Application Note AN0024

Raw Measurement

Binary Message Extension

Of

SkyTraq Venus 6 GPS Receiver

Ver 0.6

November 4, 2009

Binary Message Protocol

The Skytraq binary message protocol manual provides the detailed descriptions on the SkyTraq binary protocol serving as a communicating interface between SkyTraq GPS receivers and an external host such as PC, Notebook and mobile personal device. It is a standard protocol used by all SkyTraq devices and provides users a satisfactory control over the GPS receivers.

The SkyTraq GPS receiver outputs standard NMEA messages during normal operation. This NMEA messages may be a scheduled output at a specified rate subject to user's requests. The SkyTraq binary message protocol is designed with cares on reliable transmissions of data, ease & efficiency of implement, and payload independence mechanism which ensure users to retrieve data in a most effective & flexible way. The overall binary protocol messages can be categorized as input and output messages. Input messages provide the functionality to users to control the behavior of the GPS receiver and to retrieve the detailed information of the GPS status in real-time. Output messages, on the other hand, are information strings that GPS receiver responses to requests from hosts and can optionally periodically reports the Position, Velocity and Time (PVT) via NMEA or binary messages.

BINARY MESSAGE STRUCTURE

Message Format

The following picture shows the structure of a binary message.

The syntax of the message is shown below.

Start of Sequence

This field contains two bytes of values 0xA0, 0xA1 which indicate start of Messages.

Payload Length

The payload length (PL) field contains 16 bits of value which indicates the length of payload.

Payload

The payload field consists of 2 sub-fields, Message ID and Message Body. Message ID field defines the message ID.

Sub-Field	Values
Message ID	0x01~0xFF
Message Body	Data Bytes

Checksum

Checksum (CS) field is transmitted in all messages. The checksum field is the last field in a message before the end of sequence field. The checksum is the 8-bit exclusive OR of only the payload bytes which start from Message ID until the last byte prior to the checksum byte. A reference to the calculation of CS is provided

below,

CS = 0, N=PL; For n = 0 to N $CS = CS ^ < Payload Byte # <math>n > 0$

End of Sequence

This field contains two bytes of values 0x0D, 0x0A which indicate end of Messages.

Data Byte Ordering

All payloads in binary protocol are transferred in big-endian format. The high order byte is transmitted first followed by the low order byte for data size larger than a byte (e.g. UINT32, DPFP).

Data Type Definition

UINT8	8 bit unsigned integer
UINT16	16 bit unsigned integer
UINT32	32 bit unsigned integer
SINT8	8 bit signed integer
SINT16	16 bit signed integer
SINT32	32 bit signed integer
SPFP	32 bit single precision floating point number
DPFP	64 bit double precision floating point number

MESSAGE FLOW

Host can perform actions to GPS receiver by issuing a request or a set message. The message flow between Host and GPS receiver is designed under the considerations of certain reliable transmission. SkyTraq binary message protocol requires an ACK response from the GPS receiver upon receiving a successful input message and on the other hand, requires a NACK response from the receiver to a failed input message. Figure 1 shows a message flow that a host requests information from GPS receiver and the GPS receiver responses with an ACK and information respectively. Figure 2 shows a message flow with un-successful input message. Therefore, all requests (input messages) will have a corresponding ACK or NACK to be related with. However, output messages will not require the host to confirm by an ACK or NACK back in current design.

Figure 1

Figure 2

MESSAGE LIST

This section provides brief information about available SkyTraq binary input and output messages shown in a tabular list. All the messages are listed by Message ID. Full descriptions of input and output messages will be described in later Sections.

