The Agave Cluster

Outline

- System information
- Initial login
- Transferring files
- Modules
- Batch System
- Job Monitoring
- Interactive mode
- Other resources
- Good citizenship

Generic Cluster Architecture

Shared and Distributed Memory

Shared memory (SMP): single address space. All processors have access to a pool of **shared memory**. Agave normal and phi nodes have 28 and 64 cores per node, respectively.

Methods of memory access:

- Bus, Crossbar

API: OpenMP

Distributed memory (MPP): each Processor has its own local memory. Must do message passing to exchange data between processors. (examples: Clusters)

Methods of memory access:

various topological interconnects

API: Message Passing Interface (MPI)

Graphical View of Agave

Concise Agave Cluster Status

Mon Jun 18 10:16:21 MST 2018

Active Jobs

236

Waiting Jobs

Parallel Nodes:

Node Utilization	224 of 268								
CPU Utilization	4805 of 7504								
Memory Utilization	1	22,050,513 of 34,304,000							
cg1-1	cg1-2	cg1-3	cg1-4	cg1-5	cg1-6	cg1-7	cg1-8	cg1-9	
cg1-10	cg1-11	cg1-12	cg1-13	cg1-14	cg1-15	cg1-16	cg1-17	cg1-18	
cg2-1	cg2-2	cg2-3	cg2-4	cg2-5	cg2-6	cg2-7	cg2-8	cg2-9	
cg2-10	cg2-11	cg2-12	cg2-13	cg2-14	cg2-15	cg2-16	cg2-17	cg2-18	
cg3-1	cg3-2	cg3-3	cg3-4	cg3-5	cg3-6	cg3-7	cg3-8	cg3-9	
cg3-10	cg3-11	cg3-12	cg3-13	cg3-14	cg3-15	cg3-16	cg3-17	cg3-18	
cg3-19	cg3-20	cg3-21	cg4-1	cg4-2	cg4-3	cg4-4	cg4-5	cg4-6	
4.7	4.0	4.0	1.10		1.10	4.40			

Agave system Information

- Agave ~7.5K Broadwell cores
 - >300 trillion floating point operations per second (TFLOPs)
 - >34TB aggregate RAM
 - >6PB aggregate disk
 - Omnipath Interconnect 100Gb/s
 - Located in ISTB1
- ~5K Xeon Phi cores
- GPU partition(s)
- Agave is a true *cluster* architecture
 - Each Broadwell node has 28 processors and 128GB of RAM (~4.5GB/CPU).
 - Programs needing more resources *must* use parallel programming
 - Normal, single processor applications *do not go faster* on Agave

Initial Login

- From outside ASU campus, use VPN: download from sslvpn.asu.edu
- Login with SSH or Putty (putty.org)

```
ssh ASURITE@agave.asu.edu
```

- Connects you to a login node
- Don't overwrite ~/.ssh/authorized_keys
 - Feel free to add to it if you know how to use it:
 - ssh-keygen
 - ssh-copy-id -i ~/.ssh/id_rsa.pub ASURITE@agave.asu.edu
 - SSH is used for job start up on the compute nodes. Mistakes can prevent your jobs from running
- For X forwarding, use ssh -X
- Nomachine: rcstatus.asu.edu/agave/howto
 - Click on "Logging in to Agave cluster with NoMachine Remote Desktop"
 - Get nomachine client and nomachine profile
- Xming, MobaXterm

Transferring files

```
    Secure copy

  scp projectfile
   user1@agave.asu.edu:/home/user1/projectdir
  scp -r projectdir
   user1@agave.asu.edu:/home/user1/projectdir
• rsync -e ssh for large file transfers

    rsync -avtr bigfiledir

 user1@agave.asu.edu:/home/user1/projectdir
Winscp (winscp.net)
• ftp: Filezilla
```


Packages

- Modules are used to setup your PATH and other environment variables
- They are used to setup environments for packages & compilers

• Multiple compiler families available, so make sure you are consistent between libraries, source and run script!

