AMENDMENTS TO THE CLAIMS

Docket No.: 5178[67322(303981)]

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Previously Presented) A compound having the structure

wherein

R1 represents H, (C1-C3)alkyl, or cyclopropyl;

R2 represents (C1-C3)alkyl, cyclopropyl, O(C1-C3)alkyl, or NR3R4

wherein R³ and R⁴ are H, (C₁-C₃)alkyl, or cyclopropyl;

R^{2a} represents H or halogen:

M represents CH or N;

L represents a carbonyl group, O, NR⁵, CR⁶R⁷, or (C₂-C₃)alkylenyl which is optionally substituted up to twice by groups independently selected from halogen and OH; wherein

R5 is H or (C1-C3)alkyl; and

R6 and R7 are independently H, CH3, halogen, or OH;

J represents an aromatic or heteroaromatic ring selected from the group consisting of

$$\begin{cases} , & \frac{3}{2} \bigcap_{i \in \mathcal{I}} \frac{1}{2} \\ , & \frac{3}{2} \bigcap_{i \in \mathcal{I}} \frac{1}{2} \end{cases} , & \frac{3}{2} \bigcap_{i \in \mathcal{I}} \frac{1}{2} \\ 0 \ominus O & O \end{cases}$$

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

wherein R8 represents H or (C1-C3)alkyl;

G" represents a substituent selected from the group consisting of (C₁-C₃)alkyl,

wherein

R9 represents H or (C1-C3)alkyl; and

m represents the number of substituents G", and is 0, 1, or 2;

G represents a substituent located on ring J;

G' represents a substituent located on ring Y;

n represents the number of substituents G; and

n' represents the number of substituents G';

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G11, to a maximum total of 3 substituents on rings J and Y, and
- ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12-G37;

and subject to the further provisos

- when J is phenyl, G is other than OH or alkylthio; and when J is phenyl or pyridyl, n is 1, 2, or 3;
- 5) when J is phenyl, and G is G4 shown below, then R² is NR³R⁴;

G and G' moieties are independently selected from the group consisting of:

G1) halogen;

- G2) O(C₁-C₄)alkyl which optionally is substituted up to two times by O(C₁-C₂)alkyl;
- G3) OH:
- G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;
- G5) OCF3;
- G6) NHC(O)(C₁-C₃)alkyl;
- G7) NHSO₂(C₁-C₃)alkyl;
 - G8) NR¹⁰R¹¹, wherein

R10 and R11 are independently selected from

H.

CH₃.

cyclopropyl,

benzyl,

NR12R13 wherein

 R^{12} and R^{13} are independently H or (C₁-C₃)alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously.

and

 $(C_2\text{-}C_4) alkyl \ which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, <math>O(C_1\text{-}C_3) alkyl$, and $NR^{14}R^{15} \ , \ wherein$

 R^{14} and R^{15} are independently H or (C1-C3)alkyl, or

R14 and R15 can join to form a heterocycle of formula

Q represents CH_2 , O, or NR^{16} , and

R16represents H or (C1-C3)alkyl,

or

R¹⁰ and R¹¹ may be joined to form a saturated 5-6-membered

N-containing ring which is optionally substituted up to two times

by

OH,

NR¹⁷R¹⁸, wherein

R17 and R18 are H or (C1-C2)alkyl.

or by

(C₁-C₃)alkyl which is optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl;

G9) $(CH_2)_a$ - $NR^{19}R^{20}$ wherein

 R^{19} and R^{20} are independently H, (C1-C5)alkyl, or

(C3-C6)cycloalkyl, or may be joined to form a saturated 5-

6-membered N-containing ring; and

the subscript "a" is an integer of 1-4;

 Q^{\prime} is O or NR^{21} ;

R21 is H, (C1-C3)alkyl, or cyclopropyl; and

the subscript "b" is an integer of 1-3;

