数翔无人驾驶地图格式与绘制需求

一.前言

数翔无人驾驶地图 SuperDriveMap 是针对码头自动驾驶的地图格式, 其数据思想基础来自 opendrive 和 apollo, 并结合码头场景和决策需求进行了修订和扩展. 其核心包括: 车道中心参考线\车道附属物.

二.数据详解

2.1 地图文件

SuperDriveMap 一共包括以下 4 个地图文件, 都采用 json 文件格式, 分别为:

- a.连通图字典{车道 ID: 后续车道 ID}. 在文件中存储格式为: ID0, ID_number, ID1...IDi
- b.车道参考线字典{车道 ID: 车道中心参考线点集}. 在文件中存储格式为: IDi, x, y, s, theta, rkappa, rdappa, width_left, width_right
 - c.附属物字典{附属物 ID: 附属物属性}
 - d.车道附属物对应字典{车道 ID: 附属物 ID 集合}

2.2 车道中心参考线点数据定义

RefPoint	Description	Value
rs	当前点到参考线起点的距离 (mm)	uint32
rx	当前点的 x 坐标 (mm)	uint32
ry	当前点的 y 坐标 (mm)	uint32
rtheta	当前点的 theta 角 (0.1deg)	unt16
rkappa	当前点在参考线上的曲率 (1/mm)	float32
rdappa	当前点在参考线上的曲率导数 (1/mm*s)	float32
width_left	当前点对应的车道宽(左侧) (mm)	uint16
width_right	当前点对应的车道宽(右侧) (mm)	uint16

2.3 车道附属物数据定义

AppendObject	Description	Value
type	附属物类型	str
bounding_box	物体外围描述点集	point
object_status	附属物属性	根据附属物属性定义,
		例如红绿灯为灯色

三.地图生产与制作

3.1 地图生产流程

由于港区环境的特殊性, 数翔地图的基础数据来源于港口方提供的测绘地图, 需要以 DXF 方式提供,

获取 DXF 文件后, 需要先对 DXF 进行部分处理, 然后再通过数翔内部地图工具对 dxf 文件进行操作, 最终实现测绘地图到无人驾驶高精度地图的转换.

3.2 DXF 文件处理要求

3.2.1 图层处理要求

在 DXF 文件中, 需要将道路边界\ 道路参考线\ 道路附属物分别设置到: board \ref \appendex 三个图层上, 如果设置错误, 会导致 ID 设置错误.

3.2.2 路线处理要求

为了建立正确的连通地图, DXF 中需要保证所有参考线的交叉点处都是断开的, 即参考线最长是基于交叉点分段的, 如果分段比交叉点更小, 是允许的.

(1) 边界线处理流程

- a.首先,所有的边界线都需要画在 board 图层
- b.其次, 要先画出路口的连线: 需要按照方向分线段,即画成田字格,如下图

- c.然后画出弧线(如果有)
- d.最后将路口和弧线逐段连接起来

(2)车道中心线

车道中心线需要画在 ref 图层,其他与边界线处理方式一致