通算報告書番号: フォーマット ver.1

研究進捗報告書

ミーティング日: 2020年12月21日

学年 D2 氏名 吉田 皓太郎

注意:ミーティング時には、必ず本報告書を作成し、一部を教員に提出すると共に、一部を自分用に持参して下さい。本報告書の提出がない場合、ミーティングは実施しません。また、項目1)から項目3)について未記入の箇所がある場合にも、ミーティングは実施しません。なお、本報告書は手書きでも構いません。

テーマの概要

- 機械学習を用いたカップ形状の設計支援
- 着後形状予測のためのカップの変形解析

テーマの目的

- 1. 定性的な機能要求を満たせるようなカップ形状を設計できる
- 2. 布の物性とカップのパターンがどのような結びつきを持っているかを調べることができる.

今週のミーティング事項について

目次

1	研究進捗について	1
1.1	何が起きているのか	1
1.2	尤度関数の最大化について	2
1.3	取り組んだこと	2
1.4	母線長の最適化	2
2	荒井先生コメント	2
3	To Do List	3
ミーテ	・ィング事項の具体的な内容について	

1 研究進捗について

1.1 研究会から

研究会で述べた通り、 ω_{η} の局所解収束が問題となっていました。 ω_{η} は、既定関数の重み付き線形和を用いて、 $\frac{2\kappa}{\pi} \arctan ae(s)$ と表している。これが κ へ近づくということは,ae(s) → inf になっているということである。これは機械学習の正則化問題と同じことで, $\lambda |a|_2$ をバリア関数の代わりに代入する(ただし, λ は正則化パラメータ)ことで,計算を行ってみた。結果はまだですが,また精査していきたいと思います。

2 To Do List

- ▼ 論文流れについて考え始める
- ▼ プログラムデバッグ続き

4)メモ欄(ミーティング中に記載)
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5) 次回のミーティングまでの課題 (ノルマ) (ミーティング終了時に記載) ※学生、教員共に記載
5) 次回のミーティングまでの課題 (ノルマ) (ミーティング終了時に記載) ※学生、教員共に記載
5) 次回のミーティングまでの課題 (ノルマ) (ミーティング終了時に記載) ※学生、教員共に記載
5) 次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載
5)次回のミーティングまでの課題(ノルマ)(ミーティング終了時に記載)※学生、教員共に記載