Lecture 4 – NLP. Part 1. From Words to Vectors

Natural language processing

natasha slovnet() yargy
nae>al navec nerus.comlu
raz|del corus.tar.gz ipymarkup

Possible approaches to make vectors

- Naive
 - One-hot
 - BoW
 - TF-IDF

- Count based
 - Co-occurency
 - PPMI & co
 - LSA/LSI

- Prediction-Based
 - Word2Vec
 - GloVe
 - FastText

One-Hot Encoding

- What if on test we have word that is not in vocabulary?
- How to implement?

Why not? What a problem?

Bag-of-Words (BoW)

What the difference with One-Hot to sentences?

Bag-of-Words (BoW)

• One-hot is originally for words, if you use it for sentences – it summarize one-hot vectors for words in sentence, but without repetition. BoW – update of One-Hot for sentences, that allow repetitions of words and display it on final vector.

He is good player, he is really good!

	he	good	work	really
BoW	2	2	0	1
One-Hot	1	1	0	1

Term Frequency-Inverse Document Frequency

TF

Measures how often a term appears in a specific document

- Variants:
- Raw count
- Boolean (presence/absence)
- Log-scale: 1 + log(tf)
- Double-normalization: 0.5 + 0.5 * max(tf in doc)

Measures how rare/common a term is across the whole document corpus

- Variants:
- Classic: $\log\left(\frac{N}{df_t}\right)$
- Smooth: $\log\left(\frac{N+1}{df_t+1}\right) + 1$
- Probabilistic: $\log \left(\frac{N df_t}{df_t} \right)$
- Max-IDF..

Overall problem

• How to use connections between words?

Use n-gramms

Benefits:

- captures local context and word order (e.g. "not good" ≠ "good")
- helps with multi-word expressions / phrases ("New York", "machine learning")
- improves discrimination in tasks like sentiment, topic classification, document similarity

Trade-offs:

- increases feature space dimensionality → more sparse matrices, more memory/time cost
- risk of overfitting on rare n-grams if data small
- need to tune n (2, 3, maybe more) and frequency thresholds

What is meaning?

Do you know what the word tezgüino means?

(We hope you do not)

What is meaning?

Now look how this word is used in different contexts:

A bottle of tezgüino is on the table.

Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Can you understand what tezgüino means?

Words which frequently appear in similar contexts have similar meaning

Now look how this word is used in different contexts:

A bottle of tezgüino is on the table.

Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Tezgüino is a kind of alcoholic beverage made from corn.

With context, you can understand the meaning!

Count-based approaches

word and a context

Put this information manually, based on global corpus statistics.

Reduce dimensionality: Truncated Singular Value Decomposition (SVD)

https://lena-voita.github.io/nlp_course

What is context and matrix element

2-sized window for cat

... I saw a cute grey cat playing in the garden ...

Context:

 surrounding words in a L-sized window contexts for cat

Matrix element:

 N(w, c) – number of times word w appears in context c

About context

 Are context words at different distances equally important? If not, how can we modify co-occurrence counts?
 HAL paper

- Context before interesting than after?
 In <u>HAL paper</u> there are two context left + right
- How to choose length of window?
 Redefining Context Windows for Word Embedding Models

About matrix element

Raw count / conditional probability

- Positive Pointwise Mutual Information
- PPMI with Context Distribution Smoothing) $P(c)^{\alpha}$, $\alpha < 1$ increase probability rare context

• t-statistic -
$$\frac{P(w,c)-P(w)P(c)}{\sqrt{P(w,c)/N}}$$
, N – corpus size

- Shifted PPMI (SPPMI) when PPMI is huge and sparse
- * SVD Weighting additional weights for not null elements after PPMI

Context:

 surrounding words in a L-sized window

Matrix element:

• PPMI(w, c) = max(0, PMI(w, c)), where

$$PMI(w, c) = \log \frac{P(w, c)}{P(w)P(c)} = \log \frac{N(w, c)|(w, c)|}{N(w)N(c)}$$

Latent Semantic Analysis

 While in the previous approaches contexts served only to get word vectors and were thrown away afterward, here we are also interested in context, or, in this case, document vectors.

