1 Warm-up

Soit (Z, X) un couple de variables aléatoires sur $\mathbb{R}^d \times \mathbb{R}^m$. On note $(z, x) \mapsto p(z, x)$ la densité jointe de la loi de (Z, X) par rapport à la mesure de Lebesgue. On considère également une famille \mathcal{Q} de densités par rapport à la mesure de Lebesgue sur \mathbb{R}^d . Dans la suite les densités conditionnelles et marginales associées à $(z, x) \mapsto p(z, x)$ sont également notées p. Pour tout $p \in \mathcal{Q}$, on note \mathbb{E}_p l'espérance lorsque la loi de p a pour densité p. On introduit alors la ELBO (Evidence Lower Bound) de la façon suivante: pour tout $p \in \mathcal{Q}$, p0 and p1 alors la ELBO (Evidence Lower Bound) de la façon suivante:

$$\mathcal{L}_x(q) = \mathbb{E}_q \left[\log \frac{p(Z, x)}{q(Z)} \right] = \int \log \frac{p(z, x)}{q(z)} q(z) dz.$$

1. Montrer que pour tout $q \in \mathcal{Q}, x \in \mathbb{R}^m, \text{KL}(q||p(\cdot|x)) = \log p(x) - \mathcal{L}_x(q)$.

Nous remarquons que pour tout $q \in \mathcal{Q}$

$$\begin{split} \log p(x) &= \int \log p(x) q(z) \mathrm{d}z = \int \log \frac{p(z,x)}{p(z|x)} q(z) \mathrm{d}z \\ &= \int \log \frac{p(z,x) q(z)}{p(z|x) q(z)} q(z) \mathrm{d}z \\ &= \mathrm{KL}(q \| p(\cdot|x)) + \mathcal{L}(q) \,. \end{split}$$

2. En déduire que $\mathcal{L}_x(q) \leq \log p(x)$.

Il suffit de remarquer, grâce à l'inégalité de Jensen, qu'une divergence de Kullback-Leibler est toujours positive. Dans notre cas :

$$-\mathrm{KL}(q\|p(\cdot|x)) = \int \log \frac{p(z|x)}{q(z)} q(z) \mathrm{d}z \le \log \int \frac{p(z|x)}{q(z)} q(z) \mathrm{d}z \le 0.$$

3. Supposons que q soit de la forme $q:(z_1,\ldots,z_d)\mapsto \prod_{j=1}^d q_j(z_j)$ où les $\{q_j\}_{1\leq j\leq d}$ sont des densités par rapport à la mesure de Lebesgue sur \mathbb{R} . Fixons $1\leq j_0\leq d$ et tous les $q_j,\ j\neq j_0$. Montrez que la densité proportionnelle à $z_{j_0}\mapsto \exp\{\mathbb{E}_{-j_0}[\log p(z_{j_0},Z_{-j_0},x)]\}$ est solution de

$$q_{j_0}^* \in \operatorname{Argmax}_{q_{j_0}} \mathcal{L}_x(q)$$
,

où $Z_{-j_0}=(Z_j)_{j\neq j_0}$ et \mathbb{E}_{-j_0} est l'espérance lorsque la densité de Z_{-j_0} est $\prod_{j=1,j\neq j_0}^d q_j$

Par définition,

$$\mathcal{L}(q) = \int \log \frac{p(z, x)}{q(z)} q(z) dz = \mathbb{E}_{q_{j_0}} \left[\mathbb{E}_{-j_0} \left[\log p(Z_{j_0}, Z_{-j_0}, x) \right] \right] - \sum_{i=1}^d \mathbb{E}_{q_i} \left[\log q_j(Z_j) \right].$$

La densité $q_{j_0}^*$ est donc solution de

$$\mathrm{Argmax}_{q_{j_0}} \left\{ \mathbb{E}_{q_{j_0}} \left[\mathbb{E}_{-j_0} \left[\log p(Z_{j_0}, Z_{-j_0}, x) \right] \right] - \mathbb{E}_{q_{j_0}} \left[\log q_{j_0}(Z_{j_0}) \right] \right\} \,.$$

Définissons alors la densité $\tilde{q}_{j_0}: z \mapsto c_{j_0} \exp\{\mathbb{E}_{-j_0}[\log p(z_{j_0}, Z_{-j_0}, x)]\}$ où c_{j_0} est la constante de normalisation permettant d'obtenir une densité. On obtient alors que $q_{j_0}^*$ est solution de

$$\operatorname{Argmax}_{q_{j_0}} \left\{ \mathbb{E}_{q_{j_0}} \left[\log \tilde{q}_{j_0}(Z_{j_0}) \right] - \mathbb{E}_{q_{j_0}} \left[\log q_{j_0}(Z_{j_0}) \right] \right\} = \operatorname{Argmin}_{q_{j_0}} \operatorname{KL}(q_{j_0} \| \tilde{q}_{j_0}) ,$$

ce qui permet de conclure.

