Practica 5 - Complejidad

Ejercicio 1

a) $(n^2 - 4n - 2 \in O(n^2)) \equiv \exists n_o, k > 0 \ tq \ n \ge n_0 \implies f(n) \le k * g(n)$

$$n^2 - 4n - 2 \le n^2 \tag{1}$$

$$-4n - 2 \le 0 \tag{2}$$

$$-4n \le 2 \tag{3}$$

$$n \ge -\frac{1}{2} \tag{4}$$

(5)

Existen dichos n_o y k y una posibilidad es $n_0 = -\frac{1}{2}$ y k = 1

b)
$$f \in O(n^k) \implies f \le m \cdot n^k \le m \cdot n^{k+1} \implies \boxed{f \in O(n^{k+1})}$$

c) Qvq $log n \in O(n)$. Veo por limite

$$\lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{1}{\ln(10)n} = 0 \tag{1}$$

Por lo tanto como $f \in O(\log n)$ y $\log n \in O(n)$ entonces $f \in O(n)$

Ejercicio 2

- a) $2^n \in O(1)$ no vale ya que $2^n \ge 1$ para todo n mayor a 0. Por ejemplo con n=1 esta afirmación no vale.
- b) $n \in O(n!)$. Veo por limite:

$$\lim_{n \to \infty} \frac{n}{n!} = \lim_{n \to \infty} \frac{1}{(n-1)!} = \lim_{n \to \infty} \frac{1}{\infty} = 0 \tag{1}$$

Luego como el limite es $0 \ n \in O(n!)$

- c) $n! \in O(n^n)$ Si veo termino a termino, entonces tendre n-terminos tanto para n! como para n^n . Luego al comparar dichos terminos, puedo decir que todos los de n! son $\leq n$. Luego como todos los de n^n son n, entonces puedo afirmar que $n! \in O(n^n)$
- d) $2^n \in O(n!)$. Tomando la misma idea de antes, al comparar termino por termino, estaria enfrentando a 2 contra todos los valores de n!. Asi basta con tomar cualquier $k \ge 2$ para que valga la afirmacion.
- e) $i \cdot n \in O(j \cdot n) \implies in \le k \cdot jn \implies i \le k \cdot j$. Si $i \le j$ vale la afirmacion. Si si i¿j entonces basta con tomar algun $k \ge \frac{i}{j}$
- f) Para todo $k \in \mathbb{N}2^k \in O(1) \implies 2^k \le m.1$. Esto vale pues ambas son constantes, por lo tanto siempre va a existir un k lo suficientemente grande como para que $2^k \le m$

g) $log(n) \in O(n)$. Veo por limite:

$$\lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{1}{\ln(10)n} = 0 \tag{1}$$

Luego $log(n) \in O(n)$

- h) No vale, es lo inverso a lo planteado en d)
- i) $n^5 + b.n^3 \in \Theta(n^5) \Leftrightarrow b = 0$ $\Leftrightarrow b = 0 \implies n^5 \in \Theta(n^5) \equiv True$ $\Rightarrow n^5 + b.n^3 \in \Theta(n^5) \implies n^5 + b.n^3 \in O(n^5) \land n^5 + b.n^3 \in \Omega(n^5)$. Veo por limite.

$$\lim_{n \to \infty} \frac{n^5 + b \cdot n^3}{n^5} = \lim_{n \to \infty} 1 + b \cdot \frac{1}{n^2} = 1 + 0 = 1 \tag{1}$$

De esta manera $n^5 + b.n^3 \in \Theta(n^5 + b.n^3) = \Theta(n^5)$ para todo valor de b. En consecuencia no vale \Leftrightarrow

j) $n^k.log(n) \in O(n^k+1) \implies n^k.log(n) \le m.n^{k+1} \implies log(n) \le m.n \implies log(n) \in O(n)$ Luego esto vale (demostrado en g)

Ejercicio 3

Significa que ,dada una funcion h, todas las funciones f que acotan a h por arriba estan a su vez acotadas por arriba por g. Luego si estan contenidas mutuamente entonces van a tener el mismo crecimiento.

Ejercicio 4