Probability and Statistics

4 - Continuous Random Variables

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

November 14, 2023

Random Variables

Definition (4.1)

Let Ω be a sample space and $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ a set of events with a probability measure $\Pr: \mathcal{A} \to \mathbb{R}$. A mapping $X: \Omega \to \mathbb{R}$ is called a *random variable* if

$$X^{-1}((-\infty,x]) = \{\omega \in \Omega \mid X(\omega) \le x\} \in \mathcal{A}$$

for all $x \in \mathbb{R}$.

Note: Discrete Random variables are random variables in the sense of the definition given above and the definition of a <u>cumulative distribution function</u> (cdf) given for discrete random variables generalizes to all random variables:

$$F_X: \mathbb{R} \to [0,1], \qquad F_X(x) := \Pr(X \le x)$$

Lemma

Lemma

(i)
$$S = \mathbb{R} = (-\infty, \infty)$$
 $X^{-1}(\mathbb{R}) = \mathbb{R} \in A$

Lemma

(i)
$$S = \mathbb{R} = (-\infty, \infty)$$

(ii)
$$S = (-\infty, x)$$

$$\chi^{-1}(-\infty, x) = \chi^{-1}(-\infty, x - \frac{1}{2})$$

$$= \bigcup_{i=1}^{\infty} \chi^{-1}(-\infty, x - \frac{1}{2})$$

$$= \bigcup_{i=1}^{\infty} \chi^{-1}(-\infty, x - \frac{1}{2})$$

Lemma

(iv)

From Definition (4.1) it follows, that $X^{-1}(S) \in \mathcal{A}$ for all intervals $S \subseteq \mathbb{R}$. , XER

(i)
$$S = \mathbb{R} = (-\infty, \infty)$$

(ii)
$$S=(-\infty,x)$$

(iii)
$$S = [x, \infty)$$

 $S=(x,\infty)$

(iii)
$$S = [x, \infty)$$

Lemma

(i)
$$S = \mathbb{R} = (-\infty, \infty)$$

(ii)
$$S = (-\infty, x)$$

(iii)
$$S = [x, \infty)$$

(iv)
$$S = (x, \infty)$$

(v)
$$S = (x_1, x_2)$$

(vi)
$$S = (x_1, x_2)$$

(vi) $S = (x_1, x_2)$

(vii)
$$S = [x_1, x_2)$$

(viii)
$$S = [x_1, x_2]$$

(viii) $S = [x_1, x_2]$

$$= \chi^{-1} \left(\mathbb{R} \times \left((x_{1}, \infty) \circ (-\infty, x_{1}) \right) \right) = \chi \times \left(\chi^{-1} \left((x_{1}, \infty) \right) \circ \chi^{-1} \left((-\infty, x_{1}) \right) \right)$$

Lemma

(i) If
$$A_i \in \mathcal{A}$$
 with $A_1 \subseteq A_2 \subseteq \ldots$, then: $\Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \Pr(A_n)$
Ex. $A_i = X^{-1}((-\infty, x - \frac{1}{2}))$
(ii) If $A_i \in \mathcal{A}$ with $A_1 \supseteq A_2 \supseteq \ldots$, then: $\Pr\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \Pr(A_n)$

(i) If
$$A_i \in \mathcal{A}$$
 with $A_1 \subseteq A_2 \subseteq \ldots$, then: $\Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \Pr(A_n)$

$$\Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \Pr\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \Pr(B_i) = \lim_{n \to \infty} \sum_{i=1}^{\infty} \Pr(B_i)$$

$$= \lim_{n \to \infty} \Pr\left(\bigcup_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} \sum_{i=1}^{\infty} \Pr(B_i) = \lim_{n \to \infty} \sum_{i=1}^{\infty} \Pr(B_i)$$

Stefan Heiss (TH OWL)

(ii) If
$$A_i \in \mathcal{A}$$
 with $A_1 \supseteq A_2 \supseteq \ldots$, then: $\Pr\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \Pr(A_n)$

HW

Lemma (4.4)

If F_X is a cumulative distribution function, then the following holds:

(i)
$$\Pr(a < X \le b) = F_X(b) - F_X(a)$$
 for all $a, b \in \mathbb{R}$ with $a < b$

(ii) F_X is monotonically increasing.

(iii)
$$\lim_{x \to -\infty} F_X(x) = 0$$
, $\lim_{x \to \infty} F_X(x) = 1$

(iv)
$$F_X(x+) := \lim_{\xi \to x+} F_X(\xi) = F_X(x)$$
 for every $x \in \mathbb{R}$

(v)
$$Pr(X = x) = F_X(x) - F_X(x-)$$
 for every $x \in \mathbb{R}$

٨

(i)

 $\Pr(a < X \le b) = F_X(b) - F_X(a)$ for all $a, b \in \mathbb{R}$ with a < b

(ii) F_X is monotonically increasing.

