Teoría de Matemáticas de Bachillerato

Pedro Ángel Fraile Manzano

20 de febrero de 2023

Contenidos Generales

Ar	arta	idos del libro	P	'ág	gina —
Ι	Pre	efacios, Repaso y otras consideraciones			11
1.	Оре	eraciones sobre los números reales			13
In	trod	ucción			14
	1.1.	Estructura de los números reales			14
	1.2.	Potencias y Logaritmos			15
	1.3.	Resolución de ecuaciones exponenciales			17
	1.4.	Resolución de ecuaciones logarítmicas			19
2.	Poli	nomios sobre el cuerpo de los reales y ecuaciones			21
	2.1.	Conceptos básicos			21
	2.2.	Operaciones con polinomios			21
	2.3.	Divisibilidad de polinomios			21
3.	Ecu	aciones polinómicas			23
	3.1.	Ecuaciones lineales			23
	3.2.	Ecuaciones parabólicas			23
	3.3.	Ecuaciones de grado mayor que $2 \ldots \ldots \ldots$			24
4.	Ine	cuaciones			25
	4.1.	Inecuaciones lineales			25
	4.2.	Inecuaciones no lineales		•	25
II	Aı	nálisis Matemático			27
5.	\mathbf{Pre}	ámbulos para análisis			29
	5.1.	Topología sobre $\mathbb R$			30

6.	Cálculo de Límites	33
	6.1. Preámbulo sobre las sucesiones reales	34
	6.2. Definición	34
	6.3. Propiedades de los límites	35
	6.4. Cálculo efectivo de límites	35
	6.5. Indeterminaciones	35
7.	Las funciones sobre $\mathbb R$	37
	7.1. Definiciones previas	38
8.	Derivabilidad sobre $\mathbb R$	39
	8.1. Concepto de la derivada	40
	8.2. Derivabilidad de una función	41
	8.2.1. Estudio de la derivabilidad de una función	41
	8.3. Tabla de derivadas	42
	8.4. Algunas demostraciones de fórmulas de derivadas	43
9.	Aplicaciones de la derivada	45
	9.1. Cálculo de mínimos y máximos	46
	9.2. Cálculo de la curvatura de las funciones	46
	9.3. Optimización de funciones	46
10	0.Representación de funciones	47
	10.1. Dominio	48
	10.2. Simetría y periodicidad	49
	10.3. Continuidad	50
	10.4. Corte con los ejes	51
	10.5. Asíntotas	51
	10.6. Monotonía	51
	10.7. Curvatura	51
	10.8. Análisis de cada tipo de función elemental	51
11	\mathbb{R} .Integración sobre \mathbb{R}	53
	11.1. Conceptos principales	54
	11.2. Cálculo efectivo de integrales	56
	11.2.1. Primitivas inmediatas	56
	11.2.2. Integración por partes	57
	11.2.4. Integración por cambio de variable	57
	11.2.5. Integración de funciones racionales	57
	11.2.6. Ejercicios	58
	11.3 Aplicaciones de la integral	58

(C	Ω)	١	ľ	Г	F	7	١	Ī	Ī	Γ)	C)	ς	١.	G	1	H)	1	V	H	7	R	?	А	١	T,	F	7,9	ς	

20. Variables aleatorias continuas

III Ejercicios de Análisis Matemático	5 9
12.Representación de funciones Introducción 12.1. Funciones polinómicas 12.2. Funciones racionales 12.3. Funciones irracionales 12.4. Funciones exponenciales 12.5. Funciones logarítmicas 12.6. Funciones trigonométricas	61 61 62 62 62 62 62
IV Álgebra lineal	63
13.Espacios Vectoriales	65
14. Aplicaciones lineales	67
15.Matrices	69
16.Determinantes	71
17.Discusión de sistemas	73
V Cálculo de probabilidades	7 5
18.Probabilidades básicas	77
19. Variables aleatorias discretas	7 9

Preludio

Indice de símbolos

Con el fin de poder resumir y dinamizar el lenguaje matemático se utilizarán a lo largo de estos apuntes $\,$

Parte I

Prefacios, Repaso y otras consideraciones

Operaciones sobre los números reales

Índice del capítulo										
1.1.	Estructura de los números reales	14								
1.2.	Potencias y Logaritmos	15								
1.3.	Resolución de ecuaciones exponenciales	17								
1.4.	Resolución de ecuaciones logarítmicas	19								

Introducción

Los distintos conjuntos de números surgen de la necesidad de resolver distintas ecuaciones, es decir, a medida que necesitamos resolver ecuaciones más complejas, más se amplían el campo de números con los que podemos actuar:

1.1. Estructura de los números reales

Los números reales tiene estructura de cuerpo y te preguntarás ¿ Qué es un cuerpo?

