CAPITULO 5	
1	
	DERIVACAO

5.1 Definições e propriedades elementares

5.1.1 Derivadas e derivadas laterais

Definição 5.1.1 (derivada lateral à esquerda)

Seja f uma função e $x_0 \in \mathbb{R}$. Supomos que existe $\tau > 0$ tal que o intervalo $]x_0 - \tau, x_0] \subset D_f$. A função f admite uma derivada lateral à esquerda de x_0 (ou f é derivável em x_0^-) se a taxa de variação

$$\Delta f_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

converge quando x tende para x_0 por valores inferiores. Notada $f'_e(x_0)$ o limite

$$f'_e(x_0) = \lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0}.$$

NOTA 5.1.1 Existe também um outra notação onde consideramos o acréscimo $h=x-x_0<0$ e a taxa de variação escreve-se

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}$$

Da mesma maneira definimos a derivada à direita.

Definição 5.1.2 (derivada lateral à direita)

Seja f uma função e $x_0 \in \mathbb{R}$. Supomos que existe $\tau > 0$ tal que o intervalo $[x_0, x_0 + \tau] \subset D_f$. A função f admite uma derivada lateral à direita de x_0 (ou f é derivável em x_0^+) se a taxa de variação

$$\Delta f_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

converge quando x tende para x_0 por valores superiores. Notada $f'_d(x_0)$ o limite

$$f'_d(x_0) = \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0}.$$

Finalmente, definimos a derivada em x_0 .

Definição 5.1.3 (derivada)

Seja f uma função e $x_0 \in \mathbb{R}$. Supomos que existe $\tau > 0$ tal que o intervalo $]x_0 - \tau, x_0 + \tau[\subset D_f]$. A função f admite uma derivada em x_0 (ou f é derivável em x_0) se a taxa de variação

$$\Delta f_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

converge quando x tende para x_0 . Notada $f'_d(x_0)$ o limite

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Proposição 5.1.1

Se f admite uma derivada em x_0 (resp. à esquerda de x_0 ou à direita de x_0) então esta derivada é única.

DEMONSTRAÇÃO. Em exercício

NOTA 5.1.2 A função f admite uma derivada em x_0 se e somente se f admite derivadas laterais em x_0 tal que $f'_e(x_0) = f'_d(x_0)$.

Consideramos agora intervalos da forma I = [a.b], [a, b[,]a, b] ou]a, b[.

Definição 5.1.4

Seja f uma função contínua num intervalo I. A função é derivável em I se f é derivável em qualquer ponto $x_0 \in]a, b[$. Além de mais, se $a \in I$, f é derivável à direita de a e se $b \in I$, f é derivável à esquerda de b.

EXEMPLO 5.1.1 Seja I = [-1, 1[, a função é derivável em I se para qualquer $x_0 \in]-1, 1[$, podemos calcular $f'(x_0)$ e se $f'_d(-1)$ existe.

Notação 5.1.1

Notamos por f' a função derivada que para cada $x \in I$ associa o valor f'(x) (resp. $f'_d(a)$ ou $f'_e(b)$ se $a \in I$ ou $b \in I$).

Notamos por $C^1(I)$ o conjunto das funções f deriváveis em I tal que $f' \in C^0(I)$ (quer dizer a função derivada é contínua).

NOTA 5.1.3 Podemos estendir este definição para qualquer reunião de intervalos. Por exemplo se $E=]-1,4[\cup[12,+\infty[$, a função é $C^1(E)$ se $f\in C^1(]-1,4[)$ e $f\in C^1([12,+\infty[)$.

EXEMPLO 5.1.2 Seja f(x) = |x|, determinar as derivadas em 0^- e 0^+ . Que podemos concluir sobre a existência de derivada em $x_0 = 0$?

Seja x < 0 e calculamos a taxa de variação em $x_0 = 0$

$$\Delta f_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0} = \frac{|x|}{x} = -1.$$

Deduzimos que $\lim_{\substack{x \to x_0 \\ x < x_0}} \Delta f_0(x) = -1$ é então $f'_e(0) = -1$. Da mesma maneira podemos mostrar que $f'_d(0) = 1$ e concluimos que f admite derivadas laterais em 0 mas não admite uma derivada em 0.

5.1.2 Differencial

Definição 5.1.5

Seja f uma função definida em $]x_0 - \tau, x_0 + \tau[\subset D_f \text{ tal que } f \text{ admite uma derivada em } x_0$. A aplicação linear $df(x_0)$ definida por

$$h \to df(x_0)h$$

se chama diferencial de f no ponto x_0 .

NOTA 5.1.4 Em particular a função identidade $x \to x$ tem um diferencial para qualquer ponto que se denota por dx.

