《基础物理实验》实验报告

实验	名称				RLC	电路的谐振与	暂态过程		指导教师_	邓体	健	
姓	名	唐嘉)	良	_学-	号	2020K800990	7032	_分班分组及	- {座号 <u>4-</u>	04 - 8 号		
实验	日期 202	1年	10	月	28	日实验地点	教学楼 7	09 调课/补	课 □是	成绩评定		

RLC 电路的谐振与暂态过程实验

一、实验目的

- 1. 研究RLC电路的串联和并联谐振现象;
- 2. 了解RLC电路的相频特性和幅频特性;
- 3. 用数字存储示波器观察RLC串联电路的暂态过程,理解阻尼振动规律。

二、仪器用具

标准电感,标准电容,100Ω标准电阻,电阻箱,电感箱,电容箱,函数发生器,示波器,数字多用表,导线等。

三、实验原理

1. 串联谐振的实验原理

图 1 串联谐振电路示意图

通过实验电路方程联立, 不难解出

$$i = \frac{u}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$
$$\varphi_z = \arctan\frac{\omega L - \frac{1}{\omega C}}{R} = \varphi_u - \varphi_i,$$

可以看出,当u以及其他器材参数固定时,z,i, φ_z 均只为频率f的函数。不难作出三者关于f的图像,分别为阻抗特性曲线、相频特性曲线、幅频特性曲线,如下:

图 2 RLC 串联电路的频率特性

(a) 阻抗特性(b) 相频特性(c) 幅频特性

实验中我们即要探究 i, φ_z 关于f如何变化。谐振的定义是电压和电流是同相位变化的,从而整个电路呈电阻态,电容和电感对电路产生的复阻抗影响相当。

u固定时,当 $\varphi_z=0$,即 $\omega^2=1/LC$,图 2 中的 f_0 点处电路发生谐振。谐振时,电路总阻抗最小,电流的幅值达到最大。从上面的探究中,我们可以找到电路谐振频率,并与理论值进行比较。另外值得注意的是, $f< f_0$ 时,电路呈电容性; $f>f_0$ 时,电路呈电感性。

品质因数 $Q = \frac{u_L}{u} = \frac{u_C}{u}$ 反映了电压分配情况。不难推导出 $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$,从该式中我们可以发现 Q 的大小只与 RLC 电路的固有特性有关。另外,半功率点电流 $\frac{i_m}{\sqrt{2}}$ 对应频率 f_1 , f_2 ,此时 $Q = \frac{f_0}{f_2 - f_1}$ 反映的是频率分配。Q越大,电路的充能储能效率越高。

2. 并联谐振的实验原理

实验电路由电容与电感的并联再与电阻R'串联得到。需注意,电感中自带电阻R。并联部分阻抗为

$$\widetilde{z_p} = \frac{(j\omega L + R) \cdot \frac{1}{j\omega C}}{R + j(\omega L - \frac{1}{\omega C})} = z_p e^{i\varphi_z}$$

复阻抗模长为

$$z_p = \sqrt{\frac{R^2 + (\omega L)^2}{(1 - \omega^2 LC)^2 + (\omega CR)^2}}$$

复阻抗幅角为

$$\varphi_z = arctan \frac{\omega L - \omega C[R^2 + (\omega L)^2]}{R}$$

并联部分电压为

$$u = i \cdot z_p = \frac{u_{R'}}{R'} z_p$$

与串联 RLC 谐振电路类似,当u以及其他器材参数固定时, z_p , i, φ_z 均只为频率f的函数,图像大致如下:

图 3 RLC 并联电路的频率特性 (a) 阻抗特性 (b) 相频特性 (c) 幅频特性

我们希望探究 i,u,φ_z 与频率f的关系。谐振时, $\varphi_z=0$,电路呈电阻态, $\omega_p=\sqrt{\frac{1}{LC}-\left(\frac{R}{L}\right)^2}=\omega_0\sqrt{1-\frac{1}{Q^2}}$, $Q\gg1$ 时,有近似 $\omega_p\approx\omega_0$,对应上图中频率为 f_p 的位置。 $f< f_p$ 时,电路呈电感性; $f>f_p$ 时,电路呈电容性。注意,这里频率与电感性、电容性的关系与串联电路恰好相反。

3. RLC串联电路暂态过程的实验原理

放电状态:

