Marine seismology data/metadata standards

1	Intro	ntroduction				
	1.1	Nomenclature				
	1.2	A general rule for adding marine-specific information to StationXML				
	1.3	StationXML-standardized element				
2	osed standards and recommendations	. 2				
	2.1	Marine-specific	. 2			
	2.1.1	StationXML	. 2			
	2.1.2	subnetwork files	. 5			
2.1.3						
	2.2	Marine and maybe general, too	. 7			
2.2.1		processing steps	. 7			
	2.2.2	Proposed modifications to existing standards	. 7			
3 Rer		inder/clarification of existing standards	. 7			
	3.1	Source Identifiers	. 7			
3.2 3.3 3.4		Station names for repeated deployments				
		Deployments in lakes	. 8			
		Positions				
		Standard values that marine seismologists may not know:				

1 Introduction

1.1 Nomenclature

This document contains FDSN standards, proposed standards, and recommendations.

- Proposed standards are preceded by "We propose".
- Recommendations are preceded by "We recommend".
- FDSN standards are stated.

1.2 A general rule for adding marine-specific information to StationXML

We propose the following rule:

- Define the sub-elements that need to be specified
- Insert into StationXML as a StationXML-standardized element
- Request the addition of the information into StationXML, through FDSN WGII

1.3 StationXML-standardized element

Is an element that obeys the StationXML schema but contains information that is not specified in the schema.

Currently, StationXML-standardized elements are encoded as StationXML <Comment>s, with the elements written as JSON-formatted strings, preferably with a marine-specific subject. For example, if the information concerns "peanuts" and can be expressed as:

```
can_size.ml: 150
num_nuts: 10
brand_name: "Mr Peanut"
nut_weights.g: [1.1, 1.1, 2.2, 2.4, 1.8, 1.4, 1.3, 1.2, 3.0, 2.1]
```

then this would be entered into the StationXML file (at the station or channel level, as appropriate) as:

```
<Comment subject="peanuts"><Value>"{can_size.ml: 200. num_nuts: 10, brand_name: "Mr
Peanut", nut_weights.g: [1.1, 1.1, 2.2, 2.4, 1.8, 1.4, 1.3, 1.2, 3.0,
2.1]}"</Value></Comment>
```

2 Proposed standards and recommendations

2.1 Marine-specific

2.1.1 StationXML

2.1.1.1 Clock drift and leapseconds

There is no dedicated field in StationXML. Embed this information as JSON-coded strings JSON-coded in Station-level <Comment> fields with subjet="Clock Correction". In the future, a seperate namespace may be created to allow a more specific and structured representation

The structures are shown below in YAML format first, for clarity, then as a <u>StationXML-standardized Element</u>.

2.1.1.2 Clock drift

<u>We recommend</u> specifying clock drifts using UTC datetimes, to avoid ambiguity. The datetimes should be in ISO8601 format, followed by a "Z" to unambiguously specify UTC.

2.1.1.2.1 YAML format:

```
drift:
    type: 'piecewise_linear' # or 'cubic_spline' or 'polynomial {a0 a1 a2 ...}'
    instrument: 'Seascan MCXO'
    instrument_nomimal_drift_rate: 1e-8
    reference: 'GPS'
    syncs_instrument_reference:
        - ["2016-09-10T00:00:00Z", "2016-09-10T00:00:00Z"]
        - ["2017-01-12T00:00:01Z", "2017-01-12T00:00:00.415Z"]
        - ["2017-07-13T11:25:01Z", "2017-07-13T11:25:00.6189Z"]
```

2.1.1.2.2 StationXML format:

```
<Comment subject="Clock Correction"><Value>"{drift: {instrument: Seascan MCXO, instrument_nominal_drift_rate: 1e-8, reference: GPS, type: piecewise_linear, syncs_instrument_reference: [['2016-09-10T00:00:00Z', '2016-09-10T00:00:00Z'], ['2017-01-12T00:00:01Z', '2017-01-12T00:00:00.415Z'], ['2017-07-13T11:25:01Z', '2017-07-13T11:25:00.6189Z',]]}}"
```

2.1.1.2.3 Explanation of fields

The time_base, nominal_drift_rate and reference fields are optional. In the simplest case of a synchronization at the start and end of an experiment, and assuming purely linear drift, there would only be two items in syncs_instrument_reference.

If there is assumed to be clock drift but some or all reference values were not measured, each missing value should be represented by \sim or None.

2.1.1.3 Leap seconds

Specified using information from the <code>leap-seconds.list</code> file, available online at several sites, including https://data.iana.org/time-zones/tzdb/leap-seconds.list. The user should verify that the "File expires on" date is later than the last instrument channel's end-date.

2.1.1.3.1 YAML format:

2.1.1.3.2 StationXML format

2.1.1.3.3 Explanation of fields

- list_file_entries is an array/list, to allow for more than one leap-second during a deployment.
 - o line_text should be directly copied from
 - o leap_type indicates whether the 2nd number in the list_file line_text ("37" in the above example) is greater than the previous line's value ("+") or less than the previous line's value ("-"). As of June 2024, all leap seconds have been type "+"
- applied corrections indicates if leapsecond corrections were applied to input data/parameters:
 - o not_clock_corrected_miniseed is true if the "NOT CLOCK CORRECTED" miniSEED data integrates the leap second. For most OBS deployments, this value should be false as dataloggers without GPS don't (yet?) have a way to integrate leap seconds.

 syncs_instrument: indicates whether the instrument sync times have been corrected for the leap second(s). They generally shouldbe, but in some cases (many sync times and/or more than one leap second) this may be better left to an algorithm than to a human operator.

2.1.1.4 Orientation information

Set the following <Azimuth> and <Dip> values for the following source/subsource codes:

code	<dip unit="DEGREE S>xxx1</dip 	<azimuth unit="DEGREES" xxx=""></azimuth>	yyy	Comment
1	0.0	minusError="180.0" plusError="180.0"	0.0	Equivalent "N" for non- geographically oriented
2	0.0	minusError="180.0" plusError="180.0"	90.0	Equivalent "E" for non- geographically oriented (90° clockwise of "1" when viewed from above)
3	90.0		0.0	Positive voltage for DOWNWARD motion
N	0.0		0.0	Azimuth must be within 5° OF 0°
E	0.0		90.0	Aziumth must be within 5° OF 90°
Z	-90.0		0.0	Positive voltage for UPWARD motion. Dip must be within 5° of -90
DH, DG, DO	90.0		0.0	if value <i>DECREASES</i> for a pressure increase ²
DH, DG, DO	-90.0		0.0	if value <i>INCREASES</i> for a pressure increase ²

2.1.1.5 Data completeness

<u>We recommend</u> using Station <StartDate> and <EndDate> to specify when the data was supposed to start and end, and Channel <StartDate> and <EndDate> to specify when it actually starts and ends for each channel.

We recommend keeping all of the recorded data, including "noisy" or "bad".

2.1.1.6 Leveling system

The instrument's leveling system can affect the quality and absolute values of measurables. The following elements should be specified:

```
threshold.deg: (float) # deviation from vertical (degrees) which will trigger releveling
accuracy.deg: (float) # maximum deviation from vertical accepted after relevel
max_relevel_interval.h (float) # longest interval between level checks during the deployment
n_relevels: (int) # number of relevels performed during the deployment
relevels: (list) # list of [date, level_before.deg, level_after.deg] for each relevel
```

<u>We propose</u> implementing this as an "Equipment" element at the appropriate (Station or Channel) level, with <Type>Leveler</Type> and <Description> a JSON-encoded string of the above elements.

We will request a specific `Leveler`` implementation of the ``Equipment`` element, with the above elements added to it.

2.1.2 subnetwork files

<u>We recommend</u> using obsinfo subnetwork files to store essential information about OBS deployments. obsinfo <u>subnetwork files</u> can be used with the <u>obsinfo</u> software to generate <u>FDSN StationXML</u> files with embedded OBS-specific information, or with other tools to modify existing StationXML files.

2.1.3 miniSEED data

2.1.3.1 Clock drift correction

There are three main possibilities for distributing data:

- 1. "NOT CLOCK CORRECTED": No time correction applied.
 - a. May be preferred by users of long-period data (>10s) because it can be easier to concatenate daily files.
 - b. We recommend for Indicating:
 - i. miniSEED2: data quality flag "D"
 - c. **We recommend** for Creating:
 - i. Put time correction in record header field 16 and set field 12 bit 1 to 0.
- 2. "CLOCK CORRECTED": Indicate the time correction in each record header and apply it.
 - a. Allows the user to work with time-corrected but otherwise unmodified data
 - b. **We recommend** for Indicating:
 - i. miniSEED2: data quality flag "Q"
 - ii. miniSEED3: ????
 - c. We recommend for Creating:
 - i. Calculate a new time drift for each record
 - ii. miniSEED2: Indicate time correction applied in record header field 16 ("Time Correction" and set field 12, bit 1 ("Activity flag, time correction applied") to 1.

- 3. "RESAMPLED": Resample the data at the originally intended rate.
 - a. "Best of both worlds": data are time-corrected and easy to concatenate/combine with other data
 - b. Could distort waveforms/spectra (needs to be studied)
 - c. We recommend for Indicating:
 - i. miniSEED 2/3: Define another channel code (modified data)
 - d. We recommend for Creating
 - i. No recommendation

We recommend providing "CLOCK CORRECTED" data, if possible.

