Tasks & Mini-projects

Sign up to take on a task & mini-assignment - whether it's writing a code snippet or planning out a more abstract goal or writing documentation and creating the final presentation! Every contribution, small or large, helps make our project that much better.

Task	Description	Requires running full dataset*	Assignee (can have multiple!)	Helper
Writing a schema	List the variables we create, types, would be helpful to track whether we generated it or it existed in the original doc	N		
Standardization of 'Location Type' col	Group similar categories (e.g. "RESIDENTIAL Building" & "Residential Building/Home"	~Y	Vivek Agarwal	
Standardization of 'Complaint Type'	Clean up odd chars (e.g. \) and group similar	~Y	Chet	Victoria Levchenko, JP
Standardization/ Creation of date fields	Also creating fields with "year & week", week, season, month	N	Victoria Levchenko	
Create features around location data		~Y	JP	
Standardization of Address cols	Columns: 'Incident Zip', 'Incident Address', 'Street Name', 'Cross Street 1', 'Cross Street 2', 'Intersection Street 1', 'Intersection Street 2', 'Address Type', 'City'	~Y	@kathelyn	Victoria Levchenko
Data quality checks		~Y	Akash	
Visualize	A visual of concentrations, if	Y		

location data by "Agency" (maybe interactive?)	any, of where diff. Agencies receive the most complaints			
Visualize location data by "Complaint Type" (maybe interactive?)	A visual of concentrations, if any, of different complaint types	Υ	Vikram Setlur	
Holdout 311 dataset - using a combination of NYC and other cities' 311 data	Find/create a hold out dataset to improve testing	N	Marvin Mananghaya	

^{* &}quot;Requires running full dataset" is a flag to inform team members who may not be able to work off the full dataset if a task requires it. Otherwise the sample dataset will work well!

Breaking down larger tasks into code snippets!

Standardization of selected fields

Location type

Created a function named **standardizeLocations** place in the file **utils.py**. This function will accept a pandas dataframe. It would combine the 161 Location types into a smaller set of 45 different categories. Similar categories will be merged, for example RESIDENTIAL BUILDING, Residential Building/House, 3+ Family Apt. Building, 1-2 Family Dwelling etc have been merged under 'Residential'. Most values less than 100 have been merged into 'Other'. Standardized locations will be placed in a separate column named '**Standardized Locations**' in the same dataframe. This file can be found here:

https://github.com/datakind/msvdd_311/tree/jp_datacleaning_eda

Spreadsheet used to do analysis can be found here. This sheet will help to easily update the mapping table and generate new code.

https://docs.google.com/spreadsheets/d/1Bkg3i_ebdcZzZPJ_X1nKrSfeseTgK9bUUNTX1UUB3 ag/edit?usp=sharing

- Complaint type
- 7

Approach - Create a lookup table

- 1.) Generate distinct values of the selected field
- 2.) Generate look-up column manually annotate
- 3.) Perform look-up

Things to discuss:

1.) Standardized values

EDA

List any interesting observations you see with the data. Be sure to list your name/slack handle in case another team member has a question about it!

- missing values can be relevant to classify the complaint type. For example, when
 'Vehicle Type' is not missing, most of the "Complaint Type" is about "For Hire Vehicle Complaint".
 - Percentage of missing values for columns: {'Closed Date': 3.721856749729175, 'Descriptor': 0.7302612655286058, 'Location Type': 22.01530929848839, 'Incident Zip': 3.993754928154484, 'Incident Address': 13.793823904429223, 'Street Name': 13.798117033562251, 'Cross Street 1': 39.68282361965166, 'Cross_Street_2': 39.91050256800675, 'Intersection_Street_1': 78.96953452462897, 'Intersection_Street_2': 79.02920901957809, 'Address_Type': 9.826972585508399, 'City': 4.7440507963039025, 'Landmark': 93.32575834548528, 'Facility_Type': 15.50163067354903, 'Due_Date': 64.1609579974556, 'Resolution_Description': 8.209321528182247, 'Resolution Action Updated Date': 1.8967044509731807, 'BBL': 18.970335908733798, 'X Coordinate State Plane ': 6.558327167922884, 'Y_Coordinate__State_Plane_': 6.558327167922884, 'Vehicle_Type': 'Taxi Pick Up Location': 99.22365914844352, 'Bridge Highway Name': 99.85102841908382, 'Bridge_Highway_Direction': 99.83543004990048, 'Road Ramp': 99.83557315420491, 'Bridge Highway Segment': 99.77546934634248, 'Latitude': 6.558327167922884, 'Longitude': 6.558327167922884, 'Location': 6.558327167922884}

