ADVANCED STATISTICAL MECHANICS

https://github.com/Muatyz/review-sheet

June 8, 2025

Contents

第一章	课堂讲义		5	
1.1	Introdu	Introduction		
	1.1.1	Review of Thermodynamics	5	
		1.1.1.1 Central Theme of Thermodynamics: Work & Heat	5	
		1.1.1.1.1 The Four Laws	5	
		1.1.1.1.2 Maximum Work	5	
		1.1.1.1.3 Extensivity(广延)	5	
		1.1.1.2 Jacobian & Thermodynamics Relations	6	
		1.1.1.2.1 Definition of Jacobian	6	
		1.1.1.2.2 Property of Jacobian Matrix	6	
		1.1.1.3 Exterior derivative(外微分)	6	
	1.1.2	Some Key Concepts in Thermodynamics	7	
		1.1.2.1 Temperature	7	
		1.1.2.1.1 Thermodynamic Perspective	7	
		1.1.2.1.2 Kinetic Viewpoint	7	
		1.1.2.2 Entropy	7	
		1.1.2.2.1 Thermodynamic Perspective	7	
		1.1.2.2.2 Boltzmann's Entropy	7	
		1.1.2.2.3 Gibbs' Entropy	8	
	1.1.3	Learn Thermodynamics by Examples/Applications	8	
		1.1.3.1 Ideal Gas	8	
		1.1.3.1.1 Entropy	8	
		1.1.3.2 Electromagnetic Radiation @ Thermodynamic Viewpoint	8	
		1.1.3.3 Rubber Band	9	
		1.1.3.3.1 定性分析	9	
		1.1.3.3.2 定量分析	9	
1.2	Ensem	ble Theory	9	
	1.2.1	Space	9	
		1.2.1.1 μ -space by Ehrenfest	9	
		1.2.1.2 Γ-space	9	
		1.2.1.3 Geomatry of High-Dimensional Space	10	
		1.2.1.3.1 An Illustrative Example: Sphere in <i>n</i> -dim Space	10	
		1.2.1.3.2 The Geometric Deviation Principle	10	
		1.2.1.3.3 Probability Perspective @ Levy, 1980	10	
	1.2.2	From Dynamics to Probability Description	11	
		1.2.2.1 Dynamics	11	
		1.2.2.1.1 A Single Representative Point in Γ-Space	11	

		1.2.2.1.2 Multiple Representative Points	11
	1.2.3	Microcanonical Ensemble	12
		1.2.3.1 Equation of State for Ideal Gas	12
		1.2.3.2 Dilute Hard Sphere System	13
		1.2.3.3 Einstein's Model for Heat Capacity of Solid(1907)	13
	1.2.4	Canonical Ensemble	13
		1.2.4.1 Connection to Microcanonical Ensemble	13
		1.2.4.1.1 Environment & System Perspective	13
		1.2.4.1.2 Multiple Systems Perspective	14
		1.2.4.2 Revisit Maxwell Distribution	14
		1.2.4.2.1 Galton's Statistical Model	14
		1.2.4.2.2 Based on Symmetry	14
		1.2.4.2.3 Boltzmann	14
		1.2.4.2.4 Based on Ensemble Theory	14
		1.2.4.2.5 Geometric Viewpoint	14
		1.2.4.3 Thermodynamics	14
		1.2.4.4 Fluctuations	15
	1.2.5	Grand Canonical Ensemble	16
1.3	Phase 7	ransition	17
	1.3.1	Van der Waals Theory	17
		1.3.1.1 Derivation of Van der Waals Equation	17
		1.3.1.1.1 Simpler Argument	17
	1.3.2	Phase Diagram	18
		1.3.2.1 Maxwell Construction	18
		1.3.2.2 Critical Behavior	18
		1.3.2.2.1 Along the isothermal curve at $t = 0 (T = T_c)$	18
		$1.3.2.2.2$ Ψ_l 和 Ψ_q 对 critical point 的逼近行为 $\dots \dots \dots \dots \dots \dots \dots \dots \dots$	18
		1.3.2.2.3 Isothermal Compressibility Near the Critical State	19
	1.3.3	Ising Model: From Thermodynamic Approach to Statistical Approach	19
		1.3.3.1 Preliminary Analysics	19
		1.3.3.2 Mean-Field Approximation	19
		1.3.3.2.1 $B=0$ 下的 \overline{L}	19
		1.3.3.2.2 Weak External Field $B \rightarrow 0$	20
		1.3.3.3 Lost Correlation under Mean-Field Approximation	20
		1.3.3.3.1 概率检验	20
		1.3.3.3.2 涨落检验	20
		1.3.3.4 Derivation of Equation of State in Terms of Order Parameter L	21
		1.3.3.5 1st-Order Approximation-Bethe's Method @ 1935	21
		1.3.3.5.1 Correlation of Spin	21
		1.3.3.5.2 Specific Heat	22
		1.3.3.6 Exact Solution of 1-D Ising Model	22
		1.3.3.7 Phase Transition & Space Dimension	22
		1.3.3.8 Development of Ising Model	22
		1.3.3.8.1 Spin Glass	22
		1.3.3.8.2 Hopfield Network	23
		1 3 3 8 3 Roltzmann Machine	23

	1.3.4	Landau's Theory (of 2nd Order Phase Transition)	23
		1.3.4.1 Constrained Free Energy	23
		1.3.4.2 Fluctuations & Correlation Functions	24
		1.3.4.2.1 Generalized Landau Free Energy Correlation Function	25
		1.3.4.2.2 Validity of Mean-Field Approximation	25
	1.3.5	Scale Transformation	25
		1.3.5.1 Implement Scale Transformation	25
		1.3.5.2 Scale Transformation in 1D & 2D Ising Models	26
		1.3.5.2.1 1D Ising Model	26
		1.3.5.2.2 2D Ising Model	26
		1.3.5.2.3 Origin of Fixed Point	26
		1.3.5.2.4 RG Flow Near the Critical/Fixed Point in \vec{K} Space	27
1.4	Non-ed	quilibrium Statistical Physics	28
	1.4.1	Analyze Fluctuations	28
		1.4.1.1 Static Thermodynamic Analysis	28
		1.4.1.2 Time Analysis of Fluctuations	29
		1.4.1.2.1 Spectral Analysis	29
	1.4.2	Relaxation of Weakly Non-equilibrium State	29
		1.4.2.1 Flux & Force	30
		1.4.2.2 Onsager's Reciprocal Relation	30
		1.4.2.3 Fluactuation Phenomena	30
		1.4.2.3.1 XY Model	30
		1.4.2.3.2 Topological Defects	31
	1.4.3	Brownian Motion	31
		1.4.3.1 Random walk model	31
		1.4.3.1.1 n steps on 1D lattice	31
		1.4.3.1.2 <i>d</i> -Dim Off-Lattice Random Walk	32
		1.4.3.2 Stochastic process	32
		1.4.3.3 Smoluchowski's Approach	32
			33
		1.4.3.5 Langevin's Theory	33
		1.4.3.5.1 Analysis of Particle Postion	34
		1.4.3.5.2 Analysis of Particle Velocity	34
		1.4.3.5.3 Time Correlation of Velocity	35
		1.4.3.5.4 Fourier Transformation of Langevin Equation	35
<i>★</i> ★ — ❖	**		•
	Home		36
2.1	Homey		3 <i>6</i>
2.2			37
	2.2.1		37
	2.2.2		39 20
2.5	2.2.3	•	39
2.3			41
	2.3.1	•	41
	2.3.2	•	42
	2.3.3	Virial Expansion	43

2.4	Homework 5				
	2.4.1	Partition Function	44		
	2.4.2	Equation of State	45		
2.5	Homev	vork 6	47		
	2.5.1	Landau's Theory	47		
2.6	Homev	vork 7	48		
	2.6.1	Stretched String	48		
	2.6.2	Derive the Onsager's Reciprocal Relations	49		

第一章 课堂讲义

1.1 Introduction

1.1.1 Review of Thermodynamics

1.1.1.1 Central Theme of Thermodynamics: Work & Heat

1.1.1.1.1 The Four Laws Oth: If two systems are in thermal equilibrium with a third system, they are in thermal equilibrium with each other.

1st: The change in internal energy of a closed system is equal to the heat added to the system minus the work done by the system.

2nd: The total entropy of an isolated system can never decrease over time. In any reversible process, the total entropy of the system and its surroundings remains constant.

3rd: As the temperature approaches absolute zero, the entropy of a perfect crystal approaches a constant minimum.

increase of internal energy input heat output work
$$\mathrm{d}U = \delta Q - \delta W$$

- reversible process: dU = TdS PdV
- mechanical system: $\delta W = f dx = -dV(x)$;
- adiabatic process(绝热过程): $\delta W = P dV = -dU$. U: thermodynamic/adiabatic potential.
- *isothemal process*(等温过程). F: isothermal potential.

$$F \equiv U - TS$$
, $dF = -SdT - PdV$, $\delta W \Big|_T = PdV = -dF$

1.1.1.1.2 Maximum Work

• isothermal process, $A \rightarrow B$:

1st law:
$$\Delta W=-\Delta U+\Delta Q$$

2nd law: $\Delta Q\leq T(S_B-S_A)$
 $\Delta W\leq U_A-U_B+T(S_B-S_A)=-\Delta F,\quad \Delta F=F_B-F_A$

- $A \to B$, $U_A = U_B$: $\Delta W_{\text{max}} = T(S_B S_A)$. Example: Rubber band(橡皮筋), shrinking: $S \uparrow$.
- **1.1.1.1.3 Extensivity**(广延) 形如 $E = E_1 + E_2$ 的广延性在传统热力学中要求短程相互作用. Assume extensive quantity X,

$$U(\lambda S, \lambda X) = \lambda U(S, X) \xrightarrow{\partial_{\lambda}} \frac{\partial U(\lambda S, \lambda X)}{\partial (\lambda S)} \dot{S} + \frac{\partial U(\lambda S, \lambda X)}{\partial (\lambda X)} \dot{X} = U(S, X)$$

$$\mbox{let } \lambda = 1, \quad \frac{\partial U}{\partial S} \dot{S} + \frac{\partial U}{\partial X} \dot{X} = U \Rightarrow U = TS + QX, \quad Q = \frac{\partial U}{\partial X}$$

Introduce physics: $U = TS - PV + \mu N \Rightarrow dU = TdS + SdT - PdV - VdP + \mu dN + Nd\mu dV + N$

Since
$$dU = TdS - PdV + \mu dN$$

So new physics:
$$\mathrm{d}\mu = -s\mathrm{d}T + v\mathrm{d}P, \quad s = \frac{S}{N}, \quad v = \frac{V}{N}, \quad s = \left(\frac{\partial\mu}{\partial T}\right)_P, \quad v = \left(\frac{\partial\mu}{\partial P}\right)_T$$

一/二级相变分类依据: 化学势 μ 的导数连续性

一级相变.
$$s$$
 突变: 潜热; v 突变: 水结冰; 二级相变. $\frac{\partial s}{\partial T}$ 突变: 热容 $\left(T\frac{\partial S}{\partial T}\right)$ 变化; $\frac{\partial v}{\partial P}$ 压缩率 $\left(\frac{1}{v}\frac{\partial v}{\partial P}\right)$ 变化

Jacobian & Thermodynamics Relations

1.1.1.2.1 Definition of Jacobian (x,y) plane, functions: $\xi(x,y)$, $\eta(x,y)$. relative functions: $x(\xi,\eta)$, $y(\xi,\eta)$.

$$\mathrm{d}x = \frac{\partial x}{\partial \xi} \mathrm{d}\xi + \frac{\partial x}{\partial \eta} \mathrm{d}\eta, \quad \mathrm{d}y = \frac{\partial y}{\partial \xi} \mathrm{d}\xi + \frac{\partial y}{\partial \eta} \mathrm{d}\eta$$

$$\mathrm{d}x \wedge \mathrm{d}y = \frac{\partial (x,y)}{\partial (\xi,\eta)} \mathrm{d}\xi \wedge \mathrm{d}\eta, \quad \text{Jacobian matrix: } \frac{\partial (x,y)}{\partial (\xi,\eta)} = \begin{vmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{vmatrix} = \begin{vmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{vmatrix}$$

正则变换: J=1, 相空间体积不变. State function \leftrightarrow total differential(全微分) \leftrightarrow J=1:

$$\mathrm{d}U = T\mathrm{d}S - P\mathrm{d}V = \frac{\partial U}{\partial x}\mathrm{d}x + \frac{\partial U}{\partial y}\mathrm{d}y \Rightarrow T = \left(\frac{\partial U}{\partial S}\right)_V, -P = \left(\frac{\partial U}{\partial V}\right)_S$$

$$\frac{\partial^2 U}{\partial V \partial S} = \frac{\partial^2 U}{\partial S \partial V}, \quad \text{derivative exchange symmetry}$$

$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V \Rightarrow \frac{\partial (T,S)}{\partial (P,V)} = 1, \quad \text{Maxwell's relation(s)}$$

$$\mathrm{d}T \wedge \mathrm{d}S = \frac{\partial (T,S)}{\partial (P,V)}\mathrm{d}P \wedge \mathrm{d}V, \quad J = 1$$
 和温标选取对应

1.
$$\frac{\partial(T,S)}{\partial(P,V)} = \frac{\partial(T,S)}{\partial(\mu,\nu)} \frac{\partial(\mu,\nu)}{\partial(P,V)} = 1, \text{ to produce numerous Maxwell's relations;}$$
[Example] let $(\mu,\nu) = (V,S)$, $\frac{\partial(T,S)}{\partial(V,S)} \frac{\partial(V,S)}{\partial(P,V)} = 1 \Rightarrow \left(\frac{\partial T}{\partial V}\right)_S \cdot \left(-\frac{\partial S}{\partial P}\right)_V = 1 \Rightarrow \left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$

As $\left(\frac{\partial \gamma}{\partial u}\right)$, variables γ, μ, ν as P, V, T, S. $\frac{1}{2}A_4^3 = 12$. Write down these elements as a big matrix:

$$\begin{bmatrix} \left(\frac{\partial V}{\partial P}\right)_T & \left(\frac{\partial P}{\partial T}\right)_V & \left(\frac{\partial V}{\partial P}\right)_T \\ \vdots & \vdots & \vdots \end{bmatrix}_{4\times 3}, \quad \text{Only 3 elements are independent.}$$

$$2. \ \frac{\partial(x,y)}{\partial(\xi,y)} = \left(\frac{\partial x}{\partial \xi}\right)_y; 3. \ \frac{\partial(y,x)}{\partial(\xi,\eta)} = -\frac{\partial(x,y)}{\partial(\xi,\eta)}$$

1.1.1.3 Exterior derivative(外微分)

$$p\text{-form} \stackrel{\mathrm{d}}{\to} p + 1\text{-form. 0-form: } f(x) \to \mathrm{d} f(x) = \frac{\mathrm{d} f(x)}{\mathrm{d} x} \mathrm{d} x;$$

$$1\text{-form: } g(x,y)\mathrm{d} x \to \mathrm{d} [g(x,y)\mathrm{d} x] = \left(\frac{\partial g}{\partial x}\mathrm{d} x + \frac{\partial f}{\partial y}\mathrm{d} y\right) \wedge \mathrm{d} x = \frac{\partial f}{\partial y}\mathrm{d} y \wedge \mathrm{d} x, \quad \mathrm{d} x \wedge \mathrm{d} y = -\mathrm{d} y \wedge \mathrm{d} x \Rightarrow \mathrm{d}^2 = 0;$$

$$2\text{-form: } f(x,y)\mathrm{d} x \wedge \mathrm{d} y$$

$$\mathrm{d} U = T\mathrm{d} S - P\mathrm{d} V \Rightarrow \mathrm{d} (\mathrm{d} U) = \mathrm{d} (T\mathrm{d} S) - \mathrm{d} (P\mathrm{d} V) \Rightarrow 0 = \mathrm{d} T \wedge \mathrm{d} S - \mathrm{d} P \wedge \mathrm{d} V \Rightarrow \mathrm{d} T \wedge \mathrm{d} S = \mathrm{d} P \wedge \mathrm{d} V$$

$$\mathrm{d}^2 = 0 \Rightarrow \mathrm{d} T \wedge \left[\left(\frac{\partial S}{\partial V}\right)_T \mathrm{d} V + \left(\frac{\partial S}{\partial T}\right)_V \mathrm{d} T \right] \wedge \mathrm{d} V \Rightarrow \left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V \mathrm{d} V$$

1.1.2 Some Key Concepts in Thermodynamics

1.1.2.1 Temperature

1.1.2.1.1 Thermodynamic Perspective $dU = TdS - PdV, T \equiv \left(\frac{\partial U}{\partial S}\right)_V$, thermodynamic definition of temperature.

$$\begin{aligned} & \text{1st law: } E = E_1 + E_2 = \text{const.} \\ & \frac{\mathrm{d}S}{\mathrm{d}E_1} = 0, \quad \text{condition of thermal equilibrium} \\ & \frac{\mathrm{d}S_1}{\mathrm{d}E_1} + \frac{\mathrm{d}S_2}{\mathrm{d}E_1} = \frac{\mathrm{d}S_1}{\mathrm{d}E_1} + \frac{\mathrm{d}S_2}{\mathrm{d}E_2} \frac{\mathrm{d}E_2}{\mathrm{d}E_1} = \frac{\mathrm{d}S_1}{\mathrm{d}E_1} - \frac{\mathrm{d}S_2}{\mathrm{d}E_2} = 0 \Rightarrow \frac{\mathrm{d}S_1}{\mathrm{d}E_1} = \frac{\mathrm{d}S_2}{\mathrm{d}E_2} \leftrightarrow \frac{1}{T_1} = \frac{1}{T_2} \\ & \text{2nd law: } \frac{\mathrm{d}S}{\mathrm{d}t} \geq 0 \Rightarrow \frac{\mathrm{d}S}{\mathrm{d}E_1} \frac{\mathrm{d}E_1}{\mathrm{d}t} \geq 0 \Rightarrow \left(\frac{\mathrm{d}S_1}{\mathrm{d}E_1} - \frac{\mathrm{d}S_2}{\mathrm{d}E_2}\right) \frac{\mathrm{d}E_1}{\mathrm{d}t} \geq 0 \Rightarrow \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \frac{\mathrm{d}E_1}{\mathrm{d}t} \geq 0 \\ & \text{if } T_2 > T_1, \quad \frac{1}{T_1} - \frac{1}{T_2} > 0 \Rightarrow \frac{\mathrm{d}E_1}{\mathrm{d}t} \geq 0 \end{aligned}$$

1.1.2.1.2 Kinetic Viewpoint Microscopic structure of the system needed. Ideal gas, Maxwell distribution(3D):

$$\begin{split} P(\vec{v})\mathrm{d}^3\vec{v} &= A\mathrm{exp}\left[-\frac{mv^2/2}{k_BT}\right]\mathrm{d}^3\vec{v} \\ &\frac{1}{2}m\langle v^2\rangle = \frac{1}{2}m\left(\langle v_x^2\rangle + \langle v_y^2\rangle + \langle v_z^2\rangle\right) = \frac{3}{2}k_BT, \quad \langle v_x^2\rangle = \int v_x^2P(\vec{v})\mathrm{d}^3\vec{v} \end{split}$$

[Example] Rod particles in thermal equilibrium. 若棒的长轴为 z 轴, 则角动量 \vec{J} 倾向于 平行/ 垂直 于 z 轴. 每个自由度都是分得 $\frac{1}{2}k_BT$ 的能量.

$$\begin{split} \frac{1}{2}I_z\overline{\omega_z^2} &= \frac{1}{2}k_BT, \quad \frac{1}{2}I_x\overline{\omega_x^2} = \frac{1}{2}k_BT \\ I_z &\ll I_x = I_y \Rightarrow \overline{\omega_z^2} \gg \overline{\omega_x^2} = \overline{\omega_y^2} \\ \frac{J_z}{J_x} &= \frac{I_z\omega_z}{I_x\omega_x} \approx \frac{\omega_x}{\omega_z} \ll 1 \Rightarrow J_z \ll J_x \Rightarrow \vec{J}$$
主要在 $x - y$ 平面

1.1.2.2 Entropy

1.1.2.2.1 Thermodynamic Perspective For a reversible cyclic process, $\oint \frac{\delta Q}{T} = 0$. δQ : heat absorbed by the system.

 \forall reversible process, $\int_{\Gamma_{A \to B}} \frac{\delta Q}{T} + \int_{\Gamma_{B \to A}} \frac{\delta Q}{T} = 0 \Rightarrow \int_{\Gamma_{A \to B}} \frac{\delta Q}{T}$ is independent of the path.

State variable $dS \equiv \frac{\delta Q}{T}$ reflects intrinsic property of the system. 熔化热(相变潜热), 吸热而 T 不变(change of state).

2nd law:
$$\oint \frac{\bar{\delta}Q}{T} \le 0$$
, \forall process

$$\int_{\gamma_{A\to B}^{(I)}} \frac{\delta Q}{T} + \int_{\gamma_{B\to A}^{(R)}} \frac{\delta Q}{T} \leq 0, \quad \text{(I) for Irreversible, (R) for reversible}$$

$$\Rightarrow \underline{S(B)} - \underline{S(A)} \geq \int_{\Gamma_{A \to B}^{(I)}} \frac{\delta Q}{T} \Rightarrow \text{isolated system: } S(B) - \underline{S(A)} \geq 0$$

- **1.1.2.2.2** Boltzmann's Entropy Statistical interpretation of thermodynamics. $S = k \ln W$,
 - 1. closed/isolated system. W: number of microstates. states: (q, p); (0, 1); $|n\rangle$, disdinguishable(等价, 不可区分).
 - 2. 两系统微观态数 W_1, W_2 . 熵广延性 $S = S_1 + S_2 = k \ln W_1 + k \ln W_2 = k \ln (W_1 W_2)$. ln: 化×为+.
 - 3. $W = e^{S/k} \sim e^{O(N)}$, W: thermodynamic probability.

[Example] Closed system consisted of N non-interacting oscillators. 各振子 k 处于 $|k\rangle$ 状态. 总能量为 E. distribution of energy? n_k 为处于 $|k\rangle$ 状态的振子数目且充分大.

^{*}Gibbs' geometric viewpoint of thermodynamics U(S, V).

$$\begin{split} &\sum_k \varepsilon_k n_k = E = \text{const.}, \quad \sum_k n_k = N \\ &\exists \{n_k\} \text{ s.t. } W = \frac{N!}{\prod_k n_k!} \text{ reaches max} \overset{\ln M! = M \ln M - M}{\Longrightarrow} \ln W = -\sum_k n_k \ln \frac{n_k}{N}, \quad (\sharp \ln \sharp) \end{split}$$

拉格朗日乘子法:
$$I = \ln W - \alpha \sum_{k} n_k - \beta \sum_{k} n_k \varepsilon_k$$
, $\delta n_k \to \delta I = 0 \Rightarrow n_k^* = \frac{e^{-\beta \varepsilon_k}}{\sum_{k} e^{-\beta \varepsilon_k}}$, Boltzmann factor

Stirling's formula: $\ln N! = N \ln N - N$

$$N! = \Gamma(N+1) = \int_0^\infty e^{-x} x^N dx = \int_0^\infty e^{-S(x)} dx$$
$$S(x) \approx S(x_0) + \frac{1}{2} \frac{\partial^2 S(x)}{\partial x^2} \Big|_{x_0} (x - x_0)^2 + \cdots, \quad \frac{\partial S_x}{\partial x} \Big|_{x_0} = 0$$
$$\Rightarrow N! \simeq N^N e^{-N} (2\pi N)^{\frac{1}{2}}$$

1.1.2.2.3 Gibbs' Entropy Open system: $S = -k_B \sum_i P_i \ln P_i$. 微观态处于 $|i\rangle$ 的概率为 P_i .

1. 使得 S 最大的 $\{P_i\}$ 为等概率分布. [Example] 两状态系统.

1. 使得
$$S$$
 取入的 $\{P_i\}$ 为等概率分布. [Example] 两状态系统.
$$2. P_i = \frac{e^{-\beta E_i}}{\sum_i e^{-\beta E_i}} = \frac{e^{-\beta E_i}}{Z}, \quad S = \frac{\langle E \rangle}{T} + k_B \ln Z, \quad -k_B T \ln Z = \langle E \rangle - TS.$$

1.1.3 Learn Thermodynamics by Examples/Applications

1.1.3.1 Ideal Gas

1.1.3.1.1 Entropy

$$\begin{split} \mathrm{d}U &= T\mathrm{d}S - P\mathrm{d}V \Leftrightarrow T\mathrm{d}S = \mathrm{d}U + P\mathrm{d}V \\ &\text{If } V = \mathrm{const.}: \quad \mathrm{d}U = T\mathrm{d}S \Rightarrow \frac{\partial S(U,V)}{\partial U} \bigg|_V = T(U,V) \\ &S(U,V) - S(U_0,V) = \int_{U_0}^U \frac{1}{T(U,V)} \mathrm{d}U, \quad \text{ideal gas: } U = \frac{3}{2}k_BTN \\ &\Rightarrow S(U,V) - S(U_0,V) = \frac{3}{2}Nk_B\ln\left(\frac{U}{U_0}\right); \\ &\text{similarly,} \quad S(T,V) - S(T_0,V) = \frac{3}{2}Nk_B\ln\left(\frac{T}{T_0}\right) \end{split}$$

[Discussion] 1. Extensivity: $S \propto N$; Dimension(量纲); 2. Physics: log-dependence on U and T @ high T(low response)

Electromagnetic Radiation @ Thermodynamic Viewpoint

Stafan-Boltzmann Law: $U = bVT^4$, $b = 7.65 \times 10^{-16} \text{J/m}^3 \text{K}^4$

$$\mathrm{d}U = T\mathrm{d}S - P\mathrm{d}V \xrightarrow{\frac{1}{\mathrm{d}V}} \frac{\partial U(T,V)}{\partial V} = T\frac{\partial S(T,V)}{\partial V} - P \xrightarrow{\frac{\partial S(T,V)}{\partial V}} = \frac{\partial P(T,V)}{\partial V} \\ \Longrightarrow bT^4 = T\frac{\partial P(T,V)}{\partial T} - P \Longrightarrow P = \frac{b}{3}T^4$$

$$U = TS - PV \quad \text{(for extensive system)} \Longrightarrow P = \frac{1}{3}\frac{U}{V}, \quad S = \frac{4}{3}b^{\frac{1}{4}}U^{\frac{3}{4}}V^{\frac{1}{4}} \sim T^3$$

对光子而言,"化学势"为 0. 所以很容易因为升温激发出光子.

[Example] 更多高响应体系的例子: 1. Bending rigidity: $B \sim h^3$; 2. Power in fusion: $\sim B^4$;

1.1.3.3 Rubber Band

前置: 1. thermodynamic laws(general); 2. equation of state, molecular/microscopic model

1.1.3.3.1 定性分析 假定为快速拉伸, 即设 $\Delta Q = 0$. 拉长后构型减少, 即其构型熵 S_{conf} 减少, $T\Delta S_{conf}$ \downarrow ; 长链分子本身也在振动, 振动熵 S_{vib} 上升使得总热量为 0. 因此温度 $T \uparrow$. 相应地, 一个绷直的橡皮筋快速收缩会 $T \downarrow$.

假定橡皮筋垂吊一重物 G. 可将其视为一(低效)热机. 收缩之后, 其构型熵增加. 所以若要使得其收缩/做功, 令其吸热即可.

1.1.3.3.2 定量分析 *L*: 长度; τ: tension(张力); *T*: 温度, *U*: 内能.

 $L_0 < L < L_1, U$ 对 L 无关; τ 随着 T 升高而增大.

$$\begin{split} &U=cL_0T,\quad U\sim T\\ &\tau=bT\frac{L-L_0}{L_1-L_0},\quad \text{self-consistent condition: } \frac{\partial^2 S}{\partial U\partial V}=\frac{\partial^2 S}{\partial V\partial U}\\ \Rightarrow \mathrm{d}S=\frac{1}{T}\mathrm{d}U-\frac{\tau}{T}\mathrm{d}L=cL_0\frac{\mathrm{d}U}{U}-b\frac{L-L_0}{L_1-L_0}\mathrm{d}L \stackrel{\int}{\Longrightarrow} S=S_0+cL_0\ln\frac{U}{U_0}-b\frac{(L-L_0)^2}{2(L_1-L_0)},\quad \text{entropy elasticity} \end{split}$$

1.2 Ensemble Theory

1.2.1 Space

描述 gas model 的方法: 列出所有气体粒子的 (q,p).

1.2.1.1 μ -space by Ehrenfest

 (x, y, z, v_x, v_y, v_z) 6-dim space. 其中的一个点描述的是一个粒子的状态. 共需 $N \sim N_A$ 个点进行描述.

$$\sum_{i} \delta(x - x_i) \delta(y - y_i) \delta(z - z_i) \delta(v_x - v_{xi}) \delta(v_y - v_{yi}) \delta(v_z - v_{zi})$$

Distribution function: $f(\vec{x}, \vec{v}, t) d^3 \vec{x} d^3 \vec{v}$

随着时间推移, $H = \int f \ln f$ 总是趋向于减小. 在达成最小/细致平衡时: \vec{x} : 均匀; \vec{v} : Maxwell 分布.

[Discussion] 质嶷: 令某一时刻 $t \ \ \vec{v} \rightarrow -\vec{v}$, 难道不会使 H 回升吗?

1.2.1.2 Γ-space

 $\{q_1, q_2, q_3, p_1, p_2, p_3, q_4, q_5, q_6, p_4, p_5, p_6, \cdots\}$, 6N-dim. 空间中的一个点描述的是整团气体某时刻下的状态. 系统的演化即点的运动.

在 μ -空间中的通过 course-graining 分割的一个 $|k\rangle$ 状态格子中,有着 n_k 个粒子. 该格子的体积为 6-dim phase volume $\omega_k = \Delta \vec{q}_k \Delta \vec{p}_k$. 相应地,在 Γ 空间中由这 n_k 个粒子所占据的空间体积为 $\prod_{\alpha=1}^{n_k} \Delta \vec{q}_\alpha \Delta \vec{p}_\alpha = \prod_{\alpha=1}^{n_k} \omega_k = \omega_k^{n_k}$. 因此所有粒子所占据的空间为 $\prod_{\alpha=1}^{n_k} \omega_k^{n_k}$

在给定的 $\{n_k\}$ 中,同状态 $|k\rangle$ 的粒子间交换不会产生新的状态数,因此修正: $W' = \frac{N!}{\prod_k n_k!} \prod_k \omega_k^{n_k}$. 该体积和状态数成正比,那么寻找在 $\sum_k n_k = N$, $\sum_k \varepsilon_k n_k = E$ 约束下使得空间体积/状态数极大的 $n_k^* = A\omega_k e^{-\beta \varepsilon_k}$.

1.2.1.3 Geomatry of High-Dimensional Space

1.2.1.3.1 An Illustrative Example: Sphere in n-dim Space 3-dim space: S^2 , B^3 ; n-dim space: S^{n-1} , B^n .

在
$$n$$
-dim 欧式空间中的一个点 $x=(x_1,x_2,\cdots,x_n)$. \vec{x} 的长度为 $|x|=\sqrt{\sum_{i=1}^n x_i^2}$. 体积: $V\left(B_R^n\right)=C_nR^n$, $C_n=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}$, $\Gamma(z+1)\equiv\int_0^\infty t^{-z}e^{-t}\mathrm{d}t\stackrel{z\in\mathbb{Z}}{=}z!\approx\sqrt{2\pi z}\left(\frac{z}{e}\right)^z$
$$C_n\stackrel{\mathrm{even}}{=}\frac{\pi^{n/2}}{\left(\frac{n}{2}\right)!}\Rightarrow V\left(B_R^n\right)\simeq\frac{1}{\sqrt{n\pi}}\left(\sqrt{\frac{2\pi e}{n}}\right)^nR^n,\quad \text{unit sphere: }V\left(B_R^n\right)=1\Leftrightarrow R=\sqrt{\frac{n}{2\pi e}}$$

设两共心球半径分别为 R, $R(1+\varepsilon)$. 求夹层(Shell)体积为 $V_{\text{shell}} = V(R)[(1+\varepsilon)^n - 1^n]$. 即使 ε 很小, 也会随着 $n \uparrow$ 使得 $V[R(1+\varepsilon)]$ 急剧上升. 即高维空间中体积集中在 "边缘".

