Modelare și Simulare – Temă laborator

Tema 2 - Instalație hidraulică cu patru rezervoare

2 octombrie 2018

Cuprins

1	Model analitic	2
2	Parametri model	5

compilat la: 02/10/2018, 15:29

1 Model analitic

Instalația cu 4 rezervoare din Figura 1 reprezintă un sistem hidraulic de recirculare a apei, alcătuit din 4 rezervoare poziționate într-o configurație cascadă-serie și un rezervor acumulator.

Figura 1: Instalație cu 4 rezervoare

Modelul analitic al procesului este dat de cele cinci ecuații dinamice (pentru fiecare rezervor

în parte):

$$\frac{dV_1(t)}{dt} = -Q_{out1}(t) - Q_c(t) + Q_{out3}(t) + \gamma_1 Q_1(t)
\frac{dV_2(t)}{dt} = -Q_{out2}(t) + Q_c(t) + Q_{out4}(t) + \gamma_2 Q_2(t)
\frac{dV_3(t)}{dt} = -Q_{out3}(t) + (1 - \gamma_2) Q_2(t)
\frac{dV_4(t)}{dt} = -Q_{out4}(t) + (1 - \gamma_1) Q_1(t)
\frac{dV(t)}{dt} = Q_{out1}(t) + Q_{out2}(t) - Q_1(t) - Q_2(t)$$
(1)

unde

• debitul pompelor de alimentare este dat de:

$$Q_1(t) = k_p \cdot u_1(t), \quad Q_2(t) = k_p \cdot u_2(t)$$
 (2)

• debitele de evacuare ale rezervoarelor sunt date de:

$$Q_{out1} = a_1 \sqrt{2gh_1}, \ Q_{out2} = a_2 \sqrt{2gh_2}, \ Q_{out3} = a_3 \sqrt{2gh_3}, \ Q_{out4} = a_4 \sqrt{2gh_4}$$
 (3)

• debitul de comunicație este dat de:

$$Q_c = a_c \operatorname{sign} (\rho g h_1 - \rho g h_2) \sqrt{2g |h_1 - h_2|}$$
(4)

• volumele rezervoarelor sunt:

$$V_1 = A_1 h_1, V_2 = A_2 h_2, V_3 = A_3 h_3, V_4 = A_4 h_4, V = A_T h.$$
 (5)

Se consideră ca intrare vectorul $\begin{bmatrix} u_1 & u_2 \end{bmatrix}^{\top}$. Parametrii (γ_1, γ_2) se consideră fixați (luați o combinație de valori din setul $\left\{\frac{1}{4}, \frac{2}{4}, \frac{3}{4}\right\}$). Ieșirea se consideră unul din vectorii $\begin{bmatrix} h_1(t) & h_4(t) \end{bmatrix}^{\top}$, $\begin{bmatrix} h_2(t) & h_3(t) \end{bmatrix}^{\top}$, $\begin{bmatrix} h_2(t) & h_4(t) \end{bmatrix}^{\top}$.

Cuplând ecuațiile anterioare se obține modelul analitic neliniar al procesului.

Modelul corespunzător este:

$$\begin{cases}
\frac{dh_{1}(t)}{dt} = \frac{1}{A_{1}} \cdot \left[-a_{1}\sqrt{2gh_{1}(t)} - a_{c} \operatorname{sign}\left(\rho g h_{1}(t) - \rho g h_{2}(t)\right) \sqrt{2g |h_{1}(t) - h_{2}(t)|} + a_{3}\sqrt{2gh_{3}(t)} + \gamma_{1}Q_{1}(t) \right] \\
\frac{dh_{2}(t)}{dt} = \frac{1}{A_{2}} \cdot \left[-a_{2}\sqrt{2gh_{2}(t)} + a_{c} \operatorname{sign}\left(\rho g h_{1}(t) - \rho g h_{2}(t)\right) \sqrt{2g |h_{1}(t) - h_{2}(t)|} + a_{4}\sqrt{2gh_{4}(t)} + \gamma_{2}Q_{2}(t) \right] \\
\frac{dh_{3}(t)}{dt} = \frac{1}{A_{3}} \cdot \left[-a_{3}\sqrt{2gh_{3}(t)} + (1 - \gamma_{2})Q_{2}(t) \right] \\
\frac{dh_{4}(t)}{dt} = \frac{1}{A_{4}} \cdot \left[-a_{4}\sqrt{2gh_{4}(t)} + (1 - \gamma_{1})Q_{1}(t) \right] \\
\frac{dh(t)}{dt} = \frac{1}{A_{T}} \cdot \left[a_{1}\sqrt{2gh_{1}(t)} + a_{2}\sqrt{2gh_{2}(t)} - Q_{1}(t) - Q_{2}(t) \right]
\end{cases}$$
(6)

2 Parametri model

Simbol parametru	Denumire	Valoare
ρ	Densitatea apei	$1000 \mathrm{kg/m^3}$
g	Accelerația gravitațională	$9.8 \mathrm{\ m/s^2}$
A_1	Arie rezervor 1	$0.06m^2$
A_2	Arie rezervor 2	$0.06m^2$
A_3	Arie rezervor 3	$0.06m^2$
A_4	Arie rezervor 4	$0.06m^2$
A_T	Arie rezervor acumulator	0.1273 m^2
a_1	Coeficient de curgere din rezervorul 1	$1.31 \cdot 10^{-4} \text{ m}^2$
a_2	Coeficient de curgere din rezervorul 2	$1.51 \cdot 10^{-4} \text{ m}^2$
a_2	Coeficient de curgere din rezervorul 3	$9.27 \cdot 10^{-5} \text{ m}^2$
a_2	Coeficient de curgere din rezervorul 4	$8.82 \cdot 10^{-5} \text{ m}^2$
a_c	Coeficient de curgere pe conducta de comunicare	$4.307 \cdot 10^{-6} \text{ m}^2$
$ar{Q}_1$	Debit maxim de alimentare de la pompa principală 1	$3.26 \text{ m}^3/\text{s}$
$ar{Q}_2$	Debit maxim de alimentare de la pompa principală 2	$4 \text{ m}^3/\text{s}$
k_p	Coeficient de conversie tensiune-debit pompe principale	$\begin{array}{ll} \frac{1}{2} & L/(\min \cdot V) & = \frac{0.5 \cdot 10^{-3}}{60} \\ m^3/(s \cdot V) & = & 0.5 \cdot 10^{-4} \\ m^3/(s \cdot V) & & \end{array}$

Tabela 1: Parametri instalație cu4rezervoare