Seminario 11 2017

INMUNODEFICIENCIAS

INMUNODEFICIENCIAS

Primarias (IDP):

- alteraciones genéticas
- comprende más de 100 entidades diferentes

Secundarias:

- drogas o radiaciones
- infección por HIV
- desnutrición
- endocrinopatías
- quemaduras
- edad avanzada

Baja frecuencia (1:10⁴ recién nacidos vivos) Alta frecuencia

Para diferenciar ambas entidades se debe evaluar la <u>historia clínica</u> del paciente:

- edad de inicio de los síntomas
- historia familiar
- gérmenes prevalentes en las infecciones sufridas
- tumores
- trasplantes
- enfermedades metabólicas

Inmunodeficiencias Primarias (IDP)

- suelen ser monogénicas
- alta incidencia de procesos infecciosos
- mayor incidencia de enfermedades autoinmunes y neoplásicas
- en un 80% de los casos la enfermedad se manifiesta antes de los 5 años de vida
- incidencia hombre/mujer: 1.5-2/1

Clasificación de las IDP

Categoría Inmunodeficiencia	Tipo Inmunodeficiencia
de la RI adaptativa	A) Inmunodeficiencias predominantes de Anticuerpos.
	B) Inmunodeficiencias combinadas
	C) Otros síndromes de Inmunodeficiencia bien definidos
de la RI innata	D) Deficiencias de fagocitos
	E) Deficiencias de complemento
que confieren susceptibilidad a infecciones particulares	F) Susceptibilidad a infecciones por Micobacterias

Registro Nacional de Inmunodeficiencias

Arch Argent Pediatr 2007; 105(5):453-460

Defectos genéticos que afectan el desarrollo de los diferentes linajes linfoides

Tipos de infecciones prevalentes según el compartimento afectado en la IDP

	Bacterias extracelulares	Virus	Hongos	Parásitos unicelulares	Micobacterias
Linfocitos B	X	X ¹			
Linfocitos T	X	X	X	X	X
Células NK		X ²			
Monocitos/ Macrófagos	X ³				X
Leucocitos Polimorfonucleares	X		X		
Complemento	X ⁴				

- 3) Salmonella no typhi 1) principalmente enterovirus
- 4) Cocos G+ y G-
- 2) grupo Herpes

Manifestaciones clínicas:

Sinusitis, otitis, bronquitis, neumonía, meningitis, infecciones cutáneas, diarreas, síndrome de malabsorción

Agentes:

Bacterias extracelulares encapsuladas:

- S. Neumoniae
- S. Aureus
- H. influenza

- A1. Agamaglobulinemia ligada al sexo (Btk)
- **A2.** Agamaglobulinemias autosómicas recesivas
- A3. Síndrome de Hiper IgM
- A4. Inmunodeficiencia común variable
- A5. Deficiencias de subclases de IgG
- A6. Deficiencia de IgA
- A7. Hipogamaglobulinemia de la infancia

A1. Agamaglobulinemia ligada al sexo: ALX, Enfermedad de Bruton

bloqueo de la diferenciación de pro-B en pre-B

A1. Agamaglobulinemia ligada al sexo

- sólo la sufren los varones
- mutación en el gen BTK (*Bruton Tyrosine Kinase*)
- agamaglobulinemia: comprende a todos los isotipos

Manifestaciones clínicas

- entre los 9 y 12 meses de vida
- infecciones bacterianas recurrentes: neumonías, bronquitis, sinusitis, otitis media, etc
- se han descripto 600 mutaciones diferentes
- < 0.1% LB en sangre periférica.
- depleción de folículos linfoides y centros germinativos

A2. Agamaglobulinemias autosómicas recesivas

mutaciones en <u>distintos genes</u>:

- 1) cadena pesada μ
- 2) $Ig\alpha$ o $Ig\beta$
- 3) cadena liviana sustituta λ 5
- 4) BLNK (proteína involucrada en la señalización del BCR)

