DÉVELOPPEMENTS LIMITÉS

Table des matières

1.	Fonctions négligeables et équivalentes	1
	1.1. Négligeable	1
	1.2. Équivalence	3
2.	Dérivées successives et formules de Taylor	5
	2.1. Formules de TAYLOR	6
	2.2. Fonctions usuelles	8
3.	Développement limité à l'ordre n d'une fonction de classe C^n	8
	3.1. Développements limités	8
	3.2. Développements limités et primitives	11
	3.3. Développement limités usuels	13
	3.4. Règles de calcul des développements limités	15

1. FONCTIONS NÉGLIGEABLES ET ÉQUIVALENTES

On considère des fonctions f,g de V dans ${\bf R}$ où V est un voisinage épointé dans $\overline{\mathbf{R}} = \mathbf{R} \cup \{\infty\}$. C'est-à-dire que V est de la forme $U - \{a\}$ où U est un voisinage de a dans $\overline{\mathbf{R}}$ et $a \in \overline{\mathbf{R}}$.

- si $a = \infty$ alors $V \supset \{k, \infty\}$;
- si $a \in \mathbf{R}$ alors $V \supset]k, a[\cup]a, l[$ avec $k < a < l \text{ et } k, l \in \mathbf{R}.$

f,g sont définies au voisinage de $a\in \overline{\mathbf{R}}.$

1.1. Négligeable

Définition 1.1.0.1. —

On dit que f est $n\acute{e}gligeable$ devant g au voisinage de a s'il existe un voisinage V tel qu'il existe une fonction $\varepsilon:V\to\mathbf{R}$ telle que : $-f=\varepsilon\cdot g\,; \\ -\lim_a\varepsilon=0.$ On note $f=\mathrm{o}(g).$

Remarque. — On note:

$$\varepsilon f \colon \left\{ egin{aligned} V & \to \mathbf{R} \\ t & \mapsto \varepsilon(t) f(t) \end{aligned} \right. .$$

Exemples. — Par exemple :

- 1. Si g = 1 alors f = o(1) si, et seulement si, $\lim_a f = 0$.
- 2. Si f = 0 au voisinage de a alors pour toute fonction g : f = o(g).
- 3. Si f est bornée et $\lim_{a}(g) = \infty$ alors $f = \mathrm{o}(g)$ (on prend alors $\varepsilon = f/g$).
- 4. On a $x^m = o(x^n)$ si, et seulement si, m < n.
- 5. Pour tous $\alpha, \beta > 0$:

$$\begin{cases} x^{\alpha} = o(e^{\beta x}) \\ (\ln x)^{\alpha} = o(x^{\beta}) \end{cases},$$

 $\operatorname{car} \lim_{\infty} x^{\alpha} e^{-\beta x} = 0.$

Proposition 1.1.0.1. —

Si f/g est définie dans un voisinage de a, alors :

$$f \underset{(a)}{=} o(g) \iff \lim_{a} (f/g) = 0.$$

DÉMONSTRATION 1.1.0.1. — On prend $\varepsilon = f/g$.

Remarque. — Il peut arriver que f/g n'est pas défini dans aucun voisinage de a.

Exemples. — Contre-exemples :

- 1. Avec $g(t) = \sin(1/[t-a])$, pour tout voisinage de V de a, g(t) s'annule en un point de V.
- 2. Même si le quotient n'est pas définit : $t = o(\sin(1/t))$.

Proposition 1.1.0.2. —

On a au voisinage de a:

- 1. la propriété o est transitive ; 2. la propriété o est compatible avec la multiplication, i.e. : si $f={\rm o}(g)$ alors $fh={\rm o}(gh)$;
- 3. si f = o(g) et si h = o(k) alors fh = o(gk).

DÉMONSTRATION 1.1.0.2. —

- 1. Pour $f = \varepsilon_1 g$ et $g = \varepsilon_2 h$ avec $\lim_a \varepsilon_i = 0$ alors : $f = \varepsilon_1 \varepsilon_2 h$ et $\lim_a \varepsilon_1 \varepsilon_2 = 0$. 2. Si $f = \varepsilon g$, $\lim_a \varepsilon = 0$, alors $fh = \varepsilon gh$.

Contre-exemple. — o n'est pas compatible avec l'addition. Par exemple : $x = o(x^3)$ et $x^2 = o(-x^3)$ n'entraine pas $x + x^2 = o(0)$.

1.2. Équivalence

Définition 1.2.0.2. —

On dit que f est équivalence à g au voisinage de a si : f - g = o(g). On note $f \sim g$.

Proposition 1.2.0.3. —

Si f/g est définie dans un voisinage de a alors :

$$f \underset{(a)}{\sim} g \iff \lim_{a} f/g = 1.$$

Proposition 1.2.0.4. —

 $\underset{(a)}{\sim}$ est une relation d'équivalence.

