Bayesian updating is so popular because the math works out nicely

- Bayesian updating is so popular because the math works out nicely
- This is because of what is known as a conjugate prior (read Wikipedia)

- Bayesian updating is so popular because the math works out nicely
- This is because of what is known as a conjugate prior (read Wikipedia)
- If we assume a different kind of updating, the math could get ugly real quick

- Bayesian updating is so popular because the math works out nicely
- This is because of what is known as a conjugate prior (read Wikipedia)
- $\bullet\,$ If we assume a different kind of updating, the math could get ugly real quick
- But Bayesian updating has intuitive properties (e.g. $\lim_{t\to\infty} \mathbb{V}_{t+1}[a_i] = 0$)

- Bayesian updating is so popular because the math works out nicely
- This is because of what is known as a conjugate prior (read Wikipedia)
- If we assume a different kind of updating, the math could get ugly real quick
- But Bayesian updating has intuitive properties (e.g. $\lim_{t\to\infty} \mathbb{V}_{t+1}[a_i] = 0$)
- Moreover, we often don't know people's beliefs

- Bayesian updating is so popular because the math works out nicely
- This is because of what is known as a conjugate prior (read Wikipedia)
- If we assume a different kind of updating, the math could get ugly real quick
- But Bayesian updating has intuitive properties (e.g. $\lim_{t\to\infty} \mathbb{V}_{t+1}[a_i] = 0$)
- Moreover, we often don't know people's beliefs
- If we had detailed data on people's beliefs, that would allow us to be more flexible
 - cf. stated probabilistic choice models and quantification of preferences

Things	σet	more	complicated	l if the	sional	l ic n	ot (continuo	ıc
IIIIII	ושע	III(0)	COMBINE ATEC		י אוטוומו	1 15 11	() (15

Naturally, a discrete signal will provide less information

- Things get more complicated if the signal is not continuous
 - Naturally, a discrete signal will provide less information
 - e.g. Pass/Fail on an exam, versus a 0-100 score

- Things get more complicated if the signal is not continuous
 - Naturally, a discrete signal will provide less information
 - e.g. Pass/Fail on an exam, versus a 0-100 score
- Another complication is if the signal is selected

- Things get more complicated if the signal is not continuous
 - Naturally, a discrete signal will provide less information
 - e.g. Pass/Fail on an exam, versus a 0-100 score
- Another complication is if the signal is selected
 - For example, I only see a wage signal if I have a job

- Things get more complicated if the signal is not continuous
 - Naturally, a discrete signal will provide less information
 - e.g. Pass/Fail on an exam, versus a 0-100 score
- Another complication is if the signal is selected
 - For example, I only see a wage signal if I have a job
 - In this case, we need a choice model to resolve the sample selection problem

- Things get more complicated if the signal is not continuous
 - Naturally, a discrete signal will provide less information
 - e.g. Pass/Fail on an exam, versus a 0-100 score
- Another complication is if the signal is selected
 - For example, I only see a wage signal if I have a job
 - In this case, we need a choice model to resolve the sample selection problem
- Or if the signal is censored

- Things get more complicated if the signal is not continuous
 - Naturally, a discrete signal will provide less information
 - e.g. Pass/Fail on an exam, versus a 0-100 score
- Another complication is if the signal is selected
 - For example, I only see a wage signal if I have a job
 - In this case, we need a choice model to resolve the sample selection problem
- Or if the signal is censored
 - e.g. Grade Point Average capped at "perfect grades"

• The Kalman filter is a special type of Bayesian updating of a learning model

- The Kalman filter is a special type of Bayesian updating of a learning model
- Most common application: remote sensing of aircraft/spacecraft

• Any given sensor sends back a "noisy" signal about exact location

- The Kalman filter is a special type of Bayesian updating of a learning model
- Most common application: remote sensing of aircraft/spacecraft
 - Any given sensor sends back a "noisy" signal about exact location
 - Multiple sensors acting in sequence can provide more reliable location info

- The Kalman filter is a special type of Bayesian updating of a learning model
- Most common application: remote sensing of aircraft/spacecraft
 - Any given sensor sends back a "noisy" signal about exact location
 - Multiple sensors acting in sequence can provide more reliable location info
- Other applications: player/team skill ratings

- The Kalman filter is a special type of Bayesian updating of a learning model
- Most common application: remote sensing of aircraft/spacecraft
 - Any given sensor sends back a "noisy" signal about exact location
 - Multiple sensors acting in sequence can provide more reliable location info
- Other applications: player/team skill ratings
 - In chess/video games, "Glicko" system generalizes ELO to allow for uncertainty