根据回路电压为 0 列方程,得到 $LC\frac{d^2u_c}{dt^2} + RC\frac{du_c}{dt} + u_c = 0$ 。回想一阶微分方程的情形,解为负指数函数,呈衰减态势,这里必然和电阻R有关,是消耗。 u_c

充电状态:

道理同上,方程列为 $LC\frac{d^2u_C}{dt^2} + RC\frac{du_C}{dt} + u_c = E$ 。

引入阻尼系数 $\zeta = \frac{R}{2} \sqrt{\frac{c}{L}}$ 。 $\zeta < 1$ 边震荡边衰减; $\zeta > 1$,过阻尼状态,缓慢衰减(或上升)直至趋于 0(或 E); $\zeta = 1$,临界阻尼状态,是过阻尼和临界阻尼的分界点,没有震荡,衰减的要比过阻尼快。

图 4 RLC 暂态过程中的三种阻尼曲线

四. 实验步骤与实验数据

1. 实验前检查万用表是否正常工作

图 5 实验前检查万用表记录照片

将万用表打到电阻档,依次把红表笔插入"A""mA/μA",观察示数。上图为我实验 开始前检查万用表的照片:

2. RLC 串联电路的相频特性和幅频特性

取 L =0.1 H,C =0.05 μ F,R =100 Ω ,用示波器 CH1、CH2 通道分别观测 RLC 串联电路的总电压u和电阻两端电压 u_R 。(注意两个通道的输入线的地端在 b 点共地。)注意限制总电压峰峰值不超过 3.0 V(或有效值不超过 1.0 V),防止串联谐振时产生有危险的高电压。

(1)调谐振,改变函数发生器的输出频率,找到谐振频率 f_0 。在谐振时,用数字多用表测量u, u_L , u_C 。利用公式计算出Q值。

【数据处理与分析】 经过调试,找到谐振频率为 $f_0=2250$ Hz,测出u=0.468V, $u_L=5.45V$, $u_C=5.42V$,由此,以及

$$Q = \frac{u_L}{u} = \frac{u_C}{u}$$

可以分别算出Q = 11.65 及 Q = 11.58.

发现这两个数值非常接近,在误差允许范围内是近乎相等的。我们有理由相信,真实的 *Q* 值就位于这一区间附近。

(2) 测相频特性曲线和幅频特性曲线: 在总电压 $u_{PP}=2.0~V$ 保持不变的条件下,用示波器(在双踪显示下)测出电压、电流间相位差 φ ,以及相应的 u_R 。做RLC串联电路 $\varphi-f$ 曲线和i-f曲线。利用公式估算Q值。分析讨论以上结果。

图 6 RLC 串联电路示波器画面

f/KHz	U(Vpp)/V	(CH1 – CH2)φ/°	$u_R(Vamp)/V$	$I_{\rm max}$ / mA
1.980	2.00	-80	0.162	1.62
2.030	2.00	-70	0.197	1.97
2.110	2.00	-60	0.259	2.59
2.150	2.00	-50	0.300	3.00
2.180	2.00	-40	0.331	3.31
2.188	2.00	-30	0.338	3.38
2.205	2.00	-20	0.350	3.50
2.230	2.00	-10	0.363	3.63

2.250	2.00	0	0.365	3.65
2.268	2.00	10	0.360	3.60
2.284	2.00	20	0.351	3.51
2.320	2.00	30	0.322	3.22
2.350	2.00	40	0.293	2.93
2.400	2.00	50	0.247	2.47
2.510	2.00	60	0.178	1.78
2.800	2.00	70	0.090	0.90
3.120	2.00	80	0.056	0.56

表 1 RLC 串联电路测试数据

图 7 RLC 串联电路中相位差与频率的关系

图 8 RLC 串联电路中电流与频率的关系

上面两张图使用 Excel 的制作而成,采用平滑曲线进行连接。图 7 直接使用原始数据绘出。图 8 的电流则由公式 $i = u_B/R$ 计算而成。

两图和书上的范例进行对比,发现形状较为相似。根据图 8 得到,通频带宽度 $\Delta f = 0.197k$ Hz,故 $Q = f_0/\Delta f = 11.43$.