Context:

document d (from a collection D)

Matrix element:

• $tf-idf(w, d, D) = tf(w, d) \cdot idf(w, D)$

N(w, d)

term frequency

inverse document frequency

Word2Vec

Word2Vec

- Goal: Learn word vectors by teaching them to predict contexts
 - take a huge text corpus
 - go over the text with a sliding window, moving one word at a time.
 - for the central word, compute probabilities of context words;
 - adjust the vectors to increase these probabilities.

Word2Vec

$$P(w_{t-2}|w_t) \ P(w_{t-1}|w_t) \ P(w_{t+1}|w_t) \ P(w_{t+2}|w_t)$$
 ... I saw a cute grey cat playing in the garden ...
$$w_{t-2} \ w_{t-1} \ w_t \ w_{t+1} \ w_{t+2}$$
 context central context

words word words

Objective Function: Negative Log-Likelihood

Word2Vec tries to find the parameters that maximize the data likelihood:

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m, j \ne 0} P(w_{t+j}|w_t, \theta)$$

We want our model to think that the training data is "likely"

To do this, it uses negative (log-)likelihood as its loss function:

$$\operatorname{Loss} = J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, \atop j \neq 0} \log P(w_{t+j}|w_t, \theta) \quad \begin{array}{c} \text{How to} \\ \text{compute} \\ \text{this?} \end{array}$$
 agrees with our plan above
$$\begin{array}{c} \text{go over text} \\ \text{with a sliding} \\ \text{window} \end{array}$$
 compute probability of the context word given the central plan above
$$\begin{array}{c} \text{context word given the central} \\ \text{context word given the central} \end{array}$$

How to compute $P(w_{t+j}|\mathbf{w_t}, \theta)$?

For each word w, we will have two vectors:

- v_w when it is a central word
- u_w when it is a context word

Once the vectors are trained, usually we throw away context vectors and use only word vectors.

How to compute $P(w_{t+i}|w_t,\theta)$?

For the central word cand context word o (o - outside):

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Dot product: measures similarity of o and c Larger dot product = larger probability

Normalize over entire vocabulary to get probability distribution

Let us recall our plan:

- adjust the vectors to increase these probabilities.

https://lena-voita.github.io/nlp_course

Two vectors for each word

Two vectors for each word

One training step in detail

Loss for word j in window t

$$Loss = J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m, \\ j \ne 0}} \log P(w_{t+j} \big| w_t, \theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m, \\ j \ne 0}} J_{t,j}(\theta)$$

pick one window

... I saw a cute grey cat playing in the garden ...
$$w_{t-2}$$
 w_{t-1} w_t w_{t+1} w_{t+2}

One training step in detail

- $-\log P(cute|cat)$
- $= -u_{cute}^T v_{cat} + \log \sum_{w \in V} \exp(u_w^T v_{cat})$

- 1. Take dot product of v_{cat} with all u
- 2. exp
- 3. sum all

- 4. get loss (for this one step)
 - $J_{t,j}(\theta) = -u_{cute}^T v_{cat} + \log \sum_{w \in V} \exp(u_w^T v_{cat})$

1

2

5. evaluate the gradient, make an update

$$v_{cat} := v_{cat} - \alpha \frac{\partial J_{t,j}(\theta)}{\partial v_{cat}}$$

$$u_w := u_w - \alpha \frac{\partial J_{t,j}(\theta)}{\partial u_w} \ \forall \ w \in V$$

Let's do better: Negative Sampling

Dot product of v_{cat} :

- with u_{cute} increase,
- with all other u decrease

Dot product of v_{cat} :

- with u_{cute} increase,
- with a subset of other u decrease

Parameters to be updated:

bad

- v_{cat}
- the vocabulary

 u_w for all w in |V| + 1 vectors

Parameters to be updated:

good

- v_{cat}
- u_{cute} and u_w for $w \in \mathbb{R} + 2$ vectors in K negative examples

https://lena-voita.github.io/nlp_course

Word2Vec Variants: Skip-Gram and CBOW

... I saw a cute grey cat playing in the garden ...

Skip-Gram: from central predict context (one at a time)

(this is what we did so far)

CBOW: from sum of context predict central

(Continuous Bag of Words)

https://lena-voita.github.io/nlp_course

To reed:

- Distributed Representations of Words and Phrases and their Compositionality. <u>Paper</u>
- Efficient Estimation of Word Representations in Vector Space.
 Paper
- word2vec Parameter Learning Explained. <u>Paper</u>
- Habr: Russian translation of Jay Alammar blogpost

Relation to PMI Matrix Factorization

Good Old Classics NeurIPS 2014 Neural Word Embedding as Implicit Matrix Factorization PMI matrix Omer Levy, Yoav Goldberg Theoretically, Word2Vec is not so different from matrix factorization approaches! Skip-gram with negative-sampling Factorized matrix (SGNS) implicitly factorizes the shifted pointwise mutual information (PMI) matrix: $PMI(w, c) - \log k$, where k is the Word2Vec (SGNS) number of negative examples in negative sampling.

More details

The Effect of Context Window Size

 Larger windows – more topical similarities

 Smaller windows – more functional and syntactic similarities

GloVe: Global Vectors for Word Representation

GloVe: Global Vectors for Word Representation

$$J(\theta) = \sum_{w,c \in V} f(N(w,c)) \cdot (u_c^T v_w + b_c + \overline{b_w} - \log N(w,c))^2$$

Weighting function to:

- penalize rare events
- not to over-weight frequent events

$$\begin{cases} (x/x_{max})^{\alpha} & \text{if } x < x_{max}, \\ 1 & \text{otherwise.} \end{cases}$$

$$\alpha = 0.75, x_{max} = 100$$

FastText

Let's analyse word as a set of symbolic n-grams

- Effective work with rare words and OOV
- Consideration of morphology and internal structure of words

fastText

Word2Vec

That's all! Thank you for your attention!

Visualization1

Visualization2

Word Similarity Benchmarks

word	score	
vulgarism	profanity	9.62
subdividing	separate	8.67
friendships	brotherhood	7.5
exceedance	probability	5.0
assigned	allow	3.5
marginalize	interact	2.5
misleading	beat	1.25
radiators	beginning	0

Linear Structure

semantic: $v(king) - v(man) + v(woman) \approx v(queen)$

Syntactic: $v(kings) - v(king) + v(queen) \approx v(queens)$

Linear Structure

Similarities Across Languages

The recipe for building large dictionaries from small ones

Ingredients:

- corpus in one language (e.g., English)
- corpus in another language (e.g., Spanish)
- very small dictionary

```
cat ↔ gato
cow ↔ vaca
dog ↔ perro
fox ↔ zorro
```

Step 1:

 train embeddings for each language

Step 2:

 linearly map one embeddings to the other to match words from the dictionary

Similarities Across Languages

The recipe for building large dictionaries from small ones

Ingredients:

- corpus in one language (e.g., English)
- corpus in another language (e.g., Spanish)
- very small dictionary

```
cat ↔ gato
cow ↔ vaca
dog ↔ perro
fox ↔ zorro
```

Steps1-2:

 match words from the vocabulary

Step 3:

 after matching the two spaces, get new pairs from the new matches

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Gender stereotype **she-he** analogies

sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-football registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar cupcakes-pizzas

housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant

Gender appropriate she-he analogies

queen-king waitress-waiter ovarian cancer-prostate cancer convent-monastery

sister-brother mother-father