UNIVERSITY OF BRISTOL

January 2019 Examination Period

FACULTY OF ENGINEERING

Third Year Examination for the Degrees of Bachelor of Science Master of Engineering

COMS30009J Types and Lambda Calculus

TIME ALLOWED: 2 Hours

Answers to COMS30009J: Types and Lambda Calculus

Intended Learning Outcomes:

Q1. (a) State the rules defining one-step β -reduction, $M \to_{\beta} N$, (the names of the rules are not important).

Solution:

$$(\lambda x. M)N \to_{\beta} M[N/x]$$

$$\frac{M \to_{\beta} N}{MP \to_{\beta} NP}$$

$$\frac{P \to_{\beta} Q}{MP \to_{\beta} MQ}$$

$$\frac{M \to_{\beta} N}{\lambda x. M \to_{\beta} \lambda x. N}$$

[3 marks]

- (b) For each of the following state whether it is true or false (no justification is necessary).
 - i. M = N implies $M \rightarrow_{\beta} N$
 - ii. $M \rightarrow_{\beta} N$ implies $M \twoheadrightarrow_{\beta} N$
 - iii. $M =_{\beta} N$ implies $M \twoheadrightarrow_{\beta} N$
 - iv. $M \twoheadrightarrow_{\beta} N$ implies $M =_{\beta} N$

[4 marks]

Solution:

- i. true
- ii. true
- iii. false
- iv. true
- (c) For each of the following, give an example of a closed term M with that property.
 - i. M is in β -normal form.
 - ii. M is normalising but not strongly normalising.
 - iii. $M \to_{\beta} M$
 - iv. $M \rightarrow_{\beta} MM$

[4 marks]

Solution:

i. **I**

- ii. $\mathbf{K} \mathbf{I} \Omega$
- iii. Ω
- iv. $\Theta(\lambda x. xx)$
- (d) Recall the inductive definition of the subterm relation:

$$\frac{}{M \sqsubseteq M} (SubRefl) \qquad \frac{P \sqsubseteq M}{P \sqsubseteq (\lambda x. M)} (SubAbs)$$

$$\frac{P \sqsubseteq M}{P \sqsubseteq (MN)} (SubAppL) \qquad \frac{P \sqsubseteq N}{P \sqsubseteq (MN)} (SubAppR)$$

Prove, by induction on $M \subseteq N$, that:

If $M \subseteq N$ and M is a redex, then there is some N' such that $N \to_{\beta} N'$.

[6 marks]

Solution: The proof is by induction on $M \subseteq N$.

- In case (SubRefl), M = N. Assume M is a redex. Then M has shape $(\lambda x. P)Q$. Hence, take witness N' as P[Q/x] and $N \to_{\beta} N'$ by (Redex).
- In case (SubAbs), N has shape $\lambda x. P$. Assume the induction hypothesis: if M is a redex then there is some P' such that $P \to_{\beta} P'$. Assume M is a redex. It follows from the induction hypothesis that there is such a P'. Therefore, take N' to be $\lambda x. P'$ and by (Abs), $\lambda x. P \to_{\beta} \lambda x. P'$.
- In case (SubAppL), N has shape PQ. Assume the induction hypothesis: if M is a redex then there is some P' such that $P \to_{\beta} P'$. Assume M is a redex. Then it follows from the induction hypothesis that there is such a P'. Therefore, take P'Q as N' and, by (AppL), $PQ \to_{\beta} P'Q$.
- The case (SubAppR) is analogous to (SubAppL).
- (e) Prove that there cannot be a term M with the property that:

$$M(\lambda z. z(\mathbf{K} \mathbf{I} \Omega) \Omega) =_{\beta} \mathsf{CO}$$
 and $M(\lambda z. z \mathbf{I}(\mathbf{K} \Omega \mathbf{I})) =_{\beta} \mathsf{CO}$

[3 marks]

Solution: Suppose for the purposes of obtaining a contradiction that such a term M exists. We have:

$$\lambda z. z (\mathbf{K} \mathbf{I} \Omega) \Omega =_{\beta} \lambda z. z \mathbf{I} (\mathbf{K} \Omega \mathbf{I})$$

(cont.)

since both reduce to a common term $\lambda z. z \mathbf{I} \Omega$. Call the first of these P and the second Q for short. Then it follows that $\lceil 0 \rceil =_{\beta} M P =_{\beta} M Q =_{\beta} \lceil 1 \rceil$. However, it follows from the Church-Rosser theorem that $\lceil 0 \rceil \neq_{\beta} \lceil 1 \rceil$.

