

The power problem

Power dissipation in CMOS & calculation

Techniques for dynamic and leakage power reduction

Power analysis in practice

imec

The power problem

Power dissipation in CMOS & calculation

Techniques for dynamic and leakage power reduction Power analysis in practice

imec

Psw: DEFINITION

Psw=Toggle_rate x0.5x Vdd² xC

```
Toggle_rate: estimated or from vcd/saif file

C= sum(Cin) + wire cap

Estimated wire_cap = f(wire_load_model, fanout)

Real wire_cap (available after layout .spef file)

In .lib file (UMC 90nm):

capacitive_load_unit(1.0,pf);
```

Psw: EXAMPLEWIRE LOAD MODEL

Psw:REPORT_POWER_CALCULATION <NET>

```
Net Switching Power Calculation
```

net: di

driver: interrupt_pad/U_inputpad_padlim/O

Switching power = 3.209e-09W

net switching power = switching energy * net toggle rate

Switching Energy Per Transition = 0.01604

switching energy = 0.5 * capacitance * voltage ^ 2

total net capacitance = 0.03961

voltage = 0.9000

Net Toggle Rate = 0.0002000 (user annotated)

imec

•© IMEC 2010

Psc

= internal short circuit power + power due to switching of internal caps

Depends on capacitive load + transition times In .lib file (UMC 90nm) (unit = mW)

imec

Psc: EXAMPLE FOR INPUT PAD

Psc: REPORT_POWER_CALCULATION <PIN> ...

```
Pin Internal Power Calculation

cell: interrupt_pad/U_inputpad_padlim (UYFNGA)

pin: O

path source: I

state condition: !SMT

State and Path Dependent Rise Pin Internal Power = 2.85 I e-06 W

pin internal power = internal energy * pin toggle rate

State and Path Dependent Rise Pin Toggle Rate = 0.0001000 (estimated)

.......
```



```
PLK: REPORT_POWER_CALCULATION <INSTANCE>

Cell Leakage Power Calculation
    cell: interrupt_pad/U_inputpad_padlim (UYFNGA)
    state condition:!I * IE * !PU * !PD * !SMT

State Dependent Leakage Power = I.782e-07 W
    cell leakage power = leakage power value * state probability

State Probability = 0.9560 (estimated)
......
```


The power problem

Power dissipation in CMOS & calculation

Techniques for dynamic and leakage power reduction

Power analysis in practice

imec

© IMEC 2010

TECHNIQUES FOR DYNAMIC AND LEAKAGE POWER REDUCTION

Adapt the clock tree

Tune the logic

Use multiple VT cells

Tune VDD

Power shutoff (PSO)

Control the substrate bias

Use multiple transistor lengths

Architectural changes

Comparison of main power reducing techniques

imec

ADAPT THE CLOCK TREE

Up to 50 % or more of the dynamic power savings

- Clock always toggles
- Large capacitive load

Clock gating is mandatory when

Data only loaded at low frequency

So, no dynamic power dissipation when clock is shut off

imec

© IMEC 2010

TECHNIQUES FOR DYNAMIC AND LEAKAGE POWER REDUCTION

Adapt the clock tree

Tune the logic

Use multiple VT cells

Tune VDD

Power shutoff (PSO)

Control the substrate bias

Use multiple transistor lengths

Architectural changes

Comparison of main power reducing techniques

imec

TECHNIQUES FOR DYNAMIC AND LEAKAGE POWER REDUCTION

Adapt the clock tree

Tune the logic

Use multiple VT cells

Tune VDD

Power shutoff (PSO)

Control the substrate bias

Use multiple transistor lengths

Architectural changes

Comparison of main power reducing techniques

imec

© IMEC 2010

•23

Comparison of main power reducing techniques

Architectural changes

•© IMEC 2010

imec

TUNE YDD

MSV (multi supply voltage) design

Dynamic voltage scaling

Dynamic voltage and frequency scaling

•@IMEC2010 -27

DYNAMIC VOLTAGE AND FREQUENCY SCALING

Some power domains can operate at diff modes

- Voltage & frequency (VI,FI;V2,F2;..)
- ▶ → different timing libraries & timing constraints files
- Combinations can be optimized in parallel (MMMC)

