Mecânica Analítica

2020-2021

Série 3

Responsável: Hugo Terças

Nesta série, concluímos o estudo dos multiplicadores de Lagrange e iniciamos os potenciais centrais

** **Problema 1.** Partindo do princípio de Hamilton, mostre que para $L = L(q_i, \dot{q}_i, \ddot{q}_i, t)$, as equações de Euler-Lagrange se escrevem¹

$$\frac{\partial L}{\partial q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} + \frac{d^2}{dt^2} \frac{\partial L}{\partial \ddot{q}_i} = 0.$$

Usando a definição $S = \int_{t_a}^{t_b} L(q_i, \dot{q}_i, \ddot{q}_i, t) dt$, aplicamos a condição de estacionariedade δS ,

$$\delta S = 0 \Leftrightarrow \int_{t_a}^{t_b} \delta L(q_i, \dot{q}_i, \ddot{q}_i, t) dt = 0$$

$$\Leftrightarrow \int_{t_a}^{t_b} \left(\frac{\partial L}{\partial q_i} \delta q_i + \underbrace{\frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i}_{\mathbf{A}} + \underbrace{\frac{\partial L}{\partial \ddot{q}_i} \delta \ddot{q}_i}_{\mathbf{B}} \right) dt = 0.$$

Integramos o segundo e o terceiro termos por partes para obter

$$\mathbf{A}: \qquad \int_{t_a}^{t_b} \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i \ dt = \left[\frac{\partial L}{\partial \dot{q}_i} \delta q_i \right]_{t_a}^{t_b} - \int_{t_a}^{t_b} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \delta q_i \right) dt,$$

$$\mathbf{B}: \qquad \int_{t_a}^{t_b} \frac{\partial L}{\partial \ddot{q}_i} \delta \ddot{q}_i \ dt = \left[\frac{\partial L}{\partial \ddot{q}_i} \delta \dot{q}_i \right]_{t_a}^{t_b} - \int_{t_a}^{t_b} \frac{d}{dt} \left(\frac{\partial L}{\partial \ddot{q}_i} \delta \dot{q}_i \right) dt = - \left[\frac{\partial L}{\partial \ddot{q}_i} \delta q_i \right]_{t_a}^{t_b} + \int_{t_a}^{t_b} \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial \ddot{q}_i} \delta q_i \right) dt$$

Finalmente, substituindo na condição de estacionaridade, podemos escrever

$$\delta S = 0 \Leftrightarrow \int_{t_a}^{t_b} \left[\frac{\partial L}{\partial q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} + \frac{d^2}{dt^2} \frac{\partial L}{\partial \ddot{q}_i} \right] \delta q_i dt = 0.$$

Como as variações δq_i são infinitesimais e independentes, a única forma da derivada variacional da acção cancelar univocamente é impondo a equação de Euler-Lagrange descrita no enunciado.

¹Esta forma das equações de Euler-Lagrange não são uma mera formalidade. Na verdade, elas são bastante recorrentes em teoria de campo.

\star Problema 2. Forças de constrangimento na calote esférica.

Considere uma calote esférica de raio R. Do seu topo, uma partícula pontual de massa m parte, do repouso, podendo deslizar, sem atrito, até a abandonar.

a) Identifique os graus de liberdade do sistema e obtenha o respectivo Lagrangeano.

1 grau de liberdade efectivo: 2 graus de liberdade, (r,θ) , -1 ligação, (r=R). A energia cinética é $T=\frac{m}{2}R^2\dot{\theta}^2$ e $V=mgR\cos\theta$, pelo que se tem

$$L(\theta, \dot{\theta}) = \frac{1}{2} mR^2 \dot{\theta}^2 - mgR \cos \theta.$$

b) Escreva as equações do movimento.

Só temos uma equação do movimento,

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} = 0$$

$$\Leftrightarrow \ddot{\theta} - \frac{g}{R}\sin\theta = 0.$$

c) Assuma que a partícula e a calote interagem entre si através de um potencial $V(\mathbf{r})$. Identifique a forma desse potencial e obtenha a força de constrangimento. Para isso, promova a coordenada radial (constrangida) a grau de liberdade e imponha a restrição *a posteriori*. Interprete fisicamente.

