CSC 575 - Algorithm & Complexity Analysis: Homework # X

Due on Due Date

Cason Konzer

January 18, 2023

Homework #X

Problem 1

Homework Description

Solution

Part One

$$n^{2} + n + 1 =$$

$$\leq n^{2} + n^{2} + n^{2}$$

$$= 3n^{2}$$

$$\leq c \cdot 2n^{3}$$

Thus a valid c could be when c = 2.

Part Two

Solve P2

Problem 2

Automata Example

Figure 1: DFA, A, this is really beautiful, ya know?

Justification

Justify, Example Table

	$x \mod 5 = 0$	$x \mod 5 = 1$	$x \mod 5 = 2$	$x \mod 5 = 3$	$x \mod 5 = 4$
x0	0	2	4	1	3
x1	1	3	0	2	4

Problem 3

Example Algorithm Write part of Quick-Sort(list, start, end)

- 1: **function** QUICK-SORT(*list*, *start*, *end*)
- 2: **if** $start \ge end$ **then**
- 3: return
- 4: end if
- 5: $mid \leftarrow Partition(list, start, end)$
- 6: Quick-Sort(list, start, mid 1)
- 7: QUICK-SORT(list, mid + 1, end)
- 8: end function

Algorithm 1: Start of QuickSort

Problem 4

Part A Solution

For the bias, we need to calculate the expected value $E[\hat{\beta_1}]$:

$$E[\hat{\beta}_1] = E\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right]$$

$$= \frac{\sum x_i E[Y_i]}{\sum x_i^2}$$

$$= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2}$$

$$= \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1$$

Problem 18

Evaluate
$$\sum_{k=1}^{5} k^2$$
 and $\sum_{k=1}^{5} (k-1)^2$.

Problem 19

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Problem 6

Evaluate the integrals
$$\int_0^1 (1-x^2) dx$$
 and $\int_1^\infty \frac{1}{x^2} dx$.