Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/002450

International filing date: 04 March 2005 (04.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: EP

Number: 04090203.3

Filing date: 21 May 2004 (21.05.2004)

Date of receipt at the International Bureau: 26 July 2005 (26.07.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

04090203.3

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office Le Président de l'Office européen des brevets p.o.

R C van Dijk

European **Patent Office** Office européen des brevets

Anmeldung Nr:

04090203.3 Application no.:

Demande no:

Anmeldetag:

Date of filing:

21.05.04

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Bayer CropScience GmbH Brüningstrasse 50 65929 Frankfurt/Main ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Pflanzen mit verringerter Aktivität eines Stärke phosphorylierenden Enzyms

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s) Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/ Classification internationale des brevets:

A01H/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR LI

			-
	-		
,			
	-		

Bayer CropScience GmbH

2 1 -05- 2004

Pflanzen mit verringerter Aktivität eines Stärke phosphorylierenden Enzyms

5

10

15

Beschreibung

Die vorliegende Erfindung betrifft Pflanzenzellen und Pflanzen, die genetisch modifiziert sind, wobei die genetische Modifikation zur Verringerung der Aktivität eines Stärke phosphorylierenden OK1 Proteins im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen führt. Ferner betrifft die vorliegende Erfindung Mittel und Verfahren zur Herstellung solcher Pflanzenzellen und Pflanzen. Derartige Pflanzenzellen und Pflanzen synthetisieren eine modifizierte Stärke. Die vorliegende Erfindung betrifft daher auch die von den erfindungsgemäßen Pflanzenzellen und Pflanzen synthetisierte Stärke, Verfahren zur Herstellung dieser Stärke, sowie die Herstellung von Stärkederivaten dieser modifizierten Stärke, als auch Mehle, enthaltend erfindungsgemäße Stärken.

Weiterhin betrifft die vorliegende Erfindung Nucleinsäuremoleküle, die zur Herstellung erfindungsgemäßer Pflanzen geeignet sind.

20 Im Hinblick auf die zunehmende Bedeutung, die pflanzlichen Inhaltsstoffen als erneuerbaren Rohstoffquellen zur Zeit beigemessen wird, ist es eine der Aufgaben der biotechnologischen Forschung, sich um eine Anpassung dieser pflanzlichen Rohstoffe an die Anforderungen der verarbeitenden Industrie zu bemühen. Um eine Anwendung von nachwachsenden Rohstoffen in möglichst vielen Einsatzgebieten zu ermöglichen, ist es darüber hinaus erforderlich, eine große Stoffvielfalt zu erreichen.

Das Polysaccharid Stärke ist aus chemisch einheitlichen Grundbausteinen, den Glucosemolekülen, aufgebaut, stellt jedoch ein komplexes Gemisch

unterschiedlicher Molekülformen dar. die Unterschiede hinsichtlich des Polymerisations- und des Verzweigungsgrades aufweisen und sich somit in ihren physikalisch-chemischen Eigenschaften stark voneinander unterscheiden. Man differenziert zwischen Amylosestärke, einem im Wesentlichen unverzweigten Polymer aus alpha-1,4-glycosidisch verknüpften Glucoseeinheiten, und der Amylopektinstärke, einem verzweigten Polymer, bei dem die Verzweigungen durch das Auftreten zusätzlicher alpha-1,6-glycosidischer Verknüpfungen zustande kommen. Ein weiterer wesentlicher Unterschied zwischen Amylose und Amylopektin liegt im Molekulargewicht. Während Amylose, je nach Herkunft der Stärke, ein Molekulargewicht von $5x10^5 - 10^6$ Da besitzt, liegt das des Amylopektins zwischen 10⁷ und 10⁸ Da. Die beiden Makromoleküle können durch ihr Molekulargewicht und ihre unterschiedlichen physiko-chemischen Eigenschaften differenziert werden, was am einfachsten durch ihre unterschiedlichen Jodbindungseigenschaften sichtbar gemacht werden kann.

15

20

10

5

Amylose wurde lange als lineares Polymer, bestehend aus alpha-1,4-glycosidisch verknüpften alpha-D-Glucose-Monomeren, angesehen. In neueren Studien wurde jedoch die Anwesenheit von alpha-1,6-glycosidischen Verzweigungspunkten (ca. 0,1%) nachgewiesen (Hizukuri und Takagi, Carbohydr. Res. 134, (1984), 1-10; Takeda et al., Carbohydr. Res. 132, (1984), 83-92).

Die funktionellen Eigenschaften, wie z.B. die Löslichkeit. das Retrogradationsverhalten. das Wasserbindevermögen, die Filmbildungseigenschaften, die Viskosität, die Verkleisterungseigenschaften, die 25 Gefrier-Tau-Stabilität, die Säurestabilität, die Gelfestigkeit, die Stärkekorngröße von Stärken werden u.a. durch das Amylose/Amylopektin-Verhältnis, das Molekulargewicht, das Muster der Seitenkettenverteilung, den Gehalt an Ionen, den Lipid- und Proteingehalt, die mittlere Stärkekorngröße die Stärkekornmorphologie etc. beeinflusst. Die funktionellen Eigenschaften von Stärke werden auch vom Phosphatgehalt, einer nicht-Kohlenstoffkomponente von Stärke, beeinflusst. Dabei 30

ist zwischen Phosphat, welches in Form von Monoestern kovalent an die Glucosemoleküle der Stärke gebundenen ist (im Folgenden als Stärkephosphat bezeichnet) und Phosphat in Form von mit der Stärke assoziierten Phospholipiden zu unterscheiden.

5

10

15

30

Der Gehalt an Stärkephosphat variiert je nach Pflanzensorte. So synthetisieren z.B. bestimmte Maismutanten eine Stärke mit erhöhtem Gehalt an Stärkephosphat (waxy-Mais 0,002% und Hoch-Amylose-Mais 0,013%), während herkömmliche Mais Sorten nur Spuren von Stärkephosphat aufweisen. Ebenfalls geringe Mengen an Stärkephosphat findet man in Weizen (0,001%) während in Hafer und Sorghum kein Stärkephosphat nachgewiesen werden konnte. In Reis-Mutanten wurde ebenfalls weniger Stärkephosphat gefunden (waxy-Reis 0,003%), als in herkömmlichen Reissorten (0,013%). Signifikante Mengen von Stärkephosphat wurden in Knollenoder Wurzelspeichestärke synthetisierenden Pflanzen wie z.B. Tapioca (0,008%), Süßkartoffel (0,011%), Pfeilwurz (0,021%) oder Kartoffel (0,089%) nachgewiesen. Die im Vorangegangenen zitierten prozentualen Werte für den Stärkephosphatgehalt beziehen sich ieweils auf das Trockengewicht der Stärke und sind von Jane et al. (1996, Cereal Foods World 41 (11), 827-832) ermittelt worden.

Stärkephosphat kann in Form von Monoestern an der C-2, C-3 oder C-6 Position der 20 Glucosemonomere vorliegen (Takeda und Hizukuri, polymerisierten Starch/Stärke 23, 267-272). Die Phosphatverteilung des Phosphates in von Pflanzen synthetisierter Stärke zeichnet sich im Allgemeinen dadurch aus, dass etwa 30% bis 40% der Phosphatreste in C-3-Position und etwa 60% bis 70% der Phosphatreste in C-6-Position der Glucosemoleküle kovalent gebunden sind (Blennow et al., 2000, Int. 25 J. of Biological Macromolecules 27, 211-218). Blennow et al. (2000, Carbohydrate Polymers 41, 163-174) ermittelten einen Gehalt an Stärkephosphat, der in C-6 Position der Glukosemoleküle gebunden ist, für verschiedene Stärken, wie z.B. Kartoffelstärke (zwischen 7,8 und 33,5 nMol pro mg Stärke, je nach Sorte), Stärke aus verschiedenen Curcuma Spezies (zwischen 1,8 und 63 nMol pro mg),

Tapiocastärke (2,5 nMol pro mg Stärke), Reisstärke (1,0 nMol pro mg Stärke), Mungbohnenstärke (3,5 nMol pro mg Stärke) und Sorghumstärke (0,9 nMol pro mg Stärke). In Gerstenstärke und Stärke aus verschiedenen waxy-Mutanten von Mais konnten diese Autoren kein an der C-6-Position gebundenes Stärkephosphat nachweisen. Bisher konnte kein Zusammenhang zwischen dem Genotyp einer Pflanze und dem Gehalt von Stärkephosphat hergestellt werden (Jane et al., 1996, Cereal Foods World 41 (11), 827-832). Daher ist es zurzeit nicht möglich, den Gehalt an Stärkephosphat in Pflanzen durch züchterische Maßnahmen zu beeinflußen.

Bisher ist nur ein Protein beschrieben, welches die Einführung von kovalenten 10 Bindungen von Phosphatresten an die Glucosemoleküle der Stärke vermittelt. Dieses Protein besitzt die enzymatische Aktivität einer alpha-Glucan-Wasser-Dikinase (GWD, E.C.: 2.7.9.4) (Ritte et al., 2002, PNAS 99, 7166-7171), wird in der wissenschaftlichen Literatur häufig als R1 bezeichnet und ist an die Stärkekörner der Speicherstärke in Kartoffelknollen gebunden (Lorberth et al., 1998, Nature 15 Biotechnology 16, 473-477). In der von R1 katalysierten Reaktion werden die Edukte alpha-1,4-Glucan (Stärke), Adenosintriphosphat (ATP) und Wasser zu den Produkten Glucan-Phosphat (Stärkephosphat), Monophosphat und Adenosinmonophosphat umgesetzt. Dabei wird der gamma-Phosphatrest des ATP 20 auf Wasser und der beta-Phosphatrest des ATP auf das Glucan (Stärke) übertragen. R1 überträgt in vitro den beta-Phosphatrest von ATP auf die C-6- und die C-3-Position der Glucosemoleküle von alpha-1,4-Glucanen. Das Verhältnis von C-6-Phosphat zu C-3 Phosphat, welches bei der in vitro Reaktion erhalten wird, entspricht dem Verhältnis, welches in Stärke, isoliert aus Pflanzen, vorliegt (Ritte et 25 al., 2002, PNAS 99, 7166-7171). Da das Stärkephosphat in Kartoffelstärke zu etwa 70% in C-6-Position und zu etwa 30% in C-3-Position der Glucosemonomere der Stärke gebunden vorliegt, bedeutet dies, dass R1 bevorzugt die C-6-Position der Glucosemoleküle phosphoryliert. Weiterhin ist für R1 u.a. durch Verwendung von Amylopektin aus Mais gezeigt worden, dass es alpha-1,4-Glucane phosphorylieren kann, welche noch kein kovalent gebundenes Phosphat enthalten (Ritte et al., 2002, 30

PNAS 99, 7166-7171), d.h. R1 ist in der Lage, Phosphat de novo in alpha-1,4-Glucane einführen.

Nukleinsäuresequenzen und zu diesen korrespondierende Aminosäuresequenzen, codierend ein R1 Protein sind aus unterschiedlichen Spezies, wie z.B. Kartoffel (WO 97 11188, GenBank Acc.: AY027522, Y09533), Weizen (WO 00 77229, US 6,462,256, GenBank Acc.: AAN93923, GenBank Acc.: AR236165), Reis (GenBank Acc.: AAR61445, GenBank Acc.: AR400814), Mais (GenBank Acc.: AAR61444, GenBank Acc.: AR400813), Soyabohne (GenBank Acc.: AAR61446, GenBank Acc.: AR400815), Citrus (GenBank Acc.: AY094062) und *Arabidopsis* (GenBank Acc.: AF312027) beschrieben.

Pflanzen, die eine reduzierte Aktivität eines R1 Proteins aufweisen, sind z.B. bei Lorberth et al. (1998, Nature Biotechnology 16, 473-477) und in WO 97 11188 beschrieben. Stärke, die aus diesen Pflanzen, die eine verringerte Aktivität eines R1 Proteins aufweisen, isoliert wurden, weisen signifikant verringerte Mengen an Stärkephosphat auf.

Weitere Proteine, die eine Reaktion katalysieren, welche kovalent gebundene Phosphatgruppen in die Stärke einführen, sind bisher nicht beschrieben. Auch Enzyme, die bevorzugt Phosphatgruppen in C-3-Position und/oder C-2-Position der Glucosemoleküle von Stärke einführen, sind nicht bekannt. Damit stehen abgesehen von der Verringerung des Gehaltes an Stärkephosphat in Pflanzen auch keine Möglichkeiten zur Verfügung, die Phosphorylierung von Stärke in Pflanzen gezielt zu beeinflussen, die Phosphatverteilung innerhalb der von Pflanzen synthetisierten Stärke zu verändern und/oder den Gehalt an Stärkephosphat weiter zu verringern.

Der vorliegenden Erfindung liegt somit die Aufgabe zu Grunde, modifizierte Stärken mit verringertem Phosphatgehalt und/oder veränderter Phosphatverteilung sowie

Pflanzenzellen und/oder Pflanzen, die eine solche modifizierte Stärke synthetisieren, als auch Verfahren und Mittel zur Erzeugung besagter Pflanzen und/oder Pflanzenzellen zur Verfügung zu stellen.

- Somit betrifft die vorliegende Erfindung genetisch modifizierte Pflanzenzellen und genetisch modifizierte Pflanzen, dadurch gekennzeichnet, dass sie eine verringerte Aktivität mindestens eines OK1 Proteins im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen aufweisen.
- Die genetische Modifikation kann dabei jede genetische Modifikation sein, die zu einer Verringerung der Aktivität mindestens eines OK1 Proteins führt im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen oder Wildtyp-Pflanzen.
- Pflanzen, die eine verringerte Aktivität eines OK 1 Proteins aufweisen, weisen einen Hoch Stärke (starch excess) Phänotyp auf. Weiterhin zeigen Pflanzen, die eine verringerte Aktivität eines OK1 Proteins aufweisen ein normales Wachstum, im Vergleich zu Wildtyp-Pflanzen, d.h. die Pflanzen werden durch die verringerte Aktivität eines OK1 Proteins nicht in ihrem Wachstum behindert. Daher eignen sich Pflanzen, die eine verringerte Aktivität eiens OK1 Proteins aufweisen für die Kultivierung in der Landwirtschaft, da sie mehr Stärke und damit mehr Kohlenhydrate enthalten und gleichzeitig keine Verringerung Wachstumsrate zeigen.
- Die vorliegende Erfindung betrifft daher auch erfindungsgemäße Pflanzenzellen und Pflanzen, die einen Hoch Stärke Phänotyp aufweisen. Erfindungsgemäße Pflanzenzellen und erfindungsgemäße Pflanzen weisen in ihren Blättern am Ende der Dunkelphase mindestens zweimal, bevorzugt mindestens viermal, besonders bevorzugt mindestens sechsmal und insbesondere bervorzugt mindestens achtmal mehr Stärke auf, als entsprechende Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen.

Erfindungsgemäße Pflanzenzellen und erfindungsgemäße Pflanzen weisen in ihren Blättern am Ende der Lichtphase mindestens 1,2 mal, bevorzugt mindestens 1,5 mal, besonders bevorzugt mindestens 1,8 mal und insbesondere bervorzugt mindestens zweimal mehr Stärke auf, als entsprechende Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen.

Der Begriff "Wildtyp-Pflanzenzelle" bedeutet im Zusammenhang mit der vorliegenden Erfindung, dass es sich um Pflanzenzellen handelt, die als Ausgangsmaterial für die Herstellung der erfindungsgemäßen Pflanzenzellen dienten, d.h. deren genetische Information, abgesehen von der eingeführten genetischen Modifikation, der einer erfindungsgemäßen Pflanzenzelle entspricht.

Der Begriff "Wildtyp-Pflanze" bedeutet im Zusammenhang mit der vorliegenden Erfindung, dass es sich um Pflanzen handelt, die als Ausgangsmaterial für die Herstellung der erfindungsgemäßen Pflanzen dienten, d.h. deren genetische Information, abgesehen von der eingeführten genetischen Modifikation, der einer erfindungsgemäßen Pflanze entspricht.

Der Begriff "entsprechend" bedeutet im Zusammenhang mit der vorliegenden Erfindung, dass beim Vergleich von mehreren Gegenständen die betreffenden Gegenstände, die miteinander verglichen werden, unter gleichen Bedingungen gehalten wurden. Im Zusammenhang mit der vorliegenden Erfindung bedeutet der Begriff "entsprechend" im Zusammenhang mit Wildtyp-Pflanzenzelle oder Wildtyp-Pflanze, dass die Pflanzenzellen oder Pflanzen, die miteinander verglichen werden, unter gleichen Kulturbedingungen aufgezogen wurden und dass sie ein gleiches (Kultur-) Alter aufweisen.

In einer Ausführungsform der vorliegenden Erfindung wird die genetische Modifikation der erfindungsgemäßen Pflanzenzellen oder der erfindungsgemäßen

Pflanzen durch Mutagenese eines oder mehrerer Gene hervorgerufen. Die Art der Mutation ist dafür unerheblich, solange sie zu einer Reduktion der Aktivität eines OK1 Proteins führt.

- 5 Unter dem Begriff "Mutagenese" soll im Zusammenhang mit der vorliegenden Erfindung jegliche Art von eingeführten Mutationen verstanden werden, wie z.B. Deletionen, Punktmutationen (Nukleotidaustausche), Insertionen, Inversionen, Genkonversionen oder Chromosomentranslokation.
- Die Mutation, die zur Verringerung der Aktivität mindestens eines endogenen OK1 Proteins führt, kann dabei durch den Einsatz chemischer Agenzien oder energiereicher Strahlung (z.B. Röntgen-, Neutronen-, Gamma- UV-Strahlung) erzeugt werden.
- Agentien, die zur Erzeugung chemisch induzierter Mutationen eingesetzt werden können und die durch Einwirkung der entsprechenden Mutagene dabei entstehenden 15 Mutationen sind z.B. beschrieben bei Ehrenberg und Husain, 1981, (Mutation Research 86, 1-113), Müller, 1972 (Biologisches Zentralblatt 91 (1), 31-48). Die Erzeugung von Reismutanten unter Verwendung von Gamma Strahlen, Ethyl-Methan-Sulfonat (EMS), N-methyl-N-Nitrosurea oder Natriumazid (NaN₃) ist z.B. 20 beschrieben in Jauhar und Siddig (1999, Indian Journal of Genetics, 59 (1), 23-28), bei Rao (1977, Cytologica 42, 443-450), Gupta und Sharma (1990, Oryza 27, 217-219) und Satoh und Omura (1981, Japanese Journal of Breeding 31 (3), 316-326). Die Erzeugung von Weizenmutanten unter Verwendung von NaN3 bzw. Maleic hydrazide ist in Arora et al. (1992, Annals of Biology 8 (1), 65-69) beschrieben. Eine 25 Übersicht zur Erzeugung von Weizenmutanten unter Verwendung verschiedenen Arten energiereicher Strahlung und chemischer Agenzien ist in Scarascia-Mugnozza et al. (1993, Mutation Breeding Review 10, 1-28) dargestellt. Svec et al. (1998, Cereal Research Communications 26 (4), 391-396) beschreibt die Anwendung von N-ethyl-N-Nitrosurea zur Erzeugung von Mutanten in Triticale. Die

Verwendung von MMS (Methylmethansulfonsäure) und Gamma Strahlung zur

Erzeugung von Hirsemutanten ist in Shashidhara et al. (1990, Journal of Maharashtra Agricultural Universities 15 (1), 20-23) beschrieben.

Die Herstellung von Mutanten in Pflanzenspezies, die sich hauptsächlich vegetativ vermehren, wurde z.B. für Kartoffeln, die eine veränderte Stärke produzieren (Hovenkamp-Hermelink et al. (1987, Theoretical and Applied Genetics 75, 217-221) und für Minze mit erhöhtem Ölertrag bzw. veränderter Ölqualität (Dwivedi et al., 2000, Journal of Medicinal and Aromatic Plant Sciences 22, 460-463) beschrieben.

5

15

20

25

30

Alle diese Methoden sind grundsätzlich geeignet, die erfindungsgemäßen 10 Pflanzenzellen und die erfindungsgemäßen Pflanzen herzustellen.

Das Auffinden von Mutationen in den entsprechenden Genen, insbesondere in Genen codierend ein OK1 Protein, kann mit Hilfe von dem Fachmann bekannten Methoden geschehen. Insbesondere können hierzu Analysen, basierend auf der Amplifikation (Southern Blot), mit Sonden Hybridisierungen Polymerasekettenreaktion (PCR), der Sequenzierung betreffender genomischer Sequenzen und die Suche nach einzelnen Nucleotidaustauschen angewandt werden. Eine Methode, um Mutationen anhand von Hybridisierungsmustern zu identifizieren, ist z.B. die Suche nach Restriktionsfragment Längen-Unterschieden (Restriction Fragment Length Polymorphism, RFLP) (Nam et al., 1989, The Plant Cell 1, 699-705; Leister and Dean, 1993, The Plant Journal 4 (4), 745-750). Eine auf PCR ist z.B. von amplifizierten Fragment die Analyse basierende Methode Längenunterschieden (Amplified Fragment Length Polymorphism, AFLP) (Castiglioni et al., 1998, Genetics 149, 2039-2056; Meksem et al., 2001, Molecular Genetics and Genomics 265, 207-214; Meyer et al., 1998, Molecular and General Genetics 259, 150-160). Auch die Verwendung von mit Restriktionsendonucleasen geschnittenen amplifizierten Fragmenten (Cleaved Amplified Polymorphic Sequences, CAPS) kann zur Identifizierung von Mutationen herangezogen werden (Konieczny und Ausubel, 1993, The Plant Journal 4, 403-410; Jarvis et al., 1994, Plant Molecular Biology 24. 685-687; Bachem et al., 1996, The Plant Journal 9 (5), 745-753). Methoden zur Ermittlung von SNPs sind u.a. von Qi et al. (2001, Nucleic Acids Research 29 (22), e116) Drenkard et al. (2000, Plant Physiology 124, 1483-1492) und Cho et al. (1999, Nature Genetics 23, 203-207) beschrieben worden. Insbesondere sind Methoden, die es erlauben, viele Pflanzen innerhalb kurzer Zeit auf Mutationen in bestimmten Genen hin zu untersuchen, geeignet. Solch eine Methode, das sogenannte TILLING (Targetting Induced Local Lesions IN Genomes), ist von McCallum et al. (2000, Plant Physiology 123, 439-442) beschrieben worden.

Diese Methoden sind zur Identifizierung erfindungsgemäßer Pflanzenzellen und erfindungsgemäßer Pflanzen grundsätzlich geeignet.

Hoogkamp et al. (2000, Potato Research 43, 179-189) haben, ausgehend von einer mittels chemischer Mutagense hergestellten Kartoffelmutante (amf), stabile monoploide Mutanten hergestellt. Diese Pflanzen synthetisieren kein aktives Enzym mehr für eine stärkekorngebundene Stärkesynthase (GBSS I) und produzieren daher eine amylosefreie Stärke. Die erhaltenen monoploiden Kartoffelpflanzen können als Ausgangsmaterial für weitere Mutagenesen eingesetzt werden, um Pflanzen zu identifizieren, die eine Stärke mit veränderten Eigenschaften synthetisieren. Nach entsprechenden Methoden können auch die erfindungsgemäßen Pflanzenzellen und erfindungsgemäßen Pflanzen, die eine erfindungsgemäße Stärke produzieren, erzeugt, identifiziert und isoliert werden.

15

20

25

Die erfindungsgemäßen Pflanzenzellen und die erfindungsgemäßen Pflanzen weisen eine Verringerung der Aktivität mindestens eines OK1 Proteins auf im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen bzw. nicht genetisch modifizierten Wildtyp-Pflanzen.

Der Begriff "Verringerung der Aktivität" bedeutet dabei im Rahmen der vorliegenden Erfindung eine Verringerung der Expression endogener Gene, die OK1 Proteine

codieren und/oder eine Verringerung der Menge an OK1 Protein in den Pflanzenzellen und/oder eine Verringerung der enzymatischen Aktivität von OK1 Protein in den Pflanzenzellen.

Die Verringerung der Expression kann beispielsweise bestimmt werden durch Messung der Menge an OK1 Protein codierenden Transkripten, z.B. durch Northern-Blot-Analyse oder RT-PCR. Eine Verringerung bedeutet dabei vorzugsweise eine Verringerung der Menge an Transkripten im Vergleich zu entsprechenden nicht genetisch modifizierten Pflanzenzellen um mindestens 50%, insbesondere um mindestens 70%, bevorzugt um mindestens 85% und besonders bevorzugt um mindestens 95%.

Die Verringerung der Menge an OK1 Protein, die eine verringerte Aktivität dieser Proteine in den betreffenden Pflanzenzellen zur Folge hat, kann beispielsweise bestimmt werden durch immunologische Methoden wie Western-Blot-Analyse, ELISA (Enzyme Linked Immuno Sorbent Assay) oder RIA (Radio Immune Assay). Eine Verringerung bedeutet dabei vorzugsweise eine Verringerung der Menge an OK1 Protein im Vergleich zu entsprechenden nicht genetisch modifizierten Pflanzenzellen um mindestens 50%, insbesondere um mindestens 70%, bevorzugt um mindestens 85% und besonders bevorzugt um mindestens 95%.

15

20

Methoden zur Herstellung von Antikörpern, die spezifisch mit einem bestimmten Protein reagieren, d.h. die spezifisch an besagtes Protein binden, sind dem Fachmann bekannt (siehe z.B. Lottspeich und Zorbas (Eds.), 1998, Bioanalytik, Spektrum akad, Verlag, Heidelberg, Berlin, ISBN 3-8274-0041-4). Die Herstellung solcher Antikörper wird von einigen Firmen (z.B. Eurogentec, Belgien) als Auftragsservice angeboten. Eine Möglichkeit zur Herstellung von Antikörpern, die mit einem OK1 Protein spezifisch reagieren, ist weiter unten beschrieben (siehe Beispiel 10).

Im Rahmen der vorliegenden Erfindung soll unter dem Begriff "OK 1 Protein" ein Protein verstanden werden, welches einen Phosphatrest von ATP auf bereits phosphorylierte Stärke (P-Stärke) überträgt. Stärken, isoliert aus Blättern einer Arabisopsis thaliana sex1-3 Mutante weisen keine nachweisbaren Mengen an kovalent gebundenen Phosphatresten auf und werden von einem OK1 Protein nicht phosphoryliert, d.h. ein erfindungsgemäßes OK1 Protein benötigt bereits phosphorylierte Stärke als Substrat zur Übertragung weiterer Phosphatreste.

Bevorzugt wird von einem OK1 Protein der beta-Phosphatrest des ATP auf die Stärke und der gamma-Phosphatrest des ATP auf Wasser übertragen. Als weiteres Reaktionsprodukt entsteht bei einer durch ein OK1 Protein durchgeführten Phosphorylierungsreaktion von P-Stärke AMP (Adenosinmomophosphat). Ein Ok1 Protein wird daher als [phosphoryliertes-alpha-1,4-Glucan]-Wasser-Dikinase ([P-alpha-1,4-Glucan]-Wasser-Dikinase) bzw. als [phosphorylierte-Stärke]-Wasser-Dikinase bezeichnet.

Bevorzugt entsteht an der durch ein OK1 Protein phosphorylierten P-Stärke eine zusätzliche Phosphatmonoesterbindung in C-6-Position und/oder in C-3-Position eines Glucosemoleküls der P-Stärke. Besonders bevorzugt entstehen bei der durch ein OK1 Protein katalysierten Phosphorylierung von P-Stärke mehr zusätzliche Phosphatmonoesterbindungen in C-3-Position im Vergleich zu Phosphatmonoesterbindungen in C-6-Position der Glucosemoleküle der betreffenden P-Stärke.

20

25

Aminosäuresequenzen, die OK1 Proteine codieren, enthalten eine Phosphohistidindomäne. Phosphohistidindomänen sind z.B. beschrieben bei Tien-Shin Yu et al. (2001, Plant Cell 13, 1907-1918). Bevorzugt enthalten Phosphohistidindomänen von OK1 Proteine codierenden Amionosäuren zwei Hisdine.

Bei der Katalyse einer Phosphorylierungsreaktion einer P-Stärke durch ein OK1 Protein entsteht als Zwischenprodukt ein phosphoryliertes OK1 Protein, bei welchem ein Phosphatrest des ATP kovalent an eine Aminosäure das OK1 Proteins gebunden

ist. Das Zwischenprodukt entsteht durch Autophosphorylierung des OK1 Proteins, d.h. das OK1 Protein selbst katalysiert die Reaktion, die zu dem Zwischenprodukt führt. Bevorzugt wird durch die Autophosphorylierung ein Histidinrest der Aminosäuresequenz, codierend ein OK1 Protein, phosphoryliert, besonders bevorzugt ein Histidinrest, der Bestandteil einer Phosphohistidindomäne ist.

Weiterhin weisen erfindungsgemäße OK1 Proteine eine erhöhte Bindungsaktivität zu P-Stärke auf im Vergleich zu nicht-phosphorylierter-Stärke.

Da bisher keine Enzyme beschrieben sind, die P-Stärke als Substrat benötigen, um diese weiter zu phosphorylieren, und die bevorzugt die C-3-Position der Glucosemoleküle von Stärke phosphorylieren, war es bisher auch nicht möglich, die Verteilung des Stärkephosphates in Stärke zu beeinflussen. Die Aufklärung der Funktion eines OK1 Proteins und damit die Bereitstellung eines OK1 Proteins führt dazu, dass nun Pflanzen dahingehend genetisch modifiziert werden können, dass sie eine Stärke mit veränderten Eigenschaften synthetisieren. Das Verändern der Phosphatverteilung in von Pflanzen synthetisierter Stärke war aus Mangel an zur Verfügung stehenden Mitteln bisher nicht möglich. Durch die Bereitstellung erfindungsgemäßer Proteine und Nucleinsäuren durch die vorliegende Erfindung ist nun auch eine Veränderung des Phosphatverhältnisses in nativen Stärken möglich.

20

25

5

10

15

Unter dem Begriff "erhöhte Bindungsaktivität" soll im Zusammenhang mit der vorliegenden Erfindung, eine erhöhte Affinität eines Proteins zu einem ersten Substrat im Vergleich zu einem zweiten Substart verstanden werden. D.h., dass die Menge an Protein, die unter gleichen Inkubationsbedingungen vermehrt an ein erstes Substrat im Vergleich zu einem zweiten Substrat bindet, eine erhöhte Bindungsaktivität zu dem ersten Substrat aufweist.

Unter dem Begriff "Stärkephosphat" sollen im Zusammenhang mit der vorliegenden Erfindung kovalent an die Glucosemoleküle von Stärke gebundene Phosphatgruppen verstanden werden.

5 Unter dem Begriff "nicht-phosphorylierte-Stärke" soll im Zusammenhang mit der vorliegenden Erfindung eine Stärke verstanden werden, welche keine nachweisbaren Mengen an Stärkephosphat enthält. Zur Bestimmung der Menge an Stärkephosphat sind verschiedene Methoden beschrieben. Bevorzugt kann die bei Ritte et al. (2000, Starch/Stärke 52, 179-185) beschriebene Methode zur Bestimmung der Menge von Stärkephosphat verwendet werden. Besonders bevorzugt wird die Bestimmung der Menge an Stärkephosphat mittels ³¹P-NMR nach der bei Kasemusuwan und Jane (1996, Cereal Chemistry 73, 702-707) beschriebenen Methode durchgeführt.

Unter dem Begriff "phosphorylierte-Stärke" oder "P-Stärke" soll im Zusammenhang 15 mit der vorliegenden Erfindung eine Stärke verstanden werden, welche Stärkephosphat enthält.

Nachgewiesen werden kann die Aktivität eines OK1 Proteins z.B. durch *in vitro* Inkubation eines OK1 Proteins unter Verwendung von ATP, welches einen in der beta-Position markierten Phosphatrest enthält (markiertes ATP). Zu bevorzugen ist ATP, bei welchem der Phosphatrest in beta-Position spezifisch markiert ist, d.h. bei welchem nur der Phosphatrest in beta-Position eine Markierung trägt. Bevorzugt wird radioaktiv markiertes ATP, besonders bevorzugt ATP, bei welchem der Phosphatrest in beta-Position spezifisch radioaktiv markiert ist und insbesondere bevorzugt wird ATP, bei welchem der Phosphatrest in beta-Position spezifisch mit ³³P markiert ist, verwendet. Wird ein OK1 Protein mit markiertem ATP und Stärken, welche nicht phosphoryliert sind, inkubiert, wird kein Phosphat durch OK1 auf die Stärke übertragen. Bevorzugt wird Blattstärke der *Arabidopsis thaliana* Mutante sex1-3 (Tien-Shin Yu et al., 2001, Plant Cell 13, 1907-1918) verwendet.

20

Wird ein OK1 Protein hingegen mit P-Stärke in Gegenwart von markiertem ATP inkubiert, so kann anschließend kovalent an die P-Stärke gebundenes markiertes Phosphat nachgewiesen werden. Bevorzugt wird Stärke aus Blättern von Arabidopsis thaliana, besonders bevorzugt mittels eines R1 Proteins enzymatisch phosphorylierte Stärke aus Arabidopsis thaliana sex1-3 Mutanten (Ritte et al., 2002, PNAS 99, 7166-7171) verwendet.

5

10

15

20

25

30

Nachgewiesen werden können markierte Phosphatreste, die durch ein OK1 Protein in P-Stärke eingebaut wurden z.B. durch Abtrennung der markierten P-Stärke (z.B. durch Ausfällen mittels Ethanol, Filtration, chromatographische Methoden etc.) vom Rest des Reaktionsgemisches und anschließender Detektion der markierten Phosphatreste in der P-Stärke Fraktion. Die in der P-Stärke Fraktion gebundenen markierten Phosphatreste können dabei z.B. durch Bestimmung der Menge der in der P-Stärke Fraktion vorliegenden Radioaktivität (z.B. mittels Szintillationszähler) nachgewiesen werden. Mögliche Methoden zum Nachweis eines Proteins, welches P-Stärke als Substrat für eine Phosphorylierungsreaktion benötigt, ist weiter unten unter Allgemeine Methoden, Punkt 11 und in Beispiel 6 beschrieben.

Welche Positionen der Kohlestoffatome (C-2, C-3 oder C-6) der Glucosemonomere in P-Stärke von einem OK1 Protein bevorzugt phosphoryliert werden, kann z.B. durch Analyse der durch ein Protein phosphorylierten P-Stärken wie bei Ritte et al. (2002, PNAS 99, 7166-7171) beschrieben, ermittelt werden. Hierzu wird durch ein Protein phosphorylierte P-Stärke unter Verwendung von Säure hydrolysiert und anschließend mittels Anionenaustausch-Chromatographie analysiert.

Bevorzugt wird die von einem OK1 Protein phosphorylierte P-Stärke mittels NMR analysiert, um festzustellen, welche Positionen der Kohlestoffatome (C-2, C-3 oder C-6) der Glucosemonomere in der P-Stärke phosphoryliert werden. Eine besonders bevorzugte Methode zur Identifizierung der C-Atom-Positionen eines Glucosemoleküls einer Stärke, welche durch eine von einem OK1 Protein katalysierte Reaktion phosphoryliert werden, ist weiter unten unter Allgemeine Methoden, Punkt 13 beschrieben.

Ein phosphoryliertes Protein, welches als Zwischenprodukt bei der durch ein OK1 Protein vermittelten Phosphorylierung von P-Stärke entsteht, kann wie z.B. bei Ritte et al. (2002, PNAS 99, 7166-7171) für ein R1 Protein beschrieben, nachgewiesen werden

5

10

15

20

25

30

43

Zum Nachweis des Vorliegens eines autophosphorylierten Zwischenproduktes wird ein OK1 Protein zunächst in Abwesenheit von Stärke mit markiertem ATP, bevorzugt mit spezifisch in beta-Phosphat-Position markiertem ATP, besonders bevorzugt mit spezifisch mit ³³P in beta-Phosphat-Position markiertem ATP inkubiert. Parallel dazu wird ein Reaktionsansatz 2, der jedoch an Stelle von markiertem ATP entsprechende Mengen nicht-markiertes ATP enthält, unter ansonsten gleichen Bedingungen inkubiert. Anschließend wird nicht markiertes ATP dem Reaktionsgemisch 1 im Überschuß und eine Mischung aus nicht-markiertem ATP und markiertem ATP (gleiche Menge von markiertem ATP wie zuvor in Reaktionsgemisch 1 eingesetzt und gleiche Menge an nicht-markiertem ATP wie dem Reaktionsgemisch 1 im Überschuß zugesetzt) dem Reaktionsgemisch 2 hinzu gegeben und weiter inkubiert, bevor zu einem Teil A des Reaktionsgemisches 1 (Teil 1A) bzw. zu einem Teil A des Reaktionsgemisches 2 (Teil 2A) P-Stärke hinzu gegeben werden. Die Reaktion im verbleibenden Teil 1B und Teil 2B des Reaktionsgemisches wird durch Denaturieren des Proteins gestoppt. Das Stoppen des Teils B der Reaktionsgemische kann durch dem Fachmann bekannte Methoden, welche zur Denaturierung von Proteinen führen, bevorzugt durch Zugabe von Natriumlaurylsulfat (SDS) erfolgen. Teil 1A und Teil 2A der Reaktionsgemische werden für mindestens weitere 10 Minuten inkubiert, bevor auch diese Reaktionen gestoppt werden. Die in Teil A bzw. Teil B der jeweiligen Reaktionsgemische vorliegende Stärke wird vom jeweiligen Rest der Reaktionsgemische abgetrennt. Findet die Abtrennung der jeweiligen Stärke z.B. durch Zentrifugation statt, so befindet sich die Stärke des jeweiligen Teils A bzw. jeweiligen Teils B der Reaktionsgemische nach erfolgter Zentrifugation im sedimentierten Pellet und die sich in den jeweiligen Reaktionsgemischen befindlichen Proteine befinden sich im jeweiligen Zentrifugationsüberstand. Der

Überstand des Teils 1A bzw. 2A und des Teils 1B bzw. 2B der Reaktionsgemische kann anschließend z.B. jeweils in einer denaturierenden Acrylamidgelelektrophorese, gefolgt von einer Autoradiographie des erhaltenen Acrylamidgels analysiert werden. Zur Quantifizierung der Menge an radioaktiv markierten Proteinen, die mittels Acrylamidgelelektrophorese aufgetrennt wurden, kann z.B. die dem Fachmann bekannte Methode des so genannten "Phosphoimagings" verwendet werden. Zeigt die Autoradiographie oder die Analyse mittels "Phosphoimager" von Proteinen im Zentrifugationsüberstand des Teil B des Reaktionsgemisches 1 ein gegenüber dem Zentrifugationsüberstand des Teil A des Reaktionsgemisches 1 ein signifikant erhöhtes Signal, so zeigt dieses, dass das eine Phosphorylierung von Stärke vermittelnde Protein als autophosphoryliertes Zwischenprodukt auftritt. Die Teile A und B des Reaktionsgemisches 2 dienen als Kontrolle und sollten daher im Zentrifugationsüberstand kein signifikant erhöhtes Signal in der Autoradiographie oder in der Analyse mittels "Phosphoimager" aufweisen.

10

Zusätzlich kann die im jeweiligen sedimentierten Pellet verbliebene Stärke des 15 jeweiligen Teils A der Reaktionsgemische 1 und 2, gegebenenfalls nach anschließendem Waschen der jeweiligen Stärken, auf das Vorliegen von Stärkephosphat, welches eine dem eingesetzten markierten ATP entsprechende Markierung aufweist, hin untersucht werden. Enthalten die Stärken des Teils A des Reaktionsgemisches 1 markierte Phosphatreste und zeigt, die Autoradiographie des 20 Zentrifugationsüberstandes des Teil B des Reaktionsgemisches 1 ein gegenüber dem Zentrifugationsüberstand des Teil A des Reaktionsgemisches 1 ein signifikant erhöhtes Signal in der Autoradiographie, so zeigt dieses, dass das eine Phosphorylierung von Stärke vermittelnde Protein als autophosphoryliertes Zwischenprodukt vorliegt. Die Teile A und B des Reaktionsgemisches 2 dienen als 25 Kontrolle und sollten daher im sedimentierten Pellet, enthaltend alpha-1,4-Glucane, kein signifikant erhöhtes Signal für mit 33P markierte alpha-1,4-Glucane aufweisen. OK1 Protein Nachweis eines phosphorylierten Möglichkeiten zum Zwischenproduktes sind weiter unter unter Allgemeine Methoden Punkt 12 und in Beispiel 7 beschrieben. 30

Dass ein OK1 Protein eine erhöhte Bindungsaktivität zu einer P-Stärke im Vergleich zu nicht-phosphorylierter-Stärke aufweist, kann durch Inkubation des OK1 Proteins mit P-Stärke und nicht-phosphorylierter-Stärke in jeweils getrennten Ansätzen erfolgen.

- Zur Inkubation von OK1 Proteinen mit nicht-phosphorylierter-Stärke sind grundsätzlich alle nicht-phosphorylierten-Stärken geeignet. Bevorzugt wird eine nicht-phosphorylierte pflanzliche Stärke, besonders bevorzugt Weizenstärke und insbesondere bevorzugt granuläre Blattstärke einer Arabidopsis thaliana Mutante sex1-3 verwendet.
- Methoden z.B. zur Isolierung von Stärke aus Pflanzen sind dem Fachmann bekannt. 10 Alle dem Fachmann bekannten Methoden sind grundsätzlich geeignet, um nichtphosphorylierte-Stärke aus entsprechenden Pflanzenspezies zu isolieren. Bevorzugt wird die weiter unten (siehe Allgemeine Methoden Punkt 2) beschriebene Methode zur Isolierung von nicht-phosphorylierten-alpha-1,4-Glucanen verwendet.

