基于我国粮食经济发展战略背景下的小麦价格 ARIMA-LSTM-XGBoost组合预测模型研究

成员: 苏晓钰 李敏怡 陈嘉妤 阮炜霖 郑昊天

目录

- 01 研究背景与整体框架
- 02 小麦现货价格影响因素分析
- 03 小麦现货价格建模预测
- 04 结论

Part 01 研究背景与整体框架

Background and significance of the selected topic

研究背景

国家战略

2017 年中央一号文件提出"要坚持并完善稻谷、小麦最低收购价政策,合理调整最低收购水平,形成合理比价关系"[3]

01

国内市场

中国小麦年总产量超1亿吨,自给率达到95%以上,随着人口增长和经济发展,小麦需求量逐年上涨,市场对于优质高等小麦和饲料级小麦的需求旺盛。

国际市场

2018年起的中美贸易摩擦不断, 2007年和2011年两次粮食危机 中,乌克兰和俄罗斯两个小麦出 口大国采取了严厉的出口限制措 施进一步推高国际粮食价格,为 中国小麦进口带来更多不确定性。

外部影响

新冠肺炎疫情大流行或导致全球遭受严重饥饿人口数量翻1倍,粮食安全成为关注焦点。乌克兰作为"欧洲粮仓",俄乌冲突升级加剧疫情后复苏带来的通胀压力。

研究意义

调节市场供求关系

小麦价格受供求关系影响,又反作用于供求关系。我国粮食期货市场日臻成熟,小麦期货价格成为市场价格"风向标"。通过有效价格预测,减少卖方与市场的信息不对称,提高整条小麦供应链效率、保障生产者利益,满足市场需求,构建健康的主粮市场。

规范国内小麦定价

我国小麦生产成本高,国家通过小麦最低收购价补贴、临储麦政策"托市",维持了小麦供应量,从而保障消费需求。对小麦价格的有效预测,是国家加快推进小麦和稻谷定价机制、进行补贴政策和收储体制改革的重要依据;同时,帮助人们有效应对国际粮价波动带来的风险,促进国产小麦价格与国际化、标准化接轨,提升我国小麦产业国际影响力。

保障国家粮食安全

准确预测小麦现货价格有利于降低外部环境对于粮食供应、粮食价格的冲击,优化粮食储备。在特殊时期全球资本涌入市场避险、投机。掌握未来价格趋势的对于小麦发挥粮食作用、国家粮食供应稳定具有重要意义。

整体框架

构建小麦期货价 格影响指标体系 构建小麦期货价格 的理论预测模型

优化模型期货 价格预测模型

模型选择

数据来源

《中国农产品价格调查年鉴》《中国统计年鉴》、 国家粮油信息中心

分析方法

Pearson相关系数 随机森林特征重要性排序

基础模型

ARIMA、LSTM、 XGBoost

模型创新

能处理多变量、非线 性预测的组合模型

优化方法

组合模型调参 引入影响因素指标体系 贝叶斯优化算法

评价指标

绝对误差 相对误差 平均相对误差 ROC曲线

Part 02

小麦现货价格影响因素分析

Analysis of factors influencing wheat spot prices

小麦价格指标体系的构建

小麦价格指标体系及其数据来源

具体指标	单位	对应变量	数据来源
人民币实际有效汇率指数	2010年=100	X1	国际清算银行
货币供应量M2(同比)	%	X2	中国人民银行
人民币存款准备金率	%	X3	国家统计局
道琼斯指数		X4	Wind数据库
消费者价格指数CPI	%	X5	国家统计局
消费者信心指数		X6	国家统计局
小麦进口数量	吨	X7	海关总署
全球大米实际市场价格	美元/公吨	X8	国际货币基金组织
全球玉米实际市场价格	美元/公吨	X9	国际货币基金组织

指标分析

х1 х9 x3 x2 х5 х7 10 12 14 16 18 1000000 400000 %IncMSE IncNodePurity

variable importance

Pearson 相关系数热力图

随机森林变量重要性排序图

Part 03

小麦现货价格建模预测

Wheat spot price modelling forecasts

平稳性检验

小麦现货价格原始数据时序图

模型预测效果

组合模型

我们考虑将三种模型的优点结合,构建组合模型的思路如下:

首先使用 ARIMA模型来 捕捉时间序列数 据中的线性趋势 和季节性模式。

然后,使用LSTM 模型来捕捉非线 性关系和长期依 赖性。

最后,使用 XGBoost模型来 整合ARIMA和 LSTM模型的预测 结果,以提高预 测精度。

模型预测效果

预测效果的模型结果比较

	真实值	ARIMA	LSTM	XGBoost	组合模型
2021-05	2540	2549	2494	2540	2531
2021-06	2522	2467	2502	2489	2498
2021-07	2562	2497	2507	2587	2565
2021-08	2596	2545	2551	2554	2621
2021-09	2613	2549	2584	2551	2602
平均相对误差		1.89%	1.51%	1.25%	0.56%

Part 04 结论

Conclusions

实验结论

项目特色与创新点

组合模型的巨大潜力

份的价格影响)

综合考虑了小麦价格时间序列本身的自相关图来确定滞后阶数,发现小麦价格的影响因素从而帮助确定最优模型参数。 (例如存在一个滞后12期,即小麦价格受到一年前同样月 组合模型在预测价格用途上 具有巨大可能性,丰富了有关 市场价格预测的理论研究。另 外,模型的服务对象很广泛, 可以应用于农业产业、食品加 工业、政府单位、金融机构。 通过提供更准确的价格预测, 该模型可以帮助提高相关产业 的效率、盈利能力和稳定性。。

预测模型的创新

建立小麦价格预测指 标体系

建立了小麦价格预测的指标体系,并利用相关系数与随机森林进行变量筛选,综合考虑了变量间的线性和非线性相关程度,筛选出对小麦现货价格变化贡献较大的特征,有利于提高模型的预测能力与拟合速度。

本项目考虑到小麦现货价格同时具有线性与非线性特征,选择了适用于线性预测、短期预测精度较高的ARIMA模型拟合趋势,以及选择在处理非线性时间序列数据方面性能较好的其他模型,建立的组合预测模型相比于单一预测模型具有提高精度的优势。

谢谢老师指导观看

Thanks for watching

答辩人: 阮炜霖 郑昊天