```
In [1]: from sklearn import metrics
   from sklearn.naive_bayes import GaussianNB
   from sklearn.model_selection import train_test_split
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
```

In [2]: # 1.Load the kinematics dataset as measured on mobile sensors from the file "r
un_or_walk.csv". List out the columns in the dataset.
data = pd.read_csv("run_or_walk.csv")
data.head()

Out[2]:

	date	time	username	wrist	activity	acceleration_x	acceleration_y	acceleratio
0	30- 06- 2017	13:51:15:847724020	viktor	0	0	0.2650	-0.7814	-0.0
1	30- 06- 2017	13:51:16:246945023	viktor	0	0	0.6722	-1.1233	-0.2
2	30- 06- 2017	13:51:16:446233987	viktor	0	0	0.4399	-1.4817	0.0
3	30- 06- 2017	13:51:16:646117985	viktor	0	0	0.3031	-0.8125	0.0
4	30- 06- 2017	13:51:16:846738994	viktor	0	0	0.4814	-0.9312	0.0

In [3]: # 2. Let the target variable 'y' be the activity and assign all the columns af
 ter it to 'x'.
 X = data.iloc[:,5:]
 Y = data["activity"]

Accuracy_Score

```
In [6]: print("\nClassification Report\n")
print(metrics.classification_report(predicted_values, y_test))
```

Classification Report

	precision	recall	f1-score	support
0	0.99	0.93	0.96	14115
1	0.93	0.99	0.96	12462
accuracy			0.96	26577
macro avg	0.96	0.96	0.96	26577
weighted avg	0.96	0.96	0.96	26577

```
In [8]: # 4.Repeat the model once using only the acceleration values as predictors and
then using only the gyro values as predictors.
# Comment on the difference in accuracy between both the models.

# Acceleration as independent variable
X_A = data.iloc[:,5:8]
Y_A = data["activity"]

x_train, x_test, y_train, y_test = train_test_split(X_A, Y_A, test_size=0.3, r
andom_state=10)
g_model = GaussianNB()
g_model.fit(x_train, y_train)

predicted_values = g_model.predict(x_test)
print("\nAccuracy_Score\n")
print(metrics.accuracy_score(predicted_values, y_test))

print("\nClassification Report\n")
print(metrics.classification_report(predicted_values, y_test))
```

Accuracy_Score

0.958648455431388

Classification Report

	precision	recall	f1-score	support
0	0.99	0.93	0.96	14158
1	0.92	0.99	0.96	12419
accuracy			0.96	26577
macro avg	0.96	0.96	0.96	26577
weighted avg	0.96	0.96	0.96	26577

```
In [10]: # Gyro as independent variable
X_G = data.iloc[:,8:]
Y_G = data["activity"]

x_train, x_test, y_train, y_test = train_test_split(X_G, Y_G, test_size=0.3, r
andom_state=10)
g_model = GaussianNB()
g_model.fit(x_train, y_train)

predicted_values = g_model.predict(x_test)
print("\nAccuracy_Score\n")
print(metrics.accuracy_score(predicted_values, y_test))

print("\nClassification_Report\n")
print(metrics.classification_report(predicted_values, y_test))
```

Accuracy_Score

0.6486811905030666

Classification Report

	precision	recall	f1-score	support
0	0.74	0.62	0.68	15810
1	0.55	0.69	0.61	10767
accuracy			0.65	26577
macro avg	0.65	0.65	0.65	26577
weighted avg	0.67	0.65	0.65	26577

```
In [ ]:
```