SEQUENCE LISTING

1/23

<110> Takeda Chemical Industries, Ltd.												
<120> Novel Use of EDG Receptor												
<130> 3127WOOP												
<150> JP 2002-361415												
<151> 2002-12-12												
<160> 45												
<210> 1												
<211> 364												
<212> PRT												
<213> human												
<400> 1												
Met Ala Ala Ile Ser Thr Ser Ile Pro Val Ile Ser Gln Pro Gln Phe												
5 10 15												
Thr Ala Met Asn Glu Pro Gln Cys Phe Tyr Asn Glu Ser Ile Ala Phe												
20 25 30												
Phe Tyr Asn Arg Ser Gly Lys His Leu Ala Thr Glu Trp Asn Thr Val												
35 40 45												
Ser Lys Leu Val Met Gly Leu Gly Ile Thr Val Cys Ile Phe Ile Met												
50 55 60												
Leu Ala Asn Leu Leu Val Met Val Ala Ile Tyr Val Asn Arg Arg Phe												
65 70 75 80												
His Phe Pro Ile Tyr Tyr Leu Met Ala Asn Leu Ala Ala Ala Asp Phe												
85 90 95												
Phe Ala Gly Leu Ala Tyr Phe Tyr Leu Met Phe Asn Thr Gly Pro Asn												
The Are Are Lee The Vel Cor The Tree Lee Lee Cle Cle Lee II												
Thr Arg Arg Leu Thr Val Ser Thr Trp Leu Leu Arg Gln Gly Leu Ile												
115 120 125												
Asp Thr Ser Leu Thr Ala Ser Val Ala Asn Leu Leu Ala Ile Ala Ile												
130 135 140												

	Glu	Arg	His	Ile	Thr	Val	Phe	Arg	Met	Gln	Leu	His	Thr	Arg	Met	Ser
	145					150					155					160
	Asn	Arg	Arg	Val	Val	Val	Val	Ile	Val	Val	Ile	Trp	Thr	Met	Ala	Ile
					165					170					175	
	Val	Met	Gly	Ala	Ile	Pro	Ser	Val	Gly	Trp	Asn	Cys	Ile	Cys	Asp	Ile
				180					185					190		
	Glu	Asn	Cys	Ser	Asn	Met	Ala	Pro	Leu	Tyr	Ser	Asp	Ser	Tyr	Leu	Val
			195					200					205			
	Phe	Trp	Ala	Ile	Phe	Asn	Leu	Val	Thr	Phe	Val	Val	Met	Val	Val	Leu
		210					215					220				
	Tyr	Ala	His	Ile	Phe	Gly	Tyr	Val	Arg	Gln	Arg	Thr	Met	Arg	Met	Ser
	225					230					235					240
	Arg	His	Ser	Ser	Gly	Pro	Arg	Arg	Asn	Arg	Asp	Thr	Met	Met	Ser	Leu
					245					250					255	
	Leu	Lys	Thr	Val	Val	Ile	Val	Leu	Gly	Ala	Phe	Ile	Ile	Cys	Trp	Thr
				260					265					270		
	Pro	Gly	Leu	Val	Leu	Leu	Leu	Leu	Asp	Val	Cys	Cys	Pro	Gln	Cys	Asp
			275					280					285			
	Val	Leu	Ala	Tyr	Glu	Lys	Phe	Phe	Leu	Leu	Leu	Ala	Glu	Phe	Asn	Ser
		290					295					300				
	Ala	Met	Asn	Pro	Ile	Ile	Tyr	Ser	Tyr	Arg	Asp	Lys	Glu	Met	Ser	Ala
	305					310					315					320
	Thr	Phe	Arg	Gln	Ile	Leu	Cys	Cys	Gln		Ser	Glu	Asn	Pro	Thr	Gly
					325					330					335	
	Pro	Thr	Glu	Gly	Ser	Asp	Arg	Ser	Ala	Ser	Ser	Leu	Asn	His	Thr	Ile
				340					345					350		
	Leu	Ala		Val	His	Ser	Asn		His	Ser	Val	Val				
			355					360								
	/C															
	<210		200													
<211> 1092																
	<212> DNA <213> human															
	<213	s> hi	ıman													

<400> 2

atggctgcca tctctacttc catccctgta atttcacagc cccagttcac agccatgaat 60 gaaccacagt gcttctacaa cgagtccatt gccttcttt ataaccgaag tggaaagcat 120

