מתמונה לטקסט - חילוץ כתב יד בעברית SHECODES

עדי רוזנטל, אוקטובר 2020

מטרת הפרויקט

מימוש מערכת המאפשרת המרה של תמונה המכילה טקסט בעברית (בכתב יד / דפוס) לכדי כתב מחשב, אותו ניתן לערוך ולעצב בצורה נוחה.

3

שלושה תהליכים עיקריים בפרויקט:

- . איסוף וחילוץ של דאטה מתויג בכתב יד בעברית.
- .OCR המבוססת tesseract אימון רשת נוירונים.
- 3. יצירת ממשק נוח למשתמש, לחילוץ טקסט מתוך תמונה ואיסוף דאטה עבור אימון הרשת.

ארכיטקטורה

מבנה נתונים (DB)

תהליך טיוב המערכת לחילוץ טקסט, דורש אימון של רשת הנוירונים עם כמות גדולה של דאטה.

- תצורת הדאטה: קובץ תמונה (TIF) + קובץ טקסט (txt).
- הדאטה צריך להיות מאורגן כך שבכל תמונה מופיעה שורה אחת של כתב יד + קובץ טקסט
 בעל שם זהה, המכיל את טקסט הכתוב בתמונה.
 - הדאטה צריך להיות מדויק ובאיכות גבוהה.
 - .(overfitting כדאי לבצע גיוון בכתבי היד (כדי למנוע -

יצירה והבניה של מידע

שלוש שיטות עיקריות בהן השתמשתי ליצירת דאטה בפרויקט:

- סריקה וחילוץ של שורות טקסט מתוך דפים מוכנים ("Template"), אליהם היו צריכים המשתמשים להעתיק שורות של שירים בכתב ידם, לפי ההנחיות בדף.
 - 2. סריקה של תמונה עם טקסט ותיוג התמונה בתוך ממשק המערכת.
 - .3 איסוף פונטים בכתב יד בעברית, חילוץ שורות טקסט ותיוגם.

סריקה וחילוץ של שורות טקסט מתוך דפים מוכנים

: תהליך

- קבלת קובץ PDG / קובץ תמונה.
- במידה ומתקבל PDF מתבצעת המרה לPNG.
 - עיבוד קבצי התמונה ע"י המשתמש – יישור וניקוי רעשים.
 - חילוץ מלבנים מהתמונה. 🕟
 - ניקוי "רעשים" בתיחומי המלבנים לפי גודל.
- ניקוי של מלבנים מושחרים.
 - חיתוך של התמונה לפי תיחום המלבן.
 - תיוג התמונה לפי מילון מוגדר :

(page, line) -> label

תיוג תמונות על ידי המשתמש

: תהליך

- קבלת קלט תמונה עם טקסט בכתב יד.
- עיבוד קבצי התמונה ע"י המשתמש – יישור וניקוי רעשים.
- הפרדה של הטקסט לשורות על ידי ערך מינימלי של צבע בכל שורה.
 - הצגה של השורות בממשק תיוג עבור המשתמש.

איסוף דאטה בעזרת פונטים

- fonts_text_679 fonts_text_680.gt 10/14/2020 10:36 AM Text Document fonts_text_680 10/14/2020 10:36 AM TIF File fonts_text_681.gt 10/14/2020 10:36 AM Text Document fonts text 681 10/14/2020 10:36 AM TIF File fonts_text_682.gt 10/14/2020 10:36 AM Text Document fonts text 682 10/14/2020 10:36 AM TIF File fonts_text_683.gt 10/14/2020 10:36 AM Text Document fonts_text_683 10/14/2020 10:36 AM TIF File fonts_text_684.gt 10/14/2020 10:36 AM Text Document fonts text 684 10/14/2020 10:36 AM TIF File fonts_text_685.gt 10/14/2020 10:36 AM Text Document fonts_text_685 10/14/2020 10:36 AM TIF File fonts_text_686.gt 10/14/2020 10:36 AM Text Document fonts_text_686 10/14/2020 10:36 AM TIF File fonts text 687.gt 10/14/2020 10:36 AM Text Document fonts text 687 10/14/2020 10:36 AM TIF File

: תהליך

- ריכוז פונטים של כתב יד: •
- חיפוש פונטים שקיימים באינטרנט
 - איסוף כ-30 כתבי יד מאנשים שונים ויצירת פונטים ע"י אתר caligraphr.
 - ריכוז טקסט ארוך בעברית.
- הפרדה של הטקסט לשורות של כ-6 מילים בשורה.
- השמה של הפונטים במסמך וורד, המרה לPDF ובסוף לקובץ TIF + יצירת קובץ טקסט מותאם לתמונות.
 - חילוץ שורות טקסט מתוך התמונות.
 - תיוג השורות לפי מספר שורה במסמך טקסט.

TESSERACT - אימון הרשת

שלושה שלבים עיקריים במהלך הפרויקט עבור תהליך אימון הרשת:

- .1 מחקר כלים ואפשרויות לאימון הרשת + יצירת סביבה מתאימה לאימון.
 - .2 תהליך האימון.
 - .3 בדיקה של הרשת המאומנת.

13

תהליך האימון

- ארגון של הדאטה והעברתו לסביבה המתאימה.
 - DOCKER •
 - UBUNTO 20
 - Virtual machine
- שימוש בקוד פתוח Tesstrain שעוזר להכין את הדאטה עבור אימון.
- .txt + tif -> .box -> .lstm
 - Tesseract training tools •
- העברה של הרשת המאומנת (hebX.traineddata) לתקית התקנה של Tesseract.

