

1. A synthetic hydrotalcite of the general formula:

$$[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+}[A^{n-}_{x/n}\cdot mH_{2}O]^{x-}$$

wherein M^{2+} is a divalent cation, M^{3+} is a trivalent cation and A^{n-} is at least one organic anion comprising a carboxylate of an acid containing at least one heteroatom selected from the group consisting of nitrogen, phosphorous, sulfur and halogens.

- 2. The synthetic hydrotalcite of claim 1, wherein said divalent cation source, M^{2+} consists essentially of Mg^{2+} .
- 3. The synthetic hydrotalcite of claim 1, wherein said trivalent cation source, M^{3+} consists essentially of Al^{3+} .
- 4. The synthetic hydrotalcite of claim 1, wherein said at least one organic anion, A^{n-} comprises an amino acid.
- 5. The synthetic hydrotalcite of claim 4, wherein said amino acid comprises 4-aminobutyric acid.
- 6. The synthetic hydrotalcite of claim 4 wherein said amino acid comprises 6-aminocaproic acid.
- 7. The synthetic hydrotalcite of claim 1, wherein said hydrotalcite is capable of self exfoliation.
- 8. The synthetic hydrotalcite of claim 7, wherein said hydrotalcite is capable of reversible exfoliation.

- 10. The synthetic hydrotalcite of claim 1, wherein said divalent cation, M^{2+} comprises Mg^{2+} and up to 50% of at least one divalent cation selected from Ni^{2+} , Co^{2+} , Zn^{2+} , Cu^{2+} and Mn^{2+} .
- 11. The synthetic hydrotalcite of claim 1, wherein said trivalent cation, M³⁺ comprises A1³⁺ and up to 50% of at least one trivalent cation selected from A1³⁺, Cr³⁺, and Fe³⁺.
 - 12. A method of making a synthetic hydrotalcite having the general formula

$$[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+}[A^{n-}_{x/n}\cdot mH_{2}O]^{x-}$$

wherein M²⁺ is a divalent cation, M³⁺ is a trivalent cation and Aⁿ⁻ is at least one organic anion comprising a carboxylate of an acid containing at least one heteroatom selected from the group consisting of nitrogen, phosphorous, sulfur and halogens, said method comprising: reacting said trivalent cation source, M³⁺ with said organic anion source, Aⁿ⁻ to produce an intermediate; and reacting said intermediate with said divalent cation source, M²⁺ in water to produce said synthetic hydrotalcite.

- 13. The method of claim 12, wherein said step of reacting said trivalent cation source, M^{3+} with said organic anion source, A^{n-} occurs in water.
- 14. The method of claim 13, wherein the reaction time of said step of reacting said trivalent cation source, M³⁺ with said organic anion source, Aⁿ⁻ is from about 4 to about 8 hours at a temperature of about 75°-85°C.

- The method of claim 12, wherein the reaction time of said step of reacting said divalent cation source, M^{2+} with said intermediate is from about 4 to about 8 hours at a temperature of about 90°C.
- 16. The method of claim 12, wherein said step of reacting said trivalent cation source, M³⁺ with said organic anion source, Aⁿ⁻ occurs in an organic solvent.
- 17. The method of claim 12, wherein said step of reacting said trivalent cation source, M^{3+} with said organic anion source, A^{n-} occurs in an acid melt.
- 18. The method of claim 12, wherein said trivalent cation source, M³⁺ consists essentially of Al³⁺.
- 19. The method of claim 12, wherein said trivalent cation source, M^{3+} contains $A1^{3+}$ and up to 50% of at least one of Cr^{3+} and Fe^{3+} .
- 20. The method of claim 12, wherein said divalent cation source, M^{2+} consists essentially of Mg^{2+} .
- 21. The method of claim 12, wherein said divalent cation source, M^{2+} contains Mg^{2+} and up to 50% of at least one of Ni^{2+} , Co^{2+} , Zn^{2+} , Cu^{2+} and Mn^{2+} .
- 22. The method of claim 12, wherein said at least one organic anion source, A^{n-} comprises an amino acid.
- 23. The method of claim 22, wherein said amino acid comprises 4-aminobutyric acid.
- 24. The method of claim 22, wherein said amino acid comprises 6-aminocaproic acid.
- 25. The method of claim 12, further comprising isolating said synthetic hydrotalcite as a solid and drying said synthetic hydrotalcite.

