Cours 3 : méthode révisée du simplexe

Christophe Gonzales

LIP6 - Université Paris 6, France

En route vers la méthode révisée

Point de départ :

- à chaque itération du simplexe, on recalcule entièrement le tableau
- seule une petite partie du tableau sert pour une itération donnée

⇒ perte de temps

En route vers la méthode révisée

Point de départ :

- à chaque itération du simplexe, on recalcule entièrement le tableau
- seule une petite partie du tableau sert pour une itération donnée

 \Longrightarrow perte de temps

principe de la méthode révisée du simplexe

Essayer de reconstruire cette petite partie à partir du tableau d'origine

⇒ a priori, moins de calculs à effectuer

En route vers la méthode révisée

Point de départ :

- à chaque itération du simplexe, on recalcule entièrement le tableau
- seule une petite partie du tableau sert pour une itération donnée
- \Longrightarrow perte de temps

principe de la méthode révisée du simplexe

Essayer de reconstruire cette petite partie à partir du tableau d'origine

- ⇒ a priori, moins de calculs à effectuer
- méthode utilisée pour résoudre les gros problèmes linéaires (milliers de variables et de contraintes), en général peu denses (beaucoup de 0)

Problème de départ :

max
$$19x_1 + 13x_2 + 12x_3 + 17x_4$$

s.c. $3x_1 + 2x_2 + x_3 + 2x_4 \le 255$
 $x_1 + x_2 + x_3 + x_4 \le 117$
 $4x_1 + 3x_2 + 3x_3 + 4x_4 \le 420$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$

Problème de départ :

Introduction des variables d'écart :

max
$$19x_1 + 13x_2 + 12x_3 + 17x_4$$

s.c. $3x_1 + 2x_2 + x_3 + 2x_4 + x_5 = 255$
 $x_1 + x_2 + x_3 + x_4 + x_6 = 117$
 $4x_1 + 3x_2 + 3x_3 + 4x_4 + x_7 = 420$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$

Tableau d'origine :

$$3x_1 + 2x_2 + x_3 + 2x_4 + x_5 = 255$$

$$x_1 + x_2 + x_3 + x_4 + x_6 = 117$$

$$4x_1 + 3x_2 + 3x_3 + 4x_4 + x_7 = 420$$

$$-z + 19x_1 + 13x_2 + 12x_3 + 17x_4 = 0$$

 \implies base réalisable = (x_5, x_6, x_7)

Tableau d'origine :

$$3x_1 + 2x_2 + x_3 + 2x_4 + x_5 = 255
x_1 + x_2 + x_3 + x_4 + x_6 = 117
4x_1 + 3x_2 + 3x_3 + 4x_4 + x_7 = 420
-z + 19x_1 + 13x_2 + 12x_3 + 17x_4 = 0$$

Première itération : | faire entrer x_1 et sortir x_5 :

$$\begin{vmatrix} x_1 \\ x_1 \end{vmatrix} + \frac{2}{3}x_2 + \frac{1}{3}x_3 + \frac{2}{3}x_4 + \frac{1}{3}x_5 \\ \frac{1}{3}x_2 + \frac{2}{3}x_3 + \frac{1}{3}x_4 - \frac{1}{3}x_5 + x_6 \\ \frac{1}{3}x_2 + \frac{5}{3}x_3 + \frac{4}{3}x_4 - \frac{4}{3}x_5 \end{vmatrix} = 80$$

$$-z + \frac{1}{3}x_2 + \frac{17}{3}x_3 + \frac{13}{3}x_4 - \frac{19}{3}x_5 = -1615$$

base
$$(\widehat{x_1},\widehat{x_6},\widehat{x_7})=(85,32,80)\Longrightarrow \widehat{x_2},\widehat{x_3},\widehat{x_4},\widehat{x_5}=0$$

opérations algébriques \Longrightarrow toute solution réalisable d'un tableau est aussi solution réalisable des tableaux précédents

base
$$(\widehat{x_1}, \widehat{x_6}, \widehat{x_7}) = (85, 32, 80) \Longrightarrow \widehat{x_2}, \widehat{x_3}, \widehat{x_4}, \widehat{x_5} = 0$$

opérations algébriques \Longrightarrow toute solution réalisable d'un tableau est aussi solution réalisable des tableaux précédents

Tableau d'origine :

$$3x_1 + 2x_2 + x_3 + 2x_4 + x_5 = 255$$

 $x_1 + x_2 + x_3 + x_4 + x_6 = 117$
 $4x_1 + 3x_2 + 3x_3 + 4x_4 + x_7 = 420$

base
$$(\widehat{x_1}, \widehat{x_6}, \widehat{x_7}) = (85, 32, 80) \Longrightarrow \widehat{x_2}, \widehat{x_3}, \widehat{x_4}, \widehat{x_5} = 0$$

opérations algébriques \Longrightarrow toute solution réalisable d'un tableau est aussi solution réalisable des tableaux précédents

