

EE141-Spring 2012 Digital Integrated Circuits

Lecture 23 Clocks + Power

EECS141

Lecture #23

1

Administrativia

- □ Project Phase 2 due Today.
- □ Project Phase 3 to be launched today
- □ Assignment 9 posted today
 - One more assignmnet (#10) will not be graded

Class Material

- □ Last lecture
 - Registers + Timing
- □ Today's lecture
 - Timing + Clocks
- □ Reading (Ch 10)

EECS141 Lecture #23

Clock Distribution

Clock Distribution

- □ Single clock generally used to synchronize all logic on the same chip
 - Need to distribute clock over the entire die
 - While maintaining low skew/jitter
 - (And without burning too much power)

What matters is to minimize clock skew – not clock delay

EECS141 Lecture #23

H-Tree

Equal wire length/number of buffers to get to every location

Impact of Resistance

- □ We have already learned how to drive RC interconnect
- □ Impact of resistance is commonly seen in power supply distribution:
 - IR drop
 - Voltage variations
- □ Power supply is distributed to minimize the IR drop and the change in current due to switching of gates

EECS141 Lecture #23 17

RI Introduced Noise

Resistance and the Power Distribution Problem

- Requires fast and accurate peak current prediction
- · Heavily influenced by packaging technology

Source: Cadence

Lecture #23

EECS141

19

Power Distribution

- □ Low-level distribution is in Metal 1
- □ Power has to be 'strapped' in higher layers of metal.
- □ The spacing is set by IR drop, electromigration, inductive effects
- □ Always use multiple contacts on straps

CMOS Transistor Scaling

EECS141 Lecture #23 27

Goals of Technology Scaling

- □ Make things cheaper:
 - Want to sell more functions (transistors) per chip for the same money
 - Or build same products cheaper
 - Price of a transistor has to be reduced
- □ But also want to be faster, smaller, lower power...

Technology Scaling

- □ Benefits of 30% "Dennard" scaling (1974):
 - Double transistor density
 - Reduce gate delay by 30% (increase operating frequency by 43%)
 - Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency)
- □ Die size used to increase by 14% per generation (not any more)
- □ Technology generation spans 2-3 years

EECS141 Lecture #23 29

Technology Scaling Models

• Full Scaling (Constant Electrical Field)

ideal model — dimensions and voltages scale together by the same factor S

• Fixed Voltage Scaling

most common model until 1990's only dimensions scale, voltages remain constant

General Scaling

most realistic for today's situation — voltages and dimensions scale with different factors

Full Scaling (Dennard, Long-Channel)

- □ W, L, t_{ox}: 1/S
- \square V_{DD} , V_T : 1/S
- □ Area: WL
- □ C_{ox}: 1/tox
- \Box C_L : $C_{ox}WL$
- \Box I_D : $C_{ox}(W/L)(V_{DD}-V_T)^2$
- \square R_{eq}: V_{DD}/I_{DSAT}

EECS141 Lecture #23

Full Scaling (Dennard, Long-Channel)

- □ W, L, t_{ox}: 1/S
- □ V_{DD}, V_T: 1/S
- \Box t_p : $R_{eq}C_L$
- \square P_{avg} : $C_L V_{DD}^2 / t_p$
- \square P_{avg}/A : $C_{ox}V_{DD}^{-2}/t_p$

Scaling Relationships for Long Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD}, V_{T}		1/S	1/ U	1
N _{SUB}	V/W _{depl} ²	S	S ² /U	S ²
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	S
$C_{\mathbf{L}}$	CoxWL	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	s
I _{av}	$k_{n,p} V^2$	1/S	S/U^2	S
t _p (intrinsic)	C _L V / I _{av}	1/S	U/S ²	1/S ²
Pav	$C_L V^2 / t_p$ $C_L V^2$	1/S ²	S/U ³	s
PDP	$C_L V^2$	1/S ³	$1/\mathrm{SU}^2$	1/S

EECS141 Lecture #23 39

Full Scaling (Dennard, Short-Channel)

- □ W, L, t_{ox}: 1/S
- \square V_{DD} , V_T : 1/S
- □ Area: WL
- □ C_{ox}: 1/tox
- \Box C_L : $C_{ox}WL$
- \Box I_D : $WC_{ox}v_{sat}(V_{DD}-V_T-V_{VSAT}/2)$
- $\ \square \ R_{eq} : V_{DD} / I_{DSAT}$

EE141

Full Scaling (Dennard, Short-Channel)

- \square W, L, t_{ox} : 1/S
- \square V_{DD} , V_T : 1/S
- \Box t_p : $R_{eq}C_L$
- \square P_{avg} : $C_L V_{DD}^2 / t_p$
- \square P_{avg}/A: C_{ox}V_{DD}²/t_p

EECS141 Lecture #23 4

Transistor Scaling (Velocity-Saturated Devices)

Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD} V_{T}		1/S	1/U	1
$N_{\scriptscriptstyle SUB}$	V/W_{depl}^2	S	S^2/U	S^2
Area/Device	WL	1/S ²	$1/S^2$	1/S ²
C_{ox}	1/t _{ox}	S	S	S
C_{gate}	$C_{ox}WL$	1/S	1/S	1/S
k_{n} , k_{p}	$C_{\mathrm{ox}}W/L$	S	S	S
I_{sat}	$C_{ox}WV$	1/S	1/U	1
Current Density	I _{sat} /Area	S	S^2/U	S^2
Ron	V/I _{sat}	1	1	1
Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/.5	1/S
P	$I_{sat}V$	1/S ²	$1/U^2$	1
Power Density	P/Area	1	S^2/U^2	S^2

EECS141

21

An interesting question

- □ What will did cause this model to break?
 - Leakage set by kT/q
 - Temp. does not scale
 - V_T set to minimize power
 - Power actually increased
 - Leakage increased drastically
 - f increased faster than device speed
 - Hit cooling limit
 - Process Variation
 - Hard to build very small things accurately (less averaging)

EECS141 Lecture #23 43

Wire Scaling