- 26. The method of claim 25, wherein said drying is accomplished in a spray drier.
- 27. The method of claim 12, wherein said synthetic hydrotalcite is capable of self exfoliation.
- 28. The method of claim 27, further comprising isolating said synthetic hydrotalcite as a colloidal suspension in a solvent.
 - 29. The method of claim 28, wherein said solvent is water.
 - 30. The method of claim 28 wherein said solvent is an alcohol.
- 31. The method of claim 28, further comprising evaporating a portion of said solvent to produce a concentrated colloidal suspension of said synthetic hydrotalcite.
- 32. The method of claim 28, further comprising evaporating a portion of said solvent to produce a paste of said synthetic hydrotalcite.
 - 33. A synthetic hydrotalcite-poly-addition polymer blend comprising: at least one poly-addition polymer; and a synthetic hydrotalcite of the general formula:

$$[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+}[A^{n-}_{x/n}\cdot mH_{2}O]^{x-}$$

wherein M^{2+} is a divalent cation, M^{3+} is a trivalent cation and A^{n-} is at least one organic anion comprising a carboxylate of an acid containing at least one heteroatom selected from the group consisting of nitrogen, phosphorous, sulfur and halogens.

34. The synthetic hydrotalcite-poly-addition polymer blend of claim 33, wherein said divalent cation, M^{2+} consists essentially of Mg^{2+} .

- 35. The synthetic hydrotalcite-poly-addition polymer blend of claim 33, wherein said trivalent cation, M^{3+} consists essentially of $A1^{3+}$.
- 36. The synthetic hydrotalcite-poly-addition polymer blend of claim 33, wherein said at least one poly-addition polymer is selected from the group consisting of polypropylene, polyethylene, polybutene-1, poly-4-methyl pentene-1, polyvinyl chloride and polystyrene.
- 37. The synthetic hydrotalcite-poly-addition polymer blend of claim 33, wherein said at least one poly-addition polymer comprises a maleated polyolefin.
- 38. The synthetic hydrotalcite-poly-addition polymer blend of claim 37, wherein said maleated polyolefin comprises maleated polypropylene.
- 39. The synthetic hydrotalcite-poly-addition polymer blend of claim 33 wherein said organic anion, Aⁿ- comprises an amino acid.
- 40. The synthetic hydrotalcite-poly-addition polymer blend of claim 39, wherein said amino acid comprises 4-aminobtyric acid.
- 41. The synthetic hydrotalcite-poly-addition polymer blend of claim 39, wherein said amino acid comprises 6-aminocaproic acid.
- 42. The synthetic hydrotalcite-poly-addition polymer blend of claim 39, wherein said at least one polymer comprises a maleated polyolefin.
- 43. The synthetic hydrotalcite-poly-addition polymer blend of claim 42, wherein said maleated polyolefin bonds with said amino acid in the form of an amide.
- 44. The synthetic hydrotalcite-poly-addition polymer blend of claim 42, wherein said maleated polyolefin bonds with said amino acid in the form of an imide.

