x).$$

Si $P \in \ker(\varphi)$ on peut alors montrer par récurrence que pour tout $n \in \mathbb{N}$, P(n) = P(0).

Cette propriété est clairement vraie au rang n = 0.

Si P(n) = P(0) alors P(n+1) = P(n) = P(0).

On en déduit que le polynôme Q(X) = P(X) - P(0) admet une infinité de racines (les entiers naturels).

Q(X) est donc le polynôme nul.

Ainsi, $P(X) \in \ker(\varphi) \Longrightarrow P(X) = P(0)$ est constant.

Réciproquement, tout polynôme constant $P(X) = \lambda \in \ker(\varphi)$.

Conclusion $\ker(\varphi) = \{\text{polynome constant}\}.$

3. Soit $P \in \mathbb{R}[X]$ de degré n.

Montrons par récurrence que $\varphi^k(P)$ est de degré n-k pour tout $k \in [0,n]$.

- La propriété est vraie au rang k=0 car $\varphi^0(P)=id_{\mathbb{R}_n[X]}(P)=P$ est de degré n=n-0.
- Si $\varphi^k(P)$ et de degré n-k alors $\varphi^{k+1}(P) = \varphi(\varphi^k(P))$ est de degré n-k-1 = n-(k+1).

La famille $\mathcal{D}=(P,\varphi(P),\varphi^2(P),\ldots,\varphi^n(P))$ est composée de n+1 polynômes de degrés $n>n-1>\cdots>0$.

La famille $\mathcal{D} = (P, \varphi(P), \varphi^2(P), \dots, \varphi^n(P))$ est donc une base de $\mathbb{R}_n[X]$.

- 4. (a) Soit $Q \in \mathbb{R}_{n-1}[X]$. Montrons qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ vérifiant P(X+1) P(X) = Q(X) et P(0) = 0.
 - L'application $\varphi: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ a pour espace image : $\operatorname{Im}(\varphi) = \mathbb{R}_{n-1}[X]$.

Par conséquent, si $Q \in \mathbb{R}_{n-1}[X] = \operatorname{Im}(\varphi)$ alors il existe un polynôme $P_1 \in \mathbb{R}_n[X]$ tel que $\varphi(P_1) = Q$.

— On pose alors $P(X) = P_1(X) - P_1(0) \in \mathbb{R}_n[X]$.

Ce polynôme vérifie

- * $P(0) = P_1(0) P_1(0) = 0.$
- * $\varphi(P(X)) = \varphi(P_1(X)) \varphi(P_1(0)) = \varphi(P_1(X)) = Q(X)$ car $P_1(0)$ est constant.
- Ce polynôme est unique car si $R(X) \in \mathbb{R}_n[X]$ vérifie
 - $* \varphi(R) = Q$
 - * R(0) = 0

alors $\varphi(P-R) = \varphi(P) - \varphi(R) = Q - Q = 0$.

Ainsi, $P - R \in \ker \varphi$ donc est constant.

Mais P(0) - R(0) = 0 donc P - R est nul i.e. P = R.

Remarques

On vient de montrer que la restriction $\varphi_{|_N}$ avec $N = \{P \in \mathbb{R}_n[X] : P(0) = 0\}$ est un isomorphisme de N sur $\mathbb{R}_{n-1}[X]$.

- (b) Déterminer $P \in \mathbb{R}_4[X]$ tel que $\varphi(P) = Q(X) = X(X+1)(X+2)$. Par ce qui précède, il existe un unique polynôme $P \in \mathbb{R}_4[X]$, $P(X) = aX^4 + bX^3 + cX^2 + dX + e$ tel que
 - * P(0) = 0 (ce qui donne directement e = 0).
 - * $P(X+1) P(X) = X(X+1)(X+2) = X^3 + 3X^2 + 2X$.

On développe P(X+1)-P(X) et on rassemble par puissances décroissantes ce qui donne

$$4aX^3 + (6a+3b)X^2 + (4a+3b+2c)X + (a+b+c+d) = X^3 + 3X^2 + 2X.$$

L'identification des coefficients de ces polynômes conduit à la résolution d'un système linéaire dont l'unique solution est le quadruplé

$$(a,b,c,d) = \left(\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}, -\frac{1}{2}\right).$$

Ainsi, $P(X) = \frac{1}{4}X^4 + \frac{1}{2}X^3 - \frac{1}{4}X^2 - \frac{1}{2}X$ vérifie P(X+1) - P(X) = Q(X). On obtient en particulier

$$\sum_{k=0}^{n} k(k+1)(k+2) = \sum_{k=0}^{n} Q(k) = \sum_{k=0}^{n} (P(k+1) - P(k))$$

$$= P(n+1) - P(0) = P(n+1)$$

$$= \frac{1}{4}(n+1)^4 + \frac{1}{2}(n+1)^3 - \frac{1}{4}(n+1)^2 - \frac{1}{2}(n+1)$$

$$= \frac{n(n+1)(n+2)(n+3)}{4} \quad \text{(après factorisation)}.$$

Solution Exercice 19.

- 1. Soit $P \in \mathbb{R}_n[X]$. On note $P(X) = \sum_{k=0}^d a_k X^k$ avec d le degré de $P(X) : a_d \neq 0$. $\varphi(P) = (X+1)P(X) XP(X+1).$
 - \bullet Les polynômes (X+1)P(X) et XP(X+1) sont de degré d+1 et de même coefficient dominant a_d :

$$(X+1)P(X) = (X+1)\sum_{k=0}^{d} a_k X^k = \sum_{k=0}^{d} a_k X^{k+1} + \sum_{k=0}^{d} a_k X^k$$

$$(X+1)P(X) = \sum_{k=1}^{d+1} a_{k-1}X^k + \sum_{k=0}^{d} a_k X^k$$

$$(X+1)P(X) = a_d X^{d+1} + \sum_{k=1}^{d} a_{k-1}X^k + \sum_{k=0}^{d} a_k X^k.$$

$$- XP(X+1) = X \sum_{k=0}^{d} a_k (X+1)^k = X \sum_{k=0}^{d} a_k \sum_{\ell=0}^{k} \binom{k}{\ell} X^\ell$$

$$XP(X+1) = X \left(a_d \binom{d}{d} X^d + a_d \sum_{\ell=0}^{d-1} \binom{d}{\ell} X^l + \sum_{k=0}^{d-1} a_k \sum_{\ell=0}^{k} \binom{k}{\ell} X^\ell \right)$$

$$XP(X+1) = a_d X^{d+1} + a_d \sum_{\ell=0}^{d-1} \binom{d}{\ell} X^{l+1} + \sum_{k=0}^{d-1} a_k \sum_{\ell=0}^{k} \binom{k}{\ell} X^{\ell+1}$$

Ainsi, (X+1)P(X) - XP(X+1) est un polynôme de degré au plus $d \leq n$. On en déduit que $\operatorname{Im} \varphi \subset \mathbb{R}_n[X]$.

