MIPS Reference Data **CORE INSTRUCTION SET OPCODE** FOR-FUNCT OPERATION (in Verilog) NAME, MNEMONIC MAT (Hex) (1) 0 20_{hex} Add add R R[rd] = R[rs] + R[rt]8_{hex} (1,2)Add Immediate R[rt] = R[rs] + SignExtImmaddi Add Imm. Unsigned addiu R[rt] = R[rs] + SignExtImm(2) 0 / 21_{hex} Add Unsigned addu R[rd] = R[rs] + R[rt]R[rd] = R[rs] & R[rt]0 / 24_{hex} And and And Immediate R[rt] = R[rs] & ZeroExtImm c_{hex} andi Branch On Equal PC=PC+4+BranchAddr f(R[rs]!=R[rt])Branch On Not Equal bne PC=PC+4+BranchAddr PC=JumpAddr Jump (5) 2_{hex} Jump And Link R[31]=PC+8;PC=JumpAddr 3_{hex} jal 0 / 08_{hex} Jump Register R PC=R[rs] jr $R[rt] = \{24'b0, M[R[rs]]$ Load Byte Unsigned 1bu 24_{hex} +SignExtImm](7:0)} (2)Load Halfword $R[rt]=\{16^{\circ}b0,M[R[rs]]$ lhu 25_{hex} +SignExtImm](15:0)} Unsigned (2)Load Linked R[rt] = M[R[rs] + SignExtImm](2,7) 30_{hex} 11 Load Upper Imm. $R[rt] = \{imm, 16'b0\}$ fhex Move From Control mfc0 Multiply Load Word 23_{hex} 1 w R[rt] = M[R[rs] + SignExtImm](2) Multiply Unsigned multu 0 / 27_{hex} Nor nor $R[rd] = \sim (R[rs] \mid R[rt])$ Shift Right Arith. 0 / 25_{hex} Oror R[rd] = R[rs] | R[rt]Store FP Single d_{hex} Or Immediate ori $R[rt] = R[rs] \mid ZeroExtImm$ (3) Store FP Double $0/2a_{hex}$ Set Less Than R R[rd] = (R[rs] < R[rt]) ? 1 : 0R[rt] = (R[rs] < SignExtImm)? 1: 0 (2)Set Less Than Imm. slti a_{hex} Set Less Than Imm. R[rt] = (R[rs] < SignExtImm)sltiu Unsigned ?1:0 (2.6)Set Less Than Unsig. sltu R R[rd] = (R[rs] < R[rt]) ? 1 : 0(6) $0/2b_{hex}$ 0 / 00_{he} Shift Left Logical $R[rd] = R[rt] \ll shamt$ 0 / 02_{hex} Shift Right Logical R R[rd] = R[rt] >> shamtsrl M[R[rs]+SignExtImm](7:0) =28_{hex} Store Byte sb R[rt](7:0) (2) M[R[rs]+SignExtImm] = R[rt];38_{hex} Store Conditional sc R[rt] = (atomic) ? 1 : 0(2,7)M[R[rs]+SignExtImm](15:0) =29_{hex} Store Halfword sh R[rt](15:0) 2b_{hex} Store Word M[R[rs]+SignExtImm] = R[rt](2) SW (1) 0) 22_{hex} R R[rd] = R[rs] - R[rt]Subtract 0 / 23_h R R[rd] = R[rs] - R[rt]Subtract Unsigned (1) May cause overflow exception (2) SignExtImm = [16{immediate[15]}, immediate } (3) ZeroExtIm = { 16{1b'0}, immediate } (4) Branch (ddr = { 14{immediate[15]}, immediate, 2'b0 } (5) $Jum Addr = \{ PC+4[31:28], address, 2'b0 \}$ (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic BASIC INSTRUCTION FORMATS R immediate rt 21 20 16 15

(1)

			,	/ FM1 /F1
		FOR-	-	/ FUNCT
NAME, MNEMO	ONIC	MAT	OPERATION	(Hex)
Branch On FP True	bc1t	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0//-1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add Double	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + {F[ft],F[ft+1]}$	11/11//0
FP Compare Single	cre*	FR	FPcond = (F[fs] op F[ft])? 1:0	11/10//y
FP Compare				11/10//y
Double	c.x.d*	FR	FPcond = $(\{F[fs],F[fs+1]\} op \{F[ft],F[ft+1]\}) ? 1 : 0$	11/11//y
* $(x \text{ is eq, lt, } 0)$	orle) (d	op is	==, <, or <=) (y is 32, 3c, or 3e)	
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double			{F[ft],F[ft+1]}	11/11/ /5
	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply Double	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract Double	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$	11/11//1
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	ldc1	Ι	F[rt]=M[R[rs]+SignExtImm]; (2)	35//
Double		ъ	F[rt+1]=M[R[rs]+SignExtImm+4]	0 / / /10
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 //-12

R[rd] = CR[rs]

 $\{Hi,Lo\} = R[rs] * R[rt]$

 ${Hi,Lo} = R[rs] * R[rt]$

R[rd] = R[rt] >>> shamt

M[R[rs]+SignExtImm] = F[rt]

M[R[rs]+SignExtImm] = F[rt];

M[R[rs]+SignExtImm+4] = F[rt+1]

OPCODE

/ EMT /ET

10 /0/--/0

0/--/-18

0/--/-3

39/--/--

3d/--/--

(6) 0/--/--/19

FLOATING-POINT INSTRUCTION FORMATS

mult

sra R

swc1

sdc1

R

R

R

Ι

ARITHMETIC CORE INSTRUCTION SET

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	;
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
			A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra 31		Return Address	Yes

OPCODES	S, BASE	CONVER	SION, ASCI	ISYMB	OLS
MIDC (1)	MIDC	(2) MIDC		YY	ACC

OPCOD	ES. BASE	CONVER	SION	. Α	SCIL	SYMB	OLS		9	
	(1) MIPS						ASCII	L .	Hexa-	ASCII
opcode	funct	funct	Binar	** 7	Deci-	deci-	Char-	Dec1-	deci-	Char-
			Dillai	y	mal	mal	acter	mal	mal	
(31:26)	(5:0)	(5:0)	00 00	00	0	0	NUL	64	40	acter
(1)	sll	add.f							41	@
١.		sub.f	00 00		1	1	SOH	65		A
j .	srl	mul.f	00 00		2	2	STX	66	42	В
jal	sra	div.f	00 00		3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 01		4	4	EOT	68	44	D
bne		abs.f	00 01		5	5	ENQ	69	45	Е
blez	srlv	mov.f	00 01		6	6	ACK	70	46	F
bgtz	srav	neg.f	00 01		7	7	BEL	71	47	G
addi	jr		00 10		8	8	BS	72	48	Ĥ
addiu	jalr		00 10		9	9	HT	73	49	I
slti	movz		00 10		10	a	LF	74	4a	J
sltiu	movn		00 10		11	b	VT	75	4b	K
andi	syscall	round.w.f	00 11		12	c	FF	76	4c	L
ori	break	trunc.w.f	00 11		13	d	CR	77	4d	M
xori		ceil.w.f	00 11		14	e	SO	78	4e	N
lui	sync	floor.w.f	00 11		15	f	SI	79	4f	0
(2)	mfhi		01 00		16	10	DLE	80	50	P
(2)	mthi		01 00		17	11	DC1	81	51	Q
	mflo	movz.f	01 00		18	12	DC2	82	52	R
	mtlo	movn.f	01 00		19	13	DC3	83	53	S
			01 01		20	14	DC4	84	54	T
			01 01		21	15	NAK	85	55	U
			01 01		22	16	SYN	86	56	V
			01 01		23	17	ETB	87	57	W
	mult		01 10			18	CAN	88	58	X
	multu		01 10		25	19	EM	89 90	59	Y
	div		01 10		26	la	SUB ESC	90	5a	Z
	divu		01 10		27	1b		91	5b]
			01 11 01 11		28	lc 1d	FS GS	92	5c 5d	1
			01 11		30	1d	RS	93	5u	,
			01 11		31	le 1f	US	95	5f	
1b	add	cvt.s.f	10 00		32	20	Space	96	60	-
lh	addu	cvt.d.f	10 00		33	21	!	97	61	a
lwl	sub	cvc.u.j	10 00		34	22	÷	98	62	b
lw	subu		10 00		35	23	#	99	63	c
lbu	and	cvt.w.f	10 01		36	24	\$	100	64	d
lhu	or	ore.my	10 01		37	25	%	101	65	e
lwr	xor		10 01		38	26	&	102	66	f
	nor		10 01		39	27	,	103	67	g
sb			10 10		40	28	(104	68	h
sh			10 10		41	29)	105	69	i
swl	slt		10 10		42	2a	*	106	6a	j
SW	sltu		10 10		43	2b	+	107	6b	k
			10 11	00	44	2c	,	108	6c	1
			10 11	01	45	2d	-	109	6d	m
swr			10 11		46	2e		110	6e	n
cache			10 11		47	2f	/	111	6f	o
11	tge	c.f.f	11 00		48	30	0	112	70	p
lwc1	tgeu	c.un. f	11 00		49	31	1	113	71	q
lwc2	tlt	c.eqf	11 00		50	32	2	114	72	r
pref	tltu	c.ueq.f	11 00		51	33	3	115	73	S
	teq	c.olt.f	11 01		52	34	4	116	74	t
ldc1		c.ult.f	11 01		53	35	5	117	75	u
ldc2	tne	c.ole.f	11 01		54	36	6	118	76	V
		c.ule.f	11 01		55	37	7	119	77	W
sc		c.sf.f	11 10		56	38	8	120	78	X
swc1		c.ngle f	11 10		57	39	9	121	79	У
swc2		c.seq.f	11 10		58	3a	:	122	7a	Z
		c.ngl.f	11 10		59	3b	;	123	7b	-{
, ,		c.lt.f	11 11		60	3c	< =	124	7c]
sdc1		c.nge.f	11 11		61	3d	= >	125	7d	} ~
sdc2		c.le.f	11 11	10	62	3e	2	126	7e	~ DEI

