

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

TOPICWISE: THEORY OF COMPUTATION-2 (GATE - 2019) - REPORTS

SKIPPED(2)

OVERALL ANALYSIS COMPARISON REPORT SOLUTION REPORT

ALL(17) CORRECT(11) INCORRECT(4)

Q. 1

Consider the following TM:

Note: (a, b, c) represents: by reading input 'a', it replaces 'a' by 'b' and moves to 'c' direction. Which of the following language accepted by above TM?

Solution Video Have any Doubt?

 $\{a^m b^n c^k | m, n, k \ge 0, m = k\}$

 $\{a^m b^n c^k | m, n, k \ge 0, m = n\}$

 $\{a^m b^n c^k | m, n, k > 0, m = k\}$

Your answer is Correct

Solution:

(c)

 $L = \{a^m b^n c^k \mid m, n, k > 0 \text{ and } m = k\}$

Here, a's are replaced by x and c's are replaced by y in every scan from $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_0$ To reach final state, atleast one b should appear and atleast one y (y represents c hence a also appear) should appear.

٠.

 $L = a^i b^j c^i | i, j > 0$ is accepted by TM

So option (c) is correct.

 $\{a^m b^n c^k | m, n, k > 0, m = n\}$

QUESTION ANALYTICS

Q. 2

Consider a Game played be between two players (Player-1, Player-2) repeatedly flip a coin:

On output as a head, Player-1 get a point

On output as a tail, Player-2 get a point

A player wins if his score reaches 2 points before the other player by reaching final state. Which of the following depicts NFA for above problem?

FAQ Solution Video Have any Doubt?

Tour answer is Correct

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES Solution:

(a)

In NFA given by option (a) possibilities at final state are:

H(T H)* H

T(H T)* T

Which shows atleast one player is winning i.e. getting two points 1st by reaching at final sta

D

None of these

QUESTION ANALYTICS

Q. 3

Which of the following represents the grammar for language $L = \{w \mid n_a(w) \text{ and } n_b(w) \text{ are both even}\}$?

Solution Video | Have any Doubt ?

 $S \rightarrow aA \mid bB$

 $A \rightarrow bC \mid aS$

 $B \rightarrow aC \mid bS$

 $C \rightarrow aB \mid bA$

В

 $S \rightarrow aA |bB| \in$

 $A \rightarrow bC \mid aS$

 $B \rightarrow aC \mid bS$

 $C \rightarrow aB \mid bA$

Correct Option

Solution:

(b)

Option (b) can be obtained from the DFA given above.

Therefore (b) is correct.

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

```
A \rightarrow bS \mid aS

B \rightarrow aS \mid bS
```

D

 $S \rightarrow aA \mid bB \mid \in$

 $A \rightarrow bS \mid aC$

 $B \rightarrow bC \mid aS$

 $C \rightarrow aB \mid bA$

QUESTION ANALYTICS

Q. 4

Consider <M> be the encoding of a Turing Machine as a string over alphabet $\Sigma = \{0, 1\}$. Consider L = $\{<M>|M|$ is TM that halt on all input and L(M) = L' for some undecidable language L'}. Then L is

FAQ Solution Video Have any Doubt?

A

Decidable and recursive

Your answer is Correct

Your answer is Wrong

Solution:

(a)

Since M is a TM that halts on all input, so L(M) is decidable. So, $L(M) \neq L'$. Since decid language cannot be equal to some undecidable language.

50

 $L = \phi$

Hence decidable and recursive.

В

Decidable and non-recursive

С

Undecidable and recursively enumerable

D

Undecidable and non-recursively enumerable

QUESTION ANALYTICS

Q. 5

Which of the decision problems are decidable?

FAQ Solution Video See your Answers

Α

Given a RE grammar G, is $L(G) = \sum^*?$

Your answer is Wrong

В

Given two deterministic CFG G_1 and G_2 , is $L(G_1) \cap L(G_2) = \phi$?

С

Given two deterministic CFG G_1 and $G_{2'}$ is $L(G_1) = L(G_2)$?

