8.4.3. Normal dağılım: Sürekli bir rasgele değişkenin dağılımı için en yaygın kullanılan model normal dağılımdır. Merkezi limit teoremine göre tekrarlanan her rasgele deneyde, tekrar sayısı arttıkça tekrarların ortalaması olan rd normal dağılıma yakınsar. X rd normal dağılıma sahipse oyf

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x, \mu < \infty, \quad \sigma > 0$$

şeklindedir. $E(X) = \mu$ ve $V(X) = \sigma^2$ olup $X \sim N(\mu, \sigma^2)$ ile gösterilir. Hemen fark edileceği gibi olasılık yoğunluk fonksiyonunun belirlenmesi için σ ve μ parametrelerine ihtiyaç vardır. Yani normal dağılım iki parametreli bir dağılımdır. Farklı ortalama ve varyansa göre normal dağılımın of ve bdf grafiği aşağıdaki şekildedir.

Normal dağılımın bazı temel özellikleri

i.
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

ii.
$$P(a \le X \le b) = \int_a^b \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx$$

iii. μ 'ye göre simetrik olup $\mu=M=Mod$ olur (maximum değerin μ olduğuna dikkat ediniz.) Şu halde $\int_{-\infty}^{\mu} f(x) dx = \int_{\mu}^{\infty} f(x) dx = 0.5$

iv.
$$P(\mu - \sigma \le X \le \mu + \sigma) = 0.6826$$

 $P(\mu - 2\sigma \le X \le \mu + 2\sigma) = 0.9544$
 $P(\mu - 3\sigma \le X \le \mu + 3\sigma) = 0.9974$

 σ sabit iken μ çeşitli değerler alırsa aşağıdaki eğriler oluşur:

 μ sabit iken σ çeşitli değerler alırsa aşağıdaki eğriler oluşur:

 σ küçüldükçe ortalama civarında yoğunluğun çoğaldığına yanı yoğunluk fonksiyonunun büyük değerler aldığı açıktır.

❖ Standart Normal Dağılım

Ortalaması sıfır ($\mu=0$) ve varyansı bir ($\sigma^2=1$) olan normal dağılıma standart normal dağılım denir. Z standart normal dağılıma sahip rd olsun. $Z\sim N(0,1)$ ile gösterilir ve bu şekildeki olasılık yoğunluk fonksiyonu

0,9 0,8 0,7

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, \quad -\infty < z < \infty$$

şeklindedir. Z rasgele değişkenin birikimli dağılım fonksiyonu

$$P(Z \le z) = P(Z < z) = F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz$$

olur. Ayrıca

$$P(a \le Z \le b) = P(Z \le b) - P(Z \le a) = F(b) - F(a)$$

$$P(Z \le -z) = P(Z \ge z) = 1 - P(Z \le z)$$
 (Simetriyi düşünün)

Birikimli (Kümülatif) Normal Dağılım Tablosu

Zt	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.70	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.20	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.70	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.80	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.90	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.10	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.20	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.40	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Bazı birikimli olasılıklar için tablo değerleri

Örnek: $Z \sim N(0,1)$ olmak üzere Z rasgele değişkenin 1.96'dan küçük değerler alması olasılığı nedir?

1.96 = 1.90 + 0.06 olarak düşünelim. Birinci sutundan 1.90, birinci satırdan da 0.06 değerlerinin kesiştikleri kutucuktur.

$$P(Z \le 1.96) = 0.9750$$

Örnek: $Z \sim N(0,1)$ olmak üzere,

a)
$$P(Z \le 1.5) = 0.9332$$

b)
$$P(Z \ge 1.5) = 1 - P(Z < 1.5) = 1 - 0.9332 = 0.0668$$

c)
$$P(0.55 < Z \le 1.77) = P(Z \le 1.77) - P(Z < 0.55)$$

= $0.9616 - 0.7088$
= 0.2528

d)
$$P(Z < -2.5) = P(Z > 2.5) = 1 - P(Z \le 2.5) = 1 - 0.9938 = 0.0062$$

e)
$$P(-2.62 < Z < 0.5) = P(Z < 0.5) - P(Z < -2.62)$$

= $P(Z < 0.5) - (1 - P(Z < 2.62))$
= $0.6915 - (1 - 0.9956)$
= 0.6871

f)
$$P(Z < a) = 0.9975 \Rightarrow a = 2.81$$

g)
$$P(Z < a) = 0.95 \Rightarrow a = 1.64$$

Soru: Standart normal dağılıma sahip rasgele değişkeni için aşağıdaki olasılıkları hesaplayınız.

