Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 3

Bokmål

Faglig kontakt under eksamen: Anders Smedstuen Lund (735 91 625 / 41 45 19 15)

Kontinuasjonseksamen i Elementær diskret matematikk (MA0301)

Torsdag 8. august 2013 Tid: 0900 – 1300 Hjelpemiddelkode: D

Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt. Alle svar skal begrunnes.

Oppgave 1

- a) Hvor mange forskjellige ord er det mulig å danne med bokstavene i MISSISSIPPI? I hvor mange av disse ordene står de fire I-ene ved siden av hverandre?
- **b)** Hva er koeffisienten til x^7y^4 i uttrykket $(3x+2y)^{11}$?

Oppgave 2 Bruk logiske regneregler til å vise at påstandene

$$(\neg(p \vee \neg q)) \to (q \to r)$$

og

$$q \to (p \vee r)$$

er logisk ekvivalente.

Oppgave 3 La $I = \{0, 1\}$. Tegn en endelig tilstandsmaskin som 'forsinker' input med ett symbol. Det vil si at hvis maskinen får inputstrengen

$$x_1 x_2 x_3 \dots x_{m-1} x_m \in I^+$$

så skal den returnere strengen

$$0x_1x_2\dots x_{m-2}x_{m-1}.$$

Oppgave 4

- a) Bruk induksjon til å vise at enhver mengde med n elementer har nøyaktig 2^n delmengder, for hver $n \geq 0$.
- b) La $A = \{1, 2, 3, 4, 5\}$. Hvor mange relasjoner finnes det på A?

Oppgave 5

a) Er de følgende to grafene isomorfe?

b) Følgende graf er kjent som Petersen-grafen. Vis at den ikke er planar.

Oppgave 6 Bruk Dijkstras algoritme til å finne korteste vei fra A til B i den følgende vektede grafen.

Oppgave 7

- a) Hva menes med en relasjon på en mengde? Forklar hva som menes med at en relasjon er refleksiv; transitiv; symmetrisk; antisymmetrisk. Hvilke av disse egenskapene definerer en ekvivalensrelasjon?
- b) La \mathbb{R} være mengden av reelle tall og la $\mathcal{P}(\mathbb{R})$ betegne mengden av alle delmengder av \mathbb{R} . Betrakt relasjonen \sim på $\mathcal{P}(\mathbb{R})$ definert ved

$$A \sim B \Leftrightarrow A \cap B \neq \emptyset.$$

 $Er \sim en ekvivalensrelasjon?$