From: 8064986673

To: 00215712738300

Page: 19/28

Date: 2005/11/8 上午 11:49:45

Cite No. 2

Scarching PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-353686

(43) Date of publication of application: 24.12.1999

(51)Int.CI.

G11B 7/00 G11B 19/02 G11B 27/00

21)Application number : 10-161734

(71)Applicant: NEC CORP

22)Date of filing:

10.06.1998

(72)Inventor: YAMADA MINORU

54) POWER CALIBRATION SYSTEM OF OPTICAL DISK DEVICE

57) Abstract:

PROBLEM TO BE SOLVED: To provide a system in which an optimally ecording laser power is easily calculated.

SOLUTION: Signals of respective detectors are outputted from an ptical pickup 2 and a servo signal and an RF signal are obtained in a ignal detecting circuit 3. The RF signal is transmitted to a B detecting ircuit 8, in which a β value is calculated from the maximum value R1 nd the minimum value R2 of peak values of the RF signal to be utputted to a control circuit 12. The circuit 12 receives the B value om the β detecting circuit 8 and calculates a recording laser power for rial writing and the optimally recording laser power value by an internal scording laser power deciding means 13 to output it to a recording ontrol circuit 10.

EGAL STATUS

)ate of request for examination]

10.06.1998

)ate of sending the examiner's decision of rejection]

17.10.2000

find of final disposal of application other than the caminer's decision of rejection or application

onverted registration]

late of final disposal for application]

'atent number]

late of registration]

lumber of appeal against examiner's decision of

jection]

ate of requesting appeal against examiner's decision rejection

ate of extinction of right]

BEST AVAILABLE COPY

Copyright (C); 1998,2003 Japan Patent Office

From: 8064986673 To: 00215712738300

Page: 20/28

Date: 2005/11/8 上午 11:49:45

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-353686

(43)公開日 平成11年(1999)12月24日

(51) Int.CL*		識別配号	ΡI	•	
GIIB	7/125		G11B	7/125	С
	7/00			7/00	N
	19/02	501		19/02	501S
	27/00			27/00	D

請求項の数10 OL (全 9 頁)

(21)出願證号	特數平10-181734	(71)出職人 000004237	
		日本職駅株式会社	
(22) 出頭日	平成10年(1998) 6月10日	東京都港区芝五丁目7番1号	
		(72)発明者 山田 稔	
		東京都港区芝五丁目7番1号 日本電気	綝
		式会社内	
		(74)代理人 外理土 岩佐 钱申	

光ディスク装置のパワーキャリプレーション方式 (54) 【発明の名称】

(57)【要約】

【課題】 最適記録レーザパワーを算出しやすい方式を 提供する.

【解決手段】 光ピックアップ2からは、各ディテクタ の信号が出力され、信号検出回路3にて、サーボ信号、 RF信号が得られる。RF信号はB検出回路8へ送ら れ、RF信号のピーク値の極大値R1および極小値R2 より8億が算出され、コントロール回路12へ出力され る。コントロール回路12はβ検出回路8からのβ値を 受信し、内部の記録レーザパワー決定手段13により、 試し書き用記録レーザパワーや、最適な記録レーザパワ 一値を算出し、記録制御回路10へ送信する。

Page: 21/28 Date: 2005/11/8 上午 11:49:46

(2)

特開平11-353686

1

【特許請求の範囲】

【請求項1】各ディテクタの信号を出力する光ピックア ップと、前配信号をサーボ信号またはRF信号として出 力する信号検出回路と、前記サーボ信号または前記RF 信号を処理するコントロール回路とを備え、パワーキャ リブレーションを行う光ディスク装置のパワーキャリブ レーション方式において、

前記コントロール回路が、前記パワーキャリブレーショ ンにおける一度の使用エリアを減少して最適記録レーザ パワーを決定するレーザパワー決定手段を有することを 10 特徴とするパワーキャリブレーション方式。

【請求項2】前記信号検出回路と前記コントロール回路 との間に設けられ、前記RF信号のピーク値の極大値お よび極小値よりβ値を算出し、前記コントロール回路へ 出力するβ値検出回路を備えたことを特徴とする、翻求 項1に記載のパワーキャリプレーション方式。

【請求項3】前記β値が、前配極大値をR1,前記極小 値をR2としたときに、 $\beta = (R1+R2)/(R1-$ R2) により算出されることを特徴とする、請求項2に 記載のパワーキャリブレーション方式。

【論求項4】前記コントロール回路は、前記β検出回路 からの前記β値を受信し、前記記録レーザパワー決定手 段により、試し書き用記録レーザパワー、最適な記録レ ーザパワー値を算出することを特徴とする、請求項2ま たは3に記載のパワーキャリブレーション方式.

