Estructura de Computadores

Tema 6. Memoria Cache

Requisitos del sistema de memoria

- ► El programador requiere memoria que sea...
 - rápida
 - de gran capacidad
 - barata

Requisitos del sistema de memoria

- ► El programador requiere memoria que sea...
 - rápida
 - de gran capacidad
 - barata
- Ninguna tecnología cumple con todos los requisitos

Tecnología de memoria	Tiempo de acceso	\$ por GB en 2008
SRAM	0.5-2.5 ns	\$2000-\$5000
DRAM	50-70 ns	\$20-\$75
Disco magnético	5,000,000-20,000,000 ns	\$0.20-\$2

Requisitos del sistema de memoria

- ► El programador requiere memoria que sea...
 - rápida
 - de gran capacidad
 - barata
- Ninguna tecnología cumple con todos los requisitos

Tecnología de memoria	Tiempo de acceso	\$ por GB en 2008
SRAM	0.5-2.5 ns	\$2000-\$5000
DRAM	50-70 ns	\$20-\$75
Disco magnético	5,000,000-20,000,000 ns	\$0.20-\$2

 Podemos crear la ilusión de una gran cantidad de memoria muy rápida combinando múltiples tecnologías, gracias al principio de localidad

- Los programas acceden a una porción relativamente pequeña del espacio de direcciones en cada instante de tiempo
 - No todas las direcciones de memoria tienen la misma probabilidad de ser accedidas

- Los programas acceden a una porción relativamente pequeña del espacio de direcciones en cada instante de tiempo
 - No todas las direcciones de memoria tienen la misma probabilidad de ser accedidas

Localidad temporal

 Cuando un programa accede a un dato, existe una elevada probabilidad de que ese mismo dato vuelva a ser accedido pronto

- Los programas acceden a una porción relativamente pequeña del espacio de direcciones en cada instante de tiempo
 - No todas las direcciones de memoria tienen la misma probabilidad de ser accedidas

Localidad temporal

 Cuando un programa accede a un dato, existe una elevada probabilidad de que ese mismo dato vuelva a ser accedido pronto

Localidad espacial

 Cuando un programa accede a un dato, existe una elevada probabilidad de que los datos cercanos sean accedidos pronto

Supongamos que un programa accede a las siguientes direcciones de memoria:

Acceso	Dirección de memoria
1	0
2	1024
3	0
4	1024
5	0
6	1024
7	0
8	1024

¿Qué tipo de localidad tiene este programa?

Supongamos que un programa accede a las siguientes direcciones de memoria:

Acceso	Dirección de memoria
1	0
2	4
3	8
4	12
5	16
6	20
7	24
8	28

¿Qué tipo de localidad tiene este programa?

Supongamos que un programa accede a las siguientes direcciones de memoria:

Acceso	Dirección de memoria
1	0
2	4
3	8
4	12
5	0
6	4
7	8
8	12

¿Qué tipo de localidad tiene este programa?

- La localidad aperece de forma natural en los programas
- La mayoría de progamas contienen bucles
 - Es muy probable que los mismos datos sean accedidos de forma repetida en cada iteración del bucle (localidad temporal)
- Muchos progamas acceden a vectores
 - El acceso a elementos consecutivos de un vector exhibe localidad espacial

Jerarquía de memoria

 Podemos aprovechar el principio de localidad para implementar el sistema de memoria como una jerarquía de niveles

Velocidad	Procesador	Tamaño	Coste (\$/bit)	Tecnología
Más rápido	Memoria Cache	Más pequeño	Más caro	SRAM
	Memoria Principal			DRAM
Más lento	Disco Duro	Más grande	Más barato	Disco magnético

Jerarquía de memoria

- La memoria cache contiene los datos más recientemente accedidos
 - ► Tamaño pequeño para reducir el coste
 - Gran velocidad de acceso
 - La mayoría de accesos son servidos por la memoria cache (localidad)
- ► El sistema de memoria ofrece **gran capacidad** mediante el uso de DRAM (memoria principal) y el disco magnético
- Cuanto más lejos del procesador, mayor capacidad pero mayor tiempo de acceso

Jerarquía de memoria

- El espacio de direcciones de memoria se divide en bloques o líneas de memoria
 - Una línea de memoria es la mínima unidad de información que puede estar o no estar presente en la memoria cache

- ► Hit (Acierto)
 - El dato accedido por el procesador está presente en la memoria cache

- ► Hit (Acierto)
 - El dato accedido por el procesador está presente en la memoria cache
- Hit Ratio (Tasa de aciertos)
 - Porcentaje de accesos a memoria que encuentran los datos en la cache (porcentaje de aciertos)

- Hit (Acierto)
 - El dato accedido por el procesador está presente en la memoria cache
- Hit Ratio (Tasa de aciertos)
 - Porcentaje de accesos a memoria que encuentran los datos en la cache (porcentaje de aciertos)
- ► Miss (Fallo)
 - El dato accedido por el procesador no está presente en la memoria cache
 - Hay que traer la línea de memoria principal

- ► Hit (Acierto)
 - El dato accedido por el procesador está presente en la memoria cache
- Hit Ratio (Tasa de aciertos)
 - Porcentaje de accesos a memoria que encuentran los datos en la cache (porcentaje de aciertos)
- ► Miss (Fallo)
 - El dato accedido por el procesador no está presente en la memoria cache
 - Hay que traer la línea de memoria principal
- Miss Ratio (Tasa de fallos)
 - Porcentaje de accessos a memoria que NO encuentran los datos en la cache (porcentaje de fallos)

Secuencia de accesos:

