

Project Initialization and Planning Phase

Date	14 th July 2024
Team ID	739958
Project Title	Food Demand Forecasting for Food Delivery Company
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) template

In using machine learning to predict customer acquisition costs (CAC), advanced algorithms study past data to estimate how much it will cost to get new customers. By looking at patterns in past marketing, sales, and operational data, these models can predict CAC more accurately than older ways of doing it. This helps businesses use their resources better, improve how they market, and make more money from getting new customers.

Project Overview		
Objective	To predict the number of orders in certain food delivering platforms.	
Scope	The result determines the no of orders from the food delivering platform	
Problem Statement		
Description	To predict the number of orders from a particular area with given regional code.	
Impact	The result determines the number of orders from the food delivering platform.	
Proposed Solution		
Approach	Using the data of deliveries and customers through the dataset and run Machine Learning(ML) model to predict the number of orders from a region.	
Key Features	The ML model uses particular parameters, eg; regional code, op area, cuisine to determine the number of orders in a particular area.	

Resource Requirements

Resource Type	Description	Specification/Allocation	
Hardware			
Computing Resources	CPU/GPU specifications, number of cores	e.g., 11thGen Intel(R) Core i3, 2	
Memory	RAM specifications	e.g., 8 GB	
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD	
Software			
Frameworks	Python frameworks	e.g., Flask	
Libraries	Additional libraries	e.g., numpy,pandas,sklearn	
Development Environment	IDE, version control	e.g., Google Colab,Spyder	
Data			
Data	Source, size, format	e.g., Kaggle dataset, excel sheet	