Engineering Electromagnetics

Lecture 4

28/08/2023

by

Debolina Misra

Department of Physics IIITDM Kancheepuram, Chennai, India

Cylindrical coordinate system

Unit vectors (same meaning, different notations)

$$x = \rho \cos \phi$$
$$y = \rho \sin \phi$$

The coordinate surface

$$\rho = \sqrt{x^2 + y^2} = \text{constant}$$

 $\hat{\rho}$, $\hat{\varphi}$, and $\hat{z} \rightarrow \text{unit vectors}$

Properties:

$$\hat{\rho}. \hat{\rho} = \hat{\varphi}. \hat{\varphi} = \hat{z}. \hat{z} = 1 ; \hat{\rho}. \hat{\varphi} = \hat{\varphi}. \hat{z} = \hat{\rho}. \hat{z} = 0$$

$$\hat{\rho} \times \hat{\varphi} = \hat{z}; \hat{\varphi} \times \hat{z} = \hat{\rho}; \hat{z} \times \hat{\rho} = \hat{\varphi}$$

is a cylinder of radius ρ with the z axis as its axis,

Should be defined at a common point

If two vectors $\vec{\bf A}$ and $\vec{\bf B}$ are defined either at a common point $P(\rho, \phi, z)$ or in a $\phi =$ constant plane, we can add, subtract, and multiply these vectors as we did in the rectangular coordinate system. For example, if the two vectors at point $P(\rho, \phi, z)$ are $\vec{\bf A} = A_{\rho}\vec{\bf a}_{\rho} + A_{\phi}\vec{\bf a}_{\phi} + A_{z}\vec{\bf a}_{z}$ and $\vec{\bf B} = B_{\rho}\vec{\bf a}_{\rho} + B_{\phi}\vec{\bf a}_{\phi} + B_{z}\vec{\bf a}_{z}$, then

$$\vec{\mathbf{A}} + \vec{\mathbf{B}} = (A_{\rho} + B_{\rho})\vec{\mathbf{a}}_{\rho} + (A_{\phi} + B_{\phi})\vec{\mathbf{a}}_{\phi} + (A_{z} + B_{z})\vec{\mathbf{a}}_{z}$$
 (2.32a)

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = A_{\rho} B_{\rho} + A_{\phi} B_{\phi} + A_{z} B_{z} \tag{2.32b}$$

and

$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = \begin{vmatrix} \vec{\mathbf{a}}_{\rho} & \vec{\mathbf{a}}_{\phi} & \vec{\mathbf{a}}_{z} \\ A_{\rho} & A_{\phi} & A_{z} \\ B_{\alpha} & B_{\phi} & B_{z} \end{vmatrix}$$
 (2.32c)

Transformations

- Conversion <u>from cartesian to cylindrical coordinates:</u>
- \hat{x} . $\hat{\rho} = Cos\phi$ and \hat{y} . $\hat{\rho} = Sin\phi$
- $\widehat{x}.\widehat{\varphi} = -Sin\varphi$ and $\widehat{y}.\widehat{\varphi} = Cos\varphi$

$$\hat{\boldsymbol{\rho}} = \cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}}, \\
\hat{\boldsymbol{\phi}} = -\sin \phi \, \hat{\mathbf{x}} + \cos \phi \, \hat{\mathbf{y}}, \\
\hat{\mathbf{z}} = \hat{\mathbf{z}}.$$

If $\hat{\rho}(or \, \overline{a_{\rho}})$ makes an angle φ with x axis, what about $\widehat{\varphi}(or \, \overline{a_{\varphi}})$? And the x and y components of $\widehat{\varphi}$?

Q: For any vector A:

$$A = A_{x}\widehat{x} + A_{y}\widehat{y} + A_{z}\widehat{z}$$

How to convert it to cylindrical coordinates? $A = A_{\rho}\hat{\rho} + A_{\phi}\hat{\phi} + A_{z}\hat{z}$

$$\begin{bmatrix} \hat{\rho} \\ \hat{\varphi} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix}$$

Conversion cylindrical ↔ cartesian coordinates

Cartesian to cylindrical
$$\begin{bmatrix} A_{\rho} \\ A_{\phi} \\ A_{z} \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{x} \\ A_{y} \\ A_{z} \end{bmatrix}$$

Cylindrical to cartesian
$$\begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_\rho \\ A_\phi \\ A_z \end{bmatrix}$$

- Conversion to cartesian coordinates (Hint)
- From $A = A_{\wp} \hat{\rho} + A_{\wp} \hat{\varphi} + A_{z} \hat{z}$ to $A = A_{x} \hat{x} + A_{y} \hat{y} + A_{z} \hat{z}$
- $A_{x} = A. \ \widehat{x} = (A_{0}\widehat{\rho} + A_{\omega}\widehat{\phi} + A_{z}\widehat{z}). \ \widehat{x} = A_{0}\widehat{\rho}. \ \widehat{x} + A_{\omega}\widehat{\phi}. \ \widehat{x} + A_{z}\widehat{z}. \ \widehat{x}; \ \widehat{x}. \ \widehat{\rho} = Cos\phi; \ \widehat{y}. \ \widehat{\rho} = Sin\phi;$
- $\hat{x}. \hat{\varphi} = -Sin\varphi$ and $\hat{y}. \hat{\varphi} = Cos\varphi$; $A_x = A_{\wp} Cos\varphi A_{\wp}Sin\varphi$; $A_y = A$. $\hat{y} = A_{\wp}Sin\varphi + A_{\wp}Cos\varphi$ and $A_z = A$. $\hat{z} = A_z$

Write an expression for a position vector at any point in space in the Problem 1 rectangular coordinate system. Then transform the position vector into a vector in the cylindrical coordinate system.