15

20

30

Zur Inkubation von OK1 Proteinen mit P-Stärke sind grundsätzlich alle Stärken geeignet, die Stärkephosphat enthalten. Auch chemisch phosphorylierte Stärken können hierbei verwendet werden. Vorzugsweise werden zur Inkubation mit OK1 Proteinen P-Stärken eingesetzt, besonders bevorzugt eine nachträglich enzymatisch phosphorylierte pflanzliche Stärke, insbesondere bevorzugt eine nachträglich enzymatisch phosphorylierte pflanzliche granuläre Stärke, die aus einer sex-1 Mutante von Arabidopsis thaliana isoliert wurde.

Zum Nachweis einer erhöhten Bindungsaktivität von OK1 Proteinen zu P-Stärke im Vergleich zu nicht-phosphorylierter-Stärke werden OK1 Proteine in voneinander 25 getrennten Ansätzen mit P-Stärke (Ansatz A) und mit nicht-phosphorylierter-Stärke (Ansatz (B) inkubiert. Nach erfolgter Inkubation werden die nicht an die betreffenden Stärken der Ansätze A und B gebundenen Proteine von den Stärken und den an sie gebundenen Proteinen abgetrennt. Die Bindung zwischen den Proteinen und der P-Stärke im Ansatz A und die Bindung zwischen den Proteinen und nicht-

phosphorylierter-Stärke im Ansatz B wird anschließend aufgehoben, d.h. die betreffenden Proteine werden in Lösung gebracht. Die in Lösung gebrachten Proteine des Ansatzes A und des Ansatzes B können dann von den betreffenden Stärken, die in den entsprechenden Ansätzen vorliegen, abgetrennt werden. Daraufhin kann eine Auftrennung der isolierten P-Stärke-bindenden-Proteine des Ansatzes A bzw. der isolierten nicht-phosphorylierte-Stärke-bindenden-Proteine des Ansatzes B, mit Hilfe von dem Fachmann bekannten Methoden, wie z.B. Gelfiltration, chromatographische Verfahren, Elektrophorese, SDS-Acrylamidgelelektrophorese etc. erfolgen. Durch Vergleich der Mengen aufgetrennter Proteine des Ansatzes A mit den Mengen korrespondierender aufgetrennter Proteine des Ansatzes B, kann 10 ermittelt werden, ob ein Protein eine erhöhte Bindungsaktivität gegenüber P-Stärke im Vergleich zu nicht-phosphorylierten-Stärke aufweisen. Methoden, mit welchen eine bevorzugte Bindung von Proteinen an P-Stärke im Vergleich zu nichtphospohorylierter-Stärke nachgewiesen werden kann, sind weiter unten in Beispiel 6 beschrieben.

Die in SEQ ID NO 2 dargestellte Aminosäuresequenz codiert ein OK1 Protein aus Arabidopsis thaliana und die unter SEQ ID NO 4 dargestellte Aminosäuresequenz codiert ein OK 1 Protein aus Oryza sativa.

20

25

30

15

der vorliegenden Erfindung weiteren Ausführungsform einer Aminosäuresequenzen codierend ein OK1 Proteine eine Identität mit der in SEQ ID NO 2 oder SEQ ID NO 4 angegebenen Sequenz eine Identität von mindestens 60%, insbesondere von mindestens 70%, bevorzugt von mindestens 80% und besonders bevorzugt von mindestens 90% und insbesondere bevorzugt von mindestens 95% auf.

In einer weiteren Ausführungsform der vorliegenden Erfindung weist das OK1 Protein eine Phosphohistidindomäne auf (Tien-Shin Yu et al., 2001, Plant Cell 13, 1907-OK1 codierend Proteine, Aminosäuresequenzen, 1918).

Phosphohistidindomäne, die zu der unter SEQ ID NO 5 dargestellten Aminosäuresequenz der Phosphohistidindomäne des OK1 Proteins aus *Arabidopsis thaliana* und *Oryza sativa* eine Identität von mindestens 50%, insbesondere von mindestens 60%, bevorzugt von mindestens 70% und besonders bevorzugt von mindestens 80% und insbesondere bevorzugt von mindestens 90% aufweist.

Eine weitere Ausführungsform der vorliegenden Erfindung betrifft ein OK1 Protein, welches eine Phosphohistidindomäne aufweist. Bevorzugt enthält die Phosphohistidindomäne zwei Histidinreste.

10

5

Eine weitere Ausführungsform der vorliegenden Erfindung betrifft eine erfindungsgemäße genetisch modifizierte Pflanzenzelle oder eine erfindungsgemäße genetisch modifizierte Pflanze, wobei die genetische Modifikation in der Einführung mindestens eines fremden Nucleinsäuremoleküls in das Genom der Pflanze besteht.

15

In diesem Zusammenhang bedeutet der Begriff "genetische Modifikation" das Einführen von homologen und/oder heterologen fremden Nucleinsäuremolekülen in das Genom einer Pflanzenzelle oder in das Genom einer Pflanze, wobei besagtes Einführen dieser Moleküle zur Verringerung der Aktivität eines OK1 Proteins führt.

20 Durch Einführung eines fremden Nucleinsäuremoleküls sind die erfindungsgemäßen Pflanzenzellen oder erfindungsgemäßen Pflanzen in ihrer genetischen Information verändert. Das Vorhandensein oder die Expression des fremden Nucleinsäuremoleküls führt zu einer phänotypischen Veränderung. "Phänotypische" Veränderung bedeutet dabei vorzugsweise eine messbare Veränderung einer oder mehrerer Funktionen der Zellen. Beispielsweise zeigen die genetisch modifizierten 25 erfindungsgemäßen Pflanzenzellen und die genetisch modifizierten erfindungsgemäßen Pflanzen aufgrund des Vorhandenseins oder bei Expression des eingeführten Nucleinsäuremoleküls eine Verringerung der Aktivität eines OK1 Proteins.

Unter dem Begriff "fremdes Nukleinsäuremolekül" versteht man im Zusammenhang mit der vorliegenden Erfindung ein solches Molekül, das entweder natürlicherweise in entsprechenden Wildtyp-Pflanzenzellen nicht vorkommt, oder das in der konkreten räumlichen Anordnung nicht natürlicherweise in Wildtyp-Pflanzenzellen vorkommt oder das an einem Ort im Genom der Wildtyp-Pflanzenzelle lokalisiert ist, an dem es natürlicherweise nicht vorkommt. Bevorzugt ist das fremde Nukleinsäuremolekül ein rekombinantes Molekül, das aus verschiedenen Elementen besteht, deren Kombination oder spezifische räumliche Anordnung natürlicherweise in pflanzlichen Zellen nicht auftritt.

Prinzipiell kann das fremde Nucleinsäuremolekül jedes beliebige Nucleinsäuremolekül sein, das in der Pflanzenzelle oder Pflanze eine Erhöhung der Aktivität eines OK1 Proteins bewirkt.

- 15 Unter dem Begriff "Genom" soll im Zusammenhang mit der vorliegenden Erfindung die Gesamtheit des in einer pflanzlichen Zelle vorliegenden Erbmaterials verstanden werden. Dem Fachmann ist bekannt, dass neben dem Zellkern auch andere Kompartimente (z.B. Plastiden, Mitochondrien) Erbmaterial enthalten.
- In einer weiteren Ausführungsform sind die erfindungsgemäßen Pflanzezellen und die erfindungsgemäßen Pflanzen dadurch gekennzeichnet, dass das fremde Nucleinsäuremolekül ein OK1 Protein codiert, bevorzugt ein OK1 Protein aus Arabidopsis thaliana oder ein OK1 Protein aus Oryza sativa.
- 25 In einer weiteren Ausführungsform codiert das fremde Nucleinsäuremolekül ein OK1 Protein mit der in SEQ ID NO 2 oder SEQ ID NO 4 angegebenen Aminosäuresequenz.

Für die Einführung von DNA in eine pflanzliche Wirtszelle steht eine Vielzahl von Techniken zur Verfügung. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel, die Fusion von Protoplasten, die Injektion, die Elektroporation von DNA, die Einbringung der DNA mittels des biolistischen Ansatzes sowie weitere Möglichkeiten.

Die Verwendung der Agrobakterien-vermittelten Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120516; Hoekema, IN: The Binary Plant Vector System Offsetdrukkerij Kanters B.V. Alblasserdam (1985), Chapter V; Fraley et al., Crit. Rev. Plant Sci. 4, 1-46 und bei An et al. EMBO J. 4, (1985), 277-287 beschrieben worden. Für die Transformation von Kartoffel, siehe z.B. Rocha-Sosa et al., EMBO J. 8, (1989), 29-33).

Auch die Transformation monokotyler Pflanzen mittels auf Agrobacterium Transformation basierender Vektoren wurde beschrieben (Chan et al., Plant Mol. 15 Biol. 22, (1993), 491-506; Hiei et al., Plant J. 6, (1994) 271-282; Deng et al, Science in China 33, (1990), 28-34; Wilmink et al., Plant Cell Reports 11, (1992), 76-80; May et al., Bio/Technology 13, (1995), 486-492; Conner und Domisse, Int. J. Plant Sci. 153 (1992), 550-555; Ritchie et al, Transgenic Res. 2, (1993), 252-265). Alternatives 20 System zur Transformation von monokotylen Pflanzen ist die Transformation mittels des biolistischen Ansatzes (Wan und Lemaux, Plant Physiol. 104, (1994), 37-48; Vasil et al., Bio/Technology 11 (1993), 1553-1558; Ritala et al., Plant Mol. Biol. 24, (1994), 317-325; Spencer et al., Theor. Appl. Genet. 79, (1990), 625-631), die Protoplastentransformation, die Elektroporation von partiell permeabilisierten Zellen, die Einbringung von DNA mittels Glasfasern. Insbesondere die Transformation von 25 Mais wird in der Literatur mehrfach beschrieben (vgl. z. B. WO95/06128, EP0513849, EP0465875, EP0292435; Fromm et al., Biotechnology 8, (1990), 833-844; Gordon-Kamm et al., Plant Cell 2, (1990), 603-618; Koziel et al., Biotechnology 11 (1993), 194-200; Moroc et al., Theor. Appl. Genet. 80, (1990), 721-726).

Auch die erfolgreiche Transformation anderer Getreidearten wurde bereits beschrieben, z.B. für Gerste (Wan und Lemaux, s.o.; Ritala et al., s.o.; Krens et al., Nature 296, (1982), 72-74) und für Weizen (Nehra et al., Plant J. 5, (1994), 285-297; Becker et al., 1994, Plant Journal 5, 299-307). Alle vorstehenden Methoden sind im Rahmen der vorliegenden Erfindung geeignet.

5

10

15

20

25

30

Pflanzenzellen und Pflanzen, die durch Einführung eines OK1 Proteins genetisch modifiziert sind, lassen sich von Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen unter anderem dadurch unterscheiden, dass sie ein fremdes Nucleinsäuremolekül enthalten, das natürlicherweise in Wildtyp-Planzenzellen bzw. Wildtyp-Pflanzen nicht vorkommt oder dadurch, dass ein solches Molekül an einem Ort im Genom der erfindungsgemäßen Pflanzenzelle oder im Genom der erfindungsgemäßen Pflanze integriert vorliegt, an dem es bei Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen nicht vorkommt, d.h. in einer anderen genomischen Umgebung. Ferner lassen sich derartige erfindungsgemäße Pflanzenzellen und erfindungsgemäße Pflanzen von Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen dadurch unterscheiden, dass sie mindestens eine Kopie des fremden Nucleinsäuremoleküls stabil integriert in ihr Genom enthalten, gegebenenfalls zusätzlich zu natürlicherweise in den Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen vorkommenden Kopien eines solchen Moleküls. Handelt es sich bei dem (den) in die erfindungsgemäßen Pflanzenzellen oder erfindungsgemäßen Pflanzen eingeführten fremden Nucleinsäuremolekül(en) um zusätzliche Kopien zu bereits natürlicherweise in den Wildtyp-Pflanzenzellen lassen sich die vorkommenden Molekülen, so Wildtyp-Pflanzen bzw. erfindungsgemäßen Pflanzenzellen und die erfindungsgemäßen Pflanzen von Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen insbesondere dadurch unterscheiden, dass diese zusätzliche(n) Kopie(n) an Orten im Genom lokalisiert ist (sind), an denen sie bei Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen nicht vorkommt (vorkommen). Dies lässt sich beispielsweise mit Hilfe einer Southern Blot-Analyse nachprüfen.

Weiterhin lassen sich die erfindungsgemäßen Pflanzenzellen und die erfindungsgemäßen Pflanzen von Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen vorzugsweise durch mindestens eines der folgenden Merkmale unterscheiden: Ist

das eingeführte fremde Nucleinsäuremolekül heterolog in Bezug auf die Pflanzenzelle oder Pflanze, so weisen die erfindungsgemäßen Pflanzenzellen oder erfindungsgemäßen Pflanzen Transkripte der eingeführten Nucleinsäuremoleküle auf. Diese lassen sich z. B. durch Northern-Blot-Analyse oder durch RT-PCR (Reverse Transcription Polymerase Chain Reaction) nachweisen. Erfindungsgemäße Pflanzenzellen und erfindungsgemäße Pflanzen, die ein Antisense- und/oder ein RNAi-Transkript exprimieren, können z.B. mit Hilfe von spezifischen Nucleinsäure-Sonden, die komplementär zur der für das Protein codierenden (natürlich in der Pflanzenzelle vorkommenden) RNA sind, nachgewiesen werden. Vorzugsweise enthalten die erfindungsgemäßen Pflanzenzellen und die erfindungsgemäßen Pflanzen ein Protein, das durch ein eingeführtes Nucleinsäuremolekül codiert wird. Dies kann z. B. durch immunologische Methoden, insbesondere durch eine Western-Blot-Analyse nachgewiesen werden.

10

30

Ist das eingeführte fremde Nucleinsäuremolekül homolog in Bezug auf die Pflanzenzelle oder Pflanze, können die erfindungsgemäßen Pflanzenzellen und die erfindungsgemäßen Pflanzen von Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen beispielsweise aufgrund der zusätzlichen Expression der eingeführten fremden Nucleinsäuremoleküle unterschieden werden. Die erfindungsgemäßen Pflanzenzellen und die erfindungsgemäßen Pflanzen enthalten vorzugsweise Transkripte der fremden Nucleinsäuremoleküle. Dies kann z. B. durch Northern-Blot-Analyse oder mit Hilfe der so genannten quantitativen PCR nachgewiesen werden.

In einer weiteren Ausführungsform handelt es sich bei den erfindungsgemäßen Pflanzenzellen und bei den erfindungsgemäßen Pflanzen um transgene 25 Pflanzenzellen bzw. transgene Pflanzen.

In einer weiteren Ausführungsform sind die erfindungsgemäßen Pflanzenzellen und die erfindungsgemäßen Pflanzen dadurch gekennzeichnet, dass mindestens ein fremdes Nucleinsäuremolekül Aminosäuresequenzen codiert, die von einer Aminosäuresequenz umfasst sind, welche ein OK1 Protein codieren.

In einer weiteren Ausführungsform betrifft die vorliegende Erfindung erfindungsgemäße Pflanzenzellen und erfindungsgemäße Pflanzen wobei das fremde Nucleinsäuremolekül ausgewählt ist, aus der Gruppe bestehend aus

- 5 a) Nucleinsäuremolekülen, die ein Protein mit der unter SEQ ID NO 2 oder SEQ ID NO 4 angegebenen Aminosäuresequenz codieren;
 - b) Nucleinsäuremolekülen, die ein Protein codieren, das die Aminosäuresequenz umfasst, die von der Insertion in Plasmid A.t.-OK1-pGEM oder der Insertion in Plasmid pMI50 codiert wird;
- 10 c) Nucleinsäuremolekülen, die ein Protein codieren, dessen Sequenz eine Identität von mindestens 60% zu der unter SEQ ID NO 2 oder SEQ ID NO 4 angegebenen Aminosäuresequenz aufweisen;
 - d) Nucleinsäuremolekülen, die ein Protein codieren, dessen Sequenz eine Identität von mindestens 60% zu der Aminosäuresequenz aufweist; die von der codierenden Region der Insertion in Plasmid A.t.-OK1-pGEM oder von der codierenden Region der Insertion in Plasmid pMI50 codiert wird;

- e) Nucleinsäuremolekülen, die die unter SEQ ID NO 1 oder SEQ ID NO 3 dargestellte Nucleotidsequenz oder eine komplementäre Sequenz umfassen;
- f) Nucleinsäuremolekülen, die die Nucleotidsequenz der im Plasmid A.t.-OK1 pGEM oder Plasmid pMI50 enthaltenen Insertion umfassen;
 - g) Nucleinsäuremolekülen, welche zu den unter a), b), d) oder e) beschriebenen Nucleinsäuresequenzen eine Identität von mindestens 70% aufweisen;
- h) Nucleinsäuremolekülen, welche mit mindestens einem Strang der unter a), b),
 e) oder f) beschriebenen Nucleinsäuremolekülen unter stringenten
 Bedingungen hybridisieren;
 - i) Nucleinsäuremolekülen, deren Nucleotidsequenz aufgrund der Degeneration des genetisches Codes von der Sequenz der unter a), b), e) oder f) genannten Nucleinsäuremoleküle abweicht; und

- Nucleinsäuremolekülen, die Fragmente, allelische Varianten und/oder Derivate j) der unter a), b), c), d), e), f), g), h) oder i) genannten Nucleinsäuremoleküle darstellen.
- Die in SEQ ID NO 2 dargestellte Aminosäuresequenz codiert ein OK1 Protein aus 5 Arabidopsis thaliana und die in SEQ ID NO 4 dargestellte Aminosäuresequenz codiert ein OK1 Protein aus Oryza sativa.

Die von den verschiedenen Varianten der erfindungsgemäßen Nucleinsäuremoleküle codierten Proteine weisen bestimmte gemeinsame Charakteristika auf. Dazu können 10 z.B. biologische Aktivität, Molekulargewicht, immunologische Reaktivität. Konformation etc. gehören, sowie physikalische Eigenschaften wie z.B. das Laufverhalten in Gelelektrophoresen, chromatographisches Verhalten. Sedimentationskoeffizienten, Löslichkeit, spektroskopische Eigenschaften, Stabilität; 15 pH-Optimum, Temperatur-Optimum etc...

Das von der unter SEQ ID NO 2 dargestellten Aminosäuresequenz abgeleitete Molekulargewicht des OK1 Proteins aus Arabidopsis thaliana beträgt ca. 131 kDa und das von der unter SEQ ID NO 4 dargestellten Aminosäuresequenz abgeleitete Molekulargewicht des OK1 Proteins aus Oryza sativa beträgt ca. 132 kDa. Das von codierenden Aminosäuresequenz abgeleitete Molekulargewicht erfindungsgemäßen Proteins liegt daher vorzugsweise im Bereich von 120 kDa bis 145 kDa, bevorzugt von 120 kDa bis 140 kDa, besonders bevorzugt von 125 kDa bis 140 kDa, insbesondere bevorzugt von 130 kDa bis 135 kDa.

Die in SEQ ID NO 2 und SEQ ID NO 4 dargestellten Aminosäuresequenzen codierend OK1 Proteine aus Arabidopsis thaliana bzw. Oryza sativa enthalten jeweils 25 eine Phosphohistidindomäne. Bevorzugt enthält daher ein erfindungsgemäßes OK 1 Protein eine Phosphohistidindomäne, welche zu der unter SEQ ID NO 5 dargestellten Phosphohistidindomäne eine Identität von mindestens 50%, bevorzugt von mindestens 60%, besonders bevorzugt von mindestens 80% und insbesondere

30 bevorzugt von mindesten 90% aufweist.

Die vorliegende Erfindung betrifft Nucleinsäuremoleküle, die ein Protein mit der erfindungsgemäßen enzymatischen Aktivität eines OK1 Proteins codieren, wobei das codierte OK1 Protein eine Identität von mindestens 70% bevorzugt von mindestens 80%, besonders bevorzugt von mindestens 90% und insbesondere bevorzugt von mindestens 95% zu den unter SEQ ID NO 2 oder SEQ ID NO 4 angegebenen Aminosäuresequenzen aufweist.

Das Plasmid A.t.-OK1-pGEM, enthaltend eine cDNA, die ein OK1 Protein aus Arabidopsis thaliana codiert, wurde am 08.03.2004 unter der Nummer DSM16264 10 und das Plasmid pMI50, enthaltend eine cDNA, die ein OK1 Protein aus Oryza sativa codiert, wurde am 24.03.2004 unter der Nummer DSM16302 nach dem Budapester Vertrag hinterlegt bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, 38124 Braunschweig, Deutschland. Die in SEQ ID NO 2 dargestellte Aminosäuresequenz kann von der codierenden Region 15 der in Plasmid A.t.-OK1-pGEM integrierten cDNA Sequenz abgeleitet werden und codiert für ein OK1 Protein aus Arabidopsis thaliana. Die in SEQ ID NO 4 dargestellte Aminosäuresequenz kann von der codierenden Region der in Plasmid pMI50 integrierten cDNA Sequenz abgeleitet werden und codiert für ein OK1 Protein Erfindung betrifft Die vorliegende sativa. 20 Nucleinsäuremoleküle, die ein Protein mit der enzymatischen Aktivität eines OK1 Proteins codieren, das die Aminosäuresequenz umfasst, die von der Insertion in Plasmid A.t.-OK1-pGEM oder die von der Insertion in Plasmid pMI50 codiert wird, wobei das codierte Protein eine Identität von mindestens 70% bevorzugt von mindestens 80%, besonders bevorzugt von mindestens 90% und insbesondere 25 bevorzugt von 95% zu der Aminosäuresequenz, die von der Insertion in A.t.-OK1pGEM oder pMI50 abgeleitet werden kann, aufweist.

Die in SEQ ID NO 1 dargestellte Nucleinsäuresequenz ist eine cDNA Sequenz, die die codierende Region für ein OK1 Protein aus *Arabidopsis thaliana* und die in SEQ

ID NO 3 dargestellte Nucleinsäuresequenz ist eine cDNA Sequenz, die die codierende Region für ein OK1 Protein aus *Oryza sativa* umfasst.

Die vorliegende Erfindung betrifft daher auch Nucleinsäuremoleküle, die ein OK1 Protein codieren und die codierende Region der unter SEQ ID NO 1 oder SEQ ID NO 3 dargestellten Nucleotidsequenzen oder zu diesen komplementäre Sequenzen umfassen, Nucleinsäuremoleküle, die die codierende Region der Nucleotidsequenz der im Plasmid A.t.-OK1-pGEM oder im Plasmid pMI50 enthaltenen Insertion umfassen und Nucleinsäuremoleküle, die zu den genannten Nucleinsäuremolekülen eine Identität von mindestens 70%, bevorzugt von mindestens 80%, besonders bevorzugt von mindestens 90% und insbesondere bevorzugt von mindestens 95% aufweisen.

10

15

20

Mit Hilfe der Sequenzinformation erfindungsgemäßer Nucleinsäuremoleküle bzw. mit Hilfe eines erfindungsgemäßen Nucleinsäuremoleküls ist es dem Fachmann nun möglich, homologe Sequenzen aus anderen Pflanzenspezies, vorzugsweise aus Stärke speichernden Pflanzen, bevorzugt aus Pflanzenspezies der Gattung *Oryza*, insbesondere *Oryza sativa* oder aus *Arabidopsis thaliana* zu isolieren. Dies kann beispielsweise mit Hilfe konventioneller Methoden, wie dem Durchmustern von cDNA oder genomischen Banken mit geeigneten Hybridisierungsproben erfolgen. Dem Fachmann ist bekannt, dass die Isolierung homologer Sequenzen auch mit Hilfe von (degenerierten) Oligonucleotiden und der Verwendung von PCR basierten Methoden erfolgen kann.

Durchmusterung von Datenbanken wie sie z.B. von **EMBL** (http://www.ebi.ac.uk/Tools/index.htm) oder NCBI (National Center for Biotechnology Information, http://www.ncbi:nlm.nih.gov/) zur Verfügung gestellt werden, kann zur 🛸 25 Identifizierung von homologen Sequenzen, die für OK1 Protein codieren, dienen. Hierbei wird eine oder werden mehrere Sequenzen als so genannte Abfrage (= query) vorgegeben. Diese Abfragesequenz wird dann mittels statistischen Computerprogrammen mit Sequenzen, die in den ausgewählten Datenbanken enthalten sind, verglichen. Solche Datenbankabfragen (z.B. blast- oder fasta searches) sind dem Fachmann bekannt und können bei verschiedenen Anbietern 30 durchgeführt werden.

Wird eine solche Datenbankabfrage z.B. beim NCBI (National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/) durchgeführt, so sollen die Standardeinstellungen, die für die jeweilige Vergleichsanfrage vorgegeben sind, benutzt werden. Für Proteinsequenzvergleiche (blastp) sind dieses folgende Einstellungen: Limit entrez = nicht aktiviert; Filter = low compexity aktiviert; Expect value = 10; word size = 3; Matrix = BLOSUM62; Gap costs: Existence = 11, Extension = 1.

Für Nucleinsäuresequenzvergleich (blastn) sind folgende Parameter einzustellen: Limit entrez = nicht aktiviert; Filter = low compexity aktiviert; Expect value = 10; word size = 11.

Bei einer solchen Datenbankrecherche können z.B. die in der vorliegenden Erfindung beschriebenen Sequenzen als Abfragesequenz (query) verwendet werden, um weitere Nucleinsäuremoleküle und/oder Proteine zu identifizieren, die ein OK1 Protein codieren.

15 Mit Hilfe der beschriebenen Methoden ist es auch möglich, erfindungsgemäße Nucleinsäuremoleküle zu identifizieren und/oder zu isolieren, die mit der unter SEQ ID NO 1 oder unter SEQ ID NO 3 angegebenen Sequenz hybridisieren und die ein OK1 Protein codieren.

Der Begriff "Hybridisierung" bedeutet im Rahmen der vorliegenden Erfindung eine Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrok et al. (Molecular Cloning, A Laboratory Manual, 3rd edition (2001) Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY. ISBN: 0879695773, Ausubel et al., Short Protocols in Molecular Biology, John Wiley & Sons; 5th edition (2002),ISBN: 0471250929) beschrieben sind. Besonders bevorzugt bedeutet "Hybridisierung" eine Hybridisierung unter den folgenden Bedingungen:

Hybridisierungspuffer:

10

30

2xSSC; 10xDenhardt-Lösung (Fikoll 400+PEG+BSA; Verhältnis 1:1:1); 0,1% SDS; 5 mM EDTA; 50 mM Na2HPO4; 250 μg/ml Heringssperma DNA; 50 μg/ml tRNA; oder

;;,

25 M Natriumphoshphatpuffer pH 7,2; 1 mM EDTA; 7% SDS Hybridisierungstemperatur:

T=65 bis 68°C

10

15

20

Waschpuffer: 0,1xSSC; 0,1% SDS

5 Waschtemperatur: T=65 bis 68°C.

Nucleinsäuremoleküle, die mit den erfindungsgemäßen Nucleinsäuremolekülen hybridisieren, können prinzipiell aus jeder beliebigen Pflanzenspezies stammen, die ein entsprechendes Protein codiert, vorzugsweise stammen sie aus Stärke speichernden Pflanzen, bevorzugt aus Spezies der (systematischen) Familie Poacea, insbesondere bevorzugt aus Oryza sativa. Nucleinsäuremoleküle, die mit den erfindungsgemäßen Molekülen hybridisieren, können z.B. aus genomischen oder aus cDNA-Bibliotheken isoliert werden. Die Identifizierung und Isolierung derartiger Nucleinsäuremoleküle kann dabei unter Verwendung erfindungsgemäßen Nucleinsäuremoleküle oder Teile dieser Moleküle bzw. der reversen Komplemente dieser Moleküle erfolgen, z.B. mittels Hybridisierung nach Standardverfahren (siehe z.B. Sambrok et al., Molecular Cloning, A Laboratory Manual, 3rd edition (2001) Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY. ISBN: 0879695773, Ausubel et al., Short Protocols in Molecular Biology, John Wiley & Sons; 5th edition (2002),ISBN: 0471250929) oder durch Amplifikation mittels PCR.

Als Hybridisierungsprobe können z.B. Nucleinsäuremoleküle verwendet werden, die exakt die oder im Wesentlichen die unter SEQ ID NO 1 oder SEQ ID NO 3 angegebene Nucleotidsequenz oder Teile dieser Sequenzen aufweisen. Bei den als Hybridisierungsprobe verwendeten Fragmenten kann es sich auch um synthetische 25 Fragmente oder Oligonucleotide handeln. die mit Hilfe der gängigen Synthesetechniken hergestellt wurden und deren Sequenz im wesentlichen mit der eines erfindungsgemäßen Nucleinsäuremoleküls übereinstimmt. Hat man Gene identifiziert und isoliert, die mit den erfindungsgemäßen Nucleinsäuresequenzen

hybridisieren, sollte eine Bestimmung der Sequenz und eine Analyse der Eigenschaften der von dieser Sequenz codierten Proteine erfolgen, um festzustellen, ob es sich um ein OK1 Protein handelt. Hierzu eignen sich insbesondere Homologievergleiche auf der Ebene der Nucleinsäure- oder Aminosäuresequenz sowie die Bestimmung der enzymatischen Aktivität. Die Aktivität eines OK1 Proteins kann z.B. wie oben oder unter Allgemeinen Methoden Punkt 11 beschrieben, erfolgen. Eine bevorzugte Bindungsaffinität zu P-Stärke im Vergleich zu nichtphosphorylierter-Stärke, und Autophosphorylierung eines OK1 Proteins können nach den oben bereits und unter Allgemeine Methoden Punkte 8 und 12 beschriebenen Methoden nachgewiesen werden.

10

15

20

25

30

Die mit den erfindungsgemäßen Nucleinsäuremolekülen hybridisierenden Moleküle umfassen insbesondere Fragmente, Derivate und allelische Varianten der erfindungsgemäßen Nucleinsäuremoleküle, die ein OK1 Protein aus Pflanzen, vorzugsweise aus Stärke speichernden Pflanzen, bevorzugt aus Pflanzenspezies der Gattung *Oryza*, insbesondere bevorzugt aus *Oryza sativa* oder *Arabidopsis thaliana* codieren. Der Begriff "Derivat" bedeutet im Zusammenhang mit der vorliegenden Erfindung, dass die Sequenzen dieser Moleküle sich von den Sequenzen der oben beschriebenen Nucleinsäuremoleküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Identität zu diesen Sequenzen aufweisen. Die Abweichungen zu den oben beschriebenen Nucleinsäuremolekülen können dabei z.B. durch Deletion, Addition, Substitution, Insertion oder Rekombination entstanden sein.

Der Begriff "Identität" bedeutet im Zusammenhang mit der vorliegenden Erfindung eine Sequenzidentität über die gesamte Länge der codierenden Region von mindestens 60%, insbesondere eine Identität von mindestens 80%, vorzugsweise über 80%, besonders bevorzugt über 90% und insbesondere von mindestens 95%. Unter dem Begriff "Identität" soll im Zusammenhang mit der vorliegenden Erfindung die Anzahl der übereinstimmenden Aminosäuren/Nucleotide (Identität) mit anderen Proteinen/Nucleinsäuren, ausgedrückt in Prozent verstanden werden. Bevorzugt wird die Identität durch Vergleiche der SEQ ID NO 2 oder SEQ ID NO 4 für Aminosäuren

oder SEQ. ID NO 1 oder SEQ ID NO 3 für Nucleinsäuren zu anderen Proteinen/Nucleinsäuren mit Hilfe von Computerprogrammen ermittelt. Weisen Sequenzen, die miteinander verglichen werden, unterschiedliche Längen auf, ist die Identität so zu ermitteln, dass die Anzahl an Aminosäuren, welche die kürzere Sequenz mit der längeren Sequenz gemeinsam hat, den prozentualen Anteil der Identität bestimmt. Vorzugsweise wird die Identität mittels des bekannten und der Öffentlichkeit zur Verfügung stehenden Computerprogramms ClustalW (Thompson et al., Nucleic Acids Research 22 (1994), 4673-4680) ermittelt. ClustalW wird öffentich zur Verfügung gestellt von Julie Thompson (Thompson@EMBL-Heidelberg.DE) und Toby Gibson (Gibson@EMBL-Heidelberg.DE), European Molecular Laboratory, Meyerhofstrasse 1, D 69117 Heidelberg, Germany. ClustalW kann ebenfalls von verschiedenen Internetseiten, u.a. beim IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire, B.P.163, 67404 Illkirch Cedex, France; ftp://ftp-igbmc.u-strasbg.fr/pub/) und beim EBI (ftp://ftp.ebi.ac.uk/pub/software/) sowie bei allen gespiegelten Internetseiten des EBI (European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK), heruntergeladen werden.

10

15

20

25

Vorzugsweise wird das ClustalW Computerprogramm der Version 1.8 benutzt, um die Identität zwischen erfindungsgemäßen Proteinen und anderen Proteinen zu bestimmen. Dabei sind folgende Parameter einzustellen: KTUPLE=1, TOPDIAG=5, WINDOW=5, PAIRGAP=3, GAPOPEN=10, GAPEXTEND=0.05, GAPDIST=8, MAXDIV=40, MATRIX=GONNET, ENDGAPS(OFF), NOPGAP, NOHGAP.

Vorzugsweise wird das ClustalW Computerprogramm der Version 1.8 benutzt, um die Identität zwischen z.B. der Nucleotidsequenz der erfindungsgemäßen Nucleinsäuremoleküle der und Nucleotidsequenz von anderen Nucleinsäuremolekülen zu bestimmen. Dabei sind folgende Parameter einzustellen: KTUPLE=2, TOPDIAGS=4. PAIRGAP=5, DNAMATRIX:IUB, GAPOPEN=10, GAPEXT=5, MAXDIV=40, TRANSITIONS: unweighted.

Identität bedeutet ferner, dass funktionelle und/oder strukturelle Äquivalenz zwischen den betreffenden Nucleinsäuremolekülen oder den durch sie codierten Proteinen, besteht. Bei den Nucleinsäuremolekülen, die homolog zu den oben beschriebenen Molekülen sind und Derivate dieser Moleküle darstellen, handelt es sich in der Regel um Variationen dieser Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürlicherweise auftretende Variationen handeln, beispielsweise um Sequenzen aus anderen Pflanzenspezies oder um Mutationen, wobei diese Mutationen auf natürliche Weise aufgetreten sein können oder durch gezielte Mutagenese eingeführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende Varianten handeln, als auch um synthetisch hergestellte oder durch rekombinante DNA-Techniken erzeugte Varianten. Eine spezielle Form von Derivaten stellen z.B. Nucleinsäuremoleküle dar, die auf Grund der Degeneration des genetischen Codes von erfindungsgemäßen Nucleinsäuremolekülen abweichen.

10

15

20

25

30

Die von den verschiedenen Derivaten der erfindungsgemäßen Nucleinsäuremoleküle codierten Proteine weisen bestimmte gemeinsame Charakteristika auf. Dazu können z.B. biologische Aktivität, Substratspezifität, Molekulargewicht, immunologische Reaktivität, Konformation etc. gehören, sowie physikalische Eigenschaften wie z.B. das Laufverhalten in Gelelektrophoresen, chromatographisches Verhalten, Sedimentationskoeffizienten, Löslichkeit, spektroskopische Eigenschaften, Stabilität; pH-Optimum, Temperatur-Optimum etc.. Bevorzugte Eigenschaften eines OK1 Proteins wurden oben bereits im Detail erörtert und sind hier entsprechend anzuwenden.

Die erfindungsgemäßen Nucleinsäuremoleküle können beliebige Nucleinsäuremoleküle sein, insbesondere DNA- oder RNA-Moleküle, beispielsweise cDNA, genomische DNA, mRNA etc. Sie können natürlich vorkommende Moleküle sein, oder durch gentechnische oder chemische Syntheseverfahren hergestellte

Moleküle. Sie können einzelsträngige Moleküle sein, die entweder den codierenden oder den nicht codierenden Strang enthalten, oder doppelsträngige Moleküle.

Eine weitere Ausführungsform der vorliegenden Erfindung betrifft erfindungsgemäße
5 Pflanzenzellen und erfindungsgemäße Pflanzen, wobei das fremde
Nucleinsäuremolekül ausgewählt ist, aus der Gruppe bestehend aus

- a) DNA-Molekülen, die mindestens eine antisense-RNA codieren, welche eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert;
- 10 b) DNA-Molekülen, die über einen Cosuppressionseffekt zu Verringerung der Expression von mindestens einem endogenen Gen führen, das ein OK1 Protein codiert;
 - DNA-Molekülen, die mindestens ein Ribozym codieren, das spezifisch Transkripte von mindestens einem endogenen Gen spaltet, das ein OK1 Protein codiert,

15

20

25

- d) DNA-Molekülen, die simultan mindestens eine antisense-RNA und mindestens eine sense-RNA codieren, wobei besagte antisense-RNA und besagte sense-RNA ein doppelsträngiges RNA-Molekül ausbilden, das eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert (RNAi Technologie);
- e) Mittels in vivo-Mutagenese eingeführte Nucleinsäuremoleküle, die zu einer Mutation oder einer Insertion einer heterologen Sequenz in mindestens einem endogenen OK1 Protein codierenden Gen führen, wobei die Mutation oder Insertion eine Verringerung der Expression eines OK1 Protein codierenden Gens bewirkt, oder die Synthese von inaktiven OK1 Protein zur Folge hat;
- Nucleinsäuremolekülen, die einen Antikörper codieren, wobei der Antikörper durch die Bindung an ein OK1 Protein eine Verringerung der Aktivität eines OK1 Proteins zur Folge hat,

- g) DNA Molekülen, die Transposons enthalten, wobei die Integration dieser Transposons zu einer Mutation oder einer Insertion in mindestens einem endogenen OK1 Protein codierenden Gen führt, welches eine Verringerung der Expression von mindestens einem ein OK1 Protein codierenden Gens bewirkt, oder die Synthese von inaktiven OK1 Protein zur Folge hat; und/oder
- T-DNA Molekülen, die durch Insertion in mindestens einem endogenen OK1 Protein codierenden Gen eine Verringerung der Expression von mindestens OK1 Protein codierenden Gen bewirken, oder die Synthese von inaktivem OK1 Protein zur Folge haben.

10

15

20

5

Die Herstellung erfindungsgemäßer Pflanzenzellen und erfindungsgemäßer Pflanzen kann durch verschiedene, dem Fachmann bekannte Verfahren erzielt werden. Hierzu zählen beispielsweise die Expression einer entsprechenden antisense-RNA, oder eines doppelsträngigen RNA Konstruktes, die Bereitstellung von Molekülen oder Vektoren, die einen Cosuppressionseffekt vermitteln, die Expression eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte spaltet, die ein OK1 Protein codieren, oder die so genannte "in vivo-Mutagenese". Ferner kann die Verringerung der OK1 Protein Aktivität in Pflanzenzellen und Pflanzen auch durch die simultane Expression von sense und antisense RNA Molekülen des jeweiligen zu reprimierenden Zielgens, vorzugsweise des OK1 Gens, hervorgerufen werden.

Darüberhinaus ist bekannt, dass *in planta* die Bildung von doppelsträngigen RNA-Molekülen von Promotorsequenzen *in trans* zu einer Methylierung und einer transkriptionellen Inaktivierung homologer Kopien dieses Promotors führen kann (Mette et al., EMBO J. 19, (2000), 5194-5201).

25 Eine weitere Möglichkeit die enzymatische Aktivität von Proteinen in Pflanzenzellen oder Pflanzen zu verringern, ist die Methode der so genannten Immunomodulation. Es ist bekannt, dass eine *in planta* Expression von Antikörpern, die ein pflanzliches Protein spezifisch erkennen, durch Ausbildung eines Protein Antikörper Komplexes eine Verringerung der Aktivität betreffender Proteine in entsprechenden Pflanzenzellen zur Folge hat (Conrad und Manteufel, Trends in Plant Science 6,

(2001), 399-402; De Jaeger et al., Plant Molecular Biology 43, (2000), 419-428; Jobling et al., Nature Biotechnology 21, (2003), 77-80).

Alle diese Verfahren basieren auf der Einführung eines fremden oder mehrerer fremder Nukleinsäuremoleküle in das Genom von Pflanzenzellen oder Pflanzen und sind daher grundsätzlich geeignet, erfindungsgemäße Pflanzenzellen und erfindungsgemäße Pflanzen herzustellen.

5

10

25

Zur Inhibierung der Genexpression mittels antisense- oder cosuppressions-Technologie kann beispielsweise ein DNA-Molekül verwendet werden, das die gesamte für ein OK1 Protein codierende Sequenz einschließlich eventuell vorhandener flankierender Sequenzen umfaßt, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt bzw. cosuppressions-Effekt zu bewirken. Geeignet sind im allgemeinen Sequenzen bis zu einer Mindestlänge von 21 bp, vorzugsweise einer Mindestlänge von mindesten 100 bp, besonders bevorzugt von mindestens 500 bp. Beispielsweise weisen die DNA Moleküle eine Länge von 21-100 bp, bevorzugt von 100-500 bp, besonders bevorzugt über 500 bp auf.

