Assignment-2

201300069 邓嘉宏

email: 1739413207@qq.com

Q1

(1)

We construct an interpretation $\mathcal{I}=(\Delta^{\mathcal{I}},\cdot^{\mathcal{I}})$, and $\Delta^{\mathcal{I}}=\{a\}$, for every concept name $A,A^{\mathcal{I}}=\{a\}$, for every role name $r,r^{\mathcal{I}}=\{(a,a)\}$.

We prove by induction on the structure of \mathcal{EL} -concept C. The base case is the one where C is a concept name.

- Assume $C=A, C^{\mathcal{I}}=A^{\mathcal{I}}=\{a\} \neq \emptyset$
- Assume $C=\top$, $C^{\mathcal{I}}=\top^{\mathcal{I}}=\Delta^{\mathcal{I}}=\{a\}
 eq\emptyset$
- Assume $C=D\sqcap E$, $C^{\mathcal{I}}=D^{\mathcal{I}}\cap E^{\widetilde{\mathcal{I}}}=\{a\}\cap \{a\}=\{a\}\neq \emptyset$
- Assume $C=\exists r.D,\,C^{\mathcal{I}}=\{a\}
 eq\emptyset$

So for this \mathcal{I} and every \mathcal{EL} -concept C, $C^{\mathcal{I}} \neq \emptyset$.

(2)

A \mathcal{EL} TBox is a finite set \mathcal{T} of \mathcal{EL} concept inclusions and \mathcal{EL} concept equations. And we can repace a \mathcal{EL} concept equation $C \equiv D$ by two concept inclusions $C \sqsubseteq D$ and $D \sqsubseteq C$, so \mathcal{T} is a finite set of \mathcal{EL} concept inclusions.

We construct an interpretation $\mathcal I$ as (1). Then for all $E \sqsubseteq F$ in $\mathcal T$, we have $E^{\mathcal I} \subseteq F^{\mathcal I}$ by $E^{\mathcal I} = \{a\}$, i.e. $\mathcal I \models E \sqsubseteq F$, so $\mathcal I \models \mathcal T$.

Q2

(1)

Consider ${\mathcal T}$:

$Bird \equiv Vertebrate \sqcap \exists has_part.Wing$ $Reptile \sqsubseteq Vertebrate \sqcap \exists lays.Egg$

Step 1 gives:

 $Bird \sqsubseteq Vertebrate \sqcap \exists has_part.Wing$ $Vertebrate \sqcap \exists has_part.Wing \sqsubseteq Bird$ $Reptile \sqsubseteq Vertebrate \sqcap \exists lays.Egg$

Step 2 gives:

 $Bird \sqsubseteq Vertebrate$ $Bird \sqsubseteq \exists has_part.Wing$ $Vertebrate \sqcap \exists has_part.Wing \sqsubseteq Bird$ $Reptile \sqsubseteq Vertebrate$ $Reptile \sqsubseteq \exists lays.Egg$

Step 4 gives:

 $Bird \sqsubseteq Vertebrate$ $Bird \sqsubseteq \exists has_part.Wing$ $Vertebrate \sqcap X \sqsubseteq Bird$ $X \sqsubseteq \exists has_part.Wing$ $\exists has_part.Wing \sqsubseteq X$ $Reptile \sqsubseteq Vertebrate$ $Reptile \sqsubseteq \exists lays.Egg$

This is \mathcal{T}' .

(2)

Initialise:

$$S(Bird) = \{Bird\}$$
 $S(Vertebrate) = \{Vertebrate\}$
 $S(Wing) = \{Wing\}$
 $S(X) = \{X\}$
 $S(Reptile) = \{Reptile\}$
 $S(Egg) = \{Egg\}$
 $R(has_part) = \emptyset$
 $R(lays) = \emptyset$

• Application of (simpleR) and axiom 1,6 gives :

$$S(Bird) = \{Bird, Vertebrate\}$$

 $S(Reptile) = \{Reptile, Vertebrate\}$

Application of (rightR) and axiom 2,4,7 gives :

$$R(has_part) = \{(Bird, Wing), (X, Wing)\}$$

 $R(lays) = \{(Reptile, Egg)\}$

• Application of (leftR) and axiom 5 gives :

$$S(Bird) = \{Bird, Vertebrate, X\}$$

• No more rules are applicable.

Thus:

$$egin{aligned} S(Bird) &= \{Bird, Vertebrate, X\} \ S(Reptile) &= \{Reptile, Vertebrate\} \ R(has_part) &= \{(Bird, Wing), (X, Wing)\} \ R(lays) &= \{(Reptile, Egg)\} \end{aligned}$$

and no changes for the remaining values.

(3)

Due to $Vertebrate \in S(Reptile)$, but $Bird \notin S(Vertebrate)$, we can obtain $Reptile \sqsubseteq_{\mathcal{T}'} Vertebrate$, but $Vertebrate \sqsubseteq_{\mathcal{T}'} Bird$ is false.

Q3

(1)

We define bisimulation for \mathcal{ALCN} :

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. The relation $\rho \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is a bisimulation between \mathcal{I}_1 and \mathcal{I}_2 if:

- (i),(ii),(iii) is defined the same as \mathcal{ALC} bisimulation.
- (iv) $d_1 \ \rho \ d_2$ and there are n distinct elements $d_1^i \in \Delta^{\mathcal{I}_1}$, $1 \leq i \leq n$, $(d_1,d_1^i) \in r^{\mathcal{I}_1}$ implies the existence of n distinct elements $d_2^i \in \Delta^{\mathcal{I}_2}$, $(d_2,d_2^i) \in r^{\mathcal{I}_2}$, for all $d_1,d_1^i \in \Delta^{\mathcal{I}_1}$, $d_2 \in \Delta^{\mathcal{I}_2}$ and $r \in \mathbf{R}$.
- (v) $d_1 \ \rho \ d_2$ and there are n distinct elements $d_2^i \in \Delta^{\mathcal{I}_2}$, $1 \leq i \leq n$, $(d_2, d_2^i) \in r^{\mathcal{I}_2}$ implies the existence of $d_1^i \in \Delta^{\mathcal{I}_1}$, $(d_1, d_1^i) \in r^{\mathcal{I}_1}$, for all $d_1 \in \Delta^{\mathcal{I}_1}$, $d_2, d_2^i \in \Delta^{\mathcal{I}_2}$ and $r \in \mathbf{R}$.

Since we have proved the bisimulation invariance of \mathcal{ALC} , we only need add two cases to prove the bisimulation invariance of \mathcal{ALCN} :

- Assume that $C=\leq n\ r. \top$. Then $d_1\in (\leq n\ r. \top)^{\mathcal{I}_1}$ if and only if there exist $m\leq n$ elements $d_1^i\in \Delta^{\mathcal{I}_1} and\ (d_1,d_1^i)\in r^{\mathcal{I}_1}$ (due to semantics, $1\leq i\leq m$), if and only if there exist $d_2^i\in \Delta^{\mathcal{I}_2}$ such that $(d_2,d_2^i)\in r^{\mathcal{I}_2}$ (due to definition(iv)), if and only if $d_2\in (\leq n\ r. \top)^{\mathcal{I}_2}$.
- Assume that $C=\geq n\ r. \top$. Then $d_1\in (\geq n\ r. \top)^{\mathcal{I}_1}$ if and only if there exist $m\geq n$ elements $d_1^i\in \Delta^{\mathcal{I}_1}$ and $(d_1,d_1^i)\in r^{\mathcal{I}_1}$ (due to semantics, $1\leq i\leq m$), if and only if there exist $d_2^i\in \Delta^{\mathcal{I}_2}$ such that $(d_2,d_2^i)\in r^{\mathcal{I}_2}$ (due to definition(iv)), if and only if $d_2\in (\geq n\ r. \top)^{\mathcal{I}_2}$.

So we have proved the bisimulation invariance of \mathcal{ALCN} .

