数据仓库与数据挖掘

Data warehouse and data mining

丁钰

yuding@live.com

南京农业大学人工智能学院

第六章:挖掘频繁模式、关联和相关性:基本概念和方法

第6章: 挖掘频繁模式、关联和相关性: 基本概念和方法

- 基本概念
- 高效的模式挖掘方法
- 模式评估
- 摘要

模式发现:基本概念

■ 什么是模式发现? 为什么它很重要?

■ 基本概念: 频繁模式和关联规则

■ 压缩表示: 闭模式和极大模式

什么是模式发现?

- 什么是模式?
 - 模式:一组项目、子序列或子结构,在数据集中经常一起出现(或强烈相关)。
 - 模式代表了数据集的内在和重要属性
- 模式发现:从海量数据集中发现模式
- 例子:
 - 哪些产品经常是一起购买的?
 - 购买iPad后的后续购买行为有哪些?
 - 在这个语料库中,哪些词的序列可能构成短语?

模式发现: 为什么它很重要?

- 在数据集中寻找内在的规律性
- 是许多基本数据挖掘任务的基础
 - 关联性、相关性和因果关系分析
 - 挖掘顺序性、结构性(如子图)模式
 - 时空、多媒体、时间序列和流数据的模式分析
 - 分类: 基于判别模式的分析
 - 聚类分析: 基于模式的子空间聚类
- 广泛的应用
 - 购物篮分析、交叉营销、目录设计、销售活动分析、网络日志分析、 生物序列分析

基本概念: K项集(K-itemsets)和支持度

- 项集: 一个或多个项的集合
- **k**-项集: X = {x₁, ..., x_k}
 - 例: {Beer, Nuts, Diaper}是一个3 个项的集合
- X的(*绝对*) *支持度*, sup{X}。频率 或一个项集X的出现次数
 - 例如: sup{Beer}=3
 - 例: sup{Diaper}=4
 - 例如: sup{Beer, Diaper}=3
 - 例如: sup{Beer, Eggs}=1

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- □ (*相对*) *支持度*,*s*{*X*}。 含有X的交易 比例(即一个交易含有X的概率)
 - □ 例如,s{啤酒}=3/5=60%。
 - □ 例如: s{尿布}=4/5=80%。
 - □ 例如: s{啤酒,鸡蛋}=1/5=20%。

基本概念: 频繁项集(模式)

- 如果一个项集(或模式)X的支持度 不低于一个Minsup阈值σ,那么它就 是频繁的。
- 让σ=50% (σ: Minsup阈值)。
 对于给定的5个交易的数据集
 - 所有经常出现的1-项集。
 - 啤酒: 3/5 (60%); 坚果: 3/5 (60%)。
 - 纸尿裤: 4/5 (80%); 鸡蛋: 3/5 (60%)
 - 所有经常出现的2-项集。
 - {啤酒, 尿布}。3/5 (60%)
 - 所有经常出现的3个项目组合?
 - ■无

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- 为什么这些项集(如左图所示)会 形成任何**K**的频繁**K**项集(模式)的 完整集合?
- 观察: 我们可能需要一种有效的方 法来挖掘完整的频繁模式集

从频繁项集到关联规则

- 与项集相比,规则可以更有说服力
 - 例: *尿布 → 啤酒*
 - 购买尿布可能会导致购买啤酒
- 这个规则有多强? (support, confidence)
 - 衡量关联规则: X → Y(s, c)
 - X和 Y都是项集
 - Support , S:一项交易包含X ∪ Y的概率
 - 例如: s{尿布,啤酒}=3/5=0.6(即60%)。
 - confidence, c:包含X的交易也包含Y的*条件概 率*
 - 計算方法: C = sup(X ∪ Y) / sup(X)
 - 例: $c = \sup\{\text{Diaper, Beer}\}/\sup\{\text{Diaper}\} = \frac{3}{4}$ = 0.75

