7. Analysis of Variance for Balanced Two-Factor Experiments

An Example Two-Factor Experiment

Researchers were interested in studying the effects of 2 diets (low fiber, high fiber) and 3 drugs (D1, D2, D3) on weight gained by Yorkshire pigs. A total of 12 pigs were assigned to the 6 diet-drug combinations using a balanced and completely randomized experimental design. Pigs were housed in individual pens, injected with their assigned drugs once per week, and fed their assigned diets for a 6-week period. The amount of weight gained during the 6-week period was recorded for each pig.

A Model for the Data

For i = 1, 2; j = 1, 2, 3; and k = 1, 2; let y_{ijk} denote the weight gain of the k^{th} pig that received diet i and drug j, and suppose

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk} \quad (i = 1, 2; \ j = 1, 2, 3; \ k = 1, 2) \quad \text{where}$$

$$\mu, \alpha_1, \alpha_2, \beta_1, \beta_2, \beta_3, \gamma_{11}, \gamma_{12}, \gamma_{13}, \gamma_{21}, \gamma_{22}, \gamma_{23}$$

are unknown real-valued parameters and

$$\epsilon_{111}, \epsilon_{112}, \epsilon_{121}, \epsilon_{122}, \epsilon_{131}, \epsilon_{132}, \epsilon_{211}, \epsilon_{212}, \epsilon_{221}, \epsilon_{222}, \epsilon_{231}, \epsilon_{232} \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$

for some unknown $\sigma^2 > 0$.

Model in Matrix and Vector Form

$$y = X\beta + \epsilon, \quad \epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$$

Same Model with Cell Means Parameterization

$$\begin{bmatrix} y_{111} \\ y_{112} \\ y_{121} \\ y_{122} \\ y_{131} \\ y_{132} \\ y_{211} \\ y_{212} \\ y_{221} \\ y_{222} \\ y_{231} \\ y_{232} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \mu_{13} \\ \mu_{21} \\ \mu_{22} \\ \mu_{23} \end{bmatrix} + \begin{bmatrix} \epsilon_{111} \\ \epsilon_{122} \\ \epsilon_{131} \\ \epsilon_{212} \\ \epsilon_{221} \\ \epsilon_{221} \\ \epsilon_{222} \\ \epsilon_{231} \\ \epsilon_{232} \end{bmatrix}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$$

We could consider a sequence of progressively more complex models for the response mean that lead up to our full cell means model.

$$E(y_{iik}) = \mu + \alpha_i$$

Matrices with Nested Column Spaces

$$= \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Matrices with Nested Column Spaces

Matrices with Nested Column Spaces

$$X_4 = \left[egin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{array}
ight].$$

ANOVA Table for Our Two-Factor Example

Source	Sum of Squares	DF
Diets 1	$y'(P_2-P_1)y$	2 - 1 = 1
Drugs 1, Diets	$\boldsymbol{y}'(\boldsymbol{P}_3-\boldsymbol{P}_2)\boldsymbol{y}$	4 - 2 = 2
$Diets \times Drugs 1, Diets, Drugs$	$\boldsymbol{y}'(\boldsymbol{P}_4-\boldsymbol{P}_3)\boldsymbol{y}$	6 - 4 = 2
Error	$oldsymbol{y}'(oldsymbol{I}-oldsymbol{P}_4)oldsymbol{y}$	12 - 6 = 6
C. Total	$y'(I - P_1)y$	12 - 1 = 11

ANOVA Table for Our Two-Factor Example

Source	Sum of Squares	DF
Diets	$\mathbf{y}'(\mathbf{P}_2 - \mathbf{P}_1)\mathbf{y}$	2 - 1 = 1
Drugs	$\mathbf{y}'(\mathbf{P}_3 - \mathbf{P}_2)\mathbf{y}$	4 - 2 = 2
$Diets \times Drugs$	$\mathbf{y}'(\mathbf{P}_4 - \mathbf{P}_3)\mathbf{y}$	6 - 4 = 2
Error	$oldsymbol{y}'(oldsymbol{I}-oldsymbol{P}_4)oldsymbol{y}$	12 - 6 = 6
C. Total	$y'(I - P_1)y$	12 - 1 = 11

