E1.05 – H. I. M.

Project Plan

Jose Silva, Project Manager

Andrew Flores

Cameron Muir

Gabriel Montero-Sierra

Sponsored by:

Texas State University
601 University Dr

San Marcos, Texas 78666

Date: October, 21, 2020

Document Revision History Table Template: 3/9/20		Template: 3/9/20
Version	Summary of Changes	Date
0.1	Section Owners assigned; draft Introduction added	10/4/20
0.5	First draft of all sections completed	10/10/20
0.9	All sections updated during team review	10/14/20
1.0	Version submitted for signatures	10/18/20
1.1	Revision post-IDR, changes to block diagrams, and sections 4 and 5	11/25/20

Contents

EXI	ECUTIVE SUMMARY	3
Pro	oduct Block Diagram	5
	Power Subsystem	6
	Data Collection Subsystem	7
	Display Subsystem	8
	Mapping Subsystem	9
	Storage Subsystem	10
Pro	eject Schedule	12
De	velopment Costs	13
	Labor Categories and Burdened Hourly Cost Estimate	13
	Material Costs – Non-Capital Expenditures	14
	Capital Expenditures	14
	Total Estimated Project Costs	14
Tes	et Procedures	15

	Power Subsystem Unit Tests	16
	Battery Life Test at Maximum Power Draw	16
	Battery Recharge Test at Maximum Capacity	16
	5.2 Display Subsystem Unit Tests	17
	5.2.1 Display Visibility	17
	5.2.2 Display Data	17
	5.3 Mapping Subsystem Unit Tests	18
	5.3.1 File Import Test	18
	5.3.2 Map Refresh Test	18
	5.3.3 Map Refresh Test	19
	5.4 Storage Subsystem Unit Tests	19
	5.4.1 File Storage Test	19
	5.4.2 File Transmission Unit Test	20
	5.4.3 Wireless Transmission Speed Unit Test	20
	5.5 System Integration Unit Tests	20
	5.5.1 Device Data Collection	20
	5.5.2 Cloud Uploading	21
	5.5.3 Mapping Overlay	21
	5.5.4 Durability Test	22
	5.5.5 Water Resistivity Test	22
Ар	provals	24

1 EXECUTIVE SUMMARY

The Executive Summary was written by Cameron Muir.

The product being produced is a heat island mapping device, this device logs weather data, and has the ability to upload it to a cloud service. This data can then be taken from the cloud and overlaid onto a map for an interactive way to visualize the information. The key features of the product include:

- Logging of temperature, humidity, GPS location, date, and time.
- Built-in display for the user to monitor device readings as well as get battery life estimates and error messages.
- Rechargeable battery with a *minimum* battery life of 4 hours.
- Compact and handheld casing for ease of use.

The purpose of this document is for the team and sponsors to have an organized document of how this product will be designed, built, and executed over the next few months. The team is made up of four members, Jose Silva (PM), Andrew Flores, Cameron Muir, and Gabriel Montero-Sierra. Each member will have their own subsystem that will be completed individually. These subsystems will be tested thoroughly by each individual to ensure functionality before being integrated together into a fully working device.

2 Product Block Diagram

The Product Block Diagram was written by Gabriel Montero

The figure 2.0.1 depicts the system block diagram, each subsystem is outlined and shown how they connect.

Power Subsystem - Andrew Flores

Data Collection Subsystem - Andrew Flores

Display Subsystem - Jose Silva

Mapping Subsystem - Cameron Muir

Storage Subsystem - Gabriel Montero

Figure 2.0.1: General Block Diagram

2.1 Power Subsystem

The Power System Subsystem is owned by Andrew Flores.

Figure 2.2.1

As shown in Figure 2.1.1, the system will include a battery and a power switch to power the Arduino board which will power the display.

Input	Source	Description
Charging circuit	On-Board	The battery will be charged by an on-board charging port on the
	Charger	Arduino board.