בדיקת הרשת

תוצאות של אימוני הרשת

דו"ח בדיקות רשת

הרצה של הרשת החדשה על הדאטה לבדיקות (בתיקיית validation).

- הרשת לא אומנה על הדאטה הנ"ל.
- השוואה של תוצאת הרשת לתיוג "אמת"
- שימוש בפונקציית
 SequenceMatcher
 המבוססת על אלגוריתמים
 CCS להשוואת מחרוזות LCS
 longest contiguous
 matching
- האלגוריתם לא מתייחס למשקלים של אותיות – כמו למשל אוחיות דומות וכו'.
 - יצירת דו"ח.
- השוואה בין תוצאות הרשת המאומנת על כל שורה בvalidation, לתוצאת הרשת של אותם המשפטים לפני האימון והערכה של אחוז שיפור.

from difflib import SequenceMatcher as SQ

def Check_model_tesseract(self, folder_validation, folder_output_txtfile, psm=7, compare_methods = "SQ"):

חילוץ טקסט מתוך תמונה

- עיבוד תמונה לפני חילוץ.
 - .Pytesseract
- ."השוואת תוצאות הרשת ל"אמת".

17

עיבוד תמונה לפני חילוץ

Find the best variation of your image to extracting text

Click here to run program on this image

אבשנהל יכלמנסגם בקרשת ללןך מ NESEUISUS. CONFORCEUL BUPPILA Naseulsus, cgn Geredus Lus sussesse אמשבמנחטי מון וסדפצקרטת ללך

18

- כדי שהחילוץ יהיה אופטימלי כדאי לבצע עיבוד תמונה, לפני שימוש ברשת נוירונים.
- בממשק ישנן מספר אפשרויות להטיב עם תוצאת : הרשת
- מרכוז של הטקסט על ידי סימון האזור בו מצוי הטקסט אותו אנחנו רוצים לחלץ.
 - ניקוי רעשים בעזרת פונקציות לעיבוד תמונה :(OpenCV)

Binary – thresholding

medianBlur

Dilate

Erosion

dilate

חילוץ טקסט

19

convert a picture in Hebrew to machine encoded text - Adi Rosenthal

תהליך חילוץ הטקסט:

- אופציה לבחירת רשת נוירונים בעזרתה נרצה לחלץ את הטקסט.
 - הרשת הנבחרת צריכה להיות שמורה בתיקיית tessdata.
- באופן דיפולטי הרשת מוגדרת להיות הרשת הכי איכותית.
- החילוץ עצמו מתבצע ע"י שימוש בספריה pytesseract שמתממשקת לתוכנה של tesseract – מקבלת תמונה ושם של רשת.
- שמירת תוצאות הרשת כקובץ טקסט (Extract result).

השוואת תוצאות

- כדי לבחון את טיב התוצאה שהתקבלה בחילוץ, קיימת אופציה עבור המשתמש להכניס את הטקסט הנכון של התמונה – ה"אמת".
- ההשוואה בין הטקסטים מתקבלת כפרמטר באחוזים על ידי פונקציית "SequenceMatcher".

(לאחר הכנסת התוצאות אמת ניתן גם להכניס את תמונת הקלט עם הטקסט שהמשתמש הכניס בבדיקה אל לתוך בסיס הנתונים)

מה למדתי בפרוייקט?

- Creating Virtual machine
- Using Linux
- Work with Dockers
- Git + Github
- Tesseract / OCR
- Design + Architecture
- Using open source

- OpenCV
- Tkinter
- PIL (Image)
- Difflib
- Training tesseract
- Similarity between strings
- Designing and planning a GUI

22

צעדים להמשך...

- שיפור תוצאות הרשת בשיטות נוספות כמו:
 - .NLP
 - שימוש בתיקון על פי מילון.
- סינון של מילים ואותיות- בשילוב עם התניות בשפה העברית.
 - https://github.com/NLPH/NLPH_Resources •
 - בניית אתר אינטרנט / אפליקציה נוחה למשתמש.
- ותהליך האימון כדי להשפיע יותר על האימון. tesseract בנה מעמיקה יותר של אלגוריתם
 - בדיקה יותר מעמיקה של תוצאות הרשת.

פרוייקט סיום - עדי רוזנטל

23

קישורים

- Tesseract-OCR: https://github.com/tesseract-ocr/tesstrain
- https://medium.com/@guiem/how-to-train-tesseract-4-ebe5881ff3b7
- Train-tesseract and docker files for train : https://github.com/guiem/train-tesseract
- Tesstrain : https://github.com/tesseract-ocr/tesstrain
- https://tesseract-ocr.github.io/tessdoc/ImproveQuality
- https://www.makeuseof.com/tag/create-virtual-machine-using-windows-10-hyper-v/
- Learn OpenCV: https://www.youtube.com/watch?v=N81PCpADwKQ&t=6764s
- Learn TKinter: https://www.youtube.com/watch?v=YXPyB4XeYLA
- Learn docker: https://www.youtube.com/watch?v=i7ABlHngi1Q
- SequenceMarcher in python : https://towardsdatascience.com/sequencematcher-in-python-6b1e6f3915fc

אלות?