Subespaços de ${\rm I\!R}^n$

Definição

Um subespaço de \mathbb{R}^n é um subconjunto F de \mathbb{R}^n que satisfaz as seguintes condições:

- **1** $<math>F \neq \emptyset;$
- 2 Se $u, v \in F$ então $u + v \in F$; (F é fechado para a adição de vetores.)
- 3 Se $v \in F$ e $\alpha \in \mathbb{R}$ então $\alpha v \in F$. (F é fechado para o produto de números reais por vetores.)

Assim, se F for um subespaço de \mathbb{R}^n ,

$$v_1, \ldots, v_n \in F$$
 e $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$

então

$$\alpha_1 v_1 + \ldots + \alpha_n v_n$$
 pertence a F .

Observação

- **1** Se F for subespaço de \mathbb{R}^n então $0_{\mathbb{R}^n} \in F$.
- 2 Logo, se $0_{\mathbb{R}^n} \notin F$, então F não é subespaço de \mathbb{R}^n .

- **1** O conjunto $\{0_{\mathbb{R}^n}\}$ e \mathbb{R}^n são subespaços de \mathbb{R}^n (são os chamados *espaços triviais*).
- 2 Em \mathbb{R}^2 as retas que passam pela origem **são** subespaços de \mathbb{R}^2 .
- 3 Em \mathbb{R}^2 as retas que não passam pela origem **não são** subespaços de \mathbb{R}^2 .
- 4 Em \mathbb{R}^3 as retas e os planos que passam pela origem são subespaços de \mathbb{R}^3 .
- **5** Em \mathbb{R}^3 as retas e os planos que não passam pela origem **não são** subespaços de \mathbb{R}^3 .

Exemplos (continuação)

6 O conjunto

$$F = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4 : x_1 + x_2 = 1 \right\}$$

não é subespaço de \mathbb{R}^4 .

De facto, basta observar que a origem de \mathbb{R}^4 não pertence a F (pois $0+0\neq 1$).

Exemplos (continuação)

O conjunto

$$F = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4 : x_1 = x_2 \right\}$$

 $\acute{\mathbf{e}}$ subespaço de \mathbb{R}^4 . (A prova disso fica como exercício.)

Teorema

A interseção de dois (ou mais) subespaços de \mathbb{R}^n é um subespaço de \mathbb{R}^n .

Demonstração (caso: dois subespaços)

Sejam F e G dois subespaços de \mathbb{R}^n .

- 1 Como a origem de \mathbb{R}^n pertence a F e a G (pois ambos são subespaços) então a origem pertence a $F \cap G$, logo $F \cap G \neq \emptyset$.
- 2 Sejam $u,v\in F\cap G$. Então $u,v\in F$ e $u,v\in G$, e como F e G são subespaços temos $u+v\in F$ e $u+v\in G$, logo $u+v\in F\cap G$.
- 3 Sejam $u \in F \cap G$ e $\alpha \in \mathbb{R}$. Então $u \in F$ e $u \in G$, e como F e G são subespaços temos $\alpha u \in F$ e $\alpha u \in G$, logo $\alpha u \in F \cap G$.

Logo, $F \cap G$ é subespaço de \mathbb{R}^n .

Definição

Sejam v_1, \ldots, v_k vetores de \mathbb{R}^n .

Uma **combinação linear** de v_1,\ldots,v_k é um vetor da forma

$$\alpha_1 v_1 + \ldots + \alpha_k v_k$$
,

com $\alpha_1, \ldots, \alpha_k$ números reais (os **coeficientes** da combinação linear).

Denotamos por

$$ger\{v_1,\ldots,v_k\}$$

o conjunto de todas as possíveis combinações lineares dos vetores $v_1,\ldots,v_k.$

Teorema

Sendo $v_1,\ldots,v_k\in\mathbb{R}^n$, o conjunto $ger\{v_1,\ldots,v_k\}$ é um subespaço de \mathbb{R}^n .

Demonstração

Exercício.

Definição

Ao subespaço

$$ger\{v_1,\ldots,v_k\}$$

chamamos subespaço gerado pelos vetores v_1, \ldots, v_k .

