

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

ELU 616: Artificial Intelligence Challenge Presentation

ARIAS, Camila QUINTANA, Gonzalo

SUMMARY

Supervised Learning approach

The "Quintarias" Al

Q-learning approach

Q learning approach

In lab session 6, we approximated the Q function using linear regression.

Now we propose a non linear approximation using a three-layer neural network.

NN hyperparameters K Keras

- Three dense layers (40,20 and 4) units each.
- Input: player-centered map reconverted to vector -> that makes 48 504 trainable parameters!
- Activation functions: Relu and linear in the last layer -> It's not possible to use a Softmax layer as it's a regression problem and not a classification one.
- Optimizer: Adam
- loss function: mean squared error

Why Adam? How does it work?

- "Adaptative moment estimation"
- Presented in 2015
- Uses per-parameter learning rates that are adapted based on the estimation of the first two moments of the gradient (mean and non-centered variance)
- Well suited when there are lots of parameters to adjust
- Empirically, we obtained it was the only optimizer that produced good results

Performances

However... this method only won 38% of the games.

- 3.18 it/s in training
- Results in the last epoch w/d/l 32/5/63
- Tensorflow backend: game time and computational resources

Supervised Learning approach

How can the player decide?

Dataset description

At the beginning, we generate 1000 games > 50000 actions

Binary map centered in the player:

 $1 \rightarrow it$ was a cheese

Input dim: $(1, 41 \times 29) = (1, 1189)$

Target 0,1,2,3
Action made

Does it describe the current state? is it enough?

Supervised learning

We propose a supervised model that incorporates the notion of smell ...

- The cheese's smell
- The opponent's smell

Cheese's smell

The cheeses are no more represented as binary locations in the map... we also represent the pixels near to cheese locations as having some positive values.

Opponent's smell

We also include the opponent's position and smell by defining a 2D gaussian function centered in the player's position.

How do datasets look like?

Visualization of 1000 actions

With our approach, samples corresponding to different actions become more different

With this new approach, the player might:

- Be more attracted by cheeses that are close to each other (the smell of different cheeses adds up).
- Try to "steal" cheeses from the opponent, as now he knows its position.

Quintarias : Cheese's smell + Opponent's smell

The "Quintarias" Al

Multi-layer Perceptron classifier

- Relu activation
- Adam optimizer
- Hidden layers by default (100,)
- logarithmic loss function

Training using split 0.8/0.2 3 datasets -- > 3 classifiers

Confusion Matrices

Is it really playing?

Playing

Will Quintarias destroy Manh?

--rat Als/quintarias_sup.py --python Als/manh.py

Classifier	Rat win / miss	Python win / miss
quintarias_sup	0.396 / 0.266	0.406 / 0.273
test_smell	0.372 / 0.172	0.353 / 0.19
test_bin	0.428 / 0.320	0.403 / 0.385

Thank you very much for your attention... any questions?

