

FIG. 1A

(1)pPTM+Sp

(2)pPTM+Sp

FIG.1B

5' [E1] [] [E2] 3' *Cis*-spliced product

Trans-

5' [E1] [] [DT-A] 3' *Trans*-spliced product

FIG.1C

FIG. 2A

FIG. 2B

NOV 24 2003
P&T LIBRARY
PATENT & TRADEMARK OFFICE

FIG. 3

1. PTM+SF :

2. PTM+SF-Py1:

3. PTM+SF-Py2:

FIG.4A

FIG. 4B

FIG.4C

FIG. 5

FIG. 6A

FIG. 6B

FIG.7A

EXON 1 OF β HCG6 |
5'-CAGGGACGCCAAGGATGGAGATGTCCAG-GGGCTGATGATGTTGTT
| 1ST CODING NUCLEOTIDE OF DT-A
GATTCTTAAATCTTTGTGATGGAAAACCTTTCTTGTAACCACGGGACTA
AACCTGGTTATGTAGATTCCATTCAAAA-3'

FIG. 7B

β HCG TARGET

DOUBLE SPlicing PTM

Cis-spliced products

E1 E2 E3 = NORMAL *cis*-SPlicing (277bp)

E1 E3 = Exon SKIPPING (110bp)

Trans-spliced products

E1 DT-A = 1st EVENT, 196bp. *Trans*-SPlicing BETWEEN 5' ss OF TARGET & 3' ss OF PTM.

DT-A E3 = 2nd EVENT, 161bp. *Trans*-SPlicing BETWEEN 3' ss OF TARGET & 5' ss OF PTM.

FIG.8B

FIG.9

NOV 24 2003

FIG. 10B

FIG. 11A

FIG.11B

FIG. 11C

FIG. 12A

1. NUCLEOTIDE SEQUENCES OF THE *cis*-SPLICED PRODUCT (285 bp):

BioLac-TR1

GGCTTTCGCTACCTGGAGAGACGGCGCGCTGATCCTTTCGAAATACGCCAACGGATGGCTAACAGTCTTG

Splice junction

GGGTTTCGCTAAACTGGCAGGCTTTCAGTATCCCGTTACAG/GCCGCTTCGCTCAATAATG
GGACTGGGTGATCAGTGGATTAAATATGATAAAACGGCAACCCGTTACGGCGGTGATT
TGGCGATACGCCAACGATGCCAGTTCTGATGAACGGTCTGGCTTTGCCGACCCAGGCCATCCAG

Lac-TR2

2. NUCLEOTIDE SEQUENCES OF THE *trans*-SPLICED PRODUCT (195 bp)

BioLac-TR1

GGCTTTCGCTACCTGGAGAGACGGCGCGCTGATCCTTTCGAAATACGCCAACGGATGGCTAACAGTCTTG

Splice junction

GGCTTTCGCTAAACTGGCAGGCTTTCAGTATCCCGTTACAG/GCCGCTTCGCTGCTGCTGCTGCT
GAGCATGGCGGACATGGCATCCAAGGACCCACTTOGCCAACGGTGCCT

HCGR2

FIG. 12B

CFTR Pre-therapeutic molecule (PTM or "bullet")

CFTR mini-gene target-construction

Trans-splicing Repair

Binding
of
PTM to Target

FIG.13

primer pairs

→

Lane	Primer Pair
-	18+28
1	18+Biohis 2
2	18+Biohis
3	18+Biohis
4	8+28
5	8+Biohis 2
6	8+Biohis
standard	

FIG. 14

NOV 24 2003

DNA sequence 500 b.p. GCTAGCGTTAA ... TGCCACTCCAC linear

Positions of Restriction Endonucleases sites (unique sites underlined)

FIG. 15A

NOV 24 2003

TAAACCGCTGATCAGCCCTCGACTGTGCCTCTAGTTGCCCATCTGCCCTCCCCATCTGTTGCCCTCCTTGACC
 ATTTGGGACTAGTCGGAGCTGACACGGAAAGATCAACCGTCGTAGACAACAAACGGGAGGGGCAOGGAAGGAACTGG
 410 CF27