Se $F = ger\{v_1, \dots, v_k\}$, diz-se que $\{v_1, \dots, v_k\}$ é um **conjunto** gerador de F.

Observação: Se $\{v_1,\ldots,v_k\}$ gerar F então cada um destes vetores pertence a F.

$$ger\{v\} = \left\{ \alpha \begin{bmatrix} 1 \\ 2 \end{bmatrix} : \alpha \in \mathbb{R} \right\}$$
$$= \left\{ \begin{bmatrix} \alpha \\ 2\alpha \end{bmatrix} : \alpha \in \mathbb{R} \right\}$$
$$= \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : y = 2x \right\}$$

Logo, $ger\{v\}$ é a reta de equação y=2x.

$$2 \text{ Sejam } u = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ e } v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

$$ger\{u, v\} = \{xu + yv : x, y \in \mathbb{R}\}$$

$$= \left\{x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} : x, y \in \mathbb{R}\right\}$$

$$= \left\{\begin{bmatrix} x \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ y \end{bmatrix} : x, y \in \mathbb{R}\right\}$$

$$= \left\{\begin{bmatrix} x \\ y \end{bmatrix} : x, y \in \mathbb{R}\right\} = \mathbb{R}^{2}$$

Logo,
$$ger\{u, v\} = \mathbb{R}^2$$
.

3 Seja
$$F=\left\{\left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}\right]\in{\rm I\!R}^3:x_1=0
ight\}$$
. Então

$$F = \left\{ \begin{bmatrix} 0 \\ x_2 \\ x_3 \end{bmatrix} : x_2, x_3 \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} 0 \\ x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ x_3 \end{bmatrix} : x_2, x_3 \in \mathbb{R} \right\}$$

$$= \left\{ x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} : x_2, x_3 \in \mathbb{R} \right\} = ger \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Logo, $\left\{ \begin{array}{c|c} 0 \\ 1 \\ 0 \end{array}, \begin{array}{c|c} 0 \\ 0 \\ 1 \end{array} \right\}$ é um conjunto gerador de F.

Definição

Seja $A \in M_{m \times n}(\mathbb{R})$.

O espaço das colunas de A é o subespaço de \mathbb{R}^m gerado pelas n colunas de A (e é denotado por $\mathbf{C}(\mathbf{A})$).

O espaço das linhas de $A \in \mathbf{R}(\mathbf{A}) = C(A^T)$, isto é, o espaço gerado pelas linhas de A consideradas como vetores de \mathbb{R}^n .

Exemplos

Seja
$$A = \begin{bmatrix} 1 & 2 & -5 \\ -1 & 3 & 6 \end{bmatrix}$$
.

$$R(A) = ger \left\{ \begin{bmatrix} 1 \\ 2 \\ -5 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 6 \end{bmatrix} \right\}.$$

Teorema

O sistema Ax = b é possível se e só se $b \in C(A)$.

Demonstração

Sejam v_1, \ldots, v_n as colunas da matriz A.

Então $b \in C(A)$ sse existem $x_1, \ldots, x_n \in \mathbb{R}$ tais que $b = x_1v_1 + \ldots + x_nv_n$.

Mas
$$b = x_1v_1 + \ldots + x_nv_n$$
 é equivalente a $b = A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$.

$$\operatorname{Logo}\, b\in C(A) \text{ sse existe } x=\left[\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right] \text{ tal que } Ax=b,$$

isto é, sse o sistema Ax = b é possível.

O teorema anterior diz-nos que

$$C(A) = \{Ax : x \in \mathbb{R}^n\}$$

Observemos que

$$ger\left\{\left[\begin{array}{c}1\\0\end{array}\right],\left[\begin{array}{c}0\\1\end{array}\right]\right\}=ger\left\{\left[\begin{array}{c}1\\0\end{array}\right],\left[\begin{array}{c}0\\1\end{array}\right],\left[\begin{array}{c}2\\3\end{array}\right]\right\};$$

$$ger\left\{ \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\} = ger\left\{ \begin{bmatrix} 0\\2\\2 \end{bmatrix} \right\} = ger\left\{ \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\3\\3 \end{bmatrix} \right\}.$$

Dado um subespaço F de \mathbb{R}^n , pretendemos encontrar um conjunto gerador de F com tão poucos elementos quanto possível.

