Quiz questions

Chapter 1.2

1. Consider the time series and lag-1 scatter plot shown here. Which of the following is a correct inference from visual inspection?

- A Successive values are uncorrelated.
- B Successive values are positively correlated.
- C Negative values tend to be followed by negative values.
- D Successive values are negatively correlated.

Chapter 1.3

2. Which of the following is a valid covariance matrix?

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 4 & -1 \\ 1 & 4 \end{pmatrix} \quad C = \begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix} \quad D = \begin{pmatrix} 4 & 3 \\ 3 & 1 \end{pmatrix}$$

- 3. X and Y are random variables such that $Y = 2X + \epsilon$ where X is a random variable with mean 0 and variance 2, and $\epsilon \sim N(0,1)$ that is independent of X. What is $\operatorname{Corr}(X,Y)$?
 - A $4/\sqrt{18}$
 - B 0
 - $C -2/\sqrt{5}$
 - D 1

Chapter 2.1

- 4. Which of the following statements is TRUE?
 - A A random process is completely stationary if it has a constant mean.
 - B A random process is completely stationary if it is second order stationary.
 - C A random process is completely stationary if and only if it is second order stationary.
 - D A random process is second order stationary if it is completely stationary.
 - E A random process is second order stationary if it has a constant variance.

- 5. Let $\{X_t\}$ be a stationary process with mean 1, variance σ^2 and autocovariance sequence $\{s_\tau\}$. Which of the following statements is FALSE?
 - A $E\{X_t + X_s\} = 2, s \neq t.$
 - B $E\{X_{10}^2\} = \sigma^2$.
 - $C E\{X_0\} = E\{X_{1283}\}.$
 - $\mathrm{D} \ \mathrm{Cov}\{X_2, X_{231}\} = \mathrm{Cov}\{X_{-233}, X_{-4}\}.$
 - $E E\{X_{546}X_{536}\} = E\{X_{-230}X_{-220}\}.$

- 6. Let $\{X_t\}$ be a (second-order) stationary process with mean 0 and autocovariance sequence $\{s_\tau\}$, and let $a \neq 0$ be a fixed constant. Which of the following is FALSE?
 - A $\{aX_t\}$ is a stationary process.
 - B $\{-X_t\}$ is a stationary process.
 - C The autocovariance sequence of $\{aX_t\}$ is $\{a^2s_\tau\}$
 - D $\{(-1)^t X_t\}$ is a non-stationary process.
 - E $\{X_t + at\}$ is a non-stationary process.

7. Which of the following is a valid autocovariance sequence?

- 8. Let $\{\epsilon_t\}$ be a zero mean white noise process of variance σ_{ϵ}^2 . Which of the following statements is FALSE?
 - A. $\{\epsilon_t\}$ is a stationary process.
 - B. $E\{\epsilon_t \epsilon_{t+\tau}\} = 0$ for all $\tau \neq 0$.
 - C. The random variable $(\epsilon_t + \epsilon_{t+1})$ is correlated with the random variable $(\epsilon_{t+1} + \epsilon_{t+2})$.
 - D. $\sum_{\tau=-\infty}^{\infty} s_{\tau} = \sigma_{\epsilon}^{2}.$
 - E. $Cov{\epsilon_{t+\tau}, \epsilon_{t-\tau}} = 0$ for all τ .

9. Let $\{X_t\}$ be the MA(2) process

$$X_t = \epsilon_t - \frac{1}{2}\epsilon_{t-1} + \frac{1}{4}\epsilon_{t-2}, \quad \epsilon_t \sim N(0, 1).$$

Which of the following statements is FALSE?

- A. $s_2 = \frac{1}{4}$
- B. $s_{-3} = 0$
- C. X_t is Gaussian distributed.
- D. $s_0 = \frac{7}{4}$
- E. $E\{X_t\} = 0$.

10. Consider the stationary AR(2) process

$$X_{t} = \frac{1}{2}X_{t-1} + \frac{1}{8}X_{t-2} + \epsilon_{t} + c,$$

where $\{\epsilon_t\}$ is a zero mean white noise process and c is a fixed constant. What is $\mu = E\{X_t\}$?

