Содержание

П	екция 1. Задача UPATH	2
1	Рандомизированный алгоритм для UPATH	2
Л	Лекция 2. Практические методы дерандомизации	
2	Задача MAXCUT	3
3	Задача о максимальном дизайне	3
Л	екция 3. Вершинные экспандеры	4
4	Экспандеры и их спектральные свойства	4
Лекция 4. Амплификация		5
5	Простые техники амплификации	5
6	Амплификация экспандерами	5
Л	екция 5. Экспандеры на основе зигзаг-произведения	6
7	Squaring	6
8	Tensor product	7
9	Zigzag product	7
10	Конструкции экспанлеров	8

Лекция 1. Задача UPATH

Рандомизированный алгоритм для UPATH 1

Главный вопрос: P = BPP? В книжке «Hardness and randomness» есть некоторые результаты на тему того, что из дерандомизации может следовать $P \neq NP$.

Успешные примеры дерандомизации: проверка на простоту (алгоритм AKS), задача **UPATH** или **S-T-CONN** = $\{(G, s, t) : B \}$ неорграфе $G \}$ есть пусть из s в t $\}$.

Теорема 1. $UPATH \in RL$ (randomized logspace).

 \mathcal{L} оказательство. Запустим блуждание из s на N шагов. Если в блуждании встретится t, сказать, что достижимо, иначе нет.

Предельная частота (hitting time) ребра $P_{uv}=\lim_{n\to\infty}\frac{E\#\{(s_i,s_{i+1})=(u,v)\}}{n}$ (добавим петли, применим теорию марковских процессов).

$$P_{u,v} = \frac{1}{\text{ожидаемое время первой встречи (u, v) после выхода из v}}$$

Аналогично, существует предельная частота вершины.

алогично, существует предельнал частога верини. Так как блуждание равномерно, то $P_{uv}=\frac{1}{\deg u}P_u$ и $P_u=\sum_{t:(t,u)\in E}P_{tu}.$

Тогда $P_{uv} = \frac{1}{\deg u} \sum_{t:(t,u) \in E} P_{tu}$. Из этого следует, что все частоты одинаковы, так если есть максимальная частота, а у какого-то смежного меньше, то получается противоречие с равентсвом. То есть $P_{uv} = \frac{1}{2m}, P_u = \frac{\deg u}{2m}$.

Пусть $t_0 = s, t_1, \dots, t_{k-1}, t_k = t$ — путь из s в t. Рассмотрим вершину t_0 . Среднее время возврата в t_0 не зависит от истории блуждания, поэтому оно ровно такое, как в пределе. Поэтому мы в среднем не менее, чем за $\frac{2m}{\deg u}$ мы будем возвращаться в t_0 и рано или поздно пойдем по ребру (t_0, t_1) . Такими рассуждениями, по неравенству Маркова можно проделать 4kmшагов, чтобы с вероятностью $\geqslant \frac{1}{2}$ прийти в $t_k = t$.

Определение 1. Граф d-регулярный, если степени всех вершин равны d.

Утверждение 1. Существует универсальная последовательность поворотов полиномиальной длины, которая посещает все вершины.

Идея доказательства состоит в следующем: можно сделать случайное блуждание, такое длинное, что доля графов, на которых оно не посещает все вершины крайне мала. Тогда, так как таких графов не более n^{dn} , то можно сделать долю такой маленькой, что найдется последовательность, удовлетворяющая всем графам.

Лекция 2. Практические методы дерандомизации

2 Задача МАХСИТ

МАХСИТ: разбить вершины графа на 2 множества S, T, так чтобы между ними было как можно больше ребер.

Если выбрать S случайно, то ожидаемый размер разреза $\frac{1}{2}|E|$, то есть легко можно посторить $\frac{1}{2}$ -оптимальное приближение. Вопрос в том, как найти его, не используя случайность.

1й-способ: метод условных матожиданий: первую вершину кладем куда угодно, для каждой следующей рассматриваем 2 ситуации: поместить её в левую долю или в правую. Делаем это, максимизируя условное матожидание. Получается обычный жадный алгоритм — поместить вершину так, чтобы было как можно больше ребер между долями.

2й-способ: использование попарной независимости. Используем случайные биты, не независимые в совокупности, а независимые попарно. Суть в том, что обеспечание попарной независимости требует только логарифмического количества случайных бит.

