Introduction to Machine Learning

Lecture 12: Convolutional Neural Network (CNN)

Nov 11, 2019

Jie Wang

Machine Intelligence Research and Applications Lab Department of Electronic Engineering and Information Science (EEIS)

http://staff.ustc.edu.cn/~jwangx/

jiewangx@ustc.edu.cn

Introduction

Features

- How to extract discriminative features ?
 - Hand-crafted features: HOG, SIFT, SURF etc Learned features: hidden states of DNN

Hand-crafted Features - Robinson Compass Mask

North East Direction Mask

Contents

- Introduction
- **Network Layers of CNN**
- Learning a CNN
- **Examples of CNN Architectures**
- **More Applications**

Image Classification

- Identifying objects from various scenes is a easy task for human
- However, it is difficult for human to describe (precisely) how he/she can do it

https://medium.com/@tifa2up/image-classification-using-deep-neural-networks-a-beginner-friendly-approach-using-tensorflow-94b0a090ccd4

Hand-crafted Features – Sobel Operator

Hand-crafted Features - HOG

· Histograms of Oriented Gradients

Center: The RGB patch and gradients represented using arrows. Right: The gradients in the same patch represented as numbers

Hand-crafted Features - HOG

· Histograms of Oriented Gradients

https://www.learnopencv.com/histogram-of-oriented-gradients/ Dalal, Navneet, Triggs, et al. Histograms of Oriented Gradients for Human Detection. CVPR, 2005.

Hand-crafted Features - SIFT

Learned Features

- · We can design a new neural network
 - It can detect different patterns
 - It can detect similar patterns in different regions
 - It can roughly preserve the spatial information

Detect the similar patterns in different regions

We can use one filter to detect similar patterns

Hand-crafted Features - SIFT

Scale-Invariant Feature Transform

Lowe D.G. Distinctive Image Features from Scale-Invariant Keypoints[C]// International Journal of Computer Vision. 2004:91-110

Hand-crafted Features vs Learned Features

- Hand-crafted Features
 - Challenging to design
 - Require expert domain knowledge Not flexible

- Learned Features
 - Automatically learned by machines
 - No need of expert domain knowledge

Detect different patterns

- · Most patterns are much smaller in view of the whole image
 - A filter does not have to see the whole image to discover the pattern
 - > One filter connects to small region with less parameters at a time

The spatial information

· For many vision tasks, the detected spatial information can be redundant

Roughly preserve the spatial information

- · The relative location of patterns will be preserved after subsampling
 - Using subsampling to lessen the parameters

Network Layers of CNN

How does CNN work

• A simple but important CNN - LeNet 5

CNN – Convolution Layer

1	1	1	1	1	1
0	0	0	0	1	0
0	1	1	1	0	0
0	0	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

6×6 image

One filter Connects to small region with less parameters at a time

$$1 \times 1 + 1 \times 1 + 1 \times 1$$

 $+0 \times (-1) + 0 \times 1 + 0 \times (-1)$
 $+0 \times 1 + 1 \times (-1) + 1 \times (-1)$

Convolutional Neural Networks (CNN)

- · Try to construct a new neural network
- > One filter connects to small region with less parameters at a time
- One filter uses the same set of parameters for different regions
- Using subsampling to lessen the parameters

Convolution

Pooling (Subsampling)

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Feb. 1998

How does CNN work

· A simple but important CNN - LeNet 5

· Given an input image, how to predict its label?

CNN – Convolution Layer

· Input: Image

1	1	1	1	1	1
0	0	0	0	1	0
0	1	1	1	0	0
0	0	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0
				_	

6×6 image

One filter uses the same

set of parameters for

different regions

CNN - Convolution Layer

1	1	1	1	1	1
0	0	0	0	1	0
0	1	1	1	0	0
0	0	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

6×6 image

Stride = 1

Fi	lter 1	
1	1	1
-1	1	-1
1	-1	-1

2

CNN – Convolution Layer

1	1	1	1	1	1
0	0	0	0	1	0
0	1	1	1	0	0
0	0	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

6×6 image

Stride = 3

5

One filter uses the same set of parameters for different regions

CNN – Convolution Layer

1	1	1	1	1	1
0	0	0	0	1	0
0	1	1	1	0	0
0	0	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

6×6 image

Stride = 1

1 1

1	1	1
-1	1	-1
1	-1	-1

Filter 1

2 2 5

CNN – Convolution Layer

6×6 image

Stride = 1

1	1	1
-1	1	-1
1	-1	-1

Filter 1

CNN – Convolution Layer

0	0	0	0	1	0
0	1	1	1	0	0
0	0	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

6×6 image

Stride = 1

1	1	1
-1	1	-1
1	_1	_1

Filter 1

2 5

CNN – Convolution Layer

1	1	1	1	1	1
0	0	0	0	1	0
0	1	1	1	0	0
0	0	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

6×6 image

Stride = 1

1	-1	-1
-1	1	-1
-1	-1	1

Filter 2

Images the bias and activation function!

