

Fig. 2

Fig. 3

Fig. 5

Fig. 6A

Fig. 6B


```
C<sub>long1.n</sub> = LFSRA[7:0] XOR LFSRB[7:0]
Let us define LFSRC'[i] = LFSRC[2[I/2]]
```

 $C_{long.n}(i) = C_{long.n}(i)(1+j(-1)^i(c_{long2,}n(2[i/2]))$ (From 3G TS25.213) Multiplying bits by +1/-1 is the same as XOR for 0s and 1s. XORing by 0xAA can be used in place of the $(-1)^i$ term.

In binary representation, the Scrambling code $C_{long.n}$ becomes:

$$C_{long.n}[7:0] = C_{long1.n}[7:0](1+j(0xAA) XOR C'_{long2.n}[7:0])$$

 $C_{long,n}[7:0] = LSFRA[7:0] XOR LFSRB[7:0]$

+J(LFSRA[7:0] XOR LFSRB[7:0] XOR 0xAA XOR LFSRC'[7:0] XOR

LFSRD'[7:0])

$$C_{long,n}[7:0] = SCI[7:0] = Jscq[7:0]$$

Let us define LFSRD''[7:0] = 0xAA XOR LFSRD'[7:0], then:

$$C_{long.n}[7:0] = (LFSRA[7:0] XOR LFSRB[7:0])$$

+ $j(LFSRA[7:0] XOR LFSRB[7:0] XOR LFSRC'[7:0] XOR LFSRD''[7:0])$

We use a lookup table to compute LFSRC'[7:0] and LFSRD"[7:0])

Fig. 7

Gold code generator lookup[6:0] definitions

At address 4n+0: OUT[7:0] = Next StateA[3:0]:PASSA[3:0] OUT[7] = IN[6] XOR IN[3] OUT[6] = IN[5] XOR IN[2] OUT[5] = IN[4] XOR IN[1] OUT[5] = IN[3] XOR IN[0] OUT[3] = IN[3] OUT[2] = IN[2] OUT[1] = IN[1] OUT[0] = IN[0]	At address 4n+2: OUT[7:0] = Next StateC[3:0]:LFSRC'[3:0] OUT[7] = IN[6] XOR IN[3] OUT[6] = IN[5] XOR IN[2] OUT[6] = IN[4] XOR IN[1] OUT[5] = IN[3] XOR IN[0] OUT[4] = IN[3] OUT[2] = IN[2] OUT[1] = IN[1] OUT[1] = IN[1]
At address 4n+1: OUT[7:0] = Next StateB[3:0]:PASSA[3:0] OUT[7] = IN[6] XOR IN[5] XOR IN[4] XOR IN[3] OUT[6] = IN[5] XOR IN[4] XOR IN[3] XOR IN[2] OUT[5] = IN[4] XOR IN[3] XOR IN[1] OUT[7] = IN[3] OUT[7] = IN[3] OUT[7] = IN[7] OUT[7] = IN[7] OUT[1] = IN[7]	At address 4n+3: OUT[7:0] = Next StateD[3:0]:LFSRD"[3:0] OUT[7] = IN[6] XOR IN[5] XOR IN[4] XOR IN[3] OUT[6] = IN[5] XOR IN[4] XOR IN[3] XOR IN[2] OUT[5] = IN[4] XOR IN[3] XOR IN[2] XOR IN[1] OUT[4] = IN[3] XOR IN[2] XOR IN[1] XOR IN[0] OUT[3] = /IN[2] OUT[3] = /IN[2] OUT[1] = /IN[0] OUT[1] = /IN[0]

Fig. 8A

Gold code generator lookup[10:4] definitions

OUT[7] = IN[2]	At address 4n+0: OUT[7:0] = IN[7:4] Next StateA[7:4] OUT[3] = IN[2] OUT[2] = IN[2]
	OUT[1] = IN[0] OUT[0] = IN[0]
,	OUT[7] = IN[6] XOR IN[3] OUT[6] = IN[5] XOR IN[2]
	OUT[5] = IN[4] XOR IN[1] OUT[4] = IN[3] XOR IN[0]
s 4n+1: OUT[7:0] = IN[7:4] Next StateB[7:4]	At address 4n+1: OUT[7:0] = IN"[7:4]Next StateB[7:4] OUT[3] = /IN[2]
	OUT[2] = IN[2] OUT[1] = /IN[0]
OUT[4] = IN[3] OUT[3] = IN[3] XOR IN[5] XOR IN[4] XOR IN[3]	OUT[0] = IN[0] OUT[7] = IN[6] XOR IN[5] XOR IN[4] XOR IN[3]
	OUT[6] = IN[5] XOR IN[4] XOR IN[3] XOR IN[2]
OUT[0] = IN[0] XOR IN[2] XOR IN[1] XOR IN[0] (0)	00 [19] = IN[4] XOK IN[3] XOK IN[4] XOK IN[1] 0UT[4] = IN[] XOR IN[2] XOR IN[1] XOR IN[0]

Fig. 8B