#### Bio Stats II: Lab 3

Acknowledgements: Punt & Branch Labs (U Washington)

Gavin Fay

01/31/2023

#### Lab schedule

- 1/18: Introduction to R and R Studio, working with data
- 1/25: Intro to Visualization
- 1/31: Probability, linear modeling
- 2/08: Data wrangling, model summaries
- 2/15: Iteration
- 2/22: Creating functions, debugging
- 3/01: Simulation, Resampling
- 3/15: Flex: more modeling (brms, glmmTMB)
- 3/29: Spatial data or tidymodeling

#### **Review**



```
> library(gapminder)
> gapdata <- gapminder %>%
+ filter(year >= 1990 & year <= 2007) %>%
+ group_by(continent)
> ggplot(gapdata, aes(x = gdpPercap/1000,
                      v = lifeExp,
                      size = pop/1000000,
+
                      color = continent)) +
+
   geom_point(alpha = 0.5) +
+
   ylim(20,100) +
+
   labs(title = "Life Expectancy varies with GDP",
           subtitle = "1990 - 2007",
            x = "GDP per capita ($1000s)",
+
            y = "Life expectancy (yrs)",
           caption = "Plot created by @gavin fay",
         size = "Population (M)",
+
```

color = "Continent") +

theme minimal()

+

> suppressPackageStartupMessages(library(tidyverse))

## Recommended reading

An introduction to R (Venables et al.)

http://cran.r-project.org/doc/manuals/R-intro.pdfToday's material: Chapters 8, 11.

# Probability distributions in R

R includes a set of probability distributions that can be used to simulate and model data.

If the function for the probability model is named xxx

- ▶ pxxx: the cumulative distribution  $P(X \le x)$
- ightharpoonup dxxx: the probability distribution/density function f(x)
- ightharpoonup qxxx: the quantile q, the smallest x such that  $P(X \le x) > q$
- rxxx: generate a random variable from the model xxx

## Probability distributions in R

| Distribution      | R name  | Additional arguments |
|-------------------|---------|----------------------|
| beta              | beta    | shape1, shape2       |
| binomial          | binom   | size, prob           |
| Cauchy            | cauchy  | location, scale      |
| chi-squared       | chisq   | df                   |
| exponential       | exp     | rate                 |
| F                 | f       | df1, df2             |
| gamma             | gamma   | shape, scale         |
| geometric         | geom    | prob                 |
| hypergeometric    | hyper   | m,n, k               |
| lognormal         | lnorm   | meanlog, sdlog       |
| logistic          | logis   | location, scale      |
| negative binomial | nbinom  | size, prob           |
| normal            | norm    | mean,sd              |
| Poisson           | pois    | lambda               |
| Student's t       | t       | df                   |
| uniform           | unif    | min, max             |
| Weibull           | weibull | shape, scale         |
| Wilcoxon          | wilcox  | m,n                  |

## Standard normal distribution



#### **Functions for normal distribution**

```
Values of x for different quantiles
qnorm(p, mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
> quants \leftarrow qnorm(c(0.01,0.025,0.05,0.95,0.975,0.99))
> round(quants,2)
[1] -2.33 -1.96 -1.64 1.64 1.96 2.33
P(X \leq x)
pnorm(q, mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
> pnorm(quants)
[1] 0.010 0.025 0.050 0.950 0.975 0.990
```

#### **Functions for normal distribution**

```
Density (probability 'mass' per unit value of x)
```

```
> dnorm(quants, mean = 0, sd = 1)
[1] 0.02665214 0.05844507 0.10313564 0.10313564 0.05844507
```

Generating standard normal random variables

```
> rnorm(n=10, mean = 0, sd = 1)

[1] 1.3149588 0.9781675 0.8817912 0.4822047 0.9657529

[7] 0.2839578 -0.1616986 1.9355718 1.7232308
```

#### **Generating random numbers**

Often a good idea to use set.seed() and save the script detailing which number was used.

This ensures you can exactly repeat your results.

```
> set.seed(42)
> rnorm(3)
[1] 1.3709584 -0.5646982 0.3631284
> rnorm(3)
[1] 0.6328626 0.4042683 -0.1061245
> set.seed(42)
> rnorm(3)
[1] 1.3709584 -0.5646982 0.3631284
> rnorm(3)
[1] 0.6328626 0.4042683 -0.1061245
```

## The sample() function

To generate random numbers from discrete sets of values:

- With or without replacement
- Equal or weighted probability

Extremely useful function that underlies many modern statistical techniques:

- Resampling
- Bootstrapping
- Markov-chain Monte-Carlo (MCMC)

e.g. Roll 10 dice

```
> sample(1:6, size = 10, replace = TRUE)
[1] 4 1 5 6 4 2 2 3 1 1
```

#### Pick 3 species of bear

## Lab Exercise 1/3

- a. Generate 1,000 random normal numbers with mean 24 and standard deviation 10. Find the proportion of those random numbers that are  $\geq 2$  standard deviations from the sample mean.
- **b.** Flip a (fair) coin six times.
- **c.** Find the probability of getting six heads on those six flips (i.e. P(X = 6) given n = 6).
- **d.** How much more likely is it to get three heads than six?
- **e.** For a standard normal random variable, find the number x such that  $P(-x \le X \le x) = 0.24$ .
- **f.** The mean rate of arrival of alewives at a weir is 3.5 per hour. Plot the probability distribution function for the number of alewife arrivals in an hour.
- **g.** Find the 95% confidence interval for the number of alewives arriving per day.

#### Linear models in R

Recall linear regression model:

$$y_i = \sum_{j=0}^p eta_j x_{ij} + arepsilon_i$$
 ,  $arepsilon_i \sim N(0, \sigma^2)$  ,  $i = 1, \ldots, n$ 

In matrix form:  $y = X\beta + \varepsilon$ 

Model formulae in R,  $y \sim x$ , try ?formula

| Formula              | Description                                                                                                                                 |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| y ~ x1 -1            | - means leave something out. Fit the slope but not the intercept                                                                            |
| $y \sim x1 + x2$     | model with covariates x1 and x2                                                                                                             |
| y ~ x1 + x2 + x1:x2  | model with covariates $x\boldsymbol{1}$ and $x\boldsymbol{2}$ and an interaction between $x\boldsymbol{1}$ : $x\boldsymbol{2}$              |
| y ~ x1 * x2          | * denotes factor crossing, and is equivalent to the previous statement                                                                      |
| y ~ (x1 + x2 + x3)^2 | $\Lambda$ indicates crossing to the specified degree. Fit the 3 main effects for x1, x2, and x3 with all possible second order interactions |
| y ~ I(x1 + x2)       | I means treat something as is. So the model with single covariate which is the sum of $x1$ and $x2$ . (This way we don't have to            |

#### Linear models, lm()

```
The basic function for fitting ordinary multiple models is lm()

fitted.model <- lm(formula, data = data.frame)

e.g. species richness on beaches (Zuur Chapters 5 & 27)

> RIKZ <- read_table(file = "../data/RIKZ.txt")

> RIKZ <- RIKZ |>

+ mutate(Richness = rowSums(RIKZ[,2:76]>0)) |>

+ select(Richness, 77:89)

> RIKZ_lm1 <- lm(Richness ~ NAP, data = RIKZ)
```

## **Extracting model information**

The value of lm() is a fitted model object.

- a list of results of class 1m.