Input Syste	Input System Messages							
ID(Hex)	ID(Decimal)	Attribute	Name	Descriptions				
0x09	9	Input	Configure Output	Configure the output message format				
			Message Format	from GPS receiver				
0x12	18	Input	Configure binary	Configure the output rates of the binary				
			measurement output	measurement outputs				
			rates					
Input GPS Messages								
0x11	17	Input	Get Almanac	Retrieve almanac data of the GPS				
				receiver				
0x30	48	Input	Get Ephemeris	Retrieve ephemeris data of the GPS				
				receiver				
Output Sys	stem Messages							
ID(Hex)	ID(Decimal)	Attribute	Name	Descriptions				
0x80	128	Output	Software version	Software revision of the receiver				
0x81	129	Output	Software CRC	Software CRC of the receiver				
0x83	131	Output	ACK	ACK to a successful input message				
0x84	132	Output	NACK	Response to an unsuccessful input				
				message				
Output GP	S Messages							
ID(Hex)	ID(Decimal)	Attribute	Name	Descriptions				
0x87	134	Output	GPS Almanac Data	Outputting the GPS Almanac Data of				
				GPS receiver				
0xB1	177	Output	GPS Ephemeris Data	Outputting the GPS Ephemeris Data of				
				GPS receiver				
0xDC	220	Output	MEAS_TIME	Measurement time information				
0xDD	221	Output	RAW_MEAS	Raw channel measurements				
0xDE	222	Output	SV_CH_STATUS	SV and Channel status information				
0xDF	223	Output	RCV_STATE	GPS receiver navigation state				
0xE0	224	Output	SUBFRAME	Subframe buffer data				

INPUT MESSAGES

Configure Output Message Format– Configure and select output message type (NMEA/BINARY) (0x09)

This is a request message which will change the GPS receiver output message type. This command is issued from the host to GPS receiver and GPS receiver should respond with an ACK or NACK. The payload length is 3 bytes.

Structure:

<0xA0,0xA1>< PL><09>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 03 09 00 00 09 0D 0A

1 23

Field	Name	Example(hex)	Description	Туре	Unit		
1	Message ID	09		UINT8			
			00 : No output				
2	Туре	00	01 : NMEA message	UINT8			
			02 : Binary Message				
2	Attributes	00	0: update to SRAM	LUNITO			
3	Attributes	00	1: update to both SRAM & FLASH	UINT8			
Payload	Payload Length : 3 bytes						

Configure Binary Measurement Output Rates - Configure binary message output rates (0x12)

This is a request message which will set binary output message rate configuration. This command is issued from the host to GPS receiver and GPS receiver should respond with an ACK or NACK. The payload length is 8 bytes.

Currently the output rate configuration supports 1Hz / 2Hz / 4Hz / 5Hz / 10Hz / 20Hz.

Structure:

<0xA0,0xA1>< PL><12>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 07 12 06 01 01 01 00 01 00 08 0D 0A

1 2 34 5 6 78

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	12		UINT8	
			00: 1Hz		
	Dinamena		01: 2Hz		
	Binary measurement		02: 4Hz		
2	output rate for Meas_time	06	03: 5Hz	UINT8	
	/ Raw_meas /		04: 10Hz		
	SV_CH_Status	02: 4Hz 03: 5Hz 04: 10Hz 05: 20Hz Others: 20Hz 00: Disable 01 01: Enable 01 00: Disable 01 01: Enable 01 01: Enable 01 01: Enable 01 01: Enable 01 Others: Disable			
			Others: 20Hz		
			00: Disable		
3	Meas_time Enabling	01	01: Enable	UINT8	
			Others: Disable		
			00: Disable		
4	Raw_meas Enabling	01	01: Enable	UINT8	
			Others: Disable	UINT8	
			00: Disable		
5	SV_CH_Staus Enabling	01	01: Enable	UINT8	
			Others: Disable		
			00: Disable		
6	RCV_State Enabling	00	01: Enable (only 1Hz supported)	UINT8	
			Others: Disable		
			00: Disable		
7	Subframe Enabling	01	01: Enable	UINT8	
			Others: Disable		
0	Attailacetas	00	0: update to SRAM	LUNITO	
8	Attributes	00	1: update to both SRAM & FLASH	UINT8	
Payloa	d Length : 8 bytes			•	•

Get Almanac – Get almanac used of firmware (0x11)