[Example] 高维酒杯. 要求填满圆锥形酒杯的一半, 随着维度升高, 酒面高度也会升高, 趋近于酒杯边缘.

[Example] 密度均匀,n-dim,半径为 R 的高维球 B_R^n . 只取单个轴 x,另一个轴作为垂直 x 分量的 B_R^n 球切片 $B_{R'}^{n-1}$,其中 $R' = R\sqrt{1-\frac{x^2}{R^2}}$. 存在 $\int_{-R}^R \rho(x)\mathrm{d}x = \int_{-R}^R V\left(B_{R'}^{n-1}\right)\mathrm{d}x = V\left(B_R^n\right)$,求 $\rho(x)$ 表达式. $\frac{V\left(B_{R'}^{n-1}\right)}{V\left(B_{R'}^{n-1}\right)} = \left(\frac{R'}{R}\right)^{n-1} = \left(1-\frac{x^2}{R^2}\right)^{\frac{n-1}{2}} \simeq e^{-(n-1)x^2/2R^2}$; For a unit ball, $R = \sqrt{\frac{n}{e}} \Rightarrow \rho(x) \simeq e^{-ex^2/2}V(B_1^{n-1})$

1.2.1.3.2 The Geometric Deviation Principle Minkowski 求和. 点集 A + B 对应于 $\vec{a} + \vec{b}$. A, B 本身具有一定的形状.

Brunn-Minkowski inequality: $[V(A+B)]^{1/n} \ge [V(A)]^{1/n} + [V(B)]^{1/n}$. A 和 B 为齐形凸体, 即 $A = \alpha B + x$ 时取等. Isoperimetric principle: 等面积, 求周长最小; 等体积, 求表面积最小.

设 n-dim 无定形点集 C 和 n-dim 球点集 B, 两者体积相同 $V(C)=V(B)=V(B_R^n)$. 设 $\epsilon\to 0$, $C+\epsilon B$ 使得在 C 表面增加薄克. 那么 C 的 (n-1)-dim 表面积(Area)可借该薄壳体积除以厚度 ϵ 得到: Area $=\lim_{\epsilon\to 0}\frac{V(C+\epsilon B)-V(C)}{\epsilon}$. 不等式: $V(C+\epsilon B)^{1/n}\geq V(C)^{1/n}+V(\epsilon B)^{1/n}=V(B)^{1/n}+(\epsilon^nV(B))^{1/n}\Rightarrow {\rm Area}\geq \lim_{\epsilon\to 0}\frac{[(1+\epsilon)^n-1]}{\epsilon}V(B)\approx n\cdot V(B)$, C 为球时取等. 于是 "等体积, 表面积最小时为球" 得证.

[Example] 取两铁环沾肥皂水, 铁环间由肥皂水薄膜相连. 几何: curvature; 物理: surface tension. Laplace preessure: $p \propto \sigma \overline{H}$. [Example] 悬链线(Catenary Curve).

类比不等式
$$\frac{x+y}{2} \ge \sqrt{xy}$$
, 那么 $\sqrt{[V(C)V(D)]} \le V\left[\frac{C+D}{2}\right] \le \left(1-\frac{\epsilon^2}{8}\right)^n V(B)$. ϵ 为不对齐程度.

设单位体积球点集 B, 而 C 占据 B 体积的 $\frac{1}{2}$, 剩下的 $\frac{1}{2}$ 体积为 D. 即有 $V(C)=\frac{1}{2}V(B)$. 那么 $M=\frac{C+D}{2}$ 所能占据的体积是有限的. 代入 V(B)=1 得 $V(D)\leq 2(1-\frac{1}{8}\epsilon^2)^{2n}\times V(B)=2e^{-n\epsilon^2/4}V(B)$.

[Example] 考虑 n-dim 球的球面 S^{n-1} , 在球面上有一分布函数 f 且随球面坐标缓慢变化. 找到 f 的中位数 M, 分界为 $S_1(f < M)$ 和 $S_2(f > M)$. 令 S_1 向 S_2 方向膨胀微薄一层,得到 $f = M + \epsilon$ 界线;同样地, S_2 向 S_1 方向膨胀后,得到 $f = M - \epsilon$ 界线. 因为 $V(S_1) \ll V(S^{n-1})$ 且 $V(S_2) \ll V(S^{n-1})$,说明球面上大部分数值都集中在中值 M 附近.

1.2.1.3.3 Probability Perspective @ Levy, 1980 Uniform distribution of dots \rightarrow volume interpretted as the probability.

[Example] Probability theory of large deviation. Toss coin(抛掷硬币): $X_i = 0, 1$; 均值 $M_N = \frac{1}{N} \sum_{i=1}^N X_i$. 令 $x \in \left(\frac{1}{2}, 1\right)$, $P(M_N > x) < e^{-NI(x)}$, 其中 $I(x) = x \ln x + (1-x) \ln (1-x) + \ln 2$. 令 $x = \frac{1}{2} + \epsilon$, 则 $P(M_N > \frac{1}{2} + \epsilon) < e^{-2N\epsilon^2}$. M_N , "macrostate". microstates: $C_N^{NM_N} = C_N^k$. $C_N^k = \frac{N!}{k!(N-k)!} \Rightarrow \ln C_k = \ln \left[\frac{N!}{k!(N-k)!}\right] \simeq -N \ln x \ln x - N(1-x) \ln (1-x) = -N[I(x) - \ln 2]$ $S = k_B \ln C_N^k$

[Example] $[-1,1] \otimes [-1,1]$ 空间内随机撒点. 设 x+y=0 分割线, 该线上的点有 $\lim_{n\to\infty}\sum_{i=1}^n x_i=0$; 相应地, 若 $\lim_{n\to\infty}x+y=\epsilon$ 描述了偏离中心线的程度.

From Dynamics to Probability Description

Measurement: time-avarage. Phase space with macroscopic constraint: ensemble-avarage. Poincare recurrence theorem(庞加莱 回归定理)

时间平均:
$$\langle f \rangle_t = \frac{\displaystyle\sum_i f_i \tau_i}{\displaystyle\sum_i \tau_i}$$

Course-grained description of phase space: $f_i = f_\alpha$, $\forall i \in \alpha$.

$$\begin{split} \langle f \rangle_t &= \frac{1}{T} \sum_{\alpha} f_{\alpha} t_{\alpha}, \quad t_{\alpha} = \sum_{i \in \alpha} \tau_{\alpha} \\ &= \sum_{\alpha} f_{\alpha} \times \left(\frac{t_{\alpha}}{T}\right) = \sum_{\alpha} f_{\alpha} p_{\alpha}, \quad \text{prob description: } p_{\alpha} = \frac{t_{\alpha}}{T} \end{split}$$

Formal presentation: in equilibrium

ensemble avarage
$$\langle f \rangle_e = \langle \langle f \rangle_e \rangle_t = \langle \langle f \rangle_t \rangle_e$$

$$\left\langle \lim_{T \to \infty} \langle f \rangle_t \right\rangle_e = \lim_{T \to \infty} \langle f \rangle_t : \quad \text{ergodic}(各态历经), 初态无关}$$

$$\langle f \rangle_e = \lim_{T \to \infty} \langle f \rangle_t$$

不同情况下的 microstate: 1. In Γ-space(6N-dim), (q, p); 2. $|n\rangle$; 3. $\sigma = \pm 1$; 4. $\sigma = \{0, 1\}$... Representative point \leftrightarrow one gas. Density function(continuum description) $\sum_{i}^{\infty} \delta(x-x_i) \to \rho(x)$.

$$\langle f \rangle = \frac{\sum_{\alpha} f_{\alpha} p_{\alpha,t}}{\sum_{\alpha} p_{\alpha,t}} \Longrightarrow \frac{\int f(q,p) \rho(q,p,t) d^{3N} q d^{3N} p}{\int \rho(q,p,t) d^{3N} q d^{3N} p}$$

equilibrium condition: $\langle f \rangle$ time-invariant $\rightarrow \frac{\partial \rho}{\partial t} = 0$ [Discussion] 若 $\rho(q,p,t) = q(q,p)f(t), \langle f \rangle$ 在数学上也是平衡的. 这种情况下需要考虑到

$$\int g(q,p)f(t)\mathrm{d}^{3N}q\mathrm{d}^{3N}p=N \Rightarrow f(t)=\mathrm{const.} \Rightarrow \frac{\partial\rho}{\partial t}=0.$$

1.2.2.1 Dynamics

1.2.2.1.1 A Single Representative Point in Γ-**Space** . Hamiltonian 力学: $\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}$. 特征: 1. 轨迹不可能自相交; 2. 回归定理.

1.2.2.1.2 Multiple Representative Points 在 Γ -空间中选取一个体积 ω , 将会有 $\int_{\mathbb{R}^n} \rho(q,p,t) d\omega$ 个代表点. 其表面为 $\partial \omega$. 代表 点在 Γ -空间中的运动速度为 $\vec{v_i} = \{\dot{q_i}, \dot{p_i}\}$. 那么存在关系

$$\begin{split} &\frac{\partial}{\partial t} \int_{\omega} \rho(q,p,t) \mathrm{d}\omega = - \int_{\partial \omega} \rho \vec{v} \cdot \hat{n} \mathrm{d}\sigma = - \int_{\omega} \nabla \cdot (\rho \vec{v}) \mathrm{d}\omega, \quad \nabla = \left(\frac{\partial}{\partial \mathbf{q}}, \frac{\partial}{\partial \mathbf{p}}\right) \\ &\Rightarrow \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0, \quad \text{Continuity Equation} \end{split}$$

Material deriavtive. 设 $g(\vec{x}, t)$, flow field: $\vec{v}(\vec{x}, t)$.

$$g(\vec{x} + \delta \vec{x}, t + \delta t) - g(\vec{x}, t) = g(\vec{x}, t) + \delta \vec{x} \frac{\partial g}{\partial \vec{x}} + \delta t \frac{\partial g}{\partial t} - g(\vec{x}, t) = \delta \vec{x} \frac{\partial g}{\partial \vec{x}} + \delta t \frac{\partial g}{\partial t} = \delta t \left(\vec{v} \cdot \frac{\partial g}{\partial \vec{x}} + \frac{\partial g}{\partial t} \right)$$

$$\frac{Dg}{Dt} \equiv \frac{g(\vec{x} + \delta \vec{x}, t + \delta t) - g(\vec{x}, t)}{\delta t} = \vec{v} \cdot \frac{\partial g}{\partial \vec{x}} + \frac{\partial g}{\partial t}$$

[Discussion] How to understand $\frac{\mathrm{D}\rho}{\mathrm{D}t} = 0$? 1. canonical transform; 2. incompressibility $(\nabla \cdot \vec{v} = 0)$

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla (\rho \vec{v}) &= 0 \Rightarrow \underbrace{\frac{\partial \rho}{\partial t}}^{\frac{D\rho}{Dt} = 0} + \vec{v} \cdot \nabla \rho + \rho \nabla \cdot \vec{v} = 0 \Rightarrow \nabla \cdot \vec{v} = 0 \\ \text{check:} \quad \nabla \cdot \vec{v} &= \sum_{i} \left(\frac{\partial}{\partial q_{i}} \dot{q}_{i} + \frac{\partial}{\partial p_{i}} \dot{p}_{i} \right) = \sum_{i} \left(\frac{\partial}{\partial q_{i}} \frac{\partial H}{\partial p_{i}} - \frac{\partial}{\partial p_{i}} \frac{\partial H}{\partial q_{i}} \right) = 0 \end{split}$$

若ho为H函数ho(H), 则 $\{
ho, H\} = 0 \Rightarrow \frac{\partial
ho}{\partial t} = 0$, 即达成 equilibrium; 两种可能: 1. $ho = \mathrm{const.}$; 2. @Gibbs: canonical $\Rightarrow \ln
ho \propto H$

1.2.3 Microcanonical Ensemble

气体模型 macrostate: (E, N, V), to construct an ensemble of microstates. surface of (6N-1)-dim.

[Discussion] 可能总动量 $\vec{P} \neq \vec{0}$, 总角动量 $\vec{L} \neq \vec{0}$. 以动量为例子:

$$\underline{p_{1x}^2 + p_{1y}^2 + p_{1z}^2}_{1} + p_{2x}^2 + \cdots + p_{Nz}^2 \stackrel{\text{ideal gas}}{=} 2mE, \quad P_z = \sum_{i=1}^N p_{1z} \to 0, \text{ due to high dimension.}$$

[Example] 2-state system.
$$|1\rangle:N_1,|2\rangle:N_2. \quad P_1=\frac{N_1^{i=1}}{N_1+N_2}, P_2=\frac{N_2}{N_1+N_2} \Rightarrow \langle f \rangle=f_1P_1+f_2P_2.$$

Equilibrium density function?
$$\rho(q,p) = \begin{cases} \text{const.} & H(q,p) \in \lim_{\Delta \to 0} \left[E - \frac{\Delta}{2}, E + \frac{\Delta}{2} \right] \\ 0, & \text{others} \end{cases}$$

Foudation of equilibrium: 等概率假设, 且为 ergodicity(各态历经). Closed system: $S = k_B \ln \Omega$, $\Omega = \frac{\omega}{\omega_0}$, ω : allowed region of motion, ω_0 : some constant $\delta q \delta p \sim h \Rightarrow (\delta \mathbf{q} \delta \mathbf{p}) \sim h^{3N} \Rightarrow \omega_0 = h^{3N}$

$$\delta q \delta p \sim h \Rightarrow (\delta \mathbf{q} \delta \mathbf{p}) \sim h^{3N} \Rightarrow \omega_0 = h^{3N}$$

$$\Omega = \frac{1}{N! h^{3N}} \int_{\omega} \mathrm{d}^3 \vec{q}_1 \mathrm{d}^3 \vec{q}_2 \cdots \mathrm{d}^3 \vec{q}_N \mathrm{d}^3 \vec{p}_1 \mathrm{d}^3 \vec{p}_2 \cdots \mathrm{d}^3 \vec{p}_N, \quad N! \text{ to make } S \text{ is extensive}$$

$$\Rightarrow \text{indisdinguishability of microscopic particles}$$

1.2.3.1 Equation of State for Ideal Gas

Derive the equation of state by microcanonical ensemble method.

理想气体的内能表达式: $\sum_{i=1}^{n} |\vec{p_i}|^2 = 2mE$. 等能面为 (3N-1) 维球面, 且球面半径约为 \sqrt{E} . 那么相空间体积/微观态数

$$\Omega \sim (\sqrt{E})^{3N-1} \sim E^{3N/2}$$
. 克劳修斯熵 $S = k_B \ln \Omega = \frac{3}{2} k_B N \ln E + \text{const.}$; 1st law: $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_V \Rightarrow E = \frac{3}{2} N k_B T$.

在 1D 下存在关系
$$p \cdot L \sim \pi \Rightarrow p \sim \frac{1}{L} \Rightarrow \delta p \sim \frac{1}{L}$$
 , 则更良的微观态数表达式为 $\Omega \sim \frac{(\sqrt{E})^{3N-1}}{(\delta p)^{3N}} \stackrel{V \sim L^3}{\longrightarrow} (E^{3/2}V)^N$,

$$S = k_B \ln \Omega = Nk_B \left(\frac{3}{2} \ln E + \ln V + \text{const.} \right) \Rightarrow \left(\frac{\partial S}{\partial V} \right)_E = \frac{Nk_B}{V} \Rightarrow dS = \frac{3}{2} Nk_B \frac{dE}{E} + \frac{V}{Nk_B} \frac{dV}{V} = \frac{dE}{T} + \frac{PdV}{T},$$

观察比较得到 $Nk_B \frac{dV}{V} = \frac{PdV}{T} \Rightarrow P = \frac{N}{V} k_B T$.

1.2.3.2 Dilute Hard Sphere System

各小球可占体积为因各自体积而相互减少. 设小球半径为 a, 体积为 $\omega_e=rac{4}{3}\pi(2a)^3$. 接触距离至少为球心间距所以是 2a. 微观态数为 $\Omega = \frac{1}{N!h^N} \int d^3\vec{q_1}d^3\vec{q_2} \cdots d^3\vec{q_N}d^3\vec{p_1}d^3\vec{p_2} \cdots d^3\vec{p_N}$, 其中

$$\int d^{3}\vec{q}_{1} \cdots d^{3}\vec{q}_{N} = V(V - \omega_{e})(V - 2\omega_{e}) \cdots [V - (N - 1)\omega_{e}] = \prod_{i=0}^{N-1} (V - i\omega_{e}) \stackrel{\ln}{\Rightarrow} \ln \prod_{i=0}^{N-1} (V - i\omega_{e}) = \sum_{i=0}^{N-1} \ln (V - i\omega_{e}).$$
使用极限 $\ln (x + \delta x) \Leftrightarrow \ln x + \frac{1}{x} \delta x$, 则 $\sum_{i=0}^{N-1} \ln (V - i\omega_{e}) = \sum_{i=0}^{N-1} \left(\ln V - \frac{i\omega_{e}}{V} \right) = N \ln V - \frac{\omega_{e}}{V} \frac{(N - 1)N}{2}$

$$\simeq N \left(\ln V - \frac{\omega_{e}N}{2V} \right) \simeq N \ln \left(V - \frac{\omega_{e}N}{2} \right) \Rightarrow \int d^{3N}q = \left(V - \frac{\omega_{e}N}{2} \right)^{N}$$

[Exercise]设有 N 个硬球, 半径 a, 约定 $\omega_e = \frac{4}{3}\pi(2a)^3$, 体系能量为 E, 总体积为 V, 温度为 T. 尝试计算 S(E,V), 状态方程.

$$[\text{Hint:Area}(S^{n-1}) = \frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}R^{n-1}]$$

1.2.3.3 Einstein's Model for Heat Capacity of Solid(1907)

Excitations \rightarrow Solid property? Quantum?

N atoms, 等效于 3N independent oscillators. Total energy: U, distributed to 3N oscillators. 等效为将 $\frac{U}{\hbar\omega_0}$ 个竖隔板插入由 3N 个球间隔出的 (3N-1) 的缝隙中.

微观态数
$$W = \frac{\left[(3N-1)+\left(\frac{U}{\hbar\omega_0}\right)\right]!}{(3N-1)!\left(\frac{U}{\hbar\omega_0}\right)!}$$
,则每 1 mol 原子的熵为 $s(u) = k_B \ln W \simeq 3R \left[\ln\left(1+\frac{u}{u_0}\right)+\frac{u}{u_0}\ln\left(1+\frac{u_0}{u}\right)\right]$,其中 $s = \frac{S}{N/N_A}$, $u = \frac{U}{N/N_A}$, $u_0 = 3N_A\hbar\omega_0$. 压强是某量对体积的偏导数 $P = \frac{\partial \sharp}{\partial V}$, $\sharp: U, S \cdots$,热容则是 $c = T\frac{\partial S}{\partial T}$. 温度 $\frac{1}{T} = \left[\frac{\partial S(U)}{\partial U}\right] = \frac{k_B}{\hbar\omega_0}\ln\left(1+\frac{3}{u}\hbar\omega_0\right)$,代入即有 $\frac{1}{3N_A}u(T) = \frac{\hbar\omega_0}{e^{\hbar\omega_0/k_BT}-1}$,正是 Boson 行为. 热容为 $c = \frac{\partial u}{\partial T} = 3N_Ak_B\left(\frac{\hbar\omega_0}{k_BT}\right)^2e^{-\frac{\hbar\omega_0}{k_BT}}$.

1.2.4 Canonical Ensemble

Macrostate: (N, V, T). 能量允许涨落. 又名: Entropy representation.

Equilibrium density function? @Gibbs:
$$\frac{\partial \rho}{\partial t} = -\vec{v} \cdot \nabla \rho$$
. If equilibrium $\frac{\partial \rho}{\partial t} = 0$, then $\vec{v} \cdot \nabla \rho = 0$.
$$\sum_{i} \left(\dot{q}_{i} \frac{\partial \rho}{\partial q_{i}} + \dot{p}_{i} \frac{\partial \rho}{\partial q_{i}} \right) = 0 \Rightarrow \sum_{i} \left(\frac{\partial H}{\partial p_{i}} \frac{\partial \rho}{\partial q_{i}} - \frac{\partial H}{\partial q_{i}} \frac{\partial \rho}{\partial q_{i}} \right) = 0. \quad \not{\pi} \rho \not \to H \quad \text{函数 } \rho(H), \text{则方程自动满足.}$$

$$\rho_{1+2} = \rho_{1} \times \rho_{2}, \quad H_{1+2} = H_{1} + H_{2} \Rightarrow \ln \rho \propto \alpha H \Rightarrow \rho \propto e^{\alpha H}$$

1.2.4.1 Connection to Microcanonical Ensemble

1.2.4.1.1 Environment & System Perspective 设环境为 A', 处于态 $|r'\rangle$; 体系为 A, 处于态 $|r\rangle$, A + A' 整体是孤立系统. 那么 有 $E_r+E_{r'}=E^{(0)}=$ const.; 设 Ω' 为环境微观态数, 则体系处于态 $|r\rangle$ 的概率 $P_r\propto\Omega'(E_{r'})=\Omega'(E^{(0)}-E_r)$. 假定体系所占能 量足够小, 即 $E_r \ll E^{(0)}$, 则可 Taylor 展开: $\ln \Omega'(E^{(0)} - E_r) = \ln \Omega'(E^{(0)}) + \frac{\partial \ln \Omega'}{\partial E'} \Big|_{E' = E^{(0)}} \frac{e^{-E_r}}{(E_{r'} - E^{(0)})} + \dots = \text{const.} - \beta E_r$

于是得到 Boltzmann factor/Canonical distribution $P_r = \frac{e^{-\beta E_r}}{\sum e^{-\beta E_r}}$.

[Discussion] Taylor 展开时, 为何不需要保留更高次? \Rightarrow 为了保持 S 的广延性.

1.2.4.1.2 Multiple Systems Perspective 制备 N 个正则系综, 整体组成一个微正则系综. 设 n_r 个系统处于状态 $|r\rangle$, 能量为 E_r . 则存在约束条件 $\sum_r n_r = N$, $\sum_r n_r E_r = NU = N\langle E_r \rangle$. 微观态数为 $W = \frac{N!}{\prod_r n_r!}$, 寻找 $\{n_r\}$ 使得 W 最大化. $\Rightarrow \frac{n_r^*}{N} = \frac{e^{-\beta E_r}}{\sum_r e^{-\beta E_r}}.$

[Dsicussion] Why is $\ln \rho \propto \alpha E \Rightarrow \rho \propto e^{\alpha E}$ simple: 1. No dynamics information; 2. Time-reversal symmetry. Detailed-balance(细致平衡); 3. 具有可加性. 引申为 $\ln \rho = \alpha + \beta E$; 4. 设 $f(\epsilon)$ 为体系处于能量 ϵ 的概率,则有 $\frac{f(\epsilon_1)}{f(\epsilon_2)} = \frac{f(\epsilon_1 + \epsilon)}{f(\epsilon_2 + \epsilon)}$. 定义 $f(\epsilon) = g(\epsilon - \epsilon_2) \Rightarrow g(\epsilon)g(\epsilon_1 - \epsilon_2) = g(0)g(\epsilon_1 - \epsilon_2 - \epsilon) \Rightarrow g(\epsilon) = g(0)e^{-\beta\epsilon} \Rightarrow \frac{f(\epsilon_1)}{f(\epsilon_2)} = e^{-\beta(\epsilon_1 - \epsilon_2)}$

1.2.4.2 Revisit Maxwell Distribution

1.2.4.2.1 Galton's Statistical Model

- **1.2.4.2.2** Based on Symmetry 各向同性: $f(\vec{v}) = f(v) = f_0(v_x) f_0(v_y) f_0(v_z)$
- **1.2.4.2.3 Boltzmann** 能量离散化. $\exists \{n_r\},$ s.t. $W = \frac{N!}{\prod_{\alpha} n_{\alpha}!}$
- **1.2.4.2.4 Based on Ensemble Theory** 能量中动量和位置分离: E(q,p) = K(p) + U(q) 因此统计独立: $\rho(q,p) \propto e^{-\beta E(q,p)} \Rightarrow \rho(q,p) = Ae^{-\beta [K(p)+U(q)]} = Ae^{-\beta K(p)} \cdot e^{-\beta U(q)}$.

其中动能部分:
$$e^{-\beta K(p)} = \exp\left[-\beta \left(\frac{p_1^2}{2m} + \frac{p_1^2}{2m} + \dots + \frac{p_N^2}{2m}\right)\right] = e^{-\beta \frac{p_{1x}^2}{2m}} e^{-\beta \frac{p_{1y}^2}{2m}} e^{-\beta \frac{p_{1z}^2}{2m}} e^{-\beta \frac{p_{2z}^2}{2m}} e^{-\beta$$

New perspective on gas model: 将各粒子单独视为一个系统, 只有 E 交换而没有 N 交换: $\rho_1 = Ae^{-\beta \frac{p_1^2}{2m}}$

1.2.4.2.5 Geometric Viewpoint 在 $(p_{1x}, p_{1y}, p_{1z}, p_{2x}, p_{2y}, \cdots)$ 3N-dim 空间中, 挑任意一轴(以 p_{1x} 为例), 系统处于该轴上的概率分布为? $\Rightarrow \rho(p_{1x}) \sim e^{-\beta p_{1x}^2}$ (Energy partition theorem).

[Example] 受热浴谐振子:
$$H = \alpha p^2 + \beta q^2$$
; $\langle \alpha p^2 \rangle = \int \alpha p^2 A^{-\beta H} \mathrm{d}q \mathrm{d}p = \frac{1}{2} k_B T$. [Example] 推广: $H = \sum_i \alpha p_i^n$, $E_i = \alpha p_i^n$, $\langle E_i \rangle = \int E_i e^{-\beta E_i} \mathrm{d}E_i \Big/ \int e^{-\beta E_i} \mathrm{d}E_i = -\frac{\partial}{\partial \beta} \ln \left(\int e^{-\beta E_i} \mathrm{d}p_i \right)$. Let $y = \beta^{\frac{1}{n}} p_i \Rightarrow \int e^{-\beta E_i} \mathrm{d}p_i = \beta^{-\frac{1}{n}} \int e^{-\alpha y^n} \mathrm{d}y \Rightarrow \boxed{\langle E_i \rangle = \frac{1}{n} k_B T}$.

1.2.4.3 Thermodynamics

[Discussion] 已知 1st law: $\mathrm{d}U=T\mathrm{d}S-p\mathrm{d}V$, 如何将 U(V,S) 转变为 V 和 T 的未知函数 ?(V,T). 定义 $F\equiv U-TS$, 全微分 $\mathrm{d}F=-p\mathrm{d}V-S\mathrm{d}T\Rightarrow F(V,T)$. 因此正则系综 (N,V,T) 也被称作 F-representation. 类似地, 定义 $G\equiv F+PV$ 从而得到 P 和 T 的函数 G(P,T). $G=\mu N$.

平均能量
$$\langle E_r \rangle = \frac{\sum_r E_r e^{-\beta E_r}}{\sum_r e^{-\beta E_r}} = -\frac{\partial}{\partial \beta} \ln \left(\sum_r e^{-\beta E_r} \right)$$

内能
$$U = F + TS = F - T\left(\frac{\partial F}{\partial T}\right)_{NV} = \frac{\partial}{\partial (1/T)}\left(\frac{F}{T}\right)_{NV}$$

记 $\beta = \frac{1}{k_B T}$,则自由能 $F = -k_B T \ln Q_N(V,T)$,其中正则配分函数对状态 $|r\rangle$ 求和形式为 $Q_N = \sum_r e^{-\beta E_r}$.

求 $\langle \ln P_r \rangle = \left\langle \ln \left(\frac{e^{-\beta E_r}}{Q_N} \right) \right\rangle = -\ln Q_N - \beta \langle E_r \rangle = \beta (F - U) = -\frac{S}{k_B} \Rightarrow S = -k_B \sum_r P_r \ln P_r$, 正是 Gibbs entropy 形式. 对能量 i 求和形式: $Q_N = \sum_i g_i e^{-\beta E_i} = \int g(E) e^{-\beta E} \mathrm{d}E$, 其中 g_i 为 degeneracy of energy level E_i (能级的简并度). 微观态数/ Γ -相空间体积的形式: $Q_N = \frac{1}{N!h^{3N}} \int e^{-\beta H(q,p)} \mathrm{d}^{3N} q \mathrm{d}^{3N} p$

[Discussion] $Q_N = \sum_r e^{-\beta E_r}$,根据 $e^{-\beta E_r}$ 能定论 $E_r = 0$ 是概率最高的能量吗? $(E_r)_{\text{most prob}} = U$. 因为还存在着 g(E) 调控

1.2.4.4 Fluctuations

已知内能 U 可通过对正则配分函数求 β 偏导得到: $U = -\frac{\partial}{\partial \beta} \left(\ln \sum_r e^{-\beta E_r} \right)$. 若再对 U 求一次 β 偏导, 则有 $\frac{\sum_r E_r^2 e^{-\beta E_r}}{\int_0^T E_r e^{-\beta E_r}} \left(\sum_r E_r e^{-\beta E_r} \right)^2$

$$\frac{\partial U}{\partial \beta} = -\frac{\sum_{r} E_{r}^{2} e^{-\beta E_{r}}}{\sum_{r} e^{-\beta E_{r}}} + \left(\frac{\sum_{r} E_{r} e^{-\beta E_{r}}}{\sum_{r} e^{-\beta E_{r}}}\right) = -\langle E^{2} \rangle + \langle E \rangle^{2} \equiv \langle (\Delta E)^{2} \rangle = k_{B} T^{2} C_{v}$$
定义相对变化量/涨落为
$$\frac{\sqrt{\langle (\Delta E)^{2} \rangle}}{\langle E \rangle} = \frac{\sqrt{k_{B} T^{2} C_{v}}}{U} \sim N^{-\frac{1}{2}}$$

[Example] Classical harmonic oscillator ($\varepsilon_n = nh\nu$). Single oscillator:

$$\langle E_1 \rangle = \frac{\sum_{n} \varepsilon_n e^{-\beta \varepsilon_n}}{\sum_{n} e^{-\beta \varepsilon_n}} = \frac{h\nu}{e^{\beta h\nu} - 1}. \quad \langle E_1^2 \rangle = (h\nu)^2 \frac{1 + e^{\beta h\nu}}{(e^{\beta h\nu} - 1)^2}, \quad \langle (\Delta E_1)^2 \rangle = (h\nu)^2 \frac{e^{\beta h\nu}}{(e^{\beta h\nu} - 1)^2}, \quad \frac{\sqrt{\langle (\Delta E_1)^2 \rangle}}{\langle E_1 \rangle} = e^{\frac{1}{2}\beta h\nu}. \quad T \to 0,$$

涨落趋于发散.

$$N ext{ oscillators: } \langle (\Delta E)^2 \rangle = N \langle (\Delta E_1)^2 \rangle, \quad \frac{\sqrt{\langle (\Delta E)^2 \rangle}}{\langle E \rangle} = N^{-\frac{1}{2}} \frac{\sqrt{\langle (\Delta E_1)^2 \rangle}}{\langle E_1 \rangle}.$$

[Example] Reletive fluctuation of speed in Maxwell distribution. $f(v) = A \exp\left\{-\frac{mv^2}{2k_BT}\right\} \frac{v^2}{v^2} dv$, where v^2 for 3D gas.

$$\langle g(v) \rangle = \frac{\int g(v)f(v)dv}{\int f(v)dv}, \quad \frac{\sqrt{\langle v^2 \rangle}}{\langle v \rangle} = \sqrt{\frac{3\pi}{8} - 1}$$

[Example] Ideal gas. $H = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m}$.