- A. 0
- B. 8c/3
- C. 3c/5
- D. 1 + c
- E. c.

- 11. Consider an AR(1) process $X_t = \phi X_{t-1} + \epsilon_t$, where $0 < \phi < 1$ and $\{\epsilon_t\}$ is a zero mean white noise process with $\sigma_{\epsilon}^2 = 1$. What is $\sum_{\tau = -\infty}^{\infty} s_{\tau}$ equal to?
 - A. 1
 - B. $(\phi 1)/(1 \phi)$
 - C. $1/(1-\phi)^2$
 - D. $\phi/(1-\phi)$
 - E. $2/(1-\phi)$.

12. Which of the following is an ARMA(1,2)?

A.
$$X_{t-1} + \epsilon_t = \epsilon_{t-2} + X_t$$

B.
$$X_t - X_{t-1} = \epsilon_t$$

$$C. \epsilon_{t-1} + X_t = X_{t-1} + \epsilon_t$$

$$D. X_{t-2} + \epsilon_t = \epsilon_{t-2} + X_t$$

E.
$$\epsilon_{t-2} = 2X_{t-2} + X_t - \epsilon_t$$
.

13. Which of the following is the correct model name for this process?

$$\frac{1}{2}X_{t-3} - \epsilon_t = 3\epsilon_{t-2} - X_t$$

- A. MA(2)
- B. ARMA(3,2)
- C. AR(5)
- D. AR(3,2)
- E. ARMA(1/2,3)

Chapter 2.2

- 14. Consider the model $X_t = \mu_t + Y_t$, where $\{Y_t\}$ is a zero mean stationary process. Which one of the following statements is FALSE?
 - A. $\{Y_t^{(d)}\}$ is stationary for all $d \ge 1$.
 - B. If $\mu_t = \alpha + \beta t$, then $\{X_t^{(1)}\}$ is a stationary process.
 - C. If $\mu_t = \alpha + \beta t$, then $\Delta X_t = \Delta Y_t$.
 - D. $B^d X_t = \mu_{t-d} + Y_{t-d}$.
 - E. $\Delta^3 = 1 3B + 3B^2 B^3$.

- 15. Consider the model $X_t = \nu_t + Y_t$, where $\{Y_t\}$ is a zero mean stationary process, and $\nu_t = \sin{(\pi t/10)}$. Which of the following operations would remove seasonality?
 - A. $1 B^{10}$
 - B. $1 B^5$
 - C. $1 B^{12}$
 - D. Δ^{10}
 - E. $1 B^{20}$
 - F. Δ^5
 - G. B^{10}
 - H. Δ^{20}

16. Consider the model

$$X_t = \mu_t + \nu_t + Y_t$$

where $\{Y_t\}$ is a zero mean stationary process, μ_t is a second order polynomial trend and ν_t is a seasonality component with period 52. Which of the following is the resulting process when the operator $(1 - B^{52})\Delta^3$ is applied to $\{X_t\}$?

- A. $Y_t^{(3)} Y_{t-52}^{(3)}$
- B. $Y_t^{(3)}$
- C. $Y_t Y_{t-52}$
- D. $Y_t^{(3)} + \nu_t^{(3)}$
- E. $Y_t^{(3)} + \mu_t \mu_{t-52}$

Chapter 2.3

17. Consider the ARMA process

$$X_{t} = \sum_{k=1}^{3} \frac{1}{2^{k}} X_{t-k} + \sum_{l=0}^{3} \frac{1}{2^{l}} \epsilon_{t-l}$$

Which of the following is the correct form of the characteristic polynomial $\Theta(B)$?

