UČNI LIST – Polinomi – 2

- 1) Določi neznani koeficient tako, da bo imel polinom zahtevano ničlo:
 - a) $p(x) = x^3 2x^2 18x + (a+50), x = 4$
 - b) $p(x) = x^3 + (a+3)x^2 11x 10, x = -2$
- 2) Določi neznana koeficienta a in b tako, da bo imel polinom zahtevani ničli:
 - a) $p(x) = x^4 3x^3 + ax^2 + bx 30$, $x_1 = -2$ in $x_2 = 3$
 - b) $p(x) = x^3 + (a+1)x^2 + x + (b-2), x_1 = 2 \text{ in } x_2 = 3$
- 3) Določi koeficienta a in b tako, da bo imel polinom $p(x) = x^3 + ax^2 + bx 6$ ničlo $x_1 = -2$, pri deljenju s polinomom (x-1) pa dobimo ostanek -12.
- 4) Izračunaj vse ničle simetričnega polinoma $p(x) = 24x^4 + 50x^3 173x^2 + 50x + 24$.
- 5) Reši enačbo:

$$3^{x^3+4x^2-x-7}=0,\overline{037}$$

- 6) Poišči polinom tretje stopnje z vodilnim koeficientom –6 in ničlami $x_1 = 1$, $x_2 = -\frac{1}{2}$ in $x_3 = -2$.
- 7) Poišči polinom 3. stopnje z ničlami $x_1 = -1$, $x_2 = \frac{1}{3}$ in $x_3 = 3$, če gre njegov graf skozi točko A(1,-8).
- 8) Poišči polinom četrte stopnje z ničlami $x_1 = -2$, $x_2 = -1$, $x_3 = 1$ in $x_4 = 2$, če gre njegov graf skozi točko A(0,8).
- 9) Poišči simetrični polinom pete stopnje, ki ima ničli $x_1 = -3$ in $x_2 = 2$, če gre njegov graf skozi A(1,-32).
- 10) Izračunaj presečišča premice in polinoma:

a)
$$p(x) = x^4 + x^3 - 3x^2 - 14x - 34, y = 3x - 4$$

b)
$$p(x) = 2x^3 + x^2 + 2x + 5, y = 4x + 6$$

11) Izračunaj presečišči dveh polinomov:

a)
$$p(x)=3x^3+9x^2-5x+2$$
, $q(x)=2x^2+2x+5$

b)
$$p(x) = 2x^3 + 4x^2 - x + 3$$
, $q(x) = 5x^2 + 4x + 5$

12) Izračunaj ničle in nariši graf polinoma:

a)
$$p(x) = x^3 + 7x^2 + 14x + 8$$

c)
$$p(x) = x^3 - x^2 - 8x + 12$$

b)
$$p(x) = -x^3 - 3x^2 + x + 3$$

d)
$$p(x) = -x^3 - x^2 + 4x + 4$$

13) Izračunaj ničle in nariši graf polinoma:

a)
$$p(x) = x^3 - 4x^2 + x + 6$$

c)
$$p(x) = x^3 - 7x^2 + 15x - 9$$

b)
$$p(x) = 6x^3 + 7x^2 - 1$$

d)
$$p(x) = x^3 - 7x + 6$$

14) Zapišite vse ničle polinoma $p(x) = x(x+1)^2 (2x-1)(5x+2)^2$.

- 15) Zapiši ničle, začetno vrednost in nariši graf polinoma:
 - a) p(x)=(x+1)(x+2)(x+3)

c) $p(x)=(x-1)^2(x+2)^2$

b) $p(x)=(x+1)^2(5x-2)$

- d) $p(x) = -x^3(x+1)^2(x+3)^3$
- 16) Izračunaj ničle in nariši graf polinoma:
 - a) $p(x) = x^3 x^2 5x 3$

- c) p(x)
- c) $p(x) = x^3 + 5x^2 + 7x + 3$

b) $p(x) = x^3 - 5x^2 + 3x + 9$

- d) $p(x) = x^3 9x^2 + 24x 16$
- 17) Izračunaj ničle in nariši graf polinoma:
 - a) $p(x) = x^4 3x^3 3x^2 + 11x 6$
 - b) $p(x) = x^4 + 2x^3 4x^2 8x$

