

Taking a picture

Taking a picture

Dimensionality Reduction

Dimensionality Reduction

Dimensionality Reduction

Dimensionality Reduction

Dimensionality Reduction

Housing Data

Size
Number of rooms
→Size feature
Number of bathrooms

Schools around _______Location feature

Housing Data

5 dimensions

2 dimensions

Size
Number of rooms
Number of bathrooms
Schools around
Crime rate

Size feature

Location feature

Mean

Variance

Variance =
$$\frac{1^2 + 0^2 + 1^2}{3} = 2/3$$

Variance =
$$\frac{5^2 + 0^2 + 5^2}{3} = 50/3$$

Mean

Variance =
$$\frac{2^2+1^2+3^2}{3}$$
 = 14/3

Variance?

Variance?

x-variance =
$$\frac{2^2+0^2+2^2}{3}$$
 = 8/3

y-variance =
$$\frac{1^2+0^2+1^2}{3}$$
 = 2/3

Covariance

covariance =
$$\frac{(-2) + 0 + (-2)}{3} = -4/3$$
 covariance = $\frac{2 + 0 + 2}{3} = 4/3$

Covariance

$$\bullet^{(-2,1)}$$
 $\bullet^{(0,1)}$ $\bullet^{(2,1)}$ $\bullet^{(2,1)}$ $\bullet^{(-2,0)}$ $\bullet^{(0,0)}$ $\bullet^{(2,0)}$ $\bullet^{(2,0)}$

covariance =
$$\frac{-2+0+2+0+0+2+0+-2}{9}$$

Covariance

negative covariance

covariance zero (or very small)

positive covariance

PCA – inizio

Covariance matrix

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$

Linear Transformations

Eigenvalues

Characteristic Polynomial
$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$

$$\begin{vmatrix} x-9 & -4 \\ -4 & x-3 \end{vmatrix} = (x-9)(x-3) - (-4)(-4) = x^2 - 12x + 11$$

$$= (x-11)(x-1)$$
Eigenvalues 11 and 1

Eigenvectors

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 11 \begin{pmatrix} u \\ v \end{pmatrix} \qquad \begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 1 \begin{pmatrix} u \\ v \end{pmatrix}$$
$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

