A Generic Parallel Framework for Inferring Large Scale Gene Regulatory Networks from Expression Profiles: Applications to Alzheimer's Disease Network

SUPPLEMENTARY -1

Algorithmic Representation of the Generic Parallel Framework for Inferring Large Scale Gene Regulatory Networks from Expression Profiles

We include the algorithmic representation of the generic parallel framework in this section.

Algorithm 1 Dataset partitioning

- 1: **procedure** Partitioning(p,c) \Rightarrow Partitioning the dataset with c columns into p partitions
- 2: count=1
- 3: d=c/p > d is the number of columns in each partition
- 4: **for** every partition p **do**
- 5: Extract the columns from count to d
- 6: Store the extracted columns as a sub-matrix
- 7: count = count + d
- 8: end for
- 9: Store all the sub-matrices in SMs
- 10: end procedure

Algorithm 2 Local sub-network inference

- 1: **procedure** Inference(SMs, Algorithm-X) \triangleright Inferring the sub-networks using an Algorithm X
- 2: **for** every sub-matrix in SMs **do** parallely
- 3: Infer the network using Algorithm-X
- 4: end for
- 5: Store all the inferred sub-networks in SNs
- 6: end procedure

Algorithm 3 Centrality Analysis of sub-networks

- 1: **procedure** FINDING-HUBGENES(SNs, t) \triangleright Finding the hub genes in each sub-network
- 2: **for** every sub-network in SNs **do** parallely
- 3: Calculate the degree of every gene in the subnetwork
- 4: Sort the genes as per descending order of degree.
- 5: Select all genes that are ranked top t and store it in HG
- 6: end for
- 7: end procedure

Analysis of the effect of 'p'-the number of partitions into which the expression matrix is sliced on the results of the framework

Different methods respond differently to the variations in the number of partitions. Sensitivity analysis was performed to see the effect of the number of partitions on the execution

Algorithm 4 Hub gene distribution

- 1: **procedure** Appending-HubGenes(SNs, HGs)
 Distributing the hub genes to each sub-matrix
- 2: **for** every sub-network in SNs **do** parallely
- 3: Add the hub genes HGs of other sub-networks to each sub-matrix
- 4: end for
- 5: Store all the modified sub-matrices in MSMs
- 6: end procedure

Algorithm 5 Rewiring local sub-networks

- 1: **procedure** Re-inference(MSMs, Algorithm-X) ightharpoonup Re-inferring the modified sub-networks using an Algorithm X
- 2: **for** every modified sub-matrix in MSMs **do** parallely
- 3: Infer the network using Algorithm-X
- 4: end for
- 5: Store all the re-inferred sub-networks in MSNs
- 6: end procedure

Algorithm 6 Global Network Construction

- 1: **procedure** Merge(MSNs) ▷ Merge the modified sub-networks to get the global network
- 2: Create an empty adjacency matrix, adj, of size c*c
- 3: **for** every modified sub-networks in MSNs **do**
- 4: **for** every row r in the modified sub-network **do**
- 5: for every column c in the modified sub-network

do

- 6: Copy the content of the cell r*c and paste it in corresponding cell in adj
- 7: end for
- 8: end for
- 9: end for
- 10: end procedure

time and accuracy of results. The number of partitions were varied from 3 to 100 except for the dataset with 100 genes for which the maximum number of partitions was 50. With the exception of five methods — CLR, MRNET, MRNETB, MutRank and GeneNet, the number of partitions did not affect the accuracy of the results. For the five methods mentioned above, the accuracy decreased when there was less than 10% of the total genes in each partition of the dataset. We also see that there is an increase in accuracy observed again when as less as 2% of the total genes is in one partition but having that less number of genes would render the purpose of the framework useless because of very expensive execution time and hence is ignored.

As far as the execution time is concerned, we have two observations. For datasets with less than 2000 genes, we observed that the execution time was more than the serial execution time when there was less than 2% of the total genes in each partitions. For the datsets with more than 2000 genes, the parallel execution time was always less than the serial execution time for all methods. The results of the sensitivity analysis of two methods in reported in **Table 1 and 2**

 $\textbf{Table 1.} \ \text{Results of the sensitivity analysis of the number of partitions} \\ -- \\ p \ (\text{method} -- \\ \text{MRNETB})$

