

SAIRAM DIGITAL RESOURCES

YEAR

MA8351

DISCRETE MATHEMATICS (Common to CSE & IT)

ALGEBRAIC STRUCTURES

4.3 SUBGROUPS

SCIENCE & HUMANITIES

Subgroup

Let (G,*) be a group. A non-empty subset H of G is said to be a subgroup of G if H itself is a group under the same operation * of G.

Example: (Q, +) is a group and Z is a subset of Q. We know that (Z, +) is a group and so (Z, +) is a subgroup of (Q, +).

Example: The set of all even integers is a subgroup of set of all integers under the operation ' + '.

Theorem:

A non-empty subset H of a group (G,*) is a subgroup of G if and only if $a*b^{-1} \in H \quad \forall a,b \in H$.

Proof:

Let H be a subgroup of a G and $a, b \in H$. $\Rightarrow a^{-1}, b^{-1} \in H$

Since $a \in H$ and $b^{-1} \in H$

 $\Rightarrow a * b^{-1} \in H$ [Since *H* is closed under ' * ']

Conversely, assume H is a subset of G satisfying $a * b^{-1} \in H \ \forall \ a,b \in H$. To prove H is a subgroup of G.

(i) Since H is a non-empty, Let $a \in H$.

$$\Rightarrow a * a^{-1} \in H \implies e \in H.$$

Hence *H* satisfies Identity law.

(ii) Since $a \in H$ and $e \in H$

$$\Rightarrow e, a \in H$$
$$\Rightarrow e * a^{-1} \in H$$
$$\Rightarrow a^{-1} \in H$$

Hence H satisfies Inverse law.

Since $b \in H \implies b^{-1} \in H$ (iii) $\Rightarrow a, b^{-1} \in H$ $a * (b^{-1})^{-1} \in H$ $a*b \in H$.

Hence *H* satisfies closure law.

(iv) Associative law is always true for '*'. Hence (H, *) is a sub-group of G.

Theorem:

If H_1 and H_2 be the two subgroups of G, then P.T $H_1 \cap H_2$ is also a subgroup of G. In other words, intersection of any two subgroup of G is again a subgroup. Also verify, union of any two subgroups of G is again a subgroup.

Proof:

Let (G,*) be a group.

Since H_1 is a subgroup of G

$$\Rightarrow a * b^{-1} \in H_1$$
, $\forall a, b \in H_1$

Since H_2 is a subgroup of G

$$\Rightarrow a * b^{-1} \in H_2, \quad \forall a, b \in H_2$$

Since $a, b \in H_1$ and $a, b \in H_2$

$$\Rightarrow a, b \in H_1 \cap H_2$$

Also $a * b^{-1} \in H_1$ and $a * b^{-1} \in H_2$

$$\Rightarrow a * b^{-1} \in H_1 \cap H_2 \quad \forall a, b \in H_1 \cap H_2$$

 $\Rightarrow H_1 \cap H_2$ is a subgroup of G.

Clearly, $H_1 \cup H_2$ is not a subgroup of G.

Since (Z, +) is a group,

$$H_1 = \{ \dots -6, -4, -2, 0, 2, 4, \dots \}$$

$$H_2 = \{ \dots -10, -5, 0, 5, 10, \dots \}$$

 H_1 and H_2 are the two subgroups.

$$2 \in H_1$$
 and $5 \in H_2$

$$\implies$$
 2 + 5 \notin $H_1 \cup H_2$

: Union is not satisfied.

Example:

If H_1 and H_2 are subgroups of (G,*) then prove that $H_1 \cup H_2$ is a subgroup of H if and only if $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.

Solution: Given H_1 , H_2 are subgroups of (G,*)

Let $H_1 \cup H_2$ be a subgroup of (G,*).

To prove $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$

Assume the contrary. ie. Assume $H_1 \nsubseteq H_2$ and $H_2 \nsubseteq H_1$.

Then there exists $a \in H_1$ and $a \notin H_2$; $b \in H_2$ and $b \notin H_1$.

Since $a \in H_1$ and $b \in H_2$, $a, b \in H_1 \cup H_2 \Longrightarrow a * b \in H_1 \cup H_2$

Since $H_1 \cup H_2$ is a subgroup of (G,*)

 $\therefore a * b \in H_1 \text{ or } a * b \in H_2$

Case (i): Let $a * b \in H_1$, since $a \in H_1$, $a^{-1} \in H_1$

 $\therefore a^{-1} * (a * b) \in H_1$, as H_1 is a subgroup.

 $\Rightarrow (a^{-1}*a)*b \in H_1 \Rightarrow e*b \in H_1 \Rightarrow b \in H_1,$

which contradicts the assumption $b \notin H_1$.

Case (*ii*): Let $a * b \in H_2$, since $b \in H_2$, $b^{-1} \in H_2$

 $(a*b)*b^{-1} \in H_2$, as H_2 is a subgroup.

 $\Rightarrow a * (b * b^{-1}) \in H_2 \Rightarrow a * e \in H_2 \Rightarrow a \in H_2$

which contradicts the assumption $a \notin H_2$.

Hence in either case we have a contradiction.

 \therefore Our assumption $H_1 \nsubseteq H_2$ and $H_2 \nsubseteq H_1$ is wrong.

$$\therefore H_1 \subseteq H_2 \text{ or } H_2 \subseteq H_1$$

Conversely, let $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.

If $H_1 \subseteq H_2$ then $H_1 \cup H_2 = H_2$. $\therefore H_1 \cup H_2$ is a subgroup.

If $H_2 \subseteq H_1$ then $H_1 \cup H_2 = H_1$. $\therefore H_1 \cup H_2$ is a subgroup.

Thus $H_1 \cup H_2$ is a subgroup of (G,*).

Example: Prove that $nZ = \{nx \mid x \in Z\}$ is a subgroup of (Z, +).

Solution: Given $nZ = \{nx \mid x \in Z\}$.

If x = 0 then $nx = 0 \implies 0 \in nZ$, So nZ is non-empty.

Let $a, b \in nZ$ then a = nx, b = ny for some integers x, y.

Then $a - b = nx - ny = n(x - y) \in nZ$.

Hence (nZ, +) is a subgroup of (Z, +).

Example: Find all the non-trivial subgroups of $(Z_6, +_6)$.

Solution: $Z_6 = \{ [0], [1], [2], [3], [4], [5] \}$ $H_1 = \{ [0], [3] \}, H_2 = \{ [0], [2], [4] \}$ are all the non-trivial subgroup of $(Z_6, +_6)$

$$+_{6}$$
 [0] [3] $+_{6}$ [0] [2] [4] [0] [0] [0] [3] [0] [2] [4] [2] [4] [4] [4] [0] [2]

Since H_1, H_2 are finite subsets of G, H_1 and H_2 are closed under $+_6, (H_1, +_6), (H_2, +_6)$ are subgroups of $(Z_6, +_6)$.

Theorem: Every subgroup of a cyclic group is cyclic.

Proof: Let (G,*) be a cyclic group generated by a

Then $G = \{a^n | n \in Z\} = \langle a \rangle$

Let H be a subgroup of G.

Since H is a subset of G, every element of H is of the form a^r

for some $r \in \mathbb{Z}$.

Since *H* is a group, if $a^r \in H$, then its inverse $(a^r)^{-1} = a^{-r} \in H$.

so either r or -r is a positive integer.

Hence H contains positive integer powers of a.

Let m be the least positive integer such that $a^m \in H$.

We shall prove a^m is a generator of H.

Let $x \in H$ be any element, then $x = a^n$ for some $n \in Z$.

For the integers n and m, by Euclidean algorithm, we can find

integers q and r such that n = mq + r, $0 \le r < m$

Then
$$x = a^n = a^{mq+r} = a^{mq} * a^r = (a^m)^q * a^r$$

$$\Rightarrow (a^m)^{-q} * x = (a^m)^{-q} * (a^m)^q * a^r = e * a^r = a^r$$

$$a^r = (a^m)^{-q} * x = a^{-mq} * x$$

Now
$$a^m \in H \implies (a^m)^q \in H$$
, by closure.

$$\Rightarrow$$
 $a^{mq} \in H$ \Rightarrow $a^{-mq} \in H$ [Since H is a group.]

$$\therefore \qquad a^{-mq} * x \in H \qquad [by closure]$$

$$\Rightarrow$$
 $a^r \in H$, where $r < m$

If $r \neq 0$, then $a^r \in H$ is a contradiction to the fact that m is the least positive integer such that $a^m \in H$. Hence r = 0

$$\therefore \qquad n = mq \quad \Longrightarrow \quad x = (a^m)^q$$

Thus, any element of H is an integral power of a^m .

So, H is cyclic group generated by a^m .

i.e.,
$$H = \langle a^m \rangle$$

Theorem: If (G,*) is a cyclic group generated by a, then prove that a^{-1} is also a generator.

Proof: Given $G = \langle a \rangle$

So, any element $x \in G$ is $x = a^n$ for some integer n.

Now
$$x = a^n = (a^{-1})^{-n}$$

Thus, x is an integral power of a^{-1} and so a^{-1} is also a generator of G.

