Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологии Высшая школа интеллектуальных систем и суперкомпьютерных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ Lab2_Z1

Дисциплина: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Введение в Vivado HLS Tool CLI Flow

Выполнил студент гр. 01502

С.С. Гаспарян

Руководитель, доцент

Антонов А.П.

«22» сентября 2021

1. Задание

Текст задания находится в файле «Задание lab2 1.docx»

2. Исходный код функции

Исходный код синтезируемой функции представлен на рисунке 1.

Рис. 1 Исходный код функции find max

Функция принимает 1 аргумент — массив целых чисел и возвращает максимальное число в массиве.

3. Исходный код теста

Исходный код теста для проверки функции find_max приведен на рисунке 2. Тест обеспечивает проверку корректной функции.

```
lab2_1_test.c
                                                                                                                                                                                                                                    lab2 1 inc.c
             atype inArr_a[N] = {
                     58508, 20261, 59177, 44240, 57368, 29485, 27736, 37567, 42574, 35046, 63737, 19777, 17315, 61934, 59088, 60276, 32690, 21726, 53172, 32436, 14861, 16368, 36642, 45054, 60432, 23030, 45037, 2973, 16617, 2810, 38679, 42302, 23072, 65033, 53719, 47617, 28993, 15931, 52361, 6042, 18154, 50573, 58521, 35469, 14159, 19262, 62923, 46849, 8165,
                     50570, 46463, 23026, 34116, 17580, 2556, 29023, 7787, 14770, 31996, 57106, 17580, 5150, 33884, 40652, 37361, 54780, 55446, 829, 37888, 42282, 39574, 23220, 60032, 32570, 58689, 8667, 19009, 23264, 22693, 27175, 41012, 36333, 50201, 9603, 53913, 19934, 5803, 61701, 34704, 37799, 53282, 52285, 10126, 54343, 60114, 47487, 10776, 50036, 15494, 48664, 59495, 22245, 6359, 54003, 21992, 32226, 29847, 41002, 22667, 19717, 2652, 30856, 56051,
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
                     20030, 7636, 11616, 39965, 13439, 40494, 9144, 18415, 60954, 28606, 28542, 49772, 23196, 43206, 27725
             int max_elem = 65033;
int res_max;
            for(int i = 0; i < 2; ++i)[
    res_max = find_max(inArr_a);
    if (res_max != max_elem){</pre>
                             fprintf(stdout,
                                                                   expected %d != got %d ERROR\n", max_elem, res_max);
                     else{
                             fprintf(stdout, " expected %d == got %d PASS \n", max_elem, res_max);
             if (pass == 0)
                     fprintf(stdout, "------Pass!-----\n");
             else
                     fprintf(stderr, "------Fail!-----\n");
40
```

Рис 2. Исходный код теста lab2_1_test

4. Командный файл

На рисунке 3 представлен текст команд для автоматизации создания вариантов аппаратной реализации:

- а. Для ex sol1 задается clock period 8; clock uncertainty 0.1
- b. Для ex_sol2 задается clock period 10; clock_uncertainty 0.1
- с. Для ex sol3 задается clock period 12; clock uncertainty 0.1
- d. Для ex_sol4 задается clock period 14; clock_uncertainty 0.1
- e. Для ex_sol5 задается clock period 16; clock_uncertainty 0.1
- f. Для ex_sol6 задается clock period 18; clock_uncertainty 0.1
- g. Для ex_sol7 задается clock period 20; clock_uncertainty 0.1
- h. Для ex_sol0 задается clock period 6; clock_uncertainty 0.1

```
. . . . . .
                                                                                                                                                Терминал
# The command to create new project
  pen_project -reset lab2_1_prj
 add_file ./source/lab2_1.c
# The command to specify the top-level function set_top find_max
add_files -tb ./source/lab2_1_test.c
# The command to create the base solution named base open_solution -reset "base"
# The command to associate the device to the solution1
set_part {xa7a12tcsg325-10}
create_clock -period 6 -name clk
set_clock_uncertainty 0.1
# Build the lists of solution's name and target delay
set all_solutions {ex_sol1 ex_sol2 ex_sol3 ex_sol4 ex_sol5 ex_sol6 ex_sol7}
set all_period {{8} {10} {12} {14} {16} {18} {20} }
# The comamnd to run the loop for the lists
foreach the_solution $all_solutions the_period $all_period {
# The command to create the solution named from the list open_solution -reset $the_solution
# The command to associate clock period to the solution from the list create_clock -period $the_period -name clk
set_clock_uncertainty 0.1
# The command to associate the device to the solution1
set_part {xa7a12tcsg325-10}
# The comamnd to Synthesize the design csynth_design
# The comamnd to perform C/RTL Cosimmulation cosim_design -trace_level all -tool xsim
 # The closing bracket for the loop
```

Рис. 3 скрипт с командами для создания проекта

5. Исследование №1

5.1 Задание исследования №1

На рисунке 4 представлены данные в файле lab2_1_inc.c для исследования №1 — размер массива 128 машинных слов и тип данных int.

