Matematička indukcija

DISKRETNE STRUKTURE S TEORIJOM GRAFOVA

Damir Horvat

FOI, Varaždin

Sadržaj

prvi zadatak

drugi zadatak

treći zadatak

četvrti zadatak

peti zadatak

prvi zadatak

Ako je šalica razbijena na n dijelova, dokažite da je za sastavljanje šalice potrebno n -1 lijepljenja. Pri svakom lijepljenju spajamo samo dva dijela, bilo krhotine ili već zalijepljene dijelove šalice.

Ako je šalica razbijena na n dijelova, dokažite da je za sastavljanje šalice potrebno n-1 lijepljenja. Pri svakom lijepljenju spajamo samo dva dijela, bilo krhotine ili već zalijepljene dijelove šalice.

Rješenje

Baza indukcije

Ako je šalica razbijena na n dijelova, dokažite da je za sastavljanje šalice potrebno n-1 lijepljenja. Pri svakom lijepljenju spajamo samo dva dijela, bilo krhotine ili već zalijepljene dijelove šalice.

Rješenje

• Baza indukcije

Bazu ćemo provjeriti na dva slučaja n=1 i n=2, iako je dovoljno provjeriti samo za n=1.

Ako je šalica razbijena na n dijelova, dokažite da je za sastavljanje šalice potrebno n-1 lijepljenja. Pri svakom lijepljenju spajamo samo dva dijela, bilo krhotine ili već zalijepljene dijelove šalice.

Rješenje

• Baza indukcije

Bazu ćemo provjeriti na dva slučaja n=1 i n=2, iako je dovoljno provjeriti samo za n=1.

Ako je n=1, tada šalica zapravo nije razbijena pa je za sastavljanje šalice potrebno 0 lijepljenja (1-1=0).

Ako je šalica razbijena na n dijelova, dokažite da je za sastavljanje šalice potrebno n-1 lijepljenja. Pri svakom lijepljenju spajamo samo dva dijela, bilo krhotine ili već zalijepljene dijelove šalice.

Rješenje

Baza indukcije

Bazu ćemo provjeriti na dva slučaja n=1 i n=2, iako je dovoljno provjeriti samo za n=1.

Ako je n=1, tada šalica zapravo nije razbijena pa je za sastavljanje šalice potrebno 0 lijepljenja (1-1=0).

Ako je n=2, tada je šalica razbijena na dva dijela. Jasno je da u tom slučaju za sastavljanje šalice potrebno jedno lijepljenje (2-1=1).

Pretpostavimo da je za sastavljanje šalice razbijene na n dijelova potrebno n-1 lijepljenja.

Pretpostavimo da je za sastavljanje šalice razbijene na n dijelova potrebno n-1 lijepljenja.

Ako je šalica razbijena na n+1 dijelova,

Pretpostavimo da je za sastavljanje šalice razbijene na n dijelova potrebno n-1 lijepljenja.

Ako je šalica razbijena na n+1 dijelova, nakon prvog lijepljenja ostat će još n dijelova koje treba spojiti u cjelinu.

Pretpostavimo da je za sastavljanje šalice razbijene na n dijelova potrebno n-1 lijepljenja.

Ako je šalica razbijena na n+1 dijelova, nakon prvog lijepljenja ostat će još n dijelova koje treba spojiti u cjelinu.

Prema pretpostavci indukcije njih možemo spojiti u cjelinu sn-1lijepljenja.

Pretpostavimo da je za sastavljanje šalice razbijene na n dijelova potrebno n-1 lijepljenja.

Ako je šalica razbijena na n+1 dijelova, nakon prvog lijepljenja ostat će još n dijelova koje treba spojiti u cjelinu.

Prema pretpostavci indukcije njih možemo spojiti u cjelinu sn-1lijepljenja.

Sve zajedno smo koristili 1 + (n-1) = n lijepljenja.

Pretpostavimo da je za sastavljanje šalice razbijene na n dijelova potrebno n-1 lijepljenja.

Ako je šalica razbijena na n+1 dijelova, nakon prvog lijepljenja ostat će još n dijelova koje treba spojiti u cjelinu.

Prema pretpostavci indukcije njih možemo spojiti u cjelinu sn-1lijepljenja.

Sve zajedno smo koristili 1 + (n-1) = n lijepljenja.

