Contents

Flujos Y Ne	tworks.																						1
Grafos Dirigidos												1											
Defi	nición:																						1
	diferencia o	con ι	ın g	rafo	no	di	irie	gid	О														
																							2
Note	ación:																						2
Veci	nos Notación:						•			•													2
																							2
Network																							3
Defi	nición:																						3
"cap	oacidad"																						3
Flujos .																							4
Nota	ación para agi P	lizar	lect	ura	s de	e s	um	at	or	ias	S .									•		•	4
																							4
Note	ación para fun	cion	es so	bre	la	dos	3																4
in y	out																						4
Defi	nición																						5
prop	oiedades: Explicación									•								•		•		•	5
	1																						5
Valo	or de un flujo Definición																						6
	Demmelon																						6
Flui	os maximales																						6
I Iuj	Definición																						
	Propiedad				٠		•		•	•		• •	•	•	 •	•	•	•	 •	•	•	•	6
																							6

Flujos Y Networks.

Grafos Dirigidos

Definición:

Un Grafo dirigido es un par $G=(V,\,E)$ donde Ves un conjunto cualquiera (finito para nosotros) y $E\subseteq V\times V$

diferencia con un grafo no dirigido

$$E\subseteq V\times V$$

ahora los lados son pares ordenados en vez de conjuntos. no es lo mismo (x, y) que (y, x)

Notación:

Denotaremos el lado (x, y) como

Vecinos

Pero ahora como podemos tener lados tanto (x, y) como (y, x) deberiamos diferenciar entre "vécinos hacia adelante" y "vécinos hacia atras"

Notación:

$$\Gamma^{+}(x) = \{ y \in V | \overrightarrow{xy} \in E \}$$

 $\Gamma^{-}(x) = \{ y \in V | \overrightarrow{yx} \in E \}$

Network

Definición:

Un Network es un grafo dirigido con pesos positivos en los lados, es decir, un triple (V, E, c) donde (V, E) es un grafo dirigido y

En este contexto, se llamará la

"capacidad"

del lado

Flujos

Notación para agilizar lecturas de sumatorias

Ρ

Si P es una propiedad que puede ser verdadera o falsa, [P] denota el número 1 si P es verdadera, y 0 si P es falsa.

Supongamos que tenemos una variable x, y queremos sumar una función f(x) sobre todos los x que satisfagan una propiedad P(x)

podemos simplemente escribir x f(x)[P(x)]

$$\sum_{x} f(x)[P(x)]$$

o incluso

$$\sum f(x)[P(x)]$$

si queda claro que sumamos sobre x.

Notación para funciones sobre lados

Si g es una función definida en los lados y A y B son subconjuntos de vertices, entonces g(A, B) denotará la suma:

$$g(A,B) = \sum_{x,y} [x \in A][y \in B][\overrightarrow{xy} \in E]g(\overrightarrow{xy})$$

in y out

Dada una función g sobre lados y un vértice x, definimos:

outg(x) es todo lo que "sale" de x por medio de g.

ing(x) es todo lo que "entra" a x por medio de g.

$$\begin{aligned} \textit{out}_g(x) &= \sum_y [y \in \Gamma^+(x)] g(\overrightarrow{xy}) = g(\{x\}, \Gamma^+(x)) \\ \textit{in}_g(x) &= \sum_y [y \in \Gamma^-(x)] g(\overrightarrow{yx}) = g(\Gamma^-(x), \{x\}) \end{aligned}$$

Definición

Dado un network (V, E, c), y un par de vertices s, $t \in V$, un \in flujo de s a t es una función $f: E \to R$ con las siguientes

propiedades:

$$0 \le f(\overrightarrow{xy}) \le c(\overrightarrow{xy}) \quad \forall \overrightarrow{xy} \in E.$$

("feasability")

 $\inf(x) = \operatorname{outf}(x) \ \forall \ x \in V - \{s, t\}.$ ("conservación")

$$out_f(s) \geq in_f(s)$$
.

(s es productor)

(t es consumidor)

$$in_f(t) \geq out_f(t)$$
.

Explicación

la primera propiedad dice que no vamos a transportar una cantidad negativa de un bien

ni vamos a tranportar por encima de la capacidad de transporte de un lado.

La segunda propiedad dice que el network no tiene "pérdidas" .

La tercera especifica que s es un vértice donde hay una producción neta de bienes, pues produce mas de lo que consume.

y la cuarta que t es un vértice donde se consumen los bienes pues consume mas de lo que produce.

En algunos libros en vez de 3) se pide directamente

$$in_f(s) = 0$$

y en vez de 4) se pide

$$out_f(t) = 0.$$

en todos los ejemplos que usaremos,

$$\Gamma^{-}(s) = \Gamma^{+}(t) = \emptyset$$

s se llama tradicionalmente la "fuente" (source) y t el "resumidero" (sink).

Valor de un flujo

Definición

Dado un network (V, E, c) el valor de un flujo f de s a t es:

$$v(f) = out_f(s) - in_f(s)$$

el valor de un flujo es la cantidad neta de bienes producidos.

Flujos maximales

Definición

Dado un network N y vertices s, t, **un flujo maximal de s a t** (o "Max flow") es un flujo f de s a t tal que $v(g) \le v(f)$ para todo flujo g de s a t.

Propiedad

Propiedades 1,2 y 3 implican la 4), y $v(f) = \inf(t) - \operatorname{out} f(t)$.