Consideremos o novo Lagrangeano, onde $R \to r$ é promovido a grau de liberdade.

$$L(r, \dot{r}, \theta, \dot{\theta}) = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2\right) - mgr\cos\theta - V(r).$$

Agora temos duas equações de Euler-Lagrange,

$$r: \qquad \frac{d}{dt}\frac{\partial L}{\partial \dot{r}} - \frac{\partial L}{\partial r} = 0$$

$$\Leftrightarrow m\ddot{r} - mr\dot{\theta}^2 + mg\cos\theta + \frac{\partial V}{\partial r} = 0.$$

Segundo θ ,

$$\theta: \qquad mr^2\ddot{\theta} - mgr\sin\theta = 0.$$

Impondo a restrição, r = R, de onde resulta $\dot{r} = \ddot{r} = 0$, obtemos

$$Q_r = -\frac{\partial V}{\partial r} = mg\cos\theta - mR\dot{\theta}^2,$$

o que corresponde à força de restrição que mantém a partícula sobre a calote. Repare que o mesmo resultado seria obtido caso usasse o método dos multiplicadores de Lagrange, onde $Q_r^{\lambda} = \lambda \partial_r f$, com f(r) = R - r, designaria a força generalizada.

2

d) Determine a altura crítica h_c a que a partícula abandona a calote.

A condição de abandono da calote é $Q_r = 0$, o que fornece a condição $\cos \theta_c = (R/g)\dot{\theta}_c^2$. Para obtermos o valor de $\dot{\theta}_c$, multiplicamos a equação do movimento para θ por $\dot{\theta}$ para obter

$$\frac{1}{2}\dot{\theta}^2 + \frac{g}{R}\cos\theta = c,$$

onde c é uma constante. Se a massa partir do repouso, podemos então dizer que c=g/R, pelo que

$$\dot{\theta}_c^2 = \frac{2g}{R}(1 - \cos\theta_c).$$

Juntando o resultado das duas equações, obtemos, finalmente,

$$\cos \theta_c = \frac{2}{3} \Rightarrow \theta_c \simeq 47.9.$$

*** Problema 3. O poço de Evel Knivel. ². Evel Knivel foi um motociclista americano que ficou famoso pelas suas proezas acrobáticas. Foi considerado um dos mais aclamados duplos do cinema americano entre as décadas de 70 e 80, tendo feito mais de 75 saltos sobre motociclos e somado mais de 433 fracturas ósseas. Numa das suas proezas, Evel punha-se à prova no conhecido poço da morte.

Considere que Evel e a sua motoreta (massa total m) circulam na superfície de um parabolóide, obtido por revolução em torno do eixo zz, e de abertura a.

a) Mostre que o Lagrangeano do sistema se pode escrever como

$$L = \frac{1}{2}m(\dot{\rho}^2 + \rho^2\dot{\varphi}^2 + \dot{z}^2) - mgz,$$

onde ρ é a distância de um ponto do parabolóide ao eixo zz e φ o ângulo polar.

Usando coordenadas cilíndricas (ρ, φ, z) , temos

$$T = \frac{1}{2} m \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) = \frac{1}{2} m \left(\dot{\rho}^2 + \rho^2 \dot{\varphi}^2 + \dot{z}^2 \right).$$

O potencial é simplesmente V=mgz. Assim, $L(\rho,\dot{\rho},\varphi,\dot{\varphi},z,\dot{z})=T-V$ reproduz o Lagrangeano pedido. Note que neste ponto ainda não introduzimos a equação de ligação $f(\rho,z)$.

b) Como sabe, as equações de Euler-Lagrange só são válidas para coordenadas generalizadas independentes. Para as obter, temos de eliminar algumas coordenadas escrevendo as equações de ligação. Obtenha essa(s) equação(ões).

Ora, como Evel se desloca à superfície de um parabolóide de revolução de abertura a $(az = \rho^2)$, podemos usar a equação de ligação $f(\rho, z) = az - \rho^2 = 0$ para eliminar um

²Podia ser o poço da morte, mas, felizmente para Evel, não foi o caso.

dos graus de liberdade. Eliminemos z. Assim, o Lagrangeano vem

$$L(\varphi,\dot{\varphi},\rho,\dot{\rho}) = \frac{1}{2}m\left[\rho^2\dot{\varphi}^2 + \left(1 + \frac{4\rho^2}{a^2}\right)\dot{\rho}^2\right] - \frac{m}{a}g\rho^2.$$

c) Use o método dos multiplicadores de Lagrange para este problema. Mostre que, para velocidades angulares constantes, $\dot{\varphi} = \omega_0$, se tem

$$\lambda = -\frac{1}{2}m\omega_0^2.$$

Qual o seu significado físico?

