Série d'exercices sur générateurs Thevenin-Norton

Exercice N°1

Déterminer l'intensité I_{AB} traversant le dipôle AB

SOLUTION

On transforme le circuit extérieur au dipôle AB en générateur de Thévenin. Le circuit est ainsi ramené à une seule maille.

L'intensité du courant est alors égale à $I = \frac{E_{Th}}{R_{Th} + 4}$

On retire la résistance dite de charge (la résistance de 4 Ω placée entre A et B, traversée par I_{AB} l'intensité que l'on recherche)

On court-circuite les générateurs de tensions (on les remplace par un simple fil).

On calcule la résistance RAB qui représentera la résistance de Thévenin : RTh.

On refait un schéma

Les points C et D sont reliés par un fil. Il s'agit du même point.

4 Ω et 2 Ω (en dérivation) = 8/6 Ω = 4/3 Ω

$$4/3 \Omega$$
 et $4/3 \Omega$ (en série) = $8/3 \Omega$

$$\mathbf{R}_{\mathrm{AB}} = \mathbf{R}_{\mathrm{Th}} = 8/3 \ \Omega.$$

La résistance de charge étant toujours déconnectée, je remplace les générateurs de tension et je calcule la tension U_{AB} qui représentera la tension de Thévenin E_{Th} .

Le courant I débité par les générateurs se sépare en C en I₁ et I₂.

$$U_{AB} = U_{AC} + U_{CB} = 2.(-I_1) + 4.(+I_2)$$

$$U_{AB} = U_{AD} + U_{DB} = 4.(+I_1) + 2.(-I_2)$$

$$U_{CD} = (10+6)V = (2+4)$$
. $I_1 = (4+2)$. I_2 donc $I_1 = I_2 = 8/3$ A

On remplace la valeur de I1 et I2 dans l'expression UAB

$$U_{AB} = 2. (-8/3) + 4. (8/3) = 16/3V = E_{Th}$$

La valeur du courant est donc

$$I_{AB} = \frac{E_{Th}}{R_{Th} + 4} = \frac{\frac{16}{3}}{\frac{8}{3} + 4} = \frac{16}{20} = 0.8A$$

Exercice N°2

Déterminer l'intensité I_{AB} traversant le dipôle AB

SOLUTION

On transforme le générateur (en pointillé) de Norton (10A,5 Ω) en générateur de Thévenin (50V, 5 Ω) (fig1)

On retire la résistance de charge (celle à travers laquelle on cherche à déterminer l'intensité) et on court-

circuite les générateurs de tensions (remplacés par un simple fil) (fig2)

On calcule la résistance RAB qui est équivalente à la résistance de Thévenin : R_{Th}.

$$5 \Omega$$
 et 20Ω (en série) = 25Ω

Un fil (R=0 Ω) en dérivation sur 5 Ω alors la resistance equivalente des deux est (0 Ω).

$$\mathbf{R}_{AB} = \mathbf{R}_{Th} = \mathbf{25} \ \Omega$$

La résistance de charge étant toujours déconnectée, on replace les générateurs puis on calcule la tension U_{AB} qui correspond à la tension de Thévenin E_{Th} .(fig3)

Il n'y a pas de courant dans la branche ACDE car le circuit est ouvert.

$$U_{AB} = U_{AC} + U_{CD} + U_{DE} + U_{EB} = 0 + 50 + 0 - 45 = 5V = E_{Th}. \label{eq:uab}$$

La valeur du courant est donc : $I = \frac{5}{25+10} = 0,14 A$

Exercice N°3

Déterminer l'intensité I_{AB} traversant le dipôle AB

SOLUTION

On transforme le générateur de Norton (12A, 4 Ω) en générateur de Thévenin (48V, 4 Ω) 4 Ω et 2 Ω (en série) = 6 Ω

On transforme le générateur Thévenin (48V,6 Ω) en générateur de Norton (8A, 6 Ω)

 6Ω et 3Ω (en dérivation) = 2Ω

On transforme le générateur de Norton (8A, 2 Ω) en générateur de Thévenin (16V, 2 Ω)

