MATH 524 - Lecture 29 (12/05/2023)

Today: * o-dimensional cohomology groups

Zono-dimensional Cohomology

Theorem 42.1 [M] $H^{\circ}(K;G)$ is the group of all 0-cochains ϕ° such that $\langle \phi^{\circ}, v \rangle = \langle \phi^{\circ}, w \rangle$ whenever v, w belong to the same component of |K|. In particular, if |K| is connected, then $H^{\circ}(K) \simeq \mathbb{Z}$, and is generated by the cochain whose value is 1 on each vertex of K.

Proof $H^{\circ}(K;G)$ equals the group of 0-cocycles trivially, as there are no (-1)-dimensional simplices. If v,w are vertices that belong to the same component of |K|, there exists a 1-chain \bar{c} of K such that $\partial \bar{c} = v-w$. Then, for any 0-cocycle p° , we have

$$o = \langle \mathcal{S}\phi^{\circ}, \bar{c} \rangle = \langle \phi^{\circ}, \partial \bar{c} \rangle = \langle \phi^{\circ}, v \rangle - \langle \phi^{\circ}, w \rangle.$$

Conversely, let ϕ° be a o-cochain such that $\langle \phi^{\circ}, v \rangle - \langle \phi^{\circ}, w \rangle = 0$ whenever v, w lie in the same component of |K|. Then for each oriented 1-8 implex σ of K,

$$\langle 8\phi, \sigma \rangle = \langle \phi, \partial \sigma \rangle = 0.$$

So we conclude that $S\phi^{\circ}=0$.

In general, $H^{\circ}(K) \simeq \text{direct product of infinite cyclic groups,}$ one for each component of |K|. On the other hand, $H_{\circ}(K) \simeq \text{direct sum of this collection of groups.}$

Relative Cohomology Groups

Def Let $K_o \subseteq K$ be a subcomplex. The group of relative cochains in dimension p is defined as $C^p(K,K_o;G) = Hom(C_p(K,K_o),G)$.

The relative coboundary, also denoted S, is defined as the dual of the relative boundary operator:

 $S^{\dagger}: C^{\dagger}(K,K_{0};G) \longrightarrow C^{\dagger\dagger}(K,K_{0};G).$

We let $Z^{\dagger}(K,K_{0},G_{1})=\ker S^{\dagger}$, $B^{\dagger}(K,K_{0},G_{1})=\inf S^{\dagger}$, and $H^{\dagger}(K,K_{0},G_{1})=Z^{\dagger}(K,K_{0},G_{1})/B^{\dagger}(K,K_{0},G_{1})$.

These are the groups of relative cocycles, relative coboundaries, and the relative cohomology group in Limension p of K modulo Ko.

While the definition is presented in a straightforward manner, the correspondence to the structure of relative homology groups is specified in a dual manner.

For chains, we have the exact sequence $0 \longrightarrow C_p(K_0) \xrightarrow{i} C_p(K) \xrightarrow{j} C_p(K,K_0) \longrightarrow 0$ which splits, because $C_p(K,K_0)$ is free.

For cochains, we get a similar sequence $0 \leftarrow C^{\dagger}(K_0;G) \leftarrow \tilde{i} C^{\dagger}(K;G) \leftarrow \tilde{j} C^{\dagger}(K,K_0;G) \leftarrow 0$ which is exact, and also splits.

 $C^{\dagger}(K_{1}K_{0};G_{1})$ is a subgroup of $C^{\dagger}(K'_{1}G_{1})$ — these are the cochains that vanish on simplices carried by K_{0} . Equivalently, $C^{\dagger}(K,K_{0};G_{1})$ is the group of cochains "carried by" $K-K_{0}$. Hence J is an inclusion map.

is a restriction (or projection) — it is the restriction of cochain ϕ^{\dagger} of $C^{\dagger}(K;G)$ to simplices in K_0 .

So, dual of inclusion i is projection i, and dual of projection j is inclusion j.

Examples of Relative Cohomology

I let k, consist of se, e, e3, e43 and all vertices. Let's evaluate the relative cochains.

Notice that $H_2(k, K_0) \cong \mathbb{Z}$, $\S_{f_0+f_1}\S_{g_0}$ being a generator.

fo, f, are relative 2-whains; and each of them is a relative 2-cocycle (trivially, as there are no 3-simplices). Is either of them a coboundary? No! $Se_1^* = -f_1^*$, $Se_4^* = -f_1^*$ but e_1 , $e_4 \in K_0$.

ez is the only relative 1-cochain. And $Se_{2}^{*} = f_{1}^{*} - f_{0}^{*}$. So f_{1}^{*} and f_{0}^{*} are cohomologous.

 \Rightarrow $H^2(K,K_0) \simeq \mathbb{Z}$, and is generated by $\{f_0^*\}$ or $\{f_1^*\}$. $H'(K,K_0)=0$, as there are no relative 1-cocycles. $8e_{z}^{*}\neq0$, e_{i}^{*} , i=0,1,3,4 are trivial as those $e_{i}\in\mathcal{K}_{o}$.

 $H(K,K_0)=0$, as all 0-cochains are carried by K_0 .