Augusta University: STAT 7630

Applied Linear Models

Dustin Pluta

2024 JAN 09

Course Introduction

- Website: https://github.com/dspluta/STAT7630 SPRING2024
- Syllabus: https://github.com/dspluta/STAT7630 SPRING2024/Syllabus.pdf
- Instructor email: dpluta@augusta.edu

Distributions

- We will mainly focus on continuous distributions in this course.
- The **cumulative density function (cdf)** of a random variable X is denoted F(x), and is defined as the probability that X < x.

$$F(x) = P(X < x)$$

• The **probability density function (pdf)** is denoted f(x), and is defined as the rate of change of the cumulative probability at x,

$$f(x) = F'(x)$$
.

ullet The **support** of a random variable X is the set of all values for which f(x)
eq 0

$$\operatorname{Supp}(X)=\{x:f(x)\neq 0\}.$$

Normal Distribution: PDF

The probability density function of $X \sim \mathcal{N}(\mu, \sigma^2)$ is

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}igg\{-rac{(x-\mu)^2}{2\sigma^2}igg\}$$

Sums of Normally Distributed Variables

Suppose $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$, and let a, b be real constants.

1.
$$aX_1 + bX_2 \sim \mathcal{N}(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$$
.

2. In particular, for $X_i \overset{iid}{\sim} \mathcal{N}(\mu, \sigma^2), i = 1, \dots, n$, we have

$$\overline{X} := rac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}\left(\mu, rac{\sigma^2}{n}
ight).$$

χ^2 Distribution

 $X \sim \chi_n^2$ has pdf

$$f(x)=rac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}.$$

The parameter n is the degrees of freedom of the distribution.

χ^2 Distribution

The following is a key property of the χ^2 distribution that we will use repeatedly throughout the course:

For
$$Z_1,\ldots,Z_n\stackrel{iid}{\sim}N(0,1)$$
 ,

$$\sum_{i=1}^n Z_i^2 \sim \chi_n^2$$

.

t Distribution

We will define the t distribution as a combination of a standard normal $Z\sim N(0,1)$, and $V\sim \chi^2_v$:

$$T=rac{Z}{\sqrt{V/v}}\sim t(v),$$

where $oldsymbol{v}$ is the degrees of freedom of the distribution.

t Distribution

F Distribution

We will encounter the F distribution frequently throughout the course as well.

Let $U \sim \chi^2_u$ and $V \sim \chi^2_v$, with U and V independent. Then

$$X = rac{U/u}{V/v} \sim F_{u,v},$$

where u and v are the degrees of freedom of the distribution.

${\it F}$ Distribution

Types of Problems in Statistics

- **Hypothesis Testing**: Make a binary (Yes/No) decision regarding some unknown quantity.
- **Estimation**: Estimate the value of some unknown quantity, and characterize the uncertainty in the estimate.
- **Prediction**: Predict the values of new observations from existing observations.

We will primarily focus on a review of hypothesis testing this week.

Hypothesis Testing

In general, a Null Hypothesis Significance Test (NHST) has the form

$$H_0: heta \in \Omega_0, \quad ext{(null hypothesis)} \ H_1: heta \in \Omega_1, \quad ext{(alternative hypothesis)}$$

where $\Omega_0\subset\mathbb{R}$ is the set of parameter values satisfying the null hypothesis, and similarly for Ω_1 .

- When $\Omega_0=\{\theta_0\}$ (contains a single value), then H_0 is $H_0:\theta=\theta_0$, and is called a simple hypothesis.
- If Ω_0 contains more than one value, H_0 is called a composite hypothesis.

Null Hypothesis Significance Testing

 $H_0: heta \in \Omega_0, \quad ext{(null hypothesis)} \ H_1: heta \in \Omega_1, \quad ext{(alternative hypothesis)}$

at level of significance lpha, given a sample X_1,\ldots,X_n .

- 1. State the null and alternative hypotheses, the assumed sampling distribution of the data.
- 2. Choose an appropriate test statistic T(X) for the null hypothesis.
- 3. Check model assumptions. (e.g. QQ-plot, histogram, scatterplot)
- 4. Compute the reference distribution and corresponding P-value for the test statistic.
- 5. Conclude one of:
 - \circ P<lpha o Fail to reject H_0 : There is insufficient evidence to reject the null hypothesis at the lpha level of significance.
 - $P \ge \alpha \to \text{Reject } H_0$: There is sufficient evidence to reject the null hypothesis (and accept the alternative hypothesis) at the α level of significance.

14 / 36

Definition: P-value

The **P-value** of a NHST is the probability of seeing a test statistic as extreme or more extremem than the observed test statistic, assuming the null hypothesis is true.

One Sample z-test

Step 1

Suppose
$$X_1,\ldots,X_n \overset{iid}{\sim} \mathcal{N}(\mu,\sigma^2)$$
, with σ^2 known.

We wish to test the hypothesis

$$H_0: \mu=\mu_0$$

$$H_1: \mu > \mu_0.$$

One Sample z-test

Step 2

We will test H_0 with test statistic $T(X)=rac{\overline{X}-\mu_0}{\sigma}.$

"True" Distribution: $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$

Null Distribution: $\overline{X} \stackrel{H_0}{\sim} \mathcal{N}(\mu_0, \sigma^2/n)$

- ullet The minimum variance unbiased linear estimator for μ
- ullet The Maximum Likelihood Estimator for μ
- More on this later...

