

Prova Finale di Reti Logiche

Mattia Siriani

Matricola: 892550

Anno accademico 2019-2020

Indice

1	Intr	roduzione	3
	1.1	Descrizione generale	3
	1.2		
2	Arc	hitettura	5
	2.1	Descrizione generale	5
	2.2	Raffigurazione grafica della FSM proposta	
	2.3		
	2.4	Segnali utilizzati dalla FSM	7
	2.5		7
3	Sint	esi	8
	3.1	Risoluzione warning Post-Synthesis	8
	3.2		
4	Cas	i di Test	9
5	Con	nclusioni	19

1 Introduzione

1.1 Descrizione generale

La specifica della Prova finale "Progetto di Reti Logiche" 2019 è ispirata al metodo di codifica a bassa dissipazione di potenza chiamato "Working Zone".

Questo metodo è per il Bus indirizzi: esso viene utilizzato per codificare in maniera differente il valore di un indirizzo (7 bit) trasmesso, quando questo è compreso tra certi intervalli di valori, denominati working-zone¹ (WZ).

Ci sono due possibili codifiche:

- Se l'indirizzo da trasmettere non appartiene ad alcuna Working Zone, esso viene trasmesso invariato, con un bit addizionale impostato a 0 inserito precedentemente all'indirizzo stesso con un'operazione di concatenamento.
- Se l'indirizzo da trasmettere appartiene ad una Working Zone, il bit addizionale viene messo a 1 mentre i bit di indirizzo vengono rappresentati come segue:
 - I primi tre rappresentano il numero della Working Zone al quale l'indirizzo appartiene.
 - Gli ultimi quattro bit indicano l'offset rispetto all'indirizzo base della Working Zone (codificato in one-hot²).

¹working-zone: è un intervallo di indirizzi di dimensione fissa con partenza da un indirizzo base; i suddetti intervalli non possono essere sovrapposti.

 $^{^2}$ Codifica one-hot: è presente un solo 1 per codifica ed in base alla sua posizione, esso rappresenta un valore differente (esempio: 0 -> 0001 1 -> 0010 2 -> 0100 3 -> 1000).

1.2 Schema di funzionamento

Di seguito sono presenti due esempi di funzionamento della specifica: nel primo viene illustrato il caso in cui il valore non appartiene ad una Working Zone, mentre il secondo rappresenta un caso diametralmente opposto.

WZ1	WZ2	WZ3	WZ4	WZ5	WZ6	WZ7	WZ8	
1 - 4	11-14	23-26	56-59	89-92	72-75	60-63	100-104	

L'indirizzo codificato si divide in due parti: il primo bit rappresenta il fatto che il valore non appartenga a nessuna Working Zone, mentre i 7 bit successivi rappresentano il numero 6 scritto in binario.

L'indirizzo codificato si divide in tre parti: il primo bit rappresenta il fatto che il valore appartenga ad una Working Zone, i tre bit successivi indicano che il numero fa parte della quarta Working Zone, mentre gli ultimi quattri bit indicano che l'offset rispetto all'indirizzo base della Working Zone é pari ad 1.

2 Architettura

2.1 Descrizione generale

La specifica da me elaborata è una FSM (Finite State Machine), che si struttura come di seguito descritto:

ho iniziato creando otto segnali, che hanno lo scopo di memorizzare al loro interno i valori delle Working Zone: questo salvataggio comincia quando il segnale *i_start* viene portato alto. In seguito, il componente verifica se il valore presente in RAM(8) appartiene o meno ad una Working Zone e a seconda dei casi subisce una determinata codifica. Alla fine della FSM sono presenti due stati che hanno lo scopo di attendere che *i_start* venga reimpostato ad 1 per poi far ripartire il componente dallo stato "Elaborazione_dato", ovvero il punto in cui si elabora l'appartenenza o meno ad una Working Zone, del valore presente in RAM(8).

2.2 Raffigurazione grafica della FSM proposta

Nell'immagine che segue ho rappresentato la FSM da me elaborata.

Per ogni stato dello schema proposto avrei dovuto inserire una freccia che porta a Reset a significare che il valore di *i_rst* viene alzato ad 1, ma per una maggiore visibilità ho preferito ometterle.

2.3 Descrizione degli stati

Numero	Nome stato	Comportamento
1	Reset	Inizializza tutti i segnali al valore corretto al fine di far funzionare la componente.
2	Wait1	Attende, insieme a Wait2, che il segnale di i_start venga alzato.
3	Wait2	Attende, insieme a Wait1, che il segnale di i_start venga alzato.
4	Reg1	Registra il valore della prima Working Zone all'interno del segnale: "registro1".
5	Reg2	Registra il valore della seconda Working Zone all'interno del segnale: "registro2".
6	Reg3	Registra il valore della terza Working Zone all'interno del segnale: "registro3".
7	Reg4	Registra il valore della quarta Working Zone all'interno del segnale: "registro4".
8	Reg5	Registra il valore della quinta Working Zone all'interno del segnale: "registro5".
9	Reg6	Registra il valore della sesta Working Zone all'interno del segnale: "registro6".
10	Reg7	Registra il valore della settima Working Zone all'interno del segnale: "registro7".
11	Reg8	Registra il valore dell'ottava Working Zone all'interno del segnale: "registro8".
12	Elaborazione_Dato	In questa fase inizialmente si eseguono 8 operazioni matematiche: $ \mathbf{RAM(8)} - \mathbf{registro(i)} $ con il valore i compreso tra 1 e 8 (per rappresentare i valori iniziali delle Working Zone). Questi valori vengono memorizzati in 8 variabili differenti denominate $temp(i) \mid 1 \leq i \leq 8$. In seguito, viene elaborato il confronto matematico: $ 0 \leq \mathbf{temp(i)} \leq 3 $ per ogni variabile e se il valore è compreso nell'intervallo, allora il corrispondente registro apparterrà alla medesima Working Zone; in caso contrario, il valore non apparterrà a nessuna Working Zone. Infine, in base alla presenza o meno del valore in una Working Zone, verranno impostati i segnali che andranno poi a codificare il dato opportunamente.
13	Salvataggio_Dato	Il dato viene codificato e salvato nella posizione corretta (RAM(9)).
14	Conclusione	Una volta che il dato è stato correttamente salvato, viene alzato il segnale di <i>o_done</i> , fino a che il segnale di <i>i_start</i> non si è abbassato, concludendo così l'esecuzione.
15	Ricomincia1	Attende, insieme a Ricomincia2, che il segnale di i_start venga alzato e che quindi l'esecuzione possa ricominciare.
16	Ricomincia2	Attende, insieme a Ricomincia1, che il segnale di <i>i_start</i> venga alzato e che quindi l'esecuzione possa ricominciare.

2.4 Segnali utilizzati dalla FSM

Nome segnale	Funzionamento
Registro1	Si salva il valore corrispondente alla prima Working Zone.
Registro2	Si salva il valore corrispondente alla seconda Working Zone.
Registro3	Si salva il valore corrispondente alla terza Working Zone.
Registro4	Si salva il valore corrispondente alla quarta Working Zone.
Registro5	Si salva il valore corrispondente alla quinta Working Zone.
Registro6	Si salva il valore corrispondente alla sesta Working Zone.
Registro7	Si salva il valore corrispondente alla settima Working Zone.
Registro8	Si salva il valore corrispondente alla ottava Working Zone.
Wz_bit	Bit che, nella codifica, si utilizza per descrivere se il valore in RAM(8) appartiene (1) ad una Working Zone o meno (0).
Wz_num	Tre bit che, nella codifica, si utilizzano per descrivere a quale Working Zone il valore in RAM(8) appartenga.
Wz_offset	Quattro bit (codificati in one-hot) che, nella codifica, si usano per specificare l'offset del valore in RAM(8), rispetto a quello presente nella Working Zone corrispondente.
Valore	Valore a cui viene assegnato il contenuto di RAM(8), nel caso in cui quest'ultimo valore non appartenesse a nessuna Working Zone.
Is_in	Bit per determinare se il valore in RAM(8) è contenuto o meno in una Working Zone.

2.5 Modifiche progettuali

Durante la realizzazione del componente erano presenti degli stati aggiuntivi (nominati da U1 a U8), posizionati dopo gli stati di memorizzazione dei registri, in modo che il dato venisse salvato correttamente.

Nel risolvere i warning di inferred latch sono stati aggiunti dei segnali nominati "SegnaleGenerico_next": in questo modo gli stati dei registri vengono eseguiti due volte e quindi il valore di ogni Working Zone viene correttamente registrato nel corrispondente segnale.

