TS: Fonction Exponentielle: Exercice 13

Sébastien Harinck

www.cours-futes.com

Résoudre l'exercice suivant

Soit f la fonction définie sur]0;
$$+\infty$$
[par $f(x) = e^{x}$

Résoudre l'exercice suivant

Soit f la fonction définie sur]0; $+\infty$ [par $f(x) = e^{x}$ et C sa courbe représentative.

1. Déterminer les limites de f en 0 et en $+\infty$.

Résoudre l'exercice suivant

Soit f la fonction définie sur]0; $+\infty$ [par $f(x) = e^{x}$ et C sa courbe représentative.

- 1. Déterminer les limites de f en 0 et en $+\infty$.
- 2. Calculer la dérivée de f et dresser le tableau de variations de f.

Les limites de
$$f(x) = e^{\frac{x}{x}}$$

La fonction f est une fonction de la forme e^u où $u(x) = \frac{1}{x}$

La fonction f est une fonction de la forme e^u où $u(x)=\frac{1}{x}$ On utilise le théorème sur la limite d'un fonction composée :

La fonction f est une fonction de la forme e^u où $u(x) = \frac{1}{x}$ On utilise le théorème sur la limite d'un fonction composée : Si $\lim_{x \to a} f(x) = h$ et $\lim_{x \to a} g(x) = c$ alors $\lim_{x \to a} g(f(x)) = c$

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{x \to b} g(x) = c$ alors $\lim_{x \to a} g(f(x)) = c$

La fonction f est une fonction de la forme e^u où $u(x)=\frac{1}{x}$ On utilise le théorème sur la limite d'un fonction composée : Si $\lim_{x\to a} f(x) = b$ et $\lim_{x\to b} g(x) = c$ alors $\lim_{x\to a} g(f(x)) = c$ Nous allons appliquer ce théorème :

La fonction f est une fonction de la forme e^u où $u(x) = \frac{1}{x}$ On utilise le théorème sur la limite d'un fonction composée :

Si
$$\lim_{x\to a} f(x) = b$$
 et $\lim_{x\to b} g(x) = c$ alors $\lim_{x\to a} g(f(x)) = c$

Nous allons appliquer ce théorème :

$$\lim_{x \to 0+} \frac{1}{x} = +\infty \text{ et } \lim_{x \to +\infty} e^x = +\infty \text{ alors } \lim_{x \to 0+} f(x) = +\infty$$

Vous avez sûrement dû comprendre la logique.

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ et}$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ et } \lim_{x \to 0} e^x = 1 \text{ donc}$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ et } \lim_{x \to 0} e^x = 1 \text{ donc } \lim_{x \to +\infty} f(x) = 1$$

Comme annoncé précédemment, f est de la forme : e^u .

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)' = u'e^u$

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)' = u'e^u$

u' =

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)'=u'e^u$

$$u' = \left(\frac{1}{x}\right)'$$

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)'=u'e^u$

$$u' = \left(\frac{1}{x}\right)' = \frac{-1}{x^2}$$

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)'=u'e^u$

$$u' = \left(\frac{1}{x}\right)' = \frac{-1}{x^2}$$

On en déduit que $f'(x) = \frac{-1}{x^2}e^{\frac{1}{x}}$

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)'=u'e^u$

$$u' = \left(\frac{1}{x}\right)' = \frac{-1}{x^2}$$

On en déduit que $f'(x) = \frac{-1}{x^2}e^{\frac{1}{x}}$

Comme x^2 est toujours positive sur $]0; +\infty[$.

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)' = u'e^u$

$$u' = \left(\frac{1}{x}\right)' = \frac{-1}{x^2}$$

On en déduit que $f'(x) = \frac{-1}{x^2}e^{\frac{1}{x}}$

Comme x^2 est toujours positive sur $]0; +\infty[$. Donc $\frac{-1}{x^2}$ est toujours négative sur $]0; +\infty[$.

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)'=u'e^u$

$$u' = \left(\frac{1}{x}\right)' = \frac{-1}{x^2}$$

On en déduit que $f'(x) = \frac{-1}{x^2}e^{\frac{1}{x}}$

Comme x^2 est toujours positive sur $]0; +\infty[$. Donc $\frac{-1}{x^2}$ est toujours négative sur $]0; +\infty[$.

et comme e^{-}_{x} sera toujours positive sur]0; $+\infty$ [.

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)'=u'e^u$

$$u' = \left(\frac{1}{x}\right)' = \frac{-1}{x^2}$$

On en déduit que $f'(x) = \frac{-1}{x^2}e^{\frac{1}{x}}$

Comme x^2 est toujours positive sur $]0; +\infty[$. Donc $\frac{-1}{x^2}$ est toujours négative sur $]0; +\infty[$.

et comme $e^{\overset{-}{X}}$ sera toujours positive sur $]0;+\infty[$. car l'exponentielle est toujours positive sur $\mathbb R$

Comme annoncé précédemment, f est de la forme : e^u . Un de nos théorèmes est que la dérivée $(e^u)'=u'e^u$

$$u' = \left(\frac{1}{x}\right)' = \frac{-1}{x^2}$$

On en déduit que $f'(x) = \frac{-1}{x^2}e^{\frac{1}{x}}$

Comme x^2 est toujours positive sur $]0; +\infty[$. Donc $\frac{-1}{x^2}$ est toujours négative sur $]0; +\infty[$.

et comme $e^{\overline{X}}$ sera toujours positive sur $]0;+\infty[$. car l'exponentielle est toujours positive sur \mathbb{R} On déduit que la fonction f'(x) sera toujours négative sur $]0;+\infty[$ et que f(x) sera toujours décroissante sur ce même intervalle.