Tableau d'origine :

$$3x_1 = 255$$

 $x_1 + x_6 = 117$
 $4x_1 + x_7 = 420$

base
$$(\widehat{x_1}, \widehat{x_6}, \widehat{x_7}) = (85, 32, 80) \Longrightarrow \widehat{x_2}, \widehat{x_3}, \widehat{x_4}, \widehat{x_5} = 0$$

opérations algébriques \Longrightarrow toute solution réalisable d'un tableau est aussi solution réalisable des tableaux précédents

Tableau d'origine :

$$3x_1 = 255$$
 $x_1 = 85$
 $x_1 + x_6 = 117$ $x_6 = 32$
 $4x_1 + x_7 = 420$ $x_7 = 80$

base
$$(\widehat{x_1}, \widehat{x_6}, \widehat{x_7}) = (85, 32, 80) \Longrightarrow \widehat{x_2}, \widehat{x_3}, \widehat{x_4}, \widehat{x_5} = 0$$

opérations algébriques ⇒ toute solution réalisable d'un tableau est aussi solution réalisable des tableaux précédents

Tableau d'origine :

$$3x_{1} = 255
x_{1} + x_{6} = 117
4x_{1} + x_{7} = 420
B$$

$$x_{1} = 85
x_{6} = 32
x_{7} = 80$$

$$x_1 = 85$$

 $x_6 = 32$
 $x_7 = 80$

base
$$(\widehat{x_1}, \widehat{x_6}, \widehat{x_7}) = (85, 32, 80) \Longrightarrow \widehat{x_2}, \widehat{x_3}, \widehat{x_4}, \widehat{x_5} = 0$$

opérations algébriques \Longrightarrow toute solution réalisable d'un tableau est aussi solution réalisable des tableaux précédents

Tableau d'origine :

$$3x_{1} = 255$$

$$x_{1} + x_{6} = 117$$

$$4x_{1} + x_{7} = 420$$
b

$$x_1 = 85$$
 $x_6 = 32$
 $x_7 = 80$

base
$$(\widehat{x_1}, \widehat{x_6}, \widehat{x_7}) = (85, 32, 80) \Longrightarrow \widehat{x_2}, \widehat{x_3}, \widehat{x_4}, \widehat{x_5} = 0$$

opérations algébriques \Longrightarrow toute solution réalisable d'un tableau est aussi solution réalisable des tableaux précédents

Tableau d'origine :

$$3x_1 = 255
x_1 + x_6 = 117
4x_1 + x_7 = 420
B$$

$$x_1 = 85$$
 $x_6 = 32$
 $x_7 = 80$
 $B^{-1}B$
 $B^{-1}b$

base
$$(\widehat{x}_1, \widehat{x}_6, \widehat{x}_7) = (85, 32, 80) \Longrightarrow \widehat{x}_2, \widehat{x}_3, \widehat{x}_4, \widehat{x}_5 = 0$$

opérations algébriques \Longrightarrow toute solution réalisable d'un tableau est aussi solution réalisable des tableaux précédents

Tableau d'origine :

$3x_1 = 255$ $x_1 + x_6 = 117$ $4x_1 + x_7 = 420$ B

Première itération :

$$x_1 = 85$$
 $x_6 = 32$
 $x_7 = 80$
 $B^{-1}B$
 $B^{-1}b$

 \implies les tableaux du simplexe s'expriment en fonction de B^{-1}

 problème à résoudre : max c^T x

s.c.
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

problème à résoudre :

$$\max c^T x$$
s.c.
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

• base réalisable $\Longrightarrow x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$:

$$x_B = (x_1, x_6, x_7)$$
 $x_N = (x_2, x_3, x_4, x_5)$

 problème à résoudre : max c^Tx

$$\max c' x$$

$$s.c. \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

• base réalisable $\Longrightarrow x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$:

$$x_B = (x_1, x_6, x_7)$$
 $x_N = (x_2, x_3, x_4, x_5)$

• A = [B N]:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ 3 & 2 & 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 4 & 3 & 3 & 4 & 0 & 0 & 1 \end{bmatrix}$$

