# Estatística

Wagner Pinheiro wagner2235@gmail.com

### Variável Aleatória



Definição: variável aleatória é a função que associa cada elemento de S a um número real.

### Variável Aleatória

Experimento: jogar 2 moedas e observar o resultado (K = cara e C = coroa)



OBS: em P(X = x), a natureza funcional da v.a. foi suprimida. De fato, a expressão mais correta seria  $P(s \in S \mid X(s) = x)$ . por definição, os valores de uma v.a. são sempre mutuamente exclusivos

### Variável Aleatória Discreta

Definição: uma v.a. é discreta quando o conjunto de valores possíveis for finito ou infinito numerável.

$$P(X = x_i) \ge 0$$
 para todo  $i$ 

$$\sum_{i} P(X = x_i) = 1$$

#### Função de Probabilidade

$$f(x) = P(X = x)$$

#### Função de Distribuição Acumulada

$$F(x) = P(X \le x)$$

$$= \sum_{j} f(x_{j}) \text{ para todo } j \text{ onde } x_{j} < x$$

### Variável Aleatória Discreta

#### Exemplos:

a) jogar um dado

X: ponto obtido no dado

X = {1, 2, 3, 4, 5, 6}

X: = 1 se ponto for igual a 6

= 0 caso contrário

X = {0, 1}

- b) jogar 5 moedas (ou uma moeda 5 vezes) X: número de caras em 5 lances  $X = \{0, 1, 2, 3, 4, 5\}$
- jogar uma moeda até tirar uma cara X: número de jogadas até tirar uma cara (incluindo-se a cara)  $X = \{1, 2, 3, ...\}$  X: número de coroas até tirar uma cara  $X = \{0, 1, 2, ...\}$

### Variável Aleatória Discreta

#### Exemplos:

d) sortear um ponto de uma imagem (8bits)

X: valor de nível de cinza

$$X = \{0, 1, ..., 255\}$$

X: = 1 se valor de nível de cinza for menor que 100

= 0 caso contrário

$$X = \{0, 1\}$$

e) sortear 5 pontos em um mapa pedológico

X: número de pontos correspondentes à classe Argissolo

$$X = \{0, 1, 2, 3, 4, 5\}$$

f) sortear pontos em um mapa de vegetação até que se encontre a classe Cerrado X: número de pontos sorteados (incluindo-se o ponto da classe Cerrado)

$$X = \{1, 2, 3, ...\}$$

X: número de pontos sorteados (excluindo-se o ponto da classe Cerrado)

$$X = \{0, 1, 2, ...\}$$

### Variável Aleatória Contínua

Definição: uma v.a. é contínua quando o conjunto de valores possíveis (imagem) for inumerável.

$$P(a < X < b) \ge 0$$

#### Função Densidade de Probabilidade (fdp)

$$f(x) \ge 0$$

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$



#### Função de Distribuição Acumulada

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

### Variável Aleatória Contínua

#### Exemplos:

- a) X: distância entre dois pontos  $X = [0, +\infty[$
- b) X: distância vertical de um ponto, relativa a uma superfície plana pré-definida  $X = ]-\infty, +\infty[$
- c) X: reflectância de um objeto X = [0,1]

- . o balanço (receita despesa) de uma empresa (em reais) é uma v.a. contínua ou discreta?
- . temperatura é uma v.a. contínua ou discreta?

### Variável Aleatória e Probabilidade

Problema: Define-se uma variável X como o número de caras em 6 lances de moeda. Qual a probabilidade de se obter mais que 4 caras nesses 6 lances?

$$X = \{0, 1, 2, 3, 4, 5, 6\}$$

$$P(X > 4) = P(X = 5) + P(X = 6)$$

$$P(X = 5) = P(KKKKKC \cup KKKKCK \cup KKKCKK \cup KKCKKK \cup KCKKKK \cup CKKKKKK)$$
  
= 6/64

$$P(X = 6) = P(KKKKKK)$$
$$= 1/64$$

$$P(X > 4) = 7/64$$

## Distribuição de uma Variável Aleatória

#### Variável X



| $\overline{X}$ | P(X = x) |
|----------------|----------|
| 1              | 0,10     |
| 2              | 0,15     |
| 3              | 0,25     |
| 4              | 0,25     |
| 5              | 0,15     |
| 6              | 0,10     |

