### Выбор структуры модели глубокого обучения

Бахтеев Олег

МФТИ

20.11.2019

### Резюме прошлых семинаров

#### Заданы:

- ullet Вариационное распределение  $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, heta_{\mathbf{w}})$  с параметрами heta;
- ullet Априорное распределение  $p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})$  с параметрами  $\mathbf{h}$ ;
- ullet Функция потерь L и функция валидации Q.

**Требуется:** предложить метод выбора структуры модели  $\Gamma$ .

#### Вопросы:

- Как задать структуру модели?
- Как провести ее выбор?
- Какова вероятностная интерпретация структуры?

### Automatic relevance determination

# Пример: вариационный автокодировщик + ARD VAE:

$$L = \int_{\mathbf{z}} p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}.$$

VAE + ARD:

$$L = \iint_{\mathbf{z}, \gamma} p(\mathbf{x} | \mathbf{z} \cdot \boldsymbol{\gamma}) p(\mathbf{z}) p(\boldsymbol{\gamma}) d\mathbf{z} d\boldsymbol{\gamma}.$$



# ${\bf Spike And Slab}$

20.11.2019



# Индийский буфет, еще один пример

### AdaNet

8 / 26

### **Neural Architecture Search**



### **Neural Architecture Search**





# Neural Architecture Search: результаты

| Model                      | image size       | # parameters | Mult-Adds        | Top 1 Acc. (%) | Top 5 Acc. (%) |
|----------------------------|------------------|--------------|------------------|----------------|----------------|
| Inception V2 [29]          | 224×224          | 11.2 M       | 1.94B            | 74.8           | 92.2           |
| NASNet-A (5 @ 1538)        | 299×299          | 10.9 M       | 2.35 B           | 78.6           | 94.2           |
| Inception V3 [59]          | 299×299          | 23.8 M       | 5.72 B           | 78.0           | 93.9           |
| Xception [9]               | $299 \times 299$ | 22.8 M       | $8.38\mathrm{B}$ | 79.0           | 94.5           |
| Inception ResNet V2 [57]   | $299 \times 299$ | 55.8 M       | 13.2B            | 80.4           | 95.3           |
| NASNet-A (7 @ 1920)        | 299×299          | 22.6 M       | 4.93 B           | 80.8           | 95.3           |
| ResNeXt-101 (64 x 4d) [67] | 320×320          | 83.6 M       | 31.5 B           | 80.9           | 95.6           |
| PolyNet [68]               | $331 \times 331$ | 92 M         | 34.7 B           | 81.3           | 95.8           |
| DPN-131 [8]                | $320 \times 320$ | 79.5 M       | $32.0\mathrm{B}$ | 81.5           | 95.8           |
| SENet [25]                 | $320 \times 320$ | 145.8 M      | 42.3 B           | 82.7           | 96.2           |
| NASNet-A (6 @ 4032)        | $331 \times 331$ | 88.9 M       | 23.8 B           | 82.7           | 96.2           |

Zoph et al., 2017. Сложность моделей отличается почти в два раза при одинаковом качестве.

# Neural Architecture Search: постановка задачи

TODO

# **DARTS**

# **DARTS**

# Графовое представление модели глубокого обучения

Заданы:

- $\bigcirc$  ациклический граф (V, E);
- ② для каждого ребра  $(j,k) \in E$ : вектор базовых дифференцируемых функций  $\mathbf{g}^{j,k} = [\mathbf{g}_0^{j,k}, \dots, \mathbf{g}_{K^j,k}^{j,k}]$  мощности  $K^{j,k}$ .
- ③ для каждой вершины  $v \in V$ : дифференцируемая функция агрегации  $\mathbf{agg}_v$ .
- $oldsymbol{\Phi}$  Функция  $\mathbf{f} = \mathbf{f}_{|oldsymbol{V}|-1}$ , задаваемая по правилу

$$\mathbf{f}_{\mathbf{v}}(\mathbf{w}, \mathbf{x}) = \mathbf{agg}_{\mathbf{v}}\left(\left\{\langle \gamma^{j,k}, \mathbf{g}^{j,k} \rangle \circ \mathbf{f}_{j}(\mathbf{x}) | j \in \mathsf{Adj}(v_{k})\right\}\right), v \in \left\{1, \dots, |V| - 1\right\}, \quad \mathbf{f}_{0}(\mathbf{x}) = \mathbf{x}$$

$$(1)$$

и являющаяся функцией из признакового пространства  $\mathbb X$  в пространство меток  $\mathbb Y$  при значениях векторов,  $\gamma^{j,k} \in [0,1]^{K^{j,k}}$ .

#### Определение

Граф (V,E) со множестом векторов базовых функций  $\{\mathbf{g}^{j,k},(j,k)\in E\}$  и функций агрегаций  $\{\mathbf{agg}_v,v\in V\}$  назовем *параметрическим семейством моделей*  $\mathfrak{F}$ .

#### **Утверждение**

Для любого значения  $\gamma^{j,k} \in [0,1]^{K^{j,k}}$  функция  $\mathbf{f} \in \mathfrak{F}$  является моделью.