Démonstration 1.2.0.3. —

Par définition:

- 1. elle est réflexive : $f \sim_{(a)} f$ puisque $0 =_{(a)} o(f)$;
- 2. elle est symétrique si $f \sim g$ alors il existe ε telle que $\lim_a \varepsilon = 0$ et $f = (1+\varepsilon)g$, or $1/(1+\varepsilon)$ est aussi définie au voisinage de a et puisque $g=(1/[1+\varepsilon])f$ on a

$$g = (1 + (1/[1 + \varepsilon] - 1))f$$

or en posant $\varepsilon' = [1 + \varepsilon] - 1$ on a $\lim_a \varepsilon' = 0$;

3. elle est transitive : $f \sim g$ et $g \sim h$ implique qu'il existe $\varepsilon_1, \varepsilon_2$ telles que f = 1 $(1+\varepsilon_1)g$, $g=(1+\varepsilon_2)h$ et donc $f=(1+\varepsilon)h$ avec $\varepsilon=\varepsilon_1+\varepsilon_2+\varepsilon_1\varepsilon_2$ et $\lim_a \varepsilon=0$.

Proposition 1.2.0.5. —

Si $f \sim g$ et si $\lim_a f$ existe alors $\lim_a g$ existe et $\lim_a g = \lim_a f$.

DÉMONSTRATION 1.2.0.4. —

Soit ε telle que $\lim_a \varepsilon = 0$ alors puisque $f = (1 + \varepsilon)g$ on a

$$\lim_{a} f = \lim_{a} (1 + \varepsilon)g = \lim_{a} g.$$

Proposition 1.2.0.6. —

Le produit et le quotient (quand il est défini) d'équivalences est une équivalence. Une puissance entière d'équivalences est une équivalence.

DÉMONSTRATION 1.2.0.5. —

Si
$$f = (1 + \varepsilon_1)g$$
et $h = (1 + \varepsilon_2)k$ alors $fh = (1 + \varepsilon)gk$ avec $\varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_1\varepsilon_2$.

Proposition 1.2.0.7. —

Si $f\underset{(a)}{\sim}g$ et si $\varphi:I\to\mathbf{R}$ telle que $\lim_b\varphi=a,\,b\in I.$ Alors $f\circ\varphi\underset{(a)}{\sim}g\circ\varphi.$

$$f \circ \varphi \sim_{(a)} g \circ \varphi$$

DÉMONSTRATION 1.2.0.6. —

Si $f = (1 + \varepsilon)g$ avec $\lim_a \varepsilon = 0$. Alors $f \circ \varphi = (1 + \varepsilon') \cdot g \circ \varphi$ avec $\varepsilon' = \varepsilon \circ \varphi$ et $\lim_a \varepsilon' = 0$.

$$f \circ \varphi = (1 + \varepsilon') \cdot g \circ \varphi$$

Proposition 1.2.0.8. —

- 1. Si f est dérivable en a alors si $f'(a) \neq 0$ on a $f(x) f(a) \sim f'(a)(x a)$. 2. Si g est continue dans un voisinage épointé de a, alors si $f \sim g > 0$ alors

$$\int_{a}^{x} f(t) dt \sim \int_{a}^{x} g(t) dt.$$

DÉMONSTRATION 1.2.0.7. —

Dans l'ordre:

1. Si f est dérivable en a alors :

$$\frac{f(x) - f(a)}{x - a} \underset{(a)}{\sim} f'(a)$$

puisque si $\lim_a g = b \in \mathbf{R}^*$ alors $g \sim b$.

2. On sait que f - g = o(g) et on veut :

$$\int_{x}^{a} (f - g)(t) dt = o\left(\int_{x}^{a} g(t) dt\right).$$

En posant h = f - g on se ramène au problème :

$$h = o(g) \implies \int_a^x h = o \int_a^x g.$$

Si $h = \varepsilon g$ et $\lim_a \varepsilon = 0$ alors

$$\int_{a}^{x} g = \int_{a}^{x} \varepsilon g$$

$$\frac{\left|\int_{x}^{a} \varepsilon g\right|}{\int_{a}^{x} g} \le \max_{[a,x]} \left|\varepsilon\right| \frac{\int_{a}^{x} g}{\int_{a}^{x} g} \xrightarrow[x \to a]{} 0.$$

Donc

$$\frac{\left|\int_{a}^{x} \varepsilon g = h\right|}{\left|\int_{a}^{x} g\right|} \xrightarrow[x \to a]{} 0.$$

2. DÉRIVÉES SUCCESSIVES ET FORMULES DE TAYLOR

Soit $p \ge 0$ un entier.

Définition 2.0.0.3. —

- Soit I un intervalle de \mathbf{R} et $f: I \to \mathbf{R}$. 1. $f \in C^0$ si f est continue; 2. $f \in C^p$ $(p \ge 1)$ si f est dérivable et $f' \in C^{p-1}$.

