Reunião 02/05/18

CHAVE Discussão e apresentação dos dados

Base de consumo de energia

```
processador.dad
                      Indica a consumo (Wh) do
                      host em relação ao nº de
     01 139.91
MTN
                      CPUs usado.
     02 147.10
     03 153.20
                      Controle de uso da CPU
     04 157.08
                      (Algoritm. dinâmico?)
     30 207.00
                      Ex: \frac{1}{2} hora * H_0 4 CPUs =
     31 208.00
                      consumo 78,54Wh!
```

MAX 32 209.00

Modelo do Mauro/Denivy

- Consumo total =
 - Consumo hypervisor
 - { Minimo + gerenciamento + rede virtual }
 - Consumo VMs

Modelo do Mauro/Denivy

Consumo total =

Temos CT pela tabela anterior

- Consumo hypervisor
 - { Minimo + gerenciamento + rede virtual }
- Consumo VMs

Modelo do Mauro/Denivy

- Consumo total =
 - Consumo hypervisor
 - { Minimo + gerenciamento + rede virtual }
 - Consumo VMs

Como estimar CH e CV?

- Hypervisores tipo 1 (Xen, VMware, etc)
 - É reservada uma quantidade de núcleos físicos para o dom0 (pinados, sem conflito com outros)
 - Afirma-se que o consumo do hypervisor referese à reserva destes recursos (cpu/ram)
- Outros tipos de virtualização?
 - Na prática ambientes comerciais não usam, ou podemos afirma que não é o foco do simulador
 - P: percentual de uso impacta no gerenciam.

Quais são os núcleos pinados?

- Quais são os núcleos pinados?
 - Valor médio da diferença entre os núcleos agrupados n-n (janelas)
 - Ou os 'n' primeiros núcleos


```
J0 = sum([n1-n0]+[n2-n1]+[n3-n2])

J0 = n3-n0
```

- Quais são os núcleos pinados?
 - Valor médio da diferença entre os núcleos agrupados n-n (janelas)
 - Ou os 'n' primeiros núcleos

$$J1 = sum(...)$$

- Quais são os núcleos pinados?
 - Valor médio da diferença entre os núcleos agrupados n-n (janelas)
 - Ou os 'n' primeiros núcleos
 - Ao final é feita a média dessas janelas

$$J2 = sum(...)$$

Estimando o consumo das VMs

- ConsVM = ConsTotal ConsHyperv
 - Lógico, não? Não sei!
- Varia da quantidade de núcleos em uso até o máximo de núcleos restante para as VMs
- Útil para quando é habilitado Overbooking..
- Problemas: traces tem VMs com a mesma quantidade de núcleos físicos dos hosts, ie, inviabiliza considerar CH quando overb. não habilitado

O Simulador

- Totalmente parametrizado
- Operações nos objetos:
 - SLA = parâmetros e métricas
 - Demanda = recebe todos os arquivos → VMs
 - AZs = old 'datacenter.py' Hosts, aloca, energia,...
 - Local Controllers
 - Regiões (opcional)
 - Global Controller (API)
 - Algoritmos de escalonamento (CHAVE, MBFD, etc)

Topologia usada no teste

Poderia usar esta topologia no teste

CHAVE: Consolidação

CHAVE: Consolidação

- Multi-Thread -> execução em paralelo?
- Realizado placement otimizado por AZ
- A consolidação é feita por gatilho de fragmentação (grau de dispersão)
- Recebe as réplicas das outras AZs

CHAVE: Replicação

CHAVE: Replicação

- Multi-thread -> execução em paralelo?
- AZ adiciona réplicas em um buffer compartilhado
- LCn Instancia as réplicas em outra AZ:
 - Seleção: Menor uso (LB), melhor disponib. (HA), aleatório, add++

Medição do consumo de energia

- Média do consumo em cada hora (para Wh)
 - Aproximação, mas não é o ideal
- EAVIRA?:
 - Global: soma/média durante o 'nit'
 - Host: ConsVMs + minEnergia * p + ConsGerenc*p)
 - P = (CPUtotal CPUvms) / CPUtotal
 - P seria um fator de aceleração? (próximo slide)
 - ConsVMs: minEnergia*p + ConsGerenc*p + rede + (tabela[cpu] - minEnergia)

- P = (CPUtotal CPUvms) / CPUtotal
- P seria um fator de aceleração linear/exponenc.?

Medição do consumo de energia

- Média do consumo em cada hora (para Wh)
 - Aproximação, mas não é o ideal

Medição do consumo de energia

- Média do consumo em cada hora (para Wh)
 - Aproximação, mas não é o ideal

CHAVE (hora 0)

Tempo (m)

CHAVE (hora 0)

CHAVE (hora 1)

r					
Tempo (s)	Id ~> estado	Consumo			
0	base	130? 0			
0	v1~>E	140			
10	v2~>E	155			
20	v3~>E	215			
25	V2~>S	200			
30	v3~>S	140			
40	v1~>S	130? 0			
45	v4~>E	185			
55	v4~>S	130? 0			
57	v5~>E	155			

Tabela CPU/Wh				
0	130			
1	140			
2	155			
3	170			
4	185			
5	200			
6	215			

Histórico de uma hora				
T5_0	Vm5 ^^	c5		
t5_f	vm5 vv	c5		
t5	vm5++	c5		
t4'	vm4	c4'		
t4	vm4++	c4		
t-b	base	c0		
t1 '	vm1	c1 ′		
	vm3			
t2'	vm3<<	c2'		
25	vm2	c2 '		
20	vm3++	c3		
10	vm2++	c2		
0	vm1++	c1		
0	base	c0		

Chave: EnergyMonitor

- Cada host tem seu próprio monitor
- Algoritmo baseado em pilha:
 - Pilha com memória e pilha temporária
 - A cada inserção e remoção das MVs de um host, é modificada essa pilha
 - A cada hora (3600s) é calculado o consumo total:
 - Em WattsHora, considerando que o tempo é em segundos e que a tabela do Mauro está em WattsHora

Características dos traces pelo artigo de Zhihao Yao

Trace	Duration (days)	VM created	Host	Cores/Host
DS1	85	9173	13	24
DS2	283	900	7	12
DS3	279	2600	7	8
DS4	94	1436	12	8
DS5	33	8456	31	32
DS6	34	4157	31	32

Características dos traces

Fig. 2. CDF of VM inter-arrival time of Eucalyptus traces

Características dos traces

Fig. 3. CDF plot of VM life time in six traces

Características dos traces

Entrada de dados

- Se janela de tempo (WT) é 1
 - Tempo real, mas o 'decreasing' do FFD não aplica
 - Apenas a ordem dos hosts