Lema

Se os vetores v_1,\ldots,v_k gerarem F e se um deles for combinação linear dos restantes k-1, então esses k-1 vetores ainda geram F.

Demonstração

Suponhamos que os vetores v_1, \ldots, v_k geram F e que v_i é combinação linear dos restantes k-1.

Então existem números reais $\alpha_1,\ldots,\alpha_{i-1},\alpha_{i+1},\ldots,\alpha_k$ tais que

$$v_i = \alpha_1 v_1 + \ldots + \alpha_{i-1} v_{i-1} + \alpha_{i+1} v_{i+1} + \ldots + \alpha_k v_k.$$

Seja $v\in F$. Como $v\in F$ e $F=ger\{v_1,\ldots,v_k\}$ então existem números reais β_1,\ldots,β_k tais que

$$v = \beta_1 v_1 + \ldots + \beta_{i-1} v_{i-1} + \beta_i v_i + \beta_{i+1} v_{i+1} + \ldots + \beta_k v_k.$$

Demonstração (continuação)

$$v = \beta_1 v_1 + \ldots + \beta_{i-1} v_{i-1} + \beta_i v_i + \beta_{i+1} v_{i+1} + \ldots + \beta_k v_k.$$

 $\begin{array}{l} \mathsf{Como}\ v_i = \alpha_1 v_1 + \ldots + \alpha_{i-1} v_{i-1} + \alpha_{i+1} v_{i+1} + \ldots + \alpha_k v_k, \\ \mathsf{ent\~ao}\ v = \beta_1 v_1 + \ldots + \beta_{i-1} v_{i-1} + \beta_i (\alpha_1 v_1 + \ldots + \alpha_{i-1} v_{i-1} + \alpha_{i+1} v_{i+1} + \ldots + \alpha_k v_k) + \beta_{i+1} v_{i+1} + \ldots + \beta_k v_k, \\ \mathsf{isto}\ \acute{\mathsf{e}}, \\ v = (\beta_1 + \beta_i \alpha_1) v_1 + \ldots + (\beta_{i-1} + \beta_i \alpha_{i-1}) v_{i-1} + (\beta_{i+1} + \beta_i \alpha_{i+1}) v_{i+1} + \ldots + (\beta_k + \beta_i \alpha_k) v_k. \\ \mathsf{Assim},\ v\ \acute{\mathsf{e}}\ \mathsf{combina} \ \mathsf{c\~ao}\ \mathsf{linear}\ \mathsf{dos}\ \mathsf{vetores}\ v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k. \\ \mathsf{Logo}\ \mathsf{os}\ \mathsf{vetores}\ v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k\ \mathsf{geram}\ F. \end{array}$

Se v_1, \ldots, v_k gerarem F e nenhum desses vetores se escrever como combinação linear dos restantes k-1, então se retirarmos algum dos vetores, os restantes já não geram F.

Definição

Sejam $v_1, \ldots, v_k \in \mathbb{R}^n$ $(k \geq 2)$. Os vetores v_1, \ldots, v_k dizem-se **linearmente independentes** se nenhum deles for igual a uma combinação linear dos outros k-1.

Se só tivermos um só vetor, v_1 , diz-se que v_1 é linearmente independente se for não nulo.

Se v_1,\ldots,v_k não forem linearmente independentes, dizem-se linearmente dependentes.

Observação

A propriedade de uns tantos vetores serem linearmente independentes é uma propriedade do conjunto e não de cada um dos vetores. Assim, muitas vezes diz-se que é o conjunto que é linearmente independente.

- 1 O conjunto $\left\{ \begin{array}{c|c} 0\\1\\1 \end{array} \right\}$ é linearmente independente.
- 2 O conjunto $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ é linearmente dependente.
- 3 O conjunto $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$ é linearmente dependente.
- 4 Qualquer conjunto de vetores que contenha o vetor nulo é linearmente dependente.
- **5** O conjunto $\left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$ é linearmente independente.

