DEFS

- 1. A set is an unordered collection of elements.
- 2. A map from a set X to a set Y is a rule (writ: $f: X \to Y$) such that for each $x \in X$ there exists a unique $y \in Y$ such that f(x) = y.
- 3. Let *X* and *Y* be sets. then their cartesian product is $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$.
- 4. Let *X* be a set. then an equivalence relation is $R \subseteq X \times X$ with:
 - (a) reflexive: $x \sim x$ for all $x \in R$.
 - (b) symmetric: $x \sim y$ means $y \sim x$ for all $x, y \in R$.
 - (c) transitive: $x \sim y$ and $y \sim z$ means $x \sim z$ for all $x, y, z \in R$.
- 5. Let *R* be an equivalence relation with $R \subseteq X \times X$. Then, the equivalence class of $x \in R$ is $[x] = \{a \in R \mid x \sim a\}$.
- 6. $\mathbb{Z}/m\mathbb{Z}$ is the set of equivalence classes of the integers mod m.
- 7. A group G is a set G equipped with a binary operation \circ such that:
 - (a) if $a, b \in G$, then $a \circ b \in G$.
 - (b) $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a, b, c \in G$.
 - (c) there exists $e \in G$ such that $a = a \circ e = e \circ a$ for all $a \in G$.
 - (d) for each $a \in G$, there exists $a' \in G$ such that $a \circ a' = a' \circ a = e \in G$.
- 8. Symmetric group is the group of permutations on n letters, write S_n .
- 9. let (a_1, \ldots, a_k) and (b_1, \ldots, b_m) be cycles. Then, they are disjoint cycles if $a_i \neq b_j$ for all i, j.
- 10. a transposition is a cycle of length 2, the simplest possible permutation.
- 11. a permutation is called odd if it can be written as the product of an odd number of transpositions, similarly for even permutations.
- 12. if G is a group, then we call H a subgroup of G if H is a subset of G and H is a group under the same binary operation as on G.
- 13. let G be a group. Then the trivial subgroup is $\{e\}$ and H is a proper subgroup of G if H is a proper subset of H and H is a subgroup of G.
- 14. The general linear group $GL_2(\mathbb{R})$ is the set of 2x2 invertible matrices of real entries and the special linear group $SL_2(\mathbb{R})$ is the set of 2x2 matrices of real entries and determinant 1. (both are groups under the binary operation of multiplication of their respective elements).
- 15. A cyclic group is a group such that the entire group is genereated by a single element.
- 16. an isomorphism is a homomorphism that is bijective (that is, 1-1 and onto).
- 17. Let $f: G \to H$ be homomorphism. then $\ker f$ is the set $\{g \in G \mid f(g) = e_H\}$.
- 18. Let G be a group and H, a subgroup. then the left H-coset of $g \in G$ is the set $gH = \{gh \mid h \in H\}$ and the right H-coset of $g \in G$ is the set $Hg = \{hg \mid h \in H\}$. If the right and left H-cosets are indistinguishable, then we call them both just cosets.
- 19. Let *G* be a group and *H*, a subgroup. we define then G/H to be the quotient group, that is the group of all equivalence classes with respect to *H* in *G*. then, we say the index of *H* in *G* is |G/H| = [G:H].

THMS

- 1. the relation $\equiv \pmod{n}$ is an equivalence relation on \mathbb{Z} .
- 2. $\mathbb{Z}/n\mathbb{Z}$ has exactly *n* elements.
 - (a) if $i \in [j]$, then $j \in [i]$ (in $\mathbb{Z}/n\mathbb{Z}$).

- (b) if $[i] \cap [j] \neq \emptyset$, then [i] = [j].
- (c) if $i \neq j$ and $0 \leq i < j \leq n-1$, then $[i] \cap [j] = \emptyset$.
- (d) every $x \in Z$ belongs to one of $[0], \dots, [n-1]$.
- 3. Addition is correctly and well-defined on $\mathbb{Z}/n\mathbb{Z}$ as [a] + [b] = [a+b].
- 4. the identity element in a group is unique.
- 5. the inverse for an element in a group is unique.
- 6. for any $a, b \in G$, (ab)' = b'a'
- 7. for any $g \in G$, g'' = g.
- 8. S_n is a group with n! elements with the binary operation being composition of permutations.
- 9. Let σ , τ be disjoint cycles in S_X . then $\sigma \tau = \tau \sigma$.
- 10. every permutation in S_n can be written as the product of disjoint cycles.
- 11. any permutation of a finite set of at least 2 elements can be written as the product of transpositions.
- 12. if the identity id is written as the product of r transpositions, then r is even.
- 13. if a permutation σ can be expressed as the product of an even number of transpositions, then any product of transpositions equaling σ must contain an even number of cycles. similarly, for odd.
- 14. *H* is a subgroup of a group *G* iff:
 - (a) if $a \in H$, then $a' \in H$.
 - (b) if $a, b \in H$, then $ab \in H$.
 - (c) the identity of G exists in H, and is H's identity element.
- 15. let H be a subset of a group G, then H is a subgroup iff $H \neq \emptyset$ and $gh' \in H$ for all $g, h \in H$.
- 16. take a group G and $a \in G$. consider the cyclic subgroup $\langle a \rangle$. then $\langle a \rangle$ is a minimal subgroup of G that contains a, where minimality means that if H is a subgroup of G and $a \in H$, then $\langle a \rangle$ is a subgroup of H.
- 17. every cyclic group is abelian.
- 18. let $\phi: G \to H$ be a homomorphism. Then:
 - (a) $\phi(e_G) = e_H$.
 - (b) $\phi(g)' = \phi(g')$ for all $g \in G$.
 - (c) let *K* be a subgroup of *G*. then $\phi(K) = \{phi(g) \mid g \in K\}$ is a subgroup of *H*.
 - (d) $\phi(G) \le H$, where $\phi(G) = \{\phi(g) \mid g \in G\}$.
 - (e) let M be a subgroup of H. then $\phi'(M) = \{g \in G \mid \phi(g) \in M\}$ is a subgroup of G.
- 19. TFAE: (let G be a group, and H a subgroup of G) and $g_1, g_2 \in G$.
 - (a) $g_1 H = g_2 H$.
 - (b) $Hg_1' = Hg_2'$
 - (c) $g_1 \in g_2H$.
 - (d) $g_1H \subseteq g_2H$.
 - (e) $g_1'g_2 \in H$.
- 20. left *H*-cosets partition *G*.
- 21. lagrange's theorem. let G be a finite group and H a subgroup of G. then $[G:H] = \frac{|G|}{|H|}$, or $|G| = |H| \cdot [G:H]$.
- 22. cor. let G be a finite group and H a subgroup of G. then |H| divides |G| and |G| : H| divides |G|.
- 23. let *G* be a finite group and $G \ge H \ge K$. Then $[G:K] = [G:H] \cdot [H:K]$.