12. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 22.01.2023, 24.00 Uhr

Aufgabe 1: (3 + 3 = 6 Punkte)

- a) Es seien $f, g: (a, b) \to \mathbb{R}$ und $x_0 \in (a, b)$ mit $f(x_0) = 0$. Ferner, sei f differenzierbar in x_0 und g sei stetig in x_0 . Zeigen Sie, dass $f \cdot g: (a, b) \to \mathbb{R}$ differenzierbar in x_0 ist mit $(f \cdot g)'(x_0) = f'(x_0)g(x_0)$.
- b) Für $f:(a,b)\to\mathbb{R}$ und $x_0\in(a,b)$ existieren die rechtsseitige und linksseitige Ableitungen $f'_+(x_0)$ und $f'_-(x_0)$, und diese stimmen überein. Zeigen Sie, dass f in x_0 differenzierbar ist mit $f'(x_0)=f'_+(x_0)=f'_-(x_0)$.

Aufgabe 2 (2+2=4 Punkte) Seien $f,g:(-1,1)\to\mathbb{R}$ stetig mit $f(x)\cdot g(x)=x$ für alle $x\in(-1,1)$. Zeigen Sie:

- a) Sind f und g differenzierbar, so gilt: $f(0) = 0 \Rightarrow g(0) \neq 0$.
- b) Ohne die Differenzierbarkeitsvoraussetzung ist der Schluss in a) falsch.

Aufgabe 3: (2 + 2 = 4 Punkte)

Berechnen Sie die Ableitungen folgender Funktionen für x > 0.

a)
$$f(x) := \log \frac{x^3}{(1+x^2)^5}$$
 b) $f(x) := x^x \cos x$

Aufgabe 4: (3 + 3 = 6 Punkte)

a) Beweisen Sie für $t \in \mathbb{R}$ folgende Gleichung

$$\frac{1+it}{1-it} = e^{2i\varphi} \quad \text{mit} \quad \varphi = \arctan t$$

b) Für $n \in \mathbb{N}$ bezeichne mit $z_{k,n} \in \mathbb{C}$ die n-ten Einheitswurzeln, d.h. $z_{k,n} = e^{i\frac{2\pi k}{n}}$. Betrachte den Polygonzug, welcher die Punkte $z_{k,n}$ verbindet. Die Länge des Polygonzugs ist

$$L_n = \sum_{k=0}^{n-1} |z_{k+1,n} - z_{k,n}|.$$

Berechnen Sie $\lim_{n\to\infty} L_n$ und geben Sie eine geometrische Interpretation des Ergebnisses.