Formulario per l'esame di Statistica Allievi INF, TEL. AA 08/09 Docente: Ilenia Epiifani Probabilità

Variabili aleatorie discrete

Nome simbolo parametri	Densità discreta $p_X(k) = P[X = k]$	F.g.m. $m_X(t) = \mathrm{E}\left(\mathrm{e}^{tX}\right)$	Media	Varianza
bernoulliana $X \sim \mathbf{Be}(p) = \mathbf{Bi}(1, p)$ 0	$p^k (1-p)^{1-k} \ k = 0, 1$	$(1-p) + pe^t$	p	p(1-p)
binomiale $X \sim \mathbf{Bi}(n, p)$ 0	$\binom{n}{k} p^k (1-p)^{n-k}$ $k = 0, 1, \dots, n$	$(1-p+pe^t)^n$	np	np(1-p)
$\begin{array}{c} \text{ipergeometrica } (b+r,r,n) \\ b,r \geq 0, n \geq 1 \text{ interi} \\ n \leq b+r \end{array}$	$\max\{0, n-b\} \leq k \leq \min\{r, n\}$ $k \text{ intero}$		$\frac{nr}{b+r}$	$\frac{nrb}{(b+r)^2} \left(1 - \frac{n-1}{b+r-1} \right)$
geometrica (p) 0	$p_X(k) = p(1-p)^{k-1}$ $k = 1, 2, \dots$	$\frac{pe^t}{1 - (1 - p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$\begin{array}{c} \text{di Poisson} \\ X \sim \mathcal{P}(\lambda) \\ \lambda > 0 \end{array}$	$\frac{\mathrm{e}^{-\lambda}\lambda^k}{k!} k = 0, 1, \dots$	$\exp\left[\lambda\left(\mathbf{e}^t-1\right)\right]$	λ	λ
uniforme su $1, 2, \ldots, n$ $n \ge 1$ intero	$\frac{1}{n} k = 1, 2, \dots, n$	$\frac{e^t \left(1 - e^{nt}\right)}{n \left(1 - e^t\right)}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$

Variabili aleatorie continue

Nome simbolo parametri	Densità continua $f_X(x) = F'_X(x)$ $\forall x \text{ t.c. } F'_X \text{ esiste}$	F.g.m.	Media	Varianza
$ \begin{array}{c} \text{uniforme} \\ X \sim \mathcal{U}(a,b) \\ a < b \end{array} $	$\frac{1}{b-a}1_{(a,b)}(x)$	$\begin{cases} \frac{e^{bt} - e^{at}}{(b-a)t} & \text{se } t \neq 0\\ 1 & \text{se } t = 0 \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
normale [gaussiana] $X \sim \mathcal{N}(\mu, \sigma^2)$ $\mu \in \mathbb{R}, \ \sigma > 0$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$	$\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$	μ	σ^2
$\begin{array}{c} \text{lognormale} \\ \mu \in \mathbb{R}, \ \sigma > 0 \end{array}$	$\frac{1}{x\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right]$ $(x > 0)$		$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$
$\begin{array}{c} \operatorname{gamma} \\ X \sim \Gamma(a, \beta) \\ a, \beta > 0 \end{array}$	$\frac{1/\beta^a}{\Gamma(a)} x^{a-1} e^{-x/\beta} 1_{(0,+\infty)}(x)$	$\frac{1}{(1-\beta t)^a} \ \forall t < 1/\beta$	$a\beta$	$a\beta^2$
esponenziale $X \sim \mathcal{E}(\beta)$ $\beta > 0$	$\mathcal{E}(\beta) = \Gamma(1, \beta)$	$\frac{1}{1-\beta t} \ \forall t < 1/\beta$	β	β^2
chiquadro $X \sim \chi_n^2$ $n \ge 1, \text{ intero}$	$\chi_n^2 = \Gamma\left(n/2,2\right)$	$\left(\frac{1}{1-2t}\right)^{n/2} \forall \ t < \frac{1}{2}$	n	2n
Weibull $\alpha, \beta > 0$	$\frac{\alpha}{\beta} x^{\alpha - 1} e^{-x^{\alpha}/\beta} 1_{(0, \infty)}(x)$		$\Gamma(1+1/\alpha)\beta^{1/\alpha}$	$\beta^{2/\alpha} [\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)]$
t di Student $X \sim t_n$ $n = 1, \dots$	$\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n}\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{x^2}{n}\right)^{-(n+1)/2}$		0 se n > 1	$\frac{n}{n-2} \text{ se } n > 2$

