Assignment Project Exam Help Announcements Add WeChat powcoder

Reminder: ps3 due Thursday 10/8 at midnight (Boston)

Assignment Project Exam Help

- ps4 out Thursday, due 10/15 (1 week) https://powcoder.com
- Lab this week neural network learning
- ps3 self-grading form out Monday, due 10/19

Neural Networks III

Assignment Project Exam Help Today: Outline Add WeChat powcoder

Neural networks cont'd

Assignment Project Exam Help

- Types of networks:/Fped forward networks, convolutional networks, recurrent networks

 Add WeChat powcoder
- ConvNets: multiplication vs convolution; filters (or kernels); convolutional layers; 1D and 2D convolution; pooling layers; LeNet, CIFAR10Net

Neural Networks III

Network Architectures

Assignment Project Exam Help Neural networks: recap Add WeChat powcoder

h

 χ

Add WeChat possession possession efficiently computes cost (forward pass) and gradient (backward pass)

Assignment Project Exam Help Network architectures Add WeChat powcoder

Feed-forward

Recurrent

Neural Networks III

Convolutional Architectures

simplified view

Convolutional Neural Networks

For images and other 2-D signals

Assignment Project Exam Help Representing images Add WeChat powcoder

Fully connected

Assignment Project Exam Help 2D Input: fully connected network Add We Chat powcoder

Vectorize input by copying rows into a single column

Assignment Project Exam Help 2D Input: fully connected network Add WeChat powcoder

Problem: shifting, scaling, and other distortion changes location of features

Convolution and Project Exam Help

Add WeChat powcoder

 detect the same feature at different positions in the input, e.g. image

preserve input topology

Assignment Project Exam He https://powcode Add WeCha

features

Convolesignment Project Exam Help

Convolesignment Project Exam Help

Assignment Project Exam Help What weights correspond to these output maps? Add WeChat powcoder

These are output maps before thresholding

Hint: filters look like the

Assignment Project Exam Help

$$\partial f(x,y)$$

$$\partial x$$

What Will the Output Thap bok like?

What Will the Output Thap bok like?

Output

Stacking igner by Project Farm Helps

- Each layer outputs multi-channel feature maps (like images)
- Next layer learns filters on previous layer's feature maps

Assignment Project Exam Help Pooling layers Add WeChat powcoder

- Convolution with stride > 1 reduces the size of the input
- Another way to downsize the feature map is with pooling
- A pooling layer subsamples the input in each sub-window
 - max-pooling: chose the max in a window Help
 - mean-pooling: take the average

Pooling Assignment Project Exam Help

Add WeChat powcoder

- the pooling layers reduce the spatial resolution of each feature map
- Goal is to get a certain degree of shift and distortion Assignment Project Exam Help

Distort Assignment Project Exam Help

Add WeChat powcoder

Pooling Assignment Project Exam Help

Add WeChat powcoder

- the weight sharing is also applied in pooling layers
- for mean/max pooling, no weights are needed

Assignment Project Exam Help Putting it all together... Add Weehat powcoder

Assignment Project Exam Help Convolutional Neural Network Add WeChat powcoder

A better architecture for 2d signals

LeNet

Deep Convolutional Networks The Unreason Add Wecthat powcoderep Features

Rich visual structure of features deep in hierarchy.

conv₅ DeConv visualization
[Zeiler-Fergus]

Convolutional Neural Nets

Why they rule

Assignment Project Exam Help Why CNNs rule: Sparsity Add WeChat powcoder

 CNNs have sparse interactions, because the kernel is smaller than the input

• E.g. in thousands or millions pixel Exam He image, can detect small meaningful features such as he powcoder.com

Very efficient computation!

• For m inputs and dutputs, matripowcoder multiplication requires $O(m \times n)$ runtime (per example)

- For k connections to each output, need only $O(k \times n)$ runtime
- Deep layers have larger effective inputs, or receptive fields

Assignment Project Exam Help Why CNNs rule: Parameter sharing Add WeChat powcoder

- Kernel weights are shared across all locations
- Statistically efficient learn from more data
- Memory efficient \overline{m} store polyk parameters eince k < m, this is much smaller than $m \times n$.

Assignment Project Exam Help Why CNNs rule: Translation invariance Add WeChat powcoder

- Output is invariant to translation of input
 - spatial translation for images
 - temporal translation for time sequences
- useful when some function of a small local window is useful when applied to multiple input locations https://powcoder.com
- Note, not invariant to other transformations of input, such as large image rotatible Chat powcoder
- Pooling provides additional invariance to distortions

Convolutional Neural Nets

Example

Assignment Project Exam Help CIFAR-10 Demo ConvJS Network Add WeChat powcoder

Assignment Project Exam Help RELU: rectified linear unit Add WeChat powcoder

RELU function
$$g(x) = \max(0, x)$$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

input (32x32x3)

conv (32x32x16) params: 16x5x5x3+16 = 1216

https://powcoder.com

Add WeChat powcoder

conv (8x8x20)

wciotelerize 5x5x20, stride 1

relu (8x8x20)

pool (4x4x20)

pooling size 2x2, stride 2

parameters: 20x5x5x20+20 = 10020

Assignment (Project) ExameHelp0x320+10 = 3210

https://powcoder.com softmax (1x1x10)

Add WeChat powcoder

Car

Assignment Project Exam Help Testing the network Add WeChat powcoder

Show top three most likely classes

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Assignment Project Exam Help Next Class Add WeChat powcoder

Neural Networks IV: Recurrent Nets:

recurrent networks; training strategies

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder