2019 국가암호공모전 Ⅱ 분야 답안 제출 양식

소속 : 서울시립대학교 수학과 대표자 이름 :

문제 04

답) I am Junyeong Lee of Anyang Gyeonggi-do. The reason why I am writing this message is because I want to leave my legacy to posterity so that I won't be forgotten. But somehow everything I know seems to be finally figured out by the NSA for now, so I can't leave a record anywhere. So I decided to write this message and encrypt it then erase the encryption key forever. With only the cipher-text alone, the NSA will not be able to figure out anything. The current elliptic curve crypto-technology would not be able to find out the plaintext. After 20 or 30 years, if quantum computers are built, this message would be revealed. Perhaps then I will nolonger be in the world. I appreciate you who at last found, this message. Perhaps you know the key is '71e3e7d3fac11617c282d57c4ab211e2' now. I am Junyeong Lee of Anyang Gyeonggi-do. I have organized and executed the world's biggest cyberattacks in the last decade. Let me start the story now.

개요:

1. 문제 분석

암호문과 평문의 일부가 주어졌다. 그리고 암호문을 생성한 알고리즘의 python 코드를 함께 제공받았다.

1-1. 코드 분석

1-1-1. genStream 함수

< 그림 1. genStream 함수 >

P,Q 점들은 주어져있다.

1-1-2. encryption 함수

< 그림 2. encryption 함수 >

단, $0 \le j \le 30$ 이고 n = 1, 2, ..., i이다.

1-2. 취약점 발견하기

문제에서 주어진 타원곡선의 order는 p와 같다. 따라서 Smart's Attack1)이 가능하다. 이 Smart's Attack을 이용하면, P=s • Q (P,Q는 타원곡선 위의 점, s는 상수)에서 P,Q가 주어져 있을 때, s를 쉽게 복구할 수 있다.

풀이 :

1. 평문 위치 찿아내기

주어진 일부 평문은 32바이트이다. Smart's Attack이 걸리는 속도를 고려하여, 30바이트 2 바이트로 쪼개져 있는 경우, 1바이트 30바이트 1바이트로 쪼개져 있는 경우, 2바이트 30바이트 로 쪼개져 있는 경우로 먼저 나누어볼 수 있었다.

21바이트 11바이트로 쪼개져 있는 경우를 생각하지 않은 이유는 일부 평문으로 평문이 끝나는 것은 문법에 어긋난다고 생각했기 때문이다.

1-1. 30바이트 2바이트로 쪼개져 있는 경우

주어진 암호문을 c라 하자. c간는 941바이트이므로 30바이트씩 32번에 걸쳐 만들어졌을 것이다.

ct = (ct[0], ct[1], ..., ct[31]) 크기 32의 30바이트 단위벡터로 표현하고, 주어진 일부 평문을 p이라고 하고 상위 30바이트를 $p_1 = 'y$ figured out by the NSA for n'라 하자.

- ① for $0 \le i \le 31$, $key[i] = ct[i] \oplus p_1$, $(pt[i] \oplus r_i = ct[i] \cap \text{므로}$ r_i 를 찾기 위해 $key[i] = ct[i] \oplus p_1$ 를 한다.)
 - ② for $0 \le j \le 0 \times f = key[i] + (j \le 240)$

그림 1을 보면 r은 하위 30바이트만 사용되므로 버려진 상위 2바이트를 찾아내야 한다. 상위 2바이트만 생각하면 0xffff이겠지만 문제에서 주어진 타원곡선의 prime를 생각하여 0xf96e까지만 하면 된다.

③ k_i 에 대해 타원곡선에서 x좌표가 k_i 인 점들을 찾아준다. 그 점들을 A_1,A_2 라 하자. 존재하지 않는다면 다음 j로 넘어가자.

prime은 4m+3꼴이기 때문에, $y^2=k_i^3+ak_i+b\ (\mathrm{mod}\ p)$ 에서 y의 해는 최대 2개이다. (prime을 p라 하자)

④ $A_m (m=1,2)$ 에 대해 $A_m = t_m Q$ 에서 $Smart's \ Attack$ 을 이용하여 t_m 을 찾자.

⑤ $s_m = x(t_m P)$ 를 계산하자.

왜냐하면 t_m 은 i+1에서 seed로 이용될 것이기 때문이다.

