unex

Infraestrutura para Sistemas

Meios de transmissão não guiados

Quem sou eu

Júlio César Andrade

Bacharel em Engenharia de Computação - UEFS Especialista em User Experience - UNIFACS Mestrando em Ciências da Computação - UEFS

Introdução

Os meios de transmissão não guiados transportam ondas eletromagnéticas sem o uso de um condutor físico. Esse tipo de comunicação é, muitas vezes, conhecido como comunicação sem fio.

O espectro eletromagnético

O que é?

O espectro eletromagnético é o conjunto de todas as ondas eletromagnéticas, organizadas de acordo com suas frequências ou comprimentos de onda.

O espectro eletromagnético

Quando se movem, os elétrons criam ondas eletromagnéticas que podem se propagar pelo espaço livre (até mesmo no vácuo).

O espectro eletromagnético

O número de oscilações por segundo de uma onda eletromagnética é chamado frequência, f, e é medido em Hz.

A distância entre dois pontos máximos (ou mínimos) consecutivos é chamada comprimento de onda.

Espectro eletromagnético visível

O espectro visível diz respeito às ondas eletromagnéticas cujas frequências são localizadas entre o infravermelho e o ultravioleta. Essas ondas são aquelas que podem ser percebidas pelo olho humano e interpretadas pelo cérebro.

Espectro eletromagnético visível

Curiosidade

Iluminação Artificial: A luz visível é utilizada em lâmpadas e dispositivos de iluminação artificial para iluminar ambientes internos e externos. Lâmpadas incandescentes, fluorescentes, LED e outras fontes de luz artificial funcionam emitindo luz no espectro visível.

Transmissão de micro-ondas

A transmissão das micro-ondas ocorre em linha reta. Apesar de mais barato, este sistema possui uma limitação importante: não atravessa muito bem limites físicos, como paredes de edifícios, por exemplo.

Transmissão de micro-ondas

Comunicação de Longa Distância:

Ideal para comunicação ponto a ponto em longas distâncias, como enlaces de micro-ondas, e em comunicações via satélite.

Velocidade de Transmissão:

Oferecem altas velocidades de transmissão de dados, sendo capazes de suportar comunicações de banda larga.

Desvantagens

Penetração Limitada:

Dificuldade em penetrar obstáculos sólidos, como paredes, resultando em degradação do sinal em ambientes fechados.

Atenuação Atmosférica:

Condições meteorológicas adversas, como chuva intensa, podem causar atenuação do sinal, afetando a comunicação em longas distâncias.

Largura de Banda Limitada:

Restrição na largura de banda em comparação com tecnologias concorrentes, limitando a quantidade de dados que podem ser transmitidos simultaneamente.

Segurança:

Preocupações com a segurança, pois as ondas de micro-ondas podem ser interceptadas, exigindo medidas adequadas de criptografia.

Ondas de luz

Esta tecnologia utiliza raios laser e é fácil de ser instalada. Na visão de Tanembaum, uma aplicação mais moderna consiste em **conectar as LANs** em dois prédios por meio de lasers instalados em seus telhados.

Por sua própria natureza, a sinalização óptica coerente que utiliza raios laser é unidirecional; assim, cada prédio precisa do seu próprio raio laser e do seu próprio fotodetector.

Satélites

Satélites são um meio de transmissão que liga um ou mais transmissores a receptores na Terra, chamados de estações terrestres.

O espectro eletromagnético é essencial para as comunicações via satélite, permitindo a transmissão global de dados, voz e vídeo.

Satélites

Existem dois tipos de satélites:

Geoestacionários, que ficam permanentemente sobre o mesmo lugar da Terra, aproximadamente a 36 mil quilômetros acima da superfície terrestre;

e os **satélites de baixa altitude**, que ficam girando em torno do nosso Planeta, da mesma forma que a Lua.

Infravermelho

Esse tipo de onda eletromagnética apresenta frequência menor que a da luz vermelha e não faz parte do espectro visível ao olho humano.

Aplicações do Infravermelho

Controle Remoto:

Amplamente utilizado em controles remotos de aparelhos eletrônicos, como televisões e aparelhos de ar condicionado.

Sensoriamento Remoto:

Em sensoriamento remoto, o infravermelho é usado para coletar informações sobre a superfície da Terra, útil em áreas como agricultura e monitoramento ambiental.

Aplicações do Infravermelho

Tecnologia Térmica:

Utilizado em câmeras termográficas para medir a temperatura de objetos com base na radiação infravermelha que emitem.

