Alice Daldossi

Università degli Studi di Pavia

- 1 Formulazione del problema
- 2 Schemi di equità
 - Equità proporzionale
 - Equità max-min
- 3 Limiti
- 4 Conclusione
- 5 Applicazione

Problema

Si consideri un problema di allocazione di risorse con n giocatori e un decisore centrale (CDM) che conosce tutte le preferenze e ha completo controllo nell'assegnazione dell'allocazione.

Notazione

- Sia $X \subset \mathbb{R}^n$ l'insieme delle allocazioni delle risorse $x \in X$ che comprende tutti i vincoli per le allocazioni.
- Ogni giocatore ha una preferenza tra le allocazioni che è espressa dalla propria funzione di utilità $f_j: X \to \mathbb{R}_+, \ \forall j = 1, \dots, n.$ Quindi, scelta l'allocazione $x \in X$, l'utilità del j-esimo giocatore è $f_j(x)$.
- lacksquare Sia U l'insieme delle utilità:

$$U = \{ u \in \mathbb{R}^n_+ | \exists x \in X : f_j(x) = u_j, \ \forall j = 1, \dots, n \}.$$

■ Sia u_j^* la massima utilità raggiungibile dal j-esimo giocatore, cioè $u_j^* = \sup\{u_j | u \in U\}$.

Secondo il classico principio utilitaristico, il CDM sceglie l'allocazione risolvendo il seguente problema:

$$\max_{y} e^{T} u,
t.c. u \in U.$$
(1)

Il valore ottimo di questo problema è:

$$SYSTEM(U) = \sup\{e^T u | u \in U\},$$
 (2)

e l'allocazione risultante è la **soluzione utilitaria**.

Pro e contro

Pro: la soluzione utilitaria è adatta nelle situazioni in cui la somma delle utilità corrisponde a una misura dell'efficienza del sistema.

Contro: la somma delle utilità non considera potenziali disuguaglianze nella distribuzione di utilità tra i giocatori.

L'allocazione deve essere scelta tale che rispetti uno schema di equità definito a partire dalla natura del problema e all'idea di equità del CDM.

- Uno schema di equità è un insieme di regole e una corrispettiva funzione $\mathcal{S}: 2^{\mathbb{R}^n_+} \to \mathbb{R}^n_+$. Quindi, dato un insieme di utilità $U, \mathcal{S}(U) \in U$ è un'allocazione che rispetta l'insieme di regole scelto.
- Definiamo FAIR(U; S):

$$FAIR(U; \mathcal{S}) = e^T \mathcal{S}(U). \tag{3}$$

■ Definiamo il **prezzo dell'equità** (**POF**), POF(U; S), per il problema con l'insieme delle utilità U e lo schema di equità S, come segue:

$$POF(U; \mathcal{S}(U)) = \frac{SYSTEM(U) - FAIR(U; \mathcal{S})}{SYSTEM(U)}.$$
 (4)

Assioma 1: Pareto ottimalità

La soluzione equa S(U) è Pareto ottima.

Assioma 2: Simmetria

Se $\mathcal{I}: \mathbb{R}^2 \to \mathbb{R}^2$ è un operatore di permutazione definito da $\mathcal{I}((u_1, u_2)) = (u_1, u_2)$, allora

$$S(I(U)) = I(S(U)).$$
 (5)

Assioma 3: Invarianza affine

Se $A: \mathbb{R}^2 \to \mathbb{R}^2$ è un operatore affine definito da $A(u_1, u_2) = (A_1(u_1), A_2(u_2)), \text{ con } A_i(u) = c_i u + d_i \text{ e } c_i > 0,$ allora

$$S(A(U)) = A(S(U)). \tag{6}$$

Assioma 4: Indipendenza da alternative irrilevanti

Se U e W sono due insiemi di utilità tali che $U \subset W$, e $\mathcal{S}(W) \in U$, allora

$$S(U) = S(W). (7$$

Assioma 5: Monotonia

Siano $U \in W$ due insiemi di utilità, tali che la massima utilità possibile per il giocatore 1 è uguale, i.e., $u_1^{\star} = w_1^{\star}$. Se per ogni livello di utilità che il giocatore 1 può richiedere, la massima utilità possibile che il giocatore 2 può avere simultaneamente è maggiore o uguale in W, allora il livello di utilità del giocatore 2 nell'allocazione equa deve essere maggiore o uguale in W, i.e., $\mathcal{S}(U)_2 < \mathcal{S}(W)_2$.

$$u_1^{\star} = w_1^{\star}, \ u_2^{\star} \le w_2^{\star} \implies \mathcal{S}(U)_2 \le \mathcal{S}(W)_2 \tag{8}$$

Non esiste uno schema di equità che soddisfa tutti e 5 gli assiomi.