Information about the fitted model can be extracted, displayed, plotted, using some generic functions, inlcuding:

- anova(object1,object2) Compares a submodel with an outer model and produces an analysis of variance table
- ► coef(object) Extract the regression coefficient
- ► deviance(object) Residual sum of squares
- ► formula(object) Extract the model formula
- plot(object) Produce four plots, showing residuals, fitted values and some diagnostics
- predict(object, newdata=data.frame) Model predictions on new data
- residuals(object) or resid(object) Extract the matrix of residuals
- ▶ step(object) forward or backward model selection using AIC
- ▶ summary(object) Print a comprehensive summary of the results
- vcov(object) Return variance-covariance matrix of main parameters

# **Summary objects**

```
summary(lm1)
Call:
lm(formula = Richness ~ NAP, data = RIKZ)
Residuals:
   Min 1Q Median 3Q Max
-5.0675 -2.7607 -0.8029 1.3534 13.8723
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.6857 0.6578 10.164 5.25e-13 ***
NAP -2.8669 0.6307 -4.545 4.42e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.16 on 43 degrees of freedom
```

Multiple R-squared: 0.3245, Adjusted R-squared: 0.3088 F-statistic: 20.66 on 1 and 43 DF, p-value: 4.418e-05

## broom helper functions

```
broom::tidy()
> library(broom)
> tidy(RIKZ lm1, conf.int = TRUE)
# A tibble: 2 x 7
 term estimate std.error statistic p.value conf.low con
 <chr>
        <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 6.69 0.658 10.2 5.25e-13 5.36
2 NAP
    -2.87 0.631 -4.55 4.42e- 5 -4.14
broom::glance()
> glance(RIKZ lm1)
# A tibble: 1 x 12
 r.squared adj.r.squared sigma statistic p.value df logLik
    1 0.325 0.309 4.16 20.7 0.0000442 1 -127.
# ... with 3 more variables: deviance <dbl>, df.residual <int>,
```

# {modelsummary}

The {modelsummary} package provides a wealth of options for creating publication-quality summary tables from fitted model objects, with bindings for most of the types of models we are using in this class.

There are lots of options. . . .

|             | lm1              |
|-------------|------------------|
| (Intercept) | 6.686***         |
|             | [5.359, 8.012]   |
| NAP         | -2.867***        |
|             | [-4.139, -1.595] |
| Num.Obs.    | 45               |
| R2          | 0.325            |
| R2 Adj.     | 0.309            |
| AIC         | 260.0            |
| BIC         | 265.4            |
| Log.Lik.    | -126.977         |
| F           | 20.660           |
| RMSE        | 4.07             |

## Are model assumptions met?

In the MASS library there are many functions.

Are samples independent? (Sample design.)

Residuals normally distributed?

- Histograms, qq-plots: qqplot() and qqline()
- Kolmogorov-Smirnov normality test: ks.test()
- Shapiro-Wilk normality test: shapiro.test()

Similar variance among samples?

- Boxplots
- Bartlett's test for equal variance: bartlett.test()
- Fligner-Killeen test for equal variance: fligner.test()

## **Checking assumptions**

Model assumptions can be evaluated by plotting the model object.

```
> plot(RIKZ_lm1)
```

- > # OR
- > library(gglm)
- > gglm(RIKZ\_lm1)

