Lecture 04: Conceptual Database Design & ER-Model

CS 1555: Database Management Systems

Constantinos Costa

http://db.cs.pitt.edu/courses/cs1555/current.term/

Jan 17, 2019, 16:00-17:15 University of Pittsburgh, Pittsburgh, PA

Lectures based: P. Chrysanthis & N. Farnan Lectures

Design

- Functional Design
 - What does the database application need to do?
 - What does the data need to be used for?
 - Will start off as a general sketch of transaction
 - Will lead to finalized transaction and an application
- Database Design
 - Determines what data must be stored and how the data elements interrelate.
 - Classifies data and Identifies interrelationships.
 - This is called an ontology.

CS 1555: Database Management Systems - Constantinos Costa

Functional Design

- High-level specification of Transactions
 - DBMS-independent
 - Even diagrams, UML
- Application program design
 - DBMS-specific (db Schema together with DML)
 - Language and environment-specific

CS 1555: Database Management Systems - Constantinos Costa

5 of 44

Database Design

- Database design is the activity of specifying the schema of a database in a given data model
- · Three categories:
 - Conceptual database design
 - Logical database design
 - Physical database design

CS 1555: Database Management Systems - Constantinos Costa

Database Design

- Conceptual database design
 - An abstract but complete description of the DB
 - Implementation independent (semantic clarity)
 - E.g., conceptual model: E-R Model, UML
- Logical database design
 - The conceptual database schema
 - Formal schema in an *implementation* data model
 - E.g., Relational, O-O, O-R, Network, hierarchical
- Physical database design
 - Internal schema: Internal storage organization of objects, implementing the conceptual model

CS 1555: Database Management Systems - Constantinos Costa

7 of 44

Entity-Relationship Model (P. Chen, 1976)

Two Semantics primitives

- Entities
 - Objects with physical existence,
 e.g., Peter, Mary, Peter's house, etc.
 - Objects with conceptual existence,
 e.g., University, Course, Account, etc.
- Relationships
 - Associations between two or more entities
 e.g., Peter *married* Mary, Mary *studies* Physics, etc.

CS 1555: Database Management Systems - Constantinos Costa

Attributes

- Entities are characterized by their attributes
 - Peter has an age,
 - Mary's car has a color
- · Relationships may also have attributes
 - Peter married Mary on Jan 7

CS 1555: Database Management Systems - Constantinos Costa

Entity Types

- All similar (same attributes) entities are grouped into sets, an entity type
- Entity type schema specifies the common structure:
 - type name
 - entity attributes (Domain, value set)
 - constraints on entities
- E.g.,

FACULTY: Name(FN,LM,MI), DoB, SSN, {Degree}, Rank

- FN:String(15), LN: String(15), SSN: String(9), etc.
- DoB: DD/MM/YYYY
- Degree: {BS,MS,PhD}

Rank: {Lecturer, Assistant, Associate of Sullinos Costa

11 of 44

Uniqueness or Key Constraint

- Entities are distinguished by using various keys
- A key is a uniqueness constraint on attributes
- A Key is defined over one or more attributes
 - SSN, StudentID, Car License Plate: State and Number
- Superkey: Any combination of attributes that uniquely identifies an entity
 - Name and SSN, Name and StudentID
- Candidate Key is a minimal superkey
 - E.g., SSN and StudentID
- Primary Key is one of the candidate keys (SSN)
- Alternative keys are the remaining candidate keys

Relationship Types

- <u>Relationship Types</u>: sets of relationships that are homogeneous in participating entities
 - BELONG: < FACULTY, DEPARTMENT>
 - ENROLLS: <STUDENT, SECTION>
- <u>Degree of a relationship</u> is the number of participating entity types:
 - 2-entities → binary relationship
 - 3-entities → tenary relationship
 - ..
 - N-entities → N-ary relationship
- <u>Recursive relationships</u> that involve more than once the same entity type with different Roles:
 - SUPERVISES: < supervisor-faculty, supervisee-faculty >

CS 1555: Database Management Systems - Constantinos Costa

13 of 44

Constraints on Relationship Types

- <u>Cardinality ration</u>: Specifies the number of relationship instances that an entity can participate in.
 - 1:1 Departments having Chairpersons
 - N:1 Children having Mothers
 - 1:N Mothers having children (inverse of N:1)
 - M:N Students enrolling in Class Sections
- Participation:
 - Total → Existence of entity depends on the existence of a related entity. E.g., Classes have total participation to OFFER_BY dept.
 - Partial → Some entities are not related to other entities.
 E.g., Faculty have partial participation to CHAIR of a dept.

CS 1555: Database Management Systems - Constantinos Costa

Strong and Weak Entities

- Strong or ordinary Entities:
 - Have independent existence in the mini-world
 - They are part of the care of the application
- Weak Entities:
 - They are dependent on another entity
 - Identify owner is the specific entity on which the weak entity depends
 - No key attribute; are distinguishable through an identifying relationship and a discriminator or partial key
 - Identifying relationship is always total participation
 - It may be represented as multi-value, composite attribute of owner (When isn't this possible?)

CS 1555: Database Management Systems - Constantinos Costa

Case Study: Library Database System

- Library organized into sections, like art, children, computing, science, etc. Each section has name and a number and its headed by a head librarian
- Each book title belongs to a section and has a title, authors, ISBN, call number, year and publisher
- For each copy of the book keep track the current borrower, the due date and the librarian who charged it out.
- Members have membership number, a driver's license, an address, a phone number and birthday
- Members can have up to 5 borrowed books and can put a hold request on a book.

