1) a)

LHS=(
$$((A \cup B))$$
) = ($((A \cup B)^{c})$)

= ($((A^{c} \cap B^{c}))$)

= $((A^{c} \cap B^{c}))$

= (($((A^{c} \cap A^{c}) \cap ((A^{c} \cap B^{c})))$)

= ($((A^{c} \cap A^{c}) \cap ((A^{c} \cap B^{c})))$)

= ($((A^{c} \cap A^{c}) \cap ((A^{c} \cap B^{c})))$)

= ($((A^{c} \cap A^{c}) \cap ((A^{c} \cap B^{c})))$)

= ($((A^{c} \cap A^{c}) \cap ((A^{c} \cap B^{c})))$)

= ($(A^{c} \cap A^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap (A^{c} \cap B^{c}))$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

= ($(A^{c} \cap B^{c} \cap A^{c} \cap B^{c})$)

A | B = E | 33 B | A = E 43

a) Injective:

$$\forall x_1, x_2 \in X$$
, $(x_1 \neq x_2) \Rightarrow (f(x_1) \neq f(x_2))$
Surjective:
 $\forall y \in Y (\exists x \in X (f(x) = y))$
By extine:

2)

Byjective & suggestive

b)
$$f(x) > 1 - x^4$$

c) $f(x) = 1 - x^4$
 $f(x) = 0$
 $f(x) = 0$

3)
$$\sigma_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$$
, $\sigma_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix}$

a)
$$\alpha = \sigma_1; \sigma_2$$

$$\alpha(12345) = \sigma_2(\sigma_1(12345))$$

$$= \sigma_2(23154) = (13245)$$

B = 02; 0,

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}$$

b) $sgn(\sigma_{1}) = (-1)^{3} = -1$ $sgn(\sigma_2) = (-1)^2 = 1$ $sgn(\alpha) = (-1)' = -1$

$$sgn(\sigma_1) \cdot sgn(\sigma_2) = -1 \times 1 = -1 = sgn(\alpha)$$

~ correct

c)
$$\sigma_{1}(12345) = (23154)$$
 $\sigma_{1}^{2}(12345) = (3|245)$
 $\sigma_{1}^{3}(12345) = (12354)$
 $\sigma_{1}^{4}(12345) = (23145)$
 $\sigma_{1}^{5}(12345) = (23145)$
 $\sigma_{1}^{5}(12345) = (31254)$
 $\sigma_{1}^{5}(12345) = (12345)$
 $\sigma_{2}^{6}(12345) = (12345)$

order $\sigma_{1} = 6$
order $\sigma_{2} = 2$

4) $11 = 5(2) + 1$

a)
$$5 = 5(1) + 0$$
 : $9cd = 1$

$$11-5(2)=1$$

: $k_1=1$, $k_2=-2$, $d=1$

c)
$$7^{162}$$
 (mod 187) = $7^2 \cdot 7^{160}$ (mod (87)
= $7^2 \cdot 7^{9(187)}$ (mod 187)
= $7^2 \cdot 1$ (mod 187)
= 49 (mod 187)

(a)
$$\begin{pmatrix} 5 & a \\ a & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 & a \\ 6 & 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

5)

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 & a \\ a & 5 \end{pmatrix}^{1} \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$
$$= \frac{1}{a^2 - 25} \begin{pmatrix} 5 & -a \\ -a & 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

$$= \frac{1}{a^2 - 25} \left(\frac{30 - 6a}{30 - 6a} \right)$$

$$= \frac{1}{\alpha^2 \cdot 25} \left(\frac{30 - 6\alpha}{30 - 6\alpha} \right)$$

$$= \frac{1}{30 - 6\alpha} \left(\frac{6(5 - \alpha)}{30 - 6\alpha} \right)$$

 $=\frac{-1}{a+5}\begin{pmatrix} 6 \\ 6 \end{pmatrix}$

(see (a))

(see (a))

a +-5,5

b) a = -5

 $\mathsf{d}) \quad \mathsf{A}^2 \left(\begin{array}{c} 5 & 7 \\ 7 & 5 \end{array} \right)$

c) a = 5

$$= \frac{1}{(a+5)(a-5)} \left(\frac{6(5-a)}{6(5-a)} \right)$$

$$= \frac{1}{(a+5)(a-5)} \left(\frac{6(5-a)}{6(5-a)} \right)$$

$$= \frac{1}{(a+5)(a-5)} \left(\frac{6(5-a)}{6(5-a)} \right)$$

$$= \frac{1}{(a+5)(a-5)} \begin{pmatrix} 6(5-a) \\ 6(5-a) \end{pmatrix}$$

$$= \frac{(5-a)}{(a+5)(a-5)} \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

det (A - λI) = 0

$$\frac{1}{a^2-25}\begin{pmatrix} 5-a \\ -a \\ 5 \end{pmatrix}\begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

$$\frac{1}{215}\begin{pmatrix} 30-6a \\ 6 \end{pmatrix}$$

$$\begin{array}{c}
(x_2) \\
(5) \\
(a) \\
(6)
\end{array}$$

$$\begin{array}{c}
1 \\
(5) \\
(-a) \\
(6)
\end{array}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 5 & a \\ a & 5 \end{pmatrix}^{1} \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

Hesse are the eigenvalues

$$\begin{vmatrix} 5-\lambda & 7 \\ 7 & 5-\lambda \end{vmatrix} = (5-\lambda)^2 - 49$$

$$= 2^3 + 10\lambda - 49$$

$$= 2^3 - 10\lambda - 24 = 0$$

$$= (2-12)(\lambda+2) = 0$$

$$= \lambda - \lambda - 2 = 0$$

$$= (2-12)(\lambda+2) = 0$$

$$= \lambda - \lambda - \lambda = 0$$

$$= \lambda - \lambda = 0$$