Le problème des *N* dames ou une première approche des heuristiques

José Vander Meulen

16 novembre 2017

Problème

				0			
						0	
			0				
0							
		0					
							0
					0		
	0						

Problème

Problème

				0			
						0	
2			1				
		2					2
					1		
	0						

Min 2

Algorithme

On procède en deux phases :

- On génère un première version (+/- bonne)
- Successivement, on essaye d'améliorer la solution actuelle

Seconde Phase : On améliore la solution courante

Tant qu'il reste des conflits :

- On choisit aléatoirement une des reines R qui est la plus en conflit
- On déplace la reine R de telle manière à minimiser ses conflits. S'il existe plusieurs cases qui minimisent ses conflits, on en choisit une aléatoirement

Minimum global

Minimum local

Seconde Phase 2.0: Pour sortir des minimums locaux

Tant qu'il reste des conflits :

- Dans ≈ 10% des cas :
 - On choisit aléatoirement une des reines et sur une case choisie aléatoirement
- Dans ≈ 90% des cas :
 - On choisit aléatoirement une des reines R qui est la plus en conflit
 - On déplace la reine R de telle manière à minimiser ses conflits. S'il existe plusieurs cases qui minimise ses conflits, on en choisit une aléatoirement

Numéro des diagonales descantes (i+j)

Numéro des diagonales montantes (N - 1 + j - i)

Structure de données

Terminaison de l'algorithme

Théoriquement, il est possible que l'algorithme ne se termine pas.

Pratiquement, il se termine tjr lorsque $N = 0 \lor N = 1 \lor 4 \le N \le 20000$