EXERCÍCIOS - REVISÃO

Prova 1

- 1) Escreva estruturas de Lewis para MgO, CaCl₂, NI₃, N₂H₄ e C₂H₆.
- 2) Escreva a fórmula de Lewis mais plausível para o Cloreto de nitrosila NOCI, um agente oxidante presente na água régia, uma mistura de ácido nítrico e ácido clorídrico, capaz de solubilizar ouro.
- 3) Desenhe as estruturas para os híbridos de ressonância para as moléculas de SO_2 e O_3 . Discuta se as moléculas são polares ou apolares. Justifique.
- 4) Use a teoria VSEPR (Valence Shell Electronic Pairs Repulsion) para predizer a geometria das seguintes moléculas: (a) CH₃Cl (b) HCN (c)CH₂O (d) BF₃ (e) NSF.
- 5) Quais destas moléculas são polares? Represente e justifique pelos vetores momento de dipolo: a) Cl₂, b) ICl, c) BF₃, d) NO, e) SO₂
- 6) A molécula NH3 tem momento de dipolo μ = 1.47 D enquanto a molecular similar NF₃, tem μ = 0.24 D. Como você justifica a grande diferença entre os dois valores? Desenhe os vetores momentos de dipolo e discuta a polaridade cada molécula.
- 7) Mostre que, tanto a teoria de Ligação e Valencia e a Teoria do Orbital Molecular fornecem uma explicação para a existência da molécula de Na₂, no estado gasoso. É possível predizer a mesma molécula pela teoria de Lewis?
- 8) Para cada uma das espécies: B2, C2, F2, NO, Ne2
- (a) Preencha o diagrama do orbital molecular
- (b) Determine a ordem de ligação e a espécie é estável.
- (c) Determine se a espécie é diamagnética ou paramagnética e indique o número de elétrons desemparelhados.

