

- 1. Einführung
- 2. Datenbankentwurf
- 3. Datenbankimplementierung

- 4. Physische Datenorganisation
- 5. Anfrageoptimierung
 - 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

Datenbanken

- Einführung
- Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

Gliederung

- Einführung 1.
- Datenbankentwurf 2.
- Datenbankimplementierung 3.
- Physische Datenorganisation 4.
- Anfrageoptimierung 5.
- Transaktionsverwaltung 6.
- Datensicherheit und Wiederherstellung 7.
- **Business Intelligence** 8.

- Einführung
- Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

Gliederung

Physische Datenorganisation

- Aufbau eines DBMS
- Deklarative vs. Prozedurale Programmiersprache
- Ablauf einer Anfrageverarbeitung
- Aufbau und Organisation von Speichermedien

Aufbau von Dateien und Zugriff auf die Daten

- Einführung
- Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

- 1. Einführung
- 2. Datenbankentwurf
 - Datenbankimplementierung
- 4. Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

5. Anfrageoptimierung

8. Business Intelligence

Eine andere Möglichkeit: Referenzierung über Speicheradressen

- Einführung
- Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

Realisierungstechnik für Hintergrundspeicher-Adressen

Datenbankentwurf

5. Anfrageoptimierung

7. Datensicherheit und Wiederherstellung

8. Business Intelligence

Datenbankimplementierung

6. Transaktionsverwaltung

4. Physische Datenorganisation

"Statische" Hashtabellen

- á priori Allokation des Speichers
- Nachträgliche Vergrößerung der Hashtabelle ist "teuer"
 - Hashfunktion h(...) = ... mod N
 - Rehashing der Einträge
 - $h(...) = ... \mod M$
 - In Datenbankanwendungen viele GB
- Bsp: Matrikelnummer, Sportverein o.ä.

Matr.No. xxx.xxx =
$$10^6$$
 , # Studierende = 6000 Reserve + 20% 7200 Nächste Primzahl 7207

 Einführung 	
--------------------------------	--

4. Physische Datenorganisation

7. Datensicherheit und Wiederherstellung

Datenbankentwurf

5. Anfrageoptimierung

8. Business Intelligence

- Datenbanken Prof. Dr. D. Hesse
- Datenbankimplementierung

6. Transaktionsverwaltung

I 10 **]**

"Statische" Hashtabellen

Bsp: Matrikelnummer

Matr.No.:
$$xxx.xxx = 10^6$$
 # Studierende = 6000
Reserve + 20 % 7200
Nächste Primzahl 7207

$$f(x) = H \mod(7207)$$

Matr. No	<u>f(x)</u>
7207	0
7208	1
14416	2 > 21623
7206	
21623	

1. Einführung	4. Physische Datenorganisation	7. Datensicherheit und Wiederherstellung
2. Datenbankentwurf	5. Anfrageoptimierung	8. Business Intelligence
3. Datenbankimplementierung	6. Transaktionsverwaltung	Г 11 Т

"Statische" Hashtabellen

- Erweiterbares Hashing
 - Zusätzliche Indirektion über ein Directory
 - Ein zusätzlicher Zugriff auf ein Directory, das den Zeiger (Verweis, BlockNr) des Hash-Bucket enthält
 - Dynamisches Wachsen (und Schrumpfen) ist möglich
 - Der Zugriff auf das Directory erfolgt über einen binären Hashcode

7. Datensicherheit und Wiederherstellung8. Business Intelligence

I 12 **]**

⇒ ineffizient bei nicht vorhersehbarer Datenmenge

- 1. Einführung
- 2. Datenbankentwurf
- 3. Datenbankimplementierung

- 4. Physische Datenorganisation
- 5. Anfrageoptimierung

- 8. Business Intelligence

I 13 **]**

7. Datensicherheit und Wiederherstellung

6. Transaktionsverwaltung

Hashfunktion für erweiterbares Hashing

- h: Schlüsselmenge $\rightarrow \{0,1\}^*$
- Der Bitstring muss lang genug sein, um alle Objekte auf ihre Bucketš abbilden žu können
- Anfangs wird nur ein (kurzer) Präfix des Hashwertes (Bitstrings) benötigt
- Wenn die Hashtabelle wächst wird aber sukzessive ein längerer Präfix benötigt
- Beispiel-Hashfunktion: gespiegelte binäre PersNr

```
-h(004) = 001000000... (4=0..0100)
```

$$- h(006) = 011000000...$$
 (6=0..0110)

$$-h(007) = 111000000...$$
 (7 = 0..0111)

$$- h(013) = 101100000...$$
 (13 = 0..01101)

$$- h(018) = 0100100000...$$
 (18 = 0..010010)

$$- h(032) = 000001000...$$
 (32 = 0..0100000)

$$- H(048) = 000011000...$$
 (48 = 0..0110000)

- 1. Einführung
- Datenbankentwurf
- Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 8. Business Intelligence

7. Datensicherheit und Wiederherstellung

- 1. Einführung
- Datenbankentwurf
- Datenbankimplementierung

- 4. Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

7. Datensicherheit und Wiederherstellung

8. Business Intelligence

24

Demonstration des erweiterbaren Hashings

	h(x)	
x	d	p
2125	1	01100100001
2126	0	11100100001
2127	1	11100100001

- 1. Einführung
- 2. Datenbankentwurf
- Datenbankimplementierung

- 4. Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[25 **]**

	h(x)	
x	d	p
2125	10	1100100001
2126	01	1100100001
2127	11	1100100001
2129	10	0010100001

$$t'=1$$

$$t'=2$$

$$t'=2$$

. Einführung

I. Physische Datenorganisation

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

- Datenbankentwurf
 - Datenbankimplementierung

6. Transaktionsverwaltung

Anfrageoptimierung

26

Mehrdimensionale Datenstrukturen

- Wertbasierter Zugriff auf der Grundlage mehrerer Attribute, dies einzeln oder in beliebigen Kombinationen.
- Typische Anforderungen aus CAD, VLSI-Entwurf, Kartographie,...
- Anfragen decken den Bereich ab zwischen
 - mehrdimensionalem Punktzugriff (EMQ) und
 - mehrdimensionalen Bereichsanfragen (RQ)
- Lösung mit eindimensionalen Indexen
 - erfordert konjunktive Zerlegung der Anfrage in Einattributanfragen und Schnittmengenbildung
 - bedingt hohe Speicherredundanz
- Problemstellung:
 - Mehrdimensionale Nachbarschaftsverhältnisse

1. Einführung	4. Physische Datenorganisation	7. Datensicherheit und Wiederherstellung
2. Datenbankentwurf	5. Anfrageoptimierung	8. Business Intelligence

Transaktionsverwaltung

Grundlagen mehrdimensionaler Datenstrukturen

3. Datenbankimplementierung

• Wertebereiche D_0, \ldots, D_{k-1} :

alle D_i sind endlich, linear geordnet und besitzen kleinstes (- ∞_i) und größtes (∞_i) Element

- Datenraum $\mathbf{D} = D_0 \mathbb{Z} \dots \mathbb{Z} D_{k-1}$
- k-dimensionaler Schlüssel entspricht Punkt im Datenraum
 p ∈ D

i. Emiliang	1.	Einführung	
-------------	----	------------	--

- Physische Datenorganisation
- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

- 2. Datenbankentwurf
 - Datenbankimplementierung 6. Trans
 - 6. Transaktionsverwaltung

Anfrageoptimierung

[28 **]**

Grundlagen mehrdimensionaler Datenstrukturen

- 1. Exact Match Query spezifiziert Suchwert für jede Dimension D_i
- 2. Partial Match Query spezifiziert Suchwert für einen Teil der Dimensionen
- 3. Range Query spezifiziert ein Suchintervall $[ug_i, og_i]$ für alle Dimensionen
- 4. Partial Range Query spezifiziert ein Suchintervall für einen Teil der Dimensionen

