Contents

Statistical Inference for Simple Linear Regression (Ch.2)	. 1
Regression Diagnostics (Ch.3)	. 5
Simultaneous Intervals (Ch.4)	. 6
Miscellaneous topics (Ch.4. cont.)	. 8

Statistical Inference for Simple Linear Regression (Ch.2)

The Normal Assumption

The error term: ε_i 's are i.i.d. (independent and identically distributed) $N(0, \sigma^2)$. Hence, Y_i are i.i.d. $N(\beta_0 + \beta_1 X_i, \sigma^2)$

Inferences concerning regression coefficients

> Sampling distribution of b_1 (i.e., $\hat{\beta}_1$)

Under the Normal assumption, the OLS (same as MLE) estimator b_1 has distribution

$$\frac{(b_1-\beta_1)}{se(b_1)} \sim t(n-2)$$

where:

 β_1 is the true value of the slope.

 $se(b_1)$, or written as $s(b_1)$, is the standard error of b_1 .

$$se(b_1) = \sqrt{\frac{s^2}{\sum (X_i - \bar{X})^2}}$$

$$s^2 = MSE = \sum (y_i - \hat{y}_i)^2 / (n - 2).$$

 \triangleright Confidence Interval for β_1 is constructed as:

$$b_1 \pm t_{(1-\alpha/2,n-2)}se(b_1),$$

where:

 b_1 is the estimate (OLS and MLE are the same in this case) of β_1 ; $t_{(1-\alpha/2,n-2)}$ is the critical value for d.f.= n-2 at (1- α)100% confidence level;

$$se(b_1) = \sqrt{\frac{s^2}{\sum (X_i - \bar{X})^2}}$$
 is the standard error of b_1 ;

> Test of significance for β1 is constructed as:

$$H_0: \beta_1 = \beta_{10} \text{ vs } H_a: \beta_1 \neq \beta_{10}$$

$$t_{obs} = \frac{(b_1 - \beta_{10})}{se(b_1)}$$

 $p-value = 2 * P(t > |t_{obs}|)$, where $t \sim t(n-2)$

Reject H_0 if p-value $< \alpha$.

Or, use critical value, reject H_0 if $|t_{obs}| \ge t_{crit}, t_{crit} = t(1 - \alpha/2, n - 2)$

where: β_{10} is the "hypothesized" value for the slope (often, $\beta_{10} = 0$). If H_a is one-sided, adjust the p-value computation is one-sided as well.

- If Ha: beta > 0, then p-value = $P(t_{(df = n-2)} > t_{obx})$
- If Ha: beta < 0, then p-value = $P(t_{(df = n-2)} < t_{obx})$
- \triangleright CI and test for β_0 are similar, with standard error:

$$se(b_0) = \sqrt{s^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum (X_i - \bar{X})^2}\right)}$$

- Theories behind the above results (FYI):
 - Y_i 's are independent, Normal random variables. b_0 and b_1 are linear combinations of the Y_i 's. Properties of Normal distribution assure that:

$$\begin{aligned} b_1 &\sim N(\beta_1, \sigma^2(b_1)), \ where \ \sigma^2(b_1) = \sigma^2 / \sum (X_i - \bar{X})^2 \\ b_0 &\sim N(\beta_0, \sigma^2(b_0)), \ where \ \sigma^2(b_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum (X_i - \bar{X})^2} \right) \end{aligned}$$

- In practice, σ^2 (the population variance of the errors) is unknown. It is estimated by s^2 = MSE. Hence, changing the Normal distribution into t-distribution.
- \triangleright If the distribution of ε_i is not normal but is relatively symmetric, then the CIs and significance tests are reasonable approximations.

Confidence interval and Prediction interval

- A distinction between the Confidence Interval (CI) and the Prediction Interval (PI) is made by the difference between mean response $(E(Y_h) = \mu_h)$ and a single response $(Y_{h(new)})$ at x_h .
- Same point estimation:

$$\hat{\mu}_h(ie, \hat{Y}_{mean}) = \hat{Y}_{h(new)} = b_0 + b_1 X_h$$

Different standard errors:

For the mean response:

$$se(\hat{Y}_{mean}) = \sqrt{s^2 \left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2}\right)}$$

For single response (why?):

$$se(\hat{Y}_{h(new)}) = \sqrt{s^2 \left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2} + 1\right)} = \sqrt{\left[se(\hat{Y}_{mean})\right]^2 + MSE}$$

The CI (for mean response) and PI (for single response) are: (point est.) \pm (critical value)(std.err of the point est.) where the critical value is $t_{(1-\alpha/2,n-2)}$.