• Montrons que φ est linéaire. Soient $P, Q \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$,

$$\begin{split} \varphi(\lambda P + Q) &= (X+1)(\lambda P(X) + Q(X)) - X(\lambda P + Q)(X+1) \\ &= (X+1)(\lambda P(X) + Q(X)) - X(\lambda P(X+1) + Q(X+1)) \\ &= \lambda ((X+1)P(X) - XP(X+1)) + ((X+1)Q(X) - XQ(X+1)) \\ &= \lambda \varphi(P) + \varphi(Q). \end{split}$$

En conclusion : φ est une application linéaire de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$: $\varphi \in \mathcal{L}(\mathbb{R}_n[X])$ est un endomorphisme de $\mathbb{R}_n[X]$.

2. $\varphi(1) = (X+1) - X = 1$. $\varphi(X) = (X+1)X - X(X+1) = 0$. Soit P un polynôme de degré $d \ge 2$.

Alors, les calculs de la question précédente donnent :

$$\begin{split} &(X+1)P(X) - XP(X+1) \\ &= a_d X^{d+1} + \sum_{k=1}^d a_{k-1} X^k + \sum_{k=0}^d a_k X^k - \\ &\quad - a_d X^{d+1} - a_d \sum_{\ell=0}^{d-1} \binom{d}{\ell} X^{l+1} - \sum_{k=0}^{d-1} a_k \sum_{\ell=0}^k \binom{k}{\ell} X^{\ell+1} \\ &= \sum_{k=1}^d (a_{k-1} + a_k) X^k + a_0 - \\ &\quad - \left(a_d \binom{d}{d-1} + a_{d-1} \binom{d-1}{d-1} \right) X^d - R(X) \end{split}$$

avec

$$R(X) = a_d \sum_{\ell=0}^{d-2} \binom{d}{\ell} X^{\ell+1} + a_{d-1} \sum_{\ell=0}^{d-2} \binom{d-1}{\ell} X^{\ell+1} + \sum_{k=0}^{d-2} a_k \sum_{\ell=0}^k \binom{k}{\ell} X^{\ell+1}.$$

Notons que $\deg R(X) \leqslant d-1$. Le terme de plus haut degré de $\varphi(P)$ est donc

$$\left[a_{d-1} + a_d - \left(a_d \binom{d}{d-1} + a_{d-1} \binom{d-1}{d-1} \right) \right] X^d$$

$$= -(d-1)a_d X^d,$$

de coefficient dominant : $-(d-1)a_d \neq 0$ car $d \geq 2$.

Par conséquent, si P est de degré $d \ge 2$, $\varphi(P) \ne 0$.

On en déduit que $\ker(\varphi) = Vect(X)$ est de dimension 1.

En particulier, $\ker(\varphi) \neq \{0\}$ donc φ n'est pas injectif.

3. Notons immédiatement que φ n'est pas surjectif car sinon, puisque $\mathbb{R}_n[X]$ est dimension finie, φ serait bijectif donc injectif, ce qui n'est pas.

Par le théorème du rang $rg(\varphi) = \dim \mathbb{R}_n[X] - \dim \ker(\varphi) = (n+1) - 1 = n$. $\operatorname{Im}(\varphi) = \operatorname{Vect}(\varphi(1), \varphi(X), \varphi(X^2), \dots, \varphi(X^n)).$

Or $\varphi(1)=1, \varphi(X)=0$ et pour tout $k\in [\![2,n]\!], \varphi(X^k)$ est un polynôme de degré k.

Ainsi, $\operatorname{Im}(\varphi) = \operatorname{Vect}(1, \varphi(X^2), \dots, \varphi(X^n)).$

La famille $(1, \varphi(X^2), \dots, \varphi(X^n))$ est donc génératrice de $\operatorname{Im}(\varphi)$ de cardinal $n = \dim \operatorname{Im} \varphi$: c'est une base.

Remarques

On peut, alternativement, noter qu'il s'agit d'une famille de polynômes non nuls, échelonnée en degrés, donc libre.

On a donc bien obtenu une base de $\text{Im}(\varphi)$.

Solution Exercice 20.

1. — Montrons que $\ker(f) \subset \ker(g \circ f)$.

Soit $x \in \ker(f) : f(x) = 0_E$.

Alors $g(f(x)) = g(0_E) = 0_E$.

Ainsi, $x \in \ker(f) \Longrightarrow x \in \ker(g \circ f)$, soit $\ker(f) \subset \ker(g \circ f)$.

— Montrons que $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$.

Soit $x' \in \text{Im}(g \circ f)$. Il existe $x \in E$, tel que $x' = g \circ f(x) = g(f(x))$.

Ainsi, x' = q(f(x)) est l'image de $f(x) \in E$ par $q: x' \in \text{Im}(q)$.

Ainsi, $x \in \text{Im}(g \circ f) \Longrightarrow x \in \text{Im}(g)$, soit $\text{Im}(g \circ f) \subset \text{Im}(g)$.

- 2. Montrons que $f(\ker(g \circ f)) = \ker(g) \cap \operatorname{Im}(f)$.
 - $-f(\ker(g \circ f)) \subset \ker(g) \cap \operatorname{Im}(f).$

Soit $x' \in f(\ker(g \circ f))$. Il existe $x \in \ker(g \circ f)$ tel que x' = f(x).

En particulier $x' \in \text{Im}(f)$.

De plus, $g(x') = g(f(x)) = g \circ f(x)$ car $x \in \ker(g \circ f) = 0_E$. En particulier $x' \in \ker(g)$.

