Liouville's theorem and Gibbs measures

Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto

April 3, 2014

Let M be a symplectic manifold with symplectic form ω . Define $\omega^{\sharp}:TM\to T^*M$ by

$$\omega^{\sharp}(X)Y = \omega(X,Y), \qquad Y \in C^{\infty}(M,TM),$$

in other words,

$$(\omega^{\sharp}(X))_x v = \omega_x(X_x, v), \qquad x \in M, v \in T_x M.$$

 $\omega^{\sharp}:TM\to T^{*}M$ is a vector bundle isomorphism. Let $H\in C^{\infty}(M,\mathbb{R}).$ We define

$$X_H = (\omega^{\sharp})^{-1} (dH),$$

i.e.,

$$X_H(x) = (\omega^{\sharp})^{-1}(dH(x)), \qquad x \in M.$$

Thus, X_H is the unique element of $C^{\infty}(M, TM)$ such that

$$\omega(X_H, Y) = dH(Y), \qquad Y \in C^{\infty}(M, TM).$$

We call $X_H \in C^{\infty}(M, TM)$ the Hamiltonian vector field of H, or the symplectic gradient $\nabla_{\omega} H$ of H.

gradient $\nabla_{\omega} H$ of H. If $\omega = \sum_{i=1}^{n} dq^{i} \wedge dp_{i}$, define $X \in C^{\infty}(M, TM)$ by

$$X = \sum_{i=1}^{n} \frac{\partial H}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial}{\partial p_i}.$$

We have

$$i_X dq^i = \frac{\partial H}{\partial dp_i}$$

and

$$i_X dp_i = -\frac{\partial H}{dq^i},$$

hence, as $i_X(\alpha \wedge \beta) = (i_X \alpha) \wedge \beta + (-1)^k \alpha \wedge (i_X \beta)$ for $\alpha \in \Omega^k$ [1, p. 115, Theorem 2.4.13],

$$i_X \omega = \sum_{i=1}^n i_X (dq^i \wedge dp_i)$$

$$= \sum_{i=1}^n (i_X dq^i) \wedge dp_i - dq^i \wedge (i_X dp_i)$$

$$= \sum_{i=1}^n \frac{\partial H}{\partial p_i} dp_i + \frac{\partial H}{\partial q^i} dq^i$$

$$= dH.$$

Hence $X = X_H$.

For a vector field X, the Lie derivative $L_X\omega$ of ω is defined by,

$$L_X \omega = (F_t^*)^{-1} \frac{d}{dt} F_t^* \omega,$$

which one checks is independent of t, where $F_t^*\omega$ is the pull-back of ω by F_t . Let F_t be the flow of X_H , for $t \in I$ where I is some open interval with $0 \in I$. For $t \in I$, we have by [1, p. 115, Theorem 2.3.13],

$$\frac{d}{dt} (F_t^* \omega) = F_t^* (L_{X_H} \omega)$$

$$= F_t^* (i_X d\omega + d(i_{X_H} \omega))$$

$$= F_t^* (i_X 0 + ddH)$$

$$= F_t^* (0 + 0)$$

$$= 0$$

Thus, for $t \in I$ we have $F_t^*\omega = F_0^*\omega = \omega$. So for each $t \in I$, the map $F_t: M \to M$ is a symplectomorphism.

Let

$$\mu = \frac{\omega^n}{n!} = \frac{1}{n!} \underbrace{\omega \wedge \cdots \wedge \omega}_{n}.$$

 μ is equal to the degree 2n term in

$$\exp(\omega)$$
.

We have, as F_t^* is a homomorphism of differential algebras [1, p. 113, Theorem 2.4.9] and as F_t is a symplectomorphism,

$$F_t^* \mu = \frac{1}{n!} (F_t^* \omega) \wedge \cdots (F_t^* \omega)$$
$$= \frac{1}{n!} \omega \wedge \cdots \wedge \omega$$
$$= \mu.$$

If $\omega = \sum_{i=1}^n dq^i \wedge dp_i$ then

$$\omega^n = (-1)^{\frac{n(n-1)}{2}} n! dq^1 \wedge \cdots dq^n \wedge dp_1 \wedge \cdots \wedge dp_n;$$

the sign comes up getting all the q^{i} 's together; since we have to reorder both the q^i 's and the p_i 's the signs we get from doing those cancel.

If $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$, then, as $H \circ F_t = H$ for all $t \in I$,

$$F_t^*((f \circ H)\mu) = (f \circ H \circ F_t)F_t^*\mu$$

= $(f \circ H)\mu$.

Let $\mu_{\beta} = e^{-\beta H}\mu$. We call $\mu_{\beta} \in \Omega^{2n}(M)$ a Gibbs measure on M. One can motivate the choice of $e^{-\beta H}$ as a function by which to multiply μ (rather than any other function invariant under the Hamiltonian flow F_t) through equivariant cohomology. See [2, pp. 197–198]. Let z be a formal variable. An equivariant differential form (for the Hamiltonian flow of H) is a finite sum $\alpha = \sum_{n} \alpha_n z^n$, where α_n is a differential form on M such that $L_{X_H} \alpha_n = 0$. We define the equivariant differential D (for the Hamiltonian flow of H) by

$$D\alpha = d\alpha - zi_{X_H}\alpha = \sum_n d(\alpha_n)z^n - z\sum_n i_X(\alpha_n)z^n.$$

But

$$D^{2}\alpha = d^{2}\alpha - zdi_{X_{H}}\alpha - zi_{X_{H}}d\alpha + z^{2}i_{X_{H}}i_{X_{H}}\alpha$$

$$= -z\sum_{n} (d(i_{X_{H}}\alpha_{n}) + i_{X_{H}}(d\alpha_{n}))z^{n} + z^{2}\sum_{n} i_{X_{H}}i_{X_{H}}\alpha_{n}z^{n}$$

$$= -z\sum_{n} L_{X_{H}}\alpha_{n}z^{n} + 0$$

$$= 0.$$

Thus $D^2 = 0$. If $L_{X_H}\alpha = 0$, then $L_{X_H}(D\alpha) = 0$, while the differential of a regular differential form that is invariant under a Hamiltonian flow is not necessarily itself invariant under the Hamiltonian flow.

 $D\omega = d\omega - zi_{X_H}\omega = -(dH)z$. As $i_{X_H}f = 0$ for a function f, we have $D(\omega + zH) = 0$; thus while ω is closed under the usual differential $d, \omega + zH$ is closed under the equivariant differential D. The degree 2n term of $\exp(\omega + zH)$ is

$$e^{zH}\frac{\omega^n}{n!} = e^{zH}\mu.$$

Taking $z = -\beta$ gives us the Gibbs measure μ_{β} .

References

- [1] Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, second ed., AMS Chelsea Publishing, Providence, RI, 2008.
- [2] Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer, 2001.