(f) Let M be term. Suppose that the equation $MN =_{\beta} NMN$ is true for all terms N. Prove that M cannot have a β -normal form, i.e. if $M \twoheadrightarrow_{\beta} P$ then P is not in β -normal form.

[5 marks]

Solution: Suppose for contradiction that M satisfies this equation and yet has a normal form P. Then, one instance of the equation is $Mx =_{\beta} xMx$. Since $M \twoheadrightarrow_{\beta} P$, also $Px =_{\beta} xPx$. The term xPx is a β -normal form so, by Church Rosser, it must be that $Px \twoheadrightarrow_{\beta} xPx$ (*). We distinguish two cases for P, either P is an abstraction λy . Q or it is not. In the first case, $Px \to_{\beta} Q[x/y]$ and the latter term must be a normal form. However, $Q[x/y] \neq x(\lambda y, Q)x$ because Q[x/y] and Q are strings of the same length. In the second case, Px is already a normal form and, again $Px \neq xPx$. Therefore, it cannot be that $Px \twoheadrightarrow_{\beta} xPx$, contradicting (*).

Q2. (a) State the rules of the type system (the rule names are not important).

[3 marks]

Solution:

$$x: \forall \overline{a}. \ A \in \Gamma \frac{}{\Gamma \vdash x: A[\overline{B}/\overline{a}]}$$
(TVar)

$$\frac{\Gamma \vdash M : B \to A \quad \Gamma \vdash N : B}{\Gamma \vdash MN : A} (\mathsf{TApp})$$

$$x \notin \text{dom } \Gamma \frac{\Gamma \cup \{x : B\} \vdash M : A}{\Gamma \vdash \lambda x. M : B \rightarrow A} \text{(TAbs)}$$

(b) Give an example of a *closed* term in β -normal form that is not typable.

[1 mark]

Solution: $\lambda x \cdot xx$

- (c) For each of the following terms M, give a type environment Γ and a type A such that $\Gamma \vdash M : A$ (you need not prove it).
 - i. $(\lambda x. yxz)(\lambda z. z)$
 - ii. $(\lambda xy. yx)xz$

[3 marks]

Solution:

i.
$$y:(a \rightarrow a) \rightarrow b \rightarrow c$$
, $z:b \vdash (\lambda x.yxz)(\lambda z.z):c$

ii.
$$x:a, z:a \rightarrow b \vdash (\lambda xy.yx)xz:b$$

(d) Prove the following by induction on $M \in \Lambda$. If Γ , $x : B \vdash M : C$ and $\Gamma \vdash N : B$ then $\Gamma \vdash M[N/x] : C$

[7 marks]

Solution: The proof is by induction on $M \in \Lambda$.

- In case (Var), M is a variable y. Assume Γ , $x : B \vdash y : C$ and $\Gamma \vdash N : B$. There are two subcases:
 - If x = y then, by Inversion, B = C. By definition, y[N/x] = N and it follows from the second assumption that $\Gamma \vdash N : B$.
 - If $x \neq y$ then, y[N/x] = y. It follows from the first assumption, by inversion, that $y : B \in \Gamma$. Therefore, by (Var), $\Gamma \vdash y : B$.
- In case (App), M is an application PQ. Assume Γ , $x: B \vdash PQ : C$ and $\Gamma \vdash N : B$. Assume the induction hypotheses:

(cont.)

(IH1) if
$$\Gamma$$
, $x : B' \vdash P : C'$ and $\Gamma \vdash N : B'$ then $\Gamma \vdash P[N/x] : C'$ (IH2) if Γ , $x : B' \vdash Q : C'$ and $\Gamma \vdash N : B'$ then $\Gamma \vdash Q[N/x] : C'$

By definition (PQ)[N/x] = P[N/x][Q/x]. By inversion on the first assumption, there is a type D such that Γ , $x: B \vdash P: D \to C$ and Γ , $x: B \vdash Q: D$. Therefore, by (IH1) and the second assumption, $\Gamma \vdash P[N/x]: D \to C$. By (IH2) and the second assumption, $\Gamma \vdash Q[N/x]: D$. Therefore, by (App), $\Gamma \vdash P[N/x]Q[N/x]: C$, and P[N/x]Q[N/x] = (PQ)[N/x] by definition.