Remarque. — Si $f \in C^p$ alors les p-ièmes dérivées successives et f sont toutes continues sur $I. f \in C^{\infty}$ si $f^{(p)}$ existe et est continue pour tout $p \ge 1$.

Proposition 2.0.0.9. —

Si $f, g \in C^p$ alors f + g, fg, f/g et $f \circ g$ (si définie) sont C^p .

Démonstration 2.0.0.8. —

- 1. $(f+g)^{(p)} = f^{(p)} + g^{(p)}$ par récurrence sur p; 2. $(fg)^{(p)} = \sum_{k=0}^{p} \binom{p}{k} f^{(k)} g^{(p-k)}$;
 - 3. par récurrence sur p pour $(f \circ g)^{(p)}$ en utilisant : $(f \circ g)' = (f' \circ g)g'$.

Rappels sur les primitives. — Si $f: I \to \mathbf{R}$ est de classe C^1 avec $I \subset \mathbf{R}$ un intervalle ouvert. Alors si f' est continue $f(x) - f(a) = \int_a^x f'(t) dt$.

2.1. Formules de Taylor

Soit $I \subset \mathbf{R}$ un intervalle ouvert.

Théorème 2.1.0.1 (Formule de Taylor avec reste intégral) Soit $f: I \to \mathbf{R}$ de classe C^k . Alors pour tous $a, b \in I$ on a :

$$f(b) = \sum_{i=0}^{n-1} \frac{(b-a)^i}{i!} f^{(i)}(a) + \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt.$$

DÉMONSTRATION 2.1.0.9. —

Par récurrence sur n, on note

$$(T_n): f(b) = \sum_{i=0}^{n-1} \frac{(b-a)^i}{i!} f^{(i)}(a) + \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt.$$

Supposons que (T_k) soit vraie pour tout k < n. Alors par intégration par parties :

$$u(t) = -\frac{(b-t)^k}{k!},$$

$$v(t) = f^{(k)}(t),$$

$$R_k = \int_a^b \frac{(b-s)^{k-1}}{(k-1)!} f^{(k)}(s) \, ds,$$

$$R_{k} = \int_{a}^{b} u'(s)v(s) ds$$

$$R_{k} = [u(s)v(s)]_{a}^{b} - \int_{a}^{b} u(s)v'(s) ds$$

$$R_{k} = u(b)v(b) - u(a)v(a) + \int_{a}^{b} \frac{(b-s)^{k}}{k!} f^{(k+1)}(s) ds$$

$$R_{k} = \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-s)^{k}}{k!} f^{(k+1)}(s) ds$$

On applique
$$(T_{n-1})$$
:
$$f(b) = f(a) + \sum_{i=0}^{n-2} \frac{(b-a)^i}{i!} f^{(i)}(a) + R_{n-1}$$

$$f(b) = f(a) + \sum_{i=1}^{n-2} \frac{(b-a)^i}{i!} + \frac{(b-a)^{n-1}}{(n-1)!} f^{(n-1)}(a) + R_n$$

donc (T_n) vraie.

THÉORÈME 2.1.0.2 (Formule de TAYLOR avec reste en $f^{(n+1)}(\theta)$) Soit n > 0, $f: I \to \mathbf{R}$ de classe C^{n+1} . Pour tous $a, b \in I$ avec $a \neq b$, il existe θ

$$f(b) = \sum_{i=0}^{n} \frac{(b-a)^{i}}{i!} f^{(i)}(a) + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(\theta).$$

Démonstration 2.1.0.10. —

$$\frac{(b-a)^{n+1}}{(n+1)!} \cdot A = \int_a^b \frac{(b-s)^{n+1}}{(n+1)!} f^{(n)}(s) \, \mathrm{d}s - \frac{(b-a)^n}{n!} f^{(n)}(a).$$

On pose A tene que
$$\frac{(b-a)^{n+1}}{(n+1)!} \cdot A = \int_a^b \frac{(b-s)^{n+1}}{(n+1)!} f^{(n)}(s) \, ds - \frac{(b-a)^n}{n!} f^{(n)}(a).$$
Soit $F: I \to \mathbf{R}$ telle que:
$$F(x) = \int_x^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) \, dt - \frac{(b-x)^n}{n!} f^{(n)}(x) - \frac{(b-x)^{n+1}}{(n+1)!} A.$$
On a leads $F'(x)$:

On calcule
$$F'(x)$$
:
$$F'(x) = -\frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) - \frac{(b-x)^n}{n!} f^{(n+1)}(x) + \frac{(b-x)^{n-1}}{(n-1)!} f^{(n)}(x) + \frac{(b-x)^n}{n!} A$$

$$F'(x) = \frac{(b-x)^n}{n!} \left(A - f^{(n+1)}(x) \right).$$

$$F \text{ est dérivable donc continue sur } I:$$

$$F(a) = \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt - \frac{(b-a)^n}{n!} f^{(n)}(a) - \frac{(b-a)^{n+1}}{(n+1)!} A = 0,$$

$$F(b) = 0.$$

$$F(a) = \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt - \frac{(b-a)^n}{n!} f^{(n)}(a) - \frac{(b-a)^{n+1}}{(n+1)!} A = 0.$$

$$F(b) = 0.$$

 $F(\theta) = 0$. Par le théorème de ROLLE, il existe θ strictement entre a et b tel que $F'(\theta) = 0$.

$$\frac{(b-\theta)^n}{n!} \left(A - f^{(n+1)}(\theta) \right) = 0$$
$$A = f^{(n+1)}(\theta).$$

On en déduit :
$$\frac{(b-a)^{n+1}}{(n+1)!}f^{(n+1)}(\theta) = \int_a^b \frac{(b-s)^{n-1}}{(n-1)!}f^{(n)}(s) ds - \frac{(b-a)^n}{n!}f^{(n)}(a).$$
 On a alors le résultat en remplaçant dans (T_n) .

Remarque. — Si $|f^{(n+1)}(s)| \leq M$ pour tout $s \in I$ alors

$$\left| f(b) - \sum_{i=0}^{n} \frac{(b-a)^{i}}{i!} f^{(i)}(a) \right| \le M \frac{|b-a|^{n+1}}{(n+1)!}.$$

2.2. Fonctions usuelles

Proposition 2.2.0.10 (Exponentielle). —

Soit $n \in \mathbb{N}$, on regarde le développement de Taylor en 0 à l'ordre n+1, $\forall i, \exp^{(i)}(0)=1$. On prend b=x, a=0:

$$\exp(x) = \sum_{i=0}^{n} \frac{x^n}{n!} + \frac{x^{n+1}}{(n+1)!} \exp(\theta)$$
$$\theta \in]0, x[.$$

Proposition 2.2.0.11 (Cosinus, sinus). —

La dérivée n-ième de $\cos(t)$ est $\cos(t + n\pi/2)$.

$$\left|\cos(x) - \sum_{i=0}^{n} (-1)^{i+1} \frac{x^{2i}}{(2i)!}\right| \le \frac{x^{2n+2}}{(2n+2)!}$$

 $|\cos \theta| \le 1$.

3. DÉVELOPPEMENT LIMITÉ À L'ORDRE N D'UNE FONCTION DE CLASSE \mathbb{C}^N

3.1. Développements limités

Définition 3.1.0.4. —

Soit $I \subset \mathbf{R}$ un intervalle ouvert tel que $0 \in I, n \in \mathbf{N}$. On dit qu'une fonction $f: I \to \mathbf{R}$ admet un développement limité à l'ordre n en 0 si, et seulement s'il existe un polynôme P de degré n à coefficients réels tel que

$$\lim_{x \to 0} \frac{f(x) - P(x)}{x^n} = 0.$$

Notons

$$\varepsilon(x) = \frac{f(x) - P(x)}{x^n}$$

alors

$$\begin{cases} f(x) = P(x) + x^n \varepsilon(x)^{(1\S)}, \\ \lim_{x \to 0} \varepsilon(x) = 0. \end{cases}$$

Définition 3.1.0.5. —

Soit $I \subset \mathbf{R}$ un intervalle ouvert et soit $n \in \mathbf{N}$. On dit qu'une fonction $f: I \to \mathbf{R}$ admet un développement limité à l'ordre n en a si, et seulement si, la fonction $t \mapsto$

^{1§}. C'est-à-dire, $f(x) - P(x) = o(x^n)$.

f(t+a) admet un développement limité à l'ordre n en 0. C'est-à-dire si, et seulement s'il existe un polynôme de degré n, P à coefficients réels tel que :

$$f(x) = P(x-a) + o((x-a)^n)$$

au voisinage de a.

Théorème 3.1.0.3. —

Si f admet un développement limité à l'ordre n en un point a, alors ce développement limité est unique.

DÉMONSTRATION 3.1.0.11. —

On peut supposer a = 0. Supposons que

$$f(x) = P_1(x) + x^n \varepsilon_1(x) = P_2(x) + x^n \varepsilon_2(x)$$

où $\lim_0 \varepsilon_i = 0$ pour $i \in \{1,2\}$. On a que

$$(P_1 - P_2)(x) = x^n(\varepsilon_1 - \varepsilon_2)(x)$$

et $(P_1 - P_2)(x)$ est de la forme $r_0 + r_1x + \ldots + r_nx^n$ avec $r_0, r_1, \ldots, r_n \in \mathbf{R}$. On montre par récurrence que les r_k sont tous nuls. Quand $x\to 0$ on trouve :