A.
$$\Theta(B) = 1 - \frac{1}{2}B - \frac{1}{4}B^2 - \frac{1}{8}B^3$$

B.
$$\Theta(B) = 1 + \frac{1}{2}B + \frac{1}{4}B^2 + \frac{1}{8}B^3$$

C.
$$\Theta(B) = 1 - \frac{1}{2}B + \frac{1}{4}B^2 - \frac{1}{8}B^3$$

D.
$$\Theta(B) = 1 - \frac{1}{2}B$$

E.
$$\Theta(B) = 1 - \frac{1}{8}B^3$$

18. Consider the General Linear Process

$$X_t = \sum_{k=0}^{\infty} \frac{1}{2^k} \epsilon_{t-k}$$

where $\{\epsilon_t\}$ is a white noise process with variance σ_{ϵ}^2 . What is the variance of $\{X_t\}$?

- A. $2\sigma_{\epsilon}^2$
- B. $4\sigma_{\epsilon}^2/3$
- C. 1
- D. σ_{ϵ}^2
- E. $4\sigma_{\epsilon}^2/5$

19. Consider again the General Linear Process

$$X_t = \sum_{k=0}^{\infty} \frac{1}{2^k} \epsilon_{t-k}$$

where $\{\epsilon_t\}$ is a white noise process with variance σ_{ϵ}^2 . What is $s_1 \equiv \text{Cov}\{X_t, X_{t+1}\}$?

- A. $2\sigma_{\epsilon}^2/3$
- B. $4\sigma_{\epsilon}^2/3$
- C. 1/2
- D. $\sigma_{\epsilon}^2/2$
- E. $2\sigma_{\epsilon}^2/5$

20. Consider a process of the form

$$X_t = \frac{G_1(B)}{G_2(B)} \epsilon_t.$$

Which of the following can be written in General Linear Process form?

A.
$$G_1(z) = z^2 + 3z - 4$$
, $G_2(z) = z^2 - z + \frac{1}{4}$.

B.
$$G_1(z) = z^2 - 1$$
, $G_2(z) = z^2 + \frac{3}{2}z - 1$.

C.
$$G_1(z) = z^2 + 3z + 2$$
, $G_2(z) = z^2 - 4$.

21. Consider the MA(2) process

$$X_t = \epsilon_t + \frac{1}{4}\epsilon_{t-2}.$$

Which of the following statements is TRUE?

- A. It is stationary and invertible.
- B. It is stationary but not invertible.
- C. It is not stationary but is invertible.
- D. It is not stationary and it is not invertible.

22. Consider the ARMA(2,1) process

$$X_{t} = \frac{31}{20}X_{t-1} - \frac{3}{5}X_{t-2} + \epsilon_{t} - \frac{4}{3}\epsilon_{t-1}.$$

Which of the following statements is TRUE?

- A. It is stationary and invertible.
- B. It is stationary but not invertible.
- C. It is not stationary but is invertible.
- D. It is not stationary and it is not invertible.

23. Consider the stationary and invertible (check this if you want) ARMA(1,1) process

$$X_t = \frac{1}{2}X_{t-1} + \epsilon_t + \frac{1}{8}\epsilon_{t-1},$$

- where $\{\epsilon_t\}$ is a white noise process with variance σ_{ϵ}^2 . What is the variance of $\{X_t\}$?
 - A. $\frac{72}{48}\sigma_{\epsilon}^2$.
- B. $\frac{73}{49}\sigma_{\epsilon}^{2}$. C. $\frac{71}{47}\sigma_{\epsilon}^{2}$. D. $\frac{73}{48}\sigma_{\epsilon}^{2}$. E. $\frac{74}{49}\sigma_{\epsilon}^{2}$.

Chapter 3.1

- 24. Let $\{X_t\}$ be a stationary random process with mean zero, autocovariance sequence $\{s_\tau\}$, integrated spectrum $S^{(I)}(f)$ and spectral density function S(f). Which of the following statements is FALSE?
 - A. $S(0) = \sum_{\tau = -\infty}^{\infty} s_{\tau}$.
 - B. $\frac{d}{df}S^{(I)}(f)$ is an even function.
 - C. $S^{(I)}(f)$ is an even function.
 - D. $\int_{-1/2}^{0} S(f) df = s_0/2$.

