Actividad 3: Algunas distribuciones

Oskar Arturo Gamboa Reyes | A01173648 2024-08-09

Pregunta 1

1. Graficar una distribución Nomal con media 10, y desviación estándar 2

```
miu = 0
sigma = 1
x = seq(miu - 4*sigma, miu + 4*sigma, 0.01)
y = dnorm(x, miu, sigma)
plot(x,y, type = "l", col = "red", main = "Normal(0,1)")
```

Normal(0,1)

Pregunta 2

Graficar una distribución T Student con grados de libertad 12

```
gl = 5 # Grados de Libertad
sigma = sqrt(gl/(gl-2))
x = seq( -4*sigma, 4*sigma, 0.01)
```

```
y = dt(x,gl)
plot(x,y, type = "l", col = "blue", main = "T Student con gl = 5")
```

T Student con gl = 5

Pregunta 3

Gráfique la distribución Chi-cuadrada con 8 grados de libertad.

```
gl = 10
sigma = sqrt(2*gl)
x = seq( 0, miu + 8*sigma, 0.01)
y = dchisq(x,gl)
plot(x,y, type = "l", col = "green", main = "Chi2 con gl = 10")
```

Chi2 con gl = 10

Pregunta 4

Graficar una distribución F con v1 = 9, v2 = 13

```
v1 = 6
v2 = 10
sigma = sqrt(2)*v2*sqrt(v2+v1-2)/(sqrt(v2-4)*(v2-2)*sqrt(v1))
x = seq( 0, miu + 8*sigma, 0.01)
y = df(x,v1, v2)
plot(x,y, type = "1", col = "red", main = "F con v1 = 6, v2 = 10")
```

F con v1 = 6, v2 = 10

Pregunta 5

Si Z es una variable aleatoria que se distribuye normalmente con media 0 y desviación estándar 1, hallar los procedimientos de:

```
a) P(Z>0.7) = 0.2419637

a5 = 1 - pnorm(0.7)

b) P(Z<0.7) = 0.7580363

b5 = pnorm(0.7)

c) P(Z = 0.7) = 0

c5 = pnorm(0.7) - pnorm(0.7)
```

d) Hallar el valor de Z que tiene al 45% de los demás valores inferiores a ese valor.
 d5 = qnorm(.45)

Pregunta 6

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye normalmente con una media de 100 y desviación estándar de 7.

```
a) P(X < 87) = 0.031645
a6 = pnorm(87, 100, 7)
```

```
b) P(X > 87) = 0.968354
b6 = 1 - pnorm(87, 100, 7)
c) P(87 < X < 110) = 0.89179
c6 = pnorm(110, 100, 7) - pnorm(87, 100, 7)
```

Pregunta 7

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye T Student con gl= 10, hallar:

```
a) P(X < 0.5) = 0.6860532

a7 = pt(0.5,10)

b) P(X > 1.5) = 0.082253

b7 = 1 - pt(1.5,10)

c) Lat que sólo el 5% son inferiores a ella. (t = -1.812461)

c7 = qt(0.05, 10)
```

Pregunta 8

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye Chi-cuadrada con gl = 6, hallar

```
a) P(X2 < 3) = 0.1911532

a8 = pchisq(3, 6)

b) P(X2 > 2) = 0.9196986

b8 = 1 - pchisq(2, 6)
```

c) El valor x de chi que sólo el 5% de los demás valores de x es mayor a ese valor (Resp. 12.59159)

```
c8 = qchisq(0.95, 6)
```

Pregunta 10

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye F con v1 = 8, v2 = 10, hallar

```
a) P(X < 2) = 0.8492264

a10 = pf(2,8,10)

b) P(X > 3) = 0.05351256

b10 = 1 - pf(3,8,10)
```

c) El valor de x que sólo el 25% de los demás valores es inferior a él. (Resp. 0.6131229) c10 = qf(.25, 8, 10)

Pregunta 11

Una compañía de reparación de fotocopiadoras encuentra, revisando sus expedientes, que el tiempo invertido en realizar un servicio, se comporta como una variable normal con media de 65 minutos y desviación estándar de 20 minutos. Calcula la proporción de servicios que se hacen en menos de 60 minutos. Resultado en porcentaje con dos decimales, ejemplo 91.32%.

```
a11 = round(pnorm(60, 65, 20), 4)
```