c.ngt.f | 11 1111 63 (1) opcode(31:26) == 0(2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single);

if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

(3)

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

IEEE 754 Symbols

Exponent	Fraction	Object
0	0	± 0
0	≠0	± Denorm
1 to MAX - 1	anything	± Fl. Pt. Num.
MAX	0	±∞
MAX	≠0	NaN
S.P. $MAX = 2$	255, D.P. N	MAX = 2047

Exponent Fraction 31 23 22 S Exponent Fraction 63 62 52 51

DATA ALIGNMENT

Double Word											
	Wo	rd			W	ord					
Halfv	vord	Half	word	Hal	fword	Half	word				
Byte Byte Byte			Byte	Byte	Byte	Byte	Byte				
0	1	2	3	4	5	6	7				

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

 	 ۸.۰							
В		Interrupt			Exception	П		
D		Mask			Code	1		
31	15		8	6		2		
		Pending			U		Е	Ι
		Interrupt			M		L	Е
	15		8		4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

=/	KCEPIIC	JN CC	DES			
	Number	Name	Cause of Exception	Number	Name	Cause of Exception
	0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
	4	AdEL	Address Error Exception	10	RI	Reserved Instruction
	-	Auel	(load or instruction fetch)	10	KI	Exception
	5	AdES	Address Error Exception 11		CpU	Coprocessor
	3	Auls	(store)	11	СрС	Unimplemented
	6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
	0	IDE	Instruction Fetch	12	Ov	Exception
	7	DBE Bus Error on 13		13	Tr	Trap
	_ ′	DBE	Load or Store	13	11	пар
	8	Svs	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication: 2^x for Memory)

	TELLIALS (10 101 DISK, Communication, 2 101 Memory)												
	PRE-			PRE-			PRE-						
	SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX					
	10 ³ , 2 ¹⁰ Kilo-		$10^{15}, 2^{50}$	Peta-	10 ⁻³ milli-		10 ⁻¹⁵	femto-					
	$10^6, 2^{20}$	Mega-	$10^{18}, 2^{60}$	Exa-	10-6	micro-	10-18	atto-					
	10 ⁹ , 2 ³⁰ Giga-		$10^{21}, 2^{70}$	Zetta-	10 ⁻⁹	nano-	10-21	zepto-					
	$10^{12}, 2^{40}$	Tera-	10 ²⁴ , 2 ⁸⁰	Yotta-	otta- 10 ⁻¹² pico		10-24	yocto-					
-	1 1 1	C 1	C		4			c .					

The symbol for each prefix is just its first letter, except μ is used for micro.

127