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

注: X U Y: 两个项目集的联合。

■ 该集合同时包含X和Y

挖掘频繁项集和关联规则

■ 关联规则挖掘

- 给出两个阈值: Minsup, minconf
- 找到所有的规则, $X \rightarrow Y(s, c)$
 - 这样,s≥minsup,c≥minconf
- □ \(\dag{\pm}\) minsup = 50%
 - □ 频率。1-项集。啤酒: 3, 坚果: 3, 尿 布:4, 鸡蛋: 3
 - □ 频率: 2项集。 {啤酒, 尿布}: 3
- □ $1 \pm minconf = 50\%$
 - □ 啤酒 → 尿布 (60%, 100%)
 - **□** 尿布 → 啤酒(60%,75%)。

(问:这些都是规则吗?)

	Tid	Items bought
Ī	10	Beer, Nuts, Diaper
	20	Beer, Coffee, Diaper
	30	Beer, Diaper, Eggs
Ĭ	40	Nuts, Eggs, Milk
	50	Nuts, Coffee, Diaper, Eggs, Milk

□ 观察到的情况:

- 挖掘关联规则和挖掘频繁模式是非常接近的问题
- □ 挖掘大型数据集需要可扩展 的方法

挑战: 频繁模式太多!

- 一个长的模式包含一子列的子模式
- 下面的TDB₁包含多少个频繁项集?
 - TDB₁: T1: {a1, ..., a50}; T2: {a1, ..., a100}
 - 假设(绝对) *Minsup*=1
 - 让我们试一试
 - 1-itemsets: $\{a_1\}:2, \{a_2\}:2, ..., \{a_{50}\}:2, \{a_{51}\}:1, ..., \{a_{100}\}:1,$
 - 2-itemsets: $\{a_1, a_2\}: 2, ..., \{a_1, a_{50}\}: 2, \{a_1, a_{51}\}: 1, ..., ..., \{a_{99}, a_{100}\}: 1, ..., a_{50}\}: 1, ..., a_{50}\}: 1, a_$
 - ..., ..., ..., ...
 - 99-itemsets: $\{a_1, a_2, ..., a_{99}\}$:1,..., $\{a_2, a_3, ..., a_{100}\}$:1 一个巨大的集合,任何 100-itemset: $\{a_1, a_2, ..., a_{100}\}$:1
- 频繁项集的总数: $\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} 1$

以压缩的形式表达模式: 闭合模式

- 如何处理这样的挑战?
- 解决方案1: 闭模式。 如果一个模式(项集)X是*频繁的,*并且*不*存在与X *支持度相同的超级模式* Y oX, 那么这个模式就是封闭的。
 - 让交易数据库TDB:₁ T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - 假设*minsup*=1,TDB₁包含多少个封闭模式?
 - 2: P_1 : " $\{a_1, ..., a_{50}\}$ 2"; P_2 : " $\{a_1, ..., a_{100}\}$:1"
- 闭合模式是一种对频繁模式的无损压缩
 - 减少了模式的数量,但并没有失去支持信息!
 - 你仍将能够说"{a₂, ..., a₄₀}:2", "{a₅, a₅₁}:1"

以压缩的形式表达模式: 最大模式

- 解决方案2:最大**模式**。 如果一个模式X是频繁的,并且不存在频繁的超级模式 YoX,那么它就是一个最大模式。
- 与闭模式的区别?
 - 不关心一个最大模式的子模式的实际支持度
 - 让交易数据库TDB:₁ T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - 假设*minsup*=1,TDB₁包含多少个最大模式?
 - 1: P: "{a₁, ..., a₁₀₀}。 1"
- Max-pattern是一种有损失的压缩!
 - 我们只知道{a₁, ..., a₄₀}是频繁的
 - 但我们不知道{a₁, ..., a₄₀}, ..., 的真正支持度了!
- 因此,在许多应用中,挖掘闭模式比挖掘最大模式更可取。