- Einführung
- Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[29 **]**

Charakterisierung mehrdimensionaler Datenstrukturen

Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden:

- 1. nur atomare Gebiete (beschreibbar durch ein Rechteck)
- 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum)
- 3. disjunkt (die Gebiete überlappen nicht)

Grid-File (Gitter-Datei): atomar, vollständig, disjunkt

Datenbankentwurf

Datenbankimplementierung

5. Anfrageoptimierung

Physische Datenorganisation

6. Transaktionsverwaltung

8. Business Intelligence

7. Datensicherheit und Wiederherstellung

T 30 **T**

Charakterisierung mehrdimensionaler Datenstrukturen

Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden:

- 1. nur atomare Gebiete (beschreibbar durch ein Rechteck)
- 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum)
- 3. disjunkt (die Gebiete überlappen nicht)

K-D-B-Baum: atomar, vollständig, disjunkt

. Datenbankentwurf

Datenbankimplementierung

1. Physische Datenorganisation

5. Anfrageoptimierung

6. Transaktionsverwaltung

7. Datensicherheit und Wiederherstellung

8. Business Intelligence

[31 **]**

Charakterisierung mehrdimensionaler Datenstrukturen

Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden:

- 1. nur atomare Gebiete (beschreibbar durch ein Rechteck)
- vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum)
- 3. disjunkt (die Gebiete überlappen nicht)

R⁺-Baum: atomar, disjunkt

Datenbankentwurf

Datenbankimplementierung

Physische Datenorganisation

5. Anfrageoptimierung

6. Transaktionsverwaltung

8. Business Intelligence

7. Datensicherheit und Wiederherstellung

T 32 **T**

Charakterisierung mehrdimensionaler Datenstrukturen

Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden:

- 1. nur atomare Gebiete (beschreibbar durch ein Rechteck)
- 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum)
- 3. disjunkt (die Gebiete überlappen nicht)

R-Baum: atomar

Datenbankentwurf

Datenbankimplementierung

Physische Datenorganisation

5. Anfrageoptimierung

6. Transaktionsverwaltung

8. Business Intelligence

7. Datensicherheit und Wiederherstellung

T 33 **T**

Charakterisierung mehrdimensionaler Datenstrukturen

Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden:

- 1. nur atomare Gebiete (beschreibbar durch ein Rechteck)
- 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum)
- 3. disjunkt (die Gebiete überlappen nicht)

Buddy-Hash-Baum: atomar, disjunkt

Datenbankentwurf

Datenbankimplementierung

Physische Datenorganisation

5. Anfrageoptimierung

6. Transaktionsverwaltung

8. Business Intelligence

7. Datensicherheit und Wiederherstellung

T 34 **T**

Charakterisierung mehrdimensionaler Datenstrukturen

Mehrdimensionale Zugriffsstrukturen können gemäß der Art der Aufteilung des Datenraums in Gebiete charakterisiert werden:

- 1. nur atomare Gebiete (beschreibbar durch ein Rechteck)
- 2. vollständig (die Vereinigung aller Gebiete ergibt den gesamten Datenraum)
- 3. disjunkt (die Gebiete überlappen nicht)

Z-B-Baum: vollständig, disjunkt

- Einführung
- 2. Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[35 **]**

R-Baum: Urvater der baumstrukturierten mehrdimensionalen Zugriffsstrukturen

- Einführung
- Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

T 36 **T**

Gute versus schlechte Partitionierung

- 1. Einführung
- 2. Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[37 **]**

Nächste Phase in der Entstehungsgeschichte des R-Baums

- 1. Einführung
- 2. Datenbankentwurf
 - B. Datenbankimplementierung

- 4. Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[38 **]**

Nächste Phase

- 1. Einführung
- Datenbankentwurf
 - Datenbankimplementierung

- 4. Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[39 **]**

- Einführung
- Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

40

Wachsen des Baums: nach oben – wie im B-Baum

- 1. Einführung
- 2. Datenbankentwurf
 - . Datenbankimplementierung

- 4. Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[41 **]**

Datenraum

- Einführung
- 2. Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[42 **]**

Datenraum und Speicherstruktur – Überblick

- 1. Einführung
- 2. Datenbankentwurf
- 3. Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

