DRX Measurements

PRESENTER: 郭瑋喆

2023.04.17

DRX (Discontinuous Reception)

DRX (Discontinuous Reception)

- User Equipment (UE) has to keep listening to network
- > But being "ON" all the time would drain the battery
- => Periodic repetition of "sleep mode and wake up mode"
- Trade-off between power saving and latency
- C-DRX (Connected Mode DRX) is DRX under RRC connected mode

LTE DRX

UE wakes up periodically

Figure 3.1-1: DRX Cycle

Reference: 3GPP TS 36.321

NR DRX

DRX Parameters

LTE (3GPP TS 36.321)	NR5G (3GPP TS 138.321)
DRX Inactivity Timer	• drx-InactivityTimer
DRX Retransmission Timer	• drx-RetransmissionTimerDL/UL
DRX Short Cycle Timer	• drx-ShortCycle (optional)
	 drx-ShortCycleTimer (optional)
• HARQ RTT Timer	• drx-HARQ-RTT-TimerDL/UL
On Duration Timer	• drx-onDurationTimer
• RA-RNTI	• drx-SlotOffset
	 drx-LongCycleStartOffset

DRX Parameters

Parameters are configured by RRC.

- DRX-onDurationTimer: How long to keep listening in a cycle
- DRX-SlotOffset: Time to wake up UE
- DRX-InactivityTimer: How long to keep listening after receiving
- shortDRX-Cycle: Cycle length (ms) of short DRX
- DRX-ShortCycleTimer: When to switch from short cycle to long cycle after a period without receiving

Long/Short DRX cycle

UE would switch between short / long DRX cycle (if short cycle configured)

	Short DRX cycle (optional)	Long DRX cycle
cycle period	short	multiple of the shortDRX-Cycle value
power saving	less	more
delay	lower	higher

Signaling Sequences

Time Synchronization

Time Synchronization

- Timestamps recorded by different traces are not synchronized
- There are 3~4 distinct clocks in this experiment:
 - Server (PC)
 - Client (Cellphone)
 - ➤ 4G/5G chipset (sync with base stations)
- Time Synchronization between devices is necessary for analysis
- But cross-device time synchronization is non-trivial in practice

Current Method: Server & Client

- Assumption: Clocks' speed is stable => clock misalignment is a linear function
- Send 100 bi-directional packets between server & client through intranet¹
 - > Do this before and after the experiment then calculate the average clock misalignment
 - > Perform linear interpolation on each packet TX/RX timestamps

Current Method: Cellphone & Chipset

- There is also clock difference between cellphone (timestamp recorded at application layer) and the 4G/5G chipset (synchronizing with base stations)
- Looking for more information to resolve this problem currently

Other Possible Method

From "A First Look at Disconnection-Centric TCP Performance on High-Speed Railways 1":

Fig. 10. Example of end-to-end alignment.

Fig. 11. TCP and PDCP trace alignment.

DRX Related Logs from QXDM

QXDM

 QXDM is a suite of the diagnostic tools set for DMSS, UE and AMSS. QXDM Pro was developed to provide a rapid prototyping platform for new diagnostic clients and diagnostic protocol packets

QXDM vs. MobileInsight

- In "MobileInsight: Extracting and Analyzing Cellular Network Information on Smartphones ²," it is said that:
 - Debugging tools, such as QXDM [2], XCAL [3], MTK Catcher [4], xgoldmon [23], can collect cellular network messages and offer fine-grained information. However, they all work with PCs, and do not offer in-device collection or protocol analytics.
 - ➤ MobileInsight has access to the same cellular information as those tools.
 - => It seems that they collect data from the same resource, but MobileInsight provides a more convenient way

QXDM vs. MobileInsight

- As my current understanding, packages not catchable or not resolvable in MobileInsight may be caused by two reasons:
 - 1. The message is marked to be "reserved" in QXDM e.g. [0xB066] LTE MAC UL Buffer Status Internal

(MI)Unknown LTE MAC Uplink Buffer Status Internal packet version: 0x30 [0xB066] Reserved

