Introduction to Analysis Lecture 5

Haoming Wang

29 April 2019

Abstract

This is the Lecture note for the *Introduction to Analysis* class in Spring 2019.

1 Pointwise / uniformly convergent

Definition 1. Let $X \xrightarrow{f_n} Y(n \in \mathbb{N})$ be a seq. of maps, Y is a metric space. We say that $f_n(n \in \mathbb{N})$ converges to a map $X \xrightarrow{f} Y$

- pointwise (逐点收敛): $\forall \epsilon > 0, \forall x \in X, \exists N_x \in \mathbb{N}, \text{ s.t. } \forall n \geq N_x \Rightarrow d(f_n(x), f(x)) < \epsilon;$
- uniformly (均匀收敛): $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } \forall x \in X, \forall n \geq N \Rightarrow d(f_n(x), f(x)) < \epsilon.$ Denoted as $f_n \to f$ and $f_n \xrightarrow{uni.} f$ as $n \to \infty$ respectively.

Example 1. Given a seq. of maps $X \xrightarrow{f_n} \mathbb{R}$ where $x \in X \in \mathbb{R}$ and $f_n(x) = x^n (n \in \mathbb{N})$. Then f_n converges pointwise if $X \subseteq (-1,1]$:

$$f_n \to f = \begin{cases} 1, & x = 1 \\ 0, & x \in (-1, 1) \end{cases}$$

Figure 1: pointwise convergent

However, f_n does not converges to f uniformly, since

$$|f_n(x) - f(x)| = \begin{cases} |1 - 1| = 0, & x = 1\\ |x^n - 0| = |x|^n, & x \in (-1, 1) \end{cases}$$

For any $\epsilon > 0$, to have $|f_n(x) - f(x)| < \epsilon$, we need $|x|^n < \epsilon$ for $x \in (-1,1)$, that is $n \ln |x| < \ln \epsilon \Leftrightarrow n > \ln \epsilon / \ln |x|$ which has no upper bound, thus there does not exist a $N \in \mathbb{N}$ such that $\forall n \geq N$ has $|f_n - f| < \epsilon$ for $x \in (-1,1)$.

Remark 1. Intuitively, a seq. of maps $f_n \xrightarrow{uni.} f$ means: a pipe with any radius ϵ whose shaft is f can encase all functions after the $f_{N_{\epsilon}}$ of the $f_n(n \in \mathbb{N})$.

Figure 2: uniformly convergent

Proposition 1. Let $X \xrightarrow{f_n} Y(n \in \mathbb{N})$ is a seq. of maps between metric spaces, which converges to map $X \xrightarrow{f} Y$ uniformly, if f_n is continuous at $a \in X$ for $\forall n \in \mathbb{N}$, then f is, too.

Proof. Note that for all $x \in X$ and $n \in \mathbb{N}$, we have that

$$d(f(x), f(a)) \le d(f(x), f_n(x)) + d(f_n(x), f_n(a)) + d(f_n(a), f(a));$$

Then for any $\epsilon > 0$, since $f_n \xrightarrow{uni.} f$ as $n \to \infty$, $\exists N_{\epsilon} \in \mathbb{N}$ s.t. $\forall x \in X, n \ge N_{\epsilon} \Rightarrow d(f_n(x), f(x)) < \epsilon/3$. In particular, $d(f_{N_{\epsilon}(x)}, f(x)) < \epsilon/3$ for $\forall x \in X$. On the other hand, since $f_{N_{\epsilon}}$ is continuous at a, then $\exists \delta_{N_{\epsilon}} > 0$ s.t. $d(x, a) < \delta_{N_{\epsilon}} \Rightarrow d(f_{N_{\epsilon}}(x), f_{N_{\epsilon}}(a)) < \epsilon/3$. Then given $\epsilon > 0$, $\exists \delta_{N_{\epsilon}} > 0$, s.t. for $\forall x \in B_{\delta_{N_{\epsilon}}}(a)$ one has

$$d(f(x), f(a)) \leq d(f(x), f_{N_{\epsilon}}(x)) + d(f_{N_{\epsilon}}(x), f_{N_{\epsilon}}(a)) + d(f_{N_{\epsilon}}(a), f(a))$$
$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus f is continuous at x.

2 Complete metric space

Definition 2 (Complete, 完备). A metric space (Y,d) is complete if every Cauchy sequence $a_n(n \in \mathbb{N})$ in Y converges. That is $\lim_{n\to\infty} a_n = a \in Y$.

Example 2. (\mathbb{R}^n, d_2) is complete; (\mathbb{Q}, d_2) is incomplete.

Proposition 2 (Uniform Cauchy). Let $X \xrightarrow{f_n} Y(n \in \mathbb{N})$ be a seq. of maps, and Y be a complete metric space. Then $f_n(n \in \mathbb{N})$ converges uniformly $\Leftrightarrow \forall \epsilon, \exists N, \text{ s.t. } \forall x \in X, [n, m \geq N \Rightarrow d(f_n(x), f_m(x)) < \epsilon]$ (such $f_n(n \in \mathbb{N})$ is called **uniform Cauchy seq.**).

Proof. \Rightarrow : (The completeness of Y is not need). Since $f_n \xrightarrow{uni} f$, then for $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall x \in X, n \geq N \Rightarrow |f - f_n| < \epsilon/2$, then for $\forall x \in X, \forall n, m \geq N$ one has

$$|f_n - f_m| \le |f_n - f| + |f - f_m|$$

 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

 \Leftarrow : The assumption implies that for every fixed $x \in X$, the seq. $f_n(x)(n \in \mathbb{N})$ is a Cauchy seq. in Y and hence $\lim_{n\to\infty} f_n(x)$ exists, which we denoted as f(x). This define a map $X \xrightarrow{f} Y$. Now we will show that $f_n \xrightarrow{uni.} f$.

Since for $\forall x \in X$ and a fixed $m \in \mathbb{N}$, map $Y \xrightarrow{d} \mathbb{R}$ where $y \mapsto d(y, f_m(x))$ is continuous, then

$$d(f(x), f_m(x)) = \lim_{n \to \infty} d(f_n(x), f_m(x))$$

for all $x \in X$ (Remark ??). Since for $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall x \in X, [m, n \geq N \Rightarrow d(f_n(x), f_m(x)) < \epsilon/2]$. For every $x \in X, m \geq N$, let $n \to \infty$, we obtain that

$$d(f(x), f_m(x)) = \lim_{n \to \infty} d(f_n(x), f_m(x)) \le \frac{\epsilon}{2} < \epsilon$$

thus $f_n \xrightarrow{uni.} f$.

Remark 2. It is direct to see that: $f_n(n \in \mathbb{N})$ converges pointwise $\Leftrightarrow \forall \epsilon, \forall x, \exists N, \text{ s.t. } \in X, [n, m \ge N \Rightarrow d(f_n(x), f_m(x)) < \epsilon].$

The power of this proposition is to convert the seq. of functions $f_n(n \in \infty)$. to a series of functions $\sum_{n=1}^{\infty} g_n$, where we define $f_0 \equiv 0$ and

$$g_n = f_n - f_{n-1}, \quad n \in \mathbb{N},$$

then partial sum $s_n = g_1 + \cdots + g_n = f_n (n \in \mathbb{N})$, and hence $\sum_{n=1}^{\infty} g_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} f_n$.

Definition 3. Let $X \xrightarrow{g_n} \mathbb{R}(n \in \mathbb{N})$ be a seq. of functions, we say that $\sum_{n=1}^{\infty} g_n$ converges pointwise / uniformly the partial sum $s_n = g_1 + \cdots + g_n (n \in \mathbb{N})$ does.

Proposition 3 (Weierstrass's M - test). Let $X \xrightarrow{g_n} \mathbb{R}(n \in \mathbb{N})$ be a seq. of functions, if there exists a positive seq. $M_n(n \in \mathbb{N})$ in \mathbb{R} s.t.

1. $|g_n(x)| \leq M_n$ for all $x \in X$, $n \in \mathbb{N}$, and

2. $\sum_{n=1}^{\infty} M_n < \infty$, then $\sum_{n=1}^{\infty} g_n$ converges uniformly.

Proof. Let partial sum $s_n(x) = g_1(x) + \cdots + g_n(x)(x, \in X, n \in \mathbb{N})$, it is sufficient to show that $s_n (n \in \mathbb{N})$ is uniformly Cauchy seq. (since \mathbb{R} is complete metric space.) Simce series $\sum_n M_n < \infty$, for $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n > m \geq N \Rightarrow \text{ the tail } M_{m+1} + \infty$ $\cdots + M_n = < \epsilon$, then for any such n, m, for $\forall x \in X$ we have that

$$|s_n(x) - s_m(x)| = |g_{m+1}(x) + \dots + g_n(x)|$$

$$\leq |g_{m+1}(x)| + \dots + |g_n(x)|$$

$$\leq M_{m+1} + \dots + M_n$$

$$< \epsilon$$

Thus $s_n(n \in \mathbb{N})$ converges uniformly and hence $\sum_{n=1}^{\infty} g_n$ converges uniformly.