25. Let $\{X_t\}$ is a stationary random process with mean zero and autocovariance sequence

$$s_{\tau} = \begin{cases} 1 & \tau = 0 \\ -1/2 & |\tau| = 1 \\ 0 & |\tau| > 1. \end{cases}$$

Which of the following is the spectral density function for $\{X_t\}$?

- A. S(f) = 1
- B. $S(f) = 1 \cos(2\pi f)$
- C. $S(f) = 1 + \frac{1}{2}e^{i2\pi f}$
- D. $S(f) = 1 + \sin(2\pi f)$
- E. $S(f) = 1 \sin(2\pi f)$

26. Here is shown a single realization and the spectral density function for a stationary random process.

Which of the following is a correct statement?

- A. This is a white noise process.
- B. This process has a purely discrete spectra.
- C. This process exhibits strong oscillatory behaviour at frequencies 0.1 and 0.45.
- D. This process has a mixed spectra.
- E. Successive values of this process are uncorrelated.

27. Which of the following is a valid integrated spectrum?

- 28. How would you classify the valid integrated spectrum from Question 27 (using the classification system given in the notes)?
 - A. Purely continuous.
 - B. Purely discrete.
 - C. Mixed.
 - D. Discrete.

Chapter 3.2

- 29. I sample a continuous time random process at 9am GMT every Monday. What is the Nyquist frequency in units $hour^{-1}$?
 - A. 1/14.
 - B. 1/336.
 - C. 1/48.
 - D. 1/168.
 - E. 1/7.

30. A continuous-time stationary process $\{X(t)\}$, with t in seconds (s), has spectral density function

$$S_{X(t)}(f) = \begin{cases} 1 - \frac{1}{4}(|f| - 6), & 6 < |f| \le 10, \\ 0, & \text{otherwise,} \end{cases}$$

with f in cycles/s. It is sampled with a sample interval $\Delta t = 0.1$ s to produce the discrete-time process $\{X_t\}$.

What is the spectral density function $S_{X_t}(f)$ of $\{X_t\}$ for $|f| < f_{\mathcal{N}}$, where $f_{\mathcal{N}}$ is the Nyquist frequency?

Α.

$$S_{X_t}(f) = \begin{cases} \frac{1}{4}|f|, & |f| \le 4, \\ 0, & 4 < |f| \le 5 \end{cases}$$

В.

$$S_{X_t}(f) = \begin{cases} 1 - \frac{1}{4}|f|, & |f| \le 4, \\ 0, & 4 < |f| \le 5 \end{cases}$$

C.

$$S_{X_t}(f) = S_{X(t)}(f), |f| < 10.$$

D.

$$S_{X_t}(f) = 1 - |f|, |f| < 10.$$

Ε.

$$S_{X_t}(f) = \frac{1}{4}|f|, \qquad |f| < 5.$$

Chapter 3.3

31. Consider the linear filter $L\{X_t\} = X_t - \frac{1}{2}X_{t-1} - \frac{1}{2}X_{t+1}$. Which of the following is $|G(f)|^2$?

- 32. The filter from Question 31 is which of the following types?
 - A. Low band-pass filter.
 - B. High band-pass filter.

33. Consider the process

$$X_{t} = \frac{1}{2}X_{t-1} + \epsilon_{t} + \frac{1}{2}\epsilon_{t-1} + \frac{1}{4}\epsilon_{t-2},$$

where $\{\epsilon_t\}$ is a white noise process with variance σ_{ϵ}^2 . What is its spectral density function?

$$S(f) = \sigma_{\epsilon}^{2} \frac{21 + 8\cos(2\pi f) + 20\cos(4\pi f)}{16 + 20\cos(2\pi f)}$$

$$S(f) = \sigma_{\epsilon}^{2} \frac{20 + 16\cos(2\pi f)}{20 + 18\cos(2\pi f) + 8\cos(4\pi f)}$$

$$C$$
.