1. 使用正则系综方法. 配分函数为

$$Q_N(V,T) = \sum_r e^{-\beta E_r} = \frac{1}{N!h^{3N}} \int e^{-\beta \sum_{i=1}^N \frac{\vec{p}_i^2}{2m}} d^{3N}q d^{3N}p = \frac{1}{N!} \left(\frac{1}{\hbar^3} \int_{-\infty}^{+\infty} e^{-\beta \frac{p_1^2}{2m}} 4\pi p_1^2 dp_1 \underbrace{\int d^3\vec{q_1}}_{V} \right)^N = \frac{Q_1(T,V)^N}{N!},$$

即各粒子统计独立. 单粒子配分函数 $Q_1 = \frac{V}{h^3}(2\pi m k_B T)^{\frac{3}{2}} = \frac{V}{\lambda_T^3}$, 其中 $\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$ 为热波长. 粒子间平均间距可估算为 $a \sim \left(\frac{V}{N}\right)^{\frac{1}{3}}$. 若 $\lambda_T \ll a$, 即可认为 $h \to 0$, 无量子效应. 更一般性地, 若 Hamiltonian 仅为动量 p 的函数 H = H(p), 则单粒

子配分函数形为 $Q_1 = Vf(T)$. 当 $H = \sum_i \frac{p_i^2}{2m}$ 特殊情形时, 有 $f(T) = \lambda_T^{-3}$. 继续一般性的讨论:

$$\ln Q_N = \ln \left[\frac{(Vf(T))^N}{N!} \right] = N \ln f(T) + \ln \frac{V^N}{N!} = N \ln f(T) + \ln \left(\frac{e^N}{N^N} V^N \right) = N \ln f(T) + N \ln \left(\frac{eV}{N} \right)$$
 记 $n = \frac{N}{V}$,则 $\frac{F}{V} = nk_BT \left[\ln \left(\frac{n}{f} \right) - 1 \right] \Rightarrow P = \left(\frac{\partial F}{\partial V} \right)_{N,T} = \frac{Nk_BT}{V}$,和理想气体相同. 这说明满足该形式的状态方程,

$$S = -\left(\frac{\partial F}{\partial T}\right)_{NV} = k_B V \left[-n \ln\left(\frac{n}{f}\right) + \frac{5}{2}n\right]$$
, extensive by adding $N!$.

2. 通过态密度分析配分函数. $Q_N=\int g(E)e^{-\beta E}\mathrm{d}E,\quad g(E)\sim E^{\frac{3N}{2}-1}.$ 那么概率则是 $P(E)\mathrm{d}E=g(E)e^{-\beta E}\mathrm{d}E$ 概率 P(E) 对能量 E 导数为 0 以寻找极值点 E_0 :

$$\frac{\partial}{\partial E} \left[g(E)e^{-\beta E} \right] = g'(E)e^{-\beta E} + g(E)(-\beta)e^{-\beta E} = \left(\frac{3N}{2} - 1 \right) E^{\frac{3N}{2} - 2} e^{-\beta E} + E^{\frac{3N}{2} - 1} (-\beta)e^{-\beta E}$$

$$= \left[\left(\frac{3N}{2} - 1 \right) E^{-1} - \beta \right] \times \sharp = 0 \Rightarrow E_0 = \left(\frac{3N}{2} - 1 \right) \frac{1}{\beta} \Rightarrow \lim_{N \to \infty} E_0 = \frac{3N}{2} k_B T$$

[Example] Colored Ideal Gas. N red atoms, N blue atoms, N green atoms. Statistically independent. microstate: (q, p, color)

1. **存在三种颜色时的熵** S_{3c} : 单种颜色的配分函数 $Q_N(T,V)=\frac{1}{N!}\left(\frac{V}{\lambda_T}\right)^N$, 则三种颜色总共的配分函数为 $Q=Q_N^3$. 那 么自由能为 $F = -k_B T \ln Q = -3k_B T \ln \left(\frac{V}{N\lambda_T}\right)$. 熵为 $S_{3c} = -\left(\frac{\partial F}{\partial T}\right)_{NN} = 3Nk_B \ln \left(\frac{eV}{N}\right) - 3Nf'(T)$

2. 只存在一种颜色时的熵 S_{1c} : $S_{1c}=3Nk_B\ln\left(\frac{eV}{3N}\right)-3Nf'$

比较以上两个结果, 就会发现由于多出颜色自由度产生的混合熵 $\Delta S = S_{3c} - S_{1c} = k_B \ln 3^{3N}$.

[Discussion] 1. How to understand $\ln 3^{3N}$? statistically independent \rightarrow analyze a single particle. 底数 3: 3 种颜色/状态. 2. $S_{\text{tot}} = S_{\{q,p\}} + S_{\text{color.}}$ 新的自由度独立于 (q,p), 则熵直接相加.

[Example] 2-state. $|1\rangle:P_1=r;|2\rangle:P_2=1-r.$ For a single particle,

1.2.5 Grand Canonical Ensemble

matter. (T,V,μ) . $|rs\rangle$: 粒子数为 N_r , 能量为 E_r . 令该系统 A 与环境 A' 整体组成一个孤立系统

$$P_{rs} = \frac{e^{-\alpha N_r - \beta E_s}}{\sum_{r} e^{-\alpha N_r - \beta E_s}}$$

系综中能量的延拓:
$$U(S,V,N) \stackrel{F=U-TS}{\longrightarrow} F(T,V,N) \stackrel{\Phi=F-\mu N}{\longrightarrow} \Phi(T,V,\mu)$$
, 即 Grand potential.
$$\langle N \rangle = \sum_{r,s} N P_{rs} = \frac{\sum_{r,s} N_r e^{-\alpha N_r - \beta E_s}}{\sum_{r,s} e^{-\alpha N_r - \beta E_s}} = -\frac{\partial q}{\partial \alpha}, q = \ln \left(\sum_{r,s} e^{-\alpha N_r - \beta E_s} \right).$$
 可类比于 $\langle E \rangle = -\frac{\partial q}{\partial \beta} \Rightarrow$ q-potential

$$Q(Z,V,T) = \sum_{N=0}^{\infty} Z^{N_r} Q_{N_r}(V,T), \quad Z \equiv e^{-\alpha}, ext{ fugacity}$$
(逸度)

导出 Gibbs entropy(for open system): $\langle \ln P_{rs} \rangle = \sum P_{rs} (\ln P_{rs}) \Rightarrow S = -k_B \sum P_{rs} \ln P_{rs}$

粒子数涨落:
$$\langle (\Delta N)^2 \rangle = \frac{\langle N \rangle^2 k_B T \kappa_T}{V} \Rightarrow \frac{\langle (\Delta n)^2 \rangle}{\langle n^2 \rangle} = \frac{k_B T}{V} \kappa_T, \quad \kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial T} \right).$$

[Example] **Ideal gas.** $Q_N(V,T) = \frac{Q_1^N}{N!}, Q_1(V,T) = \frac{1}{h^3} \int e^{-\beta \frac{p^2}{2m}} \mathrm{d}^3 \vec{q} \mathrm{d}^3 \vec{p} = \frac{V}{\lambda_\sigma^3}.$ 若 H = H(p),则形式为 $Q_1(V,T) = V f(T)$.

从巨正则系综角度出发, 配分函数为
$$Q(Z,V,T) = \sum_{N_r=0}^{\infty} Z^{N_r} \frac{[Vf(T)]^{N_r}}{N_r!} = e^{ZVf(T)}$$
, 其中 $Z = e^{-\alpha}$.

那么 q-potential 为 $q(Z,V,T)=\ln Q=ZVf(T)$. 各热力学量根据与 q 的关系分别导出: 压强 $P=\frac{k_BT}{V}q=Zk_BTf(T)$;

粒子数
$$N = -\frac{\partial q}{\partial \alpha} = ZVf(T)$$
; 内能 $U = -\frac{\partial q}{\partial \beta} = ZVk_BT^2f'(T)$; 状态方程 $PV = Nk_BT$.

[Example] Fluctuation of number of particles. 考虑体系 (V,N) 中的小区域 Ω , 体积为 v, 粒子数为 n. 则 Ω 中有 n 个粒子的概率 $P_n = \frac{\sum\limits_{s} e^{-\alpha n - \beta E_n^{(s)}}}{Q}.$ 猜测平均粒子数为 $\langle n \rangle = \frac{N}{V}v$. 独立同分布. 单个粒子在/不在 Ω 中的概率: $P_1 = \frac{v}{V}, \quad P_0 = 1 - \frac{v}{V}$. 则 $\Omega 中有 n 个粒子的概率为 <math>P(n) = \frac{N!}{(N-n)!n!} P_1^n P_0^{N-n}, \lim_{N \to \infty} P(n)$ 将化为 Poisson 分布: $P(n) = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle},$ 其中 $\langle n \rangle = \frac{N}{V}v$.

1.3 **Phase Transition**

A system containing many degrees of freedom \rightarrow exhibits collective behavior.

[Example] 1. condensation of water vapor; 2. critical behavior; 3. magnetic system. ferromagnetism(自发磁化). 加热后化为 paramagnetism $M \propto H$. 这些相变存在着共性. 4. fluid-superfulid phase transition(He-3 fermion, $T_c = 2.491$ mK; He-4 boson, $T_c=2172~{
m K}$) fermion pair 才可以产生凝聚, 而产生 fermion pair 需要极低温; 5. social/crowd behavior, market price...

 $d\mu = vdP - sdT$, 化学势的一阶导数突变为一级相变(水结冰), 二阶导数突变为二级相变.

1.3.1 Van der Waals Theory

motivation: to find the universal law for gas-liquid phase transition.

分子间相互作用势: 近程排斥, 远程吸引. 临界点 r_0 . 修正 ideal gas: $P = \frac{RT}{v-b} - \frac{a}{v^2}$. b: hard-core repulsion(硬球排斥); a: attraction, $\frac{a}{v^2} \sim n^2 = \left(\frac{N}{V}\right)^2$. 1. $T \gg |\varepsilon_0|$, 可忽略相互作用; 2. $T \downarrow$, interaction \uparrow , condensed state(liquid state); 3. $T \to 0$, crystal

1.3.1.1 Derivation of Van der Waals Equation

$$\begin{split} Q_N(T,V) &= \frac{1}{N!h^{3N}} \int \prod_{i=1}^N \mathrm{d}^3 \vec{q_i} \mathrm{d}^3 \vec{p_i} \exp\left\{-\beta \sum_i \frac{p_i^2}{2m} - \beta \sum_{i < j} V(\vec{q_i} - \vec{q_j})\right\} = \frac{1}{N!} \underbrace{\lambda_T^{3N}}_{\int \mathrm{d}^3 \vec{p}} \underbrace{\left(V - \frac{N\omega}{2}\right)^N}_{\text{hard-core repulsion}} e^{-\beta \overline{U}} \\ &\overline{U} = \frac{1}{2} \sum_{i,j} V_{\text{attract}} \left(\vec{q_i} - \vec{q_j}\right) = \frac{1}{2} \int \mathrm{d}^3 \vec{r_1} \mathrm{d}^3 \vec{r_2} n(\vec{r_1}) n(\vec{r_2}) V_{\text{attract}} (\vec{r_1} - \vec{r_2}) = \frac{1}{2} n^2 V \underbrace{\int V_{\text{attract}} (\vec{r}) \mathrm{d}^3 \vec{r}}_{\text{hard-core repulsion}} = \frac{1}{2} \frac{N^2}{V} u \\ &F = -k_B T \ln Q_N(V,T) = -Nk_B T \ln \left(V - \frac{N\omega}{2}\right) + Nk_B T \ln \left(\frac{N}{e}\right) + 3Nk_B T \ln \lambda_T - u \frac{N^2}{2V} \\ &\Rightarrow P = -\left(\frac{\partial F}{\partial V}\right)_{T,N} = \frac{Nk_B T}{V - \frac{N\omega}{2}} - \underbrace{\frac{N^2}{V^2}}_{u} + \underbrace{\frac{N^2}{$$

使用 cluster expansion 对
$$V\left(\vec{q_i} - \vec{q_j}\right)$$
 进行处理.
$$[\text{Example}] \ U(r) = \begin{cases} \infty, & r \leq r_0 \\ -U_0 \left(\frac{r_0}{r}\right)^6, & r > r_0 \end{cases}. \ B(T) = -2\pi \int_0^\infty [e^{-U(r)/k_BT} - 1] r^2 \mathrm{d}r = \frac{2\pi r_0^2}{3} \left(1 - \frac{U_0}{k_BT}\right), \\ a = \frac{2\pi r_0^3 U_0}{3}, \quad b = \frac{2\pi r_0^3}{3} \end{cases}, \quad b = \frac{2\pi r_0^3}{3}.$$

1.3.1.1.1 Simpler Argument Statistical independence of particles \rightarrow consider a single particle. Accessible volume(repulsion): $V - V_0$, $V_0 \propto N \Rightarrow V_0 = bN$; potential energy(attraction): $u \propto \frac{N}{V} = n \Rightarrow u = -a\frac{N}{V}$.

$$Q_{1}(V,T) = f(T) \int_{V-V_{0}} e^{aN/VT} d^{3}\vec{r} = f(T)(V-bN)e^{aN/VT},$$

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T,N} = k_{B}T \frac{\partial \ln Q_{N}}{\partial V} \Big|_{T,N} = k_{B}T \frac{\partial}{\partial V} \left(\ln \frac{Q_{1}^{N}}{N!}\right)_{T,N} \stackrel{\partial N}{=} {}^{0}k_{B}TN \frac{\partial \ln Q_{1}}{\partial V}$$

1.3.2 Phase Diagram

Van der Waals equation: real gas.

Other ways to describe: $PV = RT \left(1 + \frac{A_2}{V} + \frac{A_3}{V^2} + \cdots \right)$, or $\frac{Pv}{k_PT} = 1 + \frac{B(T)}{v} + \frac{C(T)}{v^2} + \cdots$

 $P = \frac{RT}{v-b} - \frac{a}{v^2}$ 数学上是一个 v 的三次方程. 存在三个解代表的是 gas-liquid coexistence. $v_1 = v_l, v_3 = v_g$. 特殊情况:

1.3.2.1 Maxwell Construction

 $G=\mu N$. 在等温曲线上, $\mathrm{d}G=-S\mathrm{d}T+V\mathrm{d}P$. 设 y=P 水平线与 P(v) 交点左右分别为 A,B. 那么从 A 到 B 的自由能变化量为 $\Delta G=\int_A^BV\mathrm{d}P=\int_A^B[\mathrm{d}(PV)-P\mathrm{d}V]=P(V_B-V_A)-\int_{V_A}^{V_B}P\mathrm{d}V=0$, 前后分别是 y=P 直线下矩形面积和 P(v)曲线下的面积, 它也可以理解为 P(v) 曲线在 y=P 水平线上下两面积相等. 也就是说, 在这条水平线上 liquid-gas coexistence.

计算气液两相所占体积: $v_0 = xv_l + (1-x)v_g \Rightarrow x = \frac{v_g - v_0}{v_g - v_l}$, 即 lever rule. $\frac{\partial P}{\partial v} > 0$ 是热力学不稳定的.

1.3.2.2 Critical Behavior

Critical point: $\frac{\partial P}{\partial v}\Big| = 0$, $\frac{\partial^2 P}{\partial v^2}\Big| = 0 \Rightarrow P_c = \frac{a}{27b^2}$, $T_c = \frac{8a}{27bR}$, $v_c = 3b$, material dependent; $\frac{RT_c}{P_c v_c} = \frac{8}{3}$, material independent.

 $P_r = \frac{P}{P_c}$, $v_r = \frac{v}{v_c}$, $T_r = \frac{T}{T_c} \Rightarrow \left(P_r + \frac{3}{v_r^2}\right)(3v_r - 1) = 8T_r$. 所以即使是不同类的 Van der Waals gas, 也可以通过判断

进一步使用小量: $P_r=1+\pi$, $v_r=1+\Psi$, $T_r=1+t$, 从而使用 (π,Ψ,t) 描述临界点附近状态.

1.3.2.2.1 Along the isothermal curve at t = 0 ($T = T_c$) $\pi = -\frac{3}{2}\Psi^3$, 3: critical exponent.

1.3.2.2.2 Ψ_l 和 Ψ_g 对 critical point 的逼近行为 $\pi = 4t - 6t\Psi + \frac{3}{2}\Psi^3 \Rightarrow \begin{cases} \pi = 4t - 6t\Psi_l + \frac{3}{2}\Psi_l^3 \\ \pi = 4t - 6t\Psi_a + \frac{3}{2}\Psi_a^3 \end{cases}$. 原始的 v_l 和 v_g 是通过

Maxwell construction $\int dG = 0 \Rightarrow P(V_B - V_A) - \int_V^{V_B} P dV = 0$ 得到的. 使用 (π, Ψ, t) 重构:

$$\int_{\Psi_l}^{\Psi_g} \pi(\Psi; t) d\Psi = \pi(\Psi_g - \Psi_l) \Rightarrow 4t - 3t(\Psi_g + \Psi_l) - \frac{3}{8}(\Psi_g + \Psi_l)(\Psi_g^2 + \Psi_l^2) = \pi.$$

联立方程组得到 $2\pi=8t-6t(\Psi_l+\Psi_g)-\frac{3}{2}\left(\Psi_l^2+\Psi_g^2\right)\Rightarrow (\Psi_g+\Psi_l)(\Psi_g-\Psi_l)=0\Rightarrow \Psi_g=-\Psi_l.$ 因此在临界点附近, Ψ_l 和 Ψ_g 对称地分布在临界点两侧.

1.3.2.2.3 Isothermal Compressibility Near the Critical State $-\left(\frac{\partial\Psi}{\partial\pi}\right)_t = \begin{cases} \frac{1}{6}t^{-1}, & t>0\\ \frac{1}{12}|t|^{-1}, & t<0 \end{cases}, -1: \text{ critical exponent.}$

[Example] First observation of critical phenomenon. Water: $T_c = 373.946$ °C, $P_c = 217.7$ atom.

[Discussion] $Q(Z,V,T) = \sum_{N=0}^{N_{\text{max}}} Z^N Q_N(V,T), \quad P = \frac{k_B T}{V} \ln Q.$ 级数各项表达式均为解析的. 若要产生奇点(singularity), 应要求 Thermodynamic limit(热力学极限), 即 $\lim_{N_{\text{max}},V\to\infty}$ 的同时 $\frac{N}{V}$ = finite const.

1.3.3 Ising Model: From Thermodynamic Approach to Statistical Approach

$$H(\{\sigma_i\}) = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - \mu B \sum_i \sigma_i, \quad \sigma_i = \pm 1 (\text{binary variable})$$

1.3.3.1 Preliminary Analysics

设 N_+ 个自旋 ↑, N_- 个自旋 ↓; 又令 N_{++} 为相邻 ↑↑ 的数, N_{--} 为相邻 ↓↓ 的数, N_{+-} 为相邻 ↓↑ 与 ↑↓ 的数.

通过这些参数重构哈密顿量: $H_N = -J(N_{++} + N_{--} - N_{+-}) - \mu B(N_+ - N_-)$.

设 q 是各自旋的配位数(对于 Ising Model 即 2), 存在约束关系 $N=N_++N_-$, $qN_+=2N_{++}+N_{+-}$, $qN_-=2N_{--}+N_{+-}$. 因此只有两个独立变量.

$$(N_+, N_{++})$$
 不是单个微观态,存在着简并. 因此 $H_N(N_+, N_{++}) = -J\left(\frac{1}{2}qN - 2qN_+ + 4N_{++}\right) - \mu B(N_+ - N),$

$$Q_N = \sum_{(N_+, N_{++})} e^{-\beta H_N(N_+, N_{++})} g_N(N_+, N_{++})$$

1.3.3.2 Mean-Field Approximation

Order parameter(序参量): $L=\frac{1}{N}\sum_i \sigma_i = \frac{N_+ - N_-}{N} \in [-1,+1]$. 而 $M=\mu(N_+ - N_-) = \mu NL$.

[Discussion] 为了照顾到 L=0 中"前半全 \uparrow ,后半全 \downarrow "的特殊情况,可以进一步定义新的序参量 $S=\frac{N_{++}+N_{--}-N_{+-}}{\frac{1}{2}qN}$. 即相邻自旋方向相同为有序,反之为无序. 因此序参量依赖于对 "序" 的定义.

$$\begin{split} H(\{\sigma_i\}) &= -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - \mu B \sum_i \sigma_i = -\frac{J}{2} \sum_i \left(\sum_{\langle j \rangle} \sigma_j \right) \sigma_i - \mu B \sum_i \sigma_i \\ &= -\frac{J}{2} \sum_i (q \overline{\sigma}) \sigma_i - \mu B \sum_i \sigma_i = -\mu \left(B + \frac{1}{2} B' \right) \sum_i \sigma_i, \quad B' = \frac{qJ}{\mu} \overline{\sigma}, \quad \text{Effective field} \end{split}$$

$$\mathrm{spin}\,\,\mathrm{flip}(\uparrow \Leftrightarrow \downarrow)\,\,\mathrm{引起能量变化}\,\,\delta\varepsilon = \varepsilon_- - \varepsilon_+ = \left(-J\sum_{\langle j\rangle}\sigma_i - \mu B\sigma_i\right)_{\sigma_i = -1} - \left(-J\sum_{\langle j\rangle}\sigma_i - \mu B\sigma_i\right)_{\sigma_i = +1} = 2\mu(B+B').$$

$$\overline{N}_{\pm} = N \frac{e^{-\beta \varepsilon_{\pm}}}{\sum_{+,-}^{+} e^{-\beta \varepsilon_{i}}},$$
则有 self-consistency function(自洽方程): $\frac{\overline{N}_{-}}{\overline{N}_{+}} = \frac{1-\overline{L}}{1+\overline{L}} = e^{-2\beta(\mu B + qJ\overline{L})}, \quad \overline{L} = \overline{\sigma} = \frac{1}{N} \sum_{i} \sigma_{i}.$

等式两边同 ln, 且引入 $\arctan x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$, 得到 $\beta \left(qJ\overline{L} + \mu B \right) = \arctan \left(\overline{L} \right)$, 即 \overline{L} 形式的 **Equation of State**.

[Example] 其它使用 Mean-Field approximation 的例子

- 1. 溶液中 electric potential $\phi(\vec{r})$, 粒子分布 $\rho(\vec{r}) = \sum_s e_s n_{s_0} e^{-\frac{e_s \phi(\vec{r})}{k_B T}}$, $\nabla^2 \phi(\vec{r}) = -4\pi \rho(\vec{r})$.
- 2. 在 $\overline{L} \to 0$ 时, 即有 $\overline{L} \sim M \propto B$, 即 paramagnetism(顺磁). 非线性项 \to ferromagnetism(铁磁).

1.3.3.2.1
$$B=0$$
 下的 \overline{L} 令 $L_0=\overline{L}(B=0)$, 得到无外场条件下的状态方程 $\overline{L}_0=\tanh{(\beta Jq\overline{L}_0)}$. $\overline{L}_0\to 0$ 代表可相变. 使用极限 $\lim_{x\to 0}\tanh{(x)}\simeq x-\frac{x^3}{3}+O(x^5)$, 展开状态方程: $(\beta qJ-1)\overline{L}_0=\frac{1}{3}\left(\beta qJ\overline{L}_0\right)^3$. 若 $\beta qJ-1>0\Leftrightarrow T<\frac{qJ}{k_B}=T_c$,

[Discussion] 几何观点:
$$y = x$$
 和 $y = \tanh(\beta Jqx)$ 的交点. 在高温时只有 1 个交点, 而低温时则能产生 3 个交点. 根据中值定理, 为产生交点, 应存在 $\frac{\mathrm{d}\tanh\left(\beta J\overline{L}_0\right)}{\mathrm{d}\overline{L}_0}\bigg|_{\overline{L}_0>0} = 1 \Rightarrow \frac{qJ}{k_BT_c} = 1.$

对于 L_0 -T 相图. 这是一种 continuous phase transition, 于二阶相变. symmetry abrupt change(对称性突变).

1. 在
$$T_c$$
 左邻域, 有近似 $\lim_{T \to T_c^-} \overline{L}_0 = \overline{L}_0 \frac{T_c}{T} - \frac{1}{3} \overline{L}_0^3 \left(\frac{T_c}{T}\right)^3 \Rightarrow \overline{L}_0 \simeq 3^{\frac{1}{2}} \left(1 - \frac{T}{T_c}\right)^{\frac{1}{2}}$.

2. 在
$$T \to 0$$
 时, 有近似 $\lim_{T \to 0} \overline{L}_0 \simeq 1 - 2 \exp\left(-\frac{2T_c}{T}\right)$, 斜率 $\frac{d\overline{L}_0}{dT} \to 0$.

研究在 B=0 时的 Specific Heat(热容). 无外场时系统内能为 $H(\{\sigma_i\})=-\frac{J}{2}\sum_i(q\overline{\sigma})\sigma_i=-\frac{1}{2}qJN\overline{L}_0^2;$

热容为内能偏导 $c_0 = \frac{\partial U_0}{\partial T} = -qJN\overline{L}_0\frac{\mathrm{d}\overline{L}_0}{\mathrm{d}T}$. 可见其依赖于 $\frac{\mathrm{d}\overline{L}_0}{\mathrm{d}T}$; 因此 1. $T > T_c$ 时, $c_0 = 0$;

2.
$$\lim_{T \to T_c^-}$$
 时, 对物态方程两边都 $\frac{\partial}{\partial T}$, 得到 $c_0 = k_B N \frac{T_c}{T} \overline{L}_0^2 \frac{1 - \overline{L}_0^2}{\frac{T}{T} - \left(1 - \overline{L}_0^2\right)} \simeq \frac{3}{2} N k_B$

研究在 B=0 时的熵 S_0 . 1. Statistical method. 熵 $S_0(T \geq T_c)=k_B \ln{(2^N)}=Nk_B \ln{2}$.

2. Thermodynamic method.
$$S_0(T \ge T_c) = \int_0^T \frac{c_0(T) dT}{T} = \int_0^{T_c} \frac{c_0(T) dT}{T} + \int_{T_c}^T \frac{c_0(T) dT}{T} = -qJN \int_1^0 \frac{\overline{L}_0}{T} d\overline{L}_0$$

$$= Nk_B \int_0^1 \operatorname{arctanh} \left(\overline{L}_0 \right) d\overline{L}_0 = Nk_B \ln 2$$

$$\chi_0 = \left(\frac{\partial M}{\partial B}\right)_T \Rightarrow \lim_{T \to T_c^+} \chi_0 \simeq \frac{NM^2}{k_B} \frac{1}{T - T_c}, \quad \lim_{T \to T_c^-} \chi_0 \simeq \frac{NM^2}{2k_B} \frac{1}{T_c - T}, \quad \lim_{T \to 0} \chi_0 \simeq \frac{4NM^2}{k_B T} \exp\left\{-\frac{2T_c}{T}\right\}.$$

1.3.3.2.2 Weak External Field
$$B \to 0$$
 在 $T \ge T_c$ 时,有 $\overline{L} \simeq \frac{\mu \beta}{1 - \beta q J} B = \frac{\mu}{k_B (T - T_c)} B \Rightarrow \overline{L} \propto B$,即 Curie's law.

1.3.3.3 Lost Correlation under Mean-Field Approximation

1.3.3.3.1 概率检验 取任意两相邻格点
$$\langle i,j \rangle$$
, 其自旋均为个的概率 $P_{++} = \frac{N_{++}}{\frac{1}{2}qN}$ 是否等价于单自旋个概率乘积
$$\frac{N_{+}}{N} \times \frac{N_{+}}{N} = P_{+} \times P_{+}?$$
 通过 MFT 给出的 $U_{0} = -\frac{1}{2}qJN\overline{L}_{0}^{2}, N_{+} = \frac{1}{2}N(1+\overline{L}_{0}), H_{N}(N_{+},N_{++})$ 进行验证($\sqrt{}$). 同理 $P_{--} = P_{-}^{2}, P_{+-} = 2P_{+}P_{-}$. 如果 Random mixing(完全随机): $\frac{N_{++}N_{--}}{N_{+-}^{2}} = \frac{P_{++}P_{--}}{(P_{+-}+P_{-+})^{2}} = \frac{P_{+}^{2}P_{-}^{2}}{4P_{+}^{2}P_{-}^{2}} = \frac{1}{4}$. 因此若该值偏离 $\frac{1}{4}$, 则存在着某种自旋间的 correlation.

1.3.3.3.2 涨落检验 将
$$\sigma_i$$
 视为 continuous variable $\sigma = \langle \sigma_i \rangle + \delta \sigma_i = m + \delta \sigma_i$, 则
$$H = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j = -J \sum_{\langle i,j \rangle} (m + \delta \sigma_i)(m + \delta \sigma_j) = -Jmq \sum_i \delta \sigma_i = -Jmq \sum_i (\sigma_i - m) = -Jmq \sum_i \sigma_i + \text{const.}$$
 在处理时运用了 $\delta \sigma_i \delta \sigma_j \to 0$ 的技巧, 这也意味着 lost of correlation of fluctuation.

