

Sarah Alsubhi

ABSTRACT

The goal of this study is

To determin whether Arabic tweets
can classified either as displaying
positive, or negative sentiment with
considering emojies using different
models

WHAT IS SENTIMENT ANALYSIS

* Sentiment analysis lets you analyze the sentiment behind a given piece of text.

 It combines machine learning and natural language processing (NLP) to achieve this.

WHAT IS SENTIMENT ANALYSIS

- Sentiment analysis is a powerful technique in Artificial intelligence that has important business applications.
- * e.g. to understand your customers' attitude towards your product.

ARABIC SENTIMENT TWITTER CORPUS

58,000

This dataset we collected in April 2019. It contains 58K Arabic tweets (47K training, 11K test) tweets annotated in positive and negative labels. The dataset is balanced and collected using positive and negative emojis lexicon.

3.1 PREPROCCESSING

CLEANING THE DATA:

- * remove punctuations, longation
- remove URL, usernames
- * remove special characters, Numbers
- remove Tashkeel
- Remove stopwords
 - Tokenization and Stemming

	sentiment	tweets	Tokenized	stemmed
0	neg	اعترف ان بتس كانو شوي شوي يجيبو راسي اليوم بال	اعترف, ان, بتس, کانو, شوي, شوي, ,یجیبو, راسي	ا, ع, ت, ر, ف, , ا, ن, , ب, ت, س,] ,, ك, ا
1	neg	توقعت اذا جات داريا بشوفهم كاملين للحين احس اح	توقعت اذا جات داريا بشوفهم كاملين]للحين	ت, و, ق, ع, ت, , ا, ذ, ا, , ج, ا, ث,] ,, د
2	neg	الإهليالهلال اكتب توقعك لنتيجه لفّاء الهلال وال	الاهليالهلال, اكتب, توقعك, لنتيجه, لقاء,] الهل	ا, ل, ا, ه, ل, ي, ا, ل, ه, ل, ا, ل, ، , ا,] ك
3	neg	نعمه المصادات الحيويه تضع قطر ه ممصاد بنسلين بكت	نعمه, المضادات, الحيويه, تضع, قطره,] , أم, مضاد	ن, ع, م, ه, , ا, ل, م, ض, ا, د, ا, ت,] ,, ا
4	neg	💖 الدودو جايه نكمل علي	[💖 ,الدودو, جايه, تكمل, علي]	ا, ل, د, و, د, و, , ج, ا, ي, ه, , ت,] ,ك, م

3.1 PREPROCCESSING

BOW:

Get dataset bag-of-words counts as a vector using

COUNTVECTORIZER

```
from sklearn.feature_extraction.text import CountVectorizer
#get dataset bag-of-words counts as a vector
bow_transformer = CountVectorizer(analyzer=tokenize).fit(df['tweets'])
```

```
# BoW vector representation
messages_bow = bow_transformer.transform(df['tweets'])
```

3.2 FEATURES

TEXTUAL:

- Length of tweets
- Number of words count
- Number of characters
- * Number of sentences
- * Average words length
- * Average sentence length.

Tweets_len	word_count	char_count	avg_word_length	avg_sentence_lenght	
11	11	76	6.909091	11.0	N. N.
12	12	87	7.250000	12.0	
15	15	127	8.466667	15.0	

3.2 FEATURES

WORD EMBEDDING:

TfidfVectorizer on tweets

```
# make pipeline
pipe = make_pipeline(TfidfVectorizer(),
```

TfidfVectorizer on BoW

#transform the entire bag-of-words corpus into TF-IDF corpus
from sklearn.feature_extraction.text import TfidfTransformer
tfidf_transformer = TfidfTransformer().fit(messages_bow)

3.2 FEATURES

WORD EMBEDDING:

Testing Word2Vec

```
sample = model.wv["حسن"]

print(sample.shape)

#print(sample)

print(model.wv.most_similar("حسن"))

(,100)

(,993261158466 , 'فكن', (0.9943529367446899 , 'امري', (0.995944619178772 , 'اليقين', (0.9923 , 'المدن', (0.9929375052452087 , 'فكن') , (0.9930124878883362 , 'المدن', (2.9913020133972168 , 'اللهذا ) , (0.9913020133972168 ) , ('الصلاه', 0.9913020133972168 ) , ('الصلاه', 0.9913020133972168 )
```

3.3 MODELS

MACHINE LEARNING MODELS:

* LogisticRegression()

```
lr_ = LogisticRegression()
lr_.fit(X_train,y_train)
prediction = lr_.predict(X_test)
print(classification_report(y_test, prediction))
```


* MultinomialNB()

```
sentiment_model_ = MultinomialNB().fit(X_train, y_train)
prediction = sentiment_model_.predict(X_test)
print(classification_report(y_test, prediction))
```

3.3 MODELS

MACHINE LEARNING MODELS:

Word2Vec + LSTM

3.3 MODELS

MACHINE LEARNING MODELS:

```
Bi-I STM
model.add(layers.Embedding(input dim=500,
                           output dim=100,
                           input length=X.shape[1]))
model.add(layers.Bidirectional(layers.LSTM(100, dropout=0.5,
                                           recurrent dropout=0.5,
                                           return sequences=True)))
model.add(layers.GlobalMaxPool1D())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(dropout))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dropout(dropout))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dropout(dropout))
model.add(layers.Dense(1, activation='sigmoid'))
```


ML MODELS

Ó			LR	-TFI	DF	L	R-T	EXT	LR-E	SOW-TI	FIDF	NB-I	30W-TF	IDF	V
			Р	R	Fl	Р	R	F1	Р	R	F1	Р	R	F1	\
		Pos	71	82	76	53	48	50	96	81	88	87	79	83	
	CLASS	Neg	79	67	73	53	58	55	84	96	90	81	88	84	
AN AN		ACC		75			53	3		89	0.0		84		

DL MODELS

	W2U+	LSTM	BI-LSTM			
EVAL	LOSS	ACC	LOSS	ACC		
TRAIN	60	63	23	87		
TEST	60	63	22	87		

CHALLENG

Dealing with Arabic text

- Wordembedding :Aravec, word 2vec
- * resources

NEXT

Improving the models Experiment new models