Con questa modifica ho ridotto la FSM di otto stati.

3 Sintesi

3.1 Risoluzione warning Post-Synthesis

Ho risolto i seguenti warning di post sintesi:

- Inferred latch: ho inserito dei segnali denominati: "SegnaleGenerico_next", per permettere l'assegnazione di un valore ad ogni segnale, per tutti gli stati della FSM.
- Warning per segnali presenti nel processo, che però non comparivano nella sensitivity list.

3.2 Area Occupata

Data la quantità utilizzata, notevolmente inferiore, sia delle Look Up Table (LUT) sia dei Flip Flop (FF) rispetto alla disponibilità totale fornita dalla FPGA scelta (xc7a200tfbg484-1), ho deciso di non ottimizzare ulteriormente l'area.

SiteType	Used	Available	Util%
LUT	207	134600	0.15%
\overline{FF}	85	269200	0.03%

4 Casi di Test

Di seguito sono presenti i risultati ricavati dal testing della mia componente.

Ho deciso di creare degli appositi "Test Bench" per testare casi limite o determinati comportamenti anormali; sono presenti anche test per esaminare il normale funzionamento del componente.

Ho testato il componente per diversi valori, per quanto riguarda la durata del ciclo di clock: nei casi di test riportati successivamente è stato inserito il valore minimo (in termini di nanosecondi) a cui il componente dava esito positivo ed il valore richiesto da specifica (100 ns).

1. Tb_rst_10_clock_fine_cambio_ram8: questo test bench verifica che, in seguito ad un'elaborazione, se ne esegua un'altra con modificato il valore presente in RAM(8), aspettando 10 cicli di clock.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)		
4	13	22	31	37	45	77	91	33	1-011- 0100		
RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)*	RAM(9)		
4	13	22	31	37	45	77	91	42	0-42		
Clock 100 ns											
Tipolog	Tipologia Tempo di esecuzione Esito										
Behavi	oural		195	60 ns			TEST 1 PASSATO				
Post-Sy	ynthesis	Function	nal 195	50100 ps			TEST 1	PASSAT	O		
Behavi	oural		445	60 ns			TEST 2	PASSAT	O		
Post-Sy	ynthesis	Function	nal 445	50100 ps			TEST 2	PASSAT	О		
				Clock	x 2 ns						
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito				
Behavi	oural		235	ns			TEST 1 PASSATO				
Post-Sy	ynthesis	Function	nal 235	5100 ps			TEST 1	PASSAT	O		
Behavi	oural		383	3 ns			TEST 2	PASSAT	O		
Post-Sy	ynthesis	Function	nal 383	3100 ps			TEST 2	PASSAT	О		

Il simbolo di RAM(8)* significa che quel valore è stato modificato.

2. tb_wz_0: questo test bench verifica il caso limite di avere una Working Zone in 0 e che il valore contenuto in RAM(8) sia appartenente alla medesima Working Zone.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)				
0	13	22	31	37	45	77	91	0	1-000- 0001				
Clock 100 ns													
Tipolog	Tipologia Tempo di esecuzione Esito												
Behavi	oural		155	50 ns		r	TEST PASSATO						
Post-S	ynthesis	Function	nal 155	60100 ps		ΓEST PA	ASSATO						
	Clock 2 ns												
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito						
Behavioural				129 ns			TEST PASSATO						
Post-S	ynthesis	Function	nal 129	100 ps		r -	ΓEST PA	ASSATO					

3. Tb_wz_124_ram8_max: questo test bench verifica il caso limite opposto al precedente, ovvero di trovarsi nella situazione in cui il valore in RAM(8) sia il massimo possibile ed il valore presente in una Working Zone sia anch'esso il più alto possibile.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)					
4	13	22	31	37	45	77	91	124	1-111- 1000					
	Clock 100 ns													
Tipolog	Tipologia Tempo di esecuzione Esito													
Behavi	oural		155	ons		٢	TEST PASSATO							
Post-Sy	ynthesis	Function	nal 155	60100 ps		r -	ΓEST PA	ASSATO)					
	Clock 2 ns													
Tipolog	gia		Ter	npo di e	secuzion	e l	Esito							
Behavioural				129 ns			TEST PASSATO							
Post-Sy	ynthesis	Function	nal 129	$100 \mathrm{\ ps}$		r -	TEST PASSATO							

