Support Vector Machine using Scikit-learn

Out[104]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

data cleaning

```
In [86]:
           1 data.shape
Out[86]: (150, 5)
In [87]:
           1 data.isnull().sum()
Out[87]: sepal_length
                         0
         sepal_width
                         0
         petal_length
                         0
         petal_width
                         0
         species
                         0
         dtype: int64
In [88]:
           1 data.duplicated().sum()
Out[88]: 1
```

```
In [89]:
               dataset= data.drop_duplicates()
               dataset
Out[89]:
                sepal_length sepal_width petal_length petal_width species
             0
                                    3.5
                        5.1
                                                1.4
                                                           0.2
                                                                 setosa
             1
                        4.9
                                    3.0
                                                1.4
                                                           0.2
                                                                 setosa
             2
                        4.7
                                    3.2
                                                1.3
                                                           0.2
                                                                 setosa
             3
                        4.6
                                    3.1
                                                1.5
                                                           0.2
                                                                 setosa
             4
                        5.0
                                    3.6
                                                1.4
                                                           0.2
                                                                 setosa
            ...
                         ...
                                     ...
                                                 ...
                                                            ...
                        6.7
                                    3.0
                                                5.2
           145
                                                           2.3 virginica
                        6.3
                                    2.5
                                                5.0
                                                                virginica
           146
                                                            1.9
           147
                        6.5
                                    3.0
                                                5.2
                                                                virginica
                                                               virginica
           148
                        6.2
                                    3.4
                                                5.4
                                                           2.3
                                    3.0
                                                            1.8 virginica
           149
                        5.9
                                                5 1
          149 rows × 5 columns
In [90]:
            1 dataset.shape
Out[90]: (149, 5)
In [91]:
            1 dataset.count()
Out[91]: sepal length
                            149
          sepal width
                            149
          petal length
                            149
          petal_width
                            149
          species
                            149
          dtype: int64
In [92]:
            1 dataset.info()
          <class 'pandas.core.frame.DataFrame'>
          Index: 149 entries, 0 to 149
          Data columns (total 5 columns):
                Column
                                Non-Null Count
           #
                                                 Dtype
           0
                sepal_length 149 non-null
                                                  float64
           1
                sepal_width
                                149 non-null
                                                  float64
                                                  float64
           2
                petal_length 149 non-null
           3
                petal width
                                149 non-null
                                                  float64
                species
                                149 non-null
                                                  object
          dtypes: float64(4), object(1)
          memory usage: 7.0+ KB
In [93]:
            1 dataset.nunique()
Out[93]: sepal_length
                            35
          sepal_width
                            23
          petal length
                            43
          petal width
                            22
          species
                             3
          dtype: int64
```

In [94]:

1 dataset.describe()

Out[94]:

	sepal_length	sepal_width	petal_length	petal_width
count	149.000000	149.000000	149.000000	149.000000
mean	5.843624	3.059732	3.748993	1.194631
std	0.830851	0.436342	1.767791	0.762622
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.300000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [95]:

import seaborn as sns
sns.pairplot(dataset)

C:\Users\Ahmed Islam\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figur
e layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[95]: <seaborn.axisgrid.PairGrid at 0x1b95fad0090>


```
In [96]: 1 X = dataset.iloc[:,[0,1,2,3]]
X
```

Out[96]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

149 rows × 4 columns

Out[97]:

	species
0	setosa
1	setosa
2	setosa
3	setosa
4	setosa
145	virginica
146	virginica
147	virginica
148	virginica
149	virginica

149 rows × 1 columns

Train_Test_split

Creating Model

```
In [101]:
           1 model = SVC(kernel='linear')
           3 model.fit(X train, y train)
           4 y_pred = model.predict(X_test)
           6
           7 print('The Shape of Y predicted is:', y_pred.shape)
           8 print()
           9 print("The predicted values is:")
           10 print(y_pred)
          The Shape of Y predicted is: (30,)
          The predicted values is:
          ['versicolor' 'setosa' 'virginica' 'versicolor' 'versicolor' 'setosa'
           'versicolor' 'virginica' 'versicolor' 'versicolor' 'virginica' 'setosa'
           'setosa' 'setosa' 'versicolor' 'virginica' 'versicolor'
           'versicolor' 'virginica' 'setosa' 'virginica' 'setosa' 'virginica'
           'virginica' 'virginica' 'virginica' 'setosa' 'setosa']
          C:\Users\Ahmed Islam\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1339: DataConversio
          nWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of
          y to (n_samples, ), for example using ravel().
            y = column_or_1d(y, warn=True)
```

Accuracy Calculating

```
In [102]: 1 accuracy = accuracy_score(y_test, y_pred)
2 print("Accuracy:" ,accuracy)
```

Accuracy: 1.0

confusion Matrix

```
In [80]:
           1 import pandas as pd
           2 import numpy as np
           3 from sklearn.model selection import train test split
           4 from sklearn.preprocessing import StandardScaler
           5 from sklearn.metrics import accuracy_score
           6 import matplotlib.pyplot as plt
           7 import seaborn as sns
           8 from sklearn.svm import SVC
           9
          10 df = pd.read csv('iris')
          11
          12 print("First few rows of the dataset:")
          13 print(df.head())
          14
          15 print("\nMissing values in the dataset:")
          16 print(df.isnull().sum())
          17
          18 X = df[['sepal_length', 'sepal_width']]
          19
             y = df['species']
          20
          21 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
          22
          23 scaler = StandardScaler()
          24 X_train = scaler.fit_transform(X_train)
          25 X_test = scaler.transform(X_test)
          26
          27 | model = SVC(kernel='linear')
          28 model.fit(X_train, y_train)
          29
          30 y_pred = model.predict(X_test)
          31
          32 accuracy = accuracy_score(y_test, y_pred)
          33 print(f"\nAccuracy of the SVM model: {accuracy}")
          34
          35 | confusion_matrix = pd.crosstab(y_test, y_pred, rownames=['Actual'], colnames=['Predicted'])
          36 | sns.heatmap(confusion matrix, annot=True)
             plt.title('Confusion Matrix')
          37
          38 plt.show()
          39
          40 plt.figure(figsize=(10, 6))
          41 | colors = {'setosa': 'red', 'versicolor': 'blue', 'virginica': 'green'}
          42 for species in np.unique(y):
          43
                  subset = X[y == species]
                 plt.scatter(subset.iloc[:, 0], subset.iloc[:, 1], color=colors[species], label=species, s
          44
          45
          46 ax = plt.gca()
          47 | xlim = ax.get_xlim()
          48 | ylim = ax.get ylim()
          49
          50 xx, yy = np.meshgrid(np.linspace(xlim[0], xlim[1], 200),
          51
                                   np.linspace(ylim[0], ylim[1], 200))
          52 Z = model.decision_function(np.c_[xx.ravel(), yy.ravel()])
          53
             for i, color in zip(range(Z.shape[1]), ['red', 'blue', 'green']):
          54
          55
                 Z_class = Z[:, i].reshape(xx.shape)
          56
                 ax.contour(xx, yy, Z_class, levels=[0], linewidths=2, colors=color)
          57
          58
             plt.title('SVM Decision Boundaries with Data Points')
          59
             plt.xlabel('Sepal Length (standardized)')
             plt.ylabel('Sepal Width (standardized)')
          61 plt.legend()
          62 plt.show()
          63
```

First few rows of the dataset:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

Missing values in the dataset:

sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64

Accuracy of the SVM model: 0.9

