Colégio BBBBB andeirantes BBBB RRRR

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 162006		
2.0	Matemática - Geometria		1.a Série	М	23/06/2016			
Questões	Testes	Páginas	Professor(es)					
10		9	Fábio Cáceres/Oliveira/Rosana Alves					
Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.								
Aluno(a)				Turma	N.o			
Nota Professor			Assinatura do Professor					

Instruções

- 1. A prova pode ser resolvida a lápis. Respostas finais somente com tinta azul ou preta.
- 2. Resposta sem resolução não será considerada.
- 3. Únicos materiais permitidos: caneta, lapiseira, régua, borracha e compasso.

	30°	45°	60°	120°	135°	150°
seno	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2
cosseno	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
tangente	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$

a.

Resposta:

b.

Resposta:

C.

Resposta:

d.

02. (valor: 1,0) Calcule, em cada item, o raio da circunferência mostrada.

Rascunho

a.

Resposta:

b. ABCD é um trapézio retângulo de bases 20 cm e 5 cm.

03.

(valor: 1,0) Calcule o raio da circunferência abaixo, dado que AB = AC = $12\sqrt{5}\,$ cm e BC = 24 cm

Resposta:		
nesposia.		

04. (valor: 1,0) A figura mostra duas semicircunferências de raios iguais a 5 cm e uma semicircunferência de diâmetro \overline{AB} . Calcule a medida do raio da **circunferência** mostrada.

P 162006

p 5

Rascunho

05.

a. (valor: 0,5) As retas r, s, t e u são paralelas. Calcule x e y.

Resposta:

b. (valor: 0,5) No triângulo ABC mostrado abaixo, \overline{BI} e \overline{CI} são bissetrizes. Determine a razão $\frac{AI}{IS}$, sabendo que AB = 8 cm, AC = 12 cm e BC = 16 cm.

06. Um observador vê, do ponto A, o topo de um edifício, sob um ângulo de 30° em relação à horizontal. Após percorrer 36 m em direção ao edifício, passa visualizar, do ponto B, o mesmo topo, sob um ângulo de 60°.

Desprezando-se a altura do observador, pede-se:

a. (valor: 0,5) completar a figura e calcular a distância do ponto B até o edifício.

Resposta:

b. (valor: 0,5) calcular a altura do edifício.

07. (valor: 1,0) O triângulo ABC é retângulo em A e $\overline{\text{CS}}$ é bissetriz do ângulo externo do vértice C. Calcule as medidas $\overline{\text{AC}}$ e $\overline{\text{BC}}$.

Resposta:

08. Na figura, $\overline{\rm AS}$ é bissetriz do ângulo BÂC. Calcule:

c. (valor: 0,5) a medida AS.

a. (valor: 0,25) a medida BS.

b. (valor: 0,25) $\cos \alpha$

Resposta: a. _____, b. ____, c. ____

09. (valor: 1,0) A figura mostra duas circunferências de centros ${\bf 0}$ e ${\bf P}$ tangenciando uma semicircunferência de centro ${\bf 0}$. Sabe-se, além disso, que AB é diâmetro, S e T são pontos de tangência, QS=5 cm, QT=15 cm e $OP=4\sqrt{26}$ cm. Calcule o raio da semicircunferência.

Rascunho

10.

Rascunho

a. (valor: 0,25) A circunferência, inscrita no triângulo ABC, mostrada abaixo tem raio r. Mostre que: $r = \frac{AB + AC - BC}{2}$

b. (valor: 0,75) Calcule o valor da soma $r_1+r_2+r_3+r_4$, sabendo que o perímetro do pentágono ABCDE é $50~\rm cm$ e EF $=15~\rm cm$.

P 162006G 1.a Série Matemática - Geometria Fábio Cáceres/Oliveira/Rosana Alves 23/06/2016

Colégio BBBB Bandeirantes

01. (valor: 1,0) Calcule x em cada item.

a.

Por Pitágoras:

$$(x+5)^2 = 5^2 + 12^2$$

 $(x+5)^2 = 169$
 $x+5=13$ ou $x+5=-13$ (não convém)
 $x=8$

Resposta: 8 cm

b.

tangente de $60^{\circ} = \frac{\text{cateto oposto a } 60^{\circ}}{\text{cateto adjacente a } 60^{\circ}}$ $\sqrt{3} = \frac{x + 4\sqrt{3}}{5} \Rightarrow x = \sqrt{3}$

$$\sqrt{3} = \frac{x + 4\sqrt{3}}{5} \Rightarrow x = \sqrt{3}$$

Resposta: $\sqrt{3}$ cm

C.

Pelo teorema da bissetriz externa: $\frac{x}{15} = \frac{3}{9} \Rightarrow x = 5$

Resposta: 5 cm

d.