Definición 1.1.1. Un cuerpo es una terna $(\mathbb{K}, +, \cdot)$ donde:

- 1. \mathbb{K} es un conjunto de elementos
- 2. + es una operación sobre los elementos de \mathbb{K} que cumple:
 - Es una operación **conmutativa**, es decir, sean $a, b \in \mathbb{K}$ entonces tendremos que a + b = b + a
 - Es una operación **asociativa**, es decir dados $a, b, c \in \mathbb{K}$ tenemos que a + (b + c) = (a + b) + c
 - Existe un **elemento neutro**, es decir $\exists e/e + a = a + e = a$ $\forall a \in \mathbb{K}$.
 - Cada elemento $a \in \mathbb{K}$ existe un elemento **inverso** que se denota por a^{-1} de tal manera que $a + a^{-1} = a^{-1} + a = e$ (Esto también se da cuando no se cumple la conmutativa)
- 3. · es una operación que cumple lo siguiente
 - Es una operación **asociativa**, es decir dados $a, b, c \in \mathbb{K}$ tenemos que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - Existe un **elemento neutro** para esta operación $\exists e/e \cdot a = a \cdot e = a \ \forall a \in \mathbb{K}$.
 - Para todo elemento $a \in \mathbb{K}$ entonces $\exists a^{-1}/a \cdot a^{-1} = a^{-1} \cdot a = e$ (Esto es lo que distingue un cuerpo a un anillo)
 - · es distributivo respecto de + es decir, $a \cdot (b+c) = a \cdot b + a \cdot b$

15

Aclaración 1: Aunque se denoten como +, · no tenemos por qué usar las definiciones habituales de la suma y la multiplicación. Por ejemplo, la suma y producto de números reales no son iguales que las mismas operaciones para las matrices (quedaros con ese nombre.)

Aclaración 2: De esta manera que tenemos que lo que llamamos en los números reales la resta es la suma por el inverso y la división es el producto por el inverso.

Ejercicio Propuesto. Demostrar que \mathbb{R} y \mathbb{C} son cuerpos

1.2. Potencias y Logaritmos

Definición 1.2.1. Podemos definir las potencias como $a^n = \overbrace{a \cdot \dots \cdot a}^{\text{n veces}}$. Una vez entendido esto tenemos las siguientes propiedades

Propiedades

1.
$$a^1 = a$$
 y $a^0 = 1$ para cualquier $a \in \mathbb{R}$

2.
$$a^{-1} = \frac{1}{a}$$

3.
$$a^n \cdot a^m = a^{n+m}$$

$$4. \ \frac{a^n}{a^m} = a^{n-m}$$

5.
$$(a^n)^m = a^{n \cdot m}$$

6.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

7.
$$(a \cdot b)^n = a^n \cdot b^n$$

$$8. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Demostración

- 1. Para la primera demostración no hace falta más que decir que estamos "poniendo" sólo una a y que $a^0=1$ es básicamente proveniente del álgebra $\mathbb Z$ modular.
- 2. En este caso, tenemos que al utilizar la propiedad 3 quedará más clara pero si nosotros tenemos $a^1 \cdot a^{-1} = a^0 = 1 \Rightarrow a^{-1} = \frac{1}{a}$
- 3. Ahora tenemos que $a^n \cdot a^m = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} \cdot \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a \cdot \dots \cdot a}_{n+m \text{ veces}} = a^{m+n}$

- 4. Si combinamos la propiedad 2 y 3 queda probado $\frac{a^n}{a^m}=a^n\cdot\frac{1}{a^m}=a^n\cdot a^{-m}=a^{n-m}$
- 5. Este se debe a que estamos multiplicando paquetitos del producto de n a's, es decir , $(a^n)^m = \overbrace{a^n \cdot \ldots \cdot a^n}^{\text{m veces}} = \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} \cdot \ldots \cdot \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a^{mn}}_{\text{n veces}}$
- 6. Haciendo un razonamiento análogo pero con el producto lo tenemos
- 7. Tenemos lo siguiente $(a \cdot b)^n = \overbrace{a \cdot b \cdot \ldots \cdot a \cdot b}^{\text{n veces}} = \overbrace{a \cdot \ldots \cdot a}^{\text{n veces}} \cdot \overbrace{b \cdot \ldots \cdot b}^{\text{n veces}} = \underbrace{a^n \cdot b^n}$
- 8. Utilizando un razonamiento similar al anterior lo tenemos cambiando únicamente b por b^{-1}

Definición 1.2.2. Definimos el logaritmo de $b \in \mathbb{R}^+$ en base a > 0 de la siguiente manera

$$log_a b = x \Leftrightarrow a^x = b \tag{1.1}$$

Esta definición nos permite "traducir" de logaritmos a potencias y es lo que se utiliza para demostrar las siguientes propiedades

Propiedades: Sean $P, Q, a \in \mathbb{R}^+$

- 1. $log_a 1 = 0$
- $2. log_a a = 1$
- 3. $log_a(P \cdot Q) = log_aP + log_aQ$
- 4. $log_a\left(\frac{P}{Q}\right) = log_aP log_aQ$
- 5. $log_a P^n = n \cdot log_a P$

Ejercicio Propuesto. Se propone al lector la demostración de estas propiedades utilizando la definición de logaritmos y las propiedades de las potencias.

1.3. Resolución de ecuaciones exponenciales

Definición 1.3.1. Podemos definir una ecuación exponencial como aquella que tiene la incógnita en el exponente

$$a^x = b$$

Podemos distinguir los siguientes casos:

■ Ecuaciones donde la incógnita aparece en un solo exponente El procedimiento es intentar poner todos los elementos como potencias de la base que tiene la incógnita

$$2^{x+1} = 8$$
$$2^{x+1} = 2^3$$

Tras esto, podemos hacer el logaritmo de cada uno de los lados ya que $log_a P = log_a Q \Leftrightarrow P = Q$ en este caso a = 2 de tal forma que lo anterior nos queda:

$$2^{x+1} = 2^{3}$$

$$log_{2}(2^{x+1}) = log_{2}(2^{3})$$

$$x + 1 = 3$$

$$x = 2$$

También puede que no podamos descomponer en potencias de una sola base entonces tenemos el siguiente caso.

$$2^x = 127$$

Entonces tomamos logaritmos para poder resolverlo

$$2^{x} = 127$$

$$log_{2}(2^{x}) = log_{2}(127)$$

$$x \cdot log_{2}(2) = log_{2}(127)$$

$$x = log_{2}(127)$$

A partir de aquí podemos utilizar un cambio de base de los logaritmos para poder usar el logaritmo en base 10 o e.

