

Dr Lorenzo Moneta CERN PH-SFT CH-1211 Geneva 23 sftweb.cern.ch root.cern.ch

Fitting and Parameter Estimation in ROOT

ROOT Training at IRMM 26th February 2013

Outline

- Introduction to Fitting:
 - –what is fitting,
 - how to fit a histogram in ROOT,
 - -how to retrieve the fit result.
- Building complex fit functions in ROOT.
- Interface to Minimization.
- Common Fitting problems.
- Using the ROOT Fit GUI (Fit Panel).
- Random number generations in ROOT.
- How to generate random numbers from distributions.

What is Fitting?

- What is Fitting?
 - It is the process used to estimate parameters of an hypothetical distribution from the observed data distribution

Example

Higgs search in CMS (H → γγ)
We fit for the expected number of Higgs events and for the Higgs mass

What is Fitting (2)

- A histogram (or a graph) represents an estimate of an underlying distribution (or a function).
- The histogram or the graph can be used to infer the parameters describing the underlying distribution.
- Assume a relation between the observed variables y and x:

$$-y = f(x \mid \theta)$$

- $f(x \mid \theta)$ is the fit (model) function
- for an histogram y is the bin content
- One typically minimizes the deviations between the observed y and the predicted function values:
 - Least square fit (χ^2):
 - minimize square deviation
 - weighted by the observed errors
 - $-\sigma$ = √N for the histograms

$$\chi^2 = \sum_{i} \frac{(Y_i - f(X_i, \theta))^2}{\sigma_i^2}$$

ML Fit of an Histogram

- Maximum Likelihood (ML) Fit:
 - The parameters are estimated by finding the maximum of the likelihood function (or minimum of the negative log-likelihood function).
 - Likelihood: $L(x|\theta) = \prod P(x_i|\theta)$
- The Likelihood for a histogram is obtained by assuming a Poisson distribution in every bin:
 - Poisson(nobs | nexp)
 - n_{obs} is the observed bin content.
 - n_{exp} is the expected bin content, which can be obtained from the fit model function (the underlying distribution of the histogram)
 - $-n_{\rm exp}$ = f $(x_c | \theta)$, where x_c is the bin center, assuming a linear function within the bin. Otherwise it is obtained from the integral of the function in the bin.
- The least-square fit and the maximum likelihood fit are equivalent when the distribution of observed events in each bin is normal.
 - This is true only for large histogram statistics (large bin contents).
- For low histogram statistics the ML method is the correct one!

Fitting in ROOT

- How do we do fit in ROOT:
 - Create first a parametric function object, TF1, which represents our model, i.e. the fit function.
 - Set the initial values of the function parameters.
 - Fit the data object (Histogram or Graph):
 - call the Fit method on the Histogram or Graphs passing the function object as parameter
 - various options are possibles (see the <u>TH1::Fit</u> documentation)
 - » e.g select type of fit : least-square (default) or likelihood (option "L")
 - the resulting fit function is then drawn on top of the Histogram or the Graph.

– Examine result:

- get parameter values;
- get parameter errors (e.g. their confidence level);
- get parameter correlation;
- get fit quality.

Simple Gaussian Fitting

- Recalling our previous histogram:
 - suppose we do not know how it was generated;
 - we want to estimate the mean and sigma of the underlying gaussian distribution.

Creating the Fit Function

- To create a parametric function object (a TF1):
 - we can use the available functions in ROOT library

```
TF1 * f1 = new TF1("f1","[0]*TMath::Gaus(x,[1],[2])");
```

• or we can use pre-defined functions defined in TFormula (see TFormula documentation for the list of them):

```
TF1 * f1 = new TF1("f1", "gaus");
```

- using pre-defined functions we have the parameter name automatically set to meaningful values.
- initial parameter values are estimated whenever possible.
- We will see later in general how to build a more complex function objects
 - e.g. by using other functions

Fitting Histogram

How to fit the histogram:

- after creating the function one needs to set the initial value of the parameters
- then we can call the Fit method of the histogram class

3.22882e+00

2.44738e-02

```
root [] TF1 * f1 = new TF1("f1", "gaus");
      [] f1->SetParameters(1,0,1);
root [] h1->Fit(f1);
FCN=27.2252 FROM MIGRAD
                                           60 CALLS
                                                          61 TOTAL
                        STATUS=CONVERGED
                  EDM=1.12393e-07
                                  STRATEGY=
                                                           Example histogram
                                                                                 h1
 EXT PARAMETER
                                                                          Entries
                                                                                        1000
                              ERROR
 NO.
      NAME
               VALUE
                                                                          Mean
                                                                                      0.01102
```

For displaying the fit parameters:

Constant

Mean

Sigma

7.98760e+01

9.73840e-01

-1.12183e-02 3.16223e-02

```
gStyle->SetOptFit(1111);
```


Retrieving The Fit Result

- The main results from the fit are stored in the fit function, which is attached to the histogram; it can be saved in a file (except for customized C/C++ functions).
- The fit function can be retrieved using its name:

```
TF1 * fitFunc = h1->GetFunction("f1");
```

- The parameter values using their indices (or their names):
 - fitFunc->GetParameter(par_index);
- The parameter errors:
 - fitFunc->GetParError(par_index);
- It is also possible to access the TFitResult class which has all information about the fit, if we use the fit option "S":

```
TFitResultPtr r = h1->Fit(f1,"S");
r->Print();
TMatrixDSym C = r->GetCorrelationMatrix();
```

C++ Note: the TFitResult class is accessed by using operator-> of TFitResultPtr

Some Fitting Options

- Fitting in a Range
 - h1->Fit("gaus","","",-1.5,1.5);
- Fitting more functions to an histogram (option "+")
 - h1->Fit("expo","+","",2.,4);
- Quite / Verbose:
 - option "Q"/"V".
- Likelihood fit:
 - option "L" for count histograms;
 - option "LW" in case of weighted counts.
- Return a fit result class:
 - option "S"
- Plotting options for the histogram can be passed as well:

```
h1->Fit("gaus","L","E");
```


Time for Exercises!

Put in practice the concepts to which you were just exposed: read the instructions here

https://twiki.cern.ch/twiki/bin/view/Main/RootIRMMTutorial2013FittingExercises

and solve exercise 1

Building More Complex Functions

- It is possible to write some complex formulae and pass as string in the constructor of TF1
 - but difficult and prone to error
- Better to write directly the functions in C/C++
- A parametric TF1 can be constructed from
 - a general free function with parameters:

```
double function(double *x, double *p){
   return p[0]*TMath::Gaus(x[0],p[0],p[1]);
}
TF1 * f1 = new TF1("f1",function,xmin,xmax,npar);
```

- any C++ object implementing double operator() (double *x, double *p)

```
struct Function {
   double operator()(double *x, double *p){
      return p[0]*TMath::Gaus(x[0],p[0],p[1]);}
};
Function func;
TF1 * f1 = new TF1("f1",&func,xmin,xmax,npar,"Function");
```


Minimization

- The fit is done by minimizing the least-square or likelihood function.
- A direct solution exists only in case of linear fitting
 - it is done automatically in such cases (e.g fitting polynomials).
- Otherwise an iterative algorithm is used:
 - Minuit is the minimization algorithm used by default
 - ROOT provides two implementations: Minuit and Minuit2
 - other algorithms exists: Fumili, or minimizers based on GSL, genetic and simulated annealing algorithms
 - To change the minimizer:

```
ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2");
```

Other commands are also available to control the minimization:

```
ROOT::Math::MinimizerOptions::SetDefaultTolerance(1.E-6);
```


Minimization Techniques

- Methods like Minuit based on gradient can get stuck easily in local minima.
- Stochastic methods like simulated annealing or genetic algorithms can help to find the global minimum.

Quadratic Newton Cause-Newton approximation Parameter A

Example: Fitting 2 peaks in a spectrum

Interface to Minimization

- A common interface for all ROOT Minimizer algorithms exists: class ROOT::Math::Minimizer
- All minimizers in ROOT (Minuit, Minuit2, Fumili, GSL minimizers, simulated annealing, genetic) implement this interface
- Using the ROOT plug-in manager it is possible to change the implementation at run-time
- The interface can be used for fitting user defined likelihood or least-square functions
 - -see ROOT <u>tutorial fit/NumericalMinimization.c</u> on how to use this interface

Comments on Minimization

- Sometimes fits converge to a wrong solution
 - Often is the case of a local minimum which is not the global one.
 - This is often solved with better initial parameter values. A minimizer like Minuit is able to find only the local best minimum using the function gradient.
 - Otherwise one needs to use a genetic or simulated annealing minimizer (but it can be quite inefficient, e.g. many function calls).
- Sometimes fit does not converge :

```
Warning in <Fit>: Abnormal termination of minimization.
```

- can happen because the Hessian matrix is not positive defined
 - e.g. there are no minimum in that region →wrong initial parameters;
- numerical precision problems in the function evaluation
 - need to check and re-think on how to implement better the fit model function;
- highly correlated parameters in the fit. In case of 100% correlation the point solution becomes a line (or an hyper-surface) in parameter space. The minimization problem is no longer well defined.

```
PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2

1 0.99835 1.000 0.998
2 0.99835 0.998 1.000
```


Mitigating fit stability problems

- When using a polynomial parametrization:
 - $-a_0+a_1x+a_2x^2+a_3x^3$ nearly always results in strong correlations between the coefficients.
 - problems in fit stability and inability to find the right solution at high order
- This can be solved using a better polynomial parametrization:
 - e.g. Chebychev polynomials

