STMC HKOI Training

Boolean arithemtic

Chan Yan Mong

October 13, 2021

Boolean arithmetic

- We have just looked at conditional statements that are connected using not, or, and operators
- In fact there are algebraic structure associated with these operators called boolean arithmetic
- Understanding these arithmetic rules can help us simply and rewrite our conditional statements

Properties of boolean operators

- Associativity
 - 1. $x \lor (y \lor z) = (x \lor y) \lor z$
 - 2. $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
- Commutativity
 - 1. $x \lor y = y \lor x$
 - 2. $x \wedge y = y \wedge x$
- Distributive of \land over \lor
 - 1. $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$
 - 2. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$

Properties of boolean operations

- Identities
 - 1. $x \lor F = x$
 - 2. $x \wedge T = x$
- Annihilators
 - 1. $x \lor T = T$
 - 2. $x \wedge F = F$
- · Double negation
 - 1. $\neg(\neg x) = x$
- · De Morgan's law
 - 1. $\neg(x \lor y) = \neg x \land \neg y$
 - 2. $\neg(x \land y) = \neg x \lor \neg y$

Exercise

Prove the following Identities:

- 1. $x \land (x \lor y) = x$
- 2. $\neg x \land y = \neg(\neg y) \land \neg x$
- 3. $a = b \land a$ if and only if $b = a \lor b$
- 4. Prove by the De Morgan's law by truth table
- 5. Prove by the distributive laws by truth table
- 6. Define $x \to y = \neg x \land y$. Show that $(x \land y) \to y = T$
- 7. Define $x \leftrightarrow y = (x \to y) \land (y \to x)$. Show that $x \leftrightarrow y = (x \land y) \lor (\neg x \land \neg y)$
- 8. Simplify $(x \lor y) \land \neg(\neg x \land y)$

