Lecture 11: Deep Reinforcement Learning CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science
CIFAR AI Chair at Vector Institute

Outline

- RL with function approximation
 - Linear approximation
 - Neural network approximation

- Algorithms:
 - Gradient Q-learning
 - Deep Q-Network (DQN)

Quick Recap

Markov decision processes: value iteration

$$V(s) \leftarrow \max_{a} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V(s')$$

Reinforcement learning: Q-learning

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Complexity depends on number of states and actions

Large State Spaces

• Computer Go: 3³⁶¹ states

- Inverted pendulum: (x, x', θ, θ')
 - 4-dimensional continuous state space

Atari: 210 x 160 x 3 dimensions (pixel values)

Functions to be Approximated

• Policy: $\pi(s) \rightarrow a$

• Q-function: $Q(s, a) \in \Re$

• Value function: $V(s) \in \Re$

Traditional Neural Network

- Network of units (computational neurons) linked by weighted edges
- Each unit computes: $z = h(\mathbf{w}^T \mathbf{x} + b)$
 - Inputs: *x*
 - Outputs: *z*
 - Weights (parameters): w
 - Bias: *b*
 - Activation function (usually non-linear): h

One Hidden Layer Architecture

- Feed-forward neural network
 - Hidden units: $z_j = h_1(w_j^{(1)}x + b_j^{(1)})$
 - Output units: $y_k = h_2(\mathbf{w}_k^{(2)}\mathbf{z} + b_k^{(2)})$
 - Overall: $y_k = h_2 \left(\sum_j w_{kj}^{(2)} h_1 \left(\sum_i w_{ji}^{(1)} x_i + b_j^{(1)} \right) + b_k^{(2)} \right)$

Common Activation Functions

• Sigmoid:
$$h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

• Tanh (hyperbolic tangent):
$$h(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

• Gaussian:
$$h(a) = e^{-0.5\left(\frac{a-\mu}{\sigma}\right)^2}$$

• ReLU (Rectified Linear Unit): $h(a) = \max(a, 0)$

• Identity:
$$h(a) = a$$

Universal Function Approximator

Theorem: Neural networks with at least one hidden layer of sufficiently many sigmoid/tanh/Gaussian units can approximate any function arbitrarily closely.

Q-function Approximation

• Let
$$s = (x_1, x_2, ..., x_n)^T$$

• Linear: $Q(s, a) \approx \sum_i w_{ai} x_i$

• Non-linear (e.g., neural network): $Q(s, a) \approx g(x; w)$

Gradient Q-learning

- Minimize squared error between Q-value estimate and target
 - Q-value estimate: $Q_w(s, a)$
 - Target: $r + \gamma \max_{a'} Q_{\overline{w}}(s', a')$
- Squared error: $Err(\mathbf{w}) = \frac{1}{2} [Q_{\mathbf{w}}(s, a) r \gamma \max_{a'} (\overline{w}(s', a'))]^2$

• Gradient:
$$\frac{\partial Err}{\partial w} = \left[Q_w(s, a) - r - \gamma \max_{a'} Q_{\overline{w}}(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}$$

 $\overline{\mathbf{w}}$ fixed

Gradient Q-learning

Initialize weights w at random in [-1,1]

Observe current state s

Loop

Select action a and execute it

Receive immediate reward r

Observe new state s'

Gradient:
$$\frac{\partial Err}{\partial w} = \left[Q_w(s, a) - r - \gamma \max_{a'} Q_w(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}$$

Update weights: $\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial Err}{\partial \mathbf{w}}$

Update state: $s \leftarrow s'$

Recap: Convergence of Tabular Q-learning

 Tabular Q-Learning converges to optimal Q-function under the following conditions:

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$

- Let $\alpha(s, a) = 1/n(s, a)$
 - Where n(s, a) is # of times that (s, a) is visited
- Q-learning: $Q(s,a) \leftarrow Q(s,a) + \alpha(s,a)[r + \gamma \max_{a'} Q(s',a') Q(s,a)]$

Convergence of Linear Gradient Q-Learning

• Linear Q-Learning converges under the same conditions:

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$

- Let $\alpha_t = 1/t$
- Let $Q_w(s, a) = \sum_i w_i x_i$

$$\quad \text{Q-learning: } \boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha_t \left[Q_{\boldsymbol{w}}(s,a) - r - \gamma \max_{a'} Q_{\boldsymbol{w}}(s',a') \right] \frac{\partial Q_{\boldsymbol{w}}(s,a)}{\partial \boldsymbol{w}}$$

Divergence of Non-linear Gradient Q-learning

Even when the following conditions hold

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$

non-linear Q-learning may diverge

• Adjusting w to increase Q at (s, a) might introduce errors at nearby state-action pairs.

Mitigating divergence

- Two tricks are often used in practice:
 - 1. Experience replay
 - 2. Use two networks:
 - Q-network
 - Target network

Experience Replay

• Idea: store previous experiences (s, a, s', r) into a buffer and sample a mini-batch of previous experiences at each step to learn by Q-learning

- Advantages
 - Break correlations between successive updates (more stable learning)
 - Less interactions with environment needed to converge (better data efficiency)

Target Network

• Idea: Use a separate target network that is updated only periodically

repeat for each
$$(s, a, s', r)$$
 in mini-batch:
$$w \leftarrow w - \alpha_t \left[Q_w(s, a) - r - \gamma \max_{a'} Q_{\overline{w}}(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}$$

$$\overline{w} \leftarrow w$$
update target

Advantage: mitigate divergence

Target Network

• Similar to value iteration:

repeat for all
$$s$$

$$\underbrace{V(s)}_{a} \leftarrow \max_{a} R(s) + \gamma \sum_{s'} \Pr(s'|s,a) \underbrace{\bar{V}(s')}_{target} \quad \forall s$$

$$\underbrace{\bar{V}(s)}_{v} \leftarrow V$$

repeat for each
$$(s, a, s', r)$$
 in mini-batch:
$$w \leftarrow w - \alpha_t \left[Q_w(s, a) - r - \gamma \max_{a'} Q_{\overline{w}}(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}$$

$$\overline{w} \leftarrow w$$
update target

Deep Q-network (DQN)

Deep Mind

- Deep Q-network: Gradient Q-learning with
 - Deep neural networks
 - Experience replay
 - Target network

Breakthrough: human-level play in many Atari video games

Deep Q-network (DQN)

```
Initialize weights w and \overline{w} at random in [-1,1]
```

Observe current state *s*

Loop

Select action a and execute it

Receive immediate reward r

Observe new state s'

Add (s, a, s', r) to experience buffer

Sample mini-batch of experiences from buffer

For each experience $(\hat{s}, \hat{a}, \hat{s}', \hat{r})$ in mini-batch

Gradient:
$$\frac{\partial Err}{\partial w} = \left[Q_w(\hat{s}, \hat{a}) - \hat{r} - \gamma \max_{\hat{a}'} Q_{\overline{w}}(\hat{s}', \hat{a}') \right] \frac{\partial Q_w(\hat{s}, \hat{a})}{\partial w}$$

Update weights:
$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial Err}{\partial \mathbf{w}}$$

Update state: $s \leftarrow s'$

Every c steps, update target: $\overline{w} \leftarrow w$

Deep Q-Network for Atari

DON versus Linear Approximation

