

Multiple Imputation and subsequent calculations

Simon Ress | Ruhr-Universität Bochum September 22, 2022

Workshop at hr&c, Bochum, 2021

Content

- 1. Introduction
- 2. Examplary Data Set
- 3. Missing Patterns
- 4. Missing data handling techniques
- 5. Questions

Introduction

Introduction

What is this workshop about?

Specific methods for working with multiple imputed datasets

Why are special methods for working with multiple imputed data important?

We always want to estimate the true (causal) effect of an event

Does just using a specific algorithms leads to unbiased estimates?

No, there are other effects influencing the bias of an estimate

This workshop therefore follows a **holistic approach**. Based on methods for **calculating unbiased effects** in data without missing values, the different **missing patterns** are then introduced, the effect of different **missing-handling techniques** on the bias is demonstrated and then **multiple imputation** is introduced as a method for reducing the bias.

Examplary Data Set

Planing the interdependencies of variables

- Every variable is constructed by an random term
- Some variables are influenced by values of other variables
- e.g. "Mann" = 1 increases the probability for FK=1 by 20%

Data Set Creation

```
#Create variables
set.seed(415)
Mann = ifelse(runif(5000,0,1) < 0.50,1,0)
Alter = as.numeric(cut(runif(5000,20,70),
                       c(20,30,40,50,60,70))
FK = ifelse((Mann*0.2 + Alter*0.1 +
             runif(5000,0,0.6)) > 0.95, 1, 0)
B2.1 = as.numeric(cut(FK*2 +
                      rnorm(5000,2,0.35), c(0,1,2,3,4,6))
set.seed(1015)
B5.1 = as.numeric(cut(FK*1.5 + B2.1*0.2 + Alter*(-0.30) +
                      rnorm(5000, 2.5, 0.30), c(-2, 1, 2, 3, 4, 8)))
#Build data frame
df = data.frame(Mann, Alter, FK, B2.1, B5.1)
```

View Data Set

head(df, 10)

```
##
      Mann Alter FK B2.1 B5.1
## 1
                4 0
## 2
## 3
                    0
                5 1
                          4
                               3
## 4
                    0
                               2
## 5
## 6
                3 1
                          4
                               4
                               3
## 7
                    0
                    0
                          3
                               3
## 8
## 9
                               2
                               3
## 10
```

A. Check whether true effects can be estimated

Table 1: $Im(FK\sim Mann) \mid Mann: +0.2$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0596	0.0070	8.5438	0
Mann	0.2001	0.0099	20.1491	0

Table 2: $Im(FK\sim Alter) \mid Alter: +0.1$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.1406	0.0110	-12.7686	0
Alter	0.1002	0.0033	30.0803	0

Table 3: | FK: +2

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.4980	0.0079	318.0197	0
FK	2.0115	0.0197	101.8565	0

A. Evaluation whether true effects was estimated

Yes, in all three models the true effect was estimated (taken the confidence interval into account).

B. Check whether true effects can be estimated

Table 4: $Im(B5.1 \sim FK) \mid FK: +1.5$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.6745	0.0088	302.2230	0
FK	1.4519	0.0222	65.2572	0

Table 5: $Im(B5.1 \sim B2.1) \mid B2.1: +0.2$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.3494	0.0283	47.6337	0
B2.1	0.5521	0.0096	57.5786	0

Table 6: Im(B5.1~Alter) | Alter: -0.3

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.2286	0.0251	128.6139	0
Alter	-0.1088	0.0076	-14.3234	0

B. Evaluation whether true effects was estimated

- It is not obvious from the estimates and standard error whether the true effect was calculated
- Verification by the exact calculation of the confidence interval is needed

B.II Check if confidence interval encloses true effect

Recap Confidence Interval A confidence interval is an interval that contains the population parameter with probability $1-\alpha$. A confidence interval takes on the form:

$$\overline{X} \pm t_{\alpha/2,N-1} * S_{\overline{X}}$$

where $t_{\alpha/2,N-1}$ is the (z-)value needed to generate an area of $\alpha/2$ in each tail of a t-distribution with n-1 degrees of freedom and $S_{\overline{X}} = \frac{s}{\sqrt{N}}$ is the standard error of the mean (s=standard deviation).