#### Variável Y



| <u> </u> | P(Y=y) |
|----------|--------|
| 1        | 0,10   |
| 2        | 0,45   |
| 3        | 0,22   |
| 4        | 0,15   |
| 5        | 0,06   |
| 6        | 0,02   |

### Medidas de Tendência Central



| X | P(X = x) |
|---|----------|
| 1 | 0,10     |
| 2 | 0,15     |
| 3 | 0,25     |
| 4 | 0,25     |
| 5 | 0,15     |
| 6 | 0,10     |

 Calcular o valor médio Média

$$E(X) = \sum_{i=1}^{N} x_i P(X = x_i)$$

$$E(X) = 1*0,10+2*0,15+3*0,25+4*0,25+5*0,15+6*0,10=3,5$$

## Medidas de Tendência Central



| Y | P(Y=y) |
|---|--------|
| 1 | 0,10   |
| 2 | 0,45   |
| 3 | 0,22   |
| 4 | 0,15   |
| 5 | 0,06   |
| 6 | 0,02   |

 Calcular o valor médio Média

$$E(Y) = \sum_{i=1}^{N} y_i P(Y = y_i)$$

$$E(Y) = 1*0,10+2*0,45+3*0,22+4*0,15+5*0,06+6*0,02 = 2,68$$

### Medidas de Tendência Central

#### Média

$$E(X) = \sum_{i=1}^{n} x_i P(x_i)$$
 v.a. discretas

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$
 v.a. contínuas

OBS: média = 1º momento = esperança matemática = esperança = valor esperado

## Medidas de Dispersão

#### Variância

$$V(X) = \sum_{i=1}^{N} (x_i - \mu)^2 P(x_i)$$
 v.a. discretas

$$V(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$
 v.a. contínuas



| X | P(X = x) |
|---|----------|
| 1 | 0,10     |
| 2 | 0,15     |
| 3 | 0,25     |
| 4 | 0,25     |
| 5 | 0,15     |
| 6 | 0,10     |

$$E(X) = \sum_{i=1}^{N} x_i P(X = x_i) = 1*0,10+2*0,15+\dots+6*0,10 = 3,5$$

$$Var(X) = E(X^2) - [E(X)]^2$$

$$E(X^2) = 1^2 * 0.10 + 2^2 * 0.15 + \dots + 6^2 * 0.10 = 14.3$$

$$Var(X) = 14,3-3,5^2 = 2,05$$

=

+ 3

$$X$$
 1
 2
 3
 4
 5
 6

  $P(X=x)$ 
 0,10
 0,15
 0,25
 0,25
 0,15
 0,10

$$E(X) = 3.5$$
  $Var(X) = 2.05$ 

$$\bullet \ Y = X + o$$

Ex: 
$$Y = X + 3$$

Y
 4
 5
 6
 7
 8
 9

 X
 1
 2
 3
 4
 5
 6

 
$$P(X=x)$$
 0,10
 0,15
 0,25
 0,25
 0,15
 0,10

$$E(Y) = 4*0,10+5*0,15+\cdots+9*0,10 = 6,5$$

$$Var(Y) = E(Y^2) - [E(Y)]^2 = 44, 3 - 42, 25 = 2,05$$

$$Y = X \pm o$$
  
 $E(Y) = E(X \pm o) = E(X) \pm o$   
 $Var(Y) = Var(X \pm o) = Var(X)$ 





 $*9 = 3^2$ 

\* 3

$$E(X) = 3.5$$
  $Var(X) = 2.05$  -

#### $\bullet \quad Y = gX$

Ex: Y = 3X

Y
 3
 6
 9
 12
 15
 18

 X
 1
 2
 3
 4
 5
 6

 
$$P(X=x)$$
 0,10
 0,15
 0,25
 0,25
 0,15
 0,10

$$E(Y) = 3*0,10+6*0,15+\cdots+18*0,10 = 10,5$$

$$Var(Y) = E(Y^2) - [E(Y)]^2 = 128,7 - 110,25 = 18,45$$

$$Y = gX$$

$$E(Y) = E(gX) = gE(X)$$

$$Var(Y) = Var(gX) = g^{2}Var(X)$$





$$E(X) = 3.5$$

$$Var(X) = 2,05$$

$$E(W) = 2,68$$

$$Var(W) = 1,318$$

$$\bullet Y = X + W$$

$$Y = \{2, ..., 12\}$$

#### Distribuição Conjunta de X e W

| W $X$ | 1 | 2 | 3 | 4  | 5  | 6  |
|-------|---|---|---|----|----|----|
| 1     | 2 | 3 | 4 | 5  | 6  | 7  |
| 2     | 3 | 4 | 5 | 6  | 7  | 8  |
| 3     | 4 | 5 | 6 | 7  | 8  | 9  |
| 4     | 5 | 6 | 7 | 8  | 9  | 10 |
| 5     | 6 | 7 | 8 | 9  | 10 | 11 |
| 6     | 7 | 8 | 9 | 10 | 11 | 12 |

| W $X$      | 1    | 2    | 3    | 4    | 5    | 6    | $P(W=w_i)$ |
|------------|------|------|------|------|------|------|------------|
| 1          |      | _    |      |      |      |      | 0,10       |
| 2          |      |      |      |      |      |      | 0,45       |
| 3          |      | _    |      |      |      |      | 0,22       |
| 4          |      |      |      |      |      |      | 0,15       |
| 5          |      |      |      |      |      |      | 0,06       |
| 6          |      |      |      |      |      |      | 0,02       |
| $P(X=x_i)$ | 0,10 | 0,15 | 0,25 | 0,25 | 0,15 | 0,10 | 1          |

$$P(Y = 3) = P(X = 1; W = 2) + P(X = 2; W = 1)$$

$$P(X = 1; W = 2) = ?$$

$$X$$
 1 2 3 4 5 6  $P(X=x)$  0,10 0,15 0,25 0,25 0,15 0,10

$$E(X) = 3.5$$

$$Var(X) = 2,05$$

$$E(W) = 2,68$$

$$Var(W) = 1,318$$

$$\bullet \ Y = X + W$$

$$Y = \{2, ..., 12\}$$

#### Distribuição Conjunta de X e W

| W $X$ | 1 | 2 | 3 | 4  | 5  | 6  |
|-------|---|---|---|----|----|----|
| 1     | 2 | 3 | 4 | 5  | 6  | 7  |
| 2     | 3 | 4 | 5 | 6  | 7  | 8  |
| 3     | 4 | 5 | 6 | 7  | 8  | 9  |
| 4     | 5 | 6 | 7 | 8  | 9  | 10 |
| 5     | 6 | 7 | 8 | 9  | 10 | 11 |
| 6     | 7 | 8 | 9 | 10 | 11 | 12 |

| W $X$        | 1     | 2      | 3      | 4      | 5      | 6     | $P(W=w_i)$ |
|--------------|-------|--------|--------|--------|--------|-------|------------|
| 1            | 0,010 | 0,015  | 0,025  | 0,025  | 0,015  | 0,010 | 0,10       |
| 2            | 0,045 | 0,0675 | 0,1125 | 0,1125 | 0,0675 | 0,045 | 0,45       |
| 3            | 0,022 | 0,033  | 0,055  | 0,055  | 0,033  | 0,022 | 0,22       |
| 4            | 0,015 | 0,0225 | 0,0375 | 0,0375 | 0,0225 | 0,015 | 0,15       |
| 5            | 0,006 | 0,009  | 0,015  | 0,015  | 0,009  | 0,006 | 0,06       |
| 6            | 0,002 | 0,003  | 0,005  | 0,005  | 0,003  | 0,002 | 0,02       |
| $P(X = x_i)$ | 0,10  | 0,15   | 0,25   | 0,25   | 0,15   | 0,10  | 1          |

$$P(Y = 3) = P(X = 1; W = 2) + P(X = 2; W = 1)$$

P(X=1;W=2) = P(X=1)P(W=2) considerando que X e W sejam independentes

0,0675 0,1125 0,1125 0,0675

0,055

0,015

0.005

0,25

$$E(X) = 3.5$$

$$Var(X) = 2.05$$

$$E(W) = 2,68$$

 $P(X=x_i)$  0,10 0,15 0,25

$$Var(W) = 1,318$$

0.033

0,045

0.022

0.015

0,006

0.002

6  $P(W=w_i)$ 

0,10 0,45

0,22

0,15

0,06

0,02

$$\bullet Y = X - W$$

$$E(Y) = \sum_{i} y_{i} P(Y = y_{i})$$

$$E(X-W) = \sum_{i} \sum_{j} (x_{i}-w_{j})P(X = x_{i}; W = w_{j})$$

$$= \sum_{i} \sum_{j} x_{i} P(X = x_{i}; W = w_{j}) - \sum_{i} \sum_{j} w_{j} P(X = x_{i}; W = w_{j})$$

