

SUBSTITUTE SEQUENCE LISTING

<110> Giannotta, Fabrizio
Rigali, Sebastien
Dusart, Jean

<120> NUCLEOTIDE AND/OR AMINO-ACID SEQUENCE
CONTROLLING THE EXPRESSION OF A XYLANASE PROMOTER-OPERATOR
NUCLEOTIDE SEQUENCE

<130> VANM201.001APC

<140> US 09/762,992
<141> 2001-02-14

<150> PCT/BE99/00105
<151> 1999-08-12

<150> US 60/096,556
<151> 1998-08-14

<160> 9

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 969
<212> DNA
<213> Streptomyces sp. EC3

<220>
<221> CDS
<222> (127) ... (936)

<400> 1
atctgcacgg ttcctcgcc ggggaaagg agtcgaagg gccgggtgga cgcacggcta 60
cgcgcagcga gcgcgcgtcc cgacctatgg cctaagggtgt ctagagaagc gaggagggtt 120
taggga atg cct gct acc gac gac cgt cgg ccc aag tac cag cgg atc 168
Met Pro Ala Thr Asp Asp Arg Arg Pro Lys Tyr Gln Arg Ile
1 5 10

gcg gac tct ttg cga gag gcg atc cag tcg ggc gag tac ggt ccc ggt 216
Ala Asp Ser Leu Arg Glu Ala Ile Gln Ser Gly Glu Tyr Gly Pro Gly
15 20 25 30

gat cgg ctt ccc ggg gag aac gac ctc atg gcc acg cac ggc gtg gcc 264
Asp Arg Leu Pro Gly Glu Asn Asp Leu Met Ala Thr His Gly Val Ala
35 40 45

cgt atg acg gcc cgg cag gcg ctc ggc gtc ctg cgg gac gag ggc atc 312
Arg Met Thr Ala Arg Gln Ala Leu Gly Val Leu Arg Asp Glu Gly Ile
50 55 60

gcc gaa tcc cgg aag ggc gca ggt gtc ttc gtg cgg gcc ttc cgt ccg 360
Ala Glu Ser Arg Lys Gly Ala Gly Val Phe Val Arg Ala Phe Arg Pro

65	70	75	
ctg cgc cga cgc ggc atc cag	cg ^g ctg gcc cgc gac	cag tgg ggc aac	408
Leu Arg Arg Arg Gly Ile Gln	Arg Leu Ala Arg Asp Gln	Trp Gly Asn	
80	85	90	
gga cgg tcc atc tgg tcg	g ^c gac atc gag	gcc aga gac ctc	456
Gly Arg Ser Ile Trp Ser Ala	Asp Ile Glu Ala Arg Asp	Leu Arg Val	
95	100	105	110
gac cag gtc tcg gtg	ggc gag gag aaa	gct ccc gag cac atc	504
Asp Gln Val Ser Val Gly	Glu Glu Lys Ala	Pro Glu His Ile Gly	
115	120	125	Ala
gtc ctg ggc atg gct	gcc gaa gaa	gtc g ^c tgc gtg agg	552
Val Leu Gly Met Ala Ala	Glu Glu Val Ala	Cys Val Arg Arg Arg	
130	135	140	Arg
ttc gtc ctg gac ggc aag	ccg gtg ctg ctc	g ^c acg agt tac	600
Phe Val Leu Asp Gly Lys	Pro Val Leu Leu Ala	Thr Ser Tyr Leu Pro	
145	150	155	
ctg tcc ctg gtg gcc gga	tcc gcc atc agc	cga gag gac acc	648
Leu Ser Leu Val Ala Gly	Ser Ala Ile Ser Arg	Glu Asp Thr Gly	
160	165	170	Pro
ggc ggt acc tac gcc cg ^g	ctt gcc gaa ctc	ggc cac gaa ccg	696
Gly Gly Thr Tyr Ala Arg	Leu Ala Glu Leu Gly	His Glu Pro Val His	
175	180	185	190
ttc cgc gag gag atc cgc	tca cgc atg ccg	tcg ccg gac gag	744
Phe Arg Glu Glu Ile Arg	Ser Arg Met Pro	Ser Pro Asp Glu Val	
195	200	205	Thr
cag ctg gac ctt gcc ccg	ggc acc ccg	gtc atc ctc atc	792
Gln Leu Asp Leu Ala Pro	Gly Thr Pro Val	Ile Leu Ile Cys Arg	
210	215	220	Thr
g ^c ttc acc gac cag	ggc cac cct	gtc gag gtc aac	840
Ala Phe Thr Asp Gln Gly	His Pro Val Glu Val	Asn Glu Met Thr	
225	230	235	Leu
gac gcc gct tcc tac	gtc ttg gag tac	gac ttc gac	888
Asp Ala Ala Ser Tyr Val	Leu Glu Tyr Asp	Phe Asp Ala Gly	
240	245	250	Pro Glu
ccc gcc tcc ccc ggc	gcc gac gcc aca	g ^c ccc gga gac	936
Pro Ala Ser Pro Gly Ala	Asp Ala Thr Ala	ccg gcc tga	
255	260	265	* Ala
cagcgggcga ccgttggaaag	tcctcgcatc	ccg	969
<210> 2			
<211> 269			
<212> PRT			
<213> Streptomyces sp. EC3			
<400> 2			

Met Pro Ala Thr Asp Asp Arg Arg Pro Lys Tyr Gln Arg Ile Ala Asp
 1 5 10 15
 Ser Leu Arg Glu Ala Ile Gln Ser Gly Glu Tyr Gly Pro Gly Asp Arg
 20 25 30
 Leu Pro Gly Glu Asn Asp Leu Met Ala Thr His Gly Val Ala Arg Met
 35 40 45
 Thr Ala Arg Gln Ala Leu Gly Val Leu Arg Asp Glu Gly Ile Ala Glu
 50 55 60
 Ser Arg Lys Gly Ala Gly Val Phe Val Arg Ala Phe Arg Pro Leu Arg
 65 70 75 80
 Arg Arg Gly Ile Gln Arg Leu Ala Arg Asp Gln Trp Gly Asn Gly Arg
 85 90 95
 Ser Ile Trp Ser Ala Asp Ile Glu Ala Arg Asp Leu Arg Val Asp Gln
 100 105 110
 Val Ser Val Gly Glu Glu Lys Ala Pro Glu His Ile Gly Ala Val Leu
 115 120 125
 Gly Met Ala Ala Glu Glu Val Ala Cys Val Arg Arg Arg Arg Phe Val
 130 135 140
 Leu Asp Gly Lys Pro Val Leu Leu Ala Thr Ser Tyr Leu Pro Leu Ser
 145 150 155 160
 Leu Val Ala Gly Ser Ala Ile Ser Arg Glu Asp Thr Gly Pro Gly Gly
 165 170 175
 Thr Tyr Ala Arg Leu Ala Glu Leu Gly His Glu Pro Val His Phe Arg
 180 185 190
 Glu Glu Ile Arg Ser Arg Met Pro Ser Pro Asp Glu Val Thr Gln Leu
 195 200 205
 Asp Leu Ala Pro Gly Thr Pro Val Ile Leu Ile Cys Arg Thr Ala Phe
 210 215 220
 Thr Asp Gln Gly His Pro Val Glu Val Asn Glu Met Thr Leu Asp Ala
 225 230 235 240
 Ala Ser Tyr Val Leu Glu Tyr Asp Phe Asp Ala Gly Pro Glu Pro Ala
 245 250 255
 Ser Pro Gly Ala Asp Ala Thr Ala Pro Gly Asp Pro Ala
 260 265

<210> 3
 <211> 195
 <212> DNA
 <213> Streptomyces sp. EC3

<400> 3
 cccaaagtacc agcggatcgc ggactctttg cgagaggcga tccagtcggg cgagtacgg 60
 cccgggtgatc ggcttccccgg ggagaacgac ctcatggcca cgcacggcgt ggcccgatg 120
 acggccccggc aggcgctcgg cgtcctgcgg gacgagggca tcgcccgaatc ccggaaaggc 180
 gcaagggtgtct tcgtg 195

<210> 4
 <211> 137
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> polylinker

<400> 4
 agcttaggcct atcgatggcg cgccaaagcta gcaacttaag tagatctaag tagtctgcag 60
 cagaagctta atatttaatt aagcggccgc agtactctcg agccgccatg ggcccgatat 120

cggtaccagg cctaatt 137

<210> 5
<211> 133
<212> DNA
<213> Streptomyces sp. EC3

<400> 5
actgtaggcct atcgatggcg cgccaagcta gcaacttaag tagatctaac tagtctgcag 60
cagaagctta atattnaatt aagcggccgc agtactctcg agccgccatg ggcccgatat 120
cggtaccagg cct 133

<210> 6
<211> 12
<212> DNA
<213> Streptomyces sp. EC3

<400> 6
cgaaaactgtt ga 12

<210> 7
<211> 16
<212> DNA
<213> Streptomyces sp. EC3

<400> 7
tttccgaaag tttgcc 16

<210> 8
<211> 12
<212> DNA
<213> Streptomyces sp. EC3

<400> 8
tcgaaaacttt cg 12

<210> 9
<211> 15
<212> DNA
<213> Streptomyces sp. EC3

<220>
<221> misc_feature
<222> (1)...(15)
<223> n = A,T,C or G

<400> 9
tnncgaaann gncnc 15