#### > gglm(RIKZ\_lm1)



```
broom::augment()
> RIKZ_lm1_aug <- augment(RIKZ_lm1, se_fit = )</pre>
> glimpse(RIKZ_lm1_aug)
Rows: 45
Columns: 8
$ Richness
            <dbl> 11, 10, 13, 11, 10, 8, 9, 8, 19, 17, 6,
$ NAP
            <dbl> 0.045, -1.036, -1.336, 0.616, -0.684, 1
$ .fitted <dbl> 6.556653, 9.655722, 10.515778, 4.919680
$ .resid <dbl> 4.4433465, 0.3442783, 2.4842223, 6.0803
$ .hat <dbl> 0.02432839, 0.06623475, 0.08738853, 0.09
$ .sigma <dbl> 4.151533, 4.208801, 4.189991, 4.100641,
$ .cooksd <dbl> 0.0145788938, 0.0002601525, 0.0187094818
$ .std.resid <dbl> 1.08136537, 0.08564557, 0.62511744, 1.4
```

```
> RIKZ_lm1_aug <- augment(RIKZ_lm1,
                         se fit = TRUE)
+
> glimpse(RIKZ lm1 aug)
Rows: 45
Columns: 9
$ Richness
            <dbl> 11, 10, 13, 11, 10, 8, 9, 8, 19, 17, 6,
            <dbl> 0.045, -1.036, -1.336, 0.616, -0.684, 1
$ NAP
$ .fitted <dbl> 6.556653, 9.655722, 10.515778, 4.919680
$ .se.fit <dbl> 0.6488474, 1.0706040, 1.2297395, 0.64280
$ .resid <dbl> 4.4433465, 0.3442783, 2.4842223, 6.0803
$ .hat
            <dbl> 0.02432839, 0.06623475, 0.08738853, 0.09
$ .sigma <dbl> 4.151533, 4.208801, 4.189991, 4.100641,
$ .cooksd <dbl> 0.0145788938, 0.0002601525, 0.0187094818
$ .std.resid <dbl> 1.08136537, 0.08564557, 0.62511744, 1.4
```

+

> RIKZ\_lm1\_aug <- augment(RIKZ\_lm1,

```
> glimpse(RIKZ_lm1 aug)
Rows: 45
Columns: 10
$ Richness
            <dbl> 11, 10, 13, 11, 10, 8, 9, 8, 19, 17, 6,
$ NAP
            <dbl> 0.045, -1.036, -1.336, 0.616, -0.684, 1
$ .fitted <dbl> 6.556653, 9.655722, 10.515778, 4.919680
$ .lower
            <dbl> 5.24812804, 7.49664302, 8.03577164, 3.69
$ .upper <dbl> 7.865179, 11.814800, 12.995784, 6.216014
$ .resid
            <dbl> 4.4433465, 0.3442783, 2.4842223, 6.0803
$ .hat
            <dbl> 0.02432839, 0.06623475, 0.08738853, 0.09
$ .sigma
            <dbl> 4.151533, 4.208801, 4.189991, 4.100641,
$ .cooksd <dbl> 0.0145788938, 0.0002601525, 0.0187094818
$ .std.resid <dbl> 1.08136537, 0.08564557, 0.62511744, 1.4
```

interval = "confidence")

```
> RIKZ_lm1_aug |>
+    janitor::clean_names() |>
+    ggplot() +
+    aes(x = nap, y = fitted) +
+    geom_line() +
+    geom_point(aes(x = nap, y= richness))
```



# Fitting models directly on plots

```
> ggplot(RIKZ, aes(x = NAP, y = Richness)) +
+ geom_point() +
+ geom_smooth(method = "lm")
`geom_smooth()` using formula 'y ~ x'
```



## **Building and Comparing models**

```
> library(moderndive)
> ggplot(RIKZ) +
+ aes(x = NAP, y = Richness, color = factor(week)) +
+ geom_point() +
+ labs(x = "NAP", y = "Species Richness",
+ color = "Week") +
+ geom_parallel_slopes(se = TRUE)
```



#### **Building and Comparing models**

An alternative model for the RIKZ species richness is:

```
> RIKZ_lm2 <- lm(Richness ~ NAP + factor(week), data = RIKZ)
> #Can also create this model using the `update()` function:
> RIKZ_lm2 <- update(RIKZ_lm1, .~. + factor(week))</pre>
```

Compare models with AIC() and via anova()

## Lab exercise 2/3

- 1. Extract the residuals from the RIKZ\_lm2 model
- **2.** Are the linear regression assumptions met? Explain your reasoning
- **3.** Summarize the results of the model. What are the parameter estimates telling you about species richness on these beaches?

## Model predictions for new data

Both augment() and the predict() function can be used to obtain predictions from a fitted model object to a new data frame.

