Московский Государственный Технический Университет им. Н. Э. Баумана

Лабораторная работа №1 по курсу: «Технологии машинного обучения»

Разведочный анализ данных. Исследование и визуализация данных.

Выполнила: Студентка группы ИУ5-63 Нурлыева Д.Д.

Задание:

- Выбрать набор данных (датасет).
- Создать ноутбук, который содержит следующие разделы:
 - 1. Текстовое описание выбранного Вами набора данных.
 - 2. Основные характеристики датасета.
 - 3. Визуальное исследование датасета.
 - 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Текстовое описание набора данных

Датасет содержит следующие колонки:

В качестве набора данных мы будем использовать набор данных Heart Disease UCI - https://www.kaggle.com/ronitf/heart-disease-uci В датасете отражено наличие сердечного заболевания у пациента в зависимости от разных признаков.

```
аде - возраст в годах sex - (1 = мужчина; 0 = женщина) ср - тип боли в груди trestbps - артериальное давление в состоянии покоя (в мм рт. ст. при поступлении в стационар) chol - холестерин в мг/дл fbs - уровень сахара в крови натощак > 120 мг / дл) (1 = да; 0 = нет) restecg- электрокардиографические результаты покоя thalach - максимальная ЧСС exang - стенокардия, вызванная физическими упражнениями (1 = да; 0 = Heт) oldpeak - Депрессия, вызванная физическими упражнениями относительно покоя slope - наклон пика упражнения сегмента
```

slope - наклон пика упражнения сегмента са - количество крупных сосудов (0-3)

thal - 3 = нормальный; 6 = фиксированный дефект; 7 = реверзибельный дефект

target - заболевание 1-есть или 0-нет

Текст программы:

```
In [35]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
In [36]:
data = pd.read_csv('/Users/user/Desktop/data.csv')
In [37]:
```

data.head()

Out[37]:

```
thala
                                                         oldpe
                    trest
                          cho
                                     reste
                                                   exan
                                                                 slop
                                                                                  targ
                                fbs
                                                                            thal
   age
        sex
              ср
                                                                        ca
                    bps
                                               ch
                                                            ak
                                                                                    et
                                        cg
                                                      g
                                                      0 2.3
0
    63
           1
                3
                     145
                          233
                                  1
                                         0
                                              150
                                                                   0
                                                                         0
                                                                              1
                                                                                    1
1
    37
           1
                2
                     130
                          250
                                  0
                                         1
                                             187
                                                      0 3.5
                                                                   0
                                                                         0
                                                                              2
                                                                                     1
                     130
2
    41
           0
                1
                          204
                                  0
                                         0
                                             172
                                                      0 1.4
                                                                   2
                                                                         0
                                                                              2
                                                                                     1
3
    56
           1
                1
                          236
                                  0
                                         1
                                             178
                                                      0 0.8
                                                                   2
                                                                         0
                                                                              2
                                                                                     1
                     120
4
                                                                    2
                                                                              2
           0
                0
                                  0
                                                      1 0.6
                                                                         0
                                                                                     1
    57
                     120
                          354
                                              163
```

```
In [38]:
data.shape
Out[38]:
(303, 14)
In [39]:
total count = data.shape[0]
print('Koл-во строк:', total count)
Кол-во строк: 303
In [40]:
data.columns
Out[40]:
Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs',
'restecg', 'thalach',
       'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
      dtype='object')
In [41]:
data.dtypes
Out[41]:
              int64
age
sex
              int64
              int64
ср
trestbps
              int64
chol
              int64
fbs
              int64
restecq
              int64
              int64
thalach
              int64
exang
oldpeak
            float64
slope
              int64
              int64
ca
thal
              int64
```

```
target
              int64
dtype: object
In [42]:
for col in data.columns:
    print('{} -
{}'.format(col,data[data[col].isnull()].shape[0]))
age - 0
sex - 0
cp - 0
trestbps - 0
chol - 0
fbs - 0
restecg - 0
thalach - 0
exang - 0
oldpeak - 0
slope - 0
ca - 0
thal - 0
target - 0
In [43]:
data.describe()
```

Out[43]:

	age	sex	ср	trestb ps	chol	fbs	reste cg	thalac h	exang	oldpe ak	slope	ca	thal	target
cou	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0	303.0
nt	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000
me	54.36	0.683	0.966	131.6	246.2	0.148	0.528	149.6	0.326	1.039	1.399	0.729	2.313	0.544
an	6337	168	997	23762	64026	515	053	46865	733	604	340	373	531	554
std	9.082	0.466	1.032	17.53	51.83	0.356	0.525	22.90	0.469	1.161	0.616	1.022	0.612	0.498
	101	011	052	8143	0751	198	860	5161	794	075	226	606	277	835
min	29.00	0.000	0.000	94.00	126.0	0.000	0.000	71.00	0.000	0.000	0.000	0.000	0.000	0.000
	0000	000	000	0000	00000	000	000	0000	000	000	000	000	000	000
25 %	47.50	0.000	0.000	120.0	211.0	0.000	0.000	133.5	0.000	0.000	1.000	0.000	2.000	0.000
	0000	000	000	00000	00000	000	000	00000	000	000	000	000	000	000
50 %	55.00	1.000	1.000	130.0	240.0	0.000	1.000	153.0	0.000	0.800	1.000	0.000	2.000	1.000
	0000	000	000	00000	00000	000	000	00000	000	000	000	000	000	000
75 %	61.00	1.000	2.000	140.0	274.5	0.000	1.000	166.0	1.000	1.600	2.000	1.000	3.000	1.000
	0000	000	000	00000	00000	000	000	00000	000	000	000	000	000	000
ma	77.00	1.000	3.000	200.0	564.0	1.000	2.000	202.0	1.000	6.200	2.000	4.000	3.000	1.000
x	0000	000	000	00000	00000	000	000	00000	000	000	000	000	000	000

```
In [50]:
# Уникальные значения для целевого признака
data['target'].unique()
Out[50]:
array([1, 0])
```

