CENTRAL WASHINGTON UNIVERSITY

CS471 OPTIMIZATION

WINTER 2020

Genetic Algorithm and Differential Evolution

Student: Chao Huang Lin chao.huanglin@cwu.edu Professor:
Dr. Donald Davendra@cwu.edu

February 14, 2020

Contents

1	Introduction	2
2	Method	2
3	Important Notes	2
4	Results	3
	4.1 Function 1: Schwefel	4
	4.2 Function 2: De Jong 1	5
	4.3 Function 3: Rosenbrok's Saddle	6
	4.4 Function 4: Rastrigin	7
	4.5 Function 5: Griewangk	8
	4.6 Function 6: Sine Envelope Sine Wave	9
	4.7 Function 7: Stretch V Sine Wave	10
	4.8 Function 8: Ackley One	11
	4.9 Function 9: Ackley Two	12
	4.10 Function 10: Egg Holder	13
	4.11 Function 11: Rana	14
	4.12 Function 12: Pathological	15
	4.13 Function 13: Michalewicz	16
	4.14 Function 14: Masters' Cosine Wave	17
	4.15 Function 15: Quartic	18
	4.16 Function 16: Levy	19
	4.17 Function 17: Step	20
	4.18 Function 18: Alphine	21
	4.19 Function 1: Schwefel	22
	4.20 Function 2: De Jong 1	23
	4.21 Function 3: Rosenbrock's Saddle	24
	4.22 Function 4: Rastrigin	25
	4.23 Function 5: Griewangk	26
	4.24 Function 6: Sine Envelope Sine Wave	27
	4.25 Function 7: Stretch V Sine Wave	28
	4.26 Function 8: Ackley One	29
	4.27 Function 9: Ackley Two	30
	4.28 Function 10: Egg Holder	31
	4.29 Function 11: Rana	32
	4.30 Function 12: Pathological	33
	4.31 Function 13: Michalewicz	34
	4.32 Function 14: Masters' Cosine Wave	35
	4.33 Function 15: Quartic	36
	4.34 Function 16: Levy	37

	4.35 Function 17: Step	38
	4.36 Function 18: Alphine	39
	4.37 Summary	40
5	Discussion	41
6	Conclusion	41

1 Introduction

For this project, two optimization algorithms will be tested. These are Genetic Algorithm (GA) and Differential Evolution Algorithm (DE).

The GA is a heuristic search and optimization technique that simulates the process of natural evolution. The main operations of GA are Selection, Crossover, Mutation, and Elitism.

The DE algorithm employs the difference of two randomly selected parameter vectors as the source for random variations for a third parameter vector. Some advantages of DE are: few numbers of control parameters which make it easier to calibrate or tune, it is inherently parallel, and it has a faster convergence. There are many strategies of DE, in this project 10 different strategies will be tested.

2 Method

The GA and DE algorithms are coded using C++ object-oriented programming. The implemented classes are Population, PopulationBenchmark, Functions, Runner, GeneticAlgorithm, DifferentialEvolution and mt19937ar. Additionally, python script with jupyter notebook is implemented read the configuration parameters and call the C++ executable, then it collects the result and displays it in table and figures.

The obtained results are from 50 runs of each algorithm, the population size = 200, and the generations or iterations = 100, number of dimensions = 30.

The computer used to run the project has the following specification: Intel Core i7-9750H $2.6\mathrm{GHZ}$ with $16~\mathrm{GB}$ of RAM

3 Important Notes

During the development of this project there were many problems that need to be fixed in order to get optimal results:

- 1) The mutation of GA and the trial of DE can make the data go outside of the range, to solve this problem a function is coded to truncate the values in the range.
- 2) The project has been run in single processor mode and parallel multiprocessor mode. The results presented in this document are only from a single processor mode since there was some problem with CPU clock time in parallel mode. According to [1] the clock() function in C++ measures the CPU time used by the entire program so other processes or threads that are not part of the algorithm that need measurement also get counted. (This problem might be caused by Python subprocess package)

3) Some DE algorithms did not converge, the cost was very high. This is caused by the parameters which are not calibrated, to solve this problem, the parameters of different algorithms of Differential Evolution had been calibrated manually one by one.

The calibrated DE parameters are:

DE strategies	crossover rate	scaling factor F	scaling factor lambda
DE_best_1_exp	0.8	0.3	-
$DE_rand_1_exp$	0.9	0.1	-
$DE_randbest_1_exp$	0.9	0.4	0.4
$DE_best_2_exp$	0.9	0.25	-
$DE_rand_2_exp$	0.9	0.05	-
$DE_best_1_bin$	0.6	0.5	-
DE_rand_1_bin	0.8	0.2	-
$DE_randbest_1_bin$	0.7	0.5	0.5
DE_best_2bin	0.8	0.4	-
$DE_rand_2_bin$	0.7	0.1	-

Table 1: Configuration parameters of DE obtained by manual tuning

The calibrated GA parameters are:

crossover rate	mutation rate	mutation value range	mutation precision	elitism rate
0.9	0.05	0.1	1	0.3

Table 2: Configuration parameters of GA obtained by manual tuning

4 Results

The results of applying GA and DE optimization algorithms with 18 benchmarking functions are displayed in the following pages:

4.1 Function 1: Schwefel

Figure 1: Cost and CPU total running time of Function 1: Schwefel

algorithm	mean	std_dev	median	${\rm range_min}$	$range_max$	$time_ms$
GA	1330.170	388.519	1379.190	322.844	2451.800	2158.370
$DE_best_1 = p$	2554.650	454.357	2625.350	1692.530	3758.570	1885.140
$DE_rand_1_exp$	3221.480	245.530	3226.450	2698.210	3818.370	1917.270
$DE_randbest_1_exp$	6393.850	341.369	6432.170	5447.420	6967.870	1940.380
$DE_best_2_exp$	3393.730	766.011	3481.430	1919.550	5097.510	1964.200
$DE_rand_2_exp$	1859.860	190.640	1870.870	1285.870	2314.850	1973.270
$DE_best_1_bin$	2012.120	343.998	2076.640	1055.310	2660.160	2013.510
$DE_rand_1_bin$	6833.980	360.550	6847.770	5919.700	7390.060	2178.320
$DE_randbest_1_bin$	6764.300	575.049	6794.490	5279.800	7895.460	2238.470
$DE_best_2_bin$	2187.930	488.011	2130.950	1484.130	3557.450	2153.020
$DE_rand_2_bin$	6168.990	298.901	6230.760	5457.080	6689.420	2321.140

Table 3: Function 1: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 1330.170000 best DE cost (mean): 1859.860000

best DE: $DE_rand_2_exp$

Null Hypothesis: The cost value obtained by GA is equal to the DE_rand_2_exp

confidence interval = 95%

p value: 0.000000

GA obtains lower cost than DE_rand_2_exp then GA is better than DE_rand_2_exp.

4.2 Function 2: De Jong 1

Figure 2: Cost and CPU total running time of Function 2: De Jong 1

algorithm	mean	std_dev	median	${\rm range_min}$	range_max	${ m time_ms}$
GA	85.044	23.894	84.611	44.305	139.288	1365.260
$DE_best_1_{exp}$	4.529	2.486	3.701	2.033	13.354	949.713
$DE_rand_1_exp$	74.558	16.062	73.572	47.658	119.195	988.005
$DE_randbest_1_exp$	2.406	0.862	2.240	1.051	5.319	994.983
$DE_best_2_exp$	0.459	0.782	0.171	0.013	3.913	1036.180
$DE_rand_2_exp$	79.866	19.786	75.825	41.275	136.236	1057.180
$DE_best_1_bin$	0.004	0.004	0.003	0.001	0.019	1132.280
$DE_{rand_1_bin}$	18.665	5.393	17.922	10.120	33.667	1111.860
$DE_randbest_1_bin$	0.002	0.002	0.002	0.001	0.015	1249.120
$DE_best_2_bin$	0.007	0.005	0.006	0.002	0.023	1247.720
$DE_rand_2_bin$	8.319	2.081	7.912	5.392	15.903	1281.980

Table 4: Function 2: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 85.044300 best DE cost (mean): 0.002287 best DE: DE_randbest_1_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_randbest_1_bin

confidence interval = 95%

p value: 0.000000

DE_randbest_1_bin obtains lower cost than GA then **DE_randbest_1_bin** is better than **GA**.

4.3 Function 3: Rosenbrok's Saddle

Figure 3: Cost and CPU total running time of Function 3: Rosenbrok's Saddle

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	358923.000	267559.000	299684.000	68740.900	1398620.000	1488.010
$DE_best_1_exp$	8366.080	7368.590	6825.100	896.082	36143.000	1037.970
$DE_rand_1_exp$	616375.000	254829.000	588666.000	256876.000	1669420.000	1066.480
$DE_randbest_1_exp$	1634.280	1297.190	1187.020	359.236	6231.420	1087.650
$DE_best_2_exp$	3820.620	6851.230	1888.900	128.036	45150.700	1117.830
$DE_rand_2_exp$	753439.000	361520.000	642237.000	255458.000	1675010.000	1144.840
$DE_best_1_bin$	520.354	1468.460	124.942	28.947	10194.600	1260.940
$DE_rand_1_bin$	72972.600	22329.200	70409.300	33871.500	126730.000	1187.770
$DE_randbest_1_bin$	562.328	1690.900	139.163	32.807	11575.100	1325.200
$DE_best_2_bin$	1048.130	2325.130	199.843	34.386	10112.200	1336.470
$DE_rand_2_bin$	41223.200	17445.900	37140.600	11675.300	92562.200	1374.570

Table 5: Function 3: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 358923.000000 best DE cost (mean): 520.354000

best DE: DE_best_1_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_best_1_bin

confidence interval = 95%

p value: 0.000000

DE_best_1_bin obtains lower cost than GA then DE_best_1_bin is better than GA.

4.4 Function 4: Rastrigin

Figure 4: Cost and CPU total running time of Function 4: Rastrigin

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-67715.300	3609.350	-68065.100	-75769.800	-56733.400	2311.080
$DE_best_1_{exp}$	-48389.100	4409.680	-47912.100	-55862.600	-39156.300	2105.140
$DE_rand_1_exp$	-40661.400	4103.810	-41029.900	-52576.200	-32624.400	2129.370
$DE_randbest_1_exp$	-42764.300	4024.470	-42537.300	-53514.800	-30143.200	2142.170
$DE_best_2 exp$	-49615.600	7726.570	-48882.600	-68621.700	-27517.200	2154.290
$DE_rand_2_exp$	-49116.300	4254.270	-48819.600	-58954.800	-40404.200	2247.240
$DE_best_1_bin$	-37136.400	6739.330	-36004.300	-56677.300	-22626.200	2304.170
$DE_rand_1_bin$	-29531.800	3221.190	-28905.400	-37277.600	-24578.200	2298.010
$DE_randbest_1_bin$	-34185.400	4381.230	-33735.800	-44761.300	-21279.500	2437.100
$DE_best_2_bin$	-19621.900	7905.000	-20318.700	-34698.100	9621.470	2483.290
$DE_rand_2_bin$	-40013.100	4080.260	-39385.600	-50957.300	-33198.600	2507.650

Table 6: Function 4: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): -67715.300000

best DE cost (mean): -49615.600000

best DE: DE_best_2_exp

Null Hypothesis: The cost value obtained by GA is equal to the DE_best_2_exp

confidence interval = 95%

p value: 0.000000

GA obtains lower cost than DE_best_2_exp then GA is better than DE_best_2_exp.

4.5 Function 5: Griewangk

Figure 5: Cost and CPU total running time of Function 5: Griewangk

algorithm	mean	std_dev	median	range_min	range_max	${ m time_ms}$
GA	1.603	0.160	1.581	1.270	2.002	3276.470
$DE_best_1_exp$	0.993	0.048	1.002	0.833	1.057	2916.120
$DE_rand_1_exp$	1.474	0.103	1.465	1.293	1.754	2978.280
$DE_randbest_1_exp$	0.956	0.058	0.971	0.789	1.031	2961.530
$DE_best_2_exp$	0.217	0.169	0.154	0.052	0.782	2824.540
$DE_rand_2_exp$	1.475	0.120	1.458	1.255	1.839	3068.560
$DE_best_1_bin$	0.015	0.016	0.011	0.001	0.091	2966.040
$DE_rand_1_bin$	1.121	0.028	1.117	1.073	1.177	3129.120
$DE_randbest_1_bin$	0.011	0.011	0.006	0.002	0.054	2978.360
$DE_best_2_bin$	0.023	0.014	0.020	0.004	0.059	3025.790
DE_rand_2_bin	1.048	0.011	1.047	1.027	1.076	3324.260

Table 7: Function 5: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 1.602620 best DE cost (mean): 0.010972 best DE: DE_randbest_1_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_randbest_1_bin

confidence interval = 95%

p value: 0.000000

DE_randbest_1_bin obtains lower cost than GA then **DE_randbest_1_bin** is better than **GA**.

4.6 Function 6: Sine Envelope Sine Wave

Figure 6: Cost and CPU total running time of Function 6: Sine Envelope Sine Wave

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-40.070	0.437	-40.085	-41.066	-38.894	2505.260
$DE_best_1_exp$	-36.327	0.565	-36.422	-37.696	-35.335	2245.670
$DE_rand_1_exp$	-35.602	0.593	-35.471	-37.775	-34.823	2271.290
$DE_randbest_1_exp$	-35.918	0.431	-35.960	-36.793	-34.967	2343.630
$DE_best_2_exp$	-35.868	0.547	-35.782	-37.137	-34.672	2381.410
$DE_rand_2_exp$	-35.457	0.422	-35.395	-36.602	-34.393	2372.520
$DE_best_1_bin$	-32.592	0.671	-32.504	-34.150	-31.059	2516.240
$DE_rand_1_bin$	-32.704	0.499	-32.623	-34.079	-31.921	2486.190
$DE_randbest_1_bin$	-33.280	0.626	-33.274	-34.513	-31.781	2590.990
DE_best_2bin	-31.581	1.033	-31.590	-34.279	-29.521	2631.400
$DE_rand_2_bin$	-33.217	0.538	-33.208	-35.363	-32.194	2708.290

Table 8: Function 6: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): -40.070400

best DE cost (mean): -36.326800

best DE: DE_best_1_exp

Null Hypothesis: The cost value obtained by GA is equal to the DE_best_1_exp

confidence interval = 95%

p value: 0.000000

GA obtains lower cost than DE_best_1_exp then GA is better than DE_best_1_exp.

4.7 Function 7: Stretch V Sine Wave

Figure 7: Cost and CPU total running time of Function 7: Stretch V Sine Wave

11		. 1 1	1.			
algorithm	mean	$\operatorname{std}_{\operatorname{-}\!dev}$	median	$range_min$	$range_max$	${ m time_ms}$
GA	30.665	0.471	30.678	29.633	31.654	4661.080
$DE_best_1_{exp}$	41.091	1.458	41.033	37.153	44.118	4475.330
$DE_rand_1_exp$	42.384	1.404	42.341	38.162	45.878	4457.850
$DE_randbest_1_exp$	41.151	1.272	41.212	38.592	44.193	4503.920
$DE_best_2 exp$	42.875	1.713	42.874	38.752	46.806	4558.770
$DE_rand_2_exp$	42.142	1.243	42.048	39.757	44.523	4584.040
$DE_best_1_bin$	53.829	2.475	53.828	47.597	59.374	4710.070
$DE_rand_1_bin$	51.646	2.602	51.935	44.228	57.208	4610.680
$DE_randbest_1_bin$	49.805	2.330	49.684	45.737	55.137	4749.480
$DE_best_2_bin$	54.797	3.083	54.777	47.194	62.068	4783.610
$DE_rand_2_bin$	51.045	1.974	51.205	44.699	54.809	4881.670

Table 9: Function 7: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 30.664900 best DE cost (mean): 41.090900

best DE: DE_best_1_exp

Null Hypothesis: The cost value obtained by GA is equal to the DE_best_1_exp

confidence interval = 95%

p value: 0.000000

GA obtains lower cost than DE_best_1_exp then GA is better than DE_best_1_exp.

4.8 Function 8: Ackley One

Figure 8: Cost and CPU total running time of Function 8: Ackley One

algorithm	mean	std_dev	median	range_min	range_max	$time_ms$
GA	-68.615	2.798	-68.254	-74.087	-61.435	3126.870
$DE_best_1_exp$	-62.618	5.764	-62.828	-74.697	-48.541	2947.120
$DE_rand_1_exp$	-60.235	3.611	-60.705	-68.175	-51.756	3048.230
$DE_randbest_1_exp$	-23.060	5.377	-22.526	-37.711	-4.706	3022.120
$DE_best_2_exp$	-62.723	8.563	-62.830	-80.437	-44.481	2941.100
$DE_rand_2_exp$	-68.522	2.789	-68.553	-73.931	-60.632	3080.420
$DE_best_1_bin$	-66.035	9.275	-67.084	-79.900	-30.430	3100.030
$DE_rand_1_bin$	-33.812	6.734	-32.641	-53.044	-20.210	3182.070
$DE_randbest_1_bin$	-35.009	11.953	-36.099	-59.294	-0.737	3287.650
$DE_best_2_bin$	-44.479	21.128	-49.283	-76.128	21.145	3298.820
$DE_{rand_2}bin$	-61.283	2.866	-61.373	-67.186	-55.517	3563.030

Table 10: Function 8: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): -68.615300

best DE cost (mean): -68.521700

best DE: DE_rand_2_exp

Null Hypothesis: The cost value obtained by GA is equal to the DE_rand_2_exp

confidence interval = 95%

p value: 0.866900

Null Hypothesis is true with 95% of cofidence interval: the cost of GA is equal to the cost of DE_rand_2_exp.

4.9 Function 9: Ackley Two

Figure 9: Cost and CPU total running time of Function 9: Ackley Two

algorithm	mean	std_dev	median	${\rm range_min}$	$range_max$	$time_ms$
GA	60.636	10.164	59.826	36.270	97.436	5118.920
$DE_best_1_{exp}$	20.410	7.100	18.697	8.761	52.007	4834.950
$DE_rand_1_exp$	38.721	5.110	39.014	25.299	51.858	5044.620
$DE_randbest_1_exp$	46.666	8.474	44.816	32.060	71.422	4965.250
$DE_best_2_exp$	57.006	33.181	58.305	6.246	133.930	4718.370
$DE_rand_2_exp$	32.124	4.481	32.228	21.543	41.104	5008.020
$DE_best_1_bin$	34.759	32.776	26.968	0.386	124.512	4761.210
$DE_{rand_1_bin}$	50.078	5.938	50.376	26.227	61.097	5113.780
$DE_randbest_1_bin$	8.953	18.793	2.261	0.527	99.830	4897.940
$DE_best_2_bin$	52.178	35.027	45.816	1.823	139.311	4954.370
DE_rand_2_bin	15.336	2.131	15.316	7.345	20.440	5277.080

Table 11: Function 9: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 60.635600 best DE cost (mean): 8.952710 best DE: DE_randbest_1_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_randbest_1_bin

confidence interval = 95%

p value: 0.000000

DE_randbest_1_bin obtains lower cost than GA then **DE_randbest_1_bin** is better than **GA**.

4.10 Function 10: Egg Holder

Figure 10: Cost and CPU total running time of Function 10: Egg Holder

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-18226.300	915.881	-18373.200	-20476.500	-15880.700	3839.400
$DE_best_1_exp$	-13635.300	1043.520	-13621.600	-16154.000	-10730.700	3867.320
$DE_rand_1_exp$	-12848.900	447.916	-12845.400	-13772.600	-11899.400	3929.930
$DE_randbest_1_exp$	-9469.860	647.241	-9353.080	-10953.300	-8129.610	3977.400
$DE_best_2 exp$	-13220.500	1520.260	-12851.000	-17552.400	-10572.200	4010.010
DE_{rand_2exp}	-13696.800	487.713	-13682.800	-14779.800	-12941.900	4014.570
$DE_best_1_bin$	-14468.300	2996.410	-14935.900	-19843.400	-8668.150	4180.020
$DE_{rand_1_bin}$	-8478.360	734.300	-8352.540	-10190.100	-7180.200	4275.380
$DE_randbest_1_bin$	-8036.620	916.736	-8106.190	-9971.340	-6435.620	4406.880
$DE_best_2_bin$	-13206.800	3440.280	-12669.200	-20928.800	-7302.990	4371.700
$DE_rand_2_bin$	-8821.480	653.647	-8629.970	-10926.000	-7807.520	4492.260

Table 12: Function 10: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): -18226.300000 best DE cost (mean): -14468.300000

Dest DE cost (mean). -14400.300000

best DE: DE_best_1_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_best_1_bin

confidence interval = 95%

p value: 0.000000

GA obtains lower cost than DE_best_1_bin then GA is better than DE_best_1_bin.

4.11 Function 11: Rana

Figure 11: Cost and CPU total running time of Function 11: Rana

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-10546.200	440.372	-10547.300	-11654.400	-9505.950	4617.120
$DE_best_1_{exp}$	-8429.380	668.964	-8353.660	-10489.400	-7158.370	4721.350
DE_{rand_1exp}	-7061.110	353.680	-6978.280	-8313.310	-6563.800	4833.610
$DE_randbest_1_exp$	-6252.450	477.028	-6213.170	-7932.240	-5474.680	4828.880
$DE_best_2 exp$	-7981.080	773.981	-7820.980	-10008.800	-6754.880	4845.910
$DE_rand_2_exp$	-7170.400	264.664	-7160.110	-7928.800	-6619.250	4929.900
$DE_best_1_bin$	-8775.320	1907.570	-8282.570	-12196.800	-4839.800	4944.400
$DE_rand_1_bin$	-5122.620	415.338	-5007.840	-6357.640	-4347.190	5111.310
$DE_randbest_1_bin$	-5345.630	845.420	-5044.440	-8401.070	-4283.130	5284.960
$DE_best_2_bin$	-8162.530	2033.390	-8385.280	-12542.300	-5285.150	5153.990
$\mathrm{DE_rand_2_bin}$	-5037.860	360.314	-4972.590	-6054.450	-4384.930	5396.710

Table 13: Function 11: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): -10546.200000 best DE cost (mean): -8775.320000

best DE: DE_best_1_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_best_1_bin

confidence interval = 95%

p value: 0.000000

GA obtains lower cost than DE_best_1_bin then GA is better than DE_best_1_bin.

4.12 Function 12: Pathological

Figure 12: Cost and CPU total running time of Function 12: Pathological

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	6.054	0.602	6.113	4.790	7.535	3218.660
$DE_best_1_exp$	8.655	1.238	8.824	5.386	10.544	2891.730
$DE_rand_1_exp$	10.378	0.319	10.471	9.287	10.901	2957.840
$DE_randbest_1_exp$	10.562	0.474	10.723	8.065	11.137	2951.870
$DE_best_2 exp$	7.941	1.351	7.925	4.665	10.451	2933.840
$DE_rand_2_exp$	10.491	0.264	10.520	9.524	10.890	3018.680
$DE_best_1_bin$	6.614	1.457	6.392	4.424	12.349	2941.320
$DE_rand_1_bin$	8.402	0.764	8.477	6.870	10.065	3164.780
$DE_randbest_1_bin$	8.334	2.377	7.559	5.407	12.267	3130.240
$DE_best_2_bin$	7.082	0.961	6.993	5.218	9.919	3110.790
$DE_rand_2_bin$	11.201	0.502	11.234	9.793	12.019	3295.300

Table 14: Function 12: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 6.054130

best DE cost (mean): 6.613880

best DE: DE_best_1_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_best_1_bin

confidence interval = 95%

p value: 0.012000

GA obtains lower cost than DE_best_1_bin then GA is better than DE_best_1_bin.