180 cttgccacag aatggaacac agtcagcaag ctggtgatgg gacttggaat cactgtttgt atetteatea tgttggccaa cetattggte atggtggcaa tetatgteaa eegeegette 240 300 cattttccta tttattacct aatggctaat ctggctgctg cagacttctt tgctgggttg 360 gcctacttct atctcatgtt caacacagga cccaatactc ggagactgac tgttagcaca tggctcctgc gtcagggcct cattgacacc agcctgacgg catctgtggc caacttactg 420 480 gctattgcaa tcgagaggca cattacggtt ttccgcatgc agctccacac acggatgagc aaccggcggg tagtggtggt cattgtggtc atctggacta tggccatcgt tatgggtgct 540 600 atacccagtg tgggctggaa ctgtatctgt gatattgaaa attgttccaa catggcaccc ctctacagtg actcttactt agtcttctgg gccattttca acttggtgac ctttgtggta 660 720 atggtggttc tctatgctca catctttggc tatgttcgcc agaggactat gagaatgtct cggcatagtt ctggaccccg gcggaatcgg gataccatga tgagtcttct gaagactgtg 780 840 gtcattgtgc ttggggcctt tatcatctgc tggactcctg gattggtttt gttacttcta 900 gacgtgtgct gtccacagtg cgacgtgctg gcctatgaga aattcttcct tctccttgct gaattcaact ctgccatgaa ccccatcatt tactcctacc gcgacaaaga aatgagcgcc 960 1020 acctttaggc agatectetg etgecagege agtgagaace ecaceggece cacagaagge tcagaccgct cggcttcctc cctcaaccac accatcttgg ctggagttca cagcaatgac 1080 1092 cactctgtgg tt

<210> 3

<211> 364

<212> PRT

<213> Rat

<400> 3

Met Ala Ala Ala Ser Thr Ser Ser Pro Val Ile Ser Gln Pro Gln Phe 5 15

10

Thr Ala Met Asn Glu Gln Gln Cys Phe Tyr Asn Glu Ser Ile Ala Phe 25

Phe Tyr Asn Arg Ser Gly Lys Tyr Leu Ala Thr Glu Trp Asn Thr Val

Ser Lys Leu Val Met Gly Leu Gly Ile Thr Val Cys Val Phe Ile Met 50 55

Leu Ala Asn Leu Leu Val Met Val Ala Ile Tyr Val Asn Arg Arg Phe 70 75

His Phe Pro Ile Tyr Tyr Leu Met Ala Asn Leu Ala Ala Ala Asp Phe 85 90

Phe Ala Gly Leu Ala Tyr Phe Tyr Leu Met Phe Asn Thr Gly Pro Asn

			100					105					110		
Thr	Arg	Arg	Leu	Thr	Val	Ser	Thr	Trp	Leu	Leu	Arg	Gln	Gly	Leu	Ile
		115					120					125			
Asp	Thr	Ser	Leu	Thr	Ala	Ser	Val	Ala	Asn	Leu	Leu	Ala	Ile	Ala	Ile
	130					135					140				
Glu		His	Ile	Thr	Val	Phe	Arg	Met	Gln	Leu	His	Thr	Arg	Met	Ser
145					150					155					160
	Arg	Arg	Val	Val		Val	Ile	Val	Val	Ile	Trp	Thr	Met	Ala	Ile
	0	6		165					170		•			175	
Val	Met	Glv	Ala		Pro	Ser	Val	Glv	Trp	Asn	Cvs	Ile	Cys	Asp	Ile
		,	180					185	•		•		190	-	
Asn	His	Cvs		Asn	Met	Ala	Pro		Tvr	Ser	Asp	Ser		Leu	Val
пор	1110	195	501				200		-,-			205	•		
Pho	Trn		Tle	Phe	Asn	Leu		Thr	Phe	Val	Val		Val	Val	Leu
THE	210	MIG	110	THE	71311	215	,		1 110	,	220				
Tur		Hic	Ιlα	Pho	G1 v	Tyr	Val	Ara	Gln	Arg		Met.	Arg	Met	Ser
225	МIA	1113	110	THE	230		, ,	111 6	0111	235	1112				240
	Цi с	Sor	Sor	C1v		Arg	Ara	Acn	Ara		Thr	Met	Met	Ser	
лıg	1115	261	561	245	110	игв	ni 8	non	250		****	mo b	1.200	255	
1	Lua	Thr	Vol		Τlο	Val	Lou	G1 v			Πlρ	Val	Cvs		Thr
Leu	Lys	1111	260		116	vai	Leu	265	MIA	The	110	141	270	пр	
Dwa	C1	1			1 011	Leu	Lou		Va1	Cvc	Cve	Pro		Cvs	Asn
110	GIY	275		Leu	Leu	Leu	280	лэр	vai	Cys	Cys	285		0,5	пор
V-1	Lou			C1.,	Lyo	Phe		Lou	Lou	Lau	Δla			Aen	Ser
vai			LYI	GIU	Lys	295	THE	Leu	Leu	Leu	300		THE	nsn	JCI
41.	290		Daga	Л1.	т1.		Son	Tur	۸ra	Acn			Mat	Sor	Δla
		ASII	Pro	116		Tyr	361	1 9 1	VI B	315		Ulu	Met	561	320
305			C1.	T1.	310		Cva	C1n	120			Acn	Pro	Acn	
inr	Pne	Arg	GIN			Cys	Cys	GIII			Glu	ASII	110	335	
	Œ1	01	0.1	325			C	A 1 .	330		. 1	۸ ـ	11: -		
Pro	Thr	Glu			Asp	Arg	Ser			ser	Leu	ASN			116
		63	340		6			345		. 17 1	17 7		350		
Leu	Ala			His	Ser	Asn			Ser	· val	val				
		355)				360								

