Homework 8

1. a) Yes, this MDP is unichain. There are only two possible stationary deterministic policies, i.e. $\pi_1: d(s_1)=a_{1,1}, d(s_2)=a_{2,1}, d(s_3)=a_{3,1}$ and $\pi_2: d(s_1)=a_{1,2}, d(s_2)=a_{2,1}, d(s_3)=a_{3,1}$, and their respective transition matrices are

$$P_{d_1} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } P_{d_2} = \begin{bmatrix} 2/3 & 0 & 1/3 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

It is clear that for both of these policies there is a single recurrent class with one transient state $(\{s_1, s_2\})$ is recurrent and $\{s_3\}$ is transient for π_1 and $\{s_1, s_3\}$ is recurrent and $\{s_2\}$ is transient for π_2).

b) Using value iteration and setting $v^0 = (0,0,0)$ and $\epsilon = 0.001$, we find that the epsilon-optimal policy is $\pi_{\epsilon}^* : d(s_1) = a_{1,2}, d(s_2) = a_{2,1}, d(s_3) = a_{3,1}$ after 11 iterations. The algorithm was coded in R, and the output for v for selected iterations and the final output for d_{ϵ} are shown in the following:

$$V \\ [,1] \quad [,2] \quad [,3] \\ [1,]0.000000 \quad 3.000000 \quad 4.000000 \\ [2,]1.500000 \quad 3.000000 \quad 4.000000 \\ [3,]2.333333 \quad 4.500000 \quad 5.500000 \\ \vdots \\ [9,]8.399691 \quad 10.400463 \quad 11.400463 \\ [10,]9.400077 \quad 11.399691 \quad 12.399691 \\ [11,]10.399949 \quad 12.400077 \quad 13.400077 \\ \text{d-epsilon} \\ [,1] \\ [1,]2 \\ [2,]1 \\ [3,]1 \\ \end{bmatrix}$$

Note that this result is very dependent on ϵ . For a different value of ϵ , e.g. $\epsilon=0.0005$, we find that the epsilon-optimal policy is $\pi_{\epsilon}^*: d(s_1)=a_{1,1}, d(s_2)=a_{2,1}, d(s_3)=a_{3,1}$.

c) Using policy iteration and setting d_0 to be $d_0(s_1) = a_{1,2}, d_0(s_2) = a_{2,1}, d_0(s_3) = a_{3,1}$. In the policy evaluation step, we add the constraint that $h_0(s_1) = 0$, since it is recurrent under d_0 , to solve

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} + \begin{bmatrix} g_0 \\ g_0 \\ g_0 \end{bmatrix} + \left(\begin{bmatrix} 2/3 & 0 & 1/3 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \begin{bmatrix} 0 \\ h_0(s_2) \\ h_0(s_3) \end{bmatrix},$$

and get that $g_0 = 1$, $h_0(s_2) = 2$, and $h_0(s_3) = 3$. Then, in the policy iteration step, we find that

$$d_{1} = \arg \max \left(\begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 2/3 & 0 & 1/3 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \right)$$

$$= \arg \max \left(\begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} \right)$$

$$= d_{0}.$$

It is clear that both policies can be selected in the last step, so we set $d_1 = d_0$ since this allows us to stop the algorithm. Therefore, $d^* = d_0$, and the optimal policy is $\pi^* : d(s_1) = a_{1,2}, d(s_2) = a_{2,1}, d(s_3) = a_{3,1}$. Note that if we had set d_0 to be $d_0(s_1) = a_{1,1}, d_0(s_2) = a_{2,1}, d_0(s_3) = a_{3,1}$ instead, we would have found that policy to be optimal with the same algorithm and reasoning.

d) First, we find that

$$P_{d_1}^* = \begin{bmatrix} 2/3 & 1/3 & 0 \\ 2/3 & 1/3 & 0 \\ 2/3 & 1/3 & 0 \end{bmatrix} \text{ and } P_{d_2}^* = \begin{bmatrix} 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 \end{bmatrix}.$$

Thus,

$$g^{\pi_1} = P_{d_1}^* r_{d_1} = \begin{bmatrix} 2/3 & 1/3 & 0 \\ 2/3 & 1/3 & 0 \\ 2/3 & 1/3 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ and }$$

$$g^{\pi_2} = P_{d_2}^* r_{d_2} = \begin{bmatrix} 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\implies g^{\pi_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = g^{\pi_2}.$$

In addition,

$$h^{\pi_1} = (I - P_{d_1} + P_{d_1})^{-1} (I - P_{d_1}) r_{d_1}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2/3 & 1/3 & 0 \\ 2/3 & 1/3 & 0 \\ 2/3 & 1/3 & 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 2/3 & 1/3 & 0 \\ 2/3 & 1/3 & 0 \\ 2/3 & 1/3 & 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} -2/3 \\ 4/3 \\ 7/3 \end{bmatrix} \text{ and }$$

$$h^{\pi_2} = (I - P_{d_2} + P_{d_2}^*)^{-1} (I - P_{d_2}^*) r_{d_2}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 2/3 & 0 & 1/3 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 \end{bmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 \\ 3/4 & 0 & 1/4 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 \\ 5/4 \\ 9/4 \end{bmatrix}$$

$$\implies h^{\pi_1} = \begin{bmatrix} -2/3 \\ 4/3 \\ 7/3 \end{bmatrix} > \begin{bmatrix} -3/4 \\ 5/4 \\ 9/4 \end{bmatrix} = h^{\pi_2}.$$

Thus, the bias optimal policy is clearly $\pi_1: d(s_1)=a_{1,1}, d(s_2)=a_{2,1}, d(s_3)=a_{3,1}$ since it is the maximal gain policy that has a greater bias than $\pi_2: d(s_1)=a_{1,2}, d(s_2)=a_{2,1}, d(s_3)=a_{3,1}$. This

shows that the policy that policy iteration declared to be optimal, i.e. $\pi^* = \pi_2$, is not necessarily a bias optimal policy.