Übungsaufgaben-Formale Sprachen

Alphabet Σ ist eine endliche Menge von Symbolen. Jedes Element $\sigma \in \Sigma$ ist ein Zeichen des Alphabets. Jedes Element $\omega \in \Sigma^*$ wird als Wort über Σ bezeichnet. Jede Teilmenge $L \subseteq \Sigma^*$ ist eine formale Sprache über Σ .

- Falls Σ ein Alphabet ist, so bezeichnet Σ^* die Menge aller Worte bestehend aus Buchstaben $\in \Sigma$.
- Menge Σ^* wird als Kleene'sche Hülle bezeichnet und fasst alle endlichen Symbolsequenzen zusammen, die mit Zeichen aus dem Alphabet Σ aufgebaut werden können.
- Σ^+ bezeichnet eine nicht-leere Menge.

Aufgabe 1

Überlegen und beschreiben Sie Beispiele von "formalen" Sprachen, die Sie im Studium, im Alltag oder im Unternehmen kennengelernt haben.

Nutzen Sie die Mengen- und Sprachbeschreibungen, wie Sie es zum Beispiel für Primzahlen kennengelernt haben, um sich einen Überblick zu verschaffen und definieren anschließend die Sprache L.

Aufgabe 2

Gegeben sind die folgenden Alphabete:

$$\Sigma_1 := \{1,2,3,4,5,6,7,8,9\}$$

$$\Sigma_2 := \{0,1,2,3,4,5,6,7,8,9\}$$

$$\Sigma_3 := \{A,B,C,D,E,F\}$$

$$\Sigma_4 := \{8,9\}$$

Finden Sie umgangssprachliche Beschreibungen für die nachstehenden Sprachen:

a)
$$\Sigma_2 \mid \Sigma_1 \Sigma_2^*$$

b) $(\Sigma_2 \cup \Sigma_3) \mid (\Sigma_1 \cup \Sigma_3) (\Sigma_2 \cup \Sigma_3)^*$
c) $(\Sigma_2 \setminus \Sigma_4) \mid (\Sigma_1 \setminus \Sigma_4) (\Sigma_2 \setminus \Sigma_4)^*$

Aufgabe 3

Gegeben sind die folgenden Mengen:

$$L_1 := \{aa, bb\}$$

$$L_2 := \{a\}^+$$

$$L_3 := \{b\}^+$$

Erzeugen Sie die folgenden Sprachen:

- a) $(L_1 \cup L_2)$
- b) $(L_1 \cup L_3)$
- c) $(L_1^* \cap L_2)$

Aufgabe 4

Als Beispiel einer Grammatik haben Sie in diesem Kapitel die folgenden Produktionsregeln für eine Teilmenge der deutschen Sprache kennen gelernt:

```
<Satz> → <Subjekt> <Prädikat> <Objekt>
<Subjekt> → <Artikel> <Adjektiv> <Substantiv>
<Artikel> → Der | Die | Das
<Adjektiv> → kleine | süße | flinke
<Substantiv> → Eisbär | Elch | Kröte | Maus | Nilpferd
<Prädikat> → mag | fängt | isst
<Objekt> → Kekse | Schokolade | Käsepizza
```

Nicht alle Sätze, die sich aus den Produktionen ableiten lassen, sind grammatikalisch korrekt. Wie das Beispiel zeigt, lassen sich Wortsequenzen ableiten, in denen die Satzteile nicht zusammenpassen: "Das kleine Maus mag Käsepizza".

Schreiben Sie die Grammatik so um, dass nur solche Sätze ableitbar sind, in denen Artikel und Substantiv sprachlich korrekt kombiniert werden.

Aufgabe 5

Mit L_1 , L_2 und L_3 seien drei beliebige Sprachen gegeben. Welche der folgenden Aussagen sind richtig?

a)
$$(L_1 \cup L_2) L_3 = L_1 L_3 \cup L_2 L_3$$

b)
$$(L_1 \cap L_2) L_3 = L_1 L_3 \cap L_2 L_3$$

c)
$$(L_1 \cup L_2)^* = L_1^* \cup L_2^*$$

d)
$$(L_1 \cap L_2)^* = L_1^* \cap L_2^*$$

e)
$$(L_1^*)^* = L_1^*$$

f)
$$(L_1^+)^+ = L_1^+$$

g)
$$(L_1L_2)^*L_1 = L_1(L_2L_1)^*$$
 h) $(L_1L_2)^+L_1 = L_1(L_2L_1)^+$

A- fg. 1

 $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

L = Menge aller Notfellaumeners

EL = 110, 112, 19222, 116117

&L = 0, 11, 23, 46, 808,...

Σ = ξοι 1, 2, 3, 4, 5, 6, 2, 8, 9}

L = Henge au ongeraden Zahlen

EL = 1, 3, 5, 7, 9, 11, 13, 15,...

& L = 2, 4, 6, 8, 10, 12, 14, 16, 18, ...

a) $\Sigma_2 \mid \Sigma_1 \Sigma_2^*$

Alle Wörter aus den Alphabeten Σ_1 und Σ_2 , die nicht mit D aufongen.

b) (Σ₂ υ Σ₃) | (Σ₁ υ Σ₃) (Σ₂ υ Σ₃)*

Die Sproche besteht aus den Alphabeten Σ_2 und Σ_3 unter der Bedingung, dass der erste Buchoteben aus den Vereinigung von Σ_Λ und Σ_3 und der Rest des Wortes aus der Vereinigung von Σ_{Λ} und Σ_2 und Σ_3 bellebijer länge besteht.

c) $(\Sigma_2 \setminus \Sigma_4) \mid (\Sigma_1 \setminus \Sigma_4) (\Sigma_2 \setminus \Sigma_4) *$

{0,1,2,3,4,5,6,7} {1,2,3,4,5,6,7}. {0,1,2,3,4,5,6,7}

Oie Sprache besteht aus allen Zahlen aus dun Oktalsystum, die nicht mit einer fohrenden Nord beginnen.

Aufg. 3

- a) (L1 U L2) = {a, aa, aaa, a...a, a..abb, bba...a}
- b) (L1 U L3) = {b. 65, 666, 6...6, b...600, aa6...6}
- c) (L1* n L2) = {aa, aaaa, aaaaaaa, 8 xa, 10 xa,...}

Aufg. 4

Aufg. 5

$$L_1 = \{1, 2\}, L_2 = \{2, 3\}, L_3 = \{3, 4\}$$

- a) Korrekt
- b) horrent

c)
$$(L_1 \cup L_2)^* = L_1^* \cup L_2^*$$

 $\{1, 2, 3, 11, 22, 33...\} = \{1, 11..., 12..., 21..., 2..., 3..., 23...\}$

Aussoze ist falsch

d)
$$(L_1 \cap L_2)^* = L_1^* \cap L_2^*$$

 $\{2..., 3 = \{2..., 3\}$ | Korrelet

e)
$$(L_1^*)^* = L_1^*$$

$$\{\{\},1,...,2,...,12,...,21,...\} = \{\{\},1,...,2,...,12,...,21,...\}$$

korrekt

f)
$$(L_1^+)^+ = L_1^+$$

 $\{1..., 2..., 12..., 21...\} = \{1..., 2..., 12..., 21...\}$

$$h) (l_1 l_2)^+ l_1 = l_1 (l_2 l_1)^+$$

horrelet