4.13 Function 13: Michalewicz

Figure 13: Cost and CPU total running time of Function 13: Michalewicz

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-25.887	0.552	-25.835	-27.196	-24.732	4509.420
$DE_best_1 = xp$	-17.967	0.800	-17.802	-19.574	-16.230	4245.820
$DE_rand_1_exp$	-17.257	0.541	-17.142	-18.587	-16.191	4272.270
$DE_randbest_1_exp$	-16.114	0.600	-15.996	-17.676	-15.058	4326.960
$DE_best_2_exp$	-16.249	0.852	-16.099	-18.393	-14.376	4331.730
$DE_rand_2_exp$	-18.072	0.679	-17.908	-20.645	-16.758	4348.170
$DE_best_1_bin$	-13.277	0.708	-13.189	-14.930	-11.754	4439.490
$DE_rand_1_bin$	-12.388	0.695	-12.308	-14.673	-11.395	4403.000
$DE_randbest_1_bin$	-12.776	0.807	-12.700	-15.115	-11.504	4554.450
DE_best_2bin	-11.374	0.601	-11.376	-12.625	-10.038	4550.100
$DE_rand_2_bin$	-13.749	0.532	-13.717	-15.330	-12.476	4699.510

Table 15: Function 13: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): -25.887200 best DE cost (mean): -18.071900

best DE: DE_rand_2_exp

Null Hypothesis: The cost value obtained by GA is equal to the DE_rand_2_exp

confidence interval = 95%

p value: 0.000000

GA obtains lower cost than DE_rand_2_exp then GA is better than DE_rand_2_exp.

4.14 Function 14: Masters' Cosine Wave

Figure 14: Cost and CPU total running time of Function 14: Masters' Cosine Wave

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-12.842	1.966	-12.510	-17.187	-7.832	2838.080
$DE_best_1_{exp}$	-6.943	0.625	-7.034	-8.789	-5.398	2625.200
$DE_rand_1_exp$	-7.084	0.589	-7.023	-9.378	-6.132	2679.030
$DE_randbest_1_exp$	-5.286	0.448	-5.241	-6.123	-4.230	2656.230
$DE_best_2_exp$	-6.350	0.684	-6.212	-7.774	-5.031	2691.650
$DE_rand_2_exp$	-7.389	0.519	-7.371	-8.466	-5.919	2728.580
$DE_best_1_bin$	-4.274	0.513	-4.195	-5.576	-3.289	2849.020
$DE_rand_1_bin$	-2.836	0.312	-2.804	-3.683	-2.312	2834.160
$DE_randbest_1_bin$	-3.351	0.360	-3.349	-4.309	-2.595	2968.260
DE_best_2bin	-2.921	0.391	-2.926	-4.347	-2.092	2999.520
$DE_rand_2_bin$	-3.483	0.330	-3.484	-4.323	-2.823	3083.540

Table 16: Function 14: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): -12.841700 best DE cost (mean): -7.389280

best DE: DE_rand_2_exp

Null Hypothesis: The cost value obtained by GA is equal to the DE_rand_2_exp

confidence interval = 95%

p value: 0.000000

GA obtains lower cost than DE_rand_2_exp then GA is better than DE_rand_2_exp.

4.15 Function 15: Quartic

Figure 15: Cost and CPU total running time of Function 15: Quartic

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	43658.600	28045.300	35983.300	7846.720	150243.000	1550.680
$DE_best_1 exp$	806.342	719.590	593.730	55.636	2999.920	1116.150
$DE_{rand_1_{exp}}$	103284.000	49304.900	89445.200	38826.800	266325.000	1152.880
$DE_randbest_1_exp$	73.893	145.668	33.921	3.337	955.929	1158.990
$DE_best_2 exp$	253.454	504.449	48.181	0.010	2479.520	1203.700
DE_{rand_2exp}	105577.000	55484.600	95674.200	33958.200	264131.000	1231.430
$DE_best_1_bin$	0.105	0.380	0.004	0.000	2.426	1305.180
$DE_{-rand_{-}1_{-}bin}$	28785.100	140387.000	8082.490	1888.710	1010990.000	1261.300
$DE_randbest_1_bin$	3.999	16.630	0.027	0.000	114.900	1395.720
DE_best_2bin	0.016	0.029	0.005	0.000	0.164	1406.170
DE_{rand_2} bin	3825.140	1627.090	3518.840	1554.950	8387.470	1465.150

Table 17: Function 15: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 43658.600000 best DE cost (mean): 0.016239

best DE: DE_best_2_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_best_2_bin

confidence interval = 95%

p value: 0.000000

DE_best_2_bin obtains lower cost than GA then DE_best_2_bin is better than GA.

4.16 Function 16: Levy

Figure 16: Cost and CPU total running time of Function 16: Levy

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	3.220	2.454	2.718	0.417	10.843	4489.610
$DE_best_1_exp$	0.324	0.404	0.212	0.020	2.503	4153.580
$DE_rand_1_exp$	0.548	0.097	0.558	0.347	0.752	4348.050
$DE_randbest_1_exp$	0.245	0.103	0.231	0.082	0.505	4214.800
$DE_best_2 exp$	2.517	1.845	2.181	0.004	8.449	4056.670
$DE_rand_2_exp$	0.481	0.105	0.478	0.306	0.707	4479.960
$DE_best_1_bin$	1.629	1.408	1.315	0.000	8.091	4171.730
$DE_{rand_1_bin}$	0.397	0.087	0.398	0.184	0.575	4404.010
$DE_randbest_1_bin$	0.208	0.292	0.090	0.000	1.363	4216.740
$DE_best_2_bin$	3.374	2.696	2.773	0.006	13.085	4364.160
$DE_rand_2_bin$	0.106	0.029	0.100	0.048	0.165	4610.660

Table 18: Function 16: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 3.220140 best DE cost (mean): 0.105905

best DE: DE_rand_2_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_rand_2_bin

confidence interval = 95%

p value: 0.000000

DE_rand_2_bin obtains lower cost than GA then DE_rand_2_bin is better than GA.

4.17 Function 17: Step

Figure 17: Cost and CPU total running time of Function 17: Step

algorithm	mean	$\operatorname{std}_{\operatorname{-}\!dev}$	median	range_min	range_max	time_ms
GA	127.735	29.752	123.041	65.873	201.796	1498.120
$DE_best_1_exp$	18.614	3.455	18.223	13.358	32.191	1099.640
$DE_rand_1_exp$	112.570	20.324	110.635	68.843	155.092	1130.610
$DE_randbest_1_exp$	16.238	2.123	15.909	12.909	23.394	1127.790
$DE_best_2_exp$	9.695	1.278	9.425	7.967	13.764	1180.710
$DE_rand_2_exp$	116.961	26.495	116.016	65.986	185.861	1235.260
$DE_best_1_bin$	7.717	0.067	7.706	7.624	7.971	1278.790
$DE_rand_1_bin$	43.947	6.483	43.452	31.336	59.197	1294.370
$DE_randbest_1_bin$	7.674	0.057	7.658	7.612	7.889	1368.700
$DE_best_2_bin$	7.836	0.094	7.815	7.667	8.108	1404.950
$DE_rand_2_bin$	24.961	2.397	25.062	19.401	30.667	1478.870

Table 19: Function 17: Statistical Analysis of the Cost obtained by GA and DE

Two-Sample Z-Test Hypothesis Testing:

GA cost (mean): 127.735000 best DE cost (mean): 7.673640 best DE: DE_randbest_1_bin

Null Hypothesis: The cost value obtained by GA is equal to the DE_randbest_1_bin

confidence interval = 95%

p value: 0.000000

DE_randbest_1_bin obtains lower cost than GA then **DE_randbest_1_bin** is better than **GA**.

