String-Matching

Dr. G. P. Gupta

Outline

- · The Naive algorithm
 - How would you do it?
- · The Rabin-Karp algorithm
 - Ingenious use of primes and number theory
 - In practice optimal
- · String Matching with finite Automata
- The Knuth-Morris-Pratt algorithm
 - Skip patterns that do not match
 - This is optimal

String Matching: Applications

- · Problem arises obviously in text-editing programs
- Efficient algorithms for this problem can greatly aid the responsiveness of the text editing program
- · Other applications include:
 - Detecting plagiarism
 - Bioinformatics
 - Data Compression

String Search Task

- Given
 - A text T of length n over finite alphabet Σ:

T[1] T[n] T[n] manamanapat ternipi

- A pattern P of length m over finite alphabet Σ:

P[1] P[m]

- Output
 - All occurances of P in T

T[s+1..s+m] = P[1..m]

manamanapatternipi
Shifts pattern

Problem Definition

- String-Matching Problem:
 - Given a text string T and a pattern string P, find all valid shifts
 with which a given pattern P occurs in a given text T.

String-matching problem

Given:

- Text T[1..n]
- Pattern P[1..m], where $m \leq n$

Characters of text and pattern are drawn from a common finite alphabet Σ : $T\in \Sigma^*$ and $P\in \Sigma^*$.

Find:

All occurrences of pattern P in T, that is, all valid shifts s, where $0 \le s \le n-m$, such that

 $T[s+1\mathinner{.\,.} s+m]=P[1\mathinner{.\,.} m]$

or

 $T[s+j] = P[j], \ j=1,\ldots,m$

String Matching Algorithms

- · Naive Algorithm
 - Worst-case running time in O((n-m+1) m)
- · Rabin-Karp
 - Worst-case running time in O((n-m+1) m)
 - Better than this on average and in practice
- · Finite Automaton-Based
 - Worst-case running time in O(n + m|S|)
- · Knuth-Morris-Pratt
 - Worst-case running time in O(n+m)

Notation & Terminology

- S* = set of all finite-length strings formed using characters from alphabet S
- · Empty string: e
- |x| = length of string x
- w is a prefix of x: w x ab abcca
 w is a suffix of x: w x cca abcca
- prefix, suffix are transitive

Overlapping Suffix Lemma Lemma 32.1 (Overlapping suffix lemma) Suppose that x, y, and z are strings such that $x \equiv z$ and $y \equiv z$. If $|x| \leq |y|$, then $x \equiv y$. If $|x| \geq |y|$, then $y \equiv x$. If |x| = |y|, then x = y. Figure 32.3 A graphical proof of Lemma 32.1. We suppose that $x \equiv z$ and $y \equiv z$. The three parts of the figure illustrate the three cases of the lemma. Vertical lines connect matching regions (shown shaded) of the strings, (a) If $|x| \leq |y|$, then $x \equiv y$. (b) If $|x| \geq |y|$, then $x \equiv y$.

String Matching Algorithms Naive Algorithm

Can we do better than O(nm)? • Shifting the text string over by 1 every time can be wasteful • Example: - Suppose that the target pattern is "TAAATA" and source string is "AABCDTAAATASLKJGSSK" T[1] T[6] T[10] T[18] A A B C D T A A T A - If there is a match starting at position 6 of the text string, then position 7 can't possibly work; in fact, the next feasible starting position would be 10 in this case • This suggests that there may be ways to speed up string matching

String Matching Algorithms

Rabin-Karp

Rabin-Karp Algorithm **Coding Strings as Numbers**

- Assume each character is digit in radix-d notation (e.g. d=10)
- The string $d_n \dots d_0$ represents the number $d_n*10^n + \dots + d_1*10^1 + d_0*10^0$
- "324" = 3*10² + 2*10¹ + 4*10⁰
- Given any "alphabet" of possible "digits" (like 0...9 in the case of decimal notation), we can associate a number with a string of symbols from that alphabet
 - Let d be the total number of symbols in the alphabet
 - Order the symbols in some way, as a(0)...a(d-1)
 - Associate to each symbol a(k) the value k
 - Then view each string w[1...n] over this alphabet as corresponding to a number

Rabin-Karp Algorithm **Coding Strings as Numbers**

- Example, for the alphabet $\Sigma = \{a, b, c, d, e, f, g, h, i, j\}$, where $|\Sigma| = 10$ Interpret it as $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
 - Value of the string "acdab" would be:

Rabin-Karp Algorithm • Idea – Compute: - hash value for pattern P and - hash value for each sub-string of T of length m manamana<mark>pati</mark>pitipi 4 2 3 1 4 2 3 1 3 1 2 3 1

Rabin-Karp Algorithm Compute Hash value using Horner's Rule

• Compute

$$S_m(P) = \sum_{i=1}^{m} d^{m-i} P[i] \bmod q$$

$$S_m(P) \equiv \sum_{i=1}^m d^{m-i}P[i] \equiv d \left(\sum_{i=1}^{m-1} d^{m-i-1}P[i] \right) + P[m] \equiv dS_{m-1}(P[1..m-1]) + P[m] \pmod{q}$$

- Example
 - Then d = 10, q = 13
 Let P = 0815

 $S_4(0815) = ((((\textbf{0} \cdot 10 + \textbf{8}) \cdot 10) + \textbf{1}) \cdot 10) + \textbf{5} \text{ mod } 13 =$ $((((8 \cdot 10) + 1) \cdot 10) + 5 \mod 13 =$ $(3 \cdot 10) + 5 \mod 13 = 9$

Rabin-Karp Algorithm How to compute the hash value of the next substring in constant time?

 $S_m(T[1..m]) = 31415$ $S_m(T[2..m+1]) = 14152$

 $S_m(T[2..m+1]) \equiv d(S_m(T[1..m]) - d^{m-1}T[1]) + T[m+1] \pmod{q}$

- $T_{s+1} = 10(31415 10000 * 3) + 2 = 14152$
- Computation of hash value $S_m(T[2..m+1])$ can be performed in constant time from

Rabin-Karp Algorithm Performance Analysis

• The worst-case running time of the Rabin-Karp algorithm is O(m (n-m+1)) - Example: $P = a^m$ and $T = a^n$, since each of the [n-m+1] possible shifts is valid

- · Probabilistic analysis
- The probability of a false positive hit for a random input is 1/q
- The expected number of false positive hits is O(n/q)
 The expected run time of Rabin-Karp is O(n) + O(m (v + n/q))) if v is the number of valid shifts (hits)
- If we choose $q \geq m$ and have only a constant number of hits, then the expected time of Rabin-Karp is O(n+m).

Rabin-Karp Algorithm Review

- · Idea: Converts strings into decimal numbers
- Perform preprocessing of substrings to skip over false matches
- Worst-case running time O(n*m) because of the need to validate a match
- In practice, the Rabin-Karp algorithm runs in O(n) which turns out to be optimal

String Matching with Finite Automata

Finite Automata

A finite automaton is a quintuple $(Q, \Sigma, \delta, s, F)$:

- Q: the finite set of states
- Σ : the finite input alphabet
- δ : the "transition function" from Qx Σ to Q
- $s \in Q$: the start state
- $F \subset Q$: the set of final (accepting) states

How it works

A finite automaton accepts strings in a specific language. It begins in state q_0 and reads characters one at a time from the input string. It makes transitions (ϕ) based on these characters, and if when it reaches the end of the tape it is in one of the accept states, that string is accepted by the language.

http://www.ics.uci.edu/~eppstein/16 1/960222.html

The Suffix Function

In order to properly search for the string, the program must define a **suffix function (σ)** which checks to see how much of what it is reading matches the search string at any given moment.

 $\sigma(x) = \max\{k : P_k \sqsupset x\}$ P = abaabc $P_1 = a$ $P_2 = ab$ $P_3 = aba$ $P_4 = abaa$ $\sigma(abbaba) = aba$

http://www.cs.duke.edu/education/courses/cps130/fall98/lectures/lect14/node31.html

Example: nano

	n	a	0	<u>other</u>
empty:	n	3	ε	ε
n:	n	na	3	3
na:	nan	3	3	3
nan:	n	na	nano	3
nano:	nano	nano	nano	nano

String-Matching Automata

• For any pattern P of length m, we can define its string matching automata:

$$\begin{split} Q &= \{0,\ldots,m\} \quad \text{(states)} \\ q_0 &= 0 \quad \text{(start state)} \\ F &= \{m\} \quad \text{(accepting state)} \\ \delta(q,a) &= \sigma(P_q a) \end{split}$$

The transition function chooses the next state to maintain the invariant:

$$\phi(T_i) = \sigma(T_i)$$

After scanning in i characters, the state number is the longest prefix of P that is also a suffix of T_i .

Finite-Automaton-Matcher

The simple loop structure implies a running time for a string of length n is O(n).

However: this is only the running time for the actual string matching. It does not include the time it takes to compute the transition function.

```
FINITE-AUTOMATON-MATCHER\{T, \delta, m\}

1 n \leftarrow \text{length}[T]

2 q \leftarrow 0

3 for i \leftarrow 1 to n

4 do q \leftarrow \delta(q, T[i])

5 if q = m

6 then s \leftarrow i - m

7 print "Pattern occurs at shift" s
```

Computing the Transition Function

```
Compute-Transition-Function (P,\Sigma)

m \leftarrow \text{length}[P]

For q \leftarrow 0 to m

do for each character a \in \Sigma

do k \leftarrow \min(m+1, q+2)

repeat k \leftarrow k-1

until P_k \supset P_q a
```

return δ

This procedure computes $\delta(q,a)$ according to its definition. The loop on line 2 cycles through all the states, while the nested loop on line 3 cycles through the alphabet. Thus all state-character combinations are accounted for. Lines 4-7 set $\delta(q,a)$ to be the largest k such that $P_k \supset P_q a$.

Running Time of Compute-Transition-Function

Running Time: $O(m^3 |\Sigma|)$ Outer loop: $m |\Sigma|$

Inner loop: runs at most m+1

 $P_k \supset P_q$ a: requires up to m comparisons

References

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 32.2: The Rabin-Karp algorithm, pp.911–916.
- Karp, Richard M.; Rabin, Michael O. (March 1987). "Efficient randomized pattern-matching algorithms". IBM Journal of Research and Development 31 (2), 249-260.
- String Matching: Rabin-Karp Algorithm www.cs.utexas.edu/users/plaxton/c/337/05f/slides/StringMatching-1.pdf