## Your First MLP Code

Recitation 1, part 1 Spring 2022

#### Overview

- Neural Networks
- Perceptrons
- Multilayer perceptrons
  - Forward Pass
  - Backpropagation
  - Update Weights

#### Neural Networks

 The brain, made up of connected neurons, are the inspirations for artificial neural networks.



#### **Neural Networks**

- A neuron is a node with many inputs and one output.
- A neural network consists of many interconnected neurons -- a "simple" device that receives data at the input and provides a response.
- Information are transmitted from one neuron to another by electrical impulses and chemical signals.



Perceptron is a single layer neural network.

- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.

- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
  - Input values

 $x_1$ 

•

•

•

 $x_{n-1}$ 

 $x_n$ 

- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
  - Input values
  - Weights



- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
  - Input values
  - Weights
  - Weighted sums



- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
  - Input values
  - Weights
  - Weighted sums
  - Threshold / Activation functions



- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
- The perceptron works on the following steps:
  - Multiply all inputs with their weights

 $|x_1| \times |w_0|$ 

•

•

•

 $x_{n-1}$  imes  $w_{n-1}$ 

 $|x_n| \times |w_n|$ 

- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
- The perceptron works on the following steps:
  - Multiply all inputs with their weights
  - Add all multiplies values → weighted sum



- Perceptron is a single layer neural network.
- The perceptron consists of 4 parts.
- The perceptron works on the following steps:
  - Multiply all inputs with their weights
  - Add all multiplies values → weighted sum
  - Apply the weighted sum to activation function







 Perceptron is usually used to classify the data into two parts --Linear Binary Classifier.





- Perceptron is usually used to classify the data into two parts --Linear Binary Classifier.
  - Weights shows the strength of the particular node.
  - Activation functions are used to map the input between the required values



### Multilayer Perceptrons

What if we want to be able to distinguish between more classes?

## Multilayer Perceptrons

#### What if we want to be able to distinguish between more classes?

- Introduce more perceptrons!





## Multilayer Perceptrons



# In order to correctly classify things, the network must be **learned**.

## But first, what do we need to learn?

The parameters (or the weights)



#### How do we learn?

- → Actual Function that we are trying to model:
  - Note: We don't know the actual function.

→ We only have several sample data points on this function.





- → Our goal:
  - **♦** Estimate the function with the given samples.

#### How do we learn?

- → A measurement of error
  - ◆ How much off is the **network output** with respect to the **desired output**



- → Our goal (more specifically):
  - Minimize the loss

$$\hat{W} = rg \min_{W} \; Loss(W)$$

#### How do we learn?

→ Gradient Descent



- For each single perceptron











## Error















••••

All gradients of weights w.r.t error are calculated!

## Update Weights

$$W \leftarrow W - \eta \cdot 
abla_W Loss(W)$$
learning gradient grate

## What should be the learning rate?





https://deeplearning.cs.cmu.edu/F21/document/slides/lec8.optimizersandregularizers.pdf

## **Optimizers**

**Gradient Descent:** 

$$\theta_{t+1} = \theta_t - \alpha \cdot \nabla_{\theta} J(\theta)$$

Momentum (http://proceedings.mlr.press/v28/sutskever13.pdf):

$$m_{t+1} = \mu \cdot m_t + \alpha \cdot \triangledown_{\theta} J\left( heta
ight) \ heta_{t+1} = heta_t - m_{t+1}$$

Adagrad (https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf):

$$g \leftarrow \nabla_{\theta} J(\theta)$$

$$r \leftarrow r + g^{2}$$

$$\triangle \theta \leftarrow \frac{\delta}{\sqrt{r + \epsilon}} \cdot g$$

$$\theta \leftarrow \theta - \triangle \theta$$

## Optimizers (Cont')

Adam (https://arxiv.org/pdf/1412.6980.pdf):

$$m_{t} = \beta_{1} \cdot m_{t-1} + (1 - \beta_{1}) \cdot g_{t}$$

$$v_{t} = \beta_{2} \cdot v_{t-1} + (1 - \beta_{2}) \cdot g_{t}^{2}$$

$$\hat{m}_{t} = m_{t} / (1 - \beta_{1}^{t})$$

$$\hat{v}_{t} = v_{t} / (1 - \beta_{2}^{t})$$

$$\theta_t = \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t + \epsilon})$$

### Visualization



https://github.com/Jaewan-Yun/optimizer-visualization

## Some fun with TF Playground