• problème à résoudre :

$$\max c^T x$$
s.c.
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

• base réalisable $\Longrightarrow x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$:

$$x_B = (x_1, x_6, x_7)$$
 $x_N = (x_2, x_3, x_4, x_5)$

 \bullet A = [B N]:

$$\begin{bmatrix} 3 & 2 & 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 4 & 3 & 3 & 4 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$$

problème à résoudre :

$$\max_{s.c.} \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

• base réalisable $\Longrightarrow x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$:

$$x_B = (x_1, x_6, x_7)$$
 $x_N = (x_2, x_3, x_4, x_5)$

 \bullet A = [B N]:

$$\begin{bmatrix} 3 & 2 & 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 4 & 3 & 3 & 4 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 & 2 & 1 & 2 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 4 & 0 & 1 & 3 & 3 & 4 & 0 \end{bmatrix}$$

• problème à résoudre :

$$\max_{s.c.} \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

• base réalisable $\Longrightarrow x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$:

$$x_B = (x_1, x_6, x_7)$$
 $x_N = (x_2, x_3, x_4, x_5)$

 $\bullet A = [B N]$:

$$\begin{bmatrix} 3 & 2 & 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 4 & 3 & 3 & 4 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 & 2 & 1 & 2 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 4 & 0 & 1 & 3 & 3 & 4 & 0 \end{bmatrix}$$

 $\bullet \ Ax = Bx_B + Nx_N$

problème à résoudre :
 max c^Tx

$$s.c. \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

• base réalisable $\Longrightarrow x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$:

$$x_B = (x_1, x_6, x_7)$$
 $x_N = (x_2, x_3, x_4, x_5)$

• $A = [B \ N]$: $x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7$

$$\begin{bmatrix} 3 & 2 & 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 4 & 3 & 3 & 4 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 & 2 & 1 & 2 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 4 & 0 & 1 & 3 & 3 & 4 & 0 \end{bmatrix}$$

R

- $Ax = Bx_B + Nx_N$
- $\bullet \ Ax = b \Longrightarrow \ X_B = B^{-1}b B^{-1}Nx_N$

•
$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} \implies c^T = \begin{bmatrix} c_B^T & c_N^T \end{bmatrix}$$

 $z = c^T x = 19x_1 + 13x_2 + 12x_3 + 17x_4$
 $\implies c^T = \begin{bmatrix} 19 & 13 & 12 & 17 & 0 & 0 & 0 \end{bmatrix}$
 $\implies c_B^T = \begin{bmatrix} 19 & 0 & 0 \end{bmatrix} \text{ et } c_N^T = \begin{bmatrix} 13 & 12 & 17 & 0 \end{bmatrix}$

•
$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} \implies c^T = \begin{bmatrix} c_B^T & c_N^T \end{bmatrix}$$

 $z = c^T x = 19x_1 + 13x_2 + 12x_3 + 17x_4$
 $\implies c^T = \begin{bmatrix} 19 & 13 & 12 & 17 & 0 & 0 & 0 \end{bmatrix}$
 $\implies c_B^T = \begin{bmatrix} 19 & 0 & 0 \end{bmatrix} \text{ et } c_N^T = \begin{bmatrix} 13 & 12 & 17 & 0 \end{bmatrix}$
• $c^T x = c_B^T x_B + c_N^T x_N$

•
$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} \implies c^T = \begin{bmatrix} c_B^T & c_N^T \end{bmatrix}$$

 $z = c^T x = 19x_1 + 13x_2 + 12x_3 + 17x_4$
 $\implies c^T = \begin{bmatrix} 19 & 13 & 12 & 17 & 0 & 0 & 0 \end{bmatrix}$
 $\implies c_B^T = \begin{bmatrix} 19 & 0 & 0 \end{bmatrix} \text{ et } c_N^T = \begin{bmatrix} 13 & 12 & 17 & 0 \end{bmatrix}$

- $c^T x = c_B^T x_B + c_N^T x_N$
- $x_B = B^{-1}b B^{-1}Nx_N \Longrightarrow c_B^T x_B = c_B^T B^{-1}b c_B^T B^{-1}Nx_N$

•
$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} \implies c^T = \begin{bmatrix} c_B^T & c_N^T \end{bmatrix}$$

 $z = c^T x = 19x_1 + 13x_2 + 12x_3 + 17x_4$
 $\implies c^T = \begin{bmatrix} 19 & 13 & 12 & 17 & 0 & 0 & 0 \end{bmatrix}$
 $\implies c_B^T = \begin{bmatrix} 19 & 0 & 0 \end{bmatrix} \text{ et } c_N^T = \begin{bmatrix} 13 & 12 & 17 & 0 \end{bmatrix}$

- $x_B = B^{-1}b B^{-1}Nx_N \Longrightarrow c_B^T x_B = c_B^T B^{-1}b c_B^T B^{-1}Nx_N$
- $z = c_B^T x_B + c_N^T x_N \Longrightarrow z = c_B^T B^{-1} b c_B^T B^{-1} N x_N + c_N^T x_N$ $\Longrightarrow z = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$

