Recherche dichotomique

«Plus petit ou plus grand?»

1. Présentation de l'algorithme

Lorsqu'on cherche si un élément appartient ou non à une liste, il suffit de la parcourir en comparant chacun de ses éléments à celui que l'on cherche. Cette démarche peut être améliorée si la liste possède des propriétés particulières, notamment si c'est une liste d'entiers triée.

On veut écrire une fonction recherche_dichotomique qui : En entrée prend

- une liste liste_triee de *n* entiers triée dans l'ordre croissant;
- un entier val.

Renvoie

- l'indice de val dans liste_triee si val appartient à liste_triee;
- -1 si a n'appartient pas à liste_triee.

Exemple

- recherche_dichotomique([11, 20, 32, 33, 54], 32) renvoie 2 car 32 est l'élément d'indice 2 de la liste.
- recherche_dichotomique([20, 32, 33, 54], 40)renvoie -1 car 40 ne figure pas dans la liste.

Méthode

On compare val avec l'élément m qui se situe « à peu près au milieu de liste triee ».

- si val est égal à m c'est gagné, on renvoie l'indice de m dans

```
liste_triee;
```

- sinon si val > m on recommence avec la liste des éléments situés après m.
- sinon c'est que val < m et on recommence avec la liste des éléments situés avant m.

On itère ce procédé tant que la liste des valeurs à examiner n'est pas vide. Si on arrive à une liste vide c'est que val, n'est pas dans liste_triee.

Voici l'algorithme traduit en Рутном:

Python

```
def recherche_dichotomique(liste_triee, val):
          # début de la plage de valeurs à regarder
          gauche = 0
03
04
          # fin de la plage
          droite = len(liste_triee) - 1
05
          # tant que la plage est non vide
06
          while gauche <= droite:</pre>
07
              # on prend grosso modo le milieu
08
              milieu = (gauche + droite) // 2
09
              # si on trouve val au milieu c'est gagné
10
              if liste_triee[milieu] == val:
11
12
                  return milieu
13
              # si on a dépassé val
14
              elif liste_triee[milieu] > val:
                  # alors on regarde avant
15
                  droite = milieu - 1
16
17
              # sinon on regarde après
18
              else:
19
                  gauche = milieu + 1
          # si on est sorti de la boucle
20
          # c'est qu'on n'a pas trouvé val
21
22
          return -1
```

2. Comprendre l'algorithme

Commençons par le faire «tourner à la main» sur un exemple, avec liste_triee valant [1, 3, 4, 8, 9, 13, 20, 21].

On cherche la valeur 4.

Pour chaque itération on a noté dans un tableau les valeurs des variables (celles de gauche et droite avant qu'elles ne soient modifiées) et si la fonction renvoie quelque chose ou non.

n° d'itér	gauche	droite	milieu	liste_triee[milieu]	valeur renvoyée
1	0	7	3	8	NON
2	0	2	1	3	NON
3	2	2	2	4	OUI:2

Ainsi la fonction a renvoyé 2, indice de la valeur 4 dans la liste, au bout de 3 itérations.

On cherche la valeur 15 :

n°itér	gauche	droite	milieu	liste_triee[milieu]	return?
1	0	7	3	8	NON
2	4	7	5	13	NON
3	6	7	2	20	NON
-	7	6	-	-	OUI : -1

La dernière ligne du tableau signifie qu'au bout de la 3^e itération, les conditions de boucles ne sont plus vérifiées (car gauche > droite) et que -1 est renvoyé.

Exercice 1

On cherche la valeur 6 dans la liste précédente. Complète le tableau (des lignes resteront peut-être vides).

n°itér	gauche	droite	milieu	liste_triee[milieu]	return?

On cherche la valeur 21, complète le tableau (des lignes resteront peutêtre vides).

n°ité	r gauche	droite	milieu	liste_triee[milieu]	return?

3. Analyse de l'algorithme

Quatre questions se posent :

- **1.** Pourquoi, lorsque la fonction renvoie un entier positif, est-ce bien la position de val dans liste_triee? C'est un problème de *correction*.
- 2. Quand la fonction renvoie -1, est-ce que cela veut bien dire que val n'est pas dans liste_triee? C'est un problème de complétude.
- **3.** Pourquoi la boucle *tant que* s'arrête-t-elle toujours? On dit que c'est un problème de *terminaison*.
- **4.** Enfin, pourquoi cette fonction est-elle plus rapide qu'un parcours des éléments un par un? C'est un problème de *complexité*.

4. Correction de l'algorithme

Quand la fonction renvoie un entier positif, c'est à la ligne 12 , ce qui signifie qu'on a effectivement trouvé val dans liste_triee, à la position renvoyée.

