### Statistical and Causal Models

Congyuan Duan

December 28, 2021

Probability Theory and Statistics

Learning Theory

Causal Modeling and Learning

Probability Theory and Statistics

Learning Theory

Causal Modeling and Learning

### Probability Theory and Statistics

- Probability Theory: Reason about the outcomes of random experiments, given the preceding mathematical structure.
- Statistical Learning: Given the outcomes of experiments, infer properties of the underlying mathematical structure.

Probability Theory and Statistics

Learning Theory

Causal Modeling and Learning

### Difference

- Infer structure rather than distribution
- Different training and testing distributions

Probability Theory and Statistics

Learning Theory

Causal Modeling and Learning

# Relationship



Figure 1.1: Terminology used by the present book for various **probabilistic inference** problems (bottom) and **causal inference** problems (top); see Section 1.3. Note that we use the term "inference" to include both learning and reasoning.

# Reichenbach's common cause principle



Figure 1.2: Reichenbach's common cause principle establishes a link between statistical properties and causal structures. A *statistical* dependence between two observables *X* and *Y* indicates that they are *caused* by a variable *Z*, often referred to as a **confounder** (left). Here, *Z* may coincide with either *X* or *Y*, in which case the figure simplifies (middle/right). The principle further argues that *X* and *Y* are statistically independent, conditional on *Z*. In this figure, direct causation is indicated by arrows; see Chapters 3 and 6.

**Principle 1.1 (Reichenbach's common cause principle)** *If two random variables X and Y are statistically dependent (X \not\perp Y), then there exists a third variable Z that* causally *influences both. (As a special case, Z may coincide with either X or Y.) Furthermore, this variable Z screens X and Y from each other in the sense that given Z, they become independent, X \perp Y | Z.* 

Correlation does not imply causation.

Probability Theory and Statistics

Learning Theory

Causal Modeling and Learning

# Optical Character Recognition



Model (i);  $Y, N_X$  independent



Model (ii);  $Z, M_X, M_Y$  independent