根据电路参数进行理论计算,*Q*的理论值为 14.14。可以看出,两个实验数据得出来的品质因数相差不多,但和理论值相差较大,相对误差分别为 17.61% – 18.10% 和 19.16%。

导致误差的可能原因有:

- (1) 实验用的电感电容并不是理想元件,尤其是电感上会有伴生电阻,在电路中产生一定的压降,导致电压测量不准确。理想情况下,谐振时应当是纯电阻态的,电阻两端的电压应该和输入电压相等,但由实验数据可以看到,电阻上的电压最大到 1.64V,并不是输入的 2.00V,计算得电感上的电阻大约有 21.95Ω,并不是理想电感。
- (2) 示波器的数据动荡。在实验中,我观察到一个现象:示波器上的相位、电压示数在调节过程中一直不够稳定(即使是average值),且波动范围较大,无法精确判定谐振频率,只能肉眼凭感觉确定。这一点可以从电流与频率之间的关系图中看出,此图的形状和书上的范例不太一致,峰值附近会有小的波动。
- (3) 来自函数发生器和示波器的未知阻抗。已经调整示波器上路端电压接近 2.00V, 但总是不能调到确定为 2.00V,且两仪器阻抗未知,即使调至 2.00V也并不能说明

路端电压一定就是 2.00V。也来自偶然误差: 因为 $i_m/\sqrt{2}$ 的半功率点并未有实验具体测出,而是通过读取图中的数据得到,并不十分准确。

3. RLC 并联电路的相频特性和幅频特性

取 L =0.1 H, C =0.05 μ F, R' =5 k Ω (电阻 R' 是为监测总电流 i 而串入的)。为观测电感与电容并联部分的电压和相位,用 CH1 测量总电压,用 CH2 测量 R' 两端电压,(注意共地点在 b 点),两通道测量电压值相减 CH1-CH2 就是并联部分的电压 u 。可通过示波器面板上的"MATH"键实现两通道波形相减。

(1)调谐振。改变函数发生器的输出频率,观测并联部分的电压u(CH1-CH2)与总电流(CH2)的幅度和相位的变化。找到谐振频率 f_p 。

【数据处理与分析】 经过调试,找到谐振频率约为 $f_0 = 2250$ Hz。

(2) 测相频特性曲线和幅频特性曲线:固定总电压(u^+u_R)的峰峰值 2.0 V 保持不变,测量并联部分电压 u (CH1-CH2) 与总电流(CH2)的相位差以及二者的幅度值。可用光标(Cursor)功能读取电压值。频率范围大约在 1.70~2.80 kHz。参考频率(单位 kHz): 2.05、2.15、2.20、2.231、2.24、2.247、2.25、2.253、2.256、2.265、2.275、2.32、2.40、2.60。作RLC 并联电路的 φ^-f 曲线和 u^-f 、 i^-f 曲线。

图 9 RLC 并联电路示波器画面

f/KHz	U(Vpp)/V 保持不 变	φ/rad	u(Vamp)/V (CH1-CH2)	u _{R`} (Vamp) /mV	I _{MAX} /mA	1/dx /s ⁻¹
1. 850	2. 00	78. 91	0. 53	1. 47	10. 64	8. 333
1. 900	2. 00	79. 40	0. 75	1. 25	10.00	8. 615
1. 950	2. 00	88. 45	0. 74	1. 26	9. 21	7. 927
2. 000	2. 00	86. 39	0. 58	1. 42	8. 30	8. 405
2. 050	2. 00	85. 50	0. 50	1. 50	7. 04	8. 621
2. 100	2. 00	84. 65	0. 42	1. 58	5. 58	8. 930
2. 150	2. 00	78. 97	0. 34	1. 66	3. 90	9. 804
2. 200	2. 00	68. 04	0. 20	1. 80	2. 06	11. 490
2. 250	2. 00	6. 50	0.06	1. 94	0. 66	125. 000
2. 300	2. 00	-67. 92	0. 08	1. 92	1. 88	11. 880
2. 350	2. 00	-78. 93	0. 16	1. 84	3. 58	10. 640
2. 400	2. 00	-81. 10	0. 25	1. 75	5. 08	10. 630
2. 450	2. 00	-81. 15	0. 32	1. 68	6. 36	10. 890
2. 500	2. 00	-79. 20	0. 37	1. 63	7. 42	11. 370
2. 550	2. 00	-84. 30	0. 41	1. 59	8. 26	10. 850

