Rappresentazione dell'informazione

Numeri negativi

v.

Rappresentazione dei numeri

In un calcolatore i numeri sono rappresentati su raggruppamenti di bit, di dimensione prefissata (ad esempio: 8, 16, 32), detti parole.

(Nel caso di parole di 8 bit si usa il termine *byte*)

Su una parola di n bit, si possono rappresentare 2^n numeri diversi.

Rappresentazione dei numeri negativi

■ Di norma, se il bit più a sinistra della parola è 1, il numero viene interpretato come negativo.

Principali convenzioni:

rappresentazione in modulo e segno

rappresentazione in complemento

Rappresentazione in modulo e segno

Per rappresentare un numero, si considera:

□ il segno ⇒ bit più a sinistra della parola (0 per +, 1 per -)

il valore assoluto restanti bito modulo della parola

м

Rappresentazione in modulo e segno

Osservazioni:

- □ il massimo numero rappresentabile, in modulo, è 2ⁿ⁻¹-1
- □ lo zero compare due volte (come +0 e -0)

è richiesta un'unità aritmetica per la sottrazione

×

Rappresentazione in complemento

- È la rappresentazione abitualmente utilizzata in quanto consente di effettuare le sottrazioni usando l'unità aritmetica di somma:
 - la differenza tra due numeri positivi può essere ottenuta sommando al minuendo il complemento del sottraendo

Per illustrare la rappresentazione in complemento facciamo riferimento dapprima al sistema decimale.

M

Rappresentazione in complemento dei numeri decimali

■ Complemento a 9:

si ottiene sottraendo da 9 ciascuna cifra del numero

Esempi:

- □ il complemento a 9 di 41 è 58 (99-41 = 58)
- \square il complemento a 9 di 2607 è 7392 (9999 2607 = 7392)

w

Rappresentazione in complemento dei numeri decimali

■ Complemento a 10:

si ottiene calcolando il complemento a 9 e aggiungendo poi 1 all'ultima cifra

Nota: dato un numero decimale N a n cifre, il suo complemento a 10 è pari a 10^n - N

M

Rappresentazione in complemento dei numeri decimali

Esempi:

- □ il complemento a 10 di 41 è 59 $(99-41=58 \rightarrow 59)$
- □ il complemento a 10 di 2607 è 7393 $(9999 2607 = 7392 \rightarrow 7393)$
- □ il complemento a 10 di 3717 è 6283 $(9999 3717 = 6282 \rightarrow 6283)$

■ Esempio: 72 - 41 = 31

Sommiamo il minuendo col complemento a 10 del sottraendo:

differenza positiva

■ Esempio: 2876 - 41 = 2835

Sommiamo il minuendo col complemento a 10 del sottraendo (esteso a quattro cifre cioè 0041):

differenza positiva

■ Esempio: 72 - 357 = -285

Sommiamo il minuendo col complemento a 10 del sottraendo:

$$\begin{array}{cccc}
0 & 7 & 2 & + \\
6 & 4 & 3 & = \\
\hline
(7 & 1 & 5)
\end{array}$$

differenza negativa Complementando a 10 il risultato si ottiene il valore assoluto della differenza cioè 285

■ Esempio: 276 - 357 = -81

Sommiamo il minuendo col complemento a 10 del sottraendo:

$$276 + 643 = (919)$$

differenza negativa Complementando a 10 il risultato si ottiene il valore assoluto della differenza cioè 81

- Riassumendo, si somma al minuendo il complemento a 10 del sottraendo:
 - in caso di riporto, la differenza è positiva ed è data dal risultato della somma, a meno del riporto che viene scartato
 - se non si ha riporto, la differenza è negativa e il suo valore assoluto si ottiene complementando a 10 il risultato della somma

 Sostanzialmente analoga alla sottrazione in complemento a 10.

L'unica variante è che in caso di risultato positivo (ovvero in presenza di riporto) occorre sommare il riporto al risultato ottenuto.

■ Esempio: 72 - 41 = 31

Sommiamo il minuendo col complemento a 9 del sottraendo:

differenza positiva

■ Esempio: 276 - 357 = -81

Sommiamo il minuendo col complemento a 9 del sottraendo:

differenza negativa Complementando a 9 il risultato si ottiene il valore assoluto della differenza cioè 81

Rappresentazione in complemento dei numeri binari

Complemento a 1:

il cambiamento di segno viene ottenuto complementando ciascun bit (cioè i bit a 1 diventano 0 e viceversa)

■ Complemento a 2:

si effettua il complemento a 1 e poi si aggiunge 1

Rappresentazione in complemento dei numeri binari

Il complemento a 1 e il complemento a 2 corrispondono rispettivamente al complemento a 9 e al complemento a 10 del sistema decimale.