Output	Destination	Description
5.0V Power	Power Switch	The battery will run to a switch that will be used to power on and power off the device.
5.0V power	Arduino	The battery will supply the Arduino board with 5V

Power System Milestones		
Milestone	Date	
Subsystem Requirements Defined/Frozen	09/30/2020	
Major Design Components Identified	10/20/2020	
Design Complete and Approved	11/09/2020	
Parts Ordered	12/02/2020	
Initial Bring Up Start	02/08/2020	
Full function Unit Test Complete	03/08/2020	

2.2 Data Collection Subsystem

The Data Collection Subsystem is owned by Andrew Flores.

Figure 2.2.1

As shown in figure 2.2.1, the data collection subsystem is made up of a variety of sensors and a GPS for navigation. All of the elements will connect to the Arduino board.

Input	Source	Description
Temperature	Temperature	The temperature is measured and provided to the Arduino.
	Sensor	
Humidity	Humidity	The humidity is measured and provided to the Arduino.
	Sensor	
Position	GPS	Location is provided via coordinates.
Sunlight	Sunlight	Sunlight volume is measured and provided to the Arduino.
	Sensor	

Output	Destination	Description
Data	Arduino	All measured data will be sent to the main board where it will be
		distributed to other subsystems from there.

Data Collection Milestones		
Milestone	Date	
Subsystem Requirements Defined/Frozen	09/30/2020	
Major Design Components Identified	10/20/2020	
Design Complete and Approved	11/09/2020	
Parts Ordered	12/02/2020	
Initial Bring Up Start	02/08/2020	
Full function Unit Test Complete	03/08/2020	

2.3 Display Subsystem

The Display Subsystem is owned by Jose Silva.

Figure 2.3.1: Display Block Diagram

Input	Source	Description
Temperature	Arduino	Updates temperature displayed once sensor is read by Arduino
Position	Arduino	Updates position displayed once sensor is read by Arduino
Humidity	Arduino	Updates humidity displayed once sensor is read by Arduino
Power	Arduino	Power level of Arduino sent to display

Output	Destination	Description
Local Display	TFT LCD	The recorded data consisting of humidity, temperature, time,
	Display	and amount of battery life left will be shown on the display

Display Milestones		
Milestone	Date	
Subsystem Requirements Defined/Frozen	09/30/2020	
Major Design Components Identified	10/20/2020	
Design Complete and Approved	11/09/2020	
Parts Ordered	12/02/2020	
Initial Bring Up Start	02/08/2020	
Full function Unit Test Complete	03/08/2020	

2.4 Mapping Subsystem

The Mapping Subsystem is owned by Cameron Muir.

Figure 2.4.1 Mapping Block Diagram

As shown in Figure 2.4.1, the mapping overlay subsystem will take the data from the cloud, translate it to the Mapbox Service in a .csv file format, and finally produce an interactive map that shows the weather data in an easy to view form.

Input	Source	Description
Temperature	Cloud Service	The ambient temperature uploaded from the device is brought
		into the mapping service in a .csv file format
Humidity	Cloud Service	The humidity uploaded from the device is brought into the
		mapping service in a .csv file format
Location	Cloud Service	The location of the data reading uploaded from the device is
		brought into the mapping service in a .csv file format
Date and Time	Cloud Service	The Date and Time data reading uploaded from the device is
		brought into the mapping service in a .csv file format

Output	Destination	Description
Street level mapping image	Mapbox	This is a standard mapping image that one will normally find in common mapping services, this lets the user know landmarks near the area they are looking at.
Map marker	Mapbox	For each data entry, there will be a colored indicator that will match a given temperature reading. Each marker will include the temperature, humidity, latitude, longitude, date, and time of the reading.

Mapping Overlay Milestones				
Milestone	Date			
Subsystem Requirements Defined/Frozen	09/30/2020			
Major Design Components Identified	10/20/2020			
Design Complete and Approved	11/09/2020			
Parts Ordered	N/A (free Software)			
Initial Bring Up Start	02/08/2020			
Full function Unit Test Complete	03/08/2020			

2.5 Storage Subsystem

The Storage Subsystem is owned by Gabriel Montero.