Матрица кода Адамара: A размером $(2^l-1)\times l$, по строкам все ненулевые вектора из нулей и единиц. Тогда $y=A\cdot x$, где x вектор случайных величин длины l, будет вектор из равномерно распределенных попарно независимых случайных величин.

Таким образом, если перебрать все случайные биты, мы можем выбрать из них оптимальный и затратить на это полином времени.

3 Задача о максимальном дизайне

Определение 1. $S_1,\dots,S_m\subset\{1,\dots,d\}$ есть (m,d,l,a)-дизайн, если $|S_i|=l,$ а $\forall i\neq j\to |S_i\cap S_j|< a.$

Утверждение 1. Если d,l,a — фискированные, то для $m=\frac{C_d^a}{(C_l^a)^2}$ существует дизайн с такими параметрами.

Доказательство. Рассмотрим случайный дизайн.
$$E_{S_i}(\#\{j < i, |S_j \cap S_i| \geqslant a\}) = (i-1)P(|S_j \cap S_i| \geqslant a) < m \frac{C_l^a C_{d-a}^{l-a}}{C_d^l} < 1.$$
 Тогда найдется значение, равное 0.

Отсюда $\forall \gamma > 0, l, m \in \mathbb{N} \to \exists (m,d,l,a)$ -дизайн, $a = \gamma \log m, d = o(\frac{l^2}{a})$. То есть в полиномиальную кастрюлю можно напихать экспоненциально много сарделек с пересечением в какую-то константную долю, скажем 10%.

Полученный результат можно дерандомизировать с помощью метода условных матожиданий.

Лекция 3. Вершинные экспандеры

4 Экспандеры и их спектральные свойства

Вершинный экспандер — двудольный граф, где любое не слишком большое подмножество левой доли ($\leq \frac{n}{3}$) хорошо расширяется (хотя бы в константу

Утверждение 1. Вершинный экспандер существует.

По D-регулярному графу построим матрицу случайного блуждания M= $\frac{A}{D}$, где A — матрица смежности.

- $u=(\frac{1}{N},\ldots,\frac{1}{N})$ собственый с $\lambda=1.$
- Все собственные значения ≤ 1 по модулю.
- Граф несвязен $\Leftrightarrow \lambda = 1$ имеет кратность > 1. В одну сторону очевидно, в другую нужно рассмотреть любой СВ, не пропорциональный $(1,\ldots,1)$ и взять максимальную компоненту и минимальную это и есть две компоненты связности.
- \bullet Пусть граф связен, тогда $\lambda = -1 \mathrm{C3} \Leftrightarrow$ граф двудольный. В одну сторону очевидно, в другую нужно показать, что у CB с C3 $\lambda = -1$ максимальная компонента равна минус минимальной, далее аналогично предыдущему.

Определение 1. $\lambda(G) = \max_{\pi} \frac{|\pi M - u|}{|\pi - u|} = \max_{x \perp u} \frac{|xM|}{|x|}$.

Утверждение 2. $\lambda(G)$ — модуль второго СЗ матрицы M.

Доказательство.
$$w = \alpha_2 v^2 + \dots + \alpha_n v^n \rightarrow wM = \alpha_2 \lambda_2 v^2 + \dots + \alpha_n \lambda_n v^n$$
.
$$|wM|^2 = \alpha_2^2 \lambda_2^2 + \dots + \alpha_n^2 \lambda_n^2 \leqslant \lambda_2^2 (\alpha_2^2 + \dots + \alpha_n^2) = \lambda_2^2 |w|^2.$$

 $|\pi M^t - u| \leqslant \alpha(G)^t |\pi - u| \leqslant \lambda(G)^t$, то есть $\lambda(G)$ — задает скорость сходимости распределения к равномерному.

Утверждается, что если граф связный и не двудольный, то $\lambda(G) < 1$ —

Теорема 1. Если $\lambda(G) \leqslant \lambda \Rightarrow \forall \alpha \to G - (\alpha N, \frac{1}{\alpha + (1-\alpha)\lambda^2})$ -экспандер

Доказательство. $CP(\pi) = |\pi|^2$ — вероятность коллизии. $CP(\pi) = |\pi - u|^2 + \frac{1}{N}$. $CP(\pi) \geqslant \frac{1}{|\operatorname{Supp} \pi|}$ по KBIII.

