Práctica 2

- **1.** Sea $(A_n)_{n\in\mathbb{N}}$ una sucesión de conjuntos y sea $A = \bigcup_{n\in\mathbb{N}} A_n$. Hallar una sucesión $(B_n)_{n\in\mathbb{N}}$ de conjuntos disjuntos dos a dos tales que $B_n \subseteq A_n$ para todo $n \in \mathbb{N}$ y $A = \bigcup_{n\in\mathbb{N}} B_n$.
- **2.** Dada una función $f: X \longrightarrow Y$ y subconjuntos A, B de X y C, D de Y, probar que
 - (a) $f(A \cup B) = f(A) \cup f(B)$.
 - (b) $f(A \cap B) \subseteq f(A) \cap f(B)$. ¿Vale la igualdad?
 - (c) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
 - (d) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
 - (e) $A \subseteq f^{-1}(f(A))$. Probar que si f es inyectiva, vale la igualdad.
 - (f) $f(f^{-1}(C)) \subseteq C$. Probar que si f es survectiva, vale la igualdad.
 - (g) $f^{-1}(D)^c = f^{-1}(D^c)$.
- **3.** Decimos que $A \sim B$ (A es coordinable con B) si existe $f: A \longrightarrow B$ biyectiva. Probar que \sim es una relación de equivalencia.
- 4. Hallar el cardinal de los siguientes conjuntos

$$\mathbb{Z}_{<-3}$$
 $5\mathbb{Z}$ $\mathbb{Z} \times \mathbb{N}$ $(-1,1) \cap \mathbb{Q}$

- **5.** Probar que si A y B son conjuntos entonces:
 - (a) $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
 - (b) $\mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B)$.
 - (c) $A \sim B \Longrightarrow \mathcal{P}(A) \sim \mathcal{P}(B)$.
- **6.** (a) Sean $A \subseteq B$ conjuntos tales que A es numerable y $B \setminus A$ es infinito. Probar que $B \setminus A \sim B$.
 - (b) Hallar el cardinal del conjunto de los números irracionales.
- 7. Sean $A_1, A_2 y B_1, B_2$ dos pares de conjuntos tales que $A_1 \sim B_1 y A_2 \sim B_2$.
 - (a) Si A_1 y A_2 son disjuntos y B_1 y B_2 también, probar que $A_1 \cup A_2 \sim B_1 \cup B_2$.
 - (b) Si A_1 y B_1 son numerables, probar que $A_1 \cup A_2 \sim B_1 \cup B_2$.
- **8.** Probar que si #A = n entonces $\#\mathcal{P}(A) = 2^n$.
- **9.** (a) Sea A y B conjuntos contables. Probar que $A \cup B$ es contable.
 - (b) Sea $(A_n)_{n\in\mathbb{N}}$ una familia de conjuntos contables. Probar que $\bigcup_{n\in\mathbb{N}} A_n$ es contable.

(c) Sea A un conjunto finito y no vacío y $S = \bigcup_{m \in \mathbb{N}} A^m$. Probar que $\#S = \aleph_0$.

Deducir que, cualquiera sea el alfabeto utilizado, hay más números reales que palabras para nombrarlos. ¿Cuántos subconjuntos de \mathbb{N}^2 pueden ser definidos en un lenguaje fijo? ¿Cuántos hay en total?

- 10. Sea c el cardinal de \mathbb{R} . Probar:
 - (a) Si #A = c y #B = c, entonces $\#(A \cup B) = c$.
 - (b) Si $\#A_n = c \ \forall n \in \mathbb{N}$, entonces $\#(\bigcup_{n \in \mathbb{N}} A_n) = c$.
- 11. (a) Probar que el conjunto de números primos es numerable.
 - (b) Escribir a $\mathbb N$ como unión numerable de conjuntos numerables disjuntos dos a dos.
- 12. Probar que si A es numerable entonces $\mathcal{P}_f(A) = \{B \subseteq A : B \text{ es finito}\}$ es numerable.
- **13.** (a) Probar que $\mathcal{P}(A) \sim \{0,1\}^A = \{\phi : A \to \{0,1\} \text{ funciones}\}.$
 - (b) Probar que $[0,1) \sim \{0,1\}^{\mathbb{N}}$. Sugerencia: escribir el desarrollo binario de los números del intervalo [0,1). ¡Ojo! la escritura no es única.
 - (c) Concluir que $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$.
- 14. Calcular el cardinal del siguiente conjunto:

$$E = \{ B \subseteq \mathbb{N} : \#B = \#(\mathbb{N} \setminus B) = \aleph_0 \}.$$

- **15.** (a) Calcular el cardinal de $\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$.
 - (b) Calcular el cardinal de $[0,1) \times [0,1)$.
 - (c) Calcular el cardinal de \mathbb{R}^k para cada $k \in \mathbb{N}$.
- 16. Calcular el cardinal del conjunto formado por todos los polinomios con coeficientes reales.
- 17. Calcular el cardinal de los siguientes conjuntos:
 - (a) $\{(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{Q}:(a_n)_{n\in\mathbb{N}}\text{ es periódica}\}.$
 - (b) $\{(a_n)_{n\in\mathbb{N}}: a_n\in\mathbb{N}, \ \forall n\in\mathbb{N}\}.$
 - (c) $\{(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{N}: a_n\leq a_{n+1}, \ \forall n\in\mathbb{N}\}.$
- 18. Sea I un conjunto (de índices). Supongamos que existe una colección de intervalos no vacíos y disjuntos $\{A_i\}_{i\in I}\subseteq\mathbb{R}$ indexada por I. ¿Qué podemos decir del cardinal de I?
- 19. Sea $f: \mathbb{R} \to \mathbb{R}$ una función monótona. Probar que el conjunto de sus discontinuidades es contable.