Banco de Dados II

BDII – Apresentação da disciplina

COMPETÊNCIAS

- 1. Construir banco de dados relacional utilizando o Sistema Gerenciador de banco de dados.
- 2. Otimizar a linguagem de consulta estruturada forma de informação relevante para a tomada de decisão.

HABILIDADES

- 1.1 Utilizar sistema de gerenciamento para banco de dados.
- 2.1 Executar linguagem de consulta estruturada objetivando melhor desempenho.
- 2.2 Compilar relatórios analíticos a partir dos dados coletados.

AVALIAÇÕES

Exercícios práticos – Avaliação teórica – Projeto – Observação direta

BDII – Apresentação da disciplina

BASES TECNOLÓGICAS

Implementação de banco de dados

Criação e exclusão de banco de dados.

Variáveis e constantes

Conceitos e utilização.

Comandos SQL

• DDL, DML, DQL:

√ conceitos e utilização.

Linguagem de definição de dados - DDL

• utilização da linguagem SQL (Query).

Linguagem de manipulação de dados - DML

HABILIDADES

Linguagem de consulta de dados – DQL

Blocos de linguagem de consulta estruturada (SQL)

Exceções (tratamentos de erros)

Funções

Gatilhos

Visões Controladas

Índices

Merge e Permissões

BDII – Revisão

BDII - Conceito

O que é um banco de dados?

É uma coleção de dados relacionados

Possui as seguintes propriedades:

- Representa aspectos do mundo real (minimundo).
- Coleção lógica e coerente de dados
- Dados devem ter significado inerente
- É projetado, construído e povoado por dados, atendendo a uma proposta específica.

BDII – Conceito

Pode ser gerado e mantido manualmente

Pode ser automatizado

BDII – Entidade

O que é uma entidade

- Objeto concreto ou abstrato onde serão armazenadas as informações necessárias para amparar o projeto em desenvolvimento ou em manutenção
- Uma entidade é algo do mundo real que possui uma existência independente

Objeto

Pessoa

Conceito Abstrato

Acontecimento

BDII – Entidade

Classificação

- Forte ou Primária
- Fraca ou Dependente
- Associativa

BDII – Atributos

O que é um atributo

- Menor porção de informação
- Propriedades particulares de uma entidade
- Descreve uma entidade

Exemplo:

Funcionário (matricula, nome, endereço, telefone, dataNascimento)

BDII – Atributos

Classificação

- Atributo simples
- Atributo composto
- Atributo multivalorado
- Atributo derivado

BDII – Atributos

BDII – Restrições de Integridade

Integridade

- ✓ Correção
- ✓ Consistência
- ✓ Segurança dos dados armazenados

Chave de acesso.

Garantir integridade significa garantir o acesso individualizado a todas as ocorrências de uma tabela

BDII – Tipo de Chave de Acesso

- Chave Candidata
- Chave Primária (PK)
- Chave Composta ou Concatenada
- Chave Secundária
- Chave Estrangeira (FK)

SQL – Struct Query Language

Linguagem de Consulta Estruturada

Uma programação baseada em SQL pode ser usada para realizar tarefas complexas, como por exemplo, escrever queries e fazer consultas ou manipulações. No entanto, ela também pode executar tarefas simples em tabelas. Tais como:

- Insert (inserir);
- Delete (excluir);
- Update (atualizar);
- Search (pesquisar)

Ela é dividida em alguns subgrupos, como:

- DML Data Manipulation Language: comandos que alteram informações nas tabelas, seja para inserir ou excluir dados (ex: select, delete e insert);
- DDL Data Definition Language: são comandos que modificam o banco de dados (ex: drop apaga algum objeto e create - permite a criação de novos objetos);
- DCL Data Control Language: é o grupo responsável pelas permissões, restrições ou bloqueios (ex: grant permite o acesso e/ou modificações no banco de dados);
- DTL Linguagem de Transição de Dados: é responsável por salvar as alterações feitas pelos usuários (ex: commit - autoriza que as alterações sejam salvas).

Tabela no SQL

Modelo (DER)

Entidade

	Name	Owr	Owner T		Туре		Created_datetime			
1	itemPedido	dbo		user table		2021-03-01 11:52:18.053				
	Column_name	9 7	Гуре		(Comput	ed	Length	Prec	Sc
1	valor	١	varchar		no		12			
2	quantidade	ı	numeric		no		5	6	0	
3	idProduto	ı	numeric		no		17	30	0	
4	idPedido	1	numeric		no		17	30	0	
5	idItemPedido	ı	numeric		no			17	30	0
	Identity					Seed	I	ncrement	Not F	or Re
1	No identity column defined.)	NULL	L NULL		NUL	NULL	

SQL: Struct Query Language

TIPOS DE DADOS

- A varchar(n)
- C char(n)
- D date
- N numeric(n) tamanho inteiro numeric(n,x) n inteiro x casas decimais

n = tamanho

Para criar a tabela usamos um comando

```
CREATE TABLE nome_tabela (
    cod_instrutor (
  nome_instrutor ( )
                      INSTRUTOR
   fone_instrutor (
                                           CREATE TABLE instrutor(
                                                  atributo tipo_dado restrição(se houver),
                                                  atributo2 tipo_dado restrição(se houver)
CREATE TABLE instrutor(
                       numeric(3) not null primary key,
       codinstrutor
       nomeinstrutor varchar(30) not null,
       foneinstrutor varchar (15)
```

Instrução CREATE TABLE

Regras para nomeação de tabelas e colunas:

- Devem ser iniciadas por uma letra;
- Devem ter de 1 a 30 caracteres;
- Devem conter somente AZ, az, 09, _, \$ e #;
- Não devem duplicar o nome de outro objeto de propriedade do mesmo usuário;
- Não devem ser uma palavra reservada do servidor;
- Não é case sensitive;

Restrições

Restrições impõem regras no nível da tabela, evitam que uma tabela seja deletada se houver dependências.

Tipos válidos:

- NOT NULL
- UNIQUE
- PRIMARY KEY
- FOREIGN KEY
- CHECK.

EXERCÍCIOS

1. Dado o Der, crie o MLR (sem código SQL)

Atributo	Tipo	Tamanho	Regra
cpf_clie	С	11	PK
dt_nasc	D	-	NN
nm_clie	Α	30	NN
end_clie	Α	50	-
cep_clie	С	8	-

EXERCÍCIOS

1. Dado o Der, crie o MLR (sem código SQL)

Atributo	Tipo	Tamanho	Regra
ds_prod	А	50	NN
cd_prod	N	6	PK
preco	N	10,2	NN
qtde	N	8,2	NN

