# Запросы с агрегацией



# Агрегатные функции

```
SUM() — суммирует значения столбца. AVG() — среднее значение в столбце MIN() — наименьшее значение в столбце. MAX() — наибольшее значение в столбце. COUNT() — количество записей в столбце. DISTINCT — выводит значения без повторов.
```

# Модель



# Данные

#### **BASKET**

| ID_BASKET | NAME     |
|-----------|----------|
| 1         | Корзина1 |
| 2         | Корзина2 |
| 3         | Корзина3 |

#### **GOODS**

| ID_GOODS | NAME            | AMOUNT | PRICE |
|----------|-----------------|--------|-------|
| 1        | Шапка<br>ушанка | 10     | 400   |
| 2        | Лапти           | 5      | 300   |
| 3        | Самовар         | 4      | 500   |
| 4        | Платок          | 45     | 200   |
| 5        | Румяна          | 2      | 700   |

### BASKET\_GOODS

| id_goods | id_basket | amount |
|----------|-----------|--------|
| 1        | 1         | 2      |
| 5        | 1         | 1      |
| 3        | 1         | 2      |
| 2        | 1         | 1      |
| 4        | 1         | 1      |
| 1        | 2         | 2      |
| 3        | 2         | 3      |
| 4        | 2         | 4      |
| 2        | 3         | 3      |
| 2        | 3         | 10     |
| 3        | 3         | 3      |
| 5        | 3         | 1      |

### COUTN()

```
// Кол-во товарных позиций на складе select count(*) from goods;
```

// Кол-во уникальных товаров в корзине select count(distinct id\_goods) from basket\_goods;

### MAX(), MIN()

// Максимальное кол-во купленного товара select max(amount) from basket\_goods;

// Минимальное кол-во купленного товара уникальных товаров в корзине select min(amount) from basket\_goods;

# Шаблон запроса

```
SELECT col1, summ(amount)
  FROM table_name
WHERE expression
GROUP BY col1
HAVING summ(col1) > value
ORDER BY col2
```

# Пример 1

```
// Получим сумму заказа по корзине

SELECT col1, summ(bg.amount*g.price)

FROM basket_goods bg, goods g

WHERE bg.id_goods = g.id_goods

AND id_basket = 1

GROUP BY id_basket
```

# Пример 2

// Получим корзины где сумма заказа больше 1000 руб.

```
SELECT bg.id_basket,summ(bg.amount*g.price)
  FROM basket_goods bg, goods g
  WHERE bg.id_goods = g.id_goods
  GROUP BY bg.id_basket
HAVING summ(bg.amount*g.price) > 1000
  ORDER BY bg.id_basket
```

# Задание

Для предложенной модели получить:

- 1. Товары которых нет в корзине
- 2. Средний чек по трем корзинам
- 3. Максимальный, минимальный чек



# Добыча данных

DATA MINING (Интеллектуальный анализ данных )- это технология выявления скрытых взаимосвязей внутри больших баз данных

# Разведочный анализ данных строится на алгоритмах





- Определение выбросов
  - SVM с одним классом
- Кластеризация
  - расширенный алгоритм k-средних
  - О-кластер



- Ассоциация
  - Apriori







# Классификация

- логистическая регрессия (GLM)
- naïve Bayes
- SVM
- деревья решений



- множественная регрессия
- SVM
- Значимые атрибуты
  - принцип минимапьной длины





# Кластерный анализ

- Используется в маркетинге (группы населения с одними и теми же характеристиками), медицина (пациенты с тем же беспокойством), управлении персоналом и т.д.
- Отличается с классификацией, поскольку не используется обучение

## Ассоциативный анализ

- Используется в маркетинге (группы населения с одними и теми же характеристиками), медицина (пациенты с тем же беспокойством), управлении персоналом и т.д.
- Разделение БД на подмножества, так что внутри подгруппы различия между отдельными объектами меньше, чем между разными подгруппами

### **SVM**



- Определяется гиперплоскость в пространстве параметров
- Коэффициенты  $\vec{w}$  и смещение b
- Прогнозирование:  $f = sign(\langle \vec{w} \cdot \vec{x} \rangle + b = 0)$

# Функции БД Oracle

### Ранжирование

 rank, dense\_rank, cume\_dist, percent\_rank, ntile

### Агрегирование

 Avg, sum, min, max, count, variance, stddev, first\_value, last\_value

### Корреляция и регрессия

Correlation, linear regression family, covariance

### Линейная регрессия

- MHK.
- COVAR\_POP, COVAR\_SAMP, and CORR functions.

### Соответствие распределениям

 тесты Колмогорова-Смирнова, Андерсона-Дарлинга, хи-квадрат, Гаусса, Вейбула, экспоненциальный

#### Описательная статистика

- среднее, стд. отклонение, дисперсия, min, max, медиана, мода
- DBMS\_STAT\_FUNCS: описательная статистика по числовым колонкам

### Корреляции

Пирсона, Спирмана, Кендалла

### Кросс-табуляции

 χ², φ, V Крамера, коэффициента сопряженности, λ Кохена

### Hypothesis Testing

 тест Стьюдента, Фишера, биноминальный, Уилкоксона, х<sup>2</sup>, Манна-Уитни, Колмогорова-Смирнова, дисперсионный анализ

# Примеры

### Космос

- Проект SKYCAT. За 6 лет в Second Palomar
   Observatory собрали 3 ТБ изображений примерно о 2 млн. объектов в небе.
- Используя кластеризацию и деревья решений объекты были систематизированы. Результаты помогли астрономам открыть 16 новых квазаров, определение которых связано с большими сложностями.