Matemáticas discretas II Lenguajes y gramáticas

Junio 2022

1 Introducción

2 Lenguajes

3 Lenguajes regulares

Contenido

1 Introducción

2 Lenguajes

3 Lenguajes regulares

El alfabeto

Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman **símbolos**.

- Sea $\Sigma = \{a, b\}$ el alfabeto que consta de los símbolos a y b. Las siguientes son cadenas sobre Σ : aba, abaabaaa, aaaab.
- El alfabeto binario $\Sigma = \{0,1\}$ son las cadenas sobre Σ que se definen como secuencias finitas de ceros y unos.
- Las cadenas son secuencias ordenadas y finitas de símbolos. Por ejemplo, $w = aaab \neq w_1 = baaa$.
- Sea $\Sigma = \{a, b, c, (\tilde{\mathbf{n}}_{\cdot}, x, y, z)\}$ el alfabeto del idioma castellano.
- El alfabeto utilizado por muchos lenguajes de programación. (Inglés)
- Sea $\Sigma = \{a, b, c\}$ entonces podemos formar todas las cadenas sobre Σ incluyendo la cadena vacía.

Notación de alfabetos, cadenas y lenguajes

Notación us	sada en la teoría de lenguajes
Σ, Γ	denotan alfabetos.
Σ^*	denota el conjunto de todas las cadenas que se pueden formar con los símbolos del alfabeto $\Sigma.$
a, b, c, d, e, \dots	denotan símbolos de un alfabeto.
u, v, w, x, y, z, \ldots $\alpha, \beta, \gamma, \ldots$	denotan cadenas, es decir, sucesiones finitas de símbolos de un alfabeto.
Ě	denota la cadena vacía, es decir, la única cadena que no tiene símbolos.
$A, B, C, \ldots, L, M, N, \ldots$	denotan lenguajes (definidos más adelante).

- Si bien un alfabeto Σ es un conjunto finito, Σ^* es siempre un conjunto infinito (enumerable).
- Hay que distinguir entre los siguientes cuatro objetos, que son diferentes entre sí: \emptyset , ϵ , $\{\emptyset\}$, $\{\epsilon\}$

Alfabetos

Operaciones con alfabetos

Si Σ es un alfabeto, $\sigma \in \Sigma$ denota que σ es un símbolo de Σ , por tanto, si

$$\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$$

se puede decir que $0\in \Sigma$

Un alfabeto es simplemente un conjunto finito no vacío que cumple las siguientes propiedades, Dados Σ_1 y Σ_2 alfabetos

- Entonces $\Sigma_1 \cup \Sigma_2$ también es un alfabeto.
- $\Sigma_1 \cap \Sigma_2, \Sigma_1 \Sigma_2$ y $\Sigma_2 \Sigma_1$ también son alfabetos.

Conjunto Universal

El conjunto de todas las cadenas sobre un alfabeto $\Sigma,$ incluyendo la cadena vacía, se denota por Σ^*

- Sea $\Sigma = \{0, 1\}$ $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 100, 010, 110, \ldots\}$
- Sea $\Sigma = \{a, b, c\}$, entonces $\Sigma^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, abc, baa, ...}$
- Sea $\Sigma = \{a, b\}$, entonces $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, baa, ...\}$

Cadena es una concatenación de simbolos

Cadenas

Dado un alfabeto Σ y dos cadenas $u, v \in \Sigma^*$, la concatenación de u y v se denota como $u \cdot v$ o simplemente uv y se define así:

- 11 Si $v = \epsilon$, entonces $u \cdot \epsilon = \epsilon \cdot u = u$, es decir, la concatenación de cualquier cadena u con la cadena vacía, a izquierda o derecha, es igual a u.
- Si $u = a_1 a_2 \dots a_n$, $v = b_1 b_2 \dots b_m$, entonces

$$b_1b_2...b_m, \text{ entonces}$$

$$v = bb$$

$$v = bb$$

$$v = a_1a_2...a_nb_1b_2...b_m$$

$$v = a_1a_2...a_nb_1b_2...b_m$$

$$u \cdot v = a_1 a_2 \dots a_n b_1 b_2$$

Es decir, $u \cdot v$ es la cadena formada de escribir los símbolos de u y a continuación los símbolos de v.