Figure 2.5.1 Storage Subsystem Block Diagram

As shown in Figure 2.5.1, the storage subsystem will receive data from sensors through the controller. The data would then be transmitted via a wireless transmitter and uploaded to the cloud.

Input	Source	Description
Temperature	Arduino	Stores temperature data once sensor read by Arduino
Data		
Position Data	Arduino	Stores GPS data once sensor read by Arduino
Humidity Data	Arduino	Stores humidity data once sensor read by Arduino

Output	Destination	Description
Data	Cloud Service	The recorded data consisting of humidity, temperature, location,
		and time will be stored off board to be analyzed

Storage Overlay Milestones				
Milestone	Date			
Subsystem Requirements Defined/Frozen	09/30/2020			
Major Design Components Identified	10/20/2020			
Design Complete and Approved	11/09/2020			
Parts Ordered	N/A (free Software)			
Initial Bring Up Start	02/08/2020			
Full function Unit Test Complete	03/08/2020			

3 Project Schedule

The Project Schedule was created by Jose Silva

The Project Schedule specifies milestones and the amount of resources needed for this project. Refer to the attached PDFs for the D1 and D2 Gantt Charts.

4 Development Costs

Written by Andrew Flores

The development cost is an estimated value based on labor hours and material cost for the entire duration of the project. Detailed descriptions of the costs will be provided in the following tables throughout the section. The estimated cost for this project is \$67,000.

4.1 Labor Categories and Burdened Hourly Cost Estimate

The following table lists the positions of staff associated with the entire project as well as the area of the project that each position will be involved in.

Labor Categories Required			
Category Justification			
Digital Design Engineer	Microcontroller, Display, Sensors		
Analog Design Engineer	Data transmission, Device communication		
Software Engineer	Mapping software, Cloud storage, Autonomous programming		
Test Engineer	Subsystem testing		
Technical Writer	Product documentation for interfaces and subsystems		
Technician	Maintenance on individual devices and battery, as well as		
	troubleshooting.		
Fabricator/Assembler	Construction of the device chassis		
Project Manager	Scheduling, planning and coordination		
People	n/a, there is no HR involved		
Manager/Supervisor/HR			
Consultants	Part selection, performance requirements, product standards.		
Contractors	n/a, there are no contractors		

Table 1

The following table shows the base salaries for each staff member. The table also includes the burden rate and burden cost along with the estimated hours required for each staff member. The total cost estimation can also be found on the table. All salaries were found using "glassdoor".

Labor Category	Hourly Salary	Burden Cost/hour	Hours Required	Cost of Labor
Digital Design Engineer	\$58.00	\$95.00	180	\$17,100.00
Analog Design Engineer	\$50.00	\$83.00	50	\$4,150.00
Software Engineer	\$53.00	\$87.00	215	\$18,705.00
Test Engineer	\$34.00	\$57.00	70	\$3,990.00
Technical Writer	\$28.00	\$46.00	30	\$1,380.00
Technician	\$28.00	\$46.00	20	\$920.00
Fabricator/Assembler	\$15.00	\$25.00	25	\$625.00
Project Manager	\$55.00	\$91.00	180	\$16,380.00
Consultants	\$37.00	\$61.00	15	\$915.00
		Total:	785	\$64,165.00

Table 2

Material Costs - Non-Capital Expenditures

The following table lists the materials needed for the device along with the cost of each item.

Non-Capital	Expeditures	
Task	Material	Cost
Power/Data Collection/Data Transmission	Aruino MKR Board	\$33.90
Data Collection	GPS	\$39.95
Data Collection	Temperature/Humidity Sensor	\$15.00
Data Storage	Micro SD	\$2.95
Microcontroller Interface	Touchscreen Display	\$29.95
Device Power	Lithium Polymer Battery	\$14.95
	Total:	\$136.70

Table 3

4.2 Capital Expenditures

The following table shows the capital expenditures for equipment needed for the construction and testing of the device.

