Вступ

Актуальність теми. Напівпровідникові поверхнево-бар'єрні структури є основою сучасних мікроелектроніки та сонячної енергетики — галузей, розвиток яких на сучасному етапі багато в чому визначає загальний прогрес. Зокрема, незважаючи на все різноманіття існуючих типів фотоперетворювачів, ринок промислового використання належить моно- та полікристалічним сонячним елементам на основі кремнію. Загалом, кремнієві структури використовують найширше серед всіх напіпровідникових систем. Це пов'язано, насамперед, з величезними запасами даного елементу (він є другим за поширеністю у корі Землі), його нетоксичністю та високою технологічністю створення відповідних систем. Так, високошвидкісні логічні та інтегральні елементи нерідко створюються з використанням кремнієвих структур з контактом Шотки. В цьому ж самому сегменті високочастотних мікроелектронних пристроїв достатньо часто зустрічаються системи на основі арсеніду галію — матеріалу, який характеризується високою рухливістю носіїв заряду. У даній дисертаційній роботі наводяться результати дослідження процесів, що відбуваються саме в кремнієвих сонячних елементах та структурах метал-напівпровідник на основі кремнію та арсеніду галію, що і визначає її актуальність з прикладної точки зору.

Загальною задачею матеріалознавства ϵ створення матеріалів та структур із заданими властивостями. Для її реалізації необхідне чітке розуміння процесів, які відбуваються в матеріалах за різних умов. Зокрема, умови функціонування напівпровідникових приладів нерідко передбачають наявність різноманітного радіаційного опромінення. Звичайно, вивченню радіаційно-індукованих процесів в напівпровідниках присвячено величезна кількість досліджень (що побічно свідчить про актуальність подібних робіт), проте деякі аспекти, наприклад немонотонність зміни характеристик реальних діодів Шотки при дії гамма-квантів чи причини модифікації приповерхневого шару при мікрохвильовому опроміненні, залишалися майже поза увагою. Іншим зовнішнім чинником, який може впливати на параметри напівпровідникових структур, ϵ знакозмінні високочастотні деформації, пов'язані, наприклад з поширенням акустичних хвиль. На

початок даної роботи процеси, що відбуваються в кремнієвих бар'єрних структурах фактично не вивчалися. В роботі проведено дослідження як зазначених вище радіаційностимульованих ефектів, так і поведінки кремнієвих структур в умовах ультразвукового навантаження, що свідчить про її актуальність з точки зору матеріалознавства.

З іншого боку, для вирішення задачі матеріалознавства необхідна розробка методів керування параметрами матеріалів та структур. Відомо, що дефекти структури є визначальними для фізичних властивостей кристалів і мають фундаментальне значення у фізиці твердого тіла. Для напівпровідникових матеріалів найпоширенішими способами впливу на дефектну підсистему є радіаційне опромінення та термообробка, які суттєво впливають на стан кристала в цілому. Водночас, представлені результати свідчать про здатність ультразвукового навантаження навіть допорогової інтенсивності модифікувати дефекти в кремнієвих кристалах структурах, причому до переваг даного способу варто віднести вибірковість впливу саме на області з порушеннями періодичності та оборотність змін при кімнатних температурах. Тобто, дана робота є актуальною з точки зору розробки нових методів керування параметрами бар'єрних структур.

Нарешті, основними причинами змін стану точкових дефектів (ТД) у напівпровідникових кристалах під дією акустичних хвиль (АХ) вважаються вимушені коливання дислокацій, акустостимульована дифузія домішок та генерація ТД при надпороговій інтенсивності АХ. Проте в бездислокаційних матеріалах, таких як кремній, при допороговій інтенсивності ультразвуку це механізми її незастосовними для пояснення оборотних акустоіндукованих ефектів. Проведене дослідження особливостей акусто—дефектної взаємодії за цих умов та ідентифікація «акусточутливих» (тобто здатних до ефективної взаємодії з пружними коливаннями) дефектів, у тому числі і радіаційних, є актуальною задачею з наукової точки зору.

Отже, дослідження фізичних закономірностей та встановлення механізмів акусто— та радіаційностимульованих ефектів у поверхнево—бар'єрних напівпровідникових структурах є важливим для вирішення перелічених вище проблем й визначає актуальність дисертаційної роботи як з наукової, так і практичної точок зору.