Potencia de una cadena

Dada $w \in \Sigma^*$ y $n \in \mathbb{N}$, se define w^n de la siguiente forma

$$w^n = \begin{cases} \epsilon & \text{si } n = 0\\ \underbrace{uu \dots u}_{n-\text{veces}} & \text{si } n \ge 1 \end{cases}$$

Potencia de una cadena de manera recursiva

La potencia de una cadena se define como $w \in \Sigma^*$ para $n \in \mathbb{N}$

$$w^{n} = \begin{cases} \epsilon, & \text{si } n = 0\\ ww^{n-1}, & \text{si } n > 0 \end{cases}$$

Ejemplo. Sea una cadena w = acc sobre $\Sigma = \{a, c\}$ entonces podemos obtener $w^3 = ww^2 = www^0 = accaccaccacc = (acc)^3$

Longitud de una cadena

La longitud de una cadena $w \in \Sigma^*$ se denota |w| y se define como el número de símbolos de w (contando los símbolos repetidos), es decir:

$$|w| = \begin{cases} 0, & \text{si } w = \varepsilon \\ n, & \text{si } w = a_1 a_2 \dots a_n \end{cases}$$

$$|aba|=3, |baaa|=4$$

Reflexión o inversa de una cadena

La reflexión o inversa de una cadena $w \in \Sigma^*$ se denota como w^l y se define así:

$$w' = \begin{cases} \epsilon, & \text{si } w = \varepsilon \\ a_n \dots a_2 a_1, & \text{si } w = \underline{a_1} a_2 \dots \underline{a_n} \end{cases}$$

Palindromo: Es una cadena que es igual con su inversa

Inversa de una cadena de manera recursiva

La Inversa de una cadena Sea $u \in \Sigma^*$ entonces u^{-1} es la inversa.

$$w' = \begin{cases} w & \text{si } w = \varepsilon \\ y' \ddot{a} & \text{si } w = a \end{cases}, a \in \Sigma, y \in \Sigma^*$$

■ Sea x='able' entonces obtener x¹

$$x' = (able)' = (ble)'a$$

$$= (le)'ba$$

$$= (e)'lba$$

$$= (e)'elba$$

$$= (ebla)$$

Sea la concatenación de las cadenas "ab" y "cd" que forma "abcd" sobre un alfabeto. Sabemos que $(abcd)^l = acba$, por tanto $dcba = (cd)^l(ab)^l$. Por lo tanto, si $w \in y$ son cadenas y si x = wy entonces $x^l = (wy)^l = y^lw^l$

■ En general, $(x^l)^l = x$, para demostrar, suponga que $x = a_1 a_2 \dots a_n$.

Sufijos y prefijos

Cadena

Definición formal: Una cadena v es una subcadena o subpalabra de u si existen x, y tales que u = xvy. Nótese que x o y pueden ser ϵ y por lo tanto, la cadena vacía es una subcadena de cualquier cadena.

- Un *prefijo* de u es una cadena v tal que u = vw para alguna cadena $w \in \Sigma^*$. Se dice que v es un **prefijo propio** si $v \neq u$.
- Un *sufijo* de u es una cadena de v tal que u = wv para alguna cadena $w \in \Sigma^*$. Se dice que v es un **sufijo propio** si $v \neq u$.

Ejemplo de cadenas que son sufijos y prefijos

La concatenación como una operación binaria

Operación binaria

Una **operación binaria** en un conjunto A es una función $f: A \times A \rightarrow A$, esta deberá satisfacer las siguientes propiedades:

- La operación binaria deberá estar definida para cada par ordenado de A, es decir, f asigna a UN elemento f(a, b) de A a cada par ordenado (a, b) de elementos de A.
- Como una operación binaria es una función, sólo un elemento de A se asigna a cada par (a, b).
- Sea A = Z, se define $\underbrace{a * b}_{F \circ a_1 \circ b}$ como $\underbrace{a + b}_{S \circ 3}$. Entonces, $\underbrace{\emptyset}_{S \circ 3}$ es una operación binaria en $\underbrace{A \circ b}_{S \circ 3}$.
- Sea $A = Z^+$, se define a * b como a b. Entonces no es una operación binaria ya que no asigna un elemento de A a cualquier par ordenado de elementos de A.

