

Super resolution accelerated MRI reconstruction using Deep learning

Subin Erattakulangara & Wahid Alam April 8, 2022

Introduction

→ MRI as an intervention tool

- (+) Non-invasiveness and excellent soft-tissue contrast
- (-) Slow speed image acquisition: A bottleneck to real-time imaging
- (-)Spatiotemporal tradeoff
 - A compromise between spatial and temporal resolution

Relevance of the problem

- → High fidelity MR images are expensive
 - Large hardware setup
 - Lengthy data acquisition--> subject motion

- → Low resolution images are achievable
 - Parallel-imaging and state-of-the-art reconstruction techniques

Relevance of the problem (cont'd)

- → To catch the RT temporal resolution, Highly accelerated undersampling required
 - Induces aliasing and incoherent noise-pattern

- → Low resolution images are hard to diagnose finer details
 - Less number of pixels to characterize edges or boundaries

Solution

- ✓ Unfold aliasing and noise pattern using model-based DL framework
 - ➤ MoDL (Aggarwal et al., 2018)

- ✓ Improve spatial resolution (upscaling) with super resolution
 - SRResNet (Ledig et al., 2017)

Benefits

✓ Unfold aliasing and noise pattern using model-based DL framework

- ✓ Improve spatial resolution (upscaling) with super resolution
 - A transformation between low-res to high-res

MoDL

→ A model-based recovery framework with DL priors

$$x_{rec} = arg \min_{x} ||Ax - b||_{2}^{2} + ||x - Dw(x)||_{2}^{2}$$

MoDL (cont'd)

Source: Aggarwal et al., 2018

Dataset Preparation

- → Total of 16 3D volumetric scan from 4 subjects
 - Each scan has 32 slices; total 512 slices
- → Prepared two dataset with 256 slices for each
 - 1st dataset
 - training for MoDL and testing for SRResNet
 - 2nd dataset:
 - Testing for MoDL and training for SRResNet

How we trained MoDL

- → Step 1: High-res ground truth (128x128) to Low res (64x64)
 - Maxpooling by binning
- → Step 2: Undersampling by a factor of 4 in k-space

→ Step 3: train MoDL to learn the aliasing and noise pattern

MoDL test results:

Super resolution

SR Resnet

Network architecture

Loss: MSE, L1

Optimizer: Adam (0.9, 0.99)

Learning rate = 1e-4

Number of epochs: 500, 1000

Number of residual units: 5

Processing pipeline

Qualitative Results

High resolution GT

Low resolution input

High resolution output

Qualitative Results

High resolution GT

Low resolution input

High resolution output

Quantitative results

Quantitative results

Thank you