<210> 4

<211> 1092

<212> DNA

<213> Rat

<400> 4

atggcagctg cctctacttc cagccctgtg atttcacagc cccagttcac agccatgaac 60 gaacaacagt gcttctacaa cgagtctatc gccttcttct ataaccggag tggaaagtat 120 ctagccacag aatggaacac tgtgagcaag ctggtgatgg gactgggcat cactgtctgc 180 gtgttcatca tgctggccaa tctactggtc atggtggcaa tttacgtcaa ccgccgcttc 240 300 cattleceta titattacti gatggccaac ctggctgctg cagactlett cgctggactg gcctacttct acctgatgtt caacacggga cctaataccc ggagactgac cgtgagcaca 360 tggcttctcc ggcagggcct catcgacacc agcctgacgg cttctgtggc caacctgctg 420 gccattgcca tcgagaggca catcacagtt ttccgaatgc agctccatac acgaatgagc 480 aaccgacgtg tggtggtggt gattgtagtc atctggacta tggccattgt gatgggtgcc 540 atacccagtg tgggctggaa ctgcatctgt gatatcgatc attgttccaa catggcgccc 600 ctctacagtg actcctactt agtcttctgg gccattttca acctggtgac ctttgtggtc 660 atggtggttc tctacgctca catctttggc tatgttcgcc agaggactat gagaatgtcc 720 780 cggcatagtt ctggacccag gaggaatcgg gacaccatga tgagccttct gaagactgtg gtcattgtgc tgggtgcctt tattgtctgc tggactccgg gattggtctt gctactgctc 840 900 gatgtgtgtt gcccgcagtg cgatgtcctg gcctatgaga agttcttcct cctcctggcc gagttcaact ctgctatgaa ccccatcatc tactcctacc gcgacaaaga gatgagcgcc 960 accttcaggc agatectgtg ttgccagcgc aacgagaacc ccaacggccc cacggaaggc 1020 tetgaceget eggeeteete eeteaaceae actattetgg etggagttea eageaatgae 1080 cactctgtgg tt 1092

<210> 5

<211> 378

<212> PRT

<213> human

<400> 5

Met Ala Thr Ala Leu Pro Pro Arg Leu Gln Pro Val Arg Gly Asn Glu

5 10 15

Thr Leu Arg Glu His Tyr Gln Tyr Val Gly Lys Leu Ala Gly Arg Leu
20 25 30

Lys Glu Ala Ser Glu Gly Ser Thr Leu Thr Thr Val Leu Phe Leu Val

35 40 45

Ile Cys Ser Phe Ile Val Leu Glu Asn Leu Met Val Leu Ile Ala Ile
50 55 60

Trp	Lys	Asn	Asn	Lys	Phe	His	Asn	Arg	Met	Tyr	Phe	Phe	Ile	Gly	Asn
65					70					75					80
Leu	Ala	Leu	Cys	Asp 85	Leu	Leu	Ala	Gly	Ile 90	Ala	Tyr	Lys	Val	Asn 95	Ile
Leu	Met	Ser	Gly 100	Lys	Lys	Thr	Phe	Ser	Leu	Ser	Pro	Thr	Val	Trp	Phe
Leu	Arg	Glu 115		Ser	Met	Phe	Val		Leu	Gly	Ala	Ser 125	Thr	Cys	Ser
Leu	Leu 130		Ile	Ala	Ile	Glu 135		His	Leu	Thr	Met 140		Lys	Met	Arg
		Asp	Ala	Asn	Lys 150		His	Arg	Val	Phe 155		Leu	Ile	Gly	Met 160
145 Cys	Trp	Leu	Ile	Ala 165		Thr	Leu	Gly	Ala 170		Pro	Ile	Leu	Gly 175	
Asn	Cys	Leu	His 180		Leu	Pro	Asp	Cys 185		Thr	Ile	Leu	Pro 190		Tyr
Ser	Lys	Lys 195		Ile	Ala	Phe	Cys 200		Ser	Ile	Phe	Thr 205	Ala	Ile	Leu
Val	Thr 210		Val	Ile	Leu	Tyr 215	Ala	Arg	Ile	Tyr	Phe 220	Leu	Val	Lys	Ser
Ser 225		Arg	Lys	Val	Ala 230		His	Asn	Asn	Ser 235		Arg	Şer	Met	Ala 240
	Leu	Arg	Thr	Val 245		Ile	Val	Val	Ser 250		Phe	Ile	Ala	Cys 255	
Ser	Pro	Leu	Phe 260		Leu	Phe	Leu	Ile 265		Val	Ala	Cys	Arg		G1n
Ala	Cys	Pro 275		Leu	Phe	Lys	Ala 280		Trp	Phe	Ile	Val 285	Leu	Ala	Val
Leu	Asn 290		Ala	Met	Asn	Pro 295		Ile	Tyr	Thr	Leu 300		Ser	Lys	Glu
Met 305	Arg	Arg	Ala	Phe	Phe 310	Arg	Leu	Val	Cys	Asn 315	Cys	Leu	Val	Arg	G1y 320
	Gly	Ala	Arg	Ala	Ser	Pro	Ile	Gln	Pro	Ala	Leu	Asp	Pro	Ser 335	
Ser	Lys	Ser	Ser 340		Ser	Asn	Asn	Ser 345		His	Ser	Pro	Lys 350		Lys
C1	1.00	Lan		uic	Th-	A an	Dno		Sa	Cva	T1 ~	Mot		Lvc	۸۵۵

355 360 365

Ala Ala Leu Gln Asn Gly Ile Phe Cys Asn 370 375

<210> 6

<211> 1134

<212> DNA

<213> human

<400> 6

60 atggcaactg ccctcccgcc gcgtctccag ccggtgcggg ggaacgagac cctgcgggag 120 cattaccagt acgtggggaa gttggcggc aggctgaagg aggcctccga gggcagcacg ctcaccaccg tgctcttctt ggtcatctgc agcttcatcg tcttggagaa cctgatggtt 180 240 ttgattgcca tctggaaaaa caataaattt cacaaccgca tgtacttttt cattggcaac ctggctctct gcgacctgct ggccggcatc gcttacaagg tcaacattct gatgtctggc 300 360 aagaagacgt tcagcctgtc tcccacggtc tggttcctca gggagggcag tatgttcgtg gcccttgggg cgtccacctg cagcttactg gccatcgcca tcgagcggca cttgacaatg 420 atcaaaatga ggccttacga cgccaacaag aggcaccgcg tcttcctcct gatcgggatg 480 tgctggctca ttgccttcac gctgggcgcc ctgcccattc tgggctggaa ctgcctgcac 540 aatctccctg actgctctac catcctgccc ctctactcca agaagtacat tgccttctgc 600 660 atcagcatct tcacggccat cctggtgacc atcgtgatcc tctacgcacg catctacttc 720 ctggtgaagt ccagcagccg taaggtggcc aaccacaaca actcggagcg gtccatggca ctgctgcgga ccgtggtgat tgtggtgagc gtgttcatcg cctgctggtc cccactcttc 780 840 atcctcttcc tcattgatgt ggcctgcagg gtgcaggcgt gccccatcct cttcaaggct cagtggttca tcgtgttggc tgtgctcaac tccgccatga acccggtcat ctacacgctg 900 960 gccagcaagg agatgcggcg ggccttcttc cgtctggtct gcaactgcct ggtcagggga 1020 cggggggccc gcgcctcacc catccagcct gcgctcgacc caagcagaag taaatcaagc 1080 agcagcaaca atagcagcca ctctccgaag gtcaaggaag acctgcccca cacagacccc 1134 tcatcctgca tcatggacaa gaacgcagca cttcagaatg ggatcttctg caac