2. The message has not yet been supported by MobileInsight e.g. [0xB890] NR5G MAC CDRX Events Info

Same Package in QXDM and MI

 Take "LTE ML1 CDRX Events Info" in QXDM, and "LTE_RRC_CDRX_Events_Info" in MobileInsight for instance. They seem to be the same.

```
2022 Sep 15 07:21:15.082 [8B] 0xB198 LTE ML1 CDRX Events Info
Subscription ID = 1
Version
           = 2
Num Records = 50
Records
   |SFN |Sub-fn | CDRX Event
                                                  Internal Field Mask
    994
                                                                                        INACTIVITY TIMER: PENDING UL RETX
                               UL RETX TIMER START
             3
    994
                                          SR START
                                                                             INACTIVITY TIMER: PENDING SR: PENDING UL RETX
    994
             6
                                 UL_RETX_TIMER_END
                                                                                             INACTIVITY_TIMER:PENDING_SR
    995
             0
                                            SR_END
                                                                                                        INACTIVITY_TIMER
    995
                            INACTIVITY TIMER START
                                                                                                        INACTIVITY_TIMER
    995
             1
                               UL_RETX_TIMER_START
                                                                                        INACTIVITY_TIMER:PENDING_UL_RETX
    995
                                 UL_RETX_TIMER_END
                                                                                                        INACTIVITY_TIMER
    995
                               UL_RETX_TIMER_START
                                                                                        INACTIVITY_TIMER:PENDING_UL_RETX
             8
    995
                                 UL RETX TIMER END
                                                                                                        INACTIVITY TIMER
             9
    995
                            INACTIVITY TIMER START
                                                                                                       INACTIVITY TIMER
    995
                               UL_RETX_TIMER_START
                                                                                        INACTIVITY_TIMER:PENDING_UL_RETX
             1
    996
                            INACTIVITY TIMER START
                                                                                        INACTIVITY TIMER: PENDING UL RETX
             2
    996
                                 UL_RETX_TIMER_END
                                                                                                        INACTIVITY_TIMER
             3
                               UL_RETX_TIMER_START
                                                                                        INACTIVITY_TIMER:PENDING_UL_RETX
    996
                                          SR START
                                                                             INACTIVITY TIMER: PENDING SR: PENDING UL RETX
```

```
Time Stamp: 2022-09-05 07:19:33.080065 Type: LTE_RRC_CDRX_Events_Info
 payload
      log_msg_len:416
      type id:LTE RRC CDRX Events Info
      timestamp:2022-09-05 07:19:33.080065
      Version:2
      Num Records:50
   Records
     ▼ Records[0]
         SFN:969
         Sub-FN:3
         CDRX Event: INACTIVITY TIMER START
          Internal Field Mask: INACTIVITY_TIMER | PENDING_UL_RETX |
     Records[1]
         SFN:969
         Sub-FN:3
         CDRX Event:UL RETX TIMER START
         Internal Field Mask: INACTIVITY TIMER PENDING UL RETX
     ▼ Records[2]
         SFN:969
         Sub-FN:4
         CDRX Event: INACTIVITY_TIMER_START
         Internal Field Mask: |INACTIVITY TIMER|PENDING UL RETX|
     Records[3]
         SFN:969
         Sub-FN:4
```

DRX Related Logs

There are DRX info logs can be collected by QXDM:

- [0xB198] LTE ML1 CDRX Events Info
- [0xB890] NR5G MAC CDRX Events Info (with configuration information)

There are also some related logs:

- [0xB165] LTE Grant Manager Dedicated Configuration
- [0xB0C0] DL_DCCH / RRCConnectionReconfiguration

Which provides some information like LTE CDRX configuration.

DRX Parameters

LTE (3GPP TS 36.321)	NR5G (3GPP TS 138.321)
DRX Inactivity Timer	• drx-InactivityTimer
DRX Retransmission Timer	• drx-RetransmissionTimerDL/UL
DRX Short Cycle Timer	• drx-ShortCycle (optional)
	 drx-ShortCycleTimer (optional)
• HARQ RTT Timer	• drx-HARQ-RTT-TimerDL/UL
On Duration Timer	• drx-onDurationTimer
• RA-RNTI	• drx-SlotOffset
	 drx-LongCycleStartOffset

CDRX Configuration Comparison

- Two telecoms are using different settings. Not yet checked whether those configurations are fixed or not.
- LTE CDRX configurations may need to be checked under pure LTE mode.

