

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτφολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληφοφοφικής και Υπολογιστών

**Αλγόριθμοι και Πολυπλοκότητα** Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης

3η Σειρά Προγραμματιστικών Ασκήσεων - Ημ/νία Παράδοσης 20/1/2013

## Άσκηση 1: Αρχηγείο Ακτιβιστών

Στη μαχοινή Χώρα των Αλγορίθμων, η ακτιβιστική ομάδα της Αναζήτησης κατά Πλάτος έχει εγκαταστήσει το αρχηγείο της στα σπήλαια που βρίσκονται στους πρόποδες του βουνού του Επαναλαμβανόμενου Τετραγωνισμού. Το συγκρότημα του αρχηγείου αναπτύσσεται σε k επίπεδα με N αριθμημένες αίθουσες το καθένα. Η μοναδική είσοδος στο αρχηγείο είναι ένας διάδρομος που οδηγεί από την επιφάνεια του εδάφους στην αίθουσα s του πρώτου επιπέδου, ενώ ο επικεφαλής της ομάδας βρίσκεται στην αίθουσα t του k-οστού επιπέδου.

Οι αίθουσες στο ίδιο επίπεδο δεν συνδέονται απευθείας μεταξύ τους, και η μετακίνηση γίνεται μέσω διαδοόμων που συνδέουν (ανά δύο) αίθουσες που βρίσκονται σε διαδοχικά επίπεδα. Μάλιστα, για να διατηρήσουν την αρχιτεκτονική του αρχηγείου σχετικά απλή και εύκολα απομνημονεύσιμη, οι ακτιβιστές της Αναζήτησης κατά Πλάτος έχουν φροντίσει ώστε οι συνδέσεις μεταξύ αιθουσών σε διαδοχικά επίπεδα να είναι ίδιες για όλα τα επίπεδα. Δηλαδή, αν η αίθουσα x στο πρώτο επίπεδο συνδέεται με τις αίθουσες  $y_1,\ldots,y_\ell$  στο δεύτερο επίπεδο, τότε η αίθουσα x σε κάθε επίπεδο  $i,1\leq i\leq k-1$ , συνδέεται με τις αίθουσες  $y_1,\ldots,y_\ell$  στο επίπεδο i+1. Έτσι για την απρόσκοπτη μετακίνηση στο αρχηγείο, αρκεί η γνώση των συνδέσεων μεταξύ των αιθουσών δύο διαδοχικών επιπέδων.

Για να αξιολογήσουν την ευχολία των μεταχινήσεων εντός του αρχηγείου, οι αχτιβιστές της Αναζήτησης χατά Πλάτος σχέφτηκαν να μετρήσουν πόσες είναι οι διαφορετικές συντομότερες διαδρομές που οδηγούν από την είσοδο του αρχηγείου στην αίθουσα όπου βρίσκεται ο επικεφαλής. Σας ζητούν να τους βοηθήσετε γράφοντας ένα πρόγραμμα για αυτόν τον σχοπό.

**Δεδομένα Εισόδου:** Το πρόγραμμά σας θα διαβάζει από το standard input το πλήθος των επιπέδων, το γράφημα που περιγράφει τις συνδέσεις μεταξύ των αιθουσών δύο διαδοχικών επιπέδων, και τις αίθουσες αφετηρίας και προορισμού. Όσον αφορά στην μορφή της εισόδου, στην πρώτη γραμμή θα δίνονται (με αυτή τη σειρά, χωρισμένα με κενό) το πλήθος k των επιπέδων, το πλήθος N των αιθουσών / κορυφών σε κάθε επίπεδο, το πλήθος M των διαδρόμων / ακμών μεταξύ κορυφών δύο διαδοχικών επιπέδων, ο αριθμός s της αίθουσας αφετηρίας στο πρώτο επίπεδο, και ο αριθμός t της αίθουσας προορισμού στο τελευταίο επίπεδο. Σε καθεμία από τις υπόλοιπες M γραμμές θα δίνεται μια σύνδεση (x,y) μεταξύ αιθουσών / κορυφών διαδοχικών επιπέδων. Συγκεκριμένα, η σύνδεση (x,y) δηλώνει ότι η αίθουσα με αριθμό s σε κάθε επίπεδο s της αίθουσα με αριθμό s σο επίπεδο s της αίθουσα με αριθμό s στο επίπεδο s το επίπεδο s της αίθουσα με αριθμό s στο επίπεδο s της αιθουσα με αριθμό s στο επίπεδο s της επίπεδο s της αιθουσα με αριθμός s στο επίπεδο s της s της αιθουσα s της αιθουσα s επίπεδο s της s της αιθουσα s επίπεδο s της s της