Integrale gamma:
$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$$
 e $\Gamma(a+1) = a\Gamma(a) \ \forall a>0$

$$\textbf{Vettore gaussiano bivariato } (X,Y)^T \sim \mathcal{N}(\mu_X,\mu_Y,\sigma_X^2,\sigma_Y^2,\varrho) \quad [\varrho = \frac{\mathrm{Cov}(X,Y)}{\sigma_X\sigma_Y}]$$

$$f_{X|Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\varrho^2}} e^{-\frac{1}{2(1-\varrho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\varrho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]}$$

$$Var(X) = E(X - E(X))^{2} = E(X^{2}) - (E(X))^{2}$$
$$Cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

f.d.r bidimensionale continua: $F_{X,Y}(x,y) = \int_{-\infty}^x \int_{-\infty}^y f_{X,Y}(s,t) \, ds \, dt$ f.d.r bidimensionale discreta: $F_{X,Y}(x,y) = \sum_{s \leq x} \sum_{t \leq y} p_{X,Y}(s,t)$ Densità marginali di (X,Y) continuo: $f_X(x) = \int_{-\infty}^\infty f_{X,Y}(x,y) \, dy$ Densità marginali di (X,Y) discreto: $p_X(x) = \sum_{y_k} p_{X,Y}(x,y_k)$

Formulario per l'esame di Statistica Allievi INF TEL. AA~07/08 Docente: Ilenia Epifani ${\bf Statistica}$

Test di ipotesi sulla media di una popolazione gaussiana 1

 (x_1,\ldots,x_n) = realizzazione campionaria di X_1,\ldots,X_n i.i.d. $\sim N(\mu,\sigma^2)$.

 σ^2 nota [z-test]:

${ m H_0}$	${ m H_1}$	Si rifiuta H_0 se	p-value
$\begin{array}{l} \mu = \mu_0 \\ \mu = \mu_0 \\ \mu \leq \mu_0 \end{array}$	$\begin{array}{lll} \mu \! = \! \mu_1 & con & \mu_0 \! < \! \mu_1 \\ \mu \! > \! \mu_0 & \\ \mu \! > \! \mu_0 & \end{array}$	$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_{1 - \alpha}$	$1 - \Phi\left(\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}\right)$
$\mu = \mu_0 \\ \mu = \mu_0 \\ \mu \ge \mu_0$	$\begin{array}{ll} \mu {=} \mu_1 & con \;\; \mu_0 {>} \mu_1 \\ \mu {<} \mu_0 \\ \mu {<} \mu_0 \end{array}$	$\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \le -z_{1-\alpha}$	$\Phi\left(\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}\right)$
$\mu = \mu_0$	$\mu eq \mu_0$	$\frac{ \bar{x} - \mu_0 }{\sigma/\sqrt{n}} \ge z_{1 - \frac{\alpha}{2}}$	$2\left[1 - \Phi\left(\frac{ \bar{x} - \mu_0 }{\sigma/\sqrt{n}}\right)\right]$

 σ^2 incognita [t-test]:

$\mathbf{H_0}$	${ m H_1}$	Si rifiuta H_0 se	p-value
$\mu = \mu_0$ $\mu = \mu_0$ $\mu \le \mu_0$	$\begin{array}{ll} \mu = \mu_1 & con & \mu_0 < \mu_1 \\ \mu > \mu_0 & \\ \mu > \mu_0 & \end{array}$	$\frac{\bar{x} - \mu_0}{s/\sqrt{n}} \ge t_{n-1}(1 - \alpha)$	$1 - P\left(T_{n-1} \le \frac{\bar{x} - \mu_0}{s/\sqrt{n}}\right)$
$\mu = \mu_0$ $\mu = \mu_0$ $\mu \ge \mu_0$	$\begin{array}{ll} \mu = \mu_1 & con \ \mu_0 > \mu_1 \\ \mu < \mu_0 \\ \mu < \mu_0 \end{array}$	$\frac{\bar{x} - \mu_0}{s/\sqrt{n}} \le -t_{n-1}(1 - \alpha)$	$P\left(T_{n-1} \le \frac{\bar{x} - \mu_0}{s/\sqrt{n}}\right)$
$\mu = \mu_0$	$\mu \neq \mu_0$	$\frac{ \bar{x} - \mu_0 }{s/\sqrt{n}} \ge t_{n-1} \left(1 - \frac{\alpha}{2}\right)$	$2\left[1 - P\left(T_{n-1} \le \frac{ \bar{x} - \mu_0 }{s/\sqrt{n}}\right)\right]$

 $\bar{x} = \text{media}$ campionaria di x_1, \dots, x_n

 s^2 = varianza campionaria di x_1, \dots, x_n Φ = f.d.r. N(0,1) e z_p t.c. $\Phi(z_p) = p$

 $T_{n-1} \sim t$ di student con n-1 gradi di libertà e $t_{n-1}(p)$ t.c. $P(T_{n-1} \leq t_{n-1}(p)) = p$.

