Inference for Two-Way Contingency Tables

Jinhwan Suk

Department of Mathematical Science, KAIST

June 16, 2020

Contents

- Review
- 2 Two-Way Tables with Ordered Classifications
- Small-Sample Inference for Contingency Tables
- 4 Bayesian Inference for Two-Way Contingency Tables
- Exercise

Review

- Interval Estimation of Odds Ratio, Difference of Prop., RR
- Testing Independence (Multinomial sampling)
 - **1** Pearson χ^2 test (Under H_0 : independence)

$$X^{2} = \sum_{i,j} \frac{(n_{ij} - \hat{\mu}_{ij})^{2}}{\hat{\mu}_{ij}} \stackrel{d}{\rightarrow} \chi^{2}_{\nu}$$

2 Likelihood-ratio χ^2 test (Under H_0 : independence)

$$G^2 = -2\log\Lambda = 2\sum_{i,j}n_{ij}\log(n_{ij}/\hat{\mu}_{ij})\stackrel{d}{\to}\chi^2_{\nu}$$

Review

- Testing Independence (Independent binomial sampling)
 - **1** Homogeneity condition $\pi_1 = \pi_2$

$$z = \frac{\hat{\pi}_1 - \hat{\pi}_2}{\sqrt{\hat{\pi}(1 - \hat{\pi})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

• Score Confidence Intervals Comparing Proportions (Under $H_0: \pi_1 - \pi_2 = \delta_0$)

$$z(\delta_0) = \frac{(\hat{\pi}_1 - \hat{\pi}_2) - \delta_0}{\left(\frac{\hat{\pi}_1(\delta_0)(1 - \hat{\pi}_1(\delta_0))}{n_1} + \frac{\hat{\pi}_2(\delta_0)(1 - \hat{\pi}_2(\delta_0))}{n_2}\right)^{1/2}}$$

Contents

- Review
- 2 Two-Way Tables with Ordered Classifications
- 3 Small-Sample Inference for Contingency Tables
- 4 Bayesian Inference for Two-Way Contingency Tables
- Exercise

Linear Trend Alternative to Independence

Political Ideology	Happiness		
i official fueblogy	Not too Happy	Pretty Happy	Very Happy
Liberal	13	29	15
Moderate	23	59	47
Conservative	14	67	54

- X and Y are ordinal. $\Longrightarrow \chi^2$ and G^2 chi-squared tests ignore !!
- How can we examine dependency??
 "Positive or Negative trend" ← Correlation
- Assign scores $u_1 \leq u_2 \leq \cdots \leq u_I$ and $v_1 \leq v_2 \leq \cdots \leq v_J$

Linear Trend Alternative to Independence

Large sample normality of sample correlation coefficient.

$$\hat{\rho} = \frac{\sum_{1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sqrt{\sum_{1}^{n} (X_{i} - \bar{X})^{2} \sum_{1}^{n} (Y_{i} - \bar{Y})^{2}}}$$

$$= (\frac{1}{n} \sum_{1}^{n} X_{i}^{2} - \bar{X}^{2})^{-1/2} (\frac{1}{n} \sum_{1}^{n} Y_{i}^{2} - \bar{Y}^{2})^{-1/2} (\frac{1}{n} \sum_{1}^{n} X_{i} Y_{i} - \bar{X} \bar{Y})$$

$$= (\bar{X}^{2} - \bar{X}^{2})^{-1/2} (\bar{Y}^{2} - \bar{Y}^{2})^{-1/2} (\bar{X} \bar{Y} - \bar{X} \bar{Y})$$

Define $W_i = (X_i, Y_i, X_i^2, Y_i^2, X_i Y_i)$. Then, $\hat{\rho} = g(\bar{W})$ where

$$g(u_1, u_2, u_3, u_4, u_5) = ((u_3 - u_1^2)(u_4 - u_2^2))^{-1/2}(u_5 - u_1u_2).$$

W.L.O.G. we may assume $\mathbb{E}X = \mathbb{E}Y = 0$ and $\mathbb{E}X^2 = \mathbb{E}Y^2 = 1$ By Central Limit Theorem, $\sqrt{n}(\bar{W} - (0,0,1,1,\rho)) \stackrel{d}{\to} \mathcal{N}(0,cov(W_5))$

Linear Trend Alternative to Independence

- H_0 : independent $vs. H_1: \rho \neq 0$
- $\sqrt{n}\,\hat{
 ho} \stackrel{d}{ o} \mathcal{N}(0,1)$ under H_0 (Delta Method)
- $\mathit{M}^2 = (\mathit{n} 1)\hat{\rho}^2$ is approximately χ_1^2
- Large p-value contradicts independence.
- Small p-value does not imply linear association.