4. Tb_wz_disordinate_in: questo test bench verifica che se le Working Zone sono disordinate, il valore viene codificato correttamente.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)				
109	72	24	43	87	12	99	33	110	1-00- 0010				
	Clock 100 ns												
Tipolog	Tipologia Tempo di esecuzione Esito												
Behavi	oural		155	60 ns		-	TEST PASSATO						
Post-S	ynthesis	Function	nal 155	1550100 ps TEST PASSATO									
	Clock 2 ns												
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito						
Behavioural Post-Synthesis Functional				129 ns 129100 ps			TEST PASSATO TEST PASSATO						

5. Tb_wz_disordinate_not_in: questo test bench verifica la stessa proprietà vista sopra, solo che in questo caso il valore in RAM(8) non fa parte di una Working Zone.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)					
109	72	24	43	87	12	99	33	42	0-42					
	Clock 100 ns													
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito							
Behavi Post-Sy		Function		60 ns 60100 ps			TEST PASSATO TEST PASSATO							
				Clock	x 2 ns									
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito							
Behavi Post-Sy		Function	_	ns 100 ps			ΓEST PΑ ΓEST PΑ							

6. Tb_rst_cambio_valori: questo test bench verifica la proprietà di avere un reset con cambio di tutti i valori, in seguito ad una conclusione di un'elaborazione.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)					
0	13	22	31	37	45	77	91	42	0-42					
	Clock 100 ns													
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito							
Behavi				50 ns			TEST 1 PASSATO							
Post-S	ynthesis	Function	nal 155	50100 ps		-	TEST 1	PASSAT	O'					
	Clock 2 ns													
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito							
Behavioural				ns			TEST 1 PASSATO							
Post-Sy	ynthesis	Function	nal 129	$100 \mathrm{ps}$		-	TEST 1	PASSAT	O'					

Dopo una prima elaborazione vengono inseriti nuovi valori all'interno della RAM.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)				
10	16	25	33	38	42	70	99	42	1-101- 0001				
Clock 100 ns													
Tipolog	Tipologia Tempo di esecuzione Esito												
Behavi	oural		305	ons			TEST 2 PASSATO						
Post-Sy	ynthesis	Function	nal 305	60100 ps		7	TEST 2	PASSAT	O'				
	Clock 2 ns												
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito						
Behavi	oural		159	ns			ΓEST 2	PASSAT	O'				
Post-Sy	ynthesis	Function	nal 159	100 ps			TEST 2 PASSATO						

7. Tb_start_10_clock: questo test bench verifica che il segnale di *i_start* potrebbe essere impostato ad 1 in ogni momento, quindi in questo caso si aspettano 10 cicli di clock dopo che il segnale di *i_rst* è stato impostato a 0.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)	
4	13	22	31	37	45	77	91	33	1-011- 0100	
Clock 100 ns										
Tipologia Tempo di esecuzione Esito										
Behavioural 2550 ns TEST PASSATO										
Post-Synthesis Functional				2550100 ps TEST P						
Clock 2 ns										
Tipologia Tempo di esecuzione							Esito			
Behavi	oural		247	ns			TEST PA	ASSATO		
Post-S	ynthesis	Function	nal 247				TEST PASSATO			

8. Tb_pfrl_2020_no_wz: questo test bench verifica il normale funzionamento della componente, nel caso il valore non sia contenuto in una Working Zone.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)			
4	13	22	31	37	45	77	91	42	0-42			
	Clock 100 ns											
Tipologia Tempo di esecuzione Esito												
Behavioural 1550 ns TEST PASSATO Post-Synthesis Functional 1550100 ps TEST PASSATO												
Clock 2 ns												
Tipologia Tempo di esecuzione Esito												
Behavi Post-Sy		Function	_	ns 100 ps				ASSATO ASSATO				