On a donc montré l'implication $x' \in f(\ker(g \circ f)) \Longrightarrow x' \in \operatorname{Im}(f) \cap \ker(g)$ soit $f(\ker(g \circ f)) \subset \ker(g) \cap \operatorname{Im}(f)$.

— Réciproquement, $\ker(q) \cap \operatorname{Im}(f) \subset f(\ker(q \circ f))$.

En effet, soit $x' \in \ker(g) \cap \operatorname{Im}(f)$. Alors

 $-x' \in \text{Im}(f)$: il existe $x \in E$, tel que x' = f(x).

 $-x' \in \ker(g), g(x') = g(f(x)) = 0_E \text{ i.e. } g \circ f(x) = 0_E.$

En conclusion : $x' = f(x) \in \text{Im}(f)$ avec $x \in \text{ker}(g \circ f) : x' \in f(\text{ker}(g \circ f))$.

Par conséquent, $\ker(g) \cap \operatorname{Im}(f) \subset f(\ker(g \circ f))$.

D'où l'égalité $f(\ker(g \circ f)) = \ker(g) \cap \operatorname{Im}(f)$.

Solution Exercice 21.

— $g(\ker(f)) \subset \ker(f)$. En effet, soit $x \in \ker(f)$.

Alors $f(g(x)) = f \circ g(x) = g \circ f(x) = g(f(x)) = g(0_E) = 0_E$.

Ainsi, $g(x) \in \ker(f)$.

On a montré, l'implication : $x \in \ker(f) \Longrightarrow g(x) \in \ker(f)$ c'est-à-dire : $g(\ker(f)) \subset \ker(f)$.

— $g(\operatorname{Im}(f)) \subset \operatorname{Im}(f)$. En effet, soit $x' \in \operatorname{Im}(f)$.

Il existe donc $x \in E$ tel que x' = f(x).

Par conséquent $g(x') = g(f(x)) = g \circ f(x) = f \circ g(x) = f(g(x)) \in \text{Im}(f)$.

Ainsi, $x' \in \text{Im}(f) \Longrightarrow g(x') \in \text{Im}(f)$ soit : $g(\text{Im}(f)) \subset \text{Im}(f)$.

Solution Exercice 22.

— $f: E \to F$ est injective. En effet, soit $x \in \ker(f): f(x) = 0_F$.

Ainsi, $g(f(x)) = g(0_F) = 0_E$.

Mais $g \circ f = id_E$ donc $x = g \circ f(x) = 0_E$.

Par conséquent, $ker(f) = \{0_E\}$: f est injective.

— $g: F \to E$ est surjective.

En effet, soit $x \in E$. On a $g \circ f(x) = x$ donc g(f(x)) = x.

On note $x' = f(x) \in F : g(x') = x \in \text{Im}(g)$.

Ainsi, tour vecteur $x \in E$ possède un antécédent $x' \in F$ au moins par g.

- L'application $f: E \to F$ est injective et E et F sont de même dimension finie. Ainsi, f est bijective.
- De même g est surjective de F sur E de même dimension. Ainsi, g est bijective.
- Les applications f et g sont donc bijectives, réciproques l'une de l'autre :

$$g \circ f = id_E \Longrightarrow g^{-1} \circ g \circ f = g^{-1} \circ id_E \Longrightarrow f = g^{-1}.$$

 $- w_E \longrightarrow g \quad \exists g \ni j = g \quad \exists w_E \longrightarrow j = g$

Solution Exercice 23.

1. Montons que $\ker(g \circ f) = \ker(f) \iff \ker(g) \cap \operatorname{Im}(f) = \{0_F\}.$

 \Longrightarrow

- On a toujours $\ker(f) \subset \ker(g \circ f)$ car si $x \in \ker(f)$ alors $g \circ f(x) = g(f(x)) = f(0_F) = 0_G$.
- On suppose donc que $\ker(g \circ f) \subset \ker(f)$ et on se donne $x \in \operatorname{Im}(f) \cap \ker(g)$.
 - * $x \in \text{Im}(f)$ donc il existe $x' \in E$ tel que x = f(x') (*).
 - * $x \in \ker(g)$ donc $0_G = g(x) = g(f(x'))$.

Par conséquent $x' \in \ker(g \circ f) \subset \ker(f)$ par hypothèse.

On obtient $f(x') = 0_G$ c'est-à-dire $x = 0_F$ par (*).

En conclusion $\operatorname{Im}(f) \cap \ker(g) = \{0_F\}.$

 \longleftarrow Réciproquement, on suppose que $\ker(g) \cap \operatorname{Im}(f) = \{0_F\}.$

Montrons que $ker(f) = ker(g \circ f)$.

Comme nous l'avons déjà observé, il suffit de montrer que $\ker(g \circ f) \subset \ker(f)$.

Soit donc $x \in \ker(g \circ f)$.

Alors $g(f(x)) = 0_G$.

On en déduit que $f(x) \in \text{Im}(f) \cap \ker(g) = \{0_F\}$ par hypothèse.

Ainsi, $f(x) = 0_F$ et par conséquent $x \in \ker(f)$.

On en déduit que $\ker(g\circ f)\subset \ker(f)$ puis $\ker(g\circ f)=\ker(f).$

D'où l'équivalence.

- 2. Montrons que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g) \iff \ker(g) + \operatorname{Im}(f) = F$.
 - \Longrightarrow On suppose que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$.

Montrons que ker(g) + Im(f) = F.

Il est clair que $ker(g) + Im(f) \subset F$ comme somme de s.e.v. de F.

Soit $x \in F$ quelconque. Alors $g(x) \in \text{Im}(g) = \text{Im}(g \circ f)$.

Il existe donc $x' \in E$ tel que g(x) = g(f(x')).

Alors $x = \underbrace{f(x')}_{\operatorname{Im}(f)} + \underbrace{(x - f(x'))}_{\operatorname{\epsilon ker}(g)} \in \operatorname{Im}(f) + \ker(g).$

Ainsi, $F \subset \text{Im}(f) + \text{ker}(g)$ d'où l'égalité.

- Supposons que $F = \operatorname{Im}(f) + \ker(g)$ et montrons que $\operatorname{Im}(g) = \operatorname{Im}(g \circ f)$.
- Il est toujours vrai, sans hypothèse supplémentaire que $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$. En effet si $x \in \operatorname{Im}(g \circ f)$, il existe $x' \in E$ tel que $x = g \circ f(x') = g(f(x'))$. Ainsi, $x = g(f(x')) \in \operatorname{Im}(g)$.
- Soit maintenant $x \in \text{Im}(g)$. Il existe $x' \in F$ tel que x = g(x').

