Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

Wang, S., Peng, J., Ma, J., & Xu, J. (2016). Scientific Reports, 6, 18962. https://doi.org/10.1038/srep18962

Presented by: Shaimaa Bakr, Cici Chen, Daniel Fernandes & Rahul Palamuttam

Central Dogma of Biology

		6			Second	Position		10	_	<u> </u>	
			U	С		Α		G			
1	U	UUU	Phe / F	UCU	Ser/S	UAU UAC	Tyr / Y	UGU UGC	Cys / C	U	
	•	UUA	Leu/L	UCA	3EI / 3	UAA	STOP	UGA	STOP	Α	A
		UUG		UCG		UAG	STOP	UGG	Trp / W	G	
		CUU	Leu/L	CCU	Pro / P	CAU	His / H	CGU	Arg/R	U	
	С	CUC		CCC		CAC		CGC		C	-
Position	_	CUA		CCA		CAA	Gln/Q	CGA		Α)
osit		CUG		CCG		CAG		CGG		G	P
T L		AUU	Ile / I	ACU	Thr/T	AAU	Asn / N	AGU	Ser/S	U	Third Position
First	Α	AUC		ACC		AAC		AGC		С	9
	^	AUA		ACA		AAA	Lys / K	AGA	Arg/R	Α	
		AUG		ACG		AAG		AGG	718/11	G	
		GUU		GCU		GAU	Asp / D	GGU		U	
	G	GUC	GUA Val/V	GCC	Ala / A	GAC	75p / U	GGC	Gly / G	С	
	3	GUA		GCA		GAA	Glu / E	GGA	GIY / G	Α	
		GUG		GCG		GAG		GGG		G	

Anticodon Amino Acid Table

Levels of Protein Structures

Primary structure

Secondary structure

Tertiary structure

Quaternary structure

Secondary Structure Types

 α -helix β -sheet /strand loop /turn

Why predict secondary structure?

- "Bottom up" approach to predict tertiary structure
- Structure informs function

Labeling Secondary Structures

Alpha helix Beta sheet Anything else (loop/coil) _____ 3-state model ~30% ~20% ~50%

G = 3-turn helix (3₁₀ helix). Min length 3 résidues.

H = 4-turn helix (α helix). Min length 4 residues.

I = 5-turn helix (π helix). Min length 5 residues (Extremely rare)

T = hydrogen bonded turn (3, 4 or 5 turn)

 \mathbf{E} = extended β strand (parallel and/or anti-parallel). Min length 2 residues.

 $\bf B$ = residue in isolated β-bridge (single pair β-sheet hydrogen bond formation)

S = bend (the only non-hydrogen-bond based assignment).

C = coil (residues which are not in any of the above conformations).

8-state model

Problem Statement

Given a protein with amino acid sequence r_1 r_2 $r_3...r_n$, predict whether each amino acid r_i is in:

- (1) an α-helix, a β-strand, or neither. (3-state model)
- (2) the G, H, I, T, E, B, S, or C state. (8-state model)

Data from Far-UV Circular Dichroism

- CD wavelength between 180 and 260 nm for SS
- Obtain discrete voltage values as function of wavelength

Data from Nuclear Magnetic Resonance Spectroscopy (for smaller proteins)

Free induction decay of specific nuclei as function of radiofrequency excitation pulses

Other considerations about data

 pH & temperature of solution can influence SS

 different organisms can make different forms of the same protein

e.g. H2O surrounds & interacts with secondary structure

Important Definitions

Residue: a monomer within a polymeric chain (e.g. 1 amino acid in a protein)

Protein superfamily: group of proteins classified according to specific classification schemes

Sequence identity: amount of amino acids that match exactly between 2 sequences

Neff score: measures the average number of effective amino acids across all the residues, ranging from 1 to 20

Similarity: extent to which amino acids are conserved between proteins

Protein homology: inferred from sequence identity, characterizes extent of shared ancestry between proteins

Architecture

- A hybrid of Deep Convolutional Neural Nets and Conditional Neural Fields
- Conditional Neural Fields (CNF) are an extension of Conditional Random Fields (CRFs)

A brief history of...

Figure 1.2 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-chain CRFs, generative models, and general CRFs.