Für antisense- oder cosuppressions-Ansätze geeignet ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Identität zu den endogen in der 20 Pflanzenzelle vorkommenden Sequenzen haben, und die OK1 Proteine codieren. Die minimale Identität sollte größer als ca. 65 %, vorzugsweise größer als 80% sein. Die Verwendung von Sequenzen mit Identitäten von mindestens 90%, insbesondere zwischen 95% und 100% ist zu bevorzugen. Die Bedeutung des Begriffs "Identität" wird an anderer Stelle definiert.

Ferner ist zur Erzielung eines antisense- oder eines cosuppressions-Effektes auch die Verwendung von Introns, d.h. von nicht-codierenden Bereichen von Genen, die für OK1 Proteine codieren, denkbar.

Die Verwendung von Intron-Sequenzen zur Inhibierung der Genexpression von Genen, die für Proteine der Stärkebiosynthese codieren, wurde beschrieben in den internationalen Patentanmeldungen WO97/04112, WO97/04113, WO98/37213, WO98/37214.

5

10

25

Dem Fachmann ist bekannt, wie er einen antisense- und einen cosuppressions-Effekt erzielen kann. Das Verfahren der cosuppressions-Inhibierung wurde beispielsweise beschrieben in Jorgensen (Trends Biotechnol. 8 (1990), 340-344), Niebel et al., (Curr. Top. Microbiol. Immunol. 197 (1995), 91-103), Flavell et al. (Curr. Top. Microbiol. Immunol. 197 (1995), 43-46), Palaqui und Vaucheret (Plant. Mol. Biol. 29 (1995), 149-159), Vaucheret et al., (Mol. Gen. Genet. 248 (1995), 311-317), de Borne et al. (Mol. Gen. Genet. 243 (1994), 613-621).

Auch die Expression von Ribozymen zur Verringerung der Aktivität von bestimmten Enzymen in Zellen ist dem Fachmann bekannt und ist beispielsweise beschrieben in EP-B1 0321201. Die Expression von Ribozymen in pflanzlichen Zellen wurde z.B. beschrieben in Feyter et al. (Mol. Gen. Genet. 250, (1996), 329-338).

Die Verringerung der Aktivität eines OK1 Proteins in erfindungsgemäßen Pflanzenzellen und erfindungsgemäßen Pflanzen kann auch durch die simultane Expression von sense und antisense RNA Molekülen (RNAi Technologie) des jeweiligen zu reprimierenden Zielgens, vorzugsweise des OK1 Protein Gens, hervorgerufen werden.

Dies kann beispielsweise durch die Verwendung von chimären Konstrukten erreicht werden, die "inverted repeats" des jeweiligen Zielgens oder Teilen des Zielgens enthalten. Hierbei codieren die chimären Konstrukte für sense und antisense RNA Moleküle des jeweiligen Zielgens. Sense und antisense RNA werden *in planta* gleichzeitig als ein RNA-Molekül synthetisiert, wobei sense und antisense RNA durch

einen Spacer voneinander getrennt sein und ein doppelsträngiges RNA-Molekül bilden können.

Es konnte gezeigt werden, dass die Einführung von inverted-repeat-DNA-Konstrukten in das Genom von Pflanzenzellen oder Pflanzen eine sehr effiziente Methode ist, um die zu den inverted-repeat-DNA-Konstrukten korrespondierenden Gene zu reprimieren (Waterhouse et al., Proc. Natl. Acad. Sci. USA 95, (1998), 13959-13964; Wang and Waterhouse, Plant Mol. Biol. 43, (2000), 67-82;Singh et al., Biochemical Society Transactions Vol. 28 part 6 (2000), 925- 927; Liu et al., Biochemical Society Transactions Vol. 28 part 6 (2000), 927-929); Smith et al., (Nature 407, (2000), 319-320; internationale Patentanmeldung WO99/53050 A1). Sense und antisense Sequenzen des Zielgens bzw. der Zielgene können auch getrennt voneinander mittels gleicher oder unterschiedlicher Promotoren exprimiert werden (Nap, J-P et al, 6th International Congress of Plant Molecular Biology, Quebec, 18.-24. Juni, 2000; Poster S7-27, Vortrag Session S7).

15

20

Die Verringerung der Aktivität eines OK1 Proteins in erfindungsgemäßen Pflanzenzellen oder erfindungsgemäßen Pflanzen kann somit auch durch die Erzeugung doppelsträngiger RNA-Moleküle, erreicht werden. Vorzugsweise werden hierzu "inverted repeats" von DNA-Molekülen von OK1 Genen oder -cDNAs in das Genom von Pflanzen eingeführt, wobei die zu transkribierenden DNA-Moleküle (OK1 Gen oder -cDNA oder Fragmente dieser Gene oder cDNAs) unter Kontrolle eines Promotors stehen, der die Expression besagter DNA-Moleküle steuert.

Darüberhinaus ist bekannt, dass die Bildung von doppelsträngigen RNA-Molekülen von Promotor-DNA-Molekülen in Pflanzen *in trans* zu einer Methylierung und einer transkriptionellen Inaktivierung homologer Kopien dieser Promotoren führen kann, die im folgenden als Zielpromotoren bezeichnet werden sollen (Mette et al., EMBO J. 19, (2000), 5194-5201).

Über die Inaktivierung des Zielpromotors ist es somit möglich, die Genexpression eines bestimmten Zielgens (z.B. OK1 Gen), das natürlicherweise unter der Kontrolle dieses Zielpromotors steht, zu verringern.

D.h., die DNA-Moleküle, die die Zielpromotoren der zu reprimierenden Gene (Zielgene) umfassen, werden in diesem Fall, im Gegensatz zur ursprünglichen Funktion von Promotoren in Pflanzen, nicht als Steuerelemente zur Expression von Genen oder cDNAs, sondern selbst als transkribierbare DNA-Moleküle verwendet.

Zur Erzeugung der doppelsträngigen Zielpromotor-RNA-Moleküle *in planta*, die dort als RNA-Haarnadel-Moleküle (RNA hairpin) vorliegen können, werden vorzugsweise Konstrukte verwendet, die "inverted repeats" der Zielpromotor-DNA-Moleküle enthalten, wobei die Zielpromotor-DNA-Moleküle unter Kontrolle eines Promotors stehen, der die Genexpression besagter Zielpromotor-DNA-Moleküle steuert. Anschließend werden diese Konstrukte in das Genom von Pflanzen eingeführt. Die Expression der "inverted repeats" besagter Zielpromotor-DNA-Moleküle führt *in planta* zur Bildung doppelsträngiger Zielpromotor-RNA-Moleküle (Mette et al., EMBO J. 19, (2000), 5194-5201). Hierdurch kann der Zielpromotor inaktiviert werden.

Die Verringerung der Aktivität eines OK1 Proteins in erfindungsgemäßen Pflanzenzellen und erfindungsgemäßen Pflanzen kann somit auch durch die Erzeugung doppelsträngiger RNA-Moleküle von Promotorsequenzen von OK1 Genen erreicht werden. Vorzugsweise werden hierzu "inverted repeats" von Promotor-DNA-Molekülen von OK1 Genen in das Genom von Pflanzen eingeführt, wobei die zu transkribierenden Zielpromotor-DNA-Moleküle (Promotor eines OK1 Gens) unter Kontrolle eines Promotors stehen, der die Expression besagter Zielpromotor-DNA-Moleküle steuert.

25

30

20

10

15

Zur Inhibierung der Genexpression mittels simultaner Expression von sense und antisense RNA Molekülen (RNAi Technologie) kann beispielsweise ein DNA-Molekül verwendet werden, das die gesamte für ein OK1 Protein codierende Sequenz einschließlich eventuell vorhandener flankierender Sequenzen umfaßt, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile

lang genug sein müssen, um in den Zellen einen so genannten RNAi-Effekt zu bewirken. Geeignet sind im Allgemeinen Sequenzen mit einer Mindestlänge von 40 bp, vorzugsweise einer Mindestlänge von mindesten 100 bp, besonders bevorzugt von mindestens 500 bp. Beispielsweise weisen die DNA Moleküle eine Länge von 21-100 bp, bevorzugt von 100-500 bp auf.

5

10

15

20

25

Für simultane Expression von sense und antisense RNA Molekülen (RNAi Technologie) geeignet ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Identität zu den endogen in der Pflanzenzelle vorkommenden Sequenzen haben, und die Verzweigungsenzyme Klasse 3 codieren. Die minimale Identität sollte größer als ca. 65 %, vorzugsweise größer als 80% sein. Die Verwendung von Sequenzen mit Identitäten von mindestens 90%, insbesondere zwischen 95% und 100% ist besonders zu bevorzugen. Besonders geeignet zur Inhibierung von OK1 Genen mittels RNAi Technologie sind Sequenzen, die Nucleinsäuresequenzen enthalten, welche die unter SEQ ID NO 5 angegebene Phosphohistidindomäne codieren.

Ferner kann die Verringerung der Aktivität eines OK1 Proteins in erfindungsgemäßen Pflanzenzellen und erfindungsgemäßen Pflanzen auch durch die so genannte "in vivo-Mutagenese" erreicht werden, bei der durch Transformation von Zellen ein hybrides RNA-DNA-Oligonucleotid ("Chimeroplast") in Pflanzenzellen eingeführt wird (Kipp, P.B. et al., Poster Session beim " 5th International Congress of Plant Molecular Biology, 21.-27. September 1997, Singapore; R. A. Dixon und C.J. Arntzen, Meeting report zu "Metabolic Engineering in Transgenic Plants", Keystone Symposia, Copper Mountain, CO, USA, TIBTECH 15, (1997), 441-447; internationale Patentanmeldung WO 9515972; Kren et al., Hepatology 25, (1997), 1462-1468; Cole-Strauss et al., Science 273, (1996), 1386-1389; Beetham et al., 1999, PNAS 96, 8774-8778).

Ein Teil der DNA-Komponente des RNA-DNA-Oligonucleotids ist homolog zu einer Nukleinsäuresequenz eines endogenen OK1 Gens, weist jedoch im Vergleich zur

Nukleinsäuresequenz eines endogenen OK1 Gens eine Mutation auf oder enthält eine heterologe Region, die von den homologen Regionen umschlossen ist.

Durch Basenpaarung der homologen Regionen des RNA-DNA-Oligonucleotids und des endogenen Nukleinsäuremoleküls, gefolgt von homologer Rekombination, kann die in der DNA-Komponente des RNA-DNA-Oligonucleotids enthaltene Mutation oder heterologe Region in das Genom einer Pflanzenzelle übertragen werden. Dies führt zu einer Verringerung der Aktivität eines oder mehrerer OK1 Proteine.

Dem Fachmann ist bekannt, dass er die Aktivität von OK1 Proteinen durch die 10 Expression von nicht-funktionellen Derivaten insbesondere trans-dominanten Mutanten solcher Proteine und/oder durch die Expression von Antagonisten/Inhibitoren solcher Proteine erreichen kann.

Antagonisten/Inhibitoren solcher Proteine umfassen beispielsweise Antikörper, Bindungseigenschaften. oder Moleküle mit ähnlichen Antikörperfragmente Beispielsweise wurde ein cytoplasmatischer scFv Antikörper eingesetzt, um die 15 Aktivität des Phytochrom A Proteins in gentechnisch veränderten Tabakpflanzen zu modulieren (Owen, Bio/Technology 10 (1992), 790-4; Review: Franken, E, Teuschel, U. und Hain, R., Current Opinion in Biotechnology 8, (1997), 411-416; Whitelam, Trends Plant Sci. 1 (1996), 268-272; Conrad und Manteufel, Trends in Plant Science 6, (2001), 399-402; De Jaeger et al., Plant Molecular Biology 43, (2000), 419-428) 20 Die Verringerung der Aktivität eines Verzweigungsenzyms in Kartoffelpflanzen mittels der Expression eines spezifischen Antikörpers wurde von Jobling et al. (Nature Biotechnology 21, (2003), 77-80) beschrieben. Dabei wurde der Antikörper mit einer plastidären Targetsequenz versehen, so dass die Inhibierung von in Plastiden lokalisierten Proteinen gewährleistet war. 25

Im Zusammenhang mit der vorliegenden Erfindung können erfindungsgemäße Pflanzenzellen und Pflanzen auch durch die Verwendung der so genannten Insertionsmutagenese (Übersichtsartikel: Thorneycroft et al., 2001, Journal of experimental Botany 52 (361), 1593-1601) hergestellt werden. Unter

30

Insertionsmutagenese ist insbesondere das Inserieren von Transposons oder so genannter Transfer DNA (T-DNA) in ein Gen codierend für ein OK1 Protein zu verstehen, wobei dadurch die Aktivität eines OK1 Proteins in der betreffenden Zelle verringert wird.

5

10

15

20

25

30

Bei den Transposons kann es sich dabei sowohl um solche handeln, die in der Zelle natürlicherweise vorkommen (endogene Transposons), als auch um solche, die natürlicherweise nicht in besagter Zelle vorkommen, sondern mittels gentechnischer Methoden, wie z.B. Transformation der Zelle, in die Zelle eingeführt wurden (heterologe Transposons). Die Veränderung der Expression von Genen mittels Transposons ist dem Fachmann bekannt. Eine Übersicht über die Nutzung von endogenen und heterologen Transposons als Werkzeuge Pflanzenbiotechnologoie ist in Ramachandran und Sundaresan (2001, Plant Physiology and Biochemistry 39, 234-252) dargestellt. Die Möglichkeit, Mutanten zu identifizieren, bei welchen spezifische Gene durch Transposoninsertionsmutagenese inaktiviert wurden, ist in einer Übersicht von Maes et al. (1999, Trends in Plant Science 4 (3), 90-96) dargestellt. Die Erzeugung von Reismutanten mit Hilfe endogener Transposons ist von Hirochika (2001, Current Opinion in Plant Biology 4, 118-122) beschrieben. Die Identifizierung von Maisgenen, mit Hilfe endogener Retrotransposons wird z.B. von Hanley et al. (2000, The Plant Journal 22 (4), 557-566) dargestellt. Die Möglichkeit Mutanten mit Hilfe von Retrotransposons herzustellen und Methoden, Mutanten zu identifizieren, sind von Kumar und Hirochika (2001, Trends in Plant Science 6 (3), 127-134) beschrieben. Die Aktivität von heterologen Transposons in unterschiedlichen Spezies, ist sowohl für dikotelydone, als auch für monkotyledone Pflanzen beschrieben worden: z.B. für Reis (Greco et al., 2001, Plant Physiology 125, 1175-1177; Liu et al., 1999, Molecular and General Genetics 262, 413-420; Hiroyuki et al., 1999, The Plant Journal 19 (5), 605-613; Jeon und Gynheung, 2001, Plant Science 161, 211-219), Gerste (2000, Koprek et al., The Plant Journal 24 (2), 253-263) Arabidopsis thaliana (Aarts et al., 1993, Nature 363, 715-717, Schmidt und Willmitzer, 1989, Molecular and General Genetics 220, 17-24; Altmann et al., 1992, Theoretical and Applied

Gentics 84, 371-383; Tissier et al., 1999, The Plant Cell 11, 1841-1852), Tomate (Belzile und Yoder, 1992, The Plant Journal 2 (2), 173-179) und Kartoffel (Frey et al., 1989, Molecular and General Genetics 217, 172-177; Knapp et al., 1988, Molecular and General Genetics 213, 285-290).

5

10

20

25

Grundsätzlich können die erfindungsgemäßen Pflanzenzellen und erfindungsgemäßen Pflanzen sowohl mit Hilfe homologer, als auch heterologer Transposons hergestellt werden, wobei unter Verwendung von homologen Transposons auch solche zu verstehen sind, die bereits natürlicherweise im entsprechenden Wildtyp-Pflanzengenom vorhanden sind.

Die T-DNA Insertionsmutagenese beruht darauf, dass bestimmte Abschnitte (T-DNA) von Ti-Plasmiden aus Agrobacterium in das Genom von pflanzlichen Zellen integrieren können. Der Ort der Integration in das pflanzliche Chromosom ist dabei nicht festgelegt, sondern kann an jeder beliebigen Stelle erfolgen. Integriert die T-DNA in einen Abschnitt des Chromosoms, der eine Genfuktion darstellt, so kann dieses zur Veränderung der Genexpression und damit auch zur Änderung der Aktivität eines durch das betreffende Gen codierte Protein führen. Insbesondere führt die Integration einer T-DNA in den codierenden Bereich eines Proteins häufig dazu, dass das entsprechende Protein von der betreffenden Zelle gar nicht mehr oder nicht mehr in aktiver Form synthetisiert werden kann. Die Verwendung von T-DNA Insertionen zur Erzeugung von Mutanten ist z.B. für Arabidopsis thaliana (Krysan et al., 1999, The Plant Cell 11, 2283-2290; Atipiroz-Leehan und Feldmann, 1997, Trends in genetics 13 (4), 152-156; Parinov und Sundaresan, 2000, Current Opinion in Biotechnology 11, 157-161) und Reis (Jeon und An, 2001, Plant Science 161, 211-219; Jeon et al., 2000, The Plant Journal 22 (6), 561-570) beschrieben. Methoden zur Identifizierung von Mutanten, die mit Hilfe der T-DNA Insertionsmutagenese erzeugt wurden, sind u.a. beschrieben von Young et al., (2001, Plamt Physiology 125, 513-518), Parinov et al. (1999, The Plant cell 11, 2263-2270), Thorneycroft et al. (2001, Journal of Experimental Botany 52, 1593-1601), und McKinney et al. (1995, The Plant Journal 8 (4),613-622).

Die T-DNA Mutagenese ist grundsätzlich zur Erzeugung der erfindungsgemäßen Pflanzenzellen und Pflanzen, die eine verminderte Aktivität eines OK1 Proteins aufweisen, geeignet.'

T-DNA Insertinons Mutanten sind z.B. für *Arabidopsis thaliana* in großer Vielzahl erzeugt worden und werden von verschiedenen Kultursammlungen ("Stock centre", z.B. Salk Institute Genomic Analysis Laboratory, 10010 N. Torrey Pines Road, La Jolla, CA 92037, http://signal.salk.edu/) zur Verfügung gestellt. Die *Arabidopsis* Mutante mit der Acc. No.: SALK_110814 (Alias N610814) enthält eine T-DNA Insertion, die zu einer verringerten Aktivität eines OK1 Proteins in der Mutante führt. Bezüglich des Wachstums und der Wachstumsgeschwindigkeit verhalten sich diese Mutanten wie Wildtyp-Pflanzen, weisen aber im Gegensatz zu Wildtyp-Pflanzen einen Hoch-Stärke Phänotyp auf.

Genetisch modifizierte *Arabidopsis thaliana* Pflanzen, welche mit einem RNAi Konstrukt, enthaltend "inverted Repeats" der codierenden Region des OK1 Proteins aus *Arabidopsis thaliana* (SEQ ID NO 1), zeigten in der Western Blot Analyse eine deutlich reduzierte Menge an OK1 Protein. Diese Pflanzen zeigten ebenfalls einen Hoch-Stärke Phänotyp und ein normales Wachstum im Vergleich mit entsprechenden Wildtyp-Pflanzenzellen.

20

Daher betrifft die vorleigende Erfindung auch erfindungsgemäße Pflanzenzellen und erfindungsgemäße Pflanzen, die einen Hoch-Stärke (strach excess) Phänotyp aufweisen.

Nachgewiesen werden können Pflanzenzellen oder Pflanzen, die einen Hoch-Stärke Phänotyp aufweisen durch Bestimmung der Menge an Stärke in einzelnen

Pflanzenteilen (z.B. Blättern) mit Hilfe von dem Fachmann bekannten Methoden. So kann z.B. der Stärkegehalt mit Hilfe von enzymatisch gekoppelter photometrischer Bestimmung erfolgen.

Eine weitere einfache Methode des Nachweises eines Hoch-Stärke Phänotyps beruht auf der Färbung von Pflanzenteilen mittels Lugol'scher Lösung. Hierzu werden Pflanzenteile, bevorzugt Blätter, von Mutanten oder genetisch modifizierten Pflanzen mit Lugol'scher Lösung inkubiert. Im Vergleich dazu werden gleiche denselben Bedingungen Wildtyp-Pflanzen, die unter Pflanzenteile von aufgewachesen sind, wie die betreffenden Mutanten bzw. genetisch modifizierten Pflanzen, ebenfalls mit Lugol'scher Lösung inkubiert. Stärke färbt mit Lugol'scher 10 Lösung bräunlich bis schwarz. Je stärker die Färbung mit Lugol'scher Lösung ist, desto mehr Stärke enthalten die betreffenden Pflanzenteile. Um einen deutlichen Unterschied zwischen den Wildtyp-Pflanzen und den Mutanten bzw. den genetisch modifizierten Pflanzen erkennen zu können, werden die betrefffenden Pflanzen vor der Färbung von einzelnen Pflanzenteilen mit Lugol'scher Lösung zunächst einer Dunkelphase ausgesetz, d.h. sie werden nicht beleuchtet.

15

20

25

30

Unter dem Begriff "Hoch-Stärke Phänotyp" soll im Zusammenhang der vorliegenden Erfindung eine Mutante oder eine genetisch modifizierte Pflanze verstanden werden, die mehr Stärke in einzelnen Pflanzenteilen (z.B. Blättern) aufweisen, als entsprechende Wildtyp-Pflanzen. Bevorzugt enthalten Mutanten oder genetisch modifizierte Pflanzen am Ende einer Dunkelphase mehr Stärke in einzelnen Pflanzenteilen als entsprechende Wildtyp-Pflanzen. Die Dunkelphase kann 2 bis 20 Stunden betragen, bevorzugt beträgt sie 4 bis 16 Stunden, besonders bevorzugt 6 bis 14 und insbesondere bevorzugt 10 bis 12 Stunden.

Es wurde überraschenderweise gefunden, dass erfindungsgemäße Pflanzenzellen und erfindungsgemäße Pflanzen eine modifizierte Stärke synthetisieren im Vergleich zu Stärke von entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen.

Da bisher Enzyme beschrieben sind, keine die ausschließlich phosphorylieren, war es bisher auch nicht möglich, die Phosphatverteilung in von Pflanzen synthetisierter Stärke zu verändern. Durch die Bereitstellung erfindungsgemäßer Pflanzen durch die vorliegende Erfindung ist nun auch eine Veränderung des Phosphatverhältnisses in nativen Stärken möglich.

Die erfindungsgemäßen Pflanzenzellen und erfindungsgemäßen Pflanzen synthetisieren eine modifizierte Stärke, die in ihren physikalisch-chemischen Eigenschaften, insbesondere dem Amylosegehalt bzw. dem Amylose/Amylopektin-Verhältnis, dem Phosphatverhältnis, dem Phosphatgehalt, dem Viskositätsverhalten, der Gelfestigkeit, der Stärkekorngröße und/oder der Stärkekornmorphologie im Vergleich zu in Wildtyp-Pflanzenzellen bzw. -Pflanzen synthetisierter Stärke verändert ist, so dass diese für spezielle Verwendungszwecke besser geeignet ist.

Daher umfasst die vorliegende Erfindung auch erfindungsgemäße Pflanzenzellen und erfindungsgemäße Pflanzen, die eine modifizierte Stärke synthetisieren.

Ferner sind Gegenstand der Erfindung genetisch modifizierte Pflanzen, die erfindungsgemäße Pflanzenzellen enthalten. Derartige Pflanzen können durch Regeneration aus erfindungsgemäßen Pflanzenzellen erzeugt werden.

20 Bei den erfindungsgemäßen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl um monokotyle als auch dikotyle Pflanzen. Bevorzugt handelt es sich um Nutzpflanzen, d.h. Pflanzen, die vom Menschen kultiviert werden für Zwecke der Ernährung oder für technische, insbesondere industrielle Zwecke.

25

5

In einer weiteren Ausführungsform ist die erfindungsgemäße Pflanze, eine Stärke speichernde Pflanze.

In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung eine erfindungsgemäße Stärke speichernde Pflanze, die eine Mais- oder Weizenpflanze ist.

- Der Begriff "Stärke speichernde Pflanzen" meint im Zusammenhang mit der vorliegenden Erfindung alle Pflanzen mit Pflanzenteilen, die eine Speicherstärke enthalten, wie z.B. Mais, Reis, Weizen, Roggen, Hafer, Gerste, Maniok, Kartoffel, Sago, Mungbohne, Erbse, oder Sorghum.
- Der Begriff "Weizenpflanze" meint im Zusammenhang mit der vorliegenden Erfindung Pflanzenspezies der Gattung *Triticum* oder Pflanzen, die aus Kreuzungen mit Pflanzen der Gattung *Triticum* hervorgegangen sind, besonders in der Agrarwirtschaft zu kommerziellen Zwecken angebaute Pflanzenspezies der Gattung *Triticum* bzw. Pflanzen, die aus Kreuzungen mit Pflanzen der Gattung *Triticum* hervorgegangen sind, insbesondere bevorzugt *Triticum aestivum*.

Der Begriff "Maispflanze" meint im Zusammenhang mit der vorliegenden Erfindung Pflanzenspezies der Gattung Zea, besonders in der Agrarwirtschaft zu kommerziellen Zwecken angebaute Pflanzenspezies der Gattung Zea, besonders bevorzugt Zea mais.

20

Die vorliegende Erfindung betrifft auch Vermehrungsmaterial erfindungsgemäßer Pflanzen, enthaltend eine erfindungsgemäße Pflanzenzelle.

Der Begriff "Vermehrungsmaterial" umfasst dabei jene Bestandteile der Pflanze, die geeignet sind zur Erzeugung von Nachkommen auf vegetativem oder sexuellem Weg. Für die vegetative Vermehrung eignen sich beispielsweise Stecklinge, Calluskulturen, Rhizome oder Knollen. Anderes Vermehrungsmaterial umfasst beispielsweise Früchte, Samen, Sämlinge, Protoplasten, Zellkulturen, etc.

Vorzugsweise handelt es sich bei dem Vermehrungsmaterial um Knollen und besonders bevorzugt um endospermhaltige Körner.

In einer weiteren Ausführungsform betrifft die vorliegende Erfindung erntebare Pflanzenteile erfindungsgemäßer Pflanzen, wie Früchte, Speicherwurzeln, Wurzeln, Blüten, Knospen, Sprosse oder Stämme, vorzugsweise Samen, Körner oder Knollen, wobei diese erntebaren Teile erfindungsgemäße Pflanzenzellen enthalten.

Weiterhin betrifft die vorliegende Erfindung auch ein Verfahren zur Herstellung einer erfindungsgemäßen genetisch modifizierten Pflanze, worin

- a) eine Pflanzenzelle genetisch modifiziert wird, wobei die genetische Modifikation zur Verringerung der Aktivität eines OK1 Proteins im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen führt;
- b) aus Pflanzenzellen von Schritt a) eine Pflanze regeneriert wird; und
- 15 c) gegebenenfalls weitere Pflanzen mit Hilfe der Pflanzen nach Schritt b) erzeugt werden.

Für die laut Schritt a) in die Pflanzenzelle eingeführte genetische Modifikation gilt, dass es sich grundsätzlich um jede Art von Modifikation handeln kann, die zur Verringerung der Aktivität eines OK1 Proteins führt

Die Regeneration der Pflanzen gemäß Schritt (b) kann nach dem Fachmann bekannten Methoden erfolgen (z.B. beschrieben in "Plant Cell Culture Protocols", 1999, edt. by R.D. Hall, Humana Press, ISBN 0-89603-549-2).

25

20

Die Erzeugung weiterer Pflanzen gemäß Schritt (c) des erfindungsgemäßen Verfahrens kann z.B. erfolgen durch vegetative Vermehrung (beispielsweise über Stecklinge, Knollen oder über Calluskultur und Regeneration ganzer Pflanzen) oder

durch sexuelle Vermehrung. Die sexuelle Vermehrung findet dabei vorzugsweise kontrolliert statt, d.h. es werden ausgewählte Pflanzen mit bestimmten Eigenschaften miteinander gekreuzt und vermehrt. Die Auswahl erfolgt dabei bevorzugt in der Weise, dass die weiteren Pflanzen, die nach Schritt c) erhalten werden, die genetische Modifikation, die in Schritt a) eingeführte wurde, aufweisen.

5

10

15

20

30

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens besteht die genetische Modifikation in der Einführung eines erfindungsgemäßen fremden Nucleinsäuremoleküls in das Genom der Pflanzenzelle, wobei das Vorhandensein oder die Expression besagten fremden Nucleinsäuremoleküls zu einer verringerten Aktivität eines OK1 Proteins in der Zelle führt.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahren besteht die genetische Modifikation in der Einführung eines fremden Nucleinsäuremoleküls wobei das fremde Nucleinsäuremolekül Aminosäuresequenzen codiert, die von einer Aminosäuresequenz umfasst sind, welche ein OK1 Protein codieren.

In einer weiteren Ausführungsform wird das erfindungsgemäße Verfahren zur Herstellung einer erfindungsgemäßen genetisch modifizierten Pflanze zur Erzeugung von Stärke speichernden Pflanzen verwendet.

In einer weiteren Ausführungsform wird das erfindungsgemäße Verfahren zur Erzeugung erfindungsgemäßer Mais- oder Weizenpflanzen verwendet.

- In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens besteht die genetische Modifikation in der Einführung eines fremden Nucleinsäuremoleküls, worin das fremde Nucleinsäuremolekül ausgewählt ist, aus der Gruppe bestehend aus
 - a) Nucleinsäuremolekülen, die ein Protein mit der unter SEQ ID No. 2 oder SEQ ID NO 4 angegebenen Aminosäuresequenz codieren;

- b) Nucleinsäuremolekülen, die ein Protein codieren, dessen Aminosäuresequenz eine Identität von mindestens 60% zu der unter SEQ ID No. 2 oder SEQ ID NO 4 angegebenen Aminosäuresequenz aufweist;
- c) Nucleinsäuremolekülen, die die unter SEQ ID No. 1 oder SEQ ID NO 3 dargestellte Nucleotidsequenz oder eine komplementäre Sequenz umfassen;

5

20

- d) Nucleinsäuremolekülen, deren Nucleinsäuresequenz zu den unter a) oder c) beschriebenen Nucleinsäuresequenzen eine Identität von mindestens 60% aufweist;
- e) Nucleinsäuremolekülen, welche mit mindestens einem Strang der unter a) oder
 10 c) beschriebenen Nucleinsäuremoleküle unter stringenten Bedingungen hybridisieren;
 - f) Nucleinsäuremolekülen, deren Nucleotidsequenz aufgrund der Degeneration des genetischen Codes von der Sequenz der unter a). b), c), d), e) oder f) genannten Nucleinsäuremoleküle abweicht; und
- 15 g) Nucleinsäuremolekülen, die Fragmente, allelische Varianten und/oder Derivate der unter a), b), c), d), e) oder f) genannten Nucleinsäuremolekülen darstellen.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens besteht die genetische Modifikation in der Einführung eines fremden Nucleinsäuremoleküls, worin das fremde Nucleinsäuremolekül ausgewählt ist, aus der Gruppe bestehend aus

- a) DNA-Molekülen, die mindestens eine antisense-RNA codieren, welche eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert;
- b) DNA-Molekülen, die über einen Cosuppressionseffekt zu Verringerung der
 Expression von mindestens einem endogenen Gen führen, das ein OK1 Protein codiert;
 - DNA-Molekülen, die mindestens ein Ribozym codieren, das spezifisch Transkripte von mindestens einem endogenen Gen spaltet, das ein OK1 Protein codiert,

d) DNA-Molekülen, die simultan mindestens eine antisense-RNA und mindestens eine sense-RNA codieren, wobei besagte antisense-RNA und besagte sense-RNA ein doppelsträngiges RNA-Molekül ausbilden, das eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert (RNAi Technologie);

5

10

25

- e) Mittels in vivo-Mutagenese eingeführte Nucleinsäuremoleküle, die zu einer Mutation oder einer Insertion einer heterologen Sequenz in mindestens einem endogenen OK1 Protein Gen führen, wobei die Mutation oder Insertion eine Verringerung der Expression eines OK1 Protein codierenden Gens bewirkt, oder die Synthese von inaktivem OK1 Protein zur Folge hat;
- f) Nucleinsäuremolekülen, die einen Antikörper codieren, wobei der Antikörper durch die Bindung an ein OK1 Protein eine Verringerung der Aktivität eines OK1 Protein zur Folge hat,
- g) DNA Molekülen, die Transposons enthalten, wobei die Integration dieser Transposons zu einer Mutation oder einer Insertion in mindestens einem endogenen OK1 Protein codierenden Gen führt, welches eine Verringerung der Expression von mindestens einem ein OK1 Protein codierenden Gens bewirkt, oder die Synthese von inaktiven OK1 Protein zur Folge hat; und/oder
- h) T-DNA Molekülen, die durch Insertion in mindestens einem endogenen OK1
 Protein codierenden Gen eine Verringerung der Expression von mindestens einem OK1 Protein codierenden Gen bewirken, oder die Synthese von inaktivem OK1 Protein zur Folge haben.

In einer weiteren Ausführungsform betrifft die vorliegende Erfindung ein erfindungsgemäßes Verfahren, worin die genetisch modifizierte Pflanze eine modifizierte Stärke synthetisiert im Vergleich zu Stärke aus nicht genetisch modifizierten Wildtyp-Pflanzen.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens sythetisieren die erfindungsgemäßen Pflanzen eine modifizierte Stärke, die einen geringeren

Gehalt an Stärkephosphat und/oder eine veränderte Phosphatverteilung im Vergleich zu Stärke, isoliert aus entsprechenden Wildtyp-Pflanzen aufweist.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens synthetisieren die erfindungsgemäßen Pflanzen eine modifizierte Stärke, die ein verändertes Verhältnis von C-3-Phosphat zu C-6-Phosphat aufweist im Vergleich zu Stärke aus nicht genetisch modifizierten Wildtyp-Pflanzen. Insbesondere bevorzugt sind dabei Stärken, welche einen verringerten Anteil von in C-3-Position gebundenem Stärkephosphat gegenüber von in C-6-Position gebundenem Stärkephosphat aufweisen im Vergleich zu Stärke aus nicht genetisch modifizierten Wildtyp-Pflanzen.

Die vorliegende Erfindung betrifft auch die durch erfindungsgemäße Verfahren erhältlichen Pflanzen.

15

20

Es ist auch Aufgabe der vorliegenden Erfindung, Mittel, wie z.B. DNA Moleküle zur Erzeugung von erfindungsgemäßen Pflanzenzellen und erfindungsgemäßen Pflanzen, die im Vergleich zu nicht genetisch modifizierten Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen eine modifizierte Stärke synthetisieren, zur Verfügung zu stellen.

Somit betrifft die vorliegende Erfindung auch rekombinante Nucleinsäuremoleküle enthaltend einen Promotor, der in Pflanzenzellen die Initiation der Transkription bewirkt und mindestens eine Nucleinsäuresequenz, ausgewählt aus der Gruppe bestehend aus

25 a) Nucleinsäuresequenzen, die mindestens eine antisense-RNA codieren, welche eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert;

- Nucleinsäuresequenzen, die über einen Cosuppressionseffekt zu Verringerung der Expression von mindestens einem endogenen Gen führen, das ein OK1 Protein codiert;
- c) Nucleinsäuresequenzen, die mindestens ein Ribozym codieren, das spezifisch
 5 Transkripte von mindestens einem endogenen Gen spaltet, das ein OK1
 Protein codiert und
 - d) Nucleinsäuresequenzen, die simultan mindestens eine antisense-RNA und mindestens eine sense-RNA codieren, wobei besagte antisense-RNA und besagte sense-RNA ein doppelsträngiges RNA-Molekül ausbilden, das eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert (RNAi Technologie).

10

Unter dem Begriff "rekombinantes Nukleinsäuremolekül" soll im Zusammenhang mit der vorliegenden Erfindung ein Nukleinsäuremolekül verstanden werden, welches neben erfindungsgemäßen Nucleinsäuremolekülen zusätzliche Sequenzen enthält, welche natürlicherweise nicht in einer Kombination vorliegen, wie sie in erfindungsgemäßen rekombinanten Nucleinsäuren vorliegen. Die genannten zusätzlichen Sequenzen können dabei beliebige Sequenzen sein, bevorzugt handelt es sich dabei um regulatorische Sequenzen (Promotoren, Terminationssignale, Enhancer), besonders bevorzugt um regulatorische Sequenzen, die in pflanzlichem 20 Gewebe aktiv sind, besonders bevorzugt um regulatorische Sequenzen die in pflanzlichem Gewebe aktiv sind, in welchen Speicherstärke synthetisiert wird. Methoden zur Erzeugung erfindungsgemäßer rekombinanter Nucleinsäuremoleküle sind dem Fachmann bekannt und umfassen gentechnische Methoden wie z.B. die Verbindung von Nucleinsäuremolekülen durch Ligation, genetische Rekombination 25 oder die Neusynthese von Nucleinsäuremolekülen (siehe z.B. Sambrok et al., Molecular Cloning, A Laboratory Manual, 3rd edition (2001) Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY. ISBN: 0879695773, Ausubel et al., Short Protocols in Molecular Biology, John Wiley & Sons; 5th edition (2002),ISBN: 0471250929). 30

Regulatorische Sequenzen zur Expression in prokaryontischen Organismen (Promotoren), z.B. *E. coli*, und in eukaryontischen Organismen sind ausreichend in der Literatur beschrieben, insbesondere solche zur Expression in Hefe, wie z. B. *Saccharomyces cerevisiae*. Eine Übersicht verschiedener Systeme zur Expression für Proteine in verschiedenen Wirtsorganismen findet man z. B. in Methods in Enzymology 153 (1987), 383-516 und in Bitter et al. (Methods in Enzymology 153 (1987), 516-544).

Zur Expression von erfindungsgemäßen Nucleinsäuremolekülen, werden diese 10 vorzugsweise mit regulatorischen DNA-Sequenzen verknüpft, die die Transkription in pflanzlichen Zellen initiieren (Promotoren). Der Promotor kann dabei so gewählt sein, dass die Expression konstitutiv erfolgt oder nur in einem bestimmten Gewebe, zu einem bestimmten Zeitpunkt der Pflanzenentwicklung oder zu einem durch äußere Einflüsse determinierten Zeitpunkt. Sowohl in Bezug auf die Pflanze als auch in 15 Bezug auf das Nucleinsäuremolekül kann der Promotor homolog oder heterolog sein. Geeignete Promotoren sind z.B. der Promotor der 35S RNA des Cauliflower Mosaic Virus und der Ubiquitin-Promotor aus Mais für eine konstitutive Expression, der Patatingen-Promotor B33 (Rocha-Sosa et al., EMBO J. 8 (1989), 23-29) für eine knollenspezifische Expression in Kartoffeln oder ein Promotor, der eine Expression 20 lediglich in photosynthetisch aktiven Geweben sicherstellt, z.B. der ST-LS1-Promotor (Stockhaus et al., Proc. Natl. Acad. Sci. USA 84 (1987), 7943-7947; Stockhaus et al., EMBO J. 8 (1989), 2445-2451) oder für eine endosperm-spezifische Expression der HMG-Promotor aus Weizen, der USP-Promotor, der Phaseolinpromotor, Promotoren von Zein-Genen aus Mais (Pedersen et al., Cell 29 (1982), 1015-1026; Quatroccio et 25 al., Plant Mol. Biol. 15 (1990), 81-93), Glutelin-Promotor (Leisy et al., Plant Mol. Biol. 14 (1990), 41-50; Zheng et al., Plant J. 4 (1993), 357-366; Yoshihara et al., FEBS Lett. 383 (1996), 213-218) oder Shrunken-1 Promotor (Werr et al., EMBO J. 4 (1985), 1373-1380). Es können jedoch auch Promotoren verwendet werden, die nur zu einem durch äußere Einflüsse determinierten Zeitpunkt aktiviert werden (siehe 30

beispielsweise WO 9307279). Von besonderem Interesse können hierbei Promotoren von heat-shock Proteinen sein, die eine einfache Induktion erlauben. Ferner können samenspezifische Promotoren verwendet werden, wie z.B. der USP-Promoter aus Vicia faba, der eine samenspezifische Expression in Vicia faba und anderen Pflanzen gewährleistet (Fiedler et al., Plant Mol. Biol. 22 (1993), 669-679; Bäumlein et al., Mol. Gen. Genet. 225 (1991), 459-467).

Das erfindungsgemäße rekombinante Nucleinsäuremolekül kann auch eine Terminationssequenz (Polyandenylierungssignal) enthalten, die der Addition eines Poly-A-Schwanzes an das Transkript dient. Dem Poly-A-Schwanz wird eine Funktion bei der Stabilisierung der Transkripte beigemessen. Derartige Elemente sind in der Literatur beschrieben (vgl. Gielen et al., EMBO J. 8 (1989), 23-29) und sind beliebig austauschbar.

Es können auch Intronsequenzen zwischen dem Promotor und der codierenden Region vorhanden sein. Solche Intronsequenzen können zur Stabilität der Expression und zu einer erhöhten Expression in Pflanzen führen (Callis et al., 1987, Genes Devel. 1, 1183-1200; Luehrsen, and Walbot, 1991, Mol. Gen. Genet. 225, 81-93; Rethmeier, et al., 1997; Plant Journal. 12(4):895-899; Rose and Beliakoff, 2000, Plant Physiol. 122 (2), 535–542; Vasil et al., 1989, Plant Physiol. 91, 1575-1579; XU et al., 2003, Science in China Series C Vol.46 No.6, 561-569). Geeignete Intronsequenzen sind beispielsweise das erste Intron des sh1-Gens aus Mais, das erste Intron des Poly-Ubiquitin Gens 1 aus Mais, das erste Intron des EPSPS Gens aus Reis oder eines der beiden ersten Introns des PAT1 Gens aus Arabidopsis.

