Prof. Rocco Zaccagnino 2022/2023

Un algoritmo è detto **ricorsivo** se risolve un problema riducendo esso ad una istanza dello stesso problema ma con un input più piccolo.

```
Esempio: f(0)=3
f(n)=2 * f(n-1) + 3 per n \ge 1
```

```
procedure funz(n)

if n=o

then return 3

else

return 2 * funz(n-1) + 3
```

```
Esempio: f(0)=3
f(n)=2 * f(n-1) + 3 per n \ge 1
```

```
procedure funz(n)

if n=o

then return 3

else

return 2 * funz(n-1) + 3
```

$$f(3) = 2 * f(2) + 3$$

 $f(2) = 2 * f(1) + 3$
 $f(1) = 2 * f(0) + 3$
 $f(0) = 3$

```
Esempio: f(0)=3
f(n)=2 * f(n-1) + 3 per n \ge 1
```

```
procedure funz(n)

if n=o

then return 3

else

return 2 * funz(n-1) + 3
```

Proviamo la correttezza dell'algoritmo descritto dalla procedura funz(n)

Dimostriamo, cioè che

il valore restituito dalla procedura funz(n) coincide con f(n)

Dim. Usiamo l'induzione matematica su **n**

Base: Se n=o, il primo passo dell'algoritmo ci dice che il valore restituito da funz(o) è 3. Corretto perché f(o)=3.

Esempio: Proviamo la correttezza dell'algoritmo descritto dalla procedura **funz(n)**

Dimostriamo, cioè che il valore restituito dalla procedura **funz(n)** coincide con **f(n)**

Dim.

Ipotesi induttiva: per un \mathbf{n} intero positivo arbitrario, l'algoritmo computa correttamente $\mathbf{f(n)}$, cioè $\mathbf{funz(n)}$ restituisce $\mathbf{f(n)}$.

Passo di induzione: Ora mostriamo che la procedura **funz(n+1)** computa correttamente anche **f(n+1)**.

Esempio: Proviamo la correttezza dell'algoritmo descritto dalla procedura **funz(n)**

Dimostriamo, cioè che il valore restituito dalla procedura **funz(n)** coincide con **f(n)**

Dim.

Passo di induzione:

La procedura funz(n+1) restituisce 2 * funz(n) + 3

Per ipotesi induttiva **funz(n)** coincide con **f(n)**, quindi

$$2 * funz(n) + 3$$
 coincide con $2 * f(n) + 3 = f(n+1)$

Esempio: funzione fattoriale

o!=1 e n!=n * (n-1)! per n≥1

procedure fattoriale(n)

if n=o then return 1

else return n * fattoriale(n-1)

fattoriale(3) = 3 * fattoriale(2) =
fattoriale(2) = 2 * fattoriale(1) =
fattoriale(1) = 1 * fattoriale(0)
fattoriale(0) = 1

Esempio: funzione fattoriale

o!=1 e n!=n * (n-1)! per n≥1

```
procedure fattoriale(n)

if n=o then return 1

else return n * fattoriale(n-1)
```

fattoriale(0) = 1

fattoriale(1) = 1 * 1 = 1

fattoriale(2) = 2 * 1 = 2

fattoriale(3) = 3 * 2 = 6

Proviamo la correttezza dell'algoritmo descritto dalla procedura **fattoriale(n)**

Dimostriamo, cioè che il valore restituito dalla procedura **fattoriale(n)** coincide con **n!**

Dim. Usiamo l'induzione matematica su **n**

Base: Se n=o, il primo passo dell'algoritmo ci dice che il valore restituito da fattoriale(o) è 1. Corretto perché o!=1.

Proviamo la correttezza dell'algoritmo descritto dalla procedura **fattoriale(n)**

Dimostriamo, cioè che il valore restituito dalla procedura **fattoriale(n)** coincide con **n!**

Dim.

Ipotesi induttiva: per un **n** intero positivo arbitrario, l'algoritmo computa correttamente **n!**, cioè **fattoriale(n)** restituisce **n!**

Passo di induzione: Ora mostriamo che la procedura fattoriale(n+1)

computa correttamente anche (n+1)!

Proviamo la correttezza dell'algoritmo descritto dalla procedura **fattoriale(n)**

Dimostriamo, cioè che il valore restituito dalla procedura **fattoriale(n)** coincide con **n!**

Dim.

Passo di induzione:

La procedura fattoriale(n+1) restituisce (n+1) * fattoriale(n)

Per ipotesi induttiva (n+1) * fattoriale(n) coincide con (n+1) * n! = (n+1)!