Z-value (standard		
deviation)	p-value (probability)	Confidence level
< -1,65 oder $>$ +1,65	< 0,10	90%
< -1,96 oder $>$ +1,96	< 0,05	95%
< -2,58 oder $>$ +2,58	< 0,01	99%

B.II Check if confidence interval encloses true effect (B5.1~FK)

Table 8: $Im(B5.1 \sim FK) \mid FK: +1.5$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.6745	0.0088	302.2230	0
FK	1.4519	0.0222	65.2572	0

- True effect: +1.5
- Confidence Interval $= \overline{X} \pm t_{\alpha/2,N-1} * S_{\overline{X}}$
- lower.bound = 1.4519152 0.0222491 * 1.96 = **1.408**
- upper.bound = 1.4519152 + 0.0222491 * 1.96 = 1.496
- -> True effect is **not covered** by the confidence interval

B.II Check if confidence interval encloses true effect (B5.1 \sim B2.1)

Table 9: $Im(B5.1 \sim B2.1) \mid B2.1: +0.2$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.3494	0.0283	47.6337	0
B2.1	0.5521	0.0096	57.5786	0

- True effect: +0.2
- Confidence Interval = $\overline{X} \pm t_{\alpha/2,N-1} * S_{\overline{X}}$
- lower.bound = 0.552082 0.0095883 * 1.96 = **0.533**
- upper.bound = 0.552082 + 0.0095883 * 1.96 = 0.571

-> True effect is **not covered** by the confidence interval

B.II Check if confidence interval encloses true effect (B5.1 \sim Alter)

Table 10: Im(B5.1~Alter) | Alter: -0.3

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.2286	0.0251	128.6139	0
Alter	-0.1088	0.0076	-14.3234	0

- True effect: -0.3
- Confidence Interval = $\overline{X} \pm t_{\alpha/2,N-1} * S_{\overline{X}}$
- lower.bound = -0.1087938 0.0075955 * 1.96 = -0.124
- upper.bound = -0.1087938 + 0.0075955 * 1.96 = -0.094

-> True effect is **not covered** by the confidence interval

Brainstroming

What's the problem? Why can't we estimate the true (causal) effect?

Excursus: Modern Causal Analysis

- Satisfaction of the Conditional Independence Assumption (CIA) necessary to estimate true causal effects
- Meet the CIA using an appropriate set of control variables
- Choose control variables by a Directed Acyclic Graph (DAG)

Excursus MCA: DAG (B5.1 <- FK)

Table 11: Im(B5.1~FK+B2.1+Alter) | FK: +1.5

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.9909	0.0311	96.2506	0
FK	1.5033	0.0283	53.1769	0

[1] "Effect without fulfilling the CIA: 1.4519"

Excursus MCA: DAG (B5.1 <- B2.1)

Table 12: $Im(B5.1 \sim B2.1 + FK + Alter) \mid B2.1: +0.2$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.9909	0.0311	96.2506	0
B2.1	0.2031	0.0112	18.0842	0

[1] "Effect without fulfilling the CIA: 0.5521"

Excursus MCA: DAG (B5.1 <- Alter)

Table 13: Im(B5.1~Alter+FK+B2.1) | Alter: -0.3

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.9909	0.0311	96.2506	0
Alter	-0.3007	0.0044	-68.9450	0

[1] "Effect without fulfilling the CIA: -0.1088"

Conclusion on the calculation of the unbiased effect

- Even in case of non-missing data the estimation of unbiased estimates is not a sure-fire success
- The CIA needs to be satisfied otherwise there will be always a bias in the estimates
- Fulfilling the CIA is possible by deriving an appropriate set of variables from an DAGs

Missing Patterns

Three types of missing patterns

- Missing completely at random (MCAR)
- Missing Patterns: Missing at random (MAR)
- Missing Patterns: Missing not at random (MNAR)

Missing Patterns: Missing completely at random (MCAR)

- Missing values are completely randomly distributed in the variable of interest
 - There is no pattern to the actual values of the missing variable themselves
 - e.g. higher or lower values are more likely be missing
 - Missing data values do not relate to any distribution of another variable
 - e.g. woman are more likely to have missing values on income
- For instance, when smoking status is not recorded in a random subset of patients
- This missing-type is easy to handle, but unfortunately, data are almost never missing completely at random

