METODA DWUDZIELNA

Dane: f(x), (a,b), ε (dokładność)

Kolejne kroki algorytmu:

1.
$$x_{sr} = \frac{a+b}{2}$$

2.
$$L = b - a$$

$$x_1 = a + \frac{L}{4}, \qquad x_2 = b - \frac{L}{4}$$

Kroki 3-5 dla maksimum

a. Jeśli
$$f(x_1) > f(x_{sr})$$
 to:
 $b = x_{sr}, \qquad x_{sr} = x_1$
i przejdź do kroku 5

4. Porównanie
$$f(x_2)$$
 z $f(x_{sr})$:

a. Jeśli
$$f(x_2) > f(x_{sr})$$
 to:
 $a = x_{sr}, \qquad x_{sr} = x_2$
i przejdź do kroku 5

b. Jeśli
$$f(x_2) \le f(x_{sr})$$
 to:
 $a = x_1, \qquad b = x_2,$
i przejdź do kroku 5

5. Jeśli $L \leq \varepsilon$ to koniec $max = x_{sr}$, w przeciwnym przypadku powrót do kroku 2

Kroki 3-5 dla minimum

3. Porównanie
$$f(x_1)$$
 z $f(x_{sr})$:

a. Jeśli
$$f(x_1) < f(x_{sr})$$
 to:
 $b = x_{sr}, \qquad x_{sr} = x_1$
i przejdź do kroku 5

b. Jeśli
$$f(x_1) \ge f(x_{sr})$$
 to przejdź do kroku 4

4. Porównanie $f(x_2)$ z $f(x_{sr})$:

a. Jeśli
$$f(x_2) < f(x_{sr})$$
 to:
 $a = x_{sr}, \qquad x_{sr} = x_2$ i przejdź do kroku 5

b. Jeśli
$$f(x_2) \ge f(x_{sr})$$
 to:
 $a = x_1, \qquad b = x_2,$
i przejdź do kroku 5

5. Jeśli
$$L \leq \varepsilon$$
 to koniec $min = x_{sr}$, w przeciwnym przypadku powrót do kroku 2

PRZYKŁAD:
$$f(x) = (100 - x)^2$$
, $a = 60$, $b = 150$, $\varepsilon = 12$

Rozwiązanie analityczne:

$$f'(x) = 2(100 - x)(-1) \rightarrow -2(100 - x) = 0 \rightarrow x = 100$$

 $f''(x) = 2 > 0 - minimum (< 0 - maksimum)$

Rozwiązanie metodą dwudzielną:

$$x_{sr} = \frac{150 + 60}{2} = 105,$$
 $f(x_{sr}) = f(105) = (100 - 105)^2 = 25,$ $L = 150 - 60 = 90$
 $x_{sr} = 105,$ $f(x_{sr}) = 25,$ $L = 90$

Iteracja 1:

$$x_1 = 82.5$$
 $x_2 = 127.5$ $f(x_1) = 306.25$ $f(x_2) = 756.25$ (82.5; 127.5) $L = 127.5 - 82.5 = 45$

Iteracja 2:

$$x_1 = 93,75$$
 $x_2 = 116,25$ $f(x_1) = 39,06$ $f(x_2) = 264,06$ (93,75; 116,25) $L = 116,25 - 93,75 = 22,5$

Iteracja 3:

$$x_1 = 99,375$$
 $x_2 = 110,625$ $f(x_1) = 0,391$ $f(x_2) = 112,891$
 $(93,75; 105)$ $L = 11,25 \le \varepsilon = 12$