- ⑥ $k_{i+1,m} = (x(s_m Q) \& (2^{240} 1))$ 를 계산하자.
- $pt[i+1]_m = k_{i+1,m} \oplus ct[i+1]$ 을 계산하여 상위 2바이트가 p의 하위 2바이트와 일치하는지 확인한다.
 - ⑧ If 일치한다면, $pt[i+1]_m$ 이 아스키코드로 표현될 수 있는지 확인한다.
 - ⑨ If 표현된다면 그때의 i, j 값을 저장한다.

이러한 방법을 통해 i=7, j=60359임을 알아낼 수 있었고 이어지는 평문이 $'ow, so\ I$ $can't\ leave\ a\ record'$ 임을 알 수 있었다.

1-2. 1바이트 30바이트 1바이트로 쪼개져 있는 경우

주어진 일부 평문을 r이라고 하고 상위 30바이트를 $p_2='$ figured out by the NSA for no'라 하자.

이후 과정은 1-1과 유사하지만, 평문을 확인하는 과정이 조금 다르다.

- ① for $1 \le i \le 31$, $key[i] = ct[i] \oplus p_2$
- ② for $0 \le j \le 0 \text{x} f 96e$, $k_i = key[i] + (j \ll 240)$
- ③ k_i 에 대해 타원곡선에서 x좌표가 k_i 인 점들을 찾아준다. 그 점들을 A_1,A_2 라 하자. 존재하지 않는다면 다음 j로 넘어가자.
 - ④ $A_m (m=1,2)$ 에 대해 $A_m = t_m Q$ 에서 $Smart's \ Attack$ 을 이용하여 t_m 을 찾자.
 - ⑤ $s_m = x(t_m P)$ 을 계산하자.
 - ⑥ $k_{i+1,m} = (x(s_m Q) \& (2^{240} 1))$ 을 계산하자.
- $pt[i+1]_m = k_{i+1,m} \oplus ct[i+1]$ 을 계산하여 상위 1바이트가 p의 하위 1바이트와 일치하는지 확인한다.
 - ⑧ If 일치한다면, $pt[i+1]_m$ 이 아스키코드로 표현될 수 있는지 확인한다.
- ⑨ If 표현된다면 t_m 에 대해 타원곡선에서 x좌표가 t_m 인 점들을 찾아준다. 그 점들을 $B_{m,1}, B_{m,2}$ 라 하자. 존재하지 않는다면 다음 j로 넘어가자.
- ⑩ $B_{m,\,l}\,(m,l=1,2)$ 에 대해 $A_{m,\,l}=s_{m,\,l}Q$ 에서 Smart's~Attack을 이용하여 $s_{m,\,l}$ 을 찾자.
 - ① $k_{i-1,m,l} = (x(s_{m,l}Q) \& (2^{240} 1))$ 를 계산하자.
- $pt[i-1]_{m,l}=k_{i-1,m,l}\oplus ct[i-1]$ 을 계산하여 하위 1바이트가 p의 상위 1바이트와 일치하는지 확인한다.
 - ⑬ If 일치한다면, $pt[i-1]_{m,l}$ 이 아스키코드로 표현될 수 있는지 확인한다.

1-3. 2바이트 30바이트로 쪼개져 있는 경우

주어진 일부 평문을 r이라고 하고 상위 30바이트를 $p_3='figured\ out\ by\ the\ NSA$ for now'라 하자.

이후 과정은 1-1과 유사하지만, 평문을 확인하는 과정이 조금 다르다.

① for $1 \le i \le 31$, $key[i] = ct[i] \oplus p_3$

- ② for $0 \le j \le 0 \times f = key[i] + (j \le 240)$
- ③ k_i 에 대해 타원곡선에서 x좌표가 k_i 인 점들을 찾아준다. 그 점들을 A_1,A_2 라 하자. 존재하지 않는다면 다음 i로 넘어가자.
 - ④ $A_m (m=1,2)$ 에 대해 $A_m=t_m Q$ 에서 $Smart's\ Attack$ 을 이용하여 t_m 을 찾자.
- ⑤ t_m 에 대해 타원곡선에서 x좌표가 t_m 인 점들을 찾아준다. 그 점들을 $B_{m,\,1},B_{m,\,2}$ 라 하자. 존재하지 않는다면 다음 j로 넘어가자.
- ⑥ $B_{m,\,l}\,(m,l=1,2)$ 에 대해 $A_{m,\,l}=s_{m,\,l}Q$ 에서 Smart's~Attack을 이용하여 $s_{m,\,l}$ 을 찾자.
 - ⑦ $k_{i-1,m,l} = (x(s_{m,l}Q) \& (2^{240} 1))$ 를 계산하자.
- - $oldsymbol{\mathfrak{D}}$ If 일치한다면, $pt[i-1]_m$ i이 아스키코드로 표현될 수 있는지 확인한다.
 - ⑩ If 표현된다면 그때의 i,j 값을 저장한다.

