Gestão de Redes com Nagios e Zabbix

Mestrado Integrado em Engenharia Electrotécnica e Computadores

Planeamento e Gestão de Redes

Francisco Fernandes Xavier de Barros – 201506338 João Nuno Barbosa Neves – 201405198

30 de Maio de 2019

Introdução

No âmbito da unidade curricular de Planeamento e Gestão de Redes foram estudadas para este trabalho duas ferramentas de gestão de equipamentos e serviços de uma rede, e as suas componentes de monitorização, sendo elas o Nagios e o Zabbix. Para a monitorização foram configurados, um servidor Web, um servidor FTP, um servidor NTP, um servidor de e-mail e um servidor cache de DNS.

Para obter resultados de bom funcionamento foram forçados erros nos servidores tal como pedido no quião.

Configuração dos Servidores

Optámos por distribuir os servidores pelos tux's disponíveis da seguinte forma:

tux11 - Servidor de mail postfix

tux12 - Servidor de cache DNS

tux13 - Servidores de NTP, FTP e Apache

tux14 - Nagios e Zabbix

Servidor Web

Para o servidor web fizemos o download do pacote apache2 que se configura automaticamente de uma forma suficiente para o efeito. Observe-se na imagem abaixo o pedido feito ao mesmo a partir do tux11:

Servidor FTP

Para o servidor FTP foram executados os seguintes comandos:

- apt install vsftpd
- nano /etc/vsftpd.conf Configurações acrescentadas:
 - anonymous_enable = YES
 - anon_uploud_enable = YES
 - write enable = YES
 - anon_mkdir_write_enable = YES
- > systemctl restart vsftpd
- systemctl enable vsftpd

Para obtermos tráfego FTP criámos um pequeno script em python (ftp_python.py, em anexo) que faz um login anónimo e uma listagem do diretório. Observe-se embaixo um acesso a partir do tux11:

```
Terminal

Termin
```

Servidor NTP

Para este servidor instalámos o pacote NTP no tux13 e o pacote ntpdate nos restantes tux's. Com o comando que se demonstra embaixo vemos o bom funcionamento do servidor:

Servidor e-mail

O servidor de e-mail necessitou de um número maior de comandos, sendo eles:

- apt-get install postfix mailutils (servidor + cliente)
- nano /etc/postfix/main.cf Configurações acrescentadas:
 - myhostname = mail.banc1.pgre
 - mydomain = banc1.pgre
 - mynetworks = 127.0.0.0/8, 192.168.1.0/24, 172.16.1.0/24
 - inet protocols = ipv4
 - home mailbox = Maildir/
- systemctl restart postfix
- systemctl enable postfix
- > echo 'conteudo' | mail -s 'assunto' root /* Comando para enviar mail */

Apesar de ser um mail aparentemente local, ou seja, enviado de um tux para o mesmo, obtivemos o respetivo tráfego SMTP desejado.

Servidor DNS

Para o servidor DNS executamos os comandos definidos no ficheiro também em anexo por ser demasiado extenso (dns config.txt).

Pode ver-se embaixo o pedido feito a partir do tux11 ao servidor alocado no tux12:

```
Terminal
;; ANSWER SECTION:
google.pt.
                                118
                                                                 216.58.211.35
                                           ΙN
                                                      Α
 ; AUTHORITY SECTION:
                                                                 g.root-servers.net.
                                                      NS
NS
NS
NS
NS
NS
NS
NS
                                                                 e.root-servers.net.
                                                                 m.root-servers.net.
                                                                 d.root-servers.net.
                                                                 c.root-servers.net.
                                                                 l.root-servers.net.
                                                                 f.root-servers.net.
                                                                 j.root-servers.net.
                                                                 i.root-servers.net.
                                                                 k.root-servers.net.
                                                                 b.root-servers.net.
                                                                 h.root-servers.net.
                                                                 a.root-servers.net.
   Query time: 6 msec

SERVER: 172.16.1.12#53(172.16.1.12)

WHEN: Fri May 31 12:05:07 WEST 2019

MSG SIZE rcvd: 265
```

Geração de tráfego

Finalmente utilizámos a ferramenta crontab para automatizar a geração de tráfego aos vários servidores criados:

```
#DNS
*/15 * * * * dig google.pt > /dev/null 2>&1

#NTP
*/10 * * * * ntpdate 172.16.1.13 > /dev/null 2>&1

#FTP
*/8 * * * * python /root/Desktop/ftp_python.py > /dev/null 2>&1

#Apache
*/5 * * * * curl http://172.16.1.13 > /dev/null 2>&1

#Postfix
*/20 * * * * echo 'conteudo' | mail -s 'assunto' root > /dev/null 2>&1
```

Nagios

O Nagios foi instalado e configurado automaticamente através de uma script disponível no site oficial do Nagios.