Рис 4. Содержимое файла lab2 1 inc.c

5.2 Сравнение решений для исследования №1

На рисунке 5 представлено сравнение решений из Vivado HLS GUI по аппаратным ресурсам и временным параметрам.

Рис. 5 Сравнение решений исследования №1

5.3 Электронная таблица и график исследования №1

На рисунке 6 представлена таблица с параметрами для все решений. На рисунке 7 представлен график для сравнения всех решений.

D	_	L L		i i	u u	- 11		J	
		ex_sol1	ex_sol2	ex_sol3	ex_sol4	ex_sol5	ex_sol6	ex_sol7	ex_sol0
Clock	Target (ns)	8	10	12	14	16	18	20	6
	Estimated (ns)	6,49	6,49	6,49	6,49	6,49	6,49	6,49	3,26
Latency	(cycles)	258	258	258	258	258	258	258	258
	(ns)	1675	1675	1675	1675	1675	1675	1675	840
Resources	BRAM_18K	0	0	0	0	0	0	0	0
	DSP48E	0	0	0	0	0	0	0	0
	<u>F</u> F	52	52	52	52	52	52	52	85
	LUT	138	138	138	138	138	138	138	144
	URAM	0	0	0	0	0	0	0	0

Рис. 6 Таблица данных для всех решений

Рис. 7 График данных для всех решений

Как видно из рисунка 7 все решения имеют одинаковое Latency(ns) и используют одинаковое количество аппаратных ресурсов — FF и LUT. Только решение с заданным Timing = 6ns имеет наименьший Estimated и большее количество аппаратных ресурсов 85 FF и 144 LUT Следовательно наилучшего решения для данной функции нет.

6. Исследование №2

6.1 Задание исследования №2

На рисунке 8 представлены данные в файле lab2_1_inc.c для исследования №1 — размер массива 128 машинных слов и тип данных long long.

```
lab2_1.c

1 #define N 128
2
3 typedef long long atype;
```

Рис 8. Содержимое файла lab2 1 inc.c

6.2 Сравнение решений для исследования №2

На рисунке 9 представлено сравнение решений из Vivado HLS GUI по аппаратным ресурсам и временным параметрам.

Рис. 9 Сравнение решений исследования №2

6.3 Электронная таблица и график исследования №2

На рисунке 10 представлена таблица с параметрами для все решений. На рисунке 11 представлен график для сравнения всех решений.

		ex_sol1	ex_sol2	ex_sol3	ex_sol4	ex_sol5	ex_sol6	ex_sol7	ex_sol0
Clock	Target (ns)	8	10	12	14	16	18	20	6
	Estimated (ns)	7,08	7,08	7,08	7,08	7,08	7,08	7,08	3,83
Latency	(cycles)	258	258	258	258	258	258	258	258
	(ns)	1827	1827	1827	1827	1827	1827	1827	987
Resources	BRAM_18K	0	0	0	0	0	0	0	0
	DSP48E	0	0	0	0	0	0	0	0
	<u>FF</u>	84	84	84	84	84	84	84	149
	LUT	181	181	181	181	181	181	181	187
	URAM	0	0	0	0	0	0	0	0

Рис. 10 Таблица данных для всех решений

Рис. 11 График данных для всех решений

Как видно из рисунка 11 почти все решения имеют одинаковое Latency(ns) и используют одинаковое количество аппаратных ресурсов — FF и LUT. Только решение с заданным Timing = 6ns имеет наименьший Estimated и большее количество аппаратных ресурсов 149 FF и 187 LUT. Следовательно наилучшего решения для данной функции нет.

Вывод

В данной работе была изучена возможность создания проекта и решений для проекта в Vivado HLS с помощью командной строки. Для автоматизированного создания проекта был создан скрипт в котором было прописано создание проекта и решений с различными временными параметрами. Синтезируемая функция была протестирована с разными типами данными, такими как int и long long. Было приведено сравнение решений.