EE263 Homework 1 Fall 2025

2.61. Matrix representation of polynomial differentiation. We can represent a polynomial of degree less than n,

$$p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0,$$

as the vector $(a_0, a_1, \ldots, a_{n-1}) \in \mathbb{R}^n$. Consider the linear transformation \mathcal{D} that differentiates polynomials, *i.e.*, $\mathcal{D}p = dp/dx$. Find the matrix D that represents \mathcal{D} (*i.e.*, if the coefficients of p are given by p, then the coefficients of p are given by p.

- **2.100.** A mass subject to applied forces. Consider a unit mass subject to a time-varying force f(t) for $0 \le t \le n$. Let the initial position and velocity of the mass both be zero. Suppose that the force has the form $f(t) = x_j$ for $j 1 \le t < j$ and j = 1, ..., n. Let y_1 and y_2 denote, respectively, the position and velocity of the mass at time t = n.
 - a) Find the matrix $A \in \mathbb{R}^{2 \times n}$ such that y = Ax.
 - b) For n = 4, find a sequence of input forces x_1, \ldots, x_n that moves the mass to position 1 with velocity 0 at time n.
- **2.110.** Counting paths in an undirected graph. Consider an undirected graph with n nodes, and no self loops (i.e., all branches connect two different nodes). Let $A \in \mathbf{R}^{n \times n}$ be the node adjacency matrix, defined as

$$A_{ij} = \begin{cases} 1 & \text{if there is a branch from node } i \text{ to node } j \\ 0 & \text{if there is no branch from node } i \text{ to node } j \end{cases}$$

Note that $A = A^{\mathsf{T}}$, and $A_{ii} = 0$ since there are no self loops. We can interpret A_{ij} (which is either zero or one) as the number of branches that connect node i to node j. Let $B = A^k$, where $k \in \mathbb{Z}$, $k \ge 1$. Give a simple interpretation of B_{ij} in terms of the original graph. (You might need to use the concept of a path of length m from node p to node q.)

2.150. Gradient of some common functions. Recall that the gradient of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, at a point $x \in \mathbb{R}^n$, is defined as the vector

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix},$$

where the partial derivatives are evaluated at the point x. The first order Taylor approximation of f, near x, is given by

$$\hat{f}_{\text{tav}}(z) = f(x) + \nabla f(x)^{\mathsf{T}}(z - x).$$

This function is affine, *i.e.*, a linear function plus a constant. For z near x, the Taylor approximation \hat{f}_{tay} is very near f. Find the gradient of the following functions. Express the gradients using matrix notation.

a)
$$f(x) = a^{\mathsf{T}}x + b$$
, where $a \in \mathbb{R}^n$, $b \in \mathbb{R}$.

- b) $f(x) = x^{\mathsf{T}} A x$, for $A \in \mathbb{R}^{n \times n}$.
- c) $f(x) = x^{\mathsf{T}} A x$, where $A = A^{\mathsf{T}} \in \mathbb{R}^{n \times n}$. (Yes, this is a special case of the previous one.)
- **2.210.** Express the following statements in matrix language. You can assume that all matrices mentioned have appropriate dimensions. Here is an example: "Every column of C is a linear combination of the columns of B" can be expressed as "C = BF for some matrix F". There can be several answers; one is good enough for us.
 - a) Suppose Z has n columns. For each i, row i of Z is a linear combination of rows i, \ldots, n of Y.
 - b) W is obtained from V by permuting adjacent odd and even columns (i.e., 1 and 2, 3 and $4, \ldots$).
 - c) Each column of P makes an acute angle with each column of Q.
 - d) Each column of P makes an acute angle with the corresponding column of Q.
 - e) The first k columns of A are orthogonal to the remaining columns of A.