

Learning Guide Module

Subject Code Math 3 Mathematics 3

Module Code 6.0 *Other Types of Functions*

Lesson Code 6.4 *Transformation of Functions (Sequences)*

Time Limit 30 minutes

Time Allocation: 1 minute
Actual Time Allocation: ____ minutes

By the end of this learning guide, the students will have been able to:

- 1. Understand the order of transforming functions.
- 2. Illustrate the order of transforming functions on the coordinate plane.
- 3. Apply the order of transforming functions in graphing equations from a given parent function.

Time Allocation: 4 minutes
Actual Time Allocation: ____ minutes

From the previous lessons (Learning Guides 6.1 to 6.3), we learned how to translate, reflect, and dilate functions. Recall the different rules in transforming of functions:

TRANSFORMATIONS			
In each case, c represents a positive real number.			
	Function	Draw the graph of f and:	
Vertical translations	$\begin{cases} y = f(x) + c \\ y = f(x) - c \end{cases}$	Shift f upward c units. Shift f downward c units.	
Horizontal translations	$\begin{cases} y = f(x - c) \\ y = f(x + c) \end{cases}$	Shift f to the right c units. Shift f to the left c units.	
Reflections	$\begin{cases} y = -f(x) \\ y = f(-x) \end{cases}$	Reflect f about the x-axis. Reflect f about the y-axis.	
Vertical Stretching or Shrinking	$\begin{cases} y = cf(x); c > 1 \\ y = cf(x); 0 < c < 1 \end{cases}$	Vertically stretch f , multiplying each of its y -coordinates by c . Vertically shrink f , multiplying each of its y -coordinates by c .	
Horizontal Stretching or Shrinking	$\begin{cases} y = f(cx); c > 1 \\ y = f(cx); 0 < c < 1 \end{cases}$	Horizontally shrink f , dividing each of its x -coordinates by c . Horizontally stretch f , dividing each of its x -coordinates by c .	

Figure 1: Rules in Transforming Functions
Retrieved from: Glencoe Advanced Mathematical Concepts:
Precalculus with applications by Woods, Holliday. Mcgraw-Hill Education 2003.

In this lesson, we will learn how to perform a sequence of transformation.

Time Allocation: 15 minutes Actual Time Allocation: minutes

The sequence of transformation is the process of performing more than one transformations on a given function. Let's take a look at some examples.

Example 1: A function f is given and the indicated transformations are applied to its graph (in the given order). Denote equation for the final transformed graph as g(x). Simplify your answer.

- a. $f(x) = x^2$ shifted 3 units to the right then 1 unit upwards.
- b. $f(x) = x^2$ shifted 1 unit upwards then 3 units to the right.
- c. Compare the results from part (a) and part (b). What can you say? Do they result in the same function or not?

Answer:

a. Step 1: Shift
$$f(x) = x^2$$
 three units to the right.

$$f'(x) = (x-3)^2 = x^2 - 6x + 9$$

Step 2: Shift
$$f'(x) = (x - 3)^2$$
 one unit upward.

$$f''(x) = (x^2 - 6x + 9) + 1 = x^2 - 6x + 10$$

Step 3: Denote the final transformed graph denoted as g(x).

$$q(x) = x^2 - 6x + 10$$

b. Step 1: Shift
$$f(x) = x^2$$
 one unit upward.

$$f'(x) = x^2 + 1$$

Step 2: Shift
$$f'(x) = x^2 + 1$$
 three units to the right.

$$f''(x) = (x-3)^2 + 1 = x^2 - 6x + 9 + 1 = x^2 - 6x + 10$$

Step 3: Denote the final transformed graph denoted as
$$g(x)$$
.

$$g(x) = x^2 - 6x + 10$$

c. The result in (a) is equal to the result in (b). Takeaway: The order at which vertical and horizontal translations are performed in the function does not matter.

Example 2: A function f is given and the indicated transformations are applied to its graph (in the given order). Denote equation for the final transformed graph as g(x). Simplify your answer.

- a. $f(x) = x^2$ shifted 3 units upward then reflected across the x-axis.
- b. $f(x) = x^2$ reflected across the x-axis then shifted 3 units upward.
- c. Compare the results from part (a) and part (b). What can you say? Do they result in the same function or not?