表 2: RLC 并联电路测试数据

图 10 RLC 并联电路中相位差与频率的关系

图 11 RLC 并联电路中电流与频率的关系

图 12 RLC 并联电路中电压与频率的关系

上面两张图使用 Excel 的制作而成,采用平滑曲线进行连接。

两图和书上的范例进行对比,发现形状相似。然而相频特性曲线在两侧及谐振频率处仍 有波动和误差;电压电流幅频特性曲线在谐振频率处与理论值有差异,且电压幅频特性曲线 在低频时有异常点。导致误差的可能原因有:

- (1)实验用的电感电容并不是理想元件,尤其是电感上会有伴生电阻,在电路中产生一定的压降,导致电压测量不准确。理想情况下,谐振时应当是纯电阻态的,电阻两端的电压应该和输入电压相等,但由串联 RLC 谐振电路的数据可以计算出,电感上的电阻大约有 21.95 \(\Omega\),并不是理想电感。
- (2) 示波器的数据动荡。在实验中,我观察到一个现象:示波器上的相位、电压示数在调节过程中一直不够稳定,且波动范围较大,无法精确判定谐振频率,只能肉眼凭感觉确定。这一点可以从电流与频率之间的关系图中看出,此图的形状和书上的范例不太一致,峰值附近会有小的波动。
- (3)来自函数发生器和示波器的未知阻抗。已经调整示波器上路端电压接近 2.00V,但总是不能调到确定为 2.00V,且两仪器阻抗未知,即使调至 2.00V也并不能说明路端电压一定就是 2.00V。也来自偶然误差:因为 $i_m/\sqrt{2}$ 的半功率点并未有实验具体测出,而是通过读取图中的数据得到,并不十分准确。
- (4)万用表出现故障,示数不稳定。在使用万用表测量电压时,示数有时稳定在一个异常值,使得读数被误导。实验中在发现这一可能问题后,我经过了多次尝试,最终观察证实了万用表这一异常工作状态,猜测是内部电路接触不良导致。

4. RLC串联电路的暂态过程

由函数发生器产生方波。为便于观察,要求将方波的低电平调整与示波器的扫描基线一致。由低电平到高电平相当于充电,由高电平到低电平相当于放电。函数发生器各参数可设为: 频率 $50~\rm{Hz}$,电压峰峰值 $u_{PP}=2.0~\rm{V}$,偏移 1V。示波器 CH1 通道用来测量总电压,CH2 用来测量电容两端电压 u_C ,注意两个通道必须共地。实验中 L=0.1H,C=0.2 μ F。

(1) $R = 0\Omega$, 测量 u_C 波形如下:

图 13 RLC 串联暂态过程 $R = 0\Omega$ 时 u_C 波形

曲线有明显阻尼振荡图形,这与讲义上的理论曲线符合得非常好。可以很清晰地看出阻尼振荡过程,在0附近振幅不断减小直至稳定在0.

(2)调节R测得临界电阻 R_C ,并与理论值比较。

图 14 RLC 串联暂态过程 $R = 1400 \Omega$ 时 u_C 波形

图 15 RLC 串联暂态过程 R = 1500Ω时 u_c 波形

 $R = 1400 \, \Omega$ 时,曲线在触发点处先急促后平缓下降,没有冗余振动和乏力趋近,是较为完美的临界阻尼情况。相比之下, $R = 1500 \, \Omega$ 时趋近较为乏力,不是完美的临界阻尼。

(3)记录 $R=2k\Omega$ 和 $R=20k\Omega$ 的 u_C 波形。函数发生器的频率可分别选择为 250Hz($R=2k\Omega$)和 20Hz($R=20k\Omega$)。

图 16 RLC 串联暂态过程 $R = 2000 \Omega$ 时 u_C 波形

图 17 RLC 串联暂态过程 $R = 20000 \Omega$ 时 u_C 波形

【实验结果分析】

通过调节阻值来达到三种阻尼状态。R较小时,波形呈现的是阻尼振荡。随着R增大,波动成分开始减少,直到某一瞬间,波动成分消失,呈现完全衰减的状态,测量出此刻的 R 值为 1400Ω ,状态为临界阻尼。当 R 继续增大,衰减速率减缓,呈现过阻尼状态。

理论计算临界阻值为 $R_C = \sqrt{4L/C} = 1414\Omega$,与频率无关。理论数值与实际数值的相对误差为 $\delta = 0.990\%$ 。误差可能来自于示波器上图形阻尼状态波动过于细微,难以观察,故出现偏查。当R过阻尼时, u_C 的波形形状类似,只是更加平缓,其宽度随频率变化而变化。

