STSPIN220

Low voltage stepper motor driver

Datasheet - production data

Features

- Operating voltage: from 1.8 to 10 V
- Maximum output current: 1.3 A_{rms}
- R_{DS(on)} HS + LS = 0.4 Ω typ.
- Microstepping up to 1/256th of a step
- Current control with programmable off-time
- Full protection set
 - Non-dissipative overcurrent protection
 - Short-circuit protection
 - Thermal shutdown
- Energy saving and long battery life with standby consumption less than 80 nA

Applications

Battery-powered stepper motor applications such as:

- Toys
- Portable printers
- Robotics
- Point of sale (POS) devices

Description

The STSPIN220 is a stepper motor driver which integrates, in a small QFN 3 x 3 mm package, both control logic and a low R_{DS(on)} power stage.

The integrated controller implements PWM current control with fixed OFF time and a microstepping resolution up to 1/256th of a step.

The device is designed to operate in batterypowered scenarios and can be forced into a zeroconsumption state, allowing a significant increase in battery life.

The device offers a complete set of protection features including overcurrent, overtemperature and short-circuit protection.

Contents

Block d	liagram	5
Electric	eal data	6
2.1	Absolute maximum ratings	6
2.2	Recommended operating conditions	6
2.3	Thermal data	7
2.4	ESD protection	7
Electric	al characteristics	8
Pin des	cription	10
Typical	application	12
Functio	nal description	13
6.1	Standby and power-up	13
6.2	Microstepping sequencer	13
6.3	PWM current control	17
	6.3.1 OFF time adjustment	19
6.4	Overcurrent and short-circuit protection	20
6.5	Thermal shutdown	23
Graphs		24
Packag	e information	26
8.1	VFQFPN 3x3x1.0 16L package information	26
Orderin	g information	28
Revisio	n history	29
	2.1 2.2 2.3 2.4 Electric Pin des Typical Functio 6.1 6.2 6.3 6.4 6.5 Graphs Packag 8.1 Orderin	2.2 Recommended operating conditions 2.3 Thermal data 2.4 ESD protection Electrical characteristics Pin description Typical application Functional description 6.1 Standby and power-up 6.2 Microstepping sequencer 6.3 PWM current control 6.4 Overcurrent and short-circuit protection 6.5 Thermal shutdown Graphs Package information

STSPIN220 List of tables

List of tables

Table 1: Absolute maximum ratings	6
Table 2: Recommended operating conditions	6
Table 3: Thermal data	7
Table 4: ESD protection ratings	7
Table 5: Electrical characteristics	8
Table 6: Pin description	10
Table 7: Typical application values	12
Table 8: Step mode selection through MODEx inputs	13
Table 9: Target reference and current direction according to sequencer value (full-step mode)	15
Table 10: Target reference and current direction according to sequencer value (not full-step mode).	16
Table 11: Example	16
Table 12: ON, slow decay and fast decay states	18
Table 13: Recommended RRCOFF and CRCOFF values according to ROFF	20
Table 14: VFQFPN 3x3x1.0 16L package mechanical data	27
Table 15: Ordering information	28
Table 16: Document revision history	29

List of figures STSPIN220

List of figures

Figure 1: Block diagram	5
Figure 2: Pin connection (top view)	
Figure 3: Typical application schematic	12
Figure 4: STCK and DIR timing	14
Figure 5: Mode selection example	15
Figure 6: PWM current control sequence	19
Figure 7: OFF time regulation circuit	19
Figure 8: OFF time vs. ROFF value	20
Figure 9: Overcurrent and short-circuit protection management	21
Figure 10: Disable time versus REN and CEN values (VDD = 3.3 V)	22
Figure 11: Disable time versus REN and CEN values (VDD = 1.8 V)	22
Figure 12: Thermal shutdown management	23
Figure 13: Power stage resistance versus supply voltage	24
Figure 14: Power stage resistance versus temperature	24
Figure 15: Overcurrent threshold versus supply voltage	25
Figure 16: VFQFPN 3x3x1.0 16L package outline	26
Figure 17: VFQFPN 3x3x1.0 16L recommended footprint	