Mais par hypothèse $F = \ker(g) + \operatorname{Im}(f)$ donc il existe $(y, z) \in \ker(g) \times \operatorname{Im}(f)$ tel que x' = y + z.

On obtient x = g(x') = g(y+z) = g(y) + g(z) = g(z) car $y \in \ker(g)$.

De plus, $z \in \text{Im}(f)$: il existe $x \in E$ tel que z = f(x).

On en déduit que $x = g(z) = g(f(x)) \in \text{Im}(g \circ f)$.

On en déduit que $\operatorname{Im}(g) \subset \operatorname{Im}(g \circ f)$ d'où l'égalité.

3. On suppose enfin que $f \in \mathcal{L}(E)$ est un endomorphisme d'un K-espace vectoriel E de dimension finie. Montrons

$$\ker(f) = \ker(f^2) \iff \operatorname{Im}(f) = \operatorname{Im}(f^2) \iff E = \ker(f) \oplus \operatorname{Im}(f).$$

— Par le théorème du rang dim $E = \dim \ker(f) + \dim \operatorname{Im}(f)$.

Ainsi, $E = \ker(f) \oplus \operatorname{Im}(f) \iff E = \ker(f) + \operatorname{Im}(f)$.

Or, $\operatorname{Im}(f) = \operatorname{Im}(f^2) \iff E = \operatorname{Im}(f) + \ker(f)$.

Par conséquent, $E = \ker(f) \oplus \operatorname{Im}(f) \iff \operatorname{Im}(f) = \operatorname{Im}(f^2)$.

— Le théorème du rang donne encore

 $E = \ker(f) \oplus \operatorname{Im}(f) \iff \ker(f) \cap \operatorname{Im}(f) = \{0_E\}.$

Or $\ker(f) = \ker(f^2) \iff \ker(f) \cap \operatorname{Im}(f) = \{0_E\}.$

Par conséquent, $\ker(f) = \ker(f^2) \iff E = \ker(f) \oplus \operatorname{Im}(f)$.

On en déduit les équivalences

$$\ker(f) = \ker(f^2) \iff E = \ker(f) \oplus \operatorname{Im}(f) \iff \operatorname{Im}(f) = \operatorname{Im}(f^2).$$

Solution Exercice 24. On considère $E = \mathbb{R}^3$ et on note $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de E. Soit $f \in \mathscr{L}(E)$ non nul tel que $f^3 + f = 0_{\mathscr{L}(E)}$.

- 1. On suppose que f est injective.
 - (a) Si f est injective, puisque E est de dimension finie, on obtient que f est bijective.

En composant la relation $f^3 + f = 0$ par f^{-1} , on obtient $f^2 + id_E = 0$ c'est-à-dire $f^2 = -id_E$.

(b) Montrons alors que $(e_1, f(e_1))$ est une famille libre.

Soit $\alpha, \beta \in \mathbb{R}$ tels que $\alpha e_1 + \beta f(e_1) = 0$ (*).

En composant par f, on obtient

$$\alpha f(e_1) + \beta f^2(e_1) = f(0) \text{ soit } \alpha f(e_1) - \beta e_1 = 0 \ (**).$$

En multipliant la relation (*) par α et en retranchant la relation (**) multipliée par β on obtient

$$(\alpha^2 e_1 + \alpha \beta f(e_1)) - (\alpha \beta f(e_1) - \beta^2 e_1) = 0 \Longrightarrow (\alpha^2 + \beta^2) e_1 = 0.$$

Or $e_1 \neq 0$ donc $\alpha^2 + \beta^2 = 0$ soit $\alpha = \beta = 0$.

La famille $(e_1, f(e_1))$ est alors libre.

(c) On complète la famille libre $(e_1, f(e_1))$ en une base $\mathscr{C} = (e_1, f(e_1), u)$ de E.

Dans cette base, on a

$$A = Mat_{\mathscr{C}}(f) = \begin{cases} f(e_1) & f(f(e_1)) & f(u) \\ e_1 & 0 & -1 & \alpha \\ 1 & 0 & \beta \\ 0 & 0 & \gamma \end{cases}$$

On obtient

$$A^2 = \begin{pmatrix} -1 & 0 & \alpha \gamma - \beta \\ 0 & -1 & \alpha + \beta \gamma \\ 0 & 0 & \gamma^2 \end{pmatrix}.$$

Mais $f^2 = -id_E$ donne $A^2 = -I_3$ ce qui est une contradiction car on obtiendrait $\gamma^2 = -1$.

On en déduit que f n'est pas injective c'est-à-dire : $\ker(f) \neq \{0_E\}$.

2. $\ker(f)$ est un s.e.v. de E. On a $\dim(E) = 3$.

De plus $\ker(f) \neq \{0_E\}$ car f n'est pas injective donc dim $\ker(f) \geq 1$.

On sait également que f est non nul donc $\ker(f) \neq E$ donc $\dim \ker(f) \leqslant 2.$

Au final dim $ker(f) \in \{1, 2\}$.

3. Montrons que $E = \ker(f) \oplus \ker(f^2 + id_E)$.

— Si $x \in \ker(f) \cap \ker(f^2 + id_E)$ alors f(x) = 0 et $f^2(x) = -x$.

Par conséquent, $0 = f(f(x)) = f^2(x) = -x$ soit x = 0.

Ainsi, $\ker(f) \cap \ker(f^2 + id_E) = \{0\}.$

— Soit $x \in E$. On a $f^{3}(x) + f(x) = 0$.

Notons que $x = (x + f^2(x)) - f^2(x)$.

Or:

- * $x + f^2(x) \in \ker(f) \operatorname{car} f(x + f^2(x)) = f(x) + f^3(x) = 0.$
- $* -f^2(x) \in \ker(f^2 + id_E)$ car

 $f^{2}(-f^{2}(x)) = -f(f^{3}(x)) = -f(-(f(x))) = f^{2}(x).$

Ainsi, $E = \ker(f) + \ker(f^2 + id_E)$.

