False Data Injection Detection in Cyber-Physical System

Álan Crístoffer e Sousa (alan.e-sousa@univ-reims.fr)

CReSTIC

Supervisor: Prof. Dr. Nadhir Messai Cosupervisor: Prof. Dr. Noureddine Manamanni

Reims

Index

Introduction

False Data Injection Functional Observer

Observer Design

Bank of Observers Observer Design Residual Generator

Results

Robot Arm

Final Considerations

Final Considerations Future Works Perspective

Introduction

False Data Injection

- ✓ **Static False Data Injection**: the attacker changes the sensor reading sent, replacing it statically.
- **X** Dynamic False Data Injection: the attacker changes the sensor reading dynamically, slowly changing it so residuals change slowly.

$$\tilde{x}_j = x_i,$$
 (1)

$$\tilde{x}_j = x_j + \delta, \tag{2}$$

$$\tilde{x}_j = x_j \cdot \alpha,\tag{3}$$

Functional Observer

- \triangleright y(t) are the measured outputs.
- \triangleright z(t) are the states we wish to estimate.
- ► The observer has a reduced order dynamics system which is equivalent to the original one.
- Problem 1: how to find a w(t) that correctly estimates z(t).
- Problem 2: how to find the observer's matrices N, J, H and E.

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) + Lf(t),\\ y(t) &= Cx(t),\\ z(t) &= Fx(t). \end{split} \tag{4}$$

$$\dot{w}(t) = Nw(t) + Jy(t) + Hu(t),$$

$$\hat{z}(t) = w(t) + Ey(t).$$
(5)

Introduction

Observability

- ▶ All desired states z(t) must be observable from the outputs y(t).
- ▶ The observability of (A, C, F) cannot be greater than that of (A, C).
- There must be a path from every output y(t) to every output z(t) in the dynamics graph.

$$rank \begin{bmatrix} C \\ CA \\ F \\ FA \end{bmatrix} = rank \begin{bmatrix} C \\ CA \\ F \end{bmatrix}.$$
 (6)

Introduction

Path Finder Algorithm

Figure: Puma 560 dynamic's graph representation.

Bank of Observers

where

Observer Design

$$\dot{V} \equiv egin{bmatrix} X & W \ W^{ op} & -I \end{bmatrix},$$
 $\lambda \in \mathbb{R}^+$ is a free constant,

P is a semidefinite positive matrix

 $arg min \|P\|_2$

s.t. $\dot{V} \prec 0$

 $P \succ 0$,

with

 $\hat{C}^{\top}\hat{K}^{\top} + PF\hat{A} - \hat{E}C\hat{A} - \hat{K}\hat{C} - \lambda I$ $W = \sqrt{\lambda}(PF - \hat{E}C).$

 $X = \hat{A}^{\top} F^{\top} P - \hat{A}^{\top} C^{\top} \hat{E}^{\top} -$

Observer Design

(7)

(8)

(9)

(10)

 $\hat{A} = AF^+$. $\hat{C} = CF^+,$

 $\hat{K} = PK$,

 $\hat{V} = PV$

 $K = P^{-1}\hat{K}$ $Y = P^{-1}\hat{Y}$. E = U + YV.

 $\hat{E} = PE = PU + \hat{Y}V,$

R = F - EC.

 $N = (RA - KC)F^{+}$. J = K + NE.

(11)

(12)

Observer Design Development

$$\begin{split} e &= \hat{z} - z \\ &= w + Ey - Fx \\ &= w + ECx - Fx. \\ \dot{e} &= \dot{w} + (EC - F)\dot{x} \\ &= Nw + Jy + Hu + (EC - F)(Ax + Bu + Lf) \\ &= Ne + (NF - NEC + ECA - FA + JC)x + \\ &\quad (H + ECB - FB)u + (ECL - FL)f. \end{split} \tag{13}$$

N must be Hurwitz-stable.

$$N(F - EC) - (F - EC)A + JC = 0,$$
 (15)
 $H - (F - EC)B = 0.$

$$\begin{split} (F-EC)L_i &= 0,\\ (F-EC)L_n &\neq 0. \end{split} \tag{16}$$

Observer Design

Observer Design

Observer Design Development

$$V = e^{\top} P e, \qquad (17) \qquad \dot{V} = \dot{e}^{\top} P e + e^{\top} P \dot{e}$$

$$\dot{e} = N e - (F - EC) L_n f, \qquad (18) \qquad = (N e - \lambda R \|e\|)^{\top} P e + e^{\top} P (N e - \lambda R \|e\|)$$

$$e \propto L_n f, \qquad (19) \qquad = e^{T} (N^{\top} P + P N) e - 2\lambda \|e^{\top} P R\| \cdot \|e\| \qquad (23)$$

$$\|L_n f\| = \lambda \|e\|, \qquad (20) \qquad \leq e^{T} (N^{\top} P + P N) e - \lambda (\|e^{\top} P R\|^2 + \|e\|^2)$$

$$\dot{e} = N e - R \lambda \|e\|. \qquad (22) \qquad = e^{T} (N^{\top} P + P N - \lambda P R R^{\top} P - \lambda I) e.$$

Observer Design Development

$$\begin{split} N(F-EC) &= RA - JC, \\ NF &= RA - (J-NE)C, \\ K &= J-NE, \\ N &= RAF^+ - KCF^+, \\ (F-EC)L_i &= 0, \\ ECL_i &= FL_i, \\ E &= FL_i(CL_i)^+ + Y(I-(CL_i)(CL_i)^+), \\ U &= ECL_iL_i^+, \\ V &= I-L_iL_i^+, \\ E &= U+YV. \end{split} \tag{25}$$

$$\dot{V} = e^{T} ((R\hat{A} - EC\hat{A} - K\hat{C})^{\top}P + P(R\hat{A} - EC\hat{A} - K\hat{C}) - \lambda PRR^{\top}P - \lambda I)e.$$

$$= \hat{A}^{\top}F^{\top}P - \hat{A}^{\top}C^{\top}\hat{E}^{\top} - \hat{C}^{\top}K^{\top} + PF\hat{A} - \hat{E}C\hat{A} - K\hat{C} - \lambda PRR^{\top}P - \lambda I.$$
(26)

r = Gw + My

Residual Generator

Results

Figure: Residuals for attack on sensor 7, with $\delta = 1$.

Figure: Residuals for attack on sensor 8, copying the values from sensor 9.

Final Considerations

- The formulation is straightforward, optimization based and extendable.
- The example was a simple system for didactic reasons, but this kind of observer is better suited for large, sparse systems.

Future Works Perspective

- Extend to detect Dynamic False Data Injection attacks.
- Discrete-time version.
- Use with other techniques to detect other types of attacks.