STSPIN220 Block diagram

1 Block diagram

Figure 1: Block diagram

Electrical data STSPIN220

2 Electrical data

2.1 Absolute maximum ratings

Table 1: Absolute maximum ratings

	rable 1. Abbolate maximum ratings					
Symbol	Parameter	Test condition	Value	Unit		
Vs	Supply voltage		-0.3 to 11	V		
Vin	Logic input voltage		-0.3 to 5.5	V		
V _{OUT} - V _{SENSE}	Output-to-sense voltage drop		Up to 12	V		
Vs - Vout	Supply-to-output voltage drop		Up to 12	V		
Vsense	Sense pin voltage		-1 to 1	V		
V _{REF}	Reference voltage input		-0.3 to 1	V		
lout,rms	Continuous power stage output current (each bridge)		1.3	Arms		
Тј,ОР	Operative junction temperature		-40 to 150	°C		
Тј,ѕтв	Storage junction temperature		-55 to 150	°C		

2.2 Recommended operating conditions

Table 2: Recommended operating conditions

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
Vs	Supply voltage		1.8		10	V
VIN	Logic input voltage		0		5	V
V _{REF}	Reference voltage input		0.1		0.5	V
t _{INw}	Logic inputs positive/negative pulse width		300			ns

STSPIN220 Electrical data

2.3 Thermal data

Table 3: Thermal data

Symbol	Parameter Conditions		Value	Unit
R _{th(JA)}	Junction to ambient thermal resistance	Natural convection, according to JESD51-2a ⁽¹⁾	57.1	°C/W
R _{th} JCtop	Junction to case thermal resistance (top side)	Simulation with cold plate on package top	67.3	°C/W
RthJCbot	Junction to case thermal resistance (bottom side)	Simulation with cold plate on exposed pad	9.1	°C/W
R _{thJB}	Junction to board thermal resistance	According to JESD51-8 ⁽¹⁾	23.3	°C/W
ψлт	Junction to top characterization	According to JESD51-2a ⁽¹⁾	3.3	°C/W
ΨЈВ	Junction to board characterization	According to JESD51-2a ⁽¹⁾	22.6	°C/W

Notes:

2.4 ESD protection

Table 4: ESD protection ratings

Symbol	Parameter	Test condition	Class	Value	Unit
НВМ	Human body model	Conforming to ANSI/ESDA/JEDEC JS-001-2014	H2	2	kV
CDM	Charge device model	Conforming to ANSI/ESDA/JEDEC JS-002-2014	C2a	500	٧

 $^{^{(1)}\}text{Simulated}$ on a 21.2x21.2 mm board, 2s2p 1 Oz copper and four 300 μm vias below exposed pad.

Electrical characteristics STSPIN220

3 Electrical characteristics

Test conditions: $V_S = 5 \text{ V}$, $T_j = 25 ^{\circ}\text{C}$ unless otherwise specified.

Table 5: Electrical characteristics

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
Supply						
V _{Sth(ON)}	Vs turn-on voltage	Vs rising from 0 V	1.45	1.65	1.79	V
V _{Sth(OFF)}	Vs turn-off voltage	Vs falling from 5 V	1.3	1.45	1.65	V
V _{Sth(HYS)}	Vs hysteresis voltage			180		mV
Is	V _S supply current	No commutations EN = '0' $R_{OFF} = 160 \text{ k}\Omega$		960	1300	μΑ
IS	vs supply culterit	No commutations EN = '1' $R_{OFF} = 160 \text{ k}\Omega$		1500	1950	μΑ
I _{S,STBY}	Vs standby current	STBY = 0 V		10	80	nA
V _{STBYL}	Standby low logic level input voltage				0.9	٧
V _{SТВҮН}	Standby high logic level input voltage		1.48			V
Power stage	e					
	Total ON resistance HS + LS	V _S = 10 V, Іоит = 1.3 A		0.4	0.65	
R _{DS(on)} HS+LS		$V_S = 10 \text{ V},$ $I_{OUT} = 1.3 \text{ A},$ $T_j = 125 \text{ °C}^{(1)}$		0.53	0.87	Ω
		Vs = 3 V, I _{OUT} = 0.4 A		0.53	0.8	
l	Lookaga aurrant	OUTx = Vs			1	
I _{DSS}	Leakage current	OUTx = GND	- 1			μA
V_{DF}	Freewheeling diode forward voltage	I _D = 1.3 A		0.9		V
t _{rise}	Rise time	Vs = 10 V; unloaded outputs		10		ns
t _{fall}	Fall time	V _S = 10 V; unloaded outputs		10		ns
t _{DT} Dead time				50		ns
Current con	Current control					
Vsns,offset	Sensing offset	V _{REF} = 0.5 V; Internal reference 20% V _{REF}	-15		+15	mV

