Hough transform

Overview of today's lecture

- Finding boundaries.
- Line fitting.
- Line parameterizations.
- Hough transform.
- Hough circles.
- Some applications.

Slide credits

Most of these slides were adapted directly from:

- Matt O'Toole (CMU, 15-463, Fall 2022).
- Ioannis Gkioulekas (CMU, 15-463, Fall 2020).
- Kris Kitani (CMU, 15-463, Fall 2016).

Some slides were inspired or taken from:

- Fredo Durand (MIT).
- Bernd Girod (Stanford University).
- James Hays (Georgia Tech).
- Steve Marschner (Cornell University).
- Steve Seitz (University of Washington).

Finding boundaries

Lines are hard to find

Noisy edge image Incomplete boundaries

Applications

Autonomous Vehicles (lane line detection)

Autonomous Vehicles (semantic scene segmentation)

tissue engineering (blood vessel counting)

Worm frame

Ventral side

behavioral genetics

79%

Head

0.5 mm

Computational Photography (image inpainting)

16

Line fitting

Line fitting

Given: Many (x_i, y_i) pairs

Find: Parameters (m,c)

Minimize: Average square distance:

$$E = \sum_{i} \frac{(y_i - mx_i - c)^2}{N}$$

Line fitting

Given: Many (x_i, y_i) pairs

Find: Parameters (m,c)

Minimize: Average square distance:

$$E = \sum_{i} \frac{(y_i - mx_i - c)^2}{N}$$

Using:

$$\frac{\partial E}{\partial m} = 0 \quad \& \quad \frac{\partial E}{\partial c} = 0$$

Note: $\overline{y} = \frac{\sum_{i} y_{i}}{N}$ $\overline{x} = \frac{\sum_{i} x_{i}}{N}$

$$c = \overline{y} - m\overline{x}$$

$$m = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

Problems with parameterizations

Where is the line that minimizes E?

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Problems with parameterizations

Where is the line that minimizes E?

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Problems with parameterizations

Where is the line that minimizes E?

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Problems with parameterizations Where is the line that minimizes E? $E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$

Line fitting is easily setup as an optimization problem ... but choice of model is important

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

What optimization are we solving here?

Problems with noise

Model fitting is difficult because...

- Extraneous data: clutter or multiple models
 - We do not know what is part of the model?
 - Can we pull out models with a few parts from much larger amounts of background clutter?
- **Missing data:** only some parts of model are present
- Noise
- Cost:
 - It is not feasible to check all combinations of features by fitting a model to each possible subset

So what can we do?

Line parameterizations

Slope intercept form

$$y = mx + b$$

Slope intercept form

$$y=mx+b$$

slope y-intercept

Slope intercept form

Double intercept form

$$\frac{x}{a} + \frac{y}{b} = 1$$

Double intercept form

$$\frac{x}{a} + \frac{y}{b} = 1$$
x-intercept y-intercept

Double intercept form

$$\frac{x}{a} + \frac{y}{b} = 1$$
 x-intercept y-intercept

Normal Form

$$x\cos\theta + y\sin\theta = \rho$$

Normal Form

$$x\cos\theta + y\sin\theta = \rho$$

Derivation:

$$\cos\theta = \frac{\rho}{a} \to a = \frac{\rho}{\cos\theta}$$

$$\sin\theta = \frac{\rho}{b} \to b = \frac{\rho}{\sin\theta}$$

$$\text{plug into: } \frac{x}{a} + \frac{y}{b} = 1$$

$$x\cos\theta + y\sin\theta = \rho$$

Hough transform

Hough transform

- Generic framework for detecting a parametric model
- Edges don't have to be connected
- Lines can be occluded
- Key idea: edges vote for the possible models

$$y = mx + b$$

parameters

Image space

y = mx + bparameters

$$y-\overset{ ext{variables}}{m} \overset{ ext{variables}}{=} b$$

a line becomes a point

Image space

Parameter space

$$y = mx + b$$

parameters

What would a point in image space become in parameter space?