Equità proporzionale (PF)

Soluzione di Nash (Assiomi 1-4)

Un trasferimento di risorse tra 2 giocatori è favorevole ed equo se la percentuale di incremento dell'utilità di un giocatore è maggiore della percentuale di decremento dell'utilità dell'altro giocatore.

Generalizzazione a più giocatori: equità proporzionale

L'allocazione equa proporzionale è tale che, se paragonata a ogni altra possibile allocazione di utilità, la variazione proporzionale aggregata è minore o uguale a 0:

$$\sum_{j=1}^{n} \frac{u_j - \mathcal{S}^{PF}(U)_j}{\mathcal{S}^{PF}(U)_j} \le 0, \quad \forall u \in U.$$
 (9)

Se U è convesso, l'allocazione equa secondo l'equità proporzionale $\mathcal{S}^{PF}(U)$ si può ottenere come la (unica) soluzione ottima dei seguenti problemi equivalenti.

Matematicamente

$$\max_{u} \sum_{j=1}^{n} \log u_{j}$$
t.c. $u \in U$: (10)

o equivalentemente

$$\max_{u} \qquad \prod_{j=1}^{n} u_{j}$$
t.c. $u \in U$. (11)

Equità max-min (MMF)

Kalai-Smorodinsky(Assiomi 1-3,5) e Giustizia di Rawls

(KS): La soluzione KS intende assegnare a ogni giocatore la più grande frazione possibile della loro massima utilità.

(RJ): L'idea della giustizia di Rawls intende assegnare priorità a coloro che stanno meno bene per garantire il più alto livello minimo di utilità ottenuto.

Generalizzazione della giustizia di Rawls e della soluzione KS nel problema a due giocatori: equità max-min

L'equità max-min intende massimizzare la minima utilità ottenuta da tutti i giocatori.

Assunzione 0

I problemi sono tutti normalizzati, cioè i giocatori hanno la stessa massima utilità possibile.

Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ un operatore di riordino

$$T(y) = (y_{(1)}, \dots, y_{(n)}), \quad y_{(1)} \le \dots \le y_{(n)},$$

dove $y_{(i)}$ è l'*i*-esimo elemento più piccolo di y.

Matematicamente

Trovare un'allocazione $u^{\mathrm{MMF}} \in U$ tale che la sua risultante distribuzione di utilità riordinata è lessicograficamente più grande rispetto a tutte le altre distribuzioni di utilità riordinate:

$$T(u^{\text{MMF}}) \succeq T(u), \quad \forall u \in U.$$
 (12)

The Price of Fairness

Assunzione 1

L'insieme delle utilità U è compatto e convesso.

Proposizione: Famiglia di problemi

Sia l'insieme delle risorse $X \subset \mathbb{R}^m_+$ compatto, convesso e monotono. Si supponga che la funzione di utilità applicata al j-esimo giocatore sia tale che $f_j(x) = \overline{f}_j(x_j)$, per ogni $x \in X$, con $\overline{f}_j : \mathbb{R}^{m_j} \to \mathbb{R}$, e $x^T = [x_1^T \ x_2^T \ \dots \ x_n^T]$, dove $m_1 + \dots + m_n = m$. Inoltre, \overline{f}_j è non decrescente in ogni argomento, concava, limitata e continua su X, e $\overline{f}_j(0) = 0$. Allora, l'insieme delle utilità U risultante è compatto, convesso, e monotono.

