FICHE DE COURS 27

Bilan d'entropie en thermodynamique

Ce que je dois être capable de faire après avoir appris mon cours

Ч	Enoncer le critère qualitatif d'évolution d'un système isole.
	Énoncer le deuxième principe de la thermodynamique pour un système thermodynamique fermé sans réaction (fonction d'état, extensivité, bilan d'entropie avec terme de création).
	Donner le critère quantitatif d'évolution d'un système thermiquement isolé (transformation adiabatique).
	Définir la pression et la température thermodynamique.
	Donner et utiliser les identités thermodynamiques.
	Utiliser l'expression de l'entropie d'une PCI.
	Utiliser l'expression de l'entropie d'un GP.
	Associer une transformation isentropique à une évolution adiabatique réversible.
	Démontrer les lois de Laplace du GP pour une transformation isentropique.
	Décrire l'expérience de la détente de Joule et Gay-Lussac à l'aide du deuxième principe.
	Donner sommairement une interprétation statistique de l'entropie.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \square$ Deuxième principe de la thermodynamique :

$$\Delta S = S_{\text{\'ech}} + S_{\text{cr\'e\'e}} \qquad \text{et} \qquad dS = \delta S_{\text{\'ech}} + \delta S_{\text{cr\'e\'e}}$$

avec:

- \star l'entropie créée $S_{\rm créée} \geq 0\,;$ pour une transformation réversible $S_{\rm créée} = 0.$
- \star l'entropie échangée $S_{\rm \acute{e}ch}=\int \frac{\delta Q}{T_{\rm surf}}.$
- $\hfill \square$ Identités thermodynamiques :

$$dU = TdS - PdV \qquad \text{et} \qquad dH = TdS + VdP$$

 $\hfill \square$ Cas d'une transformation adiabatique réversible :

$$\mathrm{d}S \underset{\mathrm{AD+r\acute{e}v}}{=} 0$$