

Data Science – Exercise 0

St.Gallen, 17. September 2024 Thomas Huber

Agenda

- 1. Introduction
 - Self-Introduction of Thomas
 - Exercises
 - Exercise session structure
 - Exercise sheets / notebooks
- 2. Exercise 0
- 3. Exercise 1 (covering Lecture 1)
 - Overview
 - Additional tasks?

Introduction

Self-Introduction of Thomas

Research Interests:

- Argumentation
 - Argument Mining
 - Argument Generation
 - Argument Quality Assessment
- Reinforcement Learning
- Language Models
- Making (L)LMs overall / the training more efficient

Working on:

- SNF Project: Argumentation Chatbot
 - Automatic Evaluation of Argument Quality
 - Argument Feedback
 - Both Generation and Following
 - Generation of own arguments
- Shifting (L)LM Evaluation Paradigms

Exercise session structure

- 90 minutes in total for each session
 - 45 minutes, then 15 minutes break, then another 45 minutes
 - Break can be moved if a majority wants that
 - Start is at 16:15
 - Room is 61-152 for all sessions
 - In case this changes, there will be an announcement on Canvas (and during the Exercise if I already know about the change early enough)
 - If you have any questions at any time, feel free to ask!
 - You can of course also send an E-Mail if questions come up after the exercises
 - Or come to my office (Rosenbergstrasse 30 [this building], room 61-544)
 - For some exercises/tasks we will do group activities (in class)
 - "Split into pairs, and discuss"
 - "Form X groups, then form new groups such that one member of each original group is in the new group (jigsaw activity)
 - ...

Exercise sheets

- Each week there will be an Exercise sheet
 - It will be published one week before the exercise session where it is discussed
 - Today (in Session 0) the exercise sheet for next week (Session 1) will be posted on Canvas
 - In class we will discuss the solution of the Exercise Sheet of that week (in other words: next week we will discuss Exercise 01, which is published today)
- The Exercise sheet covers the topics of that week of the lecture
 - The Exercise sheets will be Jupyter Notebooks
 - You can run them locally or on Google Colab
 - If you have never worked with Jupyter Notebooks before then Google Colab is the easiest way to get started
 - If you have any Python IDE installed then there is a high chance it also supports Jupyter Notebooks
 - PyCharm supports them for sure and you should be able to get the Pro version with your University account

Exercise 0

Exercise 0

- Download the notebook from Canvas and run it.
 - Depending on your setup you may need to install the depencies from requirements.txt
- We will use the pandas library a lot, and not everyone may be familiar with it (or you may not have used it for a while) so we will do a pandas tutorial in this first exercise session
 - You don't have to use it to solve the exercises, but the solutions will use it

Exercise 1

Exercise 1 - Preview

- The exercise for next week will be uploaded immediately after the exercise session (or is already uploaded)
- It covers Week 1 of the lecture
 - Exercises are "shifted" by one week to give you time to solve them on your own
 - In other words: We discuss the Exercise paired with Lecture 1 in Week 2 (this is Exercise Sheet 1!)
- We will go over the notebook file directly
 - Is there anything from the lecture that you want to know more about / that you want to have an exercise about?
 - If there is, just let us know!
 - The exercise file may be updated to include additional tasks (in that case there will be an announcement on Canvas)
 - i.e. we might do an additional exercise/discussion/jigsaw activity between Task 1 and Task 2 in the notebook during the exercise session

Questions? Feedback? Anything else?

Thomas Huber

PhD Student +41 71 224 79 20

 $\underline{tho\,mas.huber@unisg.ch}$

Office: RO30 61-544

ics.unisg.ch

University of St.Gallen Institute of Computer Science Rosenbergstrasse 30 9000 St.Gallen