MCAR: Inserting Missing values in data frame

```
if(!require(missMethods)) install.packages("missMethods")
library(missMethods)

set.seed(322)

df.MCAR = delete_MCAR(df, 0.3, "Mann")

df.MCAR = delete_MCAR(df.MCAR, 0.2, "Alter")

df.MCAR = delete_MCAR(df.MCAR, 0.25, "FK")

df.MCAR = delete_MCAR(df.MCAR, 0.15, "B2.1")

df.MCAR = delete_MCAR(df.MCAR, 0.35, "B5.1")
```

MCAR: Check missing pattern (Mann)

```
## [1] "Mean 'Mann' (no missings): 0.493"
## [1] "Mean 'Mann' (MCAR): 0.4934"
##
      FALSE TRUE
##
##
    0 1773 762
##
    1 1727 738
##
##
          FALSE
                  TRUE
    0 50.7 50.8
##
        49.3 49.2
##
##
    Total 100.0 100.0
##
    Count 3500.0 1500.0
```

MCAR: Check missing pattern (Alter)

```
## [1] "Mean 'Alter' (no missings): 2.9816"
## [1] "Mean 'Alter' (MCAR): 2.988"
##
##
      FALSE TRUE
##
        843 208
    2 775 200
##
    3 777 213
##
##
    4 797 186
##
    5 808 193
##
##
          FALSE
                 TRUE
         21.1
##
    1
                 20.8
##
    2 19.4 20.0
##
          19.4 21.3
##
    4 19.9 18.6
           20.2 19.3
##
##
    Total 100.0 100.0
##
    Count 4000.0 1000.0
```

MCAR: Check missing pattern (FK)

```
## [1] "Mean 'FK' (no missings): 0.1582"
## [1] "Mean 'FK' (MCAR): 0.1568"
##
      FALSE TRUE
##
##
    0 3162 1047
##
    1 588 203
##
##
         FALSE
                  TRUE
    0 84.3 83.8
##
   1 15.7 16.2
##
##
    Total 100.0 100.0
##
    Count 3750.0 1250.0
```

MCAR: Check missing pattern (FK II)

```
#define standard error of mean function
std.error <- function(x) sd(x[!is.na(x)])/sqrt(length(x[!is.na(x)]))
#Calculate the confidence interval
mean(df.MCAR$FK, na.rm = TRUE) + 1.96*std.error(df.MCAR$FK) # upper.bound
## [1] 0.1684396
mean(df.MCAR$FK, na.rm = TRUE) - 1.96*std.error(df.MCAR$FK) # lower.bound
## [1] 0.1451604</pre>
```

MCAR: Check missing pattern (B2.1)

```
## [1] "Mean 'B2.1' (no missings): 2.8162"
## [1] "Mean 'B2.1' (MCAR): 2.8169"
##
##
     FALSE TRUE
##
        10
    2 1783 311
##
    3 1776 317
##
##
   4 337 58
##
    5 344 60
##
        FALSE TRUE
##
         0.2 0.5
##
##
    2 42.0 41.5
##
    3 41.8 42.3
##
    4 7.9 7.7
    5 8.1 8.0
##
##
    Total 100.0 100.0
##
    Count 4250.0 750.0
```

MCAR: Check missing pattern (B5.1)

```
## [1] "Mean 'B5.1' (no missings): 2.9042"
## [1] "Mean 'B5.1' (MCAR): 2.8972"
##
##
      FALSE TRUE
##
        25
            23
    2 990 506
##
    3 1626 865
##
##
    4 512 305
##
        97 51
##
##
         FALSE
                 TRUE
         0.8 1.3
##
##
    2 30.5
                 28.9
##
    3 50.0 49.4
##
    4 15.8 17.4
       3.0 2.9
##
##
    Total 100.1
                 99.9
##
    Count 3250.0 1750.0
```

Missing Patterns: Missing at random (MAR)

- Confusing and would be better stated as missing conditionally at random
- Missing data do have a relationship with other variables in the dataset
 - Whether a value is missing or not depends on other variables
 - e.g. woman are more likely to have missing values on income
- The actual shaping of the missing-values are random
 - e.g. the missing income data of woman are not especially low or high, but even distributed
- For example, smoking status is not documented in female patients because the doctor was too shy to ask

