Equilíbrio de Solubilidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1 Equilíbrio de Solubilidade

- 1. Produto de solubilidade
- 2. Efeito do íon-comum.
- 3. Formação de íons complexos.

1.0.1 Habilidades

- a. **Calcular** a constante do produto de solubilidade para um sal pouco solúvel em função de sua concentração molar.
- b. **Calcular** a solubilidade de um sal em função de sua constante do produto de solubilidade.
- c. Calcular a solubilidade de um sal em presença de íon comum.
- d. Calcular a solubilidade de um íon em presença de formação de complexos.

2 Precipitação

- 1. Predição de precipitação.
- 2. Precipitação seletiva.

2.0.1 Habilidades

- a. Determinar o precipitado formado quando soluções são misturadas.
- b. Determinar a ordem de precipitação quando um íon comum é adicionado a uma solução com diferentes íons.

Nível I

PROBLEMA 2.1

2J01

A solubilidade molar do cromato de prata é 65 μ mol L $^{-1}$ a 25 $^{\circ}$ C.

 $\boldsymbol{Assinale}$ a alternativa que mais se aproxima do K_{ps} do cromato de prata.

PROBLEMA 2.2

2302

A solubilidade molar do iodato de chumbo (II) é $40\,\mu\text{mol}\,L^{-1}$ a $25\,^{\circ}\text{C}.$

 $\boldsymbol{Assinale}$ a alternativa que mais se aproxima do K_{ps} do cromato de prata.

PROBLEMA 2.3 2303

Assinale a alternativa que mais se aproxima da solubilidade do iodato de cromo (III) a 25 °C.

Dados

• $K_{ps}(Cr(IO_3)_3) = 5 \times 10^{-6}$

PROBLEMA 2.4

2J04

Assinale a alternativa que mais se aproxima da solubilidade do sulfato de prata a 25 °C.

Dados

• $K_{ps}(Ag_2SO_4) = 1.4 \times 10^{-5}$

PROBLEMA 2.5

2J05

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de prata em uma solução $1\times 10^{-4}\, mol\, L^{-1}$ em cloreto de sódio a 25 °C.

Dados

•
$$K_{ps}(AgCl) = 1.6 \times 10^{-10}$$

PROBLEMA 2.6

2J06

Assinale a alternativa que mais se aproxima da solubilidade do carbonato de cálcio em uma solução $0,2\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cloreto de cálcio a 25 °C.

Dados

•
$$K_{ps}(CaCO_3) = 8.7 \times 10^{-9}$$

PROBLEMA 2.7

2J07

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de zinco em pH = 6 a 25 °C.

Dados

•
$$K_{ps}(Zn(OH)_2) = 2 \times 10^{-17}$$

PROBLEMA 2.8 2308

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de alumínio em pH = 4,5 a 25 °C.

Dados

• $K_{ps}(Al(OH)_3) = 1 \times 10^{-33}$

PROBLEMA 2.9

2J09

Assinale a alternativa que mais se aproxima da solubilidade do carbonato de magnésio em uma solução $3\,\mathrm{mmol}\,\mathrm{L}^{-1}$ em nitrato de magnésio.

Dados

• $K_{ps}(MgCO_3) = 1 \times 10^{-5}$

PROBLEMA 2.10

2J10

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de cobre (I) em uma solução $1,5 \, \text{mmol} \, \text{L}^{-1}$ em cloreto de potássio.

Dados

• $K_{ps}(CuCl) = 1 \times 10^{-6}$

PROBLEMA 2.11

2J11

Quando um amônia é adicionada à uma solução que contém íons prata, ocorre a formação do omplexo de coordenação:

$$Ag^{+}(aq) + 2NH_{3}(aq) \Longrightarrow Ag(NH_{3})_{2}^{+}(aq) \quad K_{f} = 1,6 \times 10^{7}$$

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de prata em uma solução $0.1 \, \text{mol} \, \text{L}^{-1}$ em amônia.

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

PROBLEMA 2.12

2J12

Quando um amônia é adicionada à uma solução que contém íons cobre, ocorre a formação do complexo de coordenação:

$$Cu^{2+}(aq) + 4NH_3(aq) \Longrightarrow Cu(NH_3)_4^{2+}(aq)$$
 $K_f = 1,2 \times 10^{13}$

Assinale a alternativa que mais se aproxima da solubilidade do sulfeto de cobre (II) em uma solução $1,2 \text{ mol L}^{-1}$ em amônia.

