信号传输

正弦激励稳态响应: $e(t)=A\sin\omega_0t\Rightarrow r_{ss}(t)=AH_0\sin(\omega_0t+\varphi_0)$, 其中 $H_0e^{j\varphi_0}=H(s)|_{s=j\omega_0}=H(j\omega_0)$

系统把 $E(j\omega)$ 改造为 $H(j\omega)E(j\omega)$

无失真传输条件: (响应与激励形状相同,幅度可改变,延时可增加,即 $r(t)=Ke(t-t_0)$) 可得系统传递函数为 $H(j\omega)=Ke^{-j\omega t_0}$

群时延: $au(\omega) = -rac{darphi(\omega)}{d\omega}$ 为常数时无失真,易测量

当幅频响应和群延时都为常数时系统无失真,且延时为au

利用失真形成特定波形:令系统传递函数为 $H(j\omega)=R(j\omega)e^{-j\omega t}$,那么输入 $\delta(\omega)$ 时,输出响应即为 $r(t-t_0)$ 。。。。。。。。。。。。。。。。。。。。。。。。。。。。

理想低通滤波器: $H(j\omega)=|H(j\omega)|e^{j\varphi(\omega)}$,其中 $|H(j\omega)|$ 在 $|\omega|<\omega_c$ 为1, $\varphi(\omega)=-\omega t_0$,可以无失真传送 $[-\omega_c,\omega_c]$ 之间的信号,其冲激响应为 $\mathcal{F}^{-1}\{H(j\omega)\}=\frac{\omega_c}{\pi}Sa[\omega_c(t-t_0)]$

理想低通滤波器的阶跃响应: $G(j\omega)=H(j\omega)\cdot\mathcal{F}\{u(t)\}=H(j\omega)\cdot(\pi\delta(\omega)+\frac{1}{j\omega})$, 由此可以计算得 $g(t)=\mathcal{F}^{-1}\{G(j\omega)\}=\frac{1}{2}+\frac{1}{\pi}\int_0^{\omega_c(t-t_0)}Sa(x)dx=\frac{1}{2}+\frac{1}{\pi}Si[\omega_c(t-t_0)]$, $Si(y)=\int_0^ySa(x)dx$ 为正弦积分。响应有最小值到最大值所需时间为上升时间 $t_r=2\frac{\pi}{\omega_c}=\frac{1}{B}$, $B=\frac{\omega_c}{2\pi}$ 为系统带宽或者单边带宽。(带宽越宽,高频损失越少,上升时间越短)

理想低通滤波器对矩形脉冲的响应:为两个阶跃响应的叠加,当 $au >> rac{\pi}{\omega_c}$ 时,波形几乎无失真

吉布斯现象: 带宽增加, 峰向着跳变点靠近, 峰起值趋近跳变值的9%

时域加窗:对无限长信号时域加窗后计算傅里叶变换,结果更准确

系统的物理可实现性:

- 必须是因果的, 即h(t) = 0当t < 0
- 频域角度: 幅度函数 $|H(j\omega)|$ 满足平方可积,即 $\int_{-\infty}^{\infty}|H(j\omega)|^2d\omega=\int_{-\infty}^{\infty}|h(t)|^2<\infty$
- 佩利-维纳准则(必要条件): $\int_{-\infty}^{\infty} \frac{|\ln|H(j\omega)||}{1+\omega^2} d\omega < \infty$ (意味着: ① $|H(j\omega)|$ 不能在任意 ω 的连续区间上等于零;② $\omega \to \infty$ 时 $|H(j\omega)|$ 的衰减速度有一定限制,不能超过 $e^{-\omega^2}$ 级别)(实际上只有多项式类型的函数和双曲函数满足该准则)

 $(\mathcal{F}\{sgn(t)\}=rac{2}{j\omega})$ 用希尔伯特变换研究系统函数约束特性: 对于因果系统 h(t)=h(t)u(t)=h(t)sgn(t),如果其稳定,则存在傅里叶变换 $H(j\omega)=\mathcal{F}\{h(t)\}=R(\omega)+jX(\omega)$,而由卷积定理 $H(j\omega)=rac{1}{2\pi}H(j\omega)*\mathcal{F}\{sgn(t)\}$,故而 $R(\omega)+jX(\omega)=rac{1}{2\pi}\{[R(\omega)+jX(\omega)]*rac{2}{j\omega}\}=-rac{j}{\pi}\int_{-\infty}^{\infty}rac{R(\lambda)}{\omega-\lambda}d\lambda+rac{1}{\pi}\int_{-\infty}^{\infty}rac{X(\lambda)}{\omega-\lambda}d\lambda$,两侧实 部和虚部相等,得 $R(\omega)=rac{1}{\pi}\int_{-\infty}^{\infty}rac{X(\lambda)}{\omega-\lambda}d\lambda$, $X(\omega)=-rac{1}{\pi}\int_{-\infty}^{\infty}rac{R(\lambda)}{\omega-\lambda}d\lambda$

希尔伯特变换与逆变换:
$$\mathcal{H}\{f(x)\}=\hat{f}(x)=rac{1}{\pi}\int_{-\infty}^{\infty}rac{f(y)}{x-y}dy$$
, $\mathcal{H}^{-1}\{\hat{f}(x)\}=f(x)=-rac{1}{\pi}\int_{-\infty}^{\infty}rac{\hat{f}(x)}{x-y}dy$

实际上
$$\mathcal{H}\{f(x)\}=f(x)*rac{1}{\pi x}$$
, $\mathcal{H}^{-1}\{\hat{f}(x)\}=\hat{f}(x)*(-rac{1}{\pi x})$ (可证明 $\mathcal{F}\{rac{1}{\pi x}*(-rac{1}{\pi x})\}=\mathcal{F}\{\delta(x)\}=1$)

为什么要调制和解调:①大气对音频衰减严重,需要将音频调到更高频带;②为降低天线尺寸过大带来的成本,提高工作频段;③方便多路复用;④由于零点漂移问题,直流放大器难以实现

抑制载波调幅(SC-AM): 传播信号
$$f(t)=g(t)\cos{(\omega_0 t)}$$
,此时 $F(\omega)=\frac{1}{2}[G(\omega+\omega_0)+G(\omega-\omega_0)]$ 。解调时 $g_0(t)=f(t)\cos{(\omega_0 t)}$,那么 $G_0(\omega)=\frac{1}{2}G(\omega)+\frac{1}{4}[G(\omega+2\omega_0)+G(\omega-2\omega_0)]$,再经由低通滤波器,可以得到原信号 $g(t)$ ($g_0(t)=g(t)\cos^2(\omega_0 t)=g(t)[\frac{1}{2}+\frac{1}{2}\cos{(2\omega_0 t)}]$) (卫星通信)

调幅(AM): SC-AM不发送载波,同步解调需要本地载波,为省去接收端的本地载波,简化接收机,在发端假如直流分量再调幅, $f(t)=[A+g(t)]\cos{(\omega_0t)}=A[1+kg(t)]\cos{(\omega_0t)}$,其中k=1/A为调制深度。解调时,AM的包络体现调制信号(可以同步解调也可以包络检波解调)(广播收音机)

单边带(SSB): 为节省频带,只发送频率偏高的两个半边带

残留边带(VSB): 让边带滤波器在 ω_0 附近渐变,使得恢复时还是形成原信号,要求边带滤波器在 ω_0 左右斜对称,频率特性有 $H(\omega_0+\Delta\omega)+H(\omega_0-\Delta\omega)=const$,称为斜切、互补对称滤波(滤波器更容易实现)