- Einführung
- 2. Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[44 **]**

Bereichsanfragen auf dem R-Baum

- 1. Einführung
- 2. Datenbankentwurf
- Datenbankimplementierung

- . Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[46 **]**

Indizierung räumlicher Objekte (anstatt Punkten) mit dem R-Baum

- 1. Einführung
- 2. Datenbankentwurf
 - . Datenbankimplementierung

- . Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[47 **]**

Indizierung räumlicher Objekte (anstatt Punkten) mit dem R-Baum

- 1. Einführung
- 2. Datenbankentwurf
 - . Datenbankimplementierung

- . Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[48 **]**

Indizierung räumlicher Objekte (anstatt Punkten) mit dem R-Baum

- Einführung
- Datenbankentwurf
- Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

49

Objektballung / Clustering logisch verwandter Daten

select *

from R

where A = x;

Hintergrundspeicher

- 1. Einführung
- 2. Datenbankentwurf
- 3. Datenbankimplementierung
- 5. Anfrageoptimierung
 - 6. Transaktionsverwaltung

Physische Datenorganisation

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

50

Hauptspeicher — Zugriffslücke — Hintergrundspeicher

- 1. Einführung
- 2. Datenbankentwurf
 - B. Datenbankimplementierung

- 4. Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[51 **]**

Indexe und Ballung

- 1. Einführung
- 2. Datenbankentwurf
- 3. Datenbankimplementierung

- 4. Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

[52 **]**

Seite P_i

$2125 \circ Sokrates$	0 '	$C4 \circ$	226 •
$5041 \circ ext{Ethik}$	0	$4\circ$	2125 •
5049 ∘ Mäeutik	0	2 \circ	$2125 \bullet$
$4052 \circ ext{Logik}$	0	$4\circ$	$2125 \bullet$
$2126 \circ \text{Russel}$	0	$C4 \circ$	$232 \bullet$
$5043 \circ \text{Erkenntnistheorie}$	0	3 \circ	$2126 \bullet$
$5052 \circ \text{Wissenschaftstheorie}$	0	3 \circ	2126 •
$5216 \circ \text{Bioethik}$	0	2 \circ	2126 •

Seite P_{i+1}

$2133 \circ \text{Popper}$	∘ C3 ∘ 52 •
$5259 \circ \text{Der Wiener Kreis}$	$\circ 2 \circ 2133 \bullet$
$2134 \circ Augustinus$	\circ C3 \circ $$ 309 \bullet
$5022 \circ Glaube und Wissen$	$\circ 2 \circ 2134 \bullet \\$
$2137 \circ \mathrm{Kant}$	\circ C4 \circ 7 \bullet
$5001 \circ \text{Grundzüge}$	$\circ 4 \circ 2137 \bullet \\$
$4630 \circ \text{Die } 3 \text{ Kritiken}$	$\circ 4 \circ 2137 \bullet \\$
:	

- Einführung
 - Datenbankentwurf
 - Datenbankimplementierung

- Physische Datenorganisation
- 5. Anfrageoptimierung
- 6. Transaktionsverwaltung

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence

I 53 **]**

Unterstützung eines Anwendungsverhaltens

Select Name

From Professoren

Where PersNr = 2136

Select Name

From Professoren

Where Gehalt >= 90000 and Gehalt <= 100000

1.	Einführung
2.	Datenbankentwurf

- 5. Anfrageoptimierung

Physische Datenorganisation

- 7. Datensicherheit und Wiederherstellung
- 8. Business Intelligence
- **F** 54 **T**

Datenbankimplementierung

6. Transaktionsverwaltung

Indizierung in SQL

Create index SemsterInd on Studenten (Semester)

drop index SemsterInd