<210> 7

<211> 222

<212> PRT

<213> Rat

<400> 7

Arg Met Tyr Phe Phe Ile Gly Asn Leu Ala Leu Cys Asp Leu Leu Ala

				5					10					15	
Gly	Ile	Ala	Tyr	Lys	Val	Asn	Ile	Leu	Met	Ser	Gly	Arg	Lys	Thr	Phe
			20					25					30		
Ser	Leu	Ser	Pro	Thr	Val	Trp	Phe	Leu	Arg	Glu	Gly	Ser	Met	Phe	Val
		35					40					45			
Ala	Leu	Gly	Ala	Ser	Thr	Cys	Ser	Leu	Leu	Ala	Ile	Ala	Ile	Glu	Arg
	50					55					60				
His	Leu	Thr	Met	Ile	Lys	Met	Arg	Pro	Tyr	Asp	Ala	Asn	Lys	Lys	His
65					70					75					80
Arg	Val	Phe	Leu	Leu	Ile	Gly	Met	Cys	Trp	Leu	Ile	Ala	Phe	Ser	Leu
				85					90					95	
Gly	Ala	Leu	Pro	Ile	Leu	Gly	Trp	Asn	Cys	Leu	Glu	Asn	Phe	Pro	Asp
			100					105					110		
Cys	Ser	Thr	Ile	Leu	Pro	Leu	Tyr	Ser	Lys	Lys	Tyr	Ile	Ala	Phe	Leu
		115					120					125			
Ile	Ser	Ile	Phe	Thr	Ala	Ile	Leu	Val	Thr	Ile	Val	Ile	Leu	Tyr	Ala
	130					135					140				
Arg	Ile	Tyr	Phe	Leu	Val	Lys	Ser	Ser	Ser	Arg	Arg	Val	Ala	Asn	His
145					150					155					160
Asn	Ser	Glu	Arg	Ser	Met	Ala	Leu	Leu	Arg	Thr	Val	Val	Ile	Val	Val
				165					170					175	
Ser	Val	Phe	Ile	Ala	Cys	Trp	Ser	Pro	Leu	Phe	Ile	Leu	Phe	Leu	Ile
			180					185					190		
Asp	Val	Ala	Cys	Arg	Ala	Lys	Glu	Cys	Ser	Ile	Leu	Phe	Lys	Ser	Gln
		195					200					205			
Trp	Phe	Ile	Met	Leu	Ala	Val	Leu	Asn	Ser	Ala	Met	Asn	Pro		
	210					215					220				
<21	8 <0														
<21	1> 60	66													
<21	2> DI	NA													
<21	3> R	at													
<40	8 <0														
cgc	cgcatgtact ttttcattgg caacttggct ctctgcgacc tgctggccgg catagcctac														

 ${\tt aaggtcaaca\ ttctgatgtc\ cggtaggaag\ acgttcagcc\ tgtctccaac\ agtgtggttc}$

 $\verb|ctcagggagg|| \verb|gcagtatgtt|| \verb|cgtagccctg|| \verb|ggcgcatcca|| \verb|catgcagctt|| attggccatt||$

60

gccattgagc ggcacctgac catgatcaag atgaggccgt acgacgccaa caagaagcac
cgcgtgttcc ttctgattgg gatgtgctgg ctaattgcct tctcgctggg tgccctgccc
atcctgggct ggaactgcct ggagaacttt cccgactgct ctaccatctt gcccctctac
tccaagaaat acattgcctt tctcatcagc atcttcacag ccattctggt gaccatcgtc
atettgtacg egegeateta etteetggte aagteeagea geegeagggt ggeeaaceae
aactccgaga gatccatggc ccttctgcgg accgtagtga tcgtggtgag cgtgttcatc
gcctgttggt cccccctttt catcctcttc ctcatcgatg tggcctgcag ggcgaaggag
tgctccatcc tcttcaagag tcagtggttc atcatgctgg ctgtcctcaa ctccgccatg
aaccca
<210> 9
<211> 353
<212> PRT
<213> human
(400) O
(400) 9 Met Clu Sen Leu Tun Sen Clu Tun Leu Aen Pre Aen Luc Vel Cln Clu
Met Gly Ser Leu Tyr Ser Glu Tyr Leu Asn Pro Asn Lys Val Gln Glu 5 10 15
His Tyr Asn Tyr Thr Lys Glu Thr Leu Glu Thr Gln Glu Thr Thr Ser
20 25 30
Arg Gln Val Ala Ser Ala Phe Ile Val Ile Leu Cys Cys Ala Ile Val
35 40 45
Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe
50 55 60
His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu
65 70 75 80
Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Ser Val
85 90 95
Thr Leu Arg Leu Thr Pro Val Gln Trp Phe Ala Arg Glu Gly Ser Ala
100 105 110
Ser Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile
115 120 125
Glu Arg His Val Ala Ile Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys
130 135 140
Ser Cys Arg Met Leu Leu Ile Gly Ala Ser Trp Leu Ile Ser Leu
145 150 155 160

