线性微分和差分算子的收缩算法

张熠

数学机械化重点实验室 中国科学院数学与系统科学研究院

Krattenthaler 问题

如果 (cn)n>0 满足

$$\ell_r c_n = \ell_{r-1} c_{n-1} + \cdots + \ell_0 c_{n-r}$$

这里 $\ell_i \in \mathbb{Z}[n]$ 且 $\ell_r \neq 0$ 。

称 $(c_n)_{n>0}$ 为在 \mathbb{Z} 上的 P-递归序列。

精想: 令 $(a_n)_{n\geq 0}$ 和 $(b_n)_{n\geq 0}$ 分别为在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。那么 $(n!a_nb_n)_{n\geq 0}$ 也是在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。

様期, KLMM 2/27

Krattenthaler 问题的例子

考虑:

$$na_n = (31n-6)a_{n-1} + (49n-110)a_{n-2} + (9n-225)a_{n-3}$$

 $nb_n = (4n+13)b_{n-1} + (69n-122)b_{n-2} + (36n-67)b_{n-3}$
 $c_n := n!a_nb_n$ 满足的一个差分方程为:
 $\alpha(n)nc_n = (\cdots)c_{n-1} + \cdots + (\cdots)c_{n-9}$
这里 $\alpha(n) \in \mathbb{Z}[n]$, $\deg_n(\alpha) = 20$ 。

张档, KLMM 3/27

Krattenthaler 问题的例子

考虑:

$$na_n = (31n - 6)a_{n-1} + (49n - 110)a_{n-2} + (9n - 225)a_{n-3}$$

 $nb_n = (4n + 13)b_{n-1} + (69n - 122)b_{n-2} + (36n - 67)b_{n-3}$

 $c_n := n! a_n b_n$ 满足的一个差分方程为:

$$\alpha(n)nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-9}$$

这里 $\alpha(n) \in \mathbb{Z}[n]$, $\deg_n(\alpha) = 20$ 。

已知的算法找到:

$$\beta nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-10}$$

这里 β 是 853-位的整数。

様期、KLMM 3/27

Krattenthaler 问题的例子

考虑:

$$na_n = (31n - 6)a_{n-1} + (49n - 110)a_{n-2} + (9n - 225)a_{n-3}$$

 $nb_n = (4n + 13)b_{n-1} + (69n - 122)b_{n-2} + (36n - 67)b_{n-3}$

 $c_n := n! a_n b_n$ 满足的一个差分方程为:

$$\alpha(n)nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-9}$$

这里 $\alpha(n) \in \mathbb{Z}[n]$, $\deg_n(\alpha) = 20$ 。

已知的算法找到:

$$\beta nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-10}$$

这里 β 是 853-位的整数。

我们的算法找到:

$$1nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-14}$$

张相, KLMM 3/27

Ore 代数 (差分情形)

考虑:

$$f(n+1)-(n+1)f(n)=0.$$

利用 $\mathbb{Z}[n][\partial]$ 其中 $\partial\circ f(n):=f(n+1),\ n\circ f(n):=n\cdot f(n)$

$$[\partial-(n+1)]\circ f=0.$$

- ▶ 设 $L \in \mathbb{Z}[n][\partial]$ 。若 $L \circ f = 0$,则称 $L \to f$ 的 差分算子。
- 》设 $L = \ell_r \partial^r + \ldots + \ell_1 \partial + \ell_0$ 称 $\deg_{\partial}(L) = r \ \mathcal{H} \ L$ 的 阶, $\operatorname{lc}_{\partial}(L) = \ell_r \ \mathcal{H} \ L$ 的 首项系数
- ▶ 设 $T \in \mathbb{Z}[n][\partial]$ 。如果 T = PL,那么 T 被称为 L 的 左倍式,这里 $P \in \mathbb{Q}(n)[\partial]$

联網、KLMM 4/27

研究动机

例 1 考虑 u(n) 的差分算子:

$$L = (1 + 16n)^{2} \partial^{2} - (224 + 512n) \partial - (1 + n)(17 + 16n)^{2}$$

问题: 假设 $u(0), u(1) \in \mathbb{Z}$, 对每个 $n \in \mathbb{N}$ 是否有 $u(n) \in \mathbb{Z}$?

张埘, KLMM 5/27

研究动机

例 1 考虑 u(n) 的差分算子:

$$L = (1 + 16n)^{2} \partial^{2} - (224 + 512n) \partial - (1 + n)(17 + 16n)^{2}$$

问题: 假设 $u(0), u(1) \in \mathbb{Z}$, 对每个 $n \in \mathbb{N}$ 是否有 $u(n) \in \mathbb{Z}$? (Abramov, Bakatou, van Hoeij) 找到 L 的左倍式:

$$T := (\ldots)L = \frac{64}{3} +$$
 低阶项 $\in \mathbb{Z}[n][\partial]$

张埘, KLMM 5/27

研究动机

例 1 考虑 u(n) 的差分算子:

$$L = (1 + 16n)^{2} \partial^{2} - (224 + 512n)\partial - (1 + n)(17 + 16n)^{2}$$

问题:假设 $u(0), u(1) \in \mathbb{Z}$,对每个 $n \in \mathbb{N}$ 是否有 $u(n) \in \mathbb{Z}$? (Abramov, Bakatou, van Hoeij) 找到 L 的左倍式:

$$T := (\ldots)L = 64\partial^3 +$$
 低阶项 $\in \mathbb{Z}[n][\partial]$

我们的算法找到 L 的另一左倍式:

$$\widetilde{T} := 1\partial^3 +$$
 低阶项 $\in \mathbb{Z}[n][\partial]$

回答: 是, u(n) 为整数序列。

様網、KLMM 5/27

给定 $L \in \mathbb{Z}[n][\partial]$, $p \mid lc_{\partial}(L)$ 。

设 $T \in \mathbb{Z}[n][\partial]$ 且 $lc_{\partial}(T) = a \cdot g$, 其中 $a \in \mathbb{Z}$, g 是本原的。 若 T 满足:

- ▶ T 为 L 的左倍式
- $ightharpoonup g \mid \frac{1}{p} \operatorname{lc}_{\partial}(L)$

则称 T 为 L 的 p-消尽算子

株網, KLMM 6/27

给定 $L \in \mathbb{Z}[n][\partial]$, $p \mid lc_{\partial}(L)$ 。

设 $T \in \mathbb{Z}[n][\partial]$ 且 $lc_{\partial}(T) = a \cdot g$, 其中 $a \in \mathbb{Z}$, g 是本原的。 若 T 满足:

- ▶ T 为 L 的左倍式
- $g \mid \frac{1}{p} \operatorname{lc}_{\partial}(L)$

则称 T 为 L 的 p-消尽算子

注: a 称为 T 首项系数的容度, 记作 c(T)

後期、KLMM 6/27

张增, KLMM 7/27

设 T 为 p-消尽算子, $lc_{\partial}(T) = a \cdot g$, 其中 $a \in \mathbb{Z}$, g 是本原的。

▶ 若 T 为奇点消尽算子. 且

$$a = \min\{c(Q) \mid Q$$
 为奇点消尽算子}

则称 T 为 L 的 完全奇点消尽算子

※期, KLMM 7/27

例 1 (续) 考虑:

$$L = (1 + 16n)^{2} \partial^{2} - (224 + 512n)\partial - (1 + n)(17 + 16n)^{2}$$

(Abramov, Bakatou, van Hoeij) 找到 L 的左倍式:

$$T = (\ldots)L = 64\partial^3 +$$
 低阶项 $\in \mathbb{Z}[n][\partial]$

找到 L 的另一左倍式:

$$\widetilde{T} = 1\partial^3 + \text{ KM} \ \overline{y} \in \mathbb{Z}[n][\partial]$$

T 和 \widetilde{T} 分别为 L 的奇点消尽算子和完全奇点消尽算子。

株相, KLMM

给定 $L \in \mathbb{Z}[n][\partial]$ 。

考虑 $\langle L \rangle := \mathbb{Q}(n)[\partial]L$, 称 $\langle L \rangle$ 关于 $\mathbb{Z}[n][\partial]$ 的 收缩理想 为

 $\mathsf{Cont}(L) := \langle L \rangle \cap \mathbb{Z}[n][\partial]$

株網、KLMM 9/27

给定 $L \in \mathbb{Z}[n][\partial]$ 。

考虑 $\langle L \rangle := \mathbb{Q}(n)[\partial]L$, 称 $\langle L \rangle$ 关于 $\mathbb{Z}[n][\partial]$ 的 收缩理想 为 $\mathsf{Cont}(L) := \langle L \rangle \cap \mathbb{Z}[n][\partial]$

- ▶ Cont(L) 为 $\mathbb{Z}[n][\partial]$ 的有限生成左理想。
- ▶ L的奇点消尽算子属于 Cont(L)。
- ▶ Cont(L) 包含 Z[n][∂]L, 但一般是真包含。

祭相, KLMM

目标: 计算 Cont(L) 的一组 $\mathbb{Z}[n][\partial]$ -基。

##, KLMM 10/27

目标: 计算 Cont(L) 的一组 $\mathbb{Z}[n][\partial]$ -基。

例 1 (续) 考虑:

$$L = (1 + 16n)^{2} \partial^{2} - (224 + 512n) \partial - (1 + n)(17 + 16n)^{2}$$

Cont(L) 由 {L, \widetilde{T} } 生成。

R/M, KLMM 10/27

奇点消去与收缩理想

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

设 $k \ge r$, 称

$$M_k := \{ T \mid T \in Cont(L), \deg_{\partial}(T) \le k \}$$

为 Cont(L) 的 k 阶子模。

程期, KLMM 11/27

奇点消去与收缩理想

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

设 $k \ge r$, 称

$$M_k := \{ T \mid T \in Cont(L), \deg_{\partial}(T) \le k \}$$

为 Cont(L) 的 k 阶子模。

设 I 为 $\mathbb{Z}[n][\partial]$ 的左理想, $a \in \mathbb{Z} \setminus \{0\}$, 称

 $I: a^{\infty} := \{T \in \mathbb{Z}[n][\partial] \mid \text{ 存在 } k \in \mathbb{N}, \text{ 使得 } a^k T \in I\}$

为 / 关于 a 的 饱和理想。

张超, KLMM
11/27

奇点消去与收缩理想

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

设 $k \ge r$, 称

$$M_k := \{T \mid T \in Cont(L), \deg_{\partial}(T) \le k\}$$

为 Cont(L) 的 k 阶子模。

设 I 为 $\mathbb{Z}[n][\partial]$ 的左理想, $a \in \mathbb{Z} \setminus \{0\}$, 称

$$I: a^{\infty} := \{T \in \mathbb{Z}[n][\partial] \mid$$
 存在 $k \in \mathbb{N}$, 使得 $a^k T \in I\}$

为 1 关于 a 的 饱和理想。

定理 1 (主要结果 1) 设 T 是 L 的奇点消尽算子, $lc_{\partial}(T)=a\cdot g$,其中 $a\in\mathbb{Z}$ 且 g 是本原的。若 $k=deg_{\partial}(T)$,则

$$\operatorname{Cont}(L) = (\mathbb{Z}[x][\partial] \cdot M_k) : a^{\infty}$$

张相, KLMM 11/27

奇点消尽算子阶的上界

给定 $L \in \mathbb{Z}[n][\partial]$ 。

(Chen, Jaroschek, Kauers, Singer) 设 $p \mid lc_{\partial}(L)$, p 不可约

- ▶ 若 p 是可消去的,则可以 计算 出上界 k,使得存在 L 的阶 为 k 的 p-消尽算子。
- ▶ 利用 Euclidean 算法,可以 <mark>计算出</mark> 奇点消尽算子阶的上 界。

张娟, KLMM 12/27

确定收缩理想的 k 阶子模

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

问题: 给定 $k \ge r$, 求 Cont(L) 的 k 阶子模 M_k 的一组生成集?

联網, KLMM 13/27

确定收缩理想的 k 阶子模

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

问题: 给定 $k \ge r$, 求 Cont(L) 的 k 阶子模 M_k 的一组生成集?

设 $V := \{v_1, \dots, v_m\}$ 为 $\mathbb{Z}[n]^r$ 的有限子集。 称 $\{(a_1, \dots, a_m) \in \mathbb{Z}[n]^m \mid \sum_{i=1}^m a_i \cdot v_i = 0\}$ 为 V 的 <mark>合冲模</mark>。

张珰, KLMM 13/27

确定收缩理想的 k 阶子模

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

问题: 给定 $k \ge r$, 求 Cont(L) 的 k 阶子模 M_k 的一组生成集?

设 $V := \{v_1, \dots, v_m\}$ 为 $\mathbb{Z}[n]^r$ 的有限子集。 称 $\{(a_1, \dots, a_m) \in \mathbb{Z}[n]^m \mid \sum_{i=1}^m a_i \cdot v_i = 0\}$ 为 V 的 <mark>合冲模</mark>。

定理 2 给定 $k \ge r$, 可以 计算出 有限集 $V \subseteq \mathbb{Z}[n]^{k+1}$ 使得 M_k 作为 $\mathbb{Z}[n]$ -模同构于 V 的合冲模。

我相, KLMM 13/27

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

回忆:设 $T \in Cont(L)$, $Ic_{\partial}(T) = a \cdot g$, 其中 $a \in \mathbb{Z}$, g 是本原的。若

$$deg(g) = min\{deg(lc_{\partial}(Q)) \mid Q \$$
 p-消尽算子}

则称 T 为 L 的 奇点消尽算子

群網, KLMM 14/27

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

回忆:设 $T \in Cont(L)$, $Ic_{\partial}(T) = a \cdot g$, 其中 $a \in \mathbb{Z}$, g 是本原的。若

$$deg(g) = min\{deg(lc_{\partial}(Q)) \mid Q \$$
 p-消尽算子}

则称 T 为 L 的 奇点消尽算子

问题:设 k 为奇点消尽算子阶的上界,求 L 的奇点消尽算子?

张坞, KLMM 14/27

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

回忆: 设 $T \in Cont(L)$, $Ic_{\partial}(T) = a \cdot g$, 其中 $a \in \mathbb{Z}$, g 是本原的。若

$$deg(g) = min\{deg(lc_{\partial}(Q)) \mid Q \ \, \text{p-消尽算子}\}$$

则称 T 为 L 的 奇点消尽算子

问题:设 k 为奇点消尽算子阶的上界,求 L 的奇点消尽算子?设 k > r. 称

$$I_k := \left\{ [\partial^k] P \mid P \in M_k \right\} \cup \{0\},$$

为 Cont(L) 的 k 阶系数理想, 这里 $[\partial^k]P$ 表示 $P + \partial^k$ 的系数。

株網、KLMM 14/27

命题 若
$$\{B_1,\ldots,B_t\}$$
 为 M_k 的一组生成集,则 $I_k=\langle[\partial^k]B_1,\ldots,[\partial^k]B_t\rangle$

联網, KLMM 15/27

命题 若 $\{B_1, \ldots, B_t\}$ 为 M_k 的一组生成集,则 $I_k = \langle [\partial^k] B_1, \ldots, [\partial^k] B_t \rangle$

定理 3 若 s 是 I_k 中次数最小的非零元素,则 M_k 中以 s 为首项系数的算子 S 是奇点消尽算子。

联搏, KLMM 15/27

命题 若 $\{B_1,\ldots,B_t\}$ 为 M_k 的一组生成集,则 $I_k = \langle [\partial^k]B_1,\ldots,[\partial^k]B_t \rangle$

定理 3 若 s 是 I_k 中次数最小的非零元素,则 M_k 中以 s 为首项系数的算子 S 是奇点消尽算子。

注: 利用 $\mathbb{Q}[n]$ 上的扩展 Euclidean 算法,可以 计算出 上述以 s 为首项系数的算子 S。

张娟, KLMM 15/27

确定收缩理想的基

算法 1: 给定 $L \in \mathbb{Z}[n][\partial]$, 计算 Cont(L) 的一组基底。

- (1) 求出奇点消尽算子阶的上界 k。
- (2) 计算 M_k 作为 $\mathbb{Z}[n]$ -模的一组生成集。
- (3) 计算 k 阶奇点消尽算子 T, 设 a 是 $lc_{\partial}(T)$ 的容度。
- (4) 利用 Gröbner 基, 计算 $(\mathbb{Z}[n][\partial] \cdot M_k)$: a^{∞} 的一组基底。

张娟, KLMM 16/27

确定收缩理想的基

例 1 (续) 考虑:

$$L = (1 + 16n)^{2} \partial^{2} - (224 + 512n)\partial - (1 + n)(17 + 16n)^{2}$$

- (1) 奇点消尽算子阶的上界为 3。
- (2) M₃ 由 {L, T} 生成。
- (3) 由于 $lc_{\partial}(\tilde{T}) = 1$, \tilde{T} 为奇点消尽算子。
- (4) $\operatorname{Cont}(L) = (\mathbb{Z}[n][\partial] \cdot \{L, \widetilde{T}\}) : 1^{\infty} = \mathbb{Z}[n][\partial] \cdot \{L, \widetilde{T}\}$

联增, KLMM 17/27

计算完全奇点消去算子

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

回忆:设 T 为奇点消尽算子, $lc_{\partial}(T) = a \cdot g$,其中 $a \in \mathbb{Z}$,g 是本原的。若

$$a = \min\{c(Q) \mid Q$$
 为奇点消尽算子}

则称 T 为 L 的 完全奇点消尽算子

张档, KLMM 18/27

计算完全奇点消去算子

给定 $L \in \mathbb{Z}[n][\partial]$, $\deg_{\partial}(L) = r$ 。

回忆:设 T 为奇点消尽算子, $lc_{\partial}(T) = a \cdot g$,其中 $a \in \mathbb{Z}$,g 是本原的。若

$$a = \min\{c(Q) \mid Q$$
 为奇点消尽算子}

则称 T 为 L 的 完全奇点消尽算子

问题: 求 L 的一个完全奇点消尽算子?

张州, KLMM 18/27

计算完全奇点消去算子

定理 4 设 $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$ 且 **G** 是 I_k 的一组 Gröbner 基。 令 $f \in G$ 中次数最低的元素。若 $F \in Cont(L)$ 且 $Ic_{\partial}(F) = f$,则 $F \in L$ 的完全奇点消尽算子。

联網, KLMM 19/27

定理 4 设 Cont(L) = $\mathbb{Z}[n][\partial] \cdot M_k$ 且 **G** 是 I_k 的一组 Gröbner 基。 令 $f \in G$ 中次数最低的元素。若 $F \in Cont(L)$ 且 $Ic_{\partial}(F) = f$,则 $F \notin L$ 的完全奇点消尽算子。

算法 2 (主要结果 2): 给定 $L \in \mathbb{Z}[n][\partial]$, 计算 L 的完全奇点消尽算子。

- (1) 由算法 1, $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_k$ 。
- (2) 计算 I_k 的一组 Gröbner 基 **G**。
- (3) 设 $f \in G$ 中次数最低的元素。回溯第 2 步,找到 $F \in Cont(L)$ 使得 $Ic_{\partial}(F) = f$ 。

联網, KLMM 19/27

例 2: 考虑 (Kauers, Krattenthaler, Müller):

$$L = (n+10)(n^6 + 47n^5 + \dots + 211696)\partial^{10} +$$
 低阶项

- (1) 由算法 1, $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{14}$
- (2) $I_{14} = \langle n + 14 \rangle$
- (3) 找到 L 的完全奇点消尽算子 T, $Ic_{\partial}(T) = n + 14$

张埘, KLMM 20/27

例 2: 考虑 (Kauers, Krattenthaler, Müller):

$$L = (n+10)(n^6 + 47n^5 + \dots + 211696)\partial^{10} +$$
 低阶项

- (1) 由算法 1, $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{14}$
- (2) $I_{14} = \langle n + 14 \rangle$
- (3) 找到 L 的完全奇点消尽算子 T, $Ic_{\partial}(T) = n + 14$

注:并不存在阶严格小于 14 的完全奇点消尽算子,因为

$$\partial^{-11} \circ I_{11} = \langle 11104n, 4n(n-466), n(n^2-34n+1336) \rangle,$$

 $\partial^{-12} \circ I_{12} = \langle 4n, n(n-24) \rangle,$
 $\partial^{-13} \circ I_{13} = \langle 2n, n(n-26) \rangle.$

张z KLMM 20/27

例 3: 考虑:

$$na_n = (31n - 6)a_{n-1} + (49n - 110)a_{n-2} + (9n - 225)a_{n-3}$$

 $nb_n = (4n + 13)b_{n-1} + (69n - 122)b_{n-2} + (36n - 67)b_{n-3}$

$$c_n := n! a_n b_n$$
 有阶为 9 的差分算子 L 满足 $lc_{\partial}(L) = (n+9)\alpha(n)$, $\alpha(n) \in \mathbb{Z}[n]$ 。

张z KLMM 21/27

例 3: 考虑:

$$na_n = (31n - 6)a_{n-1} + (49n - 110)a_{n-2} + (9n - 225)a_{n-3}$$

 $nb_n = (4n + 13)b_{n-1} + (69n - 122)b_{n-2} + (36n - 67)b_{n-3}$

 $c_n := n! a_n b_n$ 有阶为 9 的差分算子 L 满足 $lc_{\partial}(L) = (n+9)\alpha(n)$, $\alpha(n) \in \mathbb{Z}[n]$ 。

- (1) 由算法 1, $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{14}$
- (2) $I_{14} = \langle n + 14 \rangle$
- (3) 找到 L 的完全奇点消尽算子 T, $Ic_{\partial}(T) = n + 14$

张娟, KLMM 21/27

例 3: 考虑:

$$na_n = (31n - 6)a_{n-1} + (49n - 110)a_{n-2} + (9n - 225)a_{n-3}$$

 $nb_n = (4n + 13)b_{n-1} + (69n - 122)b_{n-2} + (36n - 67)b_{n-3}$

 $c_n := n! a_n b_n$ 有阶为 9 的差分算子 L 满足 $lc_{\partial}(L) = (n+9)\alpha(n)$, $\alpha(n) \in \mathbb{Z}[n]$ 。

- (1) 由算法 1, $Cont(L) = \mathbb{Z}[n][\partial] \cdot M_{14}$
- (2) $I_{14} = \langle n + 14 \rangle$
- (3) 找到 L 的完全奇点消尽算子 T, $Ic_{\partial}(T) = n + 14$

将 T 转化为 cn 的差分方程

$$1nc_n = (\cdots)c_{n-1} + \ldots + (\cdots)c_{n-14}$$

供期、KLMM 21/27

首项系数容度的下界

设 $L \in \mathbb{Z}[n][\partial]$, 表示为

$$L = a_r f_r(n) \partial^r + \dots + a_1 f_1(n) \partial + a_0 f_0(n)$$

这里 $a_i \in \mathbb{Z}$, $f_i(n)$ 是本原的。若 $gcd(a_0, ..., a_m) = 1$, 则 称 $L \in \mathbb{R}$ -本原的.

张珰, KLMM 22/27

首项系数容度的下界

设 $L \in \mathbb{Z}[n][\partial]$, 表示为

$$L = a_r f_r(n) \partial^r + \cdots + a_1 f_1(n) \partial + a_0 f_0(n)$$

这里 $a_i \in \mathbb{Z}$, $f_i(n)$ 是本原的。若 $gcd(a_0, ..., a_m) = 1$, 则 称 $L \in \mathbb{R}$ -本原的.

定理 4 设L 是 R-本原的, $a \in \mathbb{Z}$, $a \mid lc_{\partial}(L)$ 。那么对于 $Q \in Cont(L) \setminus \{0\}$, $a \mid lc_{\partial}(Q)$ 。

张娟, KLMM 22/27

首项系数容度的下界

例 4: 考虑阶为 2 的 R-本原算子 L, 其首项系数为

$$3(n+2)(3n+4)(3n+5)(7n+3)(25n^2+21n+2)$$

且 $L \gtrsim {4n \choose n} + 3^n$ 的差分算子。根据 定理 4, 对于 $Q \in Cont(L) \setminus \{0\}$, $3 \mid Ic_{\partial}(Q)$ 。

张珰, KLMM 23/27

精想: 令 $(a_n)_{n\geq 0}$ 和 $(b_n)_{n\geq 0}$ 分别为在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。那么 $(n!a_nb_n)_{n\geq 0}$ 也是在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。

依網, KLMM 24/27

精想: 令 $(a_n)_{n\geq 0}$ 和 $(b_n)_{n\geq 0}$ 分别为在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。那么 $(n!a_nb_n)_{n\geq 0}$ 也是在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。

考虑:

$$na_n = \alpha_1 a_{n-1} + \ldots + \alpha_s a_{n-s}$$

$$nb_n = \beta_1 b_{n-1} + \ldots + \beta_t b_{n-t}$$

可以 计算出 $c_n := n!a_nb_n$ 的差分算子 L。

採網、KLMM 24/27

精想: 令 $(a_n)_{n\geq 0}$ 和 $(b_n)_{n\geq 0}$ 分别为在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。那么 $(n!a_nb_n)_{n\geq 0}$ 也是在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。

考虑:

$$na_n = \alpha_1 a_{n-1} + \ldots + \alpha_s a_{n-s}$$

 $nb_n = \beta_1 b_{n-1} + \ldots + \beta_t b_{n-t}$

可以 计算出 $c_n := n!a_nb_n$ 的差分算子 L。

想法: 计算 L 的完全奇点消尽算子。

精想: 令 $(a_n)_{n\geq 0}$ 和 $(b_n)_{n\geq 0}$ 分别为在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。那么 $(n!a_nb_n)_{n\geq 0}$ 也是在 \mathbb{Z} 上的首项系数为 n 的 P-递归序列。

考虑:

$$na_n = \alpha_1 a_{n-1} + \ldots + \alpha_s a_{n-s}$$

 $nb_n = \beta_1 b_{n-1} + \ldots + \beta_t b_{n-t}$

可以 计算出 $c_n := n!a_nb_n$ 的差分算子 L。

想法: 计算 L 的完全奇点消尽算子。

实验结果表明这个猜想可能是 正确的!

张z KLMM 24/27

Krattenthaler 问题的部分证明

情形 1: 考虑:

$$na_n = \alpha a_{n-1}$$

 $nb_n = \beta_1 b_{n-1} + \ldots + \beta_t b_{n-t}$

这里 α , $\beta_i \in \mathbb{Z}[n]$ 。则 $c_n := n! a_n b_n$ 满足

$$nc_n = \gamma_1 c_{n-1} + \ldots + \gamma_t c_{n-t}$$

其中
$$\gamma_i := \beta_i \prod_{j=0}^{i-1} \alpha(n-j)$$
。

张超, KLMM 25/27

Krattenthaler 问题的部分证明

情形 2: 考虑:

$$na_n = \alpha_1 a_{n-1} + \alpha_2 a_{n-2}$$

 $nb_n = \beta_1 b_{n-1} + \beta_2 b_{n-2} + \beta_3 b_{n-3}$

这里 α_i, β_i 为未定元。则 $c_n := n! a_n b_n$ 满足

$$nc_n = \gamma_1 c_{n-1} + \ldots + \gamma_9 c_{n-9}$$

其中 $\gamma_i \in \mathbb{Z}[\alpha_1, \alpha_2, \beta_1, \beta_2, \beta_3, n]$ 。

供期、KLMM 26/27

结论

- 给出了确定收缩理想的算法
- 引入了完全奇点消尽算子并给出算法
- ▶ 序列整性判定及检验 Krattenthlater 问题的特例

张树, KLMM 27/27

结论

- ▶ 给出了确定收缩理想的算法
- 引入了完全奇点消尽算子并给出算法
- ▶ 序列整性判定及检验 Krattenthlater 问题的特例

展望

▶ Krattenthaler 问题的完全证明

张埘, KLMM 27/27

结论

- 给出了确定收缩理想的算法
- 引入了完全奇点消尽算子并给出算法
- ▶ 序列整性判定及检验 Krattenthlater 问题的特例

展望

- ▶ Krattenthaler 问题的完全证明
- > 多变元情形的收缩理想算法

张娟, KLMM 27/27

结论

- 给出了确定收缩理想的算法
- 引入了完全奇点消尽算子并给出算法
- ▶ 序列整性判定及检验 Krattenthlater 问题的特例

展望

- ▶ Krattenthaler 问题的完全证明
- 多变元情形的收缩理想算法
- 收缩理想算法的软件实现

张z KLMM 27/27

结论

- 给出了确定收缩理想的算法
- 引入了完全奇点消尽算子并给出算法
- ▶ 序列整性判定及检验 Krattenthlater 问题的特例

展望

- ▶ Krattenthaler 问题的完全证明
- ▶ 多变元情形的收缩理想算法
- 收缩理想算法的软件实现。

谢谢!

採網、KLMM 27/27