1. PLC 개요 및 기초 이론

1.1 PLC란 무엇인가? (정의 및 역할)

☑ 정의

PLC(Programmable Logic Controller, 프로그래머블 로직 컨트롤러)는 산업 현장에서 기계와 장치를 자동으로 제어하기 위해 설계된 **디지털 연산 제어 장치**다. 초기에는 릴레이와 타이머를 대체하기 위해 개발되었으며, 현재는 공장 자동화의 핵심 장비로 발전했다.

□ "하드웨어 기반의 제어 논리를 소프트웨어적으로 처리할 수 있게 만든 산업용 컴퓨터"
라고 볼 수 있다.

☑ 주요 역할

PLC는 다음과 같은 역할을 수행한다:

기능	설명
입력 신호 수집	센서, 스위치 등에서 발생하는 전기 신호를 수집
논리 연산 처리	입력 상태를 기반으로 프로그래밍된 조건에 따라 연산 수행
출력 제어	릴레이, 모터, 램프 등의 출력 장치를 작동시킴
시퀀스 제어	순차적 동작을 제어하는 로직 실행 (예: 컨베이어, 엘리베이터)
타이머/카운터 제어	일정 시간 후 동작하거나, 특정 횟수를 센 다음 동작 수행
실시간 제어	공장 기기들의 실시간 상태를 반영하여 제어 로직 실행
에러 처리 및 알람	비정상 상황을 감지하고 정지/경고 등의 처리를 수행
HMI/SCADA와 통신	사람과 시스템이 상호작용할 수 있도록 데이터 전송

☑ 핵심 특징

항목	설명
견고함(Ruggedness)	열, 습기, 먼지, 전자파 등 산업 환경에서도 견딜 수 있음
모듈성(Modularity)	입출력, 통신, 특수 기능을 모듈 단위로 추가 가능
프로그래머블(Programmable)	사용자가 래더 다이어그램 등으로 제어 논리를 작성 가능
지속 가동성(Availability)	장시간 무중단 운전을 전제로 설계됨
리얼타임 처리(Real-time)	입력 발생 후 즉시 반응 가능하도록 설계

✓ PLC가 사용되는 주요 예시

분야	예시
제조 공정	컨베이어, 포장기, 로봇 암
자동차 산업	조립 라인, 용접기, 도장 설비
식음료 산업	병입기, 혼합기, 자동 포장기
반도체/디스플레이	웨이퍼 처리, 정밀 장비 제어
물류	자동 창고, 리프트, 이송 시스템
빌딩 자동화	HVAC, 조명, 엘리베이터 제어

☑ 간단 예시로 보는 동작 흐름

- 1 │ 1) 입력 장치에서 신호 수집 (예: 버튼 누름 → 센서 감지)
- 2 **2) PLC** 내부 논리 처리 (래더 프로그램)
- 3 3) 출력 장치 제어 (모터 작동, 램프 점등 등)

☑ 관련 용어 정리

용어	의미
I/O (Input/Output)	PLC가 외부와 연결하는 입출력 신호
Scan Cycle	PLC가 입력 읽기 → 연산 처리 → 출력 갱신을 반복하는 주기
HMI (Human Machine Interface)	작업자와 PLC가 상호작용하는 터치 패널 등
SCADA	공장 전체를 모니터링/제어하는 상위 시스템

1.2 PLC의 역사 및 발전 과정

✓ PLC의 탄생 배경

1960년대 말, 미국 자동차 산업(특히 GM, 제너럴 모터스)에서는 대규모 생산 라인을 운영하면서 다음과 같은 문제가 발생했다:

- 기존의 릴레이 기반 제어 시스템은 유연성이 부족했다.
- 제어 논리를 변경하려면 **배선 작업을 모두 다시 해야 했고**, 이는 시간과 비용의 낭비로 이어졌다.
- 생산 품목이 자주 변경되는 자동차 산업에는 더 이상 릴레이 제어가 적합하지 않았다.
- → 이 문제를 해결하기 위해 소프트웨어로 논리를 변경할 수 있는 컨트롤러가 요구되었고,그 결과 PLC가 탄생하게 된다.

☑ PLC의 초기 개발 (1968년 ~ 1980년대)

연도	사건
1968년	GM의 Hydra-Matic 부서가 "프로그래머블 컨트롤러 개발 요청"을 공식화
1969년	최초의 PLC인 Modicon 084 탄생 (Richard Morley가 개발, "MODular Digital CONtroller")
1970년대	PLC가 산업계에 점차 보급되며 릴레이 기반 제어를 빠르게 대체
1980년대	다양한 제조사들이 자사 PLC 시리즈 개발 (Siemens, Allen-Bradley, Mitsubishi 등)

초기의 PLC는 다음과 같은 특징을 가짐:

- 프로그래밍 언어는 명령어 리스트(STL) 중심
- 메모리는 제한적, 속도도 느림
- 기본적인 디지털 제어에만 사용

☑ PLC의 발전기 (1990년대 ~ 2000년대 초반)

이 시기는 **PLC의 대중화 및 고급화**가 진행된 시기로, 주요 특징은 다음과 같다:

- 아날로그 입출력 제어 지원
- 타이머/카운터 기능의 고도화
- 래더 다이어그램(LD)의 정착: 유지보수가 쉬운 그래픽 기반 언어 확산
- 모듈형 구조의 채택: 입출력, 통신, 특수 기능 모듈을 조합
- HMI와의 연계 증가 (터치 패널)
- **통신 기능 내장**: RS-232, RS-485, Ethernet 포트 탑재
- ★ 이 시기에 IEC 61131-3 표준이 등장하여 PLC 프로그래밍 언어의 국제 표준화를 이끌게 됨

☑ 현대 PLC (2010년대 ~ 현재)

최근 PLC는 단순한 제어기를 넘어 **산업용 컴퓨터급 성능**을 갖추게 되었다.

현대 PLC의 특징	내용
고성능 CPU	실시간 처리, 멀티태스킹 지원
Ethernet 기반 통신	OPC UA, Modbus TCP, Profinet 등 통합
SCADA/클라우드 연동	산업용 IoT(IIoT) 시대를 위한 플랫폼화
프로그래밍 다양화	LD 외에 FBD, ST, SFC 등도 실무에서 폭넓게 활용
원격 진단/업데이트	유지보수의 자동화 및 비대면화
AI 및 예지보전 연동	Edge Al, 데이터 기반 제어 시스템과의 융합

☑ PLC 발전사 요약 연표

시기	주요 특징
1968~1970s	최초의 PLC 등장, 릴레이 대체 목적
1980s	프로그래밍 언어 발전 (STL $ ightarrow$ LD), 모듈화
1990s	IEC 61131-3 표준 등장, 아날로그/통신 기능 강화
2000s	HMI, SCADA 연동 본격화, 네트워크 기반 제어 시작
2010s~현재	lloT, Al, 클라우드 기반 스마트 팩토리 연동

✓ 오늘날 PLC의 위치

PLC는 **스마트 팩토리, 스마트 빌딩, 스마트 농업, 자동차 생산라인, 반도체 공정,** 물류 자동화 시스템 등 모든 산업 자동화 영역에서 여전히 **중추적인 제어 장치**다.

1.3 PLC의 활용 분야 (제조업, 자동화, 공장 제어 등)

☑ 개요

PLC는 **기계의 반복적인 동작을 자동으로 제어**하고, **정밀하고 신속한 판단**을 내릴 수 있도록 설계되어 있기 때문에 다음과 같은 **광범위한 산업 분야에서 핵심 제어 장치**로 사용된다.

단순 제어부터 정밀한 공정 자동화, 대규모 생산 라인, 공공 인프라까지 모든 자동화 영역에서 사용된다.

☑ 분야별 PLC 활용 사례

산업 분야	활용 예시
제조업	생산라인 시퀀스 제어, 프레스기, 사출기, 용접기, 조립 로봇
자동차 산업	차체 조립, 도장 공정, 로봇 암, 검사 장비, AGV 경로 제어
식음료 산업	혼합기, 충전기, 포장기, 멸균 시스템, 라벨러
물류/포장	컨베이어 시스템, 자동 분류기, 팔레타이저
반도체/디스플레이	클린룸 장비, 웨이퍼 로딩, 진공 펌프 제어, 캐리어 이송 시스템
화학/제약 산업	정밀 혼합, 반응기 제어, 온도/압력 제어, 배치 처리
건축/빌딩 자동화	조명 제어, HVAC(공조), 엘리베이터, 방범 시스템
수처리/에너지 설비	펌프 제어, 수위 조절, 수질 센서 연동, 풍력/태양광 발전 제어
철강/중공업	압연기, 크레인 제어, 전기로, 공장 전체 자동화 설비
농업 자동화	온실 자동 개폐, 수분 감지 급수, 스마트 관개 시스템

산업 분야	활용 예시
교통 시스템	교통 신호등, 지하철 출입문, 철도 차량 제어, 터널 환기 시스템
군수/항공/우주	무기 시퀀스 제어, 엔진 테스트 시스템, 지상시험장 제어 시스템

☑ 주요 활용 기능별 설명

기능	설명	사용 예시
시퀀스 제어	정해진 순서에 따라 장치를 제어	조립 라인, 자동문, 포장기
인터록 제어	위험 방지용 상호 배제 제어	로봇 충돌 방지, 전기 설비 보호
아날로그 제어	연속적 수치 제어 (온도, 압력 등)	반응조, 온도 제어, 수위 제어
동기 제어	여러 기기를 동시에 제어	복수 로봇 동작, 다축 제어
데이터 수집/모니터링	실시간 데이터 수집 및 가시화	생산량 집계, 에러 로그 기록
원격 제어 및 통신	다른 PLC나 HMI와 통신	원격 설비 감시, IoT 연동
자동화 로직 처리	조건문, 반복문, 타이머/카운터 등 논리 구성	자동 정지, 조건별 동작 처리

☑ 구체적인 응용 사례

📌 예 1: 자동차 조립 라인

차체 운반 → 용접 → 도장 → 검사 → 이송
 ▶ 각 공정마다 PLC가 설치되어 실시간 시퀀스를 제어하며, 서로 통신을 통해 흐름 제어

★ 예 2: 식음료 생산 설비

원료 투입 → 교반 → 살균 → 병입 → 밀봉 → 라벨 부착
 ▶ 타이머, 센서, 레벨 감지 등으로 정밀 제어

★ 예 3: 컨베이어 기반 물류 시스템

박스가 도착하면 센서 감지 → 라벨 프린트 → 분류기에서 방향 전환
 ▶ 포토센서, 리미트스위치, 모터, 피더 등을 PLC가 제어

📌 예 4: 스마트 팩토리 연동

● PLC가 데이터를 수집하여 SCADA/HMI에 전송 \rightarrow 클라우드 서버에 업로드 \rightarrow AI 분석 \rightarrow 결과를 다시 PLC에 전달 \blacktriangleright 예지보전, 품질 관리 자동화

☑ 정리

PLC는 산업 자동화의 심장 역할을 하며, **제조부터 공공 시스템, 에너지, 농업, 빌딩 제어**까지 모든 곳에 적용된다. "반복적인 논리 제어가 필요한 모든 시스템"에서 PLC는 핵심 장치다.

1.4 PLC vs 마이크로컨트롤러 비교

☑ 개요

PLC(Programmable Logic Controller)와 **마이크로컨트롤러(MCU, Microcontroller Unit)**는 모두 **자동 제어 시스템을 위한 프로세서 기반 장치**라는 공통점을 가지고 있다. 하지만 **목적, 환경, 사용 방식, 성능, 프로그래밍 언어** 등에서 매우 큰 차이가 존재한다.

☑ 정의 요약

항목	PLC	마이크로컨트롤러 (MCU)
정 의	산업용 자동화 제어를 위한 내구성 강한 프로그래머 블 컨트롤러	하나의 칩에 CPU, 메모리, 주변장치를 통합한 임베디 드 컨트롤러
대 상	산업 현장, 공정 제어	가전, loT, 센서, 로봇 등 소형 제어 시스템

☑ 비교 표 (기능별 차이)

항목	PLC	마이크로컨트롤러 (MCU)
사용 목적	공장/산업 자동화 제어	일반 임베디드 제어, 전자기기 내부 제어
환경 특성	고온, 습기, 전자파, 먼지 등 악조건 대응	실내용 혹은 제한된 환경
신뢰성	매우 높음 (24/7 운전 전제)	상대적으로 낮음
입출력 인터페 이스	산업용 디지털/아날로그 I/O, 릴레이 등 지원	GPIO, ADC, PWM 등 비교적 단순
통신	Modbus, Profinet, EtherNet/IP 등 산업용 프 로토콜 내장	UART, SPI, I2C, CAN 등 기본 통신 위주
프로그래밍 언 어	LD, FBD, STL, SFC, ST (IEC 61131-3)	C/C++, 어셈블리 등
프로그래밍 툴	전용 IDE (TIA Portal, GX Works 등)	Embedded IDE (Keil, STM32CubeIDE, Arduino 등)
개발 난이도	비전문가도 비교적 쉬움 (그래픽 기반)	프로그래밍 지식 요구
확장성	모듈 단위로 확장 (통신, I/O, 특수 기능)	칩이나 보드 단위로 설계 필요

항목	PLC	마이크로컨트롤러 (MCU)
가격	상대적으로 고가	저가 (수백 원 ~ 수천 원 단위 MCU 가능)
처리 속도	상대적으로 느림 (수 ms 단위 Scan Cycle)	빠름 (us~ns 단위 연산 가능)
사용 예시	컨베이어, 로봇 제어, 포장기 등	전자 체중계, RC카, 스마트 전등 등

☑ 적용 예시 비교

PLC	마이크로컨트롤러
대규모 생산 라인의 자동 제어	스마트 온도계, 전기포트
포장 시스템의 시퀀스 제어	RC 드론, DIY 키트
수처리 플랜트의 수위/펌프 제어	센서 데이터 로거
고장 시 자동 정지 기능 내장	수동 리셋 설계 필요

☑ 선택 기준 요약

조건	추천 장치
안정성과 견고함이 가장 중요	PLC
대량 생산용 소형 기기 제어	MCU
전문가가 아니더라도 유지보수 가능해야	PLC
개발비용이 매우 중요할 때	MCU
고정된 반복 공정 제어	PLC
유연하고 정밀한 알고리즘 구현이 필요	MCU

☑ 결론

PLC는 **산업 자동화를 위해 설계된 내구성과 안정성을 갖춘 시스템**이며, MCU는 **작고 유연하며 다양한 전자기기에서 활용되는 범용 제어 장치**다.

- PLC는 **안정성과 유지보수**를 우선하는 시스템에 적합
- MCU는 **저비용, 소형화, 고속제어**가 필요한 경우에 적합

두 시스템은 서로 **경쟁 관계가 아니라, 용도에 따라 선택되는 상호보완적 기술**이다.

1.5 릴레이 제어와 PLC의 차이점

✓ 개요

릴레이 제어와 **PLC 제어**는 모두 기계나 장치의 동작 순서를 자동으로 제어하기 위한 기술이다. 하지만 **구조, 방식, 유연성, 확장성, 유지보수** 측면에서 큰 차이를 보인다.

☑ 정의

구분	설명
릴레이 제어	전자기 스위치(릴레이)를 사용하여 전기 회로를 물리적으로 ON/OFF하는 방식. 모든 제어 논리는 하드웨어 배선 으로 구성됨.
PLC 제 어	마이크로프로세서를 기반으로 소프트웨어로 작성된 프로그램(래더 논리 등)을 통해 입출력 장치를 논리적으로 제어하는 방식. 제어 논리는 소프트웨어 프로그램 에 저장됨.

☑ 핵심 차이점 비교표

항목	릴레이 제어	PLC 제어
제어 방식	하드웨어 배선 기반	소프트웨어 논리 기반
유연성	변경이 어려움 (배선 재작업 필요)	논리 변경만으로 즉시 반영 가능
제어 논리 저장 위치	물리적 회로 구성	프로그램 메모리 내 저장
설계 및 유지보수	복잡하고 시간이 많이 듬	빠르고 직관적인 수정 가능
배선 수	매우 많음 (중복 배선 증가)	간단함 (모듈 연결만 필요)
문제 발생 시 진단	물리적 회로를 하나씩 확인해야 함	디버깅, 시뮬레이터, 모니터링 가능
확장성	확장 어려움 (릴레이 추가 필요)	모듈만 추가하면 확장 쉬움
속도 및 신뢰성	기계적 접점으로 상대적으로 느림	전자적 제어로 빠르고 안정적
기계적 수명	릴레이 접점 마모로 고장 가능	전자 회로 기반으로 상대적으로 내구성 높음
타이머/카운터 기능	외부 부품 필요	내부 내장 기능 사용 가능
비용 구조	소규모 시스템엔 저렴	초기비용은 비싸지만 대규모/장기적으로 유리
프로그램 백업	불가능	프로그램 백업 및 복원 가능

☑ 실제 예시 비교

예시 1: 모터 제어 시스템

릴레이 방식	PLC 방식
버튼 \rightarrow 릴레이1 \rightarrow 릴레이2 \rightarrow 모터 ON/OFF	버튼 입력 $ ightarrow$ PLC 논리처리 $ ightarrow$ 출력 릴레이 $ ightarrow$ 모터 ON/OFF
회로 구성 변경 시, 릴레이 배선부터 모두 다시 제작해야 함	래더 다이어그램만 수정 후 다시 다운로드하면 적용 완료

예시 2: 타이머 기능

릴레이 방식	PLC 방식
외부 타이머 릴레이 장치 필요	내장된 TON, TOF 등으로 간단 구현

☑ 장단점 요약

항목	릴레이 제어	PLC 제어
장점	단순 회로, 전기 지식만으로 구성 가능, 초기비용 저렴	유연성, 확장성, 유지보수 용이, 복잡한 제어 가능
단점	설계/수정이 번거롭고 확장성 없음	초기 학습 필요, 고장 시 디버깅 필요 지식 요구

☑ 릴레이 제어의 현재 위치

- 소규모/단일 목적 제어(예: 단순 ON/OFF, 타이머 1개)에서는 여전히 릴레이 방식 사용
- 하지만 공장 전체나 복잡한 조건/시퀀스가 필요한 시스템에서는 **PLC가 완전한 대세**가 됨

☑ 결론

릴레이 제어는 **하드웨어적, 물리적인 방식**이고 PLC는 **소프트웨어 중심의 논리적 방식**이다.

릴레이는 단순한 제어에 적합하고, PLC는 **변화, 확장, 복잡성**을 수용해야 하는 자동화 환경에 적합하다.