Supplementary Text S1: Assessing the completeness of Chlorophyta genomes

Fabricio Almeida-Silva^{1,2} and Yves Van de Peer^{1,2,3,4}

¹VIB-UGent Center for Plant Systems Biology, Ghent, Belgium

4 October 2022

Contents

1	Overview	2
2	Managing external dependencies with virtual environments	2
3	Data acquisition	2
4	Running BUSCO	3
5	Visualizing summary statistics	4
	Session info	6
	References	a

²Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

³College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China

⁴Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa

```
library(here)
library(cogeqc)
library(tidyverse)
library(Herper)

set.seed(123) # for reproducibility
options(timeout = 6000) # to load files from the web
```

1 Overview

Here, we will use *cogeqc* to assess the completeness of Chlorophyta genomes available on Pico-PLAZA 3.0 (Van Bel et al. 2018) using Best Universal Single-Copy Orthologs (BUSCO).

2 Managing external dependencies with virtual environments

Here, for convenience, we will install BUSCO in a Conda environment for use with *cogeqc*. For that, we will use the Bioconductor package *Herper*

Below, you can find the code to install miniconda in a directory of your choice (here, " \sim /Documents") and create a virtual environment containing a BUSCO installation.

```
# Path to where BUSCO will be installed and env name
my_miniconda <- file.path("~/Documents", "miniconda")
env <- "cogeqc_env"

# Create env named `cogeqc_env` with BUSCO in it
install_CondaTools(
    tools = "busco==5.3.0",
    env = env,
    channels = c("conda-forge", "bioconda"),
    pathToMiniConda = my_miniconda
)</pre>
```

3 Data acquisition

Now, we will load all genomes directly from PLAZA as DNAStringSet objects and export them to a single directory of FASTA files, so we can run BUSCO in batch mode.

```
# Links to Chlorophyta genomes from Pico-PLAZA 3.0
base_url <- "ftp://ftp.psb.ugent.be/pub/plaza/plaza_pico_03/Genomes/"
links <- paste0(
   base_url,
   c("mpu.fasta.gz", "mrcc299.fasta.gz", "olu.fasta.gz", "ome.fasta.gz",
   "orcc809.fasta.gz", "ota.fasta.gz", "bprrcc1105.fasta.gz",
   "cre.fasta.gz", "vca.fasta.gz", "cvu.fasta.gz", "acg.fasta.gz",
   "pse3.fasta.gz", "prcc4223.fasta.gz", "cnc64a.fasta.gz",</pre>
```

```
"hsp.fasta.gz", "apr.fasta.gz")
)
# Load all genomes
genomes <- lapply(links, Biostrings::readDNAStringSet)</pre>
names(genomes) <- basename(links)</pre>
# Write all genomes to a subdirectory of tempdir
genomes_path <- file.path(tempdir(), "genomes")</pre>
if(!dir.exists(genomes_path)) { fs::dir_create(genomes_path) }
write <- lapply(seq_along(genomes), function(x) {</pre>
    Biostrings::writeXStringSet(
        x = genomes[[x]],
        filepath = file.path(genomes_path, names(genomes)[x])
    return(NULL)
})
dir(genomes_path)
## [1] "acg.fasta.gz"
                              "apr.fasta.gz"
                                                     "bprrcc1105.fasta.gz"
## [4] "cnc64a.fasta.gz"
                              "cre.fasta.gz"
                                                     "cvu.fasta.gz"
## [7] "hsp.fasta.gz"
                              "mpu.fasta.gz"
                                                     "mrcc299.fasta.gz"
## [10] "olu.fasta.gz"
                              "ome.fasta.gz"
                                                     "orcc809.fasta.gz"
                              "prcc4223.fasta.gz"
                                                     "pse3.fasta.gz"
## [13] "ota.fasta.gz"
## [16] "vca.fasta.gz"
```

