化整為零之集群分析

目錄

- 1. 什麼是非監督式學習?
- 2. 集群演算法介紹
- 3. 資料集介紹
- 4. RapidMiner上戰場

一、什麼是非監督學習?

- 監督式學習/非監督式學習
- 非監督學習的應用
- 非監督學習的實際案例

監督式學習/非監督式學習

監督式學習

Supervised Learning

所有資料都被「標註」(label),告訴機器相對應的值,以提供機器學習在輸出時判斷誤差使用

非監督式學習

Unsupervised Learning

所有資料都沒有標註, 機器透過尋找 資料的特徵,自己進行分類

類別	功能	演算法	
監督式學習 Supervised	預測 Predicting	Linear Regression 線性迴歸 Random Forest 隨機森林	
	分類 Classification	Logistic Regression 邏輯迴歸 Decision Tree 決策樹	
非監督式學習 Unsupervised	分群 Clustering	K-means K平均法	
	關聯 Association	FP Growth 關聯性分析	

▲ 監督式、非監督式學習比較

監督式學習/非監督式學習

非監督學習的應用

銀行行銷

將客戶根據其特徵分 為不同的群組, 並向每 個群組定制不同的行 銷策略 BANK

根據診斷圖像、基因表 達等數據分 類, 發現潛在的 疾病, 以幫助診 斷和治療

社交媒體分析

將用戶行為數據 進行分類和聚類, 發現用戶的偏 好趨势

物流管理

路徑優化、運輸需求預 測、貨物分類等進行聚 類和分析

- 1.提高運輸效率
- 2.降低運輸成本

地震監測

根據地震測量數據 進行地震預測、捕 捉前兆

文檔分類 物品傳輸優 識別犯罪地 客戶分 球隊狀態分 器 化 點 類 析 IT警報 保險欺詐檢 乘車數 網絡犯罪分 呼叫記錄詳 自動化聚 測 據 子 細 類

▲ 其他應用

非監督學習的實際案例

鴻海研發非監督式學習演算法,智慧工廠人力再砍50%!

鴻海科技集團在 2021年宣布推出非監督式學習人工智慧演算法「FOXCONN NxVAE」,運用正面表列的模型訓練方式,以產品容易取得的正樣本進行光學檢測演算,解決產線中瑕疵樣本取得的問題,適用於良率高的成熟產品線,可增加 AI模型的整體容錯能力。

實際應用園區內的電子產品外觀檢測產線上,成功降低50%以上的產線檢測人力

有別於監督式學習在瑕疵影像採集的困難、數據標註與分類的痛點, Foxconn NxVAE導入正面表列的訓練方式, 沿用原本產線每日皆可取得的正樣本, 解決瑕疵樣本問題, 適應不同產品的智能檢測, 大幅度縮短客戶導入AI檢測的時間壓力, 協助定義產品檢測標準, 提升生產品質、降低成本, 最終提升產業價值的目標!

二、集群演算法

集群演算法---「物以類聚」。

• 所有數據進行分組,相似數據歸類於同一組,一筆數據只屬於某一組,每一組稱作一個「群集 Cluster」

集群演算法 --- 近朱者赤、近墨者黑

- 依屬性做區分
- •距離越近,推定為越相似

集群分析

- 適用於多維特徵空間中的分群,並使得分群結果在相似度測度上最佳化
- 可以透過其他套件降維

▲ 集群演算法目標

●第一步 □ 隨機選取資料組中的n筆資料, 先決定好k值, 要把它們分成幾群

●第二步 □ 決定中心點

- •第三步 □ 每一個人去計算跟中 心點的位置
- 第四步 □ 分好組後, 重新計算 中心點
- 第五步□重複以上步驟,直到 中心點不再改變

•K-means演算法有一些限制,當...

1. 大小不一

2. 密度(距離)不同

3. 數據分布呈甜甜圈

K-means怎麼選K?

