3.5.1

Suppose A, B, and C are sets.

Theorem. $A \cap (B \cup C) \subseteq (A \cap B) \cup C$

Proof. Let x be arbitrary and suppose $x \in A \cap (B \cup C)$. Thus $x \in A$ and $x \in B$ or $x \in C$. If $x \in C$ then $x \in (A \cap B) \cup C$. In the case where $x \in B$ it follows that $x \in A \cap B$ and therefore $x \in (A \cap B) \cup C$. Since x was arbitrary we can conclude that $A \cap (B \cup C) \subseteq (A \cap B) \cup C$.

3.5.2

Suppose A, B, and C are sets.

Theorem. $(A \cup B) \setminus C \subseteq A \cup (B \setminus C)$

Proof. Let x be arbitrary and suppose $x \in (A \cup B) \setminus C$. Thus $x \notin C$ and $x \in A$ or $x \in B$. If $x \in A$ then $x \in A \cup (B \setminus C)$. If $x \in B$ then if follows that $x \in B \setminus C$ and therefore $x \in A \cup (B \setminus C)$. Since x was arbitrary we can conclude $A \cap (B \cup C) \subseteq (A \cap B) \cup C$.

3.5.3

Suppose A and B are sets.

Theorem. $A \setminus (A \setminus B) = A \cap B$

Proof. Let x be arbitrary and suppose $x \in A \setminus (A \setminus B)$. Then

$$x \in A \setminus (A \setminus B) \text{ iff } x \in A \land x \notin A \setminus B$$

$$\text{iff } x \in A \land \neg (x \in A \land x \notin B)$$

$$\text{iff } x \in A \land (x \notin A \lor x \in B)$$

$$\text{iff } (x \in A \land x \notin A) \lor (x \in A \land x \in B)$$

$$\text{iff } x \in A \land x \in B$$

$$\text{iff } x \in (A \cap B)$$

3.5.4

Theorem. If $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$ then $A \subseteq B$.

Proof. Suppose $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$. Let x be arbitrary and suppose $x \in A$. Thus $x \in A \cup C$ and it follows that $x \in B \cup C$. Now if $x \in B \cup C$ then either $x \in B$ or $x \in C$. If $x \in B$ then since x was arbitrary we can conclude $A \subseteq B$. In the case that $x \in C$, then $x \in A \cap C$ and it follows that $x \in B \cap C$. Therefore $x \in C$ and $x \in B$. Thus, if $x \in A$ then $x \in B$ and since x was arbitrary we can conclude $A \subseteq B$.

3.5.5

Suppose A and B are sets.

Theorem. If $A \triangle B \subseteq A$ then $B \subseteq A$.

Proof. Suppose $A \triangle B \subseteq A$. We will prove by contradiction. Let x be arbitrary and suppose $x \in B$ and $x \notin A$. Since $x \in B$ and $x \notin A$ then $x \in A \triangle B$. Since $A \triangle B \subseteq A$, then $x \in A$. But this contradicts $x \notin A$. Therefore, if $x \in B$ then $x \in A$ and since x was arbitrary we can conclude that $B \subseteq A$.

3.5.6

Suppose A, B, and C are sets.

Theorem. $A \cup C \subseteq B \cup C \iff A \setminus C \subseteq B \setminus C$.

Proof. (\rightarrow) Suppose A, B, and C are sets. Suppose $(A \cup C) \subseteq (B \cup C)$. Let x be arbitrary and suppose $c \in A \setminus C$, which means $x \in A$ and $x \notin C$. Since $x \in A$, then $x \in A \cup C$ and therefore $x \in B \cup C$. This means $x \in B$ or $x \in C$ and since $x \notin C$, it must be that $x \in B$. Now since $x \in B$ and $x \notin C$ then $x \in B \setminus C$. Therefore, if $x \in A \setminus C$ then $x \in B \setminus C$ and since x was arbitrary we can conclude if $A \cup C \subseteq B \cup C$ then $A \setminus C \subseteq B \setminus C$.

 (\leftarrow) Now suppose $A \setminus C \subseteq B \setminus C$. Let x be arbitrary and suppose $x \in A \cup C$, which means $x \in A$ or $x \in C$. If $x \in C$ then $x \in B \cup C$ and since x was arbitrary then $A \cup C \subseteq B \cup C$. In the case that $x \in A$, since $A \setminus C \subseteq B \setminus C$ then $x \in B$. Therefore, $x \in B \cup C$ and since x was arbitrary then $A \cup C \subseteq B \cup C$.

3.5.7

Theorem. For any sets A and B, $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$

Proof. Let A and B be arbitrary sets. Let M be arbitrary and suppose $M \in \mathscr{P}(A) \cup \mathscr{P}(B)$. Thus $M \in \mathscr{P}(A)$ or $M \in \mathscr{P}(B)$, which means $M \subseteq A$ or $M \subseteq B$. In the case where $M \subseteq A$, let x be an arbitrary member of M and it follows that $x \in A$. Since $x \in A$ then $x \in A \cup B$ and because x was arbitrary we can conclude $M \subseteq A \cup B$ and therefore $M \in \mathscr{P}(A \cup B)$. In the case where $M \subseteq B$, let x be an arbitrary member of M and it follows that $x \in B$. Since $x \in B$ then $x \in A \cup B$ and because x was arbitrary we can conclude $M \subseteq A \cup B$ and therefore $M \in \mathscr{P}(A \cup B)$.

3.5.8

Theorem. For any sets A and B, if $\mathscr{P}(A) \cup \mathscr{P}(B) = \mathscr{P}(A \cup B)$ then either $A \subseteq B$ or $B \subseteq A$.

Proof. We will prove the contrapositive. Since we proved that $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$ in exercise 3.5.7, we must show that $\mathscr{P}(A \cup B) \not\subseteq \mathscr{P}(A) \cup \mathscr{P}(B)$ to prove our goal that $\mathscr{P}(A) \cup \mathscr{P}(B) \neq \mathscr{P}(A \cup B)$. Let A and B be arbitrary sets and suppose $A \not\subseteq B$ and $B \not\subseteq A$. This means there is an element $x \in A \setminus B$ and an element $y \in B \setminus A$. Since $x \in A$ and $y \in B$ then both x and y are in $x \in A \cup B$ and therefore the set $x \in A \setminus B$ is in $x \in A \setminus B$ but not in $x \in A \setminus B$. Thus $x \in A \cap B \cap B$ is in $x \in A \cap B \cap B$.

3.5.9

Theorem. Suppose x and y are real numbers and $x \neq 0$. Then y+1/x = 1+y/x iff either x = 1 or y = 1.

Proof. (\rightarrow) Suppose that y+1/x=1+y/x. Now if y=1 then we have proven our goal. So now assume $y \neq 1$ and y+1/x=1+y/x, then it follows that x=1.

 (\leftarrow) Now suppose x=1 or y=1. In the case that x=1 we have

$$y + \frac{1}{x} = y + \frac{1}{1} = y + 1 = 1 + \frac{y}{1} = 1 + \frac{y}{x}$$

In the case that y = 1 we have

$$y + \frac{1}{x} = 1 + \frac{1}{x} = 1 + \frac{y}{x}$$

3.5.10

Theorem. For every real number x, if |x-3| > 3 then $x^2 > 6x$.

Proof. Suppose that x is an arbitrary real number and that |x-3|>3. Then either $x-3\geq 0$ or x-3<0. In the case that $x-3\geq 0$, then |x-3|=x-3 and therefore |x-3|>3=x-3>3. Solving for x, we have x>6 and then multiplying both sides by x we have $x^2>6x$. In the case that x-3<0, then |x-3|=3-x and therefore 3-x>3. Solving for x we have x<0. Multiplying both sides of x<0 by 6-x we have $6x-x^2<0$ and therefore $x^2>6x$.

3.5.11

Theorem. For every real number x, |2x - 6| > x iff |x - 4| > 2.

Proof. (\rightarrow) Let x be an arbitrary real number and suppose |2x-6|>x. Our goal |x-4|>2 means that either x-4>2 or 4-x>2. Since |2x-6|>2 then either 2x-6>x or 6-2x>x. If 2x-6>x then it follows that x-4>2. Now if 6-2x>x then if follows that 4-x>2.

(\leftarrow) Now suppose |x-4|>2. Our goal |2x-6|>x means that either 2x-6>x or 6-2x>x. Since |x-4|>2 then either x-4>2 or 4-x>2. If x-4>2 then it follows that 2x-6>x. In the case that 4-x>2 then it follows that 6-2x>x.

3.5.12

Theorem. For all real numbers a and b, $|a| \le b$ if and only if $-b \le a \le b$.

Proof. (\rightarrow) Suppose a and b are arbitrary real numbers and that $|a| \leq b$. There are two cases to consider: $a \geq 0$ and a < 0. If $a \geq 0$ then $|a| = a \leq b$. It follows that $-b \leq -a$ and since $a \geq 0$ then $-a \leq a$. Therefore, $-b \leq -a \leq a \leq b$ and $-b \leq a \leq b$. Now in the case that a < 0 then $|a| = -a \leq b$. It follows that $-b \leq a$ and since a < 0 then -a > a or a < -a. Therefore $-b \leq a < -a \leq b$ and $-b \leq a \leq b$.

 (\leftarrow) Now suppose $-b \le a \le b$ and therefore $a \le b$. Now we must prove that $-a \le b$ to complete the proof. If we subtract a from both sides of $-b \le a$ and add b to both sides we have $-a \le b$.

3.5.13

Theorem. For every integer x, $x^2 + x$ is even.

Proof. Let x be an arbitrary integer. There are two cases to consider: x is even or x is odd. If x is even then there exists an integer k such that x=2k. Plugging in 2k for x in x^2+x we have $x^2+x=(2k)^2+2k=4k^2+2k=2(2k^2+k)$. Since $2k^2+k$ is an integer then x^2+x is even. In the case that x is odd there is a j such that x=2j+1. Plugging in 2j+1 for x in x^2+x we have $x^2+x=(2j+1)^2+(2j+1)=(4j^2+4j+1)+(2j+1)=4j^2+6j+2=2(2j^2+3j+1)$. Since $2j^2+3j+1$ is an integer, x^2+x is even.

3.5.14

Theorem. For every integer x, the remainder when x^4 is divided by 8 is either 0 or 1.

Proof. Suppose x is an integer and there exists an integer k such that $8k = x^4$. Since x is an integer, x is either even or odd. If x is even then there exists an integer m such that x = 2m. Then $8k = (2m)^4 = 16m^4$ and $k = 2m^4$ r 0. In the case that x is odd, then there exists an integer m such that x = 2m + 1. Then $8k = (2m+1)^4 = 16x^4 + 32x^3 + 24x^2 + 8x + 1$ and $k = 2x^4 + 4x^3 + 3x^2 + x$ r 1. Therefore, when x^4 is divided by 8 the remainder is either 0 or 1.