An skeleton assessment for Norton Sound red king crab in GMACS + Rmarkdown

Cody Szuwalski

October 23, 2020

Contents

Α.	Summary of Major Changes	
В.	Comments, responses, and assessment summary	
C.	Introduction	
	Distribution	
	Life history characteristics	
	Natural mortality	
	Weight at length	
	Maturity	
	Molting probability	
	Reproduction	
	Growth	
	Management history	
	ADFG harvest strategy	
	History of BMSY	
	Fishery history	
D.	Data	
	Catch data	
	Survey biomass and size composition data	
	Spatial distribution	

Ε.	Analytic approach
	History of modeling approaches
	Model description
	Model selection and evaluation
	Results
	Fits to data
	Estimated population processes and derived quantities
F.	Calculation of the OFL
	Methodology of the OFL $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
	Calculated OFLs and interpretation
	Projections under harvest strategies
G.	Calculation of the ABC
	Uncertainty in the ABC
	Author recommendations
н.	Data gaps and research priorities
	Methodology
	Data sources
	Scientific uncertainty
I.	Ecosystem considerations
$\mathbf{A}_{\mathbf{I}}$	ppendix A: Population dynamics

- $1. \ \, {\rm Stock:} \ \, {\rm Norton} \, \, {\rm Sound} \, \, {\rm red} \, \, {\rm king} \, \, {\rm crab}, \, {\it Paralithodes} \, \, {\it camtschaticus}.$
- 2. Catches: trends and current levels
- 3. Stock Biomass:
- 4. Recruitment

5. Management

UPDATE MANAGEMENTTABLE.CSV IN REPO FOR NSRKC, THESE ARE CURRENTLY FOR OPILIO

Table 1: Historical status and catch specifications for snow crab (1,000t).

Year	MSST	Biomass (MMB)	TAC	Retained catch	Total catch	OFL	ABC
2015/2016	75.8	91.6	18.4	18.4	21.4	83.1	62.3
2016/2017	69.7	96.1	9.7	9.7	11	23.7	21.3
2017/2018	71.4	99.6	8.6	8.6	10.5	28.4	22.7
2018/2019	63	123.1	12.5	12.5	15.4	29.7	23.8
2019/2020	1193.5	167.3	0.6	0.6	1.5	54.9	43.9
2020/2021						1541.6	1233.3

Table 2: Historical status and catch specifications for snow crab (millions of lbs).

Year	MSST	Biomass (MMB)	TAC	Retained catch	Total catch	OFL	ABC
2015/2016	167.11	201.94	40.57	40.57	47.18	183.2	137.35
$\frac{2016/2017}{2017/2018}$	153.66 157.41	$211.86 \\ 219.58$	$21.38 \\ 18.96$	21.38 18.96	$24.25 \\ 23.15$	$52.25 \\ 62.61$	$46.96 \\ 50.04$
2018/2019	138.89	271.39	27.56	27.56	33.95	65.48	52.47
$\begin{array}{c} 2019/2020 \\ 2020/2021 \end{array}$	2631.21	368.83	1.32	1.32	3.31	$\frac{121.03}{3398.64}$	$96.78 \\ 2718.96$

- 6. Basis for the OFL
- 7. Probability Density Function of the OFL
- 8. Basis for ABC

A. Summary of Major Changes

- 1. Management: None
- 2. Input data:
- 3. Assessment methodology:
- 4. Assessment results

Notes: Tagging data contribution to the likelihood is massive.

B. Comments, responses, and assessment summary

C. Introduction

Distribution

Life history characteristics

Natural mortality

Weight at length

Maturity

Molting probability

Reproduction

Growth

Management history

ADFG harvest strategy

History of BMSY

Fishery history

D. Data

Catch data

Survey biomass and size composition data

Spatial distribution

E. Analytic approach

History of modeling approaches

Model description

Model selection and evaluation

Results

Fits to data

Estimated population processes and derived quantities

F. Calculation of the OFL

Methodology of the OFL

Calculated OFLs and interpretation

Projections under harvest strategies

G. Calculation of the ABC

Uncertainty in the ABC

Author recommendations

H. Data gaps and research priorities

Methodology

Data sources

Scientific uncertainty

I. Ecosystem considerations

Appendix A: Population dynamics

Table 3: Changes in management quantities for each scenario considered. Reported management quantities are derived from maximum likelihood estimates. THIS IS FOR DEMONSTRATION ONLY; NEEDS TO BE ADJUSTED FOR NSRKC.

Model	MMB	B35	F35	FOFL	OFL
NSRKC_Hamachan_growth					
NSRKC_const_est_molt_inc	1893.62	2721.11	0.18	0.11	770.31

Figure 1: Model fits to the ADFG survey.

Figure 2: Model fits to the NMFS trawl survey.

Figure 3: Model fits to the catch data.

Figure 4: Model fits to the size composition data.

Figure 5: Model fits to the size composition data.

Figure 6: Model fits to the size composition data.

Figure 7: Model fits to the size composition data.

Figure 8: Model fits to the size composition data.

Figure 9: Model fits to the size composition data.

Figure 10: Model fits to the size composition data.

Figure 11: Observed size composition data.

Figure 12: Observed size composition data.

Figure 13: Observed size composition data.

Gear = Summer_com , Season = 3

Figure 14: Observed size composition data.

Gear = Summer_com , Season = 3

Figure 15: Observed size composition data.

Gear = ADFG Trawl , Season = 4

Figure 16: Observed size composition data.

Gear = NMFS_Trawl , Season = 5

Figure 17: Observed size composition data.

Figure 18: Estimated fishing mortality by fleet.

Figure 19: Estimated molt increments.

Figure 20: Estimated probability of molting.

Figure 21: Estimated selectivity.

Figure 22: Estimated recruitment.

Figure 23: Estimated mature biomass

0.75 -

Figure 24: Estimated size at recruitment

Figure 25: Kobe plot for the summer commercial fleet.