MAE3145: Homework 0

Due date: September 9, 2015

Problem 1 Two vectors $\vec{a}, \vec{b} \in \mathbb{R}^3$ are given as follows:

$$\vec{a} = [a_1, a_2, a_3]^T, \quad \vec{b} = [b_1, b_2, b_3]^T.$$

The dot product of two vectors is a scalar defined as

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3. \tag{1}$$

Let $a=\sqrt{\vec{a}\cdot\vec{a}},\ b=\sqrt{\vec{b}\cdot\vec{b}}$ be the length of the vectors \vec{a} , and \vec{b} , respectively. Let θ be the angle between \vec{a} and \vec{b} . The dot product can be re-written in these variables as

$$\vec{a} \cdot \vec{b} = ab \cos \theta \tag{2}$$

- (a) Suppose that $\vec{a} \cdot \vec{b} = 0$. What is the corresponding value of the angle θ . (Assume that $\vec{a} \neq 0$, $\vec{b} \neq 0$, and $0 < \theta < 2\pi$.)
- (b) Let $\vec{a} = [1, 3, -2]^T$, $\vec{b} = [-4, -1, -2]^T$. Find $\vec{a} \cdot \vec{b}$ using (1).
- (c) For \vec{a} and \vec{b} defined at (c), find the angle between those two vectors.
- (d) Check that your answer of (d) is consistent with your answer to (b).

Problem 2 The cross product of two vectors is another vector defined as

$$\vec{a} \times \vec{b} = [a_2b_3 - a_3b_2, \ a_3b_1 - a_1b_3, \ a_1b_2 - a_2b_1]^T.$$
 (3)

Alternatively, it is written as the determinant of the following matrix:

$$\vec{a} \times \vec{b} = \det \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}.$$
 (4)

We can show that its magnitude is given by

$$\|\vec{a} \times \vec{b}\| = ab\sin\theta,\tag{5}$$

and the direction of $\vec{a} \times \vec{b}$ is determined by the right-handed rule. Note that $\vec{a} \times \vec{b}$ is always perpendicular to either \vec{a} , \vec{b} , or the plane spanned by \vec{a} and \vec{b} .

(a) Suppose that $\vec{a} \times \vec{b} = \vec{0}$. What is the corresponding value of the angle θ . (Assume $0 \le \theta < 2\pi$.)

For the remaining parts (b)-(e), let $\vec{a}=[1,\,3,\,-2]^T$, $\vec{b}=[-4,\,-1,\,-2]^T$.

- (b) Show that $\vec{c} = \vec{a} \times \vec{b} = [-8, 10, 11]^T$ using (3) or (4). Also compute its length using $c = \sqrt{\vec{c} \cdot \vec{c}}$.
- (c) Compute the length $\|\vec{a} \times \vec{b}\|$ using (5), and show that it is equal to your second answer to (b).
- (d) Find the angle between \vec{a} and \vec{c} .

Problem 3 The following vector identities will be used in this class later.

$$\vec{x} \cdot (\vec{y} \times \vec{z}) = \vec{y} \cdot (\vec{z} \times \vec{x}) = \vec{z} \cdot (\vec{x} \times \vec{y}), \tag{6}$$

$$\vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z})\vec{y} - (\vec{x} \cdot \vec{y})\vec{z}. \tag{7}$$

- (a) Using (6), show that \vec{x} is perpendicular to $\vec{x} \times \vec{y}$, i.e., show $\vec{x} \cdot (\vec{x} \times \vec{y}) = 0$.
- (b) Suppose that \vec{q} is a unit vector, i.e., $\|\vec{q}\| = 1$. Show that $-\vec{q} \times (\vec{q} \times \vec{x})$ is the orthogonal projection of \vec{x} to the plane normal to \hat{q} , i.e., show that $-\vec{q} \times (\vec{q} \times \vec{x}) = \vec{x} (\vec{q} \cdot \vec{x})\vec{q}$.

Problem 4 A satellite is on a circular orbit around the Earth, i.e. the trajectory of the satellite is a circle centered at the center of the Earth. We observe that the satellite is located at the following point from the center of the Earth:

$$\vec{r}_A = 3741.7\,\hat{i} + 5612.5\,\hat{j} - 1870.8\,\hat{k}\,(\text{km}).$$

Sometime later, we observe that the satellite moved to the following position:

$$\vec{r}_B = -441.8\,\hat{i} + 6627.5\,\hat{j} + 2209.2\,\hat{k}\,(\text{km}).$$

- (a) Find the radius of the circular orbit. (Specify the unit!)
- (b) What is the rotation angle of the satellite on its circular orbit, i.e. find the angle between \vec{r}_A and \vec{r}_B .
- (c) Find a **unit** vector, namely \hat{h} that is perpendicular to the orbital plane. (Hint: find any vector, say \vec{h} , that is perpendicular to both of \vec{r}_A and \vec{r}_B , and normalize it with its length, i.e. $\hat{h} = \vec{h}/h$, where $h = \sqrt{\vec{h} \cdot \vec{h}}$).

Problem 5 Email a casual photo of yourself to tylee@gwu.edu with your name. Please, make the email subject start with MAE3145. This is NOT mandatory, but it would be very helpful to me memorize the name of the students.