Promovamos ρ a grau de liberdade. Para tal, voltemos ao Lagrangeano da alínea a), com o multiplicador de Lagrange associado à ligação

$$L^{\lambda} = \frac{1}{2}m\left(\dot{\rho}^2 + \rho^2\dot{\varphi}^2 + \dot{z}^2\right) - mgz + \lambda f(\rho, z).$$

Como a restrição envolve as coordenadas ρ e z, basta-nos escrever as suas equações correspondentes,

$$\begin{split} \rho: & \frac{d}{dt} \frac{\partial L^{\lambda}}{\partial \dot{\rho}} - \frac{\partial L^{\lambda}}{\partial \rho} = 0 \\ \Leftrightarrow m \ddot{\rho} - m \rho \dot{\varphi}^2 - \underbrace{\lambda}_{Q_{\dot{\rho}}^{\lambda}}^{\partial f} = 0, \\ z: & \frac{d}{dt} \frac{\partial L^{\lambda}}{\partial \dot{z}} - \frac{\partial L^{\lambda}}{\partial z} = 0 \\ \Leftrightarrow m \ddot{z} + m g - \underbrace{\lambda}_{Q_{\dot{\lambda}}^{\lambda}}^{\partial f} = 0. \end{split}$$

Para o caso da órbita circular $\ddot{z} = \ddot{\rho} = 0$ e $\dot{\varphi} = \omega_0$, as eqs. equação dizem-nos que $\omega_0 = \sqrt{2g/a}$ e $\lambda = -m\omega_0^2/2 = -mg/a$. As componentes da força generalizada de constrangimento, portanto, são

$$Q_{\rho}^{\lambda} = \lambda \left. \frac{\partial f}{\partial \rho} \right|_{\rho = \rho_0} = m\omega_0^2 \rho_0, \quad Q_z^{\lambda} = \lambda \left. \frac{\partial f}{\partial z} \right|_{\rho = z_0} = -\frac{1}{2} ma\omega_0^2, \quad Q_{\varphi}^{\lambda} = 0.$$

Repare que os sinais estão trocados, se compararmos com o que esperaríamos para as componentes das forças à la Newton. Isto pode ser corrigido escolhendo $-\lambda$ no Lagrangeano.

d) Vamos estudar quão estável é o movimento de Evel. Para tal, consideremos perturbações nas coordenadas do tipo $\rho = \rho_0 + \delta \rho$, $z = z_0 + \delta z$ e $\dot{\varphi} = \omega_0 + \delta \dot{\varphi}$. Escreva as equações de Euler-Lagrange em primeira ordem nas perturbações e mostre que Evel está limitado (sorte dele!) a pequenas oscilações de frequência angular

4

$$\Omega = \frac{2\omega_0}{\sqrt{1 + \frac{2\omega_0^2 \rho_0^2}{aq}}}.$$

Há duas maneiras de resolvermos este ponto: ou usamos os três graus de liberdade e juntamos as forças generalizadas Q_z^{λ} , Q_{ρ}^{λ} e Q_{φ}^{λ} (e, nesse caso, introduzimos perturbações nos multiplicadores de Lagrange, $\lambda = \lambda_0 + \delta \lambda$), ou introduzimos a ligação à priori e usamos o Lagrangeano da alínea b). Por uma questão de simplicidade, seguiremos esta última via. Considerando o Lagrangeano da alínea b), as equações do movimento são

$$\rho: \qquad \rho \left(a^2 \dot{\varphi}^2 - 4 \dot{\rho}^2 - 2ag \right) - \ddot{\rho} \left(a^2 + 4\rho^2 \right) = 0,$$

$$\varphi: \frac{d}{dt} (m\rho^2 \dot{\varphi}) = 0 \Rightarrow \ell_{\varphi} = m\rho^2 \dot{\varphi} = c.$$

Retiramos c da condição de equilíbrio, $c = m\rho_0^2\omega_0$. A conservação do momento angular permite-nos eliminar $\dot{\varphi}$ na equação radial,

$$\rho \left(4\dot{\rho}^2 + 2ag\right) - a^2 \frac{\ell_{\varphi}^2}{m^2 \rho^3} + \ddot{\rho} \left(a^2 + 4\rho^2\right) = 0.$$

Introduzindo a perturbação $\rho = \rho_0 + \delta \rho \ (\dot{\rho} = \delta \dot{\rho})$, linearizamos a equação do movimento para obter

$$\underbrace{-a^2\frac{\ell_{\varphi}^2}{m^2\rho_0^3} + 2ag\rho_0}_{=0 \text{ (equil.)}} + \delta\rho\left(2ag + 3a^2\frac{\ell_{\varphi}^2}{m^2\rho_0^4}\right) + \delta\ddot{\rho}\left(a^2 + 4\rho_0^2\right) + \mathcal{O}(\delta\rho^2) = 0.$$

Simplificamos um pouco, fazendo $\ell_{\varphi} = m\rho^2\omega_0$ e dividindo tudo por a^2 , para finalmente obter

$$\delta \ddot{\rho} + \underbrace{\frac{4\omega_0^2}{1 + 4\rho_0^2/a^2}}_{\Omega^2} \delta \rho = 0,$$

o que corresponde a um movimento harmónico de frequência angular Ω (uma manipulação final é necessária envolvendo a relação $\omega_0^2=2g/a$ para obtermos o resultado na mesma forma que está no enunciado, mas não é necessário).

