MÉTODOS NUMÉRICOS E OTIMIZAÇÃO NÃO-LINEAR

Trabalho 2 Grupo nº 35

Pedro Pereira (A80627) Sofia Marques (A87963) Pedro Pereira (A89232) José Martins (A90122)

1 de fevereiro de 2021

Introdução

A equação escolhida reflete a expressão usada por um departamento de marketing de forma a estimar o lucro máximo das vendas de um novo telemóvel, dada por:

 $(20000 + 5\sqrt{a} - 60p)(p - B) - C - a$, sendo a o valor a investir na campanha de marketing, B o preço de produção por unidade, C o valor investido para o desenvolvimento do produto e p o preço do telemóvel.

Para representar um problema de aplicação real, utilizámos valores algo realistas nas variáveis da equação. Estes foram: B = 100 (preço de produção do telemóvel), C = 800000.

Fonte do problema: http://www.est.uc3m.es/esp/nueva_docencia/comp_col_get/lade/optimizacion_simulacion/doc_generica/04_NonLinear.pdf

O objetivo e as condições de aplicabilidade da função do MATLAB usada

Assim, o objetivo desta função consiste em encontrar os valores ótimos para o investimento de marketing e preço do telemóvel de forma a maximizar o lucro da empresa.

```
function [f] = smartphones(x)
% Equação que nos vai permitir maximizar o lucro
% a partir da rotina fminunc
% x1 = a = valor a investir na campanha de marketing
% x2 = p = preço do telemóvel
s = (20000 +5*sqrt(x(1))-60*x(2))*(x(2)-100)-800000-x(1);
f = -s;
end
```

Figura 1: Ficheiro m utilizado

Uma vez que se trata de um problema de maximização, foi trocado o sinal da função para poder assim ser resolvido como um problema de minimização, e serem utilizadas as funções de minimização. É ainda importante referir que este se trata de um problema diferenciável, sendo por essa razão utilizada a função fminunc para a resolução do mesmo.

Testes Computacionais

Figura 2: Gráfico da função original

Utilizamos inicialmente como ponto inicial x1=150000 e x2=150, uma vez que analisando a equação nos pareceu evidente que x2 teria de ser superior a 100, e estimamos também que x1 deveria ser na ordem das centenas de milhar.

Sendo assim, utilizando estes valores, a rotina fminunc encontra o valor de $x1=1.0600*10^5$ e x2=230.2326 em 10 iterações e com um $fmin=-1.1163*10^5$ (que se traduz num máximo de $1.1163*10^5$ na função original). Através da opção do optimset para mostrar as iterações, foi apresentada a seguinte tabela:

>> [xmin, f	min, exitflag,	output] = f	minunc('smartphor	nes',[150000 150],	op)
				First-order	
Iteration	Func-count	f(x)	Step-size	optimality	
0	3	303175		9.94e+03	
1	9	209810	0.00100639	8.74e+03	
2	12	- 108216	1	0.143	
3	33	- 108312	597871	32.9	
4	36	- 109534	1	283	
5	39	-110711	1	363	
6	42	-111432	1	216	
7	45	-111613	1	53.4	
8	48	-111628	1	0.0986	
9	51	-111628	1	0.0112	
10	54	-111628	1	0.00017	

O valor da norma do gradiente obtido $(1.7*10^{-4})$ foi próximo de 0, indicando que os valores obtidos são relevantes.

Variando os pontos iniciais, obteve-se os seguintes resultados: Ponto inicial x1=10000 e x2=100

>> [xmin7,	fmin7, exitfl	ag7, output7]	= fminunc('sma	artphones', [10000,	100],	op)
				First-order		
Iteration	Func-count	f(x)	Step-size	optimality		
0	3	810000		1.45e+04		
1	12	-12640	0.00627586	3.58e+03		
2	15	-66041.7	1	2.02		
3	36	-79251.3	597871	706		
4	39	-90801.1	1	407		
5	42	-102502	1	44.1		
6	45	-108568	1	13.6		
7	48	-111125	1	14.7		
8	51	-111596	1	13.9		
9	54	-111627	1	3.48		
10	57	-111628	1	0.427		
11	60	-111628	1	0.0559		
12	63	-111628	1	0.00251		

Podemos ver que com este ponto inicial mais longe do ótimo, a função *fminunc* demora 12 iterações, e obtém os mesmos valores:

```
fmin = -1.1163 * 10^5
x1 = 1.0600 * 10^5 e x2 = 230.2326
```

Alterando no optimset a opção HessUpdate para 'dpf', utilizando as restantes opções predefinidas, e o ponto inicial x1 = 150000 e x2 = 150 (utilizados no 1° exemplo) obteve-se os seguintes valores:

```
fmin = -1.0872 * 10^5
x1 = 1.4316 * 10^5 e x2 = 229.7989
```

O valor da norma do gradiente obtido foi de 315.9418, muito do longe do esperado, que seria um valor próximo de 0. Isto indica-nos que este resultado obtido não é relevante.

Como último teste, utilizando agora a rotina de otimização fminsearch e com os pontos iniciais x1=150000 e x2=150 (utilizados no 1^0 exemplo) obtivemos os mesmos valores, porém o número de iterações é muito superior, sendo este igual a 71. Isto deve-se ao facto da rotina fminunc tomar partido da diferenciabilidade da função, obtendo assim a solução ótima de uma forma mais eficiente.

Conclusão

Após analisar os diferentes testes efetuados, é possível verificar que para maximizar o lucro da venda deste novo telemóvel, é necessário gastar $1.0600*10^5 \in$ na campanha de marketing e o preço do telemóvel deve ser igual a $230.2326 \in$ para que se consiga atingir o lucro máximo de $1.1163*10^5 \in$. Esta parece-nos uma solução viável para o problema escolhido.

Com a ajuda das aulas práticas e teóricas, sentimo-nos bastante confortáveis a trabalhar com a plataforma MATLAB, percebendo desde logo a sua vantagem na resolução de problemas deste tipo. A maior dificuldade encontrada no decorrer deste projeto foi provavelmente encontrar problemas de otimização não linear sem restrições que nos parecessem relevantes. Pensamos ter encontrado um problema interessante e relevante à matéria, mostrando uma possível aplicação da otimização não linear.