BTS-V	(S)-11	.20-0	654
-------	--------	-------	-----

Reg. No.				

B. Tech. Degree V Semester Supplementary Examination November 2020

CS 15-1506 COMPUTER GRAPHICS

(2015 Scheme)

Time: 3 Hours Maximum Marks: 60

PART A

(Answer ALL questions)

 $(10 \times 2 = 20)$

- I. (a) Compare raster scan and random scan system.
 - (b) Explain boundary fill algorithm.
 - (c) Explain the logical classification of input devices
 - (d) Explain homogeneous coordinates. What are the advantages of using it?
 - (e) Explain reflection about the line y = x.
 - (f) Explain Cohen Sutherland line clipping.
 - (g) Compare object space and image space approach.
 - (h) Explain Z Buffer algorithm.
 - (i) Explain constant intensity shading.
 - (j) Explain RGB color system.

PART B

 $(4 \times 10 = 40)$

- II. Derive the decision parameters and explain Bresenhams line drawing algorithm. Generate the line whose end points are (20, 10) and (30, 18).
 - OF
- III. Derive the decision parameters and explain midpoint circle drawing algorithm. Generate the circle whose centre is at (0,3) and whose radius is 3.
- IV. Prove that successive translations are additive.

OR

- V. Explain the two dimensional transformations and their matrix representations.
- VI. Explain three dimensional rotation about an arbitrary axis in space.

OF

- VII. Explain painters algorithm. How can we rectify cyclic overlapping in painters algorithm?
- VIII. Explain Gouraud shading and Phong Shading.

OF

IX. Explain the steps involved in designing an animation sequence. Explain how the motions of objects can be specified in an animation system.