NR	CHT	TWM	FET
On Duration Timer	10 ms	10 ms	10 ms
Inactivity Timer	100 ms	80 ms	100 ms
UL Retransmission Timer	16	16	16
DL Retransmission Timer	16	16	16
Long DRX Cycle	160	160	160
Short DRX Cycle	Disabled	Disabled	Disabled

LTE	CHT	TWM	FET
On Duration Timer	2	10	
Inactivity Timer	100	100	
Retransmission Timer	4	8	
Long DRX Cycle	320		
Short DRX Cycle	20	80	
Short DRX Timer	1	2	

[0xB198] LTE ML1 CDRX Events Info

```
2023 Mar 17 15:33:16.431707 [29] 0xB198 LTE ML1 CDRX Events Info
Subscription ID = 2
Version
          = 2
Num Records = 40
Records
   |SFN |Sub-fn|CDRX Event
                                                      | | Internal Field Mask
     5931
                                     LONG CYCLE START
                                                                                                                      CYCLE STARTI
     5921
                                        CDRX_OFF_2_ON
                                                                                                                      CYCLE_START |
                             ON DURATION TIMER START
     593 I
               1 |
                                                                                                                ON DURATION TIMER
     593 L
               3 |
                               ON_DURATION_TIMER_END
                                                                                                                        NO_EVENTS
               3 j
     5931
                                        CDRX ON 2 OFF
                                                                                                                        NO EVENTS
     625 I
               1
                                     LONG CYCLE START
                                                                                                                      CYCLE START
     6241
               9
                                        CDRX_OFF_2_ON
                                                                                                                      CYCLE_START
               1 j
     625 I
                             ON DURATION TIMER START
                                                                                                                ON DURATION TIMER
               2 j
                              INACTIVITY_TIMER_START
     625 I
                                                                                             ON_DURATION_TIMER: INACTIVITY_TIMER
     625 I
               3
                               ON_DURATION_TIMER_END
                                                                                                                 INACTIVITY TIMER
               7
     6251
                                 UL RETX TIMER START
                                                                                                INACTIVITY TIMER: PENDING UL RETX
     626 l
               0 |
                                   UL_RETX_TIMER_END
                                                                                                                 INACTIVITY TIMER
               5 j
     626|
                                  UL_RETX_TIMER_START
                                                                                                INACTIVITY_TIMER: PENDING_UL_RETX |
               8
     6261
                                   UL RETX TIMER END
                                                                                                                 INACTIVITY TIMER
     627 I
               3 |
                                  UL_RETX_TIMER_START
                                                                                                INACTIVITY_TIMER: PENDING_UL_RETX
     627|
               6
                                   UL_RETX_TIMER_END
                                                                                                                 INACTIVITY_TIMER
               1 j
                                  UL RETX_TIMER_START
     6281
                                                                                                INACTIVITY TIMER: PENDING UL RETX
               4
     6281
                                    UL_RETX_TIMER_END
                                                                                                                 INACTIVITY_TIMER
     635 I
               2
                                 INACTIVITY_TIMER_END
                                                                                                                        NO EVENTS
               2
     6351
                                        CDRX ON 2 OFF
                                                                                                                        NO EVENTS
               1
                                    SHORT CYCLE START
                                                                                                                      CYCLE START
     637 I
     6361
               9 j
                                        CDRX_OFF_2_ON
                                                                                                                      CYCLE_START |
     6371
               1 |
                             ON DURATION TIMER START
                                                                                                                ON DURATION TIMER
               3 |
                               ON_DURATION_TIMER_END
                                                                                                                        NO EVENTS
     637 I
               3 j
                                        CDRX_ON_2_OFF
                                                                                                                        NO_EVENTS
     637 |
                                     LONG_CYCLE_START
                                                                                                                      CYCLE_START
     657
               1 |
```