第6章: 挖掘频繁模式、关联和相关性: 基本概念和方法

- 基本概念
- 高效的模式挖掘方法

- 模式评估
- ■摘要

高效的模式挖掘方法

- 频繁模式的向下闭合特性
- Apriori算法
- Apriori的扩展或改进
- 通过探索垂直数据格式挖掘频繁模式
- FPGrowth: 频繁模式增长的算法
- 挖掘封闭模式

频繁模式的向下闭合特性

- 观察:从TDB₁: T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}。
 - 我们得到一个频繁项集: {a₁, ..., a₅₀}
 - 而且,它的子集都是频繁的。{a₁}, {a₂}, ..., {a₅₀}, {a₁, a₂}, ..., {a₁, ..., a₄₉}, ...。
 - 频繁的模式之间一定存在着一些隐藏的关系!
- 频繁模式的向下封闭(也称为 "Apriori") 属性
 - 如果{啤酒、尿布、坚果}是频繁的,那么{啤酒、尿布}也是。
 - 每笔包含{啤酒、尿布、坚果}的交易也包含{啤酒、尿布}。
 - Apriori: 频繁项集的任何子集都必须是频繁的。
- 高效的挖掘方法
 - 如果一个项目集S的任何一个子集是不频繁的,那么S就没有机会是频繁的,我们为什么还要考虑S呢!? ——把修剪用的尖刀!

Apriori修剪和可扩展的挖掘方法

- <u>Apriori修剪原则</u>:如果有任何子项集是不频繁的,它的超集甚至不应该被生成(Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- 可扩展的挖掘方法: 三种主要方法
 - 层次分明、基于连接的方法。 Apriori (Agrawal & Srikant@VLDB'94)
 - 垂直数据格式方法。Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - 频繁的模式投射和增长。FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: 一个候选项集生成和测试的方法

- Apriori的概要(按级别划分,候选项集的生成和测试)。
 - 最初,扫描一次DB,以获得频繁的1-项集
 - 重复进行
 - 从长度为k的频繁项集生成长度为(k+1)的候选项集
 - 根据数据库测试候选者,找到频繁的(k+1)项集
 - 设置k := k +1
 - 直到不能生成频繁集或候选集
 - 返回所有衍生的频繁项集

Apriori算法(伪代码)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_{k} := \{ \text{frequent items} \}; // \text{frequent 1-itemset} \}
While (F_k != \emptyset) do { // when F_k is non-empty
   C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
                            // return F_k generated at each level
return \bigcup_k F_k
```

Apriori算法--一个例子

Database TDB

TidItems10A, C, D20B, C, E30A, B, C, E40B, E

 F_2

minsup = 2

2011

 C_1

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 F_1

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

 C_2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

 C_2

{A, B} {A, C} {A, E} {B, C} {B, E} {C, E}

2nd scan

C_3	Itemset
	{B, C, E}

 3^{rd} scan F_3

Itemset	sup
{B, C, E}	2

Apriori: 实现技巧

- 如何产生候选?
 - 第1步: 自我连接*F_k*
 - 第2步: 修剪
- 候选生成的例子
 - F₃ = {abc, abd, acd, ace, bcd}
 - 自我连接。*F₃*F₃*
 - abcd来自abc和abd
 - Acde来自acd和ace
 - ■修剪。
 - acde被删除,因为ade不在F₃
 - $C_4 = \{abcd\}$

self-join

acde

pruned

ace

acd

bcd

self-join

abd

abc

候选者的产生:一个SQL的实现

- Suppose the items in F_{k-1} are listed in an order
- Step 1: self-joining F_{k-1} abcd insert into C_k select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$ from F_{k-1} as p, F_{k-1} as qwhere $p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}$
- Step 2: pruning for all *itemsets c in C_k* do for all **(k-1)-subsets s of c** do if (s is not in F_{k-1}) then delete c from C_k

Apriori: 改进和替代方案

- 减少交易数据库的扫描次数
 - 分区(例如,Savasere et al, 1995)。
 - 动态项目集计数 (Brin, et al., 1997)。
- 缩减候选的数量
 - Hashing (如DHP: Park, et al., 1995)
 - 通过支持下限修剪(例如,Bayardo 1998)。
 - 抽样 (例如, Toivonen, 1996)。
- 探索特殊的数据结构
 - 树状投影(Agarwal, et al, 2001)。
 - H-miner (Pei, et al., 2001)
 - 超立方体分解(例如, LCM: Uno, et al.)

将在随后的幻灯 片中讨论

将在随后的幻灯 片中讨论

分区: 只扫描两次数据库

■ 定理:*任何可能在TDB中频繁出现的项目集,在TDB的至少一个分区中是频繁的。*

- □ 方法:扫描DB两次(A. Savasere, E. Omiecinski and S. Navathe, *VLDB'95)*
 - □ 扫描1:对数据库进行分区,使每个分区都能容纳在主内存中(为什么?)
 - □ 在这个分区中挖掘局部频繁模式
 - □ 扫描2: 巩固全局频繁的模式
 - 寻找全局频繁项集候选者(那些在至少一个分区中频繁出现的项集)。
 - □ 通过再一次扫描TDB_i,找到这些候选者的真实频率

直接哈希和修剪(DHP)。

- DHP (Direct Hashing and Pruning) :(J. Park, M. Chen, and P. Yu, SIGMOD'95)
- 哈希:不同的项集可能有相同的哈希值: v = hash(itemset)
- 1st扫描。当计算1-项集时,哈希2-项集来计算桶的数量。
- 观察: 如果一个*k项集*的对应散列桶数低于*Minsup*阈值,则该*k*项集不可能是频繁的。
- 例:在TDB的第1st次扫描中,计数1-项集,并且
 - 将交易中的2项集哈希到其桶中
 - {ab, ad, ce}.
 - {bd, be, de}
 - ...
 - 在第一次扫描结束时。
 - 如果minsup=80,移除ab、ad、ce,因为count{ab、ad、ce}<80。

项目集	计数
{ab, ad, ce}.	35
{bd, be, de}	298
{ <i>yz, qs, wt</i> }	58

哈希表

探索垂直数据格式(Exploring Vertical Data Format):ECLAT

- ECLAT (等价类转换): 一种使用集合相交的深度优先搜索算法[Zaki等人, @KDD'97]
