Second-order generalized algebraic theories

Szumi Xie Joint work with Ambrus Kaposi

Eötvös Loránd University (ELTE)

7th World Logic Day, Budapest, 2025

Overview

Examples of (SO)(G)ATs

Algebraic theories

Generalized algebraic theories

Second-order algebraic theories

Second-order generalized algebraic theories

SOGAT → GAT translation

Summary

Examples of (SO)(G)ATs

Algebraic theories

Algebraic theory – monoids

```
M is a set
-\cdot - : M \times M \to M
\varepsilon \in M
for all x, y, z \in M, (x \cdot y) \cdot z = x \cdot (y \cdot z)
for all x \in M, \varepsilon \cdot x = x
for all x \in M, x \cdot \varepsilon = x
```

Algebraic theory – monoids

```
M : Set

-\cdot - : M \to M \to M

\epsilon : M

assoc : (x, y, z : M) \to (x \cdot y) \cdot z = x \cdot (y \cdot z)

idl : (x : M) \to \epsilon \cdot x = x

idr : (x : M) \to x \cdot \epsilon = x
```

Algebraic theory – combinator calculus

```
Tm : Set  -\cdot -: Tm \to Tm \to Tm 
K : Tm 
S : Tm 
K\beta : (K \cdot x) \cdot y = x 
S\beta : ((S \cdot x) \cdot y) \cdot z = (x \cdot z) \cdot (y \cdot z)
```

Algebraic theory – Boolean algebras

Generalized algebraic theories

GAT – graphs

V : Set

 $E:V\to V\to Set$

GAT – categories

```
Ob : Set

Hom : Ob \rightarrow Ob \rightarrow Set

- \circ - : Hom B \subset \rightarrow Hom A \subset B \rightarrow Hom A \subset C

id : Hom A \subset A

assoc : (f \circ g) \circ h = f \circ (g \circ h)

idl : id \circ f = f

idr : f \circ id = f
```

GAT – minimalistic combinatory logic

```
For : Set

- \Rightarrow - : For \rightarrow For \rightarrow For

Pf : For \rightarrow Set

MP : Pf (A \Rightarrow B) \rightarrow Pf A \rightarrow Pf B

Ax1 : Pf (A \Rightarrow B \Rightarrow A)

Ax2 : Pf ((A \Rightarrow B \Rightarrow C) \Rightarrow (A \Rightarrow B) \Rightarrow (A \Rightarrow C))
```

Second-order algebraic theories

SOAT – lambda calculus

```
Tm: Set
      -\cdot -: Tm \rightarrow Tm \rightarrow Tm
      lam : (Tm \rightarrow Tm) \rightarrow Tm
            : (lam t) \cdot u = t u
               (\lambda x. x) : Tm \rightarrow Tm
       lam(\lambda x. x): Tm
lam (\lambda f. lam (\lambda x. f \cdot (f \cdot x))) : Tm
```

SOAT – formulas of first-order logic

```
Tm
          : Set
For
          : Set
          : For
     : For
\neg- : For \rightarrow For
- \wedge - : For \rightarrow For \rightarrow For
-v-: For \rightarrow For \rightarrow For
- \Rightarrow -: For \rightarrow For \rightarrow For
       : (Tm \rightarrow For) \rightarrow For
\exists : (Tm \rightarrow For) \rightarrow For
Eq : Tm \rightarrow Tm \rightarrow For
```

$$\forall (\lambda x. \forall (\lambda y. Eq x y \Rightarrow Eq y x)) : For$$

Second-order generalized algebraic theories

SOGAT - minimalistic propositional logic

```
For : Set

- \Rightarrow - : For \rightarrow For \rightarrow For

Pf : For \rightarrow Set

\Rightarrow_{\text{elim}} : \text{Pf}(A \Rightarrow B) \rightarrow \text{Pf} A \rightarrow \text{Pf} B

\Rightarrow_{\text{intro}} : (\text{Pf} A \rightarrow \text{Pf} B) \rightarrow \text{Pf}(A \Rightarrow B)
```

