VV186 RC4

Zhu Jing

UM-SJTU Joint Institute

2018

Subsequence: Definition

2.2.25. Definition. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence and let $(n_k)_{k\in\mathbb{N}}$ be a strictly increasing sequence of natural numbers. Then the composition

$$(a_{n_k})_{k\in\mathbb{N}}:=(a_n)_{n\in\mathbb{N}}\circ(n_k)_{k\in\mathbb{N}}=(a_{n_1},a_{n_2},a_{n_3},\ldots)$$

is called a subsequence of (a_n) .

2.2.27. Definition. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence and $A\subset\mathbb{N}$ any infinite set of natural numbers. We define the subsequence

$$(a_n)_{n\in A}$$

to be the composition of (a_n) and the sequence (n_k) , where $n_0 = \min A$ and $n_{k+1} > n_k$, $n_k \in A$, for all $k \in \mathbb{N}$ ($\underline{n_k}$ is the kth-smallest element of \underline{A}).

Subsequence: Important lemma

- 2.2.29. Lemma. Let (a_n) be a convergent sequence with limit a. Then any subsequence of (a_n) is convergent with the same limit.
- 2.2.30. Lemma. Every real sequence has a monotonic subsequence.

2.2.31. Definition. Let (a_n) be a sequence. Then a number a is called an **accumulation point** of (a_n) if

$$\forall_{\varepsilon>0} \forall_{N\in\mathbb{N}} \exists_{n>N} |a_n-a| < \varepsilon.$$

If a sequence converges, then the limit is the only accumulation point.

Divergent sequence can also have accumulation point.

Subsequence

2.2.34. Lemma. A number a is an accumulation point of a sequence (a_n) if and only if there exists a subsequence of (a_n) that converges to a.

2.2.35. Theorem of Bolzano-Weierstraß. Every bounded real sequence has an accumulation point.

The Bolzano-weierstrass theorem can also be said as Every bounded real sequence in $\mathbb R$ has a convergent subsequence.

Generalizing Convergence

2.2.36. Definition. Let M be a set. A map $\varrho: M \times M \to \mathbb{R}$ is called a *metric* if

- (i) $\varrho(x,y) \ge 0$ for all $x,y \in M$ and $\varrho(x,y) = 0$ if and only if x = y.
- (ii) $\varrho(x,y) = \varrho(y,x)$
- (iii) $\varrho(x,z) \leq \varrho(x,y) + \varrho(y,z)$.

The pair (M, ϱ) is then called a *metric space*.

Generalized Convergence

$$\lim_{n\to\infty} a_n = a \qquad :\Leftrightarrow \qquad \forall \exists_{\epsilon>0} \forall_{n>N} a_n \in B_{\epsilon}(a)$$

where

$$B_{\epsilon}(a) := \{ y \in M : \rho(y, a) < \epsilon \}, \quad \epsilon > 0, \quad a \in M$$

Generalizing Boundedness and Cauchy sequence

Generalized boundedness:

 (a_n) is called bounded if

$$\underset{R>0}{\exists} \underset{n\in\mathbb{N}}{\forall} a_n \in B_R(x)$$

Boundness defined in such way is called *well-defined* because it does not depend on the choice of x.

2.2.40. Definition. A sequence (a_n) in a metric space (M, ϱ) is called a **Cauchy sequence** if

$$\forall \exists_{\varepsilon>0} \forall \rho(a_m, a_n) < \varepsilon.$$

Note: Every convergent sequence is a Cauchy sequence

Cauchy sequence

Note: Convergence and Cauchy sequence both depends on the choice of metric space. Different metric will lead to different result. Do not take $\rho = |x - y|$ for granted.

2.2.42. Lemma. Every Cauchy sequence in a metric space (M, ϱ) is bounded.

2.2.43. Theorem. Every Cauchy sequence in \mathbb{R} with the metric

$$\varrho \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \qquad \varrho(x, y) = |x - y|,$$

is convergent.

Complete metric space

2.2.44. Definition. A metric space (M, ϱ) is called *complete* if every Cauchy sequence converges in M.

The metrix space (\mathbb{N}, ρ) is not complete with

$$\rho(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$$

Notice that when proving this you should first check if (\mathbb{N},ρ) is indeed a metric space. This example shows that the same metric in a complete metric space can be incomplete in another metric space.

Complete metric space: Exercise

Prove that the metric space (\mathbb{C}, ρ) with $\rho(x, y) = |x - y|$ is complete. Hint: the metric space (\mathbb{R}, ρ) is complete.

Solution

Proof

Suppose (a_n) is a complex Cauchy sequence, $(a_n) := (x_n) + (y_n)i$, where (x_n) and (y_n) are complex sequences. Then we know

$$\forall_{\epsilon>0} \exists_{N>0} \forall_{m,n>N} |(x_n-x_m)+(y_n-y_m)i|<\epsilon$$

$$|x_n - x_m| < |(x_n - x_m) + (y_n - y_m)i| < \epsilon |(y_n - y_m)i| = |y_n - y_m| < |(x_n - x_m) + (y_n - y_m)i| < \epsilon$$

So (x_n) and (y_n) are both real Cauchy sequences, and they are convergent. Let $x := \lim x_n$, and let $y := \lim y_n$, then for properly chosen $n > N(\epsilon)$

$$|(x_n+y_n)i-(x+y\cdot i)|\leq |x_n-x|+|(y_n-y)i|<\epsilon$$

So (a_n) is convergent to $x + y \cdot i$.

Real Functions

IMPORTANT: Remember that we denote a function by the symbol f, and the values of the function at a some point x by f(x). It is important not to confuse these two notations; f is a function (set of pairs), while f(x) is a (real) number.

You need to know:

polynomial functions

power functions

rational functions

piecewise functions

periodic functions

Reference

1. VV186 Slide and previous RC Slide