

THEONEM 2	(CONVERGEN SINOLE	CE OF POINT)	EXPONE	UTIAL	QUADIZATU	RERULE	H7IW
CONSIDER TH	IE LINGAR P	ROBLEM	(*) AN	D TH	E TIM!	Z - MARCHIN	16 INTEMPTOR
(EQ1). THEN	, ASSUMING	a SUFFIC	CIEVILI	OFTEN	DILLEGE	INTIABLE	HTIW
BOUNDED D	2 PUVATIVES	WE H	AVE				
• IF C17	1 yn	- y(tn)(1	4 C Z				
• 1F C1 =	1 1 1 Mm	- y(tm) 11	4 (7	l			
HERE OSTA	net AND	THE C	ONSTAN	т С	MAY DE	PEND ON	745
FINAL TIME	BUT NO	T ON m	•				
PROOF: LO	OK AT THE	CALCULAT	IONS	A BOV	(E	1	
INTEGRATORS	WITH TI	NO CO	LLO CATI	ON PO	INTS		
	1				y(tm,)=e	4 (1/2) + Jecc	-5)A (1/n+5)ds
			9	(4)		Ó	
	- 	1		2		. 4	
	tm	5	5n+7	APP	Rokim AT low	of all)	
ESSENTIALLY	WE APPROX	IMATE C	א אודר	t 1 4	LINEAR 1	=UNCJ\ON	PASS IN G
THROUGH T WO	POINTS		J				
	8(tm+5)	$\approx \alpha_{\rm s}$	alt n+	(12) t	Bs al	tnt (22)	
WHERE C1 C	$c_2 \in [0,1]$	AND C	AND	(Bs)	AUE CHVE	N B> INI	ERPOLATION
CONDITIONS.		CONFLUENT			> LINE	IR POLYNO	OMIALS
IF you Do 74	TE CALCULAT	IONS X	OU GE	-1			
Month = e ym	+ $ -$	Q1(2A)	1	C/2(2/	A) \a(1	+C12)	
yms = e mym	C2-C1	71	C2-C1	7200	7) 300), ~10)	(FQ2)
	+ & ((7A)	1	42 (2	A)) a(t	n+C12)	
	C2-(1	C ₂ -0	1	1)0	ر ما در ال	

SIMILARLY TO THE PREVIOUS CASE, A	SSUMING & SUFFICIENTLY OFFEN
DIFFERENTIABLE (WITH BOD DERIVATIVES)	THE INTEGRATOR (ERZ) IS
SECOND ORDER ACCURATE. IF WE I	MPOSE ADDITIONAL CONDITIONS
ON C, C, WE MAY GET HIGHER OF	
$\frac{1}{2} - \frac{1}{2} \left(c_1 + c_2 \right) + c_1 c_2$	E.C. GAUSS-RADAU POINTS
	POINTS
THE INTEGRATOR MAY BE THIRD - OODE	R ACLUDATE
REMARY	
EXPONENTIAL QUADRAT ORE RULES WI	TH SUFFICIENTLY HIGH NUMBER OF
QUADRATURE POINTS ARE EXACT	WHEN a IS A POLYNOMIAL.
LAB PART	
$(2, y(t, x) = 8 2 \times y(t, x) + g(t))$ (1, 0) = y(t, 1) = 0	+ & (o, t3) × & (o,1)
) y (t, 0) = y(t 1) = 0	
0 9	
(1) g(t) S.T. THE EXACT SOLUTION	15 $y(1,x)=e^{t}\times(1-x)$
	t , ,
	u(t,x)=et sim(TTX)