Dados

• $K_{ps}(CuS) = 1.3 \times 10^{-36}$

PROBLEMA 2.13

2J13

Assinale a alternativa que mais se aproxima da massa de nitrato de prata que precisa ser adicionada a $100\,\mathrm{mL}$ de uma solução $1\times10^{-5}\,\mathrm{mol}\,\mathrm{L}^{-1}$ de cloreto de sódio para o início da precipitação.

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

PROBLEMA 2.14

2J14

Assinale a alternativa que mais se aproxima da massa de iodeto de potássio que precisa ser adicionada a 25 mL de uma solução $1 \times 10^{-5} \, \text{mol L}^{-1}$ de cloreto de sódio para o início da precipitação.

Dados

• $K_{ps}(PbI_2) = 1.4 \times 10^{-8}$

PROBLEMA 2.15

2J15

Assinale a alternativa correta a respeito da precipitação de hidróxido de níquel em uma solução $0,06 \, \text{mol} \, \text{L}^{-1}$ em cátions níquel (II).

Dados

• $K_{DS}(Ni(OH)_2) = 6.5 \times 10^{-18}$

PROBLEMA 2.16

2J16

Assinale a alternativa correta a respeito da precipitação de hidróxido de níquel em uma solução $1 \, \text{mmol} \, \text{L}^{-1}$ em cátions ferro (III).

Dados

• $K_{ps}(Fe(OH)_3) = 2 \times 10^{-39}$

PROBLEMA 2.17

2J17

Hidróxido de sódio é adicionado progressivamente a uma amostra contendo $0,05\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cátions magnésio e $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cátions cálcio.

Assinale a alternativa que mais se aproxima da concentração do primeiro íon a precipitar que permanece em solução quando o segundo precipita.

Dados

- $K_{ps}(Ca(OH)_2) = 5.5 \times 10^{-6}$
- $K_{ps}(Mg(OH)_2) = 1.1 \times 10^{-11}$

PROBLEMA 2.18

2J18

Sulfato de sódio é adicionado progressivamente a uma amostra contendo $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cátions bário e $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cátions chumbo (II).

Assinale a alternativa que mais se aproxima da concentração do primeiro íon a precipitar que permanece em solução quando o segundo precipita.

Dados

- $\bullet \ \ \mathsf{K}_{ps}(\mathsf{BaSO}_4) = \mathsf{1,1} \times 10^{-10}$
- $K_{ps}(PbSO_4) = 1.6 \times 10^{-8}$

Nível II

PROBLEMA 2.19

2J19

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de ferro (III) a $25\,^{\circ}$ C.

Dados

• $K_{ps}(Fe(OH)_3) = 2 \times 10^{-39}$

PROBLEMA 2.20

2J20

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de alumínio a 25 °C.

Dados

• $K_{ps}(Al(OH)_3) = 1 \times 10^{-33}$

PROBLEMA 2.21

2J21

Assinale a alternativa que mais se aproxima da solubilidade do fluoreto de cálcio em pH = 3.

Dados

- $K_a(HF) = 3.5 \times 10^{-4}$
- $K_{ps}(CaF_2) = 4 \times 10^{-11}$

Uma amostra de $500 \, \text{mL}$ de uma solução $0,01 \, \text{mol L}^{-1}$ em nitrato de prata é misturada com $500 \, \text{mL}$ de outra solução contendo $0,005 \, \text{mol}$ de cloreto de sódio e $0,005 \, \text{mol}$ de brometo de sódio.

Determine a concentração de todas as espécies em solução no equilíbrio.

Dados

- $K_{ps}(AgBr) = 7.7 \times 10^{-13}$
- $\bullet \ \ K_{ps}(\text{AgCl}) = 1\text{,}6\times 10^{-10}$

PROBLEMA 2.23

2J23

Uma amostra contendo 0,1 mol de nitrato de cálcio, 0,1 mol de nitrato de bário e 0,15 mol de sulfato de sódio foram adicionados em 600 mL de água destilada.

Determine a concentração de todas as espécies em solução no equilíbrio.

Dados

- $K_{ps}(BaSO_4) = 1,1 \times 10^{-10}$
- $K_{ps}(CaSO_4) = 2.4 \times 10^{-5}$

Gabarito

Nível I

- 1. C 2. B 3. B 4. A 5. D
- 6. D 7. B 8. B 9. B 10. B 11. B 12. B 13. B 14. B 15. D
- 16. D 17. B 18. E

Nível II

- 1. B
- 2. B
- 3. C
- 4. -
- 5. -