DESCRIPTION

METHOD OF DEFINING THE DIFFERENTIATION GRADE OF TUMOR

5 Technical Field

10

15

20

25

35

The present invention relates to a method of defining the differentiation grade of tumor. More particularly, the present invention relates to a method of defining the differentiation grade of tumor by selecting genes and/or proteins whose expression level correlates with each differentiation grade of hepatocellular carcinoma (HCC), measuring the expression of the genes and/or proteins of human tumor tissues in each differentiation grade. The present invention also relates to the use of these genes and/or proteins for diagnosing the differentiation grade of HCC and for screening anti-cancer agents for HCC treatment.

The present invention also relates to a kit for performing the method of the present invention comprising DNA chips, oligonucleotide chips, protein chips, peptides, antibodies, probes and primers that are necessary for DNA microarrays, oligonucleotide microarrays, protein arrays, northern blotting, in situ hybridization, RNase protection assays, western blotting, ELISA assays, reverse transcription polymerase—chain reaction (hereinafter referred to as RT—PCR) to examine the expression of the genes and/or proteins whose expression level correlates with the differentiation grade of tumor.

30 Background Art

Cancer is the major causative of death in the world. Particularly, hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, which represents a major international health problem because of its increasing incidence in many countries (Schafer, D.F. and Sorrell, M.F. Hepatocellular carcinoma, Lancet 353, 1253-1257 (1999),

Colombo, M. Hepatitis C virus and hepatocellular carcinoma, Semin. Liver Dis. 19, 263-269 (1999), and Okuda, K. Hepatocellular carcinoma, J. Hepatol. 32, 225-237 (2000)). Chronic hepatitis C virus (HCV) infection is one of the major risk factors for HCC as well as hepatitis B virus (HBV) infection, alcohol consumption, and several carcinogens such as aflatoxin B1 (Okuda, K. Hepatocellular carcinoma, J. Hepatol. 32, 225-237 (2000)). Several therapies have been adopted for the treatment of HCC. Those include surgical resection, radiotherapy, chemotherapy, and biological therapy including hormonal and gene therapy. However, none of these therapies could cure the disease. One of the major problems of HCC treatment is that characteristics of cancer cells change during the development and progression of the disease. Particularly, changes in the differentiation grade of tumor cells are apparent and frequent. Such changes alter the ability of tumor cells to invade and metastasize and also the sensitivity of cancer cells to different therapies, causing resistance to anti-cancer agents. If the changes in the characteristics of cancer cells are precisely diagnosed and managed, cancer therapy will be more effective.

10

15

20

25

30

35

suppressor genes and oncogenes such as p53, β-catenin, and AXINI genes in hepatocarcinogenesis (Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression, Cancer Res. 61, 2129-2137 (2001)). It has also been suggested that the development of HCV-associated HCC can be characterized by the pathological evolution from early to advanced tumor, which correlates with dedifferentiation of cancer cells (Kojiro, M. Pathological evolution of early hepatocellular carcinoma, Oncology 62, 43-47 (2002)). Particularly after introduction of DNA microarray technologies into medical science (Schena,

Previous studies suggested the involvement of tumor

M., Shalon, D., Davis, R.W., and Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270, 467-470 (1995), DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su, Y.A., and Trent, J.M. Use of a cDNA microarray to analyse 5 gene expression patterns in human cancer, Nat. Genet. 14, 457-460 (1996)), many studies showed gene-expression patterns relating to some aspects of HCC (Lau, W.Y., Lai, P.B., Leung, M.F., Leung, B.C., Wong, N., Chen, G., Leung, T.W., and Liew, 10 C.T. Differential gene expression of hepatocellular carcinoma using cDNA microarray analysis, Oncol. Res. 12, 59-69 (2000), Tackels-Horne, D., Goodman, M.D., Williams, A.J., Wilson, D.J., Eskandari, T., Vogt, L.M., Boland, J.F., Scherf, U., and Vockley, J.G. Identification of differentially expressed genes 15 in hepatocellular carcinoma and metastatic liver tumors by oligonucleotide expression profiling, Cancer 92, 395-405 (2001), Xu, L., Hui, L., Wang, S., Gong, J., Jin, Y., Wang, Y., Ji, Y., Wu, X., Han, Z., and Hu, G. Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma, Cancer Res. 61, 20 3176-3681 (2001), Xu, X.R., Huang, J., Xu, Z.G., Qian, B.Z., Zhu, Z.D., Yan, Q., Cai, T., Zhang, X., Xiao, H.S., Qu, J., Liu, F., Huang, Q.H., Cheng, Z.H., Li, N.G., Du, J.J., Hu, W., Shen, K.T., Lu, G., Fu, G., Zhong, M., Xu, S.H., Gu, W.Y., Huang, W., Zhao, X.T., Hu, G.X., Gu, J.R., Chen, Z., and Han, Z.G. Insight 25 into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding non-cancerous liver, Proc. Natl. Acad. Sci. U.S.A. 98, 15089-15094 (2001), Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., **30** Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression, Cancer Res. 61, 2129-2137 (2001), Shirota, Y., Kaneko, S., Honda, M., Kawai, 35 H.F., and Kobayashi, K. Identification of differentially

expressed genes in hepatocellular carcinoma with cDNA microarrays, Hepatology 33, 832-840 (2001), Delpuech, O., Trabut, J.B., Carnot, F., Feuillard, J., Brechot, C., and Kremsdorf, D. Identification, using cDNA macroarray analysis, of distinct gene expression profiles associated with 5 pathological and virological features of hepatocellular carcinoma, Oncogene 21, 2926-2937 (2002), Iizuka, N., Oka, M., Yamada-Okabe, H., Mori, N., Tamesa, T., Okada, T., Takemoto, T., Tangoku, A., Hamada, K., Nakayama, H., Miyamoto, T., Uchimura, S., and Hamamoto, Y. Comparison of gene expression 10 profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data based on a supervised learning method, Cancer Res. 62, 3939-3944 (2002), and Midorikawa, Y., Tsutsumi, S., Taniguchi, H., Ishii, M., Kobune, Y., Kodama, T., Makuuchi, M., 15 and Aburatani, H. Identification of genes associated with dedifferentiation of hepatocellular carcinoma with expression profiling analysis, Jpn. J. Cancer Res. 93, 636-643 (2002)). Among them, two studies profiled gene expression of HCC in relation to its development (Okabe, H., Satoh, S., Kato, T., 20 Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression, Cancer Res. 61, 2129-2137 (2001) and 25 Midorikawa, Y., Tsutsumi, S., Taniguchi, H., Ishii, M., Kobune, Y., Kodama, T., Makuuchi, M., and Aburatani, H. Identification of genes associated with dedifferentiation of hepatocellular carcinoma with expression profiling analysis, Jpn. J. Cancer Res. 93, 636-643 (2002)). However, nothing is known about genes 30 and/or proteins that characterize and/or regulate each differentiation grade of HCC during the course of oncogenesis and development of HCV-associated HCC. Genes and/or proteins that regulate the differentiation grade of HCC can be used for diagnosing the differentiation grade of HCC and for screening 35 anti-cancer agents for the treatment of HCC arising from

chronic HCV infection.

In the present invention, the inventors describe a method of diagnosing the differentiation grade of tumor and screening anti-cancer agents for the treatment thereof.

Particularly, the inventors describe a method of identifying 40 or more genes and/or proteins whose expression correlates with the differentiation grade of HCC, and use of these genes and/or proteins for diagnosing the differentiation grade of HCC and for screening anti-cancer agents for the treatment of HCC in different grades. More particularly, the inventors describe a method of predicting non-cancerous liver, pre-cancerous liver, and each differentiation grade of HCC with 40 genes and/or proteins.

15 Disclosure of the Invention

10

20

25

30

35

Summary of the Invention

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. However, there is no therapy that can cure the disease. This is presumably due to sequential changes in characteristics of cancer cells during the development and progression of the disease. Particularly, progression of cancer is often associated with the changes of differentiation grade of tumor cells. Diagnosis and management of such changes of cancer cells will make cancer therapy more effective. In the present invention, genes whose expression correlates with oncogenesis and development of HCC are identified by oligonucleotide microarray representing approximately 11,000 genes from 50 hepatitis C virus (HCV)-associated HCC tissues and 11 non-tumorous (non-cancerous and pre-cancerous) liver tissues.

Differentiation states are divided into 5 grades. Non-cancerous liver (L0) is the liver that is histologically normal and is seronegative for both hepatitis B virus surface antigen and HCV antibody. Pre-cancerous liver (L1) is the liver that is HCV-infected and is histopathologically diagnosed as chronic hepatitis or liver cirrhosis. Well differentiated HCC

(G1) is the HCC consisting of cancer cells that are characterized by an increase in cell density with elevated nuclear/cytoplasm ratios compared to normal hepatocytes but show the morphologies similar to normal hepatocytes.

5

10

15

20

25

30

35

Moderately differentiated HCC (G2) is the HCC consisting of cancer cells that are large and hyperchromatic. There are trabecular— or gland—like structures in cancer cell nest in G2 grade. Poorly differentiated HCC (G3) is the HCC consisting of the cancer cells that are pleomorphic or multinucleate. The tumor grows in solid masses or cell nest devoid of architectural arrangement in G3 grade. G1, G2, and G3 tumors correspond to types I, II, and III of Edmondson & Steiner classification, respectively (Edmondson, H.A. and Steiner, P.E. Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies, Cancer 7, 462—504 (1954)).

A supervised learning method followed by a random permutation test of oligonucleotide microarray data is used to select genes whose expression significantly changes during the transition from non-cancerous liver without HCV infection (L0) to pre-cancerous liver with HCV infection (L1), from L1 to well differentiated HCC (G1), from G1 to moderately differentiated HCC (G2), and from G2 to poorly differentiated HCC (G3). Self-organizing map with all the selected 40 genes whose expression is significantly altered in each transition stage can correctly predict the differentiation grade of tumor tissues. Thus, these genes can be used for diagnosing the differentiation grade of HCC and for screening anti-cancer agents for the treatment of HCC in each differentiation grade.

Detailed Description of the Invention

In the present invention, human hepatocellular carcinoma (HCC) tissues and non-tumorous (non-cancerous and pre-cancerous) liver tissues are used. HCCs with HCV infection are used for analyzing HCCs. Presence of HCV and/or HBV infection can be determined either by immunoreactivity against

anti-HCV antibody and anti-HBV antibody or by amplifying HCV and/or HBV genome by PCR. The differentiation grade of HCC can be determined by histopathological examination, and HCCs are classified into well differentiated HCC (G1), moderately differentiated HCC (G2), and poorly differentiated HCC (G3). Non-tumorous liver samples can be obtained from patients who underwent hepatic resection for benign or metastatic liver tumors. A liver sample without HCV infection is classified as non-cancerous liver (L0), and that with HCV infection is classified as pre-cancerous liver (L1). After resecting liver tissues during surgery, it is preferable that tissues are immediately frozen in liquid nitrogen or acetone containing dry ice and stored at between -70 and -80°C until use. The tissues may or may not be embedded in O.C.T. compound (Sakura-Seiki, Tokyo, Japan, Catalog No. 4583).

5

10

15

The expression of genes and/or proteins of HCC tissues and non-tumorous liver tissues can be analyzed by measuring the level of RNA and/or proteins. In most cases, the level of RNA and/or proteins is determined by measuring fluorescence from 20 substances including fluorescein and rhodamine, chemiluminescence from luminole, radioactivity of radioactive materials including ³H, ¹⁴C, ³⁵S, ³³P, ³²P, and ¹²⁵I, and optical density. For example, the expression level of RNA and/or proteins is determined by known methods including DNA microarray (Schena, M. et al. Quantitative monitoring of gene 25 expression patterns with a complementary DNA microarray, Science 270, 467-470 (1995) and Lipshutz, R.J. et al. High density synthetic oligonucleotide arrays, Nat. Genet. 21, 20-24 (1999)), RT-PCR (Weis, J.H. et al. Detection of rare mRNAs via quantitative RT-PCR, Trends Genet. 8, 263-264 (1992) and 30 Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, J. Mol. Endocrinol. 25, 169-193 (2000)), northern blotting and in situ hybridization (Parker, R.M. and Barnes, N.M. mRNA: detection 35 in situ and northern hybridization, Methods Mol. Biol. 106, 247-283 (1999)), RNase protection assay (Hod, Y.A. Simplified

ribonuclease protection assay, BioTechniques 13, 852-854 (1992) and Saccomanno, C.F. et al. A faster ribonuclease protection assay, BioTechniques 13, 846-850 (1992)), western blotting (Towbin, H. et al. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets, Proc. Natl. Acad. Sci. U.S.A. 76, 4350-4354 (1979) and Burnette, W.N. Western blotting: Electrophoretic transfer of proteins form sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radioiodinated protein A, Anal. Biochem. 112, 195-203 (1981)), ELISA assay (Engvall, E. and Perlman, P. Enzyme-linked immunosorbent assay (ELISA): Quantitative assay of immunoglobulin G, Immunochemistry 8, 871-879 (1971)), and protein array (Merchant, M. and Weinberger, S.R. Review: Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry, Electrophoresis 21, 1164-1177 (2000) and Paweletz, C.P. et al. Rapid protein display profiling of cancer progression directly from human tissue using a protein biochip, Drug Dev. Res. 49, 34-42 (2000).

10

15

20

25

30

35

Genes and/or proteins that are differently expressed in each differentiation grade of HCC and non-tumorous (non-cancerous and pre-cancerous) liver are selected by comparing the expression level of genes and/or proteins among HCC tissues in each differentiation grade and non-tumorous liver tissues. Genes and/or proteins that are differentially expressed between non-cancerous liver (L0) and pre-cancerous liver that have been infected with HCV (L1) are identified by comparing the expression level of each gene and/or protein between non-cancerous liver tissues and pre-cancerous liver Genes and/or proteins that are differentially expressed between pre-cancerous liver (L1) and well differentiated HCC (G1) are identified by comparing the expression level of each gene and/or protein between pre-cancerous liver tissues and well differentiated HCC tissues (HCC(G1)). Genes and/or proteins that are differentially expressed between well differentiated HCC (G1)

and moderately differentiated HCC (G2) are identified by comparing the expression level of each gene and/or protein between HCC(G1) and moderately differentiated HCC tissues (HCC(G2)). Similarly, genes and/or proteins that are differentially expressed between moderately differentiated HCC (G2) and poorly differentiated HCC (G3) are identified by comparing the expression level of each gene and/or protein between HCC(G2) and poorly differentiated HCC tissues (HCC(G3)).

10

15

20

25

Differences in the expression level of genes and/or proteins of non-cancerous liver, pre-cancerous liver, well differentiated HCC, moderately differentiated HCC, and poorly differentiated HCC can be analyzed and detected by known methods of statistical analyses. In all experiments for comparing the expression level of genes and/or proteins between two grades selected from LO, L1, G1, G2, and G3, the following procedures are taken.

In the first step, genes and/or proteins with certain expression level (e.g. genes with expression level greater than 40 as judged by the arbitrary units by Affymetrix gene chip results) in all the HCC samples and in the non-cancerous and pre-cancerous liver samples are selected. This selection results in certain number of genes and/or proteins. Then, the discriminatory ability of each gene and/or protein to discriminate LO from L1, L1 from G1, G1 from G2, and G2 from G3 is determined by the Fisher ratio. The Fisher ratio for a gene j is given by

$$F(j) = \frac{(\hat{\mu}_{j}(A) - \hat{\mu}_{j}(B))^{2}}{\hat{\sigma}_{j}^{2}(A) + \hat{\sigma}_{j}^{2}(B)}$$

where $\hat{\mu}_j(i)$ is the sample mean of the expression level of gene j for the samples in Grade i, and $\hat{\sigma}_j^2(i)$ is the sample variance of the expression level of gene j for the samples in Grade i.

9

5

10

15

20

25

30

35

In the second step, the selected genes and/or proteins are ranked in the order of decreasing magnitude of the Fisher ratio. A random permutation test is also performed to determine the number of genes and/or proteins to define the differentiation grade of HCC. In the permutation test, sample labels are randomly permuted between two grades to be compared, and the Fisher ratio for each gene and/or protein is again computed. This random permutation of sample labels is repeated 1,000 times. The Fisher ratios generated from the actual data are assigned Ps based on the distribution of the Fisher ratios from randomized data. From the distribution of the Fisher ratios based on the randomized data, the genes and/or proteins that are determined to be statistically significant in two grades by the random permutation test are selected. More particularly, the genes and/or proteins that have the P value less than 0.005 by the random permutation test between the two grades are selected. Among these selected genes and/or proteins, 40 genes and/or proteins having the highest Fisher ratios in each comparison between non-cancerous liver (L0) and pre-cancerous liver (L1), pre-cancerous liver (L1) and well differentiated HCC (G1), well differentiated HCC (G1) and moderately differentiated HCC (G2), moderately differentiated HCC (G2) and poorly differentiated HCC (G3) are further selected.

The ability of the selected 40 genes and/or proteins to distinguish non-cancerous liver (L0) from pre-cancerous liver (L1), pre-cancerous liver (L1) from well differentiated HCC (G1), well differentiated HCC (G1) from moderately differentiated HCC (G2), moderately differentiated HCC (G2) from poorly differentiated HCC (G3) is verified by the minimum distance classifier and the self-organizing map (SOM).

The minimum distance classifier is designed using the 40 genes and/or proteins selected in each transition stage. The expression level of each gene and/or protein is normalized to

have zero mean and unit variance using all the training samples from two grades. After measuring the Euclidean distance between a sample and each mean vector, the sample is assigned to the grade of the nearest mean vector. The minimum distance classifier that is created with the selected 40 genes and/or proteins in each transition stage is also used to predict the differentiation grade of HCC samples whose differentiation grade is not determined. To diagnose the differentiation grade of HCCs, using $\hat{\mu}_j(A)$ and $\hat{\mu}_j(B)$ previously described, the

sample mean $\hat{\mu}_j$ of the mixture consisting of Grades A and B on a gene j is obtained by

$$\hat{\mu}_j = \frac{N_A}{N_A + N_B} \hat{\mu}_j(A) + \frac{N_B}{N_A + N_B} \hat{\mu}_j(B)$$

where N_i is the number of samples from Grade i. Next, the sample variance $\hat{\sigma}_j^2$ of the mixture consisting of Grades A and

15 B on the gene j is obtained by

$$\hat{\sigma}_{j}^{2} = \frac{1}{N_{A} + N_{B} - 1} \left[(N_{A} - 1)\hat{\sigma}_{j}^{2}(A) + (N_{B} - 1)\hat{\sigma}_{j}^{2}(B) + \frac{N_{A}N_{B}}{N_{A} + N_{B}} (\hat{\mu}_{j}(A) - \hat{\mu}_{j}(B))^{2} \right]$$

Using $\hat{\mu}_j$ and $\hat{\sigma}_j^2$, $\hat{\mu}$ and \hat{V} are defined by

$$\hat{\mu} = [\hat{\mu}_1, \hat{\mu}_2, ..., \hat{\mu}_{40}]^T$$

5

$$\hat{V} = \begin{bmatrix} \frac{1}{\hat{\sigma}_1} & & & & \\ & \frac{1}{\hat{\sigma}_2} & & & \\ & & \ddots & \\ 0 & & & \frac{1}{\hat{\sigma}_{40}} \end{bmatrix}$$

20 Then, a sample x is normalized by

$$\widetilde{\boldsymbol{x}} = \widehat{V}^T (\boldsymbol{x} - \widehat{\boldsymbol{\mu}})$$

where \tilde{x} is the normalized sample. Using the normalized samples, the sample mean vector for each grade is obtained. In the minimum distance classifier, the score value is computed by

5
$$T_1(\tilde{x}) = ||\tilde{x} - \mu_{L0}||^2 - ||\tilde{x} - \tilde{\mu}_{L1}||^2$$

$$T_2(\widetilde{x}) = \|\widetilde{x} - \mu_{L_1}\|^2 - \|\widetilde{x} - \widetilde{\mu}_{G_1}\|^2$$

$$T_3(\widetilde{x}) = \|\widetilde{x} - \mu_{G1}\|^2 - \|\widetilde{x} - \widetilde{\mu}_{G2}\|^2$$

$$T_4(\widetilde{x}) \dashv |\widetilde{x} - \mu_{G2}||^2 - |\widetilde{x} - \widetilde{\mu}_{G3}||^2$$

Using four minimum distance classifiers, the differentiation grade of HCCs can be diagnosed as follows:

- (i) A normalized sample \tilde{x} is classified into Grade L0 if $T_1(\tilde{x}) < 0$, $T_2(\tilde{x}) < 0$, $T_3(\tilde{x}) < 0$ and $T_4(\tilde{x}) < 0$.
- (ii) A normalized sample \tilde{x} is classified into Grade L1 if $T_1(\tilde{x}) > 0$, $T_2(\tilde{x}) < 0$, $T_3(\tilde{x}) < 0$ and $T_4(\tilde{x}) < 0$.
- (iii) A normalized sample \tilde{x} is classified into Grade G1 if $T_1(\tilde{x}) > 0$, $T_2(\tilde{x}) > 0$, $T_3(\tilde{x}) < 0$ and $T_4(\tilde{x}) < 0$.
 - (iv) A normalized sample \tilde{x} is classified into Grade G2 if $T_1(\tilde{x})>0$, $T_2(\tilde{x})>0$, $T_3(\tilde{x})>0$ and $T_4(\tilde{x})<0$.
- (v) A normalized sample \tilde{x} is classified into Grade G3 if $T_1(\tilde{x}) > 0$, $T_2(\tilde{x}) > 0$, $T_3(\tilde{x}) > 0$ and $T_4(\tilde{x}) > 0$.

The SOM is a neural network algorithm widely used for clustering and is well known as an efficient tool for the visualization of multidimensional data (Tamayo, P. et al.

25 Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation, Proc. Natl. Acad. Sci. U.S.A. 96, 2907-2912 (1999) and Sultan, M. et al. Binary tree-structured vector quantization approach to clustering and visualizing microarray data, Bioinformatics

30 Suppl 1, S111-S119 (2002)). The SOM with all the selected 40 genes and/or proteins is carried out according to the method of MATLAB R13 with the SOM toolbox available in the web site,

http://www.cis.hut.fi/projects/somtoolbox/ (Kohonen, 2001).

Each set of forty genes and/or proteins whose expression is significantly altered during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1), from pre-cancerous liver (L1) to well differentiated HCC (G1), from well differentiated HCC (G1) to moderately differentiated HCC (G2), from moderately differentiated HCC (G2) to poorly differentiated HCC (G3) is used for diagnosing the grade of hepatocarcinogenesis of HCC, and also for screening anti-cancer agents that are used for the treatment of HCC in each grade.

10

15

20

25

30

35

Each set of forty genes and/or proteins whose expression is significantly altered during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1), from pre-cancerous liver (L1) to well differentiated HCC (G1), from well differentiated HCC (G1) to moderately differentiated HCC (G2), from moderately differentiated HCC (G2) to poorly differentiated HCC (G3) is expressed in bacteria, eukaryotic cells, and cell-free systems. Agents that affect the expression and/or function of the genes and/or proteins are screened by monitoring the expression and/or function. Monoclonal antibodies against the proteins are also raised and used for treating HCC in different grades. As monoclonal antibodies, whole mouse monoclonal antibodies, humanized antibodies, chimeric antibodies, single chain antibodies, divalent single chain antibodies, and/or bi-specific antibodies can be raised against the purified proteins, and they are used for diagnosing the grade of HCC and the treatment thereof.

A kit to examine the expression of the genes and/or proteins is also created. The kit consists of the components including reagents for an RNA extraction, enzymes for synthesis of cDNA and cRNA, DNA chips, oligonucleotide chips, protein chips, probes and primers for the genes, DNA fragments of

control genes, and antibodies to the proteins. The components of the kit are easily available from the market.

Brief Description of the Drawings

numbers.

20

35

Fig. 1 illustrates color displays of the expression of 152 genes whose expression was significantly altered during the transition from L0 to L1 (a), 191 genes whose expression was significantly altered during the transition from L1 to G1 (b), 54 genes whose expression was significantly altered during the transition from G1 to G2 (c), and 40 genes whose expression was 10 significantly altered during the transition from G2 to G3 (d). Panels e, f, g, and h illustrate expression of the selected 40 genes in each transition stage in all the samples. Expression of the selected 40 genes whose expression was significantly altered during the transition from LO to L1 (e), from L1 to G1 15 (f), from G1 to G2 (g), and from G2 to G3 (h) is shown. selected 40 genes in each transition stage discriminate samples before and after the transition. Genes are shown in decreasing order of the Fisher ratio and are indicated by GenBank accession

The name of each sample is indicated on top of each photo (e-h); NL-64, NL-65, NL-66, NL-67, NL-68, NL-69, IL-49, IL-58, IL-59, IL-60, IL-62, G1-26T, G1-42T, G1-85T, G1-86T, G1-87T, G1-147T, G1-165T, G2-1T, G2-2T, G2-6T, G2-8T, G2-10T, G2-12T, G2-16T, G2-18T, G2-20T, G2-22T, G2-23T, G2-27T, G2-28T, G2-29T, G2-31T, G2-34T, G2-37T, G2-43T, G2-45T, G2-46T, G2-49T, G2-58T, G2-59T, G2-60T, G2-62T, G2-89T, G2-90T, G2-105T, G2-151T, G2-155T, G2-161T, G2-162T, G2-163T, G2-171T, G2-182T, G3-19T, G3-21T, G3-25T, G3-35T, G3-80T, G3-81T, G3-107T, G3-174T, from the left.

The name of each gene is indicated on the right of the photo. In the case of panel e, M18533, AF035316, AL049942, L27479, "Fibronectin, Alt. Splice 1", U19765, X55503, AL046394, AB007886, AL050139, AF012086, AI539439, M19828, U92315, D76444, X02761, AF001891, AI400326, AI362017, L13977, D32053, AF038962, AL008726, J03909, Z69043, AL080080, M63138, L09159, AF017115,

M13560, M36035, U47101, U81554, M21186, D32129, AL022723, M83664, U50523, M81757, AF102803, from the top. In the case of panel f, M93221, AF079221, V01512, D88587, U12022, AF055376, R93527, R92331, U83460, AF052113, H68340, M10943, M13485, U75744, X02544, M93311, Z24725, U22961, M62403, M35878, U84011, AF055030, L13977, D13891, M63175, AB023157, U20982, M14058, AL049650, U61232, AI991040, U64444, D63997, X55503, AL080181, X76228, AB018330, D76444, U70660, U10323, from the top. In the case of panel g, M87434, M12963, AI625844, M97936, Z99129, L07633, D50312, U07364, AA883502, M97935, AF061258, AB007447, 10 M97935, W28281, M97935, Y00281, D28118, AF104913, AA675900, L27706, D32050, M63573, AF014398, X70944, U70671, AA447263, AB014569, M23115, D38521, X00351, L11672, X82834, AB007963, U76247, X68560, AB015344, AB018327, AF004430, D14697, AB028449, from the top. In the case of panel h, AA976838, Z11793, AB002311, 15 Y18004, AL031230, AF002697, AB014596, U49897, AF070570, M80482, AI263099, U22961, Z24725, U77594, L34081, M88458, U68723, X92098, D10040, AB023194, AF001903, X96752, AB006202, M75106, Y12711, D14662, S87759, Z48199, AF088219, AA453183, D31767, AB000095, AB006782, M21186, AB002312, U44772, AI541308, Z49107, 20 U77735, M38449, from the top.

Fig. 2 illustrates the validation of the selected 40 genes in each transition stage to distinguish the differentiation grade of HCC.

In each transition, from L0 to L1 (a), from L1 to G1 (b), From G1 to G2 (c), and from G2 to G3 (d), the minimum distance classifier was constructed with the samples in consecutive two differentiation grades as indicated by the red bar (training samples), and was applied to the samples in the remaining differentiation grades as indicated by the black bar (test samples). The resulting classifier classified the test samples with the accuracy of 92% (a), 98% (b), 84% (c), and 100% (d).

Fig. 3 illustrates the result of analysis by the self-organizing map (SOM) algorithm of the genes whose

25

expression changed during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1), from pre-cancerous liver (L1) to well differentiated HCC (G1), from well differentiated HCC (G1) to moderately differentiated HCC (G2), and from moderately differentiated HCC (G2) to poorly differentiated HCC (G3).

Fig. 3a illustrates clusters of the samples (Table 1). Each cell in the SOM grid corresponds to one cluster. The vectors of neighboring cells are usually located close to each other.

(m, n), index of the cell located at m-th row and n-th column. NL-XX, samples from non-cancerous liver without HCV infection (L0); IL-XX, samples from HCV-infected pre-cancerous liver (L1); G1-XXT, samples from well differentiated HCC (G1); G2-XXT,

samples from moderately differentiated HCC (G2); G3-XXT, samples from moderately differentiated HCC (G3).

The map shows that the samples clearly formed a sigmoid curve in the order of LO, L1, G1, G2, and G3. G2 samples without vessel involvement (blue letters) are located close to G1 samples and G2 samples with vessel involvement (red letters) are located close to G3 samples.

Fig. 3b illustrates the distance between the neighboring clusters.

(m, n), index of the cell located at m-th row and n-th column.

The color of the cells indicates the distance between the neighboring clusters; a red color means a long distance. The red cells in the upper area clearly show that the non-tumorous (non-cancerous and pre-cancerous) liver samples and HCC samples are relatively far apart in all the selected 40 genes.

30

10

15

20

Table 1 illustrates clusters of samples profiled to L0, L1, G1, G2, and G3 as shown in Fig. 3a.

Table 2 illustrates clinicopathologic factors of the HCC used in the present invention.

Table 3 illustrates top-40 discriminatory genes in L0 and L1. Table 4 illustrates top-40 discriminatory genes in L1 and G1.

Table 5 illustrates top-40 discriminatory genes in G1 and G2. Table 6 illustrates top-40 discriminatory genes in G2 and G3.

Best Mode for Carrying out the Invention

5

10

15

20

25

30

35

The following examples merely illustrate the preferred method for identification and use of genes and/or proteins that are differently expressed in non-cancerous liver, pre-cancerous liver, well differentiated HCC, moderately differentiated HCC, and poorly differentiated HCC.

Herein below, the present invention will be specifically described using examples, however, it is not to be construed as being limited thereto.

Example 1. Preparation of human tissues

Fifty patients underwent surgical treatment for HCC at Yamaguchi University Hospital between May 1997 and August 2000. Written informed consent was obtained from all patients before surgery. The study protocol was approved by the Institutional Review Board for the Use of Human Subjects at the Yamaguchi University School of Medicine. All of the 50 patients were seropositive for HCV antibody (HCVAb) and seronegative for hepatitis B virus surface antigen (HBsAg). A histopathological diagnosis of HCC was made in all cases after surgery. histopathological examination showed that seven patients had well differentiated HCC (G1), 35 had moderately differentiated HCC (G2), and the remaining eight had poorly differentiated HCC (G3). Clinicopathologic factors were determined according to the International Union against Cancer TNM classification. Fisher's exact test, Student's t test, and Mann-Whitney's U test were used to elucidate the differences in clinicopathologic characteristics among the 3 grades, G1, G2 and G3 HCC. P<0.05 was considered significant.