[0xB890] NR5G MAC CDRX Events Info

```
2023 Mar 17 15:33:18.013424 [F6] 0xB890 NR5G MAC CDRX Events Info
Subscription ID = 2
Misc ID = 0
Major.Minor = 2. 2
Log Fields Change BMask = 0x00000
Sub ID = 0
                                = 32
Num Records
DRX Config
   DRX Enable
   On Duration Timer Fraction = 0
   On Duration Time = 10 ms
Inactivity Timer = 100 ms
DL HARQ RTT Timer = 3
UL HARQ RTT Timer = 3
   DL Retransmission Timer = 8
   UL Retransmission Timer = 8
   Long DRX Cycle Start Offset = 12
   Long DRX Cycle
                       = 160
   Short DRX Cycle Enable = 0
   Short DRX Cycle Timer = 0
Short DRX Cycle = 0
   DRX Slot Offset = 16
Records
```

[0xB890] NR5G MAC CDRX Events Info

ecords	3							
	System SCS	System	Frame S N		Prev State	 Current State	 Reason	 Current Ref Count
(0 30kHz	z	674	5	ONDUR_INACT_TIME	R INACTIVE	ONDUR_EXPIREI) 101025316
j 1	1 30kHz	: j	689	5 j		E ONDUR_INACT_TIMER	: ONDUR_TIMER_RUNNING	; 101026516
2	2 30kHz	ː	690	5	ONDUR_INACT_TIME	R INACTIVE	ONDUR_EXPIREI	101026596
3	3 30kHz	ː	705	5	INACTIVI	E ONDUR_INACT_TIMER	ONDUR_TIMER_RUNNING	101027796
4	4 30kHz	z	706	5	ONDUR_INACT_TIME	R INACTIVE	ONDUR_EXPIREI	101027876
5	5 30kHz	ː	721	5	INACTIVI	E ONDUR_INACT_TIMER	ONDUR_TIMER_RUNNING	; 101029076
6	5 30kHz	ː	722	5	ONDUR_INACT_TIME	R ONDUR_INACT_TIMER	INACT_TIMER_RUNNING	101029156
3	7 30kHz	ː	731	11	ONDUR_INACT_TIME	R INACTIVE	ONDUR_EXPIREI	101029900
8	3 30kHz	3	737	5	INACTIVI	E ONDUR_INACT_TIMER	ONDUR_TIMER_RUNNING	[101030356
9	9 30kHz	:	738	5	ONDUR_INACT_TIME	R INACTIVE	ONDUR_EXPIREI	101030436
10	0 30kHz	:	753	5	INACTIVI	E ONDUR_INACT_TIMER	ONDUR_TIMER_RUNNING	; 101031636

 On Duration Start Frame Number Slot		Cycle Tin Number Sl		Last Grant Ti Frame Number		 Active Procedure	
[689]	5	1023	127	1023	127		NONE
j 689 j	5 j	1023	127	1023	127	İ	NONE
j 705 j	5	1023	127	1023	127	İ	NONE
j 705 j	5	1023	127	1023	127	İ	NONE
721	5	1023	127	1023	127	İ	NONE
721	5	1023	127	1023	127	İ	NONE
721	5	1023	127	721	11	Ì	NONE
737	5	1023	127	1023	127		NONE
737	5	1023	127	1023	127		NONE
753	5	1023	127	1023	127		NONE

Experiments Based on Application Layer Records

Tools

- Cellphones
 - Samsung A42 5G, Xiaomi 10T, Google Pixel 6a
- Sim cards
 - ➤ ChungHwa Telecom 5G, TaiWan Mobile 5G, FarEasTone Telecom 5G
- Qualcomm tools
 - QXDM (Qualcomm eXtensible Diagnostic Monitor 5)
 - QCAT (Qualcomm Commercial Analysis Toolkit)

Previous Work

According to "Device-Based LTE Latency Reduction at the Application Layer" 3:

- The uplink latency poses as a major component in overall latency (66.4-78.0%.)
- The latency of DRX_doze is significant in the overall uplink latency.

