Numer indeksu:	

Logika dla informatyków

Egzamin końcowy (pierwsza część)

	9 lutego 2017 czas pisania: 90 min
Zadanie 1 (2 punkty). Podaj formulę	równoważną formule $p \Rightarrow (q \wedge (r \vee \neg s))$ i mającą:
(a) koniunkcyjną postać normalną	
(b) dysjunkcyjną postać normalną	
	$p \wedge q) \Rightarrow r$ i $(p \Rightarrow r) \wedge (q \Rightarrow r)$ są równoważne to w prostokąt ym przypadku wpisz odpowiedni kontrprzykład.
otrzymana z niej przez dopisanie nawiasó	mułę $\neg \forall x \ \neg p(x) \lor q(x) \Leftrightarrow \exists x \ p(x) \lor q(x)$. Jeśli istnieje formuła w, która (niezależnie od wszelkich przyjmowanych konwencji o to w prostokąt poniżej wpisz dowolną taką formułę. W prze-fnieje".
Zadanie 4 (2 punkty). Dla $n \in \mathbb{N}$ nied	ch $A_n=\{n\}$. Jeśli zbiór $\bigcap_{m=2}^{2017}\bigcup_{n=m}^{m+9}A_n$ ma najmniejszy element
to w prostokąt poniżej wpisz najmniejsz "NIE MA".	y element tego zbioru. W przeciwnym przypadku wpisz słowa
Zadanie 5 (2 punkty). Jeśli dla wszys	tkich zbiorów A,B,C,D zachodzi inkluzja
$((A \setminus B)$	$\cup C) \cap D \subseteq (D \setminus (B \cap C)) \cap A$
to w prostokąt poniżej wpisz słowo "TAK	". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

vartosciowan	e, przy którym	a formuła jes	st fałszywa.				
oniżej wpisz	2 punkty). Jeśl rezolucyjny dov jące ten zbiór.						
eśli istnieją t	2 punkty). Rozakie dwie różne o t poniżej wpisz	od siebie i roż	zne od $I_{\underline{4}}$ rela	acje równowa	żności R_1 i R_2	R_2 na $\underline{4}$, że R_1	$\cap R_2 = I$
aturalnych Ì	2 punkty). Jeśl I zawierająca zb n przypadku wp	iór $\{\langle x,y\rangle\in\mathbb{R}$	$\mathbb{N} \times \mathbb{N} \mid y =$	x + 42, to	w prostokąt j	poniżej wpisz	

				L			
Zadanie 10 (2 punkty). Przypomnijmy, że dowód implikacji $\alpha \Rightarrow \beta$ przez kontrapozycję polega na udowodnieniu implikacji $\neg \beta \Rightarrow \neg \alpha$. Nie używając słów języka naturalnego (czyli używając jedynie symboli matematycznych) uzupełnij poniższy tekst tak, aby otrzymać poprawny dowód następującego twierdzenia: Dla dowolnych zbiorów A i B , jeśli $A \cap B = A$ to $A \subseteq B$.							
Dowód. Dowód przepro	$\textit{Dow\'od}.$ Dow\'od przeprowadzimy przez kontrapozycję. Załóżmy, że ${\color{blue} oldsymbol{}}$. Wtedy istnieje						. Wtedy istnieje
taki element x , że		oraz		. Z defi	inicji przekr	oju z	biorów otrzymu-
jemy, że \boldsymbol{x} nie należy do	zbioru		. Zatem zbiory	7		i	
są różne, co kończy dov	vód.		_				
Zadanie 11 (2 punkt	y). Rozważmy	funkcję f	$: \mathbb{N} \to \mathbb{N}$ zdefin	iowaną	wzorem		
	$f(n) = \left\{ \right. $	$n/2, \\ n+1)/2,$	jeśli <i>n</i> jest par w przeciwnym	zyste, przypa	adku.		
Jeśli istnieje funkcja o W przeciwnym przypad							ıjące tę funkcję.
Zadanie 12 (2 punkt	y). Rozważmy	funkcje					
	$F : A^B \times G : A^{B \times C}$	$A^C \to A^{B}$, $A^C \to B^A$,	$\langle C$	f_1 : f_2 :	$B \to A,$ $C \to A,$		
oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie $F(a)$ nie jest poprawne, bo $a \not\in (A^B \times A^C)$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór, do którego należy elemant oznaczany przez to wyrażenie. Np. typem wyrażenia $f_1(b)$ jest A . Wpisz odpowiedni typ wyrażenia w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".							
$F(f_1,f_2)$			($F(f_1, f_2)$	(b,c)		
$G(F(f_1, f_2)(a))$			($G(F(f_1,$	$(f_2)(a)$		
Zadanie 13 (2 punkty). Rozważmy funkcję $f:\mathcal{P}(\mathbb{N})\times\mathbb{N}\to\mathbb{N}$ zdefiniowaną wzorem							
$f(X,n) = \{i \in X \mid i \le n\} .$							
Niech $P=\{n\in\mathbb{N}:2 n\}$ i $N=\{n\in\mathbb{N}:2 n+1\}$ oznaczają odpowiednio zbiory liczb parzystych i nieparzystych. W prostokąt poniżej wpisz obliczoną wartość obrazu zbioru $\{P\}\times N$ przez funkcję f .							
$f[\{P\} \times N] =$							