a)
$$P(0.24 < Z < 1.86) = ?$$

 $P(0.24 < Z < 1.86) = P(Z < 1.86) - P(Z < 0.24)$
 $= 0.9686 - 0.5948 = 0.3738$

b)
$$P(-2.24 < Z < -0.78) = ?$$

 $P(-2.24 < Z < -0.78) = P(0.78 < Z < 2.24)$
 $= P(Z < 2.24) - P(Z < 0.78)$
 $= 0.9875 - 0.7823 = 0.2052$

Teorem: $X \sim N(\mu, \sigma^2)$, $Z = \frac{X - \mu}{\sigma}$ olarak tanımlanırsa, $Z \sim N(0,1)$ ' na dönüşür.

Örnek: $X \sim N(\mu = 100, \sigma^2 = 25)$ olmak üzere $P(90 \le X < 105) = ?$

$$P(90 \le X < 105) = \int_{90}^{105} \frac{1}{5\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-100}{5}\right)^2} dx = ?$$

$$P(90 \le X < 105) = P\left(\frac{90 - 100}{5} \le \frac{X - 100}{5} < \frac{105 - 100}{5}\right) = P(-2 \le Z < 1)$$

$$= P(Z < 1) - P(Z < -2) = P(Z < 1) - (1 - P(Z < 2))$$

$$= 0.8413 - (1 - 0.9772) = 0.8185$$

Örnek: İstatistik dersi vize not ortalaması 68 ve standart sapması 2 olan normal dağılıma sahip olsun.

a) Dersi alan herhangi bir öğrencinin notunun 72'den fazla olması olasılığı nedir?

$$P(X > 72) = P\left(Z > \frac{72 - 68}{2}\right) = P(Z > 2) = 1 - P(Z < 2) = 1 - 0.9772 = 0.0228$$

b) Dersi alan öğrencilerin yüzde kaçının notu 66 ile 70 arasındadır?

$$P(66 < X < 70) = P\left(\frac{66 - 68}{2} < Z < \frac{70 - 68}{2}\right) = P(-1 < Z < 1)$$

$$= P(Z < 1) - P(Z < -1) = P(Z < 1) - (1 - P(Z < 1))$$

$$= 0.8413 - (1 - 0.8413) = 0.6825 = \%68.25$$

c) 65'in altında not alan 14 öğrenci olduğuna göre yaklasık kaç öğrenci dersi almıstır.

$$P(X < 65) = P\left(Z < \frac{65 - 68}{2}\right) = P(Z < -1.5) = 1 - P(Z < 1.5) = 1 - 0.9332 = 0.0668$$

O halde sınıfın %6.68'i 65'in altında not almıştır. Sınıfta toplam N tane öğrenci varsa $N * 0.0668 = 14 \Rightarrow N \cong 210$ kişi vardır.

Teorem: $X \sim N(\mu, \sigma^2)$ olsun. Y = aX + b şeklinde tanımlı rd

$$E(Y) = aE(X) + b = a\mu + b \text{ ve } V(Y) = a^2V(X) = a^2\sigma^2 \text{ olup } Y \sim N(a\mu + b, a^2\sigma^2)$$
dur

dır.

Örnek:
$$X \sim N(3,2)$$
 olsun. $Y = 5X + 4$ rd $Y \sim N(5 * 3 + 4, 5^2 * 2) = N(19, 50)$

Teorem: $X_1, X_2, \dots, X_n \sim N(\mu_i, \sigma_i^2)$ $(i=1,2,\dots,n)$ bağımsız
rd olmak üzere

$$X_1 + X_2 + \dots + X_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$$

Örnek: $X_1 \sim N(2,1)$ ve $X_2 \sim N(3,2)$ bağımsız rd olmak üzere;

$$S = X_1 + X_2 \Rightarrow S \sim N(2 + 3, 1 + 2) = N(5,3)$$

$$D = X_1 - X_2 \Rightarrow D = X_1 + (-1)X_2$$

$$\Rightarrow E(D) = E(X_1) + E((-1)X_2) = 2 + (-1) * 3 = -1$$

$$\Rightarrow V(D) = V(X_1) + V((-1)X_2) = 1 + (-1)^2 * 2 = 3$$

$$\Rightarrow D \sim N(2 - 3, 1 + 2) = N(-1, 3)$$

Örnek: Bir şehre ait yıllık yağış miktarının ortalaması 300mm ve standart sapması 10mm olan normal dağılıma sahip olsun. Yıllara göre yağış miktarları bağımsız olduğuna göre

- a) Gelecek 2 yıl süresince toplam yağışın 625 mm aşması olasılığı nedir?
- b) Takip eden iki yılın yağış miktarları farkının 15 mm'den az olması olasılığı nedir?

Çözüm: $\mu_i = 300 \text{ ve } \sigma_i^2 = 100 \text{ olup } X_i \sim N(300,100) \text{ dir.}$

a)
$$S = X_1 + X_2$$
 ise $S \sim N(300 + 300, 100 + 100) = N(600, 200)$

$$P(S > 625) = P\left(Z > \frac{625 - 600}{\sqrt{200}}\right) = P(Z > 1.77) = 1 - P(Z < 1.77)$$

$$= 1 - 0.9616 = 0.0384 \cong \%4$$

b)
$$D = X_1 - X_2$$
 ise $D \sim N(300 - 300, 100 + 100) = N(0,200)$

$$P(D < 15) = P\left(Z < \frac{15 - 0}{\sqrt{200}}\right) = P(Z < 1.06) = 0.8554 \cong \%86$$

Soru:

Belli bir tür bitkinin yaşam süresi $N(\mu=35,\sigma^2=16)$ olan dağılıma sahip olduğu bilinmektedir.

$$X \sim N \ (\mu = 35, \sigma^2 = 16)$$

a) Rastgele seçilen bir bitkinin yaşam süresinin 45 günden çok olma olasılığı nedir?

$$P(X > 45) = P(\frac{X - \mu}{\sigma} > \frac{45 - 35}{4}) = P(Z > 2.5) = 1 - P(Z \le 2.5) = 1 - 0.9938 = 0.0062$$

P(2521) 7
(1=2727

b) Aynı tür bitki için alınan 10.000 örnekten kaç tanesinin yaşam süresi 45 günden fazladır? 10000×0.0062 ⇒ 62 tanesi c)

$$P(25 < X < 30) = P\left(\frac{25 - 35}{4} < Z < \frac{30 - 35}{4}\right)$$

$$= P(\frac{-10}{4} < Z < \frac{-5}{4})$$

$$= P(-2.5 < Z < -1.25)$$

$$= P(1.25 < Z < 2.5)$$

$$= P(Z < 2.5) - P(Z < 1.25)$$

$$= 0.9938 - 0.8944 = 0.0994$$

d)

$$\begin{split} P(29 < X < 39) &= P\left(\frac{29 - 35}{4} < Z < \frac{39 - 35}{4}\right) \\ &= P\left(\frac{-6}{4} < Z < \frac{4}{4}\right) = P\left(-1.5 < Z < 1\right) \\ &= P\left(0 < Z < 1\right) + P\left(0 < Z < 1.5\right) \\ &= \left[P(Z < 1) - P(Z < 0)\right] + \left[P(Z < 1.5) - P(Z < 0)\right] \\ &= (0.8413 - 0.5) + (0.9332 - 0.5) = 0.3413 + 0.4332 = 0.7745 \end{split}$$

e) Bitkinin %20' sinin yaşam süresi hangi değerin üzerindedir.

$$P(X>a) = 0.20$$

$$P(Z>\frac{a-35}{4}) = 0.20$$

$$P(Z\leq\frac{a-35}{4}) = 0.80$$

$$\frac{a-35}{4} = 0.84 \Rightarrow a = 0.84 \times 4 + 35 \Rightarrow a = 38.36$$

$$D AM \qquad D Ablo fun by k+lh$$

$$Eablo fun by here$$