(2)

We construct a \mathcal{ALCQ} concept $C=\leq 1r.A$, and two interpretations $\mathcal{I}_1,\mathcal{I}_2$, The relation $\rho\subseteq \Delta^{\mathcal{I}_1}\times\Delta^{\mathcal{I}_2}$ is a bisimulation between \mathcal{I}_1 and \mathcal{I}_2 :

$$egin{aligned} \Delta^{\mathcal{I}_1} &= \{a,b,c,d\} \ A^{\mathcal{I}_1} &= \{b\} \ B^{\mathcal{I}_1} &= \{c,d\} \ r^{\mathcal{I}_1} &= \{(a,b),(a,c),(a,d)\} \ \Delta^{\mathcal{I}_2} &= \{e,f,g,h\} \ A^{\mathcal{I}_2} &= \{f,g\} \ B^{\mathcal{I}_2} &= \{h\} \ r^{\mathcal{I}_2} &= \{(e,f),(e,g),(e,h)\} \
ho &= \{(a,e),(b,f),(b,g),(c,h),(d,h)\} \end{aligned}$$

For \mathcal{ALCQ} concept $C=\leq 1r.A$, we have $a\in\leq 1r.A$, $e\notin\leq 1r.A$. But since $(\mathcal{I}_1,a)\sim (\mathcal{I}_2,e)$, due to the bisimulation invariance of \mathcal{ALCN} , we can know \mathcal{ALCN} do not support this concept. So, \mathcal{ALCQ} is more expressive than \mathcal{ALCN} .

Q4

Let
$$\mathcal{K}=(\mathcal{T},\mathcal{A}),\,\mathcal{J}=\biguplus_{v\in\Omega}\mathcal{I}_v,$$
 we extend the notion of disjoint union:
$$\Delta^{\mathcal{J}}=\{(d,v)\mid v\in\Omega\ and\ d\in\Delta^{\mathcal{I}_v}\}$$
 $A^{\mathcal{J}}=\{(d,v)\mid v\in\Omega\ and\ d\in A^{\mathcal{I}_v}\}\ \text{for all}\ A\in\mathbf{C}$ $r^{\mathcal{J}}=\{((d,v),(e,v))\mid v\in\Omega\ and\ (d,e)\in r^{\mathcal{I}_v}\}\ \text{for all}\ r\in\mathbf{R}$ $a^{\mathcal{J}}=(d,v_0),\ d=a^{\mathcal{I}_{v_0}}\in\Delta^{\mathcal{I}_{v_0}},v_0\in\Omega$

From **Lemma 3.7.** we know:

$$d \in C^{\mathcal{I}_v} ext{ if and noly if } (d,v) \in C^{\mathcal{J}} \ (d,e) \in r^{\mathcal{I}_v} ext{ if and only if } ((d,v),(e,v)) \in C^{\mathcal{J}}$$

We prove ${\mathcal J}$ is a model of ${\mathcal K}$:

Assume ${\mathcal J}$ is not a model of ${\mathcal K}$, since ${\mathcal K}=({\mathcal T},{\mathcal A})$, we have these cases:\

- if \mathcal{J} is not a model of \mathcal{T} . Then there is a GCI $C \sqsubseteq D$ in \mathcal{T} , and an element $(d,v) \in C^{\mathcal{I}}$, $(d,v) \notin D^{\mathcal{I}}$, in this case, from **Lemma 3.7.**, we know $d \in C^{\mathcal{I}_v}$, $d \notin D^{\mathcal{I}_v}$, this contradicts to \mathcal{I}_v is a model of \mathcal{K} .
- if $\mathcal J$ is not a model of $\mathcal A$.

 If there exist a concept assertion a:C and an element $(a^{\mathcal I_v},v)\notin C^{\mathcal J}$, from **Lemma 3.7.**, we know $a^{\mathcal I_v}\notin C^{I_v}$, this contradicts to $\mathcal I_v$ is a model of $\mathcal K$.

If there exist a role assertion (a,b): r and $((a^{\mathcal{I}_v},v),(b^{\mathcal{I}_v},v)) \notin r^{\mathcal{I}}$, from **Lemma 3.7.**, we know $(a^{\mathcal{I}_v},b^{\mathcal{I}_v}) \notin r^{I_v}$, this contradicts to \mathcal{I}_v is a model of \mathcal{K} .

So we have proved \mathcal{J} is a model of \mathcal{K} .

Q5

 \Longrightarrow :

if $C \sqsubseteq_{\mathcal{K}} D$,

⇐=:

if $C \sqsubseteq_{\mathcal{T}} D$, then for every model \mathcal{I} of \mathcal{T} , $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds. As we know every model \mathcal{I} of \mathcal{K} is a model of \mathcal{T} , so if every model \mathcal{I} of \mathcal{T} , $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds , we have for every model \mathcal{I} of \mathcal{K} , $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds, that is said $C \sqsubseteq_{\mathcal{K}} D$.

