DP SCIST x NHDK x 南 11 校寒訓 - 資言資語

Koying

2023-02-02

本課程由以下贊助商贊助辦理

協辦單位:ITSA

目錄

- DP 入門
- DP 實作
- 線性 DP
- 背包問題
- 子序列 DP
- DAG DP
- 樹 DP

- DP (Dynamic Programming),動態規劃
- 利用將問題拆解成子問題的方式來解決問題
- 有些人可能聽過分治,同樣也是將問題拆解為子問題,比較不一樣的是 DP 主要是利用「記憶化的方式」,將許多會重複用到的子問題記錄下來
- DP 問題經常會有「最佳子結構」、「重疊子問題」兩大特徵
- 簡單用一句話來形容 DP 在做的事,便是將各種會用到多次,且最符合我們需要的答案記錄下來,以供之後使用,有點像是進階版的建表

費氏數列

求出 $F_n \mod 10^9 + 7 \ (n \le 10^6)$

 $lacksymbol{\blacksquare}$ 以一般遞迴式的方式,我們會得到一個 $\mathcal{O}(2^n)$ 的複雜度,顯然是不符合我們的需求

費氏數列

求出 $F_n \mod 10^9 + 7 \ (n \le 10^6)$

- $lacksymbol{\blacksquare}$ 以一般遞迴式的方式,我們會得到一個 $\mathcal{O}(2^n)$ 的複雜度,顯然是不符合我們的需求
- 如果將遞迴過程畫成一顆樹,會發現我們重複計算了很多「早就被算過」的東西

費氏數列

求出 $F_n \mod 10^9 + 7 \ (n \le 10^6)$

- $lacksymbol{\blacksquare}$ 以一般遞迴式的方式,我們會得到一個 $\mathcal{O}(2^n)$ 的複雜度,顯然是不符合我們的需求
- 如果將遞迴過程畫成一顆樹,會發現我們重複計算了很多「早就被算過」的東西
- 如果能夠將已經算過的東西記錄下來,就能夠用「空間」換取大量的「時間」

費氏數列

求出 $F_n \mod 10^9 + 7 \ (n \le 10^6)$

- $lacksymbol{\blacksquare}$ 以一般遞迴式的方式,我們會得到一個 $\mathcal{O}(2^n)$ 的複雜度,顯然是不符合我們的需求
- 如果將遞迴過程畫成一顆樹,會發現我們重複計算了很多「早就被算過」的東西
- 如果能夠將已經算過的東西記錄下來,就能夠用「空間」換取大量的「時間」
- 這便是 DP 最經典的「重疊子問題」例子。而以空間換取時間的做法,則被稱為「記憶化搜索」

國中數學

路徑問題

給一個 $n \times m$ 的方格,求從左上角走到右下角的路徑數,且每步只能往右或往下走

■ 相信有認真上課的學員都知道,這題就是將原點設為 $\mathbf{1}$,然後對於每個點 i,j,寫上 $i-1,j \cdot i,j-1$ 兩個點的和

國中數學

路徑問題

給一個 $n \times m$ 的方格,求從左上角走到右下角的路徑數,且每步只能往右或往下走

- 相信有認真上課的學員都知道,這題就是將原點設為 $\mathbf{1}$,然後對於每個點 i,j,寫上 $i-1,j \cdot i,j-1$ 兩個點的和
- 其實這就是動態規劃!

國中數學

路徑問題

給一個 $n \times m$ 的方格,求從左上角走到右下角的路徑數,且每步只能往右或往下走

- 相信有認真上課的學員都知道,這題就是將原點設為 $\mathbf{1}$,然後對於每個點 i,j,寫上 $i-1,j \cdot i,j-1$ 兩個點的和
- 其實這就是動態規劃!
- OK,學校都已經教過了,今天的課就到這邊

小試身手

Grid Paths

路徑問題,有障礙物的版本

DP 的組成與實作

■ DP 的運作過程由「狀態」、「轉移式」組成

- DP 的運作過程由「狀態」、「轉移式」組成
- ■「狀態」指的是利用陣列在紀錄子問題答案時,其 index 所代表的意義
- 而「轉移式」代表的則是大的狀態與小的狀態之間的關係

- DP 的運作過程由「狀態」、「轉移式」組成
- ■「狀態」指的是利用陣列在紀錄子問題答案時,其 index 所代表的意義
- 而「轉移式」代表的則是大的狀態與小的狀態之間的關係
- lacksquare 以剛剛的費氏數列為例子,我們會將狀態定義為: dp_i 為費氏數列的第 i 項
- $lacksymbol{\blacksquare}$ 而「轉移式」便是大家熟知的: $dp_i=dp_{i-1}+dp_{i-2}$

- DP 的運作過程由「狀態」、「轉移式」組成
- ■「狀態」指的是利用陣列在紀錄子問題答案時,其 index 所代表的意義
- 而「轉移式」代表的則是大的狀態與小的狀態之間的關係
- lacksquare 以剛剛的費氏數列為例子,我們會將狀態定義為: dp_i 為費氏數列的第 i 項
- lacksquare 而「轉移式」便是大家熟知的: $dp_i=dp_{i-1}+dp_{i-2}$
- 這樣看似齊全了,但直接執行的話,會造成無限遞迴,因此我們還需要設計一個「邊界條件」,在這個例子便是 $dp_0=0, dp_1=1$

DP 的實作方式

- 想要算出最終的狀態,主要有兩種方式:
 - 1. Top down:從最終狀態 (F_n) ,利用遞迴往回推
 - 2. Bottom up:從初始狀態 (F_0) ,利用迴圈往前算,直到算到最終狀態
- 至於為什麼這樣命名呢?如果我們將遞迴樹畫出來,便可很簡單的發現其端倪了!

Top down 的特性

- 只要推出轉移式與初始狀態,便可很教直觀的寫出程式碼
- 在某些情況可能會遞迴過深
- 遞迴常數較大,要注意可能會造成效能損失
- 範例程式碼:Top Down.cpp

Bottom up 的特性

- 子問題需比母問題早算出,因此需要想好迴圈的順序
- 若將各個狀態與其轉移點的關係畫成一張圖,則迴圈的順序便是圖論中的「拓樸排序」
- 速度快,除了省去了遞迴常數之外,也經常能因 CPU 的快取機制獲得一部分的效能 提升
- **■** 範例程式碼:Bottom up.cpp

■ 覺得 DP 很遙遠嗎?

- 覺得 DP 很遙遠嗎?
- 其實你們都已經會了!

- 覺得 DP 很遙遠嗎?
- 其實你們都已經會了!
- 其實前綴和就是一個簡單的 DP 問題

- 覺得 DP 很遙遠嗎?
- 其實你們都已經會了!
- 其實前綴和就是一個簡單的 DP 問題
- lacksquare dp_i 為 $a_1 \sim a_i$ 的總和,轉移式就是 $dp_i = dp_{i-1} + a_i$

- 覺得 DP 很遙遠嗎?
- 其實你們都已經會了!
- 其實前綴和就是一個簡單的 DP 問題
- lacksquare dp_i 為 $a_1 \sim a_i$ 的總和,轉移式就是 $dp_i = dp_{i-1} + a_i$
- 那如果是二維呢?

■ 狀態: $dp_{i,j}$ 為 $\sum_{k=1}^{i} \sum_{l=1}^{j} a_{i,j}$

- 狀態: $dp_{i,j}$ 為 $\sum_{k=1}^{i} \sum_{l=1}^{j} a_{i,j}$
- 如何轉移呢?相信大家國中時都學過一個公式: $(a+b)^2 = a^2 + b^2 + ab + ba$

- 狀態: $dp_{i,j}$ 為 $\sum_{k=1}^{i} \sum_{l=1}^{j} a_{i,j}$
- 如何轉移呢?相信大家國中時都學過一個公式: $(a+b)^2 = a^2 + b^2 + ab + ba$
- 這個公式便是利用排容原理,將重疊的部分扣除

■ 那簡單!我們的轉移式就也用排容來算就好了

■ 那簡單!我們的轉移式就也用排容來算就好了

■ 那簡單!我們的轉移式就也用排容來算就好了

■ 那如果我們要求出 (x1, y1), (x1, y2), (x2, y1), (x2, y2) 這塊矩形的總和,一樣使用排容原理即可

■ 那簡單!我們的轉移式就也用排容來算就好了

- 那如果我們要求出 (x1,y1),(x1,y2),(x2,y1),(x2,y2) 這塊矩形的總和,一樣使用排容原理即可
- $dp_{x2,y2} dp_{x1-1,y2} dp_{x2,y1-1} + dp_{x1-1,y1-1}$

滾動優化

Grid Paths

路徑問題,有障礙物的版本

■ 我們回到剛剛那題 Grid Path

Grid Paths

路徑問題,有障礙物的版本

- 我們回到剛剛那題 Grid Path
- lacksquare 觀察後可以發現, dp_i 的轉移點都是在 dp_{i-1}
- 代表 $dp_1 \sim dp_{i-2}$ 都是沒用的

Grid Paths

路徑問題,有障礙物的版本

- 我們回到剛剛那題 Grid Path
- lacksquare 觀察後可以發現, dp_i 的轉移點都是在 dp_{i-1}
- 代表 $dp_1 \sim dp_{i-2}$ 都是沒用的
- 那我們何不省點空間呢?