Capital Exped	iture Estimate				
Task	Equipment	Est'd Cost	Hourly Rate	Hours Needed	Total Cost
Build Chassis	3D Printer (TXST)	\$6,000.00	\$20.00	3	\$60.00
Test Device	Oscilliscope(TXST	\$10,000.00	\$500.00	4	\$2,000.00
				Total:	\$2,060.00

Table 4

4.3 Total Estimated Project Costs

The following table shows the total sum and final estimate of the cost for the project start to finish.

Project Labor & Material Cost Summary			
Cost Category	Estimated Cost		
Cost of Labor	\$64,165.00		
Non-Capital Expenses	\$136.70		
Allocated Capital Expenses	\$2,060.00		
Total Estimated Project Cost	\$66,361.70		

Table 5

5 Test Procedures

The Test Procedures were written by all team members of Heat Island Mapping.

Test Plan Overview	
Power Subsystem Unit Tests	DRI
1. Battery Life Test at maximum power draw	Andrew Flores
2. Battery Charge Time test	Andrew Flores
Display Subsystem Unit Tests	DRI
1. Display Visibility	Jose Silva
2. Display Data	Jose Silva
Mapping Subsystem Unit Tests	DRI
1. File import test	Cameron Muir
2. Map refresh test	Cameron Muir
3. Overall functional test	Cameron Muir
Storage Subsystem Unit Tests	DRI
1. File Storage test	Gabriel Montero
2. File transmission test	Gabriel Montero
3. Wireless transmission speed test	Gabriel Montero
Overall System Integration Tests	DRI
Device Data Collection	Jose Silva
2. Cloud Uploading	Jose Silva
3. Mapping Overlay	Jose Silva
4. Durability Test	Jose Silva
5. Water Resistivity Test	Jose Silva

Table 6

5.1 Power Subsystem Unit Tests

The Power Subsystem Unit Test section was written by Andrew Flores

5.1.1 Battery Life Test at Maximum Power Draw

Test 1.1		Written by: Andrew Flores 11/23/2020		
Subsystem: Power/Battery		Tested by: Andrew Flores TBD		
Equipment Required:	Equipment Required: Current Meter, load resistor, prototype system and battery			
Description: This test is to confirm that the minimum battery life of 4 hours will be met by the system. In order				
to simulate the worst case load of the sensor array a power resistor will be used.				
Overall Results: TBD				

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Fully charge the battery, confirm voltage is	>3V	TBD	
	above 3.3V			
2	Connect load resistor to 3.3V	625mA	TBD	
3	Set timer and monitor battery voltage until it	> 240	TBD	
	drops below minimum level of 3V	minutes		
4	Continue test until battery shutdown.	> 15	TBD	
	NOTE: This has the potential to	minutes		
	permanently damage the battery.			
5	Disconnect system and label battery to	n/a	TBD	
	indicate it has gone through a deep			
	discharge.			

5.1.2 Battery Recharge Test at Maximum Capacity

	O				
Test 1.2		Written by: Andrew Flores 11/23/2020			
Subsystem: Power/Battery		Tested by: Andrew Flores TBD			
Equipment Required:	Battery, Charger, DMM				
is at its lowest capacity to	Description: This test is to confirm that the recharge time is reasonable to be able to recharge the battery when it is at its lowest capacity to full capacity to use for the next day. A guideline to follow is that the recharge time is about the same as the discharge time.				
Overall Results: TBD					

			Expected	Actual	
#	Procedure	Pro	Result	Result	Comments:
]	Fully discharge the battery to where current=0A		0A	TBD	
2	Connect battery to charger and check hourly for 4 hours		hr1=25% hr2=50% hr3=75% hr4=100 %	TBD	
(3)	If it is not fully charged after 4 hours, leave it charging and check capacity every 10 minutes until the battery reaches max capacity.	it o mi	<4.5hr= 100%	TBD	

