Documentación Metodológica

Forecasting Ventas inmobiliarias Jesús María - Miraflores Julio 2022

Propuesta exclusiva para:

1. Objetivo

El presente documento tiene como objetivo exponer el desarrollo metodológico de los modelos de predicción de venta de inmuebles elaborados durante la consultoría brindada al equipo de ASEI.

2. Alcance

Los modelos construidos coberturan dos distritos de Lima metropolitana: **Jesús María** y **Miraflores** los cuales son divididos en zonas (1, 2 y 3) bajo el esquema de segmentación propuesta por el equipo de ASFI.

3. Análisis de segmentación

Como parte del proceso de evaluación se analizaron cada una de las series temporales brindadas por ASEI en cada una de las zonas por distritos:

MirafloresDistribución por Zona

Jesús María Distribución por Zona

Periodo de análisis: Abr2021-Abr2022

Los gráficos de distribución demuestran que existen diferencias importantes en la cantidad de ventas colocadas por zonas siendo predominante en ambos distritos las colocaciones en la zona 2.

Asimismo se evaluó que la tendencia variaba de forma diferente en cada uno de las zonas de modelamiento por lo cual se tomó la decisión de modelar las series temporales por separado.

Las series totales reflejan el comportamiento de la zona con mayor materialidad por lo cual **será necesario trabajar un modelo por cada zona por distrito**.

Zona 2

Zona 3

4. Información utilizada

El proceso de modelamiento incluyó dos principales fuentes de información compuestas por información brindada por el equipo de ASEI además de una segunda fuente conformada por data de series macroeconómicas extraída de la fuente del BCR.

Información ASEI

- Ventas mensuales totales y por zona (Jesus María y Miraflores)
- Precios de oferta de inmuebles totales y por zona (Jesus María y Miraflores)
- Precios de venta de inmuebles totales y por zona (Jesus María y Miraflores)
- Fechas de ferias inmobiliarias

Información BCR

- Tasa de interés de fondeo
- Tasa de interés activa

- Índice de precios inmueble
- Índice de precios por m2 en distritos medios
- Índice de precios por m2 en distritos altos*
- Índice de precios por m2 en 12 distritos
- Índice de precios de consumidor Lima met.
 (alimentos & energía)
- Producción de energía Lima
- Importación de bienes de consumo duradero
- índice de coyuntura de energía
- índice de coyuntura de energía sin minas
- índice de coyuntura de consumo de energía
- Variación porcentual demanda interna
- Variación porcentual del PBI*
- Variación porcentual del PBI sector construcción*
- índice de precios de inflación subyacente de bienes
- Importaciones de materiales de construcción

- índice de precios de importaciones
- Expectativa de PBI
- Tipo de cambio bancario mensual
- Indicador de variación mensual del tipo de cambio

Variables con Alto potencial

Identificamos variables con alto valor para potenciar los modelos, evaluaremos a profundidad las interacciones que se pueden tener para predecir nuestras series de interés.

Target: Venta total índice correlación

Índice de precios de importaciones	
Índice de precios del consumidor alimentos y energía (Lima)	
Índice de precios de inmuebles en distritos de medio valor	
Oferta total del mes previo	
Tipo de cambio bancario mensual	

Feature Engineering

Las variables identificadas pasaron sobre procesos de feature engineering para potenciar su valor predictivo.

El featuring consistió en la creación de variables derivadas del tipo:

- Promedios 3, 6,y 12 últimos meses de cada variable
- Ratios promedio 3/6, 6/12 meses de cada variable
- Estandarización de las variables (tomando medias y desviaciones de periodo train)

Definición muestral

Para probar de forma adecuada el funcionamiento del modelo trabajamos con un enfoque muestral OOT, el cual sugiere reservar los últimos periodos de la data para probar el desempeño del modelo.

Los modelos tomarán una ventana OOT de los 2 últimos meses de información disponible brindada por ASEI a la fecha de ejecución del modelo.

