Solutie

Primul număr reprezintă numărul total de arbori care se poate forma cu n noduri.

Se folosește codul lui Prüffer; fiecărui arbore A cu n vârfuri i se atașează un vector (a₁,

a₂,...,a_{n-1}), cu a_{n-1}=x_n. Deci vor fi nⁿ⁻² arbori, adică numărul de șiruri (a₁, a₂,...,a_{n-1}). Al doilea număr reprezintă numărul de arbori pentru care se cunoaște gradul fiecărui nod.

Fiecare nod apare în șirul $(a_1, a_2, ..., a_{n-2})$ apare de exact d_{ai} -1 ori. Vârfurile terminale nu apar în șir, iar un vârf cu gradul d_{ai} va deveni vârf terminal după ce exact d_{ai} -1 noduri adiacente cu el au fost eliminate. Suma gradelor nodurilor este egală cu 2n-2. Nr. căutat este egal cu numărul șirurilor $(a_1, a_2, ..., a_{n-2})$ care conțin de d_1 -1 ori numărul 1, de d_2 -1 ori numărul 2, etc. Acest număr este egal cu nr. de aranjări a n-2 obiecte în n căsuțe, astfel încât prima căsuță să conțină d_1 -1 obiecte, ..., ultima căsuță d_n -1 obiecte, dacă obiectele din căsuța i reprezintă numerele de ordine ale pozițiilor pe care se găsește nr. i în șirul $(a_1, a_2, ..., a_{n-2})$.

Nr. este egal cu
$$\frac{(n-2)!}{(d_1-1)!(d_2-1)!...(d_n-1)!}$$
.