【請求項5】前記試し書き記録レーザパワー、最適な記 録レーザパワーを受け取り、入力されたデータをエンコ ードする記録制御回路を備えたことを特徴とする、請求 項4に記載のパワーキャリブレーション方式。

【請求項6】前記サーボ信号を制御し、前記コントロー 30 レーション方式を提供することにある。 ル回路に出力するサーボ制御回路を備えたことを特徴と する、請求項1~5のいずれかに記載のパワーキャリブ レーション方式。

【請求項7】前記サーボ制御回路が、前記光ピックアッ **プを制御する信号,前配光ピックアップをトラック方向** へ移動させるスレッドモータ用のスレッドサーボ信号。 前記光ディスク媒体の回転を整えるスピンドルモータ用 のスピンドルサーボ信号を出力することを特徴とする、 請求項6に記載のパワーキャリブレーション方式。

含まれるディスク上のアドレス値やサーボ情報を前記コ ントロール回路へ送信することを特徴とする、請求項6 または7に記載のパワーキャリブレーション方式。

【翻求項9】前記RF信号を処理してデコードされたデ 一タを前記コントロール回路に出力する再生信号処理回 路を備えたことを特徴とする、請求項1~8のいずれか に記載のパワーキャリブレーション方式。

【讃求項10】前配再生信号処理回路が、前記RF信号 内に含まれるデータのアドレス値を前記コントロール回 ーキャリブレーション方式。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、追記型光ディスク の最適記録レーザパワーの決定を行う際の試し書きであ るパワーキャリプレーション(以下、PCA)に関し、 特に、一度のPCA使用エリアを従来より減らし、さら に従来より最適記録レーザパワーを算出しやすくしたパ ワーキャリプレーション方式に関する。

[0002]

【従来の技術】図7は、従来のCD-R試し書きエリア 1回分の使用例を示す図である。(A)は試し書きエリ アを示し、(B) は試し書きレーザパワーを示し、

- (C) はレーザパワーの強度を示す図である。図7
- (A)に示すように、従来、CD-R規格では、1回分 の試し書きエリアは、15フレーム使用するように規定 されており、全体で100回の使用が可能となってい た。また、試し書き用レーザパワーは、図7 (B) に示 すように、15段階の設定になっており、図7 (C)の ようにレーザパワーを変化させて記録し、この中から最
- 適なレーザパワー値を選択する方法を採っていた。

[0003]

【発明が解決しようとする課題】上述した従来例では、 CD-Rの規格分のエリア (99トラック+1クロー ズ) しか設けていないため、複数セッション記録や失敗 記録をするとエリアが足りなくなる。従って、試し書き エリアが不足するという問題があった。

【0004】そこで、本発明の目的は、上記問題を解消 すべく、最適記録レーザパワーを算出しやすいキャリブ

[0005]

【課題を解決するための手段】上記目的を達成するため に、本発明のキャリプレーション方式は、各ディテクタ の信号を出力する光ピックアップと、信号をサーボ信号 またはRF信号として出力する信号検出回路と、サーボ 信号またはRF信号を処理するコントロール回路とを備 え、パワーキャリブレーションを行う光ディスク装置の パワーキャリブレーション方式において、コントロール 回路が、パワーキャリブレーションにおける一度の使用 【請求項8】前記サーボ制御回路が、前記サーボ信号に 40 エリアを減少して最適記録レーザパワーを決定するレー ザパワー決定手段を有することを特徴とする。

【0006】また、信号検出回路とコントロール回路と の間に設けられ、RF信号のピーク値の極大値および極 **小値よりβ値を算出し、コントロール回路へ出力するβ** 値検出回路を備えるのが好ましい。

【0007】さらに、β値が、極大値をR1,極小値を R2としたときに、 $\beta = (R1+R2)/(R1-R)$ 2) により算出されるのが好ましい。

1

【0008】また、コントロール回路は、8検出回路か **路へ送信することを特徴とする、請求項9に記載のパワ 50 らのβ値を受信し、記録レーザパワー決定手段により、**