MAR: Inserting Missing values in data frame

```
if(!require(missMethods)) install.packages("missMethods")
library(missMethods)
# Generate MAR values using a censoring mechanism. This leads to a missing value in "X". if
  # ds_mar <- delete_MAR_censoring(ds_comp, 0.3, "X", cols_ctrl = "Y")
#The censoring mechanism is a rather strong form of MAR. A function that allows to control
  # ds mar <- delete MAR 1 to x(ds comp, 0.3, "X", cols ctrl = "Y", x = 2)
set.seed(322)
df.MAR = delete MAR 1 to x(df, 0.3, "Mann", cols ctrl = "Alter", x = 2)
df.MAR = delete_MAR_1_to_x(df.MAR, 0.4, "Alter", cols_ctrl = "FK", x = 3)
df.MAR = delete MAR 1 to x(df.MAR, 0.7, "FK", cols ctrl = "B2.1", x = 2.5)
df.MAR = delete\_MAR\_1\_to\_x(df.MAR, 0.15, "B2.1", cols\_ctrl = "B5.1", x = 2)
df.MAR = delete MCAR(df.MAR, 0.30, "B5.1")
```

MAR: Check missing pattern (Mann)

```
## [1] "Mean 'Mann' (no missings): 0.493"
## [1] "Mean 'Mann' (MAR): 0.4871"
##
      FALSE TRUE
##
##
    0 1795 740
##
    1 1705 760
##
##
          FALSE
                  TRUE
    0 51.3 49.3
##
       48.7 50.7
##
##
    Total 100.0 100.0
##
    Count 3500.0 1500.0
```

MAR: Check missing pattern (Alter)

```
## [1] "Mean 'Alter' (no missings): 2.9816"
## [1] "Mean 'Alter' (MAR): 2.797"
##
##
      FALSE TRUE
##
        726 325
    2 637 338
##
    3 625 365
##
##
    4 544 439
##
    5 468 533
##
##
          FALSE
                  TRUE
        24.2 16.2
##
    1
##
          21.2 16.9
##
          20.8 18.2
##
    4 18.1 22.0
          15.6 26.7
##
##
    Total
           99.9 100.0
##
    Count 3000.0 2000.0
```

MAR: Check missing pattern (FK)

```
## [1] "Mean 'FK' (no missings): 0.1582"
## [1] "Mean 'FK' (MAR): 0.0307"
##
      FALSE TRUE
##
##
    0 1454 2755
##
    1 46 745
##
##
         FALSE
                  TRUE
    0 96.9 78.7
##
        3.1 21.3
##
##
    Total 100.0 100.0
##
    Count 1500.0 3500.0
```

MAR: Check missing pattern (B2.1)

```
## [1] "Mean 'B2.1' (no missings): 2.8162"

## [1] "Mean 'B2.1' (MAR): 2.8082"

## ## FALSE TRUE
## 0 1454 2755
## 1 46 745
```

```
##
##
       FALSE TRUE
   1 0.3 0.3
##
##
   2 42.3 39.6
   3 41.6 43.2
##
##
   4 8.0 7.6
##
      7.9 9.3
##
   Total 100.1 100.0
   Count 4250.0 750.0
##
```

MAR: Check missing pattern (B5.1)

- Due to estimation reasons B5.1 is MCAR
- Missing patterns is the as shown before

Missing Patterns: Missing not at random (MNAR)

- The pattern of missingness is related to other variables in the dataset
- In addition, the shaping of the missing-values are NOT random
 - Whether a value is missing or not depends on its shaping
 - e.g. higher or lower incomes are more likely be missing
- For example, when smoking status is not recorded in patients admitted as an emergency, who are also more likely to have worse outcomes from surgery

MNAR: Inserting Missing values in data frame

```
if(!require(missMethods)) install.packages("missMethods")
library(missMethods)
# Generate MNAR values using a censoring mechanism. This leads to a missing value in "X", i
  #ds_mnar <- delete_MNAR_censoring(ds_comp, 0.3, "X")
# Create missing not at random (MNAR) values using MNAR1:x in a data frame
  #delete MNAR 1 to x(ds, 0.2, "X", x = 3)
set.seed(322)
df.MNAR = delete MNAR 1 to x(df, 0.3, "Mann", x = 3)
df.MNAR = delete_MNAR_1_to_x(df.MNAR, 0.4, "Alter", x = 3.5)
df.MNAR = delete MNAR 1 to x(df.MNAR, 0.45, "FK", x = 2)
df.MNAR = delete_MNAR_1_to_x(df.MNAR, 0.35, "B2.1", x = 2.5)
df.MNAR = delete MNAR 1 to x(df.MNAR, 0.30, "B5.1", x = 4)
```