In [49]: # Зависимисоть между возрастом пациаента и содержанием холестирина в крови fig, ax = plt.subplots(figsize=(10,10)) sns.scatterplot(ax=ax, x='age', y='chol', data=data) Out[49]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1e5e7470>


```
In [54]:
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='age', y='chol', data=data,
hue='target')
Out[54]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1e9e2518>
```


In [57]:
#Построение гистограммы
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['age'])
Out[57]:
<matplotlib.axes._subplots.AxesSubplot at 0x1a1f0210b8>

In [58]:
#joinplot
sns.jointplot(x='age', y='thalach', data=data, kind="kde")
Out[58]:
<seaborn.axisgrid.JointGrid at 0x1a1f3a9780>

In [59]: #парные диаграммы sns.pairplot(data)

Out[59]:

<seaborn.axisgrid.PairGrid at 0x1a1d52e208>

Out[60]:

<seaborn.axisgrid.PairGrid at 0x1a23934710>

In [63]:
Распределение параметра ср сгруппированные по target.
sns.violinplot(x='target', y='cp', data=data)
Out[63]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a2c568860>

In [64]:
data.corr()

Out[64]:															
		age	sex	ср	trestb ps	chol	fbs	reste cg	thala ch	exang	oldpe ak	slope	ca	thal	target

age	1.000	-0.098	-0.068	0.279	0.213	0.121	-0.116	-0.398	0.096	0.210	-0.168	0.276	0.068	-0.225
	000	447	653	351	678	308	211	522	801	013	814	326	001	439
sex	-0.098	1.000	-0.049	-0.056	-0.197	0.045	-0.058	-0.044	0.141	0.096	-0.030	0.118	0.210	-0.280
	447	000	353	769	912	032	196	020	664	093	711	261	041	937
ср	-0.068	-0.049	1.000	0.047	-0.076	0.094	0.044	0.295	-0.394	-0.149	0.119	-0.181	-0.161	0.433
	653	353	000	608	904	444	421	762	280	230	717	053	736	798
trest	0.279	-0.056	0.047	1.000	0.123	0.177	-0.114	-0.046	0.067	0.193	-0.121	0.101	0.062	-0.144
bps	351	769	608	000	174	531	103	698	616	216	475	389	210	931
chol	0.213	-0.197	-0.076	0.123	1.000	0.013	-0.151	-0.009	0.067	0.053	-0.004	0.070	0.098	-0.085
	678	912	904	174	000	294	040	940	023	952	038	511	803	239
fbs	0.121	0.045	0.094	0.177	0.013	1.000	-0.084	-0.008	0.025	0.005	-0.059	0.137	-0.032	-0.028
	308	032	444	531	294	000	189	567	665	747	894	979	019	046
reste	-0.116	-0.058	0.044	-0.114	-0.151	-0.084	1.000	0.044	-0.070	-0.058	0.093	-0.072	-0.011	0.137
cg	211	196	421	103	040	189	000	123	733	770	045	042	981	230
thala	-0.398	-0.044	0.295	-0.046	-0.009	-0.008	0.044	1.000	-0.378	-0.344	0.386	-0.213	-0.096	0.421
ch	522	020	762	698	940	567	123	000	812	187	784	177	439	741
exan	0.096	0.141	-0.394	0.067	0.067	0.025	-0.070	-0.378	1.000	0.288	-0.257	0.115	0.206	-0.436
g	801	664	280	616	023	665	733	812	000	223	748	739	754	757
oldp	0.210	0.096	-0.149	0.193	0.053	0.005	-0.058	-0.344	0.288	1.000	-0.577	0.222	0.210	-0.430
eak	013	093	230	216	952	747	770	187	223	000	537	682	244	696
slope	-0.168	-0.030	0.119	-0.121	-0.004	-0.059	0.093	0.386	-0.257	-0.577	1.000	-0.080	-0.104	0.345
	814	711	717	475	038	894	045	784	748	537	000	155	764	877
ca	0.276	0.118	-0.181	0.101	0.070	0.137	-0.072	-0.213	0.115	0.222	-0.080	1.000	0.151	-0.391
	326	261	053	389	511	979	042	177	739	682	155	000	832	724
thal	0.068	0.210	-0.161	0.062	0.098	-0.032	-0.011	-0.096	0.206	0.210	-0.104	0.151	1.000	-0.344
	001	041	736	210	803	019	981	439	754	244	764	832	000	029
targe	-0.225	-0.280	0.433	-0.144	-0.085	-0.028	0.137	0.421	-0.436	-0.430	0.345	-0.391	-0.344	1.000
t	439	937	798	931	239	046	230	741	757	696	877	724	029	000

In [73]:

```
# тепловая карта со значениями в ячейках plt.figure(figsize=(10, 10)) sns.heatmap(data.corr())
```

Out[73]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a31492278>


```
In [78]:
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row',
figsize=(30,10))
sns.heatmap(data.corr(method='pearson'), ax=ax[0],
annot=True, fmt='.1f')
sns.heatmap(data.corr(method='kendall'), ax=ax[1],
annot=True, fmt='.1f')
sns.heatmap(data.corr(method='spearman'), ax=ax[2],
annot=True, fmt='.1f')
fig.suptitle('Koppeляционные матрицы, построенные различными
методами')
ax[0].title.set_text('Pearson')
ax[1].title.set_text('Kendall')
ax[2].title.set_text('Spearman')
```

Корреляционные матрицы, построенные различными методам

