Scientific Computing in Astrophysics

Fall 2021

Course Overview

Developing a Programming Toolkit

MY CODE IS SORT OF SIMILAR TO A DEAD BODY, IN THAT YOU CAN EITHER COME LOOK AT IT NOU, OR WAIT A FEW WEEKS UNTIL IT BECOMES A PROBLEM.

AND BECAUSE YOU'RE LUCKY THAT THE PEOPLE AROUND YOU UNDERSTAND THAT THEY CREATE MORE PROBLEMS THAN THEY SOLVE.

- The goal of this course is to practice the fundamental algorithmic underpinnings of astronomy-oriented tasks, and to introduce a set of techniques and packages you can add to your tool box when carrying out research.
 - Good research skills include
 - Quickly installing and learning new tools
 - Knowing how to build nested, complex, yet reproducible and robust code
 - Knowing how to debug your code and parse errors (and find the relevant solutions)

Developing a Programming Toolkit

What We'll Cover

- The System. Developing comfort with UNIX, bash_profiles, environment variables, paths, PYTHONPATHs, installing code (beyond pip), compiling code from FORTRAN/C.
- The Programming. Your actual code. Structure. Objects and Classes. Functions. Writing modules.
- Maintenance and Distribution. Version control (git), hosting (github), installing your own modules (pip/PyPI)

Synergy between Coding and Science

{Programming Principles}

Functional code
Object oriented code
Modules and packages
Efficient / vectorized code
Special libraries

Scientific Needs

Image analysis
Multidimensional data
Simulation Data
Spectroscopy
Large catalogs

Course Structure

Course Structure

Lectures (1.5 / week)

Introduce course concepts
Pair coding exercises

Lab (1/week)

Involved programming assignment, started in-class

Guest Lectures (1/week)

Talks by experts in the field

Hack Day (1 / semester)

Build a short project from scratch

Class Projects (~several / semester)

Contribute to a class-wide collaborative code project

Final Projects

Build a substantive piece of code and present it to the class

Course Structure

Mondays

Lectures (1.5 / week)

Introduce course concepts
Pair coding exercises

Wednesdays

Lab (1/week)

Involved programming assignment, started in-class

Psets Due

Fridays*

Guest Lectures (1/week)

Talks by experts in the field

*Lecture/lab for first few weeks

Talks held on zoom

Problem Sets (labs)

- We will use (and re-use) a lot of data throughout the semester. You don't want to be pushing those hunky data files to GitHub or copying them around from directory to directory.
- Therefore, we suggest you organize your code something like the following

You will git pull assignments within the Astro330_code/ folder, work on them, and push/submit them. Meanwhile, you can point your code to ../../Astro330_data/ to use relevant data in your assignments. Consider setting an environment variable!

Problem Sets (labs)

View nicely formatted lab at website

astro-330.github.io

 Use assignment link to make lab repo, then pull > work > push back

Semester Roadmap

Synergy between Coding and Science

{Programming Principles}

Functional code
Object oriented code
Modules and packages
Efficient / vectorized code
Special libraries

Scientific Needs

Image analysis
Multidimensional data
Simulation Data
Spectroscopy
Large catalogs

Science Topics

Semester Roadmap

Semester Roadmap