 $CP(\pi M) - \frac{1}{N} = |\pi M - u|^2 \leqslant \lambda(G)|pi - u|^2 \leqslant \lambda^2(CP(\pi) - \frac{1}{N})$. Если π равномерное на S, то $CP(\pi) = \frac{1}{|S|}$, а $CP(\pi M) \geqslant \frac{1}{\operatorname{Supp}\pi M} = \frac{1}{|N(s)|}$. Итого, $\frac{1}{|N(S)|} - \frac{1}{N} \leqslant \lambda^2(\frac{1}{|S|} - \frac{1}{N})$, подставляя $|S| \leqslant \alpha N, \frac{1}{N} \leqslant \frac{\alpha}{|S|}$, получаем

Спектральный разрыв: $\gamma(G) = 1 - \lambda(G)$.

Известно, что если граф D-регулярный и является $(\frac{N}{2}, 1+\delta)$ -экспандер, To $\gamma(G) = \Omega\left(\frac{\delta}{D}^2\right)$.

Лекция 4. Амплификация

5 Простые техники амплификации

Хотим в **RP** уменьшить ошибку с $\frac{1}{2}$ до $\frac{1}{2^k}$. Стандартный метод: повторить k раз с новыми случайными битами: время увеличится в k раз, случайных битов нужно mk вместо m.

Техника попарной независимости: время увеличено в 2^k раз, но требуется m+k случайных битов.

Утверждение 1. Пусть X_1, \ldots, X_t — попарно независимые CB со значениями в $\{0,1\}$. $X = \frac{1}{t} \sum X_i$, $EX = \mu = \frac{1}{t} \sum \mu_i$. Тогда $P(|X - \mu| > \varepsilon) < \frac{1}{t\varepsilon^2}$.

Доказательство.
$$DX = E(X - \mu)^2 = \frac{1}{t^2} \left(\sum_{i \neq j} cov(X_i, X_j) + \sum DX_i \leqslant \frac{1}{t} \right),$$
 значит по неравенству Чебышева утверждение доказано.

6 Амплификация экспандерами

Экспандеры: время увеличино в k раз, требуется в mk случайных битов.

Идея: возьмём экспандер, в нём случайную вершину, запустим случайное блуждание длины t и все вершины по дороге используем в качестве случайных битов для алгоритма.

Нужно показать, что для люого множества вершин, доля которого $\leq \frac{1}{2}$, вероятность того, что всё блуждание останется внутри этого множества, будет эскпоненциально малой.

Теорема 1. Пусть G-d-регулярный экспандер c параметром $\lambda=1-\gamma$. $B\subset V(G), \frac{|B|}{|V(G)|}=\mu.\ v_1,\dots,v_t-c$ лучайное блуждание со стартом e начальной вершине.

Тогда
$$P(\forall i v_i \in B) \leq (\mu + \lambda(1 - \mu))^t$$
.

Доказательство. Будем считать, что любой вектор разложен на компоненты $v=v^{\parallel}+v^{\perp},v^{\parallel}=\frac{\langle u,v\rangle}{\langle u,u\rangle}u,u=(\frac{1}{n},\ldots,\frac{1}{n}),v^{\perp}=v-v^{\parallel}.$

Пусть M — матрица блуждания. $vM=(v^{\parallel}+v^{\perp})=v^{\parallel}M+v^{\perp}M=v^{\parallel}+v^{\perp}M$. Однако, $\|v^{\perp}M\|\leqslant \lambda \|v^{\perp}\|$. Отметим, что для распределения вероятностей очевидно $v^{\parallel}=u$.

Также рассмотрим матричное разложение: $vM = v^{\parallel} + v^{\perp} = \gamma v^{\parallel} + (\lambda v^{\parallel} + v^{\perp}M) = \gamma vJ + \lambda vE = v(\gamma J + \lambda E)$, где $J = \frac{1}{N}(1, \dots, 1)^T(1, \dots, 1)$ — матрица из единиц.

 $vJ=v^{\parallel},v^{\parallel}J=v^{\parallel},v^{\perp}J=0.$ E определена как остаточная матрица и мы будем показывать про нее, что $\|vE\|\leqslant \|v\|$.

Утверждение 2. Граф — экспандер с параметром $\lambda \Leftrightarrow M = \gamma J + \lambda E, \|E\| \leqslant 1$.