CTGGAAAGGTCCCACTCCCCAC 500
GACCTTCCACGGTGAGGGTG

Restriction Endonucleases site usage

Acc	I	EcoR	I	Sau96	I	2
Apa	I	EcoR	V	Sca	I	1
Apal	I	Hae	II	Sma	I	-
Avr	II	Hae	III	Sph	I	1
BamH	I	HinC	II	Spi	I	-
Ban	II	HinD	III	Ssp	I	-
Bbe	I	Hinf	I	Stu	I	-
-	-	Nde	I	-	-	-
-	-	Nhe	I	-	-	-
-	-	Not	I	-	-	-
-	-	PfIM	I	-	-	-
-	-	Pst	I	-	-	-
-	-	Pvu	I	-	-	-
-	-	Pvu	II	-	-	-

FIG. 15B

PTM [CFTR BD Intron 9] Spacer+BP+PPT+3' SS [CFTR exons 10-24] (His) 6 TAG

FIG. 16

Double Splicing
PTM

FIG. 17

DOUBLE TRANS-SPLICING SPECIFIC TARGET

FIG. 18

DOUBLE TRANS-SPlicing PTMs

FIG. 19

DOUBLE TRANS-SPlicing β -GAL MODEL

FIG. 20

(1) 3' BD (120 BP): GATTCACTTGCTCAAATTATCATCCCTAAGCAGAAAGTGATACTCTTCTTAAAGATTCTTAAACTCATTGATTC
AAAAATTAAAATACTCCCTGTTCACTCTGGTACAC

(2) Spacer sequences (24 bp): AACATTATAAACCTGGCTGGAA

(3) Branch point, pyrimidine tract and acceptor splice site: TACTAACCTGGTACCCGATATGTCTAACCTGATTGGGCCCTTGATAAG
BP Kpn I PPT EcoRV
LacZ mini 5'ss exon 3'ss LacZ mini
exon

(4) 5' donor site and 2nd spacer sequence: TGA ACG GTAACT GTTATCACCGATATGTCTAACCTGATTGGGCCCTTGATAAG
CTAAGATCCACOGG

(5) 5' BD (260 BP): TCAAAAAGTTTTCACATAATTCTTACCTCTCTTCAATTCTATGACGGCTTCATGACGGAA
ACACCAATGATTTTCTTAACTGGCTGCCATAATTCTGGAAACTGATAACACAACTGAATTCTTCACTGTGCTAA
AAAAACCCCTCTGAATTCTCCATTTCCTCCATAATCATCATACACTGAAATAAAACCCATCAATTAACTCA
TTATCAAATCACCG

FIG. 21

DSPTM8: (Δ 3' ss; 3' splice elements i.e. BP, PPT & AG dinucleotide has been deleted and replaced with random sequences, but still has the functional 5' splice site)

FIG.22

ACCURACY OF DOUBLE TRANS-SPlicing REACTION

FIG. 23A

ACCURACY OF DOUBLE TRANS-SPLICING REACTION

FIG. 23B

Double Trans-splicing Produces Full-length Protein

FIG. 24

FIG.25

IPM
NOV 24 2003

EXCISE & TRADE

**RESTORATION OF β -GAL ACTIVITY IS DUE TO DOUBLE RNA
TRANS-SPlicing EVENTS**

FIG. 26

DOUBLE TRANS-SPlicing: TITRATION OF TARGET & PTM

FIG.27

FIG. 28

SPECIFICITY OF DOUBLE TRANS-SPlicing REACTION

34

FIG.29

FIG.30

PTM with a long binding domain masking two splice sites and part of exon 10 in a mini-gene target

ACAGCTTGC**T**CATGATCATGGCCAGT TAGAACCCAAGTGAGGCAAGTCAAACATTCCCG
GGCCCATCAGCTTTGGCCAATTTCAGTGGCATTCATGGCCCCGTACCATCAGGGAGAACAAAT
C7TGGCCGTCAGTTACCCGAGTACCCGTAGGCCTATCGCCTGGTGATTAAGCCGGTCAGTGGAGGAC

MCU in exon 10 of PTM
88 Of 192 (46%) bases in PTM exon 10 are not complementary to its binding domain (bold and underlined).

FIG. 31

Sequence of a double
Trans-spliced product

[] = MCU in
PTM exon 10

FIG.32

CF-TR Repair: 5' Exon-Replacement schematic diagram of a PTM binding to the splices site of intron 10 of a mini-gene target

FIG.33

PTM with a short binding domain masking a single splice site in a mini-gene target.

FIG.34A

PTM with a long binding domain masking two splice sites in a mini-gene target.

FIG.34B

PTM with a long binding domain masking two splice sites and the whole of exon 10 in a mini-gene target.

FIG.34C

FIG.35

FIG. 36A

Cis-spliced product
[Primers CF1+CF111]

FIG.36A-1

O I P E J C V
NOV 24 2003
RECEIVED IN LIBRARY

Trans-spliced product
[Primers CF93+CF111]

FIG.36B

FIG. 37A

FIG.37B

FIG. 37C

O I P M
NOV 24 2008
EXHIBIT & TRAILER

FIG.38A

FIG.38B

FIG.39

FIG.40A(a)

FIG.40A(b)

FIG.40B

FIG.40C

FIG.41A

FIG. 41B

FIG. 41C

Exons

1-10

ATGCAGAGTCGCCCTGGAAAAGGCCAGCGTTGTCCAAACTTTTCACTGGACCAGACCAATTGAGGAAC
GATACAGACAGCCCTGGAATTGTCAGACATACCAAATCCCTCTGTTGATTCTGTCACAATCTATCTGAAAATT
GGAAAGAGAATGGGATAGAGAGCTGGCTCAAAGAAAAACTCTAAACTCATTAATGCCCTCGGGATTTTCTGG
AGATTTATGTTCTATGGAATCTTTATTTAGGGAACTACCAAAGCAGTACAGCCTCTTTACTGGGAAGAATCA
TAGCTCCTATGACCCGATAACAAGGAGAACGCTCTATCGCGATTATCTAGGCATAGGTTATGCCCTCTTTAT
TGTGAGGACACTGCTCCTACACCCAGCCATTGGCCTTCATCACATTGGAATGCCAGATGAGAATAGCTATGTTAGT
TTGATTATAAGAACACTTAAAGCTGCAAGCGTTCTAGATAAAATAAGTATTGACAACTTGTTAGTCCTT
CCAACAAACCTGAACAAATTGATGAAGGACTTGCAATTGGCACATTGCTGCGATGCCCTTGGCAACTGCCACTCCT
CATGGGCTAATCTGGAGTTCTACAGCGTCTGCCCTCTGCGACTTGGTTCTGTAGTCCTGCCCTTTCA
GCTGGCTAGGGAGAATGATGAAGTACAGAGATCAGAGAGCTGGGAAGATCAGTCAAAGACTTGTGATTACCTCAG
AAATGATCGAGAACATCCAATCTGTTAAGGCATACTGCTGGAGAACCAATGGAAAAATGATTGAAACTAAGACA
AACAGAACTGAAACTGACTCGAAGGCAGCCTATGTGAGATACTTCAATAGCTGCCCTCTCTTCAGGGTTCTT
GTGGTTTTATCTGCTCCCTATGCACTAAAGGAATCATCCTCCGGAAAATTACACCACATCTCATTCT
GCATTGTTCTGCCATGGCGTACTCGCAATTCCCTGGCTGTACAAACATGGTATGACTCTTGGACAATAAA
CAAACAGGATTCTTACAAAAGCAAGAATATAAGACATTGGAATATAACTTAAAGACTACAGAACTAGTGTGAG
AATGTAACAGCCTCTGGAGGGATTGGGAATTATTGAGAAAGCAAACAAACAATAACAATAGAAAAACTT
CTAATGGTATGACAGCCTCTTCACTTCTGGTACTCCTGTCCTGAAAGATATTCAAGAT
AGAAAAGAGGACAGTTGGCGGTTGCTGGATCCACTGGAGCAGGCAAGACGAGCTTGTATGATGATCATGGCGAG
TTAGAACCAAGTGAAGGCAAGATCAAACATTCCGGCCATCAGCTTGTGAGCCATTAGTTGATCATGCCCGTA
CCATCAAGGAGAACATAATCTCGGCGTCACTTACGACCGACTCCGCTATCGCTGGTATTAGGCCTGTCAGTTGGA
GGAG