 $2\times4\times4$

CNN – Convolution Layer

1. How to deal with the color images?

2. How many parameters in the convolution layer?

3. What is the size of the feature maps?

CNN – Convolution Layer

 How to deal with the color images? -1 -1 -1 1 -1 -1 1 -1 -1 -1 colorful images

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Feature maps is also a "colorful images"!

CNN - Convolution Layer

How to deal with the colorful images?

CNN - Convolution Layer

· How many parameters in the convolution layer?

Filter 1 $9 = 3 \times 3$

Filter 2 $9 = 3 \times 3$

Filter N

$$9 = 3 \times 3$$

There are
$$9N$$
 parameters

The power of sharing weights!

CNN – Convolution Layer

Padding

- Two ways
 - 1. Ignore the extra pixels
 - 2. Fill with zero

Add P_H and P_W zeros

Feature maps =
$$N \times \left(\frac{H-n+P_H}{s} + 1\right) \times \left(\frac{W-n+P_W}{s} + 1\right)$$

参考 cs231n 2017 lecture5, page62和 https://www.tensorflow.org/api_ uides/python/nn#Notes_on_SAk Convolution Padding

CNN - Pooling Layer

The output from the convolution layer can be huge

Input image:
$$1\times96\times96$$
 Filters: $400\times8\times8$ Feature maps= $400\times(96-8+1)\times(96-8+1)$ Stride: 1

· Output of the convolution layer

$$3168400 = 400 \times (96 - 8 + 1) \times (96 - 8 + 1)$$

- Hard to train
- Overfitting

CNN – Pooling Layer

· Average Pooling Filter 1 -1 1 -1 -1 -1 5 2 2 -2 2 0 2.25 -1 5 1 0 1 0.75 0 1 3 0 Pooled Feature

Convolved Feature

CNN – Convolution Layer

· What is the size of the feature maps?

CNN - Pooling Layer

LeNet 5

CNN - Pooling Layer

CNN - Pooling Layer

Convolved Feature
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," NIPS,

CNN - Convolution + Pooling

LeNet 5

Learned Features by CNN

· Deeper layers, more specific features

Zeiler M D, Fergus R. Visualizing and Understanding Convolutional Networks[J]. 2013, 8689:818-833.

CNN – Fully connected layer

CNN – Hyperparameters

- · Convolution layers
 - Number of filters
 - Size of filters
 - Stride
- Pooling layers
 - Window size
 - Window stride
- Fully connected layers
 - Number of layers
 - Number of neurons

CNN - Convolution + Pooling

LeNet 5

Why more convolution and pooling layer?

CNN – Fully connected layer

LeNet 5

CNN – Visualization

3D convolutional network visualization http://scs.ryerson.ca/~aharley/vis/conv/
A. W. Harley, "An Interactive Node-Link Visualization of Convolutional Neural Networks," in ISVC, pages 867-877, 2015

CNN - Traditional Methods

Comparison

	Traditional Methods	CNN
Filters	Manually design	Learn automatically
Layers	Few	Can be quite some
Features	Low level features	From low to high level features

CNN is more powerful!

Learning a CNN

Backpropagation

A simple but important CNN – LeNet 5

- · Back-propagation Chain rule
- How to compute the gradients of convolution layers and pooling layers?

Backpropagation – Convolution Layer

$$\begin{split} &\frac{\partial E}{\partial \boldsymbol{O}} = \boldsymbol{\nabla} E\left(O_{11}, O_{12}, O_{21}, O_{22}\right) \\ &= \left(\frac{\partial E}{\partial O_{11}}, \frac{\partial E}{\partial O_{21}}, \frac{\partial E}{\partial O_{21}}, \frac{\partial E}{\partial O_{22}}\right)^T \\ &\boldsymbol{O} = f(\boldsymbol{F}, \boldsymbol{X}) = \left(O_{11}, O_{12}, O_{21}, O_{22}\right)^T \triangleq \left(f_1(\boldsymbol{F}, \boldsymbol{X}), f_2(\boldsymbol{F}, \boldsymbol{X}), f_3(\boldsymbol{F}, \boldsymbol{X}), f_4(\boldsymbol{F}, \boldsymbol{X})\right)^T \\ &\frac{\partial O}{\partial F_{11}} = \left(\frac{\partial f_1}{\partial F_{11}}, \frac{\partial f_2}{\partial F_{11}}, \frac{\partial f_3}{\partial F_{11}}, \frac{\partial f_4}{\partial F_{11}}, \frac{\partial f}{\partial F_{11}}\right)^T \end{split}$$

