IT시스템설계

과제3: 변형된 MNIST Dataset 분류

전자전기공학부 B415156 이승호

Augmented MNIST Dataset

Rotation, Zoom, Flip이 적용된 Augmented MNIST Dataset을 잘 인식할 수 있도록 네트워크 구조를 변경하거나 학습데이터를 변형함으로써 성능을 향상시키는 방법들을 테스트하였다. 모든 코드는 Google Colab 환경에서 테스트하였고 Keras를 이용해서 인공지능 모델을 만들었다.

*Augment Config

Random Rotation Range = 30° Random Zoom Range = 1/1.3 Horizontal Flip Rate = 0.3

위와 같은 조건으로 데이터를 변형하였다.

1) Fully Connected

 $784(Input) \Rightarrow 784 \Rightarrow 392 \Rightarrow 10(Output)$

Parameter = 927,090

- Original Dataset을 1번 학습 위와 같은 3 Layer의 Fully Connected 모델에서 Original Dataset을 1번만 학습하였다.

*Model & Train Config

Hidden Layer Activation = ReLU Output Layer Activation = Softmax Optimizer = Adam Loss = Categorical Cross Entropy Epoch = 1 Batch Size = 100

*Result

INCOURT		
	Original Images	Augmented Images
Accuracy	0.9682	0.5798

Original Test Images에 대해서는 Accuracy가 0.95 이상으로 좋은 결과가 나왔으나 Augmented Test Images는 거의 인식하지 못했다.

- Original Dataset, Augmented Dataset을 교대로 학습 동일한 모델에 대해서 먼저 Original Dataset을 1번, 다음에 Augmented Dataset을 1번 교대로 학습하는 방식으로 학습 횟수를 늘려가며 Accuracy의 변화를 테스트하였다.

*Model & Train Config

Hidden Layer Activation = ReLU Output Layer Activation = Softmax Optimizer = Adam Loss = Categorical Cross Entropy Epoch = 1 Batch Size = 100

*Result

	Original Images	Augmented Images
1	0.8749	0.9401
2	0.9354	0.9560
3	0.9500	0.9575
4	0.9634	0.9630
5	0.9703	0.9637

1번 교대로 학습하였을 때에는 나중에 학습한 Augmented Image에 편향되어 학습된 모습을 볼 수 있었으나 3번째 학습부터는 Original Image와 Augmented Image 모두 0.95 이상으로 좋은 Accuracy 를 확인할 수 있었다.

2) Convolutional Neural Network

(28, 28, 1)(Input) \Rightarrow 32, (5, 5) Conv \Rightarrow (2,2) MaxPooling \Rightarrow 64, (5, 5) Conv \Rightarrow (2,2) MaxPooling \Rightarrow Flattening \Rightarrow 1024 \Rightarrow 512 \Rightarrow 10(Output)

Parameter = 3,794,314

- Original Dataset을 1번 학습 위와 같은 2 Conv, 2 Pool, 3 FC 모델에서 Original Dataset을 1번만 학습하였다.

*Model & Train Config

Convolution Layer Activation = ReLU
Padding = Same
Hidden Layer Activation = ReLU
Output Layer Activation = Softmax
Optimizer = Adam
Loss = Categorical Cross Entropy
Epoch = 1
Batch Size = 100

*Result

	Original Images	Augmented Images
Accuracy	0.9865	0.7067

Full Connected만을 사용해서 학습했을 때보다 학습 효율이 좋았다. Augmented Image를 테스트했을 때도 0.7067로 이전에 비해서 나은 결과를 확인할 수 있었다. 그러나 완전히 학습되었다고 하기에는 부족한 결과이기 때문에 FC와 마찬가지로 Original Dataset과 Augmented Dataset을 번갈아가며 학습하면서 Accuracy의 변화를 측정하기로 했다.

- Original Dataset, Augmented Dataset을 교대로 학습

*Model & Train Config

Convolution Layer Activation = ReLU Padding = Same Hidden Layer Activation = ReLU Output Layer Activation = Softmax Optimizer = Adam Loss = Categorical Cross Entropy Epoch = 1 Batch Size = 100

*Result

	Original Images	Augmented Images
1	0.9545	0.9731
2	0.9761	0.9790
3	0.9868	0.9782
4	0.9857	0.9824
5	0.9857	0.9824

FC와 달리 1번의 교대학습에서도 모두 Accuracy가 0.95이상이 나왔다. 5번의 교대학습 부터는 더이상학습이 되지 않았다.

+ 추가 실험

5번씩 학습된 FC와 CNN Model에 더욱 심하게 변형 된 Test Image를 넣어 Accuracy가 얼마나 떨어지는지 확인해보았다.

*Augment Config

Random Rotation Range = 45° Random Zoom Range = 1/1.5 Horizontal Flip Rate = 0.5

*Result

	FC	CNN
Accuracy	0.8566	0.9521

*Augment Config

Random Rotation Range = 60° Random Zoom Range = 1/1.7Horizontal Flip Rate = 0.7

*Result

	FC	CNN
Accuracy	0.6114	0.8374

CNN의 경우 더 심하게 변형된 데이터에 관해서도 Accuracy를 어느정도는 유지하나, 결과적으로는 Accuracy가 떨어졌다. 높은 Accuracy는 네트워크 모델의 차이이기도 하나, 변형된 데이터를 학습시켰기 때문인 것 같다.