Equivalent / indistinguish states:

Two states q_1 and q_2 are equivalent both if $\wedge S(q_1, n)$ and $S(q_2, n)$ one final states or non final states for all $n \in \mathbb{Z}^*$ it is denoted as $q_1 \equiv q_2$.

Two states q, and q_2 are K-equivalent $(K \ge 0)$ if both $S(q_1, n)$ and $S(q_2, n)$ for all string K of length K or len.

- * any two final states are o equivalence.
- * any two non-final states are ocquivalence.
- * equivalent states follow the Reflexive, symmetric and transitive Property.
- * if q, and q2 are k equivalent for all KZO then q, and q2 are equivalent.
- * The set of Kequivalent sets of state denoted by
- * if Kn = That Then the following result is the key to the construction of minimum state Automata.

construction of minimum Automata: (by using SET method)

slep o: Remove all inaccessible states from initial state.

Step 1: construction of To (by defination of a equivalence

To = {Q, Q, Y here Q Show Kequirelent setates

where Q' = set of non final state.

Step 12: (construct TK+1 from TK)

Let QK be any subset in TK. if 91,92 EQK. then they are K+1 equivalent if S(91,9) and S(92,9) are in the same equivalence class in TK, ta E E.

in this way at is further divided into K+1 equivalence classes. Repeat This brocess for every at in TK to get I

Step & 3:

construct TK+1 for K=0,1,... Until TK=TK+1

step 4: (construction of minimum Automata)

on The state table is obtained by preplacing a state of by the corresponding equivalence class.

Rrob!

Construct a minimum state Automata equivalent to the Finite Automata described by for given table.

tate	9=0	q=1	
9.0	9,1	9-5	
9-1	9-6	92	
(2)	90	9-2	
9-3	9.2	9.6	
24	27	9-5	
95	22	7-6	4
20	2.6	24	
9-2	96	2.2	e so remove

NOW Q; = { 90,91, 24,95, 96,97}

a2 = { 22}

To={{90,91, 94,95,20,203, {925}

Now construct TI,

in ai, go is requivalent to 24, 96

because 8(90/94/96,0) Ea, and S(90/94/96,1) EQ;

> 9, is one equivalent to 97 and 25 is alone so single state class

on Q2 have only one state so it can not be further Partitioned

So now The = { (90,94,96), {9,197}, { 95}, {92}}

a; = { 20, 94, 26}, a2 = { 21, 27}, a3 = { 25}, a4 = { 25}, a4 = { 25}, a4 = { 25}

in α'_1 90 is a equivalent to 94 snorthequivalent to 96 because $8(90/94,0) \in \alpha'_2$ $8(90/94,1) \in \alpha'_3$ but $8(96,0) \in \alpha'_1$

So Q! Partitioned into L 90,944 and 6903. In Qg 9, is a equivalent to 97 so no Partitioned

now T2 = { 190, 24 } 190}, { 2,, 273, 1 25}, { 25}, {22}

 $Q_1^2 = \{90,94\}, Q_2^2 = \{96\}, Q_3^2 = \{91,97\},$ $Q_4^2 = \{95\}, Q_5^2 = \{92\}$

Now construct This
in Q? 90 is 3 equivalent to 94
in Q3 9, is 3 equivalent to 97

So $\pi_3 = \{\{q_0, q_4\}, \{q_6\}, \{q_1, q_7\}, \{q_5\}, \{q_2\}\}\}$ $\pi_2 = \pi_3$ So π_2 gives us the equivalence classes

The minimum of A is $m' = \{\alpha', \{q_0, q_4\}, \{q_0, q_7\}, \{q_2\}\}\}$

where
$$Q' = \{\{q_0, q_4\}, \{q_1\}, \{q_1, q_7\}, \{q_2\}\}\}$$
 $q_0' = \{q_0, q_4\}$
 $F' = \{q_2\}$
and S' defined by Pable

aE	0	1 1
(20,26}	221,27}	1 . 954
42,273	490}	12-2 5
	4925	1203
	Leef .	120,244
49-23 / 49	0,949	{9.2}

Brob.

minimized the following OFA:

->C	C (b)
*****	100,1

- 1	0		1
9	Ь		C
5	a	- /	d
0	e	/	f
1	e	1	8
e	0		f
f 1	f		f

To = { { 9, b, 8}, { c, d, e}} here Q = { a, b, 64, Q2 = { c,d,e} now construct TI, in a, a is I equivalent to b but not f in Q2 c is I equivalent to d. and e. SO T, = { {9,6} 89, {e,d,e} } here a! = {a,b}, a= {8}, a= dcd,e3 how construct the in a a is a equivalent to b in az ocis 2 equivalent to d and e T, 二大2 So minimized DFA is 6, b3 (9, b) (c, d, e) Lc,d,e} (c,d,e) (18)

 $\{t\}$ $\{t\}$

MyHill Nerode theorem is used to minimize a DFA.

Step: 1: remove all unreachable states from DFA.

step 2: Build a two dimensional 121 X 121 matrin labelling the right side as, a, a, ... numing down and Bottom as as, a, a 2 ... numing left to right lut dashes (-) in the major diagonal and

upper triougular Part of the matrix.

* Now Perform operation in lower triangular *

Step 3: Put "X" between every final & a non final states.

Step 4: (Now for every pair of states of empty position of 2, and 12 is empty then put "x" between 2, 8 92 if S(9,9) = 91, S(92,9)=31 and $91, and 912 have "x" or "r". where <math>91 \le 510$ the step 4 while put atleast one x

step 6: Now write o in every empty position.

Stef7: To findout the states, in minimised DFA check all the scouns of final matrin if a column start with an is having o at ay, az position then { 2 x, 2y, 2z } will a state in minimized machine.

if No "o" found in any calumn q, other as is not equivalent to other states and write alone.

initial state/Final state will be that state which contains initial state / Final state.

For finding the Iransition between states of minimized machine we will adopt the same strategy as we adopt in minimization process.

Salution

-	-	-	-	-	
0	-	-	-	-	_
X	X	-	-	-	-
X	X	0	_	-	-
Х	X	0	0	-	-
26	×	X	X	X	-

set of Final state $F = \{c, d, e\}$ set of Non Final state $a-F = \{a, b, t\}$ "X" the Position of $\{a, c\}$, $\{a, d\}$, $\{a, e\}$, $\{b, c\}$, $\{b, d\}$, $\{b, e\}$,

if $\{P, Q\}$ is dashes $\{a, b\}$ then "X" $\{Q, P\}$ Now for $\{a, b\}$: $\{$

Now for (a, b) !

S(a,0)=b S(b,0)=a S(b,a) is empty S(a,1)=C S(b,1)=d S(c,d) is empty S(a,b)=C S(a,b)

Now for (b, f):

S(b,0) = 9 8 S(8,0) = 8 8 (a,8) have'se's so Put "x" at Position (b,8)

Now for (c,e): S(c,o) = e, S(e,o) = e and (e,e) have - (-is equivalent + o)

So remain empty at position (c, e)

Now for ((,d): δ((,0)=e, δ(d,0)=e & e,e have-S((,1)=f, S(d,8)=b & b.b have-SO remains empty at Position((,d))

Now for (d, e): S(d, 0) = e, S(Rio) = e, (e,e) have -S(d,1)=+, S(e,1)=+, (f.f) haveso gremain empty the position of (d, e) Now again check far (a, b) S(a,0) = b, S(b,0) = a 8 (a,b) net xoun Ses(a,1) = c, s(b,1) = d s (c,d) " "" so gremain empty the Position of (a, b) NOW for (C, E): S((,0)= e, S(e,0)=e & (e,e) have-S(c,1) = &. S(e,1) = & & (f. f) have-So sumain empty. NOW for (C,d) S(c,0) = e, s(d,0)=e 8 (e,e) have-8(c,1) = 8 , 8(d,1)= & 8 (B. B) have-So No change Now for (d,e) S(d,0) = e, S(e,0) = e, (e,e) home-S(d,1) = f. S(b,0) = f. (l.B) have-So No chaze So NOW put o at empty position.

equivalent states are quite (9,b), (c,d,e), (f)

$$Q = \{4a, b\}, \{c, d, e\}, \{b\}\}$$
 $A_0 = \{a, b\}$
 $F = \{c, d, e\}$
 $\{c, d, e\}, \{a, b\}, \{c, d, e\}\}$
 $\{c, d, e\}, \{a, b\}, \{a, b\},$

Brob!

minimized by myhill Nerode Theorem

8	1 9	1 6	1					4				
-500	121	1941	90	1-	n	-	-	-	-	-	-	
700	22	23	21	n	-		-	-	-	-	-	_
21		1	921	X	X		-	_	-	-	-	-
(92)	27	28	-	n.	21	0	-	-	_	-	_	-
(23)	28	27		-	0	X	X	_	_		-	_
84	25	26	29/	_		P. Carl	0	x		-		
(C1)	271	28 4	25/1	1.0	X	0	0	×	0	+=	-	-
((40)	27	28	26 X	1	X	0	V	76	X	X	~	-
an	27	27	27 20		×	X	1	n	X	X	0	_
28	28 9	28	98 2	1,	x	^_	/	- CV	1	5 26	2	28
			2	0	Li	92	23	29			4	0

a'= (20), (1,24), (12,23,25,2,) (2,28)}

8	9	Ь	1
->19-05	(9,24)	221,245	
(2,74)	{92,23,25,20}	{22,25,25,20}	
322232520	have now a second of the secon	(27, 283	
22728}	121, Zef	(27,28)	