24 秋- 测度与概率期末 (回忆版)

January 10, 2025

- 1. (a) 证明 $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
 - (b) 若 f 可积,则

$$\lim_{\mu(A)\to 0} \int_{\mu(A)} |f| = 0$$

(c) $(\Omega_i, \mathcal{F}_i)_{i \in I}$, I 为不可数指标,

$$\mathcal{C} = \{B_{I_c} \times \Omega_{I \setminus I_c} | B_{I_c} \in \prod_{i \in I_c} \mathcal{F}_i, I_c$$
是可数指标}

则 C 是 σ 代数

- 2. 叙述 $(\Omega_1, \mathcal{F}_1)$ 到 $(\Omega_2, \mathcal{F}_2)$ 的转移概率 $\lambda : \Omega_1 \times \mathcal{F}_2 \to [0, 1]$ 的定义,并证明 $\forall A \in \mathcal{F}_1 \times \mathcal{F}_2$, $\lambda(\omega_1, A_{\omega_1}, \mathcal{F}_2, \mathcal{F}_1)$ 的随机变量
- 3. $(\Omega, \mathcal{F}, \mathbb{P})$,证明 $\mathcal{G} = \{A | \mathbb{P}(A) = 0$ 或 $\mathbb{P}(A) = 1\}$ 是 σ 代数,若 $f \in \mathcal{G}$ 为实值函数,则 f 应该是何种形式?
- 4. Ω 为不可数集, \mathcal{F} 为包含 Ω 中单点集的最小 σ 代数
 - (a) 证明 $\mathcal{F} = \{A | A$ 可数或 A^c 可数 $\}$

(b)
$$\forall A \in \mathcal{F}, \ \mu(A) = \begin{cases} 0, A \text{可数} \\ 1, A^c \text{可数} \end{cases}$$
 则 $\mu \in (\Omega, \mathcal{F})$ 上的测度

- (c) 在 $\Omega \times \Omega$ 上,令 $\mathcal{C} = \{A \times B | A \in \mathcal{F}, B \in \mathcal{F}\}$, $\nu(A \times B) := \mu(A)\mu(B)$,则 ν 是 \mathcal{C} 上的 测度。
- (d) 叙述 ν 导出的外测度的定义,并求 $\Delta:=\{(\omega,\omega)\big|\omega\in\Omega\}$ 的外测度
- (e) 叙述如何将 C 上的 ν 扩张到 $\sigma(C)$ 上
- (f) 证明 $\Delta \notin \mathcal{F} \times \mathcal{F}$
- 5. 设 φ 是符号测度
 - (a) 证明 $\exists P \in \mathcal{F}, \, \varphi(P) = \sup_{A \in \mathcal{F}} \varphi(A)$
 - (b) 证明 $\varphi(A \cap P) = \sup_{B \in A \cap \mathcal{F}} \varphi(B)$