Nota: dato un numero binario N a n cifre, il suo complemento a 2 è pari a 2^n - N

2

Rappresentazione in complemento dei numeri binari

Esempio: consideriamo la rappresentazione binaria, su una parola di 4 bit, del numero 6₁₀

$$6_{10} = 0110_2$$

complemento a 1: 1001

complemento a 2: 1 0 0 1 +

$$\frac{1}{1010}$$

Rappresentazione in complemento dei numeri binari

- Metodo alternativo per il calcolo del complemento a 2:
 - si copiano i bit del numero da complementare, partendo da quello meno significativo, finché si incontra 1
 - una volta copiato il primo bit a 1, si invertono tutti i bit successivi

Rappresentazione in complemento dei numeri binari

Esempi:

$$0110 \quad \xrightarrow{complemento \ a \ 2} \quad 1010$$

(si copiano i due bit meno significativi e si invertono gli altri due)

(si copiano i tre bit meno significativi e si invertono gli altri cinque)

M

Rappresentazioni binarie di interi su 4 bit

Positivi o nulli		Negativi o nulli			
	Tutte le notazioni		Segno e modulo	Complem. a 1	Complem. a 2
+0	0000	-0	1000	1111	
+1	0001	-1	1001	1110	1111
+2	0010	-2	1010	1101	1110
+3	0011	-3	1011	1100	1101
+4	0100	-4	1100	1011	1100
+5	0101	-5	1101	1010	1011
+6	0110	-6	1110	1001	1010
+7	0111	-7	1111	1000	1001
		-8			1000

(Tabella tratta da *G. Bucci. Calcolatori elettronici. Architettura e organizzazione. Copyright* © 2009 - *The McGraw-Hill Companies*)

7

Rappresentazioni binarie di interi: osservazioni

- Con una parola di n bit:
 - □ i numeri positivi vanno da 0 a 2ⁿ⁻¹-1,
 qualunque sia la notazione scelta
 - i numeri negativi vanno:
 - √ da 0 a (2ⁿ⁻¹-1) sia con la notazione in modulo e segno che con la notazione in complemento a 1
 - √ da 1 a 2ⁿ⁻¹ con la notazione in complemento a 2

Rappresentazioni binarie di interi: osservazioni

- La notazione in complemento a 2 è quella normalmente usata:
 - una sola rappresentazione per lo zero
 - calcoli meno macchinosi

Addizione e sottrazione in complemento a 2

■ L'addizione di due numeri di *n* bit rappresentati in complemento a 2 non tiene conto del segno degli operandi ed è effettuata con le usuali regole della somma aritmetica, trascurando però l'eventuale riporto sul bit *n*+1.

■ La sottrazione si riduce ad un'operazione di addizione ed è effettuata sommando al minuendo il complemento a 2 del sottraendo.

■ Esempio: 00011110 - 00010110 = 00001000 $(30_{10} - 22_{10} = 8_{10})$

Sommiamo il minuendo col complemento a 2 del sottraendo:

il riporto viene scartato

differenza positiva (il primo bit della parola è 0)

■ Esempio: 00010011 - 00010110 = 111111101 $(19_{10} - 22_{10} = -3_{10})$

Sommiamo il minuendo col complemento a 2 del sottraendo:

differenza negativa (il primo bit della parola è 1)

M

Sottrazione in complemento a 2

Se si sommano due numeri con lo stesso valore assoluto, uno positivo e uno negativo in complemento a 2, si ottiene lo zero (positivo e unico).

Esempio:

$$7_{10} - 7_{10} = 0_{10}$$

Overflow

Si verifica quando il risultato di un'operazione non è rappresentabile correttamente con n bit.

Regola pratica, in caso di notazione in complemento a 2:

si ha overflow se c'è riporto al di fuori del bit di segno e non sul bit di segno, oppure se c'è riporto sul bit di segno ma non al di fuori

м

Overflow

■ Esempio: somma dei numeri $+7_{10}$ e $+6_{10}$, rappresentati su una parola di 4 bit

Il risultato corretto della somma, ovvero 13_{10} , non è rappresentabile con soli 4 bit.

M

Overflow

Esempio: somma dei numeri -4₁₀ e -5₁₀, rappresentati (in complemento a 2) su una parola di 4 bit

Il risultato corretto della somma, ovvero -9_{10} , non è rappresentabile con soli 4 bit.