Conception & Fabrication Assistées par Ordinateur

Xavier Lebreton
Cours Robotique

Présentation & tour de table

- Nom & prénom
- Expériences en Conception Assistée par Ordinateur
- Réalisations marquantes
- Attentes pour le cours
- Si vous étiez un outil...?

Objectifs

- Comprendre ce que sont les CAO/FAO
- Appréhendez les différents types de CAO/FAO
- Impression 3D : matériaux & paramètres
- CAO/FAO en 2D : Inkscape & découpe laser
- CAO/FAO en 3D : modélisation avec Fusion 360

Planning (prévisionnel)

- Cours 1: Introduction CAO/FAO et impression 3D
- Cours 2 : Découpe laser & Inkscape
- Cours 3 : Fusion 360 : bases
- Cours 4 : Fusion 360 : avancé
- Cours 5 : Réalisation concrète

Introduction à la CAO/FAO

Xavier Lebreton Cours Robotique

CAO: définition

La **conception assistée par ordinateur** ou **CAO** (en anglais, computer aided design ou CAD) comprend l'ensemble des logiciels et des techniques de modélisation géométrique permettant de concevoir, de tester virtuellement – à l'aide d'un ordinateur et des techniques de simulation numérique – et de réaliser des produits manufacturés et les outils pour les fabriquer.

source: https://fr.wikipedia.org/wiki/Conception assist%C3%A9e par ordinateur

FAO: définition

Le but de la **fabrication assistée par ordinateur** ou **FAO** (en anglais, computer-aided manufacturing ou CAM) est d'écrire le fichier contenant le programme de pilotage d'une machine-outil à commande numérique. Ce fichier va décrire précisément les mouvements que doit exécuter la machine-outil pour réaliser la pièce demandée.

WikipediA

 $source: https://fr.wikipedia.org/wiki/Fabrication_assist\%C3\%A9e_par_ordinateur$

FAO: soustractive

Usinage

FAO: soustractive

Découpe laser

FAO: additive

• Impression 3D FDM

FAO: additive

• Impression 3D SLA

FAO: additive

• Impression 3D SLS

Visite

L'impression 3D FDM

Xavier Lebreton Cours Robotique

Impression 3D

Votre première impression?

• Un objet que vous ne pensez pas possible d'imprimer

Vitesse ou précision ?

• Années 60/70

Le 16 juillet 1984, le 1^{er} brevet sur la « fabrication additive » est déposé par trois Français.

Deux semaines plus tard, l'américain Charles "Chuck" Hull brevète la technique de stéréolithographie (SLA pour StéréoLithographie Apparatus). Il est également l'inventeur du format de fichier .stl, encore utilisé aujourd'hui pour échanger les fichiers 3D pour l'impression.

Il est le co-fondateur de 3D Systems, l'un des géants de la fabrication d'imprimantes 3D qui lance fin 1988 la première imprimante 3D commerciale.

En 2004, Adrian Bowyer crée le projet RepRap, premier projet open source d'imprimante 3D, et donne naissance à la culture maker.

En 2009, les brevets FDM (Fused Deposition Modelling) expirent, ouvrant la voie à un fort développement de cette technologie

Comment ça marche?

- Déplacement
- Châssis
- Plateau chauffant
- Première couche
- Auto Nivellement
- Ventilation
- Bowden/Direct drive

Comment ça marche?

Étapes d'impression

- Avoir un modèle 3D
- Choisir le matériau
- Slicer
- Imprimer
- Post traiter

Avoir un modèle 3D

Thingiverse

GRABCAD

• Thingiverse

Grabcad

Avoir un modèle 3D

Thingiverse

Grabcad

• Cults3D

Outils de CAO 3D

FreeCad

Blender

TinkerCad

OpenScad

Solidworks

Les filaments

Xavier Lebreton
Cours Robotique

Filaments

PLA

ASA

ABS

PVB

PETG

FLEX

PA

PC

PEEK

PLA/ABS: Les historiques

- PLA
 - Facile à imprimer
 - Faible déformation
 - Dur et résistant
 - Cassant
 - Déformation à la chaleur