Political Ideology	Happiness		
Folitical Ideology	Not too Happy	Pretty Happy	Very Happy
Liberal	13	29	15
Moderate	23	59	47
Conservative	14	67	54

• χ^2 test statistic : 7.07 **p-value : 0.13**

• Pearson Correlation(ρ) = 0.135

• M^2 statistic : 5.82 **p-value : 0.02**

Monotone Trend Alternative to Independence

- H_0 : Independent $vs. H_1$: Monotone Trend
- (Method 1) : Assuming underlying continuous distribution
- (Method 2): Using ordinal measure of association

$$\hat{\gamma} = \frac{\Pi_c}{\Pi_c + \Pi_d} - \frac{\Pi_d}{\Pi_c + \Pi_d}$$

ullet $\hat{\gamma}$ has approximately a normal sampling distribution.

$$z = \hat{\gamma}/SE$$

Agresti (2010) : (C − D)/SE₀

Sensitivity to Choice of Scores

- Cochran(1954) "any set of scores gives a valid test, provided that they are constructed **without consulting** the results of the experiment"
- The scale is chosen by a consensus of experts
- (1, 2, 3, 4) and (2, 4, 6, 8) have the same ρ and hence the same M^2

Example: Infant Birth Defects by Maternal Alcohol Consumption Code

	Alcohol Consumption				
	(average number of drinks per day)				
Malformation	0	<1	1-2	3-5	>5
Absent	17,066	14,464	788	126	37
Present	48	38	5	1	1

1 Score = (0, 0.5, 1.5, 4.0, 7.0)

$$M^2 = 6.57$$
 p-value : 0.010

 \bigcirc Score = (1.0, 2.0, 3.0, 4.0, 5.0)

$$M^2 = 1.83$$
 p-value : 0.176

Midrank = (8557.5, 24365, 32013, 32473, 32555.5)

$$M^2(Spearman's rho) = 0.35$$
 p-value : 0.55

Trend Tests for $I \times 2$ and $2 \times J$ Tables

- Comparision of two groups in 2 × J table
 ⇒ Wilcoxon or Mann-Whitney test
- Linear trend test in I × 2 table
 ⇒ Cochran-Armitage trend test (Section 5.3.5)
- When one is norminal with more than 2 categories..?

Contents

- Review
- 2 Two-Way Tables with Ordered Classifications
- 3 Small-Sample Inference for Contingency Tables
- 4 Bayesian Inference for Two-Way Contingency Tables
- Exercise

Fisher's Exact Test for 2×2 Tables

- Sampling method : Poisson, Multinomial, Independent binomial
- Assumption: Individual observations are independent
- $(\{n_{i+}\}, \{n_{+j}\})$ is a sufficient statistic under H_0 : independent $\Rightarrow P(\{n_{ij}\}|\{n_{i+}\}, \{n_{+j}\})$ does not depend on unknown parameters
- ullet In 2 imes 2 table, the conditioning yields hypergeometric distribution
- For 2×2 table, independence is equivalent to $\theta = 1$

P-value =
$$P(n_{11} \ge t_o) \cdots H_1 : \theta > 1$$

• The test for 2 × 2 tables is called *Fisher's exact test*.

Example : Fisher's Tea Drinker

	Guess Po	oured First	
Poured First	Milk	Tea	Total
Milk	3	1	4
Tea	1	3	4
Total	4	4	

- $H_0: \theta = 1 \text{ vs } H_1: \theta > 1$
- P-value = $P(n_{11} \ge 3) = HG(8, 4, 3) + HG(8, 4, 4) = 0.243$
- As n₁₁ larger,

odds ratio, RR, and difference of proportions $\uparrow \Rightarrow \mathsf{SAME}\ \mathsf{p-value}$

Two-Sided P-values for Fisher's Exact Test

- ① (Irwin 1935) p-value = $\sum_{p(t) \le p(t_0)} P(n_{11} = t)$
- ② p-value = $\sum_{t \text{ is farther from } H_0 \text{ than } t_o} P(n_{11} = t)$

$$P$$
-value = $P[|n_{11} - \mathbb{E}n_{11}| \ge |t_0 - \mathbb{E}n_{11}|] = P(\chi^2 \ge \chi_o^2)$

- **3** p-value = $2 \min[P(n_{11} \ge t_o), P(n_{11} \le t_o)]$
- (Blaker 2000) p-value = $\min[P(n_{11} \ge t_o), P(n_{11} \le t_o)] + Q_0$ Q_0 is the probability in other tail that is close to, but not greater than Q.