G11) CH₂NR²²(CH₂)_cOCH₃ wherein

 R^{22} is H, (C₁-C₃)alkyl, or cyclopropyl; and

G12) OSO₂NR²³R²⁴ wherein

 R^{23} and R^{24} independently represent H, CH3, or $(C_2\text{-}C_4)$ alkyl which may optionally be substituted once by OH or $NR^{25}R^{26} \ , \ wherein$

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

- G13) CN;
- G14) NO2;
- G15) cyclopropyl;
- G16) OR^{27} , wherein R^{27} represents phenyl or benzyl;
- G17) S(C₁-C₃)alkyl;
 - G18) CH=CH-(CH $_2$) $_{1\cdot3}$ -OR 5 ; wherein $R^5 \text{ represents H or (C}_1\text{-C}_3)\text{alkyl};$

G21) $C(O)NR^{28}R^{29}$, wherein R^{28} and R^{29} are independently selected from H,

cyclopropyl, provided that both R^{28} and R^{29} are not simultaneously cyclopropyl,

, provided that this group does not constitute both
$$R^{28}$$
 and R^{29} simultaneously,

and

(C₁-C₃)alkyl which is optionally substituted up to two times by OH;

or

 R^{28} and R^{29} may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH, or by $(C_1$ - C_3)alkyl which in turn is optionally substituted up to two times by OH or $O(C_1$ - C_3)alkyl;

G23) $O-(CH_2)_d-NR^{31}R^{32}$ wherein

R³¹ and R³² are independently H, (C₁-C₃)alkyl, or cyclopropyl, or may be joined to form a saturated 5-6-membered N-containing ring; and the subscript "d" is an integer of 2-4;

the subscript "e" is an integer of 2-3; and $Q\text{'''} \text{ is O or NR}^{33}\text{ ; and}$ $R^{33} \text{ is H, } (C_1\text{-}C_3)\text{alkyl, or cyclopropyl;}$

G26) C(O)NR³⁵(CH₂)_fOR³⁶ wherein

R³⁵ is H. (C₁-C₃)alkyl, or cyclopropyl:

R³⁶ is (C₁-C₆)alkyl optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl, and

the subscript "f" is an integer of 2-4;

G27) CO₂R³⁷ wherein

R³⁷ is H or (C₁-C₃)alkyl:

- G28) phenyl, which is optionally substituted by up to 2 groups selected from halogen, (C₁-C₃)alkyl, OR³⁸, CN, CF₃, and NR³⁹R⁴⁰ wherein

 R³⁸ represents H or (C₁-C₃)alkyl; and

 R³⁹ and R⁴⁰ represent H or (C₁-C₃)alkyl;
- G29) $NR^{41}SO_2NR^{42}R^{43}$ wherein

R41 represents H, or (C1-C4) alkyl, and

 R^{42} and R^{43} independently represent H, CH₃, or (C₂-C₃)alkyl which may optionally be substituted once by -OH or $NR^{44}R^{45}$, wherein

 R^{44} and R^{45} independently represent H or $(C_1\hbox{-} C_3) alkyl;$

G30) OC(O)- CH_2 - $NR^{46}R^{47}$ wherein

 R^{46} and R^{47} independently represent H, $(C_1$ - $C_3)$ alkyl, or $CO_2(t$ -butyl), provided that R^{46} and R^{47} are not both simultaneously $CO_2(t$ -butyl);

G31) N(R⁴⁸)C(O)R⁴⁹ wherein

R48 represents H or (C1-C3)alkyl; and

R⁴⁹ represents

 $(CH_2)_{1-3}\text{-}CO_2H$,

O(C2-C4)alkyl,

 $(CH_2)_{1-4}$ -NR⁵⁰R⁵¹ wherein

 R^{50} and R^{51} independently represent \boldsymbol{H} or

(C1-C3)alkyl, or

CH(R⁵²)-NR⁵³R⁵⁴ wherein

 R^{52} represents $(CH_2)_{1-4}$ -NH₂, CH_2OH ,

 $CH(CH_3)OH, \, or \, (C_1\hbox{-} C_3) alkyl; \, and$ R^{53} and R^{54} independently represent H or