10/23

165 170 175											
Glu Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys His Tyr Val Leu											
180 185 190											
Cys Val Val Thr Ile Phe Ser Ile Ile Leu Leu Ala Ile Val Ala Leu											
195 200 205											
Tyr Val Arg Ile Tyr Cys Val Val Arg Ser Ser His Ala Asp Met Ala											
210 215 220											
Ala Pro Gln Thr Leu Ala Leu Leu Lys Thr Val Thr Ile Val Leu Gly											
225 230 235 240											
Val Phe Ile Val Cys Trp Leu Pro Ala Phe Ser Ile Leu Leu Leu Asp											
245 250 255											
Tyr Ala Cys Pro Val His Ser Cys Pro Ile Leu Tyr Lys Ala His Tyr											
260 265 270											
Phe Phe Ala Val Ser Thr Leu Asn Ser Leu Leu Asn Pro Val Ile Tyr											
275 280 285 .											
Thr Trp Arg Ser Arg Asp Leu Arg Arg Glu Val Leu Arg Pro Leu Gln											
290 295 300											
Cys Trp Arg Pro Gly Val Gly Val Gln Gly Arg Arg Arg Val Gly Thr											
305 310 315 320											
Pro Gly His His Leu Leu Pro Leu Arg Ser Ser Ser Leu Glu Arg											
325 330 335											
Gly Met His Met Pro Thr Ser Pro Thr Phe Leu Glu Gly Asn Thr Val											
340 345 350											
Val											
<210> 10											
<211> 1059											
<212> DNA											
<213> human											
Z400\ 10											
<400> 10											
atgggcaget tgtactcgga gtacctgaac cccaacaagg tccaggaaca ctataattat											
accaaggaga cgctggaaac gcaggagacg acctcccgcc aggtggcctc ggccttcatc											
gtcatcctct gttgcgccat tgtggtggaa aaccttctgg tgctcattgc ggtggcccga											
aacagcaagt tocactoggo aatgtacotg tttotgggoa acctggoogo otocgatota											
ctggcaggcg tggccttcgt agccaatacc ttgctctctg gctctgtcac gctgaggctg											

acgcctgtgc agtggtttgc ccgggagggc tctgcctcca tcacgctctc ggcctctgtc

ttcagcctcc tggccatcgc cattgagcgc cacgtggcca ttgccaaggt caagctgtat 420 ggcagcgaca agagctgccg catgcttctg ctcatcgggg cctcgtggct catctcgctg 480 gtcctcggtg gcctgcccat ccttggctgg aactgcctgg gccacctcga ggcctgctcc 540 actgtcctgc ctctctacgc caagcattat gtgctgtgcg tggtgaccat cttctccatc 600 atcctgttgg ccatcgtggc cctgtacgtg cgcatctact gcgtggtccg ctcaagccac 660 720 gctgacatgg ccgccccgca gacgctagcc ctgctcaaga cggtcaccat cgtgctaggc 780 gtetttateg tetgetgget geeegeette ageateetee ttetggaeta tgeetgteee gtccactcct gcccgatcct ctacaaagcc cactactttt tcgccgtctc caccctgaat 840 900 tecetgetea acceegteat etacaegtgg egeageeggg acctgeggeg ggaggtgett cggccgctgc agtgctggcg gccgggggtg ggggtgcaag gacggaggcg ggtcgggacc 960 ccgggccacc acctcctgcc actccgcagc tccagctccc tggagagggg catgcacatg 1020 1059 cccacgtcac ccacgtttct ggagggcaac acggtggtc

