ALGORITMOS DE BÚSQUEDA

OBJETIVOS DE LA SESIÓN

- 1. EL ALCANCE DE LA SESIÓN DE HOY SERÁ EL TEMA ALGORITMOS DE BÚSQUEDA EN JAVASCRIPT
- 2. ENTENDER QUE SON LOS ALGORITMOS DE BÚSQUEDA Y CÓMO FUNCIONAN.
- 3. VEREMOS SU FUNCIONAMIENTO EN CÓDIGO PARA ENTENDER MEJOR EL TEMA.
- 4. SEGUIREMOS CON LA DINÁMICA DE LOS EJERCICIOS PARA SEGUIR PRACTICANDO Y REFORZANDO EL TEMA VISTO DURANTE LA SESIÓN.

Repaso Algoritmos

Una secuencia de pasos para resolver un problema claramente definido

Dada la misma entrada, estos pasos deben llevarnos a la misma solución siempre

Introducción

Muchas veces en programación tenemos vectores de datos (arreglos, hashes, sets... entre otros) y es necesario obtener un elemento en específico.

Si bien, nos acostumbramos a recorrer todo el vector en su mayoría arreglos en busca de nuestro elemento, esto puede tomar mucho más tiempo del que quisiéramos.

ALGORITMOS DE BÚSQUEDA

Imagina que estás en la playa de la imagen, y se te pierde una niña de 4 años. Buscarla puede ser toda una odisea. Hay varias formas en que puedes intentar buscarla mucho más rápido.

A este tipo de búsqueda, que va elemento por elemento del vector, le llamamos Búsqueda Secuencial.

ALGORITMOS DE BÚSQUEDA

asumiendo que hay n personas en la playa y que ver a cada persona te toma 1 segundo, en el peor de los casos la última que veas sea la persona que buscas, en total demorarás n segundos en buscarla.

Búsqueda Lineal (Secuencial)

Linear Search

Llamamos secuencial a la búsqueda en la que vamos a comparar elemento por elemento del vector con el valor que buscamos.

¿Cómo buscarías una palabra en un libro?

¿Qué es un árbol binario de búsqueda?

Un árbol binario de búsqueda es una estructura de datos que funciona basado en el principio de la búsqueda binaria: los valores del árbol están colocados en forma ordenada, y el recorrido del árbol es realizado usando un algoritmo muy parecido a la búsqueda binaria.

La inserción y eliminación requieren al igual que el recorrido un tiempo logarítmico. Este costo es mucho mejor que el costo lineal de la inserción y eliminación en los arreglos ordenados, y los árboles de búsqueda binaria poseen la habilidad de realizar todas las operaciones posibles en los arreglos ordenados, incluyendo consultas en rangos y comparaciones aproximadas.

BST (Binary Search Tree)

Los árboles binarios de búsqueda se utilizan para realizar búsquedas rápidas en dispositivos de almacenamientos externos, donde los datos necesitan ser buscados y colocados en la memoria principal.

Escenario Real

Son frecuentemente utilizados para organizar largos conjuntos de datos como las bases de datos o los sistemas de ficheros.

EL SISTEMA DE ARCHIVOS EN WINDOWS

Img. Sistema Fichero de datos

A este tipo de búsqueda le llamamos Búsqueda Binaria.

Búsqueda Binaria

Imagina que pudieras decirle a toda la gente que se ponga en fila ordenada por edades. A la persona de la mitad de la fila, a la que llamaremos le preguntas su edad, y si es mayor de 4 (estábamos buscando a una persona de 4 años), entonces sabrías que la persona que buscas es alguna de las que están antes de a.

Binary Search 14 1 9 14 15 25 30 39 48

ALGORITMOS DE BÚSQUEDA

Están diseñados para localizar un elemento concreto dentro de una **estructura de datos**.

Búsqueda Binaria

Search for 47

_		_	4.0						
0	4	7	10	14	23	45	47	53	

A esto le llamamos Divide y Vencerás o Divide and Conquer.

Comparación

HORA DEL CÓDIGO

