A Diffuse Interface Framework for Modeling the Evolution of Multi-cell Aggregates as a Soft Packing Problem

S. $\mathsf{Rudraraju}^1$,J. Jiang^2 , D. Auddya^1 ,T. Topal^2 ,L. V. Diaz^3 , K. $\mathsf{Garikipati}^2$

- ¹ University of Wisconsin Madison
- ² University of Michigan Ann Arbor
 - ³ Oakland University, Michigan

WCCM 2018 New York, July 25, 2018

Soft packing problem: Overview

- Motivation
 - Embroyogenesis
 - ► Tumor growth
- Previous models
 - Vertex based, cell based, cellular automata.
- Phase field formulation of soft packing
- Mechanics of soft packing
- Material models
- Summary

Motivation: Embroyogenesis

Early cleavages of C. subdepressus under light microscopy [Reference: B. C. Vellutini and A. E. Migotto, PLOS One, 2010]

Embroyogenesis in C. subdepressus

Motivation: Embroyogenesis

Schematic view of morphological and lineage specification steps during the early mouse embryonic development [Reference: Krupinski P, Chickarmane V, Peterson C (2011), PLoS Comput Biol 7(5): e1001128]

Motivation: Tumor growth

Complexity of the tumor microenvironment [Reference: Bumsoo Han et al., Cancer Letters, Vol. 380: 1, 2016]

Cell packing in growing tumors [Reference: Mills Lab, RPI]

Soft packing of cells in cellular aggregates

¹ https://commons.wikimedia.org/w/index.php?curid=29251495

² Embryo of Echinaster brasiliensis (A. E Migotto, Universidade de Sao Paulo) https://www.cell.com/pictureshow/embryogenesis

Relevant numerical models: Cellular automata / High-Q Potts models

Cellular automata rules¹

Clustering dynamics using CA models²

¹ http://mathworld.wolfram.com/CellularAutomaton.html

² Y. Zhang et al., PLoS ONE 6(10): e24999. doi:10.1371/journal.pone.0024999, 2011

Relevant numerical models:

Cellular automata rules¹

Clustering dynamics using CA models²

¹ http://mathworld.wolfram.com/CellularAutomaton.html

² Y. Zhang et al., PLoS ONE 6(10): e24999. doi:10.1371/journal.pone.0024999, 2011

Soft packing: A phase field approach

Soft packing: A phase field approach

Soft packing: Results

Soft packing: Results

Soft packing: Role of mechanics

Soft packing: Shape model

Shape model: Results

Shape model: Results

Shape model: Extension to material models

Soft packing: Connection to embroyogenesis

Soft packing: Connection to tumor growth

Summary and ongoing work

Thanks!!!