Effiziente Algorithmen Zusammenfassung

Thomas Mohr

Contents

1	Gru	Grundlagen 4			
	1.1	Stable	Matching		
			Propose-&-Reject		
		1.1.2	5 respräsentative Probleme		
	1.2	Zentral	e Konzepte & Konventionen		
		1.2.1	O-Notation		
	1.3	Graphe	en		
		1.3.1	Repräsentation		
		1.3.2	Bekannte Begriffe		
		1.3.3	Graphtraversierung		
	1.4	Biparti	te Graphen		
		1.4.1	Starker Zusammenhang		
		1.4.2	DAG's & topologische Sortierungen		
2	Gree	edyalgor	ithmen 18		
	2.1	Interva	l scheduling		
	2.2	Interva	l Partitioning		
	2.3		tungsminimierung		
	2.4	_	te Wege in Graphen		
	2.5		ale Spannbäume		
	2.6		ung		
			Problemformulierung		
			Huffmann-Algorithmus		

List of Algorithms

1	Propose-&-Reject	5
2	DFS	14
3	Interval Partitioning	19
4	Huffmann-Algorithmus	21

1 Grundlagen

1.1 Stable Matching

- Eingabe: Zwei gleichgroße Mengen $M = \{m_1, \ldots, m_n\}$ und $W = \{w_1, \ldots, w_n\}$, welche in diesem Beispiel Männer und Frauen darstellen.
- Aufgabe: Finde paarweise Zuordnung zwischen den Elementen aus M und W, so dass für jeden $m \in M$ und jede $w \in W$, die nicht m zugeordnet ist, gilt (Stabilität):
 - 1. m zieht ihm zugeordnete w' gegenüber w vor, oder
 - 2. w zieht ihr zugeordneten m' gegenüber m vor

Stabilität beschreibt hierbei, dass die Paarungen tatsächlich vorteilhaft sind für einen von beiden. D.h., wenn (m, w) ein Paar ist, aber m lieber ein Paar mit w' bilden würde, bzw. w lieber ein Paar mit m' bilden würde, so wäre ihre Verbindung instabil.

• Beispiel:

$$M = \{X, Y, Z\}$$
 $W = \{A, B, C\}$
 $X : A < B < C$ $A : Y < X < Z$
 $Y : B < A < C$ $B : X < Y < Z$
 $Z : A < B < C$ $C : X < Y < Z$

- Zuordnung (X, C), (Y, B), (Z, A)Ist diese Zuordnung stabil? Nein! X zieht A vor und A zieht X vor.
- Zuordnung (X, A), (Y, B), (Z, C)Ist die Zuordnung stabil? Ja!
 - 1. Niemand will mit Z oder C tauschen
 - 2. X hat Traumfrau
 - 3. Y hat Traumfrau

1.1.1 Propose-&-Reject

Algorithm 1: Propose-&-Reject

```
ı alle m \in M und alle w \in W "frei"
 2 while \exists m \in M : m \text{ ist frei und } \exists w \in W \text{ der } m \text{ noch keinen Antrag gemacht hat}
        w \leftarrowerste noch "unbeantragte" Frau in m's Präferenzfolge
 3
        if w ist frei then
 4
            (m, w) wird Paar
 5
            m \leftarrow \text{"verlobt"}
 6
            w \leftarrow "verlobt"
 7
        end
 8
        else if w zieht m ihrem aktuellen Verlobten m' vor then
 9
            (m, w) wird Paar
10
            m \leftarrow "verlobt"
11
            w \leftarrow "verlobt"
12
            m' \leftarrow "frei"
13
        end
14
        else
15
            w lehnt m ab
16
        end
17
18 end
```

- Propose–Reject findet immer ein **perfektes Matching**, das stabil ist, und benötigt dazu $\leq n^2$ **Durchläufe** der while-Schleife.
- Jeder Mann bekommt die bestmögliche Frau zugeordnet ("männeroptimal").
- Jede Frau bekommt den schlechtestmöglichen Mann zugeordnet.