**Δεδομένα Εξόδου:** Το πρόγραμμα σας πρέπει να τυπώνει στο standard output (στην πρώτη γραμμή) έναν απέραιο που αντιστοιχεί στο πλήθος C των διαφορετικών συντομότερων μονοπατιών που οδηγούν από την αίθουσα s στο πρώτο επίπεδο στην αίθουσα t στο k-οστό επίπεδο. Επειδή αυτός ο αριθμός μπορεί να είναι εξαιρετικά μεγάλος, το πρόγραμμά σας πρέπει στην πραγματικότητα να τυπώνει τον  $C \bmod (10^8 + 7)$ .

| Πεοιοοισμοί:                  | Παράδειγμα Εισόδου: | Παράδειγμα Εξόδου: |
|-------------------------------|---------------------|--------------------|
| $2 \le k \le 10000$           | 6 5 11 1 3          | 10                 |
| $2 \le N \le 100$             | 1 2                 |                    |
| $2 \le M \le 4000$            | 1 3                 |                    |
| Όριο χρόνου εκτέλεσης: 1 sec. | 2 2                 |                    |
| Όριο μνήμης: 64 ΜΒ.           | 2 3                 |                    |
|                               | 2 4                 |                    |
| Θα υπάρχουν ακόμη, ως bonus,  | 3 4                 |                    |
| δύο παραδείγματα αξιολόγησης  | 3 5                 |                    |
| όπου $k=10^8$ .               | 4 1                 |                    |
|                               | 4 5                 |                    |
|                               | 5 1                 |                    |
|                               | 5 5                 |                    |

## Άσκηση 2: Αρχεία Ελέγχου

Όπως γνωρίζετε, για τον έλεγχο των λύσεων στις προγραμματιστικές ασκήσεις, κάθε πρόγραμμα εκτελείται σε ένα σύνολο αρχείων ελέγχου (test cases) που σκοπό έχουν τον έλεγχο της ορθότητας και της αποδοτικότητας της λύσης.

Η δημιουργία αυτών των αρχείων ελέγχου συχνά δεν είναι εύκολη διαδικασία. Θέλουμε λοιπόν τη βοήθειά σας στη δημιουργία αρχείων ελέγχου για το εξής πρόβλημα: "Δεδομένου ενός μη-κατευθυνόμενου πλήρους γραφήματος G με βάρη στις ακμές, να υπολογίσετε το Ελάχιστο Συνδετικό Δέντρο (ΕΣΔ) του G". Πιο συγκεκριμένα, έχουμε ήδη ετοιμάσει τα αρχεία εξόδου με τα επιθυμητά ΕΣΔ, και θέλουμε τη βοήθειά σας για τη δημιουργία των αντίστοιχων αρχείων εισόδου.

Ένα πρόβλημα είναι ότι το γράφημα G του αρχείου εισόδου μπορεί να μην έχει μοναδικό ΕΣΔ. Αυτό κάνει πιο δύσκολο τον έλεγχο ορθότητας των απαντήσεων. Θέλουμε λοιπόν να αποφύγουμε τέτοιες περιπτώσεις δημιουργώντας γραφήματα / αρχεία εισόδου με μοναδικό ΕΣΔ.

