

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

Nonlinear Wave Choked Inlets

Blacksburg, Virginia 24061

Semiannual Progress Report

Period: October 1, 1978 - April 30, 1979

The two basic changes that were done to the quasi-one dimensional flow program, where the replacement of the Runge-Kutta subroutine with a subroutine using a modified divided difference form of the Adams Pece Method and the replacement of the matrix inversion routine with a pseudo-inverse routine. The following system of first-order differential equations is solved in the program:

$$A \frac{dy}{dx} = B, \text{ where } A \text{ is a } n \times n \text{ matrix,}$$

y and B are n -component column vectors.

At the throat of the duct, if the flow is approaching choked conditions then $\det A \rightarrow 0$ and the system is singular. The pseudo-inverse routine determines, towards the solution of the linear system $AZ = B$, the singular value decomposition, $A = USV^T$. Householder biadiagonalization and a variant of the QR algorithm are used. The output from this routine is S , V , and G , where $G = U^T B$; S is diagonal and V, U are orthogonal; S also determines whether A is singular. If one or more of the elements of S is zero then A is singular. In the subroutine, if $S_{ii} \leq 10^{-14}$ then S_{ii}^{-1} is set equal to zero. The program then solves the following system

$$SV^T \frac{dy}{dx} = U^T B = G$$

$$V^T \frac{dy}{dx} = S^{-1}G = S_{ii}^{-1}G_i$$

(NASA-CR-158691) NONLINEAR WAVE CHOKED
INLETS Semiannual Progress Report, 1 Oct.
1978 - 30 Apr. 1979 (Virginia Polytechnic
Inst. and State Univ.) 9 p HC A02/MF A01

Unclassified
CSCL 20D G3/34 22260

N79-25343

If $\frac{G_i}{S_{ii}} \geq 100$ the program stops since this indicates that y' is becoming too large for the integration routine to handle. Therefore incompatible reflection coefficients (c_R 's) have been chosen. If the above check is passed, then y' is integrated. Solving for y' we have

$$y' = VS^{-1}G$$

Now these values are passed to the integration routine. Unlike the Runge-Kutta routine which would integrate to the end of the duct even if incorrect c_R 's were input, the present routine will not pass through the throat. The first cases considered were for one reflection coefficient where

$$\rho_{11}^L(0) = c_R \rho_{11}^R(0), \text{ and } c_R \rho_{11}^R(0)$$

were specified. The initial conditions at $x = 0$ for the higher harmonics were set equal to zero.

By varying c_R the following plot was obtained showing the region of correct c_R 's. This region was determined using two harmonics. Later cases using four and ten harmonics indicated that the region did not shrink by much.

The following examples compare the original Runge-Kutta version of the program with the modified version with the Adams-Pece and pseudo-inverse subroutines. The input to both runs is identical except for the c_R 's. For the Runge-Kutta case, $c_R = (0., 0.)$ and the results are for two cases, two and four harmonics. It is seen that as the throat is approached $\det A \rightarrow 0$ and there is a substantial growth in the amplitudes of the harmonics. In the case of four harmonics there are very large jumps in the amplitudes near the throat. This indicates that incorrect c_R 's were chosen.

The example using the modified program was run with $c_R = (-.5, -3.3)$. As is seen there are no large oscillations in the harmonics near the throat. This implies that the integration to the right end is valid. In the former cases, the Runge-Kutta routine could not detect the singularity and was integrating across it. Therefore, the values obtained by the Runge-Kutta method in the vicinity of the throat to the right end are incorrect. If this occurs in the new version, it will terminate at the throat where

$$RU_n = U_{1n} - \frac{c_0}{\rho_0} \rho_{1n}$$

$$RT_n = T_{1n} - \frac{(\gamma-1)T_0}{\rho_0} \rho_{1n}$$

$$\omega = 1$$

$$M_0 = -.4$$

$$\rho_I = .005$$

$\phi_m(c_R)$

ORIGINAL PAGE IS
OF POOR QUALITY

$N_0 = 7 \pm$
 ± 0.5
 $\omega_{\text{center}} =$

$NH = 2$

Traces of left
sidelobes will
overcome with
nulls and the power
will reduce to
integrate through
the duct.

3

NUMBER OF HARMONICS CONSIDERED = 4

$$W = 1 \cdot 000 \quad XMC0 = -0 \cdot 4000 \quad XF = 2 \cdot 0000 \quad A2 = 0 \cdot 100 \quad DD = 1 \cdot 000 \\ CR = -0 \cdot 5000 \quad -30CC \quad RI = C \cdot 0050 \quad NX = 80 \quad NXI = 80 \quad XMU = 0 \cdot 0$$

	FIRST	SECOND	THIRD
HARMONIC	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
TONAL	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
CHROMATIC	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

JEFF OUTPUT AI 3/05/79 16:22 JEFF

3/05/79 16:22 JEFF V 121

93 RECS VA TECH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

89
1942
561
665
23176
1034
19181
774
16179
14967
13916
13006
12233
11984
110508
10115
09794
094547
09347
09205
09110
091055
090435
09044
09079
09135
092104
09294
09400
09511
09630
096755
09884
10016

0	45129
0	54224
0	60122
0	65366
0	64893
0	73769
0	73793
0	79662
0	82463
0	84669
0	86641
0	88428
0	88373
0	91611
0	93068
0	94471
0	95840
0	97192
0	98544
0	44967
1	01296
1	02720
1	04160
1	05715
1	07303
1	08964
1	10705
1	12533
1	14458
1	16486
1	16626
1	20885
1	23273
1	25799
1	28470

13898
14500
14502
14504
14506
14508
14510
14512
14514
14516
14518
14520
14522
14524
14526
14528
14530
14532
14534
14536
14538
14540
14542
14544
14546
14548
14550
14552
14554
14556
14558
14560
14562
14564
14566
14568
14570
14572
14574
14576
14578
14580
14582
14584
14586
14588
14590
14592
14594
14596
14598
14600
14602
14604
14606
14608
14610
14612
14614
14616
14618
14620
14622
14624
14626
14628
14630
14632
14634
14636
14638
14640
14642
14644
14646
14648
14650
14652
14654
14656
14658
14660
14662
14664
14666
14668
14670
14672
14674
14676
14678
14680
14682
14684
14686
14688
14690
14692
14694
14696
14698
14700
14702
14704
14706
14708
14710
14712
14714
14716
14718
14720
14722
14724
14726
14728
14730
14732
14734
14736
14738
14740
14742
14744
14746
14748
14750
14752
14754
14756
14758
14760
14762
14764
14766
14768
14770
14772
14774
14776
14778
14780
14782
14784
14786
14788
14790
14792
14794
14796
14798
14800
14802
14804
14806
14808
14810
14812
14814
14816
14818
14820
14822
14824
14826
14828
14830
14832
14834
14836
14838
14840
14842
14844
14846
14848
14850
14852
14854
14856
14858
14860
14862
14864
14866
14868
14870
14872
14874
14876
14878
14880
14882
14884
14886
14888
14890
14892
14894
14896
14898
14900
14902
14904
14906
14908
14910
14912
14914
14916
14918
14920
14922
14924
14926
14928
14930
14932
14934
14936
14938
14940
14942
14944
14946
14948
14950
14952
14954
14956
14958
14960
14962
14964
14966
14968
14970
14972
14974
14976
14978
14980
14982
14984
14986
14988
14990
14992
14994
14996
14998
14999

ORIGINAL PAGE IS
OF POOR QUALITY

Original Variation

NUMBER OF HARMONICS CONSIDERED = 2

$N = 1$ $G_1 =$ $X_{MC} =$ $X_{L} =$ $X_{FE} =$ $X_{KL} =$ $X_{CE} =$ $X_{DE} =$ $X_{EL} =$ $X_{KL} =$ $G_2 =$ $C =$ $F =$ $L =$ $M =$ $E =$ $D =$ $B =$ $A =$

TRIG
HARM
TAN

ORIGINAL PAGE IS
OF POOR QUALITY

$$XMC = 1 \cdot 300 \quad XMC = -0 \cdot 4 \cdot 300 \quad XF = 2 \cdot 00 \quad XA = 2 \cdot 00 \\ XN = 60 \quad NXI = 60 \quad NXL = 60 \quad XMU = 6 \cdot 0$$

	100	90	80	70	60	50	40	30	20	10	0
W	100	90	80	70	60	50	40	30	20	10	0
A	100	90	80	70	60	50	40	30	20	10	0
C	100	90	80	70	60	50	40	30	20	10	0
H	100	90	80	70	60	50	40	30	20	10	0

କାହାର ପାଇଁ କାହାର ପାଇଁ କାହାର ପାଇଁ
କାହାର ପାଇଁ କାହାର ପାଇଁ କାହାର ପାଇଁ
କାହାର ପାଇଁ କାହାର ପାଇଁ କାହାର ପାଇଁ
କାହାର ପାଇଁ କାହାର ପାଇଁ କାହାର ପାଇଁ

וְבָתְרֵבָה כִּי כַּאֲמָרָה בְּבָבָבָה
בְּבָבָבָה כִּי כַּאֲמָרָה בְּבָבָבָה

ORIGINAL PAGE IS
OF POOR QUALITY

