Lorentzian Geometry and Topological Electromagnetism

Colin Roberts

Thanks and funding

Introduction

Outline

- 1 Intro Lorentzian geometry
- Poincaré group A(1,3) and its Lie algebra $\mathfrak{a}(1,3)$
- 3 de Rham (Co)homology
- 4 Topological electromagnetism

Motivation

plasmas and what not

Maxwell's Equations

Gauss's Laws

$$\vec{\nabla} \cdot \vec{E} = \rho(\vec{x}, t)$$

Ampere's Law

$$\vec{\nabla} \times \vec{B} - \frac{\partial \vec{E}}{\partial t} = \vec{J}(\vec{x}, t)$$

Faraday's Law

$$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$

Lorentzian Geometry

 stuff

Poincaré Group

symmetries of lorentz space.

de Rham (Co)homology