调频(FM): 用调制信号控制载波的频率 $f(t)=A\cos\left[\omega_c t+\int_{-\infty}^t g(\tau)d\tau\right]$,解调时对信号进行求导,可以得到包络

调相(PM):用调制信号控制载波的相位 $f(t) = A\cos\left[\omega_c t + g(t)
ight]$

频分复用(FDM)

从抽样信号恢复连续时间信号

冲激抽样: 利用 $\delta_T(t)$ 和f(t)相乘得到抽样信号 $f_s(t)$,有 $f_s(t)=\sum_{n=-\infty}^{\infty}f(nT_s)\delta(t-nT_s)$,那么其频域为

$$F_s(\omega) = rac{1}{2\pi}F(\omega)*\mathcal{F}\{\delta_T(t)\} = rac{1}{2\pi}F(\omega)*\left[\omega_s\sum_{n=-\infty}^\infty\delta(\omega-n\omega_s)
ight] = rac{1}{T_s}\sum_{n=-\infty}^\infty F(\omega-n\omega_s)$$

。恢复时,将其通过理想低通滤波器即可,此时要保证低通滤波的范围 ω_c 需要在一定范围内

零阶抽样保持:相当于在冲激抽样后,再通过一个单位冲激响应为矩形脉冲的系统($h_0(t)=u(t)-u(t-T_s),\ H_0(\omega)=T_sSa(\frac{\omega T_s}{2})e^{-j\frac{\omega T_s}{2}})\ ,\ \text{采样信号频域为}$ $F_{s0}(\omega)=F_s(\omega)H_0(\omega)=\sum_{n=-\infty}^{\infty}F(\omega-n\omega_s)Sa(\frac{\omega T_s}{2})e^{-j\frac{\omega T_s}{2}}\text{。由于采样信号相对于冲激采样进行}$ 了加权,所以要消除加权并通过低通,可以采用 $H_{0r}(j\omega)=\frac{e^{j\frac{\omega T_s}{2}}}{Sa(\frac{\omega T_s}{2})}\ (|\omega|\leq\frac{\omega_s}{2})$

一阶抽样保持:相当于先经过冲激抽样,再经过单位冲激响应为 $h_1(t)=1-\frac{|t|}{T_s}$ $(|t|< T_s)$ 的系统, $H_1(\omega)=T_sSa^2(\frac{\omega T_s}{2})$ 。抽样信号的频域为 $F_{s1}(\omega)=\sum\limits_{n=-\infty}^{\infty}F(\omega-n\omega_s)Sa^2(\frac{\omega T_s}{2})$ 。为了恢复原信号,也和零阶抽样保持类似,通过 $H_{1r}(j\omega)=\frac{1}{Sa^2(\frac{\omega T_s}{2})}$ $(|\omega|\leq \frac{\omega_s}{2})$ 的系统。

信号矢量空间

实函数范数||x||:

- 对于任意的x, 有 $||x|| \ge 0$, 当且仅当x = 0, 有||x|| = 0
- 对于任意正标量a,有||ax|| = a||x||
- $||x+y|| \le ||x|| + ||y||$

$$l_p$$
范数: $||x||_p = \left[\sum\limits_{n=1}^N |x_n|^p
ight]^{rac{1}{p}}$,则 $||x||_0 = \sum\limits_{n=1}^N |sgn(x_n)|$, $||x||_\infty = \max\limits_{1 \leq x \leq N} |x_n|$

内积:

- < x, y > = < y, x > *
- < ax, y >= a < x, y >
- < x + y, z > = < x, z > + < y, z >
- $\langle x, x \rangle = 0$ 当且仅当x = 0,否则 $\langle x, x \rangle > 0$

欧几里德内积: ①离散< $x,y>=\sum x_iy_i=x^Ty$; ②连续< $x(t),y(t)>=\int_{-\infty}^\infty x(t)y(t)dt$ 内积空间的范数(诱导范数): $||x(t)||_2^2=< x(t),x(t)>=\int_{-\infty}^\infty |x(t)|^2dt$ 柯西-施瓦茨不等式: $|< x,y>|^2 \le < x,x>< y,y>$

正交函数分解:

为了使
$$arepsilon=\int_{t_1}^{t_2}[f_1(t)-c_{12}f_2(t)]^2dt$$
最小,可以解得 $c_{12}^*=rac{\int_{t_1}^{t_2}f_1(t)f_2(t)dt}{\int_{t_1}^{t_2}f_2(t)^2dt}=rac{\langle f_1(t),f_2(t)
angle}{\langle f_2(t),f_2(t)
angle},$ 即 $f_1(t)pproxrac{\langle f_1(t),f_2(t)
angle}{\langle f_2(t),f_2(t)
angle}f_2(t)$

如果 $< f_1(t), f_2(t) >= 0$, 则二者正交

正交函数集: $\{g_r(t)\}_{r=1,2...,n}$ 为 (t_1,t_2) 上的正交函数集,为了将f(t)表示为 $\sum_{r=1}^n c_r g_r(t)$,要让误差 $\varepsilon=< f(t), f(t)>-2\sum_{r=1}^n c_r < f(t), g_r(t)>+\sum_{r=1}^n c_r^2 K_r$ $(K_r=< g_r(t), g_r(t)>)$ 最小,则 $c_r^*=\frac{1}{K_r}< f(t), g_r(t)>, \ f(t)\approx \sum_{r=1}^n \frac{1}{K_r}< f(t), g_r(t)>g_r(t)=\sum_{r=1}^n \frac{< f(t), g_r(t)>}{< g_r(t), g_r(t)>} g_r(t)$,此时误差为 $\varepsilon^*=< f(t), f(t)>-\sum_{r=1}^n \frac{< f(t), g_r(t)>^2}{< g_r(t), g_r(t)>}$ (归一化时 $< g_r(t), g_r(t)>=K_r=1$)

(当误差矢量的诱导范数||e||最小时,误差矢量正交于该集合中所有矢量,反之亦然)

完备正交函数集:如果任何函数f(t)都可用正交函数集 $\{g_r(t)\}$ 最佳近似表示,且最小误差 $\lim_{n \to \infty} \varepsilon^*(n) = 0$,则该正交函数集完备

完备正交函数集定义2: 若在 $\{g_r(t)\}$ 之外,不存在函数 $\hat{g}(t)$ 使得 $0<\int_{t_1}^{t_2}\hat{g}^2(t)dt<\infty$ 同时 $\langle \hat{g}(t), g_r(t) \rangle = 0$,也称之为完备(一般用于有限正交函数集的证明)

帕塞瓦尔定理:
$$f(t)=\sum_{r=1}^\infty c_r^*g_r(t)$$
, $\{g_r(t)\}$ 为正交函数集,则帕塞瓦尔方程 $\int_{t_1}^{t_2}f^2(t)dt=\sum_{r=1}^n(c_r^*)^2< g_r(t),g_r(t)>$

为什么选择傅里叶变换。。。。。

相关

能量 (受限) 信号: $E = \int_{-\infty}^{\infty} |f(t)|^2 dt$ 有限的信号

功率 (受限) 信号: $P=\lim_{T\to\infty}rac{1}{T}\int_{-T/2}^{T/2}|f(t)|^2dt$ 有限的信号, E无限

相关系数: $\rho_{12}=rac{< f_1(t), f_2(t)>}{||f_1(t)||||f_2(t)||}=<rac{f_1(t)}{||f_1(t)||}, rac{f_2(t)}{||f_2(t)||}>$ 小于等于1