The approach of setting type 1 errors for one-sided tests at half the conventional type 1 error used in two-sided tests is preferable in regulatory settings. This promotes consistency with two-sided confidence intervals that are generally appropriate for estimating the possible size of the difference between two treatments

Discreteness and Conservatism Issues

• In previous example, possible one-sided p-values were restricted to

- 0.05 is not probable type 1 error \Rightarrow Conservative
- Achieve any significance level by randomized test
- Tocher(1950) showed that Fisher's test is UMPU
- Or, Mid p-value ⇒ Less Conservative

Small-Sample Unconditional Tests for Independence

- Commonly, only $\{n_{i+}\}$ are fixed.
- Under binomial sampling, consider testing $H_0: \pi_1 = \pi_2$

$$T = X^2$$

• Given $\pi_1 = \pi_2 = \pi$, the p-value is $P_{\pi}(T \geq t_0)$

$$P = \sup_{0 \le \pi \le 1} P_{\pi}(T \ge t_0)$$

- $T = X^2$ table : (3,0/0,3) p-value=?
- Is it desirable to take supremum over all possible π ?

Berger and Boos(1994) P-values Maximized Over a Confidence Set.., JASA

If the data X have a probability dist. P_{ν} and we wish to test $H_0: \nu = \nu_0, \dots$

Test statistic $T \Rightarrow \text{p-value} = P(T \ge t_0)$

Now consider a model with a nuisance parameter θ , $X \sim P_{\nu,\theta}$...

Under $H_0: \nu = \nu_0$, p-value = $\sup_{\theta} P_{\nu_0,\theta}(T \ge t_0)$

1 Choose T whose distribution under H_0 does not depend on θ

e.g.
$$\frac{X-\mu_0}{\sigma} \Longrightarrow \frac{X-\mu_0}{S}$$

T is ancillary under H_0

2 Find a sufficient statistic S for θ under H_0 and condition on S.

$$p = P_{\nu_0}(T \ge t_0 | S = s)$$
 ··· Fisher's exact test

(Increases discreteness)

Berger and Boos(1994) P-values Maximized Over a Confidence Set.., JASA

- Let C_{γ} be a $1-\gamma$ confidence set for θ under H_0 .
- ullet Restrict the maximization to \mathcal{C}_{γ}

$$p_{\gamma} = \sup_{\theta \in C_{\gamma}} P_{\nu_0,\theta}(T \ge t_0) + \gamma$$

Definition (Valid p-value)

Valid p-value is a statistic p such that under the null hypothesis,

$$P(p \le \alpha) \le \alpha$$

Berger and Boos(1994) P-values Maximized Over a Confidence Set.., JASA

Theorem

Suppose that $p(\theta)$ is a valid p-value for any assumed value θ . Let C_{γ} satisfy $P(\theta \in C_{\gamma}) \geq 1 - \gamma$, if the null hypothesis is true. Then, p_{γ} is a valid p-value.

Proof:

$$P(p_{\gamma} \leq \alpha) = P(p_{\gamma} \leq \alpha, \theta_{0} \in C_{\gamma}) + P(p_{\gamma} \leq \alpha, \theta_{0} \in \bar{C}_{\gamma})$$

$$\leq P(p(\theta_{0}) + \gamma \leq \alpha, \theta_{0} \in C_{\gamma}) + P(\theta_{0} \in \bar{C}_{\gamma})$$

$$\leq P(p(\theta_{0}) \leq \alpha - \gamma) + \gamma$$

$$\leq \alpha - \gamma + \gamma$$

$$= \alpha$$

Berger and Boos(1994) P-values Maximized Over a Confidence Set.., JASA

Example: Independence Test (Two independent binomial samples)

Result				
Group	Success	Fail	Total	
1	14	33	47	
2	48	235	283	

•
$$H_0: \pi_1 = \pi_2$$
 and $T = Z^2 = \frac{(\hat{\pi}_1 - \hat{\pi}_2)^2}{\hat{\pi}(1 - \hat{\pi})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$

•
$$p_{sup} = \sup_{\pi \in [0,1]} p(\pi) = .061$$

Berger and Boos(1994) P-values Maximized Over a Confidence Set.., JASA

• $\hat{\pi} = .188$ and $C_{.001} = [.123, .267]$

$$p_{.001} = .036 + .001 = .037$$

- $p(\hat{\pi})$ is typically not a valid p-value
- Maximization on the restricted set is much easier

Contents

- Review
- 2 Two-Way Tables with Ordered Classifications
- 3 Small-Sample Inference for Contingency Tables
- Bayesian Inference for Two-Way Contingency Tables
- Exercise

Prior Distribution for Computing Proportions in 2×2 Tables

Comparison of parameters for two independent binomial samples

$$Y_i \sim bin(n_i, \pi_i)$$
, $i = 1, 2$, $\pi_i \sim beta(\alpha_{i1}, \alpha_{i2})$ and π_1 , π_2 independent \Rightarrow Independent posterior $beta(y_i + \alpha_{i1}, n_i - y_i + \alpha_{i2})$