App	Latency	AT&T	T-Mobile	Verizon	Sprint
	UL Net	10.7	9.9	10.0	17.7
PUBG	DL Net	5.0	5.0	5.0	5.0
	UL/Total	68.2%	66.4%	66.7%	78.0%
	UL Net	N/A ¹	18.4	23.8	N/A
VR	DL Net	N/A	8.5	10.6	N/A
	UL/Total	N/A	68.4%	69.2%	N/A

Latency (ms)	AT&T	T-Mobile	Verizon	Sprint
T_{drx_doze}	29.7	31.9	28.3	29.2
T _{sr_wait}	4.4	4.4	4.6	9.0
T_{sr_grant}	8.2	8.5	8.0	10.1
T _{bsr_grant}	0.03	0.00	0.03	0.16
T_{retx}	0.17	0.14	0.32	0.72

Table 1: LTE latency (ms) for two mobile apps.

Table 2: Measured latency elements for VR application. T_{drx_doze} is the average value when present.

³ Zhaowei Tan et al., "Device-Based LTE Latency Reduction at the Application Layer", NSDI '21

Overall Experiment Setting

Place: fixed place (e.g. EE2 355)

Explanatory Variables - Tools

- Telecoms: CHT, TWM, FET
- Scenarios: 4G, 5G
- Cellphones:
 - ➤ Samsung A42 5G
 - > Xiaomi 10T
 - ➤ Google Pixel 6a

Explanatory Variables - Parameters

Explanatory Variables - Parameters

Transmission sequence

Experiment Results

Experiment 1: UL First

- Set Packet_Interval as 50~150 ms and send 10 packets each round. 4
- After each round, sleep for 3 seconds.
- Measure the latency of each packet.

UL First: Result (Pixel_CHT)

- UL: The first packet has large latency, and the next 2~3 packets may have some extra latency; clustering
- DL: No obvious tendency

UL First: Result (Pixel_TWM)

- UL: The first packet has large latency, and the next 2~3 packets may have some extra latency
- DL: No obvious tendency

Experiment 1: Result (Galaxy_CHT)

- UL: The first packet has large latency; obviously clustering (inactivity_timer = 100 ms)
- DL: The first packet tends to have larger latency

UL First: Result (Galaxy_TWM)

- UL: The first packet has large latency
- DL: The first packet tends to have larger latency

UL First: Result (Xiaomi_CHT)

- UL: obviously clustering (threshold : 60-70 ms)
- DL: The first packet tends to have larger latency

UL First: Result (Xiaomi_TWM)

- UL: obviously clustering (threshold : 50-60 ms)
- DL: The first packet tends to have larger latency

UL First: Result - Comparison

UL First: Result - Table

Galaxy A42's behavior is roughly as expected, but others are not.

Combination		Pixel 6a					Galax	y A42		Xiaomi 10T			
		All packets		Without first		All packets		Without first		All packets		Without first	
		avg.	std.	avg.	std.	avg.	std.	avg.	std.	avg.	std.	avg.	std.
	UL latency (ms)	21.02	22.39	11.4	3.4	12.94	11.15	12.2	7.73	29.81	13.92	26.72	12.11
CHT	DL latency (ms)	8.99	8.3	9.0	4.12	7.34	1.96	7.3	1.96	5.91	2.64	5.82	2.65
	UL%	70.1%		55.9%		63.8%		62.6%		83.5%		82.1%	
	UL latency (ms)	20.48	24.32	17.21	25.1	11.4	7.45	9.31	2.17	42.39	17.07	42.02	10.16
TWM	DL latency (ms)	7.15	2.61	6.7	1.09	8.09	1.14	8.14	1.14	35.0	16.33	35.36	10.1
	UL%	74.1%		72.0%		58.5%		53.4%		82.8%		84.4%	

Table 2: average UL/DL latency of experiment 2.

Experiment 2: DL First

- Set *Packet_Interval* as 50~150 ms and send 10 packets each round. [2]
- After each round, sleep for 3 seconds.
- Measure the latency of each packet.

