INVERSE FUNCTION

Week 6

Learning Objective

To find the inverse of a function.

Success Criteria

- To understand that the reverse process is the inverse function.
- To find and apply the inverse function.
- To solve problems involving inverse functions.

Starter

The tables show the inputs and outputs of function.

Can you work out what f(x) is and fill in the missing gaps?

$$f(x) = 2x - 2$$

X	f(x)	
0	-2	
1	0	
2	2	
3	4	
4	6	
10	18	
15	28	

Inverse Functions

The inverse function is the rule that gets you from the output back to the input.

It is written as $f^{-1}(x)$.

Inverse Functions

If we look at the function f(x) = 2x - 2, we can start by thinking of the function as a function machine, then reversing the operations.

So the inverse function is $f^{-1}(x) =$	$\frac{x+2}{2}$
--	-----------------

x	f(x)	
0	-2	
1	0	
2	2	
3	4	
4	6	
10	18	
15	28	
21	40	

Inverse Functions

There is a quicker way to do this than drawing out a function machine every time.

$$f(x) = 2x - 2$$

Step one:

Start by writing your function in terms of *y* and *x*.

$$y = 2x - 2$$

Step two:

Switch the *y* and the *x*.

$$x = 2y - 2$$

Step three:

Make y the subject.

$$y = \frac{x+2}{2}$$

This is your inverse function: $f^{-1}(x) = \frac{x+2}{2}$

Step four:

Check by choosing an input.

$$f(1) = 2(1) - 2 = 0$$

$$f^{-1}(0) = \frac{x+2}{2} = 1$$

State the domain and range for each function on the graphs.

Discuss

Find the inverse function $f^{-1}(x)$, for the function f(x) = 4x - 7

Step one:

Start by writing your function in terms of *y* and *x*.

$$y = 4x - 7$$

Step two:

Switch the y and the x.

$$x = 4y - 7$$

Step three:

Make y the subject.

$$y = \frac{x+7}{4}$$

So
$$f^{-1}(x) = \frac{x+7}{4}$$

Step four:

Check by choosing an input.

$$f(1) = 4 \times 1 - 7 = -3$$

$$f^{-1}(-3) = \frac{-3+7}{2} = 1$$

Example 9

The function $f(x) = 7 - \frac{1}{2}x$ is defined on the domain $-5 \le x \le 5$.

a Find $f^{-1}(6)$.

b Determine whether $f^{-1}(11)$ exists. If it does, find it.

c Find the range of f(x).

d State the domain and range of $f^{-1}(x)$.

e Solve $f^{-1}(x) = 0$.

- / (~/ -	а	f^-	1(6)) = 2
-----------	---	-------	------	-------

Since f(a) = b means $f^{-1}(b) = a$, $f^{-1}(6) = a$ means f(a) = 6.

Solve $6 = 7 - \frac{1}{2}x$ algebraically or with technology.

 $11 = 7 - \frac{1}{2}x$ means that x = -8, which is outside the domain of f.

You know that f(x) is linear, so you can find its values at the endpoints of the domain to find the range.

$$f(-5) = 9.5, f(5) = 4.5$$

The domain of $f^{-1}(x)$ is the range of f(x) and vice versa.

$$f^{-1}(x) = 0$$
 means $f(0) = x$.

b
$$f^{-1}(11)$$
 is not defined.

c Range:
$$4.5 \le y \le 9.5$$

d Domain:
$$4.5 \le x \le 9.5$$

Range: $-5 \le y \le 5$

e
$$x=7$$

Example

Laura is planning to construct a garden consisting of a rectangle joined to a semicircle of radius x, as shown in the diagram. The sides of the rectangle perpendicular to this side will be of length 6 m. The garden must fit within an 18 m by 18 m square.

- **a** Find a model for the perimeter *P* (in meters) of this garden as a function of its radius *x*.
- b Find the reasonable domain and associated range of this model.
- Find an equation for the inverse function $P^{-1}(x)$ in gradient–intercept form.
- **d** State the independent and dependent variables of the function $P^{-1}(x)$.
- **e** Edging for the garden comes in three lengths: 15, 30 or 45 metres. Determine which length will give Laura a rectangle that is closest to a square.

a
$$P(x) = \pi x + 2x + 12$$

The semicircle has circumference $\frac{2\pi x}{2} = \pi x$.

The rectangle has side lengths 6 and 2x.

b Domain:
$$0 < x \le 9$$

Range: $12 < P \le 58.3$

x represents the radius, which must be positive.

As the pool must fit within an 18×18 square, x + 6 < 18 and 2x < 18, so x < 9.

c
$$P^{-1}(x) = 0.194x - 2.33$$

$$P(0) = 12$$
 and $P(9) = 58.3$.

$$x = \pi y + 2y + 12$$
 Swap x and y.

$$x-12 = (\pi + 2)y$$
 Factorise.

$$\frac{x-12}{\pi+2} = y$$

Divide by the *y* coefficient to isolate *y* and convert numbers to decimal approximations.

Dependent variable y is the radius associated with that perimeter.

Laura should choose the Find the radius for each perimeter by evaluating P^{-1} , then double the result to find one side of the rectangle. The length of the other side is 6 m:

30 m edging because it results in the rectangle whose dimensions are

most similar.

 $P^{-1}(15) = 0.583 \,\mathrm{m}$: $6 \,\mathrm{m} \times 1.166 \,\mathrm{m}$

$$P^{-1}(30) = 3.50 \,\mathrm{m}$$
: $6 \,\mathrm{m} \times 7 \,\mathrm{m}$

$$P^{-1}(45) = 6.62 \,\mathrm{m}$$
: $6 \,\mathrm{m} \times 12.8 \,\mathrm{m}$

YOUR TURN

Write your answers in your math notebook. Show all necessary workings.

Exercise 41

- 1 For each of the following functions:
 - i Sketch a graph of the inverse function.
 - ii State the domain and range of $f^{-1}(x)$.
 - iii Estimate the solution of $f(x) = f^{-1}(x)$.

а

b

- 2 Consider f(x) = -2.5x + 5 for $0 \le x \le 3$.
 - **a** Draw the graph of *f* on a pair of axes. Use the same scale on both axes.
 - **b** Point *A* lies on the graph of f^{-1} and has coordinates (b, 3). Find the value of b.
 - Determine the missing entries in the table.

Function	Domain	Range
f	0 ≤ <i>x</i> ≤ 3	
f^{-1}		

- **d** Draw the graph of f^{-1} on the same set of axes used in part **a**.
- **e** Find the coordinates of the point that lies on the graph of f, the graph of f^{-1} and the graph of y = x.

- 3 Dieneke travels from Amsterdam to Budapest, a distance of 1400 km. On the first day she covers 630 km. She notes that her average speed is 90 km hr⁻¹ on day 1. Assume that she continues at the same average speed on the second day without any breaks.
 - **a** Supposing that she begins driving at 8 am on day 2. Find an equation that expresses her total distance travelled from Amsterdam, *d* (in kilometres), as a function of time, *x* (in hours since 8 am of day 2).
 - **b** Find an equation for the inverse function $d^{-1}(x)$.
 - c Use the inverse function to predict the time (to the nearest minute) at which Dieneke will arrive at the following points:
 - i halfway between Amsterdam and Budapest
 - ii in Prague, 880km from Amsterdam
 - iii in Budapest.
 - d Comment on which of the three places Dieneke should plan to stop for a midday meal.