This is a request message which is issued from the host to GPS receiver to retrieve almanac data. The GPS receiver should respond with an ACK along with information on almanac for assigned satellites when successful and should respond with an NACK when failed. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><11>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 11 00 82 0D 0A

12

Field	Name	Example(hex)	Description	Туре	Unit	
1	Message ID	11		UINT8		
2	SV#	00	0: means all SVs 1~32 : mean for the particular SV	UINT8		
Payload	Payload Length : 2 bytes					

Get Ephemeris – Get ephemeris used of firmware (0x30)

This is a request message which is issued from the host to GPS receiver to retrieve ephemeris data. The GPS receiver should respond with an ACK along with information on ephemeris when successful and should respond with an NACK when failed. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><30>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 01 30 2D 0D 0A

1

Field	Name	Example(hex)	Description	Туре	Unit	
1	Message ID	30		UINT8		
2	SV#	00	0: means all SVs 1~32 : mean for the particular SV	UINT8		
Payload	Payload Length : 2 bytes					

OUTPUT MESSAGES

SOFTWARE VERSION - Software version of the GPS receiver (0x80)

This is a response message which provides the software version of the GPS receiver. This message is sent from the GPS receiver to host. The example below output the SkyTraq software version as 01.01.01-01.03.14-07.01.18 on System image. The payload length is 14 bytes.

Structure:

<0xA0,0xA1>< PL><80>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 0E 80 01 00 01 01 01 00 01 03 0E 00 07 01 12 98 0D 0A

1 2 34 5 6 78 9 1011121314

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	80		UINT8	
2	Software Type	00	0: Reserved	UINT8	
2	2 Software Type	00	1: System code	UINTO	
3-6	Kernel Version	00010001	X1.Y1.Z1 = SkyTraq Kernel Version	UINT32	
3-0	Remer version	00010001	Ex. X1=01, Y1=00, Z1=01 (1.0.1)		
7-10	ODM version	00040007	X1.Y1.Z1 = SkyTraq Version	UINT32	
7-10	ODIVI VEISION	00010307	Ex. X1=01, Y1=03, Z1=01 (1.3.1)		
11 11	Dovision	00060005	YYMMDD = SkyTraq Revision	LUNTOO	
11-14	Revision	00060C0F	Ex. YY=06, MM=01, DD=10 (060110)	UINT32	
Payload	d Length : 14 bytes				

SOFTWARE CRC - Software CRC of the GPS receiver (0x81)

This is a response message which provides the software CRC of the GPS receiver. This message is sent from the GPS receiver to host. The payload length is 4 bytes.

Structure:

<0xA0,0xA1>< PL><81>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 04 81 01 98 76 6E 0D 0A

1 2 34

Field	Name	Example(hex)	Description	Туре	Unit		
1	Message ID	81		UINT8			
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	00	0: Reserved	LUNITO				
2	Software Type	00	1: System code	UINT8			
3-4	CRC	9876	CRC value	UINT16			
Payload	Payload Length : 4 bytes						

ACK - Acknowledgement to a Request Message (0x83)

This is a response message which is an acknowledgement to a request message. The payload length is 2 bytes

Structure:

<0xA0,0xA1>< PL><83>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 83 02 81 0D 0A

1 2

Field	Name	Example(hex)	Description	Туре	Unit		
1	Message ID	83		UINT8			
2	ACK ID	02	Message ID of the request message	UINT8			
Payload	Payload Length: 2 bytes						

NACK - Response to an unsuccessful request message (0x84)

This is a response message which is a response to an unsuccessful request message. This is used to notify the Host that the request message has been rejected. The payload length is 2 bytes

Structure:

<0xA0,0xA1>< PL><84>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 84 01 82 0D 0A

12

Field	Name	Example(hex)	Description	Туре	Unit		
1	Message ID	84		UINT8			
2	ACK ID	01	Message ID of the request message	UINT8			
Payload	Payload Length : 2 bytes						

GPS ALMANAC Data— almanac data of GPS receiver (0x87) (polled)

This is a response message which provides the almanac information. This message is sent from the GPS receiver to host. The payload length is 28 bytes.