PAGE 21/28 * RCVD AT 11/7/2005 10:50:02 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-6/26 * DNIS:2738300 * CSID:8064986673 * DURATION (mm-ss):30-20

(3)

特開平11-353686

試し書き用記録レーザパワー、最適な記録レーザパワー

値を算出するのが好ましい。 【0009】さらに、試し書き記録レーザパワー、最適

な記録レーザパワーを受け取り、入力されたデータをエ ンコードする記録制御回路を備えるのが好ましい。

【0010】また、サーボ信号を制御し、コントロール 回路に出力するサーボ制御回路を備えるのが好ましい. 【0011】さらに、サーボ制御回路が、光ピックアッ プを制御する**信号**,光ピックアップをトラック方向へ移 動させるスレッドモータ用のスレッドサーボ信号、光デ ィスク媒体の回転を整えるスピンドルモータ用のスピン ドルサーボ信号を出力するのが好ましい。

【0012】またさらに、サーボ制御回路が、サーボ信 号に含まれるディスク上のアドレス値やサーボ情報をコ ントロール回路へ送信するのが好ましい。

【0013】また、RF信号を処理してデコードされた データをコントロール回路に出力する再生信号処理回路 を備えるのが好ましい。

【0014】さらに、再生信号処理回路が、RF信号内 に含まれるデータのアドレス値をコントロール回路へ送 20 償するのが好ましい。

【0015】以上説明したように、本発明のパワーキャ リブレーション方式は、光ピックアップからは、各ディ テクタの信号が出力され、信号検出回路にて、サーポ信 号、RF信号が得られる。RF信号はB検出回路へ送ら れ、RF信号のピーク値の極大値R1および極小値R2 より8億が算出され、コントロール回路へ出力する。コ ントロール回路は β 検出回路からの β 値を受信し、内部 の記録レーザパワー決定手段により、試し書き用記録レ ーザパワーや、最適な記録レーザパワー値を算出し、記 30 録制御回路へ送信する。

[0016]

 $\beta = (R1+R2) / (R1-R2) \cdot \cdot \cdot \cdot \cdot (1)$

次に、コントロール回路12は、β値検出回路8からの 8億を受信し、内部の記録レーザパワー決定手段13に より、試し書き用記録レーザパワーや、最適な記録レー ザパワー値を算出し、記録制御回路10へ送信する。記 **録時、記録信号生成回路11に入力されたデータはエン** コードされ、記録制御回路10へ送信される。記録制御 回路10では最適な記録レーザパワーが設定されてお り、エンコードデータはレーザ駆動回路9へ送信され、 光ピックアップ2を介して、光ディスク装置1へ記録さ ns.

【0019】以上、説明したように、本発明の光ディス ク装置のパワーキャリブレーション方式では、光ピック アップ2からは、各ディテクタの信号が出力され、再生 信号検出回路3にて、サーボ信号、RF信号が得られ る。RF信号はB値検出回路8へ送られ、RF信号のビ ーク値の極大値R1および極小値R2よりβ値が算出さ *【発明の実施の形態】次に、図面を参照して、本発明の 実施例について詳細に説明する.

Page: 22/28

【0017】図1は、本発明の光ディスク装置のパワー キャリブレーション方式の実施例の構成を示すブロック 図である。この装置は、光ディスク媒体1と、光ピック アップ2と、再生信号検出回路3と、再生信号処理回路 4と、光ピックアップ2をトラック方向に移動させるス レッドモータ5と、スピンドルモータ6と、サーボ制御 回路7と、β値検出回路8と、レーザ駆動回路9と、記 録制御回路10と、記録信号生成回路11と、装置動作 をコントロールするコントロール回路 (CPU) 12と から構成される。また、コントロール回路12は、一部 の機能として記録レーザパワー決定手段13を有する。 光ピックアップ2からは、各ディテクタの信号が得ら れ、再生信号検出回路3にて、サーボ信号、RF信号が 得られる。サーボ信号は、サーボ制御回路7へ送られ、 サーボ制御回路7にて、光ピックアップ2を制御する信 号や、光ピックアップ2をトラック方向へ移動させるス レッドモータ5用のスレッドサーボ信号や、光ディスク 1の回転を整えるスピンドルモータ6用のスピンドルサ 一ポ信号を出力する。さらに、サーポ制御回路7からは サーボ信号に含まれる、ディスク上のアドレス館やサー ボ情報がコントロール回路12へ送信される。RF信号 · は、再生信号処理団路4へ送られ、デコードされたデー タが出力される。またRF信号内に含まれるデータのア ドレス値がコントロール回路12へ送信される。RF信 号は、β値検出回路8へも送られ、RF信号のビーク値 の極大値R1と極小値R2とが検出され、次の(1)式 により算出されたβ値をコントロール回路12へ出力す **3**.