25

30

Eine weitere Ausführungsform von erfindungsgemäßen rekombinanten Nucleinsäuremolekülen der vorliegenden Erfindung sind Vektoren, insbesondere Plasmide, Cosmide, Viren, Bacteriophagen und andere in der Gentechnik gängige Vektoren, die die oben beschriebenen erfindungsgemäßen Nucleinsäuremoleküle enthalten.

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Wirtszelle, insbesondere eine prokaryontische oder eukaryontische Zelle, die genetisch modifiziert ist mit einem erfindungsgemäßen rekombinanten Nucleinsäuremolekül und/oder mit einem erfindungsgemäßen Vektor, sowie Zellen, die von derartigen Wirtszellen abstammen und die die erfindungsgemäße genetische Modifikation enthalten.

In einer weiteren Ausführungsform betrifft die Erfindung Wirtszellen, insbesondere prokaryontische oder eukaryontische Zellen, die mit einem erfindungsgemäßen rekombinanten Nucleinsäuremolekül oder einem erfindungsgemäßen Vektor transformiert wurden, sowie Wirtszellen, die von derartigen Wirtszellen abstammen und die beschriebenen erfindungsgemäßen Nucleinsäuremoleküle oder Vektoren enthalten.

15

20

10

Bevorzugt sind die erfindungsgemäßen Wirtszellen Pflanzenzellen. Dabei kann es sich prinzipiell um Pflanzenzellen aus jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. Bevorzugt handelt es sich um Pflanzenzellen aus landwirtschaftlichen Nutzpflanzen, d.h. aus Pflanzen, die vom Menschen kultiviert werden für Zwecke der Ernährung oder für technische, insbesondere industrielle Zwecke. Vorzugsweise betrifft die Erfindung Pflanzenzellen und Pflanzen aus stärkespeichernden Pflanzen, bevorzugt Pflanzenzellen aus Pflanzen der (systematischen) Familie *Poacea*, insbesondere besondere bevorzugt sind Pflanzenzellen aus Mais- oder Weizenpflanzen.

25

Gegenstand der vorliegenden Erfindung sind auch Zusammensetzungen enthaltend ein erfindungsgemäßes rekombinantes Nucleinsäuremolekül oder einen erfindungsgemäßen Vektor. Bevorzugt sind Zusammensetzungen, enthaltend ein erfindungsgemäßes rekombinantes Nucleinsäuremolekül und eine Wirtszelle.

*

Besonders bevorzugt handelt es sich bei der Wirtszelle um eine Pflanzenzelle, insbesondere bevorzugt um eine Zelle einer Mais- oder Weizenpflanze.

betrifft Zusammensetzungen erfindungsgemäßer Aspekt Ein weiterer Zusammensetzungen, die zur Erzeugung von erfindungsgemäßen Wirtszellen, bevorzugt zur Erzeugung erfindungsgemäßer Pflanzenzellen verwendet werden können. Bevorzugt handelt es sich hierbei um eine Zusammensetzung, enthaltend einen rekombinantes Nucleinsäuremolekül oder erfindungsgemäßes erfindungsgemäßen Vektor und einen biolistischen Träger, welcher zur Einführung eines erfindungsgemäßen Nucleinsäuremoleküls in eine Wirtszelle geeignet ist. Bevorzugte biolistische Träger sind Partikel aus Wolfram, Gold oder Kunststoffen.

10

15

20

Eine weitere Ausführungsform erfindungsgemäßer Zusammensetzungen betrifft erfindungsgemäßes rekombinantes enthaltend ein Zusammensetzungen Nucleinsäuremolekül oder einen erfindungsgemäßen Vektor und eine Pflanzenzelle solche enthalten Kulturmedium. Bevorzugt synthetisches und ein Nucleinsäuremolekülen. erfindungsgemäßen Zusammensetzungen neben Pflanzenzellen und synthetischem Kulturmedium auch Polyethylenglykol (PEG). Bei rekombinante erfindungsgemäße Zusammensetzungen liegt das diesen Nucleinsäuremolekül außerhalb der Pflanzenzelle vor, d.h. es befindet sich außerhalb des von einer Cytoplasmamembran umschlossenen Zellinneren der Pflanzenzelle.

Synthetische Kulturmedien, die zur Kultivierung und/oder zur Transformation von Pflanzenzellen geeignet sind, sind dem Fachmann bekannt und z.B. ausreichend in der Literatur beschrieben. Viele unterschiedliche synthetische Kulturmedien sind auch im Fachhandel käuflich erwerbbar (z.B. DUCHEFA Biochemie B.V., Belgien).

Es wurde überraschenderweise gefunden, dass Stärke, isoliert aus erfindungsgemäßen Pflanzenzellen und erfindungsgemäßen Pflanzen, die eine

verrinderte Aktivität eines OK1 Proteins aufweisen, eine modifizierte Stärke synthetisieren.

Insbesondere die veränderte Phosphatverteilung verleiht der Stärken veränderte funktionelle Eigenschaften, die in der Papierindustrie, der Kosmetikindustrie, der Nahrungsmittelindustrie und der Pharmaindustrie von großem Interesse sind.

5

10

15

20

25

30

Die vorliegende Erfindung betrifft auch modifizierte Stärken, erhältlich aus erfindungsgemäßen Pflanzenzellen oder erfindungsgemäßen Pflanzen, aus erfindungsgemäßem Vermehrungsmaterial oder aus erfindungsgemäßen erntebaren Pflanzenteilen.

In einer weiteren Ausführungsform betrifft die vorliegende Erfindung erfindungsgemäß modifizierte Stärke aus Stärke speichernden Pflanzen, bevorzugt aus Stärke speichernden Pflanzen der (systematischen) Familie Poaceae, besonders bevorzugt aus Mais- oder Weizenpflanzen.

Die vorliegende Erfindung betrifft ferner ein Verfahren zur Herstellung einer modifizierten Stärke, umfassend den Schritt der Extraktion der Stärke aus einer erfindungsgemäßen Pflanzenzelle oder einer erfindungsgemäßen Pflanze, aus erfindungsgemäßem Vermehrungsmaterial einer solchen Pflanze und/oder aus erfindungsgemäßen erntebaren Pflanzenteilen einer solchen Pflanze, vorzugsweise aus erfindungsgemäßen Stärke speichernden Teilen einer solchen Pflanze. Vorzugsweise umfasst ein solches Verfahren auch den Schritt des Erntens der kultivierten Pflanzen bzw. Pflanzenteile und/oder des Vermehrungsmaterials dieser Pflanzen vor der Extraktion der Stärke und besonders bevorzugt ferner den Schritt der Kultivierung erfindungsgemäßer Pflanzen vor dem Ernten.

Verfahren zur Extraktion der Stärke aus Pflanzen oder von Stärke speichernden Teilen von Pflanzen sind dem Fachmann bekannt. Weiterhin sind Verfahren zur Extraktion der Stärke aus verschiedenen Stärke speichernde Pflanzen beschrieben, z. B. in Starch: Chemistry and Technology (Hrsg.: Whistler, BeMiller und Paschall (1994), 2. Ausgabe, Academic Press Inc. London Ltd; ISBN 0-12-746270-8; siehe z. B. Kapitel XII, Seite 412-468: Mais und Sorghum Stärken: Herstellung; von Watson; Kapitel XIII, Seite 469-479: Tapioca, Arrowroot und Sago Stärken: Herstellung; von Corbishley und Miller; Kapitel XIV, Seite 479-490: Kartoffelstärke: Herstellung und Verwendungen; von Mitch; Kapitel XV, Seite 491 bis 506: Weizenstärke: Herstellung, Modifizierung und Verwendungen; von Knight und Oson; und Kapitel XVI, Seite 507 bis 528: Reisstärke: Herstellung und Verwendungen; von Rohmer und Klem; Maisstärke: Eckhoff et al., Cereal Chem. 73 (1996), 54-57, die Extraktion von Maisstärke im industriellen Maßstab wird in der Regel durch das so genannte "wet milling" erreicht.). Vorrichtungen, die für gewöhnlich bei Verfahren zur Extraktion von Stärke von Pflanzenmaterial verwendet werden, sind Separatoren, Dekanter, Hydrocyclone, Sprühtrockner und Wirbelschichttrockner.

15 Unter dem Begriff "Stärke speichernde Teile" sollen im Zusammenhang mit der vorliegenden Erfindung solche Teile einer Pflanze verstanden werden, in welchen Stärke, im Gegensatz zu transitorischer Blattstärke, zur Überdauerung von längeren Zeiträumen als Depot gespeichert wird. Bevorzugte Stärke speichernde Pflanzenteile sind z.B. Knollen, Speicherwurzeln und Körner, besonders bevorzugt sind Körner enthaltend ein Endosperm, insbesondere bevorzugt sind Körner enthaltend ein Endosperm von Mais- oder Weizenpflanzen.

Modifizierte Stärke, erhältlich nach einem erfindungsgemäßen Verfahren zur Herstellung modifizierter Stärke, ist ebenfalls Gegenstand der vorliegenden Erfindung.

25

In einer weiteren Ausführungsform der vorliegenden Erfindung handelt es sich bei den erfindungsgemäßen modifizierten Stärken um native Stärken.

Der Begriff "native Stärke" bedeutet im Zusammenhang mit der vorliegenden Erfindung, dass die Stärke nach dem Fachmann bekannten Methoden aus erfindungsgemäßen Pflanzen, erfindungsgemäßem erntebaren Pflanzenteilen, erfindungsgemäßen Stärke speichernden Teilen oder erfindungsgemäßem Vermehrungsmaterial von Pflanzen isoliert wird.

Weiterhin ist die Verwendung erfindungsgemäßer Pflanzenzellen oder erfindungsgemäßer Pflanzen zur Herstellung einer modifizierten Stärke Gegenstand der vorliegenden Erfindung.

10

Dem Fachmann ist bekannt, dass die Eigenschaften von Stärke durch z.B. thermische, chemische, enzymatische oder mechanische Derivatisierung verändert werden können. Derivatisierte Stärken sind für verschiedene Anwendungen im Nahrungsmittel- und/oder Nicht-Nahrungsmittelbereich besonders geeignet. Die erfindungsgemäßen Stärken sind als Ausgangssubstanz besser geeignet zur Herstellung von derivatisierten Stärken als herkömmliche Stärken, dass sie durch den höheren Gehalt an Stärkephosphat einen höheren Anteil an reaktiven funktionalen Gruppen aufweisen.

20 Die vorliegende Erfindung betrifft daher auch Verfahren zur Herstellung einer derivatisierten Stärke, worin erfindungsgemäße modifizierte Stärke, nachträglich derivatisiert wird.

Unter dem Begriff "derivatisierte Stärke" soll im Zusammenhang mit der vorliegenden Erfindung eine erfindungsgemäße modifizierte Stärke verstanden werden, deren Eigenschaften nach der Isolierung aus pflanzlichen Zellen mit Hilfe von chemischen, enzymatischen, thermischen oder mechanischen Verfahren verändert wurde. In einer weiteren Ausführungsform der vorliegenden Erfindung handelt es sich bei der erfindungsgemäßen derivatisierten Stärke um mit Hitze und/oder mit Säure behandelte Stärke.

- In einer weiteren Ausführungsform handelt es sich bei den derivatisierten Stärken um Stärkeether, insbesondere um Stärke-Alkylether, O-Allylether, Hydroxylalkylether, O-Carboxylmethylether, stickstoffhaltige Stärkeether, phosphathaltige Stärkeether oder schwefelhaltige Stärkeether.
- 10 In einer weiteren Ausführungsform handelt es sich bei den derivatisierten Stärken um vernetzte Stärken.

15

In einer weiteren Ausführungsform handelt es sich bei den derivatisierten Stärken um Stärke-Pfropf-Polymerisate.

In einer weiteren Ausführungsform handelt es sich bei den derivatisierten Stärken um oxidierte Stärken.

In einer weiteren Ausführungsform handelt es sich bei den derivatisierten Stärken um Stärkeester, insbesondere um Stärkeester, die unter Verwendung von organischen Säuren in die Stärke eingeführt wurden. Besonders bevorzugt handelt es sich um Phosphat-, Nitrat-, Sulfat-, Xanthat-, Acetat- oder Citratstärken.

Die erfindungsgemäßen derivatisierten Stärken eignen sich für verschiedene Verwendungen in der Pharmaindustrie, im Nahrungsmittel- und/oder Nicht-Nahrungsmittelbereich. Methoden zur Herstellung von erfindungsgemäßen derivatisierten Stärken sind dem Fachmann bekannt und in der allgemeinen Literatur ausreichend beschrieben. Eine Übersicht zur Herstellung von derivatisierten Stärken findet sich z.B. bei Orthoefer (in Corn, Chemistry and Technology, 1987, eds. Watson und Ramstad, Chapter 16, 479-499).

Derivatisierte Stärke, erhältlich nach dem erfindungsgemäßen Verfahren zur Herstellung einer derivatisierten Stärke ist ebenfalls Gegenstand der vorliegenden Erfindung.

5

Ferner ist die Verwendung erfindungsgemäßer modifizierter Stärken zur Herstellung von derivatisierter Stärke Gegenstand der vorliegenden Erfindung.

10 Beschreibung der Sequenzen

SEQ ID NO 1: Nucleinsäuresequenz enthaltend die codierende Region des A.t.-OK1 Proteins aus *Arabidopsis thaliana*. Diese Sequenz ist den Vektoren OK1-pGEM und OK1-pDEST[™]17 und inseriert.

SEQ ID NO 2: Aminosäuresequenz codierend das A.t.-OK1 Protein aus 15 Arabidopsis thaliana Diese Sequenz ist von der unter SEQ ID NO 1 dargestellten Nucleinsäuresequenz ableitbar.

SEQ ID NO 3: Nucleinsäuresequenz enthaltend die codierende Region des O.s.-OK1 Proteins aus *Oryza sativa*. Diese Sequenz ist dem Vektor pMI50 inseriert.

SEQ ID NO 4: Aminosäuresequenz codierend das O.s.-OK1 Protein aus *Oryza* 20 sativa. Diese Sequenz ist von der unter SEQ ID NO 3 dargestellten Nucleinsäuresequenz ableitbar.

SEQ ID NO 5: Peptidsequenz codierend die Phosphohistidindomäne der OK1 Proteine aus Arabidopsis thaliana und Oryza sativa.

SEQ ID NO 6: Peptidsequenz enthaltend in der Aminosäuresequenz codierend 25 ein S.t.-OK1 Protein aus Kartoffel.

SEQ ID NO 7: Peptidsequenz enthaltend in der Aminosäuresequenz codierend ein S.t.-OK1 Protein aus Kartoffel.

SEQ ID NO 8: Peptidsequenz enthaltend in der Aminosäuresequenz codierend ein S.t.-OK1 Protein aus Kartoffel.

SEQ ID NO 9: Peptidsequenz enthaltend in der Aminosäuresequenz codierend ein S.t.-OK1 Protein aus Kartoffel.

5 SEQ ID NO 10: Partielle Nucleinsäuresequenz codierend ein S.t.-OK1 Protein aus Kartoffel. Diese Nucleinsäuresequenz wurde mittels der unter SEQ ID NO 11, SEQ ID NO 13 und SEQ ID NO 14 dargestellten Peptidsequenzen mittels "Blast Search" in der TIGR Datenbank identifiziert.

SEQ ID NO 11: Partielle Aminosäuresequenz codierend ein S.t.-OK1 Protein aus Kartoffel. Die dargestellte Aminosäuresequenz ist von der unter SEQ ID NO 15 dargestellten Nucleinsäuresequenz ableitbar.

Beschreibung der Abbildungen

Denaturierendes Acrylamidgel zur Identifizierung von Proteinen aus 15 Fig. 1: Arabidopsis thaliana, die bevorzugt an nicht-phosphorylierte-Stärke im Vergleich zu Standard binden. ln Spur "M" ist ein phosphorvlierter-Stärke Molekulargewichtsmarker aufgetragen. In Spur "-" sind Proteine, erhalten nach Inkubation des Kontrollansatzes C aus Beispiel 1 d) aufgetragen. In Spur "K" sind Proteinextrakte von Arabidopsis thaliana, erhalten nach Inkubation mit nicht-20 phosphorylierter-Stärke, isoliert aus Blättern einer Arabidopsis thaliana sex1-3 Mutante (Ansatz B, Beispiel 1 d)), aufgetragen. In Spur "P" sind Proteinextrakte von Arabidopsis thaliana, erhalten nach Inkubation mit Stärke, isoliert aus Blättern einer Arabidopsis thaliana sex1-3 Mutante, die nachträglich in vitro mit einem R1 Protein phosphoryliert wurde (Ansatz A, Beispiel 1 d)) aufgetragen. Nach erfolgter 25 Elektrophorese wurde das Acrylamidgel mit Comassie Blau gefärbt.

Fig. 2: Nachweis der Autophosphorylierung des OK1 Proteins. Fig. 2 A) stellt ein nach erfolgter Elektrophorese mit Comassie Blau gefärbtes denaturierendes (SDS) Acrylamidgel dar. Fig. 2 B) zeigt die Autoradiographie eines denaturierenden (SDS) Acrylamidgels. Auf beide Gele wurden jeweils die gleichen Proben zu gleichen Mengen aufgetragen. M: Standard Protein Molekulargewichtsmarker; R1: Probe aus Reaktionsgefäß 1 nach Beispiel 7 (nach Inkubation eines OK1 Proteins mit ATP); R2: Probe aus Reaktionsgefäß 2 nach Beispiel 7 (nach Inkubation eines OK1 Proteins mit ATP wurde das Protein auf 95°C erhitzt); R3: Probe aus Reaktionsgefäß 3 nach Beispiel 7 (nach Inkubation eines OK1 Proteins mit ATP wurde das Protein in 0,5 M HCI inkubiert); R4: Probe aus Reaktionsgefäß 4 nach Beispiel 7 (nach Inkubation eines OK1 Proteins mit ATP wurde das Protein mit 0,5 M NaOH inkubiert).

10

- Fig. 3: Nachweis der Stärke phosphorylierenden Aktivität eines OK1 Proteins (siehe Beispiel 6). OK1 Protein wurde mit nicht-phosphorylierter-Stärke, isoliert aus Blättern einer *Arabidopsis thaliana sex1-3* Mutante (Ansatz A) und Stärke, isoliert aus Blättern einer *Arabidopsis thaliana sex1-3* Mutante, die nachträglich *in vitro* mit einem R1 Protein phosphoryliert wurde (Ansatz B) inkubiert. Ansatz C entspricht Ansatz B, außer dass dieser Ansatz C ohne OK1 Protein inkubiert wurde. Für jeden Ansatz (A, B, C) wurden je zwei unabhängige Versuche durchgeführt (Versuch 1 und Versuch 2). Graphisch dargestellt sind die jeweiligen Mengen, gemessen in cpm (Counts per minute), an ³³P markiertem Phosphat, welches von dem OK1 Protein in nicht-phosphorylierte-Stärke (Ansatz A) und phosphorylierte Stärke (Ansatz B) eingeführt wurde.
- 25 Fig. 4: Vergleich der C-Atom-Positionen von Glucosemolekülen der Stärke, die von einem R1 Protein bzw. einem OK1 Protein phosphoryliert werden (siehe Beispiel 9). OK1 Protein (Ansatz A) wurde in Anwesenheit von mit ³³P markierten ATP mit Stärke, isoliert aus Blättern einer Arabidopsis thaliana sex1-3 Mutante, die nachträglich in vitro mit einem R1 Protein phosphoryliert wurde, inkubiert.). R1 Protein (Ansatz B) wurde in Anwesenheit von mit 33P markierten ATP mit Stärke,

isoliert aus Blättern einer *Arabidopsis thaliana sex1-3* Mutante inkubiert Nach erfolgter Inkubation wurde eine Totalhydrolyse der Stärke durchgeführt und die erhaltenen Hydrolyseprodukte mittels HPAE Chromatographie aufgetrennt. Als Standard wurden den Hydrolyseprodukten vor der Auftrennung Glucose-6-Phosphat und Glucose-3-Phosphat zugegeben. Die mittels HPAE Chromatographie aufgetrennten Hydrolyseprodukte wurden in einzelnen Fraktionen aufgesammelt. Mit Fraktion 15 eluierte das zugegebene Glucose-6-Phosphat und mit Fraktion 17 das zugegebene Glucose-3-Phosphat. Die erhaltenen Fraktionen wurden anschließend auf das Vorliegen von radioaktiv markiertem Phosphat hin untersucht. Die in den einzelnen Fraktionen gemessene Menge an ³³P markiertem Phosphat, gemessen in cpm (Counts per minute), welches von dem OK1 Protein oder dem R1 Protein jeweils in die Hydrolyseprodukte der phosphorylierten-Stärke eingeführt wurde, ist graphisch dargestellt.

5

10

25

30

Fig. 5 Nachweis der Autophosphorylierung des OK1 Proteins. Fig. 5 A) stellt einen Western Blot dar. Fig. 5 B) zeigt die Autoradiographie eines denaturierenden (SDS) Acrylamidgels. Auf beide Gele wurden jeweils die gleichen Proben zu gleichen Mengen aufgetragen. Das OK1 Protein wurde entweder mit randomisiertem radioaktiv markiertem ATP oder mit spezifisch in gamma-Position radioaktiv markiertem ATP inkubiert. Nach erfolgter Inkubation wurden die Proteine entweder auf 30°C oder 95°C erhitzt, oder in 0,5 M NaOH bzw. 0,5 M HCl inkubiert.

Fig. 6 Nachweis der Übertragung des beta-Phosphatrestes von ATP auf Stärke in einer von einem OK1 Protein katalysierten Reaktion. Es wurde zur Phosphorylierung von mittels eines R1 Proteins *in vitro* phosphorylierter Stärke, isoliert aus Blättern einer *Arabidopsis thaliana sex1-*3 Mutante, durch ein OK1 Protein entweder spezifisch in gamma-Position mit ³³P markiertes ATP oder randomisiertes ³³P ATP eingesetzt. In den jeweiligen mit "control" bezeichneten Experimenten wurde kein OK1 Protein zugegeben. Jeder Versuchsansatz wurde zweimal unabhängig voneinander durchgeführt. Die Ergebnisse beider Versuche sind dargestellt.

Fig. 7 Mit Lugol'scher Lösung gefärbtes Blatt einer Mutante, die eine verringerte Aktivität eines OK1 Proteins aufweist im Vergleich zu einem Blatt einer Wildtyp-Pflanze.

5

Fig. 8 Westernblot Analyse von Pflanzen, die eine verringerte Menge an OK1 Protein aufweisen. Die Pflanzenlinien A.t.-alpha-OK1-1, A.t.-alpha-OK1-2, A.t.-alpha-OK1-3, A.t.-alpha-OK1-4 und A.t.-alpha-OK1-5 wurden mit Hilfe der RNAi Technologie genetisch modifiziert. WT bezeichnet Wildtyp-Pflanzen.

10

20

15 Allgemeine Methoden

Im Folgenden werden Methoden beschrieben, welche zur Durchführung der erfindungsgemäßen Verfahren verwendet werden können. Diese Methoden stellen konkrete Ausführungsformen der vorliegenden Erfindung dar, beschränken die vorliegende Erfindung jedoch nicht auf diese Methoden. Dem Fachmann ist bekannt, dass er durch Modifikation der beschriebenen Methoden und/oder durch Ersetzen einzelner Methodenteile durch alternative Methodenteile die Erfindung in gleicher Weise ausführen kann.

25 1. Herstellung von Proteinextrakten aus pflanzlichen Gewebe

a) Herstellung von Proteinextrakten aus pflanzlichen Geweben

Blattmaterial wird sofort nach der Ernte in flüssigem Stickstoff eingefroren und daraufhin im Mörser unter flüssigem Stickstoff homogenisiert. Das zerkleinerte Blattmaterial wird mit dem ca. 3,5-fachen Volumen (bezogen auf das Gewicht des eingesetzten Blattmaterials) kaltem (4°C) Bindungspuffer versetzt und für 2x 10 s mit einem Ultraturrax (maximale Geschwindigkeit) aufgeschlossen. Nach der ersten Behandlung mit einem Ultraturrax wird das zerkleinerte Blattmaterial auf Eis abgekühlt, bevor die zweite Behandlung erfolgt. Anschließend wird das behandelte Blattmaterial durch ein 100 µm Nylonnetz gegeben und 20 min zentrifugiert (50 ml Zentrifugengefäß, 20.000xg, 4°C).

10

b) Ausfällen der in den Proteinextrakten enthaltenen Proteine

Der nach Zentrifugation nach Schritt a) erhaltene Überstand wird abgenommen und sein Volumen bestimmt. Für das Ausfällen von Proteinen wird Ammoniumsulfat über einen Zeitraum von 30 Minuten kontinuierlich unter Rühren auf Eis bis zu einer Endkonzentration von 75% (Gewicht/Volumen) dem Überstand zugegeben. Anschließend wird der Überstand für eine weitere Stunde auf Eis unter Rühren inkubiert. Die aus dem Überstand ausgefällten Proteine werden bei 20.000xg und 4°C für 10 min pelletiert und das Pellet anschließend in 5 ml Bindungspuffer aufgenommen, d.h. die im Pellet vorliegenden Proteine werden in Lösung gebracht.

20

25

30

15

c) Entsalzen der ausgefällten Proteine

Die gelösten Proteine werden mittels einer mit Sephadex G25 gefüllten PD10-Säule (Amersham Bioscience, Freiburg, Prod. Nr. Säulen: 17-0851-01, Prod. Nr. Sephadex G25-M: 17-0033-01) bei einer Temperatur von 4^C entsalzt, d.h. auch das zur Ausfällung unter Schritt b) verwendete Ammoniumsulfat wird von den gelösten Proteinen abgetrennt. Die PD10-Säule wird vor dem Auftragen der nach Schritt b) in Lösung gebrachten Proteine mit Bindungspuffer äquilibriert. Dazu werden fünfmal jeweils 5 ml Bindungspuffer über die Säule gegeben. Anschließend werden pro Säule 2,5 ml der nach Schritt b) erhaltenen Proteinlösung auf die Säule gegeben, bevor Proteine mit 3,5 ml Bindungspuffer von der Säule eluiert werden.

d) Bestimmung der Proteinkonzentration

Die Proteinkonzentration wird mit einem Bradford-Essay (Biorad, München, Prod. Nr. 500-0006 bestimmt (Bradford, 1976, Anal. Biochem. 72, 248-254).

5

20

e) Zusammensetzung des Bindungspuffers [

	Bindungspuffer:	50 mM	HEPES/NaOH (od. KOH), pH 7.2
		1 mM	EDTA
		2 mM	Dithioerythritol (DTE)
10		2 mM	Benzamidìn
	£.,	2 mM	ε-Aminocapronsäure
		0.5 mM	PMSF
		0.02 %	Triton X-100

2. Isolierung von Blattstärke

15 a) Isolierung von Stärkegranula aus pflanzlichen Geweben

Blattmaterial wird sofort nach der Ernte in flüssigem Stickstoff eingefroren. Das Blattmaterial wird im Mörser portionsweise unter flüssigem Stickstoff homogenisiert und in insgesamt dem ca. 2,5-fachen Volumen (Gewicht/Volumen) Stärkepuffer aufgenommen. Diese Suspension wird zusätzlich noch einmal im Waring Blendor für 20 s bei maximaler Geschwindigkeit homogenisiert. Das Homogenisat wird durch ein Nylonnetz (100 µm Maschenweite) gegeben und 5 Minuten bei 1.000xg zentrifugiert. Der Überstand mit den löslichen Proteinen wird verworfen.

b) Reinigung der Stärke, isoliert aus pflanzlichen Geweben

Das nach Schritt a) erhaltene Stärke enthaltende Pellet wird nach Entfernen des auf der Stärke oben aufliegenden grünen Materials durch abspülen des grünen Materials mit Stärkepuffer in Stärkepuffer aufgenommen und sukzessive durch Nylonnetze unterschiedlicher Maschenweite (in der Reihenfolge 60 μm, 30 μm, 20 μm) gegeben. Das Filtrat wird über ein 10 ml Percoll-Kissen (95% (v/v) Percoll (Pharmacia, Uppsala, Schweden), 5% (v/v) 0,5M HEPES-KOH pH7,2) zentrifugiert (Correx-Röhrchen, 15 min, 2.000xg) zentrifugiert. Das nach dieser Zentrifugation erhaltene Sediment wird einmal in Stärkepuffer resuspendiert und erneut zentrifugiert (5 min, 1.000xg,).

c) Entfernen der an die Stärke gebundenen Proteine

Nach Schritt b) werden Stärkegranula erhalten, welche an Stärke bindende Proteine enthalten. Die an die Oberfläche der Stärkegranula gebundenen Proteine werden durch viermalige Inkubation mit 0,5 % SDS (Natriumlaurylsulfat) für jeweils 10-15 Minuten bei Raumtemperatur unter Schütteln entfernt. Nach jedem Waschschritt erfolgt dabei ein Zentrifugation (5 min, 5.000xg), um die Stärkegranula vom betreffenden Waschpuffer abzutrennen.

d) Reinigung von Proteinen befreiter Stärke

20

Die nach Schritt c) erhaltene, von an ihre Oberfläche bindenden Proteinen befreiten Stärke, wird anschließend durch viermaliges Inkubieren mit Waschpuffer für jeweils 10-15 Minuten bei Raumtemperatur unter Schütteln entfernt. Nach jedem Waschschritt erfolgt dabei eine Zentrifugation (5 min, 1.000xg), um die Stärkegranula vom betreffenden Waschpuffer abzutrennen. Diese Reinigungsschritte dienen vor allem der Entfernung des bei Inkubationen nach Schritt c) eingesetzten SDS.

25 e) Bestimmung der Konzentration von isolierter Stärke

Die Menge der Stärke, isoliert nach Schritt d) wird photometrisch bestimmt. Die optische Dichte der Stärkesuspension wird nach geeigneter Verdünnung gegen eine Eichgerade bei einer Wellenlänge von 600 nm gemessen. Der lineare Bereich der Eichgerade befindet sich zwischen 0 und 0,3 Extinktionseinheiten.

Zur Erstellung der Eichgeraden wird Stärke, z.B. isoliert aus Blättern einer Arabidopsis thaliana sex1-3 Mutante unter Vakuum getrocknet, gewogen und in einem definierten Volumen Wasser aufgenommen. Die so erhaltene Suspension wird in mehreren Schritten jeweils im Verhältnis 1 zu 1 mit Wasser verdünnt, bis man eine Suspension von ca. 5 µg Stärke pro ml Wasser enthält. Die durch die einzelnen Verdünnungsschritte erhaltenen Suspensionen werden im Photometer bei einer Wellenlänge von 600 nm vermessen. Die für die jeweiligen Suspensionen erhaltenen Absorptionswerte werden gegen die in der jeweiligen Suspension vorliegende Konzentration der Stärke aufgetragen. Die erhaltene Eichgerade sollte in dem Bereich von 0 µg Stärke pro ml Wasser bis 0,3 µg Stärke pro ml Wasser einer linearen mathematischen Funktion folgen.

f) Aufbewahrung isolierter Stärke

Die Stärke kann entweder direkt, ohne weitere Lagerung für weitere Versuche verwendet werden, oder in Aliquots in 1,5 mL Eppendorfgefäßen bei –20°C gelagert werden. Sowohl die eingefrorene Stärke, als auch nicht gelagerte, frisch isolierte Stärke kann gegebenenfalls z.B. für die in der vorliegenden Erfindung beschriebenen Methoden betreffend *in vitro-*Phosphorylierung und/oder Bindungstest eingesetzt werden.

20

5

10

g) Zusammensetzung von verwendeten Puffern

1x Stärkepuffer:

20 mM HEPES-KOH, pH 8.0

0.2 mM EDTA

0.5 % Triton X-100

25

Waschpuffer:

50 mM HEPES/KOH, pH 7,2

3. Rekombinante Expression eines identifizierten Stärke phosphorylierenden Proteins

a) Herstellung eines bakteriellen Expressionsvektors enthaltend eine cDNA, die ein Stärke phosphorylierendes Protein codiert

Die cDNA codierend ein Stärke phosphorylierendes Protein kann z.B. unter 5 Verwendung von mRNA oder poly-A-plus-mRNA aus pflanzlichen Geweben als "Template" mittels Polymerase-Ketten-Reaktion (PCR) amplifiziert werden. Dazu wird zunächst eine reverse-Transkriptase für die Herstellung eines zur einem Stärke phosphorylierenden Protein codierenden mRNA komplementären cDNA Stranges verwendet, bevor der betreffende cDNA Strang mittels DNA-Polymerase amplifiziert 10 wird. So genannte "Kits" enthaltend Substanzen, Enzyme und Anleitungen zur Durchführung von PCR Reaktionen sind käuflich erwerbbar (z.B. SuperScriptTM One-Step RT-PCR System, Invitrogen, Prod. Nr.: 10928-034. Die amplifizierte cDNA codierend ein Stärke phosphorylierendes Protein kann anschließend in einen bakteriellen Expressionsvektor, z.B. pDEST™17 (Invitrogen) kloniert werden. 15 pDEST™17 enthält den T7 Promotor, der zur Initiation der Transkription von der T7-RNA-Polymerase verwendet wird. Weiterhin enthält der Expressionsvektor pDEST™17 in 5'-Richtung vom T7 Promotor eine Shine Dalgarno Sequenz gefolgt von einem Start-Codon (ATG) und von einem so genannten His-tag. Dieser His-tag besteht aus sechs direkt hintereinander folgenden Codons, die jeweils die 20 Aminosäure Histidin codieren und befindet sich in dem Leseramen des genannten Start Codons. Die Klonierung einer cDNA, codierend ein Stärke phosphorylierendes Protein in pDEST™17 erfolgt in der Weise, dass eine translationale Fusion zwischen den Codons für das Start Codon, den His-tag und der cDNA codierend ein Stärke phosphorylierendes Protein entsteht. Dadurch wird nach Transkription, initiiert am T7 25 Promotor und anschließender Translation ein Stärke phosphorylierendes Protein erhalten, welches an seinem N-Terminus zusätzliche Aminosäuren, beinhaltend den His-tag, enthält.

Es sind jedoch auch andere zur Expression in Mikroorganismen geeignete Vektoren 30 zur Expression eines Stärke phosphorylierenden Proteins verwendbar.

Expressionsvektoren und dazugehörige Expressionsstämme sind dem Fachmann bekannt und in geeigneter Kombination auch käuflich beim entsprechenden Fachhandel erwerbbar.

5 b) Herstellung von Expressionsklonen in Escherichia coli

10

15

20

Es wird zunächst ein entsprechender Transformations kompetenter *E. coli* Stamm, der eine T7-RNA-Polymerase chromosomal codiert mit dem nach Schritt a) hergestellten Expressionsplasmid transformiert und anschließend auf durch Agar verfestigtem Nährmedium über Nacht bei 30°C inkubiert. Als Expressionstamm eignen sich z.B. BL21 Stämme (Invitrogen Prod. Nr.: C6010-03 die eine T7-RNA-Polymerase unter Kontrolle eines mittels IPTG induzierbarem Promotor (lacZ) chromosomal codieren.

Aus der Transformation hervorgehende Bakterienkolonien können mit dem Fachmann bekannten Methoden daraufhin untersucht werden, ob sie das gewünschte Expressionsplasmid, enthaltend eine das Stärke phosphorylierende Protein codierende cDNA, enthalten. Es werden dabei Expressionsklone erhalten.

c) Expression eines Stärke phosphorylierenden Proteins in Escherichia coli

Zunächst wird eine Vorkultur hergestellt. Dazu wird ein Expressionsklon erhalten nach Schritt b) in 30 ml Terrific Broth (TB-Medium), enthaltend ein Antibiotikum zur Selektion auf Anwesenheit des Expressionsplasmides beimpft und über Nacht bei 30°C unter Schütteln (250 rpm) inkubiert.

Anschließend wird eine Hauptkultur zur Expression eines Stärke phosphorylierenden Proteins hergestellt. Dazu werden jeweils 1 Liter Erlenmeyer-Kolben, enthaltend jeweils 300 ml auf 30°C vorgewärmtes TB-Medium und ein Antibiotikum zur Selektion auf Anwesenheit des Expressionsplasmides mit jeweils 10 ml einer entsprechenden Vorkultur beimpft und bei 30°C unter Schütteln (250 rpm) bis zu einer Optischen Dichte (gemessen bei einer Wellenlänge von 600 nm; OD600) von ca. 0,8 inkubiert.

phosphorylierenden **Porteins** ein eines Stärke Expression Wurde zur des Stärke die Expression bei welchem Expressionsplasmid verwendet, phosphorylierenden Proteins mittels eines induzierbaren Systems initiiert wird (z.B. der Expressionsvektor pDEST™17 in BL21 *E. coli* Stämmen, induzierbar mittels IPTG), so wird nach erreichen einer OD600 von ca. 0,8 der in Hauptkultur der betreffende Induktor (z.B. IPTG) zugegeben. Nach Zugabe des Induktors wird die Hauptkultur bei 30°C unter Schütteln (250 rpm) inkubiert, bis eine OD600 von ca. 1,8 erreicht ist. Anschließend wird die Hauptkultur für 30 Minuten auf Eis gekühlt, bevor die Zellen der Hauptkultur durch Zentrifugation (10 Minuten bei 4.000xg und 4°C) vom Kulturmedium abgetrennt werden.

4. Reinigung eines Stärke phosphorylierenden Proteins

5

10

- a) Aufschluss von ein Stärke phosphorylierendes Protein exprimierenden Zellen
 Die nach Zentrifugation in Schritt c), Punkt 3 Allgemeine Methoden erhaltenen Zellen
 werden in Lysispuffer resuspendiert. Dabei werden ca. 4 ml Lysispuffer zu etwa 1 g
 Zellen gegeben. Anschließend werden die resuspendierten Zellen für 30 Minuten auf
 Eis inkubiert, bevor sie mit Hilfe einer Ultraschallsonde (Baudelin Sonoplus UW
 2070, Baudelin electronic, Berlin, Einstellungen: Cycle 6, 70%, 1 Minute) unter
 ständiger Kühlung durch Eis aufgeschlossen werden. Dabei ist darauf zu achten,
 dass die Zellsuspension während der Ultraschallbehandlung nicht zu stak erwärmt
 wird. Die nach der Ultraschallbehandlung erhaltene Suspension wird Zentrifugiert (12
 Minuten bei 20.000xg, 4°C) und der nach Zentrifugation erhaltene Überstand wird
 durch einen Filter mit 45 µm Porengröße filtriert.
- 25 b) Reinigung des Stärke phosphorylierenden Proteins

 Handelt es sich bei dem in *E. coli* Zellen exprimierten Stärke phosphorylierenden

 Protein um ein Fusionsprotein mit einem His-tag, so kann eine Aufreinigung mit Hilfe

 von Nickelionen erfolgen, an welches das His-tag mit hoher Affinität bindet. Dazu

 werden 25 ml des in Schritt d) erhaltenen Filtrates wird mit 1 ml Ni-Agarose-Slurry

(Qiagen, Prod. Nr.: 30210) versetzt und für 1 Stunde auf Eis inkubiert. Anschließend wird das Gemisch aus Ni-Agarose-Slurry und Filtrat über eine Polysteren Säule (Pierce, Prod. Nr.: 29920) gegeben. Der Säulendurchlauf wird verworfen. Die Säule wird zunächst durch Aufgeben von 8 ml Lysispuffer gewaschen, wobei der Durchlauf erneut verworfen wird. Die Elution des Stärke phosphorylierenden Proteins erfolgt dann durch fraktioniertes Aufgeben von zweimal jeweils 1 ml E1-Puffer, gefolgt von einmal 1 ml E2-Puffer und anschließend von fünfmal jeweils 1 ml E3-Puffer auf die Säule. Der Durchlauf, der bei dem Aufgeben der einzelnen Fraktion der entsprechenden Elutionspuffer (E1-, E2-, E3-Puffer) auf die Säule anfällt, wird in voneinander getrennten Fraktionen aufgefangen. Aliquots dieser Fraktionen werden anschließend mittels denaturierender SDS-Acrylamidgelelektrophorese, gefolgt von einer Comassie-Blau Färbung analysiert. Die Fraktionen, welche das Stärke phosphorylierende Protein in ausrechender Menge und zufriedenstellender Reinheit enthalten, werden vereinigt und mit Hilfe von Druckfiltration bei 4°C aufkonzentriert. Die Druckfiltration kann z.B. mit Hilfe einer Amicon-Zelle (Amicon Ultrafitrtion Cell, Model 8010, Prod. Nr.: 5121) bei Verwendung einer Diaflo PM30-Membran (Millipore, Prod. Nr.: 13212) bei 4°C erfolgen. Zur Konzentrierung können aber auch andere dem Fachmann bekannte Methoden verwendet werden.

