## FUNKCJE DWÓCH I TRZECH ZMIENNYCH

Wykład 8.

#### ZBIORY NA PŁASZCZYŹNIE I W PRZESTRZENI

Def. (płaszczyzna, przestrzeń)

Przestrzenią dwuwymiarową (płaszczyzną)  $R^2$  jest zbiór par uporządkowanych (x,y), gdzie  $x,y \in R$ , tj.

$$R^2 = \{(x,y) : x,y \in R\} = R \times R.$$

Podobnie, przestrzenią trójwymiarową R³, jest

$$R^{3} = \{(x, y, z) : x, y, z \in R\} = R \times R \times R.$$

Elementy (x,y) oraz (x,y,z) nazywamy odpowiednio *punktami* płaszczyzny lub przestrzeni.

Liczby x, y oraz x, y, to współrzędne kartezjańskie punktów <math>(x,y) oraz (x,y,z).

Def. (odległość punktów)

Odległość punktów  $P_1$ ,  $P_2$  płaszczyzny lub przestrzeni oznaczamy przez  $|P_1P_2|$  oraz:

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
,

gdzie  $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in \mathbb{R}^2$  lub

$$|P_1P_2|^{def} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
,

gdzie  $P_1 = (x_1, y_1, z_1), P_2 = (x_2, y_2, z_2) \in \mathbb{R}^3$ .

Def. (otoczenie punktu)

Otoczeniem o promieniu r > 0 punktu  $P_0$  na płaszczyźnie lub przestrzeni jest zbiór:

$$O(P_0,r) = \{P : |P_0P| < r\}.$$

Otoczeniem punktu na płaszczyźnie jest koło o środku w danym punkcie. Otoczeniem punktu w przestrzeni jest kula otwarta o środku w danym punkcie.

Def. (zbiór ograniczony i nieograniczony)

Zbiór A jest ograniczony, jeżeli jest zawarty w otoczeniu pewnego punktu, tzn.

$$\exists_{P_0} \exists_{r>0} A \subset O(P_0,r).$$

W przeciwnym przypadku mówimy, że zbiór A jest nieograniczony.

Def. (punkt wewnętrzny zbioru)

Punkt *P* jest punktem wewnętrznym zbioru *A*, jeżeli istnieje otoczenie tego punktu zawarte w zbiorze *A*, tzn.

$$\exists_{r>0} O(P,r) \subset A$$
.

Def. (zbiór otwarty)

Zbiór jest otwarty, jeżeli każdy punkt tego zbioru jest jego punktem wewnętrznym.

## **FUNKCJE DWÓCH I TRZECH ZMIENNYCH**

Def. (funkcja dwóch zmiennych)

Funkcja f dwóch zmiennych określona na zbiorze  $A \subset R^2$  o wartościach w R przyporządkowuje każdemu punktowi z A dokładnie jedną liczbę rzeczywistą

$$f: A \rightarrow R$$
, tj.  $z = f(x, y)$ ,  $(x, y) \in A$ .

Def. (funkcja trzech zmiennych)

$$A \subset \mathbb{R}^3$$
  $f: A \to \mathbb{R}$  tj.  $w = f(x, y, z)$ , gdzie  $(x, y, z) \in A$ .

Def.

Dziedzina, zbiór wartości – podobnie jak w przypadku funkcji jednej zmiennej.

## Przykład. Wyznaczyć dziedzinę funkcji

$$f(x, y) = \ln(4x - x^2 - y) + x\sqrt{y}$$
.

Zauważmy, że funkcja ta określona jest w zbiorze punktów  $p = (x, y) \in \mathbb{R}^2$ , których współrzędne muszą spełniać warunek:

$$4x-x^2-y>0 \quad i \quad y\geq 0.$$

#### **Zatem**

$$D = \{(x,y) \in \mathbb{R}^2 : y < 4x - x^2 \land y \ge 0\} = \{(x,y) \in \mathbb{R}^2 : \theta \le y < 4x - x^2\}.$$



## Def. (wykres funkcji dwóch zmiennych)

## Wykresem funkcji f dwóch zmiennych jest zbiór:

$$\{(x,y,z) \in \mathbb{R}^3 : (x,y) \in D_f, z = f(x,y)\}.$$

## Wykres funkcji dwóch zmiennych.



#### **Przykład**

Funkcja z = 1 - x - 2yDziedziną jest cała płaszczyzna Wykresem tej funkcji jest płaszczyzna.