Six non-cancerous liver samples were obtained from six patients who underwent hepatic resection for benign or metastatic liver tumors, and confirmed to have histologically normal livers. They were all seronegative for both HBsAg and

HCVAb. Five HCV-infected liver samples were also prepared from the non-tumorous areas of five patients with HCC. All five liver samples were histopathologically diagnosed as chronic hepatitis or liver cirrhosis. Informed consent in writing was obtained from all patients before surgery.

Example 2. Clinicopathologic characteristics of HCCs

5

10

15

20

30

35

Histological examinations showed that, among the 50 . HCV-associated HCCs enrolled in this study, seven were well differentiated HCC (G1), 35 were moderately differentiated HCC (G2), and the remaining eight were poorly differentiated HCC (G3) (Table 2). The tumor size of G2 and G3 HCCs was significantly larger than that of G1 HCC (p=0.0007 and p=0.028, respectively, by Mann-Whitney's U test). The incidence of vessel involvement in G2 and G3 HCCs was significantly higher than that in G1 HCC (p=0.038 by Fisher's exact test). parallel to dedifferentiation from G1 to G3, tumor stage was more advanced (p=0.066 by Fisher's exact test). Thus, each type of G1, G2, and G3 HCCs enrolled in this study showed characteristics corresponding to dedifferentiation, i.e., tumor size, metastatic potential, and tumor stage, as proposed by Kojiro (Kojiro, M. Pathological evolution of early hepatocellular carcinoma, Oncology 62, 43-47 (2002)).

25 Example 3. Extraction of the RNA from tissues

Pieces of the tissues (about 125 mm³) were suspended in TRIZOL (Life Technologies, Gaithersburg, USA, Catalog No. 15596-018) or Sepasol-RNAI (Nacalai tesque, Kyoto, Japan, Catalog No. 306-55) and homogenized twice with a Polytron (Kinematica, Littau, Switzerland) (5 sec at maximum speed). After addition of chloroform, the tissues homogenates were centrifuged at 15,000 x g for 10 min, and aqueous phases, which contained RNA, were collected. Total cellular RNA was precipitated with isopropyl alcohol, washed once with 70% ethanol, and suspended in DEPC-treated water (Life Technologies, Gaithersburg, USA, Catalog No. 10813-012).

After treated with 1.5 units of DNase I (Life Technologies, Gaithersburg, USA, Catalog No. 18068-015), the RNA was re-extracted with TRIZOL/chloroform, precipitated with ethanol, and dissolved in DEPC-treated water. Thereafter, small molecular weight nucleotides were removed by using RNeasy Mini Kit (QIAGEN, Hilden, Germany, Catalog No. 74104) according to a manufacturer's instruction manual. Quality of the total RNA was judged from the ratio of 28S and 18S ribosomal RNA after agarose gel electrophoresis. The purified total RNA was stored at -80 °C in 70% ethanol solution until use.

Example 4. Synthesis of cDNA and labeled cRNA probes

cDNA was synthesized by using reverse SuperScript Choice System (Life Technologies, Gaithersburg, USA, Catalog No. 18090-019) according to the manufacturer's instruction manual. Five micrograms of the purified total RNA were hybridized with oligo-dT primers (Sawady Technology, Tokyo, Japan) that contained sequences for the T7 promoter and 200 units of SuperScriptII reverse transcriptase and incubated at 42 °C for 1 hr. The resulting cDNA was extracted with phenol/chloroform and purified with Phase Lock Gel™ Light (Eppendorf, Hamburg, Germany, Catalog No. 0032 005.101).

cRNA was also synthesized by using MEGAscript T7 kit (Ambion, Austin, USA, Catalog No. 1334) and cDNA as templates according to the manufacturer's instruction. Approximately 5 µg of the cDNA was incubated with 2 µl of enzyme mix containing T7 polymerase, 7.5 mM each of adenosine triphosphate (ATP) and guanosine triphosphate (GTP), 5.625 mM each of cytidine triphosphate (CTP) and uridine triphosphate (UTP), and 1.875 mM each of Bio-11-CTP and Bio-16-UTP (ENZO Diagnostics, Farmingdale, USA, Catalog No. 42818 and 42814, respectively) at 37 °C for 6 hr. Mononucleotides and short oligonucleotides were removed by column chromatography on CHROMA SPIN +STE-100 column (CLONTECH, Palo Alto, USA, Catalog No. K1302-2), and the cRNA in the eluates was sedimented by adding ethanol. Quality of the cRNA was judged from the length of the cRNA after agarose

gel electrophoresis. The purified cRNA was stored at -80 °C in 70% ethanol solution until use.

Example 5. Gene expression analysis of HCC in different differentiation grade

5

10

15

20

25

30

35

Gene expression of human primary tumors from glioma patients was examined by high-density oligonucleotide microarrays (U95A array, Affymetrix, Santa Clara, USA, Catalog No. 510137) (Lipshutz, R.L. et al. High density synthetic oligonucleotide arrays, Nat. Genet. 21, 20-24 (1999)). hybridization with oligonucleotides on the chips, the cRNA was fragmented at 95 °C for 35 min in a buffer containing 40 mM Tris (Sigma, St. Louis, USA, Catalog No. T1503) -acetic acid (Wako, Osaka, Japan, Catalog No. 017-00256) (pH 8.1), 100 mM potassium acetate (Wako, Osaka, Japan, Catalog No. 160-03175), and 30 mM magnesium acetate (Wako, Osaka, Japan, Catalog No. 130-00095). Hybridization was performed in 200 µl of a buffer containing 0.1 M 2-(N-Morpholino) ethanesulfonic acid (MES) (Sigma, St. Louis, USA, Catalog No. M-3885) (pH 6.7), 1 M NaCl (Nacalai tesque, Kyoto, Japan, Catalog No. 313-20), 0.01% polyoxylene (10) octylphenyl ether (Wako, Osaka, Japan, Catalog No. 168-11805), 20 μg herring sperm DNA (Promega, Madison, USA, Catalog No. D181B), 100 µg acetylated bovine serum albumin (Sigma, St. Louis, USA, Catalog No. B-8894), 10 μg of the fragmented cRNA, and biotinylated-control oligonucleotides, biotin-5'-CTGAACGGTAGCATCTTGAC-3' (Sawady technology, Tokyo, Japan), at 45 °C for 12 hr. After washing the chips with a buffer containing 0.01 M MES (pH 6.7), 0.1 M NaCl, and 0.001% polyoxylene(10) octylphenyl ether buffer, the chips were incubated with biotinylated anti-streptavidin antibody (Funakoshi, Tokyo, Japan, Catalog No. BA0500) and stained with streptavidin R-Phycoerythrin (Molecular Probes, Eugene, USA, Catalog No. S-866) to increase hybridization signals as described in the instruction manual (Affymetrix, Santa Clara, Each pixel level was collected with laser scanner (Affymetrix, Santa Clara, USA) and levels of the expression of

each cDNA and reliability (Present/Absent call) were calculated with Affymetrix GeneChip ver. 3.3 and Affymetrix Microarray Suite ver. 4.0 softwares. From these experiments, expression of approximately 11,000 genes in the human primary tumors of glioma patients was determined.

Example 6. Statistical analysis of the oligonulceotide microarray data

5

10

15

20

25

Genes with average differences greater than 40 (arbitrary units by Affymetrix) in all the 50 HCC samples and the 11 non-tumorous (non-cancerous and pre-cancerous) liver samples were selected. This procedure yielded 3,559 genes out of approximately 11,000. Next, the Fisher ratio was determined (Iizuka, N., Oka, M., Yamada-Okabe, H., Mori, N., Tamesa, T., Okada, T., Takemoto, T., Tangoku, A., Hamada, K., Nakayama, H., Miyamoto, T., Uchimura, S., and Hamamoto, Y. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data based on a supervised learning method, Cancer Res. 62, 3939-3944 (2002) and Luo, J., Duggan, D.J., Chen, Y., Sauvageot, J., Ewing, C.M., Bittner, M.L., Trent, J.M., and Isaacs, W.B. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling, Cancer Res. 61, 4683-4688 (2001)) to evaluate these genes as discriminators of LO from L1, L1 from G1, G1 from G2, and G2 from G3. The above 3,559 genes were ranked in the order of decreasing magnitude of the Fisher ratio. A random permutation test was also performed to determine the number of genes to define the differentiation grade of HCC. The random permutation test was carried out as described previously 30 (Iizuka, N., Oka, M., Yamada-Okabe, H., Mori, N., Tamesa, T., Okada, T., Takemoto, T., Tangoku, A., Hamada, K., Nakayama, H., Miyamoto, T., Uchimura, S., and Hamamoto, Y. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide 35 microarray data based on a supervised learning method, Cancer

Res. 62, 3939-3944 (2002) and Luo, J., Duggan, D.J., Chen, Y., Sauvageot, J., Ewing, C.M., Bittner, M.L., Trent, J.M., and Isaacs, W.B. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling, Cancer Res. 61, 4683-4688 (2001)). In the test, sample labels were randomly permuted between two grades to be considered, and the Fisher ratio for each gene was again computed. This random permutation of sample labels was repeated 1,000 times. Fisher ratios generated from the actual data were then assigned Ps based on the distribution of the Fisher ratios from randomized data. From the distribution of the Fisher ratios based on the randomized data, all of the genes that could pass the random permutation test (P< 0.005) were selected. This procedure was performed in all experiments for the comparison of two grades. As a result, 152 genes with the Fisher ratios higher than 4.90 were statistically significant discriminators between LO and L1. Likewise, 191 genes with the Fisher ratios higher than 4.08 to discriminate L1 from G1, 54 genes with the Fisher ratios higher than 1.52 to discriminate G1 from G2, and 40 genes with the Fisher ratios higher than 1.34 to discriminate G2 from G3, were identified.