Concatenación de cadenas como una operación binaria

Concatenación

La operación de la concatenación \cdot es una operación binaria entre cadenas de un alfabeto Σ , esto es:

$$f(\rho, \rho) : \Sigma_* \times \Sigma_* \to \Sigma_* \qquad \rho \in \mathcal{D}_{\bullet}$$
 he \mathcal{D}_{\bullet}

Sean $u, v \in \Sigma^*$ y se denota por $u \cdot v$ o simplemente uv.

$$|uv|=|u|+|v|$$

- Dado el alfabeto Σ y dos cadena $w, u \in \Sigma^*$
 - Entonces $w \cdot \epsilon = \epsilon \cdot w = w$.
 - Si $u = a_1 a_2 a_3 \dots a_n$, $w = b_1 b_2 b_3 \dots b_m$, entonces,

$$u\cdot w=a_1a_2a_3\ldots a_nb_1b_2b_3\ldots b_n$$

U, V & 5.*

Por tanto
$$|u \cdot w| = n + m$$

La concatenación de cadenas es asociativa. Es decir, si $u, v, w \in \Sigma^*$, entonces:

$$(uv)w = u(vw)$$

Semigrupos

Semigrupo

Sea (Σ^*, \cdot) es un **semigrupo** el cual es un conjunto no vacío Σ^* junto con una operación binaria asociativa \cdot definida en Σ^* .

 \blacksquare El conjunto P(S), donde S es un conjunto, junto con la operación de la unión (P(S)) es un semigrupo y es también un semigrupo

Sea
$$S = \{a, b\}$$
 entonces $(a, b) \cup (\emptyset \bigcirc \{b\}) = (\{a, b\} \cup \emptyset) \cup \{b\}$

- El semigrupo (Σ^* , ·) no es un semigrupo cunmutativo porque para $u, w \in \Sigma^*$ no se cumple que $u \cdot w = w \cdot u$.
- Sea w = ac, $w_1 = ab$ y $w_2 = bb$ tal que w, w_1 , $w_2 \in \Sigma^*$ entonces

$$w w_1 w_2$$
 $w(w_1 w_2) = (ww_1)w_2$ Something oscipting $w(w_1 w_2)$ $w(w_2 w_2)$

Monoide

Monoide

Un **monoide** es un semigrupo (S, *) que tiene idéntico.

■ El semigrupo P(S) con la operación de la unión tiene como idéntico a <u>Ø</u> ya que

$$F(\emptyset * A) = \emptyset \cup A = A = A \cup \emptyset$$

- Sea $(\Sigma^*, \cdot, \underline{\epsilon})$ un **monoide** con las siguientes propiedades:
 - Es una operación binaria, es decir la concatenación es cerrada. ∀x, y ∈ Σ*, entonces x ⋅ y ∈ Σ*.
 - **2** La concatenación es un semigrupo (Σ^*, \cdot) y por tanto \cdot es asociativa $\forall x, y, z \in \Sigma^*, (xy)z = x(yz)$
 - 3 La cadena vacía ϵ es la idéntica para la concatenación: $\forall x \in \Sigma^*, \ \epsilon \cdot x = x \cdot \epsilon = x$

Contenido

1 Introducción

2 Lenguajes

3 Lenguajes regulares

Lenguaje

Un *lenguaje* es un conjunto de palabras o cadenas. Un lenguaje L sobre un alfabeto Σ es un subconjunto de Σ^* y si $L = \Sigma^*$ es el lenguaje de todas las cadenas sobre Σ .

- Sea $L = \emptyset$ el lenguaje vacío
- \blacksquare $\emptyset \subseteq L \subseteq \Sigma^*$
- $\Sigma = \{a, b, c\}. L = \{a, aba, aca\}$
- $\Sigma = \{a, b, c\}$. $L = \{a, aa, aaa\}$ $\neq \{a^n : n \ge 1\}$
- $\Sigma = \{a, b, c\}$. $L = \{w \in \Sigma^* : w \text{ no contiene el símbolo } c\}$. Por ejemplo, abbaab $\in L$ pero abbcaa $\notin L$.
- Sobre $\Sigma = \{0, 1, 2\}$ el lenguaje de las cadenas que tienen igual número de ceros, unos y dos's en cualquier orden.