Prema principu matematičke indukcije tvrdnja vrijedi za svaki $n \in \mathbb{N}$.

drugi zadatak

Na feštu je došlo n ljudi i svaka dva (različita) čovjeka su međusobno nazdravili. Matematičkom indukcijom dokažite da je ukupni broj zdravica jednak $\frac{n(n-1)}{2}$.

Na feštu je došlo n ljudi i svaka dva (različita) čovjeka su međusobno nazdravili. Matematičkom indukcijom dokažite da je ukupni broj zdravica jednak $\frac{n(n-1)}{2}$.

Rješenje

• Baza indukcije: n = 1

Na feštu je došlo n ljudi i svaka dva (različita) čovjeka su međusobno nazdravili. Matematičkom indukcijom dokažite da je ukupni broj zdravica jednak $\frac{n(n-1)}{2}$.

Rješenje

• Baza indukcije: n=1

Ako je na feštu došao samo jedan čovjek, tada on nije imao s kime nazdraviti.

Na feštu je došlo n ljudi i svaka dva (različita) čovjeka su međusobno nazdravili. Matematičkom indukcijom dokažite da je ukupni broj zdravica jednak $\frac{n(n-1)}{2}$.

Rješenje

• Baza indukcije: n = 1

Ako je na feštu došao samo jedan čovjek, tada on nije imao s kime nazdraviti. Nadalje, za n=1 je $\frac{n(n-1)}{2}=0$ pa tvrdnja vrijedi.

Pretpostavimo da je ukupni broj zdravica na fešti od n ljudi jednak $\frac{n(n-1)}{2}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Pretpostavimo da je ukupni broj zdravica na fešti od n ljudi jednak $\frac{n(n-1)}{2}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Neka je na fešti ukupno n+1 ljudi $a_1, a_2, \ldots, a_n, a_{n+1}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Pretpostavimo da je ukupni broj zdravica na fešti od n ljudi jednak $\frac{n(n-1)}{2}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Neka je na fešti ukupno n+1 ljudi $a_1, a_2, \ldots, a_n, a_{n+1}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Po pretpostavci indukcije ukupni broj zdravica između ljudi a_1, a_2, \ldots, a_n jednak je $\frac{n(n-1)}{2}$.

Pretpostavimo da je ukupni broj zdravica na fešti od n ljudi jednak $\frac{n(n-1)}{2}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Neka je na fešti ukupno n+1 ljudi $a_1, a_2, \ldots, a_n, a_{n+1}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Po pretpostavci indukcije ukupni broj zdravica između ljudi a_1, a_2, \ldots, a_n jednak je $\frac{n(n-1)}{2}$.

Nadalje, osoba a_{n+1} je po pretpostavci nazdravila sa svim preostalim osobama i taj broj zdravica je jednak n.

Pretpostavimo da je ukupni broj zdravica na fešti od n ljudi jednak $\frac{n(n-1)}{2}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Neka je na fešti ukupno n+1 ljudi $a_1, a_2, \ldots, a_n, a_{n+1}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Po pretpostavci indukcije ukupni broj zdravica između ljudi a_1, a_2, \ldots, a_n jednak je $\frac{n(n-1)}{2}$.

Nadalje, osoba a_{n+1} je po pretpostavci nazdravila sa svim preostalim osobama i taj broj zdravica je jednak n.

$$\frac{n(n-1)}{2}+n$$

Pretpostavimo da je ukupni broj zdravica na fešti od n ljudi jednak $\frac{n(n-1)}{2}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Neka je na fešti ukupno n+1 ljudi $a_1, a_2, \ldots, a_n, a_{n+1}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Po pretpostavci indukcije ukupni broj zdravica između ljudi a_1, a_2, \ldots, a_n jednak je $\frac{n(n-1)}{2}$.

Nadalje, osoba a_{n+1} je po pretpostavci nazdravila sa svim preostalim osobama i taj broj zdravica je jednak n.

$$\frac{n(n-1)}{2} + n = \frac{n(n-1)+2n}{2}$$

Pretpostavimo da je ukupni broj zdravica na fešti od n ljudi jednak $\frac{n(n-1)}{2}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Neka je na fešti ukupno n+1 ljudi $a_1, a_2, \ldots, a_n, a_{n+1}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Po pretpostavci indukcije ukupni broj zdravica između ljudi a_1, a_2, \ldots, a_n jednak je $\frac{n(n-1)}{2}$.