Définition d'un dictionnaire

- B = base, N = hors base
- $x_B = B^{-1}b B^{-1}Nx_N$
- $z = c_B^T B^{-1} b + (c_N^T c_B^T B^{-1} N) x_N$

⇒ méthode révisée du simplexe

À chaque itération de l'algorithme :

- choisir une variable entrante
- 2 choisir une variable sortante $\implies (x_B, x_N)$
- 3 faire une mise à jour de la solution réalisable : $\widehat{x_B}$

Exemple:

$$\implies B = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \qquad \widehat{x_B} = B^{-1}b = \begin{bmatrix} \widehat{x_1} \\ \widehat{x_6} \\ \widehat{x_7} \end{bmatrix} = \begin{bmatrix} 85 \\ 32 \\ 80 \end{bmatrix}$$

prochaine variable entrante : une variable dont le coefficient dans z est positif \Longrightarrow calculer z

prochaine variable entrante : une variable dont le coefficient dans z est positif \Longrightarrow calculer z

calcul de
$$z = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$
:

prochaine variable entrante : une variable dont le coefficient dans z est positif \Longrightarrow calculer z

calcul de
$$z = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$
:

• calculer $y^T = c_B^T B^{-1} \Longrightarrow$ résoudre le système $y^T B = c_B^T$:

$$[y_1 \ y_2 \ y_3] \cdot \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} = C_B^T = [19 \ 0 \ 0] \Longrightarrow y^T = \begin{bmatrix} \frac{19}{3} & 0 & 0 \end{bmatrix}$$

prochaine variable entrante : une variable dont le coefficient dans z est positif \Longrightarrow calculer z

calcul de
$$z = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$
:

• calculer $y^T = c_B^T B^{-1} \Longrightarrow$ résoudre le système $y^T B = c_B^T$:

$$[y_1 \ y_2 \ y_3] \cdot \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} = c_B^T = [19 \ 0 \ 0] \Longrightarrow y^T = \begin{bmatrix} \frac{19}{3} \ 0 \ 0 \end{bmatrix}$$

2 calculer $h^T = y^T N$:

$$h^{T} = y^{T} N = \begin{bmatrix} \frac{19}{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 3 & 3 & 4 & 0 \end{bmatrix} = \begin{bmatrix} \frac{38}{3} & \frac{19}{3} & \frac{38}{3} & \frac{19}{3} \end{bmatrix}$$

prochaine variable entrante : une variable dont le coefficient dans z est positif \Longrightarrow calculer z

calcul de
$$z = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$
:

• calculer $y^T = c_B^T B^{-1} \Longrightarrow$ résoudre le système $y^T B = c_B^T$:

$$[y_1 \ y_2 \ y_3] \cdot \begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} = C_B^T = [19 \ 0 \ 0] \Longrightarrow y^T = \begin{bmatrix} \frac{19}{3} \ 0 \ 0 \end{bmatrix}$$

2 calculer $h^T = y^T N$:

$$h^T = y^T N = \begin{bmatrix} \frac{19}{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 3 & 3 & 4 & 0 \end{bmatrix} = \begin{bmatrix} \frac{38}{3} & \frac{19}{3} & \frac{38}{3} & \frac{19}{3} \end{bmatrix}$$

3 calculer $\hat{c}_N^T = c_N^T - c_B^T B^{-1} N = c_N^T - h^T$: $\hat{c}_N^T = \begin{bmatrix} 13 & 12 & 17 & 0 \end{bmatrix} - \begin{bmatrix} \frac{38}{3} & \frac{19}{3} & \frac{38}{3} & \frac{19}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$

$$\Longrightarrow \widehat{c}_N^T = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

Après la première itération du simplexe :

$$\begin{vmatrix} x_1 \\ + \frac{2}{3}x_2 + \frac{1}{3}x_3 + \frac{2}{3}x_4 + \frac{1}{3}x_5 \\ \frac{1}{3}x_2 + \frac{2}{3}x_3 + \frac{1}{3}x_4 - \frac{1}{3}x_5 + x_6 \\ \frac{1}{3}x_2 + \frac{5}{3}x_3 + \frac{4}{3}x_4 - \frac{4}{3}x_5 \end{vmatrix} = 85$$

$$-z + \frac{1}{3}x_2 + \frac{17}{3}x_3 + \frac{13}{3}x_4 - \frac{19}{3}x_5 = -1615$$

$$\widehat{c}_N^T = c_N^T - c_B^T B^{-1} N$$
 = coeffs hors base de la fonction objectif pour la base (x_1, x_6, x_7)