A3. Síndrome de hiper IgM

- compromiso en *switch* de isotipo y en proceso de hipermutación
- muy bajos niveles de IgG, IgA e IgE
- niveles normales o elevados de IgM
- mutación en distintos genes.
- algunos ejemplos:
 - 1) CD40L: ligado al X, forma más frecuente
 - 2) CD40: autosómica
- **3) AID:** enzima expresada selectiva y transientemente en células B en el centro germinal, en respuesta a la activación B inducida a través de CD40. Inicia el *switch* isotípico y la hipermutación somática, deaminando citosinas en regiones VH y regiones de *switch*

A4. Inmunodeficiencia común variable (IDCV)

- hipogamaglubulinemia de al menos 2 isotipos (siempre incluye IgG)
- bajos niveles de Ig totales
- hipertrofia tejido linfoide
- dificultad para montar respuestas de anticuerpos específicas.
- suele diagnosticarse en edades no pediátricas
- mutación en distintos genes:
- **1) ICOS:** proteína relacionada a CD28 que se induce en LT activados produciendo coestimulación al unirse a su ligando, ICOS-L.

2) CD19: integra el co-receptor B, disminuyendo el umbral de activación frente a antígenos opsonizados por fragmentos derivados de C3b.

B) Inmunodeficicencias combinadas severas (IDCS)

- •severo compromiso en la respuesta inmune: celular y humoral.
- •llevan a la muerte si no son tratadas en forma muy temprana
- •formas posibles: Células T ausentes o muy disminuidas.
 - Células B ausentes o no funcionales.
 - Células NK ausentes o presentes

Manifestaciones clínicas:

Candidiasis oral recurrente, diarreas, detención del crecimiento.

<u>Infecciones por diversos microorganismos</u>: CMV, EBV, enterovirus, *S.* neumoniae, H. influenza, M. tuberculosis, P.jiroveci (P. carinii), Aspergillius, Cándida.

tratamiento: trasplante de médula ósea

B) Inmunodeficicencias combinadas severas (IDCS)

- mutaciones en distintos genes.

Algunos ejemplos:

- B1) cadena γ común (ligada al X)
- **B2) JAK3**
- B3) ADA
- B4) IL7R α
- **B5) Artemis**
- **B6)** RAG 1 y 2
- **B7) MHC clase II**
- B8) cadena α RIL-2
- **B9)** cadenas γ o ϵ de CD3

- B) Inmunodeficicencias combinadas severas (IDCS)
- B1) cadena γ común (la IDCS más frecuente) B2) JAK3

Receptores para citoquinas que emplean la vía γ común/JAK3

Los pacientes con mutaciones en la tirosina quinasa JAK3 (autosómica recesiva) comparten el mismo fenotipo con aquellos que presentan mutaciones en la cadena γ común (ligada al X)

B) Inmunodeficicencias combinadas severas (IDCS)

B3) ADA (adenosina deaminasa): enzima involucrada en el catabolismo de purinas. Su ausencia o defecto funcional resulta en la acumulación de la 2'-deoxyadenosina que ejerce un potente efecto citotóxico sobre los linfocitos.

B4) Cadena α del receptor de IL7

B5) Artemis: nucleasa que juega un papel crítico en los eventos de recombinación V-D-J y en los mecanismos de reparación del DNA

B6) RAG1 y 2: median la recombinación V-D-J en la ontogenia B y T

B7) Deficiencia en la expresión de moléculas del CMH de clase II

B) Inmunodeficicencias combinadas severas (IDCS)

	LT(αβ)	LB	NK
γ común o JAK3	NO	SI	NO
ADA	NO	NO	NO
RAG1/2 o Artemis	NO	NO	SI
СДЗү	NO	SI	SI

C) otros síndromes de inmunodeficiencia bien definidos.

C1) síndrome de DiGeorge:

- deleción en el brazo largo del cromosoma 22 que afecta varios genes
- produce hipoplasia o aplasia tímica o paratiroide.
- pueden, o no, presentar compromiso inmune. Si lo presentan: "DiGeorge completos"
- muestran un perfil inmunológico variado

C2) IPEX (Immune dysregulation polyendocrinopathy enteropathy X-linked):

- mutaciones en el factor de transcripción FOXP3, molécula crítica en el desarrollo de LTreg naturales
- diabetes, hipotiroidismo, diarrea, hepatitis, nefritis, anemias hemolíticas, sor manifestaciones tempranas frecuentes.

C3) ALPS (Autoimmune lymphoproliferative syndrome):

- mutaciones en Fas, FasL, caspasa 8 o caspasa 10.
- linfoadenopatías no malignas, hepatoesplenomegalia y anemia, neutropenia y trombocitopenia autoinmunes

D1) defectos en la MIGRACIÓN de fagocitos.

D2) defectos en la FUNCIÓN de fagocitos.

D1) defectos en la MIGRACIÓN de fagocitos

D1.1) LAD-1:

- mutaciones en $\beta 2$ integrinas (las $\beta 2$ integrinas son heterodímeros formados por una subnidad β y otra alfa)

$lpha^{ m L}eta_2$	$lpha^{ m M}eta_2$	$oldsymbol{lpha}^{\mathrm{X}}oldsymbol{eta}_{2}$
CD11a/CD18	CD11b/CD18	CD11c/CD18
LFA-1	Mac-1=CR3	CR4

- migración defectiva de neutrófilos a tejidos infectados
- infecciones bacterianas recurrentes.
- <u>diagnóstico</u>: citometría de flujo

D1) defectos en la MIGRACIÓN de fagocitos D1.2) LAD-2:

- mutaciones en la fucosil transferasa (enzima que interviene en la síntesis de los motivos reconocidos por las selectinas en sus ligando).
- rolling y migración de neutrófilos a tejidos infectados defectiva
- infecciones bacterianas recurrentes
- <u>diagnóstico</u>: citometría de flujo

D1.3) LAD-3:

- Deficiencia de RAP-1(molécula involucrada en la activación de las integrinas por los receptores de quimiocinas).
- Defectos en la adhesión estable y migración leucocitaria.

D2) defectos en la FUNCIÓN de fagocitos: enfermedad granulomatosa crónica.

- mutaciones en alguno de los <u>componentes de la NADPH oxidasa</u>: gp91 (60% de los casos ligada a X), p22, p47 y p67 (autosómicas recesivas).
- infecciones bacterianas recurrentes.
- frecuente desarrollo de granulomas en tractos digestivo y urinario

- <u>diagnóstico</u>:

reducción del colorante NBT (microscopía)

oxidación de la DHR evaluado por citometría de flujo.

E) deficiencias de complemento

Componentes afectados	Manifestaciones clínicas
C1, C4, C2 o C3	Infecciones bacterianas y autoinmunidad (depósito tisular de complejos inmunes)
C5, C6, C7, C8, o C9	Infecciones por Neisserias
C1 inhibidor	Angioedema hereditario

Diagnóstico:

- a) Dosaje de los niveles séricos de los componentes del complemento por IDR o ELISA
- b) Valoración funcional de la capacidad hemolítica del complemento (CH50)

F) susceptibilidad a infecciones por Micobacterias

- susceptibilidad incrementada a infecciones por micobacterias. Suelen, además, mostrar una susceptibilidad incrementada a infecciones por Salmonellas y ciertos virus.
- indicación: no vacunar con BCG + Atb
- mutaciones en distintos genes que llevan a defectos en la señalización de la vía del

IL12/IL23/IFNy:

- 1- cadena R1 del receptor de IFNy.
- 2- cadena β1 del receptor de IL-12.
- 3- subunidad p40 IL-12.
- 4- Stat-1.
- 5- cadena R2 del receptor de IFNy.
- 6- NEMO.

Mutaciones de genes que confieren susceptibilidad a infecciones por Micobacterias

Seminars in Immunology 18 (2006) 347-361

La señalización a través de los receptores de IL-12 e IFNy cumple un papel importante en la defensa contra las micobacterias

- 1. La fagocitosis de la micobacteria por los macrófagos induce la producción de IL-12 (IL-12p40/p35). La IL-12 activa a LT y células NK a través del receptor para IL-12 (un heterodímero IL-12Rβ1/IL-12Rβ2) e induce la producción de IFNγ.
- 2. El IFNy producido por las células NK y los LT actúa a través de su receptor (un heterodímero IFNyR1/IFNyR2). Stat-1 participa en la transducción de señales a través del receptor de IFNy e incrementa la producción de IL-12.
- 3. La molécula **NEMO** participa en la transducción de señales vía CD40, la cual incrementa la producción de IL-12.