- •計算每筆資料和中心點的距離,用來比較群集誤差的結果
- 手肘法(Elbow Method)

誤差平方和(SSE):計算各點到cluster中心的距離的平方的和

「找出相同群凝聚度越小、不同群分離度越高」的 值

將所有的點都計算 S後再總和。S值越大,表示效果越好,適合作為 K

a:與相同群內的其他點的平均距離

S:以一個點作為計算的 值

三、資料集介紹

資料集介紹

欄位名稱	資料型態	分布	欄位名稱(中文)
recency	Date-time	2018/12/31~2019/10/23	客戶最近一次的消費日期
frequency	Integer	01~246	客戶消費的頻率
monetary	Integer	約13萬~百億美元	客戶消費的總金額
company_id	Nominal	類別、屬性無大小之分	客戶的公司id
province	Nominal		運送地址 的州/省
district	Nominal		運送地址 的行政區
village	Nominal		運送地址 的村(里)
address	Nominal		客戶的運送地址
phone_number	Nominal		客戶的聯絡電話

•企業如何將顧客價值進行分群?

• 顧客關係管理中的 RFM 模型

隨著顧客的購買通路越來越多樣,企業可以透過觀察顧客行為,將顧客分群針對不同類型的顧客提供差異化行銷,來優化顧客體驗。

•為什麼要使用 RFM模型?

• 協助認識顧客

可以從分類中找出顧客的特性,並進一步提出個人化行銷,將行銷預算用在刀口上。

舉個例子:RFM模型可以帶我們了解哪一群會員是品牌忠誠客戶?哪些會員即將流失,而需要怎麼盡快挽救的?

透過了解會員行為,可以擬定出更適當的會員策略。

• 直觀好操作

RFM模型使用的門檻較低,僅需要公司本來就有存取的顧客資料、簡單的統計工具,以及對RFM模型架構的基本認識,便可以執行。透過幾個簡單的分析步驟,就能更深入了解顧客在品牌中的行為。

Recency

最近消費日

最近有互動(指消費、點擊、 轉換)的顧客活躍度較高

Frequency

消費頻率

互動頻率越高,對公司的黏著 度越高

Monetary

消費金額

消費金額高,表示消費能力高

適用於 CRM、EDM 或 Web 的分析指標

- 上次的消費日期
- 上次打開電子郵件的日期
- 上次潛在顧客轉換的日期

- 一段時間內購買的次數
- 一段時間內開信的次數
- 一段時間內的潛在顧客轉換次數
- 一段時間內顧客花費的總金額
- 一段時間內,根據每個顧客的 獲得成本及利潤等因素估算的 價值
- 一段時間內從不同指標得出的 顧客參與度分數

RFM模型的三大指標

- (x軸) frequency (F)
- :一段時間內訂購商品的次數
- (y軸) recency (R)
- :最近一次訂購商品的時間
- (z軸) monetary (M)
- :一段時間內訂購商品的總金額

RFM指標的高低

客戶根據RFM指標的高低可以區分出八 種價值的客戶,每一類型的客戶都有相 對應的行銷策略。

重要發展客戶(M↑,R↑,F↓)

這類型的客戶已經有了第一次的消費, 且消費金額偏高,是不可或缺的客戶類型。為了提升該類型客戶的消費頻率, 可以透過信件提醒或是消息推播提醒, 並應盡可能培養成重要價值客戶。

四、RapidMiner上戰場

集群分析流程

Step 1. 資料讀取

Step 1. 資料讀取

- 1. 點擊Next後, 進入最後格式設定的畫面, 可以發現有異常資料
- 2. 勾選「Replace errors with missing values」, 以遺漏值方式取代異常資料
- 3. 點擊「Finish」,完成資料讀取

Step 2. 遺漏值處理

2.

- 1. 將Read CSV的out連線至res
- 2. 點擊左上角執行按鈕, 再點擊 Results, 以查看執行後結果
- 3. 執行結果中, 點擊Statistics, 閱覽 描述性統計資料, 可以發現到幾乎 每一個欄位都存在著遺漏值

Step 2. 遺漏值處理

- 1. 點選上方「Design」,回到作業區
- 2. 於左下角搜尋「missing」
- 3. 在Filter目錄中,找到「Filter Examples」
- 4. 將Filter Examples拖曳至線上,並點擊兩下,以打開Create Fliter頁面

