

www.**eritecampinas**.com.br

Colégio

PROFESSOR DANILO

ITINERÁRIO DE CIÊNCIAS – ANÁLISE DOS DADOS EXPERIMENTAIS – 15/04/2024 🗸

NOME:FERNANDO GARRIDO DA SILVA RAPHAEL	NOTA:
ATIVIDADE 2° BIMESTRE	Da matemática, sabemos que
	$sen(A+B) = sen A \cdot cos B + sen A \cdot cos B$
Esta atividade deverá ser entregue até a próxima aula, dia 29 de abril.	Se, no entanto, $A = B = \theta$: $sen(2\theta) = sen\theta \cdot cos\theta + sen\theta \cdot cos\theta = 2 \cdot sen\theta \cdot cos\theta$
Será avaliada a parte envolvendo cálculo, embora haja um	Portanto:
espaço para copiar as deduções feitas durante a aula.	Q8.
Vamos então começar falando sobre lançamento oblíquo. Q1.	Equação do alcance:
Seja o perfil de lançamento de um projétil.	
	Para maximizar o alcance do foguete, vamos desprezar a
	resistência do ar e tentar maximizar o resultado anterior.
	Fazemos isso encontrando o valor máximo do seno, que é 1 (e argumento é 90°). Assim, encontramos que o alcance é máximo
	quando o lançamento é feito sob ângulo de 45°.
	Q9.
Q2.	Equação do alcance máximo (para um ângulo de lançamento
Q2. Na horizontal, o movimento é uniforme:	de 45°):
Q3.	
Na vertical, o movimento é uniformemente variado. Vamos	Para usarmos o resultado experimental devemos utilizar a área do gráfico de F vs t, que nos fornece uma grandeza chamada
considerar apenas uma equação:	Impulso e que usaremos a letra I para representá-la.
	O Impulso é igual à variação da quantidade de movimento e
	quantidade de movimento Q é igual ao produto da massa pela velocidade. Assim:
Q4.	Q10.
Decompondo o vetor velocidade inicial	
Q5.	Por fim, podemos relacionar a área do gráfico, sua massa e a equação do alcance.
Decompondo o vetor velocidade final	
	ATIVIDADE AVALIATIVA
	 Como primeiro passo, estime a massa m de um foguete a sel lançado na Mobfog. O professor irá aceitar uma faixa bem
	grande de valores. Apenas justifique como chegou em tal valor.
Q6.	
Com as equações do movimento uniformemente variado,	
podemos calcular o tempo de voo	Como segundo passo, determine a área do gráfico obtido através dos dados experimentais fornecidos pelo professor na
	tabela abaixo.
Q7.	
Substituindo o resultado anterior na equação do movimento horizontal	
	3. Como último passo, calcule o alcance máximo de acordo con
	a sua estimativa, a área do gráfico e as deduções feitas em sala

www.**eritecampinas**.com.br

PROFESSOR DANILO

ITINERÁRIO DE CIÊNCIAS –	ANÁLISE DOS DADOS EXPERIMENTAIS –	15/04/2024
--------------------------	-----------------------------------	------------

THOI EGGOTT BITTINE	
tempo (ms)	Força (N)
130	0,04
310	0,24
490	0,74
670	5,46
850	8,81
1030	11,25
1210	7,21
1390	0,04
1570	0,02