Si consideri un problema di allocazione delle risorse con n giocatori, $n \geq 2$. Sia $U \subset \mathbb{R}^n_+$ l'insieme delle utilità tale che soddisfa A.1. Se tutti i giocatori hanno la stessa utilità massima raggiungibile, che è maggiore di 0, allora

1 il prezzo dell'equità proporzionale è limitato da

$$POF(U; \mathcal{S}^{PF}) \le 1 - \frac{2\sqrt{n} - 1}{n}, \tag{13}$$

2 il prezzo dell'equità max-min è limitato da

$$POF(U; \mathcal{S}^{MMF}) \le 1 - \frac{4n}{(n+1)^2}.$$
 (14)

Inoltre, il limite dell'equità proporzionale è stretto se $\sqrt{n} \in \mathbb{N}$, mentre quello dell'equità proporzionale lo è per ogni n.

Si consideri un problema di allocazione delle risorse con n giocatori, $n \geq 2$. Sia $U \subset \mathbb{R}^n_+$ l'insieme delle utilità tale che soddisfa A.1. Se tutti i giocatori hanno utilità massima raggiungibile maggiore di 0, allora

1 il prezzo dell'equità proporzionale è limitato da

$$POF(U; \mathcal{S}^{PF}) \le 1 - \frac{2\sqrt{n} - 1}{n} \frac{\min_{j \in \{1, \dots, n\}} u_j^{\star}}{\max_{j \in \{1, \dots, n\}} u_j^{\star}} - \frac{1}{n} + \frac{\min_{j \in \{1, \dots, n\}} u_j^{\star}}{\sum_{j=1}^{n} u_j^{\star}}; \quad (15)$$

2 il prezzo dell'equità max-min è limitato da

$$POF(U; S^{MMF}) \le 1 - \frac{4n}{(n+1)^2} \frac{\frac{1}{n} \sum_{j=1}^n u_j^*}{\max_{j \in \{1, \dots, n\}} u_i^*}.$$
 (16)

Conclusione

L'analisi svolta è precisa e applicabile a una vasta varietà di problemi di allocazione delle risorse.

Osservazione 1

Il "prezzo" di una soluzione equa è presumibilmente piccolo quando il numero di giocatori è basso.

Osservazione 2

L'equità proporzionale è una teoria che comporta un prezzo ben più basso rispetto a quello dell'equità max-min.

Presentazione del problema

Problema

Un condominio da 6 appartamenti ha installato dei pannelli fotovoltaici che creano energia elettrica pari a 30 kWh al giorno. Questo totale viene normalmente suddiviso tra le 6 utenze in base alle quote di ciascuna. Se una famiglia va in vacanza, l'appartamento consuma meno, quindi c'è più energia a disposizione per le altre. Come distribuire questa energia in più?

Risoluzione

Per ogni famiglia si cerca la percentuale del rispettivo surplus (energia che non viene normalmente coperta dai fotovoltaici) che è coperta dal fotovoltaico aggiuntivo.

Dati

n=6 appartamenti

Disponibilità giornaliera dei pannelli fotovoltaici: 30 kWh

Prezzo dell'energia: 0.277 €/kWh

Presenze	Nomi	Copertura	Surplus	Fisso
1	Bianchi	2,647058824	1,452941176	1,5
1	Rossi	3,235294118	4,164705882	1,5
1	Verdi	3,529411765	1,970588235	1,5
0	Longo	5,882352941	3,117647059	1,5
0	Costa	6,470588235	3,529411765	2
1	Gatti	8,235294118	5,764705882	2

Nomi	Copertura aggiuntiva	Costo
Bianchi	1.452941176	0.00
Rossi	4.164705882	0.00
Verdi	1.970588235	0.00
Gatti	1.264705883	1.25

Soluzione

$$SYSTEM(U) = \sup\{e^T u | u \in U\} =$$

$$= 100.0 + 100.0 + 100.0 + 21.94 = 321.94$$
(17)

Link al codice:

https://github.com/Daldossi/The-Price-of-Fairness/

blob/main/Fairness_Utilitarian.py

Teorema: Uguali massime utilità possibili

Abbiamo n=6>2 giocatori, $U\subset\mathbb{R}^6_+$ è compatto e convesso. Tutti i giocatori hanno la stessa massima utilità, che è maggiore di 0, allora

$$POF(U; \mathcal{S}^{PF}) \le 1 - \frac{2\sqrt{n} - 1}{n} = 0.3501700857389407,$$

$$POF(U; \mathcal{S}^{MMF}) \le 1 - \frac{4n}{(n+1)^2} = 0.5102040816326531.$$
(18)