CC1004 - Modelos de Computação Teórica 18

Ana Paula Tomás

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

Maio 2021

- Um autómato de pilha é um modelo duma máquina que tem uma memória infinita (a pilha) embora tenha um conjunto de estados finito.
- Cada transição é determinada pelo estado atual, pelo símbolo no topo da pilha e possivelmente pelo símbolo da palavra que está a ler na fita.
- Em cada transição, o autómato pode alterar ou manter o estado e substituir ou manter o topo da pilha.
- Se o topo da pilha for X e o substituir por $X_1X_2...X_k$, com $k \ge 1$, e $X_i \in \Gamma$, então retira X e coloca sucessivamente $X_k,...,X_2X_1$, passando o topo a ser X_1 . Convenciona-se que o símbolo mais à esquerda é o que fica no topo.
- Se substitui por X por ε , o topo é retirado. Se substitui X por X, não há alteração da pilha.
- Se a pilha estiver vazia, não pode efetuar qualquer transição.

- Um autómato de pilha é um modelo duma máquina que tem uma memória infinita (a pilha) embora tenha um conjunto de estados finito.
- Cada transição é determinada pelo estado atual, pelo símbolo no topo da pilha e possivelmente pelo símbolo da palavra que está a ler na fita.
- Em cada transição, o autómato pode alterar ou manter o estado e substituir ou manter o topo da pilha.
- Se o topo da pilha for X e o substituir por $X_1X_2...X_k$, com $k \ge 1$, e $X_i \in \Gamma$, então retira X e coloca sucessivamente $X_k,...,X_2X_1$, passando o topo a ser X_1 . Convenciona-se que o símbolo mais à esquerda é o que fica no topo.
- Se substitui por X por ε , o topo é retirado. Se substitui X por X, não há alteração da pilha.
- Se a pilha estiver vazia, não pode efetuar qualquer transição.

- Um autómato de pilha é um modelo duma máquina que tem uma memória infinita (a pilha) embora tenha um conjunto de estados finito.
- Cada transição é determinada pelo estado atual, pelo símbolo no topo da pilha e possivelmente pelo símbolo da palavra que está a ler na fita.
- Em cada transição, o autómato pode alterar ou manter o estado e substituir ou manter o topo da pilha.
- Se o topo da pilha for X e o substituir por $X_1X_2...X_k$, com $k \ge 1$, e $X_i \in \Gamma$, então retira X e coloca sucessivamente $X_k,...,X_2X_1$, passando o topo a ser X_1 . Convenciona-se que o símbolo mais à esquerda é o que fica no topo.
- Se substitui por X por ε , o topo é retirado. Se substitui X por X, não há alteração da pilha.
- Se a pilha estiver vazia, não pode efetuar qualquer transição.

- Um autómato de pilha é um modelo duma máquina que tem uma memória infinita (a pilha) embora tenha um conjunto de estados finito.
- Cada transição é determinada pelo estado atual, pelo símbolo no topo da pilha e possivelmente pelo símbolo da palavra que está a ler na fita.
- Em cada transição, o autómato pode alterar ou manter o estado e substituir ou manter o topo da pilha.
- Se o topo da pilha for X e o substituir por $X_1X_2...X_k$, com $k \ge 1$, e $X_i \in \Gamma$, então retira X e coloca sucessivamente $X_k,...,X_2X_1$, passando o topo a ser X_1 . Convenciona-se que o símbolo mais à esquerda é o que fica no topo.
- Se substitui por X por ε , o topo é retirado. Se substitui X por X, não há alteração da pilha.
- Se a pilha estiver vazia, não pode efetuar qualquer transição.

Um autómato de pilha ${\mathcal A}$ é um definido por

$$A = (S, \Sigma, \Gamma, \delta, s_0, Z_0, F)$$

sendo

- 5 o conjunto de estados, S é finito,
- ∑ o alfabeto de entrada,
- $s_0 \in S$ o estado inicial, $Z_0 \in \Gamma$ o símbolo inicial na pilha,
- F o conjunto de estados finais,
- δ a função de transição, que é uma função de $S \times (\Sigma \cup \{\varepsilon\}) \times \Gamma$ no conjunto dos subconjuntos de $S \times \Gamma^*$.

NB: $A \times B \times C = \{(a,b,c) \mid a \in A, b \in B, c \in C\}$ ou seja, o conjunto dos ternos ordenados.

Autómatos de Pilha - Aceitação por Estados Finais

Exemplo 1: Seja $A = (\{s_0, s_1, s_2\}, \{0, 1\}, \{Z, B\}, \delta, s_0, Z, \{s_2\})$ um autómato de pilha, com aceitação por estados finais, e

$$\begin{array}{llll} \delta(s_0,\varepsilon,Z) & = & \{(s_2,Z)\} & & \delta(s_0,0,Z) & = & \{(s_0,BZ)\} \\ \delta(s_0,0,B) & = & \{(s_0,BB)\} & & \delta(s_0,1,B) & = & \{(s_1,\varepsilon)\} \\ \delta(s_1,1,B) & = & \{(s_1,\varepsilon)\} & & \delta(s_1,\varepsilon,Z) & = & \{(s_2,Z)\} \end{array}$$

e $\delta(s, \alpha, X) = \{ \}$ para os restantes ternos $(s, \alpha, X) \in S \times (\Sigma \cup \{\varepsilon\}) \times \Gamma$.

Vamos ilustrar esquematicamente o processamento da palavra 0011.

4□ > 4□ > 4∃ > 4∃ > ∃ 90

Autómatos de Pilha - Aceitação por Estados Finais

Exemplo 1: Seja $A = (\{s_0, s_1, s_2\}, \{0, 1\}, \{Z, B\}, \delta, s_0, Z, \{s_2\})$ um autómato de pilha, com aceitação por estados finais, e

$$\begin{array}{llll} \delta(s_0,\varepsilon,Z) & = & \{(s_2,Z)\} & & \delta(s_0,0,Z) & = & \{(s_0,BZ)\} \\ \delta(s_0,0,B) & = & \{(s_0,BB)\} & & \delta(s_0,1,B) & = & \{(s_1,\varepsilon)\} \\ \delta(s_1,1,B) & = & \{(s_1,\varepsilon)\} & & \delta(s_1,\varepsilon,Z) & = & \{(s_2,Z)\} \end{array}$$

e $\delta(s, \alpha, X) = \{ \}$ para os restantes ternos $(s, \alpha, X) \in S \times (\Sigma \cup \{\epsilon\}) \times \Gamma$.

Vamos ilustrar esquematicamente o processamento da palavra 0011.

A linguagem aceite pelo autómato por estados finais é $\{0^n1^n \mid n \in \mathbb{N}\}.$

 $x \in \Sigma^*$ é aceite por estados finais se x puder levar o autómato da configuração inicial (s_0, x, Z) a uma configuração $(s_2, \varepsilon, \gamma)$, com $\gamma \in \Gamma^*$.

Autómatos de Pilha - Aceitação por Estados Finais

Exemplo 1: Seja $A = (\{s_0, s_1, s_2\}, \{0, 1\}, \{Z, B\}, \delta, s_0, Z, \{s_2\})$ um autómato de pilha, com aceitação por estados finais, e

$$\begin{array}{llll} \delta(s_0,\varepsilon,Z) & = & \{(s_2,Z)\} & & \delta(s_0,0,Z) & = & \{(s_0,BZ)\} \\ \delta(s_0,0,B) & = & \{(s_0,BB)\} & & \delta(s_0,1,B) & = & \{(s_1,\varepsilon)\} \\ \delta(s_1,1,B) & = & \{(s_1,\varepsilon)\} & & \delta(s_1,\varepsilon,Z) & = & \{(s_2,Z)\} \end{array}$$

e $\delta(s, \alpha, X) = \{ \}$ para os restantes ternos $(s, \alpha, X) \in S \times (\Sigma \cup \{\varepsilon\}) \times \Gamma$.

Vamos ilustrar esquematicamente o processamento da palavra 0011.

A linguagem aceite pelo autómato por estados finais é $\{0^n1^n \mid n \in \mathbb{N}\}$. $x \in \Sigma^*$ é aceite por estados finais se x puder levar o autómato da configuração inicial (s_0, x, Z) a uma configuração $(s_2, \varepsilon, \gamma)$, com $\gamma \in \Gamma^*$.

Autómatos de Pilha - Aceitação por Pilha Vazia

Exemplo 2: Seja $A_2 = (\{s_0, s_1, s_2\}, \{0, 1\}, \{Z, B\}, \delta, s_0, Z, \{\})$ um autómato de pilha, com aceitação por pilha vazia, e

$$\begin{array}{llll} \delta(s_0,\varepsilon,Z) & = & \{(s_1,\varepsilon)\} & & \delta(s_0,0,Z) & = & \{(s_0,BZ)\} \\ \delta(s_0,0,B) & = & \{(s_0,BB)\} & & \delta(s_0,1,B) & = & \{(s_1,\varepsilon)\} \\ \delta(s_1,1,B) & = & \{(s_1,\varepsilon)\} & & \delta(s_1,\varepsilon,Z) & = & \{(s_1,\varepsilon)\} \end{array}$$

e $\delta(s, \alpha, X) = \{ \}$ para os restantes ternos $(s, \alpha, X) \in S \times (\Sigma \cup \{\varepsilon\}) \times \Gamma$.

Vamos ilustrar esquematicamente o processamento da palavra 0011.

A linguagem aceite pelo autómato por pilha vazia é $\{0^n1^n \mid n \in \mathbb{N}\}$. $x \in \Sigma^*$ é aceite por pilha vazia se x puder levar o autómato da configuração inicial (s_0, x, Z) a uma configuração $(s, \varepsilon, \varepsilon)$, com $s \in S$.

Autómatos de Pilha - Aceitação por Pilha Vazia

Exemplo 2: Seja $A_2 = (\{s_0, s_1, s_2\}, \{0, 1\}, \{Z, B\}, \delta, s_0, Z, \{\})$ um autómato de pilha, com aceitação por pilha vazia, e

$$\begin{array}{llll} \delta(s_0,\varepsilon,Z) & = & \{(s_1,\varepsilon)\} & & \delta(s_0,0,Z) & = & \{(s_0,BZ)\} \\ \delta(s_0,0,B) & = & \{(s_0,BB)\} & & \delta(s_0,1,B) & = & \{(s_1,\varepsilon)\} \\ \delta(s_1,1,B) & = & \{(s_1,\varepsilon)\} & & \delta(s_1,\varepsilon,Z) & = & \{(s_1,\varepsilon)\} \end{array}$$

e $\delta(s, \alpha, X) = \{ \}$ para os restantes ternos $(s, \alpha, X) \in S \times (\Sigma \cup \{\varepsilon\}) \times \Gamma$.

Vamos ilustrar esquematicamente o processamento da palavra 0011.

A linguagem aceite pelo autómato por pilha vazia é $\{0^n1^n \mid n \in \mathbb{N}\}.$

 $x \in \Sigma^*$ é aceite por pilha vazia se x puder levar o autómato da configuração inicial (s_0, x, Z) a uma configuração $(s, \varepsilon, \varepsilon)$, com $s \in S$.

Autómatos de Pilha - Aceitação por Pilha Vazia

Exemplo 2: Seja $A_2 = (\{s_0, s_1, s_2\}, \{0, 1\}, \{Z, B\}, \delta, s_0, Z, \{\})$ um autómato de pilha, com aceitação por pilha vazia, e

$$\begin{array}{llll} \delta(s_0,\varepsilon,Z) & = & \{(s_1,\varepsilon)\} & & \delta(s_0,0,Z) & = & \{(s_0,BZ)\} \\ \delta(s_0,0,B) & = & \{(s_0,BB)\} & & \delta(s_0,1,B) & = & \{(s_1,\varepsilon)\} \\ \delta(s_1,1,B) & = & \{(s_1,\varepsilon)\} & & \delta(s_1,\varepsilon,Z) & = & \{(s_1,\varepsilon)\} \end{array}$$

e $\delta(s, \alpha, X) = \{ \}$ para os restantes ternos $(s, \alpha, X) \in S \times (\Sigma \cup \{\varepsilon\}) \times \Gamma$.

Vamos ilustrar esquematicamente o processamento da palavra 0011.

A linguagem aceite pelo autómato por pilha vazia é $\{0^n1^n \mid n \in \mathbb{N}\}.$

 $x \in \Sigma^*$ é aceite por pilha vazia se x puder levar o autómato da configuração inicial (s_0, x, Z) a uma configuração $(s, \varepsilon, \varepsilon)$, com $s \in S$.

Exemplo 3: $L = \{ww^R \mid w \in \{a,b\}^*\}$, onde w^R é a reversa de w, constituída pelas capícuas de comprimento par, é aceite por pilha vazia pelo autómato de pilha $\mathcal{A} = (\{s_0, s_1\}, \{a, b\}, \{Z, A, B\}, \delta, s_0, Z, \{\})$ onde

```
\begin{array}{ll} \delta(s_0,\varepsilon,Z) = \{(s_1,Z)\} \\ \delta(s_0,a,Z) = \{(s_0,AZ)\} \\ \delta(s_0,a,B) = \{(s_0,AB)\} \\ \delta(s_0,a,A) = \{(s_0,AA),(s_1,\varepsilon)\} \\ \delta(s_1,a,A) = \{(s_1,\varepsilon)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array} \qquad \begin{array}{ll} \delta(s_0,b,Z) = \{(s_0,BZ)\} \\ \delta(s_0,b,A) = \{(s_0,BA)\} \\ \delta(s_0,b,B) = \{(s_0,BB),(s_1,\varepsilon)\} \\ \delta(s_1,b,B) = \{(s_1,\varepsilon)\} \end{array}
```

- Em s_0 o autómato *carrega* a pilha: com a, coloca A no topo; com b, coloca B no topo. Mas, <u>é não determinístico</u>: pode também começar a *descarregar* a pilha: se tiver A no topo e na fita está a ou se tiver B no topo e na fita tem b, pode passar a s_1 e retirar o topo.
- Em s_1 o autómato está a *descarregar* a pilha: se tem A no topo e consome a, retira A; se tem B no topo e consome b, retira B.

Exemplo 3: $L = \{ww^R \mid w \in \{a,b\}^*\}$, onde w^R é a reversa de w, constituída pelas capícuas de comprimento par, é aceite por pilha vazia pelo autómato de pilha $\mathcal{A} = (\{s_0, s_1\}, \{a, b\}, \{Z, A, B\}, \delta, s_0, Z, \{\})$ onde

```
\begin{array}{ll} \delta(s_0,\varepsilon,Z) = \{(s_1,Z)\} \\ \delta(s_0,a,Z) = \{(s_0,AZ)\} \\ \delta(s_0,a,B) = \{(s_0,AB)\} \\ \delta(s_0,a,A) = \{(s_0,AA),(s_1,\varepsilon)\} \\ \delta(s_1,a,A) = \{(s_1,\varepsilon)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array} \qquad \begin{array}{ll} \delta(s_0,b,Z) = \{(s_0,BZ)\} \\ \delta(s_0,b,A) = \{(s_0,BA)\} \\ \delta(s_0,b,B) = \{(s_0,BB),(s_1,\varepsilon)\} \\ \delta(s_1,b,B) = \{(s_1,\varepsilon)\} \end{array}
```

- Em s_0 o autómato *carrega* a pilha: com a, coloca A no topo; com b, coloca B no topo. Mas, <u>é não determinístico</u>: pode também começar a *descarregar* a pilha: se tiver A no topo e na fita está a ou se tiver B no topo e na fita tem b, pode passar a s_1 e retirar o topo.
- Em s₁ o autómato está a descarregar a pilha: se tem A no topo e consome a, retira A; se tem B no topo e consome b, retira B.

$$\begin{array}{l} L = \{ww^R \mid w \in \{\mathtt{a},\mathtt{b}\}^\star\} \text{ \'e aceite por pilha vazia} \text{ pelo aut\'omato de pilha} \\ \mathcal{A} = (\{s_0,s_1\},\{\mathtt{a},\mathtt{b}\},\{\mathtt{Z},\mathtt{A},\mathtt{B}\},\delta,s_0,\mathtt{Z},\{\ \}) \text{ onde} \end{array}$$

$$\begin{array}{ll} \delta(s_0,\varepsilon,Z) = \{(s_1,Z)\} \\ \delta(s_0,a,Z) = \{(s_0,AZ)\} \\ \delta(s_0,a,B) = \{(s_0,AB)\} \\ \delta(s_0,a,A) = \{(s_0,AA),(s_1,\varepsilon)\} \\ \delta(s_1,a,A) = \{(s_1,\varepsilon)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array} \qquad \begin{array}{ll} \delta(s_0,b,Z) = \{(s_0,BZ)\} \\ \delta(s_0,b,A) = \{(s_0,BA)\} \\ \delta(s_0,b,B) = \{(s_0,BB),(s_1,\varepsilon)\} \\ \delta(s_1,b,B) = \{(s_1,\varepsilon)\} \end{array}$$

Exemplo: abba é aceite pois pode ser totalmente processada e levar o autómato a pilha vazia. Partindo da configuração inicial (s_0 , abba, Z) pode chegar a ($s_1, \varepsilon, \varepsilon$).

 $\begin{array}{l} L = \{ww^R \mid w \in \{\mathtt{a},\mathtt{b}\}^\star\} \text{ \'e aceite por pilha vazia} \text{ pelo aut\'omato de pilha} \\ \mathcal{A} = (\{s_0,s_1\},\{\mathtt{a},\mathtt{b}\},\{\mathtt{Z},\mathtt{A},\mathtt{B}\},\delta,s_0,\mathtt{Z},\{\ \}) \text{ onde} \end{array}$

$$\begin{array}{ll} \delta(s_0,\varepsilon,Z) = \{(s_1,Z)\} \\ \delta(s_0,a,Z) = \{(s_0,AZ)\} \\ \delta(s_0,a,B) = \{(s_0,AB)\} \\ \delta(s_0,a,A) = \{(s_0,AA),(s_1,\varepsilon)\} \\ \delta(s_1,a,A) = \{(s_1,\varepsilon)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array} \qquad \begin{array}{ll} \delta(s_0,b,Z) = \{(s_0,BZ)\} \\ \delta(s_0,b,A) = \{(s_0,BA)\} \\ \delta(s_0,b,B) = \{(s_0,BB),(s_1,\varepsilon)\} \\ \delta(s_1,b,B) = \{(s_1,\varepsilon)\} \end{array}$$

Exemplo: abba é aceite pois pode ser totalmente processada e levar o autómato a pilha vazia. Partindo da configuração inicial $(s_0, abba, Z)$ pode chegar a $(s_1, \varepsilon, \varepsilon)$.

Exemplo 4: $L = \{wtw^R \mid w \in \{a,b\}^*, t \in \{a,b,\varepsilon\}\}$ é aceite por pilha vazia pelo autómato de pilha $\mathcal{A} = (\{s_0,s_1\},\{a,b\},\{Z,A,B\},\delta,s_0,Z,\{\})$ com

$$\begin{array}{ll} \delta(s_0,\varepsilon,Z) = \{(s_1,Z)\} \\ \delta(s_0,a,Z) = \{(s_0,AZ),(s_1,Z)\} \\ \delta(s_0,a,B) = \{(s_0,AB),(s_1,B)\} \\ \delta(s_0,a,A) = \{(s_0,AA),(s_1,\varepsilon),(s_1,A)\} \\ \delta(s_1,a,A) = \{(s_1,\varepsilon)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array} \qquad \begin{array}{ll} \delta(s_0,b,Z) = \{(s_0,BZ),(s_1,Z)\} \\ \delta(s_0,b,A) = \{(s_0,BA),(s_1,A)\} \\ \delta(s_0,b,B) = \{(s_0,BB),(s_1,\varepsilon),(s_1,B)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array}$$

Como no autómato anterior, no estado so tem de admitir que:

- ainda não chegou ao meio da palavra (continua a carregar a pilha)
- está a consumir o símbolo do meio (muda para s₁ mas não altera a pilha) ou
- está a consumir o primeiro símbolo depois do meio (muda para s_1 e retira o topo).

A linguagem das capícuas de alfabeto {a,b} não pode ser reconhecida por autómatos de pilha determinísticos.