Зв'язок роботи з науковими програмами, планами, темами, грантами. Дисертаційна робота пов'язана із планами науково-дослідних робіт, які проводились в рамках держбюджетних тем та міжнародних проектів на кафедрі загальної фізики фізичного факультету Київського національного університету імені Тараса Шевченка. А саме: №01БФ051-09 «Теоретичне та експериментальне дослідження фізичних властивостей неоднорідних систем на основі матеріалів акусто-опто-електроніки та мікроелектроніки» (№ держ. реєстрації 01БФ051-09, 2001-2005рр.); №06БФ051-04 «Експериментальне та теоретичне дослідження структури та фізичних властивостей низькорозмірних систем на основі напівпровідникових структур, різних модифікацій вуглецю та композитів» (№ держ. реєстрації 0106U006390, 2006–2010рр.); №11БФ051–01 «Фундаментальні дослідження в галузі фізики конденсованого стану і елементарних частинок, астрономії і матеріалознавства для створення основ новітніх технологій» (№ держ. реєстрації 0111U004954, 2011–2015рр.); №16БФ051–01 «Формування та фізичні властивості наноструктурованих композитних матеріалів та функціональних поверхневих шарів на основі карбону, напівпровідникових та діелектричних складових» (№ держ. реєстрації ????, 2016–2018рр.) та проект УНТЦ №3555 «Дослідження та створення методів опто- акустичного контролю матеріалів» (2006–2008рр.).

Мета і завдання дослідження. Метою дисертаційної роботи ϵ встановлення фізичних закономірностей акустоїндукованих динамічних ефектів у кремнієвих структурах з p—n переходом та контактом Шотки, визначення механізмів впливу радіаційного опромінення та ультразвукового навантаження на процеси перенесення заряду в напівпровідникових поверхнево—бар'єрних структурах, методична розробка нових способів модифікації дефектної підсистеми кристалів з використанням ультразвуку.

Для досягнення поставленої мети вирішувалися наступні задачі:

- Підбір бар'єрних структур для досліджень та вибір режимів їх обробки нейтронами, γ -квантами та мікрохвильовим опроміненням.
- Дослідження закономірностей проходження струму в широкому температурному діапазоні, у тому числі і за умов ультразвукового навантаження з використанням акустичних хвиль різного типу, інтенсивності та частоти.

- Проведення порівняльного аналізу та оптимізації методів визначення параметрів напівпровідникових бар'єрних структур.
- Ідентифікація механізмів перенесення заряду як у вихідних структурах, так і в радіаційно-модифікованих; визначення характерних параметрів (висота бар'єру, фактор неідеальності, час життя неосновних носіїв заряду тощо).
- Вивчення впливу акустичного навантаження на процеси фотоелектричного перетворення в кристалічних кремнієвих сонячних елементах до та після нейтронного опромінення.
- Визначення механізмів та розробка фізичних моделей акусто— та радіаційноіндукованих ефектів.
- Дослідження впливу радіаційного опромінення та акустичного навантаження на параметри глибоких рівнів, пов'язаних з порушеннями кристалічної структури, ідентифікація основних акусто–активних дефектів.

Об'єкт дослідження – перенесення заряду в напівпровідникових бар'- єрних структурах.

Предмет дослідження— вплив ультразвукового навантаження та радіаційного опромінення на процеси проходження струму та фотоелектричного перетворення у поверхнево-бар'єрних напівпровідникових структурах.

Методи дослідження. Для виконання поставлених завдань було використано комплекс технологічних, експериментальних та розрахункових методів, який включає вольт-амперні характеристики; вольт-фарадні характеристики; метод диференційних коефіцієнтів ВАХ для визначення параметрів глибоких рівнів; метод стаціонарного струму короткого замикання (SSSCC) для визначення довжини дифузії неосновних носіїв; аналітичні та чисельні методи визначення параметрів діодів Шотки; еволюційні алгоритми мінімізації функції; імпульсний метод вимірювання коефіцієнта поглинання акустичної хвилі; резонансний метод вимірювання імпедансу навантаженого акустичного перетворювача; акустоелектрична релаксаційна спектроскопія глибоких рівнів; профілометрія; метод визначення деформації приповерхневих кристалічних площин по зміні кутового положення дифракційного максимуму при трансляції зразка; контрольоване радіаційне та мікрохвильове опромінення для зміни дефектного стану зразків; метод ультразвукового навантаження.

Наукова новизна отриманих результатів. В процесі виконання дисертаційної роботи було отримано ряд нових, науково-обгрунтованих результатів, які мають важливе значення для розуміння процесів процесів перенесення заряду в поверхнево-бар'єрних структурах, у тому числі радіаційно опромінених, за умов акустичного навантаження. Наукова новизна зумовлена застосуванням нових акусто-індукованих методів керування станом дефектів у напівпровідникових структурах, а також вперше проведеними ретельними та повними дослідженнями низки фундаментальних процесів електропереносу та рекомбінації нерівноважних носіїв заряду у різних (переважно, кремнієвих) поверхнево-бар'єрних структурах в умовах керованих змін системи кристалічних дефектів, як за допомогою радіаційного опромінення, так і акустичного навантаження. Зіставлення отриманих експериментальних результатів з даними теоретичного аналізу та окремими результатами інших авторів, дозволили повністю якісно і, у більшості випадків, кількісно описати всі виявлені ефекти. Досягнутий високий рівень розуміння деталей процесів протікання струму в поверхнево-бар'єрних структурах дозволяє надійно оцінювати ефективність роботи відповідних приладів і передбачати поведінку подібних напівпровідникових пристроїв.

