Feuille d'exercices nº 14 : espaces vectoriels

Exercice 1.

1. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^2 ?

$$E_{1} = \{(x, y) \in \mathbb{R}^{2} \mid -9x + 7y = 0\}$$

$$E_{2} = \{(x, y) \in \mathbb{R}^{2} \mid 2x - 5y = 1\}$$

$$E_{3} = \{(x, y) \in \mathbb{R}^{2} \mid xy \ge 0\}$$

$$E_{4} = \{(x, y) \in \mathbb{R}^{2} \mid x = 0\}$$

$$E_{5} = \{(x, y) \in \mathbb{R}^{2} \mid x \le y\}$$

$$E_{6} = \{(x, y) \in \mathbb{R}^{2} \mid |x| = |y|\}$$

2. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^3 ?

$$E_7 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z \ge 0\}$$
 $E_8 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$

3. Les ensembles suivants sont-ils des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?

L'ensemble E_9 des suites croissantes L'ensemble E_{10} des suites monotones

L'ensemble E_{11} des suites bornées L'ensemble E_{12} des suites convergeant vers 0

L'ensemble E_{13} des suites arithmétiques L'ensemble E_{14} des suites géométriques

L'ensemble E_{15} des suites $(x_n)_{n\in\mathbb{N}}$ telles que : $\forall n\in\mathbb{N},\ x_{n+2}=4x_{n+1}-2x_n$

4. Les ensembles suivants sont-ils des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{R}}$?

L'ensemble E_{16} des fonctions positives L'ensemble E_{17} des fonctions s'annulant en 0

L'ensemble E_{18} des fonctions continues L'ensemble E_{19} des fonctions dérivables

L'ensemble E_{20} des fonctions 2π -périodiques L'ensemble E_{21} des f telles que f(3) = 2f(5) - 1

Exercice 2. Équation du sous-espace engendré.

- 1. À quelle condition sur le réel a, a-t-on : $(1, a, 2) \in \text{Vect}((1, 1, 3), (0, 1, 1))$?
- 2. Déterminer de même une condition nécessaire et suffisante sur (a, b, c) pour que : $(a, b, c) \in \text{Vect}((1, 1, 3), (2, -1, 3), (0, 1, 1))$

Exercice 3. Dans \mathbb{R}^3 , montrer que Vect((1,1,1),(2,1,-1)) = Vect((1,2,4),(3,1,-3)).

Exercice 4. On considère dans \mathbb{R}^3 les deux sous-ensembles suivants :

$$F = \{(x, y, z) \mid 2x + y - 3z = 0\} \quad \text{et} \quad G = \{(2a + b, a - b, 3a - b) \mid (a, b) \in \mathbb{R}^2\}.$$

Montrer qu'il s'agit de deux sous-espaces vectoriels de \mathbb{R}^3 , et déterminer leur intersection $F \cap G$.

Exercice 5. Dans les cas suivants, on donne trois ensembles E, F et G. Montrer que F et G sont deux sous-espaces supplémentaires de E.

- 1. Soient E l'ensemble des suites réelles convergentes, F celui des suites constantes et G l'ensemble des suites convergeant vers 0.
- 2. Soit E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} dérivables. On pose $F = \{f \in E \mid f(0) = f'(0) = 0\}$ et G l'ensemble des fonctions affines.
- 3. $E = \mathcal{C}^0([-1,1],\mathbb{R})$; $F = \{f \in E \mid \int_{-1}^1 f(t) \ dt = 0\}$ et G l'ensemble des fonctions constantes sur [-1,1].
- 4. $E = \{(u_n)_{n \in \mathbb{R}} \mid \forall n \in \mathbb{N}, \ u_{n+3} u_{n+2} u_{n+1} + u_n = 0\};$ $F = \{(u_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+1} + u_n = 0\} \text{ et } G = \{(u_n)_{n \in \mathbb{R}} \mid \forall n \in \mathbb{N}, \ u_{n+2} - 2u_{n+1} + u_n = 0\}.$

Exercice 6. Déterminer une famille génératrice pour les ensembles suivants :

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 2z\} \qquad B = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 2z, x + y + z = 0\}$$

Exercice 7. Pour A et B des sous-espaces vectoriels de \mathbb{R}^3 . Déterminer une famille génératrice de $A \cap B$.

1.
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x = y + z\} \text{ et } B = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y = 3z\}.$$

2.
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y = 3z\} \text{ et } B = \text{Vect}((1, 1, 2), (2, 1, 1)).$$

3.
$$A = \text{Vect}((1, 2, 2), (3, 2, 2))$$
 et $B = \text{Vect}((1, 0, 1), (1, 1, 2))$.

Exercice 8. Les familles suivantes sont-elles libres? génératrices? Sont-elles des bases?

- 1. ((1,2,5,4),(2,4,10,7)) dans \mathbb{R}^4 .
- 2. ((1,2,3),(-5,-10,-15)) dans \mathbb{R}^3 .
- 3. ((1,0,0),(1,1,0),(1,1,1)) dans \mathbb{R}^3 .
- 4. $((3,1,-4,6),(1,1,4,4),(1,0,-4,\alpha))$ dans \mathbb{R}^4 , avec $\alpha \in \mathbb{R}$.

Exercice 9. Dans $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, les vecteurs suivants forment-ils une famille libre? forment-ils une famille génératrice de E?