Q6

(1)

True.

As C is a \mathcal{ALC} -concept that is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , by finite model property, we know there is a model \mathcal{I} of \mathcal{T} such that $|C^{\mathcal{I}}| \geq 1$.

Let $\mathcal{I}_m=\biguplus_{1\leq v\leq m}\mathcal{I}_v$ be m-fold disjoint union of \mathcal{I} with itself, then by **Lemma 3.7.** and **Theorem 3.8.**, we know \mathcal{I}_m is a model of \mathcal{T} and $|C^{\mathcal{I}_m}|=m|C^{\mathcal{I}}|\geq m$.

(2)

False.

Construct $\mathcal{T}=\{A\sqsubseteq \exists r. \neg A, \neg A\sqsubseteq \exists r. A\}, C=\top$, and C is satisfiable w.r.t \mathcal{T} .

Let m=1, assume there is a finite model $\mathcal I$ of $\mathcal T$ such that $|C^{\mathcal I}|=|\Delta^{\mathcal I}|=m=1$. That is said the domain of $\mathcal T$ has only one element, so there must have $A=\emptyset$ or $\neg A=\emptyset$. But:

- If $A=\emptyset$, then $\exists r.A=\emptyset$. As $\mathcal I$ is a model of $\mathcal T$, so $\mathcal T\models \neg A\sqsubseteq \exists r.A$, so $\neg A=\emptyset$, contradiction occur.
- If $\neg A = \emptyset$, then $\exists r. \neg A = \emptyset$. As \mathcal{I} is a model of \mathcal{T} , so $\mathcal{T} \models A \sqsubseteq \exists r. \neg A$, so $A = \emptyset$, contradiction occur.

Q7

False.

We construct $\mathcal{T}=\{A\sqsubseteq \exists r.\top\}$, $C=\top$, as shown in lecture. Then $sub(C)\cup sub(\mathcal{T})=\{\top,A,\exists r.\top\}$, we construct \mathcal{I} as follow:

$$egin{aligned} \Delta^{\mathcal{I}} &= \{d_1, d_1', d_2, d_2'\} \ A^{\mathcal{I}} &= \{d_1, d_1', d_2\} \ r^{\mathcal{I}} &= \{(d_1, d_2), (d_1', d_2')\} \end{aligned}$$

and its filtration $\mathcal J$ w.r.t. $sub(C) \cup sub(\mathcal T)$ are as follow:

$$egin{aligned} \Delta^{\mathcal{J}} &= \{[d_1], [d_1'], [d_2], [d_2']\} \ A^{\mathcal{J}} &= \{[d_1], [d_1'], [d_2]\} \ r^{\mathcal{J}} &= \{([d_1], [d_2]), ([d_1'], [d_2]), ([d_1], [d_2']), ([d_1'], [d_2'])\} \end{aligned}$$

Assume $\rho=\{(d,[d])\mid d\in\Delta^{\mathcal{I}}\}$ is a bisimulation between \mathcal{I} and \mathcal{J} . So $(d_1,[d_1])\in\rho$, but $[d_1]$ has an r-successor in \mathcal{J} that does not belong to the extension of A, whereas d_1 does not have such an r-successor in \mathcal{I} , contradiction occur, so this ρ is not a bisimulation between \mathcal{I} and \mathcal{J} .

Q8

(1)

(i) $d \approx_{\mathcal{I}} e$ implies there is a bisimulation ρ on \mathcal{I} such that $d \ \rho \ e$, i.e. $d \in A^{\mathcal{I}}$ if and only if $e \in A^{\mathcal{I}}$, for all $d, e \in \Delta^{\mathcal{I}}$, and $A \in \mathbf{C}$;

(ii) $d \approx_{\mathcal{I}} e$ and $(d,d') \in r^{\mathcal{I}}$ implies $d \ \rho \ e$ and $(d,d') \in r^{\mathcal{I}}$, implies the existence of $e' \in \Delta^{\mathcal{I}}$ such that $d' \ \rho \ e'$ and $(e,e') \in r^{\mathcal{I}}$, i.e., $d' \approx_{\mathcal{I}} e'$ and $(e,e') \in r^{\mathcal{I}}$, for all $d,d',e \in \Delta^{\mathcal{I}}$ and $r \in \mathbf{R}$.

