$$(5\pm 9)'(x) = f'(x) \pm 9'(x)$$

$$(5\cdot 9)'(x) = f'(x)g(x) + f(x)g(x)'$$

$$(f(g(x))'(x) = f'(g(x)) \cdot g'(x)$$

$$R(x) = \frac{Q(x)}{p/x}$$

Case 1:
$$P(z) = simple roots$$
 $P(z) = \prod_{i=1}^{n} (q_i z + b)$

$$\frac{Q(z)}{P(z)} = R(z) = \sum_{i=1}^{n} \frac{C_i}{(q_i z + b)}$$

2:
$$P(a)$$
 has multiple roots: $P(a) = p(a) \cdot (aa+b)^k$
has only simple roots: $p(a) = f(a) \cdot (aa+b)^k$

$$R(a) = \sum_{i=1}^{n} \frac{C_i}{a_i x_i + b_i} + \sum_{i=1}^{n} \frac{D_i}{a_i x_i + b_i}$$