$$\widehat{\boldsymbol{c}}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

choix de la variable entrante : n'importe quelle variable de coeff positif dans \widehat{c}_N^T

$$\widehat{\boldsymbol{c}}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

$$\widehat{c}_{N}^{T} = c_{N}^{T} - c_{B}^{T}B^{-1}N = c_{N}^{T} - y^{T}N$$

$$= \begin{bmatrix} 13 & 12 & 17 & 0 \end{bmatrix} - \begin{bmatrix} \frac{19}{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 3 & 3 & 4 & 0 \end{bmatrix}$$

$$\widehat{\boldsymbol{c}}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

$$\widehat{c}_{N}^{T} = c_{N}^{T} - c_{B}^{T} B^{-1} N = c_{N}^{T} - y^{T} N
= \begin{bmatrix} 13 & 12 & 17 & 0 \end{bmatrix} - \begin{bmatrix} \frac{19}{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 3 & 3 & 4 & 0 \end{bmatrix}
= \begin{bmatrix} \frac{1}{3} \end{bmatrix}$$

$$\widehat{\boldsymbol{c}}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

$$\widehat{c}_{N}^{T} = c_{N}^{T} - c_{B}^{T} B^{-1} N = c_{N}^{T} - y^{T} N
= [13 \ 12 \ 17 \ 0] - \begin{bmatrix} \frac{19}{3} \ 0 \ 0 \end{bmatrix} \begin{bmatrix} 2 \ 1 \ 2 \ 1 \\ 1 \ 1 \ 1 \ 0 \\ 3 \ 3 \ 4 \ 0 \end{bmatrix}
= \begin{bmatrix} \frac{1}{3} \ \frac{17}{3} \end{bmatrix}$$

$$\widehat{\boldsymbol{c}}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

$$\widehat{c}_{N}^{T} = c_{N}^{T} - c_{B}^{T}B^{-1}N = c_{N}^{T} - y^{T}N
= [13 12 17 0] - \begin{bmatrix} \frac{19}{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 3 & 3 & 4 & 0 \end{bmatrix}
= \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} \end{bmatrix}$$

$$\widehat{\boldsymbol{c}}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

$$\widehat{c}_{N}^{T} = c_{N}^{T} - c_{B}^{T}B^{-1}N = c_{N}^{T} - y^{T}N
= [13 12 17 0] - [\frac{19}{3} 0 0] \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 3 & 3 & 4 & 0 \end{bmatrix}
= [\frac{1}{3} \frac{17}{3} \frac{13}{3} \frac{-19}{3}]$$

$$\widehat{c}_N^T = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

choix de la variable entrante : n'importe quelle variable de coeff positif dans \widehat{c}_N^T

$$\widehat{c}_{N}^{T} = c_{N}^{T} - c_{B}^{T} B^{-1} N = c_{N}^{T} - y^{T} N
= [13 \ 12 \ 17 \ 0] - \left[\frac{19}{3} \ 0 \ 0\right] \begin{bmatrix} 2 \ 1 \ 2 \ 1 \\ 1 \ 1 \ 1 \ 0 \\ 3 \ 3 \ 4 \ 0 \end{bmatrix}
= \left[\frac{1}{3} \ \frac{17}{3} \ \frac{13}{3} \ \frac{-19}{3}\right]$$

 \Longrightarrow on n'est pas obligé de calculer tout \widehat{c}_N^T :

e.g., calculer \hat{c}_N^T colonne par colonne et s'arrêter quand on a un nombre positif

$$\widehat{\boldsymbol{c}}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

$$\widehat{C}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix} \qquad \widehat{x_{B}} = B^{-1}b = \begin{bmatrix} \widehat{x_{1}} \\ \widehat{x_{6}} \\ \widehat{x_{7}} \end{bmatrix} = \begin{bmatrix} 85 \\ 32 \\ 80 \end{bmatrix}$$

choix de la variable entrante : x_3

 \implies augmenter la valeur de x_3 tout en assurant que les valeurs de x_R restent positives

$$Bx_B + Nx_N = b \Longrightarrow x_B = B^{-1}b - B^{-1}Nx_N$$

$$\widehat{\boldsymbol{c}}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix}$$

$$\widehat{c}_{N}^{T} = \begin{bmatrix} \frac{1}{3} & \frac{17}{3} & \frac{13}{3} & \frac{-19}{3} \end{bmatrix} \qquad \widehat{x_{B}} = B^{-1}b = \begin{bmatrix} \widehat{x_{1}} \\ \widehat{x_{6}} \\ \widehat{x_{7}} \end{bmatrix} = \begin{bmatrix} 85 \\ 32 \\ 80 \end{bmatrix}$$

$$3x_1 + 2x_2 + x_3 + 2x_4 + x_5 = 255$$

$$x_1 + x_2 + x_3 + x_4 + x_6 = 117$$

$$4x_1 + 3x_2 + 3x_3 + 4x_4 + x_7 = 420$$

$$-z + 19x_1 + 13x_2 + 12x_3 + 17x_4 = 0$$

choix de la variable entrante : x_3

 \implies augmenter la valeur de x_3 tout en assurant que les valeurs de x_R restent positives

$$Bx_B + Nx_N = b \Longrightarrow x_B = B^{-1}b - B^{-1}Nx_N$$

soit a la colonne de N correspondant à $x_3 \Longrightarrow x_B = B^{-1}b - B^{-1}ax_3$

soit *a* la colonne de *N* correspondant à $x_3 \Longrightarrow x_B = B^{-1}b - B^{-1}ax_3$

calcul de
$$d = B^{-1}a$$
: résoudre $Bd = a$):

$$\begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \Longrightarrow d = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix}$$

soit *a* la colonne de *N* correspondant à $x_3 \Longrightarrow x_B = B^{-1}b - B^{-1}ax_3$

calcul de
$$d = B^{-1}a$$
: résoudre $Bd = a$:

$$\begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \Longrightarrow d = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix}$$

$$\implies \begin{bmatrix} x_1 \\ x_6 \\ x_7 \end{bmatrix} = \begin{bmatrix} 85 \\ 32 \\ 80 \end{bmatrix} - x_3 \times \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

soit *a* la colonne de *N* correspondant à $x_3 \Longrightarrow x_B = B^{-1}b - B^{-1}ax_3$

calcul de
$$d = B^{-1}a$$
: résoudre $Bd = a$:

$$\begin{bmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \Longrightarrow d = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix}$$

$$\implies \begin{bmatrix} x_1 \\ x_6 \\ x_7 \end{bmatrix} = \begin{bmatrix} 85 \\ 32 \\ 80 \end{bmatrix} - x_3 \times \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 \implies valeur max de x_3 = 48 (ligne de x_6) \implies x_6 sort de la base

$$d = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix}$$

Après la première itération du simplexe :

$$\begin{vmatrix} x_1 \\ +\frac{2}{3}x_2 + \frac{1}{3}x_3 + \frac{2}{3}x_4 + \frac{1}{3}x_5 \\ \frac{1}{3}x_2 + \frac{2}{3}x_3 + \frac{1}{3}x_4 - \frac{1}{3}x_5 + x_6 \\ \frac{1}{3}x_2 + \frac{5}{3}x_3 + \frac{4}{3}x_4 - \frac{4}{3}x_5 \end{vmatrix} = 85$$

$$-z + \frac{1}{3}x_2 + \frac{17}{3}x_3 + \frac{13}{3}x_4 - \frac{19}{3}x_5$$

$$= -1615$$

 \implies d = colonne de x_3 après la première itération du simplexe

Après la première itération du simplexe :

$$\begin{vmatrix}
x_1 \\
+\frac{1}{2}x_2 \\
\frac{1}{2}x_2 + x_3
\end{vmatrix} + \frac{1}{2}x_4 + \frac{1}{2}x_5 - \frac{1}{2}x_6 \\
+\frac{1}{2}x_4 - \frac{1}{2}x_5 + \frac{3}{2}x_6
\end{vmatrix} = 69$$

$$-\frac{1}{2}x_2 + \frac{1}{2}x_4 - \frac{1}{2}x_5 - \frac{5}{2}x_6 + x_7 = 0$$

$$-z - \frac{5}{2}x_2 + \frac{3}{2}x_4 - \frac{7}{2}x_5 - \frac{17}{2}x_6$$

$$= -1887$$

$$d = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix} \Longrightarrow \widehat{x_B} - 48 \times d = \begin{bmatrix} 85 \\ 32 \\ 80 \end{bmatrix} - 48 \times \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix} = \begin{bmatrix} 69 \\ 0 \\ 0 \end{bmatrix}$$

