CSC 369 Notes

1. Secondary Storage Devices

•

2. Disk Components

• Parts

- Platter:
 - * Data can be stored in both upper and lower parts of the platter
- Cyliner:
 - * Is a set of tracks that can be read without moving the arm
- Sector:
 - * Size of disk block is multiple of sectors
- Disk arm touching surface \rightarrow disk surface crash

3. Disk Performance

IMPORTANT We should know the bulk part time of how this works

- Seek:
 - Is the time it takes to move the disk arm to correct cylinder
 - Depends on how fast disk arm can move
 - Typical time: 1-15ms, depending on distance (avg 5-6 ms)
 - Improves very slowly (7 10% per year)

CSC 369 Notes

• Rotation:

- Is the time it takes to rotate under the head to get to correct sector
- Depends on rotation rate of disk
- Average latency of $\frac{1}{2}$ rotation

• Transfer:

- Is the time it takes to transfer data from surface to disk controller, electronics and sending it back to host
- Depends on density
- $-\sim 100 \mathrm{MB/s}$, average sector transfer time of $\sim 5 \mu s$
- Improves rapidly ($\sim 40\%$ per year)

4. Traditional Service Time Component

- OS tries to minimize the cost of rotational latency, transfer time, and seek time
- Improvement attention especially on seek time and rotation latency

5. Some Hardware Optimizations

• Track Skew

- Has to do with numbering on tracks

CSC 369 Notes

- Is to reduce rotational latency

• Zones

- Is to make sure data is stored with same density
 - Is done to maximize the capacity of hard drive
 - Outer tracks \rightarrow holds more sectors

• Cache

- Is also called Track Buffer
- Is a small memory chip embedded in hard drive $(8-16\mathrm{MB})$
- Is aware of disk geometry
- May cache whole track
- Boosts future reads on the same track

6. Disk and the OS

•