CSEG601 & CSE5601 Spatial Data Management & Application:

Spatial Query Processing using R-tree

Sungwon Jung

Big Data Processing & Database Lab.

Dept. of Computer Science and Engineering
Sogang University
Seoul, Korea
Tel: +82-2-705-8930

Tel: +82-2-705-8930 Email: jungsung@sogang.ac.kr

1

Content

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- Closest Pair Query
- Close Pair Query

Range query: find the objects in a given range. E.g. find all hotels in Boston.

No index: scan through all objects. NOT EFFICIENT!

Aggregation Query

- Given a range, find some aggregate value of objects in this range.
- COUNT, SUM, AVG, MIN, MAX
- Example: Find the total number of hotels in Massachusetts.
- Straightforward approach: reduce to a range query.
- Better approach: along with each index entry, store aggregate of the sub-tree.

Content

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- Closest Pair Query
- Close Pair Query

Nearest Neighbor (NN) Query

• Given a query location q, find the nearest object.

• E.g.: given a hotel, find its nearest bar.

13

R-trees - NN search

• Q: How? (find near neighbor; refine...)

R-trees - NN search

• A1: depth-first search; then range query

R-trees - NN search

• A1: depth-first search; then range query

R-trees - NN search

• A1: depth-first search; then range query

R-trees - NN search: Branch and Bound

- A2: [Roussopoulos+, sigmod95]:
 - At each node, priority queue, with promising MBRs, and their best and worst-case distance
- main idea: Every face of any MBR contains at least one point of an actual spatial object!

MBR face property

- MBR is a d-dimensional rectangle, which is the minimal rectangle that fully encloses (bounds) an object (or a set of objects)
- MBR f.p.: Every face of the MBR contains at least one point of some object in the database

Search improvement

- Visit an MBR (node) only when necessary
- How to do pruning? Using MINDIST and MINMAXDIST

MINDIST

- MINDIST(P, R) is the minimum distance between a point P and a rectangle R
- If the point is inside R, then MINDIST=0
- If P is outside of R, MINDIST is the distance of P to the closest point of R (one point of the perimeter)

MINDIST computation

- MINDIST(p,R) is the minimum distance between p and R with corner points l and u
 - the closest point in R is at least this distance away

MINMAXDIST

- MINMAXDIST(P,R): for each dimension, find the closest face, compute the distance to the furthest point on this face and take the minimum of all these (d) distances
- MINMAXDIST(P,R) is the smallest possible upper bound of distances from P to R
- MINMAXDIST guarantees that there is at least one object in R with a distance to P smaller or equal to it.

$$\exists o \in R, \|(P,o)\| \le MINMAXDIST(P,R)$$

MINDIST and MINMAXDIST

• MINDIST(P, R) <= NN(P) <= MINMAXDIST(P,R)

Pruning in NN search

- Downward pruning: An MBR R is discarded if there exists another R' s.t. MINDIST(P,R)>MINMAXDIST(P,R')
- Downward pruning: An object O is discarded if there exists an R s.t. the Actual-Dist(P,O) > MINMAXDIST(P,R)
- Upward pruning: An MBR R is discarded if an object O is found s.t. the MINDIST(P,R) > Actual-Dist(P,O)

Pruning 1 example

• Downward pruning: An MBR R is discarded if there exists another R' s.t. MINDIST(P,R)>MINMAXDIST(P,R')

Pruning 2 example

 Downward pruning: An object O is discarded if there exists an R s.t. the Actual-Dist(P,O) > MINMAXDIST(P,R)

Pruning 3 example

• Upward pruning: An MBR R is discarded if an object O is found s.t. the MINDIST(P,R) > Actual-Dist(P,O)

Ordering Distance

• MINDIST is an optimistic distance where MINMAXDIST is a pessimistic one.

NN-search Algorithm

- 1. Initialize the nearest distance as infinite distance
- 2. Traverse the tree depth-first starting from the root. At each Index node, sort all MBRs using an ordering metric and put them in an **Active Branch List (ABL).**
- 3. Apply pruning rules 1 and 2 to ABL
- 4. Visit the MBRs from the ABL following the order until it is empty
- 5. If Leaf node, compute actual distances, compare with the best NN so far, update if necessary.
- 6. At the return from the recursion, use pruning rule 3
- 7. When the ABL is empty, the NN search returns.