4.18 Function 18: Alphine

Figure 18: Cost and CPU total running time of Function 18: Alphine

algorithm	mean	$std_{-}dev$	median	range_min	range_max	time_ms
GA	18.903	4.296	18.499	8.833	26.103	1905.180
$DE_best_1_exp$	44.836	23.021	36.868	15.752	127.641	1653.390
$DE_rand_1_exp$	27.128	3.951	27.255	19.172	36.741	1690.010
$DE_randbest_1_exp$	54.767	11.171	54.614	33.832	88.008	1681.220
$DE_best_2_exp$	48.362	20.063	45.537	4.092	94.633	1768.150
$DE_rand_2_exp$	23.537	3.785	23.411	15.557	35.538	1806.250
$DE_best_1_bin$	57.801	28.004	50.831	10.234	143.547	1871.850
$DE_{rand_1_bin}$	24.683	3.349	24.913	17.813	32.461	1877.280
$DE_randbest_1_bin$	29.555	17.094	24.332	8.935	98.477	1990.090
$DE_best_2_bin$	92.449	40.111	85.133	19.770	195.347	1997.580
$DE_{rand_2}bin$	12.652	1.917	12.325	8.391	17.788	2017.690

Table 20: Function 18: Statistical Analysis of the Cost obtained by GA and DE

4.19 Function 1: Schwefel

Figure 19: Cost and CPU total running time of Function 1: Schwefel

mean	std_dev	median	${\rm range_min}$	$range_max$	$time_ms$
1330.170	388.519	1379.190	322.844	2451.800	2158.370
2554.650	454.357	2625.350	1692.530	3758.570	1885.140
3221.480	245.530	3226.450	2698.210	3818.370	1917.270
6393.850	341.369	6432.170	5447.420	6967.870	1940.380
3393.730	766.011	3481.430	1919.550	5097.510	1964.200
1859.860	190.640	1870.870	1285.870	2314.850	1973.270
2012.120	343.998	2076.640	1055.310	2660.160	2013.510
6833.980	360.550	6847.770	5919.700	7390.060	2178.320
6764.300	575.049	6794.490	5279.800	7895.460	2238.470
2187.930	488.011	2130.950	1484.130	3557.450	2153.020
6168.990	298.901	6230.760	5457.080	6689.420	2321.140
	1330.170 2554.650 3221.480 6393.850 3393.730 1859.860 2012.120 6833.980 6764.300 2187.930	1330.170 388.519 2554.650 454.357 3221.480 245.530 6393.850 341.369 3393.730 766.011 1859.860 190.640 2012.120 343.998 6833.980 360.550 6764.300 575.049 2187.930 488.011	1330.170 388.519 1379.190 2554.650 454.357 2625.350 3221.480 245.530 3226.450 6393.850 341.369 6432.170 3393.730 766.011 3481.430 1859.860 190.640 1870.870 2012.120 343.998 2076.640 6833.980 360.550 6847.770 6764.300 575.049 6794.490 2187.930 488.011 2130.950	1330.170 388.519 1379.190 322.844 2554.650 454.357 2625.350 1692.530 3221.480 245.530 3226.450 2698.210 6393.850 341.369 6432.170 5447.420 3393.730 766.011 3481.430 1919.550 1859.860 190.640 1870.870 1285.870 2012.120 343.998 2076.640 1055.310 6833.980 360.550 6847.770 5919.700 6764.300 575.049 6794.490 5279.800 2187.930 488.011 2130.950 1484.130	1330.170 388.519 1379.190 322.844 2451.800 2554.650 454.357 2625.350 1692.530 3758.570 3221.480 245.530 3226.450 2698.210 3818.370 6393.850 341.369 6432.170 5447.420 6967.870 3393.730 766.011 3481.430 1919.550 5097.510 1859.860 190.640 1870.870 1285.870 2314.850 2012.120 343.998 2076.640 1055.310 2660.160 6833.980 360.550 6847.770 5919.700 7390.060 6764.300 575.049 6794.490 5279.800 7895.460 2187.930 488.011 2130.950 1484.130 3557.450

Table 21: Function 1: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): 1330.170000

4.20 Function 2: De Jong 1

Figure 20: Cost and CPU total running time of Function 2: De Jong 1

algorithm	mean	$std_{-}dev$	median	range_min	range_max	time_ms
GA	85.044	23.894	84.611	44.305	139.288	1365.260
$DE_best_1_exp$	4.529	2.486	3.701	2.033	13.354	949.713
$DE_rand_1_exp$	74.558	16.062	73.572	47.658	119.195	988.005
$DE_randbest_1_exp$	2.406	0.862	2.240	1.051	5.319	994.983
$DE_best_2_exp$	0.459	0.782	0.171	0.013	3.913	1036.180
$DE_rand_2_exp$	79.866	19.786	75.825	41.275	136.236	1057.180
$DE_best_1_bin$	0.004	0.004	0.003	0.001	0.019	1132.280
$DE_rand_1_bin$	18.665	5.393	17.922	10.120	33.667	1111.860
$DE_randbest_1_bin$	0.002	0.002	0.002	0.001	0.015	1249.120
$DE_best_2_bin$	0.007	0.005	0.006	0.002	0.023	1247.720
$DE_rand_2_bin$	8.319	2.081	7.912	5.392	15.903	1281.980

Table 22: Function 2: Statistical Analysis of the Cost

Best Algorithm:

 $DE_randbest_1_bin$, Cost (mean): 0.002287

4.21 Function 3: Rosenbrock's Saddle

Figure 21: Cost and CPU total running time of Function 3: Rosenbrock's Saddle

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	358923.000	267559.000	299684.000	68740.900	1398620.000	1488.010
$DE_best_1_exp$	8366.080	7368.590	6825.100	896.082	36143.000	1037.970
$DE_rand_1_exp$	616375.000	254829.000	588666.000	256876.000	1669420.000	1066.480
$DE_randbest_1_exp$	1634.280	1297.190	1187.020	359.236	6231.420	1087.650
$DE_best_2_exp$	3820.620	6851.230	1888.900	128.036	45150.700	1117.830
$DE_rand_2_exp$	753439.000	361520.000	642237.000	255458.000	1675010.000	1144.840
$DE_best_1_bin$	520.354	1468.460	124.942	28.947	10194.600	1260.940
$DE_rand_1_bin$	72972.600	22329.200	70409.300	33871.500	126730.000	1187.770
$DE_randbest_1_bin$	562.328	1690.900	139.163	32.807	11575.100	1325.200
$DE_best_2_bin$	1048.130	2325.130	199.843	34.386	10112.200	1336.470
$DE_rand_2_bin$	41223.200	17445.900	37140.600	11675.300	92562.200	1374.570

Table 23: Function 3: Statistical Analysis of the Cost

Best Algorithm:

DE_best_1_bin, Cost (mean): 520.354000

Two-Sample Z-Test Hypothesis Testing:

confidence interval = 95%

 $DE_randbest_1_bin$, Cost (mean): 562.328000 P value: 0.894600 the cost of $DE_randbest_1_bin$ is equal to the cost of $DE_best_1_bin$.

DE_best_2_bin, Cost (mean): 1048.130000 P value: 0.174800 the cost of DE_best_2_bin is equal to the cost of DE_best_1_bin.

4.22 Function 4: Rastrigin

Figure 22: Cost and CPU total running time of Function 4: Rastrigin

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-67715.300	3609.350	-68065.100	-75769.800	-56733.400	2311.080
$DE_best_1 = xp$	-48389.100	4409.680	-47912.100	-55862.600	-39156.300	2105.140
$DE_rand_1_exp$	-40661.400	4103.810	-41029.900	-52576.200	-32624.400	2129.370
$DE_randbest_1_exp$	-42764.300	4024.470	-42537.300	-53514.800	-30143.200	2142.170
$DE_best_2 exp$	-49615.600	7726.570	-48882.600	-68621.700	-27517.200	2154.290
DE_{rand_2exp}	-49116.300	4254.270	-48819.600	-58954.800	-40404.200	2247.240
$DE_best_1_bin$	-37136.400	6739.330	-36004.300	-56677.300	-22626.200	2304.170
$DE_{rand_1_bin}$	-29531.800	3221.190	-28905.400	-37277.600	-24578.200	2298.010
$DE_randbest_1_bin$	-34185.400	4381.230	-33735.800	-44761.300	-21279.500	2437.100
$DE_best_2_bin$	-19621.900	7905.000	-20318.700	-34698.100	9621.470	2483.290
$DE_rand_2_bin$	-40013.100	4080.260	-39385.600	-50957.300	-33198.600	2507.650

Table 24: Function 4: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): -67715.300000

