Quantum Mechanics

Mark Benazet Castells

March 13, 2024

Week 4

Quantum Mechanics

Exercise Material

Webpage

Week 3

Recap

Review

Exercises

Quantum Mechanics

Review of Last Week

- Any questions on last week's topics?
- Feedback on the previous session?

Recap

Separation of variables

$$\Psi(x,t) = \psi(x) \cdot \varphi(t) = \psi(x) \cdot e^{-i\frac{Et}{\hbar}}$$

$\textbf{TISE} \rightarrow \textbf{Eigenvalue Problem}$

$$\hat{H}\psi = E\psi$$

$$\Psi_{general}(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) \cdot e^{-i\frac{E_n t}{\hbar}}$$

• Measuring energy of particle \hat{H} in $\Psi_{general}$ will obtain one of the values E_n with probability $|c_n|^2$, then the wave will "collapse" $\Psi_{general}$ into one of the ψ_n eigenstates.

$$c_n = \int \psi_{gen}(x)\psi_n(x)dx,$$

Infinite Square Well

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right), \quad E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}, \quad n \in \mathbb{Z}^+$$

- Solutions are mutually orthogonal: $\int \psi_m^* \psi_n \, \mathrm{d}x = \delta_{mn} \begin{cases} 0 & m \neq n \\ 1 & m = n \end{cases}$
- \bullet Solutions form a complete set: $f(x) = \sum_{n=1}^{\infty} c_n \psi_n(x)$

Free Particle

$$\Psi_k(x,t) = Ae^{i(kx - \omega t)},$$

- ullet Separable Solutions are not normalizable o Free particles with a **definite** energy do not exist
- ullet We have to do a continuous superposition of different dk waves.

$$\begin{split} &\Psi_{gen}(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(k) \exp\left[i\left(kx - \frac{\hbar k^2}{2m}t\right)\right] dk, \\ &\text{where } g(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x,0) e^{-ikx} dx \end{split}$$

- ullet The function $\Psi_{gen}(x,t)$ represents a **wave packet**, which is a superposition of plane waves of different wavelengths.
- The wave packet contains range of k, which correspond to different momenta $p=\hbar k$ and energies $E=\frac{\hbar^2 k^2}{2m}.$

Review

Commutators

Commutators tell us whether the order of the operators applied matters. The commutator of two operators \hat{A} and \hat{B} is defined as:

$$\left[\hat{A}, \hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A}.$$

It measures the non-commutativity of the operators, with $\left[\hat{A},\hat{B}\right]=0$ indicating that \hat{A} and \hat{B} commute, thus the order in which we apply the operators does not matter.

Commutators

Example: Given the position operator \hat{x} and the momentum operator $\hat{p}=-i\hbar\frac{\partial}{\partial x}$, the commutator $[\hat{x},\hat{p}]$ is defined as:

$$[\hat{x}, \hat{p}] = \hat{x}\hat{p} - \hat{p}\hat{x}$$

Substituting \hat{p} into the equation gives:

$$[\hat{x},\hat{p}] = \hat{x}(-i\hbar\frac{\partial}{\partial x}) - (-i\hbar\frac{\partial}{\partial x})\hat{x}$$

Applying the operators to a test function f(x):

Commutators

$$[\hat{x}, \hat{p}]f(x) = \hat{x}(-i\hbar\frac{\partial f(x)}{\partial x}) - (-i\hbar\frac{\partial}{\partial x})(\hat{x}f(x))$$

$$= -i\hbar x \frac{\partial f(x)}{\partial x} + i\hbar\frac{\partial}{\partial x}(xf(x))$$

$$= -i\hbar x \frac{\partial f(x)}{\partial x} + i\hbar\left(f(x) + x\frac{\partial f(x)}{\partial x}\right)$$

$$= i\hbar f(x)$$

Since this operation was performed on an arbitrary function $f(\boldsymbol{x})$, we can conclude that:

$$[\hat{x},\hat{p}]=i\hbar$$

Harmonic Oscillator

In classical mechanics

We define this potential as being $V(x) = \frac{1}{2}kx^2$.

