

FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIERA DA CUNHA CURSO TÉNICO DE ELETRÔNICA — ELEMENTOS DE PROGRAMAÇÃO

Lista de exercícios de Vetores

- 1. Elabore um programa que lê valores para um vetor de 17 posições e o escreve. Escreve, a seguir, somente os números primos deste vetor.
- 2. Elabore um programa para ler valores para dois vetores, a[13] e b[13]. Transfira, a seguir, os valores lidos para um vetor c[26] e os escreva de maneira ordenada.
- 3. Elabore um programa que lê 30 valores inteiros para um vetor. Encontre o menor e o maior valor deste vetor, escrevendo-os juntamente com a sua posição.
- 4. Escreva um algoritmo que lê um vetor A(10) e escreva a posição de cada elemento igual a 10 deste vetor.
- 5. Escrever um algoritmo que lê um vetor X(25) e o escreve. Substitua, a seguir, todos os valores nulos de X por 1 e escreva novamente o vetor X.
- 6. Faça um algoritmo que leia 100 valores e os escreva na ordem contrária à que foram digitados.
- 7. Elabore um programa que lê 20 valores inteiros e positivos para um vetor e o escreve (todos os valores numa linha). Escreva, a seguir, os valores informando, ao lado, quantas vezes ele foi digitado no vetor.
- 8. Elabore um programa que lê valores inteiros para um vetor de 30 posições e o escreve. Troque, a seguir, somente os números primos deste vetor pelo valor "zero". Escreva o vetor resultante.
- 9. Elabore um programa que leia 50 valores para um vetor A e o escreve. Pesquise, a seguir, o vetor e:
 - a) Encontre e escreva o maior valor e sua posição;
 - b) Encontre e escreva o menor valor e sua posição;
 - c) Calcule e escreva a média aritmética dos valores lidos;
 - d) Escreva quantos são pares;
 - e) Escreva quantos são impares:
 - f) Exiba todos os números primos;

Lista de exercícios de Matrizes

- 1. Elabore um programa que lê valores inteiros para um matriz a[6][6]. Calcule, a seguir, a soma dos elementos das colunas e linhas, escrevendo estes resultados num vetor. Escreva o vetor resultante.
- 2. Elabore um programa que lê valores inteiros para um matriz a[6][6]. Ordene, a matriz, de forma que o menor valor esteja armazenado na primeira posição da matriz e o maior na última. Escreva a matriz ordenada.
- 3. Faça um programa que leia uma matriz mat 3 x 4 de inteiros, substitua seus elementos negativos por 0 e imprima a matriz mat original e a modificada.
- 4. Faça um programa que leia uma matriz mat 2 x 5 de inteiros e imprima os elementos de mat na ordem inversa.
- 5. Na teoria dos sistemas, define-se como elemento minimax de uma matriz o menor elemento da linha onde se encontra o maior elemento da matriz. Elabore um programa que lê valores inteiro para um matriz a[6][6] e escreve o seu minimax juntamente com sua posição.
- 6. Elabore um programa que lê valores inteiros para uma matriz M[5][5]. Crie, a seguir, dois vetores SL[5] e SC[5] que armazenarão o somatório dos elementos das linhas e das colunas da matriz M. Escrever a matriz lida e os vetores
- 7. Elabore um programa que lê valores inteiros para uma matriz M[5][5]. Localize, a seguir, os valores repetidos, substituindo-os pelo valor –1. Escrever a matriz lida, a matriz resultante (sem os valores –1) e quantos valores repetidos foram localizados.
- 8. Elabore um programa que lê valores inteiros para um matriz a[6][6]. Embaralhe os valores da matriz da seguinte forma: os valores da coluna 1 são armazenados na coluna dois, os da 2 são armazenados na 3 e assim por diante até os valores da coluna 6 serem armazenados na coluna 1. Este procedimento deve ser realizado três vezes. Após, repita o procedimento das colunas para as linhas. Escreva a matriz lida e a resultante.

9. Considerando uma matriz quadrada, podemos identificar várias áreas, como por exemplo, a diagonal principal, secundária, ...

Elaborar um programa que leia a ordem de uma matriz quadrada (mínimo de 3 e máximo de 10) e leia valores inteiros e positivos para ela (pode utilizar a função aleatório). Após a leitura dos valores desta matriz, escrever na tela de maneira centralizada um menu de opções:

- 1. Diagonal principal (DP)
- 2. Diagonal secundária (DS)
- 3. Elementos acima das diagonais
- 4. Elementos abaixo das diagonais
- 5. Elementos acima da DP e abaixo da DS
- 6. Elementos abaixo da DP e acima da DS
- 7. Todos os elementos da matriz
- 8. Sair do programa

Para cada uma destas opções, apresentar a soma dos elementos conforme a opção selecionada.

Após o cálculo, escrever a matriz, a soma correspondente e voltar ao menu para selecionar uma nova opção. O algoritmo deve ser encerrado quando a opção for 8.

Matriz 9x9

11	12	13	14	15	16	17	18	19
21	22	23	24	25	26	27	28	29
31	32	33	34	35	36	37	38	39
41	42	43	44	45	46	47	48	49
51	52	53	54	55	56	57	58	59
61	62	63	64	65	66	67	68	69
71	72	73	74	75	76	77	78	79
81	82	83	84	85	86	87	88	89
91	92	93	94	95	96	97	98	99

Matriz 6x6

11	12	13	14	15	16
21	22	23	24	25	26
31	32	33	34	35	36
41	42	43	44	45	46
51	52	53	54	55	56
61	62	63	64	65	66