Quiz, 10 questions

| × | Required t                                                                                                                      | o pass: 80% or higher                                                                                                                                                                 | Back to Week 2 |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
|   | You can re                                                                                                                      | take this quiz up to 3 times every 8 hours.                                                                                                                                           | Retake         |  |  |
|   |                                                                                                                                 |                                                                                                                                                                                       |                |  |  |
|   |                                                                                                                                 |                                                                                                                                                                                       |                |  |  |
|   | ×                                                                                                                               | 0 / 1<br>points                                                                                                                                                                       |                |  |  |
|   | 1. Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch? |                                                                                                                                                                                       |                |  |  |
|   |                                                                                                                                 | $a^{[3]\{8\}(7)}$                                                                                                                                                                     |                |  |  |
|   |                                                                                                                                 | $a^{[8]\{3\}(7)}$                                                                                                                                                                     |                |  |  |
|   |                                                                                                                                 | $a^{[3]\{7\}(8)}$                                                                                                                                                                     |                |  |  |
|   | This                                                                                                                            | should not be selected                                                                                                                                                                |                |  |  |
|   |                                                                                                                                 | $a^{[8]\{7\}(3)}$                                                                                                                                                                     |                |  |  |
|   | <b>~</b>                                                                                                                        | 1 / 1<br>points                                                                                                                                                                       |                |  |  |
|   | 2.<br>Which<br>agree                                                                                                            | of these statements about mini-batch gradient descent with?                                                                                                                           | t do you       |  |  |
|   |                                                                                                                                 | You should implement mini-batch gradient descent we explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization). | ne             |  |  |
|   |                                                                                                                                 | Training one epoch (one pass through the training set mini-batch gradient descent is faster than training on using batch gradient descent.                                            | _              |  |  |

# One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient Optimization algorithms

Quiz, 10 questions

Correct

7/10 points (70%)

| <b>~</b> | 1 / 1<br>points                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|
| -        | the best mini-batch size usually not 1 and not m, but instead ning in-between?                                                           |
|          | If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.      |
| Un-s     | elected is correct                                                                                                                       |
|          | If the mini-batch size is 1, you end up having to process the entire training set before making any progress.                            |
| Un-s     | elected is correct                                                                                                                       |
|          | If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.                                   |
| Corre    | ect                                                                                                                                      |
|          | If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress. |
| Corre    | ect                                                                                                                                      |



0/1 points

## Optimization algorithms

Quiz, 10 questions

7/10 points (70%)



Which of the following do you agree with?

- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

### This should not be selected

- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.



1/1 points

### Optimization algorithms

Quiz, 10 questions

Jan 1st: 
$$\theta_1 = 10^{\circ} C$$

Jan 2nd:  $\theta_2 10^{\circ} C$ 

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with  $\beta = 0.5$  to track the temperature:  $v_0 = 0$ ,  $v_t = \beta v_{t-1} + (1 - \beta)\theta_t$ . If  $v_2$  is the value computed after day 2 without bias correction, and  $v_2^{corrected}$  is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 7.5, v_2^{corrected} = 10$$

Correct

$$v_2 = 10, v_2^{corrected} = 7.5$$

$$v_2 = 10, v_2^{corrected} = 10$$

$$v_2 = 7.5, v_2^{corrected} = 7.5$$



1/1 points

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = 0.95^t \alpha_0$$

Correct

$$\alpha = \frac{1}{1+2*t} \alpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

7/10 points (70%)

# Optimization algorithms

Quiz, 10 questions

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature:  $v_t = \beta v_{t-1} + (1-\beta)\theta_t.$  The red line below was computed using  $\beta = 0.9$ . What would happen to your red curve as you vary  $\beta$ ? (Check the two that apply)



Decreasing  $\beta$  will shift the red line slightly to the right.

### **Un-selected** is correct



Increasing  $\beta$  will shift the red line slightly to the right.

#### Correct

True, remember that the red line corresponds to  $\beta=0.9$ . In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.



Decreasing  $\beta$  will create more oscillation within the red line.

### Correct

True, remember that the red line corresponds to  $\beta=0.9$ . In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Quiz, 10 questions



0/1 points

8. Consider this figure:



These plots were generated with gradient descent; with gradient descent with momentum ( $\beta$  = 0.5) and gradient descent with momentum ( $\beta$  = 0.9). Which curve corresponds to which algorithm?



(1) is gradient descent. (2) is gradient descent with momentum (large  $\beta$ ) . (3) is gradient descent with momentum (small  $\beta$ )



- (1) is gradient descent. (2) is gradient descent with momentum (small  $\beta$ ). (3) is gradient descent with momentum (large  $\beta$ )
- (1) is gradient descent with momentum (small  $\beta$ ). (2) is gradient descent. (3) is gradient descent with momentum (large  $\beta$ )
- (1) is gradient descent with momentum (small  $\beta$ ), (2) is gradient descent with momentum (small  $\beta$ ), (3) is gradient descent



1/1 points

Suppose batch gradient descent in a deep network is taking excessively

long to find a value of the parameters that achieves a small value for the Optimization algorithms  $[a,b^{[1]},\dots,W^{[L]},b^{[L]})$ . Which of the following techniques could help find parameter values that attain a small value for

 $\mathcal{J}$ ? (Check all that apply)

Correct

7/10 points (70%)

Quiz, 10 questions

|       | Try mini-batch gradient descent                                                           |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------|--|--|--|--|
| Corr  | ect                                                                                       |  |  |  |  |
|       |                                                                                           |  |  |  |  |
|       | Try using Adam                                                                            |  |  |  |  |
| Corr  | Correct                                                                                   |  |  |  |  |
|       |                                                                                           |  |  |  |  |
|       | Try initializing all the weights to zero                                                  |  |  |  |  |
| lln-s | -selected is correct                                                                      |  |  |  |  |
| 011-3 | selected is correct                                                                       |  |  |  |  |
|       | Try better random initialization for the weights                                          |  |  |  |  |
| Corr  | ect                                                                                       |  |  |  |  |
|       |                                                                                           |  |  |  |  |
|       | Try tuning the learning rate $lpha$                                                       |  |  |  |  |
| Corre | ect                                                                                       |  |  |  |  |
|       |                                                                                           |  |  |  |  |
|       |                                                                                           |  |  |  |  |
|       |                                                                                           |  |  |  |  |
|       |                                                                                           |  |  |  |  |
|       | 1/1                                                                                       |  |  |  |  |
|       | points                                                                                    |  |  |  |  |
|       |                                                                                           |  |  |  |  |
| 10.   |                                                                                           |  |  |  |  |
| Which | of the following statements about Adam is False?                                          |  |  |  |  |
|       | The learning rate hyperparameter $\boldsymbol{\alpha}$ in Adam usually needs to be tuned. |  |  |  |  |
|       | Adam should be used with batch gradient computations, not with mini-batches.              |  |  |  |  |

Optimization algorithms the advantages of RMSProp and momentum

7/10 points (70%)

Quiz, 10 questions

We usually use "default" values for the hyperparameters  $\beta_1,\beta_2$  and  $\varepsilon$  in Adam ( $\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8}$ )