- ** Problema 4. O pêndulo móvel. Considere um pêndulo simples, composto por uma massa m suspensa numa haste indeformável de comprimento ℓ e de massa desprezável, cujo ponto de suporte é uma massa M que se pode deslocar horizontalmente.
- a) Escolha θ (o ângulo que o pêndulo faz com a vertical) e X (a posição horizontal da massa M em relação à origem) como coordenadas generalizadas. Escreva um Lagrangeano simpático para o sistema.

Sejam $(X + \ell \sin \theta, -\ell \cos \theta)$ e (X, 0) as coordenadas das massas m e M, respectivamente. Se $V = mgy = -mg\ell \cos \theta$ for o potencial, temos

$$L(\theta,\dot{\theta},X,\dot{X}) = \frac{1}{2} m \left(\ell^2 \dot{\theta}^2 + 2\ell \dot{X} \dot{\theta} \cos \theta \right) + \frac{1}{2} (m+M) \dot{X}^2 + mg\ell \cos \theta.$$

b) Obtenha as equações do movimento do sistema.

$$X: \frac{d}{dt}\frac{\partial L}{\partial \dot{X}} - \frac{\partial L}{\partial X} = 0$$

$$\Leftrightarrow m\ell\ddot{\theta}\cos\theta - m\ell\sin\theta\dot{\theta}^2 + (m+M)\ddot{X} = 0,$$

$$\theta: \frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} = 0$$

$$\Leftrightarrow m\ell^2\ddot{\theta} + m\ddot{X}\ell\cos\theta + mg\ell\sin\theta = 0$$

c) Considere o caso em que a massa M se desloca com velocidade constante. Mostre que o Lagrangeano resultante é equivalente (ou seja, resulta nas mesmas equações do movimento) ao caso do pêndulo simples standard (com ponto de suspensão fixo). Discuta o resultado.

Neste caso, podemos tomar $\dot{X}=v_0$ e $\ddot{X}=0$. Assim, a equação para θ fornece

$$\ddot{\theta} + \omega_0^2 \sin \theta = 0.$$

Isto acontece porque o Lagrangeano é invariante para a transformação de Galileu, $X' = X + v_0 t$.

d) Considere agora o caso em que a massa M se desloca com aceleração constante. Quantos graus de liberdade tem o sistema? Mostre que neste caso o Lagrangeano não é equivalente ao de um pêndulo simples standard. Qual a origem do novo ingrediente? Escreva as equações do movimento.

Neste caso, tomamos $\ddot{X}=a_0$. Isto resulta numa equação de ligação do tipo $f(X;t)=X-X_0-v_0t-a_0t^2/2$ (ligação holónoma reónoma), o que restringe a variável X. Assim sendo, ficamos com um grau de liberdade. Como determinámos a equação para θ de forma independente de X, podemos substituir a ligação directamente na equação do movimento,

$$\ddot{\theta} + \frac{a_0}{\ell} \cos \theta + \omega_0^2 \sin \theta = 0.$$

Isto reflecte o facto de que os referenciais acelerados não são inerciais.

e) Ainda no mesmo caso da alínea d), determine a força na direcção r utilizando o método dos multiplicadores indeterminados de Lagrange. A que corresponde o termo não presente no caso standard? Este é um caso em que temos duas ligações. Promovamos X e r a graus de liberdade, e introduzamos as ligações $f_1(X;t) = X - a_0 t^2/2$ ($v_0 = X_0 = 0$, por simplicidade) e $f_2(r) = r - \ell$.

$$L^{\lambda}[X, \dot{X}, \theta, \dot{\theta}, r, \dot{r}] = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2 + 2r\dot{X}\dot{\theta}\cos\theta + 2\dot{r}\dot{X}\sin\theta\right) + \frac{1}{2}(m+M)\dot{X}^2 + mgr\cos\theta + \sum_{k=1}^{2}\lambda_k f_k.$$