Derivation of Equation of State in Terms of Order Parameter L

Also as an [Exercise]:

$$\begin{split} \frac{N_{+}}{N} &= \frac{1}{2}(1+L), \quad \frac{N_{-}}{N} = \frac{1}{2}(1-L), \quad L = \frac{N_{+} - N_{-}}{N} \\ \frac{N_{++}}{\frac{1}{2}qN} &= \left(\frac{N_{+}}{N}\right)^{2} \to \frac{N_{++}}{N} = \frac{q}{8}(1+L)^{2}, \quad \text{similarly } \frac{N_{--}}{N} = \frac{q}{8}(1-L)^{2}, \quad \frac{N_{+-}}{N} = \frac{q}{4}(1-L^{2}) \\ U(L) &= -\frac{1}{2}qJNL^{2} - \mu BNL \\ S &= k_{B} \ln \left(\frac{N!}{N_{+}!N_{-}!}\right)^{N \to \infty} - k_{B}N \left[\frac{1+L}{2} \ln \left(\frac{1+L}{2}\right) + \frac{1-L}{2} \ln \left(\frac{1-L}{2}\right)\right] \\ F(L) &= U - TS = -\frac{1}{2}qJNL^{2} - \mu BNL + k_{B}TN \left[\frac{1+L}{2} \ln \left(\frac{1+L}{2}\right) + \frac{1-L}{2} \ln \left(\frac{1-L}{2}\right)\right] \\ \frac{\partial F}{\partial L} &= 0 \Rightarrow -qJNL - \mu BN + \frac{1}{2}k_{B}TN \left[\ln \left(\frac{1+L}{2}\right) + 1 - \ln \left(\frac{1-L}{2}\right) - 1\right] = 0 \\ &\Rightarrow -qJNL - \mu BN + \frac{1}{2}k_{B}TN \ln \left(\frac{1+L}{1-L}\right) = 0 \Rightarrow \frac{1}{2} \ln \left(\frac{1+L}{1-L}\right) = \frac{qJL + \mu B}{k_{B}T} \\ &\Rightarrow \arctan L = \beta(qJL + \mu B), \quad \beta = \frac{1}{k_{B}T} \end{split}$$

1.3.3.5 1st-Order Approximation-Bethe's Method @ 1935

$$(q+1)$$
 system. σ_0 感受到 $q \uparrow \sigma_i$ 的作用. $H_{q+1} = -\mu B \sigma_0 - \mu (B+B') \sum_{j=1}^q \sigma_j - J \sum_{j=1}^q \sigma_0 \sigma_j$. Requirement: $\overline{\sigma}_0 = \overline{\sigma}_j$, $\forall j$. $Z = \sum_{\sigma_0 = \pm 1} \sum_{\sigma_j = \pm 1} e^{-\beta H_{q+1}} = \overset{\sigma_0 = +1}{Z_+} + \overset{\sigma_0 = -1}{Z_-}$, $Z_{\pm} = e^{\pm \alpha} \left[2 \cosh \left(\alpha + \alpha' \pm \gamma \right) \right]^q$, $\alpha = \frac{\mu B}{k_B T}$, $\alpha' = \frac{\mu B'}{k_B T}$, $\gamma = \frac{J}{k_B T}$. $\overline{\sigma}_0 = (+1) \frac{Z_+}{Z} + (-1) \frac{Z_-}{Z}$, $\overline{\sigma}_j = \langle \frac{1}{q} \sum_j \sigma_j \rangle = \frac{1}{q} \frac{1}{Z} \frac{\partial Z}{\partial \alpha'}$ (类比巨正则系综 $Z = \sum_{r,s} e^{-\alpha N_r - \beta E_s}$, $\langle N \rangle = -\frac{\partial \ln Z}{\partial \alpha}$). $\overline{\nabla}_j = \overline{\nabla}_j \Rightarrow e^{2\alpha'} = \left[\frac{\cosh \left(\alpha + \alpha' + \gamma \right)}{\cosh \left(\alpha + \alpha' - \gamma \right)} \right]^{q-1}$. $\alpha' = \alpha' (\alpha, \gamma)$.

若 $\alpha=0$ (no external field), 此时 $\alpha'=0$ 解存在(顺磁). 非零解: $\alpha'=(q-1)\tanh\gamma\left(\alpha'-\mathrm{sech}^2\gamma\frac{\alpha'^2}{3}\right)$. 根据中值定理,

有解即要求斜率
$$\left(\frac{\partial}{\partial \alpha'}\right)$$
满足 $\left(q-1\right)$ tanh $\gamma > 1$.解得 $^{\gamma_c} = \frac{1}{2} \ln \left(\frac{q}{q-2}\right)$, $T_c = \frac{2J}{k_B} \frac{1}{\ln \left(\frac{q}{q-2}\right)}$.

检验发现对于 1-dim Ising Model, $q=2\Rightarrow T_c=0$.

$$\alpha'(T \le T_c) = \left[3(q-1)\frac{J}{k_B T_c} \left(1 - \frac{T}{T_c}\right)\right]^{\frac{1}{2}}, \quad \overline{\sigma}_0 = \frac{(+1) \cdot Z_+ + (-1) \cdot Z_-}{Z_+ + Z_-} = \frac{\frac{Z_+}{Z_-} - 1}{\frac{Z_+}{Z_-} + 1} = \frac{\sinh\left(2\alpha + 2\alpha'\right)}{\cosh\left(2\alpha + 2\alpha'\right) + e^{-2\gamma}}.$$

若
$$\alpha=0$$
,则 $\lim_{\alpha'\to 0}\overline{\sigma}_0=\frac{2\alpha'}{1+e^{-2\gamma_c}}=\left[\frac{q^2}{q-1}\frac{J}{k_BT_c}3\left(1-\frac{T}{T_c}\right)\right]^{\frac{1}{2}}$. 无论是否存在关联 q ,都存在于 $T=T_c$ 附近的发散斜率.

1.3.3.5.1 Correlation of Spin 对于 no correlation 体系, $\frac{N_{++}N_{--}}{N_{-}^2} = \frac{1}{4}$.

将求和形式写作
$$Z = \sum_{\sigma_0 = \pm 1} \sum_{\sigma_1 \pm 1} \left(\sum_{\sigma_2, \sigma_3, \cdots, \sigma_q = \pm 1} \right) = Z_{++} + Z_{+-} + Z_{--}$$
. 存在键数约束 $N_{++} + N_{--} + N_{+-} = \frac{1}{2} q N$. 可解得 $(N_{++}, N_{--}, N_{+-}) = \frac{q N}{4[e^{\gamma} \cosh{(2\alpha + 2\alpha')} + e^{-\gamma}]} \left(e^{2\alpha + 2\alpha' + \gamma}, e^{-2\alpha - 2\alpha' + \gamma}, 2e^{-\gamma} \right)$.

代入检验自旋关联
$$\frac{N_{++}N_{--}}{N_{+-}^2}=\frac{1}{4}\stackrel{\text{correlation}}{e^{4\gamma}},\quad \gamma=\frac{J}{k_BT}$$

1.3.3.5.2 Specific Heat 无外场内能为
$$U_0 = -\frac{1}{2}qJN\frac{\cosh{(2\alpha')} - e^{-2\gamma}}{\cosh{(2\alpha')} + e^{-2\gamma}}$$
. 在 $T > T_c$ 时, 等效平均场为 $\alpha' = 0$. 此时热容为
$$\frac{c_0}{Nk_B} = \frac{1}{2}q\gamma^2 \operatorname{sech}^2\gamma > 0$$
 回忆 MFT 给出的 $c_0 \propto \overline{L}_0 \frac{\mathrm{d}\overline{L}_0}{\mathrm{d}T} = 0$ 和此处结果相悖, 显然是忽略了涨落关联造成的

1.3.3.6 Exact Solution of 1-D Ising Model

1.3.3.7 Phase Transition & Space Dimension

spin flip: energetically unfavored, entropically favored. $F = 2J - k_B T \ln N < 0 \Rightarrow T > \frac{2J}{k_B \ln N}$. 1D: (+,+,-,+,+) 染色 元素翻转 $+\to -$,不会消耗能量; 2D: $\begin{pmatrix} -&-&-&-&-\\ -&-&-&-&-\\ -&+&+&+&-\\ -&-&-&-&- \end{pmatrix}$ 染色元素翻转, 需要消耗能量.

1.3.3.8 Development of Ising Model

1.3.3.8.1 Spin Glass
$$H = -\sum_{\langle i,j \rangle} J_{ij} \sigma_i \sigma_j - h \sum_i \sigma_i$$
, metastable state.

$$\textbf{1.3.3.8.2} \quad \textbf{Hopfield Network} \quad \text{Learning & Computation. } V_i \rightarrow \begin{cases} 1, & \text{if } \sum_{j} \omega_{ij} V_j > U \\ 0, & \text{if } \sum_{j} \omega_{ij} V_j < U \end{cases}.$$

1.3.3.8.3 Boltzmann Machine
$$V_i=0 \rightarrow 1, \quad \frac{P_{V_i=0}}{P_{V_i=1}}=e^{-\Delta E_i/k_BT}.$$

1.3.4 Landau's Theory (of 2nd Order Phase Transition)

Critical exponents: $\alpha, \beta, \gamma, \delta$. External field h; Order parameter: $m_0 = m(h = 0)$;

Response functions: C_0 (热容), $\chi_0 \sim \frac{\partial m}{\partial h}$ (磁化率).

$$\lim_{h \to 0, T \to T_c^-} m_0 \sim (T_c - T)^{\beta}, \quad \lim_{h \to 0} \chi_0 \sim \begin{cases} (T - T_c)^{-\gamma}, & T \to T_c^+ \\ (T_c - T)^{-\gamma'}, & T \to T_c^- \end{cases},$$

$$\lim_{h \to 0} m \bigg|_{T = T_c} \sim h^{1/\delta}, \quad \lim_{h \to 0} C_0 \sim \begin{cases} (T - T_c)^{-\alpha}, & T \to T_c^+ \\ (T_c - T)^{-\alpha'}, & T \to T_c^- \end{cases}$$

 $\lim_{h\to 0} m \bigg|_{T=T_c} \sim h^{1/\delta}, \quad \lim_{h\to 0} C_0 \sim \begin{cases} (T-T_c)^{-\alpha}, & T\to T_c^+ \\ (T_c-T)^{-\alpha'}, & T\to T_c^- \end{cases}$ [Example] 1. superfluid He: $\alpha\approx -0.01294$; 2. Oth approximation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-liquid phase transformation of Ising Model & Van der Waals theory of gas-li sition: $\alpha=\alpha'=0$, $\beta=\frac{1}{2}, \gamma=\gamma'=1, \delta=3; 3.$ CO2: $\beta=0.34$, $\delta=0.42$, $\gamma=1.32$. N2: $\beta=0.33$, $\delta=0.42$, $\gamma=1.35$ [Discussion] Critical exponents. 考虑稳定性条件, 导出其关系 $\alpha'+2\beta+\gamma'\geq 2$ (Rushbrooke's inequality).

1.3.4.1 Constrained Free Energy

平衡态下,
$$\mathrm{d}F = -S\mathrm{d}T - M\mathrm{d}H, \quad M = -\left(\frac{\partial F}{\partial H}\right)_T \Rightarrow F(T,H,M), \text{ let } \left.\frac{\partial F(T,H,M)}{\partial M}\right|_{\mathrm{equilibrium}} = 0. \ M \text{ acts as a constraint.}$$

Continuous variable m_0 : $m_0 = 0 \xrightarrow{\text{phase transition}} m_0 \neq 0$.

Free energy (analytic function of m_0): $\lim_{t,m_0\to 0} \psi_0(t,m_0) = q(t) + r(t)m_0^2 + s(t)m_0^4 + \cdots, t = \frac{T-T_c}{T}$,

其中 q(t), r(t), s(t) 是 phenomenological parameters(唯象参数).

一级相变: m_0 -T 相图中, m_0 出现骤降. 在 gas-liquid PT 中, $m_0 = \rho_l - \rho_q$.

[Discussion] ψ_0 是对 m_0 的偶函数, 因为要求系统具有:

1. symmetry: 能量不应依赖于磁化的方向, 即 $\psi_0(m_0) = \psi_0(-m_0)$;

2. 稳定性: 自由能需要在
$$m_0=0$$
 (高温相) 取得极小值, 若有奇次项则使得 $\left.\frac{\partial \psi_0}{\partial m_0}\right|_{m_0=0}\neq 0$.

化学势 μ 全微分: $d\mu(T, p, h) = -SdT + vdp - mdh$. 加入外场 h 得到约化的化学势: $\tilde{\mu} = \mu + mh$

其全微分为
$$\mathrm{d}\widetilde{\mu} = -S\mathrm{d}T + v\mathrm{d}p - h\mathrm{d}m$$
. 那么 $\mu = \widetilde{\mu} - mh = \widetilde{\mu}_0(T,p) + \alpha(T,p)m^2 + \beta(T,p)m^4 - mh$.

平衡态:
$$\frac{\partial \psi_0}{\partial m_0} = r(t)m_0 + 2s(t)m_0^3 = 0 \Rightarrow m_0 = 0, \pm \sqrt{\frac{-r(t)}{s(t)}}$$
. 将 $r(t)$, $s(t)$ 以 t 阶数展开:

$$r(t) = r_0 + \boxed{r_1 t} + r_2 t^2 + \cdots$$
, $s(t) = \boxed{s_0} + s_1 t + s_2 t^2 + \cdots$. 仅取框选项, 即

$$\psi_0 = q_0 + r_1 t m_0^2 + s_0 m_0^4, \quad r_1 > 0, \quad s_0 > 0.$$
 存在关系 $\sqrt{\frac{-r(t)}{2s(t)}} \simeq \sqrt{\frac{r_1 |\mathbf{t}|}{2s_0}} \Rightarrow \beta = \frac{1}{2}, \quad m_0 \sim t^{\beta} (\beta \text{ 的定义}).$

$$\psi_0(m_0)$$

$$m_0^* \sim |t|^{1/2}$$

$$\beta = \frac{1}{2}$$

$$\psi_0(m_0) = q_0 + r_1 t m_0^2 + s_0 m_0^4 \quad T > T_c \ (t > 0)$$

$$T < T_c \ (t < 0)$$

$$m_0$$

$$\psi_0(-m_0^*)$$

$$\psi_0(m_0^*)$$

$$m_0$$

$$\psi_0(m_0^*)$$

$$m_0$$

$$\psi_0(m_0^*)$$

$$m_0 < |t|^{\frac{1}{2}}, \quad t < 0$$

[Discussion] The concept of "**Universality Class**(普**适类**)". 以 critical exponents 对相变进行分类. 比如 Ising Model 和 Van der Waals gas 属于同类($\alpha=\alpha'=0,\beta=\frac{1}{2},\gamma=\gamma'=1,\delta=3$). q(t),r(t),s(t) 不影响 critical exponents, 而是描述具体实验. [Discussion] Wriss model @ 1907

$$F = U - TS, \quad dU = -\int H dM, \quad H = H_{\rm ext} + b, \quad b \propto M : \text{mean field} \Rightarrow U = -H_{\rm ext}M + \alpha M^2$$

$$S = S(m), \quad m = \frac{N_+ - N_-}{N}, \quad S(m) = -Nk_B \sum_j P_j \ln P_j, \quad P_{\pm}(m) = \frac{1 \pm m}{2}$$

$$F = -hm + \alpha m^2 - Nk_B T[(1+m)\ln(1+m) + (1-m)\ln(1-m)]$$

Landau Free Energy 物态方程:
$$\left. \frac{\partial F}{\partial m} \right|_{m_0} = 0 \Rightarrow h = 2r_1m + 4s_0m^3 \Rightarrow |m_0| = \sqrt{\frac{r_1|t|}{2s_0}}, \quad t \to 0^-.$$

$$2^{\frac{1}{2}} \left[2\operatorname{sgn}(t) \left(\frac{m}{r_1^{\frac{1}{2}} |t|^{\frac{1}{2}} / s_0^{\frac{1}{2}}} \right) + 4 \left(\frac{m}{r_1^{\frac{1}{2}} |t|^{\frac{1}{2}} / s_0^{\frac{1}{2}}} \right)^3 \right] = \frac{h}{r_1^{\frac{3}{2}} |t|^{\frac{3}{2}} s_0^{\frac{1}{2}}} \Leftrightarrow 2^{\frac{1}{2}} \left[2\operatorname{sgn}(t)\widetilde{m} + \widetilde{m}^3 \right] = \widetilde{h}, \quad \widetilde{\psi} = -\widetilde{h}\widetilde{m} + \operatorname{sgn}(t)\widetilde{m}^2 + \widetilde{m}^4 + \widetilde$$

约化自由能:
$$\widetilde{\psi} = \frac{\psi}{r_1^2|t|^2/s_0} \sim \widetilde{h}$$
, 或 $\frac{\psi}{|t|^2} \sim \frac{h}{|t|^{\frac{3}{2}}}$. 于是有 $\psi = C_2|t|^2 f\left(\frac{C_1 h}{|t|^{\frac{3}{2}}}\right)$.

Beyond MFT: 将指数延拓为
$$\psi = C_2 |t|^{2-\alpha} f\left(\frac{C_1 h}{|t|^{\Delta}}\right), m_0 \sim \lim_{h \to 0} \left(\frac{\partial \psi}{\partial h}\right) \sim \lim_{h \to 0} |t|^{2-\alpha-\Delta} f'\left(\frac{C_1 h}{|t|^{\Delta}}\right) \Rightarrow \beta = 2 - \alpha - \Delta$$
 $\gamma = \gamma' = \alpha + 2\Delta - 2, \quad \delta = \frac{\Delta}{\alpha}$. 不需要知道具体的 Hamiltonian.

 $\gamma=\gamma'=\alpha+2\Delta-2, \quad \delta=rac{\Delta}{\beta}.$ 不需要知道具体的 Hamiltonian.

1.3.4.2 Fluctuations & Correlation Functions

无关联体系:
$$\langle \sigma_i \sigma_j \rangle = \langle \sigma_i \rangle \langle \sigma_j \rangle$$
. 定义关联函数 $g_{ij} = \langle \sigma_i \sigma_j \rangle - \langle \sigma_i \rangle \langle \sigma_j \rangle = \langle \delta \sigma_i \delta \sigma_j \rangle$, 其中 $\delta \sigma = \sigma - \langle \sigma \rangle$.

配分函数为
$$Q_N(H,T) = \sum_{\{\sigma_i\}} \exp\left(\beta J \sum_{\langle i,j \rangle} \sigma_i \sigma_j + \beta \mu H \sum_i \sigma_i\right)$$
, 通过对 $\ln Q_N$ 求偏导以得到期望值:

$$\frac{\partial \ln Q_N}{\partial H} = \beta \mu \left\langle \sum_i \sigma_i \right\rangle = \beta \langle M \rangle, \quad \frac{\partial^2 \ln Q_N}{\partial H^2} = \beta^2 \left(\left\langle M^2 \right\rangle - \left\langle M \right\rangle^2 \right);$$

$$\chi = \frac{\partial \overline{M}}{\partial H} = \frac{\partial}{\partial H} \left(\frac{1}{\beta} \frac{\partial \ln Q_N}{\partial H} \right) = \beta \left(\langle M^2 \rangle - \langle M \rangle^2 \right) = \beta \mu^2 \sum_{i,j} g_{ij},$$

1. 热容
$$C_v = \frac{\partial \langle E \rangle}{\partial T} \bigg|_V = \frac{\langle (\Delta E)^2 \rangle}{k_B T^2};$$

2. 等温压缩率
$$\kappa_T = -\frac{1}{\langle V \rangle} \frac{\partial \langle V \rangle}{\partial P} \bigg|_T = \frac{\langle (\Delta V)^2 \rangle}{k_B T \langle V \rangle}.$$

For homegeneous system, $g_j = g(\vec{r}), \quad \chi = \beta \mu^2 N \sum_{\vec{r}} g\left(\vec{r}\right) = N \beta \mu^2 \frac{1}{a^d} \int \mathrm{d}^d \vec{r} g\left(\vec{r}\right), \quad a: \text{lattice constant}.$ 也可理解为再乘上

 $e^{i\vec{k}\cdot\vec{r}}$ 进行傅里叶变换得到 $\widetilde{g}\left(\vec{k}\right)$, 但仅取 $\vec{k}=0$ 的分量, 即 $\widetilde{g}\left(\vec{k}=0\right) o \chi$.

[Discussion] **Linear Response**. $H = H_0[m(x)] - \int \mathrm{d}x m(x) h(x)$, 其中 m(x) 和 h(x) 是 linear coupling 的. 那么 $F = -k_B T \ln Q$, $\chi(x,x') = \frac{\partial m(x')}{\delta h(x)} = -\frac{\partial^2 F}{\partial h(x)\partial h(x')} = \beta \left(\langle m(x)m(x') \rangle - \langle m(x) \rangle \langle m(x') \rangle \right)$

1.3.4.2.1 Generalized Landau Free Energy Correlation Function 一般性地, 自由能 $F = \int d^d \vec{x} \left\{ am \left(\vec{x} \right)^2 + b \left[\nabla m \left(\vec{x} \right) \right]^2 \right\}$

 $m(\vec{x})$ 为 order parameter, 其中 a = kt, 于是存在关联长度 $\xi = \sqrt{\frac{b}{kt}}$. 尝试求解序参量 $m(\vec{x})$ 的关联函数 $\langle m(\vec{x}) m(\vec{x}') \rangle$.

可使用 Fourier 变换 $m\left(\vec{x}\right) = \frac{1}{(2\pi)^d} \int \mathrm{d}^d \vec{q} e^{i\vec{q}\cdot\vec{x}} \widetilde{m}\left(\vec{q}\right), \quad \widetilde{m}\left(\vec{q}\right) = \int \mathrm{d}^d \vec{x} e^{-i\vec{q}\cdot\vec{x}} m\left(\vec{x}\right)$ 将其在 \vec{q} 空间中处理.

规定 $\int e^{i(\vec{q}-\vec{q}')\cdot\vec{x}} d^d\vec{x} = (2\pi)^d \delta(\vec{q}-\vec{q}').$ 变换后自由能为 $F\left[\widetilde{m}\left(\vec{q}\right)\right] = \int \frac{d^d\vec{q}}{(2\pi)^d} \left(kt + bq^2\right) \widetilde{m}\left(\vec{q}\right) \widetilde{m}\left(-\vec{q}\right).$

记关联函数 $C(\vec{x}) \equiv \langle m(\vec{x}) m(0) \rangle = \frac{1}{(2\pi)^d} \int \mathrm{d}^d \vec{q} e^{i\vec{q}\cdot\vec{x}} \langle |\tilde{m}(\vec{q})|^2 \rangle$, 其 Fourier 变换后形式为:

$$\widetilde{C}\left(\vec{q}\right) = \frac{\int \left|\widetilde{m}\left(\vec{q}\right)\right|^{2} \exp\left\{-\beta F\left[\widetilde{m}\left(\vec{q}\right)\right]\right\} \mathrm{d}^{d}\vec{q}}{\int \exp\left\{-\beta F\left[\widetilde{m}\left(\vec{q}\right)\right]\right\} \mathrm{d}^{d}\vec{q}} = \frac{(2\pi)^{d}}{2} \frac{T}{kt + bq^{2}} = \frac{(2\pi)^{d}}{2} \frac{T}{kt(1 + \xi^{2}q^{2})}$$

重新变换回 \vec{x} 空间,得到 $C(\vec{x}) = \frac{T}{2} \int \mathrm{d}^d \vec{q} e^{i \vec{q} \cdot \vec{x}} \frac{1}{kt + bq^2}$. 1. d=1: Residue theorem. $\lim_{r \gg \xi} C(r) \propto r^{-(d-1)/2} e^{-r/\xi}$;

2. d = 3: $C(r) \sim \frac{1}{r}e^{-r/\xi}$.

[Discussion] New critical exponents. 对于关联现象存在 $\lim_{h\to 0, t\to 0^+} \xi \sim t^{-\nu}$, C(r) $\sim r^{-(d-2+\eta)}$.

1.3.4.2.2 Validity of Mean-Field Approximation 平均场理论的生效范围

1. **涨落 v.s. 效应**. 选任意一点 σ_0 , 设范围尺度(半径)为 ξ , 圈出范围 Ω . 范围内其余自旋为 σ_r .

If
$$\int_{\Omega} \langle \delta \sigma_r \delta \sigma_0 \rangle \mathrm{d}^d \vec{r} \ll \int_{\Omega} \langle \sigma_r \rangle \langle \sigma_0 \rangle \mathrm{d}^d \vec{r} \Leftrightarrow T\chi \ll m^2 \xi^d \Leftrightarrow T(T_c - T)^{-\gamma} \ll (T_c - T)^{2\beta} (T_c - T)^{-\nu d} \Rightarrow \gamma < \nu d - 2\beta,$$

即涨落相对效应很小,则 MFT($\gamma = 1, \beta = \nu = \frac{1}{2}$) 较好 $\Rightarrow d > 4$.

2. **涨落/关联贡献**. 对相变/关联有贡献的内能: $U_f = -J\sum_{i,j}\left(\langle\sigma_i\sigma_j\rangle - \langle\sigma_i\rangle\langle\sigma_j\rangle\right) = -J\sum_{i,j}g(r_{ij})$

其中 $g(r) \sim \int \mathrm{d}^d\left(\vec{q}a\right) \frac{e^{-i\vec{q}\cdot\vec{x}}}{t(1+\xi^2q^2)}$ 为关联函数. 关联/涨落部分的热容与 $C_f = -\frac{\partial g(r)}{\partial t} = \int q^{d-1} \frac{e^{-i\vec{q}\cdot\vec{r}}}{t^2(1+\xi^2q^2)} \mathrm{d}q$ 有关.

考虑 Long wavelength limit (small $q \sim \frac{1}{\xi}$): $\Rightarrow C_f \sim \int \mathrm{d}q \frac{q^{d-1}}{t^2(1+\xi^2 q^2)} \sim \xi^{-d} t^{-2} \sim \left(t^{-\frac{1}{2}}\right)^{-d} t^{-2} \sim t^{-(d-4)/2}$,

发现 $\lim_{d \le 4} C_f = \infty$, 和 1. 中表述一致.

1.3.5 Scale Transformation

对 2D spin lattice 进行标度变换: $\begin{bmatrix} x & o & x \\ o & o & x \\ x & x & x \end{bmatrix} \xrightarrow{N_x > N_o} X$. 观察发现, 对于 Critical state($\xi \to \infty$), 会保持 Scale invariance.

[Discussion] Symmetry consideration (Noether's theorem)

 $L = \left(\dot{x}^2 + \dot{y}^2\right) + V(x-y), \ \forall \ (x,y) \rightarrow (x+\delta,y+\delta) \ \text{表现出平移不变性}; \\ L = \dot{x}^2 + \dot{y}^2 + x^2 + y^2, \ \text{表现出旋转不变性}.$

1.3.5.1 Implement Scale Transformation

存在两种尺度变换思路:

$$2. \begin{bmatrix} \emptyset & o & \emptyset & o & \emptyset & o \\ o & \emptyset & o & \emptyset & o & \emptyset \\ \emptyset & o & \emptyset & o & \emptyset & o \\ o & \emptyset & o & \emptyset & o & \emptyset \\ \emptyset & o & \emptyset & o & \emptyset & o \\ o & \emptyset & o & \emptyset & o & \emptyset \end{bmatrix}, Q_N = \sum_{\sigma_i} \exp\left[-\beta H_N(\{\sigma_i\}, J)\right] = \sum_{\sigma'_j} \exp\left[-\beta H_{N'}\left(\{\sigma'_j\}, J'\right)\right], N' = \frac{N}{2}, a' = \sqrt{2}a, l = \frac{a'}{a} = \sqrt{2}.$$

考察对相变有贡献的自由能(Landau 自由能是 Helmholtz 自由能), Single point: $N'\psi^{(s)}(t',h') = N\psi^{(s)}(t,h)$,

类比 $N \to N' = l^{-d}N$, 线性假设 $t \to t' = l^{y_t}t$, $h \to h' = l^{y_h}h$. 于是将 $\psi^{(s)}$ 变换写作 $\psi^{(s)}(t,h) = l^{-d}\psi^{(s)}(l^{y_t}t,l^{y_h}h)$ 形式.

已知自由能
$$\psi^{(s)}(t,h) = |t|^{\beta}\widetilde{\psi}\left(\frac{h}{|t|^{\alpha}}\right)$$
, 变换前后分别代入得 $|t|^{\beta}\widetilde{\psi}\left(\frac{h}{|t|^{\alpha}}\right) = l^{-d} |t'|^{\beta} \widetilde{\psi}\left(\frac{h'}{|t'|^{\alpha}}\right)$,

比较可得
$$\frac{h}{|t|^{\alpha}} = \frac{h'}{|t'|^{\alpha}}$$
, $|t|^{\beta} = l^{-d} |t'|^{\beta}$. 因此指数间存在关系 $\alpha = \frac{y_h}{y_t}$, $\beta = \frac{d}{y_t}$

1.3.5.2 Scale Transformation in 1D & 2D Ising Models

1.3.5.2.1 1D Ising Model 研究 $J \rightarrow J'$, $B \rightarrow B'$ 变换的具体形式. 将配分函数写作形式:

$$Q_N = \sum_{\sigma} \exp\left\{\beta \sum_i \left[J\sigma_i \sigma_{i+1} + \frac{1}{2}\mu B(\sigma_i + \sigma_{i+1})\right]\right\} = \sum_{\sigma} \exp\left\{\sum_i \left[K_0 + K_1 \sigma_i \sigma_{i+1} + \frac{1}{2}K_2(\sigma_i + \sigma_{i+1})\right]\right\}$$

将系数写作矢量形式 $\vec{K} = (K_0, K_1, K_2) = (0, \beta J, \beta \mu B)$. 可知变换时有 $\vec{K} \to \vec{K}'$, 其蕴含具体变换的信息.

不妨假定总自旋数 N 为偶数,则取自旋链环中所有偶数位置,则自旋数变换: $N \to N' = \frac{N}{2}$. 变换前后的配分函数相等:

$$Q_{N} = \sum_{\sigma'_{j}} \prod_{j=1}^{\frac{N}{2}} e^{2K_{0}} e^{\frac{1}{2}K_{2}(\sigma'_{j} + \sigma'_{j+1})} 2 \cosh \left[K_{1} \left(\sigma'_{j} + \sigma'_{j+1} \right) + K_{2} \right] = \sum_{\sigma'_{j}} \prod_{j=1}^{\frac{N}{2}} e^{K'_{0} + K'_{1}\sigma'_{j}\sigma'_{j+1} + \frac{1}{2}K'_{2}(\sigma'_{j} + \sigma'_{j+1})}$$

 $\sigma \to \sigma'$ 的变换即相邻自旋求和, 涉及 3 类情况: $\sigma_{2j} = \sigma_{2j+1} = \pm 1 \Rightarrow \sigma'_j = \pm 1; \quad \sigma_{2j} = -\sigma_{2j+1} \Rightarrow \sigma'_j = 0$, 作为约束方程. 解得 $\vec{K} \to \vec{K}'$ 的具体表达式:

 $e^{K_0'} = 2e^{2K_0} \left[\cosh\left(2K_1 + K_2\right)\cosh\left(2K_1 - K_2\right)\cosh^2K_2\right]^{\frac{1}{4}} = \sharp_0(K_0, K_1, K_2), \quad e^{K_1'} = \sharp_1(K_1, K_2), \quad e^{K_2'} = \sharp_2(K_1, K_2)$ [Discussion] 研究无外场条件 $(K_2 = 0)$ 下各量. 配分函数变换为 $Q_N(K_1, K_2) = e^{N'K_0'}Q_{N'}(K_1', K_2)',$

因此自由能变换为 $F_N(K_1, K_2) = -N'K'_0 + F_{N'}(K'_1, K'_2)$.

设单自旋自由能为 $f(K_1, K_2)$ 形式: $f(K_1; K_2 = 0) = -\frac{1}{2} \ln \left[2 \cosh^{\frac{1}{2}} (2K_1) \right] + \frac{1}{2} f \left(K_1' = \ln \left[\cosh^{\frac{1}{2}} (2K_1) \right]; K_2' = 0 \right)$

令 $x = K_1$, 即有 $f(x) = -\frac{1}{2} \ln \left[2 \cosh^{\frac{1}{2}}(2x) \right] + \frac{1}{2} f \left(\ln \left[\cosh^{\frac{1}{2}}(2x) \right] \right)$, 代入 x = 0 发现 $f(0) = -\ln 2$. 猜测 $f(x) = -\ln \left[2y(x) \right]$, 代入单自旋自由能变换式: $\frac{y^2(x)}{y \left\{ \ln \left[\cosh^{\frac{1}{2}}(2x) \right] \right\}} = \cosh^{\frac{1}{2}}(2x)$, 解得 $y(x) = \cosh(x)$.

因此 $f(K_1; K_2 = 0) = -\ln(2\cosh K_1)$

$$\textbf{1.3.5.2.2} \quad \textbf{2D Ising Model} \quad Q_N = e^{NK_0} \sum_{\sigma_i} \exp \left\{ K \sum_{\langle i,j \rangle} \sigma_i \sigma_j + L \sum \sigma_i \sigma_j + M \sum \sigma_j \sigma_r \sigma_l \sigma_m \right\}$$

1.3.5.2.3 Origin of Fixed Point 变换 $K' = R_l(K)$ 可以视为点在 \vec{K} 空间中的 flow(轨迹).

那么可能存在点 K^* , 使得 $R_l(K^*) = K^*$. 这类点即 **Fixed Point**.

