

Residual Networks & Densly Connected Convolutional Networks

Alexander Bierenstiel

Deep Learning Seminar WS19/20 8. January 2020

Outline

ResNet (published 2015)

- Architecture
- Properties

DenseNet (published 2018)

- Architecture
- Properties

Experiments

ResNet Residual Unit

• H(x) old mapping

Source: (modified) Paper "Deep Residual Learning for Image Recognition"

ResNet Residual Unit

- H(x) old mapping
- x skip connection / identity

Source: (modified) Paper "Deep Residual Learning for Image Recognition"

ResNet Residual Unit

- H(x) old mapping
- x skip connection / identity
- F(x) new mapping with skip connection

Source: (modified) Paper "Deep Residual Learning for Image Recognition"

ResNet Architecture

Source: "Deep Residual Learning for Image Recognition"

ResNet Properties

- Improved gradient flow
 - Less prone to vanishing gradients
 - Deeper networks are trainable
- Feauture propagation
- Skip connections are computationally cheap
- Very flexible
 - Classification
 - Localization
 - Detection
 - Segmentation

DenseNet Architecture

Source: Paper "Densely Connected Convolutional Networks"

DenseNet Architecture II

Source: Paper "Densely Connected Convolutional Networks"

DenseNet Properties

Similarities compared to ResNet:

- Less prone to vanishing gradients
- Deeper networks are trainable

Differences compared to ResNet:

- Combine feature maps by concatenation
 - Improved information flow (no information loss through summation)
 - Enables feature reuse
- Summarize feature maps by transition layers

Experiments

Dataset

- Data from HS Offenburg Sweaty team
- Small dataset excerpt:
 - 8 Classes
 - 4917 Training images
 - 1230 Test images

Source: https://sweaty.hs-offenburg.de/projekt/

Dataset

Ball

Goal post

Obstacle

L-Line

X-Line

T-Line

Penalty spot

Robot foot

ResNet-50 Performance Overview

2,5 h Training time

1230 Test images

17 False predictions

1,38% Error rate

ResNet-50 Performance False Predictions

Robot foot (Ball)

Robot foot (X-Line)

Goal post

Goal post (T-Line)

Goal post (Obstacle)

Penalty spot

T-Line (L-Line)

Obstacle (Robot foot)

ResNet-50 -101 -152

ResNet-152 & DenseNet-169

Literature

Colab Notebook:

https://github.com/abieren/DL-Seminar-ResNet-DenseNet

Source code and documentation:

Keras ResNet Documentation https://keras.io/applications/#resnet

"Tutorial Keras: Transfer Learning with ResNet50" https://www.kaggle.com/suniliitb96/tutorial-keras-transfer-learning-with-resnet50

GitHub: "How to add and remove new layers in keras after loading weights?" https://stackoverflow.com/questions/41668813/how-to-add-and-remove-new-layers-in-keras-after-loading-weights

ResNet Paper:

"Deep Residual Learning for Image Recognition" https://arxiv.org/abs/1512.03385

DenseNet Paper:

"Densely Connected Convolutional Networks" https://arxiv.org/abs/1608.06993

Sweaty HS Offenburg:

https://sweaty.hs-offenburg.de/projekt/