PROBLEMA 13 ? Tema 3

En los dos problemas aparece el cálculo del valor medio (en un periodo) del vector de Poyntiv

 $S = \frac{1}{2\mu} E_0 B_0 e^{-2\beta^2} \{ \cos[2(k_2 - \omega t + \delta_E) + \phi] + \cos\phi \} \hat{u}_2$

Por la que tenemos que calcular

 $\langle \cos[2(k_2-\omega t+\delta_E)+\phi]+\cos\phi\rangle =$

= $\langle \cos[2(k_2-\omega t+\delta_E)+\phi]\rangle+\langle \cos\phi\rangle$

 $=\frac{1}{T}\int \cos \phi dt =$

= 1 cosp / dt =

= = = 605 \$ T = 600 \$

Para calcular $\langle \cos[2(k_2-\omega t + \delta_E) + \phi] \rangle$ tenemos en chevita:

 $\cos \left[2(k_2 - wt + \delta_E) + \phi \right] = \cos \left(2k_2 - 2wt + 2\delta_E + \phi \right) = \cos \left(-2wt + 2k_2 + 2\delta_E + \phi \right) = \cos \left((x + \beta) \right)$

Cos (
$$\alpha+\beta$$
) = 101 α (05 β - 4en α 4en β

Os (-2 wt $+2$ $k_2 + 2\delta_E + \phi$) =

= $\cos(-2$ wt) cos (2 $k_2 + 2\delta_E + \phi$) - $\cos(-2$ wt)

= -4 w(2 wt)

= -4 w(2 wt) $+2$ (2 $k_2 + 2\delta_E + \phi$) +

+ $+4$ en (2 wt) $+2$ (2 $k_2 + 2\delta_E + \phi$)

Colvulando el volor medio en un periodo:

 $+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

($+2$ cos (2 $k_2 + 2\delta_E + \phi$) $+2$ cos (2 $k_2 + 2\delta_E + \phi$)

$$\langle \cos(2\omega t) \rangle = \frac{1}{T} \int \cos(2\omega t) dt =$$

$$= \frac{1}{T} \int \sec(2\omega t) = \frac{1}{2\omega T} (\int \cot(2\omega T) - \frac{1}{2\omega T} \int \cot(2\omega T) dt =$$

$$= \frac{1}{T} \int \cot(2\omega T) = \frac{1}{T} \int \cot(2\omega T) dt =$$

$$= -\frac{1}{T} \int \cot(2\omega T) = \frac{1}{T} \int \cot(2\omega T) dt =$$

$$= -\frac{1}{T} \int \cot(2\omega T) = -\frac{1}{T} \int \cot(2\omega T) dt =$$

$$= -\frac{1}{T} \int \cot(2\omega T) = -\frac{1}{T} \int \cot(2\omega T) dt =$$

$$= -\frac{1}{T} \int \cot(2\omega$$

$$\langle w [2(k_2-wt+\delta_E)+\phi)=0$$