(C₁-C₃)alkyl;

G32) C(O)-(C₁-C₃)alkyl;

G33) (CH₂)_g-N(R⁵⁵)-C(O)-R⁵⁶ wherein

g represents 1, 2, or 3;

R55 represents H or (C1-C3)alkyl:

R⁵⁶ represents

(C1-C3)alkyl optionally substituted up to two times by

OR⁵⁷ or NR⁵⁸R⁵⁹, wherein

R⁵⁷ represents H or (C₁-C₃)alkyl, and

R⁵⁸ and R⁵⁹ each represents H or (C₁-C₂)alkyl.

NYC 323556 1

or
$$R^{56}$$
 represents halogen, $(C_1\text{-}C_3)$ alkyl, $O(C_1\text{-}C_3)$ alkyl, CN ,

OH. CF₃, or NR⁶¹R⁶², wherein

R⁶¹ and R⁶² represent H or (C₁-C₃)alkyl; and

h represents 0, 1, or 2;

i represents 1, 2, or 3;

R⁶³ represents H or (C₁-C₃)alkyl;

R⁶⁴ and R⁶⁵ each represents H or (C₁-C₃)alkyl;

or

$$R^{64}$$
 and R^{65} may be joined to form Q^V wherein Q^V represents CH_2 , O or NR^{66} wherein R^{66} represents H or $(C_1\text{-}C_3)$ alkyl;

(CH₂)_j-N(R⁶⁷)-SO₂
$$\frac{f_r-N}{V_s}$$
 N
G35) $\frac{N^{68}}{R^{68}}$ wherein

j represents 1, 2, or 3;

R67 represents H or (C1-C3)alkyl; and

R⁶⁸ represents H or (C₁-C₃)alkyl;

G36) (CH₂)_k-N(R⁶⁹)-SO₂-R⁷⁰ wherein

k represents 1, 2, or 3;

R⁶⁹ represents H or (C₁-C₃)alkyl; and

R⁷⁰ represents (C₁-C₄)alkyl, or phenyl which is optionally

substituted up to perhalo by halogen or up to three times by

OR71, CN, CF3, or NR72R73, wherein

R71 represents H or (C1-C3)alkyl; and

R⁷² and R⁷³ each represents H or (C₁-C₃)alkyl;

G37) CH=CH-(CH₂)₁₋₃-NR⁷⁴R⁷⁵ wherein

R74 and R75 represent H or (C1-C3)alkyl;

or a pharmaceutically acceptable salt or stereoisomer thereof.

2. (Original) The compound of claim 1

wherein

R1 represents H:

M represents CH;

J represents a heteroaromatic ring selected from the group consisting of

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and
- ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G13, G22, G29, and G31;

and subject to the further proviso

4) when J is pyridyl, n is 1, 2, or 3;

and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

G1) halogen;

- G2) O(C₁-C₄)alkyl which optionally is substituted up to two times by O(C₁-C₂)alkyl:
- G3) OH:
- G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;
- G5) OCF3;
 - G8) NR¹⁰R¹¹, wherein

 R¹⁰ and R¹¹ are independently selected from

Η,

 CH_3 ,

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

R¹² and R¹³ are independently H or (C₁-C₃)alkyl, provided that both R¹⁰ and R¹¹ are not NR¹²R¹³ simultaneously.

and

 $(C_2\text{-}C_4) alkyl \ which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, <math>O(C_1\text{-}C_3) alkyl$, and $NR^{14}R^{15}$, wherein

 R^{14} and R^{15} are independently H or (C1-C3)alkyl, or R^{14} and R^{15} can join to form a heterocycle of

formula wherein

Q represents CH₂, O, or NR¹⁶, and

R¹⁶represents H or (C₁-C₃)alkyl,

13

R10 and R11 may be joined to form a saturated 5-6-membered

N-containing ring which is optionally substituted up to two times

by

OH.

NR17R18, wherein

R¹⁷ and R¹⁸ are H or (C₁-C₃)alkyl.

or by

(C₁-C₃)alkyl which is optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl;

G12) OSO₂NR²³R²⁴ wherein

 R^{23} and R^{24} independently represent H, CH $_{\!3},$ or (C $_{\!2}\text{-C}_{\!4})alkyl$ which may optionally be substituted once by OH or

NR25R26, wherein

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl:

G13) CN:

G22) FN Q" wh

wherein

 $Q^{\prime\prime}$ is O or $NR^{30},$ and

R³⁰ is

H.

cyclopropyl, or

(C₁-C₃)alkyl which is optionally substituted once by halogen, OH, or O(C₁-C₃)alkyl;

 $G29) \quad NR^{41}SO_2NR^{42}R^{43} \, wherein$

 R^{41} represents H, or (C_1 - C_4)alkyl, and

```
R^{42} and R^{43} independently represent H, CH<sub>3</sub>, or (C_2\text{-}C_3) alkyl which may optionally be substituted once by -OH or NR^{44}R^{45} \ , \ wherein R^{44} \ and \ R^{45} \ independently \ represent \ H \ or (C_1\text{-}C_3) alkyl; and
```

(C1-C3)alkyl.

G31) $N(R^{48})C(O)R^{49}$ wherein $R^{48} \text{ represents H or } (C_1\text{-}C_3)\text{alkyl}; \text{ and }$ $R^{49} \text{ represents }$ $(CH_2)_{1-3}\text{-}CO_2H,$ $O(C_2\text{-}C_4)\text{alkyl},$ $(CH_2)_{1-4}\text{-}NR^{50}R^{51} \text{ wherein }$ $R^{50} \text{ and } R^{51} \text{ independently represent H or }$ $(C_1\text{-}C_3)\text{alkyl}, \text{ or }$ $CH(R^{52})\text{-}NR^{53}R^{54} \text{ wherein }$ $R^{52} \text{ represents } (CH_2)_{1-4}\text{-}NH_2, CH_2OH,$ $CH(CH_3)OH, \text{ or } (C_1\text{-}C_3)\text{alkyl}; \text{ and }$ $R^{53} \text{ and } R^{54} \text{ independently represent H or }$

3. (Original) The compound of claim 2
wherein

R¹ represents H;

R² represents O(C₁-C₃)alkyl or NR³R⁴
wherein R³ and R⁴ are H or (C₁-C₃)alkyl;

R^{2a} represents H;

L represents O or CR⁶R⁷ wherein

R⁶ and R⁷ are independently H. CH₃, or OH;

 G^{*} represents a substituent selected from the group consisting of $O(C_1\text{-}C_3)$ alkyl, halogen, and $CF_3;$

n and n' are independently 0 or 1, and provisos 1-3 do not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) Cl or F:
- G2) O(C₁-C₃)alkyl;
- G3) OH:
- G4) (C₁-C₃)alkyl, which is optionally substituted up to three times by halogen;
- G5) OCF3;
 - G8) $NR^{10}R^{11}$, wherein

R10 and R11 are independently selected from

Η,

 CH_3 ,

cyclopropyl,

benzyl,

NR 12R 13 wherein

R¹² and R¹³ are independently H or (C₁-C₃)alkyl, provided that both R¹⁰ and R¹¹ are not NR¹²R¹³ simultaneously.

and

 $(C_2\text{-}C_4) alkyl \ which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, <math>O(C_1\text{-}C_3) alkyl$, and $NR^{14}R^{15}$, wherein

 R^{14} and R^{15} are independently H or (C1-C3)alkyl, or R^{14} and R^{15} can join to form a heterocycle of

formula - N wherein

Q represents CH2, O, or NR16, and

R16represents H or (C1-C3)alkyl,

G12) OSO₂NR²³R²⁴ wherein

 R^{23} and R^{24} independently represent H, $CH_3,$ or $(C_2\text{-}C_4)$ alkyl which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

16

G13) CN:

(G22) \$\frac{2}{5} \quad \text{N} \quad \text{Q}" \quad \text{wherein}

Q" is O or NR30, and

R³⁰ is H or (C₁-C₃)alkyl; and

G31) N(R48)C(O)R49 wherein

R⁴⁸ represents H or (C₁-C₃)alkyl; and

R49 represents

 $(CH_2)_{1-3}$ - CO_2H ,

O(C2-C4)alkyl,

(CH₂)₁₋₄-NR⁵⁰R⁵¹ wherein

R⁵⁰ and R⁵¹ independently represent H or (C₁-C₃)alkyl, or

CH(R⁵²)-NR⁵³R⁵⁴ wherein

R⁵² represents (CH₂)₁₋₄-NH₂, CH₂OH, CH(CH₃)OH, or

(C1-C3)alkyl; and

R⁵³ and R⁵⁴ independently represent H or (C₁-C₃)alkyl.

4. (Original) The compound of claim 1

wherein

R1 represents H;

M represents CH;

J represents a heteroaromatic ring selected from the group consisting of

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and
- ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G21, G25, G26, and G31;
- and subject to the further proviso

4) when J is pyridyl, n is 1, 2, or 3;

and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) halogen;
- G2) O(C₁-C₄)alkyl which optionally is substituted up to two times by O(C₁-C₂)alkyl;
- G3) OH;
- G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;
- G5) OCF3;
 - G8) NR¹⁰R¹¹, wherein

```
R10 and R11 are independently selected from
        H.
        CH3.
        cyclopropyl,
        benzyl,
        NR<sup>12</sup>R<sup>13</sup> wherein
                 R<sup>12</sup> and R<sup>13</sup> are independently H or (C<sub>1</sub>-C<sub>3</sub>)alkyl, provided
                 that both R10 and R11 are not NR12R13 simultaneously.
        and
        (C2-C4)alkyl which is optionally substituted up to three times by
                 halogen, and up to two times by substituent groups
                 independently selected from hydroxyl, O(C1-C3)alkyl, and
                 NR14R15, wherein
                         R14 and R15 are independently H or (C1-C3)alkyl, or
                         R14 and R15 can join to form a heterocycle of
                          formula §-N wherein
                         O represents CH2, O, or NR16, and
                         R<sup>16</sup>represents H or (C<sub>1</sub>-C<sub>3</sub>)alkyl,
        or
R<sup>10</sup> and R<sup>11</sup> may be joined to form a saturated 5-6-membered
        N-containing ring which is optionally substituted up to two times
        by
        OH
        NR17R18, wherein
        R<sup>17</sup> and R<sup>18</sup> are H or (C<sub>1</sub>-C<sub>3</sub>)alkyl.
        or by
        (C1-C3)alkyl which is optionally substituted up to two times by
                 halogen, OH, or O(C1-C3)alkyl;
```

R²³ and R²⁴ independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or NR²⁵R²⁶, wherein R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

G21) C(O)NR²⁸R²⁹, wherein

R28 and R29 are independently selected from

Η,

cyclopropyl, provided that both R^{28} and R^{29} are not simultaneously cyclopropyl,

and

(C₁-C₃)alkyl which is optionally substituted up to two times by OH:

or

 R^{28} and R^{29} may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH, or by $(C_1\text{-}C_3)$ alkyl which in turn is optionally substituted up to two times by OH or O($C_1\text{-}C_3$) alkyl;

$$\begin{array}{ll} Q\\ Q25) & \stackrel{Q}{=} \overset{Q}{-} \overset{Q}{-} \overset{V}{N} & Q^{iv} \\ & \text{wherein} \\ Q^{iv} \text{ is } O \text{ or } NR^{34} \text{ ; and} \\ & R^{34} \text{ is } H, (C_{i}\text{-}C_{3})\text{alkyl, or cyclopropyl;} \end{array}$$