Generative vs Discriminative Models

- Hidden Markov Models are Generative
 - Using hidden states, they generate a likely observed output
 - Model the joint distribution: P(x,y) = P(y)*P(x|y)
 - Use maximum a posteriori (MAP) classifier to determine which hidden state was most probable
- Conditional Random Fields are Discriminative
 - CRFs describe a sequence by coloring the sequence with a fixed set of labels
 - (For this paper, our labels will be protein SS)
 - CRFs directly model the data using conditional probabilities
 - \blacksquare P(y|x)
- Use Bayes Rule to convert from one to the other!
- In practice, non-naive generative models/statespaces are hard to create

Takeaways

Generative Models

- Can be applied in unsupervised learning
- Forced to model the input distribution and the conditional probabilities at the same time
- Less prone to overfitting data

Discriminative Models

- Unsupervised learning still an "active area of research"
- Can model the input distribution and the conditional probabilities separately
- More prone to overfitting data

Read for more details:

Sutton, C., & Mccallum, A. (2011). An Introduction to Conditional Random Fields. Machine Learning, 4(4), 267–373. https://doi.org/10.1561/2200000013

(Linear Chain)Conditional Random Fields & Neural Fields

P(output at y | x sequence) = normed exponential(linear weighted sum of local window + weight of previous output)

P(output at y | x sequence) = normed exponential(nonlinear weighted sum of local window + weight of previous output)

Conditional Random Fields

Inputs:

1. The dependency between the neighboring output labels. Essentially a list of transitions.

Formally:
$$f_{y,y'}(Y, X, t) = \delta[y_t = y]\delta[y_{t-1} = y']$$

Where δ is an indicator function (only 1 when state at position t is y)

2. The dependency between the label at one position and the observations around this position. Essentially a window on our X inputs.

Formally:
$$f_y(Y, X, t) = \mathbf{f}(X, t)\delta[y_t = y]$$

Conditional

 $P(Y|X) = \frac{1}{Z(X)} \exp(\sum_{t=1}^{N} (\psi(Y, X, t) + \phi(Y, X, t)))$

Random

Fields

where

$$\phi(Y, X, t) = \sum_{y} w_{y}^{T} f_{y}(Y, X, t)$$

is the potential function defined on vertex at the t^{th} position, which measures the compatibility between the local observations around the t^{th} position and the output label y_t ; and

$$\psi(Y, X, t) = \sum_{y, y'} u_{y, y'} f_{y, y'}(Y, X, t)$$
(5)

is the potential function defined on an edge connecting two labels y_t and y_{t+1} . This potential measures the compatibility between two neighbor output labels.

 Input

(3)

(4)

Output

Conditional Neural Fields

$$\phi(Y,X,t) = \sum\nolimits_{y} \sum\nolimits_{g=1}^{K} w_{y,g} h(\theta_g^T \mathbf{f}(X,t)) \delta[y_t = y]$$
 Where h is a nonlinear activation function, like tanh or sigmoid

Lots of work on this, see: Chen, L.-C., Schwing, A. G., Yuille, A. L., & Urtasun, R. (n.d.). Learning Deep Structured Models.

Difference Between CRF and RNN?

1 Answer

Jordan Boyd-Graber, Assistant Prof working on Machine Learning at U Colorado Written May 9

RNNs have a latent state that is never observed (e.g. the memory in a LSTM). In contrast, the CRF has a latent state that is observed for training data (the model has to learn how to recreate those latent states for test data).

Both are similar in that there is a set of parameters that tell you how to evolve the latent state from one time step to the next.

920 Views · View Upvotes

Upvote | 9 | Downvote Comment 1

1. Regularization

2. Select non-redundant protein sequences?

a. Protein Sequence Identity

b. Protein Superfamilies

•

GOAL: Avoid overfitting

Training Method

$$logP(Y|X) = \sum [\Psi(Y,X,i) + \Phi(Y,X,i)] - logZ(x))$$

- This is obtained by taking the log of both sides of the CRF equation for conditional probability
- Train model parameters by maximum-likelihood
- Y = Secondary Structure type at residue i
- X = input feature where X_i is a column vector representing the input feature
- Z = partition function

Regularization: The problem of overfitting

- Overfit

$$min \sum V(f(x), y))$$

Regularization

$$min \sum V(f(x), y) + \lambda R(f)$$

L2 Regularization

$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- L2 norm least squares error
- Objective Function:

$$\max \theta \log P\theta (Y|X) - \lambda \|\theta\| 2$$

- To reduce over-fitting, the log-likelihood objective function is penalized with the L2-norm of the model parameters.

