# JEGYZŐKÖNYV KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

# MAG-MÁGNESES REZONANCIA VIZSGÁLATA



• Mérést végezte : Brindza Mátyás

• Mérőtársak : Kovács Benjamin, Németh Olivér

 $\bullet\,$  Mérés időpontja : 2023.04.21.

# Tartalomjegyzék

| 1. | A mérés célja                                               | 4 |
|----|-------------------------------------------------------------|---|
| 2. | A mérés elméleti háttere  2.1. A g-faktor                   | 5 |
| 3. | 2.3. A hagneses momentum mozgasa rorgo koordmatarendszerben |   |
|    | Mérési feladatok         4.1. A proton g-faktora            | 8 |
|    | 4.3. Hibaforrások                                           | 8 |

# Mérési adatok, megjegyzések

Oszcillátor : 5.671kHz Egyenáram : 1.6A

Stabilitás mérés :

9:10 - 13.7 ms9:15 - 11.2 ms

 $\mathord{\hspace{1pt}\text{--}\hspace{1pt}}\!>5$  perc alatt $2\mathrm{ms}$ elcsúszás

Elcsúszás után visszaállítjuk a frekvenciát, ami most 5.688kHz, tehát 16kHz az elcsúszás a frekvenciában.

Ezek adják meg az egész mérés pontosságát, ebből tudjuk megmondani, hogy mennyire tudjuk pontosan mérni a dolgokat.

Mivel a színusz lineáris a nulla körül, ezért ezt lineárisnak vesszük (hogy mit, nem tudom, majd kiderül).

Első mérési pont : Hall szonda :  $129.4 \mathrm{mT}$ 

Oszcillátor : 5.687 (az utolsó számjegy ingadozik 7 és 8 között)

| Áramerősség | Áramerősség tekerő | Hall szonda         | Oszcillátor          |
|-------------|--------------------|---------------------|----------------------|
| 1.366A      | 445                | $117.0 \mathrm{mT}$ | 5.5150kHz            |
| 1.186A      | 384                | $103.1 \mathrm{mT}$ | $4.457 \mathrm{kHz}$ |
| 0.994A      | 321                | $92.2 \mathrm{mT}$  | $4.055 \mathrm{kHz}$ |

## 1. A mérés célja

A mérés során a hidrogén és a fluor atommagok mágneses rezonanciájáról szerzünk tapasztalatokat. Meggyőződünk róla, hogy egy sztatikus  $B_0$  tér hatására felhasadnak az elfajult energiaszintek, és egy időben változó  $B_1(t) = B_1 \cdot \cos(\omega t)$  tér hatására fellép a rezonancia jelensége.

#### 2. A mérés elméleti háttere

## 2.1. A g-faktor

Nagyságrendi becslést, illetve intuíciót szerezhetünk a giromágneses arányról, ha megvizsgáljuk egy pontszerű töltött részecske mozgását homogén mágneses térben. Bárhogy felvehetjük a koordinátarendszert a jelenség leírására, de ezesetben a legpraktikusabb, ha a külső sztatikus tér a z tengely irányába mutat.

Tudjuk, hogy a mágneses momentum és az impulzusmomentum arányosak egymással:

$$\hat{\mu} = \gamma \hat{J} \tag{1}$$

ahol  $\gamma$ -t giromágneses aránynak szokás nevezni, amely egy részecskére jellemző mennyiség. Az m tömegű és q töltésű részecske v sebességgel körpályán kering egy B mágneses térben, eközben egy A felületet súrolva. Egy köráram mágneses momentuma definíció szerint az áram nagysága és a közbezárt felület szorzata, az impulzusmomentum pedig ismert klasszikus forgómozgás esetén :

$$\mu = I \cdot A = qv \frac{1}{2\pi r} r^2 \pi = \frac{qvr}{2} \tag{2}$$

$$J = mvr (3)$$

$$\Rightarrow \mu = \frac{q}{2m}J \Rightarrow \gamma = \frac{q}{2m} \tag{4}$$

Várhatóan a részecske tömege és töltése határozza meg, hogy adott J impulzusmomentum mellett mekkora lesz a részecske mágneses momentuma. Ez kvalitatív bár fennáll kvantumrészecskékre is, az arányossági tényező más lesz. A kvantum-részecskéknek kvantált az impulzusmomentumuk, és saját impulzumomentumuk is van. Az impulzusmomentumot  $\hbar$  egységekben adjuk meg a j kvantumszám segítségével.

$$J = \hbar \cdot i \tag{5}$$

Az impuzlusmomentum és a mágneses momentum közti arányosság kvantumos korrekciójára vezetjük be a g mennyiséget, melyet g-faktornak szokás nevezni.

$$\gamma = g \cdot \frac{q}{2m} \tag{6}$$

Elektronok és nukleonok esetén érdemes egyesíteni a konstansokat, ezt a célt szolgálja a Bohr-magneton  $(\mu_B)$  és a magmagneton  $(\mu_N)$ .

$$\mu_e = g_e \cdot \frac{e}{2m_e} J_e = g_e \mu_B j \tag{7}$$

$$\mu = g \cdot \frac{e}{2m_p} J = g\mu_N j \tag{8}$$

A magnetonok anyagi jellemzőkből állnak, a g-faktor pedig kimérhető  $\mu$  és j ismeretében. A g-faktor értéke elektronra, protonra és neutronra :

$$g_e \approx 2.002322 \tag{9}$$

$$g_p \approx 5.585486 \tag{10}$$

$$g_n \approx -3.826085 \tag{11}$$

A klasszikus esetet g=1 esetén kapjuk vissza. Kvantumos esetben ettől eltérő, de nagyságrendileg megegyező g-faktorokat mérünk.

#### 2.2. Az energiaszintek felhasadása

Egy részecsecske impulzusmomentuma  $J=\hbar j$  módon kvantált, egy adott tengelyre vett vetületének 2j+1 lehetséges értéke van. A fennálló forgásszimmetria miatt nem alaptalan feltételezés, hogy a magára hagyott rendszerben degeneráltak lehetnek az energiaszintek. Egy külső  $B_0$  mágneses tér hatására megszűnik a degeneráció, a mágneses térrel való kölcsönhatás miatt felhasadnak az energiaszintek.

$$\hat{K} = -\hat{\mu}\hat{B}_0 = -\gamma B_0 \hat{J}_z \tag{12}$$

A mágneses kvantumszám különbözteti meg a  $\hat{J}_z$  operátor sajátállapotait, a  $\hat{K}$  operátor sajátértékei pedig maguk az energiák.

$$\hat{J}_z|m> = m\hbar|m> \tag{13}$$

$$\hat{K}|m\rangle = E_m|m\rangle \tag{14}$$

Tehát az energiaszintek :

$$E_m = -\gamma B_0 \cdot (m \cdot \hbar) \tag{15}$$

Az energia arányos  $\gamma$ -val és a külső térrel, ezért a szomszédos energiaszintek közti különbség is.

$$\Delta E = |\gamma| \hbar B_0 \tag{16}$$

A felhasadt energiszintek között átmenetek hozhatók létre egy időben változó mágneses tér szuperponálásával. Perturbáljuk harmonikusan a Hamilton-operátort.

$$\hat{H}'(t) = -\hat{\mu}B_1(t) = -\hat{\mu}B_1\cos(\omega t) \tag{17}$$

Bevett módon kiszámolható az időegységenkénti átmeneti valószínűség a perturbációszámítás első rendjében.

$$W_{m \to m'} = \frac{2\pi}{\hbar} \left| \left\langle m \right| - \hat{\mu} B_1 \right| \right\rangle \left| \delta(E_{m'} - E_m - \hbar \omega) \right| \tag{18}$$

A felfelé és lefelé léptető operátorok  $\hat{J}_{\pm} = \hat{J}_x \pm \hat{J}_y$ . A  $\hat{J}_x$  és  $\hat{J}_y$  operátorok kifejezhetők a léptető operátorokkal, ezért egy |m> sajátállapotot a |m+1> és |m-1> állapotok kombinációjába viszik. A (13)-as kifejezésben már láttuk, hogy a  $\hat{J}_z$  operátor nem változtatja meg m-et. Így tehát a  $\underline{B}_1$  térnek csakis a  $\underline{B}_0$ -ra merőleges komponensei képesek átmeneteket előidézni. A perturbációszámítás első rendjében csak szomszédos állapotok között lehet átmenet, azaz  $m\to m\pm 1$ . A Dirac-delta miatt minden olyan átmetet valószínűség 0, ahol  $h\omega$  nem fedezi pontosan az  $E_{m'}-E_m$  energiakülönbséget. Az energiakülönbség a (16)-os kifejezésből ismert.

$$\hbar\omega = \Delta E = |\gamma|\hbar B_0 \tag{19}$$

Ez a kifejezés adja meg, hogy a perturbáló tér milyen frekvenciája mellett történhet átmenet az energiaszintek között, ezért rezonancia-feltételnek is szokás nevezni.

$$\omega = |\gamma| B_0 \tag{20}$$

#### 2.3. A mágneses momentum mozgása forgó koordinátarendszerben

Tudjuk, hogy bármely időpillanatban egy mágneses momentumra  $\underline{M} = \underline{\mu} \times \underline{B}$  forgatónyomaték hat, mely az impulzusmomentum idő szerinti deriváltja.

$$\frac{d\underline{J}}{dt} = \underline{\mu} \times \underline{B} \tag{21}$$

$$\frac{d(\gamma \underline{J})}{dt} = \frac{d\underline{\mu}}{dt} = \underline{\mu} \times (\gamma \underline{B}) \tag{22}$$

Egy  $\underline{A}(t)$  vektor  $\underline{\Omega}$  szögsebességgel forgó rendszerben és laboratóriumi rendszerben vett időderiváltja közti kapcsolat az alábbi módon fejezhető ki.

$$\frac{d\underline{A}(t)}{dt} = \frac{\delta\underline{A}(t)}{\delta t} \Big|_{\Omega} + \underline{\Omega} \times \underline{A}$$
 (23)

Így a mágneses momentum egy  $\Omega$  szögsebességgel forgó rendszerben felírható, mint :

$$\frac{\delta\underline{\mu}}{\delta t}\bigg|_{\underline{\Omega}} = \underline{\mu} \times (\gamma B + \underline{\Omega}) = \underline{\mu} \times \underline{B}'_{eff}$$
(24)

ahol  $\underline{B}'_{eff} = \underline{B}' + \frac{\Omega}{\gamma}$ . A forgó koordinátarendszerben mért mennyiségeket vesszővel jelöljük. Sztatikus tér esetén érdemes úgy megválasztani a forgó koordinátarendszert, hogy  $\underline{\Omega} = -\gamma \underline{B}_0$  fennálljon. Ekkor a koordinátarendszer forgása követi a mágneses momentum precesszióját a  $\underline{B}_0$  tér körül, ugyanis  $\underline{B}'_{eff} = 0$ . Ennek a forgásnak a szögsebességét a spin Larmor-frekvenciájának szokás nevezni.

$$|\omega| = \omega_L = \gamma B_0 \tag{25}$$

Kapcsoljunk be egy  $\underline{B}_1(t) = \underline{B}_1 \cos(\omega t) \perp \underline{B}_0$  harmonikus teret, mely felbontható két, ellentétes sodrású cirkulárisan polarizált komponensre. Kiderül, hogy ezek közül csak a mágneses momentummal egy irányban forgó komponensnek lesz jelentős járuléka, ezért - az 1/2-es szorzótól eltekintve - az alábbi kifejezéssel közelítjük a harmonikus teret.

$$\underline{B}_1(t) = B_1 \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix} \tag{26}$$

Ezesetben célszerűbb másképp megválasztani a koordinátarendszert, mégpedig úgy, hogy az a  $\underline{B}_1(t)$  tér forgását kövesse, azaz  $\Omega = \omega$ . A fázissal nem foglalkozunk,  $\underline{B}_1$  mindig a forgó koordinátarendszer x'-tengelye felé mutasson. Ekkor a forgó rendszerben a mágneses tér :

$$\underline{B}'_{eff} = \begin{pmatrix} B_1 \\ 0 \\ B_0 + \omega/\gamma \end{pmatrix} \tag{27}$$

Így forgó koordinátarendszerben a mágneses momentum a  $\underline{B}'_{eff}$  tér körül precesszál. Laboratóriumi rendszerben azt látjuk, hogy az eredő tér a  $B_0$  tér körül forog, és az önmagában forgó tér körül végez precessziót a mágneses momentum. Pusztán geometriai elgondolással belátható, hogy a  $\underline{B}_eff$  térnek a z-tengellyel bezárt szöge ( $\Theta$ ) konstans, illetve a kezdetben  $\underline{B}_0$  irányába mutató mágneses momentum z-tengellyel bezárt szöge 0 és  $2\Theta$  között változik. Kezdtetben z-irányba mutat a mágneses momentum, a  $\underline{B}'_{eff}$  körüli körmozgás során a legszélső eset az lesz, amikor a momentum vektora átkerül a  $\underline{B}'_{eff}$  "másik oldalára", azaz a szimmetria miatt  $2\Theta$  szöget zár be a z-tengellyel. A  $\underline{B}'_{eff}$  komponensei alapján meghatározható a  $\Theta$  szög nagysága is.

$$\tan(\Theta) = \frac{B_1}{B_0 + \omega/\gamma} \tag{28}$$

Definíció szerint  $B_1 >> B_0$ , ezért ez a tört minden esetben kicsi lesz, kivéve amikor a harmonikusan változó tér frekvenciája éppen<sup>1</sup>  $\omega_L = -\gamma B_0$ , mely Larmor-frekvenciaként ismert. Rezonanciát kereshetünk úgy is, hogy a  $B_0$ -t állandóan tartva a  $B_1(t)$  tér frekvenciáját változtatjuk, valamint úgy is, hogy a pertubáló tér frekvenciáját tartjuk állandó értéken, és a  $B_0$  teret változtatjuk.

#### 2.4. Abszorpció és Kiszélesedés

Mágneses tér bekapcsolásakor egy feles spinű részecskének két állapota lehetséges :

$$E_{\uparrow\downarrow} = \mp \frac{1}{2}\mu_0 B_0 \tag{29}$$

A felfelé, illetve a lefelé orientálódó spinek betöltöttsége Boltzmann-eloszlást követ adott T hőmérsékleten.

$$N_{\uparrow\downarrow} = e^{\pm\frac{g\mu_0 B_0}{2k_B T}} \tag{30}$$

A spinek száma külön-külön változik időben, ám az összegük állandó.

$$N_0 = N_{\uparrow}(t) + N_{\downarrow}(t) = const. \tag{31}$$

 $A B_1 \sim \sin(\omega_L t)$  tér bekapcsolása felborítja a fenti termikus egyensúlyt, mivel a tér azonos valószínűséggel engedi meg az átmenetet mindkét irányban. Mivel lecsökkent az alacsonyabb energiájú állapotok valószínűsége (illetve megnőtt a magasabb energiájú állapotok valószínűsége), miközben a rendszer "igyekszik" visszatérni a termikus egyensúlyhoz, a spinek disszipálják az elnyelt energia egy részét a környezetükbe. Ennélfogva a tér kikapcsolása után a spin-eloszlás visszatér eredeti állapotába. Az ehhez szükséges időt nevezzük spin-rács relaxációs időnek  $(T_1)$ . Amennyiben a spinek gyorsan disszipálják az energiát a  $B_1(t)$  gerjesztéshez képest, a rendszer stabl, és a gerjesztés alatt sem lesz távol a termikus eloszlástól. Túl gyenge csatolás vagy túl erős gerjesztés hatására telítés történik, így lecsökken az abszorpció. Magok esetén másodperc nagyságrendű is lehet a relaxációs idő, ezért előnyös kisebb gerjesztést használni.

<sup>&</sup>lt;sup>1</sup>A kiszélesedés jelenségéről a következő fejezetben lesz szó.

A gyakorlatban nem egy Dirac-elta írja le a  $\Theta(\omega)$  összefüggést, hanem egy véges szélességű csúcs, melynek közepe a Larmor-frekvencia. Ennek oka a homogén és az inhomogén kiszélesedésben keresendő.

Egy  $\delta t$  élettartamú gerjesztett állapotnak  $\delta \omega \approx \delta E/\hbar$  energiabizonytalansága van a Heisenberg-féle határozatlansági relációból adódóan, ezért ezen a tartományon is megfigyelhető jelentős abszorpció. Ezt hívjuk homogén kiszélesedésnek. Ez szoros kapcsolatban áll a relaxációs idővel, ugyanis  $\delta t \approx T_1$ . Az inhomogén kiszélesedés oka, hogy a spinek sosem egzaktul sztatikus és homogén teret érzékelnek. Bármely névleg homogén térnek is vannak inhomogenitásai, ám minden spin kölcsönhat magával a mintával is. Egy  $\delta B_{lok}$  lokális fluktuáció esetén  $\delta \omega = \gamma \delta B_{lok}$  kiszélesedés lép fel.

#### 3. A kísérleti elrendezés

A mérés során két különálló tekercset használunk a sztatikus  $B_0$  és a harmonikusan változó  $B_1(t)$  tér előállítására. Azt a mérési módszert valósítja meg a berendezés, mely során a  $B_0$  teret változtatjuk, erre szolgál egy harmadik, moduláló tekercs, melyet a moduláló jelgenerátor hajt meg. A  $B_0$  teret 25Hz frekvenciával, a nagyságának néhány százalékával változtatjuk. A pertubáló tér frekvenciája kézzel változtatható, de konstans.

A rezonancia esetén fellépő abszorpciót ugyanaz a tekercs méri, mely a rádiófrekvenciás gerjesztést végzi. A tekercsen végigszaladó jelek eljutnak az oszcillátorba, ahol abszopció esetén amplitúdó-csökkenést látunk. Az oszcillátor vízszintes tengelyén látjuk a homogén mágneses tér modulációját, a függőleges tengelyen pedig az abszopciót - rezonancia esetén csúcsot.

Hall-szondát használunk a mágneses té méréséhez. Egy rádiófrekvenciás antennát használunk a frekvencia mérésére, ugyanis két szinuszos jel összege lebegést mutat. Az oszcilloszkóp használható integrált módban is, ekkor 256 ciklust átlagol, ezzel a háttérzaj nagy részét kiszűrve.

Fontos megemlíteni, hogy a tekercsek esetén az áramot tartjuk kontroll alatt, ugyanis ez szabja meg a keletkező mágneses tér nagyságát. A tekercsnek van ellenállása, ennélfogva használat során melegszik, mely megváltoztatja az ellenállását is. Feszültségforrás esetén nem, vagy csak nehezen lehetne kiküszöbölni a melegedésből fakadó ellenállás-változást.

A mintatartót, mely kézzel szabályozható, úgy állítjuk be, hogy a tekercsek tengelyére essen rá.

## 4. Mérési feladatok

## 4.1. A proton g-faktora

A protonminta (vizes oldat) rezonanciáját 9 pontban mértük meg, melyekből fejenként 4-et sorsultunk ki véletlenszerűen mérőtársaimmal. Ezeket az alábbi táblázat foglalja össze.

| $I_{hall}[A]$ | $I_{knob}$ | $B_{hall}[\mathrm{mT}]$ | $\nu_L[MHz]$ |
|---------------|------------|-------------------------|--------------|
| 1.186         | 384        | 103.1                   | 4.547        |
| 1.715         | 557        | 139.1                   | 6.094        |
| 2.243         | 728        | 177.4                   | 7.768        |
| 2.415         | 785        | 189.5                   | 8.309        |

1.táblázat. A  $^{60}\mathrm{Co}$ izotóp esetén mért csúcspárokra illesztett görbe paraméterei

A frekvencia és a mágneses tér közti a (20) összegüggést követi, illetve a g-faktor a (6) kifejezés segítségével számolható ki a giromágneses arányból.

$$\omega_L = \frac{\nu_L}{2\pi} = \frac{g}{2\pi} \cdot \frac{q_p}{2m_p} \cdot B_0 \tag{32}$$

$$m_p = 1.67262192 \cdot 10^{-27} kg \quad q_p = 1.6022 \cdot 10^{-19} C$$
 (33)

Ezek ismeretében az  $\omega_L(B_0)$  adatsorra egyenes illeszthető, melynek eredménye az alábbi ábrán látható.

Az illesztett paraméter :

$$g = 5.752 \pm 0.007 \tag{34}$$

A névleges érték  $g_p = 5.5856$ , mely nem esik bele (ebbe) a hibatartományba, ám az eltérés csupán  $\approx 3\%$ .



1. ábra. A proton rezonanciájának térfüggésére illesztett egyenes

#### 4.2. A fluor és a proton rezonanciájának összehasonlítása

A méréshez egy teflon és egy víz mintát használunk. A mérés menete a következő.

- Megkeressük a víz rezonancia frekvenciáját az áram változtatásával.
- A vízmintát kicseréljük a teflon mintára, majd ismét növeljük a mágneses teret, amíg rezonanciát nem tapasztalunk, melynek frekvenciáját megmérjük.
- Helyezzük újra a vízmintát a mintatartóba, majd a mágneses tér változtatása nélkül megkeressük a rezonancia frekvenciáját.

Ezt ismételjük 4 mérési pontban. Amennyiben a tér nem változott sem időben, sem térben, az alábbi összefüggés lesz igaz minden mérési pontra.

$$\frac{\nu_F}{\nu_p} = \frac{\omega_F}{\omega_p} = \frac{\frac{1}{\hbar} g_F \mu_N B_0}{\frac{1}{\hbar} g_p \mu_N B_0} = \frac{g_F}{g_p}$$
(35)

A mérés eredményét az alábbi táblázat foglalja össze.

| $\nu_F[MHz]$ | 5.724 | 6.547  | 7.246  | 7.795  |
|--------------|-------|--------|--------|--------|
| $\nu_p[MHz]$ | 6.084 | 6.950  | 7.700  | 5.095  |
| $g_F/g_p$    | 0.941 | 0.9420 | 0.9410 | 1.5300 |

2. táblázat. A fluor és a proton rezonanciájának összehasonlítása, g-faktoruk aránya

Az utolsó mérési pont minden bizonnyal hibás, ezért nem vettem figyelembe. Ennek a mérési módszernek az előnye, hogy az eredményben jó közelítéssel kiküszöbölhető a mágneses tér reprodukciós hibája és az esetleges indukcióvonal-torzulások is megegyeznek a frekvencia-párok esetén, illetve a hőtágulásból származó szisztematikus hiba is.

Így a fluor g-faktora, mely névleg 5-10%-kal kisebb, mint a protoné, beleesik ebbe a hibatartományba.

$$g_F = 5.4146 \pm 0.0007 \tag{36}$$

#### 4.3. Hibaforrások

Hall-szonda segítségével mértünk reprodukálhatóságot is egy adott, állnadó I=1.282A mellett.

| $B_{hall}[mT] \mid 11$ | $6.4 \mid 115.2$ | 114.6 | 116.4 | 116.1 |
|------------------------|------------------|-------|-------|-------|
|------------------------|------------------|-------|-------|-------|

3. táblázat. Reprodukálhatóság Hall-szondával

Így kiszámolható az adatsor szórása, mely a mágneses tér hibáját adja meg.

$$\Delta B = 0.5mT \tag{37}$$

Ez alulbecslésnek bizonyul a névleges 1-2%-hoz képest, ezért az utóbbit használjuk.

Az oszcilloszkópon a csúcsok leolvasását 1ms pontosan tehetjük meg, ám 5 perc alatt 2.5ms eltérést észleltünk, mely 5.687MHz - 5.671MHz = 16kHz elcsúszást jelent. Így a frekvencia hibája megadható, mint :

$$\Delta \nu = \frac{16kHz}{2.5} = 6.4kHz \tag{38}$$

Ez lényegesen nagyobb, mint az antenna 1kHz pontossága, ezért erre a hibára hagyatkozunk.

A mérés során melegedő tekercsek ellenállás áramforrással van kiküszöbölve, ám a hőtágulás következtében megváltozik a tekercsek térfogata. Továbbá megemlítendő, hogy Föld-mágneses tere nem befolyásolja a mérést, ugyanis ez a  $\mu T$  tartományban van, mely lényegesen kisebb a mért mennyiségeknél és a hibájuknál.

Így a g-faktor hibája :

$$\left(\frac{\Delta g_p}{g_p}\right)^2 = \left(\frac{\Delta \omega_L}{\omega_L}\right)^2 + \left(\frac{\Delta B_0}{B_0}\right)^2 \tag{39}$$

$$g_F = 5.415 \pm 0.115 \tag{40}$$

Illetve hasonlóan a  $g_F/g_p$  arány hibája :

$$\Delta \frac{g_F}{g_p} = 0.941 \pm 0.002 \tag{41}$$