Answer:

a. Step 1: Shift
$$f(x) = x^2$$
 three units upward.

$$f'(x) = x^2 + 3$$

Step 2: Reflect
$$f'(x) = x^2 + 3$$
 across the x-axis.

$$f''(x) = -(x^2 + 3) = -x^2 - 3$$

Step 3: Denote the final transformed graph denoted as g(x). $q(x) = -x^2 - 3$

b. Step 1: Reflect
$$f(x) = x^2$$
 across the x-axis.

$$f'(x) = -(x^2) = -x^2$$

$$f'(x) = -(x^2) = -x^2$$
Step 2: Shift $f'(x) = -x^2$ three units upward.

$$f''(x) = -x^2 + 3$$

Step 3: Denote the final transformed graph denoted as g(x).

$$g(x) = -x^2 + 3$$

c. The result in (a) is not equal to the result in (b). Takeaway: Be mindful of the order in performing multiple types of transformations!

Important! For consistency, the following order of transformation will be followed in transforming functions involving more than one transformation:

- 1. Horizontal Translation
- 2. Dilation
- 3. Reflecting
- 4. Vertical Translation

Example 3: Use the graph of $f(x) = x^2$ to graph $g(x) = 2(x-3)^2 - 1$.

Answer:

1. Our graphs will be transformed in the following order:

a. Step 1: Horizontal translation. Graph $y = (x - 3)^2$ by shifting the graph of $f(x) = x^2$

three units to the right.

Figure 2: Step 1. Sequence of Transformations

b. Step 2: Stretching: Graph $y = 2(x - 3)^2$ by stretching the previous graph by a factor of 2.

Figure 3: Step 2. Sequence of Transformations

c. Vertical translation: Graph $g(x) = 2(x - 3)^2 - 1$ by shifting the previous graph down 1 unit.

Figure 4: Step 3. Sequence of Transformations

Use geogebra to graph the function $g(x) = 2(x-3)^2 - 1$. The result should be exactly the same as the one we obtained throught transformations.

Time Allocation: 9 minutes Actual Time Allocation: minutes

Answer the following questions. Items marked with an asterisk (*) will be graded.

1. Use the graph of f(x) on the right to graph each function g.

a.
$$g(x) = f(x-1) - 1$$

b.
$$*g(x) = f(x - 1) + 1$$

c. $g(x) = 2f(\frac{1}{2}x)$

c.
$$g(x) = 2f(\frac{1}{2}x)$$

d.
$$*g(x) = \frac{1}{2}f(x+1)$$

Figure 4: Function for Sequence of Transformation Retrieved from: Glencoe Advanced Mathematical Concepts: Precalculus with applications by Woods, Holliday. Mcgraw-Hill Education 2003.

2. Begin by graphing the parent absolute value function f(x) = |x|. Use the transformation of this graph to sketch the given function g.

a.
$$h(x) = -|x + 4|$$

b.
$$*h(x) = -|x+4| + 1$$

c.
$$h(x) = 2|x+4|$$

d.
$$*h(x) = -2|x+4|+1$$

3. Functions f and g are graphed in the same coordinate system. If g is obtained from f through a sequence of transformations, find an equation for g.

Figure 5: Absolute Value Function for Sequence of Transformation
Retrieved from: Glencoe Advanced
Mathematical Concepts: Precalculus with applications by Woods, Holliday. Mcgraw-Hill Education 2003.

Figure 5: Semicircle Function for Sequence of Transformation Retrieved from: Glencoe Advanced Mathematical Concepts: Precalculus with applications by Woods, Holliday. Mcgraw-Hill Education 2003.

Time Allocation:	1 minute
Actual Time Allocation:	minutes

- The sequence of transformation is the process of performing more than one transformations on a given function.
- The order of operation in performing a sequence of transformation matters. However, if the sequence only involved translation, the order at which vertical and horizontal translations are performed does not matter.
- For consistency, the following order of transformation will be followed in transforming functions involving more than one transformation:
 - i. Horizontal Translation
 - ii. Dilation
 - iii. Reflecting
 - iv. Vertical Translation

References:

Albarico, J.M. (2013). THINK Framework. Based on *Science LINKS* by E.G. Ramos and N. Apolinario. Quezon City: Rex Bookstore Inc.

Carter, J., Cuevas, G., Day, R., and Malloy, C., (2012). *Glencoe Geometry*. USA: The McGraw-Hill Companies, Inc.

International Geogebra Institute. (2020). GeoGebra. www.geogebra.org

Stewart, J., Redlin, L., Watson, S (2012). *Precalculus: Mathematics for Calculus*. Brooks/Cole, Cengage Learning.

Prepared by: Imari Joy C. Borda

Position: Special Science Teacher (SST) I

Campus: PSHS – SMC

Reviewed by: Arvin Fajardo

Position: Special Science Teacher (SST) III

Campus: PSHS - CLC

Answer Key:

Navigate

3. a.
$$f(x) = -(x+4)^2$$