- En conclusion, $E = \ker(f) \oplus \ker(f^2 + id_E)$.
- 4. On pose $F = \ker(f^2 + id_E)$ et on note u un vecteur non nul de F.
 - (a) Montrons que $f(u) \in F$.

En effet, $(f^2 + id_E)(f(u)) = f^3(u) + f(u) = -f(u) + f(u) = 0.$

Ainsi $f(u) \in \ker(f^2 + id_E)$.

— Montrons que (u, f(u)) est libre.

Soient $\alpha, \beta \in \mathbb{R}$ tels que $\alpha u + \beta f(u) = 0$ (*).

On compose par f, on obtient

 $\alpha f(u) + \beta f^2(u) = 0 \text{ soit } \alpha f(u) - \beta u = 0 \quad (**).$

En multipliant (*) par α et en retranchant (**) multipliée par β , on obtient

 $(\alpha^2 + \beta^2)u = 0$ soit $\alpha = \beta = 0$ car $u \neq 0$.

(b) — Puisque (u, f(u)) est une famille libre de F, on en déduit que $\dim F = \dim \ker(f^2 + id_E) \geqslant 2$.

De plus, $\ker(f^2 + id_E) \neq E$ car $f^2 \neq -id_E$ (sinon on se retrouve dans la situation contradictoire de la question 1.): donc dim $\ker(f^2 + id_E) < 3$.

Finalement, dim $\ker(f^2 + id_E) = 2$. — Puisque $E = \ker(f) \oplus \ker(f^2 + id_E)$, on obtient

3 = dim E = dim $\ker(f)$ + dim $\ker(f^2 + id_E)$ = dim $\ker(f)$ + 2.

Ainsi, $\dim \ker(f) = 1$.

(c) Soit v un vecteur non nul de ker(f).

La famille (v, u, f(u)) est la concaténation d'une base de $\ker(f)$ et d'une base de $\ker(f^2 + id_E)$ respectivement de dimension 1 et 2.

C'est donc une base de $E = \ker(f) \oplus \ker(f^2 + id_E)$.

(d) Dans cette base $\mathscr{B}' = (v, u, f(u))$ adaptée à la décomposition en somme directe $E = \ker(f) \oplus \ker(f^2 + id_E)$

$$Mat_{\mathscr{B}'}(f) = \begin{matrix} f(v) & f(u) & f(f(u)) \\ v & 0 & 0 & 0 \\ 0 & 0 & -1 \\ f(u) & 0 & 1 & 0 \end{matrix} \right)$$

Solution Exercice 25.

1. \Longrightarrow 2. On suppose que $\varphi^2 = 0$ et $rg(\varphi) = p$.

Le théorème du rang donne dim $E = \dim \ker(\varphi) + rq(\varphi)$.

Ainsi $2p = \dim \ker(\varphi) + p$.

Donc dim $\operatorname{Im}(\varphi) = rg(\varphi) = 2p - p = p = \dim \ker(\varphi)$.

Les espaces $\ker(\varphi)$ et $\operatorname{Im}(\varphi)$ ont donc la même dimension.

Pour montrer qu'ils sont égaux, montrons que l'un est inclus dans l'autre.

On va montrer que $\operatorname{Im}(\varphi) \subset \ker(\varphi)$.

En effet, soit $x \in \text{Im}(\varphi)$: il existe $x' \in E$ tel que $x = \varphi(x')$.

Alors, $\varphi(x) = \varphi^2(x') = 0_E$ par hypothèse $\varphi^2 = 0$.

Ainsi, $x \in \ker(\varphi)$.

D'où l'inclusion $\operatorname{Im}(\varphi) \subset \ker(\varphi)$.

Ces deux espaces étant de même dimension, on obtient : $\ker(\varphi) = \operatorname{Im}(\varphi)$.

 $2. \Longrightarrow 3.$

Le théorème du rang donne dim $E = \dim \ker(\varphi) + \dim \operatorname{Im}(\varphi)$.

Ainsi, $2p = \dim \ker(\varphi) + \dim \operatorname{Im}(\varphi) = 2 \dim \ker(\varphi)$

car on a par hypothèse $\ker(\varphi) = \operatorname{Im}(\varphi)$.

Donc $p = \dim \ker(\varphi) = \dim \operatorname{Im}(\varphi)$.

Soit $\mathscr{B}_0 = (e_1, \ldots, e_p)$ une base de $\ker(\varphi)$.

On la complète en une base $\mathscr{B} = (e_1, \dots, e_p, e_{p+1}, \dots, e_{2p})$ de E.

- Pour tout $j \in [1, p], \varphi(e_j) = 0_E \operatorname{car} e_j \in \ker(\varphi).$
- Pour tout $j \in [p+1, 2p]$, $\varphi(e_j) \in \text{Im}(\varphi) = \text{ker}(\varphi) = Vect(e_1, \dots, e_p)$. Il existe donc pour tout $j \in [p+1, 2p]$, p scalaires $\alpha_{i,j}$ tels que

$$\varphi(e_j) = \sum_{i=1}^p \alpha_{ij} e_i.$$

Ainsi dans la base \mathscr{B} :

$$Mat_{\mathscr{B}}(\varphi) = \begin{pmatrix} \varphi(e_1) & \dots & \varphi(e_p) & \varphi(e_{p+1}) & \dots & \varphi(e_{2p}) \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & a_{1,p+1} & & a_{1,2p} \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & a_{p,p+1} & & a_{p,2p} \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ e_{2p} & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}.$$

— Il reste à montrer que $A \in \mathcal{M}_p(\mathbb{K})$ est inversible.

On a:

$$Im(\varphi) = Vect(\varphi(e_1), \dots, \varphi(e_p), \varphi(e_{p+1}), \dots, \varphi(e_{2p}))$$

$$\operatorname{Im}(\varphi) = \operatorname{Vect}(\varphi(e_{p+1}), \dots, \varphi(e_{2p}))$$

$$\operatorname{car} e_j \in \ker(\varphi) \text{ pour tout } j \in [1, p].$$

Puisque $\ker(\varphi) = \operatorname{Im}(\varphi)$, on obtient

$$Vect(e_1, \ldots, e_p) = \ker(\varphi) = \operatorname{Im}(\varphi) = Vect(\varphi(e_{p+1}), \ldots, \varphi(e_{2p})).$$

Ainsi, les familles $\mathscr{B}_0=(e_1,\ldots,e_p)$ et $\mathscr{B}_1=(\varphi(e_{p+1}),\ldots,\varphi(e_{2p}))$ sont toutes deux des bases de $\mathrm{Im}(\varphi)$ car génératrice de $\mathrm{Im}(\varphi)$ et composée de $p=\dim\mathrm{Im}(\varphi)$ vecteurs.