Remark 3. The above conclusion still holds if modify \mathbb{R} to \mathbb{R}^k for some $k \in \mathbb{N}$.

Example 3. Consider series $\sum_{n=1}^{\infty} \sin(x^n)/3^n$ since

$$|g_n| = \left| \frac{\sin(x^n)}{3^n} \right| \le \frac{1}{3^n} =: M_n$$

thus $\sum_{n=1}^{\infty} \sin(x^n)/3^n$ converges uniformly. We can plot them out, define $s_n = \sum_{i=1}^n g_i$, then

with the MATLAB code:

```
gn = 1000; % grid number
   fn = 700; % func number
   X = linspace(-5,5,gn);
3
   Y = zeros(gn,fn);
   for n = 1:fn
5
       F = @(x) \sin(x.^n)./(3.^n);
6
       Y(:,n) = F(X)';
   end
   T = triu(ones(fn,fn));
9
   YY = Y*T;
10
11
   clf;
12
   subplot(1,2,1);
13
   hold on;
   for n = 1:fn
15
       plot(X,YY(:,n), LineWidth=1);
16
   end
17
   xlabel('$x$','Interpreter','latex');
   ylabel('$s_n(x)$','Interpreter','latex');
19
   hold off;
20
   subplot (1,2,2);
22
   plot(X,YY(:,end), LineWidth=1.5, Color='r');
23
   xlabel('$x$','Interpreter','latex');
24
   ylabel('$s_{700}(x)$','Interpreter','latex');
```

Exercise 1. Let X be a metric space, and define

$$C_b(X) := \{x \xrightarrow{f} \mathbb{R} | f \text{ is bounded continuous} \}.$$

For any $f \in C_b(X)$, we let

$$||f||_{\sup} := \sup_{x \in X} |f(x)|$$

For $f,g \in C_b(X)$, define

$$d(f,g) := ||f - g||_{\sup}$$

show that

1. (1.a)
$$||f||_{\sup} \ge 0$$
 and equality holds iff $f(x) \equiv 0$ for $\forall x \in X$; (1.b) $||f + g||_{\sup} \le ||f||_{\sup} + ||g||_{\sup}$ for all $f, g \in C_b(X)$; (1.c) $||cf||_{\sup} = |c| \cdot ||f||_{\sup}$ for all $f \in C_b(X)$, $c \in \mathbb{R}$;

- 2. d is a metric on $C_h(X)$;
- 3. $(C_b(X), d)$ is complete;

4. if
$$f_n \in C_b(X) (n \in \mathbb{N})$$
 and $f \in C_b(X)$, $[f_n \xrightarrow{uni.} f \Leftrightarrow f_n \xrightarrow{w.r.t. d} f]$ as $n \to \infty$.

Proof. Since $\forall f \in C_b(X)$ is bounded, then any $||f||_{\text{sup}}$ exists.

1. (1.a) trivial; (1.b) Assume that exists $f,g \in C_b(X)$ s.t. $\sup_{x \in X} (|f| + |g|) > \sup_{x \in X} |f| + \sup_{x \in X} |g|$. Then exists $x \in X$, s.t.

$$\sup_{x \in X} |f| + \sup_{x \in X} |g| < |f(x)| + |g(x)| \le \sup_{x \in X} (|f| + |g|)$$

which is contrary, thus

$$\begin{split} \|f + g\|_{\sup} &= \sup_{x \in X} |f + g| \le \sup_{x \in X} (|f| + |g|) \\ &\le \sup_{x \in X} |f| + \sup_{x \in X} |g| \\ &= \|f\|_{\sup} + \|g\|_{\sup} \end{split}$$

