CS449/CS549 Computational Learning Quiz 4 Fall 2023 (take home).

Due: 12/05/23 (in class, submit hardcopy). You may consult class materials and other additional references, but your submitted answers must be your own work.

Markov Decision Process: infinite play.

Let $S = \{s_0, s_1, s_2\}$ be a set of states, $A = \{a, b, c\}$ be a set of actions, $\{P_a, P_b, P_c\}$ be a set of Markov chains, and $R : S \to \mathbb{R}$ be a reward function given by

$$P_a = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{bmatrix}, \qquad P_b = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \qquad P_c = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad R = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \gamma = \frac{1}{2}$$

Our MDP is $M = (S, A, \{P_a, P_b, P_c\}, R, s_0, \gamma)$. A policy is a map $\pi : S \to A$.

- 1. Consider the random-play policy $\pi_a = \begin{bmatrix} a \\ a \\ a \end{bmatrix}$. Compute its value function V_{π_a} .
- 2. (T/F) random-play is bad: π_a is not optimal. Hint: apply the fixed-point iterator Φ .
- 3. Consider a suspiciously better policy $\pi_o = \begin{bmatrix} b \\ a \\ c \end{bmatrix}$. Compute its value function V_{π_o} .
- 4. (T/F) The suspicion is well-founded: π_o is better than random-play.
- 5. (T/F) The suspicion is more than well-founded: π_o is optimal. Hint: apply the fixed-point iterator Φ .
- 6. (CS549) (T/F) Policy Iteration is better than Value Iteration on π_a .