Задача 1. Бинарный поиск

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

В упорядоченном целочисленном массиве методом бинарного поиска найти заданное число и вывести его номер.

Формат входных данных

В первой строке входного файла записаны через пробел два целых числа N и X – размер массива и число, которое нужно найти в этом массиве $(1 \le N \le 10^6, -10^6 \le X \le 10^6)$.

Во второй строке через пробел записаны N целых чисел в порядке неубывания – элементы массива. Все числа по модулю не превосходят 10^6 .

Формат выходных данных

В выходной файл необходимо вывести номер элемента массива, содержащего заданное число X. Если такого числа нет, то вывести число -1.

Пример

input.txt	output.txt
5 9	3
2 4 7 9 12	

Задача 2. Бинарный поиск 2

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

В упорядоченном массиве вещественных чисел методом бинарного поиска найти самое близкое число к заданному и вывести его номер.

Формат входных данных

В первой строке входного файла записаны через пробел два целых числа N и X — размер массива и число, близкое к которому нужно найти в этом массиве $(1\leqslant N\leqslant 10^6,-10^6\leqslant X\leqslant 10^6).$

Во второй строке через пробел записаны N вещественных чисел в порядке неубывания – элементы массива. Все числа по модулю не превосходят 10^7 .

Формат выходных данных

В выходной файл необходимо вывести номер элемента массива, содержащего заданное число, значение которого наиболее близко к X. Если таких чисел больше одного, то вывести номер первого по порядку.

Пример

input.txt	output.txt
5 5	1
2.1 4.37 6.2 9.07 12.01	

Задача 3. Поиск подстроки в строке

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

В файле дано две строки: первая строка T длины N и вторая строка P длины M.

Обе строки состоят только из маленьких букв латинского алфавита, причём $N,M\geqslant 1$ и $N+M\leqslant 10^6.$

Требуется найти в строке T все вхождения строки P как подстроки, и вывести позиции этих вхождений.

Позиция вхождения — это номер первого символа P в строке T (символы нумеруются начиная с нуля). Позиции нужно выводить в порядке возрастания.

Пример

input.txt	output.txt
abacababa	3
aba	0
	4
	6

Пояснение к примеру

В примере имеется три вхождения шаблона: **aba**cababa (0), abac**aba**ba (4), abacab**aba** (6).

Задача 4. Бинарный поиск+

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда*
Ограничение по памяти: разумное

Требуется реализовать функцию, которая находит методом бинарного поиска элемент с заданным значением в отсортированном массиве, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
int binsearch (int a[], int l, int r, int x);
```

Здесь a — имя массива целых чисел, 1 и r — индексы элементов, соответсвующие левой и правой границам поиска, x — значение искомого элемента.

Функция binsearch возвращает индекс элемента в массиве, равного \mathbf{x} . Если таких элементов несколько, то выдается самый правый индекс. Если элемент в массиве отсутствует, то функция выдает -1.

Формат входных данных

В первой строке записано одно целое число N — размер отсортированного массива $(1 \le N \le 10^5)$.

Далее записаны элементы массива A_i (N целых чисел, $|A_i| \leq 10^9$).

Затем записано целое число Q — количество запросов, которые нужно обработать $(1\leqslant Q\leqslant 10^5).$

В остальных Q строках записаны целые числа X_j , определяющие запросы на поиск.

Формат выходных данных

Каждый запрос нужно обрабатывать следующим образом. Сначала нужно прибавить к записанному в файле числу X_j ответ на предыдущий запрос R_{j-1} , получив $Y_j = X_j + R_{j-1}$. Затем нужно найти в массиве A элемент, равный Y_j : его индекс будет ответом R_j для этого запроса. Если таких элементов много, то в качестве ответа R_j следует выбрать самый большой индекс. Если таких элементов нет, то ответ R_j равен -1.

Элементы массива нумеруются индексами от 0 до N-1. Для первого запроса предыдущего ответа нет, так что полагаем $Y_0=X_0$.

Основы алгоритмизации и программирования Лабораторная работа 6, поиск

Пример

input.txt	output.txt
10	1
1 1 3 4 4 7 8 10 10 12	2
10	-1
1	2
2	5
3	-1
4	-1
5	5
6	-1
7	-1
8	
9	
10	

Пояснение к примеру

Первый запрос: нужно найти значение $X_0 = Y_0 = 1$. Таких элементов два и они имеют индексы 0 и 1. В данной задаче нужно всегда выбирать максимальных индекс, если выбор есть, поэтому ответ A_0 равен 1.

Для следующего запроса задано число $X_1=2$. Прибавляем к нему предыдущий ответ $A_0=1$, и получаем число $Y_1=3$, которое нужно искать. Такой элемент есть в массиве под индексом 2, так что выводим ответ $A_1=2$.

Для следующего запроса указано $X_2=3$. Прибавляем предыдущий ответ $A_1=2$, и получаем, что нужно искать $Y_2=5$. Такого числа нет, так что выводим ответ $A_2=-1$.

Теперь рассмотрим запрос $X_3=4$. Сперва прибавляем предыдущий ответ $A_2=-1$, получаем число $Y_3=3$, которое нужно искать. Значит ответ $A_3=2$. И так далее...