- 1. $u: x \mapsto \cos x$, $v: x \mapsto \sin x$, $w: x \mapsto e^x$;
- 2. $u_1: x \mapsto 2\cos x$, $u_2: x \mapsto \cos 2x$, $u_3: x \mapsto \cos^2 x$, $u_4: x \mapsto \sin^2 x$

Exercice 10. Dans chacun des cas suivants, montrer que la famille \mathcal{F} est une base de E, et déterminer les coordonnées de u dans \mathcal{F} .

1.
$$E = \mathbb{R}^3$$
; $\mathcal{F} = ((-1, 1, 1); (1, -1, 1); (1, 1, -1))$ et $u = (2, 3, 4)$.

2.
$$E = \mathcal{M}_2(\mathbb{R}); \mathcal{F} = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \right) \text{ et } u = I_2.$$

Exercice 11.

- 1. Donner une base de F = Vect(u, v, w), où u = (1, -1, 1), v = (0, -1, 2) et w = (1, -2, 3) dans \mathbb{K}^3 .
- 2. Donner une base de $G = \{(x, y, z) \in \mathbb{K}^3 | x + 2y + z = 0\}.$
- 3. Montrer que F = G.

Exercice 12. Donner une base des espaces vectoriels suivants :

1.
$$E_1 = \{(x, y, z) \in \mathbb{K}^3 \mid x - 2y + 3z = 0\}$$

2.
$$E_2 = \{(x, y, z) \in \mathbb{K}^3 \mid x = 2y = 3z\}$$

3.
$$E_3 = \{(x, y, z, t) \in \mathbb{K}^4 \mid x + y = y + z = z + t = t + x = 0\}$$

4.
$$E_4 = \{(x, y, z, t) \in \mathbb{K}^4 \mid x + 2y - z = x - y = t = 0\}$$

- 5. E_5 = l'ensemble des suites arithmétiques dans $\mathbb{K}^{\mathbb{N}}$
- 6. E_6 = l'ensemble des solutions réelles de l'équation différentielle y''=0

- 7. E_7 = l'ensemble des solutions réelles de l'équation différentielle y'' + 4y = 0
- 8. E_8 = l'ensemble des solutions réelles de l'équation différentielle $y' + 8\cos(4x)y = 0$

Exercice 13. Compléter en une base de \mathbb{K}^4 la famille ((1,1,1,1),(1,1,-1,-1)).

Exercice 14. Dans chacun des cas suivants, montrer que les ensembles F et G sont des sous-espaces vectoriels de E, et qu'ils sont supplémentaires.

- 1. $E = \mathbb{R}^2$; $F = \{(x, y) \mid x + y = 0\}$ et $G = \{(x, y) \mid x y = 0\}$.
- 2. $E = \mathbb{R}^3$; $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = y \text{ et } x + z = 0\} \text{ et } G = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\}.$
- 3. $E = \mathbb{R}^3$; $F = \{(x, y, z) \mid x y + z = 0\}$ et G = Vect((3, 2, 1)).
- 4. $E = \mathbb{R}_2[X]$; $F = \text{Vect}(X, X^2)$ et $G = \{P \mid P' = 0\}$.
- 5. $E = \mathbb{R}_6[X]$; $F = \{P \in E \mid P \text{ est une fonction paire}\}$ et $G = \{P \in E \mid P \text{ est une fonction impaire}\}$.

Exercice 15. Dans $E = \mathbb{R}^3$ soit F = Vect((1, 1, 0), (0, 1, 1)) et G = Vect((1, 1, 1)). Déterminer $F \cap G$ et F + G.

Pour s'entrainer

Exercice 16.

- 1. Soient $u_1 = (1, 2, 0, 1), u_2 = (2, 1, 3, 1), u_3 = (0, 3, -3, 1)$ et $E = \text{Vect}(u_1, u_2, u_3)$. Déterminer une base de E.
- 2. Soient $v_1 = (1, 2, 1, 0), v_2 = (-1, 1, 1, 1), v_3 = (2, -1, 0, 1), v_4 = (2, 2, 2, 2)$ et $F = \text{Vect}(v_1, v_2, v_3, v_4)$. Déterminer une base de F.
- 3. Déterminer une base de $E \cap F$ et une base de E + F.

Exercice 17.

- 1. C = Vect((1,2,3),(3,2,1)). Déterminer une équation cartésienne de C.
- 2. D = Vect((1,2,3)). Déterminer un système d'équations cartésiennes pour D.

Exercice 18. On note \mathcal{A} l'ensemble des matrices de la forme

$$A = \begin{pmatrix} a & a+b & b \\ b & a-b & a+2b \\ a & b & 0 \end{pmatrix} \quad \text{pour } a, b \in \mathbb{C}.$$

Montrer que A est un sous-espace vectoriel de $M_3(\mathbb{C})$ et en donner une base.

Exercice 19. Équation du sous espace engendré.

- 1. Déterminer le réel a pour que : $(a, 4) \in Vect((4, 16), (3, 9))$.
- 2. Déterminer le réel a pour que : $(1, a) \in \text{Vect}((10, 15), (4, 6))$.
- 3. Déterminer une condition nécessaire et suffisante pour que : $(a, b) \in \text{Vect}((2, -3), (-4, 6))$.