Backpropagation – Convolution Layer

$$\begin{aligned} \boldsymbol{O} &= f\left(\boldsymbol{F}; \boldsymbol{X}\right) & f_{1}(\boldsymbol{X}) = o_{11} = F_{11}X_{11} + F_{12}X_{12} + F_{21}X_{21} + F_{22}X_{22} \\ & f_{2}(\boldsymbol{X}) = o_{12} = F_{11}X_{12} + F_{12}X_{13} + F_{21}X_{22} + F_{22}X_{23} \\ & f_{3}(\boldsymbol{X}) = o_{21} = F_{11}X_{21} + F_{12}X_{22} + F_{21}X_{31} + F_{22}X_{32} \\ & f_{4}(\boldsymbol{X}) = o_{22} = F_{11}X_{22} + F_{12}X_{23} + F_{21}X_{32} + F_{22}X_{33} \end{aligned}$$

$$\frac{\partial f_{1}}{\partial F_{11}} = X_{11} \qquad \frac{\partial f_{2}}{\partial F_{11}} = X_{12} \qquad \frac{\partial f_{3}}{\partial F_{11}} = X_{21} \qquad \frac{\partial f_{4}}{\partial F_{11}} = X_{22} \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ \frac{\partial f_{1}}{\partial F_{22}} = X_{22} \qquad \frac{\partial f_{2}}{\partial F_{22}} = X_{23} \qquad \frac{\partial f_{3}}{\partial F_{22}} = X_{32} \qquad \frac{\partial f_{4}}{\partial F_{22}} = X_{33} \end{aligned}$$

Loss functions

Mean squared error (MSE)

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

· Cross entropy loss

$$Loss = -\sum_{i=1}^{n} Y_i \log p_i$$

User defined loss

Backpropagation - Convolution Layer

- The output of convolution operation $\mathbf{0} = f(\mathbf{F}, \mathbf{X})$
- The loss E
- Assume that we have already computed $\frac{\partial E}{\partial o_{ij}}$, and of course all partial derivatives of latter layers

Backpropagation – Convolution Layer

$$\begin{split} \frac{\partial E}{\partial F_{11}} &= \frac{\partial E}{\partial O_{11}} \frac{\partial f}{\partial F_{11}} + \frac{\partial E}{\partial O_{12}} \frac{\partial f}{\partial F_{11}} + \frac{\partial E}{\partial O_{21}} \frac{\partial f}{\partial F_{11}} + \frac{\partial E}{\partial O_{22}} \frac{\partial f}{\partial F_{11}} \\ \frac{\partial E}{\partial F_{12}} &= \frac{\partial E}{\partial O_{11}} \frac{\partial f}{\partial F_{12}} + \frac{\partial E}{\partial O_{12}} \frac{\partial f}{\partial F_{12}} + \frac{\partial E}{\partial O_{21}} \frac{\partial f}{\partial F_{12}} + \frac{\partial E}{\partial O_{22}} \frac{\partial f}{\partial F_{12}} \\ \frac{\partial E}{\partial F_{21}} &= \frac{\partial E}{\partial O_{11}} \frac{\partial f}{\partial F_{21}} + \frac{\partial E}{\partial O_{12}} \frac{\partial f}{\partial F_{21}} + \frac{\partial E}{\partial O_{21}} \frac{\partial f}{\partial F_{21}} + \frac{\partial E}{\partial O_{22}} \frac{\partial f}{\partial F_{21}} \\ \frac{\partial E}{\partial F_{22}} &= \frac{\partial E}{\partial O_{11}} \frac{\partial f}{\partial F_{22}} + \frac{\partial E}{\partial O_{12}} \frac{\partial f}{\partial F_{22}} + \frac{\partial E}{\partial O_{21}} \frac{\partial f}{\partial F_{22}} + \frac{\partial E}{\partial O_{21}} \frac{\partial f}{\partial F_{22}} + \frac{\partial E}{\partial O_{21}} \frac{\partial f}{\partial F_{22}} \\ \frac{\partial E}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} &= \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} \\ \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} &= \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{22}} \frac{\partial F}{\partial F_{22}} \\ \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} &= \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} \\ \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} &= \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} \\ \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} &= \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} + \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial F_{22}} \\ \frac{\partial F}{\partial O_{21}} \frac{\partial F}{\partial O_{21$$

Backpropagation – Convolution Layer

$$\begin{split} \frac{\partial E}{\partial F_{11}} &= \frac{\partial E}{\partial O_{11}} X_{11} + \frac{\partial E}{\partial O_{12}} X_{12} + \frac{\partial E}{\partial O_{21}} X_{21} + \frac{\partial E}{\partial O_{22}} X_{22} \\ \frac{\partial E}{\partial F_{12}} &= \frac{\partial E}{\partial O_{11}} X_{12} + \frac{\partial E}{\partial O_{12}} X_{13} + \frac{\partial E}{\partial O_{21}} X_{22} + \frac{\partial E}{\partial O_{22}} X_{23} \\ \frac{\partial E}{\partial F_{21}} &= \frac{\partial E}{\partial O_{11}} X_{21} + \frac{\partial E}{\partial O_{12}} X_{22} + \frac{\partial E}{\partial O_{21}} X_{31} + \frac{\partial E}{\partial O_{22}} X_{32} \\ \frac{\partial E}{\partial F_{22}} &= \frac{\partial E}{\partial O_{11}} X_{22} + \frac{\partial E}{\partial O_{12}} X_{23} + \frac{\partial E}{\partial O_{21}} X_{32} + \frac{\partial E}{\partial O_{22}} X_{33} \end{split}$$

Backpropagation – Convolution Layer

$\begin{array}{c|ccccc} X_{11} & X_{12} & X_{13} \\ \hline X_{21} & X_{22} & X_{23} \\ \hline X_{31} & X_{32} & X_{33} \\ \hline \end{array}$

$$\begin{split} \frac{\partial E}{\partial F_{11}} &= \frac{\partial E}{\partial O_{11}} X_{11} + \frac{\partial E}{\partial O_{21}} X_{12} + \frac{\partial E}{\partial O_{21}} X_{21} + \frac{\partial E}{\partial O_{22}} X_{22} \\ \frac{\partial E}{\partial F_{12}} &= \frac{\partial E}{\partial O_{11}} X_{12} + \frac{\partial E}{\partial O_{12}} X_{13} + \frac{\partial E}{\partial O_{21}} X_{22} + \frac{\partial E}{\partial O_{22}} X_{23} \\ \frac{\partial E}{\partial F_{21}} &= \frac{\partial E}{\partial O_{11}} X_{21} + \frac{\partial E}{\partial O_{12}} X_{22} + \frac{\partial E}{\partial O_{21}} X_{31} + \frac{\partial E}{\partial O_{22}} X_{32} \\ \frac{\partial E}{\partial F_{22}} &= \frac{\partial E}{\partial O_{11}} X_{22} + \frac{\partial E}{\partial O_{12}} X_{23} + \frac{\partial E}{\partial O_{21}} X_{32} + \frac{\partial E}{\partial O_{22}} X_{33} \end{split}$$

Backpropagation – Convolution Layer

$$\begin{aligned} \boldsymbol{O} &= f(\boldsymbol{F}; \boldsymbol{X}) \quad f_1(\boldsymbol{X}) = O_{11} = F_{11}X_{11} + F_{12}X_{12} + F_{21}X_{21} + F_{22}X_{22} \\ & f_2(\boldsymbol{X}) = O_{12} = F_{11}X_{12} + F_{12}X_{13} + F_{21}X_{22} + F_{22}X_{23} \\ & f_3(\boldsymbol{X}) = O_{21} = F_{11}X_{21} + F_{12}X_{22} + F_{21}X_{31} + F_{22}X_{32} \\ & f_4(\boldsymbol{X}) = O_{22} = F_{11}X_{22} + F_{12}X_{23} + F_{21}X_{32} + F_{22}X_{33} \end{aligned}$$

$$\frac{\partial E}{\partial X_{11}} = \frac{\partial E}{\partial O_{1}} F_{11} + \frac{\partial E}{\partial O_{12}} 0 + \frac{\partial E}{\partial O_{22}} 0 + \frac{\partial E}{\partial O_{22}} 0 - \frac{\partial E}{\partial X_{12}} = \frac{\partial E}{\partial O_{11}} F_{12} + \frac{\partial E}{\partial O_{12}} F_{11} + \frac{\partial E}{\partial O_{22}} 0 - \frac{\partial E}{\partial V_{22}} 0 - \frac{\partial E}{\partial V_{23}} 0 - \frac{\partial E}{\partial O_{13}} 0 + \frac{\partial E}{\partial O_{12}} F_{12} + \frac{\partial E}{\partial O_{22}} 0 - \frac{\partial E}{\partial O_{23}} 0 - \frac{\partial E}{\partial O_{2$$