DL First: Result (Pixel_CHT)

- UL: No obvious tendency
- DL: The first packet has large latency

DL First: Result (Pixel_TWM)

- UL: No obvious tendency
- DL: The first packet has large latency, and the next 2~3 packets may have some extra latency

DL First: Result (Galaxy_CHT)

- UL: No obvious tendency
- DL: The first packet has large latency

DL First: Result (Galaxy_TWM)

- UL: No obvious tendency
- DL: The first packet has large latency

DL First: Result (Xiaomi_CHT)

- UL: No obvious tendency
- DL: The first packet has large latency; some clustering (threshold: 50-60 ms)

DL First: Result (Xiaomi_TWM)

- UL: No obvious tendency
- DL: The first packet has large latency; obvious clustering (threshold: 50-60 ms)

DL First: Result - Comparison

DL First: Result - Table

Galaxy A42's behavior seems to be more reasonable

Combination		Pixel 6a					Galax	y A42		Xiaomi 10T			
		All packets		Without first		All packets		Without first		All packets		Without first	
		avg.	std.	avg.	std.	avg.	std.	avg.	std.	avg.	std.	avg.	std.
	UL latency (ms)	10.74	4.65	12.66	7.36	8.6	3.36	8.44	3.07	8.22	5.68	8.3	4.35
CHT	DL latency (ms)	24.18	45.3	14.08	21.01	11.37	18.26	7.18	1.87	26.32	48.91	20.49	8.86
	UL%	30.8%		47.3%		43.1%		54.0%		23.8%		28.8%	
	UL latency (ms)	12.69	6.11	9.41	2.4	8.28	2.18	8.1	2.01	10.91	8.0	12.41	7.75
TWM	DL latency (ms)	22.7	40.42	16.15	26.9	14.38	23.75	8.11	1.08	24.02	22.16	19.0	7.8
	UL%	35.9%		36.8%		36.5%		50.0%		31.2%		39.5%	

Table 3: average UL/DL latency of experiment 3.

Experiments Comparison: Galaxy_CHT

• Here we use Galaxy A42 (the only phone can run QXDM) as example.

Experiments Comparison: Galaxy_TWM

• Here we use Galaxy A42 (the only phone can run QXDM) as example.

Experiments Comparison: Table

- The latency of the first UL packet after sleep has lower latency than DL
- Also, the latency of the first UL packet has smaller standard deviation than DL
- DL usually has a smaller latency than UL

Combination			Pixe	el 6a		Galaxy A42				Xiaomi 10T			
		UL first (experiment 2)		DL first (experiment 3)		UL first (experiment 2)		DL first (experiment 3)		UL first (experiment 2)		DL first (experiment 3)	
		avg.	std.	avg.	std.	avg.	std.	avg.	std.	avg.	std.	avg.	std.
CHT	latency (ms)	76.23 (11.4)	15.19	126.82 (14.08)	73.17	26.39 (12.2)	8.49	48.31 (7.18)	42.24	42.88 (26.72)	12.47	74.17 (20.49)	60.45
TWM	latency (ms)	77.56 (17.21)	10.31	120.4 (16.15)	55.34	24.7 (9.31)	6.65	69.91 (8.11)	46.08	53.17 (42.02)	27.52	61.55 (19.0)	48.81

Table 4: comparison of experiment 2 & 3. (): the average latency without first packet)

DRX Event Logs Analysis

DRX Parameters

LTE (3GPP TS 36.321)	NR5G (3GPP TS 138.321)
DRX Inactivity Timer	• drx-InactivityTimer
DRX Retransmission Timer	• drx-RetransmissionTimerDL/UL
DRX Short Cycle Timer	• drx-ShortCycle (optional)
	• drx-ShortCycleTimer (optional)
• HARQ RTT Timer	• drx-HARQ-RTT-TimerDL/UL
On Duration Timer	• drx-onDurationTimer
• RA-RNTI	• drx-SlotOffset
	drx-LongCycleStartOffset

DRX Parameters

Parameters are configured by RRC.

- DRX-onDurationTimer: How long to keep listening in a cycle
- DRX-SlotOffset: Time to wake up UE
- DRX-InactivityTimer: How long to keep listening after receiving
- shortDRX-Cycle: Cycle length (ms) of short DRX
- DRX-ShortCycleTimer: When to switch from short cycle to long cycle after a period without receiving

Figure Illustration

Figuration - NSA

Figuration - LTE Only

