Analyse Numérique Exercices – Série 21

9 avril 2020 Questions marquées de \star à rendre le 23 avril 2020

1. (*, tout l'exercice) (Méthode de Newton-Schulz pour calculer l'inverse d'une matrice)

Soit $A \in \mathbb{R}^{n \times n}$ une matrice inversible. Dans cet exercice, on va montrer qu'il est possible de trouver une approximation de A^{-1} avec la méthode de Newton. Étant donnée A, on cherche la "racine" de l'équation sous forme matricielle

$$f(X) = X^{-1} - A = 0.$$

L'itération de Newton est donnée par

$$X_{k+1} = X_k - [f'(X_k)]^{-1} f(X_k).$$
(1)

On remarque que la dérivée $f'(X) \equiv g'(X)$, où $g(X) = X^{-1}$. Il s'agit d'un opérateur linéaire

$$g'(X):\mathbb{R}^{n\times n}\to\mathbb{R}^{n\times n},\quad \text{défini par}\quad E\mapsto -X^{-1}EX^{-1}.$$

Autrement dit, l'application de g'(X) à une matrice E nous donne la matrice $-X^{-1}EX^{-1}$.

(a) (0.5 points) Montrer que l'itération de Newton (1) peut être réécrite sous la forme

$$X_{k+1} = 2X_k - X_k A X_k.$$

- (b) Maintenant on définit $R_k = I X_k A$ et on va montrer que si $||R_0|| = ||I X_0 A|| = \alpha < 1$, alors le taux de convergence de l'erreur $||X_k A^{-1}||$ est quadratique.
 - i. (0.5 points) Montrer d'abord, par calcul direct, que $R_{k+1} = R_k^2$.
 - ii. (1 point) Montrer qu'il existe une constante C telle que

$$||X_{k+1} - A^{-1}|| \le C ||X_k - A^{-1}||^2.$$
(2)

Indication : on pourra utiliser que $R_kA^{-1} = A^{-1} - X_k$ et $R_k = R_kA^{-1}A$.

2. (Méthode de Runge)

(a) Réécrire l'équation différentielle d'ordre 2

$$z'' - \alpha z = 0$$
, $z(0) = 1$, $z'(0) = 1$

en un problème différentielle d'ordre 1 de la forme

$$\mathbf{y}' = A\mathbf{y}, \quad \mathbf{y}(0) = \mathbf{y}_0.$$

(b) On rappelle le tableau de Butcher de la méthode de Runge :

$$\begin{array}{c|cc}
0 & & \\
1/2 & 1/2 & \\
\hline
& 0 & 1
\end{array}$$

Pour $\alpha = -1$, calculer la solution exacte $\mathbf{y} : [0,1] \to \mathbb{R}^2$ et la solution numérique avec la méthode de Runge sur [0,1], avec h = 1/2. Évaluer les deux solutions en t = 1 et les comparer.

(c) Pour quelles valeurs de $\alpha \in \mathbb{R}^*$, la solution $z : \mathbb{R} \to \mathbb{R}$ vérifie

$$\lim_{t\to\infty}|z(t)|<\infty\ ?$$