MA2202 (Algebra I)

Jia Cheng

September 2021

1 Definitions

Sets

$$\mathbb{N} = \mathbb{Z}^+$$

Functions

Functional equality: 2 functions $f_1:A\to B, f_2:C\to D$ are equal iff $A=B\wedge C=D$ and their elementwise images are equal.

Equivalence Class Given a set S, an equivalence relation \equiv on S. Then the equivalence class of an element $a \in S$ is denoted

$$Cl(a) = \{x \in S : a \equiv x\}$$

2 Elementary Number Theory

Coprime cancellation Suppose a, b, c are non-zero integers and gcd(a, c) = 1 and a|bc.

There are 2 ways to prove a|b.

First way, use Bezout's Lemma and multiple b on both sides.

Second way actually also uses Bezout's Lemma underlyingly, but we can view it atomically as follows.

Lemma gcd(a,c) = 1, then there exists an "inverse" c' of c such that $cc' \equiv 1 \pmod{a}$.

Since $bc \equiv 0 \pmod{a}$, we multiply c' on both sides to get $b \equiv bcc' \equiv 0 \pmod{a}$. Hence a|b.

Fermat's Little Theorem Given prime $p, a \in \mathbb{Z}$, we have

$$a^p \equiv a \pmod{p}$$

If p does not divide a, then we use cancellation to get $a^{p-1} \equiv 1 \pmod{p}$

Chinese Remainder Theorem Taken from Brilliant

THEOREM

Chinese Remainder Theorem

Given pairwise coprime positive integers n_1, n_2, \ldots, n_k and arbitrary integers a_1, a_2, \ldots, a_k , the system of simultaneous congruences

$$egin{array}{ll} x\equiv a_1 & ({
m mod}\ n_1) \ x\equiv a_2 & ({
m mod}\ n_2) \ & dots \ x\equiv a_k & ({
m mod}\ n_k) \end{array}$$

has a solution, and the solution is unique modulo $N=n_1n_2\cdots n_k$

The following is a general construction to find a solution to a system of congruences using the Chinese remainder theorem:

- 1. Compute $N = n_1 \times n_2 \times \cdots \times n_k$.
- 2. For each $i=1,2,\ldots,k$, compute

$$y_i = rac{N}{n_i} = n_1 n_2 \cdots n_{i-1} n_{i+1} \cdots n_k.$$

- 3. For each $i=1,2,\ldots,k$, compute $z_i\equiv y_i^{-1} \mod n_i$ using Euclid's extended algorithm (z_i exists since n_1,n_2,\ldots,n_k are pairwise coprime)
- 4. The integer $x = \sum_{i=1}^k a_i y_i z_i$ is a solution to the system of congruences, and $x \mod N$ is the unique solution modulo N.

3 Groups

Group axioms

- When proving axiom G4, closure under inverses, to show that y is an inverse of $x \in G$, we need to show that $y \in G$ in addition to showing that xy = yx = e. Too frequently the detail that $y \in G$ is not explicitly proven.
- ullet This also applies if we want to prove a certain element is the identity. We may need to prove that the element lies in G first.

4 Counterexamples

Operations Commutative but not associative

- Taking arithmetic mean/geometric mean of 2 numbers
- Taking the difference of 2 numbers |a-b|

Associative but not commutative

- Function composition
- Matrix multiplication
- \bullet $(x,y) \mapsto y$

5 Symmetric groups

Isomorphism between 2 permutation groups Let S_n be the symmetric group of order n, and S_Y be the permutation group on Y, where |Y| = n. We write $Y = \{x_1, \ldots, x_n\}$ Then there are 2 ways in which we can define an isomorphism $\phi: S_n \to S_Y$.

First, a more indirect definition. Let $f: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$. Then $f \in S_n$. Define $\phi(f)$ as the mapping

$$\phi(f): x_i \mapsto x_{f(i)}$$

It is then easy to prove the homomorphic properties of ϕ . $\phi(f \circ g)(x_i) = x_{(f \circ g)(i)} = x_{f(g(i))} = (\phi(f) \circ \phi(g))(x_i)$.

Second, we define the mapping $T: i \to x_i$ and consequently, $\phi = T \circ f \circ T^{-1}$. Then $\phi(f \circ g) = T \circ f \circ g \circ T^{-1} = T \circ f \circ T^{-1} \circ T \circ g \circ T^{-1}$.