$$= \sum_{i} x_{i} \sum_{j} P(X = x_{i}; W = w_{j}) - \sum_{j} w_{j} \sum_{i} P(X = x_{i}; W = w_{j})$$

$$= \sum_{i} x_i P(X = x_i) - \sum_{i} w_i P(W = w_i)$$

$$= E(X) - E(W) = 3,5 - 2,68 = 0,82$$

$$E(X \pm W) = E(X) \pm E(W)$$

$$X$$
 1 2 3 4 5 6  $P(X=x)$  0,10 0,15 0,25 0,25 0,15 0,10

$$E(X) = 3.5$$

$$Var(X) = 2,05$$

$$E(W) = 2,68$$

$$Var(W) = 1,318$$

$$\bullet \ Y = X + W$$

$$Var(Y) = E(Y^2) - E(Y)^2$$

$$Var(X + W) = E((X + W)^{2}) - (E(X + W))^{2}$$

$$= E(X^{2} + 2XW + W^{2}) - (E(X) + E(W))^{2}$$

$$= E(X^{2}) + 2E(XW) + E(W^{2}) - E(X)^{2} - 2E(X)E(W) - E(W)^{2}$$

$$= E(X^{2}) - E(X)^{2} + E(W^{2}) - E(W)^{2} + 2(E(XW) - E(X)E(W))$$

$$Var(X) \qquad Var(W) \qquad COV(X, W)$$

covariância entre X e W

$$E(X) = 3.5$$

$$Var(X) = 2,05$$

$$E(W) = 2,68$$

$$Var(W) = 1,318$$

$$\bullet \ Y = X + W$$

$$Var(Y) = E(Y^2) - E(Y)^2$$

$$Var(X + W) = E((X + W)^{2}) - (E(X + W))^{2}$$

$$= E(X^{2} + 2XW + W^{2}) - (E(X) + E(W))^{2}$$

$$= E(X^{2}) + 2E(XW) + E(W^{2}) - E(X)^{2} - 2E(X)E(W) - E(W)^{2}$$

$$= E(X^{2}) - E(X)^{2} + E(W^{2}) - E(W)^{2} + 2(E(XW) - E(X)E(W))$$

$$Var(X+W) = Var(X) + Var(W) + 2COV(X,W)$$

$$X$$
 1
 2
 3
 4
 5
 6

  $P(X=x)$ 
 0,10
 0,15
 0,25
 0,25
 0,15
 0,10

$$E(X) = 3.5$$

$$Var(X) = 2,05$$

$$E(W) = 2,68$$

$$Var(W) = 1,318$$

$$\bullet \ Y = X - W$$

$$Var(Y) = E(Y^2) - E(Y)^2$$

$$Var(X - W) = E((X - W)^{2}) - (E(X - W))^{2}$$

$$= E(X^{2} - 2XW + W^{2}) - (E(X) - E(W))^{2}$$

$$= E(X^{2} - 2E(XW) + E(W^{2}) - E(X)^{2} + 2E(X)E(W) - E(W)^{2}$$

$$= E(X^{2}) - E(X)^{2} + E(W^{2}) - E(W)^{2} - 2(E(XW) - E(X)E(W))$$

$$Var(X \pm W) = Var(X) + Var(W) \pm 2COV(X, W)$$

se 
$$X$$
 e  $W$  são independentes:  $E(XW) = E(X)E(W)$   $\therefore$ 

$$Var(X \pm W) = Var(X) + Var(W)$$

$$Var(X+W) = 2,05+1,318 = 3,368$$

#### Resumo:

$$Y = X \pm o$$
  
 $E(Y) = E(X \pm o) = E(X) \pm o$   
 $Var(Y) = Var(X \pm o) = Var(X)$ 

$$Y = gX$$

$$E(Y) = E(gX) = gE(X)$$

$$Var(Y) = Var(gX) = g^{2}Var(X)$$

$$Y = X \pm W$$
 
$$E(Y) = E(X \pm W) = E(X) \pm E(W)$$
 
$$Var(Y) = Var(X \pm W) = Var(X) + Var(W) \pm 2COV(X, W)$$
 
$$Var(Y) = Var(X \pm W) = Var(X) + Var(W) \quad \text{(independentes)}$$