Exercise 3

Zhiwei Ying

1.

Proof of a)

Here is the truth table of $p \to (q \to p)$.

	· P)•							
p	q	$q \rightarrow p$	$p \to (q \to p)$					
T	T	Т	Т					
Т	F	Т	Т					
F	Т	F	T					
F	F	Т	T					

Thus, $p \to (q \to p)$ is a tautology. Q.E.D.

Proof of b)

Here is the truth table of $(p \to q \to r) \to (p \to q) \to (p \to r)$.

p	q	r	$p \rightarrow q$	$p \rightarrow r$	$q \rightarrow r$	$p \to q \to r$	$(p \to q) \to (p \to r)$	$(p \to q \to r) \to (p \to q) \to (p \to r)$
T	T	T	T	T	T	T	Т	T
T	T	F	T	F	F	F	F	T
T	F	T	F	T	T	Т	Т	T
T	F	F	F	F	T	Т	T	Т
F	T	Т	T	Т	T	Т	T	Т
F	T	F	T	T	F	T	T	Т
F	F	Т	Т	Т	T	Т	Т	Т
F	F	F	T	Т	T	Т	T	Т

Thus, $(p \to q \to r) \to (p \to q) \to (p \to r)$ is a tautology. *Q.E.D.*

$Proof \ of \ c)$

Here is the truth table of $p \rightarrow q \rightarrow r$.

p	q	r	$q \rightarrow r$	$p \to q \to r$
T	T	T	Т	T
T	T	F	F	F
T	F	T	Т	T
Т	F	F	Т	T
F	T	Т	Т	Т
F	T	F	F	T
F	F	Т	T	T
F	F	F	Т	Т

p	q	r	$p \wedge q$	$(p \land q) \rightarrow r$
T	T	T	T	Т
T	Т	F	T	F
T	F	T	F	Т
T	F	F	F	Т
F	T	T	F	Т
F	Т	F	F	Т
F	F	T	F	Т
F	F	F	F	Т

Thus, $p \to q \to r$ and $(p \land q) \to r$ are logically equivalent. Q.E.D.

2.

Proof of a)

If $[[\phi]]_J = T$, then $[[\phi|\phi]]_J = F$, $[[\neg\phi]]_J = F$.

If $[[\phi]]_J = F$, then $[[\phi|\phi]]_J = T$, $[[\neg\phi]]_J = T$.

Thus for any J, $\phi | \phi$ and $\neg \phi$ are logically equivalent. Q.E.D.

 $Proof\ of\ b)$

From a), we know that $(\phi|\psi)|(\phi|\psi) \equiv \neg(\phi|\psi)$.

Here are the truth tables of $\neg(\phi|\psi)$ and $\phi \wedge \psi$.

φ	ψ	$\phi \wedge \psi$
T	T	T
T	F	F
F	T	F
F	F	F

φ	ψ	$\phi \psi$	$\neg(\phi \psi)$
T	T	F	T
T	F	Т	F
F	Т	Т	F
F	F	Т	F

Thus, we know that $(\phi|\psi)|(\phi|\psi)$ and $\phi \wedge \psi$ are logically equivalent. Q.E.D.

Proof of c)

We know that every compound proposition is logically equivalent to a compound proposition involving only \neg and \land .

From a), b), we can find that $(\phi|\psi)|(\phi|\psi)$ and $\phi \wedge \psi$ are logically equivalent, $\phi|\phi$ and $\neg \phi$ are logically equivalent. Thus, every compound proposition is logically equivalent to a compound proposition involving only |, which means | itself forms a functionally complete collection of logical operators. Q.E.D.