

AGENDA

PROBLEM DESCRIPTION

DATA ANALYSIS

ASSUMPTIONS

METHODOLOGY

EVALUATION

CONCLUSION

PROBLEM

DEFINITION

The primary driver of commercial bank failures in recessionary high interest rate environments are losses and weak loan demand.

Consumer credit card debt amounted to \$841B in 2022. Credit loans remain to be lucrative to banks given their comparatively high interest rates.

the **originality**BRING **TRANSPARENCY** TO **BLACK BOX**APPLICANT APPROVAL SIZING MODELS

DATASET

application_record.csv

ID	Client Number
CODE_GENDER	Gender
FLAG_OWN_CAR	Owns car?
FLAG_OWN_REALITY	Owns property?
CNT_CHILDREN	Number of children
AMT_INCOME_TOTAL	Annual income
NAME_INCOME_TYPE	Income category/source
NAME_EDUCATION_TYPE	Education level
NAME_FAMILY_STATUS	Marital status
NAME_HOUSING_TYPE	Way of living
DAYS_BIRTH	Age
DAYS_EMPLOYED	Days Employed
FLAG_MOBIL	Mobile phone?
FLAG_WORK_PHONE	Work phone?
FLAG_PHONE	Phone?
FLAG_EMAIL	Email?
OCCUPATION TYPE	Occupation category
CNT_FAM_MEMBERS	Family Size

credit_record.csv

ID	Client Number
MONTHS_BALANCE	Number of months on book
STATUS	No loan / loan paid off / overdue

HOW CREDIT CARDS MAKE MONEY

NET INTEREST INCOME (60%)

Scenario 1: No transactions made during the statement period. No interest income.

Scenario 2: Full balance paid by due date, hence no interest charged. No interest income.

Scenario 3: Interest assessed on overdue balance and compounds for subsequent cycles until paid off.

Scenario 4: Write off clients as bad debts after many cycles, resulting in a net loss.

CLIENT PROFILING

Scenario 1
No Purchases Made

\$0 Revenue

Scenario 2

Balance Fully Paid Off

Interchange

Scenario 3
Late Payment (Overdue)

Interchange + Net Interest

Scenario 4
No Payment (Write off)

Net loss

ASSUMPTIONS

ADDITIONAL REVENUE

COSTS

SPEND CONTROL

LOSSES

Finance Charges

Earnings on Capital

Balance Transfers

Transaction Fees

Over-limit Fees

Annual Fees

Cost of Funds

Management Fees

Marginal Operating Expenses

Cost of Rewards

Insurance

Balance Utilization (Interest Income)

Limit Increases

Purchase
Utilization
(Interchange
Income)

Unit Write Off Rate

Balance Control Ratio

Loss Assumption Factors

UNIVARIATE

Applicant Record NULL CHECK

Credit Record NULL CHECK

UNIVARIATE

Most applicants are working class, secondary education, married and own a house/apartment.

UNIVARIATE

Equal number of clients make no purchases vs. those who pay off in full (affects interchange revenue).

Most overdue loans are paid off within 30 days after the statement cycle.

People seldom wait up to 150+ days to repay their loan.

BIVARIATE

Income Distribution by Education

Income Distribution by Age

Some outliers earn 14x higher than IQR range [\$500,000 - \$7,000,000].

Students and 20-year-olds have higher median incomes than is seen in the real world.

METHODOLOGY APPROACHES & CHALLENGES

DATA CLEANING

ATTRIBUTE	ACTION	REASONING
CNT_CHILDREN	DROP FEATURE	High Correlation To CNT_FAMILY_MEMBERS (0.88)
OCCUPATION_TYPE	GROUPED CATEGORICAL REPLACEMENT	Replace N/A With Most Common Occupation Per Income Amount (Socio-Economic Grouping)
AMT_INCOME_TOTAL	NONE	Outliers Have Little Effect On Ensembles

FEATURE ENGINEERING

BINARY CATEGORICAL ENCODING

ATTRIBUTE	VALUE RANGE
CODE_GENDER	[M, F]
FLAG_OWN_CAR	[Y, N]
FLAG_OWN_REALITY	[Y, N]

VALUE RANGE
[1, 0]
[1, 0]
[1, 0]

NUMERIC EQUAL WIDTH BINNING

ATTRIBUTE	VALUE RANGE
DAYS_BIRTH	[-7705, -25201]
AMT_INCOME_TOTAL	[26100, 6750000]
DAYS_EMPLOYED	[-17531, 365243]