(iii) $d \approx_{\mathcal{I}} e$ and $(e,e') \in r^{\mathcal{I}}$ implies $d \ \rho \ e$ and $(e,e') \in r^{\mathcal{I}}$, implies the existence of $d' \in \Delta^{\mathcal{I}}$ such that $d' \ \rho \ e'$ and $(d,d') \in r^{\mathcal{I}}$, i.e., $d' \approx_{\mathcal{I}} e'$ and $(d,d') \in r^{\mathcal{I}}$, for all $d,e,e' \in \Delta^{\mathcal{I}}$ and $r \in \mathbf{R}$.

So $pprox_{\mathcal{I}}$ is a bisimulation on \mathcal{I} .

(2)

We modify the definition about filtration:

$$egin{aligned} [d]_{pprox_{\mathcal{I}}} &= \{e \in \Delta^{\mathcal{I}} \mid d pprox_{\mathcal{I}} e\}; \ \Delta^{\mathcal{J}} &= \{[d]_{pprox_{\mathcal{I}}} \mid d \in \Delta^{\mathcal{I}}\}; \ A^{\mathcal{J}} &= \{[d]_{pprox_{\mathcal{I}}} \mid ext{there is } d' \in [d]_{pprox_{\mathcal{I}}} ext{ with } d' \in A^{\mathcal{I}}\} ext{ for all } A \in \mathbf{C}; \ r^{\mathcal{J}} &= \{([d]_{pprox_{\mathcal{I}}}, [e]_{pprox_{\mathcal{I}}}) \mid ext{there are } d' \in [d]_{pprox_{\mathcal{I}}}, e' \in [e]_{pprox_{\mathcal{I}}} ext{ with } (d', e') \in r^{\mathcal{I}}\} ext{ for all } r \in \mathbf{R}. \end{aligned}$$

(i) $(d,[d]_{pprox_{\mathcal{I}}})\in
ho$ implies:

 $d\in A^{\mathcal{I}}$ if and only if $e\in A^{\mathcal{I}}$,(if $dpprox_{\mathcal{I}}e$, for all e) if and only if $[d]_{pprox_{\mathcal{I}}}\in A^{\mathcal{I}}$,(due to all e and d, by definition $d,e\in [d]_{pprox_{\mathcal{I}}}$), for all $d\in \Delta^{\mathcal{I}},[d]_{pprox_{\mathcal{I}}}\in \Delta^{\mathcal{I}},$ and $A\in \mathbf{C}$;

(ii) $(d,[d]_{\approx_{\mathcal{I}}}) \in \rho$ and $(d,d') \in r^{\mathcal{I}}$ implies: the existence of $[d']_{\approx_{\mathcal{I}}} \in \Delta^{\mathcal{I}}$ such that $d \in [d]_{\approx_{\mathcal{I}}}, d' \in [d']_{\approx_{\mathcal{I}}}$ with $(d,d') \in r^{\mathcal{I}}$, so $([d]_{\approx_{\mathcal{I}}},[d']_{\approx_{\mathcal{I}}}) \in r^{\mathcal{I}}$ and $(d',[d']_{\approx_{\mathcal{I}}}) \in \rho$, for all $d,d' \in \Delta^{\mathcal{I}},[d]_{\approx_{\mathcal{I}}} \in \Delta^{\mathcal{I}},$ and $r \in \mathbf{R}$;

 $\begin{array}{l} \text{(iii) } (d,[d]_{\approx_{\mathcal{I}}}) \in \rho \text{ and } ([d]_{\approx_{\mathcal{I}}},[d']_{\approx_{\mathcal{I}}}) \in r^{\mathcal{I}} \text{ implies:} \\ d_1 \in [d]_{\approx_{\mathcal{I}}}, d'_1 \in [d']_{\approx_{\mathcal{I}}} \text{ with } (d_1,d'_1) \in r^{\mathcal{I}} \text{, because } d \approx_{\mathcal{I}} d_1 \text{ ,so there exist } d' \in \Delta^{\mathcal{I}} \text{ such that } \\ d' \approx_{\mathcal{I}} d'_1 \text{ and } (d,d') \in r^{\mathcal{I}} \text{ , } (d',[d']_{\approx_{\mathcal{I}}}) \in \rho \text{, for all } d \in \Delta^{\mathcal{I}}, [d]_{\approx_{\mathcal{I}}}, [d']_{\approx_{\mathcal{I}}} \in \Delta^{\mathcal{I}} \text{ and } r \in \mathbf{R}. \end{array}$