Operaciones entre lenguajes

- Operaciones entre lenguajes; Sean A, B lenguajes sobre Σ entonces $A \cap B$, $A \cup B$, A B operaciones de conjuntos.
- Las operaciones lingüísticas son la concatenación, potencia, inverso y clausura.
- Sean A, B lenguajes sobre Σ entonces,

$$A \cup B = \{x | x : x \in A \quad o \quad x \in B\}$$

$$\{a\} \cup \{b\} = \{a, b\}$$

 $\{a, ab\} \cup \{ab, aab, aaabb\} = \{a, ab, aab, aaabb\}$

Operaciones entre lenguajes

■ Sean A, B lenguajes sobre Σ entonces,

$$A \cap B = \{x | x : x \in A \quad y \quad x \in B\}$$
$$\{a, ab\} \cap \{ab, aab\} = \{ab\}$$
$$\{a, aab\} \cap \{a, ab, aab, aaabb\} = \{a, aab\}$$
$$\{\epsilon\} \cap \{a, ab, aab, aaabb\} = \emptyset$$

Complemento en Σ*:

$$\sim A = \{x \in \Sigma^* | x \notin A\}$$

 $\sim A = \Sigma^* - A$

 $A = \{$ Cadenas de longitud par $\}$ sobre $\Sigma = \{a, b\}$, entonces $\sim A = \{$ cadenas de longitud impar $\}$.

Operaciones entre lenguajes

■ Sean A, B lenguajes sobre Σ entonces,

$$A - B = \{x | x : x \in A \quad y \quad x \notin B\}$$

Sea *B*: El lenguaje de todas las cadenas de ceros de cualquier longitud. Entonces:

Sea $A = \{0, 1\}^*$ y $B = \{0\}^*$ entonces $A - B = \{0, 1\}^* - \{0\}^* = 0^* 1(0 \cup 1)^*$

A-B es el lenguaje de todas las cadenas de unos y ceros con almenos un uno.

A = { \(\frac{1}{2}, \frac{1}{

Lenguaje Universal

Si $\Sigma \neq \emptyset$, entonces Σ^* es el conjunto de todas las cadenas sobre Σ . Se le llama **lenguaje universal.**

lacksquare es un conjunto infinito de cadenas de longitud finita sobre Σ .

Teorema

Sean A y B dos lenguajes sobre el alfabeto Σ . Entonces A=B si y sólo si $A\subseteq B$ y $B\subseteq A$.

- \Rightarrow) Suponiendo que A=B, entonces si $x\in A$, como A=B entonces $x\in B$ por tanto $A\subseteq B$ de la misma forma si $x\in B$ entonces como A=B entonces $x\in A$ por lo tanto $B\subseteq A$.
- \Leftarrow) Se demuestra que si $A \subseteq B$ y $B \subseteq A$ entonces A = B.

Sea el lenguaje del conjunto de cadenas con igual número de ceros y unos.

$$L_1 = \{\epsilon, 01, 10, 0011, 0101, 1001, 000111, \ldots\}$$

$$L = \{a^n b^n : n \ge 0\} \subset L_1 \subset \{0, 1\}^*$$

- La concatenación de lenguajes de dos lenguajes A y B sobre Σ, notada por A.B o simplemente AB.
- $AB = \{uv : u \in A, v \in B\}$
- $A \cdot \emptyset = \emptyset \cdot A = \emptyset$

v sea

$$A \cdot \emptyset = \{uw : u \in A, w \in \emptyset\} = \emptyset$$

$$A - \{ab, b, b, \} \quad B - \{a, b, b\}$$

$$AB - \{aba, abb, bla, bllb, baa, bab\}$$

$$AB - \{aba, abb, bla, bllb, baa, bab\}$$

$$A \cdot \{\varepsilon\} = \{\varepsilon\} \cdot A = A$$

$$A \cdot \{\epsilon\} = \{uw : u \in A, w \in \{\epsilon\}\} = \{u : u \in A\} = A$$

 Las propiedad distributiva generalizada de la concatenación con respecto a la unión.

$$A \cdot \bigcup_{i \in I} B_i = \bigcup_{i \in I} (A \cdot B_i)$$

$$x \in A \cdot \bigcup_{i \in I} B_i \iff x = u \cdot v, u \in A, v \in \bigcup_{i \in I} B_i$$
 $\iff x = u \cdot v, u \in A, v \in B_j,$
 $\exists j \in I$
 $\iff x \in A \cdot B_j, \exists j \in I$
 $\iff x \in \bigcup_{i \in I} (A \cdot B_i)$

■ Ejemplo. Sean $A = \{ab\}, B_1 = \{a, b\}, y B_2 = \{abb, b\}$

$$A \cdot \bigcup_{i \in I} B_i = \bigcup_{i \in I} (A \cdot B_i)$$

$$A \cdot \bigcup_{i \in I=2} B_i = A \cdot (B_1 \cup B_2)$$

$$A \cdot \bigcup_{i \in I=2} B_i = \{ab\} \cdot (\{a,b\} \cup \{abb,b\})$$

$$\{ab\} \cdot (\{a,b\} \cup \{abb,b\}) = (\{ab\} \cdot (\{a,b\}) \cup (\{ab\} \cdot \{abb,b\})$$

