Análisis Comparativo de Despliegues de Cell-free Massive MIMO para Redes 6G: Evaluación entre Topologías Acotada y No Acotada

Autor: José Ignacio Mariscal Cristóbal

Tutor: Jan García Morales

Cotutor: Alejandro de la Fuente Iglesias.

Curso académico: 2023/2024

Índice

1. Motivación

2. Beneficios de CF-mMIMO

3. Conceptos Clave

4. Simulación

5. Conclusiones

Motivación

¿Qué es CF-mMIMO?

- **Tecnología emergente** que transforma las redes de telecomunicaciones.
- Sustituye la estructura celular tradicional por múltiples APs dispersos que colaboran como un solo sistema.
- Cada usuario es atendido por varios
 APs, mejorando la cobertura y la calidad de la señal.

Estructura Técnica

- APs con múltiples antenas, interconectados a través de fibra óptica.
- Comunicación rápida y eficiente, permitiendo compartir información del canal para procesamiento de señales avanzado.
- **Beamforming**: Direcciona la señal hacia el usuario, aumentando eficiencia y minimizando interferencia.

Motivación

¿Por qué CF-mMIMO?

- Superación de limitaciones de redes celulares: Mejora servicio en áreas densas y en bordes de celdas.
- Flexibilidad en configuraciones de despliegue: Adaptable a diferentes entornos y necesidades de densidad de usuarios.
- Eficiencia espectral y capacidad: Gestión eficiente del espectro y soporte para múltiples dispositivos.
- Preparación para redes 6G: Alta calidad de servicio en áreas extensas.

Motivación

Objetivo General del Estudio

Estudiar, explorar y analizar la arquitectura y funcionamiento de CF-mMIMO en despliegues acotados y no acotados

¿Por Qué?

- CF-mMIMO planteado para entornos no acotados.
- Los escenarios ilimitados son inviables por restricciones computacionales.
- Adaptamos el estudio a escenarios acotados y realistas.
- Comparamos el rendimiento en contextos realistas y teóricos.

Beneficios de CF-mMIMO

Comparación con otras tecnologías

- Massive MIMO Celular
- Small Cells

Mayor SNR con Variaciones Menores

CF-mMIMO → Mejor

SNR alto y uniforme gracias a múltiples APs cooperando, garantizando calidad en toda la cobertura.

Mejor Gestión de la Interferencia

CF-mMIMO → Óptima

Reducción eficaz de interferencias mediante coordinación entre APs, mejorando la calidad de conexión.

Transmisión Coherente

CF-mMIMO → Superior

Gestión inteligente de potencia entre APs para una transmisión de señales coherente y sincronizada, maximizando el SNR.

Conceptos Clave

SE

$$SE_{ul,c}^{k} = \frac{\tau_u}{\tau_c} E \left[log_2 \left(1 + SINR_{ul,c}^{k} \right) \right] bit/s/Hz$$

Interferencia Total

$$I_{\text{total}} = I_{\text{Co-Canal}} + I_{\text{Usuarios}} + I_{\text{Pilotos}}$$

Buena Est. de Canal y Precod.

$$\eta(I_{\text{Co-Canal}}) + \eta(I_{\text{Usuarios}}) \approx 0$$

$$I_{\text{total}} \approx I_{\text{Pilotos}}$$

SINR

$$SINR_{ul,c}^{k} = \frac{SNR_{ul,c}^{k}}{1 + \frac{I_{total}}{N}}$$

Contaminación de Pilotos

Depende de la Densidad de Usuarios/ m^2

Baja Densidad de Usuarios/m ²	Alta Densidad de Usuarios/m ²
$I_{\text{Pilotos}} \approx 0$	↑↑ I _{Pilotos}
$SINR_{ul,c}^k \approx SNR_{ul,c}^k$	$SINR_{ul,c}^k < SNR_{ul,c}^k$

Simulación

Objetivo de la Simulación

Comparar la SE del sistema CF-mMIMO en escenarios acotados y no acotados, evaluando las prestaciones entre usuarios en el interior y como en el borde del área de cobertura.

Configuración Set-Up

Parámetros N° Total de Usuarios Lado A. Cobertura N° APs N° Antenas/AP Efecto de la Densidad Efecto de la Densidad Efecto de la Densidad de N° Antenas/AP· m² Efecto del Tamaño del de AP/m² en el Área de de Usuarios/m² en el Área de Cobertura en el Área de Área de Cobertura Cobertura Cobertura

Tipos de Escenarios

Escenario Acotado

Cobertura limitada a un área definida, ideal para analizar detalladamente los efectos de en un escenario que podemos desarrollar e implementar en la vida real.

Escenario No Acotado

Simula un área de cobertura infinita usando el algoritmo Wrap Around, permitiendo evaluar el rendimiento del sistema sin el "efecto borde".

10

Análisis Comparativo de Despliegues de Cell-free Massive MIMO para Redes 6G

Simulación

"Efecto Borde"

Borde del Área de Cobertura

Ш

Análisis Comparativo de Despliegues de Cell-free Massive MIMO para Redes 6G

Simulación

Posición del Usuario

Escenario Acotado

12

Análisis Comparativo de Despliegues de Cell-free Massive MIMO para Redes 6G

Simulación

Precodificación

Precodificación MR vs P-MMSE

Conclusiones

Entorno Acotado vs Entorno No Acotado

Acotado

Reducción de la SE por efectos de borde e interferencia, destacando la necesidad de gestionar estas limitaciones.

No Acotado

Exhiben una eficiencia más estable y uniforme, gracias a la menor influencia de los bordes y una mejor distribución de la señal.

Efectos de Borde

Despliegues acotados sufren por efectos de borde, mientras no acotados disfrutan de eficiencia espectral más uniforme.

Densidad de Usuarios

El aumento en la cantidad de usuarios activos intensifica la demanda sobre los recursos de la red, aumentando la contaminación de pilotos e incrementando la interferencia general.

Precodificación: MR vs P-MMSE

Eficacia de P-MMSE en escenarios densos frente a la simplicidad de MR en entornos menos densos.

Agradecimientos y Preguntas

