Содержание

1	Мн	имум 1	L																							2
	1.1	Глава	1																							2
		1.1.1	Б	ИЛ	ет	1																				2
		1.1.2	Б	ИЛ	ет	2																				2
		1.1.3	Б	ИЛ	ет	3																				2
		1.1.4	Б	ИЛ	ет	4	: .																			3
		1.1.5	Б	ИЛ	ет	5																				3
		1.1.6	Б	ИЛ	ет	6																				4
		1.1.7	Б	ИЛ	ет	7																				4
		1.1.8	Б	ИЛ	ет	8																				5
	1.2	Глава	2																							5
		1.2.1	Б	ИЛ	ет	1																				5
		1.2.2	Б	ИЛ	ет	2																				6
		1.2.3	Б	ИЛ	ет	3																				6
		1.2.4	Б	ИЛ	ет	4																				6
		1.2.5	Б	ИЛ	ет	5																				6
		1.2.6	Б	ИЛ	ет	6																				7
		1.2.7	Б	ИЛ	ет	7													٠		٠					7
2	2 Минимум 2																7									
	2.1	Билет																								7
	2.2	Билет	2																							8
	2.3	Билет	3																							8
	2.4	Билет																								9
	2.5	Билет	5																							9
	2.6	Билет	6																							10

1 Мнимум **1**

1.1 Глава 1

1.1.1 Билет 1

Определение случайного события:

Пусть Ω — множество элементарных исходов эксперимента. Случайным событием называется любое подмножество множества Ω .

Определение достоверного события:

Достоверным событием называется событие Ω , которому благоприятствует каждый исход эксперимента.

Определение невозможного события:

Невозможным событием называется пустое множество, которому не благоприятствует ни один исход эксперимента.

Определение противоположного события:

Событием, противоположным событию A называется событие \overline{A} , которое состоит из исходов, не благоприятствующих A.

1.1.2 Билет 2

Определение σ -алгебры событий:

Сигма алгеброй событий называется множество \mathcal{F} подмножеств $A\subset\Omega,$ удовлетворяющее условиям:

- 1. если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$;
- 2. $\Omega \in \mathcal{F}$;
- 3. если $\{A\}_{i=1}^{\infty} \in \mathcal{F}$, то $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

1.1.3 Билет 3

Пусть \mathcal{A} — алгебра множеств из Ω .

Определение конечно аддитивной вероятностной меры

Конечно аддитивной вероятностной мерой Q(A) называется функция множества $Q:\mathcal{A}\to [0;1]$, такая, что:

- 1. $\forall A \in \mathcal{A} \ Q(A) \geq 0$;
- 2. $Q(\Omega) = 1$;

3. $\forall A, B \in \mathcal{A}$: $A \cap B = \emptyset$ $Q(A \cup B) = Q(A) + Q(B)$ $Q(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} Q(A_i)$.

Определение счётно аддитивной вероятностной меры:

Счётно аддитивно вероятностной мерой P(A) называется функция множества $P:\mathcal{F} \to [0;1]$, такая, что:

- 1. $\forall A \in \mathcal{F} \ P(A) \ge 0;$
- 2. $P(\Omega) = 1$;
- 3. $\forall \{A_i\}_{i=1}^{\infty} \in \mathcal{F}: \forall i \neq j \ A_i \cap A_j = \varnothing \ P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i).$

1.1.4 Билет 4:

Свойства вероятности:

- 1. $P(\overline{A}) = 1 P(A)$
- 2. Если $A \subseteq B$, то $P(A) \le P(B)$ и $P(B \setminus A) = P(B) P(A)$
- 3. Теория сложения вероятностей:

Пусть A и B некоторые события, $A, B \in \mathcal{F}$. Тогда

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

4. Непрерывность вероятностной меры:

Пусть $\{A\}_{i=1}^{\infty}$ — монотонный класс событий, то есть

1) $A_i \subset A_{i+1}$ или 2) $A_i \supset A_{i+1}$. Тогда

$$P(\lim_{n\to\infty}(A_n)) = \lim_{n\to\infty}(A_n)$$

1.1.5 Билет 5

Определение классической вероятности:

 $P(A) = \frac{k}{n}$, где k — количество благоприятных A исходов, n — количество всех возможных исходов эксперимента.

1.1.6 Билет 6

Определение условной вероятности:

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство и $A, B \in \mathcal{F}, P(B) > 0$. Условной вероятностью события A при условии, что наступило событие B называется число:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Пусть $\{A_i\}_{i=1}^{\infty}$ — полная группа несовменстных событий.