Comunicação sem Fio:

Usado em sistemas de comunicação sem fio de curto alcance, como controles remotos de TV e sensores de proximidade em smartphones.

Segurança e Vigilância:

Câmeras de infravermelho são comuns em sistemas de segurança e vigilância para monitorar áreas em condições de baixa luminosidade.

Vantagens do Infravermelho

Detecção de Calor:

Medição eficiente de temperaturas com base na radiação infravermelha.

Visão em Baixa Luminosidade:

Capacidade de "ver" em condições de baixa luminosidade por meio de câmeras de infravermelho.

Comunicação sem Fio de Curto Alcance:

Amplamente utilizado em controles remotos e sensores de proximidade.

Segurança e Vigilância:

Aplicado em sistemas de segurança para monitoramento em condições de baixa luminosidade.

Não Requer Meio Material para Propagação:

Pode se propagar no vácuo, não dependendo de um meio material.

Desvantagens do Infravermelho

Visibilidade Limitada:

Não é visível ao olho humano.

Interferência Atmosférica:

Condições atmosféricas, como neblina, podem interferir na transmissão eficaz.

Alcance Limitado:

Alcance efetivo pode ser limitado, especialmente em condições adversas.

Aquecimento Excessivo em Dispositivos:

Pode gerar calor excessivo em certos dispositivos, como lasers de infravermelho.

Dificuldade em Penetrar Objetos Sólidos:

Pode ter dificuldade em penetrar em alguns materiais.

Ondas de rádio

(Também chamada de Radiofrequência)

Muitos dispositivos sem fio usam ondas de rádio para transmitir dados. Essas ondas são geradas por um transmissor e captadas por um receptor.

Exemplos incluem Wi-Fi, Bluetooth e comunicações de rádio.

Vantagens

Facilidade de Geração:

As ondas de rádio são fáceis de gerar, tornando sua produção mais acessível e eficiente.

Longo Alcance:

Têm a capacidade de percorrer longas distâncias, o que as torna ideais para comunicações em grandes áreas geográficas.

Penetração em Edifícios:

Conseguem adentrar facilmente em prédios, proporcionando uma comunicação eficaz em ambientes fechados.

Omnidirecionalidade:

Uma característica fundamental é a omnidirecionalidade, o que significa que as ondas viajam em todas as direções a partir da fonte de transmissão.

Desvantagens

Interferência:

- As ondas de rádio podem sofrer interferência de outras fontes eletromagnéticas, como dispositivos eletrônicos, outros sinais de rádio e até mesmo condições atmosféricas.

Atenuação em Obstáculos:

- Obstáculos sólidos, como edifícios e paredes, podem causar atenuação do sinal de rádio, resultando em uma diminuição da qualidade da comunicação.

Faixa Limitada de Frequências:

- A faixa de frequência disponível para comunicações de rádio é limitada, o que pode levar a congestionamento e competição por espectro em áreas densamente povoadas.

Propagação Limitada em Distâncias Longas:

- Para comunicações de longa distância, as ondas de rádio podem sofrer atenuação e propagação limitada, especialmente em condições atmosféricas adversas.

Desvantagens

Limitações de Largura de Banda:

- A largura de banda disponível para comunicações de rádio pode ser limitada em comparação com tecnologias de comunicação de dados mais recentes.

Multipercurso:

- Fenômeno em que o sinal se propaga por múltiplos caminhos, causando variações na intensidade do sinal e potencial de interferência.

Susceptibilidade a Ruídos:

- Ruídos elétricos e atmosféricos podem afetar a qualidade do sinal de rádio, especialmente em ambientes urbanos ou áreas com muitos dispositivos eletrônicos.

Principais tecnologias que utilizam ondas de rádio

WIFI

As redes Wi-Fi fazem uso de ondas de rádio comuns para transmitir as informações de Internet, assim como acontece com a televisão, rádio e celular, por exemplo.

Geração de Sinal:

Um dispositivo, como um roteador sem fio, gera um sinal Wi-Fi. Esse sinal é uma onda de rádio que transmite dados.

Frequências de Rádio:

O Wi-Fi opera em frequências de rádio, comumente em 2,4 GHz ou 5 GHz. Cada faixa tem suas próprias características e vantagens.

Antenas:

Tanto o roteador quanto os dispositivos conectados possuem antenas. As antenas ajudam na transmissão e recepção do sinal Wi-Fi.

Comunicação entre dispositivos via Wifi

A comunicação entre os dispositivos conectados na rede Wi-Fi é feita através do protocolo 802.11, que possibilita a eles reconhecerem as informações uns dos outros.

