

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1 (уровень А)

- 1. Найдите $\frac{\partial f}{\partial x}$, если $f(x + \Delta x, y) f(x, y) = -2y\Delta x (\Delta x)^2$.
- 2. Являются ли равенства y(-2) = 0, y'(-2) = 1 начальными условиями для уравнения y' = 7x y?
- 3. Найдите приближенно (заменив дифференциалом) приращение функции $z = \arcsin(x^3 + y^3)$ в точке (-1,1) при $\Delta x = \Delta y = 0$,1.
- 4. Исследуйте на экстремум функцию $z = -2x^2 y^2 xy 3x + y + 1$.
- 5. Решите дифференциальное уравнение $y' + y = e^{-x}$
- 6. Является ли функция y = ctgx решением уравнения $y' + y = \frac{1}{sinx}$?
- 7. Решите дифференциальное уравнение $y'' 4y' = -2\cos 3x$.

Зав. кафедрой		_д.фм.н., проф. Уварова Л. А.
	подпись	ФИО

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2 (уровень А)

- 8. Найдите $\frac{\partial f}{\partial x}$, если $f(x + \Delta x, y) f(x, y) = -5\Delta x (\Delta x)^2$.
- 9. Являются ли равенства y(9) = 0, y'(9) = 1 начальными условиями для уравнения y' = 6x y?
- 10.Найдите приближенно (заменив дифференциалом) приращение функции $z = 7 + x 7y 3x^2y^2 + x^4y$ в точке. (1, 0) при $\Delta x = \Delta y = 0,1$.
- 11.Исследуйте на экстремум функцию $z = x^2 + 2y^2 3xy 2x + 2y 1$.
- 12. Решите дифференциальное уравнение $y' + 2y = \frac{e^{-2x}}{x^2 + 1}$.
- 13. Составьте дифференциальное уравнение с общим решением $y = C_1 e^{-x} + C_1 e^{2x}$.
- 14. Решите дифференциальное уравнение $y'' 2y' = 3\cos 4x$.

1 '1 _	полпись	ФИО	_
Зав. кафедрой		д.фм.н., проф. Уварова Л. А	Α.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3 (уровень А)

- 1. Составьте уравнение касательной плоскости к поверхности $x \sin 2z y^3 + 1 = 0$ в точке (-3, 1, 0).
- 2. Решите уравнение $y' 2y = e^{2x} \sin x$.
- 3. Найдите приближенно (заменив дифференциалом) приращение функции $z=7+x-7y+4x^2y^2+x^4y$ в точке (-1, 1) при $\Delta x=0,01,\ \Delta y=-0,02$.
- 4. Исследуйте на экстремум функцию $z = -x^2 y^2 + xy x y 1$..
- 5. Решите дифференциальное уравнение $xyy' + 2 = y^2$.
- 6. Функции y_1 , y_2 , y_3 , y_4 линейно независимые решения однородного линейного дифференциального уравнения 4-го порядка. Напишите вид общего решения этого уравнения.
- 7. Решите линейное неоднородное дифференциальное уравнение с постоянными коэффициентами $y'' + 9y = 6e^{3x}$.

Зав. кафедрой		д.фм.н., проф. Уварова Л. А
	полпись	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №4 (уровень А)

$$1. z = \frac{5y^2}{2x - 3y}. \frac{\partial z}{\partial y} = ?$$

- 2. Найдите общее решение н.л.д.у., если одним из его решений является функция $\cos 5x$, а фундаментальную систему решений соответствующего о.л.д.у. образуют функции x и x^2 .
- 3. Найдите модуль градиента функции $u = \arcsin(x^2 y^2 2z^2)$ в точке (2, -2, 0).

4.
$$z = e^{\frac{1}{x-y}}$$
. dz=?

- 5. Решите дифференциальное уравнение (x 2y)dx + xdy = 0.
- 6. Найдите общее решение уравнения $y''' = 3^{2x}$.
- 7. Для данного неоднородного дифференциального уравнения напишите вид его частного решения с неопределенными коэффициентами (числовых значений коэффициентов не находите) $y'' 3y' = (x 2)^2$.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №5 (уровень А)

1.
$$z = \frac{2y}{5x-4y}$$
. $\frac{\partial z}{\partial y} = ?$

- 2. Найдите общее решение н.л.д.у., если одним из его решений является функция $\ln 3x$, а фундаментальную систему решений соответствующего о.л.д.у. образуют функции x и x^2 .
- 3. Найдите модуль градиента функции $u = \sqrt{x^2 4y^2 + z^2}$ в точке (2, 1, -2).
- 4. Исследуйте на экстремум функцию $z = x^2 + y^2 xy 3x$.
- 5. Решите дифференциальное уравнение $y^2y' 2x^2 = 0$.
- 6. Решите дифференциальное уравнение (1 + x)y'' y' = 0; y(1) = y'(1) = 4.
- 7. Решите задачу Коши: y'' 3y' 4y = 2x 6; y(0) = 1, y'(0) = -3.

Зав. кафедрой		_д.фм.н., проф. Уварова Л. А
	подпись	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №6 (уровень А)

1.
$$z = tg(x^5 - 3y)$$
. $\frac{\partial z}{\partial x} = ?$

- 2. Составить уравнение нормали к поверхности $x^2 y^2 = z$ в точке (2, -2, 0).
- 3. Найдите приближенно (заменив дифференциалом) приращение функции $z = 2x^3 xy^2 + 5x^2y 4x 2$ в точке (-1, 1) при $\Delta x = 0.02$, $\Delta y = -0.03$.
- 4. Исследуйте на экстремум функцию $z = -x^2 y^2 + xy x y + 4$.
- 5. Решите дифференциальное уравнение $y' + y = e^{-x} \cos x$.
- 6. Исследуйте на линейную зависимость следующую системы функций x, 2x, 4.
- 7. Для данного неоднородного дифференциального уравнения напишите вид его частного решения с неопределенными коэффициентами (числовых значений коэффициентов не находите) $y^{''} 5y^{'} = x^2 e^{5x}$.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №7 (уровень А)

- 1. $z = \sin(3x^6 4y)$. $\frac{\partial z}{\partial x} = ?$
- 2. Функция $y = \varphi(x, C_1, C_2)$ при любых значениях C_1 и C_2 удовлетворяет уравнению $y'' = f(x, C_1, C_2)$. При каком условии эта функция является общим решением данного уравнения?
- 3. Найдите приближенно (заменив дифференциалом) приращение функции $z=5+x-7y-3x^2y^2+x^3y$ в точке (-1,1) при $\Delta x=0,02,\ \Delta y=0,01$.
- 4. Исследуйте на экстремум функцию $z = -x^2 y^2 xy + 6x + 1$.
- 5. Решите дифференциальное уравнение $y' = \frac{y}{4+x^2}$.
- 6. Является ли функция $y = x\cos x$ решением уравнения $y'' + y + 2\sin x = 0$?
- 7. Решите линейное неоднородное дифференциальное уравнение с постоянными коэффициентами $y'' 4y = 4x^2 5$.

Зав. кафедрой		_д.фм.н., проф. Уварова Л. А.
	полпись	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №8 (уровень А)

- 1. Составьте уравнение касательной плоскости к поверхности $x \operatorname{tg} 2z y^2 + 4 = 0$ в точке (1, -2, 0).
- 2. Функции x^2 и x^5 решения н.л.д.у. Будет ли функция $x^5 x^2$ решением соответствующего о.л.д.у. Ответ обоснуйте.
- 3. Найдите модуль градиента функции $u = \sqrt{2x^2 y^2 z^2}$ в точке (1,0,1).
- 4. $z = \frac{y^3}{x^2}$. $\frac{\partial^2 z}{\partial x \partial y} = ?$
- 5. Решите дифференциальное уравнение $y' 2y = \frac{e^{2x}}{\cos^2 x}$.
- 6. Функции y_1 , y_2 , y_3 , y_4 линейно независимые решения однородного линейного дифференциального уравнения 4-го порядка. Напишите вид общего решения этого уравнения.
- 7. Для данного неоднородного дифференциального уравнения напишите вид его частного решения с неопределенными коэффициентами (числовых значений коэффициентов не находите) $y'' + 6y' + 9y = x\sin 3x$.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №9 (уровень А)

- 1. $z = \frac{x^2 5y}{x^2 + 3y}$. $\frac{\partial z}{\partial y} = ?$
- 2. Функции x и x^3 решения н.л.д.у. Будет ли функция x^3 x решением соответствующего о.л.д.у. Ответ обоснуйте.
- 3. Найдите модуль градиента функции $u = \frac{1}{2}\arcsin(x^2 y^2 z^2)$ в точке (3, -3, 0).
- 4. Исследуйте на экстремум функцию $z = x^2 + 2y^2 2xy + 4x 2y + 1$.
- 5. Решите дифференциальное уравнение $yy'\sqrt{\frac{1-x^2}{1-y^2}} + 1 = 0$.
- 6. Составьте дифференциальное уравнение с общим решением $y = C_1 e^{-2x} + C_1 e^{3x}$.
- 7. Решите линейное неоднородное дифференциальное уравнение с постоянными коэффициентами y'' y = 5x + 2.

Зав. кафедрой		_д.фм.н., проф. Ува	<u>рова Л. А</u>
	полпись		

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10 (уровень А)

- 1. Найдите $\frac{\partial f}{\partial x}$, если $f(x + \Delta x, y) f(x, y) = -2y\Delta x (\Delta x)^2$.
- 2. Являются ли равенства y(-3) = 0, y'(-3) = 4 начальными условиями для уравнения y' = 4x y?
- 3. Найдите приближенно (заменив дифференциалом) приращение функции $z = \arcsin(x^3 + y^3)$ в точке (-2, 2) при $\Delta x = \Delta y = 0,1$.
- 4. Исследуйте на экстремум функцию $z = -2x^2 y^2 xy 3x + y + 1$.
- 5. Решите дифференциальное уравнение $y' + y = e^{-x} \sin 2x$.
- 6. Является ли функция y = tg2x решением уравнения $y' + y = \frac{1}{\cos 2x}$?
- 7. Решите дифференциальное уравнение $y'' 4y' = -2\cos 4x$.

Зав. кафедрой <u>д.</u> д.	фм.н.,	проф.	Увар	ова Ј	П. А	4
· ·	•		_			

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №11 (уровень А)

- 1. Составьте уравнение касательной плоскости к поверхности $x \sin 2z y^2 + 1 = 0$ в точке (-3, 1, 0).
- 2. Решите уравнение $y' y \cot x = \sin x$.
- 3. Найдите приближенно (заменив дифференциалом) приращение функции $z = \ln (x^3 + y^2 + 2)$ в точке (2, 1) при $\Delta x = 0.01$, $\Delta y = -0.02$.
- 4. Исследуйте на экстремум функцию $z = -x^2 y^2 xy + x y + 5$.
- 5. Решите дифференциальное уравнение $xyy' + 2 = y^2$.
- 6. Функции y_1 , y_2 , y_3 линейно независимые решения однородного линейного дифференциального уравнения 3-го порядка. Напишите вид общего решения этого уравнения.
- 7. Решите линейное неоднородное дифференциальное уравнение с постоянными коэффициентами $y'' 4y' = -2\cos 2x$.

Зав. кафедрой		_д.фм.н., проф. Уварова Л. А
	полпись	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №12 (уровень А)

- 1. Чему равно наибольшее значение производной по направлению функции u = f(x, y, z) в точке P_0 , если $gradu(P_0) = (5, -3, 2)$?
- 2. Найти приближенно (заменив дифференциалом) приращение функции $z = \sqrt{3 x^3 y^3}$ в точке (-1, 1) при $\Delta x = 0,1$, $\Delta y = 0,5$.
- 3. Исследуйте на экстремум функцию. $z = -x^2 5y^2 + 4xy 2x$.
- 4. Являются ли линейно зависимыми функции e^{2x} и xe^{5x} ? Ответ обоснуйте.
- 5. Является ли функция $y = e^{3x}$ решением уравнения y'' 3y' = 1? Ответ обоснуйте.
- 6. Найдите общее решение уравнения $y' = \frac{y}{x} \frac{y^2}{x^2}$.
- 7. Решите дифференциальное уравнение $y'' + 16y = \sin(2x)$.

Зав. кафедрой	д.фм.н., проф. Уварова Л	Ι. A
зав. кафедрон	_д.ф. м.н., проф. э варова э	1. 11

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №13 (уровень А)

- 1. Найдите $\frac{\partial f}{\partial x}$, если $f(x + \Delta x, y) f(x, y) = -3y\Delta x 4(\Delta x)^3$.
- 2. Найдите модуль градиента функции

$$u = 2x^3y^2z - x^2z^2 + yz - 3x + 4y - 3$$
 в точке (-1, 0, 1).

- 3. Исследуйте на экстремум функцию $z = x^2 4y^2 2xy + 6x 1$..
- 4. Решите дифференциальное уравнение $x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$.
- 5. Как найти общее решение однородного линейного дифференциального уравнения, если известна его фундаментальная система решений?
- 6. Является ли функция $y = e^{5x}$ решением уравнения y'' 25y = 1? Ответ обоснуйте.
- 7. Решите линейное дифференциальное уравнение 2-го порядка $y'' + 2y' 3y = \cos x$.

Зав. кафедрой		<u>д.фм.н., проф</u>
Уварова Л. А.		
	подпись	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №14 (уровень А)

- 1. $z = \sqrt{y^3 3x^4}$. $\frac{\partial z}{\partial x} = ?$
- 2. Составьте уравнение нормали к поверхности $x^2 3xy z^2 = 0$ в точке (-1, 0, 1).
- 3. Найдите приближенно (заменив дифференциалом) приращение функции $z = xy^3 3x^2y^2 7x + y + 1$ в точке (0, 1) при $\Delta x = 0,1$, $\Delta y = 0,2$.
- 4. Исследуйте на экстремум функцию $z = 2\ln(1-x) y^2 + 2x + 6y 2$.
- 5. Решите дифференциальное уравнение $y' = \frac{x}{3v^2} + \frac{y}{x}$.
- 6. Составьте линейное однородное дифференциальное уравнение, если его фундаментальная система решений имеет вид $y_1 = \sin 2x$, $y_2 = \cos 2x$.
- 7. Для данного неоднородного дифференциального уравнения напишите вид его частного решения с неопределенными коэффициентами (числовых значений коэффициентов не находить) $y'' 10y' + 25y = (1 x)e^{5x}$.

полнись	ФИО
Зав. кафедрой	_д.фм.н., проф. Уварова Л. А

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №15 (уровень А)

- 1. Чему равно наибольшее значение производной по направлению функции u = f(x, y, z) в точке P_0 , если $\operatorname{grad} u(P_0) = (-1, 6, -4)$?
- 2. Найдите приближенно (заменив дифференциалом) приращение функции $z=e^{x^2-y^2}$ в точке (-4, 4) при $\Delta x=-0.02, \ \Delta y=0.01$.
- 3. Исследуйте на экстремум функцию $z = 5x^2 y^2 + 2xy + 12y$.
- 4. Решить дифференциальное уравнение $y' = 2^{3x-y}$.
- 5. Решите задачу Коши: $y' + y = 5xe^{-x}$, y(1) = 0.
- 6. Подтвердите, что $y = \sqrt[3]{\cos 3x}$ является решением дифференциального уравнения $y'ctg \, 3x + y = 0$.
- 7. Решите уравнение $y'' + y' 2y = 2xe^x$.

Зав. кафедрой _		_д.фм.н., проф. Уварова Л. А.
	подпись	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 16 (уровень А)

- 1. Функции $\sin x$ и $\cos x$ являются решениями о.л.д.у. Будет ли функция $6\sin x + 8\cos x$ решением этого уравнения? Ответ обоснуйте.
- 2. $z = x \ln(e^x + 4y)$. $\frac{\partial z}{\partial x} = ?$
- 3. Найдите приближенно (заменив дифференциалом) приращение функции $z = \ln(x^3 3y^2)$ в точке (1, 0) при $\Delta x = 0.2$, $\Delta y = -0.1$.
- **4.** Исследуйте на экстремум функцию $z = x^2 + y^2 xy + 3x$.
- 5. Решить дифференциальное уравнение $y' = (-5x + 3)y^2$.
- 6. Запишите общее решение линейного дифференциального уравнения с постоянными коэффициентами $a_2y'' + a_1y' + a_0y = 0$, если соответствующее характеристическое уравнение имеет вещественные и различные корни $\lambda_1, \lambda_2(\lambda_1 \neq \lambda_2)$.
- 7. Решите уравнение $y'' + 3y' 4y = xe^{-3x}$.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №17 (уровень А)

1.
$$z = \sqrt{4y^3 - 7x^2}$$
. $\frac{\partial z}{\partial y} = ?$

- 2. Найдите модуль градиента функции $u = \frac{2}{3} \operatorname{arctg} (x^3 + y^3 z^3)$ в точке (2, 1,1).
- 3. Исследуйте на экстремум функцию $z = y + \frac{4}{y} x^2$.
- 4. Является ли функция $y = x^2$ решением уравнения $(y')^2 = x^2 + 2y$? Ответ обоснуйте.
- 5. Решите дифференциальное уравнение $\frac{dx}{dy} = \frac{1+x^2}{1+y^2}$.
- 6. Как выглядят начальные условия для уравнения y''' = f(x, y, y', y'')?
- 7. Решите уравнение y'' 4y' + 5y = 2x + 1.

Зав. кафедрой _		д.фм.н., проф. Уварова Л. А
	подпись	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №18 (уровень А)

- 1. $z = \operatorname{arctg} \frac{3y}{x}$. dz = ?
- 2. Является ли гипербола xy + 2 = 0 интегральной кривой уравнения xy' + y + 1 = 0. Ответ обоснуйте.
- 3. Найдите приближенно (заменив дифференциалом) приращение функции $z = \sqrt{2x^3 y^3}$ в точке (1, 0) при $\Delta x = -0.1$, $\Delta y = 0.2$.
- 4. Исследуйте на экстремум функцию $z = x^2 + 2y^2 3xy 2x + 2y + 5$.
- 5. Решите дифференциальное уравнение $y' + y = \frac{e^{-x}}{\sin^2 x}$.
- 6. Запишите общее решение линейного дифференциального уравнения с постоянными коэффициентами $a_2y'' + a_1y' + a_0y = 0$, если соответствующее характеристическое уравнение имеет корень λ кратности m = 2.
- 7. Решите дифференциальное уравнение $y'' 5y' + 6y = 15\sin 3x$.

Зав. кафедрой	д.фм.н., проф. Уварова Л. А
эав. кафедроп	_д.ф. м.н., проф. 3 варова 31. 71

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19 (уровень А)

- 1. Составьте уравнение касательной плоскости к поверхности $x^2 5xy z^2 = 0$ в точке (-1, 0, 1).
- 2. Найти модуль градиента функции $u = y \arctan(x^2 + z^2 2)$ в точке (1,1,-1).
- 3. Исследуйте на экстремум функцию $z = 2\ln(1-x) y^2 + 2x + 6y 2$.
- 4. Решите уравнение $y' = \frac{7xy}{x^2-1}$.
- 5. Решите уравнение $y'' + 2y' + 2y = -2e^{-2x}$.
- 6. Получите общее решение ОДУ $y'' = \sin 2x$. Выпишите частное решение, удовлетворяющее начальным условиям: y(0) = 1; y'(0) = 0.
- 7. Проверьте, что функция $y = -\frac{1}{x} + e^x$ является решением уравнения $\frac{3}{x} = \frac{2}{x} + \frac{2}{x}$

$$x^{3}(y''-y) = x^{2}-2$$

Зав. кафедрой	
<u>Л. А</u> .	
подпис	СЬ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВПО МГТУ «СТАНКИН»)

Кафедра «Прикладная математика» 2020/2021 учебный год

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1. Уровень ВС

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. На поверхности $z = x^2 + xy 2y^2 + 3x + 3$ найдите точку, в которой нормаль к этой поверхности перпендикулярна плоскости x + 2y + z = 0.
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = x - 4y \\ \dot{y} = x - 3y \end{cases}$$

3. Составьте линейное дифференциальное уравнение, общее решение которого имеет вид $y = C_1 + C_2 x + C_3 e^{-3x} + x^2 + \sin x$.

полнись	ФИО
Зав. кафедрой	_д.фм.н., проф. Уварова Л. А

минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

20 _/ 20 _ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №2 (уровень В,С)

- 1. С помощью дифференциала функции двух переменных вычислите приближенно $\sqrt[3]{(2,99)^2-(1,03)^3}$.
- 2. Решите систему $\begin{cases} \dot{x} = 2x + y \\ \dot{y} = 4y x \end{cases}$
- 3. Решите дифференциальное уравнение $y''' + 2y'' 4y' 8y = 4x 2 + \cos 2x$.

Зав. кафедрой		_д.фм.н., проф. Уварова Л. А
	подпись	ФИО

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

20 / 20 учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №3 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. К поверхности $x^2 + 2y^2 3z^2 = 42$ провести касательные плоскости, параллельные плоскости x + 4y - 6z = 0.
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = 4x - 5y \\ \dot{y} = x - 2y \end{cases}$$

 $\begin{cases} \dot{x} = 4x - 5y \\ \dot{y} = x - 2y \end{cases}$ 3. Решите уравнение $y''' + 3y'' + 4y' + 12y = 4x + \cos 2x$.

Зав. кафедрой подпись ΦИО

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

 $20 _{} - / 20 _{} _{}$ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №4 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. Исследуйте на экстремум функцию $z = x^3 + 3xy^2 15x 12y + 2$.
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = -5x + 3y \\ \dot{y} = -3x + y \end{cases}.$$

3. Решите дифференциальное уравнение

$$y''' + 3y'' - 4y' - 12y = 4x + \sin 3x.$$

Зав. кафедрой		
	подпись	ΨΝΟ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

 $20 _{-}/20_{-}$ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №5 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. Верно ли, что градиенты функций $u = \frac{x+y}{z}$ и $v = \frac{y+z}{x}$ в точке $M\left(1, -\frac{1}{2}, 1\right)$ ортогональны?

$$\begin{cases} \dot{x} = x - y \\ \dot{y} = -4x + y \end{cases}$$

3. Найдите определитель Вронского функций из какой-нибудь фундаментальной системы решений уравнения y''' - 2y'' - y' + 2y = 0.

Зав. кафедрой _		_д.фм.н.,	проф.	Уварова Л	<u>. A</u> .
	подпись			ФИО	

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВПО МГТУ «СТАНКИН»)

Кафедра «Прикладная математика»

2019/2020 учебный год

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6. Уровень ВС

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. На поверхности $z = 2x^2 + 3xy y^2 + 2x + y 2$ найти точку, в которой касательная плоскость к этой поверхности параллельна плоскости 7x + 9y z = 0.
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = x + y \\ \dot{y} = -2x + 3y \end{cases}$$

3. Составьте однородное линейное дифференциальное уравнение, фундаментальную систему решений которого образуют функции $e^{3x}cos4x$, $e^{3x}sin4x$, 1, x.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

 $20 _{-}/20_{-}$ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №7 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. Найти производную функции $u = x^2 e^y + z^2$ в точке M(1,0,-2) по направлению вектора \overline{MN} , где N(13,-4,1).
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = 2x - y \\ \dot{y} = 4x + 6y \end{cases}$$

 $\dot{x} = 2x - y$ $\dot{y} = 4x + 6y$ 3. Решите дифференциальное уравнение

$$y''' - 2y'' - 4 + 8y = 6(e^{2x} + 1).$$

подпис	еь ФИО
Зав. кафедрой	_д.фм.н., проф. Уварова Л. А.

минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

 $20\ _/\ 20\ _$ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №8 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. На поверхности $z = 3x^2 xy + 2y^2 5x + y 3$ найти точку, в которой касательная плоскость к этой поверхности параллельна плоскости 3x + 7y + z = 0.
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = x + 3y \\ \dot{y} = -x + 5y \end{cases}$$

3. Решите дифференциальное уравнение $y''' - 3y'' - 4y' + 12y = 7x + 10e^{-2x} - 3.$

Зав. кафедрой	д.фм.н., проф. Уварова Л. А
полпись	ФИО

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

20 _ / 20 _ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №9 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. На поверхности $z = 3x^2 + 2xy 7x + 3$ найти точку, в которой нормаль к этой поверхности перпендикулярна плоскости 3x 2y + z = 0.
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = 2x - 3y \\ \dot{y} = x - 2y \end{cases}$$

3. Решите дифференциальное уравнение y''' + 2y'' + y' + 2y = 4(x - cosx) - 2(sinx - 1).

Зав. кафедрой		
	подпись	ΨΝΟ

минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

 $20 _{-}/20_{-}$ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №10 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. x-y+2z=0 уравнение касательной плоскости к поверхности z=f(x,y) в точке M(2,4,1). Найти значение производной $\frac{\partial f}{\partial x}$ в точке (2,4).
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = -x + 2y \\ \dot{y} = -2x - 5y \end{cases}$$

3. Решите дифференциальное уравнение $y''' - 2y'' - 9y' + 18y = 4 - 9x(1-x) + 5e^{2x}$.

полпись	ФИО
Зав. кафедрой	_д.фм.н., проф. Уварова Л. А

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

 $20 _{-}/20_{-}$ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №11 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. Найдите производную функции $u = x^3 y^2 z$ в точке M(-1,2,0) по направлению вектора \overline{MN} , где N(1,1,2).
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = y \\ \dot{y} = -2x + 3y \end{cases}$$

 $\begin{cases} \dot{x} = y \\ \dot{y} = -2x + 3y \end{cases}$ 3. Составьте линейное дифференциальное уравнение, общее решение которого имеет вид $y = C_1 + C_2 x + C_3 e^{-x} + x^2 - 2\cos x$.

Зав. кафедрой		_д.фм.н., проф. Уварова Л. А
· · ·	подпись	ФИО

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

 $20 _{} - / 20 _{} _{}$ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №12 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. На поверхности $2x^2 y^2 3z 6 = 0$ найти точку, в которой касательная плоскость к этой поверхности параллельна плоскости Oxy.
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = 2x - 5y \\ \dot{y} = 5x - 6y \end{cases}$$

3. Составьте линейное дифференциальное уравнение, общее решение которого имеет вид $y = C_1 + C_2 x + C_3 e^{-2x} + x^3 - \cos x$.

Зав. кафедрой	_д.фм.н., проф	. Уварова Л. А.
	полпись	ФИО

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

Кафедра «Прикладная математика» 2019/2020учебный год

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13. Уровень ВС

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 3. На поверхности $z = x^2 + xy 2y^2 + 3x + 3$ найдите точку, в которой нормаль к этой поверхности перпендикулярна плоскости x + 2y + z = 0.
- 4. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = x - 4y \\ \dot{y} = x - 3y \end{cases}$$

3. Составьте линейное дифференциальное уравнение, общее решение которого имеет вид $y = C_1 + C_2 x + C_3 e^{-3x} + x^2 + \cos x$.

подпись	ФИО	
Зав. кафедрой	д.фм.н., проф. Уварова Л. А	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

 $20 _{} - / 20 _{} _{}$ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №14 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. Верно ли, что касательные плоскости к поверхности $x^2-2yz=0$ в точках M(2,2,1) и N(2,-1,-2) взаимно перпендикулярны?
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = 4x - 5y \\ \dot{y} = 2x - 3y \end{cases}$$

3. Решите дифференциальное уравнение $y''' - 2y'' + 4y' - 8y = 4(1 - \cos 3x - \sin 3x)$.

Зав. кафедрой	полица	<u>д.фм.н., проф. Уварова Л.</u>	<u>A</u>
Зав. кафедро п	подпись	<u></u>	<u> </u>

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

20 _/ 20 _ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №15 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. Найдите производную функции u = (x+z)(y+z) в точке M(1,1,1) по направлению вектора \overline{MN} , где N(-1,4,7).

$$\begin{cases} \dot{x} = 3x - 2y \\ \dot{y} = 4x + 7y \end{cases}$$

3. Решите дифференциальное уравнение $y''' - y'' + y' - y = 5x + \sin 3x + 10.$

1 1	подпись	ФИО
Зав. кафедрой		_д.фм.н., проф. Уварова Л. А

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

20 _/ 20 _ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №16 (уровень В,С)

- 1. На поверхности $z = x^2 - 2xy + 2y^2 - 2x + 2$ найти точку, в которой касательная плоскость к этой поверхности параллельна плоскости Oxy .
- 2. Решите систему $\begin{cases} \dot{x} = 8x + 2y \\ \dot{y} = -9x y \end{cases}$
- 3. Решите дифференциальное уравнение y''' + 2y'' 4y' 8y = x + sin2x.

Зав. кафедрой _		_д.фм.н., проф. Уварова Л	<u>. A</u> .
	подпись	ФИО	

минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

20 _/ 20 _ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №17 (уровень В,С)

- 1. На поверхности $z = 2x^2 xy + 3y^2 2x 8$ найти точку, в которой нормаль к этой поверхности перпендикулярна плоскости 4x 6y z = 0.
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = 4x - 5y \\ \dot{y} = x - 2y \end{cases}$$
 3.Решите уравнение $y''' + 3y'' - 4y' - 12y = 6x + cos2x$.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

20 _ / 20 _ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №18 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. Составить уравнение той касательной плоскости к поверхности $z=x^2+2y^2$, которая параллельна плоскости. 2x - 4y - z - 2 = 0.
- 2. Решите систему дифференциальных уравнений

$$\begin{cases} \dot{x} = -5x + 3y \\ \dot{y} = -3x + y \end{cases}$$

 $\begin{cases} \dot{x} = -5x + 3y \\ \dot{y} = -3x + y \end{cases}$ 3.Решите дифференциальное уравнение

$$y''' + 3y'' - 4y' - 12y = 2x^2 + \sin 3x.$$

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

 $20 _{-}/20_{-}$ учебный год

Кафедра «Прикладная математика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №19 (уровень В,С)

По дисциплине «Математический анализ» Для студентов 1 курса, 2 семестра

- 1. Верно ли, что градиенты функций $u = \frac{x+y}{z}$ и $v = \frac{y+z}{x}$ в точке $M\left(1, -\frac{1}{2}, 1\right)$ ортогональны?

$$\begin{cases} \dot{x} = x - y \\ \dot{y} = -4x + y \end{cases}$$

3. Найдите определитель Вронского функций из какой-нибудь фундаментальной системы решений уравнения y''' - 4y'' - y' + 4y =0.

Зав. кафедрой _		M.H., I	троф.	Уварова	<u>Л. А</u> .
	подпись			ФИО	