Simple Linear Regression Exercise1

July 19, 2024

Simple linear regression

Real estate is one of those examples that every regression course goes through as it is extremely easy to understand and there is a (almost always) certain causal relationship to be found.

The data is located in the file: 'real estate price size.csv'.

In this exercise, the dependent variable is 'price', while the independent variable is 'size'.

1.1 Import the relevant libraries

```
[]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import statsmodels.api as sm
     import seaborn as sns
     sns.set()
```

1.2 Load the data

154282.128000

234280.148000

min 25%

```
data = pd.read_csv('real_estate_price_size.csv')
[]:
     data.head()
[]:
             price
                       size
        234314.144
                     643.09
        228581.528
                     656.22
     1
     2 281626.336
                     487.29
     3 401255.608
                    1504.75
     4 458674.256
                    1275.46
[]:
    data.describe()
[]:
                    price
                                   size
               100.000000
                            100.000000
     count
            292289.470160
                            853.024200
    mean
             77051.727525
                            297.941951
     std
```

479.750000

643.330000

```
50% 280590.716000 696.405000
75% 335723.696000 1029.322500
max 500681.128000 1842.510000
```

1.3 Create the regression

1.3.1 Declare the dependent and the independent variables

```
[ ]: y = data['price']
x1 = data['size']
```

1.3.2 Explore the data

```
[]: plt.scatter(x1,y)
   plt.xlabel('Size',fontsize=20)
   plt.ylabel('Price',fontsize=20)
   plt.show()
```


1.3.3 Regression itself

```
[]: x = sm.add_constant(x1)
results = sm.OLS(y,x).fit()
results.summary()
```

[]:

Dep. Variable:	price	R-squared:	0.745
Model:	OLS	Adj. R-squared:	0.742
Method:	Least Squares	F-statistic:	285.9
Date:	Fri, 19 Jul 2024	Prob (F-statistic):	8.13e-31
Time:	12:12:29	Log-Likelihood:	-1198.3
No. Observations:	100	AIC:	2401.
Df Residuals:	98	BIC:	2406.
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} \gt \mathbf{t} $	[0.025	0.975]
const	$1.019e{+05} \\ 223.1787$	$1.19e + 04 \\ 13.199$	8.550 16.909	$0.000 \\ 0.000$	7.83e+04 196.986	1.26e+05 249.371
Or	nnibus:	6.262	Durbi	in-Watso	on: 2	2.267
\mathbf{Pr}	ob(Omnibu	s): 0.044	Jarqu	e-Bera ((JB): 2	2.938
$\mathbf{S}\mathbf{k}$	ew:	0.117	$\operatorname{Prob}($	JB):	(0.230
Kι	ırtosis:	2.194	Cond	No.	2.7	5e + 03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.75e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
plt.scatter(x1,y)
yhat = x1*223.1787+101900
fig = plt.plot(x1,yhat, lw=4, c='black', label ='regression line')
plt.xlabel('Size', fontsize = 20)
plt.ylabel('Price', fontsize = 20)
plt.show()
```

