Лекция 7

IP = PSPACE. Лемма Вэлианта-Вазирани

(Конспект: С. Николенко)

7.1 IP = PSPACE

Интерактивные протоколы. IP (Interactive Protocol) — это класс языков, полиномиально распознаваемых при помощи так называемого интерактивного протокола. Интерактивный протокол — это алгоритм, описывающий процесс передачи данных между двумя вычислительными устройствами: P (Prover) и V (Verifier). P обладает неограниченными вычислительными возможностями, V — полиномиальная по времени вероятностная машина Тьюринга (P не имеет доступа к лентам V; в частности, к используемым V случайным числам). P пытается убедить V принять вход алгоритма, а V хочет принять его тогда и только тогда, когда этот вход принадлежит языку, для которого и составлен протокол. То есть P передает V некоторую информацию, а V ее проверяет в меру своих полиномиальных способностей. Язык L принадлежит IP, если существует такой полиномиальный по времени (и размеру передаваемых данных) протокол, что

- \bullet если $x \in L,$ то P всегда может убедить V в том, что вход надо принять;
- если $x \notin L$, то P может убедить V с вероятностью не более $\frac{1}{2}$.

Пример 7.1. Язык, состоящий из пар неизоморфных графов, принадлежит **IP**: V берет выбирает случайным образом граф из пары, применяет к его вершинам случайную перестановку, отправляет полученный граф P и просит его отгадать, какой же граф он выбрал.

Ясно, что **IP** содержится в **PSPACE**: переберем все возможные ответы Prover'a; если для какого-то из них при моделировании Verifier'a (с перебором возможных значений случайных битов) все ветви будут принимающими, то $x \in L$. Значит, для доказательства равенства достаточно показать, что некоторый **PSPACE**-полный язык разпознаваем **IP**-протоколом. Мы будем использовать язык булевых формул с кванторами (QBF), то есть формул вида $Q_1x_1 \dots Q_nx_nB(x_1 \dots x_n)$, где $B(x_1 \dots x_n)$ — булева формула без кванторов, и $Q_1 \dots Q_n \in \{\forall, \exists\}$.

Арифметизация. Бескванторную булеву формулу $B(x_1 \dots x_n)$ можно «арифметизовать»: поставить ей в соответствие многочлен $b(x_1 \dots x_n)$, значение которого на 0 и 1 совпадает с соответствующим значением формулы B (где 0 соответствует false, 1 соответствует true). Именно, $\alpha \wedge \beta$ заменяется на $\alpha \cdot \beta$, $\neg \alpha$ — на $1-\alpha$, и $\alpha \vee \beta$ — как $\neg (\neg \alpha \wedge \neg \beta)$ (т.е. на $1-(1-\alpha)(1-\beta)$ — эту формулу обозначим $\alpha * \beta$). Очевидно, что значение многочлена b, записанного согласно этим правилам в виде формулы (скобки не раскрываем!), вычислить просто — но для этого должны быть заданы значения (свободных) переменных.

Арифметизуем теперь всю формулу с кванторами. Пусть теперь P(x,...) — некоторый многочлен (по смыслу — каким-то образом полученный нами из булевой формулы). Определим операторы «раскрытия» кванторов

$$(A_x P)(\ldots) = P(0, \ldots) \cdot P(1, \ldots),$$

$$(E_x P)(\ldots) = P(0, \ldots) * P(1, \ldots),$$

и оператор понижения степени (линеаризации)

$$(L_x P)(x, \ldots) = P \mod (x^2 - x)$$

(то есть все x^n при n > 1 заменяются на x).

Многочлен $L_x P$ имеет те же переменные, что и P; в $A_x P$ и $E_x P$ переменная x отсутствует. Отметим, что P и $L_x P$ совпадают при значениях переменных из $\{0,1\}$. Ясно, что исходная булева формула с кванторами

$$Q_1x_1\dots Q_nx_nB(x_1\dots x_n)$$

имеет то же самое значение, что и

$$q_{x_1}^{(1)}$$
 L_{x_1} $q_{x_2}^{(2)}$ $L_{x_1}L_{x_2}$ $q^{(x_3)}$... $q_{x_n}^{(n)}$ $L_{x_1}...L_{x_n}$ $b(x_1...x_n)$, (7.1)

где $q^{(i)}=A$, если $Q_i=\forall$, $q^{(i)}=E$, если $Q_i=\exists$. Можно было бы обойтись и без операторов L_x ; они применяются, чтобы степень промежуточных многочленов (при вычислении (7.1) справа налево) была не слишком велика.

Протокол. Наша задача — вычислить значение (7.1). Сделать это трудно (при раскрытии скобок будет получаться экспоненциально много мономов). Поэтому мы (Verifier) воспользуемся Prover'ом. При описании протокола заодно будем доказывать и его корректность, выделяя это курсивом.

Протокол будет заключаться в том, что мы будет последовательно спрашивать P о полиномах, являющихся не до конца вычисленным (7.1), снимая кванторы слева направо. Пусть $q \in \{E, A, L\}$, а R — полином, записанный как в (7.1), т.е. при помощи операторов E, A, L, а не в явном виде. Нашей промежуточной задачей будет убедиться в том, что

$$q_{x_i}R(x_1,\dots,x_{i-1},x_i) = c, (7.2)$$

для некоторых заданных числовых значений свободных переменных $x_1 = r_1, \ldots, x_{i-1} = r_{i-1}$ (и $x_i = r_i$, если q = L). (Ясно, что исходная задача формулируется именно в таких терминах: i = 1, R — вся формула (7.1), кроме первого оператора q.) Мы будем сводить нашу задачу к задаче для более короткого R, т.е. наш протокол будет рекурсивным.

Благодаря операторам L, степень по каждой переменной промежуточных многочленов при вычислении (7.1) справа налево не превосходит d, где d — общее количество вхождений переменных в исходную формулу¹. Многочленами $q_{x_i}R$ в нашем алгоритме как раз будут эти промежуточные многочлены, поэтому мы будем требовать, чтобы степень $R(r_1,\ldots,r_{i-1})$ как многочлена от одной переменной не превосходила d. Случайные числа будут выбираться из поля $\mathbb{F} = \mathbb{Z}/p\mathbb{Z}$ остатков по модулю простого числа p, которое следует взять чуть большим, чем d^4 (p может выбрать либо P, либо V, потому что проверка простоты для чисел такого размера тривиальна).

Строгое описание протокола (вернее, рекурсивной процедуры проверки того, что если произвести все действия в «многочлене» $q_{x_i} \dots q'_{x_n} R(r_1, \dots, r_{i-1}, x_i, \dots, x_n)$ с внешним оператором q [сам многочлен записан как в условии, только вместо первых i-1 операторов к нему прилагаются значения для соответствующих переменных], то получится константа c) таково. Имеется три случая:

q=A. Р должен послать V коэффициенты многочлена от одной переменной $s(x_i)=R(r_1,\ldots,r_{i-1},x_i)$. Если $\deg s>d$ или $s(0)s(1)\neq c$, V отвергает вход алгоритма (u он npas-ecлu действительно (7.2) верно u P npucлал npasильные коэффициенты s, pasенство s(0)s(1)=c было бы выполнено по определению оператора A).

 $^{^{1}}$ На самом деле, такой большой степень может быть только для самого внутреннего многочлена b, а далее не превосходит 2.

В противном случае остается убедиться, что коэффициенты многочлена s — правильные (если это так, то задача выполнена). V выбирает случайное число $r_i \in F$. Теперь, рекурсивно используя тот же протокол, P должен убедить V, что $R(r_1 \dots r_{i-1}, r_i) = s(r_i)$. Заметим, что вероятность того, что это равенство выполнено, но коэффициенты многочлена s — неправильные, не превосходит d/d^4 (мы случайно попали в корень многочлена степени не более d над полем размера $\geq d^4$). Этим исчерпывается возможность ошибиться на этом шаге — дальнейшее зависит только от рекурсивного вызова.

- q = E. Полностью аналогично предыдущему пункту (только проверять надо, конечно, что s(0) * s(1) = c).
- q=L. Р должен послать V коэффициенты многочлена от одной переменной $s(x)=(R(r_1\dots r_{i-1},x))$. Если $\deg s>d$ или $s(0)+(s(1)-s(0))r_i\neq c$, то V отвергает (отметим, что $s(0)+(s(1)-s(0))r_i-s(0)$) это значение $s(x) \mod (x^2-x)$ при $x=r_i-s(x)$ то снова правильно делает, что отвергает).

Так мы убеждаемся, что линеаризация была произведена правильно. Снова остается убедиться, что коэффициенты многочлена s — правильные. Тогда V выбирает случайный элемент $r'_i \in \mathbb{F}$. Теперь, рекурсивно используя тот же протокол, P должен убедить V, что $R(r_1, \ldots, r_{i-1}, r'_i) = s(r'_i)$. Вероятность ошибиться на этом шаге — снова d/d^4 .