5. Proceso de Modelamiento

El desarrollo metodológico se dará de forma estratégica en 3 etapas:

La etapa 1 expuesta en el apartado anterior tendrá por finalidad extraer el máximo provecho de las posibles interacciones y patrones de la data.

La etapa 2 consiste en desarrollar un modelo ARIMA basado en el aprendizaje de la misma serie temporal tomando como input la misma serie y su comportamiento histórico.

La etapa 3 desarrollará un modelo de regresión lineal donde nuestro sistema aprenderá de las

interacciones y elasticidades que tienen los componentes macroeconómicos sobre la venta de inmuebles.

La etapa 4 finalmente tendrá como objetivo ensamblar los modelos desarrollados en la etapa 2 y 3. En los modelos de Miraflores se usó la metodología de ensamble por medias y en Jesús María se utilizaron modelos var (Vectores autorregresivos) para ensamblar los modelos.

6. Desarrollo de modelos

Miraflores Zona 1

MZ1 - ARIMA

El modelo Arima y sus componentes p, d y q se basaron en aspectos de pruebas de hipótesis basados en pruebas de dicky-fuller y de diferenciación desarrollados en los notebooks de trabajo además de contrastar los resultados con el modelamiento de la serie y los p-values obtenidos para cada grado de autoregresión y estacionariedad.

modelo resultado:

Dep. Variable: D2.Venta_zona_1 No. Observations: 43 Model: ARIMA(1, 2, 1) Log Likelihood -143.792 Method: css-mle S.D. of innovations 6.517 Date: Thu, 21 Jul 2022 AIC 297.585 Time: 16:18:02 BIC 306.391 Sample: 2 HQIC 300.832	
Method: css-mle S.D. of innovations 6.517 Date: Thu, 21 Jul 2022 AIC 297.585 Time: 16:18:02 BIC 306.391 Sample: 2 HQIC 300.832	
Date: Thu, 21 Jul 2022 AIC 297.585 Time: 16:18:02 BIC 306.391 Sample: 2 HQIC 300.832	
Time: 16:18:02 BIC 306.391 Sample: 2 HQIC 300.832	
Sample: 2 HQIC 300.832	
coef std err z P> z [0.025 0	
	===== 0.975]
const 1.0562 1.257 0.840 0.406 -1.408	
Venta_zona_1_lag2_avg3 -0.0840 0.102 -0.824 0.415 -0.284	0.116
ar.L1.D2.Venta_zona_1 -0.2812 0.148 -1.894 0.066 -0.572	
ma.L1.D2.Venta_zona_1 -1.0000 0.064 -15.505 0.000 -1.126 -	-0.874
Roots	
Real Imaginary Modulus Frequency	
AR.1 -3.5561 +0.0000j 3.5561 0.5000	
MA.1 1.0000 +0.0000j 1.0000 0.0000	

MZ1 - REGRESIÓN MACRO

El modelo de regresión macro contiene las siguientes

variables y coeficientes correspondientes:

OLS Regression Results

Dep. Variable:	Venta_zona_1	R-squared:		0.307	7	
Model:	OLS	Adj. R-squared	d:	0.253	3	
Method:	Least Squares	F-statistic:		5.751		
Date:	Thu, 21 Jul 2022	Prob (F-statis	stic):	0.00234	Į.	
Time:	17:12:43	Log-Likelihood	d:	-129.54	Į.	
No. Observations:	43	AIC:		267.1		
Df Residuals:	39	BIC:		274.1		
Df Model:	3					
Covariance Type:	nonrobust					
		ef std err			-	-
intercept		242 0.789				
<pre>precio_oferta_zon1_r exp_PBI_avg3_std</pre>	at3to6_std -2.21	0.788	-2.809	0.008	-3.806	-0.619
exp_PBI_avg3_std	1.25	0.793	1.586	0.121	-0.346	2.861
flg_feia_avg3_std	1.82	231 0.789	2.312	0.026	0.228	3.418
					:	
Omnibus:	3.670	Durbin-Watson	:	1.614	Į.	
Prob(Omnibus):	0.160	Jarque-Bera (JB):	3.280)	
Skew:	0.671	Prob(JB):		0.194	Į.	
Kurtosis:	2.834	Cond. No.		1.18	3	

