UNIT 1

Introduction to Analog Electronics Session-2

Characteristics of JFET (Common Source, Common Drain and Common Gate configurations) and uses

Differences between BJT and JFET

JUNCTION FIELD EFFECT TRANSISTOR (JFET)

- ☐ There are two types of JFET's: n-channel and p-channel.
- ☐ The **n-channel** is widely used.
- ☐ Three terminals:
 - ☐ Drain (D) and Source (S) are connected to n-channel
 - ☐ Gate (G) is connected to the p-type material.
- ☐ Gate is always **reverse biased**
- \Box Gate current, $I_G = 0$

CONSTRUCTION, TYPES & SYMBOLS

BASICS

JFET AMPLIFIER-CONFIGURATIONS

1. Common Source (CS) configuration (Good voltage amplifier)

- ☐ Mostly used, Similar to CE transistor
- Generally used in <u>audio frequency amplifiers</u> and in high input impedance pre-amplifier stages.

2. Common Drain (CD) configuration (Good voltage buffer)

- ☐ Source follower
- ☐ High input impedance and a low output impedance
- ☐ Approx. unity voltage gain-used in <u>buffer amplifiers</u>.
- referred to as "Common Drain" because there is no signal available at the drain connection.

3. Common Gate (CG) configuration (Good current buffer)

- Has a low input impedance, but a high output impedance.
- Applied in <u>high frequency circuits</u> or in <u>impedance matching</u> circuits where a low input impedance needs to be matched to a high output impedance
- ☐ <u>Microphone amplifiers</u>

BASICS

COMMON SOURCE AMPLIFIER

- ☐ In CS configuration, the input is given to the gate and the output is taken from the drain.
- ☐ 180 degree phase shift between input and output.

Features

- ☐ Large voltage gain
- ☐ Good voltage amplifier
- ☐ Better transconductance amplifier
- ☐ High input resistance
- ☐ Medium / high output resistance

CONNECTION DIAGRAM FOR DETERMINING THE CS AMPLFIER CHARACTERISTICS

Drain or V-I characteristics

- Output characteristics
- \square Relationship between Drain current (I_D) and Drain to source voltage (V_{DS}) for different values of gate to source voltage (V_{GS})

Operation analysis includes

- \square Without external bias: $(V_{GS} = 0)$
- ☐ With external bias.

$I_D VS V_{DS} FOR V_{GS} = constant$

The transfer characteristics

- The plot of the drain current Vs gate-source voltage for different values of drain to source voltage (V_{GS})
- It is observed that the value of drain current varies **inversely** with respect to gate-source voltage when the drain-source voltage is constant.

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

The transfer characteristics is drawn between input voltage and output current.

$$I_D VS. V_{GS} FOR V_{DS} = constant$$

At the pinch-off point,

- \square V_{GS} at pinch-off is denoted as V_p
- \square any further increase in V_{DS} does not produce any increase in I_{DS}
- \Box I_D is at saturation or maximum. It is referred to as I_{DSS}.

Important terms in JFET drain characteristics

- ☐ **Knee Point**: Where the variation of drain current with drain-source voltage appears to be linear. But beyond this point, the linearity changes into a curve.
- ☐ Channel Ohmic Region: The region to the left of the knee point in the characteristics curve.
- **Pinch-off point**: The point in the curve beyond which the drain current will not increase further no matter how much we are increasing the drain to source voltage.
- ☐ **Pinch-off Voltage**: The voltage at the pinch-off point is termed as pinch-off voltage because at this voltage, the current is completely turned to be constant.
- ☐ **Drain-Source Saturation Current**: The drain to source saturation current is the current which becomes constant and enters into a saturation state.

COMMON DRAIN JFET AMPLIFIER (Source follower)

Connect voltmeters and ammeters to measure the necessary voltages and currents (as explained in CS amplifier connections)

The output characteristics

The transfer characteristics

COMMON GATE JFET AMPLIFIER-CHARACTERISTICS

Connect voltmeters and ammeters to measure the necessary voltages and currents (as explained in CS amplifier connections)

The transfer characteristics

COMPARISON BETWEEN BJT AND JFET

BJT	JFET
Bipolar device (current condition, by both types of	Unipolar device (current conduction is only due to
carriers, i.e. majority and minority-electrons and	one type of majority carrier either electron or hole).
hole).	
The operation depends on the injection of minority	The operation depends on the control of a junction
carries across a forward biased junction.	depletion width under reverse bias.
Current controlled device. The base current controls	Voltage controlled device. The gate voltage controls
the output current.	output current.
High noise level. (current conduction through	Low noise level. (current conduction is through
junctions)	n-channel or p-channel and no junction crossing)
Low input impedance (due to forward bias at input	High input impedance (due to reverse bias).
side).	
Gain is characterized by voltage gain.	Gain is characterised by transconductance.
Low thermal stability. (positive temperature	Better thermal stability.(NTC at high current levels
coefficient at high current levels lead to thermal	prevent thermal breakdown)
breakdown)	
Cheaper	Relatively costly

REVIEW QUESTIONS

Source follower is a circuit that provides_____

In CS amplifier, the drain-source current is largest when the gate-source voltage V_{GS} is ____

Which JFET amplifier configuration is used in microphone amplifiers?

JFET is a ____ controlled device