Certamen MAT-266 Análisis de Regresión

Profesor: Felipe Osorio. 7 de diciembre de 2011.

1. (20 puntos) Muestre que si X es de rango completo

$$\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 = \|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2 + (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T \boldsymbol{X}^T \boldsymbol{X} (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}),$$

desde ahí deduzca que $Q(\beta) = ||Y - X\beta||^2$ es minimizado para $\beta = \widehat{\beta}$.

2. (20 puntos) Considere el modelo

$$Y_{ij} = \theta_i x_j + \epsilon_{ij}, \qquad i = 1, 2; j = 1, \dots, T,$$

con $\{\epsilon_{ij}\}$ variables aleatorias independientes $\mathcal{N}(0, \sigma^2)$ y $\{x_i\}$ constantes conocidas. Obtenga el estadístico F para probar $H_0: \theta_1 = \theta_2$.

3. (20 puntos) Desde el ajuste de todas las regresiones posibles a un conjunto de 13 datos y 4 regresores, se obtuvo la siguiente información:

RSS_p	R_p^2	\widehat{eta}_0	\widehat{eta}_1	\widehat{eta}_2	\widehat{eta}_3	\widehat{eta}_4
2715.764	0.000	95.42				
1265.687	0.534	81.48	1.87			
906.336	0.666	57.42		0.79		
1939.401	0.286	110.21			-1.26	
883.867	0.675	117.57				-0.74
57.905	0.979	52.58	1.47	0.66		
1227.072	0.548	72.35	2.31		0.49	
74.762	0.972	103.10	1.44			-0.61
415.442	0.847	72.08		0.73	-1.01	
868.880	0.680	94.16		0.31		-0.46
175.738	0.935	131.28			-1.20	-0.72
48.111	0.982	48.19	1.70	0.66	0.25	
47.973	0.982	71.65	1.45	0.42		-0.24
50.836	0.981	203.64		-0.92	-1.45	-1.56
73.815	0.973	111.68	1.05		-0.41	-0.64
47.864	0.982	62.41	1.55	0.51	0.10	-0.14

- a) Encuentre el mejor subconjunto de regresores usando los critérios $s_p^2,\,C_p$ y Akaike.
- b) Obtenga el mejor subconjunto de regresores mediante el procedimiento stepwise. Use $F_{IN}=F_{OUT}=4,0.$
- 4. (20 puntos) Considere la inclusión de una nueva variable regresora \boldsymbol{Z} como

$$Y = X\beta + \gamma Z + \epsilon \tag{1}$$

con $E(\epsilon) = \mathbf{0}$ y $Cov(\epsilon) = \sigma^2 \mathbf{I}_n$. Tenemos $\mathbf{H} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$, multiplique ambos lados de (1) por $(\mathbf{I} - \mathbf{H})$ y obtenga un estimador para γ .

5. (20 puntos) Sea $\overline{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij} \text{ y } z_{ij} = x_{ij} - \overline{x}_j$, para todo $i = 1, \ldots, n; j = 1, \ldots, k$ y considere $\mathbf{Z} = (z_{ij}), \, \boldsymbol{\beta}_{(0)} = (\beta_1, \ldots, \beta_k)^T$. De este modo, tenemos el modelo centrado dado por:

$$egin{aligned} m{Y} &= \gamma_0 m{1} + m{Z} m{eta}_{(0)} + m{\epsilon} \ &= (m{1}, m{Z}) egin{pmatrix} \gamma_0 \ m{eta}_{(0)} \end{pmatrix} + m{\epsilon}. \end{aligned}$$

Para $E(\epsilon) = \mathbf{0}$ y $Cov(\epsilon) = \sigma^2 \mathbf{I}$, obtenga el estimador mínimos cuadrados de γ_0 y $\boldsymbol{\beta}_{(0)}$. Calcule también la matriz de covarianza de $\hat{\boldsymbol{\theta}} = (\hat{\gamma}_0, \hat{\boldsymbol{\beta}}_{(0)}^T)^T$. ¿Son $\hat{\gamma}_0$ y $\hat{\boldsymbol{\beta}}_{(0)}$ independientes?