Review of set theory

- Variable objects x, y, z; sets S, T, U.
- Literal set $\{a, b, c\}$ and set-builder $\{x \mid P(x)\}$.
- ← relational operator ("is an element of")
- The empty set \emptyset .
- Set relations =, \subseteq , \subset , $\not\subset$, etc.
- Venn diagrams.
- Cardinality |S| and infinite sets \mathbb{N} , \mathbb{Z} , \mathbb{R} .
- Power sets P(S).
- Infinite and finite sets

Sets of sets

More formally:
 S ∉ S, but S ∈ {S}

- The empty set, $\emptyset = \{\}$
- ∅ ∉ {}
- But $\varnothing \in \{\varnothing\}$
- {Ø} = {{}}
- $\{\emptyset\} \in \{\{\emptyset\}\}$

Proving Set Identities

- To prove statements about sets, of the form $E_1 = E_2$ (where the E_3 are set expressions), here are three different and useful methods:
 - 1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
 - 2. Use set builder notation & logical equivalences.
 - 3. Use a membership table.

Method 1: Mutual subsets

- Example:
- Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

Method 2: Direct proof

Consider DeMorgan's rule:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

 $A \cup B$ is shaded.

Direct Proof ---- on blackboard

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate element is a member of the specified set, and "0" for non-membership. This is a function.
- Prove equivalence with identical columns.

More on this latter --- after we discuss functions

Functions

• From calculus, you are familiar with the concept of a real-valued function f, which assigns to each number $x \in \mathbb{R}$ a particular value y = f(x), where $y \in \mathbb{R}$.

• But, the notion of a function can also be naturally generalized to the concept of assigning elements of *any* set to elements of *any* set. (Also known as a *map*.)

Function: Formal Definition

• Def. For any sets A, B, we say that a function f (or "mapping") from A to B is a particular assignment of exactly one element $f(x) \subseteq B$ to each element $x \in A$. We can write

$$f:A \rightarrow B$$

as short-hand notation to denote function f maps elements from set A to set B.

- To implement the function for a particular $x \in A$ we write f(x).
- For $a \in A$ and $b \in B$, we can also write f(a)=b.

Graphical Representations

Functions can be represented graphically in several ways:

Note: EVERY element of set A has to be mapped to ONE (and only one) element in B.

Functions and sets

- A set S over universe U can be viewed as a function from the elements of U to {T, F}, saying for each element of U whether it is in S.
- Ex.

```
Let S=\{3\}
Then S(0)=F, S(3)=T, etc.
```

- A set operator such as \cap , \cup can be viewed as a function from pairs of sets to a new set.
- Ex.

```
\cap ((\{1,3\},\{3,4\})) = \{3\}
```

Important Function Terminology

- Def. Let $f:A \rightarrow B$, and f(a)=b (where $a \in A$ & $b \in B$). Then
 - A is the domain of f.
 - B is the codomain of f.
 - b is the *image* of a under f.
 - a is a pre-image of b under f.
 - In general, b may have more than 1 pre-image.
 - The range $R \subseteq B$ of f is $R = \{b \mid \exists a \ f(a) = b \}$.

We also say the *signature* of f is $A \rightarrow B$.

Basics of functions

- $f:A \rightarrow B$ means that EVERY element of set A has to be mapped to ONE (and only one) element in B.
- Set A is the domain
- Set B is the codomain

- e.g., Let the domain A be the set of students in this class
- Let the codomain B be the letter grades {A,B,C,D,F}
- Calculation of the final grade is a function that maps all the scores of each student in A to a letter grade in B.

BA: Set of all functions

• Def. The set of *all* possible functions $f:A \rightarrow B$ is B^A .

• Theorem. For finite A, B, $|B^A| = |B|^{|A|}$.

• Remark. For finite set S, the cardinality of the power set $|P(S)| = 2^{S}$.

Are these functions?

Function?

•	f	(a)) =	a^2
		· ~ /	,	•

•
$$f(a) = sin(a)$$

•
$$f(a) = \pm a$$

•
$$f(a) = 1/a$$

•
$$f(a) = 1/a$$

Domain

Codomain

$$\mathbb{Z}$$

$$\mathbb{R}$$

$$\mathbb{Z}$$

$$\mathbb{Z}$$

$$\mathbb{Z}^+$$

Range

- The actually values in codomain B that are mapped onto.
- The range of function f is the set $\{f(a) \mid a \in A\}$

Although this element is in the codomain, it is not in the range of f.

e.g. Even though the codomain of grades for this class is the set {A,B,C,D,F}, we hope that the range is smaller.

Range versus Codomain

- Remarks.
- The range of a function might not be its whole codomain.
- The codomain is the set that the function is *declared* to map all domain values into.
- The range is the *particular* set of values in the codomain that the function *actually* maps elements of the domain to.

Range vs. Codomain - Example

• Ex. Suppose I declare to you that:

"f is a function mapping students in this class to their weight measured to the closest pound."

- At this point, you know f's codomain is: ______.
- Suppose each student's weight is between 80-300 pounds.
- Then the range of f is ______, but its codomain is _____.

Images of Sets under Functions

• Def. Let $f:A \rightarrow B$, and $S \subseteq A$.

The *image* of *S* under *f* is simply the set of all images (under *f*) of the elements of *S*.

```
f(S) := \{f(s) \mid s \in S\}:= \{b \mid \exists s \in S: f(s) = b\}.
```

 Note the range of f can be defined as simply the image (under f) of f's domain!

One-to-One Functions

- Def. A function is *one-to-one* (1-1), or *injective*, or *an injection*, iff every element of its range has *only* 1 pre-image.
 - Formally: given $f:A \rightarrow B$, "f is injective" := $(\neg \exists x,y: x \neq y \land f(x) = f(y))$.
- Only <u>one</u> element of the domain is mapped <u>to</u> any given <u>one</u> element of the range.
 - Domain & range have same cardinality. What about codomain?
- Memory jogger: Each element of the domain is <u>injected</u> into a different element of the range.
 - Compare "each dose of vaccine is injected into a different patient."

One-to-One Illustration

 Bipartite (2-part) graph representations of functions that are (or not) one-to-one:

One-to-one

Not one-to-one Consider $f(x) = x^2$ where $x \in \mathbb{Z}$

Not even a function!

Sufficient Conditions for 1-1ness

- For functions f over numbers, we say:
 - f is strictly (or monotonically) increasing iff $x>y \rightarrow f(x)>f(y)$ for all x,y in domain;
 - f is strictly (or monotonically) decreasing iff $x>y \rightarrow f(x)< f(y)$ for all x,y in domain;
- If f is either strictly increasing or strictly decreasing, then f is one-to-one.
- Ex.
- $f(x) = x^3$
- f(x) = 1/x (Converse is not necessarily true)

Onto (Surjective) Functions

- Def. A function $f:A \rightarrow B$ is onto or surjective or a surjection iff its range is equal to its codomain $(\forall b \in B, \exists a \in A: f(a)=b)$.
- Remark. An *onto* function maps the set *A* <u>onto</u> (over, covering) the *entirety* of the set *B*, not just over a piece of it.
- Ex. Let $f:\mathbb{R} \to \mathbb{R}$.
- $f(x) = x^3$ is onto,
- $f(x) = x^2$ is not onto. (Why?)

Illustration of Onto

• Some functions that are, or are not, onto their codomains:

Bijections

- Def. A function f is said to be a bijection, (or a one-to-one correspondence, or reversible, or invertible,) iff it is both one-to-one and onto.
- Def. For bijections $f:A \rightarrow B$, there exists an inverse of f, written $f^{-1}:B \rightarrow A$, which is the unique function such that
 - (where I_A is the identity function on A)

$$f^{-1} \circ f = I_A$$

The Identity Function

- Def. For any domain A, the *identity function* $I:A \rightarrow A$ (variously written, I_A , $\mathbf{1}$, $\mathbf{1}_A$) is the unique function such that $\forall a \in A$, I(a)=a.
- Some identity functions you've seen:
 - f(x) = x+0, or f(x) = 1x,
 - ∧ with **T**, ∨ with **F**,
 - \cup with \emptyset , \cap with U.
- Remark. The identity function is always both one-to-one and onto (bijective).