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_2(x) = 2x^2 - 1$
 $T_3(x) = 4x^3 - 3x$
 $T_4(x) = 8x^4 - 8x^2 + 1$
 $T_5(x) = 16x^5 - 20x^3 + 5x$
 $T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1$

Parameter Errors

- Errors returned by the fit are computed from the second derivatives of the likelihood function
 - Asymptotically the parameter estimates are normally distributed. The estimated correlation matrix is then:

$$\hat{\mathbf{V}}(\hat{\boldsymbol{\theta}}) = \left[\left(-\frac{\partial^2 \ln L(\mathbf{x}; \boldsymbol{\theta})}{\partial^2 \boldsymbol{\theta}} \right)_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} \right]^{-1} = \mathbf{H}^{-1}$$

 A better approximation to estimate the confidence level in the parameter is to use directly the log-likelihood function and look at the difference from the minimum.

- Method of Minuit/Minos (Fit option "E")
 - obtain a confidence interval which is in general not symmetric around the best parameter estimate

```
TFitResultPtr r = h1->Fit(f1,"E S");
r->LowerError(par_number);
r->UpperError(par_number);
```


The Fit Panel

- The fitting in ROOT using the FitPanel GUI
 - GUI for fitting all ROOT data objects (histogram, graphs, trees)
- Using the GUI we can:
 - -select data object to fit
 - choose (or create) fit model function
 - set initial parameters
 - -choose:
 - fit method (likelihood, chi2)
 - fit options (e.g Minos errors)
 - drawing options
 - change the fit range

Fit Panel (2)

The Fit Panel provides also extra functionality:

Control the minimization

Contour plot

Scan plot of minimization function

Time for Exercises!

Put in practice the concepts to which you were just exposed: read the instructions here

https://twiki.cern.ch/twiki/bin/view/Main/RootIRMMTutorial2013FittingExercises

and solve exercises 2 and 3

Generating Pseudo Data

- Random number generation in ROOT is done using the TRandom classes
 - Three psudo-random number generator exists, TRandom1, TRandom2 and TRandom3. TRandom is the base class.
 - TRandom3 (a Mersenne-Twister generator) is used by default (it has a very long period, ~ 10⁶⁰⁰⁰ and it is very fast).
 - Random numbers can be generated using the global static variable gRandom

```
root [0] gRandom->Rndm()
(Double_t)9.99741748906672001e-01
```

- TRandom::Rndm() generates uniform number in the [0,1] range.
- Seeding is controlled using TRandom::SetSeed(seed).
- When using seed = 0, independent random streams can be generated (the seed is based on a UUID number).

Random Number Distributions

 The class TRandom provides methods to generate numbers according to some pre-defined distributions

Distributions	Description
Double_t Uniform(Double_t x1,Double_t x2)	Uniform random numbers between x1, x2
Double_t Gaus(Double_t mu, Double_t sigma)	Gaussian random numbers. Default values: mu=0, sigma=1
Double_t Exp(Double_t tau)	Exponential random numbers with mean tau.
Double_t Landau(Double_t mean, Double_t sigma)	Landau distributed random numbers. Default values: mean=0, sigma=1
Double_t BreitWigner(Double_t mean, Double_t gamma)	Breit-Wigner distributed random numbers. Default values mean=0, gamma=1
Int_t Poisson(Double_t mean) Double_t PoissonD(Double_t mean)	Poisson random numbers
<pre>Int_t Binomial(Int_t ntot, Double_t prob)</pre>	Binomial Random numbers
Circle (Double_t &x, Double_t &y, Double_t r)	Generate a random 2D point (x, y) in a circle of radius r
Sphere (Double_t &x, Double_t &y, Double_t &z, Double_t r)	Generate a random 3D point (x, y, z) in a sphere of radius r
Rannor (Double_t &a, Double_t &b)	Generate a pair of Gaussian random numbers with mu=0 and sigma=1

Random Number Distributions (2)

 Random numbers can be generated according to what-ever distribution using accept-rejection techniques (often not very efficient) or by using the inverse of the cumulative (integral) distribution

 ROOT has the method TF1::GetRandom(), which uses this technique to generate random numbers from a generic function object

Time for Exercises!

Put in practice the concepts to which you were just exposed: read the instructions here

https://twiki.cern.ch/twiki/bin/view/Main/RootIRMMTutorial2013FittingExercises

and solve exercise 4

Summary

- We have learned:
 - the concept of fitting,
 - how to fit a histogram in ROOT.
- We have also learned:
 - how to generate random numbers and distributions which can be used to test and validate the fitting procedure.
- We will see later the fitting in practice using some data from IRMM.
- We will see also how fitting can be facilitate by using a tool like RooFit.
- How it can be extended in a statistical framework (RooStats).