Introduction to Biology - Monsoon 2022

End Semester Examination

(Course outcomes: CO-2, CO-4 and CO-5)

Max. Time: 3.0 hrs	Max. Marks: 65
1. The following is the DNA sequence for the transcription initiation of the promoter region is boxed. Transcription begins at and including A/T base pair.	
5'TGGACTGCTA TAATAGCAGG GCTGCCGAAT GTGCTGCCAT 3'ACCTGACGAT ATTATCGTCC CGACGGCTTA CACGACGGTA	ACGGCCATGG TTCTTAAAGT3' TGCCGGTACC AAGAATTTCA5'
(A) Which DNA strand (choose from top or bottom) serves as the transcription? Explain. [2 marks]	e template strand for
(B) Fill in the first 6 nucleotides of the primary/ nascent mRNA [1 mark]	transcribed from Gene A.
5'	3'
(C) Fill in the first four amino acids of Protein A encoded by Ge provided on the last page. [1 mark]	ne A. Note: A codon chart is
N — — — — — — — — — — — — — — — — — — —	C
(D) The last 5 amino acids (amino acid105- amino acid109) at the Protein A are indicated below. Each of these amino acids is this protein.	
N - pro ¹⁰⁵ -asn ¹⁰⁶ -ser ¹⁰⁷ -met ¹⁰	⁸ -leu ¹⁰⁹ -C
The DNA sequence encoding the above 5 amino acids is inc	cluded within the sequence below

You isolate and sequence the following two different mutant alleles of Gene A that encode the above 5 amino acids. Each mutant allele is due to a point mutation that is bold and underlined. Which of these mutants will ALTER the folding of Protein A

Wild-type

Mutant 1 5'-AACCAAATTCCATGTTATAGC-3' Mutant 2 5'-AACCGTATTCCATGTTATAGC-3' 3'-TTGGTTTAAGGTACAATATCG-5'

5'-AACCGAATTCCATGTTATAGC-3'

3'-TTGGCTTAAGGTACAATATCG-5'

Explain, in terms of the change in the reading frame and/ or amino acid sequence, why you selected this mutant and NOT the other. [3 marks]

2.	What is the	e sequence ((1 to 4) is	n which these	proteins function	on during DNA	replication	on	
(primase	(1104)1		A helicase				
	the second secon	ligase		Di	A Helicuse				
	A STATE OF THE PARTY OF THE PAR	polymeras	e						
							ant of DN	A from	
	Briefly exp super-coili	olain their fi ng?	unctions.	Which enzy	ne relieves a re	plicating segm	[5 n	narks]	
3	sequence o	f events tha	t will oc	cur when the	odons and antic in-coming tRNA er the next pep	A sets into its I	oing sit	e. Reulaw	2
					8/-1				
			()			
				-		er.			
	The diagra	m below sh	ows an i	mRNA moleci	ale with various	regions labell	led:		
1.	The diagra								
		_					UAG		PPP-
	AAAAAAA			AUG			5	6	7
	1		2	3	4				
	(A) Th	nere is a pro	blem wi	th above diag	am. True or Fa	lse. Explain y	our choice	e [1.5 mar	rks]
	(B) Ide	ntify by nu	mber the	e region(s) tha	is/are:			[2.5 mar	ks]
	(<i>b</i>) ide	coding (i.e	. contair	ns codons that	are part of the	peptide)			
	b)	non-codin							
	c)	3' end							
	d)	5' end							
	e)	ribosome l	oinding s	site					
5.)	Draw and o	explain the regulation	(a) patte of recon	rn of chromos nbination duri	ome segregation	on in mitosis a meiotic progr	nd meiosi ams.	s and (b) ti [4 marks	he i]
d	Explain the	underlying	princip	ole of: [4	marks]				
y .	(a) Poly	merase cha	in reacti	ion					
		ger Sequen							
9.	In response	to hypoxia	(lack o	f oxygen), ma	mmalian cells or regulating th	induce expression? [3 marks	sion of gro	oup of gen	es.
	Explain the				ATT BELLEVIE				

8. Shown below is a segment of replicating DNA

- (A) On the schematic, draw the elongating DNA strands and label their 5' and 3' ends
- (B) To which strand (choose from top, bottom or both) can primer 5'CATG3' bind during replication?
- (C) Which strand (choose from top or bottom) is the template for discontinuous (lagging) strand synthesis? [3 marks]
- 19. Explain how telomerase and DNA polymerase operate together to lengthen the chromosomes. Label the 3' and 5' ends of the strands and modify this diagram to show where DNA polymerase and telomerase will lengthen the strands. Also, explain why DNA polymerase alone cannot accomplish the task of telomere DNA synthesis.