<210> 11

<211> 352

<212> PRT

<213> Rat

<400> 11

Met Gly Gly Leu Tyr Ser Glu Tyr Leu Asn Pro Glu Lys Val Gln Glu
5 10 15

His Tyr Asn Tyr Thr Lys Glu Thr Leu Asp Met Gln Glu Thr Pro Ser

20 25 30

Arg Lys Val Ala Ser Ala Phe Ile Ile Ile Leu Cys Cys Ala Ile Val 35 40 45

Val Glu Asn Leu Leu Val Leu Ile Ala Val Ala Arg Asn Ser Lys Phe
50 55 60

His Ser Ala Met Tyr Leu Phe Leu Gly Asn Leu Ala Ala Ser Asp Leu 65 70 75 80

Leu Ala Gly Val Ala Phe Val Ala Asn Thr Leu Leu Ser Gly Pro Val 85 90 95

Thr Leu Ser Leu Thr Pro Leu Gln Trp Phe Ala Arg Glu Gly Ser Ala 100 105 110

Phe Ile Thr Leu Ser Ala Ser Val Phe Ser Leu Leu Ala Ile Ala Ile
115 120 125

Glu Arg Gln Val Ala Ile Ala Lys Val Lys Leu Tyr Gly Ser Asp Lys 130 135 140

Ser	Cys	Arg	Met	Leu	Met	Leu	Ile	Gly	Ala	Ser	Trp	Leu	Ile	Ser	Leu
145					150					155					160
Ile	Leu	Gly	Gly	Leu	Pro	Ile	Leu	Gly	Trp	Asn	Cys	Leu	Asp	His	Leu
				165					170					175	
Glu	Ala	Cys	Ser	Thr	Val	Leu	Pro	Leu	Tyr	Ala	Lys	His	Tyr	Val	Leu
			180					185					190		
Cys	Val	Val	Thr	Ile	Phe	Ser	Val	Ile	Leu	Leu	Ala	Ile	Val	Ala	Leu
		195					200					205			
Tyr	Val	Arg	Ile	Tyr	Phe	Val	Val	Arg	Ser	Ser	His	Ala	Asp	Val	Ala
	210					215					220				
Gly	Pro	Gln	Thr	Leu	Ala	Leu	Leu	Lys	Thr	Val	Thr	Ile	Val	Leu	Gly
225					230					235					240
Val	Phe	Ile	Ile	Cys	Trp	Leu	Pro	Ala	Phe	Ser	Ile	Leu	Leu	Leu	Asp
				245					250					255	
Ser	Thr	Cys	Pro	Val	Arg	Ala	Cys	Pro	Val	Leu	Tyr	Lys	Ala	His	Tyr
			260					265					270		
Phe	Phe	Ala	Phe	Ala	Thr	Leu	Asn	Ser	Leu	Leu	Asn	Pro	Val	Ile	Tyr
		275					280					285			
Thr	Trp	Arg	Ser	Arg	Asp	Leu	Arg	Arg	Glu	Val	Leu	Arg	Pro	Leu	Leu
	290					295					300				
Cys	Trp	Arg	Gln	Gly	Lys	Gly	Ala	Thr	Gly	Arg	Arg	Gly	Gly	Asn	Pro
305					310					315					320
Gly	His	Arg	Leu	Leu	Pro	Leu	Arg	Ser	Ser	Ser	Ser	Leu	Glu	Arg	Gly
				325					330					335	
Leu	His	Met	Pro	Thr	Ser	Pro	Thr	Phe	Leu	Glu	Gly	Asn	Thr	Val	Val
			340					345					350		
<21	0> 1:	2													
<21	1> 10	056													
<21	2> DI	NA													
<21	3> Ra	at													
<40	<400> 12														
atg	atgggcggtt tatactcaga gtacctcaat cctgagaagg ttcaggaaca ctacaattac														

accaaggaga cgctggacat gcaggagacg ccctccgca aggtggcctc cgccttcatc atcattttat gctgtgccat cgtggtggag aaccttctgg tgctaatcgc agtggccagg