20 Zusammensetzung verwendeter Puffer

Lysispuffer: 50 mM **HEPES**

5

10

15

300 mM NaCl

10 mM Imidazol

pH 8,0 (einstellen mit NaOH)

25 1 mg/ml Lysozym (direkt vor Verwendung des Puffers zugeben)

1/4 Tablette pro 10 ml Proteaseinhibitoren Complete EDTA free, (Roche

Produkt Nr.: 1873580) (direkt vor Verwendung des Puffers zugeben)

Elutionspuffer E1: 50 mM **HEPES** 300 mM NaCl

50 mM Imidazol

pH 8,0 (einstellen mit NaOH)

5 Elutionspuffer E2: 50 mM HEPES

300 mM NaCl

75 mM Imidazol

pH 8,0 (einstellen mit NaOH

10 Elutionspuffer E3: 50 mM HEPES

300 mM NaCl

250 mM lmidazol

pH 8,0 (einstellen mit NaOH

15 5. Rekombinante Expression eines R1 Proteins

Die Rekombinante Expression eines R1 Proteins ist in der Literatur beschrieben (Ritte et al., 2002, PNAS 99, 7166-7171; Mikkelsen et al., 2004, Biochemical Journal 377, 525-532), kann jedoch auch entsprechend der weiter oben unter Punkt 3. Allgemeine Methoden beschriebenen Methode betreffend die Rekombinante Expression eines Stärke phosphorylierenden Proteins durchgeführt werden.

6. Reinigung eines R1 Proteins

20

25

Die Aufreinigung eines R1 Proteins ist in der Literatur beschrieben (Ritte et al., 2002, PNAS 99, 7166-7171; Mikkelsen et al., 2004, Biochemical Journal 377, 525-532), kann jedoch auch entsprechend der weiter oben unter Punkt 4. Allgemeine

Methoden beschriebenen Methode betreffend die Reinigung eines Stärke phosphorylierenden Proteins durchgeführt werden, wenn durch Expression von R1 in E. coli Zellen ein R1 Fusionsprotein entsteht, welches einen His-tag enthält.

In vitro Herstellung von phosphorylierter-Stärke ausgehend von nicht-5 7. phosphorylierter-Stärke

In vitro Phosphorylierung von nicht-phosphorylierter-Stärke a)

Stärke, welche kein Stärkephosphat enthält (z.B. isoliert aus Blättern von Arabidopsis thaliana sex1-3 Mutanten mit Hilfe der oben unter Punkt 2, Allgemeine Methoden beschriebenen Methode) wird mit R1 Puffer und mit gereinigtem R1 Protein (ca. 0,25 10 μg R1 Protein pro mg Stärke) versetzt, so dass sich ein Stärkegehalt von 25 mg pro ml ergibt. Dieser Reaktionsansatz wird über Nacht (ca. 15 h) bei Raumtemperatur unter Schütteln inkubiert. An die im Reaktionsansatz vorliegende Stärke gebundenes R1 wird nach Abschluss der Reaktion durch vier maliges Waschen mit jeweils ca. 800 μl 0,5 % SDS entfernt. Anschließend wird das noch in der in vitro 15 phosphorylierten Stärke vorliegende SDS durch fünf maliges Waschen mit jeweils 1 ml Waschpuffer von entfernt. Alle Waschschritte finden jeweils bei Raumtemperatur für 10 bis 15 Minuten unter Schütteln statt. Nach jedem Waschschritt erfolgt eine Zentrifugation (2 min, 10.000xg), um die Stärkegranula vom betreffenden SDS-Puffer oder Waschpuffer abzutrennen.

b) Zusammensetzung verwendeter Puffer

R1-Puffer: 50 mM HEPES/KOH, pН 7.5 1 mM **EDTA** 25 6 mM MgCl₂ 0,5 mM **ATP**

Waschpuffer:

20

50 mM HEPES/KOH, pH 7,2

- 8. Bindung von Proteinen an phosphorylierte-Stärke bzw. nichtphosphorylierte-Stärke
- a) Isolierung von P-Stärke-Protein-Komplexen bzw. nicht-phosphorylierter-Stärke 5 Protein-Komplexen
- Ca. 50 mg P-Stärke, bzw. ca. 50 mg nicht-phosphorylierte Stärke werden in getrennten Ansätzen jeweils in ca. 800 µl Proteinextrakt resuspendiert. Die Proteinkonzentration der Proteinextrakte sollte jeweils ca. 4 mg bis 5 mg pro ml betragen. Die Inkubation der P-Stärke bzw. nicht-phosphorylierten-Stärke mit Proteinextrakten wird bei Raumtemperatur für 15 Minuten unter Schütteln bei 4°C 10 durchgeführt. Nach erfolgter Inkubation werden die Reaktionsansätze über ein Percoll-Kissen (4 ml) abzentrifugiert (15 Minuten, 3500 rpm, 4°C). Nicht an phosphorylierte Stärke bzw. P-Stärke gebundene Proteine befinden sich nach Zentrifugation im Überstand und können mit einer Pasteurpipette abgenommen werde. Der Überstand wird verworfen. Das nach Zentrifugation erhaltene 15 sedimentierte Pellet enthaltend P-Stärke und nicht-phosphorylierte-Stärke inclusive der an die betreffenden Stärken jeweils gebundene Proteine (P-Stärke-Protein-Komplexe bzw. nicht-phosphorylierter-Stärke-Protein-Komplexe), wird zweimal mit je 1 ml Waschpuffer (siehe oben, Allgemeine Methoden unter Punkt 7.b)), durch Inkubation für jeweils 3 Minuten bei 4°C unter Schütteln gewaschen. Nach jedem 20 Waschschritt erfolgt eine Zentrifugation (5 Minuten, 8000 rpm, 4°C in einer Tischzentrifuge, Hettich EBA 12R), um die P-Stärke, bzw. nicht-phosphorylierte-Stärke von dem Waschpuffer abzutrennen.
- 25 b) In Lösung bringen der in den P-Stärke-Protein-Komplexen bzw. nichtphosphorylierter-Stärke-Protein-Komplexen gebundenen Proteinen
 - Die nach Schritt a) erhaltenen P-Stärke-Protein-Komplexe bzw. nichtphosphorylierte-Stärke-Protein-Komplexe werden jeweils in ca. 150 µl SDS-Probenpuffer resuspendiert und 15 Minuten unter Schütteln bei Raumtemperatur

inkubiert. Anschließend wird die P-Stärke bzw. nicht-phosphorylierte-Stärke von den in Lösung gebrachten Proteinen durch Zentrifugation (1 Minute, 13.000 rpm, Raumtemperatur, Eppendorf Tischzentrifuge) abgetrennt. Der nach Zentrifugation erhaltene Überstand wird zur Entfernung jeglicher Reste von P-Stärke bzw. nicht-phosphorylierte-Stärke noch einmal zentrifugiert (1 Minute, 13.000 rpm, Raumtemperatur, Eppendorf Tischzentrifuge) und abgenommen. Es werden dadurch in Lösung gebrachte Proteine, die an P-Stärke bzw. nicht-phosphorylierte-Stärke binden, erhalten.

10 c) Zusammensetzung verwendeter Puffer

25

SDS-Probenpuffer: 187,5 mM Tris/HCl pH 6,8

6 % SDS

30 % Glycerin

~ 0,015 % Bromphenolblau

15 60 mM Dithioerythritol (DTE, frisch zusetzen!)

Percoll: Percoll wird über Nacht gegen eine Lösung, bestehend aus und 25 mM HEPES / KOH, pH 7,0 dialysiert

20 9. Auftrennung von Proteinen, die an P-Stärke und/oder nichtphosphorylierte-Stärke binden

Die nach Schritt c) unter Punkt 8. Allgemeine Methoden betreffend die Bindung von Proteinen an P-Stärke bzw. nicht-phosphorylierte-Stärke erhaltenen in Lösung gebrachten Proteine werden jeweils für 5 Minuten bei 95°C inkubiert und anschließend mit Hilfe denaturierender Polyacrylamidgelelektrophorese aufgetrennt. Dabei wird für die durch Bindung an P-Stärke und für die durch Bindung an nichtphosphorylierte-Stärke erhaltenen in Lösung gebrachten Proteine jeweils ein

gleiches Volumen auf das Acrylamidgel aufgetragen. Das nach erfolgter Elektrophorese erhaltene Gel wird mindestens über Nacht mit kolloidalem Comassie (Roth, Karlsruhe, Roti-Blue Rod. Nr.: A152.1) gefärbt und anschließend in 30 % Methanol, 5 % Essigsäure, oder in 25% Methanol entfärbt.

5

10. Identifizierung und Isolierung von an P-Stärke und/oder nichtphosphorylierte-Stärke bindenden Proteinen

- a) Identifizierung von Proteinen mit erhöhter Bindungsaktivität gegenüber P-Stärke im Vergleich zu nicht-phosphorylierter-Stärke
- Acrylamidgelelektrophorese mittels Auftrennung 10 Proteine, die, nach anschließender Sichtbarmachung durch Färbung (siehe oben, Punkt 9. Allgemeine Methoden), ein verstärktes Signal nach Bindung an P-Stärke im Vergleich zu einem entsprechenden Signal nach Bindung an nicht-phosphorylierte-Stärke zeigen, weisen eine erhöhte Bindungsaktivität gegenüber P-Stärke im Vergleich zu nichterhöhte Proteine, die eine auf. Dadurch können phosphorylierter-Stärke 15 Bindungsaktivität gegenüber P-Stärke im Vergleich zu nicht-phosphorylierter-Stärke aufweisen, identifiziert werden. Proteine, die eine erhöhte Bindungsaktivität gegenüber P-Stärke im Vergleich zu nicht-phosphorylierter-Stärke aufweisen, werden aus dem Acrylamidgel ausgeschnitten.

20

ldentifizierung der Aminosäuresequenz von Proteinen, die eine erhöhte Bindungsaktivität gegenüber P-Stärke im Vergleich zu nicht-phosphorylierter-Stärke aufweisen

Nach Schritt a) identifizierte Proteine werden mit Trypsin verdaut und die erhaltenen Peptide zur Ermittlung der Massen der erhaltenen Peptide mittels MALDI-TOF analysiert. Trypsin ist eine sequenzspezifische Protease, d.h. Trypsin spaltet Proteine an einer vorgegebnen Stelle nur dann, wenn die betreffenden Proteine bestimmte Aminosäuresequenzen enthalten. Trypsin spaltet Peptidbindungen immer dann, wenn vom N-Terminus ausgehend die Aminosäuren Arginin und Lysin

aufeinander folgen. Dadurch ist es möglich, sämtliche Peptide, die nach Trypsin Verdau einer Aminosäuresequenz entstehen würden, theoretisch zu ermitteln. Durch die Kenntnis der die theoretisch ermittelten Peptide codierenden Aminosäuren können auch die Massen der Peptide, die nach theoretischem Trypsin Verdau erhalten werden, ermittelt werden. Datenbanken (z.B. **NCBinr** http://prospector.ucsf.edu/ucsfhtml4.0/msfit.htm; Swissprot http://cbrg.inf.ethz.ch/Server/MassSearch.html) die Informationen über die Massen von Peptiden nach theoretischem Trypsin Verdau enthalten, können daher mit den real mittels MALDI-TOF-MS erhaltenen Massen von Peptiden unbekannter Proteine verglichen werden. Aminosäuresequenzen, die gleiche Peptidmassen theoretischem und/oder realem Trypsin Verdau aufweisen, sind als identisch anzusehen. Die betreffenden Datenbanken enthalten sowohl Peptidmassen von Proteinen, deren Funktion bereits nachgewiesen wurde, als auch Peptidmassen von Proteinen, welche bisher nur hypothetisch durch Ableitung von Aminosäuresequenzen ausgehend von in Sequenzierprojekten erhaltenen Nucleinsäuresequenzen existieren. Die tatsächliche Existenz und die Funktion solcher hypothetischen Proteine ist daher selten nachgewiesen und wenn überhaupt eine Funktion angegeben ist, dann beruht diese meist alleinig auf Vorhersagen, jedoch nicht auf einem tatsächlichen Nachweis der Funktion.

10

15

Banden, enthaltend nach Schritt a) identifizierte Proteine werden aus dem Acrylamidgel ausgeschnitten; das ausgeschnittene Acrylamidstück wird zerkleinert und durch Inkubation für ca. eine halbe Stunde bei 37°C in ca. 1 ml 60% 50mM NH₄HCO₃, 40% Acetonitril entfärbt. Anschließend wird die Entfärbelösung abgenommen und das verbleibende Gel unter Vakuum (z.B. Speedvac) getrocknet.
Nach Trocknung wird Trypsinlösung zum Verdau des in dem betreffenden Gelstück enthaltenen Proteins hinzu gegeben. Der Verdau erfolgt über Nacht bei 37°C. Nach dem Verdau wird wenig (bis das Acrylamidgel sich weißlich färbt) Acetonitril zugegeben und der Ansatz unter Vakuum (z.B. Speedvac) getrocknet. Nach erfolgter Trocknung wird so viel 5%ige Ameisensäure zugegeben, dass die getrockneten
Bestandteile gerade bedeckt sind und für einige Minuten bei 37°C inkubiert. Die Behandlung mit Acetonitril gefolgt von der Trocknung wird einmal wiederholt.

Anschließend werden die getrockneten Bestandteile in 0,1% TFA (Triflouressigsäure, 5 μl bis 10 μl) aufgenommen und in ca. 0,5 μl Portionen auf einen Träger aufgetropft. Träger werden ebenfalls gleiche Matrix (ε-Cyano-4-Mengen hydroxyzimtsäure) aufgegeben. Nach Auskristallisieren der Matrix werden die Massen der Peptide mittels MALDI-TOF-MS-MS (z.B. Burker Reflex[™] II, Bruker Daltonic, Bremen) ermittelt. Mit den erhaltenen Massen werden Datenbanken auf Aminosäuresequenzen hin durchsucht, welche nach theoretischem Trypsinverdau gleiche Massen ergeben. Somit können Aminosäuresequenzen identifiziert werden, welche Proteine codieren, die bevorzugt an phosphorylierte alpha-1,4-Glucane binden und/oder P-alpha-1,4-Glucane als Substart benötigen.

11. Verfahren zum Nachweis von Stärke phosphorylierender Aktivität eines **Proteins**

Inkubation von Proteinen mit P-Stärke und/oder nicht-phosphorylierter-Stärke a)

10

15

20

Um nachzuweisen, ob ein Protein eine Stärke phosphorylierende Aktivität aufweist, können zu untersuchende Proteine mit Stärke und radioaktiv markiertem ATP inkubiert werden. Dazu werden ca. 5 mg P-Stärke bzw. ca. 5 mg nichtphosphorylierte-Stärke mit dem zu untersuchenden Protein (0,01 µg bis 5,0 µg pro mg eingesetzter Stärke) in 500 µl Phosphorylierungspuffer für 10 Minuten bis 30 Minuten bei Raumtemperatur unter Schütteln inkubiert. Anschließend wird die Reaktion durch Zugabe von SDS bis zu einer Konzentration von 2% (Gewicht/Volumen) gestoppt. Die im jeweiligen Reaktionsgemisch vorliegenden Stärkegranula werden abzentrifugiert (1 Minute, 13.000xg), einmal mit 900 µl einer 2 % SDS Lösung und jeweils viermal mit 900 µl einer 2 mM ATP Lösung gewaschen. Jeder Waschschritt wird für 15 Minuten bei Raumtemperatur unter Schütteln 25 Nach jedem Waschschritt werden die Stärkegranula durch durchgeführt. Zentrifugation (1 Minute, 13.000xg) vom betreffenden Waschpuffer abgetrennt.

Zusätzlich sollten bei der Durchführung eines Experimentes zum Nachweis von Stärke phosphorylierender Aktivität eines Proteins weitere Reaktionsansätze, die

kein Protein oder inaktiviertes Protein enthalten, ansonsten aber in gleicher Weise wie die beschriebenen Reaktionsansätze behandelt werden, als so genannte Kontrollen mitgeführt werden.

5 b) Ermittlung der Menge an durch enzymatische Aktivität in die P-Stärke und/oder nicht-phosphorylierte-Stärke eingebauten Phosphatreste

Die nach Schritt a) erhaltenen Stärkegranula können auf des Vorliegen von radioaktiv markierten Phosphatresten hin untersucht werden. Dazu wird die jeweilige Stärke in je 100 μl Wasser resuspendiert und mit jeweils 3 ml Scintillationscocktail (z.B. Ready Safe[™], BECKMANN Coulter) versetzt und anschließend mit Hilfe eines Scintillationszählers (z.B. LS 6500 Multi-Purpose Scintillation Counter, BECKMANN COULTER™) analysiert.

- c) Identifizierung von Proteinen, die bevorzugt P-Stärke als Substart verwenden
- Wird ein Protein in getrennten Ansätzen einmal mit P-Stärke und einmal mit nichtphosphorylierter-Stärke nach der unter a) beschriebenen Methode inkubiert, so kann
 durch Vergleich der nach Schritt b) erhaltenen Werte für das Vorliegen von
 Stärkephosphat ermittelt werden, ob das betreffende Protein mehr Phosphat in PStärke im Vergleich zu nicht-phosphorylierter-Stärke eingebaut hat. Damit können
 auch Proteine identifiziert werden, die Phosphat in P-Stärke, nicht jedoch in nichtphosphorylierte-Stärke einführen können. D.h. es können Proteine identifiziert
 werden, die bereits phosphorylierte Stärke als Substart für eine weitere
 Phosphorylierungsreaktion benötigen.
- 25 d) Zusammensetzung verwendeter Puffer

10

Phosphorylierungs-Puffer: 50 mM HEPES/KOH, pH 7,5

1 mM EDTA

6 mM MgCl₂

0,01 bis 0,5 mM ATP

0,2 bis 2 μ Ci pro ml randomisiertes 33 P-ATP (alternativ kann auch ATP eingesetzt werden, welches einen spezifisch in beta-Position markierten Phosphatrest enthält)

5

10

Unter dem Begriff "randomisiertes ATP" soll im Zusammenhang mit der vorliegenden Erfindung ATP verstanden werden, welches sowohl in gamma-Position, als auch in beta-Position markierte Phosphatreste enthält (Ritte et al. 2002, PNAS 99, 7166-7171). Randomisiertes ATP wird in der wissenschaftlichen Literatur auch als Beta/gamma-ATP bezeichnet. Eine Methode zur Herstellung von randomisiertem ATP ist im Folgenden beschrieben.

i) Herstellung von randomisiertem ATP

Der hier beschriebenen Methode zur Herstellung von randomisiertem ATP mit Hilfe von Enzym katalysierten Reaktionen liegen folgende Reaktionsmechanismen zu Grunde:

1. Reaktionsschritt:

$$\gamma^{33}$$
P-ATP + AMP + Myokinase $\to \beta^{33}$ P-ADP + ADP (Adenosin-P-P- 33 P + Adenosin-P \to Adenosin-P-P + Adenosin-P- 33 P)

20 2. Reaktionsschritt:

33
P-ADP + ADP + 2 PEP + Pyruvatkinase $\rightarrow \beta^{33}$ P-ATP + ATP + 2 Pyruvat (Adenosin-P-P + Adenosin-P- 33 P + 2 PEP \rightarrow Adenosin-P-P + Adenosin-P- 33 P-P + 2 Pyruvat)

Die Reaktionsgleichgewichte liegen auf Produktseite, trotzdem entsteht bei dieser Reaktion eine Mischung aus größtenteils β^{33} P-ATP und etwas γ^{33} P-ATP.

ii) Durchführung des 1. Reaktionsschrittes

ATP (100 μCi, 3000 Ci pro mmol), welches einen in gamma-Position mit ³³P markierten Phosphatrest enthält (Hartmann Analytic, 10 μCi/μl), wird mit 2 μl Myokinase (AMP-phosphotransferase, aus Kaninchen Muskel; SIGMA, Prod. Nr.: M3003 3,8 mg/ml, 1,626 Units/mg) in 90 μl Randomisierungspuffer für 1 Stunde bei 37°C inkubiert. Anschließend wird die Reaktion durch Inkubation für 12 Minuten bei 95°C gestoppt, bevor der Reaktionsansatz mittels Zentrifugalfiltartion über einen Microcon YM 10 Filter (Amicon, Millipore Prod. Nr. 42407) bei 14.000xg für mindestens 10 Minuten aufgereinigt wird.

10 iii) Durchführung des 2. Reaktionsschrittes

Dem in Schritt ii) erhaltenen Filtrat werden 2 µl Pyruvatkinase (zur Herstellung einer entsprechenden Lösung siehe unten) und 3 µl 50 mM PEP (Phosphoenolpyruvat) zugegeben. Diese Reaktionsgemisch wird für 45 Minuten bei 30°C inkubiert, bevor die Reaktion durch Inkubation bei 95°C für 12 Minuten gestoppt wird. Anschließend wird das Reaktionsgemisch zentrifugiert (2 Minuten, 12.000 rpm in einer Eppendorftischzentrifuge). Der nach Zentrifugation erhaltene, randomisiertes ATP enthaltende Überstand wird abgenommen, aliquotiert und kann bei -20°C gelagert werden.

20 Herstellung der Pyruvatkinase Lösung

15 μl Pyruvatkinase (aus Kaninchenmuskel, Roche, Prod. Nr. 12815), 10 mg/ml, 200 Units/mg bei 25 °C) werden abzentrifugiert, der Überstand verworfen und das Pellet in 27 μl Pyruvatkinasepuffer aufgenommen.

iv) Verwendete Puffer

25 Pyruvatkinasepuffer:

50 mM

HEPES/KOH pH 7,5

1 mM

EDTA

Randomisierungspuffer:

100 mM

HEPES/KOH pH 7,5

1 mM EDTA

10 % Glycerol

5 mM MgCl₂

5 mM KCl

0,1 mM ATP

0,3 mM AMP

12. Nachweis der Autophosphorylierung eines Proteins

Um nachzuweisen, ob ein Protein eine autophosphorylierende Aktivität aufweist, können zu untersuchende Proteine mit radioaktiv markiertem ATP inkubiert werden. Dazu werden zu untersuchende Proteine (50 µg bis 100 µg) in 220 µl Phosphorylierungspuffer (siehe oben, Punkt 12 d), Allgemeine Methoden) für 30 Minuten bis 90 Minuten bei Raumtemperatur unter Schütteln inkubiert. Anschließend wird die Reaktion durch Zugabe von EDTA bis zu einer Endkonzentration von 0,11 M gestoppt. Ca. 2 µg bis 4 µg Protein werden mit Hilfe denaturierender Polyacrylamidgelelektrophorese (7,5%iges Acrylamidgel) aufgetrennt. Das nach Polyacrylamidgelelektrophorese erhaltene Gel wird einer Autoradiographie unterzogen. Proteine, die in der Autoradiographie ein Signal zeigen, tragen einen radioaktiven Phosphatrest.

20

5

10

15

13. Identifizierung der C-Atom-Positionen der Glucosemoleküle eines alpha-1,4-Glucans, in welche Phosphatreste durch ein Stärke phosphorylierendes Protein eingeführt werden

Welche C-Atom-Positionen der Glucosemoleküle eines alpha-1,4-Glucans von einem Protein phosphoryliert werden, kann durch Hydrolyse der durch ein betreffendes Protein *in vitro* phosphorylierten erhaltenen Glucane, anschließender Auftrennung der nach Hydrolyse erhaltenen Glucosemonomere, gefolgt von Messung des durch ein betreffendes Protein eingebautes Phosphat in bestimmte Fraktionen der Glucosemoleküle geführt nachgewiesen werden.

a) Totalhydrolyse der alpha-1,4-Glucane

5 Alpha-1,4-Glucan enthaltende Wasser-Susupensionen werden zentrifugiert, das sedimentierte Pellet anschließend in 0,7 M HCl (Baker, zur Analyse) resuspendiert und unter Schütteln für 2 Stunden bei 95°C inkubiert. Nach erfolgter Inkubation werden die Proben kurz abgekühlt und zentrifugiert (z.B. 2 Minuten 10.000xg). Der erhaltene Überstand wird in ein neues Reaktionsgefäß überführt und durch Zugabe von 2 M NaOH (Baker, zur Analyse) neutralisiert. Falls ein Pellet zurück bleibt, wird es in 100 μl Wasser resuspendiert und die Menge des darin vorliegenden markierten Phosphates zur Kontrolle bestimmt.

Der neutralisierte Überstand wird anschließend über einen 10 kDa Filter zentrifugiert.

Durch Messung eines Aliquots des erhaltenen Filtrates wird die Menge an
markiertem Phosphat im Filtrat z.B. mit Hilfe eines Scintillationszählers bestimmt.

b) Fraktionierung der Hydrolyseprodukte und Ermittlung der phosphorylierten C-Atom Positionen

Die mittels Schritt a) erhaltenen neutralisierten Filtrate der Hydrolyseprodukte können (bei Verwendung von radioaktiv markiertem ATP etwa 3.000 cpm) mit Hilfe von z.B. Hoch-Druck-Anionenaustausch-Chromatographie (HPAE) aufgetrennt werden. Zur Einstellung des für die HPAE benötigten Volumens kann das neutralisierte Filtrat mit H₂O verdünnt werden. Weiterhin wird den entsprechenden Filtraten als interne Kontrolle jeweils Glucose-6-Phosphat (ca. 0,15 mM) und Glucose-3-Phosphat (ca. 0,3 mM) zugegeben. Die Auftrennung mittels HPAE kann z.B. mit Hilfe einer Dionex Anlage DX 600 Bio Lc unter Verwendung einer CarboPac PA 100 Säule (mit entsprechender Vorsäule) und eines gepulsten amperometrischen Detektors (ED 50) Detektors erfolgen. Dabei wird vor Injektion der Probe die Säule zunächst für 10 Minuten mit 99% Eluent C und 1% Eluent D gespült. Anschließend werden jeweils 60

μl Probenvolumen injiziert. Die Elution der Probe erfolgt durch folgende Bedingungen:

Flußrate:

1 ml pro Minute

Gradient:

linear ansteigend von 0 Minuten bis 30 Minuten

5

	Eluent C	Eluent D
0 Minuten	99%	1%
30 Minuten	0%	100%
35 Minuten	0%	100%

Stop des Laufes

10

15

20

25

Die von der Säule eluierten Hydrolyseprodukte werden in einzelnen Fraktionen von je 1 ml aufgefangen. Da den injizierten Proben der Hydrolyseprodukte jeweils nicht markiertes Glucose-3-Phosphat (Ritte et al. 2002, PNAS 99, 7166-7171) und nicht markiertes Glucose-6-Phosphat (Sigma, Prod. Nr.: G7879) als interne Standards zugemischt wurden, können mittels gepulster amperometrischer Detektion die Fraktionen ermittelt werden, welche entweder Glucose-3-Phosphat oder Glucose-6-Phosphat enthalten. Durch Messung der Menge an markierten Phosphaten in den einzelnen Fraktionen und anschließendem Vergleich mit den Fraktionen, welche Glucose-3-Phosphat oder Glucose-6-Phosphat enthalten, können damit diejenigen Fraktionen ermittelt werden, in welchen markiertes Glucose-6-Phosphat oder markiertes Glucose-3-Phosphat enthalten ist. Die Menge des markierten Phosphates in den betreffenden Fraktion wird bestimmt. Durch die Verhältnisse der für markiertes Phosphat gemessenen Mengen an Glucose-3-Phosphat zu Glucose-6-Phosphat in den einzelnen Hydrolyseprodukten, kann nun ermittelt werden, welche C-Atom-Position von einem alpha-1,4-Glucan phosphorylierenden Enzym bevorzugt phosphoryliert wird.

c) Verwendete Puffer

Eluent C:

100 mM NaOH

Eluent D:

100 mM NaOH

500 mM Natriumacetat

5

20

25

14. Transformation von Reispflanzen

Reispflanzen wurden nach der von Hiei et al. (1994, Plant Journal 6(2), 271-282) beschriebenen Methode transformiert.

10 15. Transformation von Kartoffelpflanzen

Kartoffelpflanzen wurden mit Hilfe von Agrobakterium, wie bei Rocha-Sosa et al. (EMBO J. 8, (1989), 23-29) beschrieben, transferiert.

16. Bestimmung des Stärkegehaltes aus Blattmaterial

15 a) Probenvorbereitung:

Entfernung der löslichen Zucker durch ethanolische Extraktion:

Ca. 1 g frisches Blattmaterial von Pflanzen wird gefriergetrocknet, gewogen und anschließend mit einer Kugelmühle zu einem feinen Pulver homogenisiert. Ca. 50 mg pulverisiertes Blattmaterial (Doppelbestimmung) werden eingewogen, mit 1 ml 80% Ethanol versetzt, stark geschüttelt und die homogene Dispersion 1 Stunde bei 80°C im Wasserbad inkubiert. Nach Abkühlen auf ca. 40°C wird die Dispersion 5 Minuten bei 3000 U/min (Minifuge RF, Heraeus) zentrifugiert. Der Überstand wird verworfen. Das Blattmaterial wird noch 2 mal mit je 1 ml 80% Ethanol versetzt und je 20 Minuten bei 80°C im Wasserbad inkubiert. Nach Abkühlen und Zentrifugieren (s.o.) werden die Überstände jeweils verworfen.

(b) Stärkebestimmung in Mikrotiterplatte/Spectramax bei 340 nm:

Die Bestimmung erfolgt mit Hilfe des Stärke Lebensmittelanalytik UV-Test, Boehringer Mannheim, Best. Nr.: 207748 (Amyloglucosidase, Stärkemesspuffer, Glucose-6-phosphatdehydrogenase).

Das zuckerfreie Blattmaterial wird mit 400 μl 0,2 N KOH versetzt und durch starkes Schütteln homogenisiert. Das Homogenat wird 1 Stunde bei 95°C im Wasserbad inkubiert. Nach dem Abkühlen werden 75 μl 1M Essigsäure dazugegeben und gründlich gemischt. Es wird 10 Minuten bei 4000 rpm zentrifugiert. 25 bzw. 50 μl Überstand werden in eine Mikrotiterplatte zu 50 μl Amyloglucosidase (Boehringer Mannheim) sowie 25 bzw. 50 μl Millipore Wasser gegeben und bei 56°C 1 Stunde verdaut. In eine weitere Mikrotiterplatte werden 196 μl Stärkemesspuffer (Boehringer Mannheim) vorgelegt. Dazu werden 4 (bis 20) μl des abgekühlten Stärkeverdaus pipettiert. Das Verhältnis kann je nach Glucosekonzentration bis auf 40 μl Verdau + 160 μl Stärkemesspuffer angehoben werden.

15 Messung: Schütteln, Preread

20

25

+ 2 μl Glucose-6-phosphatdehydrogenase (Boehringer Mannheim) Inkubation: 30 Minuten bei 37°C, messen

(c) Die Berechnung des Stärkegehaltes erfolgt wie nachstehend angegeben:

Messvolumen (200 µl) x Extraktionsvol. (4750 µl) x Amyloglucosidase-Verdauvol. (200 µl) \bar{x} Δ OD/ ϵ x 1000 x Probemessvol. (4 µl...40 µl) x Probeverdauvol. (50 µl) x Einwaage (g) x d(1) = Konzentration (µmol/g Trockengewicht)

 ε = 6,3 l x mmol-1 x cm-1 (molarer Extinktionskoeffizient von NADH bei 340 nm)

Aus den ermittelten Gewichten vor und nach dem Gefriertrocknen sowie der molaren Masse von Glucose (162,1 g/mol – Anhydrid) wird die Konzentration in mg Glucose / g Frischgewicht errechnet.

17. Färbung von Pflanzenteilen mit Lugol'scher Lösung

Zu untersuchende Pflanzenteile werden den Pflanzen entnommen und in 80% Ethanol bei 50°c inkubiert, bis die Pflanzenteile keinen grünen Blattfarbstoff mehr enthalten. Anschließend werden die Pflanzenteile in Lugol'scher Lösung inkubiert, bevor überschüssige Lugol'sche Lösung mit Wasser von den Pflanzenteilen abgespült wird. Pflanzenteile, die Stärke enthalten, weisen eine bräunliche bis schwarze Färbung auf. Je intensiver die Färbung ist, desto mehr Stärke enthalten die betreffenden Pflanzenteile.

10 Beispiele

- Isolierung eines Proteins aus Arabidopsis thaliana, welches eine erhöhte Bindungsaktivität gegenüber P-Stärke im Vergleich zu nichtphosphorylierter-Stärke aufweist
- a) Herstellung von Proteinextrakten aus Arabidopsis thaliana
- 15 Proteinextrakte wurden aus etwa 7 g Blättern (Frischgewicht) von Arabidopsis thaliana (Ökotyp Columbia, Col-O) nach dem unter Punkt 1, Allgemeine Methoden beschriebenen Verfahren hergestellt.
- b) Isolierung von Stärkegranula aus Blättern von sex1-3 Mutanten von Arabidopsis 20 thaliana

Stärkegranula wurden aus etwa 20 g (Frischgewicht) aus Blättern einer sex1-3 Mutante von Arabidopsis thaliana nach dem unter Punkt 2., Allgemeine Methoden beschriebenen Verfahren isoliert.

25 c) In vitro Phosphorylierung von Stärke, isoliert aus einer sex1-3 Mutante von Arabidopsis thaliana mit gereinigtem R1 Protein

Etwa 30 mg nicht-phosphorylierte-Stärke, isoliert aus einer sex1-3 Mutante von Arabidopsis thaliana wurde nach dem unter Punkt 7., Allgemeine Methoden beschriebenen Verfahren mittels eines rekombinant in E. coli exprimierten und gereinigten R1 Proteins phosphoryliert. Zur Expression des R1 Proteins in E. coli und zur anschließenden Aufreinigung wurden die bei Ritte et al. (2002, PNAS 99, 7166-7171) beschrieben Verfahren verwendet.

- d) Isolierung von Proteinen, die an P-Stärke und/oder nicht-phosphorylierte-Stärke binden
- 10 Proteinextrakte von *Arabidopsis thaliana*, erhalten nach Schritt a) wurden in einem Ansatz A mit 50 mg der nach Schritt c) hergestellten *in vitro* phosphorylierten Stärke nach dem unter Punkt 8 a), Allgemeine Methoden beschriebenen Verfahren inkubiert und gewaschen.

In einem zweiten Ansatz B wurden Proteinextrakte von Arabidopsis thaliana, erhalten nach Schritt a) mit 50 mg der nach Schritt b) hergestellten nicht-phosphorylierten-Stärke nach dem unter Punkt 8 a), Allgemeine Methoden beschriebenen Verfahren inkubiert und gewaschen.

Anschließend wurden die an P-Stärke des Ansatzes A und die an nichtphosphorylierte-Stärke des Ansatzes B nach dem unter Punkt 8 b), Allgemeine Methoden beschriebenen Verfahren in Lösung gebracht.

In einem dritten Ansatz C wurden 50 mg der nach Schritt c) hergestellten in vitro phosphorylierten Stärke nach dem unter Punkt 8 a), Allgemeine Methoden beschriebenen Verfahren inkubiert und gewaschen. Ansatz C enthielt jedoch keinen Proteinextrakt.

25

20

5

e) Auftrennung der nach Schritt d) erhaltenen Proteine mittels Acrylamidgelelektrophorese

Die in Schritt d) erhaltenen Proteine der Ansätze A, B und C wurden mittels einem 9%igem Acrylamidgel unter denaturierenden Bedingungen (SDS) nach dem unter

Punkt 9., Allgemeine Methoden beschriebenen Verfahren aufgetrennt und anschließend mit Comassie Blau gefärbt. Das gefärbte Gel ist in Fig. 1 dargestellt. Es ist deutlich zu erkennen, dass ein Protein, welches im denaturierenden Acrylamidgel bezogen auf eine Proteinstandardmarker (Spur M) ein Molekulargewicht von ca. 130 kDa aufweist, bevorzugt an phosphorylierte Stärke Spur P) im Vergleich zu nichtphosphorylierter-Stärke (K) bindet.

5

30

- f) Identifizierung des Proteins, das bevorzugt an P-Stärke im Vergleich zu nichtphosphorylierter-Stärke bindet
- Die in Schritt e) identifizierte Bande des Proteins mit einem Molekulargewicht von ca. 10 130 kDa wurde aus dem Gel ausgeschnitten. Anschließend wurde das Protein wie unter Allgemeine Methoden 10 b) beschrieben, aus dem Acrylamid herausgelöst, mit Trypsin verdaut und die erhaltenen Peptidmassen mittels MALD-TOF-MS bestimmt. Der durch MALDI-TOF-MS erhaltene so genannte "Fingerprint" wurde mit in 15 Datenbanken http://www.matrixscience.com/search_form_select.html; (Mascot: ProFound: http://129.85.19.192/profound_bin/WebProFound.exe; PepSea: http://195.41.108.38/PepSeaIntro.html) enthaltenen Fingerprints theoretisch verdauter Aminosäuremoleküle verglichen. Da ein solcher Fingerprint sehr spezifisch für ein Protein ist, konnte ein Aminosäuremolekül identifiziert werden. Mit Hilfe der Sequenz dieses Aminosäuremoleküls konnte eine ein OK1 Protein codierende 20 Nucleinsäuresequenz aus Arabidopsis thaliana isoliert werden. Das mit diesem Verfahren identifizierte Protein wurde mit A.t.-OK1 bezeichnet Nach Analyse der Aminosäuresequenz des OK1 Proteins aus Arabidopsis thaliana, ergab sich, dass diese von der in der Datenbank vorliegenden Sequenz (NP 198009, NCBI) abweicht. Die in SEQ ID No 2 dargestellte Aminosäuresequenz codiert das A.t.-OK1 Protein. 25 SEQ ID No 2 enthält im Vergleich mit der Sequenz der Datenbank (Acc.: NP 198009.1, NCBI) Anweichungen. Die in SEQ ID No 2 enthaltenen Aminosäuren 519 bis 523 (WRLCE) und 762 bis 766 (VRARQ) sind nicht in der Sequenz, welche in der

Datenbank vorliegt (ACC.: NP 198009.1) enthalten. Gegenüber der Version 2 der Datenbanksequenz (Acc.: NP 198009.2) enthält die in SEQ ID NO 2 dargestellte

Aminosäuresequenz noch die zusätzlichen Aminosäuren 519 bis 523 (WRLCE).

2. Klonierung einer cDNA, die das identifizierte OK1 Protein codiert

Die A.t.-OK1 cDNA wurde mit Hilfe reverser PCR unter Verwendung von mRNA, isoliert aus Blättern von *Arabidopsis thaliana* isoliert. Dazu wurde ein cDNA Strang mittels reverser Transkriptase SuperScriptTM First-Strand Synthesis System for RT PCR, Invitrogen Prod. Nr.: 11904-018) synthetisiert, welcher dann unter Verwendung von DNA Polymerase amplifiziert (Expand High Fidelity PCR Systems, Roche Prod. Nr.: 1732641) wurde. Das erhaltene Amplifikat dieser PCR Reaktion wurde in den Vektor pGEM®-T (Invitrogen Prod. Nr.: A3600) kloniert. Das erhaltene Plasmid wird mit A.t.-OK1-pGEM bezeichnet, die das A.t.-OK1 Protein codierende cDNA Sequenz wurde ermittelt und ist unter SEQ ID NO. 1 dargestellt.

Die unter SEQ ID NO 1 dargestellte Sequenz entspricht nicht der Sequenz, die in der Datenbank enthalten ist. Diese wurde oben bereits für die Aminosäuresequenz, codierend ein A.t.-OK1 Protein diskutiert.

Verwendete Bedingungen für die Amplifikation der cDNA codierend das A.t.-OK1

Erststrangsynthese:

5

10

15

20

25

Es wurden die vom Hersteller angegebenen Bedingungen und Puffer verwendet. Der Reaktionsansatz für die Erststrangsynthese enthielt außerdem folgende Substanzen:

3 μg Gesamt-RNA

5 μM 3'-Primer (OK1rev1: 5'-GACTCAACCACATAACACACAAAGATC)

0,83 µM dNTP Mix

Der Reaktionsansatz wurde für 5 Minuten bei 75°C inkubiert und anschließend auf Raumtemperatur abgekühlt.

Anschließend wurden 1st Strand buffer, RNase Inhibitor und DTT zugegeben und für 2 Minuten bei 42°C inkubiert, bevor 1 µL Superscript RT DNA Polymerase zugegeben wurde und der Reaktionsansatz für 50 Minuten bei 42°C inkubiert wurde.

Bedingungen Für die Amplifikation des Erststranges mittels PCR:

1 μL des Reaktionsansatzes der Erststrangsynthese

0.25 μM 3'Primer (OK1rev2: 5'- TGGTAACGAGGCAAATGCAGA)

0.25 μM 5'Primer (OK1fwd2: 5'- ATCTCTTATCACACCACCTCCAATG)

Reaktionsbedingungen:

Schritt 1 95°C 2 min

5 Schritt 2 94°C 20 sec

Schritt 3 62°C 30 sec (Temp. pro Zyklus -0.67°C) (30 s), 68°C (

Schritt 4 68°C 4 Minuten

Schritt 5 94°C 20 sec

Schritt 6 56°C 30 sec

10 Schritt 7 68°C 4 Minuten

15

20

25

Schritt 8 68°C 10 Minuten

Zunächst wurde die Reaktion nach den Schritten 1 bis 4 durchgeführt. Zwischen Schritt 4 und Schritt 2 folgten 10 Wiederholungen (Zyklen), wobei die Temperatur des Schrittes 3 nach jedem Zyklus um 0,67°C verringert wurde. Anschließend erfolgte die Reaktion nach den in Schritten 5 bis 8 angegebenen Bedingungen. Zwischen Schritt 7 und Schritt 5 folgten 25 Wiederholungen (Zyklen), wobei die Zeit des Schrittes 7 je Zyklus um 5 sec verlängert wurde. Nach erfolgter Reaktion wurde die Reaktion auf 4°C gekühlt.