$$S(f) = \sigma_{\epsilon}^{2} \frac{20 + 18\cos(2\pi f) + 8\cos(4\pi f)}{20 + 16\cos(2\pi f)}$$

$$S(f) = \sigma_{\epsilon}^{2} \frac{20 + 16\cos(2\pi f)}{21 + 20\cos(2\pi f) + 8\cos(4\pi f)}$$

$$S(f) = \sigma_{\epsilon}^{2} \frac{21 + 20\cos(2\pi f) + 8\cos(4\pi f)}{20 - 16\cos(2\pi f)}$$

34. Let $\Phi(B)X_t = \epsilon_t$ be an AR(2) process where $\Phi(z)$ has complex conjugate roots and $\{X_t\}$ has has spectral density function

$$S(f) = \frac{\sigma_{\epsilon}^2}{[1 - \cos(2\pi(0.125 - f)) + 0.25][1 - \cos(2\pi(0.125 + f)) + 0.25]}.$$

Expressing $\{X_t\}$ in the form $X_t = \phi_{1,2}X_{t-1} + \phi_{2,2}X_{t-2} + \epsilon_t$, what are the parameters $\phi_{1,2}$ and $\phi_{2,2}$?

A.
$$\phi_{1,2} = 1/\sqrt{2}, \ \phi_{2,2} = -1/4$$

B.
$$\phi_{1,2} = 1/4$$
, $\phi_{2,2} = 1/\sqrt{2}$

C.
$$\phi_{1,2} = -1/\sqrt{2}$$
, $\phi_{2,2} = -1/\sqrt{2}$

D.
$$\phi_{1,2} = -1/4$$
, $\phi_{2,2} = 1/\sqrt{2}$

E.
$$\phi_{1,2} = 1/\sqrt{2}$$
, $\phi_{2,2} = 1/4$

Chapter 4.1

- 35. An estimator $\hat{\theta}$ of a parameter θ has $MSE\{\hat{\theta}\}=3$ and $Var\{\hat{\theta}\}=3$. What is $E\{\hat{\theta}\}$?
 - A. 0.
 - B. 3.
 - C. $-\theta$.
 - D. $\theta + 3$.
 - E. θ .

- 36. An estimator $\hat{\theta}$ of a parameter θ has $E\{\hat{\theta}\} = \theta + c$, and $Var\{\hat{\theta}\} = c^2/2$. What is the mean square error of $\hat{\theta}$?
 - A. $c^2/2$.
 - B. $c + c^2/2$.
 - C. $3c^2/2$.
 - D. $\theta + c + c^2/2$.
 - E. $(\theta + c)^2 + c^2/2$.

- 37. Let X_1, X_2 be a portion of an AR(1) process $X_t = \frac{1}{2}X_{t-1} + \epsilon_t$, where $\{\epsilon_t\}$ is a white noise process with zero mean and $\sigma_{\epsilon}^2 = 1$. What is $\text{Var}\{\bar{X}\}$, where $\bar{X} = \frac{1}{2}(X_1 + X_2)$?
 - A. $\frac{10}{9}$.
 - B. 1.
 - C. $\frac{7}{2}$.
 - D. $\frac{5}{4}$.
 - E. $\frac{8}{3}$.

- 38. Let $X_1, X_2, ..., X_{100}$ be a portion of an MA(2) process $X_t = \epsilon_t \frac{1}{2}\epsilon_{t-1} + \frac{1}{4}\epsilon_{t-2}$, where $\{\epsilon_t\}$ is zero mean white noise process with $\sigma_{\epsilon}^2 = 2$. What is $E\{\hat{s}_1^{(p)}\}$ computed from this portion?
 - A. $\frac{99}{100}$.
 - B. $-\frac{99}{100}$.
 - C. $\frac{100}{99}$.
 - D. $-\frac{99}{80}$. E. $-\frac{80}{99}$.