2 Inférence variationnelle : modèle gaussien

Soient α_0 et β_0 deux reéls strictement positifs et μ_0 un réel. On considère les variables aléatoires suivantes : $\sigma^2 \sim \mathcal{IG}(\alpha_0, \beta_0)$, $\mu \sim \mathcal{N}(\mu_0, \sigma^2)$ et $X = (X_i)_{1 \leq i \leq n} \sim \bigotimes_{i=1}^n \mathcal{N}(\mu, \sigma^2)$ où \mathcal{IG} est la loi inverse gamma de paramètres α_0 et β_0 de densité $z \mapsto \beta_0^{\alpha_0} \Gamma^{-1}(\alpha_0) z^{-(\alpha_0+1)} \exp(-\beta_0/z)$ sur \mathbb{R}_+^* .

1. Écrire la densité jointe des variables $Z = (\mu, \sigma^2)$ et X.

Pour tout x, μ, σ^2 , la logdensité jointe de $z = (\mu, \sigma^2)$ et x est donnée par :

$$\begin{split} \log p(z,x) &= \log p(\sigma^2) + \log p(\mu|\sigma^2) + \log p(x|\mu,\sigma^2) \\ &= -\frac{1}{2} \log(2\pi\sigma^2) - \frac{(\mu - \mu_0)^2}{2\sigma^2} \\ &+ \alpha_0 \log \beta_0 - \log \Gamma(\alpha_0) - (\alpha_0 + 1) \log(\sigma^2) - \frac{\beta_0}{\sigma^2} \\ &- \frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \,. \end{split}$$

2. On considère une famille variationnelle où les densités sont de la forme $q:(\mu,\sigma^2)\mapsto q_1(\mu)q_2(\sigma^2)$. Écrire la ELBO associée.

La ELBO s'écrit, pour tout $x = (x_1, \ldots, x_n)$,

$$\mathcal{L}_{x}(q) = \mathbb{E}_{q} \left[\log \frac{p(Z, x)}{q(Z)} \right]$$

$$= \mathbb{E}_{q} \left[\log p(\sigma^{2}) + \log p(\mu | \sigma^{2}) + \log p(x | \mu, \sigma^{2}) \right] - \mathbb{E}_{q_{1}} \left[\log q_{1}(\mu) \right] - \mathbb{E}_{q_{2}} \left[\log q_{2}(\sigma^{2}) \right].$$

3. Écire la mise à jour de q_1 dans une étape de l'algorithme CAVI.

On sait que la mise à jour s'écrit, à une constante additive près,

$$\log q_1^*(\mu) = \mathbb{E}_{q_2} \left[-\frac{(\mu - \mu_0)^2}{2\sigma^2} - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right].$$

Ainsi, à une constante additive près,

$$\log q_1^*(\mu) = -\mathbb{E}_{q_2} \left[\frac{n+1}{2\sigma^2} \left(\mu - \frac{\mu_0 + n\bar{x}_n}{n+1} \right)^2 \right],$$

 $où \bar{x}_n = \sum_{i=1}^n x_i/n$. Ainsi,

$$\log q_1^*(\mu) = -\frac{1}{2}(n+1)\mathbb{E}_{q_2}[1/\sigma^2] \left(\mu - \frac{\mu_0 + n\bar{x}_n}{n+1}\right)^2.$$

On en déduit que q_1^* est la densité de la loi gaussienne de moyenne $(\mu_0 + n\bar{x}_n)/(n+1)$ et dont l'inverse de la variance est $(n+1)\mathbb{E}_{q_2}[1/\sigma^2]$ (qui est calculable lorsque q_2 est une loi inverse gamma).

4. Écire la mise à jour de q_2 dans une étape de l'algorithme CAVI.

