De-Morgon's Theorem

LAB #03

Fall 2025

CSE202L Digital Logic Design Laboratory

Class Section: A

Submitted by:

Name: Afaq AslamReg: 24PWCSE2367Name: Abbas AliReg: 24PWCSE2402Name: Salman AhmadReg: 24PWCSE2445

Submitted to:

Dr. Rehmat Ullah Khattak

October 10, 2025

Department of Computer Systems Engineering

University of Engineering and Technology, Peshawar

De-Morgan's Theorem:

Objective:

By the end of this experiment, you should be able to:

• Demonstrate De-Morgan's theorems through practical implementation using two input variables.

Required Components:

- 7432 Quad 2-input OR gate IC
- 7404 Hex Inverter IC
- LED (Light Emitting Diode)
- 7430 Quad 2-input AND gate IC
- DIP Switch
- Three resistors (1 kΩ each)

DE-MORGAN'S THEOREM:

- $(X + Y)' = X' \cdot Y' \cdot \dots \cdot (a)$
- $(X \cdot Y)' = X' + Y' \dots (b)$

Procedure:

- Assemble the circuit corresponding to the left-hand side of Equation (a), as illustrated in Figure 3.1.
 Observe how the LED responds to different input combinations.
- Next, construct the circuit shown in Figure 3.2, representing the right-hand side of Equation (a).
 Test all possible input combinations using the switches and fill in the truth table (Table 3.1) accordingly.
- Compare the output columns from both circuits to determine if Equation (a) is validated.
- Repeat the same steps for the circuits shown in Figures 3.3 and 3.4 to verify Equation (b) as per De-Morgan's Theorem.

LOGIC CIRCUIT DIAGRAM

Truth Table 3.1:

X	Υ	(X . Y)'	(X' + Y')
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Circuit Picture:

Fig. 3.3: Circuit for (X.Y)'

Truth Table 3.2:

Х	Y	(X . Y)'	(X' + Y')
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

REVIEW QUESTIONS:

• Simplify the expression using De-Morgan's theorems and verify the two expressions experimentally.

$$F = ((A . B)' + A)'$$

ANSWER:

Truth Table:

• Determine experimentally whether the given circuits are equivalent. Then use De-Morgan's theorem to prove your answer algebraically.

Answer:

Experimental Diagram:

