- 1. [10] Случайная величина X имеет стандартное нормальное распределение.
  - а) [2] Найдите безусловное ожидание  $\mathbb{E}(|X|)$ .
  - б) [4] Найдите условное ожидание  $\mathbb{E}(X \mid X > 0)$ .
  - в) [4] Найдите условную дисперсию  $Var(X \mid X > 0)$ .

Запишите ответ в явном виде, а если это невозможно, то с помощью функции распределения.

2. [10] Вектор (X,Y) имеет совместную функцию плотности

$$f(x,y) = \begin{cases} 2x^3 + 2y^3, \text{ если } x,y \in [0;1], \\ 0, \text{ иначе.} \end{cases}$$

- а) [3] Найдите совместную функцию плотности вектора (R = X Y, S = X + 3Y).
- б) [3 + 2] Найдите условную функцию плотности  $f_{Y|X}(y \mid x)$  и ожидание  $\mathbb{E}(Y \mid X = x)$ .
- в) [2] Правда ли, что величины X и Y одинаково распределены?
- 3. [10] Рассмотрим пуассоновский поток снежинок  $(X_t)$  падающих на раскрытую ладошку с интенсивностью  $\lambda=2$  снежинки в секунду.
  - а) [3] Какова вероятность того, что за 3 секунды на ладошку упадёт не более двух снежинок?
  - б) [3] Я только что раскрыл ладошку. Какова вероятность того, что следующие две снежинки упадут раньше, чем истекут четыре секунды?
  - в) [2 + 2] Найдите условную вероятность  $\mathbb{P}(X_5 = 10 \mid X_4 = 6)$  и дисперсию  $\mathbb{V}$ ar $(X_5 \mid X_4 = 6)$ .
- 4. [10] Полина подбрасывает правильный кубик n>100 раз. Обозначим результаты отдельных бросков как  $X_i$ , а суммарный результат как S,  $S=X_1+X_2+\cdots+X_n$ .
  - а) [3] Найдите  $\mathbb{E}(X_i)$  и  $\mathbb{V}\mathrm{ar}(X_i)$ .
  - б) [4] Найдите примерно вероятность  $\mathbb{P}(S>\mathbb{E}(S)+\sqrt{n}).$
  - в) [3] Найдите такое число a, что  $\mathbb{P}(S>a)=0.52$  при n=200.

В этом упражнении ответ запишите с помощью стандартной нормальной функции распределения F и найдите численно по таблицам.

5. Вектор Y имеет совместное нормальное распределение.

$$Y \sim \mathcal{N}\left(\begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 10 & -1 & -2\\ & 20 & -3\\ & & 30 \end{pmatrix}\right).$$

- а) [3] Найдите  $\mathbb{E}(Y_1 5Y_2)$ ,  $\mathbb{V}$ ar $(Y_1 5Y_2)$ ,  $\mathbb{P}(Y_1 5Y_2 > 0)$ .
- б) [3] Найдите  $\mathbb{C}\mathrm{ov}(Y_{1}Y_{2},Y_{3}).$
- в) [4] Найдите  $\mathbb{P}(Y_1 > 0 \mid Y_2 = 2)$ .

В этом упражнении достаточно записать ответ с помощью стандартной нормальной функции распределения F.

- 6. Величины  $X_n$  независимы и  $X_n \sim \text{Beta}(n+10,20)$ .
  - а) [2] Найдите закон распределения  $R=1-X_{30}$ .
  - б) [2 + 2] Найдите ожидания  $\mathbb{E}(1/X_{30})$  и  $\mathbb{E}(X_{30}/(1-X_{30})).$
  - в) [4] К чему сходится последовательность  $(X_n)$  по распределению?



## Таблица для нормального распределения

В таблице приведены значения вероятностей

$$\mathbb{P}(\{X \le x\}) = \int_{-\infty}^{x_{\alpha}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = \alpha.$$

Целые части и десятые доли числа x указаны в левом столбце; сотые доли числа x — в верхней строке.

| x   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.67   | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |
| 3.5 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 |
| 3.6 | 0.9998 | 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |