Regularización: Lasso y Elastic Net Big Data y Machine Learning para Economía Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

- 1 Regularization
 - Recap
 - Ridge as Data Augmentation
 - Lasso
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

- Regularization
 - Recap
 - Ridge as Data Augmentation
 - Lasso
 - Ridge and Lasso: Pros and Cons
 - Familia de regresiones penalizadas
 - Elastic Net

1 Regularization

- Recap
 - Ridge as Data Augmentation
- Lasso
- Ridge and Lasso: Pros and Cons
- Familia de regresiones penalizadas
- Elastic Net

Regularización: Motivación

- Las técnicas econometricas estándar no están optimizadas para la predicción porque se enfocan en la insesgadez.
- ▶ OLS por ejemplo es el mejor estimador lineal *insesgado*
- ightharpoonup OLS minimiza el error "dentro de muestra", eligiendo β de forma tal que

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2$$
 (1)

- pero para predicción, no estamos interesados en hacer un buen trabajo dentro de muestra
- ▶ Queremos hacer un buen trabajo, fuera de muestra

OLS 1 Dimension

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2$$
 (2)

App

OLS 2 Dimensiones

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i2}\beta_2)^2$$
(3)

Fuente: https://allmodelsarewrong.github.io

Ridge

- Asegurar cero sesgo dentro de muestra crea problemas fuera de muestra: trade-off Sesgo-Varianza
- Las técnicas de machine learning fueron desarrolladas para hacer este trade-off de forma empírica.
- Vamos a proponer modelos del estilo

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} R(\beta_j)$$
 (4)

donde R es un regularizador que penaliza funciones que crean varianza

Ridge

lacktriangle Para un $\lambda \geq 0$ dado, consideremos ahora el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{i=1}^{p} (\beta_i)^2$$
 (5)

Intuición en 2 Dimensiones (Ridge)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (6)

Ridge as Data Augmentation (1)

RidgeDataAug

▶ Add λ additional points

$$\sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \beta^2 \tag{7}$$

Ridge as Data Augmentation (2)

RidgeDataAug

► Add a single point

$$\sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \beta^2 =$$
 (8)

1 Regularization

- Recap
 - Ridge as Data Augmentation
- Lasso
- Ridge and Lasso: Pros and Cons
- Familia de regresiones penalizadas
- Elastic Net

Lasso

Para un $\lambda \geq 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (9)

Lasso

lacktriangle Para un $\lambda \geq 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (9)

- LASSO's free lunch": selecciona automáticamente los predictores que van en el modelo $(\beta_j \neq 0)$ y los que no $(\beta_j = 0)$
- ▶ Por qué? Los coeficientes que no van son soluciones de esquina
- $ightharpoonup L(\beta)$ es no differentiable

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (10)

$$\hat{\beta} > 0$$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (11)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (12)

$$\hat{\beta} > 0$$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (13)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (14)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (15)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta$$
 (16)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda\beta \tag{17}$$

Solución analitica

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(18)

Intuición en 2 Dimensiones (Lasso)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } (|\beta_1| + |\beta_2|) \le c$$
 (19)

Example

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Resumen

- ► Ridge y Lasso son sesgados, pero las disminuciones en varianza pueden compensar estoy y llevar a un MSE menor
- Lasso encoje a cero, Ridge no tanto
- ► Importante para aplicación:
 - Estandarizar los datos
 - ► Elegimos λ → Validación cruzada

Subgradientes

Coordinate Descent

Regularization

- Recap
 - Ridge as Data Augmentation
- Lasso
- Ridge and Lasso: Pros and Cons
- Familia de regresiones penalizadas
- Elastic Net

- ► Objective 1: Accuracy
 - lacktriangle Minimize prediction error (in one step) ightarrow Ridge, Lasso
- Objective 2: Dimensionality
 - ▶ Reduce the predictor space → Lasso's free lunch
- ▶ More predictors than observations (k > n)
 - OLS fails
 - Ridge augments data
 - Lasso chooses at most *n* variables

OLS when k > n

- ▶ Rank? Max number of rows or columns that are linearly independent
 - ▶ Implies $rank(X_{n \times k}) \le min(k, n)$
- ▶ MCO we need $rank(X_{n \times k}) = k \implies k \le n$
- ▶ If $rank(X_{n \times k}) = k$ then rank(X'X) = k
- ▶ If k > n, then $rank(X'X) \le n < k$ then (X'X) cannot be inverted
- ▶ Ridge works when $k \ge n$

Ridge when k > n

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \sum_{j=1}^{k} x'_{ij}\beta_j)^2 + \lambda (\sum_{j=1}^{k} \beta_j)^2$$
 (20)

- ► Solution → data augmentation
- ► Intuition: Ridge "adds" *k* additional points.
- ▶ Allows us to "deal" with k > n

Ridge when k > n

- ▶ When we have a group of highly correlated variables,
 - Lasso chooses only one.

- ▶ When we have a group of highly correlated variables,
 - Lasso chooses only one. Makes it unstable for prediction.
 - ► Ridge shrinks the coefficients of correlated variables toward each other. This makes Ridge "work" better than Lasso. "Work" in terms of prediction error

Regularization

- Recap
 - Ridge as Data Augmentation
- Lasso
- Ridge and Lasso: Pros and Cons
- Familia de regresiones penalizadas
- Elastic Net

Family of penalized regressions

$$min_{\beta}R(\beta) = \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda \sum_{s=2}^{p} |\beta_s|^q$$
 (21)

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

Regularization

- Recap
 - Ridge as Data Augmentation
- Lasso
- Ridge and Lasso: Pros and Cons
- Familia de regresiones penalizadas
- Elastic Net

Elastic net

$$min_{\beta}EN(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + \frac{(1-\alpha)}{2} \sum_{j=1}^{p} (\beta_j)^2\right)$$
(22)

- ightharpoonup Si $\alpha = 1$ Lasso
- ► Si $\alpha = 0$ Ridge

Elastic Net

- ► Elastic net: happy medium.
 - ► Good job at prediction and selecting variables

$$min_{\beta}EN(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + \frac{(1-\alpha)}{2} \sum_{j=1}^{p} (\beta_j)^2\right)$$
(23)

- Mixes Ridge and Lasso
- Lasso selects predictors
- Strict convexity part of the penalty (ridge) solves the grouping instability problem
- ▶ How to choose (λ, α) ? → Bidimensional Crossvalidation
- ▶ Recomended lecture: Zou, H. & Hastie, T. (2005)

Example

 $photo\ from\ \texttt{https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/allowers.}$