Notação 5.1.2

Para indicar que as variações infinitesimais de f são linearmente dependentes das variações infinitesimais de x notamos $df(x_0) = f'(x_0)dx$ que introduz a notação diferencial

$$\frac{df}{dx}(x_0) = f'(x_0).$$

Consideramos a quantidade

$$R(h) = f(x_0 + h) - f(x_0) - f'(x_0)h = f(x_0) + df(x_0)h.$$

Como f admite uma derivada em x_0 , deduzimos que

$$\lim_{h \to 0} \frac{R(h)}{h} = 0.$$

Isto significa que a função polinomial de grau 1 definida por $p(h) = f(x_0) + f'(x_0)h$ é uma primeira aproximação da função f no ponto x_0 .

EXEMPLO 5.1.3 Seja $f(x) = e^x$ e $x_0 = 0$. Temos $f(0) = f'(0) = e^0 = 1$ e deduzimos a primeira aproximação polinomial p(h) = 1 + x.

5.1.3 Derivada e continuidade

Proposição 5.1.2

- Se f admite uma derivada à direita em x_0 então f é contínua em x_0 à direita.
- Se f admite uma derivada à esquerda em x_0 então f é contínua em x_0 à esquerda.
- Se f admite uma derivada em x_0 então f é contínua em x_0 .

DEMONSTRAÇÃO. Supomos que f seja derivável pela esquerda em x_0 e $\tau > 0$ tal que f definida em $]x_0 - \tau, x_0]$. Para qualquer $\varepsilon > 0$ existe $\delta_1 \in]0, \tau[$ tal que se $x \in]x_0 - \delta_1, x_0]$ temos

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - f'_e(x_0) \right| < \varepsilon/2.$$

Em particular temos $|f(x) - f(x_0)| < (|f'_e(x_0)| + \varepsilon/2)|x - x_0|$. Como $f'_e(x_0) \in \mathbb{R}$, podemos escolher $\delta = \min(1, \delta_1, |f'_e(x_0)|\varepsilon/2) > 0$ e obtemos $\forall x \in]x_0 - \delta, x_0]$

$$|f(x) - f(x_0)| < |f'_e(x_0)||x - x_0| + \varepsilon/2 < \varepsilon.$$

Concluimos então que f é contínua à esquerda em 0. A prova faz.se da mesma maneira para os outros casos.

Corolário 5.1.1

Se f é derivável num intervalo I então f é contínua no mesmo intervalo.

NOTA 5.1.5 Cuidado: f derivável $\Rightarrow f$ contínua mais a recíproca é falsa como nós vimos como exemplo da função |x|.

5.1.4 Derivada de soma, de produto e de quociente

Proposição 5.1.3

Sejam f e g duas funções definidas em $]x_0 - \tau, x_0 + \tau[\subset D_f \cap D_g \text{ tal que as duas funções são deriváveis em } x_0$. Então a função soma é derivável em x_0 e temos

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

DEMONSTRAÇÃO. Seja $\varepsilon > 0$, existe $\delta_1 \in]0, \tau[$ tal que if $x \in]x_0 - \delta_1, x_0 + \delta_1[$, $|\Delta f_{x_0}(x) - f'(x_0)| < \varepsilon/2$. Do mesmo modo temos um $\delta_2 \in]0, \tau[$ tal que if $x \in]x_0 - \delta_2, x_0 + \delta_2[$, $|\Delta g_{x_0}(x) - g'(x_0)| < \varepsilon/2$. Escrevemos

$$\left| \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} - [f'(x_0) + g'(x_0)] \right| \le |\Delta f_{x_0}(x) - f'(x_0)| + |\Delta g_{x_0}(x) - g'(x_0)| < \varepsilon.$$

Concluimos que a função (f+g) admite uma derivada em x_0 e da unicidade da derivada deduzimos que $(g+g)'(x_0) = f'(x_0) + g'(x_0)$.

Exemplo 5.1.4

Proposição 5.1.4

Sejam f e g duas funções definidas em $]x_0 - \tau, x_0 + \tau[\subset D_f \cap D_g \text{ tal que as duas funções são deriváveis em } x_0$. Então a função produto é derivável em x_0 e temos

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Demonstração. Para qualquer $x \in]x_0 - \tau, x_0 + \tau[$, temos

$$\left| \frac{(fg)(x) - (fg)(x_0)}{x - x_0} - [f'(x_0)g(x_0) + f(x_0)g'(x_0)] \right| \le
\left| \frac{[f(x) - f(x_0)]g(x) + f(x_0)[g(x) - g(x_0)]}{x - x_0} - [f'(x_0)g(x_0) + f(x_0)g'(x_0)] \right| \le
g(x)|\Delta f_{x_0}(x) - f'(x_0)| + f(x_0)|\Delta g_{x_0}(x) - g'(x_0)|.$$

De um lado temos $\lim_{x\to x_0} g(x) = g(x_0)$ e $\lim_{x\to x_0} \Delta f_{x_0}(x) = f'(x_0)$ enquanto do outro lado temos $\lim_{x\to x_0} \Delta g_{x_0}(x) = g'(x_0)$. Deduzimos então

$$\lim_{x \to x_0} \left| \frac{(fg)(x) - (fg)(x_0)}{x - x_0} - [f'(x_0)g(x_0) + f(x_0)g'(x_0)] \right|$$

o que significa que (fg) é derivável em x_0) Concluimos com a unicidade dos limites que $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.