G26) C(O)NR³⁵(CH₂)_fOR³⁶ wherein

 R^{35} is H, (C_1-C_3) alkyl, or cyclopropyl; R^{36} is (C_1-C_6) alkyl optionally substituted up to two times by halogen, OH, or $O(C_1-C_3)$ alkyl, and

the subscript "f" is an integer of 2-4; and

G31)
$$N(R^{48})C(O)R^{49}$$
 wherein R^{48} represents H or $(C_1\text{-}C_3)$ alkyl; and R^{49} represents $(CH_2)_{1:3}\text{-}CO_2\text{H}$, $O(C_2\text{-}C_4)$ alkyl, $(CH_2)_{1:4}\text{-}NR^{50}R^{51}$ wherein R^{50} and R^{51} independently represent H or $(C_1\text{-}C_3)$ alkyl, or $CH(R^{52})\text{-}NR^{53}R^{54}$ wherein R^{52} represents $(CH_2)_{1:4}\text{-}NH_2$, CH_2OH , $CH(CH_3)OH$, or $(C_1\text{-}C_3)$ alkyl; and R^{53} independently represent H or $(C_1\text{-}C_3)$ alkyl.

5. (Original) The compound of claim 4

wherein

R1 represents H:

R2 represents O(C1-C3)alkyl or NR3R4

wherein R³ and R⁴ are H or (C₁-C₃)alkyl;

R^{2a} represents H:

L represents O or CR6R7, wherein

R⁶ and R⁷ are independently H, CH₃, or OH;

G" represents a substituent selected from the group consisting of $O(C_1\text{-}C_3)alkyl$, halogen, and CF_3 ;

n and n' are independently 0 or 1, and provisos 1-3 do not apply;

G and G' moieties are independently selected from the group consisting of:

G1) Cl or F:

G2) O(C₁-C₃)alkyl;

G3) OH:

21

G4) (C1-C3)alkyl, which is optionally substituted up to three times by halogen:

G5) OCF3:

G8) NR¹⁰R¹¹, wherein

R10 and R11 are independently selected from

H.

 CH_3

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

 R^{12} and R^{13} are independently H or (C₁-C₃)alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously,

and

 $(C_2\text{-}C_4)$ alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, $O(C_1\text{-}C_3)$ alkyl, and $NR^{14}R^{15}$, wherein

R¹⁴ and R¹⁵ are independently H or (C₁-C₃)alkyl, or R¹⁴ and R¹⁵ can join to form a heterocycle of

formula wherein

Q represents CH₂, O, or NR¹⁶, and

R¹⁶represents H or (C₁-C₄)alkyl.

G12) OSO₂NR²³R²⁴ wherein

R²³ and R²⁴ independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or NR²⁵R²⁶, wherein R²⁵ and R²⁶ independently represent H or (C₁-C₂)alkyl:

G21) C(O)NR²⁸R²⁹, wherein
R²⁸ and R²⁹ are independently selected from

Н

and

(C₁-C₃)alkyl which is optionally substituted up to two times by OH;

G25)
$$\begin{cases} \bigcap_{s=0}^{Q^{lv}} \bigvee_{\text{wherein}} Q^{lv} \text{ wherein} \\ Q^{lv} \text{ is O or NR}^{34}; \text{ and} \\ R^{34} \text{ is H or (C_1-C_2)alkvl}; \end{cases}$$

G26) C(O)NR35(CH2)fOR36 wherein

R³⁵ is H or (C₁-C₃)alkyl;

 $R^{36}\ is\ (C_1\text{-}C_6) alkyl\ optionally\ substituted\ up\ to\ two\ times\ by$ halogen, OH, or $O(C_1\text{-}C_3) alkyl,$ and

the subscript "f" is an integer of 2-4; and

G31) N(R⁴⁸)C(O)R⁴⁹ wherein

R48 represents H or (C1-C3)alkyl; and

R49 represents

(CH₂)₁₋₃-CO₂H,

O(C2-C4)alkyl.

