Сильная и слабая определимость в логиках с сильным отрицанием

Одинцов Сергей Павлович Институт Математики СО РАН odintsov.sergey2013@yandex.ru

Соавторы: Д. М. Анищенко, Новосибирский госуниверситет, d.anishchenko@g.nsu.ru

Секция: Математическая логика и теоретическая информатика

В логиках с сильным отрицанием \sim условия истинности и ложности формул определяются параллельно, а сильное отрицание позволяет переходить от условий истинности к условиям ложности и наоборот. Вследствие этого слабая эквивалентность $\varphi \leftrightarrow \psi$, определяемая обычным образом, означает лишь, что в каждом из возможных миров формулы φ и ψ одновременно истинны. Сильная эквивалентность $\varphi \leftrightarrow \psi := (\varphi \leftrightarrow \psi) \land (\sim \varphi \leftrightarrow \sim \psi)$ сохраняет как истинность, так и ложность формул и является конгруенцией на алгебре формул. Именно эта эквивалентность используется при стандартном определении дефинициальной эквивалентности (d-эквивалентости) логик с сильным отрицанием. В [1] определена слабая d-эквивалентность за счет замены φ на φ и отказа от условия на φ в определении структурной трансляции. Оказалось [1], что различные версии Белнаповских модальных логик являются слабо d-эквивалентными.

В [3] определены так называемые bl-логики как логики, язык которых содержит сильное отрицание, правило отделимости для слабой эквивалентности является производным и есть формула $\odot(p,q)$ такая, что для любых формул φ и ψ доказуемы следующие слабые эквивалентности: $\odot(\varphi,\psi) \leftrightarrow \varphi$, $\sim \odot(\varphi,\psi) \leftrightarrow \psi$. В [3] также доказано, что для bl-логик из слабой d-эквивалентности следует d-эквивалентность.

В данном докладе мы сделаем обзор упомянутых результатов и перейдем от взаимной определимости логик к изучению определимости параметров в логиках с сильным отрицанием. В качестве первого шага мы докажем для расширений избыточной логики Нельсона N3 аналог известной теоремы Крайзеля [2], утверждающей, что каждая суперинтуиционистская логика удовлетворяет свойству Бета, т.е. в каждой из таких логик из неявной определимости следует явная определимость.

Теорема. Пусть L — логика, расширяющая N3. Для любой формулы $\Phi(\overline{p},q)$ из

$$(\Phi(\overline{p},q) \land \Phi(\overline{p},q')) \rightarrow (q \Leftrightarrow q') \in L$$

следует существование двух формул $\psi^+(\overline{p})$ и $\psi^-(\overline{p})$ таких, что

$$\Phi(\overline{p},q) \to (q \leftrightarrow \psi^+(\overline{p})), \quad \Phi(\overline{p},q) \to (\sim q \leftrightarrow \psi^-(\overline{p})) \in L.$$

Как видно, в расширениях логики N3 из сильной неявной определимости (однозначно определяющей как истинность, так и ложность параметра q) следует слабая явная определимость, условия истинности и ложности для q определяются при помощи

различных формул. Очевидно также, что в bl-логиках из слабой явной определимости следует сильная явная определимость. Логика N3 не является однако bl-логикой. Поэтому остается открытым вопрос, когда в расширениях N3 из слабой явной определимости следует сильная явная определимость.

Работа выполнена в рамках государственного задания ИМ СО РАН (проект FWNF2022-0012).

- [1] S.P. Odintsov, H. Wansing, Disentangling FDE-based paraconsistent modal logics, Studia Logica, 105 (2017), 1221—1254.
- [2] G. Kreisel, Explicit definability in intuitionistic logic, The Journal of Symbolic Logic, 25 (1960), 389–390.
- [3] S.P. Odintsov, D. Skurt, H. Wansing, On Definability of Connectives and Modal Logics over FDE, Logic and Logical Philosophy, 28 (2019), 631–659.