1

TRANSFORMATION DE LAPLACE

A-Intégrale de Laplace
B-Propriétés de la Transformation
de Laplace
C-Transformation de Laplace inverse
D-Propriétés de la Transformation
de Laplace inverse

A-Intégrale de Laplace

Rappel:

La transformée de Fourier de s(t), notée S(f), s'écuit: $S(f) = \int s(t) \cdot e^{-j2\Pi f r} dr$

La transformée de Fourier inverse s'écuit.

$$s(t) = \int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{+\infty} f$$

La transformée de tourier n'existe que si l'intégrale qui permet de la calculer est convergente (valeur finie)

Sinon, on peut rendre cette intégrale convergente en multipliant s(t) par e-o.t.

o valeur réelle positive appelée "rayon de convergence"

=> définition d'une nouvelle grandeur, appelée "fréquence complexe": p= o + j2TTf 1. Définition

Soit f une function de la variable réelle $x \in \mathbb{R}$ et supposée mulle pour x < 0

La transformée de Laplace F(p) de la fonction f(x) est définie par : $F(p) = \int_{-\infty}^{+\infty} e^{-px} f(sx) dsx$

p est une variable complexe

On éait: F(p) = 2[6x]

Fp) anni applée mage de fa,

L'application & Les Fest la transformation de Laplace.

Pour que la transformée de Laplace de f(x) existe, il fant que l'intégrale set plus de soit convergente.

Pour cela, il fant que f:

- soit continue par morceaux sur tout Germé [O, x.o],

- soit d'orche exponentiel à l'infimi, cad qu'il existe M>0 et L tels que:

 $|f(x)| < Me^{x}$ pour x > X

Dans ce cas, la transformée de Laplace est définie pour $p > \lambda$, ou si p est complexe, pour $Re(p) > \lambda$. Le domaine de convergence de F(p) est donc l'ouvert $J\lambda$, $t\infty I$ ou le demi-plan complexe cléfini par $Re(p) > \lambda$.

2. Exemples.

$$\begin{cases} U(\alpha) = \Lambda & \text{si } \alpha > 0 \\ U(\alpha) = 0 & \text{si } n < 0 \end{cases}$$

2) Fonction impulsion unité (ou distribution de Dirac)

$$\begin{cases}
\int_{\varepsilon}^{\varepsilon} (x) = \frac{1}{\varepsilon} & \text{si } x \in [0, \varepsilon] \\
\int_{\varepsilon}^{\varepsilon} (x) = 0 & \text{si } x \notin [0, \varepsilon]
\end{cases}$$

3) Fonction puissance

$$\begin{cases}
f(\alpha) = \alpha^m & \text{si } x > 0 & (n \in \mathbb{N}) \\
f(\alpha) = 0 & \text{si } x < 0
\end{cases}$$

4) Fonction exponentielle $\int f(x) = e^{-\alpha x} \quad \text{si } x \gg 0 \quad (\alpha \text{ complexe})$ $\int f(x) = 0 \quad \text{si } x < 0$

Synthèse des résultats:

f(x)	F(P)	
U(x)	1 P	
S (x)	1	
χ^{d}	F(2+1) P2+1	([(nt)=n! sin (N)
e-ax	1 p+a	
Cos wac	p2+w2	
sin wx	$\frac{\omega}{\rho^2 + \omega^2}$	

Toutes ces fonctions sont supposées mulles pour x <0.

B-Propriétés de la transformation de Laplace

La transformation de Laplace
$$f = f = est$$
 linéaire:

 $f = f = f = est$ linéaire:

Soit
$$g(x) = f(ax)$$
 $a > 0$

$$\mathcal{L}[g(x)] = \int_{0}^{+\infty} e^{-px} f(ax) dx$$

On fait le changement de variable: an = t

$$\mathcal{L}[g(x)] = \int_{0}^{+\infty} e^{-\frac{t}{a}} f(t) d(\frac{t}{a}) = \frac{1}{a} \int_{0}^{+\infty} e^{-(\frac{t}{a})t} f(t) dt$$

Danc, si
$$\mathcal{L}[f(x)] = F(p)$$
 \Rightarrow $\mathcal{L}[f(ax)] = \frac{1}{a} F(f(a))$

3- Transformée de f(x-a) _ Translation

Soit
$$\int g(x) = \int (x-a)$$
 si $x \ge a$ and $a > 0$

$$\int g(x) = 0$$
 si $x < a$

$$\int f(x-a) = 0$$

$$\mathcal{L}[g(x)] = \int_{0}^{e^{-\rho x}} g(x) dx = \int_{a}^{+\infty} e^{-\rho x} f(x-a) dx$$

On fait le changement de maniable : $\alpha - \alpha = t$

$$\mathcal{L}\left[q(x)\right] = \int_{0}^{+\infty} e^{-p(a+t)} f(t) dt = e^{-pa} \int_{0}^{+\infty} e^{-pt} f(t) dt$$

$$Donc, si$$
 $\mathcal{L}[f(\alpha)] = F(p) \Rightarrow \mathcal{L}[g(\alpha)] = e^{-p\alpha} F(p)$

$$2\left[f(\alpha-\alpha)\right] = e^{-p\alpha} 2\left[f(\alpha)\right]$$

Le résultat est auni appelé "théorème du relaid".