Structure:

<0xA0,0xA1>< PL><87>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 1C 87 01 ... 82 0D 0A

1 2

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	87		UINT8	
2	PRN	01	Satellite PRN 01-32	UINT8	Hz
0	WORD 3 bit 01~		Bit01- Bit24 (MSB->LSB) of 3 rd word of	0 1 1 1	
3	bit24		the almanac.	3 bytes	
4	WORD 4 bit 01~		Bit01- Bit24 (MSB->LSB) of 4 th word of	2 by too	
4	bit24		the almanac.	3 bytes	
F	WORD 5 bit 01~		Bit01- Bit24 (MSB->LSB) of 5 th word of	2 by too	
5	bit24		the almanac.	3 bytes	
6	WORD 6 bit 01~		Bit01- Bit24 (MSB->LSB) of 6 th word of	3 bytes	
6	bit24		the almanac.	3 bytes	
7	WORD 7 bit01~		Bit01- Bit24 (MSB->LSB) of 7 th word of	3 bytes	
′	bit24		the almanac.	3 bytes	
8	WORD 8 bit01~		Bit01- Bit24 (MSB->LSB) of 8 th word of	3 bytes	
O	bit24		the almanac.	3 Dytes	
9	WORD 9 bit01~		Bit01- Bit24 (MSB->LSB) of 9 th word of	3 bytes	
9	bit24		the almanac.	3 bytes	
10	WORD 10 bit01~		Bit01- Bit24 (MSB->LSB) of 10 th word of	3 bytes	
10	bit24		the almanac.	3 bytes	
11	WNA		Week number of almanac	SINT16	week
Payloa	d Length : 28 bytes				

GPS Ephemeris data – ephemeris data of the GPS receiver (0xB1) (polled)

This is a response message which provides the Ephemeris Data of the GPS receiver to Host. This message is sent from the GPS receiver to host. The payload length is 87 bytes.

Structure:

<0xA0,0xA1>< PL><B1>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 57 B1 00 02 00 77 88 04 61 10 00 00 00 00 00 00 00 00 00 00 00	0 DB DF 59 A6 00 00 1E 0A
1 2 3	28 29
47 7C 00 77 88 88 DF FD 2E 35 A9 CD B0 F0 9F FD A7 04 8E CC A8 10 2C	A1 0E 22 31 59 A6 74 00 77
30 31	62 63
89 0C FF A3 59 86 C7 77 FF F8 26 97 E3 B9 1C 60 59 C3 07 44 FF A6 37 DI	F F0 B0 5E 0D 0A
64 65	86 87

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	B1		UINT8	
2-3	SV id	02	Satellite id	UINT16	
4	Reserved	0	A reserved byte	UINT8	
5	Subframe 1 WORD 2 bit		Bit01- Bit24 (MSB->LSB) of 2 nd word	3 bytes	
3	01~ bit24		of subframe 1.	3 Dyles	
6	Subframe 1 WORD 3 bit		Bit01- Bit24 (MSB->LSB) of 3 rd word	3 bytes	
0	01~ bit24		of subframe 1.	3 Dyles	
7	Subframe 1 WORD 4 bit		Bit01- Bit24 (MSB->LSB) of 4 th word	3 bytes	
,	01~ bit24		subframe 1.	3 Dytes	
8	Subframe 1 WORD 5 bit		Bit01- Bit24 (MSB->LSB) of 5 th word	3 bytes	
0	01~ bit24		of subframe 1.	O Dytes	
9	Subframe 1 WORD 6		Bit01- Bit24 (MSB->LSB) of 6 th word	3 bytes	
3	bit01~ bit24		of subframe 1.	3 Dytes	
10	Subframe 1 WORD 7		Bit01- Bit24 (MSB->LSB) of 7 th word	3 bytes	
10	bit01~ bit24		of subframe 1.	3 Dytes	
11	Subframe 1 WORD 8		Bit01- Bit24 (MSB->LSB) of 8 th word	3 bytes	
11	bit01~ bit24		of subframe 1.	3 Dytes	
12	Subframe 1 WORD 9		Bit01- Bit24 (MSB->LSB) of 9 th word	3 bytes	
12	bit01~ bit24		of subframe 1.	o bytes	
13	Subframe 1 WORD 10		Bit01- Bit24 (MSB->LSB) of 10 th word	3 bytes	
10	bit01~ bit24		of subframe 1.	o bytes	
14-23	Subframe 2 WORD 2~		Words 2 through 10 of subframe 2,		
14 20	WORD10		same as field 4-13.		
24-33	Subframe 3 WORD 2~		Words 2 through 10 of subframe 3,		