Ejercicio 1.3.1. Resuelve las siguientes ecuaciones.

a)
$$4^{x+1} - 8 = 0$$
 b) $3^{x+2} = 81$ c) $x + 1$ d) $e^x - 1 = 3$

• Ecuaciones donde la incógnita está en más de una potencia El procedimiento es conseguir una expresión donde las potencias que tengan las incógnitas se reduzcan a las misma base y podamos hacer un cambio de variable $a^x = t$ que después desharemos como si fuera un caso como el anterior.

Vamos a resolver el siguiente ejemplo

$$2^{x+1} + 2^{x-1} + 2^x = 7$$

Para empezar pongamos todo como una combinación lineal de 2^x para ello aplicamos las propiedades de las potencias.

$$2^{x+1} + 2^{x-1} + 2^x = 7$$
$$2 \cdot 2^x + \frac{2^x}{2} + 2^x = 7$$

Ahora ya podemos tomar el cambio de variable $2^x = t$ de manera que obtenemos lo siguiente.

$$2 \cdot 2^{x} + \frac{2^{x}}{2} + 2^{x} = 7$$
$$2 \cdot t + \frac{t}{2} + t = 7$$

La anterior ecuación es una ecuación fácilmente resoluble por tanto, ya hemos obtenido lo que queríamos, reducir la dificultad del ejercicio.

$$2 \cdot t + \frac{t}{2} + t = 7$$
$$\frac{7}{2} \cdot t = 7$$
$$t = 2$$

Por tanto sabemos que t=2 lo que implica entonces que $2^x=t=2$ y al aplicar logaritmos a ambos lados de la igualdad y obtenemos que

$$log_2 2^x = log_2 2$$
$$x = 1$$

1.4. Resolución de ecuaciones logarítmicas

Definición 1.4.1. Podemos definir una ecuación exponencial como aquella que tiene la incógnita dentro de un logaritmo.

Polinomios sobre el cuerpo de los reales y ecuaciones

Índic	e del capítulo
	2.1. Conceptos básicos
	2.2. Operaciones con polinomios 21
	2.3. Divisibilidad de polinomios 21
2.1.	Conceptos básicos
2.1.	Conceptos básicos
2.2.	Operaciones con polinomios
2.3.	Divisibilidad de polinomios

22 CAP 'ITULO~2.~POLINOMIOS~SOBRE~EL~CUERPO~DE~LOS~REALES~Y~ECUACIONES

Ecuaciones polinómicas

Índice del capítulo

3.1.	Ecuaciones lineales	23
3.2.	Ecuaciones parabólicas	23
3.3.	Ecuaciones de grado mayor que 2	24

3.1. Ecuaciones lineales

Una ecuación lineal es de la forma ax + b = 0 y es el tipo más simple que puede haber de ecuación. Para resolver este tipo de ecuaciones, hay que aplicar la operación inversa a ambos lados de tal manera que si tenemos

$$ax + b = 0$$

y restamos b a ambos lados obtenemos que

$$ax + b - b = -b \Rightarrow ax = -b$$

y ahora si dividimos cada lado entre a obtendremos que

$$\frac{ax}{a} = \frac{-b}{a} \Rightarrow x = \frac{-b}{a}$$

3.2. Ecuaciones parabólicas

La fórmula general de las ecuaciones de segundo grado o parabólicas son de la forma

$$ax^2 + bx + c = 0$$

Las soluciones de este tipo de ecuaciones en caso de tenerlas se calculan con la siguiente fórmula:

$$x = \frac{-b \pm \sqrt{-b^2 - 4ac}}{2a}$$

En el caso de que b c sean nulos entonces tendremos que:

• c = 0 Entonces tenemos $ax^2 + bx$ sacamos factor común a x.

$$ax^2 + bx = 0$$
$$x \cdot (ax + b) = 0$$

Entonces como el producto es igual a 0 entonces puede que uno de los factores sea 0.

$$ax + b = 0$$
$$x = 0$$

 \bullet b=0 En este caso se resuelve como una ecuación normal y al final aplicaremos una raíz cuadrada

$$ax^{2} + b = 0$$

$$ax^{2} = -b$$

$$x^{2} = \frac{-b}{a}$$

$$x = \pm \sqrt{\frac{-b}{a}}$$

3.3. Ecuaciones de grado mayor que 2

Las ecuaciones de grado mayor que 2 se resuelven de manera muy parecida a las ecuaciones de 2^0 grado con c=0 se factoriza el polinomio y se va buscando las raíces de cada factor. De esta manera, podemos resolver ecuaciones del grado que queramos.

Inecuaciones

Índice	e del capítulo	
	4.1. Inecuaciones lineales 2	5
	4.2. Inecuaciones no lineales	5
4.1.	Inecuaciones lineales	
4.2.	Inecuaciones no lineales	

Parte II Análisis Matemático

Preámbulos para análisis

Índice del capítulo	
5.1. Topología sobre $\mathbb R$	30

5.1. Topología sobre \mathbb{R}

La topología ocupa un lugar muy destacado cuando se trata del análisis matemático ya que es la rama que estudia que ocurre con ciertas propiedades de proximidad cuando a un conjunto le aplicas lo que hemos llamado funciones continuas en anteriores cursos.

