Katedra za računarstvo i informatiku

Šifra predmeta: R265 18.04.2023.

Uvod u interaktivno dokazivanje teorema Vežbe 9

Zadatak 1 Zasnivanje prirodnih brojeva.

Definisati algebarski tip podataka prirodni koji predstavlja prirodni broj.

datatype prirodni = undef

Diskutovati o tipu prirodni i sledećim termovima.

typ prirodni

term Nula

term Sled Nula

term Sled (Sled Nula)

Definisati skraćenice za prirodne brojeve 1, 2, 3.

abbreviation jedan :: prirodni (1) where

 $1 \equiv undefined$

abbreviation dva :: prirodni (2) where

 $2 \equiv undefined$

abbreviation tri :: prirodni (3) where

 $3 \equiv undefined$

Primitivnom rekurzijom definisati operaciju sabiranja. Uvesti levo asocijativni operator \oplus za operaciju sabiranja.

fun saberi (infixl \oplus 100) where

 $a \oplus b = undefined$

Testirati funkciju sabiranjem nekih skraćenica za prirodne brojeve.

Pokazati da je sabiranje asocijativno.

lemma saberi-asoc:

shows $a \oplus (b \oplus c) = a \oplus b \oplus c$

Pokazati da je sabiranje komutativno.

Savet: Potrebno je pokazati pomoćne lemu.

lemma saberi-kom:

shows $a \oplus b = b \oplus a$

 ${f lemma}\ saberi-kom-isar:$

shows $a \oplus b = b \oplus a$

Primitivnom rekurzijom definisati operaciju množenja. Uvesti levo asocijativni operator \otimes za operaciju množenja.

fun pomnozi (infix $l \otimes 101$) where $a \otimes b = undefined$

Pokazati komutativnost množenja.

Savet: Pokazati pomoćne lemme.

lemma pomnozi-kom:

shows $a \otimes b = b \otimes a$

Pokazati da je množenje asocijativno.

lemma pomnozi-asoc:

shows
$$a \otimes (b \otimes c) = a \otimes b \otimes c$$

Primitivnom rekurzijom definisati operaciju stepenovanja. Uvesti desno asocijativni operator za operaciju stepenovanja.

fun stepenuj (infixr \frown 102) where $a \frown b = undefined$

Pokazati da važi: $a^1 = a$.

 ${\bf lemma}\ stepenuj\hbox{-}jedan\hbox{:}$

shows $a \cap 1 = a$

Pokazati da važi: $a^{(n+m)} = a^n b^m$.

lemma stepenuj-na-zbir[simp]:

shows $a \cap (n \oplus m) = a \cap n \otimes a \cap m$

Pokazati da važi: $a^{nm} = a^{n^m}$.

lemma *stepenuj-na-proizvod*:

shows $a \cap (n \otimes m) = (a \cap n) \cap m$

Zadatak 2 Dodatni primeri.

Pokazati sledeće teoreme u Isar-u. Kao dodatan izazov, dozvoljeno je korišćenje samo primenjivanje pravila *rule* i *subst* za dokazivanje među koraka, tj. bilo kakva automatizacija (*simp*, *auto*, *metis*, *blast*, *force*, *fastforce*, *sladgehammer*, ...) je zabranjena.

lemma $a \oplus Nula = a$

lemma $a \otimes (Sled \ b) = a \otimes b \oplus a$

lemma $a \otimes b \otimes c = a \otimes (b \otimes c)$

lemma $a \otimes b = b \otimes a$

lemma $a \otimes (b \oplus c) = a \otimes b \oplus a \otimes c$