3. Herstellung eines Vektors, zur rekombinanten Expression der cDNA des OK1 Proteins

Die Sequenz codierend das OK1 Protein aus *Arabidopsis thaliana* wurde nach Amplifikation mittels PCR durch Verwendung des Plasmides A.t.-OK1-pGEM als Template unter Verwendung der Gateway Technologie (Invitrogen) zunächst in den Vekor pDONOR[™] 201 (Invitrogen Prod. Nr.: 11798-014) kloniert. Anschließend wurde die codierende Region des OK1 Proteins aus dem erhaltenen Vektor durch sequenzspezifische Rekombination in den Expressionsvektor pDEST17[™] (Invitrogen Prod. Nr.: 11803-014) kloniert. Der erhaltene Expressionsvektor wird mit A.t.-OK1-

pDEST™17 bezeichnet. Durch die Klonierung entstand eine translationale Fusion der das A.t-OK1 Protein codierenden cDNA mit in dem Expressionssvektor pDEST™17 vorliegenden Nucleotiden. Die aus dem Vektor pDEST™17 stammenden Nucleotide, die mit der cDNA codierend das A.t.-OK1 Protein translational fusioniert sind, codieren 21 Aminosäuren. Diese 21 Aminosäuren umfassen u.a. das Start Codon (ATG) und einen so genannten His-tag (6 Histidinreste direkt hintereinander). Nach Translation dieser translational fusionierten Sequenzen entsteht dadurch ein A.t.-OK1 Protein, welches an seinem N-terminus die zusätzlichen 21 Aminosäuren, codiert durch Nucleotide, stammend aus dem Vektor aufweist. Das aus diesem Vektor resultierende rekombinante A.t.-OK1-Protein enthält daher 21, aus dem Vektor pDEST™17 stammende, zusätzliche Aminosäuren an seinem N-Terminus.

4. Heterologe Expression des OK1 Proteins in E. coli

10

15

20

25

Der nach Beispiel 3 erhaltene Expressionsvektorektor A.t.-OK1-pDEST™17 wurde in den *E. coli* Stamm BL21 Star™ (DE3) (Invitrogen, Prod. Nr. C6010-03) transformiert. Eine Beschreibung diese Expressionssystems ist bereits weiter oben (siehe Punkt 3., Allgemeine Methoden) erfolgt. Aus der Transformation resultierende Bakterienklone, enthaltend den Vektor A.t.-OK1-pDEST™17, dienten zunächst zur Herstellung einer Vorkultur, die anschließend zur Beimpfung einer Hauptkultur verwendet wurde (siehe Punkt 3.c), Allgemeine Methoden). Vorkultur und Hauptkultur wurden jeweils bei 30°C unter Schütteln (250 rpm) inkubiert. Nachdem die Hauptkultur eine OD₅₀₀ von ca. 0,8 erreicht hatte wurde die Expression des rekombinanten A.t.-OK1 Proteins durch Zugabe von IPTG (Isopropyl-beta-D-thiogalactopyranosid)™ bis zu einer Endkonzentration von 1 mM induziert. Nach Zugabe von IPTG wird die Hauptkultur bei 30°C unter Schütteln (250 rpm) inkubiert, bis eine OD₅₀₀ von ca. 1,8 erreicht war. Anschließend wurde die Hauptkultur für 30 Minuten auf Eis gekühlt, bevor die Zellen der Hauptkultur durch Zentrifugation (10 Minuten bei 4.000xg und 4°C) vom Kulturmedium abgetrennt wurden.

5. Reinigung des rekombinant exprimierten OK1 Proteins

Die Reinigung und Aufkonzentration des A.t.-OK1 Proteins aus Zellen, erhalten nach Beispiel 4, wurde nach dem unter Punkt 4, Allgemeine Methoden beschriebenen Verfahren durchgeführt.

5

10

15

6. Nachweis von Stärke phosphorylierender Aktivität des OK1 Proteins

Der Nachweis der Stärke phosphorylierenden Aktivität des A.t.-OK1 Proteins erfolgte nach dem unter Punkt 11, Allgemeine Methoden beschriebenen Verfahren. Dabei wurden jeweils 5 µg von nach Beispiel 5 hergestelltem, gereinigtem A.t.-OK1 Protein, in einem Ansatz A mit 5 mg Stärke, isoliert aus einer sex1-3 Mutante von Arabidopsis thaliana nach Beispiel 1 b) und in einem Ansatz B mit 5 mg Stärke, erhalten durch enzymatische Phosphorylierung nach Beispiel 1 c) in ieweils 500 Phosphorylierungspuffer enthaltend 0,05 (³³P) markiertes, mM radioaktiv randomisiertes ATP (insgesamt 1.130.00 cpm, ca. 0,55 μCi) für 30 Mimnuten bei Raumtemperatur unter Schütteln inkubiert. Als Kontrolle diente ein Ansatz C, welcher dem Ansatz B entsprach, jedoch kein OK1 Protein enthielt, ansonsten aber in gleicher Weise behandelt wurde, wie die Ansätze A und B. Für alle Ansätze (A, B, C) wurden jeweils zwei voneinander unabhängige Versuche durchgeführt.

Mittels Verwendung eines Scintillationszählers wurden die Stärken aus den Ansätzen A, B, und C auf das Vorliegen von radioaktiv markiertem Phosphat hin untersucht (siehe Punkt 11 b), Allgemeine Methoden). Die Ergebnisse sind in Tabelle 1 und in Fig. 3 dargestellt.

	Gemesse Radioakti	ene ivität [cpm]
	Versuch 1	Versuch 2
Ansatz A (nicht-phosphorylierte Stärke + OK1)	42	47
Ansatz B (phosphorylierte Stärke + OK1)	7921	8226
Ansatz C (phosphorylierte Stärke ohne Protein)	56	53

Tabelle 1: Nachweis einer Stärke phosphorylierenden Aktivität des Ok1 Proteins

Aus den erhaltenen Ergebnissen ist erkennbar, dass das OK1 Protein keine Phosphatgruppen von ATP auf Stärke überträgt, wenn nicht-phosphorylierte-Stärke als Substrat angeboten wird, da der in cpm gemessene Anteil der durch ein OK1 Protein auf nicht-phosphorylierte-Stärke übertragenen Phosphatgruppen den Anteil der radioaktiv markierten Phosphatgruppen in Ansatz C (Kontrolle) nicht übersteigt. Wird hingegen P-Stärke als Substrat angeboten, ist der in cpm gemessene Anteil an radioaktiven Phosphatgruppen, welcher von ATP auf P-Stärke übertragen wird, signifikant höher. Daraus ist ersichtlich, dass das OK1 Protein P-Stärke als Substart benötigt und dass nicht-phosphorylierte-Stärke nicht als Substart von dem OK1 Protein akzeptiert wird.

10

15

Wird der oben dargestellte Versuch mit spezifisch in gamma-Position mit ³³P markiertem ATP durchgeführt, so kann kein Einbau von radioaktiv markiertem Phosphat in die Stärke festgestellt werden. Daraus ergibt sich, dass der beta-Phosphatrest des ATP von einem OK1 Protein auf Stärke übertragen wird. Die Ergebnisse eines solchen Versuches sind in Fig. 6 dargestellt.

7. Nachweis der Autophosphorylierung

Der Nachweis der Autophosphorylierung des A.t.-OK1 Proteins erfolgte mittels der weiter oben beschriebenen Methode (siehe Punkt 12, Allgemeine Methoden). Dabei wurden 50 µg gereinigtes A.t.-OK1 Protein mit radioaktiv markiertem, randomisiertem ATP in 220 µl Phosphorylierungspuffer (siehe oben, Punkt 12 d), Allgemeine Methoden) bei Raumtemperatur für 60 Minuten unter Schütteln inkubiert. Anschließend wurden den Inkubationsansätzen jeweils 100 µl entnommen und in vier frische Reaktionsgefäße überführt. In Reaktionsgefäß 1 wurde die Reaktion durch Zugabe von je 40 µl 0,11M EDTA gestoppt. Reaktionssgefäß 2 wurde bei 95°C für 5 Minuten inkubiert. Zu Reaktionsgefäß 3 wurde HCI bis zu einer Endkonzentration von 0,5 M zugegeben und zu Reaktionsgefäß 4 wurde NaOH bis zu einer Endkonzentration von 0,5 M zugegeben. Die Reaktionsgefäße 3 und 4 wurden jeweils für 25 Minuten bei 30°C inkubiert. Anschließend wurden jeweils 50 µl der Reaktionsgefäße 1, 2, 3 und 4 entnommen, mit SDS Probenpuffer versetzt und mittels SDS-Acrylamidgelelektrophorese (7,5%iges Acrylamidgel) aufgetrennt. Dazu 15 wurden Proben der Reaktionsgefäße auf jeweils zwei identische Acrylamidgele aufgetragen. Eines der nach erfolgter Elektrophorese erhaltenen Gele wurde einer Autoradiographie unterzogen, während das zweite Gel mit Comassie Blau gefärbt wurde.

In dem mit Comassie Blau gefärbten Gel (siehe Fig. 2A)) ist deutlich zu erkennen, dass die Behandlung mit 0,5 M NaOH zu einem Abbau des OK1 Proteins führt. Das OK1 Protein ist daher als labil gegenüber NaOH zu bezeichnen. Inkubation bei 30°C, 95°C und mit 0,5 M HCl zeigen, dass das OK1 Protein unter den genannten Inkubationsbedingungen relativ stabil ist. Dieses ist daraus zu schließen, dass bei diesen Inkubationsbedingungen jeweils etwa gleiche Mengen OK1 Protein nach Comassie Blau Färbung im betreffenden Gel nachgewiesen werden können.

In der Autoradiographie (siehe Abb. 2B)) ist durch Vergleich mit bei 30°C inkubiertem phosphoryliertem OK1 Protein zu erkennen, dass eine Inkubation des phosphorylierten OK1 Proteins bei 95°C zu einer deutlichen Reduzierung des Phosphates, welches an das OK1 Protein gebunden ist, führt. Die Bindung zwischen

30

dem Phosphatrest und einer Aminosäure des OK1 Proteins ist daher als Hitzelabil zu bezeichnen. Weiterhin ist eine leichte Abnahme des an das OK1 Protein gebundenen Phosphates ebenfalls bei Inkubation mit 0,5 M HCl und 0,5 M NaOH im Vergleich mit bei 30°C inkubiertem phosphoryliertem OK1 Protein zu beobachten. Wird die Tatsche berücksichtigt, dass die Menge des OK1 Proteins in der Autoradiographie nach Behandlung mit 0,5 M NaOH wegen der Labilität des OK1 Proteins gegenüber NaOH wesentlich geringer ist, als in den mit Hitze und Säure behandelten Proben, so kann geschlossen werden, dass die Bindung zwischen dem Phosphatrest und einer Aminosäure des OK1 Proteins relativ stabil gegenüber Basen ist. Da die mit Säure behandelte Probe etwa gleiche Proteinmengen wie die bei 30°C und bei 95°C inkubierte Probe enthält, jedoch ein signifikant geringeres Signal als die mit 30°C behandelte Probe in der Autoradiographie aufweist, ist davon auszugehen, dass auch saure Inkubationsbedingungen die Bindung zwischen einem Phosphatrest und einer Aminosäure des OK1 Proteins zu einem gewissen Maße spalten. Daher konnte in den durchgeführten Versuchen auch eine Labilität der Bindung zwischen einem Phosphatrest und einer Aminosäure des OK1 Proteins festgestellt werden. Die Labilität gegenüber Säuren ist dabei jedoch wesentlich weniger ausgeprägt als die Labilität gegenüber Hitze.

10

15

20

25

30

Bindungen zwischen der Aminosäure Histidin und Phosphat sind Hitzelabil, Säurelabil aber Basestabil (Rosenberg, 1996, Protein Analysis and Purification, Birkhäuser, Boston, 242-244). Die oben beschriebenen Ergebnisse sind daher ein Hinweis darauf, dass durch Autophosphorylierung eines OK1 Proteins ein Phosphohistidin entsteht.

Wird rekombinant exprimiertes OK1 Protein wie oben beschrieben mit spezifisch in keine ATP inkubiert. SO kann 33P markiertem gamma-Position mit Autophosphorylierung festgestellt werden. Fig. 5 A) zeigt die Menge an Protein, die nach den betreffenden Inkubationsschritten mittels Western Blot Analyse in dem jeweiligen Reaktionsansatz noch nachgewiesen werden kann. Fig. 5 B) zeigt eine Autoradiographie von Protein aus den einzelnen Reaktionsansätzen. Es ist zu erkennen, dass bei Verwendung von spezifisch in der gamma-Position markiertem ATP keine Autophosphorylierung des OK1 Proteins auftritt, während bei Verwendung

von randomisiertem ATP eine Autophosphorylierung nachgewiesen werden kann. Dieses bedeutet, dass bei der Autophosphorylierung eines OK1 Proteins der Phosphatrest der beta-Position des ATP kovalent an eine Aminosäure des OK1 Proteins gebunden wird.

5

8. Nachweis der von einem OK 1 Protein phosphorylierten C-Atom-Positionen der Glucosemoleküle von Stärke

a) Herstellung von phosphorylierter-Stärke

Phosphorylierte Stärke wurde nach Punkt 7, Allgemeine Methoden hergestellt. Es wurden dazu in einem Ansatz A 5 mg nicht phosphorylierte Stärke, isoliert aus 10 Blättern einer sex1-3 Mutante von Arabidopsis thaliana mit 25 µg gereinigtem A.t.-OK1 Protein und in einem zweiten Ansatz B 5 mg in vitro phosphorylierter-Stärke ursprünglich isoliert aus Blättern einer sex1-3 Mutante von Arabidopsis thaliana) mit 5 μg gereinigtem R1 Protein eingesetzt. Die Reaktion erfolgte jeweils in 500 μl Phosphorylierungspuffer, der jeweils ³³P markiertes ATP (ca. 2,5 x 10⁶ cpm) enthielt, 15 durch Inkubation bei Raumtemperatur für 1 Stunde unter Schütteln. Zusätzlich wurde ein Kontrollansatz, welcher 5 mg Stärke, isoliert aus Blättern einer sex1-3 Mutante von Arabidopsis thaliana und den genannten Phosphorylierungspuffer, jedoch kein Protein enthielt, verwendet. Der Kontrollansatz wurde genauso behandelt, wie die Ansätze A und B. Die einzelnen Reaktionen wurden durch Zugabe von jeweils 125 µl 20 10% SDS gestoppt und mit je 900 µl einmal mit 2% SDS, fünfmal mit 2 mM ATP und zweimal mit H₂O gewaschen. Nach jedem Waschschritt erfolgte eine Zentrifugation (jeweils 2 Minuten in einer Eppendorf Tischzentrifuge bei 13.000 rpm). Die erhaltenen Stärkepellets wurden jeweils in 1 ml H₂O resuspendiert und 100 µl jedes Ansatzes wurden nach Zugabe von 3 ml Scintillationscocktail (Ready SafeTM, 25 BECKMANN) versetzt und anschließend mit Hilfe eines Scintillationszählers (LS 6500 Multi-Purpose Scintillation Counter, BECKMANN COULTER™) vermessen.

Die Messung ergab folgende Ergebnisse:

Kontrolle:

63 cpm/100 μL

630 cpm/1000 µl

Ansatz A (OK1):

1351 cpm/100 μl

13512 cpm/1000 µl

Ansatz B (R1):

3853 cpm/100 µl

38526 cpm/1000 µl

5

10

15

20

b) Totalhydrolyse der P-Stärke

Die nach Schritt a) erhaltenen Suspensionen der Ansätze A, B und C wurden erneut zentrifugiert (5 Minuten in einer Eppendorf Tischzentrifuge bei 13.000 rpm), die erhaltenen Pellets in 90 μl 0,7 M HCl (Baker, zur Analyse) resuspendiert und anschließend für 2 Stunde bei 95°C inkubiert. Anschließend wurden die Ansätze A, B und C erneut zentrifugiert (5 Minuten in einer Eppendorf Tischzentrifuge bei 13.000 rpm), und der Überstand in ein neues Reaktionsgefäß überführt. Sedimentierte Rückstände der Ansätze wurden in jeweils 100 μl H₂O resuspendiert und nach Zugabe von je 3 ml Scintillationscocktail (Ready SafeTM, BECKMANN) mit Hilfe eines Scintillationszählers (LS 6500 Multi-Purpose Scintillation Counter, BECKMANN COULTERTM) vermessen. In keinem der Rückstände konnten signifikante Mengen an Radioaktivität nachgewiesen werden, was bedeut, dass sich alle mit radioaktivem Phosphat markierten Hydrolyseprodukte im Überstand befinden.

Danach erfolgte die Neutralisation der einzelnen Überstände, enthaltend die Hydrolyseprodukte, durch Zugabe von jeweils 30 µl 2 M NaOH (die Menge der zur Neutralisation benötigten Menge von NaOH wurde vorher an Blindproben ausgetestet): Die neutralisierten Hydrolyseprodukte wurden auf einen 10 kDa Microcon-Filter, der vorher zweimal mit je 200 µl H₂O gespült wurde, gegeben und für ca. 25 Minuten bei 12.000 rpm in einer Eppendorf Tischzentrifuge zentrifugiert. Von dem erhaltenen Filtrat (jeweils ca. 120 µl) wurden je 10 µl abgenommen, die nach Zugabe von je 3 ml Scintillationscocktail (Ready SafeTM, BECKMANN) mit Hilfe eines Scintillationszählers (LS 6500 Multi-Purpose Scintillation Counter, BECKMANN COULTERTM) vermessen wurden.

Die Bestimmung der in den einzelnen Ansätzen vorliegenden Aktivität ergab dabei folgende Ergebnisse:

Ansatz A (OK1): 934 cpm/10 μl 11.208 cpm/120 μl 93 cpm/μl

Ansatz B (R1): 2518 cpm/10 μl 30.216 cpm/120 μl 252 cpm/μl

5

10

20

25

c) Auftrennung der Hydrolyseprodukte

Die Auftrennung der nach Schritt b) erhaltenen Hydrolyseprodukte wurde mittels HPAE unter Verwendung einer Dionex Anlage unter den oben angegebnen Bedingungen (siehe (Allgemeine Methoden Punkt 13 c)) durchgeführt.. Die Proben zur Auftrennung der filtrierten Überstände der Ansätze A und B, erhalten nach Schritt b) waren dazu wie folgt zusammengesetzt:

Ansatz A (OK1): 43 μ l des nach Schritt b) erhaltenen Überstand des Ansatzes A (entspricht ca. 4.000 cpm), 32 μ l H₂O, 2,5 μ l 2,5 mM Glucose-6-Phosphat und 2,5 μ l 5 mM Glucose-3-Phosphat (Σ Volumen = 80 μ l).

Ansatz B (R1): 16 μl des nach Schritt b) erhaltenen Überstand des Ansatzes B (entspricht ca. 4.000 cpm), 59 μl H_2O , 2,5 μl 2,5 mM Glucose-6-Phosphat und 2,5 μl 5 mM Glucose-3-Phosphat (Σ Volumen = 80 μl).

Jeweils 60 µl, enthaltend ca. 3.000 cpm, der entsprechenden Proben wurden zur Auftrennung mittels HPAE injiziert. Die Durchführung der HPAE erfolgte nach den unter Punkt 23 c) angegebnen Bedingungen. Die Elutionspuffer wurden nach Passage der HPAE-Säule in Fraktionen von je 1 ml aufgesammelt. Das Aufsammeln der Fraktionen wurde 10 Minuten nach Injektion der Probe begonnen. Anhand des erhaltenen Signals des eingesetzten PAD Detektors konnte die Elution von Glucose-6-Phosphat der Fraktion 15 und die die Elution von Glucose-3-Phosphat der Fraktion 17 zugeordnet werden. Jeweils 500 µl der einzelnen Fraktionen wurden mit je 3 ml Scintillationscocktail (Ready SafeTM, BECKMANN) gemischt und anschließend mit Hilfe eines Scintillationszählers (LS 6500 Multi-Purpose Scintillation Counter, BECKMANN COULTERTM) vermessen. Für die einzelnen Fraktionen wurden folgende Meßwerte erhalten:

	Gesamt cpm je Fraktion			
	Ansatz (OK1)	AAnsatz (R1)	В	
Fr 13	8,7	3,3		
Fr 14	13,1	32,2		
Fr 15 (G6P)	207,3	1952,8		
Fr 16	399,8	112,3		
Fr 17 (G3P)	1749,2	801,6		
Fr 18	196,7	17,3		
Fr 19	6,7	18,9		
Summe	2581,5	2938,3		
Auftrag	3000,0	3000,0		
Wiederfindung	86,0%	97,9%	_	

Tabelle 4: Gemessene Menge an Radiaktivität [cpm] in einzelnen Fraktionen von Hydrolyseprodukten, erhalten durch Hydrolyse von mittels eines OK1 Proteins oder R1 Proteins phosphoryliereten Stärke.

5 Die Ergebnisse sind auch in Fig. 5 graphisch dargestellt

10

Nach von R1 Protein katalysierter Phosphorylierung von Stärke eluierten nach Hydrolyse der Stärke ca. 66% des radioaktiv markierten Phosphates, bezogen auf das gesamte gemessene radioaktive Phosphat in den analysierten Fraktionen, mit der Fraktion, die Glucose-6-Phosphat als Standard enthielt und ca. 27% mit der Fraktion, die Glucose-3-Phosphat als Standard enthielt. Nach von OK1 Protein katalysierter Phosphorylierung von Stärke, eluierten nach Hydrolyse der Stärke ca. 67% des radioaktiv markierten Phosphates, bezogen auf das gesamte gemessene radioaktive Phosphat in den analysierten Fraktionen, mit der Fraktion, die Glucose-3-

Phosphat als Standard enthielt und ca. 8% mit der Fraktion, die Glucose-6-Phosphat als Standard enthielt. Daraus kann geschlossen werden, dass Glucosemoleküle der Stärke von R1 Proteinen bevorzugt in C-6-Position phosphoryliert werden, während von OK1 Proteinen Glucosemoleküle der Stärke bevorzugt in C-3-Position phosphoryliert werden.

9. Identifizierung eines OK1 Proteins in Reis

10

15

20

Durch Verwendung der unter den Punkten 1 bls 13, Allgemeine Methoden beschrieben Verfahren konnte auch ein Protein aus *Oryza sativa* (Varietät M202) identifiziert werden, welches einen Phosphatrest von ATP auf P-Stärke überträgt. Das Protein wurde mit O.s.-OK1 bezeichnet. Nicht-phosphorylierte-Stärke wird von dem O.s.-OK1 Protein nicht als Substart verwendet, d.h. auch das O.s.-OK1 Protein benötigt P-Stärke als Substrat. Die das identifizierte O.s.-OK1 Protein codierende Nucleinsäuresequenz ist unter SEQ ID NO 3 und die das O.s.-OK1 Protein codierende Aminosäuresequenz ist unter SEQ ID NO. 4 dargestellt. Die unter SEQ ID NO 4 dargestellte Aminosäuresequenz codierend das O.s.-OK1 Protein weißt eine Identität von 57% mit der unter SEQ ID NO 2 dargestellten Aminosäuresequenz codierend das A.t.-OK1 Protein auf. Die unter SEQ ID NO 3 dargestellte Nucleinsäuresequenz codierend das O.s.-OK1 Protein weißt eine Identität von 61% mit der unter SEQ ID NO 1 dargestellten Nucleinsäuresequenz, codierend das A.t.-OK1 Protein auf.

Herstellung des Plasmides pMI50 enthaltend die Nucleinsäuresequenz codierend ein OK1 Protein aus *Oryza sativa*

25 Der Vektor pMI50 enthält ein DNA-Fragment welches das vollständige OK1 Protein aus Reis der Varietät M202 kodiert.

Die Amplifikation der DNA aus Reis erfolgte in fünf Teilschritten.

Der Teil des offenen Leserasters von Position -11 bis Position 288 der unter SEQ DIE NO 3 angegebnen Sequenz wurde mit Hilfe von Reverser Transkriptase und der

Polymerase Kettenreaktion unter Verwendung der synthetischen Oligonukleotide Os_ok1-R9 (GGAACCGATAATGCCTACATGCTC) und Os_ok1-F6 (AAAACTCGAGGAGGATCAATGACGTCGCTGCGGCCCCTC) als Primer auf RNA von unreifen Reissamen amplifiziert. Das amplifizierte DNA-Fragment wurde in den Vektor pCR2.1 (Invitrogen Katalognummer K2020-20) kloniert. Das erhaltene Plasmid wurde mit pML123 bezeichnet.

Der Teil des offenen Leserasters von Position 250 bis Position 949 der unter SEQ DIE NO 3 angegebnen Sequenz wurde mit Hilfe von Reverser Transkriptase und der Polymerase Kettenreaktion unter Verwendung der synthetischen Oligonukleotide 10 Os_ok1-F4 (CCAGGTTAAGTTTGGTGAGCA) und Os_ok1-R6 (CAAAGCACGATATCTGACCTGT) als Primer auf RNA von unreifen Reissamen amplifiziert. Das amplifizierte DNA-Fragment wurde in den Vektor pCR2.1 (Invitrogen Katalognummer K2020-20) kloniert. Das erhaltene Plasmid wurde mit pML120 bezeichnet.

Der Teil des offenen Leserasters von Position 839 bis Position 1761 der unter SEQ DIE NO 3 angegebnen Sequenz wurde mit Hilfe von Reverser Transkriptase und der Polymerase Kettenreaktion unter Verwendung der synthetischen Oligonukleotide Os_ok1-F7 (TTGTTCGCGGGATATTGTCAGA) und Os_ok1-R7 (GACAAGGGCATCAAGAGTAGTATC) als Primer auf RNA von unreifen Reissamen amplifiziert. Das amplifizierte DNA-Fragment wurde in den Vektor pCR2.1 (Invitrogen Katalognummer K2020-20) kloniert. Das erhaltene Plasmid wurde mit pML121 bezeichnet.

Der Teil des offenen Leserasters von Position 1571 bis Position 3241 der unter SEQ DIE NO 3 angegebnen Sequenz wurde mit Hilfe von Reverser Transkriptase und der Polymerase Kettenreaktion unter Verwendung der synthetischen Oligonukleotide (ATGATGCGCCTGATAATGCT) und Os ok1-R4 Os_ok1-F8 (GGCAAACAGTATGAAGCACGA) als Primer auf RNA von unreifen Reissamen amplifiziert. Das amplifizierte DNA-Fragment wurde in den Vektor pCR2.1 (Invitrogen erhaltene Das Plasmid wurde mit K2020-20) kloniert. Katalognummer pML119bezeichnet. 30

Der Teil des offenen Leserasters von Position 2777 bis Position 3621 wurde mit Hilfe der Polymerase Kettenreaktion unter Verwendung der synthetischen Oligonukleotide Os_ok1-F3 (CATTTGGATCAATGGAGGATG) und Os_ok1-R2 (CTATGGCTGTGGCCTGTTTGCA) als Primer auf genomischer DNA von Reis amplifiziert. Das amplifizierte DNA-Fragment wurde in den Vektor pCR2.1 (Invitrogen Katalognummer K2020-20) kloniert. Das erhaltene Plasmid wurde mit pML122 bezeichnet.

5

Die Zusammenklonierung der Teilstücke des offenen Leserasters von OK1 erfolgte folgendermaßen.

- 10 Ein 700 Basenpaare langes *Apa*l-Fragment aus pML120, einen Teil des offenen Leserasters von OK1 enthaltend wurde in die *Apa*l-Schnittstelle von pML121 kloniert. Das erhaltene Plasmid wurde mit pMl47 bezeichnet.
- Ein 960 Basenpaare langes Fragement enthaltend die für OK1 codierenden Bereiche der Vektoren aus pML120 und pML123 wurde mittels Polymerase Kettenreaktion amplifiziert. Dabei wurden die Primer Os_ok1-F4 (s. o.) und Os_ok1-R9 (s. o.) je in einer Konzentration von 50 nm und die Primer Os_ok1-F6 und Os_ok1-R6 je in einer Konzentration von 500 nm eingesetzt. Das amplifizierte DNA-Fragment wurde in den Vektor pCR2.1 (Invitrogen Katalognummer K2020-20) kloniert. Das erhaltene Plasmid wurde mit pMI44 bezeichnet.
- 20 Ein 845 Basenpaare langes Fragment aus pML122 wurde zur Einführung einer Xhol-Schnittstelle nach dem Stop-Codon mit den Primern Os_ok1-F3 (s. o.) und Os_ok1-R2Xho (AAAACTCGAGCTATGGCTGTGGCCTGCTTTGCA) reamplifiziert und in den Vektor pCR2.1 (Invitrogen Katalognummer K2020-20) kloniert. Das erhaltene Plasmid wurde mit t pMI45 bezeichnet.
- 25 Ein 1671 Basenpaare langes Fragment enthaltend einen Teil des offenen Leserasters von OK1 wurde aus pML119 durch Verdau mit den Restriktionsenzymen Spel und Pstl erhalten. Das Fragement wurde in pBluskript II SK+ (Genbank Acc.: X52328) kloniert. Das erhaltene Plasmid wurde mit pMI46 bezeichnet.
- Ein 1706 Basenpaare langes Fragment enthaltend einen Teil des offenen 30 Leserasters von OK1 wurde mit den Restriktionsenzymen *Spe*l und *Xho*l aus pMI46

herausgeschnitten und in den Vektor pMl45 kloniert, der mit denselben Restriktionsenzymen geschnitten worden war. Das erhaltene Plasmid wurde mit pMl47 bezeichnet.

Ein 146 Basenpaare langes Fragment enthaltend einen Teil des offenen Leserasters von OK1 wurde mit den Restriktionsenzymen *Afl*II/*Not*I aus pMI43 herausgeschnitten und in den Vektor pMI44 kloniert, der mit denselben Restriktionsenzymen geschnitten worden war. Das erhaltene Plasmid wurde mit pMI49 bezeichnet.

5

10

20

25

Ein 1657 Basenpaare langes Fragment enthaltend einen Teil des offenen Leserasters von OK1 wurde mit den Restriktionsenzymen *Not*I und *Nar*I aus dem Vektor pMI49 herausgeschnitten und in den Vektor pMI47 kloniert, der mit denselben Restriktionsenzymen geschnitten worden war. Das erhaltene Plasmid wurde mit pMI50 bezeichnet und enthält die gesamte codierende Region des in Reis identifizioerten OK1 Proteins.

15 10. Herstellung eines Antikörpers, der ein OK1 Protein spezifisch erkennt

Als Antigen wurde ca. 100 µg gereinigtes A.t.-OK1 Protein mittels SDS Gelelektrophorese aufgetrennt, die Proteinbande enthaltend das A.t.-OK1 Protein ausgeschnitten und an die Firma EUROGENTEC S.A. (Belgien) verschickt, die die Herstellung des Antikörpers im Auftrag ausführte. Zunächst wurden die Preimmunseren von Kaninchen dahingehend geprüft, ob sie evtl. bereits vor der Immunisierung mit rekombinantem OK1 ein Protein aus einem A. t. Gesamtextrakt erkennen. Die Preimmunseren zweier Kaninchen erkannten im Bereich 100-150 kDa keine Proteine und wurden daraufhin für die Immunisierung ausgewählt. Pro Kaninchen wurden 4 Injektionen à 100 µg Protein durchgeführt (Tag 0, 14, 28, 56). Je Kaninchen wurden 4 Blutentnahmen durchgeführt: (Tag 38, Tag 66, Tag 87 und die Endblutung). Serum, erhalten nach der ersten Blutung zeigte bereits eine spezifische Reaktion mit OK1 Antigen im Western-Blot. Für alle weiteren Versuche wurde jedoch die letzte Blutung eines Kaninchens verwendet.

11. Herstellung transgener Reispflanzen, die eine verringerte Aktivität eines OK1 Proteins aufweisen

- a) Herstellung eines Konstruktes zur Inhibierung des OK1 Proteins in Reis mittels RNAi Technologie
- Das Plasmid pML125, welches zur Transformation von Reispflanzen verwendet wurde, wurde durch spezifische Rekombination der Plasmide pML124 und plR115 unter Verwendung des GartewayTM Klonierungssystems (Invitrogen) erhalten.

pML124 wurde erhalten, indem ein 359 Basenpaare langes DNA-Fragment aus pML119 (siehe oben, Beispiel 9), enthaltend einen Teil des offenen Leserasters welcher für das OK1-Protein aus Reis codiert, in den mit *Eco*RI geschnittenen Vektor pENTR-1A (Invitrogen, Produktnummer 11813-011) kloniert wurde.

Das Plasmid pIR115 basiert auf den Plasmiden pGSV71, pIR94, enthaltend den Promoter des Globulin-Gens aus Reis, pIR87 enthaltend das Intron 1 des Gens codierend für Alkoholdehydrogenase aus Mais und die "Gateway reading frame cassette A" (RfA) aus dem "Vector conversion System" (Invitrogen Produktnummer 11828-019).

15

pGSV71 ist ein Derivat des Plasmides pGSV7, welches sich vom intermediären Vektor pGSV1 ableitet. pGSV1 stellt ein Derivat von pGSC1700 dar, dessen Konstruktion von Cornelissen und Vanderwiele (Nucleic Acid Research 17, (1989), 19-25) beschrieben wurde. pGSV1 wurde aus pGSC1700 erhalten, durch Deletion des Carbenicillin Resistenzgen, sowie Deletion der T-DNA-Sequenzen der TL-DNA-Region des Plasmides pTiB6S3.

pGSV7 enthält den Replikationsursprung des Plasmides pBR322 (Bolivar et al., Gene 2, (1977), 95-113) sowie den Replikationsursprung des *Pseudomonas-* Plasmides pVS1 (Itoh et al., Plasmid 11, (1984), 206). pGSV7 enthält außerdem das selektierbare Markergen *aadA*, aus dem Transposon Tn1331 aus *Klebsiella pneumoniae*, welches Resistenz gegenüber den Antibiotika Spectinomycin und

Streptomycin verleiht (Tolmasky, Plasmid 24 (3), (1990), 218-226; Tolmasky and Crosa, Plasmid 29(1), (1993), 31-40)

Das Plasmid pGSV71 wurde erhalten durch Klonierung eines chimären *bar*-Gens zwischen die Borderregionen von pGSV7. Das chimäre *bar*-Gen enthält die Promotorsequenz des Blumenkohlmosaikvirus zur Initiation der Transkription (Odell et al., Nature 313, (1985), 180), das *bar*-Gen aus *Streptomyces hygroscopicus* (Thompson et al., Embo J. 6, (1987), 2519-2523) und den 3'-untranslatierten Bereich des Nopalinsynthasegens der T-DNA von pTiT37, zur Termination der Transkription und Polyadenylierung. Das *bar*-Gen vermittelt Toleranz gegenüber dem Herbizid Glufosinat-Ammonium.

5

10

15

30

Das Plasmid plR94 wurde erhalten indem der Promoter des Globulin-Gens aus Reis durch eine Polymerase Kettenreaktion (30 x 20 sec 94 °C, 20 sec 62 °C, 1 min 68 °C, 4 mM Mg₂SO₄) mit den Primern glb1-F2 (AAAACAATTGGCGCCTGGAGGGAGGAGA) und glb1-R1 (AAAACAATTGATGATCAATCAGACAATCACTAGAA) auf genomischer DNA von Reis der Varietät M202 mit High Fidelity Taq Polymerase (Invitrogen, Katalognummer 11304-011) amplifiziert und in pCR2.1 (Invitrogen Katalognummer K2020-20) kloniert wurde.

Das Plasmid plR87 wurde erhalten indem das Intron 1 des Gens codierend für den Primern Adh(i)-1 mit aus Mais 20 Alkoholdehydrogenase Adh(i)-2 und (TTTTCTCGAGGTCCGCCTTGTTTCTCCT) (TTTTCTCGAGCTGCACGGGTCCAGGA) auf genomischer DNA von Mais der amplifiziert wurde. Das Produkt der Polymerase Kettenreaktion (30 x 30 sec 94 °C, 30 sec 59 °C, 1 min 72 °C, 2,5 mM MgCl₂) wurde mit dem Restriktionsenzym Xhol verdaut und in den Vektor pBluescript II SK+ (Genbank # X52328) kloniert, der mit dem gleichen 25 Enzym geschnitten worden war.

(AATTGTAAATGATATCTTAATTAAGCTTACTAGTGTTAACTCGAGCCTAGGAGCT CTGCAGCCTGCA) in den mit *Sdal* und *Munl* geschnittenen Vektor pGSV71 kloniert wurde.

Das erhaltene Plasmid plR115 wurde mit *Sdal* geschnitten, die überstehenden 3'Enden mit T4 DNA Polymerase geglättetet und ein 197 Basenpaare großes, mittels
T4 DNA-Polymerase geglättetes *HindIII I SphI* Fragment aus pBinAR (Höfgen und
Willmitzer, 1990, Plant Science 66, 221-230), enthaltend das Terminationssignal des
Octopinsynthase Gens aus *Agrobacterium tumefaciens*, eingefügt. Das erhaltene
Plasmid wurde mit plR96 bezeichnet. In den Vektor plR96 wurde ein 986
Basenpaare langes DNA Fragment aus plR94, enthaltend den Promoter des
Globulin-Gens aus Reis, kloniert. Das erhaltene Plasmid wurde mit plR103
bezeichnet.

Das Plasmid plR107 wurde erhalten indem die "RfA-Kassette" (s. o.) in das mit dem Restriktionsenzym *Eco*RV geschnittene Plasmid plR103 kloniert wurde.

Aus dem Plasmid plR87 wurde mit dem Restriktionsenzym Xhol ein 540 Basenpaare 15 langes Fragment enthaltend das Intron 1 des Gens codierend Alkoholdehydrogenase aus Mais herausgeschnitten und in den ebenfalls mit Xhol geschnittene Plasmid pIR107 kloniert. Das erhaltene Plasmid wurde mit pIR114 bezeichnet. Das Plasmid pIR115 wurde erhalten indem die "RfA-Kassette" (s. o.) in das mit Ecl136II geschnitten Plasmid pIR114 kloniert wurde. Das erhaltene Plasmid 20 wurde mit pML125 bezeichnet.

b) Transformation von Reispflanzen

Reispflanzen (Varietät M202) wurden mittels *Agrobacterium* (enthaltend das Plasmid pML125) unter Verwendung der bei Hiei et al. (1994, Plant Journal 6(2), 271-282) beschriebenen Methode transformiert.

c) Analyse der transgenen Reispflanzen

Mit Hilfe der Quantitativer RT PCR Analyse konnten Reispflanzen identifiziert werden, die eine verringerte Menge an OK1 Protein codierender mRNA aufwiesen.

12. Herstellung transgener Kartoffelpflanzen, die eine verringerte Aktivität eines OK1 Proteins aufweisen

a) Herstellung des Plasmides pBinB33-Hyg

Ausgehend vom Plasmid pBinB33 wurde das EcoRI-HindIII-Fragment umfassend den B33-Promotor, einen Teil des Polylinkers sowie den ocs-Terminator herausgeschnitten und in den entsprechend geschnittenen Vektor pBIB-Hyg ligiert (Becker, 1990, Nucl. Acids Res. 18, 203).

Das Plasmid pBinB33 wurde erhalten, indem der Promotor des Patatin Gens B33 aus Solanum tuberosum (Rocha-Sosa et al., 1989) als *Dral*-Fragment (Nukleotide – 1512 - +14) in den mit Sstl geschnittenen Vektor pUC19, dessen Enden mit Hilfe der T4 DNA-Polymerase geglättet worden waren, ligiert wurde. Daraus entstand das Plasmid pUC19-B33. Aus diesem Plasmid wurde der B33-Promotor mit EcoRI und Smal herausgeschnitten und in den entsprechend geschnittenen Vektor pBinAR (Höfgen und Willmitzer, 1990, Plant Science 66, 221-230) ligiert. Hieraus entstand der pflanzliche Expressionsvektor pBinB33.

20 b) Herstellung des Vektors A.t.-OK1-pBinB33-Hyg

Die codierende Sequenz des A.t.-OK1 Proteins wurde mit den Restriktionsendonucleasen Bsp120I und Sall aus dem Plasmid OK1-pGEM heausgeschnitten und in den mit Smal und Sall gescvhnittenen Vektor pBinB33-Hyg ligiert. Das erhaltene Plasmid wurde mit A.t.-OK1-pBinB33-Hyg bezeichnet.

c) Transformation von Kartoffelpflanzen

Agrobacterium tumefaciens (Stamm GV2260) wurde mit dem Plasmid A.t.-OK1-pBinB33-Hyg transformiert. Anschließend wurden Kartoffelpflanzen der Varietät

25

5

10

15

Désirée mit Hilfe der Agrobacterien, enthaltend das Plasmid A.t.-OK1-pBinB33-Hyg nach der bei Rocha-Sosa et al. (EMBO J. 8, (1989), 23-29) beschrieben Methode transformiert und Pflanzen regeneriert.

5 d) Analyse der transgenen Kartoffelpflanzen und der von diesen synthetisierten Stärke

Es konnten mittels Quantitativer RT PCR Analyse Pflanzen identifiziert werden, die eine verringerte Aktivität des endogenen OK1 Proteins in den Knollen aufwiesen.

