Department of Computer Science Chair of Computer Networks and Telematics Prof. Dr. Christian Schindelhauer Exam: "Mock Exam 6: Introduction to Cryptography" Date and time: 2020/08/08 15:58 Duration: 90 minutes Room: your room Permitted exam aids: none (well, not this time, but in the real exam) Prof. Dr. Christian Schindelhauer Examiner: Family name: First name: Matriculation number: Subject: Program: ☐ Bachelor ☐ Master ☐ Lehramt □ others

NOTES

Signature:

· Please fill out this form.

Signature of the examiner:

- Please write your matriculation number on each paper sheet.
- Please fill in your answer in the designated areas.

	Max	Reached	Comments
Basics	8		
DES & AES	18		
Fields and Modular Arithmetics	18		
Hash Functions, Digital Signature and Cryptographic Protocols	12		
Public Key Cryptography	24		
Quantum Cryptography	10		
Sum	90		
Grade: .			
Date of the review of the exam: .			

[8 Points] Describe the message authentication using a symmetric key	with a picture.

Question 1: Basics

Ouestion	2:	DES	&	AES
Outsuui	. 4.		u	

on 2: DES & AES	[18 Points
[10 Points] Describe how DES can be attacked by a	
message attack. How many attempts are necessary or	n the expectation?

(b)	[8 Points] Can DES extended to a secure scheme? If yes, how?				

Question 3: Fie	lds and Modular Arithmetics
-----------------	-----------------------------

[18 Points]

Compute 101			

(b)	[10 Points]	Prove the little theorem of Fermat.

Question 4: Crypto Hash Functions, Digital Signature and Crypto Protocols [12 Points]

[4 Points]	Name four rea	al-word crypto	ographic has	h functions.	
[8 Points]	Describe Diffi	e-Hellman Ko	ey Exchange	protocol.	

	\adiam	5 .	Dublia	TZ 0.77	Currento anos	. h
L	Jueshon	J :	Public	Ney	Cryptograp	JIIY

[24 Points]

ion 5: Public Key Cryptography	[24 Point
[6 Points] Give three types of mistakes when choosing prin	me numbers for RSA.

(b)	[10 <i>Points</i>]	Consider the	elliptic curve

$$y^2 = x^3 - 3x$$

for $E(\mathbb{R})$. For the points $P=(0,0),\,Q=(-\sqrt{3},0)$ compute $P\star Q$ and P+Q.

$Q = (x_q, y_q)$ ar	$\frac{\operatorname{id} x_p = x_q.}{}$		

Ouestion	6:	Quantum	Crvn	togra	phv
Zacstion	•	Zuantani	$\mathbf{v}_{\mathbf{I}}$	rosi a	Pij

[10 Points]

wave model.			