TBA

Ke-Han Chen

Department of Applied Mathematics National Chiao Tung University

October 18th, 2018

Preliminaries

Theorem

If C is nonnegative square matrix, then the following holds. The spectral radius $\rho(C)$ is an eigenvalue of C with a corresponding nonnogative right eigenvector and a corresponding nonnegative left eigenvector.

Preliminaries

The following theorem is from [].

Theorem

Let $C = (c_{ij})$, $C' = (c'_{ij})$, P and Q be $n \times n$ matrices. Assume that

- (i) $PCQ \leq PC'Q$;
- (ii) there exist a nonnegative column vector $u = (u_1, u_2, \dots, u_n)^T$ and a scalar $\lambda' \in \mathbb{R}$ such that λ' is an eigenvalue of C' with associated eigenvector Qu;
- (iii) there exist a nonnegative row vector $v^T = (v_1, v_2, \dots, v_n)$ and a scalar $\lambda \in \mathbb{R}$ such that λ is an eigenvalue of C with associated left eigenvector v^TP ; and
- (iv) $v^T PQu > 0$.

Then $\lambda \leq \lambda'$. Moreover, $\lambda = \lambda'$ if and only if

$$(PC'Q)_{ij} = (PCQ)_{ij}$$
 for $1 \le i, j \le n$ with $v_i \ne 0$ and $u_j \ne 0$.

Proof

Multiplying the nonnegative vector u in (ii) to the right of both terms of (i),

$$PCQu \le PC'Qu = \lambda'PQu.$$
 (1)

Multiplying the nonnegative left eigenvector v^T of C for λ in assumption (iii) to the left of all terms in (1), we have

$$\lambda v^T P Q u = v^T P C Q u \le v^T P C' Q u = \lambda' v^T P Q u. \tag{2}$$

Now delete the positive term $v^T PQu$ by assumption (iv) to obtain $\lambda \leq \lambda'$ and finish the proof of the first part.

Proof (Continue)

Assume that $\lambda=\lambda'$, so the inequality in (2) is an equality. Especially $(PCQu)_i=(PC'Qu)_i$ for any i with $v_i\neq 0$. Hence, $(PCQ)_{ij}=(PC'Q)_{ij}$ for any i with $v_i\neq 0$ and any j with $u_j\neq 0$. Conversely, (0.2) implies

$$v^T PCQu = \sum_{i,j} v_i (PCQ)_{ij} u_j = \sum_{i,j} v_i (PC'Q)_{ij} u_j = v^T PC'Qu,$$

so
$$\lambda = \lambda'$$
 by (2).

Our Method

Throughout fix $k \in [n-1]$. Let E_{kn} denote the $n \times n$ binary matrix with a unique 1 appearing in the position k, n of E_{kn} . We will apply the previous theorem with P = I and

$$Q = I + E_{kn} = \begin{pmatrix} 1 & & & & 0 \\ & 1 & & & \\ & & \ddots & & 1 \\ & & & 1 & \\ 0 & & & 1 \end{pmatrix}.$$

k-rooted vector

Definition

A column vector $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)^T$ is called *k-rooted* if $\mathbf{v}_j \geq 0$ for $1 \leq j \leq n$ and $\mathbf{v}_k \geq \mathbf{v}_n$.

The following Lemma is immediate from the above definition.

Lemma

vector rooted lemma If $u = (u_1, u_2, \dots, u_n)^T$ and $v' = (v_1, v_2, \dots, v_n) := Qu = (u_1, \dots, u_{k-1}, u_k + u_n, u_{k+1}, \dots, u_n)^T$, then

- (i) $\sqrt{\ }$ is k-rooted if and only if u is nonnegative;
- (ii) $u_k > 0$ if and only if $v_k > v_n$.

Our first result

Theorem

Let $C = (c_{ij})$, $C' = (c'_{ij})$ be $n \times n$ matrices. Assume that

- (i) $C[-|n| \le C'[-|n|]$ and $c_{ik} + c_{in} \le c'_{ik} + c'_{in}$ for all $1 \le i \le n$;
- (ii) there exist a k-rooted vector $\mathbf{V} = (\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_n)^T$ and a scalar $\lambda' \in \mathbb{R}$ such that λ' is an eigenvalue of C' with associated eigenvector \mathbf{V} ;
- (iii) there exists a nonnegative vector $v^T = (v_1, v_2, ..., v_n)$ and a scalar $\lambda \in \mathbb{R}$ such that λ is an eigenvalue of C with associated left eigenvector v^T ;
- (iv) $v^T v' > 0$.