MNAR: Check missing pattern (Mann)

```
## [1] "Mean 'Mann' (no missings): 0.493"
## [1] "Mean 'Mann' (MNAR): 0.3851"
##
      FALSE TRUE
##
##
    0 2152 383
##
    1 1348 1117
##
##
          FALSE
                  TRUE
    0 61.5 25.5
##
        38.5 74.5
##
##
    Total 100.0 100.0
##
    Count 3500.0 1500.0
```

MNAR: Check missing pattern (Alter)

```
## [1] "Mean 'Alter' (no missings): 2.9816"
## [1] "Mean 'Alter' (MNAR): 2.571"
##
##
      FALSE TRUE
##
       883 168
    2 817 158
##
    3 437 553
##
##
    4 430 553
    5 433 568
##
##
##
         FALSE
                 TRUE
       29.4 8.4
##
    1
##
    2 27.2 7.9
##
    3 14.6 27.7
##
    4 14.3 27.7
          14.4 28.4
##
##
    Total
           99.9 100.1
##
    Count 3000.0 2000.0
```

MNAR: Check missing pattern (FK)

```
## [1] "Mean 'FK' (no missings): 0.1582"
## [1] "Mean 'FK' (MNAR): 0.064"
##
      FALSE TRUE
##
##
    0 2574 1635
##
    1 176 615
##
##
         FALSE
                  TRUE
    0 93.6 72.7
##
       6.4 27.3
##
##
    Total 100.0 100.0
##
    Count 2750.0 2250.0
```

MNAR: Check missing pattern (B2.1)

```
## [1] "Mean 'B2.1' (no missings): 2.8162"
## [1] "Mean 'B2.1' (MNAR): 2.6662"
##
##
     FALSE TRUE
##
        12
    2 1701 393
##
    3 1105 988
##
##
    4 224 171
    5 208 196
##
##
##
        FALSE
                 TRUE
        0.4 0.1
##
##
    2 52.3 22.5
##
    3 34.0 56.5
##
    4 6.9 9.8
    5 6.4 11.2
##
##
    Total 100.0 100.1
##
    Count 3250.0 1750.0
```

MNAR: Check missing pattern (B5.1)

```
## [1] "Mean 'B5.1' (no missings): 2.9042"
## [1] "Mean 'B5.1' (MNAR): 2.7774"
##
##
     FALSE TRUE
##
        43
##
    2 1350 146
    3 1534 957
##
##
    4 489 328
##
    5 84
            64
##
##
        FALSE
                 TRUE
         1.2 0.3
##
##
    2 38.6 9.7
##
    3 43.8 63.8
##
    4 14.0 21.9
         2.4 4.3
##
##
    Total 100.0 100.0
##
    Count 3500.0 1500.0
```

Missing data handling techniques

Overview of missing data handling techniques

Traditional Methods

- Delete Rows with Missing Values (list-wise deletion)
- Mean/Median Imputation
- Regression Imputation

Modern Methods

Multiple Imputation

Missingness	List-wise deletion	Mean/Median Imputation	Regression Imputation	Multiple Imputation
MCAR	unbiased estimate \ (biases SE)	unbiased estimate \ (biases SE)	unbiased estimate \ (biases SE)	unbiased estimate \ (unbiased SE)
MAR	biased estimate \ (biases SE)	biased estimate \ (biases SE)	unbiased estimate \ (biases SE)	unbiased estimate \ (unbiased SE)
MNAR	biased estimate \ (biases SE)	biased estimate \ (biases SE)	unbiased estimate \ (biases SE)	unbiased estimate \ (unbiased SE)

MCAR: list-wise deletion (Point estimate Mann) CODE

MCAR: list-wise deletion (Point estimate Mann)

Full Dataset (true coefficients)

```
## [1] "Mean 'Mann' (no missings): 0.493"

## [1] "upper.bound: 0.5069"

## [1] "lower.bound: 0.4791"
```

Missing Dataset

```
## [1] "Mean 'Mann' (MCAR): 0.4934"

## [1] "upper.bound: 0.51"

## [1] "lower.bound: 0.4769"
```

Evaluation: Unbiased Estimate (biases SE & Confidence Interval)

