Teoría de la integral y de la medida Hoja n⁰ 6 (Medidas de Lebesque-Stieltjes)

1.- Dar un ejemplo de una función de distribución F tal que dF(a,b) < F(b) - F(a) < dF[a,b] para algún a y b siendo dF la medida correspondiente a F.

2.- Sea μ la medida de contar sobre \mathbb{R} y $\mathcal{P}(\mathbb{R})$. Para un conjunto fijado $A \subset \mathbb{R}$, definimos $\nu(B) = \mu(B \cap A)$ para todo $B \subset \mathbb{R}$

a) Si $A=\{1,2,3,\ldots,n,\ldots\}$ ¿es ν una medida de Lebesgue Stieltjes? En caso afirmativo hallar su función de distribución .

b) Si $A=\{1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n},\ldots\}$ ¿es ν una medida de Lebesgue Stieltjes? En caso afirmativo hallar su función de distribución.

3.- Sea F(x) la función de distribución sobre \mathbb{R} dada por

$$F(x) = \begin{cases} 0 & \text{si } x \in (-\infty, -1) \\ 1 + x & \text{si } x \in [-1, 0) \\ 2 + x^2 & \text{si } x \in [0, 2) \\ 9 & \text{si } x \in [2, \infty) \end{cases}$$

Si dF es la medida de Lebesgue Stieltjes correspondiente a F, hallar la medida dF de los siguientes conjuntos: $\{2\}, [-1/2, 3), (-1, 0] \cup (1, 2), [0, 1/2) \cup (1, 2], \{x \in \mathbb{R} : |x| + 2x^2 > 1\}.$

4.- Sea $f: \mathbb{R} \to \mathbb{R}$ no-negativa e integrable Lebesgue, sobre cada intervalo finito tal que $\int_{-\infty}^{\infty} f(x)dx = 1$. Probar que $F(x) = \int_{-\infty}^{x} f(y)dy$ es una función de distribución de probabilidad y ademas F es continua (A f se le llama la **función de densidad**). Si

$$f(x) = \begin{cases} 1, & \text{si} \quad x \in [0, 1] \\ 0, & \text{en el resto} \end{cases}$$

hallar F(x).

5.- Supongamos que la función de probabilidad que mide la duración en minutos de las conferencias telefónicas viene dada por la función de densidad

$$f(x) = \begin{cases} \alpha e^{-kx}, & \text{si } x \ge 0\\ 0, & \text{en el resto} \end{cases}$$

siendo $k \ge 0$ una constante conocida.

- a) Hallar α para que f sea una densidad de probabilidad.
- b) Si $k = \frac{1}{2}$, calcular la probabilidad de que una conversación dure mas de tres minutos.
- c) Si $k = \frac{1}{2}$, calcular la probabilidad de que una conversación dure entre 3 y 6 minutos.
- 6.- Dada la función de distribución

$$F(x) = \begin{cases} 0 & \text{si } x \in (-\infty, -1) \\ \frac{1}{3} & \text{si } x \in [-1, \sqrt{2}) \\ \frac{1}{2} + \frac{x - \sqrt{2}}{10} & \text{si } x \in [\sqrt{2}, 5) \\ 1 & \text{si } x \in [5, \infty) \end{cases}$$

Si dF es la medida de probabilidad correspondiente, calcular la medida de los conjuntos: \mathbb{R} ; $(\mathbb{R} \setminus \mathbb{Q}) \cap [\sqrt{2}, 5]$; $(\mathbb{R} \setminus \mathbb{Q}) \cap [-2, \sqrt{2}]$; $\mathbb{Q} \cap [1, 6]$.

7.- Sea F una función de distribución en \mathbb{R} . a) Probar que el conjunto de puntos de discontinuidad de F es numerable. b) Probar que el conjunto de puntos de continuidad es denso en \mathbb{R} .

(Sugerencia: F es monótona luego en sus puntos de discontinuidad hay saltos).

- 8.- Variando si es necesario en cada caso el tamaño de los intervalos, construir un conjunto de tipo Cantor de medida de Lebesgue mayor que $1-\epsilon$.
- 9.- Sea dF la medida de Lebesgue Stieltjes sobre $\mathbb R$ correspondiente a una función de distribución continua F no trivial.
 - a) Probar que si A es numerable entonces dF(A) = 0.
- b) Probar que existen conjuntos A tales que dF(A)>0 y A no contiene ningún intervalo abierto.
 - c) Si $dF(\mathbb{R} \setminus A) = 0$, ξ tiene que ser A denso en \mathbb{R} ? Sugerencia: Para c) construir una función F(x) que sea constante en un intervalo.
- 10.- Sea $F:[0,\infty)\to [0,\infty)$ la función de distribución definida mediante $F(x)=\log(1+x)$, sea dF la medida de Lebesgue Stieltjes asociada a F. Calcular dF {Cantor} .

Sugerencia: El conjunto de Cantor está contenido en 2^n intervalos de longitud $\frac{1}{3^n}$.

- 11.- Sea (Ω, \mathcal{A}, P) un espacio de probabilidad. Sean X_1 X_2 dos **variables aleatorias** sobre él, (i.e., dos funciones medibles de $(\Omega, \mathcal{A}, P) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$) y sean F_{X_1} , F_{X_2} las funciones de distribución de las medidas de probabilidad inducidas por X_1 , X_2 respectivamente $(F_{X_j}(x) = P\{\omega \in \Omega : X_j(\omega) \leq x\}, j=1,2)$. Probar que si $P\{\omega \in \Omega : X_1(\omega) = X_2(\omega)\} = 1$ entonces $F_{X_1}(x) = F_{X_2}(x) \quad \forall x \in \mathbb{R}$.
- 12.- Se considera el espacio de probabilidad $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, P)$, donde $P(A) = \int_A f(x) dx$ viene dada por la función de densidad

$$f(x) = \begin{cases} 1, & \text{si } x \in [0, 1] \\ 0, & \text{si } x \notin [0, 1] \end{cases}$$

Sea $X: (\mathbb{R}, \mathcal{B}_{\mathbb{R}}, P) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ definida mediante

$$X(x) = \begin{cases} -2\log x, & \text{si } x > 0\\ 0, & \text{en el resto.} \end{cases}$$

Hallar F_X , la función de distribución de la probabilidad inducida por X.