Wahrscheinlichkeitstheorie und Statistik - Zusammenfassung

Julian Shen

25. Dezember 2021

1 Grundbegriffe

- Grundraum ist eine nicht leere Menge $\Omega \neq \emptyset$ und enthält alle möglichen Ergebnisse eines Zufallsexperiments
- Ereignisse sind Teilmengen $A \subseteq \Omega$, denen eine Wahrscheinlichkeit zugeordnet werden kann. Falls ein ω Ergebnis ist, dann heißt $\{\omega\}$ Elementarereignis

Ereignisse können durch Mengenoperationen logisch verknüpft werden:

- $A \cup B$: Ereignis A oder B tritt ein ("inklusives oder")
- $A \cap B$: Ereignis A und B treffen ein
- $A \setminus B$: Ereignis A tritt ein, aber Ereignis B trifft nicht ein
- B^{C} : Ereignis B trifft nicht ein
- $A \subseteq B$: Wenn A eintritt, dann tritt auch B ein

Jedem Ereignis kann durch die **relative Häufigkeit** eine Wahrscheinlichkeit zugeordnet werden. Für n Wiederholungen und Ergebnisse $\omega_1, \ldots, \omega_n \in \Omega$ gilt:

$$\mathbb{P}_n(A) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\omega_i \in A\}}$$

Definition: Diskretes Wahrscheinlichkeitsmaß

Eine Abbildung $\mathbb{P}: \mathscr{P}(\Omega) \to [0,1]$ heißt diskretes Wahrscheinlichkeitsmaß, falls

- $\mathbb{P}(\Omega) = 1$
- $\forall A_n \subseteq \Omega, n \in \mathbb{N}$, disjunkt: $\mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{i=1}^n \mathbb{P}(A_n)$ (σ -Additivität)
- es existiert eine abzählbare Menge $\Omega_0 \subseteq \Omega$ mit $\mathbb{P}(\Omega_0) = 1$

Dann heißt (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum. Es gelten folgende Rechenregeln für diskrete Wahrscheinlichkeitsräume:

- $\mathbb{P}(\emptyset) = 0$
- $\mathbb{P}(A^{\mathsf{C}}) = 1 \mathbb{P}(A)$
- $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Definition: Bernoulliverteilung

Wahrscheinlichkeitsverteilung heißt Bernoulliverteilung Ber_p mit Erfolgswahrscheinlichkeit p, wenn:

- Grundraum $\Omega = \{0, 1\}$
- $\mathbb{P}(1) = p$ für ein $p \in [0, 1]$

Es gilt
$$\mathbb{P}(\{0\}) = 1 - \mathbb{P}(\{1\}) = 1 - p$$

Definition: Gleichverteilung

Das Wahrscheinlichkeitsmaß (Ω, \mathbb{P}) heißt Gleichverteilung oder **Laplace-Verteilung** U_A auf Ω , falls

- $\Omega \neq \emptyset$ endlich
- $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$, für $A \subseteq \Omega$

Urnenmodelle/Fächermodelle

Urnenmodell mit	mit	ohne	
n Kugeln und	Zurücklegen	Zurücklegen	
k Ziehungen			
mit	n ^k	n!	unterscheidbare
Reihenfolge	"	$\frac{n!}{(n-k)!}$	Murmeln
ohne	$\binom{n+k-1}{k}$	(n)	ununterscheidbare
Reihenfolge	(k)	$\binom{n}{k}$	Murmeln
	mit	ohne	Verteilung von
	Mehrfachbelegung	Mehrfachbelegung	k Murmeln auf
			<i>n</i> Fächer

Urnenmodelle ermöglichen es, die Wahrscheinlichkeiten zu bestimmen, falls von einer Gleichverteilung ausgegangen werden kann!

Definition: Zähldichte

Sei (Ω, \mathbb{P}) ein diskreter Wahrscheinlichkeitsraum. Dann wird die Funktion

$$f: \Omega \to [0,1], f(\omega) = \mathbb{P}(\{\omega\})$$

Wahrscheinlichkeitsfunktion oder Zähldichte von \mathbb{P} genannt.

Diese besitzt folgende Eigenschaften:

- $\Omega_T := \{\omega \in \Omega \mid f(\omega) > 0\}$ ist abzählbar und heißt **Träger** von $\mathbb P$ bzw. von f
- $\sum_{\omega \in \Omega} f(\omega) = 1$

Die Zähldichte ist eindeutig!

Definition: Binomialverteilung

Das Wahrscheinlichkeitsmaß $\mathbb{P}=Bin_{(n,p)}$ auf $\{0,\ldots,n\}$ mit der Zähldichte

$$f(k) = \binom{n}{k} p^k \cdot (1-p)^{n-k} \qquad \forall k \in \{0, \dots, n\}$$

heißt Binomialverteilung mit Parametern $n \in \mathbb{N}$ und $p \in [0, 1]$.

Definition: Geometrische Verteilung

Das Wahrscheinlichkeitsmaß $\mathbb{P} = Geo_p$ auf \mathbb{N}_0 mit der Zähldichte

$$f(k) = (1-p)^k \cdot \forall k \in \mathbb{N}_0$$

heißt geometrische Verteilung mit Parameter $p \in (0,1]$.