五. 实验总结

1.本次实验,我进一步熟悉了函数发生器和示波器的一些操作。最重要的是学会了两种办法测量相位差:一是利用自带的measure功能,二是利用光标跟踪功能读取横坐标的时间差,进而计算出相位差。当示波器的图像波动的很厉害,可能是因为噪声过大,需查看是不是函数发生器没有点击 output 按键,或者是示波器时间过小,或是自己想要探测的信号过弱然后需要更换实验元件。我在实验中遇到了这一问题,后来通过点击 output、调节旋钮等方法成功得到正确波形。

2.培养了全面思考问题的能力。实验中难免会得到一些异常数据或是异常图形,此时应该全面考虑、综合电路各方面因素判断误差来源。比如,万用表出现故障,示数不稳定。在使用万用表测量电压时,示数有时稳定在一个异常值,使得读数被误导。实验中在发现这一可能问题后,我经过了多次尝试,最终观察证实了万用表这一异常工作状态,猜测是内部电路接触不良导致。又或者,电感上有伴生电阻,导致电压测量不准确。这是根据路端电压比输出电压小推断出来的。

六. 思考题

- 1.相位差怎么测量?本实验中有哪几种方法能获得相位差?
- 答:一是利用自带的*measure*功能,二是利用光标跟踪功能读取横坐标的时间差,进而计算出相位差。主要有上述这两种方法。
 - 2.并联谐振原理部分的 fp 和 fp'有什么不同?
- 答: fp!=fp'。因为 fp 是谐振频率,而 fp'是阻抗极大所对应的频率,在并联电路中二者并不一定相等。
 - 3.实验中示波器为什么要共地?

答: 示波器测量的是通道中心线对地的电压, 共地有利于测得正确电压数值。

4.串联谐振的 Q 值怎么获得? 并联谐振的 Q 值怎么获得? 两种 Q 值的意义有何相同点和 不同点?

答: 串联谐振的 Q 可以通过计算

$$Q = \frac{u_L}{u} = \frac{u_C}{u}$$

来获得;或者通过幅频特性曲线的同频带宽度 $Q = f_0/\Delta f$ 来获得。

并联谐振电路的O可以通过计算

$$Q = \frac{i_L}{u} = \frac{i_C}{u}$$

 $Q = \frac{i_L}{u} = \frac{i_C}{u}$ 来获得; 或者通过幅频特性曲线的同频带宽度 $Q = f_0/\Delta f$ 来获得。

相同点是 Q 都表征了电路的储能功能和频率选择性; 不同点是串联电路的 Q 表征电压谐 振,而并联电路的Q表征电流谐振。

5.你认为本实验有什么地方可以改进?

答:实验中所得到的幅频、相频特性曲线存在误差部分和异常点,实验中可以尝试多测 量一些数据,并且摒弃异常点,来使得拟合的曲线更加逼近理论曲线。另外,尽管和理论值 的误差已经非常小,但如果在暂态过程时可以放大细致观察曲线,说不定能够将临界阻尼电 阻更加精确地确定下来。

七. 附录

		U=0.468	5.45 2.708 V 4 545	V - 5.42V	$Q = \frac{u_L}{u} = 11.65$	2:
	= 2250 H2 203 (21)	-1 0		25/222	$\alpha = \frac{\alpha}{\alpha} = 11.58$	
5/kHz (1.98)	-70 -60		The state of the s			
11						
UR/V (0.162 i/mA 1.62	0.197 0.39		3.18 3.50			
		1 211	2.51 2.80	3.12		
J/RHZ 2.268	10 3°	40 50	60 70	80		
UR/V 0.360 0.2	5 0.322	0.293 0.247		0.056	C –	
1/mA 3.60 :	3-51 3,22	293 247		0.56	Q= fo =	
R=(00) 1/4 f/RHz 1.85 1/dx (ST) 1/2/2 1/0 78.9 1/10 A 10.64 1/10 A 10.64 1/dx (ST) 1/60 1/10 A 0.64 1/10 A 0.6	25 2.050 1. 79.4 88 0.75 0.7 10.0 9 25 2.050 11.88 15 67.92 16 0.08 188	2.26 0 22 10.64 16 -78.93 -	85.5 8 85.5 8 0.5 0. 7.04 5. 2013 10.89	2. \$0 2. \$5 - 11.37 10.85 - 79.20 - 84.3		