

Digital Design Spring 2024

Instructor: Ms. Umarah Qaseem

COMBINATIONAL CIRCUIT

- X So far we've just worked with combinational circuits, where applying the same inputs always produces the same outputs.
- X This corresponds to a mathematical function, where every input has a single, unique output.
- X No way of remembering or storing information after inputs have been removed.

9

SEQUENTIAL CIRCUIT

- X The outputs of a sequential circuit depend on not only the inputs, but also the state, or the current contents of some memory.
- X This makes things more difficult to understand, since the same inputs can yield *different* outputs, depending on what's stored in memory.
- X The memory contents can also change as the circuit runs.

SEQUENTIAL CIRCUIT

- X Many real-life devices are sequential in nature:
 - X Combination locks open if you enter numbers in the right order.
 - X Elevators move up or down and open or close depending on the buttons that are pressed on different floors and in the elevator itself.

11

Types of Sequential Circuits

- X Synchronous
 - X State changes synchronized by one or more clocks
- X Asynchronous
 - X Timing of changes are independent of any clocks

STORAGE ELEMENTS

- X Latch
- X Flip-Flop a latch that transitions on a clock
- X Registers

MEMORY

- X A memory should have at least three properties.
 - 1. It should be able to hold a value.
 - 2. You should be able to read the value that was saved.
 - 3. You should be able to *change* the value that's saved.
- X We'll start with the simplest case, a one-bit memory.
 - 1. It should be able to hold a single bit, 0 or 1.
 - 2. You should be able to read the bit that was saved.
 - 3. You should be able to change the value. Since there's only a single bit, there are only two choices:
 - Set the bit to 1
 - Reset, or clear, the bit to 0.

15

BASIC IDEA OF STORAGE

- X How can a circuit "remember" anything, when it's just a bunch of gates that produce outputs according to the inputs?
- X The basic idea is to make a loop, so the circuit outputs are also inputs.
- X First Attempt Cross Coupled Inverter

CROSS COUPLED INVERTER

X Consider 2 possible cases:

X Q = 0: then Q' = 1 and Q = 0 (consistent) Q = 1: then Q' = 0 and Q = 1 (consistent) Q = 1: then Q' = 0 and Q = 1 (consistent)

CROSS COUPLED INVERTER

- X Does this satisfy the properties of memory?
 - X These circuits "remember" Q, because its value never changes. (Similarly, Q' never changes either.)
 - We can also "read" Q, by attaching a probe or another circuit.
 - X But we can't **change** Q! There are no external inputs here, so we can't control whether Q=1 or Q=0.

19

SR (SET-RESET) LATCHES

- X Replace the Inverters with NOR gates
- X Add two inputs R & S

SR Latch <u>1</u> Q $\overline{\mathsf{Q}}$ S

<u>1</u> Q s <u>0</u> $\overline{\mathbf{q}}$ ā Invalid Invalid

X SR stands for Set/Reset Latch
X Stores one bit of state (Q)

X Control what value is being stored with S, R inputs
X Set: Make the output 1 (S = 1, R = 0, Q = 1)
X Reset: Make the output 0 (S = 0, R = 1, Q = 0)

X Behavior undefined/invalid when:
X S = R = 1

X SR Latch
Symbol
R Q
Symbol
R Q
S Q

D-LATCH

C D Next state of Q

O X No Change

1

1

0

1

Q=0;

Reset State

Q=1; Set State

D LATCH

X A D latch is based on an S'R' latch. The additional gates generate the S' and R' signals, based on inputs D ("data") and C ("control").

- X When C = 0, S' and R' are both 1, so the state Q does not change.
- \times When C = 1, the latch output Q will equal the input D.
- X No more messing with one input for set and another input for reset!

С	D	Q
0	X	No change
1	0	0
1	1	1

SUMMARY

- $\overline{\mathsf{X}}$ A sequential circuit has memory. It may respond differently to the same inputs, depending on its current state.
- X Memories can be created by making circuits with feedback.
 - X Latches are the simplest memory units, storing individual bits.
 - X It's difficult to control the timing of latches in a larger circuit.
- X Next, we'll improve upon latches with flip-flops, which change state only at welldefined times. We will then use flip-flops to build all of our sequential circuits.

oo

LATCHES VS FLIP FLOPS

- X Latch = level-sensitive device
 - X State changes with input when enabled (e.g. clock = 1)
 - X Holds last input value when disabled (when clock = 0)
- X Flip-flop = edge-triggered device
 - X State of flip-flop can only change during clock transition
 - X Example: Flip-flops change on rising/falling edge of clock

FLIP-FLOPS

- X The state of the flip-flop or a latch is switched by the change in the control input – C.
- X This momentary change is called trigger
- x and the transition it causes is said to trigger the flip-flop.
- X The D-Latch with pulses in its control input is essentially a flip-flop that is triggered every time the pulse goes to logic 1.

68

FLIP-FLOPS

- X Flip-flops are constructed in such a way to operate them properly when working in a proper clock.
- X The key to the proper operation of flip-flop is to trigger it only during a signal transition.

-

FLIP FLOP SYMBOLS

- X Triangle indicates clock
- X Edge trigger:
 - X No bubble at clock: positive edge triggered
 - X Bubble at clock: negative edge triggered

92

PRESET AND CLEAR - NO CHANGE WHEN BOTH HIGH

Preset and Clear are asynchronous inputs.

They are used to initialize the memory to 0 or 1.

If preset is low, then q is set as 1 If clear is low, then q is cleared to 0.