STSPIN220 Electrical characteristics

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
	Total OFF time	R _{OFF} = 10 kΩ		9		μs
t _{OFF}	Total OFF time	R _{OFF} = 160 kΩ		125		μs
Δf _{OSC}	Internal oscillator precision (fosc/fosc,ID)	R _{OFF} = 20 kΩ	- 20%		+20%	
t _{OFF,jitter}	Total OFF time jittering	R _{OFF} = 10 kΩ			2%	
toff,slow	Slow decay time			5/8 × toff		μs
toff,fast	Fast decay time			3/8 × t _{OFF}		μs
Logic IOs						
V _{IH}	High logic level input voltage		1.6			V
VIL	Low logic level input voltage				0.6	V
VRELEASE	FAULT open drain release voltage				0.4	V
VoL	EN Low logic level output voltage	I _{EN} = 4 mA			0.4	V
R _{STBY}	STBY pull-down resistance			36		kΩ
I _{PDEN}	EN pull-down current			10.5		μA
tENd	EN input propagation delay	From EN falling edge to OUT high impedance		55		ns
tMODEho	MODEx input hold time	From STBY edge ⁽²⁾	100			μs
tmODEsu	MODEx input setup time	From STBY edge ⁽²⁾	1			μs
tDIRh	DIR input hold time	From STCK rising edge ⁽³⁾	100			ns
t _{DIRsu}	DIR input setup time	From STCK rising edge ⁽³⁾	100			ns
tsтскн	STCK high time	(3)	100			ns
tstckl	STCK low time	(3)	100			ns
fsтск	STCK inputs frequency	(3)			1	MHz
Protections						
T _{jSD}	Thermal shutdown threshold			160		°C
TjSD,Hyst	Thermal shutdown hysteresis			40		°C
loc	Overcurrent threshold	See Figure 15		2		Α

Notes:

⁽³⁾See Figure 4.

⁽¹⁾Based on characterization data on a limited number of samples, not tested during production.

⁽²⁾See Figure 5.

Pin description STSPIN220

4 Pin description

Figure 2: Pin connection (top view)

Note: The exposed pad must be connected to ground.

Table 6: Pin description

N.	Name	Туре	Function
1	DIR\MODE4	Logic input	Direction input, Step mode selection input 4.
2	STCK\MODE3	Logic input	Step clock input, Step mode selection input 3.
3	OUTA1	Power output	Power bridge output side A1.
4	SENSEA	Power output	Sense output of the bridge A.
5	OUTA2	Power output	Power bridge output side A2.
6	VS	Supply	Device supply voltage.
7, EPAD	GND	Ground	Device ground.
8	OUTB2	Power output	Power bridge output side B2.
9	SENSEB	Power output	Sense output of the bridge B.
10	OUTB1	Power output	Power bridge output side B1.
11	REF	Analog input	Reference voltage for the PWM current control circuitry.
12	TOFF	Analog input	Internal oscillator frequency adjustment.
13	EN\FAULT	Logic input\Open drain output	Logic input 5 V compliant with open drain output. This is the power stage enable (when low, the power stage is turned off) and is forced low through the integrated open-drain MOSFET when a failure occurs.
14	STBY\RESET	Logic input	Logic input 5 V compliant. When forced low, the device is forced into low consumption mode.
15	MODE2	Logic input	Step mode selection input 2.

