8. Fourier Transform

- 1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that
 - (a) f is infinitely many time differentiable,
 - (b) $f^n(x) \to 0$ as $|x| \to \infty$,
 - (c) $\int_{\mathbb{R}} |f^n(x)| dx < \infty$, $f^n(x) = \frac{d^n f}{dx^n}$.

Then Prove that

 $\mathcal{F}(f^n(x)) = (i\xi)^n \mathcal{F}(f(x))$, where \mathcal{F} is the notation for fourier transform.

- 2. Find the Fourier transform of the following functions defined on \mathbb{R} :
 - (i) $f(x) = x^2$, if 0 < x < 1 and 0 otherwise.
 - (ii) f(x) = |x|, if $x \in (-1, 1)$ and zero otherwise.

 - (iii) $f(x) = e^{-4x^2}$, $x \in \mathbb{R}$ and a > 0. (iv) $f(x) = xe^{-x}$, x > 0 and zero otherwise.
 - (v) $f(x) = e^{-|x|}, x \in \mathbb{R}.$
 - (vi) f(x) = 1, if $x \in (-1, 1)$ and zero otherwise.
- 3. Let $q(x) = e^{-\frac{x^2}{b^2}}$ and $f(x) = e^{-a^2x^2}$, $a, b \in \mathbb{R}$.

Then find the explicit expression of the Fourier transform of h(x) =(g * f)(x) (convolution of f and g).

- 4. Solve the following initial value problems using Fourier transform techniques
 - (i) $u_t = k^2 u_{xx}, \ x \in \mathbb{R}, \ t > 0, \ k \in \mathbb{R}$ with initial condition : $u(x,0) = 1 + x^2$.
 - (ii) $u_t = k^2 u_{xx}, x \in \mathbb{R}, t > 0, k \in \mathbb{R}$ with initial condition : u(x,0) = 1, if $x \in (-1,1)$ and zero otherwise.
 - (iii) $u_t = k^2 u_{xx}, x \in \mathbb{R}, t > 0, k \in \mathbb{R}$ with initial condition : $u(x,0) = e^{-a|x|}, a > 0.$

(iv)
$$u_t = k^2 u_{xx}, x \in \mathbb{R}, t > 0, k \in \mathbb{R}$$

with initial condition : $u(x,0) = e^{-ax^2}, a > 0$.

- 5. Use Plancherels identity to find a relation between the solution and the initial data (in terms of L^2 -norm) for the following Problems:
 - (i) $u_t + u_x + bu = 0$ with given $u(x, 0) = u_0(x)$.
 - (ii) $u_t = u_{xxx}$ with given $u(x, 0) = u_0(x)$.

 - (iii) $u_t = bu_{xx} + au_x + cu$ with given $u(x, 0) = u_0(x)$. (iv) $u_{tt} = a^2 u_{xx}$ with $u(x, 0) = u_0(x)$, $u_t(x, 0) = u_1(x)$.