

Operating Systems (INFR10079) 2023/2024 Semester 2

Memory Management (Allocation)

abarbala@inf.ed.ac.uk

Contiguous Allocation #1

- Main memory must support both OS and user processes
- Memory limited resource must allocate efficiently
- Contiguous allocation is an early method
- Main memory usually into two partitions
 - OS (usually) held in low memory with interrupt vector
 - Processes held in high memory
 - Each contained in single contiguous section of memory

Contiguous Allocation #2

- Relocation and limit registers
 - To protect user processes
 - from each other
 - from changing OS code and data
 - Relocation register contains value of smallest physical address
 - Limit register contains range of logical addresses
 - Each logical address must be less than the limit register
- MMU translates logical address
 - transparently, during execution

Multiple-partition Allocation #1

- Multiple-partition allocation
 - Variable partition size (size of a program) for efficiency
 - Degree of multiprogramming limited by number of partitions

Multiple-partition Allocation #2

Multiple-partition allocation

- Hole: block of available memory; holes of various sizes
- When a process arrives, OS allocates memory from a hole large enough to accommodate it
- Process exiting, returns partition to OS, adjacent free partitions combined
- Operating system maintains information about
 - allocated partitions
 - free partitions (hole)

Dynamic Storage-Allocation Problem

How to satisfy a request of size *n* from a list of free holes?

- First-fit: Allocate the first hole that is big enough
- Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered by size
 - Produces the smallest leftover hole
- Worst-fit: Allocate the largest hole; must also search entire list
 - Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Multiple Programs: Swapping (1)

- How many programs are currently executed?
- Do they all fit in memory?

Multiple Programs: Swapping (2)

operating

system

process P_x

main memory

- How many programs are currently executed?
- Do they all fit in memory?

- Swapping
 - a) **SWAP IN:** Bringing in memory a process in its entirety (from disk)
 - b) RUN: Running it for a while
 - c) SWAP OUT: Putting it back from memory (to disk)
 - About **running** processes, no programs!
 - Idle processes are stored on disk,
 - Do not take up any memory when they are not running

backing store

Multiple Programs: Swapping (3)

Time -

Memory allocation changes as processes come into memory and leave it. The shaded regions are unused memory (MOS Figure 3-4)

Multiple Programs: Swapping (3)

Memory allocation changes as processes come into memory and leave it. The shaded regions are unused memory (MOS Figure 3-4)

Multiple Programs: Growing Programs

- (a) Allocating space for a growing program at the end if more space is needed, relocate
- (b)Allocating space for a growing program in its address space
 - max amount of growth
- (c) Both solutions are not ideal

Multiple Programs: Memory Fragmentation #1

- Process creation and exit, swapping, process growing and shrinking
- Create memory holes
 - New processes, memory is available, cannot be placed

Compaction

- Move all processes tightly together
 - By memory copy or
 - By swapping out and in
 - Computationally expensive
- What if a process needs to grow its heap or stack?

System

System

Multiple Programs: Memory Fragmentation #2

External Fragmentation

- You allocate the exact amount of memory requested
- Total memory space exists to satisfy a request, but it is not contiguous

Internal Fragmentation

- You allocate more than what required
- Allocated memory may be slightly larger than requested memory
- First fit analysis reveals given N blocks allocated, 0.5 N blocks lost to fragmentation
 - 1/3 may be unusable

Concepts

- Relocatable binaries
- MMU
- Logical Address Space vs Physical Address Space
- Contiguous Memory Allocation
 - First fit, best fit, worst fit
- Swapping
- Growing programs
- Fragmentation
 - Compaction