$$= \int_{L} \left(X_{-1} \left((a^{1} + 2) \right) \right) = \int_{L} \left(a + \chi \in P \right)$$

$$= \int_{L} \left(X_{-1} \left((-a^{1} + 2) \right) - (-a^{1} + 2) \right)$$

$$= \int_{L} \left(X_{-1} \left((-a^{1} + 2) \right) - \int_{L} \left(X_{-1} \left((-a^{1} + 2) \right) - (-a^{1} + 2) \right) \right)$$

$$= \int_{L} \left(X_{-1} \left((-a^{1} + 2) \right) - \int_{L} \left(X_{-1} \left((-a^{1} + 2) \right) - (-a^{1} + 2) \right) \right)$$

$$= \int_{L} \left(X_{-1} \left((-a^{1} + 2) \right) - \int_{L} \left((a + \chi + 2) \right) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right) + \int_{L} \left((a + \chi + 2) \right)$$

$$= \int_{L} \left((a + \chi + 2) \right) - \int_{L} \left((a + \chi + 2) \right) + \int_{L} \left((a + \chi +$$

(iii)
$$\lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to \infty} F_X(x) = 1$$

$$A_i := X^{-1}((-\infty, i]) \in A, \quad A_i \in A_i \in A_i$$

$$\lim_{x \to -\infty} F_X(x) = \lim_{x \to \infty} F_X(x) = \lim_{x \to \infty} P_X(x) = \lim_{$$

(iv)
$$F_X(x+) := \lim_{\xi \to x+} F_X(\xi) = F_X(x)$$
 for every $x \in \mathbb{R}$

<u>Proof.</u> Let $(x_i)_{i\in\mathbb{N}}$ be a sequence of real numbers with $x_i > x$ for all $i \in \mathbb{N}$, $x_1 \ge x_2 \ge x_3 \ge \dots$ and $\lim_{i \to \infty} x_i = x$. Then:

$$F_X(x+) = \lim_{i \to \infty} F_X(x_i) = \lim_{i \to \infty} \Pr(X \le x_i)$$

$$A_i = X^{-1}((--, x_i)) \qquad \stackrel{(4.3)(ii)}{=} \Pr\left(\bigcap_{i \to \infty} \{\omega \in \Omega \mid X(\omega) \le x_i\}\right)$$

$$= \Pr\left(\{\omega \in \Omega \mid X(\omega) \le x\}\right) = F_X(x)$$

(v)
$$Pr(X = x) = F_X(x) - F_X(x-)$$
 for every $x \in \mathbb{R}$

$$\begin{array}{lll} \underline{\mathit{Proof.}} & \mathsf{Put} \; x_i \, := \, x - \frac{1}{i}. \; \mathsf{Then} \\ & F_X(x-) \; = \; \lim_{i \to \infty} F_X(x_i) \; = \; \lim_{i \to \infty} \mathsf{Pr}(X \le x_i) \\ & \stackrel{\mathsf{(4.3)(i)}}{=} \; \mathsf{Pr}\left(\bigcup_{i \to \infty} \{\omega \in \Omega \mid X(\omega) \le x_i\}\right) \\ & = \; \mathsf{Pr}\left(\{\omega \in \Omega \mid X(\omega) < x\}\right) \; = \; \mathsf{Pr}(X < x) \end{array}$$

and:

$$Pr(X = x) = Pr(X < x) - Pr(X < x) = F_X(x) - F_X(x-)$$

ed f

Quantile Functions

Definition (4.5)

Let X be a random variable with cdf F_X . The *quantile function* of X is defined for all $p \in (0,1)$ by:

$$F_X^{-1}(p) := \min\{x \mid F_X(x) \ge p\}$$

First quartile, median and third quartile are defined to be: $F_X^{-1}\left(\frac{1}{4}\right)$, $F_X^{-1}\left(\frac{1}{2}\right)$ and $F_X^{-1}\left(\frac{3}{4}\right)$

Note: If F_X is continuous and strictly increasing, then restricting the codomain of F_X to $F_X(\mathbb{R}) = (0,1)$ yields a bijective mapping with the quantile function as the inverse mapping.

Quantile Functions

Definition (4.5)

Let X be a random variable with cdf F_X . The *quantile function* of X is defined for all $p \in (0,1)$ by:

$$F_X^{-1}(p) := \min\{x \mid F_X(x) \ge p\}$$

First quartile, median and third quartile are defined to be: $F_X^{-1}\left(\frac{1}{4}\right)$, $F_X^{-1}\left(\frac{1}{2}\right)$ and $F_X^{-1}\left(\frac{3}{4}\right)$

Note: If F_X is continuous and strictly increasing, then restricting the codomain of F_X to $F_X(\mathbb{R}) = (0,1)$ yields a bijective mapping with the quantile function as the inverse mapping. Moreover:

- (i) $F_X(F_X^{-1}(p)) \geq p$ for all $p \in (0,1)$
- (ii) $F_X(F_X^{-1}(p)) = p$ for all $p \in (0,1)$ if F_X is continuous
- (iii) F_X^{-1} is strictly increasing if F_X is continuous
- (iv) $F_X^{-1}(F_X(x)) \le x$ for all $x \in \mathbb{R}$ with $F_X(x) \in (0,1)$

Quantile Functions

- (i) $F_X(F_X^{-1}(p)) \ge p$ for all $p \in (0,1)$
- (ii) $F_X(F_X^{-1}(p)) = p$ for all $p \in (0,1)$ if F_X is continuous
- (iii) F_X^{-1} is strictly increasing if F_X is continuous
- (iv) $F_X^{-1}(F_X(x)) \leq x$ for all $x \in \mathbb{R}$ with $F_X(x) \in (0,1)$