Nadalje, osoba a_{n+1} je po pretpostavci nazdravila sa svim preostalim osobama i taj broj zdravica je jednak n.

$$\frac{n(n-1)}{2} + n = \frac{n(n-1)+2n}{2} = \frac{(n-1+2)n}{2}$$

Pretpostavimo da je ukupni broj zdravica na fešti od n ljudi jednak $\frac{n(n-1)}{2}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Neka je na fešti ukupno n+1 ljudi $a_1, a_2, \ldots, a_n, a_{n+1}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Po pretpostavci indukcije ukupni broj zdravica između ljudi a_1, a_2, \ldots, a_n jednak je $\frac{n(n-1)}{2}$.

Nadalje, osoba a_{n+1} je po pretpostavci nazdravila sa svim preostalim osobama i taj broj zdravica je jednak n.

$$\frac{n(n-1)}{2} + n = \frac{n(n-1)+2n}{2} = \frac{(n-1+2)n}{2} = \frac{(n+1)n}{2}.$$

Pretpostavimo da je ukupni broj zdravica na fešti od n ljudi jednak $\frac{n(n-1)}{2}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Neka je na fešti ukupno n+1 ljudi $a_1,a_2,\ldots,a_n,a_{n+1}$ pri čemu su svaka dva čovjeka međusobno nazdravili.

Po pretpostavci indukcije ukupni broj zdravica između ljudi a_1, a_2, \ldots, a_n jednak je $\frac{n(n-1)}{2}$.

Nadalje, osoba a_{n+1} je po pretpostavci nazdravila sa svim preostalim osobama i taj broj zdravica je jednak n.

Stoga je ukupni broj zdravica jednak

$$\frac{n(n-1)}{2} + n = \frac{n(n-1)+2n}{2} = \frac{(n-1+2)n}{2} = \frac{(n+1)n}{2}$$
.

Prema principu matematičke indukcije tvrdnja vrijedi za svaki $n \in \mathbb{N}$.

Napomena

- Zadatak se lagano može riješiti pomoću elementarne kombinatorike.
- Ako ljude poistovjetimo s elementima nekog konačnog skupa, tada su zdravice zapravo dvočlani podskupovi tog skupa. Svaku zdravicu određuju dvije osobe pri čemu poredak tih osoba nije bitan.
- Ukupni broj zdravica jednak je ukupnom broju svi dvočlanih podskupova n-članog skupa, što je jednako $\binom{n}{2}$.

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

treći zadatak

Dokažite da je za svaki $n \in \mathbb{N}$ šahovsku ploču dimenzija $3 \times 2n$ moguće prekriti pločicama oblika \square . Pritom se podrazumijeva da je svako polje samo jedanput prekriveno i da pločice ne vire izvan ploče.

Dokažite da je za svaki $n \in \mathbb{N}$ šahovsku ploču dimenzija $3 \times 2n$ moguće prekriti pločicama oblika \square . Pritom se podrazumijeva da je svako polje samo jedanput prekriveno i da pločice ne vire izvan ploče.

Rješenje

• Baza indukcije: n = 1

Dokažite da je za svaki $n \in \mathbb{N}$ šahovsku ploču dimenzija $3 \times 2n$ moguće prekriti pločicama oblika \bigoplus . Pritom se podrazumijeva da je svako polje samo jedanput prekriveno i da pločice ne vire izvan ploče.

Rješenje

• Baza indukcije: n = 1

Radi se o ploči dimenzija 3×2 .

Dokažite da je za svaki $n \in \mathbb{N}$ šahovsku ploču dimenzija $3 \times 2n$ moguće prekriti pločicama oblika \bigoplus . Pritom se podrazumijeva da je svako polje samo jedanput prekriveno i da pločice ne vire izvan ploče.

Rješenje

• Baza indukcije: n = 1

Radi se o ploči dimenzija 3×2 .

Takvu ploču je moguće prekriti pločicama oblika ⊞ kako je prikazano na slici.

Zadatak 3

Dokažite da je za svaki $n \in \mathbb{N}$ šahovsku ploču dimenzija $3 \times 2n$ moguće prekriti pločicama oblika \bigoplus . Pritom se podrazumijeva da je svako polje samo jedanput prekriveno i da pločice ne vire izvan ploče.

Rješenje

• Baza indukcije: n = 1

Radi se o ploči dimenzija 3×2 .

Takvu ploču je moguće prekriti pločicama oblika

h kako je prikazano na slici.

Korak indukcije

Zadatak 3

Dokažite da je za svaki $n \in \mathbb{N}$ šahovsku ploču dimenzija $3 \times 2n$ moguće prekriti pločicama oblika \bigoplus . Pritom se podrazumijeva da je svako polje samo jedanput prekriveno i da pločice ne vire izvan ploče.

