

DANKOOK UNIV.

SAR team Intern Mobile Systems Engineering 32154231

Sobin Park Mobile EMC/RF team Intern Mobile Systems Engineering 32161681

DANKOOK UNIV.

프로젝트 시작 배경

General EMC 팀은 UL Korea Suwan Lab의 신설된 부서이다. 특정 기업들을 Target으로 주 업무가 이루어지는 Mobile EMC/RF와 SAR팀과는 달리, 수많은 고객사와 다양한 제품을 다루는 부서로 팀원들 간의 의사소통에 문제가 많다.

 \square^5

얼굴인식 로그인 기능

아이디,패스워드 뿐 아니라 얼굴인식 (Face ID)를 추가하여 팀 스케쥴러 에 대한 보안성 강화

- ✓ 해당 팀원들로만 한정한 ID 생성
- ✓ Keras를 사용한 얼굴 인식 모델링

Linear Regression 모델을 활용한, 프로젝트 종료일 예측

✓ Apache 를 이용한 가상 서버 구축

프로젝트의 접근성 Project Accessibility

사내 네트워크 (CAN, Company Network Area)의 웹 서버 회사내 네트워크를 이용해서만 다양한 사람들이 동시에 프로젝트를 관리 할 수 있기 위한 웹 베이스 기반

- FTP 프로토콜을 활용한, 프로젝트 종료 3일 전 메일 알림 서비스
- 파이썬을 이용한, 성적서 자동화 기능 구현 (word, excel 연동)

DANKOOK UNIV.

Face ID

Keras를 활용한 얼굴 인식 모델 구현

- 노트북 내, 웹 캠을 이용한 사용자 얼굴 인식
- 모델링 학습을 위한, 팀원들의 얼굴 데이터 수집
- ID, PW 뿐 아니라 얼굴인식까지 해야하는 3차 인증 로그인 기능

[얼굴 인식 예시]

각 사용자에 대한 얼굴 데이터 사전 수집을 통한 모델 학습 완료

>> 정확도가 90%로 높음

>> 보안 기능을 요구 하기 때문에, 높은 정확도에 초점을 맞춤.

YoungHwan, Your Future Starts Today J.F.

Edit Task Add Task Logout

UNIV.

● 메인 대쉬보드 Main Dashboard

YoungHwan, Your Future Starts Today MA

현재 로그인한 유저

MySQL을 통한 데이터베이스 접근

EMC Task

Edit Task Add Task Logout

Task 추가,수정,삭제 메뉴바

Bootstrap4를 활용한 게시판 기능 구현

- 새로운 프로젝트 생성부터 수정, 삭제를 게시판으로 표현
 - Private / Public 기능 구현 추가 (보안 강화)
 - 자신이 등록한 Task만 수정, 삭제 가능 (권한 부여)

[Add Task]

	General EMC-V	V	My Task	Add Task	Logout
삼성 노트북 Ray					* a

[Edit Task] 클릭 시, 해당 User가 등록한 Task 목록 등장

UNIV.

등록된 Task

Javascript를 이용한 좋아요, 프로그레스 바 구현

- 제품 모델명, 설명, 사진 영역 구현
- **좋아요**: 최초 Task 등록자, 이외 해당 프로젝트에 참여하는 user 이름 표시
- <u>프로그레스 바</u>: 전체 업무율을 계산하여, 진행된 정도를 시각적으로 표현
 - 해당 이미지: 클릭시, 해당 프로젝트의 화면으로 렌더링

> 각 프로젝트에 참여중인 인원들을 쉽게 파악할 수 있다. 이에 맞춰 개인별 업무를 다르게 할당 할 수 있다.

현재 완료된 테스트/전체 양 을 계산한 진행률

> 전체 진행해야 하는 프로젝트 양을 계산, 현재까지 완료된 테스트를 DB에 저장: 진행률 계산하여 프로그레스 바로 표현한다.

● 프로젝트 별 페이지 Project-specific pages

부서별 메뉴 정리

- General EMC 부서 내, EMC 팀과 RF 팀으로 나뉜다.
 - 각 팀별 맞춤형 Side bar 메뉴 구성

2020년 6월 16일 12:37:30 예상되는 종료일은? 2020-06-25

현재 날짜/시간 & 예측 종료일

예측 종료일을 계산하는 Linear Regression 모델 생성

- 실제 팀원들과의 인터뷰를 통해, 각 업무별 최소, 최대, 평균 업무 시간 데이터 수집
 - 메타 데이터를 통해, 더미 데이터를 통한 대량의 데이터 생산
 - 가변적인 추가 업무에 대비하기 위해,

Ajax 통신을 통해 업무가 추가될 수록 데이터 업데이트

- 종료 3일 전, 최고 책임자에게 FTP 를 활용한 프로젝트 종료 알림 메일 전송

Model. 'Airpods PRO'

YoungHwan ON (II)

프로젝트 명 & 접속한 User

Javascript를 통해, 프로젝트 명과 접속한 User명 표시

- 프로젝트 별 페이지가 같은 디자인으로 되어있어 user가 헷갈릴 수도 있기 때문에 표시

● 프로젝트 별 페이지 Project-specific pages

[전체 프로젝트]