Cabe mencionar que algunos p-values superan los valores de 0.05 (confianza de 95%) bajo decisión experta pues se consideró adecuado para el modelo considerar algunos componentes sacrificando significancia estadística para mejorar la robustez que puede presentar el modelo frente a cambios sistémicos del país.

MZ1 - COMBINACIÓN

La combinación de modelos en esta zona se realizó bajo la metodología de ensamble por medias que consiste en promediar el resultado de ambos modelos para la estimación final.

Miraflores Zona 2

MZ2 - ARIMA

El modelo Arima y sus componentes p, d y q se basaron en aspectos de pruebas de hipótesis basados en pruebas de dicky-fuller y de diferenciación desarrollados en los notebooks de trabajo además de contrastar los resultados con el modelamiento de la serie y los p-values obtenidos para cada grado de autoregresión y estacionariedad.

modelo resultado:

	ARIMA Mo	odel Resu	lts			
Dep. Variable:	D2.Venta_zona_2	2 No. 0	bservations:		43	
Model:	ARIMA(1, 2, 1)	Log L	ikelihood		-172.267	
Method:	css-mle	s.D.	of innovations		12.663	
Date:	Sun, 24 Jul 2022	2 AIC			354.534	
Time:	05:52:51	l BIC			363.340	
Sample:	2	HQIC			357.781	
			z	 D> a		0.0751
					-	_
const	-0.0173	0.839	-0.021	0.984	-1.662	1.627
Venta_zona_2_lag2_avg	3 0.0021	0.022	0.096	0.924	-0.040	0.044
ar.L1.D2.Venta_zona_2						
ma.L1.D2.Venta_zona_2	-1.0000	0.062	-16.210	0.000	-1.121	-0.879
	I	Roots				
	ıl Imagi	-				
AR.1 -5.079						
MA.1 1.000	0.0 +0.0	0000i	1.0000		0.0000	

MZ2 - REGRESIÓN MACRO

El modelo de regresión macro contiene las siguientes variables y coeficientes correspondientes:

Dep. Variable:	Venta_zona_2	R-squared:		0.739			
Model:	OLS	Adj. R-squared	:	0.719			
Method:	Least Squares	F-statistic:		36.78			
Date:	Sun, 24 Jul 2022	Prob (F-statis	tic):	1.87e-11			
Time:	05:53:20	Log-Likelihood	:	-161.27			
No. Observations:	43	AIC:		330.5			
Df Residuals:	39	BIC:		337.6			
Df Model:	3						
Covariance Type:	nonrobust						
		coef	std err	t	P> t	[0.025	0.975
intercept		42.7099	1.651	25.868	0.000	39.370	46.05
exp PBI avg3 std		5.9631	1.657	3.600	0.001	2.612	9.31
ind_prec_cons_lima_	met_alim_ener_avg3_:	std 15.6759	1.684	9.307	0.000	12.269	19.08
flg_feia_avg3_std		3.8777	1.647	2.354	0.024	0.546	7.20
Omnibus:	1.317	Durbin-Watson:		1.517			
Prob(Omnibus):	0.518		В):	1.011			
Skew:	-0.373 2.915	Prob(JB):		0.603			
Kurtosis:		Cond. No.		1.17			

Cabe mencionar que algunos p-values superan los

valores de 0.05 (confianza de 95%) bajo decisión experta pues se consideró adecuado para el modelo considerar algunos componentes sacrificando significancia estadística para mejorar la robustez que puede presentar el modelo frente a cambios sistémicos del país.

