Лабораторная работа №1 Сравнение численных методов решения задачи Дирихле для уравнения Пуассона

Выполнил(а):
Группа: Вариант №
Тестовая задача варианта №2 или №5. (обведите свой вариант) $\Delta u(x, y) = $
при $x \in (___, ___)$, $y \in (___, ___)$;
$u(___, y) = ____,$
u(x,) =.
$u\left(x,y\right) =\underline{\hspace{1cm}}$
Разностную схему для решения задачи Дирихле можно решить с помощью итерационных методов линейной алгебры. Для исследования используйте методы: 1. Метод 2. Метод С целью сравнения свойств этих методов для тестовой задачи типа 2 про-
С целью сравнения свойств этих методов <i>для тестовой задачи типа 2</i> проведите следующие эксперименты:
1. Найдите численное решение разностной схемы на сетке фиксированного размера $n^{(1)} = $, $m^{(1)} = $ при различных значениях <i>критерия остановки метода</i> ε_1 ($\varepsilon^{(1)}$, $\varepsilon^{(2)}$, $\varepsilon^{(3)}$). Запишите в таблице N_2 1, сколько итераций N за трачено, какова <i>достигнутая точность итерационного метода</i> ε_2 , , с какой точностью ε_3 решена тестовая задача, какое время T затрачено на решение зада-
чи и среднее время t проведения одной итерации.
2. Для сетки того же размера найдите численное решение разностной схемь при различных значениях <i>ограничения числа итераций</i> $N(N^{(1)}, N^{(2)}, N^{(3)})$. Запиши-
те в таблице №2, какова достигнутая точность итерационного метода ε_2 , ,
какой точностью ε_3 решена тестовая задача, какое время T затрачено на решение
задачи и среднее время t проведения одной итерации.
3. Аналогично таблицам №1,2 заполните таблицы №3,4 при решении разност
ной схемы на сетке размера $n^{(2)} = \underline{\hspace{1cm}}, m^{(2)} = \underline{\hspace{1cm}}.$ 4. Напишите, в чем особенность тестовой задачи второго типа?
5. Объясните, что означает значение ε_3 для тестовой задачи второго типа?
6. Напишите, какой метод из двух является более предпочтительным
Обоснуйте свой ответ.

Таблица №1

Сетка $n^{(1)} =, m^{(1)} =,$	ограничение числа ш	агов 20000
Тип начального приближения		

Параметры метода:

	Метод 1					Метод 2				
\mathcal{E}_{l}	N	\mathcal{E}_2	\mathcal{E}_3	t	T	N	\mathcal{E}_2	\mathcal{E}_3	t	T
ε ⁽¹⁾ =										
_										
$\varepsilon^{(2)}=$										
_										
ε ⁽³⁾ =										
_										

Таблица №2

Сетка $n^{(1)}$	$=$, $m^{(1)}$	=, точност	гь метода $arepsilon_1 = 10^{\text{-}16}$
		 /	1

Тип начального приближения:

Параметры метода:

7.7	Метод 1				Метод 2			
N	\mathcal{E}_2	\mathcal{E}_3	t	T	\mathcal{E}_2	\mathcal{E}_3	t	T
$N^{(1)} = _{}$								
_								
$N^{(2)} = $								
_								
$N^{(3)} = $								
_								

Таблица №3

Сетка $n^{(2)} =$	$_{-}$, $m^{(2)} = _{-}$	_, ограничение числа шагов 200	00

Тип начального приближения:

Параметры метода:

	Метод 1					Метод 2				
\mathcal{E}_{l}	N	\mathcal{E}_2	\mathcal{E}_3	t	T	N	\mathcal{E}_2	\mathcal{E}_3	t	T
$\varepsilon^{(1)}=$										
_										
$\varepsilon^{(2)}=$										
_										
$\varepsilon^{(3)}=$										
_										

Таблица №4

Таблица №4 Сетка $n^{(2)} =$ _____, $m^{(2)} =$ _____, точность метода $\varepsilon_1 = 10^{\text{-}16}$

Тип начального приближения:

Параметры метода:

N	Метод 1				Метод 2			
	\mathcal{E}_2	\mathcal{E}_3	t	T	\mathcal{E}_2	\mathcal{E}_3	t	T
N ⁽¹⁾ =								
_								
N ⁽²⁾ =								
_								
$N^{(3)} = $								
_								

Пары методов на группу

Гр. №	Метод 1	Метод 2
1	Верхней релаксации, ω=ω _{opt} (TopRelaxationMethod.dll)	Якоби (YakobiMethod.dll)
2	Минимальных невязок (MinimalDiscrepancyMethod.dll)	Верхней релаксации, ω=ω _{opt} (TopRelaxationMethod.dll)
3	Сопряженных градиентов (ConjugateGradientsMethod.dll)	Минимальных невязок (MinimalDiscrepancyMethod.dll)
4	Сопряженных градиентов (ConjugateGradientsMethod.dll)	Зейделя (ZeidelMethod.dll)
5	Якоби (YakobiMethod.dll)	Простой итерации с чебышевским набором параметров, K=10, (ChebyshevSimpleIterationMethod.dll)
6	Зейделя (ZeidelMethod.dll)	Простой итерации, т=т _{opt} (SimpleIterationMethod.dll)

Варианты заданий в группе

в-т <u>№</u>	$n^{(1)}m^{(1)}$	$n^{(2)}m^{(2)}$	$arepsilon^{(1)}$	$arepsilon^{(2)}$	$\varepsilon^{(3)}$	$N^{(1)}$	$N^{(2)}$	$N^{(3)}$
1	(20,20)	(200,200)	10 ⁻⁵	10 ⁻⁷	10 ⁻⁹	30	300	1300
2	(50,50)	(500,500)	10 ⁻⁴	10 ⁻⁶	10 ⁻⁸	40	400	1400
3	(30,30)	(300,300)	10 ⁻⁵	10 ⁻⁷	10-9	20	200	1200
4	(40,40)	(400,400)	10 ⁻⁴	10 ⁻⁶	10 ⁻⁸	40	400	1400
5	(30,30)	(300,300)	10 ⁻⁴	10 ⁻⁶	10-8	50	500	1500
6	(20,20)	(200,200)	10 ⁻³	10 ⁻⁵	10 ⁻⁷	10	100	1000