

Part 1

Example 1

Note: Assume T = 6s.

Signal 1

Signal 2

Signal 3

Signal 4

Phi 1

Phi 2

Phi 3

Constellation Diagram

Symbol Energy

```
Command Window
How many signals do you want to input?
Input Signal period
Input Signal matrix
[2 6; 1 0]
Input Signal matrix
[4 6; 1 0]
Input Signal matrix
[2 6; 0 1]
Input Signal matrix
[6;1]
symbol_energy =
   2
   4
   4
   6
>>
```

Example 2

Signal 1

Signal 2

Signal 3

Phi 1

Phi 2

Constellation Diagram

Symbol Energy

```
Command Window

How many signals do you want to input?

3
Input Signal period

3
Input Signal matrix
[1 3; 2 0]
Input Signal matrix
[2 3; -4 0]
Input Signal matrix
[3;3]
symbol_energy =

4
32
27
```

Part 2

Polar NRZ

Constellation Diagram Without Noise

Note: In the following diagram, bit rate = 1 bit/s just to clarify the concept. However, in the next part bit rate = 1000 bits/s, and it could be varied from the code if necessary.

Constellation Diagram with Complex Noise

Transmitter Encoded Signal (Time Domain)

Received Noisy Signal (Time Domain)

Note: Eb/No = 6 dB for this graph.

BER vs $\frac{E_b}{N_o}$

Theoretical Results

Theoretical Analysis

$$P_e(symbol) = Q\left(\frac{S_{21} - S_{11}}{\sqrt{2No}}\right)$$

- In BPSK each bit is represented in one symbol, so BER = $P_e(symbol)$
- From the constellation diagram shown at the beginning of Part 2:
- $\bullet \quad S_{21} S_{11} = 2\sqrt{Eb}$
- Therefore, BER = $Q\left(\sqrt{\frac{2\times Eb}{No}}\right)$

BER vs $\frac{E_b}{N_o}$

BER Values

Comments

- The BER decreases with increasing Eb/No, as predicted by the theoretical expression.
- The actual BER curve deviates slightly from the theoretical curve.
- Overall, the results demonstrate that polar NRZ can achieve good BER performance in AWGN channels.