- In case (Abs), M is an abstraction $\lambda y. P$ and C is an arrow $D \to E$. We can assume by the variable convention that $x \neq y$ and $y \notin FV(Q)$ and $y \notin ran(\Gamma)$. Assume $\Gamma, x : B \vdash \lambda y. P : D \to E$ and $\Gamma \vdash N : B$. Assume the induction hypothesis IH: if $\Gamma, x : B' \vdash P : C'$ and $\Gamma \vdash N : C'$ then $\Gamma \vdash P[N/x] : C'$. It follows by inversion from the first assumption that $\Gamma, x : B, y : D \vdash P : E$. Therefore, it follows from the induction hypothesis that $\Gamma, y : D \vdash P[N/x] : E$. Therefore, it follows from (Abs) that $\Gamma \vdash \lambda y. P[N/x] : D \to E$. By the assumptions on y and definition, $\lambda y. P[N/x] = (\lambda y. P)[N/x]$.
- (e) Prove that $a \to (a \to b) \to b$ is the principal type of $\lambda xy.yx$, i.e. that:
 - $\vdash \lambda xy. yx: a \rightarrow (a \rightarrow b) \rightarrow b$
 - and, for any other type A such that $\vdash \lambda xy.yx:A$, there is a substitution σ such that $A=(a\to (a\to b)\to b)\sigma$

[5 marks]

Solution: First, observe that $a \to (a \to b) \to b$ is a type of $\lambda xy.yx$ because:

$$x: a, y: a \to b \vdash y: a \to b \qquad x: a, y: a \to b \vdash x: a$$

$$x: a, y: a \to b \vdash yx: b$$

$$x: a \vdash \lambda y. yx: (a \to b) \to b$$

$$\vdash \lambda xy. yx: a \to (a \to b) \to b$$

Next, suppose that A is another type of $\lambda xy.yx$. By Inversion, A must have shape $B \to C$ with $x: B \vdash \lambda y.yx: C$. By inversion on this judgement, C must have shape $D \to E$ with x: B, $y: D \vdash yx: E$. By inversion on this judgment, there is a type F such that x: B, $y: D \vdash y: F \to E$ and x: B, $y: D \vdash x: F$. By inversion on these final two judgements, we have $D = F \to E$ and B = F. Therefore, $\vdash \lambda xy.yx: F \to (F \to E) \to E$. We have $(a \to (a \to b) \to b)[F/a, E/b] = F \to (F \to E) \to E$, as required.

(f) Suppose $M =_{\beta} \lambda x. xx$. Prove that M is *not* typable.

[3 marks]

Solution: Suppose for the purpose of obtaining a contradiction that M is typable, i.e. there is a type A such that $\vdash M:A$. Observe that, since $\lambda x.xx$ is a β -normal form, it follows from the definition of $=_{\beta}$ that $M \twoheadrightarrow_{\beta} \lambda x.xx$. By Subject-Reduction, it follows that $\vdash \lambda x.xx:A$. However, we know that $\lambda x.xx$ is not typable.

- (g) Give two terms M and N and a type A such that $M \to_{\beta} N$ and, additionally, both of the following are true:
 - There are no proof trees for $\vdash M : A$
 - There are infinitely many proof trees for $\vdash N : A$

[3 marks]

Solution: Take $N = \mathbf{K} \mathbf{I} \mathbf{I}$ and $M = \mathbf{K} N \Omega$ and $A = a \to a$. Then, clearly $M \to_{\beta} N$. M is untypable because it contains Ω as a subterm. On the other hand, there are infinitely many proof trees for $\vdash \mathbf{K} \mathbf{I} \mathbf{I} : a \to a$ because the following is a proof tree for all types B:

$$\begin{array}{c}
\vdots \\
\vdash \mathbf{K} : (a \to a) \to (B \to B) \to a \to a \quad \vdash \mathbf{I} : a \to a \\
\hline
\vdash \mathbf{K} \cdot \mathbf{I} : (B \to B) \to a \to a \quad \vdash \mathbf{I} : B \to B \\
\hline
\vdash \mathbf{K} \cdot \mathbf{I} : a \to a
\end{array}$$