AP Biology Intro to Statistics

Statistics

- Statistical analysis is used to collect a sample size of data which can infer what is occurring in the general population
 - More practical for most biological studies
 - Requires math and graphing data

Typical data will show a normal distribution

(bell shaped curve).

Range of data

Statistical Analysis

Two important considerations

- O How much variation do I expect in my data?
- What would be the appropriate sample size?

Measures of Central Tendencies

Mean

Average of data set

Median

- Middle value of data set
- Not sensitive to outlying data

Mode

Most common value of data set

Measures of Average

- Mean: average of the data set
 - Steps:
 - × Add all the numbers and then divide by how many numbers you added together

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i.$$
 $\bar{\mathbf{x}} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$

Example: 3, 4, 5, 6, 7

$$3+4+5+6+7=25$$

25 divided by $5=5$
The mean is 5

Measures of Average

- Median: the middle number in a range of data points
 - o Steps:
 - × Arrange data points in numerical order. The middle number is the median
 - x If there is an even number of data points, average the two middle numbers
- Mode: value that appears most often

Example: 1, 6, 4, 13, 9, 10, 6, 3, 19

1, 3, 4, 6, 6, 9, 10, 13, 19

Median = 6

Mode = 6

Measures of Variability

Standard Deviation

- ➤ In normal distribution, about 68% of values are within one standard deviation of the mean
- ▼ Often report data in terms of +/- standard deviation
- It shows how much <u>variation</u> there is from the "average" (mean).
 - ➤ If data points are close together, the standard deviation with be small
 - ➤ If data points are spread out, the standard deviation will be larger

Standard Deviation

- 1 standard deviation from the mean in either direction on horizontal axis represents 68% of the data
- 2 standard deviations from the mean and will include
 ~95% of your data
- 3 standard deviations form the mean and will include
 ~99% of your data
- <u>Bozeman video</u>: Standard Deviation

$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

Grades from recent quiz in AP Biology:

96, 96, 92, 90, 88, 86, 86, 84, 80, 70

1st Step:

find the mean (\overline{X})

	$\sum (X - \overline{X})^2$
s = 1	n-1

Measure Number	Measured Value x	(x - X)	(x - X) ²
1	96	9	81
2	96	9	81
3	92	5	25
4	90	3	9
5	88	1	1
6	86	-1	1
7	86	-1	1
8	84	-3	9
9	80	-7	49
10	70	-17	289
TOTAL	868	TOTAL	546
Mean, X	87	Std Dev	

2nd Step:

determine the deviation from the mean for each grade then square it

$$\sum (X - \overline{X})^2$$

$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

Measure Number	Measured Value x	(x - X)	(x - X) ²
1	96	9	81
2	96	9	81
3	92	5	25
4	90	3	9
5	88	1	1
6	86	-1	1
7	86	-1	1
8	84	-3	9
9	80	-7	49
10	70	-17	289
TOTAL	868	TOTAL	546
Mean, X	87	Std Dev	

Measured Value x	(x - X)	(x - X) ²
96	9	81
96	9	81
92	5	25
90	3	9
88	1	1
86	-1	1
86	-1	1
84	-3	9
80	-7	49
70	-17	289
868	TOTAL	546
87	Std Dev	
	96 96 92 90 88 86 86 80 70 868	Value x (x - X) 96 9 92 5 90 3 88 1 86 -1 86 -1 84 -3 80 -7 70 -17 868 TOTAL

Step 3:

Calculate degrees of freedom (n-1)

where n = number of data values

So,
$$10 - 1 = 9$$

$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

Measure Number	Measured Value x	(x - X)	(x - X) ²
1	96	9	81
2	96	9	81
3	92	5	25
4	90	3	9
5	88	1	1
6	86	-1	1
7	86	-1	1
8	84	-3	9
9	80	-7	49
10	70	-17	289
TOTAL	868	TOTAL	546
Mean, X	87	Std Dev	8

Step 4:

Put it all together to calculate S

$$S = \sqrt{(546/9)}$$

= 7.79
= 8

$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

Calculating Standard Error

- So for the class data:
 - o Mean = 87
 - Standard deviation (S) = 8
- 1 s.d. would be (87 8) thru (87 + 8) or 81-95
 - So, 68.3% of the data should fall between 81 and 95
- 2 s.d. would be (87 − 16) thru (87 + 16) or 71-103
 - So, 95.4% of the data should fall between 71 and 103
- \bullet 3 s.d. would be (87 24) thru (87 + 24) or 63-111
 - o So, 99.7% of the data should fall between 63 and 111

Measures of Variability

Standard Error of the Mean (SEM)

- Accounts for both sample size and variability
- Used to represent uncertainty in an estimate of a mean
- As SE grows smaller, the likelihood that the sample mean is an accurate estimate of the population mean increases

Calculating Standard Error

$$Mean = 87$$

$$S = 8$$

$$n = 10$$

$$SE_{\bar{x}} = \frac{S}{\sqrt{n}}$$

$$SE_X = 8/\sqrt{10}$$

= 2.52
= 2.5

Bozeman video: Standard Error

This means the measurements vary by \pm 2.5 from the mean

Graphing Standard Error

• Common practice to add standard error bars to graphs, marking one standard error above & below the sample mean (see figure below). These give an impression of the precision of estimation of the

mean, in each sample.

Which sample mean is a better estimate of its population mean, B or C?

Identify the two populations that are most likely to have statistically significant differences?

Practice Problems

• Consider the following three data sets A, B and C.

$$A = \{9,10,11,7,13\}$$

$$B = \{10,10,10,10,10\}$$
 Find

$$C = \{1,1,10,19,19\}$$

- a) Calculate the mean of each data set.
- b) Calculate the standard deviation of each data set.
- c) Which set has the largest standard deviation?
- d) Is it possible to answer question c) without calculations of the standard deviation?

Practice Problems

• What is the population standard deviation for the numbers: 75, 83, 96, 100, 121 and 125?

 Ten friends scored the following marks in their endof-year math exam:

23%, 37%, 45%, 49%, 56%, 63%, 63%, 70%, 72% and 82%

What was the standard deviation of their marks?