1题

1.1 题

$$egin{array}{ll} \max & 3w_1+6w_2+2w_3+2w_4 \ s.\,t. & w_1+3w_2+w_4 \leq 8 \ & 2w_1+w_2 \leq 6 \ & w_2+w_3+w_4 \leq 3 \ & w_1+w_2+w_3 \leq 6 \ & w_1,w_2,w_3,w_4 \geq 0 \end{array}$$

1.2 题

$$Ax^{*T} - b = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 6 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\therefore w_4^* = 0$$

$$\therefore x_1^*, x_2^*, x_3^* \neq 0$$

$$\therefore \begin{cases} w_1 + 3w_2 + w_4 = 8 \\ 2w_1 + w_2 = 6 \\ w_2 + w_3 + w_4 = 3 \end{cases} \Rightarrow \begin{cases} w_1 = 2 \\ w_2 = 2 \\ w_3 = 1 \end{cases}$$

$$\therefore w^* = (2, 2, 1, 0)$$

2题

2.1 题

$$\begin{cases} x_1 - 1 - \alpha_1 - \alpha_2 = 0 \\ x_2 - 2 - \alpha_1 - \alpha_3 = 0 \\ (x_1 + x_2 - \kappa)\alpha_1 = 0 \\ x_1\alpha_2 = 0 \\ x_2\alpha_3 = 0 \\ \alpha_1, \alpha_2, \alpha_3 \ge 0 \\ x_1 + x_2 - \kappa \ge 0 \\ x_1, x_2 \ge 0 \end{cases}$$

代入 $\kappa = 4, x_1 = 1.5, x_2 = 2.5$ 得:
$$\alpha_1 = 0.5, \alpha_2 = 0, \alpha_3 = 0$$
$$\therefore x^* 为 KKT$$
点显然,所给问题为凸规划
$$\therefore x^*$$
是最优解

2.2 题

$$\begin{cases} x_1 - 1 = 0 \\ x_2 - 2 = 0 \\ x_1 + x_2 - \kappa > 0 \\ x_1, x_2 > 0 \end{cases}$$
 $\therefore \kappa < 3$
最优解为 $(1, 2)$, 目标函数最优值为 $-\frac{5}{2}$

2.3 题

由(2)得 $\kappa < 3$ 时,最优解不在边界上

假设最优解落在边界
$$x_1+x_2-\kappa=0$$
,进而 $x_1+x_2=\kappa$

$$egin{cases} x_1 = lpha_1 + lpha_2 + 1 \ x_2 = lpha_1 + lpha_3 + 2 \Rightarrow x_1, x_2 > 0 \ lpha_1, lpha_2, lpha_3 \geq 0 \ x_1 lpha_2 = 0 \ lpha_2 lpha_3 = 0 \ x_2 lpha_3 = 0 \ x_1 = lpha_1 + 1 \ x_2 = lpha_1 + 2 \ lpha_1 > 0 \ \end{cases} pprox x_1 = rac{\kappa - 1}{2}, x_2 = rac{\kappa + 1}{2}, \kappa \geq 3$$

综上, 当 $\kappa \geq 3$ 时, 最优解为可行区域边界点, 最优解为 $\left(\frac{\kappa-1}{2}, \frac{\kappa+1}{2}\right)$, 目标函数最优值为 $\frac{1}{4}\kappa^2 - \frac{3}{2}\kappa - \frac{1}{4}$

2.4 题

$$\begin{cases} x_1 - 1 - w = 0 \\ x_2 - 2 - w = 0 \\ x_1, x_2 > 0 \end{cases} \Rightarrow \begin{cases} x_1 = w + 1 \\ x_2 = w + 2 \end{cases}$$
 $w \ge 0$

$$\therefore$$
 对偶问题为
$$\max \quad \theta(w) = -w^2 + (\kappa - 3)w - \frac{5}{2}$$
 $s.t. \quad w > 0$

3 题

3.1 题

$$egin{array}{ll} \min & x_1+x_2-3x_3+M(x_6+x_7) \ s.\,t. & x_1-2x_2+x_3+x_4=11 \ & 2x_1+x_2-4x_3-x_5+x_6=3 \ & x_1-2x_3+x_7=1 \ & x_i\geq 0, i=1,\ldots,7 \end{array}$$

	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆	x ₇	
x ₄	1	-2	1	1	0	0	0	11
x ₆	2	1	-4	0	-1	1	0	3
x ₇	1	0	-2	0	0	0	1	1
	3M-1	M-1	-6M+3	0	-M	0	0	4M

	x ₁	x ₂	х ₃	x ₄	x ₅	x ₆	x ₇	
x ₄	0	-2	3	1	0	0	-1	10
x ₆	0	1	0	0	-1	1	-2	1
x ₁	1	0	-2	0	0	0	1	1
	0	M-1	1	0	-M	0	1-3M	M+1

	x ₁	x ₂	х ₃	x ₄	x ₅	x ₆	x ₇	
x ₄	0	0	3	1	-2	2	-5	12
x ₂	0	1	0	0	-1	1	-2	1
x ₁	1	0	-2	0	0	0	1	1
	0	0	1	0	-1	1-M	-1-M	2

	x ₁	x ₂	х ₃	x ₄	x ₅	x ₆	x ₇	
х3	0	0	1	1/3	-2/3	2/3	-5/3	4
x ₂	0	1	0	0	-1	1	-2	1
x ₁	1	0	0	2/3	-4/3	4/3	-7/3	9
	0	0	0	-1/3	-1/3	1/3-M	2/3-M	-2