4.23 Function 5: Griewangk

Figure 23: Cost and CPU total running time of Function 5: Griewangk

algorithm	mean	std_dev	median	${\rm range_min}$	$range_max$	${ m time_ms}$
GA	1.603	0.160	1.581	1.270	2.002	3276.470
$DE_best_1_exp$	0.993	0.048	1.002	0.833	1.057	2916.120
$DE_rand_1_exp$	1.474	0.103	1.465	1.293	1.754	2978.280
$DE_randbest_1_exp$	0.956	0.058	0.971	0.789	1.031	2961.530
$DE_best_2 exp$	0.217	0.169	0.154	0.052	0.782	2824.540
$DE_rand_2_exp$	1.475	0.120	1.458	1.255	1.839	3068.560
$DE_best_1_bin$	0.015	0.016	0.011	0.001	0.091	2966.040
$DE_rand_1_bin$	1.121	0.028	1.117	1.073	1.177	3129.120
$DE_randbest_1_bin$	0.011	0.011	0.006	0.002	0.054	2978.360
$DE_best_2_bin$	0.023	0.014	0.020	0.004	0.059	3025.790
$DE_{rand_2_bin}$	1.048	0.011	1.047	1.027	1.076	3324.260

Table 25: Function 5: Statistical Analysis of the Cost

Best Algorithm:

 $DE_randbest_1_bin$, Cost (mean): 0.010972

Two-Sample Z-Test Hypothesis Testing:

confidence interval = 95%

DE_best_1_bin, Cost (mean): 0.015211 P value: 0.121100 the cost of **DE_best_1_bin** is equal to the cost of **DE_randbest_1_bin**.

4.24 Function 6: Sine Envelope Sine Wave

Figure 24: Cost and CPU total running time of Function 6: Sine Envelope Sine Wave

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-40.070	0.437	-40.085	-41.066	-38.894	2505.260
$DE_best_1_exp$	-36.327	0.565	-36.422	-37.696	-35.335	2245.670
$DE_rand_1_exp$	-35.602	0.593	-35.471	-37.775	-34.823	2271.290
$DE_randbest_1_exp$	-35.918	0.431	-35.960	-36.793	-34.967	2343.630
$DE_best_2_exp$	-35.868	0.547	-35.782	-37.137	-34.672	2381.410
$DE_rand_2_exp$	-35.457	0.422	-35.395	-36.602	-34.393	2372.520
$DE_best_1_bin$	-32.592	0.671	-32.504	-34.150	-31.059	2516.240
$DE_rand_1_bin$	-32.704	0.499	-32.623	-34.079	-31.921	2486.190
$DE_randbest_1_bin$	-33.280	0.626	-33.274	-34.513	-31.781	2590.990
$DE_best_2_bin$	-31.581	1.033	-31.590	-34.279	-29.521	2631.400
$DE_rand_2_bin$	-33.217	0.538	-33.208	-35.363	-32.194	2708.290

Table 26: Function 6: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): -40.070400

4.25 Function 7: Stretch V Sine Wave

Figure 25: Cost and CPU total running time of Function 7: Stretch V Sine Wave

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	30.665	0.471	30.678	29.633	31.654	4661.080
$DE_best_1_{exp}$	41.091	1.458	41.033	37.153	44.118	4475.330
$DE_rand_1_exp$	42.384	1.404	42.341	38.162	45.878	4457.850
$DE_randbest_1_exp$	41.151	1.272	41.212	38.592	44.193	4503.920
$DE_best_2_exp$	42.875	1.713	42.874	38.752	46.806	4558.770
$DE_rand_2_exp$	42.142	1.243	42.048	39.757	44.523	4584.040
$DE_best_1_bin$	53.829	2.475	53.828	47.597	59.374	4710.070
$DE_rand_1_bin$	51.646	2.602	51.935	44.228	57.208	4610.680
$DE_randbest_1_bin$	49.805	2.330	49.684	45.737	55.137	4749.480
$DE_best_2_bin$	54.797	3.083	54.777	47.194	62.068	4783.610
$DE_rand_2_bin$	51.045	1.974	51.205	44.699	54.809	4881.670

Table 27: Function 7: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): 30.664900

4.26 Function 8: Ackley One

Figure 26: Cost and CPU total running time of Function 8: Ackley One

algorithm	mean	std_dev	median	range_min	range_max	$time_ms$
GA	-68.615	2.798	-68.254	-74.087	-61.435	3126.870
$DE_best_1_exp$	-62.618	5.764	-62.828	-74.697	-48.541	2947.120
$DE_rand_1_exp$	-60.235	3.611	-60.705	-68.175	-51.756	3048.230
$DE_randbest_1_exp$	-23.060	5.377	-22.526	-37.711	-4.706	3022.120
$DE_best_2_exp$	-62.723	8.563	-62.830	-80.437	-44.481	2941.100
$DE_rand_2_exp$	-68.522	2.789	-68.553	-73.931	-60.632	3080.420
$DE_best_1_bin$	-66.035	9.275	-67.084	-79.900	-30.430	3100.030
$DE_rand_1_bin$	-33.812	6.734	-32.641	-53.044	-20.210	3182.070
$DE_randbest_1_bin$	-35.009	11.953	-36.099	-59.294	-0.737	3287.650
$DE_best_2_bin$	-44.479	21.128	-49.283	-76.128	21.145	3298.820
$DE_{rand_2}bin$	-61.283	2.866	-61.373	-67.186	-55.517	3563.030

Table 28: Function 8: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): -68.615300

Two-Sample Z-Test Hypothesis Testing:

confidence interval = 95%

DE_rand_2_exp, Cost (mean): -68.521700 P value: 0.866900 **the cost of DE_rand_2_exp** is equal to the cost of **GA**.

 $DE_best_1_bin$, Cost (mean): -66.035300 P value: 0.059700 the cost of $DE_best_1_bin$ is equal to the cost of GA.

4.27 Function 9: Ackley Two

Figure 27: Cost and CPU total running time of Function 9: Ackley Two

algorithm	mean	$std_{-}dev$	median	range_min	range_max	time_ms
GA	60.636	10.164	59.826	36.270	97.436	5118.920
$DE_best_1_exp$	20.410	7.100	18.697	8.761	52.007	4834.950
$DE_rand_1_exp$	38.721	5.110	39.014	25.299	51.858	5044.620
$DE_randbest_1_exp$	46.666	8.474	44.816	32.060	71.422	4965.250
$DE_best_2_exp$	57.006	33.181	58.305	6.246	133.930	4718.370
$DE_rand_2_exp$	32.124	4.481	32.228	21.543	41.104	5008.020
$DE_best_1_bin$	34.759	32.776	26.968	0.386	124.512	4761.210
$DE_rand_1_bin$	50.078	5.938	50.376	26.227	61.097	5113.780
$DE_randbest_1_bin$	8.953	18.793	2.261	0.527	99.830	4897.940
$DE_best_2_bin$	52.178	35.027	45.816	1.823	139.311	4954.370
$DE_rand_2_bin$	15.336	2.131	15.316	7.345	20.440	5277.080

Table 29: Function 9: Statistical Analysis of the Cost

Best Algorithm:

 $DE_randbest_1_bin$, Cost (mean): 8.952710

4.28 Function 10: Egg Holder

Figure 28: Cost and CPU total running time of Function 10: Egg Holder

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-18226.300	915.881	-18373.200	-20476.500	-15880.700	3839.400
$DE_best_1_exp$	-13635.300	1043.520	-13621.600	-16154.000	-10730.700	3867.320
$DE_rand_1_exp$	-12848.900	447.916	-12845.400	-13772.600	-11899.400	3929.930
$DE_randbest_1_exp$	-9469.860	647.241	-9353.080	-10953.300	-8129.610	3977.400
$DE_best_2 exp$	-13220.500	1520.260	-12851.000	-17552.400	-10572.200	4010.010
$DE_rand_2_exp$	-13696.800	487.713	-13682.800	-14779.800	-12941.900	4014.570
$DE_best_1_bin$	-14468.300	2996.410	-14935.900	-19843.400	-8668.150	4180.020
$DE_{rand_1_bin}$	-8478.360	734.300	-8352.540	-10190.100	-7180.200	4275.380
$DE_randbest_1_bin$	-8036.620	916.736	-8106.190	-9971.340	-6435.620	4406.880
DE_best_2bin	-13206.800	3440.280	-12669.200	-20928.800	-7302.990	4371.700
$DE_rand_2_bin$	-8821.480	653.647	-8629.970	-10926.000	-7807.520	4492.260