Solution

The position vector of any point P(x, y, z) in space is

$$\vec{\mathbf{A}} = x\vec{\mathbf{a}}_x + y\vec{\mathbf{a}}_y + z\vec{\mathbf{a}}_z$$

Using the transformation matrix as given in (2.39), we obtain

$$A_{\rho} = x \cos \phi + y \sin \phi$$

$$A_{\phi} = -x \sin \phi + y \cos \phi$$
 and $A_z = z$

Substituting $x = p \cos \phi$ and $y = \rho \sin \phi$, we obtain

$$A_{\rho} = \rho$$
, $A_{\phi} = 0$, and $A_{z} = z$

Thus, the position vector \vec{A} in the cylindrical coordinate system is

$$\vec{\mathbf{A}} = \rho \vec{\mathbf{a}}_{\rho} + z \vec{\mathbf{a}}_{z}$$

Problem 2

Express the vector $\vec{\mathbf{A}} = \frac{k}{\rho^2} \vec{\mathbf{a}}_{\rho} + 5 \sin 2\phi \vec{\mathbf{a}}_{z}$ in the rectangular coordinate system.

Solution Using the transformation matrix

$$A_{\rho} = \frac{k}{\rho^2}$$
, $A_{\phi} = 0$, and $A_z = 5\sin 2\phi$

we obtain

$$A_x = \frac{k \cos \phi}{\rho^2}$$
, $A_y = \frac{k \sin \phi}{\rho^2}$, and $A_z = 10 \cos \phi \sin \phi$

Substituting $\rho = \sqrt{x^2 + y^2}$, $\cos \phi = \frac{x}{\rho}$, and $\sin \phi = \frac{y}{\rho}$, we obtain the desired transformation of vector $\vec{\bf A}$ as

$$\vec{\mathbf{A}} = \frac{kx}{[x^2 + y^2]^{3/2}} \vec{\mathbf{a}}_x + \frac{ky}{[x^2 + y^2]^{3/2}} \vec{\mathbf{a}}_y + \frac{10xy}{x^2 + y^2} \vec{\mathbf{a}}_z$$

Problem 3

If $\vec{A} = 3\vec{a}_{\rho} + 2\vec{a}_{\phi} + 5\vec{a}_{z}$ and $\vec{B} = -2\vec{a}_{\rho} + 3\vec{a}_{\phi} - \vec{a}_{z}$ are given at points $P(3, \pi/6, 5)$ and $Q(4, \pi/3, 3)$, find $\vec{C} = \vec{A} - \vec{B}$ at point $S(2, \pi/4, 4)$.

The two vectors are not defined in the same $\phi = \text{constant plane}$, so we cannot sum them directly in the cylindrical system. Conversion to the rectangular system is therefore necessary. For vector \vec{A} given at point $P(3, \pi/6, 5)$, the transformation matrix becomes

$$\begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \cos 30^\circ & -\sin 30^\circ & 0 \\ \sin 30^\circ & \cos 30^\circ & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$$

$$\vec{A} = 1.598\vec{a} + 3.232\vec{a} + 5\vec{a}$$

 $\vec{\mathbf{A}} = 1.598\vec{\mathbf{a}}_x + 3.232\vec{\mathbf{a}}_y + 5\vec{\mathbf{a}}_z$

Similarly, with $\phi = \pi/3$, the transformed vector $\vec{\bf B}$ is

$$\vec{\mathbf{B}} = -3.598\vec{\mathbf{a}}_x - 0.232\vec{\mathbf{a}}_y - \vec{\mathbf{a}}_z$$

$$\vec{\mathbf{C}} = -2\vec{\mathbf{a}}_x + 3\vec{\mathbf{a}}_y + 4\vec{\mathbf{a}}_z$$

Vector \vec{C} can now be transformed into its components at point $S(2, \pi/4, 4)$ in the cylindrical system by making use of the transformation matrix given in (2.39). That is

$$\begin{bmatrix} C_{\rho} \\ C_{\phi} \\ C_{5} \end{bmatrix} = \begin{bmatrix} \cos 45^{\circ} & \sin 45^{\circ} & 0 \\ -\sin 45^{\circ} & \cos 45^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ 4 \end{bmatrix}$$

Thus, $\vec{C} = 0.707\vec{a}_{\rho} + 3.535\vec{a}_{\phi} + 4\vec{a}_{z}$

Note that the transformation of a vector from one coordinate system to another neither changes its magnitude nor its direction.

Thank You