Correct Option

Solution:

(c)

- For RE grammar, $L(G) = \sum_{i=1}^{\infty} i.e.$ RE grammar accept everything is undecidable.
- For two DCFG, $L(G_1) \cap L(G_2) = \phi$ is undecidable since $L(G_1) \cap L(G_2) = \phi \equiv \overline{L(G_1)} \cup \overline{L(G_2)} = \phi$ i.e.

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

Given two CFG G_1 and G_2 , is $L(G_1) = L(G_2)$?

QUESTION ANALYTICS

Q. 6

Consider the following language:

$$L_1 = \{0^l 1^m 0^{l+m} \mid l, m \ge 0\}$$

$$L_2 = \{0^l \, 1^{2l} \, 0^n \; \big| \; l \geq 0, \, n \geq 0\}$$

$$\begin{split} L_1 &= \{0^l \, 1^m \, 0^{l+m} \, \big| \, l, \, m \geq 0\} \\ L_3 &= \{0^l \, 1^{2l} \, 0^{l+n} \, \big| \, l \geq 0, \, n \geq 0\} \end{split}$$

$$L_4 = \{0^m 1^n 2^m 3^n \mid m, n > 0\}$$

The number of languages are DCFL.

Solution Video Have any Doubt?

2

Your answer is Correct2

Solution:

 L_1 : is DCFL, push all 0's and 1's in the stack the for every 0 of the string, start popping from

L2: is DCFL, for every 0 in the string push two 0's in the stack, for every '1', pop a '0' from stack, then skip operation will be applied on all 0's.

 $L_3:0^l1^{2l}0^l0^n$, this is not even a CFG. Due to three level dependency, it can't be solved using si

 L_4 : Here we need to compare each 2 with 0 and each 3 with 1. However, in both the cases to stack contains 1's and 2's respectively. So, can't be solved using single stack.

QUESTION ANALYTICS

Q. 7

Let L = $\{(a^P)^* \mid P \text{ is a prime number}\}$ and $\Sigma = \{a\}$. The minimum number of states in NFA that accepts the language L are

FAQ Solution Video Have any Doubt?

3

Correct Option

Solution:

$$L = \{(a^p)^* | P \text{ is a prime}\}$$

$$=\;(a^2)^* \cup (a^3)^* \cup (a^5)^* \cup = \{\epsilon,\, a^2,\, a^3,\, a^4,\, a^5,\, a^6,....\}$$

= All strings of a's except the string a

 $= \{a^n | n = 0 \text{ or } n \ge 2\}$

Number of states = 3.

Your Answer is 1

QUESTION ANALYTICS

Q. 8

Consider the context free grammars over the alphabet {a, b} given below. S is non-terminal:

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

4

Your answer is Correct4

Solution:

 $L(G_1)$ = Set of even palindromes

 $L(G_2) = (aa + bb)^*$

So, string "aabb" or "bbaa" belongs to $L(G_2)$ but not to $L(G_1)$.

Hence 4 is answer.

QUESTION ANALYTICS

Q. 9

Consider the following two statements with respect to countability?

Statement 1: If A ∪ B is uncountable, then both set A and set B must be uncountable.

Statement 2: The Cartesian product of two countable sets A and B is countable.

The number of the above two statements correct are _

Solution Video Have any Doubt?

1

Your answer is Correct1

Solution:

Statement-1: This is incorrect i.e. atleast one set can be uncountable but need not be both.

Statement-2: Cartesian product of two countable sets A and B is countable.

QUESTION ANALYTICS

Q. 10

Consider the following statements:

 S_1 : Pumping lemma can be used to prove given language is regular.

 S_2 : Given a grammar, checking if the grammar is not regular is decidable problem.

 S_3 : If L is a regular and M is not a regular language then L.M. is necessarily non-regular.

 S_4 : The number of derivations step for any strings W of length n is grammar is CNF and GNF form is (2n -1) and (n) respectively.

Which of the following statement is correct?

Solution Video Have any Doubt?

Only S_1 , S_3 is correct

R

Only S_2 , S_4 is correct

Your answer is Correct

Solution:

S₁: Pumping lemma can prove that language is not regular but can't prove that the language regular. Hence this is false.