We recommend, if there is no measure of clock drift:

- miniSEED2:
 - o Provide data as "D". set bit 7 of data quality flag ("time tag is questionable") to 1.
 - Add blockette 500, field 10 ("Clock status") indicating that there is an unmeasured drift (for example: "Unmeasured clock drift on Seascan MCXO, expected order = 1e-8")
- miniSEED3
 - No recommendation yet.

A new version of ``msmod``, in development, should be able to create **CLOCK CORRECTED** data from **NOT CLOCK CORRECTED** data, using piecewise linear, cubic spline, or polynomial interpolation.

2.1.3.2 Leap seconds

Leap seconds should be corrected in **CLOCK CORRECTED** data and the record containing the leap second should be flagged.

2.1.3.2.1 Positive leap second

61 seconds in the minute.

This is the only case as of year 2025:

- Shift all record times AFTER the leap second back one second.
- Set activity flag bit 4 to 1 in the header of the record containing the leap second.
- Change 'end sync instrument' to be one second earlier than what the instrument indicated

2.1.3.2.1.1 Example

Changing the data using msmod, for a positive leap-second at 23:59:60 on day 182, 2016:

```
msmod --timeshift -1 -ts 2016,182,23:59:59.999999'
msmod --actflags '4,1' -tsc 2016,182,23:59:59.999999 -tec 2016,182,23:59:59.999999
```

A new "msmod" option has been proposed to simplify this to one line and one time specification.

2.1.3.2.2 Negative leap second

59 seconds in the minute

There have been no negative leap seconds as of 2025.

- Shift all record times AFTER the leap second forward one second.
- Set activity flag bit 5 to 1 in the header of the record containing the leap second.
- Change end_sync_instrument to be one second later than what the instrument indicated

2.2 Marine (and maybe general, too)

2.2.1 processing steps

<u>We recommend</u> that processing done on data files (from data download to delivery to the data center) should be recorded in text-based, structured files. The <u>JSON process-steps format</u> is an example.

2.2.2 Proposed modifications to existing standards

2.2.2.1 Allow sampling rate to be specified as double precision¹

This is the only way to accurately represent OBS clock rates, which are regular but off of the specified sampling rate by a factor of approximately 1e-8 (MCXOs) or 1e-9.5 (CSACs), requiring 27- or 32-bit floating-point mantissas, respectively, to be correctly specified. Single precision floats only have 23-bit mantissas, double precision floats have 52-bit mantissas.

2.2.2.1.1 In miniSEED3

In the miniSEED3 header, the Data publication version replaces the data quality flags (can still have flags in "Extra Header Fields" (field 14). This offers a clear hierarchy, but not a way to specify that one wants uncorrected or corrected data (recommended RAW=1 could be used for uncorrected data). Could this be put in field 14: extra header fields? In any case, would have to be searchable using web tools

3 Reminder/clarification of existing standards

3.1 Source Identifiers

The following source-subsource codes (see <u>FDSN Source Identifiers documentation</u>) should be used for the following types of sensor/data:

Code	Description
1	Unoriented seismometer, "N" channel equivalent
2	Unoriented seismometer "E" channel (+90 degrees from "1")
3	Seismometer/geophone with inverted vertical channel (positive voltage is down)

¹ Double precision sampling rates are included in the miniSEED3 specification

DH	Hydrophone
DG	Differential pressure gauge
DO	"Absolute" bottom pressure recorder

3.2 Station names for repeated deployments

The <u>IASPEI Station Coding Standard</u> recommends that station and/or location codes be changed if the associated sensors are moved far enough to result in a significant *teleseismic* travel-time residual discrepancy. <u>We recommend</u> the same, except that the basis for what is a significant travel-time residual discrepancy should depend on your study.

If you change the station name between deployments, we recommend incrementing the last *N* characters of the station name, e.g. ``STAA``, ``STAB``, ``STAC``, or ``STA01``, ``STA02``, ``STA03``, etc. The value of *N* depends on the maximum number of deployments you will possibly make and the characters you use in the incrementor (numeric, alphabetic, or alphanumeric).

3.3 Deployments in lakes

Set <WaterLevel> to the elevation of the lake surface

3.4 Positions

We recommend using the plusError, minusError and measurementMethod attributes to specify uncertainties in Latitude, Longitude and Elevation and how you measured them.

3.5 Standard values that marine seismologists may not know:

Within each <Channel>, set <Type>CONTINUOUS</Type> and <Type>GEOPHYSICAL</Type>