week5

---- Dong Pu

Question 1 Question:

- Use the data in problem1.csv. Fit a Normal Distribution and a Generalized T distribution to this data. Calculate the VaR and ES for both fitted distributions.
- Overlay the graphs the distribution PDFs, VaR, and ES values. What do you notice? Explain the differences.

Question 1 Answer

	Normal distribution	T distribution
VaR	0.08083001649793141	0.07341047133790324
Expected Shartfall	0.10155666084239018	0.10820008042369983

Question 1 Answer

From the plot on the right, we can see that T distribution clearly better describes the dataset.

For T distribution, VaR is larger than normal distribution, and ES is smaller than normal distribution.

Question 2 Question

- In your main repository, create a Library for risk management. Create modules, classes, packages, etc as you see fit. Include all the functionality we have discussed so far in class. Make sure it includes
- 1. Covariance estimation techniques.
- 2. Non PSD fixes for correlation matrices
- 3. Simulation Methods
- 4. VaR calculation methods (all discussed)
- 5. ES calculation
- Create a test suite and show that each function performs as expected

Question 2 Answer

- Please refer to the risklib.py file for all functions created.
- The test case for each functionality is in the week5 ipynb.

Question 3 Question

- Use your repository from #2. Using Portfolio.csv and DailyPrices.csv. Assume the expected return on all stocks is 0. This file contains the stock holdings of 3 portfolios. You own each of these portfolios.
- Fit a Generalized T model to each stock and calculate the VaR and ES of each portfolio as well as your total VaR and ES. Compare the results from this to your VaR form Problem 3 from Week 4.

Question 3 Answer

	Portfolio A	Portfolio B	Portfolio C	Total
Historic VaR	8805.507754785509	6981.307577790557	5496.294533012176	21076.418322771406
Simulated Var with T	2006.4609446966533	1882.9713069221045	1581.5563530839136	3150.4144172653027
Historic ES	10438.09016614881	8945.79531744502	7436.626667146727	26687.791306205963
Simulated ES with T	2529.3345196176138	2368.122887611612	2054.84685017911	3990.1516833426354

Question 3 Answer

- For historic data, the result is quite close to the one from week4 question 3.
- For simulated data, the result is quite different since we fit a Generalized T model to each stock. In general, they are smaller than the result from week4 question 3.