ZÁPADOČESKÁ UNIVERZITA FAKULTA APLIKOVANÝCH VĚD KATERDRA KYBERNETIKY

Dokumentace k projektu ITE-YELLOW

Martin Hamar, Radek Kaupe, Samuel Kokoška

KKY/ITE Datum: 18. prosince 2024

1 Úvod

1.1 Zadání

2 Jednotlivé moduly

Projekt je rozdělen na několik modulů, které spolu přirozeně spolupracují. Tyto moduly se dají hrubě rozdělit na hardwarovou část a na softwarouvou část. Hardwarová část zahrnuje krabičku a mikropočítač ESP8266 a jeho nastavení. Softwarovou část zahrnuje nastavení databáze, subscribera a spuštění backendu a webové stránky.

2.1 Krabička

Obsah sekce "Krabička".

2.2 ESP8266

2.2.1 Funkce

Kompletní zařízení disponuje funkcemi:

- Měření teploty. vlhkosti a osvětlení.
- Možnost zastoupení dedikovaného senzoru teploty v případě jeho poruchy méně přesným senzorem vlhkosti.
- Posílání hodnot indikujících poruchu senzorů.
- Synchronizace času s NTP serverem.
- Posílání naměřených dat přes MQTT s Quality Of Service 1 zpráva je doručena alespoň jednou.
- Detekce selhání zaslání zprávy a tedy ztráty spojení.
- Znovupřipojení se k Wi-Fi a MQTT brokeru v případě ztráty spojení.
- Archivace naměřených dat v případě ztráty spojení a jejich znovuposlání po obnovení spojení.
- Poslání tracebacku a samovolný reset v případě chyby v hlavní smyčce.

2.2.2 Setup

Pro použití na Vašem pracovišti je potřeba změnit v souboru main.py konstanty

- NET_NAME název Vaší Wi-Fi sítě
- NET PASS heslo k této síti
- NTP HOST adresa serveru pro synchronizaci času
- BROKER IP IP adresa MQTT brokera
- \bullet BROKER_UNAME uživatelské jméno pro připojení k brokeru
- BROKER PASSWD heslo pro připojení k brokeru
- TOPIC topic, na který budou zprávy zasílány

Volitelně je zde možnost měnit parametry

- PERIOD SEC perioda měření a posílání v sekundách
- TIMEOUT maximální doba čekání na potvrzení přijetí zprávy od brokera v sekundách po jejím uplynutí začne archivace a pokusy o znovupřipojení
- RECON PERIOD perioda pokusů o znovupřipojení se na Wi-Fi a brokera v milisekundách
- doporučuje se změnit/vymazat ze struktury zprávy položku team name

Společně s main.py je potřeba nahrát do zařízení následující knihovny, pokud tak již nebylo učiněno:

- temp sensor.py
- light sensor.py
- umqtt.py

Dále stačí jen zapojit zařízení do napájení. Pokud je vše v pořádku, tak by po připojení se na brokera měla zhasnout LED na pinu 16 (D0 na fyzickém zařízení) a měly by se začít posílat zprávy na daný topic.

2.3 Databáze

K realizaci projektu bude třeba založit PostgreSQL databázi na stroji, kde chcete nechat běžet pythonyské skripty. Uživatele, heslo, hosta a název databáze je třeba napsat do .env složky tímto způsobem:

```
DB_USER=uzivatel
DB_PASSWORD=heslo
DB_HOST=host
DB_NAME=nazev_databáze
```

Po tomto kroku můžete spustit skript db.py, který vytvoří potřebné tabulky: sensor_data, teams, sensor_data_outliers. Tabulka sensor_data je hlavní tabulka, kde se ukládájí veškerá validní data. V tabulce teams jsou uložená jména a ID jednotlivých týmů a do tabulky sensor_data_outliers se ukládá informace, zda záznamy přesahují Aimtecem vymezené hranice. Tabulka sensor_data_test je určena pro debuggovací a testovací účely. Ukládají se zde například i záznamy z budoucnosti či se zápornou illuminací, aby se tyto případy mohli identifikovat a na straně ESP8266 opravit.