Par conséquent A est la matrice de passage $P_{\mathscr{B}_0 \to \mathscr{B}_1}$ donc est inversible. On peut également noter que

$$rg(A) = rg\left[Mat_{\mathscr{B}_0}(\mathscr{B}_1)\right] = p.$$

 $3. \Longrightarrow 1.$

On suppose qu'il existe une base $\mathscr{B} = (e_1, \ldots, e_p, e_{p+1}, \ldots, e_{2p})$ de E telle que la matrice de φ dans cette base soit de la forme $M = \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}$ avec $A \in GL_p(\mathbb{K})$.

— Calculons $M^2 = (c_{ij})_{1 \leq i,j \leq 2p}$. Pour tout $(i,j) \in [1,2p]^2$:

$$c_{i,j} = \sum_{k=1}^{2p} m_{ik} m_{kj} = \sum_{k=1}^{p} \underbrace{m_{ik}}_{=0} m_{kj} + \sum_{k=p+1}^{2p} m_{ik} \underbrace{m_{kj}}_{=0} = 0.$$

Ainsi, $M^2 = 0$ donc en termes d'endomorphisme $\varphi^2 = 0$.

— Montrons enfin que M est de rang p ce qui donnera alors $rg(\varphi) = p$.

Pour cela, il suffit d'échelonner la matrice M, ce qui revient à échelonner ses p première lignes, c'est-à-dire à échelonner la sous-matrice A (les p premières colonnes de M sont nulles).

La matrice $A \in \mathcal{M}_{p}(\mathbb{K})$ étant inversible, on a rg(A) = p.

La méthode du pivot de Gauss fait donc apparaître p pivots non nuls donc M est de rang rg(M) = p également.

Solution Exercice 26.

1. Soit $x_0 \in E$ tel que $f^{p-1}(x_0) \neq 0_E$.

Alors $f^k(x_0) \neq 0_E$ pour tout $k \in [0, p-1]$ (sinon $f^{p-1}(x_0)$ serait nul).

Soient $\lambda_0, \lambda_1, \dots, \lambda_{p-1} \in \mathbb{K}$ tels que $\lambda_0 x_0 + \lambda_1 f(x_0) + \dots + \lambda_{p-1} f^{p-1}(x_0) = 0_E$.

En composant par f^{p-1} , on obtient par

— linéarité de f^{p-1}

— et le fait que $f^p=0_{\mathscr{L}(E)}$ (qui donne $f^k=0_{\mathscr{L}(E)}$ pour tout $k\geqslant p$) :

$$\lambda_0 f^{p-1}(x_0) + \lambda_1 f^p(x_0) + \dots + \lambda_{p-2} f^{2(p-1)-1}(x_0) + \lambda_{p-1} f^{2(p-1)}(x_0) = 0$$

soit $\lambda_0 f^{p-1}(x_0) = 0$ puis $\lambda_0 = 0$ car $f^{p-1}(x_0) \neq 0_E$.

Ainsi, $\lambda_0 = 0$ et on obtient $\lambda_1 f(x_0) + \cdots + \lambda_{p-1} f^{p-1}(x_0)$.

En composant successivement par f^{p-2}, \ldots, f^2, f on obtient

 $\lambda_1 = 0, \dots, \lambda_{p-2} = 0$ puis finalement $\lambda_{p-1} = 0$.

La famille $(x_0, f(x_0), \ldots, f^{p-1}(x_0))$ est donc libre.

Tout famille libre d'un \mathbb{K} -espace vectoriel de dimension finie a un cardinal au plus $\dim(E)$.

Ainsi, $p \leq n$.

2. Soit $\mathscr{B} = (x_0, f(x_0), \dots, f^{p-1}(x_0), e_1, \dots, e_{n-p})$ une base de E.

Dans cette base, la matrice de f a la forme suivante :

Soit $\mathcal B$ une base de E obtenue en complétant la famille $\mathcal F$.

Déterminer la forme de la matrice de f dans cette base.

3. La forme de la matrice de l'endomorphisme f^k s'obtient en calculant les images des vecteurs de base $(x_0, f(x_0), \dots, f^{p-1}(x_0), e_1, \dots, e_{n-p})$.

On constate notamment que la diagonale de 1 se décale vers la gauche et le bas de la matrice.

En particulier la suite $(rg(f^k))_{k\in\mathbb{N}}$ est décroissante et à valeurs dans \mathbb{N} donc stationnaire en 0 ce qui est cohérent avec le fait que $f^p = 0_{\mathscr{L}(E)}$.

Solution Exercice 27.

1. Soient f,g les endomorphismes de \mathbb{R}^3 canoniquement associés aux matrices

$$P = \frac{1}{4} \begin{pmatrix} 4 & 2 & 4 \\ 0 & 2 & -4 \\ 0 & -1 & 2 \end{pmatrix} \quad \text{et} \quad S = \begin{pmatrix} 3 & 4 & 4 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix}.$$

— Montrons que f est une projection vectorielle.

Le calcul donne $P^2 = P$. Par conséquent, $f \circ f = f$ et f est un projecteur vectoriel.

Déterminons les caractéristiques géométriques de f.

Il s'agit de déterminer F = Im(f) et G = ker(f).

On note $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

- * On a $Im(f) = Vect(f(e_1), f(e_2), f(e_3)).$
- La lecture de la matrice P donne

Im(f) = Vect((4,0,0), (2,2,-1)) = Vect((1,0,0), (2,2,-1)).

* La résolution du système homogène associé à PX = 0 donne : $\ker(f) = Vect((-2, 2, 1)).$

Ainsi, f est la projection sur le plan F = Vect((1,0,0),(2,2,-1)) parallèlement à la droite G = Vect((-2,2,1)).

Montrons que g est une symétrie vectorielle.

Le calcul donne $S^2 = I_3$. Par conséquent $g^2 = id_{\mathbb{R}^3}$ et g est une symétrie vectorielle.

Déterminons ses éléments géométriques caractéristiques.

