Esercitazioni su circuiti combinatori

Salvatore Orlando & Marta Simeoni

Algebra Booleana: funzioni logiche di base

OR (somma): l'uscita è 1 se almeno uno degli ingressi è 1

AND (prodotto): l'uscita è 1 se tutti gli ingressi sono 1

A B	$(A \cdot B)$	
0 0 0 1 1 0 1 1	0 0 0 1	A B A and B

Algebra Booleana: funzioni logiche di base

NOT (complemento): l'uscita è il complemento dell'ingresso

$$A \longrightarrow A$$
 nor B

Algebra booleana: equazioni

Come si dimostra che due funzioni logiche sono uguali?

Ci sono due metodi:

- Costruire la tabella di verità delle due funzioni e verificare che, per gli stessi valori dei segnali di ingresso, siano prodotti gli stessi valori dei segnali di uscita
- Sfruttare le proprietà dell'algebra booleana per ricavare una funzione dall'altra (tramite sequenze di equazioni)

Algebra booleana: equazioni

Come si dimostra che due funzioni logiche sono uguali?

Esempio: considerare le leggi di De Morgan

$$\sim$$
(A•B) = (\sim A) + (\sim B)

A B	$(A \cdot B)$	~(A·B)	~A	~B	(~A)+(~B)
0 0	0	1	1	1	1
0 1	0	1	1	0	1
1 0	0	1	0	1	1
1 1	1	0	0	0	0

Algebra booleana: equazioni

Come si dimostra che due funzioni logiche sono uguali?

Esempio: considerare le leggi di De Morgan

$$\sim$$
(A+B) = (\sim A) • (\sim B)

$$\begin{array}{l}
 -A \sim B = \sim A \sim B + 0 = \sim A \sim B + [\sim (A+B) \cdot (A+B)] = \\
 [\sim A \sim B + \sim (A+B)] \cdot [\sim A \sim B + (A+B)] = \\
 [\sim A \sim B + \sim (A+B)] \cdot [(\sim A + A) \cdot (\sim B + A) + B] = \\
 [\sim A \sim B + \sim (A+B)] \cdot [\sim B + A + B] = (\sim A \sim B) + \sim (A+B) \\
 \sim A \sim B = \sim A \sim B \cdot 1 = \sim A \sim B \cdot [\sim (A+B) + (A+B)] = \\
 (\sim A \sim B) \cdot \sim (A+B) + (\sim A \sim B) \cdot (A+B) = \\
 (\sim A \sim B) \cdot \sim (A+B) + [\sim A \sim B \cdot A + \sim A \sim B \cdot B] = (\sim A \sim B) \cdot \sim (A+B) \\
 \sim A \sim B = \sim A \sim B + \sim (A+B) = ((\sim A \sim B) \cdot \sim (A+B)) + \sim (A+B) = \\
 \sim (A+B) \cdot [(\sim A \sim B) + 1] = \sim (A+B)
\end{array}$$

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

D è vera se almeno uno degli ingressi è vero

E è vera se esattamente due input sono veri

F è vera se tutti e tre gli input sono veri

Intuitivamente le equazioni sono:

$$D = A + B + C$$

$$F = ABC$$

$$E = (AB + BC + AC) \cdot \sim (ABC)$$

Realizzazione di circuiti combinatori

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

D è vera se almeno uno degli ingressi è vero

E è vera se esattamente due input sono veri

F è vera se tutti e tre gli input sono veri

A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	Λ	1	1	Λ

Tabella di verità

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

D è vera se almeno uno degli ingressi è vero

E è vera se esattamente due input sono veri

F è vera se tutti e tre gli input sono veri

A	В	С	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Prodotti di somme (PS):

$$D = A + B + C$$

Realizzazione di circuiti combinatori

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

D è vera se almeno uno degli ingressi è vero

E è vera se esattamente due input sono veri

F è vera se tutti e tre gli input sono veri

A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Prodotti di somme (PS):

$$D = A + B + C$$

$$E = (A+B+C) (A+B+\sim C) (A+\sim B+C)$$

$$(\sim A+B+C) (\sim A+\sim B+\sim C)$$

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

D è vera se almeno uno degli ingressi è vero

E è vera se esattamente due input sono veri

F è vera se tutti e tre gli input sono veri

A	В	С	D	Е	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Prodotti di somme (PS):

$$D = A+B+C$$

$$E = (A+B+C) (A+B+\sim C) (A+\sim B+C)$$

($\sim A+B+C) (\sim A+\sim B+\sim C)$

$$F = (A+B+C) (A+B+\sim C) (A+\sim B+C)$$

$$(A+\sim B+\sim C) (\sim A+B+C)$$

$$(\sim A+B+\sim C) (\sim A+\sim B+C)$$

Realizzazione di circuiti combinatori

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

D è vera se almeno uno degli ingressi è vero

E è vera se esattamente due input sono veri

F è vera se tutti e tre gli input sono veri

A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Somme di Prodotti (SP):

$$D = (\sim A \sim BC) + (\sim AB \sim C) + (\sim ABC) + (A \sim B \sim C) + (A \sim BC) + (AB \sim C) + (ABC)$$

$$\mathbf{E} = (\sim \mathbf{ABC}) + (\mathbf{A} \sim \mathbf{BC}) + (\mathbf{AB} \sim \mathbf{C})$$

$$F = ABC$$

Esercizio: Minimizzare la funzione D dell'esercizio precedente

$$\mathbf{D} = (\sim \mathbf{A} \sim \mathbf{BC}) + (\sim \mathbf{AB} \sim \mathbf{C}) + (\sim \mathbf{ABC}) + (\mathbf{A} \sim \mathbf{B} \sim \mathbf{C}) + (\mathbf{A} \sim \mathbf{BC}) + (\mathbf{AB} \sim \mathbf{C}) + (\mathbf{ABC})$$

BC	00	01	11	10
0		1	1	1
1	1	1	1	1

Realizzazione di circuiti combinatori

Esercizio: Minimizzare la funzione D dell'esercizio precedente

$$\mathbf{D} = (\sim \mathbf{A} \sim \mathbf{BC}) + (\sim \mathbf{AB} \sim \mathbf{C}) + (\sim \mathbf{ABC}) + (\mathbf{A} \sim \mathbf{B} \sim \mathbf{C}) + (\mathbf{A} \sim \mathbf{BC}) + (\mathbf{ABC}) + (\mathbf{ABC})$$

BC	00	01	11	10
0		1	1	1
1	1	1	1	1

Si può considerare un rettangolo più grande di quello a sinistra, che include anche quello selezionato

Esercizio: Minimizzare la funzione D dell'esercizio precedente

$$\mathbf{D} = (\sim \mathbf{A} \sim \mathbf{BC}) + (\sim \mathbf{AB} \sim \mathbf{C}) + (\sim \mathbf{ABC}) + (\mathbf{A} \sim \mathbf{B} \sim \mathbf{C}) + (\mathbf{A} \sim \mathbf{BC}) + (\mathbf{AB} \sim \mathbf{C}) + (\mathbf{ABC})$$

BC	00	01	11	10
0		1	1	1
1	1	1	1	1

Realizzazione di circuiti combinatori

Esercizio: Minimizzare la funzione D dell'esercizio precedente

$$D = (\sim A \sim BC) + (\sim AB \sim C) + (\sim ABC) + (A \sim B \sim C) + (A \sim BC) + (AB \sim C) + (ABC)$$

Errore!

si deve raccogliere un p-sottocubo (rettangolo di celle adiacenti) di **2**^p celle

Esercizio: Minimizzare la funzione D dell'esercizio precedente

$$D = (\sim A \sim BC) + (\sim AB \sim C) + (\sim ABC) + (A \sim B \sim C) + (A \sim BC) + (AB \sim C) + (ABC)$$

$$\mathbf{D} = \mathbf{A} + \mathbf{B} + \mathbf{C}$$

Realizzazione di circuiti combinatori

Esercizio: Minimizzare la funzione E dell'esercizio precedente $E = (\sim ABC) + (A\sim BC) + (AB\sim C)$

$$\mathbf{E} = (\sim \! \mathbf{ABC}) + (\mathbf{A} \sim \! \mathbf{BC}) + (\mathbf{AB} \sim \! \mathbf{C})$$

Esercizio: Realizzare il circuito precedente (riportato qui in figura) nei seguenti casi:

- 1. utilizzando porte AND e OR a due ingressi
- 2. utilizzando porte NAND a tre ingressi

Realizzazione di circuiti combinatori

Esercizio: (continua)

Realizzazione utilizzando porte AND e OR a due ingressi

Esercizio: (continua)

Realizzazione utilizzando porte NAND a tre ingressi

$$E = (\sim ABC) + (A\sim BC) + (AB\sim C) = [applico \ De \ Morgan]$$
$$\sim [\sim (\sim ABC) \bullet \sim (A\sim BC) \bullet \sim (AB\sim C)]$$

Realizzazione di circuiti combinatori

Esercizio: Minimizzare la funzione F dell'esercizio precedente espressa come prodotto di somme (PS)

$$F = (A+B+C) (A+B+\sim C) (A+\sim B+C) (A+\sim B+\sim C) (\sim A+B+C) (\sim A+B+\sim C) (\sim A+C)$$

p-sottocubi composti da zeri. Per ottenere le varie somme (PS), in ogni somma devono apparire solo le variabili che rimangono invariate in ogni p-sottocubo. Le variabili sono negate sono quelle valori uguali ad 1.

Esercizio: Dati quattro ingressi A, B, C, D realizzare un circuito che fornisca in uscita il segnale E definito come segue:

- il valore di E è indifferente se gli ingressi sono tutti 0 o tutti 1
- E è 1 se gli ingressi contengono un numero dispari di 1
- E è 0 se gli ingressi contengono un numero pari di 1

A	В	C	D	E
0	0	0	0	X
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	X

Tabella di verità

Realizzazione di circuiti combinatori

A	В	C	<u> D</u>	E
0	0	0	0	X
0	0	0	1	1
0 0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1 0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1 0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	X

Tabella di verità

Mappa di Karnaugh

Realizzare il circuito usando porte AND e OR a due soli ingressi

$$\mathbf{E} = \sim \mathbf{A} \sim \mathbf{B} \sim \mathbf{C} + \sim \mathbf{A} \sim \mathbf{C} \sim \mathbf{D} + \sim \mathbf{B} \sim \mathbf{C} \sim \mathbf{D} + \sim \mathbf{A} \sim \mathbf{B} \sim \mathbf{D} + \mathbf{B} \sim \mathbf{C} \sim \mathbf{D} + \mathbf{A} \sim \mathbf{B} \sim \mathbf{D} + \mathbf{A} \sim \mathbf{D} \sim$$

Sintesi di funzioni logiche

Algoritmo di Quine McCluskey

- Le mappe di Karnaugh servono per la minimizzazione "a mano" delle funzioni (fini a 5 variabili)
- L'algoritmo di Quine McCluskey serve per sintetizzare funzioni logiche *minime* in maniera "automatica"

Sintesi di funzioni logiche: Algoritmo di Quine McCluskey

Considerare la funzione logica rappresentata dalla tabella di verità seguente:

A	В	C	D	Е
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1> 5
0	1	1	0	1> 6
0	1	1	1	1> 7
1	0	0	0	1> 8
1	0	0	1	1> 9
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1> 12
1	1	0	1	1> 13
1	1	1	0	1> 14
1	1	1	1	0

Sintesi di funzioni logiche: Algoritmo di Quine McCluskey

Prima fase: riportare le combinazioni che danno uscita "1" in tabella, suddividendole rispetto al PESO, cioè al numero di "1" presenti in ciascuna combinazione.

```
A B C D

8 1 0 0 0

-----

5 0 1 0 1

6 0 1 1 0

9 1 0 0 1

12 1 1 0 0

----

7 0 1 1 1

13 1 1 0 1

14 1 1 1 0
```

Sintesi di funzioni logiche: Algoritmo di Quine McCluskey

Prima fase: Confrontare poi le configurazioni di una sezione con tutte le combinazioni della sezione successiva.

Individuiamo così eventuali coppie con distanza di Hamming uguale a 1 Nella nuova tabella, i bit differenti tra ogni coppia diventano DON'T CARE

```
ABCD
                         ABCD
                         1 0 0 _
 1 0 0 0 √
                   8/9
                   8/12
 0 1 0 1 \sqrt{}
  0 1 1 0 √
                         0 1 _ 1
                         1 0 1
9 1 0 0 1 √
                   5/13
12 1 1 0 0 V
                         0 1 1
                   6/7
                   6/14 _ 1 1 0
7 0 1 1 1 √
                   9/13
                         1 0 1
13 1 1 0 1 √
                   12/13 1 1 0
14 1 1 1 0 √
                   12/14 1 1 _ 0
```

Sintesi di funzioni logiche: Algoritmo di Quine McCluskey

Prima fase: **Iteriamo** il procedimento sulle nuove tabelle, fino a quando non è più possibile individuare coppie di righe con distanza di Hamming uguale ad 1.

Sintesi di funzioni logiche: Algoritmo di Quine McCluskey

Applichiamo le mappe di Karnaugh.

Nell'equazione di sopra abbiamo quindi alcuni p-sottocubi ridondanti!!

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: Costruzione della tabella di copertura

	5	6	7	8	9	12	13	$ ^{14}$	
A~C				(X)	X	X	Х		
~ABD	Х		X						
B~CD	Х						Х		
~ABC		X	X						
BC~D		Х						X	
AB~D						X		X	

Le colonne 8 e 9 si possono "coprire" solo usando A~C, che quindi diventa un termine indispensabile

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

	5	6	7	8	9	12	13	14	
A~C				X	X	X	Χ		
~ABD	Х		Х						
B~CD	Х						Х		
~ABC		X	X						
BC~D		X						X	
AB~D						X		X	

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

		5	6	7	8	9	1	.2	1	.3	14	
(Z~C											
•	Λ					44	1		_4			<u> </u>
	~ABD	X		X								
	B~CD	X							Σ			
	~ABC		Х	X								
	BC~D		Х								X	
-	AB~D						Σ				X	

A~C copre le colonne 8 e 9, ma anche le colonne 12 e 13

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

	5	6	7	8	}	9	1	2	1	.3	14	
D~C						X	, X					
~ABD	Х		Х	Ź		<u> </u>	-					
B~CD	Х								Σ			
~ABC		Х	Х									
BC~D		X									X	
AB~D							Χ				X	

	5	6	7	14	
~ABD	Х		Х		
B~CD	X				
~ABC		X	X		
BC~D		X		Х	
AB~D				X	

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

	5	6	7	14	
~ABD	X		Х		
B~CD	Λ				
~ABC		Х	Χ		
BC~D		Х		X	
AB~D				77	

le righe relative a B~CD e AB~D sono dominate dalle righe relative a ~ABD e BC~D, rispettivamente

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

	5	6	7	8		9		1:	2	1	3	14	
					H		H	Н	_	_	H		
A~C				Х		Χ		Χ		Χ			
~ABD	Х		Х				L						
B~CD	X									Χ			
~ABC		Х	Х										
BC~D		Х			Г		Г					Х	
AB~D								Х				X	

	5	6	7	14	
~ABD	Х		Х		
B~CD	X				
~ABC		Х	Х		
BC~D		X		X	
AB~D				V	

	5	6	7	14	
~ABD	Х		Х		
~ABC		Х	Х		
BC~D		Х		Х	
-					\vdash

Le colonne 5 e 14 si possono rispettivamente "coprire" solo usando ~ABD e BC~D Quindi entrambi diventano termini indispensabili

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

	5	6	7	8		9		12	2	1	3	14	
A~C				X	F	X	H	X	F	X	F		
~ABD	Х		Х										
B~CD	Х						П			Х	Г		
~ABC		Х	Х				П						
BC~D		Х			Г							Х	
AB~D								Χ				X	

	5	6	7	14	
~ABD	<u>y</u>		X		
B~CD	<u>v</u>				
~ABC		Х	Х		
BC~D		Х		Х	
AB~D				(X)	

 $\mathbf{E} = \mathbf{A} \sim \mathbf{C} + \sim \mathbf{A}\mathbf{B}\mathbf{D} + \mathbf{B}\mathbf{C} \sim \mathbf{D}$