

- Second derivative test (cont.) ← This only works (as stated below) for $f(x, y)$

• Let $f(x, y)$ be differentiable at \vec{P} and \vec{P} is a CP.

① If $f_{xx}(\vec{P}) > 0$ and $D(\vec{P}) = f_{xx}(\vec{P})f_{yy}(\vec{P}) - (f_{xy}(\vec{P}))^2 > 0$, then \vec{P} is a local min point of f .

② If $f_{xx}(\vec{P}) < 0$ and $D(\vec{P}) = f_{xx}(\vec{P})f_{yy}(\vec{P}) - (f_{xy}(\vec{P}))^2 > 0$, then \vec{P} is a local max point of f .

③ If $D(\vec{P}) = f_{xx}(\vec{P})f_{yy}(\vec{P}) - (f_{xy}(\vec{P}))^2 < 0$, then \vec{P} is a saddle point of f .

N.B: ① IF $D(\vec{P}) = 0$, 2nd derivative test gives no info.

② you can also use f_{yy} in place of f_{xx} for ① and ②

Ex] classify via 2nd derivative test all CPs of $f(x, y) = x^2 + xy + y^2 + y$.

① find critical points ② use 2nd derivative test to say as much as you can about them,

Sol] ① find $\nabla f = \langle 2x+y, x+2y+1 \rangle$

$$\therefore \nabla f = 0 \text{ iff } \langle 2x+y, x+2y+1 \rangle = 0 \rightarrow \begin{aligned} 2x+y &= 0 \\ x+2y+1 &= 0 \end{aligned} \rightarrow x+2(-2x)+1=0 \rightarrow x=\frac{1}{3}, y=-\frac{2}{3}$$

∴ f has a unique CP at $(\frac{1}{3}, -\frac{2}{3})$

via 2nd derivative test:

$$f_{xx}=2, f_{yy}=2, f_{xy}=1$$

$$\therefore D(x, y) = f_{xx} \cdot f_{yy} - (f_{xy})^2 = 2 \cdot 2 - 1^2 = 3$$

at $P = (\frac{1}{3}, -\frac{2}{3})$, $D_P = 3 > 0$ and $f_{xx}(\frac{1}{3}, -\frac{2}{3}) = 2 > 0$

so $(\frac{1}{3}, -\frac{2}{3})$ is a local min point with local min value with $f(\frac{1}{3}, -\frac{2}{3}) = (\frac{1}{3})^2 + (\frac{1}{3})(-\frac{2}{3}) + (-\frac{2}{3})^2 + -\frac{2}{3} = -\frac{1}{3}$

Ex] classify CPs of $f(x,y) = x^3 + y^3 - 3x^2 - 3y^2 + 9y$

Sol] $\nabla f = \langle 3x^2 - 6x, 3y^2 - 6y + 9 \rangle = 3\langle x^2 - 2x, y^2 - 2y + 3 \rangle$

$$\nabla f = 3\langle x(x-2), (y-3)(y+1) \rangle$$

$$\nabla f = 0 \text{ iff } \begin{cases} x(x-2) = 0 \\ (y-3)(y+1) = 0 \end{cases} \text{ iff } \begin{cases} x=0 \text{ or } x=2 \\ y=3 \text{ or } y=-1 \end{cases}$$

	$x=0$	$x=2$	
$y=3$	$(0, 3)$	$(2, 3)$	analyze via 2nd derivative test all 4 of these points are CPs.
$y=-1$	$(0, -1)$	$(2, -1)$	

For $P = (0, 3)$:

$$D_P = 6^2(0-1)(3-1) = 6^2(-2) = -72$$

So $P = (0, 3)$ is a saddle point of f .

$$D = f_{xx} \cdot f_{yy} - f_{xy}^2$$

$$f_{xx} = 6x - 6 = 6(x-1)$$

$$f_{yy} = 6y - 6 = 6(y-1)$$

$$f_{xy} = f_{yx} = 0$$

$$D = [6(x-1)] \cdot [6(y-1)] + 0^2$$

For $P = (0, -1)$:

$$D_P = 6^2(0-1)(-1-1) > 0$$

$$f_{xx}(0, -1) = 6(0-1) < 0$$

So $P(0, -1)$ is a local

max of f w/ local

max value

$$f(0, -1) = 5 \text{ (approx)}$$

For $P = (2, 3)$:

$$D_P = 6^2(2-1)(3-1) > 0$$

$$f_{xx} = 6(2-1) > 0$$

$\therefore P(2, 3)$ is a local min of f

with local min value

$$f(2, 3) = -3$$

For $P = (2, -1)$

$$D_P = 6^2(2-1)(-1-1) < 0$$

$\therefore P = (2, -1)$ is a saddle point

[Ex] classify CPS of $f(x,y) = xy + e^{-xy}$

$$\nabla f = \langle y - ye^{-xy}, x - xe^{-xy} \rangle = \langle y(1-e^{-xy}), x(1-e^{-xy}) \rangle$$

