

HW-NAS-Bench: Hardware-aware Neural Architecture Search Benchmark

Chaojian Li¹, **Zhongzhi Yu¹**, Yonggan Fu¹, Yongan Zhang¹, Yang Zhao¹, Haoran You¹, Qixuan Yu², Yue Wang², Yingyan (Celine) Lin¹

¹ Georgia Institute of Technology, SCS ² Rice University, ECE

ICLR'21 Spotlight

Background & Motivation

HW-NAS as an Automation Tool is on Growing Demand

- HardWare-aware Neural Architecture Search (HW-NAS) automatically searches optimal architectures for a target application and device
- The number of HW-NAS research increases rapidly

Challenge 1: Non-trivial to Obtain Hardware-cost

HW-NAS requires hardware-cost of (all) networks in the search space

Time-consuming to be obtained

- Existing methods: hardwarecost look-up tables/devicespecific estimator
- · Limitations:

 - non-hardware experts

Challenge 2: Difficult to Benchmark HW-NAS

Difficult to benchmark different HW-NAS algorithms because of the **different adopted devices**

- Existing methods: Benchmarks focusing on accuracy/FLOPs/#Params/ server-level hardware-cost
- Limitations:
 - No/Limited hardware-cost
 - S FLOPs/#Params does not correlate well with hardware-cost

The Proposed HW-NAS-Bench

HW-NAS-Bench: Highlighted Features

- Six devices, three categories
- Two search spaces: NAS-Bench-201 and FBNet search spaces
- Both energy and latency

Devices	Edge GPU	Raspi 4	Edge TPU	Pixel 3	ASIC-Eyeriss	FPGA
Collected Metrics	Latency (ms) Energy (mJ)	Latency (ms)	Latency (ms)	Latency (ms)	Latency (ms) Energy (mJ)	Latency (ms) Energy (mJ)
Collecting Method	Measured	Measured	Measured	Measured	Estimated	Estimated
Runtime Environment	TensorRT	TensorFlow Lite	Edge TPU Runtime	TensorFlow Lite	Accelergy+Timeloop / DNN-Chip Predictor	Vivado HLS
Customizing Hardware?	X	×	×	×	/	/
Category	Commercial Edge Devices				ASIC	FPGA

- Democratize HW-NAS research to non-hardware experts
 - Solved Challenge 1: Non-trivial to Obtain Hardware-cost
- Facilitate a unified benchmark for HW-NAS
 - Solved Challenge 2: Difficult to Benchmark HW-NAS

HW-NAS-Bench: Hardware-cost Collection Pipeline

 Implementation in each device is optimized to make sure the best hardware performance of networks in the search space

HW-NAS-Bench: Analysis

Analysis 1: Real Hardware-cost Is Necessary

Theoretical metrics (e.g., FLOPs/#Params) do NOT correlate well with real-measured/estimated hardware-cost

Coefficient can be as low as 0.36

Analysis 2: Device-specific Cost Is Necessary
Hardware-cost on one device do NOT correlate well with
hardware-cost on other devices

Coefficient can be as low as 0

Analysis 3: Device-specific HW-NAS is Necessary

DNN architectures with the optimal accuracy vs. hardware-cost trade-offs in one device may not perform well in another device

HW-NAS-Bench: Easy-to-use APIs

Create API

```
from hw_nas_bench_api import HWNASBenchAPI as HWAPI
hw api = HWAPI("HW-NAS-Bench-v1 0.pickle", search space="nasbench201")
```

Get the real-measured/estimated hardware-cost

HW_metrics = hw_api.query_by_index(0, "cifar10")

Example output:

===> Example to get use the hardware metrics edgegpu_latency: 5.867418537139893 (ms) edgegpu_energy: 24.226614330768584 (mJ) raspi4_latency: 10.481976820010459 (ms) edgetpu_latency: 0.9571811309997429 (ms) pixel3_latency: 3.605849999999998 (ms) eyeriss_latency: 3.645620000000001 (ms) eyeriss_energy: 0.6872827644999999 (mJ) fpga_latency: 2.57296 (ms) fpga_energy: 18.01072 (mJ)

Try it now:

https://github.com/GATECH-EIC/HW-NAS-Bench