1.1.2 5 respräsentative Probleme

- 1. Interval Scheduling
 - Eingabe: Intervalle mit Start- & Endzeiten
 - Aufgabe: Finde größtmögliche Menge nichtüberlappender Intervalle
 - Beispiel für Greedy

2. Gewichtetes Interval Scheduling

- Eingabe: Intervalle mit Start- & Endzeiten und positiven Gewichten
- Aufgabe: Finde Lösung mit größtmöglichem Gesamtgewicht
- Beispiel für dynamisches Programmieren:

3. Bipartites Matching

- Eingabe: Bipartiter Graph
- Aufgabe: Finde größtmögliche "unabhängige" (keine gemeinsamen Endpunkte) Kantenmenge
- Beispiel für Netzwerkflüsse:

4. Independent set

- Eingabe: Ungerichteter Graph
- Aufgabe: Finde größtmögliche "unabhängige" (paarweise nicht benachbarte) Knotenmenge

• Beispiel (NP-schwer):

• Vorige Probleme sind Spezialfälle von Independent Set

5. Competitive Facility Location

- Eingabe: Knotengewichteter Graph
- Regeln: Zwei Spieler wählen alternierend Knoten; gewählter Knoten wird samt Nachbarn gelöscht.
- Ziel: Spieler 1 will Knoten so wählen, dass Spieler 2 möglichst wenige Pnkte macht
- Beispiel (PSPACE-vollständig):

1.2 Zentrale Konzepte & Konventionen

- Ziel effizienter Algorithmen: polynomielle Laufzeit, d.h. es existieren Konstanten c, d, so dass der Algorithmus bei Eingabegröße n nach $c \cdot n^d$ Schritten terminiert.
- Man beachte: Worst-Case Analyse

1.2.1 \mathcal{O} -Notation

• $T(n) = \mathcal{O}(f(n))$ falls $\exists c > 0, n_0 \ge 0 : \forall n \ge n_0 : T(n) \le c \cdot f(n)$

- $T(n) = \Omega(f(n))$ falls $\exists c > 0, n_0 \ge 0 : \forall n \ge n_0 : T(n) \ge c \cdot f(n)$

- T(n) = o(f(n)) falls $\forall c > 0 : \exists n_0 \ge 0 \forall n \ge n_0 : T(n) < c \cdot f(n)$
- $T(n) = \omega(f(n))$ falls f(n) = o(T(n))

Wenn die Eingabe n groß genug wird wächst T

•
$$T(n) = \mathcal{O}(f(n))$$

• $T(n) = \Omega(f(n))$

• $T(n) = \Theta(f(n))$

• T(n) = o(f(n))

• $T(n) = \omega(f(n))$

nicht schneller

nicht langsamer

genauso schnell

echt langsamer

echt schneller

als f.

1.3 Graphen

- G = (V, E)

1.3.1 Repräsentation

- Adjazenzmatrix
 - $n \times n \ 0/1$ -Matrix
 - $A_{i,j} = 1 \iff \{v_i, v_j\} \in E$
 - Hoher Speicherbedarf für Graphen mit wenigen Kanten ("dünn", "sparse")

- \bullet Adjazenzliste
 - Array/Liste von Nachbarn für jeden Knoten
 - Jeder Array-Eintrag führt zur Liste von Nachbarn

1.3.2 Bekannte Begriffe

• Pfad: Folge von Knoten, aufeinanderfolgende sind benachbart

• Kreis: Pfad v_1, \ldots, v_l mit $v_1 = v_l$

• Ungerichteter zusammenhängender Graph: Zwischen allen Knotenpaaren existiert ein Pfad

• Baum: Ungerichtet, kreisfrei, zusammenhängend

1.3.3 Graphtraversierung

Breitensuche (BFS)

- Idee
 - $-\,$ Beginne am Startknoten s
 - Durchforste Graph "schichtweise" (erst Abstand 1 zu s, dann Abstand 2, usw.)
- Wichtige Datenstruktur: Schlange (FIFO)
- \bullet BFS kann in $\mathcal{O}(n+m)$ Zeit durchgeführt werden
- Eventuell hoher Speicherbedarf
- $\bullet\,$ Mit BFS findet man alle kürzesten Pfade ausgehend von s

Tiefensuche (DFS)

Algorithm 2: DFS

```
Input: Startknoten u
1 R \leftarrow \emptyset
2 Markiere u als besucht
\mathbf{3} \ R \leftarrow R \cup \{u\}
4 foreach \{u,v\} \in E do
       if v nicht besucht then
          \mathtt{DFS}(v)
6
       end
8 end
9 return R
```


- \bullet DFS kann in $\mathcal{O}(n+m)$ Zeit durchgeführt werden.
- DFS findet in der Regel keine kürzesten Wege.
- Anwendung z.B. beim Finden von Zusammenhangskomponenten.