Exercice N°4

Déterminer l'intensité I_{AB} traversant le dipôle AB

SOLUTION

On transforme le générateur de Thévenin (12V, 6 Ω) en générateur de Norton (2A, 6 Ω) 6 Ω et 3 Ω (en dérivation)= 2 Ω

On transforme le générateur de Norton (2A, 2 Ω) en générateur de Thévenin (4V, 2 Ω)

Exercice N°5

Déterminer l'intensité I_{AB} traversant le dipôle AB

SOLUTION

On transforme le générateur de Thévenin (36V, 12 Ω) en générateur de Norton (3A, 12 Ω)

Les deux générateurs idéaux de Norton sont équivalents à un générateur idéal de Norton qui délivre 6+3=9A $12~\Omega$ et $6~\Omega$ (en dérivation) = $4~\Omega$

On transforme le générateur de Norton (9A, 4 Ω) en générateur de Thévenin (36V, 4 Ω)

Exercice N°6

Déterminer l'intensité I_{AB} traversant le dipôle AB

SOLUTION

On transforme le circuit en pointillé en générateur de Thévenin.(fig1). Le circuit est ainsi ramené à une seule maille.

- 1- Je retire la résistance de charge (la résistance à travers laquelle je cherche à déterminer l'intensité du courant)(fig2)
- 2- Je court-circuite les générateurs de tensions (je les remplace par un simple fil) (fig3)
- 3- Je calcule la résistance R_{AB} qui est équivalente à la résistance de Thévenin : R_{Th}.

$$5 \Omega$$
 et 5Ω (en série) = 10 Ω

Un fil (R=0 Ω) en dérivation sur 10 Ω = 0 Ω

10 Ω et 10 Ω (en dérivation) = 5 Ω

$$5 \Omega$$
 et 5Ω (en série) = 10 Ω

$$R_{AB} = R_{Th} = 10 \Omega$$
.

4- La résistance de charge étant toujours déconnectée, je replace les générateurs et je calcule la tension U_{AB} qui correspond à la tension de Thévenin E_{Th} .(fig4)

Le courant I débité par le générateur 5V traverse la résistance de 5 Ω et celle de 10 Ω , le circuit étant ouvert il n'y a pas de courant traversant la résistance de 5 Ω placée entre A et A'.

 $V_{A'} = V_A$ car il n'y a pas de courant circulant entre A et A'

$$U_{AB} = U_{A'B} = U_{A'C} + U_{CB} = 10 I + 8$$

$$U_{AB} = U_{A'B} = U_{A'C'} + U_{C'D'} + U_{D'B} = -5 I + 5 - 5 I = -10 I + 5$$

Les deux équations précédentes permettent de déterminer I : 10 I + 8 = -10 I + 5 \Rightarrow 20xI = -3 \Rightarrow

$$I = -3/20 A$$

On remplace la valeur de I dans une des expressions de U_{AB} : U_{AB} = 10 (-3/20) + 8 = 6,5 V

5- La valeur de E_{Th} est donc :

$$E_{Th} = \mathbf{R_{Th}} I + U_{AB} = 10. (-3/20) + 6.5 = 5 V$$

Exercice $N^{\circ}7$

Déterminer l'intensité I_{AB} traversant le dipôle AB

SOLUTION

On transforme le générateur de Thévenin (36V, 12 Ω) en générateur de Norton (3A, 12 Ω)

12 Ω et 6 Ω (en dérivation) = 4 Ω

Les deux générateurs idéaux de Norton sont équivalents à un générateur idéal de Norton qui délivre I=6+3=9A

On transforme le générateur de Norton (9A, 4 Ω) en générateur de Thévenin (36V, 4 Ω)

Exercice $N^{\circ}8$

Ramener le circuit ci-dessous à un circuit à une seule maille.

SOLUTION

On transforme le générateur de Thévenin (24V, 12 Ω) en générateur de Norton (2A, 12 Ω) (fig1)

Les trois générateurs de courant idéaux sont en parallèles. Ils sont équivalents à un générateur idéal débitant I=5+2-1=6A (fig2)

On transforme le générateur de Norton $(6A,12~\Omega)$ en générateur de Thévenin $(72V,12~\Omega)$ (fig 3) $12~\Omega$ et $6~\Omega$ en dérivation = $4~\Omega$

