

AREA MAPPING ROBOT WITH FOUR WHEELS, LiDAR AND CAMERA

Submitted By

K.S. PAVAL (CB.EN.U4AIE20047)

SHREYA SANGHAMITRA(CB.EN.U4AIE20066)

.....

For the Completion of

19AIE213 - ROBOTIC OPERATING SYSTEMS

CEN

11th July 2022

INDEX

S.NO	TITLE	PAGE NUMBER
1	INTRODUCTION	3
2	OBJECTIVE	3
3	COMPONENTS USED	3
4	TOOLS	3
5	LAUNCH FILES	4
6	RQT GRAPH	6
7	URDF	7
8	SIMULATION	13
9	CONCLUSION	15

Introduction

Area Mapping Robot with Four Wheels, LiDAR and Camera

In this project, a robot is created which helps to map the area in real-time with a sensor known as the LiDAR sensor. LiDAR (**Li**ght **D**etection **A**nd **R**anging) is a sensor which works when the laser light from a source (transmitter) is reflected from the objects. It is used for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. A camera is attached so that the user can see the object/area that the LiDAR sensor is detecting.

Objective

To design a robot with four wheels with LiDAR sensor and camera for area mapping.

Components Used

- 4 wheel-robot
- LiDAR sensor
- Camera

Tools

The simulation of the robot is done in GAZEBO and the prototype can be viewed in RVIZ where every object/path detected by the camera and the LiDAR sensor can also be viewed.

Launch Files Used

• world.launch

In this launch file we spawn our robot in the world that we created.

• Empty.world

Here a world environment is created where a ground and sun has been included.

```
<
```

And here we can see the robot in gazebo

Robot_description.launch

• Slam_gmapping.launch

```
<?xml version="1.0"?>
<launch>
     <node name="slam_gmapping" pkg="gmapping" type="slam_gmapping">
          <remap from="/scan" to="/atom/sensor_laser/scan"/>
          <param name="base_frame" value="base_footprint"/>
          </node>
</launch>
```

rqt_graph

parallels@parallels:~/catkin_ws/src/atom\$ rosrun rqt_graph rqt_graph
WARNING: Package name "rosActionExample" does not follow the naming conventions.
 It should start with a lower case letter and only contain lower case letters, d
igits, underscores, and dashes.
WARNING: Package name "rosActionExample" does not follow the naming conventions.
 It should start with a lower case letter and only contain lower case letters, d
igits, underscores, and dashes.

URDF Files Used

• atom.gazebo

```
35
     </gazebo>
37
     <!-- camera -->
     <gazebo reference="camera">
  <sensor type="camera" name="camera1">
38
39
          <update_rate>30.0</update_rate>
<camera name="head">
40
41
42
            <horizontal_fov>1.3962634</horizontal_fov>
43
               <width>800</width>
44
              <height>800</height>
<format>R8G8B8</format>
45
46
47
            </image>
48
            <clip>
49
              <near>0.02</near>
50
               <far>300</far>
51
            </clip>
52
          </camera>
          <plugin name="camera_controller" filename="libgazebo_ros_camera.so">
53
54
            <always0n>true</always0n>
55
            <updateRate>0.0</updateRate>
56
             <cameraName>camera</cameraName>
            <imageTopicName>rgb/image_raw</imageTopicName>
57
            <cameraInfoTopicName>rgb/camera_info</cameraInfoTopicName>
<frameName>camera</frameName>
58
59
            <hackBaseline>0.07</hackBaseline>
60
61
            <distortionK1>0.0</distortionK1>
62
            <distortionK2>0.0</distortionK2>
63
            <distortionK3>0.0</distortionK3>
64
            <distortionT1>0.0</distortionT1>
            <distortionT2>0.0</distortionT2>
65
66
          </plugin>
67
        </sensor>
     </gazebo>
```

```
<!-- hokuvo -->
             71
72
73
74
75
76
77
78
79
80
                       <visualize>false/visualize>
                       <update_rate>40</update_rate>
<ray>
                           <scan>
                                <horizontal>
                            <hortzontal>
    <samples>720</samples>
    <resolution>1</resolution>
    <min_angle>-1.570796</min_angle>
    <max_angle>1.570796</max_angle>
    </hortzontal>
</scan>
  81
  82
83
84
85
86
87
88
                           <range>
                                <min>0.10</min>
                                <max>30.0</max>
<resolution>0.01</resolution>
89
90
91
92
93
94
95
96
97
98
99
                            </range>
                           </range>
<noise>
<type>gaussian</type>
<!-- Noise parameters based on published spec for Hokuyo laser
    achteving "+-30mm" accuracy at range < 10m. A mean of 0.0m and
    stddev of 0.01m will put 99.7% of samples within 0.03m of the true
    reading. -->
<mean-0.0</mean>
<mean-0.0</mean>
                                 <stddev>0.01</stddev>
                            </noise>
                      </noise>
</nay>
</nay=
<pre>

<p
101
103
                   </sensor>
104
105
106
107
             </gazebo>
108 </robot>
```

