CHAPTER 01 영상 처리 개요

PART 01 영상 처리 개요 및 OpenCV 소개

목차

- 1.1 영상 처리란?
- 1.2 영상 처리의 수준
- 1.3 영상 처리의 역사
- 1.4 영상 처리 관련 분야
- 1.5 영상의 형성 과정
- 1.6 디지털 영상의 표현과 영상 처리
- 1.7 영상 처리 응용 분야

1.1영상 처리란?

- 화소
 - 영상의 구성요소
- 화소 처리
 - 영상 처리의 출발점
- 영상
 - 밝기와 색상이 다른 일정한 수의 화소들로 구성

- 영상처리
 - 입력된 영상을 어떤 목적을 위해 처리하는 기술
 - 어떤 목적을 위해 수학적 연산을 이용해 화소들에 대해 변화를 주는 것
 - 아날로그 영상 처리 / 디지털 영상 처리

1.1영상 처리란?

• 영상처리의 예

1.2 영상처리의 수준

- 저수준 영상처리
 - 영상 처리 결과가 영상인 경우
- 고수준 영상처리
 - 영상 처리 결과가 영상이 아니라, 영상의 특성을 나타내는 경우

영상획득	저수준 영상 처리 (좁은 의미의 영상 처리)
영상향상	
영상복원	
변환처리	
영상압축	
영상분할	고수준 영상 처리 (컴퓨터 비전)
영상표현	
영상인식	

〈그림 1.2.1〉 영상 처리 분야

1.3 영상 처리의 역사

- 영상 처리의 시작
 - 1920년대 초반 런던과 뉴욕 간에 해저 케이블을 통한 신문사들이 사진 전송
- 본격적인 영상 처리 위한 기술
 - 1940년대 폰 노이만의 디지털 컴퓨터의 개념 시작
 - 1950년 이후 트랜지스터, IC, 마이크로프로세서 같은 하드웨어 발달
 - 1950~60년대 프로그램의 언어의 발달과 운영체제 등의 소프트웨어 기술 발달
- 본격적인 영상 처리 시작
 - 우주 탐사 계획인 아폴로 계획과도 관련, 우주선에서 보낸 훼손된 영상의 복 원 연구

1.3 영상 처리의 역사

- 1970년대 영상 처리 분야 더욱 발전
 - CT, MRI 등의 의료 분야
 - 원격 자원 탐사, 우주 항공 관련 분야
- 1990년대 컴퓨터 비전과 응용 분야 급속히 확장
 - 인터넷 시대에 영상검색, 영상전송, 영상광고
 - 디지털 방송 관련 컴퓨터 그래픽스, 디지털 카메라 보급

1.4 영상 처리 관련 분야

- 영상 처리
 - 입력 영상을 처리하여 출력으로 처리된 영상 획득
- 컴퓨터 비전
 - 입력은 영상, 출력은 어떤 정보
 - 얼굴인식, 지문 인식, 번호판 인식 등
- 컴퓨터그래픽스
 - 입력이 어떤 서술이고, 출력이 영상
 - CAD프로그램
 - 그리고자 하는 물체의 수치 입력 > 해당 물체의 그래픽 영상 생성

1.5 영상의 형성 과정

• 영상 - 위치 값과 밝기 값을 가진 일정한 수의 화소의 모임으로 정의

$$f(x,y)=i(x,y)*r(x,y)$$
 반사계수 영상 조명의 세기

1.5 영상의 형성 과정

- 양자화
 - 제한된 비트수로 화소값을 나타내려 밝기 값을 정수화 시키는 과정
- 샘플링
 - 무한한 연속된 값을 일정한 해상도에 따라 유한개의 화소수만큼 입력 값을 취하는 과정

1.6 디지털 영상의 표현과 영상 처리

- M×N 크기 디지털 영상
 - 표본화 수에 따라 M, N 결정
 - 양자화 수준에 따라 밝기 값 레벨 결정
 - k 비트로 양자화→ 2k개 레벨
 - 8비트 양자화 → 28개 = 256개 레벨

1.6 디지털 영상의 표현과 영상 처리

- 의료 분야 (방사선, 초음파)
 - 컴퓨터 단층촬영(CT), 자기 공명영상 (MRI)
 - 양전자 단층촬영(PET)
- 방송 통신 분야
 - 디지털 방송 서비스로 인한 영상처리 기술 발달
 - 스포츠 방송 분야에 영상 처리 기술 적용 , 가상광고 분야

- 공장 자동화 분야
 - 산업용 카메라로 제품 품질 모니터링 및 불량 제거
- 출판 및 사진 분야
 - 영상 생성, 품질 향상, 색상을 조작 등의 작업을 위해 영상 처리 기술 사용
 - 기존 영상에 영상 처리 기술을 융합하여 새로운 합성 영상

- 5) 애니메이션 및 게임 분야
 - 촬영된 영상과 그래픽 기술이 조합
 - 현실감 향상

- 6) 기상 및 지질 탐사 분야
 - 방대한 기상 정보를 이용의 시각화
 - 다양한 주파수의 사진들을 영상 처리 기술로 표현

• 기타 영상 처리 분야

단원 요약

- 영상 처리는 어떤 목적을 위해, 입력영상에 수학적 연산을 화소에 가해 변화 주는 것이다.
- 영상 처리는 잡음 제거와 같은 저수준 영상 처리로부터 물체 인식과 같은 고수준 영상 처리까지 포함한다. 기본적인 영상 처리는 저수준 영상 처리를 말한다.
- 영상 처리의 관련 분야인 컴퓨터 비전, 컴퓨터그래픽스는 서로 관련이 있고 서로의 구분은 입력의 형태로 구분할 수 있다.
- 영상의 형성은 광원으로부터 물체에 비친 빛이 카메라 센서를 통해 영상을 형성한다. 영상 f(x,y)는 조명의 세기 i(x,y)와 반사계수 r(x,y)의 곱으로 나타난다.
- 디지털 영상은 표본화(sampling)와 양자화(quantization) 단계를 거쳐서 일정한 수의화소의 집합 M×N 크기로 표현된다.
- 영상 처리는 의료 분야, 방송통신 분야를 포함한 최근의 계산 사진학과 같은 다양한 응용 분야들을 가지고 있고, 그 응응 분야가 점차 확대되고 있다.

담당 교수

• 허종욱

- 연구실: 공학관 A1301호
- 연구분야:
 - 멀티미디어 신호처리
 - 영상처리, 컴퓨터 비전
 - 멀티미디어 보안/포렌식
- 연락처
 - 033-248-2359
 - juhou@hallym.ac.kr

https://sites.google.com/view/juhouhallym/home

수업 방식

- 수업은 대면/비대면 하이브리드 방식으로 제공됩니다.
 - 대면 수업에 참석하기 힘든 학생은 참고하세요.
- 수업은 비대면 녹화강의로 매주 제공됩니다.
- 매주 실습실에서 문제풀이형 대면 실습이 진행됩니다.
 - 실습 문제는 온라인 강의에서 미리 제시됩니다.
 - 따라가기 힘든 학생은 미리 풀어보고 오시길 바랍니다.
- 시험은 대면으로 진행됩니다.

강의 개요

- 필요 배경지식
 - 선수과목: Python 프로그래밍 관련 수업
 - 혹은 최소 한가지 언어의 프로그래밍 경험

•평가 지표

- 중간고사: 25%
- 기말고사: 25%
- 실습 과제: 20%
- 기말프로젝트: 20%
- 출석: 10%

수업 교재

• OpenCV-Python으로 배우는 영상처리 및 응용

• 저 : 정성환, 배종욱

• 출판사 : 생능출판(생능출판사)

• 실습 시간에 수업교제를 많이 참고하므로 반드시 지참합니다.

