Summary

We want to create a recipe creating/sharing a grocery list app. You'll be planning out what tables we'll need, what information they'll store, and how the data will relate to each other.

Features

- Users can sign into the app with their email and password
 - Users table with columns email and password.
- Users can create recipes with ingredients and instructions
 - o (One to Many) User can create multiple recipes, each recipe linked to 1 user
 - (Many to Many) Each recipe can have multiple ingredients, ingredients can be linked to multiple recipes
- Recipes can be marked as public or private
 - Extra column in Recipes table, data type BOOLEAN
- Users can view other people's recipes
 - SELECT recipes linked to that specific user id?
- Ingredients from recipes can be added to user's grocery lists
 - (Many to Many) ingredients can be apart of multiple grocery lists and multiple grocery lists can use the same ingredients
- Users can create their own occasions and assign recipes to occasions
 - (One to Many) User can have multiple occasions but occasions are assigned to one user

Part 1 - Step 1 - Brainstorming

- Need to keep track of:
 - user id (email, password)
 - recipe_id (user_id foreign key, instructions TEXT, public/private BOOLEAN)
 - ingredients id (ingredient)
 - o recipe ingredients id (recipe id foreign key, ingredients id foreign key)
 - grocery_list_id (user_id foreign key, recipe_id foreign key)
 - Grocery_list_ingredients_id (grocery_list_id foreign key, ingredients_id foreign key, ingredient)
 - o occasions id (user id foreign key, recipe id foreign key)
- High Level needs to keep track of
 - User account id
 - User email
 - User password encryption
 - If a user exists with an email
 - Account sign up for a new user
 - Creation of individual recipes

- Creation of grocery lists
- Previously saved recipes
- Previously saved grocery lists
- Individual ingredients
- Individual grocery list items
- Quantity of grocery items (ingredients)
- o Image of ingredients?
- Brand of ingredient/items
- Status of grocery item (checked or unchecked) (optional)

Part 1 - Step 2 - Table Ideas

- Users
 - This table will hold information about every user account in the app
 - Each row will represent an individual user
- Recipes
 - This table will hold information about every recipe created by a specific user
 - Each row will be an individual recipe
- Ingredients
 - This table hold information about every different ingredient
 - Each row will be an individual ingredient
- RecipesIngredients Table (Association Table)
 - This table will associate which ingredients are used in each recipe
 - Each row will be 1 ingredient associated with 1 recipe
 - These can be grouped/ordered by recipe id?
- Grocery Lists
 - o This table will hold information about every grocery list created by a specific user
 - Each row will be an individual grocery list
- GroceryListsIngredients (Association Table)
 - This table will associate which ingredients are included in a specific grocery list
 - Each row will be an individual grocery list ingredient
- Occasions
 - o This table will hold information about every occasion created by specific users
 - Each row will represent an occasion created by a specific user
- OccasionsRecipes (Association Table)
 - This table will associate which recipes are included in each occasion
 - Each row will be 1 recipe associated with 1 occasion

Part 1 - Step 3 - Relationships

- One-to-One:
 - N/a because we have no special cases/types
- One-to-Many:
 - <u>Users table</u> and <u>Recipes table</u> because individual users can create multiple recipes, but a recipe is only linked with one specific user

- Each individual user (from <u>Users Table</u>) can create many occasions in the Occasion Table.
- Each individual user (from <u>Users Table</u>) can create many grocery lists in the <u>Grocery Lists Table</u>.

Many-to-Many:

- <u>RecipeIngredients Table</u> is an Association Table between the <u>Recipe Table</u> and <u>Ingredients Table</u>.
- <u>GroceryListsIngredients Table</u> is an Association Table between the <u>Grocery Lists</u>
 <u>Table</u> and <u>Ingredients Table</u>.
- OccasionsRecipes Table is an Association Table between the Occasions Table and Recipes Table.

Part 2 - Step 1 - PDF from DB Designer

- Michael's pdf
 - Organized for easy reference arrow readability

Part 2 - Step 2 - Columns

- Users Table
 - user id (type SERIAL PRIMARY KEY)
 - Primary key for the table
 - Important for identifying specific users
 - username (type VARCHAR(60))
 - Characters selected for the user's username will have a limit of 30
 - Will be useful for logging in + to display on public recipes
 - email (type VARCHAR(100))
 - Characters selected for the user's email will have a limit of 100
 - Will be useful for if they forgot their password and need to reset it + if they want to subscribe for weekly emails about the hottest new recipes.
 - password (type VARCHAR (60))
 - Characters selected for the user's password will have a limit of 100
 - Will be useful for verifying login credentials, so only that user will be able to log in to that account.
- Recipes Table
 - recipe id (type SERIAL PRIMARY KEY)
 - The primary key for the table
 - Important for identifying specific recipes
 - user_id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - A reference to the specific user who created the recipe

- recipe_name (type VARCHAR(60))
 - Characters selected for the recipe_name will have a limit of 60
 - Name of the recipe the ingredient are in
- - Data type being referenced here is of type VARCHAR(60)
 - References the username of the recipe creator
- instructions (type TEXT)
 - This data type imposes no character limit for the recipe instructions
 - The step by step instructions for preparing the recipe
- public (type BOOLEAN with a default of FALSE)
 - Recipes can be kept private or shared publicly, can keep track of this with a BOOLEAN
 - By default, recipes are kept private. But if a user would like to share their recipe publicly, they can hit a button to update the Boolean here to True
- Ingredients Table
 - ingredient_id (type SERIAL PRIMARY KEY)
 - Primary key for the table
 - Important for identifying specific ingredients
 - ingredient_name (type VARCHAR(30))
 - Characters selected for the ingredient name will have a limit of 30
 - The name of the ingredient
- RecipesIngredients Table
 - recipes_ingredients_id (type SERIAL PRIMARY KEY)
 - Primary Key for the table
 - Ensures uniqueness
 - recipe_id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - Reference id number to the specific recipe
 - ingredients id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - Reference id number to the specific ingredient
 - - Characters selected for the ingredient name will have a limit of 30
 - Name of the ingredient used in the recipe
- Grocery Lists Table
 - grocery_list_id (type SERIAL PRIMARY KEY)
 - Primary key for the table
 - Ensures uniqueness
 - grocery_list_name (type VARCHAR(60))
 - Characters selected for the grocery list name will have a limit of 60
 - Name of the specific grocery list
 - user_id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - A reference to the specific user who created each grocery list

- recipe_id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - Reference id number to the specific recipe
- GroceryListsIngredients Table
 - o grocery lists ingredients id (type SERIAL PRIMARY KEY)
 - Primary key for the table
 - Ensures uniqueness
 - grocery_list_id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - A reference to the specific id for each grocery list, which will be repeated for each ingredient to be added to the grocery list
 - ingredients_id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - A reference to the specific id for each ingredient to be added to any grocery list
 - ingredient name (type VARCHAR(30) FOREIGN KEY) REDUNDANT
 - Data type being referenced here is of type VARCHAR(30)
 - A reference to the ingredient_name associated with the specific ingredients id
- Occasions Table
 - occasions_id (type SERIAL PRIMARY KEY)
 - Primary key for the table
 - Ensures uniqueness
 - occasion name (type VARCHAR(60))
 - Characters selected for the occasion name will have a limit of 60
 - Name of the specific occasion
 - user id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - A reference to the specific user who created each occasion
- OccasionsRecipes Table
 - occasions_recipes_id (type SERIAL PRIMARY KEY)
 - Primary key for the table
 - Ensures uniqueness
 - occasions id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - A reference to the specific id for each occasion, which will be repeated for each recipe to be added to the occasion
 - recipe_id (type INT FOREIGN KEY)
 - Data type being referenced here is of type INT
 - A reference to each recipe id to be added to a specific occasion id

Part 3 - Create Table Statements in SQL

Users Table

 CREATE TABLE users(user_id SERIAL PRIMARY KEY, username VARCHAR(60), email VARCHAR(100), password VARCHAR(60));

Recipes Table

 CREATE TABLE Recipes(recipe_id SERIAL PRIMARY KEY, user_id INTEGER NOT NULL REFERENCES users(user_id), recipe_name VARCHAR(60), instructions TEXT, public BOOLEAN DEFAULT False);

Ingredients Table

CREATE TABLE ingredients(ingredients_id SERIAL PRIMARY KEY, ingredients_name VARCHAR(30));

RecipesIngredients Table

 CREATE TABLE recipesIngredients(recipes_ingredients_id SERIAL PRIMARY KEY, recipe_id INTEGER NOT NULL REFERENCES recipes(recipe_id), ingredients_id INTEGER NOT NULL REFERENCES ingredients(ingredients_id));

Grocery Lists Table

 CREATE TABLE groceryList(grocery_list_id SERIAL PRIMARY KEY, grocery_list_name VARCHAR(60), user_id INTEGER NOT NULL REFERENCES users(user_id), recipe_id INTEGER NOT NULL REFERENCES recipes(recipe_id));

GroceryListsIngredients Table

 CREATE TABLE groceryListsIngredients(grocery_lists_ingredients_id SERIAL PRIMARY KEY, grocery_list_id INTEGER NOT NULL REFERENCES groceryList(grocery_list_id), ingredients_id INTEGER NOT NULL REFERENCES ingredients(ingredients_id));

Occasions Table

 CREATE TABLE occasions(occasions_id SERIAL PRIMARY KEY, occasion_name VARCHAR(60), user_id INTEGER NOT NULL REFERENCES users(user_id));

OccasionsRecipes Table

 CREATE TABLE occasionsRecipes(occasions_recipes_id SERIAL PRIMARY KEY, occasions_id INTEGER NOT NULL REFERENCES occasions(occasions_id), recipe_id INTEGER NOT NULL REFERENCES recipes(recipe_id));

Intermediate - Inserting Data into our Tables

•