전체 프로젝트 별 진행 상황 요약

- 총 4단계의 프로세스로 구분
- 프로젝트 시작일 (Task 등록일), 예측되는 종료일, 현재 참여하고 있는 user 수 (좋아요 누른 user 수) 를 표현
- 특정 프로세스 완료 시, 해당 버튼 클릭을 하여 저장 버튼을 누르면 색깔 있는 버튼모양으로 변경됨 (DB 연동)

● 프로젝트 별 페이지 Project-specific pages

[새로운 모드에 대한 정보 입력]

[EMC-TASK]

가변적인 Mode 추가 및 삭제

- 해당 프로젝트 별 시행해야 하는 모드, 그리고 test plan 종류 매우 다양하다. 따라서, 이러한 유동적인 환경에 맞추기 위해, user의 input form을 통해 데이터 입력을 받고, DB에 저장하는 기능 구현하였다.

DANKOOK

UNIV.

● 프로젝트 별 페이지 Project-specific pages

[각 모드별 시험 진행 상황을 체크할 수 있다]

[EMC-모드별 진행 상황]

가변적인 Mode 추가 & 엑셀 파일 자동화 연동

- 자주 변경되는 프로젝트 진행 상황에 맞춰 수동적으로 테스크 플랜을 수정 및 작성 하는 것은 불필요한 시간 소모
- 이를 해결하고자, 자동으로 해당 프로젝트에 관한 엑셀 파일 생성을 한 다음, 시험 완료 버튼을 눌러 저장할 경우 엑셀에 해당 날짜가 표기 됨.

[Airpods PRO.xlsx 파일 일부]

UNIV.

[RF-TASK]

진행 완료 상황 파악

- EMC와는 달리 종류가 매우 다양한 RF의 경우, 상위 엔지니어가 쉽게 인지 할 수 있는 수준의 진행 상황에 대해 표현

[RF-규격별 진행상황]

진행 완료 상황 파악 - 프로그레스바

- 각 규격에 따른 프로세스 별 진행상황을 MS-SQL을 통해 해당 진행상황이 정리된 엑셀파일과 연동하여 진행 상황을 한꺼번에 쉽게 알 수 있도록 수치화 및 시각화 함.

[RF-성적서 TDS]

파일 업로드를 통한 성적서 자동화

- 엑셀파일에 정리된 데이터를 일정한 형식에 맞춰 워드 파일로 보고서 작성한다.
- 반복적인 업무를 프로그래밍 코드로 작성함으로써, 업무 효율을 높일 수 있다.

[성적서 자동화 중임을 표현하는 이미지]

[자동화된 성적서 일부]

● 프로젝트 마무리

개발 환경 구축

	<		May		>	
SUN	MON	TUE	WED	THU	FRI	SAT
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

April (4월 말) : 프로젝트 계획안 작성

May (5월 전체)

: 기계학습을 활용한 종료 예측일 (Linear Regression), 얼굴 인식 모 델링 (Keras) 개발

: 빠르고 깔끔한 디자인을 위한, Flask (Django에서 변경), jQuery, 부 트스트랩4 활용

June (6월 ~ 현재)

: 사내 네트워크에 서버 구축 (Company Area Network)

: Apache를 통한 가상 서버 생성 및 베타 테스트 진행 및 디버깅 중

모델 개발 서버 개발 구축

DANKOOK UNIV.

[Deep Learning from skratch - sati kogi 2017 / 한빛미디어]

[SW developing Process - 특허청 2012 / 특허청]

[Wes Mckinney,Julie Steele and Meghan Blanchette, Teresa Exley,"Python for Data Analysis" proceedings 2012.Oct O'REILLY pp.111-152] [Vivian Siahaan-Rismon Hasiholan Sianipar "LEARNING PyQt5", firstedition proceedings 2019 MY_SQL ,pp 89-221]

[L. Benini, A. Bogliolo, S. Cavallucci and B. Ricco, "Monitoring system activity for OS-directed dynamic power management," Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379), Monterey, CA, USA, 1998, pp. 185-190.]

[T. E. Oliphant, "Python for Scientific Computing," in Computing in Science & Engineering, vol. 9, no. 3, pp. 10-20, May-June 2007.] [python cookbook 3rd_edition - O'Relly 2015 /한빛미디어]

[Deep learning with python - François Chollet / 한빛 미디어]

[Unified, Real-Time Object Detection - Joseph Redmon / Google Al team]

[H. Cai, Q. Wu, T. Corradi, and P. Hall. The cross-depiction problem: Computer vision algorithms for recog-nising objects in artwork and in photographs. arXiv preprint arXiv:1505.00110, 2015.]

[M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual ob-ject classes challenge: A INTERNSHIP REPORT 90 retrospective. International Journal of Computer Vision, 111(1):98–136, Jan. 2015. 1

[S. Gidaris and N. Komodakis. Object detection via a multi- region & semantic segmentation-aware CNN model. CoRR, abs/1505.01749, 2015.] [P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localiza- tion and detection using convolutional networks. CoRR, abs/1312.6229, 2013.]

[J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders. Selective search for object recognition. International journal of computer vision, 104(2):154–171, 2013.]

템플릿 활용 http://pptbizcam.co.kr/