 S_2 : We can check regular grammar by following productions $V \to T^* V + T^*$ or $V \to V T^* + T^*$

 S_3 : Consider 'L' to be ϕ and 'M' to $\{a^n b^n \mid n \leq 0\}$

L.M. = ϕ , which is regular

 S_A : In case of CNF, (n-1) derivations are required to generate a string with (n) Non-Termi since only one Non-Terminals is added during each derivation.

Further, (n) derivations are required to convert those Non-Terminals to terminals. So, in total, to generate a string of n terminals:

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

However, in case of GNF: In a single derivation, we get a terminal in addition to our No Terminals. $S \rightarrow T(NT)^*$ Therefore, no need for (n-1) derivations to increase length. Hence, only (n) derivations are required. С Only S_3 is correct Only S_2 , S_3 is correct **QUESTION ANALYTICS** Q. 11 Consider L₁, L₂ be any two context sensitive languages and R be any regular language. Then which of the following is/are correct? I $L_1 \cup R$ is regular. II. \overline{L}_2 is context sensitive language. III. $L_1 \cap L_2$ is context sensitive. IV. $L_1 - L_2$ is non-CSL. Solution Video Have any Doubt? I, II and IV only II and III only **Correct Option** Solution:

- $L_1 \cup R = CSL \cup Reg = CSL$ but need not regular.
- $\overline{L}_2 = \overline{CSL} = CSL$, since CSL closed under complement.
- $L_1 \cap L_2 = CSL \cap CSL = CSL$, since CSL closed under intersection.
- L_1 L_2 = CSL CSL = CSL \cap $\overline{\text{CSL}}$ = CSL, since CSL are closed under intersection complement.

So, only II and III are true.

С

I and IV only

II, III and IV only

QUESTION ANALYTICS

Q. 12

Which of the following are context free?

$$\begin{split} &L_1: \{a^n \, b^m \, a^k \, \big| \, k = mn \text{ and } k, \, m, \, n \geq 1 \} \\ &L_2: \{a^{m \, + \, n} \, b^{n \, + \, m} \, c^m \, \big| \, n, \, m \geq 1 \} \\ &L_3: \{a^n \, b^n \, c^m \, \big| \, m < n \text{ and } m, \, n \geq 1 \} \end{split}$$

FAQ Solution Video Have any Doubt?

L₁ and L₂ only

L₂ and L₃ only

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES None of the language

Correct Option

Solution:

(d)

 $L_1: \{a^n b^m a^k \mid k = mn\}$ is not CFL, since we can not implement it with single stack.

 $L_2: \{a^{m+n}b^{n+m}c^m \mid n, m \ge 1\}$ is non-CFL since here more than 1 comparison present i.e., $\{a^m a^n b^n b^m c^m\}$. Hence cannot be implement by single stack.

 $L_3:\{a^n\ b^n\ c^m\ |\ m< n\ and\ m,\ n\geq 1\}$ is non-CFL since more than 1 comparison are presimultaneously. i.e. after comparison of n=n, we left with only c^m and we cannot com m< n or not.

So, none of the language is CFL.

QUESTION ANALYTICS

Q. 13

Identify the language generated by the following grammar where S is start variable?

$$S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow S_1 c \mid A$$

$$A \rightarrow aAb \in$$

$$S_2 \rightarrow aS_2 \mid B$$

$$B \rightarrow bBc \mid \in$$

Solution Video Have any Doubt?

Α

 ${a^n b^n c^m \hat{a} \square \square n, m \ge 0}$

В

 ${a^n b^m c^k \hat{a} \square \square n, m, k \ge 0}$

C

 ${a^n b^m c^m \hat{a} \square \square n, m \ge 0}$

D

 $\{a^n b^n c^m \hat{a} \square \square n, m \ge 0\} \cup \{a^n b^m c^m \hat{a} \square \square n, m \ge 0\}$

Your answer is Correct

Solution:

(d)

 $L_1: S_1 \rightarrow S_1 c \mid A \leftarrow \{a^n b^n c^m \mid n, m \ge 0\}$

$$A \rightarrow aAb \mid \in = \{a^n b^n \mid n \ge 0\}$$

 $L_2: S_2 \rightarrow aS_2 \mid B \leftarrow \{a^n b^m c^m \mid n, m \ge 0\}$

$$B \to bBc \mid \in \Rightarrow \{b^m c^m \mid m \ge 0\}$$

So, L = L_1 \cup L_2 = { $a^n b^n c^m | n, m \ge 0$ } \cup { $a^n b^m c^m | n, m \ge 0$ }.