Method	Dataset	No. of genes	No. of divisions	Time (parallel)	Time (ori)	AUROC (serial)	AUROC (parallel
			3	0.2582793			0.4751735
			4	0.2699604			0.4626734
			5	0.3001034			0.4460002
	D1	100	10	0.4028945	0.0004015	0.4500005	0.4070058
	E1	100	15	0.6074078	0.0304215	0.4700965	0.5061602
			20	0.87482			0.4750513
			25	1.46544			0.4708554
			50	2.201079			0.4837548
			3	1.037702			0.5047914
			4	0.8332999			0.4943463
			5	0.7474859	1		0.4876388
			10	0.7468171	1		0.4747045
			15	0.8918905			0.4199268
	E2	500	20	1.232851	1.437677	0.4700795	0.4445019
	22	000	25	2.241731	1.101011	0.1100100	0.4324351
			30	2.999165	-		0.4405668
					-		
			40	9.017609	-		0.4449185
			50	13.87991			0.4428238
			100	75.83868			0.4644348
			4	2.87572			0.6393649
			5	2.37909			0.6255273
			8	1.752395		0.5849953	0.6214211
			10	1.700114			0.6232417
			15	1.676256			0.5901537
	E3	1000	20	1.625044	8.781887		0.5713419
			25	2.230592			0.5604388
			30	3.476223			0.5567747
			40	5.220152			0.5395399
			50	10.46326			0.5855421
MANAGER			100	125.35788			0.5756264
MRNETB			5	11.48563			0.4678863
		2000	8	7.952174	60.94098		0.4495279
			10	6.376798			0.4491476
			15	5.366306		0.4874883	0.4212134
			20	5.925039			0.4162524
	Y1		25	5.83725			0.4057272
			30	6.272249			0.4187293
			40	9.302474			0.4039421
			50	14.55863	-		0.4016726
			100	124.30506			0.4291133
			200	1822.1346			0.4515485
			5	38.80129			0.5476824
			10	16.12336	-		0.5268498
			15		-		
				12.0399	-		0.5102305
			20	10.47794	-		0.4817858
	Y2	3000	25	10.76091	232.97442	0.5226453	0.4741886
			30	9.627196	-		0.4764677
			40	13.33211			0.4644823
			50	21.44946	_		0.4555635
			100	144.6708	_		0.4654877
			200	1965.207			0.4841594
			5	75.44892			0.5389527
			10	34.00466			0.5204785
			15	22.85685			0.4998019
			20	20.78727	1		0.4940239
	Y3	4000	25	19.4952	596.8266	0.5143631	0.4763505
			30	17.14795	1		0.4741595
			40	21.71285	1		0.4662791
			50	24.88754	1		0.4609697
			100	116.17974	1		0.4425268

 $\textbf{Table 2.} \ \text{Results of the sensitivity analysis of the number of partitions} \\ -- \\ \text{p (method } -- \\ \text{GENIE3)}$

Method	Dataset	No. of genes	No. of divisions	Time (parallel)	Time (ori)	AUROC (serial)	AUROC (parallel)
			3	67.302			0.7450411
			4	55.92979	İ		0.6501785
			5	68.61876			0.6016743
	Б1	100	10	195.47706	101 0050	0.6100010	0.6616885
	E1	100	15	506.79594	101.9859	0.6122919	0.6242751
			20	815.481			0.6204374
			25	1079.7702			0.6573135
			50	2201.3382			0.6591835
			3	620.4708			0.4563433
			4	488.78856			0.4587709
			5	556.53576			0.4622911
			10	491.3475]		0.4624013
			15	504.69216			0.4561326
	E2	500	20	595.6548	1101.2172	0.4547994	0.4613543
			25	872.2956			0.4602847
			30	1126.983			0.4580237
			40	3731.0688			0.4580121
			50	8115.336			0.4530124
			100	43827.012			0.4529339
			4	1365.5496			0.4876607
			5	1441.9476			0.4892534
			8	1001.336			0.4900074
			10	959.1		0.4859839	0.4954473
			15	948.4194			0.5000924
	E3	1000	20	1328.409	3028.029		0.4920679
			25	1530.747			0.4932211
			30	1593.7086			0.5000215
			40	2181.3426			0.4852749
			50	3902.292			0.4872499
GENIE3			100	55956.456			0.4887764
GENIES		2000	5	4360.1256	8368.8876		0.3903841
			8	3670.3123			0.3905948
			10	3183.0498			0.3910653
			15	2702.895		0.3501581	0.3909497
			20	2715.6816			0.3931362
	Y1		25	2460.7878			0.3912922
			30	2873.8068			0.3921571
			40	3565.4142			0.3933395
			50	4395.4992			0.3914612
			100	14648.8068			0.3909949
			200	-			-
			5	7811.2116			0.4296868
			10	4621.3884			0.4300033
			15	4091.2272			0.4303226
			20	3625.2972			0.4305626
	Y2	3000	25	3742.7832	15444.7416	0.4196192	0.4312513
	_		30	3845.9196			0.4313225
			40	3995.028			0.4312531
			50	5419.296			0.4299473
			100	16049.9412			0.4292132
			200	-			-
			5	12150.7488			0.4156369
			10	7294.5072			0.4159663
			15	6240.6612			0.4161526
			20	5747.094	1		0.4163694
	Y3	4000	25	6178.2228	23756.094	0.4146161	0.4165883
			30	5195.4696			0.4168235
			40	5986.5624			0.4165706
			50	7237.3752			0.4164336
			100	18868.6584			0.4163032

Analysis of the effect of the number of hub genes considered in the framework

While performing experiments, the number of hub genes to be included in the phase 3 of the framework was decided on the basis of the results of the experiments performed by varying the number of hub genes on the basis of their degrees. We ranked the genes on the basis of the degree and then considered only those genes that had the highest degree. The execution time and the accuracy was observed. Then the top two highest degree possessing genes were considered. Similary, the experiment was done up till the top 10 highest degree possessing genes were included. The results are reported in Table 3. We can see that it is sufficient to include the top two highest degree possessing nodes as the best accuracy with less execution time is achieved in this situation.

Analysis of how the order of the datasets affects the execution time and accuracy

We shuffled the order of the genes in each dataset to see whether it affected the accuracy of the networks obtained. We inferred the networks using both the original methods serially as well as using our framework. We observed slight change in both the accuracy of the results and also the execution time. Since both the serial methods as well as the framework saw similar changes in accuracy and execution time we concluded that this was due to the methods. Otherwise there was no reason why the serial execution also showed changed in accuracy when the whole expression matrix was available in its case. The results of this analysis is reported in Table 4.

Analysis of the effect of the number of cores on the parallel execution time and actual speedup of the generic parallel framework

After reporting the theoretical speedup using Amdahl's law, it was necessary to see how the execution time and thereby the speedup varied with the increase in the number of cores. Since the system we used had six cores, we varied the number of cores by 1, 2, 4 and 6 for the datasets consisting of 1000 and 4000 genes. The results are reported in Table 5 and 6. We see that as expected, there is an increase in speedup as the number of cores is increased.

Fig. 1. Performance comparison of the GRN inference methods (benchmarked using gold standard network) for the dataset with 1000 genes

Fig. 2. Performance comparison of the GRN inference methods (benchmarked using gold standard network) for the dataset with 2000 genes

Fig. 3. Performance comparison of the GRN inference methods (benchmarked using gold standard network) for the dataset with 3000 genes

Fig. 4. Prediction accuracy comparison of the GRN inference methods (benchmarked using gold standard network) for the dataset with 1000 genes

Extended results of the enrichment analysis

We report here the complete results of the enrichment analysis performed on the 41 clusters obtained from the inferred AD network in Table 7. We see that for almost all clusters, a good number of genes are seen associated with brain related disorders and other pathways that were reported by the work that contributed the dataset. Despite using CLR, an algorithm that is just an average performance showcasing inference algorithm, the inferred network shows good performance. We have used

Table 3. Results from the experiments performed by varying the number of highest degree genes considered

No. of genes	Method	Rank of hub gene degree ¹	Execution Time	%increase in time	AUROC
		1	56.19894	-	0.508316
		2	77.43394	27.42337533	0.508492
		3	87.18292	35.53904824	0.508031
		4	128.564	56.2871877	0.507786
4000	CLR	5	169.94232	66.93057974	0.507068
4000	CLIC	6	175.53024	67.98332868	0.506776
		7	175.96728	68.06284668	0.506537
		8	283.44988	80.17323556	0.505534
		9	480.51426	88.30441785	0.505674
		10	789.45654	92.88131301	0.507823
		1	26.06695	-	0.506135
		2	27.50107	5.214778916	0.506142
		3	27.79961	6.232677365	0.503316
		4	45.44948	42.64631851	0.502632
2000	ADACNE	5	50.3376	48.21574727	0.502067
3000	ARACNE	6	53.81044	51.55782038	0.498136
		7	67.66704	61.47762633	0.497384
		8	79.31166	67.1335211	0.494322
		9	149.93004	82.61392447	0.491485
		10	150.92364	82.72838503	0.494049
		1	24.70366	-	0.505361
		2	24.90474	0.807396504	0.506317
		3	25.28636	2.30440443	0.505751
		4	25.18159	1.897934165	0.505179
2000	MANAGE	5	25.50633	3.146944308	0.504698
2000	MRNET	6	25.50846	3.155031703	0.503321
		7	35.37619	30.16868125	0.502513
		8	35.55297	30.51590345	0.502514
		9	35.82522	31.04394055	0.501631
		10	36.1349	31.63490144	0.500626
		1	4.277107	=	0.508207
		2	4.68632	8.732075488	0.509583
		3	4.921183	13.08782868	0.506387
		4	4.941176	13.43949295	0.506346
1000	MAD	5	5.460856	21.67698617	0.505557
1000	MutRank	6	5.653765	24.34940257	0.504989
		7	6.107507	29.96967502	0.503167
		8	6.894055	37.95948828	0.503161
		9	7.743583	44.76578865	0.504027
		10	8.967887	52.30641287	0.504382
		1	53.20957	-	0.639795
		2	56.54971	6.277329435	0.647199
		3	60.51642	13.7322102	0.638214
		4	63.09306	18.57464738	0.633848
100	g	5	68.21982	28.20968108	0.640744
100	Genie3	6	68.43	28.60468521	0.642381
		7	84.26478	58.36395596	0.634011
		8	92.16348	73.20846607	0.629124
		9	103.44786	94.41589173	0.570448
		10	166.81758	213.5104832	0.581995

Table 4. Results from the experiments conducted to observe how the order of genes in a dataset affects the accuracy and execution time
both in serial execution as well as using our generic parallel framework

Dataset	Method	Order	Serial execution (AUROC)	Parallel Execution (AUROC)	Serial execution (time)	Parallel Execution (Time)
	CLR	Not changed	0.5914037	0.6216419	2.013068	1.41811
1000	CLIC	Shuffled	0.6144022	0.6353742	2.4156816	1.660474
1000	ARACNE	Not changed	0.4531609	0.466568	3.6787	0.8885281
	ARACNE	Shuffled	0.4621106	0.4631829	4.04657	1.073504
	GeneNet	Not changed	0.3786474	0.3799406	801.3882	18.56008
2000	Generiei	Shuffled	0.3568267	0.3557269	830.604762	20.62397
2000	Genie3	Not changed	0.3501581	0.3909497	8368.8876	2460.7878
	Gemes	Shuffled	0.3552018	0.4027007	9353.84648	2873.8068
	MINE	Not changed	0.3991989	0.4074706	4225.73	50.25479
3000	MINE	Shuffled	0.4000889	0.4113608	4502.2064	58.26799
3000	MRNET	Not changed	0.5224756	0.5468827	172.38498	10.08324
	MIGNET	Shuffled	0.5135056	0.5213046	184.66974	10.5455
	PCOR	Not changed	0.5141001	0.5386138	8625.906	54.30579
4000	rcon	Shuffled	0.5150379	0.5278262	8675.799962	61.76574
4000	C3NET	Not changed	0.3954438	0.3971617	251.74806	9.96609
	CSNET	Shuffled	0.3990732	0.3993559	258.68586	10.75217

 ${\bf Fig.~5.}$ Prediction accuracy comparison of the GRN inference methods (benchmarked using gold standard network) for the dataset with 2000 genes

Fig. 6. Prediction accuracy comparison of the GRN inference methods (benchmarked using gold standard network) for the dataset with 3000 genes

the default parameters in all the algorithms so as to not meddle with its working. If the algorithm can be tuned with the best performing parameters then the framework is sure to perform better.