- $H_0: \pi_1 \le \pi_2$ vs. $H_1: \pi_1 > \pi_2$ $\Rightarrow P(\pi_1 \le \pi_2 | y_1, n_1; y_2, n_2)$: Bayesian p-value
- Intervals for difference of proportions, RR, Odds ratio

$$P(L < w < U) = F_w(U) - F_w(L)$$

$$F_w(t) = \int_{S_t} f(\pi_1, \pi_2 | y_1, n_1; y_2, n_2) d\pi_1 d\pi_2, \quad S_t = \{w \le t\}$$

Example: Urn Sampling Gives Highly Unbalanced Treatment Allocation

Result			
Treatment	Success	Fail	Total
Α	11	0	11
В	0	1	1

$$H_0: \pi_1 = \pi_2 \text{ vs } H_1: \pi_1 > \pi_2$$

- **9** 95% *equal-tail* posterior interval for θ : (1.2, 218.4) (independent beta(2, 2) priors)
- ② 95% equal-tail posterior interval for θ : (1.7, 4677) (independent uniform priors)
- § 95% equal-tail posterior interval for θ : (3.3, 1.4 × 10⁶) (independent Jeffreys priors)
- Frequentist: inverting large-sample score test (4.5, ∞)

Highest Posterior Density Intervals

- An alternative approach : Highest Posterior Density Interval(HPDI)
- Intuitively meaningful!! but, ...

Highest Posterior Density Intervals

	Resu		
Treatment	Success	Fail	Total
A	1	9	10
В	5	5	10

- HPDI for $\theta = (0.0006, 0.82)$
- HPDI for $1/\theta = (0.17, 38.23) \neq (1/0.82, 1/0.0006)$
- 95% ETI for $\theta = (0.017, 1.10)$
- 95% ETI for $1/\theta = (0.91, 57.9) = (1/1.10, 1/0.017)$

Bayesian Inference for Two-Way Contingency Tables Testing Independence

- Bayesian Factor
 - Alternative to classical hypothesis testing(LRT)
 - Bayesian factor K is given by

$$K = \frac{P(D|H_0)}{P(D|H_1)}$$

- 2 Estimate Parameter
 - Estimate parameter that describe the association
 - ullet correlation(ho), Goodman-Kruskal's gamma(γ)

Contents

- Review
- 2 Two-Way Tables with Ordered Classifications
- Small-Sample Inference for Contingency Tables
- 4 Bayesian Inference for Two-Way Contingency Tables
- Exercise

Exercise 3.3

	Homosexuals Should Have Right to Marry		
Political Party	Strongly Agree	Strongly Disagree	
Strong Democrat	60	44	
Strong Republican	2	61	

- $\log(\hat{\theta}) = ?$
- Standard error of $\log(\hat{\theta}) = ?$
- The Wald 95% confidence interval for θ is ...?

$$\log(\hat{\theta}) = \log(60 * 61/2 * 44) = 3.728$$

$$\sigma^2 = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4} = 0.5558$$

$$(\exp(3.728 - 1.96 * 0.746), \exp(3.728 + 1.96 * 0.746)) = (9.6, 179.3)$$

 n_{12} is too small! \rightarrow interval estimate is so **imprecise**

Exercise 3.6

Result			
Treatment	Success	Fail	Total
А	7	8	15
В	0	15	15
Total	7	23	

Q : Obtain a 95% confidence interval for the odds ratio

• The Wald CI:

$$\log(\hat{\theta}) = \infty$$
, $\sigma^2 = \infty \Rightarrow \textit{Not exists}$

Profile Likelihood CI

$$G^2 = 2\sum_{i,j} n_{ij} \log(n_{ij}/\hat{\mu}_{ij}(\theta_0)) < \chi_1^2(.05)$$

Exercise 3.6 • Code

• $\hat{\mu}_{ij}(\theta_0)$ is the unique expected frequency estimates that have the same row and column margins as $\{n_{ij}\}$ and satisfy

$$\frac{\hat{\mu}_{11}(\theta_0)\hat{\mu}_{22}(\theta_0)}{\hat{\mu}_{12}(\theta_0)\hat{\mu}_{21}(\theta_0)} = \theta_0$$

• Put $\hat{\mu}_{11}(\theta_0) = n_{\theta_0}$. Then,

$$\frac{n_{\theta_0}(n_{\theta_0} + 8)}{(7 - n_{\theta_0})(n_{\theta_0} + 15)} = \theta_0$$

• We want collect all θ_0 such that

$$2\left(7\log\frac{7}{n_{\theta_0}} + 8\log\frac{8}{15 - n_{\theta_0}} + 15\log\frac{15}{8 + n_{\theta_0}}\right) < 3.841$$

• So we get $C_{.05} = (2.40, \infty)$