Definición 5.1.1. Una **topología**, τ , sobre el conjunto A es una familia de subconjuntos de finita o no que cumple las siguientes características:

- $A y \emptyset$ pertenecen a τ .
- Dado $\{A_i\}_{i\in I}$ una familia arbitraria (puede ser finita o no) de elementos de τ entonces $\cup_{i\in I}A_i$ también pertenece a la topología.
- Dado $\{A_i\}_{i=0}^{i=k}$ una familia finita de elementos de la topología entonces $\bigcap_{i=0}^{i=k} A_i$ es también un elemento de la topología.

A esta forma de definir una topología lo llamamos definir una topología por *abiertos*, ya que a los elementos de la topología definida así se les llama conjuntos abiertos.

Ejercicio 5.1.1. Comprobar que \mathbb{R} con los intervalos abiertos es una topología.

Definición 5.1.2. Diremos que un conjunto es **cerrado** cuando su complementario sea abierto.

Aclaración: Un conjunto puede no ser ni abierto ni cerrado y puede ser los dos a la vez, como por ejemplo el \emptyset ya que su contrario que sería el total es abierto, pero como está en la topología τ , entonces es abierto. Ambas cosas no son contradictorias.

Ahora bien, supongamos que ya tenemos estas cualidades de espacio topológico, ahora vamos a definir lo que es un entorno abierto de un punto a.

Definición 5.1.3. Un entorno no es más que la vecindad de un punto *(Los puntos cercanos a él)*, y diremos que un entorno E es abierto si $\forall x \in E$ existe un abierto que está contenido en el entorno.

Ahora nos falta definir una medida sobre \mathbb{R} que nos permita decir de manera clara y concisa lo que está y lo que no está en las vecindades del punto. La medida más habitual sobre \mathbb{R} es el valor absoluto.

Definición 5.1.4. Una medida es una aplicación

$$||: \quad \mathbb{R} \times \mathbb{R} \quad \longrightarrow \quad \mathbb{R}$$
$$(x,y) \quad \longmapsto \quad dist(x,y)$$

Que cumple las siguientes propiedades:

- $\forall x \in \mathbb{R}$ se cumple que dist(x, x) = 0
- $\forall x, y \in \mathbb{R}$ se cumple que dist(x, y) = dist(y, x)
- $\forall x, y, z \in \mathbb{R}$ se cumple que $dist(x, z) \leq dist(x, y) + dist(y, z)$ Es decir, el camino más corto es el camino directo entre dos puntos.

Ejercicio 5.1.2. Probar que el valor absoluto es una medida sobre los números reales.

Ahora, vamos a definir la principal definición para la que usamos la topología. Las funciones continuas.

Definición 5.1.5. Una aplicación

$$f \colon X \longrightarrow Y$$

Diremos que es continua si $\forall E$ abierto de B entonces se cumple que $f^{-1}(B)$ es oto conjunto abierto.

Esta definición nos quiere decir que este tipo de funciones lo que hace es mandar puntos que están cerca a puntos que siguen cerca por así decirlo, ya que un entorno de f(a) viene de un entorno de a.

Continuará...

Cálculo de Límites

Índice del capítulo		
6.1.	Preámbulo sobre las sucesiones reales	34
6.2.	Definición	34
6.3.	Propiedades de los límites	35
6.4.	Cálculo efectivo de límites	35
6.5.	Indeterminaciones	35

6.1. Preámbulo sobre las sucesiones reales

Definición 6.1.1. Definimos una sucesión de números reales $\{a_k\}$ como una aplicación de la forma:

$$\begin{array}{cccc} \{a_k\} \colon & \mathbb{N} & \longrightarrow & \mathbb{R} \\ & k & \longmapsto & a_k \end{array}$$

Tenemos que tener claros unos cuantos conceptos sobre sucesiones antes de ponernos a definir lo que es una función o sucesión convergente y que es eso de convergente.

Definición 6.1.2. Se dice que una sucesión $\{a_n\}$ es convergente en \mathbb{R} , o que es convergente a $l \in \mathbb{R}$ o que su límite es l cuando si $\forall \varepsilon \geq 0$ y $\varepsilon \in \mathbb{R}$ $\exists n_0 \in \mathbb{N}$ de manera que cuando $n \leq n_0 \Leftarrow |l - a_n| \leq \varepsilon$

Aclaración: Una sucesión que sea convergente tiene un único límite.

Esta definición lo que nos dice es que cogiendo un ε arbitrariamente pequeño se puede encontrar un $n_0 \in \mathbb{N}$ de manera que la distancia entre el límite y un término posterior de $\{a_n\}$ a a_{n_0} es menor que ese ε

Podemos entonces extender esta definición a una aplicación del tipo

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

Entonces dejemos definido esta extensión a lo continuo

6.2. Definición

Definición 6.2.1. Una función es convergente a l cuando $x \to a \ \forall \varepsilon \in \mathbb{R}$ entonces $\exists \delta \geq 0$ de manera que $|x - a| \leq \delta \Rightarrow |f(x) - f(a)| \leq 0$

Podemos definir de esta manera el límite ya que hemos definido la estructura de espacio métrico de $\mathbb R$ ya que como demostramos anteriormente esta aplicación es una distancia.