 [3 marks]

- 11. During protein synthesis, the thermodynamics of base paring between tRNAs and mRNAs sets the upper limit for the accuracy with which protein molecules are made. True or False. Explain your choice. [3 marks]
- One indication of the relative importance of various ATP-producing pathways is the V_{max} of certain enzymes of these pathways. The values of V_{max} of several enzymes from chest muscles used for flying of pigeon and pheasant are listed below.

	$V_{\rm max}$ (μ mol substrate/min/g tissue)						
Enzyme	Pigeon	Pheasant					
Hexokinase	3,0	2.3					
Glycogen phosphorylase	18.0	120.0					
Phosphofructokinase-1	24.0	143.0					
Citrate synthase	100.0	15.0					
Triacylglycerol lipase	0.07	0.01					

- (a) Discuss the relative importance of glycogen metabolism and fat metabolism in generating ATP in the chest muscles of these birds.
- (b) Compare oxygen consumption in the two birds.
- (c) Judging from the data in the table, which bird is the long-distance flyer? Justify your answer. [3 marks]

13.	Which of the follow function? Explain yo	ing r	nutat	ional r. Ra	chan	iges v iem.	voul	i you	pred	ict to	be t	he mos	t deleterio 3 marks]	us to gene	
	 Insertion of a single nucleotide near the end of the coding sequence. Removal of a single nucleotide near the beginning of the coding sequence. Deletion of three consecutive nucleotides in the middle of the coding sequence. Deletion of four consecutive nucleotides in the middle of the coding sequence. Substitution of one nucleotide for another in the middle of the coding sequence. 														
64.	14. What are the three classes of cell-surface receptors? Discuss different ways he adapted to an extracellular signal molecule.											ow cells b [2 mar			
15.	5. DNA polymerization happens in 5' to 3' direction while proof reading happens in 3'to 5' direction. What will be the consequence(s) if the directions are interchanged? [2 marks]														
16 .	Place the following e	event	s in t	heir c	orre	ct sec	quenc	e:					[2 marks]		
	Translation RNA processing	<u> </u>	Trans _ Nuc	cripti clear	ion expo	rt —	_ Po	lyade	nylat	ion		Саг	oping		
17,	Wobble base pairing A. AUG a B. AAA a What does wobble h	nd U	UU UU			I	C. GC	the fo GA ar AG ar	nd GC	GC	airs	codons		2 marks]	
18.	Explain the basic me	chan	ism 1	for re	pair (of UV	V ind	uced	pyrin	nidin	e dir	ner.	[2	2 marks]	
(9)	What is genomic imp	print	ing?										Ţ	2 marks]	
29.	Why does mitochone	dria r	need 1	to ope	erate	the (2 cyc	le?					[2 marks]	
21./	Although oxygen do when O ₂ is present. \	es no Why	ot par	ticipa	ite di	rectly	y in t	he cit	ric a	eid c	ycle,	the cyc		es only 2 marks]	
Codon table															
		GCA GCC GCG GCU	AGA AGG CGA CGC CGG CGU	GAC GAU	AAC	UGC	GAA GAG	CAA CAG	GGA GGC GGG GGU	CAC	AUA AUC AUU	UUA UUG CUA CUC CUG CUU			
		Ala	Arg	Asp	Asn	Cys	Glu	Gln	Gly	His	lle	Leu			
		AAA AAG	AUG	UUC	CCA CCC CCG CCU	AGC AGU UCA UCC UCG UCU	ACA ACC ACG ACU	Uaa	UAC	GUA GUC GUG GUU		JAA JAG JGA			
		Lys	Met	Phe	Pro	Ser	The	Tro	Tvr	Val	A CONTRACTOR	utop			