Power controller needed to

- ► Select right voltage
- Select right frequency

imec

© IMEC 201

ADAPTIVE VOLTAGE AND FREQUENCY SCALING

Closed loop system

V & F modified due to variations in

T, process, IR drop

Dedicated analog circuits

Optimal power reduction

Tool support ??

imec

TECHNIQUES FOR DYNAMIC AND LEAKAGE POWER REDUCTION

Adapt the clock tree

Tune the logic

Use multiple VT cells

Tune VDD

Power shutoff (PSO)

Control the substrate bias

Use multiple transistor lengths

Architectural changes

Comparison of main power reducing techniques

imec

© IMEC 2010

TECHNIQUES FOR DYNAMIC AND LEAKAGE POWER REDUCTION

Adapt the clock tree

Tune the logic

Use multiple VT cells

Tune VDD

Power shutoff (PSO)

Control the substrate bias

Use multiple transistor lengths

Architectural changes

Comparison of main power reducing techniques

imec

EXAMPLE I : VOLTAGE REDUCTION AND PARALLELISM

Single adder at frequency f: $P_{ref} = fC_{ref}V_{pp}^2$

Two adders at frequency f/2: $P = \frac{f}{2} (\underbrace{2.1 \cdot C_{ref}}) V_{\text{DD}}^2 = 1.05 \cdot P_{ref}$ Routing overhead (estimation)

Operation at frequency f/2 allows to lower V_{DD}:

$$P = \frac{f}{2} (2.1 \cdot C_{ref}) (0.75 \cdot V_{pp})^2 = 0.6 \cdot P_{ref}$$
Reduced supply (estimation)

Parallelism helps if (and only if) the supply can be lowered

→ Parallelism + V reduction + f reduction
gives you P reduction for area increase!

imec

© IMEC 2010

•33

EXAMPLE 2: MEMORY SPLITTING

If the software and/or data are persistent in one portion of a memory

- → split that block of memory into portions.
- → selectively power down the unused

imec

TECHNIQUES FOR DYNAMIC AND LEAKAGE POWER REDUCTION

Adapt the clock tree

Tune the logic

Use multiple VT cells

Tune VDD

imec

Power shutoff (PSO)

Control the substrate bias

Use multiple transistor lengths

Architectural changes

Comparison of main power reducing techniques

	Dynamic Power Savings	Leakage Power Savings	Timing Penalty	Area Penalty	Complexity and TTM Penalties	Imple- mentation Impact	Design Impact	Verification Impact
Dynamic po	wer reduction	n techniques						
Clock gating	20%	~0X	~0% Clock tree insertion delay	<2%	None	Low	Low	None
Operand isolation	<5%	~0X	~0% May add a few gates to pipeline	None	None	None	None	None
Logic restruc- turing	<5%	~0X	~0%	Little	None	None	None	None
Logic resizing	<5%	~0X	~0%	~0% to -10%	None	None	None	None
Transition rate buffering	<5%	~0X	~0%	Little	None	None	None	None
Pin swapping	<5%	~0X	~0%	None	None	None	None	None

	Dynamic Power Savings	Leakage Power Savings	Timing Penalty	Area Penalty	Complexity and TTM Penalties	Imple- mentation Impact	Design Impact	Verification Impact
Leakage po	wer reduction	techniques		,		,	,	,
Multi-V _{th}	0%	2-3X	~0% Automated	2 to -2%	Low	Low	None	None
Multi- supply voltage (MSV)	40–50%	2X	~0% Adds level shifters; clock scheduling issues due to latency changes	<10% Power routing and power inter- connect; level shifters	High Design time, turnaround time, TTM	Medium	Medium	Low
DVFS	40–70%	2–3X	~0% Adds level shifters, power-up sequence; clock scheduling issues due to dynamic latency changes	<10% Adds level shifters and a power manage- ment unit	High Design time, turnaround time, TTM	High	High	High