SOGAT – minimalistic first-order logic

```
Tm: Set
For : Set
- \Rightarrow - : For \rightarrow For \rightarrow For
\forall : (Tm \rightarrow For) \rightarrow For
Eq : Tm \rightarrow Tm \rightarrow For
Pf : For \rightarrow Set
\Rightarrow_{\text{intro}} : (\text{Pf } A \rightarrow \text{Pf } B) \leftrightarrow \text{Pf } (A \Rightarrow B) : \Rightarrow_{\text{elim}}
\forall_{\text{intro}} : ((t : Tm) \rightarrow Pf(A t)) \leftrightarrow Pf(\forall A) : \forall_{\text{elim}}
```

SOGAT → GAT translation

GATs are nice

Algebras form a complete & cocomplete category Initial algebra is the syntax

Second-order models?

Model:

Tm : Set $-\cdot - : Tm \to Tm \to Tm$ lam : $(Tm \to Tm) \to Tm$ $\beta : (lam t) \cdot u = t u$

Second-order models?

Model:

Tm : Set
$$-\cdot - : Tm \to Tm \to Tm$$

$$lam : (Tm \to Tm) \to Tm$$

$$\beta : (lam t) \cdot u = t u$$

Homomorphism:

$$f: Tm_A \to Tm_B$$

$$f(t \cdot_A u) = (f t) \cdot_B (f u)$$

$$f(lam_A t) = lam_B (\lambda x. f(t?))$$

$$t: Tm_A \to Tm_A \quad x: Tm_B$$

SOGAT → **GAT** translation

$SOGAT \rightarrow GAT$ translation – propositional logic

SOGAT

GAT

For, $- \Rightarrow -$

Pf : For \rightarrow Set

 $\Rightarrow_{\text{elim}}$: Pf $(A \Rightarrow B) \rightarrow \text{Pf } A \rightarrow \text{Pf } B$

 $\Rightarrow_{\mathsf{intro}} : (\mathsf{Pf}\,A \to \mathsf{Pf}\,B) \to \mathsf{Pf}\,(A \Rightarrow B)$

SOGAT → GAT translation - propositional logic

SOGAT

GAT

For. $- \Rightarrow -$

Pf : For \rightarrow Set

 $\Rightarrow_{\text{elim}} : \text{Pf}(A \Rightarrow B) \rightarrow \text{Pf} A \rightarrow \text{Pf} B$

 $\Rightarrow_{\text{intro}}$: (Pf A \rightarrow Pf B) \rightarrow Pf (A \Rightarrow B) $\Rightarrow_{\text{intro}}$: Pf ($\Gamma \triangleright A$) B \rightarrow Pf Γ (A \Rightarrow B)

SOGAT → GAT translation - propositional logic

SOGAT

GAT

For. $- \Rightarrow -$

For. $- \Rightarrow -$

Pf : For \rightarrow Set

 $\Rightarrow_{\text{elim}} : \text{Pf}(A \Rightarrow B) \rightarrow \text{Pf} A \rightarrow \text{Pf} B$

 \Rightarrow_{intro} : (Pf $A \rightarrow Pf B$) $\rightarrow Pf (A \Rightarrow B)$ \Rightarrow_{intro} : Pf $(\Gamma \triangleright A) B \rightarrow Pf \Gamma (A \Rightarrow B)$

SOGAT → GAT translation – propositional logic

SOGAT	GAT
	Con
For, - ⇒ -	For, - ⇒ -
Pf : For \rightarrow Set	Pf : Con \rightarrow For \rightarrow Set
	$-\triangleright$ - : Con \rightarrow For \rightarrow Con
$\Rightarrow_{\text{elim}} : \text{Pf}(A \Rightarrow B) \rightarrow \text{Pf} A \rightarrow \text{Pf} B$	$\Rightarrow_{\text{elim}} : \text{Pf} \Gamma (A \Rightarrow B) \rightarrow \text{Pf} \Gamma A \rightarrow \text{Pf} \Gamma B$
$\Rightarrow_{intro} : (PfA \to PfB) \to Pf(A \Rightarrow B)$	$\Rightarrow_{intro} : Pf (\Gamma \triangleright A) \ B \to Pf \ \Gamma (A \Rightarrow B)$