	WORD 10	same as field 4-13.	
Pavload	Length: 87 bytes		

MEAS_TIME- Measurement time information (0xDC) (Periodic)

This is the time information on when the raw GPS measurement is taken. This message is sent from the GPS receiver to host. The payload length is 10 bytes

Structure:

<0xA0,0xA1>< PL><DC>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 0A DC 01 00 01 11 3A82 0D 0A

1 2 3 4

Field	Name	Example(hex)	Description	Туре	Unit		
1	Message ID	DC		UINT8			
2	IOD	01	Issue of Data from (0-255)	UINT8			
3	Receiver WN	0001	Receiver Week number (0-65535)	UINT16	weeks		
4	Receiver TOW	113A	Receiver TOW (0-604799999)	UINT32	ms		
5	Measurement period	03E8	Measurement period (1-1000)	UINT16	ms		
Payload L	Payload Length : 10 bytes						

RAW_MEAS- Raw measurements from each channel (0xDD) (Periodic)

This is the raw measurement from the GPS receiver. This message is sent from the GPS receiver to host. The measurement data of a channel is provided only when the corresponding satellite signal is under lock status. The payload length is (3+Number_of_measurement*23) bytes.

Structure:

<0xA0,0xA1>< PL><DD>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 62 DD 01 0582 0D 0A

1 2 3......

Field	Name		Example(hex)	Description	Туре	Unit
1	Message ID		DD		UINT8	
2	IOD		01	Issue of Data from 0-255	UINT8	
3	NMEAS		05	Number of measurement	UINT8	
4		PRN	02	Satellite PRN	UINT8	
5		CN0	28	Channel CNR	UINT8	dBHz
6		Pseudo-range	7530	Channel pseudo-range	DPFP	meter
	_			Accumulated carrier		
				phase measurement,		Cycles
				The carrier phase		
				measurement is		
				accumulated after		
				carrier lock is		
				achieved. Discontinuity		
	Channel 1 Measurement			in the carrier phase will		
		Assumulated		be indicated by the		
7		Accumulated	C1D5DB26F29E872B	cycle slip flag. We also	DPFP	
		carrier cycle		adjust the polarity of		(L1)
				the carrier phase		
				measurement before		
				output. The polarity of		
				accumulated carrier		
				cycle is defined such		
				that an approaching		
				satellite has		
				decreasing		

	I		T	T		
				accumulated carrier		
				cycle measurement,		
				the same as RINEX		
				convention.		
				The sign of Doppler		
				frequency is defined		
8	Dannlar fra swan av	CAOAEACD	such that the	CDED		
	Doppler frequency	C49A51CB	approaching satellite	SPFP	Hz	
			has positive doppler			
			frequency.			
				Bit 0 ON:		
				pseudo-range is		
			available in the			
			channel.			
			Bit 1 ON: Doppler			
		Channel Indicator		frequency is available		
				in the channel.		
				Bit 2 ON: carrier phase		
•			07	is available in the		
9				channel.	UINT8	
				Bit 3 ON: cycle slip is		
				possible in the		
				channel.		
				Bit 4 ON: coherent		
				integration time of the		
				channel is equal to or		
				more than 10ms.		
				(* Bit 0 is LSB)		
10-15	Channel 2 mea	surement				
15-21	Channel 3 mea	surement				
:		:	:	:	:	:
Payload	Length : 3+NME	AS*23 bytes				
	·					

SV_CH_STATUS- SV and channel status (0xDE) (Periodic)

This is the information about channel and satellite status. This message is sent from the GPS receiver to host. The payload length is (3+Num_of_satellite*10) bytes.

