Algebra 2 Warmup — Foundations & Functions

Be kind to future-you: show steps and box final answers.

Quick Reminders (read me!)

Function: each input x has exactly one output y. Domain: allowed x values. Range: resulting y values.

Exponent rules: $a^m a^n = a^{m+n}$, $a^m/a^n = a^{m-n}$ (with $a \neq 0$), $(a^m)^n = a^{mn}$, $a^{-k} = 1/a^k$. **Solving tips:** Keep equations balanced, combine like terms, and check restrictions (like denominators $\neq 0$).

SAT/ACT Tip

When evaluating f (something), treat the input like a blank: wherever you see x in the rule, drop the input in.

1.	Evaluate/simplify by substitution. Let $A = 3p - 2q$ and $B = \frac{p^2}{q}$. Compute A and B when $p = -2$ and $q = 4$. Then simplify $A + B$.
2.	Solve the linear equation. $4(2x-3)-5=3x+7$. Show your algebra and circle
	your final x .
3.	Absolute value.
	(a) Solve $ 2x - 5 = 9$.

	(b) Solve the inequality $ x+1 \le 4$ and state the solution in interval notation.
4.	Literal equation (solve for a variable). Solve $F = \frac{9}{5}C + 32$ for C (isolate C in terms of F).
5.	Exponent rules practice. Simplify as a single power of a and b (no negative exponents): $\frac{(a^3b^{-2})^2}{a^{-1}b^4}$. Then evaluate your simplified expression at $a=-2,\ b=\frac{1}{2}$.
6.	Quadratic: factor and solve.
	(a) Solve $x^2 - 5x - 24 = 0$ by factoring.
	(b) The function $f(x) = x^2 - 5x - 24$ has which x-intercepts? (List as ordered pairs.)
7	Solve the system of equations.

7. Solve the system of equations

$$\begin{cases} 2x + 3y = 7 \\ 4x - y = 1 \end{cases}$$

Use any method (elimination or substitution). Show steps.

0	
8.	Function evaluation and structure. Let $f(x) = 2x^2 - 3x + 1$.
	(a) Compute $f(-2)$.
	(b) Compute $f(k)$ (simplify).
	(c) Compute and simplify $f(a+1) - f(a)$.
9.	Piecewise function practice.
	(x + A x < 0)
	$p(x) = \begin{cases} x+4, & x < 0, \\ x^2, & 0 \le x \le 2, \\ 6, & x > 2. \end{cases}$
	$P(x) = \begin{cases} x, & 0 \le x \le 2, \\ 6, & x > 2 \end{cases}$
	$(0, \qquad x > 2)$
	Evaluate $p(-3)$, $p(0)$, $p(2)$, $p(5)$ and briefly name which piece you used each time.
10	Modeling word problem (linear) A ride share shares a hase fee of \$2.50 -less \$1.00
	Modeling word problem (linear). A ride-share charges a base fee of \$2.50 plus \$1.80 per mile.
	P

Algebra 2 In-Class Practice #1	Foundations & Functions
(a) Write a function $C(m)$	giving total aget in dollars for m miles

(a)	Write a function $C(m)$ giving total cost in dollars for m miles.
(b)	Find $C(6)$.
(c)	You have \$20. What is the greatest whole number of miles you can ride?

Page 4 of 4

You did math today. Future-you approves.