- 6 O conjunto $\left\{ \begin{array}{c|c} 1 \\ 1 \\ 1 \end{array}, \begin{array}{c} 2 \\ 2 \\ 2 \end{array} \right\}$ é linearmente dependente.
- Qualquer conjunto de vetores em que um é múltiplo de outro, é linearmente dependente.
- Subconjuntos de conjuntos linearmente independentes são linearmente independentes.
- Um conjunto que contenha um subconjunto linearmente dependente é também linearmente dependente.

Critério de independência linear

Os vetores v_1, \ldots, v_k são linearmente independentes se e só se for impossível escrever o vetor nulo como combinação linear de v_1, \ldots, v_k , exceto da forma trivial.

Isto é, os vetores v_1,\dots,v_k são linearmente independentes se e só se

$$\alpha_1 v_1 + \ldots + \alpha_k v_k = 0_{\mathbb{R}^n} \quad \Rightarrow \quad \alpha_1 = \ldots \alpha_k = 0$$

Vejamos se o conjunto $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\2 \end{bmatrix} \right\}$ é linearmente independente.

Sejam x_1, x_2, x_3 tais que

$$x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

isto é,
$$\begin{vmatrix} 1 & 2 & 2 \\ 0 & -3 & 3 \\ 0 & 0 & 2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$
, isto é,

Exemplo (continuação)

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & -3 & 3 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ isto \'e,}$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 &= 0 \\ -3x_2 + 3x_3 &= 0 \\ 2x_3 &= 0 \end{cases} \log \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{cases}.$$

Concluímos assim que

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\2 \end{bmatrix} \right\}$$

é linearmente independente.

Será que o conjunto

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\0 \end{bmatrix} \right\}$$

é linearmente independente?

Sejam x_1, x_2, x_3 tais que

$$x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, isto é,

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ isto \'e,}$$

Exemplo (continuação)

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ isto \'e,}$$

$$\left\{ \begin{array}{rll} x_1 + x_2 + 2x_3 &= 0 \\ -3x_2 - 3x_3 &= 0 & \log 0 \\ 0 &= 0 \end{array} \right. \text{ in } \left\{ \begin{array}{rll} x_1 = -x_3 \\ x_2 = -x_3 \end{array} \right. ,$$

e portanto o sistema é possível indeterminado, existindo portanto mais do que a solução nula. Concluímos assim que

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\0 \end{bmatrix} \right\}$$

é linearmente dependente.

Corolário

Designemos por A a matriz cujas colunas são v_1, \ldots, v_k .

Os vetores v_1,\ldots,v_k são linearmente independentes se e só se o sistema Ax=0 for possível determinado.

(logo,

os vetores v_1,\dots,v_k são linearmente dependentes se e só se o sistema Ax=0 for possível indeterminado.)

Corolário

Em \mathbb{R}^n não pode existir um conjunto linearmente independente com mais de n vetores.

Definição

Seja F um subespaço de \mathbb{R}^n . Um conjunto de vetores de F que

- ullet gere F
- seja linearmente independente

diz-se uma **base** de F.

Observação

Quando falarmos de bases vamos considerar o conjunto como conjunto ordenado.

lacktriangle O exemplo mais simples para base de \mathbb{R}^n é o conjunto

$$\left\{ \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \dots, \begin{bmatrix} 0\\0\\\vdots\\0\\1 \end{bmatrix} \right\},\,$$

que se designa por **base canónica** de \mathbb{R}^n .

- 2 O conjunto $\left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \end{bmatrix} \right\}$ é uma base de \mathbb{R}^2 .
- 3 O conjunto $\left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ não é uma base de \mathbb{R}^2 , pois apesar de gerar \mathbb{R}^2 , não é linearmente independente.
- 4 O conjunto $\left\{ \left[\begin{array}{c} 2 \\ 3 \end{array} \right] \right\}$ não é uma base de \mathbb{R}^2 , pois apesar de ser linearmente independente, não gera \mathbb{R}^2 .

Teorema

Seja $\{v_1,\ldots,v_k\}$ uma base de um subespaço F. Então qualquer vetor $v\in F$ escreve-se de modo único como combinação linear de v_1,\ldots,v_k .

(Aos coeficientes desta combinação linear chamamos componentes ou coordenadas de v relativamente à base $\{v_1, \ldots, v_k\}$.)

