Examen, 04 mai 2007, 8h30 - 11h30

Durée 3 heures. Documents interdits, calculettes autorisées.

Les trois exercices d'application et le problème sont indépendants. On demande que les questions 1.a) et 1.b) du Problème soient abordées.

Exercice 1 – Soit N = 187 et $\mathcal{B} = \{2, 3, 5\}$. On remarque que dans $\mathbb{Z}/N\mathbb{Z}$, on a

$$37^2 = 2^2 \times 3 \times 5,$$

$$149^2 = 3^3 \times 5,$$

$$163^2 = 3 \times 5.$$

En déduire une identité $x^2 = y^2$ exhibant un facteur non trivial de N.

Exercice 2 – On désire trouver tous les polynômes $A, B, C \in \mathbb{F}_2[x]$ tels que

$$(*) (x+1)A + x^2B + C = 1$$

1) Trouver une matrice $U \in \mathrm{GL}_3(\mathbb{F}_2[x])$, c'est-à-dire 3×3 et inversible, telle que

$$((x+1) \quad x^2 \quad 1) U = (1 \quad 0 \quad 0).$$

2) On pose

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} := U^{-1} \begin{pmatrix} A \\ B \\ C \end{pmatrix}.$$

Décrire l'ensemble des $a, b, c \in \mathbb{F}_2[x]$ et en déduire l'ensemble des (A, B, C) solutions de l'équation (*).

Exercice 3 – Soit I l'idéal de $\mathbb{C}[x,y,z]$ engendré par $x+y+z,\,y^2+yz+z^2$ et z^3 .

- 1) On choisit l'ordre lexicographique sur les monômes de $\mathbb{C}[x,y,z]$, avec x>y>z. Calculer un reste de la division de x^2+xy^2 par les 3 polynômes ci-dessus. On rappellera la condition que doit vérifier le reste.
- 2) Étant donné $f \in \mathbb{C}[x,y,z]$, on cherche à décider si $f \in I$ par division euclidienne par les polynômes de la base. Que peut-on dire dans les trois situations suivantes :
 - a) le reste obtenu est 0.
 - b) le reste obtenu est 1. [Montrer par l'absurde que $1 \notin I$.]
 - c) le reste obtenu est x. [Attention au piège!]

Problème (Preuve de primalité)

Soit N > 1 un entier. Soit $p \mid N-1$ un nombre premier et $e := v_p(N-1)$, c'est-à-dire que p^e divise exactement N-1. On suppose qu'il existe $a \in \mathbb{Z}$ vérifiant

$$\begin{cases} a^{N-1} \equiv 1 \pmod{N}, \\ \operatorname{pgcd}\left(a^{(N-1)/p} - 1, N\right) = 1. \end{cases}$$

Sous ces conditions, tout diviseur d de N vérifie $d \equiv 1 \pmod{p^e}$. [On ne demande pas de reproduire cette démonstration.]

- 1) On fixe N et p et on se donne un entier 0 < a < N.
 - a) Proposer un code Maple testant si a vérifie bien les conditions (S_p) .
- b) Borner le nombre d'opérations élémentaires utilisées par votre algorithme, en fonction de $n := \log N$. [On pourra supposer qu'addition et multiplication dans $\mathbb{Z}/N\mathbb{Z}$ utilisent $\widetilde{O}(n)$ opérations élémentaires, ainsi que le calcul de $\operatorname{pgcd}(u,v)$ quand |u|,|v| < N.]
- 2) Dans toute cette question, on suppose que N est premier, et on fixe un nombre premier p divisant N-1.
 - a) Comment se simplifient les deux propriétés (S_p) ?
- b) En déduire la probabilité qu'un entier a tiré uniformément au hasard dans [1, N] vérifie (S_p) . S'attend-on à trouver rapidement de tels a?

On suppose dans toute la suite que N-1=FU, où tous les facteurs premiers de F sont connus, et que pour chaque $p \mid F$, on connaît a=a(p) vérifiant les propriétés (S_p) .

- 3) On suppose dans cette question que $F \geqslant N^{1/2}$. Soit d > 1 un diviseur de N.
 - a) Montrer que $d \equiv 1 \pmod{F}$.
 - b) En déduire que $d > N^{1/2}$, puis que N est premier.
- 4) On suppose maintenant que $N^{1/3} \leqslant F < N^{1/2}$.
 - a) Démontrer que la décomposition en base F de N est de la forme $c_2F^2 + c_1F + 1$.
- b) On suppose que N n'est pas premier. Montrer qu'il a exactement deux diviseurs premiers de la forme p=aF+1, q=bF+1, pour des entiers $0 < a \le b$. Montrer que $ab \le F-1$ et en déduire que $a+b \le F-1$ [montrer que le cas a=1, b=F-1 est impossible], puis que $c_1=a+b$, $c_2=ab$. Conclure que $c_1^2-4c_2$ est un carré dans \mathbb{Z} .
- c) Avec les notations du a), montrer que N est premier si et seulement si $c_1^2 4c_2$ n'est pas un carré dans \mathbb{Z} .
- 5) Écrire une procédure Maple complète qui prend en entrée un entier N et une liste L_F de nombres premiers divisant N-1, et prouve la primalité de N grâce aux méthodes du 3) et du 4), si l'entier F correspondant est suffisamment grand. Il est interdit d'utiliser les fonctions de type factor.