	import pandas a	
		lib.pyplot as plt
	import seaborn import numpy as	
	-	
n [3]: i	<pre>import os</pre>	
	os.getcwd()	
[4]:	C:\\Users\\SAl	ICOM\\Downloads'
[6] • [6]	os chdir('C.\\I	Users\\SAICOM\\Downloads')
		Jacks (Ishifodi (Isamirodas)
[7]: d	df=pd.read_csv	("Salary_Data.csv")
	df.head()	
[8]:	YearsExperience	e Salary
0	1.1	1 39343.0
1	1 1.3	3 46205.0
2		5 37731.0
3	3 2.0	0 43525.0
4	4 2.2	2 39891.0
[9]: c	df.tail()	
t[9]:	YearsExperienc	ce Salary
2	25 9	0.0 105582.0
		.5 116969.0
		0.6 112635.0
		0.3 122391.0
		1.5 121872.0
_	10	
[10]: 0	df.head(30)	
		an Calami
[10]:		
		.1 39343.0
		.3 46205.0
		5 37731.0
		2.0 43525.0
		.2 39891.0
		2.9 56642.0
		0.0 60150.0
		3.2 54445.0
		3.2 64445.0
		57189.0
1	10 3	9.9 63218.0
1	11 4	.0 55794.0
1	12 4	.0 56957.0
1	13 4	.1 57081.0
1	14 4	.5 61111.0
1	15 4.	.9 67938.0
1	16 5	5.1 66029.0
1		3.3 83088.0
1		9.9 81363.0
		5.0 93940.0
		8.8 91738.0
		1.1 98273.0
		9 101302.0
2	23 8	2.2 113812.0

PRACTICAL NO.1

Importing the Libraries

24

25

26

27

28

29

In [11]: df.info()

In [12]: df.describe()

count

mean

std

min

25%

75% max

In [13]: df.shape

Out[13]: (30, 2)

In [14]: df.size

In [15]: df.ndim

In [18]: print(X)

6

7

8

9

11

12 13

14

15

16 17

18

19

20

In [19]: print(y)

0

6

8

9

10

11

12 13

14

15

16

17

19

In [21]: print(X_train)

In [22]: print(X_test)

In [23]: print(y_train)

0

4

2

21 26

18

29

20

10

14

In [24]: print (y_test)

16 5

Salary

39343.0 39891.0

66029.0

56642.0 13 57081.0 11 55794.0 22 101302.0 46205.0

37731.0

43525.0 98273.0

116969.0 81363.0

121872.0

91738.0

54445.0

63218.0

61111.0

Name: Salary, dtype: float64

Name: Salary, dtype: float64

lr = LinearRegression() lr.fit(X_train, y_train)

In [26]: #Assigning Coefficient (slope) to m

Intercept : 1.4551915228366852e-11

LinearRegression()

In [27]: print("Coefficient :", m)

Coefficient : [1.]

In [28]: #Assigning Y-intercept to a c = lr.intercept_

In [29]: print("Intercept : ", c)

Out[25]: ▼ LinearRegression

m = lr.coef_

In [25]: from sklearn.linear_model import LinearRegression

19 93940.0 6 60150.0

27 112635.0 15 67938.0 23 113812.0 17 83088.0 8 64445.0 9 57189.0 28 122391.0 24 109431.0 12 56957.0

25 105582.0

27 112635.0 15 67938.0 23 113812.0 17 83088.0 64445.0 57189.0 28 122391.0 24 109431.0 12 56957.0

In [16]: df.isnull().sum()

dtype: int64

In [17]: #Assiging values in X & Y

y=df["Salary"]

39343.0 46205.0 37731.0 43525.0 39891.0 56642.0

60150.0

54445.0

64445.0

57189.0 10 63218.0

> 55794.0 56957.0

> 57081.0

61111.0

67938.0 66029.0

83088.0

81363.0

93940.0

91738.0 21 98273.0 22 101302.0 23 113812.0 24 109431.0 25 105582.0 26 116969.0 27 112635.0 28 122391.0 29 121872.0

> 39343.0 46205.0 37731.0 43525.0 39891.0 56642.0

> 60150.0 54445.0

64445.0

57189.0

63218.0 55794.0

56957.0

57081.0

61111.0

67938.0

66029.0

83088.0 81363.0

93940.0 91738.0

Name: Salary, dtype: float64

In [20]: #Splitting testdata into X_train, X_test, y_train, y_test

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=42)

101302.0 23 113812.0 24 109431.0 25 105582.0 26 116969.0 27 112635.0 28 122391.0 29 121872.0

Salary 39343.0 39891.0 16 66029.0 56642.0 13 57081.0 11 55794.0 22 101302.0 46205.0 37731.0 25 105582.0 3 43525.0 21 98273.0 26 116969.0 18 81363.0 29 121872.0 20 91738.0 54445.0 10 63218.0 14 61111.0 19 93940.0 60150.0

YearsExperience 0

X=df.drop("YearsExperience", axis=1)

Out[15]: 2

8.7 109431.0

9.0 105582.0

9.5 116969.0

9.6 112635.0

10.3 122391.0

10.5 121872.0

<class 'pandas.core.frame.DataFrame'>

Column Non-Null Count Dtype

Salary

30.000000

76003.000000

27414.429785

37731.000000

56720.750000

65237.000000

7.700000 100544.750000

10.500000 122391.000000

float64

float64

RangeIndex: 30 entries, 0 to 29 Data columns (total 2 columns):

O YearsExperience 30 non-null

1 Salary 30 non-null

dtypes: float64(2)

memory usage: 612.0 bytes

YearsExperience

30.000000

5.313333

2.837888 1.100000

3.200000

4.700000

To perform and Analysis of Simple Linear Regression