(CH₂)₁₋₄-NR⁵⁰R⁵¹ wherein

R50 and R51 independently represent H or (C1-C3)alkyl, or

CH(R⁵²)-NR⁵³R⁵⁴ wherein

R52 represents (CH2)1-4-NH2, CH2OH, CH(CH3)OH, or

(C1-C3)alkyl; and

 R^{53} and R^{54} independently represent H or (C₁-C₃)alkyl.

6. (Original) The compound of claim 1

wherein

R1 represents H;

M represents CH:

J represents an aromatic or heteroaromatic ring selected from the group consisting of

and
$$N \rightarrow 0$$

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y.
- ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rines J and Y, and
- ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G22, and G31;

and subject to the further proviso

4) when J is pyridyl, n is 1, 2, or 3;

and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) halogen;
- G2) O(C₁-C₄)alkyl which optionally is substituted up to two times by O(C₁-C₂)alkyl;
- G3) OH;

G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;

G5) OCF3:

G8) NR¹⁰R¹¹, wherein

R¹⁰ and R¹¹ are independently selected from

Н, СН₃.

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

 R^{12} and R^{13} are independently H or (C₁-C₃)alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously,

and

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O(C₁-C₃)alkyl, and NR¹⁴R¹⁵, wherein

 R^{14} and R^{15} are independently H or (C₁-C₃)alkyl, or R^{14} and R^{15} can join to form a heterocycle of

Q represents CH2, O, or NR16, and

R¹⁶represents H or (C₁-C₃)alkyl,

or

R10 and R11 may be joined to form a saturated 5-6-membered

N-containing ring which is optionally substituted up to two times

by

OH.

NR17R18, wherein

 R^{17} and R^{18} are H or (C₁-C₃)alkyl, or by $(C_1\text{-}C_3)alkyl \ which is optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl;$

G12) $OSO_2NR^{23}R^{24}$ wherein $R^{23} \text{ and } R^{24} \text{ independently represent H, CH}_3, \text{ or } (C_2\text{-}C_4) \text{alkyl which may}$ optionally be substituted once by OH or $NR^{25}R^{26}$, wherein $R^{25} \text{ and } R^{26} \text{ independently represent H or } (C_1\text{-}C_3) \text{alkyl};$

G22)

Wherein

Q'' is O or NR³⁰, and

R³⁰ is

H,

cyclopropyl, or

(C₁-C₃)alkyl which is optionally substituted once by halogen, OH, or O(C₁-C₃)alkyl; and

G31) N(R⁴⁸)C(O)R⁴⁹ wherein
R⁴⁸ represents H or (C₁-C₃)alkyl; and
R⁴⁹ represents
(CH₂)₁₋₃-CO₂H,
O(C₂-C₄)alkyl,

(CH₂)₁₋₄-NR⁵⁰R⁵¹ wherein
R⁵⁰ and R⁵¹ independently represent H or (C₁-C₃)alkyl, or
CH(R⁵²)-NR⁵³R⁵⁴ wherein
R⁵² represents (CH₂)₁₋₄-NH₂, CH₂OH, CH(CH₃)OH, or
(C₁-C₃)alkyl; and
R⁵³ and R⁵⁴ independently represent H or (C₁-C₃)alkyl.

wherein

R1 represents H;

R2 represents O(C1-C3)alkyl, or NR3R4

wherein R3 and R4 are H or (C1-C3)alkyl:

R^{2a} represents H:

L represents O or CR6R7, wherein

R⁶ and R⁷ are independently H, CH₃, or OH;

G" represents a substituent selected from the group consisting of $O(C_1-C_3)$ alkyl, halogen, and CF_3 :

n and n' are independently 0 or 1, and provisos 1-3 do not apply;

G and G' moieties are independently selected from the group consisting of:

- G1) Cl or F;
- G2) O(C1-C3)alkyl:
- G3) OH:
- G4) (C₁-C₃)alkyl, which is optionally substituted up to three times by halogen;
- G5) OCF3;
 - G8) NR¹⁰R¹¹, wherein

R10 and R11 are independently selected from

H.