5.2 Display Subsystem Unit Tests

The Display Subsystem Unit Tests were written by Jose Silva

5.2.1 Display Visibility

Test 2.1		Written by: Jose Silva 10/5/2020		
Subsystem: Display		Tested by: Jose Silva		
Equipment Required:	Equipment Required: Arduino, TFT LCD Display, power supply			
Description: This test is to confirm that the display panel is visible in direct sunlight and dims after an allotted amount of time.				
Overall Results: TBD				

		Expected		
#	Procedure	Result	Actual Result	Comments:
1	Connect TFT display to Arduino	Display turns	TBD	
		on		
2	Insert SD card with preloaded data to	Code should	TBD	
	display	take data from		
		SD card and		
		display the		
		values		
3	Wait 30 seconds	Display should	TBD	
		go to low		
		power mode		
		and dim		
4	Wait another 30 seconds	Display should	TBD	
		go to sleep		
		mode and turn		
		off		
5	Tap on display	Display should	TBD	
		turn back on		
		with newly		
		recorded data		
		displayed		

5.2.2 Display Data

Test 2.2		Written by: Jose Silva 10/5/2020	
Subsystem: Display		Tested by: Jose Silva	
Equipment Required: Arduino, TFT LCD Display,		power supply	
Description: This test is to confirm that the display panel displays the correct information given by the sensors			
Overall Results: TBD			

	#	Procedure	Expected Result	Actual Result	Comments:
Ī	1	Connect TFT LCD display to Arduino	Display	TBD	
			turns on		

2	Arduino will send data from SD card to	Display	TBD	
	Display	displays		
		pseudo		
		data		

Notes/Comments: To be tested Spring 2021

5.3 Mapping Subsystem Unit Tests

The Display Subsystem Unit Tests were written by Cameron Muir

5.3.1 File Import Test

Test 3.1		Written by: Cameron Muir 11/24/2020		
Subsystem: Mapping		Tested by: Cameron Muir		
Equipment Required:	Equipment Required: Windows PC, Access to internet, access to AWS Cloud and Mapbox			
Description: This test is to confirm that a .csv file can be imported from Amazon Web Services (AWS) into the				
Mapbox mapping service.				
Overall Results: TBD				

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Receive AWS bucket link from Cloud Subsystem	N/A	N/A	A link was established and used to download a test '.csv' file on 11/24/2020
2	Generate a simple test code to import and display lat/long values from the .csv file	Test map displayed	TBD	

5.3.2 Map Refresh Test

Test 3.2		Written by: Cameron Muir 11/24/2020		
Subsystem: Mapping		Tested by: Cameron Muir		
Equipment Required:	net, access to AWS Cloud and Mapbox			
Description: This test is to confirm that the map generated can be refreshed with any new data every hour.				
Keeping the map up to date based on any uploads throughout the day.				
Overall Results: TBD				

#	Procedure	Expected Result	Actual Result	Comments:
1	Receive AWS bucket link from Cloud Subsystem	N/A	N/A	A link was established and used to download a test '.csv' file on 11/24/2020
2	Generate a simple test code to import and display lat/long values from the .csv file	.csv imported	TBD	
3	Generate code to import the given .csv file every hour.	N/A	TBD	
4	For 2 hours update the .csv test file with new data points and verify they are loaded into the map	Map updated every hour	TBD	

5.3.3 Map Refresh Test

Test 3.3	Written by: Cameron Muir 11/25/2020	
Subsystem: Mapping	Tested by: Cameron Muir	
Equipment Required:	Windows PC, Access to internet, access to AWS Cloud and Mapbox	
Description: This test is to	confirm that a generated map is interactive with any additional features such as	
zooming in and out, or clicking on individual readings to find more details about them.		
Overall Results: TBD		

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Open map using generated link by Mapbox	Map	TBD	
		should		
		open		
2	Test zooming in and out of the map.	Map	TBD	
		should		
		scale		
		dependin		
		g on		
		zoom		
3	Click on individual data points and verify	Data	TBD	
	information appears relating to temperature,	points		
	humidity, latitude, longitude, date, and time	should		
	appear	generate		
		a pop up		