De igual forma se puede demostrar que:

$$\left(\bigcup_{i\in I}B_i\right)\cdot A=\bigcup_{i\in I}(B_i\cdot A)$$

La concatenación no es distributiva con respecto a la intersección, es decir, no se cumple que $A \cdot (B \cap C) = A \cdot B \cap A \cdot C$. Contraejemplo: Sea $A = \{a, \epsilon\}$, $B = \{\epsilon\}$, $C = \{a\}$ se tiene:

$$A \cdot (B \cap C) = \{a, \epsilon\} \cdot \emptyset = \emptyset$$

Por otro lado,

$$A \cdot B \cap A \cdot C = \{a, \epsilon\} \cdot \{\epsilon\} \cap \{a, \epsilon\} \cdot \{a\}$$
$$= \{a, \epsilon\} \cap \{a^2, a\} = a$$

Potencia del lenguaje

Potencia del lénguaje Dado un lenguaje A sobre Σ y $(A \subseteq \Sigma^*)$ y $n \in \mathbb{N}$, se define

$$A^{n} = \left\{ \begin{array}{ll} \{\epsilon\}, & \text{si } n = 0 \\ A \cdot A^{n-1}, & \text{si } n \ge 1 \end{array} \right.$$

$$K^{2} = \{0,1\}$$

$$K^{0} = \{6\}$$

$$K^{1} = \{0,1\}$$

$$K^{1} = \{0,1\}$$

$$K^{2} = \{0,1\}$$

$$K^{2} = \{0,1\}$$

$$K^{3} = \{0,1\}$$

Def. formal de Cerradura de Kleene

La cerradura de Kleene de un lenguaje $A \subseteq \Sigma^*$ es la unión de las potencias: se denota por A^*

$$A^* = \bigcup_{i \geq 0} A^i = A^0 \cup A^1 \cup A^2 \cup \ldots \cup A^n$$

lacktriangle Observación: A^* se puede describir de la siguiente manera:

$$A^* = \{u_1 u_2 \dots u_n : u_i \in A, n \geq 0\}$$

Es el conjunto de todas las concatenaciones de la cadena A, incluyendo ϵ

■ la cerradura positiva se denota por A⁺

$$A^+ = \bigcup_{i>1} A^i = A^1 \cup A^2 \cup A^3 \cup \ldots \cup A^n$$

A= f9,66} Ax A ou Atu Azu Azu A A= {E} 30 {a, 11 }0 {aa, a66, b6a, 666} N { a.o., a966, a666, a6666, bba9, b6a66, 6666a, 666666} A= (e, a, 66, aq, a66, 669, } B= 20,124 Bx={e,0,11,00,011,110,1111,000,0011,...} B+ {0,12,00,021, 82}

Ejercicios propuestos

$$D = \{a,b,c\}$$

 $D*=\{...\}$

$$A^{+} = A^{*} \cdot A = A \stackrel{\frown}{A^{*}}$$

$$A \cdot A^{*} = A \stackrel{\frown}{A^{0}} \cup A^{1} \cup A^{2} \cup ...)$$

$$= (A^{1} \cup A^{2} \cup A^{3} \cup ...)$$

$$= A^{+}$$

Se demuestra lo mismo que
$$A^+ = A^* \cdot A$$

 $(A^0 \cup A^1 \cup A^2 \cup ...) A$
 $(A^4 \cup A^2 \cup A^3 \cup ...)$
 A^{\dagger}

■ ⇒), Sea un $x \in A^* \cdot A^*$, entonces $x = u \cdot v$, con $u \in A^*$ y $v \in A^*$ Por tanto $x = u \cdot v$, con $u = u_1 u_2 \dots u_n$, $u_i \in A$, $n \ge 0$ y $v = v_1 v_2 \dots v_m$, $v_i \in A$, $m \ge 0$ De donde

$$X = u \cdot v = u_1 u_2 \dots u_n \cdot v_1 v_2 \dots v_m$$

con $u_i \in A$, $v_i \in A$, por lo tanto x, es una concatenación de n + m cadenas de A, así que $x \in A^*$.

≥ (⇐) Recíprocamente, si $x \in A^*$, entonces $x = x \cdot \varepsilon \in A^* \cdot A^*$. Esto prueba la igualdad de los conjuntos $A^* \cdot A^*$ y A^* .