$$r_0 = 0$$

$$r_1x + \ldots + r_nx^n = x^n(\varepsilon_1 - \varepsilon_2)(x)$$

$$r_k x^k + \ldots + r_n x^n = x^n (\varepsilon_1 - \varepsilon_2)(x),$$

$$r_1x + \ldots + r_nx^n = x^n(\varepsilon_1 - \varepsilon_2)(x).$$
 Supposons que $r_0 = r_1 = r_{k-1} = 0, k > 0$. Alors
$$r_kx^k + \ldots + r_nx^n = x^n(\varepsilon_1 - \varepsilon_2)(x),$$

$$r_k + r_{k+1}x + \ldots + r_nx^{n-k} = x^{n-k}(\varepsilon_1 - \varepsilon_2)(x),$$

 $n-k \geq 0$ et donc $r_k = 0$ en passant à la limite.

Corollaire 3.1.0.1. —

Soit $f(x) = P(x) + x^n \varepsilon(x)$ le développement limité d'une fonction f à l'ordre n en 0. Alors:

- 1. si f est paire alors P est pair;
- 2. si f est impaire alors P est impaire.

DÉMONSTRATION 3.1.0.12. —

$$f(x) = P(x) + x^n \varepsilon(x),$$

$$f(-x) = P(-x) + x^n (-1)^n \varepsilon(-x) = P(-x) + x^n \varepsilon_1(x),$$
 Or comme $\varepsilon(x) \to 0$ quand $x \to 0$ alors $\varepsilon_1 \to 0$ aussi.

1. si f est impaire alors on a:

$$f(x) = -P(-x) - x^n \varepsilon_1(x)$$

et comme la première et cette expression sont des développements limits de f à l'ordre n en 0, par unicité on a -P(-x)=P(x), c'est-à-dire P impaire;

2. si f est paire, on a:

$$f(x) = P(-x) + x^n \varepsilon_1(x)$$

alors de même, l'unicité nous dit que P est alors paire.

Proposition 3.1.0.12. —

Soit $f: I \to \mathbf{R}$ une fonction continue en $a \in I$.

1. le développement limité de f en a à l'ordre 0 est

$$f(x) = f(a) + \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0;$$

2. la fonction f est dérivable en a si, et seulement si, elle possède un développement limité à l'ordre 1 en a, alors dans ce cas le développement limité est donné par :

$$f(x) = f(a) + f'(a)(x - a) + \varepsilon(x)(x - a), \lim_{x \to a} \varepsilon(x) = 0.$$

DÉMONSTRATION 3.1.0.13. —

Dans l'ordre:

- 1. On pose $\varepsilon(x) = f(x) f(a)$. Comme f est continue en 0, $\varepsilon(x)$ aussi et $\lim_{x\to a} \varepsilon(x) = 0$.
- 2. Supposons que f soit dérivable en a, c'est-à-dire :

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

On pose

$$\varepsilon(x) = \frac{f(x) - f(a)}{x - a} - f'(a).$$

On a bien $\lim_{x\to a} \varepsilon(x) = 0$ et

$$f(x) = f(a) + (x - a)f'(a) + (x - a)\varepsilon(x).$$

Réciproquement, supposons que f admette un développement limité :

$$f(x) = a_0 + (x - a)a_1 + (x - a)\varepsilon(x),$$

avec $\lim_{x\to a}\varepsilon(x)=0.$ Alors, par continuité $a_0=f(a)$ et

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} a_1 + \varepsilon(x) = a_1 = f'(a).$$

3.2. Développements limités et primitives

Théorème 3.2.0.4. —

Soit $f:I\to \mathbf{R}$ une application continue. Soit F une primitive de f. Soit $a\in I$ et supposons que f admette un développement limité en a à l'ordre n :

$$f(x) = a_0 + a_1(x - a) + \frac{a_2}{2}(x - a)^2 + \ldots + \frac{a_n}{n!}(x - a)^n + (x - a)^n \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0$$

$$f(x) = a_0 + a_1(x-a) + \frac{a_2}{2}(x-a)^2 + \ldots + \frac{a_n}{n!}(x-a)^n + (x-a)^n \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0.$$
 Alors F admet le développement limité suivant à l'ordre $n+1$ en a :
$$F(x) = F(a) + a_0(x-a) + \frac{a_1}{2}(x-a)^2 + \ldots + \frac{a_n}{(n+1)!}x^{n+1} + (x-a)^{n+1}\varepsilon_1(x), \lim_{x \to a} \varepsilon_1(x) = 0.$$

