Bisection Method

Mayank Pathania 204103314

February 4, 2021

1 Question No.2

```
Algorithm 1 Bisection Method
```

```
procedure BISECTION_METHOD(start_point, end_point, increment)
set a very low \epsilon value.
a = start\_point;
b = a + increment;
evaluate f(a);
evaluate f(b);
initialize empty vector zeros;
while (b \le end\_point) do
   if (f(a) * f(b) < 0) then
       mid = (a+b)/2;
       evaluate f(mid);
       if (f(mid) < \epsilon) then
                                                                                   ▶ close to zero
          store mid in zeros;
          a = b;
          f(a) = f(b);
          b = a + increment;
          evaluate f(b);
       else if (f(mid) * f(a) < 0) then
          b = mid;
          f(b) = mid;
       else
          a = mid;
          f(a) = f(mid);
   else
       a = b;
       f(a) = f(b);
       b = a + increment;
       evaluate f(b);
   return zeros;
                                                          ▶ empty zeros means no solution found
```

2 Flow Chart

3 Result $x^3 - 2x + 1$

3.1 Parameters

 $\begin{array}{lll} \text{start-point}: & -2 \\ \text{end-point}: & 2 \\ \text{increment}: & 0.5 \\ \boldsymbol{\epsilon}: & \mathbf{10^{-9}}; \end{array}$

3.2 Output

root	function evaluations
-1.61803	32
0.618034	64
1	93
total	95

4 Remarks

- $\bullet\,$ The function evaluations are cumulative.
- input arguments can be changed to get different solutions, if exist.
- \bullet for increment = 1 only one solution was found.
- \bullet for increment = 0.5 all three solutions were found.