§1 Lecture 11-18

Definition of continuity: $\forall \epsilon > 0$, $\exists \delta > 0 : f(V_{\delta}(x_0) \cap A) \subseteq V_{\epsilon}(f(x_0))$

Remark 1.1. Let x_0 be an isolated point of A. Then <u>any</u> function $f: A \to \mathbb{R}$ is continuous at x_0 .

Proof. Let $f: A \to \mathbb{R}$ and let $\epsilon > 0$. Since x_0 is an isolated point of $A, \exists \delta: V_{\delta}(x_0) \cap A = \{x_0\}.$

Then,
$$f(V_{\delta}(x_0) \cap A) = f(\{x_0\}) = \{f(x_0)\}$$
. Thus f is continuous at x_0 .

Theorem 1.2 (Algebraic Rules for Continuity)

Let $f, g : A \to \mathbb{R}$ and let $x_0 \in A$ be a cluster point of A. f, g is continuous at x_0 , then:

- (a) f + g is continuous at x_0 .
- (b) $f \cdot g$ is continuous at x_0 .
- (c) f g is continuous at x_0 .
- (d) f/g is continuous at x_0 if $\forall x \in A, g(x) \neq 0$.

Proof.

(a) Let (x_n) be a sequence in A with $\lim(x_n) = x_0$.

Since f and g are continuous at x_0 , we have that $\lim(f(x_n)) = f(x_0)$ and $\lim(g(x_n)) = g(x_0)$.

Thus,

$$\lim((f+g)(x_0)) = \lim(f(x_0) + g(x_0))$$

$$= \lim(f(x_n)) + \lim(g(x_n)) = f(x_0) + g(x_0) = (f+g)(x_0)$$

$$\Rightarrow f + g \text{ is continuous at } x_0$$

Alternatively, we can use the limits of functions. f, g are continuous at x_0 so

$$\lim_{x \to x_0} f(x) = f(x_0)$$
$$\lim_{x \to x_0} g(x) = g(x_0)$$

Thus

$$\lim_{x \to x_0} [(f+g)(x)] = \lim_{x \to x_0} [f(x) + g(x)]$$

$$= \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = f(x_0) + g(x_0) = (f+g)(x_0)$$

$$\Rightarrow f + g \text{ is continous at } x_0$$

- (b) Left as an exercise
- (c) Left as an exercise
- (d) Left as an exercise

Theorem 1.3 (Compositions of continuous functions)

Let $f: A \to B$, and $g: B \to \mathbb{R}$ where $f(A) \subseteq B$. Let $x_0 \in A$, and let f be continuous at x_0 , and g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .

Proof.

1. Proof with $\epsilon - \delta$

Let $\epsilon > 0$. Because g is continuous at $f(x_0)$, we get that

$$\exists \nu > 0 \text{ such that } g(V_{\nu}(f(x_0)) \cap B) \subseteq V_{\epsilon}(g(f(x_0))). \tag{1}$$

And since f is continuous at x_0 , we get that

$$\exists \delta > 0 \text{ such that } f(V_{\delta}(x_0) \cap A) \subseteq V_{\nu}(f(x_0))$$
 (2)

Combining (1) and (2) we get that

$$(g \circ f)(V_{\delta}(x_0) \cap A) = g(f(V_{\delta}(x_0) \cap A) \subseteq g(V_{\nu}(f(x_0) \cap B) \subseteq V_{\epsilon}(g(f(x_0))))$$

$$\Rightarrow (g \circ f)(V_{\delta}(x_0) \cap A) \subseteq V_{\epsilon}((g \circ f)(x_0))$$

 $\Rightarrow g \circ f$ is continuous at x_0

2. Proof with sequential method

Let (x_n) be a sequence with $\lim(x_n) = x_0$. Since f is continuous at x_0 , we have that $\lim(f(x_n)) = f(x_0)$.

Because g is continuous at $f(x_0)$, we have that

$$\lim(g(f(x_n))) = g(f(x_0))$$

$$\Rightarrow \lim((g \circ f)(x_n)) = (g \circ f)(x_0)$$

 $\Rightarrow g \circ f$ is continuous at x_0

Definition 1.4. A function $f: A \to \mathbb{R}$ is called <u>continuous</u> (on A) if f is continuous at all $x_0 \in A$.

