Implémenter un modèle de scoring

Introduction

 "Prêt à dépenser": propose des prêts à la consommation à des clients n'ayant pas ou peu d'historique de prêt

- Mission => outil de scoring
 - Calcul probabilité de défaut
 - Classification

- Démarche globale:
 - Élaborer un modèle de scoring
 - Déployer le modèle sous forme d'une API Flask
 - Intégrer et optimiser le système MLOps

Description du jeu de données

- 7 fichiers
 - données comportementales
 - données historiques autres établissements ...
- Application_test:
 - pour vérifier absence de data leakage
 - o pour analyse du data drift

- Nettoyage et features engineering
 - => Kernels Kaggle adaptés
- Dataframe obtenu (307497, 815)

Partie 1: Modélisation

Démarche de modélisation

Rééquilibrage des classes avec Smote

• Déséquilibre de classes: inégalement représentées, risques de biaiser le modèle

 Smote: Suréchantillonnage des Minorités Synthétiques (SMOTE génère de nouvelles observations synthétiques pour la classe minoritaire en se basant sur les voisins les plus proches)

Choix des modèles

• Baseline: Régresseur naïf

- Modèle linéaire: Régression logistique
 - hyperparamètres:
 - C: régularisation (pénalise certaines features pour empêcher overfitting)
 - Penalty (I1, I2 ou ElasticNet)

- Modèle non linéaire: LGBM
 - o algo arbres de décision
 - o construction arbres feuille par feuille
 - hyperparamètres:
 - n_estimators
 - learning_rate
 - num_leaves

Choix des mesures - AUC

- **TPR= Rappel** = Sensibilité = tp/(tp+fn) => capacité à détecter difficulté de remboursement (Proportion d' échantillons positifs que l'on a classés positifs)
- FPR= 1 Spécificité = 1 (TN/(FP + TN)) => Spécificité: taux de vrais négatifs

Choix des mesures - Coût métier des erreurs

 Les FN coûtent 10 fois plus que les FP

Création d'une fonction:

coût=10 FN+ FP

 Optimiser le seuil de classification pour minimiser la fonction de coût

Tracking ML Flow

Tracking ML Flow

Comparaison des performances

Modèle	Hyperparamètres optimisés	AUC	Rappel	Précision	Coût Métier (à minimiser)	Temps de train
Dummy classifier	strategy=stratified	0.497	0.498	0.079	78295	9 sec
Régression logistique	C=0.048 penalty=l2	0.763	0.685	0.17	48392	8 min
LGBM	learning_rate=0.01, n_estimators=1850, num_leaves=85 max_depth	0.781	0.608	0.21	45876	3 min

Analyse de l'importance des variables globale avec SHAP

- SHAP: Contribution de variables à la différence entre la valeur prédite par le modèle et la moyenne des prédictions
- Variables les plus importantes, qui ont le plus d'impact sur les prédictions

Analyse de l'importance des variables locale avec SHAP

• SHAP en local: Pour un prêt spécifique, affichage des features qui ont le plus impacté la prédiction

Partie 2: Pipeline de déploiement

Outils plateforme MLOps

Dépot Github

vincmartel/Projet7--Implementez-un-modele-de-scoring (github.com)

Github Actions: build et deploy

Workflow -> définition des étapes de build et deploy dans fichier.yml


```
branches:
     - master
 workflow_dispatch:
jobs:
 build:
   runs-on: ubuntu-latest
   steps:
     - uses: actions/checkout@v4
     - name: Set up Python version
       uses: actions/setup-python@v1
       with:
         python-version: '3.11'
     - name: Create and start virtual environment
         python -m venv venv
         source veny/bin/activate
     - name: Install dependencies
       run: pip install -r requirements.txt
     - name: Run tests with pytest
       run: pytest
     - name: Zip artifact for deployment
       run: zip release.zip ./* -r
     - name: Upload artifact for deployment jobs
       uses: actions/upload-artifact@v3
       with:
         name: python-app
         path:
           release.zip
           !venv/
 deploy:
   runs-on: ubuntu-latest
   needs: build
   environment:
     name: 'Production'
```

Github Actions: build

Github Actions: deploy

Azure: management de l'API

Partie 3: Data drift

Analyse du data drift

- Définition: variation des données en production VS données d'entraînement (risque diminution performances)
- But: suivre l'efficacité d'un modèle en production
- Data drift entre application_train et application_test

Analyse du data drift

- Actions d'amélioration possibles:
 - Nouvelles données d'entraînement
 - Sélection de features
 - Optimisation hyperparamètres, ré-entraînement du modèle

Partie 4: Démo scoring crédit

Décision d'attribution de crédit

Décision d'attribution de crédit

