Statistik och Dataanalys I

Föreläsning 21 - Hypotestest och jämföra grupper

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Mera hypotestest: fel av typ I och II
- Jämföra två populationer oberoende stickprov
- Jämföra två populationer parade data

Praktisk vs Statistisk signifikans

Teststatistiska

$$T = \frac{\bar{X} - \mu_0}{\frac{s}{\sqrt{n}}}$$

- Stora stickprov: även små skillnader $\bar{X} \mu_0$ blir signifikanta.
- Det betyder inte alltid att de är praktiskt betydelsefulla.
- Studie 1:
 - $\bar{x} = 1$, $\mu_0 = 0$, s = 2, n = 10.

$$t_{\rm obs} = \frac{1 - 0}{\frac{2}{\sqrt{10}}} = 1.58$$

- Studie 2:
 - $\bar{x} = 0.05$, $\mu_0 = 0$, s = 2, n = 10000.

$$t_{\rm obs} = \frac{0.05 - 0}{\frac{2}{\sqrt{10000}}} = 2.5$$

Fel av typ I och II

Fel av typ I:

- $ightharpoonup \alpha = P(\text{f\"orkasta } H_0 \mid H_0 \text{ sann}).$
- Bestäms av kritiska värdet.

Fel av typ II:

- $\beta = P(\text{inte f\"orkasta } H_0 \mid H_A \text{ sann}).$
- ▶ Beror på kritiska värdet och värdet på μ under H_A .

Testets styrka

▶ $1 - \beta = P(\text{f\"orkasta } H_0 \mid H_A \text{ sann})$

Fel av typ I och II

Fel av typ I och II - interaktivt

Jämföra grupper - bekämpningsmedel i lax ossum medel i lax

- Total.pestocide i 153 laxar vid 8 olika platser.
- Grupp 1: Eastern Canada med n = 24 laxar. $N(\mu_1, \sigma_1)$.
 - $\bar{x}_1 = 33.572$
 - $s_1 = 7.671$
- Grupp 2: Norge med n = 12 laxar. $N(\mu_2, \sigma_2)$.
 - $\bar{x}_2 = 41.763$
 - $s_2 = 10.373$
- \blacksquare Är $\mu_1 = \mu_2$?

Jämföra grupper - konfidensintervall för $\mu_1-\mu_2$

- Grupp 1: n_1 observationer från populationen $N(\mu_1, \sigma_1)$.
 - ▶ Medelvärde \bar{x}_1 och standardavvikelse s_1 .
- Grupp 2: n_2 observationer från populationen $N(\mu_2, \sigma_2)$.
 - Medelvärde \bar{x}_2 och standardavvikelse s_2 .
- Oberoende observationer inom och mellan grupperna.

$$E(\bar{X}_1 - \bar{X}_2) = E(\bar{X}_1) - E(\bar{X}_2) = \mu_1 - \mu_2$$

$$Var(\bar{X}_1 - \bar{X}_2) = Var(\bar{X}_1) + Var(\bar{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

Standardfel

$$SE(\bar{x}_1 - \bar{x}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Konfidensintervall för differensen $\mu_1 - \mu_2$

$$(\bar{x}_1 - \bar{x}_2) \pm t_{0.025, df} \cdot SE(\bar{x}_1 - \bar{x}_2)$$

Frihetsgraderna df har en komplicerad formel. Använder R.

Jämföra grupper - bekämpningsmedel i lax Osendata Formed salmon


```
> # Using the t.test function to compute C.I. and do test H0: mu1 = mu2
```

> t.test(Total.Pesticides ~ Location, data = salmonTwoPop)

Welch Two Sample t-test

```
data: Total.Pesticides by Location
t = -2.424, df = 17.223, p-value = 0.02663
alternative hypothesis: true difference in means between group Eastern Canada and g
95 percent confidence interval:
```

-15.314121 -1.068879

sample estimates:

mean in group Eastern Canada mean in group Norway 33,57167 41.76317

Jämföra grupper - test för $\mu_1=\mu_2$

Hypotestest för skillnaden mellan två gruppers väntevärden:

$$H_0: \mu_1 = \mu_2$$
 $H_0: \mu_1 - \mu_2 = d_0$
 $H_A: \mu_1 \neq \mu_2$ $H_A: \mu_1 - \mu_2 \neq d_0$

Recall: Allmän formel teststatistika

Estimat – parameter under H_0 Standardfel estimator under H_0

Teststatistika

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{SE(\bar{x}_1 - \bar{x}_2)} = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t_{\text{df}} \text{ under } H_0$$

- Förkastar H_0 om $|t_{obs}| > t_{crit}$.
- \blacksquare *p*-värde från $t_{\rm df}$.

Jämföra parade grupper

- Parade data. Ex mäter samma *n* personer vid två tillfällen:
- Mätningar vid tidpunkt 1: $N(\mu_1, \sigma_1)$.
- Mätningar vid tidpunkt 2: $N(\mu_2, \sigma_2)$.
- Beroende stickprov, med lika många observationer.
- Skapa differenser av mätningarna: $d_i = x_{1i} x_{2i}$.
- Differenserna ska vara oberoende mellan personer.
- Standardfel

$$SE(\bar{d}) = \frac{s_d}{\sqrt{n}}$$

■ 95%-igt konfidensintervall

$$\bar{d} \pm t_{0.025}, n-1 \cdot \frac{s_d}{\sqrt{n}}$$

Hypotestest

$$H_0: \mu_1 = \mu_2$$

 $H_{\Delta}: \mu_1 \neq \mu_2$

$$T = rac{ar{d} - 0}{rac{s_d}{\sqrt{n}}} \sim t_{n-1}$$

Local vs online insurance sales

Person	Local	Online	PriceDiff
1	550	388	162
2	856	593	263
3	460	497	-37
4	1248	910	338
5	580	665	-85
6	1022	1263	-241
7	773	703	70
8	830	789	41
9	900	1001	-101
10	710	699	11
medelvärde	792.900	750.800	42.100
standardavv.	235.431	254.956	174.964

> t.test(price ~ place, data = df, paired = TRUE)

Paired t-test

data: price by place

t = 0.76091, df = 9, p-value = 0.4662

alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval:

-83.06154 167.26154 sample estimates:

mean difference

42.1