Universidad Nacional de Río Negro Física III B - 2020

Unidad 01

Clase
 U01 C03 - 03

Fecha 17 Mar 2019

Cont Calores

Cátedra Asorey

Web https://gitlab.com/asoreyh/unrn-f3b

Unidad 1: Calor

Gases reales

- Átomos y moléculas con interacción entre si (pero de corta distancia) → Fuerzas de Van der Waals
 - Monoatómicos: nobles, He, Ar,...
 - Diatómicos: H₂, O₂, N₂,...
 - Triatómicos: CO₂, H₂O(*)
 - Complejos: NH₃
- Mejor aproximación: gases monoatómicos en condiciones de baja presión y temperatura (baja densidad)

Postulados de la teoría cinética: Gas ideal

- Formado por un gran número de moléculas idénticas
- Separación media es grande respecto a las dimensiones
 - Volumen despreciable respecto al volumen contenedor
- Se mueven aleatoriamente con velocidades diferentes
 - La velocidad media de las moléculas es constante
- Obedecen las leyes de Newton
 - Sólo interactúan (con el recipiente) a través de choques elásticos
- El gas está en equilibrio térmico con el recipiente

Choques en las paredes del recipiente

¿Cuántos choques se producen en la pared en un tiempo At?

- En el intervalo ∆t, sólo impactarán en la pared A aquellas que estén a cierta distancia y en una cierta dirección
 - tres casos posibles

La presión, hasta aquí:

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \langle v^2 \rangle \right)$$

Reordenando

$$\frac{PV}{N} = \left(\frac{2}{3}\langle E_K \rangle\right)$$

Ecuación de estado microscópica

O también:

$$\frac{PV}{N}$$
 = constante

¿Cómo? ¿¿¿no era PV = n R T????

- La <E_k> es "macroscópicamente inaccesible"
- Definimos la temperatura media

$$T \equiv \frac{1}{k_{B}} \left(\frac{2}{3} \langle E_{K} \rangle \right)$$

donde k_B = 1,3806 x 10⁻²³ J/K es la constante de Boltzmann.

- La temperatura media es una medida de la energía cinética media de las partículas del sistema.
- Luego: $\frac{PV}{N} = k_b T$
- Y entonces

$$PV = Nk_bT$$

Al fin, PV = nRT

Multiplicando y dividiendo por el Número de Avogadro:

$$PV = \frac{N}{N_A}(N_A k_b)T$$

• N/N_A es el número de moles de gas en el recipiente V, n:

$$PV = n(N_A k_b)T$$

Y al producto (N_A k_B):

$$R = N_A k_b = (6,022 \times 10^{23} \text{ mol}^{-1})(1,3806 \times 10^{-23} \text{ J K}^{-1})$$

$$R = N_A k_b = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$$

• Resultando:

PV=nRT

H. Asorey - F3B 2020

Ecuación de estado de un gas ideal 10/30

La constante universal de los gases ideales, R

 $R = \frac{PV}{nT} \equiv N_A k_B$

- Relaciona, a través de la ecuación de estado, las distintas magnitudes físicas asociadas a un gas ideal:
 - Cantidad de gas, n (moles)
 - Presión del gas, P (Pa)
 - Volúmen del gas, V (m³)
 - Temperatura del gas, T (K)
- En unidades del SI:

$$R = N_A k_b = (6,022 \times 10^{23} \text{ mol}^{-1})(1,3806 \times 10^{-23} \text{ J K}^{-1})$$

$$R = N_A k_b = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$$

• Otro valor usual (no SI): $R = 0.082 L atm K^{-1} mol^{-1}$

Condiciones "Normales" de Presión y Temperatura (CNPT)

- Parámetros "estandarizados" para trabajar con un gas...
 - Hay muchas convenciones → no son estándares...
 - ¿qué presión? ¿qué temperatura? ¿en qué unidades?
- Nuestra convención:

$$V = \frac{nRT}{P}$$

- $T = O^{\circ}C \rightarrow T = 273,15 \text{ K}$
- $P = 1atm \rightarrow P = 101325 Pa$ (ó P=1013,25 hPa ó P=101,325 kPa)
- \rightarrow V_{molar}=0,022309m³=22,398 L (volumen molar normal)
- Otras, por ej., T=273,15 K; P = 10^5 Pa \rightarrow V_{molar} = 22,7 L ó, T=293.15K; P = 1atm \rightarrow V_{molar} = 24,06 L, etc

Aplicación: buscando al Helio

- La concentración de Helio en la atmósfera es tan baja (~5.2 ppm) que este gas fue descubierto en el Sol (Lockyer, 1868)
- Sin embargo, es muy abundante en el Universo
- ¿Dónde está el Helio?