Step 3 Check model assumptions.

Step 4 Compute reference distribution.

ullet Reference Distribution: $T(X) \stackrel{H_0}{\sim} \mathcal{N}(0,1)$

Step 5 Make conclusion.

Hypothesis Testing Terminology

- Type I Error: $\alpha = P(\mathrm{Reject}\; H_0 | H_0 \; \mathrm{is} \; \mathrm{True})$
- Type II Error: $\beta = P(\text{Fail to reject } H_0 | H_0 \text{ is False})$
- Power: $1 \beta = P(\text{Reject } H_0 | H_0 \text{ is False})$

Remarks

- In the NHST framework, lpha is selected by the researcher.
- Power is determined by the choice of α , as well as the sample size and the size of the effect being tested.

One-sample z-test

- Suppose $X_1,\ldots,X_n\stackrel{iid}{\sim}\mathcal{N}(\mu,\sigma^2)$. We wish to test $H_0:\mu=\mu_0$. Assume σ^2 is known.
- ullet Since $ar{X}$ is an unbiased sufficient statistic for μ , we can use this estimator to construct our test statistic.
- ullet We want to standardize the statistic to make it easy to compute the P-value.
- $ar{X} \sim \mathcal{N}(\mu, \sigma^2)$, so

$$Z = rac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \stackrel{H_0}{\sim} \mathcal{N}(0,1).$$

One-sample z-test

- Suppose $X_1,\ldots,X_n\stackrel{iid}{\sim}\mathcal{N}(\mu,\sigma^2)$. We wish to test $H_0:\mu=\mu_0$. Assume σ^2 is known.
- We can again use \overline{X} to construct our test statistic, but we must now also estimate σ^2 .
- Use the sample variance estimator, which is unbiased for σ^2 :

$$s^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2.$$

• Now consider test statistic $T=rac{ar{x}-\mu_0}{s/\sqrt{n}}.$ What is the reference distribution?

One-sample z-test (cont'd)

- ullet What is the reference distribution of $T=rac{ar x-\mu_0}{s/\sqrt n}$?
- ullet Recall that $rac{(n-1)s^2}{\sigma^2}\sim \chi^2_{n-1}.$
- ullet We can rewrite T as

$$T=rac{Z}{\sqrt{V/v}},$$

where
$$Z=rac{(\overline{X}-\mu_0)}{\sigma}$$
 and $V=rac{(n-1)s^2}{\sigma^2}.$

ullet Thus, $T\stackrel{H_0}{\sim}\chi^2_{n-1}$.

Example: One-sample t-test

```
set.seed(12)

n \leftarrow 20

mu \leftarrow 0

sigma \leftarrow 0.5

x \leftarrow rnorm(n, mu, sigma)

hist(x, breaks = 20)
```


Example: One-sample t-test

```
x_bar \leftarrow sum(x) / n

s \leftarrow sqrt(sum((x - x_bar)^2) / (n - 1))

print(x_bar)

## [1] -0.1656045

print(s)

## [1] 0.4334393

test_stat \leftarrow (x_bar - 0) / (s / sqrt(n))

print(test_stat)

## [1] -1.708673
```

Example: One-sample t-test

```
pnorm(test_stat)
## [1] 0.04375576
pt(test_stat, df = n - 1)
## [1] 0.05189839
```

- ullet We see that the t-test gives a larger P-value than what one would get from the normal distribution.
- If one incorrectly applies a z-test instead of a t-test, the Type I error will be inflated, especially for small sample sizes.

```
set.seed(1234)
n ← 20
mu ← 0.9
sigma ← 0.5
x ← rnorm(n, mu, sigma)

lik ← function(mu, sigma = 1) {
   (2 * pi * sigma^2)^(-n / 2) * exp(- 1 / (2 * sigma^2) * sum((x - mu)^2))
}
mu_seq ← seq(0, 2, 0.01)
lik_vals ← sapply(X = mu_seq, FUN = lik)
```


Likelihood Ratio Test

Suppose we want to test $H_0: \mu=1$ with the LRT.

Likelihood Ratio Test

Suppose we want to test $H_0: \mu=1$ using the LRT.

```
set.seed(1234)
n \leftarrow 20
mu \leftarrow 0.9
sigma \leftarrow 0.5
x \leftarrow rnorm(n, mu, sigma)
mu 0 \leftarrow 1
s_0 \leftarrow sqrt(1 / n * sum((x - mu_0)^2))
mu_hat \leftarrow mean(x)
s \leftarrow sqrt(1 / (n - 1) * sum((x - mu hat)^2))
F_stat \leftarrow n * (mu_hat - mu_0)^2 / s^2
P_{val} \leftarrow pf(F_{stat}, df1 = 1, df2 = n - 1, lower.tail = FALSE)
P val
## [1] 0.06141741
```

```
t.test(x = x, mu = 1)
##
       One Sample t-test
##
###
## data: x
## t = -1.988, df = 19, p-value = 0.06142
## alternative hypothesis: true mean is not equal to 1
## 95 percent confidence interval:
## 0.5374297 1.0119063
## sample estimates:
## mean of x
## 0.774668
T stat \leftarrow (mu hat - mu 0) / sqrt(s^2 / n)
2 * pt(T stat, df = n - 1, lower.tail = T)
## [1] 0.06141741
```


