Go Si d:
$$X \times X \rightarrow \mathbb{R}$$
 eo una métrica, entonces

 $\overline{J}(x,y) = \frac{d(x,y)}{1+d(x,y)}$ también es una

métrica.

Demostremos que $\overline{J}(x,y) > 0$

Sabemos que $\overline{J}(x,y) > 0$
 $\overline{J}(x,y) > 1$

Por ende:

 $\overline{J}(x,y) > 1$

Por ende:

 $\overline{J}(x,y) > 1$
 $\overline{J}(x,y) > 1$

Si x=y = d(x,y)=0 = d(x,y)=0Para demostrar que d(x,y)=d(y,x) comen-Zamos diciendo que

$$\frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)}$$
= $\frac{d(y,x)}{1+d(y,x)}$
= $\frac{d(y,x)}{1+d(y,x)}$

Para demostrar la designaldad triangular podemos decir que
$$\frac{d(x,y)}{2} = \frac{d(x,z)}{d(x,z)} + \frac{d(z,y)}{d(z,y)}$$
= $\frac{d(x,y)}{2} = \frac{d(x,z)}{2} + \frac{d(z,y)}{2}$
= $\frac{d(x,y)}{2} = \frac{d(x,z)}{2} + \frac{d(z,y)}{2}$
= $\frac{d(x,z)}{2} + \frac{d(z,y)}{2}$