

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2007 CONTROL SYSTEM

SEMESTER - 5

Time	 3 Hours	. 1
I	 JIIUUIS	,

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

. Cł	noose t	he correct alternatives for any	ten of the	the following: $10 \times 1 =$: 10			
i)	Th	The type of a transfer function denotes the number of						
	a)	zeros at origin	b)	poles at infinity				
	c)	poles at origin	d)	finite poles.				
ii)	Th	e characteristic equation of a s	system i	$s s^2 + 2s + 2 = 0$. The system is				
	a)	critically damped	b)	underdamped				
	c)	overdamped	d)	none of these.				
iii)) Ad	dition of a pole to the closed lo	op trans	efer function				
	a)	increases rise time	b)	decreases rise time				
	c)	increases overshoot	d)	has no effect.				
iv)) By	the use of PD control to the se	econd o	rder system, the rise time				
	a)	decreases	b)	increases				
	c)	remains same	d)	has no effect.				
v)	W	nen the phase crossover frequ	ency is	equal to the gain crossover frequen	ıcy,			
	the	e system exhibits						
	a)	sustained oscillations						
	b)	damped oscillatory respons	e					
	c)	oscillations of increasing an	plitude					
	d)	overdamped response.						

5201

- vi) If the gain of the open loop system is doubled, the gain margin is not affected a) gets doubled b) becomes $\frac{1}{4}$ th. c) becomes half d) The function $\frac{1}{1+sT}$ has slope of vii) - 6 dB/decade a) 6 dB / decade b) - 20 dB/decade 20 dB / decade. c) d) "Synchros" are popularly used as transmitter of viii) digital data al b) mathematical data c) angular data d) all of these. A 2nd order system exhibits 100% overshoot. Its damping coefficient is ix) equal to 0 a) equal to 1 > 1. c) < 1 For the transfer function $G(s)H(s) = \frac{1}{s(s+1)(s+0.5)}$, X) the phase crossover frequency is 0.5 rad/sec 0.707 rad/sec a) b) 1.732 rad/sec d) 2 rad/sec. c) Transfer function with unit magnitude & antisymmetric pole-zero patterns xi) correspond to minimum phase system all pass system b) a) no-pass systems. non-minimum phase systems d) c) xii) A linear time invariant system obeys the principle of superposition a) b) the principle of homogeneity
 - c) both the principles in (a) & (b)
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Determine the transfer function of the network shown below in fig. 1:

Fig. 1

 Use block diagram reduction technique to find out the overall transfer function of the system shown below in fig. 2.

- 4. Consider the following mechanical translation system. F denotes force, X denotes displacement, M denotes mass, B denotes friction coefficient & K denotes spring constant. As shown below in fig. 3.
 - a) Write down the differential equations governing the system shown below.
 - Draw the corresponding electrical equivalent circuit using force-voltage analogy.

Fig. 3

A unity feedback system is characterized by the open loop transfer function 5.

$$G(s) = \frac{1}{s(0.5 s + 1)(0.2 s + 1)}$$

Determine the steady state errors for unit step, unit ramp & unit acceleration input. Also determine the damping ratio & natural frequency of the dominant roots.

The open loop transfer function of a unity feedback system is given by 6. $G(s) = \frac{k}{s(Ts+1)}$ where k & T are positive constants. By how much should the amplifier gain be reduced so that the peak overshoot of unit step response of the system is reduced from 75% to 25%?

GROUP - C (Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

Draw the Bode plot of the following system. Find the relative stability of the system.:

$$G(s) = \frac{10(s+2)}{s(s^2+s+1)}$$
.

Derive the transfer function from the following Bode plot shown below in fig. 4. 10 + 5

- 8. a) Sketch the root locus of a system whose open loop transfer function is given by $G(s) = \frac{k}{s(s+2)(s+4)}.$
 - b) Evaluate the value of k at a point where the root loci crosses the imaginary axis. Determine the frequency.
 - c) Calculate the values of k so that the dominant pair of complex poles of the system has a damping ratio of 0.5.
- 9. a) State Routh's stability criterion.
 - Using Routh's stability criterion, determine the value of K for which the closed loop system with unity feedback system with open loop transfer function $G(s) = \frac{K}{(s^2 + 6s + 25)(s + 2)(s + 4)}$ exhibits sustained oscillation.
 - c) Why is the step function used to characterise the dynamic behaviour of a 2nd order system? State whether the impulse function can be used for this purpose or not.

 3 + 7 + 5
- 10. a) State & explain the Nyquist criterion for studying stability of a control system.
 - b) A unity feedback control system has open loop transfer function $G(s) = \frac{K}{s(s^2 + s + 4)}.$

Draw the Nyquist plot & hence investigate the stability of the system for various values of k.

- c) What are the advantages of Nyquist plot? 4 + 7 + 4
- 11. a) What is polar plot?
 - b) Define lag & lead compensators & their functions.
 - c) Discuss with neat sketches two different types of liquid control schemes.

END

5201