Назовём события A_i гипотезами, а $P(A_i)$ назовём априорные вероятности гипотез.

Теорема (формула полной вероятности):

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство и $\{A_i\}_i^{\infty} \in \mathcal{F}$ — полная группа попарно несовметных событий; $P(A_i) > 0$, пусть $A \in \mathcal{F}$ — неполное событие и $P(A|A_i) \geq 0$. Тогда

$$P(A) = \sum_{i=1}^{\infty} P(A_i) * P(A|A_i)$$

Теорема (формула Байеса):

Пусть $\{A_i\}_{i=1}^{\infty}$ — полная группа попарно несовместимых событий, и пусть для некоторого P(A)>0. Тогда

$$\forall i = \overline{1, \infty} \ P(A_i|A) = \frac{P(A_i) * P(A|A_i)}{P(A)},$$

1.1.7 Билет 7

Определение независимости событий:

Случайные события А и В называются независимыми, если

$$P(A \cap B) = P(A) * P(B)$$

1.1.8 Билет 8

Определение (критерий независимости событий):

Пусть A и B такие, что P(B)>0. Тогда случайные события A и B независимы $\Leftrightarrow P(A|B)=P(A)$

Теорема (о независимости противоположных событий):

Пусть A и B — независимы. Тогда события A и $\overline{B};$ \overline{A} и B; \overline{A} и \overline{B} — попарно независимы.

1.2 Глава 2

1.2.1 Билет 1

Множество A называется элементарным, если оно представимо в виде суммы прямоугольников хотя бы 1 способом:

$$A = \bigcup P_k,$$

где P_k — покрытие.

Мерой элементарного множества A называется

$$m'(A) = \sum m(P_k),$$

где P_k — разбиение A.

Определение верхней меры Лебега:

Верхней мерой Лебега называется

$$\mu^*(A) = \inf_{\{P_k\}} \sum_m (P_k)$$

Определение нижней меры Лебега:

Рассмотри множество $E \setminus A$. (m(E) = 1). Нижней мерой Лебега называется

$$\mu_*(A) = 1 - \mu^*(E \setminus A)$$

Определение измеримого по Лебегу множества и меры Лебега:

Говорят, что множество A измеримо по Лебегу, если:

$$\mu^*(A) = \mu_*(A) = \mu(A)$$

Величина $\mu(A)$ — мера Лебега множества A.

1.2.2 Билет 2

Определение измеримой функции:

Пусть X и Y — некоторые множества и пусть S_x и S_y — классы подмножества. $f: X \to Y$ — некоторая функция.

Функция $f:X \to Y$ называется (S_x,S_y) — измеримой, если:

$$\forall B \in S_y \quad \exists f^{-1}(B) \in S_x$$

Определение измеримой действительной функции:

Действительная функция f(x) с областью определения $X\subset R$ называется μ -измеримой или S_{μ} -измеримой, если для любого борелевского множества $b\in\beta(R)$ $f^{-1}(b)\in S_{\mu}$.

1.2.3 Билет 3

Определение (критерий измеримости действительных функций):

Действительная функция f(x) измерима \Leftrightarrow

$$orall C \in R \quad f^{-1}(b) = f^{-1}(-\infty,C)$$
 — измерима
$$\{x: f(x) < C\}$$

1.2.4 Билет 4

Определение случайной величины:

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство. Случайной величиной называется вещественно значная функция ξ такая, что

$$\xi: \Omega \to R \quad \forall x \in R \quad \{w: \xi(w) < x\} \in \mathcal{F}$$

1.2.5 Билет 5

Определение функции распределения:

Функцией распределения вероятностей случайной величины ξ называется функция $F_{\xi}(x) = P\{w: \xi(w) < x\}$

Свойства функции распределения:

- 1. $0 \le F_{\xi}(x) \le 1 \quad \forall x \in R;$
- 2. $F_{\xi}(x)$ неубывающая, непрерывная слева функция;
- 3. $\lim_{x \to +\infty} F_{\xi}(x) = 1$ $\lim_{x \to -\infty} F_{\xi}(x) = 0;$
- 4. $P\{a \le \xi < b\} = F_{\xi}(b) F_{\xi}(a);$
- 5. $P\{\xi = x_0\} = F_{\xi}(x_0 + 0) F_{\xi}(x_0)$.

1.2.6 Билет 6

Определение функции плотности распределения:

Функцией плотности распределения вероятностей случайной величины ξ называется функция $f_{\xi}(x)$ такая, что:

- 1. $\forall x \in R \quad f_{\xi}(x) \ge 0;$
- 2. $F'_{\xi}(x) = f_{\xi}(x);$
- 3. $\int_{-\infty}^{\infty} f_{\xi}(x) dx = 1;$
- 4. $P\{a \le \xi \le b\} = \int_{b}^{a} f_{\xi}(x) dx$.

1.2.7 Билет 7

Определение случайных независимых велечин:

Случайные велечины ξ и μ называются независимыми, если:

$$\forall x, y \in R \quad P\{w : \xi(w) < x; \mu(w) < y\} = P\{w : \xi(w) < x\} * P\{w : \mu(w) < y\}$$

2 Минимум 2

2.1 Билет 1

Определение случайной величины:

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство. Случайной величиной называется вещественно значная функция ξ такая, что

$$\xi: \Omega \to R \quad \forall x \in R \quad \{w: \xi(w) < x\} \in \mathcal{F}$$

2.2 Билет 2

Определение функции распределения:

Функцией распределения вероятностей случайной величины ξ называется функция $F_{\xi}(x) = P\{w: \xi(w) < x\}$

Свойства функции распределения:

- 1. $0 \le F_{\xi}(x) \le 1 \quad \forall x \in R;$
- 2. $F_{\xi}(x)$ неубывающая, непрерывная слева функция;
- 3. $\lim_{x \to +\infty} F_{\xi}(x) = 1$ $\lim_{x \to -\infty} F_{\xi}(x) = 0;$
- 4. $P{a \le \xi < b} = F_{\xi}(b) F_{\xi}(a);$
- 5. $P\{\xi = x_0\} = F_{\xi}(x_0 + 0) F_{\xi}(x_0)$.

2.3 Билет 3

Доказательство непрерывности слева функции распределения

Требуется показать, что для возрастающей последовательности $\{x_n\}$, такой что $\lim_{n\to\infty} x_n = x$, последовательность $\{F(x_n)\}$ при $n\to\infty$ стремится к F(x) или $\lim_{n\to\infty} F(x_n) = F(x)$.

Рассмотрим последовательность событий $A_n = \{w : \xi(w) < x_n\}$

Для неё верно:

$$\forall n \ A_n \subset A_{n+1} \ (x_n < x_{n+1})$$

$$\bigcup_{n=1}^{\infty} A_n = A = \{ w : \xi(w) < x_n \}$$

То есть последовательность $\{A_n\}$ удовлетворяет свойству непрерывности вероятностной меры $P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A)$.

Тогда можем записать

$$\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} P\{\xi \in (-\infty, x_n)\} = \lim_{n \to \infty} P\{\xi \in (-\infty, x)\} = F(x).$$

Таким образом,

$$\lim_{n \to \infty} F(x_n) = F(x).$$

2.4 Билет 4

Доказательство неубывания функции распределения:

По определению требуется показать, что:

$$\forall x_1 < x_2 \quad F(x_1) \le F(x_2)$$

Пусть

$$(-\infty, x_2) = (-\infty, x_1) \cup [x_1, x_2]$$

Тогда

$$F(x_2) = P\{\xi \in (-\infty, x_2)\} = P\{\xi \in (-\infty, x_1) \cup \xi \in [x_1, x_2)\} = P\{\xi \in (-\infty, x_1)\} + P\{\xi \in [x_1, x_2]\}$$

Учитывая, что $P\{\xi \in (-\infty, x_1)\} \ge 0$ и $P\{\xi \in [x_1, x_2]\} \ge 0$, получим

$$P\{\xi \in (-\infty, x_1)\} + P\{\xi \in [x_1, x_2]\} \ge P\{\xi \in (-\infty, x_1)\} = F(x_1)$$

То есть

$$\forall x_1 < x_2 \quad F(x_1) \le F(x_2)$$

2.5 Билет 5

Определение функции плотности распределения:

Функцией плотности распределения вероятностей случайной величины ξ называется функция $f_{\xi}(x)$ такая, что:

- 1. $\forall x \in R \quad f_{\xi}(x) \ge 0;$
- 2. $F_{\xi}^{'}(x) = f_{\xi}(x)$ почти всегда;
- 3. $\int_{-\infty}^{\infty} f_{\xi}(x) dx = 1;$
- 4. $P\{a \le \xi < b\} = \int_{b}^{a} f_{\xi}(x) dx$.

2.6 Билет 6

Определение случайных независимых велечин:

Случайные велечины ξ и μ называются независимыми, если:

$$\forall x,y \in R \quad P\{w: \xi(w) < x; \mu(w) < y\} = P\{w: \xi(w) < x\} * P\{w: \mu(w) < y\}$$