5. Stosując metodę najmniejszych kwadratów (regresja liniowa), wyznaczyć wartości współczynników prostej (prostych) najlepszego dopasowania (linii trendu, prostej regresji) dla zmierzonych zależności UH= f(Bn). Wyznaczyć niepewności tych współczynników oraz współczynnik korelacji RK. Skorzystać z gotowych programów komputerowych (patrz też: "dodatki" na stronie internetowej LPF). Wykorzystując otrzymane parametry prostej, narysować na wykresach punktowych zależności UH = f(Bn) odpowiadające im linie trendu y = ax +b, tworzące rodzinę charakterystyk polowych hallotronu. Wyniki graficzne omówić.

Dane	Wartość
a_0	3.907
a_1	-348.91000
$u(a_0)$	0.0008
$u(a_1)$	0.09394
$\approx u(a_0)$	0.008
$\approx u(a_1)$	0.094
Wspól.	
Korel.	-0.9991121
Liniowej	

$$U_H=B_n*a_1+a_0$$

Niepewności z programu na lpf, wyskoczył błąd w trakcie liczenia. Wnioski
Silna korelacja liniowa

6. Dla trzech punktów nanieść prostokąty niepewności (pola niepewności) oraz omówić tendencję ich zmian. Wybrać punkty (po jednym z początkowego, środkowego i końcowego obszaru wykresu) najbardziej oddalone (odstające) od prostej regresji.

Szukałem w wielu miejscach jak nanieść pola niepewności dla wybranych punktów, nie znalazłem