Warm-Up for May 2nd, 2022

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy May 1, 2022

1 Memory Bank

- 1. Current density, and Ohm's Law: $\mathbf{J} = \rho \mathbf{v}$, $\mathbf{J} = \sigma \mathbf{E}$, $\Delta V = IR$.
- 2. Note about current and capacitors: dQ/dt = I, $Q = C\Delta V$.
- 3. Flux rule for motional emf: $\mathcal{E} = -d\Phi_B/dt$
- 4. Definition of self-inductance, or just **inductance**: $\Phi_B = LI$.

2 Current and Ohm's Law

- 1. (a) Assume that moving charges in current have two velocities: the drift velocity $v_{\rm ave}$ in the direction of current flow, and a thermal velocity $v_{\rm th}$ in random directions. Let $v_{\rm th} = \lambda/t$. Show that the average velocity of an object that is accelerating for a short time t is $v_{\rm ave} = \frac{1}{2}at$. (b) Substitute t with $\lambda/v_{\rm th}$, and inserve $v_{\rm ave}$ into the definition of current density from the memory bank. (c) Show that $\bf J$ is proportional to $\bf E$, even though current has a constant drift velocity $v_{\rm ave}$.
- 2. A capacitor C has been charged up to potential V_0 ; at time t=0, it is connected to a resistor R, and begins to discharge (Fig. 1, left). (a) Determine the charge on the capacitor as a function of time, Q(t). What is the current through the resistor, I(t)? (b) Show that the integral of $P(t) = I^2(t)R$, the energy delivered to the resistor, is $W = \frac{1}{2}CV_0^2$. (c) Now imagine charging up the capacitor (Fig. 1, middle). Determine Q(t) and I(t). (d) Find the total energy output of the battery ($\int V_0 I dt$). What fraction of the battery output shows up in the capacitor?
- 3. For the RL circuit of Fig. 1 (right), what is I(t)?

Figure 1: Two circuits: (left) RC circuits, and (right) the RL circuit.