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

$$(A^*)^n = A^*, \text{ para todo } n \ge 1$$

Contraejemplo de $A^+ \cdot A^+ = A^+$. Sea $\Sigma = \{a, b\}$, $A = \{a\}$ se tiene que

$$A^{+} = (A^{1} \cup A^{2} \cup A^{3} \cup ...)$$

$$= (a) \cup \{aa\} \cup \{aaa...\}$$

$$= \{a^{n} : n \ge 1\}$$

$$A^{+}A^{+} = \{A^{2} \cup A^{2} \cup$$

Por otro lado,

$$A^{+} \cdot A^{+} = \{a, a^{2}, a^{3}, ...\} \cdot \{a, a^{2}, a^{3}, ...\}$$
$$= \{a^{2}, a^{3}, ...\}$$
$$= \{a^{n} : n \ge 2\}$$

■
$$(A^*)^+ = A^*$$

$$(A^*)^+ = (A^*)^1 \cup (A^*)^2 \cup (A^*)^3 \cup \dots$$

$$= A^* \cup A^* \cup A^* \dots$$

$$= A^*$$

$$(A^+)^* = A^*$$

$$(A^+)^* = (A^+)^0 \cup (A^+)^1 \cup (A^+)^2 \cup \dots$$

$$= \{\epsilon\} \cup A^+ \cup A^+ A^+ \cup \dots$$

$$= A^* \cup (\text{conjuntos contenidos en } A^+)$$

$$= A^*$$

$$(A^+)^+ = A^+$$

$$(A^+)^+ = (A^+)^1 \cup (A^+)^2 \cup (A^+)^3 \cup \dots$$

$$= (A^+)^1 \cup (\text{conjuntos contenidos en } A^+)$$

$$= A^+$$

Operaciones claves

Operaciones claves en los lenguajes:

$$\quad \blacksquare \ \, A^* \subseteq \Sigma^* \qquad A^+ \subseteq \Sigma^+$$

$$A^+ \subseteq A^*$$

$$\blacksquare \emptyset^0 = \{\varepsilon\}$$

$$\quad \blacksquare \ \emptyset^n = \emptyset, \, n \geq 1$$

$$\quad \blacksquare \ \emptyset^* = \{\varepsilon\} \qquad \emptyset^+ = \emptyset$$

Inverso de un lenguaje

Inverso de un lenguaje

Sea A sobre Σ , se define A^{I} como:

$$A^{\prime} = \{u^{\prime} : u \in A\}$$

Sean A y B lenguajes sobre Σ tal que $(A, B \subseteq \Sigma^*)$

$$(A.B)^{l} = B^{l}.A^{l}$$

$$x \in (A \cdot B)^I \iff x = u^I, \text{ donde, } u \in A \cdot B$$
 $\iff x = u^I, \text{ donde, } u = vw, v \in A, w \in B$
 $\iff x = (vw)^I, \text{ donde, } v \in A, w \in B$
 $\iff x = w^Iv^I, \text{ donde, } v \in A, w \in B$
 $\iff x = B^IA^I$

Propiedades del inverso de un lenguaje

Sean A y B lenguajes sobre Σ tal que $(A, B \subseteq \Sigma^*)$

$$(A \cup B)^I = A^I \cup B^I$$

$$(A \cap B)^I = A^I \cap B^I$$

$$(A')' = A$$

$$\blacksquare (A^*)^l = (A^l)^*$$

$$(A^+)^l = (A^l)^+$$

Contenido

1 Introducción

2 Lenguajes

3 Lenguajes regulares

Lenguajes regulares

Los lenguajes regulares sobre un alfabeto Σ se definen recursivamente como:

■ \emptyset , $\{\varepsilon\}$ y $\{a\}$, $a \in \Sigma$ son lenguajes regulares.