5

10

15

20

25

30

35

Example 7. Selection of genes whose expression correlates with differentiation grade of HCC

with oligonucleotide array data, changes in the gene expression during oncogenesis, i.e., from non-cancerous liver (L0) to HCV-infected pre-cancerous liver (L1) and from L1 to well differentiated HCC (G1), and during dedifferentiation of HCC (G1 to G2 and G2 to G3) were analyzed. The supervised learning method followed by a random permutation test identified 152 genes whose expression level was significantly changed during the transition from L0 to L1. Among the 152 genes, 67 were upregulated and 85 were downregulated during this transition. In the same manner, 191 genes whose expression level was significantly changed during the transition from L1 to G1 HCC were identified. Among the 191 genes, 95 were

upregulated and 96 were downregulated during this transition. Fifty-four genes appeared to be differentially expressed between G1 and G2 HCCs, and among them the expression of 36 genes was increased and that of 18 genes was decreased during the transition from G1 to G2. Forty genes turned out to be differentially expressed between G2 and G3 HCCs, and among them the expression of 10 genes was increased and that of 30 genes was decreased during the transition from G2 to G3.

5

10

15

25

30

35

To examine performance of the genes selected in each grade in the oncogenesis and development of HCC, the inventors applied data of these genes to all samples. As a result, almost all of these genes selected in each transition stage were placed in LO-L1 transition, L1-G1 transition, G1-G2 transition, and G2-G3 transition. For example, the 191 genes that discriminate L1 from G1 HCC could clearly distinguish non-tumorous livers (L0 and L1) from HCCs (G1, G2, and G3) (Fig. 1). These results indicate that altered level of the selected genes plays central roles in determining each grade of HCC pathogenesis.

20 Example 8. Genes whose expression changed during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1)

Expression of most of immune response-related genes, metabolism-related genes, transport-related genes, proteolysis-related genes, and oncogenesis-related genes was increased, and that of transcription-related genes was decreased during the transition from LO to L1 (Table 3).

Immune response-related genes include MHC class I family (HLA-A, -C, -E, and -F), MHC class II family (HLA-DPB1 and HLA-DRA), CD74, NK4, LILRB1, FCGR3B, and IFI30.

Upregulation of an interferon (IFN) inducible gene such as IFI30 may represent host defense against viral infection; however, it should be noted that several IFN-related genes were decreased during dedifferentiation of G1 to G2 as mentioned in the following section (see Example 10).

Metabolism-related genes include KARS, ALDOA, ASAH, MPI, and GAPD. Increased levels of KARS and ALDOA enhance protein

biosynthesis and glycolysis, respectively. Upregulaton of ASAH, MPI, and GAPD augments biosynthesis of fatty acid, mannose, and glyceraldehyde, respectively.

Transport-related genes include VDAC3, SSR4, BZRP, and ATOX1. SSR4 is responsible for the effective transport of newly synthesized polypeptides. ATOX1 is a copper transporter and an increase in its expression causes activation of various metabolic pathways, because many enzymes require copper ion as a cofactor of enzymatic activity.

5

10

15

20

25

30

35

Proteolysis-related genes include CST3 and CTSD. CST3 is involved in vascular formation. Increased serum level of CTSD protein was observed in cirrhotic patients who may develop pre-cancerous hepatic nodules (Leto, G., Tumminello, F.M., Pizzolanti, G., Montalto, G., Soresi, M., Ruggeri, I., and Gebbia, N. Cathepsin D serum mass concentrations in patients with hepatocellular carcinoma and/or liver cirrhosis, Eur. J. Clin. Chem. Clin. Biochem. 34, 555-560 (1996)).

Oncogenesis-related genes include MBD2, RPS19, RPS3, RPS15, and RPS12. DNA methylation is a common epigenetic change in many malignancies, thus, DNA methylation patterns are determined by the enzymatic processes of methylation and demethylation. Upregulation of MBD2, which inhibits transcription from methylated DNA, plays an important role in downregulation of tumor suppressor genes carrying methylated DNA at their promoter regions.

Downregulation of a transcription-related gene, RB1CC1, was observed during the transition from L0 to L1. The RB1CC1 protein is a major regulator of the tumor suppressor gene RB1, thereby decreased levels of RB1CC1 can promote oncogenesis via decreased activity of RB1 protein.

Thus, HCV-infected pre-cancerous liver is characterized by the altered expression of these genes, which suggests that initiation of hepatocarcinogenesis occurs during HCV infection. Among genes whose expression changes during the transition from LO to L1, those involved in proteolysis and oncogenesis may serve as molecular targets for chemoprevention

of HCV-associated HCC.

5

10

15

20

25

30

35

Example 9. Genes whose expression changed during the transition from pre-cancerous liver (L1) to well differentiated HCC (G1)

Genes whose expression was altered during the transition from L1 to G1 include most oncogenesis-related genes, signal transduction-related genes, transcription-related genes, transport-related genes, detoxification-related genes, and immune response-related genes (Table 4).

Oncogenesis-related genes such as BNIP3L, FOS, MAF, and IGFBP3 that can induce apoptosis of some cancer cells and IGFBP4 that acts as an inhibitor of IGF-induced cell proliferation were downregulated during the transition, indicating downregulation of these genes is also important for the promotion of hepatocarcinogenesis. Previous report also showed the decreased expression of IGFBP3 and IGFBP4 in HCC compared with non-tumorous liver (Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression, Cancer Res. 61, 2129-2137 (2001) and Delpuech, O., Trabut, J.B., Carnot, F., Feuillard, J., Brechot, C., and Kremsdorf, D. Identification, using cDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma, Oncogene 21, 2926-2937 (2002)). The data of the present invention provide additional insights that downregulation of these two genes has already occurred in well differentiated HCC. MAF functions as a regulator for cell differentiation. BNIP3L induces cell apoptosis via inhibiting activity of BCL2. In some cases, expression of FOS seems to be associated with apoptotic cell death. Thus, downregulation of these five genes is likely to trigger the transformation of hepatocyte after chronic HCV infection.

Signal transduction-related genes such as CAMKK2, GMFB,

RALBP1, CDIPT, ZNF259, and RAC1, and transcription-related genes such as DRAP1, ILF2, BMI1, and PMF1 were upregulated during the transition from L1 to G1. Other signal transduction-related genes such as CALM1, RAB14, TYROBP, and MAP2K1 were downregulated during this transition.

Downregulation of TYROBP in G1 HCC may reflect decreased immune response. Alteration of the expression of genes involved in various signal transduction pathways may reflect a true portrait in well differentiated HCC arising from HCV-infected pre-cancerous liver.

10

15

20

25

30

35

Transport-related genes such as TBCE, ATP6V1E, ATOX1, and SEC61G were upregulated, and those such as SLC31A1 and DDX19 were downregulated during the transition from L1 to G1. ATOX1 that is an intracellular copper transporter was upregulated during the transition from LO to L1, and it was further upregulated during the transition from L1 to G1. Since an excessive copper is toxic or even lethal to the hepatocytes, distinct expression of ATOX1 genes alters intracellular copper ion concentrations, thereby promotes DNA damage and cell injury. In fact, a recent study showed the preventive effect of copper-chelating agents on tumor development in the murine HCC xenograft model (Yoshii, J., Yoshiji, H., Kuriyama, S., Ikenaka, Y., Noguchi, R., Okuda, H., Tsujinoue, H., Nakatani, T., Kishida, H., Nakae, D., Gomez, D.E., De Lorenzo, M.S., Tejera, A.M., and Fukui, H. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells, Int. J. Cancer. 94, 768-773 (2001)).

DNA damage and cell injury can be augmented by the downregulation of an antioxidant gene CAT and detoxification-related genes such as MT1H, MT1E, MT1F, MT1B, MT3, and UGT2B7, promoting the dedifferentiation of HCC.

Using anti-hyaluronan receptor-1 antibody, Carreira et al. showed that the number of lymphatic vessels was smaller in HCC than in non-tumorous liver tissues such as liver cirrhosis (Mouta Carreira, C., Nasser, S.M., di Tomaso, E., Padera, T.P.,

Boucher, Y., Tomarev, S.I., and Jain, R.K. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis, Cancer Res. **61**, 8079-8084 (2001)). In the present invention, expression of immune response-related genes such as 5 ORM1, C1R, C6, IL4R, C8B, and C1S was decreased during the transition from L1 to G1, indicating that changes in microenvironment in HCC occur during the transition from L1 to G1. As reported previously, many genes encoding complement component were downregulated during this transition (Okabe, H., 10 Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., and Nakamura, Y. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression, Cancer Res. 61, 15 2129-2137 (2001) and Iizuka, N., Oka, M., Yamada-Okabe, H., Mori, N., Tamesa, T., Okada, T., Takemoto, T., Tangoku, A., Hamada, K., Nakayama, H., Miyamoto, T., Uchimura, S., and Hamamoto, Y. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected 20 hepatocellular carcinoma by oligonucleotide microarray data based on a supervised learning method, Cancer Res. 62, 3939-3944 (2002)).

Example 10. Genes whose expression changed during the transition from well differentiated HCC (G1) to moderately differentiated HCC (G2)

30

35

Genes whose expression was altered during the transition from G1 to G2 include IFN-related genes, cell structure and motility-related genes, transcription-related genes, and tumor suppressor genes (Table 5).

During transition from G1 to G2, the most prominent genetic changes appeared to be downregulation of IFN-related genes such as OAS2, STAT1, PSME1, ISGF3G, and PSMB9. Similar genetic changes were also observed in prostate cancer cells (Shou, J., Soriano, R., Hayward, S.W., Cunha, G.R., Williams,

P.M., and Gao, W.Q. Expression profiling of a human cell line model of prostatic cancer reveals a direct involvement of interferon signaling in prostate tumor progression, Proc. Natl. Acad. Sci. U.S.A. 99, 2830-2835 (2002)). IFN acts not only as an antiviral agent but also as an anticancer agent; however, certain types of HCC do not respond to IFN. Downregulation of the IFN-related genes can attenuate response of tumor cells to IFN, suggesting that resistance of HCC to IFN is exploited during the transition from G1 to G2. Among the IFN-related genes, STAT1 appeared four times in our list of discriminators 10 of G1 from G2 (Table 5). Unlike other genes of the same family, STAT1 functions as a tumor suppressor (Bromberg, J.F. Activation of STAT proteins and growth control, Bioessays 23, 161-169 (2001)). Interestingly, IFN treatment increases STAT1 expression in hepatocyte as well as many IFN-related genes 15 (Radaeva, S., Jaruga, B., Hong, F., Kim, W.H., Fan, S., Cai, H., Strom, S., Liu, Y., El-Assal, O., and Gao, B. Interferon-alpha activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes, Gastroenterology 122, 1020-1034 (2002)). Upregulation of 20 STAT1 in HCC cell lines was observed during differentiation induced by sodium butyrate (Hung, W.C. and Chuang, L.Y. Sodium butyrate enhances STAT 1 expression in PLC/PRF/5 hepatoma cells and augments their responsiveness to interferon-alpha, Br. J. Cancer 80, 705-710 (1999)). The facts that STAT1 is a 25 transcriptional target of the IGF-independent apoptotic effect of IGFBP3 (Spagnoli, A., Torello, M., Nagalla, S.R., Horton, W.A., Pattee, P., Hwa, V., Chiarelli, F., Roberts, C.T. Jr., and Rosenfeld, R.G. Identification of STAT-1 as a molecular target of IGFBP-3 in the process of chondrogenesis, J. Biol. 30 Chem. 277, 18860-18867 (2002)) and that IGFBP3 is downregulated during the transition from L1 to G1 strongly suggest that decreased expression of STAT1 during the transition from G1 to G2 HCC facilitate the further dedifferentiation of HCC.

a variety of biological processes including cell growth,

35

Transcription-related gene TRIM16 that is involved in

differentiation, and pathogenesis, and tumor suppressor gene TPD52L2 that promotes cell proliferation were also upregulated during the transition from G1 to G2. Upregulation of these genes in G2 HCC may promote growth and invasion of tumor cells.