STSPIN220 Pin description

N.	Name	Туре	Function
16	MODE1	Logic input	Step mode selection input 1.

Typical application STSPIN220

5 Typical application

Table 7: Typical application values

Name	Value
Cs	2.2 μF / 16V
C _{SPOL}	22 μF / 16V
RSNSA, RSNSB	330 mΩ / 1W
Cen	10 nF / 6V3
Ren	18 kΩ
Сѕтву	1 nF / 6V3
Rsтву	18 kΩ
Coff	22 nF
Rcoff	1 kΩ
Roff	47 kΩ (toff \cong 37 μs)

Figure 3: Typical application schematic

6 Functional description

The STSPIN220 is a stepper motor driver integrating a microstepping sequencer (up to 1/256th of a step), two PWM current controllers and a power stage composed of two fully-protected full-bridges.

6.1 Standby and power-up

The device provides a low consumption mode forcing the STBY\RESET input below the V_{STBY}, threshold.

When the device is in standby status, the power stage is disabled (outputs are in high impedance) and the supply to the integrated control circuitry is cut off. When the device exits the standby status, all of the control circuitry is reset to power-up condition.

6.2 Microstepping sequencer

The value of the MODEx inputs is latched at power-up and when the device exits the STBY condition. After this, the input value is unimportant and the MODE3 and MODE4 inputs start operating as step-clock and direction input.

The only exception is the MODE1 = MODE2 = LOW condition; in this case the system is forced into full-step mode. The previous condition is restored as soon as the MODE1 and MODE2 inputs switch to a different combination.

An example of mode selection is shown in Figure 5.

At each STCK rising edge, the sequencer of the device is increased (DIR input high) or decreased (DIR input low) of a module selected through the MODEx inputs as listed in *Table 8*.

The sequencer is a 10-bit counter that sets the reference value of the PWM current controller and the direction of the current for both of the H bridges.

MODE3 (STCK)	MODE4 (DIR)	MODE1	MODE2	Step mode
0	0	0	0	Full-step
0	0	0	1	1/32 nd step
0	0	1	0	1/128 th step
0	0	1	1	1/256 th step
0	1	0	0	Full-step - 1/32 nd step ⁽¹⁾
0	1	0	1	1/4 th step
0	1	1	0	1/256 th step
0	1	1	1	1/64 th step
1	0	0	0	Full-step - 1/128 nd step ⁽¹⁾
1	0	0	1	1/256 th step
1	0	1	0	1/2 step
1	0	1	1	1/8 th step
1	1	0	0	Full-step - 1/256th step(1)

Table 8: Step mode selection through MODEx inputs

MODE3 (STCK)	MODE4 (DIR)	MODE1	MODE2	Step mode
1	1	0	1	1/64 th step
1	1	1	0	1/8 th step
1	1	1	1	1/16 th step

Notes:

 $^{(1)}$ This driving mode is automatically bypassed by the MODE1 = MODE2 = 0 if it is kept after the device quit the standby condition.

Figure 4: STCK and DIR timing

Figure 5: Mode selection example STBY\ RESET MODE1 MODE2 MODE3 (STCK) MODE4 (DIR) Stepping 1/256 th step Fu**ll**-step 1/256th step 1/16 th step Undeterminated Undeterminated mode

Times F. Mada adadian assessed

When the full-step mode is set, the reference value of the PWM current controller and the direction of the current for both H bridges as listed in *Table 9*.

Table 9: Target reference and current direction according to sequencer value (full-step mode)

										Phas	e A	Phas	e B
Sequencer value							Reference voltage	Current direction	Reference voltage	Current direction			
0	0	Х	Х	Χ	Х	Х	Х	Х	Х	100% x V _{REF}	$A1 \rightarrow A2$	100% x V _{REF}	B1 → B2
0	1	Х	Х	Χ	Х	Х	Х	Х	Х	100% x V _{REF}	$A1 \rightarrow A2$	100% x V _{REF}	B1 ← B2
1	0	Х	Х	Χ	Х	Х	Х	Х	Х	100% x V _{REF}	A1 ← A2	100% x V _{REF}	B1 ← B2
1	1	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	100% x V _{REF}	A1 ← A2	100% x V _{REF}	B1 → B2

When the step mode is different from the full-step mode the values listed in *Table 10* are used.