Table 30: Function 10: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): -18226.300000

4.29 Function 11: Rana

Figure 29: Cost and CPU total running time of Function 11: Rana

mean	$\operatorname{std}_{\operatorname{-}\!dev}$	median	$range_min$	$range_max$	$time_ms$
-10546.200	440.372	-10547.300	-11654.400	-9505.950	4617.120
-8429.380	668.964	-8353.660	-10489.400	-7158.370	4721.350
-7061.110	353.680	-6978.280	-8313.310	-6563.800	4833.610
-6252.450	477.028	-6213.170	-7932.240	-5474.680	4828.880
-7981.080	773.981	-7820.980	-10008.800	-6754.880	4845.910
-7170.400	264.664	-7160.110	-7928.800	-6619.250	4929.900
-8775.320	1907.570	-8282.570	-12196.800	-4839.800	4944.400
-5122.620	415.338	-5007.840	-6357.640	-4347.190	5111.310
-5345.630	845.420	-5044.440	-8401.070	-4283.130	5284.960
-8162.530	2033.390	-8385.280	-12542.300	-5285.150	5153.990
-5037.860	360.314	-4972.590	-6054.450	-4384.930	5396.710
	-10546.200 -8429.380 -7061.110 -6252.450 -7981.080 -7170.400 -8775.320 -5122.620 -5345.630 -8162.530	-10546.200 440.372 -8429.380 668.964 -7061.110 353.680 -6252.450 477.028 -7981.080 773.981 -7170.400 264.664 -8775.320 1907.570 -5122.620 415.338 -5345.630 845.420 -8162.530 2033.390	-10546.200 440.372 -10547.300 -8429.380 668.964 -8353.660 -7061.110 353.680 -6978.280 -6252.450 477.028 -6213.170 -7981.080 773.981 -7820.980 -7170.400 264.664 -7160.110 -8775.320 1907.570 -8282.570 -5122.620 415.338 -5007.840 -5345.630 845.420 -5044.440 -8162.530 2033.390 -8385.280	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 31: Function 11: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): -10546.200000

4.30 Function 12: Pathological

Figure 30: Cost and CPU total running time of Function 12: Pathological

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	6.054	0.602	6.113	4.790	7.535	3218.660
$DE_best_1_exp$	8.655	1.238	8.824	5.386	10.544	2891.730
$DE_rand_1_exp$	10.378	0.319	10.471	9.287	10.901	2957.840
$DE_randbest_1_exp$	10.562	0.474	10.723	8.065	11.137	2951.870
$DE_best_2 exp$	7.941	1.351	7.925	4.665	10.451	2933.840
$DE_rand_2_exp$	10.491	0.264	10.520	9.524	10.890	3018.680
$DE_best_1_bin$	6.614	1.457	6.392	4.424	12.349	2941.320
$DE_rand_1_bin$	8.402	0.764	8.477	6.870	10.065	3164.780
$DE_randbest_1_bin$	8.334	2.377	7.559	5.407	12.267	3130.240
DE_best_2bin	7.082	0.961	6.993	5.218	9.919	3110.790
$DE_rand_2_bin$	11.201	0.502	11.234	9.793	12.019	3295.300

Table 32: Function 12: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): 6.054130

4.31 Function 13: Michalewicz

Figure 31: Cost and CPU total running time of Function 13: Michalewicz

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	-25.887	0.552	-25.835	-27.196	-24.732	4509.420
$DE_best_1 = xp$	-17.967	0.800	-17.802	-19.574	-16.230	4245.820
$DE_rand_1_exp$	-17.257	0.541	-17.142	-18.587	-16.191	4272.270
$DE_randbest_1_exp$	-16.114	0.600	-15.996	-17.676	-15.058	4326.960
$DE_best_2_exp$	-16.249	0.852	-16.099	-18.393	-14.376	4331.730
$DE_rand_2_exp$	-18.072	0.679	-17.908	-20.645	-16.758	4348.170
$DE_best_1_bin$	-13.277	0.708	-13.189	-14.930	-11.754	4439.490
$DE_rand_1_bin$	-12.388	0.695	-12.308	-14.673	-11.395	4403.000
$DE_randbest_1_bin$	-12.776	0.807	-12.700	-15.115	-11.504	4554.450
DE_best_2bin	-11.374	0.601	-11.376	-12.625	-10.038	4550.100
$DE_rand_2_bin$	-13.749	0.532	-13.717	-15.330	-12.476	4699.510

Table 33: Function 13: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): -25.887200

4.32 Function 14: Masters' Cosine Wave

Figure 32: Cost and CPU total running time of Function 14: Masters' Cosine Wave

algorithm	mean	std_dev	median	$range_min$	$range_max$	$time_ms$
GA	-12.842	1.966	-12.510	-17.187	-7.832	2838.080
$DE_best_1_{exp}$	-6.943	0.625	-7.034	-8.789	-5.398	2625.200
$DE_rand_1_exp$	-7.084	0.589	-7.023	-9.378	-6.132	2679.030
$DE_randbest_1_exp$	-5.286	0.448	-5.241	-6.123	-4.230	2656.230
$DE_best_2_exp$	-6.350	0.684	-6.212	-7.774	-5.031	2691.650
$DE_rand_2_exp$	-7.389	0.519	-7.371	-8.466	-5.919	2728.580
$DE_best_1_bin$	-4.274	0.513	-4.195	-5.576	-3.289	2849.020
$DE_rand_1_bin$	-2.836	0.312	-2.804	-3.683	-2.312	2834.160
$DE_randbest_1_bin$	-3.351	0.360	-3.349	-4.309	-2.595	2968.260
DE_best_2bin	-2.921	0.391	-2.926	-4.347	-2.092	2999.520
DE_rand_2 _bin	-3.483	0.330	-3.484	-4.323	-2.823	3083.540

Table 34: Function 14: Statistical Analysis of the Cost

Best Algorithm:

GA, Cost (mean): -12.841700

4.33 Function 15: Quartic

Figure 33: Cost and CPU total running time of Function 15: Quartic

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	43658.600	28045.300	35983.300	7846.720	150243.000	1550.680
$DE_best_1 exp$	806.342	719.590	593.730	55.636	2999.920	1116.150
$DE_rand_1_exp$	103284.000	49304.900	89445.200	38826.800	266325.000	1152.880
$DE_randbest_1_exp$	73.893	145.668	33.921	3.337	955.929	1158.990
$DE_best_2 exp$	253.454	504.449	48.181	0.010	2479.520	1203.700
$DE_rand_2_exp$	105577.000	55484.600	95674.200	33958.200	264131.000	1231.430
$DE_best_1_bin$	0.105	0.380	0.004	0.000	2.426	1305.180
$DE_rand_1_bin$	28785.100	140387.000	8082.490	1888.710	1010990.000	1261.300
$DE_randbest_1_bin$	3.999	16.630	0.027	0.000	114.900	1395.720
$DE_best_2_bin$	0.016	0.029	0.005	0.000	0.164	1406.170
$DE_rand_2_bin$	3825.140	1627.090	3518.840	1554.950	8387.470	1465.150

Table 35: Function 15: Statistical Analysis of the Cost

Best Algorithm:

DE_best_2_bin, Cost (mean): 0.016239

Two-Sample Z-Test Hypothesis Testing:

confidence interval = 95%

DE_best_1_bin, Cost (mean): 0.104807 P value: 0.100300 the cost of DE_best_1_bin is equal to the cost of DE_best_2_bin.

 $DE_rand_1_bin$, Cost (mean): 28785.100000 P value: 0.147100 the cost of $DE_rand_1_bin$ is equal to the cost of $DE_best_2_bin$.

DE_randbest_1_bin, Cost (mean): 3.999430 P value: 0.090300 the cost of DE_randbest_1_bin is equal to the cost of DE_best_2_bin.