VALUE RANGE	NOTES
[21,69]	Rounded To Nearest Integer
[25000, 7000000]	Rounded To Nearest 10,000
[0,51]	Currently Unemployed Range = [0, (Age-18)]

MULTICLASS CATEGORICAL ENCODING

ATTRIBUTE	VALUE RANGE
NAME_EDUCATION_TYPE	Secondary, Higher Ed., etc.
OCCUPATION_TYPE	Laborer, Manager, etc.
NAME_FAMILY_STATUS	Single, Married, Widow, etc.
NAME_INCOME_TYPE	Working, Student, Pension, etc.
NAME_HOUSING_TYPE	House, Rented Apartment, etc.

VALUE RANGE	NOTES
[1,5]	Ordinal Encoding To Maintain Hierarchy
[1,0]	One-Hot Dummy Encoding

FEATURE ENGINEERING

$$\mathbf{MONTH \, SPEND} = \frac{\text{AMT INCOME TOTAL * EXPENDITURE (50\%)}}{12 \, \text{MONTHS}}$$

INTERCHANGE = **MONTH SPEND** * INTERCHANGE. RATE (2%)

INTEREST = MONTH SPEND
$$\left[1 + \frac{\text{APR (19.99\%)}}{12 \text{ MONTHS}}\right]^{\# \text{ MONTHS OVERDUE}} - \text{MONTH SPEND}$$

Clients modelled as spending 50% of their gross income, to account for net earnings after tax and savings.

DATA PARTITIONING CLASSIFICATION - APPROACH # 1

OBJECTIVE: MINIMIZE LOSSES (MULTICLASS)

Scenario 1

No Purchases Made

\$0 Revenue

Scenario 2

Balance Fully Paid Off

Interchange

Scenario 3

Late Payment (Overdue)

Interchange + Net Interest

MAXIMIZE

Scenario 4

No Payment (Write off)

Net loss

MINIMIZE

PROBLEMS

High Income Scenario 2 yield more Interchange Revenue than Low Income Scenario 3 Interest Revenue.

Under-Sampling Issues.

Poor Model Performance.

DATA PARTITIONING CLASSIFICATION - APPROACH #2

OBJECTIVE: MINIMIZE LOSSES (MULTICLASS)

Scenario 1

No Purchases Made

\$0 Revenue

Scenario 2 + 3
Balance Fully Paid Off or Overdue
Interchange or Interchange + Net Interest

25%
25%
25%
25%

MAXIMIZE IQR

Scenario 4

No Payment (Write off)

Net loss

MINIMIZE

PROBLEMS

Revenue Generation is a Function of Time. Not all Clients have equal Credit History.

Under-Sampling Issues.

Poor Model Performance.

DATA PARTITIONING CLASSIFICATION - APPROACH #3

OBJECTIVE: MINIMIZE LOSSES (BINARY)

Scenario 1 + 2 + 3

No Purchases Made, Balance Fully Paid Off or Overdue

\$0 Revenue, Interchange or Interchange + Net Interest

Scenario 4

No Payment (Write off)

Net loss

MINIMIZE

PROBLEM

Under-Sampling.

DATA PARTITIONING SAMPLING - APPROACH #1

TECHNIQUE: SMOTE

METHOD: KNN TO GENERATE NEW DATA

PROBLEMS

Fake Data with Little Variance.

Majority: Minority Ratio too Big, Over-Sampling = Over Correction.

Under-Fitting.

DATA PARTITIONING SAMPLING - APPROACH #2

TECHNIQUE: K-FOLD CROSS VALIDATION **METHOD**: SPLIT DATA INTO K GROUP, TRAIN ON K-1 FOLDS

MODEL DESIGN

APPROACH: TRY NUMEROUS MODELS, FINE TUNE BEST ONE

MODEL DESIGN

FINE TUNING: BAYSIAN SEARCH BACK-PROPOGATION

RESULTS

OPTIMIZE WRITE-OFF CLASSIFICATION TO MINIMIZE LOSSES

RECALL 59.8%

ACCURACY 99.6%

PRECISION 79.1%

CONCLUSIONS

LOW SOCIO-ECONOMIC FACTORS YIELD HIGHEST IMPORTANCE

SINGLE PROLETARIANS WITH NO
DEPENDANTS/ASSETS MOST LIKELY TO BECOME
WRITE-OFFS

FUTURE WORK

Added Applicant Features
Added Quantitative Features
Explore Multiclass Approach
Real Credit Bureau Data
Add Assumptions Back