[Example] $X_{i+1} = \lambda X_i (1 - X_i)$, 存在两个不动点 $X^* = 0, 1$.

变换对应于矩阵, 即可用特征值来进行描述. 令变换无穷小, 则 $R_{l_2}[R_{l_1}(K)] = R_{l_1*l_2}(K) \longrightarrow \lambda_{l_1}\lambda_{l_2} = \lambda_{l_1*l_2}$. 这说明特征值可能为 $\lambda(l) \sim l^{\alpha}$ 形式, 从而满足 $l_1^{\alpha}l_2^{\alpha} = (l_1 \cdot l_2)^{\alpha}$.

研究 \vec{K} 的连续变换. 记 $R_l^n(K^*) = K^{(n)}$ 为对 \vec{K} 进行了 n 次 R_l 变换的结果. 那么关联长度将会满足变换式 $\xi^{(n)} = l^{-n}\xi^{(0)}$. 对于不动点 K^* 而言, 将会有 $\xi(K^*) = l^{-1}\xi(K^*)$. 该方程具有两个解 $\{ \begin{pmatrix} \text{trivial critical} \\ 0 \end{pmatrix}, \infty \}$.

[Discussion] 若经过 n 次变换后的关联长度 $\xi[K^{(n)}]$, 能推导出初始点 $K^{(0)} = R_l^0(K)$ 的关联长度 $\xi(K^{(0)}) = \infty$ 吗? 由于 l > 1, 则关联长度有 $\xi(K') = l^{-1}\xi(K) < \xi(K)$. 可见 $\xi[K^{(n)}]$ 递减, 其仍发散说明初项 $\xi[K^{(0)}] = \infty$. 可见 $\xi = \infty$ 不仅会在不动点/Critical point 出现, 也会在 \vec{K} 空间中连续出现而形成 Critical Curve.

1.3.5.2.4 RG Flow Near the Critical/Fixed Point in \vec{K} Space 研究不动点附近的 $\vec{K} = \vec{K}^* + \vec{k}$. 其中 $\vec{k} \to \vec{0}$.

那么可将
$$K \to K'$$
 变换写作 Taylor 展开: $\vec{K}' = \vec{K}^* + \vec{k}' = R_l\left(\vec{K}^* + \vec{k}\right) = R_l\left(\vec{K}^*\right) + \frac{\partial R_l\left(\vec{q}\right)}{\partial \vec{q}}\bigg|_{\vec{q} = \vec{K}^*} \vec{k} + \cdots$,

其中
$$\vec{k}' = A_l \vec{k}$$
, $A_l = \frac{\partial R_l (\vec{q})}{\partial \vec{q}} \bigg|_{\vec{q} = \vec{K}^*}$. 将 \vec{k} 以基矢展开 $\vec{k} = \sum_i u_i \hat{\phi}_i$, 则变换式 $\vec{k}' = A_l \vec{k}$ 即可写作 $\sum_i u_i' \hat{\phi}_i = A_l \sum_i u_i \hat{\phi}_i$. 特征方程 $A_l \hat{\phi}_i = \lambda_i \hat{\phi}_i$, 代入为 $\sum_i u_i' \hat{\phi}_i = \sum_i u_i \lambda_i \hat{\phi}_i$, 即得分量变换式 $u_i \to u_i' = \lambda_i u_i = l^{y_i} u_i$. n 次变换后, 分量 $u_i^{(n)} = l^{ny_i} u_i^{(0)} = \lambda_i^n u_i^{(0)}$; 可见:

- 1. $\lambda_i > 1$, 则分量发散, 此时 u_i 为 **Relevant Variable**(有相变贡献);
- 2. $\lambda_i < 1$, 则分量收敛于 0, 此时 u_i 为 Irrelevant Variable(无相变贡献).

[Discussion] Scale transformation 是一个信息丢失的过程, 所以重整化群严格来说不能被称为群结构. 现在研究 2D Ising Model 中的 RG flow. 取公式中的 K 和 L 作为坐标轴, 得到大致的 RG flow 示意图:

在不动点附近存在 $\vec{\phi}_{\text{relevant}}$ 和 $\vec{\phi}_{\text{irrelevant}}$, 两本征矢所指的方向. 亦即, 若要流沿着指向 K^* 的曲线移动, 要求分量 $u_{\text{relevant}} \to 0$.

[Discussion] Emergence of Non-analyticity/singularity

- 1. 回忆: 在研究配分函数时, 每一项都是解析的, 若要产生 singularity(奇点), 则需要求和项数无穷大, 而某些物理量保持有限值(e.g. $\lim_{N,V\to\infty}n=\frac{N}{V}=n_0$);

v 2. 不动点也是通过无穷连续变换产生的; 3. 微分方程 $\frac{\mathrm{d}u}{\mathrm{d}t} = -2u\left(u^2 - 1\right)$ 的精确解为 $u(t) = \frac{u_0}{\sqrt{u_0^2 - (u_0^2 - 1)e^{-4t}}}$, 其中 $u_0 = u\Big|_{t=0}$. 存在不动点 $u^* = \pm 1$, 通过 $\lim_{t \to \infty} u(t) = \operatorname{sgn}(u_0)$ 逼近.

[Example] RG Equ. of 2D Ising Model:
$$\begin{cases} K' = 2K^2 + L \\ L' = K^2 \end{cases}$$
,通过
$$\begin{cases} K' = K \\ L' = L \end{cases}$$
解得
$$\begin{cases} K^* = \frac{1}{3} \\ L^* = \frac{1}{9} \end{cases}$$
. 取不动点附近
$$\begin{cases} K = K^* + k_1 \\ L = L^* + k_2 \end{cases}$$

小量变换满足
$$\begin{cases} k_1' = \frac{4}{3}k_1 + k_2 \\ k_2' = \frac{2}{3}k_1 \end{cases}.$$
 将其写作矩阵形式: $\vec{k}' = A_l\vec{k} \Rightarrow A_l = \begin{bmatrix} 4/3 & 1 \\ 2/3 & 0 \end{bmatrix}$. 该矩阵的特征值为 $\lambda_{1,2} = \frac{2 \pm \sqrt{14}}{3}$.

 $(\lambda_1 > 1, 则 u_1$ 是 **Relevant Variable**, 表现为 $u_1 \neq 0$ 时, RG flow 趋于发散.)

特征矢量 $\vec{\phi}_{1,2} = \begin{bmatrix} 2 \pm \sqrt{10} \\ 2 \end{bmatrix}$; 将其作为基矢, 则小量 $\vec{k} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = u_1 \vec{\phi}_1 + u_2 \vec{\phi}_2$. 反解得到 $u_1 = 2k_1 + (\sqrt{10} - 2)k_2$. 令 $u_1 = 0$, 则 $\lambda_1 > 1$ 不影响流的轨迹经过不动点 (K^*, L^*) . 此时得到 K-L 空间中的一条斜线 $2k_1 + (\sqrt{10} - 2)k_2 = 0$, 该 斜线将与 K 轴相交于 $K_c \simeq 0.3979$.

[Discussion] Complexity? Universal behavior?

形如 $x_{j+1} = f(x_i, \lambda)$ 的迭代方程. 如 $x_{i+1} = \lambda x_i (1 - x_i)$, 随着 λ 值变化出现不动点 x^* 的分形. 定义 $\delta_n = \frac{x_{n+1} - x_n}{x_n - x_{n-1}}$, 发现其存在规律 $\lim_{n \to \infty} \delta_n = 4.6692 \cdots$.

1.4 Non-equilibrium Statistical Physics

Fluctuations. 1. Equilibrium state: thermodynamic level/quantities (N, T, P), 随机变量存在概率分布 \to 涨落 $N = N_0 + \delta N$; 2. Non-equilibrium state, thermodynamic level: 时空间不均匀, T(x,t), n(x,t). 通过局域平衡假设分析. $\frac{\partial n}{\partial x} \to \text{flux}$. Relaxation(弛豫); Transportation(输运). force-flux 关系.

1.4.1 Analyze Fluctuations

[Example] Classical nucleation theory: 若 $\mu_{\text{vapor}} > \mu_{\text{liquid}}$, 则凝结发生. Local fluactuation of density ρ : grow/decay. $G = -\alpha |\overset{\uparrow}{\Delta}\mu| R^3 + \beta \sigma \overset{\downarrow}{\cdot} R^2$. 需要足够大的凝结核.

1.4.1.1 Static Thermodynamic Analysis

$$\left\langle (\Delta E)^2 \right\rangle = \left\langle (C_v \Delta T)^2 \right\rangle + \left\langle \left[\left(\frac{\partial E}{\partial V} \right)_{TN} \Delta V \right]^2 \right\rangle + \cdots = C_v k_B T^2 + k_B T \kappa_T V \left(\frac{\partial E}{\partial V} \right)_{TN}^2.$$

[Discussion] 令 internal energy per particle
$$\widetilde{\varepsilon}$$
 与 volume per particle v .
$$k_B T \kappa_T V \left(\frac{\partial E}{\partial V} \right)_{TN}^2 = k_B T \kappa_T N v \left(\frac{\partial \widetilde{\varepsilon}}{\partial v} \right)_T^2 = k_B T \kappa_T N n^3 \left(\frac{\partial \widetilde{\varepsilon}}{\partial n} \right)_T^2,$$
 其中粒子数密度 $n = \frac{N}{V} = \frac{1}{v}$. 回忆巨正则系综: $\langle (\Delta E)^2 \rangle = k_B T^2 C_v$, 即 canonical 项. 将其和粒子数涨落项 $\langle (\Delta N)^2 \rangle$ 分离,从而写作 $\langle (\Delta E)^2 \rangle = \langle (\Delta E)^2 \rangle_{\text{canonical}} + \left(\frac{\partial \langle E \rangle}{\partial N} \right)_{TV}^2 \langle (\Delta N)^2 \rangle$,其中 $\langle (\Delta N)^2 \rangle = \frac{\langle N \rangle^2 k_B T \kappa_T}{V}$ 观察相对涨落与体积 V 关系为 $\frac{\sqrt{\langle (\Delta T)^2 \rangle}}{\langle T \rangle} \sim \frac{1}{\sqrt{V}}$, $\frac{\sqrt{\langle (\Delta V)^2 \rangle}}{\langle V \rangle} \propto \frac{1}{\sqrt{V}}$. 因此 MFT 难以用于小尺度系统.

1.4.1.2 Time Analysis of Fluctuations

$$x_0 \to x_f(t)$$
. 视涨落为含时信号 $A(t)$. 时间平均 $\langle A \rangle = \frac{1}{T} \int_0^T A(t) \mathrm{d}t$; 定义时间关联函数 $\phi(t) = \frac{1}{T} \int_0^T \delta A(u) \delta A(u+t) \mathrm{d}u$. 假定 ergodic(各态历经), 时间平均化为系综平均: $\phi(t_1,t_2) = \langle \delta A(t_1) \delta A(t_2) \rangle$. 时间平移不变性: $\phi(t_1,t_2) \to \phi(t_2-t_1)$. 时间平移不变性 in Joint probability $P_n(x_1,t_1;x_2,t_2;\cdots;x_n,t_n) = P_n(x_1,t_1+\Delta t;x_2,t_2+\Delta t;\cdots;x_n,t_n+\Delta t)$

[Discussion] Correlation & Macroscopic properties.

- 1. 空间关联函数 $g_{ij} \stackrel{\text{in equilibrium}}{\longrightarrow} \text{Response } \chi;$
- 2. 时间关联函数 $\phi(t) \stackrel{\text{out of equilibrium}}{\longrightarrow} \text{conductivity, viscosity}(粘度)$.

[Example] 测量 k_B . 分光出点光源, 凸透镜聚焦后散射至垂吊镜面, 相机收集其反射光. 镜子受空气撞击即布朗运动(视为 热浴). 热平衡下 $\frac{1}{2}L\langle\theta^2\rangle=\frac{1}{2}k_BT\Rightarrow\langle\theta^2\rangle=\frac{k_BT}{L}$. (能均分定理: Hamiltonian \propto 自由度平方) 分别在 1 atom 和 10^{-4} mmHg 进行 实验. 前者相比后者的偏转产生频率高得多. 但只要温度一样, 仅凭 $\langle \theta^2 \rangle$ 无法区分. 类比于价格/股票的含时变化.

1.4.1.2.1 Spectral Analysis [Discussion] 使用三棱镜分光, 实际上就是一种频谱分析.

$$\widetilde{x}(\omega) = \int_{-\infty}^{+\infty} x(t)e^{i\omega t} dt, \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widetilde{x}(\omega)e^{-i\omega t} d\omega$$

对 statistically stationary signal(稳态信号), 关联函数 $\phi(t'-t) = \langle x(t') x(t) \rangle = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \langle \widetilde{x}(\omega) \widetilde{x}(\omega') \rangle e^{-i(\omega t + \omega' t')} d\omega d\omega',$ 可推断频域内关联函数为 $\langle \widetilde{x}(\omega)\widetilde{x}(\omega')\rangle = 2\pi \left[\widetilde{x^2}(\omega)\right]\delta\left(\omega-\omega'\right)$, 那么变换回时域形式: $\phi(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widetilde{x^2}(\omega)e^{-i\omega t}d\omega$,

其中 $\tilde{x}^2(\omega)$ 是 $x^2(t)$ 的傅里叶变换. 令 $\tilde{x}^2(\omega)$ 对频域积分并归一化, 得到

 $\phi(0) = \left\langle \widetilde{x^2}(\omega) \right\rangle = \int_{0}^{+\infty} \widetilde{x^2}(\omega) \frac{\mathrm{d}\omega}{2\pi} = 2 \int_{0}^{+\infty} \widetilde{x^2}(\omega) \frac{\mathrm{d}\omega}{2\pi},$ 即得出 Wiener-Khinchin theorem(for random process & statistically stationary signal).

$$\begin{split} & [\text{Example}] \ \phi(t) = \langle x(0)x(t) \rangle = \langle x(0)^2 \rangle e^{-\lambda |t|}. \ \widetilde{x^2}(\omega) = \langle x(0)^2 \rangle \frac{2\lambda}{\omega^2 + \lambda^2}, \left\langle x^2(t) \right\rangle = \left\langle 2 \int_0^{+\infty} \widetilde{x^2}(\omega) \frac{\mathrm{d}\omega}{2\pi} \right\rangle, \\ & \int_0^{+\infty} \frac{\lambda}{\omega^2 + \lambda^2} \mathrm{d}\omega = \int_0^{+\infty} \frac{1}{\omega'^2 + 1} \mathrm{d}\omega' = \frac{\pi}{2} \Rightarrow \left\langle x^2(t) \right\rangle = \langle x^2(0) \rangle. \end{split}$$

1.4.2 Relaxation of Weakly Non-equilibrium State

形如
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = -\lambda x(t) \Rightarrow x(t) = x(0)e^{-\lambda t}$$
 的(描述性) Relaxation equation. 物质输运和热量输运是耦合的, 则 $\langle x_i(t) \rangle \Rightarrow \frac{\mathrm{d}x_i(t)}{\mathrm{d}t} = -\sum_k \lambda_{ik} x_k(t)$. 延拓 $\phi_{ik}(t'-t) = \langle x_i(t') x_k(t) \rangle = \langle x_k(t) x_i(t') \rangle = \phi_{ki}(t-t') \Rightarrow \boxed{\phi_{ik}(t) = \phi_{ki}(-t)}$. 若 $x_i(-t) = x_i(t), \phi_{ik}(t'-t) = \langle x_i(t') x_k(t) \rangle = \langle x_i(-t') x_k(-t) \rangle = \phi_{ik} [-t'-(-t)] = \phi_{ik}(t-t') \Rightarrow \phi_{ik}(t) = \phi_{ik}(-t)$ 因此时间反演对称下,有 $\boxed{\phi_{ik}(t) = \phi_{ki}(t)}$

1.4.2.1 Flux & Force

求和约定: $\dot{x}_i(t) = -\lambda_{ik}x_k(t)$, 定义共轭量 $X_i = \frac{\partial S}{\partial x_i}$ 以引入熵 $S(x_1, x_2, \cdots, x_n)$. $\dot{x}_i(t), X_i(t)$ 分别为 flux 和 force.

Taylor 展开:
$$S(x_i) = S(0) + \left(\frac{\partial S}{\partial x_i}\right)_{x_i=0} + \frac{1}{2} \left(\frac{\partial^2 S}{\partial x_i \partial x_j}\right)_{x_i=x_j=0} x_i x_j + \dots = S(0) - \frac{1}{2} \beta_{ij} x_i x_j, 其中 \beta_{ij} = \beta_{ji}.$$

代入展开式:
$$X_i = \frac{\partial S}{\partial x_i} = \frac{\partial}{\partial x_i} \left[S(0) - \frac{1}{2} \beta_{jk} x_j x_k \right] = -\frac{\beta_{jk}}{2} \frac{\partial}{\partial x_i} (x_j x_k) = -\frac{\beta_{jk}}{2} (\delta_{ij} x_k + x_j \delta_{ik}) = -\beta_{ik} x_k.$$

于是 Force $X_i = -\beta_{ik} x_k$, 从而得到 Force-Flux 关系 $x_i = \gamma_{ik} X_k$, 其中 $\gamma_{ik} = \lambda_{il} (\beta^{-1})_{lk}$ 是 Kinetic Coefficient.

比如写作二阶形式的
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
. 若常数项 $S(0) = 0$, 则熵可写作共轭量乘积: $S = \frac{1}{2} X_i x_i$,

变化率为
$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{1}{2} \left(\dot{X}_i x_i + X_i \dot{x}_i \right)$$
. 利用 force-flux 关系处理 $x_i \dot{X}_i = x_i \left(-\beta_{ik} \dot{x}_k \right) = x_i \left(-\beta_{ki} \dot{x}_k \right) = X_k \dot{x}_k$,

因此 $\dot{S} = X_i \dot{x}_i = \frac{\partial \dot{S}}{\partial x_i} \dot{x}_i$, 显然就是链式求导规则.

[Example] 考虑铜棒, 忽略体积变化($\mathrm{d}V=0$). 存在热流 \vec{J}_h . Internal energy per volume: u(x,y,z,t). 则有

$$\frac{\partial u}{\partial t} + \nabla \cdot \vec{J_h} = 0 \stackrel{\mathrm{d}u = T \mathrm{d}S}{\Longrightarrow} \frac{\partial S}{\partial t} = -\frac{1}{T} \nabla \cdot \vec{J_h} \Rightarrow \frac{\partial S}{\partial t} + \nabla \cdot \left(\frac{\vec{J_h}}{T}\right) = -\frac{1}{T^2} \vec{J_h} \cdot \nabla T.$$

等式右边为 rate of entropy production($\neq 0$ 时为非平衡过程), 即为 0 时形成对 S 的连续性方程.

1.4.2.2 Onsager's Reciprocal Relation

平衡态时,
$$\langle \dot{x}_i \rangle = 0$$
, $\langle x_i \rangle = \tilde{x}_i$. $\langle x_i X_j \rangle = \text{Tr}_{x} \left[x_i X_j A e^{\Delta S(x_1, x_2, \cdots, x_n)/k_B} \right] = \text{Tr}_{x} \left[x_i X_j A e^{\frac{1}{2k_B} \beta_{ij} (x_i - \tilde{x}_i) (x_j - \tilde{x}_j)} \right]$

$$\frac{\partial \langle x_i \rangle}{\partial \widetilde{x}_j} = \delta_{ij} = \frac{\partial}{\partial \widetilde{x}_j} \operatorname{Tr}_{x_i} \left[x_i A e^{-\frac{1}{2k_B} \beta_{ij} (x_i - \widetilde{x}_i) (x_j - \widetilde{x}_j)} \right] = \operatorname{Tr}_{x_i} \left[x_i \frac{\frac{-X_j}{\beta_{ij} x_i}}{k_B} A e^{-\frac{1}{2k_B} \beta_{ij} (x_i - \widetilde{x}_i) (x_j - \widetilde{x}_j)} \right] = -\frac{1}{k_B} \langle x_i x_j \rangle.$$

于是得到关系
$$\left[\langle x_i X_j \rangle = -k_B \delta_{ij} \right]$$

于是得到关系
$$\langle x_i X_j \rangle = -k_B \delta_{ij}$$
 .

Time reversal symmetry of $x_i : \langle x_i(0) x_j(t) \rangle = \langle x_i(t) x_j(0) \rangle \stackrel{t=0}{\Longrightarrow} \langle x_i(0) \dot{x}_j(0) \rangle = \langle \dot{x}_i(0) x_j(0) \rangle$.

等式两边分别代入 force-flux 关系: $\begin{cases} \langle x_i(0) \gamma_{jl} X_l(0) \rangle = -k_B \gamma_{jl} \delta_{il} = -k_B \gamma_{ji} \\ \langle \gamma_{il} X_l(0) x_j(0) \rangle = -k_B \gamma_{il} \delta_{jl} = -k_B \gamma_{ij} \end{cases}$,联立即得 $\boxed{ \gamma_{ij} = \gamma_{ji} }$.

若将
$$\dot{x}_i = \gamma_{ij} X_j$$
 定义为 $\frac{\partial f}{\partial X_i}$, 则有 $f = \frac{1}{2} \gamma_{ij} X_i X_j$. 熵变化率可表述为 $\frac{\mathrm{d}S}{\mathrm{d}t} = X_i \dot{x}_i = X_i \frac{\partial f}{\partial X_i} = 2f$

[Discussion] Dynamics of fluactuation $x_i = 0 \rightarrow x_i \neq 0$. 若过程可表述为 $\dot{x}_i = -\Gamma_{ik}x_k$;

- 1. 且 Γ_{ik} 可对角化, 则可进一步写作 decay $\dot{x}_i' = -\lambda_i x_i'$;
- 2. 且 Γ_{ik} antisymmetric(特征值纯虚数), 即 $\dot{x}_i = -\lambda_{ik}^A x_k$, 则动力学为 oscillatory(振荡).

1.4.2.3 Fluactuation Phenomena

1.4.2.3.1 XY Model Hamiltonian
$$H = -\frac{1}{2}J\sum_{\langle i,j\rangle}\left\langle \vec{S}_i\cdot\vec{S}_j\right\rangle$$
, 其中自旋形式为 $\vec{S}_i = (\cos\theta_i,\sin\theta_i)$.

相比一般的 Ising model 多了
$$\theta$$
 进行控制. 选定 \vec{R} 处一格点, 设 θ 足够小. 则 Hamiltonian 为 $\lim_{\theta \to 0} H = \frac{J}{4} \sum_{\vec{R}} \sum_{\vec{a}} \left[\theta \left(\vec{R} \right) - \theta \left(\vec{R} + \vec{a} \right) \right]^2$; 使用 Fourier 变换 $\theta_{\vec{k}} = \frac{1}{\sqrt{N}} \sum_{\vec{R}} \theta \left(\vec{R} \right) e^{-i\vec{k}\cdot\vec{R}}$,

将 Hamiltonian 写作动量 \vec{k} 形式 $H = \frac{1}{2} \sum_{\vec{r}} J_{\vec{k}} |\theta_{\vec{k}}|^2$, 其中 $J_{\vec{k}} = 2J \sum_{\vec{r}} \left[1 - \cos \left(\vec{k} \cdot \vec{a} \right) \right]$.

$$\left\langle \vec{S} \left(\vec{R} \right) \cdot \vec{S} \left(\vec{0} \right) \right\rangle = \begin{cases} \exp \left(-\frac{T}{\alpha} \frac{R}{a} \right), & d = 1, \text{short range order} \\ \left(R/a \right)^{-T/2\pi\alpha}, & d = 2, \text{quasi-long-range order} \\ \exp \left[-\frac{Tk_Da}{\pi^2\alpha} \right] \left(1 + \frac{\pi}{4k_DR} \right), & d = 3, \text{long range order} \end{cases}$$

1.4.2.3.2 Topological Defects 拓扑缺陷: vortex. 通过矢量场分析(汇源, winding number).

[Example] 二维点电荷电场, 点电荷所在位置即 defect core. 沿着圆周电场矢量方向旋转 360 度(规定旋转方向和圆周旋转方向相同为+, 反之为-). 则 winding number 为 +1. 匀强电场则为 0. 即 $\oint d\theta = 2\pi k, k \in \mathbb{Z}$.

根据
$$H \sim \int (\nabla \theta)^2$$
 可知, 拓扑缺陷的激发需要能量, 并且和角度梯度有关. 设 $\frac{\partial \theta}{\partial r} = 0 \Rightarrow \nabla \theta = \frac{1}{r} \frac{\partial \theta}{\partial \phi} \hat{e}_{\phi} + \frac{\partial \theta}{\partial r} \hat{e}_{r}$, $\oint d\theta = \oint \nabla \theta \cdot d\vec{l} = \frac{1}{r} \frac{\partial \theta}{\partial \phi} 2\pi r = 2\pi k \Rightarrow \frac{\partial \theta}{\partial \phi} = k \Rightarrow \theta = k\phi + c_0$, c_0 使得全局相位偏移.
$$\forall H \sim \int (\nabla \theta)^2$$
 使用变分法, 即 $\delta H = 0 \Rightarrow \nabla^2 \theta = 0$

1. One defect:
$$E = \stackrel{\text{core energy}}{\varepsilon_0(a)} + \frac{K}{2} \int (\nabla \theta)^2 d^2 \vec{x} \stackrel{\theta = k\phi}{=} \varepsilon_0(a) + \pi K k^2 \ln \left(\frac{R}{a}\right)$$

2. Two defects. r 为两缺陷间距, $E_{\text{int}} = 2\pi k_1 k_2 K \ln \left(\frac{R}{r}\right)$, 可类比二维形式的 Coulomb 势能(但不完全等效), k_1, k_2 acts as charge. 温度从 0K 升高, 涨落变强, 激发出结构.

[Discussion] KPZ 方程(fluactuation/growth of interfaces). $h(\vec{x},t)$ 为界面厚度.

$$\frac{\partial h\left(\vec{x},t\right)}{\partial t} = \nu \nabla^{2} h + \lambda \left(\nabla h\right)^{2} + \eta \left(\vec{x},t\right), \quad \eta = \text{white noise} \quad \left\langle \eta \left(\vec{x},t\right)\right\rangle = 0$$

1.4.3 Brownian Motion

[Discussion] 墨滴在水中的扩散并不完全是布朗运动, 较大的影响因素是 flux. Brownian motion 本质是可以写出 Hamiltonian 的, 应当是一个完全确定系统. 随机性的来源: 观察的时间间隔 Δt . 散点连线后是完全无规律的. 长链分子(Polymer) 的空间结构也可类比于布朗运动, 但不完全相同(需要考虑之前分子所占体积, 亦即 Self Avoidance); 特征是 $\sqrt{\left\langle \vec{R}^2 \right\rangle} \sim L^{\frac{1}{2} + \delta}$, 其中 δ 为分子自身体积产生的.

1.4.3.1 Random walk model

$$\langle r^2 \rangle \propto t$$
.

1.4.3.1.1 n steps on 1D lattice n 步后处于第 m 格的概率为

$$\begin{split} & \stackrel{x=ml}{P_n(m)} = C_n^{\frac{n+m}{2}} \left(\frac{1}{2}\right)^{\frac{n+m}{2}} \left(\frac{1}{2}\right)^{\frac{n-m}{2}}, \ \ \stackrel{\sim}{\bowtie} \ k = \frac{n+m}{2} \ \ \text{ Local Model III} \ \rightarrow \text{ L$$

极限下取高斯分布
$$\lim_{n\to\infty} P_n(m) = \frac{1}{\sqrt{2\pi n}} \exp\left(-\frac{m^2}{2n}\right)$$
. 使用 $\begin{cases} x=ml \\ t=n\tau \end{cases}$ 连续化为 $P(x,t) \mathrm{d} x = \frac{\mathrm{d} x}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$, 其中扩散系数 $D = \frac{l^2}{2t}$, 在气体中约 $\left(10^{-6},10^{-5}\right) \, \mathrm{m}^2/\mathrm{s}$, 在液体中约 $\left(10^{-10},10^{-9}\right) \, \mathrm{m}^2/\mathrm{s}$.

[Discussion] 从单粒子到粒子群. 设 N particles, 且均为 $\delta(x,0)$ 分布. 经过时段 t_1 后, 则有分布函数 $P(x,t_1)\mathrm{d}x \to n\left(\vec{x},t\right)\mathrm{d}x$. 这就是扩散现象

连续性方程
$$\frac{\partial n\left(\vec{x},t\right)}{\partial t} = -\nabla \cdot \vec{j}\left(\vec{x},t\right)$$
, Fick's law $\vec{j}\left(\vec{x},t\right) = -D\nabla n\left(\vec{x},t\right)$, 从而导出扩散方程 $\frac{\partial n\left(\vec{x},t\right)}{\partial t} = D\nabla^2 n\left(\vec{x},t\right)$.

一维扩散方程解为
$$n(\vec{x},t) = \frac{N}{(4\pi Dt)^{d/2}} \exp\left(-\frac{|\vec{x}|^2}{4Dt}\right).$$

$$\langle x \rangle = 0, \langle x^2 \rangle = \frac{1}{N} \int_{-\infty}^{+\infty} x^2 n(\vec{x}, t) d^d \vec{x} = 2 dDt$$
,可见各轴分量独立.

$$\langle (\Delta x)^2 \rangle \sim Dt$$
, 纯粹依靠扩散作用在空气中传播 1m 需耗时 $t \sim \frac{\langle (\Delta x)^2 \rangle}{D} \sim 10^6 \text{ s} \approx 11 \text{ days}$.

[Discussion]
$$\sqrt{\langle (\Delta x)^2 \rangle} \sim t^{\gamma}$$
. $\gamma > \frac{1}{2}$: super diffusion; $\gamma < \frac{1}{2}$: sub diffusion. e.g. cloud size: $\gamma \approx \frac{3}{2}$.

一种解释
$$\gamma \neq \frac{1}{2}$$
 非 normal diffusion 的思路: Levy flight(令步长为概率分布).

