Use of Direct Numerical Simulations for Studies on Magnetohydrodynamics

Andrés Cathey

The University of Edinburgh

June 20, 2017

Overview

Current and Future Work

- Theory review of MHD and turbulent processes.
- Crash course on ARCHER and Scientific Computing.
- Become familiar with available MHD code (eDNS).
- Determine onset of dynamo action (threshold value of magnetic Reynolds number (Re_M)) in forced MHD simulations.

Overview

Current and Future Work

- ► Theory review of MHD and turbulent processes.
- Crash course on ARCHER and Scientific Computing.
- Become familiar with available MHD code (eDNS).
- Determine onset of dynamo action (threshold value of magnetic Reynolds number (Re_M)) in forced MHD simulations.
- ► Study behaviour for different magnetic Prandtl number $(Pr_M = Re_M/Re = \nu/\eta)$.
- ► (If time allows) Study effect of helicity's effect on the inverse cascade.

ARCHER

Crash Course

- ARCHER is the largest UK National Supercomputing Service.
- Run parallelised simulations of cubic boxes describing MHD turbulence.
- Larger boxes require more cores to store in-code memory.
- ▶ Boxes of lattice size $N^3 > 32^3$ cannot realistically be worked on regular laptops/desktops (eDNS allows to get to up to 2048³).
- Lattice size is directly proportional to the maximum wavenumber of the simulations, and it has to be set up such that the kinetic and magnetic Kolmogorov length scales are resolved.

$$\partial_t \mathbf{u} = -\frac{1}{\rho} \nabla \rho - (\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{1}{\rho} (\nabla \times \mathbf{b}) \times \mathbf{b} + \nu \nabla^2 \mathbf{u} + \mathbf{f}_u \qquad (1)$$

$$\partial_t \mathbf{b} = (\mathbf{b} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{b} + \eta \nabla^2 \mathbf{b} + \mathbf{f}_b$$
 (2)

$$\nabla \cdot \mathbf{u} = 0 \tag{3}$$

$$\nabla \cdot \mathbf{b} = 0 \tag{4}$$

Onset of Dynamo Action

$$k_{max} pprox rac{N}{3}$$
 $k_{max} > k_{\eta}, k_{
u}$ (5)

$$k_{\eta} = \left(\frac{\varepsilon}{\eta^3}\right)^{1/4}$$
 $k_{\nu} = \left(\frac{\varepsilon}{\nu^3}\right)^{1/4}$ (6)

Onset of Dynamo Action

Keep Pr_M constant, vary ν . $Re_M = 28.27$

Figure: eDNS simulation with 64 lattice size and $\nu = 0.025$ and $\eta = 0.025$ ($Pr_M = 1.0$).

Onset of Dynamo Action

Keep Pr_M constant, vary ν . $Re_M = 36.14$

Figure: eDNS simulation with 64 lattice size and $\nu = 0.020$ and $\eta = 0.020$ ($Pr_M = 1.0$).

Onset of Dynamo Action

Keep Pr_M constant, vary ν . $Re_M = 47.16$

Figure: eDNS simulation with 64 lattice size and $\nu = 0.015$ and $\eta = 0.015$ ($Pr_M = 1.0$).

Onset of Dynamo Action

Keep Pr_M constant, vary ν . $Re_M = 69.58$

Figure: eDNS simulation with 64 lattice size and $\nu = 0.010$ and $\eta = 0.010$ ($Pr_M = 1.0$).

Onset of Dynamo Action (vary Pr_M)

Keep ν constant, vary Pr_M . $Re_M = 29.47$

Figure: eDNS simulation with 64 lattice size and $\nu = 0.020$ and $\eta = 0.025$ ($Pr_M = 0.8$).

Onset of Dynamo Action (vary Pr_M)

Keep ν constant, vary Pr_M . $Re_M = 36.14$

Figure: eDNS simulation with 64 lattice size and $\nu = 0.020$ and $\eta = 0.020$ ($Pr_M = 1.0$).

Onset of Dynamo Action (vary Pr_M)

Keep ν constant, vary Pr_M . $Re_M = 48.17$

Figure: eDNS simulation with 64 lattice size and $\nu = 0.020$ and $\eta = 0.015$ ($Pr_M = 1.33$).

Onset of Dynamo Action (vary Pr_M)

Keep ν constant, vary Pr_M . $Re_M = 70.23$

Figure: eDNS simulation with 64 lattice size and $\nu = 0.020$ and $\eta = 0.010$ ($Pr_M = 2.0$).

Onset of Dynamo Action (vary Pr_M)

- ▶ Both methods have similar behaviour magnetic Reynolds number is the key component for the onset of Dynamo action.
- Pick only one method.
- Look at the energies in the end of the simulation as a function of wavenumber.

Onset of Dynamo Action

Wavenumber summed energy and energy spectra. $\nu = 0.020$. $Pr_M = 0.8$. $Re_M = 29.47$

Figure: k-summed kinetic and magnetic Energy for N=64, $\nu=0.020$, $\eta=0.025$.

Figure: Kinetic and magnetic Energy spectra for N=64, $\nu=0.020$, $\eta=0.025$.

Onset of Dynamo Action

Wavenumber summed energy and energy spectra. $\nu = 0.020$. $Pr_M = 1.0$. $Re_M = 36.14$

Figure: k-summed kinetic and magnetic Energy for N=64, $\nu=0.020$, $\eta=0.010$.

Figure: Kinetic and magnetic Energy spectra for N=64, $\nu=0.020$, $\eta=0.010$.

Onset of Dynamo Action

Wavenumber summed energy and energy spectra. $\nu = 0.020$. $Pr_M = 1.0$. $Re_M = 36.14$

Figure: k-summed kinetic and magnetic Energy for N=64, $\nu=0.020$, $\eta=0.015$.

Figure: Kinetic and magnetic Energy spectra for N=64, $\nu=0.020$, $\eta=0.015$.