相对误差: $\frac{arepsilon^*}{||f_1(t)||^2}=1-\frac{\langle f_1(t),f_2(t)
angle^2}{||f_1(t)||^2||f_2(t)||^2}=1ho_{12}^2$

能量信号的相关函数: $R_{12}(\tau) = \int_{-\infty}^{\infty} f_1(t) f_2^*(t-\tau) dt = \int_{-\infty}^{\infty} f_1(t+\tau) f_2^*(t) dt$, $R_{21}(\tau) = \int_{-\infty}^{\infty} f_1^*(t-\tau) f_2(t) dt = \int_{-\infty}^{\infty} f_1^*(t) f_2(t+\tau) dt$ (满足 $R_{12}(\tau) = R_{21}^*(-\tau)$)

能量信号的自相关函数: $R(\tau)=\int_{-\infty}^{\infty}f(t)f^*(t-\tau)dt=\int_{-\infty}^{\infty}f(t+\tau)f^*(t)dt$ (满足 $R(\tau) = R^*(-\tau)$

功率信号的相关函数: $R_{12}(au)=\lim_{T o\infty}rac{1}{T}\int_{-T/2}^{-T/2}f_1(t)f_2^*(t- au)dt$,

$$R_{21}(au) = \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} f_1^*(t- au) f_2(t) dt$$
 (满足 $R_{12}(au) = R_{21}^*(- au)$)

功率信号的自相关函数: $R(au)=\lim_{T\to\infty}rac{1}{T}\int_{-T/2}^{T/2}f(t)f^*(t- au)dt$ (满足 $R(au)=R^*(- au)$)

 $f(t) = E\cos{(\omega_1 t)}$ 的功率信号自相关函数为 $R(au) = rac{E^2}{2}\cos{(\omega_1 au)}$

$$f(t)=E\sin{(\omega_1t)}$$
的功率信号自相关函数为 $R(au)=rac{E^2}{2}\cos{(\omega_1 au)}$

任意相位正弦函数的自相关函数都为余弦,周期信号的自相关函数仍为周期信号,且周期不变,自相关 函数丢失了相位特性

相关和卷积的关系:

- 卷积为 $c(t)=\int_{-\infty}^{\infty}f_1(\tau)f_2(t-\tau)d\tau$ (先反褶再移位) 相关为 $R_{12}(t)=\int_{-\infty}^{\infty}f_1(\tau)f_2^*(\tau-t)d\tau$ (不反褶只移位)
- 故而有 $R_{12}(t) = f_1(t) * f_2^*(-t)$

 $\mathcal{F}\{R_{12}(\tau)\}=F_1(\omega)F_2^*(\omega)$, $\mathcal{F}\{R(\tau)\}=|F(\omega)|^2$ $(R_{12}(\tau)为f_1(t)和f_2(t)$, $R(\tau)为f(t)$ 的自相 关函数)

匹配滤波器: (匹配接收) 当接收信号与发送信号有某种相关性时,输出得到尖峰(只关心有无)

输入脉冲为e(t),则应令冲激响应为h(t)=e(T-t)(保证响应为因果信号,所以延时T),响应为 e(t)的自相关函数移位,r(t)=R(t-T)=e(t)*e(T-t)

离散信号

系统的分类: 连续时间系统、离散时间系统、混合系统

序列差分:

• 前向: $\Delta x(n) = x(n+1) - x(n)$

• 后向: $\nabla x(n) = x(n) - x(n-1)$

• 高阶: $\nabla^m x(n) = \nabla[\nabla^{m-1} x(n)]$

序列尺度压扩: z(n) = x(an) (z(n))中的n只能取整数,不满足的被剔除)

单位样值信号: $\delta(n)$ (仅在n=0时为1)

单位阶跃信号: u(n) (当 $n \ge 0$ 时为1)

矩形序列、斜变序列、单边指数序列、正弦序列、复指数序列(

 $x(n)=e^{jn\omega_0}=\cos{(n\omega_0)}+j\sin{(n\omega_0)}$

正弦序列: $\sin{(n\omega_0)}$, 注意此处可能并不满足 $\frac{2\pi}{T}=\omega$

几种典型序列关系:

• 单位样值信号: $\delta(n) = u(n) - u(n-1)$

• 阶跃序列: $u(n) = \sum_{k=0}^{\infty} \delta(n-k)$

• 矩形序列: $R_N(n) = \sum\limits_{k=0}^{N-1} \delta(n-k)$

• 斜变序列: $nu(n) = \sum_{k=1}^{\infty} u(n-k) = \sum_{k=1}^{\infty} \sum_{l=0}^{\infty} \delta(n-k-l)$

任意序列可表示为加权、延迟的单位脉冲之和 $x(n) = \sum\limits_{m=-\infty}^{\infty} x(m) \delta(n-m)$

$$\delta(n) \xleftarrow{\sum_{k=0}^{\infty} \delta(n-k)} u(n) \xleftarrow{\sum_{k=1}^{\infty} u(n-k)} nu(n)$$

常系数线性差分方程的求解:

- 迭代法 (用于运算器实现)
- 齐次解与特解之和(先令x(n)一侧为0求出齐次解,再加上特解)(齐次解在特征根 a_k 没有重根的情况下,形式为 $\sum\limits_{k=1}^{N}C_ka_k^n$,出现p重根时,则其对应一项形式变为 $(\sum\limits_{i=0}^{p-1}R_in^i)a_k^n$)(特解,当激励序列为 n^k 形式,则特解为 $y_p(n)=\sum\limits_{i=0}^{k}D_in^{k-i}$,当激励形式为 a^n ,则特解为 Da^n)
- 零输入与零状态之和
- Z变换

• 状态变量法

离散时间系统的单位样值(单位冲激)响应h(n)(求解时可以把 $\delta(n)$ 当做初值条件)

• 因果性: h(n) = h(n)u(n) (n < 0时无响应)

• BIBO稳定性(绝对可和): $\sum\limits_{n=-\infty}^{\infty}|h(n)|<\infty$

输入信号为 $x(n)=\sum\limits_{m=-\infty}^{\infty}x(m)\delta(n-m)$,则经过单位样值响应为h(n)的系统,输出为 $y(n)=\sum\limits_{m=-\infty}^{\infty}x(m)h(n-m)=x(n)*h(n)$ 。

卷积和性质:

• 交換律: x(n) * h(n) = h(n) * x(n)

• 分配律: $[x_1(n) + x_2(n)] * h(n) = x_1(n) * h(n) + x_2(n) * h(n)$

• 结合律: $[x(n)*h_1(n)]*h_2(n) = x(n)*[h_1(n)*h_2(n)]$

• 筛选性: $x(n) * \delta(n) = x(n)$

z变换

由拉氏变换引入单边z变换: 抽样信号 $x_s(t)=x(t)\delta_T(t)=\sum\limits_{n=0}^\infty x(nT)\delta(t-nT)$,则其拉氏变换为 $X(s)=\mathcal{L}\{x_s(t)\}=\sum\limits_{n=0}^\infty x(nT)e^{-snT}$

定义
$$z=e^{sT}$$
,有 $X(z)=\sum\limits_{n=0}^{\infty}x(nT)z^{-n}$,再令 $T=1$,则 $X(z)=\sum\limits_{n=0}^{\infty}x(n)z^{-n}=\mathcal{Z}\{x(n)\}$

