Teoría de colas

Isaac Estrada García

8 de octubre de 2020

1. Objetivos

Examinar los efectos en los tiempos de ejecución de los diferentes ordenamientos cambian cuando se varía el número de núcleos asignados al cluster, ulizando como caso práctico números primos y no- primos como datos de entrada en un vector descargados de https://primes.utm.edu/lists/small/millions

2. Metodología y Resultados

Se hace uso del lenguaje de programación Python para determinal el números de nucleos del ordenador con el siguiente código.

```
>>> from multiprocessing import cpu_count
>>> cpu_ont()
8
```

El código principal empieza con una funcion para determinar los numeros primos y no-primos así como sus factores.

```
def factor(n):
    if n < 4:
        return -1
    if n % 2 == 0:
        return 2
    for i in range(3, int(ceil(sqrt(n))), 2):
        if n % i == 0:
            return i
    return -1</pre>
```

Como siguiente paso se importa el archivo dataprimes.txt ubicado en el repositorio simulacion URL: https://github.com/IsaacEstrada159/simulacion/tree/master/p3 creando un vector llamado datos se paraleliza y se miden los tiempos de ejecución con 10 replicas variando el núcleos. Finalmente el código imprime resultados descrimptivos de los tiempos de ejecución.

Cuadro 1: Efectos del tiempo variando el nucleo orden original

Nucleo	\mathbf{M}	Media	${f M}$
1	4.731	4.930	5.560
2	2.448	2.537	3.250
3	2.401	2.496	3.274
4	1.655	1.859	2.722

3. Conclusión