FMO P-3856-1

CLAIMS

We claim:

1	1. A noble metal tip for use with a spark plug electrode, comprising:				
2	a firing end having a sparking surface,				
3	an attachment end, and;				
4	a retention feature extending generally radially inwardly into said				
5	noble metal tip, wherein said noble metal tip is capable of being inserted into a bore				
6	located in either a spark plug center and/or ground electrode such that said sparking				
7	surface is located outside of the bore and said retention feature is located within the bore.				
1	2. The noble metal tip of claim 1, wherein said attachment end includes a				
2	tapered section.				
1	3. The noble metal tip of claim 1, wherein said retention feature radially				
2	extends only partially through the diameter of said noble metal tip.				
1	4. The noble metal tip of claim 3, wherein said retention feature is of a				
2	generally conical shape.				
2	generally conical shape.				
1	5. The noble metal tip of claim 3, wherein said retention feature includes a				
2	groove that extends around the entire circumference of said noble metal tip.				
1	6. The noble metal tip of claim 1, wherein said retention feature includes a				
2	diameter that is between 0.05mm-0.3mm.				
۷	diameter that is between 0.05mm-0.5mm.				
1	7. The noble metal tip of claim 1, wherein said retention feature radially				
2	extends into said noble metal tip by a distance that is between 0.05mm-0.3mm.				
1	8. The noble metal tip of claim 1, wherein said tip further comprises a				
2	plurality of said retention features, one or more of said features are located at a first axial				
3	position along said tip and one or more of said features are located at a second axial				
4	position along said tip, said first and second axial positions are spaced from one another.				

11

1

2

3

1	9. The noble metal tip of claim 8, wherein first and second retention feature.				
2	are located at said first axial position and are circumferentially spaced from one another				
3	by approximately 180°, and third and fourth retention features are located at said second				
4	axial position and are circumferentially spaced from one another by approximately 180°.				
1	10. The noble metal tip of claim 9, wherein said first and third retention				
2	features are circumferentially spaced by approximately 90°, said third and second				
3	retention features are circumferentially spaced by approximately 90°, said second and				
4	fourth retention features are circumferentially spaced by approximately 90°, and said				
5	fourth and first retention features are circumferentially spaced by approximately 90°.				
1	11. The noble metal tip of claim 1, wherein said noble metal tip is comprised				
2	of an Ir-based material.				
۷	of all it-based material.				
1	12. An electrode assembly including the noble metal tip of claim 1				
1	13. A spark plug including the electrode assembly of claim 12				
1	14. A center electrode assembly for use in a spark plug, comprising:				
2	a center electrode component including a front end having a blind bore				
3	formed therein,				
4	a generally cylindrical noble metal tip secured within said blind bore				
5	said tip including:				
6	a firing end having a sparking surface,				
7	an attachment end located within said blind bore, and;				
8	a retention feature, and;				
9	a fusion layer;				
10	wherein said retention feature receives at least a portion of said fusion				

15. The center electrode assembly of claim 14, wherein said tip further comprises a plurality of said retention features, one or more of said features are located at

layer such that said noble metal tip is secured within said blind bore.

2

4	second axial position along said tip, said first and second axial positions are spaced from					
5	one another.					
1	16.	The center electrode assembly of claim 14, wherein said sparking surface				
2	protrudes be	yond the end of said center electrode tapered front end by a distance between				
3	0.1mm-1.0mm.					
1	17.	The center electrode assembly of claim 14, wherein said sparking surface				
2	has a diameter between 0.25mm-1.0mm.					
1	18.	The center electrode assembly of claim 14, wherein said noble metal tip is				
2	comprised of an Ir-based material.					
1	19.	The center electrode assembly of claim 14, wherein said center electrode				
2	component i	s comprised of a nickel-based material having a thermal conductivity of				
3	greater than 3	30 W/mK during normal spark plug operating temperatures.				
1	20.	A spark plug including the center electrode assembly of claim 14.				
1	21.	A method of manufacturing a spark plug electrode assembly, said method				
2		comprising the steps of:				
3		(a) providing a noble metal wire;				
4		(b) providing either a center or ground electrode;				
5		(c) drilling retention features into said noble metal wire;				
6		(d) inserting an end of said noble metal wire into a recess in said				
7	electrode;					
8		(e) applying a laser to said electrode such that a molten material flows				
9	into said retention features, and;					
10		(f) cutting said noble metal wire to a predetermined length.				
1	22.	The method of claim 21, wherein step (c) further comprises using one or				

1 23. The method of claim 21, wherein step (e) involves no relative motion 2 between said laser heads and either said electrode or said noble metal wire.

more laser heads to laser drill said retention features.

FMO P-3856-1

1	24.	The method of claim 21, when	ein step (c) further com	prises laser drilling
2	retention feat	res such that they only partially	y extend through the dia	meter of said noble
3	metal wire.			

- 1 25. The method of claim 21, wherein step (f) further comprises using a 2 tapered cutting wheel to radially cut said noble metal wire to a predetermined length such 3 that one end of the cut section is flat where the other end of the cut section is tapered.
- 1 26. The method of claim 21, wherein said noble metal wire is an Ir-based 2 wire.