

Modelling range shifts

Mean range size change % spp. lose range % spp. >50% range loss	Europe -20% 78% 25%	Africa -4% 62% 24%	RR spp. +7% 60% 44%
Mean range shift (km)	301	596	144
Mean range overlap	42%	50%	47%
% spp. <10% overlap	12%	11%	20%
% spp >90% overlap & <10% range loss	2%	14%	18%

 Climate is not the only determinant of species ranges

- So, exposure to CC is just one component of vulnerability to CC impacts
- Need to consider sensitivity and adaptive capactiy

Sensitivity:

- The potential for species to cope with CC in situ
- Assessed by scoring traits such as habitat/microhabitat specialisation, narrow environmental tolerances, potential for disruption of environmental triggers, interspecific interactions, & rarity

Adaptive capacity:

- Extent to which species is capable of mitigating the impacts of changes in their immediate environment through dispersal and/or microevolutionary change
- Assessed by scoring dispersal ability, dispersal barriers, low genetic diversity, long generation time and low reproductive output

Exposure:

- The degree of environmental change expected based on sea level rise and projected changes in monthly temperature and precipitation (means and variability) across species' ranges
- Score each species for each trait. Upper quartile of scores defined as 'high'
- Species scoring high for exposure, sensitivity & 'unadaptiveness' = highly susceptible

Potential adapters (5)

May not be threatened

Monitor and support adaptive responses

Highly Susceptible (7)

Of greatest concern

Specific research needed. Interventions probably needed

Monitor population trends

b

Assessing impacts on IBA network

- Fynbos, Afrotropical Highlands, Namib-Karoo: lose most
- Sudan/Guinea Savanna, Sahara-Sindian biomes: gain most

The Future Role of Protected Areas

➤ Persistence of individual priority species by 2085 within IBAs for which they trigger designation

Retain suitable climate space somewhere within the network 62-93 species (8-11%)

Lose all suitable climate space from within the network 7-8 species (0.9-1%)

Retain suitable climate space in ≥ 1 IBA in which they currently trigger designation 714-746 species (88-92%)

 Indicates remarkably high persistence of priority species (i.e. network robustness)

What do these results mean for individual sitemanagers?

Conservation Biology

Contributed Paper

Toward a Management Framework for Networks of Protected Areas in the Face of Climate Change

DAVID G. HOLE,*† BRIAN HUNTLEY,*†† JULIUS ARINAITWE,‡ STUART H. M. BUTCHART,§
YVONNE C. COLLINGHAM,* LINCOLN D. C. FISHPOOL,§ DEBORAH J. PAIN,**‡‡
AND STEPHEN G. WILLIS*

*School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom †Science & Knowledge Division, Conservation International, 2011 Crystal Drive, Arlington, VI 22202, U.S.A. ‡BirdLife Africa Partnership Secretariat, P.O. Box 3512, 00100 GPO, Nairobi, Kenya §BirdLife International, Wellbrook Court, Girton Road, Cambridge, Cambridgeshire CB3 0NA, United Kingdom **Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire SG19 2DL, United Kingdom

- > Translating models into adaptive management
 - Method for categorizing PAs based on the projected numbers of emigrants and immigrants.

Hole et al. (2011) Cons Biol

> Reserve Categorization

> IBA Categorization

Assessing impacts on IBA network

Identify management options for different categories

- e.g. habitat management, restoration and creation aimed at maximising extent & suitability of microhabitats & habitats for potential colonists/emigrants/persistent species
- e.g. management of disturbance regimes (fire, flood, grazing etc) to inhibit/facilitate ecological succession depending on needs of emigrants/colonists
- e.g. site expansion to capture adjacent habitats suitable for potential colonists/emigrants/persistent species

Assessing impacts on IBA network

Management options for different categories

	Emigrating	Colonizing	Persisting	Habitat management	Disturbance regime management	Translocati on	Area addition s	Matrix management
High Persistence	L	L	Н	Р	Natural		Refugia	
Increasing Special- ization	Н	L	L	Е	Arrest succession	Е		Е
High Turnover	Н	Н	L	E+C	Balance	E+C	у	E+C
Increasing Value	L	Н	Н	E+C	Balance	С	у	С
Increasing Diversifi- cation	М	М	М	?	?	?	?	?

Projected species 'movement'

> Estimating direction of movement

Upper Guinea Forest endemic birds – range shift

Fill gaps and facilitate movement of species

Mitigation impacts

spatial patterns of crop expansion across the tropics

Monitoring & indicators

Climatic Impact Index for European birds Gregory, Willis *et al.* (2009)

Possible solution – translocating species