1.4 Bipartite Graphen

- Ein Graph G=(V,E) ist **bipartit**, falls $V=V_1\cup V_2$ mit $V_1\cap V_2=\emptyset$ und $E\subseteq V_1\times V_2.$
- $\bullet\,$ Äquivalent:
 - Gist zweifärbbar

- G hat keinen Kreis ungerader Länge

1.4.1 Starker Zusammenhang

- Ein gerichteter Graph heißt stark zusammenhängend, falls jedes Knotenpaar wechselseitig durch jeweils mind. einen gerichtetetn Pfad verbunden ist.
- \bullet Es kann in $\mathcal{O}(n+m)$ Zeit festgestellt werden, ob ein Graph G=(V,E)stark zusammenhängend ist.
- Beispiel
 - Stark zusammenhängend

Nicht stark zusammenhängend

1.4.2 DAG's & topologische Sortierungen

- Sei G = (V, E) ein gerichteter Graph. Eine **topologische Sortierung** ist eine totale Ordnung v_1, v_2, \ldots, v_n mit Knoten aus V, so dass für jede Kante $(v_i, v_j) \in E$ gilt: i < j.
- DAG: "directed acyclic graph": gerichteter, azyklische Graph
- Beispiel:

(Vi Vi) kise: Kurs vi muss behanden sein bevor

- ullet G ist gerichtet azyklisch \iff G hat top. Sortierung
- Eine topologische Sortierung eines Graphen G, falls existierend, kann in $\mathcal{O}(n+m)$ Zeit gefunden werden. Beweisidee:
 - 1. Finde $v \in V$ ohne Eingangskante
 - 2. Setze v an Spitze der Sortierung
 - 3. Lösche v
 - 4. Finde Sortierung von "G-v" rekursiv und setze diese hinter v

2 Greedyalgorithmen

2.1 Interval scheduling

- Eingabe: Intervalle (Jobs) mit Startzeiten s_i und Endzeiten $f_i, 1 \le i \le n$.
- Aufgabe: Finde größtmögliche Menge nichtüberlappender Intervalle.
- Greedy-Strategie: Nimm Job mit frühestmöglicher Endzeit
- Dieser Algorithmus liefert immer eine optimale Lösung mit Laufzeit $\mathcal{O}(n \log n)$.

2.2 Interval Partitioning

- Eingabe: Intervalle (Jobs) mit Startzeiten s_i und Endzeiten f_i , $1 \le i \le n$.
- Aufgabe: Finde kleinstmögliche Menge von "Zeitstrahlen", so dass alle Jobs, auf diese verteilt, nicht überlappen.
- Die **Tiefe** einer Intervallmenge ist die maximale Zahl überlappender Intervalle.
- Greedy-IP liefert immer eine optimale Lösung mit Laufzeit $\mathcal{O}(n \log n)$.

Algorithm 3: Interval Partitioning

```
1 Sortiere Jobs nach aufsteigenden Startzeiten, d.h. s_1 \leq s_2 \leq \ldots \leq s_n
 \mathbf{2} \ d \leftarrow 0
 3 for r \leftarrow 1 to n do
        if Job j_r "passt auf Zeitstrahl" k \in \{1, ..., d\} then
           Job j_r wird Zeitstrahl k zugeordnet
 \mathbf{5}
        end
 6
        else
 7
            öffne neuen Zeitstrahl d+1
 8
            ordne Jobj_r Zeitstrahld+1zu
 9
            d \leftarrow d + 1
10
        end
11
12 end
```

2.3 Verspätungsminimierung

- Eingabe: Jobs $j, 1 \leq j \leq n$, mit Zeitdauer t_j und "Frist" d_j .
- Aufgabe: Finde Ausführungsreihenfolge der Jobs, so dass **maximale Verspätung** minimiert wird, d.h. minimiere $L := \max_j l_j$, wobei $l_j := \max\{0, f_j d_j\}$, und f_j die Beendigungszeit von j in dieser Ausführungsreihenfolge ist.
- \bullet Greedy-Strategie: Führe Jobs gemäß steigender Frist d_i aus.
- Der Algorithmus liefert immer eine optimale Lösung mit Laufzeit $\mathcal{O}(n \log n)$.