2.4 Subscriber a připojení k Aimtec AWS

Před samotným spuštěním subscribera je třeba vyřešit credentials týkající se připojení na Aimtec. je hlavní tabulka, kde se ukládájí veškerá validní data

2.4.1 Aimtec

Pro zajištění posílání dat na Aimtec upravte .env soubor, aby obsahoval AIMTEC_URL= a zadejte správnou URL adresu. Poté spusťte aimtec.py skript, pro získání TEAM_UUID. Ten také zadejte do již zmíněného soubouru. Nyní by měl .env soubor vypadat následovně:

2.4.2 Subscriber

Pro zajištění komunikace s brokerem je třeba opět upravit .env soubor, je třeba zadat následující položky:

```
BROKER_IP=IP
BROKER_PORT=PORT
BROKER_UNAME=uzivatelske_jmeno
BROKER_PASSWD =heslo
TOPIC=topic
```

Po provedení úprav v sekcích 2.3, 2.4.1 a 2.4.2 by tedy vaše .env složka měla vypadat následovně:

```
DB_USER=uzivatel
DB_PASSWORD=heslo
DB_HOST=host
DB_NAME=nazev_databaze
AIMTEC_URL=URL
TEAM_UUID=UUID
BROKER_IP=IP
BROKER_PORT=PORT
BROKER_UNAME=uzivatelske_jmeno
BROKER_PASSWD =heslo
TOPIC=topic
```

Pokud ano, nyní můžete spustit skript subscriber_vm.py.

2.4.3 Funkce samotného subscribera

Subscriber má několik funckí:

- 1. Validace příchozích dat
- 2. Příjímání chyb z ESP8266
- 3. Ukládání dat do databáze
- 4. Posílání dat na Aimtec AWS

Validace dat

Momentálně subscriber validuje:

- 1. správný formát příchozího JSONu
- 2. správný název týmu
- 3. smysluplné hodnoty teploty, osvětlení a vlhkosti
- 4. zda má zpráva jiný timestamp, než ta poslední (kvůli použití QoS 1)
- 5. zda timestamp není více jak hodinu z budoucnosti

Příjímání chyb z ESP8266

U příjímání chyb je třeba zmínit, že je ukládá do složky subscriber\err\, kde názvy souborů jsou timestampy, které se v chybové zprávě vyskytují.

Ukládaní do databáze

Do "ostré" databáze se ukládájí pouze validní data. Pro validační a testovací účely se většina dat (ve správném formátu) uloží do testovací tabulky. Je to z důvodu možnosti zjištění případných chyb, ať už na straně ESPčka nebo subscribera. Také lze beztrestně manipulovat s daty, aniž by se změny projevili na webové stránce.

Posílání dat na Aimtec

Funkčnost se dá popsat následovně: Při spuštění skriptu se pokusí přihlásit na Aimtec AWS. Pokud server nespí, proběhne všechno v pořádku a data se budou posílat na Aimtec každou minutu. V případě, že AWS nefunguje, skript se bude o login pokoušet každých deset vteřin, dokud se mu to nepodaří. V pozadí vše ostatní bude probíhat tak jak má (především samozřejmě ukládání dat do databáze), ale data se na AWS nepošlou. Momentálně nefunguje žádné zpětné posílání dat, takže v případě výpadku/spánku AWS serveru, data jsou ztracena.

2.5 Backend

Backend webové stránky se jednodušše spustí pomocí skriptu backend.py. Musí se spusti na stroji, kde se vyskytuje databáze a zárověň běží skript subscriber_vm.py. K souběžnému pouštění skirptů doporučuji tmux. Pokud se Vám skript podařil spustit, stránky by nyní měly fungovat a pracovat zcela nezávisle na ostatních modulech. Pouze si vybírají potřebná data z databáze a zobrazují je. Na hlavní stránce jsou k vidění nejnovější poslaná data každého týmu. Je zde zajištěna asynchronní komunikace pomocí technologie WebSockets. Na stránce /statistics jsou k vidění celkové množství naměřených dat a základní statistiky žlutého týmu. Poté na stránkách /graphs-one-day a /graphs-one-week jsou k vidění grafy, zobrazující průměrnou hodnotu každé hodinu/každého den za poslední den/sedm dní. Grafy jsou částečně interaktivní lze, vyškrtnutím týmů z nabídky v grafu, zobrazit jen některé týmy.

3 Závěr