Ejercicio 6.2.1. Probar que la función $f(x) = x^2 + x + 1$ tiende a 1 en el punto x = 0

Demostración. Tomemos un $\varepsilon < 0$ entonces tomando como $\delta < \min\{1, \frac{\varepsilon}{2}\} \Rightarrow \delta < 1 \Rightarrow \delta^2 < \delta$ por tanto, tenemos que $|x| < \delta$

$$|f(x) - 1| = |x^2 + x| \le |x^2| + |x| < \delta^2 + \delta < 2\delta < \varepsilon$$

35

6.3. Propiedades de los límites

Una función puede tener distintos límites dependiendo de que topología esté definida sobre el conjunto a estudiar pero hay que recordar que una vez fijada la topología, este es único.

Ahora vamos a ver y a comprender ciertas propiedades que nos ayudarán en el cálculo efectivo de límites

Proposición 6.3.1. Sean f, g dos funciones cuyos límites $\lim_{x\to a} f \lim_{x\to a} f$ existen entonces

- \bullet Sea $\lambda \in \mathbb{R}$ entonces $\lim_{x \to a} \lambda f(x) = \lambda \lim_{x \to a} f(x)$
- \bullet Si se cumple que $\lim_{x\to a}g(x)\neq 0$ entonces $\lim_{x\to a}\frac{1}{g(x)}=\frac{1}{\lim_{x\to a}g(x)}$

6.4. Cálculo efectivo de límites

Sea

6.5. Indeterminaciones

Las funciones sobre $\mathbb R$

Índice del	capítulo	
7.1.	Definiciones previas	38

7.1. Definiciones previas

Definición 7.1.1. Una función f(x) es continua en un punto a cuando $\lim_{x\to a} f(x) = f(a)$. Es otra forma de definir la continuidad y es equivalente a la definición que se puede dar de una aplicación continua que dábamos en el apartado de topología.

Definición 7.1.2. Diremos que una función es continua si lo es en todos sus puntos.

Propiedades Se cumplen las siguientes propiedades asociadas a las funciones continuas:

- Dadas f y g dos funciones continuas entonces tendremos que f+g también es una función
- Dada f una función continua y $k \in \mathbb{R}$ entonces tenemos que $k \cdot f$ es una función continua también
- \blacksquare Dadas dos funciones f,g continuas tenemos que $f\cdot g$ también es continua
- La composición de funciones continuas f, g también es una función continua.

Ejercicio 7.1.1. Demostrar mediante las propiedades de los límites de linealidad y de conservación del producto.

Ejercicio 7.1.2. Comprueba si las siguientes funciones son continuas en x=2

$$a)f(x) = \frac{1}{x-2}$$
 $b)f(x) = \frac{3x-5}{x^2-4}$ $c)f(x) = \frac{x^2}{x^2+1}$ $d)f(x) = 3x^2 - \frac{2}{x^2}$

Comprobar que una función es continua en un punto x=a es únicamente comprobar que el $\lim_{x\to a} f(x) = f(a)$ por tanto hay que tener en cuenta cuando no existe un límite

Derivabilidad sobre \mathbb{R}

Índice del capítulo	
8.1. Concepto de la derivada	40
8.2. Derivabilidad de una función	41
8.2.1. Estudio de la derivabilidad de una función	41
8.3. Tabla de derivadas	42
8.4. Algunas demostraciones de fórmulas de derivadas	43

8.1. Concepto de la derivada

Para empezar, tenemos que refrescar un concepto de geometría análitica, la pendiente de una recta

Definición 8.1.1. La pendiente de una recta en \mathbb{R}^2 (El plano real) se define como la cantidad de unidades que avanza la y por cada unidad que avanza la x. Es decir, definiendo el incremento de y como $y_1 - y_0 = \Delta y$ donde y_1 es la coordenada y del punto final y y_0 lo mismo pero del punto inicial. definimos de manera igual el Δx . Entonces definimos de manera matemática la fórmula de la pendiente como:

$$m = \frac{\Delta y}{\Delta x}$$

Ahora bien, sea f(x) una función de manera que $f: \mathbb{R} \longrightarrow \mathbb{R}$ de la cual queremos obtener la recta secante que pasa por unos determinados puntos $p_1 = (x_1, y_1), p_2 = (x_2, y_2)$. Entonces tendremos la siguiente gráfica: Tendremos entonces que la fórmula de la recta secante a la función que pasa por esos dos puntos p_1, p_2 es la siguiente:

$$(y - f(x_1)) = \frac{\Delta f(x)}{\Delta x}(x - x_1)$$

Definición 8.1.2. A la pendiente de la recta secante a la función f(x) en los puntos x_1, x_2 se le conoce como Tasa de Variación Media

Supongamos ahora que escribimos $x_1 = x$ y $x_2 = x + h$ donde $h \in \mathbb{R}$ entonces la ecuación anterior queda como:

$$(y - f(x_1)) = \frac{f(x_1 + h) - f(x_1)}{h}(x - x_1)$$

Si después de esto, si hacemos que la $h \to 0$ obtendremos la recta tangente de manera que la pendiente $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$. Es ese límite lo que definimos como $Derivada\ de\ una\ función$.

Definición 8.1.3. Llamaremos derivada de f(x) en el punto a al límite

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

41

8.2. Derivabilidad de una función

Definición 8.2.1. Diremos que una función es derivable en a si existe el límite $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}.$

Definición 8.2.2. Diremos que una función es derivable si lo es en todos los puntos del dominio.

