Derivatives

Section 2.7-2.8

Outline:

- Derivatives:
 - As tangents and velocities
 - In general
- ▶ The Derivative as a Function:
 - Differentiable functions
 - Some cases of not differentiable functions
 - Higher derivatives

Derivatives

- The problem of finding the tangent line to a curve and the problem of finding the velocity of an object both involve finding the same type of limit.
- ▶ This special type of limit is called a derivative.

Derivatives: Tangents

1 Definition The **tangent line** to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

provided that this limit exists.

2

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Derivatives: In General

Definition The **derivative of a function** f **at a number** a, denoted by f'(a), is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if this limit exists.

5

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Ex: Find f'(1) where $f(x) = \sqrt{x}$. Find the tangent line of $y = \sqrt{x}$ at x = 1.

Ex: Find
$$f(0)$$
, where $f(x) = x^{\frac{2}{3}}$.

Sol:

Ex: Suppose that fis diff at x=a. Find lim f(a+h)-f(a-h)
h-0 2h

Q: Can we define
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h}$$

 $(\text{Try } f(x) = i \times i)$

Derivatives: In General

Suppose y is a quantity that depends on another quantity x. Thus y is a function of x and we write y = f(x). Then the derivative of f at x = a means the **instantaneous rate** of change of y with respect to x at x = a.

instantaneous rate of change =
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

The Derivative as a Function

Let x be a variable. We can define

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Now we regard f'(x) as a new function, called the **derivative** of f.

Ex: Find f(x), where $f(x) = \sqrt{x}$.

Ex: Find
$$f(x)$$
 where $f(x) = |X|$.

Ex: Recognize
$$\left| \frac{1}{(x+h)^2} - \frac{1}{x^2} \right|$$
, $\left| \frac{a^h - 1}{h} \right|$, $\left| \frac{sin h}{h} \right|$ as derivatives.

The Derivative as a Function

Notations:

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

The symbols D and \overline{dx} are called differentiation operators because they indicate the operation of differentiation.

The Derivative as a Function

If we want to indicate the value of a derivative in Leibniz notation at a specific number a, we use the notation

$$\left. \frac{dy}{dx} \right|_{x=a}$$
 or $\left. \frac{dy}{dx} \right]_{x=a}$

which is a synonym for f'(a).

Differentiable Functions

- **3 Definition** A function f is **differentiable at** a if f'(a) exists. It is **differentiable on an open interval** (a, b) [or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.
 - **Theorem** If f is differentiable at a, then f is continuous at a.

Note: The converse of Theorem 4 is false; that is, there are functions that are continuous but not differentiable.

Ex: Show that if fix) is differentiable at x=a then fix) is continuous at x=a.

Differentiable Functions

- ▶ Some cases of not differentiable functions:
- A discontinuous point, a corner, a vertical tangent, or an oscillating point.

Ex: Suppose that
$$f(x)$$
 is continuous at $x=2$ and
$$\frac{f(x)-3}{\lim_{x\to 2} \frac{f(x)-3}{x^2-4}} = -1$$
 Find $f(z)$ and $f'(z)$.

Continuous everywhere but differentiable nowhere

Weierstrass functions

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

where 0 < a < 1 , b is a positive odd integer

and $ab>1+\frac{3}{2}\pi$.

Higher Derivatives

- If f(x) is a differentiable function, then its derivative f' is also a function, so f' may have a derivative of its own, denoted by (f')' = f''. This new function f'' is called the **second derivative** of f.
- Leibniz notation: $\frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2}$

Higher Derivatives

The higher derivatives of f(x) can be defined in the similar way:

$$y''' = f'''(x) = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}$$

$$y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n}$$

Review

- What is the derivative of a function at a point x=a ?
- ▶ What is the relation between the differentiability of a function and the continuity of the function ?
- What are the higher derivatives of a function ?