Structure:

<0xA0,0xA1>< PL><DE>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 35 DE 01 05 00 0282 0D 0A

1 2 3 4 5......

Field	Name		Example(hex)	Description	Туре	Unit
1	Message ID		DE		UINT8	
2	IOD		01	Issue of Data from 0-255	UINT8	
3	NSVS		05	Number of SVs	UINT8	
4		Channel ID	00	Channel ID 0-11	UINT8	
5		PRN	02	Satellite PRN	UINT8	
				Bit 0 ON: Almanac is		
			received for this satellite			
			Bit 1 ON: Ephemeris is			
6		SV Status indicator	07	received for this satellite	UINT8	
				Bit 2 ON: This satellite is		
				healthy		
				(*Bit 0 is LSB)		
7		URA	00	User range accuracy	UINT8	
8	SV-CH 1	CN0	28	CNR	SINT8	dBHz
9		Elevation	2D	SV Elevation	SINT16	deg
10	- Status	Azimuth	8A	SV Azimuth	SINT16	deg
	Olalus			Bit 0 ON: Pull-in stage is		
				done for this channel		
				Bit 1 ON: Bit		
				synchronization is done		
				for this channel		
11		Channel Status	1F	Bit 2 ON: Frame	LIINITO	
' '		indicator		synchronization is done	UINT8	
				for this channel		
				Bit 3 ON: Ephemeris is		
				received for this channel		
				Bit 4 ON: Used in normal		
				fix mode		

			Bit 5 ON: Used in differential fix mode				
			(*Bit 0 is LSB)				
12-19	SV-CH 2 status						
20-27	SV-CH 3 status						
:	:	:	:	:	:		
Payload Length : 3+NSVS*10 bytes							

RCV_STATE- Receiver navigation status (0xDF) (Periodic)

This is the navigation status calculated by of the GPS receiver. This message is sent from the GPS receiver to host. The payload length is 81 bytes. This information is for reference purpose only.

Structure:

<0xA0,0xA1>< PL><DF>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 51 DF 01 02 05......82 0D 0A

1 2 3 4......

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	DF		UINT8	
2	IOD	01	Issue of Data from 0-255	UINT8	
			00: NO_FIX,		
			01: FIX_PREDICTION		
3	Navigation State	02	02: FIX_2D	UINT8	
			03: FIX_3D		
			04: FIX_DIFFERENTIAL		
4	WN	05F2	GPS week number	UINT16	weeks
5	TOW	41134EFC 00000000	GPS TOW	DPFP	sec
6	ECEF POS_X	C146C60AF89C8B3E	ECEF POS_X	DPFP	meter
7	ECEF POS_Y	4152F1BAEC433B0A	ECEF POS_Y	DPFP	meter
8	ECEF POS _Z	41444679FC67CED3	ECEF POS _Z	DPFP	meter
9	ECEF VEL_X	BBA49C10	ECEF VEL_X	SPFP	m/s
10	ECEF VEL_Y	3C9BC4A0	ECEF VEL_Y	SPFP	m/s
11	ECEF VEL_Z	00000000	ECEF VEL_Z	SPFP	m/s
12	Clock Bias	61616161FC59E1F4	Clock Bias of receiver	DPFP	meter
13	Clock Drift	41D79E49	Clock Drift of receiver	SPFP	m/s
14	GDOP	3F99999A	GDOP	SPFP	
15	PDOP	3F99999A	PDOP	SPFP	
16	HDOP	3F99999A	HDOP	SPFP	
17	VDOP	3F99999A	VDOP	SPFP	
18	TDOP	3F99999A	TDOP	SPFP	
Payload	Length: 81 bytes	•	•	•	•

SUBFRAME- Sub frame buffer data (0xE0) (Periodic)

This is the information about the sub frame data bits currently collected in GPS receiver. The data bits are composed from the 24 higher bits of each of the navigation words and the parity bits are not included in the output. Only when all 10 navigation words have been verified by parity checking, the data bits in the sub frame are output. Before being sent out to the host, the data bits are also polarity-adjusted. The 8 preamble bits of a sub frame, for example, can be obtained from the first byte of the 3-byte field of navigation word 1. This message is sent from the GPS receiver to host. The payload length is 33 bytes.