8.2.1. Estudio de la derivabilidad de una función

8.3. Tabla de derivadas

Propiedades de la derivada

Para empezar hay que tener en cuenta estas derivadas de operaciones de funciones básicas, sumar y restar, producto y división, producto por un escalar y composición

$$\begin{split} (f(x)+g(x))' &= f'(x)+g'(x) \\ (f(x)\cdot g(x))' &= f'(x)g(x)+g'(x)f(x) \\ (\lambda\cdot f(x))' &= \lambda f'(x) \ \forall \lambda \in \mathbb{R} \\ \text{Regla de la cadena: } (f\circ g(x))' &= f'(g(x))\cdot g'(x) \end{split}$$

Estas son las propiedades básicas de todas las derivadas, la mayoría se demuestran con la definición de la derivada como un límite. Ahora veamos la tabla de la fórmulas de las derivadas habituales

Nombre de la función	Derivada	Composición
Potencial	$(x^n)' = nx^{n-1}$	$(f(x)^n) = nf(x)^{n-1} \cdot f'(x)$
Exponencial en base e	$(e^x)' = e^x$	$(e^{f(x)}) = e^{f(x)} \cdot f'(x)$
Exponencial en base a	$(a^x)' = a^x \cdot ln(a)$	$(a^{f(x)}) = a^{f(x)} \cdot f'(x) \cdot ln(a)$
Logaritmo en base a	$(log_a(x))' = \frac{1}{x \cdot ln(a)}$	$(\log_a(f(x)))' = \frac{f'(x)}{\ln(a) \cdot f(x)}$
Logaritmo neperiano	$(ln(x))' = \frac{1}{x}$	$(ln(f(x)))' = \frac{f'(x)}{f(x)}$
Coseno	$(\cos(x))' = \sin(x)$	$(f(x)^n) = nf(x)^{n-1} \cdot f'(x)$
Seno	(sen(x))' = -cos(x)	$(f(x)^n) = nf(x)^{n-1} \cdot f'(x)$
Tangente	$(tg(x))' = 1 + tg^2(x)$	$(f(x)^n) = nf(x)^{n-1} \cdot f'(x)$
Arcoseno	$(arcsen(x))' = nx^{n-1}$	$(f(x)^n) = nf(x)^{n-1} \cdot f'(x)$
Arcocoseno	$(x^n)' = nx^{n-1}$	$(f(x)^n) = nf(x)^{n-1} \cdot f'(x)$
Arcotangente	$(x^n)' = nx^{n-1}$	$(f(x)^n) = nf(x)^{n-1} \cdot f'(x)$

8.4. Algunas demostraciones de fórmulas de derivadas

Aplicaciones de la derivada

ítulo	
culo de mínimos y máximos	46
culo de la curvatura de las funciones	46
timización de funciones	46
	culo de mínimos y máximos

- 9.1. Cálculo de mínimos y máximos
- 9.2. Cálculo de la curvatura de las funciones
- 9.3. Optimización de funciones

Representación de funciones

Índice del capítulo	
10.1. Dominio	48
10.2. Simetría y periodicidad	49
10.3. Continuidad	50
10.4. Corte con los ejes	51
10.5. Asíntotas	51
10.6. Monotonía	51
10.7. Curvatura	51
10.8. Análisis de cada tipo de función elemental \dots	51

10.1. Dominio

Recordemos lo que era el dominio de una función de manera precisa

Definición 10.1.1. El dominio de una función o aplicación $f: X \longrightarrow Y$ es el subconjunto de puntos $x \in X$ para el cual existe f(x).

Para que lo entendamos de nuevo la función f en el caso que nos ocupa es algo a lo que le entran números, la función hace una operación, $(En\ el\ caso\ de\ 2x\ sería\ que\ lo\ multiplica\ por\ dos)$ y te devuelve ese valor operado. El dominio son los números que la función puede operar sin romperse, es decir, sin hacer cosas raras que no se pueden hacer en los números reales como por ejemplo:

- Dividir entre 0: Por tanto si tenemos una fracción habrá que comprobar cuando el denominador se hace 0. (Plantear la ecuación)
- Hacer la raíz de un número negativo: Para poder hacerlo tendríamos que extender nuestro campo a C lo cual ahora mismo se nos escapa de nuestro alcance. Se plantea la inecuación
- Hacer el logaritmo de un número negativo

Dominios de las funciones elementales

Ahora vamos a ir desmenuzando los tipos de funciones que conocemos y analizando su dominio:

- Funciones Polinómicas Son las funciones del tipo $a_n \cdot x^n + \ldots + a_o$ en este caso, su dominio es todo \mathbb{R} .
- Funciones Racionales Son las funciones del tipo $\frac{a_n \cdot x^n + \ldots + a_0}{b_m \cdot x^m + \ldots + b_0}$ en este caso, su dominio es todo \mathbb{R} , salvo los puntos en los que se anule el denominador, por o tanto hay que resolver la ecuación $b_m \cdot x^m + \ldots + b_0 = 0$.
- Funciones Irracionales Son las de tipo $f(x) = \sqrt[n]{g(x)}$ tenemos que el dominio de f(x) es:
 - El mismo que g(x) si n es impar
 - Si n es par el dominio de f(x) son los x que cumplen que $g(x) \ge 0$.
- Funciones Exponenciales Son de la forma $f(x) = a^{g(x)}$ con a > 0 y $a \neq 1$, su dominio es \mathbb{R} .
- Funciones Logarítmicas Son de la forma $f(x) = log_a g(x)$ a > 0 y su dominio son los x tales que g(x) > 0.