Eine Western Blot Analyse, welche mit dem unter Beispiel 10 beschriebenen Antikörper durchgeführt wurde, bestätigte, dass Pflanzen, die eine verringerte Menge an mRNA des endogenen OK1 Proteins aufwiesen, auch eine verringerte Menge an OK1 Protein aufwiesen, im Vergleich zu nicht transformierten Wildtyp-Pflanzen.

Pflanzen, die im Vergleich zu entsprechenden Wildtyp Pflanzen eine verringerte Menge an OK1 Protein und eine verringerte Menge an OK1 Protein codierender mRNA aufwiesen, wurden erneut im Gewächshaus angezogen. Stärke, die aus Konollen dieser Pflanzen isoliert wurde, zeigte einen verringerten Gehalt an kovalent an die betreffende Stärke gebundenem Phospaht.

13. Analyse von Arabidopsis thalliana Pflanzen, die eine verringerte Aktivität eines OK1 Proteins aufweisen

T-DNA Insertionsmutanten von *Arabidopsis thaliana* (erhältilich von Salk Institute Genomic Analysis Laboratory, 10010 N. Torrey Pines Road, La Jolla, CA 92037, http://signal.salk.edu/ unter den ACC. No.: Salk_110814, Alias N610814), die bezüglich der Insertion im OK1 Gen homozygot waren, wurden unter folgenden Bedingungen angezogen:

Lichtphase:

15

20

25

16 Stunden, 20°C

Dunkelphase:

8 Stunden, 16°C

Kurz bevor die Blütenbildung einsetzte, wurden die Pflanzen bei einer Lichtphase von 12 Stunden bei 20°C und einer Dunkelphase von 12 Stunden bei 17°C kultiviert.

Von den erhaltenen Samen der Mutantenlinie (Salk_110814) wurden Pflanzen aus 3 verschiedenen Samen des ursprünglichen Saatgutes (Salk_110814-1, Salk_110814-2, Salk_110814-3) für die Analyse kultiviert.

Am Ende der Dunkelphase wurden von 6 Wildtyp-Pflanzen (Ökotyp Columbia) jeweils 10 Blätter entfernt und in 70% Ethanol bei 50°C entfärbt. Weiterhin wurden von jeweils 4 verschiedenen Pflanzen der Mutantenlinien Salk_110814-1, Salk_110814-2 bzw. Salk_110814-3 die jeweils homozygot bezüglich der T-DNA Insertion in einem OK1 Gen waren, jeweils 6 Blätter entfernt und in 70% Ethanol bei 50°C entfärbt. Anschließend wurden die Blätter für 10 Minuten in Lugol'scher Lösung inkubiert, bevor überschüssige Lugol'sche Lösung mit Leitungswasser von den Blättern abgespült wurde. Alle Blätter von Wildtyp-Pflanzen zeigten keine Färbung Mutantenlinien Salk 110814-1. mit Lugol'scher Lösung. Alle Blätter der Salk_110814-2 bzw. Salk_110814-3 zeigten hingegen eine dunkelbraune oder eine schwarze Färbung (siehe Fig. 7). Die Mutantenlinien zeigen daher einen Hoch-Stärke Phänotyp im Vergleich zu den Wildtyp-Pflanzen. Während der Kultivierung konnten keine Unterschiede betreffend das Wachstum zwischen den Mutantenlinien und den Wildtyp-Pflanzen festgestellt werden.

10

15

Genetisch modifizierte Arabidopsis thaliana Pflanzen, welche mit einem RNAi 20 Konstrukt, enthaltend "inverted Repeats" der codierenden Region eines OK1 Gens unter Kontrolle des 35S Promotors, transformiert waren, wurden mit Hilfe der Western Blot Analyse unter Verwendung des in Beispiel 10 beschriebenen Antikörpers ananlysiert. Es konnten mehrere unabhängige Linien identifiziert werden, die eine verringerte Menge an OK1 Protein aufwiesen, im Vergleich zu Wildtyp-25 Diese Linien wurden unter den im Beispiel 13 angegebenen Pflanzen. Kulturbedingungen kultiviert. Jeweils 5 Blätter der einzelnen Linien wurden am Ende der Dunkelphase (12 Stunden bei 17°C) entfernt, in Ethanol entfärbt und mit Lugol'scher Lösung gefärbt. Alle Pflanzen zeigten im Vergleich zu entsprecehnden Wildtyp-Pflanzen einen Hoch-Stärke Phänotyp. Während der Kultivierung konnten 30 keine Unterschiede betreffend das Wachstum zwischen den genetisch modifizierten

Pflanzen und den Wildtyp-Pflanzen festgestellt werden. Die mittels RNAi Technologie genetisch modifizierten Poflanzen zeigten damit die gleichen Eigenschaften wie die Mutantenlienien Salk_110814-1, Salk_110814-2 bzw. Salk_110814-3.

Jeweils vier Arsbidopsis thaliana Pflanzen der unabhängigen aus Transformationsereignissen hervorgegangenen Linien A.t.-alpha-OK1-1, A.t.-alpha-5 OK1-2, A.t.-alpha-OK1-3, A.t.-alpha-OK1-4, A.t.-alpha-OK1-5, bei welchen die Menge an OK1 Protein mittels RNAi Technologie verringert ist, wurden zu unterschiedlichen Zeitpunkten auf ihren Blattstärkegehalt hin untersucht. Die Verringerung der Menge an OK1 Protein in den jeweiligen Linien wurde mittels Westernblot Ananlyse nachgewiesen (siehe Fig. 8). Die Bestimmung des Gehaltes von Blattstärke der einzelnen Linien wurde mit Hilfe des Stärke/Starch-Kits der Firma Boehringer Mannheim (Produkt Nr.: 0207748) durchgeführt. Dazu wurden alle Blätter von jeweils vier Pflanzen der einzelnen Linien geerntet, und die Blätter durch Mörsern homogenisiert. 40 mg bis 60 mg des homogenisierten Blattmaterials wurde zwei mal mit jeweils 80% Ethanol gewaschen und der Überstand verworfen. Das 15 zurückbleibende, nicht in Ethanol lösliche Material wurde nach einmaligem Waschen in 1 ml Wasser gefriergetrocknet, anschließend in 0,5 ml 0,2M KOH bei 95°C für 1 h gelöst und die erhaltene Lösung mit 88 µL1 M Essigsäure auf einen pH Wert von 7 eingestellt.. 25 µl der jeweiligen erhaltenen Lösung wurden mit 50 Amylodlucosidase-Lösung (Stärke/Starch-Kit der Firma Boehringer Mannheim, 20 Produkt Nr.: 0207748), der 1 Unit alpha-Amylase (von Bacillus amyloliquefaciens, Boehringer, Prod-Nr. 161764) zugegeben wurde, versetzt und bei 55 °C für 1 h inkubiert. 20 µl der mit Amylogucosidase und alpha-Amylase behandelten Lösung wurden anschließend für die Glucosebestimmung mittels enzymatischem gekoppeltem photometrischem Test (siehe Produktinformationsblatt zur Besrtimmung 25 von nativer Stärke der Firma Boehringer Inmgelheim, Produkt Nr.: 0207748) eingesetzt. Paralell zu den transgenen Linien wurde ebenfalls der Gehalt von Stärke in Blättern von Arabidopsis thaliana Wildtyp-Pflanzen (Ökotyp Columbia) bestimmt. Die Wildtyp-Pflanzen und die transgenen Pflanzen wurden unter gleichen Bedingungen kultiviert: 12 Stunden Lichtphase gefolgt von 12 Stunden Dunkelphase. 30

Blätter der jeweiligen transgenen Pflanzenlinien und Wildtyp-Pflanzen wurden jeweils ca. 4,5 Wochen nach der Samenkeimung nach Beendigung einer Dunkelphase, nach Beendigung einer Lichtphase und nach Beendigung einer zweiten Dunkelphase, die direkt auf die Lichtphase folgte, geerntet. Je transgener Pflanzenlinie wurden jeweils zwei unabhängige Extrakte hergestellt von welchen jeweils zwei Messungen des Stärkegehaltes durchgeführt wurden. Für Wildtyp-Pflanzen wurden jeweils vier unabhängige Extrakte hergestellt von welchen jeweils zwei Messungen des Stärkegehaltes durchgeführt wurden. Die Bestimmung der Gehalte an Blattstärke ergab folgende Ergebnisse:

10

Ende	Linie	Starch content (mg/g FW)	Standardabweichung*
Dunkelphase 1	A.talpha-OK1-1	4,09	0,55
	A.talpha-OK1-2	4,93	0,94
	A.talpha-OK1-3	5,59	0,52
	A.talpha-OK1-4	6,36	0,87
	A.talpha-OK1-5	1,49	0,99
	Wildtyp	0,78	0,14
Ende Lichtlphase			
•	A.talpha-OK1-1	9,30	0,96
	A.talpha-OK1-2	9,86	1,45
	A.talpha-OK1-3	11,68	1,60
	A.talpha-OK1-4	9,53	1,25
	A.talpha-OK1-5	6,61	0,71
	Wildtyp	5,61	0,72
End Ende. Dunkelphase 2			• •
	A.talpha-OK1-1	3,92	0,83
	A.talpha-OK1-2	4,35	1,07
	A.talpha-OK1-3	6,00	0,63
	A.talpha-OK1-4	5,34	1,35
	A.talpha-OK1-5	1,46	0,56
	Wildtyp	0,62	0,18

Tabelle 4: Menge der Blattstärke in Arabidopsis thaliana Pflanzen, bei welchen die Menge des OK1 Proteins mit Hilfe der RNAi Technologie reduziert ist.

* Standardabweichung mit der allgemeinen Formel: Wurzel [$(n\Sigma x^2 - (\Sigma x)^2) / n(n-1)$]

5

Patentansprüche

- Genetisch modifizierte Pflanzenzelle, dadurch gekennzeichnet, dass sie eine verringerte Aktivität mindestens eines OK1 Proteins im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen aufweist.
- Genetisch modifizierte Pflanzenzelle nach Anspruch 1, wobei die genetische Modifikation in der Einführung mindestens eines fremden Nucleinsäuremoleküls in das Genom der Pflanzenzelle besteht.
- Genetisch modifizierte Pflanzenzelle nach Anspruch 2, wobei das fremde Nucleinsäuremolekül Aminosäuresequenzen codiert, die von einer ein OK1 Protein codierenden Aminosäuresequenz umfasst sind.
- 4. Genetisch modifizierte Pflanzenzelle nach einem der Ansprüche 2 oder 3, wobei besagtes fremdes Nucleinsäuremolekül ausgewählt ist, aus der Gruppe bestehend aus
 - a) DNA-Molekülen, die mindestens eine antisense-RNA codieren, welche eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert;
 - DNA-Molekülen, die über einen Cosuppressionseffekt zu Verringerung der Expression von mindestens einem endogenen Gen führen, das ein OK1 Protein codiert;
 - DNA-Molekülen, die mindestens ein Ribozym codieren, das spezifisch Transkripte von mindestens einem endogenen Gen spaltet, das ein OK1 Protein codiert,
 - d) DNA-Molekülen, die simultan mindestens eine antisense-RNA und mindestens eine sense-RNA codieren, wobei besagte antisense-RNA und besagte sense-RNA ein doppelsträngiges RNA-Molekül ausbilden, das eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert (RNAi Technologie);
 - e) Mittels in vivo-Mutagenese eingeführte Nucleinsäuremoleküle, die zu einer Mutation oder einer Insertion einer heterologen Sequenz in mindestens einem endogenen OK1 Protein codierenden Gen führen, wobei die

- Mutation oder Insertion eine Verringerung der Expression eines OK1 Protein codierenden Gens bewirkt, oder die Synthese von inaktiven OK1 Protein zur Folge hat;
- f) Nucleinsäuremolekülen, die einen Antikörper codieren, wobei der Antikörper durch die Bindung an ein OK1 Protein eine Verringerung der Aktivität eines OK1 Proteins zur Folge hat,
- g) DNA Molekülen, die Transposons enthalten, wobei die Integration dieser Transposons zu einer Mutation oder einer Insertion in mindestens einem endogenen OK1 Protein codierenden Gen führt, welches eine Verringerung der Expression von mindestens einem ein OK1 Protein codierenden Gens bewirkt, oder die Synthese von inaktiven OK1 Protein zur Folge hat; und/oder
- h) T-DNA Molekülen, die durch Insertion in mindestens einem endogenen OK1 Protein codierenden Gen eine Verringerung der Expression von mindestens OK1 Protein codierenden Gen bewirken, oder die Synthese von inaktivem OK1 Protein zur Folge haben.
- 5. Pflanzenzelle nach einem der Ansprüche 1 bis 4, die im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen eine modifizierte Stärke synthetisiert.
- 6. Pflanze enthaltend Pflanzenzellen nach einem der Ansprüche 1 bis 5.
- 7. Pflanze nach Anspruch 6, die eine Stärke speichernde Pflanze ist.
- 8. Pflanze nach Anspruch 7, die eine Weizen- oder Maispflanze ist.
- 9. Pflanze nach einem der Ansprüche 6, 7 oder 8, die einen Hoch-Stärke (strach excess) Phänotyp aufweist.
- 10. Vermehrungsmaterial von Pflanzen nach einem der Ansprüche 6, 7 oder 8, enthaltend Pflanzenzellen nach einem der Ansprüche 1 bis 5.
- 11. Erntebare Pflanzenteile von Pflanzen nach einem der Ansprüche 6, 7 oder 8, enthaltend Pflanzenzellen nach einem der Ansprüche1 bis 5.

- 12. Verfahren zur Herstellung einer genetisch modifizierten Pflanze nach einem der Ansprüche 6, 7 oder 8, worin
 - a) eine Pflanzenzelle genetisch modifiziert wird, wobei die genetische Modifikation zur Verringerung der Aktivität eines OK1 Proteins im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen führt;
 - b) aus Pflanzenzellen von Schritt a) eine Pflanze regeneriert wird; und
 - c) gegebenenfalls weitere Pflanzen mit Hilfe der Pflanzen nach Schritt b) erzeugt werden.
- 12. Verfahren nach Anspruch 11, wobei die genetische Modifikation in der Einführung mindestens eines fremden Nucleinsäuremoleküls in das Genom der Pflanze besteht.
- 13. Verfahren nach Anspruch 12, worin besagtes fremde Nukleinsäuremolekül ausgewählt ist, aus der Gruppe bestehend aus
 - a) DNA-Molekülen, die mindestens eine antisense-RNA codieren, welche eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert;
 - b) DNA-Molekülen, die über einen Cosuppressionseffekt zu Verringerung der Expression von mindestens einem endogenen Gen führen, das ein OK1 Protein codiert;
 - DNA-Molekülen, die mindestens ein Ribozym codieren, das spezifisch Transkripte von mindestens einem endogenen Gen spaltet, das ein OK1 Protein codiert,
 - d) DNA-Molekülen, die simultan mindestens eine antisense-RNA und mindestens eine sense-RNA codieren, wobei besagte antisense-RNA und besagte sense-RNA ein doppelsträngiges RNA-Molekül ausbilden, das eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert (RNAi Technologie);
 - e) Mittels in vivo-Mutagenese eingeführte Nucleinsäuremoleküle, die zu einer Mutation oder einer Insertion einer heterologen Sequenz in mindestens einem endogenen OK1 Protein Gen führen, wobei die Mutation oder

- Insertion eine Verringerung der Expression eines OK1 Protein codierenden Gens bewirkt, oder die Synthese von inaktivem OK1 Protein zur Folge hat;
- f) Nucleinsäuremolekülen, die einen Antikörper codieren, wobei der Antikörper durch die Bindung an ein OK1 Protein eine Verringerung der Aktivität eines OK1 Protein zur Folge hat,
- g) DNA Molekülen, die Transposons enthalten, wobei die Integration dieser Transposons zu einer Mutation oder einer Insertion in mindestens einem endogenen OK1 Protein codierenden Gen führt, welches eine Verringerung der Expression von mindestens einem ein OK1 Protein codierenden Gens bewirkt, oder die Synthese von inaktiven OK1 Protein zur Folge hat; und/oder
- h) T-DNA Molekülen, die durch Insertion in mindestens einem endogenen OK1 Protein codierenden Gen eine Verringerung der Expression von mindestens einem OK1 Protein codierenden Gen bewirken, oder die Synthese von inaktivem OK1 Protein zur Folge haben.
- 14. Verfahren nach einem der Ansprüche 11, 12 oder 13, wobei die genetisch modifizierte Pflanze im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzen eine modifizierte Stärke synthetisiert.
- 15. Rekombinantes Nucleinsäuremolekül enthaltend einen Promotor, der in Pflanzenzellen die Initiation der Transkription bewirkt und mindestens eine Nucleinsäuresequenz, ausgewählt aus der Gruppe aus
 - a) Nucleinsäuresequenzen, die mindestens eine antisense-RNA codieren, welche eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert;
 - Nucleinsäuresequenzen, die über einen Cosuppressionseffekt zu Verringerung der Expression von mindestens einem endogenen Gen führen, das ein OK1 Protein codiert;
 - Nucleinsäuresequenzen, die mindestens ein Ribozym codieren, das spezifisch Transkripte von mindestens einem endogenen Gen spaltet, das ein OK1 Protein codiert und

- d) Nucleinsäuresequenzen, die simultan mindestens eine antisense-RNA und mindestens eine sense-RNA codieren, wobei besagte antisense-RNA und besagte sense-RNA ein doppelsträngiges RNA-Molekül ausbilden, das eine Verringerung der Expression von mindestens einem endogenen Gen bewirkt, das ein OK1 Protein codiert (RNAi Technologie).
- 16. Vektor enthaltend ein rekombinantes Nucleinsäuremolekül wie in Anspruch 15 unter a) bis d) definiert.
- 17. Wirtszelle, die genetisch modifiziert ist mit einem rekombinanten Nucleinsäuremolekül nach Anspruch 15 oder mit einem Vektor nach Anspruch 16.
- 18. Zusammensetzung enthaltend ein rekombinantes Nucleinsäuremolekül wie in Anspruch 15 unter a) bis d) definiert oder einen Vektor nach Anspruch 16.
- 19. Modifizierte Stärke erhältlich aus einer genetisch modifizierten Pflanze nach einem der Ansprüche 6, 7 oder 8, aus Vermehrungsmaterial nach Ansprüch 9, oder aus erntebaren Pflanzenteilen nach Ansprüch 10.
- Verfahren zur Herstellung einer modifizierten Stärke umfassend den Schritt der Extraktion der Stärke aus einer Pflanzenzelle nach einem der Ansprüche 1 bis
 5.
- 21. Verfahren zur Herstellung einer modifizierten Stärke umfassend den Schritt der Extraktion der Stärke aus einer Pflanze nach einem der Ansprüche 6, 7 oder 8, und/oder aus Stärke speichernden Teilen einer solchen Pflanze.
- 22. Verfahren zur Herstellung einer modifizierten Stärke umfassend den Schritt der Extraktion der Stärke aus erntebaren Pflanzenteilen nach Anspruch 10.
- 23. Verwendung von Pflanzen nach einem der Ansprüche 6, 7 oder 8 zur Herstellung einer modifizierten Stärke.
- Modifizierte Stärke erhältlich nach einem Verfahren nach einem der Ansprüche
 20, 21 oder 22.

- 25. Verfahren zur Herstellung einer derivatisierten Stärke, worin modifizierte Stärke nach Anspruch 19 oder 24 oder erhältlich durch ein Verfahren nach einem der Ansprüche 20, 21 oder 22 derivatisiert wird.
- 26. Derivatisierte Stärke erhältlich nach einem Verfahren nach Anspruch 25.
- 27. Verwendung von modifizierter Stärke nach einem der Ansprüche 19 oder 24 zur Herstellung von derivatisierter Stärke.

EPO-BERLIN.

2 1 -05- 2004

Zusammenfassung

Die vorliegende Erfindung betrifft Pflanzenzellen und Pflanzen, die genetisch modifiziert sind, wobei die genetische Modifikation zur Verringerung der Aktivität eines Stärke phosphorylierenden OK1 Proteins im Vergleich zu entsprechenden nicht genetisch modifizierten Wildtyp-Pflanzenzellen bzw. Wildtyp-Pflanzen führt. Ferner betrifft die vorliegende Erfindung Mittel und Verfahren zur Herstellung solcher Pflanzenzellen und Pflanzen. Derartige Pflanzenzellen und Pflanzen synthetisieren eine modifizierte Stärke. Die vorliegende Erfindung betrifft daher auch die von den erfindungsgemäßen Pflanzenzellen und Pflanzen synthetisierte Stärke, Verfahren zur Herstellung dieser Stärke, sowie die Herstellung von Stärkederivaten dieser modifizierten Stärke, als auch Mehle, enthaltend erfindungsgemäße Stärken.

Weiterhin betrifft die vorliegende Erfindung Nucleinsäuremoleküle, die zur Herstellung erfindungsgemäßer Pflanzen geeignet sind.

EPO-BERLIN 2 1 -05- 2004

Fig. 1

Fig. 2

Fig.:

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25 **2 1 -05**- 2004 SEQUENCE LISTING

<110>	Bayer C	ropScie	ence Gmb	н									
<120> Enzyms	Pflanze	n mit V	erringe/	rter	Akt	iviti	ät ei	ines	Stäi	rke	ohosi	phory	lierenden
<130>	BCS 04-	BCS 04-5007-EP											
<160>	11												
<170>	PatentI	n vers	ion 3.1										
<210>	1												
<211>	3591												
<212>	DNA												
<213>	Arabido	psis t	haliana										
<220>													
<221>	CDS												
<222>	(1)(3	3591)											
<223>													
<400> atg ga Met G	1 ng agc at lu ser I	tt ggc le Gly 5	agc cat Ser His	tgt Cys	tgc Cys	agc Ser 10	tct Ser	cct Pro	ttc Phe	acc Thr	ttc Phe 15	atc Ile	48
act ac Thr Ai	ga aac to rg Asn So 20	er Ser	tca tca Ser Ser	ctt Leu	cct Pro 25	aga Arg	ctc Leu	gtt Val	aac Asn	atc Ile 30	act Thr	cac His	96
aga gi Arg Va	tt aat c al Asn Lo 35	tc agc eu Ser	cac caa His Gln	tct ser 40	cac His	cga Arg	ctc Leu	aga Arg	aac Asn 45	tcc Ser	aat Asn	tct Ser	144
cgt co Arg Lo	tc act to eu Thr C O	gc act ys Thr	gct act Ala Thr 55	tct Ser	tct Ser	tcc Ser	acc Thr	att Ile 60	gag Glu	gaa Glu	caa Gln	cgg Arg	192
aag a Lys Ly 65	ag aaa g ys Lys A	at gga sp Gly	tca gga Ser Gly 70	acg Thr	aaa Lys	gtg Val	agg Arg 75	ttg Leu	aat Asn	gtg Val	agg Arg	tta Leu 80	240
gat c Asp H	at caa g is Gln V	tt aat al Asn	ttt ggt Phe Gly	gac Asp	cat His	vai	gct Ala	MEL	ttt Phe	gga Gly	tca Ser	gct Ala	288

Seite 1

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25 85 90 95

														,,		
aaa Lys	a gaq s Gli	g att	t ggt e Gly 100	y ser	tgo Tr	aaa Lys	aag Lys	aaa 5 Lys 105	Ser	cci Pro	t tt	g aa u Ası	t tgg 1 Tri 110	o Se	t gag r Glu	336
aat Asr	gga Gly	tgg Trp 115	vai	tgt Cys	gag Gli	ttg Leu	gaa Glu 120	i rer	gac Asp	ggt Gly	gg Gl	t cag y Gli 12:	ı va	t tt Le	g gag u Glu	384
tat Tyr	aag Lys 130	PHE	gtc Val	att Ile	gtt Val	aag Lys 135	ASI	gat Asp	ggt Gly	tca Ser	cti Lei 140	ı Sei	tgg Trp	ga Gl	a tct u Ser	432
ggt Gly 145	ASP	aat Asn	cgt Arg	gtc Val	ctt Leu 150	Ly5	gtt Val	cca Pro	aat Asn	tct Ser 155	Gly	g aat ⁄ Asr	ttt Phe	tci Sei	t gtt Val 160	480
gtt Val	tgt Cys	cat His	tgg Trp	gat Asp 165	gct Ala	act Thr	aga Arg	gaa Glu	acc Thr 170	Leu	gat Asp	ttg Leu	cct Pro	cac Glr 175	g gag i Glu	528
gtt Val	ggt Gly	aat Asn	gat Asp 180	gat Asp	gat Asp	gtt Val	ggt Gly	gat Asp 185	ggt Gly	ggg Gly	cat His	gag Glu	agg Arg 190	Asp	aat Asn	576
cat His	gat Asp	gtt Val 195	ggt Gly	gat Asp	gat Asp	aga Arg	gta Val 200	gtg Val	gga Gly	agt Ser	gaa Glu	aat Asn 205	ggt Gly	gcg Ala	cag Gln	624
ctt Leu	cag Gln 210	aag Lys	agt Ser	aca Thr	ttg Leu	ggt Gly 215	ggg Gly	caa Gln	tgg Trp	caa Gln	ggt Gly 220	Lys	gat Asp	gcg Ala	tcc Ser	672
ttt Phe 225	atg Met	cgt Arg	tct Ser	aat Asn	gat Asp 230	cat His	ggt Gly	aac Asn	aga Arg	gaa Glu 235	gtt Val	ggt Gly	aga Arg	aat Asn	tgg Trp 240	720
gat Asp	act Thr	agt Ser	ggt Gly	ctt Leu 245	gaa Glu	ggc Gly	aca Thr	gct Ala	ctt Leu 250	aag Lys	atg Met	gtt Val	gag Glu	ggt Gly 255	gat Asp	768
cgc Arg	aac Asn	tct Ser	aag Lys 260	aac Asn	tgg Trp	tgg Trp	aga Arg	aag Lys 265	ctt Leu	gaa Glu	atg Met	gta Val	cgc Arg 270	gag Glu	gtt Val	816
ata Ile	gtt Val	ggg Gly 275	agt Ser	gtt Val	gag Glu	agg Arg	gag Glu 280	gaa Glu	cga Arg	ttg Leu	aag Lys	gcg Ala 285	ctc Leu	ata Ile	tac Tyr	864
tct Ser	gca Ala 290	att Ile	tat Tyr	ttg Leu	aag Lys	tgg Trp 295	ata Ile	aac Asn	aca Thr	ggt Gly	cag Gln 300	att Ile	cct Pro	tgt Cys	ttt Phe	912
gaa Glu 305	gat Asp	gga Gly	ggg Gly	cat His	cac His 310	cgt Arg	cca Pro	aac Asn	agg Arg	cat His 315	gcc Ala	gag Glu	att Ile	tcc Ser	aga Arg 320	960
ctt Leu	ata Ile	ttc Phe	Arg	gag Glu 325	ttg Leu	gag Glu	cac His	TIG	tgc Cys 330	agt Ser	aag Lys	aaa Lys	Asp	gct Ala 335	act Thr	1008
cca Pro	gag Glu	GIU	gtg Val 340	ctt Leu	gtt Val	gct Ala	arg	aaa Lys 345	atc Ile	cat His	ccg Pro	tgt Cys	tta Leu 350	cct Pro	tct Ser	1056
ttc Phe	aaa Lys .	gca (Ala (gag Glu i	ttt . Phe	act Thr	gca (Ala /	gct Ala	gtc (Val (cct Pro Seit	Leu '	act Thr	cgg Arg	att . Ile .	agg Arg	gac Asp	1104

		В ⁽ 355	cs O	4-50	07_0	<1 V	erri 360	nger	te A	ktiv	ität.	_SEQ 365	UENZ	PROT	OKOLL	sT25
ata Ile	gcc Ala 370	cat His	cgg Arg	aat Asn	gat Asp	att Ile 375	cct Pro	cat His	gat Asp	ctc Leu	aag Lys 380	caa Gln	gaa Glu	atc Ile	aag Ly s	1152
cat His 385	acg Thr	ata Ile	caa Gln	aat Asn	aag Lys 390	ctt Leu	cac His	cgg Arg	aat Asn	gct Ala 395	ggt Gly	cca Pro	gaa Glu	gat Asp	cta Leu 400	1200
att Ile	gca Ala	aca Thr	gaa Glu	gca Ala 405	atg Met	ctt Leu	caa Gln	cga Arg	att Ile 410	acc Thr	gag Glu	acc Thr	cca Pro	gga Gly 415	aaa Lys	1248
tat Tyr	agt Ser	gga Gly	gac Asp 420	ttt Phe	gtg Val	gag Glu	cag Gln	ttt Phe 425	aaa Lys	ata Ile	ttc Phe	cat His	aat Asn 430	gag Glu	ctt Leu	1296
aaa Lys	gat Asp	ttc Phe 435	ttt Phe	aat Asn	gct Ala	gga Gly	agt Ser 440	ctc Leu	act Thr	gaa Glu	cag Gln	ctt Leu 445	gat Asp	tct Ser	atg Met	1344
aaa Lys	att Ile 450	tct Ser	atg Met	gat Asp	gat Asp	aga Arg 455	ggt Gly	ctt Leu	tct Ser	gcg Ala	ctc Leu 460	aat Asn	ttg Leu	ttt Phe	ttt Phe	1392
gaa Glu 465	tgt Cys	aaa Lys	aag Lys	cgc Arg	ctt Leu 470	gac Asp	aca Thr	tca Ser	gga Gly	gaa Glu 475	tca Ser	agc Ser	aat Asn	gtt Val	ttg Leu 480	1440
gag Glu	ttg Leu	att Ile	aaa Lys	acc Thr 485	atg Met	cat His	tct Ser	cta Leu	gct Ala 490	tct Ser	tta Leu	aga Arg	gaa Glu	aca Thr 495	att Ile	1488
ata Ile	aag Lys	gaa Glu	ctt Leu 500	aat Asn	agc Ser	ggc Gly	ttg Leu	cga Arg 505	aat Asn	gat Asp	gct Ala	cct Pro	gat Asp 510	act Thr	gcc Ala	1536
att Ile	gca Ala	atg Met 515	cgc Arg	cag Gln	aag Lys	tgg Trp	cgc Arg 520	ctt Leu	tgt Cys	gag Glu	atc Ile	ggc Gly 525	ctc Leu	gag Glu	gac Asp	1584
tac Tyr	ttt Phe 530	Phe	gtt Val	cta Leu	cta Leu	agc Ser 535	aga Arg	ttc Phe	ctc Leu	aat Asn	gct Ala 540	ctt Leu	gaa Glu	act Thr	atg Met	1632
gga Gly 545	gga Gly	gct Ala	gat Asp	caa Gln	ctg Leu 550	gca Ala	aaa Lys	gat Asp	gtg val	gga Gly 555	tca Ser	aga Arg	aac Asn	gtt Val	gcc Ala 560	1680
tca Ser	tgg Trp	aat Asn	gat Asp	cca Pro 565	cta Leu	gat Asp	gct Ala	ttg Leu	gtg Val 570	Leu	ggt Gly	gtt Val	cac His	caa Gln 575	vai	1728
ggt Gly	cta Leu	tct ser	ggt Gly 580	Trp	aag Lys	caa Gln	gaa Glu	gaa Glu 585	Cy5	tta Leu	gcc Ala	att Ile	gga Gly 590	ASII	gaa Glu	1776
cto Leu	ctt Leu	gct Ala 595	Trp	cga Arg	gaa Glu	agg Arg	gac Asp 600	Leu	ctt Leu	gaa Glu	aaa Lys	gaa Glu 605	ggg Gly	gaa Glu	gag Glu	1824
gat Asp	gga Gly 610	Lys	aca Thr	att Ile	tgg Trp	gcc Ala 615	. Met	agg Arg	ctg Leu	aaa Lys	gca Ala 620	Tnr	ctt	gat Asp	cga Arg	1872
gca Ala	cgc Arg	aga Arg	tta Leu	aca Thr	gca Ala	gaa Glu	tat Tyr	tct Ser	. Ast	ttg Leu ite	Leu	ctt Leu	caa Gln	ata Ile	ttt Phe	1920

625	5		BCS	04-5	007_ 630	OK1)	Verr	inge	rte	Akti 63	vită 5	it_SE	QUEN	IZPRO	TOKOL 640	L.ST25
cct Pro	cct Pro	aat Asr	gtg val	gag Gli 645	ı Ile	tta Leu	gga Gly	aaa / Lys	gct Ala 650	i Lei	a gg:	a att y Ile	cca Pro	a gae 65:	g aat u Asn	1968
agt Ser	gto Val	aag Lys	acc Thr 660	Tyr	aca Thr	gaa Glu	gca Ala	gag Glu 665	Ile	cgt Arg	t gct g Ala	t gga a Gly	att / Ile 670	e Ile	t ttc e Phe	2016
cag Gln	ato Ile	tca Ser 675	Lys	ctc Leu	tgc Cys	act Thr	gtt Val 680	Leu	cta Leu	aaa Lys	gci S Ala	t gta a Val 685	Arg	aat Asr	tca Ser	2064
ctt Leu	ggt Gly 690	Ser	gag Glu	ggc Gly	tgg Trp	gat Asp 695	gtc Val	gtt Val	gta Val	Pro	gga Gly 700	a tcg / Ser)	acg Thr	tct Ser	ggg	2112
aca Thr 705	tta Leu	gtt Val	cag Gln	gtt Val	gag Glu 710	Ser	att Ile	gtt Val	ccg Pro	gga Gly 715	' Ser	ttg Leu	cca Pro	gca Ala	act Thr 720	2160
ser	ч	Giy	Pro	725	Tie	Leu	Leu	vai	730	Lys	Ala	. Asp	Gly	Asp 735		2208
Giu	vai	Sel	740	Ald	ASI	GIY	ASN	745	Ala	GIY	Val	atg Met	Leu 750	Leu	Gln	2256
diu	Leu	755	піз	Leu	Ser	HIZ	760	GIY	vai	Arg	Ala	cgg Arg 765	Gin	Glu	Lys	2304
TIE	770	Pne	vaı	ınr	Cys	775	Asp	Asp	Asp	Lys	780		Asp	IJe	Arg	2352
785	Leu	vai	GIY	Lys	790	vaı	Arg	Leu	Glu	795	Ser	cca Pro	Ser	His	Va1 800	2400
ASII	Leu	тіе	Leu	805	Thr	GIU	GIY	Arg	Ser 810	Arg	Thr	tcc Ser	Lys	Ser 815	Ser	2448
AIA	ınr	Lys	820	Thr	Asp	Lys	Asn	Ser 825	Leu	Ser	Lys	aaa Lys	Lys 830	Thr	Āsp	2496
Lys	Lys	835	Leu	ser	TIE	ASP	840	Giu	Glu	Ser	Lys	cct Pro 845	Gly	Ser	Ser	2544
ser	850	ASI	ser	Leu	Leu	855	ser	Ser	Lys	Asp	860	cct Pro	Ser	Gly	Gly	2592
865	тіе	АТА	Leu	АІА	870	АІа	Asp	Va I	Pro	Thr 875	Ser	ggt Gly	Ser	Lys	Ser 880	2640
Ala	АІа	Cys	Gly	885	Leu	Ala	Ser	Leu	890	Glu	Ala	tct Ser	Ser	Lys 895	va1	2688
cac His	agc Ser	gaa Glu	cac His	gga Gly	gtt Val	ccg Pro	gca Ala	tca Ser	Phe	aag Lys te 4	gtt Val	cca Pro	act Thr	gga Gly	gtt Val	2736

всs 04-5007_ок1 verringerte Aktivität_sequenzproтокоLL.ST25 900 905 910	j
gtc ata cct ttt gga tcg atg gaa tta gct tta aag caa aat aat tcg 27 Val Ile Pro Phe Gly Ser Met Glu Leu Ala Leu Lys Gln Asn Asn Ser 915 920 925	784
gaa gaa aag ttt gcg tct ttg cta gaa aaa cta gaa acc gcc aga cct Glu Glu Lys Phe Ala Ser Leu Leu Glu Lys Leu Glu Thr Ala Arg Pro 930 940	832
gag ggt ggt gag cta gac gac ata tgt gac cag atc cat gaa gtg atg Glu Gly Gly Glu Leu Asp Asp Ile Cys Asp Gln Ile His Glu Val Met 945 950 960	880
aaa acg ttg caa gtg cct aaa gaa aca atc aac agc ata agc aaa gcg Lys Thr Leu Gln Val Pro Lys Glu Thr Ile Asn Ser Ile Ser Lys Ala 965 970 975	928
ttt ctc aaa gat gct cgt ctc att gtt cgt tca agt gct aac gtc gag Phe Leu Lys Asp Ala Arg Leu Ile Val Arg Ser Ser Ala Asn Val Glu 980 985 990	976
gac tta gcc gga atg tca gct gca gga ctc tat gaa tca atc cct aac 30 Asp Leu Ala Gly Met Ser Ala Ala Gly Leu Tyr Glu Ser Ile Pro Asn 995 1000	024
gtg agt ccc tcg gat cct ttg gtg ttt tca gat tcg gtt tgc caa 30 Val Ser Pro Ser Asp Pro Leu Val Phe Ser Asp Ser Val Cys Gln 1010 1015	069
gtt tgg gct tct ctc tac aca aga aga gct gtt cta agc cgt aga 32 Val Trp Ala Ser Leu Tyr Thr Arg Arg Ala Val Leu Ser Arg Arg 1025 1035	114
gct gct ggt gtc tct caa aga gaa gct tca atg gct gtt ctc gtt Ala Ala Gly Val Ser Gln Arg Glu Ala Ser Met Ala Val Leu Val 1040 1045 1050	159
caa gaa atg ctt tcg ccg gac tta tca ttc gtt ctg cac aca gtg Gln Glu Met Leu Ser Pro Asp Leu Ser Phe Val Leu His Thr Val 1055 1060 1065	204
agt cca gct gat ccg gac agt aac ctt gtg gaa gcc gag atc gct 3. Ser Pro Ala Asp Pro Asp Ser Asn Leu Val Glu Ala Glu Ile Ala 1070 1080	249
cct ggt tta ggt gag act tta gct tca gga aca aga gga aca cca Pro Gly Leu Gly Glu Thr Leu Ala Ser Gly Thr Arg Gly Thr Pro 1085 1090 1095	294
tgg aga ctc gct tcg ggt aag ctc gac ggg att gta caa acc tta 3 Trp Arg Leu Ala Ser Gly Lys Leu Asp Gly Ile Val Gln Thr Leu 1100 1105 1110	339
gct ttc gca aac ttc agc gaa gag ctt ctt gtg tca gga aca ggt 3 Ala Phe Ala Asn Phe Ser Glu Glu Leu Leu Val Ser Gly Thr Gly 1115 1120 1125	384
cct gct gat gga aaa tac gtt cgg ttg acc gtg gac tat agc aaa Pro Ala Asp Gly Lys Tyr Val Arg Leu Thr Val Asp Tyr Ser Lys 1130	3429
aaa cgt tta act gtt gac tcg gtg ttt aga cag cag ctc ggt cag Lys Arg Leu Thr val Asp Ser val Phe Arg Gln Gln Leu Gly Gln 1145 1150 1155	3474
aga ctc ggt tcg gtt ggt ttc ttc ttg gaa aga aac ttt ggc tgt 3 Arg Leu Gly Ser Val Gly Phe Phe Leu Glu Arg Asn Phe Gly Cys Seite 5	3519

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25

3591

gct caa gac gtt gaa ggt tgt ttg gtt ggt gaa gat gtt tac att 3564 Ala Gln Asp Val Glu Gly Cys Leu Val Gly Glu Asp Val Tyr Ile 1175 1180 1185

gtt cag tca agg cca caa cct ctg tag Val Gln Ser Arg Pro Gln Pro Leu 1190 1195

<210> 2

<211> 1196

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Glu Ser Ile Gly Ser His Cys Cys Ser Ser Pro Phe Thr Phe Ile
1 10 15