Chapter 4.2

- 39. Which of the following statements is FALSE
 - A. The periodogram is an asymptotically $(N \to \infty)$ unbiased estimator of S(f).
 - B. The effect of side-lobe leakage is greater for processes with large dynamic range.
 - C. The periodogram for a white noise process is unbiased but the direct spectral estimator for a white noise process is biased.
 - D. Tapering (with a non-rectangular taper such as those given in the notes) reduces side-lobe leakage.
 - E. $\hat{s}_0^{(p)} = \int_{-1/2}^{1/2} \hat{S}^{(p)}(f) df$.

40. For any taper, it can be shown that

$$\int_{-1/2}^{1/2} E\{S^{(d)}(f)\} df = s_0.$$

Which of the following is a true statement about the periodogram?

- A. $\int_{-1/2}^{1/2} E\{S^{(p)}(f)\} df$ is less than s_0 .
- B. $\int_{-1/2}^{1/2} E\{S^{(p)}(f)\} df$ is greater than s_0 .
- C. $\int_{-1/2}^{1/2} E\{S^{(p)}(f)\} df$ is equal to s_0 .

Chapter 5

- 41. Which of the following parametric model fitting methods for AR(p) processes makes assumptions on the probability distribution of the random process as well as the model and order.?
 - A. Yule-Walker (untapered).
 - B. Yule-Walker (tapered).
 - C. Least squares.
 - D. Maximum likelihood.

- 42. Consider the AR(2) process $X_t 0.5X_{t-2} = \epsilon_t$. Given $\text{Var}\{X_t\} = 2$, and using the Yule-Walker equations, what is the value of σ_{ϵ}^2 ?
 - A. 4/3.
 - B. 2.
 - C. 2/3.
 - D. 1.
 - E. 3/2

43. Suppose for an AR(2) process we obtain $\hat{s}_0 = 5$, $\hat{s}_1 = 4$, and $\hat{s}_2 = 2$. What is the estimated AR(2) model?

A.
$$\phi_{1,2} = 4/3$$
, $\phi_{2,2} = -2/3$, $\sigma_{\epsilon}^2 = 1$

B.
$$\phi_{1,2} = -2/3$$
, $\phi_{2,2} = 4/3$, $\sigma_{\epsilon}^2 = 3/2$.

C.
$$\phi_{1,2} = -4/3$$
, $\phi_{2,2} = -2/3$, $\sigma_{\epsilon}^2 = 3/2$.

D.
$$\phi_{1,2} = -4/3$$
, $\phi_{2,2} = 2/3$, $\sigma_{\epsilon}^2 = 1/2$.

E.
$$\phi_{1,2} = 2/3$$
, $\phi_{2,2} = -4/3$, $\sigma_{\epsilon}^2 = 1/2$.

44. Suppose you observe a portion $X_1, ..., X_8$ and wish to fit an AR(2) model. Which of the following is F as defined in the notes?

A.
$$\begin{bmatrix} X_2 & X_1 \\ X_3 & X_2 \\ \vdots & \vdots \\ X_8 & X_7 \end{bmatrix}$$
 B.
$$\begin{bmatrix} X_1 & X_2 & \cdots & X_6 \\ X_2 & X_3 & \cdots & X_7 \end{bmatrix}$$
 C.
$$\begin{bmatrix} X_2 & X_3 & \cdots & X_8 \\ X_1 & X_2 & \cdots & X_7 \end{bmatrix}$$

D.
$$\begin{bmatrix} X_2 & X_1 \\ X_3 & X_2 \\ \vdots & \vdots \\ X_7 & X_6 \end{bmatrix}$$
 E.
$$\begin{bmatrix} X_1 & X_2 \\ X_2 & X_3 \\ \vdots & \vdots \\ X_7 & X_8 \end{bmatrix}$$
 F.
$$\begin{bmatrix} X_2 & X_3 & \cdots & X_8 \end{bmatrix}$$