最优解: $(9,1,4)^T$ 最优值:-2

3.2 题

新的右端向量:
$$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{5}{3} \\ 0 & 1 & -2 \\ \frac{2}{3} & \frac{4}{3} & -\frac{7}{3} \end{pmatrix} \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \\ 1 \\ \frac{1}{3} \end{pmatrix}$$
新的目标函数值:
$$\frac{1}{3} + 1 + 1 = \frac{7}{3}$$

	x ₁	x ₂	х ₃	x ₄	X ₅	x ₆	x ₇	
х3	0	0	1	1/3	-2/3	2/3	-5/3	-1/3
x ₂	0	1	0	0	-1	1	-2	1
x ₁	1	0	0	2/3	-4/3	4/3	-7/3	1/3
	0	0	0	-1/3	-1/3	1/3-M	2/3-M	7/3

	x ₁	x ₂	х ₃	x ₄	X ₅	x ₆	x ₇	
X ₅	0	0	-3/2	-1/2	1	-1	5/2	1/2
x ₂	0	1	-3/2	-1/2	0	0	1/2	3/2
x ₁	1	0	-2	0	0	0	1	1
	0	0	-1/2	-1/2	0	-M	3/2-M	5/2

新问题最优解: $(1, \frac{3}{2}, 0)^T$ 新问题最优值: $\frac{5}{2}$

4 题

$$L = (x_1 - 1)^2 + x_2^2 - v(x_1 - \frac{x_2^2}{\beta})$$

$$KKT条件: \begin{cases} 2(x_1 - 1) - v = 0 \\ 2x_2 + \frac{2v}{\beta}x_2 = 0 \\ x_1 - \frac{x_2^2}{\beta} = 0 \end{cases}$$
将 $x_1 = x_2 = 0$ 代入得 $v = -2$

$$x_1 - \frac{x_2^2}{\beta} £(0,0)$$
处的梯度为 $(1,0)^T$

$$G = \{d = (d_1, d_2)^T | (1,0) \times (d_1, d_2)^T = 0\} = \{d = (d_1, d_2)^T | d_1 = 0\}$$

$$\nabla^2 L = \begin{pmatrix} 2 & 0 \\ 0 & 2 + \frac{2v}{\beta} \end{pmatrix}$$
代入 $x_1 = x_2 = 0, v = -2$ 得 $\nabla^2 L = \begin{pmatrix} 2 & 0 \\ 0 & 2 - \frac{4}{\beta} \end{pmatrix}$

$$2 - \frac{4}{\beta} > 0 \Rightarrow \beta > 2$$
时, \overline{x} 一定是局部最优解
$$2 - \frac{4}{\beta} < 0 \Rightarrow 0 < \beta < 2$$
时, \overline{x} 一定不是局部最优解
$$2 - \frac{4}{\beta} = 0 \Rightarrow \beta = 2$$
时, $x_2^2 = 2x_1$, 目标函数变为 $(x_1 - 1)^2 + 2x_1(x_1 \ge 0)$
即目标函数为 $x_1^2 + 1(x_1 \ge 0)$, 显然 $x_1 = 0$ 时达到最优值, 此时 $x_2 = 0$, 故 \overline{x} 是局部最优解 综上, $\beta \ge 2$ 时, \overline{x} 是局部最优解

5 题

5.1 题

5.2 题

$$egin{aligned} L &= f(x) - v^T (Ax - b) \
abla L &=
abla f(x) - A^T v = egin{pmatrix}
abla_{x_N} f(x) \\
abla_{x_N} f(x) \end{pmatrix} - egin{pmatrix} B^T \\ N^T \end{pmatrix} v \end{aligned}$$

必要性:

$$d=0\Rightarrow d_N=0\Rightarrow r(x_N)=0\Rightarrow
abla_{x_N}f(x)-(B^{-1}N)^T
abla_{x_B}f(x)=0$$
 $\Leftrightarrow v=(B^{-1})^T
abla_{x_B}f(x)$
则 $abla_{x_B}f(x)-B^Tv=0$
 $abla_{x_N}f(x)-N^Tv=
abla_{x_N}f(x)-N^T(B^{-1})^T
abla_{x_B}f(x)$
 $=
abla_{x_N}f(x)-N^T(B^{-1})^T
abla_{x_B}f(x)$
 $=
abla_{x_N}f(x)-(B^{-1}N)^T
abla_{x_N}f(x)$
 $=
abla$

充分性:

证毕