Problem 5b, 5d

Indicate if the sentences are statements.

Problems:

- (b) She is a mathematics major.
- (d) $x = 2^6$

Answers:

- (b) Yes, this is a statement, as it states something true.
- (d) This is not a statement, as the finality of x decides if it's true or not.

Problem 8c

Write symbolically.

Problem:

John is neither healthy, wealthy, nor wise.

Let:

h = "John is healthy," w = "John is wealthy," and s = "John is wise."

Answer:

 $(\sim h \, \wedge \sim w \, \wedge \sim s)$

Problem 9c

 $Write\ symbolically.$

Problem:

 $10>x\geq 5$

Let:

p = x > 5, q = x = 5, and r = 10 > x

Answer:

 $r \wedge (p \vee q)$

Problem 10e

Write symbolically.

Problem:

Either DATAENDFLAG is on or it is the case that both ERROR equals 0 and SUM is less than 1,000.

Let:

p be the statement "DATAENDFLAG is off," q the statement "ERROR equals 0," and r the statement "SUM is less than 1,000."

Answer:

 $\sim p \lor (q \land r).$

Problem 29

Use De Morgan's laws to write negations.

Problem:

This computer program has a logical error in the first ten lines, or it is being run with an incomplete data set.

Answer:

This computer program does not have a logical error in the first ten lines, and it is not being run with an incomplete data set.

Problem 35

Let x be a particular real number, and use De Morgan's laws to write negations.

Problem:

 $x \le -1$ or x > 1

Answer:

 $-1 < x \le 1$

Problem 39

Write negations.

Let numorders and numinstock be particular values.

Problem:

 $(numorders < 50 \text{ and } numinstock > 300) \text{ or } (50 \le numorders < 75 \text{ and } numinstock > 500)$

Answer:

This statement's logical form is $(p \land q) \lor ((r \land s) \land t)$, so its negation has the form:

$$\begin{split} &\sim ((p \wedge q) \vee ((r \wedge s) \wedge t)) \\ &\equiv \sim (p \wedge q) \, \wedge \sim ((r \wedge s) \wedge t) \\ &\equiv (\sim p \, \vee \sim q) \wedge (\sim (r \wedge s) \, \vee \sim t) \\ &\equiv (\sim p \, \vee \sim q) \wedge ((\sim r \, \vee \sim s) \, \vee \sim t) \end{split}$$

Thus, a negation for this statement is:

 $(numorders \ge 50 \text{ or } numinstock \le 300) \text{ and } ((numorders < 50 \text{ or } numorders \ge 75) \text{ or } numinstock \le 500)$

Problem 43

Use a truth table to establish if the statement is a tautology or contradiction.

Problem:

$$(\sim p \vee q) \vee (p \wedge \sim q)$$

Answer:

It is a tautology:

$\mid p \mid$	q	$\sim p$	$\sim q$	$(\sim p \lor q)$	$(p \land \sim q)$	$(\sim p \lor q) \lor (p \land \sim q)$
T	T	F	F	T	F	T
$\mid T \mid$	F	F	T	T	T	\mathbf{T}
F	T	T	F	T	F	${f T}$
F	F	T	T	T	F	${f T}$

Problem 49

Give the steps for logical equivalence.

Problem:

$$(p \vee \sim q) \wedge (\sim p \vee \sim q)$$

Answer:

 $\begin{array}{l} (p \vee \sim q) \wedge (\sim p \vee \sim q) \\ \equiv (\sim q \vee p) \wedge (\sim q \vee \sim p) \text{ by commutative law} \\ \equiv \sim q \vee (p \wedge \sim p) \text{ by distributive law} \\ \equiv \sim q \vee \mathbf{c} \text{ by negation law} \\ \equiv \sim q \text{ by identity law} \end{array}$

Therefore, $(p \lor \sim q) \land (\sim p \lor \sim q) \equiv \sim q$.

Problem 54

Write the logical equivalence.

Problem:

$$(p \wedge (\sim (\sim p \vee q))) \vee (p \wedge q) \equiv p$$

Answer:

 $\begin{array}{l} (p \wedge (\sim (\sim p \vee q))) \vee (p \wedge q) \\ \equiv (p \wedge (p \wedge \sim q)) \vee (p \wedge q) \text{ by De Morgan's law} \\ \equiv (\sim q \wedge (p \wedge p)) \vee (p \wedge q) \text{ by associative law} \\ \equiv (\sim q \wedge p) \vee (p \wedge q) \text{ by idempotent law} \\ \equiv (p \wedge \sim q) \vee (p \wedge q) \text{ by commutative law} \\ \equiv p \wedge (\sim q \vee q) \text{ by distributive law} \\ \equiv p \wedge \mathbf{t} \text{ by negation law} \\ \equiv p \text{ by identity law} \end{array}$

Therefore, $(p \land (\sim (\sim p \lor q))) \lor (p \land q) \equiv p$.

Canvas Problem

Write the logical equivalence::

Problem:

$$((\sim p \land q) \lor (\sim p \land \sim q)) \lor (\sim p \land q) \equiv \sim p$$

Answer:

$$\begin{array}{l} ((\sim p \wedge q) \vee (\sim p \wedge \sim q)) \vee (\sim p \wedge q) \\ \equiv (\sim p \wedge (q \vee \sim q)) \vee (\sim p \wedge q) \text{ by distributive law} \\ \equiv (\sim p \wedge \mathbf{t}) \vee (\sim p \wedge q) \text{ by negation law} \\ \equiv \sim p \vee (\sim p \wedge q) \text{ by identity law} \\ \equiv \sim p \text{ by absorption law} \end{array}$$

Therefore, $((\sim p \land q) \lor (\sim p \land \sim q)) \lor (\sim p \land q) \equiv \sim p$.