Escape atmosférico (1ra parte)

Ма

VOI-COZ - 2

Mejorando el cálculo

- Lo que hay que recordar es que hemos utilizado la velocidad promedio del Helio
- Un conjunto grande (~Número de Avogadro) de átomos de Helio a 300K, la <v> ~ 1370 m/s ~ 0,1 v_e.
- Es ~ 10% de la velocidad de escape
- Las velocidades de cada átomo individual podrá distar (y mucho) de la promedio

Paréntesis: Distribución de probabilidad

- Función que asigna a cada suceso la probabilidad de que dicho suceso ocurra:
- Se puede determinar empíricamente a partir de la fracción de sucesos observados sobre el total

Distribución normal o Gaussiana

Sea un gas ideal a una temperatura T

 ¿Cuál es la distribución de probabilidad del módulo de la velocidad |v| de las moléculas que componen un gas

$$|\vec{\mathbf{v}}| = \sqrt{\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2}}$$

 ¿Cuál es la distribución de probabilidad de cada componente v_i de las moléculas que componen un gas?

Ley de los grandes números → v_i tiene distribución Normal

 La Distribución de Maxwel-Boltzmann representa la distribución |v| si sus componentes son normales

Si v_i tiene una distribución normal, |v| tiene una distribución de Maxwel-Boltzmann

Maxwell-Boltzmann

$$\frac{\eta}{q\eta} = t(\alpha) q$$

Se pende ver per 15m20 se do poro 3+=0=5

di funo en engra = Se hare un contro di monthe

$$\frac{1}{2} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^$$

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$$

$$F(E) = \frac{2}{\sqrt{\pi}} \left(\frac{1}{kT}\right)^{3/2} E^{\frac{1}{2}} e^{-\frac{E}{kT}}$$

B 2020

Funciones de distribución

probability density $f(u) = \left[\frac{M}{2\pi RT}\right]^{3/2} \cdot 4\pi u^2 \cdot e^{-Mu^2/2RT}$

El problema de Richter

El diagrama PV

Transformaciones

P

Una transformación representa al cambio de estado del gas

La transformación 1 modifica las condiciones del gas del estado "A" (n_A,p_A,V_A,T_A) al estado "B" (n_B,p_B,V_B,T_B)

¿Qué sucede cuando un gas se expande?

- Si n y P son constantes, V aumenta $\rightarrow V_f V_i = \Delta V$
- Sea un pistón de área A y Volúmen V

$$W=F\Delta h$$

 $W=pA\Delta h$

W es el trabajo realizado por el gas Tiene el signo de ΔV

$$W = p \Delta V$$

Si
$$\Delta V = 0 \rightarrow W=0$$

Al expandirse, el gas realiza un trabajo sobre el medio

→ W=p △V = mg△h

Transformaciones

Mar 17, 2020

H. Asorey - F3B 2020

25/30

Energia interna

Energía media de las N partículas de un gas a temp. T:

$$U \stackrel{\text{def}}{=} N \langle E_K \rangle = N \frac{1}{N} \sum_{i_1}^{N} E_{i,k} = \sum_{i_1}^{N} E_{i,k}$$

$$U = N\left(\frac{3}{2}kT\right) = \frac{3}{2}\frac{N}{N_A}N_AkT \rightarrow U = \frac{3}{2}nRT$$

Variaciones à n=cte,

$$dU = \frac{3}{2}Rd(nT) = \frac{3}{2}R(dnT + ndT)$$

$$dU = \frac{3}{2}nRdT \rightarrow \Delta U = \frac{3}{2}nR\Delta T$$
Mar 17, 2020

Si T cambia, necesariamente habrá un cambio en la energía interna del gas (y viceversa) ¿Qué es el calor específico?

Calor específico: cantidad de calor necesaria para que un mol de una sustancia cambie su temperatura en 1 K

• Le entrego calor a n moles de una sustancia y su temperatura aumenta ΔT , entonces:

$$C \stackrel{\text{def}}{=} \frac{Q}{n \Delta T} \rightarrow Q = C n \Delta T$$

Calor específico de un gas ideal

- Al calentar un gas, ¿cuántos tipos de transformaciones son posibles?
- A V=cte, caliento n moles de un gas ideal... ¿y T?
- $Q = \Lambda U$ ¿Qué pasa con la energía total?
- Q se transforma en ... ;?

$$C_{V} n \Delta T = \frac{3}{2} n R \Delta T$$

$$C_v = \frac{3}{2}R$$

El calor específico a V=cte de un gas ideal, C,, es proporcional a R

¿Qué pasa si caliento el gas a P=cte?

A P=cte, caliento n moles de un gas ideal... ¿y V?

• Si
$$\Delta V$$
 no es $O \rightarrow Trabajo \rightarrow W = p \Delta V$

[juso la ec. de estado!

 $W = p \left(\frac{n R \Delta T}{p} \right)$
 $\Rightarrow W = n R \Delta T$

Además hay un cambio de la energía interna:

$$\Delta U = \frac{3}{2} nR\Delta T$$

• Ahora, ¿de donde proviene el trabajo y ∆U?

$$Q = \Delta U + W$$

$$C_{P} n \Delta T = \frac{3}{2} n R \Delta T + n R \Delta T$$

$$C_{P} n \Delta T = \left(\frac{3}{2} R + R\right) n \Delta T$$

$$C_{P} = \frac{3}{2} R + R \rightarrow C_{P} = C_{V} + R$$