5

10

Example 11. Genes whose expression changed during the transition from moderately differentiated HCC (G2) to poorly differentiated HCC (G3)

Genes whose expression was altered during the transition from G2 to G3 include proteolysis-related genes, BCL2-related gene, and metabolism- and energy generation-related genes (Table 6).

SPINT1 and LGALS9 turned out to be upregulated during the transition from G2 to G3. SPINT1 is involved in regulation of proteolytic activation of hepatocyte growth factor (HGF) in 15 injured tissues. Previously, Nagata et al. showed that transduction of antisense SPINT1 (HAI-1) inhibited the growth of human hepatoma cells, suggesting that SPINT1 plays an important role in the progression of HCC (Nagata, K., Hirono, S., Ido, A., Kataoka, H., Moriuchi, A., Shimomura, T., Hori, 20 T., Hayashi, K., Koono, M., Kitamura, N., and Tsubouchi, H. Expression of hepatocyte growth factor activator and hepatocyte growth factor activator inhibitor type 1 in human hepatocellular carcinoma, Biochem. Biophys. Res. Commun. 289, 205-211 (2001)). LGALS9 belongs to a lectin family that is 25 involved in cell adhesion, cell growth regulation, inflammation, immunomodulation, apoptosis, and metastasis. Several galectins are thought to be related to cancer cell adhesion (Ohannesian, D.W., Lotan, D., Thomas, P., Jessup, J.M., Fukuda, M., Gabius, H.J., and Lotan, R. Carcinoembryonic 30 antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells, Cancer Res. 55, 2191-2199 (1995)).

BNIP3, a BCL2-related gene, was downregulated during the transition from G2 to G3. BNIP3 shares 56% amino acid sequence identity with BNIP3L. As mentioned above, expression

of BNIP3L was decreased during the transition from L1 to G1. Because BCL2 functions as an anti-apoptotic factor, downregulation of BNIP3L and BNIP3 promotes oncogenesis, facilitating the dedifferentiation of tumor cells.

5

10

15

20

25

30

35

Many metabolism- and energy generation- related genes were also downregulated during this transition. In addition, expression of PGRMC1 encoding a liver-rich protein that binds to progesterone and RARRES2 was also decreased during the transition from G2 to G3. Decreased expression of RARRES2 may be the causative of poor response of G3 HCC to retinoic acids.

Example 12. Color display of the expression of the selected genes in each transition stage

Expression of 152 genes whose expression was significantly altered during the transition from L0 to L1 (Fig. 1a), 191 genes whose expression was significantly altered during the transition from L1 to G1 (Fig. 1b), 54 genes whose expression was significantly altered during the transition from G1 to G2 (Fig. 1c), and 40 genes whose expression was significantly altered during the transition from G2 to G3 (Fig. 1d) was shown by color display. These genes clearly distinguished the samples in the two consecutive differentiation grades. Fig. 1e-h indicate the expression of the selected 40 genes in each transition stage in all the samples. Expression of the selected 40 genes whose expression was significantly altered during the transition from L0 to L1 (Fig. 1e), from L1 to G1 (Fig. 1f), from G1 to G2 (Fig. 1g), and from G2 to G3 (Fig. 1h) was also shown by color display. The selected 40 genes in each transition stage discriminated samples before and after the transition.

Example 13. Validation of the selected 40 genes in each transition stage to distinguish the differentiation grade of HCC

To validate discriminative performance of the selected 40 genes in each transition stage, the minimum distance

classifier with the selected 40 genes in each transition stage was created. In each transition, the minimum distance classifier was constructed with the samples in consecutive two differentiation grades as indicated by the red bar (training samples), and was applied to the samples in the remaining differentiation grades as indicated by the black bar (test samples) (Fig. 2). The resulting classifier classified the test samples with the accuracy of 92% (Fig. 2a), 98% (Fig. 2b), 84% (Fig. 2c), and 100% (Fig. 2d).

10

15

20

25

30

Example 14. Analysis by the self-organizing map (SOM) algorithm of the genes whose expression changed during the transition from non-cancerous liver (L0) to pre-cancerous liver (L1), from pre-cancerous liver (L1) to well differentiated HCC (G1), from well differentiated HCC (G1) to moderately differentiated HCC (G2), and from moderately differentiated HCC (G2) to poorly differentiated HCC (G3)

Expression of the genes whose expression was statistically significantly different between non-cancerous liver (L0) and pre-cancerous liver (L1), pre-cancerous liver (L1) and well differentiated HCC (G1), well differentiated HCC (G1) and moderately differentiated HCC (G2), moderately differentiated HCC (G2) and poorly differentiated HCC (G3) was analysed according to the method of MATLAB R13 with the SOM toolbox available in the web site, http://www.cis.hut.fi/projects/somtoolbox/ (Kohonen, 2001). 40 genes in each comparison between non-cancerous liver (L0) and pre-cancerous liver (L1), pre-cancerous liver (L1) and well differentiated HCC (G1), well differentiated HCC (G1) and moderately differentiated HCC (G2), moderately differentiated HCC (G2) and poorly differentiated HCC (G3) were used. vectors of neighboring cells were located close to each other in the 155-dimentional gene space (Fig. 3a), where (m, n) indicated the cell located at m-th row and n-th column, NL-XX indicated samples from non-cancerous liver without HCV 35 infection (L0), IL-XX indicated samples from HCV-infected

pre-cancerous liver (L1), G1-XXT indicated samples from well differentiated HCC (G1), G2-XXT indicated samples from moderately differentiated HCC (G2), G3-XXT indicated samples from moderately differentiated HCC (G3). The map showed that the samples clearly formed a sigmoid curve in the order of LO, L1, G1, G2, and G3. G2 samples without vessel involvement (blue letters) were located close to G1 samples and G2 samples with vessel involvement (red letters) were located close to G3 samples (Fig. 3a). G2 samples without venous invasion were located close to G1 samples and G2 samples with venous invasion were located close to G3 samples. Thus, the SOM classified G2 samples into two subtypes, i.e., tumor with venous invasion and that without venous invasion, in the stream of dedifferentiation grade. When the distance between the neighboring clusters was shown by colors where red indicated long distance, the red cells in the upper area clearly demonstrated that the non-tumorous (non-cancerous and pre-cancerous) liver and HCC samples were relatively far apart in the 155-dimentional genes space (Fig. 3b).

20

25

30

35

15

10

Industrial Applicability

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. However, there is no therapy that can cure the disease. This is presumably due to sequential changes in characteristics of cancer cells during the development and progression of the disease. Particularly, progression of cancer is often associated with the changes of differentiation grade of tumor cells. Diagnosis and management of such changes of cancer cells will make cancer therapy more effective. In the present invention, genes whose expression correlates with oncogenesis and development of HCC are identified. A supervised learning method followed by a random permutation test is used to select genes whose expression significantly changes during the transition from non-cancerous liver without HCV infection (LO) to pre-cancerous liver with HCV infection (L1), from L1 to well differentiated HCC (G1), from G1 to

moderately differentiated HCC (G2), and from G2 to poorly differentiated HCC (G3). The minimum distance classifier and the self-organizing map (SOM) with the selected 40 genes whose expression is significantly altered in each transition stage can correctly predict the differentiation grade of tumor tissues. Thus, these genes can be used for diagnosing the differentiation grade of HCC and for screening anti-cancer agents for the treatment of HCCs in each differentiation grade.

5

Table 1. Clusters of samples profiled to L0, L1, G1, G2, and G3.

cell	sample					
(1,1)	IL-49, IL-58, IL-59, IL-60, IL-62					
(1,2)						
(1,3)	NL-64, NL-65, NL-68, NL-69					
(1,4)	NL-66, NL-67					
(1,5)						
(2,1)						
(2,2)	G2-34T					
(2,3)						
(2,4)						
(2,5)	G2-16T, G2-29T, G2-45T G2-2T					
(3,1)	G1-85T, G1-87T					
(3,2)						
(3,3)	G1-42T					
(3,3)	G2-22T					
(3,4)						
(3,5)						
(4,1)	G1-86T G2-105T					
(4,2)	G1-26T					
(4,3)						
(4,4)	G2-8T, G2-27T					
(4,5)	G2-151T					
(5,1)	G1-147T, G1-165T					
(5,2)						
(5,3)	G2-60T					
(5,4)	G2-18T					
(5,5)	G2-31T					
(3,3)	G2-20T, G2-59T					
(6,1)	G3-21T					
(6,2)	G3-80T					
(6,3)	G2-1T, G2-163T					
(0/0)	G2-161T					
(6,4)	G2-28T, G2-155T					
(6,5)	G2-90T					
(7,1)	G3-107T					
(7,2)	G3-25T					
(7,3)	G2-46T, G2-62T, G2-171T G2-162T					
(7,4)						
(7,5)	G2-37T					
	G2-6T, G2-58T					

(8,1)	G3-35T, G3-81T, G3-174T
(8,2)	G2-49T
	G2-23T
(8,3)	G2-12T
	G2-10T
	G3-19T
(8,4)	G2-89T
(8,5)	G2-43T, G2-182T

Table 2. Clinicopathologic characteristics per study group.

Factors	Well (G1)	Moderately (G2)	Poorly (G3)	P value
Sex				N.S.
Male	4	24	6	
Female	3	11	2	
Age (year)	65.3±2.6	65.4±1.2	67.2±3.3	N.S.
Primary lesion				N.S.
Single tumor	6	15	2	
Multiple tumors	1	20	6	
Tumor size (cm)	2.0±0.3	5.0±0.5	6.0±2.5	p=0.0007 (G1 vs G2)
Tunor Size (Cit)				p=0.028 (G1 vs G3)
Stage*				p=0.066
Į	6	10	2	
II	1	17	3	
IIIA/IV	0	8	3	
Venous invasion*				p=0.038
(-)	7	21	3	
(+)	0	14	5	
Non-tumorous liver				N.S.
Normal or chronic hepatitis	2.	15	2	
Liver cirrhosis	5	20	6	

^{*,} Tumor differentiation, stage, and venous invasion were determined on the basis of TNM classification of UICC.

Fisher's exact test, Student's t test, and Mann-Whitney's U test were used to elucidate the differences in backgrounds between each differentiation grade.

N.S., not significant.

디 and 10 10 in genes discriminatory Top-40ო Table

comparison with

in

in L1

downregulated

genes

protein/post-transcription and small transcription/retroviral stimuli extracellular matirx acid binding transduction/ GTP-binding protein cellular responses lipid metabolism detoxification extracellular cytoskeleton RNA-binding control Function nucleic unknown unknown unknown unknown protein unknown signal al 3 2p24-p23 9q13-q21 2-p21B 4 3 16q13 1q21 3921 21q22 20p11 6p24 2q12 Xp21 2p11 6p22 KIAA0426 FLJ13910 RANBP2L1 Symbol S100A2 **ZNF337** PCBP3 APOB X123 MTIV ZNF9 四四四 337 homolog to tubulin beta gene product 9 hypothetical protein S100 calcium binding protein RAN binding protein zinc finger protein IV ataxia region gene X123 fibronectin (Alt M binding metallothionein apolipoprotein zinc finger Description Friedreich dystrophin protein A2 Splice 1) **KIAA0426** FLJ13910 2-like 1 poly (rC) protein chain Fibronectin GB:number AB007886 AL050139 AF012086 AF035316 AL049942 AI539439 AL046394 Alt. M18533 **U19765** M19828 L27479 X55503 Splice Eighteen Fisher* ratio 23.02 20.65 12.56 13.71 99. .24 .63 50.45 .91 .41 18.34 16.13 12.37 16 14 12 11 11

and genes Top-40 discriminatory Table 3.

Fisher ratio	GB number	Description	Symbol	Locus	Function
10.59	U92315	sulfotransferase family, cytosolic, 2B, member 1	SULT2B1	19q13.3	steroid metabolism
10.53	D76444	zinc finger protein 103 homolog (mouse)	ZFP103	2p11.2	central nervous system development
10.50	X02761	fibronectin 1	FN1	2q34	extracellular matirx/cell adhesion and motility
10.20	AF001891	zinc finger protein-like 1	ZFPL1	11q13	unknown
9.74	AI400326	EST		2	UniGene Cluster Hs.356456

Twenty-two genes upregulated in L1 in comparison with L0

Fisher	GB number	Description	Symbol	Focus	Function
40.49	AI362017	cystatin C	CST3	20p11.21	cysteine protease inhibitor
21.66	L13977	prolylcarboxypeptidase (angiotensinase C)	PRCP	11q14	metabolism/lysosome- related protein
20.59	D32053	lysyl-tRNA synthetase	KARS	16q23-q24	protein biosynthesis
13.70	AF038962	voltage-dependent anion channel 3	VDAC3	8p11.2	transport of adenine nucleotides
11.90	AL008726	protective protein for beta-galactosidase (cathepsin A)	PPGB	20q13.1	lysosomal protein/enzyme activator
11.71	J03909	interferon, gamma-inducible protein 30	IEI30	19p13.1	lysosomal thiol reductase/IFN-inducible

(cont'd) and genes Top-40 discriminatory

GB. number Z69043 AL080080 M63138 L09159	Description signal sequen receptor, del thioredoxin-r transmembrane cathepsin D ras homolog g family, membe	Symbol SSR4 TXNDC CTSD	Xq28 14q21.3 11p15.5 3p21.3	Function translocatation of newly synthesized polypeptides redox reaction lysosomal aspartyl protease/proteolysis oncogenesis/actin cytoskeleton reorganization
AF017115	77 (1)	COX411	16q22-qter	energy pathway
	CD74 antigen benzodiazapine receptor	CD/4 BZRP	5q32 22q13.31	flow of cholesterol into mitochondria
1	nitrogen fixation cluster-like	NIFU	12q24.1	unknown
1	calcium/calmodulin- dependent protein kinase II gamma	CAMK2G	10q22	signal transduction
	rome ptid	CYBA	16q24	energy generation
	major histocompatibility complex, class I, A	HLA-A	6p21.3	immune response

L1. 10 Table 3. Top-40 discriminatory

					· · · · · · · · · · · · · · · · · · ·
Function.	immune response	immune response	cell motility and cytoskeleton	oncogenesis/RNA-binding protein	cell adhesion
Logas	6p21.3	6p21.3	13q12-q13	19q13.2	5q31
Symbol	HLA-F	HLA-DPB1	ARPC2	RPS19	CINNA1
Description	major histocompatibility complex, class I, F	major histocompatibility complex, class II, DP beta 1	actin related protein 2/3 complex, subunit 2	0	catenin (cadherin-associated protein), alpha 1
GB number	AL022723	M83664	U50523	M81757	AF102803
Fisher	9.44	9.41	9.16	9.02	8.89

Table 4. Top-40 discriminatory genes in L1 and G1.

with comparison Twenty-eight genes downregulated in G1

	Į.	<u> </u>								г	
Function	phagocytosis and pinocytosis	tumor suppressor/induction of apoptosis	oncogenesis/transcription	extracellular space	signal transduction/ calcium-binding protein	oncogenesis/transcription	detoxification	detoxification	port	Ras superfamily member of GTP-binding proteins	alteration of RNA secondary structure
Locus	10p13.	8p21	14q24.3	1p35.3	14q24-q31	16q22-q23	16q13	16q13	9q31-q32	9q32-q34.11	17q22
Lodmyz	MRC1	BNIP3L	FOS	FCN3	CALM1	MAF	MT1H	MT1E	SLC31A1	RAB14	RNAHP
Description	mannose receptor, C type 1	BCL2/adenovirus E1B 19kD interacting protein 3-like	v-fos FBJ murine osteosarcoma viral oncogene homólog	ficolin 3 (Hakata antigen)	calmodulin 1	v-maf musculoaponeurotic fibrosarcoma oncogene homolog	metallothionein 1H	metallothionein 1E	solute carrier family 31, member1	RAB14, member RAS oncogene family	RNA helicase-related protein
GB mumber	M93221	AF079221	V01512	D88587	U12022	AF055376	R93527	R92331	U83460	AF052113	H68340
Fisher ratio	26.84	26.08	21.46	21.45	20.15	19.73	19.19	•	17.65	17.30	15.26

(cont'd) G1. genes Top-40 discriminatory Table 4.

Function	detoxification	detoxification	DNA metabolism	immune response/acute-phase response	cation	cell cycle and cell proliferation	unknown	signal transduction/cell proliferation	signal transduction/cell proliferation	glycogen degradation	unknown	metabolism/lysosome- related protein
Locus	16q13	16q13	3p21.1- 3p14.3	9q31-q32	16q13	14q22.1		17q12-q21.1	7p13-p12	1p21	6q27	11q14
Symbol	MT1F	MT1B	DNASE1L3	ORM1	MT3	MIG2		IGFBP4	IGFBP3	AGL	XAP135	PRCP
Description	metallothionein 1F	metallothionein 1B	deoxyribonuclease I-like 3	orosomucoid 1	metallothionein 3	mitogen inducible 2	unknown	insulin-like growth factor binding protein	insulin-like growth factor binding protein	amylo-1, 6-glucosidase, 4-alpha- glucanotransferase	PHD zinc finger protein XAP135, isoform b	prolylcarboxypeptidase (angiotensinase C)
GB number	M10943	M13485	U75744	X02544	M93311	224725	U22961	M62403	M35878	U84011	AF055030	L13977
Fisher ratio	14.96	14.18	13.34	12.65	11.95	•	11.52	11.45	11.01	10.80	10.74	10.29

<u>G</u>1 L1 genes Table 4. Top-40 discriminatory

Fisher	GB humber	Description	Symbol	Locus	Function
10.02	D13891	inhibitor of DNA binding 2	ID2	2p25	negative regulator of cell differentiation
9.95	M63175	autocrine motility factor receptor	AMFR	16q21	signal transduction/cell motility
9.94	AB023157		KIAA0940	10q23.33	unknown
9.76	U20982	insulin-like growth factor binding protein	IGEBP4	17q12-q21.1	signal transduction/cell proliferation
9.09	M14058	complement component 1, r subcomponent	C1R	12p13	immune response

Twelve genes upregulated in G1 in comparison with L

Fisher	ge mamper	Description	Symbol	Locus	Function
30.42	AL049650	small nuclear ribonucleoprotein polypeptides B and B1	SNRPB	20p13	RNA processing/modification/ RNA splicing
20.95	U61232	tubulin-specific	TBCE	1q42.3	microtubule/cochaperonin
.11.95	AI991040	DR1-associated protein	DRAP1	11q13.3	transcription
10.96	U64444	ubiquitin fusion degradation 1-like	UFD1L	.22q11.21	1
10.71	D63997	golgi autoantigen, golgin subfamily a, 3	GOLGA3	12q24.33	stabilization of Golgi structure
10.60	X55503	metallothionein IV	MT4	16q13	detoxification

G1 Table 4. Top-40 discriminatory

	ly, member 4 ing, 31kD, V1 almodulin- protein	ATP6V1E	22q11.1	viral receptor proton transport
	ing, 31kD, V1 almodulin- protein	ATP6V1E	22q11.1	proton transport
	almoduli protein			
	almoduli protein			
	protein		•	signal transduction/
		CAMKK2	12q24.2	calcium-binding protein
	Kinase Kinase Z, Deld			
homol ATX1	zinc finger protein 103	ZFP103	2p11.2	central nervous system
ATX1	homolog (mouse)			qevelopment qevelopment
_	antioxidant		1	copper homeostasis and ion
U/0660 protein i	in 1 homolog	ATOX1	5432	transport
(yeast)	(t)			
interl	interleukin enhancer	TLF2	1921.1	transcription
	binding factor 2, 45kD		71	

Table 5. Top-40 discriminatory genes in G1 and G2

GI in comparison Fifteen genes downregulated in G2

Function	antiviral response protein/IFN-inducible	detoxification	unknown	transcription/ IFN-signaling pathway	0 1	proteolysis and peptidolysis/IFN-inducible	potassium transport	mı	proteolysis and peptidolysis
Docus	12q24.2	4q21-q23		2q32.2	6q22.33	14q11.2	12p11.23	14q11.2	11q12
Symbol	OAS2	ADH1A		STAT1	HSF2	PSME1	KCNJ8	PSME1	UBE2L6
Description	2'-5'-oligoadenylate synthetase 2	class I alcohol dehydrogenase alpha subunit	hypothetical protein FLJ20378	signal transducer and activator of transcription 1	heat shock transcription factor 2	proteasome activator subunit1	potassium inwardly-rectifying channel subfamily J, member8	proteasome activator subunit1	ubiquitin-conjugating enzyme E2L6
GB number	M87434	M12963	AI625844	M97936	Z99129	L07633	D50312	U07364	AA883502
Fisher	2.89	2.63	2.51	2.43	2.12	2.08	2.06	2.02	2

(cont'd) G2. and **G1** genes Top-40 discriminatory Table 5.

