7 Лінійні швидкості та прискорення точок тіла, що обертається

 $(\text{тема } 1.\overline{2.2})$

План і означення, порівняльна таблиця формул кінематики для поступального і оберт. рухів

Порівнюючи формули кінематики точки або поступального руху тіла з формулами обертального руху тіла, легко помітити, що основні з цих формул за структурою подібні. Щоб з формул поступального руху дістати формули обертального руху, треба замість лінійного переміщення s підставити кутове переміщення <p, замість лінійної швидкості V— кутову швидкість ω а замість лінійного прискорення ε .

Формули поступального і обертального рухів зручно порівняти за допомогою табл, **10.1.**

Таблиия 10.1

		Вид руху	
Кінематична	Характер руху	поступальний	обертальний
міра руху			
Переміщення	Нерівномірний	S = f(t)	$\varphi = f(t)$
	Рівномірний	S = vt	$\varphi = \omega t$
	Рівнозмінний	$S = v_0 t + a t^2 / 2$	$\varphi = \omega_0 t + \varepsilon t^2 / 2$
Швидкість	Нерівномірний	v = ds/dt	$\omega = d\varphi/dt$
	Рівномірний	v = const	$\omega = const$
	Рівнозмінний	$v = v_0 + at$	$\omega = \omega_0 + \varepsilon t$
Прискорення	Нерівномірний	$a_t = dv/dt$	$\varepsilon = d\omega/dt$
дортичне	Рівномірний	$a_t = 0$	$\varepsilon = 0$
	Рівнозмінний	$a_t = const$	$\varepsilon = const$
Прискорення		$a_n = v^2/p$	$a_n = \omega^2 t$
нормальне			