Démonstration 3.2.0.14. —

Soit

$$P(t) = \sum_{k=0}^{n} \frac{a_k}{k!} (t - a)^k.$$

Pour tout $x \neq a$:

$$\varepsilon(x) = \frac{f(x) - P(x)}{(x - a)^n}.$$

Par hypothèse, $\lim_{x\to a} \varepsilon(x) = 0$. En posant $\varepsilon(a) = 0$, on obtient que ε est continue sur I. Donc ε admet une primitive et dans l'identité

$$f(x) = a_0 + a_1(x - a) + \frac{a_2}{2}(x - a)^2 + \ldots + \frac{a_n}{n!}(x - a)^n + (x - a)^n \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0$$

tous les termes admettent des primitives. Donc

$$F(x) - F(a) = \int_{a}^{x} f(t) dt$$

$$F(x) - F(a) = \int_{a}^{x} \left(\sum_{k=0}^{n} \frac{a_{k}}{k!} (t - a)^{k} + (t - a)^{n} \varepsilon(t) \right) dt$$

$$F(x) - F(a) = \sum_{k=0}^{n} \frac{a_{k}}{(k+1)!} (x - a)^{k+1} + u(x),$$

$$u(x) = \int_{a}^{x} (t - a)^{n} \varepsilon(t) dt.$$

Par le théorème de Rolle :

$$u(x) = (x - a)(\theta - a)^n \varepsilon(\theta)$$

pour un θ compris entre a et x. Donc

$$|u(x)| = |x - a| |\theta - a|^n |\varepsilon(\theta)| \le |x - a|^{n+1} |\varepsilon(\theta)|$$

et $\varepsilon(\theta)$ tend vers 0 quand x tend vers a puisque θ est compris entre a et x. Donc :

$$F(x) = \sum_{k=0}^{n} \frac{a_k}{(k+1)!} (x-a)^{k+1} + (x-a)^{n+1} \varepsilon_1(x)$$

οù

$$\varepsilon_1(x) = \frac{u(x)}{(x-a)^{n+1}} \to 0.$$

Soit $f:I\to \mathbf{R}$ de classe $C^n,\ a\in I.$ Alors f admet pour développement limité à

$$f(x) + \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + (x-a)^n \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0.$$

Démonstration 3.2.0.15. —

Pour n=0,1 ça a été déjà vu. Supposons alors $n\geq 2$. Soit $f\in C^n$, posons g=f'avec $g \in C^{n-1}(I)$. Par récurrence :

$$g(x) = \sum_{k=0}^{n-1} \frac{g^{(k)}(a)}{k!} (x-a)^k + (x-a)^{n-1} \varepsilon(x), \lim_{x \to a} \varepsilon(x) = 0.$$

$$f \text{ est une primitive de } g:$$

$$f(x) = f(a) + \sum_{k=0}^{n-1} \frac{g^{(k)}(a)}{(k+1)!} (x-a)^{k+1} + (x-a)^n \varepsilon_1(x), \lim_{x \to a} \varepsilon_1(x) = 0$$

$$f(x) = f(a) + \sum_{k=0}^{n-1} \frac{f^{(k+1)}(a)}{(k+1)!} (x-a)^{k+1} + (x-a)^n \varepsilon_1(x)$$

$$f(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + (x-a)^n \varepsilon_1(x).$$

Exemple. — Soit:

$$f(x) = \begin{cases} \exp(-1/x^2), & \text{si } x > 0 \\ 0, & \text{si } x \le 0 \end{cases}$$

son développement limité en 0 d'ordre n est :

$$f(x) = x^n \varepsilon(x), \lim_{x \to 0} \varepsilon(x) = 0.$$

3.3. Développement limités usuels

Développements limités en 0 :

$$\exp(x) = \sum_{i=0}^{n} \frac{x^{i}}{i!} + x^{n} \varepsilon(x)$$

$$\operatorname{ch}(x) = \sum_{i=0}^{n} \frac{x^{2i}}{(2i)!} + x^{2n+1} \varepsilon(x)$$

$$\operatorname{sh}(x) = \sum_{i=0}^{n} \frac{x^{2i+1}}{(2i+1)!} + x^{2n+2} \varepsilon(x)$$

$$\operatorname{cos}(x) = \sum_{i=0}^{n} (-1)^{i} \frac{x^{2i}}{(2i)!} + x^{2n+1} \varepsilon(x)$$

$$\sin(x) = \sum_{i=0}^{n} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!} + x^{2n+2} \varepsilon(x)$$

$$\alpha \in \mathbf{R} : (1+x)^{\alpha} = 1 + \sum_{i=0}^{n} \frac{\alpha(\alpha-1) \dots (\alpha-i)}{(i+1)!} x^{i+1} + x^{n+1} \varepsilon(x)$$

$$\frac{1}{1-x} = \sum_{i=0}^{n} x^{i} + x^{n+1} \varepsilon(x)$$

$$\frac{1}{1+x} = \sum_{i=0}^{n} (-1)^{i} x^{i} + x^{n+1} \varepsilon(x)$$

$$\log(1-x) = -\sum_{i=1}^{n} \frac{x^{i}}{i!} + x^{n} \varepsilon(x)$$

$$\log(1+x) = \sum_{i=1}^{n} (-1)^{i+1} \frac{x^{i}}{i} x^{n} \varepsilon(x)$$

$$\operatorname{Arctan}(x) = \sum_{i=1}^{n} (-1)^{i+1} \frac{x^{2i-1}}{2i-1} + x^{2n} \varepsilon(x)$$