#### **Przykład**

Funkcja  $f(x, y) = x^2 + y^2$ Dziedziną jest cała płaszczyzna  $D = R^2$ Wykresem jest elipsoida o przekroju kolistym.



Wykres funkcji  $f(x, y) = x^2 + y^2$ 

## 2. Wykresem funkcji

$$z = a(x^2 + y^2)$$

jest paraboloida obrotowa, tj. powierzchnia powstała z obrotu paraboli  $z = ax^2$  wokół osi *Oz*.



## 3. Wykresem funkcji

$$z = k\sqrt{x^2 + y^2}$$

jest stożek, tj. powierzchnia powstała z obrotu półprostej z = kx dla  $x \ge 0$  wokół osi Oz.



## 4. Wykresem funkcji

$$z = \pm \sqrt{R^2 - (x^2 + y^2)}$$

jest górna (+) lub dolna (-) półsfera o środku w początku układu współrzędnych i promieniu *R*.



## Def.

# Poziomicą wykresu funkcji f, odpowiadającą poziomowi $h \in R$ , nazywamy zbiór:

$$\{(x,y)\in D_f: f(x,y)=h\}.$$



Poziomica wykresu funkcji *f* odpowiadająca poziomowi *h* 

Fakt (przesunięcia i odbicia wykresów funkcji)

## 1. Wykres funkcji

$$z = f(x-a, y-b) + c$$

powstaje z wykresu z = f(x, y) przez przesunięcie o wektor  $\vec{v} = (a, b, c)$ .

## 2. Wykres funkcji

$$z = -f(x, y)$$

powstaje z wykresu z = f(x, y) przez symetrię względem płaszczyzny xOy.



Przesunięcie wykresu funkcji o wektor  $\vec{v} = (a,b,c)$ 

Odbicie wykresu funkcji względem płaszczyzny *xOy* 

## Def. (funkcja ograniczona)

Funkcja f dwóch zmiennych jest ograniczona na zbiorze  $A\subset D_f$ , jeżeli zbiór wartości funkcji f na zbiorze A jest ograniczony, tzn.

$$\exists_{M>0} \forall_{(x,y)\in A} |f(x,y)| \leq M.$$

*Uwaga*. Definicja funkcji ograniczonej trzech zmiennych jest analogiczna. Definicje funkcji dwóch i trzech zmiennych ograniczonych z dołu lub z góry są podobne do odpowiednich definicji dla funkcji jednej zmiennej.

#### **GRANICE FUNKCJI W PUNKCIE**

Def. (ciąg na płaszczyźnie)

Ciągiem punktów na płaszczyźnie  $((P_n) | \text{lub}((x_n, y_n)))$  jest odwzorowanie zbioru liczb naturalnych w zbiór  $R^2$ .

Def. (granica właściwa ciągu)

Ciąg  $(P_n) = ((x_n, y_n))$  jest zbieżny do punktu  $P_0 = (x_0, y_0)$ , tj.

$$\lim_{n\to\infty} P_n = P_0 \text{ lub } \lim_{n\to\infty} (x_n, y_n) = (x_0, y_0),$$

wtedy i tylko wtedy, gdy

$$\lim_{n\to\infty}x_n=x_0 \text{ oraz } \lim_{n\to\infty}y_n=y_0.$$

*Uwaga*. Ciąg ( $P_n$ ) jest zbieżny do punktu  $P_0$ , jeżeli w dowolnym otoczeniu punktu  $P_0$  znajdują się prawie wszystkie wyrazy tego ciągu.

Def. (Heinego granicy właściwej funkcji w punkcie)

Liczba g jest granicą właściwą funkcji f w punkcie ( $x_0, y_0$ ), co zapisujemy

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = g,$$

wtedy i tylko wtedy, gdy

$$\bigvee_{(x_n, y_n)} \left( \lim_{n \to \infty} (x_n, y_n) = (x_0, y_0) \right) \Rightarrow \left( \lim_{n \to \infty} f(x_n, y_n) = g \right).$$

Uwaga. W podobny sposób można określić granicę funkcji trzech zmiennych.