Il s'agit de déterminer $F = \ker(g - id_{\mathbb{R}^3})$ et $G = \ker(g + id_{\mathbb{R}^3})$.

On trouve F = Vect((-2, 1, 0), (-2, 0, 1)) et G = Vect((-2, 1, 1)).

Ainsi, g est la symétrie par rapport au plan F et parallèlement à la droite G.

2. On considère dans \mathbb{R}^3 le plan \mathcal{P} et la droite \mathcal{D} d'équations cartésiennes respectives :

$$\mathcal{P}: x + y + z = 0$$
 et $\mathcal{D}: \left\{ \begin{array}{ccccc} x & - & y & + & z & = & 0 \\ x & + & y & + & 2z & = & 0 \end{array} \right.$

On a $\mathcal{P} = Vect((-1, 1, 0), (-1, 0, 1))$ et $\mathcal{D} = Vect(3, 1, -2)$.

La famille $\mathscr{B} = ((-1,1,0),(-1,0,1),(3,1,-2))$ est libre (à vérifier) et composée de $3 = \dim \mathbb{R}^3$ vecteurs.

 \mathscr{B} est donc une base de \mathbb{R}^3 et par conséquent, $\mathbb{R}^3 = \mathcal{P} \oplus \mathcal{D}$.

 \bullet Dans cette base, la matrice de la projection p sur ${\mathcal P}$ parallèlement à ${\mathcal D}$:

$$Mat_{\mathscr{B}}(p) = \begin{pmatrix} (-1,1,0) & p(-1,0,1) & p(3,1,-2) \\ (-1,0,1) & 1 & 0 & 0 \\ (-1,0,1) & 0 & 1 & 0 \\ (3,1,-2) & 0 & 0 & 0 \end{pmatrix}$$

Dans la base canonique \mathcal{B}_c , la formule de changement de base donne

$$Mat_{\mathscr{B}_c}(p) = PMat_{\mathscr{B}}(p)P^{-1}$$

avec
$$P = P_{\mathcal{B}_c \to \mathcal{B}} = \begin{pmatrix} -1 & -1 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}$$
.

On obtient

$$Mat_{\mathscr{B}_c}(p) = \begin{pmatrix} -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 1 & 1 & 2 \end{pmatrix}.$$

 \bullet Dans la base $\mathcal{B},$ la matrice de la symétrie s par rapport à \mathcal{P} et parallèlement à \mathcal{D} :

$$Mat_{\mathscr{B}}(s) = \begin{pmatrix} (-1,1,0) & s(-1,0,1) & s(3,1,-2) \\ (-1,1,0) & 1 & 0 & 0 \\ (-1,0,1) & 0 & 1 & 0 \\ (3,1,-2) & 0 & 0 & -1 \end{pmatrix}$$

On obtient

$$Mat_{\mathscr{B}_c}(s) = PMat_{\mathscr{B}}(s)P^{-1} = \begin{pmatrix} -2 & -3 & -3 \\ -1 & 0 & -1 \\ 2 & 2 & 3 \end{pmatrix}.$$

Solution Exercice 28. Soient E un \mathbb{K} -espace vectoriel de dimension n et f,g des endomorphismes de E tels que $f+g=id_E$ et $rg(f)+rg(g)\leqslant n$.

- 1. Montrons que ker(g) = Im(f).
 - Soit $x \in \ker(g) : g(x) = 0$.

Par hypothèse $f + g = id_E$ donc f(x) + g(x) = x i.e. $f(x) = x \in \text{Im}(f)$. Ainsi, $x \in \text{ker}(g) \Longrightarrow x \in \text{Im}(f)$.

On en déduit que $ker(g) \subset Im(f)$.

En particulier $\dim \ker(g) \leq \dim \operatorname{Im}(f)$.

- Mais $rg(f)+rg(g)\leqslant n$ donc $rg(f)\leqslant n-rg(g)=n-\dim {\rm Im}(g)=\dim {\rm ker}(g)$ par le théorème du rang.
- Par conséquent $\dim \operatorname{Im}(f) \leq \dim \ker(g)$. On en déduit que $\dim \operatorname{Im}(f) = \dim \ker(g)$ puis l'égalité des espaces $\operatorname{Im}(f) = \ker(g)$.
- 2. Soit $x \in E$. Alors $f(x) \in \text{Im}(f) = \text{ker}(g)$.

Ainsi, g(f(x)) = 0.

Puisque x est quelconque, on obtient $g \circ f = 0_{\mathscr{L}(E)}$.

3. La relation $f + g = id_E$ donne en composant par f à droite,

$$f^2 + \underbrace{g \circ f}_{0_{\mathscr{L}(E)}} = f$$
 i.e. $f^2 = f$,

et par g à gauche :

$$\underbrace{g\circ f}_{0_{\mathscr{L}(E)}}+g^2=g \text{ i.e. } g^2=g.$$

On en déduit que f et g sont des projecteurs.

Solution Exercice 29.

- 1. p+q est un projecteur si et seulement si $(p+q)^2=p+q$ c'est-à-dire $\underbrace{p^2}_{=p}+p\circ q+q\circ p+\underbrace{q^2}_{=q}=p+q \text{ i.e. si et seulement si } p\circ q+q\circ p=0(*).$
- 2. En composant la relation $p \circ q + q \circ p = 0$ par :
 - p à gauche, on trouve $p \circ p \circ q + p \circ q \circ p = 0$ soit $p \circ q + p \circ q \circ p = 0$.
 - p à droite, on trouve $p \circ q \circ p + q \circ p \circ p = 0$ soit $p \circ q \circ p + q \circ p = 0$.
 - Ainsi, $p \circ q = q \circ p$ (car tous deux égaux à $-p \circ q \circ p$).
 - On obtient par (*) $0 = p \circ q + q \circ p = 2p \circ q = 0$ i.e. $p \circ q = 0 = q \circ p$.

On en déduit que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0_{\mathscr{L}(E)}$.

Solution Exercice 30. Soient p, q des projecteurs d'un \mathbb{K} -espace vectoriel de E tels que $p \circ q = 0$. Soit $r = p + q - q \circ p$.

