ML dseb62 w4 - Nguyen Tuan Duy

October 2022

Problem 2c 1

Ridge regression Loss function:

$$L_{ridge} = \frac{1}{2N} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)^2 + \lambda w_1^2$$
$$= \frac{1}{2N} (||Y - XW||_2^2 + \lambda ||W||^2)$$

minimizing L_{ridge} is the same as minimizing $L = ||Y - XW||_2^2 + \lambda ||W||^2$

$$\frac{\delta L}{\delta W} = 2X^T (Y - XW) + 2\lambda W = 0$$
$$W = (X^T X + I\lambda)^{-1} X^T Y$$

Lasso regression:

$$L_{lasso} = \frac{1}{2N} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)^2 + \lambda |w_1|$$

because $\lambda |w_1|$ cannot be derived we have to optimize the function using gradient descent

* algorithm:

we update $w = w - \alpha * dw$ and $b = b - \alpha * db$ where α is the learning rate and d if $w_i > 0$: $dw = \frac{-2}{m} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)^2 + \lambda$ if $w_i \leq 0$: $dw = \frac{-2}{m} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)^2 - \lambda$ and $db = \frac{-2}{m} (w_0 + w_1 x_i - y_i)$

if
$$w_i \le 0$$
:
 $dw = \frac{-2}{m} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)^2 - \lambda$
and $db = \frac{-2}{m} (w_0 + w_1 x_i - y_i)$