Работа 2.2.3 Измерение теплопроводности воздуха при атмосферном давлении

Мыздриков Иван Витальевич Б06-401

2 апреля 2025 г.

Теоретическая справка

Теплопроводность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии

$$\overline{q} = -k \nabla T$$
, где $k \left[\frac{\mathrm{Bt}}{\mathrm{M} \cdot \mathrm{K}} \right]$ - коэффициент теплопроводности.

Молекулярно-кинетическая теория дает следующую оценку для коэффициента теплопроводности газов:

$$k \sim \lambda \overline{\nu} \cdot nc_V$$
.

С помощью некоторых преобразований мы получаем, что

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_1}} k \cdot \Delta T.$$

Экспериментальная установка

Схема установки приведена на рис. 1. На оси полой цилиндрической трубки с внутренним диаметром $2r_0 \sim 0.7$ см размещена металлическая нить диаметром $2r_1 \sim 0,05$ мм и длиной $L \sim 40$ см (материал нити и точные геометрические размеры указаны в техническом описании установки). Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура t_0 поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально.

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля–Ленца: Q = UI, и сопротивление нити по закону Ома: $R = \frac{U}{I}$.

Рис. 1: Схема установки

Сопротивление нити является однозначной функцией её температуры R(t). Эта зависимость может быть измерена с помощью термостата по экстраполяции мощности нагрева к нулю $Q \to 0$, когда температура нити и стенок совпадают $t_1 \approx t_0$. Альтернативно, если материал нити известен, зависимость его удельного сопротивления от температуры может найдена по справочным данным.

На рис. 2 представлена схема электрической установки:

Схема рис. 2 предусматривает использование одного вольтметра и одного амперметра, магазина сопротивлений $R_{\rm M}$, включённого последовательно с источником напряжения и нитью.

Методика измерений

Принципиально неустранимая систематическая ошибка измерения температуры с помощью термометра сопротивления возникает из-за необходимости пропускать через резистор (нить) измерительный ток. Чем этот ток выше, тем с большей точностью будет измерен как он сам, так и напряжение. Однако при этом квадратично возрастает выделяющаяся на

Рис. 2: Электрическая схема измерения сопротивления нити и мощности нагрева

резисторе мощность $Q=UI=I^2R$. Следовательно, температура резистора становится выше, чем у объекта, температуру которого надо измерить. Измерения же при малых токах не дают достаточной точности (в частности, из-за существенного вклада термо-электрических явлений в проводниках и контактах). Эта проблема решается построением нагрузочной кривой - зависимости измеряемого сопротивления R от выделяющейся в нём мощности R(Q), с последующей экстраполяцией к нулевой мощности $Q \to 0$ для определения сопротивления $R_0 = R(0)$, при котором его температура равна температуре измеряемого объекта. Кроме того, в данной работе измерение нагрузочных кривых позволяет в ходе эксперимента получить температурную зависимость сопротивления нити, так как при $Q \to 0$ температура нити равна температуре термостата ($T \approx T_0$). В исследуемом интервале температур (20-80 C) зависимость сопротивления от температуры можно с хорошей точностью аппроксимировать линейной функцией:

$$R(t) = R_{273} \cdot (1 + \alpha t)$$

где $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$ - температурный коэффициент сопротивления материала.

Ход работы

- 1. При комнатной температуре термостата измеряем зависимость сопротивления нити $R=\dfrac{U}{I}$ от подаваемой на неё мощности Q=UI нагрузочную кривую R(Q). Измерения проводим для 7-9 различных значений силы тока через нить от 0 до I_{max} .
- 2. Проводим измерения нагрузочных кривых согласно п. 1 для 5–7 температур термостата в диапазоне от комнатной до 80 ^{0}C .