Table 10: Target reference and current direction according to sequencer value (not full-step mode)

							Phase	A	Phase	В			
		S	Sequ	ienc	er v	/alu	е			Reference voltage	Current direction	Reference voltage	Current direction
0	0	0	0	0	0	0	0	0	0	Zero (power bridge disabled)	-	100% × V _{REF}	B1 → B2
0	0				1	1				Sin(N/256 × π /2) × V_{REF}	$A1 \rightarrow A2$	Cos(N/256 × π/2) × V _{REF}	B1 → B2
0	1	0 0 0 0 0 0 0 0		0	100% × V _{REF}	A1 → A2	Zero (power bridge disabled)	-					
0	1	N			Sin(π/2 + N/256 × π/2) × V _{REF}	A1 → A2	Cos(π/2 + N/256 × π/2) × V _{REF}	B1 ← B2					
1	0	0	0	0	0	0	0	0	0	Zero (power bridge disabled)	-	100% × V _{REF}	B1 ← B2
1	0				1	1				Sin(N/256 × π /2) × V_{REF}	A1 ← A2	Cos(N/256 × π/2) × V _{REF}	B1 ← B2
1	1	0 0 0 0 0 0 0 0		100% × V _{REF}	A1 ← A2	Zero (power bridge disabled)	-						
1	1 N			Sin(π/2 + N/256 × π/2) × V _{REF}	A1 ← A2	Cos(π/2 + N/256 × π/2) × V _{REF}	B1 → B2						

The following table shows the target reference and sequencer values for 1/2-, 1/4- and 1/8-step operation. Higher microstepping resolutions follow the same pattern. The reset state (home state) for all stepping mode is entered at power-up or when the device exits the standby status.

Table 11: Example

1/2 step	1/4 step	1/8 step	VREF phase A	VREF phase B	Sequencer value
					000000000
1	1	1	0%	100%	
					home state
		2	19.509%	98.079%	0000100000
	2	3	38.268%	92.388%	0001000000
		4	55.557%	83.147%	0001100000
2	3	5	70.711%	70.711%	0010000000
		6	83.147%	55.557%	0010100000
	4	7	92.388%	19.509%	0011100000
		8	98.079%	19.509%	0011100000
3	5	9	100%	0%	0100000000

1/2 step	1/4 step	1/8 step	VREF phase A	VREF phase B	Sequencer value
		10	98.079%	-19.509%	0100100000
	6	11	92.388%	-38.268%	0101000000
		12	83.147%	-55.557%	0101100000
4	7	13	70.711%	-70.711%	0110000000
		14	55.557%	-83.147%	0110100000
	8	15	38.268%	-92.388%	0111000000
		16	19.509%	-98.079%	1000100000
5	9	17	0%	100%	100000000
		18	-19.509%	-98.079%	1000100000
	10	19	-38.268%	-92.388%	1001000000
		20	-55.557%	-83.147%	1001100000
6	11	21	-70.711%	-70.711%	1010000000
		22	-83.147%	-55.557%	1010100000
	12	23	-92.388%	-38.268%	1011000000
		24	-98.079%	-19.509%	1011100000
7	13	25	-100%	0%	1100000000
		26	-98.079%	19.509%	1100100000
	14	27	-92.388%	38.268%	1101000000
		28	-83.147%	55.557%	1101100000
8	15	29	-70.711%	70.711%	1110000000
		30	-55.557%	83.147%	1110100000
	16	31	-38.268%	92.388%	1111000000
		32	-19.509%	98.079%	1111100000

The positive number means that the output current is flowing from OUTx1 to OUTx2, vice versa for a negative value.

6.3 PWM current control

The device implements two independent PWM current controllers, one for each full bridge.

