Model-based Segmentation: Part II

Medical Image Analysis Koen Van Leemput Fall 2023

The problem to be solved

$$\mathbf{d} = (d_1, \dots, d_N)^{\mathrm{T}}$$

 d_n : intensity in voxel n

$$\mathbf{l} = (l_1, \dots, l_N)^{\mathrm{T}}$$
$$l_n \in \{1, \dots, K\}$$

K: number of classes

One solution: generative modeling

Formulate a statistical model of image formation

– The model depends on some parameters $~m{ heta}=(m{ heta}_l^{
m T},m{ heta}_d^{
m T})^{
m T}$

Segmentation = inverse problem

Segmentation = inverse problem

Bayesian inference

- Play with the mathematical rules of probability

- Assign a label to each voxel independently
- Probability of assigning label k is π_k

$$p(\mathbf{l}|\boldsymbol{\theta}_l) = \prod \pi_{l_n}, \quad \boldsymbol{\theta}_l = (\pi_1, \dots, \pi_K)^{\mathrm{T}}$$

– Draw the intensity in each voxel with label k from a Gaussian distribution with mean μ_k and variance σ_k^2

$$p(\mathbf{d}|\mathbf{l}, \boldsymbol{\theta}_d) = \prod_n \mathcal{N}(d_n | \mu_{l_n}, \sigma_{l_n}^2), \quad \boldsymbol{\theta}_d = (\mu_1, \dots, \mu_K, \sigma_1^2, \dots \sigma_K^2)^{\mathrm{T}}$$
$$\mathcal{N}(d | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(d - \mu)^2}{2\sigma^2}\right]$$

$$K=3$$
 labels

$$p(\mathbf{d}|\boldsymbol{\theta}) = \prod_{n} \left(\sum_{k} \mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k} \right)$$
$$\boldsymbol{\theta} = (\mu_{1}, \dots, \mu_{K}, \sigma_{1}^{2}, \dots \sigma_{K}^{2}, \pi_{1}, \dots, \pi_{K})^{\mathrm{T}}$$

– Apply Bayes' rule:
$$p(\mathbf{l}|\mathbf{d}, oldsymbol{ heta}) = \prod_n p(l_n|d_n, oldsymbol{ heta})$$

$$p(l_n|d_n, \boldsymbol{\theta}) \propto \mathcal{N}(d_n|\mu_{l_n}, \sigma_{l_n}^2) \pi_{l_n}$$

$$\hat{\mathbf{l}} = \arg \max_{\mathbf{l}} p(\mathbf{l}|\mathbf{d}, \boldsymbol{\theta}) = \arg \max_{l_1, \dots, l_N} p(l_n|d_n, \boldsymbol{\theta})$$

Today's lecture

How to obtain
$$m{ heta}=(\mu_1,\ldots,\mu_K,\sigma_1^2,\ldots\sigma_K^2,\pi_1,\ldots,\pi_K)^{\mathrm{T}}$$

Today's lecture

How to obtain
$$m{ heta}=(\mu_1,\ldots,\mu_K,\sigma_1^2,\ldots\sigma_K^2,\pi_1,\ldots,\pi_K)^{\mathrm{T}}$$

How to obtain model parameters?

- Click manually on some representative points for each label
- "Train once, apply forever"
- Doesn't work well in MRI:
 - different imaging protocols
 - different scanner platforms (make, version)
 - ✓ software/hardware upgrades

/

How to obtain model parameters?

- Click manually on some representative points for each label
- "Train once, apply forever"
- Doesn't work well in MRI:
 - different imaging protocols
 - different scanner platforms (make, version)
 - ✓ software/hardware upgrades

٠

Let's estimate the model parameters automatically from each individual scan

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\mathbf{d}|\boldsymbol{\theta})$$

$$= \arg \max_{\boldsymbol{\theta}} \log p(\mathbf{d}|\boldsymbol{\theta})$$

Estimate the *maximum likelihood* parameters:

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\mathbf{d}|\boldsymbol{\theta})$$

$$\underbrace{=}_{\boldsymbol{\theta}} \arg \max_{\boldsymbol{\theta}} \log p(\mathbf{d}|\boldsymbol{\theta})$$

Task:

- 1. Is this valid? Could I use sine() instead of log()?
- 2. Benefit? Hint: compute (0.01)^1000 in Matlab/Python

estimate)

estimate)

estimate)

estimate)

Expectation Maximization (EM) algorithm:

estimate)

estimate)

Expectation Maximization (EM) algorithm:

- Repeatedly maximize a lower bound to the objective function
- Guaranteed to <u>never</u> move in a wrong direction!

Extends easily to more than two variables (Jensen's inequality):
$$\log \left(\sum_k w_k x_k\right) \geq \sum_k w_k \log(x_k)$$
$$w_k \geq 0, \forall k \text{ and } \sum_k w_k = 1$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \mathcal{N}(d_n | \mu_k, \sigma_k^2) \, \pi_k \right)$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$
$$\geq \sum_{n} \sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right)$$

 $w_k^n \ge 0, \forall k, n \text{ and } \sum_k w_k^n = 1, \forall n$

Question: are random weights enough?

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$
$$\geq \sum_{n} \sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right)$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$

$$\geq \sum_{n} \sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right)$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$
$$\geq \sum_{n} \sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right)$$

The lower bound touches the objective function at the current parameter estimate if $w_k^n \propto \mathcal{N}(d_n|\tilde{\mu}_k, \tilde{\sigma}_k^2) \tilde{\pi}_k$

The lower bound touches the objective function at the current parameter estimate if $w_k^n \propto \mathcal{N}(d_n|\tilde{\mu}_k, \tilde{\sigma}_k^2) \tilde{\pi}_k$

Maximizing the lower bound

Lower bound:

$$\sum_{n} \left[\sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n} | \mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right) \right] = -\frac{1}{2} \sum_{k} \left[\frac{1}{\sigma_{k}^{2}} \sum_{n} w_{k}^{n} (d_{n} - \mu_{k})^{2} + \left(\sum_{n} w_{k}^{n} \right) \log \sigma_{k}^{2} \right] + \sum_{k} \left[\left(\sum_{n} w_{k}^{n} \right) \log \pi_{k} \right] + C$$

Maximizing the lower bound

Lower bound:

$$\sum_{n} \left[\sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n} | \mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right) \right] = -\frac{1}{2} \sum_{k} \left[\frac{1}{\sigma_{k}^{2}} \sum_{n} w_{k}^{n} (d_{n} - \mu_{k})^{2} + \left(\sum_{n} w_{k}^{n} \right) \log \sigma_{k}^{2} \right] + \sum_{k} \left[\left(\sum_{n} w_{k}^{n} \right) \log \pi_{k} \right] + C$$

Task:

3. What is $\tilde{\pi}_k$?

Maximizing the lower bound

Lower bound:

$$\sum_{n} \left[\sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n} | \mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right) \right] = -\frac{1}{2} \sum_{k} \left[\frac{1}{\sigma_{k}^{2}} \sum_{n} w_{k}^{n} (d_{n} - \mu_{k})^{2} + \left(\sum_{n} w_{k}^{n} \right) \log \sigma_{k}^{2} \right] + \sum_{k} \left[\left(\sum_{n} w_{k}^{n} \right) \log \pi_{k} \right] + C$$

$$\tilde{\mu}_{k} \leftarrow \frac{\sum_{n} w_{k}^{n} d_{n}}{\sum_{n} w_{k}^{n}}$$

$$\frac{\partial}{\partial \boldsymbol{\theta}} = 0 \qquad \Rightarrow \quad \tilde{\sigma}_{k}^{2} \leftarrow \frac{\sum_{n} w_{k}^{n} (d_{n} - \tilde{\mu}_{k})^{2}}{\sum_{n} w_{k}^{n}}$$

$$\tilde{\pi}_{k} \leftarrow \frac{\sum_{n} w_{k}^{n}}{N}$$

Classify the image voxels according to the current parameter estimate ("E-step")

- Repeatedly apply closedform parameter updates
- Each iteration improves the log likelihood

initialization

- Imaging artifact in MRI
- Smooth intensity variations across the image area

- Depends on the object being scanned
- More pronounced on high-field scanners

Causes segmentation errors with our segmentation procedure so far...

Causes segmentation errors with our segmentation procedure so far...

Generative model

Improved imaging model

Improved imaging model

Improved imaging model

Bias field model

Linear combination of M smooth basis functions

$$b_n = \sum_{m=1}^{M} c_m \phi_m^n$$

$$\mathbf{b} = (b_1, \dots, b_N)^{\mathrm{T}}$$

 ϕ_m^n : value of the *m*th basis function in voxel *n*

 $\mathbf{c} = (c_1, \dots, c_M)^{\mathrm{T}}$: parameters of the bias field model

Bias field model

Parameter optimization

- Bias field parameters are part of the model parameters
- Parameter optimization with a *Generalized* Expectation Maximization (GEM) algorithm

Constructing the lower bound

- Same derivations as before
- The lower bound touches the

objective function at current parameter estimate if
$$w_k^n \propto \mathcal{N}\bigg(d_n - \sum_m \tilde{c}_m \phi_m^n \ \Big| \tilde{\mu}_k, \tilde{\sigma}_k^2 \bigg) \, \tilde{\pi}_k$$

Improving the lower bound

$$\frac{\partial}{\partial \boldsymbol{\theta}} = 0 \qquad \Rightarrow \qquad \tilde{\mu}_k \leftarrow \frac{\sum_n w_k^n (d_n - \sum_m \tilde{c}_m \phi_m^n)}{\sum_n w_k^n}$$

$$\tilde{\sigma}_k^2 \leftarrow \frac{\sum_n w_k^n (d_n - \sum_m \tilde{c}_m \phi_m^n - \tilde{\mu}_k)^2}{\sum_n w_k^n}$$

Improving the lower bound

$$\frac{\partial}{\partial \boldsymbol{\theta}} = 0 \qquad \Rightarrow \qquad \tilde{\mu}_k \leftarrow \frac{\sum_n w_k^n (d_n - \sum_m \tilde{c}_m \boldsymbol{\phi}_m^n)}{\sum_n w_k^n}$$

$$\tilde{\sigma}_k^2 \leftarrow \frac{\sum_n w_k^n (d_n - \sum_m \tilde{c}_m \boldsymbol{\phi}_m^n - \tilde{\mu}_k)^2}{\sum_n w_k^n}$$

$$\tilde{\pi}_k \leftarrow \frac{\sum_n w_k^n}{N}$$

Improving the lower bound (cont.)

$$\tilde{\mathbf{c}} \leftarrow (\mathbf{\Phi}^{\mathrm{T}} \mathbf{S} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{S} \mathbf{r}$$

✓ cf. linear regression

$$\mathbf{\Phi} = \begin{pmatrix} \phi_1^1 & \phi_2^1 & \dots & \phi_M^1 \\ \phi_1^2 & \phi_2^2 & \dots & \phi_M^2 \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1^N & \phi_2^N & \dots & \phi_M^N \end{pmatrix}$$

$$s_k^n = rac{w_k^n}{ ilde{\sigma}_k^2}, \quad s_n = \sum_k s_k^n, \quad oldsymbol{S} = ext{diag}(s_n), \quad ilde{d}_n = rac{\sum_k s_k^n ilde{\mu}_k}{\sum_k s_k^n}, \quad oldsymbol{r} = egin{pmatrix} d_1 - ilde{d}_1 \ dots \ d_N - ilde{d}_N \end{pmatrix}$$

Improving the lower bound (cont.)

$$\tilde{\mathbf{c}} \leftarrow (\mathbf{\Phi}^{\mathrm{T}} \mathbf{S} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{S} \mathbf{r}$$

✓ cf. linear regression

$$m{\Phi} = \left(egin{array}{cccc} \phi_1^1 & \phi_2^1 & \dots & \phi_M^1 \ \phi_1^2 & \phi_2^2 & \dots & \phi_M^2 \ dots & dots & \ddots & dots \ \phi_1^N & \phi_2^N & \dots & \phi_M^N \end{array}
ight)$$

$$s_k^n = \frac{w_k^n}{\tilde{\sigma}_k^2}$$
 $s_n = \sum_k s_k^n$, $S = \operatorname{diag}(s_n)$, $\tilde{d}_n = \frac{\sum_k s_k^n \tilde{\mu}_k}{\sum_k s_k^n}$, $r = \begin{pmatrix} d_1 - d_1 \\ \vdots \\ d_N - \tilde{d}_N \end{pmatrix}$

E-step

M-step part 1: distribution estimation

M-step part 2: bias field estimation

M-step part 2: bias field estimation

M-step part 2: bias field estimation

 Repeatedly apply closedform parameter updates

Each iteration improves the likelihood

MRI data

Estimated bias field

Aalto-yliopisto
Aalto-universitetet
Aalto University

MRI data

White matter without bias field model

White matter with bias field model

Estimated bias field

MRI data

White matter without bias field model

White matter with bias field model

Estimated bias field