[0018]

※回路12は、B値検出回路8からのB値を受信し、内部 の記録レーザパワー決定手段13により、試し書き内部 の記録レーザパワー決定手段により、試し書き用記録レ ーザパワーや、最適な記録レーザパワー値を算出し、記 録制御回路10へ送信する。

【0020】次に、図2~図4を参照して、本発明の実 施例の動作について説明する。

【0021】図2は、CD-R規格にて規定されている 試し書き用のエリアであるPCAを示す図である。PC A21は100回使用できるようになっており、使用回 数をカウントするカウントエリア22と、実際に試し書 きを行うテストエリア23とから構成されている。カウ ントエリア22は、一回の使用で1フレーム長が記録さ れるようになっており、本実施例では、カウントエリア 22をCF001~CF100と表現する。 テストエリ ア23は、1回の使用で15フレーム長が記録されるよ れ、コントロール回路12へ出力される。コントロール※50 うになっており、本実施例では、テストエリア23を1

From: 8064986673 To: 00215712738300 Page: 23/28 Date: 2005/11/8 上午 11:49:46

(4)

特開平11-353686

5

5フレーム単位で1パーティションとして、TP001 〜TP100と表現する。また、15フレーム内をTP01〜TF15と表現する。ここで、TA1, TA2, TA3は、それぞれ本実施例の1回の試し書きに使用するエリアを示しており、3回使用することができることを示している。

【0022】図3は、テストエリア23内の1パーティションで使用する記録レーザパワーを示している。

(A) はフレームごとの記録レーザパワーを示し、

上昇していることを示している。

(B) はそれぞれの記録レーザパワーの強度を示す図で 10 ある。従来と同じ特度を想定して、15段階の記録レーザパワーを使用する。図3(A)では、1フレームごとの記録レーザパワーPW01~PW15を示し、図3(B)はそれぞれの記録レーザパワーの強さが段階的に

【0023】次に、図4を参照して、コントロール回路 12の動作について説明する。まず、フレームTFO1 にレーザパワーPW08にて記録する(ステップS10 0)、次に、TF01を再生しながら、B値検出回路8 からのβ値(BTF01)を受信し、目標β値と比較す 20 る(S101)。その結果、目標β値より大きければ、 次にTFO2にPWO4にて記録する(S102).こ のTF02を再生しながら、β値検出回路8からのβ値 (BTF02)を受信し、目標β値と比較する(S10 3)。その結果、目標β値より大きければ、次にTFO 3にPW02にて記録する(S104)。TF03を再 生しながら、β値検出回路8からのβ値(BTF03) を受信し、目標 B値と比較する (S105). この結 果、目標β値より大きければ、次にTF04にPW01 にて記録する (S106) . TF04を再生しながら、 β検出回路8からのβ値(BTFO4)を受信し、目標 β値と比較する (S107)。この結果、目標β値より 大きければ、エラー (ERR) 処理を行い終了する (S 108)、また、目標β値より小さければ、目標β値は PWO 1からPWO 2の間に存在する事になり、従来と 同様にPWO1からPWO2内の最適記録レーザパワー を決定する(S109)。

【0024】また、S105での結果、目標β値より小さければ、次にTF04にPW03にて記録する(S110)。TF04を再生しながら、β検出回路8からの 40 β値(BTF04)を受信し、目標β値と比較する(S111)。この結果、目標β値より大きければ、目標β値はPW02からPW03の間に存在する事になり、従来と同様にPW02からPW03内の最適記録レーザパワーを決定する(S112)。また、目標β値より小さければ、目額β値はPW03からPW04の間に存在する事になり、従来と同様にPW03からPW04内の最適記録レーザパワーを決定する(S113)。

