	3.2	The Distribution of Primes	
\mathcal{T}	heorer	3.4 (The Prime Number Theore	m)
		lyna T(x)	
		$\lim_{x \to \infty} \frac{\pi(x)}{\log x} = 1$	
	Th	is usually written as	
		$\mathcal{I}(x) \sim \frac{x}{\log x}$	
		logx	
P	roof:	Later	
1	4 7/ 0		o E
7	Tuni	largest known prime 5 as	ω_J
	yanı	ild so the second	
		282,589,933_1	
	foun	l in 2018. It has 24,862,048 d	igits.
<u></u>	prolla	y: Let Ph be the nth prime, no Then, promogn. This means	4Z.
		Then, progn. This means	5
		that $\lim_{n\to\infty} \frac{P_n}{n\log n} = 1$.	
		$n \rightarrow \infty n \log n$	

 P	rc	oj		人	10	te	ł	ha	ŧ												
						T	T C	Pn		_	n										
				F		m						3.	4,								_
						\mathcal{U}															_
					٠,'	. /	l ^	ر 	Pn 09	— Pu	_		-(Ď							
														90	10	9 P.					
																			(2))	
				\mathcal{O}															-		_
													/	/ U.	(M	a	(j)			
							("				J		(-		J	C				
X	_ (Th	î5	7	nR	an	6	10	n	<i>th</i>	pr	im	e	75	a	.5	la	rga	2		_
									0.5	<i>,</i>	24	09	n'								
76	Q.	g re	מתי	3	.5	: L	L T	Ļ,	n E	\mathbb{Z}^7	. (The	n,	the	re	a	re	at			
						le 5.	03	t	n	Co	on s	se C	ut	îvl	_ (LO:	פאח	051	ite		
						//) 1 K	ge	15												

Proof: Consider the n consecutive integers
$(n+1)!+2, (n+1)!+3, \dots, (n+1)!+n+1$
Notice that the jth integer is divisible by j+1 (j=j, n).
Hence the proof!
Bertrand's Postulate
For any $n \in \mathbb{Z}^+$ with $n > 1$, \exists a prime p such that $n .$
Proof! Omitted.
There are many conjectures on primes.
There are many conjectures on primes. Please read the literature about them.
Some of them are listes below. 1. Twin Prime Conjecture
2. The Erdős Conjecture
2. The Erdős Conjecture 3. Goldbach's Conjecture 4. The n²+1 conjecture
5. The Legendre Conjecture