LT

célula NK

Monocito macrófato CD

La subunidad p40 es común para las citoquinas IL-12 e IL23. Del mismo modo, los receptores para ambas citoquinas comparten la subunidad β1 del receptor.

ESTUDIOS DE LABORATORIO FRENTE A UNA PROBABLE IDP

Pruebas de "primer nivel" básicas

Hemograma con recuento y fórmula leucocitaria

Proteinograma electroforético: Relación A/G

Dosaje de IgGs:

De alta complejidad, algunas imprescindibles para el diagnóstico.

Estudios de la respuesta inmune humoral

- Nivel I. Pruebas complementarias.
- Recuento <u>cuantitativo</u> de los niveles séricos de IgG, IgM, IgA por *IDR* e IgE por *ELISA*.
- 2. Recuento <u>cuantitativo</u> de LB por *citometría de flujo*, mediante Ac que identifican LB (CD19, CD20).
- 3. <u>Estudio funcional</u>: Búsqueda de anticuerpos preexistentes, generados en respuesta a vacunas o infecciones previas: isohemaglutininas anti-A y anti-B, Anti-estreptolisona O (ASTO), Anti-toxina tetánica, Anti-toxina diftérica por *Aglutinación, ELISA*.

Nivel II.

- 1. Determinación de Ac antineumocócicos en respuesta a inmunización activa con polisacárido neumocóccico. *ELISA*
- 2. Detección <u>cuantitativa</u>, por *citometría de flujo*, de la expresión en los LB de CD27, molécula asociada al desarrolllo de memoria B.
- 3. Determinación <u>cuantitativa</u> de subclases de IgG: IgG1, IgG2, IgG3, IgG4. *ELISA*.
- 4. Análisis de mutaciones en genes causantes de IDP de Ac: BTK, cadena μ , Ig α , AID. Secuenciación.

Estudios de la respuesta inmune celular

- Nivel I. Pruebas complementarias.
- Determinación <u>cuantitativa</u>, por *citometría de flujo*, de la expresión de marcadores T (CD3, CD4, CD8).
- Pruebas de hipersensibilidad retardada a distintos antígenos: PPD, Candidina, estreptoquinasa-estreptodornasa. Estudio <u>funcional</u>.
- > Nivel II.
- Estudio <u>funcional</u> de la respuesta proliferativa in vitro a mitógenos (PHA, ConA, PMA más Ionomicina). <u>Cultivo celular</u>
- 2. Estudio <u>funcional</u> de la respuesta proliferativa a antígenos; candidina, PPD y células alogénicas en cultivo mixto linfocitario. *Cultivo celular*
- 3. Dosaje de citocinas en sobrenadantes de cultivos linfocitarios o en el citoplasma celular en respuesta a mitógenos: IL-1, IL-2, IFN γ , TNF α , IL-4, IL-6 y otras. *ELISA*, citometría de flujo (intracitoplasmática). Estudio cuantitativo-funcional.
- 4. Estudio <u>funcional</u> de actividad enzimática: ADA, PNP.
- 5. Estudios de mutaciones en genes asociados con IDP celulares y combinadas: cadena γ común, JAK3, Artemis, RAG1, RAG2, ZAP-70, entre otros.

Estudios de la respuesta inmune innata I

Fagocitos

- > Nivel I.
- Estudios <u>funcionales</u> de mecanismos microbicidas dependientes de oxígeno: dependientes:
 - a) Prueba de reducción de nitroazul de tetrazolio (NBT).
 - b) Prueba de oxidación del colorante dihidrorodamina (DHR) por citomtería de flujo.
- > Nivel II.
- Determinación <u>cuantitativa</u> de la expresión de moléculas de adhesión (CD11b, CD18).
 Citometría de flujo.
- 2. Estudio <u>funcional</u> de la movilidad de fagocitos (leucotaxis).
- 3. Determinación de las actividades enzimáticas: mieloperoxidasa, glucosa-6-fosfato deshidrogenasa. Estudio cuantitativo y funcional.
- 4. Actividad bactericida. Estudio <u>funcional</u>.
- 5. Evaluación funcional de la vía de transducción de señales de IFN γ e IL-12.
- 6. Estudios de mutaciones en genes causantes de IDP asociadas con fagocitos (CYBB, CYBA, p47^{phox}, p67^{phox}, IFNGR1, IFNGR2, IL12B1, IL12B2, STAT1, NEMO, TYK2).