$$\nabla f = 0 \text{ iff } \begin{cases} y(1-e^{-xy}) = 0 \\ x(1-e^{-xy}) = 0 \end{cases} \text{ iff } \begin{cases} y=0 \text{ or } 1-e^{-xy}=0 \\ x=0 \text{ or } 1-e^{-xy}=0 \end{cases}$$

$$1-e^{-xy}=0 \text{ iff } e^{-xy}=1 \text{ iff } -xy=0 \text{ iff } x=0 \text{ or } y=0$$

$$\therefore \nabla f = 0 \text{ iff } \begin{cases} y=0 \text{ or } (y=0 \text{ or } x=0) \\ x=0 \text{ or } (y=0 \text{ or } x=0) \end{cases} \text{ iff } \begin{cases} x=0 \text{ or } y=0 \\ y=0 \text{ or } x=0 \end{cases}$$

$$\therefore \nabla f = 0 \text{ iff } x=0 \text{ or } y=0 \rightarrow$$

Now: Analyze CPS using 2nd d test

$$f_{xx} = y^2 e^{-xy}$$

$$f_{yy} = x^2 e^{-xy}$$

$$f_{xy} = 1 - (e^{-xy} + y(-xe^{-xy})) = 1 - e^{-xy}(1-xy)$$

$$\therefore D(x,y) = (y^2 e^{-xy})(x^2 e^{-xy}) = (1 - e^{-xy}(1-xy))^2$$

$$= (xy)^2 (e^{-2xy}) - (1 - e^{-xy}(1-xy))^2$$

either $x=0$ or $y=0$
iff $xy=0$

Every CP
satisfies

$$D(x,y) = 0^2 e^{-2(0)} - (1 - e^{-0}(1-0))^2$$

$$= 0 - (1-1) = 0$$

2nd derivative test
is inconclusive on
all of these CPS

- Lagrange multipliers:

Goal: build a method to systematically

solve constrained optimization problem.

Problem: You need to: optimize $f(\vec{x})$

$$\text{subject to } g_1(\vec{x}) = g_2(\vec{x}) = \dots, g_k(\vec{x}) = 0$$

- Observation: If we want extreme values of F on

a level set $F(\vec{x}) = c$, what we really want are

CPS of F because $\nabla F = \nabla c = 0$

$\nabla F = \nabla c = 0$ \rightarrow

Consider F derived from the problem:

$$F(\vec{x}, \lambda_1, \lambda_2, \dots, \lambda_k) = f(\vec{x}) - \lambda_1 g_1(\vec{x}) - \lambda_2 g_2(\vec{x}) - \dots - \lambda_k g_k(\vec{x})$$

Now (because of level set considerations)

see the video, ^{global}solutions to the problem

occur only at CPs of F .

∴ we now need to solve $\nabla F = 0$ and find
absolute max/min values.

[Ex] Optimize $f(x, y) = x e^y$ along $x^2 + y^2 = 2$
one constraint, 1 λ

Sol] need $F(x, y, \lambda)$. Note: $x^2 + y^2 = 2$ iff $x^2 + y^2 - 2 = 0$
So we use $g(x, y) = x^2 + y^2 - 2$

$$F(x, y, \lambda) = f(x, y) - \lambda g(x, y)$$

$$= x e^y - \lambda (x^2 + y^2 - 2)$$

$$\therefore \nabla F = \langle e^y - \lambda 2x, x e^y - \lambda 2y, -(x^2 + y^2 - 2) \rangle$$

$$\nabla F = 0 \text{ iff } \begin{cases} e^y - \lambda 2x = 0 \\ x e^y - \lambda 2y = 0 \\ -(x^2 + y^2 - 2) = 0 \end{cases}$$

$$\begin{cases} 2\lambda x = e^y & (1) \\ 2\lambda y = x e^y & (2) \\ x^2 + y^2 = 2 & (3) \end{cases}$$

by ① $\lambda \neq 0$ because $2\lambda x = e^y$ and e^y is never 0 for real inputs.

by ② and plugging in ① $2\lambda y = x e^y = x(2\lambda x) = 2\lambda x^2 \rightarrow y = x^2$

by ③ $x^2 + y^2 = 2 \rightarrow x^2 + (x^2)^2 - 2 = 0 \rightarrow (x^2 + 2)(x^2 - 1) = 0$

∴ $(x^2 + 2)(x+1)(x-1) = 0$ so $x = \pm 1$ for all CPs of F

if $x = 1$: $y = 1^2$ and $\lambda = \frac{e^y}{2x} = \frac{e^1}{2(1)} = \frac{e}{2}$ ∴ $(1, 1)$ is a possible

extreme point of F w/ corresponding value

$$f(1, 1) = 1 e^1 = e$$

$$\text{If } x = -1; y = (-1)^2 = 1 \text{ and } \lambda = \frac{\partial f}{\partial x} = \frac{e^x}{2(-1)} = \frac{-e}{2}$$

$\therefore (-1, 1)$ is a possible extreme point
of w/ value $f(-1, 1) = -e$

$\therefore e$ is the

$\therefore e$ is the global max and $-e$ is the global min
for f subject to $x^2 + y^2 = 2$