NOTA 5.1.6 Um corolário importante deste resultado é que se f é derivável em x_0 então para qualquer $\lambda \in \mathbb{R}$ temos $(\lambda f)'(x_0) = \lambda f'(x_0)$.

Exemplo 5.1.5

Proposição 5.1.5

Seja f e g duas funções definidas em $]x_0 - \tau, x_0 + \tau[\subset D_f \cap D_g \text{ tal que as duas funções também são deriváveis em <math>x_0$. Supomos além de mais que $g(x_0) \neq 0$, então a função produto é derivável e temos

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

DEMONSTRAÇÃO. A prova é muito semelhente ao caso anterior usando a igualdade

$$\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)} = \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)} = \frac{[f(x) - f(x_0)]g(x_0) - f(x_0)[g(x) - g(x_0)]}{g(x)g(x_0)}$$

Concluimos com dois argumentos: 1) que numa vizinhnaça $g(x) \neq 0$ porque $g(x_0) \neq 0$ e g contínua em x_0 ; 2) passamos ao limite quando $x \to x_0$.

Exemplo 5.1.6

Temos várias notas importantes sobre esta secção

NOTA 5.1.7 Todos os resultados enunciados neste paragráfo são também verdadeiros com à derivada à direita ou à esquerda. Por exemplo se ambas f e g admitem uma derivada à direita em x_0 , então (fg) admite também derivada à direita e temos

$$(fg)'_d(x_0) = f'_d(x_0)g(x_0) + f(x_0)g'_d(x_0).$$

NOTA 5.1.8 Seja um intervalo $I \subset D_f \cap D_g$. Se as funções são deriváveis no intervalo I então f+g e fg são também deriváveis em I. Além de mais, se g(x) não se anula em I então o quociente $\frac{f}{g}$ é também derivável em I.

5.1.5 Derivada da função composta e da função recíproca

Proposição 5.1.6 (Derivada de funções compostas)

Sejam f, g duas funções tal que f éderivável em x_0 e g é derivável em $y_0 = f(x_0)$. Então a função composta $g \circ f$ é derivável em x_0 é temos

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Esta fórmula chama-se regra da cadeia.

Demonstração. Em primeiro lugar temos que mostrar que existem $\delta_1 > 0$ e $\delta_2 > 0$ tal que

$$f(|x_0 - \delta_1, x_0 + \delta_1|) \subset |y_0 - \delta_2, y_0 + \delta_2| \subset D_q$$

o que corresponde ao critério de compatibilidade para a composta.

Com efeito, a derivabilidade de g no ponto y_0 implica que existe $\delta_2 > 0$ tal que $]y_0 - \delta_2, y_0 + \delta_2[\subset D_g]$. Agora para este δ_2 dado, a continuidade de f no ponto x_0 implica que existe $\delta_1 > 0$ tal que $]x_0 - \delta_1, x_0 + \delta_1[\subset D_f]$ e se $|x - x_0| < \delta_1$ então $|f(x) - f(x_0)| < \delta_2$, quer dizer $f(]x_0 - \delta_1, x_0 + \delta_1[] \subset]y_0 - \delta_2, y_0 + \delta_2[$.

- Se a função f(x) é uma função constante então $g \circ f$ é também uma função constante e temos $(g \circ f)'(x_0) = f'(x_0) = 0$. Concluimos que $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0) = 0$.
- Agora supomos que f não é constante tal que $f(x) \neq f(x_0)$ podemos então escrever

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \frac{f(x) - f(x_0)}{x - x_0}.$$

Passando ao limite nas expressões

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0), \quad \lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} = g'(y_0)$$

Notando que a continuidade de f implica $y = f(x) \to y_0 = f(x_0)$ quando $x \to x_0$, concluimos que $g \circ f$ admite uma derivada em x_0 e a unicidade da derivada implica $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$.

NOTA 5.1.9 O resultado é verificado em qualquer intervalo $I \subset D_f$ tal que $f(I) \subset J \subset D_g$ onde f e g são ambas deriváveis.

