Leveraging Good Representations in Linear Contextual Bandits

Matteo Papini^{§¶}, Andrea Tirinzoni[§], Marcello Restelli[§], Alessandro Lazaric[†], Matteo Pirotta[†]

† Facebook Al Research, § Politecnico di Milano

¶ work done while at Facebook

International Conference on Machine Learning (ICML), 2021

Contextual Linear Bandits $r(x, a) = \langle \phi(x, a), \theta^* \rangle$

- $x_t \sim \rho$
- $a_t \in \{1, \dots, A\}$
- $r_t = r(x_t, a) + \text{noise}$

minimize
$$R(n) = \sum_{t=1}^n r(x_t, a^\star_{x_t}) - r(x_t, a_t)$$

A Several algorithms have been designed for this problem, e.g., LinUCB [Chu et al., 2011], OFUL [Abbasi-Yadkori et al., 2011], Thompson Sampling [Abeille and Lazaric, 2017]

 $* a_x^{\star} = \underset{a}{\operatorname{argmax}} \{ r(x, a) \}$

Contextual Linear Bandit: LinUCB [Chu et al., 2011, Abbasi-Yadkori et al., 2011]

Setting:

$$r(x_t, a_t) = \langle \phi(x_t, a_t), \theta^* \rangle$$

- **known** realizable d_{ϕ} -dimensional representation ϕ
- lacksquare unknown parameter $heta^\star \in \mathbb{R}^{d_\phi}$

Contextual Linear Bandit: LinUCB [Chu et al., 2011, Abbasi-Yadkori et al., 2011]

Setting:

$$r(x_t, a_t) = \langle \phi(x_t, a_t), \theta^* \rangle$$

- **known** realizable d_{ϕ} -dimensional representation ϕ
- lacksquare unknown parameter $heta^\star \in \mathbb{R}^{d_\phi}$

LinUCB:

- Estimate θ^* to build *Upper Confidence Bound* $U_t \ge r$ with high probability
- $a_t = \max_a U_t(x_t, a)$

then, LinUCB suffers a problem-dependent regret:

$$R_n \lesssim \frac{d_\phi^2}{\Lambda} \ln^2(n)$$

* minimum gap assumption: $r(x,a_x^\star) - r(x,a) > \Delta$ for all $x,a \neq a_x^\star$

Contextual Linear Bandit: LinUCB [Chu et al., 2011, Abbasi-Yadkori et al., 2011]

Setting:

$$r(x_t, a_t) = \langle \phi(x_t, a_t), \theta^* \rangle$$

- **known** realizable d_{ϕ} -dimensional representation ϕ
- lacksquare unknown parameter $heta^\star \in \mathbb{R}^{d_\phi}$

LinUCB:

- Estimate θ^* to build *Upper Confidence Bound* $U_t \ge r$ with high probability
- $a_t = \max_a U_t(x_t, a)$

then, LinUCB suffers a problem-dependent regret:

$$R_n \lesssim \frac{d_\phi^2}{\Lambda} \ln^2(n)$$

* minimum gap assumption: $r(x,a_x^\star) - r(x,a) > \Delta$ for all $x,a \neq a_x^\star$

What is a Good Representation?

Good Representations for LinUCB

We say ϕ is good if:*

$$\operatorname{span}\{\phi(x, a_x^{\star}) \mid x \in \operatorname{supp}(\rho)\} = \mathbb{R}^{d_{\phi}}$$

Our result

LinUCB achieves CONSTANT regret if and only if ϕ is good:

$$R_n \lesssim \frac{d_\phi^2}{\Delta} \ln^2(\tau_\phi)$$

where

$$\begin{split} \tau_{\phi} &\lesssim \left(\frac{d_{\phi}^2}{\lambda_{\phi} \Delta}\right)^2 & \text{(constant)} \\ \lambda_{\phi} &= \lambda_{\min} \Big(\mathbb{E}_{\rho}[\phi(x, a_x^{\star}) \phi(x, a_x^{\star})^{\top}]\Big) & (\lambda_{\phi} > 0 \text{ iff } \phi \text{ good)} \end{split}$$

*good feature ϕ introduced in [Hao et al., 2020].

** $a_x^{\star} = \underset{-}{\operatorname{argmax}} \{r(x, a)\}$

Matteo Papini

Strong Assumption? Not really...

We fit neural networks to real datasets from [Bietti et al., 2018]

Network size	Good representations	λ_ϕ (median)	\mathbb{R}^2
(16, 16)	88.8%	0.001833	0.67
(32, 32)	86.4%	0.001502	0.76
(64, 64)	79.9%	0.001004	0.83

▲ Good representations seem to be quite common in practice!

Can we Leverage Good Representations?

Given M realizable representations ϕ_1, \ldots, ϕ_M (good or not)

Given M realizable representations ϕ_1, \ldots, ϕ_M

- **11** Estimate θ_i for each ϕ_i using all data
- 2 Build UCB $U_{ti} \geq r$ with high probability
- $a_t = \max_a \min_i U_{ti}(x_t, a)$

Regret of LEADER

$$R_n(\text{LEADER}) \leq \ln(M) \min_{i \in [M]} R_n(\phi_i)$$

and is constant if at least one of the M representations is good

Mixing Representations

 ϕ_1,\dots,ϕ_M are all NOT good

Still, LEADER achieves constant regret

- LEADER can mix representations to form a good representation and achieve constant regret
- Redundant representations can also be good
- The minimum gap assumption can be removed
- Misspecified representations can be eliminated fast
- Constant regret is observed in real problems with neural networks
- LEADER is competitive with model-selection algorithms

And stay tuned for representation selection in Linear MDPs

Details are in the paper:

Leveraging Good Representations in Linear Contextual Bandits

ICML 2021

Matteo Papini, Andrea Tirinzoni, Marcello Restelli, Alessandro Lazaric, Matteo Pirotta

Thank you

- Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In NIPS, pages 2312–2320, 2011.
- Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In AISTATS, volume 54 of Proceedings of Machine Learning Research, pages 176–184. PMLR, 2017.
- Alberto Bietti, Alekh Agarwal, and John Langford. A contextual bandit bake-off. arXiv preprint arXiv:1802.04064, 2018.
- Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff functions. In AISTATS, volume 15 of JMLR Proceedings, pages 208–214. JMLR.org, 2011.
- Botao Hao, Tor Lattimore, and Csaba Szepesvári. Adaptive exploration in linear contextual bandit. In *AISTATS*, volume 108 of *Proceedings of Machine Learning Research*, pages 3536–3545. PMLR, 2020.