Rješenje

• Baza indukcije: n = 1

Radi se o ploči dimenzija 3×2 .

Takvu ploču je moguće prekriti pločicama oblika ⊞ kako je prikazano na slici.

• Korak indukcije

Pretpostavimo da je za neki $n \in \mathbb{N}$ šahovsku ploču dimenzija $3 \times 2n$ moguće prekriti pločicama oblika \square .

Tu šahovsku ploču možemo podijeliti na dvije manje ploče dimenzija $3 \times 2n$ i 3×2 .

Tu šahovsku ploču možemo podijeliti na dvije manje ploče dimenzija $3 \times 2n$ i 3×2 .

Prema bazi indukcije ploču dimenzija 3×2 možemo prekriti pločicama oblika \boxplus .

Tu šahovsku ploču možemo podijeliti na dvije manje ploče dimenzija $3 \times 2n$ i 3×2 .

Prema bazi indukcije ploču dimenzija 3×2 možemo prekriti pločicama oblika \boxminus .

Po pretpostavci indukcije ploču dimenzija $3 \times 2n$ možemo prekriti pločicama oblika \Box .

2*n*

Promatramo šahovsku ploču dimenzija $3 \times 2(n+1)$.

Tu šahovsku ploču možemo podijeliti na dvije manje ploče dimenzija $3 \times 2n i 3 \times 2$

Prema bazi indukcije ploču dimenzija 3×2 možemo prekriti pločicama oblika 🗄 .

Po pretpostavci indukcije ploču dimenzija $3 \times 2n$ možemo prekriti pločicama oblika \blacksquare .

Iz svega navedenog slijedi da ploču dimenzija $3 \times 2(n+1)$ također možemo prekriti pločicama oblika oxdot pa je tvrdnja dokazana.

7/18

četvrti zadatak

- P(1) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

- P(1) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

P(1)

- P(1) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3)$$

- P(1) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5)$$

- P(1) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7)$$

- P(1) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9)$$

- P(1) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11)$$

- P(1) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

Zaključak

- P(1) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

Zaključak

P(n) je tvrdnja koja vrijedi za sve neparne prirodne brojeve.

- P(2) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

- P(2) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

P(2)

- P(2) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(2) \Rightarrow P(4)$$

- P(2) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(2) \Rightarrow P(4) \Rightarrow P(6)$$

- P(2) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8)$$

- P(2) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8) \Rightarrow P(10)$$

- P(2) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8) \Rightarrow P(10) \Rightarrow P(12)$$

- P(2) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8) \Rightarrow P(10) \Rightarrow P(12) \Rightarrow \cdots$$

Zaključak

- P(2) je istinita tvrdnja.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8) \Rightarrow P(10) \Rightarrow P(12) \Rightarrow \cdots$$

Zaključak

P(n) je tvrdnja koja vrijedi za sve parne prirodne brojeve.

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

P(1)

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3)$$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5)$$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7)$$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9)$$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11)$$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

 $P(2)$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(4)$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(4) \Rightarrow P(6)$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8)$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8) \Rightarrow P(10)$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8) \Rightarrow P(10) \Rightarrow P(12)$

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8) \Rightarrow P(10) \Rightarrow P(12) \Rightarrow \cdots$

Zaključak

- P(1) i P(2) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+2) istinita tvrdnja.

$$P(1) \Rightarrow P(3) \Rightarrow P(5) \Rightarrow P(7) \Rightarrow P(9) \Rightarrow P(11) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(4) \Rightarrow P(6) \Rightarrow P(8) \Rightarrow P(10) \Rightarrow P(12) \Rightarrow \cdots$

Zaključak

P(n) je tvrdnja koja vrijedi za sve prirodne brojeve.