atom.xacro

```
Open ▼ 🗇
                                                                                                                                                        *atom.xacro
  1 <?xml version='1.0'?>
 10
                 <xacro:property name="robot_wheel_mass" value="5"/>
<xacro:property name="robot_wheel_length" value="0.05"/>
<xacro:property name="robot_wheel_radius" value="0.1"/>
11
12
13
14
                 <xacro:property name="camera_mass" value="8.1"/>
<xacro:property name="hokoyu_mass" value="1e-5"/>
15
16
17
18
                   <xacro:property name="laser_stze_x" value="0.03"/>
<xacro:property name="laser_stze_y" value="0.03"/>
<xacro:property name="laser_stze_z" value="0.04"/>
<xacro:property name="laser_origin_x" value="0.065"/>
<xacro:property name="laser_origin_z" value="0"/>
<xacro:property name="laser_origin_z" value="0.035"/>
19
20
21
22
23
24
25
26
27
28
                 <!-- Make Chassis of Bot --> <link name="chassis">
                              <pose>0 0 0.1 0 0 0</pose>
                              <mass value="${robot_chassis_mass}"/>
<origin xyz="0.0 0 0" rpy=" 0 0 0"/>
31
33
34
35
                                           txx="0.147116667" txy="0" txz="0" tyy="0.334951167" tyz="0" tzz="0.3978345"
36
37
38
39
40
41
42
43
44
45
46
47
48
50
51
52
53
                              />
</inertial>
                              </geometry>
                              </collision>
                              </geometry>
                              </visual>
                 </link>
55
```

```
| Non-axes | Non-axes
```

```
227
      <!-- Project center to the ground -->
228
      <link name="robot_footprint"></link>
230
231
232
      <!-- Define Joints -->
233
      234
235
236
237
239
240
241
      </joint>
243
      244
246
247
248
249
250
251
252
253
      </joint>
254
      255
256
257
258
259
260
261
262
263
264
      </joint>
      265
266
267
268
269
270
271
272
273
274
      </joint>
      275
276
277
278
           <child link="camera" />
279
280
           <axis xyz="0 1 0"/>
      </joint>
281
282
      283
285
286
287
288
         <axis xyz="0 1 0"/>
      </joint>
289
290
291
      292
293
294
295
```

```
298
           <!-- Color of bot -->
           <gazebo reference="left wheel front">
299
300
                   <material>Gazebo/Green</material>
301
                   <kp>1000000.0</kp> <!-- kp and kd for rubber -->
                   <kd>100.0</kd>
302
303
                   <mu1>1.0</mu1>
304
                   <mu2>1.0</mu2>
305
                   <maxVel>1.0</maxVel>
306
                   <minDepth>0.00</minDepth>
387
           </gazebo>
308
309
           <gazebo reference="left_wheel_back">
                   <material>Gazebo/Green</material>
310
                   <kp>1000000.0</kp> <!-- kp and kd for rubber -->
311
312
                   <kd>100.0</kd>
                   <mu1>1.0</mu1>
313
                   <mu2>1.0</mu2>
314
315
                   <maxVel>1.0</maxVel>
316
                   <minDepth>0.00</minDepth>
317
           </gazebo>
318
          <gazebo reference="right_wheel_front">
319
320
                   <material>Gazebo/Green</material>
321
                   <kp>1000000.0</kp> <!-- kp and kd for rubber -->
                   <kd>100.0</kd>
322
323
                   <mu1>1.0</mu1>
                   <mu2>1.0</mu2>
324
325
                   <maxVel>1.0</maxVel>
326
                   <minDepth>0.00</minDepth>
327
           </gazebo>
328
           <gazebo reference="right_wheel_back">
                   <material>Gazebo/Green</material>
329
330
                   <kp>1000000.0</kp> <!-- kp and kd for rubber -->
331
                   <kd>100.0</kd>
                   <mu1>1.0</mu1>
332
333
                   <mu2>1.0</mu2>
334
                   <maxVel>1.0</maxVel>
335
                   <minDepth>0.00</minDepth>
           </gazebo>
336
337
           <!--<gazebo reference="right_wheel">
                   <material>Gazebo/Green</material>
338
           </gazebo>-->
339
340
341
          <gazebo reference="camera">
342
                   <material>Gazebo/Red</material>
          </gazebo>
343
344
345
           <gazebo reference="chassis">
346
                   <material>Gazebo/Blue</material>
347
           </gazebo>
348
349
           <!-- Motor, Camera and Lidar Simulation -->
350
           <xacro:include filename="$(find atom)/urdf/atom.gazebo" />
351
352 </robot>
```

