

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:	li .	
Ricky Chen		

UB Person Number:

5	0	2	3	((6	8
		0 1 3 4 5 6 7 3				0 1 2 3 4 5 7 8	
9	9	9	9	9	9	9	9

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

a)
$$\begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & b \end{bmatrix}$$
 $\rightarrow R_3 = R_3 - 2R_1$ $\begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & -1 & 0 & b + 4 \end{bmatrix}$ $\uparrow + \frac{1}{2}$ $\begin{bmatrix} 1 & 0 & -2 & -b & -6 \\ 0 & 0 & 2 & b & +6 \\ 0 & -1 & 0 & b & +4 \end{bmatrix}$ $\uparrow + \frac{1}{2}$ $\begin{bmatrix} 1 & 0 & -2 & -b & -6 \\ 0 & 0 & 2 & b & +6 \\ 0 & -1 & 0 & b & +4 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & -b & -4 \\ 0 & -1 & 0 & b & +6 \\ 0 & 0 & 2 & b & +6 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & -b & -4 \\ 0 & 1 & 0 & -b & -4 \\ 0 & 1 & 0 & -b & -4 \\ 0 & 0 & 1 & b & +6 \end{bmatrix}$ $\begin{pmatrix} 1 & 0 & 0 & 0 & -b & -4 \\ 0 & 1 & 0 & -b & -4 \\ 0 & 0 & 1 & b & +6 \\ 0 & 1 & 0 & -b & -4 \\ 0 & 0 & 1 & b & -b & -4 \\ 0 & 0 & 1 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 & 0 & 0 & 0 & -b & -4 \\ 0 &$

b) yes, the set {v1, v2, v3} is linearly independent because after row reduction every column is a proof column.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 2 & 3 \\ 1 & 0 & 1 & 3 \\ 0 & 2 & -1 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.

b) Find all vectors
$$\mathbf{u}$$
 satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

A) $\mathbf{v} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

$$T(e_1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} T(e_2) = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$$

$$T(e_1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} T(e_2) = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$$
 standard matrix of $T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$

$$R_3 = R_3 - R_1$$
 $\left(\begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 1 \\ 1 & -3 & -2 \end{bmatrix} \right)$

$$\begin{bmatrix} 3 & 0 & 21 \\ 1 & 1 & 10 \\ 0 & 1 & -3 \end{bmatrix} * \begin{pmatrix} \frac{1}{3} \\ 0 \\ 0 \\ 1 & -3 \end{pmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | 7 \\ 0 & 1 & | -3 \\ 0 & 1 & | -3 \end{bmatrix} = \begin{bmatrix}$$

$$\begin{bmatrix} 1 & 7 \\ 0 & 1 & 3 \\ 0 & 1 & -3 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

vectors
$$\mathbf{v}_{1}$$
 and \mathbf{v}_{2} such that $I_{A}(\mathbf{v}_{1}) = I_{A}(\mathbf{v}_{2})$.

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$-(3\ell_{1}) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{pmatrix} \geq -\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{pmatrix} \geq -\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & -1 & 0 \end{pmatrix} \geq \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & -1 & 0 \end{pmatrix} \leq \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & -1 & 0 \end{pmatrix} \leq \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & -1 & 0 \end{pmatrix} \geq \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & -1 & 0 \end{pmatrix} \geq \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 0 & -6 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 0 & -6 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in Span(u, v)$ then $w \in Span(u, v)$.

True, because since into is in the spon (u,v) then it must be true that we spon(u,v) because the sum of the two vectors are in the spon (u,v).

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

then ([0] v=[0]) is also linearly independent the set [4,10] [0] [0]) is also linearly independent because it has only one solution and proof of in every column. If 4,0,0 we independent then it has pivot col.

True

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

Filly,

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad u = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

u and v could still be independent and be multiplied with A to make it linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

Yes, true because if u is in the Span of (v, w) then
the transformation could just be the scalar of u vector
and it would still let T(u) be in the span of T(v), T(w)