- b*= { @, 6, 66, 666, 666, ...}
- si A y B son lenguajes regulares, también lo son:

$$A \cup B$$
 (Unión)

A · B (Concatenación)

A*(Cerradura de Kleene)

Ejemplo 1. Dado $\Sigma = \{a, b\}$ el lenguaje A de todas las palabras que tienen exactamente una a: $A = (b)^* \setminus \{a\} \cdot \{b\}^*$

~ 69 bog

Ejemplo 2. Lenguaje de todas las cadenas que comienzan con b:

$$B = \{b\} \cdot \{(a \cup b)\}^*$$

Ejemplo 3. Lenguaje de todas las cadenas que contienen la cadena ba:

Dado el alfabeto {0,1} definir los siguientes lenguajes regulares:

1) Lenguajes que tienen la cadena 🕦

2) Lenguajes que inician en 1, tienen la cadena 01 y terminan

Propiedades de clausura

Teorema

Si L, L_1 y L_2 son lenguajes regulares sobre un alfabeto Σ , también lo son:

- 1 $L_1 \cup L_2$
- 2 L₁L₂
- 3 L+
- $\overline{L} = \Sigma^* L$
- 5 L*
- 6 $L_1 \cap L_2$
- $\frac{7}{1} L_1 L_2$
- 8 L₁△L₂ Diferencia simétrica

A = {2,3,5}

Son los elementos que están L1 y L2, pero no en ambos

Observación

Un sublenguaje (subconjunto) de un lenguaje regular no es necesariamente regular, es decir, la familia de los lenguajes regulares no es cerrada para subconjuntos.

Propiedades de clausura

Observación

- Un lenguaje regular puede contener sublenguajes No-regulares. Sea $L = \{a^n b^n\}$ es un sublenguaje del lenguaje regular a^*b^*
- Todo lenguaje finito es regular y la unión finita de lenguajes regulares es regular.
- La unión infinita de lenguajes no necesariamente es regular.

$$L = \{a^n b^n : n \ge 1\} = \bigcup_{i \ge 1} \{a^i b^i\}$$

Donde cada $\{a^ib^i\}$ regular, pero L No lo es.

b?= {6,66,600 }

de a y b 9n: {9,00,000 } anbccc

n a's seguido de n b's tenemos igual cantidad

Definición formal de expresiones regulares

Las expresiones regulares sobre un alfabeto Σ se definen recursivamente como:

- \emptyset , ϵ y a, $a \in \Sigma$ son expresiones regulares.
- si A y B son expresiones regulares, también lo son:

$$A \cup B$$
 (Unión)
 $A \cdot B$ (Concatenación)
 A^* (Cerradura de Kleene)

- Son expresiones regulares aab^* , ab^+ , $(aaba^*)^+$
- Sea el conjunto $\{\epsilon, aa, aba, ab^2a, ab^3a, ab^4a, ...\}$ entonces $\{\epsilon\} \cup \underline{ab^*a}$ es una expresión regular.
- lacksquare Expresión regular de todas las cadenas impares sobre $\Sigma=\{a,b\}$

$$a(aa) \cup ab \cup ba \cup bb)^* \overset{\downarrow}{\cup} b(aa \cup ab \cup ba \cup bb)^*$$

Expresiones regulares

13. $(rs^*)^* = \varepsilon \cup r(r \cup s)^*$ 14. $s(r \cup \varepsilon)^* (r \cup \varepsilon) \cup s = sr^*$

15. $rr^* = r^*r$

Teorema

Sean r, s y t expresiones regulares sobre Σ , entonces:

1.
$$r \cup s = s \cup r$$

2. $r \cup \emptyset = r = \emptyset \cup r$
3. $r \cup r = r$
4. $(r \cup s) \cup t = r \cup (s \cup t)$
5. $r\varepsilon = r = \varepsilon r$
6. $r\emptyset = \emptyset = \emptyset r$
7. $(rs)t = r(st)$
8. $r(s \cup t) = rs \cup rt \ y \ (r \cup s)t = rt \cup st$
9. $r^* = r^{**} = r^*r^* = (\varepsilon \cup r)^* = r^*(r \cup \varepsilon) = (r \cup \varepsilon)r^* = \varepsilon \cup rr^*$
10. $(r \cup s)^* = (r^* \cup s^*)^* = (r^*s^*)^* = (r^*s)^*r^* = r^*(sr^*)^*$
11. $r(sr)^* = (rs)^*r$
12. $(r^*s)^* = \varepsilon \cup (r \cup s)^*s$

Ejemplos expresiones regulares

Ejemplo 2. Probar que $(b \cup aa^*b) \cup (b \cup aa^*b)(a \cup ba^*b)^*(a \cup ba^*b)$ y $a^*b(a \cup ba^*b)^*$ son equivalentes.

٠

Ejemplo 2. Probar que $(b \cup aa^*b) \cup (b \cup aa^*b)(a \cup ba^*b)^*(a \cup ba^*b)$ y $a^*b(a \cup ba^*b)^*$ son equivalentes.

