Ginwidth=

Calc 1: Tutorial 11

September 10, 2019

1. If $f(x) = \ln x - 1$, $1 \le x \le 4$, evaluate the Riemann sum with n=6, taking the sample points to be left endpoints. Give your answer correct to six decimal places

$$n = 6, \Delta x = \frac{4 - 1}{6} = 0.5$$

$$R_6 \approx 0.5 \left[(\ln 1 - 1) + (\ln 1.5 - 1) + (\ln 2 - 1) + (\ln 2.5 - 1) + (\ln 3 - 1) + (\ln 3.5 - 1) \right]$$

= -0.816861

2. Find an approximation to the integral $\int_0^4 (x^2 - 3x) dx$ using a Riemann sum with right endpoints and n = 8.

$$\int_0^4 \left(x^2 - 3x\right) dx, n = 8, \Delta x = \frac{4 - 0}{8} = 0.5$$

$$\int_{0}^{4} (x^{2} - 3x) dx \approx 0.5 \left(\left((0.5)^{2} - 3(0.5) \right) + \left((1)^{2} - 3(1) \right) + \left((1.5)^{2} - 3(1.5) \right) + \left((2)^{2} - 3(2) \right) + \left((1.5)^{2} - 3(1.5) \right) + \left((1.5)^{2} - 3(1.$$

3. Use the Midpoint Rule with the given value of n to approximate the integral. Round each answer to **four decimal places**.

(a)
$$\int_0^{10} \sin \sqrt{x} dx$$
, $n = 5$, $\Delta x = \frac{10-0}{5} = 2$

i. For the sake of simplicity, I'm going to create a table

x_{left}	0	2	4	6	8
x_{right}	2	4	6	8	10
x_{mid}	1	3	5	7	9

ii. Remember to set your calculator to radians

$$\int_0^{10} \sin \sqrt{x} dx \approx 2 \left(\sin \left(\sqrt{1} \right) + \sin \left(\sqrt{3} \right) + \sin \left(\sqrt{5} \right) + \sin \left(\sqrt{7} \right) + \sin \left(\sqrt{9} \right) \right)$$
$$= 6.4643$$

(b)

4.

(a) Find $\int_{2}^{5} f(x) dx$, given $\int_{2}^{8} f(x) dx = 1.7$ and $\int_{5}^{8} f(x) dx = 2.5$

$$\int_{2}^{8} f(x) dx = \int_{2}^{5} f(x) dx + \int_{5}^{8} f(x) dx$$
$$\int_{2}^{5} f(x) dx = \int_{2}^{8} f(x) dx - \int_{5}^{8} f(x) dx$$
$$= 1.7 - 2.5$$
$$= -0.8$$

(b) Find $\int_{1}^{3} f(t) dt$, if $\int_{0}^{1} f(t) dt = 2$, $\int_{0}^{4} f(t) dt = -6$, $\int_{3}^{4} f(t) dt = 1$

$$\int_{0}^{4} f(t) = \int_{0}^{1} f(t) dt + \int_{1}^{3} f(t) dt + \int_{3}^{4} f(t) dt$$

5.

(a)
$$\int_0^2 \frac{1}{\sqrt{1+x^3}} dx$$
, $n = 10$

i. Trapezoidal rule

A. Break into subintervals

$$\Delta x = \frac{2 - 0}{10}$$
$$= 0.2$$

B. Area for a single trapezoid

$$A_i = \frac{\Delta x}{2} \left(f\left(x_i - 1\right) + f\left(x_i\right) \right)$$

C. Area for the full trapezoids

x	$y = \frac{1}{\sqrt{1+x^3}}$
0	1
0.2	0.99602
0.4	0.96946
0.6	0.90685
0.8	0.81325
1	0.70711
1.2	0.60545
1.4	0.51681
1.6	0.44298
1.8	0.38258
2	0.33333

