第4章 功和能

- **4-1** 一质点在如图所示的坐标平面内做圆周运动,有一力 $F = F_0(xi + yj)$ 作用在质点 上.则该质点从坐标原点运动到(0,2R)位置过程中,力 F 对它所做的功为().
 - (A) $F_0 R^2$
 - (B) $2F_0R^2$
 - (C) $3F_0R^2$
 - (D) $4F_0R^2$

题 4-1图

- **4-2** 质量 m=0.5 kg 的质点,在 xOy 坐标平面内运动,其运动方程为 $x=5t,y=0.5t^2$ (SI),从 t=2s 到 t=4s 这段时间内,外力对质点做的功为(
 - (A) 1.5J
- (B) 3J
- (C) 4.5J
- (D) -1.5J
- **4-3** 一个质点同时在几个力作用下的位移为: $\Delta r = 4i 5j + 6k(SI)$,其中一个力为恒力 F = -3i - 5j + 9k(SI),则此力在该位移过程中所做的功为().
 - (A) 50J
- (B) 17J
- (C) 67J
- (D) 91J
- 4-4 一质量为 M 的弹簧振子,水平放置目静止在平衡位置,如图所示. 一质量为 m 的子 弹以水平速度v射入振子中,并随之一起运动,如果水平面光滑,此后弹簧的最大 势能为().
 - (A) $\frac{1}{2}mv^2$
- (B) $\frac{m^2 v^2}{2(M+m)}$
- (C) $(M+m)\frac{m^2}{2M^2}v^2$ (D) $\frac{m^2}{2M}v^2$

题 4-4 图

- 4-5 人造地球卫星,绕地球做椭圆轨道运动,地球在椭圆的一个焦点上,则卫星 的().
 - (A) 动量不守恒,动能守恒
- (B) 动量守恒,动能不守恒
- (C) 对地心的角动量守恒,动能不守恒 (D)对地心的角动量不守恒,动能守恒

4 – 6	对功的概念有以下几种说法.
	①保守力做正功时,系统内相应的势能增加
	②质点运动经一闭合路径,保守力对质点的功为零
	③作用力与反作用力大小相等,方向相反,所以两者所做功的代数和必为 0.
	在上述说法中,正确的是().
	(A)①②正确 (B)②③正确 (C)只有②正确 (D)只有③正确
4 – 7	一质量为 m 的质点在指向圆心的平方反比力 $F = -kr^{-2}$ 的作用下,做半径为 r 的
	圆周运动,此质点的速率为 若取距圆心无穷远处为势能零
	点,则其机械能为
4 – 8	有一劲度系数为 k 的轻弹簧,竖直放置,下端悬一质量为 m 的小球,先使弹簧为原
	长,而小球恰好与地接触,再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止,
	在此过程中外力所作的功为
4 – 9	有一人造地球卫星,质量为 m ,在地球表面上空 2 倍于地球半径 R 的高度沿圆轨道
	运行,用 m 、 R 、引力常数 G 和地球的质量 M 表示(1)卫星的动能
4 – 10	一质量为 10.0×10^{-3} kg 的子弹,在枪膛中前进时受到的合力 $F=1.28\times10^{4}$ (1-
	(N),子弹在枪口的速度为 (N) ,大弹在枪口的速度为 (N) ,大弹在枪口的速度为 (N) ,大弹在枪口的速度为 (N) ,大弹在枪口的速度为 (N) ,大弹在枪口的速度为 (N) ,

4-11 一长方体蓄水池,面积为 $S=50\text{m}^2$,储水深度为 $h_1=1.5\text{m}$. 假定水平面低于地面的高度是 $h_2=5\text{m}$,问要将这池水全部抽到地面上来,抽水机需做功多少? 若抽水机的功率为 80%,输入功率为 P=35kW,则抽光这池水需要多长时间?

- **4-12** 某弹簧不遵守胡克定律,若施力 F,则相应伸长为 x,力与伸长的关系为 $F=2x+3x^2$ (SI),求:
 - (1) 将弹簧从伸长 $x_1 = 5$ cm 拉伸到伸长 $x_2 = 10$ cm 时所需做的功;
 - (2) 将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为 $1.000 \, \text{kg}$ 的物体,然后将弹簧拉伸到伸长 $x = 10 \, \text{cm}$,再将物体由静止释放.求当弹簧回到伸长 $x_1 = 5 \, \text{cm}$ 时,物体的速率.

- **4-13** 一质量为 m 的质点在 xOy 平面上运动,其位置矢量为 $r = q\cos\omega t i + p\sin\omega t j$ (SI), 式中 p,q,ω 是正值常数,且 p>q. 求:
 - (1) 求质点在点 P(0,p)和点 Q(q,0)处的动能;
 - (2)质点所受的合作用力 F,以及当质点从点 P 运动到点 Q 的过程中的分力 F_x 和 F_y 分别做的功.

CUGP

4-14 如图所示,总长为 l,质量为 m 的匀质链条,部分置于桌面上,链条与桌面的摩擦因数为 μ ,下垂端的长度为 a,在重力作用下,由静止开始下落,求链条完全滑离桌面时重力、摩擦力分别做的功.

题 4-14 图

4-15 一个质量为 m 的物体沿 x 轴作直线运动,其速度随时间的函数关系为 $V = bt^2$,式中 b 为常量. 已知 t = 0 时,质点位于坐标原点. 质点运动时受到的阻力为: $F_t = -kv$,式中比例系数 k 为常量. 试求:物体在 0 到 t 时间内,阻力对物体做的功.