K-NN search

- Keep the sorted buffer of at most k current nearest neighbors
- Pruning is done using the k-th distance

Another NN search: Best-First

- Global order [HS99]
 - Maintain distance to all entries in a common Priority Queue
 - Use only MINDIST
 - Repeat
 - Inspect the next MBR in the list
 - Add the children to the list and reorder
 - Until all remaining MBRs can be pruned

NN Basic Algorithm

- Keep a heap *H* of index entries and objects, ordered by MINDIST.
- Initially, *H* contains the root.
- While $H \neq \phi$
 - Extract the element with minimum MINDIST
 - If it is an index entry, insert its children into H.
 - If it is an object, return it as NN.
- End while

Pruning 1 in NN Query

• If we see an object o, prune every MBR whose MINDIST > d(o, q).

• Side notice: at most one object in *H*!

39

Pruning 2 using MINMAXDIST

- Prune even before we see an object!
- Prune E_1 if exists E_2 s.t. MINDIST $(q, E_1) > \text{MINMAXDIST}(q, E_2)$.

• MINMAXDIST: compute max dist between q and each edge of E_2 , then take min.

NN Full-Blown Algorithm

- Keep a heap *H* of index entries and objects, ordered by MINDIST.
- Initially, *H* contains the root.
- Set $\delta = +\infty$.
- While $H \neq \phi$
 - Extract the element *e* with minimum MINDIST.
 - If it is an object, return it as NN.
 - − For every entry se in PAGE(e) whose MINDIST $\leq \delta$
 - Insert se into H.
 - Decrease δ to MINMAXDIST(q, se) if possible.
- · End while

41

Best-First vs Branch and Bound

- Best-First is the "optimal" algorithm in the sense that it visits all the necessary nodes and nothing more!
- But needs to store a large Priority Queue in main memory. If PQ becomes large, we have thrashing...
- BB uses small Lists for each node. Also uses MINMAXDIST to prune some entries

Content

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- Closest Pair Query
- Close Pair Query

43

Closest Pair (CP) Query

- Given two sets of objects R and S,
- Find the pair of objects $(r \in R, s \in S)$ with minimum distance.

- CP = (r_2, s_1)
- E.g. find the closest pair of hotel-bar.

CP Solution Idea

- Assume *R* and *S* are indexed by R-trees with same height.
- Similar to the NN query algorithm.
- MINDIST, MINMAXDIST for a pair of MBRs:

45

CP Basic Algorithm

- Keep a heap *H* of pairs of index entries and pairs of objects, ordered by MINDIST.
- Initially, *H* contains the pair of roots.
- While $H \neq \phi$
 - Extract the pair (e_R, e_S) with minimum MINDIST.
 - If it is a pair of objects, return it as CP.
 - For every entry se_R in PAGE(e_R) and every entry se_S in PAGE(e_S)
 - Insert(e_R , e_S) into H.
- · End while

CP Full-Blown Algorithm

- Keep a priority queue *H* of pairs of index entries and pairs of objects, ordered by MINDIST.
- Initially, *H* contains the pair of roots.
- Set $\delta = +\infty$.
- While $H \neq \phi$
 - Extract the pair (e_R, e_S) with minimum MINDIST.
 - If it is a pair of objects, return it as CP.
 - − For every entry se_R in PAGE(e_R) and every entry se_S in PAGE(e_S) whose MINDIST ≤ δ
 - Insert(se_R, se_S) into H.
 - Decrease δ to MINMAXDIST(se_R , se_S) if possible.
- End while

47

Content

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- Closest Pair Query
- Close Pair Query

Close Pair Query

- Given two sets of objects R and S, plus a threshold α,
- Find every pair of objects $(r \in R, s \in S)$ with distance $<\alpha$.

• Close pairs = (r_1, s_1) , (r_2, s_1) , and (r_3, s_3) .

49

Close Pair Solution Idea

- Observation: if $d(r, s) < \alpha$, $\forall mbr_R, mbr_S$ that contain r and s, respectively, we have: MINDIST $(mbr_R, mbr_S) < \alpha$.
- Solution idea:
 - start with the pair of root nodes,
 - Join pairs of index entries whose MINDIST $<\alpha$,
 - Till we reach leaf level.

Close Pair Algorithm

- Push the pair of root nodes into *stack*.
- While $stack \neq \phi$
 - Pop a pair (e_R, e_S) from *stack*.
 - For every entry se_R in PAGE(e_R) and se_S in PAGE(e_S) where MINDIST(se_R , se_S) $<\alpha$
 - Push (se_R, se_S) into stack if se_R is an index entry;
 - Otherwise report (se_R, se_S) as one close pair.
- · End while