

$\begin{array}{c} {\rm Type 977~fitting~for~heat~pump} \\ {\rm HP 30L\text{-}M\text{-}WEB} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/02/26 at: 11:03:06 h

Table 1: Fitted coefficients for the heat pump.

C C -:	D:t:	
Coefficient	Description	[+]
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	4.1854e + 01
P_{Q_2}	2^{st} condenser polynomial coefficient	2.7234e + 02
P_{Q_3}	3^{st} condenser polynomial coefficient	-3.0235e+01
P_{Q_4}	4^{st} condenser polynomial coefficient	3.3505e+01
P_{Q_5}	5^{st} condenser polynomial coefficient	7.7189e+01
P_{Q_6}	6^{st} condenser polynomial coefficient	-1.5104e+02
P_{COP_1}	1 st COP polynomial coefficient	1.0074e+01
P_{COP_2}	2^{st} COP polynomial coefficient	$4.8898e{+01}$
P_{COP_3}	3 st COP polynomial coefficient	-6.1964e+01
P_{COP_4}	4 st COP polynomial coefficient	-1.5923e+02
P_{COP_5}	5 st COP polynomial coefficient	3.6790e + 01
P_{COP_6}	6 st COP polynomial coefficient	1.1997e + 02
\dot{m}_{cond}	$4700.00 \ [kg/h]$	
\dot{m}_{evap}	$11750.00 \ [kg/h]$	
COP_{nom} (A0W35)	4.13	
$Q_{cond,nom}$ (A0W35)	$33.60 \ [kW]$	
$Q_{evap,nom}$ (A0W35)	$25.46 \ [kW]$	
$W_{comp,nom}$ (A0W35)	8.14 [kW]	
RMS_{COP}	1.16e - 01	
$RMS_{Q_{cond}}$	1.25e + 00	
$RMS_{W_{comp}}$	1.35e - 01	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	^{o}C	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	20.00	6.41	6.37	0.6	51.45	50.57	1.7	8.03	7.94	1.10
35.00	10.00	5.25	5.34	1.7	42.23	43.25	2.3	8.05	8.10	0.62
35.00	7.00	4.93	5.12	3.7	39.51	41.56	4.9	8.02	8.12	1.25
35.00	2.00	4.29	4.06	5.6	34.79	32.85	5.9	8.12	8.09	0.32
35.00	-7.00	3.39	3.28	3.2	26.65	25.68	3.8	7.86	7.82	0.57
35.00	-15.00	2.66	2.71	1.7	19.50	19.92	2.1	7.32	7.35	0.44
45.00	7.00	3.77	3.92	3.8	37.40	39.06	4.2	9.91	9.96	0.49
45.00	2.00	3.27	3.15	4.0	32.64	30.88	5.7	9.97	9.81	1.64
45.00	-7.00	2.56	2.56	0.2	24.43	23.91	2.2	9.53	9.34	1.99
45.00	-15.00	2.01	2.14	6.1	17.21	18.56	7.3	8.58	8.69	1.29
50.00	20.00	4.42	4.28	3.1	48.31	47.56	1.6	10.93	11.10	1.51
50.00	15.00	4.00	4.05	1.2	43.69	44.90	2.7	10.93	11.10	1.53
50.00	7.00	3.31	3.40	2.6	36.20	37.32	3.0	10.93	10.97	0.37
50.00	2.00	2.88	2.74	5.0	31.42	29.55	6.3	10.90	10.77	1.24
50.00	-7.00	2.27	2.22	2.1	23.15	22.62	2.4	10.22	10.19	0.30
55.00	20.00	3.91	3.92	0.2	47.10	46.46	1.4	12.03	11.85	1.54
55.00	7.00	2.94	3.09	4.8	34.93	36.22	3.6	11.88	11.73	1.28
55.00	-7.00	2.05	1.97	4.1	21.77	21.52	1.1	10.64	10.95	2.83
Sum				53.7			62.3			20.30
RMS_{COP}	1.16e - 01									
RMS_{O}	1.25e + 00									
$RMS_{W_{comp}}$	1.35e - 01									

Figure 1: Q_{cond} differences between experiments and fitted data

Figure 2: W_{comp} differences between experiments and fitted data

Figure 3: COP differences between experiments and fitted data