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

P(1)

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4)$$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7)$$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10)$$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13)$$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16)$$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17) \Rightarrow \cdots$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17) \Rightarrow \cdots$
 $P(3)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17) \Rightarrow \cdots$
 $P(3) \Rightarrow P(6)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17) \Rightarrow \cdots$
 $P(3) \Rightarrow P(6) \Rightarrow P(9)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17) \Rightarrow \cdots$
 $P(3) \Rightarrow P(6) \Rightarrow P(9) \Rightarrow P(12)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17) \Rightarrow \cdots$
 $P(3) \Rightarrow P(6) \Rightarrow P(9) \Rightarrow P(12) \Rightarrow P(15)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17) \Rightarrow \cdots$
 $P(3) \Rightarrow P(6) \Rightarrow P(9) \Rightarrow P(12) \Rightarrow P(15) \Rightarrow P(18)$

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17) \Rightarrow \cdots$
 $P(3) \Rightarrow P(6) \Rightarrow P(9) \Rightarrow P(12) \Rightarrow P(15) \Rightarrow P(18) \Rightarrow \cdots$

Zaključak

- P(1), P(2) i P(3) su istinite tvrdnje.
- Ako je P(k) istinita tvrdnja, tada je P(k+3) istinita tvrdnja.

$$P(1) \Rightarrow P(4) \Rightarrow P(7) \Rightarrow P(10) \Rightarrow P(13) \Rightarrow P(16) \Rightarrow \cdots$$

 $P(2) \Rightarrow P(5) \Rightarrow P(8) \Rightarrow P(11) \Rightarrow P(14) \Rightarrow P(17) \Rightarrow \cdots$
 $P(3) \Rightarrow P(6) \Rightarrow P(9) \Rightarrow P(12) \Rightarrow P(15) \Rightarrow P(18) \Rightarrow \cdots$

Zaključak

P(n) je tvrdnja koja vrijedi za sve prirodne brojeve.

Princip matematičke indukcije (slaba forma, općeniti oblik)

Neka je P(n) tvrdnja koja ovisi o $n \in \mathbb{N}$. Ako vrijedi:

- a) $P(n_0), P(n_0 + 1), \dots, P(n_0 + m 1)$ su istinite tvrdnje.
- b) Ako je P(k) istinito za neki $k \ge n_0$, tada je istinito i P(k+m).

Tada je P(n) istinita tvrdnja za svaki prirodni broj $n \ge n_0$.

Pomoću matematičke indukcije dokažite da je svaku cjelobrojnu poštarinu veću ili jednaku od 20 kuna moguće platiti samo pomoću maraka od 3 kn i 7 kn.

Pomoću matematičke indukcije dokažite da je svaku cjelobrojnu poštarinu veću ili jednaku od 20 kuna moguće platiti samo pomoću maraka od 3 kn i 7 kn.

Rješenje

• Baza indukcije

$$n = 20$$

Pomoću matematičke indukcije dokažite da je svaku cjelobrojnu poštarinu veću ili jednaku od 20 kuna moguće platiti samo pomoću maraka od 3 kn i 7 kn.

Rješenje

• Baza indukcije

n=20 Poštarinu od 20 kuna moguće je platiti pomoću dvije marke od 7 kn i dvije marke od 3 kn.

Pomoću matematičke indukcije dokažite da je svaku cjelobrojnu poštarinu veću ili jednaku od 20 kuna moguće platiti samo pomoću maraka od 3 kn i 7 kn.

Rješenje

• Baza indukcije

n=20 Poštarinu od 20 kuna moguće je platiti pomoću dvije marke od 7 kn i dvije marke od 3 kn.

$$n = 21$$

Pomoću matematičke indukcije dokažite da je svaku cjelobrojnu poštarinu veću ili jednaku od 20 kuna moguće platiti samo pomoću maraka od 3 kn i 7 kn.

Rješenje

• Baza indukcije

n=20 Poštarinu od 20 kuna moguće je platiti pomoću dvije marke od 7 kn i dvije marke od 3 kn.

n=21 Poštarinu od 21 kune moguće je platiti pomoću tri marke od 7 kn ili pomoću sedam marki od 3 kn.

Pomoću matematičke indukcije dokažite da je svaku cjelobrojnu poštarinu veću ili jednaku od 20 kuna moguće platiti samo pomoću maraka od 3 kn i 7 kn.

Rješenje

• Baza indukcije

 $\boxed{n=20}$ Poštarinu od 20 kuna moguće je platiti pomoću dvije marke od 7 kn i dvije marke od 3 kn.

n=21 Poštarinu od 21 kune moguće je platiti pomoću tri marke od 7 kn ili pomoću sedam marki od 3 kn.

$$n = 22$$

Zadatak 4

Pomoću matematičke indukcije dokažite da je svaku cjelobrojnu poštarinu veću ili jednaku od 20 kuna moguće platiti samo pomoću maraka od 3 kn i 7 kn.

Rješenje

- Baza indukcije
 - $\boxed{n=20}$ Poštarinu od 20 kuna moguće je platiti pomoću dvije marke od 7 kn i dvije marke od 3 kn.
 - n=21 Poštarinu od 21 kune moguće je platiti pomoću tri marke od 7 kn ili pomoću sedam marki od 3 kn.
 - n=22 Poštarinu od 22 kune moguće je platiti pomoću jedne marke od 7 kn i pet marki od 3 kn.

Pretpostavimo da je za neki prirodni broj $n \ge 20$ poštarinu od n kuna moguće platiti samo pomoći marki od 3 kn i 7 kn.

Pretpostavimo da je za neki prirodni broj $n \ge 20$ poštarinu od n kuna moguće platiti samo pomoći marki od $3 \, \text{kn}$ i $7 \, \text{kn}$.

Želimo dokazati da je tada poštarinu od n+3 kune također moguće platiti samo pomoću marki od $3\,\mathrm{kn}$ i $7\,\mathrm{kn}$.

Pretpostavimo da je za neki prirodni broj $n \ge 20$ poštarinu od n kuna moguće platiti samo pomoći marki od 3 kn i 7 kn.

Želimo dokazati da je tada poštarinu od n+3 kune također moguće platiti samo pomoću marki od $3\,\mathrm{kn}$ i $7\,\mathrm{kn}$.

Po pretpostavci indukcije poštarinu od n kuna je moguće platiti samo pomoću marki od $3\,\mathrm{kn}$ i $7\,\mathrm{kn}$.

Pretpostavimo da je za neki prirodni broj $n \ge 20$ poštarinu od n kuna moguće platiti samo pomoći marki od 3 kn i 7 kn.

Želimo dokazati da je tada poštarinu od n+3 kune također moguće platiti samo pomoću marki od 3 kn i 7 kn.

Po pretpostavci indukcije poštarinu od n kuna je moguće platiti samo pomoću marki od 3 kn i 7 kn. Ukoliko toj poštarini dodamo još jednu marku od 3 kn, platit ćemo poštarinu od n+3 kune samo pomoću marki od 3 kn i 7 kn.

peti zadatak

Princip matematičke indukcije (jaka forma)

Neka je P(n) tvrdnja koja ovisi o $n \in \mathbb{N}$. Ako vrijedi:

- a) $P(n_0)$ je istinita za neki $n_0 \in \mathbb{N}$.
- b) Neka je $k > n_0$ proizvoljni prirodni broj. Ako je P(m) istinito za svaki prirodni broj m, $n_0 \le m < k$, tada je istinito i P(k).

Tada je P(n) istinita tvrdnja za svaki prirodni broj $n \ge n_0$.

Zadatak 5

Niz brojeva $a_0, a_1, a_2, a_3, \ldots$ koji počinje s $0, 1, 5, 19, \ldots$ definiran je rekurzijom

$$a_{n+2} = 5a_{n+1} - 6a_n$$
, $a_0 = 0$, $a_1 = 1$.

Dokažite matematičkom indukcijom da se n-ti član ovog niza može izračunati pomoću formule

$$a_n=3^n-2^n, \quad n\in\mathbb{N}\cup\{0\}.$$

$$a_{n+2} = 5a_{n+1} - 6a_n$$
, $a_0 = 0, a_1 = 1$

 $a_n=3^n-2^n$

Rješenje

• Baza indukcije

Tvrdnja vrijedi za n = 0 i n = 1.

$$a_{n+2} = 5a_{n+1} - 6a_n, \quad a_0 = 0, a_1 = 1$$

 $a_n=3^n-2^n$

Rješenje

• Baza indukcije

Tvrdnja vrijedi za n = 0 i n = 1.

$$a_0 = 3^0 - 2^0 = 1 - 1 = 0$$

$$a_{n+2} = 5a_{n+1} - 6a_n, \quad a_0 = 0, a_1 = 1$$

 $a_n=3^n-2^n$

Rješenje

• Baza indukcije

Tvrdnja vrijedi za n = 0 i n = 1.

$$a_0 = 3^0 - 2^0 = 1 - 1 = 0,$$
 $a_1 = 3^1 - 2^1 = 3 - 2 = 1$

$$a_{n+2} = 5a_{n+1} - 6a_n, \quad a_0 = 0, a_1 = 1$$

$$a_n=3^n-2^n$$

Rješenje

• Baza indukcije

Tvrdnja vrijedi za n = 0 i n = 1.