Librarians have a name, ssn, address, phone

CS 1555: Database Management Systems - Constantinos Costa

Observation

- nouns -> entity types/sets
 - E.g., Section, librarian
- verbs -> relationship types
 - E.g., belongs, headed

CS 1555: Database Management Systems - Constantinos Costa

Entities

- **1. TITLE**: <u>CallNumber</u>, Name, Author{(Name(Fname, MI, Lname),Order)}, ISBN, Year, Publisher;
- **2. MEMBER**: MemNo, DriverLic(State,No), Name(Fname, MI, Lname), Address, PhoneNumber;
- 3. BOOK: BookID, Edition;
- **4. LIBRARIAN**: <u>SSN</u>, Name, Address, Salary, Gender, Date of Birth;
- 5. SECTION: SectNo, Name;

CS 1555: Database Management Systems - Constantinos Costa

Weak Entity

- Assume the additional requirement that all the dependents of each librarian are stored in the DB
- 1. **DEPENDENT**: Name, Date of Birth, Kinship

CS 1555: Database Management Systems - Constantinos Costa

23 of 44

Relationships

- 1. COPY: <TITLE, BOOK> 1:M, PARTIAL/TOTAL;
- 2. BELONGS: <BOOK, SECTION> N:1,TOTAL/PARTIAL;
- 3. HOLD: <MEMBER, TITLE> M:N, PARTIAL/PARTIAL, Date;
- **4. BORROW**: <MEMBER, BOOK> 1:5, PARTIAL/PARTIAL, BorrowDueDate;
- **5. CHECKS**: <LIBRARIAN, BOOK> 1:N, PARTIAL/PARTIAL;
- **6. MANAGES**: <LIBRARIAN, SECTION> 1:1, PARTIAL/PARTIAL;
- 7. WORKS: <LIBRARIAN, SECTION> 1:N, TOTAL/PARTIAL;
- **8. DEPENDS**: <LIBRARIAN, DEPENDENT> 1:N, PARTIAL/TOTAL;
- **9. SUPERVISES**: <supervisor-LIBRARIAN, supervisee-LIBRARIAN> 1:N, PARTIAL/PARTIAL;

CS 1555: Database Management Systems - Constantinos Costa

Assumptions/Clarifications:

- One author writes one or more titles.
- Several co-authors write one or more titles.
- A book is a copy of a title. A title can have one or more copies of the book.
- A book has a unique id (not a copy id). If a copy id is used then book is a weak entity type.
- A particular member places a hold on a particular title.
- Not all members necessarily borrow books. Not all books are necessarily borrowed.
- Not all titles need necessarily be of books.

 However, all books must have a title and only one

 itle. CS 1555: Database Management Systems Constantinos Costa 25 of 44

EER Model: Enhanced ER Model

- The **EER** model introduced the concepts of superclass and subclass entity types in the ER model
 - MEMBER (superclass):
 - LIFE-MEMBER, REGULAR-MEMBER, and SEASON-MEMBER (Subclasses)
 - LIBRARIAN (superclass):
 - HEAD LIBRARIANS, SALARY LIBRARIANS, and HOURLY LIBRARIANS (subclasses)

CS 1555: Database Management Systems - Constantinos Costa

26

Why EER Model?

- To add more semantic clarity to the design
- E.g., if only salary-librarians can belong to the librarian guild, then this can be expressed as
 - BelongTo:<SALARY-LIBRARIAN, LIB-GUILD> and not as
 - BelongTo:<LIBRARIAN, LIB-GUILD>
- Minimize NULL values

CS 1555: Database Management Systems - Constantinos Costa

27 of 44

Specialization, Generalization, Inheritance

• <u>Specialization</u>: identifying subclasses, and their distinguishing characteristics (attributes & relationships)

(Top-down design)

• <u>Generalization</u>: aggregate entities to a superclass entity type by identifying their common characteristics (Bottom-up design)

CS 1555: Database Management Systems - Constantinos Costa

Specialization, Generalization, Inheritance

- ☐ Inheritance: IS_A (instance) relationship that supports attribute inheritance and relationship participation
 - Single inheritance results in a hierarchy
 - Multiple inheritance results in a lattice

CS 1555: Database Management Systems - Constantinos Costa

29 of 44

Inclusion Constraints

- The *disjoint* constraint: the subclasses of a superclass are disjoint.
 - This means that an entity can be a member of only one subclass.
 - The entities for each class can be user-defined or specified with a predicate-defined subclass.
 - In a predicate-defined subclass, we use a selection condition on one or more attributes to define the entities of the subclass. E.g., MembershipStatus
- The non-disjoint constraints: specify that the subclasses are overlapping and an entity may be a member of more than one subclass.

CS 1555: Database Management Systems - Constantinos Costa

Completeness Constraints

- <u>A total specialization:</u> specifies that every entity in the superclass must be a member of some of its subclasses
 - E.g., a librarian must belong to one of the subclasses of LIBRARIAN.
- A partial specialization: specifies that an entity may not belong to any subclass
 - E.g., an honorary member may not belong to any of the specializations (subclasses) of MEMBER.
- Superclass via generalization is always total

CS 1555: Database Management Systems - Constantinos Costa

UML & OMT (Object Modeling Technique)

- Describe software modules and their interactions including data requirements via diagrams
- They include *class diagrams* which are similar to EER diagrams *same concepts different names*
 - Entity = object; Entity type = class
- In UML, a class is a box with three sections:
 - Class name, Object attributes, Object operations
- relationships are called associations, relationship instances are called links that have link attributes
- Relationship constraints are called *multiplicities*
- Two types of relationships: association & aggregation with directionality of access

CS 1555: Database Management Systems - Constantinos Costa