5.4 Storage Subsystem Unit Tests

The Display Subsystem Unit Tests were written by Gabriel Montero

5.4.1 File Storage Test

Test 4.1		Written by: Gabriel Montero 11/25/2020	
Subsystem: Storage		Tested by: Gabriel Montero	
Equipment Required: Arduino, MicroSD, Windows		s PC, Power Supply	
Description: This test is to	confirm that inputs are put int	to a .csv file and can be stored onboard by the microSD	
card module.			
Overall Results: TBD	Overall Results: TBD		

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Feed data to the Arduino, as if the data is coming from sensors.	.csv file formatted	TBD	Data is fed from PC to Arduino through pins and is stored in .csv format on the microSD card. To be tested in Spring 2021.
2	Verify files on microSD.	.csv format	TBD	Checking to see if the data stored on the microSD card is formatted properly.

5.4.2 File Transmission Unit Test

Test 4.2	Written by: Gabriel Montero 11/25/2020	
Subsystem: Storage	Tested by: Gabriel Montero	
Equipment Required:	Arduino, MicroSD, Windows PC, Access to internet, access to AWS Cloud	
Description: This test is meant to confirm that the Arduino can upload data to AWS Cloud.		
Overall Results: TBD		

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Input a test file into a microSD card.	.csv test	TBD	Placing a file into microSD to later
		file in a		upload to cloud.
		microSD		
		card		
2	Wifi module connection	Wifi	TBD	Checking for wifi connection to
		connection		upload data.
3	Upload file from microSD card to AWS	file	TBD	Checking if the test file is
	Cloud	uploaded		successfully uploaded to the cloud.
		to cloud		
4	Create data buffer if wifi is not connected	Buffer	TBD	If wifi is not connected, then a buffer
		created		is created for data that needs to be
				uploaded. Once wifi is connected,
				upload the buffered data.

5.4.3 Wireless Transmission Speed Unit Test

Test 4.3		Written by: Gabriel Montero 11/25/2020	
Subsystem: Storage		Tested by: Gabriel Montero	
Equipment Required: Arduino, MicroSD, Windows		s PC, Access to internet, access to AWS Cloud	
Description: This test is to check the transmission speed of the wifi module.			
Overall Results: TBD			

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Connect Arduino to wifi	wifi	TBD	Check to see if the Arduino is able to
		connected		connect to wifi.
2	Transmit test file through wifi to cloud	Less than 10	TBD	Monitor how long it took for the data
		seconds		to transmit with respect to how large
				the file was.

5.5 System Integration Unit Tests

The System Integration Unit Tests were written by Jose Silva

5.5.1 Device Data Collection

Test 5.1		Written by: Jose Silva 11/25/2020	
Subsystem: Complete System		Tested by: Jose Silva	
Equipment Required: Complete prototype, weather		app with local San Marcos area	
Description: This test is to	confirm that the device can pr	roperly record the ambient temperature and humidity of	
San Marcos			

Overall Results: TBD

		Expected		
#	Procedure	Result	Actual Result	Comments:
1	Go outside anywhere in the San Marcos area	Device turns on	TBD	
	and turn on the device			
2	Insert a new SD card	Device	TBD	
		recognizes SD		
		card		
3	Walk around the area	Device records	TBD	Device should dim and go
		data and		into low power mode
		displays last		when not interacted with
		data recorded		after 30 seconds.
4	Check weather app for the local San Marcos	Data displayed	TBD	
	area	matches the		
		reported		
		weather		

5.5.2 Cloud Uploading

Test 5.2		Written by: Jose Silva 11/25/2020	
Subsystem: Complete System		Tested by: Jose Silva	
Equipment Required: Complete prototype, laptop v		with Chrome, Safari, Bing, and Firefox search engines	
Description: This test is to confirm that the device can upload recorded data from local storage to the cloud server			
Overall Results: TBD			