$$a_0 = 3^0 - 2^0 = 1 - 1 = 0,$$
 $a_1 = 3^1 - 2^1 = 3 - 2 = 1$

• Korak indukcije

$$a_{n+2} = 5a_{n+1} - 6a_n, \quad a_0 = 0, a_1 = 1$$

$$a_n = 3^n - 2^n$$

Rješenje

• Baza indukcije

Tvrdnja vrijedi za n = 0 i n = 1.

$$a_0 = 3^0 - 2^0 = 1 - 1 = 0,$$
 $a_1 = 3^1 - 2^1 = 3 - 2 = 1$

Korak indukcije

Neka je $n \in \mathbb{N}$, n > 1. Pretpostavimo da vrijedi $a_k = 3^k - 2^k$ za sve prirodne brojeve $0 \le k < n$.

$$a_{n+2} = 5a_{n+1} - 6a_n, \quad a_0 = 0, a_1 = 1$$

$$a_n=3^n-2^n$$

Rješenje

Baza indukcije

Tvrdnja vrijedi za n = 0 i n = 1.

$$a_0 = 3^0 - 2^0 = 1 - 1 = 0,$$
 $a_1 = 3^1 - 2^1 = 3 - 2 = 1$

Korak indukcije

Neka je $n \in \mathbb{N}$, n > 1. Pretpostavimo da vrijedi $a_k = 3^k - 2^k$ za sve prirodne brojeve $0 \le k < n$.

Želimo dokazati da tvrdnja vrijedi za prirodni broj n, tj. da je $a_n = 3^n - 2^n$.

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2} = 5a_{n+1} - 6a_n$$

$$a_n =$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2} = 5a_{n+1} - 6a_n$$

$$a_n = 5a_{n-1} - 6a_{n-2}$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2} = 5a_{n+1} - 6a_n$$

$$a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot$$

pretpostavka indukcije za k = n - 1

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2} = 5a_{n+1} - 6a_n$$

$$a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right)$$

pretpostavka indukcije za k = n - 1

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2} = 5a_{n+1} - 6a_n$$

$$a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6$$

pretpostavka: $a_k = 3^k - 2^k$ za sve $0 \le k < n$ želimo dokazati: $a_n = 3^n - 2^n$ pretpostavka indukcije za k = n - 2 $a_{n+2} = 5a_{n+1} - 6a_n$ $a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right)$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2} = 5a_{n+1} - 6a_n$$

pretpostavka indukcije za
$$k = n - 1$$

indukcije
$$za k = n - 1$$

$$=5\cdot\frac{3^n}{3}$$

mo dokazati:
$$a_n = 3^n - 2^n$$

pretpostavka indukcije za $k = n - 1$

$$a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2}=5a_{n+1}-6a_n$$

$$=5\cdot\frac{3^n}{3}-5\cdot\frac{2^n}{2}$$

pretpostavka indukcije za
$$k = n - 1$$

pretpostavka indukcije za
$$k = n - 2$$

$$a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2}=5a_{n+1}-6a_n$$

$$a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

$$=5\cdot\frac{3^{n}}{3}-5\cdot\frac{2^{n}}{2}-6\cdot\frac{3^{n}}{3^{2}}$$

pretpostavka indukcije za
$$k = n - 1$$

pretpostavka indukcije za
$$k = n - 2$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2} = 5a_{n+1} - 6a_n$$

pretpostavka
indukcije
za
$$k = n - 1$$

pretpostavka indukcije za
$$k = n - 1$$

$$a_{n} = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

$$= 5 \cdot \frac{3^{n}}{3} - 5 \cdot \frac{2^{n}}{3} - 6 \cdot \frac{3^{n}}{3^{2}} + 6 \cdot \frac{2^{n}}{3^{2}}$$

pretpostavka indukcije za
$$k = n - 2$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2}=5a_{n+1}-6a_n$$

pretpostavka indukcije za
$$k = n - 1$$

$$a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

pretpostavka

indukciie

za k = n - 2

$$=5\cdot\frac{3^n}{3}-5\cdot\frac{2^n}{2}-6\cdot\frac{3^n}{3^2}+6\cdot\frac{2^n}{2^2}=$$

$$=\frac{5}{3}\cdot 3^n$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2}=5a_{n+1}-6a_n$$

pretpostavka indukcije za
$$k = n - 1$$

$$za k = n - 1$$

$$a_{n} = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

$$= 5 \cdot \frac{3^{n}}{3} - 5 \cdot \frac{2^{n}}{2} - 6 \cdot \frac{3^{n}}{3^{2}} + 6 \cdot \frac{2^{n}}{2^{2}} =$$