Additional results and discussion of the performance assessment of the generic parallel framework

This section includes the results of the performance assessment performed by comparing the resultant networks from the serial

Fig. 7. ROC curve plot for G1DBN (Dataset: 1000)

Fig. 8. ROC curve plot for SPCOR (Dataset: 1000)

and parallel execution through the framework for all the methods for the datasets having 1000, 2000, and 3000 genes as seen in Figures 1-6. From these figures too it is established

 $\textbf{Table 5.} \ \text{Results from the experiments performed on the dataset with 1000 genes to analyze how the number of cores influences the $T(p)$ and Speedup of the generic parallel framework$

Method	Serial Execution Time	No. of Cores	Time taken	Speedup
		1	3.305254	1.424638
RELNET	4 709701	2	2.215338	2.125541
RELNET	4.708791	4	2.066441	2.278696
		6	2.047779	2.299462
		1	1.891723	1.064145
GI D	0.010000	2	1.660474	1.212345
CLR	2.013068	4	1.589154	1.266755
		6	1.41811	1.419543
		1	3.380013	1.088369
		2	1.332889	2.759945
ARACNE	3.6787	4	1.177884	3.123143
		6	0.8885281	4.140218
		1	5.747403	0.66413
		2	2.275635	1.677345
MRNET	3.817024	4	1.711515	2.230202
		6	1.357832	2.811117
		1	8.046114	1.091445
		2	5.002226	1.755596
MRNETB	8.781887	4	3.857496	2.276577
		6	1.625004	5.404225
		1	11.06605	0.432477
		2	3.49622	1.368853
C3NET	4.78581	4	2.997953	1.596359
		6	2.73455	1.750127
		1		
	1.159587	2	14.50754	0.07993
C3MTC		4	2.420735	0.479023
		6	1.268201	0.914356
			1.08314	1.070579
	62.65368	1	31.77093	1.972044
BC3NET		2	8.373955	7.48197
		4	4.475174	14.00028
		6	3.876542	16.16226
		1	20.19428	0.461551
MutRank	9.320698	2	4.45259	2.093321
		4	4.124638	2.259761
		6	1.552822	6.002425
		1	41.93982	2.101236
PCOR	88.12548	2	8.155652	10.80545
		4	6.503647	13.55016
		6	5.607112	15.71673
		1	32.12222	5.338393
SPCOR	171.48102	2	12.58253	13.6285
21 0010	11110102	4	7.351351	23.32646
		6	5.55842	30.85068
		1	3399.6708	0.890683
Genie3	3028.029	2	1117.17	2.710446
Gemes	0020.020	4	1005.927	3.010188
		6	948.419	3.192712
		1	49.1186	2.435241
GeneNet	110.61564	2	12.31467	9.713264
Genemen	119.61564	4	11.05297	10.82204
		6	9.55122	12.5236
		1	25.4252	14.19969
ATTAIT	261 02009	2	9.464289	38.14655
MINE	361.03002	4	9.233094	39.10174
		6	8.20522	44.00004
		1	6728.7852	48.67087
	1			135.8275
		2	2411.115	133.6273
G1DBN	327495.83	4	2315.5524	141.4331

Table 6. Results from the experiments performed on the dataset with 4000 genes to analyze how the number of cores influences the T(p) and Speedup of the generic parallel framework

Method	Serial Execution Time	No. of Cores	Time taken	Speedup
		1	73.93242	3.576700181
DELNE	204 4241	2	43.69066	6.052417153
RELNET	264.4341	4	38.41355	6.883875612
		6	35.50105	7.448627576
		1	67.60982	3.721162695
CI D	2-1-2-1	2	31.08285	8.094082106
CLR	251.58714	4	19.05674	13.20200307
		6	16.5067	15.24151648
		1	73.04046	4.534207479
ARACNE	331.1806	2	23.38503	14.16207719
ARACNE	331.1000	4	7.499687	44.15925625
		6	6.470149	51.18593096
		1	77.81466	5.372768833
MDNET	410 00010	2	33.63054	12.4315631
MRNET	418.08018	4	23.23	17.99742488
		6	18.25389	22.90362109
		1	75.44892	7.91033987
MDNEED	FOC 200C	2	34.00466	17.55131797
MRNETB	596.8266	4	20.78727	28.71115832
		6	17.14795	34.80454515
		1	85.65786	2.93899474
		2	25.46409	9.886392956
C3NET	251.748	4	11.10081	22.67834509
		6	9.96609	25.26045821
		1	10.33884	1.242270893
		2	7.191122	1.786041177
C3MTC	12.84364	4	6.720699	1.911057168
		6	5.02833	2.554255588
		1	177.17256	5.70138062
		2	59.25709	17.04653738
BC3NET	1010.1282	4	23.50392	42.97700979
		6	18.56242	54.41791534
		1	73.84638	3.319445043
		2	51.46657	4.762878117
MutRank	245.129	4	28.06297	8.734962835
		6	19.01626	12.89049477
		1	746.8266	11.55007869
		2	114.56202	75.29463953
PCOR	8625.906	4	76.38342	112.9290362
		6	61.68558	139.8366685
		1	430.89678	18.90527286
		2	118.8702	68.53039029
SPCOR	8146.2212	4	86.79114	93.8600553
		6	67.68558	120.3538656
		1	11877.5376	2.000085775
		2	8030.9304	2.958074945
Genie3	23756.094	4	5780.6532	4.109586439
		6	5195.47	4.572462934
		1	778.0776	17.9056783
		2	71.91906	193.7178712
GeneNet	13932.0072	4	46.02863	302.6813355
		6	44.4271	313.5925415
		1	169.8726	52.00173542
		2	109.8726	83.55129933
MINE	8833.67	4	93.3194	94.66059576
		6	93.3194 88.2916	100.0510807
		l "	00.2910	100.0310007

Fig. 9. ROC curve plot for PCOR (Dataset: 1000)

Fig. 10. ROC curve plot for MUTRANK (Dataset: 1000)

that the generic parallel framework consistently performs well for all methods with datasets consisting of varying number of genes. The framework outputs a network that has the same accuracy as that of the original network and sometimes even better.

The AUROC scores for some of the methods are slightly below 0.5 for some of the datasets. This however has nothing to do with our framework. We have used the methods as a blackbox, without any modifications. We were not intending to improve the qualitative aspect of the original algorithms. However, our generalized framework did not perform inferior either in comparison to original algorithms, which was one of the actual targets. However, the performance of the serial methods may be improved by appropriate parameter tuning, which is beyond the scope of this work at present. The accuracy obtained is at par with that obtained when the methods are executed as is in the serial environment. The benefit of our framework is that it aids those methods incapable

Fig. 11. ROC curve plot for MRNET (Dataset: 1000)

Fig. 12. ROC curve plot for MRNETB (Dataset: 1000)

of inferring networks with more than 10000 nodes, to now infer networks with more than 25,000 genes on the same machine. With this achievement, we now can focus only on improving the methods in terms of accuracy without worrying on its scalability since our framework takes care of it.

We have also included the ROC and PR curve plots for 8 algorithms for the performance assessment against gold networks in Figures 7-22.

DoParallel R package

The doParallel package seeks to provide a "parallel backend" for the foreach package [2], i.e., it helps us execute the foreach loops in parallel. We first register the number of cores in the machine we are using and then pass it to the doParallel package. The machine should have multiple processors or cores or even both. We code the task that we require to be executed parallelly in the foreach loop. A detailed explanation of the working of this package is available at https://cran.r-project.org/web/packages/doParallel/doParallel.pdf.

Fig. 13. ROC curve plot for RELNET (Dataset: 1000)

0.4

recall

0.6

8.0

- 1. Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nature protocols, 4(1):44-57, 2009.
- 2. Steve Weston and Rich Calaway. Getting started with ${\it doparallel \ and \ for each.}\ Available\ on\ https://cran.\ r\text{-}project.$ org/web/packages/doParallel/vignettes/getting startedParallel. $pdf,\ 2015.$

Fig. 15. PR curve plot for G1DBN (Dataset: 1000)

0.

0.8

9.0

4.0

0.2

0.0

0.0

0.2

PR-Curve

Fig. 17. PR curve plot for PCOR (Dataset: 1000)

0.4

recall

0.6

8.0

0.2

 $\textbf{Fig. 18.} \ \, \textbf{PR} \ \, \textbf{curve plot for MUTRANK (Dataset: 1000)}$

Fig. 19. PR curve plot for MRNET (Dataset: 1000)

Fig. 20. PR curve plot for MRNETB (Dataset: 1000)

Fig. 21. PR curve plot for RELNET (Dataset: 1000)

Fig. 22. PR curve plot for ARACNE (Dataset: 1000)

Table 7: Results of the enrichment analysis of the 41 clusters obtained from DAVID [1].

Cluster No.	Size of Cluster	Enrichment Score and Disease	Genes	P_value	Benjamin
		Enrichment Score: 7.37			
		Amyotrophic lateral sclerosis	51	3.90E-10	6.10E-08
		Parkinson disease	41	9.40E-10	9.60E-08
7	1001	Pathways of neurodegeneration - multiple diseases	57	4.80E-09	3.10E-07
		Huntington disease	43	5.00E-09	3.10E-07
		Prion disease	39	1.60E-08	8.40E-07
		Alzheimer disease	46	2.50E-07	8.50E-06
	•	1			
		Enrichment Score: 7.94	Count	P_Value	Benjamin
		Amyotrophic lateral sclerosis	54	3.40E-11	4.80E-09
		Parkinson disease	44	4.70E-11	4.80E-09
1	1000	Pathways of neurodegeneration - multiple diseases	60	6.60E-10	5.10E-08
		Huntington disease	45	1.10E-09	6.90E-08
		Prion disease	41	3.30E-09	1.70E-07
		Alzheimer disease	47	2.10E-07	8.20E-06
		Enrichment Score: 0.6	Count	P_Value	Benjamin
		Pathways of neurodegeneration - multiple diseases	48	1.30E-01	7.50E-01
		Amyotrophic lateral sclerosis	38	1.50E-01	7.70E-01
2	5064	Alzheimer disease	39	1.70E-01	7.70E-01
_	0004	Huntington disease	29	3.30E-01	9.40E-01
		Parkinson disease	24	4.70E-01	1.00E+00
		Prion disease	24	5.00E-01	1.00E+00
		1 Holl disease	24	5.00E-01	1.0012+00
	1	E 1 4 C 100	G ,	DAL	ъ
		Enrichment Score: 1.98 Prion disease	Count	P_Value	Benjamin
			28 33	1.50E-04	4.80E-02
9	1000	Alzheimer disease		1.10E-03	9.60E-02
3	1000	Pathways of neurodegeneration - multiple diseases	38	1.50E-03	9.60E-02
		Parkinson disease	25	1.50E-03	9.60E-02
		Huntington disease	23	2.70E-02	3.60E-01
		Amyotrophic lateral sclerosis	26	4.30E-02	4.40E-01
		Enrichment Score: 0.14	Count	P_Value	Benjamin
		Parkinson disease	12	6.20E-01	1.00E+00
		Prion disease	12	6.40E-01	1.00E+00
4	1000	Alzheimer disease	16	7.20E-01	1.00E+00
-	1000	Amyotrophic lateral sclerosis	15	7.50E-01	1.00E+00
		Huntington disease	12	7.80E-01	1.00E+00
		Pathways of neurodegeneration - multiple diseases	16	9.30E-01	1.00E+00
		1 attiways of neurodegeneration - multiple diseases	10	9.50E-01	1.0012+00
		Enrichment Score: 0.1	Count	P_Value	Benjamin
		Prion disease	13	6.20E-01	1.00E+00
		Pathways of neurodegeneration - multiple diseases	22	6.50E-01	1.00E+00
5	999	Huntington disease	12	8.50E-01	1.00E+00
		Alzheimer disease	15	8.80E-01	1.00E+00
		Amyotrophic lateral sclerosis	14	9.00E-01	1.00E+00
		Parkinson disease	9	9.40E-01	1.00E+00
		Tarkingon disease		0.102 01	1.001
		Enrichment Score: 0.42	Count	P_Value	Benjamin
		Alzheimer disease	23	1.70E-01	7.50E-01
		Prion disease	17	1.80E-01	7.50E-01
8	998	Pathways of neurodegeneration - multiple diseases	24	4.30E-01	9.60E-01
8		Amyotrophic lateral sclerosis	19	4.50E-01	9.60E-01
	1				1.00E+00
		Darlingon digongo			
		Parkinson disease	12	6.90E-01	
		Parkinson disease Huntington disease	13	6.90E-01 7.50E-01	
		Huntington disease	13	7.50E-01	1.00E+00
		Huntington disease Enrichment Score: 1.05	13 Count	7.50E-01 P_Value	1.00E+00
		Huntington disease Enrichment Score: 1.05 Huntington disease	13 Count 21	7.50E-01 P_Value 7.80E-03	1.00E+00 Benjamir 3.90E-01
9	1000	Huntington disease Enrichment Score: 1.05	13 Count	7.50E-01 P_Value	1.00E+00

	I	Table 7 continued from previous page	16	6 20E 00	0.0013.0
		Parkinson disease	16	6.20E-02	9.20E-0
		Prion disease	15	1.20E-01	9.70E-0
		Pathways of neurodegeneration - multiple diseases	22	2.10E-01	1.00E+
		E : 1 4 C 0 49	I a .	DALL	ъ .
		Enrichment Score: 0.43	Count	P_Value	Benjam
		Pathways of neurodegeneration - multiple diseases	23	1.80E-01	1.00E+
10	1000	Prion disease	14	2.20E-01	1.00E+
12	1000	Parkinson disease	13	3.00E-01	1.00E+
		Alzheimer disease	17	3.90E-01	1.00E+
		Amyotrophic lateral sclerosis	14	6.50E-01	1.00E+
		Huntington disease	10	8.20E-01	1.00E+
		T 11 + G + 4 04	I a .	DIL	ъ.
		Enrichment Score: 1.31	Count	P_Value	Benjan
		Amyotrophic lateral sclerosis	22	6.00E-03	6.50E-0
		Parkinson disease	15	3.80E-02	1.00E+
13	1000	Prion disease	13	1.40E-01	1.00E+
		Alzheimer disease	17	1.50E-01	1.00E+
		Huntington disease	14	1.50E-01	1.00E-
		Pathways of neurodegeneration - multiple diseases	20	1.60E-01	1.00E⊣
		Enrichment Score: 0.18	Count	P_Value	Benjan
		Spinocerebellar ataxia	5	5.00E-01	1.00E+
		Alzheimer disease	11	5.40E-01	1.00E-
14	1000	Prion disease	8	5.50E-01	1.00E+
14	1000	Huntington disease	8	6.80E-01	1.00E⊣
		Amyotrophic lateral sclerosis	9	7.50E-01	1.00E⊣
		Parkinson disease	6	8.20E-01	1.00E⊣
		Pathways of neurodegeneration - multiple diseases	10	8.70E-01	1.00E+
	•		•	•	
		Enrichment Score: 0.44	Count	P_Value	Benjan
		Amyotrophic lateral sclerosis	11	1.70E-01	1.00E-
		Pathways of neurodegeneration - multiple diseases	12	2.90E-01	1.00E-
15	1000	Alzheimer disease	10	3.10E-01	1.00E-
		Parkinson disease	6	5.70E-01	1.00E-
		Prion disease	6	5.90E-01	1.00E+
		Huntington disease	5	8.40E-01	1.00E-
				<u> </u>	
		Enrichment Score: 0.2	Count	P_Value	Benjan
		Spinocerebellar ataxia	6	1.70E-01	1.00E⊣
		Huntington disease	7	6.00E-01	1.00E-
		Alzheimer disease	8	6.90E-01	1.00E-
16	999	Pathways of neurodegeneration - multiple diseases	9	7.70E-01	1.00E
		Amyotrophic lateral sclerosis	6	8.90E-01	1.00E
		Parkinson disease	4	9.20E-01	1.00E
		Prion disease	4	9.20E-01	1.00E
		Enrichment Score: 0.35	Count	P_Value	Benjan
		Amyotrophic lateral sclerosis	17	2.30E-01	1.00E+
		Pathways of neurodegeneration - multiple diseases	18	5.00E-01	1.00E
17	999	Parkinson disease	10	5.00E-01 5.90E-01	1.00E
		Prion disease Prion disease	10	6.10E-01	1.00E+
		Alzheimer disease	12	8.00E-01	1.00E+
		Alizhennet disease	14	0.0015-01	1.00E
		Envishment Secret 0.64	Const	D Wal	Bon!-
		Enrichment Score: 0.64	Count	P_Value	Benjan
18	1000	Alzheimer disease	23	2.40E-02	5.50E-0
	1000	Parkinson disease	10	6.30E-01	1.00E+
		Prion disease	8	8.70E-01	1.00E⊣
	T	I D. 1.1	La	D ** 1	- ·
		Enrichment Score: 0.59	Count	P_Value	Benjan
		Huntington disease	15	7.90E-02	1.00E+
		Amyotrophic lateral sclerosis	16	1.60E-01	1.00E+
	1000	Pathways of neurodegeneration - multiple diseases	19	1.90E-01	1.00E+

	1	Table 7 continued from previous page	1.0	F COT ::	1.005
		Alzheimer disease	13	5.00E-01	1.00E+00
		Parkinson disease	9	5.60E-01	1.00E+00
		Prion disease	9	5.70E-01	1.00E+00
			T =:	T =	T =
		Enrichment Score: 2.36	Count	P_Value	Benjamini
		Pathways of neurodegeneration - multiple diseases	35	2.50E-04	3.30E-02
		Parkinson disease	21	2.70E-03	9.30E-02
20	1000	Alzheimer disease	27	3.20E-03	9.70E-02
		Amyotrophic lateral sclerosis	26	3.90E-03	1.00E-01
		Huntington disease	21	1.20E-02	1.80E-01
		Prion disease	19	1.50E-02	2.00E-01
		Spinocerebellar ataxia	12	1.90E-02	2.30E-01
		Enrichment Score: 0.63	I a .	DVI	D
			Count	P_Value	Benjamini
		Spinocerebellar ataxia	14	5.40E-04	1.50E-01
		Amyotrophic lateral sclerosis	19	4.70E-02	1.00E+00
21	1000	Alzheimer disease	18	1.00E-01	1.00E+00
		Pathways of neurodegeneration - multiple diseases	20	1.70E-01	1.00E+00
		Huntington disease	13	2.50E-01	1.00E+00
		Prion disease	10	4.80E-01	1.00E+00
		Parkinson disease	8	7.40E-01	1.00E+00
		Enrichment Score: 0.52	Count	P_Value	Benjamini
		Huntington disease	14	7.60E-02	1.00E+00
		Spinocerebellar ataxia	7	2.00E-02	1.00E+00 1.00E+00
22	1000	Parkinson disease	10	3.10E-01	1.00E+00 1.00E+00
22	1000	Alzheimer disease	12	4.90E-01	1.00E+00 1.00E+00
		Pathways of neurodegeneration - multiple diseases	14	5.50E-01	1.00E+00 1.00E+00
		Prion disease	8	6.20E-01	1.00E+00 1.00E+00
		1 Holl disease	1 6	0.2015-01	1.00E+00
		Enrichment Score: 0.32	Count	P_Value	Benjamini
23	999	Neurotrophin signaling pathway	6	1.30E-01	1.00E+00
20	000	Alzheimer disease	6	9.30E-01	1.00E+00
		Tibliomor discuss	1 0	0.002 01	1.002 00
		Enrichment Score: 0.79	Count	P_Value	Benjamini
24	999	Alzheimer disease	9	3.70E-01	1.00E+00
		Enrichment Score: 0.49	Count	P_Value	Benjamini
		Amyotrophic lateral sclerosis	11	1.40E-01	1.00E+00
25	999	Pathways of neurodegeneration - multiple diseases	11	3.70E-01	1.00E+00
		Prion disease	7	3.70E-01	1.00E+00
		Alzheimer disease	8	5.70E-01	1.00E+00
	•	·			
		Enrichment Score: 0.31	Count	P_Value	Benjamini
26	999	Spinocerebellar ataxia	4	3.60E-01	1.00E+00
		Alzheimer disease	6	7.00E-01	1.00E+00
28	997	Enrichment Score: 0.28	Count	P_Value	Benjamini
26	991	Alzheimer disease	4	7.80E-01	1.00E+00
·		Enrichment Score: 0.27	Count	P_Value	Benjamini
		Parkinson disease	6	3.80E-01	1.00E+00
		Amyotrophic lateral sclerosis	7	5.00E-01	1.00E+00
29	1000	Alzheimer disease	7	5.40E-01	1.00E+00
		Pathways of neurodegeneration - multiple diseases	8	5.90E-01	1.00E+00
		Prion disease	5	5.90E-01	1.00E+00
		Huntington disease	5	6.90E-01	1.00E+00
		Enrichment Score: 3.35	Count	P_Value	Benjamini
		Parkinson disease	32	9.60E-06	3.00E-03
		Pathways of neurodegeneration - multiple diseases	46	2.50E-05	3.10E-03
30	1000	Prion disease	30	8.50E-05	6.70E-03