Then $\lambda \leq \lambda'$. Moreover, $\lambda = \lambda'$ if and only if

- (a) $c_{ik} + c_{in} = c'_{ik} + c'_{in}$ for $1 \le i \le n$ with $v_i \ne 0$ and $v'_n \ne 0$;
- (b) $c'_{ij}=c_{ij}$ for $1\leq i\leq n,\ 1\leq j\leq n-1$ with $v_i\neq 0$ and $v'_j>v'_n.$

k-rooted matrix

Definition ((k,n)-sum)

For a matrix $C'=(c'_{ij})$ of n columns, the (k,n)-sum vector of C' is the vector of the sum of the k-th and n-th columns of C', where $k \leq n-1$.

Definition (k-rooted matrix)

A matrix $C=(c'_{ij})$ is called k-rooted if its columns and its (k,n)-sum vector are all k-rooted except the last column of C.

Theorem

- (i) C' is a k-rooted matrix, if and only if, $Q^{-1}C'Q$ is nonnegative.
- (ii) C' has a k-rooted eigenvector v' = Qu for $\rho(C')$ as an eigenvalue. u is a nonnegative eigenvector of $Q^{-1}C'Q$ for $\rho(C')$.
- (iii) $\rho(C') = \rho(Q^{-1}C'Q)$

Remark

$$Q^{-1} = I - E_{kn} = \begin{pmatrix} 1 & & & & 0 \\ & 1 & & & \\ & & \ddots & & & -1 \\ & & & 1 & \\ 0 & & & & 1 \end{pmatrix}.$$

The matrix $Q^{-1}C'Q$ is

Proof.

For (i), the form of $Q^{-1}C'Q$ in last page shows that $Q^{-1}C'Q \geq 0$ if and only if C' is k-rooted. For (ii), C' is k-rooted and it has an k-rooted eigenvector Qu. And base on (i), $Q^{-1}C'Q$ is nonnegative implies that it has an eigenvector corresponding to spectral radius of $Q^{-1}C'Q$

- (i) $C'*Qu = \lambda * Qu = Q*\lambda u$ times Q^{-1} to the left
- (ii) $Q^{-1}C'Q^* u = \lambda * u$

where λ is the spectral readius of C', so it is necessary that (iii) holds.

Lemma

If a square matrix C' has a rooted eigenvector for λ' , then C' + dI also has the same rooted eigenvector for $\lambda' + d$, where d is a constant and I is the identity matrix with the same size of C'.

Theorem

Let C be an $n \times n$ nonnegative matrix. For $1 \le i \le n$ and $1 \le j \le n-1$, choose c'_{ij} such that $c'_{ij} \ge c_{ij}$, and then choose r'_{i} such that $r'_{i} \ge c_{ik} + c_{in}$ and $c'_{kj} \ge c'_{nj} > 0$, and let $c'_{in} := r'_{i} - c'_{ik}$ with $r'_{k} \ge r'_{n}$. Whereas $c'_{kk} \ge c'_{nk}$ is not necessary. Then the $n \times n$ matrix $C = (c'_{ij})$ has a positive k-rooted eigenvector for $\rho(C')$ and $\rho(C) \le \rho(C')$.

Proof

The assumptions are necessary that $PCQ \leq PC'Q$, and C' is k-rooted, by 0.9, For certain d, if $C'+d^*I$ is k-rooted, then it has a k-rooted eigenvector with its spectral radius $\lambda + d$. C' would share the same eigenvector with $C'+d^*I$ and has eigenvalue λ . So $C'+d^*I$ and $C+d^*I$ meet the conditions of 0.5, and we can show that $\rho(C'+d*I) \geq \rho(C+d*I)$ and then $\rho(C') \geq \rho(C)$

Example

For the following 4×4 matrix

$$C = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix},$$

we choose

$$C' = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

Then $\rho(C) \leq \rho(C')$ by previous theorem.

Counterexample

For the following two 4×4 matrices

$$C = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}, \quad C' = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix},$$

we have $CQ \le C'Q$, but $\rho(C) = 2.234 \le 2.148 = \rho(C')$. This is because $c'_{33} + c'_{34} \ge c'_{43} + c'_{44}$.