Padrão IEEE 802.11

O Wi-Fi utiliza diferentes padrões, como 802.11b, 802.11g, 802.11n, 802.11ac, etc. Cada padrão oferece diferentes velocidades de transmissão e alcances.

Padrão IEEE	Ano	Frequência	Taxa
802.11	1997	2.4 GHz	2 Mbps
802.11a	1999	5 GHz	54 Mbps
802.11b	1999	2.4 GHz	11 Mbps
802.11g	2003	2.4 GHz	54 Mbps
802.11n	2009	2.4/5 GHz	600 Mbps
802.11ac	2014	5 GHz	3.6 Gbps
802.11ax	2019	2.4/5 GHz	10 Gbps

Bluetooth

A comunicação via Bluetooth é feita por meio de ondas de rádio de curto alcance que operam, tipicamente, na frequência de 2,4 GHz, podendo chegar a 2,483 GHz. Essa é a faixa de frequências ISM, reservada para aplicações industriais, científicas e médicas.

Vantagens

Ampla compatibilidade: a tecnologia funciona em muitos dispositivos, estando presente em praticamente todos os notebooks, celulares e tablets atuais;

Baixo consumo de energia: o Bluetooth não é uma tecnologia que demanda muita energia, principalmente nas versões mais modernas ou em dispositivos baseados em Bluetooth Low Energy;

Baixa interferência: uma conexão Bluetooth até pode causar interferência em outros aparelhos ou redes wireless, mas esse não é um problema frequente;

Retrocompatibilidade: um dispositivo baseado em uma versão recente do Bluetooth é compatível com as versões anteriores, existindo poucas exceções.

Desvantagens

Alcance limitado: o Bluetooth pode alcançar distâncias de 100 metros (ou mais) sob determinadas circunstâncias, mas a maioria das conexões do tipo não passa de 10 metros;

Velocidade de transferência inferior: a taxa de transferência do Bluetooth não é tão elevada quanto as que podem ser atingidas com redes Wi-Fi ou conexões cabeadas;

Bluetooth Wireless Personal Area Network

Uma Bluetooth Wireless Personal Area Network (WPAN) refere-se a uma rede pessoal sem fio formada por dispositivos Bluetooth que se comunicam entre si em uma área física restrita.

Bluetooth Wireless Personal Area Network

(BT-WPAN) consiste de **piconets**. Cada piconet é um conjunto de até oito dispositivos Bluetooth. Um dispositivo é designado como mestre e os outros como escravos.

Mestre (Master):

O dispositivo mestre é o responsável por iniciar e controlar a comunicação em uma conexão Bluetooth. Ele determina o timing da transmissão, coordena o acesso ao canal de comunicação e gerencia os dispositivos escravos. Em uma piconet Bluetooth, há apenas um dispositivo mestre.

Escravo (Slave):

Os dispositivos escravos são aqueles que se conectam e respondem ao dispositivo mestre em uma conexão Bluetooth. Eles sincronizam suas operações com o mestre e têm seus tempos de transmissão determinados por ele. Uma piconet pode ter até sete dispositivos escravos, além do mestre.

Bluetooth Wireless Personal Area Network

Duas piconets podem se conectar através de um dispositivo Bluetooth comum a ambas (um gateway, bridge ou um dispositivo mestre) para formarem uma scatternet.

Bluetooth Wireless Personal Area Network

Estas piconets interconectadas dentro de uma scatternet formam uma infra-estrutura para Mobile Area Network (MANET) e podem tornar possível a comunicação de dispositivos não diretamente conectados ou que estão fora de alcance de outro dispositivo.

Por que formar Scatternet?

Por que formar Scatternet?

É útil quando há a necessidade de comunicação entre dispositivos de diferentes piconets. O objetivo é a formação de scatternets que forneçam comunicação efetiva e eficiente através de vários de nós com tempo de resposta aceitável e baixo consumo de energia para o desenvolvimento de aplicações fim-a-fim.

Principais versões do Bluetooth

Versão	Velocidade	
1.2	1 Mbit/s	
2.0 + EDR	3 Mbit/s	
3.0	25 Mbit/s	
4.0 (Bluetooth Low energy)	25 Mbit/s	
5.0	50 Mbit/s	

Bibliografia

TANENBAUM, Andrew S. Redes de computadores. 6. ed. Campus.

ROSS, Keith e KUROSE, JAMES. Redes de Computadores e a Internet: Uma nova abordagem, Ed. Addison Wesley.

TORRES, Gabriel. **Redes de Computadores**, Ed. Nova Terra.

