Business Process Management (5)

Process Analysis

Process Analysis Techniques

Qualitative analysis

- Value-Added & Waste Analysis
- Root-Cause Analysis
- Pareto Analysis
- Issue Register

Quantitative Analysis

Value-added analysis

1. Decorticate the process into steps

- Steps performed before a task
- The task itself, possibly decomposed into smaller steps
- Steps performed after a task, in preparation for the next task

2. Classify each step

- Value-adding (VA)
- Business value-adding (BVA)
- Non-value-adding (NVA)

Seven sources of waste

Move

- Transportation
- Motion

Hold

- Inventory
- Waiting

Over-do

- Defects
- Over-Processing
- Over-Production

Issue register structure

Can take the form of a table with:

- Issue identifier
- Short name
- Description
- Assumptions
- Impact: Qualitative and Quantitative
- Possible improvement actions

Larger process improvement projects may require issue trackers

Pareto chart example

Two-Dimensional Prioritization: PICK Chart

Root-cause analysis

Why-why diagram

Five levels of nesting - "Five Why's"

Cause-effect (Fishbone) diagram

Process Analysis Techniques

Qualitative analysis

- Value-Added & Waste Analysis
- Root-Cause Analysis
- Pareto Analysis
- Issue Register

Quantitative Analysis

- Flow analysis
- Queuing analysis
- Simulation

Fundamentals of

Business Process Management

Marlon Dumas · Marcello La Rosa Jan Mendling · Hajo A. Reijers

Second Edition

- 1. Introduction
- 2. Process Identification
- 3. Essential Process Modeling
- 4. Advanced Process Modeling
- 5. Process Discovery
- 6. Qualitative Process Analysis
- 7. Quantitative Process Analysis
- 8. Process Redesign
- 9. Process-Aware Inf. Systems
- 10. Process Implementation
- 11. Process Monitoring
- 12.BPM as an Enterprise Capability

Process performance

If you had to choose between two services, you would typically choose the one that is:

- F...
- C...
- B...

Process performance

If you had to choose between two services, you would typically choose the one that is:

- Faster
- Cheaper
- Better

Process performance

Time measures

Time taken by value-adding activities

Time between start and completion of a process instance

Processing time

Cycle time

Waiting time

Time taken by non-value-adding activities

Cycle time efficiency

Cost measures

Typical components of cost

Material cost

 Cost of tangible or intangible resources used per process instance

Resource cost

 Cost of person-hours employed per process instance

Resource utilization

Resource utilization = 60%

on average resources are idle 40% of their allocated time

Resource utilization vs. waiting time

Typically, when resource utilization > 90%

→ Waiting time increases steeply

Quality

Product quality

• Defect rate

Delivery quality

- On-time delivery rate
- Cycle time variance

Customer satisfaction

Customer feedback score

Identifying performance measures

For each process, formulate process performance objectives

Customer should be served always in a timely manner

For each objective, identify variable(s) and aggregation method

performance measure

Variable: customer served in < 30 min.

Aggregation method: percentage

Measure: $ST_{30} = \%$ of customers served in < 30 min.

For each performance measure, define targets

 $ST_{30} > 99\%$

Process performance reference models

Supply Chain Operations Reference Model (SCOR)

Performance measures for supply chain management processes

American Productivity and Quality Council (APQC)

 Performance measures and benchmarks for processes in the Process Classification Framework (PCF)

IT Infrastructure Library (ITIL)

• Performance measures for IT service management processes

Flow analysis

Flow analysis of cycle time

Sequence – Example

• What is the average cycle time?

Cycle time = 10 + 20 = 30

Example: Alternative Paths

What is the average cycle time?

Cycle limite to $140 \pm 920 \pm 10.12 = 29$

Example: Parallel paths

What is the average cycle time?

Cycle time = 10 + 20 = 30

Example: Rework loop

What is the average cycle time?

Cycle time =
$$10 + 20 = 30$$

Cycle time = $10 + 200.8 = 30$

Flow analysis equations for cycle time

Flow analysis of cycle time

Cycle time = 1.25 + 3 + 3 + 1.4 = 8.65 days

Flow analysis of processing time

Processing time = 2.5 + 3 + 2 + 1.4 = 8.9 hours

Cycle time efficiency = 8.9 hours / 8.65 days = 12.9%

Limitation 1: Not all Models are Structured

Limitation 2: Fixed arrival rate capacity

- Cycle time analysis does not consider:
 - The rate at which new process instances are created (arrival rate)
 - The number of available resources
- Higher arrival rate at fixed resource capacity
 - → high resource contention
 - → higher activity waiting times (longer queues)
 - → higher activity cycle time
 - → higher overall cycle time
- The slower you are, the more people have to queue up...
 - and vice-versa

Questions

