

# Topic: Unit 5 Course Name: Industrial Automation and Control(20EE11Q3)

Dr. Kavirayani Srikanth
Asst. Professor
Dept. of EEE

#### Classification



#### Introduction

- Motion control and drives are very important actuation subsystems for process and discrete manufacturing industries.
- Motion control systems are critical for product quality in discrete manufacturing, while variable speed drives lead to significant energy savings in common industrial loads such as pumps, compressors and fans.

#### Introduction

- Variable speed drives can be categorized into adjustable speed drives and servo drives.
- In adjustable speed drives the speed set points are changed relatively infrequently, in response to changes in in process operating points.













Function: conversion of signals of various nature into standard electrical signals

Physical Quantity

Transducers

Function: conversion of signals of various nature into standard electrical signals

Analogical normalized signal



Function: equipping machine-tools with control and automation functions

- industrial PC (IPC),
- programmable logic controller (PLC),
- programmable automation controller (PAC)



| Basic concepts and determinations                                   |  |
|---------------------------------------------------------------------|--|
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
| Classification of                                                   |  |
| electric drives                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
| Classification of electric drives                                   |  |
| ☐ By the sort of current of drive engine:                           |  |
|                                                                     |  |
| ✓ direct current (DC)                                               |  |
|                                                                     |  |
| ✓ alternating current                                               |  |
| diterriating current                                                |  |
| endator 14                                                          |  |
| 100 to 17                                                           |  |
|                                                                     |  |
|                                                                     |  |
| Classification of electric drives                                   |  |
| □By the sort of mechanical Ge Mot                                   |  |
| transmission:                                                       |  |
| ✓ geared electric drive in which an electric motor is connected     |  |
| with a working machine by means of one of types of                  |  |
| transmission devices                                                |  |
|                                                                     |  |
| ✓ gearless electric drive (direct<br>drive), when an electric motor |  |
| is connected directly with a machine tool                           |  |

#### Classification of electric drives

- ☐ By the type of motion:
  - ✓ unidirectional and reversing rotating
  - ✓ unidirectional and reversing <u>linear</u> motion

Linear motion



#### Classification of electric drives

- ☐ By the level of automation:
  - a) uncontrolled electric drive
  - b) automated electric drive in which a part of control operations is executed
  - without operator participation;
    c) automatic electric drive, in which full control operations are executed without operator participation.



#### Classification of electric drives

- ☐ By the type of control system:
  - a) open-loop control. It is an electric drive control system in which a feed-back of output coordinate absents;
  - closed-loop control. It is an electric drive control system in which a feed-back of output coordinate presents;
  - c) electric shaft it is an interconnected electric drive which provides synchronous motion two or more machine tools, not having a mechanical connection.

a) c)

#### Classification of electric drives

#### ■ By principles of output coordinates control:

- a) controllable electric drive which provides a guided change of machine tool motion coordinates in accordance with requirements of a technological process;
- b) positional electric drive which provides a machine tool transferring to a set position;
- c) follow-up electric drive which provides a machine tool moving in accordance with an arbitrarily changing reference signal;
- d) software programmable electric drive which provides a machine tool moving in accordance with a set program;



#### Classification of electric drives

- ☐ By a method of passing to mechanical energy:
  - a) individual electric drive only one machine tool is operated by one engine;
  - b) group electric drive a few machine tools are operated by one engine;
  - c) multimotor electric drive one machine tool is operated by a few electric motors;
  - d) interconnected electric drive an electric drive contains two or a few electric or mechanically connected electric drives, during working



Basic concepts and determinations

Basic directions of electric drive development

| Basic directions of electric drive development                                                                                                                                                                                   |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>Expansion of automated drives, mainly frequency controlled drives of alternating<br/>current with a usage of the fully controlled semiconductor devices</li> </ul>                                                      |   |
| <ul> <li>Increase of requirements to accuracy indexes of dynamic and static modes of<br/>operations</li> </ul>                                                                                                                   |   |
| ☐ Expansion and complication of electric drives functions                                                                                                                                                                        |   |
| <ul> <li>Expansion of functional possibilities of an electric drive in different production<br/>operations and technological processes by application of the numerical control<br/>systems and microprocessor devices</li> </ul> |   |
| Standardization of an element base and creation of a complete electric drive for<br>requirements satisfying of a wide class of production mechanisms                                                                             |   |
| ☐ Expansion of power ratings to ten of thousands of kilowatts and considerable variety of their design                                                                                                                           |   |
| <ul> <li>Creation of powerful gearless drives of ball and autogenous mills, mine winder,<br/>basic mechanisms of excavators and other mechanisms</li> </ul>                                                                      |   |
| ☐ Increase efficiency and power factor of all electric drive types ☐ Usage of grouped electric drive systems with a common supply for flexible control of                                                                        |   |
| electric power streams, energy storage, reactive power compensation etc.                                                                                                                                                         |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
| AC DRIVES                                                                                                                                                                                                                        |   |
| AC motor Drives are used in many industrial and domestic                                                                                                                                                                         |   |
| application, such as in conveyer, lift, mixer, escalator etc.                                                                                                                                                                    |   |
|                                                                                                                                                                                                                                  |   |
| The AC motor have a number of advantages :                                                                                                                                                                                       | _ |
| <ul> <li>Lightweight (20% to 40% lighter than equivalent DC motor)</li> <li>Inexpensive</li> </ul>                                                                                                                               |   |
| Low maintenance                                                                                                                                                                                                                  |   |
| The Disadvantages AC motor:                                                                                                                                                                                                      |   |
| * The power control relatively complex and more expensive  There are two type of AC motor Drives:                                                                                                                                |   |
| 1. Induction Motor Drives                                                                                                                                                                                                        |   |
| 2. Synchronous Motor Drives 20ee11Q3                                                                                                                                                                                             |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                  |   |
| INDUCTION MOTOR DRIVES                                                                                                                                                                                                           |   |
|                                                                                                                                                                                                                                  |   |
| Three-phase induction motor are commonly used in adjustable-speed drives (ASD).                                                                                                                                                  |   |
| Basic part of three-phase induction motor:                                                                                                                                                                                       |   |
| Three-phase                                                                                                                                                                                                                      |   |
| Three • • Stator                                                                                                                                                                                                                 |   |
| phase • Rotor                                                                                                                                                                                                                    |   |
| Stator Air gap Rotor                                                                                                                                                                                                             |   |
| ω <sub>m</sub> Τ                                                                                                                                                                                                                 |   |
| 20ee11Q3                                                                                                                                                                                                                         |   |





The stator winding are supplied with balanced three-phase AC voltage, which produce induced voltage in the rotor windings. It is possible to arrange the distribution of stator winding so that there is an effect of multiple poles, producing several cycle of magnetomotive force (mmf) or field around the air

The speed of rotation of field is called the  $\mbox{synchronous speed}~\omega_{\mbox{\tiny S}}$  , which is

$$\omega_s = \frac{2\omega}{p}$$

- $\begin{array}{ll} \omega_{s} \text{ is syncronous speed [rad/sec]} \\ N_{s} \text{ is syncronous speed [rpm]} \\ p \text{ is numbers of poles} \\ \omega \text{ is the supply frequency [rad/sec]} \\ f \text{ is the supply frequency [Hz]} \\ N_{m} \text{ is motor speed} \end{array}$
- $N_s = \frac{120 f}{}$

#### The motor speed

The rotor speed or motor speed is :  $\omega_m = \omega_s (1 - S)$ 

 $S = \frac{N_S - N_m}{N_S}$  $S = \frac{\omega_S - \omega_m}{\omega_S}$  Or Where S is slip, as defined as:



#### **Equivalent Circuit Of Induction Motor**



motqtjee11Q3

#### Performance Characteristic of Induction Motor



 $P_{scu} = 3I_s^2 R_s$ Stator copper loss:

 $P_{rcu} = 3(I_r)^2 R_r$ Rotor copper loss :

 $P_c = 3 \frac{V_m^2}{20 \text{ eq } ^{12}R_m^2} \approx 3 \frac{V_s^2}{R_m}$ 

#### **Performance Characteristic of Induction** Motor

| - Power developed on air gap | (Power fropm stator to |
|------------------------------|------------------------|
| rotor through air gap):      | P.                     |

$$P_g = 3(I_r)^2 \frac{R_r}{S}$$

rotor through air gap) : 
$$P_{g} = 3(I_{r}^{-})^{2} \frac{R_{r}^{-}}{S}$$
 - Power developed by motor : 
$$P_{d} = P_{g} - P_{rcu} = 3(I_{r}^{-})^{2} \frac{R_{r}^{-}}{S} (1 - S)$$
 or 
$$P_{d} = P_{g} (1 - S)$$

$$P_d = P_g (1 - S)$$

- Torque of motor : 
$$T_d = \frac{P_d}{\varpi_m} \qquad \text{or} \quad T_d = \frac{P_d \ 60}{2\pi \ N_m}$$

or 
$$= \frac{P_s(1-S)}{\omega_S(1-S)} = \frac{P_s}{\omega_s}$$

#### **Performance Characteristic of Induction** Motor

Input power of motor:  $P_i = 3V_s I_s \cos \phi_m$ 

 $= P_c + P_{scu} + P_g$ 

Output power of motor :  $P_o = P_d - P_{noload}$ 

### Performance Characteristic of Induction Motor

If 
$$P_g >> (P_c + P_{scu})$$

and 
$$P_d >> P_{noload}$$

so, the efficiency can calculated as :

$$\eta \approx \frac{P_d}{P} = \frac{P_g (1 - S)}{P} = 1 - S$$

20ee11Q3

### Performance Characteristic of Induction Motor

Generally, value of reactance magnetization X  $_{\rm m}>>$  value Rm (core losses) and also  $X_m^{~2}>>(R_s^2+X_s^2)$ 

So, the magnetizing voltage same with the input voltage :  $V_{\scriptscriptstyle m} pprox V_{\scriptscriptstyle s}$ 

Therefore, the equivalent circuit is ;



### Performance Characteristic of Induction Motor

Total Impedance of this circuit is :

$$Z_{i} = \frac{-X_{m}(X_{s} + X_{r}) + jX_{m}(R_{s} + \frac{R_{r}}{S})}{R_{s} + \frac{R_{r}}{S} + j(X_{m} + X_{s} + X_{r})}$$

The rotor current is :  $I_r = \frac{V_s}{\left[\left(R_s + \frac{R_r^2}{S}\right)^2 + \left(X_s + X_r^2\right)^2\right]^2}$ 





Torque – speed Characteristic

20ee11Q3

#### Three region operation:

1. Motoring:  $0 \le S \le 1$ 2. Regenerating: S < 03. Plugging:  $1 \le S \le 2$ 



### Performance Characteristic of Induction Motor

Starting speed of motor is  $\omega_m = 0$  or S = 1,

Starting torque of motor is:  $T_{sr} = \frac{3R_{r}^{'}V_{s}^{2}}{\omega_{s}\left[\left(R_{s} + \frac{R_{r}^{'}}{S}\right)^{2} + \left(X_{s} + X_{r}^{'}\right)^{2}\right]}$ 

Slip for the maximum torque  $S_{max}$  can be found by setting :  $\frac{dT_d}{dS} = 0$ 

So, the slip on maximum torque is :  $S_{\text{max}} = \pm \frac{R_r^{'}}{\left[\left(R_s\right)^2 + \left(X_s + X_r^{'}\right)^2\right]^{\frac{1}{2}}}$ 

### Performance Characteristic of Induction Motor

Torque maximum is :  $T_{\text{max}} = \frac{3 V_s^2}{2\omega_s \left[ R_s + \sqrt{R_s^2 + \left( X_s + X_r^2 \right)^2} \right]}$ 

And the maximum regenerative torque can be found as :

$$T_{\text{max}} = \frac{3 V_s^2}{2\omega_s \left[ -R_s + \sqrt{R_s^2 + (X_s + X_r^2)^2} \right]}$$

Where the slip of motor  $s = -S_m$ 

20ee11Q3

Speed-Torque Characteristic:  $T_{d} = \frac{3R_{r}^{2}V_{s}^{2}}{S\omega_{s}\left[\left(R_{s} + \frac{R_{r}^{2}}{S}\right)^{2} + \left(X_{s} + X_{r}^{2}\right)^{2}\right]}$ 

For the high Slip S. (starting)  $\left( X_{s} + X_{r}^{'} \right)^{2} >> \left( R_{s} + \frac{R_{r}^{'}}{S} \right)^{2}$ 

So, the torque of motor is :  $T_d = \frac{3\,R_r^{'}\,V_s^2}{S\,\varpi_s\left(X_s + X_r^{'}\right)^2}$ 

And starting torque (slip S=1) is :  $T_{st} = \frac{3 \, R_r^{'} \, V_s^{\, 2}}{\omega_s \left( X_s + X_r^{'} \right)^2}$ 

20ee11Q3

For low slip S region, the motor speed near unity or synchronous speed, in this region the impedance motor is :  $\left(X_s + X_r^{'}\right)^2 << \frac{R_{r_r}^{'}}{c}>> R_s$ 

So, the motor torque is :  $T_d = \frac{3V_s^2 \ S}{\omega_s \ R'_r}$ 

And the slip at maximum torque is :  $S_{\rm max} = \pm \frac{R_r^{'}}{\left[ (R_r)^2 + \left( X_r + X_r^{'} \right)^2 \right]}$ 

The maximum motor torque is :  $T_{d} = \frac{3R_{r}^{2}V_{s}^{2}}{S\omega_{s}\left[\left(R_{s} + \frac{R_{r}^{2}}{S}\right)^{2} + \left(X_{s} + X_{r}^{2}\right)^{2}\right]}$ 

#### Stator Voltage Control

Controlling Induction Motor Speed by Adjusting The Stator Voltage





#### **Frequency Voltage Control**

Controlling Induction Motor Speed by Adjusting The Frequency Stator Voltage





If the frequency is increased above its rated value, the flux and torque would decrease. If the synchronous speed corresponding to the rated frequency is call the base speed  $\omega_{b_i}$  the synchronous speed at any other frequency becomes:

$$\omega_s = \beta \omega_b$$

And: 
$$S = \frac{\beta \omega_b - \omega_m}{\beta \omega_b} = 1 - \frac{\omega_m}{\beta \omega_b}$$

The motor torque :

$$= \frac{3R_r'V_s^2}{S\omega_s\left[\left(R_s + \frac{R_r'}{S}\right)^2 + \left(X_s + X_r'\right)^2\right]}$$

$$T_{d} = \frac{3R_{r}V_{s}^{2}}{S\beta\omega_{b}\left[\left(R_{s} + \frac{R_{r}}{S}\right)^{2} + \left(\beta X_{s} + \beta X_{r}^{2}\right)^{2}\right]}$$

| If | R. | is negligible. | the | maximum | torque | at the | - hase | speed a | as |
|----|----|----------------|-----|---------|--------|--------|--------|---------|----|

$$T_{mb} = \frac{3 V_s^2}{2S \omega_b (X_s + X_s^2)}$$

And the maximum torque at any other frequency is :

$$T_m = \frac{3}{2S \,\omega_b \left(X_s + X_r^{'}\right)} \frac{{V_s^{'2}}}{\beta^2}$$

At this maximum torque, slip S is :

$$S_m = \frac{R_r'}{\beta (X_s + X_r')}$$

Normalizing :

$$T_{m} = \frac{3}{2S \omega_{b} (X_{s} + X_{r})} \frac{V_{s}^{2}}{\beta^{2}}$$

$$T_{mb} = \frac{3 V_{s}^{2}}{2S \omega_{b} (X_{s} + X_{r})}$$



20ee1103

 $T_m \beta^2 = T_{mt}$ 

#### ☐Requirement of speed control

- Speed control means change the drive speed as desired by the process to maintain different process parameter at different load.
- ➤ Energy saving.
- Speed control is different concept from speed regulation where there is a natural change in speed due to change on load on the shaft.
- Speed control either done is manually by the operation or by the means of some automatic control device.
- > Low speed starting requirement.

20ee11Q3

#### ☐ Method of speed control of induction motor

- ➤ Stator voltage control
- ➤ Stator frequency control
- Stator current control
- ≻V/F control
- >Static rotor resistance control

| > Synchronous speed    | V <sub>1</sub> >V <sub>2</sub> >V <sub>3</sub>                |
|------------------------|---------------------------------------------------------------|
| $N_s = \frac{120f}{p}$ | V <sub>1</sub> V <sub>1</sub> SV <sub>2</sub> SV <sub>3</sub> |
| Toque equation         | V <sub>3</sub>                                                |
|                        | V. Tambah                                                     |
| $T \propto W^2$        |                                                               |
|                        |                                                               |
|                        | o n <sub>1</sub> n <sub>2</sub> n <sub>1</sub> spi            |

20ee11Q3



20ee11Q



#### Approximate per phase equivalent circuit



$$I_{_F} = \frac{V_{_S}}{\sqrt{\left(R_{_S}+R_{_F}/S\right)^2+\varpi_e^2\left(L_{_D}+L_{_D}\right)^2}}$$
 This yields that,

This yields that, 
$$\text{20ee11Q3} \qquad \quad T_e = 3 \bigg(\frac{P}{2}\bigg) \frac{R_v}{S \omega_e} \cdot \frac{V_e^2}{(R_e + R_v/S)^2 + \omega_e^2 (L_h + L_h)^2}$$



For adjustible speed applications, the induction machine, particularly the cage rotor type, is most commonly used in industry. These machines are very cheap and rugged, and are available from fractional horsepower to multi-megawatt capacity, both in single-phase and poly-phase versions. In this lesson, the basic fundamentals of construction, operation and speed control for induction motors are presented.

In cage rotor type induction motors the rotor has a squirrel cage-like structure with shorted end rings. The stator has a three-phase winding, and embedded in slots distributed sinusoidally. It can be shown that a sinusoidal three-phase balanced set of ac voltages applied to the three-phase stator windings creates a magnetic field rotating at angular speed  $\omega_b = 4\pi f_e/P$  where  $f_e$  is the supply frequency in Hz and P is the number of stator poles.

If the rotor is rotating at an angular speed  $(\omega_s$ , i.e. at an angular speed  $(\omega_s - \omega_s)$  with respect to the rotating stator mmf, its conductors will be subjected to a sweeping magnetic field, inducing voltages and current and mmf in the short-circuited rotor bars at a frequency  $(\omega_s - \omega_s)P/4\pi$ , known as the slip speed. The interaction of air gap flux and rotor mmf produces torque. The per unit slip  $\omega$  is defined as

$$S = \frac{\omega_s - \omega_s}{\omega_s}$$

## Speed Control From the torque speed characteristics in Fig. 34.2, it can be seen that at any rotor speed the magnitude and/or frequency of the supply voltage can be controlled for obtaining a desired torque. The three possible modes of speed control are discussed below. Variable-Voltage, Constant-Frequency Operation A simple method of controlling speed in a cage-type induction motor is by varying the stator voltage at constant supply frequency. Stator voltage control is also used for "soft stard" to limit the stator current during periods of you rotor speeds. Figure 34.3 shows the torque-speed curves with variable stator voltage. Often, low-power motor drives use this type of speed control due to the simplicity of the drive circuit. Variable-Frequency Operation Figure 34.4 shows the torque-speed curve, if the stator supply frequency is increased with constant supply voltage, where $\omega_i$ is the base angular speed. Note, however, that beyond the rated frequency $\omega_0$ , there is fall in maximum torque developed, while the speed rises. **BLDC Motors** · A BLDC motor accomplishes commutation electronically using rotor position feedback to determine when to switch the current. The structure is shown in Figure. · Feedback usually entails an attached Hall sensor or a rotary encoder. The stator windings work in conjunction with permanent magnets on the rotor to generate a nearly uniform flux density in the air gap. This permits the stator coils to be driven by a constant DC voltage (hence the name brushless DC), which simply switches from one stator coil to the next to generate an AC voltage waveform with a trapezoidal shape. 20ee11Q3

| Feature                                                    | BLDC motor                                                                                     | AC induction motor                                                  | Actual Advantage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Speed/Torque<br>Characteristics                            | Flat                                                                                           | Nonlinear — lower torque at lower speeds                            | Permanent magnet design with rotor<br>position feedback gives BLDC higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Output Power/                                              | High                                                                                           | Moderate                                                            | starting and low-speed torque  Both stator and rotor have windings for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Frame Size (Ratio)  Dynamic Response                       | Fast                                                                                           | Low                                                                 | Induction motor  Lower rotor inertia because of permanent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Slip Between                                               |                                                                                                | Yes; rotor runs at a lower frequency than stator by slip            | magnet  BLDC is a synchronous motor, induction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Stator And Rotor<br>Frequency                              | No                                                                                             | frequency and slip increases<br>with load on the motor              | motor is an asynchronous motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                            |                                                                                                | 20ee11Q3                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| detect feedba precise perforr  • BLDC automa machir torque | BLDC m<br>the roto<br>ck to the<br>commu-<br>mance.<br>motors<br>ation so<br>nes, and<br>densi | or position. The<br>he electronic<br>utation timing a<br>are widely | ate Hall sensors to<br>ese sensors provide<br>controller, enabling<br>and improved motor<br>used in industrial<br>as robotics, CNC<br>stems. Their high<br>control, and low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sneed contro                                               | of BLDC (Brus                                                                                  | shless DC) motors can be ac                                         | .DC Motors  hieved using various control methods, the control with the footbashing of the control method of th |
| In sensor-bas                                              | more advance                                                                                   | ess control, square-wave con<br>ed control strategies such a        | atrol, PWM (Pulse Width Modulation)<br>as PI (Proportional-Integral) and PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Sp                                                                                                                                                                                                                                                             | peed (                             | Contro                                   | of BLD                                                            | C mot                                         | ors                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|---------------------------------|--|
| measu                                                                                                                                                                                                                                                          | rable parame                       | ol, rotor position<br>eters such as l    | on information co<br>back electromoti                             | an be obtained<br>ve force or st              | d using other<br>tator current, |  |
| Square                                                                                                                                                                                                                                                         | -wave control                      | is a simple cont                         | rol method that i<br>in a square wa                               |                                               |                                 |  |
| duty cy                                                                                                                                                                                                                                                        | ycle of a high                     | -frequency puls                          | power delivered<br>e train. This metl<br>or sensorless syst       | nod provides a                                | by varying the ccurate speed    |  |
| control                                                                                                                                                                                                                                                        | ller adjusts th<br>s or other sou  | ne power delive                          | ies such as PI a<br>ered to the mot<br>ing proportional,<br>peed. | or based on fe                                | eedback from                    |  |
|                                                                                                                                                                                                                                                                |                                    |                                          |                                                                   |                                               |                                 |  |
|                                                                                                                                                                                                                                                                |                                    | ;                                        | 20ee11Q3                                                          |                                               |                                 |  |
|                                                                                                                                                                                                                                                                |                                    |                                          |                                                                   |                                               |                                 |  |
|                                                                                                                                                                                                                                                                |                                    |                                          |                                                                   |                                               |                                 |  |
|                                                                                                                                                                                                                                                                |                                    |                                          |                                                                   |                                               |                                 |  |
|                                                                                                                                                                                                                                                                |                                    | Annli                                    | ication                                                           |                                               |                                 |  |
|                                                                                                                                                                                                                                                                |                                    | Appl                                     | ications                                                          | )                                             |                                 |  |
| power<br>reduce                                                                                                                                                                                                                                                | steering, brak<br>d noise, and in  | king systems, ar<br>mproved reliabil     | oyed in electric v<br>d HVAC systems.<br>ity compared to t        | They offer high<br>raditional brush           | her efficiency,<br>ned motors.  |  |
| washin<br>quietei                                                                                                                                                                                                                                              | ig machines, a<br>r performance    | and air condition<br>, and longer life   | d in household<br>ners. They provid<br>span compared to           | e energy-efficie<br>conventional r            | ent operation,<br>motors.       |  |
| actuato                                                                                                                                                                                                                                                        | ors, flight con<br>Il components   | trol systems, an                         | s are used in aero<br>d auxiliary powe<br>ere their compact       | r units (APUs).                               | They are also                   |  |
| Medica<br>tools, i                                                                                                                                                                                                                                             | infusion pump                      | os, and laborato                         | e employed in me<br>ry equipment. Th                              | eir precise con                               | ntrol, compact                  |  |
| size, and low electromagnetic interference make them suitable for medical applications.  Consumer Electronics: BLDC motors are utilized in various consumer electronics, including computer cooling fans, hard disk drives, and printers. They offer efficient |                                    |                                          |                                                                   |                                               |                                 |  |
| and rel                                                                                                                                                                                                                                                        | iable perform                      | ance in compact                          | form factors.                                                     | ,                                             |                                 |  |
|                                                                                                                                                                                                                                                                |                                    | :                                        | 20ee11Q3                                                          |                                               |                                 |  |
|                                                                                                                                                                                                                                                                |                                    |                                          |                                                                   |                                               |                                 |  |
|                                                                                                                                                                                                                                                                |                                    |                                          |                                                                   |                                               |                                 |  |
|                                                                                                                                                                                                                                                                |                                    |                                          |                                                                   |                                               |                                 |  |
|                                                                                                                                                                                                                                                                | Advatages                          | Brushless<br>DC motor                    | Brushed DC<br>motor                                               | Induction<br>motor                            |                                 |  |
|                                                                                                                                                                                                                                                                |                                    | Field Winding<br>on stator and           | Field Winding<br>on the rotor and                                 | Both the rotor<br>and stator<br>have          |                                 |  |
|                                                                                                                                                                                                                                                                | Mechanical<br>Structure            | permanent<br>magnets on<br>rotor.        | stator are made<br>of permanent<br>magnets or                     | windings but<br>the AC lines<br>are connected |                                 |  |
|                                                                                                                                                                                                                                                                | Maintenance                        | No                                       | Periodic<br>maintenance                                           | to the stator                                 |                                 |  |
|                                                                                                                                                                                                                                                                | Wallichaire                        | maintenance<br>Flat –                    | because of<br>brushes<br>Moderate – Loss                          | maintenance                                   |                                 |  |
|                                                                                                                                                                                                                                                                | Speed-<br>Torque<br>characteristic | operation at<br>all speeds<br>with rated | in torque at<br>higher speeds<br>because of                       | Non-linear                                    |                                 |  |
|                                                                                                                                                                                                                                                                | Efficiency                         | load<br>High                             | losses in brushes<br>Moderate                                     | High<br>efficiency                            |                                 |  |
|                                                                                                                                                                                                                                                                | Commutatio                         | Using solid                              | Mechanical<br>contacts                                            | Special<br>starting                           | -                               |  |
|                                                                                                                                                                                                                                                                | n method                           | state<br>switches                        | between<br>brushes and<br>commutator                              | circuit is<br>required                        |                                 |  |

|                                                                                                         | lo lo                                                                                                                                             | ligh - no<br>osses in<br>rushes                                                  | Moderate –<br>losses in<br>brushes                                                         | Low<br>determined<br>by the AC<br>line<br>frequency;<br>increases in<br>load<br>further |       |  |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|--|
| me<br>rot                                                                                               | tore of                                                                                                                                           | lall sensors,<br>ptical<br>ncoders, etc.                                         | Automatically<br>detected by<br>brushes and<br>commutator                                  | neduces speed                                                                           |       |  |
| Dir                                                                                                     | rection Re                                                                                                                                        | eversing<br>ne switching<br>equence                                              | Reversing the<br>terminal<br>voltage                                                       | By<br>changing<br>the two<br>phases of<br>the motor<br>input                            |       |  |
| Ele                                                                                                     | ectrical Lo                                                                                                                                       | ow                                                                               | High – as<br>brushes used                                                                  | Low                                                                                     | •     |  |
|                                                                                                         | rstem O:                                                                                                                                          | ligh-because<br>of external<br>controller<br>equirement                          | Low                                                                                        | Low                                                                                     |       |  |
| <ul> <li>Materi</li> <li>Alexan Funda ttp://d d=11</li> <li>P Sai K Machi</li> <li>https://d</li> </ul> | ial, 2019 inder Besh mentals of do.nmu.o  (umar, Le nes, GVP //www.m                                                                              | nta, Lectu<br>of Electric<br>org.ua/cou<br>ecture Ma<br>eCE(A), 20<br>nonolithic | re material<br>c Drives,<br>urse/index.<br>terial, Spe<br>119.<br>spower.com<br>stor Funda | on php?categ cial Electri                                                               | cal . |  |
| Singh,<br>Revie                                                                                         | References Singh, Surya & Singh, Krishna & Verma, K & Singh, Jaswant & Tiwari, Naveen. (2021). A Review on Control of a Brushless DC Motor Drive. |                                                                                  |                                                                                            |                                                                                         |       |  |
|                                                                                                         |                                                                                                                                                   | 20ee1                                                                            | 1103                                                                                       |                                                                                         |       |  |

| Thar       | nk you   |  |   |  |
|------------|----------|--|---|--|
| • Queries? | ·        |  |   |  |
| Queries:   |          |  |   |  |
|            |          |  |   |  |
|            |          |  |   |  |
|            |          |  | _ |  |
|            |          |  |   |  |
|            | 20ee11Q3 |  |   |  |