Análisis Exploratorio y Modelado Orbital de Asteroides

Mayte Torres Hernández Análisis de datos con Python

Departamento de Matemáticas Universidad Autónoma Metropolitana

Martes, 12 de agosto del 2025

Motivación para estudiar los datos del MPC

- Dinámica del Sistema Solar: elementos orbitales (a, e, i) para reconstruir trayectorias y evolución a largo plazo.
- Propiedades físicas: magnitud absoluta H y parámetro G para inferir tamaños y poblaciones.
- Predicciones de propiedades físicas.
- Buena minería de datos

¿por qué importa?

Estudiar el MPC permite entender cómo se mueven y evolucionan los asteroides y cometas.

Objetivos

- Describir brevemente que es el Centro de planetas Menores (MPC) a partir de sus parámetros orbitales y físicos.
- Explorar distribuciones básicas (H, excentricidad, anomalia media, error cuadratico medio(RMS), argumento del perihelio,...).
- Visualizar relaciones entre variables a través de diagramas de dispersión.
- Reportar correlaciones (Spearman) entre variables seleccionadas.
- Agrupamiento de familias, predecir la magnitud absoluta.

The Minor Planet Center

El Centro de Planetas Menores (MPC) es una institución que se dedica a recopilar, calcular y publicar datos sobre objetos menores como asteroides y cometas. El MPC asigna identificadores únicos a los observatorios que contribuyen con observaciones y descubrimientos.

Variables de la base de datos

_	Data	columns (total 24 col	umns).	
3	#	Column	Non-Null Count	Dtype
	0	Orden_descubrimiento	72177 non-null	int64
	1	ID _	72177 non-null	object
	2	Н	72177 non-null	float64
	3	G	72177 non-null	float64
	4	Epoch	72177 non-null	object
	5	MeanAnomaly	72177 non-null	float64
	6	ArgPerihelion	72177 non-null	float64
	7	LongAscNode	72177 non-null	float64
	8	Inclination	72177 non-null	float64
	9	Eccentricity	72177 non-null	float64
	10	MeanMotion	72177 non-null	float64
	11	SemiMajorAxis	72177 non-null	float64
	12	Uncertainty	72177 non-null	float64
	13	Reference	72177 non-null	object
	14	NObs	72177 non-null	float64
	15	NOppositions	72177 non-null	int64
	16	ObsStart	72177 non-null	int64
	17	Dash	72177 non-null	object
	18	ObsEnd	72177 non-null	object
	19	RMS	72177 non-null	float64
	20	CoarsePerturbers	72177 non-null	object
	21	PrecisePerturbers	72177 non-null	object
	22	Computer	72177 non-null	object
	23	ReadableDesignation	72177 non-null	object
dtypes: float64(12), int64(3), object(9)				

: ▶ ◀ Ē Þ Ē ♡Q@

Gráficas de dispersión

Gráficas de caja

Semieje mayor vs Inclinación

La descripción de la gráfica corresponde al cinturón principal de asteroides, una región del sistema solar ubicada entre las órbitas de Marte y Júpiter, donde se concentra una gran cantidad de asteroides con inclinaciones orbitales bajas. Esta zona se encuentra aproximadamente entre 2 y 3.5 unidades astronómicas (UA) del Sol.

Semieje mayor vs Inclinación (color: H)

El gráfico revela zonas con magnitud absoluta baja (color más oscuro). Puntos más claros \rightarrow Vecindad de Júpiter (5.2 UA): presencia de objetos (troyanos) con amplio rango de inclinaciones.

Semieje mayor vs Inclinación (color:e)

Este gráfico revela zonas con excentricidad baja (color más oscuro) \rightarrow órbitas casi circulares, como muchos asteroides del cinturón principal.

Los puntos más claros \rightarrow órbitas más elípticas, como cometas, objetos dispersos o centauros.

Asteroides cercanos a la Tierra

Se clasifican dinámicamente con base en dos parámetros orbitales: q=a(1-e): perihelio = es el punto donde el objeto está más cerca del Sol Q=a(1+e): afelio = es el punto donde está más lejos del Sol.

Gráfico de orbitas de los cuerpos menores

Matriz de correlación

- 0.75

0.50

- 0.25

- 0.00

-0.25

-0.50

-0.75

Agrupamiento por K-means

Velocidad media y tercera ley de Kepler

La tercera ley de Kepler, establece que el cuadrado del período orbital de un planeta es directamente proporcional al cubo de la distancia media de ese planeta al Sol.

$$P^2 = a^3$$

Tercera ley (forma newtoniana):

$$n^2 a^3 = \mu, \qquad n = \frac{2\pi}{T}, \ \mu = G(M+m).$$

Movimiento medio:

$$n = \frac{2\pi}{T}.$$

3ª ley de Kepler en forma log-log

Tercera ley (forma newtoniana):

$$n^2 a^3 = \mu \quad \Longrightarrow \quad n = \sqrt{\mu} \, a^{-3/2},$$

a el semieje mayor y $\mu = G(M+m)$.

Tomando logaritmos (cualquier base):

$$y := \log n, \quad x := \log a \quad \Rightarrow \quad \log n = \underbrace{\log(\sqrt{\mu})}_{\mathbf{L}} + \underbrace{\left(-\frac{3}{2}\right)}_{\mathbf{L}} \log a.$$

Distribución de residuos (ley de Kepler)

La gráfica muestra que:

Si el residuo es 0, significa que $n_{real} = n_{pred}$.

Si es positivo, el valor real es mayor que el predicho; si es negativo, es menor.

Predicción de la Magnitud Absoluta H

Usando RandomForestRegressor tenemos:

R²: 0.723 RMSE: 0.981

Distribución de residuos

La gráfica muestra que el modelo no tiene gran sesgo, es decir, predice bastante bien a ${\cal H}.$

Importancia de variables para la predicción de H

Referencias

- https://minorplanetcenter.net/iau/info/Perturbers.html
- https://github.com/Mayte13/Datos

Conclusiones y trabajo futuro

- Se presentaron distribuciones básicas, relaciones entre elementos orbitales y como predecir la Magnitud absoluta.
- Próximo:Usar los datos para calcular la acción del funcional usando redes neuronales.

¡Gracias!

por su atención