MZ2 - COMBINACIÓN

La combinación de modelos en esta zona se realizó bajo la metodología de ensamble por medias que consiste en promediar el resultado de ambos modelos para la estimación final.

Miraflores Zona 3

MZ3 - ARIMA

El modelo Arima y sus componentes p, d y q se basaron en aspectos de pruebas de hipótesis basados en pruebas de dicky-fuller y de diferenciación desarrollados en los notebooks de trabajo además de contrastar los resultados con el modelamiento de la serie y los p-values obtenidos para cada grado de autoregresión y estacionariedad.

modelo resultado:

ARIMA MODEL RESULTS										
Dep. Variable:	D2.Venta_zona_3	No. Observations:	43							
Model:	ARIMA(3, 2, 1)	Log Likelihood	-143.487							
Method:	css-mle	S.D. of innovations	6.417							
Date:	Sun, 24 Jul 2022	AIC	300.974							
Time:	19:48:05	BIC	313.303							
Sample:	2	HQIC	305.521							

	coef	std err	z	P> z	[0.025	0.975]
const	0.4113	0.353	1.164	0.252	-0.282	1.104
Venta_zona_3_lag2_avg3	-0.0281	0.028	-1.019	0.315	-0.082	0.026
ar.L1.D2.Venta_zona_3	-0.4224	0.155	-2.729	0.010	-0.726	-0.119
ar.L2.D2.Venta_zona_3	-0.2348	0.178	-1.319	0.195	-0.584	0.114
ar.L3.D2.Venta_zona_3	-0.0782	0.172	-0.455	0.652	-0.415	0.259
ma.L1.D2.Venta_zona_3	-1.0000	0.063	-15.872	0.000	-1.123	-0.877
		Roots				

	Real	Imaginary	Modulus	Frequency					
AR.1	-0.1331	-2.1579j	2.1620	-0.2598					
AR.2	-0.1331	+2.1579j	2.1620	0.2598					
AR.3	-2.7361	-0.0000j	2.7361	-0.5000					
MA.1	1.0000	+0.0000j	1.0000	0.0000					

El modelo de regresión macro contiene las siguientes variables y coeficientes correspondientes:

	OLS Regress	ion R	esults				
Dep. Variable:	Venta_zona_3	R-sq	uared:		0.440		
Model:	OLS	Adj.	R-squared:		0.413		
Method:	Least Squares	F-st	atistic:		16.51		
Date:	Wed, 13 Jul 2022	Prob	(F-statistic):		5.14e-06		
Time:	20:12:44	Log-	Likelihood:		-143.74		
No. Observations:	45	AIC:			293.5		
Df Residuals:	42	BIC:			298.9		
Df Model:	2						
Covariance Type:	nonrobust						
=======================================		=====					
		coef	std err	t	P> t	[0.025	0.975]
intercept			0.911				17 202
	ienes_avg3_std 4						
precio_venta_total_	rat3to6_std -1	.3525	0.935	-1.446	0.155	-3.239	0.534
Omnibus:			in-Watson:		1.373		
Prob(Omnibus):	0.999	Jarq	ue-Bera (JB):		0.133		
Skew:	0.011	Prob	(JB):		0.936		
Kurtosis:	2.734	Cond	l. No.		1.19		
		=====					

Cabe mencionar que algunos p-values superan los valores de 0.05 (confianza de 95%) bajo decisión experta pues se consideró adecuado para el modelo considerar algunos componentes sacrificando significancia estadística para mejorar la robustez que puede presentar el modelo frente a cambios sistémicos del país.

MZ3 - COMBINACIÓN

La combinación de modelos en esta zona se realizó bajo la metodología de ensamble por medias que consiste en promediar el resultado de ambos modelos para la estimación final.