$$= \frac{5}{3} \cdot 3^{n} - \frac{5}{2} \cdot 2^{n}$$

pretpostavka indukcije za
$$k = n - 2$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2} = 5a_{n+1} - 6a_n$$

pretpostavka indukcije za
$$k = n - 1$$

pretpostavka indukcije za
$$k = n - 1$$

$$a_{n} = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

$$= 5 \cdot \frac{3^{n}}{3} - 5 \cdot \frac{2^{n}}{2} - 6 \cdot \frac{3^{n}}{3^{2}} + 6 \cdot \frac{2^{n}}{2^{2}} =$$

$$= \frac{5}{3} \cdot 3^{n} - \frac{5}{2} \cdot 2^{n} - \frac{2}{3} \cdot 3^{n}$$

pretpostavka indukcije za
$$k = n - 2$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2}=5a_{n+1}-6a_n$$

pretpostavko indukcije za
$$k = n - 1$$

pretpostavka indukcije za
$$k = n - 1$$

$$a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

$$= 5 \cdot \frac{3^n}{3} - 5 \cdot \frac{2^n}{2} - 6 \cdot \frac{3^n}{3^2} + 6 \cdot \frac{2^n}{2^2} =$$

 $=\frac{5}{3}\cdot 3^n - \frac{5}{2}\cdot 2^n - \frac{2}{3}\cdot 3^n + \frac{3}{2}\cdot 2^n$

pretpostavka indukcije za
$$k = n - 2$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2}=5a_{n+1}-6a_n$$

pretpostavka indukcije za
$$k = n - 1$$

pretpostavka indukcije za
$$k = n - 1$$

$$a_{n} = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

$$= 5 \cdot \frac{3^{n}}{3} - 5 \cdot \frac{2^{n}}{3} - 6 \cdot \frac{3^{n}}{3^{2}} + 6 \cdot \frac{2^{n}}{3^{2}} =$$

$$=\frac{5}{3}\cdot 3^n-\frac{5}{2}\cdot 2^n-\frac{2}{3}\cdot 3^n+\frac{3}{2}\cdot 2^n=$$

$$= \left(\frac{5}{3} - \frac{2}{3}\right) \cdot 3^n$$

pretpostavka indukcije za
$$k = n - 2$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2}=5a_{n+1}-6a_n$$

pretpostavka indukcije za
$$k = n - 1$$

pretpostavka indukcije za
$$k = n - 2$$

$$a_{n} = 5a_{n-1} - 6a_{n-2} = 5 \cdot \left(3^{n-1} - 2^{n-1}\right) - 6 \cdot \left(3^{n-2} - 2^{n-2}\right) =$$

$$= 5 \cdot \frac{3^{n}}{3} - 5 \cdot \frac{2^{n}}{2} - 6 \cdot \frac{3^{n}}{3^{2}} + 6 \cdot \frac{2^{n}}{2^{2}} =$$

$$= \frac{5}{3} \cdot 3^{n} - \frac{5}{2} \cdot 2^{n} - \frac{2}{3} \cdot 3^{n} + \frac{3}{2} \cdot 2^{n} =$$

$$= \left(\frac{5}{3} - \frac{2}{3}\right) \cdot 3^{n} + \left(-\frac{5}{2} + \frac{3}{2}\right) \cdot 2^{n}$$

želimo dokazati:
$$a_n = 3^n - 2^n$$

$$a_{n+2}=5a_{n+1}-6a_n$$

pretpostavka indukcije za
$$k = n - 1$$

$$a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot (3^{n-1} - 2^{n-1}) - 6 \cdot (3^{n-2} - 2^{n-2}) =$$

pretpostavka

indukciie

za k = n - 2

$$=5\cdot\frac{3^{n}}{3}-5\cdot\frac{2^{n}}{2}-6\cdot\frac{3^{n}}{3^{2}}+6\cdot\frac{2^{n}}{2^{2}}=$$

$$= \frac{5}{3} \cdot 3^n - \frac{5}{2} \cdot 2^n - \frac{2}{3} \cdot 3^n + \frac{3}{2} \cdot 2^n =$$

$$= \left(\frac{5}{3} - \frac{2}{3}\right) \cdot 3^n + \left(-\frac{5}{2} + \frac{3}{2}\right) \cdot 2^n =$$

$$=3^{n}-2^{n}$$