4. Transformée de la dérivée

Si f' est continue par morceaux sur tout fermé $[0, \infty]$ et si 2[f(a)] = F(p), alors on a:

$$2\left[f_{6u}^{\prime}\right] = \rho F(\rho) - f(0+)$$

Démonstration:

$$2\left[f(x)\right] = \int_{0}^{+\infty} e^{-px} f(x) dx \quad \text{por definition}$$

$$2[f(x)] = [e^{-px}](x) + p \int_{0}^{+\infty} e^{-px} f(x) dx \quad integration$$
par porties

Comme lim
$$e^{-px} f(6c) = 0$$
 on a $\left[e^{-px} f(6c) \right]_{0}^{+\infty} = -f(0^{+})$

d'où:
$$2[f(\alpha)] = \rho^{-1}(\rho) - f(o^{+})$$
 cyfd.

De même, si l'éverifie à son tour les hypothèses du théorème:

$$\mathcal{L}[f'(x)] = \rho \mathcal{L}[f(x)] - f'(0^{+})$$

$$= \rho [\rho F(\rho) - f(0^{+})] - f'(0^{+})$$

$$= \rho^{2} F(\rho) - \rho f(0^{+}) - f'(0^{+})$$

De façon générale:

$$\mathcal{I}[f^{(n)}(a)] = p^{n-1}f(0^{+}) - p^{n-2}f'(0^{+}) \dots - f^{(n-1)}(0^{+})$$

Et dans le cas particulier où $f(o^+) = f'(o^+) = \dots = f^{(n-1)}(o^+) = o$,

ma:

$$\mathcal{L}[p^{(n)}(x)] = p^n F(p)$$

Dériver & correspond donc à multiplier F par p.

Remaque:

On a
$$\mathcal{L}[f(\alpha)] = \int_{0}^{\pi R} e^{-px} f(\alpha) dx = pf(p) - f(0), p \in \mathbb{R}$$

Si
$$\lim_{p\to +\infty} \int_{0}^{+\infty} f'(x) dx = 0$$
, alors $\lim_{p\to +\infty} f(p) = \int_{0}^{+\infty} f(x) dx = 0$

Si
$$\lim_{\rho \to 0} \int_{\rho}^{+\infty} f'(x) dx = \int_{\rho}^{$$

$$2\left[\int_{0}^{x}f(t)dt\right]=\frac{F(t)}{t}$$

Démonstration:

On pose
$$f(x) = \int_{0}^{x} f(r) dr$$

$$\Rightarrow f'(x) = f(x) \text{ et } f(0^{+}) = 0$$
On ana $\mathcal{L}[f'(x)] = \mathcal{L}[f(x)] - f(0^{+}) = \mathcal{L}[f(x)]$

pur ailleurs $\mathcal{L}[f'(x)] = \mathcal{L}[f(x)] = F(p)$

$$d'où \mathcal{L}[f'(x)] = f(p) \text{ cqfd.}$$

C-Transformation de Laplace invierse

Soit F(p) la transformée de Laplace d'une Barction B(x).

On appelle transformée de Laplace inverse, ou <u>original</u>, de F(p),

la fonction f(x):

$$g(\alpha) = 2^{-1} [F(p)]$$

" Si f(a) possède les propriétés énencées au début du

chapitre: - continue par morceaux sur tout fermé [0,26],
- d'ordre exponentiel à l'infini,

alors la transformée de laplace inverse f(x) d'une fonction F(p) est unique sur tout sous-ensemble ou

elle est continu.

D-Propriétés de la transformation de Laplace inverse

1_ Lineanté

L'inverse d'une application lineaire étant lineaire, on a:

Pour obtenir la transformée de Laplace inverse d'une fraction rationnelle $F(p) = \frac{N(p)}{N(p)}$ on utilise radécomposition en éléments simples.

Soit f(x) l'original de
$$F(p)$$
: $f(x) = 2^{-1}[F(p)]$

alors
$$2^{-1} \left[F(ap) \right] = \frac{1}{\alpha} f\left(\frac{x}{\alpha}\right)$$

alors
$$2^{-1}[F(p+a)] = e^{-ax}f(x)$$

alors
$$\mathbb{Z}^{-1}[F'(p)] = -\alpha f(\alpha)$$

alors
$$\left[\mathcal{L}^{-1} \left[F'(\rho) \right] = - \alpha f(\alpha) \right]$$
 et $\left[\mathcal{L}^{-1} \left[f'(\alpha) d\alpha \right] \right] = f(\alpha)$

Si
$$f(\alpha) = \mathcal{L}^{-1}[f(\rho)]$$
 et $g(\alpha) = \mathcal{L}^{-1}[g(\rho)]$,

alors
$$\left[\mathcal{L}^{-1} \left[F(p) \cdot G(p) \right] = \int_{0}^{\infty} f(t) \cdot g(x-t) dt \right]$$

convolution de f par q et est notée (f*q) (x)

6m a:
$$(f *g)(x) = (g *f)(x)$$

L'original du produit algébique de deux fonctions est clanc le produit de convolution des originaux.

Synthèse des propriétés des transformées de Loplace et de leurs inverses:

$f(x) = \frac{\mathcal{L}}{\mathcal{L}^{-1}} F(p)$		
26+19	AF +p9	
f (on)	1 F(fa)	
f(x-a). V(x-a) e-an. f(x)	e-ap. F(p) F(p+a)	
$\int_{-\infty}^{1} f(x)$ $-\infty \int_{0}^{1} f(x)$	PF(P)-f(0+) F'(P)	
f(r) dt f(x)	F(p) Soo F(u) du	
$\int_{0}^{\infty} f(t) g(x-t) dx$	F(p). G(p)	