Reduced Probability of Track Loss with Background Subtracted Object Representation

We define $\mathcal{T}_t = \{\Psi_{1:t}\}$ to be the set of positively identified states for p_i until time t. We denote the time since the last update to a track ID as μ . We denote the ID of p_i as α and we represent the correct assignment of an ID to p_i as $\Gamma(\alpha)$. The threshold for the Cosine metric is $\lambda \sim \mathbb{U}[0,1]$. The threshold for the track age, *i.e.*, the number of frames before which track is destroyed, is ξ . We denote the probability of an event that uses Mask R-CNN as the primary object detection algorithm with $\mathbb{P}^M(\cdot)$ and the probability of an event that uses a standard Faster R-CNN as the primary object detection algorithm (*i.e.*, outputs bounding boxes without boundary subtraction) with $\mathbb{P}^F(\cdot)$. Finally, $\mathcal{T}_t \leftarrow \{\phi\}$ represents the loss of \mathcal{T}_t by occlusion.

Theorem 1. With probability $1 - \frac{B}{A}$ binary tensors extracted from background subtracted (BGS) representations decrease the number of road agent tracks lost, thereby reducing the number of false negatives, in comparison to regular bounding boxes.

Proof. In our approach, we use Mask R-CNN for pedestrian detection, which outputs bounding boxes and their corresponding masks. We use the mask and bounding box pair to generate a BGS-Representations (Section 4A). The correct assignment of an ID depends on successful feature matching between the predicted measurement feature and the optimal detection feature. In other words,

$$l(f_{p_i}, f_{h_j^*}) > \lambda \Leftrightarrow (\alpha = \phi)$$
 (1)

Using Lemma 1 and the fact that $\lambda \sim \mathbb{U}[0,1],$

$$\mathbb{P}(l(f_{p_i}, f_{h_{j, p_i}^*}^M) > \lambda) < \mathbb{P}(l(f_{p_i}, f_{h_{j, p_i}^*}^F) > \lambda)$$

Using Eq. 1, it directly follows that,

$$\mathbb{P}^{M}(\alpha = \phi) < \mathbb{P}^{F}(\alpha = \phi) \tag{2}$$

In our approach, we set

$$(\mu > \xi) \wedge (\alpha = \phi) \Leftrightarrow \mathcal{T}_t \leftarrow \{\phi\}$$

Using Eq. 2, it follows that,

$$\mathbb{P}^{M}(\mathcal{T}_{t} \leftarrow \{\phi\}) < \mathbb{P}^{F}(\mathcal{T}_{t} \leftarrow \{\phi\}) \tag{3}$$

We define the total number of false negatives (FN) as

$$FN = \sum_{t=1}^{T} \sum_{p_{q} \in \mathcal{G}} \delta_{\mathcal{T}_{t}} \tag{4}$$

where $p_g \in \mathcal{G}$ denotes a ground truth pedestrian in the set of all ground truth pedestrians at current time t and $\delta_z = 1$ for z = 0 and 0 elsewhere. This is a variation of the Kronecker delta function. Using Eq. 3 and Eq. 4, we can say that fewer lost tracks $(\mathcal{T}_t \leftarrow \{\phi\})$ indicate a smaller number of false negatives.

The upper bound, $\mathbb{P}^F(\mathcal{T}_t)$, in Eq. 3 depends on the amount of padding done to f_{p_i} and f_{h_j} . A general observed trend is that a higher amount of padding results in a larger upper bound in Eq. 3.

Lemma 1. For every pair of binary tensors $(f_{h_j}^M, f_{h_j}^F)$ generated from a BGS-Representation and a bounding box respectively, if $||f_{h_j}^M||_0 > ||f_{h_j}^F||_0$, then $l(f_{p_i}, f_{h_j}^M) < l(f_{h_j}, f_{h_j}^F)$ with probability $1 - \frac{B}{A}$, where A and B are positive integers and A > B.

Proof. Using the definition of the Cosine metric, the lemma reduces to proving the following,

$$f_{p_i}^T (f_{h_i}^M - f_{h_i}^F) > 0 (5)$$

We pad both $f_{h_i}^M$ and $f_{h_i}^F$ such that $||f_{h_i}^M||_0 > ||f_{h_i}^F||_0$.

We reduce $f_{p_i}^T$, $f_{h_j}^M$, and $f_{h_j}^F$ to binary vectors, *i.e.*, vectors composed of 0s and 1s. Let $\Delta f = f_{h_j}^M - f_{h_j}^F$. We denote the number of 1s and -1s in Δf as A and B, respectively. Now, let x and y denote the L_0 norm of $f_{h_j}^M$ and $f_{h_j}^F$, respectively. From our padding procedure, we have x > y. Then, if x = A, and y = B, we trivially have A > B. But if y > B, then $A = x - (y - B) \implies A - B = x - y$. From x > y, it again follows that A > B. Thus, $x > y \implies A > B$.

Next, we define a (1,1) coordinate in an ordered pair of vectors as the coordinate where both vectors contain 1s. Similarly, a (1,-1) coordinate in an ordered pair of vectors is the coordinate where the first vector contains 1 and the second vector contains -1. Then, let p_a and p_b respectively denote the number of (1,1) coordinates and (1,-1) coordinates in the pair $(f_{p_i}^T, \Delta f)$. By definition, we have $0 < p_a < A$ and $0 < p_b < B$. Thus, if we assume p_a and p_b to be uniformly distributed, it directly follows that $\mathbb{P}(p_a > p_b) = 1 - \frac{B}{A}$.