Induction, continued

Induction

In Section 10.1, the book proves the following propositions by applying the axiom of induction.

- 1. If $n \in \mathbb{N}$, then $1+3+5+\cdots+(2n-1)=n^2$ 2. If n is a non-negative integer, then $5|(n^5-n)$. 3. If $n \in \mathbb{Z}$, and $n \ge 0$, then $\sum_{i=0}^{n} i \cdot i! = (n+1)! 1$. 4. If $n \in \mathbb{N}$, then $2^n \le 2^{n+1} 2^{n-1} 1$.
- 5. If $n \in \mathbb{N}$, then $(1+x)^n \ge 1 + nx$ for all $x \in \mathbb{R}$ with x > -1.

YOU SHOULD CAREFULLY STUDY ALL OF THESE PROOFS

Two notes: Problem 3 has $n \geq 0$ and Problem 5 has an additional variable.

Triangular numbers (Exercise 1)

Proposition: Prove that $1 + 2 + 3 + \dots + n = \frac{n^2 + n}{2}$.

Geometric series

Proposition: For any $n \geq 0$,

$$1 + x + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$$

A result on sets (Problem 17)

Proposition: Suppose that A_1, A_2, \cdots, A_n are sets contained in a universal set U and that $n \geq 2$. Then

$$\bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \overline{A_i}$$