2-4-4 節

Bonus

反向傳播 Backpropagating

從神經網路的任何一個 neuron j 開始, 一開始 (上圖的 start!) 我們先計算損失 函數 \mathcal{L} 對該 neuron \dot{J} (以下簡稱 \dot{J}) 的輸出 $\mathcal{Y}_{\dot{J}}$ 的變化率 $\frac{\partial \mathcal{L}}{\partial y_{i}}$, 運用 chain rule 我們就 可以再算出 \mathcal{L} 對 \mathbf{j} 的輸入 $\mathbf{z}_{\mathbf{j}}$ 的變化率:

$$\frac{\partial \mathcal{L}}{\partial z_i} = \frac{\partial y_j}{\partial z_i} \cdot \frac{\partial \mathcal{L}}{\partial y_i}$$

其中 $\frac{\partial \mathcal{L}}{\partial y_j}$ 是已知,所以我們只要算 $\frac{\partial y_j}{\partial z_j}$ 就好了,而 $\mathbf{y_j}$ 是在 forward pass 就已經算好了。所以 $\frac{\partial y_j}{\partial z_j}$ 很快就可以算出來。而 $\frac{\partial \mathcal{L}}{\partial z_j}$ 就只是二者相乘就好了。

接著來算前一個 (從上圖, z_i 前一個就是 y_{j-1}):

$$\frac{\partial \mathcal{L}}{\partial y_{j-1}} = \sum_{i} \frac{\partial z_{j}}{\partial y_{j-1}} \cdot \frac{\partial \mathcal{L}}{\partial z_{j}}$$

 $\frac{\partial \mathcal{L}}{\partial y_{j-1}} = \sum \frac{\partial z_j}{\partial y_{j-1}} \cdot \frac{\partial \mathcal{L}}{\partial z_j}$ 為什麼要 \sum_j 呢?因為 z_j 對 \mathcal{L} 的影響會從 j 那一層的各 neuron 往尾端的各 neuron (各路線) 擴散出去,所以要每 條連線都要加起來。這其實是多變數 chain rule 的概念。

然後就以此類推可以算出:

$$\frac{\partial \mathcal{L}}{\partial z_{j-1}} = \frac{\partial y_{j-1}}{\partial z_{j-1}} \cdot \frac{\partial \mathcal{L}}{\partial y_{j-1}}$$

這裡一樣把已算好的 $\frac{\partial \mathcal{L}}{\partial y_{j-1}}$ 拿來乘就好,而 y_{j-1} 已經在 forward pass 算好了,所以只要算 $\frac{\partial y_{j-1}}{\partial z_{j-1}}$ 就好了!

同樣的:

$$\frac{\partial \mathcal{L}}{\partial y_{j-2}} = \sum_{j=1}^{\infty} \frac{\partial z_{j-1}}{\partial y_{j-2}} \cdot \frac{\partial \mathcal{L}}{\partial z_{j-1}}$$
 以此類推...

所以這樣從 $j \to j-1 \to j-2 \to \dots$ 就可以把全部 neuron 的輸入對 $\mathcal L$ 的影響率 $\frac{\partial \mathcal L}{\partial z_j}$ 和輸出對 $\mathcal L$ 的影響率 $\frac{\partial \mathcal L}{\partial y_j}$ 都算出來,這就是使用偏微分 chain rule 做反向傳播的過程。

但是,不要忘了!我們要的是 $\frac{\partial \mathcal{L}}{\partial w_j}$!因為我們要用 $w_j = w_j - \eta \frac{\partial \mathcal{L}}{\partial w_j}$ 來改變一點點 w_j 值,以便做 SGD 啊!算 $\frac{\partial \mathcal{L}}{\partial w_j}$ 可以說是前述反向傳播的副產品,因為:

$$\frac{\partial \mathcal{L}}{\partial w_{j-1,j}} = \frac{\partial z_j}{\partial w_{j-1,j}} \cdot \frac{\partial \mathcal{L}}{\partial z_j}$$

其中 $\frac{\partial L}{\partial z_i}$ 我們已經算出來了, 而 z_j 和 $w_{j-1,j}$ 的關係是:

$$z_{j} = w_{j-1,j} \cdot y_{j-1} + b_{j-1,j}$$

$$\Rightarrow \frac{\partial z_{j}}{\partial w_{j-1,j}} = y_{j-1}$$

$$\Rightarrow \frac{\partial \mathcal{L}}{\partial w_{j-1,j}} = y_{j-1} \cdot \frac{\partial \mathcal{L}}{\partial z_{j}}$$

其中 $\frac{\partial \mathcal{L}}{\partial z_j}$ 已算好, y_{j-1} 也在前向傳播 (forward pass) 時算好了,所以 $\frac{\partial \mathcal{L}}{\partial w_{j-1,j}}$ 就二者相乘就好了!這就是反向傳播的原理。

*參考資料: Geoferry Hinton 的 YouTube 教學,網址:請上 youtube 搜尋 Geoffery Hinton Lecture 3.4