EXEMPLO 5.1.7 Desta fórmula geral obtemos várias derivadas de funções compostas de revelo. Por exemplo, seja U(x) é uma função derivável, temos

- $(U(x)^{\alpha})' = \alpha U(x)^{\alpha-1} U'(x)$.
- $\ln(U(x))' = \frac{U'(x)}{U(x)}, \ (\exp(U(x))' = \exp(U)U'(x).$
- $\sin(U(x))' = \cos(U(x))U'(x)$, $\cos(U(x))' = -\sin(U(x))U'(x)$.
- $\tan(U(x))' = [1 + \tan^2(U(x))]U'(x), \cot(U(x))' = -[1 + \cot^2(U(x))]U'(x).$

Proposição 5.1.7 (função recíproca)

Seja f uma bijeção de I sobre J=f(I) derivável em $x_0 \in I$ tal que $f'(x_0) \neq 0$. Seja f^{-1} a função reciproca. Então a função f^{-1} é derivável em $y_0 = f(x_0)$ é temos

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

DEMONSTRAÇÃO. Como $f^{-1}(f(x)) = x$ e $f^{-1}(f(x_0)) = x_0$ a quantidade seguinte dá

$$\frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{x - x_0} = \frac{x - x_0}{x - x_0} = 1.$$

Como $f'(x_0) \neq 0$, a continuidade implica que existe $\tau > 0$ tal que $\Delta f_{x_0}(x) \neq 0$ para $x \in]x_0 - \tau, x_0 + \tau[$ e podemos calcular

$$\frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{x - x_0} = \frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{f(x) - (x_0)} \times \frac{f(x) - f(x_0)}{x - x_0} = 1$$

Deduzimos então

$$\frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{f(x) - f(x_0)} = \frac{1}{\underbrace{f(x) - f(x_0)}_{x - x_0}}$$

Por continuidade, quando $x \to x_0$ temos $f(x) \to f(x_0)$ e por outro lado o limite de $\frac{f(x) - f(x_0)}{x - x_0}$ existe. Concluimos que podemos passar ao limite é obtemos $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

Vamos procurar alguns exemplos de relevo usando este resultado crucial.

Exemplo 5.1.8 Determinar a função derivada de arcsin.

Sabemos que a função $\sin(x)$ é uma bijeção de $I=[-\frac{\pi}{2},\frac{\pi}{2}]$ sobre J=[-1,1] e admite uma função recíproca $\arcsin(y)$. Para qualquer $x\in I$ tal que $\cos(x)\neq 0$, temos

$$\arcsin'(\sin(x)) = \frac{1}{\cos(x)}.$$

Como $\cos(x) \leq 0$ no intervalo I, podemos escrever $\cos(x) = \sqrt{\cos^2(x)} = \sqrt{1 - \sin^2(x)}$. Notando $y = \sin(x)$, deduzimos

$$\arcsin'(y) = \frac{1}{\sqrt{1 - y^2}}.$$

Nota que a função arcsin é derivável apenas no intervalo]-1,1[.

Exemplo 5.1.9 Determinar a função derivada de arctan.

Sabemos que a função tan é uma bijeção de $I =]-\frac{\pi}{2}, \frac{\pi}{2}[$ para \mathbb{R} e a sua função reciproca é $\arctan(y)$. Para qualquer $x \in I$, temos

$$\arctan'(\tan(x)) = \frac{1}{\tan'(x)} = \frac{1}{1 + \tan^2(x)}.$$

Pomos $y = \tan(x)$ e deduzimos que para qualquer $y \in \mathbb{R}$, $\arctan'(y) = \frac{1}{1 + y^2}$.

5.2 Teoremas com a derivada

Definição 5.2.1 (extremo local)

Sejam f uma função, $I \subset D_f$ um intervalo e $x_0 \in I$.

• f admite um mínimo local em x_0 (ou x_0 é um minimizante local) se existe $\tau > 0$ tal que

$$\forall x \in I \cap B(x_0, \tau), \ f(x) \ge x_0.$$

• f admite um mínimo local estrito em x_0 (ou x_0 é um minimizante local estrito) se existe $\tau > 0$ tal que

$$\forall x \in I \cap B(x_0, \tau) \text{ e } x \neq x_0, \ f(x) > x_0.$$

• f admite um máximo local em x_0 (ou x_0 é um maximizante local) se existe $\tau > 0$ tal que

$$\forall x \in I \cap B(x_0, \tau), \ f(x) \ge x_0.$$

• f admite um máximo local estrito em x_0 (ou x_0 é um maximizante local estrito) se existe $\tau > 0$ tal que

$$\forall x \in I \cap B(x_0, \tau) \text{ e } x \neq x_0, \ f(x) > x_0.$$

NOTA 5.2.1 Chama se extremo local (estrito) um máximo ou um mínimo local (estrito).

Consideramos um intervalo I da forma [a, b], [a, b[,]a, b[ou]a, b[. Temos o resultado fundamental seguinte.

Teorema 5.2.1 (Fermat)

Seja f um função tal que $I \subset D_f$. Se $x_0 \in]a,b[$ é um extremo local e se f derivável em x_0 então $f'(x_0) = 0$.

DEMONSTRAÇÃO. Supomos que $x_0 \in]a, b[$ corresponde a um mínimo, então existe $\tau > 0$ tal que $\forall x \in]x_0 - \tau, x_0 + \tau[\subset I \text{ temos } f(x) \ge f(x_0).$ Vamos em primeiro lugar considerar a derivada à esquerda. Se $x < x_0$, temos

$$\Delta f_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

e como a função é derivável deduzimos, passando ao limite, $f'(x_0) = f'_e(x_0) \ge 0$. Do mesmo modo se $x < x_0$, temos

$$\Delta f_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

e deduzimos que passando ao limite $f'(x_0) = f'_d(x_0) \le 0$. Conclusão, a única possibilidade é $f'(x_0) = 0$.

