

Somefin Fishy: Hydrodynamics of median fins

Dave Matthews

Project Goals

Use a robotic foil model to explore the roles of the dorsal fin in fish swimming

Predictors

Phase angle (°)

Flapping amplitude ratio

SPS (self propelled speed)

Grouped by flapping frequency (HZ)

Response

- Lateral force
 - ▶ aka F_y
 - = Experimental control

Fake Data

- Real data
 - ► Limited collection
 - Measured errors
- Created fake data with normal distributions around real data

"Grad school is stumbling from failure to failure with no loss of enthusiasm

-Winston Churchill"

-Lizzie Wolkovich

The Equation

- Fy ~ position + SPS + phase angle + Amplitude Ratio + (1 | frequency)
 - No interactions thanks to loo

Test Data

Fy ~ position + SPS + phase angle + Amplitude Ratio + (1 | frequency)

Fake coefficients

```
coefPos <- 50
range(fakeData$SPS) #-37 to 42
coefSPS <- 1
range(fakeData$phaseAng) #-51 to 49
coefAng <- -1
range(fakeData$flapAmpRatio) #-.22 to .12
coefAmpl <- -100</pre>
```

Fake data vectors

```
posVect <- c(rep(0,nTot/2), rep(1,nTot/2))
fakePosition <- sample(posVect, replace=FALSE)
fakeSPS <- rnorm(nTot, 35, 10)
fakeAng <- rnorm(nTot, 50, 15)
fakeAmpl <- rnorm(nTot, .15, .05)
freqGroup <- c(rep(1,10),rep(2,10),rep(3,10),rep(4,10),...</pre>
```


The Problem

Data Analysis

What my model thinks my data does

What I think my data does

What my data actually does

Fit both models!

"bad" test data


```
#The Model (complex)
FyTestComp <- rep("NA", length(fakeSPS))
for(i in 1:length(fakeSPS)) {
   FyTestComp[i] <- intComplex[freqGroup[i]]+coefPos*fakePosition[i]+coefSPS*fakeSPS[i]+coefAng*fakeAng[i]+coefAmpl*fakeAmpl[i]+rnorm(1,0,5)
}</pre>
```


Good Enough!

ON TO THE REAL (FAKE) DATA

Posterior Predictive Checks (Pink)

Posterior Predictive Checks (Pink)

Posterior Predictive Checks (Coral)

Model on Real (fake) Data (Pink)

- Intercept
 - \rightarrow -77.2, SD = 21.4
- Intercept (frequency=.5 Hz)
 - ▶ 110.8, SD = 23.3
- Intercept (frequency=2.5Hz)
 - ► -46.4, SD=21.8
- Intercept (frequency=3 Hz)
 - \rightarrow -53.4 SD = 22.8
- Position (near)
 - ▶ 20, SD = 6.9
- Amplitude ratio
 - ▶ 286.5, SD = 36.4

Model on Real (fake) Data (Coral)

- Intercept (frequency=1 Hz)
 - ▶ 83.6, SD = 42.7
- Intercept (frequency=2.5 Hz)
 - ► -153.1, SD = 49
- Amplitude ratio
 - ▶ 247.2, SD = 63.4

Main Results

- 2 models behave differently
 - Shape difference only mattered in pink
 - Effect of amplitude ratio consistent
- Next
 - Direct comparisons at each frequency

Now with real (real) data...