Доказательство.
$$E = \frac{M - \gamma J}{\lambda}. \ uE = \frac{uM - \gamma uJ}{\lambda} = \frac{u(1 - \gamma)}{\lambda} = u.$$
 Если $v \perp u$, то $vE = \frac{v^{\perp} - \gamma v^{\perp} J}{\lambda} = \frac{1}{\lambda} v^{\perp} M \Rightarrow \|v^{\perp} E\| = \frac{1}{\lambda} \|v^{\perp} M\| \leqslant \|v^{\perp}\|.$ Пусть $P = \text{diag}\{\chi_B(i)\}, P(i,j) = I(i=j,i\in B).$ Тогда $P(v\in B) = |\pi P|_1.$

Утверждение 3.
$$P(v_1, \ldots, v_t \in B) = |uP(MP)^{t-1}|_1$$
.

Доказательство. Более того, $P(v_1, \ldots, v_{l+1} \in B, v_{l+1} = i) = (uP(MP)^l)_i$. Докажем индукцией по l:

База l=0 очевидна. Показываем переход: ясно, что $(uP(MP)^l\cdot M)_i=P(v_1,\dots v_{l+1}\in B,v_{l+2}=i)$. Если еще раз умножить на P, то все координаты для $i\notin B$.

$$P^2 = P$$
, а значит $uP(MP)^{t-1} = uP(PMP)^{t-1}$.

Утверждение 4. $||PMP|| \le \mu + \lambda(1-\mu)$.

Доказательство.
$$\|PMP\| = \|P(\gamma J + \lambda E)P\| = \gamma \|PJP\| + \lambda \|PEP\| \leqslant \gamma \|PJP\| + \lambda$$
.
$$xPJP = yJP = N(yu^T)(uP) = (\sum y_i)(uP), \|xPJP\| = (\sum y_i)\|uP\| \leqslant (\sqrt{\mu N}\|y\|)\sqrt{\frac{\mu}{N}} = \mu\|y\| \leqslant \mu\|x\| \Rightarrow \|PJP\| \leqslant \mu$$
. Итого, $\|PMP\| \leqslant \gamma \mu + \lambda = \mu + \lambda(1-\mu)$.

Итого,
$$P(\forall i v_i \in B) \leq |uP(MP)^{t-1}|_1 \leq \sqrt{\mu N} ||uP(PMP)^{t-1}|| = \sqrt{\mu N} ||uP|| ||PMP||^{t-1} \leq \mu(\mu + (1-\mu)\lambda)^{t-1} < (\mu + (1-\mu)\lambda)^t.$$

Для ВРР применима аналогичная техника.

Лекция 5. Экспандеры на основе зигзаг-произведения

Строим граф с тремя параметрами N — число вершин, D — степень каждой вершины, $\gamma = 1 - \lambda$ — spectral gap.

Рассмотрим три операции, для которых оценим влияние на каждый параметр.

7 Squaring

Эта операция преобразует $G=(V,E)\mapsto (V,E')=G^2$, причем ребро в новом графе есть ребре $(u,w)\in E'\Leftrightarrow \exists v:(u,v)\in E,(v,w)\in E$ с кратностью, равной числу таких v. В матричном виде это собственно возведение матрицы в квадрат.

Тогда $||xM^2|| \le \lambda^2 ||x||$. При такой операции $(N, D, 1-\lambda) \mapsto (N, D^2, 1-\lambda^2)$.

8 Tensor product

Принимает на вход $G_1=(V_1,E_1), M_1$ с параметрами D_1,γ_1 и $G_2=(V_2,E_2), M_2$ с параметрами D_2,γ_2 . Результата $G_1\otimes G_2=(V_1\times V_2,E), D=D_1D_2.$ (i,j) сосед пары (v_1,v_2) есть пара из i-го соседа v_1 и j-го соседа v_2 .

Случайное блуждание по такому графу — это независимое одновременное случайное блуждание по двум сомножителям.

Утверждение 1. $\gamma(G) = \min\{\gamma(G_1), \gamma(G_2)\}.$

Доказательство. Покажем, что для $\forall x \in \mathbb{R}^{N_1N_2}, x \perp u_{N_1N_2} \to \|xM\| \leqslant \lambda \|x\|$. $x = x^{\parallel} + x^{\perp}, x^{\parallel} \|u_{N_2}$ в каждом облаке. $x^{\parallel} = y \times u_{N_2}$, где $y \perp u_{N_1}$. $\|xM^{\parallel} = y \otimes u_{N_2} = \|x^{\parallel}M + x^{\perp}M\|^2 = \|x^{\parallel}M\|^2 + \|x^{\perp}M\|^2 \leqslant \lambda_1^2 \|x^{\parallel}\|^2 + \lambda_2^2 \|x^{\perp}\|$. Поясним, почему это так:

 $x^{\parallel}M = (y \otimes u_{N_2})(M_1 \otimes M_2) = (yM_1) \otimes (u_{N_2}M_2) = yM_1 \otimes u_{N_2}.\|yM_1\| \leqslant \lambda_1\|y\| \Rightarrow \|x^{\parallel}M\| \leqslant \lambda_1\|x^{\parallel}\|.$

 $x^{\perp}M = x^{\perp}(I_{N_1} \otimes M_2)(M_1 \otimes I_{N_2})$. Первое уменьшает норму в λ_2 раз, второе нормы не уменьшает, поэтому $\|x^{\perp}M\| \leqslant \lambda_2 \|x\|$.

