Math 71: Algebra

Fall 2022

PSET 2 — September 30, 2022

Prof. Voight

Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

- (a) Abstract Algebra by David S. Dummit & Richard M. Foote.
- (b) Algebra by Jacob K. Goldhaber & Gertrude Ehrlich

Problems

1. (DF 0.1.7) Let $f: A \to B$ be a surjective map of sets. For $y \in B$, let

$$f^{-1}(y) := \{ x \in A : f(x) = y \}$$

be the *preimage* or *fiber* of f over y. (The map f is bijective if and only if $f^{-1}(y) = \{x\}$ consists of a single element $x \in A$, in which case we can define f^{-1} as a function, removing the set brackets. But we always have fibers.) Define a relation by $a \sim b$ if f(a) = f(b). Show that this relation is an equivalence relation whose equivalence classes are the fibers of f.

What we know (so far):

- (a) f is surjective, meaning, for every $y \in B$, there exists at least one $x \in A$ such that f(x) = y.
- (b) We define the relation $a \sim b$ to hold if f(a) = f(b). From this, we can note:
 - (a) Symmetry: $a \sim b \implies f(a) = f(b) \implies f(b) = f(a) \implies b \sim a$.
 - (b) **Reflexivity:** For every $a \in A$ acted on by f, f(a) = f(a), so $a \sim a$.
 - (c) **Transitivity:** If $a \sim b$ and $b \sim c$, then f(a) = f(b) = f(c), so $a \sim c$.

Since \sim has symmetry, reflexivity, and transitivity, we can conclude that \sim is an equivalence relation.

Next, we show that the equivalence classes of \sim are the fibers of f.

First, let's define the equivalence classes of \sim .

Since f is surjective, for every $y \in B$, there exists at least one $x \in A$ such that f(x) = y.

Let's take one such element, $x_0 \in A$ and its corresponding $y_0 \in B$ such that $f(x_0) = y_0$.

The equivalence class of x_0 under f is the set of all elements $x \in A$ such that $f(x) = f(x_0) = y_0$.

This, by definition, implies that $x \sim x_0$, and $x \in f^{-1}(y_0)$.

$$[x_0] = \{x \in A \colon x \sim x_0 \qquad (\text{meaning } f(x) = f(x_0))\}$$

Next, we need to show that the equivalence classes of \sim are the fibers of f.

Let's take an arbitrary equivalence class $[x_0]$ such as the one derived above.

We know that $[x_0] \subseteq A$ and $f(x) = y_0$ for all $x \in [x_0]$.

Then, by definition of inverses, $f^{-1}(y_0) = [x_0]$.

Generally, $[x] = f^{-1}(f(x))$ for all $x \in A$, and [x] is the equivalence class of x under \sim .

- 2. (sorta-not-really DF 0.3.15(b))
 - (a) For a=69 and n=372, determine the greatest common divisor $g:=\gcd(a, n)$, the least common multiple $\operatorname{lcm}(a, b)$, and write g=ax+by with $x,y\in\mathbb{Z}$. Is $\overline{a}\in(\mathbb{Z}/n\mathbb{Z})^{\times}$? If so, what is \overline{a}^{-1} ?

Factoring, we get $69 = 3 \cdot 23$ and $372 = 2^2 \cdot 3 \cdot 31$. By definition, given:

$$a = 1^{a_1} \cdot 2^{a_2} \cdot 3^{a_3} \cdot \cdot \cdot (n-1)^{a_{n-1}} \cdot n^{a_n}$$
$$b = 1^{b_1} \cdot 2^{b_2} \cdot 3^{b_3} \cdot \cdot \cdot (n-1)^{b_{n-1}} \cdot n^{b_n}$$

Then we can define the gcd and lcm as:

$$\mathbf{gcd}\ (a,\ b) = 1^{\min(a_1,b_1)} \cdot 2^{\min(a_2,b_2)} \cdot 3^{\min(a_3,b_3)} \cdots (n-1)^{\min(a_{n-1},b_{n-1})} \cdot n^{\min(a_n,b_n)}$$

$$\mathbf{lcm}\ (a,\ b) = 1^{\max(a_1,b_1)} \cdot 2^{\max(a_2,b_2)} \cdot 3^{\max(a_3,b_3)} \cdots (n-1)^{\max(a_{n-1},b_{n-1})} \cdot n^{\max(a_n,b_n)}$$