Demonstração

Como $\{v_1,\ldots,v_k\}$ gera F então existem números reais α_1,\ldots,α_k tais que $v=\alpha_1v_1+\ldots+\alpha_kv_k$. Suponhamos que existem números reais β_1,\ldots,β_k tais que $v=\beta_1v_1+\ldots+\beta_kv_k$. Então $\alpha_1v_1+\ldots+\alpha_kv_k=\beta_1v_1+\ldots+\beta_kv_k$, logo $(\alpha_1-\beta_1)v_1+\ldots+(\alpha_k-\beta_k)v_k=0$. Como os vetores v_1,\ldots,v_k são linearmente independentes temos $\alpha_i-\beta_i=0$ para $i=1,\ldots,k$, isto é $\alpha_i=\beta_i$, para $i=1,\ldots,k$.

Dado um subespaço F, se conhecermos uma base de F, qualquer vetor de F fica determinado pela indicação das suas coordenadas relativamente a essa base.

Exemplos

lacktriangledown As coordenadas de $\left[egin{array}{c} 2 \\ 3 \end{array} \right]$ relativamente à base canónica são 2

e 3 pois
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
.

2 As coordenadas de $\begin{bmatrix} x \\ y \end{bmatrix}$ relativamente à base canónica são x e y pois $\begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Subespaços de
$${\rm I\!R}^n$$

3 As coordenadas de $\begin{bmatrix} 4 \\ 6 \end{bmatrix}$ relativamente à base

$$\left\{ \left[\begin{array}{c} 1 \\ 0 \end{array}\right], \left[\begin{array}{c} 1 \\ 1 \end{array}\right] \right\} \text{ são -2 e 6 pois } \left[\begin{array}{c} 4 \\ 6 \end{array}\right] = -2 \left[\begin{array}{c} 1 \\ 0 \end{array}\right] + 6 \left[\begin{array}{c} 1 \\ 1 \end{array}\right].$$

4 As coordenadas de $\left[\begin{array}{c} x \\ y \end{array}\right]$ relativamente à base

$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\} \text{ são } (x-y) \text{ e } y \text{ pois }$$

$$\begin{bmatrix} x\\y \end{bmatrix} = (x-y) \begin{bmatrix} 1\\0 \end{bmatrix} + y \begin{bmatrix} 1\\1 \end{bmatrix}.$$

Teorema

Seja F um subespaço de ${\rm I\!R}^n$. Sejam v_1,\ldots,v_p vetores de F que geram F e sejam w_1,\ldots,w_q vetores de F linearmente independentes. Então tem-se, necessariamente, $p\geq q$.

Isto é, num subespaço, um conjunto gerador nunca pode ter menos elementos do que um conjunto linearmente independente.

Corolário

Se uma base de um subespaço for constituída por k vetores, então todas as bases têm k vetores.

Definição

Seja F um subespaço de \mathbb{R}^n . Se uma base de F (e portanto todas) tiver k elementos, dizemos que F tem **dimensão** k, e escrevemos dimF = k.

Se $F = \{0\}$, escrevemos, por definição, dimF = 0.

Exemplos

- $1 dim \mathbb{R}^n = n$
- ${f Z}$ Em ${\Bbb R}^2$, as retas que passam na origem têm dimensão 1.
- ${
 m f IR}^3$, as retas que passam na origem têm dimensão 1.
- \blacksquare Em \mathbb{R}^3 , os planos que passam na origem têm dimensão 2.

5 O subespaço
$$F = ger \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$
 tem dimensão 2 pois o conjunto $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$ gera F e é linearmente independente, logo é base de F .

Se dim F = k, k > 0, então:

- lacktriangleright k é o número máximo de elementos que pode ter um conjunto linearmente independente de vetores de F;
- $lackbox{ } k$ é o número mínimo de elementos que pode ter um conjunto gerador de F.

Teorema

Sejam v_1,\ldots,v_q vetores linearmente independentes. Se um vetor w não pertencer a $ger\{v_1,\ldots,v_q\}$, então os vetores v_1,\ldots,v_q,w são linearmente independentes.

