En seguida à monstração feite para indicar que a Equação a Derivadas Parciais dada por

c=c(x,y,t) com (x,y) ERCR2 e te(0, T] CR

De - & De + W. VC + uc = f(x, y, t)

tendo como condições de contorno uma das formas da condição de Robin

a. c(x,y,t) + 62c(x,y,t) = h(x,y,t), (x,y) 600 e tex=(0,T]

A derivada direcional 3c (x, y, t) = TC · 17

sendo M o vetor unitário ortogonal a DQ e externo a Q.

Obst: se b=0 e h=0 => a condição é de Dirichlet Homogénea e se h ≠ o é de Dirichlet não = Homogénea

052: Se a = 0 e dependendo de h ser ou não identicamente nula, a condição fica sendo de von Neumann homogênea ou não

Obs.3: (1) e a seguência sat evidentemente and logas se 12 CR² ou se SZCR³

(1)

Consideremos alguns casos:

1. Se este problema, para IZCR1 for estaciona nio, (1) se reduz a

(2) $\int -x C'(x) + J C(x) + \mu C(x) = f(x), x \in \Omega$ com condições de fronteira adequadas

A primaira vista, esta E.D.O. de 1ª ordem, linear e a coreficientes constantes deve ser resolvida por métodos analíticos mas... supusemos, em aula que, considerando $\Omega = [0, h]$, fiseria dada por

emperficie da água

$$f(x) = \begin{cases} 0,0 \leq x \leq h \\ F, x = h \end{cases}$$

fundo do lago

Pronto, é necessário aproximan!

Uma aproximação usual, via Diferenças Divididas Centrais, considera, mas usando

em que $\alpha_0=0$, $\alpha_1=\Delta x$, $\alpha_2=2\Delta x$, ..., $\alpha_1=i\cdot\Delta x$, ... $\alpha_n=n\cdot\Delta x=h$

Applied Biosystems www.appliedbiosystems.com
$$\Delta x = \frac{h}{n}$$
,

temos (via Série de Taylor/Mac Laurin):

(a)
$$C_{i+1} = C_i + \Delta x \cdot C_$$

Ona, fazendo (a) + (b) e "ajeitando", temos $C_{i-1} - 2C_i + C_{i+1} = \Delta x^2 C_i'' + O(\Delta x^4)$, ou

(3)
$$C_i'' \simeq C_{i+} - 2C_i + C_{i+}$$
 \Rightarrow esta operação "aproxima" o valor Δx^2 $da 2^- derivada com enno $O(\Delta x^2)$$

Mas agora fazendo (a)-(b) e ajeitando, vem:

$$C'_{i} = \frac{Cih - Ci+}{2\Delta n} + O(\Delta x^{2})$$

Pode-se observat que, en (3), ao dividir $O(\Delta x^4)$ por Δx^2 , temos $O(\Delta x^2)$ e, en (4), dividindo $O(\Delta x^3)$ por 2. Δx , temos, tumbém, $O(\Delta x^2)$

A aproximação de (2), para um x; da partigos (5) do intervalo J fica sendo

De (5), rearranjando, obtem-se um sistema linear cuja re linha (com i \upsi 0 e i\upsi 1) é dada por:

$$\left(\frac{\omega}{\Delta n^{2}} - \frac{\upsilon}{2\Delta n}\right)^{C_{i-1}} + \left(\frac{2\kappa}{\Delta n^{2}} + \mu\right)^{C_{i}} + \left(-\frac{\kappa}{\Delta n^{2}} + \frac{\upsilon}{2\Delta n}\right)^{C_{i+1}} = f_{i}$$

E parque isto not vale dos extremos?

Nesses 2 panhos há as condições de contorno como exemplo considere mos, no fundo, i.e.: para x = 0, como o poluente noto chega la que x = 0, como o poluente noto chega la que x = 0, como o poluente noto evapora, que x = 0, como o poluente noto evapora, que x = 0, isto significa que x = 0, noto conhecida, mesmo conhecida que x = 0.

Assim, temos, para i=1

para
$$2 \le i \le n$$
, a expressão (6) e, quando
 $i = n$, $-\frac{2x}{\Delta n^2}$, $C_{n-1} + \left(\frac{2x}{\Delta n^2} + \mu\right)$ $C_n = f_n$

(*) a explicação seguira, é preciso configer na Applied Biosystems Makmática!

Assim, a	aproximaç	ão de c	= c(x)	, dada p	or	
120	O, C1, C2, C3			120000		resolven
^	1.c = fb	sendo	M dad	a por		
2x2+ / L	-x+ U Ax2 ZA	×	O	0	O	0
-x -v Ax2 2Ax	2x + pe	$\frac{-\alpha}{\Delta x^2} + \frac{\alpha}{\alpha}$	V O	0 ~ .		0
0	-d - v=	2x2+/h	-x	+ 5 0.	O	0
6 6					,	4
0.	0	0	0	AXL ZAX	Dx2 + pe	-x + υ- Δx2 2Δx
0	٥	0.	, , 0	0	- 2x	2x + M
o fer	mo îndep forma	endente	, acimo	e indicad	do como	56
		0	Obs.	· a for	ite é	
				pontual	em 2	= n
	,			on seja	s de um	whom
	_	0		que ate	a posig	cão
7	₩	45				
				(n-1)	só tem a	zenes

