SG house price analysis

by Zhu Ai Ling

Outline

- Data exploration and preprocessing
- Modeling
- Insights

Data exploration

- Data source:
- https://data.gov.sg/dataset/resale-flat-prices
- Mar 2012-July 2017
- 100331 records, 9 attributes and resale_price

Data Exploration and preprocessing

- Data exploration: Check and remove missing value, noise
- Feature Engineering: Create new features and drop unwanted features
- Further Data exploration: univariate analysis and bivariate analysis
- Further Feature Engineering:
 - Normalize numeric features
 - Create Dummy variables for the categorical features
- Data splitting: Split data into training and test

Data sample

Ta	arg	e
	_	

month	town	flat_type	block	street_name	storey_ran ge	floor_area_s qm	flat_model	lease_comme nce_date	resale_pri ce
2012-0 3	ANG MO KIO	2 ROOM	172	ANG MO KIO AVE	06 TO 10	45	Improved	1986	250000
2012-0 3	ANG MO KIO	2 ROOM	510	ANG MO KIO AVE	01 TO 05	44	Improved	1980	265000
2012-0 3	ANG MO KIO	3 ROOM	610	ANG MO KIO AVE	06 TO 10	68	New Generation	1980	315000
2012-0 3	ANG MO KIO	3 ROOM	474	ANG MO KIO AVE	01 TO 05	67	New Generation	1984	320000
2012-0	ANG MO KIO	3 ROOM	604	ANG MO KIO AVE	06 TO 10	67	New Generation	1980	321000
2012-0 3	ANG MO KIO	3 ROOM	154	ANG MO KIO AVE	01 TO 05	68	New Generation	1981	321000

Data exploration: flat_model: noise

Data exploration and preprocessing: Feature engineering

- Create New features:
 - age_at_sale ='year'-'lease_commence_date'
 - extract year and month from 'year-month'
 - price_per_sqm='resale_price']/'floor_area_sqm'
- Drop unwanted features: unwanted = {'block', 'street_name'}

Data exploration: Data summary

	floor_area_sqm	resale_price	price_per_sqm	age_at_sale
count	100331	100331	100331	100331
mean	96.611177	450036.5626	4728.254694	23.99367095
std	24.60016607	130669.9166	1003.445685	10.60193973
min	31	190000	2375	1
25%	74	355000	4054.054054	15
50%	95	425000	4530.201342	26
75%	111	515000	5144.821492	32
max	280	1180000	10645.16129	51

Data exploration: Univariate analysis: distribution of resale_price

Univariate analysis: distribution of floor_area and age_at_sale

Bivariate analysis: resale_price vs. numerical variables

Bivariate analysis: resale_price vs. Categorical variables

Data Engineering

- Normalize numeric features:
 - transform the skewed numeric features by taking log(feature + 1)
- Create Dummy variables for the categorical features
- 100330 records, 211 features

Data splitting

- Time series data:
- split data into training(2012-2015) and test (2016-2017)
- test: 2016-19379, 2017-9715 total (29094)
- train: 2012-1015: total (71236)

Regression modeling

Setting:

- Tune parameter using CV
- Evaluation criteria: RMSE

Models considered:

- Simple: Ridge, Lasso
- Ensemble: Random Forest, XGboost

Ridge-alpha tuning

Regression modelling: Preliminary Results

Model	RMSE
Ridge	0.118403911
Lasso	0.126580114
RF	0.121871804
XGboost	0.115110421

Ridge model does a good job

Regression modeling: Ridge vs XGboost

Regression modeling: Ridge vs XGboost

Feature Importance: Lasso coefficients

Feature Importance: RF

Insights

- Based on existing data and simple experiment setting:
 - Simple model does a good job
- More convincing conclusion can be drawn from:
 - Nested Cross-validation and careful data splitting
 - Fine tuning parameters for XGboost
- Performance can be improved by further Feature Engineering:
- Augment data with other features like Neighbourhood features: distance to CBD, MRT, Schools, also some Economic factors like consumer price index etc