Cyclic notations Given 2 products A, B of disjoint permutation cycles, themselves also being pairwise disjoint. There are permutations f, g such that A represents f and B represents g. Now we want to prove the following properties.

- AB represents $f \circ g$. Proving this would allow us to make use of the properties of functional composition to claim that A(BC) = (AB)C, where A, B, C are products of disjoint permutation cycles. (and A, B, C are themselves pariwise disjoint).

 To prove this we consider cases: whether x lies in the cycles of A, whether x lies in the cycles of
- AB = BA. To show this we only need to consider 3 cases. Whether x lies in the cycles of A, whether x lies in the cycles of B, or neither.

B, or neither. Note that if x does not lie in the cycles of A for e.g., then f(x) = x.

Showing equivalence of 2 cycles Suppose c, d are 2 cycles such that $\exists i, \forall n \in \mathbb{N}, c^n(i) = d^n(i)$, where for a function f, f^n denotes composition n times.

We first write out $c = (i, c(i), \dots, c^{|c|-1}(i))$

Then in particular $\forall n \in \{0, 1, ..., |c| - 1\}, c^n(i) = d^n(i), d^n(i) = c^n(i)$ and $d^{|c|}(i) = c^{|c|}(i) = i$, which says that $d = (i, c(i), ..., c^{|c|-1}(i))$. Hence d = c.

Notice that the key part of this argument is to show that d loops around, i.e. $d(c^{|c|-1}(i)) = i$.

Decompositions

- $(1,2,\ldots,n)=(1,n)(1,n-1)\ldots(1,3)(1,2)$
- $(1,2,\ldots,n) = (1,2)(2,3)\ldots(n-2,n-1)(n-1,n)$

Making transpositions Suppose we have the transpositions (i, i + 1), for each $1 \le i \le n - 1$. Aim: Make $(1, i), 1 \le i \le n$.

Observe that (1, 2, ..., i) = (1, i)(1, i-1)...(1, 2) = (1, i)...(1, 2, ..., i-1) and that (1, 2, ..., i-1) has the decomposition (1, 2)(2, 3)...(i-2, i-1). Hence we have $(1, i) = (1, 2)...(i-1, i)((1, 2)(2, 3)...(i-2, i-1))^{-1} = (1, 2)...(i-1, i)(i-2, i-1)...(1, 2)$.

Suppose we have the transpositions $(1, i), 1 \le i \le n$.

Aim: Make $(i, j), 1 \le i, j \le n, i \ne j$.

Observe that (1, i, j) has 2 decompositions, (1, j)(1, i) and (1, i)(i, j). Hence, $(i, j) = (1, i)^{-1}(1, j)(1, i) = (1, i)(1, j)(1, i)$.

Note that having all transpositions trivially means being able to generate all n-permutations, since every permutation can be decomposed into a product of transpositions.

Conjugating permutations with cycle If $c = (i_1, i_2, ..., i_k)$ is a cycle in S_n and $f \in S_n$,

$$f \circ c \circ f^{-1} = (f(i_1), f(i_2), \dots, f(i_k))$$

A direct corollary of this is that

$$f^n \circ c \circ f^{-n} = (f^n(i_1), f^n(i_2), \dots, f^n(i_k))$$

where f^n denotes composing f n times.

Two applications, both seen in a previous section.

- 1. Let $\sigma = (1, 2, 3, ..., n)$. Then $\sigma^n \circ (1, 2)\sigma^{-n} = (\sigma^n(1), \sigma^n(2)) = (n+1, n+2)$. We can view σ^n as a successor function.
- 2. (i, n-1)(n-1, n)(i, n-1) = (c(n-1), c(n)) = (i, n) where c = (i, n-1). This application of the lemma is not as useful because it is easier to see the transitive equality (i, n-1)(n-1, n) = (i, n-1, n) = (i, n)(i, n-1).

Product groups Given groups G_1 , G_2 of finite order, the product group $G_1 \times G_2$ has order $|G_1| \cdot |G_2|$.

Application: Suppose we have natural numbers p, q and we want to quickly find a group of order pq. One example we can consider is then the product group $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.