How do we really compute the PageRank?

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Computing Page Rank

- Key step is matrix-vector multiplication
 - $r^{\text{new}} = A \cdot r^{\text{old}}$
- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

$$\mathbf{A} = \beta \cdot \mathbf{M} + (\mathbf{1} \cdot \beta) \left[\mathbf{1} / \mathbf{N} \right]_{\mathbf{N} \times \mathbf{N}}$$

$$\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Matrix Formulation

- Suppose there are N pages
- Consider page j, with d_i out-links
- We have $M_{ij} = 1/|d_j|$ when $j \rightarrow i$ and $M_{ij} = 0$ otherwise
- The random teleport is equivalent to:
 - Adding a **teleport link** from j to every other page and setting transition probability to $(1-\beta)/N$
 - Reducing the probability of following each out-link from $1/|d_i|$ to $\beta/|d_i|$
 - Equivalent: Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

Rearranging the Equation

•
$$r = A \cdot r$$
, where $A_{ij} = \beta M_{ij} + \frac{1-\beta}{N}$
• $r_i = \sum_{j=1}^N A_{ij} \cdot r_j$
• $r_i = \sum_{j=1}^N \left[\beta M_{ij} + \frac{1-\beta}{N}\right] \cdot r_j$
 $= \sum_{j=1}^N \beta M_{ij} \cdot r_j + \sum_{j=1}^N \frac{1-\beta}{N} r_j$
 $= \sum_{j=1}^N \beta M_{ij} \cdot r_j + \frac{1-\beta}{N}$ since $\sum r_j = 1$
• So we get: $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$

Note: Here we assumed **M** has no dead-ends.

 $[x]_N$... a vector of length N with all entries x

Sparse Matrix Formulation

We just rearranged the PageRank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

- where $[(1-\beta)/N]_N$ is a vector with all N entries $(1-\beta)/N$
- M is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
 - Add a constant value (1-β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_i r_i^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
 - Directed graph G with spider traps and dead ends
 - Parameter β
- Output: PageRank vector r
 - Set: $r_j^{(0)} = \frac{1}{N}$, t = 1
 - do:
 - $\forall j: \ r_j^{\prime(t)} = \sum_{i \to j} \beta \ \frac{r_i^{(t-1)}}{d_i}$ $r_j^{\prime(t)} = \mathbf{0} \ \text{if in-deg. of } j \text{ is } \mathbf{0}$
 - Now re-insert the leaked PageRank:

$$\forall j: r_j^{(t)} = r'_j^{(t)} + \frac{1-S}{N}$$
 where: $S = \sum_j r'_j^{(t)}$

- t = t + 1
- while $\sum_{j} \left| r_{j}^{(t)} r_{j}^{(t-1)} \right| > \varepsilon$ (Stanford University) Mining of Massive Da