Ćwiczenie SOW

Statystyki opisowe i wizualizacja danych

Część teoretyczna

Materiał z wykładu dot. statystyk opisowych i wizualizacji danych.

Zadania do wykonania

Dokonaj opisu statystycznego i wizualizacji danych charakteryzujących samochody.

1. Wczytaj i zmodyfikuj zbiór danych:

```
data = pd.read_csv('carbig.csv')

np.random.seed(int(nr_gr * r_k))

# Replace NaN

columns = ['Acceleration', 'Displacement', 'Horsepower', 'Weight', 'MPG']

for col in columns:
    data[col].fillna(data[col].mode()[0], inplace=True)

# Select columns

x = data[columns].values

# Add random noise (1% variation)

noise_multiplier = 1 + (np.random.rand(*x.shape) * 2 - 1) / 100

x = x * noise_multiplier
```

gdzie za nr_gr wstaw numer swojej sekcji a za r_k aktualny rok kalendarzowy.

Objaśnij powyższe polecenia. Podejrzyj i opisz zmienne.

- 2. Wyznacz wartości minimalne i maksymalne oraz miary średnie (slajdy 22 i 23) dla każdej zmiennej numerycznej (kolumny macierzy x).
- 3. Wyznacz rozstęp, kwartyle, rozstęp międzykwartylowy, odchylenie ćwiartkowe i typowy obszar zmienności (slajd 24) dla każdej zmiennej numerycznej. Utwórz wykresy pudełkowe dla wszystkich zmiennych numerycznych (boxplot).
- 4. Wyznacz miary rozrzutu (slajd 26 i 27) dla każdej zmiennej numerycznej.
- 5. Utwórz histogramy dla każdej zmiennej numerycznej (hist; slajd 32).
- 6. Wyznacz współczynniki asymetrii (skew) oraz kurtozy (kurtosis) dla każdej zmiennej numerycznej (slajdy 30 i 31).
- 7. Utwórz wykres probplot dla każdej zmiennej numerycznej. Wyjaśnij co on obrazuje.
- 8. Utwórz i zinterpretuj wykres parallel_coordinates. Uwaga, przed wykonaniem wykresu dokonaj standaryzacji danych (zscore) i przekształć dane do postaci DataFrame. Dodaj do DataFrame jeszcze jedną kolumnę 'Cylinders'. Potraktuj tę kolumnę jako class_column (patrz opis funkcji parallel_coordinates).

- 9. Wyznacz współczynniki korelacji liniowej dla każdej pary zmiennych numerycznych (slajd 33).
- 10. Utwórz wykres obrazujący współzależności pomiędzy każdą parą zmiennych numerycznych (scatter_matrix; slajd 47).
- 11. Wyznacz dodatkową zmienną (Zuzycie) reprezentującą zużycie paliwa w litrach na 100 km (na podstawie zmiennej MPG). Przyjmij 1 mila = 1,6 km, 1 galon = 3,79 litra. Sporządź wykres zależności zużycia paliwa od MPG. Utwórz wykresy zależności Zuzycie od Acceleration, Displacement, Horsepower, Weight.
- 12. Jakie jest średnie zużycie paliwa w dla samochodów z 3, 4, 5, 6 i 8 cylindrami?

Co powinno znaleźć się w sprawozdaniu

- A) Cel ćwiczenia.
- B) Treść zadania.
- C) Raport z wykonania ćwiczenia. Dla każdego punktu: polecenia Pythona, wyniki (tabele, wykresy), komentarz.
- D) Wnioski końcowe.

Zadania dodatkowe dla ambitnych

1. Zaimplementuj ćwiczenie w innym środowisku, np. Matlab, R, C#, ...

Przykładowe zagadnienia i pytania zaliczeniowe

- 1. Statystyki opisowe i ich implementacje w Pythonie
- 2. Metody wizualizacji danych i ich implementacje w Pythonie
- 3. Materiał ze sprawozdania.

Do przygotowania na następne zajęcia

- 1. Zapoznać się z instrukcją do kolejnego ćwiczenia.
- 2. Zapoznać się z częścią teoretyczną do kolejnego ćwiczenia.