Galton Board. 每层都是
$$X_i = \pm 1$$
 的离散随机变量. 最后位置 $S_n = \sum_{i=1}^n X_i$, 处于 k 的概率 $P(S = k) = C_n^k p^k (1-p)^k$. 一般性地, 步长期望 $\langle X_i \rangle = (+l) \times p + (-l) \times (1-p) = l(2p-1)$, 最后位置期望为 $\langle S_n \rangle = \sum_{i=1}^n \langle X_i \rangle = nl(2p-1)$.
$$\langle S_n^2 \rangle = \langle \sum_{ij} X_i X_j \rangle = \sum_i \langle X_i^2 \rangle + \sum_{i \neq j} \langle X_i X_j \rangle = \left[l^2 p + l^2 (1-p) \right] n + \sum_{i \neq j} \langle X_i \rangle \langle X_j \rangle = nl^2 + n(n-1)(2p-1)^2 l^2$$

1.4.3.1.2 d-Dim Off-Lattice Random Walk 将位矢 \vec{r} 展开为基矢形式 $\vec{r} = \sum_{\alpha=1}^{d} x_{\alpha} \hat{e}_{\alpha}$, 其中 $x_{\alpha} = \sum_{i=1}^{N} \vec{a}_{i} \cdot \vec{e}_{\alpha} = a_{i} \sum_{i=1}^{N} \cos \theta_{i}$. 根据独立性有 $\langle r^{2} \rangle = \sum_{\alpha=1}^{d} \langle x_{\alpha}^{2} \rangle$, 各轴 $\langle x_{\alpha}^{2} \rangle = a^{2} \sum_{i=1}^{d} \langle \cos \theta_{i} \rangle + a^{2} \sum_{i\neq j}^{\langle \cos \theta_{i} \rangle = 0} \langle \cos \theta_{j} \rangle = Na^{2} \langle \cos^{2} \theta \rangle$. 对2维球面 $d\Omega = \sin \theta \stackrel{[0,\pi][0,2\pi]}{d\theta} \stackrel{[0,\pi][0,2\pi]}{d$

[Discussion] Random unit vector \vec{n} in n-dim space. $\vec{n}=\sum_{\alpha=1}^d n_{\alpha}\hat{e}_{\alpha}, \left\langle n_{\alpha}^2 \right\rangle = \sum_{\alpha=1}^d \left\langle n_{\alpha}^2 \right\rangle = d\left\langle \cos^2\theta \right\rangle = 1 \Rightarrow \left\langle n_1^2 \right\rangle = \frac{1}{d}$

1.4.3.2 Stochastic process

Static continuous random variable $X_i: \{x_0\} \to [x_1, x_1^{t_1} + \mathrm{d}x] \to [x_2, x_2^{t_2} + \mathrm{d}x] \to \cdots$ 令 $P_1(x,t) = \operatorname{Prob}\left[x < x(t) < x + \mathrm{d}x\right]$ 为 t 时刻 $x \in (x,x+\mathrm{d}x)$ 的概率, $P_n(x_0,t_0;x_1,t_1;\cdots;x_{n-1},t_{n-1})\mathrm{d}x_0\cdots\mathrm{d}x_{n-1} = \operatorname{Prob}\left[x_0 < x(t_0) < x_0 + \mathrm{d}x_0,\cdots,x_{n-1} < x(t_{n-1}) < x_{n-1} + \mathrm{d}x_{n-1}\right]$ 定义 **Transition Probability**: $\operatorname{Prob}\left[(x_0,t_0) \to (x_1,t_1)\right]\mathrm{d}x_1 = \frac{P_2(x_0,t_0;x_1,t_1)\mathrm{d}x_1}{P_1(x_0,t_0)}$. 该语言下的关联函数为 $\langle x_0(t_0)x_1(t_1)\rangle = \int x_0(t_0)x_1(t_1)P_n(x_0,t_0;x_1,t_1,\cdots)\prod_{n=1}^{n-1}\mathrm{d}x_n$.

1.4.3.3 Smoluchowski's Approach

即从 x_0 出发, 经过 n-1 步到达任意位置 z, 再经过 1 步到达 x. 对于位置 z, 要求 $P_1(z|x) = \frac{1}{2} \left(\delta_{z,x+1} + \delta_{z,x-1} \right), P_0(z|x) = \delta_{z,x}, \text{代入递推得 } P_n(x_0|x) = \frac{1}{2} P_{n-1}(x_0|x-1) + \frac{1}{2} P_{n-1}(x_0|x+1).$ 构造辅助函数 $Q_n(\xi) \equiv \sum_{x=-\infty}^{+\infty} P_n(x_0|x)\xi^{x-x_0}$, 将其递推化: $Q_n(\xi) = \sum_{x=-\infty}^{+\infty} \left[\frac{1}{2} P_n(x_0|x-1)\xi^{x-x_0} + \frac{1}{2} P_{n-1}(x_0|x+1)\xi^{x-x_0} \right] = \frac{1}{2} \xi Q_{n-1}(\xi) + \frac{1}{2} \xi^{-1} Q_{n-1}(\xi) = \frac{1}{2} \left(\xi + \xi^{-1} \right) Q_{n-1}(\xi)$ 代入初始条件 $Q_0(\xi) = 1$ 解得 $Q_n(\xi) = \left(\frac{1}{2} \right)^n \sum_{|x-x_0| \le n} C_n^{[n+(x-x_0)]/2} \xi^{x-x_0}.$ 通过同构可知 $P_n(x_0|x) = \left(\frac{1}{2} \right)^n C_n^{[n+(x-x_0)]/2}$, 其中 $|x-x_0| \le n$.

从 x_0 出发, 经过 n 步后到达 x 的概率为 $\operatorname{Prob}\left(x_0 \overset{n \text{ steps}}{\longrightarrow} x\right) = P_n(x_0|x)$,可写作递推形式 $(n \ge 1)$ $\sum_{n=1}^{+\infty} P_{n-1}(x_0|z)P_1(z|x)$,

State of System(Markov Procss, History-Independent)

态: $n = 1, 2, 3, \dots, M$; 态为 n 的概率: y(n); 时间: $t = s\tau$, $s = 0, 1, 2 \dots$ 系统在 $t = s\tau$ 时刻处于状态 n 的概率: P(n, s).

Markov Chain: $P(n,s) \to P(n,s+1) \to P(n,s+2) \to \cdots$, 即依赖于前一时刻的状态, 和历史无关.

前文所谈则是 history-dependent $P(n,s) = f[P(n,s-1),P(n,s-2),\cdots,P(n,0)].$

定义 Conditional Prob: $P(n_1, s_1|n_2, s_2)$. 则从 s_0 时刻的状态 n_0 迁移至 (s_0+1) 时刻的状态 n 的概率为

$$P(n_0, s_0|n, s+1) = \sum_{m=1}^{M} P(n_0, s_0|m, s) P(m, s|n, s+1) = \sum_{m=1}^{M} P(n_0, s_0|m, s) Q_{mn}(s).$$

那么系统在 s 时刻处于状态 n 的概率为 $P(n,s) = \sum_{m=1}^{M} P(m,s-1) P(m,s-1|n,s)$, 重复该递推直至化为形式:

$$P(n,s) = \sum_{m,m_1,m_2,\cdots,m_{s-1}} P(m,0)P(m,0|m_1,1)P(m_1,1|m_2,2)\cdots P(m_{s-1},s-1|n,s)$$

$$= \sum_{m,m_1,m_2,\cdots,m_{s-1}} P(m,0)Q_{mm_1}(1)Q_{m_1m_2}(2)\cdots Q_{m_{s-1}n}(s-1) = \sum_{m} P(m,0)\left(Q^S\right)_{mn}, P(m,s_0|n,s) = \left(Q^{s-s_0}\right)_{mn}$$

其中运用了类似于矩阵乘法 $\sum_{i} A_{ij}B_{jk} = (AB)_{ik}$.

[Example] N-ring [$P(N+1) \equiv P(1)$]. 将 Random Walk 近似为 Markov Process. $Q_{n,n+1} = Q_{n+1,n} = \frac{1}{2}, n \in \mathbb{N}$.

$$P(n,s) = P(n-1,s-1)Q_{n-1,n} + P(n+1,s-1)Q_{n+1,n} = \frac{1}{2}\left[P(n-1,s-1) + P(n+1,s-1)\right]$$
 Define $\delta P(n,s) \equiv P(n,s) - P(n,s-1) = P(n-1,s-1)Q_{n-1,n} + P(n+1,s-1)Q_{n+1,n} - P(n,s-1)$

Define
$$\delta P(n,s) \equiv P(n,s) - P(n,s-1) = P(n-1,s-1)Q_{n-1,n} + P(n+1,s-1)Q_{n+1,n} - P(n,s-1)Q_{n-1,n}$$

$$= \frac{1}{2}[P(n-1,s-1) + P(n+1,s-1) - 2P(n,s-1)]$$

Let t be continuous: $\tau \frac{dP_n(t)}{dt} = \frac{1}{2} \left[P_{n-1}(t) + P_{n+1}(t) - 2P_n(t) \right]$; Then let n be continuous:

$$au rac{\mathrm{d}P_n(t)}{\mathrm{d}t} = rac{a^2}{2} rac{P_{n-1}(t) + P_{n+1}(t) - 2P_n(t)}{a^2} \Rightarrow rac{\partial P(x,t)}{\partial t} = D rac{\partial^2 P(x,t)}{\partial x^2}, \quad D \sim rac{a^2}{2 au}.$$
 If E Feynmann Kac formula.

1.4.3.5 Langevin's Theory

忽略粒子间关联(flux). Based on force & dynamics, equation of motion. $x(t+\delta t)-x(t)=f(t)\delta t\Rightarrow \dot{x}(t)=f$, random force.

介观(mesoscopic) level:
$$M \frac{\mathrm{d} \vec{v}}{\mathrm{d} t} = -\frac{\vec{v}}{B} + \vec{F}(t)$$
. $f_{\mathrm{stokes}} = f(\overset{*\text{Permonstance}}{a}, \overset{\text{he}}{\eta}, \overset{\text{in}}{v}, \overset{\text{in}}{v}) = 6\pi \eta av \Rightarrow B = \frac{1}{6\pi \eta a}$

随机力满足 $\langle F(t) \rangle = 0$, $\langle \vec{F}(t) \vec{F}(t') \rangle = C_1 \delta(t - t')$.

[Discussion] 回忆 Ideal gas: $\langle \delta n(x) \delta n(x') \rangle = c \delta(x-x')$, 形式与随机力的二阶矩相似.

只有一阶矩和二阶矩非零,则可使用 Gaussian distribution 描述.

[Example] Irregular part(noise) of collective electron motion in circuit. $L \frac{dI}{dt} = \frac{dissipation}{-RI} + \frac{fluactuation}{V(t)}$

两边同乘 \vec{v} 且求期望 $\langle \cdot \rangle$,有 $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} M \left\langle v(t)^2 \right\rangle \right) + M \tau^{-1} \left\langle v(t)^2 \right\rangle = \langle v(t) F(t) \rangle$,即得到**动能形式的 Langevin 方程**

$$\frac{\mathrm{d}K(t)}{\mathrm{d}t} = \langle v(t)F(t) \rangle - \frac{2}{\tau}K(t).$$
其中 $\tau = MB$. 平衡态:
$$\frac{\mathrm{d}K(t)}{\mathrm{d}t} = 0 \Rightarrow \langle v(t)F(t) \rangle = \frac{2}{\tau}K_0 = \frac{2}{\tau} \cdot \frac{d}{2}k_BT, d$$
 为维数.

在
$$d = 1$$
 情况下, 定义 $v(t) = e^{-t/\tau}u(t)$, 其中 $\tau = MB$. 将其代入方程后解得 $v(t) = \frac{1}{M} \int_0^t dt' e^{-(t-t')/\tau} F(t')$

那么
$$\langle v(t)F(t)\rangle = \frac{C_1}{2M}$$
, 其中 C_1 来自于 $\langle \vec{F}(t)\vec{F}(t')\rangle = C_1\delta(t-t')$.

平衡态:
$$\frac{C_1}{2M} = \frac{2}{\tau} \cdot \frac{1}{2} k_B T \Rightarrow C_1 = \frac{2k_B T}{B}$$
, Fluactuation-Dissipation Theorem(涨落耗散定理).

1.4.3.5.1 Analysis of Particle Postion 检查 Langevin 语言下的 $\langle r^2(t) \rangle = 2dDt$ 是否仍然满足.

方程写作
$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = -\frac{\vec{v}}{\tau} + \vec{A}(t)$$
, 其中 $\vec{A}(t) = \frac{\vec{F}}{M}$. 因为 $\frac{\mathrm{d}^2r^2}{\mathrm{d}t^2} = 2v^2 + 2\vec{r} \cdot \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$, 等号两边同乘 \vec{r} 后求系综平均 $\langle \cdot \rangle$, 有

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}r^2 + \frac{1}{\tau}\frac{\mathrm{d}}{\mathrm{d}t}r^2 = 2v^2 + \vec{r} \cdot \vec{A} \Rightarrow \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left\langle r^2 \right\rangle + \frac{1}{\tau}\frac{\mathrm{d}}{\mathrm{d}t} \left\langle r^2 \right\rangle + 2\left\langle v^2 \right\rangle + \left\langle \vec{r} \cdot \vec{A} \right\rangle,$$
 因为 \vec{A} 和 \vec{r} 无关, 所以该期望项为 0.

三维动能均值为
$$\frac{1}{2}M\langle v^2\rangle = \frac{1}{2}k_BT \times 3$$
,解得位移方均 $\langle r^2(t)\rangle = \frac{6k_BT\tau^2}{M}\left[\frac{t}{\tau} - \left(1 - e^{-t/\tau}\right)\right]$

1.
$$t \ll \tau$$
, $\langle r^2(t) \rangle = \frac{3k_BT}{M}t^2 = \langle v^2 \rangle t^2$, 即 Ballistic motion(弹道运动). 然而 Langevin 方程在 $t \to 0$ 时有效性存疑.

1.
$$t \ll \tau$$
, $\langle r^2(t) \rangle = \frac{3k_BT}{M}t^2 = \langle v^2 \rangle t^2$, 即 Ballistic motion(弹道运动). 然而 Langevin 方程在 $t \to 0$ 时有效性存疑.
2. $t \gg \tau$, $\langle r^2(t) \rangle = \frac{6k_BT\tau}{M}t = 6Bk_BTt \stackrel{d=3}{=} 6Dt \Rightarrow \boxed{D=Bk_BT}$, $\forall d$, another form of **Fluactuation-Dissipation Theorem**, or **Einstein's Relation**.

1.4.3.5.2 Analysis of Particle Velocity $\vec{v}(t)$

[Discussion] 速度发散
$$\lim_{\delta t \to 0} \frac{\langle |x(t+\delta t) - x(t)| \rangle}{\delta t} \sim \lim_{\delta t \to 0} \frac{(\delta t)^{\frac{1}{2}}}{\delta t} \to \infty$$
. Solution:

1. Stochastic Differential Equation 严格化;

- 2. 从场的观点出发. 将随机性转移至概率分布函数(particle-based approach \rightarrow field-based approach). 场 f(x,t), 则位置为 $\rho(x) = q\delta(x - x_0), \int \rho(x) dx = q.$ 如果是匀速直线运动, 则 $f(x,t) = \delta(x - vt)$. 若粒子 $x \to x + \delta x$, 则 $f(x,t) = \langle \delta[x - x(t)] \rangle$, 即场与粒子观点的转换.

约束
$$\sum_{i} n_{i} = N$$
. 态迁移率(transition rate) 为 $\frac{n_{i}(t+\delta t) - n_{i}(t)}{\delta t} = -\sum_{j \neq i} n_{i}(t)P_{i \to j} + \sum_{j \neq i} n_{j}(t)P_{j \to i}$, 这类方程被称为

Master equation.

1. 假定为 Markov Process:

2. 粒子数守恒:
$$\frac{1}{\delta t} \left[\sum_{i} n_i (t + \delta t) - \sum_{i} n_i \right] = \sum_{i} \left(\sum_{i \neq j} n_j P_{j \to i} - \sum_{i \neq j} n_i P_{i \to j} \right) = 0.$$

[Application] 2-state system. $n_+: |+\rangle$, $n_-: |-\rangle$. 迁移速率 ω_{\pm} . 平衡态: $\frac{n_+^0}{n_-^0} = \frac{\omega_+}{\Omega_+^0}$

$$\frac{dn_{+}}{dt} = -n_{+}\omega_{-} + n_{-}\omega_{+}, \quad \frac{dn_{-}}{dt} = -n_{-}\omega_{+} + n_{+}\omega_{-}$$

Relaxation dynamics: 设 $n(t) = n_- - n_+$. 则微分方程化为 $\frac{\mathrm{d}n(t)}{\mathrm{d}t} = \frac{1}{\tau} \left[n(t) - n^0 \right]$, 其中 $\tau = \frac{1}{\omega_+ + \omega_-}$, $n^0 = n_-^0 - n_+^0$.

[Discussion] 连续变量 Master Equation. 前提: 1. 归一化条件: $\int_{-\infty}^{+\infty} f(x,t) dx = 1$;

- 2. 概率函数定义: f(x,t)dx 是粒子在 t 时刻处于 [x,x+dx] 的概率.
- 3. 动力学: $\frac{\partial f(x,t)}{\partial t} = \int_{-\infty}^{+\infty} \left[-f(x,t)W(x,x') + f(x',t)W(x',x) \right] dx', W(x,x')dx'$ 是 $x \to x'$ 的迁移概率.

以上动力学方程可改写为 $\frac{\partial}{\partial t}f(x,t) = -\frac{\partial}{\partial x}\left(\mu_1(x)f(x,t)\right) + \frac{1}{2}\frac{\partial^2}{\partial x^2}\left[\mu_2(x)f(x,t)\right]$, 即 Fokker-Planck 方程.

其中矩系数
$$\mu_1(x) = \int_{-\infty}^{+\infty} d\xi \xi W(x,\xi) = \frac{\langle \delta x \rangle_{\delta t}}{\delta t} = \langle v_x \rangle, \quad \mu_2(x) = \int_{-\infty}^{+\infty} d\xi \xi^2 W(x,\xi) = \frac{\langle (\delta x)^2 \rangle_{\delta t}}{\delta t}.$$

写作概率流形式: $\frac{\partial}{\partial t}f(x,t) = -\frac{\partial}{\partial x}j(x,t), \quad j(x,t) = \mu_1(x)f(x,t) - \frac{1}{2}\frac{\partial}{\partial x}[\mu_2(x)f(x,t)].$

[Example] 粘液中振子. 矩系数信息为 $\mu_1(x) = -\lambda Bx$, $\mu_2(x) = \frac{\langle \delta x^2 \rangle}{\delta t} = 2Bk_BT$

Fokker-Planck 方程为 $\frac{\partial f(x,t)}{\partial t} = \lambda B \frac{\partial}{\partial x} (xf(x,t)) + Bk_B T \frac{\partial^2 f(x,t)}{\partial x^2}$

平衡态解:
$$\lambda B \frac{\partial}{\partial x}(xf(x,\infty)) + Bk_BT \frac{\partial^2}{\partial x^2}f(x,\infty) = 0 \Rightarrow f(x,\infty) = \left(\frac{\lambda}{2\pi k_BT}\right)^{\frac{1}{2}}e^{-\frac{\lambda x^2}{2k_BT}}.$$
 $\langle x \rangle = 0, \quad \langle x^2 \rangle = \int_{-\infty}^{+\infty} x^2 f(x,\infty) \mathrm{d}x = \frac{k_BT}{\lambda}$ 设初始为 δx 分布,则一般含时解为 $f(x,t) = \left[\frac{\lambda}{2\pi k_BT(1-e^{-2\lambda Bt})}\right]^{\frac{1}{2}}\exp\left[-\frac{\lambda x^2}{2k_BT(1-e^{-2\lambda Bt})}\right].$ 该模型对应的 Langevin 方程为 $\eta \frac{\mathrm{d}x}{\mathrm{d}t} = -U'(x) + F(t)$,其中 $U(x) = \frac{1}{2}\lambda x^2$, $U'(x) = \lambda x$ 为势能的导数.

1.4.3.5.3 Time Correlation of Velocity v(t). 令时间变量 u_1, u_2 .

则位移方均
$$\langle x^2(t) \rangle = \left\langle \left(\int_0^t \mathrm{d} u_1 v(u_1) \right) \left(\int_0^t \mathrm{d} u_1 v(u_1) \right) \right\rangle = \int_0^t \mathrm{d} u_1 \int_0^t \mathrm{d} u_2 \, \langle v(u_1) v(u_2) \rangle.$$
 利用微积分性质 $\frac{\mathrm{d}}{\mathrm{d}t} \int_0^t f(u) \mathrm{d}u = \int_0^t \mathrm{d}u \, \langle v(u) v(u_1) \rangle = 2 \int_0^t \mathrm{d}u \, \langle v(u) v(u_1) \rangle$

1.4.3.5.4 Fourier Transformation of Langevin Equation

约化 Langevin 方程形为
$$\frac{\mathrm{d}v(t)}{\mathrm{d}t} = -\frac{v(t)}{\tau} + A(t)$$
, 其中 $\langle A(t)A(t') \rangle = C_1'\delta(t-t')$. 速度变换为 $\widetilde{v}(\omega) = \frac{\widetilde{A}(\omega)}{-i\omega + \tau^{-1}}$, 约化随机力变换后满足 $\left\langle \widetilde{A}(\omega)\widetilde{A}(\omega') \right\rangle = 2\pi C_1'\delta(\omega + \omega')$ 频域内速度关联为 $\langle \widetilde{v}^*(\omega)\widetilde{v}(\omega') \rangle = S(\omega)\delta(\omega + \omega')$, 其中 $S(\omega) = \frac{2\pi C_1}{\tau^{-2} + \omega^2}$. 令速度关联在 ω' 域积分,得到 $\langle \widetilde{v}^*(\omega)\widetilde{v}(t=0) \rangle = S(\omega)$; 再令其在 ω 域积分,得到 $\langle v(t)v(0) \rangle = \int_{-\infty}^{+\infty} S(\omega)e^{-i\omega t}\frac{\mathrm{d}\omega}{2\pi}$. 令自由参数 $t=0$, 则 $\left\langle v(0)^2 \right\rangle = \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega}{2\pi}S(\omega)$; 根据对称性, $S(0) = 2\int_{0}^{+\infty} \mathrm{d}t \langle v(t)v(0) \rangle = \frac{2\pi C_1}{\tau^{-2}} = 2D$.

第二章 Homework

2.1 Homework 2

1. Show that the volume element

$$d\omega = \prod_{i=1}^{3N} (dq_i dp_i)$$

of the phase space remains invariant under a canonical transformation of the (generalized) coordinates (q, p) to any other set of (generalized) coordinates (Q, P).

[Hint: Before considering the most general transformation of this kind, which is referred to as a contact transformation, it may be helpful ti consider a point transformation - one in which the new coordinates Q_i and the old coordinates q_i transform only among themselves.]

$$(Q, P) = (Q(q, p), P(q, p))$$

So the volume element is

$$d\omega' = \prod_{i=1}^{3N} dQ_i dP_i = \left| \frac{\partial(Q, P)}{\partial(q, p)} \right| \prod_{i=1}^{3N} dq_i dp_i$$
$$J = \frac{\partial(Q, P)}{\partial(q, p)} = \begin{bmatrix} \frac{\partial Q}{\partial q} & \frac{\partial Q}{\partial p} \\ \frac{\partial P}{\partial q} & \frac{\partial P}{\partial p} \end{bmatrix}$$

Since canonical transformations preserve the Poisson brackets

$${Q_i, Q_i} = 0, \quad {P_i, P_i} = 0, \quad {Q_i, P_i} = \delta_{ii},$$

which gives the Jacobian matrix J

$$J^T \Omega J = \Omega, \quad \Omega = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$$

So $\det\Omega = 1$, which means $\det J = 1$.

Therefore we have $d\omega' = d\omega$, or

$$\prod_{i=1}^{3N} dQ_i dP_i = \prod_{i=1}^{3N} dq_i dp_i$$

2. The generalized coordinates of a simple pendulum are the angular displacement θ and the angular momentum $ml^2\dot{\theta}$. Study, both mathematically and graphically, the nature of the corresponding trajectories in the phase space of the system, and show that the area A enclosed by a trajectory is equal to the product of the total energy E and the time period τ of the pendulum. With θ and $L=m\dot{\theta}l^2$, the Hamiltonian of the simple pendulum is

$$H = \frac{L^2}{2ml^2} + mgl(1 - \cos\theta)$$

So the area A enclosed by a trajectory is computed using the integral of $Ld\theta$:

$$A = \oint L \mathrm{d}\theta.$$

Deriative of A with respect to E gives the time period τ :

$$\frac{\mathrm{d}A}{\mathrm{d}E} = \frac{\mathrm{d}}{\mathrm{d}E} \oint L \mathrm{d}\theta = \oint \frac{\partial L}{\partial E} \mathrm{d}\theta$$
$$\frac{\partial H}{\partial L} = \frac{L}{ml^2} = \dot{\theta}$$
$$\Rightarrow \frac{\mathrm{d}A}{\mathrm{d}E} = \oint \frac{1}{\dot{\theta}} \mathrm{d}\theta = \tau$$
$$\Rightarrow A = E\tau.\Box$$

2.2 Homework 3

2.2.1 1-D Harmonic Oscillators

Derive

1. an asymptotic expression for the number of ways in which a given energy E can be distributed among a set of N one-dimensional harmonic oscillators, the energy eigenvalues of the oscillators being $\left(n+\frac{1}{2}\right)\hbar\omega; n=0,1,2,\cdots$;

The ground state energy for N oscillators is

$$E_{\text{ground}} = N \cdot \frac{1}{2}\hbar\omega = \frac{N}{2}\hbar\omega.$$

So the excitation energy above the ground state is

$$E^* = E - E_{\text{ground}} = E - \frac{N}{2}\hbar\omega.$$

So we need to distribute E^* among N oscillators, or

$$\sum_{i=1}^{N} = M, \quad \text{where } M = \frac{E^*}{\hbar \omega} = \frac{E}{\hbar \omega} - \frac{N}{2}.$$

So the number of ways, or the microstates, is given by the combinatorics

$$\Omega = \binom{M+N-1}{N-1}$$

With the Stirling approximation, we have

$$\ln \Omega \approx (M+N) \ln (M+N) - M \ln M - N \ln N - \frac{1}{2} \ln (2\pi MN)$$

$$\Omega \approx \frac{(M+N)^{M+N}}{M^M N^N} \sqrt{\frac{M+N}{2\pi MN}}$$

Apply $M = \frac{E}{\hbar \omega} - \frac{N}{2}$ to the above equation, we have

$$\Omega \approx \frac{\left(\frac{E}{\hbar\omega} + \frac{N}{2}\right)^{\frac{E}{\hbar\omega} + \frac{N}{2}}}{\left(\frac{E}{\hbar\omega} - \frac{N}{2}\right)^{\frac{E}{\hbar\omega} - \frac{N}{2}} N^N} \sqrt{\frac{\frac{E}{\hbar\omega} + \frac{N}{2}}{2\pi \left(\frac{E}{\hbar\omega} - \frac{N}{2}\right)N}}$$

If $\frac{E}{\hbar\omega} \gg N$, the number of states can be approximated as

$$\Omega \approx \frac{1}{N!} \left(\frac{E}{\hbar \omega} \right)^N.$$

2. and the corresponding expression for the "volume" of the relevant region of the phase space of this system. Establish the correspondence between the two results, showing that the conversion factor ω_0 is precisely h^N .

For a one-dimensinal harmonic oscillator with energy E_i , its Hamiltonian is a elliptic curve:

$$H_i = \frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 x_i^2 = E_i$$

So the phase space volume is given by the integral of the Hamiltonian over the energy surface:

$$\Gamma_i = \iint H_i \mathrm{d}p_i \mathrm{d}x_i = \pi \cdot \sqrt{\frac{2E_i}{m}} \cdot m \cdot \frac{1}{\omega} \sqrt{\frac{2E_i}{m}} = \frac{2\pi E_i}{\omega}$$

So the total phase space volume is given by

$$\Gamma = \int_{\sum E_i \le E} \prod_{i=1}^N \frac{2\pi E_i}{\omega} dE_1 \cdots dE_N = \frac{(2\pi/\omega)^N E^N}{N!} = \frac{1}{N!} \left(\frac{2\pi E}{\omega}\right)^N$$

The classical microstate is

$$\Omega = \frac{1}{N!} \left(\frac{E}{\hbar \omega} \right)^N = \frac{1}{N!} \left(\frac{2\pi E}{\hbar \omega} \right)^N = \frac{1}{h^N} \Gamma$$

So we get

$$\omega_0 = h^N$$

3. On the basis of Problem 1, derive the entropy and temperature. Comment on the result.

Since the number of microstates Ω is given by

$$\Omega \approx \frac{\left(\frac{E}{\hbar\omega} + \frac{N}{2}\right)^{\frac{E}{\hbar\omega} + \frac{N}{2}}}{\left(\frac{E}{\hbar\omega} - \frac{N}{2}\right)^{\frac{E}{\hbar\omega} - \frac{N}{2}}N^{N}} \sqrt{\frac{\frac{E}{\hbar\omega} + \frac{N}{2}}{2\pi(\frac{E}{\hbar\omega} - \frac{N}{2})N}},$$

we can calculate the entropy S using the Boltzmann entropy formula with Stirling approximation:

$$S = k_B \left[\left(\frac{E}{\hbar \omega} + \frac{N}{2} \right) \ln \left(\frac{E}{\hbar \omega} + \frac{N}{2} \right) - \left(\frac{E}{\hbar \omega} - \frac{N}{2} \right) \ln \left(\frac{E}{\hbar \omega} - \frac{N}{2} \right) - N \ln N \right]$$

With the thermodynamic connection $\frac{1}{T} = \frac{\partial S}{\partial E}$, we have

$$\frac{1}{T} = \frac{k_B}{\hbar\omega} \ln\left(\frac{\frac{E}{\hbar\omega} + \frac{N}{2}}{\frac{E}{\hbar\omega} - \frac{N}{2}}\right)$$

$$\Rightarrow T = \frac{\hbar\omega}{k_B} \left[\ln\left(\frac{E + \frac{N}{2}\hbar\omega}{E - \frac{N}{2}\hbar\omega}\right)\right]^{-1}$$

2.2.2 Helmholtz Free Energy

Making use of the fact that the Helmholtz free energy A(N,V,T) of a thermodynamic system is an extensive property of the system, show that

$$N\left(\frac{\partial A}{\partial N}\right)_{V,T} + V\left(\frac{\partial A}{\partial V}\right)_{N,T} = A$$

[Note that this result implies the well-known relationship: $N\mu = A + PV (\equiv G)$.]

Since the Helmholtz free energy A(N, V, T) satisfies the scaling relation

$$A(\lambda N, \lambda V, T) = \lambda A(N, V, T)$$
 for any $\lambda > 0$,

so A(N, V, T) is homogeneous of degree 1 in N and V. So apply the Euler theorem for homogeneous functions to show that

$$N\left(\frac{\partial A}{\partial N}\right)_{V,T} + V\left(\frac{\partial A}{\partial V}\right)_{N,T} = A(N,V,T).$$

Since the chemical potential μ is defined as $\mu = \left(\frac{\partial A}{\partial N}\right)_{V,T}$, and the pressure P is defined as $P = -\left(\frac{\partial A}{\partial V}\right)_{N,T}$, so we have the relation between the Helmholtz free energy and the chemical potential and pressure:

$$N\mu + V(-P) = A \Rightarrow N\mu = A + PV \equiv G.$$

2.2.3 Dilute Hard Sphere Gas

Assume there's a dilute hard sphere system, where exists N hard spheres with radius a, or volume $\omega_e = \frac{4}{3}\pi(2a)^3$. The system is at thermal equilibrium at temperature T. The total energy is E, and the system is in a container with volume V. Derive

1. entropy S(E,V). [Hint: For an n-dimensional sphere with radius R, its (n-1)-dimensional sphere area $S^{(n-1)}$ is $\mathbf{Area} = \frac{2\pi^{n/2}}{\Gamma(n/2)}R^{n-1}s$]

The number of microstates is given by

$$\Omega(E,V,N) = \frac{1}{N!h^{3N}} \int_{\mathcal{D}} \mathrm{d}^{3N} q \mathrm{d}^{3N} p \delta \left(E - \sum_{i=1}^{N} \frac{p_i^2}{2m} \right), \quad \text{where } \mathcal{D}: |\vec{q_i} - \vec{q_j}| \geq 2a, \quad \forall i < j.$$

At dilute gas limit, the free volume can be consideres as the rest volume:

$$V_{
m free}pprox V-rac{N\omega_e}{2}.$$

So for the real space integral part, we have

$$\int_{\mathcal{D}} d^{3N} q \approx \left(V - \frac{N\omega_e}{2}\right)^N.$$

Since the energy consists of the kinetic energy only, as

$$E = \sum_{i=1}^{N} \frac{p_i^2}{2m},$$

the momentum integral part can be calculated:

$$\int d^{3N}p \delta \left(E - \sum_{i=1}^{N} \frac{p_i^2}{2m} \right) = \int d\Omega_{3N} \int_0^\infty dp p^{3N-1} \delta (E - \frac{p^2}{2m}), \quad p = \sqrt{\sum_{i=1}^{3N} p_i^2}$$

where $\mathrm{d}\Omega_{3N}$ is the angle interal part of the 3N-dimensional sphere. As the hint gives, we have

$$S_{3N-1}(R) = \frac{2\pi^{3N/2}}{\Gamma(3N/2)}R^{3N-1}$$

Let $R=\sqrt{2mE}$, and remember that $\delta(E-\frac{p^2}{2m})=\frac{m}{p}\delta(p-\sqrt{2mE})$, we have

$$\int d^{3N} p \delta \left(E - \sum_{i=1}^{N} \frac{p_i^2}{2m} \right) \propto (2mE)^{3N/2-1}$$

So the number of microstates is given by

$$\Omega(E,V,N) \approx \frac{1}{N!h^{3N}} \left(V - \frac{N\omega_e}{2}\right)^N \frac{(2\pi m)^{3N/2}}{\Gamma(3N/2)} E^{3N/2-1} \label{eq:omega_energy}$$

So the Boltzmann entropy is given by

$$S(E, V, N) = k_B \left\{ -\ln N! - 3N \ln h + N \ln \left(V - \frac{N\omega_e}{2} \right) + \left(\frac{3N}{2} - 1 \right) \ln E + \frac{3N}{2} \ln (2\pi m) - \ln \Gamma \left(\frac{3N}{2} \right) \right\}$$

With thermodynamic limit $N \to \infty$ and Stirling approximation $\ln N! \approx N \ln N - N$, we have

$$S(E, V, N) \sim Nk_B \ln \left(V - \frac{N\omega_e}{2}\right) + \frac{3N}{2}k_B \ln E + \cdots$$

2. guess the equation of state.