г., СН₃.

cyclopropyl,

benzyl.

NR¹²R¹³ wherein

 R^{12} and R^{13} are independently H or $(C_1$ - $C_3)$ alkyl, provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$ simultaneously.

and

27

 $(C_2\text{-}C_4)$ alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, $O(C_1\text{-}C_3)$ alkyl, and $NR^{14}R^{15}$, wherein

 R^{14} and R^{15} are independently H or (C_1 - C_3)alkyl, or R^{14} and R^{15} can join to form a heterocycle of

Q represents CH₂, O, or NR¹⁶, and R¹⁶represents H or (C₁-C₃)alkyl;

G12) OSO₂NR²³R²⁴ wherein

 R^{23} and R^{24} independently represent H, CH_3 , or $(C_2\text{-}C_4)$ alkyl which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein R^{25} and R^{26} independently represent H or $(C_1\text{-}C_3)$ alkyl;

G22)
$$\stackrel{\frac{2}{5}-\sqrt{Q^*}}{}$$
 wherein Q^* is O or NR^{30} , and R^{30} is H or $(C_1\cdot C_3)$ alkyl; and

G31) N(R48)C(O)R49 wherein

 R^{48} represents H or (C₁-C₃)alkyl; and

R49 represents

 $(CH_2)_{1-3}$ - CO_2H ,

O(C2-C4)alkyl,

(CH₂)₁₋₄-NR⁵⁰R⁵¹ wherein

 R^{50} and R^{51} independently represent H or (C1-C3)alkyl, or CH(R^{52})-NR^{53}R^{54} wherein

R52 represents (CH2)14-NH2, CH2OH, CH(CH3)OH, or (C1-C3)alkyl; and R⁵³ and R⁵⁴ independently represent H or (C₁-C₃)alkyl.

- 8. (Original) A compound selected from the group consisting of
 - 4-{3-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}-N-methylpyridine-2carboxamide:
 - 4-{3-[(2-amino-6-phenylpyrimidin-4-yl)amino|phenoxy}pyridine-2-carboxamide;
 - 4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridine-2-carbonitrile;
 - 6-phenyl-N⁴-(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
 - N⁴-{4-I(2-chloropyridin-4-yl)oxylphenyl}-6-phenylpyrimidine-2.4-diamine:
 - 4-{2-amino-6-I(4-{I2-(trifluoromethyl)pyridin-4-ylloxy}phenyl)aminolpyrimidin-4yl}phenyl sulfamate;
 - N-(4-{2-amino-6-[(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)amino]pyrimidin-4yl phenyl)glycinamide trifluoroacetate;
 - 6-(4-aminophenyl)-N⁴-(4-{[2-(trifluoromethyl)pyridin-4-ylloxy}phenyl)pyrimidine-2.4diamine:
 - 6-(6-aminopyridin-3-yl)-N⁴-(4-{[2-(trifluoromethyl)pyridin-4-ylloxy}phenyl)pyrimidine-2.4-diamine:
 - 6-pyridin-3-yl-N⁴-(4-{[2-(trifluoromethyl)pyridin-4-ylloxy}phenyl)pyrimidine-2,4diamine:
 - N-I(4-{4-I(2-amino-6-phenylpyrimidin-4-yl)aminolphenoxy}pyridin-2-yl)methyll-4methoxybenzenesulfonamide trifluoroacetate:
 - N-I(4-{4-I(2-amino-6-phenylpyrimidin-4-yl)aminolphenoxy}pyridin-2vl)methyl]methanesulfonamide trifluoroacetate:
 - and
 - (4-{4-[(2-amino-6-phenylpyrimidin-4-yl)aminolphenoxy}pyridin-2-yl)methanol trifluoroacetate (salt).
- 9. (Original) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

11. (Canceled)