Aula 30: Tabelas de dispersão

Método da divisão

Idéia básica para o uso de tabelas de dispersão

Transformar as <u>chaves</u> em <u>endereços</u> de uma tabela, como tentativa de fazer a busca de chaves em tempo O(1).

Idéia básica para o uso de tabelas de dispersão

Princípio de funcionamento

Suponha que existam \underline{n} chaves a serem armazenadas em uma tabela T com \underline{m} compartimentos numerados 0, 1, 2, ..., m-1

Acesso direto

Exemplo 1

- n=m
- os valores das chaves são 0, 1, ..., m-1
- cada chave s é
 armazenada no
 compartimento s

T

1

5

Armazenar

Voltar

01 03

00

02

05

0

Acesso direto

Exemplo 2

- **□** *n* < *m*
- *─ m - n* é pequeno
- cada chave s é armazenada no compartimento s
- \neg *T* fica com m n espaços (compartimentos vazios)

$$n = 6$$

$$m = 8$$

$$m - n = 2$$

T

0

 $\overline{}_2$

3

 $\mid 4$

5

--- $\frac{6}{7}$

| 7

Armazenar

Voltar

03

05

00

01

07

04

Acesso direto

Exemplo 3

- n=2
- -m = 1.000.000
- **-** *n* << *m*
- -m n é grande
- valores das chaves:0 e 999.999

Armazenar

Voltar

999.999

Chaves

cederj

Uso de funções de dispersão geral

Idéia: transformar a chave x num endereço-base h(x), que é um valor entre 0 e m-1. h é chamada função de dispersão.

$$h(x) = x \mod 5$$

Armazenar

Voltar

78 60 96 59 13 Chaves

cederj

O fenômeno da colisão

Ocorre quando a função de dispersão *h* <u>não é</u> <u>injetora</u>, isto é, existem duas chaves diferentes *x* e *y* com o mesmo valor de endereço-base. Temos portanto:

$$h(x) = h(y)$$
 e $x \neq y$

- Neste caso, *x* e *y* são chamadas <u>chaves sinônimas</u> <u>em relação a *h*.</u>
- As técnicas que lidam com chaves sinônimas englobam-se sob o método geral denominado tratamento de colisões.

Condições que deve satisfazer uma boa função de dispersão

- Produzir um número baixo de colisões.
- Ser facilmente computável.
- Ser uniforme, isto é: <u>a função h deve dar a todos os compartimentos de T a mesma probabilidade de serem escolhidos</u>.

Se T tem m compartimentos, então cada um deles tem probabilidade 1/m de ser endereçobase de alguma chave.

Método da divisão

$$h(x) = x \bmod m$$

onde m é o tamanho da tabela T.

$$h(x) = x \mod 23$$

Armazenar

Voltar

44 46

49 68

71

97

ceder

Exercício final

Suponha um conjunto de n chaves formado pelos n primeiros múltiplos do número 7.

Quantas colisões seriam obtidas mediante a aplicação das funções de dispersão seguintes:

- (a) $x \mod 7$
- (b) $x \mod 14$
- (c) $x \mod 5$

Resolução do exercício

Para a função $h(x) = x \mod 7$, todas as chaves são sinônimas!

Observe:

- Se temos n chaves, seriam então produzidas $\underline{n-1}$ colisões, pois:
 - a primeira chave, 7, é colocada no endereço 0, que está inicialmente vazio
 - a partir daí, as n-1 chaves restantes geram
 n-1 colisões
 cederi

Resolução do exercício

Para a função $h(x) = x \mod 14$, observe o que acontece:

- As chaves múltiplas de 7 têm endereço-base 7 e as chaves múltiplas de 14 têm endereço-base 0
- Logo, para $n \le 2$, temos 0 colisões (as chaves 7 e 14 não geram colisões)
- Para n > 2, temos n-2 colisões (as n-2 maiores chaves ou colidem com a chave 7 ou com a chave 14)

Resolução do exercício

Item (c)

Para a função $h(x) = x \mod 5$, observe o que acontece:

O que está acontecendo? Você consegue deduzir?

Mostre que o número de colisões é

$$\begin{cases} 0, & \text{se } n \le 5 \\ n-5, & \text{se } n > 5 \end{cases}$$