Spring 2016

1. Assume $f \in L^1[0,1]$. Compute

$$\lim_{k \to \infty} \int_{[0,1]} |f|^{1/k} \ dx.$$

Solution. Let's split this integral into three regions.

$$\int_{[0,1]} |f|^{1/k} dx = \int_{f=0} |f|^{1/k} dx + \int_{0 < |f| \le 1} |f|^{1/k} dx + \int_{|f| > 1} |f|^{1/k} dx.$$

The integral over the first region is clearly zero for all k. On the second region we have that $|f|^{1/k} \le 1$ for all k. Since the interval [0,1] has finite measure, we have that the constant function 1 is in $L^1(\{x:0<|f|\le 1\})$, so the dominated convergence theorem says that the integral over the second region goes to $m(\{0<|f|\le 1\})$. Similarly, on the third region we have that $|f|^{1/k} \le |f|$, which is in L^1 , so the dominated convergence theorem says that the third integral goes to $m(\{|f|>1\})$. Combining these, we have that

$$\lim_{k \to \infty} \int_{[0,1]} |f|^{1/k} dx = m(\{|f| > 0\}).$$

2. Let $\{f_n\}$ be a sequence of measurable functions on [0,1] and $0 \le f_n \le 1$ a.e. Assume that

$$\lim_{n \to \infty} \int_{[0,1]} f_n g \ dx = \int_{[0,1]} f g \ dx$$

for some $f \in L^1[0,1]$ and any $g \in C[0,1]$. Prove that $0 \le f \le 1$ a.e.

Solution. Since $f \in L^1[0,1]$, by the Lebesgue differentiation theorem we have that

$$\frac{1}{m(E)} \int_{E} f(t) dt \to f(x) \tag{1}$$

as E shrinks to x for almost all x. Furthermore, since $0 \le f_n \le 1$ we also have that

$$\frac{1}{m(E)} \int_E f_n(t) \ dt \to f_n(x) \in [0, 1]$$

as E shrink to x for almost all x. Intuitively, we'd like to replace the integral of f in (1) with a limit of integrals of f_n .

We claim that the function g in the given hypothesis can be replaced with the indicator function of an interval χ_I . To see this, let g_m be a sequence of continuous functions with $g_m \to \chi_I$ in L^1 and $0 \le \chi_I \le 1$. By extracting a subsequence we can assume that $g_m \to \chi_I$ a.e. as well. We then have

$$\int_0^1 |f_n \chi_I - f \chi_i| \le \int_0^1 |f_n \chi_I - f_n g_m| + \int_0^1 |f_n g_m - f g_m| + \int_0^1 |f g_m - f \chi_i|.$$

Since $||f_n||_{L^{\infty}} \leq 1$, we have that the first integral on the RHS can be made small uniformly in n by picking m large. The second integral goes to zero as $n \to \infty$ by hypothesis since g_m is continuous. The third integral can be made small for m large by dominated convergence since $|fg_m| \leq |f| \in L^1$.

For almost all x, if I_k is a sequence of intervals shrinking to x then

$$\frac{1}{m(I_k)} \int_{I_k} f \ dx = \frac{1}{m(I_k)} \int f \chi_{I_k} \ dx$$
$$= \lim_{n \to \infty} \frac{1}{m(I_k)} \int f_n \chi_{I_k} \ dx.$$

Since $0 \le f_n \le 1$, the RHS is in [0,1] for almost all x. By the Lebesgue differentiation theorem we then have that $0 \le f \le 1$ a.e.

3. Let $f, g \in L^2(\mathbb{R}, \mathcal{M}_L, \mu_L)$. Show that f * g is a continuous function on \mathbb{R} vanishing at infinity, that is, $f * g \in C(R)$ and $\lim_{|x| \to \infty} (f * g)(x) = 0$.

Proof. For any h we have by Hölder's inequality

$$|(f * g)(x+h) - (f * g)(x)| = \left| \int f(t)[g(x+h-t) - g(x-t)] dt \right|$$
 (2)

$$\leq \|f\|_{L^2} \cdot \|g_h - g\|_{L^2},\tag{3}$$

where $F_h(x) = F(x+h)$ for any function F. Now for any $\epsilon > 0$ we can find $\varphi \in C_0(\mathbb{R})$ with $\|g - \varphi\|_{L^2} = \|g_h - \varphi_h\|_{L^2} < \epsilon$. By the triangle inequality we then have

$$||g_h - g||_{L^2} \le ||g_h - \varphi_h||_{L^2} + ||\varphi_h - \varphi||_{L^2} + ||\varphi - g||_{L^2}$$

$$< ||\varphi_h - \varphi||_{L^2} + 2\epsilon.$$

Suppose that φ has support contained in the compact set K. If we pick h small enough then we can guarantee that $\varphi_h - \varphi$ is supported on a set with measure at most $2 \cdot m(K)$. Now since φ is continuous with compact support, it is uniformly continuous, so we can choose h small enough that $|\varphi_h(x) - \varphi(x)| = |\varphi(x+h) - \varphi(x)| < \epsilon$ for all x in the support of $\varphi_h - \varphi$. For such h we have

$$\|\varphi_h - \varphi\|_{L^2} \le \epsilon \cdot (2 \cdot m(K))^{1/2},$$

so (2) can be made arbitrarily small, which shows that f * g is continuous.

First we claim that if φ and ψ are continuous with compact support then $\varphi * \psi$ vanishes at infinity. By definition we have that

$$(\varphi * \psi)(x) = \int \varphi(t)\psi(x-t) dt.$$

The product $\varphi(t)\psi(x-t)$ is nonzero only if t is in the support of φ and x-t is in the support of φ . If pick x large enough then supports of $t \mapsto \varphi(t)$ and $t \mapsto \psi(x-t)$ are disjoint, so this integral is zero.

Let f_n and g_n be sequences in $C_0(\mathbb{R})$ converging in L^2 to f and g, respectively. We then have

$$|(f * g)(x) - (f_n * g_n)(x)| \le |(f * g)(x) - (f_n * g)(x)| + |(f_n * g)(x) - (f_n * g_n)(x)|$$

$$\le ||g||_{L^2} \cdot ||f - f_n||_{L^2} + ||f_n||_{L^2} \cdot ||g - g_n||_{L^2}.$$

Since $f_n \to f$ and $g_n \to g$ in L^2 , we have that $f_n * g_n$ converges uniformly to f * g. Since $f_n * g_n$ vanishes at infinity, we must then have that f * g vanishes at infinity. \square