學號:R06922075 系級: 資工碩一 姓名:翁瑋

請實做以下兩種不同feature的模型,回答第(1)~(3)題:

- (1) 抽全部9小時內的污染源feature的一次項(加bias)
- (2) 抽全部9小時內pm2.5的一次項當作feature(加bias)

備註:

- a. NR請皆設為0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據kaggle public+private分數),討論兩種feature的影響

	public	private
All feature * 9hr	7.46251	5.33797
pm2.5 * 9hr	7.44013	5.62719

我們可以看到選取全部feature時在private中有比pm2.5更好的表現,但在public中僅小輸一點點,在自己train時,all feature的表現也比pm2.5來的好,整體看來,我會認為all feature 的表現比pm2.5好一些。

2. (1%)將feature從抽前9小時改成抽前5小時,討論其變化

	public	private
All feature * 5hr	7.66522	5.35001
pm2.5 * 5hr	7.57904	5.79187

跟上面那題9小時的對照,整體的誤差值都變大了,在僅改變選取時間範圍的情況下,我們可以推論5個小時前到9個小時前的數值,對於pm2.5還是有一定影響力的。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

折線圖中看不出來太大差別,實際數值也只在小數點後五位有正負一的誤差,或許是training次數不夠還沒到overfitting的程度,也可能是採用的loss function只有一次項沒有高次項,因此overfitting比較不容易發生。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一存量 y^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum\limits_{n=1}^N \left(y^n-x^n\cdot w\right)^2$ 。若將所有訓練資料的特徵值以矩陣 $X=[x^1\ x^2\ ...\ x^N]^T$ 表示,所有訓練資料的標註以向量 $y=[y^1\ y^2\ ...\ y^N]^T$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。(其中 X^TX 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^TX)^{-2}X^Ty$

Ans: (c)

を feature 報為
$$Z$$
 , $X = N \times Z$, $W = Z \times I$, $Y = N \times I$
Loss = $\sum_{n=1}^{N} (y^n - \chi^n \cdot w)^2$, $\mathcal{Z} \times \mathbb{Z} = Cs(X)$
 $(\Rightarrow) \| y - \chi \cdot w \|_{min}$
 $(\Rightarrow) P^{j}_{\chi}(y) = \chi \cdot w$
 $(\Rightarrow) \langle y - \chi w , \chi \rangle = 0$, $\forall \chi \in \chi$
 $(\Rightarrow) \langle y - \chi w , \chi \rangle = 0$, $\forall \chi \in \chi$
 $(\Rightarrow) \langle \chi \nabla y - \chi \nabla w \rangle = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla y - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi \nabla x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi \nabla x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi x w) = 0$ $(\Rightarrow) \mathcal{L}^{T}(\chi x - \chi x w) = 0$, $\forall \chi \in \chi \times I$
 $(\Rightarrow) \mathcal{L}^{T}(\chi$