2.4 Kürzeste Wege in Graphen

- Eingabe: Gerichteter Graph G = (V, E) mit Längeangaben $l_e \ge 0$ für jede Kante $e \in E$, Startknoten s und Zielknoten t.
- \bullet Aufgabe: Finde kürzesten Pfad (Summe der Kantenlängen) von s nach t.
- Greedy-Ansatz
 - Starte mit $S := \{s\}$.
 - Vergrößere ${\cal S}$ schrittweise um je einen Knoten.
 - Für jeden Knoten in S ist kürzester Pfad entdeckt.
 - Kandidaten für Hinzunahme zu S sind Knote mit mindestens einem Nachbarn in S. Erweiterung von S immer von Knoten aus, der geringste Distanz zu s hat (unter den noch nicht betrachteten Knoten).
- Mittels des Algorithmus von Dijkstra lassen sich alle kürzesten Pfade ausgehend von s in $\mathcal{O}(m \log n)$ Schritten mittels eines Priority Queue berechnen.

2.5 Minimale Spannbäume

- \bullet Eingabe: Zusammenhängender ungerichteter Graph G mit beliebigen Kantengewichten.
- Aufgabe: Finde einen Baum in G, der alle Knoten von G enthält und bei dem die Summe der Kantengewichte minimal ist.
- Berühmte Greedy-Algorithmen:
 - Kruskal: Wähle "billigste" Kante, die keinen Kreis erzeugt.
 - Prim: Erzeuge Baum ausgehend von einem Startknoten durch Erweiterung um billigste Kante.
- Beide genannten Algorithmen können das MST-Problem in $\mathcal{O}(m \log n)$ Schritten lösen.

2.6 Kodierung

- Eingabe: Zeichenkette T über endlichem Alphabet $\Sigma = \{c_1, \ldots, c_n\}$, für jeden Buchstaben c_i eine "relative Häufigkeit" $f(c_i) \geq 0$, wobei $\sum_{i=1}^{n} f(c_i) = 1$.
- Aufgabe: Kodiere T über Binäralphabet $\{0,1\}$, sodass der entstehende Code minimale Länge hat.
- Eine Kodierung $\gamma: \Sigma \to \{0,1\}^+$ heißt **Präfix-Code** bzw. **präfixfrei**, falls es keine zwei Buchstaben $a, b \in \Sigma$ gibt, so dass $\gamma(a)$ ein Präfix von $\gamma(b)$ ist.

2.6.1 Problemformulierung

• Modifizierte Aufgabenstellung: Finde eine präfixfreie Kodierung rightsquigarrow Finde vollständigen Binärbaum, dessen Blätter mit de Elementen aus Σ beschriftet sind (1:1), so dass die Kosten des Baums T

$$cost(T) = \sum_{i=1}^{n} f(c_i) \cdot (\text{"Tiefe von } c_i \text{ im Baum"})$$

minimal sind.

2.6.2 Huffmann-Algorithmus

Algorithm 4: Huffmann-Algorithmus

```
1 if |\Sigma|=2 then
2 | kodiere einen Buchstaben mit 0, den anderen mit 1
3 end
4 else
5 | a,b:= "Buchstaben mit kleinster Häufigkeit"
6 | lösche a und b aus \Sigma und füge neuen Buchstaben \overline{ab} hinzu
7 | f(\overline{ab}):=f(a)+f(b)
8 | Konstruiere rekursiv präfixfreien Code mit Baum T'
9 | Ersetze in T' das Blatt \overline{ab} durch den Unterbaum
10 end
```

Der Algorithmus von Huffman findet in $\mathcal{O}(n \log n)$ Zeit eine optimale präfixfreie Kodierung.