DÉMONSTRATION 3.3.0.16 (ch). —

$$ch(x) = \frac{e^{x} + e^{-x}}{2}$$

$$ch'(x) = \frac{e^{x} - e^{-x}}{2} (= sh(x))$$

$$ch''(x) = ch(x)$$

$$ch^{(2i)}(0) = 1$$

$$sh^{(2i)}(0) = 0$$

DÉMONSTRATION 3.3.0.17 (cos). —

$$\cos^{(k)}(x) = \cos(x + k\pi/2)$$
$$\cos^{(k)}(0) = \cos(k\pi/2)$$
$$\cos^{(2k)}(0) = (-1)^k$$
$$\cos^{(2k+1)}(0) = 0$$

DÉMONSTRATION 3.3.0.18 (sin). —

$$\sin^{(k)}(x) = \sin(x + k\pi/2)$$
$$\sin^{(2k)}(0) = 0$$
$$\sin^{(2k+1)}(0) = (-1)^k$$

Démonstration 3.3.0.19 $((1+x)^{\alpha} = f(x))$. —

Par récurrence :

$$f^{(k)}(x) = \alpha(\alpha - 1) \dots (\alpha - k + 1)(1 + x)^{\alpha - k}$$

$$f^{(k)}(0) = \alpha(\alpha - 1) \dots (\alpha - k + 1)$$

DÉMONSTRATION 3.3.0.20 (1/1 - x). —

$$\frac{1 - x^n}{1 - x} = 1 + x + x^2 + \dots + x^n$$
$$\frac{1}{1 - x} = 1 + x + \dots + x^n + x^n \cdot \frac{x}{1 - x}$$

DÉMONSTRATION 3.3.0.21 $(\log(1-x))$.

Utiliser le théorème sur le développement limité d'une primitive avec le développement limité de 1/1-x.

DÉMONSTRATION 3.3.0.22 (Arctan(x)). —

Arctan'(x) =
$$\frac{1}{1+x^2}$$

$$\frac{1}{1+x^2} = \sum_{i=1}^{n} (-1)^i x^{2i} + x^{2n} \varepsilon(x)$$

et on conclut avec le théorème du développement limité d'une primitive.

Remarque. — On a vu que si

$$f(x) = \begin{cases} \exp(-1/x^2), & \text{si } x > 0 \\ 0, & \text{si } x \le 0 \end{cases}$$

alors le développement limité de f(x) en 0 à l'ordre n est

$$f(x) = x^n \varepsilon(x).$$

Or le développement limité de 0 en 0 à l'ordre n est identique.

Exemple. — Soit:

$$f \colon \begin{cases} \mathbf{R} \to \mathbf{R} \\ x \mapsto \begin{cases} 0 \text{ si } x = 0 \\ x^3 \sin(1/x) \text{ si } x \neq 0 \end{cases}$$

La fonction f est continue en 0.

On regarde le développement limité à l'ordre 2 en 0 :

$$f(x) = x^2 \varepsilon(x), \ \varepsilon(x) = \begin{cases} 0 \text{ si } x = 0 \\ x \sin(1/x) \text{ sinon} \end{cases}, \lim_{x \to 0} \varepsilon(x)0.$$

Donc le développement limité de f(x) en 0 à l'ordre 2 est :

$$f(x) = x^2 \varepsilon(x).$$

Dérivabilité de f en 0 (puisqu'elle est lisse sur \mathbf{R}^*) :

$$\frac{f(x) - f(0)}{x - 0} = x^2 \sin(1/x) \underset{x \to 0}{\longrightarrow} 0$$

donc f est dérivable et f'(0) = 0.

$$\frac{f'(x) - f'(0)}{x - 0} = \frac{3x^2 \sin(1/x) - x \cos(1/x)}{x} = 3x \sin(1/x) - \cos(1/x)$$

donc f n'est pas dérivable à l'ordre 2 en 0 (même si elle a un développement limité à l'ordre 2).

3.4. Règles de calcul des développements limités

Proposition 3.4.0.13. —

Soit f, g ayant des développements limités à l'ordre n en 0:

$$f(x) = P(x) + x^n \varepsilon(x), \ g(x) = Q(x) + x^n \varepsilon(x)$$

 $\jmath\left(x\right)=F(x)+x^{n}\varepsilon(x),\;g(x)=Q(x)+x^{n}\varepsilon(x)$ avec P,Q des polynômes de degré au plus n et $\lim_{x\to 0}\varepsilon(x)=0$ (non forcément identiques). Alors

1. le développement limité à l'ordre n en 0 de f+g est

$$(f+g)(x) = (P+Q)(x) + x^n \varepsilon(x);$$

2. pour tout $\lambda \in \mathbf{R}$, le développement λf à l'ordre n en 0 est :

$$(\lambda f)(x) = \lambda P(x) + x^n \varepsilon(x).$$

Démonstration 3.4.0.23. —

Écrivons $f(x) = P(x) + x^n \varepsilon_f(x)$ et $g(x) = Q(x) + x^n \varepsilon_g(x)$.

- 1. $(f+g)(x) = P(x) + Q(x) + x^n(\varepsilon_f + \varepsilon_g)(x)$ et on note $\varepsilon = \varepsilon_f + \varepsilon_g$ qui tend bien en 0.
- 2. De même.

Proposition 3.4.0.14. —

Soit f qui admet le développement limité en 0 à l'ordre n:

$$f(x) = P(x) + x^n \varepsilon(x), \lim_{x \to 0} \varepsilon(x) = 0.$$

Alors pour tout $p\in\{0,\dots,n\},\ f$ admet le développement limité en 0 à l'ordre p : $f(x)=T_p(P)(x)+x^p\varepsilon(x)$

$$f(x) = T_p(P)(x) + x^p \varepsilon(x)$$

avec $T_p(P)$ le polynôme tronqué de P :

$$T_p(P) = \sum_{k=0}^{p} a_k x^k, \ P = \sum_{k=0}^{n} a_k x^k.$$

Démonstration 3.4.0.24. —

$$f(x) = T_p(P)(x) + x^p \left(\sum_{k=p+1}^n a_k x^{k-p} + x^{n-p} \varepsilon(x) \right).$$

$$\varepsilon_1(x) = \sum_{k=p+1}^n a_k x^{k-p} + x^{n-p} \varepsilon(x).$$

On a bien $\varepsilon_1(x) \to 0$ quand $x \to 0$

Proposition 3.4.0.15. —

Soient f, g admettant les développements limités :

$$f(x) = P(x) + x^n \varepsilon_1(x), \ g(x) = Q(x) + x^n \varepsilon_2(x).$$

Alors fg admet le développement limité à l'ordre n en 0 suivant : $(fg)(x) = T_n(PQ)(x) + x^n \varepsilon(x).$

$$(fg)(x) = T_n(PQ)(x) + x^n \varepsilon(x).$$

Remarque. — Si f, g admettent les développements limités à l'ordre n en a:

$$f(x) = P(x-a) + (x-a)^n \varepsilon_1(x), \ g(x) = Q(x-a) + (x-a)^n \varepsilon_2(x)$$

alors le développement limité:

$$(fg)(x) = T_n(PQ)(x-a)^{(2\S)} + (x-a)^n \varepsilon(x).$$

DÉMONSTRATION 3.4.0.25. —

$$(fg)(x) = (PQ)(x) + x^{n}(Q\varepsilon_{1}(x) + P\varepsilon_{2}(x))$$

$$PQ(x) = T_{n}(PQ)(x) + x^{n+1}R(x), R \in \mathbf{R}[x]$$

$$(fg)(x) = T_{n}(PQ)(x) + x^{n}(xR(x) + Q\varepsilon_{1}(x) + P\varepsilon_{2}(x))$$

On pose:

$$\varepsilon(x) = xR(x) + Q\varepsilon_1(x) + P\varepsilon_2(x)$$

$$\lim_{x \to 0} xR(x) = 0$$

$$\lim_{x \to 0} Q\varepsilon_1(x) = 0$$

$$\lim_{x \to 0} P\varepsilon_2(x) = 0$$

$$\lim_{x \to 0} \varepsilon(x) = 0$$

Exemple. — On veut le développement limité de :

$$Arctan(x-1) \exp(x)$$

en 1 d'ordre 3.

$$Arctan(y) = y - \frac{y^3}{3} + y^3 \varepsilon(y)$$

$$Arctan(x-1) = (x-1) - \frac{(x-1)^3}{3} + (x-1)^3 \varepsilon(x)$$

$$\exp(x) = \exp(x-1+1) = e \exp(x-1)$$

$$\exp(x) = e \left(1 + (x-1) + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} + (x-1)^3 \varepsilon(x)\right)$$

Et donc

$$f(x) = e\left((x-1) - \frac{(x-1)^3}{3} + (x-1)^3 \varepsilon(x)\right) \times \left(1 + (x-1) + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} + (x-1)^3 \varepsilon(x)\right)$$
$$f(x) = e\left((x-1) + (x-1)^2 + \frac{(x-1)^3}{2} - \frac{(x-1)^3}{3}\right) + (x-1)^3 \varepsilon(x)$$

^{2§.} On tronque avant d'évaluer en x - a.