2. key 찿기

1-1 경우에서 i = 7, j = 60359 임을 알아냈으므로 그에 대해 k_7 을 계산할 수 있다.

① 1-1-③, 1-1-④에서와 동일한 방법으로 A_1,A_2 를 찾고 t_1,t_2 .를 찾아준다. 이 때, A_1 과 A_2 의 x좌표는 같고 y좌표는 서로 $\mod p$ 에서 덧셈의 역원이다.

 A_1 을 A라 하고 그에 대한 t_1 을 t_7 이라하자.

- ② for $1 \leq i \leq 7,\, t_{8-i}$ 에 대해 타원곡선에서 x좌표가 t_{8-i} 인 점들을 찾아준다. 그 점들을 $B_{8-i,1},\, B_{8-i,2}$ 라 하자.
 - ③ $B_{8-i,1}$ 에 대해 $B_{8-i,1}=t_{7-i}P$ 에서 $Smart's\ Attack$ 을 이용하여 t_{7-i} 를 찾자.
 - ④ t_{7-i} 에 대해 $k_{7-i} = (x(t_{7-i}Q) \& (2^{240}-1))$ 를 계산하자.
 - ⑤ $pt[7-i] = k_{7-i} \oplus ct[7-i]$ 를 계산하여 pt[7-i]가 아스키코드로 표현되는지 확인한다.
 - ⑥ If 표현되지 않는다면, $B_{8-i,2}$ 에 대해서도 동일하게 ③, ④, ⑤를 실시한다.
- ${\it \romega}$ If 그래도 표현되지 않는다면, $i \geq 2$ 에서 $B_{9-i,2}$ 에 대해서 실시한 후, 다시 $B_{8-i,1}, B_{8-i,2}$ 에 대해 실시한다.
 - ® t_0 에 대해 타원곡선에서 x좌표가 t_0 인 점들을 찾아준다. 그 점들을 B_1, B_2 라 하자.
 - ⑨ B_1, B_2 에 대해 $B_m = keyP$ 에서 $Smart's \ Attack$ 을 이용하여 key를 찾자.

즉, 하나씩 해보다가 아스키코드가 나오지 않는다면 전전 B의 y좌표를 바꿔주면 된다. 이러한 과정을 통해 key = 0x71e3e7d3fac11f17c282d57c4ab211e2임을 알 수 있었다.

3. 전체 평문 복구하기

복호화는 2에서 구한 key를 이용하여 암호화과정과 똑같이 진행하면 된다.

이를 통해 복구한 전체 평문은 "I am Junyeong Lee of Anyang Gyeonggi-do. The reason why I am writing this message is because I want to leave my legacy to posterity so that I won't be forgotten. But somehow everything I know seems to be finally figured out by the NSA for now, so I can't leave a record anywhere. So I decided to write this message and encrypt it then erase the encryption key forever. With only the cipher-text alone, the NSA will not be able to figure out anything. The current elliptic curve crypto-technology would not be able to find out the plaintext. After 20 or 30 years, if quantum computers are built, this message would be revealed. Perhaps then I will nolonger be in the world. I appreciate you who at last found. This message. Perhaps you know the key is '71e3e7d3fac11617c282d57c4ab211e2' now. I am Junyeong Lee of Anyang Gyeonggi-do. I have organized and executed the world's biggest cyberattacks in the last decade. Let me start the story now." 이다.

참고문헌:

1) Nigel P. Smart, The Discrete Logarithm Problem on Elliptic Curves of Trace One, HP Laboratories Bristol, 1997

https://www.hpl.hp.com/techreports/97/HPL-97-128.pdf

2) Peter Novotney, *Weak Curves In Elliptic Curve Cryptography*, 2010 https://wstein.org/edu/2010/414/projects/novotney.pdf

¹⁾ Nigel P. Smart, The Discrete Logarithm Problem on Elliptic Curves of Trace One, HP Laboratories Bristol , 1997