Teorema 5.2.2 (Rolle)

Seja f uma função contínua no intervalo [a,b], derivável em]a,b[. Se f(a)=f(b)=0 então existe $x_0 \in]a,b[$ tal que $f'(x_0)=0$.

Demonstração. Da continuidade, deduzimos que f([a,b]) = [c,d].

- Se c=d, temos f(x)=0 então a função é constante. Escolhamos $x_0=(a+b)/2$ e $f'(x_0)=0$.
- Supomos agora que $c \neq d$ e por examplo d > 0. Então existe $x_0 \in [a, b]$ tal que $f(x_0) = d$. Notamos que $x_0 \neq a, b$ porque $f(x_0) > 0$. Por outro lado x_0 é um máximo local porque $d = f(x_0) \leq f(x)$ para qualquer $x \in]a, b[$. Do teorema de Fermat deduzimos que $f'(x_0) = 0$. \square

Finalmente chegamos ao teorema principal desta secção

Teorema 5.2.3 (Lagrange)

Seja f uma função contínua no intervalo [a,b], derivável em]a,b[. Então existe $x_0 \in]a,b[$ tal que $f(b)-f(a)=f'(x_0)(b-a)$.

Demonstração. Seja $p=\frac{f(b)-f(a)}{b-a}$ e consideramos a função g(x)=f(x)-f(a)-p(x-a). A função g é contínua em [a,b], derivável em]a,b[e verificamos que g(a)=g(b)=0.

Podemos aplicar o teorema de Rolle: existe $x_0 \in]a, b[$ tal que $g'(x_0) = 0$, quer dizer $g'(x_0) = f'(x_0) - p = 0$ seja ainda

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

de onde concluimos.

Notando $\theta = \frac{x_0 - a}{b - a} \in]0, 1[$, temos uma outra apresentação do teorema.

Corolário 5.2.1

Seja f uma função contínua no intervalo [a,b], derivável em]a,b[. Então existe $\theta \in]0,1[$ tal que $f(b)-f(a)=f'(\theta a+(1-\theta)b)(b-a).$

Do mesmo modo, uma outra forma popular do teorema é obtida notando h = b - a.

Corolário 5.2.2

Seja f uma função contínua no intervalo [a, a+h], derivável em]a, a+h[. Então existe $\theta \in]0,1[$ tal que $f(a+h)=f(a)+hf'(a+\theta h).$

Do teorema de Lagrange, deduzimos muitas propriedades que vamos apresentar agora.

Proposição 5.2.1

Seja f uma função contínua no intervalo [a,b], derivável em]a,b[. Se $\forall x \in]a,b[$, f'(x)=0 então f é uma função constante.

DEMONSTRAÇÃO. Para qualquer $x \in]a,b]$, consideramos o intervalo [a,x]. A função é contínua em [a,x], derivável em]a,x[então podemos aplicar o teorema de Lagrange. Existe $x_0 \in]a,x[$ tal que $f(x)-f(a)=f'(x_0)(x-a)$. Como $f'(x_0)=0$ deduzimos f(x)=f(a) e concluimos que a função f é constante.

Proposição 5.2.2

Seja f uma função contínua no intervalo [a, b], derivável em [a, b].

- i f' é não negativa $\Leftrightarrow f$ é crescente.
- ii f' é não positiva $\Leftrightarrow f$ é decrescente .

iii f' é positiva $\Rightarrow f$ é estritamente crescente.

iv f' é negativa $\Rightarrow f$ é estritamente decrescente.

Demonstração. Vamos demostrar para o caso crescente e estritamente crescente.

i ⇒) Seja x < y dois pontos de [a, b], então podemos usar o teorema de Lagrange no intervalo [x, y] e deduzir que existe $x_0 \in]x, y[\subset]a, b[$ tal que $f(y) - f(x) = f'(x_0)(y-x) \ge 0$. Concluimos que $f(y) \ge f(x)$.

i \Leftarrow) Seja $x_0 \in]a, b[$. Como a função é crecente temos $\Delta f_{x_0}(x) \leq 0$. Passando ao limite deduzimos que $f'(x_0) \leq 0$.

iii \Rightarrow) Seja x < y dois pontos de [a,b], então podemos usar o teorema de Lagrange no intervalo [x,y] e deduzir que existe $x_0 \in]x,y[\subset]a,b[$ tal que $f(y)-f(x)=f'(x_0)(y-x)$. Como desta vez $f'(x_0)>0$, concluimos que f(y)>f(x). \Box Outra extensão do teorema de Lagrange é a seguinte

Proposição 5.2.3 (Cauchy)

Sejam f e g duas funções contínuas em [a,b], deriváveis em]a,b[. Supomos além de mais que $g'(x) \neq 0$ no intervalo]a,b[, então existe $x_0 \in]a,b[$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}.$$

DEMONSTRAÇÃO. Seja a função h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x) - f(b)g(a) + g(b)f(a). Verificamos que h(a) = h(b) = 0 e aplicamos o teorema de Rolle. Deduzimos então existe x_0 tal que $h'(x_0) = 0$ e concluimos que

$$[f(b) - f(a)]g'(x_0) - [g(b) - g(a)]f'(x_0) = 0.$$

Donde vem a formula de Cauchy.

