SEMAINE DU 14/09 AU 18/09

1 Cours

Raisonnements, égalités/inégalités et ensembles

Logique Conjonction, disjonction, négation de propositions logiques. Implication et équivalence. Quantificateurs.

Raisonnements Double implication. Raisonnement par l'absurde. Contraposition. Récurrence (simple, double, forte). Analyse/synthèse.

Égalités et inégalités Opérations sur les égalités et inégalités (implication ou équivalence). Application à la résolution d'équations ou inéquations. Valeur absolue. Inégalités triangulaires.

Ensembles Appartenance, inclusion. Union, intersection, complémentaire. Produit cartésien.

Sommes et produits

 $\textbf{Techniques de calcul} \ \ \text{Symbole} \ \ \underline{\sum} \ \ \text{et règles de calcul}, \ \text{sommes télescopiques}, \ \text{changement d'indice}, \ \text{sommes par paquets}.$

Sommes classiques Suites arithmétiques et géométriques, factorisation de $\mathfrak{a}^{\mathfrak{n}} - \mathfrak{b}^{\mathfrak{n}}$, binôme de Newton.

Sommes doubles Définition, règles de calcul, interversion des signes \sum (cas de sommes triangulaires), sommes par paquets.

Produits Symbole \prod et règles de calcul, produits télescopiques, passage au logarithme.

2 Méthodes à maîtriser

- ► Rédiger proprement une récurrence.
- ▶ Montrer une inégalité en raisonnant par équivalence.
- ▶ Résolution d'équations et d'inéquations avec valeurs absolues et racines carrées.
- ► Changement d'indice.
- ► Sommes et produits télescopiques.
- \blacktriangleright Interversion des symboles \sum pour les sommes doubles.

3 Questions de cours

ightharpoonup Déterminer les applications $f: \mathbb{N} \to \mathbb{N}$ telles que

$$\forall (m,n) \in \mathbb{N}^2, \ f(m+n) = f(m) + f(n)$$

- ▶ Énoncer et démontrer la formule du binôme de Newton par récurrence.
- ▶ Soit $(a, b) \in \mathbb{R}^2$. Démontrer l'inégalité triangulaire $|a + b| \le |a| + |b|$. En déduire la seconde inégalité triangulaire $|a b| \ge ||a| |b||$.
- ▶ On pose $S_m(n) = \sum_{k=1}^n k^m$ pour $m \in \mathbb{N}$ et $n \in \mathbb{N}^*$. Calculer $S_2(n)$ puis $S_3(n)$ sous forme factorisée.