【0025】また、S103での結果、目標β値より小 5 (D) に示す。これにより、目標β位置を検出するたさければ、次にTF03にPW06にて記録する(S1 50 めに従来15段階必要だった記録レーザパワーが4段階

20)。TF03を再生しながら、β検出回路8からのβ値(BTF03)を受信し、目観β値と比較する(S121)。この結果、目標β値より大きければ、次にTF04にPW05にて記録する(S122)。TF04を再生しながら、β検出回路8からのβ値(BTF04)を受信し、目標β値と比較する(S123)。この結果、目標β値より大きければ、目標β値はPW04からPW05の間に存在する事になり、従来と同様にPW04からPW05内の最適記録レーザパワーを決定する(S124)。また目標β値より小さければ、目標β値はPW05からPW06内の最適記録レーザパワーを決定する(S125)。

【0026】また、S121での結果、目標β値より小さければ、次にTF04にPW07にて配録する(S126)。TF04を再生しながら、β検出回路8からのβ値(BTF04)を受信し、目標β値と比較する(S127)。この結果、目標β値より大きければ、目標β値はPW06からPW07の間に存在する事になり、従来と同様にPW06からPW07内の最適配録レーザバワーを決定する(S128)。また目標β値より小さければ、目標β値はPW07からPW08の間に存在することになり、従来と同様にPW07からPW08内の最適配録レーザパワーを決定する(S129)。

【0027】また、S101での結果、目標を値より小さければ、次にPW08からPW15にての記録を行うが、S102からS129までの処理と同様になるため、フローチャートを省略した(S140)。

【0028】次に、図5.図6を参照して、本発明の他30 の実施例について説明する。

【0029】図5は、本発明の他の実施例の動作について説明する図である。図5(A)は、15段階の記録レーザパワーを示し、図5(B)は、記録レーザパワーの位置を示し、図5(C)は、目標8値を示し、図5

- (D)は、記録レーザパワーの強度を示す図である。
- 【0030】各図について説明すると、図5(A)は、 従来の15段階の記録レーザパワーを示しており、目標 身値B1が得られる記録レーザパワー位置をP23とす る。この位置P23を検出するために、まず15段階中 の中央に位置するPW08のレーザパワーで記録し、戻 りのβ値がPW01側かPW15側に存在するかを判断 する。次にPW04のレーザパワーで記録し、戻りのβ 値がPW01側かPW08側かを判断する。引き続き同 様に判断して目標β位置を追い込んでいくと、図5
- (B)のTF01からTF04位置に示した記録レーザ パワー値になり、図5(C)のPW02とPW03との 間に目標β位置があることが判明する。TF05は空き エリアとなっている。この記録レーザパワーの強度を図 5(D)に示す。これにより、目標β位置を検出するた かに始ま15段階が関がった解験レーザパワーが4段階

Page: 24/28 Date: 2005/11/8 上午 11:49:47

(5)

特開平11-353686

7

で同レベルの検出をすることが可能となる。

【0031】図6は、本発明の他の実施例の動作を示す フローチャートである。まず、TF01ヘアクセスする (ステップS200). 次に、フレームTF01にレー ザパワーPW08にて記録し(S201)、再度TF0 1ヘアクセスする (S202). TF01を再生しなが ら、β値検出回路8からのβ値(BTF01)を受信し (S203)、目標8億B1と比較する(S204)。 この結果、目標B値B1より大きいため、次にTF02 ヘアクセスする (S206)。 TF02を再生しなが ら、B検出回路8からのB値(BTF02)を受信し (S207)、目標β値B1と比較する(S208)。 この結果、目標β値B1より大きいため、次に、TF0 3にPW02にて記録する(S209).次に、TF0 3ヘアクセスする (S210). TF03を再生しなが ら、β検出回路8からのβ値(BTF03)を受信し (S211)、目標β値B1と比較する(S212)。* *この結果、目標β値B1より小さいため、次に、TF0 4にPW03にて記録する (S213). 次に、TF0 4ヘアクセスする (S214)。 TF04を再生しなが ら、β値検出回路8からのβ値(BTFO4)を受信し (S215)、目標 8 値 B1と比較する (S216)。 この結果、目標β値B1より大きいため、目標β値B1 はPWO2からPWO3の間に存在することになり、従 来と同様にPW02からPW03内の最適記録レーザバ