This can be useful when:

- a subset of the data was reserved from the fitting process ('test data')
- you want to obtain model predictions at values other than the data (for example when plotting fitted values)

```
> newdata <- RIKZ |>
+ slice(1:10) |>
+ mutate(NAP = NAP + 1)
> new_predictions <- augment(RIKZ_lm1, newdata = newdata)</pre>
```

## More on interrogating model results

You can also interrogate model objects directly. Type names(object) to get a list of the components of object.

```
> names(RIKZ_lm1)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.re
[9] "xlevels" "call" "terms" "model
```

str() can also be used.

# More on interrogating model results

... - attr(\*, "order")= int 1 ... - attr(\*, "intercept")= int 1

Note that summary(object) is also a list, and components can be

```
extracted from here too.
> names(summary(RIKZ lm1))
 [1] "call" "terms" "residuals" "coef:
 [5] "aliased" "sigma"
                               "df"
                                              "r.sq
 [9] "adj.r.squared" "fstatistic" "cov.unscaled"
> str(summary(RIKZ_lm1))
List of 11
$ call
           : language lm(formula = Richness ~ NAP, da
```

\$ terms : Classes 'terms', 'formula' language Rich ....- attr(\*, "variables")= language list(Richness, NAP) ...- attr(\*, "factors")= int [1:2, 1] 0 1

..... attr(\*, "dimnames")=List of 2 .....\$ : chr [1:2] "Richness" "NAP"

.. .. ... **:** chr "NAP"

...- attr(\*, "term.labels")= chr "NAP"

## **Centering covariates**

When dealing with numeric covariates, it often makes sense to center these variables before performing a regression.

- i.e. subtract the mean from each covariate.

This helps to make our parameters more meaningful.

- they now correspond to the average case in the data, rather than some extrapolated value.
- this is particularly useful for intercept parameters.

#### Fitting multiple models simultaneously

We may be interested in fitting many (many) models. R has functionality to do this efficiently.

- > library(broom)
- > ggplot(gapminder, aes(x=year, y=lifeExp, group = country)) +
- + geom\_line() +
- + facet\_wrap(~continent)



## Fitting multiple models simultaneously

```
> gapminder_models <- gapminder |>
+ group_by(country) |>
+ nest() |>
+ mutate(model = map(data, ~lm(lifeExp~year, data = .x))) |>
+ mutate(coefs = map(model, tidy, conf.int = TRUE)) |>
+ unnest(coefs)
```

- > ggplot(gapminder\_models, aes(x = estimate, group = term)) +
   geom\_histogram(fill="black",col="white") +
- + facet\_wrap(~term, scales= "free")



```
> slopes <- filter(gapminder models, term == "year") %>%
       arrange(desc(estimate))
> continents <- select(gapminder, country, continent) |>
   distinct()
> slopes <- slopes |> left_join(continents)
Joining, by = "country"
> ggplot(slopes, aes(x = fct reorder(country, estimate), y = est
    #qeom_histogram(fill="black",col="white") +
   geom point(alpha=0.5) +
+
+
   geom_errorbar(aes(ymin=conf.low, ymax=conf.high), width=.05)
+ coord_flip() +
   labs(y = "slope",
+
        x = "Country") +
+
+ theme minimal()
```



# Lab exercise 3/3

- 1. Fit a linear regression using 2007 gapminder data of the form lm(gdpPercap ~ continent, where gdpPercap is the new outcome variable y. Get information about the best-fitting line from the regression table. How do the regression results match up with those of an analysis of life expectancy by continent?
- **2.** Extract the model coefficients and their 95 percent confidence intervals.
- **3.** Plot the residuals vs the fitted values and comment on their distribution and patterns.
- 4. Identify the five countries with the five most negative residuals? What do these negative residuals say about their life expectancy relative to their continents life expectancy?
- 5. Repeat this process, but identify the five countries with the five most positive residuals. What do these positive residuals say about their life expectancy relative to their continents life expectancy?