Jesús María Zona 1

JMZ1 - ARIMA

El modelo Arima y sus componentes p, d y q se basaron en aspectos de pruebas de hipótesis basados en pruebas de dicky-fuller y de diferenciación desarrollados en los notebooks de trabajo además de contrastar los resultados con el modelamiento de la serie y los p-values obtenidos para cada grado de autoregresión y estacionariedad.

modelo resultado:

	0. 0. 0							
		ARIMA	Mode	el Resul	lts			
Dep. Variable:	D2.Ve	nta_zon	a_1	No. Ok	servations:		44	
Model:	ARIM	A(1, 2,	1)	Log Li	ikelihood		-194.030	
Method:		css-	mle	S.D. o	of innovations		18.885	
Date:	Mon, 2	5 Jul 2	022	AIC			398.060	
Time:		07:08	:49	BIC			406.981	
Sample:			2	HQIC			401.369	
					z			
					0.373			
Venta_zona_1_lag3_av	g3 –	0.0158		0.041	-0.383	0.704	-0.097	0.065
ar.L1.D2.Venta_zona_	1 -	0.3925		0.138	-2.835	0.007	-0.664	-0.121
ma.L1.D2.Venta_zona_								
			Roc					
Rea	al	Im	agina	ary	Modulus		Frequency	
AR.1 -2.54							0.5000	
MA.1 1.00								

JMZ1 - REGRESIÓN MACRO

El modelo de regresión macro contiene las siguientes variables y coeficientes correspondientes:

OLS Regression Results								
Dep. Variable:	Venta_zona_1	R-squ	ared:		0.215			
Model:	OLS	Adj.	R-squared:		0.177			
Method:	Least Squares	F-sta	atistic:		5.614			
Date:	Mon, 25 Jul 2022	Prob	(F-statistic):		0.00700			
Time:	07:09:16	Log-I	Likelihood:		-182.87			
No. Observations:	44	AIC:			371.7			
Df Residuals:	41	BIC:			377.1			
Df Model:	2							
Covariance Type:	nonrobust							
		coef	std err	t	P> t	[0.025	0.975]	
intercept			2.418					
ind_prec_inm_rat3to6	5_std 7	.6093	2.511	3.030	0.004	2.538	12.680	
ind_prec_inf_suby_bi	lenes_avg6_std 5	.9194	2.597	2.279	0.028	0.674	11.165	
Omnibus:	2.788	Durbi	in-Watson:		1.630			
Prob(Omnibus):	0.248	Jarqu	ıe-Bera (JB):		1.898			
Skew:	0.191	Prob	(JB):		0.387			
Kurtosis:	3.943	Cond	No.		1.38			

Cabe mencionar que algunos p-values superan los valores de 0.05 (confianza de 95%) bajo decisión

experta pues se consideró adecuado para el modelo considerar algunos componentes sacrificando significancia estadística para mejorar la robustez que puede presentar el modelo frente a cambios sistémicos del país.

JMZ1 - COMBINACIÓN

La combinación de modelos en esta zona se realizó bajo la metodología de vectores autorregresivos la cual combina ambos resultados como parte de un modelo ARIMA con las mismas consideraciones del modelo anterior.

ARIMA Model Results								
Dep. Variable:	D2	.Venta_zon	a_1	No.	Observations:		42	
Model:	I	RIMA(1, 2,	1)	Log	Likelihood		-183.694	
Method:		css-i	nle	S.D.	of innovations		18.178	
Date:	Mor	, 25 Jul 2	022	AIC			379.389	
Time:		07:09	:30	BIC			389.815	
Sample:			2	HQIC	:		383.210	
				~				
		coef	std	err	z	P> z	[0.025	0.9751
const		1.2984	5	.381	0.241	0.811	-9.249	11.846
venta predicted					-1.789			
					0.504			
					-2.695			
					-14.457			
ma.bi.bz.venea_		-1.0000	Roo		-11.157	0.000	-1.150	-0.004
					Modulus			
			-	-	Modulus			
					2.5351			
MA.1					1.0000			
rira . I	1.0000	т.		ر ن	1.0000		0.0000	