Teorema (Construção de uma base)

Suponhamos que dimF = k, k > 0. Então:

- 1 Dado um conjunto de vetores linearmente independentes de F, se esse conjunto não for uma base de F é possível acrescentar-lhe vetores de F de forma a obter uma base de F.
- 2 Qualquer conjunto de k vetores de F linearmente independentes é uma base de F.
- 3 Dado um conjunto finito de vetores que gerem F, se esse conjunto não for uma base de F é possível retirar-lhe vetores de forma a obter uma base de F.
- 4 Qualquer conjunto de k vetores de F que gerem F é uma base de F.

Exemplos

independentes, mas não constituem uma base de \mathbb{R}^3 (pois $dim\mathbb{R}^3=3$). Pretendemos obter uma base de \mathbb{R}^3 que contenha v_1 e v_2 . Para isso, basta determinar $v_3\in\mathbb{R}^3$ tal que $v_3\not\in ger\{v_1,v_2\}$. Como $ger\{v_1,v_2\}=$

$$\left\{ \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} : \alpha, \beta \in \mathbb{R} \right\} =$$

$$\left\{ \left[\begin{array}{c} \alpha+\beta\\ \beta\\ 0 \end{array} \right] : \alpha,\beta \in {\rm I\!R} \right\} \text{, ent\~ao } v_3 = \left[\begin{array}{c} 0\\ 0\\ 1 \end{array} \right] \not\in ger\{v_1,v_2\}.$$

Assim, $\{v_1, v_2, v_3\}$ é uma base de \mathbb{R}^3 (que contém v_1 e v_2).

2 Como o conjunto $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$ é linearmente independente e $dim\mathbb{R}^3=3$, constitui uma base de \mathbb{R}^3 .

O conjunto

$$\left\{ \left[\begin{array}{c} 1\\0\\0 \end{array} \right], \left[\begin{array}{c} 0\\1\\0 \end{array} \right], \left[\begin{array}{c} 0\\0\\1 \end{array} \right], \left[\begin{array}{c} 1\\1\\1 \end{array} \right] \right\}$$

gera \mathbb{R}^3 , pois qualquer elemento de \mathbb{R}^3 escreve-se como combinação linear destes quatro vetores. De facto, temos

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

base de \mathbb{R}^3 .

Mas este conjunto não é linearmente independente, pois

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Assim, ao conjunto
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
 podemos retirar o vetor $\left[1\\1\\1 \end{bmatrix}$ que o conjunto $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ continua a gerar \mathbb{R}^3 e é linearmente independente, logo é uma

Subespaços de ${
m I\!R}^n$

ALGA 23-24

4 O conjunto $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ gera \mathbb{R}^2 , pois para qualquer

$$\left[\begin{array}{c} x \\ y \end{array}\right] \in \mathbb{R}^2 \text{ temos } \left[\begin{array}{c} x \\ y \end{array}\right] = -y \left[\begin{array}{c} 1 \\ -1 \end{array}\right] + (x+y) \left[\begin{array}{c} 1 \\ 0 \end{array}\right].$$

Como $dim \mathbb{R}^2 = 2$ podemos concluir que $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ é

uma base de ${\rm I\!R}^2$.

Corolário

Seja F um subespaço de ${\rm I\!R}^n$. Então:

- $\mathbf{1}$ F tem dimensão.
- $2 \ dim F \leq n.$
- $\lim F = n$ se e só se $F = \mathbb{R}^n$.

Recordemos...

Seja A uma matriz qualquer.

N(A) : espaço nulo de A (conjunto das soluções de Ax=0)

C(A) : espaço das colunas de A (espaço gerado pelas colunas de A)

R(A): espaço das linhas de A (espaço gerado pelas linhas de A)

Exemplos

Seja
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$$
.

$$N(A) = \{x \in \mathbb{R}^2 : Ax = 0\} =$$

$$= \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 : \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$C(A) = ger \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix} \right\}$$

$$R(A) = ger\left\{ \left[\begin{array}{c} 1 \\ 1 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \end{array}\right], \left[\begin{array}{c} 1 \\ 2 \end{array}\right] \right\}$$

Definição

Seja A uma matriz.

A dimensão de N(A) chama-se **nulidade** de A e denota-se por nul(A).

