Reverzibilis Reaction System

2019. október 8.

Definíció. Az $\mathcal{A} = (S, A)$ reaction system reverzibilissé tehető, amennyiben teljesülnek a következő feltételek:

- (1) \mathcal{A} nem tartalmaz olyan reakciókat, melyeknek jobb oldala átfedő: tetszőleges $i, j \in A$ reakció esetén $P_i \cap P_j = \emptyset$, ha $i \neq j$.
- (2) A kontextusból kapott szimbólumok nem állhatnak elő egy reakció produktumaként sem: ha $\pi = (\gamma, \delta)$ egy interactive process, ahol $\gamma = C_0, C_1, \ldots, C_n, n \geq 1$, akkor bármely C_i kontextus és $a \in A$ reakció esetén $C_i \cap P_a = \emptyset$.
- (3) Az állapotok minden eleme részt vesz valamilyen reakcióban: ha π egy interactive process, ahol $sts(\pi) = W_0, W_1, \dots, W_n, n \geq 1$, akkor $\bigcup_{a \in en(W_i)} R_a = W_i, i \leq n$.

Ekkor az A-nak megfelelő reverzibilis reaction system $A_{rev} = (S_{rev}, A_{rev})$, ahol

$$S_{rev} = S \cup \{ \rho \},$$

$$A_{rev} = \overrightarrow{A} \cup \overleftarrow{A},$$

$$\overrightarrow{A} = \{ (R_a, I_a \cup \{ \rho \}, P_a) : a \in A \},$$

$$\overrightarrow{A} = \{ (P_a \cup \{ \rho \}, \varnothing, R_a) : a \in A \}.$$

 ρ egy speciális szimbólum (tehát $\rho \notin P_a, a \in A_{rev}$), mely egy visszafelé irányba tett számítási lépésre kényszeríti a rendszert.

Példa

Tekintsünk a Tour of Reaction Systems cikkből egy olyan Binary Countert, ahol n=2, azaz két bittel dolgozunk. Ekkor a reaction system a következő alaphalmazból és reakciókból áll:

```
\begin{split} S &= \{\,p_0, p_1, inc, dec\,\}, \\ A &= \{\\ &\quad (\{p_0\}, \{dec, inc\}, \{p_0\}), \\ &\quad (\{p_1\}, \{dec, inc\}, \{p_1\}), \\ &\quad (\{inc\}, \{dec, p_0\}, \{p_0\}), \\ &\quad (\{inc, p_0\}, \{dec, p_1\}, \{p_1\}), \\ &\quad (\{inc, p_1\}, \{dec, p_0\}, \{p_1\}), \\ &\quad (\{dec\}, \{inc, p_0, p_1\}, \{p_1\}), \\ &\quad (\{dec\}, \{inc, p_0\}, \{p_0\}), \\ &\quad (\{dec, p_0, p_1\}, \{inc\}, \{p_1\}), \\ \} \end{split}
```

Az így kapott rs nem teljesíti a fenti definíciót, hiszen a reakciók jobb oldalai között lesz átfedés. Ezt jobban illusztrálja, ha állapotátmenet-diagramon ábrázoljuk a rendszer működését (egyelőre kihagyva a reset átmenetet, amikor a bemenet az inc és dec szimbólumokból áll):

Ha például a p_0 állapotban vagyunk, akkor nem tudhatjuk, hogy az üres állapotból, önmagunkból vagy a p_1 állapotból érkeztünk, azaz, a megelőző

lépés növelés, helyben maradás vagy csökkentés volt-e. Így a visszalépés nem egyértelmű.

Kettőnél több bit esetén a definíció harmadik szabálya sem teljesül, hiszen ahogy a cikkben szerepel, lehetnek eltűnő szimbólumok ("[When an increment is requested] bits that are less significant than the 2^j position will disappear because there are no enabled reactions to produce them.").