Big Data Analytics

Introduction

Souhaib Ben Taieb

January 31, 2021

University of Mons

Table of contents

About the course

The supervised learning problem

The perceptron learning mode

Contact details

- Prof. Souhaib BEN TAIEB
- De Vinci building, second floor, room 2.15
- Email: souhaib.bentaieb@umons.ac.be

Prerequisites

- Probability and statistics
- Linear algebra
- Optimization (linear and non-linear)
- Multivariate calculus
- Machine learning (US-B3-SCINFO-019-M)

Communication

Website

- https://github.com/bsouhaib/BDA21
- Lecture notes

Moodle

- https://moodle.umons.ac.be/course/view.php?id=2786
- Forum for asking questions, etc.
- Assignment submissions
- No email please use the Moodle forum

Key reference

Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin (2012) Learning from Data. AMLBook.

https://work.caltech.edu/telecourse.html

Assessment

- Final exam (Open book): 60%
 - \bullet To pass, your exam mark must be $\geq 50\%$
- One project (group of 2 students): **20%**
- Four assignments (group of 2 students): 20% (5% each)

Task	Due Date	Value
Final exam	Official exam period	60%
Project	TBA	20%
Assignments 1–4	TBA	20%

Main topics

- Theory of learning
- Linear models (classification and regression)
- (Stochastic) Gradient descent
- (Deep) Neural networks and backpropagation
- (?) Support Vector Machines
- (?) Recommender systems, text mining, ...

Programming languages

Table of contents

About the course

The supervised learning problem

The perceptron learning mode

Components of learning

Components of learning

Metaphor: Credit approval

Applicant information:

age	23 years	
gender	male	
annual salary	\$30,000	
years in residence	1 year	
years in job	1 year	
current debt	\$15,000	
• • •		

Approve credit?

© Teator: Yaser Abu-Mostafa - LFD Lecture 1

6/19

Components of learning

Components of learning

Formalization:

- Input: **x** (customer application)
- Output: *y* (good/bad customer?)
- ullet Target function: $f:\mathcal{X} o\mathcal{Y}$ (ideal credit approval formula)
- ullet Data: $(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$ (historical records)
 - \downarrow \downarrow \downarrow
- ullet Hypothesis: $g:\mathcal{X}
 ightarrow \mathcal{Y}$ (formula to be used)

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 1

7/10

Note: $\mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}$.

The learning process

The learning algorithm \mathcal{A} picks $g \approx f$ from a hypothesis set \mathcal{H} using the training examples (data).

The learning model

Solution components

The 2 solution components of the learning problem:

 \bullet The Hypothesis Set

$$\mathcal{H} = \{h\}$$
 $g \in \mathcal{H}$

• The Learning Algorithm

Together, they are referred to as the *learning* model.

(c) FIT Creator: Yaser Abu-Mostafa - LFD Lecture 1

9/19

Table of contents

About the course

The supervised learning problem

The perceptron learning model

The perceptron learning model

Let $\mathcal{X}=\mathbb{R}^d$ bet the input space, and let $\mathcal{Y}=\{+1,-1\}$ be the output space, denoting a binary (yes/no) decision.

To specify the perceptron learning model, we need to define:

- 1. The perceptron hypothesis set
- 2. The perceptron learning algorithm

For $s \in \mathbb{R}$, we define the sign function as

$$\operatorname{sign}(s) = egin{cases} -1 & \text{if } s < 0, \\ 0 & \text{if } s = 0, \\ 1 & \text{if } s > 0. \end{cases}$$

The perceptron hypothesis set

A simple hypothesis set - the 'perceptron'

For input $\mathbf{x}=(x_1,\cdots,x_d)$ 'attributes of a customer'

Approve credit if
$$\sum_{i=1}^d w_i x_i > \text{threshold},$$

Deny credit if
$$\sum_{i=1}^d w_i x_i < \text{threshold}.$$

This linear formula $h \in \mathcal{H}$ can be written as

$$m{h}(\mathbf{x}) = ext{sign}igg(igg(\sum_{i=1}^d m{w}_i x_iigg) - ext{threshold}igg)$$

(C) (F) Greator: Yaser Abu-Mostafa - LFD Lecture 1

10/19

Note: for the moment, sign(0) is ignored (technicality).

The perceptron hypothesis set

$$h(\mathbf{x}) = \operatorname{sign}\!\left(\left(\sum_{i=1}^d w_i \ x_i\right) + w_0
ight)$$

Introduce an artificial coordinate $x_0 = 1$:

$$h(\mathbf{x}) = \operatorname{sign}\!\left(\sum_{i=0}^d \mathbf{w}_i \; x_i\right)$$

In vector form, the perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

'linearly separable' data

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 1

11/19

The L_2 norm of $\mathbf{z} = (z_0, z_1, \dots, z_d)^T$ is given by

$$\|\mathbf{z}\|_2 = \sqrt{\sum_{i=0}^d z_i^2}.$$

The dot product of two vectors \mathbf{w} and \mathbf{x} is defined by

$$\boldsymbol{w} \cdot \boldsymbol{x} = \boldsymbol{w}^T \boldsymbol{x} = \|\boldsymbol{w}\|_2 \|\boldsymbol{x}\|_2 \cos(\theta),$$

where $\|\cdot\|_2$ is the L₂ norm, θ is the angle between \boldsymbol{w} and \boldsymbol{x} .