The Diet-Drug Dataset

```
>
 d
   diet drug weightgain
                      41.3
                      43.7
3
                      40.9
                      39.2
5
                      37.4
6
                      37.9
                      36.8
8
       2
                      34.6
9
                      33.6
10
                      34.3
             3
11
                      35.8
12
                      35.1
```

```
> d$diet=factor(d$diet)
> d$drug=factor(d$drug)
>
> a=d$diet
> b=d$drug
> y=d$weightgain
```

```
> x1=matrix(1, nrow=nrow(d), ncol=1)
> x1
     [,1]
[1,]
[2,] 1
[3,] 1
[4,] 1
[5,] 1
[6,] 1
[7,] 1
[8,] 1
[9,] 1
[10,] 1
[11,] 1
[12,] 1
```

```
> x2=cbind(x1, model.matrix(~0+a))
> x2
   x1 a1 a2
3 1 1 0
5
8
10
11
12
```

```
> x3=cbind(x2, model.matrix(~0+b))
> x3
      a1 a2 b1 b2 b3
3
5
6
8
10
11
12
```

```
> x4=model.matrix(~0+b:a)
> x4
   b1:a1 b2:a1 b3:a1 b1:a2 b2:a2 b3:a2
10
11
12
```

```
> SumOfSquares=c(
+ t(v) % * % (p2-p1) % * % v,
+ t(v) % * % (p3-p2) % * % v,
+ t(y) % * % (p4-p3) % * % y,
+ t(y) % * 8 (I-p4) % * 8 y,
+ t(y) % * % (I-p1) % * % y)
>
> Source=c(
+ "Diet | 1",
+ "Drug|1, Diet",
+ "Diet x Drug|1, Diet, Drug",
+ "Error",
+ "C. Total")
```

```
> o=lm(weightgain~diet+drug+diet:drug,data=d)
>
> anova(o)
Analysis of Variance Table
Response: weightgain
         Df Sum Sq Mean Sq F value Pr(>F)
diet 1 76.003 76.003 61.9592 0.0002226 ***
drug 2 14.820 7.410 6.0408 0.0365383 *
diet:drug 2 12.287 6.143 5.0082 0.0525735 .
Residuals 6 7.360 1.227
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

What do the *F*-tests in this ANOVA table test?

Recall the null hypothesis for F_j is true if and only if

$$\beta' X' (\mathbf{P}_{j+1} - \mathbf{P}_j) X \beta = 0.$$

We have the following equivalent conditions

$$\beta' X' (\mathbf{P}_{j+1} - \mathbf{P}_j) X \beta = 0 \iff \beta' X' (\mathbf{P}_{j+1} - \mathbf{P}_j)' (\mathbf{P}_{j+1} - \mathbf{P}_j) X \beta = 0$$

$$\iff || (\mathbf{P}_{j+1} - \mathbf{P}_j) X \beta ||^2 = 0$$

$$\iff (\mathbf{P}_{j+1} - \mathbf{P}_j) X \beta = \mathbf{0}$$

$$\iff C\beta = \mathbf{0},$$

where C is any full-row-rank matrix with the same row space as $(P_{i+1} - P_i)X$.

What do the *F*-tests in this ANOVA table test?

Let's take a look at $(P_{j+1} - P_j)X$ for each test in the ANOVA table.

When computing $(P_{j+1} - P_j)X$, we can use any model matrix X that specifies one unrestricted treatment mean for each of the six treatments.

The entries in any rows of $(P_{j+1} - P_j)X$ are coefficients defining linear combinations of the elements of the parameter vector β that corresponds to the chosen model matrix X.

Our Choice for X and β

$$\boldsymbol{\beta} = \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \mu_{13} \\ \mu_{21} \\ \mu_{22} \\ \mu_{23} \end{bmatrix}$$

ANOVA Diet Test

```
> x = x4
> fractions((p2-p1)%*%x)
  b1:a1 b2:a1 b3:a1 b1:a2 b2:a2 b3:a2
  1/6 1/6 1/6 -1/6 -1/6 -1/6
2 1/6 1/6 1/6 -1/6 -1/6 -1/6
3 1/6 1/6 1/6 -1/6 -1/6 -1/6
4 1/6 1/6 1/6 -1/6 -1/6 -1/6
5 1/6 1/6 1/6 -1/6 -1/6 -1/6
6 1/6 1/6 1/6 -1/6 -1/6
7 -1/6 -1/6 -1/6 1/6 1/6 1/6
8 -1/6 -1/6 -1/6 1/6 1/6 1/6
9 -1/6 -1/6 -1/6 1/6 1/6 1/6
10 -1/6 -1/6 -1/6 1/6 1/6 1/6
11 -1/6 -1/6 -1/6 1/6 1/6 1/6
12 -1/6 -1/6 -1/6 1/6 1/6
                           1/6
```

ANOVA Diet Test

$$(\mathbf{P}_2 - \mathbf{P}_1)X\beta = \mathbf{0} \iff \mathbf{C}\beta = \mathbf{0},$$

where

$$m{C}m{eta} = egin{bmatrix} rac{1}{3} & rac{1}{3} & rac{1}{3} & -rac{1}{3} & -rac{1}{3} & -rac{1}{3} \end{bmatrix} egin{bmatrix} \mu_{11} \\ \mu_{12} \\ \mu_{13} \\ \mu_{21} \\ \mu_{22} \\ \mu_{23} \end{bmatrix} = ar{\mu}_{1.} - ar{\mu}_{2.}.$$

ANOVA Drug Test

