Principio de Inducción matemática

Prof. Jhon Fredy Tavera Bucurú

2025

Principio de Inducción Matemática (PIM)

Principio de Inducción Fuerte (PIF)

Principio de Inducción Matemática

Principio de Inducción Matemática (PIM)

Sea P(n) una propiedad del número natural n. Ejemplos de propiedades:

n puede ser factorizado en un producto de números primos.

Principio de Inducción Matemática (PIM)

Sea P(n) una propiedad del número natural n. Ejemplos de propiedades:

- n puede ser factorizado en un producto de números primos.
- ► $1+2+\cdots+n=\frac{n(n+1)}{2}$.
- La ecuación 2x + 3y = n admite solución con x e y enteros positivos.

Cómo Probar P(n) usando el PIM

Para probar que P(n) es verdadera para todo natural $n \ge n_0$, se utiliza el Principio de Inducción Matemática (PIM), que consiste en verificar dos cosas:

- 1. Base de la Inducción: $P(n_0)$ es verdadera.
- 2. **Paso Inductivo:** Si P(n) es verdadera para algún número natural $n \ge n_0$, entonces P(n+1) también es verdadera.

Conclusión:

Cómo Probar P(n) usando el PIM

Para probar que P(n) es verdadera para todo natural $n \ge n_0$, se utiliza el Principio de Inducción Matemática (PIM), que consiste en verificar dos cosas:

- 1. Base de la Inducción: $P(n_0)$ es verdadera.
- 2. **Paso Inductivo:** Si P(n) es verdadera para algún número natural $n \ge n_0$, entonces P(n+1) también es verdadera.

Conclusión: Si ambos pasos se cumplen, P(n) es verdadera para todo $n \ge n_0$.

Por qué funciona el Principio de Inducción Finita

En la **base de la inducción**, verificamos que la propiedad es válida para un valor inicial $n = n_0$.

Por qué funciona el Principio de Inducción Finita

En la **base de la inducción**, verificamos que la propiedad es válida para un valor inicial $n = n_0$.

El **paso inductivo** nos asegura que si la propiedad en n es verdadera (la llamada *hipótesis de inducción*) tambien lo será para n+1. Como en n_0 la propiedad es verdadera, tambien lo será en n_0+1 .

Una vez verificados la base y el paso inductivo, se crea una **cadena de implicaciones**:

$$P(n_0)$$
 es verdadera (base) \Rightarrow $P(n_0+1)$ es verdadera \Rightarrow $P(n_0+2)$ es verdadera \Rightarrow $P(n_0+3)$ es verdadera \Rightarrow ...

De este modo, P(n) es verdadera para todo natural $n \ge n_0$.

Queremos demostrar que, para todo entero positivo n, se cumple:

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

Esta es la propiedad P que debemos de probar para todo n natural, es decir que P(n) es verdadera $\forall n \in \mathbb{N}$.

Paso 1: Base de la inducción

Comprobamos que la propiedad es verdadera para $n_0 = 1$, es decir que P(1) es verdadera:

$$1 = \frac{1 \times (1+1)}{2} = \frac{2}{2} = 1$$

Paso 2:Paso inductivo

(Hipotesis de Inducción) Suponemos que la propiedad es verdadera para n, es decir P(n) es verdadera:

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

y probamos que P(n+1) es verdadera

$$1+2+\cdots+n+(n+1)=\frac{(n+1)((n+1)+1)}{2}$$

Para mostrar que la igualdad es cierta para n+1. Sumamos (n+1) a ambos lados de la hipótesis de inducción:

$$1+2+\cdots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)$$

Simplificamos el lado derecho:

$$\frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Conclusión:

Por el Principio de Inducción Matemática (PIM), la propiedad es verdadera para todo número natural $n,\ n>1.$

Queremos demostrar que $M_n=n(n^2-1)(3n+2)$ es múltiplo de 24, para todo $n\in\mathbb{N}$

Paso 1: Base de la inducción

Verificamos que para n = 0, $M_0 = 0$, que es un múltiplo de 24.

Paso 2: Paso Inductivo

Supongamos que P(k) es verdadera (hipotesis de inducción), es decir $M_k = k(k^2 - 1)(3k + 2)$ es divisible por 24 para algún k.

Queremos demostrar que $M_n=n(n^2-1)(3n+2)$ es múltiplo de 24, para todo $n\in\mathbb{N}$

Paso 1: Base de la inducción

Verificamos que para n = 0, $M_0 = 0$, que es un múltiplo de 24.

Paso 2: Paso Inductivo

Supongamos que P(k) es verdadera (hipotesis de inducción), es decir $M_k = k(k^2-1)(3k+2)$ es divisible por 24 para algún k. Y probemos que P(k+1) es verdadera, es decir que M_{k+1} también es divisible por 24.