- Вперше виявлені та дослідженні оборотні ефекти впливу ультразвукового навантаження на електрофізичні властивості кремнієвих структур з p-n-переходом та контактом метал-напівпровідник; показано, що застосування ультразвукового навантаження розширює можливості вивчення фундаментальних характеристик і параметрів подібних структур.
- Вперше проведено порівняння впливу акустичного навантаження на параметри як неопромінених, так і радіаційно-опромінених кремнієвих поверхнево-бар'єрних структур; вперше ідентифіковано основні акустоактивні радіаційні дефекти.
- Запропонована нова фізична модель акусто-активного комплексного дефекту, в рамках якої пояснено особливості виявлених акустоіндукованих ефектів.
- Вперше проведено порівняльний аналіз аналітичних, чисельних та еволюційних методів розрахунку параметрів діодів Шотки з вольт–амперних характеристик та визначено найбільш оптимальні з точки зору точності та швидкодії.

- Вперше показано доцільність застосування моделі поглинання ультразвуку Брейсфорда до пояснення динамічних акустоїндукованих ефектів в кремнієвих структурах метал—напівпровідник.
- ullet Вперше показано взаємозв'язок характеру непонотонності дозової залежності зміни висоти бар'єру Шотки при γ -опроміненні зі ступенем неоднорідності контакту.
- Вперше досліджено вплив мікрохвильового випромінювання на параметри дефектів, розташованих у приповерхневих шарах кристалів GaAs, 6H–SiC та на внутрішніх границях арсенід–галієвих епітаксійних структур.

Практичне значення отриманих результатів. Отримані в роботі результати сприяють більш глибокому розумінню фізичних процесів у поверхнево-бар'єрних структурах при дії зовнішніх чинників (надвисокочастотного-, нейтронного- та гамма-опромінення, знакозмінних механічних навантажень), що дозволяє підвищити точність прогнозування реальних робочих характеристик подібних систем в залежності від умов їх функціонування. Запропоновано новий метод динамічного акустичного керування струмом напівпровідникових діодів різного типу, а саме сонячних елементів та структур з контактом Шотки. Дослідження частотних, амплітудних та температурних залежностей акустоіндукованих ефектів у бар'єрних структурах дозволяє ефективно контролювати процеси перенесення заряду. Проведене тестування та порівняльне дослідження різноманітних методів визначення параметрів діодів Шотки дозволяє вибрати найфективніший залежно від експериментальних умов вимірювання характеристик, типу структур, вимог до швидкодії. Запропоновано новий метод оптимізації вибору діапазону даних для побудови аналітичних функцій, що дозволяє підвищити точність визначення параметрів структур металл-напівпровідник. Виявлені зміни особливостей акустоїндукованих ефектів у бар'єрних структурах після опромінення можуть бути використані для створення нових сенсорів типу та дози радіації. А саме, амплітудна залежність АІ змін зворотного струму діодів Шотки дозволяє оцінити поглинуту дозу гамма-квантів, тоді як величина та знак впливу ультразвуку на фактор неідельності та рекомбінаційний струм кремнієвих p-n структур дозволяють розрізнити нейтронно– та гамма-опромінені структури.

