Linear Algebra I

November 15, 2018

Final Exam 2018

(Total: 100 pts, 50% of the grade)

ID#:

Name:

- 1. Let $\boldsymbol{u} = [1, -1, -2]^{\top}$, $\boldsymbol{v} = [-1, -2, 1]^{\top}$, $\boldsymbol{w} = [2, 1, -2]^{\top}$, $\boldsymbol{e}_1 = [1, 0, 0]^{\top}$, $\boldsymbol{e}_2 = [0, 1, 0]^{\top}$ and $\boldsymbol{e}_3 = [0, 0, 1]^{\top}$ be vectors in \mathbb{R}^3 . (15 pts)
 - (a) Find (i) $\boldsymbol{u} \times \boldsymbol{v}$ and (ii) the volume of the parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. Show work.

(b) Find the standard matrix A of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(\boldsymbol{u}) = \boldsymbol{e}_1, T(\boldsymbol{v}) = \boldsymbol{e}_2$ and $T(\boldsymbol{w}) = \boldsymbol{e}_3$. Show work.

Points:

1.(a)	(b)*	2.(a)*	(b)	(c)	(d)	(e)	(f)	*	Total
								10 pts	
3.(a)*	(b)*	4.(a)*	(b)	(c)	(d)*			none	
								$5 \mathrm{~pts}$	

メッセージ欄:この授業について、特に改善点について、その他何でもどうぞ。

2. Consider the system of linear equations with augmented matrix $C = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_7]$, where $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_7$ are the columns of C. Let $A = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_6]$ be its coefficient matrix. We obtained a row echelon form G after applying a sequence of elementary row operations to the matrix C. (35 pts)

(a) Describe each step of a sequence of elementary row operations to obtain G from C by [i,j], [i,j;c], [i;c] notation. Show work.

(b) Find an invertible matrix P of size 4 such that G = PC and express P as a product of <u>four</u> elementary matrices. Do not forget writing P. Show work.

(c) Explain that the invertible matrix P of size 4 such that G = PC is unique.

(d) Find the reduced row echelon form of the matrix C. Show work.

(e) Find all solutions of the system of linear equations.

(f) Explain that the linear transformation defined by $T: \mathbb{R}^6 \to \mathbb{R}^4$ ($\boldsymbol{x} \mapsto A\boldsymbol{x}$), i.e., $T(\boldsymbol{x}) = A\boldsymbol{x}$ is NOT one-to-one.

3. Let A, \boldsymbol{x} and \boldsymbol{b} be a matrix and vectors given below.

(20 pts)

$$A = \begin{bmatrix} 2 & 0 & 1 & 4 \\ -2 & -1 & -5 & 5 \\ 4 & 1 & 3 & -3 \\ -2 & 3 & 1 & 4 \end{bmatrix}, \ \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 8 \end{bmatrix}.$$

(a) Evaluate det(A). Show work.

(b) Express x_4 as a quotient (bun-su) of determinants when $A\mathbf{x} = \mathbf{b}$, and write adj(A), the adjugate of A. Don't evaluate the determinants.

$$x_4 =$$

$$, adj(A) =$$

(30 pts)

4. Let A, v and P be given below.

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 & -a_4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \\ \lambda^3 \\ \lambda^4 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 & x_5 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 & x_5^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 & x_5^3 \\ x_1^4 & x_2^4 & x_3^4 & x_4^4 & x_5^4 \end{bmatrix}.$$

Let
$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + x^5$$
.

(a) Find the determinant of P. Show work. You may use the following: $\det(Q) = (x_3 - x_2)(x_4 - x_2)(x_5 - x_2)(x_4 - x_3)(x_5 - x_3)(x_5 - x_4)$, where Q is the matrix obtained from P by deleting the 5th row and the 1st column.

(b) Show the following: If \boldsymbol{v} is an eigenvector of A corresponding to an eigenvalue α , then $\alpha = \lambda$ and $f(\alpha) = 0$.

(c) Suppose x_1, x_2, x_3, x_4, x_5 are distinct and $f(x_1) = f(x_2) = f(x_3) = f(x_4) = f(x_5) = 0$. Show that A is diagonalizable.

(d) Show that det(xI - A) = f(x).