UMassAmherst

BLINK: A High Throughput Link Layer for Backscatter Communication

Pengyu Zhang, Jeremy Gummeson, Deepak Ganesan

University of Massachusetts Amherst

Why backscatter radio?

Can backscatter replace active radios as the first wireless hop?

High Throughput Backscatter Stack

Encoding and Modulation in Backscatter Radio

Encoding and Modulation in Backscatter Radio

Goal 1: Select optimal bit-rate on tag to reader link

Channel Hopping in Backscatter Radio

Goal 2: Design high throughput FCC-compatible channel selection algorithm

BLINK Overview

- Link Metrics
- Design
- Evaluation
- Conclusion

Link Metrics in Backscatter Radio

- Commercial reader exposes RSSI and loss rate
 - In active radio, RSSI is correlated with loss rate. Does this hold true for backscatter radios?

Expt: Measure RSSI/loss-rate for single tag over distance

Link Metrics in Backscatter Radio

- Commercial reader exposes RSSI and loss rate
 - In active radio, RSSI is correlated with loss rate.
 Does this hold true for backscatter radios?
- Expt: Measure RSSI/loss-rate for single tag over distance

Why is there low correlation between RSSI and loss rate?

Reason: Multipath Self-interference

Key insight: self-interference causes high losses even if signals interfere constructively i.e. RSSI is high!

Reason: Multipath Self-interference

- Key insight: self-interference causes high losses even if signals interfere constructively i.e. RSSI is high!
- Implication: Use both RSSI (range effects) and lossrate (self-interference effects).

BLINK Overview

- Link Metrics
- Design
 - Mobility Detection
 - Rate Adaptation
 - Channel Switching
- Evaluation
- Conclusion

Mobility Detection

Link Signature: Euclidean distance between successive RSSI/Lossrate scans of 50 channels

Result: Can reliably detect change of tag position and movement pattern with over 90% accuracy.

BLINK Overview

- Link Metrics
- Design
 - Mobility Detection
 - Rate Adaptation
 - Channel Switching
- Evaluation
- Conclusion

Goal: choose among six encoding/baudrate combinations based on observed RSSI/loss rate

Bitrate (symbol/s)	Throughput (kbps)	
FM0/640	640	
FM0/160	160	
Miller4/640	160	
Miller4/256	64	
FM0/40	40	
Miller8/256	32	

Intuition: Loss rate increase caused primarily by selfinterference, hence choose stronger encoding.

Intuition: RSSI reduction caused primarily by range effects, hence choose the next lower bitrate.

Does our intuition hold in practice?

BLINK Overview

- Link Metrics
- Design
 - Mobility Detection
 - Rate Adaptation
 - Channel Switching
- Evaluation
- Conclusion

Channel Switching

Recall: Dwell time of 0.2s - 0.4s per channel. How can we exploit the flexibility?

Channel Switching

- Recall: Dwell time of 0.2s 0.4s per channel. How can we exploit the flexibility?
- Observation: Channel is bursty i.e. we observe a string of successful packet transmission or losses

Algorithm: switch channels upon single loss

Putting it together

BLINK Overview

- Link Metrics
- Design
- Evaluation
 - Experiment Setup
 - Rate Adaptation
 - Channel Switching
 - Overall System Performance
- Conclusion

Experimental Setup

Impinj Reader

Static tags

Mobile tags

Toy train

Collected data set

	Group 1	Group 2	Group 3
Training data	room/day 1	room/day 1	room/day 1
Testing data	room/day 2	corridor1/day 3	corridor2/day 4
Training size	158	158	158
Test size	347	161	162

Benefits of Rate Adaptation

Blink Rate adaptation is close to optimal bitrate

Benefits of Channel Switching

BLINK improves throughput by 2x through burstiness-aware channel switching.

Impact of Scale: Static Tags

BLINK is 1.3x-1.5x better than SampleRate and 1.4x-1.6x better than AutoSet.

Impact of Scale: Mobile Tags

BLINK is 1.4x-2x better than SampleRate and 2x-2.5x better than AutoSet

Conclusion

- Understand role of multipath self-interference on link metrics for backscatter links.
- Clustering-based rate adaptation and burstiness-aware channel switching.
- Up to 3x improvement in throughput over a range of scales, channel conditions and mobility scenarios.

Thank you!

Backup Slides

BLINK Overview

Euclidean distance between RSSI and loss rate vector

Euclidean distance between link signatures

- Need to compare both RSSI vector and loss rate vector
- Exploit only RSSI vector?

Exploit only loss rate vector?

Channel Probe

- Rate adaptation waits for link metrics to be obtained before selecting best bitrate. How long does this take?
 - 7 queries per channel → 5s probe
- Can we reduce channel Probe time?
 - Observation: Sharp transition
 Between good and bad channels

Implication: One packet per channel to probe

Result: $5s \rightarrow 0.7s$

oss Rate