FUNCTIONS

KATTELA SHREYA

December 2023

- 1. The interval in which the function f given by $f(x) = x^2 e^{-x}$ is strictly increasing, is
 - (a) $(-\infty, \infty)$
 - (b) $(-\infty, 0)$
 - (c) $(2, \infty)$
 - (d) (0,2)
- 2. The function $f(x) = \frac{x-1}{x(x^2-1)}$ is discontinuous at
 - (a) exactly one point
 - (b) exactly two points
 - (c) exactly three points
 - (d) no points
- 3. The function $f : \mathbb{R} \to [-1, 1]$ defined by $f(x) = \cos x$ is
 - (a) both one-one and onto
 - (b) not one-one, but onto
 - (c) one-one, but onto
 - (d) neither one-one, nor onto
- 4. The range of the principal value branch of the function $y = \sec^{-1} x$ is
- 5. The principal value of $\cos^{-1}\left(\frac{-1}{2}\right)$ is

- 6. Find the value of k, so that the function $f(x) = \begin{cases} kx^2 + 5 & \text{if } x \le 1, \\ 2 & \text{if } x > 1 \end{cases}$ is continuous at x = 1.
- 7. Check whether the relation $\mathbb R$ in the set $\mathbb N$ of natural numbers given by

$$\mathbb{R} = \{ (a, b) : \text{a is divisor of b} \}$$
 (1)

is reflexive, symmetric or transitive. Also determine whether $\ensuremath{\mathbb{R}}$ is an equivalence relation.

8. Prove that:

$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\sin^{-1}\left(\frac{4}{5}\right) \tag{2}$$