Numer indeksu:

Zadanie 14 (2 punkty). Niech $\mathcal{F} = \{ f \in \mathbb{N}^{\mathbb{N}} \mid f(0) = 0 \land f(1) = 1 \}$. Jeśli zbiór \mathcal{F} ma moc nie większą niż \aleph_0 to w prostokąt poniżej wpisz dowolną funkcję różnowartościową $F : \mathcal{F} \to \mathbb{N}$. Jeśli zbiór \mathcal{F} ma moc co najmniej continuum, to w prostokąt poniżej wpisz dowolną funkcję różnowartościową $G : \{0,1\}^{\mathbb{N}} \to \mathcal{F}$. A jeśli żaden z tych przypadków nie zachodzi, wpisz słowo "NIE".								
moc	, –	nkty). Jeśli istnieje rela w prostokąt poniżej wpi						
Zad	anie 16 (2 pu	nkty). Wpisz w puste po	ola poniż	zszei tabe	elki moce o	odpowiedni	ch zbiorów.	
	, -	$\boxed{\{1,2\}\times(\{3,4,5\}^{\{6,7\}})}$	1	N{0,1}	$\mathbb{R}^{\{2016\}}$	{2017} ^ℕ	$\{2016, 2017\}^{\mathbb{N}}$	
		nkty). W prostokąt poni sadnienie, że taki izomorf			zm pomię	dzy porządł	$\operatorname{kami} \langle \mathbb{Z} \times \{0,1\}, \leq 1 \rangle$	$\leq_{lex}\rangle$
wycl	n $\langle \{0,1\}^*, \leq_{lex} \rangle$ padku wpisz uz	nkty). Jeśli porządek lekjest regularny to wpisz wasadnienie dlaczego nie jenkty). W prostokąt poni	v prostok est on re	ąt poniże gularny.	ej słowo "I	REGULAR	NY". W przeciw	rnym
ków	na zbiorze liczb	o naturalnych N.						
nato unifi	omiast u, v, x i g	nkty). W tym zadaniu y są zmiennymi. W pros najogólniejsze unifikator słowo "NIE".	tokąty o	bok tych	spośród j	podanych p	oar termów, któr	re są
f(s)	$(x,g(y),a) \stackrel{?}{=} f($	(u,u,v)		f(x,g(x))	$(x),a) \stackrel{?}{=} .$	f(u, u, v)		
f(x)	$(x,g(y),a) \stackrel{?}{=} f($	(u,v,v)	j	f(x,g(y),	$a) \stackrel{?}{=} f(u)$	g,g(u),v)		

	Numer indeksu:	
Oddane zadania:		

Logika dla informatyków

Egzamin końcowy (część druga)

9 lutego 2017 czas pisania: 120 min

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów¹.

Zadanie 21. Rozważmy dowolne zbiory A i B. Ile jest funkcji z A w zbiór pusty? Ile jest funkcji ze zbioru pustego w A? Czy prawdziwa jest implikacja jeśli $A^B = B^A$ to A = B? Wszystkie odpowiedzi należy uzasadnić.

Zadanie 22. Czy istnieje największa w sensie inkluzji relacja równoważności na zbiorze liczb naturalnych, która nie zawiera pary (0,1)? Uzasadnij odpowiedź.

Zadanie 23. Udowodnij, że istnieje dokładnie continuum różnych przechodnich relacji na zbiorze liczb naturalnych, które są funkcjami.

 $^{^{1}}$ Algorytm oceniania odda
anych zadań jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów a następnie od wyniku zostają od
jęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.