Lecture 30: Chains and cycles

Math 660—Jim Fowler

Monday, August 2, 2010

Replace integrals over arcs by integrals over chains.

What is a chain?

Cycles

If a chain is a sum of closed curves, we call it a cycle.

Cycles

If a chain is a sum of closed curves, we call it a cycle.

Theorem $\int_{\gamma} dF = 0 \text{ if } \gamma \text{ is a cycle.}$

Cycles

If a chain is a sum of closed curves, we call it a cycle.

Theorem $\int_{\gamma} dF = 0 \text{ if } \gamma \text{ is a cycle.}$

Define winding number of cycles.

Simply connected

A region in $\mathbb C$ is simply connected if its complement is connected.

Simply connected

A region in $\mathbb C$ is simply connected if its complement is connected.

This definition is only valid for the plane!

Simply connected

A region in $\mathbb C$ is simply connected if its complement is connected.

This definition is only valid for the plane!

Examples?

Theorem

A region Ω is simply connected if and only if $n(\gamma, a)$ for all cycles in Ω and all points $a \notin \Omega$.

A cycle in a region Ω is homologous to zero inside Ω if $n(\gamma, a)$ for all $a \notin \Omega$.

A cycle in a region Ω is homologous to zero inside Ω if $n(\gamma, a)$ for all $a \notin \Omega$.

We write $[\gamma_1] = [0] \in H_1(\Omega)$.

A cycle in a region Ω is homologous to zero inside Ω if $n(\gamma, a)$ for all $a \notin \Omega$.

We write $[\gamma_1] = [0] \in H_1(\Omega)$.

We write $[\gamma_1] = [\gamma_2] \in H_1(\Omega)$ if $[\gamma_1 - \gamma_2] = [0]$.

Cauchy's theorem

Theorem

If f(z) is analytic in Ω , then

$$\int_{\gamma} f(z) dz = 0$$

for every cycle γ which is homologus to zero in Ω .

Cauchy's theorem

Theorem

If f(z) is analytic in Ω , then

$$\int_{\gamma} f(z) dz = 0$$

for every cycle γ which is homologus to zero in Ω .

In other words, if the property holds for 1/(z-a) with $a \notin \Omega$, then it holds for all analytic f.

By Cauchy's theorem, there exists a single-valued analytic function F(z) so that F'(z) = f(z).

By Cauchy's theorem, there exists a single-valued analytic function F(z) so that F'(z) = f(z). Then,

Corollary

If f(z) is analyic and nonzero in a simply connected region Ω , then it is possible to define single valued analytic branches of $\log f(z)$ and $\sqrt[n]{f(z)}$.