Teorema

Seja A uma matriz $m \times n$. Então, tem-se

$$nul(A) = n - car(A).$$

Exemplo

Seja
$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -1 & -1 & 1 & 0 \\ 2 & 4 & 0 & 0 \end{bmatrix}$$
. Temos

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -1 & -1 & 1 & 0 \\ 2 & 4 & 0 & 0 \end{bmatrix} \xrightarrow{L_2 + L_1} \begin{bmatrix} \boxed{1} & 2 & 0 & -1 \\ 0 & \boxed{1} & 1 & -1 \\ 0 & 0 & 0 & \boxed{2} \end{bmatrix} = U.$$

Logo car(A) = 3 e portanto nul(A) = 4 - 3 = 1.

Teorema

Seja A $m \times n$ e U a matriz em escada obtida de A no final da parte descendente do processo de eliminação de Gauss. Tem-se

$$dimC(A) = dimC(U) = car(A),$$

e uma base de ${\cal C}(A)$ é constituída pelas colunas de A correspondentes às colunas de ${\cal U}$ que contêm pivots.

De uma forma geral $C(A) \neq C(U)$.

Exemplo

Seja
$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -1 & -1 & 1 & 0 \\ 2 & 4 & 0 & 0 \end{bmatrix}$$
. Temos

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -1 & -1 & 1 & 0 \\ 2 & 4 & 0 & 0 \end{bmatrix} \xrightarrow{L_2 + L_1} \begin{bmatrix} \boxed{1} & 2 & 0 & -1 \\ 0 & \boxed{1} & 1 & -1 \\ 0 & 0 & 0 & \boxed{2} \end{bmatrix} = U.$$

Uma base para C(A) é $\left\{ \begin{array}{c|c} 1 \\ -1 \\ 2 \end{array}, \begin{array}{c|c} 2 \\ -1 \\ 4 \end{array}, \begin{array}{c|c} -1 \\ 0 \\ 0 \end{array} \right\}$.

Consequência

Para determinar uma base de um subespaço do qual se conheça um conjunto gerador, considera-se a matriz A cujas colunas são os vetores geradores do subespaço e determina-se uma base de C(A). A dimensão do subespaço é igual à característica de A.

Exemplo

Seja
$$F = ger \left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-2 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}.$$

Então
$$F=C(A)$$
 para $A=\left[egin{array}{cccc} -1 & 1 & 2 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & -1 & -2 & 0 \end{array} \right].$

Mas

$$A = \begin{bmatrix} -1 & 1 & 2 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & -1 & -2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 & 1 & 2 & 0 \\ 0 & \boxed{1} & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U.$$

A dimensão de F é igual a car(A), logo dimF=2 e uma base

para
$$F$$
 é (uma base para $C(A)$):
$$\left\{ \begin{array}{c|c} -1 & 1 \\ 0 & 1 \end{array}, \begin{array}{c|c} 1 \\ 1 \\ -1 \end{array} \right\}.$$

Como a aplicação às linhas de uma matriz A de operações elementares não altera o subespaço gerado pelas linhas, temos

$$R(A) = R(U).$$

Teorema

Uma base de R(A) é constituída pelas linhas não nulas de U (i.e. pelas linhas que têm pivots). Logo, dim R(A) = car(A).

Exemplo

Seja
$$A=\left[\begin{array}{cccc} 1 & 2 & 0 & -1 \\ -1 & -1 & 1 & 0 \\ 2 & 4 & 0 & 0 \end{array}\right]$$
 . Temos

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -1 & -1 & 1 & 0 \\ 2 & 4 & 0 & 0 \end{bmatrix} \xrightarrow{L_2 + L_1} \begin{bmatrix} \boxed{1} & 2 & 0 & -1 \\ 0 & \boxed{1} & 1 & -1 \\ 0 & 0 & 0 & \boxed{2} \end{bmatrix} = U.$$

Uma base para
$$R(A)$$
 é $\left\{ \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\2\\2 \end{bmatrix} \right\}$.

Teorema

Seja A $m \times n$. Então

$$car(A) = car(A^T).$$

Demonstração

Seja A $m \times n$. Temos

$$R(A) = C(A^T)$$

logo

$$dimR(A) = dimC(A^T)$$

i.e.

$$car(A) = car(A^T).$$