Batch Submission Process

Queue: Job script waits for resources on Server Compute nodes execute the job script, launching MPI processes

Launch: contact each compute node to start executable (e.g. a.out)

SLURM Commands

sbatch,	Submit a job
srun, salloc	
squeue	Check on the status of jobs
sinfo	Get info on nodes/partitions
scancel	Delete running and queued jobs
scontrol	Alter/hold/release jobs
	man pages for all of these commands

showjobs	Running jobs with queue info				
longjob <jobid></jobid>	Details on job				

SLURM: OpenMP "job" Script

```
#!/bin/bash
                                     ·······<del>≻</del> # of cores ∜
#SBATCH -n 1
#SBATCH -J hello
                                     Job name
#SBATCH -o %j.OUT }------
                                    stdout file name, %j = job id
#SBATCH -e %j.ERROR }------
                                     ★ stderr file name, %j = job id
#SBATCH -t 0-00:15:00
                                       ···► Max Run Time (15 minutes)
module load intel/2018x
export OMP_NUM_THREADS=1
                                      Execution commands
./hello
```


SLURM: OpenMP Job Script II

```
#!/bin/bash
                  }------# # of cores, architecture
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=28
                 #SBATCH --time=96:00:00
module load openmpi/3.0.0-gnu-7x
export OMP NUM THREADS=28
export OMP DYNAMIC=TRUE
time srun -mpi=pmi2 lmp_g++_openmpi -in in.eam -v x 2
```


Normal and wildfire queues

• The mybalance command:

[user1@agave1 ~]\$ mybalance

User : user1

CPU Hours Allocated : 25000

CPU Hours Used : 526.36

CPU Hours Available : 24473.63

- If the resource request for your submitted job (#CPUs X walltime requested) fits within your available CPU hours, the job is non-preemptable, i.e. will run uninterrupted in the normal queue.
- If your resource request exceeds the available CPU hours, the job is **preemptable**, and will run in the **wildfire** queue.
- Limit of 50 running jobs per user

SLURM partitions and environment

- Serial and parallel partitions
 - No need to specify automatically determined based on requested resources
- #SBATCH -p phi
- #SBATCH -p physicsgpul # Use physicsgpul partition
- #SBATCH -p cidsegpul # Use cidsegpul partition
 #SBATCH -q wildfire # Run job in wildfire QOS queue
 #SBATCH --gres=gpu:2

Variable	Purpose
SLURM_JOB_ID	Batch job id
SLURM_SUBMIT_DIR	Directory where job was submitted
SLURM_JOB_NODELIST	Filename containing list of nodes
SLURM_ARRAY_TASK_ID	Slurm array index (next slide)

SLURM arrays and small jobs

- Arrays can loop to submit many jobs: --array
- sbatch --array=0-20 job
 (in job) ./executable.x < \$SLURM_ARRAY_TASK_ID.inp
 or ./executable2.x \$SLURM ARRAY TASK ID
- For single line short jobs: --wrap

```
sbatch -n 2 --wrap="module load gcc/7x;gcc -fopenmphello_world.c;export OMP_NUM THREADS=2;./a.out"
```


Matlab Job Script

```
#!/bin/bash
#SBATCH -n 1
                                # of cores
#SBATCH -J hello }
                                Job name
#SBATCH -o %j.OUT
                                 Output file name
#SBATCH -e %j.ERROR

→ Max Run Time (4 hours)

#SBATCH -t 0-04:00:00
module load matlab/2018a
#Use one of the two commands below
matlab –nodisplay –nodesktop –nosplash < hello.m
matlab –nodisplay –nodesktop –nosplash –r "hello, quit"
```


R Job Script

```
#!/bin/bash
#SBATCH -n 1
                              # of cores
#SBATCH -J hello
                              Job name
#SBATCH -o %j.OUT
#SBATCH -e %j.ERROR }-
                               Output file name
                                   #SBATCH -t 0-04:00:00
module load r/3.5.1
#Use one of the two commands below
R --no-save --quiet --slave < regression.r
Rscript regression.r 20000
```


NAMD "job" Script

```
#!/bin/bash
                               # of nodes
#SBATCH -N 1
#SBATCH -n 28
                                # of cores
#SBATCH -J namd
                                Job name
#SBATCH -o %j.OUT
                                 Output file name
#SBATCH -e %j.ERROR
                                     Max Run Time (1 day)
#SBATCH -t 1-00:00:00
module load namd/2.13-mpi
namd2 qwikmd_equilibration_0.conf
```


NAMD GPU "job" Script

```
#!/bin/bash
#SBATCH -n 1
                                 # of CPU cores
#SBATCH -J namd
                                 Job name
#SBATCH -o %j.OUT
                                   Output file name
                                     ····• partition
#SBATCH -p asinghargpu1 }
#SBATCH -q wildfire
                                    Choose "wildfire" for private partition
#SBATCH --gres=gpu:1
                                     # of GPUs
#SBATCH -e %j.ERROR
#SBATCH -t 0-12:00:00
                                      ► Max Run Time (12 hours)
module load namd/2.13b1-cuda
namd2 qwikmd_equilibration_0.conf
```


Job Monitoring (squeue utility)

[user1@agave1 ~]\$ squeue

JOBID PARTITION	NAME U	SER ST	TIME	NODES	NODELIST (REASON)
208952_[0-199]	serial COLD_3	3 mrline	PD	0:00	1 (BeginTime)
207709	serial R-px-OS	a epopplet	PD	0:00	<pre>1 (AssocMaxJobsLimit)</pre>
207710	serial R-px-OS	a epopplet	PD	0:00	<pre>1 (AssocMaxJobsLimit)</pre>
207711	serial R-px-OSa	a epopplet	PD	0:00	<pre>1 (AssocMaxJobsLimit)</pre>
207712	serial R-px-OSa	a epopplet	PD	0:00	<pre>1 (AssocMaxJobsLimit)</pre>
207713	serial R-px-OS	a epopplet	PD	0:00	<pre>1 (AssocMaxJobsLimit)</pre>

•

Basic squeue options:

-u username Display jobs belonging to specified user-l, --long Display extended job information

myjobs

To kill a job:

[user1@agave1 ~]\$ scancel <JOBID>

Interactive Mode

- interactive Interactive mode
- screen Detach "^ad" interactive jobs.
 Reattach with screen -r. (Also tmux)
 - 1. screen (on login node)
 - 2. interactive
- •interactive -N 1 -n 28 Entire Broadwell node
- interactive -q wildfire -p asinghargpul -- gres=gpu:1 -t4:00:00 GPU node

Mount point	User Access Limit	Lifetime		
/home	1TB quota	Project		
/scratch	no quota	30 days		

NSF sponsored resources: XSEDE, OSG

- Stampede2 (TACC)
 - 368280 CPUs
 - 12.8 PFLOPs
 - Xeon Phi and Skylake
- Comet (SDSC)
 - 46752 Haswell CPUs 2 PFLOPs
 - Comet GPU 104 TFLOPs
- Bridges (Pitt)
 - Bridges GPU 900 TFLOPs
 - Bridges Large Memory nodes 3TB and 12TB RAM nodes
- xsede.org click on XUP, "create account"
- Open Science Grid large-scale single node deploy
- Email support@hpchelp.asu.edu to reach ASU Campus Champions for assistance

Good citizenship

- Shared login node: Do not compute on the login nodes
- Shared filesystem: Run I/O intensive jobs on scratch
- Shared network: Do not start 20 scps
- Shared compute resource: Give good estimate of runtime. Test submission scripts before submitting them at large scale.
- Shared help desk: Do some homework before submitting ticket. Do not submit multiple tickets on same topic.
 Describe issue in detail (e.g. job ID, full path to failing sbatch script, etc.). Be patient.

Conclusion

For any assistance please contact us:

support@hpchelp.asu.edu

Office hours: GWC546 1-4pm Tues (and 1-4pm Wed during academic year)

Info at: researchcomputing.asu.edu
and rcstatus.asu.edu/agave