	Dynamic Power Savings	Leakage Power Savings	Timing Penalty	Area Penalty	Complexity and TTM Penalties	Imple- mentation Impact	Design Impact	Verification Impact
Leakage po	wer reduction	techniques			*			
Power shutoff (PSO)	~0%	10-50X	4–8% Adds isolation cells, complex timing, wakeup time, rush currents	5-15% Adds isolation cells, state retention cells; always- on cells; may have wider power grid due to rush currents; power manage- ment unit	High System architecture, support for power control, verification, synthesis, implementa- tion, DFT	Medium- high	High	High
Memory splitting	~0%	Varies	Varies Adds isolation cells for power shutoff	Varies	Varies	Medium- high	High	High
Substrate biasing	~0%	10X	10%	<10%	High	High	Medium -high	Medium

The power problem

Power dissipation in CMOS

Techniques for dynamic and leakage power reduction

Power analysis in practice

imec

The power problem

Power dissipation in CMOS & calculation

Techniques for dynamic and leakage power reduction

Power analysis in practice

imec

© IMEC 2010

POWER ANALYSIS IN PRACTICE

- Average power analysis based on real stimuli
 - Toggle info (either vcd or saif) for zones of interest
 - Timing constraints (input transition constraints + loads)
 - Estimated wire loads (pre-layout) / Real loads (post-layout)
 - => Detailed power consumption of all sub-units
- Dynamic power analysis
 - Complete waveforms for all wires (vcd) for zones of interest
 - Timing constraints (input transition constraints + loads)
 - Estimated wire loads / Real loads (post-layout)
 - => Peak power : single value + time

imec

POWER ANALYSIS IN PRACTICE

Example of tools that may be used

- primetime : generate timing of the cells (=> sdf)

 based on input transitions and loads
- modelsim: simulate the testbenches (=> vcd)
 instantiating gate level netlist (+sdf)
- primetime-px: power analysis

imec

@ IMEC 2010

Pre-layout problem:

Non-balanced clock tree in the netlist

Clock nets = ideal

Clock gates(=delay)

Possible hold time issues during simulation

Propagation of X

Useless vcd file

Image | Clock | Clock

GENERATE TIMING OF CELLS (=> SDF)

Pre-layout solution:

Annotate:

- zero delays to the clock gates
- fixed delay to all flops (eg. 0.5 ns)
- regular delay to all other cells (based on wire load)

Note: select corner(.lib) for worst case power:

Eg: best process/ low temperature/ highest voltage

imec

•© IMEC 2010

EXAMPLE: GENERATE SDF(I)

Start primetime (pt_shell) - only main commands

read_db libraries (bc)>
read_verilog <netlist>
set auto_wire_load_selection true
set_wire_load_mode enclosed

imec

EXAMPLE: GENERATE SDF(2)

EXAMPLE: GENERATE SDF(3)

•© IMEC 2010

imec

EXAMPLE: GENERATE SDF(3) report annotated delay -list annotated write sdf -context verilog -version 3.0 -include (SETUPHOLD RECREM) \$SDF DIR/\${TopEntity}ZeroDelay0d5.sdf . . . (CELL (CELLTYPE "UYFNGA") (INSTANCE IObus_in_4_pad/U_inputpad_padlim) (DELAY (ABSOLUTE (CONDELSE (IOPATH I O (0.296::0.296) (0.320::0.320))) (CONDELSE (IOPATH IE O (1.249::1.249) (0.525::0.525))) (COND SMT==0 (IOPATH I O (0.296::0.296) (0.320::0.320))) (COND SMT==0 (IOPATH IE O (1.249::1.249) (0.525::0.525))) imec •© IMEC 2010 49

process GenPLL_FREF

> 0 - pad_scan_enable 0 - pad_test

tb_hte

imec

•© IMEC 2010

EXAMPLE: SIMULATION (3)

```
#compile verilog libraries & netlist

vlog -work UMC_lib $UMC_CORE

vlog -work UMC_lib $UMC_IOS

vlog -work UMC_lib $UMC_RAM1

vlog -work UMC_lib $UMC_RAM2

vlog -work UMC_lib $UMC_PLL

vlog -work NanoSoc_lib $NETLIST

#compile extra VHDL levels on top of NanoSOC_1 into NanoSoc_lib

vcom -work NanoSoc_lib $TB/nanoSOC_gate_level.vhd

vcom -work NanoSoc_lib $RTL/nanoSoc_package.vhd # only component

#compile all VHDL testbench files into TB_lib

vcom -work TB_lib $TB/tdc_and_delaygen.vhd

.....

vcom -work TB_lib $TB/tb_hte.vhd
```