Особистий внесок здобувача. Внесок автора у отримання наукових результатів полягає у постановці задач та визначенні методів їх вирішення, виборі об'єктів та формулюванні основних напрямків досліджень, розробці методології експериментальних досліджень та програмного забезпечення для обробки експериментальних даних. Переважна більшість експериментальних та теоретичних досліджень виконані автором особисто. 12 з 25 наукових публікацій опублікованих за темою дисертації є одноосібними роботами здобувача. У наукових працях, опублікованих зі співавторами, автору належить проведення значної частини досліджень та аналіз і узагальнення отриманих даних, інтерпретація результатів, участь у написанні наукових статей. Співавторами частини робіт ([1, 3, 4, 6, 20]) були студенти фізичного факультету Київського національного університету імені Тараса Шевченка, які виконували кваліфікаційні роботи під керівництвом здобувача. В роботах [1, 3, 4, 6, 18-20] автором здійснено підбір структур для досліджень, вибір режимів вимірювань та радіаційного опромінення, проведено переважну частину експериментальних вимірювань та аналіз механізмів перенесення заряду і впливу ультразвукових хвиль на ці процеси, підготовлено тексти статей. В роботі [1] автором запропоновано модель акустоактивного дефектного комплексу, в роботі [3] — проведено аналіз можливості застосування моделі поглинання ультразвуку внаслідок руху дислокаційних перегинів до пояснення акустоїндукованих змін параметрів діодів Шотки. Внесок здобувача у роботу [8] визначався проведенням розрахунків в межах моделей дислокаційного поглинання ультразвуку. В роботі [12] вимірювання вольт-фарадних характеристик були проведені співробітником фізичного факультету, канд. фіз.-мат. наук Надточієм А. Б. Пошук та аналіз літературних даних щодо впливу ультразвуку на параметри напівпровідникових кристалів та структур на їх основі, а також їх узагальнення у роботах [14, 23] проводилось сумісно з докт. фіз.-мат. наук Оліхом Я. М. (Інститут фізики напівпровідників ім. В. Є. Лашкарьова НАНУ). Внесок здобувача у роботу [16] визначався постановкою дослідів по вимірюванню вольт-амперних характеристик, інтерпретацією відповідних результатів (саме ця частину представлена у дисертаційній роботі), участю у написанні статті. В роботах [21,22] автор провів дослідження параметрів глибоких рівнів з використанням методу акустоелектронної релаксаційної спектроскопії,

здійснив аналіз отриманих даних, взяв участь у написанні статей. Постановка наукової задачі в цих роботах, а також загальна інтерпретація результатів виконана сумісно з докт. техн. наук Конаковою Р. В.; рентгенографічні та профілометричні дослідження проводились канд. фіз.-мат. наук Литвином П. М. (обидва — Інститут фізики напівпровідників ім. В. Є. Лашкарьова НАНУ). Основна частина результатів представлялася автором особисто на вітчизняних і міжнародних конференціях та наукових семінарах кафедри загальної фізики Київського національного університету імені Тараса Шевченка.

Апробація результатів дисертації. Основні результати, викладені в роботі, доповідались на наукових семінарах кафедри загальної фізики Київського національного університету імені Тараса Шевченкаі були представлені на наступних наукових конференціях: I, III, IV, V, VI та VII Українська наукова конференція з фізики напівпровідників (Одеса, Україна, 2002; Одеса, Україна, 2007; Запоріжжя, Україна, 2009; Ужгород, Україна, 2011; Чернівці, Україна, 2013; Дніпро, Україна, 2016); III международная конференция «Радиационно-термические эффекты и процессы в неорганических материалах» (Томск, Россия, 2002); 1-ша та 6-та Міжнародна науково-технічна конференція «Сенсорна електроніка і мікросистемні технології СЕМСТ» (Одеса, Україна, 2004; 2014); 2004 IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference (Montreal, Canada, 2004); Девятая международная научно-техническая конференция «Актуальные проблемы твердотельной электроники и микроэлектроники» (Дивноморское, Россия, 2004); 2005 та 2014 IEEE International Ultrasonics Symposium (Rotterdam, Netherlands, 2005; Chicago, USA, 2014); 2007 ta 2015 International Congress on Ultrasonics (Vienna, Austria, 2007; Metz, France, 2015); MRS 2007 Spring Meeting, Symposium F: Semiconductor Defect Engineering - Materials, Synthetic Structures, and Devices II (San Francisco, USA, 2007); VI та VII Міжнародна школа-конференція «Актуальні проблеми фізики напівпровідників» (Дрогобич, Україна, 2008; 2010); XII та XIV Міжнародна конференція «Фізика і технологія тонких плівок та наносистем» (Івано-Франківськ, Україна, 2009; Буковель, Україна, 2013); Четверта міжнародна науково-практична конференція «Матеріали електронної техніки та сучасні інформаційні технології» (Кременчук, Україна, 2010); Всеукраїнська

наукова конференція «Актуальні проблеми теоретичної, експериментальної та прикладної фізики» (Тернопіль, Україна, 2012); International research and practice conference «Nanotechnology and nanomaterials» (Bukovel, Ukraine, 2013); IV міжнародна конференція «Сучасні проблеми фізики конденсованого стану» (Київ, Україна, 2015); ІІ Всеукраїнська науково-практична конференція МЕІСЅ-2017 (Дніпро, Україна, 2017).

Публикації. За отриманими результатами опубліковано 25 наукових праць, з них 24 статті у фахових журналах і 1 у матеріалах наукової конференції.

Структура та обсяг дисертації. Дисертація складається із вступу, шести розділів, загальних висновків та списку використаних джерел. Загальних обсяг дисертації складає 353 сторінки, включаючи 123 рисунки та 30 таблиць.