Simulation

We first run roscore

Then in another terminal we open a gazebo world where we want our robot simulation to happen:

```
WARNING: Package name "rosActionExample" does not follow the naming conventions. It should start with a lower case letter and only contain lower case letters, digits, underscores, and dashes.

... logging to /home/parallels/.ros/log/7f02f652-00c3-11ed-b95b-470ab3f4e0ee/ros launch-parallels-7721.log
Checking log directory for disk usage. This may take a while.

Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

WARNING: Package name "rosActionExample" does not follow the naming conventions. It should start with a lower case letter and only contain lower case letters, digits, underscores, and dashes.

started roslaunch server http://parallels:44965/
```

Then in another terminal we will put in the commands to spawn our robot in the gazebo world we had opened:

```
parallels@parallels:~$ roslaunch atom world.launch
WARNING: Package name "rosActionExample" does not follow the naming conventions.
It should start with a lower case letter and only contain lower case letters, d
igits, underscores, and dashes.
... logging to /home/parallels/.ros/log/7f02f652-00c3-11ed-b95b-470ab3f4e0ee/ros
launch-parallels-7928.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.
WARNING: Package name "rosActionExample" does not follow the naming conventions.
It should start with a lower case letter and only contain lower case letters, d
igits, underscores, and dashes.
xacro: in-order processing became default in ROS Melodic. You can drop the optio
n.
started roslaunch server http://parallels:46067/
```

At the end in order to move our robot in the gazebo world we give the following commands in the terminal:

```
Parallels@parallels:~$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

Reading from the keyboard and Publishing to Twist!

Moving around:

U i 0
j k l
m , .

For Holonomic mode (strafing), hold down the shift key:

U I 0
J K L
M < >

t: up (+z)
b: down (-z)

anything else: stop

q/z: increase/decrease max speeds by 10%

w/x: increase/decrease only linear speed by 10%
e/c: increase/decrease only angular speed by 10%
```

Gazebo

Here we can operate our robot in the gazebo world with the controller

• RVIZ

In RVIZ we can detect the path using LiDAR sensor and and we can see from the robot's point of view using the cameras installed in the robot

Conclusion

Thus, we have successfully implemented a robot with LiDAR sensors and camera which can be used to map the area that it is travelling.