- 45. Which of the following probabilistic statements is FALSE for an AR(4) process?
 - A. $f(X_{10}|X_9,...,X_1,\boldsymbol{\phi},\sigma_{\epsilon}^2) = f(X_{10}|X_9,...,X_6,\boldsymbol{\phi},\sigma_{\epsilon}^2)$
 - B. $f(X_{12}|X_{11},...,X_1,\boldsymbol{\phi},\sigma_{\epsilon}^2) = f(X_{12}|X_{11},...,X_6,\boldsymbol{\phi},\sigma_{\epsilon}^2).$
 - C. $f(X_{12}|X_{11},...,X_1,\boldsymbol{\phi},\sigma_{\epsilon}^2) = f(X_{12}|X_{11},X_{10},\boldsymbol{\phi},\sigma_{\epsilon}^2).$
 - D. $f(X_6|X_5,...,X_2,\phi,\sigma_{\epsilon}^2) = f(X_6|X_5,...,X_1,\phi,\sigma_{\epsilon}^2)$.
 - E. $f(X_{1004}|X_{1003},...,X_1,\boldsymbol{\phi},\sigma_{\epsilon}^2) = f(X_{1004}|X_{1003},X_{1002},X_{1001},X_{1000},\boldsymbol{\phi},\sigma_{\epsilon}^2).$

46. You fit AR(p) processes for p = 1, ..., 6. The table below reports the AIC value for each model.

$$\begin{array}{c|cc} p & AIC \\ 1 & 26.51 \\ 2 & 20.46 \\ 3 & 14.18 \\ 4 & -21.71 \\ 5 & -17.99 \\ 6 & -18.56 \end{array}$$

Which model do you select?

Chapter 6

- 47. Forecast $X_{100}(7)$ is which of the following?
 - A. A forecast made at time 100 of the value at time 7.
 - B. A forecast made at time 7 for the value 107.
 - C. A forecast made at time 7 of the value at time 100.
 - D. A forecast made at time 100 of the value at time 107.
 - E. A forecast made at time 107 of the value at time 100.

- 48. Consider the AR(1) process $X_t = -\frac{1}{3}X_{t-1} + \epsilon_t$, where $\{\epsilon_t\}$ is a zero mean white noise process with variance σ_{ϵ}^2 . Which of the following is the 2-step ahead prediction variance?
 - A. $\frac{81}{100}\sigma_{\epsilon}^2$.

 - B. $\frac{8}{10}\sigma_{\epsilon}^2$. C. $\frac{10}{9}\sigma_{\epsilon}^2$.
 - D. σ_{ϵ}^2 .
 - E. $\frac{91}{81}\sigma_{\epsilon}^2$.

- 49. Consider the AR(2) model $X_t = \frac{1}{2}X_{t-1} \frac{1}{5}X_{t-2} + \epsilon_t$. I observe the following realisation $X_0 = 3, X_1 = 0, X_2 = 1$. What is $X_2(3)$?
 - A. -3/40.
 - B. 1/20.
 - C. -1/20.
 - D. 1/2.
 - E. 0.

- 50. Consider the MA(3) model $X_t = \epsilon_t \frac{1}{2}\epsilon_{t-1} + \epsilon_{t-2} \frac{1}{2}\epsilon_{t-3}$, $\{\epsilon_t\}$ is a white noise process with variance 2. What is the 3-step ahead prediction variance?
 - A. 4/9.
 - B. 2.
 - C. 9/4.
 - D. 9/2.
 - E. 5

51. Consider the ARMA(1,1) model

$$X_{t} = \frac{1}{2}X_{t-1} + \epsilon_{t} + \frac{1}{8}\epsilon_{t-1}$$

Which of the following is the forecast $X_t(2)$ in the form $X_t(2) = \sum_{k=0}^{\infty} \pi_k X_{t-k}$? HINT: You may want to refer back to Question 23.