Zabbix

O Zabbix por outro lado, foi mais complicado de instalar e configurar. Para tal foram seguidos os passos que se encontram no site oficial do Zabbix e foram criados três clientes em três tux's e um servidor no restante.

Para tal usamos os seguintes comandos para configurar o servidor:

- wget https://repo.zabbix.com/zabbix/4.2/debian/pool/main/z/zabbix-release /zabbix-release 4.2-1+stretch all.deb
- dpkg -i zabbix-release_4.2-1+stretch_all.deb
- > apt update
- apt install zabbix-server-mysgl zabbix-frontend-php zabbix-agent
- mysql -uroot -p

password /*Inserir nova password*/
mysql> create database zabbix character set utf8 collate utf8_bin;
mysql> grant all privileges on zabbix.* to zabbix@localhost identified by 'password';
mysql> quit;

- zcat /usr/share/doc/zabbix-server-mysql*/create.sql.gz | mysql -uzabbix -p zabbix
- nano /etc/zabbix/zabbix_server.conf Configurações acrescentadas:

- DBPassword=password /*password = password pretendida"
- systemctl restart zabbix-server zabbix-agent apache2
- systemctl enable zabbix-server zabbix-agent apache2

No cliente instalamos apenas o pacote zabbix-agent e após definido o IP do servidor (172.16.1.14), criámos os hosts na interface gráfica e associamos os respetivos templates:

Resultados Obtidos

Nas seguintes imagens é possível verificar os resultados obtidos, indicadores de um bom funcionamento de ambas as ferramentas.

Zabbix:

Posteriormente, foram provocadas falhas nos servidores, de modo a verificar o que as duas ferramentas apresentavam:

Estes erros foram originados ao desativar o daemon com o comando service * stop e logo pudemos observar em ambas as interfaces os avisos de que algo estaria a funcionar mal.

Devido a uma falta de template de associação ao protocolo DNS não foi possível ao zabbix identificar a falha neste servidor.

Comparação de ferramentas e conclusões finais

Após algumas horas a trabalhar com ambas as ferramentas podemos concluir que são ambas poderosas à sua maneira e ao mesmo tempo diferentes.

O software que o Nagios disponibiliza no website oficial facilita imenso a configuração deste, e a interface gráfica é acessível. Associando os serviços a cada um dos hosts rapidamente obtivemos informação acerca do tráfego a que estes estavam sujeitos.

Já o zabbix não foi tão simples de configurar pois não havia um script que fazia todo o trabalho por nós, mas com uma pesquisa razoável pela web rapidamente se percebeu o funcionamento da ferramenta. De notar que o zabbix oferece informação acerca da utilização de memória e CPU, coisa que o nagios não demonstra. Existem também métodos disponíveis que não utilizámos como os alertas por e-mail, encriptação de dados e uma quantia enorme de templates para utilizar (inclusive feitos em desenvolvimento externo ao software oficial), este último tanto no zabbix como no nagios.

Ferramentas Grafana e openDCIM

As ferramentas Nagios e Zabbix são ferramentas mais direcionadas à monitorização do tráfego numa rede. Estas conseguem detetar quando ocorre uma falha no sistema assim como quando essa falha é resolvida.

Por outro lado, as ferramentas Grafana e openDCIM são utilizadas para analisar os logs.

Estas ferramentas têm características únicas pelo que, o uso de várias pode ser benéfico na análise e monitorização da rede.

Fontes

https://www.zabbix.com

https://www.zabbix.com/download

https://www.nagios.org

https://www.nagios.com/downloads/nagios-xi/linux/

https://www.digitalocean.com/community/tutorials/how-to-configure-bind-as-a-

private-network-dns-server-on-ubuntu-14-04

https://grafana.com https://opendcim.org