Identity Function Illustrations

• The identity function:

Domain and range

Graphs of Functions

- We can represent a function $f:A \rightarrow B$ as a set of ordered pairs $\{(a,f(a)) \mid a \in A\}$.
- Note that $\forall a$, there is only 1 pair (a,b).
 - Later (ch.6): *relations* loosen this restriction.
- For functions over numbers, we can represent an ordered pair (x,y) as a point on a plane.
 - A function is then drawn as a curve (set of points), with only one *y* for each *x*.

A Couple of Key Functions

- In discrete math, we will frequently use the following two functions over real numbers:
- Def. The *floor* function $\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{Z}$, where $\lfloor x \rfloor$ ("floor of x") means the largest (most positive) integer $\leq x$. Formally, $\lfloor x \rfloor :\equiv \max(\{i \in \mathbb{Z} \mid i \leq x\})$.
- Def. The *ceiling* function $\lceil \cdot \rceil : \mathbb{R} \to \mathbb{Z}$, where $\lceil x \rceil$ ("ceiling of x") means the smallest (most negative) integer $\geq x$. Formally, $|x| :\equiv \min(\{i \in \mathbb{Z} \mid i \geq x\})$

Visualizing Floor & Ceiling

- Real numbers "fall to their floor" or "rise to their ceiling."
- Note that if $x \notin \mathbb{Z}$, $[-x] \neq -[x] \&$ $[-x] \neq -[x]$
- Note that if $x \in \mathbb{Z}$, $\lfloor x \rfloor = \lceil x \rceil = x$.

Plots with floor/ceiling

- Note that for $f(x)=\lfloor x\rfloor$, the graph of f includes the point (a, 0) for all values of a such that $a \ge 0$ and a < 1, but not for the value a = 1.
- We say that the set of points (a,0) that is in f does not include its limit or boundary point (a,1).
 - Sets that do not include all of their limit points are generally called *open sets*.
- In a plot, we draw a limit point of a curve using an open dot (circle) if the limit point is not on the curve, and with a closed (solid) dot if it is on the curve.

Plots with floor/ceiling: Example

• Plot of graph of function $f(x) = \lfloor x/3 \rfloor$:

Operators (general definition)

- Def. An *n*-ary *operator over* (or *on*) the set *S* is any function from the set of ordered *n*-tuples of elements of *S*, to *S* itself.
- Ex. If S={T,F},
 ¬ can be seen as a unary operator, and
 ∧, ∨ are binary operators on S.
- Ex. \cup and \cap are binary operators on the set of all sets.

Constructing Function Operators

- If ("dot") is any operator over B, then we can extend to also denote an operator over functions $f:A \rightarrow B$.
- Ex. Given any binary operator •: $B \times B \rightarrow B$, and functions $f,g:A \rightarrow B$, we define $(f \bullet g):A \rightarrow B$ to be the function defined by: $\forall a \in A$, $(f \bullet g)(a) = f(a) \bullet g(a)$.

Function Operator Example

- +,× ("plus" , "times") are binary operators over $\mathbb R$. (Normal addition & multiplication.)
- Therefore, we can also add and multiply functions
- Def. Let $f, g: \mathbb{R} \to \mathbb{R}$.
 - $(f+g): \mathbb{R} \to \mathbb{R}$, where (f+g)(x) = f(x) + g(x)
 - $(f \times g)$: $\mathbb{R} \to \mathbb{R}$, where $(f \times g)(x) = f(x) \times g(x)$

Function Composition Operator

• Def. Let $g:A \rightarrow B$ and $f:B \rightarrow C$. The composition of f and g, denoted by $f \circ g$, is defined by $(f \circ g) = f(g(a))$.

• Remark. \circ (like Cartesian \times , but unlike $+, \land, \cup$) is non-commuting. (Generally, $f \circ g \neq g \circ f$.)

Review of §2.3 (Functions)

- Function variables f, g, h, ...
- Notations: $f:A \rightarrow B$, f(a), f(A).
- Terms: image, preimage, domain, codomain, range, one-to-one, onto, strictly (in/de)creasing, bijective, inverse, composition.
- Function unary operator f^{-1} , binary operators +, -, etc., and 0.
- The $\mathbf{R} \rightarrow \mathbf{Z}$ functions [x] and [x].