MCAR: Mean/Median Imputation (Point estimate Mann) CODE

```
# Mean Imputation
 df.MCAR.Mean = df.MCAR
 df.MCAR.Mean$Mann <- ifelse(is.na(df.MCAR$Mann), mean(df.MCAR$Mann, na.rm = TRUE),
                              df .MCAR$Mann)
# Point estimates
 pasteO("Mean 'Mann' (no missings): ". mean(df$Mann))
 pasteO("Mean 'Mann' (MCAR): ", round(mean(df.MCAR.Mean$Mann, na.rm = TRUE),4))
  #define standard error of mean function
   std.error <- function(x) sd(x[!is.na(x)])/sqrt(length(x[!is.na(x)]))</pre>
  #Calculate the confidence interval
   pasteO("upper.bound: ", round(mean(df.MCAR.Mean$Mann, na.rm = TRUE) + 1.96*
                                    std.error(df.MCAR.Mean$Mann), 4)) # upper.bound
   pasteO("lower.bound: ", round(mean(df.MCAR.Mean$Mann, na.rm = TRUE) - 1.96*
                                    std.error(df.MCAR.Mean$Mann), 4)) # lower.bound
```

MCAR: Mean/Median Imputation (Point estimate Mann)

Full Dataset (true coefficients)

```
## [1] "Mean 'Mann' (no missings): 0.493"

## [1] "upper.bound: 0.5069"

## [1] "lower.bound: 0.4791"
```

Missing Dataset

```
## [1] "Mean 'Mann' (MCAR): 0.4934"

## [1] "upper.bound: 0.505"

## [1] "lower.bound: 0.4818"
```

Evaluation: Unbiased Estimate (biases SE & Confidence Interval)

Excursus: Rules for MI inference ("Rubin's rules")

Literature-Link

Combining parameter estimates

For a single population parameter of interest, Q, e.g. a regression coefficient, the MI overall point estimate is the average of the **m**-estimates of Q from the imputed datasets: $\overline{Q} = \frac{1}{m} \sum_{i=1}^m \hat{Q}$

The **standard error** is calculated with the **total variance**(TIV), which is uses the **within imputation variance**(WIV) and the **between imputation variance**(BIV):

$$\begin{split} WIV &= \frac{1}{m} \sum_{i=1}^m \sigma^2 \text{, where } \sigma^2 = \frac{\sum (X_i - \mu)^2}{N} \\ BIV &= \frac{1}{m} \sum_{i=1}^m (\hat{Q}_i - \overline{Q}) \\ TIV &= WIV + (1 + \frac{1}{m})BIW \end{split}$$

Now the standard error is calculated by $SD=\sqrt{TIV}$ and $SE=\frac{SD}{\sqrt{N/m}}$

Testing "Rubin's rules" code

```
#Create artificial mi-dataset (no missings)
  df.mi = rbind(df,df,df,df,df) %% mutate(mi_id = rep(1:5, each = 5000))
  n_mi = length(unique(df.mi$mi_id))
#Calculate and compare point-estimates
  round(mean(df$Mann),4)
  round(mean(df.mi$Mann),4)
#Calculate and compare standard errors & confidence intervals
  #1. Step: Calculate the total variance by the "within imputation variance" and the "between imputation variance"
  #2.Step: Calculate the SE from the "total variance"
    WIV = df.mi %>% group_by(mi_id) %>% summarise(var = var(Mann)) %>% summarise(var = mean(var)) %>% .[[1]]
    BIV = df.mi %>% group_by(mi_id) %>% summarise(mean = mean(Mann)) %>% mutate(diff.square = (mean - colMeans(.[2]))^2) %>%
      summarise(B = mean(diff.square)) %>% . [[1]]
    TTV = WTV + (1+1/5)*BTV
    SD = sqrt(TIV)
    SE = SD/sqrt(nrow(df.mi)/5)
  # Alternative: directly use SE as within-component
    W = df.mi %>% group_by(mi_id) %>% summarise(std.error = sd(Mann[!is.na(Mann)])/sqrt(length(Mann[!is.na(Mann)]))) %>%
      summarise(std.error = mean(std.error)) %>%
      . [[1]]
    B = df.mi %>% group_by(mi_id) %>% summarise(mean = mean(Mann)) %>% mutate(diff.square = (mean - colMeans(.[2]))^2) %>%
      summarise(B = mean(diff.square)) %>% .[[1]]
    SE.short = W+(1+1/n_mi)*B
  #Alternative: Neglect between-component
    #define standard error of mean function
      mi_std.error <- function(x) sd(x[!is.na(x)])/sqrt(length(x[!is.na(x)])/n_mi) # UNbiased!!!!
  #Define standard error without considering MI-structure (WRONG)
    std.error <- function(x) sd(x[!is.na(x)])/sgrt(length(x[!is.na(x)])) #Biased!!!!
```

