This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

REMARKS

The Final Office Action mailed October 15, 2003, has been received and reviewed. Claims 1 through 6, 8 and 9 are currently pending in the application. Claims 1 through 6, 8 and 9 stand rejected. Applicant proposes to amend claims 2 and 9 and respectfully requests reconsideration of the application as proposed to be amended herein.

35 U.S.C. § 112 Claim Rejections

Claims 2 and 9 stand rejected under 35 U.S.C. § 112, first paragraph, as failing to comply with the written description requirement, in that the claims contain subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. Applicant respectfully traverses this rejection, as hereinafter set forth.

Applicant respectfully disagrees with the rejection. However, in an effort to expedite prosecution, applicant proposes to amend claims 2 and 9 to recite the metal-containing conductive pad is "substantially damage- free". Reconsideration and withdrawal of the rejection is requested.

35 U.S.C. § 103(a) Obviousness Rejections

Obviousness Rejection Based on U.S. Patent No. 5,883,001 to Jin et al. in View of U.S. Patent No. 4,943,359 to Wilson et al.

Claims 1 through 6, 8, and 9 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over Jin et al. (U.S. Patent No. 5,883,001) in view of Wilson et al. (U.S. Patent No. 4,943,359). Applicant respectfully traverses this rejection, as hereinafter set forth.

M.P.E.P. 706.02(j) sets forth the standard for a Section 103(a) rejection:

To establish a *prima facie* case of obviousness, three basic criteria must be met. First, there must be some suggestion or motivation, either in the references themselves or in the knowledge generally available to one of ordinary skill in the art, to modify the reference or combine reference teachings. Second, there must be a reasonable expectation of success. Finally, the prior art reference (or

references when combined) must teach or suggest all the claim limitations. The teaching or suggestion to make the claimed combination and the reasonable expectation of success must both be found in the prior art, and not based on applicant's disclosure. *In re Vaeck*, 947 F.2d 488, 20 USPQ2d 1438 (Fed. Cir. 1991). (Emphasis added).

Jin discloses a two-step etching process for making a multilayer metallization structure. A metal contact 23 is formed over a region 19. A dielectric barrier 24 of SiON or silicon nitride is formed over the metal contact 23. Then, a flowable glass dielectric layer 25 is deposited over which another dielectric layer 27 is formed. A PSG layer 28 is formed on the dielectric layer 27 and a photoresist layer 30 is formed over the PSG layer 28.

To create an opening to the metal contact 23, the photoresist is patterned and an opening 26 is etched which exposes the PSG layer 28. (Jin, Figs. 4 and 5). An isotropic etch is performed through the PSG layer 28 and part of the dielectric layer 27 using 10:1 BOE. (Jin, Fig. 6, col. 7, lines 31-35). The isotropic etch creates tapered sidewalls 35, 36 on the opening 26. (Jin, col. 6, lines 37-39). Jin next discloses an anisotropic etch through the dielectric layer 27, glass dielectric layer 25 and barrier dielectric layer 24 to expose the metal contact 23. The anisotropic etch consists of a main etch and an overetch to remove oxide residue, but which may induce charging damage to the device. (Jin, col. 7, lines 51-55).

Wilson discloses a two-step etching process for making a multilayer metallization structure. A first interconnect layer 12 is formed on a dielectric layer 11. The first interconnect layer 12 is covered by a first metal layer 13 which is then covered by a sacrificial layer 14. (Wilson, col. 3, lines 49-51). Preferably, the first interconnect layer comprises aluminum copper alloy, the first metal layer 13 comprises TiW or TiSi and sacrificial layer 14 comprises aluminum alloy or titanium nitride. (Id., col. 3, lines 53-57; col. 4, lines 4-5). The layers 12, 13, 14 are patterned and an interlayer dielectric 16 is formed thereover. (Wilson, FIG. 2). The dielectric layer 16 is patterned and dry etched to expose the sacrificial layer 14. (Id. col. 4, lines 17-24; FIG. 3). A second *isotropic* etch, preferably comprising a solution of nitric acid, phosphoric acid, and acetic acid, is then performed. (Id. col. 4, lines 34-38). The isotropic etch removes

residual backsputtered material 19 and etches sacrificial layer 14 in both a downward and sideways direction to create a single "T" shaped void. (Cf. Wilson, FIGs. 3 and 4). Additionally, the wet etch chemical "removes residual backsputtered material incorporated into the polymer film" (Id. at lines 51-55).

Each of independent claims 1 through 6 and 8 through 9 of the presently claimed invention recite a "residue-free contact opening" and a substantially damage-free metal containing conductive pad which is not taught or suggested by the proposed combination of Jin and Wilson. Jin discloses removing *oxide* residues from the metal contact 23 by an overetch but lacks any disclosure of removing *metal* residue from the opening 26. (Jin, col. 7, lines 50-55). Jin notes the disclosed method will "minimize dielectric residues" on the conductive pad. (Jin, col. 2, lines 59-61). Thus, Jin cannot teach or suggest a "residue free opening" or "residue free contact opening" as recited in the presently claimed invention as metal residue may still remain.

Further, each of the independent claims includes the limitation of applying nitric acid and the Examiner acknowledges that Jin fails to teach removing metal polymer residues by applying nitric acid as specifically recited in independent claims 3, 4, 8 and 9. (Paper No. 23, page 4). Instead, Jin teaches an overetch to remove oxide residue. However, Jin acknowledges the main etch and overetch may induce charging damage. (Jin, col. 7, lines 50-56 and Specification, page 8, lines 1-7). Accordingly, Jin fails to teach or suggest a substantially damage-free metal-containing conductive pad as recited in each of the claims of the presently claimed invention.

Similarly, Wilson teaches a wet isotropic etch process to substantially remove the sacrificial metal layer and create a contact interface with a wider cross section. The process of Wilson does not include a cleaning step following the isotropic etch. Thus, any residue created by the isotropic etch step will be left in the contact opening, compromising the performance and durability of the contact ultimately deposited therein. Additionally, the application of a combination of nitric acid and phosphoric acid will not render the Wilson opening residue free. (Specification, page 8, lines 1-7).

The process of Jin in view of Wilson will not render a contact opening residue-free with a substantially damage-free metal containing conductive pad. The Jin process fails to remove

metal residue and may induce charging damage to the device. The Wilson process also fails to completely remove residue. (Specification, page 8, lines 1-7)("mixtures of phosphoric acid and nitric acid were also found to be unacceptable for removal of the residue layer"). As neither Jin nor Wilson teaches or suggests a residue-free contact opening and a substantially damage-free conductive pad, the combination of Jin in view of Wilson will not result in residue-free contact openings of the presently claimed invention. Applicant respectfully requests that the rejection of claims 1 through 6 and 8 through 9 be withdrawn.

Furthermore, independent claims 1, 2, 5 and 6, of the presently claimed invention, each include similar limitations of an opening "extending from an upper surface of said dielectric layer to a metal-containing conductive pad" and having substantially parallel sidewalls extending from said upper surface of said dielectric layer to said substantially damage-free metal-containing conductive pad. Applicant respectfully submits that the proposed combination of Jin and Wilson fails to teach or suggest an opening in a dielectric layer having substantially parallel sidewalls extending from said upper surface of said dielectric layer to said substantially damage-free metal-containing conductive pad. Instead, Jin teaches a wet etch followed by an isotropic etch and anisotropic etch to create a "Y" shaped opening. (Jin, col. 6, lines 37-39, Figs. 7 and 8). As stated, Jin also teaches a process that may induce charge damage. Similarly, Wilson expressly teaches a dry etch and an isotropic etch to create a "T" shaped void. (Wilson, col. 4, lines 19-21 and 34-36).

Applicant respectfully disagrees that Jin discloses a residue-free opening having substantially parallel sidewalls. (Paper No. 23, page 3). Instead, Jin teaches or suggests an opening 26 over a metal contact pad 23. (Jin, Fig. 5, col. 7, lines 29-30). Jin teaches or suggests that the opening 26 is further etched twice to remove oxide residue. The first isotropic etch creates an opening clearly *having tapered sidewalls*. (Jin, Fig. 6, col. 7, lines 30-39). A second anisotropic etch does not completely remove the tapered portion 35, 36 of the sidedwalls. (Jin, Fig. 7). Accordingly, the wet etch followed by an isotropic etch and anisotropic etch creates a "Y" shaped opening. (Jin, col. 6, lines 37-39, Figs. 7 and 8).

As the proposed combination of Jin and Wilson fails to teach or suggest every limitation of the presently claimed invention, applicant respectfully submits that independent claims 1, 2, 5 and 6 of the presently claimed invention, are not rendered obvious by Jin in view of Wilson. Accordingly, applicant submits that claims 1, 2, 5 and 6 are allowable over the proposed combination of references.

Additionally, independent claims 3, 4, 8 and 9 of the presently claimed invention each include the similar limitation of a "metal polymer residue-free and oxide polymer residue-free opening in a dielectric layer and a metal-containing barrier layer". Applicant respectfully submits that the proposed combination of Jin and Wilson fails to teach or suggest such an opening. Jin only discloses dielectric layers surrounding a via and lacks disclosure of a metal-containing barrier layer. Wilson discloses a sacrificial metal layer 14 above first metal layer 13. However, Wilson teaches a dry etch which creates residue in a via followed by a wet isotropic etch comprising both nitric acid and phosphoric acid. (Wilson, col. 4, lines 34-38). As noted, mixtures of nitric acid and phosphoric acid (rather than independent application) are unacceptable for complete removal of residue layers. (Specification, page 8, lines 1-7). Thus, the via opening in Wilson is not metal polymer residue-free and oxide polymer residue-free. As the proposed combination of Jin and Wilson fails to teach or suggest every limitation of the presently claimed invention, applicant respectfully submits that independent claims 3, 4, 8 and 9 of the presently claimed invention, are not rendered obvious by Jin in view of Wilson. Accordingly, applicant submits that claims 3, 4, 8 and 9 are allowable over the proposed

combination of references.

ENTRY OF AMENDMENTS

The proposed amendments to claims 2 and 9 above should be entered by the Examiner because the amendments are supported by the as-filed specification and drawings and do not add any new matter to the application. Further, the amendments do not raise new issues or require a further search. Finally, if the Examiner determines that the amendments do not place the application in condition for allowance, entry is respectfully requested upon filing of a Notice of Appeal herein.

CONCLUSION

Claims 1 through 6, 8 and 9 are believed to be in condition for allowance, and an early notice thereof is respectfully solicited. Should the Office determine that additional issues remain which might be resolved by a telephone conference, the Examiner is respectfully invited to contact Applicant's undersigned attorney.

Respectfully submitted,

Krista Weber Powell

Registration No. 47,867

Attorney for Applicant(s)

TRASKBRITT

P.O. Box 2550

Salt Lake City, Utah 84110-2550

Telephone: 801-532-1922

Date: December 5, 2003

KWP/ps:ljb
Document in ProLaw