Missing values count (on 15% data) in descending order - the ranking should generalize to the larger dataset if it is a representative sample

	colname
Vehicle.Type	698731
Taxi.Company.Borough	698232
Bridge.Highway.Name	697750
Road.Ramp	697648
Bridge.Highway.Direction	697642
Bridge.Highway.Segment	697229
Taxi.Pick.Up.Location	693366
Landmark	652152
Intersection.Street.2	552249
Intersection.Street.1	551832
Facility.Type	507743
Due.Date	448351
Cross.Street.2	278891
Cross.Street.1	277300
Location.Type	155108
BBL	132563
Street.Name	96432
Incident.Address	96390
Address.Type	68670
Resolution.Description	57552
Latitude	45829
Longitude	45829
Y.CoordinateState.Plane.	45829
X.CoordinateState.Plane.	45829
Location	45829
City	33166
Incident.Zip	27924
Closed.Date	26008
Resolution.Action.Updated.Date	13254
Descriptor	9905
Park.Facility.Name	63
Borough	0
Community.Board	0
Open.Data.Channel.Type	0
Park.Borough	0
Created.Date	0
Status	0

- Consider using more generalizable geo fields/features that can apply to other cities
 - o Currently looking into Location Type & Facility Type
 - -JP & Marvin
- Column profiles (for sample)

Dataset info

Column types

Number of columns	41
Number of rows	698791
Total Missing (%)	θ
Total size in memory	-1 Bytes

Ca	ategorical	θ
	Numeric	θ
	Date	θ
	Array	θ
Not	available	θ

Agency	Frequency			
categorical	Value	Count	Frecuency (%)	
Unique 28	NYPD	207485	29.69%	
Unique (%) 0.0	HPD	143975	20.6%	
Missing θ	DSNY	98732	14.13%	
Missing (%) θ.θ	DOT	76827	10.99%	
D-4-4	DEP	51994	7.44%	
Datatypes	DOB	35756	5.12%	
String 698791	DPR	30404	4.35%	
Integer	DOHMH	17735	2.54%	
Decimal	DOF	11788	1.69%	
Bool	TLC	8520	1.22%	
Date	"Missing"	θ	0.0%	
Missing θ				
Null 0				

Landmark	Frequency			
null	Value	Count	Frecuency (%)	
Unique 4656	None	652152	93.33%	
Unique (%) 0.67	BROADWAY	537	0.08%	
Missing 652152	5 AVENUE	315	0.05%	
Missing (%) 93.33	7 AVENUE	224	0.03%	
D-4-4	PARSONS BOULEVARD	218	0.03%	
Datatypes	3 AVENUE	210	0.03%	
String 46639	2 AVENUE	199	0.03%	
Integer	8 AVENUE	179	0.03%	
Decimal	DEKALB AVENUE	178	0.03%	
Bool	ST NICHOLAS AVENUE	175	0.03%	
Date	"Missing"	652152	93.33%	
Missing 0				
Null 652152				

Code snippets 🞉

Standardization/Creation of date fields < Python syntax>

There are 4 date fields to clean:

```
# ALTER object types to datatime for date columns

df['Created Date'] = pd.to_datetime(df['Created Date'])

df['Created Date'] = pd.to_datetime(df['Closed Date'])

df['Due Date'] = pd.to_datetime(df['Due Date'])

df['Resolution Action Updated Date'] = pd.to_datetime(df['Resolution
Action Updated Date'])
```

```
def clean_col(col):
    col = col.tolist()
    ls col = []
    for c in col:
        c = re.sub('[^a-zA-Z-]','',c)
        c = c.split()
        c = ' '.join(c)
        c = c.lower()
        ls_col.append(c)
    return ls_col
import nltk
from nltk.stem import PorterStemmer
from nltk.tag import pos_tag
from nltk.corpus import wordnet
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
def cleaner_col(col, lemmatize=True, stem=False):
    ps = PorterStemmer()
    wnl = WordNetLemmatizer()
    col = col.tolist()
    ls_col = []
    for c in col:
        c = re.sub('[^a-zA-Z-]','',c)
        c = c.split()
        c = ' '.join(c)
        c = c.lower()
        ls\_word = []
        eng_stopwords = set(stopwords.words('english'))
        for word in c.split():
            word = re.sub(r'[-/]','',word)
            if word not in eng_stopwords:
                if lemmatize is True:
                    word=wnl.lemmatize(word)
                elif stem is True:
                    if word == 'oed':
                        continue
```

```
word=ps.stem(word)

ls_word.append(word)
words = ' '.join(ls_word)
ls_col.append(words)

return ls_col

Use case:
df['CitySvcReq'] = cleaner_col(df['Complaint.Type'])
```