Para este problema, teríamos 3 equações com mais duas 3 + 2 = 5 incógnitas, que completaríamos com as duas equações de ligação f_1 e f_2 . Podem tentar fazer esse caso para exercício, mas aqui podemos ser económicos: como apenas nos é pedido a força generalizada segundo a direcção radial r, podemos reduzir, a priori, o número de graus de liberdade. Assim, usamos apenas uma ligação e fazemos $f(r) = \ell - r$ para escrever

$$L^{\lambda}[\theta,\dot{\theta},r,\dot{r}] = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2 + 2r\dot{X}\dot{\theta}\cos\theta + 2\dot{r}\dot{X}\sin\theta\right) + \frac{1}{2}(m+M)\dot{X}^2 + mgr\cos\theta + \lambda f.$$

Em relação ao Lagrangeano anterior, podemos dizer que X é "despromovido" de coordenada generalizada a parâmetro. Da equação para r, resulta

$$-\lambda \frac{\partial f}{\partial r} + m\ddot{r} + mg\cos\theta + mr\dot{\theta}^2 + m\ddot{X}\sin\theta = 0.$$

Usando agora $\ddot{X} = a_0$ e $\ddot{r} = 0$, temos

$$Q_r^{\lambda} = \lambda \frac{\partial f}{\partial r} = mg \cos \theta + mr\dot{\theta}^2 + ma_0 \sin \theta.$$

Existe, portanto, um termo extra na tensão da haste devido à aceleração imposta ao sistema.

- ** Problema 5. O plano oscilante. Considere uma massa M fixa no vértice que faz um ângulo recto entre uma barra (sem massa) de comprimento ℓ e uma barra muito longa, também sem massa. Nesta última, um berlinde de massa m pode deslizar, sem atrito. O sistema pode rodar no plano definido pelas duas barras, sendo θ o ângulo com a vertical. Assuma que o berlinde de massa m pode penetrar a massa M.
- a) Identifique os graus de liberdade do sistema e obtenha o respectivo Lagrangeano.

Dois graus de liberdade: θ e x. Assumindo que o berlinde pode penetrar a massa M, temos, e observando que tem as coordenadas relevantes são $(x,y)_M = (\ell \sin \theta, -\ell \cos \theta)$ e $(x,y)_m = (x\cos \theta + \ell \sin \theta, x\sin \theta - \ell \cos \theta)$, temos

$$T = \frac{1}{2}M(\ell^2\dot{\theta}^2) + \frac{1}{2}\left[(\dot{x} + \ell\dot{\theta})^2 + x^2\dot{\theta}^2\right]$$

e
$$V = -Mg\ell\cos\theta - mg(\ell\cos\theta - x\sin\theta)$$
. Assim, temos
$$L(\theta, \dot{\theta}, x, \dot{x}) = \frac{1}{2}M\ell^2\dot{\theta}^2 + \frac{1}{2}\left[(\dot{x} + \ell\dot{\theta})^2 + x^2\dot{\theta}^2\right] + Mg\ell\cos\theta + mg(\ell\cos\theta - x\sin\theta).$$

b) Determine as equações do movimento.

Dois graus de liberdade ⇒ duas equações do movimento:

$$\theta$$
: $\ell\ddot{\theta} + \ddot{x} + g\sin\theta - x\dot{\theta}^2 = 0$

x:
$$M\ell^e\ddot{\theta} + m\ell(\ell\ddot{\theta} + \ddot{x}) + mx^2\ddot{\theta} + 2mx\dot{x}\dot{\theta} + (M+m)g\ell\sin\theta + mgx\cos\theta = 0$$

c) Determine os modos próprios de vibração do sistema no limite das pequenas oscilações.

O limite das pequenas oscilações é obtido para $\theta \ll 1$ e $x \ll \ell$. Assim, linearizando perto dos pontos de equilíbrio $(x, \theta) = (0, 0)$ temos

$$\theta: \qquad (\ell\ddot{\theta} + \ddot{x}) + g\theta = 0,$$

$$x: \qquad M\ell(\ell\ddot{\theta} + g\theta) + m\ell(\ell\ddot{\theta} + \ddot{x}) + mg\ell\theta + mgx = 0.$$

Podemos simplificar um pouco mais estas equações (por exemplo, substituindo $g\theta$ por $-(\ell\ddot{\theta} + \ddot{x})$ na primeira equação e $-\ddot{x}$ por $(\ell\ddot{\theta} + g\theta)$ na segunda) e escrever

$$\ddot{\theta} + \frac{g}{\ell}\theta + \frac{\ddot{x}}{\ell} = 0,$$
$$\ddot{x} - \frac{mg}{M\ell}x = 0.$$

Escrevendo o problema na forma matricial $A \cdot X = 0$, onde $X = (\theta, x)^T$, e testando soluções exponenciais, obtemos um modo normal para x = 0 que corresponde à oscilação do pêndulo de massa (m + M) à frequência $\omega = \sqrt{g/\ell}$. Contudo, para a solução $x(t) = x_0 \cosh(\omega_1 t + \varphi)$, com $\omega_1 = \sqrt{mg/M\ell}$ implica que $\theta(t) = \theta_0 \cosh(\omega_1 t + \varphi)$. Este segundo modo é instável, i.e. cresce no tempo. Passado algum tempo, a aproximação linear deixa de fazer sentido aqui. Estamos perante um caso em que a solução numérica é necessária para compreendermos o comportamento completo do sistema.

d) Perceba o que aconteceria se as massas m e M fossem impenetráveis. Que alterações ocorreriam nas alíneas a), b) e c)?

Se as massas fossem impenetráveis, teríamos de introduzir uma condição de restrição. Neste caso, a condição seria não-holónoma, $f(x) = x \ge 0$. Em alternativa, introduziríamos um potencial de esferas rígidas V(x > 0) = 0 e $V(x = 0) = \infty$. Neste último caso, teríamos de ter cuidado ao interpretar a força generalizada que nos apareceria.

- \star Problema 6. Uma simples barreira centrífuga. Considere uma mola de constante elástica k e comprimento natural ℓ_0 , ligada a uma massa m que se pode mover no plano.
- a) Quantos graus de liberdade tem este sistema? Justifique.

Existem 2 graus de liberdade (r, θ) . Apesar de existir um potencial central, $V(r) \sim r^2$, a este ponto não podemos impor restrições aos graus de liberdade do sistema. NOTA BEM: Redução do número de equações do movimento devido a integrais do movimento \neq redução do número de graus de liberdade devido a ligações!

b) Escreva o Lagrangeano deste sistema em coordenadas generalizadas e determine as quantidades conservadas. Justifique.

$$L(r, \dot{r}, \theta, \dot{\theta}) = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2\right) - \frac{1}{2}k(r - \ell_0)^2.$$

Como o Lagrangeano não depende da coordenada angular, $\partial_{\theta}L=0$, existe conservação do momento angular

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \theta}\right) = \frac{d}{dt}\left(mr^2\dot{\theta}\right) = 0,$$

reflectindo a conservação do momento angular. Para além disso, como L não depende explicitamente do tempo, a identidade de Beltrami diz-nos que

$$\frac{\partial L}{\partial \dot{\theta}} \dot{\theta} + \frac{\partial L}{\partial \dot{r}} \dot{r} - L = \text{constante}$$

$$\Leftrightarrow \underbrace{\frac{1}{2}m\left(r^2 + r^2\dot{\theta}^2\right) + \frac{1}{2}k(r - \ell_0)^2}_{T+V} = \text{constante},$$

significando a conservação da energia mecânica do sistema.

- ** Problema 7. A mesa furada. Considere uma massa m unida a outra massa M por um fio inextensível de comprimento ℓ_0 . A massa M é colocada sob a acção da gravidade (movimento vertical), ao passo que a massa m pode movimentar-se no plano horizontal.
- a) Quantos graus de liberdade tem este sistema? Justifique.

Tem dois (2) graus de liberdade (3 - 1 ligação).

b) Escreva o Lagrangeano deste sistema em coordenadas generalizadas e determine as quantidades conservadas.

A corda tem comprimento constante, pelo que $z+r=\ell_0$, onde z representa a distância vertical da massa ao tampo da mesa. Assim, V(z)=-Mgz (z "cresce" para baixo do tampo da mesa), pelo que temos imediatamente, escolhendo (r,θ) para coordenadas generalizadas,

9

$$L(r, \dot{r}, \theta, \dot{\theta}) = \frac{1}{2}(m+M)\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 + Mg(\ell_0 - r).$$

c) Obtenha os pontos de equilíbrio do sistema e caracterize-os. Em condições estes existem?