${\bf 2} - \chi^2$ -test sulla varianza di una popolazione gaussiana

 μ nota:

H_{0}	${ m H_1}$	Si rifiuta H_0 se	p-value
$\sigma^2 = \sigma_0^2$ $\sigma^2 = \sigma_0^2$ $\sigma^2 \le \sigma_0^2$	$\begin{array}{lll} \sigma^2 \! = \! \sigma_1^2 & con & \sigma_0^2 \! < \! \sigma_1^2 \\ \sigma^2 \! > \! \sigma_0^2 & \\ \sigma^2 \! > \! \sigma_0^2 & \end{array}$	$\frac{ns_0^2}{\sigma_0^2} \ge \chi_n^2 (1 - \alpha)$	$1 - F_n \left(\frac{ns_0^2}{\sigma_0^2} \right)$
$\sigma^2 = \sigma_0^2$ $\sigma^2 = \sigma_0^2$ $\sigma^2 \ge \sigma_0^2$	$\begin{array}{lll} \sigma^2 \! = \! \sigma_1^2 & con & \sigma_0^2 \! > \! \sigma_1^2 \\ \sigma^2 \! < \! \sigma_0^2 & \\ \sigma^2 \! < \! \sigma_0^2 & \end{array}$	$\frac{ns_0^2}{\sigma_0^2} \le \chi_n^2(\alpha)$	$F_n\left(\frac{ns_0^2}{\sigma_0^2}\right)$
$\sigma^2 = \sigma_0^2$	$\sigma^2 eq \sigma_0^2$	$\frac{ns_0^2}{\sigma_0^2} \ge \chi_n^2 (1 - \frac{\alpha}{2}) \text{ oppure } \frac{ns_0^2}{\sigma_0^2} \le \chi_n^2 (\frac{\alpha}{2})$	$2 \min\{p_1, p_2\}$ dove $p_1 = F_n \left(\frac{ns_0^2}{\sigma_0^2}\right)$ e $p_2 = 1 - p_1$

$$s_0^2 = (1/n) \sum_{j=1}^n (x_j - \mu)^2.$$

 μ incognita:

$\mathbf{H_0}$	H_1	Si rifiuta H_0 se	p-value
$\sigma^2 = \sigma_0^2$ $\sigma^2 = \sigma_0^2$ $\sigma^2 \le \sigma_0^2$ $\sigma^2 \le \sigma_0^2$	$\begin{array}{lll} \sigma^2 \! = \! \sigma_1^2 & con & \sigma_0^2 \! < \! \sigma_1^2 \\ \sigma^2 \! > \! \sigma_0^2 & \\ \sigma^2 \! > \! \sigma_0^2 & \end{array}$	$\frac{(n-1)s^2}{\sigma_0^2} \ge \chi_{n-1}^2 (1-\alpha)$	$1 - F_{n-1} \left(\frac{(n-1)s^2}{\sigma_0^2} \right)$
$\sigma^2 = \sigma_0^2$ $\sigma^2 = \sigma_0^2$ $\sigma^2 \ge \sigma_0^2$ $\sigma^2 \ge \sigma_0^2$	$\begin{array}{lll} \sigma^2 \! = \! \sigma_1^2 & con & \sigma_0^2 \! > \! \sigma_1^2 \\ \sigma^2 \! < \! \sigma_0^2 & \\ \sigma^2 \! < \! \sigma_0^2 & \end{array}$	$\frac{(n-1)s^2}{\sigma_0^2} \le \chi_{n-1}^2(\alpha)$	$F_{n-1}\left(\frac{(n-1)s^2}{\sigma_0^2}\right)$
$\sigma^2 = \sigma_0^2$	$\sigma^2 eq \sigma_0^2$	$\frac{(n-1)s^2}{\sigma_0^2} \ge \chi_{n-1}^2 (1 - \frac{\alpha}{2}) \text{ o } \frac{(n-1)s^2}{\sigma_0^2} \le \chi_{n-1}^2 (\frac{\alpha}{2})$	$2\min\{p_1, p_2\}$ dove $p_1 = F_{n-1}\left(\frac{(n-1)s^2}{\sigma_0^2}\right)$ e $p_2 = 1 - p_1$

 $F_n=$ funzione di ripartizione chi-quadro con n gradi di libertà e $\chi^2_n(p)$ t.c. $F_n(\chi^2_n(p))=p$.