■ Funciones Trigonométricas Circulares Tanto f(x) = cos(x) como f(x) = sen(x) su dominio es \mathbb{R} y de aquí se pueden considerar el resto de funciones trigonométricas.

10.2. Simetría y periodicidad

La simetría de una función se define de la siguiente manera:

Definición 10.2.1. Una función $f:A\longrightarrow \mathbb{R}$ es par si $\forall x\in A$ se cumple que f(-x)=f(x). Es decir, es simétrica respecto del eje de coordenadas OY

Definición 10.2.2. Una función $f: A \longrightarrow \mathbb{R}$ es impar si $\forall x \in A$ se cumple que f(-x) = f(x). Es decir, es simétrica respecto del origen de coordenadas

Estas cualidades lo que nos permiten es reducir el tamaño del conjunto de puntos a estudiar, en el caso de la simetría nos permite reducir a la parte positiva de los reales y la periodicidad a un solo periodo.

10.3. Continuidad

La continuidad de una función es una propiedad que se estudia dentro del dominio de una función y aunque no tiene sentido estudiar si se da en puntos que no son del dominio de la función solemos comprobar que pasa en las inmediaciones de los puntos que no pertenecen al dominio, manteniéndonos en el dominio. Es decir, si tengo un dominio que es $\mathbb{R}-\{0\}$ haremos el límite de la función cuando $x\to 0$ para saber que tenemos en las inmediaciones del punto. Tenemos dos casos:

- Que la función sea a trozos con ramas continuas a ambos lados del punto que las une
 Ejemplo.
- Que la función tenga un punto singular Ejemplo.

10.4. Corte con los ejes

Los cortes con los ejes son importantes por que nos dan una referencia de donde está situada la gráfica de la curva.

- Cortes con el eje X.
- Cortes con el eje Y.

10.5. Asíntotas

Asíntotas Verticales

Asíntotas Horizontales

Asíntotas Oblicuas

10.6. Monotonía

10.7. Curvatura

10.8. Análisis de cada tipo de función elemental

Polinómicas

Dominio

Las funciones polinómicas tienen como dominio todo \mathbb{R} .

Simetría

Solo las funciones que cumplen $P(x) = \sum a_n \cdot x^{2n}$ con $n \neq 0$ son pares

Continuidad

Los polinomios son funciones continuas en todo $\mathbb R$

Asíntotas

Los polinomios no tienen asíntotas verticales, horizontales ni oblicuas.

Monotonía y curvatura

No es más que derivar funciones polinómicas.

Ejemplo. La función $f(x)=x^3+x^2-x-1$ tiene la siguiente función. En detalle podemos ver que efectivamente el dominio es todo $\mathbb R$, no es simétrica, es continua, no tiene asintotas

Integración sobre $\mathbb R$

11.1. Conceptos principales	54
11.2. Cálculo efectivo de integrales	56
11.2.1. Primitivas inmediatas	 56
11.2.2. Integración por partes	 57
11.2.4. Integración por cambio de variable	 57
11.2.5. Integración de funciones racionales	 57
11.2.6. Ejercicios	 58
11.3. Aplicaciones de la integral	58

11.1. Conceptos principales

¿Qué demonios es una integral?

La integral es una suma, una suma infinita, normalmente se define como el área de bajo la gráfica que forma la curva con el eje de las x's.

Sea una función $f:[a,b] \longrightarrow \mathbb{R}^+$ (por ahora vamos a considerar que es únicamente positiva, es decir, solo puede tomar valores positivos).

Entonces podemos hacer una primera aproximación del área por rectángulos . En principio, tenemos un rectángulo que cogiendo el mínimo de la función nos queda como se muestra en la imagen:

De esta manera el cálculo del área bajo la curva que obtenemos es el siguiente

$$inf(f(x)) \cdot (b-a)$$
 $sup(f(x)) \cdot (b-a)$

Es evidente que esto como aproximación del área bajo la curva deja bastante que desear, por tanto, se puede dividir el intervalo [a,b] a la mitad de manera que se obtenga una mejor aproximación como se ve en la imagen.

Como se puede ver en este caso de las áreas por debajo, se aproxima de mejor manera el área por debajo.

En general, podemos hacer una partición de n partes del intervalo [a, b], es decir, sean $\{x_0, x_1 \dots x_n\}$ donde $a = x_0 < x_1 \dots < x_{n-1} < x_n = b$, de esta manera, tomar los rectángulos r_i, R_i debajo o por encima de la curva respectivamente tomando como altura el mínimo o máximo de f(x) en el intervalo $[x_{i-1}, x_i]$ respectivamente.

De esta manera, el área de cada rectángulo es $area(r_i) = \inf_{x \in [x_{i-1}, x_i]} (f(x)) \cdot (x_i - x_{i-1})$, la suma de todos los rectángulos sería el área bajo la curva.

Si hacemos una partición infinitesimal, es decir hacemos que el numero de los puntos x_i lleguen a ser infinitos podemos obtener el área bajo la curva.