Estudios de la respuesta inmune innata II

Complemento

- > Nivel I.
- 1. Determinación <u>cuantitativa</u> de sus componentes (C3, C4, C1 estearasa). IDR.
- Actividad lítica del complemento (complemento hemolítico 50 y vía alternativa 50).
 Estudio <u>cuantitativo y funcional</u>.
- > Nivel II.
- 1. Determinación <u>cuantitativa y funcional</u> de los restantes componentes del complemento. *ELISA (cuantificación), pruebas funcionales (CH50)*.
- 2. Determinación <u>cuantitativa y funcional</u> de los restantes inhibidores del complemento. *ELISA (cuantificación)*.

Céluas NK

- 1. Determinación cuantitativa de expresión de moléculas de linaje (CD16/56, KIR, $V\alpha24$) por citometría de flujo.
- Actividad citolítica sobre células K562. Estudio funcional.

OTROS ESTUDIOS

Médula ósea.

Biopsia o aspirado: Útil para la identificación de plasmocitos y células pre-B.

Detección de portadores.

Cuando se conoce el defecto en la familia.

Diagnóstico prenatal.

Cuando se conoce el defecto en la familia, mediante la obtención de sangre fetal, células amnióticas o vellosidades coriónicas.

CRITERIOS DE VACUNACIÓN

- Vacunas <u>microorganismos muertos o inactivados</u> Vacunas <u>polisacáridas</u>
 No plantean problemas de tolerancia y seguridad.
- Vacunas a <u>microorganismos atenuados</u>
 Suelen estar contraindicadas en pacientes con IDP

Tratamientos de las IDP

- Reemplazo con inmunoglobulinas IV

Dosis de 400-600 mg/kg/mes (aplicación endovenosa o s.c.), que permiten mantener niveles séricos de anticuerpos IgG superiores a 500 mg/dl (nivel de protección).

- Reemplazo enzimático

Administración de ADA bovina modificada conjugada con polietilenglicol.

- <u>Trasplante de médula ósea</u>

Idealmente, tanto donante como receptor deben tener idénticos HLA-A, B, C y DR.

Transplante haploidéntico: ya que solamente 1/3 de los pacientes con IDP encuentran un donante compatible.

Riesgo: enfermedad de injerto vs huésped

Indicadores de reconstitución inmune

- Mejoría clínica.
- Presencia de células T y NK circulantes en pacientes con IDSC ligada a X.
- Detección de quimerismo celular
- > Incremento del nivel de inmunoglobulinas circulantes.
- > Inducción de anticuerpos post-vacunación .

Inmunodeficiencias secundarias: HIV-SIDA

- 42 millones viven con HIV en el mundo y 25 millones ya murieron
- se estiman 133 mil infectados en Argentina (30 mil casos reportados)

- virus con genoma compuesto por dos cadenas de RNA
- infecta principalmente LT CD4, macrófagos y DC
- produce SIDA luego de varios años de infección

Historia natural de la infección por HIV-1

Visión tradicional

Depleción temprana del compartimento T efector y de memoria en mucosas

INFECCIONES OPORTUNISTAS

Infecciones Oportunistas en órganos específicos en individuos infectados con VIH

Incapacidad de montar una respuesta de anticuerpos neutralizantes

Variabilidad

Extensiva glicosilación

Epitopes crípticos

Variabilidad del VIH-1

- Alta tasa de replicación (109 1010 virus/día)
- Alta tasa de error de TR (1 sustitución/genoma/ciclo): Cada célula infectada contiene un genoma viral diferente en al menos un nucleótido respecto del virus infectante.
- Alta tasa de recombinación (7 a 30 rec/ciclo)

El problema de la variabilidad

las diferentes cuasi-especies circulantes en un individuo pueden diferir en un 35% a nivel de secuencia del gen de la envoltura viral, principal blanco de la respuesta inmune

escape a respuesta CTL escape a Ac neutralizantes

Copyright © 2006 Nature Publishing Group Nature Reviews | Immunology