Testing "Rubin's rules" code

Mean Calculation:

```
## [1] "Mean (Full-Dataset): 0.493"

## [1] "Mean (MI-Dataset): 0.493"
```

SE Calculation:

```
## [1] "SE (Not considering MI-structure): 0.00316203098302302"

## [1] "SE (No between effect): 0.00707051622499995"
```

[1] "SE (Rubin's rule, SE indead of VAR): 0.0070710819568159

```
## [1] "SE (Rubin's rule): 0.00774536245927749"
```

MCAR: Multiple Imputation (Point estimate Mann) CODE

```
if(!require(mice)) install.packages("mice")
library(mice)
# Multiple Imputation
  df.MCAR.MI <- mice(df.MCAR.m=5.maxit=50,meth='pmm',seed=500, print=FALSE) # Object of mice class, can be used with mice-special
  df.MCAR.MI <- complete(df.MCAR.MI, 'long') # create dataframe of the n-imputed datasets
# Point estimates
  pasteO("Mean 'Mann' (MCAR): ", round(mean(df.MCAR.MI$Mann),4))
#Define function for SE-calculation
  mi_se = function(data, var, mi_id) {
    WIV = data %>%
      group_by(eval(parse(text =mi_id))) %>%
      summarise(variance = var(eval(parse(text=var)))) %>%
      summarise(var = mean(variance)) %>%
      . [[1]]
    BIV = data %>%
      group_by(eval(parse(text =mi_id))) %>%
      summarise(mean = mean(eval(parse(text=var)))) %>%
      mutate(diff.square = (mean - colMeans(.[2]))^2) %>%
      summarise(B = mean(diff.square)) %>%
      . [[1]]
    TIV = WIV+(1+1/length(unique(data[,mi_id])))*BIV
    SD = sqrt(TIV)
    SE = SD/sqrt(nrow(data)/length(unique(data[,mi_id])))
    return(SE)
#Using the function
  mi_se(df.mi, "Mann", "mi_id")
```

MCAR: Multiple Imputation (Point estimate Mann)

Full Dataset (true coefficients)

```
## [1] "Mean 'Mann' (no missings): 0.493"

## [1] "upper.bound: 0.5069"

## [1] "lower.bound: 0.4791"
```

Missing Dataset

```
## [1] "Mean 'Mann' (MCAR): 0.4952"

## [1] "upper.bound (wrong): 0.5014"

## [1] "lower.bound (wrong): 0.489"

## [1] "upper.bound (true): 0.5091"

## [1] "lower.bound (true): 0.4814"
```

Evaluation: Unbiased Estimate (unbiases SE & Confidence Interval)

MAR: Multiple Imputation (Point estimate Mann)

Full Dataset (true coefficients)

```
## [1] "Mean 'Mann' (no missings): 0.493"

## [1] "upper.bound: 0.5069"

## [1] "lower.bound: 0.4791"
```

Missing Dataset

```
## [1] "Mean 'Mann' (MAR): 0.4973"

## [1] "upper.bound (wrong): 0.5035"

## [1] "lower.bound (wrong): 0.4911"

## [1] "upper.bound (true): 0.5111"

## [1] "lower.bound (true): 0.4834"
```

Evaluation: Unbiased Estimate (unbiases SE & Confidence Interval)

MNAR: Multiple Imputation (Point estimate Mann)

Full Dataset (true coefficients)

```
## [1] "Mean 'Mann' (no missings): 0.493"

## [1] "upper.bound: 0.5069"

## [1] "lower.bound: 0.4791"
```

Missing Dataset

```
## [1] "Mean 'Mann' (MNAR): 0.3913"

## [1] "upper.bound (wrong): 0.3974"

## [1] "lower.bound (wrong): 0.3853"

## [1] "upper.bound (true): 0.4049"

## [1] "lower.bound (true): 0.3778"
```

Evaluation: Unbiased Estimate (unbiases SE & Confidence Interval)

Questions

Questions

Any Questions so far?