(1.c) $||cf||_{\sup} = \sup_{x \in X} |c \cdot f(x)| = \sup_{x \in X} |c| \cdot |f(x)| = |c| \cdot \sup_{x \in X} |f(x)| = |c| \cdot ||f||_{\sup}$. 2. We only prove the triangle inequality: for any $f, g \in C_b(X)$, we have

$$d(f,g) = \|f - g\|_{\sup} = \|f + (-g)\|_{\sup}$$

$$\leq \|f\|_{\sup} + \|-g\|_{\sup}$$

$$= \leq \|f\|_{\sup} + \|g\|_{\sup}.$$

3. Suppose $f_n(n \in \mathbb{N})$ is a Cauchy seq. in $(C_b(X), d)$, thus for any $\epsilon > 0, \exists N \in \mathbb{N}$, s.t. for $\forall n, m \geq N$, one has

$$d(f_n, f_m) = ||f_n - f_m||_{\sup} = \sup_{x \in X} |f_n - f_m| < \epsilon$$

thus for $\forall x \in X$, $|f_n(x) - f_m(x)| \le \sup_{x \in X} |f_n - f_m| < \epsilon$. Thus fix any $x' \in X$, then $f_n(x')(n \in \mathbb{N})$ is a Cauchy seq. in \mathbb{R} , and converges since \mathbb{R} is complete metric space, denote the limit as f(x'). It is direct to see that f is bounded, and we will show that f is continuous on X as well.

Since for any $n \in \mathbb{N}$, $f_n \in C_b(X) \Rightarrow f_n$ is continuous on X, thus for any $x \in X$, $\epsilon > 0$, $\exists \delta > 0$ s.t. for any $x' \in B_{\delta}(x)$ (w.r.t. d_2), we have that $d_2(f_n(x'), f_n(x)) < \epsilon/3$. And since for any $x \in X$, $f_n(x)$, as a Cauchy seq. in \mathbb{R} , converges to f(x), and hence $\exists N \in \mathbb{N}$, s.t. for $n \geq N$, $d_2(f(x), f_n(x)) < \epsilon/3$. Thus for any $n \geq N$, $x' \in B_{\delta}(x)$ (w.r.t. d_2), we have

$$d(f(x), f(x')) \le d(f(x), f_n(x)) + d(f_n(x), f_n(x')) + d(f_n(x'), f(x'))$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus f is continuous on $X \Rightarrow f \in C_b(X)$. Now we show that $f_n \to f$ w.r.t. d. Assume that f_n does not converges to f w.r.t. d, that is $\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n \geq N$, s.t.

$$d(f,f_n) = ||f - f_m||_{\sup} = \sup_{x \in X} |f - f_n| \ge \epsilon > \frac{\epsilon}{2},$$

and hence $\exists x \in X \text{ s.t.}$

$$\frac{\epsilon}{2} < |f(x) - f_n(x)| \le \sup_{x \in X} |f - f_n|$$

which leads to a contradiction with $f_n(x)$ is Cauchy in \mathbb{R} and converges to f(x). Thus $f_n \to f \in C_b(X)$ w.r.t. d.

4. It is sufficient to show that bounded continuous $f_n(n \in \mathbb{N})$ is a uniform Cauchy seq. of functions $\Leftrightarrow f_n(n \in \mathbb{N})$ is a Cauchy seq. in $(C_b(X), d)$.

 \Rightarrow : $f_n(n \in \mathbb{N})$ are bounded continuous $\Rightarrow f_n \in C_b(X)(n \in \mathbb{N})$. And for any $\epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n > m \geq M$, has $|f_n(x) - f_m(x)| < \epsilon/2$ for $\forall x \in X$, thus $\sup_{x \in X} |f_n - f_m| \leq \epsilon/2 < \epsilon \Rightarrow d(f_m, f_n) < \epsilon \Rightarrow f_n(n \in \mathbb{N})$ are Cauchy seq. in $(C_b(X), d)$.

 \Leftarrow : $f_n(n \in \mathbb{N})$ are Cauchy seq. in $(C_b(X), d)$, then for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s,t, $\forall n, m \geq N$ has $d(f_m, f_n) = \sup_{x \in X} |f_m - f_n| < \epsilon \Rightarrow \forall x \in X$ has $|f_m(x) - f_n(x)| < \epsilon \Rightarrow f_n(n \in \mathbb{N})$ are uniform Cauchy seq.

Since $(C_b(X), d)$ is complete, then

$$f_n \xrightarrow{w.r.t. d} f \Leftrightarrow f_n \text{ are Cauchy seq. in } (C_b(X), d)$$
 $\Leftrightarrow f_n \text{ are uniform Cauchy seq.}$
 $\Leftrightarrow f_n \xrightarrow{uni.} f.$