QUESTION ANALYTICS

Q. 14

If $L_1 = \{a^n b^n \mid n \ge 0\}$ and $L_2 = \{b^n c^n \mid n \ge 0\}$, consider

I. $L_1 \cdot L_2$ is non CFL

II. $L_1 \cdot L_2 = \{a^n b^{2n} c^n \mid n \ge 0\}$

Which one of the following is correct?

Solution Video Have any Doubt?

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

☆ HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS
STUDENTS ONLY ON BOOK
PACKAGES

C

Only II

Both I and II

D

Neither I nor II

Your answer is Correct

Solution:

(d)

 $\begin{array}{ll} L_1 \ = \ \{a^n\,b^n\,\big|\, n \geq 0\} \ \text{is DCFL and CFL also.} \\ L_2 \ = \ \{b^n\,c^n\,\big|\, n \geq 0\} \ \text{is DCFL and CFL also.} \end{array}$

We know that CFL · CFL = CFL

So, $L_1 \cdot L_2 = \{a^n b^n b^m c^m \mid n, m \ge 0\}$ which is CFL and we can see that $L_1 \cdot L_2$ is clearly not equal $\{a^n b^{2n} c^n \mid n \ge 0\}$.

So II is not true.

So answer is option (d).

OUESTION ANALYTICS

Q. 15

The number of strings present of length 10 in language $L = \{a^{2n+1} b^{2m+1} \mid n \ge 0, m \ge 0 \text{ are } \underline{\hspace{1cm}}$

FAQ Solution Video Have any Doubt?

5

Your answer is Correct5

Solution:

Now

5

Language L = $\{a^{2n+1} b^{2m+1} | n \ge 0, m \ge 0\}$

Regular expression = (aa)*a (bb)*b

Since we need to find number of strings of length 10,

 $\begin{vmatrix} a^{2n+1} b^{2m+1} \end{vmatrix} = 2n + 1 + 2m + 1$ = 2(m+n) + 22(m+n) + 2 = 10

m+n=4

.. Number of solutions of this equation = 5

QUESTION ANALYTICS

Q. 16

Consider the following Problems:

 P_1 : {<M, x, k> | M is a TM and M does not halt on x within k steps}

P2: {<M> | M is a TM and M accepts atleast two strings of different length}

P₃: {<M> | M is a TM and there exist an input whose length is less than 100, on which M halts}

The number of problems which is RE but not REC is _

FAQ Solution Video Have any Doubt?

2

Correct Option

Solution:

2

 P_1 : T_{Yes} : When machine does not halt on x until k steps.

 T_{No} : When machine halt on x within k steps.

So, recursive.

https://onlinetestseriesmadeeasy.in/madeeasy/index.php?pageName=timeManagementReport&testid=1187&t=a&testType=2

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES T_{No} : Does not exist, since machine may go into infinite loop. So, RE but not REC.

Your Answer is 1

QUESTION ANALYTICS

Q. 17

Consider the following CFG:

For the above CFG, the total number of strings generated whose length is less than or equal to 6 is

FAQ Solution Video Have any Doubt?

29

Your answer is Correct29

Solution:

29

The grammar generates the set of all palindromes possible over $\{a, b\}$.

Lets first find the number of even palindromes of length atmost 6 (0, 2, 4, 6 length respecti

0 length palindromes = $2^{0/2} = 1$

2 length palindromes = $2^{2/2} = 2$

4 length palindromes = $2^{4/2} = 4$

6 length palindromes = $2^{6/2} = 8$

So total number of even palindromes of length at most 6 = 1 + 2 + 4 + 8 = 15

Similarly number of odd palindromes of length atmost 6 = 2 + 4 + 8 = 14

So total palindromes = 29

QUESTION ANALYTICS