On sait que la mise à jour s'écrit, à une constante additive près,

$$\log q_2^*(\sigma^2) = -\frac{1}{2}\log(2\pi\sigma^2) - (\alpha_0 + 1)\log(\sigma^2) - \frac{n}{2}\log(2\pi\sigma^2) + \mathbb{E}_{q_1} \left[-\frac{(\mu - \mu_0)^2}{2\sigma^2} - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right].$$

Ainsi, à une constante additive près,

$$\log q_2^*(\sigma^2) = -\left(\frac{1}{2} + \alpha_0 + 1 + \frac{n}{2}\right) \log \sigma^2 - \frac{\mathbb{E}_{q_1}\left[(\mu - \mu_0)^2 + \sum_{i=1}^n (x_i - \mu)^2\right]}{2\sigma^2}.$$

On reconnaît une loi inverse gamma de paramètres

$$\alpha = 1/2 + \alpha_0 + 1 + n/2$$
.

$$\beta = \mathbb{E}_{q_1} \left[(\mu - \mu_0)^2 + \sum_{i=1}^n (x_i - \mu)^2 \right] / 2.$$

3 Inférence variationelle pour les modèles exponentiels

On considère un couple de variables aléatoires $(Z,X) \in \mathbb{R}^d \times \mathbb{R}^m$. On note $(z,x) \mapsto p(z,x)$ la densité jointe de ce couple par rapport à la mesure de Lebesgue. Nous souhaitons utiliser dans cet exercice une approche variationnelle pour estimer la loi a posteriori p(z|x). Pour cela on se donne une famille de densités sur \mathbb{R}^d :

$$Q = \left\{ (z_1, \dots, z_d) \mapsto \prod_{j=1}^d q_j(z_j); q_j \text{ est une densit\'e sur } \mathbb{R} \right\}.$$

1. Rappeler l'algorithme CAVI (Coordinate Ascent Variational Inference) pour estimer itérativement q^* .

Fixons $1 \leq j_0 \leq d$. On sait que pour toutes densités $(q_j)_{1 \leq j \leq d}$, en notant \mathcal{L}_x la ELBO,

$$q_{j_0}^* = \operatorname{Argmax}_{q_{j_0}} \mathcal{L}_x(q)$$

est la densité proportionnelle à $z_j \mapsto \exp\{\mathbb{E}_{-j_0}[\log p(z_{j_0}, Z_{-j_0}, x)]\}$, où $Z_{-j_0} = (Z_j)_{j \neq j_0}$ et \mathbb{E}_{-j_0} est l'espérance lorsque la densité de Z_{-j_0} est $\prod_{j=1, j \neq j_0}^d q_j$. L'algorithme CAVI fonctionne donc de la façon suivante.

- (a) Initialiser toutes les densités $(q_j)_{1 \leq j \leq d}$ aux valeurs $(q_j^{(0)})_{1 \leq j \leq d}$.
- (b) Jusqu'à convergence, répéter pour $p \ge 0$:
 - i. Choisir aléatoirement $1 \leq j_0 \leq d$.
 - ii. Pour tout $j \neq j_0$, $q_i^{(p+1)} = q_i^{(p)}$.
 - iii. $Poser\ q_{j_0}^{(p+1)} = \operatorname{Argmax}_{q_{j_0}} \mathcal{L}_x(q) \ où \ q: (z_1, \dots, z_d) \mapsto q_{j_0}(z_{j_0}) \prod_{j=1, j \neq j_0}^d q_j^{(p+1)}(z_j)$
- 2. Supposons que le modèle soit tel que pour tout $j \in \mathbb{R}$,

$$p(z_j|z_{-j}, x) = h(z_j) \exp(\eta(z_{-j})^{\top} s(z_j) - a(z_{-j})),$$

où $z_{-j} = (z_u)_{1 \leq u \leq d, u \neq j}$ et où η , s et a sont des fonctions connues (la dépendance en x de ces fonctions est omise par simplicité). Montrer que si les densités $(q_u)_{1 \leq u \leq d, u \neq j}$ sont fixées alors la mise à jour de l'algorithme CAVI de la j-ème densité est (à une constante multiplicative près),

$$q_j^*(z_j) \mapsto h(z_j) \exp\left\{\mathbb{E}_{-j}[\eta(Z_{-j})^T s(Z_j)]\right\},$$

où \mathbb{E}_{-i} est l'espérance sous la loi de densité $\prod_{u=1, u\neq i}^d q_u(z_u)$.

Il suffit d'écrire, pour $1 \le j \le d$, la fonction $z_j \mapsto \exp\{\mathbb{E}_{-j}[\log p(z_j, Z_{-j}, x)]\}$ en utilisant la forme exponentielle de l'énoncé et de supprimer les termes multiplicatifs ne dépendants pas de z_j .

3. La convergence de l'algorithme CAVI dépend-elle de l'initialisation des densité $(q_u)_{1\leqslant u\leqslant d}$?

Oui. La convergence de l'algorithme dépend de l'initialisation de l'algorithme. C'est bien sûr un point très important en pratique (il en est de même pour l'algorithme Expectation Maximization).