EXAMPLE: SIMULATION (4)

imec

© IMEC 201

EXAMPLE: SIMULATION (5)

imec

EXAMPLE : AVERAGE POWER ANALYSIS (I)

Start primetime-px (pt_shell) - only main commands

```
read_db read_verilog <netlist>
set power_enable_analysis true
set power_analysis_mode averaged
set_units -time ns -capacitance pF
set_load 10 [all_outputs]
set_input_transition 2 [all_inputs]
set auto_wire_load_selection true
set_wire_load_mode enclosed
```

imec

•© IMEC 2010

EXAMPLE : AVERAGE POWER ANALYSIS(2)

imec

EXAMPLE : AVERAGE POWER ANALYSIS(3)

```
#note:library time unit = 1 ns
# time unit in vcd file = ps (= sim resolution)
# reset.vcd : 0 .. 5us
# prom_read.vcd : 200 .. 250 us
read_vcd -time {0 5000}
../../simulation/activity_files/blink/reset.vcd
-strip_path tb_hte/uut/inst_NanoSOC/inst_NanoSOC_1
update_power
report_power -h -levels 2 > ../reports/reset_0_5us.rpt
reset_switching_activity
```

imec

© IMEC 2010

EXAMPLE : AVERAGE POWER ANALYSIS(4)

```
Switch Int
                                                 Leak
                                                            Total
Hierarchy
                                  Power Power Power
                                                            Power
NanoSOC 1
                                  2.12e-04 8.79e-03 3.00e-04 9.30e-03 100.0
 IObus_in_4_pad (inputpad_0_25)
                                7.35e-09 1.82e-05 1.28e-07 1.84e-05 0.2
 adc_data_6_pad (inputpad_0_11)
                                 0.000 0.000 1.86e-07 1.86e-07 0.0
 IObus_addr_0_pad (outputpad_12_0_0_test_14)
                                     0.000 0.000 1.70e-07 1.70e-07 0.0
 Inst_histo_builder (histo_builder_test_1)
                                  2.21e-06 2.47e-05 2.28e-06 2.92e-05 0.3
   Inst isto fsm (isto fsm test 1) 2.09e-07 9.38e-06 4.76e-07 1.01e-05 0.1
 imec
          •© IMEC 2010
```


EXAMPLE : PEAK POWER ANALYSIS (I)

```
reset_switching_activity
set power_analysis_mode time_based

read_vcd -time {4120000 4150000}
../../simulation/activity_files/blink/normal_op.vcd
-strip_path tb_hte/uut/inst_NanoSOC/inst_NanoSOC_1

report_power > ../reports/normal_op_4120us_4150us_peak.rpt
```

imec

© IMEC 201

EXAMPLE: PEAK POWER ANALYSIS (2)

```
Internal Switching Leakage Total
   Power Group
                     Power Power
                                     Power
                                             Power ( %) Attrs
   ______
                    2.527e-03 1.453e-04 6.891e-06 2.679e-03 (49.93%)
                    1.205e-03 1.237e-06 1.920e-04 1.398e-03 (26.05%)
   memory
                      0.0000 1.304e-06 1.243e-05 1.373e-05 ( 0.26%)
   black_box
                    4.995e-04 3.693e-05 4.328e-06 5.408e-04 (10.08%) i
   clock_network
                     1.840e-04 2.584e-05 4.806e-05 2.579e-04 ( 4.81%)
                    1.235e-04 3.137e-04 3.883e-05 4.761e-04 ( 8.87%)
   combinational
                       0.0000 0.0000 0.0000 0.0000 ( 0.00%)
   sequential
     Net Switching Power = 5.243e-04 (9.77%) X Transition Power = 4.444e-04
                                                            = 1.872e-05
     Cell Internal Power = 4.538e-03 (84.59%) | Glitching Power
     Cell Leakage Power = 3.026e-04 (5.64%) Peak Power
                                                            = 0.8759
                      -----
                                        Peak Time
                                                            = 4124819.999
                     = 5.365e-03 (100.00%)
   Total Power
        •© IMEC 2010
imec
```