Parallelizing Dinic's Algorithm

Connor Mowry, Wenqi Deng

Parallel Computer Architecture and Programming Fall 2024

Carnegie Mellon University

Summary

We parallelized Dinic's max-flow algorithm, optimizing the BFS and DFS phases using OpenMP and MPI.

Dinic's Algorithm Background

- Max-flow algorithm; alternates between:
 - BFS phase: Construct level graph
 - DFS phase: Push flow on level graph until no paths remain
- Data Dependencies:
 - BFS: Frontier updates
 - DFS: Dynamically changing residual capacities

Approaches

- OpenMP BFS:
 - Parallelize over vertices
 - Parallelize over edges

- OpenMP **DFS**:
 - Forward locking: lock during exploration
 - Reverse lock: lock after completion

- MPI BFS:
 - 1D decomposition: partition vertices
 - 2D decomposition: partition vertices and edges

Challenges

- **BFS** Challenges:
 - Load imbalance: Uneven degree distribution
 - Communication overhead (MPI only):
 Synchronizing frontier updates across processes
- DFS Challenges:
 - Data dependencies: Rely on capacities that are concurrently updated
 - Synchronization costs: Lock mechanism

Results

Discussions

OpenMP BFS:

- Outperforms sequential with ~2 threads
- Vertex: generally faster
- Edge: faster for dense graphs

OpenMP DFS:

- Slower than sequential, but exhibits speedup compared to single thread
- Forward lock outperforms reverse lock

MPI BFS:

- Outperforms sequential with ~32 threads
- 2D is faster for dense graphs
- 1D is faster for sparse graphs

Conclusions

Approach	Setting	Effects
Sequential	Sequential	Faster in small and sparse graphs
By Vertex	OpenMP BFS	Faster than sequential in large and dense graphs
By Edge	OpenMP BFS	Faster than by vertex in very dense graphs
Forward Locking	OpenMP DFS	Slower than sequential, but exhibits speedup compared to single thread
Reverse Locking	OpenMP DFS	Slower than forward locking
1D Partition	MPI BFS	Slower than OpenMP BFS; faster than 2D in sparse graphs
2D Partition	MPI BFS	Slower than OpenMP BFS; faster than 1D in dense graphs