9. Tb_pfrl_2020_in_wz: questo test bench verifica il normale funzionamento della componente, nel caso il valore sia contenuto in una Working Zone.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)			
4	13	22	31	37	45	77	91	42	1-011- 0100			
	Clock 100 ns											
Tipologia Tempo di esecuzione Esito												
Behavioural 1650 ns TEST PASSATO												
Post-Synthesis Functional				1650100 ps TEST PASSAT								
Clock 2 ns												
Tipologia Tempo di esecuzione Esito												
Behavioural Post-Synthesis Functional				ns 100 ps	TEST PASSATO TEST PASSATO							

10. Tb_rst_prima_o_done_cambio_ram8: questo test bench verifica il caso limite in cui il valore codificato viene salvato in RAM(9) con o_done='0'; nel frattempo arriva un segnale di i_rst='1' che fa ripartire l'esecuzione, ma con RAM(8) modificata, quindi si avrá una codifica differente in RAM(9).

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)
4	13	22	31	37	45	77	91	42	0-42
RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)*	RAM(9)
4	13	22	31	37	45	77	91	46	1-101- 0010

TipologiaTempo di esecuzioneEsitoBehavioural2950 nsTEST PASSATOPost-Synthesis Functional3050100 psTEST PASSATO		Clock 100 ns	
	Tipologia	Tempo di esecuzione	Esito
·			

	Clock 2 ns	
Tipologia	Tempo di esecuzione	Esito
Behavioural Post-Synthesis Functional	255 ns 257100 ps	TEST PASSATO TEST PASSATO

Il simbolo di RAM(8)* significa che quel valore è stato modificato.

11. Tb_restart_dopo_10_clock_fine: questo test bench verifica che un segnale di i_start può arrivare dopo n cicli di clock in seguito alla conclusione di un'elaborazione, aspettando 10 cicli di clock.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)	
4	13	22	31	37	45	77	91	33	1-011- 0100	
Clock 100 ns										
Tipolog	gia		Ter	npo di e	secuzion	e l	Esito			
Behavi	oural		195	50 ns		r	ΓEST 1	PASSAT	O'	
Post-S	ynthesis	Function	nal 195	50100 ps		r	ΓEST 1	PASSAT	O'	
Behavi	oural		345	50 ns		r	ΓEST 2	PASSAT	O'	
Post-S	ynthesis	Function	nal 345	50100 ps		ŗ	ΓEST 2	PASSAT	O'	
Clock 2 ns										
Tipolog	gia		Ter	npo di e	secuzion	e]	Esito			
Behavi	oural		235	ns		r	ΓEST 1	PASSAT	O'	
Post-S	ynthesis	Function	nal 235	5100 ps		r	ΓEST 1	PASSAT	O'	
Behavi	oural		363	3 ns		Г	ΓEST 2	PASSAT	O'	
Post-S	ynthesis	Function	nal 363	8100 ps		r	ΓEST 2	PASSAT	O'	

12. Tb_valore_127_no_wz: questo test bench verifica che il valore in RAM(8) sia il massimo possibile (127) e non appartenga a nessuna Working Zone.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)			
0	13	22	31	37	45	77	91	127	127			
	Clock 100 ns											
Tipologia Tempo di esecuzione Esito												
Behavioural 1550 ns TEST PASSATO Post-Synthesis Functional 1550100 ps TEST PASSATO												
Clock 2 ns												
Tipologia Tempo di esecuzione Esito												
Behavioural Post-Synthesis Functional				129 ns 129100 ps			TEST PASSATO TEST PASSATO					

13. Tb_valore_0_no_wz: questo test bench verifica che il valore in RAM(8) sia il minimo possibile (0) e non appartenga a nessuna Working Zone.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)		
1	13	22	31	37	45	77	91	0	0		
Clock 100 ns											
Tipologia Tempo di esecuzione Esito											
Behavioural 1550 ns TEST PASSATO Post-Synthesis Functional 1550100 ps TEST PASSATO											
Clock 2 ns											
Tipologia Tempo di esecuzione Esito											
Behavi Post-S	oural ynthesis	Function	_	ns 100 ps	TEST PASSAT TEST PASSAT						

14. tb_rst_1_clock: questo test bench alza il segnale di *i_rst* ad 1 dopo un ciclo di clock da quando il segnale di *i_start* è stato messo ad 1. Ho controllato questa condizione anche per 0,2,3,4,5 cicli di clock.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)		
4	13	22	31	37	45	77	91	33	1-011- 0100		
Clock 100 ns											
Tipologia Tempo di esecuzione Esito											
Behavioural				60 ns		r	TEST PA	ASSATO)		
Post-S	ynthesis	Function	nal 195	50100 ps		r	TEST PA	ASSATO)		
Clock 2 ns											
Tipolog	gia		Ter	npo di e	secuzion	e]	Esito				
Behavi	oural		235	ns		r	TEST PA	ASSATO)		
Post-S	ynthesis	Function	nal 235	5100 ps		r	TEST PA	ASSATO)		

I valori dei test per 0,2,3,4,5 clock sono praticamente uguali tranne per il tempo di esecuzione che cambia ogni volta di 100 o 2 ns in base al clock che utilizzo.