# Выбор структуры: двуслойная нейросеть

Модель  $\mathbf{f}$  задана **структурой**  $\mathbf{\Gamma} = [\gamma^{0,1}, \gamma^{1,2}].$ 

Модель: 
$$\mathbf{f}(\mathbf{x}) = \operatorname{softmax}\left((\mathbf{w}_0^{1,2})^\mathsf{T} \mathbf{f}_1(\mathbf{x})\right), \quad \mathbf{f}(\mathbf{x}) : \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad \mathbf{x} \in \mathbb{R}^n.$$
 
$$\mathbf{f}_1(\mathbf{x}) = \gamma_0^{0,1} \mathbf{g}_0^{0,1}(\mathbf{x}) + \gamma_1^{0,1} \mathbf{g}_1^{0,1}(\mathbf{x}),$$

где  $\mathbf{w} = [\mathbf{w}_0^{0,1}, \mathbf{w}_1^{0,1}, \mathbf{w}_0^{1,2}]^\mathsf{T}$  — матрицы параметров,  $\{\mathbf{g}_{0,1}^0, \mathbf{g}_{0,1}^1, \mathbf{g}_{1,2}^0\}$  — обобщенно-линейные функции скрытых слоев нейросети.

$$\begin{split} \gamma_0^{0,1} g_0^{0,1}(x) &= \gamma_0^{0,1} \sigma \left( (w_0^{0,1})^\mathsf{T} x \right) \\ f_0(x) &= x \\ \gamma_1^{0,1} g_1^{0,1}(x) &= \gamma_1^{0,1} \sigma \left( (w_1^{0,1})^\mathsf{T} x \right) \\ \gamma_1^{0,1} g_1^{0,1}(x) &= \gamma_1^{0,1} \sigma \left( (w_1^{0,1})^\mathsf{T} x \right) \end{split}$$

Бахтеев Олег (МФТИ) Структура 20.11.2019 16 / 26

### Ограничения на структурные параметры

Примеры ограничений для одного структурного параметра  $\gamma, |\gamma| = 3$ .



На вершинах куба



На вершинах симплекса



Внутри куба



Внутри симплекса

### Репараметризация

#### Определение

Случайную величину  $\psi$  с распределением q с параметрами  $\theta_{\psi}$  назовем репараметризованной через случайную величину  $\varepsilon$ , чье распределение не зависит от параметров  $\theta_{\psi}$ , если:

$$\psi = \mathbf{g}(arepsilon, oldsymbol{ heta}_{\psi})$$

где g — некоторая непрерывная функция.

#### Пример

$$\mathsf{E}_{q_{\mathsf{w}}(\mathsf{w}|\mathsf{\Gamma},\theta_{\mathsf{w}})}\log\ p(\mathsf{y}|\mathsf{X},\mathsf{w},\mathsf{\Gamma}) = \int_{\mathsf{w}}\log\ p(\mathsf{y}|\mathsf{X},\mathsf{w},\mathsf{\Gamma})q_{\mathsf{w}}(\mathsf{w}|\mathsf{\Gamma},\theta_{\mathsf{w}})d\mathsf{w}.$$

Продифференцируем по параметрам  $\theta_{\mathsf{w}}$ :

$$\nabla_{\theta_{\mathbf{w}}} \mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\Gamma,\theta_{\mathbf{w}})} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\Gamma) = \int_{\mathbf{w}} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\Gamma) \nabla_{\theta_{\mathbf{w}}} q_{\mathbf{w}}(\mathbf{w}|\Gamma,\theta_{\mathbf{w}}) d\mathbf{w}.$$

Пусть возможна репараметризация:  $\mathbf{w} = \mathbf{g}(\boldsymbol{arepsilon}, \boldsymbol{ heta}_{\mathbf{w}})$ . Тогда:

$$\begin{split} &\nabla_{\theta_{\mathbf{w}}}\mathsf{E}_{q(\mathbf{w},\Gamma|\theta)}\log p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma}) = \nabla_{\theta_{\mathbf{w}}}\mathsf{E}_{\varepsilon}\log p(\mathbf{y}|\mathbf{X},\mathbf{g}(\varepsilon),\mathbf{\Gamma}) = \\ &= \int_{\varepsilon} \nabla_{\theta_{\mathbf{w}}}\log p(\mathbf{y}|\mathbf{X},\mathbf{g}(\varepsilon),\mathbf{\Gamma})p(\varepsilon)d\varepsilon = \mathsf{E}_{\varepsilon}\nabla_{\theta_{\mathbf{w}}}\log p(\mathbf{y}|\mathbf{X},\mathbf{g}(\varepsilon),\mathbf{\Gamma}). \end{split}$$

# Reparametrization

# **Logit-Normal**

20 / 26

### **Gumbel-Softmax**

# **Proposed Method**

22 / 26

# **Proposed Method**

23 / 26

# **Properties**

# **Examples**

# Используемые материалы