HEIGHTS PROBLEM SET 5

Below you will find some problems to work on for Week 5! There are three categories: beginner, intermediate and advanced.

Beginner problems

The first two questions ask you to adapt the construction of the canonical height function on an elliptic curve to a dynamical setting.

Question 1. Let $f: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism of degree $d \ge 2$ defined over a number field K. Recall from lecture that h(f(P)) = dh(P) + O(1) for any $P \in \mathbb{P}^n(\overline{\mathbb{Q}})$, say

$$|h(f(P)) - dh(P)| \le C$$

for any $P \in \mathbb{P}^n(\overline{\mathbb{Q}})$. Use a telescoping sum argument to show that

$$\left|\frac{h(f^{\circ N}(P))}{d^N} - \frac{h(f^{\circ M}(P))}{d^M}\right| \leqslant \frac{C}{(d-1)d^M}$$

for all $N > M \ge 0$. Conclude from this that the function

$$\hat{h}_f(P) := \lim_{N \to \infty} \frac{h(f^{\circ N}(P))}{d^N}$$

is well-defined, i.e. that the limit always converges.

Question 2. Complete the proof of the following theorem from lecture: let $f: \mathbb{P}^n \to \mathbb{P}^n$ be a morphism of degree $d \geq 2$. Then,

- (1) $\hat{h}_f(P) = h(P) + O(1)$ (with big-O constant independent of P)
- (2) $\hat{h}_f(f(P)) = d\hat{h}_f(P)$.
- (3) The function \hat{h}_f is the unique such function satisfying the above two properties.
- (4) $\hat{h}_f(P) \ge 0$ always, and $\hat{h}_f(P) = 0$ if and only if $P \in \mathbb{P}^n(\overline{\mathbb{Q}})$ is pre-periodic (i.e. $f^{\circ N}(P) = f^{\circ M}(P)$ for some distinct $N, M \ge 0$).

Question 3. Let K be a number field, and let E/K be an elliptic curve defined over K. Prove that the group $E(K)_{\text{tors}}$ of torsion K-points is finite.

Question 4. Let E be an elliptic curve over a number field K. Show that the next two statements are equivalent.

(a) For all $P, Q \in E(\overline{\mathbb{Q}})$, we have

$$h_E(P+Q) + h_E(P-Q) = 2h_E(P) + 2h_E(Q) + O(1),$$

where the implied constants in O(1) depend on E, but are independent of the pair of points P,Q.

(b) For any integer $m \in \mathbb{Z}$, we have

$$h_E(mP) = m^2 h_E(P) + O(1),$$

where the implied constants in the O(1) notation depend only on E and m and not on the point P.

Intermediate problems

Question 5. Let $\alpha_1, \ldots, \alpha_n$ be any n algebraic numbers (not necessarily conjugate), and let

$$f(x) = (x - \alpha_1) \dots (x - \alpha_n) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in \mathbb{Q}[x].$$

Show that

$$-n\log(2) + \sum_{i=1}^{n} h(\alpha_i) \leq h([1:a_1:\dots:a_n]) \leq (n-1)\log 2 + \sum_{i=1}^{n} h(\alpha_i).$$

Hint: Fix a place v, and use induction on $n = \deg f$ to show that

$$c_v^{-n} \prod_{j=1}^n \max\{1, |\alpha_j|_v\} \leqslant \max_{0 \leqslant i \leqslant n} |\alpha_i|_v \leqslant c_v^{n-1} \prod_{j=1}^n \max\{1, |\alpha_j|_v\},$$

where $c_v = 1$ if v is non-archimedean, but $c_v = 2$ if v is real, and $c_v = 4$ if v is complex. In the induction step, you'll want to write $f(x) = (x - \alpha_k)g(x)$ with k chosen to maximize $|\alpha_k|_v$.

Advanced problems

Question 6. This problem will give you a way of computing $2 \cdot E(K)$ to use the Descent method for finding E(K). Let E be an elliptic curve defined over K. Consider the ring R := K[x]/f(x)K[x]. Define the map $\varphi : E(K) \to R^{\times}/(R^{\times})^2$ given by

$$\varphi(P) = x(P) - x$$

Show the following

- (1) φ is a homomorphism
- (2) $\ker(\varphi) = 2 \cdot E(K)$

Use the map φ to show that if $E: y^2 = f(x)$ and $f(x) \in \mathbb{Q}[x]$ has three rational roots, then E(Q)/2E(Q) is finite

Question 7. Let G be an abelian group. Show that G is finitely generated if and only if

- (1) G admits a norm (as an abelian group). This is, there is a map $|\cdot|: G \to \mathbb{R}_{\geq 0}$ such that
 - (i) |mp| = |m| |p| for all $g \in G$ and $m \in \mathbb{Z}$,
 - (ii) $|h + g| \le |h| + |g|$ for all $h, g \in G$,
 - (iii) for each $c \in \mathbb{R}$ the set $Gc := \{g \in G \mid |p| \leq c\}$ is finite.
- (2) G/mG is finite for some integer m > 1.

Does your proof determine explicitly a set of generators? Note that this is analogous to the descent method used in the lectures to show that E(K) is finite, where E is an elliptic curve defined over a number field K.

¹This problem comes from Section 7 of this REU paper