Lead Scoring Case Study

Submitted by: Rishupriya Srivastava

Contents

- ▶▶Problem Statement and Objective
- ►► Problem Approach
- **►**EDA
- **▶** Correlations
- ►► Model Evaluations
- **▶** Observations
- **▶** Conclusion

Problem Statement

• X Education faces a substantial gap in lead conversion despite a high volume of Challenge: generated leads. **Current Conversion Rate:** • Only 30% of acquired leads successfully convert into paying customers. Resource-intensive efforts on all leads without targeted focus on potential Inefficiency Concern: conversions. Objective: • Increase lead conversion efficiency by identifying and prioritizing 'Hot Leads.' Lead Scoring Model • Develop a predictive model assigning lead scores based on conversion Requirement: likelihood. **CEO's Target:** • Aim for a target lead conversion rate of around 80%. **Expected Impact:** • Improve lead conversion rates.

Objective

- Develop a Lead Scoring Model:
- Clearly define the criteria that contribute to a lead being considered promising.
- Understand the CEO's target lead conversion rate of approximately 80%.
- Collect and preprocess relevant data on leads, ensuring that it is clean, accurate, and comprehensive.
- Split the dataset into training and testing sets.
- Iteratively fine-tune the model to enhance its predictive accuracy.
- Ensure that the lead scoring model is interpretable and can provide explanations for the assigned scores.
- Implement a system to monitor the model's performance over time.
- Regularly communicate the progress and results of the lead scoring model to the CEO and other relevant stakeholders.
- Document the entire process, from data collection to model development and deployment.

Problem Approach

Data Acquisition and Inspection: Importing data and thoroughly inspecting the data frame for initial insights.

Data Preparation: Preparing the data for analysis, handling missing values, and ensuring data integrity.

Exploratory Data Analysis (EDA): Conducting EDA to gain a deeper understanding of data patterns and characteristics.

Dummy Variable Creation: Creating dummy variables to effectively represent categorical data. **Test-Train Data Split:** Dividing the dataset into training and testing sets for model development and evaluation.

Feature Scaling: Standardizing or normalizing features to ensure consistent scale across variables.

Correlation Analysis: Examining correlations between variables to identify relationships and potential insights.

Model Building: Using Recursive Feature Elimination (RFE), Rsquared, Variance Inflation Factor (VIF), and p-values for optimal feature selection.

Model Evaluation: Assessing the model's performance using various metrics and validation techniques.

Predictions on Test Set: Applying the trained model to make predictions on the test set for performance validation.

EDA - Data Cleaning

- •Data Cleaning: Replacing "Select" values in the feature column with null, as it indicates that the lead did not select any option.
- •Dropping Columns: Removing columns with more than 40% missing values.
- •Removing Unwanted Columns: Further elimination of unnecessary columns.
- •Checking for Duplicates: Ensuring there are no duplicate entries in the dataset.
- •Checking for Categorical Data: Identifying and handling categorical data appropriately.
- •Checking for Highly Skewed Data: Assessing the skewness of data distribution in columns.
- •Grouping Low-Frequency Values: Grouping values with low frequencies to prevent sparsity.
- •Checking for Outliers: Identifying and managing outliers in the dataset.

EDA - Reference Graphs for Data Cleaning

Specialization

 Leads specializing in HR, Finance, and Marketing have a higher probability of conversion.

Lead Source and Lead Origin

- Lead source clearly shows Google and Direct Traffic has high probability for conversion
- Whereas in Lead Origin most number of leads are landing on Submission.

Last Lead Activity

Leads which are opening email have high probability to convert, same as sending SMS would also benefit.

Occupation

• Unemployed individuals show a higher level of interest in joining the course, making them more likely to become leads.

Correlation

There does not seem to be correlation

Model Evaluation

- The point 0.495 is approx point where all the 3 curve meet.
- So the 0.495 seems to be Optimal cutoff point for probability threshold.

The above graph shows the trade-off between Precision and Recall.

Observation

- Train Data:
 - Accuracy 85.01
 - Sensitivity 85.46
 - Specificity 84.73
- Test Data:
 - Accuracy 85.01
 - Sensitivity 85.46
 - Specificity 84.73

Conclusion

Consistent Performance:

•Evaluation metrics indicate consistent model performance in both training and testing datasets.

•High Sensitivity:

- •The model achieves a commendable sensitivity of 85.46% with a cut-off value of 0.49.
- •This indicates the model's ability to accurately identify potential leads that convert.

•Exceeding CEO's Target:

- •The model surpasses the CEO's target sensitivity of around 80%.
- •This showcases the effectiveness of the model in meeting key performance goals.

·High Accuracy:

- •The model demonstrates an accuracy rate of 85.01%.
- •This aligns closely with the study's objectives, affirming the model's reliability in predicting lead conversions.

•Robust Performance Summary:

- In summary, the model exhibits robust performance, surpassing sensitivity targets and achieving high accuracy.
- •This instills confidence in the model's utility for lead identification at X Education.