Problem Set 4

Wenjing Li 11/18/2019

Question 1

```
## New names:
## * `` -> ...1
```

Table 1: Estimation for 4 different measurements.

1	tot_dist	max_abs_dev	avg_abs_dev	auc
estimation	-0.161	-0.510	-0.651	-0.406
lwr	-0.234	-0.731	-0.906	-0.596
upr	-0.089	-0.289	-0.396	-0.215

Question 2

```
## Parsed with column specification:
## cols(
## division = col_double(),
## dispar_weight = col_double(),
## lwr_dispar = col_double(),
## upr_dispar = col_double()
## )
```

Table 2: key data summaries for disparity in different census division.

division	dispar_weight	lwr_dispar	upr_dispar
9	0.185	0.127	0.243
6	0.093	0.039	0.148
4	0.077	0.025	0.128
8	0.055	-0.005	0.115
7	0.051	0.013	0.089
10	0.034	-0.004	0.072
5	0.033	-0.002	0.067
2	0.019	-0.013	0.052
1	0.018	0.001	0.035
3	0.000	-0.026	0.027

Note that the division 9 has the largest disparity. Division 9 is the mountain south.

Question 3

New names:

* `` -> ...1

Table 3: Result for logistic regression.

1	weekday	winter	$centered_age$	$centerd_age^2$	gender	PIR
ratio	1.001	0.955	1.185	0.977	1.362	1.090
lwr	0.862	0.891	1.162	0.970	1.271	1.066
upr	1.164	1.023	1.208	0.983	1.459	1.115
margin	0.000	-0.009	0.035	0.058	0.016	NA
lwr_margin	-0.028	-0.022	0.031	0.045	0.012	NA
upr_margin	0.029	0.004	0.040	0.072	0.021	NA

New names:

* `` -> ...1

Table 4: Result for mixed logistic regression.

1	weekday	winter	centered_age	centerd_age^2	gender	PIR
ratio	0.961	0.920	1.332	0.962	1.726	1.165
lwr	0.738	0.802	1.280	0.949	1.503	1.114
upr	1.252	1.056	1.386	0.975	1.983	1.219
margin	-0.004	-0.009	0.033	0.059	0.016	NA
lwr_margin	-0.033	-0.024	0.028	0.044	0.012	NA
upr_margin	0.024	0.006	0.038	0.074	0.021	NA

Note that two methods product similar result and the result from the first logistic model is much more precise than the other one.

Since all of the odd ratios in the model are around 1, that means each increasion in the predictors may not cause a difference in response. Thus, the statement that people in the US are more likely to drink water on a weekday than a weekend day is not sure.