Since only the volume changed from V to $V = \frac{N\omega_e}{2}$, the state equation can be compared with the ideal gas one:

$$P\left(V - \frac{N\omega_e}{2}\right) = Nk_BT.$$

3. calculate the equation of state.

With the thermodynamic relation $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{VN}$ and $\frac{P}{T} = \left(\frac{\partial S}{\partial V}\right)_{EN}$, we have

$$S(E, V, N) \sim NK_B \ln \left(V - \frac{N\omega_e}{2}\right) + \cdots$$

$$\frac{P}{T} = \left(\frac{\partial S}{\partial V}\right)_{E, N} \sim \frac{Nk_B}{V - \frac{N\omega_e}{2}} \cdots$$

So we have the equation of state for the dilute hard sphere system:

$$P\left(V - \frac{N\omega_e}{2}\right) = Nk_BT$$

2.3 Homework 4

2.3.1 Van der Waals equation

1. Derive for the dimensionless van der Waals equation of state from the original vdW equation $P = \frac{RT}{v-b} - \frac{a}{v^2}$.

The conditions for the critical point are

$$\left(\frac{\partial P}{\partial v}\right)_T = 0, \quad \left(\frac{\partial^2 P}{\partial v^2}\right)_T = 0.$$

So compute the derivatives of the pressure *P*:

$$\begin{cases} \frac{\partial P}{\partial v} &= -\frac{RT}{(v-b)^2} + \frac{2a}{v^3}, \\ \frac{\partial^2 P}{\partial v^2} &= \frac{2RT}{(v-b)^3} - \frac{6a}{v^4}. \end{cases}$$

At the critical point, let $v = v_c$, $P = P_c$, $T = T_c$, and we have the following equations:

$$\begin{cases} \frac{RT_c}{(v_c-b)^2} - \frac{2a}{v_c^3} &= 0, \\ \frac{2RT_c}{(v_c-b)^3} - \frac{6a}{v_c^4} &= 0. \end{cases} \Rightarrow \begin{cases} RT_c &= \frac{2a(v_c-b)^2}{v_c^3}, \\ RT_c &= \frac{3a(v_c-b)^3}{v_c^4}. \end{cases} \Rightarrow v_c = 3b$$

Since v_c has been determined, we can substitute it into the first equation to get:

$$RT_c = \frac{2a(3b-b)^2}{(3b)^3} = \frac{8a}{27b} \Rightarrow T_c = \frac{8a}{27Rb}$$
$$P_c = \frac{RT_c}{v_c - b} - \frac{a}{v_c^2} = \frac{a}{27b^2}.$$

Rescale the variables with the critical conditions:

$$\begin{split} P_r &= \frac{P}{P_c}, \quad v_r = \frac{v}{v_c}, \quad T_r = \frac{T}{T_c}. \\ \Leftrightarrow P &= P_r P_c = P_r \cdot \frac{a}{27b^2}, \quad v = v_r v_c = v_r \cdot 3b, \quad T = T_r T_c = T_r \cdot \frac{8a}{27Rb}. \end{split}$$

So the van der Waals equation of state come to be

$$P_r \cdot \frac{a}{27b^2} = \frac{RT_r \cdot \frac{8a}{27Rb}}{v_r \cdot 3b - b} - \frac{a}{(v_r \cdot 3b)^2}$$
$$\Rightarrow P_r = \frac{8T_r}{3v_r - 1} - \frac{3}{v_r^2}.$$

2. Plot typical curves P(v) at high and low temperature. In the derivation, one should identify the critical point. Show all your work.

% Define the reduced volume range $v_r = linspace(0.5, 10, 1000);$

% High temperature $(T_{-r} > 1, e.g., T_{-r} = 1.5)$

 $T_r_high = 1.5$;

$$P_{-r}-high = 8 * T_{-r}-high ./ (3 * v_{-r} - 1) - 3 ./ (v_{-r}.^2);$$

% Low temperature $(T_{-r} < 1, e.g., T_{-r} = 0.8)$

 $T_rlow = 0.8$;

$$P_r_1ow = 8 * T_r_1ow ./ (3 * v_r - 1) - 3 ./ (v_r.^2);$$

% Critical isotherm $(T_{-r} = 1)$

```
T_r_critical = 1;
P_r_critical = 8 * T_r_critical ./ (3 * v_r - 1) - 3 ./ (v_r.^2);

% Plotting
figure;
hold on;
plot(v_r, P_r_high, 'b', 'LineWidth', 2, 'DisplayName', 'High_T_(T_r_=_1.5)');
plot(v_r, P_r_low, 'r', 'LineWidth', 2, 'DisplayName', 'Low_T_(T_r_=_0.8)');
plot(v_r, P_r_critical, 'k', 'LineWidth', 2, 'DisplayName', 'Critical_(T_r_=1)');
xlabel('Reduced_Volume_(v_r)');
ylabel('Reduced_Pressure_(P_r)');
title('van_der_Waals_Equation_of_State');
legend('Location', 'best');
grid on;
hold off;
```

The figure is shown below:

2.3.2 Maxwell Equal Area Construction

Derive for the Maxwell equal area construction.

The van der Waals equation of state for a non-ideal gas is given by

$$P = \frac{RT}{v - b} - \frac{a}{v^2}$$

The Maxwell construction replaces an unphysical "loop" with a horizontal line(Constant P), reprensenting liquid-vapor coexis-

tence. Conditions for phase equilibrium are:

$$P(T,V_g)=P(T,V_l)=P_{\rm sat}, \quad V_{g/l} \mbox{: the molar volume of gas/liquid phases.}$$

$$\mu_g(T,P)=\mu_l(T,P)$$

Since $G = \mu N$ and dG = -SdT + VdP, we have:

$$\mu_g - \mu_l = \int_{V_l}^{V_g} \left(\frac{\partial \mu}{\partial V}\right)_T dV = \int_{V_l}^{V_g} v dP = 0$$

Since P is constant (P_{sat}) along the coexistence line, we can write:

$$\int_{V_l}^{V_g} v \mathrm{d}P = P_{\text{sat}}(V_g - V_l) - \int_{P_l}^{P_g} P \mathrm{d}V = 0$$

And we know that $P_l = P_g = P_{\text{sat}}$, so this reduces to

$$\int_{V_l}^{V_g} P \mathrm{d}V = P_{\text{sat}}(V_g - V_l) \,,$$

which is the conclusion to be derived.

2.3.3 Virial Expansion

Assume that in the virial expansion

$$\frac{Pv}{kT} = 1 - \sum_{j=1}^{\infty} \frac{j}{j+1} \beta_j \left(\frac{\lambda^3}{v}\right)^j,$$

where β_j are the irreducible cluster integrals of the system, only terms with j=1 and j=2 are appreciable in the critical region.

1. Determine the relationship between β_1 and β_2 at the critical point, and

Since only the first two terms are appreciable, we can write the virial expansion as:

$$\frac{Pv}{kT} \simeq 1 - \left(\frac{1}{2}\beta_1 \frac{\lambda^3}{v} + \frac{2}{3}\beta_2 \frac{\lambda^6}{v^2}\right) = 1 - \frac{\beta_1 \lambda^3}{2v} - \frac{2\beta_2 \lambda^6}{3v^2}.$$

Or we can write it as a pressure function P of variable v:

$$P = kT \left(v^{-1} - \frac{\beta_1 \lambda^3}{2} v^{-2} - \frac{2\beta_2 \lambda^6}{3} v^{-3} \right)$$

So list the derivatives of P with respect to v:

$$\frac{\partial P}{\partial v} = kT(-v^{-2} + \beta_1 \lambda^3 v^{-3} + 2\beta_2 \lambda^6 v^{-4}) (= 0),$$

$$\frac{\partial^2 P}{\partial v^2} = kT(2v^{-3} - 3\beta_1 \lambda^3 v^{-4} - 8\beta_2 \lambda^6 v^{-5}) (= 0),$$

which brings the critical point conditions:

$$-v_c^{-2} + \beta_1 \lambda^3 v_c^{-3} + 2\beta_2 \lambda^6 v_c^{-4} = 0,$$

$$2v_c^{-3} - 3\beta_1 \lambda^3 v_c^{-4} - 8\beta_2 \lambda^6 v_c^{-5} = 0.$$

We can rewrite the equations as

$$-v_c^2 + \beta_1 \lambda^3 v_c + 2\beta_2 \lambda^6 = 0, (2.1)$$

$$2v_c^2 - 3\beta_1 \lambda^3 v_c - 8\beta_2 \lambda^6 = 0. (2.2)$$

So the target is to eliminate terms like v_c . (2.3)×2+(2.5) gives

$$(2v_c^2 - 2v_c^2) = (3\beta_1\lambda^3v_c - 2\beta_1\lambda^3v_c) + (8\beta_2\lambda^6 - 4\beta_2\lambda^6)$$
$$\Rightarrow 0 = \beta_1\lambda^3v_c + 4\beta_2\lambda^6 \Rightarrow \beta_1 = -\frac{4\beta_2\lambda^3}{v_c}.$$

Substitute this into (2.3) gives:

$$v_c^2 = \left(-4\beta_2 \frac{\lambda^3}{v_c}\right) \lambda^3 v_c + 2\beta_2 \lambda^6$$

$$\Rightarrow v_c^2 = -2\beta_2 \lambda^6 \Rightarrow v_c = \sqrt{-2\beta_2} \lambda^3$$

This connects β_1 and β_2 :

$$\beta_1 = -\frac{4\beta_2 \chi^3}{\sqrt{-2\beta_2} \chi^3} = 2\sqrt{-2\beta_2}.$$

So we have $\beta_1 = 2\sqrt{-2\beta_2}$.

2. show that $\frac{kT_c}{P_c v_c} = 3$.

From the previous problem, we have $\beta_1=\frac{2v_c}{\lambda^3}$ and $\beta_2=-\frac{v_c^2}{2\lambda^6}$. Substituting these into the virial expansion gives:

$$\frac{P_c v_c}{kT_c} \simeq 1 - \frac{2v_c}{\lambda^3} \cdot \frac{\lambda^3}{2v_c} - \left(-\frac{v_c^2}{2\lambda^6}\right) \frac{2\lambda^6}{3v_c^2}$$
$$= 1 - 1 + \frac{1}{3} = \frac{1}{3}$$

So we have $\boxed{\frac{kT_c}{P_c v_c} = 3}$

2.4 Homework 5

2.4.1 Partition Function

Show that the partition function of an Ising lattice can be written as

$$Q_N(B,T) = \sum_{N_+,N_{+-}} g_N(N_+,N_{+-}) \exp\{-\beta H_N(N_+,N_{+-})\},$$

where

$$H_N(N_+, N_{+-}) = -J\left(\frac{1}{2}qN - 2N_{+-}\right) - \mu B(2N_+ - N),\tag{2.3}$$

while other symbols have their usual meanings; compare these results to equations

$$H_N(N_+, N_{++}) = -J(N_{++} + N_{--} - N_{+-}) - \mu B(N_+ - N_-)$$

$$= -J\left(\frac{1}{2}qN - 2qN_+ + 4N_{++}\right) - \mu B(2N_+ - N)$$
(2.4)
(2.5)

and

$$Q_N(B,T) = \sum_{N_+,N_{++}} g_N(N_+,N_{++}) \exp \{-\beta H_N(N_+,N_{++})\}.$$

The Hamiltonian of the Ising model is given by

$$H = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - \mu B \sum_i \sigma_i, \quad \sigma_i = \pm 1 \quad \forall i.$$

The total number of neighbor pairs is

$$N_{++} + N_{--} + N_{+-} = \frac{1}{2}qN$$

So the interaction energy component of the Hamiltonian becomes

$$-J\sum_{\langle i,j\rangle} \sigma_i \sigma_j = -J(N_{++} + N_{--} - N_{+-}),$$

where $\sigma_i \sigma_j = +1$ for N_{++} and N_{--} , and $\sigma_i \sigma_j = -1$ for N_{+-} .

The magnetic energy component is

$$-\mu B \sum_{i} \sigma_{i} = -\mu B(N_{+} - N_{-}) = -\mu B(2N_{+} - N), \quad N_{-} = N - N_{+}.$$

Combining these two components gives the total Hamiltonian

$$H_N = -J(N_{++} + N_{--} - N_{+-}) - \mu B(2N_+ - N)$$

Using the relation $N_{++} + N_{--} = \frac{1}{2}qN - N_{+-}$, we can rewrite the Hamiltonian as

$$H_N = -J\left(\frac{1}{2}qN - 2N_{+-}\right) - \mu B(2N_+ - N),$$

So the partition function can be expressed as

$$\begin{split} Q_N(B,T) &= \sum_{N_+,N_{+-}} g_N(N_+,N_{+-}) \mathrm{exp} \{ -\beta H_N(N_+,N_{+-}) \} \\ &= \sum_{N_+,N_{+-}} g_N(N_+,N_{+-}) \mathrm{exp} \left\{ -\beta \left[-J \left(\frac{1}{2} qN - 2N_{+-} \right) - \mu B (2N_+ - N) \right] \right\} \end{split}$$

which matches the provided expression

To prove that (2.3) and (2.5) are equivalent, we can use the relation between N_{+-} and N_{++} :

$$qN_{+} = 2N_{++} + N_{+-} \Rightarrow N_{+-} = qN_{+} - 2N_{++}$$

Substituting this into (2.3) gives:

$$H_N(N_+, N_{+-}) = -J \left[\frac{1}{2} qN - 2(qN_+ - 2N_{++}) \right] - \mu B(2N_+ - N)$$

$$= \left[-J \left(\frac{1}{2} qN - 2qN_+ + 4N_{++} \right) - \mu B(2N_+ - N) \right]$$

2.4.2 Equation of State

Show that the curve in 2.1 hits the horizontal and vertical axes at right angle according to the equation of state

$$\bar{L}_0 = \tanh\left(\frac{qJ\bar{L}_0}{kT}\right).$$

To show that the curve given by the equation of state $\bar{L}_0 = \tanh\left(\frac{qJ\bar{L}_0}{kT}\right)$ hits the horizontal and vertical axes at right angles, we need to analyze the slope of the curve at the boundaries T=0 and $T=T_c=\frac{qJ}{k}$.

Differentiate both sides of the equation with respect to T, with chain rule:

$$\frac{\mathrm{d}\bar{L}_0}{\mathrm{d}T} = \mathrm{sech}^2 \left(\frac{qJ\bar{L}_0}{kT} \right) \left(\frac{qJ}{kT} \frac{\mathrm{d}\bar{L}_0}{\mathrm{d}T} - \frac{qJ\bar{L}_0}{kT^2} \right)$$

$$\left[1 - \mathrm{sech}^2 \left(\frac{qJ\bar{L}_0}{kT} \right) \frac{qJ}{kT} \right] \frac{\mathrm{d}\bar{L}_0}{\mathrm{d}T} = - \mathrm{sech}^2 \left(\frac{qJ\bar{L}_0}{kT} \right) \frac{qJ\bar{L}_0}{kT^2}$$

$$\frac{\mathrm{d}\bar{L}_0}{\mathrm{d}T} = \frac{\mathrm{sech}^2 \left(\frac{qJ\bar{L}_0}{kT} \right) \frac{qJ\bar{L}_0}{kT^2}}{\mathrm{sech}^2 \left(\frac{qJ\bar{L}_0}{kT} \right) \frac{qJ\bar{L}_0}{kT}}$$

Figure 2.1: The spontaneous magnetization of a Weiss ferromagnet as a function of temperature. The experimental points (after Becker) are for iron (x), nickel (o), cobalt (Δ), and magnetite (+).

1. At
$$T=0$$
. Define $x=\frac{qJ\bar{L}_0}{kT}$, we have:

$$\lim_{T \to 0} \tanh \left(\frac{qJ\bar{L}_0}{kT} \right) = \lim_{x \to \infty} \tanh x = 1, \quad \forall \bar{L}_0 \neq 0$$

$$\Rightarrow \lim_{T \to 0} \bar{L}_0 = 1$$

$$\lim_{T \to 0} \operatorname{sech}^2 \left(\frac{qJ\bar{L}_0}{kT} \right) = \lim_{x \to \infty} \operatorname{sech}^2 x = 0, \quad \forall \bar{L}_0 \neq 0$$

$$\Rightarrow \lim_{T \to 0} \frac{\mathrm{d}\bar{L}_0}{\mathrm{d}T} = \boxed{0}$$

Thus the curve hits the horizontal axis horizontally at T=0.

2. At
$$T=T_c$$
. We have $\bar{L}_0=0$, and $\lim_{x\to 0} \tanh x=x-\frac{x^3}{3}+o(x^3)$.

$$\lim_{\bar{L}_0 \to 0} \tanh\left(\frac{qJ\bar{L}_0}{kT}\right) = \frac{qJ\bar{L}_0}{kT} - \frac{1}{3}\left(\frac{qJ\bar{L}_0}{kT}\right)^3$$

$$\Rightarrow \bar{L}_0\left(1 - \frac{qJ}{kT}\right) = -\frac{1}{3}\left(\frac{qJ}{kT}\right)^3\bar{L}_0^3$$

Define $T_c = \frac{qJ}{k}$, so that $t = \frac{T}{T_c} = \frac{kT}{qJ}$ to substitute into the equation:

$$\bar{L}_0 \left(1 - \frac{1}{t} \right) = -\frac{\bar{L}_0^3}{3t^3}$$

Let $t=1+\epsilon$ while $\epsilon\to 0$, we have $1-\frac{1}{t}\approx \epsilon.$ Then rewrite the equation as:

$$\bar{L}_0 \epsilon = -\frac{1}{3} \bar{L}_0^3 \Rightarrow \bar{L}_0 \approx \sqrt{3} \sqrt{1 - \frac{T}{T_c}}$$

$$\Rightarrow \lim_{T \to T_c^-} \frac{\mathrm{d}\bar{L}_0}{\mathrm{d}T} \approx -\frac{\sqrt{3}}{2} \frac{1}{\sqrt{1 - \frac{T}{T_c}}} \frac{1}{T_c} = \boxed{\infty}$$

Therefore the curve hits the vertical axis vertically at $T = T_c$.

2.5 Homework 6

2.5.1 Landau's Theory

Derive the critical exponents based on Landau's theory for second-order phase transition.

$$\psi_0(t, m_0) = q(t) + r(t)m_0^2 + s(t)m_0^4 + \cdots \quad \left(t = \frac{T - T_c}{T_c}, |t| \ll 1\right);$$

Assuming that

- Symmetry: The free energy is even in m_0 ;
- Analticity: ψ_0 is analytic in m_0 and t, which allows a Taylor expansion;
- Critical behavior: Near T_c , the coefficients behave as $r(r) \approx r_0 t$, $s(t) \approx s_0 > 0$.

The exponents are given by:

$$m_0 \sim (-t)^{\beta}, \quad \chi \sim |-t|^{-1}, \quad m_0 \sim h^{1/\delta}, \quad \xi \sim |t|^{-\nu}$$

The equilibrium order parameter m_0 minimizes the free energy:

$$\frac{\partial \psi_0}{\partial m_0} = 0 \Rightarrow 2r(t)m_0 + 4s(t)m_0^3 = 0$$
$$\Rightarrow m_0[r(t) + 2s(t)m_0^2] = 0$$

So

- Disordered phase $(T > T_c)$: $m_0 = 0$, since r(t) > 0;
- Ordered phase $(T < T_c)$: $m_0^2 = -\frac{r(t)}{2s(t)} \approx -\frac{r_0 t}{2s_0}$, since $r(t) \approx r_0 t$ and $s(t) \approx s_0$.
- 1. For $T < T_c, t < 0, m_0 \sim \sqrt{-t} \Rightarrow m_0 \sim (-t)^{1/2} \Rightarrow \beta = \frac{1}{2}$
- 2. Susceptibility χ , which is defined as $\chi^{-1}=\left.\frac{\partial^2\psi_0}{\partial m_0^2}\right|_{m_0=m_{eq}}$.
 - For $T > T_c$, $m_0 = 0$. $\chi^{-1} = 2r(t) \approx 2r_0 t \Rightarrow \chi \sim t^{-1}$
 - For $T < T_c$, $m_0^2 = -\frac{r(t)}{2s(t)}$:

$$\frac{\partial^2 \psi_0}{\partial m_0^2} = 2r(t) + 12s(t)m_0^2 = 2r(t) + 12s(t)\left[-\frac{r(t)}{2s(t)}\right] = -4r(t)$$

$$\chi^{-1} = -4r(t) \approx -4r_0t \Rightarrow \chi \sim (-t)^{-1} \Rightarrow \boxed{\gamma = 1}$$

- 3. Specific heat.
 - For $T > T_c$, $\psi_0 = q(t)$;
 - For $T < T_c$, $\psi_0 = q(t) + r(t)m_0^2 + s(t)m_0^4 = q(t) \frac{r(t)^2}{4s(t)}$. And the specific heat is defined as $C = -T\frac{\partial^2 \psi_0}{\partial T^2}$. Since $r(t) \sim t$, the singular part is C, which jumps at t = 0. So $\alpha = 0$.
- 4. Critical isotherm. At $T=T_c$, the free energy is $\psi_0=q(0)+s(0)m_0^4+\cdots$. Applying an external field h, the equilibrium condition is

$$h = \frac{\partial \psi_0}{\partial m_0} = 4s(0)m_0^3 \Rightarrow m_0 \sim h^{1/3} \Rightarrow \delta = 3$$

5. Correlation length, which is defined as $\xi \sim \sqrt{\frac{c}{r(t)}} \sim t^{-1/2} \Rightarrow \boxed{\nu = \frac{1}{2}}$

2.6 Homework 7

2.6.1 Stretched String

A string of length l is stretched, under a constant tension F, between two fixed points A and B. Show that the mean square (fluctuational) displacement y(x) at point P, distant x from A, is given by

$$\overline{\{y(x)\}^2} = \frac{kT}{Fl}x(l-x)$$

Further show that, for $x_2 \geq x_1$,

$$\overline{y(x_1)y(x_2)} = \frac{kT}{Fl}x_1(l-x_2).$$

[Hint: Calculate the energy, Φ , associated with the fluctuation in question; the desired probability distribution is then given by $p \propto \exp(-\Phi/kT)$, from which the required averages can be readily evaluated.]

Boundary conditions: y(0) = y(l) = 0. Energy of the fluactuation: $\Phi[y(x)] = \frac{F}{2} \int_{0}^{t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2} \mathrm{d}x$.

$$\text{Therefore } P[y(x)] \propto \exp \ \left(-\frac{\Phi[y(x)]}{kT} \right) = \exp \ \left[-\frac{F}{2kT} \int_0^l \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)^2 \mathrm{d}x \right].$$

Expand y(x) in eigenmodes which satisfies the boundary conditions: $y(x) = \sum_{n=0}^{\infty} a_n \sin\left(\frac{n\pi x}{l}\right)$, so the derivative becomes $\frac{\mathrm{d}y}{\mathrm{d}x} = \sum_{n=0}^{\infty} a_n \sin\left(\frac{n\pi x}{l}\right)$

Substitute into the energy:
$$\Phi = \frac{F}{2} \int_0^l \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 \mathrm{d}x = \frac{F}{2} \sum_{n=1}^\infty a_n^2 \left(\frac{n\pi}{l}\right)^2 \frac{l}{2} = \sum_{n=1}^\infty \frac{F \pi^2 n^2}{4l} a_n^2.$$

The probability distribution is $p(\{\}) \propto \exp \left[-\sum_{l=1}^{\infty} \frac{F\pi^2 n^2}{4l} a_n^2\right]$, which is a product of independent Gaussian distribution for each

$$a_n$$
. And the variance of each a_n can be extracted from the exponent term: $\overline{a_n^2} = \frac{2kT}{Fl} \left(\frac{l}{n\pi}\right)^2 = \frac{2kTl}{F\pi^2 n^2}$

Fourier expand
$$\overline{y(x)^2} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \overline{a_n a_m} \sin\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right)$$
. Since $\overline{a_n a_m} = \overline{a_n^2} \delta_{nm}$, $\overline{y(x)^2} = \frac{2kTl}{F\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin^2\left(\frac{n\pi x}{l}\right)$.

Use the indentity
$$\sum_{n=1}^{\infty} \frac{\cos 2n\theta}{n^2} = \frac{\pi^2}{6} - \frac{\pi\theta}{2} + \frac{\theta^2}{2}$$
 and $\sin^2\theta = \frac{1-\cos{(2\theta)}}{2}$, the summation terms

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{n\pi x}{l}\right) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos\left(\frac{2n\pi x}{l}\right) = \frac{\pi^2}{12} - \frac{1}{2} \left(\frac{\pi^2}{6} - \frac{\pi^2 x}{2l} + \frac{\pi^2 x^2}{2l^2}\right) = \frac{\pi^2 x}{2l} - \frac{\pi^2 x^2}{2l^2} = \frac{\pi^2}{2l^2} x(l-x)$$

Substitute it back into the expansion to get
$$\overline{y(x)^2} = \frac{2kTl}{F\pi^2} \times \frac{\pi^2}{2l^2} x(l-x) = \boxed{\frac{kT}{Fl}x(l-x)}$$

Similarly,
$$\overline{y(x_1)y(x_2)} = \sum_{n=1}^{\infty} \overline{a_n^2} \sin\left(\frac{n\pi x_1}{l}\right) \sin\left(\frac{n\pi x_2}{l}\right) = \frac{2kTl}{F\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{n\pi x_1}{l}\right) \sin\left(\frac{n\pi x_2}{l}\right).$$

Use the indentity
$$\sum_{n=1}^{\infty} \frac{\cos{(n\theta)}}{n^2} = \frac{\pi^2}{6} - \frac{\pi\theta}{2} + \frac{\theta^2}{4}$$
 and $\sin{A}\sin{B} = \frac{\cos{(A-B)} - \cos{(A+B)}}{2}$, the summation term:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{n\pi x_1}{l}\right) \sin\left(\frac{n\pi x_2}{l}\right) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos\left[\frac{n\pi (x_1 - x_2)}{l}\right] - \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos\left[\frac{n\pi (x_1 + x_2)}{l}\right]$$

So define $\theta_1 = \frac{\pi(x_1 - x_2)}{l}$, $\theta_2 = \frac{\pi(x_1 + x_2)}{l}$, the summation term becomes

$$\sum_{n=1}^{\infty} \frac{\cos(n\theta_1)}{n^2} = \frac{\pi^2}{6} - \frac{\pi|\theta_1|}{2} + \frac{\theta_1^2}{4}, \quad \sum_{n=1}^{\infty} \frac{\cos(n\theta_2)}{n^2} = \frac{\pi^2}{6} - \frac{\pi\theta_2}{2} + \frac{\theta_2^2}{4}.$$
 Therefore

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{n\pi x_1}{l}\right) \sin\left(\frac{n\pi x_2}{l}\right) = \frac{1}{2} \left[\frac{\pi^2}{6} - \frac{\pi^2 |x_1 - x_2|}{2l} + \frac{\pi^2 (x_1 - x_2)^2}{4l^2}\right] - \frac{1}{2} \left[\frac{\pi^2}{6} - \frac{\pi^2 (x_1 + x_2)}{2l} + \frac{\pi^2 (x_1 + x_2)^2}{4l^2}\right]$$

$$\pi^2 (x_1 + x_2 - |x_1 - x_2|) - \pi^2 [(x_1 - x_2)^2 - (x_1 + x_2)^2] = \pi^2 (2x_1) - \pi^2 (-4x_1)$$

$$= \frac{4l}{4l} + \frac{8l^2}{4l} = \frac{4l}{4l}$$
usion to get $\frac{4l}{4l} \times (x_1)u(x_2) = 2kTl \times (\pi^2x_1 - \pi^2x_1x_2) = kT \times (l-x_2)$

 $=\frac{\pi^2(x_1+x_2-|x_1-x_2|)}{4l}+\frac{\pi^2[(x_1-x_2)^2-(x_1+x_2)^2]}{8l^2}\xrightarrow{x_2\geq x_1}\frac{\pi^2(2x_1)}{4l}+\frac{\pi^2(-4x_1x_2)}{8l^2}$ Substitute it back into the expansion to get $\overline{y(x_1)y(x_2)}=\frac{2kTl}{F\pi^2}\times\left(\frac{\pi^2x_1}{2l}-\frac{\pi^2x_1x_2}{2l^2}\right)=\boxed{\frac{kT}{Fl}x_1(l-x_2)}$

Derive the Onsager's Reciprocal Relations

Derive for the Onsager's reciprocity relation. [Refer to Section 15.7 @ Pathria& Beale]