8

にPW04にて記録する(S205)。次に、TF02 10 【0032】また、図5(C)のTF06からTF10 位置に、温度などの影響により目標8の位置がP67に なった場合の本実施例実行後の記録レーザパワー値を示 す。この場合、従来と同じ特度で最適レーザパワー値を 決定するので有れば、PWO6およびPWO7より決定 する。また、空きエリアTF10を利用して、例えば、 次の(2)式より算出されたPWxxで記録する。 [0033]

ワーを決定する(S217)。

 $PWxx = (PW06 + PW07)/2 \cdot \cdot \cdot \cdot \cdot (2)$

35.

【0034】本実施例では、記録レーザパワーの選択 を、比較範囲の1/2に相当するものを15段階記録パ ワーの中から選択していたが、この選択は、この限りで はなく、システムやディスクの特性にあわせた値を選択 しても良い。

【0035】また、 β 値の位置の変化を学習することに より、本実施例での最初の記録レーザパワーをPWO4 から開始することも可能であり、3フレームの使用で1 回の試し書きが終了する。従って、従来の1回分の試し 30 書きエリアで5回分の試し書きが可能となる。

【0036】また、本実施例では、従来の一回分の試し 書きエリアを複数回使用する手法を採っているが、シス テムにより、更に細かいβ値を得たいのであれば、TF O5からTF15まで従来より細かくデータを得ること ができる。

【0037】以上、説明したように、本発明のパワーキ ャリブレーションでは、光ピックアップ2からは、各デ ィテクタの信号が出力され、信号検出回路3にて、サー が信号、RF信号が得られる。RF信号はB検出回路8 40 へ送られ、RF信号のピーク値の極大値R1および極小 値R2よりβ値が算出され、コントロール回路12へ出 力される。コントロール回路12は8検出回路8からの 8億を受信し、内部の記録レーザパワー決定手段13に より、試し書き内部の記録レーザパワー決定手段によ り、試し書き用記録レーザパワーや、最適な記録レーザ パワー値を算出し、記録制御回路10へ送信する。

[0038]

【発明の効果】本発明では、記録レーザパワーを選択し ながら記録していく。従って、従来の1回の試し書き工※50 5 スレッドモータ

この結果、従来より更に細かいβ値を得ることが可能で 20%リアにて複数回の試し書きができるという効果を奏す

【0039】また、エリアに余裕ができ、従来より細か。 い記録パワーを与えることができるため、最適レーザパ ワーを求める際の補間計算が容易で、かつ精度の向上が 望める。従って、従来よりも最適レーザパワーの算出が 容易になるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の実施例の構成を示すブロック図であ る.

【図2】本発明の実施例の動作を示す概略図である。 【図3】本発明の実施例の使用例を示す図である.

(A)は15段階の記録レーザパワーを示し、(B)は それぞれの記録レーザパワーの強度を示す図である。 【図4】本発明の実施例の動作を示すフローチャートで ある.

【図5】本発明の実施例の動作を示す図である。(A) は15段階の記録レーザパワーを示し、(B) は記録レ ーザパワーの位置を示し、(C)は目額β値を示し、

(D) は記録レーザパワーの強度を示す図である。

【図6】本発明の他の実施例の動作を示すフローチャー トである.

【図7】 従来例の使用例を示す図である。(A)は15 段階のエリアを示し、(B)はレーザパワーを示し、 (C) はレーザパワーの強度を示す図である。 【符号の説明】

- 1 光ディスク媒体
- 2 光ピックアップ
- 3 再件信号検出回路
- 4 再生信号処理回路

From: 8064986673 ' To: 00215712738300 Page: 25/28 Date: 2005/11/8 上午 11:49:47

(6) 特開平11-353686

- 6 スピンドルモータ
- 7 サーブ制御回路
- 8 值校出回路
- 9 レーザ駆動回路
- 10 配錄制御回路
- 11 記錄信号生成回路

- 12 コントロール回路
- 13 記録レーザパワー決定手段
- 21 パワーキャリブレーションエリア (PCA)
- 22 カウントエリア
- 23 テストエリア

(7)

特開平11-353686

【図3】

【図6】

(8)

特開平11-353686

[図4]

(9) 特開平11-353686

【図7】

4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.