PAUTA EVALUACION 2 ALGEBRA Y TRIGONOMETRIA (522115) (14/06/2004).

P1. Sean $f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ y $g: Dom(g) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ dos funciones reales definidas por:

$$f(x) = \frac{1-x}{1+x}$$
 y $g(x) = \frac{1}{x}$.

- a) Pruebe que la función f es invertible y defina su inversa f^{-1} . (10 Ptos.)
- b) Defina las funciones: $g \circ f$ y $f \circ g$. (10 Ptos.)

Solución

a)
$$Dom(f) = \{x \in \mathbb{R} : f(x) \in \mathbb{R}\} = \mathbb{R} - \{-1\}$$
 (2 puntos)

Inyectividad: Sean $x_1, x_2 \in Dom(f)$ tal que $f(x_1) = f(x_2)$. Luego,

$$\frac{1-x_1}{1+x_1} = \frac{1-x_2}{1+x_2} \iff (1-x_1)(1+x_2) = (1-x_2)(1+x_1)$$

$$\iff 1 - x_1 + x_2 - x_1 x_2 = 1 + x_1 - x_2 - x_1 x_2 \iff 2x_2 = 2x_1 \iff x_1 = x_2.$$

Por lo tanto, f es inyectiva.

(3 puntos)

Como $Dom(f) \neq \emptyset$ y f es inyectiva, entonces existe la función inversa: $f^{-1}: Rec(f) \to Dom(f).$

$$y = f(x) \iff y = \frac{1-x}{1+x} \iff 1 - y = x(1+y) \iff x = \frac{1-y}{1+y}.$$

(3 puntos)

De aquí,
$$Rec(f) = \{ y \in \mathbb{R} : y = f(x), x \in \mathbb{R}, x \neq -1 \} = \mathbb{R} - \{-1\}.$$
 (3 puntos)
Así, $f^{-1} : \mathbb{R} - \{-1\} \to \mathbb{R} - \{-1\} \text{ con } f^{-1}(y) = \frac{1-y}{1+y}.$ (2 puntos)

b)
$$Dom(g) = \{x \in \mathbb{R} : g(x) \in \mathbb{R}\} = \{x \in \mathbb{R} : \frac{1}{x} \in \mathbb{R}\} = \mathbb{R} - \{0\}.$$
 (2 puntos)

$$Dom(g \circ f) = \{x \in Dom(f) : f(x) \in Dom(g)\}\$$

$$= \{x \in \mathbb{R} - \{-1\} : \frac{1-x}{1+x} \in \mathbb{R} - \{0\}\} = \mathbb{R} - \{-1, 1\}.$$
(2 puntos)

Así,

$$g \circ f : \mathbb{R} - \{-1, 1\} \to \mathbb{R}, \quad (g \circ f)(x) = g(\frac{1-x}{1+x}) = \frac{1+x}{1-x}.$$
 (2 puntos)

$$Dom(f \circ g) = \{x \in Dom(g) : g(x) \in Dom(f)\} = \{x \in \mathbb{R} - \{0\} : \frac{1}{x} \in \mathbb{R} - \{-1\}\} = \mathbb{R} - \{0, -1\}.$$
 (2 puntos)

Así,

$$f \circ g : \mathbb{R} - \{0, -1\} \to \mathbb{R}, \quad (f \circ g)(x) = f(\frac{1}{x}) = \frac{x - 1}{x + 1}.$$
 (2 puntos)

P2. El precio de un determinado producto después de t años de uso está dado por la función real: $f:[0,+\infty[\longrightarrow \mathbb{R}$ definida por:

$$f(t) = \begin{cases} 4\log_2(2t+4) & \text{si } 0 \le t \le 6, \\ (\frac{1}{2})^{t-10} & \text{si } t > 6. \end{cases}$$

- a) Determine si la función f(t) es creciente o decreciente o ninguna de las dos formas. (5 Ptos.)
- b) Determine el recorrido de f(t) y muestre que el precio máximo del producto es igual a 16. (10 Ptos.)
- c) ¿Es posible que el producto tenga el mismo precio inicial después de t > 0 años de uso?. Justifique su respuesta. (5 Ptos.)