- If the angle between w and x are less than 90 degrees, the dot product will be positive, as $cos(\theta)$ will be positive.
- If the angle between w and x are greater than 90 degrees, the dot product will be negative, as $\cos(\theta)$ will be negative.
- If w and x are perpendicular (at 90 degrees to each other), the result of the dot product will be zero, because $cos(\theta)$ will be zero.

The perceptron learning algorithm

A simple learning algorithm - PLA

The perceptron implements

$$h(\mathbf{x}) = \mathrm{sign}(\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{x})$$

Given the training set:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)$$

pick a misclassified point:

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

and update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

© @ Creator: Yaser Abu-Mostafa - LFD Lecture 1

12/19

The perceptron learning algorithm

Iterations of PLA

• One iteration of the PLA:

$$\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$$

where (\mathbf{x}, y) is a misclassified training point.

ullet At iteration $t=1,2,3,\cdots$, pick a misclassified point from $(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$ and run a PLA iteration on it.

That's it!

(C) FM Creator: Yaser Abu-Mostafa - LFD Lecture 1

13/19

→ PLA is guaranteed to converge if data is **linearly separable**.

The perceptron learning algorithm

```
Data: \{(\mathbf{x}_n, y_n)\}_{n=1}^N initialise weights at t=0 to \mathbf{w}(0); for t=0,1,2,\ldots do

select a misclassified point (\mathbf{x}_n, y_n); update the weights: \mathbf{w}(t+1) = \mathbf{w}(t) + y_n \mathbf{x}_n; iterate to the next step until all points are well classified; end

Return the final weights \mathbf{w}(t+1).
```

Exercise I

Problem 1.2 Consider the perceptron in two dimensions: $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$ where $\mathbf{w} = [w_0, w_1, w_2]^{\mathsf{T}}$ and $\mathbf{x} = [1, x_1, x_2]^{\mathsf{T}}$. Technically, \mathbf{x} has three coordinates, but we call this perceptron two-dimensional because the first coordinate is fixed at 1.

- (a) Show that the regions on the plane where $h(\mathbf{x}) = +1$ and $h(\mathbf{x}) = -1$ are separated by a line. If we express this line by the equation $x_2 = ax_1 + b$, what are the slope a and intercept b in terms of w_0, w_1, w_2 ?
- (b) Draw a picture for the cases $\mathbf{w} = [1,2,3]^{\mathrm{T}}$ and $\mathbf{w} = -[1,2,3]^{\mathrm{T}}$.

In more than two dimensions, the +1 and -1 regions are separated by a *hy perplane*, the generalization of a line.

(Source: Abu-Mostafa et al. Learning from data. AMLbook)

Solution to Exercise I

- (a) We have $\mathbf{w}^T \mathbf{x} > 0$ if $h(\mathbf{x}) = +1$, and $\mathbf{w}^T \mathbf{x} < 0$ if $h(\mathbf{x}) = -1$. These two regions are separated by the line $\mathbf{w}^T \mathbf{x} = 0$. This can also be written as $w_0 + w_1 x_1 + w_2 x_2 = 0$. In other words, $a = -\frac{w_1}{w_2}$ and $b = -\frac{w_0}{w_2}$.
- (a) See board.

Exercise II

Consider the following dataset

$$\mathbf{x}_1 = (3,1), \mathbf{x}_2 = (1,-3), \mathbf{x}_3 = (-1,3), \mathbf{x}_4 = (2.5,-1)$$
 and $y_1 = 1, y_2 = -1, y_3 = 1, y_4 = 1.$

- 1. Plot the data set in $[-1,3] \times [-3,3]$
- 2. Is the data linearly separable?
- 3. Run the perceptron algorithm with $\mathbf{w}(0) = (-3, 1, 1)^T$.

Solution to Exercise II

See board.

Exercise III

The weight update rule, at time step t + 1,

$$\boldsymbol{w}(t+1) \leftarrow \boldsymbol{w}(t) + y(t)\boldsymbol{x}(t),$$

has the nice interpretation that it moves in the direction of classifying $\mathbf{x}(t)$ correctly.

- 1. Show that $y(t)\mathbf{w}^T(t)\mathbf{x}(t) < 0$.
 - [Hint: x(t) is misclassified by w(t)]
- 2. Show that $y(t)\mathbf{w}^T(t+1)\mathbf{x}(t) > y(t)\mathbf{w}^T(t)\mathbf{x}(t)$.

[Hint: Use the update rule].

Solution for Exercise III

1. Let $s(t) = \mathbf{w}^T(t)\mathbf{x}(t)$. If $\mathbf{x}(t)$ is misclassified by $\mathbf{w}(t)$, then we have $\operatorname{sign}(s(t)) = +1$ and y(t) = -1, or $\operatorname{sign}(s(t)) = -1$ and y(t) = +1. In other words, we have

$$y(t)s(t) < 0 \equiv y(t)\boldsymbol{w}^{T}(t)\boldsymbol{x}(t) < 0.$$

2. We have

$$y(t)\mathbf{w}^{T}(t+1)\mathbf{x}(t) = y(t)[\mathbf{w}^{T}(t) + y(t)\mathbf{x}^{T}(t)]\mathbf{x}(t)$$
(1)

$$= y(t)\mathbf{w}^{T}(t)\mathbf{x}(t) + [y(t)]^{2}\mathbf{x}^{T}(t)\mathbf{x}(t)$$
 (2)

$$> y(t) \boldsymbol{w}^{T}(t) \boldsymbol{x}(t),$$
 (3)

since $[y(t)]^2 > 0$ and $x^T(t)x(t) > 0$ (since $x_0(t) = 1$).