※ 學生筆記一為什麼是選擇過濾, 而非遺漏 值填補? 遺漏值可能存在於同一筆資料中的多個欄位, 進行過濾能 夠先將 這些幾乎不具代表性/影響力、過多遺漏值的資料優先排除

Step 2. 遺漏值處理

- 1. 選擇曾出現遺漏值的欄位「recency」
- 2. 對該欄位的過濾選擇「is not missing」, 確保欄位必須有值
- 3. 點選右下角「OK」,並**重複**前面檢查遺漏值的動作,可以發現到資料中已無遺漏值,完成遺漏值處理
 - ※ 學生筆記一為什麼是選擇 recency? recency是出現過遺漏值的欄位,但不一定非得選擇 recency進行過濾,也可以選擇其他欄位,但最終的目標是「減少遺漏 值」的出現

Step 3. 欄位計算

- 1. 於左下角搜尋欄搜尋「Generate」
- 2. 在Generation目錄中, 找到「Generate Attributes」
- 3. 將Generate Attributes拖曳至線上,並點擊兩下,以打開Edit Parameter List頁面

※ 學生筆記一為什麼要欄位計算? RFM中的R是以與最近一次消費的「間隔時間」,作為考量。因此 ,需要計算最近一次消費時間與現在的間隔

Step 3. 欄位計算

- 1. 於column name中新增/輸入「r」的欄位
- 2. 點擊右側計算機, 進入Edit Expression頁面
- 3. 於 Expression 輸入日期計算公式,如下 date_diff(recency,date_now(),DATE_UNIT_DA Y,"America/Los_Angeles")
- 4. 點選兩次「Apply」,完成欄位計算

```
※ 學生筆記一公式講解date_diff (recency, date_now(), DATE_UNIT_DAY, "America/Los_Angeles")日期加減 (開始日, 結束日,計算後單位(天), 時區 )
```


Step 4. 選擇分析欄位

- 1. 於左側搜尋框中搜尋「select」
- 2. 在Selection目錄中,找到「Select Attributes」
- 3. 將Select Attributes拖曳至線上
- 4. 選取Select Attributes時,右側Parameters會出現相關設定,於attribute filter type中選擇「a subset」,並點開下方「Selcet Attributes」,進入 select subset

Step 4. 選擇分析欄位

- 於Attributes中, 按住Ctrl點選「frequency、monetary、r」三個欄位
- 2. 點選右向鍵,將三個欄位新增於Selected Attributes中
- 3. 點選「Apply」,完成欄位選擇

※ 學生筆記一為什麼是選擇 r, 而不是 recency? 欄位 r 是前面欄位計算所產生的欄位, 目的在記錄現在時間與最近一次消費時間的間距, 而 recency僅記錄最近一次消費時間的日期, 並不符需求

Step 5. 正規化

- 1. 於左側搜尋框中搜尋「Normalize」
- 2. 在Normalization目錄中,找到「Normalize」
- 3. 將Normalize拖曳至線上
- 4. Normalize**選取狀態**時,**點選**右側Parameters 下方「Show advanced parameters」,並於 method中選擇「range transformation」
 - ※ 學生筆記一什麼是 range transformation?
 - 一種常見的資料正規化方法, 用於將數 值資料轉換到特定的範圍內, 目的是將不同範圍的資料映射到統一的標準範圍內, 以便進行比較和分析

Step 6. K-means集群分析

- 1. 於左側搜尋框中搜尋「Clustering」
- 2. 在Segmentation目錄中, 找到「k-Means」
- 3.將k-Means拖曳至線上,記得將下方clu也
 - 一併連線至res, 才能產生圖表

Step 6. K-means集群分析

《自行決定參數》

於Clustering選取時,右側Parameters能夠進行最後的參數設置,**參數不同,結果也會不同**

k-分群數量(想將資料分為幾個群)

max runs一最大執行次數(可能影響精確性,同時也會拉長執行時間)

▲ 分群分析流程圖。練習專案下載

執行後,點選上方Results可以看到...

Data-每筆資料分群後的個別結果

Statistics一分群後的描述性統計

Visualizations一視覺化圖表

可自行調整座標軸

▲ 執行結果視覺化

Q & A 時間