Example 1.5

- 1. x is continuous on \mathbb{R} .
- 2. Because products of continuous functions are continuous, x^n is continuous on \mathbb{R} for all $n \in \mathbb{N}$.

Note also that if $c_n \in \mathbb{R}$, $c_n x^n$ is continuous on \mathbb{R} .

- 3. Since sums of continuous functions are continuous, every polynomial $p(x) := a_0 + a_1 x + \cdots + a_n x^n$ is continuous on \mathbb{R} .
- 4. Since quotients of continuous functions are continuous, wherever the denominator is non-zero, we have that all rational functions $R(x) := \frac{P(x)}{Q(x)}$, P, Q polynomials are continuous on \mathbb{R}/N where $N := \{x \in \mathbb{R} : Q(x) = 0\}$.
- 5. We've seen that $\lim_{x\to x_0} \sqrt{x} = \sqrt{x_0}$ for all $x_0 \in \mathbb{R}_0^+$. Thus \sqrt{x} is continuous on \mathbb{R}_0^+ .
- 6. sin and cos are continuous on \mathbb{R} . See assignment 11.

Example 1.6 (Examples of discontinuous functions. sgn, Dirichlet, Thomae)

1.

$$sgn(x) := \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

Let (x_n) be a sequence with $x_n > 0$ for all $n \in \mathbb{N}$ and $\lim(x_n) = 0$ (e.g. $x_n = 1/n$. Then $\operatorname{sgn}(x_n) = 1$ for all $n \in \mathbb{N}$. Thus $(\operatorname{sgn}(x_n))$ converges to 1.

But! $sgn(0) = 0 \neq 1 = lim(sgn(x_n))$. Thus sgn is discontinuous at 0.

2. Dirichlet's Function. $f:[0,1] \to \mathbb{R}$ where f is defined as follows:

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Claim: f is discontinuous at all $x_0 \in [0, 1]$.

Proof. Proof by cases where $x_0 \in \mathbb{Q}$ and $x_0 \in \mathbb{R} \setminus \mathbb{Q}$:

a) Let x_0 be rational. Because $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} , we know that $\exists (x_n) \in [0,1]$ such that $\lim (x_n) = x_0$ and that $\forall n \in \mathbb{N} : x_n \in \mathbb{R} \setminus \mathbb{Q}$.

Then $\forall n \in \mathbb{N}$ we have that $f(x_n) = 0 \Rightarrow \lim(f(x_n)) = 0 \neq 1 = f(x_0)$.

b) Let $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Because \mathbb{Q} is dense in \mathbb{R} , we know that $\exists (x_n) \in [0,1]$ with $\lim_{n \to \infty} (x_n) = x_0$ and $\forall n \in \mathbb{N} : x_n \in \mathbb{Q}$.

Then $\forall n \in \mathbb{N} : f(x_n) = 1 \Rightarrow \lim(f(x_n)) = 1 \neq 0 = f(x_0).$

3. Thomae's Function Consider $f:[0,1]\to\mathbb{R}$ such that

$$f(x) = \begin{cases} 1/q, & x = n/q, \ \gcd(n,q) = 1\\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Claim: f is <u>continuous</u> at all irrational numbers, but <u>discontinuous</u> at all rational numbers.

§1.1 Topological consequences of continuity

Exercise.

- 1. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be continuous. Is f(I) an interval? (Yes, we will see later)
- 2. If $U \subseteq \mathbb{R}$ is open and $f: U \to \mathbb{R}$ is continuous, is f(U) open? (No. Find a counterexample).
- 3. If $V \subseteq \mathbb{R}$ is closed, is f(V) closed? (No)
- 4. If $S \subseteq \mathbb{R}$ is bounded, is f(S) bounded (No)
- 5. If $C\mathbb{R}$ is compact (recall that this means closed and bounded), is f(C) compact? Solution.
 - 1. We will see later.
 - 2. Let $f:]-1,1[\to \mathbb{R}$ where $x \to x^2$. Then]-1,1[is open, but f(]-1,1[)=[0,1[which is <u>not</u> open.
 - 3. $f:[1,\infty[\to\mathbb{R} \text{ where } x\to 1/x. \text{ Then } f([1,\infty[)=]0,1] \text{ which is } \underline{\text{not}} \text{ closed.}$
 - 4. $f:]0,1] \to \mathbb{R}$ where $x \to 1/x$. The domain of f is bounded. But $(]0,1]) = [1,\infty[$ is unbounded.

5.