In quantum Mechanics

The harmonic oscillator is modeled by a particle in a quadratic potential well and is given by: $V(x)=\frac{1}{2}kx^2=\frac{1}{2}m\omega^2x^2$, where k is the spring constant, m is the mass of the particle, and $\omega=\sqrt{\frac{k}{m}}$ is the angular frequency of the oscillator. A typical example is the vibrations of diatomic molecules

Creation and Annihilation Operators

The quantum harmonic oscillator is elegantly analyzed using creation (raising) and annihilation (lowering) operators, denoted by \hat{a}_+ and \hat{a}_- , respectively. These operators are defined as:

$$\hat{a}_{+} = \frac{1}{\sqrt{2\hbar m\omega}} \left(-i\hat{p} + m\omega x \right),$$

$$\hat{a}_{-} = \frac{1}{\sqrt{2\hbar m\omega}} \left(i\hat{p} + m\omega x \right),$$

A crucial property of these operators is their non-commutativity, given by the relation $[\hat{a}_-,\hat{a}_+]=1$.

Operational Impact on Energy Levels

The action of the creation and annihilation operators on the energy eigenstates is described by:

$$\hat{a}_{+}\psi_{n} = \sqrt{n+1}\psi_{n+1}, \quad \hat{a}_{-}\psi_{n} = \sqrt{n}\psi_{n-1},$$

highlighting their role in "moving up or down the ladder".

Hamiltonian and Quantum States

The Hamiltonian of the harmonic oscillator, incorporating these operators, is:

$$\hat{H} = \hbar\omega \left(\hat{a}_{-}\hat{a}_{+} - \frac{1}{2}\right) = \hbar\omega \left(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2}\right),$$

representing the total energy. This formalism facilitates deriving the ground state solution by solving $\hat{a}_-\psi_0=0$, yielding:

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega}{2\hbar}x^2\right), \quad E_0 = \frac{1}{2}\hbar\omega$$

Extending this, the energy and wave function of the nth quantum state are obtained through the repeated application of \hat{a}_+ , leading to:

$$\psi_n = \frac{1}{\sqrt{n!}} (\hat{a}_+)^n \psi_0,$$

$$E_n = \left(n + \frac{1}{2}\right) \hbar \omega,$$

Properties of the Quantum Harmonic Oscillator

- Quantized Energy Levels: The energy levels are discrete, quantized as $E_n=\left(n+\frac{1}{2}\right)\hbar\omega$, with n being a non-negative integer.
- **Zero-Point Energy:** The ground state energy is $\frac{1}{2}\hbar\omega$. There is non-zero energy even at T=0K.
- Wave Function Symmetry: Ground state wave functions are Gaussian, and higher states are Hermite-Gaussian, with $\langle x \rangle$ often zero.
- Orthogonality: The wave functions ψ_n are orthogonal, satisfying $\int_{-\infty}^{\infty} \psi_m^*(x) \psi_n(x) dx = \delta_{mn}$.
- **Completeness:** These wave functions form a complete basis for square-integrable functions.

- Existence Outside Potential Well: There's a non-zero probability of finding a particle outside the potential well, illustrating quantum penetration into classically forbidden regions.
- Classical Turning Points: Comparing the quantum oscillator to its classical counterpart involves examining classical turning points where kinetic energy is zero.
- Energy Gap: The gap between successive levels is $\hbar\omega$, influenced by $\omega=\sqrt{\frac{k}{m}}$, where k is the spring constant and m is the mass.

Exercises

Exercises

Exercise 1

Hint: Always apply the commutators to some function $[\hat{A},\hat{B}]f(x)$

Exercises

Exercise 2

For deeper understanding

Exercises

Exercise 3

Hint: $\psi_n = \frac{1}{\sqrt{n!}} (\hat{a}_+)^n \psi_0$ for $n = 1 \to \psi_1 = \frac{1}{\sqrt{1!}} (\hat{a}_+)^1 \psi_0$ Answer MUST be normalized!

Questions?

THANK YOU!