aacagcaagt tccactcagc catgtacctg ttcctcggca acctggcagc ctccgacctg

60

120

ctggcaggcg tggccttcgt ggccaacacc ttgctctccg gacctgtcac cctgtcctta 300 360 actocottgc agtggtttgc ccgagagggt tcagcottca tcacgctctc tgcctcggtc ttcagcctcc tggccattgc catcgagaga caagtggcca tcgccaaggt caagctctac 420 ggcagtgaca aaagctgtcg aatgttgatg ctcattgggg cctcttggct gatatcgctg 480 attetgggtg gettgeecat cetgggetgg aattgtetgg accatetgga ggettgetee 540 actgtgctgc ccctctatgc taagcactat gtgctctgcg tggtcaccat cttctctgtc 600 atcttactgg ctatcgtggc cttgtacgtc cgaatctact tcgtagtccg ctcaagccat 660 gcggacgttg ctggtcctca gacgctggcc ctgctcaaga cagtcaccat cgtactgggt 720 gttttcatca tctgctggct gccggctttt agcatccttc tcttagactc tacctgtccc 780 gtccgggcct gtcctgtcct ctacaaagcc cattatttct ttgccttcgc caccctcaac 840 tctctgctca accctgtcat ctatacatgg cgtagccggg accttcggag ggaggtactg 900 aggcccctgc tgtgctggcg gcaggggaag ggagcaacag ggcgcagagg tgggaaccct 960 ggtcaccgac teetgeeect eegeagetee ageteeetgg agagaggett geatatgeet 1020 acatcgccaa catttctgga gggcaacaca gtggtc 1056 <210> 13 <211> 22 <212> DNA <213> Artificial Sequence <220>

<223> Primer

<400> 13

ccaccgaccc atgtactatt tt

22

<210> 14

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 14

tgtaggctac tcctgccaac ag

```
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
\langle 223 \rangle Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
<400> 15
                                                       22
ttggcaatct ggccctctca ga
<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 16
                                                       21
actgtcagca catggctcct t
<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 17
                                                       21
accgtaatgt gcctctcgat t
<210> 18
<211> 22
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
<400> 18
attgacacca gcctgacggc at
                                                     22
<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 19
                                                     19
ccgtgctctt cttggtcat
<210> 20
 <211> 19
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
 <400> 20
                                                      19
 ccagatggca atcaaaacc
 <210> 21
 <211> 26
 <212> DNA
 <213> Artificial Sequence
<220>
 <223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
```

<400> 21		
tgcagcttca tcgtcttgga gaacct	26	
<210> 22		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 22		
cctggtcaag actgttgtca tc	22	
, and the second se		
<210> 23		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 23		
caggacattg caggactca	19	
(010) 04		
<210> 24		
<211> 27		
<212> DNA <213> Artificial Sequence		
(213) Artificial Sequence		
⟨220⟩		
<pre><223> Probe, labeled 5'-terminal with FAM and 3</pre>	3'-terminal with T	`AMRA
(220) 11000, 1000100 0 teliminal with 1/m and 0	5 COLUMNICAL WICH I	
<400> 24		
tggtactgct cctggatggt ttaggct	27	
<210> 25		

```
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 25
                                                     19
ccaacaaggt ccaggaaca
<210> 26
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 26
aggttttcca ccacaatgg
                                                     19
<210> 27
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
<400> 27
                                                     28
aattatacca aggagacgct ggaaacgc
<210> 28
<211> 19
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Primer
<400> 28
                                                     19
gaactgcctg tgcgccttt
<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 29
                                                     20
ccatagaggc ccatgatggt
<210> 30
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
<400> 30
                                                     28
tctgcccctc tactccaagc gctacatc
<210> 31
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

<400> 31

tgactgcttc cctcaccaa 19 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 32 22 gcatcctcat gattgacatg tg <210> 33 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA <400> 33 22 ttgctggtta tcgccgtgga ga <210> 34 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 cttgctccac tgtcttgcc 19 <210> 35

<211> 19

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 35
                                                      19
tagagtgcac agatcgcgg
<210> 36
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
<400> 36
                                                      28
ctctacgcca aggcctacgt gctcttct
<210> 37
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 37
tgtccctaga cccaagagac tttag
                                                      25
<210> 38
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220>

```
<223> Primer
<400> 38
ggtccccttc tcttttccaa a
                                                      21
<210> 39
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe, labeled 5'-terminal with FAM and 3'-terminal with TAMRA
<400> 39
                                                      28
atgaacttgc ttggtagccc ccatcttc
<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 40
                                                      20
atcttgtacg cgcgcatcta
<210> 41
⟨211⟩ 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 41
```

22

tggatctctc ggagttgtgg tt

```
<210> 42
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<400> 42
                                            22
tggtcaagtc cagcagccgc ag
<210> 43
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 43
                                            19
gtttgcccga gagggttca
<210> 44
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 44
                                            21
cttgtctctc gatggcaatg g
<210> 45
<211> 27
```

<212> DNA

<213> Artificial Sequence

<220>

<400> 45

cttcatcacg ctctctgcct cggtctt