1 Distanțe

1. Distanța Manhattan:

$$L_1((x_1, x_2, x_3, \dots, x_n), (y_1, y_2, y_3, \dots, y_n)) = \sum_{i=1}^n |x_i - y_i|$$

2. Distanța Euler:

$$L_2((x_1, x_2, x_3, \dots, x_n), (y_1, y_2, y_3, \dots, y_n)) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

3. Distanța Minkowski:

$$L_p((x_1, x_2, x_3, \dots, x_n), (y_1, y_2, y_3, \dots, y_n)) = \sqrt[p]{\sum_{i=1}^n |x_i - y_i|^p}$$

2 Metrici

2.1 Clasificare

1. Precizie: (DOAR cazul binar) $P = \frac{TP}{TP + FP}$

2. Recall: (DOAR cazul binar) $R = \frac{TP}{TP + FN}$

3. Specificitate: (DOAR cazul binar) $S = \frac{TN}{TN + FP}$

4. Acuratețe: $A = \frac{T}{T+F}$

5. F_{β} -score (DOAR cazul binar) $F_{\beta} = (1 + \beta^2) \cdot \frac{P \cdot R}{(\beta^2 \cdot P) + R}$

2.2 Regresie

1. Corelația Kendall-Tau: $\tau_a = \frac{P-Q}{n(n-1)}$

$$P = |\{(i, j) : 1 \le i < j \le n, (x_i - x_j^2)(y_i - y_j) > 0\}|$$
 (numărul de perechi concordante) $Q = |\{(i, j) : 1 \le i < j \le n, (x_i - x_j)(y_i - y_j) < 0\}|$ (numărul de perechi disconcordante)

3 Bayes

1.
$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

2.
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

3. Teoremă: Clasificatorul Bayes h_{Bayes} este optim. (i.e. $\operatorname{error}_{\text{true}}(h_{\text{Bayes}}) \leq \operatorname{error}_{\text{true}}(h), \forall h$)

4 Funcții Kernel

Definiție: O funcție finit pozitiv semi-definită $k: X \times X \to \mathbb{R}$ pentru care există o funcție de scufundare $\phi: x \in \mathbb{R}^m \to \phi(x) \in F$ cu F - spațiu Hilbert astfel încât se verifică relația

$$k(x,z) = \langle \phi(x), \phi(z) \rangle$$

1

4.1 Exemple

- 1. RBF (Gaussiană): $k(x, z) = e^{-\frac{||x-z||^2}{2\sigma^2}}$
- 2. Intersecție: $k(x,z) = \sum_{i} \min\{x_i, z_y\}$
- 3. Hellinger: $k(x,z) = \sum_{i} \sqrt{x_i \cdot z_i}$
- 4. **PQ**: k(x,z) = 2(P-Q)

4.2 Obținerea de noi funcții kernel

- (i) $k(x,z) = k_1(x,z) + k_2(x,z)$
- (ii) $k(x,z) = ak_1(x,z)$
- (iii) $k(x,z) = k_1(x,z) \cdot k_2(x,z)$
- (iv) $k(x,z) = f(x) \cdot f(z)$
- (v) k(x,z) = x'Bz

k1, k2 - funcții kernel

a - constantă reală pozitivă

 \boldsymbol{f} - funcție cu valori reale

B - matrice simetrică pozitiv semidefinită

4.3 Normalizarea datelor

- 1. Forma primală: $\frac{\phi(x)}{||\phi(x)||}$
- 2. Forma duală: $\frac{k(x_i,z_j)}{\sqrt{k(x_i,z_i)\cdot k(x_j,z_j)}}$
- 3. Matricea kernel: $\frac{K_{ij}}{\sqrt{K_{ii} \cdot K_{jj}}}$
- 4. Forma duală a unei matrici $X \colon X \cdot X^T$

5 Regresii

- 1. Costul regresiei Lasso: $cost(y, yhat) = \sum_{i} (yhat_i y_i)^2 + \alpha ||W||^1$
- 2. Costul regresiei Ridge: $cost(y, yhat) = \sum_{i} (yhat_i y_i)^2 + \alpha ||W||^2$

6 Erori

- 1. Mean Squared Error (MSE): $MSE(y, yhat) = \frac{1}{n} \sum_{i=1}^{n} (yhat_i y_i)^2$
- 2. Mean Absoulte Error (MAE): $MAE(y, yhat) = \frac{1}{n} \sum_{i=1}^{n} |yhat_i y_i|$

2

7 Calcule convoluții

• Input: $H \times W \times D$

• Filtre: x filtre de $y \times y$

 \bullet Stride: z

 \bullet Padding: p

- 1. Număr parametrii strat: $n_{\text{parametrii}} = (y \cdot y \cdot D + 1) \cdot x$
- 2. Dimensiune output: $O \times O \times D$, unde $O = (W y + 2 \cdot p)/z + 1$ (+1 vine de la bias)

8 Perceptroni

- 1. **Output**: $Y = X \cdot W + b$ X - input, W - weights, b - bias.
- 2. Reactualizare weights: $NW = W l \cdot G$ W - weights, G - gradienți, l - learning rate