So $ho=\{(d,[d]_{pprox_{\mathcal{I}}})\mid d\in\Delta^{\mathcal{I}}\}$ is a bisimulation between ${\mathcal{I}}$ and ${\mathcal{J}}.$

(3)

If \mathcal{I} is a model of an \mathcal{ALC} -concept C w.r.t. an \mathcal{ALC} -Tbox \mathcal{T} , then:

- For every GCI $D \sqsubseteq E$ in \mathcal{T} , we have if $a \in D^{\mathcal{I}}$, $then \ a \in E^{\mathcal{I}}$, by bisimulation invariance of \mathcal{ALC} , we have if $[a]_{\approx_{\mathcal{I}}} \in D^{\mathcal{I}}$, $then \ [a]_{\approx_{\mathcal{I}}} \in E^{\mathcal{I}}$.
- If $a\in C^\mathcal{I}$, by bisimulation invariance of \mathcal{ALC} , we have $[a]_{pprox_\mathcal{I}}\in C^\mathcal{I}.$

So $\mathcal J$ is also a model of the $\mathcal A\mathcal L\mathcal C$ -concept C w.r.t. the $\mathcal A\mathcal L\mathcal C$ -Tbox $\mathcal T$.

Q9

The unravelling of the following interpretation ${\mathcal I}$ at d up to depth 5 :

Q10

False.

We construct a $\mathcal K$, where $\mathcal T=\emptyset$, $\mathcal A=\{a:A,(a,a):r\}$. And an $\mathcal A\mathcal L\mathcal C$ -concept $C=\top$. In this case, for every model $\mathcal I$ of $\mathcal K$, we know $a^{\mathcal I}\in A^{\mathcal I},(a^{\mathcal I},a^{\mathcal I})\in r^{\mathcal I}$, and the graph of $\mathcal I$ have a cycle " $a^{\mathcal I}\to_r a^{\mathcal I}$ ", this is not a tree, so every model $\mathcal I$ of $\mathcal K$ is not a tree model.

Q11

$$\mathcal{A}_0 = \{(b,a): r,(a,b): r,(a,c): s,(c,b): s,a: \exists s.A,b: \forall r.((\forall s.\neg A) \sqcup (\exists r.B)), c: \forall s.(B \sqcap (\forall s.\bot))\}$$

Apply rule \rightarrow_\exists gives:

$$\mathcal{A}_1 = \mathcal{A}_0 \cup \{(a,d): s,d:A\}$$

Apply rule \rightarrow_\forall gives:

$$\mathcal{A}_2 = \mathcal{A}_1 \cup \{a: (orall s.
eg A) \sqcup (\exists r. B)\}$$

Apply rule \rightarrow_\forall gives:

$$\mathcal{A}_3 = \mathcal{A}_2 \cup \{b : B \cap (\forall s. \bot)\}$$

Apply rule \rightarrow_{\sqcap} gives:

$$\mathcal{A}_4 = \mathcal{A}_3 \cup \{b: B, b: \forall s. \perp\}$$

Apply rule \rightarrow_{\sqcup} . We have two possibilities:

• Firstly we can try:

$$\mathcal{A}_5 = \mathcal{A}_4 \cup \{a : \forall s. \neg A\}$$

Then apply rule \rightarrow_\forall gives:

$$\mathcal{A}_6 = \mathcal{A}_5 \cup \{c : \neg A, d : \neg A\}$$

Due to $d:A,d:\neg A$, we have obtained a clash, thus this choice was unsuccessful.

• Secondly, we can try:

$$\mathcal{A}_5^* = \mathcal{A}_4 \cup \{a: \exists r.B\}$$

No rule is applicable to \mathcal{A}_5^* and it does not contain a clash.

So \mathcal{A} is consistent:

