Continuous Variables (Chapter 3)

Prof. Joyce Robbins

Continuous Variables

We're looking for features such as:

- Asymmetry
- Outliers
- Multimodality
- Gaps
- Heaping
- Rounding
- Impossibilities / Errors

Basic Options

- Stripcharts / rug plotStem and leaf plotDotplots
- Histogram / density curve
- Boxplot

Strip charts

```
par(las = 1) # for all chunks since global.par set to TRUE above
world <- read.csv("countries2012.csv")
stripchart(world$TFR, col = "red", pch = 21)</pre>
```


Strip charts

stripchart(world\$TFR, col = "red", pch = 21,
 method = "jitter")

Strip charts w/ boxplot

```
boxplot(world$TFR, horizontal = TRUE)
stripchart(world$TFR, col = "red", pch = 21, add = TRUE, method = "jitter")
```


Rug plot

```
plot(world$GDP, world$TFR)
rug(world$GDP, col = "red")
rug(world$TFR, col = "red", side = 2)
```


Strip charts

```
stripchart(decrease - treatment,
main = "stripchart(OrchardSprays)",
vertical = TRUE, log = "y",
data = OrchardSprays, pch = 21)
```

stripchart(OrchardSprays)

Stem and leaf plot

```
prices <- c(379, 425, 450, 450, 499, 529, 535, 535, 545, 599, 665, 675, 699, 699, 725, 725, 745, 799)
stem(prices)</pre>
```

The decimal point is 2 digit(s) to the right of the |

Dot plot

```
library(ggplot2)
ggplot(world, aes(TFR, y = factor("TFR"))) +
geom_dotplot()
```


Forecast 2018 House elections show big potential fore Democratic landslide, little for Republicans. If we underestimate Democrats by 3% nationally, they could have an historic wave midterm. But if Republicans overperform by 3%, they gain just 10 seats.

Forecast 2018 Democrat Vote Share (%)

*Forecast comes from thecrosstab.com/2018-midterms-forecast/

Histograms

- primary tool for continuous data
- boundary issues
- count / relative frequency / density histograms
- unequal binwidth histograms
- importance of binwidth
- using ggvis to interactively adjust binwidths

How are histograms created?

Draw a histogram on paper of the following data.

(use binwidth = 5)

50, 51, 53, 55, 56, 60, 65, 65, 68

How are histograms created?

par(las = 1) # opts_knit\$set(global.par = TRUE) above
x <- c(50, 51, 53, 55, 56, 60, 65, 65, 68)
hist(x, col = "lightblue")</pre>

Histogram of x

How are histograms created?

Frequency

What is causing the difference?

Bin boundaries

```
op <- par(mfrow = c(1, 2), las = 1)
hist(x, col = "lightblue", ylim = c(0, 4),
    xlab = "right = TRUE (default)", font.lab = 2)
hist(x, col = "lightblue", right = FALSE, ylim = c(0, 4),
    xlab = "right = FALSE", font.lab = 2)</pre>
```


par(op)

Bin boundaries

hist(x, breaks = seq(47.5, 72.5, 5), col = "lightblue")

Histogram of x

Bin boundaries

```
# presentation issues
hist(x, breaks = seq(47.5, 72.5, 5), col = "lightblue",
axes = FALSE)
axis(1, at = seq(47.5, 72.5, 5))
axis(2, at = 0:3)
```

Histogram of x

Frequency, Relative Frequency, Density

mids freq relfreq density

- 350 1 0.05556 0.00056
- 450 4 0.22222 0.00222
- 550 5 0.27778 0.00278 650 4 0.22222 0.00222
- 750 4 0.22222 0.00222
- the sum of relative frequencies is 1
- the sum of densities x binwidth is 1

Frequency, Relative Frequency, Density

```
x <- hist(prices, breaks = seq(300, 800, 100), plot = FALSE)
x</pre>
                                                                                                                                                                                                                                                      ## $breaks
## [1] 300 400 500
## $counts
## [1] 1 4 5 4 4
## attr(,"class")
## [1] "histogram"
                                                  # $equidist
# [1] TRUE
                                                                                                                                                   $mids [1] 350 450 550 650 750
                                                                                                                                                                                                                                                                                                         $breaks [1] 300 400 500 600 700 800
                                                                                                  $xname
[1] "prices"
                                                                                                                                                                                                     $density [1] 0.00055556 0.00222222 0.00277778 0.00222222 0.00222222
```

Frequency vs. Density Histogram (freq = FALSE)

Don't use density = TRUE

hist(prices, breaks = seq(300, 800, 100), col = "lightblue",
density = TRUE)

Histogram of prices

Don't use density = TRUE

hist(prices, breaks = seq(300, 800, 100), col = "lightblue",
density = 10)

Histogram of prices

[1] 1

Sum(TRUE)

Density histogram ggplot2

```
df2 <- data.frame(x = rnorm(1000))
ggplot(df2, aes(x, y = ..density..)) + geom_histogram()</pre>
```


Relative frequency histogram

Method # 1 Use barplot()

```
x <- barplot(df$relfreq, space = 0, col = "lightblue",
ylab = "relative frequency")
# axis(1) to see the scale on the x-axis
axis(1, at = 0:5, labels = seq(300, 800, 100))
title("Relative Frequency Histogram of Prices")</pre>
```

Relative Frequency Histogram of Prices

Relative frequency histogram

Method # 2 Use hist() and change the y-axis tick mark labels... but be careful!!

```
hist(prices, breaks = c(300, 400, 500, 600, 700, 800),

col = "lightblue", yaxt = "n",

ylab = "relative frequency",

main = "Relative Frequency Histogram of Prices")

axis(2, at = 0:5, labels = round((0:5)/18,2))
```

Relative Frequency Histogram of Prices

relative frequency

Example from the web

Relative Frequency Histogram

Source: http://www.statisticshowto.com/relative-frequency-histogram-2/

What's wrong with this histogram?

```
# Use geom_col since we already have frequency counts
# This is an example of what not to do
df <- read.csv("zip10027census2000.csv")
dfsage <- factor(dfsage, levels = dfsage)
g0 <- ggplot(df, aes(x = age, y = pop)) +
    geom_col(width = 1, color = "blue", fill = "lightblue") +
    ylab("count")</pre>
```


Relative frequency histogram

```
# Doesn't fix the problem
ggplot(df, aes(x = age, y = percent/100)) +
geom_col(width = 1, color = "blue", fill = "lightblue") +
ylab("relative frequency")
```


Density histogram with unequal bin (or class) widths

Density = RelFreq / Binwidth

```
library(dplyr)
kdf <- df %>% transmute(Class = age, Frequency = pop,
knitr::kable(kdf)
                     ClassWidth = binwidth,
Density = round(RelFreq/ClassWidth,3))
                                                                                Relfreq = round(pop/sum(pop),3),
```

Class	
Frequency	
RelFreq	
ClassWidth	
Density	

85+	75-84	65-74	60-64	55-59	45-54	35-44	25-34	20-24	15-19	10-14	5-9	۸ 5
1767	3781	6350	4148	5467	14077	16380	19317	8316	4977	3999	4072	4435
0.018	0.039	0.065	0.043	0.056	0.145	0.169	0.199	0.086	0.051	0.041	0.042	0.046
15	10	10	ъ	Л	10	10	10	Л	ъ	5	ъ	ъ
0.001	0.004	0.007	0.009	0.011	0.014	0.017	0.020	0.017	0.010	0.008	0.008	0.009

Compare the histograms

```
library(gridExtra)
grid.arrange(g0 + ggtitle ("Incorrect"),
g2 + ggtitle ("Correct"))
```


Source: https://factfinder.census.gov/

Cumulative frequency histogram

Binwidth

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

hist(world\$TFR, col = "lightblue",
breaks = seq(1 , 8, .25))

hist(world\$TFR, col = "lightblue", breaks = seq(1 , 8, .125))

Histograms

Fewer bins

```
ggplot(df, aes(x = scores)) +
  geom_histogram(color = "blue", fill = "lightblue",
  breaks = seq(30, 110, 10)) +
  scale_x_continuous(breaks = seq(30, 110, 10))
```


ggvis

- built w/ Vega, Shiny
- Vega <- D3 + ...
- Shiny <- R + web (HTML, CSS, SVG, JavaScript)
- code looks like ggplot2 + dplyr
- best use: EDA
- More info, tutorials: https://ggvis.rstudio.com/

```
library(ggvis)
faithful %>% ggvis(~eruptions) %>%
                                                                  layer_histograms(fill := "lightblue",
                                  step = .1,
label = "width"))
```

```
## Warning: Can't output dynamic/interactive ggvis plots in a knitr document.
## Generating a static (non-dynamic, non-interactive) version of the plot.
```



```
df <-read.csv("countries2012.csv")
df %>% ggvis(-GDP) %>%
                                                                                              layer_histograms(fill := "green",
                                                                     width = input_slider(500, 10000,
step = 500,
label = "width"))
                                               value = 5000,
```

```
## Warning: Can't output dynamic/interactive ggvis plots in a knitr document.
## Generating a static (non-dynamic, non-interactive) version of the plot.
```


Center

```
df <- data.frame(x = c(50, 51, 53, 55, 56, 60, 65, 65, 68))
df %>% ggvis(-x) %>%
                                                                                                                                                                                  layer_histograms(fill := "red",
                                                                                                                                                          width = input_slider(1, 10,
                                                                  center = input_slider(0, 1,
                                                                                         step = 1,
label = "width"),
                                                                                                                                     value = 5,
                      value = .5,
step = .5,
label = "center"))
```


Boundary

```
df %>% ggvis(-x) %>%
                                                                                                                  layer_histograms(fill := "red",
                                                                                   boundary = input_slider(47.5, 50,
                                                         label = "width"),
                                                                       step = 1,
                           value = 50,
step = .5,
label = "boundary"))
```


