Lois de l'optique géométrique

#chapitre4 #optique

Ondes lumineuses

Sources lumineuses

Emission thermique

Modèle du corps noir, tout matériel émet, du fait de sa température, un rayonnement électromagnétique dont le spectre est continue.

Emission par transition électronique

Il est possible d'émettre de la lumière en faisant retourner un électron d'une couche électronique à une autre couche plus proche du noyaux. On obtient un spectre de raies.

Rayon lumineux et source ponctuelle

Un rayon lumineux est une ligne le long de la quelle se propage l'onde lumineuse. Il correspond également à la direction de propagation de l'énergie lumineuse.

- $S(x,t) = A(x)\cos(\omega t kx + \varphi_0)$
- Avec $\omega = \frac{2\pi}{T}$ et $k = \frac{2\pi}{\lambda}$

Source ponctuelle

- Assimilable à un point.
- Les rayons sont des semi droites.
- Deux points reçoivent la même signal.

Indice optique d'une milieu transparent

$$\lambda = rac{v}{f} \mid \lambda_0 = rac{c}{f} \mid v = rac{c}{n}$$

On obtient donc $\lambda=rac{\lambda_0}{n}$ ou $k=nk_0.$

 Quand on change de milieu, on change pas la fréquence mais on change la longueur d'onde.

Diffraction

- $\sin(\theta) \approx \frac{\lambda}{a}$
- $a < 100 imes \lambda$ conditions pour diffraction
- La notion de rayon lumineux n'est plus utilisable

Approximation de l'optique géométrique

Consiste à négliger tout phénomène de diffraction

•
$$a > 1000 \times \lambda$$

Lois de Snell-Descartes

Premier Ioi

Le rayon réfléchi et le rayon réfracté, sont réfléchi et réfracté compris dans le plan d'incidence.

Deuxième loi

L'angle de réflexion est relie à l'angle d'indice par i'=-i .

Troisième loi

Les angles d'incidence et de réfraction sont reliés via les indices des deux milieux par la relation suivante : $n_i \sin(i) = n_r \sin(r)$

Réflexion totale

$$\sin(i_{lim}) = rac{n_r}{n_i}$$

La fibre optique

Cône d'acceptance :

$$ON = \sqrt{n_c^2 - n_g^2}$$

Etalement temporel d'une impulsion

$$\Delta t = rac{L}{C} rac{n_c}{n_g} (n_c - n_g)$$

Fréquence maximale

$$BP = rac{C}{L} imes rac{n_g}{n_c} imes rac{1}{n_c - n_g} ext{ car } rac{1}{BP} = \Delta t$$