RIEŠENIE

Vypočítame dĺžku Jožkových nôh N. Vieme, že $N=\frac{4}{7}\times J_v=\frac{4}{7}\times 2=\frac{8}{7}\approx 1.142857m$. Teraz si zistime dĺžku jeho kroku J_k . Nakreslíme si obrázok:

Teraz si zistíme výšku v. Zo zadania vidíme že keď stojí Jožko rozkročený, je o $\frac{1}{20}$ svojej výšky nižší. Jeho výška je 2m, z čoho $\frac{1}{40}$ je 0.1m=10cm. v by teda malo byt N-0.1=1.042857. Na obrázku vidíme pravouhlý trojuholník XBC. Pomocou Pytagorovej vety vypočítame J_k :

$$(\frac{J_k}{2})^2 + v^2 = N^2$$

Malou úpravou rovnice dostaneme

$$(\frac{J_k}{2})^2 = N^2 - v^2$$

Teraz obe strany rovnice odmocníme, dostaneme

$$\frac{J_k}{2} = \sqrt{N^2 - v^2}$$

Výslednú rovnicu ešte zjednodušíme:

$$J_k = \sqrt{N^2 - v^2} \times 2$$

Teraz môžeme prejsť k samotnému počítaniu:

$$J_k = \sqrt{1.142857^2 - 1.042857^2} \times 2 \approx \sqrt{1.306122 - 1.087551} \times 2 = \sqrt{0.218571} \times 2 \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \times 2 = 0.935032 \, m_{\rm s} \approx 0.467516 \, m_{$$

Vypočítajme Jožkovu rýchlosť J_R .

Keďže Jožko prejde J_k za $\frac{3}{4}$ sekundy, za $\frac{1}{4}$ sekundy by mal prejsť $\frac{1}{3} \times J_k$, za jednu sekundu by teda mal prejsť $\frac{4}{3} \times J_k \approx 1.246709 m$, z toho vyplýva že $J_R = 1.246709 \frac{m}{s}$