由罗伦级数引入单边z变换: $f(z)=\sum_{n=-\infty}^\infty a_n(z-z_0)^n$,其中 $a_n=\frac{1}{2\pi j}\oint_{C_\rho}\frac{f(\xi)}{(\xi-z_0)^{n+1}}d\xi$,那么单边z变换就是取 $z_0=0$,且n从0开始

双边z变换: $\mathcal{Z}\{x(n)\}=\sum_{n=-\infty}^{\infty}x(n)z^{-n}$,因果序列的单边与双边z变换一致

典型序列z变换(因果信号不区分单双边):

$$\mathcal{Z}\left\{\delta(n)\right\} = \sum_{n=0}^{\infty} \delta(n)z^{-n} = 1$$

$$\mathcal{Z}\left\{u(n)\right\} = \sum_{n=0}^{\infty} u(n)z^{-n} = \sum_{n=0}^{\infty} z^{-n} = \frac{1}{1-z^{-1}} = \frac{z}{z-1}, \quad |z| > 1$$

$$\mathcal{Z}\left\{nu(n)\right\} = \sum_{n=0}^{\infty} nz^{-n} = z^{-1} \frac{\mathrm{d}}{\mathrm{d}z^{-1}} \sum_{n=0}^{\infty} z^{-n}$$

$$= z^{-1} \frac{\mathrm{d}}{\mathrm{d}z^{-1}} \left(\frac{1}{1-z^{-1}}\right) = \frac{z}{(z-1)^2}, \quad |z| > 1$$

$$\mathcal{Z}\left\{a^n u(n)\right\} = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{z}{a}\right)^{-n} = \frac{1}{1-az^{-1}} = \frac{z}{z-a}, \quad |z| > |a|$$

$$\mathcal{Z}\left\{e^{\mathrm{j}n\omega_0} u(n)\right\} = \frac{z}{z-\mathrm{e}^{\mathrm{j}\omega_0}}, \quad |z| > |e^{\mathrm{j}\omega_0}| = 1$$

$$\mathcal{Z}\left\{\cos(n\omega_0)u(n)\right\} = \mathcal{Z}\left\{\frac{1}{2}\left(e^{\mathrm{j}n\omega_0} + e^{-\mathrm{j}n\omega_0}\right)u(n)\right\}$$

$$= \frac{1}{2}\left(\frac{z}{z-\mathrm{e}^{\mathrm{j}\omega_0}} + \frac{z}{z-\mathrm{e}^{-\mathrm{j}\omega_0}}\right)$$

$$= \frac{z^2 - z\cos\omega_0}{z^2 - 2z\cos\omega_0 + 1}, \quad |z| > 1$$

$$\mathcal{Z}\left\{\sin(n\omega_0)u(n)\right\} = \mathcal{Z}\left\{\frac{1}{2\mathrm{j}}\left(e^{\mathrm{j}n\omega_0} - e^{-\mathrm{j}n\omega_0}\right)u(n)\right\}$$

$$= \frac{1}{2\mathrm{j}}\left(\frac{z}{z-\mathrm{e}^{\mathrm{j}\omega_0}} - \frac{z}{z-\mathrm{e}^{-\mathrm{j}\omega_0}}\right)$$

$$= \frac{z\sin\omega_0}{z^2 - 2z\cos\omega_0 + 1}, \quad |z| > 1$$

典型信号的拉氏变换和z变换对比:

原函数	拉氏变换	z 变换
$\delta(t), \delta(n)$	1	1
u(t), u(n)	$\frac{1}{s}$	$\frac{z}{z-1}$
tu(t), nu(n)	$\frac{1}{s^2}$	$\frac{z}{(z-1)^2}$
$e^{-at}u(t), a^nu(n)$	$\frac{1}{a+s}$	$\frac{z}{z-a}$
$\cos(\omega_0 t)u(t), \cos(n\omega_0)u(n)$	$\frac{s}{s^2 + \omega_0^2}$	$\frac{z^2 - z\cos\omega_0}{z^2 - 2z\cos\omega_0 + 1}$
$\sin(\omega_0 t)u(t), \sin(n\omega_0)u(n)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\frac{z\sin\omega_0}{z^2 - 2z\cos\omega_0 + 1}$

比值、根值判定法。。。。。。。。。。。。。。。。。

z变换收敛域:由s平面和z平面的映射关系,因为 $re^{j\theta}=z=e^{sT}=e^{(\sigma+j\omega)T}=e^{\sigma T}e^{j\omega T}$,有 $r=e^{\sigma T}$, $\theta=\omega T$

z变换形式可能相同,就需要ROC收敛域来进一步确定

- 有限时宽序列ROC为全平面
- 右边序列如 $x(n)=a^nu(n)$,z变换为 $\frac{z}{z-a}$,收敛域为|z|>a
- 左边序列如 $x(n) = -a^n u(-n-1)$, z变换也为 $rac{z}{z-a}$, 收敛域为|z| < a
- 双边序列如 $x(n)=a^nu(n)+b^nu(-n-1)$,z变换为 $rac{z}{z-a}-rac{z}{z-b}$,收敛域为a<|z|< b

逆z变换:
$$x(n)=\mathcal{Z}^{-1}\{X(z)\}=rac{1}{2\pi j}\oint_C X(z)z^{n-1}dz$$
 (柯西定理 $\oint_C z^k dz=jr^{k+1}\oint_C e^{j(k+1)\theta}d\theta=2\pi j$,当且仅当 $k=-1$,否则为0)

逆z变换求解方法:

- 部分分式分解: 先分解再查表,由于大部分z变换式中含有z,故而先分解 $\frac{X(z)}{z}$ 再乘以z,得到表中
- 幂级数展开(长除法):像计算一般数字除法一样计算,得到 z^{-1} 的升幂级数,对应得到逆变换结
- 围线积分法(留数法): $\mathcal{Z}^{-1}\{X(z)\}=\sum\limits_{m}\mathrm{Res}\left[X(z)z^{n-1},z_{m}
 ight]$ 。。。。。。。。。

z变换的基本性质:

- 线性: $\mathcal{Z}\{ax_1(n) + bx_2(n)\} = aX_1(z) + bX_2(z)$
- 位移性 (时移) : ①双边: $\mathcal{Z}\{x(n-m)\}=z^{-m}X(z)$; ②单边:

える
$$\mathcal{Z}\{x(n-m)\}=z^{-m}[X(z)+\sum\limits_{k=-m}^{-1}x(k)z^{-k}],$$
 $\mathcal{Z}\{x(n+m)\}=z^m[X(z)-\sum\limits_{k=0}^{m-1}x(k)z^{-k}]$ (単边例如: $\mathcal{Z}\{x(n-1)\}=z^{-1}X(z)+x(-1),\;\mathcal{Z}\{x(n-2)\}=z^{-2}X(z)+z^{-1}x(-1)+x(-2))$ (地分地域不幸)

- 序列线性加权 (z域微分) : 双边: $\mathcal{Z}\{nx(n)\}=-z\frac{d}{dz}X(z)$ (收敛域不变)
- 序列指数加权(z域尺度变换): 双边 $\mathcal{Z}\{a^nx(n)\}=\overset{\sim}{X(rac{z}{a})}$ (注意收敛域变化)
- 初值定理(单边z变换): $x(0) = \lim_{z \to \infty} X(z)$ 终值定理(单边z变换): $\lim_{n \to \infty} x(n) = \lim_{z \to 1} [(z-1)X(z)]$
- 卷积定理: $\mathcal{Z}\{x(n)*h(n)\}=X(z)H(z)$ (注意收敛域为二者交集,除非二者发生零极点相 消,则收敛域会扩大)

单边 z 变换	双边 z 变换
表达式决定收敛域,	联合收敛域和表达式
只需表达式即可求逆	才能求逆
逆变换不唯一	逆变换唯一
用于求解差分方程和	一般用于语音信号处理和地震信
研究系统响应特性	号处理等非因果系统中

z变换与拉氏变换的对应关系:

• 假设存在一个连续信号
$$\hat{x}(t)=\sum\limits_{i=1}^{N}A_{i}e^{p_{i}t}u(t)$$
,则拉氏变换为 $\mathcal{L}\{\hat{x}(t)\}=\sum\limits_{i=1}^{N}rac{A_{i}}{s-p_{i}}$

• 假设存在一个离散信号
$$x(n)=\sum\limits_{i=1}^NA_ie^{p_inT}u(n)$$
,则其z变换为 $\mathcal{Z}\{x(n)\}=\sum\limits_{i=1}^Nrac{A_i}{1-e^{p_iT}z^{-1}}$

z平面和s平面映射:因为 $re^{j heta}=z=e^{sT}=e^{(\sigma+j\omega)T}=e^{\sigma T}e^{j\omega T}$,有 $r=e^{\sigma T}$, $\theta=\omega T=2\pirac{\omega}{\omega_s}$, 故而 ω 每变化一个 ω_s , 抽样信号不变

z平面上的收敛域有一条竖直线右侧变为一个圆的外侧

利用z变换解差分方程:
$$\sum\limits_{k=0}^{N}a_ky(n-k)=\sum\limits_{r=0}^{M}b_rx(n-r)$$
,等式两边取单边z变换,得到 $\sum\limits_{k=0}^{N}a_kz^{-k}[Y(z)+\sum\limits_{l=1}^{-1}y(l)z^{-l}]=\sum\limits_{r=0}^{M}b_rz^{-r}[X(z)+\sum\limits_{m=-r}^{-1}x(m)z^{-m}]$

• 零输入情况下,可以由
$$\sum\limits_{k=0}^{N}a_kz^{-k}[Y(z)+\sum\limits_{l=-k}^{-1}y(l)z^{-l}]=0$$
直接得到
$$Y(z)=-\frac{\sum\limits_{k=0}^{N}[a_kz^{-k}\sum\limits_{l=-k}^{-1}y(l)z^{-l}]}{\sum\limits_{k=0}^{N}a_kz^{-k}}$$
,进而结合一系列初始状态可以得到确切的零输入响应

• 零状态情况下,认为初始状态都为0,**若激励为因果序列**,则有 $\sum\limits_{k=0}^N a_k z^{-k} Y(z) = \sum\limits_{r=0}^M b_r z^{-r} X(z)$

,故而有
$$Y(z)=X(z)rac{\sum\limits_{r=0}^{M}b_{r}z^{-r}}{\sum\limits_{k=0}^{N}a_{k}z^{-k}}=X(z)H(z)$$

• 完全响应是零输入响应和零状态响应之和

同态信号处理:基本原理为将非线性运算转化为线性运算进行处理

卷积运算同态信号处理

应用: 盲解卷

$$\begin{split} x(n) &= e(n) * h(n) \\ X(z) &= \mathscr{Z} \left\{ x(n) \right\} = E(z) H(z) \\ \hat{X}(z) &= \ln E(z) + \ln H(z) \\ \hat{x}(n) &= \mathscr{Z}^{-1} \left\{ \hat{X}(z) \right\} = \mathscr{Z}^{-1} \left\{ \ln E(z) \right\} + \mathscr{Z}^{-1} \left\{ \ln H(z) \right\} \\ \hat{y}(n) &= \mathcal{LP} \left\{ \mathscr{Z}^{-1} \left\{ \ln E(z) \right\} + \mathscr{Z}^{-1} \left\{ \ln H(z) \right\} \right\} = \mathscr{Z}^{-1} \left\{ \ln E(z) \right\} \\ \hat{Y}(Z) &= \mathscr{Z} \left\{ \hat{y}(n) \right\} = \ln E(z) \\ Y(Z) &= \exp \left\{ \hat{Y}(Z) \right\} = E(z) \\ y(n) &= \mathscr{Z}^{-1} \left\{ Y(z) \right\} = e(n) \end{split}$$

离散系统的系统函数:系统单位样值响应为h(n),则y(n)=x(n)*h(n),Y(z)=X(z)H(z),系统函数被定义为 $H(z)=rac{Y(z)}{X(z)}=\mathcal{Z}\{h(n)\}$,与前面的**零状态响应**形式有关,即

$$H(z)=rac{\sum\limits_{r=0}^{M}b_{r}z^{-r}}{\sum\limits_{k=0}^{N}a_{k}z^{-k}}=\sum\limits_{n=0}^{\infty}h(n)z^{-n}$$
,可以因式分解为 $H(z)=Arac{\prod\limits_{r=1}^{M}(1-z_{r}z^{-1})}{\prod\limits_{k=1}^{N}(1-p_{k}z^{-1})}=Arac{\prod\limits_{k=1}^{M}(z-z_{r})}{\prod\limits_{k=1}^{N}(z-p_{k})}z^{z^{N-M}}$

回忆 s 平面极点和 z 平面极点的对应关系

$$z = e^{sT} \Longrightarrow re^{i\theta} = e^{(\sigma + j\omega)T} \Longrightarrow \begin{cases} r = e^{\sigma T} \\ \theta = \omega T \end{cases}$$

固定 T 讨论 r, θ 的变化

s 平面极点位置		波形特征	z 平面极点位置			
虚轴 $\sigma = 0$		等幅	单位圆 $r=1$			
右半平面 $\sigma > 0$	幅度	增幅	圆外 $r > 1$			
左半平面 $\sigma < 0$		减幅	圆内 $r < 1$			
实轴 $\omega = 0$		直流 (单调变化)	正实轴 $\theta = 0$			
上下移动 ω ↑	频率	振荡频率增加	呈扇形展开 θ ↑			
$ \omega = \frac{\omega_{ m s}}{2} = \frac{\pi}{T}$		达到最高频率后 将重复	负实轴 $\theta = \pi$			

z 平面极点位置和时域波形的关系 ("大圆图")

"大圆图"说明

- ▶ 图中 $\omega = 0$, $\frac{\omega_s}{8}$, $\frac{\omega_s}{4}$, $\frac{\omega_s}{2}$ 对应于 z 平面的 $\theta = 0$, $\frac{\pi}{4}$, $\frac{\pi}{2}$, π , 随着 ω 继续增加, θ 将周期重复,所以 $z \to s$ 是多值映射
- ▶ 非实轴上的波形对应共轭极点,如 $h(n) = e^{-\sigma_0 n} \cos(n\omega_0)$ 的 z 变换分母为

$$z^{2} - 2ze^{-\sigma_{0}}\cos\omega_{0} + e^{-2\sigma_{0}} = (z - e^{-\sigma_{0}}e^{j\omega_{0}})(z - e^{-\sigma_{0}}e^{-j\omega_{0}})$$

