I. PROBLEM SET I

0.1 Problem Set 1

1.) Prove Proposition 6: For any $a, b \in \mathbb{R}$, $\begin{pmatrix} a \lor b = \frac{1}{2}(a+b+|a-b|) \\ a \land b = \frac{1}{2}(a+b-|a-b|) \end{pmatrix}$.

Let $a, b \in \mathbb{R}$. Suppose $a \ge b$. Clearly, $a \lor b = a$ and $a \land b = b$. Furthermore, |a - b| = a - b since $a - b \ge 0$. Thus,

$$a \lor b = a = \frac{1}{2} (a + b + (a - b)) = \frac{1}{2} (a + b + |a - b|) \tag{1}$$

$$a \wedge b = b = \frac{1}{2} (a + b - (a - b)) = \frac{1}{2} (a + b - |a - b|). \tag{2}$$

Suppose a < b. Clearly, $a \lor b = b$ and $a \land b = a$. Furthermore, |a - b| = -(a - b) since a - b < 0. Thus,

$$a \lor b = b = \frac{1}{2} \Big(a + b + \Big(-(a - b) \Big) \Big) = \frac{1}{2} (a + b + |a - b|)$$
 (3)

$$a \wedge b = a = \frac{1}{2} \left(a + b - \left(-(a - b) \right) \right) = \frac{1}{2} (a + b - |a - b|). \tag{4}$$

In either case, $a \lor b = \frac{1}{2}(a+b+|a-b|)$ and $a \land b = \frac{1}{2}(a+b-|a-b|)$ holds.

2.) Prove Proposition 7: For any $a, b, r \in \mathbb{R}$, $\begin{pmatrix} a \lor b = b \lor a \\ a \land b = b \land a \\ (a \land b \le r \le a \lor b) \implies \left((|r - a| \le |a - b|) \land (r - b \le |a - b|) \right)$

Let $a, b, r \in \mathbb{R}$. The first two statements immediately follow by applying the commutativity of real numbers and |a - b| = |-(a - b)| = |b - a| to Proposition 6.

Suppose $a \land b \le r \le a \lor b$. Without loss of generality, let $a \ge b$. Thus,

$$b \le r \le a \tag{5}$$

$$r - a \le 0 \tag{6}$$

$$b - r \le 0 \tag{7}$$

$$b - a \le 0 \tag{8}$$

From (5), $r - a \ge b - a$. This along with (6) and (8) implies $|r - a| = -(r - a) \le -(b - a) = |b - a|$.

From (5), $r - b \le a - b$. This along with (7) and (8) implies $|r - b| = r - b \le a - b = |a - b|$.