Homework-H3.4_k-Means_Clustering

October 16, 2020

1 Homework H3.4

By: Markus Limbacher & Lucas Krauter

1.1 Preparations

1.1.1 Import of libraries

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  %matplotlib inline
  import copy
  # to check the time of execution, import function time
  import time
  # check versions of libraries
  print('pandas version is: {}'.format(pd.__version__))
  print('numpy version is: {}'.format(np.__version__))
```

pandas version is: 1.0.3 numpy version is: 1.18.3

1.1.2 Dataset

```
[2]: # Dataset declaration

df = pd.DataFrame({
    'x': [12, 20, 28, 18, 29, 33, 24, 45, 45, 52, 51, 52, 55, 53, 55, 61, 64, \u00cd
    -69, 72],
    'y': [39, 36, 30, 52, 54, 46, 55, 59, 63, 70, 66, 63, 58, 23, 14, 8, 19, 7, \u00cd
    -24]
})

np.random.seed(42)

# Number of clusters ==> k
k = 3
# centroids[i] = [x, y]
centroids = {
```

```
i+1: [np.random.randint(0, 80), np.random.randint(0, 80)]
for i in range(k)
}
```

1.1.3 Display dataset

```
[3]: fig = plt.figure(figsize=(5, 5))
plt.scatter(df['x'], df['y'], color='k')
colmap = {1: 'r', 2: 'g', 3: 'b'}
for i in centroids.keys():
    plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.show()
```


1.2 K-Means manually

1.2.1 Assignment Stage

```
[4]: # Function to determine closest centroid
     def assignment(df, centroids):
         # Iterating over every centroid
         for i in centroids.keys():
             # distance function: sqrt((x1 - x2)^2 - (y1 - y2)^2)
            df['distance_from_{}'.format(i)] = (
                 np.sqrt(
                     (df['x'] - centroids[i][0]) ** 2
                     + (df['y'] - centroids[i][1]) ** 2
         centroid_distance_cols = ['distance_from_{}'.format(i) for i in centroids.
     →keys()]
         df['closest'] = df.loc[:, centroid_distance_cols].idxmin(axis=1)
         df['closest'] = df['closest'].map(lambda x: int(x.lstrip('distance_from_')))
         df['color'] = df['closest'].map(lambda x: colmap[x])
         return df
     df = assignment(df, centroids)
     print(df)
```

	X	У	distance_from_1	distance_from_2	distance_from_3	closest	color
0	12	39	46.324939	62.625873	35.902646	3	b
1	20	36	38.013156	56.364883	38.000000	3	b
2	28	30	28.017851	52.430907	44.721360	1	r
3	18	52	50.328918	53.600373	22.090722	3	b
4	29	54	45.650849	42.426407	21.931712	3	b
5	33	46	36.715120	40.496913	30.870698	3	b
6	24	55	49.091751	47.265209	19.416488	3	b
7	45	59	45.398238	26.019224	29.154759	2	g
8	45	63	49.365980	26.172505	27.313001	2	g
9	52	70	56.008928	21.470911	32.249031	2	g
10	51	66	52.000000	20.880613	32.015621	2	g
11	52	63	49.010203	19.235384	33.837849	2	g
12	55	58	44.181444	16.124515	38.483763	2	g
13	53	23	9.219544	41.146081	60.745370	1	r
14	55	14	4.000000	48.703183	69.462220	1	r
15	61	8	11.661904	52.952809	77.698134	1	r
16	64	19	13.928388	41.593269	70.434367	1	r
17	69	7	19.313208	53.037722	83.006024	1	r
18	72	24	23.259407	36.013886	72.138755	1	r

1.2.2 Display modified dataset with color assigned to closest centroid.

```
[5]: def displayDataset(df, centroids):
    fig = plt.figure(figsize=(5, 5))
    plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')
    for i in centroids.keys():
        plt.scatter(*centroids[i], color=colmap[i])
    plt.xlim(0, 80)
    plt.ylim(0, 80)
    plt.show()
displayDataset(df, centroids)
```


1.2.3 Update Stage

```
[6]: # Copies current centroids for demonstration purposes
old_centroids = copy.deepcopy(centroids)

# Calculate mean from each seperate cluster as new centroids
def update(k):
    for i in centroids.keys():
```

```
centroids[i][0] = np.mean(df[df['closest'] == i]['x'])
    centroids[i][1] = np.mean(df[df['closest'] == i]['y'])
    return k

centroids = update(centroids)
```

1.2.4 Display updated centroids

1.2.5 Repeat Assigment

```
[8]: df = assignment(df, centroids)

# Plot results
displayDataset(df, centroids)
```


1.2.6 Loop until all assigned categories don't change any more

```
[9]: while True:
    closest_centroids = df['closest'].copy(deep=True)
    centroids = update(centroids)
    df = assignment(df, centroids)
    if closest_centroids.equals(df['closest']):
        break

displayDataset(df, centroids)
```


1.3 K-Means using scikit-learn

1.3.1 Preparations

1.3.2 Executing K-Means function

```
[11]: # 3 Clusters
kmeans = KMeans(n_clusters=3)
# Fitting K-Means modell
```

```
print(kmeans.fit(df))
```

```
[12]: # Using modell to label dataset
labels = kmeans.predict(df)
centroids = kmeans.cluster_centers_
```

```
[13]: # Display result
fig = plt.figure(figsize=(5, 5))

colors =list( map(lambda x: colmap[x+1], labels))

plt.scatter(df['x'], df['y'],color=colors, alpha=0.5, edgecolor='k')
for idx, centroid in enumerate(centroids):
    plt.scatter(*centroid, color=colmap[idx+1])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.show()
```



```
[14]: # print current date and time
print("date & time:",time.strftime("%d.%m.%Y %H:%M:%S"))
print ("**** End of Homework-H3.4_k-Means_Clustering ****")
```

date & time: 16.10.2020 23:01:20
**** End of Homework-H3.4_k-Means_Clustering ****