Lecture 4
Label Aggregation: EM-Based Methods

Instructor: Chien-Ju (CJ) Ho

Logistics: Reminders

Review:

 The next required reading is mathematically dense. Try to at least understand the formulation and the interpretations of the main results.

Assignments:

- Assignment 1 is due next Friday
- Assignment 2 will be announced next Tuesday

Bidding of presentations

- Form a team and choose >= 3 topics that interest you
- Bidding link will be up next Tuesday (and due the same day)
- Presentation assignments will be announced next Wednesday

Finding teammates

Stay after lectures and/or utilize Piazza features

Logistics: Project Timeline

- Sep 23: Project proposal
 - Brief description of the proposed project (1~2 paragraph)
 - Citing at least one paper that's relevant to your proposal
- Oct 14: Milestone 1
 - A brief literature review and the description of your plan (one page)
 - Last chance to change the topic of the project
- Nov 4: Milestone 2
 - Summary of your current progress (up to 2 pages)
 - Last chance to convert the research project to (a more
- Dec 6/8: In-class project presentations
- Dec 9: Project report due

About how to choose topics:

- 1. I will post a list of example/past projects next week.
- 2. Looking at future lectures could help.
- 3. Schedule meetings to discuss with me about your project if you like.

A Short Recap of Last Lecture

Course Overview

Report a problem

Human as data sources:
Label aggregation
Probabilistic reasoning to

aggregate noisy human data

Humans are "Humans":
Incentive design
Game theoretical modeling of humans and incentive design

Practical challenges:
Real-time and complex tasks
Studies on workflow and team
designs from HCI perspective

Selected recent topics: Ethical issues of AI/ML, learning with strategic behavior, Human-AI collaborations.

Label Aggregation

	Worker 1	Worker 2	Worker 3	Worker 4	•••
Task 1	+1	-1		-1	
Task 2		-1	+1		
Task 3	-1			+1	
Task 4		+1	+1		
•••					

- Goal: infer true labels
- Challenges
 - Unknown worker skills
 - Different task difficulties
 - More factors to consider (some structures of tasks/workers?)

Probabilistic Approach for Label Aggregation

- High-level ideas:
 - Let D be the set of observations
 (e.g., training dataset, the set of labels we got from workers)
 - Let θ be the set of latent parameters we care about (e.g., ML hypothesis, true labels)
 - Two important concepts
 - Posterior: $Pr(\theta|D)$ [More discussion in CSE515T]
 - Likelihood: $Pr(D|\theta)$ [More discussion in CSE417T]
 - Connection: $Pr(\theta|D) = \frac{Pr(\theta)Pr(D|\theta)}{Pr(D)}$

MLE approach (roughly speaking): Find $\theta^* = argmax_\theta \Pr[D|\theta]$

Majority Voting for "Homogeneous" Workers

- Model: Every worker gives correct label with probability p>0.5
- Majority voting leads to maximum likelihood estimation (MLE)

```
MLE (roughly speaking): Find \theta^* = argmax_\theta \Pr[D|\theta]
```

- Theoretical guarantees of majority voting
 - Hoeffding's Inequality

$$\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 n}$$
 for any $\epsilon > 0$

Plug it into label aggregation binary classification

Prob of error $\leq e^{-\frac{1}{2}n(2p-1)^2}$, where p is the prob of correct label

What if Workers are Heterogeneous

- Worker $i \in \{1, ..., n\}$
 - provides label $l_i \in \{-1, +1\}$
 - assumption: each label l_i is correct with probability p_i
 - assume p_i is known

Remember why we can write it in this way? Hint: it's due to the choice of the label presentation $\{+1, -1\}$

Weighted majority voting

Predict $sign(\sum_{i=1}^{n} w_i l_i)$

- Weights that lead to MLE: $w_i = \ln \frac{p_i}{1-p_i}$ for label l_i
 - You can prove this yourself following the proof of simple majority voting
- Weights that minimizes error bound: $w_i = 2p_i 1$ for label l_i
 - (Lemma 1 in <u>Ho et al. ICML 2013</u>)

Today's Lecture

Framework for Probabilistic Inference

• Notations:

Each d_i is often assumed to be independently drawn

- $D = \{d_1, ..., d_n\}$: observations (e.g., training data, labels we got from workers)
- θ : be the set of latent parameters we care about (e.g., ML hypothesis, true labels)

MLE approach

```
• \theta^* = argmax_{\theta} \Pr(D|\theta)
= argmax_{\theta} \prod_{i=1}^{n} \Pr(d_i|\theta) (from the common "independence" assumption)
= argmax_{\theta} \log \prod_{i=1}^{n} \Pr(d_i|\theta)
```

 $= argmax_{\theta} \sum_{i=1}^{n} \log \Pr(d_i | \theta)$

In machine learning, we often replace this as a (negative) point-wise "loss function"

Framework for Probabilistic Inference

• Notations:

Each d_i is often assumed to be independently drawn

- $D = \{d_1, ..., d_n\}$: observations (e.g., training data, labels we got from workers)
- θ : be the set of latent parameters we care about (e.g., ML hypothesis, true labels)

MLE approach

```
• \theta^* = argmax_{\theta} \Pr(D|\theta)

= argmax_{\theta} \prod_{i=1}^{n} \Pr(d_i|\theta) (from the common "independence" assumption)

= argmax_{\theta} \log \prod_{i=1}^{n} \Pr(d_i|\theta)

= argmax_{\theta} \sum_{i=1}^{n} \log \Pr(d_i|\theta)
```

Another interpretation

- Define point-wise loss function $\ell(d,\theta)$
- Solving $\theta^* = argmin_{\theta} \sum_{i=1}^n \ell(d_i, \theta)$

Solving this optimization problem is one of the "key" steps in machine learning.

Get Back to Label Aggregation

- Steps for MLE approach
 - Define label generation model $Pr(d_i|\theta)$ (define loss functions in ML)
 - θ contains the true labels and other latent factors in your models
 - Optimization: Find $\theta^* = argmax_{\theta} \sum_{i=1}^{n} \log \Pr(d_i | \theta)$
 - In the last lecture, there are only two possible values for θ . So we find it in a brute-force way
 - Maximum likelihood estimation (MLE):
 - Predict +1 if $Pr[L|l^* = +1] \ge Pr[L|l^* = -1]$
 - Predict -1 otherwise
 - What if there are (infinitely) many possible values of θ ?
 - Need to perform "optimization" algorithms to find it θ^* .

Optimization

- One of the key elements in modern machine learning
 - The reason most ML courses require probability, calculus, and linear algebra
- Assume the function we want to minimize (maximize) is convex (concave)
 - Gradient descent is one of the most commonly-used algorithm

$$w_{t+1} = w_t - \gamma_t \, \nabla J(w)$$

- 1. Requires gradient to exist everywhere
- 2. Only guarantees to find local optimum
 In convex functions, local optimum == global optimum
- What if the function is not convex
 - Start at a random point, do many times, report the best one

Expectation-Maximization (EM)

- What if gradient doesn't always exist
- Consider the function we want to minimize: $L(\theta_1, \theta_2)$
 - $\partial L/\partial \theta_1$ can be obtained (e.g., θ_1 are the unknown worker skills)
 - $\partial L/\partial \theta_2$ are hard to obtain (e.g., θ_2 are the "true" labels)
- EM: an iterative approach
 - Start with some initial estimates of θ_1 , θ_2
 - Iteratively perform the following until the stop conditions are met:
 - Fix θ_1 , estimate θ_2 (e.g., find MLE)
 - Fix θ_2 , estimate θ_1
 - Stopping condition: converged, # iterations >= pre-determined threshold, etc

Only guarantee to converge to local optimum.

Consider a simpler case: Optional Reading

Maximum Likeihood Estimation of Observer Error-Rates Using the EM Algorithm. Dawid and Skene. Applied Statistics. 1979.

Motivating Scenario

- Multiple doctors give diagnosis based on a patient's information
- Doctors might make mistakes (with unknown probability)
- Given diagnosis from multiple doctors, how to infer the patients' true condition

- In the context of label aggregation
 - Doctors -> workers
 - Diagnosis -> labels
 - They consider the setting all tasks are the same

Reminder: If Worker Skills are Known

- Worker $i \in \{1, ..., n\}$
 - provides label $l_i \in \{-1, +1\}$
 - assumption: each label l_i is correct with probability p_i
 - assume we know p_i

Think about why we can write it in this way? Hint: it's due to the choice of the label presentation $\{+1, -1\}$

- Weighted majority voting Predict $sign(\sum_{i=1}^{n} w_i l_i)$
 - Weights that lead to MLE: $w_i = \ln \frac{p_i}{1-p_i}$ for label l_i
 - You can prove this yourself following the proof of simple majority voting
 - Weights that minimizes error bound: $w_i = 2p_i 1$ for label l_i
 - (Lemma 1 in <u>Ho et al. ICML 2013</u>)

