HW1 - Particle System

2022 Computer Animation and Special Effects

Outline

- Overview
- Environment Setup
- Objective
- Report
- Scoring
- Submission

Overview

- IDE: Visual studio 2019 / Visual studio 2022
- Graphics API: OpenGL
- Dependencies
 - Eigen
 - glfw
 - glad
 - Dear ImGui

Overview (cont.)

https://youtu.be/BgJ4UWFfxFw

Environment Setup

Download <u>Visual Studio 2019 – Community</u> or <u>Visual Studio 2022 - Community</u>

Environment Setup (cont.)

Launch Visual Studio Installer

Environment Setup (cont.)

- Download HW1.zip and unzip
- Open HW1.sln

.vs	2022/3/1 下午 08:28	檔案資料夾	
assets	2022/3/1 下午 08:27	檔案資料夾	
bin	2022/3/1 下午 08:31	檔案資料夾	
build	2022/3/1 下午 08:31	檔案資料夾	
cmake	2022/3/1 下午 08:27	檔案資料夾	
extern	2022/3/1 下午 08:27	檔案資料夾	
☐ HW1	2022/3/1 下午 08:27	檔案資料夾	
include	2022/3/1 下午 08:28	檔案資料夾	
src src	2022/3/1 下午 08:28	檔案資料夾	
clang-format	2022/3/1 下午 08:27	CLANG-FORMAT	1 KB
igitignore	2022/3/1 下午 08:27	GITIGNORE 檔案	1 KB
CMakeLists	2022/3/1 下午 08:27	文字文件	4 KB
₩1	2022/3/1 下午 08:27	Microsoft Visual	3 KB
LICENSE	2022/3/1 下午 08:27	檔案	2 KB
README.md	2022/3/1 下午 08:27	MD 檔案	2 KB

Environment Setup (cont.)

Run the project

- Select config then build (CTRL+SHIFT+B)
- Use F5 to debug or CTRL+F5 to run
 - It will spend a lot of time to debug so release is recommended unless you need debugger

Objective

- src
 - cloth.cpp
 - void Cloth::initializeSpring()
 - void Cloth::computeSpringForce()
 - sphere.cpp
 - void Spheres::collide(Cloth* cloth)
 - void Spheres::collide()
 - integrator.cpp
 - void ExplicitEuler::integrate(...)
 - void ImplicitEuler::integrate(...)
 - void MidpointEuler::integrate(...)
 - void RungeKuttaFourth::integrate(...)

- void Cloth::initializeSpring()
 - Goal
 - Construct the connection of springs
 - Hint
 - You should initialize three types of spring
 - struct, shear and bending

- Take a 3x3 cloth(9 particles) for example and observe the center particle
 - Struct / bending: 2 directions
 - 4 directions: up, down, left and right. But if each particle is responsible for all 4 directions, there will have duplicate connection. Thus, each particle will only be responsible for 2 directions.
 - Shear: 2 directions
 - Center particle is surrounded by 8 particles. 8 4 (up, down, left and right) = 4, and each particle can be only responsible for half part of directions.

- Put all springs in std::vector<Spring> _springs, which is a class member in class Cloth
- You can also check class Spring in spring.h

```
Spring(unsigned int start, unsigned int end, float restLength, Type type) :
    _startParticleIndex(start), _endParticleIndex(end), _length(restLength), _springType(type) {}
```

- The parameter particlesPerEdge, which is defined in config.h, might be used
- Here is a sample code of connecting one of struct springs

```
float structrualLength = (_particles.position(0) - _particles.position(1)).norm();
_springs.emplace_back(0, 1, structrualLength, Spring::Type::STRUCTURAL);
```

- void Cloth::computeSpringForce()
 - Goal
 - Compute spring and damper forces
 - Hint
 - Review "particles.pptx" from p.9 p.13
 - Trace every spring and apply the force accordingly
 - Set acceleration to apply the force
 - You can use float Particles::inverseMass(int i) to get the inverse of mass
 - The parameter springCoef and damperCoef are defined in config.h

- void Spheres::collide(Cloth* cloth) / void Spheres::collide()
 - Goal
 - Handle collision between spheres and cloth / spheres and spheres
 - Hint
 - Review "particles.pptx" from p.14 p.19
 - You can use their radius and distance to determine whether they are collided
 - The radius of particles of cloth can be regarded as 0

- To compute the velocity after collision
 - You only need to worry about the component of the velocity that is in the direction of the collision
 - The other component of the velocity (tangent to the collision) will stay the same for both particles
 - You can refer to this website for detailed information

$$v_a = rac{m_{
m a} u_{
m a} + m_{
m b} u_{
m b} + m_{
m b} C_R (u_{
m b} - u_{
m a})}{m_{
m a} + m_{
m b}}$$
 and $v_{
m b} = rac{m_{
m a} u_{
m a} + m_{
m b} u_{
m b} + m_{
m a} C_R (u_{
m a} - u_{
m b})}{m_{
m a} + m_{
m b}}$

- Integrator
 - Hint
 - You should update particles' velocity and position.
 - void ExplicitEuler::integrate(...)
 - Hint: Review "ODE_basics.pptx" from p.15 p.16
 - void ImplicitEuler::integrate(...)
 - Hint
 - Review "ODE_implicit.pptx" from p.18 p.19
 - You probably need to call simulateOneStep() for getting future information
 - void MidpointEuler::integrate(...)
 - Hint: Review "ODE_basics.pptx" from p.18 p.20 and "pbm.pdf" from B.5 B.6
 - void RungeKuttaFourth::integrate(...)
 - Hint: Review "ODE_basics.pptx" from p.21 and "pbm.pdf" from B.5 B.6

- Bonus
 - Add friction force in void Spheres::collide function
 - Add rolling the sphere in void Spheres::collide function
 - Remind: You should mention it in your report

Report

- Suggested outline
 - Introduction/Motivation
 - Fundamentals
 - Implementation
 - Result and Discussion
 - The difference between integrators
 - Effect of parameters
 - Bonus (Optional)
 - Conclusion

Scoring

- Construct the connection of springs 15%
- Compute spring and damper forces 20%
- Handle Collision 20%
 - spheres and cloth 10%
 - spheres and spheres 10%
- Integrator 25%
 - Explicit Euler 5%
 - Implicit and Midpoint Euler 5%
 - Runge-Kutta 4th 15%
- Report 20%
- Bonus 15%
 - Add friction force 5%
 - Add rolling the sphere 10%

Submission

- Please upload <u>hw1_<your student ID>.zip</u> and <u>report_< your student ID</u>
 pdf respectively
- hw1_<your student ID>.zip (root)
 - src
 - include
- Late policies
 - Penalty of 10 points on each day after deadline
- Cheating policies
 - 0 points for any cheating on assignments
- Deadline
 - Monday, 2022/03/21, 23:59