- Tid-List:含有一个项目集的交易-ID的列表
- 垂直格式: T(e)={T₁₀, T₂₀, T₃₀}; T(a)={T₁₀, T₂₀}; T(ae)={T₁₀, T₂₀}。
- Tid-List的属性
 - t(X) = t(Y)。X和Y总是一起发生(例如,t(ac}=t(d})。
 - t(X) ⊂ t(Y): 有X的交易总是有Y(例如, t(ac) ⊂ t(ce))。
- 根据垂直交叉推导出频繁模式
- 使用diffset来加速挖掘
 - 只记下不同种类的数据
 - $t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow Diffset (ce, e) = \{T_{20}\}$

一个水平数据格式的交易数据 库

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

垂直数据格式的交易数据库

项目	TidList
а	10, 20
b	20, 30
С	10, 30
d	10
е	10, 20, 30

为什么要通过模式增长来挖掘频繁模式?

- Apriori: 一种广度优先的搜索挖掘算法
 - ■首先找到完整的频繁K项集的集合
 - 然后推导出频繁的(k+1)-项集候选者
 - 再次扫描数据库,找到真正频繁的(k+1)项集
- 采用不同挖掘方法的动机
 - 我们能否开发一种深度优先搜索的挖掘算法?
 - 对于一个频繁的项集p,后续的搜索能否只限于包含p的那些交易?
- 这种想法产生了frequent pattern growth。
 - FPGrowth (J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation, " SIGMOD 2000)

例子:从交易数据库中构建FP-树

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

在插入频繁1st的 项列表。"F、C、A、M、P"

{}

1. 扫描一次数据库,找到单项的频繁模式。

min_support = 3

F: 4, A: 3, C: 4, B: 3, M: 3, P: 3

- 按频率降序排列频繁出现的项目, f-list
- 再次扫描数据库,构建FP树 F-list = f-c-a-b-m-p

□每个交易的频繁项表被作为一个分支插入 , 共享的子分支被合并, 计数被累积。

例子:从交易数据库中构建FP-树

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

在插入**2**nd个频繁的 项列表 "*F、C、A、B、M*"

1. 扫描一次数据库,找到单项的频繁模式。

让min_support = 3

F: 4, A: 3, C: 4, B: 3, M: 3, P: 3

- 2. 按频率降序排列频繁出现的项目,f-list
- 3. 再次扫描数据库,构建FP树 F-list = f-c-a-b-m-p
 - □每个交易的频繁项目表被作为一个分支插 入,共享的子分支被合并,计数被累积。

例子。从交易数据库中构建FP-树

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

在插入所有频繁的 项表后

1. 扫描一次数据库,找到单项的频繁模式。 让min_support = 3

F: 4, A: 3, C: 4, B: 3, M: 3, P: 3

- 按频率降序排列频繁出现的项目, f-list
 F-list = f-c-a-b-m-p
- 3. 再次扫描数据库,构建FP树
 - □每个交易的频繁项表被作为一个分支插入 ,共享的子分支被合并,计数被累积。

挖掘FP-树:基于模式和数据

- 模式挖掘可以根据当前模式进行划分
 - 包含p的模式: p的条件模式基: FCAM:2, CB:1
 - *p*的条件模式基(即*p*存在的条件下的数据库)。
 - 项目p的前缀路径
 - 有m但没有p的模式: m的条件数据库: FCA: 2, FCAB: 1

Conditional database of each pattern

<u>Item</u>	<u>Conditional database</u>
C	f:3
а	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

递归地挖掘每个条件模式基

min_support = 3

Conditional Data Bases

<u>item</u>	cond. data base
C	f:3
а	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

m's FP-tree

对于每个条件模式基

- 挖掘单项模式
- 构建其条件FP-树并进行挖掘

p's conditional DB: $fcam:2, cb:1 \rightarrow c:3$

m's conditional DB: fca:2, $fcab:1 \rightarrow fca:3$

b's conditional DB: $fca:1, f:1, c:1 \rightarrow \phi$

实际上,对于单分支的FP-树,所有的频繁 模式都可以一次生成。

m: 3

fm: 3, cm: 3, am: 3

fcm: 3, fam:3, cam: 3

fcam: 3

特例: FP-树中的单前缀路径

- 假设一个(有条件的)FP树T有一个共享的单一前缀路径P
- 挖掘可以分解为两个部分

FPGrowth:通过模式增长挖掘频繁模式

- 频繁模式增长(FPGrowth)方法的本质
 - 寻找频繁出现的单项,并根据每个这样的单项模式来划分数据库