Structure:

<0xA0,0xA1>< PL><E0>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 21 E0 01 01 00 00 0082 0D 0A

1 2 3 4 5......

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	E0		UINT8	
2	PRN	01	Satellite PRN	UINT8	
3	SFID	01	Sub-frame ID (1-5)	UINT8	
4	WORD 1 bit01~		24 parity-checked and polarity-adjusted	0 5.455	
4	bit24		bits of subframe word 1	3 bytes	
_	WORD 2 bit01~		24 parity-checked and polarity-adjusted	0 5.455	
5	bit24		bits of subframe word 2	3 bytes	
6	WORD 3 bit01~		24 parity-checked and polarity-adjusted	3 bytes	
6	bit24		bits of subframe word 3	3 bytes	
7	WORD 4 bit01~		24 parity-checked and polarity-adjusted	3 bytes	
7	bit24		bits of subframe word 4	3 bytes	
8	WORD 5 bit01~		24 parity-checked and polarity-adjusted	3 bytes	
0	bit24		bits of subframe word 5	3 bytes	
9	WORD 6 bit01~		24 parity-checked and polarity-adjusted	2 hydaa	
9	bit24		bits of subframe word 6	3 bytes	
10	WORD 7 bit01~		24 parity-checked and polarity-adjusted	2 hydaa	
10	bit24		bits of subframe word 7	3 bytes	
44	WORD 8 bit01~		24 parity-checked and polarity-adjusted	O hydron	
11	bit24		bits of subframe word 8	3 bytes	
10	WORD 9 bit01~		24 parity-checked and polarity-adjusted	2 hydaa	
12	bit24		bits of subframe word 9	3 bytes	
13	WORD 10 bit01~		24 parity-checked and polarity-adjusted	2 bytes	
13	bit24		bits of subframe word 10	3 bytes	
Payload	d Length : 33 bytes				

Change Log

Ver 0.6, Nov.04, 2009

1. The definition about the polarity of accumulated carrier cycle is added.

Ver 0.5, October 9, 2009

2. Description about raw measurement 0xDD message and its definition of accumulated carrier phase is modified.

Ver 0.4, September 25, 2009

- 1. Corrected little endian to big endian on message format.
- 2. Updated raw measurement output 0xDD accumulated carrier cycle to DPFP, message length is changed from 3+19xN to 3+23xN. Sign of Doppler frequency is made positive when satellite is approaching.
- 3. Binary message output 0xE0 is data bit polarity adjusted before output.

Ver 0.3, September 21, 2009

1. Adding scaling information on binary message 0xDD accumulated carrier cycle output

Ver 0.2, April 8, 2009

1. Modified to support 1 / 2 / 4 / 5 / 10 / 20 Hz carrier phase raw data output

Ver 0.1, Mar 14, 2009

1. Initial release.

SkyTraq Technology, Inc.

5F, No.26, Minsiang Street, Hsinchu, Taiwan, 300

Phone: +886 3 5678650 Fax: +886 3 5678680 Email: info@skytrag.com.tw

© 2006 SkyTraq Technology Inc. All rights reserved.

Not to be reproduced in whole or part for any purpose without written permission of SkyTraq Technology Inc ("SkyTraq"). Information provided by SkyTraq is believed to be accurate and reliable. These materials are provided by SkyTraq as a service to its customers and may be used for informational purposes only. SkyTraq assumes no responsibility for errors or omissions in these materials, nor for its use. SkyTraq reserves the right to change specification at any time without notice.

These materials are provides "as is" without warranty of any kind, either expressed or implied, relating to sale and/or use of SkyTraq products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. SkyTraq further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. SkyTraq shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

SkyTraq products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.