For a = 69 and b = 372, we get:

$$\mathbf{gcd} (69, 372) = 2^{0} \cdot 3 \cdot 23^{0} \cdot 31^{0} = 3$$

 $\mathbf{lcm} (69, 372) = 2^{2} \cdot 3 \cdot 23 \cdot 31 = 8556$

Using the Euclidean algorithm:

$$372 = 69 \cdot 5 + 27$$

$$69 = 27 \cdot 2 + 15$$

$$27 = 15 \cdot 1 + 12$$

$$15 = 12 \cdot 1 + 3$$

$$12 = 3 \cdot 4 + 0$$

Back-substituting, we get:

$$3 = 15 - 12$$

$$= 15 - (27 - 15) = 2 \cdot 15 - 27$$

$$= 2(69 - 2 \cdot 27) - 27 = 2 \cdot 69 - 5 \cdot 27$$

$$= 2 \cdot 69 - 5(372 - 5 \cdot 69) = 27 \cdot 69 - 5 \cdot 372$$

$$= 27 \cdot 69 - 5 \cdot 372$$

Thus, we can write $3 = 27 \cdot 69 - 5 \cdot 372$, with x = 27 and y = -5.

Is $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$? If so, what is \overline{a}^{-1} ?

No, $\overline{69} \notin (\mathbb{Z}/372\mathbb{Z})^{\times}$ because \mathbf{gcd} $(69, 372) \neq 0$ (that is, 69 and 372 are not coprime).

(b) Taking n = 89, what is the order of $\overline{2}$ in $(\mathbb{Z}/n\mathbb{Z})^{\times}$?

The order $o(\overline{a})$ of an element $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ is the smallest positive integer k such that $\overline{a}^k \equiv 1 \pmod{n}$.

For a single element, we can use the following algorithm to find the order:

```
function order (a, n)
  k = 1
  while a^k is not congruent to 1 mod n
    k = k + 1
  return k
```

We get:

```
ghci> order 2 89
Found 2 ^ 11 = 2048 == 1 (mod 89)
```

The order of $\overline{2}$ in $(\mathbb{Z}/89\mathbb{Z})^{\times}$ is 11.

(c) How many elements are there in $(\mathbb{Z}/360\mathbb{Z})^{\times}$?

All elements in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ have to be coprime to n.

There are a total of $\phi(n)$ relatively prime numbers less than n.

We can calculate the value of $\phi(n)$ for reasonably small n using a simple algorithm:

```
function phi (n)
  count = 0
  for i = 1 to n
    if gcd (i, n) == 1
      count = count + 1
  return count
```

We get:

```
ghci> phi 360
96
```

Optionally, we can also factor $360 = 2^3 \cdot 3^2 \cdot 5$ and use the multiplicative property of the phi function to get:

$$\phi(360) = \phi(2^3 \cdot 3^2 \cdot 5)$$

$$= \phi(2^3) \cdot \phi(3^2) \cdot \phi(5)$$

$$= (2^3 - 2^2) \cdot (3^2 - 3) \cdot (5 - 1)$$

$$= 8 \cdot 6 \cdot 4$$

$$= 96$$

Hence, there are a total of 96 elements in $(\mathbb{Z}/360\mathbb{Z})^{\times}$.

- 3. (DF 1.3.1, sorta 1.3.7)
 - (a) Let σ be the permutation

$$1 \mapsto 3, 2 \mapsto 4, 3 \mapsto 5, 4 \mapsto 2, 5 \mapsto 1$$

and au be the permutation

$$1\mapsto 5,\ 2\mapsto 3,\ 3\mapsto 2,\ 4\mapsto 4,\ 5\mapsto 1.$$

Find the cycle decompositions of each of the following: $\sigma, \tau, \sigma^2, \sigma^{-1}, \sigma\tau, \tau\sigma, \tau^2\sigma$. Do σ and τ commute?