Επιπλέον, θέλουμε τα αρχεία ελέγχου να μπορούν να διακρίνουν μεταξύ ενός σωστού αλγόριθμου και ενός λάθος αλγόριθμου, ο οποίος ίσως τυχαίνει να υπολογίζει τη σωστή απάντηση σε κάποιες περιπτώσεις. Για παράδειγμα, αν όλες οι ακμές του γραφήματος εισόδου που δεν ανήκουν στο ΕΣΔ είχαν βάρος πολύ μεγαλύτερο από τις ακμές του ΕΣΔ, και το παρατηρούσε κάποιος, θα μπορούσε να υλοποιήσει έναν αλγόριθμο που απλά θα απέκλειε τις ακμές πολύ μεγάλου βάρους από το ΕΣΔ. Αυτός ο αλγόριθμος δεν θα ήταν βέβαια σωστός, όμως πιθανότατα θα υπολόγιζε τις σωστές απαντήσεις για αρκετά από τα συγκεκριμένα αρχεία ελέγχου. Για να αποφύγουμε τέτοιες περιπτώσεις, θέλουμε το γράφημα εισόδου να έχει το ελάχιστο δυνατό συνολικό βάρος ακμών.

Καταλήγουμε λοιπόν ότι δεδομένου ενός δέντρου T με βάρη στις αμμές, θέλουμε να υπολογίσουμε ένα μη-κατευθυνόμενο πλήρες γράφημα G, με ελάχιστο συνολικό βάρος ακμών, για το οποίο το T αποτελεί το μοναδικό Ελάχιστο Συνδετικό Δέντρο. Ζητάμε να μας βοηθήσετε γράφοντας ένα πρόγραμμα για αυτόν το σκοπό.

**Δεδομένα Εισόδου:** Αρχικά, το πρόγραμμά σας θα διαβάζει από το standard input έναν θετικό ακέραιο N που αντιστοιχεί στο πλήθος των κορυφών του δέντρου T. Οι κορυφές είναι αριθμημένες από το 1 έως το N. Σε κάθε μία από τις επόμενες N-1 γραμμές, θα υπάρχουν τρεις θετικοί

απέραιοι  $a_i$ ,  $b_i$  παι  $w_i$  χωρισμένοι με πενό. Αυτοί δηλώνουν ότι η πορυφή  $a_i$  συνδέεται στο T με την πορυφή  $b_i$  μέσω μιας απμής βάρους  $w_i$ .

**Δεδομένα Εξόδου:** Το πρόγραμμά σας πρέπει να τυπώνει στο standard output (στην πρώτη γραμμή) το ελάχιστο συνολικό βάρος ακμών ενός μη-κατευθυνόμενου πλήρους γραφήματος G για το οποίο το δέντρο T αποτελεί το μοναδικό Ελάχιστο Συνδετικό Δέντρο. Σημειώστε ότι για μεγάλες τιμές του N, το ελάχιστο συνολικό βάρος ακμών του G (καθώς και κάποια από τα ενδιάμεσα αποτελέσματα που χρειάζονται για τον υπολογισμό του) μπορεί να υπερβαίνουν το  $2^{32}$ .

| Πεοιοοισμοί:                  | П | αδα | ιδείγματα Εισόδου: | Παραδείγματα Εξόδου: |
|-------------------------------|---|-----|--------------------|----------------------|
| $3 \le N \le 500000$          | 3 |     |                    | 19                   |
| $1 \le a_i, b_i \le N$        | 1 | 2   | 4                  |                      |
| $1 \le w_i \le 10000$         | 2 | 3   | 7                  |                      |
| Όριο χρόνου εκτέλεσης: 1 sec. |   |     |                    |                      |
| Όοιο μνήμης: 64 ΜΒ.           | 4 |     |                    | 12                   |
|                               | 1 | 2   | 1                  |                      |
|                               | 1 | 3   | 1                  |                      |
|                               | 1 | 4   | 2                  |                      |