4 Running BUSCO

Now that all genomes are stored as FASTA files in /tmp/Rtmp1XXP35/genomes, we can assess their completeness with BUSCO.

```
# See all possible lineage datasets
with_CondaEnv(
    env, list_busco_datasets(), my_miniconda
)

# Run BUSCO using chlorophyta_odb10 as the lineage data set
busco <- with_CondaEnv(
    env,
    run_busco(
        sequence = genomes_path,
        outlabel = "chlorophyta_busco",
        mode = "genome",
        lineage = "chlorophyta_odb10",
        outpath = tempdir(),
        download_path = tempdir()
),
    my_miniconda
)</pre>
```

```
# Read and parse the output
outdir <- file.path(tempdir(), "chlorophyta_busco")
busco_summary <- read_busco(outdir)
save(
    busco_summary,
    file = here::here("products", "result_files", "busco_summary.rda"),
    compress = "xz"
)</pre>
```

The parsed BUSCO output (as returned by read_busco()) looks like this:

```
load(here("products", "result_files", "busco_summary.rda"))
head(busco_summary)
## Class Frequency Lineage File
## 1 Complete_SC 94.1 chlorophyta_odb10 pse3.fasta.gz
## 2 Complete_SC 95.1 chlorophyta_odb10 cre.fasta.gz
## 3 Complete_SC 96.8 chlorophyta_odb10 olu.fasta.gz
## 4 Complete_SC 98.7 chlorophyta_odb10 mrcc299.fasta.gz
## 5 Complete_SC 91.8 chlorophyta_odb10 apr.fasta.gz
## 6 Complete_SC 86.4 chlorophyta_odb10 acg.fasta.gz
```

5 Visualizing summary statistics

Finally, let's visualize summary BUSCO stats:

```
# Manually create tree based on Pico-PLAZA's tree
c_branches <- function(b1, b2) {</pre>
    x <- paste0("(", b1, ",", b2, ")")
ostreococcus_root <- "((((Ostreococcus_lucimarinus, Ostreococcus_sp_RCC809), Ostreococcus_tauri), Ostreococcus_</pre>
micromonas <- "(Micromonas_pusilla_strain_CCMP1545, Micromonas_sp_RCC299)"</pre>
chlamydomonadales <- "(Volvox_carteri, Chlamydomonas_reinhardtii)"</pre>
picochlorum <- "(Picochlorum_sp_SENEW3, Picochlorum_RCC4223)"</pre>
chlorellales <- "((Helicosporidium_sp, Auxenochlorella_protothecoides), Chlorella_sp_NC64A)"</pre>
trebouxiophyceae <- c_branches(</pre>
    "(Coccomyxa_subellipsoidea_C-169, Asterochloris_sp_Cgr/DA1pho_v2)",
    c_branches(picochlorum, chlorellales)
)
chlo_tree <- c_branches(</pre>
    c_branches(
        ostreococcus_root, micromonas
    ),
    c_branches(
        chlamydomonadales, trebouxiophyceae
chlo_tree <- paste0(chlo_tree, ";")</pre>
```

```
# Read tree as a phylo object and clean species names
chlo_tree <- treeio::read.tree(text = chlo_tree)</pre>
chlo_tree$tip.label <- gsub("_", " ", chlo_tree$tip.label)</pre>
# Plot species tree and get species order from tree topology
p_{tree} < - plot_species_tree(chlo_tree, xlim = c(0, 12))
taxa_order <- rev(ggtree::get_taxa_name(p_tree))</pre>
# Plot BUSCO summary stats
p_busco <- busco_summary %>%
    mutate(File = str_replace_all(File, "\\.fasta.*", "")) %>%
    mutate(File = str_replace_all(
        File,
        c (
            "pse3" = "Picochlorum sp SENEW3",
            "cre" = "Chlamydomonas reinhardtii",
            "olu" = "Ostreococcus lucimarinus",
            "mrcc299" = "Micromonas sp RCC299",
            "apr" = "Auxenochlorella protothecoides",
            "acg" = "Asterochloris sp Cgr/DA1pho v2",
            "cvu" = "Coccomyxa subellipsoidea C-169",
            "bprrcc1105" = "Bathycoccus prasinos",
            "orcc809" = "Ostreococcus sp RCC809",
            "prcc4223" = "Picochlorum RCC4223",
            "ota" = "Ostreococcus tauri",
            "hsp" = "Helicosporidium sp",
            "mpu" = "Micromonas pusilla strain CCMP1545",
            "vca" = "Volvox carteri",
            "ome" = "Ostreococcus mediterraneus",
            "cnc64a" = "Chlorella sp NC64A"
        )
    )) %>%
    mutate(File = factor(File, taxa_order)) %>%
    plot_busco() +
    theme(axis.text.y = element_blank()) +
    labs(y = "")
# Combining phylogeny with BUSCO plot
combined <- patchwork::wrap_plots(p_tree, p_busco)</pre>
combined
```