$T = 23^{0}C$						
<i>Q</i> , Дж	ε_Q , Дж	$R, O_{\rm M}$	ε_R , Om			
0.003	0.0005	19.593	0.0005			
0.011	0.0005	19.625	0.0005			
0.024	0.0005	20.205	0.0005			
0.04	0.0005	19.911	0.0005			
0.06	0.0005	20.073	0.0005			
0.083	0.0005	20.0	0.0005			
0.123	0.0005	18.083	0.0005			
0.172	0.0005	20.939	0.0005			
0.202	0.0005	20.833	0.0005			

Таблица 1: Данные для комнатной температуры

$T = 32^{0}C$						
<i>Q</i> , Дж	ε_Q , Дж	$R, O_{\rm M}$	ε_R , Om			
0.003	0.0005	21.61	0.0005			
0.011	0.0005	19.888	0.0005			
0.023	0.0005	20.103	0.0005			
0.04	0.0005	20.196	0.0005			
0.06	0.0005	20.312	0.0005			
0.102	0.0005	19.867	0.0005			
0.11	0.0005	20.606	0.0005			
0.138	0.0005	20.751	0.0005			
0.168	0.0005	20.922	0.0005			
0.199	0.0005	21.092	0.0005			

Таблица 2: Данные для $T=32^{0}C$

$T = 44.3^{\circ}C$						
<i>Q</i> , Дж	ε_Q , Дж	R, Om	ε_R , Om			
0.003	0.0005	21.084	0.0005			
0.011	0.0005	21.131	0.0005			
0.024	0.0005	21.199	0.0005			
0.041	0.0005	21.288	0.0005			
0.061	0.0005	21.397	0.0005			
0.085	0.0005	21.521	0.0005			
0.11	0.0005	21.656	0.0005			
0.138	0.0005	21.798	0.0005			
0.168	0.0005	21.953	0.0005			
0.198	0.0005	22.107	0.0005			

Таблица 3: Данные для $T=44.3^{0}C$

$T = 55^{0}C$					
<i>Q</i> , Дж	ε_Q , Дж	R, Om	ε_R , Om		
0.003	0.0005	21.842	0.0005		
0.011	0.0005	21.883	0.0005		
0.025	0.0005	21.952	0.0005		
0.042	0.0005	22.04	0.0005		
0.092	0.0005	32.676	0.0005		
0.085	0.0005	22.263	0.0005		
0.111	0.0005	22.39	0.0005		
0.138	0.0005	22.527	0.0005		
0.167	0.0005	22.673	0.0005		
0.197	0.0005	22.818	0.0005		

Таблица 4: Данные для $T=55^{0}C$

$T = 78^{0}C$						
<i>Q</i> , Дж	ε_Q , Дж	R, Om	ε_R , Om			
0.005	0.0005	16.274	0.0005			
0.012	0.0005	23.288	0.0005			
0.025	0.0005	23.354	0.0005			
0.043	0.0005	23.441	0.0005			
0.063	0.0005	23.543	0.0005			
0.086	0.0005	23.651	0.0005			
0.112	0.0005	23.772	0.0005			
0.138	0.0005	23.899	0.0005			
0.167	0.0005	23.857	0.0005			
0.194	0.0005	24.162	0.0005			

Таблица 5: Данные для $T = 78^{0}C$

Рис. 3: График для $T=23^{0}C$

Рис. 4: График для $T=32^{0}C$

Рис. 5: График для $T=44.3^{0}C$

Рис. 6: График для $T=55^{0}C$

Рис. 7: График для $T=78^{0}C$

3. теперь обработаем результаты, запишем все наклоны и R_0 из графиков в одну таблицу

T, K	dR/dQ, Ом/Дж	$\sigma_{dR/dQ},~\mathrm{Om}/\mathrm{Дж}$	R_0 , OM	σ_{R_0} , Om
296	6.2	0,8	19.7	0,03
305	6.0	0,8	19.9	0,2
317.3	5.2	0,07	21	0,002
328	5.1	1,3	21.8	0,01
351	4,4	1	23.2	0,1

Рис. 8: График R(T)

T, K	dR/dQ, Ом/Дж	R_0 , Om	σ_{R_0} , Om	(dR/dT)/(dR/dQ), Дж/К	k, Вт/м К	$\mid \sigma_k, \mathrm{Br/m} \mathrm{K} \mid$
296	6.2	19.7	0,03	0,0665	0,131	0,002
305	6.0	19.9	0,2	0,0652	0,128	0,002
317.3	5.2	21	0,002	0,0662	0,130	0,002
328	5.1	21.8	0,01	0,0665	0,131	0,002
351	4.4	23.2	0,1	0,0661	0,129	0,002

Таблица 6: Таблица k