Solución

a) Como el logaritmo de la función $4\log_2(2t+4)$ es de base 2>1 entonces, esta función es creciente. Por otro lado, la función exponencial $\left(\frac{1}{2}\right)^{t-10}$ tiene base <1, luego es decreciente. Así, la función f(t) no es creciente ni decreciente. (5 Ptos.)

b)
$$Rec(f) = \{ y \in \mathbb{R} : f(t) = y, t \in [0, +\infty[] = \{ y \in \mathbb{R} : 4 \log_2(2t + 4) = y, 0 \le t \le 6 \} \cup \{ y \in \mathbb{R} : \left(\frac{1}{2}\right)^{t-10}, t > 6 \}.$$
 (2 puntos)

$$R_1: \qquad 4\log_2(2t+4) = y \iff 2^{\frac{y}{4}} = (2t+4) \iff 2^{\frac{y}{4}} - 4 = 2t \iff 2^{\frac{y}{4}-1} - 2 = t.$$
Luego, $0 \le t \le 6 \iff 0 \le 2^{\frac{y}{4}-1} - 2 \le 6 \iff 4 \le 2^{\frac{y}{4}} \le 16 \iff \log_2(4) \le \frac{y}{4} \le \log_2(8) \iff 8 \le y \le 16.$
(2 puntos)

$$R_2: \qquad \left(\frac{1}{2}\right)^{t-10} = y \iff 2^{10-t} = y \iff 10 - t = \log_2(y) \iff t = 10 - \log_2(y).$$

Luego, $t > 6 \iff 10 - \log_2(y) > 6 \iff 4 > \log_2(y) \iff 0 < y < 16$. (2 puntos)

Por lo tanto,
$$Rec(f) = R_1 \cup R_2 = [8, 16] \cup]0, 16[=]0, 16]$$
 (2 puntos)

Así, el valor máximo de la función f(t) es 16 y es alcanzado cuando t=6. (2 puntos)

- c) El precio inicial del producto es igual a $f(0) = 4\log_2(4) = 8$. Por otro lado, el precio del producto después de t = 7 años es $f(7) = \frac{1}{2}^{-3} = 8$. Por lo tanto, el precio del producto después de siete años es el mismo que el inicial. (5 puntos)
- **P3.** Sea $f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ la función real definida por:

$$f(x) = \operatorname{sen}\left(2x + \frac{\pi}{2}\right).$$

- a) Determine dominio y periodo de f(x). (4 Ptos.)
- b) Determine el valor de $f(x_1)$ si se sabe que $Arccos(x_1) = \frac{\pi}{2}$. (4 Ptos.)
- c) Pruebe la identidad trigonométrica: $sen(2x + \frac{\pi}{2}) = 1 2sen^2(x)$. (6 Ptos.)
- d) Encuentre los valores de $x \in \mathbb{R}$ tal que f(x) = 1. (Ind: puede usar el resultado en c) sin haberlo probado) (6 Ptos.)

<u>Solución</u>

a)
$$Dom(f) = \{x \in \mathbb{R} : f(x) = \operatorname{sen}\left(2x + \frac{\pi}{2}\right) \in \mathbb{R}\} = \mathbb{R}.$$
 (2 puntos)

Periodo:
$$p = \frac{2\pi}{2} = \pi$$
. (2 puntos)

- b) $Arccos(x_1) = \frac{\pi}{2} \iff \cos(\frac{\pi}{2}) = x_1 \implies x_1 = 0$. Así, $f(x_1) = f(0) = \sin(\frac{\pi}{2}) = 1$.
- c) $sen(2x + \frac{\pi}{2}) = sen(2x)\cos(\frac{\pi}{2}) + sen(\frac{\pi}{2})\cos(2x) = \cos(2x) = \cos^2(x) \sin^2(x) = 1 \sin^2(x) \sin^2(x) = 1 2\sin^2(x)$. (6 puntos)
- d) $\operatorname{sen}(2x + \frac{\pi}{2}) = 1 \iff 1 2\operatorname{sen}^2(x) = 1 \implies \operatorname{sen}^(x) = 0$. Luego el conjunto solución de la ecuación planteada es $S = \{x \in \mathbb{R} : x = 2k\pi \lor x = \pi + 2k\pi, k \in \mathbb{Z}\} = \{x = k\pi, k \in \mathbb{Z}\}.$ (6 puntos)