Digital Fundamentals

Thomas L. Floyd

Logic Gates /
Boolean Algebra and Logic Simplification
Chapter 3

The Inverter

Boolean **NOT** operation

Output
X
HIGH (1)
LOW(0)

The **NOT** operation (complement) : $X = \overline{A}$.

An Inverter Application

Example waveforms:

Example: 1's Complement

The AND Gate

Outputs HIGH when all inputs are HIGH

X 0
Λ
U
0
0
1

The **AND** operation : $X = A \cdot B$ or X = AB.

The AND Gate

Example waveforms:

Example: Masking

If the binary number 10100011 is ANDed with the mask 00001111, what is the result?

00000011

The OR Gate

$$\begin{array}{c|c} A & \longrightarrow & \geq 1 \\ B & \longrightarrow & X \end{array}$$

Outputs HIGH if any input is HIGH

Inp	outs	Output
\overline{A}	В	X
0	0	0
0	1	1
1	0	1
1	1	1

The **OR** operation : X = A + B.

The OR Gate

Example waveforms:

Example: ASCII (Set to specific bit)

5th bit: 1 if lowercase, 0 if uppercase

(ASCII letter) OR (8-bit mask 00100000)?

The resulting letter will be lower case.

The NAND Gate

$$A \longrightarrow X$$
 $B \longrightarrow X$

Outputs LOW when all inputs are HIGH

Inp	uts	Output
\overline{A}	В	X
0	0	1
0	1	1
1	0	1
1	1	0

The **NAND** operation $X = \overline{A \cdot B}$ (Or, $X = \overline{AB}$.)

The NAND Gate

Example waveforms:

The NAND gate is "universal".

Inverter using NAND gate: —

The NOR Gate

$$A \longrightarrow X$$

$$\begin{array}{c|c} A & & \geq 1 & X \\ B & & & \end{array}$$

Outputs LOW if any input is HIGH

Inp	uts	Output
\overline{A}	В	X
0	0	1
0	1	0
1	0	0
1	1	0

The **NOR** operation : $X = \overline{A + B}$.

The NOR Gate

+5.0 V

Example waveforms:

The NOR operation will produce a LOW if any input is HIGH.

When is the LED is ON for the circuit shown?

The LED will be on when any of the four inputs are HIGH.

The XOR Gate

Outputs HIGH only when both inputs are at opposite logic levels.

X
71
0
1
1
0

The **XOR** operation : $X = A\overline{B} + \overline{A}B$ or $X = A \oplus B$.

The XOR Gate

Example waveforms:

Notice that the XOR gate will produce a HIGH only when exactly one input is HIGH.

If the *A* and *B* waveforms are both inverted for the above waveforms, how is the output affected?

There is no change in the output.

The XNOR Gate

The **XNOR gate** produces a HIGH output only when both inputs are at the same logic level. The truth table is

Inputs	Output
A B	X
0 0	1
0 1	0
1 0	0
1 1	1

The **XNOR** operation : $X = \overline{AB} + AB$ or $X = A \bigcirc B$.

The XNOR Gate

Example waveforms:

Notice that the XNOR gate will produce a HIGH when both inputs are the same. This makes it useful for comparison functions.

If the *A* waveform is inverted but *B* remains the same, how is the output affected?

The output will be inverted.

Fixed Function Logic