A.
$$\sum_{k=0}^{\infty} \frac{5}{8} \cdot \left(-\frac{1}{2}\right)^k X_{t-k}$$

B.
$$\sum_{k=0}^{\infty} \frac{5}{16} \cdot \left(-\frac{1}{8}\right)^k X_{t-k}$$

C.
$$\sum_{k=0}^{\infty} \frac{5}{8} \cdot \left(-\frac{1}{4}\right)^k X_{t-k}$$
.

D.
$$\sum_{k=0}^{\infty} \frac{1}{16} \cdot \left(-\frac{1}{8}\right)^k X_{t-k}$$
.

E.
$$\sum_{k=0}^{\infty} \frac{5}{16} \cdot (\frac{1}{4})^k X_{t-k}$$

Chapter 7.1

52. Consider the following cross correlation sequence $\rho_{X_1X_2,\tau}$ for two jointly stationary processes $\{X_{1,t}\}$ and $\{X_{2,t}\}$.

Which of the following is a correct statement?

- A. $X_{1,t}$ is strongly correlated with $X_{2,t+d}$.
- B. $X_{1,t}$ is strongly correlated with $X_{2,t-d}$.
- C. $X_{1,t+d}$ is strongly correlated with $X_{2,t}$.
- D. $X_{1,t}$ is strongly correlated with $X_{2,t}$.
- E. Process $\{X_{1,t}\}$ shows no correlation with process $\{X_{2,t}\}$

53. Consider again the jointly stationary processes from Question 52. Which of the following is $\rho_{X_2,X_1,\tau}$?

C

54. Let $\{X_{1,t}\}$ be a stationary zero mean white noise process with variance $\sigma_{X_1}^2$, and let $X_{2,t} = \frac{1}{3}X_{1,t-3} + \frac{1}{3}X_{1,t-4} + \frac{1}{3}X_{1,t-5}$. Which of the following represents the cross covariance sequence $s_{X_1,X_2,\tau}$?

Chapter 7.2

- 55. For the same processes as in Question 54, what is the group delay?
 - A. 3/2
 - B. -1/2
 - C. 3
 - D. $3\pi/2$
 - E. -3π

56. For the same processes as in Question 54, what is the magnitude squared coherence $\gamma^2_{X_1X_2}(f)$?

A.
$$\gamma_{X_1X_2}^2(f) = \left[1 + \frac{\sigma_{\epsilon}^2}{4\sin^2(\pi f)S_X(f)}\right]^{-1}$$

B.
$$\gamma_{X_1X_2}^2(f) = \left[1 + \frac{1}{4\cos(\pi f)S_X(f)}\right]^{-1}$$

C.
$$\gamma_{X_1X_2}^2(f) = \left[1 + \frac{\sigma_{\epsilon}^2}{4\cos^2(\pi f)S_X(f)}\right]^{-1}$$

D.
$$\gamma_{X_1X_2}^2(f) = \left[1 + \frac{1}{4\cos^2(\pi f)S_X(f)}\right]^{-1}$$

E.
$$\gamma_{X_1X_2}^2(f) = \left[1 + \frac{\sigma_{\epsilon}^2}{4\sin^2(\pi f)S_X(f)}\right]^{-1}$$

Chapter 7.3

57. Let $\{X_t\}$ be a zero mean stationary process with autocovariance sequence $\{s_{X,\tau}\}$ and spectral density function $S_X(f)$. Consider the process

$$Y_t = \sum_{u=-\infty}^{\infty} g_u X_{t-u} + \epsilon_t,$$

where $\{\epsilon_t\}$ is a zero mean white noise process with variance σ_{ϵ}^2 that is uncorrelated with $\{X_t\}$, and the impulse response sequence is $g_1=1$, $g_2=1$ and $g_u=0$ for all $u \neq 1, 2$. Which of the following is the cross spectrum $S_{XY}(f)$? Hint: You may use without proof that $e^{ia} + e^{ib} = e^{i(a+b)/2} \cdot 2\cos((a-b)/2)$

- A. $S_{XY}(f) = S_X(f)\cos(\pi f)$
- B. $S_{XY}(f) = 2S_X(f)\sin(\pi f)e^{-i3\pi f}$
- C. $S_{XY}(f) = S_X(f) \cos(\pi f) e^{-i6\pi f}$
- D. $S_{XY}(f) = S_X(f)\sin(\pi f)$
- E. $S_{XY}(f) = 2S_X(f)\cos(\pi f)e^{-i3\pi f}$