D. Trapezoidal rule estimate

$$\int_0^2 \frac{1}{\sqrt{1+x^3}} dx \approx \frac{0.2}{2} \left[1 + 2 \left(0.9960 + \dots + 0.3826 \right) + 0.3333 \right]$$

$$= 14.01435$$

$$= 14.0144 \left(4.d.p. \right)$$

- (b) $\int_0^1 e^{-x^2} dx$, n = 10
 - i. Trapezoidal rule estimate
 - ii. Simpson's rule estimate

A. Break into subintervals

$$\Delta x = \frac{1 - 0}{10}$$
$$= 0.1$$

B. Find area for Simpson's rule

•	ind area for simpson's rate									
	x	$f\left(x\right) = e^{-x^2}$	Odd	Even						
	0	1								
	0.1		0.99005							
	0.2			0.96079						
	0.3		0.91393							
	0.4			0.85214						
	0.5		0.77880							
	0.6			0.69768						
	0.7		0.61263							
	0.8			0.52729						
	.9		0.44486							
	.10	0.36788	3.74027	3.0379						

C. Approximate with Simpson's rule

$$\int_0^3 \frac{1}{1+x^3} dx = \frac{0.1}{3} \left[1 + 0.36788 + 4 (3.74027) + 2 (3.0379) \right]$$
$$= 0.7468$$

6

(a)
$$\int_{\frac{1}{6}}^{\frac{1}{2}} \frac{dx}{(5+6x)^3}$$

$$\int_{\frac{1}{6}}^{\frac{1}{2}} \frac{dx}{(5+6x)^3} = \int_{\frac{1}{6}}^{\frac{1}{2}} \frac{1}{(5+6x)^3} dx$$
$$= \int_{\frac{1}{2}}^{\frac{1}{2}} (5+6x)^{-3} dx$$

i. Let
$$u = 5 + 6x$$

$$\frac{du}{dx} = 6$$
$$dx = \frac{du}{6}$$

ii. Find the bounds in terms of u

$$x = \frac{1}{2}$$

$$u = 5 + 6\left(\frac{1}{2}\right)$$

$$= 5 + 3$$

$$= 8$$

$$x = \frac{1}{6}$$

$$x = \frac{1}{6}$$

$$u = 5 + 6\left(\frac{1}{6}\right)$$

$$= 6$$

iii. Find the definite integral, in the form of u

$$\int_{\frac{1}{6}}^{\frac{1}{2}} \frac{dx}{(5+6x)^3} = \int_{\frac{1}{6}}^{\frac{1}{2}} (5+6x)^{-3} dx$$

$$= \int_{6}^{8} u^{-3} \frac{du}{6}$$

$$= \frac{1}{6} \int_{6}^{8} u^{-3} du$$

$$= \frac{1}{6} \left[\frac{u^{-2}}{-2} \right]_{6}^{8}$$

$$= \frac{1}{6} \left(\frac{8^{-2}}{-2} - \frac{6^{-2}}{-2} \right)$$

$$= \frac{7}{6912}$$

(b)
$$\int_{-2}^{2} \frac{x+6}{\sqrt{x+2}} dx$$

$$\int_{-2}^{2} \frac{x+6}{\sqrt{x+2}} dx$$

i. Let
$$u = \sqrt{x+2}$$
 (given)

$$\frac{du}{dx} = \frac{1}{2\sqrt{x+2}}$$

$$dx = 2\sqrt{x+2}du$$

$$u^2 = x + 2$$
$$x = u^2 - 2$$

ii. Find the bounds in terms of u

A.
$$x = 2$$

$$u = \sqrt{2+2}$$
$$= 2$$

B.
$$x = -2$$

$$u = \sqrt{-2+2}$$
$$= 0$$

iii. Find the integral

$$\int_{-2}^{2} \frac{x+6}{\sqrt{x+2}} dx = \int_{0}^{2} \frac{x+6}{\sqrt{x+2}} 2\sqrt{x+2} du$$