1. On calcule r^2 et on simplifie en utilisant $p^2 = p, q^2 = q, p \circ q = 0$:

$$r^{2} = (p + q - q \circ p) \circ (p + q - q \circ p)$$

$$= (p^{2} + p \circ q - p \circ q \circ p) + (q \circ p + q^{2} - q^{2} \circ p) - (q \circ p^{2} - q \circ p \circ q + (q \circ p)^{2})$$

$$= (p) + (q) - (q \circ p) = r.$$

Ainsi, r est un projecteur.

2. — Soit $x \in \ker p \cap \ker q$.

Alors $r(x) = p(x) + q(x) - q \circ p(x) = 0$.

Ainsi, $ker(p) \cap ker(q) \subset ker(r)$.

— Réciproquement soit $x \in \ker(r)$.

Alors $p(x) + q(x) - q \circ p(x) = 0$ (**).

- * En composant par p, à gauche, on obtient : $p^2(x) + p \circ q(x) p \circ q \circ p(x) = 0$ soit p(x) = 0. Ainsi $x \in \ker(p)$.
- * En composant par (**) par q à gauche, on obtient $q \circ p(x) + q^2(x) q^2 \circ p(x) = 0$ donc (x) = 0. Ainsi, $x \in \ker(q)$.

On en déduit que $\ker(r) \subset \ker(p) \cap \ker(q)$.

Finalement, $\ker r = \ker p \cap \ker q$.

3. — Soit $x' \in \operatorname{Im}(r)$: il existe $x \in E$ tel que $x' = r(x) = p(x) + q(x) - q \circ p(x) = p(x) + q(x - p(x)) \in \operatorname{Im}(p) + \operatorname{Im}(q).$ Ainsi, $\operatorname{Im}(r) \subset \operatorname{Im}(p) + \operatorname{Im}(q)$.

— Soit $x' \in \text{Im}(p) + \text{Im}(q)$: il existe $x_1, x_2 \in E$, tels que $x' = p(x_1) + q(x_2)$. On a $p \circ q = 0$ et $q^2 = q$ donc:

 $x' = p(p(x_1) + q(x_2)) + q(p(x_1) + q(x_2)) - q \circ p(p(x_1) + q(x_2))$

 $x' = r(p(x_1) + q(x_2)) \in \text{Im}(r).$

Ainsi, $\operatorname{Im}(p) + \operatorname{Im}(q) \subset \operatorname{Im}(r)$.

- Finalement, Im(p) + Im(q) = Im(r).
- Pour conclure, notons que $\operatorname{Im}(p) \cap \operatorname{Im}(q) = \{0_E\}.$

En effet, si $x' \in \text{Im}(q) \cap \text{Im}(p)$ alors il existe $x_1, x_2 \in E$ tels que

 $x' = p(x_1) = q(x_2).$

On obtient $p(x') = p^2(x_1) = p(x_1) = x'$ et $p(x') = p \circ q(x_2) = 0_E$. Ainsi, x' = 0.

Par conséquent $\operatorname{Im}(p) \cap \operatorname{Im}(q) = \{0_E\}$. La somme $\operatorname{Im}(p) + \operatorname{Im}(q)$ est directe.

— On a donc montré : $\operatorname{Im}(p) \oplus \operatorname{Im}(q) = \operatorname{Im}(r)$.

Solution Exercice 31. Soient E un \mathbb{K} -espace vectoriel et p,q des projecteurs de E qui commutent i.e. $p \circ q = q \circ p$.

1. Montrons que $p \circ q$ est un projecteur.

On calcule:

 $(p\circ q)^2=(p\circ q)\circ (p\circ q)=p\circ (q\circ p)\circ q=p\circ (p\circ q)\circ q$ car les projecteurs commutent.

Puisque $p^2 = p$ et $q^2 = q$, on obtient $(p \circ q)^2 = p \circ q$: $p \circ q$ est un projecteur.

- 2. Montrons que $\operatorname{Im}(p \circ q) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$.
 - Soit $x' \in \text{Im}(p \circ q)$: il existe $x \in E$ tel que $x' = p \circ q(x) = p(q(x)) \in \text{Im}(p)$. Puisque p et q commutent, on a aussi

 $x' = p \circ q(x) = q \circ p(x) = q(p(x)) \in \operatorname{Im}(p).$

Ainsi, $x' \in \operatorname{Im}(p \circ q) \Longrightarrow x' \in \operatorname{Im}(p) \cap \operatorname{Im}(q) : \operatorname{Im}(p \circ q) \subset \operatorname{Im}(p) \cap \operatorname{Im}(q)$.

— Réciproquement, soit $x' \in \text{Im}(p) \cap \text{Im}(q)$: il existe $x_1, x_2 \in E$ tels que $x' = p(x_1) = q(x_2)$.

On obtient $p(x') = p^2(x_1) = p(x_1) = p \circ q(x_2)$.

Ainsi, $x' = p \circ q(x_2) \in \operatorname{Im}(p \circ q)$.

D'où $x' \in \operatorname{Im}(p) \cap \operatorname{Im}(q) \Longrightarrow x' \in \operatorname{Im}(p \circ q) : \operatorname{Im}(p) \cap \operatorname{Im}(q) \subset \operatorname{Im}(p \circ q).$

- Finalement, $\operatorname{Im}(p \circ q) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$.
- 3. Soit $x \in \ker(p) + \ker(q)$.

Il existe $x_1 \in \ker(p)$ et $x_2 \in \ker(q)$ tel que $x = x_1 + x_2$.

Alors $p \circ q(x) = p \circ q(x_1 + x_2) = p \circ q(x_1) + p \circ q(x_2) = q \circ p(x_1) + p \circ q(x_2) = 0$ car $x_1 \in \ker(p)$ et $x_2 \in \ker(q)$.

— Réciproquement, si $x \in \ker(p \circ q)$ alors :

$$x = \underbrace{\frac{1}{2}[x - (p-q)(x)]}_{\in \ker(p)} + \underbrace{\frac{1}{2}[x - (q-p)(x)]}_{\in \ker(q)} \text{ avec} :$$

$$p(x - (p - q)(x)) = p(x - p(x) + q(x)) = p(x) - p^{2}(x) + p \circ q(x) = 0$$

$$q(x - (q - p)(x)) = q(x - q(x) + p(x)) = q(x) - q^{2}(x) + q \circ p(x) = 0.$$

Montrer que $\ker(p \circ q) = \ker(p) + \ker(q)$.