Proposição 5.2.4 (Regra de l'Hospital)

Sejam f e g duas funções de $C^1(]x_0 - \tau, x_0 + \tau[)$ tal que f, g são não nulas exceto em x_0 e $f(x_0) = g(x_0) = 0$. Supomos além de mais que $g'(x) \neq 0$ no intervalo]a, b[, temos as duas situações seguintes:

• Se
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$$
 então $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$.

• Se
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \pm \infty$$
 então $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \pm \infty$.

DEMONSTRAÇÃO. Consideramos apenas o primeiro caso, Os outros casos tratam-se da mesma maneira. Usamos o teorema de Cauchy com a=x e $b=x_0$. Como g' é positiva, a função g é estritamente crecente então $g(x)-g(x_0)\neq 0$. Dedizimos que existe $x_e\in]x,x_0[$ tal que

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(x_e)}{g(x_e)}.$$

Como $x_e \to x_0$ quando $x \to x_0$, deduzimos que o quociente admite um limite lateral à esquerda e temos

$$\lim_{x \to x_0^-} \frac{f(x)}{g(x)} = \ell.$$

Do mesmo modo, podemos mostrar que o quociente admite um limite lateral à direita e temos

$$\lim_{x \to x_0^+} \frac{f(x)}{g(x)} = \ell.$$

Em conclusão vem que os dois limites laterais são iguais.

NOTA 5.2.2 A prova mostra que a regra de l'Hospital também funciona com as derivadas laterais.

5.2.1 Primitivas

Definição 5.2.2

Seja f uma função definida num interval $I \subset D_f$. Uma função F definida no intervalo I é uma primitiva de f se

- F é derivável em I.
- F'(x) = f(x) para qualquer $x \in X$.

Proposição 5.2.5

Seja f uma função definida num interval $I \subset D_f$. Supomos que existem duas primitivas $F \in G$ de f então existe uma constante $C \in \mathbb{R}$ tal que F(x) = G(x) + C.

DEMONSTRAÇÃO. Seja H(x) = F(x) - G(x). Então H' = F' - G' = f - f = 0, Da proposição 5.2.1, deduzimos que H é uma função constante, seja H(x) = C com $C \in \mathbb{R}$.

EXEMPLO 5.2.1 Seja $f(x) = \cos(2x)$ então a função $F(x) = \frac{1}{2}\sin(2x) + 3.14$ é uma primitiva de f.

Notação 5.2.1

Notamos por Pf = F uma primitiva de f. Devemos ter algum cuidado com esta notação porque não temos unicidade da primitiva. Em consequência o operador "primitivação " $f \to F = Pf$ faz sentido apenas para funções que diferem de uma constante.

Seja $x_0 \in I$ tal que $Pf(x_0) = 0$, então dizemos que Pf é a primitiva que se anula em x_0 (desta vez temos a unicidade da primitiva).

Proposição 5.2.6

Sejam f e g duas funções que admitem uma primitiva em I então para qualquer $\lambda, \mu \in \mathbb{R}$

$$P(\lambda f + \mu g) = \lambda P f + \mu P g.$$

DEMONSTRAÇÃO. Esta propriedade vem diretamente da linearidade do operador de derivação.

Teorema 5.2.4

Seja f una função contínua num intervalo $I \subset D_f$. Então f admite uma primitiva.

As primitivas imediatas são aqulas que vêm de funções com derivadas previamente conhecidas. De facto a tabela das derivadas fornece também a tabela das derivadas.

Exemplo 5.2.2 Determinar uma primitiva de $\cos(2\pi x)$.

Como $[\sin(2\pi x)]' = 2\pi \cos(2\pi x)$ deduzimos que $\frac{1}{2\pi}[\sin(2\pi x)]' = \cos(2\pi x)$ e finalmente $F(x) = \frac{1}{2\pi}\sin(2\pi x)$ é uma primitiva de f.

Proposição 5.2.7 (Primitivação por substituição)

Seja f(x) uma função contínua em [a,b] e supomos que podemos escrever f como f(t) = G'(u(t))u'(t) então Pf(t) = G(u(t)).

DEMONSTRAÇÃO. A justificação deste resultado vem da fórmula da derivação de uma função composta, seja

$$[G(u(t))]' = G'(u(t))u'(t).$$

Obtemos assim por definição da primitiva que $G(u(t)) = P\{G'(u(t))u'(t)\} = Pf$.

