

Dept. of Computer Science & Engineering (CSE)
Midterm Exam Total Marks: 30 Spring-2023

Course Code: CSE2217 Course Title: Data Structure and Algorithms II

Time: 1 hour 45 minutes

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

There are **Four** questions. **Answer all of them**. Show all the calculations/steps, where applicable. Figures in the right-hand margin indicate full marks.

1	(a) Consider a modified version of the Merge sort algorithm as follows:					[1.5]
	If the array size is less than or equal to 2, then it sorts the array at constant time .					
	Otherwise, it divides the array of size n into 3 subarrays, each with a size of $n/3$. This division takes $O(n^2)$ time. Then the algorithm sorts the subarrays recursively, and then merges their solutions in time $O(nlogn)$. Write a recurrence relation for the running-time $T(n)$ of this algorithm.					
	(b) Prove that the divide and n>1.	conquer meth	od will sort a	n array in O (n	logn) time when	[2.5]
	(c) Given an array of integers $A = \{70, -40, 20, -50, 10, -15, 20\}$, find the Maximum-sum Continuous Subarray using divide-and-conquer. You must show the recursion tree and clearly mention left, right and crossing sum for each tree node.					
	recursion tree and clearly m	ention left, ri g	tht and cross	ing sum for ea	ch tree node.	
2	(a) What is the main difference Conquer algorithms? Whe Programming?	ence between	Dynamic Pr	rogramming a	and Divide-and-	[3]
2	(a) What is the main difference Conquer algorithms? When	ence between n should we cycle dealer bu	Dynamic Pr try to solve	rogramming at a problem	and Divide-and- using Dynamic n selling them at	[3]
2	(a) What is the main difference Conquer algorithms? When Programming?(b) Suppose you are a motoror retail price for a profit. You have a profit.	ence between n should we cycle dealer bu ave a budget of ems on sale: Yamaha	Dynamic Pr try to solve lying cars who f 7 lac Tk. Yo	rogramming are a problem olesale and the u went to the w	and Divide-and- using Dynamic on selling them at wholesale market,	
2	(a) What is the main difference Conquer algorithms? When Programming? (b) Suppose you are a motor of retail price for a profit. You have and you saw the following its Car Name	ence between n should we cycle dealer bu ave a budget of ems on sale: Yamaha R15	Dynamic Pr try to solve lying cars who f 7 lac Tk. Yo Harley Davidson	rogramming as a problem olesale and the u went to the ward to the	nd Divide-and- using Dynamic n selling them at tholesale market, Honda CBR 150R R	
2	(a) What is the main difference Conquer algorithms? When Programming?(b) Suppose you are a motorogretail price for a profit. You have and you saw the following items.	ence between n should we cycle dealer bu ave a budget of ems on sale: Yamaha	Dynamic Pr try to solve lying cars who f 7 lac Tk. Yo	rogramming are a problem olesale and the u went to the w	and Divide-and- using Dynamic on selling them at wholesale market,	

You want to get the **maximum profit** from selling all these motorcycles, but your budget restricts you from buying all of them. Find the maximum profit you can obtain by buying some of these motorcycles and then selling them, provided the total wholesale cost of the motorcycles you selected **do not exceed your budget of 7 lac Tk**. Note that you can only buy one of these motorcycles at a time, so if you purchased a Yamaha R15 from the wholesale market, you cannot purchase it again. Find the solution to this problem by using **dynamic programming** and creating a **lookup table**.

	which mear purchase it a you make to	e now you have an infinite supply of motorcycles in the wholesale market, as that if you purchased a Yamaha R15 from the wholesale market, you could again (<i>if you have the required amount of money</i>). What modification should to the algorithm you used in question (b) to make it work for an infinite supply cles? (You do not need to show any lookup tables here)	[1.5]	
3	(a) Calculate the time complexity (Best Case and Worst Case) of the following code snippets			
	(i)	<pre>for (int i =1; i<n; for(int="" i="i*2)" j="j*2)" j<p;="" p++;="" pre="" printf("hello");="" {="" }="" }<=""></n;></pre>		
	(ii)	<pre>for(int i =1; i*i<n; i++)="" pre="" printf("hello");="" {="" }<=""></n;></pre>		
	(iii)	<pre>for(int i =1; i<n; for(int="" i="i*2)" j="1;" j++)="" j<i;="" pre="" printf("hello");="" {="" }="" }<=""></n;></pre>		
	(b) Given $f(n) = 5n^3 + 6n^2 + 3n + 9$; $g(n) = n^4$; find the values of c and n ₀ such that when $n > n_0$, f (n) = O (g (n))			
4		optimal solution to the fractional knapsack instance of $n = 4$, $W = 5$, $(v1, = (50, 30, 35, 60)$, and $(w1, w2, w3, w4) = (2, 2, 1, 3)$.	[3]	
	(b) Suppose we want to encode the symbols {A, B, C, D} in binary. Is the following a valid Huffman code? {A: 0; B: 10; C: 110; D: 111} If it is, build the code tree; if not, explain why you can't.			
	(c) You are given the arrival and the departure times of eight trains for a railway platform, and each one is in the format: [arrival time, departure time). Only one train can use the platform at a time. Suppose that you have got the following train-use requests for the next day. [8, 12), [6, 9), [11, 14), [2, 7), [1, 7), [12, 20), [7, 12), [13, 19)] Find the maximum number of trains that can use the platform without any collision			
		rliest departure time.		