Data Mining - Lab - 2

Jeet Bhalodi 23031701006

Numpy & Perform Data Exploration with Pandas

Numpy

- 1. NumPy (Numerical Python) is a powerful open-source library in Python used for numerical and scientific computing.
- 2. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on them efficiently.
- 3. NumPy is highly optimized and written in C, making it much faster than using regular Python lists for numerical operations.
- 4. It serves as the foundation for many other Python libraries in data science and machine learning, like pandas, TensorFlow, and scikit-learn.
- 5. With features like broadcasting, vectorization, and integration with C/C++ code, NumPy allows for cleaner and faster code in numerical computations.

Step 1. Import the Numpy library

```
In [8]: import numpy as np
```

Step 2. Create a 1D array of numbers

```
In [12]: arr1 = np.arange(10)
arr1

Out[12]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [15]: arr2 = np.arange(10,20)
arr2

Out[15]: array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

In [21]: arr3 = np.array([1,3,5,7,9])
arr3
```

```
Out[21]: array([1, 3, 5, 7, 9])
```

Step 3. Reshape 1D to 2D Array

Step 4. Create a Linspace array

```
In [57]: arr = np.linspace(0,10,5)
arr
Out[57]: array([ 0. ,  2.5,  5. ,  7.5,  10. ])
```

Step 5. Create a Random Numbered Array

Step 6. Create a Random Integer Array

```
In [101... arr = np.random.randint(1, 100)
arr

Out[101... 84

In [103... arr = np.random.randint(1, 100, size=6)
arr

Out[103... array([34, 64, 8, 40, 22, 40])

In [105... arr = np.random.randint(1, 100, (5,6))
arr
```

Step 7. Create a 1D Array and get Max, Min, ArgMax, ArgMin

```
In [133...
          a = np.random.randint(1, 100,5)
Out[133...
           array([87, 9, 42, 73, 53])
          max_value = np.max(a)
In [135...
          max_value
Out[135...
           87
In [137...
          min_value = np.min(a)
          min_value
Out[137...
In [139...
          index_max = np.argmax(a)
           index_max
Out[139...
In [141...
          index_min = np.argmin(arr)
           index_min
Out[141...
```

Step 8. Indexing in 1D Array

Step 9. Indexing in 2D Array

```
In [173... arr = np.random.randint(1, 100,(3,3))
    print(arr)

    [[84 88 19]
    [39 83 3]
    [12 70 15]]

In [175... print(arr[1])
    [39 83 3]

In [177... print(arr[0][2])
    19

In [179... print(arr[-1][-1])
    15
```

Step 10. Conditional Selection

You did it! 10 exercises down — you're on fire!

Pandas

Step 1. Import the necessary libraries

```
In [218... import pandas as pd
```

Step 2. Import the dataset from this address.

```
In [225...
user = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/data/
user
```

Out[225...

	user_id	age	gender	occupation	zip_code
0	1	24	М	technician	85711
1	2	53	F	other	94043
2	3	23	М	writer	32067
3	4	24	М	technician	43537
4	5	33	F	other	15213
•••					
938	939	26	F	student	33319
939	940	32	М	administrator	02215
940	941	20	М	student	97229
941	942	48	F	librarian	78209
942	943	22	М	student	77841

943 rows × 5 columns

Step 3. Assign it to a variable called users and use the 'user_id' as index

In [231...

users = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/data
users

Out[231...

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
•••		•••		
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	М	student	77841

943 rows × 4 columns

Step 4. See the first 25 entries

In [233...

users.head(25)

Out[233...

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
6	42	М	executive	98101
7	57	М	administrator	91344
8	36	М	administrator	05201
9	29	М	student	01002
10	53	М	lawyer	90703
11	39	F	other	30329
12	28	F	other	06405
13	47	М	educator	29206
14	45	М	scientist	55106
15	49	F	educator	97301
16	21	М	entertainment	10309
17	30	М	programmer	06355
18	35	F	other	37212
19	40	М	librarian	02138
20	42	F	homemaker	95660
21	26	М	writer	30068
22	25	М	writer	40206
23	30	F	artist	48197
24	21	F	artist	94533
25	39	М	engineer	55107

Step 5. See the last 10 entries

In [237... users.tail(10)

943

22

Out[237		age	gender	occupation	zip_code
	user_id				
	934	61	М	engineer	22902
	935	42	М	doctor	66221
	936	24	М	other	32789
	937	48	М	educator	98072
	938	38	F	technician	55038
	939	26	F	student	33319
	940	32	М	administrator	02215
	941	20	М	student	97229
	942	48	F	librarian	78209

Step 6. What is the number of observations in the dataset?

77841

student

```
In [247... users.shape[0]
Out[247... 943
```

Step 7. What is the number of columns in the dataset?

```
In [249... users.shape[1]
Out[249... 4
```

Step 8. Print the name of all the columns.

```
In [263... users.columns
Out[263... Index(['age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

Step 9. How is the dataset indexed?

Step 10. What is the data type of each column?

Step 11. Print only the occupation column

```
In [270...
          users['occupation']
           user_id
Out[270...
           1
                     technician
           2
                           other
                         writer
           4
                     technician
                           other
           939
                         student
           940
                  administrator
           941
                         student
           942
                      librarian
           943
                         student
           Name: occupation, Length: 943, dtype: object
```

Step 12. How many different occupations are in this dataset?

Step 13. What is the most frequent occupation?

Step 14. Summarize the DataFrame.

In [280... users.describe() Out[280... age count 943.000000 mean 34.051962 12.192740 std min 7.000000 25% 25.000000 **50%** 31.000000 **75%** 43.000000 max 73.000000

Step 15. Summarize all the columns

In [306... users.describe(include="all")

Out[306...

	age	gender	occupation	zip_code
count	943.000000	943	943	943
unique	NaN	2	21	795
top	NaN	М	student	55414
freq	NaN	670	196	9
mean	34.051962	NaN	NaN	NaN
std	12.192740	NaN	NaN	NaN
min	7.000000	NaN	NaN	NaN
25%	25.000000	NaN	NaN	NaN
50%	31.000000	NaN	NaN	NaN
75%	43.000000	NaN	NaN	NaN
max	73.000000	NaN	NaN	NaN

Step 16. Summarize only the occupation column

In [315... users['occupation'].describe()

```
Out[315... count 943
unique 21
top student
freq 196
Name: occupation, dtype: object
```

Step 17. What is the mean age of users?

```
In [296... users.age.mean()
Out[296... 34.05196182396607
```

Step 18. What is the age with least occurrence?

You're not just learning, you're mastering it. Keep aiming higher! \mathscr{A}