Grid Paths

路徑問題,有障礙物的版本

■ 既然只用到兩列,那我們陣列就只開兩列 dp[0]、dp[1]

Grid Paths

路徑問題,有障礙物的版本

- 既然只用到兩列,那我們陣列就只開兩列 dp[0]、dp[1]
- 當 $i \equiv 0 \pmod{2}$ 時,就使用 dp[0],反之 dp[1]
- 這樣就可以將空間複雜度降到 n 了!

Grid Paths

路徑問題,有障礙物的版本

- 既然只用到兩列,那我們陣列就只開兩列 dp[0]、dp[1]
- 當 $i \equiv 0 \pmod{2}$ 時,就使用 dp[0],反之 dp[1]
- 這樣就可以將空間複雜度降到 n 了!
- 需要注意的是,陣列中可能還存著以前的資訊,所以要先記得初始化

Grid Paths

路徑問題,有障礙物的版本

- 既然只用到兩列,那我們陣列就只開兩列 dp[0]、dp[1]
- 當 $i \equiv 0 \pmod{2}$ 時,就使用 dp[0],反之 dp[1]
- 這樣就可以將空間複雜度降到 n 了!
- 需要注意的是,陣列中可能還存著以前的資訊,所以要先記得初始化
- 一些小技巧:
 - 偶 0 奇 1:*i*&2
 - 偶 1 奇 0:i1

AtCoder DP Contest A - Frog 1

每顆石頭的高度為 h_i ,從第 i 顆跳到第 j 顆的代價是 $|h_i-h_j|$ 每次可以跳 1 或 2 格,求從第 1 格跳到第 N 格的最小代價

 $lacksymbol{\blacksquare}$ 首先我們先訂定狀態: dp_i 為目前停在第 i 格的最小代價

AtCoder DP Contest A - Frog 1

每顆石頭的高度為 h_i ,從第 i 顆跳到第 j 顆的代價是 $|h_i - h_j|$ 每次可以跳 1 或 2 格,求從第 1 格跳到第 N 格的最小代價

- 首先我們先訂定狀態:*dpi* 為目前停在第 *i* 格的最小代價
- 經由題目可知,第 i 格可由第 i-1,i-2 格得來,因此 i-1,i-2 便是 i 的「轉移點」

AtCoder DP Contest A - Frog 1

每顆石頭的高度為 h_i ,從第 i 顆跳到第 j 顆的代價是 $|h_i - h_j|$ 每次可以跳 1 或 2 格,求從第 1 格跳到第 N 格的最小代價

- $lacksymbol{\blacksquare}$ 首先我們先訂定狀態: dp_i 為目前停在第 i 格的最小代價
- 經由題目可知,第 i 格可由第 i-1,i-2 格得來,因此 i-1,i-2 便是 i 的「轉移點」
- 有了轉移點之後,我們就能夠推出轉移式: $dp_i = \min(dp_{i-1} + |h_i h_{i-1}|, dp_{i-2} + |h_i h_{i-1}|)$,而初始狀態則是: $dp_1 = 0, dp_2 = |h_1 h_2|$

AtCoder DP Contest A - Frog 1

每顆石頭的高度為 h_i ,從第 i 顆跳到第 j 顆的代價是 $|h_i-h_j|$ 每次可以跳 1 或 2 格,求從第 1 格跳到第 N 格的最小代價

- $lacksymbol{\blacksquare}$ 首先我們先訂定狀態: dp_i 為目前停在第 i 格的最小代價
- 經由題目可知,第 i 格可由第 i-1,i-2 格得來,因此 i-1,i-2 便是 i 的「轉移點」
- 有了轉移點之後,我們就能夠推出轉移式: $dp_i = \min(dp_{i-1} + |h_i h_{i-1}|, dp_{i-2} + |h_i h_{i-1}|)$,而初始狀態則是: $dp_1 = 0, dp_2 = |h_1 h_2|$
- 時間複雜度 O(n)

AtCoder DP Contest A - Frog 1

每顆石頭的高度為 h_i ,從第 i 顆跳到第 j 顆的代價是 $|h_i-h_j|$ 每次可以跳 1 或 2 格,求從第 1 格跳到第 N 格的最小代價

- 首先我們先訂定狀態:*dpi* 為目前停在第 *i* 格的最小代價
- 經由題目可知,第 i 格可由第 i-1,i-2 格得來,因此 i-1,i-2 便是 i 的「轉移點」
- 有了轉移點之後,我們就能夠推出轉移式: $dp_i = \min(dp_{i-1} + |h_i h_{i-1}|, dp_{i-2} + |h_i h_{i-1}|)$,而初始狀態則是: $dp_1 = 0, dp_2 = |h_1 h_2|$
- 時間複雜度 O(n)
- 這種有關線性遞迴的 DP 便稱為「線性 DP」

AtCoder DP Contest A - Frog 1

每顆石頭的高度為 h_i ,從第 i 顆跳到第 j 顆的代價是 $|h_i - h_i|$ 每次可以跳 1 或 2格,求從第 1 格跳到第 N 格的最小代價

- 首先我們先訂定狀態:*dpi* 為目前停在第 *i* 格的最小代價
- 經由題目可知,第 i 格可由第 i-1,i-2 格得來,因此 i-1,i-2 便是 i 的「轉 移點1
- 有了轉移點之後,我們就能夠推出轉移式: $dp_i = \min(dp_{i-1} + |h_i - h_{i-1}|, dp_{i-2} + |h_i - h_{i-1}|)$,而初始狀態則是: $dp_1 = 0, dp_2 = |h_1 - h_2|$
- 時間複雜度 O(n)
- 這種有關線性遞迴的 DP 便稱為「線性 DP」

CSES Dice Combinations

你有無限多顆六面骰,求丟出的點數總和為 n 的方法數

■ 解決一些排列組合問題也是 DP 的其中一個用處

CSES Dice Combinations

你有無限多顆六面骰,求丟出的點數總和為 n 的方法數

- 解決一些排列組合問題也是 DP 的其中一個用處
- 狀態應該不難訂: dp_i 為丟出的點數總和為 i 的方法數

CSES Dice Combinations

你有無限多顆六面骰,求丟出的點數總和為 n 的方法數

- 解決一些排列組合問題也是 DP 的其中一個用處
- 狀態應該不難訂: dp_i 為丟出的點數總和為 i 的方法數
- 觀察一下題目條件,可以發現當目前點數為 $i-6 \sim i-1$ 時,再丟一顆骰子,點數和 就有機會變成 i

CSES Dice Combinations

你有無限多顆六面骰,求丟出的點數總和為 n 的方法數

- 解決一些排列組合問題也是 DP 的其中一個用處
- 狀態應該不難訂: dp_i 為丟出的點數總和為 i 的方法數
- 觀察一下題目條件,可以發現當目前點數為 $i-6\sim i-1$ 時,再丟一顆骰子,點數和 就有機會變成 i
- 因此 $i-1 \sim i-6$ 便是 i 的轉移點

CSES Dice Combinations

你有無限多顆六面骰,求丟出的點數總和為 n 的方法數

- 解決一些排列組合問題也是 DP 的其中一個用處
- 狀態應該不難訂: dp_i 為丟出的點數總和為 i 的方法數
- 觀察一下題目條件,可以發現當目前點數為 $i-6 \sim i-1$ 時,再丟一顆骰子,點數和 就有機會變成 i
- 因此 $i-1 \sim i-6$ 便是 i 的轉移點

最終轉移式:
$$dp_i = egin{cases} 1 & \text{if } i=0 \ \sum_{j=1}^i dp_i & \text{if } i \leq 6 \ \sum_{j=i-6}^{i-1} dp_i & \text{otherwise} \end{cases}$$