3 Test per il confronto di medie di due popolazioni gaussiane

3.1 Caso di campioni indipendenti:

$$(x_1,\ldots,x_m)$$
 = realizzazione di $\boldsymbol{X}=X_1,\ldots,X_m$ $i.i.d. \sim N(\mu_X,\sigma_X^2),$ (y_1,\ldots,y_n) = realizzazione di $\boldsymbol{Y}=Y_1,\ldots,Y_n$ $i.i.d. \sim N(\mu_Y,\sigma_Y^2)$ e $\boldsymbol{X},\boldsymbol{Y}$ indipendenti.

 σ_X^2 , σ_Y^2 note [z-test]:

H_0		H_1	Si rifiuta H_0 se	p-value
		$\mu_X > \mu_Y + \Delta$ $\mu_X > \mu_Y + \Delta$	$\frac{\bar{x} - \bar{y} - \Delta}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \ge z_{1-\alpha}$	$1 - \Phi\left(\frac{\bar{x} - \bar{y} - \Delta}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}\right)$
	$= \mu_Y + \Delta$ $\geq \mu_Y + \Delta$	$\mu_X \!<\! \mu_Y \!+\! \Delta \\ \mu_X \!<\! \mu_Y \!+\! \Delta$	$\frac{\bar{x} - \bar{y} - \Delta}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \le -z_{1-\alpha}$	$\Phi\left(\frac{\bar{x} - \bar{y} - \Delta}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}\right)$
μ_X	$=\mu_Y+\Delta$	$\mu_X eq \mu_Y + \Delta$	$\frac{ \bar{x} - \bar{y} - \Delta }{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \ge z_{1 - \frac{\alpha}{2}}$	$2\left[1 - \Phi\left(\frac{ \bar{x} - \bar{y} - \Delta }{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}\right)\right]$

 $\sigma_X^2 = \sigma_Y^2$ incognite ma uguali [t-test]:

$\mathbf{H_0}$	H_1	Si rifiuta H_0 se	p-value
$\mu_X \!=\! \mu_Y \!+\! \Delta \\ \mu_X \!\leq\! \mu_Y \!+\! \Delta$	$\mu_X > \mu_Y + \Delta \\ \mu_X > \mu_Y + \Delta$	$\frac{\bar{x} - \bar{y} - \Delta}{s_p \sqrt{1/m + 1/n}} \ge t_{m+n-2} (1 - \alpha)$	$1 - P\left(T_{m+n-2} \le \frac{\bar{x} - \bar{y} - \Delta}{s_p \sqrt{1/m + 1/n}}\right)$
$\mu_X = \mu_Y + \Delta \\ \mu_X \ge \mu_Y + \Delta$	$\mu_X < \mu_Y + \Delta \\ \mu_X < \mu_Y + \Delta$	$\frac{\bar{x} - \bar{y} - \Delta}{s_p \sqrt{1/m + 1/n}} \le -t_{m+n-2}(1 - \alpha)$	$P\left(T_{m+n-2} \le \frac{\bar{x} - \bar{y} - \Delta}{s_p \sqrt{1/m + 1/n}}\right)$
$\mu_X = \mu_Y + \Delta$	$\mu_X \neq \mu_Y + \Delta$	$\frac{ \bar{x} - \bar{y} - \Delta }{s_p \sqrt{1/m + 1/n}} \ge t_{m+n-2} (1 - \frac{\alpha}{2})$	$2 - 2P\left(T_{m+n-2} \le \frac{ \bar{x} - \bar{y} - \Delta }{s_p\sqrt{1/m + 1/n}}\right)$

 $s_p^2 = \frac{s_X^2(m-1) + s_Y^2(n-1)}{m+n-2} \text{ con } s_X^2 = \text{varianza campionaria di } x_1, \dots, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_n, x_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza campionaria di } y_1, \dots, y_m \text{ e } s_Y^2 = \text{varianza$ $T_{m+n-2} \sim t$ di student con m+n-2 gradi di libertà.