Jesús María Zona 2

JMZ2 - ARIMA

El modelo Arima y sus componentes p, d y q se basaron en aspectos de pruebas de hipótesis basados en pruebas de dicky-fuller y de diferenciación desarrollados en los notebooks de trabajo además de contrastar los resultados con el modelamiento de la serie y los p-values obtenidos para cada grado de autoregresión y estacionariedad.

modelo resultado:

1.0000

MA.1

ARIMA Model Results

+0.0000j

	ARIMA Model Results								
Dep. Variable:	_	_			44				
Model:	ARIMA(3, 2,	 Log L 	ikelihood		-167.138				
Method:	css-m	le S.D.	of innovations		10.270				
Date:	Mon, 25 Jul 20	22 AIC			348.276				
Time:	07:53:	22 BIC			360.765				
Sample:		2 HQIC			352.907				
	coef	std err	z	P> z	[0.025	0.975]			
const	0.3422	0.617	0.555	0.582	-0.866	1.551			
Venta_zona_2_lag2_av	g3 -0.0085	0.016	-0.541	0.592	-0.039	0.022			
ar.L1.D2.Venta_zona_									
ar.L2.D2.Venta_zona_									
ar.L3.D2.Venta_zona_									
ma.L1.D2.Venta_zona_	2 -1.0000	0.062	-16.005	0.000	-1.122	-0.878			
		Roots							
Re	al Ima	ginary	Modulus		Frequency				
AR.1 0.51									
AR.2 0.51	92 +1	.7761j	1.8504		0.2047				
AR.3 -2.98	86 -0	.0000j	2.9886		-0.5000				

1.0000

0.0000

JMZ2 - REGRESIÓN MACRO

El modelo de regresión macro contiene las siguientes variables y coeficientes correspondientes:

	OLS Regres	sion Re	esults				
					=======		
Dep. Variable:	Venta_zona_2	R-squ	ared:		0.311		
Model:	OLS	Adj.	R-squared:		0.259		
Method:	Least Squares	F-sta	atistic:		6.013		
Date:	Mon, 25 Jul 2022	Prob	(F-statistic):		0.00176		
Time:	07:53:45	Log-I	Likelihood:		-182.43		
No. Observations:		AIC:			372.9		
Df Residuals:	40	BIC:			380.0		
Df Model:	3						
Covariance Type:	nonrobust						
=======================================		======					
			std err			-	-
intercept	4		2.418				
var porc demanda in	terna_avg3_std	9.1532	2.610	3.506	0.001	3.877	14.429
flg feia avg3 std			2.443				
exp PBI avg3 std		7.1417	2.598	2.748	0.009	1.890	12.393
Omnibus:	1.494	Durbi	in-Watson:		0.597		
Prob(Omnibus):	0.474	Jarqu	ie-Bera (JB):		1.446		
Skew:	0.351	Prob((JB):		0.485		
Kurtosis:	2.456	Cond.	No.		1.55		

Cabe mencionar que algunos p-values superan los valores de 0.05 (confianza de 95%) bajo decisión

experta pues se consideró adecuado para el modelo considerar algunos componentes sacrificando significancia estadística para mejorar la robustez que puede presentar el modelo frente a cambios sistémicos del país.

JMZ2 - COMBINACIÓN

La combinación de modelos en esta zona se realizó bajo la metodología de vectores autorregresivos la cual combina ambos resultados como parte de un modelo ARIMA con las mismas consideraciones del modelo anterior.

