

Hammad Khan Musakhel 21801175

> CS342-002 HW3

11/03/2021

```
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
//good practice to enlist the functions already/beforehand
void * avgthread(void * param);
void * minthread(void * param);
void * maxthread(void * param);
// size of array
int MAXSIZE = 1000:
// maximum number of threads
int THREADCOUNT = 3:
int lower = 1;
int upper = 100;
int array[1000];
int count = 0;
int minimum = 0:
int maximum = 0;
double average = 0;
void * avgthread(void * param)
  int i;
  printf("1st thread \n");
  for (i = 0; i < MAXSIZE; i++) {
     count += array[i];
  average = count / MAXSIZE;
  pthread_exit(NULL);
}
void * minthread(void * param)
```

```
{
  printf("2nd thread \n");
  minimum = array[0];
  for (int i = 0; i < MAXSIZE; i++)
     if(array[i] < minimum){</pre>
       minimum = array[i];
  }
  pthread_exit(NULL);
void * maxthread(void * param)
  printf("3rd thread\n");
  for (int j = 0; j < MAXSIZE; j++)
     if(array[j] > maximum){
       maximum = array[j];
  pthread_exit(NULL);
}
// Driver Code
int main()
  //Generate random number
  for(int i = 0; i < 1000; i++)
  {
     array[i]= rand() % 1000;
  pthread_t threads[THREADCOUNT]; //array of thread creations
  // Creating 3 threads
  pthread_create(&threads[0], NULL, avgthread, (void*)NULL);
  pthread_create(&threads[1], NULL, minthread, (void*)NULL);
  pthread_create(&threads[2], NULL, maxthread, (void*)NULL);
```

```
// waiting for completion
for (int i = 0; i < THREADCOUNT; i++) {
    pthread_join(threads[i], NULL);
}

printf("average = %f \n", average);
printf("minimum = %d \n", minimum);
printf("maximum = %d \n", maximum);
return 0;
}</pre>
```

Q3)

Considering 1 as the time taken to execute, then: 1/(0.25) + (0.75/8) = 2.906 is the approximation for speed up.

The limit is achieved when threads are infinite; 1/0.25 + (0) = 4 4 is the limit

Q4)

q = 30 ms

Process	Finish Time	Waiting Time
Α	81	31
В	223	128
С	203	128
D	132	57
E	243	128

Process	Finish Time	Waiting Time
Α	124	74
В	249	154
С	186	111
D	145	70
Е	238	123

q = 0.3 ms

Process	Finish Time	Waiting Time
Α	224	174
В	327	232
С	242	167
D	171	96
E	294	179

SRJF

Process	Finish Time	Waiting Time
Α	50	0
В	240	145
С	110	35
D	75	0
Е	160	45

FCFS

Process	Finish Time	Waiting Time
A	50	0

Process	Finish Time	Waiting Time
В	130	35
С	170	95
D	190	115
Е	240	125

Q5)

Initial assumption = 20 3 bursts of lengths 24, 18, and 30 assuming alpha = 0.4

.:.

$$T1 = (0.4)(24) + (0.6)(20) = 21.6$$

$$T2 = (0.4)(18) + (0.6)(21.6) = 20.16$$

$$T3 = (0.4)(30) + (0.6)(20.16) = 24.096$$

24.096 Ans.