The voltage of the sense pins (V_{SENSEA} and V_{SENSEB}) is compared to the respective internal reference generated based on the sequencer value (see *Table 9* and *Table 10*).

When $V_{\text{SENSEX}} > V_{\text{REFX}}$, the integrated comparator is triggered, the OFF time counter is started and the decay sequence is performed.

The decay sequence starts turning on both the low sides of the full bridge. When 5/8^{ths} of the programmed OFF time (toff,slow) has expired, the decay sequence performs a quasi-synchronous fast decay.

Table 12: ON	, slow decay	v and fast	decay states
--------------	--------------	------------	--------------

Current direction ⁽¹⁾	ON	Slow decay	Fast decay (quasi-synch)
	HSX1 = OFF	HSX1 = OFF	HSX1 = OFF
Zoro (newer bridge disabled)	LSX1 = OFF	LSX1 = OFF	LSX1 = OFF
Zero (power bridge disabled)	HSX2 = OFF	HSX2 = OFF	HSX2 = OFF
	LSX2 = OFF	LSX2 = OFF	LSX2 = OFF
	HSX1 = ON	HSX1 = OFF	HSX1 = OFF
X1 → X2	LSX1 = OFF	LSX1 = ON	LSX1 = ON
\(\lambda_1 \rightarrow \lambda_2\)	HSX2 = OFF	HSX2 = OFF	HSX2 = OFF
	LSX2 = ON	LSX2 = ON	LSX2 = OFF
	HSX1 = OFF	HSX1 = OFF	HSX1 = OFF
X1 ← X2	LSX1 = ON	LSX1 = ON	LSX1 = OFF
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	HSX2 = ON	HSX2 = OFF	HSX2 = OFF
	LSX2 = OFF	LSX2 = ON	LSX2 = ON

Notes:

The reference voltage value, V_{REF} , must be selected according to the load current target value (peak value) and sense resistor value.

Equation 1

$$V_{REF} = R_{SNSx} \cdot I_{LOAD,peak}$$

In choosing the sense resistor value, two main issues must be taken into account:

- The sense resistor dissipates energy and provides dangerous negative voltages on the SENSE pins during current recirculation. For this reason the resistance of this component should be kept low (using multiple resistors in parallel will help to obtain the required power rating with standard resistors).
- The lower the R_{SNSx} value, the higher the peak current error due to noise on the V_{REF} pin and the input offset of the current sense comparator. Values of R_{SNSx} that are too low must be avoided.

 $^{^{(1)}}$ The current direction is set according to *Table 9* and *Table 10*.

V_{SENSEX}

Figure 6: PWM current control sequence

6.3.1 OFF time adjustment

The total OFF time (slow decay + fast decay) is adjusted through an external resistor connected between the TOFF pin and ground, as shown in *Figure 7*. A small RC series must be inserted in parallel with the regulator resistor in order to increase the stability of the regulation circuit according to *Table 12* indications.

Figure 7: OFF time regulation circuit

The relationship between the OFF time and the external resistor value is shown in *Figure 8*. The value typically ranges from 10 μ s to 150 μ s.

Table 13: Recommended RRCOFF and CRCOFF values according to ROFF

Roff	R _{RCOFF}	CRCOFF
10 kΩ ≤ R _{OFF} < 82 kΩ	1 kΩ	22 nF
82 kΩ ≤ R _{OFF} ≤ 160 kΩ	2.2 kΩ	22 nF

140
120
100
80
40
20
0
50
100
150
200
Off resistor [kohm]

Figure 8: OFF time vs. ROFF value

6.4 Overcurrent and short-circuit protection

The device embeds circuitry protecting each power output against overload and short circuit conditions (short to ground, short to VS and short between outputs).

When the overcurrent or short-circuit protection is triggered, the power stage is disabled and the EN\FAULT input is forced low through the integrated open-drain MOSFET discharging the external C_{EN} capacitor (refer to *Figure 9*).

The power stage is kept disabled and the open-drain MOSFET is kept ON until the EN\FAULT input falls below the $V_{RELEASE}$ threshold, then the C_{EN} capacitor is charged through the external R_{EN} resistor.