SOGAT → GAT translation – propositional logic

SOGAT	GAT
For, - ⇒ -	Con, Sub, ♦ (category with terminal object) For, - ⇒ -
Pf : For → Set	Pf : $Con \rightarrow For \rightarrow Set$ -[-] : $Pf \Gamma A \rightarrow Sub \Delta \Gamma \rightarrow Pf \Delta A$ (functorial) ->- : $Con \rightarrow For \rightarrow Con$ ($Sub \Delta \Gamma \times Pf \Delta A$) $\cong Sub \Delta (\Gamma \triangleright A)$
$\Rightarrow_{\text{elim}} : \text{Pf}(A \Rightarrow B) \rightarrow \text{Pf} A \rightarrow \text{Pf} B$	$\Rightarrow_{\text{elim}} : \text{Pf } \Gamma(A \Rightarrow B) \rightarrow \text{Pf } \Gamma A \rightarrow \text{Pf } \Gamma B$ $(\Rightarrow_{\text{elim}} t \ u)[\sigma] = \Rightarrow_{\text{elim}} (t[\sigma]) (u[\sigma])$
$\Rightarrow_{intro} : (PfA \to PfB) \to Pf(A \Rightarrow B)$	$\Rightarrow_{intro} : Pf(\Gamma \triangleright A) B \rightarrow Pf\Gamma(A \Rightarrow B)$ $(\Rightarrow_{intro} t)[\sigma] = \Rightarrow_{intro} (t[\sigma^{+}])$

$SOGAT \rightarrow GAT$ translation – propositional logic

· · · · ·	
SOGAT	GAT
For, - ⇒ -	Con, Sub, \diamond (category with terminal object) For, $- \Rightarrow -$
Pf : For → Set	Pf : Con \rightarrow For \rightarrow Set -[-] : Pf $\Gamma A \rightarrow$ Sub $\Delta \Gamma \rightarrow$ Pf ΔA (functorial) - \triangleright - : Con \rightarrow For \rightarrow Con (Sub $\Delta \Gamma \times$ Pf ΔA) \cong Sub $\Delta (\Gamma \triangleright A)$
$\Rightarrow_{\text{elim}} : \text{Pf}(A \Rightarrow B) \rightarrow \text{Pf} A \rightarrow \text{Pf} B$	$\Rightarrow_{\text{elim}} : \text{Pf } \Gamma (A \Rightarrow B) \rightarrow \text{Pf } \Gamma A \rightarrow \text{Pf } \Gamma B$ $(\Rightarrow_{\text{elim}} t \ u)[\sigma] = \Rightarrow_{\text{elim}} (t[\sigma]) (u[\sigma])$
$\Rightarrow_{intro} : (PfA \to PfB) \to Pf(A \Rightarrow B)$	$\Rightarrow_{intro} : Pf (\Gamma \triangleright A) B \to Pf \Gamma (A \Rightarrow B) \\ (\Rightarrow_{intro} t) [\sigma] = \Rightarrow_{intro} (t[\sigma^*])$

SOGAT → **GAT** translation – first-order logic

SOGAT	GAT
	Con, Sub, >
Tm : Set	Tm : Set $- \triangleright_{Tm}$: Con \rightarrow Con
For : Set	For $: Con \rightarrow Set$
Pf : For \rightarrow Set	Pf : $Con \rightarrow For \rightarrow Set$ - \triangleright_{Pf} -: $Con \rightarrow For \rightarrow Con$

 $\diamond \triangleright_{\mathsf{Tm}} \triangleright_{\mathsf{Pf}} A \triangleright_{\mathsf{Tm}} \triangleright_{\mathsf{Pf}} B$: Con

Summary

Summary

In our paper¹:

- The theory of (SO)GAT signatures
- Two different translations: parallel and single
- · Correctness of translation wrt standard presheaf model

Future work:

- Equivalence of the two translations
- Translation with combinators (no context)
- · Prove things on the SOGAT level

¹Kaposi and Xie, "Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics", 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).