Pela lei dos senos:

$$\frac{12}{\text{sen }150^{\circ}} = 2x \Rightarrow 12 = 2 \cdot \frac{1}{2} \cdot x \Rightarrow x = 12$$

Resposta: 12 cm

02. (valor: 1,0) Calcule, em cada item, o raio da circunferência mostrada.

a.

Por Pitágoras:

$$x^2 + 35^2 = 37^2 \Rightarrow x = 12$$

De acordo com as medidas indicadas:

$$12 - r + 35 - r = 37$$

 $r = 5$

Resposta: 5 cm

b. ABCD é um trapézio retângulo de bases 20 cm e 5 cm.

$$(1) BC + AD = AB + CD$$

$$\begin{cases} (2) & (BC)^2 = (CE)^2 + (BE)^2 \end{cases}$$

$$\begin{cases} x + 2R = 20 + 5 \\ x^2 = (2R)^2 + 15^2 \end{cases}$$

$$|x^2 = (2R)^2 + 15$$

$$\begin{cases} x = 25 - 2R \\ x^2 = 4R^2 + 15^2 \end{cases}$$

Por substituição: $(25-2R)^2 = 4R^2 + 15^2 \Rightarrow$

$$\Rightarrow 25^2 - 100R + 4R^2 = 4R^2 + 15^2 \Rightarrow R = 4$$

Resposta: 4 cm

03. (valor: 1,0) Calcule o raio da circunferência abaixo, dado que $AB = AC = 12\sqrt{5}$ cm e BC = 24 cm

Por Pitágoras no ΔAMC:

$$h^2 + 12^2 = (12\sqrt{5})^2 \Rightarrow h = 24$$

(2) Por Pitágoras no ΔOMC:

$$(h - R)^2 + 12^2 = R^2$$

$$(24 - R)^2 + 12^2 = R^2$$

$$24^2 - 48R + R^2 + 12^2 = R^2$$

$$\frac{24 \cdot 24}{48} - \frac{48R}{48} + \frac{12 \cdot 12}{48} = \frac{0}{48} \Rightarrow R = 15$$

Resposta: 15 cm

04. (valor: 1,0) A figura mostra duas semicircunferências de raios iguais a 5 cm e uma semicircunferência de diâmetro \overline{AB} . Calcule a medida do raio da **circunferência** mostrada.

Por Pitágoras no triângulo destacado: $(2x-5)^2 + x^2 = (x+5)^2 \Rightarrow 4x^2 - 30x = 0 \Rightarrow 2x (2x-15) = 0 \Rightarrow x = 0$ (não convém) ou x = 7,5

Resposta: x = 7.5 cm

05.

a. (valor: 0,5) As retas r, s, t e u são paralelas. Calcule x e y.

Aplicando o teorema de Tales:

- $(1) \qquad \frac{x}{10} = \frac{3y}{15} \Rightarrow x = 2y$
- (2) $\frac{y+1}{10} = \frac{x}{15}$

$$\frac{y+1}{10} = \frac{2y}{15} \Rightarrow y = 3$$

Logo,
$$x = 6$$

Resposta: x = 6 cm, y = 3 cm

b. (valor: 0,5) No triângulo ABC mostrado abaixo, \overline{BI} e \overline{CI} são bissetrizes. Determine a razão $\frac{AI}{IS}$, sabendo que AB = 8 cm, AC = 12 cm e BC = 16 cm.

Aplicando o teorema da bissetriz nos triângulos ABS e ACS, temos:

$$\frac{8}{x} = \frac{a}{b} e \frac{12}{y} = \frac{a}{b}$$

Portanto:
$$\frac{8}{x} = \frac{12}{y} \Rightarrow 3x - 2y = 0$$

$$\operatorname{Mas} x + y = \operatorname{AB} \Rightarrow x + y = 16$$

Resolvendo este sistema temos
$$x = \frac{32}{5}$$

Logo,
$$\frac{AI}{IS} = \frac{a}{b} = \frac{8}{x} = \frac{8}{\frac{32}{5}} = \frac{40}{32} = \frac{5}{4}$$

Resposta: $\frac{5}{4}$

06. Um observador vê, do ponto A, o topo de um edifício, sob um ângulo de 30° em relação à horizontal. Após percorrer 36 m em direção ao edifício, passa visualizar, do ponto B, o mesmo topo, sob um ângulo de 60°.

Desprezando-se a altura do observador, pede-se:

a. (valor: 0,5) completar a figura e calcular a distância do ponto B até o edifício.

De acordo com as medidas fornecidas, tem-se os ângulos de 120° e 30° no triângulo ABD. Logo, esse triângulo é isósceles e, portnato, BD = 36.

No triângulo BCD:
$$\frac{x}{36} = \cos 60^{\circ} \Rightarrow \frac{x}{36} = \frac{1}{2} \Rightarrow x = 18$$

Resposta: 18 m

b. (valor: 0,5) calcular a altura do edifício.

No triângulo BCD:
$$\frac{h}{36} = \text{sen } 60^\circ \Rightarrow \frac{h}{36} = \frac{\sqrt{3}}{2} \Rightarrow h = 18\sqrt{3}$$

Resposta: $18\sqrt{3}$ m

07. (valor: 1,0) O triângulo ABC é retângulo em A e \overline{CS} é bissetriz do ângulo externo do vértice C. Calcule as medidas \overline{AC} e \overline{BC} .

T.B.E.:
$$\frac{x}{39} = \frac{y}{15} \Rightarrow x = \frac{13y}{5}$$

Por Pitágoras: $x^2 = y^2 + 24^2$
Por substituição: $\left(\frac{13y}{5}\right)^2 = y^2 + 24^2$

Por substituição:
$$\left(\frac{13y}{5}\right)^2 = y^2 + 24^2 \Rightarrow$$

$$\Rightarrow \frac{169y^2}{25} = y^2 + 24^2 \Rightarrow 169y^2 - 25y^2 = 25 \cdot 24^2 \Rightarrow$$

$$\Rightarrow 144y^2 = 25 \cdot 24^2 \Rightarrow 12y = 5 \cdot 24 \Rightarrow y = 10$$

$$\Rightarrow x = 26$$

Resposta: x = 26 cm, y = 10 cm

08. Na figura, $\overline{\rm AS}$ é bissetriz do ângulo BÂC. Calcule:

Resposta: a. 2 cm, b. $\frac{1}{8}$, c. $3\sqrt{2}$ cm

a. (valor: 0,25) a medida BS.

T.B.I.:
$$\frac{4}{x} = \frac{6}{5-x} \Rightarrow x = 2$$

b. (valor: 0,25) $\cos \alpha$

$$6^{2} = 4^{2} + 5^{2} - 2 \cdot 4 \cdot 5 \cdot \cos\alpha \Rightarrow$$

$$40 \cdot \cos\alpha = 16 + 25 - 36 \Rightarrow 40 \cdot \cos\alpha = 5 \Rightarrow \cos\alpha = \frac{1}{8}$$

c. (valor: 0,5) a medida AS.

$$(AS)^2 = 4^2 + 2^2 - 2 \cdot 4 \cdot 2 \cdot \cos\alpha \Rightarrow$$

 $(AS)^2 = 16 + 4 - 2 \cdot 4 \cdot 2 \cdot \frac{1}{8} \Rightarrow (AS)^2 = 18 \Rightarrow AS = 3\sqrt{2}$

09. (valor: 1,0) A figura mostra duas circunferências de centros \mathbf{O} e \mathbf{P} tangenciando uma semicircunferência de centro \mathbf{Q} . Sabe-se, além disso, que AB é diâmetro, S e T são pontos de tangência, QS = 5 cm, QT = 15 cm e $OP = 4\sqrt{26}$ cm. Calcule o raio da semicircunferência.

Sejam r e R os raios das circunferências e x o raio da semicircunferência. Temos:

- (1) Pitágoras no $\triangle POC$: $(R-r)^2 + 20^2 = (4\sqrt{26})^2 \Rightarrow R-r = 4$
- (2) Pitágoras no $\triangle PQT$: $(x-r)^2 = r^2 + 15^2 \Rightarrow x^2 2xr = 225$
- (3) Pitágoras no $\triangle SOQ$: $(x R)^2 = R^2 + 5^2 \Rightarrow x^2 2xR = 25$

Subtraindo membro a membro as duas últimas equações, temos:

$$-2xr + 2xR = 225 - 25 \Rightarrow 2x (R - r) = 200$$
 (4)

Substituindo (1) em (4): $2x \cdot 4 = 200 \Rightarrow x = 25$

Resposta: 25 cm

a. (valor: 0,25) A circunferência, inscrita no triângulo ABC, mostrada abaixo tem raio r. Mostre que:

$$r = \frac{AB + AC - BC}{2}$$

Sejam
$$AB = x$$
, $AC = y$ e $BC = z$

De acordo com as medidas indicadas:

$$x-r+y-r=z \Rightarrow 2r=x+y-z$$

$$Logo, r = \frac{AB + AC - BC}{2}$$

b. (valor: 0,75) Calcule o valor da soma $r_1+r_2+r_3+r_4$, sabendo que o perímetro do pentágono ABCDE é 50 cm e EF = 15 cm.

Usando o resultado do item anterior:

$$2r_1 = AB + AF - BF$$

$$2r_2 = BC + BF - CF$$

$$2r_3 = CD + CF - DF$$

$$2r_4 = DE + DF - 15$$

Portanto:
$$2 (r_1 + r_2 + r_3 + r_4) = (AB + BC + CD + DE + AF) - 15 \Rightarrow$$

 $\Rightarrow 2 (r_1 + r_2 + r_3 + r_4) = (50 - 15) - 15 \Rightarrow r_1 + r_2 + r_3 + r_4 = 10$

Resposta: 10 cm