	İ	Table 7 continued from previous page		1	
		Huntington disease	32	1.30E-04	8.20E-03
		Alzheimer disease	36	4.70E-04	1.90E-02
		Amyotrophic lateral sclerosis	35	4.90E-04	1.90E-02
	•				
		Enrichment Score: 0.27	Count	P_Value	Benjamini
		Pathways of neurodegeneration - multiple diseases	26	3.30E-01	1.00E+00
		Amyotrophic lateral sclerosis	20	4.10E-01	1.00E+00
31	1000	v -			
		Prion disease	14	5.30E-01	1.00E+00
		Alzheimer disease	17	7.50E-01	1.00E+00
		Huntington disease	13	7.90E-01	1.00E+00
		Enrichment Score: 0.43	Count	P_Value	Benjamini
		Pathways of neurodegeneration - multiple diseases	27	2.00E-01	1.00E+00
		Alzheimer disease	22	2.40E-01	1.00E+00
33	1000	Amyotrophic lateral sclerosis	20	3.40E-01	1.00E+00
		Prion disease	14	4.70E-01	1.00E+00
		Parkinson disease	13	5.60E-01	1.00E+00
		Huntington disease	14	6.40E-01	1.00E+00
		Huntington disease	14	0.40E-01	1.00E+00
		D 11 40 000	La	DAV	ъ
		Enrichment Score: 0.36	Count	P_Value	Benjamini
		Prion disease	14	2.60E-01	1.00E+00
34	1000	Pathways of neurodegeneration - multiple diseases	21	4.00E-01	1.00E+00
04	1000	Parkinson disease	12	4.70E-01	1.00E+00
		Alzheimer disease	16	5.50E-01	1.00E+00
		Amyotrophic lateral sclerosis	15	6.00E-01	1.00E+00
	"				
		Enrichment Score: 0.56	Count	P_Value	Benjamini
		Prion disease	14	2.30E-02	4.80E-01
		Alzheimer disease	14	2.00E-01	8.60E-01
35	999	Parkinson disease	10	2.50E-01	8.80E-01
30	999				
		Pathways of neurodegeneration - multiple diseases	14	4.50E-01	9.90E-01
		Huntington disease	9	5.30E-01	9.90E-01
		Amyotrophic lateral sclerosis	10	6.30E-01	1.00E+00
		Enrichment Score: 0.4	Count	P_Value	Benjamini
		Alzheimer disease	10	3.00E-01	1.00E+00
		Amyotrophic lateral sclerosis	8	5.50E-01	1.00E+00
36	1000	Parkinson disease	6	5.60E-01	1.00E+00
		Prion disease	6	5.80E-01	1.00E+00
		Pathways of neurodegeneration - multiple diseases	9	6.70E-01	1.00E+00
		Huntington disease	6	6.80E-01	1.00E+00
			1 -		1
		Enrichment Score: 0.56	Count	P_Value	Benjamini
		Pathways of neurodegeneration - multiple diseases	24	1.30E-01	8.20E-01
	000	Parkinson disease	15	1.30E-01	8.20E-01
37	999	Huntington disease	16	1.70E-01	8.80E-01
		Alzheimer disease	18	2.90E-01	9.90E-01
		Amyotrophic lateral sclerosis	14	6.50E-01	1.00E+00
		Prion disease	9	8.00E-01	1.00E+00
-					
		Enrichment Score: 1.03	Count	P_Value	Benjamini
		Amyotrophic lateral sclerosis	22	9.80E-03	9.50E-01
		Huntington disease	18	2.10E-02	1.00E+00
38	1000	Alzheimer disease	20	4.70E-02	1.00E+00
		Parkinson disease	15	5.30E-02	1.00E+00
		Prion disease	14	1.00E-01	1.00E+00
	1				1.00E+00
		Pathways of neurodegeneration multiple diseases	1 20	1 2 11118: 111	
		Pathways of neurodegeneration - multiple diseases	20	2.00E-01	1.002 00
			1		
		Enrichment Score: 0.66	Count	P_Value	Benjamini
		Enrichment Score: 0.66 Amyotrophic lateral sclerosis	Count 13	P_Value 8.10E-02	Benjamini 9.50E-01
39	999	Enrichment Score: 0.66	Count	P_Value	Benjamini

		Table 1 continued from previous page			
		Alzheimer disease	5	9.60E-01	1.00E+00
		Enrichment Score: 0.7	Count	P_Value	Benjamini
		Spinocerebellar ataxia	8	3.80E-03	8.70E-01
		Alzheimer disease	12	1.90E-02	1.00E+00
40	1000	Neurotrophin signaling pathway	6	2.80E-02	1.00E+00
		Pathways of neurodegeneration - multiple diseases	13	3.40E-02	1.00E+00
		Huntington disease	9	6.40E-02	1.00E+00
		Parkinson disease	7	1.70E-01	1.00E+00
		Enrichment Score: 0.98	Count	P_Value	Benjamini
41	999	Pathways of neurodegeneration - multiple diseases	23	5.40E-02	4.80E-01
41	333	Huntington disease	16	6.70E-02	5.10E-01
		Amyotrophic lateral sclerosis	15	3.10E-01	8.80E-01