Esempio: Numeri di Fibonacci

$$F(0)=0$$
, $F(1)=1$ e $F(n)=F(n-1)+F(n-2)$ per n≥2

```
procedure Fibonacci(n)

if n=0 then

return 0

else if n=1 then

return 1

else

return Fibonacci(n-1)+Fibonacci(n-2)
```

Esempio: Numeri di Fibonacci

$$F(0)=0$$
, $F(1)=1$ e $F(n)=F(n-1)+F(n-2)$ per n≥2

Fibonacci(4) = Fibonacci(3) + Fibonacci(2)

Fibonacci(3) = Fibonacci(2) + Fibonacci(1)

Fibonacci(2) = Fibonacci(1) + Fibonacci(0)

Fibonacci($\mathbf{1}$) = $\mathbf{1}$ Fibonacci($\mathbf{0}$) = $\mathbf{0}$

Fibonacci(2) = Fibonacci(1) + Fibonacci(0)

Fibonacci(1) = 1 Fibonacci(0) = 0

Un insieme può essere definito

- Elencando i suoi elementi:
 - {a, b, c} ha elementi a,b,c
- Specificando le proprietà caratteristiche di suoi elementi
 - A = {w | w ha la proprietà P}

Un altro modo per descrivere insiemi è attraverso una definizioni ricorsiva

Un insieme **A** è *definito ricorsivamente* nel modo seguente:

Passo base: Si definiscono uno o più oggetti elementari

Passo ricorsivo: definisce la regola che permette di costruire oggetti più

complessi in termini di quelli già definiti dell'insieme.

Esempio: Sia A un sottoinsieme di interi definito ricorsivamente come segue:

Passo base: $1 \in A$

Passo ricorsivo: se $x \in A$ allora $x + 2 \in A$

Quali sono gli elementi di A?

- *Passo base*: 1 ∈ A
- Applico il *Passo ricorsivo*: $x=1 \in A$ allora $x+2=1+2=3 \in A$
- Applico il *Passo ricorsivo*: $x=3 \in A$ allora $x+2=3+2=5 \in A$
- 1, 3, 5, 7, 9 ∈ A

Le definizioni ricorsive possono essere usate per descrivere insiemi di stringhe

Un alfabeto e un insieme finito di elementi (chiamati lettere o simboli)

■ Ex: L'alfabeto delle lettere romane minuscole è

$$\checkmark \Sigma = \{a, b, ..., z\}$$

Ex: L'alfabeto delle *cifre arabe* è

$$\checkmark \Sigma = \{0,1,...,9\}$$

■ Ex: L'alfabeto binario è

$$\checkmark \Sigma = \{0,1\}$$

Le definizioni ricorsive possono essere usate per descrivere insiemi di stringhe

L'insieme di stringhe Σ^* sull'alfabeto Σ è definito ricorsivamente nel modo seguente

Passo base: la stringa vuota $\lambda \in \Sigma^*$

Passo ricorsivo: Se $w \in \Sigma^*$ e $x \in \Sigma$ allora $wx \in \Sigma^*$

La **lunghezza di una parola** in Σ^* sull'alfabeto Σ è definito ricorsivamente nel modo seguente

Passo base: $I(\lambda) = 0$

Passo ricorsivo: Se $w \in \Sigma^*$ e $x \in \Sigma$ allora I(wx) = I(w) + 1

Le definizioni ricorsive possono essere usate per descrivere parole palindrome

Una stringa è **palindroma** se letta da sinistra a destra o da destra a sinistra da luogo alla stessa sequenza

Esempi: alla, otto, ingegni, Anna, ottetto.

Nota: Per semplicità diamo la definizione per un piccolo alfabeto $\Sigma = \{a, b\}$

L'insieme delle **parole palindrome** sull'alfabeto $\Sigma = \{a,b\}$ è definito ricorsivamente nel modo seguente:

Passo base: a,b,λ sono parole palindrome

Passo ricorsivo: Se w è una parola palindroma allora anche awa e bwb sono

parole palindrome

Le definizioni ricorsive possono essere usate per descrivere espressioni aritmetiche

Una espressione aritmetica è definita ricorsivamente nel modo seguente

Passo base: i numeri (interi o reali) e le variabili sono espressioni aritmetiche

Passo ricorsivo: se E1 ed E2 sono espressioni aritmetiche allora

 $(E_1 + E_2)$, $(E_1 - E_2)$, $(E_1 \times E_2)$, $(E_1 \setminus E_2)$

sono **espressioni aritmetiche**.

Se E e un'espressione aritmetica allora (-E) e un'espressione aritmetica.

Le definizioni ricorsive possono essere usate per descrivere strutture dati

Un albero radicato è un albero contenente un vertice particolare detto radice

Un albero radicato può essere descritto ricorsivamente nel modo seguente

Base: un singolo vertice r è un albero radicato

Passo ricorsivo: Supponiamo che T_1 , T_2 ,, T_n sono **alberi radicati disgiunti** con radici r_1 , r_2 ,, r_n . Allora, il **grafo** formato dalla radice r, che non è in nessuno degli alberi radicati T_1 , T_2 ,, T_n , ottenuto connettendo con un arco r a ciascun r_1 , r_2 ,, r_n è anch'esso un albero radicato

Un **albero binario pieno** è un albero radicato dove ciascun vertice ha **o** oppure **due** figli; se tali figli esistono, essi sono chiamati **figlio destro** e **figlio sinistro**

Un albero binario pieno è descritto ricorsivamente nel modo seguente

Base: un singolo vertice r è un albero binario pieno

Passo ricorsivo: Se T_1 e T_2 sono alberi binari pieni, allora l'albero T_2 formato connettendo la radice T_2 con un arco alla radice del sottoalbero sinistro T_2 e con un altro arco la radice del sottoalbero destro T_2 è un albero binario pieno