Design of the CMU Sphinx-4 Decoder

Paul Lamere¹, Philip Kwok¹, William Walker¹, Evandro Gouvêa², Rita Singh², Bhiksha Raj³, Peter Wolf³

¹Sun Microsystems Laboratories, ²Carnegie Mellon University, ³Mitsubishi Electric Research Laboratories, USA

Summary: Sphinx-4 is an open source HMM-based speech recognition system written in the JavaTM programming language. The design of the Sphinx-4 decoder incorporates several new features in response to current demands on HMM-based large vocabulary systems. New design aspects include graph construction for multilevel parallel decoding with multiple feature streams without the use of compound HMMs, the incorporation of a generalized search algorithm that subsumes Viterbi decoding as a special case, token stack decoding for efficient maintenance of multiple paths during search, design of a generalized language HMM graph from grammars and language models of multiple standard formats, that can toggle between a flat search structure and tree search structures.

Description

- Speaker independent
- Large vocabulary
- Continuous speech
- Support true 3-gram, FST and BNF grammars
- Written entirely in the JavaTM programming language
- Open source BSD style license
- Based upon Sphinx-3 and Sphinx-3.3 developed at Carnegie Mellon University (CMU)

- Collaboration between:

- Sun Microsystems Laboratories
- Carnegie Mellon University
- Mitsubishi Electric Research Laboratories (MERL)

Goals

- Highly flexible recognizer
- Speed and accuracy equal to or exceeding Sphinx-3
- Give the world an open source state-of-the-art system for
 - Application development
 - Speech research

Learn More

- Visit the Sphinx-4 project website at:
 cmusphinx.sourceforge.net
- Or contact the team at: cmusphinx-contacts@lists.sourceforge.net

The JavaTM Programming Language

- Object-Oriented
 - Decoupled modules
- Pluggable modules
- High performance
- Garbage collection
- Multi-threaded language
- Rich set of standard libraries
- Write Once, Run AnywhereTM
- Large developer base

The Front End AudioSource Premphasizer Windower Spectrum Analyzer Spectrum Analyzer Mel Filter Bank Mel Cepstrum Filter Normalizer Feature Extractor

Acoustic Model Layout HMM UnitDescription UnitContext TransitionMatrix[n][n] UnitDescription SenoneSequence Right[] UnitContext SenoneSequence CompositeSenoneSequence Senone[] SenoneSequence[] Senone MixtureWeights[m] MixtureComponents[m] ► MeanTransformationMatrix MixtureComponent MeanTransformationVector Mean[x] MeanTransformationMatrix[x][x] Variance MeanTransformationVector[x] Variance[x] VarianceTransformationMatrix VarianceTransformationMatrix[x][x]

Tests

- TI46 11 word dictionary, isolated speech recognition, uses
 TI-46 data from the LDC
- TIDIGITS 11 word dictionary, continuous speech recognition, uses TIDIGITS data from the LDC
- AN4 105 highly confusable words and letters, continuous speech recognition, 3-gram language models, from CMU
- RM1 1,000 word vocabulary, N-gram language models,
 ARPA's Resource Management database
- HUB4 64,000 word vocabulary, 3-gram language models,
 pre-segmented F0 (baseline/broadcast speech), from LDC
 1999 HUB-4 Broadcast News evaluation test material

Performance Comparison				
Test	Word Error Rate (%)		Speed (X RT)	
	Sphinx-3	Sphinx-4	Sphinx-3	Sphinx-4
TI46	0.67	0.17	0.41	0.28
TIDIGITS	1.10	0.32	0.79	0.22
AN4	6.23	6.21	3.70	2.28
RM1 1-gram	15.67	14.77	1.88	$> 10^{\dagger}$
RM1 2-gram	2.10	2.10	2.00	$> 10^{\dagger}$
RM1 3-gram	0.90^{\ddagger}	0.99°	1.74	> 10 [†]

†Note that RM1 tests have not been optimized for speed ‡Note that Sphinx-3 implements a pseudo-3-gram, not a pure 3-gram

Discussion

* Not optimized for accuracy

- Performs well in terms of speed (RT) and accuracy (WER) for smaller tasks
- Performs well in terms of accuracy (WER) for medium-sized tasks
- Not yet optimized for speed for medium-sized or larger tasks
- Evaluation of the medium vocabulary tasks (RM1) and the large vocabulary tasks (HUB4) is ongoing
- Performance data collected on a Dual CPU, 750 MHz
 UltraSPARC® III processors with 1024 MB memory

Current and Future Work

- Optimize medium vocabulary tasks improve speed to meet or exceed Sphinx-3
- Complete and optimize large vocabulary tasks
- Create Sphinx-4 trainer to generate Sphinx-4 acoustic models
- Support word lattices
- Support confidence scoring
- Support Java Speech API (JSAPI)