Après la première itération du simplexe :

$$\begin{vmatrix} x_1 \\ \frac{1}{2}x_2 \\ -\frac{1}{2}x_2 + \end{vmatrix} x_3 \begin{vmatrix} +\frac{1}{2}x_4 + \frac{1}{2}x_5 - \frac{1}{2}x_6 \\ +\frac{1}{2}x_4 - \frac{1}{2}x_5 + \begin{vmatrix} \frac{3}{2}x_6 \\ \frac{1}{2}x_2 \end{vmatrix} = 69$$

$$\begin{vmatrix} -\frac{1}{2}x_2 \\ +\frac{1}{2}x_4 - \frac{1}{2}x_5 - \frac{5}{2}x_6 + x_7 \end{vmatrix} = 0$$

$$\begin{vmatrix} -z \\ -\frac{5}{2}x_2 \\ +\frac{3}{2}x_4 - \frac{7}{2}x_5 - \frac{17}{2}x_6 \end{vmatrix} = -1887$$

$$d = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix} \Longrightarrow \widehat{x_B} - 48 \times d = \begin{bmatrix} 85 \\ 32 \\ 80 \end{bmatrix} - 48 \times \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{5}{3} \end{bmatrix} = \begin{bmatrix} 69 \\ 0 \\ 0 \end{bmatrix}$$

 $\widehat{x_B} - 48d \Longrightarrow$ valeurs des variables en base \Longrightarrow nouvel $\widehat{x_B}$

Itération de l'algorithme révisé du simplexe

B = base courante $\widehat{x_B}$ = valeur de la solution courante

• calculer y^T tel que $y^TB = c_B^T (\Longrightarrow y^T = c_B^TB^{-1})$

- B = base courante $\widehat{x_B}$ = valeur de la solution courante
 - calculer y^T tel que $y^TB = c_B^T (\Longrightarrow y^T = c_B^TB^{-1})$
 - choisir une colonne entrante : n'importe quelle colonne a de N telle que $c_a^T > y^T a$, où $c_a^T = \text{coeff de la colonne } a$ dans c^T

- B = base courante $\widehat{x_B}$ = valeur de la solution courante
- calculer y^T tel que $y^TB = c_B^T \iff y^T = c_B^TB^{-1}$
- choisir une colonne entrante : n'importe quelle colonne a de N telle que $c_a^T > y^T a$, où $c_a^T = \text{coeff de la colonne } a$ dans c^T
- 3 calculer d tel que Bd = a ($\Longrightarrow d \approx$ valeur de la colonne a après itération du simplexe)

- B = base courante $\widehat{x_B}$ = valeur de la solution courante
 - calculer y^T tel que $y^TB = c_B^T (\Longrightarrow y^T = c_B^TB^{-1})$
- choisir une colonne entrante : n'importe quelle colonne a de N telle que $c_a^T > y^T a$, où $c_a^T = \text{coeff de la colonne } a$ dans c^T
- 3 calculer d tel que Bd = a ($\Longrightarrow d \approx$ valeur de la colonne a après itération du simplexe)
- trouver le plus grand nombre t tel que $\widehat{x_B} td \ge 0$
 - si $t = +\infty$: problème non borné
 - sinon : au moins 1 ligne = 0 ⇒ variable sortant de la base

- B = base courante $\widehat{x_B}$ = valeur de la solution courante
- calculer y^T tel que $y^TB = c_B^T \iff y^T = c_B^TB^{-1}$
- choisir une colonne entrante : n'importe quelle colonne a de N telle que $c_a^T > y^T a$, où $c_a^T = \text{coeff de la colonne } a$ dans c^T
- 3 calculer d tel que Bd = a ($\Longrightarrow d \approx$ valeur de la colonne a après itération du simplexe)
- **1** Itouver le plus grand nombre t tel que $\widehat{x_B} td \ge 0$
 - si $t = +\infty$: problème non borné
 - ullet sinon : au moins 1 ligne = 0 \Longrightarrow variable sortant de la base
- **1** remplacer $\widehat{x_B}$ par $\widehat{x_B} td$, puis la ligne correspondant à la variable sortante par t

- B = base courante $\widehat{x_B}$ = valeur de la solution courante
- calculer y^T tel que $y^TB = c_B^T \iff y^T = c_B^TB^{-1}$
- choisir une colonne entrante : n'importe quelle colonne a de N telle que $c_a^T > y^T a$, où $c_a^T = \text{coeff de la colonne } a$ dans c^T
- 3 calculer d tel que Bd = a ($\Longrightarrow d \approx$ valeur de la colonne a après itération du simplexe)
- trouver le plus grand nombre t tel que $\widehat{x_B} td \ge 0$
 - si $t = +\infty$: problème non borné
 - sinon : au moins 1 ligne = 0 ⇒ variable sortant de la base
- remplacer $\widehat{x_B}$ par $\widehat{x_B} td$, puis la ligne correspondant à la variable sortante par t
- remplacer dans *B* la colonne de la variable sortante par celle de la variable entrante

Efficacité de l'algo révisé : calcul de $y^TB = c_B^T$ et de Bd = a

Efficacité de l'algo révisé : calcul de $y^TB = c_B^T$ et de Bd = a

- B_k: base après k itérations
- B_k ne diffère de B_{k-1} que par la colonne a rentrant à l'itération k