5. Complétude de l'algorithme

Pour prouver que cette fonction est complète, on doit utiliser un *invariant de boucle*.

Définition

Un invariant de boucle est une propriété $\mathcal P$ dépendant éventuellement des variables du programme.

- \mathcal{P} doit être vraie avant l'entrée dans la boucle;
- $\mathcal P$ doit rester vraie à chaque itération de boucle;
- à la fin de la boucle, $\mathcal P$ doit nous permettre de conclure que la fonction « fait bien ce qu'elle doit faire ».

Dans notre cas voici l'invariant de boucle :

 \mathcal{P} : «si val est dans liste_triee son indice est entre gauche et droite»

- avant l'entrée dans la boucle while, on a gauche == 0 et droite == len(liste_triee) - 1 donc P est trivialement vérifiée; 6. TERMINAISON 5

- dans la boucle, si liste_triee[milieu] == val alors on renvoie val et la fonction s'arrête et donne bien le résultat attendu;

- sinon si liste_triee[milieu] > val alors puisque la liste est triée, la position de val ne peut être qu'entre gauche et milieu-1, or droite est actualisée avec cette valeur, et P reste vraie;
- de même si liste_triee[milieu] < val;</pre>
- En sortie de boucle \mathcal{P} est toujours vérifiée et puisque gauche > droite cela signifie que val n'est pas dans liste_triee.

On a donc prouvé la complétude de notre fonction.

6. Terminaison

Pour prouver qu'une boucle tant que se termine, en théorie on détermine un variant de boucle.

Définition

Un variant de boucle est un entier positif qui décroît strictement à chaque itération de boucle. On le choisit de sorte à ce que lorsqu'il atteint zéro (ou un, en tout cas une petite valeur) la boucle se termine.

Dans notre cas, le variant de boucle est l'entier \vee défini par \vee = droite - gauche : la condition du while est liée à \vee puisque gauche <= droite équivaut à \vee >= \odot .

Pour montrer que v décroît strictement il suffit de montrer que ou bien gauche augmente strictement ou bien droite décroît strictement.

Or lors d'une itération, m est toujours entre gauche et droite (au sens large) et

- soit on trouve que liste_triee[m] vaut val et la boucle s'arrête;
- sinon ou bien gauche devient m + 1 donc augmente strictement, ou bien droite devient m - 1 donc décroît strictement.

Ainsi les valeurs de v décroissent strictement, donc finissent (si on ne trouve pas val) par atteindre zéro et la boucle se termine. On dit qu'on a prouvé la *terminaison* de la fonction.

7. Complexité

On va ici évaluer le nombre d'étapes nécessaires au déroulement de la fonction. On va raisonner dans le pire des cas : val n'appartient pas à la liste.

À chaque itération de boucle, le nombre de valeurs qui restent à examiner) est au moins divisé par 2 et lorsque cette valeur vaut 1, c'est qu'on est à la dernière itération de boucle et on est sûr ou bien de trouver val à cet endroit, ou bien on sort de la boucle et on renvoie -1.

Ainsi, pour une liste triée de taille n, le nombre d'itérations de la boucle dans le pire des cas, c'est le plus petit entier k tel que 2^k dépasse n.

Pour une liste de longueur 2 on est sûrs d'arriver au résultat en 2 itérations, pour une liste de longueur 4, en 3 itérations et en généralisant, si la liste est de longueur 2^n , en n+1 itérations.

Pour un tableau de longueur 1000, puisque $2^9 < 1000 < 2^{10}$, on est sûr d'arriver au résultat au plus en 10 itérations.

Définition

Soit n un entier naturel non nul, on appelle logarithme en base 2 de n l'unique réel x solution de

$$2^x = n$$

Ce nombre x est noté $\log_2(n)$.

Ce que l'on vient de prouver, c'est que pour une liste de taille n, la fonction recherche_dichotomique nécessitera au plus $E(\log_2(n))+1$ itérations pour déterminer si oui ou non une valeur appartient à cette liste (E représente la fonction partie entière).

Propriété

Soit une liste triée de longueur $n \in \mathbf{N}^*$. Soit p le nombre de bits nécessaires pour écrire p en base 2.

La recherche dichotomique d'une valeur dans la liste nécessite ${\bf au}$ plus p accès à cette liste.

Pour cette raison la complexité de l'algorithme de recherche dichotomique est

7. COMPLEXITÉ 7

dite *logarithmique*. C'est bien mieux que celle de la recherche simple.

Exercice 2 : efficacité de l'algorithme

1. Dans une liste triée de taille 10 000, en combien d'étapes l'algorithme de recherche dichotomique s'arrête-t-il *dans le pire des cas*?

2. Même question pour une liste de taille 100 000 et pour une liste de taille 1000 000.