Из конструкции видно, что $x^{\parallel}M \perp x^{\perp}M$, значит утверждение доказано.

9 Zigzag product

Принимает на вход $G=(N,D_1,\gamma_1), H=(D_1,D_2,\gamma_2)$ и выдает G Z H с параметрами $(ND_1,D_2^2,\gamma=\gamma_1\gamma_2^2), \lambda\leqslant\lambda_1+2\lambda_2.$

 $V = V_1 \times V_2, (u \in V_1, i \in V_2)$. Сосед (u, i) с номером (a, b) — это:

- i' a-й сосед i в H.
- \bullet v-i'-й сосед u в G.
- j' номер u среди соседей v.
- j-b-й сосед j' в H.
- (v,j) результат.

Если H — полный граф с петлями, то $G(\mathbb{Z})H = G \otimes H$.

Утверждение 2. Если A,B,M — матрицы случайных блужданий графов G,H,G②H, то $M=\widetilde{B}\widehat{A}\widetilde{B}$, где $\widetilde{B}=I_{N_1}\otimes B,\,\widehat{A}_{(u,i),(v,j)}=1,$ если ребро (u,v) присутствует в G, имеет номер i среди соседей u и номер j среди соседей v.

Доказательство. Следует из конструкции.

$$B=\gamma_2 J+(1-\gamma_2)E$$
, где J есть матрица из $\frac{1}{D_1}$, а $\|E\|\leqslant 1$. Тогда $\widetilde{B}=\gamma_2\widetilde{J}+(1-\gamma_2)\widetilde{E}$.

$$B = (\gamma_2 \widetilde{J} + (1 - \gamma_2) \widetilde{E}) \widehat{A} (\gamma_2 \widetilde{J} + (1 - \gamma_2) \widetilde{E} = \gamma_2^2 \widetilde{J} \widehat{A} \widetilde{J} + (1 - \gamma^2) F, ||F|| \leqslant 1.$$

При этом $\widetilde{J}\widehat{A}\widetilde{J}=A\otimes J$ так как J соответствует полному графу. Тогда

 $M = \gamma_2^2 A \otimes J + (1 - \gamma_2^2) F.$ $\|xM\| \leq \gamma_2^2 \|xA \otimes J\| + (1 - \gamma_2^2) \|xF\| \leq (\gamma_2^2 (1 - \gamma_1) + (1 - \gamma_2^2)) \|x\| = (1 - \gamma_2^2) \|x\| + (1$ $\gamma_1\gamma_2^2)||x||.$

10 Конструкции экспандеров

Первая конструкция. Пусть есть экспандер H с параметрами $(D^4, D, \frac{7}{8})$.

Будем итерировать процесс $G_1=H^2, G_{t+1}=G_t^2 \boxtimes H$. G_1 тогда будет иметь параметры $(D^4, D^2, \frac{63}{64})$. Если G_t имеет параметры $(N, D^2, 1-\lambda)$, то у G_t^2 они будут $(N, D^4, 1-\lambda^2)$. Тогда G_{t+1} имеет параметры $(ND^4, D^2, (1-\lambda^2)\frac{49}{64})$. Если $\lambda > \frac{1}{2}$ (что верно для G_1), то разрыв $coxpaнsercs > \frac{1}{2}$.

Вторая конструкция дает более быстрый рост графа. Если H — экспандер с параметрами $(D^8, D, \frac{7}{8})$, то $G_1 = H^2$, $G_{t+1} = (G_t \otimes G_t)^2 \textcircled{2} H$.

 $(G_t\otimes G_t)^2$ имеет параметры $(N^2,D^8,>\frac{3}{4}).$ $(G_t\otimes G_t)^2$ 2H тогда имеет параметры $(N^2D^8, D^2, > \frac{1}{2})$.

Если считать таким образом, то можно за полилог перечислить всех соседей конкретной вершины.