Granicę funkcji f w punkcie  $(x_0, y_0)$  oznaczamy przez  $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$  lub

$$f(x,y) \rightarrow g$$
, gdy  $(x,y) \rightarrow (x_0,y_0)$ .

## Def. (Heinego granicy niewłaściwej w punkcie)

## Funkcja f ma w punkcie $(x_0, y_0)$ granicę niewłaściwą $\infty$ , co zapisujemy

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=\infty,$$

wtedy i tylko wtedy, gdy

$$\forall \lim_{n\to\infty} (x_n, y_n) = (x_0, y_0) \Rightarrow \lim_{n\to\infty} f(x_n, y_n) = \infty.$$

*Uwaga*. Podobnie definiujemy obie granice niewłaściwe dla funkcji trzech zmiennych.

## Przykład 1. Wykazać, że

$$\lim_{(x,y)\to(1,1)} f(p) = \frac{x-y}{x^2-y^2} = \frac{1}{2}.$$

Niech  $(p_k)$  będzie dowolnym ciągiem punktów zbieżnym do punktu  $p_0=(1,1)$ , czyli

$$p_k = (x_k, y_k)$$
, gdzie  $\lim_{k \to \infty} x_k = 1$ ,  $\lim_{k \to \infty} y_k = 1$ .

Wtedy

$$\lim_{k \to \infty} \frac{x_k - y_k}{x_k^2 - y_k^2} = \lim_{k \to \infty} \frac{x_k - y_k}{(x_k - y_k)(x_k + y_k)} = \lim_{k \to \infty} \frac{1}{(x_k + y_k)} = \frac{1}{2}.$$

## Przykład 2. Wykazać, że funkcja

$$f(x,y) = \frac{x+y}{x-y}$$

nie ma granicy w punkcie  $p_0 = (0,0)$ .

W tym przypadku wystarczy wskazać dwa różne ciągi  $(p_k)$  i  $(q_k)$  zbieżne do  $p_0 = (0,0)$  i takie, że odpowiadające im ciągi wartości funkcji  $(f(p_k))$  i  $(f(q_k))$  mają różne granice.

## Dziedziną funkcji f jest zbiór

$$D = \{(x, y) \in R^2 : y \neq x\}$$

**Niech**  $p_k = (\frac{1}{k}, \frac{2}{k}), \ q_k = (\frac{3}{k}, \frac{1}{k})$  dla  $k \in N$ .

## Widzimy, że $p_k \in D$ i $q_k \in D$ oraz

$$\lim_{k\to\infty}p_k=p_0\ \mathbf{i}\ \lim_{k\to\infty}q_k=p_0.$$

## Jednocześnie

$$\lim_{k \to \infty} f(p_k) = \lim_{k \to \infty} \frac{\frac{1}{k} + \frac{2}{k}}{\frac{1}{k} - \frac{2}{k}} = \lim_{k \to \infty} (-3) = -3, \qquad \lim_{k \to \infty} f(q_k) = \lim_{k \to \infty} \frac{\frac{3}{k} + \frac{1}{k}}{\frac{3}{k} - \frac{1}{k}} = \lim_{k \to \infty} 2 = 2.$$

Z powyższego wynika (na podstawie definicji Heinego), że granica funkcji  $f(x,y) = \frac{x+y}{x-y}$  w punkcie  $p_0 = (0,0)$  nie istnieje.

## Tw. (granica sumy)

1. 
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = p$$
  
2.  $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = q$   $\Rightarrow \lim_{(x,y)\to(x_0,y_0)} [f(x,y) + g(x,y)] = p + q$ 

## Tw. (granica iloczynu)

1. 
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = p$$
  
2.  $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = q$   $\Rightarrow \lim_{(x,y)\to(x_0,y_0)} [f(x,y)\cdot g(x,y)] = pq$ 

## Tw. (granica ilorazu)

1. 
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = p$$
2.  $g(x,y) \neq 0$  dla każdego  $(x,y) \neq (x_0,y_0)$ 
3.  $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = q \neq 0$ 

Uwaga. Powyższe trzy twierdzenia są prawdziwe także dla funkcji trzech zmiennych. Do znajdowania granic funkcji dwóch i trzech zmiennych można stosować twierdzenia o dwóch i o trzech funkcjach, analogiczne do takich twierdzeń dla funkcji jednej zmiennej.