		1		Т	<u></u>	
Function	transcription/ IFN-signaling pathway	signal transduction	signal transduction	transcription/ IFN-signaling pathway	microtubule associated protein	transcription/ IFN-signaling pathway
Locus .	2q32.2	4q22	12g	2432.2	12p13.1	2q32.2
Symboll	STAT1	LIM	FLN29	STAT1	GABARAPL 1	STAT1
Description	signal transducer and activator of transcription 1	LIM protein	FLN 29 gene product	signal transducer and activator of transcription 1	GABA(A) receptor-associated protein like 1	signal transducer and activator of transcription 1
GB mumber.	M97935	AF061258	AB007447	M97935	W28281	M97935
Fisher	1.85	1.83	1.74	1.72	1.7	1.66

Twenty-five genes upregulated in G2 in comparison with G1

Function	protein modification/RNA binding	transcription	tanslation	proteolysis and peptidolysis
Locus	3q21.3-q25.2	17q23.3	3q27-qter	2q23.3
Symbol.	RPNI	ZNF161	EIF4G1	FNBP3
Description	ribophorin I	zinc finger protein 161	eukaryotic protein synthesis initiation factor 4 gamma	bi
GB number	X00281	D28118	AF104913	AA675900
Fisher	4.41	3.25	2.83	2.27

(cont'd) and **G1** genes Table 5. Top-40 discriminatory

Function -	chaperone/protein folding	tRNA processing/protein synthesis	chaperone/immune response	at l	mRNA splicing/mRNA processing	unknown	golgi stacking	unknown	small molecule transport	proteolysis and peptidolysis	cytoskeleton	transcription	vesicle transport
Todias	7p14.1	16q22	15q21-q22	18p11.2	1p34.2	7	2p24.3-q21.3	3	12q23-q24.1	2p16.2	7p15-p12	19p13.1-p12	3p22-p21.3
Symbol	CCT6A	AARS	PPIB	IMPA2	SFPQ	AZLP	GORASP2	KIAA0669	ATP2A2	PA200	ACTB	ZNF91	GOLGA4
Description	chaperonin containing TCP1, subunit 6A (zeta	alanyl-tRNA synthetase	peptidylprolyl isomerase B	inositol(myo)-1(or 4)-monophosphatase 2	splicing factor proline/glutamine rich	ataxin 2 related protein	golgi reassembly stacking protein 2,	KIAA0669 gene product	Ca ^{tt} ting, slow t	some ac	1	zinc finger protein 91	golgi autoantigen, golgin subfamily a, 4
хэдшпи ВЭ	L27706	D32050	M63573	AF014398	X70944	U70671	AA447263	AB014569	M23115	D38521	X00351	L11672	X82834
Elsher ratio	2.27	2.15	2.1	2.09	2.08	2.03	1.89	1.87	•	1.83	1.82		

G2. and **G1** genes Table 5. Top-40 discriminatory

Function Fig. 75		proteolysis and peptidolysis/apoptosis	transcription	ubiquitination	unknown.	cell proliferation	cholesterol biosynthesis	RNA helicase
Locius	1pter-p22.1	16q12	2q31	Xp11.23- p11.1	20q13.13- q13.2	20q13.2- q13.3	1q21.2	14q32.2
Symbol	KIAA0494	SIAH1	SP3	UBQLN2	ADNP	TPD52L2	FDPS	DICER1
Description	KIAA0494 gene product	seven in absentia homolog 1 (Drosophila)	Sp3 transcription factor	ubiquilin 2	activity-dependent neuroprotector	tumor protein D52-like 2	farnesyl diphosphate synthase	Dicerl, Dcr-1 homolog (Drosophila)
GB number	AB007963	U76247	X68560	AB015344	AB018327	AF004430	D14697	AB028449
Fisher ratio	1.74	1.74	1.73	1.73	1.73	1.7	1.67	1.67

63 and **G**2 in genes iscriminatory ਹ Top-40 9 Table

82

with

in

633

in

transporter/aminobutyrate biosynthesis Ras/Rap1A-associating signalling/proteolys. activity transduction and lipid metabolism ubiquitination transcription embryogenesis morphogenesis antioxidant acid catabolism apoptosis cell-cell electron Humction unknown signal amino .2-q12 2 12q22-q24 \vdash 15q26 Tocas Xp22 6p22 5q31 19q13. 5435 4q32 4 14q11 PDZ-GEF1 ALDH5A1 **FBXW1B** Symbol BNIP3 SEPP1 APOC1 PACE 4 SCML2 PAH comparison cid ike dehydrogenase domain ng sex comb on midleg-l 2 (Drosophila) A1 E1B 24473 mRNA sequence paired basic amino a PDZ domain containi Homo sapiens clone C-I guanine nucleotide 7 family, member 19kD interacting system exchange factor BCL2/adenovirus F-box and WD-40 apolipoprotein selenoprotein (Drosophila) phenylalanine hydroxylase Description protein 1B aldehyde 5 fari cleaving protein plasma, downregulated GB, mumber AE070570 AA976838 AL031230 AB014596 AF002697 AB002311 M80482 Z11793 X18004 U49897 genes Fisher ratio 2.36 1.76 .65 1.62 1.86 . 59 . 20 . 64 . 80 71 $\boldsymbol{\vdash}$ 2 \vdash \vdash $\boldsymbol{\vdash}$

G3. **G**2 genes Table 6. Top-40 discriminatory

Eunction	similar to Rattus norvegicus kidney-specific protein mRNA	unknown	cell cycle control	retinoic acid	receptor/retinoic	acid-inducble	liver enerme for alvaine and	hile acid metabolisms		intracellular protein	traffic		transcription/cell cycle	intracellular protein	traffic	fatty acid metabolism		unknown		mitochondrial	enzyme/energy generation	
Locus	16		14q22.1		7435			9q22.3			7p22.2		14q24.3-q31	12024_31	• {	4q34-q35	1	2q24.3		4422-426	י ני ני ני	
Symbol '			MIG2		RARRES2			BAAT			KDELR2		CHES1	RNP24		FACL2		KIAA0977		HADHSC		
Description	or	unknown	mitogen inducible 2	retinoic acid receptor	responder (tazarotene	induced) 2	bile acid Coenzyme A:	amino acid	<i>N</i> -acyltransferase	KDEL endoplasmic	reticulum protein	retention receptor 2	checkpoint suppressor 1	coated vesicle membrane	protein	acid-Coenzyme	ligase, long-chain 2	KIAA0977 protein	L-3-hydroxyacyl-	Coenzyme A	dehydrogenase, short	chain
GB number	AI263099	U22961	224725		U77594		L34081			M88458		U68723	800C0X	00704	D10040		AB023194		NE001003	COCTOO 34		
Fisher ratio	1.59	1.57	1.57		1.53			1.49			1.49		1.48	٦ ٧	O Ħ •	1.44	ł •	1.43		7	7 + . 1	

Table 6. Top-40 discriminatory

Fisher	zəqumu gg	Description	Symbol	Locus	Function
1.40	x96752	L-3-hydroxyacyl- Coenzyme A dehydrogenase, short chain	HADHSC	4q22-q26	mitochondrial enzyme/energy generation
1.40	AB006202	<pre>succinate dehydrogenase complex, subunit D</pre>	SDHD	11423	mitochondrial protein/electron transporter
1.37	M75106	carboxypeptidase B2	CPB2	13q14.11	proteolysis and peptidolysis
1.37	Y12711	rogesterone receptor membrane component 1	PGRMC1	Xq22-q24	liver-rich protein that binds to progesterone
1.36	D14662	anti-oxidant protein 2	AOP2	1423.3	antioxidant activity/non-selenium glutathione peroxidase
1.36	\$87759	protein phosphatase 1A	PPM1A	14q23.1	cellular stress responses
1.36	248199	syndecan 1	SDC1	2p24.1	cell adhesion and metastasis
1.35	AF088219	chemokine (C-C motif) ligand 14	CCL14	17q11.2	cell proliferation
1.35	AA453183	EST			unknown

Ten genes upregulated in G3 in comparison with G2

Function	RNA-binding protein
Locus	2q33-q34
Symbol	DAZAP2
Description	DAZ associated protein 2
GB number	D31767
Fisher	2.80

₼.

G2 genes Table 6. Top-40 discriminatory

Eunction	inhibitor specific for HGFactivator	cell adhesion and metastasis	energy generation	DNA-binding protein	neuronal maturation	extracellular stimuli and cellular responses	cell adhesion and metastasis	cell proliferation	cell growth and adhesion
FOCUS	15q13.3	17q11.1	16q24	12q24.3-qter	1p32	1q21	17q11.1	Xp11.23	19q13.2
Symbol	SPINT1	LGALS9	CYBA	BAZZA	PPT1	S100A13	LGALS9	PIM2	TGFB1
Description	serine protease inhibitor, Kunitz type 1	galectin 9	cytochrome b-245, alpha polypeptide	bromodomain adjacent to zinc finger domain 2A	palmitoyl-protein thioesterase 1	S100 calcium binding protein A13	galectin 9	pim-2 oncogene	transforming growth factor, beta 1
GB mumber	AB000095	AB006782	M21186	AB002312	U44772	AI541308	Z49107	U77735	M38449
Fisher	2.57	2.40	2.18	1.96	1.84	1.77	1.53	1.36	1.34