- 45. The synthetic hydrotalcite-poly-addition polymer blend of claim 33, wherein said hydrotalcite is capable of self exfoliation.
- 46. The synthetic hydrotalcite-poly-addition polymer blend of claim 45, wherein said hydrotalcite is capable of reversible exfoliation.
- 47. The synthetic hydrotalcite-poly-addition polymer blend of claim 33, wherein said hydrotalcite is capable of reversible exfoliation.
- 48. The synthetic hydrotalcite-poly-addition polymer blend of claim 33, wherein said divalent cation, M^{2+} contains Mg^{2+} and up to 50% of at least one divalent cation selected from Ni^{2+} , Co^{2+} , Zn^{2+} , Cu^{2+} and Mn^{2+} .
- 49. The synthetic hydrotalcite-poly-addition polymer blend of claim 33, wherein said trivalent cation, M^{3+} contains $A1^{3+-}$ and up to 50% of at least one trivalent cation selected from Cr^{3+} and Fe^{3+} .
- 50. A method of making a synthetic hydrotalcite-poly-addition polymer blend, said method comprising:

mixing an emulsion comprising at least one poly-addition polymer with a hydrotalcite of the following formula to obtain a blend,

$$[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+}[A^{n-}_{x/n}\cdot mH_{2}O]^{x-}$$

wherein M^{2+} is a divalent cation, M^{3+} is a trivalent cation and A^{n-} is at least one organic anion comprising a carboxylate of an acid containing at least one heteroatom selected from the group consisting of nitrogen, phosphorous, sulfur and halogens.

- 51. The method of claim 50, wherein said at least one poly-addition polymer is selected from the group consisting of polypropylene, polyethylene, polybutene-1, poly-4-methyl pentene-1, polyvinyl chloride and polystyrene.
- 52. The method of claim 50, wherein said at least one poly-addition polymer comprises a maleated polyolefin.
- 53. The method of claim 52, wherein said maleated polyolefin comprises maleated polypropylene
 - 54. The method of claim 50, further including a step of drying said blend.
- 55. The method of claim 54, wherein said step of drying comprises spraydrying.
- 56. The method of claim 50 wherein said organic anion, Aⁿ comprises an amino acid.
- 57. The method of claim 56, wherein said amino acid comprises 4-aminobtyric acid.
- 58. The method of claim 56, wherein said amino acid comprises 6-aminocaproic acid.
- 59. The method of claim 56, wherein said at least one poly-addition polymer comprises a maleated polyolefin.
- 60. The method of claim 59, wherein said maleated polyolefin reacts with said amino acid to form an amide.
- 61. The method of claim 59, wherein said maleated polyolefin reacts with said amino acid to form an imide.

- 62. The method of claim 50, wherein said hydrotalcite is capable of self exfoliation.
- 63. The method of claim 62, wherein said hydrotalcite is capable of reversible exfoliation.
- 64. The method of claim 50, wherein said hydrotalcite is capable of reversible exfoliation.
 - 65. A synthetic hydrotalcite-poly-addition polymer blend comprising:

 a maleated polyolefin, at least one unmodified polyaddition polymer; and
 a synthetic hydrotalcite of the general formula:

$$[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+}[A^{n-}_{x/n}\cdot mH_{2}O]^{x-}$$

wherein M^{2+} is a divalent cation, M^{3+} is a trivalent cation and A^{n-} is at least one organic anion comprising a carboxylate of an amino acid.

- 66. The synthetic hydrotalcite-poly-addition polymer blend of claim 65, wherein said amino acid comprises 4-aminobtyric acid.
- 67. The synthetic hydrotalcite-poly-addition polymer blend of claim 65, wherein said amino acid comprises 6-aminocaproic acid.
- 68. The synthetic hydrotalcite-poly-addition polymer blend of claim 65, wherein said maleated polyolefin bonds with said amino acid in the form of an amide.
- 69. The synthetic hydrotalcite-poly-addition polymer blend of claim 65, wherein said maleated polyolefin bonds with said amino acid in the form of an imide.

70. The synthetic hydrotalcite-poly-addition polymer blend of claim 65, wherein said at least one unmodified polymer is selected from the group consisting of polypropylene, polyethylene, polybutene-1, poly-4-methyl pentene-1, polyvinyl chloride and polystyrene.