Latent Unknown Clustering with Integrated Multi-Omics Data (LUCID)

Yinqi Zhao, Nikolaos Stratakis, David V. Conti

Exposome Data Challenge Event

28th April 2021

Research Question

Does early-life organochlorine exposure increase obesity risk, and if yes, what are the underlying mechanistic pathways?

Environmental obesogen hypothesis

Organochlorines (OCs)

A major class of suspected obesogens

Compounds widely used in the past as pesticides or in industrial processes

Pregnancy and childhood are critical periods of increased susceptibility to chemical effects

Guided Hypothesis

Conventional study

Unanswered question: What is the underlying biological process between E and Y?

Guided Hypothesis

Goal: estimate the subgroup characterized by certain exposure and omics profiles

An overview of LUCID model

Prof. David Conti

Statistical Modeling

$$f(\mathbf{Z} \mid X = k) = \phi(\mathbf{Z}; \delta_k, \Sigma_k)$$

$$f(X = k \mid \mathbf{E}) = S(\beta, k, \mathbf{E}) = \frac{\exp(\beta_k \mathbf{E})}{\sum_{k} \exp(\beta_k \cdot \mathbf{E})}$$
$$f(Y \mid X = k) = \phi(Y; \gamma_k, \sigma_k)$$

$$f(Y \mid X = k) = \phi(Y; \gamma_k, \sigma_k)$$

Questions Addressed in Data Challenge

Goal:

- 1. Identify the subgroups with high BMI z-score (obesity)
- 2. Characterize the subgroups by distinguished omics profiles
- 3. Estimate the association between exposure and subgroups

Variable Selection for Metabolites

- 1. Preliminary screening (45 omics signatures identified)
- 2. Integrated variable selection(14 omics signatures)

Keck School of Medicine of USC

Results

1. Association between BMI z-score and each subgroup

Distribution of BMI z-score for each subgroup

Results

2. Omics profiles for each subgroup

Results

3. Exposure profiles for each cluster

Results

If we combine all these information together?

- 1. Latent subgroup to BMI
- 2. Latent subgroup to metabolites
- 3. Exposure to latent subgroup

- 1. Latent subgroup to BMI
- 2. Latent subgroup to metabolites
- 3. Exposure to latent subgroup

- 1. Latent subgroup to BMI
- 2. Latent subgroup to metabolites
- 3. Exposure to latent subgroup

- 1. Latent subgroup to BMI
- 2. Latent subgroup to metabolites
- 3. Exposure to latent subgroup

- 1. Latent subgroup to BMI
- 2. Latent subgroup to metabolites
- 3. Exposure to latent subgroup

Conclusions

- LUCID is a novel method for integrated multi-omics analysis
- We implemented LUCID to discover 4 latent subgroups characterized by distinguished OC exposure and omic profiles and their association with obesity
- We confirmed previous HELIX publication results (Vrijheid EHP 2020) that childhood HCB exposure cross-sectionally associates with reduced childhood BMI-z score
- We identified a new association confirming previous literature that prenatal HCB exposure increases BMI (obesogenic effect)
- Using multi-omic profiling, we identified signatures (IL-1beta, IL-6, insulin) giving insight into underlying mechanistic pathways (eg., systemic inflammation, disturbed glucose metabolism)

Acknowledgments:

Special thanks to Professor David Conti, Dr. Nikos Stratakis for their invaluable suggestions to this project!

References:

1. LUCID method paper:

Peng, C., Wang, J., Asante, I., Louie, S., Jin, R., Chatzi, L., Casey, G., Thomas, D.C., and Conti, D.V. (2019). A Latent Unknown Clustering Integrating Multi-Omics Data (LUCID) with Phenotypic Traits. Bioinformatics.

2. LUCID R package:

Currently available on CRAN (<u>LUCIDus</u>)

An updated version is on Github: <u>USCbiostats/LUCIDus: the new version of LUCID (github.com)</u>

Keck School of Medicine of USC

Analysis Pipeline

Step 1: Data Preparation

Exposure: Organochlorines (18)*

Metabolite: Serum metabolites (177)

Urine metabolites (44)

Proteomics (36)

Outcome: BMI z-score

Covariates: Sex, age, Mother's BMI, Mother's education status, cohort

Sample size: 1152

Step 2: Model Building

Step 3: Model Interpretation

- 1. Omics profiles for each subgroup
- 2. Distribution of BMI for each subgroup
- 3. Exposure profiles for each cluster
- 4. Sankey Diagram for association

* Concentrations in pregnancy (maternal) and childhood

Preliminary Screening

- 1. RED: exposure and outcome
- 2. GREEN: serum metabolomics
- 3. BLUE: urine metabolomics
- 4. ORANGE: proteomics

Fitting LUCID Model