即有共轭极点 $e^{-(\sigma_0+j\omega_0)}, e^{-(\sigma_0-j\omega_0)}$

ight
ight
ight
ho 当 $\omega=rac{\omega_{
m s}}{2}$ 时,极点位于负实轴

$$h(n) = a^n \cos\left(n\frac{\omega_s}{2}T\right) = a^n \cos(n\pi) = (-a)^n u(n)$$

$$H(z) = \frac{z}{z+a}$$

▶ a 在圆内/外决定了序列收敛/发散

由离散系统函数H(z)判断系统因果性和BIBO稳定性:

- 由极点分布和收敛域判定因果性: 充要条件h(n) = h(n)u(n), 即 $R_{x1} < |z| \leq \infty$
- 由极点分布和收敛域判断系统BIBO稳定性: 充要条件 $\sum\limits_{n=-\infty}^{\infty}|h(n)|<\infty$,必要条件

$$H(z=1)=\sum_{n=-\infty}^{\infty}h(n)z^{-n}|_{z=1}=\sum_{n=-\infty}^{\infty}h(n)<\infty$$

因果稳定系统:全部极点落在单位圆内,即收敛域满足 $a<|z|\leq\infty$ (a<1)

离散时间傅里叶变换(DTFT):由抽样信号的傅里叶变换引入,因为

$$x_s(t)=x(t)\delta_T(t)=\sum\limits_{n=-\infty}^{\infty}x(nT)\delta(t-nT)$$
,其傅里叶变换为 $\mathcal{F}\{x_s(t)\}=\sum\limits_{-\infty}^{\infty}x(nT)e^{-jn\omega T}$,取 $T=1$,则 $\mathcal{F}\{x(n)\}=\sum\limits_{n=-\infty}^{\infty}x(n)e^{-jn\omega}=X(e^{j\omega})$ 。

DTFT可以由z变换定义拓展,将
$$z$$
替换为 $e^{j\omega}$,即DTFT为单位圆上的 z 变换, $X(z)|_{|z|=1}=X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x(n)e^{-jn\omega}$

DTFT逆变换为 $x(n)=rac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})e^{jn\omega}d\omega$

	 频域连续	频域离散
时域连续	FT 时非周频非周	FS 时周频非周
时域离散	DTFT 时非周频周	DFS 时周频周 DFT 时限频限

离散时间系统的频率响应特性:对于输入信号 $x(n)=A\sin{(n\omega)}$,经过离散时间系统后,有 $y(n)=A|H(e^{j\omega})|\sin\left[n\omega+arphi(\omega)
ight]\;(H(e^{j\omega})=|H(e^{j\omega})|e^{jarphi(\omega)}$ 为系统单位样值冲激的DTFT) $H(e^{j\omega})$ 和h(t)为一对傅里叶变换, $H(e^{j\omega})$ 有频谱含义,由于 $e^{j\omega}$ 为周期函数,故而 $H(e^{j\omega})$ 以 $\omega_s = \frac{2\pi}{T}$ 为周期变化

对于实系数序列,频率响应的模是偶函数,相位是奇函数

▶ 若实系数,则频响的模是偶函数,相位是奇函数

▶ 频带 (0, ω_s/2) 之内特性的决定全部特性

频率特性的几何确定法:
$$H(e^{j\omega})=rac{\prod_{k=1}^{m}(e^{j\omega}-z_r)}{\prod_{k=1}^{N}(e^{j\omega}-p_k)}e^{j(N-M)\omega}=|H(e^{j\omega})|e^{j\varphi(\omega)}$$
, 假设 $e^{j\omega}-z_r=A_re^{j\psi_r}$, $e^{j\omega}-p_k=B_ke^{j\theta_k}$, 则有 $|H(e^{j\omega})|=rac{\prod_{k=1}^{M}A_r}{\prod_{k=1}^{N}B_k}$, $\varphi(\omega)=\sum_{r=2}^{M}\psi_r-\sum_{k=1}^{N}\theta_k+(N-M)\omega$

 $H(e^{j\omega})$ 呈周期性,绕圆一周为 ω 从0到 ω_s 的图形,若实系数,则绕圆半周0到 $\frac{\omega_s}{2}$ 即可

稳定系统极点在单位圆内,零点可在圆外(**全通是极点和零点关于单位圆共轭对称、最小相移系统为所有零点均位于单位圆内**)

z=0处的零点和极点不影响幅度,只影响相位

数字滤波器: (被采样的原信号带宽受限 $-\omega_m<\omega<\omega_m$)输入采样信号,其傅里叶变换为 $\mathcal{F}\{x(t)\delta_T(t)\}=\sum_{n=-\infty}^\infty x(nT)e^{-jn\omega T}=DTFT\{x(nT)\}=X(e^{j\omega})$ (注意此处相当于序列为 x(nT),而其DTFT还受到了T的一定拉伸)

此外
$$\mathcal{F}\{x(t)\delta_T(t)\}=rac{1}{T}\sum_{k=-\infty}^{\infty}X(\omega-k\omega_s)$$
, $\omega_s=rac{2\pi}{T}\geq 2\omega_m$

所以可以得到X(n)的频谱为 $X(e^{j\omega})=rac{1}{T}\sum_{k=-\infty}^{\infty}X(\omega-k\omega_s)$,可以其为 $X(\omega)$ 的周期延拓

数字滤波器的频率响应 $H(e^{j\omega})$ 起着对输入联系信号的频谱进行修正的作用

滤波器分类:
$$(y(n) = \sum\limits_{r=0}^{M} b_r x(n-r) - \sum\limits_{k=1}^{N} a_k y(n-k))$$

- 按结构分: 递归式、非递归式 (有无y(n-k)项)
- 按特征分: ①无限冲激响应, 递归, 非线性相移; ②有限冲激响应, 非递归, 线性相移

IIR(无限冲激响应)滤波器实现:采用冲激响应不变法,利用模拟滤波器原型,由s域表达式转为z域,即由 $h(t)=\sum\limits_{i=1}^NA_ie^{p_it}u(t)$ 变为 $h(n)=\sum\limits_{i=1}^NA_ie^{p_inT}u(n)$,二者为抽样关系,但后者在前者基础上在零点处补足 $\frac{A_i}{2}$,前者拉氏变换为 $H(s)=\frac{A_i}{s-p_i}$,后者z变换为 $\sum\limits_{i=1}^N\frac{A_i}{1-e^{p_iT}z^{-1}}$

巴特沃斯滤波器设计。。	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	0	۰	•
数字式自激振荡器。。。	0	۰	•	۰	0	۰	0	0	۰	۰	۰	۰	۰	۰	•	۰	0	۰	•	•	۰	•	
设计磁盘驱动读取系统。			•	•	•	•	•	•	•	•	•		•	•	•	•	•	•			•		

信号流图

名称	英文	解释
结点	Node	变量或者信号
转移函数	Transfer Function	结点间增益
支路	Branch	连接两个结点之间的有向线 段,其增益即转移函数
源点	Source Node	只有输出支路
阱点	Sink Node	只有输入支路
混合结点	Mixed Node	即有输入又有输出的结点

结点把所有输入支路信号叠加, 并把总和信号传送到各输出支路

流图转置 (把支路中信号传输方向调转、源点和阱点对换) 后转移函数保持不变,但内结点所表示的信号 有变化

信号流图的代数运算

信号流图的代数运算(续)

混合支路规则补充

梅森公式: $H=rac{1}{\Delta}\sum_k g_k \Delta_k$,其中:

- 特征行列式 $\Delta=1-\sum_a L_a+\sum_{b,c} L_b L_c-\sum_{d,e,f} L_d L_e L_f+\dots$ (1-各环路增益之和+每两个互不接触的环路增益乘积之和-每三个互不接触的环路增益乘积之和+…)
- g_k 为由源点到阱点之间的第k条前向通路的增益(前向通路中由源到阱通过任何结点不多于一次)
- Δ_k 为第k条前向通路特征行列式的余因子,即除去与第k条前向通路相接触的环路外余下的特征行列式,若都接触则只留下1

利用梅森公式绘制流图:

根据梅森公式的定义直接绘出

$$H(s) = \frac{b_0 \frac{1}{s^{n-m}} + b_1 \frac{1}{s^{n-m+1}} + \dots + b_{m-1} \frac{1}{s^{n-1}} + b_m \frac{1}{s^n}}{1 + a_1 \frac{1}{s} + a_2 \frac{1}{s^2} + \dots + a_{n-1} \frac{1}{s^{n-1}} + a_n \frac{1}{s^n}}$$

应用转置性质

状态方程

状态方程: $\dot{\lambda} = A\lambda + Be \ (\lambda)$ 大态变量)

输出方程: $r = C\lambda + De$

由信号流图建立状态方程:一般取每个积分器的输出作为状态变量,再由状态变量写出输出方程

列写状态方程,取每个积分器的输出作为状态变量 (这是设状态变量的最简单方法)

$$\dot{\lambda}_1 = \lambda_2$$

$$\dot{\lambda}_2 - \lambda_3$$

$$\vdots$$

$$\dot{\lambda}_{k-1} = \lambda_k$$

$$\dot{\lambda}_k = -a_k \lambda_1 - a_{k-1} \lambda_2 - \dots - a_1 \lambda_k + e(t)$$

▶ 再由状态变量写输出方程

$$r(t) = b_k \lambda_1 + b_{k-1} \lambda_2 + \dots + b_1 \lambda_k + b_0 \left[-a_k \lambda_1 - a_{k-1} \lambda_2 - \dots - a_1 \lambda_k + e(t) \right] = (b_k - b_0 a_k) \lambda_1 + (b_{k-1} - b_0 a_{k-1}) \lambda_2 + \dots + (b_1 - b_0 a_1) \lambda_k + b_0 e(t)$$

进而可以得到系数如下:

$$\dot{\boldsymbol{\lambda}}(t) = \mathbf{A}\boldsymbol{\lambda}(t) + \mathbf{B}\mathbf{e}(t)$$

 $\mathbf{r}(t) = \mathbf{C}\boldsymbol{\lambda}(t) + \mathbf{D}\mathbf{e}(t)$

其中

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_k & -a_{k-1} & -a_{k-2} & \cdots & -a_1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
$$\mathbf{C} = \begin{bmatrix} b_k - b_0 a_k & b_{k-1} - b_0 a_{k-1} & \cdots & b_1 - b_0 a_1 \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} b_0 \end{bmatrix}$$

说明

▶ 若微分方程右端阶次低, 左端阶次高, 则有

$$b_0 = 0$$
 $\mathbf{D} = \mathbf{0}$

▶ 若右端只有激励原函数,不包含其各阶导数,则只有 $b_k \neq 0$, 其余 $b_i = 0, \forall i \neq k$,

$$\mathbf{C} = \begin{bmatrix} b_k & 0 & \cdots & 0 \end{bmatrix} \qquad \mathbf{D} = \mathbf{0}$$

- ▶ 利用转置特性,可得到另一流图,建立另一种形式的状态方程,则 **A**, **B**, **C**, **D** 不同
- ▶ 对于同一系统,若流图形式不同,则状态变量选择不同;即对于给定系统而言,状态变量选择并不唯一,**A**,**B**,**C**,**D** 也不唯一

将算子表达式分解建立状态方程:将算子表达式拆分为一系列分式求和的形式,进而画出并联形式的流图,例子如下

例 12-5 用并联结构形式表示下式为状态方程的形式

$$\begin{split} H(p) &= \frac{p+4}{(p+1)^3(p+2)(p+3)} \\ &= \frac{3/2}{(p+1)^3} + \frac{-7/4}{(p+1)^2} + \frac{15/8}{p+1} + \frac{-2}{p+2} + \frac{1/8}{p+3} \end{split}$$

讨论

- ▶ 如果各因式相乘,流图呈级联形式,则 A 类似三角阵
- ▶ 若系统转移函数无重根,分解成并联形式后, A 为对角阵
- ▶ 当系统转移函数有重根时, A 为约当阵
- ▶ 因为任何矩阵都和约当阵相似 (对角阵是约当阵的特例),所以对同一系统而言,选择不同状态变量产生的不同形式的 A 都是相似的

连续时间系统状态方程求解:

• 拉普拉斯变换解法: 对给定状态方程 $\dot{\lambda}(t)=A\lambda(t)+Be(t)$, $r(t)=C\lambda(t)+De(t)$ 进行拉氏变换,微分变为乘法, $s\Lambda(s)-\lambda(0_-)=A\Lambda(s)+BE(s)$, $R(s)=C\Lambda(s)+DE(s)$, 进而可以解除状态变量 $\Lambda(s)=(sI-A)^{-1}\lambda(0_-)+(sI-A)^{-1}BE(s)$, 输出为 $R(s)=C(sI-A)^{-1}\lambda(0_-)+[C(sI-A)^{-1}B+D]E(s)$, 定义 $\Gamma(s)=(sI-A)^{-1}$, 那

$$\Delta\Lambda(s)=\Gamma(s)\lambda(0_-)+\Gamma(s)BE(s)$$
, $R(s)=C\Gamma(s)\lambda(0_-)+[C\Gamma(s)B+D]E(s)$, 逆变 换得到 $\lambda(t)=\gamma(t)\lambda(0_-)+\gamma(t)B*e(t)$, $r(t)=C\gamma(t)\lambda(0_-)+[C\gamma(t)B+D\delta(t)]*e(t)$, 其中 $\gamma(t)=\mathcal{L}^{-1}\{\Gamma(s)\}$

- 时域解法
- 状态方程和转移函数:由状态方程求转移函数,零状态情况下,有 $R(s) = [C(sI-A)^{-1}B+D]E(s) = H(s)E(s), \text{ 假如为单输入单输出,那么} \\ H(s) = C(sI-A)^{-1}B+D = \frac{Cadj(sI-A)B}{|sI-A|} + D, |sI-A| = 0$ 的根就是其极点,也就是 A的特征值

由状态方程求转移函数(续)

▶ 假设 m 个输入, r 个输出

$$\mathbf{H}_{r \times m}(s) = \mathbf{C}_{r \times k} (s \mathbf{I}_{k \times k} - \mathbf{A}_{k \times k})^{-1} \mathbf{B}_{k \times m} + \mathbf{D}_{r \times m}$$

$$= \begin{bmatrix} H_{11}(s) & H_{12}(s) & \cdots & H_{1m}(s) \\ H_{21}(s) & H_{22}(s) & \cdots & H_{2m}(s) \\ \vdots & \vdots & \ddots & \vdots \\ H_{r1}(s) & H_{r2}(s) & \cdots & H_{rm}(s) \end{bmatrix}$$