Except for *Helicosporidium sp.*, Chlorophyta genomes on Pico-PLAZA 3.0 have a high quality, as denoted by their high completeness.

Session info

This document was created under the following conditions:

```
sessioninfo::session_info()
## - Session info ------
## setting value
## version R version 4.2.1 (2022-06-23)
## os Ubuntu 20.04.4 LTS
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_US.UTF-8
## ctype en_US.UTF-8
## tz Europe/Brussels
## date 2022-10-04
## pandoc 2.18 @ /usr/lib/rstudio/bin/quarto/bin/tools/ (via rmarkdown)
##
## package * version date (UTC) lib source
## ape
                  5.6-2 2022-03-02 [1] CRAN (R 4.2.0)
## aplot
                   0.1.6 2022-06-03 [1] CRAN (R 4.2.0)
## asserthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)

## backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)

## BiocGenerics 0.42.0 2022-04-26 [1] Bioconductor

## BiocManager 1.30.18 2022-05-18 [1] CRAN (R 4.2.0)
## BiocManager
                   1.30.18 2022-05-18 [1] CRAN (R 4.2.0)
                 * 2.25.0 2022-06-15 [1] Github (Bioconductor/BiocStyle@7150c28)
## BiocStyle
                  2.64.1 2022-08-18 [1] Bioconductor
## Biostrings
                    1.0-7 2021-04-24 [1] CRAN (R 4.2.0)
## bitops
```

```
## bookdown 0.27 2022-06-14 [1] CRAN (R 4.2.0) ## broom 0.8.0 2022-04-13 [1] CRAN (R 4.2.0)
## cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.2.0)

## cli 3.4.1 2022-09-23 [1] CRAN (R 4.2.1)

## cogeqc * 1.1.6 2022-10-04 [1] Github (almeidasilvaf/cogeqc@e86df13)

## colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.0)

## crayon 1.5.2 2022-09-29 [1] CRAN (R 4.2.1)
## GenomeInfoDbData 1.2.8 2022-05-06 [1] Bioconductor
```

```
1.8.7 2022-03-24 [1] CRAN (R 4.2.0)
0.1-7 2013-12-03 [1] CRAN (R 4.2.0)
## plyr
## png
                   * 0.3.4 2020-04-17 [1] CRAN (R 4.2.0)
## purrr
               2.5.1 2020-04-1/ [1] CRAN (R 4.2.0)

2.5.1 2021-08-19 [1] CRAN (R 4.2.0)

1.0.9 2022-07-08 [1] CRAN (R 4.2.1)

1.98-1.9 2022-10-03 [1] CRAN (R 4.2.1)

* 2.1.2 2022-01-30 [1] CRAN (R 4.2.0)

1.4.0 2022-03-28 [1] CRAN (R 4.2.0)

2.0.1 2021-08-05 [41 CRAN (R 4.2.0)
## R6
## Rcpp
## RCurl
## readr
## readxl
##
## [1] /home/faalm/R/x86_64-pc-linux-gnu-library/4.2
    [2] /usr/local/lib/R/site-library
## [3] /usr/lib/R/site-library
## [4] /usr/lib/R/library
##
 ## ------
```

cogeqc: an R/Bioconductor package for quality checks in comparative genomics

References

Van Bel, Michiel, Tim Diels, Emmelien Vancaester, Lukasz Kreft, Alexander Botzki, Yves Van de Peer, Frederik Coppens, and Klaas Vandepoele. 2018. "PLAZA 4.0: An Integrative Resource for Functional, Evolutionary and Comparative Plant Genomics." *Nucleic Acids Research* 46 (D1): D1190–96.