| Name                 |            |
|----------------------|------------|
|                      |            |
|                      |            |
| Center/Index Number/ | ********** |

545/3 CHEMISTRY PRACTICAL Paper 3 AUGUST, 2022 2 hours



## JINJA JOINT EXAMINATIONS BOARD

**Uganda Certificate of Education** 

**MOCK EXAMINATIONS – AUGUST, 2022** 

**CHEMISTRY** 

**PRACTICAL** 

Paper 3

2 hours

## **INSTRUCTIONS TO CANDIDATES:**

- Answer **All** questions.
- Answers are to be written in the spaces provided.
- You are not allowed to use any reference books.
- All working must be clearly shown.
- Mathematical tables, slide rules and non-programmable silent electronic calculators may be used.
- [H=1, 0=16]

## For Examiner's use only

| Q1 | Q2 | TOTAL |
|----|----|-------|
|    |    |       |
|    |    |       |

- 1. You are provided with the following:
  - **S**, which is a solution of a base.
  - **T**, which is a solution of an acid.

You are required to determine;

- (i) the molarity of the acid.
- (ii) themolar heat of reaction between the acid and the base.

## **PROCEDURE**

- (a) Using a measuring cylinder, measure 120cm<sup>3</sup> of **S** and transfer it into a 250cm<sup>3</sup> beaker. Add 60cm<sup>3</sup> of distilled water, mix and label it **BA1**.
- (b) Transfer 100.0cm<sup>3</sup> of **T** into another 250cm<sup>3</sup> beaker using a measuring cylinder. Add 100cm<sup>3</sup> of distilled water, mix and label **BA2**.
- (c) Measure and record the initial temperature of **BA1**.
- (d) Run 20.00cm<sup>3</sup> of **BA1** from a burette into a dry plastic beaker.
- (e) Using a measuring cylinder, transfer at once 5.0cm<sup>3</sup> of **BA2** into the plastic beaker containing **BA1**. Stir with the thermometer and record the highest temperature attained by the mixture.
- (f) Repeat procedures (d) and (e) using 10.0, 15.0, 20.0, 25.0, 30.0, 35.0 and 40.0cm<sup>3</sup> of **BA2**.
- (g) Record your results in the table below.

Initial temperature of **BA1** .....<sup>0</sup>c

(01 mark)

Table

| Volume of <b>BA2</b> used (cm <sup>3</sup> ) | 5.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 |
|----------------------------------------------|-----|------|------|------|------|------|------|
|                                              |     |      |      |      |      |      |      |
| Highest temperature attained                 |     |      |      |      |      |      |      |
| by the mixture (°)                           |     |      |      |      |      |      |      |

(07 marks)

(a) Plot a graph of highest temperature attained by the mixture against volume of **BA2** used. (7½ marks)

| (i) t  | the graph, determine; the volume of <b>BA2</b> required to neutralize 20.0cm <sup>3</sup> of <b>BA1</b> . (½ mar                                 | Turn over            |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|        |                                                                                                                                                  |                      |
| (ii) t | the maximum temperature change for the reaction. (01 mark)                                                                                       |                      |
|        |                                                                                                                                                  |                      |
| (b)    |                                                                                                                                                  | of acid;<br>½ marks) |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
| (c)    | Determine the;                                                                                                                                   |                      |
|        | maximum heat evolved during the reaction. (Specific heat capacity mixture = $4.2Jg^{-1}K^{-1}$ , density of mixture = $1 gcm^{-3}$ ). (2½ marks) | of the               |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
| (ii)   | molar heat of reaction between the acid and the base. (02 marks)                                                                                 |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |
|        |                                                                                                                                                  |                      |

2. You are provided with substance **P**, which contains **two** cations and **one** anion. Carry out the following tests on **P** and identify the cations and anions in it. Identify the gas(es) evolved.

Record your observations and deductions in the table below.

|     | TEST                                                                                                                                               | OBSERVATIONS | DEDUCTIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|
| (a) | Heat strongly one spatula end-ful of <b>P</b> in a hard glass tube until there is no change.                                                       |              |            |
| (b) | To three spatula end-fuls of <b>p</b> , add dilute nitric acid a little at a time until there is no further change. Warm if necessary to dissolve. |              |            |
| (c) | To the acidic solution in (b), add dilute sodium hydroxide solution drop wise until in excess. Filter and keep the filtrate and residue.           |              |            |
| (d) | To the filtrate in (c), add dilute nitric acid until the solution is just acidic. Divide the acidic solution into three parts.                     |              |            |
| i.  | To the first part of the acidic solution, add sodium hydroxide solution drop wise until in excess.                                                 |              |            |

| T | urn | over |
|---|-----|------|
|   |     |      |

| 11.  | of the acidic solution, add aqueous ammonia solution drop wise until in excess.                                                                                                  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| iii. | To the third part of the acidic solution, add 3 – 4 drops of potassium iodine solution.                                                                                          |  |
| (e)  | Wash the residue with sodium hydroxide solution. Then transfer the residue in a test tube and add about 3cm³ of dilute nitric acid. Divide the acidic solution into three parts. |  |
| i.   | To the first part of the solution add sodium hydroxide solution drop wise until in excess.                                                                                       |  |
| ii.  | To the second part of the solution, add ammonia solution drop wise until in excess.                                                                                              |  |
| iii. | To the third part of<br>the solution, add<br>sodium carbonate<br>solution until there<br>is no further<br>change.                                                                |  |
|      | Identify the:<br>(i) Cations in <b>P</b>                                                                                                                                         |  |

| J | racinary the.           |
|---|-------------------------|
|   | (i) Cations in <b>P</b> |
|   | (ii) Anion in <b>P</b>  |

**END**