EECS 215: Introduction to Electronic Circuits FA24 Homework Set 5

Issued: 10/4/24

Due: 10/11/24, 5;00 PM submitted electronically on Gradescope.

Contents

Problem 1. UMF P2.71 with additions	1
Problem 2. UMF P.3.93 with modifications.	2
Problem 3. UMF with additions/changes	3
Problem 4. MOSFET Differential Amplifier	3
Problem 5. UMF P3.83	4
Problem 6. UMF P4.24 (with additions)	5
Problem 7. UMF 4.36	6
Problem 8. UMF 4.50	7

Problem 1. UMF P2.71 with additions.

- a. Use Matlab to generate the plots. Assume 0.7V for the voltage drop of a forward-biased diode.
- b. Simulate using LTSpice (see the diode example from HW03) and compare the results to part a.

2.71 If the voltage source in the circuit of **Fig. P2.70(a)** generates the single triangular waveform shown in **Fig. P2.70(c)**, generate plots for $i_1(t)$ and $i_2(t)$.

Problem 2. UMF P.3.93 with modifications.

- a. Draw the linear circuit model for this circuit.
- b. Obtain an expression for V_{out} vs. V_{in} for the circuit below. Assume $V_{BE}=0.7V$ when the transistor is on and that we are interested in the regime $V_{in}\geq 0.7V$
- c. What is the small signal gain of this circuit $G = \frac{\partial V_{out}}{\partial V_{in}}$

Problem 3. UMF with additions/changes

- a. Do the problem as stated in the text but with the device transconductances changed to $g_1=g_2=20\Omega^{-1}$. If needed, assume the MOSFET threshold voltage is 0.
- b. Find the Thevenin equivalent for this circuit as seen at the output.

*4.60 Determine $v_{\text{out}}(t)$ as a function of $v_{\text{s}}(t)$ for the circuit in Fig. P4.60. Assume $V_{\text{DD}} = 2.5 \text{ V}$.

Problem 4. MOSFET Differential Amplifier

Suppose we have the circuit shown below built with the idealized MOSFET covered in the text and class (UMF section 4-11). The two MOSFETs in the circuit are identical.

- a. Redraw the circuit using the linear equivalent circuit model for the idealized MOSFET.
- b. Using this picture, use nodal analysis to find a function relating v_{out} measure to ground vs. v_{in1}, v_{in2} and the MOSFET transconductance (g) and the other circuit constants.

Page **3** of **7**

Problem 5. UMF P3.83

- a. Do the problem as stated in the text.
- b. Use LTSpice to simulate for V_{oc} , I_{SC} and the circuit node voltages when the correct R_L is attached. Take the ground to be the negative terminal of the 15V voltage source.
 - *3.83 Determine the maximum power that can be extracted by the load resistor from the circuit in Fig. P3.83.

Problem 6. UMF P4.24 (with additions)

- a. Do the problem as stated.
- b. Find the limits on the linear range of v_S assuming we must have $-15V \le v_o \le 15V$ due to the power supply limitations.

4.24 For the circuit in Fig. P4.24, obtain an expression for voltage gain $G = v_o/v_s$.

Problem 7. UMF 4.36

4.36 Find the value of v_0 in the circuit in Fig. P4.36.

*4.50 Relate the output voltage v_0 in Fig. P4.50 to v_s .

