1 Outlier detection scheme

We now use the weighted projection quantiles for the purpose of detecting multivariate outliers. Relative to a multivariate data cloud, multiple outliers can either lie far away from the majority of the data in a separate small cluster of points, or they may be scattered without any noticeable clumping. We combine our idea of depth outlined in section (?) with a k-nearest neighbor distance measure to devise an outlier score for each observation in a multivariate dataset that can detect clustered or scattered outliers based on different values of a tuning parameter.

Definition Consider iid observations $\mathbf{X} = \{\mathbf{X_1}, ..., \mathbf{X_n}\} \in \mathbb{R}^{n \times p}$ from a multi-variate distribution F. For any point $\mathbf{x} \in \mathbb{R}^p$ suppose $\bar{d}_k(\mathbf{x}, \mathbf{X})$ and $D(\mathbf{x}, \mathbf{X})$ are its k-nearest neighbor distance and WPQ-depth based on the data, respectively. The the depth-based outlier score for x is defined as:

$$O_{D,\alpha}(\mathbf{x}; \mathbf{X}) = \alpha \cdot \log(\bar{d}_k(\mathbf{x}, \mathbf{X})) - (1 - \alpha) \log(D(\mathbf{x}, \mathbf{X}))$$

where $\alpha \in [0,1]$ is the tuning parameter.

For $\alpha=0$ this score becomes the negative log of the depth function, while $\alpha=1$ makes this same as the log of mean kNN distance. This outlier score is defined based on the reasoning that a point far isolated from the rest of the data will always have a low depth, but whether it has a high kNN distance or not depends on if it is part of a small isolated clump of points or a single isolated point. For small values of α , $O_{D,\alpha}$ puts more emphasis on isolated points. On the other hand, for α close to 1 high values of the outlier score will tend to identify low-depth isolated points.

1.1 Simulations

We now consider two simulation scenarios to demonestrate the performance of our outlier score at different values of α . The k to obtain mean kNN distance is fixed at $\lfloor \sqrt{n} \rfloor$.

In the first setup we consider 500-size sample, 95% of which are from $\mathcal{N}((0,0)', I_2)$ and the other 5% drawn from $\mathcal{N}((10,10)', I_2)$. Fig. 1 gives the index plots for outlier scores computed considering $\alpha = 0.1, 0.5, 0.9$. Points 1 to 475 are colored green and the last 25, which are situated away from the main data cloud, are colored red.

1.2 Real data examples

Stackloss data This dataset due to Brownlee [ref] has been widely used for detecting outliers in regression or unsupervised analysis [refs]. It consists of 21 observations in a plant regarding oxidation of Ammonia to Nitric Acid, and

Figure 1: Index plots for simulation setup 1 (Left to right) $\alpha = 0.1, 0.5, 0.9$

Figure 2: Index plots for simulation setup 2 (Left to right) $\alpha = 0.1, 0.5, 0.9$

has 3 predictors: air flow, cooling temperature and concentration of acid; and percentage of ingoing Ammonia that escapes as response variable. A simple linear regression reveals observation 21 as outlier.

We set aside the response variable and calculate outlier scores based only the 3 predictor variables. Fig. 3 shows the outlier scores for $\alpha = 0.05, 0.5$ and 0.95. In all the plots the 21st observation is among those with highest outlier scores (especially for $\alpha = 0.95$).

Hawkins, Bradu amd Kass data This artificial dataset given by Hawkins et al [ref] consists of 75 observations and 4 variables (3 predictors and 1 response variable). The first 10 observations are high influential points while observations 11 to 14 are good leverage points. Our analysis using outlier scores based on the 3 predictor variables (Figure 4) identifies all the first 14 observations as outliers.

Figure 3: Outlier scores for stackloss data

Figure 4: Outlier scores for Hawkins-Bradu-Kass data (Dotted line at index = 14)