Exemplo 4: $L = \{wtw^R \mid w \in \{a,b\}^*, t \in \{a,b,\varepsilon\}\}$ é aceite por pilha vazia pelo autómato de pilha $\mathcal{A} = (\{s_0,s_1\},\{a,b\},\{Z,A,B\},\delta,s_0,Z,\{\})$ com

```
\begin{array}{ll} \delta(s_0,\varepsilon,Z) = \{(s_1,Z)\} \\ \delta(s_0,a,Z) = \{(s_0,AZ),(s_1,Z)\} \\ \delta(s_0,a,B) = \{(s_0,AB),(s_1,B)\} \\ \delta(s_0,a,A) = \{(s_0,AA),(s_1,\varepsilon),(s_1,A)\} \\ \delta(s_1,a,A) = \{(s_1,\varepsilon)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array} \qquad \begin{array}{ll} \delta(s_0,b,Z) = \{(s_0,BZ),(s_1,Z)\} \\ \delta(s_0,b,A) = \{(s_0,BA),(s_1,A)\} \\ \delta(s_0,b,B) = \{(s_0,BB),(s_1,\varepsilon),(s_1,B)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array}
```

Como no autómato anterior, no estado s_0 tem de admitir que:

- ainda não chegou ao meio da palavra (continua a carregar a pilha)
- ullet está a consumir o símbolo do meio (muda para s_1 mas não altera a pilha) ou
- está a consumir o primeiro símbolo depois do meio (muda para s₁ e retira o topo).

A linguagem das capícuas de alfabeto $\{a,b\}$ não pode ser reconhecida por autómatos de pilha determinísticos.

A linguagem $L = \{wtw^R \mid w \in \{a,b\}^\star, t \in \{a,b,\varepsilon\}\}$, das capícuas, é aceite por pilha vazia pelo autómato de pilha $\mathcal{A} = (\{s_0,s_1\},\{a,b\},\{\mathsf{Z},\mathsf{A},\mathsf{B}\},\delta,s_0,\mathsf{Z},\{\ \})$ com

$$\begin{array}{ll} \delta(s_0,\varepsilon,Z) = \{(s_1,Z)\} \\ \delta(s_0,a,Z) = \{(s_0,AZ),(s_1,Z)\} \\ \delta(s_0,a,B) = \{(s_0,AB),(s_1,B)\} \\ \delta(s_0,a,A) = \{(s_0,AA),(s_1,\varepsilon),(s_1,A)\} \\ \delta(s_1,a,A) = \{(s_1,\varepsilon)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array} \quad \begin{array}{ll} \delta(s_0,b,Z) = \{(s_0,BZ),(s_1,Z)\} \\ \delta(s_0,b,A) = \{(s_0,BA),(s_1,A)\} \\ \delta(s_0,b,B) = \{(s_0,BB),(s_1,\varepsilon),(s_1,B)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array}$$

Exemplo: aabaa é aceite. Partindo de $(s_0, aabaa, Z)$, pode chegar a $(s_1, \varepsilon, \varepsilon)$.

A linguagem $L = \{wtw^R \mid w \in \{a,b\}^\star, t \in \{a,b,\varepsilon\}\}$, das capícuas, é aceite por pilha vazia pelo autómato de pilha $\mathcal{A} = (\{s_0,s_1\},\{a,b\},\{\mathsf{Z},\mathsf{A},\mathsf{B}\},\delta,s_0,\mathsf{Z},\{\ \})$ com

$$\begin{array}{ll} \delta(s_0,\varepsilon,Z) = \{(s_1,Z)\} \\ \delta(s_0,a,Z) = \{(s_0,AZ),(s_1,Z)\} \\ \delta(s_0,a,B) = \{(s_0,AB),(s_1,B)\} \\ \delta(s_0,a,A) = \{(s_0,AA),(s_1,\varepsilon),(s_1,A)\} \\ \delta(s_1,a,A) = \{(s_1,\varepsilon)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array} \quad \begin{array}{ll} \delta(s_0,b,Z) = \{(s_0,BZ),(s_1,Z)\} \\ \delta(s_0,b,A) = \{(s_0,BA),(s_1,A)\} \\ \delta(s_0,b,B) = \{(s_0,BB),(s_1,\varepsilon),(s_1,B)\} \\ \delta(s_1,\varepsilon,Z) = \{(s_1,\varepsilon)\} \end{array}$$

Exemplo: aabaa é aceite. Partindo de $(s_0, aabaa, Z)$, pode chegar a $(s_1, \varepsilon, \varepsilon)$.

