MA204: Mathematics IV

Partial Differential Equation (Boundary and Initial Value Problem)

Boundary and Initial Value Problem

If we denote a region by Ω , typically it is assumed to be an open, connected set with some piecewise smooth boundary $\partial\Omega$.

A boundary condition is then an additional equation that specifies the value of z and/or some of its derivatives on the set $\partial\Omega$.

An initial condition, on the other hand, specifies the value of z and some of its derivatives at some initial time t_0 (often $t_0 = 0$).

Consider the 1D wave equation $u_{tt} = c^2 u_{xx}$ on the region 0 < x < L, 0 < t with the boundary conditions

$$u(0, t) = 0, u(L, t) = 0$$

and initial conditions

$$u(x,0) = f(x) \text{ and } u_t(x,0) = g(x).$$

The need of boundary and initial condition for a PDE is to force the solution of the PDE to be unique and well-behaved.

Boundary and initial value problem

We often hear three types of boundary and initial conditions for problems related to physical situations.

- (1) Cauchy conditions: In this case, for the PDF, the value of the solution z and its normal derivatives are specified along some smooth surface S in the coordinate space of all independent variables. Thus to get a well-posed¹ problem under this condition,
 - (a) if z is a function of n variables, then the surface S should have dimension n-1
 - (b) if the PDE is of order k, then z and its first k-1 normal derivatives must be specified along the normal to S.

Boundary and initial value problem

We often hear three types of boundary and initial conditions for problems related to physical situations.

- (1) Cauchy conditions: In this case, for the PDF, the value of the solution z and its normal derivatives are specified along some smooth surface S in the coordinate space of all independent variables. Thus to get a well-posed¹ problem under this condition,
 - (a) if z is a function of n variables, then the surface S should have dimension n-1
 - (b) if the PDE is of order k, then z and its first k-1 normal derivatives must be specified along the normal to S.
- (2) **Dirichlet condition:** The Dirichlet condition specifies the value of z on the boundary $\partial\Omega$ of the region of study of the PDE.

Boundary and initial value problem

We often hear three types of boundary and initial conditions for problems related to physical situations.

- (1) Cauchy conditions: In this case, for the PDF, the value of the solution z and its normal derivatives are specified along some smooth surface S in the coordinate space of all independent variables. Thus to get a well-posed¹ problem under this condition,
 - (a) if z is a function of n variables, then the surface S should have dimension n-1
 - (b) if the PDE is of order k, then z and its first k-1 normal derivatives must be specified along the normal to S.
- (2) **Dirichlet condition:** The Dirichlet condition specifies the value of z on the boundary $\partial\Omega$ of the region of study of the PDE.
- (2) **Neumann condition:** In Neumann condition, the value of the derivatives of z along the normal to surface S are specified.

Problems with Cauchy conditions

Theorem (Existence and Uniqueness Theorem)

If the functions F, f_0 , f_1 ,..., f_{k-1} are analytic near the origin, then there is a neighbourhood of the origin where the following Cauchy initial value problem

$$\frac{\partial^k z}{\partial t^k}(x,y,z,t) = F(x,y,z,t,z_x,z_y,\ldots)$$

with

$$\frac{\partial^j z}{\partial t^j}(x, y, z, 0) = f_j(x, y, z) \text{ for } 0 \le j < k$$

has a unique analytic solution z = z(x, y, z, t).

Problems with Dirichlet and Neumann conditions

Theorem (Existence and Uniqueness Theorem for Dirichlet condition)

Suppose Ω is an open, bounded, connected region with smooth boundary $\partial\Omega$. Then the Dirichlet problem

$$abla^2 u = 0 \text{ in } \Omega$$

with

$$u = f$$
 on $\partial \Omega$

has a unique solution for each continuous function f on $\partial\Omega$.

Theorem (Existence and Uniqueness Theorem for Neumann condition)

The Neumann problem

$$\nabla^2 u = 0$$
 in Ω

with

$$u_n = f$$
 on $\partial \Omega$

has a solution for each continuous function f if and only if $f_{\partial\Omega}f=0$. In this case, the solution is unique up to an additive constant.

Heat Equation

The general form of a heat equation is

$$u_t = k\nabla^2 u + r,$$

where k is normalized conductivity called thermal diffusibility and r is source term.

A important class of solution of the heat equation are the steady-state solutions. In this, u is considered to be independent of t, i.e., $\frac{\partial u}{\partial t} = 0$.

Thus we have the heat equation in the Poisson's form

$$k\nabla^2 u + r = 0.$$

In addition, if r = 0, then u satisfies the Laplace equation

$$\nabla^2 u = 0.$$

Heat Equation

Consider the 1D heat equation $u_t = u_{xx}$ in the positive quadrant x, t > 0 under the conditions u(x, 0) = 0 and u(0, t) = 0.

Problem

Ex: Find the solution of the Dirichlet problem $\nabla^2 u = 0$ with u(x, b) = u(a, y) = 0, u(0, y) = 0, u(x, 0) = f(x).

Problem

Ex: Find the solution of the Neumann problem $\nabla^2 u = 0$ with $u_x(a,y) = u_x(0,y) = 0$, $u_y(x,0) = 0$, $u_y(x,b) = f(x)$.

Thank you

Thank You!!