UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA

PROGRAMAS DE ESTUDIO SEMESTRE SÉPTIMO, OCTAVO O NOVENO

Asignatura FISICOQUÍMICA DE	Ciclo TERMINAL Y DE	Campo de Estudio FISICOQUÍMICA	Departamento FISICOQUÍMICA
SISTEMAS MOLECULARES ORGANIZADOS	ESPECIALIZACIÓN		

HORAS/SEMANA/SEMESTRE

Tipo de asignatura:	TEÓRICA
Modalidad de la asignatura:	CURSO

ASIGNATURA PRECEDENTE: Ninguna ASIGNATURA SUBSECUENTE: Ninguna

OBJETIVO(S):

Un análisis de los sistemas de interés químico, biológico y bioquímico muestra que la materia está organizada en diversos grados o niveles de complejidad en el estado líquido. Las especiales características del agua hacen que las moléculas disueltas en ella se organicen en sistemas moleculares más complejos como micelas, membranas y vesículas o que adquieran conformaciones tridimensionales específicas como en el caso de las proteínas. En este curso se propone estudiar estos sistemas moleculares con las herramientas de la fisicoquímica, siguiendo el orden de complejidad en su organización.

UNIDADES TEMÁTICAS

NÚMERO DE HORAS POR UNIDAD	UNIDAD
18T 18H	 INTRODUCCION A LOS SISTEMAS MOLECULARES ORGANIZADOS. 1.1. Fundamentos termodinámicos. 1.2. Aplicaciones en la industria farmaceútica. 1.3. Aplicaciones en la industria de alimentos. 1.4. Aplicaciones en la industria química. 1.5. Estado actual de la investigación básica y aplicada en el área. 1.6. Organización molecular en seres vivos.
18T 18H	 MÉTODOS EXPERIMENTALES DE ESTUDIO DE SISTEMAS MOLECULARES ORGANIZADOS. 2.1. Evidencias de organización molecular. 2.2. Calorimetría de barrido diferencial. 2.3. Calorimetría de titulación isotérmica. 2.4. Fluorescencia y dicroísmo circular. 2.5. Tensión superficial estática. 2.6. Tensión superficial dinámica.

12T	3. MODELOS PARA EL ESTUDIO DE SISTEMAS MOLECULARES
12H	ORGANIZADOS.
	3.1. Efectos cooperativos.
	3.2. Modelos para el estudio de micelas, micelas
	invertidas y liposomas.
	3.3. Modelos para el estudio de interacciones proteína
	proteína y proteína-sustrato.
	3.4. Modelos para el plegamiento de proteínas.

TOTAL 48T=48H

BIBLIOGRAFÍA BÁSICA

- 1. Luisi, P. L., Walde, P. (Editores) Giant vesicles. Perspectives in supramolecular chemistry, Vol. 6, John Wiley & Sons, 2000.
- 2. Kronberg, B., Holmberg, K., Lindman, B., Surface Chemistry of Surfactants and Polymers. Wiley 2014.
- 3. Mitchell, M. Complexity: A Guided Tour. Oxford University Press, 2011.
- 4. Israelachvili, J. Intermolecular forces. Academic Press, 2011.
- 5. <u>Ben-Naim</u>, A. The protein folding problem and its solution. World Scientific Publishing Company, 2013

BIBLIOGRAFÍA COMPLEMENTARIA

- 1. Baszkin, A., Norde, W. Physical chemistry of biological interfaces. Taylor & Francis 1999.
- 2. Shah, D. O. (Editor) Micelles, microemulsions and monolayers. Science and Technology. Marcel Dekker Inc., Nueva York 1998.

SUGERENCIAS DIDÁCTICAS

Exposición del profesor, seminarios impartidos por los alumnos, elaboración de un trabajo de investigación y discusión de artículos recientes en el área.

FORMA DE EVALUAR

Exámenes parciales, tareas, exposiciones y participación en clase.

PERFIL PROFESIOGRÁFICO DE QUIENES IMPARTEN LA ASIGNATURA

Profesores activos en investigación en el área, con estudios de posgrado en Fisicoquímica.