 - 通过对每个分区*的数据库*(也称为模式的*条件数据库*)进行上述操作,递归 地增长频繁模式
 - 为了便于高效处理,可以构建一个高效的数据结构,即FP-树。
- 挖掘
 - 递归地构建和挖掘(有条件的) FP-树
 - 直到产生的FP-树是空的,或者直到它只包含一条路径--单一路径将产生其子路径的所有组合,其中每一条都是一个频繁的模式。

Trans	Items
1	b,d,f,g,l
2	f,g,h,l,m,n
3	b,f,h,k,m
4	a,f,h,j,m
5	d,f,g,j,m

1.设relative min_sup=0.6,使用 Apriori算法寻找频繁模式。

2.设relative min_sup=0.4,使用fp-growth算法寻找频繁模式

第6章: 挖掘频繁模式、关联和相关性: 基本概念和方法

- 基本概念
- 高效的模式挖掘方法
- 模式评估

■ 摘要

模式评估

- 支持-置信框架的局限性
- 有趣的度量: 提升和相关x²

■ 无变量度量

■ 趣味性度量的比较

如何判断一条规则/模式是否有趣?

- 模式挖掘将产生一大套模式/规则
 - 并非所有生成的模式/规则都是有趣的
- 趣味性的测量。客观的与主观的
 - 客观的趣味性措施
 - 支持、置信、相关、...
 - 主观的趣味性衡量。
 - 不同的用户对趣味性的判断可能不同
 - 让用户指定
 - 基于查询: 与用户的特定请求有关
 - 根据自己的知识基础进行判断
 - 出乎意料,新鲜感,及时性

支持-信任框架的局限性

■ 在关联规则中,s和c是否有趣。" $A \Rightarrow B$ " [s, c]? 要小心!

例子。假设一个学校可能有以下关于可能打篮球和/或吃麦片的学生人数的统计。

	打篮球	不打篮球	和(行)
吃麦片	400	350	750
不吃麦片	200	50	250
sum(col.)	600	400	1000

2-way contingency table

- 关联规则挖掘可能会产生以下结果。
 - 打篮球 ⇒ 吃麦片 [40%, 66.7%] (更高的S&C)
- 但这个强关联规则是误导性的。吃麦片的学生总体比例是 75%>66.7%,这是一个更有说服力的规则。
 - ¬打篮球⇒吃麦片[35%, 87.5%](高S&C)

趣味性的度量:提升度(lift)

■ 依赖/相关事件的衡量标准: lift

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- □ Lift(B, C)可以说明B和C是如何关联的
 - □ Lift(B, C) = 1: B和C是独立的
 - □ >1: 正相关
 - □ < 1: 负相关
- □对于我们的例子。

$$lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$$
$$lift(B,\neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$$

- □ 因此,B和C是负相关的,因为lift(B,C)<1。
 - □ B和¬C是正相关的, 因为lift(B, ¬C) > 1。

提升比S&C更有说服力

	В	¬В	\sum_{row}
С	400	350	750
¬С	200	50	250
$\sum_{\text{col.}}$	600	400	1000

趣味性度量: χ^2

• 检验相关事件的另一个措施: χ^2

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

□对于右边的表格。

	В		¬B	\sum_{row}	
С	400 (450)		350 (300)	750	
¬C	2	ر (150)	50 (100)	250	
\sum_{col}		600	400	1000	

$v^2 - \frac{(4)^2}{2}$	$(00-450)^2$	$(350-300)^2$	$(200-150)^2$	$(50-100)^2$	一 1 7 7 7 4 7 1 7 1 1 LL	
λ —	450	300	150	100	- 25.50	
					观察值	

- □ 通过查阅**χ**²分布的临界值表,可以得出结论: B和C独立的可能性非常低(<0.01)。
- □ **χ**²检验显示B和C是负相关的,因为预期值是450,但观察值只有400。
- □ 因此, **x**²也比支持-置信框架更能说明问题

lift和 χ^2 : 它们总是好的度量吗?

- 零事务: 既不包含B也不包含C的交易
- 让我们检查一下新的数据集D

- BC(100)比B¬C(1000)和¬BC(1000)稀少得多 ,但有许多¬B¬C(100000)。
- 不太可能B和C一起发生!
- 但是, Lift(B, C) = 8.44 >> 1 (Lift显示B)
 和C是强正相关的!)。
- **χ**² = 670:观察值(BC)>>预期值(11.85)
- 太多的无效交易可能会 "坏了一锅汤"!

	В	¬B	\sum_{row}
С	100	1000	1100
¬С	1000	100000	101000
$\sum_{\text{col.}}$	1100	101000	102100
		3	芝交易

加入预期值的应急表

	В	¬В	\sum_{row}	
С	100 (11.85)	1000	1100	
¬C	1000 (988.15)	100000	101000	
$\sum_{\text{col.}}$	1100	101000	102100	

趣味性度量和无差异性

- *零不变度量。*不随零事务的数量而变化的值
- 一些有趣的度量。 有些是零不变的

Measure	Definition	Range	Null-Invariant?
