

Course Name: Digital Hardware Design

Course Code: 17B1NEC741

Pulse Generation Techniques-2

Dr. Arti Noor
Dean, Academic Affairs
Electronics and Communication Engineering,
Jaypee Institute of Information Technology, Noida

Indirect Logic Approach

- 1. In indirect approach the output is taken from decoder gate.
- 2. The block diagram is shown below. A combination of counter and Combinational logic is used for pulse train detection

The sequence is 10110. it is 5-bit long so 5 unique states are required. Any mod-5 counter may be used.

Use a simple ripple counter which goes through states 0,1,2,3,4,0..... States 5,6,7 may not be used and are invalid or X.

Q_3	Q_2	Q_1	Output (f)	
0	0	0	1	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	×	
1	1	0	×	
1	1	1	×	

Truth table for output (f)

Output,
$$f = Q_2 + \overline{Q}_3 \overline{Q}_1$$

K-map and logic minimization

Logic block using mod-5 ripple counter

States	Q_3	Q_2	Q_1	f_1	f_2
0	О	0	0	1	1
1	Ο	0	1	O	1
2	Ο	1	Ο	0	1
3	Ο	1	1	1	1
4	1	0	О	1	1
5	1	0	1	0	1
6	1	1	Ο	0	0
7	1	1	1	Ο	0

K-map and logic minimization

$$f_1 = \overline{Q}_2 \overline{Q}_1 + \overline{Q}_3 Q_2 Q_1$$

$$f_2 = \overline{Q}_2 + \overline{Q}_3$$

Practice Problems

Draw FSM for a system which is getting input bit serially and output is 1 when the present bit & past two bit contains even no of 1's.

