MI11	
Systèmes temps réel critique	
Jérôme De Miras	
Ml11 Poste : 59 02 e-Mail : demiras@hds.utc.fr 1	
Temps global	
Ml11	
utc 2	
Temps et ordre	

Notion de temps	
 Permet de se référer à des événements passés ou à des événements qui pourraient se produire dans le futur 	
□ Base pour la construction d'une partie des unités de la physique	
□ En physique Newtonienne, variable indépendante qui conduit l'évolution des variables d'état	
utc Printemps 2017	
Temps réel et ordre	
 Dans un système TR toutes les actions sont réparties dans le temps 	
 Pour assurer un comportement cohérent, il est essentiel que chaque nœud partage le même ordre des événements 	
 Cet ordre est si possible l'ordre temporel ; une base de temps peut aider à satisfaire ce besoin 	
MI11 ulc Printemps 2017 5	
	1
Ordre temporel	
 Le continuum du temps peut se représenter par une ligne orientée : ensemble infini {T} d'instants i. {T} est ordonné : soit p = q soit p < q, soit p > q ii. {T} est dense : entre p et q on peut placer r si p≠q 	
 Une section de la ligne est une durée Un événement n'a pas de durée Les instants sont totalement ordonnés, pas les événements (simultanéité) 	
utc Printemps 2017	

Ordre causal □ La dépendance causale des événements est importante □ Permet de retrouver l'événement primaire qui précède une succession d'autres (alarmes) Utile pour identifier une cause de faute L'ordre temporel est nécessaire mais pas suffisant à l'ordre causal ☐ Si l'ordre ne peut être que partiel, on peut essayer d'exclure les événements arrivés trop tard pour être l'événement premier 7 Ordre de livraison ■ Existe si le système de communication garantie que tous les calculateurs hôte auront accès à une séquence d'événements de la même manière □ Ne correspond pas forcément à l'ordre temporel ou causal 8 Horloges Horloges physiques : □ Un appareil muni d'un compteur et d'un oscillateur La durée entre deux ticks est la granularité de l'horloge (discrétisation du temps) □ Horloge de référence : $lue{}$ Observateur possédant une horloge unique $\it Z$ servant à dater les événements \Box On suppose que f^z est suffisamment grande pour que sa granularité soit sans influence sur son utilisation Z(e): date absolue de e n^k : granularité de l'horloge k en microticks de Z

Dérive d'horloges

□ La dérive se mesure par rapport à Z entre 2 microticks

$$drift_{i}^{k} = \frac{Z(microtick_{i+1}^{k}) - Z(microtick_{i}^{k})}{n^{k}}$$

- □ Très proche de 1
- □ Taux de dérive

$$\rho_i^k = \left| drift_i^k - 1 \right|$$

 Ce taux n'est jamais nulle ; une horloge réelle non synchronisée finit toujours par dériver

10

P	ré	ci	si	OI	าด	ľ'n	n	rl	oc	16	ς

Offset entre deux horloges de même granulosité

$$offset_i^{j,k} = |Z(microtick_i^j) - Z(microtick_i^k)|$$

□ Précision de *n* horloges {1,2,3, ...,*n*}

$$\Pi_i = \max_{\forall i \leq j, k \leq n} \left\{ offset_i^{j,k} \right\}$$

 $\hfill\Box$ Π est la précision de l'ensemble sur un intervalle d'intérêt

$$\Pi = \max(\Pi_i)$$

□ Dérive entre les horloges :

nécessité de resynchroniser le groupe en interne

1

Fidélité d'horloges $lue{}$ Offset et précision pris entre une horloge k et Z□ Pour garder une horloge dans un intervalle borné par rapport à Z, on doit procéder à une synchronisation externe □ Ensemble d'horloges synchronisé avec Z avec une fidélité A \Rightarrow synchronisation interne avec une précision 2A□ L'inverse est faux 13 Temps standard ☐ Temps Atomique International (IAT) □ 1 second = 9 192 631 770 périodes de radiation d'une transition sur un atome de césium 133 □ Temps Universel Coordonné (UTC) Dérivé de l'observation astronomique entre la terre et le soleil □ Introduit en 1972 à la place du GMT □ La seconde correspond au TAI et on ajoute une seconde de temps en temps 14 Mesure du temps