PLA/ABS: Les historiques

- ABS
 - Dur à imprimer
 - Vapeurs nocives
 - Résistant aux chocs
 - Résistance thermique
 - Lissable à l'acétone

PETG: le passe partout

- PETG
 - Facile à imprimer
 - Robuste
 - Non cassant
 - Thermorésistant
 - Post traitement pas évident

Flex : plus de souplesse

- TPU
 - Dur à imprimer
 - Flexible
 - Résistance mécanique
 - Résistance aux chocs
 - Post traitement compliqué

ASA : le post traité

- ASA
 - Difficulté d'impression moyenne
 - Très robuste
 - Résistant aux UV
 - Thermorésistant
 - Lissage facile

PVB: soluble dans l'alcool

- PVB
 - Facile à imprimer
 - Résistant
 - Lissage à l'IPA
 - Déformation à la chaleur

PA/PC/PEEK: les ultra techniques

- PA: Nylon
 - Difficile à imprimer
 - Durable
 - Résistance mécanique
 - Sensible à l'humidité
 - Post traitement compliqué

PA/PC/PEEK: les ultra techniques

- Difficile à imprimer
- Thermorésistant
- Peu hygroscopique
- Isolation électrique
- **■** Excellente résistance mécanique

PA/PC/PEEK: les ultra techniques

- PEEK
 - Très difficile à imprimer
 - Excellente résistance mécanique
 - Excellente résistance chimique
 - Excellente résistance à la chaleur
 - Résistance à l'humidité

	Difficu		Résista			Difficu Ité de		
	Ité		nce	Thermo	Résist	post		
	d'impr	Tarif	mécani	résista	ance à	traite		
	-	(au kg)	que	nce	l'eau	ment	Usage	Remarque
								Existe chargées en bois,
DI A	Fasila	4E 20C	Faible	Faible	Faible	Mayran	Dià ao aotháticusa	métal ou en de nombreuses
PLA	Facile	15-30€	Faible	Faible	Faible	Moyen	Pièce esthétiques	couleurs
ABS	Moyen	30€	Bonne	Bonne	Bonne	Facile		
PETG	Facile	30€	Bonne	Bonne	Bonne	Moyen	Toute pièce mécanique, prototypage	
FLEX	Moyen	50-100€	Bonne	Bonne	Bonne	Elevée	Pièces souples	
							Usage en extérieur (résistance UV)	
				Excellent			ou pièce à haute résistance	
ASA	Moyen	30-40€	Excellente	е	Faible	Facile	thermique	
PVB	Moyen	50€	Bonne	Faible	Faible	Facile	Objets translucides, décoration	
				Excellent	Excellen			
PC	Moyen	50-80€	Excellente	е	te	Facile	Pièces extrêmement solides	Existe chargé en carbone
							Pièces subissant de fortes	
PA	Elevée	60-120€	Excellente	Faible	Faible	Elevée	contraintes mécaniques	Existe chargé en carbone
	Très			Excellent	Excellen			Résistance aux produits
PEEK	élevée	800€	Excellente	е	te	NA	Pièces mécaniques pour la NASA	chimiques

Т

Xavier Lebreton Cours Robotique

CURA

■ SLIC3R

• Simplify 3D

PrusaSlicer

Paramètres principaux

- Hauteur de couche
- Coque/couches dessus-dessous
- Remplissage: quantité et type
- Températures
- Supports
- Jupe & bordure

Lexique

- CAO: Conception Assistée par Ordinateur
- FAO: Conception Assistée par Ordinateur
- FDM: Fused Deposition Modeling/Dépôt de fil
- SLA: StéréoLithogrAphie
- SLS: Selective Laser Sintering

Crédits

- https://prusament.com/fr/materials/
- https://creadil.com/2020/01/16/les-differents-types-de-fila ments-dans-limpression-3d/
- https://fr.wikipedia.org/wiki/Impression_3D