Thr Arg Asn Ser Ser Ser Ser Leu Pro Arg Leu Val Asn Ile Thr His 20 25 30

Arg Val Asn Leu Ser His Gln Ser His Arg Leu Arg Asn Ser Asn Ser 35 40 45

Arg Leu Thr Cys Thr Ala Thr Ser Ser Ser Thr Ile Glu Glu Gln Arg 50 60

Lys Lys Lys Asp Gly Ser Gly Thr Lys Val Arg Leu Asn Val Arg Leu 65 70 75 80

Asp His Gln Val Asn Phe Gly Asp His Val Ala Met Phe Gly Ser Ala 85 90 95

Lys Glu Ile Gly Ser Trp Lys Lys Lys Ser Pro Leu Asn Trp Ser Glu 100 105 110

Asn Gly Trp Val Cys Glu Leu Glu Leu Asp Gly Gly Gln Val Leu Glu 115 120 125

Tyr Lys Phe Val Ile Val Lys Asn Asp Gly Ser Leu Ser Trp Glu Ser 130 140

Gly Asp Asn Arg Val Leu Lys Val Pro Asn Ser Gly Asn Phe Ser Val 150 155 160

Val Cys His Trp Asp Ala Thr Arg Glu Thr Leu Asp Leu Pro Gln Glu 165 170 175

Val Gly Asn Asp Asp Val Gly Asp Gly Gly His Glu Arg Asp Asn Seite 6

His Asp Val Gly Asp Asp Arg Val Val Gly Ser Glu Asn Gly Ala Gln
195 205 Leu Gln Lys Ser Thr Leu Gly Gly Gln Trp Gln Gly Lys Asp Ala Ser 210 215 220 Phe Met Arg Ser Asn Asp His Gly Asn Arg Glu Val Gly Arg Asn Trp 225 230 235 240 Asp Thr Ser Gly Leu Glu Gly Thr Ala Leu Lys Met Val Glu Gly Asp 245 250 255 Arg Asn Ser Lys Asn Trp Trp Arg Lys Leu Glu Met Val Arg Glu Val 260 265 270 Ile Val Gly Ser Val Glu Arg Glu Glu Arg Leu Lys Ala Leu Ile Tyr 275 280 285 Ser Ala Ile Tyr Leu Lys Trp Ile Asn Thr Gly Gln Ile Pro Cys Phe 290 295 300 Glu Asp Gly Gly His His Arg Pro Asn Arg His Ala Glu Ile Ser Arg 305 310 315 320 Leu Ile Phe Arg Glu Leu Glu His Ile Cys Ser Lys Lys Asp Ala Thr 325 330 335 Pro Glu Glu Val Leu Val Ala Arg Lys Ile His Pro Cys Leu Pro Ser 340 345 350 Phe Lys Ala Glu Phe Thr Ala Ala Val Pro Leu Thr Arg Ile Arg Asp 355 360 365 Ile Ala His Arg Asn Asp Ile Pro His Asp Leu Lys Gln Glu Ile Lys 370 375 380 His Thr Ile Gln Asn Lys Leu His Arg Asn Ala Gly Pro Glu Asp Leu 385 390 395 Ile Ala Thr Glu Ala Met Leu Gln Arg Ile Thr Glu Thr Pro Gly Lys 405 410 415 Tyr Ser Gly Asp Phe Val Glu Gln Phe Lys Ile Phe His Asn Glu Leu 420 425 430 Lys Asp Phe Phe Asn Ala Gly Ser Leu Thr Glu Gln Leu Asp Ser Met 445 Lys Ile Ser Met Asp Asp Arg Gly Leu Ser Ala Leu Asn Leu Phe Phe Seite 7

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25

Glu Cys Lys Lys Arg Leu Asp Thr Ser Gly Glu Ser Ser Asn Val Leu 465 470 475 480

Glu Leu Ile Lys Thr Met His Ser Leu Ala Ser Leu Arg Glu Thr Ile 485 490 495

Ile Lys Glu Leu Asn Ser Gly Leu Arg Asn Asp Ala Pro Asp Thr Ala 500 505 510

Ile Ala Met Arg Gln Lys Trp Arg Leu Cys Glu Ile Gly Leu Glu Asp 515 525

Tyr Phe Phe Val Leu Leu Ser Arg Phe Leu Asn Ala Leu Glu Thr Met 530 540

Gly Gly Ala Asp Gln Leu Ala Lys Asp Val Gly Ser Arg Asn Val Ala 545 550 550 560

Ser Trp Asn Asp Pro Leu Asp Ala Leu Val Leu Gly Val His Gln Val 565 575

Gly Leu Ser Gly Trp Lys Gln Glu Glu Cys Leu Ala Ile Gly Asn Glu 580 585 590

Leu Leu Ala Trp Arg Glu Arg Asp Leu Leu Glu Lys Glu Glu Glu 595 600 605

Asp Gly Lys Thr Ile Trp Ala Met Arg Leu Lys Ala Thr Leu Asp Arg 610 620

Ala Arg Arg Leu Thr Ala Glu Tyr Ser Asp Leu Leu Gln Ile Phe 625 630 635

Pro Pro Asn Val Glu Ile Leu Gly Lys Ala Leu Gly Ile Pro Glu Asn 645 655

Ser Val Lys Thr Tyr Thr Glu Ala Glu Ile Arg Ala Gly Ile Ile Phe 660 670

Gln Ile Ser Lys Leu Cys Thr Val Leu Leu Lys Ala Val Arg Asn Ser 675 680 685

Leu Gly Ser Glu Gly Trp Asp Val Val Val Pro Gly Ser Thr Ser Gly 690 700

Thr Leu Val Gln Val Glu Ser Ile Val Pro Gly Ser Leu Pro Ala Thr 705 710 715 720

Ser Gly Gly Pro Ile Ile Leu Leu Val Asn Lys Ala Asp Gly Asp Glu Seite 8 Glu Val Ser Ala Ala Asn Gly Asn Ile Ala Gly Val Met Leu Leu Gln
740 750 Glu Leu Pro His Leu Ser His Leu Gly Val Arg Ala Arg Gln Glu Lys 755 760 765 Ile Val Phe Val Thr Cys Asp Asp Asp Asp Lys Val Ala Asp Ile Arg 770 775 780 Arg Leu Val Gly Lys Phe Val Arg Leu Glu Ala Ser Pro Ser His Val 785 790 795 800 Asn Leu Ile Leu Ser Thr Glu Gly Arg Ser Arg Thr Ser Lys Ser Ser 805 810 815 Ala Thr Lys Lys Thr Asp Lys Asn Ser Leu Ser Lys Lys Lys Thr Asp 820 825 830 Lys Lys Ser Leu Ser Ile Asp Asp Glu Glu Ser Lys Pro Gly Ser Ser 835 840 845 Ser Ser Asn Ser Leu Leu Tyr Ser Ser Lys Asp Ile Pro Ser Gly Gly 850 860 Ile Ile Ala Leu Ala Asp Ala Asp Val Pro Thr Ser Gly Ser Lys Ser 865 870 875 880 Ala Ala Cys Gly Leu Leu Ala Ser Leu Ala Glu Ala Ser Ser Lys Val 885 890 895 His Ser Glu His Gly Val Pro Ala Ser Phe Lys Val Pro Thr Gly Val 900 905 910 Val Ile Pro Phe Gly Ser Met Glu Leu Ala Leu Lys Gln Asn Asn Ser 915 920 925 Glu Glu Lys Phe Ala Ser Leu Leu Glu Lys Leu Glu Thr Ala Arg Pro 930 940 Glu Gly Gly Glu Leu Asp Asp Ile Cys Asp Gln Ile His Glu Val Met 945 950 955 960 Lys Thr Leu Gln Val Pro Lys Glu Thr Ile Asn Ser Ile Ser Lys Ala 965 970 975 Phe Leu Lys Asp Ala Arg Leu Ile Val Arg Ser Ser Ala Asn Val Glu 980 985 Asp Leu Ala Gly Met Ser Ala Ala Gly Leu Tyr Glu Ser Ile Pro Asn Seite 9

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25

- Val Ser Pro Ser Asp Pro Leu Val Phe Ser Asp Ser Val Cys Gln 1010 1020
- Val Trp Ala Ser Leu Tyr Thr Arg Arg Ala Val Leu Ser Arg Arg 1025 1030 1035
- Ala Ala Gly Val Ser Gln Arg Glu Ala Ser Met Ala Val Leu Val 1040 1045 1050
- Gln Glu Met Leu Ser Pro Asp Leu Ser Phe Val Leu His Thr Val 1055
- Ser Pro Ala Asp Pro Asp Ser Asn Leu Val Glu Ala Glu Ile Ala 1070 1080
- Pro Gly Leu Gly Glu Thr Leu Ala Ser Gly Thr Arg Gly Thr Pro 1085 1090 1095
- Trp Arg Leu Ala Ser Gly Lys Leu Asp Gly Ile Val Gln Thr Leu 1100 1110
- Ala Phe Ala Asn Phe Ser Glu Glu Leu Leu Val Ser Gly Thr Gly 1115 1125
- Pro Ala Asp Gly Lys Tyr Val Arg Leu Thr Val Asp Tyr Ser Lys 1130 1140
- Lys Arg Leu Thr Val Asp Ser Val Phe Arg Gln Gln Leu Gly Gln 1145 1155
- Arg Leu Gly Ser Val Gly Phe Phe Leu Glu Arg Asn Phe Gly Cys 1160 1170
- Ala Gln Asp Val Glu Gly Cys Leu Val Gly Glu Asp Val Tyr Ile 1175 1180 1185
- Val Gln Ser Arg Pro Gln Pro Leu 1190 1195
- <210> 3
- <211> 3644
- <212> DNA
- <213> Oryza sativa
- <220>
- <221> CDS

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25

<222> (13)..(3633)

<223>

<pre><400> 3 cgaggaggat ca atg acg tcg ctg cgg ccc ctc gaa acc tcg ctc tcc ata</pre>											
ggc ggc agg Gly Gly Arg 15	ccg cgc cgt Pro Arg Arg	ggt ctc g Gly Leu V 20	gtc ctc ccc /al Leu Pro	ccg ccc gg Pro Pro Gl 25	a gtc g y Val d	ggt 99 Sly					
gcg ggt gtg Ala Gly Val 30	ctg ctc cgc Leu Leu Arg 35	cgg gga g Arg Gly A	gcg atg gcg Ala Met Ala 40	g ctc cct go a Leu Pro Gl	y Aig r	cgc 147 Arg 45					
ggc ttc gcg Gly Phe Ala	tgc cgc ggg Cys Arg Gly 50	aga tcc g Arg Ser A	gcg gcc tcg Xla Ala Sei 55	g gcg gca ga r Ala Ala Gl	g aga a u Arg 7 60	aca 195 Thr					
aag gag aaa Lys Glu Lys	aag aga aga Lys Arg Arg 65	Asp Ser S	tca aag caq Ser Lys Gli 70	g cca ttg gt n Pro Leu Va 75	. I HTS I	ctc 243 _eu					
cag gtt tgt Gln Val Cys 80	cta gag cac Leu Glu His	cag gtt a Gln Val L 85	aag ttt ggi Lys Phe Gly	t gag cat gt y Glu His Va 90	a ggc a	att 291 Ile					
atc ggt tcc Ile Gly Ser 95	aca aag gag Thr Lys Glu	ctt ggt t Leu Gly S 100	tca tgg gag Ser Trp Gli	g gag cag gt u Glu Gln Va 105	t gaa (1 Glu I	ctg 339 Leu					
gaa tgg act Glu Trp Thr 110	aca aat ggt Thr Asn Gly 115	Trp val C	tgc cag ct Cys Gln Lei 120	u Lys Leu Pi	O GIY	gaa 38 <i>7</i> Glu 125					
aca ctt gtg Thr Leu Val	gag ttt aaa Glu Phe Lys 130	ttt gtt a Phe Val I	ata ttt tt Ile Phe Le 135	g gtg gga gg u Val Gly G	y Lys 140	gat 435 Asp					
aaa ata tgg Lys Ile Trp	gaa gat ggt Glu Asp Gly 145	' A sn Asn A	cgt gtt gt Arg Val Va 150	I Glu Leu Pi	g aag o Lys 55	gat 483 Asp					
ggt aag ttt Gly Lys Phe 160	Asp Ile Va	tgc cac t Cys His 1 165	tgg aat ag Trp Asn Ar	a aca gaa g g Thr Glu G 170	ag cca lu Pro	tta 531 Leu					
gaa ctt tta Glu Leu Leu 175	gga aca cca Gly Thr Pro	a aag ttt g Lys Phe G 180	gag ttg gt Glu Leu Va	c gga gaa g 1 Gly Glu A 185	t gaa la Glu	aag 579 Lys					
aat act ggc Asn Thr Gly 190	gag gat gc Glu Asp Ala 19	a Ser Ala S	tct gta ac Ser Val Th 20	r Phe Ala P	O GIU	aaa 627 Lys 205					
gtt caa gat Val Gln Asp	att tca gt lle Ser Va 210	t gtt gag a l Val Glu /	aat ggt ga Asn Gly As 215	t cca gca c p Pro Ala P	ca gag ro Glu 220	gcc 675 Ala					
gag tca ago Glu Ser Ser	aaa ttt gg Lys Phe Gi 225	y Gly Gin j	tgg caa gg Trp Gln Gl 230	y ser Lys i	ct gtt nr Val 35	ttc 723 Phe					

ato	a sa:	a to	BCS	04-5	007_	OK1	Verr	inge	rte	Akti	vita	it_s	QUEN	IZPRO	токог	.L.ST25
Me	t Ar	240	r ASI	1 GII	J HTS	Lei	245	i Lys	5 GIL	ı Ala	a As _i	25	g Me ¹	t Tr	g gat p Asp	771
aca T h i	a act r Thi 255	GI	g cti y Lei	gat I Asp	t gga o Gly	ata 'Ile 260	: Ala	t ctg	aaa Lys	t ctg Lei	g gtg I Va 26:	l Gli	g ggo	ga† Ası	t aaa o Lys	819
gca A1a 270	a ser	agg Arg	g aad g Asr	tgg Trp	tgg Trp 275	Arg	aag Lys	tta Leu	gag Glu	gtt Val 280	Va	t cgo l Arg	999 9 GTy	ata / Ile	ttg Leu 285	867
tca Sei	a gaa Glu	tct Ser	ttt Phe	gat Asp 290) Asp	cag Gln	agt Ser	cgt Arg	ctg Leu 295	Gly	g gco ⁄ Ala	cti Lei	gta Val	tac Tyr 300	tca Ser	915
gct Ala	att Ile	#tat Tyr	ctg Leu 305	Lys	tgg Trp	att Ile	tat Tyr	aca Thr 310	Gly	cag Gln	ata Ile	tcg Ser	tgc Cys 315	Phe	: gaa Glu	963
gat Asp	ggt Gly	ggc Gly 320	H15	cat His	cgg Arg	cct Pro	aac Asn 325	Lys	cat His	gct Ala	gag Glu	ata Ile 330	Ser	agg Arg	caa Gln	1011
ata Ile	ttc Phe 335	Arg	gaa Glu	ctt Leu	gaa Glu	atg Met 340	atg Met	tat Tyr	tat Tyr	ggg Gly	aaa Lys 345	acc Thr	aca Thr	tca Ser	gcc Ala	1059
aag Lys 350	ASP	gtt Val	ctc Leu	gtg Val	att Ile 355	cgc Arg	aaa Lys	att Ile	cat His	ccc Pro 360	Phe	tta Leu	cct Pro	tca Ser	ttt Phe 365	1107
aag Lys	tca Ser	gag Glu	ttt Phe	aca Thr 370	gcc Ala	tct Ser	gtc Val	cct Pro	cta Leu 375	aca Thr	cga Arg	att Ile	cgt Arg	gat Asp 380	att Ile	1155
gct Ala	cac His	cgg Arg	aat Asn 385	gac Asp	atc Ile	cca Pro	cat His	gat Asp 390	ctc Leu	aag Lys	caa Gln	gaa Glu	atc Ile 395	aag Lys	cat His	1203
act Thr	ata Ile	caa Gln 400	aac Asn	aaa Lys	ctt Leu	cat His	cgt Arg 405	aat Asn	gct Ala	gga Gly	cct Pro	gag Glu 410	gat Asp	ctt Leu	att Ile.	1251
gct Ala	aca Thr 415	gaa Glu	gtc Val	atg Met	ctt Leu	gct Ala 420	agg Arg	att Ile	act Thr	aag Lys	acc Thr 425	cct Pro	gga Gly	gaa Glu	tac Tyr	1299
agt Ser 430	gaa Glu	aca Thr	ttt Phe	gtt Val	gaa Glu 435	caa Gln	ttc Phe	acg Thr	ata Ile	ttt Phe 440	tat Tyr	agc Ser	gaa Glu	cta Leu	aaa Lys 445	1347
gat Asp	РЛЕ	ttc Phe	aat Asn	gct Ala 450	ggc Gly	agc Ser	cta Leu	ttt Phe	gag Glu 455	caa Gln	ctg Leu	gag Glu	tcc Ser	atc Ile 460	aag Lys	1395
gaa Glu	tct Ser	ctg Leu	aac Asn 465	gag Glu	tca Ser	ggc Gly	tta Leu	gaa Glu 470	gtt val	ctc Leu	tca Ser	tcc Ser	ttt Phe 475	gtg Val	gaa Glu	1443
acc T h r	aaa Lys	agg Arg 480	agt Ser	ttg Leu	gac Asp	GIn	gtg Val 485	gat Asp	cat His	gca Ala	gaa Glu	gat Asp 490	ttg Leu	gat Asp	aaa Lys	1491
aat Asn	gat Asp 495	acc Thr	att Ile	caa Gln	att Ile	ttg Leu 500	atg Met	act Thr	acc Thr	ttg Leu	caa Gln 505	tca Ser	tta Leu	tct Ser	tct Ser	1539

cta Leu 510	aga Arg	tca	att	cta	ntc	ลลด	aac	CTT	aaa	aut	ität ggc Gly	CTT	ada	aat	yaı	L.ST25 1587
aca	cct Pro	gat Asp	aat Asn	gct Ala 530	ata Ile	gca Ala	atg Met	cga Arg	caa G1n 535	aag Lys	tgg Trp	cgc Arg	ctt Leu	tgt Cys 540	gaa Glu	1635
att Ile	agt Ser	ctt Leu	gag Glu 545	gat Asp	tat Tyr	tca Ser	ttt Phe	gtt Val 550	ctg Leu	tta Leu	agc Ser	aga Arg	ttc Phe 555	atc Ile	aat Asn	1683
act Thr	ctt Leu	gaa Glu 560	gcc Ala	tta Leu	ggt Gly	gga Gly	tca Ser 565	gct Ala	tca Ser	ctt Leu	gca Ala	aag Lys 570	gat Asp	gta Val	gct Ala	1731
aga Arg	aat Asn 575	act Thr	act Thr	cta Leu	tgg Trp	gat Asp 580	act Thr	act Thr	ctt Leu	gat Asp	gcc Ala 585	ctt Leu	gtc val	att Ile	ggc Gly	1779
atc Ile 590	aat Asn	caa Gln	gtt Val	agc Ser	ttt Phe 595	tca Ser	ggt Gly	tgg Trp	aaa Lys	aca Thr 600	gat Asp	gaa Glu	tgt Cys	att Ile	gcc Ala 605	1827
ata Ile	ggg Gly	aat Asn	gag Glu	att Ile 610	ctt Leu	tcc Ser	tgg Trp	aag Lys	caa Gln 615	aaa Lys	ggt Gly	cta Leu	tct Ser	gaa Glu 620	agt Ser	1875
gaa Glu	ggt Gly	tgt Cys	gaa Glu 625	gat Asp	ggg Gly	aaa Lys	tat Tyr	att Ile 630	tgg Trp	tca Ser	cta Leu	aga Arg	ctt Leu 635	aaa Lys	gct Ala	1923
aca Thr	ctg Leu	gac Asp 640	aga Arg	gca Ala	cgg Arg	aga Arg	tta Leu 645	acg Thr	gaa Glu	gag Glu	tac Tyr	tct Ser 650	gaa Glu	gca Ala	ctt Leu	1971
ctt Leu	tct Ser 655	ata Ile	ttc Phe	cct Pro	gaa Glu	aaa Lys 660	gta Val	atg Met	gtt Val	att Ile	ggg Gly 665	aaa Lys	gcc Ala	ctt Leu	gga Gly	2019
ata Ile 670	Pro	gat Asp	aac Asn	agt Ser	gtg Val 675	aga Arg	act Thr	tac Tyr	aca Thr	gag Glu 680	gca Ala	gaa Glu	att Ile	cgt Arg	gct Ala 685	2067
ggc Gly	att Ile	gtt Val	Phe	cag G1n 690	٧al	tct Ser	1 VS	1 60	CVS	Thr	gta Val	Leu	cag Gln	aaa Lys 700	Ala	2115
att Ile	cga Arg	gaa Glu	gta Val 705	ctt Leu	gga Gly	tca Ser	act Thr	ggc Gly 710	tgg Trp	gat Asp	gtt Val	ctt Leu	gtt Val 715	cct Pro	gga Gly	2163
gtg Val	gcc Ala	cat His 720	Gly	act Thr	ctg Leu	atg Met	cgg Arg 725	gtg Val	gaa Glu	aga Arg	att Ile	ctt Leu 730	Pro	gga Gly	tca Ser	2211
tta Leu	cct Pro 735	Ser	tct Ser	gtc Val	aaa Lys	gaa Glu 740	Pro	gtg Val	gtt Val	cta Leu	att Ile 745	gta Val	gat Asp	aag Lys	gct Ala	2259
gat Asp 750	Gly	gat Asp	gaa Glu	gag Glu	gtc Val 755	Lys	gct Ala	gct Ala	ggg Gly	gat Asp 760	aat Asn	ata Ile	gtt Val	ggt Gly	gtt Val 765	2307
att Ile	ctt Leu	ctt Leu	cag Gln	gaa Glu 770	Leu	cct Pro	cac His	ctt Leu	tca Ser 775	His	ctt Leu	ggt Gly	gtt Val	aga Arg 780	Ala	2355

			BCS	04-5	007_	ок1	Verr	inge	rte	Akti	vitä	t_SE	QUEN:	ZPRO	TOKOLI	L.ST25
Ar	c caa g Gli	a uau	ı aaı	. gci Val	. ura	LILL	: OTâ	і аст	Cys	gaa Glu	+2+	· not	020	aca Thr	a++	2403
ac: Th	a gat r Asp	gtg Val 800	tat Tyr	ttg Leu	ctt Leu	gag Glu	gga G1y 805	aaa Lys	tat Tyr	atc Ile	aga Arg	tta Leu 810	gaa Glu	gca Ala	tca Ser	2451
tc: Sei	ato r Ile 819	: ASII	gtc Val	aat Asn	ctc Leu	tca Ser 820	TIG	gtt Val	tca Ser	gaa Glu	aaa Lys 825	aat Asn	gac Asp	aat Asn	gct Ala	2499
gt(Va 83(tct Ser	aca Thr	gaa Glu	cca Pro	aat Asn 835	agt Ser	aca Thr	ggg Gly	aat Asn	cca Pro 840	ttt Phe	caa Gln	cag Gln	aaa Lys	ctc Leu 845	2547
caa Glr	aat Asn	gaa Glu	ttc Phe	tct Ser 850	cta Leu	cca Pro	tcg Ser	gat Asp	atc Ile 855	gag Glu	atg Met	cca Pro	ctg Leu	caa Gln 860	atg Met	2595
tct Ser	aag Lys	caa Gln	aaa Lys 865	agc Ser	aaa Lys	tca Ser	gga Gly	gtg Val 870	aat Asn	ggt Gly	agt Ser	ttt Phe	gct Ala 875	gct Ala	ctt Leu	2643
gag Glu	ctt Leu	tca Ser 880	gaa Glu	gct Ala	tca Ser	gtg Val	gaa Glu 885	tca Ser	gct Ala	ggt Gly	gca Ala	aaa Lys 890	gct Ala	gct Ala	gca Ala	2691
tgc Cys	aga Arg 895	act Thr	ctt Leu	tct Ser	gtt Val	ctt Leu 900	gct Ala	tca Ser	ttg Leu	tct Ser	aat Asn 905	aaa Lys	gtc Val	tat Tyr	agt Ser	2739
gat Asp 910	GIII	gga Gly	gtt Val	cca Pro	gca Ala 915	gcc Ala	ttt Phe	aga Arg	gtc Val	cct Pro 920	tct Ser	ggt Gly	gct Ala	gtg Val	ata Ile 925	2787
cca Pro	ttt Phe	gga Gly	tca Ser	atg Met 930	gag Glu	gat Asp	gcg Ala	ctc Leu	aag Lys 935	aaa Lys	agt Ser	gga Gly	Ser	ctg Leu 940	gaa Glu	2835
tcc Ser	ttt Phe	aca Thr	agc Ser 945	ctt Leu	cta Leu	gaa Glu	aag Lys	att Ile 950	gaa Glu	aca Thr	gcc Ala	Lys '	gtc Val 955	gaa Glu	aat Asn	2883
ggt Gly	gaa Glu	gtt Val 960	gat Asp	agc Ser	ctg Leu	Ala	ttg Leu 965	gag Glu	cta Leu	caa Gln	Ala	ata Ile: 970	att Ile:	tca Ser i	cat His	2931
ctt Leu	tcc ser 975	cca Pro	ccg Pro	gag Glu	GIU	act Thr 980	att Ile	ata Ile	ttt Phe	ctc a	aaa k Lys / 985	aġa a Arg :	atc [·] Ile i	ttc (Phe l	cca Pro	2979
cag Gln 990	gat Asp	gtc Val	cgg Arg	Leu .	att (11e) 995	gtt : Val /	aga Arg	tct : Ser :	ser /	gct Ala 1000	aat Asn	gtg Val	gag Glu	gat Asp	ttg Leu 1005	3027
gct Ala	ggt Gly	atg Met	ser /	gct Ala 1010	gct Ala	ggt Gly	ctc Leu	tat Tyr	gat Asp 101	tca Ser 5	a att	t cco e Pro	aat Asr	gto Va 102		3072
agt Ser	ctc Leu	atg (Met /	wah i	cca Pro 1025	tgt Cys	gcc Ala	ttt Phe	gga Gly	gct Ala 1030	gcg Ala O	ggti Val	t ggg I Gly	aag Lys	gtt Val 103	_	3117
tgg Trp	gct Ala	tct : Ser !	Leu	tac Tyr L040	aca Thr	agg A r g	aga Arg	gcc Ala	atc Ile 1045	cta Leu	ago Ser	cgt Arg	cga Arg	gco Ala 105	1	3162

٠,		В	cs 0	4-500	7_0K	1 Ve	rrin	gert	e Akt	ivit	ät_s	EQUE	NZPR	OTOKOLL	ST25
gct Ala	ggt Gly	gtt Val	tat Tyr	cag Gln 1055	aga Arg	gac Asp	gcg Ala	aca Thr	atg Met 1060	Ala	ya1	Leu	val	Gln 1065	3,207
gaa Glu	ata Ile	ctg Leu	cag Gln	cca Pro 1070	gat Asp	ctc Leu	tcc Ser	ttc Phe	gtg Val 1075	ctt Leu	cat His	act Thr	gtt Val	tgc Cys 1080	3252
ccc Pro	gct Ala	gac Asp	cat His	gac Asp 1085	ccc Pro	aag Lys	gtt Val	gtc Val	cag Gln 1090	gct Ala	gag Glu	gtc val	gcc Ala	cct Pro 1095	3297
ggg Gly	ctg Leu	ggt Gly	gaa Glu	acg Thr 1100	ctt Leu	gct Ala	tca Ser	gga Gly	acc Thr 1105	cgt Arg	ggc Gly	acc Thr	ccg Pro	tgg Trp 1110	3342
agg Arg	ctg Leu	tca Ser	tgt Cys	aac Asn 1115	aaa Lys	ttc Phe	gat Asp	gga Gly	aaa Lys 1120	gtt Val	gcc Ala	act Thr	ctt Leu	gcc Ala 1125	3387
ttt Phe	tca Ser	aat Asn	ttc Phe	agt Ser 1130	gag Glu	gag Glu	atg Met	gtg Val	gtg Val 1135	cac His	aac Asn	tct Ser	ggt Gly	cct Pro 1140	3432
gcc Ala	aat Asn	gga Gly	gaa Glu	gta Val 1145	att Ile	cgt Arg	ctt Leu	act Thr	gtt Val 1150	gat Asp	tac Tyr	agc Ser	aag Lys	aag Lys 1155	3477
cca Pro	ttg Leu	tcg Ser	gtt Val	gat Asp 1160	aca Thr	acc Thr	ttt Phe	agg Arg	aag Lys 1165	cag Gln	ttt Phe	ggt Gly	cag Gln	cga Arg 1170	3522
ctg Leu	gct Ala	gcg Ala	att Ile	ggc Gly 1175	cag Gln	tat Tyr	ctg Leu	gag Glu	cag Gln 1180	aag Lys	ttc Phe	ggg Gly	agt Ser	gca Ala 1185	3567
cag Gln	gat Asp	gtg Val	gaa Glu	ggt Gly 1190	Cys	ctg Leu	gtt Val	ggg Gly	aaa Lys 1195	gat Asp	att Ile	ttt Phe	ata Ile	gtg Val 1200	3612
caa Gln	agc Ser	agg Arg	cca Pro	cag Gln 1205	cca Pro	tag	aag	ccga	att c						3644

<210> 4

<211> 1206

<212> PRT

<213> oryza sativa

<400> 4

Met Thr Ser Leu Arg Pro Leu Glu Thr Ser Leu Ser Ile Gly Gly Arg 1 15

Pro Arg Arg Gly Leu Val Leu Pro Pro Pro Gly Val Gly Ala Gly Val 20 25 30

Leu Leu Arg Arg Gly Ala Met Ala Leu Pro Gly Arg Arg Gly Phe Ala 35 40 45

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25 Cys Arg Gly Arg Ser Ala Ala Ser Ala Ala Glu Arg Thr Lys Glu Lys 50 60 Lys Arg Arg Asp Ser Ser Lys Gln Pro Leu Val His Leu Gln Val Cys 65 70 75 80 Leu Glu His Gln Val Lys Phe Gly Glu His Val Gly Ile Ile Gly Ser 85 90 95 Thr Lys Glu Leu Gly Ser Trp Glu Glu Gln Val Glu Leu Glu Trp Thr 100 105 110 Thr Asn Gly Trp Val Cys Gln Leu Lys Leu Pro Gly Glu Thr Leu Val 115 120 125 Glu Phe Lys Phe Val Ile Phe Leu Val Gly Gly Lys Asp Lys Ile Trp 130 140 Glu Asp Gly Asn Asn Arg Val Val Glu Leu Pro Lys Asp Gly Lys Phe 145 150 155 160 Asp Ile Val Cys His Trp Asn Arg Thr Glu Glu Pro Leu Glu Leu Leu 165 170 175 Gly Thr Pro Lys Phe Glu Leu Val Gly Glu Ala Glu Lys Asn Thr Gly 180 185 190 Glu Asp Ala Ser Ala Ser Val Thr Phe Ala Pro Glu Lys Val Gln Asp 195 200 205 Ile Ser Val Val Glu Asn Gly Asp Pro Ala Pro Glu Ala Glu Ser Ser 210 220 Lys Phe Gly Gly Gln Trp Gln Gly Ser Lys Thr Val Phe Met Arg Ser 225 235 240 Asn Glu His Leu Asn Lys Glu Ala Asp Arg Met Trp Asp Thr Thr Gly 245 250 255 Leu Asp Gly Ile Ala Leu Lys Leu Val Glu Gly Asp Lys Ala Ser Arg 260 265 270 Asn Trp Trp Arg Lys Leu Glu Val Val Arg Gly Ile Leu Ser Glu Ser 275 280 285 Phe Asp Asp Gln Ser Arg Leu Gly Ala Leu Val Tyr Ser Ala Ile Tyr 290 295 300 Leu Lys Trp Ile Tyr Thr Gly Gln Ile Ser Cys Phe Glu Asp Gly Gly 305 310 315

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25 His His Arg Pro Asn Lys His Ala Glu Ile Ser Arg Gln Ile Phe Arg 325 330 335 Glu Leu Glu Met Met Tyr Tyr Gly Lys Thr Thr Ser Ala Lys Asp Val 340 345 Leu Val Ile Arg Lys Ile His Pro Phe Leu Pro Ser Phe Lys Ser Glu 355 360 365 Phe Thr Ala Ser Val Pro Leu Thr Arg Ile Arg Asp Ile Ala His Arg 370 375 380 Asn Asp Ile Pro His Asp Leu Lys Gln Glu Ile Lys His Thr Ile Gln 385 390 400 Asn Lys Leu His Arg Asn Ala Gly Pro Glu Asp Leu Ile Ala Thr Glu 405 415Val Met Leu Ala Arg Ile Thr Lys Thr Pro Gly Glu Tyr Ser Glu Thr 420 425 430 Phe Val Glu Gln Phe Thr Ile Phe Tyr Ser Glu Leu Lys Asp Phe Phe 435 440 Asn Ala Gly Ser Leu Phe Glu Gln Leu Glu Ser Ile Lys Glu Ser Leu 450 460 Asn Glu Ser Gly Leu Glu Val Leu Ser Ser Phe Val Glu Thr Lys Arg 465 470 475 480 Ser Leu Asp Gln Val Asp His Ala Glu Asp Leu Asp Lys Asn Asp Thr 485 490 495 Ile Gln Ile Leu Met Thr Thr Leu Gln Ser Leu Ser Ser Leu Arg Ser 500 505 510 Val Leu Met Lys Gly Leu Glu Ser Gly Leu Arg Asn Asp Ala Pro Asp 515 525 Asn Ala Ile Ala Met Arg Gln Lys Trp Arg Leu Cys Glu Ile Ser Leu 530 540 Glu Asp Tyr Ser Phe Val Leu Leu Ser Arg Phe Ile Asn Thr Leu Glu 545 550 560 Ala Leu Gly Gly Ser Ala Ser Leu Ala Lys Asp Val Ala Arg Asn Thr 565 570 575 Thr Leu Trp Asp Thr Thr Leu Asp Ala Leu Val Ile Gly Ile Asn Gln 580 585

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25 Val Ser Phe Ser Gly Trp Lys Thr Asp Glu Cys Ile Ala Ile Gly Asn 595 600 605 Glu Ile Leu Ser Trp Lys Gln Lys Gly Leu Ser Glu Ser Glu Gly Cys 610 620 Glu Asp Gly Lys Tyr Ile Trp Ser Leu Arg Leu Lys Ala Thr Leu Asp 625 630 635 640 Arg Ala Arg Arg Leu Thr Glu Glu Tyr Ser Glu Ala Leu Leu Ser Ile 645 650 655 Phe Pro Glu Lys Val Met Val Ile Gly Lys Ala Leu Gly Ile Pro Asp 660 665 670 Asn Ser Val Arg Thr Tyr Thr Glu Ala Glu Ile Arg Ala Gly Ile Val 675 680 685 Phe Gln Val Ser Lys Leu Cys Thr Val Leu Gln Lys Ala Ile Arg Glu 690 700 Val Leu Gly Ser Thr Gly Trp Asp Val Leu Val Pro Gly Val Ala His 705 710 715 720 Gly Thr Leu Met Arg Val Glu Arg Ile Leu Pro Gly Ser Leu Pro Ser 725 730 735 Ser Val Lys Glu Pro Val Val Leu Ile Val Asp Lys Ala Asp Gly Asp 740 750 Glu Glu Val Lys Ala Ala Gly Asp Asn Ile Val Gly Val Ile Leu Leu 755 760 765 Gln Glu Leu Pro His Leu Ser His Leu Gly Val Arg Ala Arg Gln Glu 770 780 Asn Val Val Phe Val Thr Cys Glu Tyr Asp Asp Thr Val Thr Asp Val 785 790 795 800 Tyr Leu Leu Glu Gly Lys Tyr Ile Arg Leu Glu Ala Ser Ser Ile Asn 805 810 815 Val Asn Leu Ser Ile Val Ser Glu Lys Asn Asp Asn Ala Val Ser Thr 820 830 Glu Pro Asn Ser Thr Gly Asn Pro Phe Gln Gln Lys Leu Gln Asn Glu 835 840 845 Phe Ser Leu Pro Ser Asp Ile Glu Met Pro Leu Gln Met Ser Lys Gln 850 860

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25 Lys Ser Lys Ser Gly Val Asn Gly Ser Phe Ala Ala Leu Glu Leu Ser 865 870 875 880 Glu Ala Ser Val Glu Ser Ala Gly Ala Lys Ala Ala Ala Cys Arg Thr 885 890 895 Leu Ser Val Leu Ala Ser Leu Ser Asn Lys Val Tyr Ser Asp Gln Gly 900 905 910 Val Pro Ala Ala Phe Arg Val Pro Ser Gly Ala Val Ile Pro Phe Gly 915 920 925 Ser Met Glu Asp Ala Leu Lys Lys Ser Gly Ser Leu Glu Ser Phe Thr 930 935 940 Ser Leu Leu Glu Lys Ile Glu Thr Ala Lys Val Glu Asn Gly Glu Val 945 950 955 960 Asp Ser Leu Ala Leu Glu Leu Gln Ala Ile Ile Ser His Leu Ser Pro 965 970 975 Pro Glu Glu Thr Ile Ile Phe Leu Lys Arg Ile Phe Pro Gln Asp Val 980 985 990 Arg Leu Ile Val Arg Ser Ser Ala Asn Val Glu Asp Leu Ala Gly Met 995 1000 1005 Ser Ala Ala Gly Leu Tyr Asp Ser Ile Pro Asn Val Ser Leu Met 1010 1015 1020 Asp Pro Cys Ala Phe Gly Ala Ala Val Gly Lys Val Trp Ala Ser 1025 1030 1035 Leu Tyr Thr Arg Arg Ala Ile Leu Ser Arg Arg Ala Ala Gly Val 1040 1045 1050 Tyr Gln Arg Asp Ala Thr Met Ala Val Leu Val Gln Glu Ile Leu 1055 1060 1065 Gln Pro Asp Leu Ser Phe Val Leu His Thr Val Cys Pro Ala Asp 1070 1080 His Asp Pro Lys Val Val Gln Ala Glu Val Ala Pro Gly Leu Gly 1085 1090 1095 Glu Thr Leu Ala Ser Gly Thr Arg Gly Thr Pro Trp Arg Leu Ser 1100 1105 Cys Asn Lys Phe Asp Gly Lys Val Ala Thr Leu Ala Phe Ser Asn 1115 1120 1125

Seite 19

```
BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25
```

Phe Ser Glu Glu Met Val Val His Asn Ser Gly Pro Ala Asn Gly 1130 1140

Glu Val Ile Arg Leu Thr Val Asp Tyr Ser Lys Lys Pro Leu Ser 1145 1150 1155

Val Asp Thr Thr Phe Arg Lys Gln Phe Gly Gln Arg Leu Ala Ala 1160 1165 1170

Ile Gly Gln Tyr Leu Glu Gln Lys Phe Gly Ser Ala Gln Asp Val 1175 1180 1185

Glu Gly Cys Leu Val Gly Lys Asp Ile Phe Ile Val Gln Ser Arg 1190 1200

Pro Gln Pro 1205

<210> 5

<211> 12

<212> PRT

<213> Oryza sativa, Arabidopsis thaliana

<400> 5

Leu Pro His Leu Ser His Leu Gly Val Arg Ala Arg 1 10

<210> 6

<211> 9

<212> PRT

<213> Solanum tuberosum

<400> 6

Pro Glu Glu Cys Lys Ala Val Gly Asn

<210> 7

<211> 7

<212> PRT

<213> Solanum tuberosum

<400> 7

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25 Thr Glu Glu Tyr Ser Glu Thr 1 5 <210> 8

<211> 7 <212> PRT

<213> Solanum tuberosum

<400> 8
Arg Phe Val Asn Ala Val Glu
1 5

<210> 9

<211> 7

<212> PRT

<213> Solanum tuberosum

<400> 9
Glu Gly Ser Glu Asp Gly Lys
5

<210> 10

<211> 403

<212> DNA

<213> Solanum tuberosum

<220>

<221> CDS

<222> (1)..(402)

<223>

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25 40 45 aaa aac att agt tct tgg aat gat cca att gga gca ctt aca gtt gga Lys Asn Ile Ser Ser Trp Asn Asp Pro Ile Gly Ala Leu Thr Val Gly 50 55 60 atc caa cag cta ggt ata tct ggt tgg aag ccc gag gaa tgc aaa gct Ile Gln Gln Leu Gly Ile Ser Gly Trp Lys Pro Glu Glu Cys Lys Ala 65 70 75 80 240 gtt gga aat gaa ctt ttg tca tgg aaa gaa agg ggt att tca gaa att Val Gly Asn Glu Leu Leu Ser Trp Lys Glu Arg Gly Ile Ser Glu Ile 85 90 95 288 gaa ggc agc gaa gat ggt aag act ata tgg gca tta aga cta aaa gcg Glu Gly Ser Glu Asp Gly Lys Thr Ile Trp Ala Leu Arg Leu Lys Ala 100 105 110 336 act ctt gat aga agt cga agg tta act gag gag tat tcc gag aca ctt Thr Leu Asp Arg Ser Arg Arg Leu Thr Glu Glu Tyr Ser Glu Thr Leu 115 120 384 ctc caa ata ttc cct gaa a 403 Leu Glm Ile Phe Pro Glu <210> 11 <211> 134 <212> PRT <213> Solanum tuberosum <400> Ala Asp Ala Ser Ile Ala Met Arg Gln Lys Trp Arg Leu Cys Glu Ile 10 10 15Gly Leu Glu Asp Tyr Ala Phe Val Leu Leu Ser Arg Phe Val Asn Ala 20 25 30 Val Glu Ala Leu Gly Gly Ala Asp Trp Leu Ala Glu Asn Val Thr Val 35 40 45 Lys Asn Ile Ser Ser Trp Asn Asp Pro Ile Gly Ala Leu Thr Val Gly 50 60Tle Gln Gln Leu Gly Ile Ser Gly Trp Lys Pro Glu Glu Cys Lys Ala 65 70 75 80

192

Thr Leu Asp Arg Ser Arg Arg Leu Thr Glu Glu Tyr Ser Glu Thr Leu Seite 22

Val Gly Asn Glu Leu Leu Ser Trp Lys Glu Arg Gly Ile Ser Glu Ile 85 90 95

Glu Gly Ser Glu Asp Gly Lys Thr Ile Trp Ala Leu Arg Leu Lys Ala

BCS 04-5007_OK1 Verringerte Aktivität_SEQUENZPROTOKOLL.ST25 120 125

Leu Gln Ile Phe Pro Glu 130

a control of the control of the support	manganaganggangganggan (1) 1000 ga manganagan 1110 da 16	and the second s	and harmonic to the state of th	e lagra e (a la recentación de lagra properti la fraguese	And the second to detail the second s	Land to Daily the Manager Const.
		· · · · · · · · · · · · · · · · · · ·				
-						
				1		
		,				
		- v _e			j.	
						i