## **FUNKCJE CIĄGŁE**

Def. (funkcja dwóch zmiennych ciągła w punkcie)

Funkcja f jest ciągła w punkcie ( $x_0$ ,  $y_0$ ) wtedy i tylko wtedy, gdy

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

Def. (funkcja dwóch zmiennych ciągła na zbiorze otwartym)

Funkcja jest ciągła na zbiorze otwartym  $D \subset \mathbb{R}^2$ , jeżeli jest ciągła w każdym punkcie tego zbioru.

*Uwaga*. Definicje ciągłości w punkcie i na zbiorach dla funkcji trzech zmiennych są analogiczne do podanych powyżej.

Tw. (działania na funkcjach ciągłych)

Suma, iloczyn, iloraz oraz złożenie funkcji ciągłych są funkcjami ciągłymi.

## Pochodne cząstkowe pierwszego rzędu

Pochodną cząstkową funkcji f w punkcie  $(x_0, y_0)$  względem zmiennej x jest granica (jeżeli istnieje):

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

Pochodna cząstkową względem zmiennej x obliczamy jak zwykłą pochodną zmiennej x traktując y jako (znany) parametr.

Analogicznie definiujemy pochodną cząstkową względem y.

Oznaczenie 
$$\frac{\partial f}{\partial x}(x_0y_0)\frac{\partial f}{\partial y}(x_0y_0)$$
 lub $f_x'(x_0,y_0)$   $f_y'(x_0,y_0)$ 

lub krótko 
$$\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}$$
.

# Przykłady: Wyznaczyć pochodne ( $\frac{\partial z}{\partial x}$ i $\frac{\partial z}{\partial y}$ )

1. 
$$z = f(x, y) = x^2 - 3xy - 4y^2 - x + 2y$$
.  

$$\frac{\partial z}{\partial x} = 2x - 3y - 1$$
. 
$$\frac{\partial z}{\partial y} = -3x - 8y + 2$$
.

2.  $u = f(x,y) = e^{x^2+y^2}$ .

$$\frac{\partial u}{\partial x} = 2x\boldsymbol{\ell}^{x^2+y^2}; \quad \frac{\partial u}{\partial y} = 2y\boldsymbol{\ell}^{x^2+y^2}.$$

3.  $u = f(x, y, z) = xy^3 \cos(xz)$ .

$$\frac{\partial u}{\partial x} = y^3 \cos(xz) - xy^3 z \sin(xz);$$
  $\frac{\partial u}{\partial y} = 3xy^2 \cos(xz);$   $\frac{\partial u}{\partial z} = -x^2 y^3 \sin(xz)$ 

4.  $u = f(r, \varphi) = r^2 \sin^3 \varphi$ .

$$\frac{\partial u}{\partial r} = 2r \sin^3 \varphi$$
,  $\frac{\partial u}{\partial \varphi} = 3r^2 \sin^2 \varphi \cos \varphi$ .

5. 
$$z = f(x, y) = \frac{2x - 3y}{x + 4y}$$
.  

$$\frac{\partial z}{\partial x} = \frac{2(x + 4y) - (2x - 3y) \cdot 1}{(x + 4y)^2} = \frac{2x + 8y - 2x + 3y}{(x + 4y)^2} = \frac{11y}{(x + 4y)^2},$$

$$\frac{\partial z}{\partial y} = \frac{-3(x + 4y) - (2x - 3y) \cdot 4}{(x + 4y)^2} = \frac{-3x - 12y - 8x + 12y}{(x + 4y)^2} = \frac{-11x}{(x + 4y)^2}.$$

## Podobnie oblicza się pochodne funkcji trzech zmiennych.



Interpretacja geometryczna pochodnych cząstkowych funkcji dwóch zmiennych z=f(x,y) w punkcie  $p_{\scriptscriptstyle 0}=(x_{\scriptscriptstyle 0},y_{\scriptscriptstyle 0})$ :

$$f'_{x}(x_{0},y_{0}) = tg\alpha_{1}; \quad f'_{y}(x_{0},y_{0}) = tg\alpha_{2}$$