SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS

LINEAR DIFFERENTIAL EQUATIONS

In many applied problems, several quantities are varying continuously in time, and they are related by a system of differential equations.

$$\begin{pmatrix} y_1'(t) \\ y_2'(t) \\ \vdots \\ y_n'(t) \end{pmatrix} \begin{cases} y_1' = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n \\ y_2' = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n \\ \vdots \\ y_n'(t) \end{pmatrix} \begin{cases} y_1' = a_{11}y_1 + a_{22}y_2 + \dots + a_{2n}y_n \\ \vdots \\ y_n'(t) \end{pmatrix} \begin{cases} y_1'(t) \\ \vdots \\ y_n'(t) \end{cases}$$

LINEAR DIFFERENTIAL EQUATIONS

We assume $y_1,...,y_n$ are differentiable functions of t.

$$\begin{cases} y_1' &= a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n \\ y_2' &= a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n \\ \vdots &\vdots &\vdots &\vdots \\ y_n' &= a_{1n}y_1 + a_{2n}y_2 + \dots + a_{nn}y_n \end{cases}$$

$$Y' = AY$$
 Y'
 A
 Y

A SOLUTION TO THE SYSTEM

When
$$n = 1$$
: $y'(t) = ay(t)$

Then $y(t) = ce^{at}$ where c is a constant is a solution since

$$y(t) = ce^{at} \implies y'(t) = cae^{at} = a(ce^{at}) = ay(t)$$

Let

$$\mathbf{Y} = \begin{pmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{pmatrix} = \begin{pmatrix} x_1 e^{\lambda t} \\ x_2 e^{\lambda t} \\ \vdots \\ x_n e^{\lambda t} \end{pmatrix} = e^{\lambda t} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = e^{\lambda t} \mathbf{X}$$
Let's check if
$$e^{\lambda t} \mathbf{X} \text{ really}$$
works!

A SOLUTION TO THE SYSTEM

$$Y = e^{\lambda t} x \implies Y' = \lambda e^{\lambda t} x$$

$$Y' = AY$$

So if we choose λ to be an eigenvalue of A and

 ${m x}$ be an eigenvector of ${m A}$ in the eigenspace $E_{{\boldsymbol \lambda}}$, we have

$$Ax = \lambda x$$

$$Y = e^{\lambda t} x \implies AY = e^{\lambda t} Ax$$

$$\Rightarrow AY = e^{\lambda t} \lambda x \qquad (Ax = \lambda x)$$

$$\Rightarrow AY = \lambda (e^{\lambda t} x)$$

$$\Rightarrow AY = Y'$$

Let's check if $e^{\lambda t}x$ really works!

COMBINING SOLUTIONS

We have seen that if x_1 is an eigenvector of A associated with the eigenvalue λ_1 , then $Y_1 = e^{\lambda_1 t} x_1$ is a solution to Y' = AY.

Similarly, if x_2 is an eigenvector of A associated with the eigenvalue λ_2 , then $Y_2 = e^{\lambda_2 t} x_2$ is also a solution to Y' = AY.

What about

$$k_1 \mathbf{Y}_1 + k_2 \mathbf{Y}_2$$
 where $k_1, k_2 \in \mathbb{R}$?

(a linear combination of Y_1 and Y_2)

Will $k_1 Y_1 + k_2 Y_2$ also be a solution to Y' = AY?

COMBINING SOLUTIONS

$$(k_1\boldsymbol{Y}_1 + k_2\boldsymbol{Y}_2)'$$

$$= k_1 Y_1' + k_2 Y_2'$$

$$= k_1 \mathbf{A} \mathbf{Y}_1 + k_2 \mathbf{A} \mathbf{Y}_2$$

$$= A(k_1Y_1 + k_2Y_2)$$

 Y_1 and Y_2 are solutions to Y' = AY?

$$Y_1' = AY_1$$
 $Y_2' = AY_2$

Thus, $k_1 Y_1 + k_2 Y_2$ is also a solution to Y' = AY.

Generalising, if $Y_1, Y_2, ..., Y_n$ are solutions of Y' = AY, then any linear combination $k_1Y_1 + k_2Y_2 + ... + k_nY_n$ will also be a solution.

SET OF ALL SOLUTIONS

In general, the solutions of the system of linear differential equations:

$$\begin{cases} y_1' = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n \\ y_2' = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n \\ \vdots & \vdots & \vdots \\ y_n' = a_{1n}y_1 + a_{2n}y_2 + \dots + a_{nn}y_n \end{cases}$$

or simply represented by Y' = AY, will form a <u>subspace</u> of the vector space of all continuous vector-valued functions.

REMARKS

$$Y' = AY \qquad (*) \qquad S =$$

$$S =$$
solution set of (*)

- 1) There always exists a fundamental set of solutions to (*).
- 2) If A is a square matrix of order n, then there are n linearly independent functions in a fundamental set.
- 3) Each solution in the set S is a unique linear combination of these n functions in the fundamental set.
- 4) Thus, a fundamental set of solutions is a <u>basis</u> for the set of all solutions of (*).

REMARKS

$$Y' = AY \qquad (*)$$

$$S =$$
solution set of (*)

- 5) S is an n dimensional vector space of functions.
- 6) If a vector Y_0 is specified, then the initial value problem is to construct the unique Y (in the set S) such that Y' = AY and $Y(0) = Y_0$.

SUMMARY

- 1) What is a system of linear differential equations (Y' = AY).
- 2) How to construct the solution set S of Y' = AY and how this is related to the eigenvalues/eigenvectors of A.
- 3) When A is $n \times n$, the solution set S of Y' = AY is a n-dimensional vector space of functions.