Backpropagation – Pooling Layer

Max Pooling

4×4 Input

LeNet (1998)

Gradient-based learning applied to document recognition

[Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner 1998]

LeNet-5

5 layers

2×2 output

Backpropagation – Convolution Layer

$$\begin{split} \frac{\partial E}{\partial \boldsymbol{O}} &= \boldsymbol{\nabla} E(O_{11}, O_{12}, O_{21}, O_{22}) \\ &= \left(\frac{\partial E}{\partial O_{11}}, \frac{\partial E}{\partial O_{12}}, \frac{\partial E}{\partial O_{22}}, \frac{\partial E}{\partial O_{22}}\right)^T \end{split}$$

$$\begin{aligned} \boldsymbol{O} &= f(\boldsymbol{F}, \boldsymbol{X}) = (O_{11}, O_{12}, O_{21}, O_{22})^T \triangleq \left(f_1(\boldsymbol{F}, \boldsymbol{X}), f_2(\boldsymbol{F}, \boldsymbol{X}), f_3(\boldsymbol{F}, \boldsymbol{X}), f_4(\boldsymbol{F}, \boldsymbol{X})\right)^T \\ \frac{\partial \boldsymbol{O}}{\partial X_{11}} &= \left(\frac{\partial f_1}{\partial X_{11}}, \frac{\partial f_2}{\partial X_{11}}, \frac{\partial f_3}{\partial X_{11}}, \frac{\partial f_4}{\partial X_{11}}\right)^T \end{aligned}$$

Backpropagation – Convolution Layer

Examples of CNN Architecture

ImageNet (Benchmark dataset)

- ImageNet
 - About 1.5×10⁷ images, 2.2×10⁴ categories
 - An image database organized according to the WordNet hierarchy

ISVRC

Classification Task

Classification + Localization Task

Deng et al. 2009, Russakovsky et al. 2015

Example credit: Fei-Fei Li and Jia Deng

VGGNet (2014)

Very Deep Convolutional Networks for Large-Scale Image Recognition

VGG-16 16 layers (trainable) &

VGG-19 19 layers (trainable)

Top-5 Error rate: 7.3% (VGG-19)

Top-5 Error rate: 6.7%

GooLeNet (2014)

· Going Deeper with Convolutions

Only 3 layers???

[Karen Simonyan, Andrew Zisserman 2014]

22 layers!!!

ResNet

AlexNet (2012)

ImageNet Classification with Deep Convolutional Neural Networks

[Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton 2012]

GooLeNet (2014)

Going Deeper with Convolutions

[Karen Simonyan, Andrew Zisserman 2014]

ResNet

· Deep Residual Learning for Image Recognition

[Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 2015]

ResNet

Only 2 layers??? Of course NOT!!!

152 layers!!!

Top-5 Error rate: 3.57%

Hardware

- Trend
 - Deeper than deeper
- > Need a great number of computation resources

Hardware Thanks to NVIDIA!

Software

More Applications

Applications – Object Detection

Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015.

Applications – Style Transfer

Gatys L A, Ecker A S, Bethge M. Image Style Transfer Using Convolutional Neural Networks. CVPR, 2016.

Applications – Text Classification

Applications – Object Detection

Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015

Applications – Style Transfer

Gatys L A, Ecker A S, Bethge M. Image Style Transfer Using Convolutional Neural Networks. CVPR, 2016.

Applications – Speech Recognition

Abdel-Hamid O, Mohamed A R, Jiang H, et al. Convolutional Neural Networks for Speech Recognition[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2014, 22(10):1533-1545.

Materials

- Paper: Gradient-based Learning Applied to Document Recognition
 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, 1998.
- Paper: Deep Learning
 - Y. Lecun, Y. Bengio, and G. Hinton, Nature, 2015.
- Course: Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
- · Tool: CNN Visualization

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

Questions