AtCoder DP Contest A - Frog 1

每顆石頭的高度為 h_i ,從第 i 顆跳到第 j 顆的代價是 $|h_i-h_j|$ 每次可以跳 1 或 2 格,求從第 1 格跳到第 N 格的最小代價

CSES Dice Combinations

你有無限多顆六面骰,求丟出的點數總和為 n 的方法數

AtCoder DP Contest B - Frog 2

每顆石頭的高度為 h_i ,從第 i 顆跳到第 j 顆的代價是 $|h_i-h_j|$ 每次可以跳 $1\sim k$ 格, 求從第 1 格跳到第 N 格的最小代價

2020 台南一中 x 台南女中聯合寒訓 pD. 公假無雙

見原題

AtCoder DP Contest C - Vacation

每天有三種活動,每種活動都有一個分數,求相鄰兩天不為同一活動時的最大分數和

CSES Removing Digits

給定一數字 n,每次可以減去 n 的任意一位數字,求最少減幾次可以減到 0 $(n \le 10^6)$ 如: $27 \to 20 \to 18 \to 10 \to 9 \to 0$

CF 1625C. Road Optimization

一條長度為 l 的道路上有 n 個限速牌,每個限速牌上會寫著一個數字 a_i ,代表車子以最高限速行駛時,每公里需要花 a_i ,而車子經過該車速牌就會調整車速為限速牌上的最高時速。

你可以移除最多 k 個限速牌,求車子開過所需的最少時間

背包問題

背包問題

- 背包問題算是 DP 中最經典的題型,網路上直接搜尋動態規劃大概十篇有九篇都是背包問題
- 背包問題主要分為三種:
 - 1.0-1 背包問題:每種物品只有一個
 - 2. 無限背包問題:每種物品有無限個
 - 3. 有限背包問題:每種物品有有限個
- 今天的課程會提到前兩種(其實也是線性 DP 的變種)

AtCoder DP Contest D - Knapsack 1

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最大價值

$$(N \le 100, W \le 10^5, w_i \le W, v_i \le 10^9)$$

lacktriangleright 題目問的是最多裝 W 的最大價值,那我們就用重量當作狀態吧! dp_i 代表重量為 i 時的最大價值

(ㅁ▶◀♬▶◀불▶◀불▶ 불 쒸٩♡

AtCoder DP Contest D - Knapsack 1

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最大價值

 $(N \le 100, W \le 10^5, w_i \le W, v_i \le 10^9)$

- 題目問的是最多裝 W 的最大價值,那我們就用重量當作狀態吧! dp_i 代表重量為 i 時的最大價值
- $lacksymbol{\blacksquare}$ 對於重量 i,可以透過拿取第 j 種物品讓重量變為 $i+w_j$,因此轉移點為 $i-w_j$

AtCoder DP Contest D - Knapsack 1

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最大價值

 $(N \le 100, W \le 10^5, w_i \le W, v_i \le 10^9)$

- 題目問的是最多裝 W 的最大價值,那我們就用重量當作狀態吧! dp_i 代表重量為 i 時的最大價值
- $lacksymbol{\blacksquare}$ 對於重量 i,可以透過拿取第 j 種物品讓重量變為 $i+w_j$,因此轉移點為 $i-w_j$
- 那我們就可以很輕鬆的推出轉移式了!

AtCoder DP Contest D - Knapsack 1

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最大價值

$$(N \le 100, W \le 10^5, w_i \le W, v_i \le 10^9)$$

- 題目問的是最多裝 W 的最大價值,那我們就用重量當作狀態吧! dp_i 代表重量為 i 時的最大價值
- $lacksymbol{\blacksquare}$ 對於重量 i,可以透過拿取第 j 種物品讓重量變為 $i+w_j$,因此轉移點為 $i-w_j$
- 那我們就可以很輕鬆的推出轉移式了!

$$lack dp_i = egin{cases} 0 & ext{if} & if < 0 \ ext{max}(dp_i, dp_{i-w_j} + v_j) & ext{otherwise} \end{cases}$$

◆□ > ◆□ > ◆ = > ◆ = > ○

AtCoder DP Contest D - Knapsack 1

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最大價值

$$(N \le 100, W \le 10^5, w_i \le W, v_i \le 10^9)$$

- 題目問的是最多裝 W 的最大價值,那我們就用重量當作狀態吧! dp_i 代表重量為 i 時的最大價值
- $lacksymbol{\blacksquare}$ 對於重量 i,可以透過拿取第 j 種物品讓重量變為 $i+w_j$,因此轉移點為 $i-w_j$
- 那我們就可以很輕鬆的推出轉移式了!
- 實作小細節:由於要求最大價值,因此對於所有 i>0, dp_i 的初始值為 $-\infty$,最後 答案便是最大的 i 滿足 $dp_i>0$

AtCoder DP Contest E - Knapsack 2

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最小重量

$$(N \le 100, W \le 10^9, w_i \le W, v_i \le 10^3)$$

lacksquare 可以發現 W 最大來到了 10^9 ,因此我們需要更改狀態設計

AtCoder DP Contest E - Knapsack 2

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最小重量

$$(N \le 100, W \le 10^9, w_i \le W, v_i \le 10^3)$$

- lacksquare 可以發現 W 最大來到了 10^9 ,因此我們需要更改狀態設計
- 除了重量,還有甚麼可以當作狀態呢?

AtCoder DP Contest E - Knapsack 2

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最小重量

 $(N \le 100, W \le 10^9, w_i \le W, v_i \le 10^3)$

- 可以發現 W 最大來到了 10⁹,因此我們需要更改狀態設計
- 除了重量,還有甚麼可以當作狀態呢?
- 觀察一下題目,發現最多裝 W 的最大價值,可以轉換為最大價值且最多裝 W,因此可以換個方向,改以價值當作狀態

AtCoder DP Contest E - Knapsack 2

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最小重量

 $(N \le 100, W \le 10^9, w_i \le W, v_i \le 10^3)$

- 可以發現 W 最大來到了 10⁹,因此我們需要更改狀態設計
- 除了重量,還有甚麼可以當作狀態呢?
- 觀察一下題目,發現最多裝 W 的最大價值,可以轉換為最大價值且最多裝 W,因此可以換個方向,改以價值當作狀態
- *dp_i* 代表價值 *i* 時所需的最小重量

AtCoder DP Contest E - Knapsack 2

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最小重量

$$(N \le 100, W \le 10^9, w_i \le W, v_i \le 10^3)$$

- 可以發現 W 最大來到了 10⁹,因此我們需要更改狀態設計
- 除了重量,還有甚麼可以當作狀態呢?
- 觀察一下題目,發現最多裝 W 的最大價值,可以轉換為最大價值且最多裝 W,因此可以換個方向,改以價值當作狀態
- *dp_i* 代表價值 *i* 時所需的最小重量

AtCoder DP Contest E - Knapsack 2

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最小重量

$$(N \le 100, W \le 10^9, w_i \le W, v_i \le 10^3)$$

- 可以發現 W 最大來到了 10⁹,因此我們需要更改狀態設計
- 除了重量,還有甚麼可以當作狀態呢?
- 觀察一下題目,發現最多裝 W 的最大價值,可以轉換為最大價值且最多裝 W,因此可以換個方向,改以價值當作狀態
- *dpi* 代表價值 *i* 時所需的最小重量

 $lacksymbol{\bullet}$ 初始狀態: $dp_i = \infty \ (i>0)$,答案就是最大的 i 滿足 $dp_i \leq W$

無限背包問題

Minimizing Coins

硬幣問題,有無限個面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的最少硬幣數量 $(n\leq 100,x,c_i\leq 10^6)$

■ 還記得貪心課講到的硬幣問題嗎?當面額不存在倍數關係時,就可以用 DP 來解決!

無限背包問題

Minimizing Coins

硬幣問題,有無限個面額為 $c_1, c_2, ..., c_n$ 的硬幣,求湊出 x 元的最少硬幣數量 $(n \le 100, x, c_i \le 10^6)$

- 還記得貪心課講到的硬幣問題嗎?當面額不存在倍數關係時,就可以用 DP 來解決!
- 題目要問湊出 *x* 的最少數量,那我們就用總和當作狀態

無限背包問題

Minimizing Coins

硬幣問題,有無限個面額為 c_1, c_2, \ldots, c_n 的硬幣,求湊出 x 元的最少硬幣數量 $(n \le 100, x, c_i \le 10^6)$

- 還記得貪心課講到的硬幣問題嗎?當面額不存在倍數關係時,就可以用 DP 來解決!
- 題目要問湊出 x 的最少數量,那我們就用總和當作狀態
- *dp_i* 為湊出 *i* 元的最少硬幣數量

無限背包問題

Minimizing Coins

硬幣問題,有無限個面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的最少硬幣數量 $(n\leq 100,x,c_i\leq 10^6)$

- 還記得貪心課講到的硬幣問題嗎?當面額不存在倍數關係時,就可以用 DP 來解決!
- 題目要問湊出 x 的最少數量,那我們就用總和當作狀態
- *dp_i* 為湊出 *i* 元的最少硬幣數量

無限背包問題

Minimizing Coins

硬幣問題,有無限個面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的最少硬幣數量 $(n\leq 100,x,c_i\leq 10^6)$

- 還記得貪心課講到的硬幣問題嗎?當面額不存在倍數關係時,就可以用 DP 來解決!
- 題目要問湊出 x 的最少數量,那我們就用總和當作狀態
- *dp_i* 為湊出 *i* 元的最少硬幣數量

■ 初始狀態: $dp_i = \infty \ (i>0)$,答案就是 dp_x

◆ロ → ◆ 個 → ◆ 達 → ● ● の へ ○

31 / 100

CSES Coin Combinations I

你有面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是兩種 $(n\leq 100,x,c_i\leq 10^6)$

■ 狀態應該很明顯:*dp_i* 為湊出 *i* 元的方法數

CSES Coin Combinations I

你有面額為 c_1, c_2, \ldots, c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是兩種 $(n \le 100, x, c_i \le 10^6)$

■ 狀態應該很明顯: dp_i 為湊出 i 元的方法數

■ 轉移式:
$$dp_i = \begin{cases} 1 & \text{if } i = 0 \\ \sum_{j=1}^n dp_{i-c_j} & \text{otherwise} \end{cases}$$

CSES Coin Combinations I

你有面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是兩種 $(n\leq 100,x,c_i\leq 10^6)$

- 狀態應該很明顯: dp_i 為湊出 i 元的方法數
- 轉移式: $dp_i = \begin{cases} 1 & \text{if } i = 0 \\ \sum_{j=1}^n dp_{i-c_j} & \text{otherwise} \end{cases}$
- Trivial la!

CSES Coin Combinations II

你有面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是同一種 $(n\leq 100,x,c_i\leq 10^6)$

■ 多了排列算同一種的限制該怎麼辦?

CSES Coin Combinations II

你有面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是同一種 $(n\leq 100,x,c_i\leq 10^6)$

- 多了排列算同一種的限制該怎麼辦?
- 我們觀察一下原本的轉移式會有甚麼問題

CSES Coin Combinations II

你有面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是同一種 $(n\leq 100,x,c_i\leq 10^6)$

- 多了排列算同一種的限制該怎麼辦?
- 我們觀察一下原本的轉移式會有甚麼問題
- 如果外層迴圈是 $1 \sim x$ (價值),內層迴圈為 $1 \sim n$ (面額),那麼就會發生重複計算的問題,如上所述

◆ロ → ◆園 → ◆ 園 → ◆ 園 ・ り へ ○ ○

CSES Coin Combinations II

你有面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是同一種 $(n\leq 100,x,c_i\leq 10^6)$

- 多了排列算同一種的限制該怎麼辦?
- 我們觀察一下原本的轉移式會有甚麼問題
- 如果外層迴圈是 $1 \sim x$ (價值),內層迴圈為 $1 \sim n$ (面額),那麼就會發生重複計算的問題,如上所述
- 如何解決?簡單,將硬幣面額的順序固定

CSES Coin Combinations II

你有面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是同一種 $(n\leq 100,x,c_i\leq 10^6)$

- 多了排列算同一種的限制該怎麼辦?
- 我們觀察一下原本的轉移式會有甚麼問題
- 如果外層迴圈是 $1 \sim x$ (價值),內層迴圈為 $1 \sim n$ (面額),那麼就會發生重複計算的問題,如上所述
- 如何解決?簡單,將硬幣面額的順序固定
- 因此我們只需要將兩層迴圈替換就可以了!

AtCoder DP Contest D - Knapsack 1

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最大價值

 $(N \le 100, W \le 10^5, w_i \le W, v_i \le 10^9)$

AtCoder DP Contest E - Knapsack 2

有 N 種物品,每種物品的重量為 w_i ,價值為 v_i ,背包的容量為 W,求背包裡的物品的最小重量

 $(N \le 100, W \le 10^9, w_i \le W, v_i \le 10^3)$

Minimizing Coins

硬幣問題,有無限個面額為 c_1,c_2,\ldots,c_n 的硬幣,求湊出 x 元的最少硬幣數量 $(n\leq 100,x,c_i\leq 10^6)$

CSES Coin Combinations I

你有面額為 c_1, c_2, \ldots, c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是兩種 $(n \le 100, x, c_i \le 10^6)$

CSES Coin Combinations II

你有面額為 c_1, c_2, \ldots, c_n 的硬幣,求湊出 x 元的方案數量,[1, 2, 3]、[1, 3, 2] 算是同一種 $(n \le 100, x, c_i \le 10^6)$

Book Shop

見原題

35 / 100

Koying DP 2023-02-02

有限背包問題

總共有 n 種物品,每個物品有其數量 c_i 、重量 w_i 、價值 v_i ,背包的容量為 W,求背包裡的物品的最大價值

$$(n \le 1000, c_i \le 10^9, w_i \le 100, W \le 1000)$$

■ 注意物品數量不再是無限或是 0-1

有限背包問題

總共有 n 種物品,每個物品有其數量 c_i 、重量 w_i 、價值 v_i ,背包的容量為 W,求背包裡的物品的最大價值

$$(n \le 1000, c_i \le 10^9, w_i \le 100, W \le 1000)$$

- 注意物品數量不再是無限或是 0-1
- 如果將每個物品都拆開來看的話,光是物品數量就會超過 109

有限背包問題

總共有 n 種物品,每個物品有其數量 c_i 、重量 w_i 、價值 v_i ,背包的容量為 W,求背包裡的物品的最大價值

$$(n \le 1000, c_i \le 10^9, w_i \le 100, W \le 1000)$$

- 注意物品數量不再是無限或是 0-1
- 如果將每個物品都拆開來看的話,光是物品數量就會超過 109
- 還記得二進位這東西嗎?我們只需要有 $2^0, 2^1, \ldots, 2^n$,便可湊出 $0 \sim 2^{n+1}-1$

有限背包問題

總共有 n 種物品,每個物品有其數量 c_i 、重量 w_i 、價值 v_i ,背包的容量為 W,求背包裡的物品的最大價值

$$(n \le 1000, c_i \le 10^9, w_i \le 100, W \le 1000)$$

- 注意物品數量不再是無限或是 0-1
- 如果將每個物品都拆開來看的話,光是物品數量就會超過 109
- 還記得二進位這東西嗎?我們只需要有 $2^0, 2^1, \dots, 2^n$,便可湊出 $0 \sim 2^{n+1}-1$
- lacksquare 在這裡也同理!我們將 c_i 拆成 $2^0, 2^1, \ldots$,就可以將物品數量變為 lacksquare a_i 了!

有限背包問題

總共有 n 種物品,每個物品有其數量 c_i 、重量 w_i 、價值 v_i ,背包的容量為 W,求背包裡的物品的最大價值

$$(n \le 1000, c_i \le 10^9, w_i \le 100, W \le 1000)$$

- 注意物品數量不再是無限或是 0-1
- 如果將每個物品都拆開來看的話,光是物品數量就會超過 109
- $lacksymbol{\blacksquare}$ 還記得二進位這東西嗎?我們只需要有 $2^0,2^1,\ldots,2^n$,便可湊出 $0\sim 2^{n+1}-1$
- $lacksymbol{\blacksquare}$ 在這裡也同理!我們將 c_i 拆成 $2^0,2^1,\ldots$,就可以將物品數量變為 $lacksymbol{\mathsf{Log}}\ c_i$ 了!

有限背包問題

總共有 n 種物品,每個物品有其數量 c_i 、重量 w_i 、價值 v_i ,背包的容量為 W,求背包裡的物品的最大價值

 $(n \le 1000, c_i \le 10^9, w_i \le 100, W \le 1000)$

- 注意物品數量不再是無限或是 0-1
- 如果將每個物品都拆開來看的話,光是物品數量就會超過 10⁹
- $lacksymbol{\blacksquare}$ 還記得二進位這東西嗎?我們只需要有 $2^0,2^1,\ldots,2^n$,便可湊出 $0\sim 2^{n+1}-1$
- lacksquare 在這裡也同理!我們將 c_i 拆成 $2^0, 2^1, \ldots$,就可以將物品數量變為 lacksquare a_i 了!
- 之後如果你們有機會學到 DP 優化,會再將這個做法優化到更快

更多例題

例題

- Array Description
- **■** Counting Towers
- CF 1526C1. Potions (Easy Version)

子序列 DP

一些名詞解釋

- Subsequence 子序列:從一個字串中挑出幾個字元組成的字串,前後相對順序不變,如:abc 的子序列為 a, b, c, ab, ac, bc, abc
- Substring 子字串:從一個字串中挑出某個區間的字元組成的字串,如:abc 的子字串為 a, b, c, ab, bc, abc

■ LCS:Longest Common Subsequence,最長共同子序列

- LCS:Longest Common Subsequence,最長共同子序列
- 給定兩字串 s_1, s_2 ,求一個最長的字串長度,使得該字串為 s_1, s_2 的子序列

■ 子序列 DP 的轉移式算是比較特別的

- 子序列 DP 的轉移式算是比較特別的
- $lacksymbol{\blacksquare} dp_{i,j}$: s_1 的前 i 個元素與 s_2 的前 j 個元素的 LCS 長度

- 子序列 DP 的轉移式算是比較特別的
- \blacksquare $dp_{i,j}$: s_1 的前 i 個元素與 s_2 的前 j 個元素的 LCS 長度
- 怎麼轉移呢?可以觀察到, $s_{1,i}$ 與 $s_{2,i}$ 只有兩種關係:一樣 or 不一樣

■ 我們先來看 $s_{1,i} = s_{2,j}$ 的情況

- 我們先來看 $s_{1,i} = s_{2,i}$ 的情況
- 假設 $s_{1,i}=s_{2,j}$,那麼以 $s_{1,i}$ 為結尾的某個共同子序列,去掉結尾之後,就會變成 s_1 的前 i-1 個元素與 s_2 的前 j-1 個元素的 LCS

(□▶ ◀♬▶ ◀불▶ ◀불▶ 불 쒸९♡

- 我們先來看 $s_{1,i} = s_{2,j}$ 的情況
- 假設 $s_{1,i}=s_{2,j}$,那麼以 $s_{1,i}$ 為結尾的某個共同子序列,去掉結尾之後,就會變成 s_1 的前 i-1 個元素與 s_2 的前 j-1 個元素的 LCS
- 例如: $s_1 = \mathsf{abcd}$, $s_2 = \mathsf{acd}$,而 i = 4, j = 3 時, $s_{1,4} = s_{2,3}$,因此以 d 結尾的 LCS 就會是"abc"、"ac" 的 LCS 加上 d

◆□▶ ◆□▶ ◆≧▶ ◆臺▶ 臺 め९○

- 我們先來看 $s_{1,i} = s_{2,i}$ 的情況
- 假設 $s_{1,i}=s_{2,j}$,那麼以 $s_{1,i}$ 為結尾的某個共同子序列,去掉結尾之後,就會變成 s_1 的前 i-1 個元素與 s_2 的前 j-1 個元素的 LCS
- 例如: $s_1 = \mathsf{abcd}$, $s_2 = \mathsf{acd}$,而 i = 4, j = 3 時, $s_{1,4} = s_{2,3}$,因此以 d 結尾的 LCS 就會是"abc"、"ac" 的 LCS 加上 d
- 發現這些性質之後,我們就可以推出在這樣的情況, $dp_{i,j} = dp_{i-1,j-1} + 1$ 了!

■ 那假如不一樣呢?

- 那假如不一樣呢?
- 因為 $s_{1,i} \neq s_{2,j}$,所以 (i,j) 的 LCS 一定不會有 $s_{1,i}$ 或是 $s_{2,j}$

- 那假如不一樣呢?
- 因為 $s_{1,i} \neq s_{2,j}$,所以 (i,j) 的 LCS 一定不會有 $s_{1,i}$ 或是 $s_{2,j}$
- 這代表 *i*, *j* 都是沒用的!

- 那假如不一樣呢?
- 因為 $s_{1,i} \neq s_{2,j}$,所以 (i,j) 的 LCS 一定不會有 $s_{1,i}$ 或是 $s_{2,j}$
- 這代表 *i*, *j* 都是沒用的!
- 既然他沒用,那我們就隨便抓之前的狀態當作最佳解吧!

LCS

- 那假如不一樣呢?
- 因為 $s_{1,i} \neq s_{2,j}$,所以 (i,j) 的 LCS 一定不會有 $s_{1,i}$ 或是 $s_{2,j}$
- 這代表 i, j 都是沒用的!
- 既然他沒用,那我們就隨便抓之前的狀態當作最佳解吧!
- $lacksymbol{\blacksquare}$ 在這個狀態下的轉移式: $dp_{i,j} = \max(dp_{i-1,j}, dp_{i,j-1})$

$$dp_{i,j} = \begin{cases} dp_{i-1,j-1} + 1 & \text{if } s_{1,i} = s_{2,j} \\ \max(dp_{i-1,j}, dp_{i,j-1}) & \text{otherwise} \end{cases}$$

■ 我們可以先來看看動畫

- 我們可以先來看看動畫
- $s_{1,i} = s_{2,j}$:代表轉移點在 (i-1,j-1)
- 將答案 ans 加上 $s_{1,i} \cdot \mathbf{i} 1 \cdot \mathbf{j} 1$

- 我們可以先來看看動畫
- $s_{1,i} = s_{2,j}$:代表轉移點在 (i-1,j-1)
- 將答案 ans 加上 s_{1,i}、i 1、j 1
- $s_{1,i} \neq s_{2,j}$:代表轉移點在 (i-1,j) 或是 (i,j-1)
- 看哪個比較大,將 *i*,*j* 移至該點

- 我們可以先來看看動畫
- $s_{1,i} = s_{2,j}$:代表轉移點在 (i-1,j-1)
- 將答案 ans 加上 s_{1,i}、i 1、j 1
- $s_{1,i} \neq s_{2,j}$:代表轉移點在 (i-1,j) 或是 (i,j-1)
- 看哪個比較大,將 *i,j* 移至該點
- 最後 *ans* 的逆序就是答案!

LCS 例題

AtCoder DP Contest F. LCS

給兩字串,求 LCS

- 對於兩個字串 s_1, s_2 , 你有以下三種方法可以操作:
 - 刪除某個字元
 - 插入某個字元
 - 修改某個字元
- \blacksquare 求需要最少操作幾次,才能將 s_1 變成 s_2
- 操作次數稱為編輯距離

舉例

- abc 可由一次刪除變成 ac
- abc 可由一次插入變成 abdc
- abc 可由一次修改變成 abd

轉移式

- 提示:這邊的狀態定義跟 LCS 一樣,轉移式也跟 LCS 有異曲同工之妙
- $lacktriangledown dp_{i,j}$ 為 $s_{1,1} \ldots s_{1,i}$ 跟 $s_{2,1} \ldots s_{2,j}$ 的編輯距離
- 試想可以怎麼從 LCS 的定義轉換過來

轉移式

- 提示:這邊的狀態定義跟 LCS 一樣,轉移式也跟 LCS 有異曲同工之妙
- $lacktriangledown dp_{i,j}$ 為 $s_{1,1} \ldots s_{1,i}$ 跟 $s_{2,1} \ldots s_{2,j}$ 的編輯距離
- 試想可以怎麼從 LCS 的定義轉換過來
- \blacksquare $s_{1,i} = s_{2,j}$:顯然不需要在 (i,j) 做任何操作
- 轉移式: $dp_{i,j} = dp_{i-1,j-1}$

轉移式 - 刪除

■ 接著是不同的情況

轉移式 - 刪除

- 接著是不同的情況
- 我們可以將 $s_{1,i}$ 刪除來得到 $s_{1,i-1}$
- 也就是說,(i,j) 可由一次編輯得到 (i-1,j) 的狀態

■ 如果要在 $s_{1,i}$ 後插入一個字元,你會選哪個?

■ 如果要在 $s_{1,i}$ 後插入一個字元,你會選哪個?

■ 顯然: $s_{2,i}$,這樣才有意義

- 如果要在 $s_{1,i}$ 後插入一個字元,你會選哪個?
- 顯然: $s_{2,j}$,這樣才有意義
- 既然你要為了 $s_{2,j}$ 再插入一個字元使其相等,那為何不乾脆刪掉 $s_{2,j}$?

- 如果要在 $s_{1,i}$ 後插入一個字元,你會選哪個?
- 顯然: $s_{2,i}$,這樣才有意義
- 既然你要為了 $s_{2,j}$ 再插入一個字元使其相等,那為何不乾脆刪掉 $s_{2,j}$?
- 所以刪除等價於插入,轉移式相同

轉移式 - 修改

■ 修改後長度不變,但能夠滿足 $s_{1,i}=s_{2,i}$

轉移式 - 修改

- $lacksymbol{\blacksquare}$ 修改後長度不變,但能夠滿足 $s_{1,i}=s_{2,i}$
- lacksquare 而相等的情況我們剛剛討論過了,轉移點 (i,j),只是這次需要花費一次編輯

轉移式 - 修改

- lacksquare 修改後長度不變,但能夠滿足 $s_{1,i}=s_{2,i}$
- 而相等的情況我們剛剛討論過了,轉移點 (i,j),只是這次需要花費一次編輯
- 轉移式: $dp_{i,j} = dp_{i-1,j-1} + 1$

最終轉移式

■ 最後,我們把三種情況的轉移式合併起來

$$dp_{i,j} = \begin{cases} dp_{i-1,j-1} & s_{1,i} = s_{2,j} \\ \min(dp_{i-1,j-1}, dp_{i-1,j}, dp_{i,j-1}) + 1 & \text{otherwise} \end{cases}$$

■ 時間複雜度 O(n²)

55 / 100

例題

CSES Edit Distance

編輯距離經典題

■ 編輯距離看起來好像很廢?

- 編輯距離看起來好像很廢?
- 但他幫我完成了一份分數蠻高的探究與實作報告

- 編輯距離看起來好像很廢?
- 但他幫我完成了一份分數蠻高的探究與實作報告
- 事實上,編輯距離可用來計算兩個 DNA 的相似程度

- 編輯距離看起來好像很廢?
- 但他幫我完成了一份分數蠻高的探究與實作報告
- 事實上,編輯距離可用來計算兩個 DNA 的相似程度
- 如果你們有生物報告或是探究報告要做,可以參考一下 (0

LIS

LIS

- Longest Increasing Subsequence,最長遞增子序列
- 跟 LCS 一樣,都是子序列問題
- 只是從"共同"的子序列,變成一個字串裡最長且元素呈現遞增 $(s_i \leq s_{i+1})$ 的子序列
- 例如 16723 的 LIS 就是 123

■ 狀態定義: dp_i :以第 i 個元素為結尾的 LIS

- 狀態定義: dp_i :以第 i 個元素為結尾的 LIS
- 對於所有 j < i,如果 $s_j \le s_i$,那就代表 s_i 可以接在 s_j 後面

- 狀態定義: dp_i :以第 i 個元素為結尾的 LIS
- 對於所有 j < i,如果 $s_j \le s_i$,那就代表 s_i 可以接在 s_j 後面
- 因此 i 的轉移點就是對於所有 j,滿足 $j < i, s_j \le s_i$

- 狀態定義: dp_i :以第 i 個元素為結尾的 LIS
- 對於所有 j < i,如果 $s_j \le s_i$,那就代表 s_i 可以接在 s_j 後面
- 因此 i 的轉移點就是對於所有 j,滿足 $j < i, s_j \le s_i$
- 取最好的接上去就可以了!

- 狀態定義: dp_i :以第 i 個元素為結尾的 LIS
- 對於所有 j < i,如果 $s_j \le s_i$,那就代表 s_i 可以接在 s_j 後面
- 因此 i 的轉移點就是對於所有 j,滿足 $j < i, s_j \le s_i$
- 取最好的接上去就可以了!

$\mathcal{O}(n\log n)$ 作法

■ $\mathcal{O}(n^2)$ 實在是太遜了,能不能更快?

$\mathcal{O}(n \log n)$ 作法

- $\mathcal{O}(n^2)$ 實在是太遜了,能不能更快?
- 遞增 ⇒ 單調性 ⇒ 能不能二分搜阿??
- 我們畫圖試試看,假設我們有 {4,5,1,2,3,10,7,2}

■ 一開始 4,5 都遞增,所以直接連起來

■ 接下來的 1 比任何一個數字都還要小,因此我們先擺在旁邊

(□) (□) (□) (□) (□)

■ 2 > 1,所以我們接在 1 **後面**

- 3 > 2,所以接在 2 後面
- 可以發現,第二條鍊已經比第一條鍊長了,所以將第一條鍊捨棄
- 同樣位在第二位,5 > 2,顯然 2 的潛力比較高(畢竟可以接比較多東西)

- 換句話說,如果在兩條鍊的同一位有兩數字 a, b,且 a > b,那麼直接留下 b 而不 是 a 肯定是最好的
- 也就是將數字大的直接淘汰
- 那我們重新試試看

■ 這步驟一樣

- 原本 1 應該是另一條鍊的第一項,但跟他並排的 2 > 1,潛力比較不好
- 所以我們把 2 捨棄,填上 1

■ 再把 5 用 2 替換掉

■ 將 3,10 接上

- 依剛剛的規則,用 7,2 將 10,3 替換掉
- 最後得到的就是 LIS 長度了!

■ 觀察一下規則可以發現,當我們加入新元素 A_i 時,我們可以在鍊裡找到一個元素 A_j 並將其取代 (A_j 滿足 $A_j \le A_i$ 且 A_j 盡可能小)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ♥9

- 觀察一下規則可以發現,當我們加入新元素 A_i 時,我們可以在鍊裡找到一個元素 A_j 並將其取代 (A_j 滿足 $A_j \le A_i$ 且 A_j 盡可能小)
- 有沒有很像二分搜?

- 觀察一下規則可以發現,當我們加入新元素 A_i 時,我們可以在鍊裡找到一個元素 A_j 並將其取代 (A_j 滿足 $A_j \le A_i$ 且 A_j 盡可能小)
- 有沒有很像二分搜?
- 其實這就是在做 lower bound

- 觀察一下規則可以發現,當我們加入新元素 A_i 時,我們可以在鍊裡找到一個元素 A_i 並將其取代 $(A_i$ 滿足 $A_i \le A_i$ 且 A_i 盡可能小)
- 有沒有很像二分搜?
- 其實這就是在做 lower bound
- 每次找到一個元素取代,若沒元素能夠取代就在鍊的尾端接上

- 觀察一下規則可以發現,當我們加入新元素 A_i 時,我們可以在鍊裡找到一個元素 A_j 並將其取代 $(A_j$ 滿足 $A_j \le A_i$ 且 A_j 盡可能小)
- 有沒有很像二分搜?
- 其實這就是在做 lower bound
- 每次找到一個元素取代,若沒元素能夠取代就在鍊的尾端接上
- 時間複雜度 $\mathcal{O}(n \log n)$

■ 應該有人有疑問:假設目前鍊長 4,我替換掉了位置 2,阿 3,4 又沒辦法接在 2 後面,怎麼會合法?

