MODULE 2-CHAPTER 3

Steps involved in Diffie Hellman Exchange Protocol

Let A and B are parties to communicate

large prime no- p and generator- g

- A chooses random number **a**, such that, 1<a<p-1 Computes Partial key g^amod p and send this to B
- B chooses random number b, such that, 1<b<p-1
 Computes Partial key g^bmod p and send this to A
- On receipt of A's message B computes $(g^a \text{mod } p)^b = g^{ab} \text{mod } p$
- On receipt of B's message A computes $(g^b \text{mod } p)^a = g^{ab} \text{mod } p$
- g^{ab}mod p is common secret key for A and B to communicate.

Man-in-the middle attack on Diffie-Hellman Key exchange protocol

An attacker C choose secret c and computes $g^c \mod p$ C Intercept A's message to B, substitute it with $g^c \mod p$ and send this to B B computes $(g^c \mod p)^b \mod p = g^{bc} \mod p$

C also intercept B's message to A sending g^c mod p
A computes (g^c mod p)^a mod p=g^{ac} mod p
C also computes two secrets
g^{bc} mod p and g^{ac} mod p

Mrs. Vijayalaxmi Mekali, Asst prof, Dept of CSE, KSIT

Steps involved in El Gamal Encryption

Let **A** and **B** are parties to communicate.

Let large prime no- p and generator- g

- A chooses random number a which is its privite key such that, 1<a<p-1
- Public key of A is triplet (p, g, α)

Where $\alpha = \mathbf{g}^{\mathbf{a}} \mathbf{mod} \mathbf{p}$

To encrypt the message **M**, **B** does the following operation

- Chooses a random number **r**, **1**<**r**<**p-1**
- Computes

$$C_1 = g^r mod \ p$$

$$C_2=(M*\alpha^r) \mod p$$

Sends C₁, C₂ to A

A decrypts the cipher text C1 and C2 using private key a

$$(C_1^{-a})*C_2 \mod p$$

Problems on Diffie-Hellman key exchange technique

1. Find secret using Diffie-Hellman key exchange technique with a common prime q=11 and a primitive root g=2. A has the private key $X_A=8$, B has the private key $X_B=4$.

A's public key=
$$g^{XA}$$
mod q
= 2^8 mod 11=3

Shared secret key= $(g^{XB}$ mod q) XA mod q
= 5^8 mod 11
= 4

B's public key = g^{XB} mod q
= 2^4 mod 11=5

Shared secret key= $(g^{XA}$ mod q) XB
= 3^4 mod 11
= 4

Shared secret key=4

2. Find secret using Diffie-Hellman key exchange technique with a common prime q=71 and a primitive root g=7. A has the private key $X_A=5$, B has the private key $X_B=12$.

A's public key=
$$g^{XA}$$
mod q
= 7^5 mod $71=51$
B's public key = g^{XB} mod q
= 7^{12} mod $71=4$
Shared secret key= $(g^{XB}$ mod q) XA mod q
= 4^5 mod 71
= 30
Shared secret key= $(g^{XA}$ mod q) XB mod q
= 51^{12} mod 71
= 30

Shared secret key=30

3. Find secret using Diffie-Hellman key exchange technique with a common prime q=131 and a primitive root g=2. A has the private key $X_A=24$, B has the private key $X_B=17$.

	B's public key = g^{XB} mod q
$=2^{24} \mod 131=46$	$=2^{17} \mod 131=72$
Shared secret key= (g ^{XB} mod q) ^{XA} mod q	Shared secret key= (g ^{XA} mod q) ^{XB} mod q
$=72^{24} \mod 131$	$=46^{17} \text{mod } 131$
=13	=13

Shared secret key=13

Note when exponent is higher value following method can be applied.

Convert exponent into binary form, then apply the steps

- 1. Initially d=1
- 2. consider binary form exponent from left to right

If bit=0

Compute d² mod p

 $d = d^2 \mod p$

If bit=1

Compute $d^2 *b \mod p ((d^2 \mod p) *b \mod p)$

 $d = d^2 *b \bmod p$

In above example, to compute $72^{24} \mod 131$ above method can be applied Binary of exponent 24 is $1 \ 1 \ 0 \ 0$

			b = 72, q = 131		
Assume d=1	1	1	0	0	0
d	1	7 2	7 29	55	12
d ² mod q	1	75	55	12	13 (Ans)
d ² b mod q	72	29			

 $72^{24} \mod 131=13$

In above example, to compute 46^{17} mod 131 above method can be applied Binary of exponent 17 is $1 \quad 0 \quad 0 \quad 1$

			b = 46, q=131		
Assume d=1	1	0	0	0	1
d	1	7 46	20	7	49
d ² mod q	1	20	7	49	43
d ² b mod q	46				13 (Ans)

Problems on El Gamal Encryption

- 1. Common prime p=19 and g=10. A's private key, a= 5, B choose random integer r=6, message M=17
 - b. Compute public key of A
 - c. B perform encryption for the message M=17, Compute cipher text C₁ and C₂
 - d. Decryption of C_1 and C_2 by A

Solution

A's corresponding public key- α(alpha)

$$\alpha = g^a \mod p = 10^5 \mod 19 = 3$$

If B perform encryption for the message M=17.

Compute C₁ and C₂

$$C_1 = g^r \mod p$$

= $10^6 \mod 19 = 11$
 $K = \alpha^r \mod p = 3^6 \mod 19 = 7$
 $C_2 = (K*M) \mod p$
= $(7*17) \mod 19 = 5$

Encrypted two cipher text are $C_1=11$, $C_2=5$

A Decrypt the Cipher C_1 and C_2 using private key a and obtain the message M.

$$K = (C_1)^a \mod p$$

= 11⁵ mod 19= **7**
 $M = (C_2 K^{-1}) \mod p$
= $(C_2 * K^{-1} \mod p) \mod p$
= 5 * 11 mod 19 = **17**
 $M = 17$

```
(C_2 	ext{ K}^{-1}) 	ext{ mod p can be written as}
(C_2 	ext{ K}^{-1} 	ext{ mod p}) 	ext{ mod p}
K = 7
K^{-1} 	ext{ mod p} = 7^{-1} 	ext{ mod 19}
= 11 	ext{ this obtained as follows}
7*1 	ext{ mod } 19 \neq 1
7*2 	ext{ mod } 19 \neq 1
-
-
7*11 	ext{ mod } 19 = 1
```

- 3. Common prime p=131 and g=2. A's private key, a= 97, B choose random integer r=33, message M=17
 - a. Compute public key of A
 - b. B perform encryption for the message M=17, Compute cipher text C₁ and C₂
 - c. Decryption of C_1 and C_2 by A

El Gamal Encryption common prime p=131 and g=2.

a) A's private key, a=97, corresponding public key α (alpha)

$$\alpha = g^a \mod p$$

$$= 2^{97} \mod 131 = 14$$

$$\alpha = 14$$

b) B choose random integer **r=33**,

If B perform encryption for the message M=75,

Compute C_1 and C_2 .

$$C_{1\,=\,g^{r}}\;mod\;p\;=2^{33}mod\;131\;=\!103$$

$$K = \alpha^r \mod p = 14^{33} \mod 131 = 95$$

$$C_2 = K*M \mod p = 95*75 \mod 131 = 51$$

c) Decrypt the Cipher C₁ and C₂ and obtain the message M.

$$K = (C_1)^a \mod p = 103^{97} \mod 131 = 95$$

$$M = (C_2 \ K^{\text{-}1}) \ mod \ p = 51 \ *(\ 95^{\text{-}1} \ mod \ 131) \ mod \ 131$$

$$M = (51 * 40) \mod 131 = 75$$

95⁻¹ mod 131=40 (apply extended Euclidean algorithm)

In above example, to compute 2⁹⁷mod 131 above method can be applied Binary of exponent 97 is 1 1 0 0 0 0 1

$$b = 2$$
, $q=131$

Assume d=1	1	1	0	0	0	0	1
d	1	2	8	64	35	4 6	2 0
d ² mod q	1	4	64	35	46	20	7
d ² b mod q	2	8					14(Ans)

14³³mod 131

Binary of exponent 33 is 1 1 0 0 0 0 1

$$b = 14, q=131$$

Assume d=1	1	0	0	0	0	1
d	1	1 4	65	33	4 1	109
d ² mod q	1	65	33	41	109	91
d ² b mod q	14					95(Ans)

Mrs. Vijayalaxmi Mekali, Asst prof, Dept of CSE, KSIT

Mrs. Vijayalaxmi Mekali, Asst prof, Dept of CSE, KSIT		

Cryptography, Network security and Cyberlaw