Image space

y = mx + b

a point becomes a line

Image space

Parameter space

How's the intercept and slope determined?

a point becomes a line

Image space

Parameter space

Image and parameter

space

$$y$$
 variables $y = mx + b$ y parameters

$$y = mx + b$$
 $y = mx + b$
 $y =$

a point becomes a line

Image space

Parameter space

y = mx + bparameters

Image space

Parameter space

y = mx + bparameters

two points become ?

Image space

Parameter space

y variables y = mx + b parameters

three points become ?

Image space

Parameter space

y variables y = mx + b parameters

three points become ?

Image space

Parameter space

Image and parameter

Space What's special about all three y - mx = bpoints?

49

y = mx + b \sqrt{y} parameters

four points become ?

Image space

Parameter space

y = mx + bparameters

four points become ?

Image space

Parameter space

Image and parameter

space

$$-1 = m + b$$

$$b = -m -1$$

four points become ?

Image space

Parameter space

How would you find the best fitting line?

Is this method robust to measurement noise?

Is this method robust to outliers?

Line Detection by Hough Transform

Algorithm:

- 1. Quantize Parameter Space (m,c)
- 2. Create Accumulator Array A(m,c)
- 3. Set $A(m,c) = 0 \quad \forall m,c$
- 4. For each image edge (x_i, y_i) For each element in A(m,c)If (m,c) lies on the line: $c = -x_i m + y_i$ Increment A(m,c) = A(m,c) + 1
- 5. Find local maxima in A(m,c)

Problems with parameterization

How big does the accumulator need to be for the parameterization (m,c)?

A(m,c)

Problems with parameterization

How big does the accumulator need to be for the parameterization (m,c)?

A(m,c)

The space of m is huge!

The space of c is huge!

$$-\infty \leq m \leq \infty$$

$$-\infty \leq \mathcal{C} \leq \infty$$

Normal Form

$$x\cos\theta + y\sin\theta = \rho$$

Derivation:

Better Parameterization

Use normal form:

$$x\cos\theta + y\sin\theta = \rho$$

Given points (x_i, y_i) find (ρ, θ)

Hough Space Sinusoid

$$0 \le \theta \le 2\pi$$

$$0 \le \rho \le \rho_{\text{max}}$$

(Finite Accumulator Array Size)

variables y = mx + bparameters

a point becomes?

Image space

Parameter space

Image and parameter

space

$$y = mx + b$$
parameters

a point becomes a wave

Image space

Parameter space

Image and parameter

space

y = mx + b $\sqrt{}$ parameters

What's theta and rho?

$$x\cos\theta + y\sin\theta = \rho$$

Normal Form

$$x\cos\theta + y\sin\theta = \rho$$

Derivation:

$$\cos\theta = \frac{\rho}{a} \to a = \frac{\rho}{\cos\theta}$$

$$\sin\theta = \frac{\rho}{b} \to b = \frac{\rho}{\sin\theta}$$

$$\text{plug into: } \frac{x}{a} + \frac{y}{b} = 1$$

$$x\cos\theta + y\sin\theta = \rho$$

Image and parameter

space

$$y = mx + b$$
 $y = mx + b$
parameters

Theta=0 and rho=1

$$x\cos\theta + y\sin\theta = \rho$$

63

$$y = mx + b$$

parameters

$$x\cos\theta + y\sin\theta = \rho$$

$$y = mx + b$$

parameters

$$x\cos\theta + y\sin\theta = \rho$$

$$y = mx + b$$

parameters

$$x\cos\theta + y\sin\theta = \rho$$

$$y = mx + b$$

parameters

$$x\cos\theta + y\sin\theta = \rho$$

$$y = mx + b$$

parameters

$$x\cos\theta + y\sin\theta = \rho$$

$$y = mx + b$$

parameters

$$x\cos\theta + y\sin\theta = \rho$$

$$y = mx + b$$

parameters

$$x\cos\theta + y\sin\theta = \rho$$

$$y = mx + b$$
parameters

$$= mx + b \qquad x\cos\theta + y\sin\theta = \rho$$

a line becomes a point

Image space

Parameter space

$$y = mx + b$$
parameters

$$x\cos\theta + y\sin\theta = \rho$$

a line becomes a point

Image space

Parameter space

There are two ways to write the same line:

Positive rho version:

$$x\cos\theta + y\sin\theta = \rho$$

Negative rho version:

$$x\cos(\theta + \pi) + y\sin(\theta + \pi) = -\rho$$

Recall:

$$\sin(\theta) = -\sin(\theta + \pi)$$
$$\cos(\theta) = -\cos(\theta + \pi)$$

$$\cos(\theta) = -\cos(\theta + \pi)$$

$$y = mx + b$$
parameters

$$x\cos\theta + y\sin\theta = \rho$$

a line becomes a point

Image space

Parameter space

Image and parameter space

$$y = mx + b$$

parameters

Image space

Parameter space

Image and parameter space

$$y = mx + b$$

parameters

Image and parameter space

$$y = mx + b$$

parameters

Implementation

- 1. Initialize accumulator H to all zeros
- 2. For each edge point (x,y) in the image For θ = 0 to 180 $\rho = x \cos \theta + y \sin \theta \\ H(\theta, \rho) = H(\theta, \rho) + 1 \\ end \\ end$
- 3. Find the value(s) of (θ, ρ) where $H(\theta, \rho)$ is a local maximum
- 4. The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

NOTE: Watch your coordinates. Image origin is top left!

can you guess the shape?

line

line rectangle

In practice, measurements are noisy...

Real-world example

Hough Circles

Let's assume radius known

$$(x-a)^2+(y-b)^2=r^2 \qquad \qquad (x-a)^2+(y-b)^2=r^2$$

What is the dimension of the parameter space?

$$(x-a)^2+(y-b)^2=r^2$$

$$(x-a)^2+(y-b)^2=r^2 \qquad \qquad (x-a)^2+(y-b)^2=r^2$$

Image space

Parameter space

What does a point in image space₉correspond to in parameter space?

$$(x-a)^2 + (y-b)^2 = r^2$$

variables

$$(x-a)^2 + (y-b)^2 = r^2$$

variables

variables

$$(x-a)^2 + (y-b)^2 = r^2$$

variables

variables

$$(x-a)^2 + (y-b)^2 = r^2$$

variables

variables

What if radius is unknown?

$$(x-a)^2+(y-b)^2=r^2 \qquad \qquad (x-a)^2+(y-b)^2=r^2$$

What if radius is unknown?

$$(x-a)^2+(y-b)^2=r^2$$

$$(x-a)^2 + (y-b)^2 = r^2 \qquad (x-a)^2 + (y-b)^2 = r^2$$
variables

If radius is not known: 3D Hough Space!

Use Accumulator array A(a,b,r)

Surface shape in Hough space is complicated

Using Gradient Information

Gradient information can save lot of computation:

Edge Location
$$(x_i, y_i)$$

Edge Direction ϕ_i

Assume radius is known:

$$a = x - r \cos \phi$$

$$b = y - r \sin \phi$$

$$(x - a)^2 + (y - b)^2 = r^2$$

parameters

variables

variables

$$(x-a)^2 + (y-b)^2 = r^2$$

variables

parameters

variables

The Hough transform ...

Deals with occlusion well?

Detects multiple instances?

Robust to noise?

Good computational complexity?

Easy to set parameters?

Can you use Hough Transforms for other objects, beyond lines and circles?

Do you have to use edge detectors to vote in Hough Space?

Application of Hough transforms

Detecting shape

F. Jurie and C. Schmid, Scale-invariant shape features for recognition of object categories, CVPR 2004

Original images

Laplacian circles

Hough-like circles

Which feature detector is more consistent?

Robustness to scale and clutter