Figure 9: Overcurrent and short-circuit protection management

The total disable time after an overcurrent event can be set by properly sizing the external network connected to the EN\FAULT pin (refer to *Figure 9*):

Equation 2

$$t_{DIS} = t_{discharge} + t_{charge}$$

But t_{charge} is normally much higher than $t_{\text{discharge}}$, thus we can consider the following:

Equation 3

$$t_{DIS} \cong R_{EN} \cdot C_{EN} \cdot ln \frac{(V_{DD} - R_{EN} \cdot I_{PDEN}) - V_{RELEASE}}{(V_{DD} - R_{EN} \cdot I_{PDEN}) - V_{IH}}$$

where V_{DD} is the pull-up voltage of the R_{EN} resistor.

Figure 11: Disable time versus REN and CEN values (VDD = 1.8 V)

6.5 Thermal shutdown

The device embeds circuitry protecting it from overtemperature conditions.

When the thermal shutdown temperature is reached, the power stage is disabled and the EN\FAULT input is forced low through the integrated open-drain MOSFET (refer to *Figure 12*).

The protection and the EN\FAULT output are released when the IC temperature returns to a safe operating value $(T_{jSD} - T_{jSD,Hyst})$.

Figure 12: Thermal shutdown management

Graphs STSPIN220

7 Graphs

Figure 13: Power stage resistance versus supply voltage

Figure 14: Power stage resistance versus temperature

STSPIN220 Graphs

Figure 15: Overcurrent threshold versus supply voltage

Package information STSPIN220

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

8.1 VFQFPN 3x3x1.0 16L package information

SEATING \bigcirc PLANE A3 PIN #1 ID C = 0.30D1 13 16 12 9 9 4 8 5 b D2

Figure 16: VFQFPN 3x3x1.0 16L package outline

STSPIN220 Package information

Table 14: VFQFPN 3x3x1.0 16L package mechanical data

	Table 14. VI QLI IN OXXXII.0 TOE package mechanical data							
		Dimensions						
Symbol		(mm)						
	Min.	Тур.	Max.	Notes				
A	0.80	0.90	1.00	(1)				
A1		0.02						
А3		0.20						
b	0.18	0.25	0.30					
D	2.85	3.00	3.15					
D2	1.70	1.80	1.90					
E	2.85	3.00	3.15					
E2	1.70	1.80	1.90					
е		0.50						
L	0.45	0.50	0.55					

Notes:

 $^{(1)}$ VFQFPN stands for "thermally-enhanced very thin fine pitch quad package, no lead". Very thin: $0.80 < A \le 1.00$ mm / Fine pitch: e < 1.00 mm. The pin 1 identifier must be present on the top surface of the package as an indentation mark or other feature of the package body.

Figure 17: VFQFPN 3x3x1.0 16L recommended footprint

Ordering information STSPIN220

9 Ordering information

Table 15: Ordering information

Order code	Package	Packaging
STSPIN220	VFQFPN 3x3x1.0 16L	Tape & reel

STSPIN220 Revision history

10 Revision history

Table 16: Document revision history

Date	Version	Changes
06-May- 2016	1	Initial release.
30-Jun- 2016	2	 Updated document status to Datasheet - production data on page 1. Updated Table 1 (changed Max. value of VS from 12 to 11) and Table 7 (changed toff value from ≅47 μs to ≅37 μs).
29-Nov- 2016	3	 Updated Figure 1 in Section 1: "Block diagram" (replaced by new figure). Updated Table 2 in Section 2.2: "Recommended operating conditions" (added t_{INW} symbol). Updated Table 3 in Section 2.3: "Thermal data" (replaced by new table). Updated Table 8 in Section 6.2: "Microstepping sequencer" [removed "Sequencer module (binary)" column]. Added Table 11 in Section 6.2: "Microstepping sequencer". Updated Table 13 in Section 6.3.1: "OFF time adjustment" (updated title). Updated Figure 13 in Section 7: "Graphs" (replaced by new figure). Minor modifications throughout document.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved