

Lora vs Peft

Feature	PEFT (General) 🗸 / 🗶	LoRA (Specific PEFT) 🗸 / 🗶
Definition	✓ Broad category of parameter- efficient fine-tuning methods	X Not a broad method, but a specific PEFT approach
Trainable Parameters	✓ Small fraction of the model (varies by method)	✓ Even fewer parameters due to low- rank matrices
Efficiency	✓ More efficient than full fine- tuning, but method-dependent	One of the most memory-efficient PEFT techniques
Base Model Changes	X Some PEFT methods modify parts of the base model	✓ LoRA never modifies the base model (only adds trainable matrices)
Implementation Complexity	X Some PEFT methods are complex to implement	✓ LoRA is relatively easy to integrate into Transformers
Storage Cost	✓ Lower than full fine-tuning	Extremely low, as it only stores small adapter matrices
Performance	Can reach near full fine-tuning performance	Comparable to full fine-tuning with much lower compute
Multi-Task Adaptability	X Some PEFT methods require separate models per task	✓ LoRA allows adapter swapping without retraining
Best Use Cases	General-purpose fine-tuning	✓ Ideal for Transformer-based models (e.g., LLaMA, GPT)
Fine-Tuning Speed	X Some PEFT methods still require significant compute	✓ LoRA is one of the fastest fine-tuning methods

With the rise of large language models (LLMs), fine-tuning them efficiently has become a major challenge. Traditional fine-tuning requires updating all model parameters, which is expensive and memory-intensive. This is where Parameter-Efficient Fine-Tuning (PEFT) techniques come in, with LoRA being one of the most popular methods.

Let's break down their differences in concept, efficiency, use cases, and performance.

What is PEFT?

- PEFT (Parameter-Efficient Fine-Tuning) refers to a category of methods that adapt a pre-trained model without updating all parameters.
- Instead of modifying the entire model, PEFT techniques introduce lightweight trainable components that make fine-tuning more efficient in terms of memory, compute, and storage.

Popular PEFT Techniques

- LoRA (Low-Rank Adaptation)
- Prefix Tuning
- Adapter Layers
- Prompt Tuning

Key Features of PEFT

- Reduces memory usage by keeping most model weights frozen
- Faster training with fewer trainable parameters
- Maintains performance close to full fine-tuning

What is LoRA

 LoRA (Low-Rank Adaptation) is a specific PEFT method that decomposes weight updates into low-rank matrices, reducing the number of trainable parameters.

How LoRA Works

- Instead of modifying the original weights, LoRA injects low-rank trainable matrices into the pre-trained model's layers (typically in attention layers of Transformers).
- These matrices capture task-specific knowledge while keeping the base model unchanged, allowing for efficient adaptation.

Key Features of LoRA

- Uses low-rank matrices to adapt pre-trained weights
- Reduces GPU memory requirements significantly
- Performs well across multiple tasks with minimal finetuning

PEFT vs LoRA – Key Differences

Feature	PEFT (General) 🗸 / 🗶	LoRA (Specific PEFT) V/X
Definition	✓ Broad category of parameter- efficient fine-tuning methods	X Not a broad method, but a specific PEFT approach
Trainable Parameters	✓ Small fraction of the model (varies by method)	▼ Even fewer parameters due to low- rank matrices
Efficiency	✓ More efficient than full fine- tuning, but method-dependent	One of the most memory-efficient PEFT techniques
Base Model Changes	X Some PEFT methods modify parts of the base model	✓ LoRA never modifies the base model (only adds trainable matrices)
Implementation Complexity	X Some PEFT methods are complex to implement	✓ LoRA is relatively easy to integrate into Transformers
Storage Cost	✓ Lower than full fine-tuning	Extremely low, as it only stores small adapter matrices
Performance	Can reach near full fine-tuning performance	Comparable to full fine-tuning with much lower compute
Multi-Task Adaptability	X Some PEFT methods require separate models per task	✓ LoRA allows adapter swapping without retraining
Best Use Cases	✓ General-purpose fine-tuning	✓ Ideal for Transformer-based models (e.g., LLaMA, GPT)
Fine-Tuning Speed	X Some PEFT methods still require significant compute	✓ LoRA is one of the fastest fine-tuning methods

When to Use PEFT vs LoRA?

Use PEFT when

- You need a general framework for efficient fine-tuning
- You want flexibility in choosing methods (prompt tuning, adapters, LoRA, etc.)
- Your model has limited compute or memory for training

Use LoRA when

- You are fine-tuning Transformer-based models efficiently
- You need to fine-tune multiple tasks efficiently while keeping the base model unchanged
- You want to deploy fine-tuned adapters without storing multiple full model copies