ACHALMA MENDOZA, ELMER EDISON

Considere el siguiente modelo de ecuaciones simultáneas de oferta y demanda de un bien en particular:

$$\begin{aligned} Q_t^O &= \beta_{10} + \beta_{11} P_t + \mu_{1t} \\ Q_t^d &= \beta_{20} + \beta_{21} P_t + \beta_{22} W_t + \mu_{2t} \end{aligned}$$

Donde:

 $Q_t = Cantidad$

 $P_t = Precio$

 $W_t = Salario$

 a) Analice la identificación del modelo propuesto (condición de orden y de rango) y su eventual estimación a partir de la siguiente información muestral:

$$Qo = Qd$$

Ecuaciones reducidas

i)
$$\begin{split} &B_{10} + B_{11}P_t + u_{1t} = B_{20} + B_{21}P_t + B_{22}W_t + u_{2t} \\ &B_{11}P_t - B_{21}P_t = B_{20} + B_{22}W_t + u_{2t} - B_{10} - u_{1t} \\ &(B_{11} - B_{21})P_t = B_{20} + B_{22}W_t + u_{2t} - B_{10} - u_{1t} \\ &P_t = \frac{B_{20} + B_{22}W_t + u_{2t} - B_{10} - u_{1t}}{(B_{11} - B_{21})} \end{split}$$

$$\begin{split} P_t &= \frac{B_{20} - B_{10}}{(B_{11} - B_{21})} + \frac{B_{22}W_t}{(B_{11} - B_{21})} + \frac{u_{2t} - u_{1t}}{(B_{11} - B_{21})} \\ \pi_0 &= \frac{B_{20} - B_{10}}{(B_{11} - B_{21})} \\ \pi_1 &= \frac{B_{22}}{(B_{11} - B_{21})} \\ v_t &= \frac{u_{2t} - u_{1t}}{(B_{11} - B_{21})} \end{split}$$

$$P_t = \pi_0 + \pi_1 W + v_t$$

ii)

$$Q_t = \pi_2 + \pi_3 W + x_t$$

$$\pi_2 = \frac{\beta_{21} * B_{10} - \beta_{20} * \beta_{11}}{(B_{21} - B_{11})}$$

$$\pi_3 = -\frac{\beta_{22} * B_{11}}{(B_{21} - B_{11})}$$

$$x_t = -\frac{\beta_{21} * \mu_{1t} - B_{11} * \mu_{2t}}{(B_{21} - B_{11})}$$

Identificando la condición de orden y rango

 $P_t = \pi_0 + \pi_1 W + v_t$ 3-2 1-1 entonces 1>0 Sobre identificada

 $Q_t = \pi_2 + \pi_3 W + x_t$ 3-2 1-1 entonces 1>0 Sobre identificada Tenemos 2 variables endógenas

VENDOGENAS:

- \bullet P_t
- \bullet Q_t

Y una variable exógena

W

Eventual Estimación

Q	Р	W
20	10	10
30	20	15
45	15	5
15	25	5
15	40	15
30	20	15
15	25	5
45	15	5
15	40	15
20	10	10

Regresionamos Precio con salario

Entonces tenemos

$$\pi_0 = 12$$

$$\pi_1 = 1$$

Regresionamos ${\bf Q}$ y ${\bf W}$

$$\pi_2 = 32.5$$

$$\pi_3=-0.75$$

Reemplazamos los valores de las π en:

a.

$$B_0 = \pi_2 - B_1 * \pi_0$$

$$B_0 = 32.5 - B_1 * 12$$

$$B_0 = 32.5 - (-0.75) * 12$$

$$B_0 = 41.5$$

b.

$$B_1 = \frac{\pi_3}{\pi_1}$$

$$B_1 = \frac{-0.75}{1}$$

$B_1 = -0.75$

Estimando

Q EST	W	P	Q
34	10	10	20
26.5	15	20	30
30.25	5	15	45
22.75	5	25	15
11.5	15	40	15
26.5	15	20	30
22.75	5	25	15
30.25	5	15	45
11.5	15	40	15
34	10	10	20

b) Estime la ecuación exactamente identificada mediante el método de mínimos cuadrados indirectos y mínimos cuadrados de dos etapas y compruebe que ambos resultados son iguales.

Tenemos las siguientes ecuaciones reducidas:

$$P_t = \pi_0 + \pi_1 W + v_t$$

$$Q_t = \pi_2 + \pi_3 W + x_t$$

ETAPA 1

Hacemos la regresión

$$P_t = 1 + 12 * W + v_t$$

$$P_t = 1 + 12 * W$$

Estadísticas de la regresión

Coeficiente (0.43437224 Coeficiente (0.18867925 R^2 ajustado 0.08726415

Error típico 10.3682207 Observacion 10

ANÁLISIS DE VARIANZA

G	Grados de liberta	a de cuadradio	de los cua	F	alor crítico de F
Regresión	1	200	200	1.86046512	0.20970752
Residuos	8	860	107.5		
Total	9	1060			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	nferior 95.0%	uperior 95.0%
Intercepción	12	8.0311892	1.49417474	0.17348592	-6.51995551	30.5199555	-6.51995551	30.5199555
Variable X 1	1	0.73314391	1.36398868	0.20970752	-0.6906329	2.6906329	-0.6906329	2.6906329

ETAPA 2

Hacemos la regression

$$Q_t = \pi_2 + \pi_3 W + x_t$$

$$Q_t = 41.5 - 0.75W + x_t$$

Estadísticas de la regresión

Coeficiente (0.2941742 Coeficiente (0.08653846 R^2 ajustado -0.02764423 Error típico 12.1834929 Observacion 10

ANÁLISIS DE VARIANZA

	Grados de libertna	de cuadradio	de los cua	F	alor crítico de F
Regresión	1	112.5	112.5	0.75789474	0.40935004
Residuos	8	1187.5	148.4375		
Total	9	1300			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	nferior 95.0%	uperior 95.0%
Intercepción	32.5	9.43729304	3.44378413	0.00877475	10.7375632	54.2624368	10.7375632	54.2624368
Variable X 1	-0.75	0.86150305	-0.8705715	0.40935004	-2.73662959	1.23662959	-2.73662959	1.23662959