		Expected		
#	Procedure	Result	Actual Result	Comments:
1	Go outside anywhere in the San Marcos area	Device turns on	TBD	
	and turn on the device			
2	Insert a new SD card	Device	TBD	
		recognizes SD		
		card		
3	Walk around the area with WIFI capabilities	Device records	TBD	Device should dim and go
		data and		into low power mode
		displays last		when not interacted with
		data recorded		after 30 seconds.
4	Tap button on display labeled "Cloud	URL is	TBD	The URL is the link to the
	Storage URL"	displayed		cloud storage
5	Turn on laptop and enter URL into Chrome,	Cloud storage	TBD	
	Safari, Bing, and Firefox	is viewed		

5.5.3 Mapping Overlay

Test 5.3		Written by: Jose Silva 11/25/2020	
Subsystem: Complete System		Tested by: Jose Silva	
Equipment Required: Complete prototype, laptop		with Chrome, Safari, Bing, and Firefox search engines	
Description: This test is to	confirm that the recorded data	a from the cloud storage is viewed on Mapbox mapping	
software			
Overall Results: TBD			

		Expected		
#	Procedure	Result	Actual Result	Comments:
1	Go outside anywhere in the San Marcos area and turn on the device	Device turns on	TBD	
2	Insert a new SD card	Device recognizes SD card	TBD	
3	Walk around the area with WIFI capabilities	Device records data and displays last data recorded	TBD	Device should dim and go into low power mode when not interacted with after 30 seconds.
4	Tap button on display labeled "Mapping Overlay URL"	URL is displayed	TBD	The URL is the link to the Mapbox mapping overlay
5	Turn on laptop and enter URL into Chrome, Safari, Bing, and Firefox	Interactive map is shown	TBD	

5.5.4 Durability Test

Test 5.4		Written by: Jose Silva 11/25/2020	
Subsystem: Complete System		Tested by: Jose Silva	
Equipment Required: Complete prototype, height o		f 3' from hard, smooth concrete	
Description: This test is to confirm that the device can withstand a drop of 3' without loss of functionality			
Overall Results: TBD			

		Expected		
#	Procedure	Result	Actual Result	Comments:
1	Go outside anywhere in the San Marcos area and turn on the device	Device turns on	TBD	
2	Insert a new SD card	Device recognizes SD card	TBD	
3	Drop the device from 3' onto the sidewalk	Device is still functional	TBD	
4	Repeat 5 times (6 in total)	Device is still functional	TBD	2 drops on 3 edges down, minor cosmetic damage is acceptable

5.5.5 Water Resistivity Test

Test 5.5		Written by: Jose Silva 11/25/2020	
Subsystem: Complete System		Tested by: Jose Silva	
Equipment Required: Complete prototype, showeri		ng can with water	
Description: This test is to confirm that the device can withstand 3 full showerings from a watering can held			
above 2' from device without any visible entry of liquid into enclosure and remain functional.			
Overall Results: TBD			

		Expected		
#	Procedure	Result	Actual Result	Comments:

1	Place device with display screen facing up	N/A	N/A
2	Fill watering can and shower water over device from 3' above	No water is entered into the enclosure	TBD
3	Repeat 2 more times (3 in total)	No water is entered into the enclosure	TBD
4	Inspect device exterior	Device remains functional	TBD
5	Inspect interior of enclosure	No water is entered into the enclosure	TBD

6 Approvals

The signatures of the people below indicate an understanding in the purpose and content of this document by those signing it. By signing this document, you indicate that you approve of the Project Plan.

Approver Name	Title	Signature	Date
Jose Silva	Project Manager	Towa	11/25/2020
Andrew Casper	D2 Project Manager	Andrew G. Cosper	11/28/2020
Semih Aslan	Faculty Advisor	Semih Aslan	12/2/2020
Lee Hinkle	Sponsor		
Mark Welker	Instructor		

Author	Word Count
Cameron Muir	457
Gabriel Montero-Sierra	514
Andrew Flores	841
Jose Silva	1142