4.34 Function 16: Levy

Figure 34: Cost and CPU total running time of Function 16: Levy

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	3.220	2.454	2.718	0.417	10.843	4489.610
$DE_best_1_exp$	0.324	0.404	0.212	0.020	2.503	4153.580
$DE_rand_1_exp$	0.548	0.097	0.558	0.347	0.752	4348.050
$DE_randbest_1_exp$	0.245	0.103	0.231	0.082	0.505	4214.800
$DE_best_2 exp$	2.517	1.845	2.181	0.004	8.449	4056.670
$DE_rand_2_exp$	0.481	0.105	0.478	0.306	0.707	4479.960
$DE_best_1_bin$	1.629	1.408	1.315	0.000	8.091	4171.730
$DE_rand_1_bin$	0.397	0.087	0.398	0.184	0.575	4404.010
$DE_randbest_1_bin$	0.208	0.292	0.090	0.000	1.363	4216.740
DE_best_2bin	3.374	2.696	2.773	0.006	13.085	4364.160
$DE_rand_2_bin$	0.106	0.029	0.100	0.048	0.165	4610.660

Table 36: Function 16: Statistical Analysis of the Cost

Best Algorithm:

DE_rand_2_bin, Cost (mean): 0.105905

4.35 Function 17: Step

Figure 35: Cost and CPU total running time of Function 17: Step

algorithm	mean	std_dev	median	range_min	range_max	time_ms
GA	127.735	29.752	123.041	65.873	201.796	1498.120
$DE_best_1_{exp}$	18.614	3.455	18.223	13.358	32.191	1099.640
$DE_rand_1_exp$	112.570	20.324	110.635	68.843	155.092	1130.610
$DE_randbest_1_exp$	16.238	2.123	15.909	12.909	23.394	1127.790
$DE_best_2_exp$	9.695	1.278	9.425	7.967	13.764	1180.710
$DE_rand_2_exp$	116.961	26.495	116.016	65.986	185.861	1235.260
$DE_best_1_bin$	7.717	0.067	7.706	7.624	7.971	1278.790
$DE_{rand_1_bin}$	43.947	6.483	43.452	31.336	59.197	1294.370
$DE_randbest_1_bin$	7.674	0.057	7.658	7.612	7.889	1368.700
$DE_best_2_bin$	7.836	0.094	7.815	7.667	8.108	1404.950
$DE_rand_2_bin$	24.961	2.397	25.062	19.401	30.667	1478.870

Table 37: Function 17: Statistical Analysis of the Cost

Best Algorithm:

 $DE_randbest_1_bin$, Cost (mean): 7.673640

4.36 Function 18: Alphine

Figure 36: Cost and CPU total running time of Function 18: Alphine

algorithm	mean	$std_{-}dev$	median	range_min	range_max	time_ms
GA	18.903	4.296	18.499	8.833	26.103	1905.180
$DE_best_1_{exp}$	44.836	23.021	36.868	15.752	127.641	1653.390
$DE_rand_1_exp$	27.128	3.951	27.255	19.172	36.741	1690.010
$DE_randbest_1_exp$	54.767	11.171	54.614	33.832	88.008	1681.220
$DE_best_2_exp$	48.362	20.063	45.537	4.092	94.633	1768.150
$DE_rand_2_exp$	23.537	3.785	23.411	15.557	35.538	1806.250
$DE_best_1_bin$	57.801	28.004	50.831	10.234	143.547	1871.850
$DE_rand_1_bin$	24.683	3.349	24.913	17.813	32.461	1877.280
$DE_randbest_1_bin$	29.555	17.094	24.332	8.935	98.477	1990.090
$DE_best_2_bin$	92.449	40.111	85.133	19.770	195.347	1997.580
DE_{rand_2} bin	12.652	1.917	12.325	8.391	17.788	2017.690

Table 38: Function 18: Statistical Analysis of the Cost

Best Algorithm:

DE_rand_2_bin, Cost (mean): 12.652100

4.37 Summary

fanct	gonid GA	Q ^E .	DE.	Jand Lexp	Tandlest, Lexp	DE DEED DE	DE.	De Destabili	rand I bin	gandoest. Liin	ge ^t . Liu
1	1330.170	2554.650	3221.480	6393.850	3393.730	1859.860	2012.120	6833.980	6764.300	2187.930	6168.990
2	85.044	4.529	74.558	2.406	0.459	79.866	0.004	18.665	0.002	0.007	8.319
3	358923.000	8366.080	616375.000	1634.280	3820.620	753439.000	520.354	72972.600	562.328	1048.130	41223.200
4	-67715.300	-48389.100	-40661.400	-42764.300	-49615.600	-49116.300	-37136.400	-29531.800	-34185.400	-19621.900	-40013.100
5	1.603	0.993	1.474	0.956	0.217	1.475	0.015	1.121	0.011	0.023	1.048
6	-40.070	-36.327	-35.602	-35.918	-35.868	-35.457	-32.592	-32.704	-33.280	-31.581	-33.217
7	30.665	41.091	42.384	41.151	42.875	42.142	53.829	51.646	49.805	54.797	51.045
8	-68.615	-62.618	-60.235	-23.060	-62.723	-68.522	-66.035	-33.812	-35.009	-44.479	-61.283
9	60.636	20.410	38.721	46.666	57.006	32.124	34.759	50.078	8.953	52.178	15.336
10	-18226.300	-13635.300	-12848.900	-9469.860	-13220.500	-13696.800	-14468.300	-8478.360	-8036.620	-13206.800	-8821.480
11	-10546.200	-8429.380	-7061.110	-6252.450	-7981.080	-7170.400	-8775.320	-5122.620	-5345.630	-8162.530	-5037.860
12	6.054	8.655	10.378	10.562	7.941	10.491	6.614	8.402	8.334	7.082	11.201
13	-25.887	-17.967	-17.257	-16.114	-16.249	-18.072	-13.277	-12.388	-12.776	-11.374	-13.749
14	-12.842	-6.943	-7.084	-5.286	-6.350	-7.389	-4.274	-2.836	-3.351	-2.921	-3.483
15	43658.600	806.342	103284.000	73.893	253.454	105577.000	0.105	28785.100	3.999	0.016	3825.140
16	3.220	0.324	0.548	0.245	2.517	0.481	1.629	0.397	0.208	3.374	0.106
17	127.735	18.614	112.570	16.238	9.695	116.961	7.717	43.947	7.674	7.836	24.961
18	18.903	44.836	27.128	54.767	48.362	23.537	57.801	24.683	29.555	92.449	12.652

Table 39: Summary: mean cost of each optimization algorithm with different bench-mark functions, the best cost of each function is highlighted.

The table 39 shows a summary of the mean cost obtained by each algorithm, the lowest cost of each function is highlighted in yellow. It can be observed that the Genetic Algorithm found the minimum values in 10 functions, in some way Differential Algorithms are pretty good, they found the lowest cost in 9 functions. In function 8 both algorithms found the lowest cost.

5 Discussion

The previous results show that both GA and DE are good, almost half of the lowest cost is found by GA and another half by DE. Regarding the running time, it can be noticed that in general the GA are slower than DE since in GA it is necessary to do two sorting in each iteration that makes it more time-consuming. Additionally, the figures show that in general, the binomial crossover version of DE is slower than the exponential crossover.

6 Conclusion

In this project two optimization algorithms have been implemented and tested, they are Genetic Algorithm and Differential Evolution Algorithm. From the testing results, it can be observed there is not an absolute winner, GA is better with some functions, and DE with others. The CPU running time of both algorithms is similar. However, some versions of DE are faster than GA but those versions did not find the lowest cost.

To be able to compare the performance between different algorithms we assumed that the manual tuning of the configuration parameters of GA and DE achieved its best value. Additionally, we believe that the comparison is only valid for the mentioned configuration, running the algorithm with other parameters might produce a different result.

For future work, the comparison between different algorithms can be done in another way. As we can see from the ANNEX the time that each algorithm took to converge is different, so we can set a target cost and test which algorithm achieves the target cost first, in this way we can get a better comparison about which algorithm converges faster.

References

[1] Measuring cpi time in c. https://stackoverflow.com/questions/20167685/measuring-cpu-time-in-c. Accessed: 2020-02-11.

ANNEX

Figure 37: Genetic Algorithm: Cost vs Iterations, function2

The figure 37 shows how Genetic Algorithm Converge through different generations (iterations).

The figure 38 shows how Differential Evolution Algorithm Converge through different generations (iterations).

Figure 38: Differential Evolution: Cost vs Iterations, function2