Local Methods-II

CS771: Introduction to Machine Learning
Purushottam Kar

Recap

$$= \left\{ \frac{1}{3} \circ + \frac{1}{3} \circ + \frac{1}{3} \circ \right\}$$

$$= \left\{ \frac{1}{3} \circ + \frac{1}{3} \circ + \frac{1}{3} \circ \right\}$$

Regression with Weighted r-NN

$$= \left\{ \frac{1}{5} \circ + \frac{3}{5} \circ + \frac{1}{5} \circ \right\}$$

Regression with Weighted r-NN

$$= \left\{ \frac{1}{5} \circ + \frac{3}{5} \circ + \frac{1}{5} \circ \right\}$$

Can use a similar trick with k-nn too!

Classification with Weighted r-NN

Classification with Weighted r-NN

Classification with Weighted r-NN

All it takes are 20 questions

Guess the Movie!

Year of Release 2010,2011,...2017

Box-Office Collection Low (< INR 100 cr) Medium (INR 100-1000 cr) High (> 1000 cr)

Choose an Adviser!

Learning with Decision Trees

... and Decision Forests

Decision Trees

- Very versatile
- Easy to implement
- Extremely fast at test time
- Easy to interpret by humans
- Can be voluminous
- Can overfit badly
- Very very popular

Regression with Decision Trees

Regression with Decision Trees

Regression with Decision Trees

Multi-label Classification with Decision Trees

DT Learning Algorithms

The Questions that Matter

How many children should a node have?

How to send data points to children?

When to stop splitting and make the node a leaf?

What to do at a leaf?

How many trees to train?

Model selection, memory constraints

Can take any (complicated) action at a leaf

Why not call another machine learning algorithm?

Useful trick to keep in mind

For speed, keep leaf action simple

- Can take any (complicated) action at a leaf
 - Why not call another machine learning algorithm?
 - Useful trick to keep in mind

• For speed, keep leaf action simple

- Can take any (complicated) action at a leaf
 - Why not call another machine learning algorithm?
 - Useful trick to keep in mind

• For speed, keep leaf action simple

- Can take any (complicated) action at a leaf
 - Why not call another machine learning algorithm?
 - Useful trick to keep in mind

• For speed, keep leaf action simple

- Can take any (complicated) action at a leaf
 - Why not call another machine learning algorithm?
 - Useful trick to keep in mind

• Simplest action – constant

• DT piecewise constant function!

- Can take any (complicated) action at a leaf
 - Why not call another machine learning algorithm?
 - Useful trick to keep in mind

• For speed, keep leaf action simple

• Simplest action – constant

• DT piecewise constant function!

Node Splitting A "classification" problem in itself! ML Algorithm Usually a simple "stump" Based on only one feature: speed! One child per value feature can take!

A "classification" problem in itself!

Discrete features easy to handle

Based on only one feature: speed!

Usually a simple "stump"

One child per value feature can take!

A "classification" problem in itself!

Discrete features easy to handle

Low, Medium, High

Usually a simple "stump"

Based on only one feature: speed!

Continuous features discretized

One child per value feature can take!

How finely?

August 11, 2017

Do "multi-label" splits make sense?

Discrete features easy to handle

Based on only one feature: speed!

How finely?

Continuous features

discretized

Low, Medium, High

A "classification" problem in itself!

Usually a simple "stump"

One child per value feature can take!

A pure node needs no children

CS771: Intro to ML

August 11, 2017

Exercise: Think about how to deal with regression!!

Pruning Strategies

- Stop if node is pure or almost pure
- Stop if all features exhausted
 - Don't use a feature twice on a path
 - ullet Limits depth of tree to d
- Can stop if a node is ill-populated
- Can grow a tree and then merge nodes
 - Merge two leaves and see if it worsens or not repeat
 - Use a validation set to make these decisions

A few Thoughts

- Why can't I use more features in a node decision stump?
 - Decision tree learning is an NP-hard problem in itself
 - Speed is an issue if using many features at each node
- Why cant I reuse features along a path?
 - Might mean you did not utilize it fully before
 - May lead to very deep trees
- Do I have to do things this way?
 - No, can experiment with well-founded, even crazy, ideas
 - But, give techniques that stood the test of time, a chance
- Some of the state-of-the-art multi-label classifiers are DTs

Please give your Feedback

http://tinyurl.com/ml17-18afb