Forces X_i and the current \dot{x}_i : $\dot{x}_i = \gamma_{ij} X_i$

$$S(x_i) = S\left(\widetilde{x}_i\right) + \underbrace{\left(\frac{\partial S}{\partial x_i}\right)_{x_i = \widetilde{x}_i}}_{x_i = \widetilde{x}_i} \underbrace{\left(\frac{\partial^2 S}{\partial x_i \partial x_j}\right)_{x_{i,j} = \widetilde{x}_{i,j}}}_{x_{i,j} = \widetilde{x}_{i,j}} \left(x_i - \widetilde{x}_i\right) \left(x_j - \widetilde{x}_j\right), \quad \left(\frac{\partial S}{\partial x_i}\right)_{x_i = \widetilde{x}_i}}_{x_i = \widetilde{x}_i} = 0$$

$$\Delta S \equiv S(x_i) - S\left(\widetilde{x}_i\right) = -\frac{1}{2}\beta_{ij}\left(x_i - \widetilde{x}_i\right)\left(x_j - \widetilde{x}_j\right), \quad \beta_{ij} = -\left(\frac{\partial^2 S}{\partial x_i \partial x_j}\right)_{x_{i,j} = \widetilde{x}_{i,j}}} = \beta_{ji}$$
The driving forces X_i can be defined as the second law of thermodynamics: $X_i = \left(\frac{\partial S}{\partial x_i}\right) = -\beta_{ij}\left(x_j - \widetilde{x}_j\right)$

$$\langle x_i X_j \rangle = \frac{\int_{-\infty}^{+\infty} (x_i X_j) \exp\left\{-\frac{1}{2k} \beta_{ij} \left(x_i - \widetilde{x}_i\right) \left(x_j - \widetilde{x}_j\right)\right\} \prod_i \mathrm{d}x_i}{\int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2k} \beta_{ij} \left(x_i - \widetilde{x}_i\right) \left(x_j - \widetilde{x}_j\right)\right\} \prod_i \mathrm{d}x_i}, \text{ where }$$

$$\langle x_i \rangle = \frac{\int_{-\infty}^{+\infty} x_i \mathrm{exp} \, \left\{ -\frac{1}{2k} \beta_{ij} \left(x_i - \widetilde{x}_i \right) \left(x_j - \widetilde{x}_j \right) \right\} \prod_i \mathrm{d}x_i}{\int_{-\infty}^{+\infty} \mathrm{exp} \, \left\{ -\frac{1}{2k} \beta_{ij} \left(x_i - \widetilde{x}_i \right) \left(x_j - \widetilde{x}_j \right) \right\} \prod_i \mathrm{d}x_i} = \widetilde{x}_i, \quad \frac{\partial \langle x_i \rangle}{\partial x_j} = 0 \Rightarrow \langle x_i X_j \rangle = -k \delta_{ij}.$$

$$\langle x_i(0)x_j(s)\rangle = \langle x_i(0)x_j(-s)\rangle, \quad \langle x_i(0)x_j(-s)\rangle = \langle x_i(s)x_j(0)\rangle \Rightarrow \langle x_i(0)x_j(s)\rangle = \langle x_i(s)x_j(0)\rangle. \text{ Let } s \to 0 \text{ to get: } \langle x_i(0)\dot{x}_j(0)\rangle = \text{Substitute the force-current relation, and get } \\ \langle x_i(0)x_j(0)\rangle = -k\gamma_{jl}\delta_{il} = -k\gamma_{ji} \\ \langle x_i(0)x_j(0)\rangle = -k\gamma_{il}\delta_{jl} = -k\gamma_{ij} \\ \langle x_i(0)x_j(0)\rangle = -k\gamma_{il}\delta_{il} = -k\gamma_{il}\delta_{il}\delta_{il} = -k\gamma_{il}\delta_{il}\delta_{il} = -k\gamma_{il}\delta_{il}\delta_{il}\delta_{il} = -k\gamma_{il}\delta$$

024072910017, He Yicheng, 02407291001 heyicheng@sjtu.edu.cn 1 Introduction to probability theory

 n_0 different particles

Bayes' theorem

$$p(B|A) = \frac{p(A|B) \cdot p(B)}{p(A)} = \frac{p(A|B) \cdot p(B)}{\sum_{B'} p(A|B) \cdot p(B')}$$

Expectation and covariance

$$\langle f \rangle = \sum_{i} f(i)p_{i} \text{ or } \langle f \rangle = \int_{i} f(x)p(x)dx$$

$$\mu = \langle i \rangle = \sum_{i} ip_{i} \text{ or } \mu = \langle x \rangle = \int_{i} xp(x)dx$$

$$\sigma^{2}_{i} = \langle i^{2} \rangle - \langle i \rangle^{2}$$

$$\sigma^{2}_{ij} = \langle ij \rangle - \langle i \rangle^{2}$$

Binomial distribution

$$\frac{N!}{(N-i)!i!} = \binom{N}{i}$$
 binomial coefficient
$$\binom{N}{i!} = \binom{N}{i!}$$

$$p_i = \binom{i}{i} \cdot p^i q^{N-i}$$
 distribution

$$p_i = \binom{N}{i} \cdot p^i q^{N-i} \text{ distribut}$$

$$\mu = \langle i \rangle = N \cdot p$$

$$\langle i^2 \rangle = p \cdot N + p^2 \cdot N \cdot (N-1)$$

$\sum_{i=0}^{N} p_i = \sum_{i=0}^{N} {N \choose i} \cdot p^i q^{N-i} = (p+q)^N = 1$

Gauss distribution

thermodynamic potentials: F(T, V, N) = U - TS

 $\hat{H}(S, p, N) = U + pV$ G(T, p, N) = U + pV - TS

$p(x) = \frac{1}{x} \cdot x$

$$\rho = \sigma^2$$
 Ideal Gas

 $\mathcal{H} = \sum_{i=1}^{3N} \frac{p_i^2}{2m} + V(q_1, \dots, q_{3N})$

microcanonical partition sum for an ideal

3 The canonical ensemble $T = \mathrm{const}$, $V = \mathrm{const}$, $N = \mathrm{const}$. Boltzmann distribution

 $p_i = \frac{1}{Z} e^{-\beta E_i}$ Boltzmann distribution $Z = \sum_{i} e^{-\beta E_i}$ partition sum

 $S = k_B N \left\{ \ln \left[\left(\frac{V}{N} \right) \left(\frac{4\pi mE}{3h^2 N} \right)^{3/2} \right] + \frac{5}{2} \right\}$

equations of state for ideal gas

2 The microcanonical ensemble $E \approx \mathrm{const}$, $V = \mathrm{const}$. The fundamental postulate

 $\Omega(E) = \frac{V^N \pi^{3N/2} (2mE)^{3N/2}}{h^{3N} N! \left(\frac{3N}{2}\right)!}$

 $p(k; \mu) = \frac{\mu^{\Lambda}}{k!} e^{-\mu}, \quad E[k] = \mu, \ V[k] = \mu$

Poisson distribution

Information entropy

 $S = -\sum p_i \ln(p_i)$

For classical Hamiltonian systems:

 $p(\vec{q}, \vec{p}) = \frac{1}{ZN!h^{3N}} e^{-\beta \mathcal{H}(\vec{q}, \vec{p})}$

 $p = T \left(\frac{\partial S}{\partial V} \right)_{E,N} = TNk_B \frac{1}{V} \rightarrow pV = Nk_B T$

 $\mu = k_B T \ln \left(\frac{N \lambda^3}{V} \right)$ chemical potential

 $\lambda = \frac{h}{\sqrt{2\pi m k_B T}}$ Thermal de Broglie

 $S = -k_B \sum_{i=1}^{M} p_i \ln(p_i) = k_B \ln(\Omega)$

 $\Omega(E;\delta E) = \frac{1}{h^{3N}N!} \iint_{E-\delta E \leq \mathcal{H}(\vec{q},\vec{p}) \leq E} d$

 $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{N,V} = \frac{3}{2}\frac{Nk_B}{E} \to U = \frac{3}{2}Nk_BT$

 $Z_N(T,V) = \frac{1}{\lambda^{3N}N!} \int_V d\vec{q} e^{-\beta \hat{V}(\vec{q})}$

For common Hamiltonian:

 $z \propto \int dq dp e^{-\beta \mathcal{H}}$ $Z_N(T,V) = \frac{1}{N!h^{3N}} \iint d\vec{q} d\vec{p} e^{-\beta \mathcal{H}(\vec{q},\vec{p})}$

 $= \left(\frac{\pi}{A\beta}\right)^{\frac{1}{2}} \cdot \left(\frac{\pi}{B\beta}\right)^{\frac{1}{2}} \propto \left(T^{\frac{1}{2}}\right)^{f_{dof}}$

$$F = -k_{\rm B}T\ln(z) = -\frac{fdof}{2}k_{\rm B}TIn(T)$$

sum ('equipartition theorem')

 $F(T,V,N) = -k_B T \ln Z_N(T,V)$

Free energy

Einstein model for specific heat of a solid

 $E = \hbar\omega\left(\frac{N}{2} + \mathcal{Q}\right) \to \mathcal{Q} = \left(\frac{E}{\hbar\omega} - \frac{N}{2}\right)$

 $\Omega(E,N) = \frac{(Q+N)!}{O!N!}$

 $\Omega = \frac{\Omega}{h^{3N} \prod_{j=0}^{n_0} N_j!} \iint_{E-\delta E \leq \mathcal{H}(\vec{q},\vec{p}) \leq E}$

Equilibrium conditions Entropy S must be maximal

Thermal contact

 $\langle E \rangle = U = -\partial_{\beta} \ln Z_N$

 $S = k_{B} \left[\mathcal{Q} \ln \left(\frac{\mathcal{Q} + N}{\mathcal{Q}} \right) + N \ln \left(\frac{\mathcal{Q} + N}{N} \right) \right]$

 $=k_B N\left[(e+\frac{1}{2})\ln(e+\frac{1}{2})-(e-\frac{1}{2})\ln(e-\frac{1}{2})\right]$

 $e = E/E_0$; $E_0 = N\hbar\omega$; $\beta = \hbar\omega/k_BT$

 $\frac{1}{T} = \frac{\partial S}{\partial E} \Rightarrow E = N\hbar\omega\left(\frac{1}{2} + \frac{1}{e^{\beta} - 1}\right)$

 $N_{+} - N_{-} = \frac{L}{a} = m \rightarrow N_{+} = \frac{1}{2} (N + m)$

Contact with exchange of particle number

 $\frac{\partial S(E,V,N)}{\partial V}\bigg|_{E,N} = \frac{p(E,V,N)}{T(E,V,N)}$

Contact with volume excahnge

 $\partial S(E,V,N)$

 $\left. \frac{\partial S(E,V,N)}{\partial N} \right|_{E,V} = -\frac{\mu(E,V,N)}{T(E,V,N)}$

 $dE = TdS - pdV + \mu dN$

Equations of state

 $c_v = \frac{dE}{dT}$

Entropic elasticity of polymers

 $\Omega = \frac{N!}{N_+!N_-!} = \frac{N!}{\left(\frac{1}{2}(N+m)\right)!\left(\frac{1}{2}(N-m)\right)!}$ if both directions are possible *x*2

$$S = -\frac{\partial F}{\partial T} = \frac{f dof}{2} k_{B} (\ln(T) + 1)$$

$$U = -\partial_{\beta} \ln(z) = \frac{f dof}{2} k_{B} T$$

$$c_{\nu} = \frac{dU}{dT} = \frac{f dof}{2} k_{B}$$

$$c_{p} = \frac{f dof + 2}{2} k_{B}$$

equations of state

 $dF = dE + d(TS) = -SdT - pdV + \mu N$

$$\sigma I = \sigma V$$
 . Non-interacting systems

 ε_{ij} is the j^{th} state of the i^{th} element

$$Z = \sum_{j_1 \ j_2} \sum_{i,j} \dots \sum_{j_N} e^{-\beta \sum_{i=1}^N \epsilon_i j_i}$$

Molecular gases

$$j_1$$
 j_2 j_N

$$= \left| \sum_{i} e^{-\beta \epsilon_{1} j_{1}} \right| \dots \left| \sum_{i} e^{-\beta} \right|$$

$$= \left(\sum_{j_1} e^{-\beta \epsilon_1 j_1}\right) \dots \left(\sum_{j_N} e^{-\beta \epsilon_N j_1 N}\right)$$

 $S_i = \frac{3}{2}k_BN_i\ln(E_i) + \text{independent of}E_i$

 $dS = 0 \rightarrow \frac{\partial S_1}{\partial E_1} = \frac{\partial S_2}{\partial E_2}$

Calculate phasevolume

 Set up Hamiltonian Calculate entropy S Calculate $U = \langle E \rangle$ • determine T, p, μ

Statistical deviation from average Two ideal gases in thermal conact $T_1=T_1$

 $S = -k_B \left(N_+ \ln \left(\frac{N_+}{N} \right) + N_- \ln \left(\frac{N_-}{N} \right) \right)$

N molecules; x different mode types: $Z = Z_{trans} \cdot Z_{vib} \cdot Z_{rot} \cdot Z_{elec} \cdot Z_{nuc}$ $Z_x = Z_x^N$

$$= z_1 \cdot \dots \cdot z_N = \prod_{i=1}^N z_i$$

Vibrational modes

$$\rightarrow F = -k_B T \sum_{i=1}^{N} \ln(z_i) = -k_B T \ln(Z)$$

$$= -k_B T \sum_{i=1}^{n} \ln(z_i) = -k_B T \ln(Z)$$

$$-k_B T \sum_{i=1} \ln(z_i) = -k_B T \ln(Z)$$

often described by the Morse potential:
$$V(r)=E_0\left(1-e^{-\alpha(r-r_0)}\right)^2$$
 An exact solution of the Schrödinger equation gives:

$$F = -k_{\rm B} TNIn(z)$$

 $E_1 = \overline{E}_1 + \Delta E$, $E_2 = \overline{E}_2 - \Delta E$

consider small deviation:

 $S(\overline{E}_1 + \Delta E) \approx \frac{3}{2} k_B \left[N_1 \ln \overline{E}_1 + N_2 \ln \overline{E}_2 \right]$

 $-\frac{N_1}{2} \left(\frac{\Delta E}{\overline{E}_1} \right)^2 - \frac{N_2}{2} \left(\frac{\Delta E}{\overline{E}_2} \right)^2 \right]$

 $\rightarrow \Omega = \overline{\Omega} e^{\left[-\frac{3}{4}\left(\frac{\Delta E}{E}\right)^2 N^2 \left(\frac{1}{N_1} + \frac{1}{N_2}\right)\right]}$

$$Z = z^N$$
, $F = -k_B TNIn(z)$

$$E_n = \hbar \omega_0 \left(n + \frac{1}{2} \right) - \frac{\hbar^2 \omega_0^2}{eE_0} \left(n + \frac{1}{2} \right)^2$$

$$\omega_0 = \frac{\alpha}{2\pi} \sqrt{\frac{2E_0}{\mu}}, \quad \mu = \frac{m}{2}$$

$$w_0 = 2\pi \sqrt{\mu}$$
, $\mu = 2$
For $\hbar \omega_0 \ll E_0$ we can use the harmonic approximation:

$$z_{vib} = \frac{e^{-\beta\hbar\omega/2}}{1 - e^{-\beta\hbar\omega}}$$

$$T_{z,z} \approx \frac{\hbar\omega_0}{\hbar\omega_0} \approx 6.140 \text{K for } H_z$$

 $Z_N(T,V) = \frac{V^N}{N!} \left(\int_{-\infty}^{+\infty} \frac{dp}{h} \, e^{-\beta} \frac{p^2}{2m} \right)^{3N}$

 $T_{vib} \approx \frac{\hbar \omega_0}{k_{\rm B}} \approx 6.140 K$ for H_2

Rotational modes

standart approximation is the one of a rigid rotator. The moment of inertia is given as:

narmonic Hamiltonian with $f_{dof} = 2$

 $\mathcal{H} = Aq^2 + Bp^2$

 f_{dof} are the degrees of freedom.

Equipartition theorem

 $I = \mu r_0^2 \quad T_{rot} = \frac{\hbar^2}{Ik_B}$

Nuclear contributions: ortho- and parahydro-gen $\to E_l = \frac{\hbar^2}{2I} l(l+1)$

For sufficiently high temperture (classical S=1, $z_{ortho}=\sum_{l=1,3,5,...}(2l+1)e^{-\frac{l(l+1)T_{rot}}{L}}$ limit), each quadratic term in the Hamiltonian contributes a factor $T^{\frac{1}{2}}$ to the partition S=0, $z_{para}=\sum_{l=0.2.4}$ $(2l+1)e^{-\frac{l(l+1)T_{rot}}{T}}$

Specific heat of a solid Debye model

$$\rightarrow \omega(k) = \left(\frac{4\kappa}{m}\right)^{\frac{1}{2}} \left| \sin\left(\frac{ka}{2}\right) \right|$$
$$\omega = \frac{2\pi}{T}, \quad k = \frac{2\pi}{\lambda}$$

Debye frequency:

$$\omega_D = c_s \left(\frac{6\pi^2 N}{V} \right)^{\frac{1}{3}}$$

$$c_s = \frac{d\omega}{dk} \Big|_{k=0} = \sqrt{\frac{\kappa}{m}} a$$

density of states in ω -space:

$$D(\omega) = 3 \frac{\omega^2}{\omega_D^3}$$
 for $\omega \le \omega_D$

count modes in frequency-space:

$$\sum_{modes} (\ldots) = 3 \sum_k (\ldots) = 3N \int_0^{\omega D} d\omega D(\omega) (\ldots)$$

partition sum:

$$z(\omega) = \frac{e^{-\beta\hbar\omega/2}}{1 - e^{-\beta\hbar\omega}}$$

$$\begin{split} & \rightarrow Z = \prod_{modes} z(\omega) \\ & \rightarrow E = -\partial_{\beta} \ln(Z) = \sum_{modes} \hbar \omega \left(\frac{1}{e^{\beta \hbar \omega} - 1} + \frac{1}{2} \right) \\ & = E_0 + 3N \int_0^{\omega D} d\omega \frac{\hbar \omega}{e^{\beta \hbar \omega} - 1} \frac{3\omega^2}{\omega^3} \end{split}$$

$$c_{\nu}(T) = \frac{\partial E}{\partial T}$$

$$\begin{split} (T) &= \frac{\partial E}{\partial T} \\ &= \frac{3\hbar^2 N}{k_B T^2} \int_0^{\omega_D} d\omega \frac{3\omega^2}{\omega_D^3} \frac{e^{\beta\hbar\omega}\omega^2}{\left(e^{\beta\hbar\omega} - 1\right)^2} \end{split}$$

$$c_v(T) = \frac{9Nk_B}{u_m^3} \int_0^{u_m} \frac{e^u u^4}{(e^u - 1)^2} du$$

the limit for $\hbar\omega_D \ll k_B T$:

$$c_v(T) = 3Nk_B$$

the limit for $k_B T \ll \hbar \omega_D$: $(T_D = \frac{\hbar \omega_D}{k_B})$

$$c_v(T) = \frac{12\pi^4}{5} Nk_B \left(\frac{T}{T_D}\right)^3$$

Black body radiation

$$E = \frac{4\sigma}{c}VT^4, \quad \sigma = \frac{\pi^2k_B^4}{60\hbar^3c^2}$$

$$c_v = \frac{16\sigma}{c}VT^3$$

Plank's law for black body radiation

 $J = \frac{P}{A} = \sigma T^4$ Stefan-Boltzmann law

$$u(\omega) := \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\hbar \omega/(k_B T)} - 1}$$

The Plank distribution has a maximum at: $\hbar\omega_{max}=2.82k_{B}T$ Wien's displacement law

4 The grandcanonical ensemble

$$t = const.$$

$$\begin{split} &T, \mu = const. \\ &p_N(q, p) = \frac{1}{\Xi_{\mu}(T, V)} e^{-\beta(H_N(q, p) - \mu N)} \\ &\Xi_{\mu}(T, V) = \sum_{N=0}^{\infty} \frac{1}{h^{3N} N!} \iint d^{3N} q d^{3N} p e^{-\beta(H_N - \mu N)} \end{split}$$

$$(T,V) = \sum_{N=0} \frac{1}{h^{3N}N!} \iint d^{3N}q d^{3N}V$$

$$\to \Xi_z = \sum_{N=0}^{\infty} z^N Z_N(T,V)$$

$z=e^{eta\mu} ightarrow{ m Fugacity}$ Mean phase space observable

$$\langle F \rangle = \frac{1}{\Xi_{\mu}(T,V)} \sum_{N=0}^{\infty} \frac{1}{\hbar^{3N}N!} \iint d^{3N}q d^{3N} p ...$$

 $\dots e^{-\beta(H_N-\mu N)}F_N(q,p)$ mean particle number:

$$\langle N \rangle = \frac{1}{\beta} \left(\frac{\partial}{\partial \mu} \ln \left(\Xi_{\mu}(T, V) \right) \right)_{T, V}$$
$$= z \left(\frac{\partial}{\partial z} \ln \left(\Xi_{z}(T, V) \right) \right)_{T, V}$$

$$p = -\left(\frac{\partial H}{\partial V}\right) = \frac{1}{\beta} \left(\frac{\partial}{\partial V} \ln\left(\Xi_{\mu}(T, V)\right)\right)$$

$$U = \langle H \rangle = -\left(\frac{\partial}{\partial \beta} \ln\left(\Xi_{\mu}(T, V)\right)\right)_{\mu, V} + \mu \langle N \rangle$$
$$= -\left(\frac{\partial}{\partial \beta} \ln\left(\Xi_{z}(T, V)\right)\right)_{z, V}$$

Grandcanonical potential grandcanonical potential:

anonical potential:

$$\Psi(T,V,\mu) = -k_B T \ln \left(\Xi_{\mu}(T,V)\right)$$

 $d\Psi = -SdT - pdV - \langle N \rangle d\mu$ p is maximal, if Ψ is minimal. Total differential:

 $S = -\frac{\varphi \varphi}{\partial T}, p = -\frac{\varphi \varphi}{\partial \theta}, N = -\frac{\varphi \varphi}{\partial \theta}$

Equations of state:

 $z_B = \frac{1}{\frac{1}{1 - \frac{1}{3 - \beta(\epsilon - \mu)}}}$

Fluctuations

$$\sigma_N^2 = \langle N^2 \rangle - \langle N \rangle^2 = \frac{1}{\beta^2} \left(\partial_\mu^2 \ln(\Xi_\mu) \right)$$

$$\sigma_N = 1$$

 $\frac{\sigma_N}{\langle N \rangle} \propto \frac{1}{\sqrt{N}}$

$$Z_N(T,V) = \frac{1}{N!} \left(\frac{V}{\lambda^3}\right)^N, \ \lambda = \frac{h}{(2\pi m k_B T)^{\frac{1}{2}}}$$

$$\Xi = \sum_{N=0}^{\infty} Z_N(T, V) z^N$$

$$= \sum_{N=0}^{\infty} \frac{1}{N!} \left(e^{\beta \mu} \frac{V}{\lambda^3} \right)^N$$

$$= e^{z} \frac{V}{\lambda^{3}} \text{ fugacity: } z := e^{\beta \mu}$$

$$\langle N \rangle = \frac{1}{\beta} \partial_{\mu} \ln(Z_{G}) = \frac{V}{\lambda^{3}} d^{\beta \mu}$$

$$\mu = k_{B} T \ln \left(\frac{N \lambda^{3}}{V} \right)$$

Molecular adsorption onto a surface

$$Z_G = z_G^N; z_G = 1 + e^{-\beta(\varepsilon - \mu)}$$

$$\langle n \rangle = \frac{1}{e^{-\beta(\mu - \varepsilon)} + 1} \text{ per site}$$

$\langle \epsilon \rangle = \epsilon \langle n \rangle$

- 5 Quantum fluids Fermion vs. bosons 1. Fermions: Pauli-principle + not distinguishable
 - 2. Bosons: symetric wave function + not distinguishable
- 3. Boltzmann: particles are distinguish-

Canonical ensemble $\omega_n \to {\rm degeneracy} \ {\rm of} \ {\rm state} \ n$

teracy of state n
$$z = \sum_{n} \omega_n \exp(-\beta E_n)$$

Grand canonical ensemble only two states $0, \epsilon$

average occupation number n_F : $z_F = 1 + e^{-\beta(\epsilon - \mu)}$

ge occupation number
$$n_F$$
:
$$n_F = \frac{1}{e^{\beta(e-\mu)} + 1}$$
 Fermi function

For $T \to 0$, the fermi function approaches step function:

 $n_F = \Theta(\mu - \epsilon)$

average occupation number n_B :

$$n_B = \frac{1}{e^{\beta(\varepsilon - \mu) - 1}}$$

 $\mu \to -\infty$ the two grandcanonical distr. become the Maxwell-Boltzmann distr.

Classical limit

 $n_{F/B} = \frac{1}{e^{\beta(\varepsilon-\mu)} \pm 1} \to e^{\beta\mu} e^{-\beta\varepsilon}$

- Fermions tend to fill up energy states one after the other
- Bosons tend to condense all into the same low energy state

 $E = \frac{3}{2}k_{\rm B}TN$

 $N = g \frac{V}{13} e^{\beta \mu}$

6 Phase transitions

The ideal Fermi fluid density of states:

$$O(\epsilon) = \frac{V}{2\pi N} \left(\frac{2m}{\hbar^2}\right)^{\frac{N}{2}} \sqrt{\epsilon}$$

 $\mathcal{H} = -\sum_{i} J_{ij} S_i S_j - \mu B_0 \sum_{i} S_i$

Fermi energy

$$N = \sum_{\vec{k},m_s} n_{\vec{k},m_s} = N \int_0^\infty d\epsilon D(\epsilon) n_F(\epsilon)$$

Limit $T \to 0$. $\mu(T=0)$ is called Fermi energy:

 $\mathcal{H} = -J \sum_{\langle i,j \rangle} \vec{J}_i \vec{J}_j - \mu \vec{B} \sum_i \vec{J}_i$

 $\mathcal{H} = -\bar{\Sigma}_{\langle i,j\rangle} J_{ij} S_i S_j$

lattice gases:

Perromagnetic systems:

special cases:

$$\epsilon_F = (3\pi^2)^{\frac{2}{3}} \frac{\hbar^2 \rho^{\frac{2}{3}}}{2m}$$

specific heat

$$\mu = \epsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{k_B T}{\epsilon_F} \right)^2 \right] \text{ for } T \ll \frac{\epsilon_F}{k_B}$$

 $Z_N = \sum_{S_1} \dots \sum_{S_N} \exp\left(\sum_{i=1}^{r-1} j_i S_i S_{i+1}\right)$

 $=2^{N}\prod_{i=1}^{N-1}\cosh\left(\beta J_{i}\right)$

Only Next Neighbor and $B_0 = 0$ $J_{i,i+1} \rightarrow J_i$, $\mathcal{H} = -\sum_{i=1}^{N-1} J_i S_i S_{i+1}$,

$$c_V = \frac{\partial E}{\partial T}\Big|_V = N\frac{\pi^2}{3}k_B^2 D(\epsilon_F)T$$

$$c_V = N\frac{\pi^2}{2}k_BT/k_B$$

Fermi pressure

$$p \xrightarrow{T \to 0} \frac{2}{5} \frac{N}{V} \epsilon_F = \frac{(2\pi^2)^{\frac{2}{3}}}{5} \frac{\hbar^2}{mn, \frac{5}{3}}$$

spontanious magnetisation:

 $M_S(T) = \mu\langle S \rangle$

Spin correlation function:

The ideal Bose fluid

 $\varepsilon = \frac{\hbar^2 k^2}{2m}$ and conserved particle number N.

No phase transition for T>0. But for T=0

 $M_{S}^{2}(T) = \mu^{2} \lim_{i \to \infty} \langle S_{i} S_{i+1} \rangle$

$$N = \frac{N}{\lambda^3} g_{\frac{3}{2}}(z)$$

$$z = e^{\beta \mu}, \lambda = \frac{h}{(2\pi m k_B T)^{\frac{1}{2}}}$$

$$T_c = \frac{2\pi}{(\zeta(\frac{3}{2}))^{\frac{2}{3}}} \frac{\hbar^2 \rho^{\frac{2}{3}}}{k_B m}$$

 $E = \frac{3}{2} k_B T \frac{V}{\lambda^3} g_{\frac{S}{2}}(z) = \frac{3}{2} k_B T N_e \frac{g_{\frac{S}{2}}(z)}{g_{\frac{S}{2}}(z)}$

 $T = \begin{pmatrix} T(+1,+1) & T(+1,-1) \\ T(-1,+1) & T(-1,-1) \end{pmatrix}$

 $T_{i,i+1} = e^{jS_iS_{i+1} + \frac{1}{2}b(S_i + S_{i+1})}$

Transfer matrix $j=\beta J, \quad b=\beta \mu B_0, \quad S_i=\pm 1$

 $\rightarrow e^{-\beta \mathcal{H}} = T_{1,2} \cdot T_{2,3} \dots T_{N,1}$

 $Z_N = \lambda_1^N + \lambda_2^N = E_+^N + E_-^N$

$$c_V = \frac{15}{2} {}^{AB_I} \frac{3}{\lambda^3} \frac{8\frac{5}{2}(z)}{2} = \frac{2}{2} {}^{AB_I} {}^{AB_I} \frac{8\frac{3}{2}(z)}{8\frac{2}{3}(z)}$$
 for $N \gg 1 \to E_+ \gg E_-$

Renormalization of the Ising chain
$$c_V = \frac{15}{4} {}^{AB_I} N \left(\frac{T}{T_c} \right)^{\frac{3}{2}} \frac{\zeta \left(\frac{5}{2} \right)}{\zeta \left(\frac{3}{2} \right)} \left(\text{ for } T \le T_c \right)$$

$$c_V = \frac{15}{4} {}^{AB_I} N \frac{8\frac{5}{2}(z)}{2} - \frac{9}{4} {}^{AB_I} N \frac{8\frac{3}{2}(z)}{2} \left(T > T_c \right)$$

Renormalization of the 2d Ising mo

 $K' = \frac{1}{2}\ln(\cosh(2K))$

Renormalization of the 2d Ising model $\overline{K}' = K' + K_1 = \frac{3}{8} \ln(\cosh(4K))$

The 2d Ising model

$$\beta\mathcal{H} = -K \sum_{r,c} S_{r,c} S_{r+1,c} - K \sum_{r,c} S_{r,c} S_{r,c+1}$$
$$1 = \sinh(2K_c)$$

$$= \sinh(2K_c)$$

$$t = \frac{1}{2} \ln \left(1 + \sqrt{2} \right) \approx 0.4407$$

$$K_c = \frac{1}{2} \ln (1 + \sqrt{2}) \approx 0.4407$$

 $T_c = 2J / \ln (1 + \sqrt{2}) \approx 2.269J/k_B$

$$2J/\ln\left(1+\sqrt{2}\right)\approx 2.269J/k_{\rm B}$$

Perturbation theory

 $F \le F_u = F_0 + \langle \mathcal{H}_1 \rangle_0$ Bogoliubov inequality

Mean field theory for the Ising model

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j$$

$$\mathcal{H}_0 = -B \sum_i S_i$$

$$= -B \sum_{i}^{\langle i,j,j \rangle} S_i$$

$$F_0 = -Nk_B T \ln \left(e^{\beta B} + e^{-\beta B} \right)$$

$$= -Nk_B T \ln(2 \cosh(\beta B))$$

$$F \le F_0 + (\mathcal{H} - \mathcal{H}_0)_0$$

$$= -Nk_B T \ln(2 \cosh(\beta B)) - N\frac{z}{2} \langle S \rangle_0^2$$

=
$$-Nk_BT\ln(2\cosh(\beta B))$$

$$F_0 + \langle \mathcal{H} - \mathcal{H}_0 \rangle_0$$

$$-Nk_BT\ln(2\cosh(\beta E))$$

$$N\langle S \rangle_0 = F_u$$

$$+N\langle S\rangle_0=F_u$$

$$= 2 \cdot \text{dimension}$$

$$\Rightarrow z = 2 \cdot \text{dimension}$$
$$B = Jz \langle S \rangle_0 = Jz \tanh(\beta B)$$

$$K_C = \frac{1}{z} \to T_C = \frac{zJ}{k_B}$$

7 Classical fluids Virial expansion

$$F=Nk_BT\Big[\ln(\rho\lambda^3)-1+B_2\rho\Big]$$

$$p=\rho k_BT\left[1+B_2\rho\right]$$
 Second virial coefficient

$B_2(T) = -2\pi \int r^2 d\tau \left(e^{-\beta U(\tau)} - 1\right)$

8 Others Stirling's formula

$\ln(n!) = n \ln(n) - n + \frac{1}{2} \ln(2\pi n)$

$\epsilon = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$ de Broglie relation

$$E_{kin} = \frac{1}{2}M\overline{v^2}$$

$$E_{rot} = \frac{1}{2}I\overline{\omega^2}$$