(a)
$$\sigma$$

$$\begin{array}{c}
1 \mapsto 3 \\
2 \mapsto 4 \\
3 \mapsto 5 \\
4 \mapsto 2 \\
5 \mapsto 1 \\
= (1 \ 3 \ 5) \ (2 \ 4)
\end{array}$$
(b) τ

$$\begin{array}{c}
1 \mapsto 5 \\
2 \mapsto 3 \\
3 \mapsto 2 \\
4 \mapsto 4 \\
5 \mapsto 1 \\
= (1 \ 5) \ (2 \ 3) \ (4) \\
= (1 \ 5) \ (2 \ 3)
\end{array}$$
(c) σ^2

$$\begin{array}{c}
1 \mapsto 3 \mapsto 5 \\
2 \mapsto 4 \mapsto 2 \\
3 \mapsto 5 \mapsto 1 \\
4 \mapsto 2 \mapsto 4 \\
5 \mapsto 1 \mapsto 3 \\
= (1 \ 5 \ 3) \ (2) \ (4) \\
= (1 \ 5 \ 3)
\end{array}$$

$$\begin{array}{c} 1\mapsto 5\\ 2\mapsto 4\\ 3\mapsto 1\\ 4\mapsto 2\\ 5\mapsto 3\\ = (1\,5\,3)\,(2\,4)\\ \\ \text{(e) }\sigma\tau\\ \\ \hline \\ 1\mapsto 5\mapsto 1\\ 2\mapsto 3\mapsto 5\\ 3\mapsto 2\mapsto 4\\ 4\mapsto 4\mapsto 2\\ 5\mapsto 1\mapsto 3\\ = (1)\,(2\,5\,3\,4)\\ = (2\,5\,3\,4)\\ \\ \text{(f) }\tau\sigma\\ \\ \hline \\ 1\mapsto 3\mapsto 2\\ 2\mapsto 4\mapsto 4\mapsto 4\\ 3\mapsto 5\mapsto 1\\ 4\mapsto 2\mapsto 3\\ 5\mapsto 1\mapsto 5\\ = (1\,2\,4\,3)\,(5)\\ = (1\,2\,4\,3)\\ \\ \text{(g) }\tau^2\sigma\\ \\ \hline \\ 1\mapsto 3\mapsto 2\mapsto 3\\ 2\mapsto 4\mapsto 4\mapsto 4\\ 3\mapsto 5\mapsto 1\mapsto 5\\ = (1\,2\,4\,3)\\ \\ \text{(g) }\tau^2\sigma\\ \\ \hline \\ 1\mapsto 3\mapsto 2\mapsto 3\\ 2\mapsto 4\mapsto 4\mapsto 4\\ 3\mapsto 5\mapsto 1\mapsto 5\\ 4\mapsto 2\mapsto 3\mapsto 2\\ 1\mapsto 5\mapsto 1\\ = (1\,3\,5)(2\,4)\\ \\ \text{(h) Do }\sigma \text{ and }\tau \text{ commute?}\\ \text{No. As demonstrated above: }\sigma\tau\neq\tau\sigma.\\ \\ \text{This is expected, since the cycles in }\sigma \text{ are not disjoint from the cycles in }\tau.\\ \end{array}$$

(b) Write out the cycle decomposition of each element of order 2 in the symmetric group S_4 . How many such elements are there of each cycle type?

- (a) There are 9 elements of order 2 in S_4 .
- $(1\ 2)$
- $(1\ 3)$
- (14)
- $(2\ 3)$
- (24)
- $(3\ 4)$
- $(1\ 2)\ (3\ 4)$
- $(1\ 3)\ (2\ 4)$
- (14)(23)
- (b) There are 6 elements of order 2 in S_4 . There are 3 elements of cycle type $(1\ 2)$, 2 elements of cycle type $(1\ 3)$, and 1 element of cycle type $(1\ 4)$.
- (c) How many elements are in the set $\{\sigma \in S_5 : \sigma(2) = 5\}$?

We are fixing the map $2 \mapsto 5$. This means 2 maps to only 5, and no other number maps to 5.

- $1 \mapsto \{1 \ 2 \ 3 \ 4\}$
- $2 \mapsto \{5\}$
- $3 \mapsto \{1\ 2\ 3\ 4\}$
- $4 \mapsto \{1 \ 2 \ 3 \ 4\}$
- $5 \mapsto \{1\ 2\ 3\ 4\}$

Once we have fixed the map $2 \mapsto 5$, we have 4 possible mappings for each of the remaining 4 numbers of S_5 . Thus, there are 4 choices for the second mapping.

We then have one less choice for the third mapping, and so on. In particular, there will be 3 choices for the third element, 2 choices for the fourth element, and 1 choice for the fifth element.

The number of elements is $4 \cdot 3 \cdot 2 \cdot 1 = 4! = 24$.

- 4. (some of DF 1.6.6)
 - (a) Let $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ be the set of nonzero real numbers. Then \mathbb{R}^{\times} is a group under multiplication. Define a second binary operation on \mathbb{R}^{\times} by x*y=xy/2 for $x,y\in\mathbb{R}^{\times}$. Show that $(\mathbb{R}^{\times},*)$ is a group, and find an isomorphism $\phi\colon (\mathbb{R}^{\times},\cdot) \xrightarrow{\sim} (\mathbb{R}^{\times},*)$. [Hint: if it helps, write $G=\mathbb{R}^{\times}$ in the second case with the nonstandard operation.]

Let's pick arbitrary $x, y, z \in \mathbb{R}^{\times}$. Then:

$$x*y = \frac{xy}{2} \in \mathbb{R}^{\times} \qquad \text{(Closure)}$$

$$(x*y)*z = \frac{xy}{2}*z = \frac{xyz}{4} = x*\frac{yz}{2} = x*(y*z) \qquad \text{(Associative)}$$

$$x*2 = x \cdot \frac{2}{2} = x = 2 \cdot \frac{x}{2} = 2*x \qquad \text{(Identity = 2)}$$

$$x * (4/x) = x \cdot \frac{4}{2x} = 2 = \frac{4}{x} \cdot \frac{x}{2} = (4/x) * x$$
 (Inverse of x is = 4/x)

Thus, $(\mathbb{R}^{\times}, *)$ is a group.

Let's define $\phi \colon (\mathbb{R}^{\times}, \cdot) \xrightarrow{\sim} (\mathbb{R}^{\times}, *)$ by $\phi(r) = 2r$ for $r \in \mathbb{R}^{\times}$. Then:

$$\phi(xy) = \phi(x) * \phi(y) \qquad \text{(Required condition)}$$

$$2xy = 2x * 2y$$

$$2xy = 2x \cdot \frac{2y}{2}$$

$$2xy = 2xy$$

Furthermore, if ϕ is an isomorphism then it needs to map the identity in $(\mathbb{R}^{\times}, \cdot)$ to the identity in $(\mathbb{R}^{\times}, *)$.

$$\phi(e_1) = \phi(e_2)$$

$$e_1 = 1$$

$$e_2 = 2$$

$$\phi(e_1) = \phi(1) = 2 \cdot 1 = 2 = e_2$$

Thus, ϕ is *proven consistent* as an isomorphism between $(\mathbb{R}^{\times}, \cdot)$ and $(\mathbb{R}^{\times}, *)$.

(b) Prove that the groups \mathbb{Z} (under +) is not isomorphic to \mathbb{Q} (under +). [Remark: there is a bijection from \mathbb{Z} to \mathbb{Q} that is not a homomorphism, and a homomorphism that is not a bijection!]

Let's take $\phi \colon \mathbb{Q} \xrightarrow{\sim} \mathbb{Z}$ to be an isomorphism. Then:

- (a) By definition, ϕ needs to map the identity in \mathbb{Q} to the identity in \mathbb{Z} .
- (b) By definition, ϕ needs to be distributive over the group operations (+).

That is: $\phi(x+y) = \phi(x) + \phi(y)$ for all $x, y \in \mathbb{Q}$.

Let's take an arbitrary $q \in \mathbb{Q}$ such that $2 \nmid q$. Let's take a corresponding $z \in \mathbb{Z}$ such that $\phi(q) = z$. Then, by the distributivity of ϕ : $\phi(q) = \phi(q/2 + q/2) = \phi(q/2) + \phi(q/2)$.

Let's define $z' \in \mathbb{Z}$: $z' = \phi(q/2)$. Then:

$$\phi(q) = z$$

$$\phi(\frac{q}{2} + \frac{q}{2}) = z$$

$$2z' = z$$

$$z' = \frac{z}{2}$$

We can conclude that, given $\phi(q)=z\in Z$, then $\phi(q/2)=z/2$ is not in $\mathbb Z$ for any q such that $2\nmid\phi(q)$. For a specific example, consider the instances of q such that $\phi(q)\in\{1,3,5,7,\ldots\}$ (the odd positive integers). Then, $\phi(q/2)\in\{\frac{1}{2},\frac{3}{2},\frac{5}{2},\frac{7}{2},\ldots\}\not\in\mathbb Z$.

This contradiction (ϕ mapping elements from Q to \mathbb{Z} yet the same elements are seen to not be in \mathbb{Z}) proves that ϕ is not an isomorphism, and \mathbb{Z} is not isomorphic to \mathbb{Q} under addition.

5. Let $\phi \colon G \to H$ be a bijective homomorphism, with inverse $\phi^{-1} \colon H \to G$. Show that ϕ^{-1} is also a homomorphism.

What we know (so far):

- (i) That ϕ is a bijection tells us that:
 - (a) ϕ is injective that is, for every $g_1, g_2 \in G$ such that $\phi(g_1) = \phi(g_2)$, we have $g_1 = g_2$.
 - (b) ϕ is surjective that is, for every $h \in H$, there is a $g \in G$ such that $\phi(g) = h$.
- (ii) That ϕ is a homomorphism tells us that for every $g_1, g_2 \in G$, $\phi(g_1g_2) = \phi(g_1)\phi(g_2)$.
- (iii) That ϕ^{-1} is the inverse of ϕ tells us that, $\phi^{-1}(\phi(g)) = g$ for every $g \in G$, and $\phi(\phi^{-1}(h)) = h$ for every $h \in H$.

Next, let's pick two elements $a, b \in G$, and corresponding elements $a', b' \in H$ such that $\phi(a) = a'$ and $\phi(b) = b'$.

By property (3) above, $\phi^{-1}(a') = a$ and $\phi^{-1}(b') = b$.

By property (2) above, $\phi(ab) = \phi(a)\phi(b) = a'b'$.

From this, we aim to show that ϕ^{-1} is a homomorphism by showing that $\phi^{-1}(a'b') = \phi^{-1}(a')\phi^{-1}(b') = ab$.

$$\phi(ab) = \phi(a)\phi(b) = a'b'$$

$$\phi^{-1}(\phi(ab)) = \phi^{-1}(\phi(a)\phi(b)) = \phi^{-1}(a'b') \text{ (Invert both sides)}$$

$$\phi^{-1}(\phi(ab)) = \phi^{-1}(\phi(a))\phi^{-1}(\phi(b)) = \phi^{-1}(a'b') \text{ (By (ii) above)}$$

$$\phi^{-1}(\phi(ab)) = \phi^{-1}(a')\phi^{-1}(b') = \phi^{-1}(a'b') \text{ (Since } \phi(a) = a', \phi(b) = b')$$

$$ab = \phi^{-1}(a')\phi^{-1}(b') = \phi^{-1}(a'b') \text{ (Since } \phi^{-1}(\phi(x)) = x)$$

Thus, we see that $\phi^{-1}(a'b') = \phi^{-1}(a')\phi^{-1}(b') = ab$, and ϕ^{-1} is a homomorphism.