Problème

- Si dans un système on pouvait mesurer la date d'un événement par rapport à Z, tout serait facile
- L'ordre temporel pourrait être donné quelque soit la variation des délais de communication
- □ Réalité : n nœuds $\Rightarrow n$ horloges
- ⇒Notion de temps global moins forte que la référence universelle

16

Temps global

lacksquare Soient n nœuds, n horloges c^k (g^k), synchronisées en interne avec une précision Π

$$Z(microtick_i^j) - Z(microtick_i^k) < \Pi$$

 \square Sur chaque horloge on choisit un sous-ensemble de microticks (tous les p microticks) pour former les ticks t_i d'un temps global

Temps global: condition d'existence

 Le temps global est raisonnable si toutes les réalisations locales satisfont

$$g < \Pi$$

g : granulosité

 Assure que la que la borne de l'erreur de synchronisation est inférieure à 1 micro-granule

Mesure d'un intervalle

 Un intervalle est un segment de temps dont la durée vraie est

$$d_{obs} - 2g < d_{vraie} < d_{obs} + 2g$$

 2 est par définition du temps global la valeur max d'erreur

Précédence Π/Δ

□ Un ensemble d'événement est Π/Δ précédent si pour tout couple e_i , e_j avec $\pi<<\Delta$

$$(|Z(e_i)-Z(e_j)| \le \pi) \lor (|Z(e_i)-Z(e_j)| > \Delta)$$

Précédence Π/Δ

21

□ Regroupe les événements sous forme de « boule »

Event set	L'intervalle observé est sup ou égal	Ordre temporel possible
0/1 g préc	$\mid t^{j}(e_{1})-t^{k}(e_{2})\mid \geq 0$	Non
0/2 g préc	$\mid t^{j}(e_{1})-t^{k}(e_{2})\mid \geq 1$	Non
0/3 g préc	$\mid t^{j}(e_{1})-t^{k}(e_{2})\mid \geq 2$	Oui
0/4 g préc	$\mid t^{j}(e_{1})-t^{k}(e_{2})\mid \geq 3$	Oui
	,	

2 événements vus par 2 nœuds

Limite dans la mesure du temps Dans un système distribué avec un temps global raisonnable (granularité g) 1 événement observé, 2 nœuds : la date peut différer de 1 Un intervalle observé est tel que $d_{obs} - 2g < d_{vraie} < d_{obs} + 2g$ L'ordre de deux événements peut être retrouvé si les dates diffèrent d'au moins 2 L'ordre temporel d'un ensemble 0/3g peut toujours être retrouvé

Synchronisation par un maitre central	
 Un maitre envoie périodiquement sa valeur d'horloge 	
 Les nœuds regarde la différence avec la leur Correction avec prise en compte du temps de 	
transport) La précision dépend de la gigue sur le temps de	
transport	
$\Pi = \mathcal{E} + \Gamma$	
□ Tolérance aux fautes : multiplication des masters	
MI11 34	
Algorithmes de synchronisation distribués	
 Echange de donnée compteur de temps de chaque nœud 	
□ Exécution d'une fonction de convergence	
 Si le résultat dépasse la précision, désactivation du nœud 	
□ Mise à jour du compteur local de temps	
Ml11	
uc Printemps 2017	
ASD : lecture des temps	
Le temps minimum d'envoi peut être compensé	
□ Problème : la gigue qui dépend du lieu de traitement de l'information	
□ Niveau application : 500 µs à 5 ms □ Dans le noyau de l'OS : 10 µs à 100 µs	
□ Dans le contrôleur de comm : moins de 10 μs	
□ Précision atteignable (1) N: nombre de nœuds	
$\Pi = \mathcal{E}\left(1 - \frac{1}{N}\right) \qquad \begin{array}{l} N : \text{ nombre de nœuds} \\ \mathcal{E} : \text{ gigue} \\ \rho = 0 \text{ (drift rate)} \end{array}$	

ASD : fonction de convergence

- ☐ Fault tolerance Average Algorithm
 - □ Fonctionne en 1 passe
 - $\square N$ nœuds, k byzantines au maximum
- $lue{}$ Calcul des différences entre c^k et les autres
- ☐ Trie et élimination des k plus basses et hautes
- ☐ Moyenne des *N-2k* restantes

ASD : étape de correct	ion
 Soit par modification directe de la valeur d'horloge Problème : provoque des sauts temporel 	
□ Soit en appliquant une correction de taux de variation de l'horloge	
Ml11	30