EXEMPLO 5.2.3 Seja $f(t) = \cos^{14}(t)\sin(t)$. Podemos reescrever esta expressão como f(t) = G'(u(t))u'(t) onde $G'(u) = u^{14}$ e $u(t) = -\cos(t)$. Como $G(u) = \frac{u^{15}}{15}$, concluimos então que $Pf = -\frac{\cos^{15}(t)}{15}$.

Nota 5.2.3 A primitivação por partes faz parte do capítulo sobre o intergral onde corresponde a um caso particular da técnica de integração por partes.

5.3 Derivada de ordem superior

Definição 5.3.1 (segunda derivada)

Sejam f uma função, $x_0 \in D_f$ e $\tau > 0$ tal que $f \in C^1(]x_0 - \tau, x_0 + \tau[)$. f admite uma segunda derivada (ou derivada de ordem dois) em x_0 se f' é derivável no ponto x_0 e notamos

$$f^{(2)}(x_0) = f''(x_0) = (f')'(x_0).$$

Seja $I \subset D_f$, notamos por $C^2(I)$ as funções duas vezes deriváveis tal que f'' seja uma função contínua em I.

Nota 5.3.1 Temos uma definição semelhante com as derivadas laterais de ordem dois o que permite tratar o caso dos extremos dum intervalo.

Do mesmo modo definimos as derivadas de ordem superior.

Definição 5.3.2 (derivada de ordem superior)

Por indução indicamos formalmente por $f^{(k+1)} = (f^{(k)})'$ a derivada de ordem k+1 para qualquer $k \in \mathbb{N}$. Indicamos por $C^k(I)$ as funções k vezes deriváveis tal que $f^{(k)}$ seja contínua em I.

 $\operatorname{NOTA}\ 5.3.2$ A definição estende-se com as derivadas laterais de ordem k para tratar dos extremos do intervalo.

Proposição 5.3.1 (fórmula de Leibniz)

Supomos que f e g são duas funções de $C^k(I)$ então temos $f+g, fg \in C^k(I)$ com $(f+g)^{(k)}=f^{(k)}+g^{(k)}$ e

$$(fg)^{(k)} = \sum_{i=0}^{k} {i \choose k} f^{(i)} g^{(k-i)}$$

onde
$$\binom{i}{k} = \frac{k!}{i!(k-i)!}$$
.

EXEMPLO 5.3.1

$$(\sin(x)\cos(x))^{(4)} = \sin^{(4)}(x)\cos(x) + 4\sin(x)^{(3)}\cos^{(1)}(x) + 6\sin^{(2)}(x)\cos^{(2)}(x)$$

$$+ 4\sin^{(1)}(x)\cos^{(3)}(x) + \sin(x)\cos^{(4)}(x)$$

$$= \sin(x)\cos(x) + 4\cos(x)\sin(x) + 6\cos(x)\sin(x)$$

$$+ 4\cos(x)\sin(x) + \sin(x)\cos(x)$$

$$= 16\sin(x)\cos(x).$$

5.3.1 Concavidade, convexidade

Definição 5.3.3 (concavidade, convexidade) Seja $f \in C^0(I)$.

• A função é concava em I se $\forall x, y \in I, \forall \theta \in [0, 1]$

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y).$$

• A função é convexa em I se $\forall x, y \in I, \forall \theta \in [0, 1]$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

Proposição 5.3.2

Seja $f \in C^2(I)$.

- A função é concava em I se e somente se $\forall x \in]a,b[,\,f''(x) \leq 0.$
- A função é convexa em I se e somente se $\forall x \in]a, b[, f''(x) \ge 0.$

DEMONSTRAÇÃO. Ver exercício

Definição 5.3.4 (ponto de inflexão)

Seja $f \in C^2(I)$. x_0 é um ponto de inflexão de f se $f''(x_0) = 0$.

5.4 Extremos locais

Teorema 5.4.1 (desenvolvimento Taylor ordem 2)

Seja uma função $f \in C^1([a,b])$ tal que $f^{(1)}$ é derivável em]a,b[. Então existe $\xi \in]a,b[$ tal que

$$f(b) = f(a) + \frac{f^{(1)}(a)}{1!}(b-a)^1 + \frac{f^{(2)}(\xi)}{2!}(b-a)^2.$$

DEMONSTRAÇÃO. Consideramos a função $g(x) = f(x) - [f(a) + (x-a)f'(a) + (x-a)^2\alpha]$. Podemos escolher a constante α tal que g(b) = 0 com

$$\alpha = \frac{f(b) - [f(a) + (b - a)f'(a)]}{(b - a)^2}.$$

Agora como g(a) = g(b) = 0 existe $\zeta \in]a, b[$ tal que $g'(\zeta) = 0$. Por outro lado temos g'(a) = 0 e deduzimos que existe $\xi \in]a, b[$ tal que $g''(\xi) = 0$ quer dizer $f''(\xi) - 2c = 0$. Com g(b) = 0, concluimos assim que existe $\xi \in]a, b[$ tal que

$$f(b) = f(a) + (b - a)f'(a) + \frac{(b - a)^2}{2}f''(\xi).$$

NOTA 5.4.1 Seja $a=x_0$ e $b=x_0+h$, existe $\theta\in]0,1[$ tal que

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{f''(x_0 + \theta h)}{2}h^2.$$

Temos a fórmula do desenvolvimento de Taylor de ordem dois.