Calculamos la diferencia:

$$M_{k+1} - M_k = ((k+1)((k+1)^2 - 1)(3(k+1) + 2)) - (k(k^2 - 1)(3k + 2))$$

$$= ((k+1)((k^2 + 2k)(3(k+1) + 2)) - (k(k-1)(k+1)(3k + 2))$$

$$= k(k+1)[(k+2)(3k+5) - (k-1)(3k+2)]$$

$$= 12k(k+1)^2.$$

Simplificamos y reorganizamos:

$$M_{k+1} - M_k = 12k(k+1)^2$$

Dado que el producto de $k(k+1)^2$ es múltiplo de 24 (ya que k y k+1 son consecutivos), se concluye que M_{k+1} es divisible por 24.

Calculamos la diferencia:

$$M_{k+1} - M_k = ((k+1)((k+1)^2 - 1)(3(k+1) + 2)) - (k(k^2 - 1)(3k + 2))$$

$$= ((k+1)((k^2 + 2k)(3(k+1) + 2)) - (k(k-1)(k+1)(3k + 2))$$

$$= k(k+1)[(k+2)(3k+5) - (k-1)(3k+2)]$$

$$= 12k(k+1)^2.$$

Simplificamos y reorganizamos:

$$M_{k+1} - M_k = 12k(k+1)^2$$

Dado que el producto de $k(k+1)^2$ es múltiplo de 24 (ya que k y k+1 son consecutivos), se concluye que M_{k+1} es divisible por 24.

Conclusión:

Por el Principio de Inducción Matemática (PIM),

$$M_n = n(n^2 - 1)(3n + 2)$$
 es múltiplo de 24 para todo $n \ge 0$.

Queremos demostrar que

$$senx + sen2x + ... + sen(kx) = \frac{sen(\frac{(k+1)x}{2})sen(\frac{kx}{2})}{sen(\frac{x}{2})}$$
(1)

Para todo k natural. Lo demostraremos por PIM 1. Base inductiva (para el primer elemento de (k = 1)

$$\frac{sen(\frac{(1+1)x}{2})sen(\frac{(1)x}{2})}{sen(\frac{x}{2})}$$
 (2)

$$=\frac{sen(\frac{(2)x}{2})sen(\frac{x}{2})}{sen(\frac{x}{2})}=sen\frac{2x}{2}=senx=\sum_{j=1}^{1}sen(jx) \quad (3)$$

Se cumple la base inductiva k = 1

Paso Inductivo (Hipotesis de Inducción) Supongamos que P(k) es verdadera, es decir, que

$$senx + sen2x + ... + sen(kx) = \frac{sen(\frac{(k+1)x}{2})sen(\frac{kx}{2})}{sen(\frac{x}{2})}$$
(4)

Y problemos que P(k+1) es verdadera (Tesis de Inducción), es decir

$$senx + sen2x + ... + sen(kx) + sen(k+1)x = \frac{sen(\frac{(k+2)x}{2})sen(\frac{(k+1)x}{2})}{sen(\frac{x}{2})}$$
(5)

$$= senx + sen2x + ... + sen(kx) + sen(k+1)x$$

$$= \frac{sen(\frac{(k+1)x}{2})sen(\frac{kx}{2})}{sen(\frac{x}{2})} + sen(k+1)x$$

$$= \frac{sen(\frac{(k+1)x}{2})sen(\frac{kx}{2}) + sen(\frac{x}{2})sen(k+1)x}{sen(\frac{x}{2})}$$

Usando la identidad del ángulo doble en la función sen(k+1)x

$$sen2\theta = 2sen\theta \cos\theta$$

Tenemos

$$\frac{sen(\frac{(k+1)x}{2})\left(sen(\frac{kx}{2}) + 2sen(\frac{x}{2})cos(\frac{(k+1)x}{2})\right)}{sen(\frac{x}{2})}$$
 (6)

Ahora, usando la identidad

$$sen\theta cos \rho = \frac{sen(\theta + \rho) - sen(\rho - \theta)}{2}$$

tenemos

$$sen\frac{x}{2}\cos\frac{(k+1)x}{2} = \frac{sen(\frac{x}{2} + \frac{x(k+1)}{2}) - sen(\frac{x(k+1)}{2} - \frac{x}{2})}{2}$$
$$= \frac{1}{2}\left(sen\left(\frac{xk}{2} + x\right) - sen\left(\frac{kx}{2}\right)\right)$$

Reemplazando

$$\frac{sen(\frac{(k+1)x}{2})sen(\frac{(k+2)x}{2})}{sen(\frac{x}{2})}$$

Por tanto P(k+1) es verdadera. Entonces por PIM la P(k)

Principio de Inducción Matemática Fuerte

Principio de Inducción Matemática Fuerte (PIF)

Una variante del Principio de Inducción Matemática (PIM) es el **Principio de Inducción Matemática Fuerte (PIF)**, también conocido como *principio de inducción fuerte* o *principio de inducción completa*, en el que se debe mostrar:

1. Base de la Inducción: $P(n_0)$ es verdadera.

Principio de Inducción Matemática Fuerte (PIF)

Una variante del Principio de Inducción Matemática (PIM) es el **Principio de Inducción Matemática Fuerte (PIF)**, también conocido como *principio de inducción fuerte* o *principio de inducción completa*, en el que se debe mostrar:

- 1. Base de la Inducción: $P(n_0)$ es verdadera.
- 2. **Paso Inductivo:** Si P(k) es verdadera para todo natural k tal que $n_0 \le k \le n$,

Principio de Inducción Matemática Fuerte (PIF)

Una variante del Principio de Inducción Matemática (PIM) es el **Principio de Inducción Matemática Fuerte (PIF)**, también conocido como *principio de inducción fuerte* o *principio de inducción completa*, en el que se debe mostrar:

- 1. Base de la Inducción: $P(n_0)$ es verdadera.
- 2. **Paso Inductivo:** Si P(k) es verdadera para todo natural k tal que $n_0 \le k \le n$, entonces P(n+1) también es verdadera.

La secuencia de Fibonacci F_n está definida recursivamente por:

$$F_0 = 0$$
, $F_1 = 1$ y $F_n = F_{n-1} + F_{n-2}$ para $n \ge 2$.

Así, sus primeros términos son:

$$F_0=0, \quad F_1=1, \quad F_2=1, \quad F_3=2, \quad F_4=3, \quad F_5=5, \quad F_6=8, \quad \dots$$

Ejemplo 1: Formula determinista secuencia de Fibonacci

Se desea mostrar que, si F_n es el n-esimo número de Fiboncaci:

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$

donde

$$\alpha = \frac{1+\sqrt{5}}{2} \quad \text{y} \quad \beta = \frac{1-\sqrt{5}}{2}$$

son las raíces de $x^2 = x + 1$. Esta es la propiedad P(n).

Demostración

Base de Inducción Tenemos que:

$$F_0 = rac{lpha^0 - eta^0}{lpha - eta} = 0 \quad \text{y} \quad F_1 = rac{lpha^1 - eta^1}{lpha - eta} = 1$$

Paso Inductivo supongamos que P(k) es verdadera para todo $0 \le k \le n$, es decir

$$F_k = \frac{\alpha^k - \beta^k}{\alpha - \beta} \ \forall \ 0 \le k \le n$$

y probemos que P(n+1) es verdadera.

Dado que:

$$F_{n+1} = F_n + F_{n-1}$$

Sustituyendo la fórmula de la hipótesis de inducción:

$$F_{n+1} = \frac{\alpha^n - \beta^n}{\alpha - \beta} + \frac{\alpha^{n-1} - \beta^{n-1}}{\alpha - \beta}$$

Simplificando:

$$F_{n+1} = \frac{\alpha^n(\alpha+1) - \beta^n(\beta+1)}{\alpha - \beta} = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

Concluimos que:

$$F_{n+1} = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

Por lo tanto, P(n) es verdadera $\forall n \geq 0$, es decir la fórmula es válida para todo $n \geq 0$.

Ejemplo 2: Coeficiente Binomial son enteros

Queremos demostrar que, para cualquier $n \ge m$ con $n, m \in \mathbb{N}$, el coeficiente binomial:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

es un número entero.

Base de la inducción:

Procederemos por inducción sobre la variable t, definida como la suma de m+n, es decir t=m+n. Si t=0, entonces m=n=0 y:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$$

es un número entero.

Antes de desarrollar el paso inductivo, observemos primero que para 0 < m < n tenemos la siguiente identidad de binomios:

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

Esta identidad sigue directamente de las definiciones:

$$\binom{n-1}{m} + \binom{n-1}{m-1} = \frac{(n-1)!}{m!(n-m-1)!} + \frac{(n-1)!}{(m-1)!(n-m)!}$$

$$= \frac{(n-1)!((n-m)+m)}{m!(n-m)!} = \frac{n!}{m!(n-m)!} = \binom{n}{m}.$$

Paso Inductivo

Ahora supongamos que $\binom{n}{m}$ es entero para todo $k \in \mathbb{N}$, tal que $0 \le k \le t$ (hipótesis de inducción).

Note que podemos suponer también que 0 < m < n, ya que si m = n o m = 0, tenemos $\binom{n}{m} = 1$, y el resultado es trivial. Entonces, si m + n = t + 1, tenemos que:

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

Y como $(n-1)+m \le t$ y $(n-1)+(m-1) \le t$ por hipotesis de inducción $\binom{n}{m}$ es entero, pues cada sumando en la derecha es entero por la hipótesis de inducción. Como P(t+1) es verdadera, entonces por Principio de Inducción matemática Fuerte P(t) es verdadera $\forall t \ge 0$.

Es decir, el coeficiente binomial es entero para cualquier $n \ge m$.