$$= 2 \int_{0}^{2} x+6 du$$

$$= 2 \int_{0}^{2} u^{2}-2+6 du$$

$$= 2 \int_{0}^{2} u^{2}+4 du$$

$$= 2 \left[\frac{u^{3}}{3}+4 u\right]_{0}^{2}$$

$$= 2 \left(\frac{2^{3}}{3}+4 (2)\right)$$

$$= \frac{64}{3}$$

- (c) $\int_0^3 \sqrt{9 x^2} dx$
 - i. $x = 3\cos\theta$.
 - A. Find $d\theta$

$$\frac{dx}{d\theta} = 3(-\sin\theta)$$
$$dx = -3\sin\theta d\theta$$

B. Find bounds in respect of θ

C.
$$x = 3$$

$$\theta = \cos^{-1} \frac{x}{3}$$
$$= \cos^{-1} 1$$
$$= 0$$

D.
$$x = 0$$

$$\theta = \cos^{-1} 0$$
$$= \frac{\pi}{2}$$

E. Find the integral

$$\int_{0}^{3} \sqrt{9 - x^{2}} dx = \int_{0}^{3} \sqrt{9 - (3\cos\theta)^{2}} dx$$

$$= \int_{0}^{3} \sqrt{9 - 9\cos^{2}\theta} dx$$

$$= \int_{0}^{3} \sqrt{9 (1 - \cos^{2}\theta)} dx$$

$$= \int_{0}^{3} 3\sqrt{1 - \cos^{2}\theta} dx$$

$$= 3 \int_{0}^{3} \sqrt{1 - (1 - \sin^{2}\theta)} dx$$

$$= 3 \int_{0}^{3} \sqrt{1 - (1 - \sin^{2}\theta)} dx$$

$$= 3 \int_{0}^{3} \sin\theta dx$$

$$= 3 \int_{0}^{3} \sin\theta (-3\sin\theta d\theta)$$

$$= -9 \int_{\frac{\pi}{2}}^{0} \sin\theta (-3\sin\theta d\theta)$$

$$= -9 \int_{\frac{\pi}{2}}^{0} 1 + \cos(2\theta)$$

$$= -\frac{9}{2} \int_{\frac{\pi}{2}}^{0} 1 + \cos(2\theta)$$

$$= -\frac{9}{2} [\theta - 2\sin(2\theta)]_{\frac{\pi}{2}}^{0}$$

$$= \frac{9}{4} \pi$$

- (d) $\int_4^6 \frac{12}{(x-3)(x+1)} dx$
 - i. Partial fractions!

$$\frac{12}{(x-3)(x+1)} = \frac{A}{(x-3)} + \frac{B}{(x+1)}$$
$$12 = A(x+1) + B(x-3)$$
$$A(x+1) + B(x-3) - 12 = 0$$

A. Find A, when x = 3

$$A(3+1) + B(3-3) - 12 = 0$$

$$4A - 12 = 0$$

$$A = \frac{12}{4}$$

$$= 3$$

B. Find B, when x = -1

$$A(-1+1) + B(-1-3) - 12 = 0$$

$$-4B - 12 = 0$$

$$B = -\frac{12}{4}$$

$$= -3$$

C. Find the fractions

$$\frac{12}{(x-3)(x+1)} = \frac{A}{(x-3)} + \frac{B}{(x+1)}$$
$$= \frac{3}{x-3} - \frac{3}{x+1}$$

ii. Find the integration

$$\int_{4}^{6} \frac{12}{(x-3)(x+1)} dx = \int_{4}^{6} \left(\frac{3}{x-3} - \frac{3}{x+1}\right) dx$$

$$= 3 \int_{4}^{6} \left(\frac{1}{x-3} - \frac{1}{x+1}\right) dx$$

$$= 3 \left[\int_{4}^{6} \frac{1}{x-3} dx - \int_{4}^{6} \frac{1}{x+1} dx\right]$$

$$= 3 \left[\ln(x-3)\right]_{4}^{6} - \left[\ln(x+1)\right]_{4}^{6}\right]$$

$$= 3 \left[\ln 3 - \ln 1 - (\ln 7 - \ln 5)\right]$$

$$= 3 \left[\ln 3 - \ln 1 - \ln 7 + \ln 5\right]$$

$$= 3 \left[\ln \frac{3*5}{7}\right]$$

$$= 3 \ln \frac{15}{7}$$