1 Features

- Full duplex operation (independent serial receive and transmit registers).
- Asynchronous or synchronous operation
- High resolution baud rate generator
- \bullet Serial frame with 5,6,7,8,9 data bits and 1 or 2 stop bits
- Odd or even partiy generator and checker by hardware
- Double speed asynchronous communication mode

2 Block Diagram

2.1 Clock Generator Block

- Consist of sync. Logic for external clock input for usage in sync. slave operation
- Consist of Baud rate Generator.
- Uses the XCKn pin for sync. Transfer mode

2.2 Transmitte Block

- Consist of singe write buffer continuous transfer of data without delay between frames
- Consist of Serial Shift register and Parity Generator
- Also, Control logic for handling different serial frame format.

2.3 Receiver Block

- Consist of Clock and data recovery unit uses for Asynchronous reception
- Consist of Parity Checker, Control Logic, Shift Register, Two level Receiver buffer
- Can support frame error, data overrun parity error

3 Clock Genration

- Generates Base Clock for Transmitter and Receiver.
- USART supports four modes of clock operation
 - (i) Normal Asynchronous
 - (ii) Double Speed Asynchronous
 - (iii) Master synchronous
 - (iv) Slave synchronous
- Selection between Asynchronous and Synchronous is done by UMSELn bit in UCSRnC USART Control and Status Register C.
- The Double Speed is selected by U2Xn bit in UCSRnA USART Control and Status Register A.
- In Synchronous Mode, the master or slave mode is selected by DDR_XSCn bit direction. [external slave mode; internal master mode]

${f Signals}$	Description
txclk	Transmitte Clock
rxclk	Receiver Base Clock
xclki	Input from XCK pin - used for synchronous slave operation.
xclko	Clock output to XCK pin - used for synchronous master operation.
fosc	XTAL pin frequency (System clock).

3.1 Internal Clock Generation - The Baud Rate Generator

- Used for Asynchronous and Synchronous Master modes of operation.
- Programmed using **UBRRn** register.

Operating Mode	UBRRn calculation
Asynchronous Normal Mode ($U2Xn == 0$)	$UBRRn = \frac{f_{OSC}}{16*BAUD} - 1$
Asynchronous Double Speed $Mode(U2Xn == 1)$	$UBRRn = \frac{f_{OSC}}{8*BAUD} - 1$
Synchronous Master Mode	$UBRRn = \frac{f_{OSC}}{2*BAUD} - 1$

3.2 External Clock

- Used by synchronous Slave mode.
- External clock input from XCKn pin is used and should

$$f_{XCK} < \frac{f_{OSC}}{4}$$

4 Frame Format

- **St** Start bit, always low.
- (n) Data bits (0 to 8).
- **P** Parity bit. Can be odd or even.
- **Sp** Stop bit, always high.
- **IDLE** No transfers on the communication line (RxDn or TxDn). An IDLE line must be high.
 - A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error checking.
 - The combinations can be
 - 1 start bit
 - -5 or 6 or 7 or 8 or 9 data bits
 - no or even or odd parity bits
 - -1 or 2 stop bits
 - A frame starts with start bit followed by LSB data bits.
 - Next the data bet can be from 5 to 9 ending with MSB data bits.
 - Parity bits may be added if enabled.
 - Finally, stop bit of 1 or 2 size is added.
 - Generally, the line is idel with high Logic.

5 Register Description

UDRn - USART I/O Data Register n

7	6	5	4	3	2	1	0
			RXI	3[7:0]			
			TXI	B[7:0]			

UCSRnA - USART Control and Status Register n A

7	6	5	4	3	2	1	0
RXCn	TXCn	UDREn	FEn	DORn	UPEn	U2Xn	MPCMn

UCSRnB - USART Control and Status Register n B

7	6	5	4	3	2	1	0	
RXCIEn	TXCIEn	UDRIEn	RXENn	TXENn	UCSZn2	RXBn	TXB8n	

UCSRnC - USART Control and Status Register n C

7	6	5	4	3	2	1	0	
UMSELn1	UMSELn0	UPMn1	UPMn0	USBSn	UCSZn1	UCSZn0	UCPOLn	

- RXCn USART Receive Complete Set when there are unread data in receive buffer.
- TXCn USART Transmit Complete Set when the entire frame in the transmit shift register has been shifted out and there are no new data currently present in the transmit buffer.
- *UDREn* USART Data Register Empty indicates if the transmit buffer is ready to receive new data. A one indicates buffer is expty and ready to transmit.
- U2Xn Double the USART Transmission Speed Affects only the asynchronous operation. One will increase the speed of transfer rate in asynchronous opration.
- RXCIEn RX Complete Interrupt Enable n Writing one will enabled Receive Complete interrupt.
- TXCIEn TX Complete Interrupt Enable n Writing one will enabled Transmit Complete intterrupt.
- *UDRIen* USART Data Register Empty Interrupt Enable n Enable data register empty interrupt.
- \bullet *RXENn* Receiver Enable enable the receiver for reception.
- \bullet TXENn Transmitter Enable enable the Transmitter for Transmission.
- UCSZn[2:0] Character Size n select the number of data bits in a frame.
- RXB8n Receive Data Bit 8 n it's the actual 9th bit received.
- TXB8n Transmit Data Bit 8 n it's the actual 9th bit to the transmitted.
- UMSELn[1:0] USART Mode Select Select the mode.
- *UPMn*[1:0] Parity Mode Disable or set the parity mode type.
- *USBSn* Stop Bit select Selects the number of stop bits to be inserted by transmitter.

UMSELn[1:0]	\mathbf{Mode}	UPMn[1:0]	Parity Mode		
00	Asynchronous USART	00	Disabled	\pmb{USBSn}	Stop Bit(s)
01	Synchronous USART	01	Reserved	0	1-bit
10	Reserved	10	Even Parity	0	2-bit
11	Master SPI	11	Odd Parity		•

UCSZn[2:0]	Character Size
000	5-bit
001	6-bit
010	7-bit
011	8-bit
111	9-bit

UBRRnL and UBRRnH - USART Baud Rate Registers

15	14	13	12	11	10	9	8
-	-	-	-		UBRR	n[11:8	
UBRRn[7:0							
7	6	5	4	3	2	1	0

UBRRn[11:0] - the actual 12-bit USART Baud Rate Registers.

6 Configurint USART

- First, the mode is selected by configuring the UMSEL0[1:0] bits in UCSR0C register.
- Next, the Baud rate is choosen and set in UBRR0[11:0] bits in UBRR0H and UBRR0L registers.
- Next, the frame format is set by configuring,
 - Data Length by configuring UCSZ0[2:0] bit in UCSR0B and UCSR0C register.
 - Parity by configuring *UPM0[1:0]* bit in **UCSR0C** register.
 - Stop bits by configuring ${\it USBS0}$ bit in ${\it UCSR0C}$ register.
- Interrupt may be anabled by setting bits in *UCSR0A* register and ISR are wirtten.
- Finally, the Transmitter and Receiver are enabled by setting *TXEN0* and *RXEN0* bits in *UCSR0B*.
- The data can be sent by checking if the *UDRE0* bit is set in **UCSR0A** register and wiring the 8-bit data into **UDR0** register.
- The data can be received by checking if the RXC0 bit is set in UCSR0A register and reading the 8-bit data from UDR0 register.
- The code for a simple USART is seen below,

```
// Setting up the Mode
// Select the Asyncronous Master Mode.
// Setting UMSELO[1:0] in UCSROC to 00
UCSROC &= ~(1<<UMSEL00);
UCSROC &= ~(1<<UMSEL01);

// setting up the Buad rate
// Due to The Clock rate being 8MHz, for a buad rate of 9600
// UBRRO = (fosc / (16*BAUD)) -1
// So UBRRO = (8000000 / (16 * 9600)) - 1 = 0x33
UBRROH = 0x00;
UBRROL = 0x33;
// setting up the Frame Format</pre>
```

```
// Let's select 8-bit data bits, no parity, and 1 stop bit
// 8 - bit data bits
// By selecting UCSZ0[2:0] in UCSROC and UCSROB register to be 011
UCSROB &= ^{\sim}(1 << UCSZO2);
UCSROC \mid = (1 << UCSZO1);
UCSROC |= (1<<UCSZ00);</pre>
// No parity
// By selecting UPMO[1:0] in UCSROC to 00
UCSROC \&= ~(1 << \text{UPMO1});
UCSROC &= ~(1<<UPMOO);
// 1 stop bit
// By selecting USBSO in UCSROC to O
UCSROC &= ~(1<<USBSO);</pre>
// Disabling any interrupts
UCSROB &= ^{\sim}(1<<7);
UCSROB &= ~(1<<6);
UCSROB &= ~(1<<5);
// Enabling Transmitter
UCSROB \mid = (1<<TXENO);
// Enabling Receiver
UCSROB \mid = (1<<RXENO);
```