Exercice 1:

On considère la syntaxe suivante :

Syntaxe	Exemple1	Exemple2	Exemple3	Exemple4
Id = valeur	Code	Code	Code	Code
Id = Id + Id $Id = Id + valeur$	a=10	a = b + c	a=b+20	a=b*c+d+e

Partie I:

On propose la grammaire suivante:

1. $S \rightarrow id = TE$

2. $T \rightarrow id$

3. T \rightarrow valeur

4. $E \rightarrow + TE$

5. $E \rightarrow *TE$

6. E $\rightarrow \varepsilon$

1. Donner l'ensemble V_N et l'ensemble V_T .

 $V_N = \{S, T, E\}, V_T = \{id, =, *, +, valeur\}$

2. Donner les premiers et les suivants de chaque symbole non terminal.

	Premier	Suivant
S	Id	\$
T	id,valeur	+,*,\$
Е	+,*,ε	\$

3. Élaborer la table d'analyse LL de cette grammaire.

	id	+	*	=	valeur	\$
S	1					
T	2				3	
Е		4	5			6

4. Analyser la phrase $\mathbf{x} = \mathbf{y} + \mathbf{4} + \mathbf{z}$ et Donnez l'arbre de dérivation associé. A noter que x,y et z sont des identificateurs.

Pile	Entrée	Sortie
\$S	$\mathbf{x} = \mathbf{y} + 4 + \mathbf{z}$	$S \rightarrow id = T E$
\$ET =id	$\mathbf{x} = \mathbf{y} + 4 + \mathbf{z}$	T→id
\$E id	y+4+z\$	$E \rightarrow + T E$
\$ET+	$\pm 4 + z$ \$	T→valeur
\$E valeur	4 + z\$	E → + T E
\$ET+	+ z \$	T→id
\$E	\$	$E \rightarrow \varepsilon$
\$	\$	Accepter
,		

Partie II:

Cette partie traitera une grammaire permettant de produire la syntaxe d'une fonction sous Python.

On considère la syntaxe suivante:

Syntaxe	Exemple1	Exemple2	Exemple3	
def fonction(liste_paramètres):	Code	Code	Code	
instr	def fct1(x):	def fct2(x,y):	def fct1(x,y,z):	
où instr présente l'instruction de la	X=X+X*X	x=x+2*y	x=x+2*y+z	
partie I	Résultat de l'exécution	Résultat de l'exécution	Résultat	de
			l'exécution	
	>>> x=1	>>> x=1	>>> x=1	
	>>> fct1(x)	>>> y=2	>>> y=2	
	>>>x	$\Rightarrow fct2(x,y)$	>>> z=3	
	2	>>>X	>> fct3(x,y,z)	
		5	>>>X	
		>>>y	8	
		2	>>>y	
			2	
			>>>z	
			3	

- 1. Proposer une grammaire pour la syntaxe des fonctions.
- 1. $S' \rightarrow def nomFct (LP) : S$
- 2. LP \rightarrow id Par
- 3. LP $\rightarrow \varepsilon$
- 4. Par → ,id Par
- 5. Par $\rightarrow \varepsilon$
- 6. $S \rightarrow id = T E$
- 7. $T \rightarrow id$
- 8. T \rightarrow valeur
- 9. E → + T E
- 10. E → *T E
- 11. E $\rightarrow \varepsilon$
- 2. Donner l'ensemble V_N et l'ensemble V_T de la nouvelle grammaire $V_N = \{S'; LP; Par; S; T; E\}$ $V_T = \{def; nomFct; (;); ; ; id; = ; *; +; valeur\}$
- 3. Donner les premiers et les suivants de chaque symbole non terminal.

	Premier	Suivant
S'	def	\$
LP	id ;ε)
Par	$,; \varepsilon$)
S	id	\$
T	id ;valeur	+,*,\$
Е	$+;^*;_{\mathcal E}$	\$

^{4.} Élaborer la table d'analyse LL de cette grammaire.

_	_	
L.	D	v
П,	_	1

TTD 1	1		
TD - anal	vseur	syntaxic	nue
	,	~ /	1

20	23/	つい	N 1
∠∪	1231	4 U	12 4

	def	nomFct	()	,	:	id	=	*	+	valeur	\$
S'	1											
LP				3			2					
Par				5	4							
S							6					
T							7				8	
Е									10	9		11

Exercice 2

Un dictionnaire en Python est une structure des données qui utilisent un système d'indexation (clé) propre à lui, chaque clé est séparée de sa valeur par deux points (:), les éléments sont séparés par des virgules, et le tout est enfermé dans des accolades.

Un dictionnaire vide sans aucun article est écrit avec seulement deux accolades, comme ceci: {}

on dictionnance vide sans adduit afficie est echt avec sedienient deux accorades, confine ceci. {}.						
	Script	résultat				
Exemple1	>>> dict={'a':1,4:"bonjour",3.14:"pi",3:22/7}	>>> dict['a'] 1				
Exemple2	>>> dict={'a':1,4:"bonjour",3.14:"pi",3:22/7}	>>> dict[4] 'bonjour'				
Exemple3	>>> dict={'a':1,4:"bonjour",3.14:"pi",3:22/7}	>>> dict[3.14] 'pi'				
Exemple4	>>> dict={'a':1,4:"bonjour",3.14:"pi",3:22/7}	>>> dict[3] 3.142857142857143				

Partie I Analyse ascendante:

On propose la grammaire suivante:

 $S \rightarrow id = \{ C \}$

 $C \rightarrow id$: val | id: val , C

où id désigne un identificateur, et val désigne une valeur de type quelconque

1. Donner l'ensemble V_N et l'ensemble V_T .

W (
$V_N = \{\ldots, \}; V_T = \{\ldots, \}$	· ;

2. Donner les premiers et les suivants de chaque symbole non terminal.

		J
Premier={ }		Suivant={ }
1 Terrifica		Survaint ()

3. Élaborer la table d'analyse LL de cette grammaire

• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••

4. Analyser l'instruction d = {'a':1, 4:3} et donnez l'arbre de dérivation correspondant.

Analyse			Arbre	
Pile	Entrée	Sortie		

Partie II:

La deuxième partie sera dédiée à une grammaire permettant de produire un dictionnaire contenant d'autres dictionnaires

Exemple1	Exemple2
>>> d1 = {'a':1, 4: 3.14, 7:9}	>>> d1 = {'a':1, 4: 3.14, 7:9}
$>>> d2 = \{1 : \{'b':2, 6 : "smi"\}, 4: 3.14, 7: 9\}$	$>>> d2 = \{1 : \{'b':2, 6 : "smi"\}, 4: 3.14, 7: 9\}$
>>> d2[1]	$>>> d3 = \{2: d2, 8: d1, 7: 9\}$
{'b': 2, 6: 'smi'}	>>> d3[2]
>>> d2[1]['b']	{1: {'b': 2, 6: 'smi'}, 4: 3.14, 7: 9}
2	>>> d3[2][1]
>>> d2[7]	{'b': 2, 6: 'smi'}
9	>>> d3[2][1][6]
	'smi'

1. Proposer une grammaire pour la syntaxe permettant de produire un dictionnaire de dictionnaires

FPK	TD – analyseur syntaxique	2023/2024
2. Trouver 1'	ensemble V_N et l'ensemble V_T . de la no	ouvelle grammaire
$V_N=\{\ \}$	1	$V_{\mathcal{I}}=\{\ \}$
3. Trouver le	s premiers et les suivants de chaque sy	ymbole non terminal.
Premier={ }	5	Suivant={ }
4. Élaborer la	a table d'analyse LL de cette grammai	re?