15. Tb_0_clock_rst: questo test bench verifica che, in seguito ad un'elaborazione, venga cambiato il valore in RAM(8) istantaneamente.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)
4	13	22	31	37	45	77	91	33	1-011- 0100
RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)*	RAM(9)
4	13	22	31	37	45	77	91	42	0-42
				Clock	100 ns				
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito		
Behavi	oural		165	50 ns		_	ΓEST 1	PASSAT	О
Post-Sy	Post-Synthesis Functional					-	ΓEST 1	PASSAT	O
Behavi	oural		335	60 ns		-	ΓEST 2	PASSAT	O
Post-Sy	ynthesis	Function	nal 335	50100 ps		-	ΓEST 2	PASSAT	O
				Clock	c 2 ns				
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito		
Behavi	oural		229) ns		_	ΓEST 1	PASSAT	O
Post-Sy	ynthesis	Function	nal 229	0100 ps		-	ΓEST 1	PASSAT	O
Behavi	oural		361	ns		_	ΓEST 2	PASSAT	O
Post-Sy	ynthesis	Function	nal 361	100 ps		-	ΓEST 2	PASSAT	O

Il simbolo di RAM(8)* significa che quel valore è stato modificato.

16. Tb_rst_10_clock_fine: questo test bench verifica che, in seguito ad un'elaborazione si aspettino 10 cicli di clock prima di avere un *i_rst='1'* che, in questo caso, modifichi tutti i valori in memoria.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)		
4	13	22	31	37	45	77	91	33	1-011- 0100		
Clock 100 ns											
Tipologia Tempo di esecuzione Esito											
Behavioural 1950 ns						<u>-</u>	ΓEST 1	PASSAT	O'		
Post-Synthesis Functional				1950100 ps TEST 1					O'		
Clock 2 ns											
Tipolog	gia		Ter	npo di e	secuzion	e I	Esito				
Behavi	oural		235	o ns			TEST 1	PASSAT	O'		
Post-S	ynthesis	Function	nal 235	5100 ps		-	TEST 1	PASSAT	O'		

Dopo una prima elaborazione vengono inseriti nuovi valori all'interno della RAM.

RAM(0)	RAM(1)	RAM(2)	RAM(3)	RAM(4)	RAM(5)	RAM(6)	RAM(7)	RAM(8)	RAM(9)
10	16	25	33	38	42	70	99	98	0-98
Clock 100 ns									
Tipologia Tempo di esecuzione							Esito		
Behavioural Post-Synthesis Functional				4450 ns 4450100 ps			TEST 2 PASSATO TEST 2 PASSATO		
Clock 2 ns									
Tipologia				Tempo di esecuzione			Esito		
Behavioural Post-Synthesis Functional				383 ns 383100 ps			TEST 2 PASSATO TEST 2 PASSATO		

5 Conclusioni

Il componente funziona correttamente come da specifica: é stato da me sottoposto ad una grande quantità di test, che hanno dato tutti esito positivo, sia in Behavioural, sia in Post-Synthesis Functional, sia in Post-Implementation Functional, anche se quest'ultimo non veniva richiesto in specifica.

Sarebbe stato possibile minimizzare la FSM, ma ho deciso di tenere alcuni stati separati per favorirne la leggibilità e mantenere una chiara distribuzione logica. Ho deciso di non ottimizzare ulteriormente l'area in quanto la quantità di Look Up Table $(0.15\%\ used)$ e di Flip Flop $(0.03\%\ used)$ è notevolmente inferiore a quella totale.

Il componente funziona correttamente fino ad un periodo di clock di 2 ns, cioè il 98% più veloce del clock voluto in specifica (100 ns).