Ejemplos expresiones regulares

Ejemplo 3. ¿Las siguientes expresiones regulares representan el mismo lenguaje?

$$(a^*b)^*$$
 y $\epsilon \cup (a \cup b)^*b$

Ejemplo 4. Demostrar que $r(sr)^* = (rs)^*r$

 \Rightarrow) Sea $w \in r(sr)^*$, entonces

$$w = r_0(s_1r_1)(s_2r_2)...(s_nr_n)$$
, para $n \ge 0$

$$W = r_0(s_1r_1)(s_2r_2)...(s_nr_n)$$

$$W = (r_0s_1)(r_1s_2)(r_2s_3)...(r_{n-1}s_n)r_n$$

Por lo tanto, $r(sr)^* \subseteq (rs)^*r$ \Leftarrow

Sea $w \in (rs)^* r$, entonces

$$w = (r_0 s_0)(r_1 s_1) \dots (r_{n-1} s_{n-1}) r_n$$
, para $n \ge 0$

Equivalent c

Ejemplo 3. ¿Las siguientes expresiones regulares representan el mismo lenguaje?

guaje?

$$(a^*b)^*y \quad (a\cup b)^*b \quad (a^*)^* = a^*$$

$$\{(a\setminus)^*u \quad (a^*l)^2u \quad (a^*l)^2.... \}$$

$$\{ \in u \quad (a\cup b)^*b \quad (a^*b)^*b \quad (a^*b)^*b \quad (a^*)^*b \quad (a^*b)^*b \quad (a^*)^*b \quad (a^*)^*b$$

(4.6), = (2.01), 1111 (4.6), = (2.01), 1111 (4.6), = (2.01), 1111 (4.6), = (2.01), 1111 (4.6), = (2.01), 1111

Ejemplo 3. ¿Las siguientes expresiones regulares representan el mismo lenguaje? $(a^* b)^* \quad \text{y} \quad \text{$\epsilon \cup (a \cup b)^* b$}$

9.
$$r^* = r^{**} = r^* r^* = (\varepsilon \cup r)^* = r^* (r \cup \varepsilon) = (r \cup \varepsilon) r^* = \varepsilon \cup r r^*$$
10. $(r \cup s)^* = (r^* \cup s^*)^* = (r^* s^*)^* = (r^* s)^* r^* = r^* (s r^*)^*$
11. $r(sr)^* = (rs)^* r$
12. $(r^* s)^* = \varepsilon \cup (r \cup s)^* s$
13. $(rs^*)^* = \varepsilon \cup (r \cup s)^*$
14. $s(r \cup \varepsilon)^* (r \cup \varepsilon) \cup s = s r^*$
15. $rr^* = r^* r$

Encontrar las expresiones regulares de los siguientes lenguajes

Ejemplo 5. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que comienzan con b y terminan con a.

$$b(a \cup b)^*a$$

Ejemplo 6. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen exactamente dos a's

Ejercicios resueltos de expresiones regulares

Ejemplo 7. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen un número par de símbolos (palabras de longitud par)

$$(aa \cup ab \cup ba \cup bb)^*$$

Ejemplo 8. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen un número impar de símbolos (palabras de longitud impar)

$$a(aa \cup ab \cup ba \cup bb)^* \cup b(aa \cup ab \cup ba \cup bb)^*$$

Ejemplo 9. $\Sigma = \{a, b\}$ Lenguaje de todas las palabras que tienen un número par de a's.

$$b^*(ab^*a)^*b^*$$

Ejercicios resueltos de expresiones regulares

Ejemplo 10. Sobre $\Sigma = \{0,1\}$ lenguaje de todas las cadenas que tienen exactamente dos ceros:

Ejemplo 11. Sobre $\Sigma = \{0,1\}$ lenguaje de todas las cadenas cuyo penúltimo símbolo, de izquierda a derecha, es un 0.

$$(0 \cup 1)^*0(0 \cup 1)$$

Expresiones regulares en la computación

- Las expresiones regulares sirven para la construcción de analizadores léxicos.
- http://regexpal.com/ es un testeador de expresiones regulares en java.

Representa palabras que comienzan por una letra mayúscula seguida de un espacio en blanco y de dos letras mayúsculas. Ejemplo, reconocería Ithaca NY. Por ejemplo, Palo Alto CA no la reconocería.

Referencias

Kenneth H. Rosen.

Discrete Mathematics and Its Applications.

McGraw-Hill Higher Education, 7th edition, 2011.

Chapter 13. Modeling Computation.