Regression Analysis Regression Methods

Nicoleta Serban, Ph.D.

Associate Professor

Stewart School of Industrial and Systems Engineering

Regression Analysis: Overview

About this lesson

Simple Linear Regression

Data: $\{(x_1, Y_1), ..., (x_n, Y_n)\}$

Model: $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1,...,n

- Linearity/Mean Zero Assumption : $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption $\{\epsilon_1,...,\epsilon_n\}$ are independent random variables
- Normality Assumption: $\varepsilon_i \sim Normal$

ANOVA

Data: Y_{ij} for $j = 1, ..., n_i$; i = 1, ..., k

Model: $Y_{ij} = \mu_{\dot{l}} + \epsilon_{\dot{l}\dot{l}}$ where $\epsilon_{\dot{l}\dot{l}}$ is an error term

- Constant Variance Assumption: $Var(\epsilon_{ij}) = \sigma^2$
- Independence Assumption: $\{\varepsilon_{1i},...,\varepsilon_{ni}\}$ are independent random variables
- *Normality Assumption*: $\varepsilon_{ij} \sim Normal(0, \sigma^2)$

Multiple Linear Regression

Data: $\{(x_{11},...,x_{1p}),Y_1\},....,\{(x_{n1},...,x_{np}),Y_n\}$

Model: $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} + \epsilon_i$, i = 1,...,n

- Linearity/Mean Zero Assumption: $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption: $\{\varepsilon_1,...,\varepsilon_n\}$ are independent random variables
- Normality Assumption: $\varepsilon_i \sim Normal$

Logistic Regression

Data: $\{(x_{11},...,x_{1p}),Y_1\},....,\{(x_{n1},...,x_{np}),Y_n\}$ where $Y_1,...,Y_n$ binary responses

Model: Probability of success given predictor(s)

$$p = p(x_1,...,x_p) = P\{Y=1|x_1,...,x_p\}$$

link *p* to the predicting variables through *logit* link function

$$g(p) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p$$

- Linearity Assumption: $g\{p(x_1,...,x_p)\} = \beta_0 + \beta_1x_1 + ... + \beta_px_p$
- Independence Assumption: Y₁,..., Y_n are independent random variables
- Logit link function: $g(p) = \ln \left(\frac{p}{1-p} \right)$

Poisson Regression

Data: $\{(x_{11},...,x_{1p}),Y_1\},....,\{(x_{n1},...,x_{np}),Y_n\}$ where $Y_1,...,Y_n$ count response variable

Model: Model the conditional expectation:

$$log(E(Y|X_1, ..., X_p)) = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p$$

- Linearity Assumption: $log(E(Y|x_1, ..., x_p)) = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p$
- Independence Assumption: Y₁,..., Y_n are independent random variables
- Variance Assumption: $E(Y|x_1, ..., x_p) = V(Y|x_1, ..., x_p)$

Generalized Linear Model

Data: $\{(x_{11},...,x_{1p}),Y_1\},....,\{(x_{n1},...,x_{np}),Y_n\}$ where $Y_1,...,Y_n$ response variable with **a distribution from the exponential family**

Model: Model the conditional expectation:

$$g(E(Y|x_1, ..., x_p)) = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p$$
 OR
$$E(Y|x_1, ..., x_p) = g^{-1}(\beta_0 + \beta_1 x_1 + ... + \beta_p x_p)$$

where g() is a *link function* and $g^{-1}()$ the *inverse link function* depending on the distribution of Y.

Weighted Least Regression (WLS)

Data: $\{(x_{11},...,x_{1p}),Y_1\},....,\{(x_{n1},...,x_{np}),Y_n\}$

Model: $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} + \epsilon_i$, i = 1,...,n

Assumptions: For the vector of errors $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)$

- Linearity/Mean Zero Assumption: $E(\varepsilon) = 0$
- Covariance-Variance Assumption: $V(\varepsilon) = \Sigma$
- Independence Assumption: $\{\varepsilon_1,...,\varepsilon_n\}$ are independent random variables
- *Normality Assumption*: $\varepsilon \sim Normal$

Generalized Additive Model (GAM)

Model: $Y_i = f(x_{i1},...,x_{ip}) + \varepsilon_i$, i = 1,...,n with $f(x_1,...,x_p) = \alpha + f_1(x_1) + ... + f_p(x_p) \text{ where } f_1,...,f_p \text{ are unknown smooth functions}$

Model Estimation:

- Backfitting algorithm:
 - Initialize: $\hat{\alpha}$, \hat{f}_1 ,..., \hat{f}_p
 - Iterate until convergence: For j=1,..,p

$$\check{R}_i = Y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f}_k(x_{ki})$$
 and estimate \hat{f}_j from regressing $\check{R}_i \sim x_{ji}$

Summary

