BRAC University Course: MAT-216(Mathematics III) Practice sheet (Calculus) # 4

1. Evaluated the iterated integrals:

(a)
$$\int_{\frac{\pi}{2}}^{\pi} \int_{0}^{x^{2}} \frac{1}{x} \cos \frac{y}{x} \, dy \, dx$$
 (b) $\int_{0}^{1} \int_{0}^{1} \frac{x}{(xy+1)^{2}} \, dy \, dx$ (c) $\int_{1}^{2} \int_{0}^{y^{2}} e^{\frac{x}{y^{2}}} \, dx \, dy$ (d) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{\sqrt{x^{2}+y^{2}}} \, dy \, dx$.

- 2. (a) Find the area of the region inside the circle $r = 4\sin\theta$ and outside the circle r = 2.
 - (b) $\iint_{R} \frac{1}{x^2 + y^2 + 1} dA$, where R is the sector in the first quadrant bounded by y = 0, y = x and $x^2 + y^2 = 4$.
- 3. Use polar coordinates to evaluate the double integral $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} (x^2+y^2)^{1/2} dy dx$.
- 4. (a) Find the volume of the solid that is bounded by the cylinder $y = x^2$ and by the planes y + z = 4 and z = 0.
 - (b) Find the volume of the surface enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.
- 5. Evaluated the iterated integral by converting to polar coordinates:

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2) dy dx$$
 (b) $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dy dx$

(c)
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \frac{dydx}{\left(1+x^{2}+y^{2}\right)^{\frac{3}{2}}} \quad (a>0).$$

6. (a) Evaluate $\int_{y=0}^{4} \int_{x=\frac{y}{2}}^{x=\frac{y}{2}+1} \frac{2x-y}{2} dxdy$ by applying transformation T:

where $u = \frac{2x - y}{2}$, $v = \frac{y}{2}$ and integrating over an appropriate region in *uv*-plane.

(b) Evaluate $\iint_{R} \frac{x-y}{x+y} dA$, where R is the region enclosed by the lines

x - y = 0, x - y = 1, x + y = 1 & x + y = 3, using the transformation.

Double Integral

Exercise- 14.1- 1-16.

Exercise- 14.2- 1-26.

Exercise- 14.3- 1-12, 23-34.

Surface Area from Double Integral

Exercise- 14.4- 1-9.

Triple Integral

Exercise- 14.5- 1-12, 15-18.

Change of variables

Exercise- 14.7- 1-12, 21-24, 35-37.

Book: Elementary Calculus- Howard Anton (10th Edition), Soft Copy