Trans-splicing domain

GTAAGATATCACCGATATGTCACCTGATTGGCCTCGATACGCTAACGATCCACCGG
TCAAAAGTTTCACATAATTCTTACCTCTTGAATTGATGACGCTCTGTATCTATATTGATCATTG
GAAACACCAATGATATTCTTAATGGCCTGGCATATCTGGAAAATGATAACACAATGAAATTCTTCACTGT
GCTTAATTACCCCTCTGAATTCTCCATTCTCCATAATCATCATTACAACGACTCTGGAAATAAACCATCATT
ATTAACCTATTCAAATCACCGCT

FIG.42

153 bp PTM24 Binding Domain:

Nhe I 153 bp BD underlined
GCTAGC-AATAATGACGAAGCCGCCCTCACGGCTCAGGATTCACTTGCCCTAACATTATCATCCCTAAAGCAGAAAGTCATA

TTCTTATTGTAAAGATTCTATTAAACTCATTTGATTCAAATATTAAATACTCCCTGTTCACCTACTCTGCTATGC

Sac II
AC-GGGGG

FIG. 43A

Trans-splicing domain

AATAATGACGAAGCCGCCCTCACGCTCAGGATTCACTGCCCTCCAATTATCATCTAAGCAGAAGTGTATATTCTTA
TTTGTAAAGATTCTATTAACTCAATTGATTCAAATATTAAAATACTTCCTGTTACCTACTCTGCTATGCACCCGC
GGAACATTATTATAACCTGCTCGAATACTAACTGGTACCTCTTCTTTTGATATCCTGCAG