 \succ The Working-Hotelling Confidence Band gives combined "confidence intervals" at <u>all</u> X_h :

$$\hat{\mu}_h \pm W \times se(\hat{Y}_{mean}), \quad where W = \sqrt{2F_{(1-\alpha; 2,n-2)}}$$

 $F_{(1-\alpha; 2,n-2)}$ can be found using an F-distribution calculator.

We will discuss more on the topic of multiple CI's and tests in later chapters.

The ANOVA table

Partitioning Sum of Squares:

We will use the Sum of Squares as a measurement of the variation.

Total variation (measured by Sum of Squares) in Y: $SSTO = \sum (Y_i - \overline{Y})^2$

Variation in Y that can be explained by X: $SSR = \sum (\hat{Y}_i - \overline{Y})^2$

Variation due to randomness (unexplained variation): $SSE = \sum (Y_i - \hat{Y}_i)^2$

Note that: (proof?) SSTO = SSR + SSE

> Partitioning **Degrees of Freedom:**

$$df_{Total}$$
 (n-1) = df_{Reg} (1) + df_{Error} (n-2)

➤ The ANOVA table.

Source	Sum of Squares	df	Mean Squares	F	P-value
Regression(Model)	SSR	1	$MSR=SSR/df_R$	F=MSR/MSE	$P(F_{(dfR, dfE)} > F)$
Error(Residual)	SSE	n-2	$MSE=SSE/df_E$		
Total	SSTO	n-1			

Q. What is that p-value in the ANOVA table for?

Coefficient of determination

- R^2 = SSR/SSTO is the proportion of the variation in Y (measured by the sum of squares) that can be determined/explained by the linear regression model using X.
- ightharpoonup In SLR, $R^2 = (r)^2$, where r is the correlation coefficient between Y and X.
- $ightharpoonup R^2$ is between (0, 1).

- For models with the same number of predictors, a larger value of R² is preferred. However, note that R² increases when more predictors are added to the model. (Adjusted-R² will be introduced in multiple linear regression.)
- ➤ R² tells the strength of association assuming the current model is appropriate. In SLR (straight-line), if the association between the variables is curved, R² may not be meaningful.

Some considerations:

- > The normality assumption.
- ➤ Interpreting the regression parameters and R².
- > The Power of a test.
 - What is Power?
 - Things that can affect the power:
 - The difference between the "truth" and "hypothesis".
 - The variability of the data (i.e., the standard error of the statistic).
 - The sample size.
 - The significance level.
 - More details on this topic in the text, p.51 and Table B.5 (p. 669)
- > Extrapolation.
- Correlation vs causation.

Regression Diagnostics (Ch.3)

What to diagnose?

> The assumptions about the model.

Diagnostic tools

- ightharpoonup The residuals: $e_i = y_i \hat{y}_i = y_i (b_0 + b_1 x_i)$
- Most diagnostic graphs and tests are based on the residuals. Sometimes, the residuals may be further "processed" (more details later).

The Lack-of-fit test

- Test for Linearity (and how the model fits the data set in general).
- \triangleright Only applies to the data sets where there are 2 or more observations $(Y_{i,j})$ at a given X_j value.
- ightharpoonup Partitioning the $SSE = \sum_{i,j} \left(Y_{i,j} \hat{Y}_{i,j} \right)^2$

Sum of Squares of Lack of Fit: $SS_{LF} = \sum_{i,j} \left(\overline{Y}_j - \hat{Y}_{i,j} \right)^2$

Sum of Squares of Pure Error: $SS_{PE} = \sum_{i,j} (Y_{i,j} - \overline{Y}_i)^2$

 $\mathsf{SSE} = \mathsf{SS}_\mathsf{LF} + \mathsf{SS}_\mathsf{PE}$

> Partitioning the Degrees of Freedom:

 $df_{E}(n-2) = df_{LF}(c-2) + df_{PE}(n-c)$

where n is the sample size, and c is the number of different X values in the data set.

Expanded ANOVA Table.

Source	Sum of Squares	df	Mean Squares	F	P-value
Regression	SSR	1	MSR=SSR/df _R	F=MSR/MSE	$P(F_{(dfR, dfE)} > F)$
Error	SSE	n-2	$MSE=SSE/df_E$		
Lack of Fit	SS_LF	c-2	$MS_{LF}=SS_{LF}/df_{LF}$	$F_{LF} =$	$P(F_{(dfLF, dfPE)} >$
Pure Error	SS_PE	n-c	$MS_{PE}=SS_{PE}/df_{PE}$	MS_{LF}/MS_{PE}	F _{LF})
Total	SSTO	n-1		·	

Q. What are the hypotheses associated with the p-values?

Please refer to handouts *Diagnostics.pdf* and *Regression_Diagnostics.doc* on Blackboard for more details on regression diagnosis.

5

Simultaneous Intervals (Ch.4)

Why correct for significance level?

Let Cl_1 and Cl_2 be the confidence intervals for two parameters: β_1 and β_2 , respectively. We will use "c" if the interval contains the true parameter value, "nc" if the interval does not contain the true parameter.

P(both "c") < P(Cl₁ "c") =
$$1 - \alpha$$
,
P(both "c") = P(Cl₁ "nc") + P(Cl₂ "nc") - P(Cl₁ "nc" or Cl₂ "nc")
 $\geq (1 - \alpha) + (1 - \alpha) - 1$
 $\geq 1 - 2 \alpha$

The Bonferroni correction for joint CI

- We want the probability that "both intervals are correct" to be $\geq 1 \alpha$. That is, we have an "error budget" of α that can be spent on 2 Cl's. So we split the "budget" equally and each CI will have $\alpha^* = \alpha/2$.
- For example, for 95% simultaneous (joint) CI for $β_0$ and $β_1$, each CI will have confidence level 97.5% using Bonferroni correction.
- In general, if we consider g Cl's simultaneously at $(1-\alpha)$ family level, we will use: $1-\alpha^*=1-(\alpha/g)$ for each Cl, i.e., $b_k \pm t_{(1-\alpha^*/2,n-2)}s(b_k)$
- > Bonferroni correction is a conservative approach.

Simultaneous/Joint confidence Interval for mean response $(E(Y_h) = \mu_h)$

Use Bonferroni correction to adjust the critical t-value:

$$\hat{\mu}_h \pm B \times se(\hat{Y}_{mean}), \quad where B = t_{(1-\alpha/(2g); n-2)}$$

Recall Working-Hotelling:

$$\hat{\mu}_h \pm W \times se(\hat{Y}_{mean}), \quad where W = \sqrt{2F_{(1-\alpha; 2, n-2)}}$$

➤ Which one is better? Choose the smaller value of B and W (why?).

Simultaneous/Joint Prediction Interval for individual response $(Y_{h(new)})$

> Use Bonferroni correction to adjust the critical t-value:

$$\hat{Y}_{h(new)} \pm B \times se(\hat{Y}_{h(new)}), \text{ where } B = t_{(1-\alpha/(2g); n-2)}.$$

> Scheffé: consider g Pl's simultaneously:

$$\hat{Y}_{h(new)} \pm S \times se(\hat{Y}_{h(new)}), \text{ where } S = \sqrt{gF_{(1-\alpha; g, n-2)}}.$$

➤ Which one is better? Choose the smaller value of B and S (why?).

Simultaneous tests

> Adjust the significance level for each test, using Bonferroni correction.

Miscellaneous topics (Ch.4, cont.)

Regression through origin

- $ightharpoonup Y_i = \beta_1 X_i + e_i$
- > Estimation equations need to be changed.
- Residuals may not sum to 0.
- > ANOVA table needs adjustments (SSTO may be less than SSE).

Measurement Error

- For Y, this is usually not a problem. Just adds to the random error.
- For X, we can get biased estimators of our regression parameters.
- > See text p.165 for more details.

Inverse Prediction

- Sometimes it is called calibration.
- ➤ Given Y_h, predict the corresponding value of X, by solving the fitted linear equation.
- > Approximate CI can be obtained.
- See text p.169 for more details.

Choice of X levels

- ➤ Many questions: How many levels? How far between 2 levels? Range of X? How many observations at each level?
- ➤ Answer: It depends!
- See text p.171 for more details.