```
> fractions((p3-p2)%*%x)
  b1:a1 b2:a1 b3:a1 b1:a2 b2:a2 b3:a2
1 1/3 -1/6 -1/6 1/3 -1/6 -1/6
2 1/3 -1/6 -1/6 1/3 -1/6 -1/6
3 - 1/6  1/3 - 1/6  - 1/6  1/3 - 1/6
4 - 1/6  1/3 - 1/6  -1/6  1/3 -1/6
5 -1/6 -1/6 1/3 -1/6 -1/6 1/3
6 -1/6 -1/6 1/3 -1/6 -1/6 1/3
7 	 1/3 	 -1/6 	 -1/6 	 1/3 	 -1/6 	 -1/6
8 1/3 -1/6 -1/6 1/3 -1/6 -1/6
9 - 1/6  1/3 - 1/6  - 1/6  1/3 - 1/6
10 -1/6 1/3 -1/6 -1/6 1/3 -1/6
11 -1/6 -1/6 1/3 -1/6 -1/6 1/3
12 -1/6 -1/6 1/3 -1/6 -1/6 1/3
```

ANOVA Drug Test

ANOVA Drug Test

$$(\mathbf{P}_3 - \mathbf{P}_2)X\beta = \mathbf{0} \iff \mathbf{C}\beta = \mathbf{0},$$

where

$$\mathbf{C}\boldsymbol{\beta} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \mu_{13} \\ \mu_{21} \\ \mu_{22} \\ \mu_{23} \end{bmatrix} \\
= \begin{bmatrix} \bar{\mu}_{\cdot 1} - \bar{\mu}_{\cdot 2} \\ \bar{\mu}_{\cdot 1} - \bar{\mu}_{\cdot 3} \end{bmatrix}.$$

ANOVA Test for Diet × Drug Interactions

```
> fractions((p4-p3)%*%x)
  b1:a1 b2:a1 b3:a1 b1:a2 b2:a2 b3:a2
1 1/3 -1/6 -1/6 -1/3 1/6 1/6
2 1/3 -1/6 -1/6 -1/3 1/6 1/6
3 -1/6 1/3 -1/6 1/6 -1/3 1/6
4 -1/6 1/3 -1/6 1/6 -1/3 1/6
5 -1/6 -1/6 1/3 1/6 1/6 -1/3
6 -1/6 -1/6 1/3 1/6 1/6 -1/3
7 -1/3 1/6 1/6 1/3 -1/6 -1/6
8 -1/3 1/6 1/6 1/3 -1/6 -1/6
9 1/6 -1/3 1/6 -1/6 1/3 -1/6
10 1/6 -1/3 1/6 -1/6 1/3 -1/6
11 1/6 1/6 -1/3 -1/6 -1/6 1/3
12 1/6 1/6 -1/3 -1/6 -1/6 1/3
```

ANOVA Test for Diet × Drug Interactions

ANOVA Test for Diet × Drug Interactions

$$(\mathbf{P}_4 - \mathbf{P}_3)X\beta = \mathbf{0} \iff \mathbf{C}\beta = \mathbf{0},$$

where

$$C\beta = \begin{bmatrix} 1 & -1 & 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \mu_{13} \\ \mu_{21} \\ \mu_{22} \\ \mu_{23} \end{bmatrix}$$
$$= \begin{bmatrix} \mu_{11} - \mu_{12} - \mu_{21} + \mu_{22} \\ \mu_{11} - \mu_{13} - \mu_{21} + \mu_{23} \end{bmatrix}.$$

ANOVA for Balanced Two-Factor Experiments

The diet-drug experiment is *balanced* in the sense that every treatment (defined by a diet-drug combination) has the same number of experimental units.

Each experimental unit provided a single response measurement (weight gain), so the resulting diet-drug dataset is *balanced* in the sense that each treatment has the same number of independent, constant variance observations of the response.

Due to this balance, the tests for diets, drugs, and diets \times drugs in the ANOVA table turn out to be exactly the same as the tests for diet main effect, drug main effects, and diet \times drug interactions we discussed previously as tests of $C\beta = 0$.