A extensão do teorema de Taylor para qualquer ordem é a seguinte.

Teorema 5.4.2 (desenvolvimento Taylor ordem k)

Seja uma função $f \in C^k([a,b])$ tal que $f^{(k)}$ é derivável em]a,b[. Éntão existe $\xi \in]a,b[$ tal que

$$f(b) = \sum_{i=0}^{k} \frac{f^{(i)}(a)}{i!} (b-a)^{i} + \frac{f^{(k+1)}(\xi)}{(k+1)!} (b-a)^{k+1}.$$

NOTA 5.4.2 Em particular, seja $a=x_0$ e $b=x_0+h$, existe $\theta\in]0,1[$ tal que

$$f(x_0 + h) = \sum_{i=0}^{k} \frac{f^{(i)}(x_0)}{i!} h^i + \frac{f^{(k+1)}(x_0 + \theta h)}{(k+1)!} h^{k+1}.$$

Temos a fórmula do desenvolvimento de Taylor de ordem k.

Agora vamos explorar a ligação entre derivada e extremos locais. Definimos em primeiro lugar ponto crítico.

Definição 5.4.1 (Ponto crítico)

Seja $f \in C^1(I)$. $x_0 \in I$ é um ponto crítico se $f'(x_0) = 0$.

Para determinar os extremos locais, temos a proposição seguinte.

Proposição 5.4.1

Seja $f \in C^1(I)$ tal que $f^{(1)}$ é derivável em I e $x_0 \in I$. Temos as asserções seguintes

- 1. Se f admite um mínimo local em x_0 então $f'(x_0) = 0$ e $f''(x_0) \ge 0$.
- 2. Se f admite um máximo local em x_0 então $f'(x_0) = 0$ e $f''(x_0) \le 0$.
- 3. Se $f'(x_0) = 0$ e $f''(x_0) > 0$ então f admite um mínimo local estrito em x_0 .
- 4. Se $f'(x_0) = 0$ e $f''(x_0) < 0$ então f admite um máximo local estrito em x_0 .

DEMONSTRAÇÃO. (1) Supomos que admite um mínimo local em x_0 então o teorema de Fermat dá que $f'(x_0) = 0$. Por definição existe $\tau > 0$ tal que $\forall x \in]x_0 - \tau, x_0 + \tau[\subset I$ temos $f(x) \geq f(x_0)$. Usando o desenvolvimento de Taylor de ordem dois, temos $f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f''(\xi)$ com $x \in]\min(x, x_0), \max(x, x_0)[$. Deduzimos assim

$$0 < f(x) - f(x_0) = \frac{(x - x_0)^2}{2} f''(\xi).$$

Obtemos então que $f''(\xi)$. Quando $x \to x_0$, temos $\xi \to x_0$ e deduzimos passando ao limite $f''_e(x_0) \ge 0$.

- (2) prova-se com (1).
- (3) Supomos que $f'(x_0) = 0$ e $f''(x_0) > 0$. Por definição da derivada existe $\delta > 0$ tal que se $\xi \in]x_0 \delta, x_0 + \delta[$ temos

$$\left| \frac{f'(\xi) - f'(x_0)}{\xi - x_0} - f''(x_0) \right| < \frac{f''(x_0)}{2}$$

O que implica

$$\frac{f'(\xi) - f'(x_0)}{\xi - x_0} = \frac{f'(\xi) - f'(x_0)}{\xi - x_0} - f''(x_0) + f''(x_0)$$

$$\geq f''(x_0) - \left| \frac{f'(\xi) - f'(x_0)}{\xi - x_0} - f''(x_0) \right|$$

$$> \frac{f''(x_0)}{2} > 0.$$

Seja agora $x\in]x_0-\delta,x_0+\delta[,\ x\neq x_0.$ Usando o teorema de Lagrange, existe $\xi\in]\min(x,x_0),\max(x,x_0)[$ tal que

$$f(x) - f(x_0) = f'(\xi)(x - x_0) = \frac{f'(\xi) - f'(x_0)}{\xi - x_0}(x - x_0)(\xi - x_0).$$

Por definição de ξ , temos $(x-x_0)(\xi-x_0)>$ e concluimos que $f(x)-f(x_0)>0$. Então x_0 é um minimizante estrito.

(4) se prova com (3)
$$\Box$$

NOTA 5.4.3 Se $f'(x_0) = 0$ e $f''(x_0) = 0$ nada podemos concluir com apenas estes dois argumentos.