- c) $p(x) = x^4 2x^2 3$
- d) $p(x) = -3x^4 + 3$
- 18) Dan je polinom $p(x) = x^3 6x^2 + 9x 4$. Poišči njegove ničle, nato pa izračunaj presečišča s premico y = 4x 4. Nariši graf polinoma in premico!
- 19) a) Iz grafa polinoma 3. stopnje ugotovi, kje ima ničle in kolikšna je začetna vrednost. Kolikšna je vrednost polinoma pri *x* = −1? Poišči tudi enačbo tega polinoma.
- b) Iz grafa polinoma četrte stopnje ugotovi, kje ima ničle in kolikšna je začetna vrednost. Kolikšna je vrednost polinoma pri x = 1? Določi še enačbo tega polinoma.

- 20) Reši neenačbe:
 - a) $x^3 6x^2 + 11x 6 < 0$
 - b) $-x^3 + 2x^2 + 5x 6 \le 0$

- c) $x^3 + 3x^2 4 \ge 0$
- d) $x^3 + 5x^2 9x 45 \le 0$

- 21) Reši neenačbe:
 - a) $x^3 9x^2 + 26x 24 > 0$
 - b) $-2x^5 12x^4 16x^3 + 12x^2 + 18x \ge 0$
- c) $-3x^3 11x^2 5x + 3 > 0$
- d) $3x^5 + 5x^4 7x^3 9x^2 + 4x + 4 \ge 0$

REŠITVE UČNEGA LISTA – Polinomi – 2

1) a)
$$a = -10$$

b)
$$a = -4$$

2) a)
$$a=1, b=7$$

b)
$$a = -5, b = 8$$

3)
$$a=0, b=-7$$

4)
$$x_1 = -4, x_2 = -\frac{1}{4}, x_3 = \frac{2}{3}, x_4 = \frac{3}{2}$$

5)
$$x_1 = 1, x_2 = -1, x_3 = -4$$

6)
$$p(x) = -6x^3 - 9x^2 + 9x + 6$$

7)
$$p(x) = 3x^3 - 7x^2 - 7x + 3$$

8)
$$p(x) = 2x^4 - 10x^2 + 8$$

9)
$$p(x) = 6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6$$

10) a)
$$P_1(3,5)$$
, $P_2(-2,-10)$

b)
$$P_1(1,10), P_2(-1,2), P_3(-\frac{1}{2},4)$$

11) a)
$$P_1(1,9)$$
, $P_2(-3,17)$, $P_3(-\frac{1}{3},\frac{41}{9})$

b)
$$P_1(-1,6)$$
, $P_2(2,33)$, $P_3(-\frac{1}{2},\frac{17}{4})$

12) a) N:
$$x_1 = -1$$
, $x_2 = -2$, $x_3 = -4$, $p(0) = 8$

b) N: $x_1 = -1$, $x_2 = 1$, $x_3 = -3$, p(0) = 3

c) N: $x_1 = -3$, $x_{2,3} = 2$, p(0) = 12

14)
$$x_1 = 0$$
, $x_{2,3} = -1$, $x_4 = \frac{1}{2}$, $x_{5,6} = -\frac{2}{5}$

b) N:
$$x_1 = -1$$
, $x_{2,3} = 3$, $p(0) = 9$

17) a) N: $x_1 = -2$, $x_{2,3} = 1$, $x_4 = 3$, p(0) = -6

19) a)

$$N: x_1 = -2, x_2 = \frac{1}{2}, x_3 = 2; f(0) = 4$$

 $A(-1,9); p(x) = 2x^3 - x^2 - 8x + 4$

b)

$$N: x_{1,2} = -1, x_3 = \frac{3}{2}, x_4 = 2; f(0) = -6$$

 $B(1,-4); p(x) = -2x^4 + 3x^3 + 6x^2 - 5x - 6$

20) a)
$$x \in (-\infty, 1) \cup (2, 3)$$

b) $x \in [-2,1] \cup [3,+\infty)$

21) a) $x \in (2,3) \cup (4,\infty)$