- 應該有人有疑問:假設目前鍊長 4,我替換掉了位置 2,阿 3,4 又沒辦法接在 2 後面,怎麼會合法?
- 這是因為這個鍊其實不是真正的 LIS,只是紀錄各種 IS 在同一位置上的最佳解罷了

- 應該有人有疑問:假設目前鍊長 4,我替換掉了位置 2,阿 3,4 又沒辦法接在 2 後面,怎麼會合法?
- 這是因為這個鍊其實不是真正的 LIS,只是紀錄各種 IS 在同一位置上的最佳解罷了
- 你可以把他想像成是在"新陳代謝"

子序列 DP 的構造解

■ 前面都是在講最大長度,沒有講構造出的答案

子序列 DP 的構造解

- 前面都是在講最大長度,沒有講構造出的答案
- DP 問題中,一個非常關鍵的點就是目前狀態的轉移點是哪一個

子序列 DP 的構造解

- 前面都是在講最大長度,沒有講構造出的答案
- DP 問題中,一個非常關鍵的點就是目前狀態的轉移點是哪一個
- 我們可以對每個狀態紀錄他是由哪個轉移點轉移得來的
- 最後再從最後一個一直往前推,就能夠找到答案了!
- 這部分就留給學員回家實作了

例題

CSES Increasing Subsequence

LIS 經典題目

APCS 202101 4. 飛黃騰達

見原題

2021 TOIP pC

見原題

BIT

- Binary Indexed tree,又稱 Fenwick Tree
- 可以說是簡化版的 Segment Tree

BIT

- 首先,我們要知道什麼是 lowbit
- lowbit 指的是數字在二進位下,最右邊的 1 代表的數字
- **例如** $5 = 101_{(2)}, lowbit(5) = 1 \cdot 6 = 110_{(2)}, lowbit(6) = 2$
- 在程式上可以用 x & (-x) 算出
- 因為 -x 就是 x 的補數 +1
- $(56)_{10} = (111000)_2, (-56)_{10} = (001000)_2$

BIT

- 接著來看 BIT 的定義
- BIT[i] 代表的是 [i-lowbit(i)+1,i] 的區間
- 也就是說,BIT[i] 代表的就是長度為 lowbit(i) 的區間

update

- lacksquare 如果我們要更改 A_i 的值,那就需要更改所有包含 i 的陣列
- 觀察之後會發現,從 i 開始,每次更改後將 i 加上 lowbit(i)
- 經過的點就是包含 i 的所有區間

query

- lacksquare 至於查詢 $1\sim i$ 的和,則是要避免有重疊的線段
- 觀察後,會發現其實就是不斷 -lowbit(i)
- OK!我們會 BIT 了

先來個簡單的

CSES Dynamic Range Sum Queries

請寫出一支程式,支援以下操作:

- update(i, x):將 A_i 加上 x
- \blacksquare query(l, r):查詢 $A_l, A_{l+1}, \cdots, A_r$ 的總和

■ BIT 也可以拿來計算最大值

- BIT 也可以拿來計算最大值
- 我們將 BIT 的區間定義成以該區間內的數字為結尾的 LIS 長度

- BIT 也可以拿來計算最大值
- 我們將 BIT 的區間定義成以該區間內的數字為結尾的 LIS 長度
- 也就是 query(i) 會回傳以 $1 \sim i$ 為結尾的最大 LIS 長度

- BIT 也可以拿來計算最大值
- 我們將 BIT 的區間定義成以該區間內的數字為結尾的 LIS 長度
- 也就是 query(i) 會回傳以 $1 \sim i$ 為結尾的最大 LIS 長度
- 假設這是 tmp,那我們在 tmp 之後就能再接上 i,使得 LIS 長度加一

- BIT 也可以拿來計算最大值
- 我們將 BIT 的區間定義成以該區間內的數字為結尾的 LIS 長度
- 也就是 query(i) 會回傳以 $1 \sim i$ 為結尾的最大 LIS 長度
- 假設這是 tmp,那我們在 tmp 之後就能再接上 i,使得 LIS 長度加一
- 如此一來,我們就可以使用 BIT 來計算 LIS 了!

最終步驟

- 1. 對於每個數字 a_i ,查詢 tmp = query(a_i 1)
- 2. update(a_i , tmp + 1)
- 3. 最後 query(夠大的數字) 就是答案!

逆序數對

TIOJ 1080 A. 逆序數對

計算符合以下條件的數對數量: $i < j, a_i > a_j$

■ 這題其實是分治的題目

逆序數對

TIOJ 1080 A. 逆序數對

計算符合以下條件的數對數量: $i < j, a_i > a_j$

- 這題其實是分治的題目
- 但我們可以很開心的用 BIT 解決

逆序數對

TIOJ 1080 A. 逆序數對

計算符合以下條件的數對數量: $i < j, a_i > a_j$

- 這題其實是分治的題目
- 但我們可以很開心的用 BIT 解決
- 將 query 設定為數字 $1 \sim i$ 出現的次數

逆序數對

TIOJ 1080 A. 逆序數對

計算符合以下條件的數對數量: $i < j, a_i > a_j$

- 這題其實是分治的題目
- 但我們可以很開心的用 BIT 解決
- 將 query 設定為數字 $1 \sim i$ 出現的次數
- 對於某個數字 a_j $a_i > a_j$ 的數量就是 n query(a_j)

DAG

- 不確定圖論有沒有講過
- DAG:有向無環圖
- 能夠拓樸排序的就是 DAG

- 回想一下第一堂 DP 課,講 Bottom Up 的地方
- 有提到"需要知道轉移點的前後順序"
- 有沒有覺得,這跟某種圖論技巧有關呢?

■ 回想一下,拓樸排序的作用是甚麼?

- 回想一下,拓樸排序的作用是甚麼?
- 構造出一個順序,使得所有邊都是由這個順序的前面指向後面

- 回想一下,拓樸排序的作用是甚麼?
- 構造出一個順序,使得所有邊都是由這個順序的前面指向後面
- 其實這就跟轉移點的前後順序一樣!

- 回想一下,拓樸排序的作用是甚麼?
- 構造出一個順序,使得所有邊都是由這個順序的前面指向後面
- 其實這就跟轉移點的前後順序一樣!
- 將轉移點之間的關係畫成圖,迴圈的順序便是拓樸排序了

- 回想一下,拓樸排序的作用是甚麼?
- 構造出一個順序,使得所有邊都是由這個順序的前面指向後面
- 其實這就跟轉移點的前後順序一樣!
- 將轉移點之間的關係畫成圖,迴圈的順序便是拓樸排序了
- 有了一定的順序,就能夠拿來 DP

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

■ 首先,最長路徑有甚麼性質?

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

- 首先,最長路徑有甚麼性質?
- 一定是入度為 0 的點開始,如何證明?

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

- 首先,最長路徑有甚麼性質?
- 一定是入度為 0 的點開始,如何證明?
- 若最長路徑的起點 v 入度 $\neq 0$,那麼一定有一個點 u 能夠通到 v,那 v 就不可能 是起點了

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

- 首先,最長路徑有甚麼性質?
- 一定是入度為 0 的點開始,如何證明?
- 若最長路徑的起點 v 入度 $\neq 0$,那麼一定有一個點 u 能夠通到 v,那 v 就不可能 是起點了
- 由反證法得證

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

■ 接著回到 DP

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

- 接著回到 DP
- 狀態很好訂:*dp_i*:以 *i* 為結尾的最大路徑長度

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

- 接著回到 DP
- 狀態很好訂:*dp_i*:以 *i* 為結尾的最大路徑長度
- 接著來找轉移點,應該也很好想,就是所有通向 i 的邊

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

- 接著回到 DP
- 狀態很好訂:*dp_i*:以 *i* 為結尾的最大路徑長度
- 接著來找轉移點,應該也很好想,就是所有通向 i 的邊
- 轉移式: $dp_i = \max(dp_i + 1)$ (j 表所有能連向 i 的邊)

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

- 接著回到 DP
- 狀態很好訂:*dp_i*:以 *i* 為結尾的最大路徑長度
- 接著來找轉移點,應該也很好想,就是所有通向 i 的邊
- 轉移式: $dp_i = \max(dp_i + 1)$ (j 表所有能連向 i 的邊)
- 最後,利用 Topo Sort 的順序依序轉移,最後取最大的 dp_i 就是答案!

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

- 接著回到 DP
- 狀態很好訂:*dp_i*:以 *i* 為結尾的最大路徑長度
- 接著來找轉移點,應該也很好想,就是所有通向 i 的邊
- 轉移式: $dp_i = \max(dp_i + 1)$ (j 表所有能連向 i 的邊)
- 最後,利用 Topo Sort 的順序依序轉移,最後取最大的 dp_i 就是答案!
- 其實這題也有只使用 DFS 的作法,大家可以想想看

CSES Longest Flight Route

跟 AtCoder DP Contest G 類似,但是要求出一組解

■ 我們已經知道怎麼算長度了,那路徑怎麼算呢?

CSES Longest Flight Route

跟 AtCoder DP Contest G 類似,但是要求出一組解

- 我們已經知道怎麼算長度了,那路徑怎麼算呢?
- 還記得子序列 DP 的構造解嗎?
- 我們在子序列 DP 那邊會利用紀錄轉移點來得到構造解,在這裡也可以用!