$\chi^2(A,B)$	$\sum_{i,j} \frac{(e(a_i,b_j)-o(a_i,b_j))^2}{e(a_i,b_j)}$	$[0, \infty]$	No /
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0, \infty]$	No
Allconf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	Yes
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes
Kulczynski(A, B)	$\frac{1}{2} \left(\frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$	[0, 1]	Yes
$\mathit{MaxConf}(A,B)$	$max\{\frac{s(A \cup B)}{s(A)}, \frac{s(A \cup B)}{s(B)}\}$	[0, 1]	Yes

X² 和lift不是零 不变的

Jaccard、 consine、 AllConf、 MaxConf和 Kulczynski都是 零不变的度量。

模式评估比较(几种度量)

• 全置信度: $all_conf(A,B) = min\{P(A|B), P(B|A)\}$

- 最大置信度: $max_conf(A,B) = max\{P(A|B), P(B|A)\}$
- Kulczynski (Kulc) 度量: $Kulc(A, B) = \frac{1}{2}(P(A \mid B) + P(B \mid A))$
- 余弦度量: $\cos ine(A,B) = \sqrt{P(A|B) \times P(B|A)}$

零不变性:一个重要的属性

- 为什么零不变性对分析大量交易数据至关重要?
 - 许多交易可能既不含牛奶,也不含咖啡!

牛奶与咖啡相依表

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

- □ Lift和χ²不是零不变的:不好评估包含过 多或过少零事务的数据!
- □ 许多度量都不是零不变的!

Null-transactions w.r.t. m and c

Data set	mc	$\neg mc$	$m \neg c$	$m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

零不变性度量的比较

- 并非所有的零不变性度量都是平等的
- 哪一个更好?
 - D_4 - D_6 的零不变性度量是有区别的

	milk	$\neg milk$	Σ_{row}
coffee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

所有5个都是零不变的

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99

微妙: 他们在这些数据集上意见不一致

Imbalance Ratio with Kulczynski Measure

■ IR (Imbalance Ratio): 衡量两个项目集A和B在规则影响中的不平衡性。

$$IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$$

- Kulczynski和Imbalance Ratio(IR)一起对所有三个数据集D₄到D呈现出清晰的 画面₆
 - D_4 不中立和平衡; D_5 不中立但不平衡
 - D₆ 中立,但非常不平衡

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	0.5	$\bigcirc 0.5$	0
D_5	1,000	100	10,000	100,000	0.09	0.29	$\bigcirc 0.5$	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	$\bigcirc 0.5$	0.99

选择什么度量进行有效的模式评估?

- 在许多大型数据集中,空值情况占主导地位
 - 大多数篮子里既没有牛奶也没有咖啡;大多数论文中,迈克和吉姆都不是作者;
- 零不变性是一个重要的属性
- 如果空交易不占主导地位,则提升、**x²**和余弦是很好的测量方法
 - 否则,应使用*库尔钦斯基+失衡*率来判断模式的有趣程度。

第6章: 挖掘频繁模式、关联和相关性: 基本概念和方法

- 基本概念
- 高效的模式挖掘方法
- 模式评估
- 摘要

摘要

- 基本概念
 - 什么是模式发现? 为什么它很重要?
 - 基本概念。频繁模式和关联规则
 - 压缩表示。封闭模式和最大模式
- 高效的模式挖掘方法
 - 频繁模式的向下闭合特性
 - Apriori算法
 - Apriori的扩展或改进
 - 通过探索垂直数据格式挖掘频繁模式
 - FPGrowth: 频繁模式增长的方法
 - 挖掘封闭模式
- 模式评估
 - 模式挖掘中的趣味性度量
 - 有趣的度量。提升和**χ**²
 - 零不变的度量
 - 趣味性度量的比较

Recommended Readings (Basic Concepts)

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

Recommended Readings (Efficient Pattern Mining Methods)

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

Recommended Readings (Pattern Evaluation)

- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010