Large Regularization Factor

- DeepCNF has many model parameters
- Small L2-norm will restrict the search space of the model parameter
- To prevent overfitting the regularization factor must also be sufficiently large
- Too large of a Regularization factor => underfitting

L-BFGS

- Once we introduce non-linearities
 - CRF's were convex, had guaranteed global maximas
 - Traditional gradient descent will not work
 - So we need stochastic gradient descent
 - L-BFGS similar to stochastic gradient descent
- Limited BFGS
 - Optimization algorithm that approximates Browden-Fletcher-Goldfarb-Shannon algorithm with limited memory
- Use L-BFGS to search for optimal model parameters
 - Parameter estimation
- Has been successfully used to train CRF and CNF

Training and Test: 25% Sequence Identity

Training Set

~5600 CullPDB Proteins

- JPRED 1338 training
 - Use non-redundant proteins
 - Use proteins in different superfamilies
 - reduce bias incurred by sequence profile similarity between training and test proteins

~ 500 CullPDB Proteins

Test Set

- 513 CB513 Proteins
- 123 CASP10 Proteins
- 105 CASP11 Proteins
- 179/403 CAMEO test targets

What is Protein Sequence Identity

What is sequence identity?

- Sentences,
 - Similar sequences have common phonemes, letters, and capitalization

- Protein Sequences
 - Similar chemical properties i.e. acidic vs basic, hydrophobic vs hydrophilic

Training and Test: Protein Sequence Identity

PDB - Protein Data Bank

PISCES - Protein Culling Server

 Creates PDB sequence identities via Hidden Markov Models

CullPDB - 25 % Sequence identity to remove redundancies between training and test set

Training and Test: Protein superfamilies

Protein Superfamilies

CATH - Class, Architecture, Topology, Homology

- A hierarchical protein domain classification
- Homologous superfamilies in CATH predict protein function by recognizing sequence patterns associated with a particular function
- Insight : Proteins from different superfamilies have different sequence identities

CATH

The four main levels of the CATH hierarchy are as follows:

#	Level	Description
1	Class	the overall secondary-structure content of the domain. (Equivalent to SCOP class)
2	Architecture	high structural similarity but no evidence of homology. (Equivalent to SCOP fold)
3	Topology	a large-scale grouping of topologies which share particular structural features
4	Homologous superfamily	indicative of a demonstrable evolutionary relationship. (Equivalent to SCOP superfamily)

Overfitting Conclusion

- 1. They calibrated a regularization factor
- 2. They artificially introduced more diverse protein sequences
 - a. Protein sequence similarity threshold
 - b. Unique Protein Families

Results

8-class SS prediction

SSpro34, without template and with template,
 RaptorX-SS833, , ICML201436

3-class SS prediction

 SSpro, RaptorX-SS8, PSIPRED24, SPINE-X12, JPRED

Performance Metrics

 Q3, Q8, Precision and Recall, Segment of OVerlap (SOV)

Segment of OVerlap (SOV)

- Is more suitable for segmented nature of SS
- We care more about the type and general location of SS
- Less with weight on edge errors

Observed structure Predicted structure Span of S1 and S2 Length of OV Degree of variation at edges
$$SOV(S1,S2) = \frac{1}{N} \sum_{i \in \{H,E,C\}} \sum_{(s1,s2) \in S(i)} \frac{\min(s1,s2) + \sigma(s1,s2)}{\max(s1,s2)} \cdot l(s1)$$

Regularization Factor

CNF Architecture

Results

	Q3 (%)				
Methods	CullPDB	CB513	CASP10	CASP11	CAMEO
SSpro (without template)	79.5	78.5	78.5	77.6	77.5
SSpro (with template)	88.7	90.7	84.2	78.4	78.9
SPINE-X	81.7	78.9	80.7	79.3	80.0
PSIPRED	82.5	79.2	81.2	80.7	80.1
JPRED	82.9	81.7	81.6	80.4	79.7
RaptorX-SS8	81.2	78.3	78.9	79.1	79.4
DeepCNF-SS	85.4	82.3	84.4	84.7	84.5