	AR	MA Mode	el Res	sults			
				Observations		43	
Model:	ARIMA(0,	1, 3)	Log	Likelihood		-156.913	
Method:	CS	ss-mle	S.D.	of innovation	ons	8.982	
Date:	Mon, 25 Jul	2022	AIC			327.826	
Time:	07:	53:53	BIC			340.155	
Sample:		1	HQIC	:		332.373	
						[0.025	
						-9.841	
venta_predicted							
macro_pred	0.1814	0.	.136	1.336	0.190	-0.085	0.447
ma.L1.D.Venta_zona_2							
ma.L2.D.Venta_zona_2	-0.4959	0.	206	-2.405	0.021	-0.900	-0.092
ma.L3.D.Venta_zona_2	-0.2226	0.	156	-1.430	0.161	-0.527	0.082
		Roc	ots				
P.e.				Modu:			
			_	1.0			
MA.2 -1.61	41	-1.374	10j	2.1	197	-0.3878	
MA.3 -1.61	41	+1.374	10j	2.1	197	0.3878	

Jesús María Zona 3

JMZ3 - ARIMA

El modelo Arima y sus componentes p, d y q se basaron en aspectos de pruebas de hipótesis basados en pruebas de dicky-fuller y de diferenciación desarrollados en los notebooks de trabajo además de contrastar los resultados con el modelamiento de la serie y los p-values obtenidos para cada grado de autoregresión y estacionariedad.

modelo resultado:

MA.3

-1.0000

ARTMA	Model	Results

+0.0000j

		IMA Model Re				
Don Handahlas						
Dep. Variable:	_				44	
Model:			g Likelihood		-157.895	
Method:			O. of innovat	lons		
	Mon, 25 Ju				333.790	
Time:	08	:06:28 BIG			349.848	
Sample:		2 HQ:	IC		339.745	
			rr z			
const			05 1.078			
Venta_zona_3_lag2_a	avg3 -0.06	21 0.0	58 –1.079	0.288	-0.175	0.051
ar.L1.D2.Venta_zona	a_3 -2.21	83 0.3	38 –6.569	0.000	-2.880	-1.556
ar.L2.D2.Venta_zona						
ar.L3.D2.Venta_zona						
ma.L1.D2.Venta_zona						
ma.L2.D2.Venta_zona	_					
ma.L3.D2.Venta_zona	a_3 -1.00		39 –2.574	0.014	-1.762	-0.238
		Roots				
	Real	Imaginary	Mod	ulus	Frequency	
AR.1 -1.0						
AR.2 -1.0		_		0866		
AR.3 -2.5		-0.0000j		5304		
MA.1 1.0		-0.0000j		0000		
MA.2 -1.0		-0.0000j		0000		

1.0000

0.5000

JMZ3 - REGRESIÓN MACRO

El modelo de regresión macro contiene las siguientes variables y coeficientes correspondientes:

	OLS Regres	sion Result	s				
Dep. Variable:	Venta zona 3	R-squared	 l:		0.374		
Model:	OLS	Adj. R-sc	uared:		0.330		
Method:	Least Squares	F-statist	ic:		8.381		
Date:	Mon, 25 Jul 2022	Prob (F-s	statistic):	0.	000176		
Time:	08:06:48	Log-Likel	ihood:	-	153.75		
No. Observations:	46	AIC:			315.5		
Df Residuals:	42	BIC:			322.8		
Df Model:	3						
Covariance Type:	nonrobust						
		coef	std err	t	P> t	[0.025	0.975
intercept		26.5652	1.056	25.153	0.000	24.434	28.697
ind prec inm avg3	std	3.7640	1.083	3.475	0.001	1.578	5.950
ind prec inf suby	bienes rat3to6 std	2.7606	1.187	2.326	0.025	0.365	5.156
prod_ener_lima_avg	6_std	-2.5381	1.179	-2.153	0.037	-4.917	-0.159
Omnibus:	1.024	 Durbin-Wa	:======: :tson:		1.525		
	0.599	Jarque-Be	era (JB):		0.330		
Prob(Omnibus):	0.333						
Prob(Omnibus): Skew:		Prob(JB):			0.848		

Cabe mencionar que algunos p-values superan los valores de 0.05 (confianza de 95%) bajo decisión

experta pues se consideró adecuado para el modelo considerar algunos componentes sacrificando significancia estadística para mejorar la robustez que puede presentar el modelo frente a cambios sistémicos del país.