This is to standardize address columns

```
# converting dtype float to str
df['Incident Address'] = df['Incident Address'].astype(str)
df['Street Name'] = df['Street Name'].astype(str)
df['Cross Street 1'] = df['Cross Street 1'].astype(str)
df['Cross Street 2'] = df['Cross Street 2'].astype(str)

def normalize_case(df,text_field):
    df['text_field'] = df['text_field'].str.lower()
    return df

def remove_punc(df,text_field):
    df['text_field'] = df['text_field'].str.replace('[^\w\s]','')
    return df
```

Possible checklist to clean text data:

1. Removing all irrelevant chars such as any non alphanumeric chars

- 2. Tokenize text by separating it into individual words
- 3. Remove words that are not relevant, such as "@"
- 4. Convert all chars to lowercase
- 5. Consider combining misspelled or alternately spelled words to a sing representation
- 6. Consider lemmatization
- 7. Removing stop words

Some latitude & longitude features:

```
borough to location = {'MANHATTAN': [40.7831,-73.9712],
               'BROOKLYN': [40.6782,-73.9442],
               'BRONX': [40.8448,-73.8648],
               'QUEENS':[40.7282,-73.7949],
               'STATEN ISLAND': [40.5795,-74.1502],
               'Unspecified':[0,0]}
def sphere dist(first lat, first lon, second lat, second lon):
  #Define earth radius (km)
  R earth = 6371
  #Convert degrees to radians
  first_lat, first_lon, second_lat, second_lon = map(np.radians,[first_lat, first_lon,
second lat, second lon])
  #Compute distances along lat, lon dimensions
  dlat = second lat - first lat
  dlon = second lon - first lon
  #Compute haversine distance
  a = np.sin(dlat/2.0)**2 + np.cos(first lat) * np.cos(second lat) *
np.sin(dlon/2.0)**2
  return 2 * R_earth * np.arcsin(np.sqrt(a))
def dummy manhattan distance(first lat, first lon, second lat, second lon):
  a = sphere_dist(first_lat, first_lon, second_lat, second_lon)
  b = sphere dist(first lat, first lon, second lat, second lon)
  return a + b
def bearing_array(first_lat, first_lon, second_lat, second_lon):
  R earth = 6371 # in km
  lng delta rad = np.radians(second lon - first lon)
  first lat, first lon, second lat, second lon = map(np.radians, (first lat, first lon,
second lat, second lon))
  y = np.sin(lng_delta_rad) * np.cos(second_lat)
  x = np.cos(first lat) * np.sin(second lat) - np.sin(first lat) * np.cos(second lat)
* np.cos(lng_delta_rad)
  return np.degrees(np.arctan2(y, x))
```

Model deployment

- One could use a special-purpose framework such as MLflow (https://www.mlflow.org/docs/latest/index.html) which supports models from multiple libraries, build a simple Flask app (https://github.com/amirziai/sklearnflask/) or use cloud providers such as AWS/Azure/GCP.
 - Akash

Other cities 311 download links

```
Python code:

try:

import urllib2 as urllib

except ImportError:

import urllib.request as urllib

import requests

url = "

urllib.urlretrieve(url,'./<filename>.csv')
```

San Francisco

https://data.sfgov.org/api/views/vw6y-z8j6/rows.csv?accessType=DOWNLOAD&bom=true&format=true

Austin

https://data.austintexas.gov/api/views/i26j-ai4z/rows.csv?accessType=DOWNLOAD&bom=true &format=true

Baton Rogue

https://data.brla.gov/api/views/7ixm-mnvx/rows.csv?accessType=DOWNLOAD&bom=true&format=true

Chicago

https://data.cityofchicago.org/api/views/v6vf-nfxy/rows.csv?accessType=DOWNLOAD&bom=true

Baltimore

https://data.baltimorecity.gov/api/views/9agw-sxsr/rows.csv?accessType=DOWNLOAD&bom=true&format=true

Buffalo

https://data.buffalony.gov/api/views/whkc-e5vr/rows.csv?accessType=DOWNLOAD&bom=true&format=true