What if Workers' Skills are Unknown

- Short Discussion: What can we do?
 - Think about the EM idea we just discussed

	Worker 1	Worker 2	Worker 3	Worker 4	Worker 5
Task 1	-1	+1	-1	+1	-1
Task 2	+1	+1	-1	+1	-1
Task 3	+1	-1	+1	-1	+1
Task 4	-1	-1	+1	+1	+1

```
EM: an iterative approach Start with some initial estimates of \theta_1, \theta_2 Iteratively perform the following until the stop conditions are met: Fix \theta_1, estimate \theta_2 (e.g., find MLE) Fix \theta_2, estimate \theta_1 Stopping condition: converged, # iterations >= pre-determined threshold, etc
```

What if Workers' Skills are Unknown

	Worker 1	Worker 2	Worker 3	Worker 4	Worker 5
Task 1	-1	+1	-1	+1	-1
Task 2	+1	+1	-1	+1	-1
Task 3	+1	-1	+1	-1	+1
Task 4	-1	-1	+1	+1	+1

High-Level Description of EM

```
Algorithm 1 The basic EM framework of Dawid and Skene (1979).
  Input: Sets of worker-generated labels for each instance
  Initialize each instance's label based on a simple majority vote
  repeat
    for all Workers w do
      Calculate w's quality parameter(s), treating each instance's current label as ground
      truth
    end for
    for all Instances i do
      Calculate the most likely label for i, treating each worker's approximated quality
      parameter(s) as ground truth
    end for
  until Label assignments have converged
  Output: The current label assignments for each instance
```

Making Better Use of the Crowd: How Crowdsourcing Can Advance Machine Learning Research. Vaughan. JMLR 2018.

Required Reading

Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise. Whitehill et al. NIPS 2009.

Reminder on the Framework

- Steps for MLE approach
 - Define label generation model $Pr(d_i|\theta)$
 - θ contains the true labels and other latent factors in your models
 - Optimization: Find $\theta^* = argmax_{\theta} \sum_{i=1}^{n} \log \Pr(d_i | \theta)$
 - In last lecture, there are only two possible values for θ . So we brute-force find it.
 - Maximum likelihood estimation (MLE):
 - Predict +1 if $Pr[L|l^* = +1] \ge Pr[L|l^* = -1]$
 - Predict -1 otherwise
 - What if there are infinitely many possible values of θ ?
 - Need to perform "optimization" algorithms to find θ^* .

Model of Label Generation

$$p(L_{ij} = Z_j | \alpha_i, \beta_j) = \frac{1}{1 + e^{-\alpha_i \beta_j}}$$

What do these parameters mean?

Using EM to find the MLE

- E-Step:
 - Fix current estimate α and β , calculate the distribution of true labels
- M-Step
 - Fix current estimate of true labels, finding α and β that maximize likelihood
 - Using gradient descent

$$p(L_{ij} = Z_j | \alpha_i, \beta_j) = \frac{1}{1 + e^{-\alpha_i \beta_j}}$$

Simulation/Experiments

Discussion

What are your general thoughts about the paper.

• When do you think majority voting would be a preferred method than GLAD or other more sophisticated method?

 What other aspects of label generation do you think can/should also be modeled (the application doesn't need to be restricted to image labeling)?

When Majority-Voting Might Be Preferred

- Not enough data: Occam's Razor
- Fairness considerations: When the outcome impacts people
 - Can we give different weights to voters in Presidential Elections?
- When the label is subjective
 - Aggregating preferences is a hard question
 - Arrow's impossibility theorem

What Other Aspects to Model

- Confusion matrix
 - Instead of using a single probability for modeling worker skills for tasks

Ground Truth

	Label 1	Label 2	Label 3
Label 1	0.8	0.1	0.1
Label 2	0.1	0.9	0
Label 3	0.1	0.2	0.7

Worker Label

What Other Aspects to Model

• The Multidimensional Wisdom of Crowds. Welinder et al. NIPS 2010

What Other Aspects to Model

- Temporal Information
 - Workers get more experienced over time
 - [some recent relevant research topic: machine teaching]
 - Workers get tired over time
 - Most approaches are pretty ad-hoc

General Framework for Label Aggregation

- Most of the papers in label aggregation follow this general idea.
- Steps:
 - Model label generation $Pr(d_i|\theta)$
 - Optimization: Find $\theta^* = argmax_{\theta} \sum_{i=1}^{n} \log \Pr(d_i|\theta)$ [or other objective]

- With reasonable models, it works well in practice.
- However, no theoretical guarantees in general.

Next Lecture

- Read papers that give theoretical guarantees
 - Be prepared for the more math-heavy reading
 - Try to at least understand the formulation/models and the interpretations of the main results