Таким образом, мы совершим $O(d^2)$ рекурсивных вызовов, причем в каждом из них вероятность ошибиться не превосходит $1/d^3$. Таким образом, вероятность ошибки нашего протокола $\leq O(d^2) \cdot 1/d^3$.

7.2 Лемма Вэлианта-Вазирани.

Лемма Вэлианта-Вазирани является одним из первых нетривиальных результатов об отношениях между сложностными классами.

Лемма 7.1 (L. Valiant, V. Vazirani). Имеется вероятностное (с односторонней ошибкой) полиномиальное по времени сведение задачи выполнимости к ее индивидуальным задачам, имеющим не более одного выполняющего набора.

Иными словами, по заданной формуле F в КНФ можно построить формулы F_1, \ldots, F_m в КНФ, такие что

- если F выполнима, то с вероятностью, большей 1/2, по крайней мере одна из формул F_1, \ldots, F_m имеет в точности один выполняющий набор;
- если F невыполнима, то все формулы F_1, \ldots, F_m невыполнимы.

Пусть F — формула, а набор A присваивает значения всем ее переменным. Отождествим A с n-битным числом $a = a_0 a_1 \dots a_{n-1}$, таким что $a_j = 1$, если соответствующая переменная в наборе A имеет значение true, и $a_j = 0$ в противном случае. Выберем целые числа p_i и r_i следующим образом. Сначала выберем равновероятно случайным образом целое $i \in [0..n]$. Затем выберем равновероятно случайным образом $p_i \in [1..b_i]$ и $r_i \in [0..b_i]$, где $b_i = 4 \cdot 2^i n^2$. Заменим F на формулу

$$F \wedge (a \mod p_i = r_i).$$

Выражение « $(a \mod p_i = r_i)$ » обозначает здесь булеву формулу в КНФ от переменных a_0, \ldots, a_{n-1} (возможно, также использующую дополнительные переменные, причем значения дополнительных переменных od-nosnauno определяются по значениям остальных переменных), которая представляет соответствующее арифметическое сравнение. Например, эта формула может быть получена посредством кодирования обычного умножения «в столбик»². Очевидно, что это сведение полиномиально по времени и переводит невыполнимую формулу в невыполнимую формулу. Остается доказать, что если F выполнима, то с большой вероятностью новая формула одновыполнима.

Пусть $a^{(1)},\ldots,a^{(D)}$ — все выполняющие наборы формулы F. Заметим, что $i=\lceil\log_2D\rceil$ с вероятностью 1/(n+1). Предположим, что это событие имеет место. Заметим, что для данных j,h $(j\neq h)$ имеется не более n простых делителей разности $a^{(j)}-a^{(h)}$. С другой стороны, для достаточно больших n имеется, как минимум, $0.92129 \cdot b_i/\ln b_i > b_i/\log_2 b_i \geq 2^{i+1}n$ простых чисел, не превосходящих b_i . Таким образом, имеется, по крайней мере, $2^{i+1}n-2^in=2^in$ чисел p, не превосходящих b_i , таких, что остаток выполняющего набора $a^{(j)}$ по модулю p отличается от остатков всех других выполняющих наборов по модулю p. Следовательно, по крайней мере 2^in пар $0\leq p_i, r_i\leq b_i$ «отличают» набор $a^{(j)}$ от всех остальных. Заметим, что для различных выполняющих наборов множества «отличающих» пар дизъюнктны. Следовательно, имеется не менее $2^in \cdot D \geq 2^{2i-1}n$ искомых пар. Таким образом, для достаточно больших n вероятность выбрать такую пару составляет, по крайней мере, $\frac{2^{2i-1}n}{16\cdot 2^{2i}n^4}=\frac{1}{32n^3}$.

 $^{^2}$ Элементарные операции над битами кодируются так: чтобы определить новый бит $z=x\wedge y$, допишем дизъюнкции $\neg x\vee \neg y\vee z,\, \neg z\vee x,\, \neg z\vee y.$ Остальные операции можно закодировать при помощи этой и отрицания (а можно и напрямую).

Домножая на вероятность выбрать «правильное» i, получаем, что вероятность ошибки в нашем сведе́нии не превосходит $1-\frac{1}{32n^4+32}$. Выбирая тройки (i,p_i,r_i) случайным образом $O(n^4)$ раз, получаем константную вероятность ошибки.