JMZ3 - COMBINACIÓN

La combinación de modelos en esta zona se realizó bajo la metodología de vectores autorregresivos la cual combina ambos resultados como parte de un modelo ARIMA con las mismas consideraciones del modelo anterior.

		A Model R				
Dep. Variable:					42	
_	_	_	g Likelihood		-145.050	
Method:			D. of innovat		6.630	
Date:				10115	310.100	
Time:		7:34 BI			327.477	
Sample:	00.0	2 HQ			316.470	
Sample:		z ng	10		310.470	
					[0.025	-
const					0.386	
venta_predicted	-0.1239	0.04	4 -2.838	0.008	-0.209	-0.038
					-0.027	
ar.L1.D2.Venta_zona_						
ar.L2.D2.Venta_zona_						
ar.L3.D2.Venta_zona_	3 0.2918	0.20	7 1.406	0.169	-0.115	0.698
ma.L1.D2.Venta zona	3 -0.9990	0.18	3 -5.468	0.000	-1.357	-0.641
ma.L2.D2.Venta_zona_	3 -1.0000	0.14	3 -7.015	0.000	-1.279	-0.721
ma.L3.D2.Venta_zona_	3 0.9990	0.18	2 5.503	0.000	0.643	1.355
		Roots				
Re			 Mod			
AR.1 1.55						
AR.2 -1.32			1.			
AR.3 -1.66						
MA.1 -1.00		_				
MA.2 1.00		+0.0000j		0000	0.0000	
MA.3 1.00			1.			
TA. 3						

7. Conclusiones y usos de modelos

En función a los resultados obtenidos se plantearon dos alternativas de uso de los modelos.

Uso mensual: Se basa en el output de los modelos y estima cuánto será la venta de inmuebles mensual en un horizonte no mayor a 6 meses (por recomendación del modelador). En el escenario de los modelos en semáforo amarillo y rojo se necesitará un monitoreo trimestral del modelo para poder decidir si mantenerlo en despliegue. Finalmente, en un escenario óptimo se esperaría que un modelo en verde pueda predecir dentro de los márgenes esperados por 1 año a partir de la fecha de construcción del modelo.

Uso de trimestres acumulados: Se basa en el output de los modelos acumulados de tres meses y estima cuánto será la venta de inmuebles trimestral en un horizonte no mayor a 6 meses (por recomendación del modelador). En el escenario de los modelos en semáforo amarillo y rojo se necesitará un monitoreo trimestral del modelo para poder decidir si mantenerlo en despliegue. Finalmente, en un escenario óptimo se esperaría que un modelo en verde pueda predecir dentro de los márgenes esperados por 1 año a partir de la fecha de construcción del modelo.

Leyenda de semáforos de modelos

Resumen de modelos

Resumen de variables para implementación

Finalmente como recomendaciones finales se deja expuesta la recomendación de utilizar acumulaciones trimestrales por sobre las estimaciones mensuales además de agrupaciones por distrito por sobre las desagregaciones por Zona. Esto con la finalidad de mantener los niveles de precisión de estimación lo más robustos y confiables posible.

8. Referencias bibliográficas

Time Series Analysis: Forecasting and Control; Wiley Series in Probability and Statistics - Box, George E. P., Jenkins, Gwilym M., Reinsel, Gregory C.

Time Series Analysis and its Applications - Robert H. Shumway; David S. Stoffer

Practical Time Series Analysis - Aileen Nielsen

Analysis of Financial Time Series - Ruey S. Tsay

Applied Time Series Analysis - Torence Mills

Forecasting: principles and practice - Rob J Hyndman and George Athanasopoulos