其中
$$H_{ij}(s) = \frac{R_i(s)}{E_j(s)} \Big|_{E_k(s)=0, \forall k \neq j}$$

$$= \frac{\hat{\pi} i \, \hat{\tau} \hat{\pi} \hat{\pi}}{\hat{\pi} j \, \hat{\tau} \hat{\pi} \hat{\pi}} \Big|_{\substack{\underline{t} \in \hat{\pi} \\ \underline{t} \in$$

离散时间系统状态方程的建立:与连续时间系统状态方程类似,但是积分和求导变为时移

离散时间系统的状态空间表示

- ▶ k 个状态变量, m 个激励信号, r 个输出响应; 同连续时间系统, 但用差分代替微分
- ▶ 状态方程

$$\lambda_{k\times 1}(n+1) = \mathbf{A}_{k\times k}\lambda_{k\times 1}(n) + \mathbf{B}_{k\times m}\mathbf{x}_{m\times 1}(n)$$

▶ 输出方程

$$\mathbf{y}_{r\times 1}(n) = \mathbf{C}_{r\times k} \boldsymbol{\lambda}_{k\times 1}(n) + \mathbf{D}_{r\times m} \mathbf{x}_{m\times 1}(n)$$

结构示意图

1/E为一次延时。

离散时间系统状态方程的求解:

• 时域迭代求解:假设原状态方程为 $\lambda(n+1)=\lambda(n)+Bx(n)$,则有迭代式子 $\lambda(n)=A^{n-n_0}\lambda(n_0)\sum_{i=n_0}^{n-1}A^{n-1-i}Bx(i)$,若有 $n_0=0$,则 $\lambda(n)=A^n\lambda(0)u(n)+A^{n-1}Bu(n-1)*x(n)$,代入输出方程有

$$y(n)=C\lambda(n)+Dx(n)=CA^n\lambda(0)u(n)+[CA^{n-1}Bu(n-1)+D\delta(n)]*u(n)$$
,考察 零状态响应,得到 $h(n)=CA^{n-1}Bu(n-1)+D\delta(n)$

• z变换求解: 对状态方程和输出方程两边同时取单边z变换,有 $z\Lambda(z)-z\lambda(0)=A\Lambda(z)+BX(z)$, $Y(z)=C\Lambda(z)+DX(z)$,由此可以解得状态变量 $\Lambda(z)=(zI-A)^{-1}z\lambda(0)+(zI-A)^{-1}BX(z)$,进而取逆有 $\lambda(n)=\mathcal{Z}^{-1}[(zI-A)^{-1}z]\lambda(0)+\mathcal{Z}^{-1}[(zI-A)^{-1}]B*x(n)$,最后得到形式应与时域迭代 结果一致,那么 $A^nu(n)=\mathcal{Z}^{-1}[(zI-A)^{-1}z]$, $A^{n-1}u(n-1)=\mathcal{Z}^{-1}[(zI-A)^{-1}]$,同样可以得到系统转移函数为 $H(z)=C(zI-A)^{-1}B+D$

状态矢量的线性变换: (假设新的状态变量为 $\gamma=P\lambda$, 则 $\lambda=P^{-1}\gamma$) 对状态方程两侧代入 $\lambda=P^{-1}\gamma$, 有 $P^{-1}\dot{\gamma}(t)=AP^{-1}\gamma(t)+Be(t)$, 两边左乘P, 得到 $\dot{\gamma}=PAP^{-1}\gamma(t)+PBe(t)=\hat{A}\gamma(t)+\hat{B}e(t)$, 而输出方程变为 $r(t)=CP^{-1}\gamma(t)+De(t)=\hat{C}\gamma(t)+\hat{D}e(t)$, 综上,发生变换后,有 $\hat{A}=PAP^{-1}$. $\hat{B}=PB$, $\hat{C}=CP^{-1}$, $\hat{D}=D$

将变化后的结果代入H(s),会发现其形式没有发生变化,即相似变化不改变A的特征值,因为系统物理本质不变

可以利用该性质对A进行对角化,使系统变为并联结构,从而各个状态变量之间互不影响,可以独立研究系统对状态变量的作用

对角化步骤:

- 求A的特征矢量并由此构造变换矩阵P
- 若k阶矩阵A有k个线性无关的特征向量,则A可化为对角阵,且对角线上元素即为特征值

求得**归一化特征向量** e_i 后令 $P^{-1}=[e_1|e_2|\dots|e_k]$,进而 $P=(P^{-1})^T$,那么原来A就变为 $\hat{A}=PAP^{-1}$,就是对角阵了,其对角元素为对应的特征值

由状态方程判断系统的BIBO稳定性:

• 连续系统: |sI - A| = 0的根就是H(s)的极点,故而若A的特征值在s左半平面系统稳定

• 离散系统: |zI - A| = 0的根就是H(z)的极点,故而若A的特征值在z平面单位圆内系统稳定

系统的可控制性与可观测性

可控性: 给定起始状态,可以找到容许的输入量(控制矢量),在有限时间内把系统的所有状态引向零状态。如果可做到这点,则称系统完全可控

 可观性: 给定输入(控制)后,能在有限时间内根据系统输出唯一地确定系统的起始状态。如果可做 到这点,则称系统完全可观

判别方法:

• 利用可控阵和可观阵判别: $M=[B\ AB\ \dots\ A^{k-1}B]$ 为满秩,即秩为k,则系统完全可控;若 $N=[C\ CA\ \dots\ CA^{k-1}]^T$ 为满秩,即秩为k,则系统完全可观。可控性只和A和B有关,可观性只与A和C有关(k就是状态变量的维

数)。。。。。。。。。。。。。。。。。。。。。。。。。。。

• A矩阵规范化后判别:对A矩阵进行对角化,在A对角化形式 \hat{A} 中,若 \hat{B} 不含零元素,则完全可控,若 \hat{C} 不含零元素,则完全可观(若有重根,则将A化为约当阵规范形式后再判定,若 \hat{B} 与每个约当块最后一行相应的那些行不含零元素,则完全可控,若 \hat{C} 与每个约当块第一列相应的那些列不含零元素,则完全可观)。。。。。。。。。。。。。。。。。。。。。

可控、可观与H(s)的关系: 只考虑单输入单输出情况时,在A化为对角阵形式后,若 \hat{C} 或者 \hat{B} 中出现零元素(即 c_i 或者 b_i 出现0),则发生H(s)的极点消失现象

H(s) 中的极点消失现象

▶ 只考虑单输入单输出情况, 假设 A 已经对角化

$$H(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

$$= \begin{bmatrix} c_1 & c_2 & \cdots & c_k \end{bmatrix} \begin{bmatrix} s - a_1 & 0 & \cdots & 0 \\ 0 & s - a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s - a_k \end{bmatrix}^{-1} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} + d$$

$$= \frac{c_1 b_1}{s - a_1} + \frac{c_2 b_2}{s - a_2} + \cdots + \frac{c_k b_k}{s - a_k} + d$$

$$= \sum_{i=1}^k \frac{c_i b_i}{s - a_i} + d$$

- ▶ 在 \mathbf{A} 化为对角阵形式后,如果 b_i 或 c_i 两者之一为零,则对应项消失,即极点消失
- H(s)中原有k个极点,有项消失(即零极点对消)后则极点不到k个(降阶)
- **零极点相消的部分是不可控、不可观的部分**,所以转移函数的描述方式只能反映系统中可观可控的部分,所以用转移函数描述系统不全面,而用状态方程和输出方程描述系统更全面、详尽