Caso di campioni accoppiati:

 $(X_1, Y_1), \ldots, (X_n, Y_n) \text{ i.i.d. } \sim N\left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \sigma_X^2 & \varrho\sigma_X\sigma_Y \\ \varrho\sigma_X\sigma_Y & \sigma_Y^2 \end{pmatrix}\right) \in \mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \varrho \text{ incogniti. Per i problemi}$ di verifica di ipotesi:

- $-H_0: \mu_X \le \mu_Y + \Delta \text{ contro } H_1: \mu_X > \mu_Y + \Delta$
- $H_0: \mu_X \ge \mu_Y + \Delta \text{ contro } H_1: \mu_X < \mu_Y + \Delta$

– $H_0: \mu_X = \mu_Y + \Delta$ contro $H_1: \mu_X \neq \mu_Y + \Delta$ svolgere opportuno t-test usando il campione $X_1 - Y_1, \dots, X_n - Y_n$.

4 F-test per il confronto di varianze di due popolazioni gaussiane

 $(x_1,\ldots,x_m)=$ realizzazione di $\boldsymbol{X}=X_1,\ldots,X_m$ i.i.d. $\sim N(\mu_X,\sigma_X^2),$ $(y_1,\ldots,y_n)=$ realizzazione di $\boldsymbol{Y}=Y_1,\ldots,Y_n$ i.i.d. $\sim N(\mu_Y,\sigma_Y^2)$ e $\boldsymbol{X},\boldsymbol{Y}$ indipendenti.

 μ_X, μ_Y note:

$$\sigma_X^2 \geq \sigma_Y^2 \quad \sigma_X^2 < \sigma_Y^2 \quad \frac{s_{0X}^2}{s_{0Y}^2} \leq F_{m,n}(\alpha) \qquad \qquad P\left(F_{m,n} \leq \frac{s_{0X}^2}{s_{0Y}^2}\right)$$

$$\sigma_X^2 = \sigma_Y^2 \quad \sigma_X^2 \neq \sigma_Y^2 \quad \begin{array}{ll} s_{0X}^2/s_{0Y}^2 \geq F_{m,n}(1-\alpha/2) \text{ oppure} & 2\min\{p_1,p_2\} \text{ dove} \\ s_{0X}^2/s_{0Y}^2 \leq F_{m,n}(\alpha/2) & p_1 = P\left(F_{m,n} \leq s_{0X}^2/s_{0Y}^2\right) \text{ e } p_2 = 1 - p_1 \end{array}$$

$$s_{0X}^2 := \frac{\sum_{j=1}^m (x_j - \mu_X)^2}{m} \text{ e } s_{0Y}^2 := \frac{\sum_{j=1}^n (y_j - \mu_Y)^2}{n}.$$

$$F_{a,b} = \text{v.a. avente densit\`a di Fisher con } (a,b) \text{ gradi di libert\`a e } F_{a,b}(p) \text{ t.c. } P(F_{a,b} \leq F_{a,b}(p)) = p.$$

 μ_X, μ_Y incognite:

-	H_1	${ m Si}$ rifiuta ${ m H_0}$ se	p-value
$\sigma_X^2 \leq \sigma_Y^2$	$\sigma_X^2 > \sigma_Y^2$	$\frac{s_X^2}{s_Y^2} \ge F_{m-1,n-1}(1-\alpha)$	$1 - P\left(F_{m-1, n-1} \le \frac{s_X^2}{s_Y^2}\right)$
$\sigma_X^2 \geq \sigma_Y^2$	$\sigma_X^2 < \sigma_Y^2$	$\frac{s_X^2}{s_Y^2} \le F_{m-1,n-1}(\alpha)$	$P\left(F_{m-1,n-1} \le \frac{s_X^2}{s_Y^2}\right)$

$$\sigma_X^2 = \sigma_Y^2 \quad \sigma_X^2 \neq \sigma_Y^2 \quad \begin{array}{ll} s_X^2/s_Y^2 \geq F_{m-1,n-1}(1-\alpha/2) \text{ oppure} & 2 \min\{p_1,p_2\} \text{ dove} \\ s_X^2/s_Y^2 \leq F_{m-1,n-1}(\alpha/2) & p_1 = P\left(F_{m-1,n-1} \leq s_X^2/s_Y^2\right) \text{ e } p_2 = 1-p_1 \end{array}$$