Definición 11.1.1. Sea f(x) una función real continua, una función es integrable si al hacer infinitas particiones, la suma superior (la suma de las áreas que toma los supremos) y la suma inferior (lo mismo pero con los mínimos). A ese limite se le llama *Integral de* f(x) *en el intervalo* [a,b]

11.2. Cálculo efectivo de integrales

Muchas veces se considera el operador integral como el operador inverso de la derivada para calcular la integral tenemos que desarrollar varias técnicas

Primitivas

Definición 11.2.1. Sea una función F(x) diremos que es **primitiva** de la función $f(x) \Leftrightarrow F'(x) = f(x)$

Para empezar, vamos a ver lo que se llaman **primitivas inmediatas**, es decir son las primitivas que no requieren ningún mecanismo más que las siguientes fórmulas

11.2.1. Primitivas inmediatas

Para empezar hay que tener en cuenta que las integrales son límites lo que implica que tenemos la siguiente propiedad.

Sean f,g funciones integrables y $\lambda \in \mathbb{R}$ entonces tenemos que:

$$\int f(x) + \lambda \cdot g(x)dx = \int f(x)dx + \lambda \int g(x)dx$$

Es decir la integral es un operador lineal sobre las funciones, ya que conserva las sumas de elementos y los productos de estos por escalares (Pero ya hablaremos de que es una aplicación lineal más tarde)

Aplicando esta propiedad y las fórmulas que se detallan a continuación podemos hacer bastantes integrales. A la izquierda se detalla como hacer la integral sobre nada más que una función y el derecho sobre una composición.

$$\int x^{n} = \frac{1}{n+1}x^{n+1} + C \ \forall n \neq 1$$

$$\int f(x)^{n} \cdot f'(x)dx = \frac{1}{n+1}f(x)^{n+1} + C \ \forall n \neq 1$$

$$\int e^{x}dx = e^{x} + C$$

$$\int f(x)$$

$$\int \frac{1}{x}dx = \ln|x| + C$$

$$\int \frac{f'(x)}{f(x)}dx = \ln|f(x)| + C$$

$$\int \cos(x)dx = \sin(x) + C$$

$$\int \cos(f(x)) \cdot f'(x)dx = \sin(f(x)) + C$$

$$\int \sin(x)dx = -\cos(x) + C$$

$$\int \sin(f(x)) \cdot f'(x)dx = -\cos(f(x)) + C$$

$$\int \frac{1}{\sqrt{1-x^{2}}} = \arcsin(x) + C$$

$$\int \frac{1}{\sqrt{1-x^{2}}} = \arcsin(x) + C$$

$$\int \frac{1}{1+x^{2}} = \arctan(x) + C$$

$$\int f(x)$$

11.2.2. Integración por partes

La integración por partes es una técnica que nos permite de manera sistemática la reducción de la complejidad del cálculo de la primitiva de la siguiente manera

Proposición 11.2.3. Sean dos funciones u(x), v(x) derivables e integrables. Entonces se cumple que:

$$\int u(x)dv(x)dx = u(x) \cdot v(x) - \int v(x) \cdot du(x)dx \tag{11.1}$$

En general se hace la elección de la función u (Que es la que tendremos que derivar para hacer más sencilla la integral) siguiendo la regla ALPES:

- **A**: arcsen(x), arccos(x), arctg(x)
- L: Logaritmos
- P: Polinomios
- E: Exponenciales
- S: sen(x), cos(x) y tg(x).

Esta regla se sustenta en que derivar las primeras funciones, es decir, las funciones trigonométricas inversas y los logaritmos, es mucho más fácil que hacer su antiderivada o calcular su primitiva.

11.2.4. Integración por cambio de variable

11.2.5. Integración de funciones racionales

Sean dos polinomios P(x) y Q(x) entonces tenemos el caso de que queramos calcular la integral:

$$\int \frac{P(x)}{Q(x)} dx$$

Sólo discutiremos los casos en los que grad(P(x)) < grad(Q(x)) ya que en el caso contrario se puede hacer la división y aplicando la linealidad de la integral volver al caso considerado.

Una vez reducido a nuestro caso de estudio tenemos que **factorizar** el polinomio Q(x), tras esto se descompondrá la división como una suma de fracciones que tendrán como denominadores los factores del polinomio Q(x)

$$\frac{P(x)}{Q(x)} = \frac{P_1(x)}{Q_1(x)} + \frac{P_2(x)}{Q_2(x)} \dots + \frac{P_n(x)}{Q_n(x)}$$
(11.2)

Donde los $Q_1(x) \dots Q_n(x)$

- Caso 1: Factores lineales distintos
- Caso 2: Factores lineales con multiplicidad
- Caso 3: Factores cuadráticos distintos

11.2.6. Ejercicios

11.3. Aplicaciones de la integral

Parte III Ejercicios de Análisis Matemático

Representación de funciones

Índice del capítulo

Introducción	61
12.1. Funciones polinómicas	61
12.2. Funciones racionales	62
12.3. Funciones irracionales	62
12.4. Funciones exponenciales	62
12.5. Funciones logarítmicas	62
12.6. Funciones trigonométricas	62

Introducción

En esta capítulo vamos a recopilar todo los conocimiento de análisis que hemos recopilado durante todos los temas anteriores

12.1. Funciones polinómicas

Ejercicio 12.1.1.

$$f(x) = \frac{2x}{1+x^2}$$

Demostración. Hola

- 12.2. Funciones racionales
- 12.3. Funciones irracionales
- 12.4. Funciones exponenciales
- 12.5. Funciones logarítmicas
- 12.6. Funciones trigonométricas

Parte IV Álgebra lineal

Espacios Vectoriales

Aplicaciones lineales

Matrices

Determinantes

Discusión de sistemas

Parte V Cálculo de probabilidades

Probabilidades básicas

Variables aleatorias discretas

Variables aleatorias continuas