CSES Longest Flight Route

跟 AtCoder DP Contest G 類似,但是要求出一組解

- 我們已經知道怎麼算長度了,那路徑怎麼算呢?
- 還記得子序列 DP 的構造解嗎?
- 我們在子序列 DP 那邊會利用紀錄轉移點來得到構造解,在這裡也可以用!
- pre_i: i 的轉移點

CSES Longest Flight Route

跟 AtCoder DP Contest G 類似,但是要求出一組解

- 我們已經知道怎麼算長度了,那路徑怎麼算呢?
- 還記得子序列 DP 的構造解嗎?
- 我們在子序列 DP 那邊會利用紀錄轉移點來得到構造解,在這裡也可以用!
- pre_i:i 的轉移點
- lacksquare 在拓樸排序的過程中更新 pre_i ,最後再把這些點連起來就是答案了

例題

AtCoder DP Contest G - Longest Path

給 DAG,求出一條最長的路徑

CSES https://cses.fi/problemset/task/1674/

共有 n 人,第 1 人是老闆,其餘每個人都有一個上司,求每個人的所有下屬數量

CSES Longest Flight Route

跟 AtCoder DP Contest G 類似,但是要求出一組解

樹 DP

樹 DP

- 樹其實就是一種 DAG,有些樹 DP 也可以用 DAG 實作(如果樹是有向的),不過這 邊我會主要以 DFS 的方式實作
- 複習一下樹的術語:
 - root:樹根,樹的最頂端
 - child:子節點,某個點往下一層的點
 - sub-tree:子樹,由子節點組成的樹
 - depth:深度,從 root 到某個點的距離

■ 樹直徑:樹上最長的那條路徑

- 樹直徑:樹上最長的那條路徑
- 假設有一條路徑是以 i 為中心,往 i 的兩條子樹延伸

- 樹直徑:樹上最長的那條路徑
- 假設有一條路徑是以 i 為中心,往 i 的兩條子樹延伸
- 怎樣會最長?

- 樹直徑:樹上最長的那條路徑
- 假設有一條路徑是以 i 為中心,往 i 的兩條子樹延伸
- 怎樣會最長?
- \blacksquare 從 i 的子節點裡,找出能夠延伸到最長的兩個路徑

■ 假設 dp_i 為以 i 為中心的最大長度

- 假設 dp_i 為以 i 為中心的最大長度
- 那我們會需要幾種東西:
 - dep_i:i 的深度
 - sub_i: i 的子樹中最深的點

- 假設 dp_i 為以 i 為中心的最大長度
- 那我們會需要幾種東西:
 - dep_i:i 的深度
 - sub_i: i 的子樹中最深的點
- 那麼 dp_i 怎麼算?

- 假設 dp_i 為以 i 為中心的最大長度
- 那我們會需要幾種東西:
 - dep_i:i 的深度
 - *sub*_i: *i* 的子樹中最深的點
- 那麼 dp_i 怎麼算?
- 假設 v 是 i 的子樹,而其中擁有最大 sub 的兩個點是 a,b,那麼 dp_i = $sub_a + sub_b 2 \cdot dep_i$

- 假設 dp_i 為以 i 為中心的最大長度
- 那我們會需要幾種東西:
 - dep_i:i 的深度
 - sub_i: i 的子樹中最深的點
- 那麼 dp_i 怎麼算?
- 假設 v 是 i 的子樹,而其中擁有最大 sub 的兩個點是 a,b,那麼 dp_i = $sub_a + sub_b 2 \cdot dep_i$
- lacktriangleright 至於 sub_i 怎麼算呢?簡單,把 dep 當作 DFS 的回傳值,或是直接記錄在陣列裡,就可以收集到所有子樹的資料了!

例題

CSES Tree Diameter

求樹直徑

TIOJ https://tioj.ck.tp.edu.tw/problems/1213

求有權重的樹直徑

2022 TOIP B. 建設人工島

見原題

APCS 202007 P4. 病毒演化

有 n 種病毒,每個病毒由一個長度為 m 的 RNA 序列組成,包含 A、U、C、G、Q(Q 代表不確定)

除了原始病毒外,所有病毒都是由某個病毒演化而來的,求將 @ 填入某個字元後,每個病毒與它演化來源的病毒的距離總合最小值是多少?(距離指的是不一樣的位置數)

■ 狀態可以怎麼訂?我們先將字元編號:AUCG@ 對應 01234(後面會以 $s_{i,j}$ = 0/1/2/3/4 表示)

APCS 202007 P4. 病毒演化

有 n 種病毒,每個病毒由一個長度為 m 的 RNA 序列組成,包含 A、U、C、G、Q(Q 代表不確定)

除了原始病毒外,所有病毒都是由某個病毒演化而來的,求將 @ 填入某個字元後,每個病毒與它演化來源的病毒的距離總合最小值是多少?(距離指的是不一樣的位置數)

- 狀態可以怎麼訂?我們先將字元編號:AUCG@ 對應 01234(後面會以 $s_{i,j}$ = 0/1/2/3/4 表示)
- lacksquare $dp_{i,j,k}$:第 i 個病毒,第 j 個位置,第 k 種字元的最小距離

APCS 202007 P4. 病毒演化

有 n 種病毒,每個病毒由一個長度為 m 的 RNA 序列組成,包含 A、U、C、G、Q(Q 代表不確定)

除了原始病毒外,所有病毒都是由某個病毒演化而來的,求將 @ 填入某個字元後,每個病毒與它演化來源的病毒的距離總合最小值是多少?(距離指的是不一樣的位置數)

- 狀態可以怎麼訂?我們先將字元編號:AUCG@ 對應 01234(後面會以 $s_{i,j}$ = 0/1/2/3/4 表示)
- lacksquare $dp_{i,j,k}$:第 i 個病毒,第 j 個位置,第 k 種字元的最小距離
- 對於每個 RNA 序列,我們需要先做一些操作:

APCS 202007 P4. 病毒演化

有 n 種病毒,每個病毒由一個長度為 m 的 RNA 序列組成,包含 A、U、C、G、Q(Q 代表不確定)

除了原始病毒外,所有病毒都是由某個病毒演化而來的,求將 @ 填入某個字元後,每個病毒與它演化來源的病毒的距離總合最小值是多少?(距離指的是不一樣的位置數)

- 狀態可以怎麼訂?我們先將字元編號:AUCG@ 對應 01234(後面會以 $s_{i,j}$ = 0/1/2/3/4 表示)
- lacksquare $dp_{i,j,k}$:第 i 個病毒,第 j 個位置,第 k 種字元的最小距離
- 對於每個 RNA 序列,我們需要先做一些操作:

APCS 202007 P4. 病毒演化

有 n 種病毒,每個病毒由一個長度為 m 的 RNA 序列組成,包含 A、U、C、G、@ (@ 代表不確定)

除了原始病毒外,所有病毒都是由某個病毒演化而來的,求將 @ 填入某個字元後,每個病毒與它演化來源的病毒的距離總合最小值是多少?(距離指的是不一樣的位置數)

■ 至於轉移式怎麼訂呢?

APCS 202007 P4. 病毒演化

有 n 種病毒,每個病毒由一個長度為 m 的 RNA 序列組成,包含 A、U、C、G、@ (@ 代表不確定)

除了原始病毒外,所有病毒都是由某個病毒演化而來的,求將 @ 填入某個字元後,每個病毒與它演化來源的病毒的距離總合最小值是多少?(距離指的是不一樣的位置數)

- 至於轉移式怎麼訂呢?
- 對於轉移點 v,我們枚舉 $k,l=0\sim 4$,如果 $k\neq l$ 就代表要 +1

APCS 202007 P4. 病毒演化

有 n 種病毒,每個病毒由一個長度為 m 的 RNA 序列組成,包含 A、U、C、G、@ (@ 代表不確定)

除了原始病毒外,所有病毒都是由某個病毒演化而來的,求將 @ 填入某個字元後,每個病毒與它演化來源的病毒的距離總合最小值是多少?(距離指的是不一樣的位置數)

- 至於轉移式怎麼訂呢?
- 對於轉移點 v,我們枚舉 $k,l=0\sim 4$,如果 $k\neq l$ 就代表要 +1
- $lacksymbol{\blacksquare}$ 最終轉移式: $dp_{i,j,k} = \sum \min_{l=0}^4 (dp_{v,j,l} + (k
 eq l))$

APCS 202007 P4. 病毒演化

有 n 種病毒,每個病毒由一個長度為 m 的 RNA 序列組成,包含 A、U、C、G、Q(Q 代表不確定)

除了原始病毒外,所有病毒都是由某個病毒演化而來的,求將 @ 填入某個字元後,每個病毒與它演化來源的病毒的距離總合最小值是多少?(距離指的是不一樣的位置數)

- CSES Tree Matching
- CF 1528A. Parsa's Humongous Tree