Ejercicios B2T2

Sistemas Inteligentes (SIN) ETSInf - Grado en Informática

Curso 2023/2024

- 1. En un problema de clasificación en 2 clases, para objetos representados mediante vectores de características bidimensionales, se tienen dos muestras de entrenamiento: $\vec{y}_1 = (0,0)^t$, $\vec{y}_2 = (1,1)^t$ de clases $c_1 = 1$, $c_2 = 2$, respectivamente.
 - Mostrar una traza de ejecución del algoritmo Perceptrón, con vectores de pesos iniciales nulos, factor de aprendizaje $\alpha=1$ y margen b=0,1. La traza debe incluir las sucesivas actualizaciones de los vectores de pesos de las clases
- 2. Se tiene un problema de clasificación en dos clases, 0 y 1, para objetos representados en $\{0,1\}^2$, esto es, vectores de bits de la forma $\vec{x} = (x_1, x_2)^t$ con $x_1, x_2 \in \{0, 1\}$. Asimismo, disponemos de cuatro muestras de entrenamiento:

x_n	x_1	x_2	x_3	x_4
$\overline{x_{n1}}$	0	0	1	1
x_{n2}	0	1	0	1
$\overline{c_n}$	0	1	1	0

Se pide:

- a) Aplicar una iteración del algoritmo Perceptrón con pesos iniciales nulos, constante de aprendizaje $\alpha=1$ y margen b=0,1, mostrando los pesos resultantes
- b) ¿Convergerá el algoritmo Perceptrón a una solución sin datos de entrenamiento mal clasificados? Razona la respuesta
- 3. Dado el conjunto de muestras bidimensionales $\mathcal{X} = \{(-2, -2), (0, 0), (2, 2)\}$, cada una respectivamente de las clases 1, 2 y 3, y los vectores de pesos $\vec{w}_1 = (0, -2, -2)$, $\vec{w}_2 = (-1, 0, 0)$ y $\vec{w}_3 = (-1, 4, 4)$, realizar una iteración del algoritmo Perceptrón con factor de aprendizaje $\alpha = 1$ y margen $\gamma = 0,1$ usando los pesos iniciales propuestos, mostrando los pesos resultantes y las regiones de decisión correspondientes a cada clase
- 4. Dado un problema de clasificación en dos clases con dos datos bidimensionales $\mathcal{D} = \{((1,0,0)^t,(1,0)^t),((1,1,1)^t,(0,1)^t)\}$:
 - a) Realiza tres iteraciones del algoritmo de aprendizaje del modelo de regresión logística que minimiza la neg-log-verosimilitud con descenso por gradiente ($\eta=1,0$) a partir de la matriz de pesos iniciales nulos
 - b) Calcula la probabilidad a posteriori de los datos a partir de la matriz de pesos final obtenida en el anterior apartado.
 - c) Clasifica los datos por máxima probabilidad a posteriori.
- 5. Sea un modelo de regresión logística en notación compacta (homogénea) para un problema de clasificación en C=3 clases y datos representados por vectores de dimensión D=2.

$$p(\boldsymbol{y} \mid \boldsymbol{x}; \mathbf{W}) = \operatorname{Cat}(\boldsymbol{y} \mid \mathcal{S}(\mathbf{W}^t \boldsymbol{x})) \quad \text{con} \quad \mathbf{W}^t = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \in \mathbb{R}^{C \times D}$$

Actualiza el valor de **W** con una iteración de descenso por gradiente con el conjunto de entrenamiento $\mathcal{D} = \{(\boldsymbol{x} = (1,1,1)^t, y=1)\}$ y factor de aprendizaje $\eta = 0,1$.

Soluciones

- 1. En total 3 iteraciones.
 - Iteración 1: $w_1 = (0,0,0)^t \to (1,0,0)^t \to (0,-1,-1)^t, w_2 = (0,0,0)^t \to (-1,0,0) \to (0,1,1)^t$
 - Iteración 2: $w_1 = (0, -1, -1)^t \to (1, -1, -1)^r, w_2 = (0, 1, 1)^t \to (-1, 1, 1)^t$
 - Iteración 3: no hay cambios
- 2. $\vec{w}_1 = \vec{w}_2 = (0, 0, 0)^t$
 - b) No es posible porque las muestras no son linealmente separables ni siquiera usando el margen propuesto
- 3. Los pesos obtenidos son $\vec{w}_1=(-1,-2,-2), \vec{w}_2=(0,0,0)$ y $\vec{w}_3=(-2,4,4)$. Las regiones de decisión son:

 $4. \quad a)$

$$\begin{split} &\text{Iteración 1: } W_1^t = \begin{pmatrix} 0.0 & -0.25 & -0.25 \\ 0.0 & 0.25 & 0.25 \end{pmatrix} \\ &\text{Iteración 2: } W_2^t = \begin{pmatrix} 0.115 & -0.385 & -0.385 \\ -0.115 & 0.385 & 0.385 \end{pmatrix} \\ &\text{Iteración 3: } W_3^t = \begin{pmatrix} 0.231 & -0.491 & -0.491 \\ -0.231 & 0.491 & 0.491 \end{pmatrix} \end{split}$$

- b) $P(c_1|x_1) = 0.613, P(c_2|x_1) = 0.387, P(c_1|x_2) = 0.182, P(c_2|x_2) = 0.818$
- c) Por máxima probabilidad a posteriori, x_1 se clasifica en c_1 y x_2 en c_2

5.

$$\mathbf{W} = \begin{pmatrix} 1,0845 & -0,0422 & 0,9578 \\ -0,9156 & 0,9578 & -1,0422 \\ 0,0844 & -0,0422 & 0,9578 \end{pmatrix}$$