(sub A2) Cell wall (CW)

(intro to A2.2 and A2.3)

Purpose of the lecture:

- What are the general functions of the CW?
- What is the Gram stain?
- How do the structures of gram-positive and gram-negative cell walls differ?

The Gram Stain

(a) Gram-Positive

(b) Gram-Negative

Differential stain, most NB in microbiology

Staining is related to or reflects differences in?

A2.2 Gram-positive cell wall

- Thick homogeneous CW
- Primarily peptidoglycan (PG)

_

Gustav Bouwer - 2018

Techoic acids

- CW contains large amounts
- Polymers

Connected to?

_

Extend to surface

What are lipotechoic acids?

Techoic acid functions

Maintain structure of cell wall

Negative charge

A2.3 Gram-negative cell wall

- More complex
- Thin PG layer

• OM contains:

Braun's lipoprotein

- What does it do?

- How?

Gustav Bouwer - 2018

Lipopolysaccharides (LPS)

Composition?

OM is asymmetric

• e.g. Salmonella typhimurium

Structure

LPS functions

- Lipid A is major component of OM, helps stability
- Protect cells permeability barrier
- Core polysaccharide
- O side chain
- LPS can acts as endotoxin

2.3.3.1 OM functions

(component functions)

Prevent loss of constituents

Important protective barrier

Porins

Transmembrane proteins

- Channels for entrance/exit

2.3.2 Periplasmic space

Occupied by periplasm

Many proteins that participate in nutrient acquisition

ET and Energy

Chemoreceptors (chemotaxis)

Enzymes for PG synthesis (also Gram+)

Modification?

- Gram+?
 - Have what instead?