Results

	Q8 (%)				
Methods	CullPDB	CB513	CASP10	CASP11	CAMEO
SSpro (without template)	66.6	63.5	64.9	65.6	63.5
SSpro (with template)	85.1	89.9	75.9	66.7	65.7
ICML2014	72.1	66.4	_	_	
RaptorX-SS8	69.7	64.9	64.8	65.1	66.2
DeepCNF-SS	75.2	68.3	71.8	72.3	72.1

The program for ICML2014 is not publicly available. Its result is taken from its paper.

Results

	SOV score (%)				
Methods	CullPDB	CB513	CASP10	CASP11	CAMEO
SSpro (without template)	77.4	77.2	75.9	77.3	75.4
SSpro (with template)	81.3	79.4	80.7	77.4	76.3
SPINE-X	79.1	78.7	78.7	79.3	79.4
PSIPRED	81.8	81.0	80.9	81.4	80.1
JPRED	82.5	83.3	82.4	82.0	80.7
RaptorX-SS8	80.9	79.5	80.2	81.1	78.1
DeepCNF-SS	86.7	84.8	85.7	86.5	85.5

Results - CB513

0.833

0.26

0.0

0.904

0.255

0.528

E

G

Н

S

T

	Recall		Precision		
SS8 label	DeepCNF	ICML2014	DeepCNF	ICML2014	
L	0.657	0.655	0.571	0.518	
В	0.026	0.0	0.433	0.0	

0.797

0.131

0.0

0.9

0.14

0.503

0.748

0.49

0.0

0.849

0.487

0.53

0.717

0.45

0.0

0.831

0.444

0.496

Homologous Information

Where is the improvement from?

Q3 accuracy - 84.9 %

- Stricter experiment with 1338 JPRED proteins for training and 149 for test
 - All proteins belong to different superfamilies
 - Divided training set into 7 and trained 7 DeepCNF models separately
 - Unlikely that test proteins and training proteins share similar sequence profiles

Conclusion : Results are from DeepCNF and not sequence profile similarity!

Thank You

Paper Criticism/Evaluation

- Lack of Methodology
- ICML2014 program not publicly available
 - Only evaluted performance on CASP10, CASP11, and CAMEO test sets -http://jmlr.org/proceedings/papers/v32/zhou14.pdf
- Couldn't test Cheng's deep learning method method not made publicly available
- They do not report SOV for the final experiment for protein superfamilies to filter data sets
- Low precision and recall

Experiment Setup: Comparisons

Q3/Q8 - percent of residues for which predicted secondary structures are correct 8-state SS prediction

- SSPro, RaptorX-SS8, ICML2014

3-state SS prediction also calculate Segment of Overlap score

SSpro, RaptorX-SS8, PSIPRED, SPINE-X, JPRED

_

$\max \theta \log P\theta (Y|X) - \lambda \|\theta\| 2$

 θ - set of model parameters

 λ - regularization factor used to avoid overfitting

- Large regularization factor => L2-norm of model parameters small
- Restrict search space of model parameters and avoid overfitting
- Too large of a regularization factor may restrict model parameter into too small of a search space -> Underfit
- Log-liklihood not convex only solve for local optimum

$$\Psi(Y, X, i) = \sum_{a,b} T_{a,b} \delta(Y_i = a) \delta(Y_{i+1} = b)$$

- Potential Function for correlation among adjacent SS types around position i
- i indicates position
- a and b represent secondary structure states
- δ () is an indicator function

$$\Phi(Y, X, i) = \sum_{a} \sum_{m} U_{a,m} H_m(X, i, W) \delta(Y_i = a)$$

- Model's relationship between Y_i and input features for i
- H(X, i, W) is a neural network function for the m-th neuron at position i of the top layer
- W, U, T are model parameters to be trained
- W weighting for convolutional neural net
- U connection of output of neural net to conditional neural field
- T connection among nodes in neural field