Escrevendo a equação de Euler-Lagrange para a coordenada r, obtemos

$$(m+M)\ddot{r} + mr\dot{\theta}^2 = -\frac{\partial V(r)}{\partial r},$$

com V(r) = Mgr. Usando a conservação do momento angular, $\ell_{\theta} = mr^2\dot{\theta}$, podemos escrever a equação do movimento na forma

$$\ddot{r} = -\frac{1}{m+M} \frac{\partial}{\partial r} \underbrace{\left(\frac{\ell_{\theta}^2}{2mr^2} + V(r)\right)}_{V_{\rm ef(r)}}.$$

A condição de equilíbrio corresponde e determinar o mínimo do potencial efectivo, i.e. $V'_{\rm ef}(r) \equiv dV_{\rm ef}/dr = 0$. Assim,

$$\frac{\ell_{\theta}^2}{mr_0^3} - Mg = 0 \Leftrightarrow \omega_0^2 = \frac{M}{m} \frac{g}{r_0}.$$

Isto significa que a órbita que apresenta velocidade angular constante é aquele que tem um raio fixo (movimento circular uniforme).

d) Considere uma pequena perturbação à órbita de equilíbrio, $r = r_0 + \xi$. Obtenha a equação para ξ e verifique o teorema de Bertrand.

Fazendo a substituição $r = r_0 + \xi$ na equação do movimento, temos

$$\ddot{\xi} = \frac{1}{m+M} \left(\frac{\ell_{\theta}^2}{m(r_0 + \xi)^3} - Mg \right)$$

$$\Leftrightarrow \ddot{\xi} = \frac{1}{m+M} \left(\underbrace{\frac{\ell_{\theta}^2}{mr_0^3} - Mg}_{=0 \text{ (equil.)}} - 3\frac{\ell_{\theta}^2}{mr_0^4} \xi \right) + \mathcal{O}(\xi^2)$$

$$\Leftrightarrow \ddot{\xi} + \underbrace{\frac{3m}{m+M} \omega_0^2}_{\Omega^2} \xi = 0.$$

Uma vez que $\Omega = \sqrt{3m/(m+M)}\omega_0$, observamos que o rácio $\Omega/\omega = \sqrt{3m/(m+M)}$ não é um número racional para valores arbitrários de m/M (e, portanto, o ângulo apsidal $\theta_A = \pi/\sqrt{3m/(m+M)}$ não é um racional de π), pelo que perturbações à órbita circular não resultam em órbitas fechadas. De uma forma geral, isto é esperado pois o potencial $V(r) \sim r$ não satisfaz as condições do teorema de Bertrand. Contudo, se

$$M/m = 3k^2 - 1,$$

onde k=p/q é um racional, então órbitas fechadas podem existir. Isto acontece porque, nesse caso, a barreira centrífuga é criada pela massa m, ao passo que o potencial V(r) é devido à massa M. Assim, podemos ajustar o rácio M/m de tal forma que o potencial efectivo corresponda, <u>localmente</u> (i.e para $r \sim r_0$), àquele do potencial $V(r) \sim 1/r^2$ ou do potencial $V(r) \sim r^2$. Matematicamente, basta que a segunda derivada do potencial efectivo no ponto de equilíbrio, $V''_{\rm ef}(r_0)$, seja igual a um dos dois casos que satisfaz o teorema de Bertrand. Obviamente, esta discussão só é válida porque estamos a discutir perturbações até à primeira ordem.

** Problema 8. Um Teorema de Nöther. Como vimos, o Teorema de Nöther estabelece uma relação geral entre simetrias e leis de conservação. Vejamo-lo formulado na sua versão mais fraca. Para tal, consideremos a seguinte família de transformações contínuas de parâmetro infinitesimal ϵ

$$q_i' = q_i + \epsilon \xi_i(q_i, t),$$

onde ξ_i designam os geradores das translações.

a) Mostre que, caso o Lagrangeano seja invariante para a transformação acima, i.e. se $\delta L = \frac{dL}{d\epsilon}\Big|_{\epsilon=0} = 0$, então existe conservação da seguinte quantidade (carga de Nöther)

$$\mathcal{I}(q_i, \dot{q}_i) = \frac{\partial L}{\partial \dot{q}_i} \xi_i.$$

Seja $L=L(q_i,\dot{q}_i,t)$ um Lagrangeano. Caso se verifique invariância para a transformação, $L(q_i,\dot{q}_i,t)=L(q_i',\dot{q}_i',t')$, então

$$\delta L \equiv \left. \frac{dL}{d\epsilon} \right|_{\epsilon=0} = 0.$$

Neste caso, a derivada variacional é

$$\delta L = \frac{\partial L}{\partial q_i} \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \delta q_i \right).$$

Combinando os resultados anteriores, temos

$$\mathcal{I}(q_i,\dot{q}_i) = \frac{\partial L}{\partial \dot{q}_i} \delta q_i = \frac{\partial L}{\partial \dot{q}_i} \frac{\partial q_i}{\partial q'_i} \delta q'_i = \text{constante}.$$

Finalmente, usando o facto de que $\delta q'_i = \xi_i$, obtemos o resultado pretendido (não há problema caso tenha obtido isto com o sinal trocado; é irrelevante).

b) Use o resultado anterior para demonstrar que a conservação do momento linear é uma consequência da simetria para translações. Para tal, recorra à transformação

$$X = x + \epsilon$$
.

O Lagrangeano mais genérico que podemos construir satisfazendo a invariância pretendida é

$$L(x, \dot{x}) = T(\dot{x}^2) + C = L(X, \dot{X}).$$

Assim, tomando $\xi = 1$ no resultado anterior, vem que a quantidade conservada é

$$\mathcal{I}(x,\dot{x}) = \frac{\partial T}{\partial \dot{x}} = m\dot{x},$$

considerando o caso usual $T = \frac{1}{2}m\dot{x}^2$.

c) Repita o ponto anterior considerando a invariância para rotações no plano (x, y),

$$\left[\begin{array}{c} X \\ Y \end{array}\right] = \lim_{\epsilon \to 0} \left[\begin{array}{c} x\cos\epsilon & -y\sin\epsilon \\ x\sin\epsilon & y\cos\epsilon \end{array}\right] \simeq \left[\begin{array}{cc} x & -\epsilon y \\ \epsilon x & y \end{array}\right]$$

para demonstrar a conservação do momento angular segundo a direcção z.

Desta vez, o Lagrangeano mais simétrico que podemos construir é da forma

$$L(x, \dot{x}, y, \dot{y}) = T(\dot{x}^2, \dot{y}^2) + V(x^2 + y^2) = L(X, \dot{X}, Y, \dot{Y}).$$

Pelo teorema de Nöther,

$$\mathcal{I} = \frac{\partial L}{\partial \dot{x}} \xi_x + \frac{\partial L}{\partial \dot{y}} \xi_y.$$

Finalmente, reconhecendo que $\xi_x = -y$ e $\xi_y = x$, temos

$$\mathcal{I} = -\frac{\partial L}{\partial \dot{x}}y + \frac{\partial L}{\partial \dot{y}}x = p_y x - p_x y = \ell_z,$$

evidenciando a conservação do momento angular segundo z.

- *** Fraco, forte e o polaritão. Considere um sistema mecânico composto por dois osciladores idênticos de massa m e constante elástica k, e suponha, ainda, que estes se encontram ainda ligados entre si por uma mola de constante elástica k'. O acoplamento entre os dois osciladores pode ser de dois tipos, dependendo do valor de k': fraco ou forte, sendo que o último caso é de particular relevância. Em física de matéria condensada, por exemplo, um mecanismo deste tipo permite o acoplamento de partículas elementares de um determinado sistema (ex. fotão acoplando com um excitão, em semi-condutores), dando origem a quasi-partículas (neste caso o polaritão). A teoria das quasi-partículas é extremamente bem-sucedida na descrição de efeitos colectivos em matéria condensada (esperem para ver!).
- a) Mostre que o Lagrangiano do sistema pode ser escrito na seguinte forma

$$L = \frac{1}{2}m(\dot{x}_1^2 + \dot{x}_2^2) - \frac{1}{2}k(x_1^2 + x_2^2) - \frac{1}{2}k'(x_1 - x_2)^2$$

- b) Defina novas coordenadas ξ_1 e ξ_2 (quais?) que transformem o problema num outro onde as molas aparecem desacopladas. Escreva as equações do movimento para estas novas coordenadas e interprete fisicamente o resultado.
- c) Regressemos às coordenadas originais $x_1(t)$ e $x_2(t)$. Escreva as respectivas equações do movimento, resolva-as e obtenha os *batimentos*

$$x_1(t) = A_1 \left[\sin(\omega_1 t) + \frac{\omega_1}{\omega_2} \sin(\omega_2 t) \right], \quad x_2(t) = A_2 \left[\sin(\omega_1 t) - \frac{\omega_1}{\omega_2} \sin(\omega_2 t) \right].$$

Determine ω_1 e ω_2 e interprete fisicamente. Onde é que já vimos isto?

- d) Considere a situação em que $k' \ll k$. Expanda ω_2 em primeira ordem no rácio k'/k e represente graficamente $x_1(t)$ e $x_2(t)$. Observe o aparecimento de um envelope envolvendo uma oscilação no seu interior.
- e) Inverta a situação, tomando agora $k' \gg k$. Que tipo de movimento obtemos? A este fenómeno dá-se o nome de acoplamento forte.