Efficacité de l'algo révisé : calcul de $y^TB = c_B^T$ et de Bd = a

- B_k: base après k itérations
- B_k ne diffère de B_{k-1} que par la colonne a rentrant à l'itération k
- supp que la colonne de a dans B_k soit la pème
- a est la colonne qui rentre \implies à la kème itération, $B_{k-1}d = a$

Efficacité de l'algo révisé : calcul de $y^TB = c_B^T$ et de Bd = a

- B_k: base après k itérations
- B_k ne diffère de B_{k-1} que par la colonne a rentrant à l'itération k
- supp que la colonne de a dans B_k soit la pème
- a est la colonne qui rentre \implies à la kème itération, $B_{k-1}d = a$

calcul de B_k

- E_k = matrice unité dont la pème colonne est remplacée par d
- $\bullet \ B_k = B_{k-1}E_k$

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 1 & 5 \\ 4 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

- $B_0 = I$
- \bullet $B_1 = E_1$
- \bullet $B_2 = E_1 E_2$
- \bullet $B_3 = E_1 E_2 E_3$
- **....**

- $B_0 = I$
- \bullet $B_1 = E_1$
- \bullet $B_2 = E_1 E_2$
- \bullet $B_3 = E_1 E_2 E_3$
-

- $B_0 = I$
- \bullet $B_1 = E_1$
- \bullet $B_2 = E_1 E_2$
- \bullet $B_3 = E_1 E_2 E_3$
- **.....**
- \bullet $(\dots(((y^TE_1)E_2)E_3)\dots E_k) = c_B^T$

- $B_0 = I$
- \bullet $B_1 = E_1$
- \bullet $B_2 = E_1 E_2$
- \bullet $B_3 = E_1 E_2 E_3$
- **.....**
- $(...(((y^TE_1)E_2)E_3)...E_k) = c_B^T$
- calcul de y: $y_k^T E_k = c_B^T$
 - **2** $y_{k-1}^T E_{k-1} = y_k^T$
 - $y_{k-2}^T E_{k-2} = y_{k-1}^T$
 - 4
 - $y^T E_1 = y_2^T$

$$\begin{bmatrix} y_k^1 & y_k^2 & y_k^3 & y_k^4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 5 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 32 & 4 & 1 \end{bmatrix}$$

$$\begin{bmatrix} y_k^1 & y_k^2 & y_k^3 & y_k^4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 5 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 32 & 4 & 1 \end{bmatrix}$$

$$\begin{bmatrix} y_k^1 & y_k^2 & y_k^3 & y_k^4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 5 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 32 & 4 & 1 \end{bmatrix}$$

$$\implies \begin{bmatrix} y_k^1 \\ y_k^2 \\ y_k^3 \\ y_k^4 \end{bmatrix} = \begin{bmatrix} 3 \\ \end{bmatrix}$$

$$\begin{bmatrix} y_k^1 & y_k^2 & y_k^3 & y_k^4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 5 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 32 & 4 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} y_k^1 \\ y_k^2 \\ y_k^3 \\ y_k^4 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ \end{bmatrix}$$

$$\begin{bmatrix} y_k^1 & y_k^2 & y_k^3 & y_k^4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 5 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 32 & 4 & 1 \end{bmatrix}$$

$$\implies \begin{bmatrix} y_k^1 \\ y_k^2 \\ y_k^3 \\ y_k^4 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} y_k^1 & y_k^2 & y_k^3 & y_k^4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 5 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 32 & 4 & 1 \end{bmatrix}$$

$$\implies \begin{bmatrix} y_k^1 \\ y_k^2 \\ y_k^3 \\ y_k^4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 4 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} y_k^1 & y_k^2 & y_k^3 & y_k^4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 5 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 32 & 4 & 1 \end{bmatrix}$$

$$\implies \begin{vmatrix} y_k^1 \\ y_k^2 \\ y_k^3 \\ y_k^4 \end{vmatrix} = \begin{vmatrix} 3 \\ 2 \\ 4 \\ 1 \end{vmatrix}$$

$$\implies$$
 seul y_k^2 nécessite un calcul :
$$\begin{cases} s-1 \text{ additions} \\ s-1 \text{ multiplications} \\ 1 \text{ division} \end{cases}$$

En pratique:

- lorsque $B_0 \neq I$: factorisations triangulaires de B_0
- en général : factorisation de B_k à l'aide des E_k plus rapide que le calcul de B_{ν}^{-1}
- si ça n'est plus le cas (trop d'itérations) : refactoriser B_k comme si c'était un nouveau B_0

méthode révisée plus rapide que la méthode standard sur de grosses instances