Exons 10-24

ACTTCACTCTAATGATTATGGAGAACTGGAGCCTTCAGGGTAAAATTAAAGCACAGTGAAGAATTCTATTCT
GTTCTCAGTTTCCCTGGATTATGCCCTGGCACCATAAAGAAAATATCATCTTGGTTCCTATGATGAATATAGATA
CAGAACGCTCATCAAAGCATGCCAAGTAGAAGAGGACATCTCAAGTTGAGAGAAAAGACAATATAGTTCTGGAGAA
GGTGAATCACACTGAGTGGAGCTAACGAGCAAAATTCTTAGCAAGAGCACTATACAAAGATGCTGATTGATT
TATTAGACTCTCCTTGGATACCTAGATGTTAACAGAAAAAGAAATTGAAAGCTGTCCTAAACTGATGCC
TAACAAAATAGGATTTGGTCACTCTAAAATGAAACATTAAAGAAAAGCTGACAAAATATTAAATTGATGAAGGT
AGCAGCTATTTATGGACATTTCAGAACTCCAAAATCTACAGCCAGACTTAGCTCAAAACTCATGGATGTGATT
CTTCGACCAATTAGTCAGAAAGAAGAAATTCAATCCTAACTGAGACCTACCCGTTCTCATTAGAAGGAGATGC
TCCTGTCCTGGACAGAAACAAAAACATCTTAAACAGACTGGAGAGTTGGGGAAAAAGGAAGAATTCTATT
CTCAATCCAATCAACTCTACGAAAATTCCATTGCAAAAGACTCCCTACAAATGAATGGCATCGAACAGGATT
CTGATGAGCCTTAGAGAGAAGGCTGCTTAGTACAGATTCTGAGCAGGGAGAGGCGATACTGCCCTCGCATCGCG
GATCAGCACTGGCCCCACGCTTCAGGACGAAGGAGGAGCTGTCCTGAACCTGATGACACACTCAGTTAACCAAGGT
CAGAACATTACCGAAAGACAACAGCATCCACACAAAAGTCACTGCCCTCAGGCAAACATTGACTGAACGGATA
TATATTCAAGAAGGTTATCTAAGAAACTGGCTGGAAATAAGTGAAGAAATTACGAAGAACACTAAAGAGTGCTT
TTTGATGATATGGAGAGCATACCAGCAGTGACTACATGGAACACATACCTCGATATAATTACTGTCACAAAGAGCTT
ATTTTGCTAATTGCTGTTAGTAAATTCTGGCAGAGTGGCTCTTGGTTGCTGGCTCCTTGGAA
ACACTCCTCTCAAGACAAAGGAATAGTACTCATACTAGAAATAACAGCTATGAGTATTACCCAGCACCAGTT
GTATTATGTGTTTACATTACGTGGAGTAGCCGACACTTGTCTGCTATGGATTCTCAGAGGTCTACCACTGGT
CATACTCTAATCACAGTGTGAAAATTACCCACAAATGTTACATTCTGTTCAAGCACCTATGTCACCCCTCA
ACACGGTGAAGCAGCTGGATTCTTAATAGATTCTCAAAGATATGCAATTGGATGACCTCTGCCCTTACCAT
ATTGACTTCATCCAGTTGTTATTAAATTGTGATTGGAGCTATGAGTTGCGAGTTTACAACCCCTACATCTTGT
GCAACAGTCCAGTGAGTGGCTTTATTATGTTGAGAGCATTTCTCCAAACCTCACACCAACTCAAACAACTGG
AATCTGAAGGAGGAGTCCAATTTCACTCATCTGTTACAAGCTAAAAGGACTATGGACACTTCGTCCTCGGAGC
GCAGCCTACTTGAACACTCTGTTCCACAAAGCTCTGAATTACATACTGCCAAGTGGTTCTTGTACCTGTCACACTG
CGCTGGTCCAATGAGAATAGAAATGATTTGTCATCTTCTCATGGTACCTCATTTCAATTAAACACAG
GAGAAGGAGAAGGAAGAGTTGTTATTACCTGACTTTAGCCATGAATATCATGAGTACATTGCACTGGCTGAAACTC
CAGCATAGATGTGGATAGCTGATGCCATCTGAGCCGAGCTTAAAGTATTGACATGCCAACAGAAGTAAACCT
ACCAACTCAACCAACCATACAAGATGCCAAGTCTGAAAGTTGATTGAGAATTCACACGTGAAGAAAGATG
ACATCTGCCCTCAGGGGCCAAATGACTGTCAAAGATCTCACAGCAAATACACAGAAGGTGGAAATGCCATATTAGA
GAACATTCTCTCAATAAGTCTGGCCAGAGGGTGGCTTGGAAAGACTGGATCAGGAAAGAGTACTTGT
TCAGCTTTTGAGACTACTGAACACTGAAGGAGAAATCCAGATGATGGTGTCTGGATTCAATAACTTGCAC
AGTGGAGGAAAGCCTTGGAGTGATACCACAGAAAGTATTATTTCTGGAACATTAGAAAAACTTGGATCCCTA
TGAACAGTGGAGTGATCAAGAAATATGAAAGTGGAGATGAGCTGGCTCAGATCTGATAGAACAGTTCTGG
AAGCTTGAATTGTCCTTGAGGGCTGTCCTAACCCATGCCACAAGCAGTTGATGTGCTGGCTAGATCTG
TTCTCAGTAAGGCCAGATCTGCTGCTGATGAACCCAGTCTCATTGGATCCAGTAACATACCAATAATTAGAAG
AACTCTAAACAAAGCATTGCTGATTGACAGTAATTCTGTGAACACAGGATAGAACCAATGCTGGAATGCCAACAA
TTTTGGTCAAGAAGAGAACAAAGTGGCCAGTACGATTCCATCCAGAAACTGCTGAACGAGAGGAGCCTTCCGGC
AAGCCATCAGCCCCCTCCGACAGGGTGAAGCTTTCCCCACCGGAACCTCAAGCAAGTGCAAGTCAAGCCCCAGATTG

Histidine tag Stop

TGCTCTGAAAGAGGAGACAGAACAGAGTGCAAGATACAAGGCTCATCATCATCATCATTAG

FIG. 43B