Session 2: Linear transformations and matrices

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. Recap of the videos
- 2. Operation on matrices
- 3. Kernel and Image
- 4. Why do we care about all these things?

 Solving linear systems

Linear maps & matrices

Linear maps & matrices 2/2

Two sides of the same coin

$$\begin{array}{c} \text{Matrix} \\ \widehat{L} \in \mathbb{R}^{n \times m} \\ \\ \hline \\ - \\ \\ l_{n_1 1} \\ \hline \\ l_{n_1 n_2} \\ \\ \end{array}$$

Linear maps & rnatrices

Two sides of the same coin

L(e1) = 2 e1 = Pm

Rotations in \mathbb{R}^2

Let $\theta \in \mathbb{R}$. The rotation $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ of angle θ about the origin is linear.

Exercise: what is the canonical matrix of R_{θ} ?

$$R_{\Theta} = \begin{pmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{pmatrix}$$

$$R_{o}\begin{pmatrix} \begin{pmatrix} 2 \\ y \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} 2y \\ y \end{pmatrix}$$

Linear maps & matrices

Operations on matrices

Operations on matrices 5/27

Addition and scalar multiplication

Sum of two matrices of the **same** dimensions:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} + \begin{pmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,m} \end{pmatrix} = \begin{pmatrix} a_{1,1} + b_{1,1} & \cdots & a_{1,m} + b_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} + b_{n,1} & \cdots & a_{n,m} + b_{n,m} \end{pmatrix}$$

• Multiplication by a scalar λ :

$$\lambda \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} = \begin{pmatrix} \lambda a_{1,1} & \cdots & \lambda a_{1,m} \\ \vdots & \ddots & \vdots \\ \lambda a_{n,1} & \cdots & \lambda a_{n,m} \end{pmatrix}$$

Operations on matrices 6/27

A new vector space!

Proposition

- $\mathbb{R}^{n \times m}$ is a vector space.

Proof. shetor

[1]0 con

Operations on matrices

Product of two matrices

Warning:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,m} \end{pmatrix} \neq \begin{pmatrix} a_{1,1} & b_{1,1} & \cdots & a_{1,m} \times b_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & b_{n,1} & \cdots & a_{n,m} \times b_{n,m} \end{pmatrix}$$

We will never consider such notion of product because it doesn't have any "geometrical meaning"

Operations on matrices 8/27

Matrix product

Operations on matrices 9/27

Matrix product

Theorem

Let $L \in \mathbb{R}^{n \times m}$ and $M \in \mathbb{R}^{m \times k}$.

The entries matrix product LM are given by

Operations on matrices 10/27

Proof

Operations on matrices

Rotations in \mathbb{R}^2

The R_a and R_b denote respectively the matrices of the rotations of angles a and b about the origin, in \mathbb{R}^2 .

 $R_{a} = \begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix}$ **Exercise**: Compute the product R_aR_b .

1st method RaRb = $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. $\begin{pmatrix} \cos b & -\sin b \\ \sin b & \cos b \end{pmatrix}$ = $\begin{pmatrix} \cos a & \cos b - \sin a \sin b \\ \cos b & \sin \alpha + \cos a \sin b \end{pmatrix}$

2nd method: Ra Rb is the composition of Rb and Ra which is a rotation of angle arb:

RaRb = Ratb = (cos(a+b) - sin(a+b))(As a by product: cos(a+b) = cosa cosb - sina sinb)

Matrix product properties

Let
$$A, B \in \mathbb{R}^{n \times m}$$
 and $C, D \in \mathbb{R}^{m \times k}$.

$$(A+B) \cdot C = A \cdot C + BC$$

$$A(C+D) = AC + AD$$

$$Recall Idn = \begin{pmatrix} 1 & (o) \\ (o) & 1 \end{pmatrix} : \int Idn A = A$$

$$A \cdot Idn = A$$

Can we divide two matrices?

do we have
$$B = C$$
?

Take: $A = (11)$ $B = (11$

Take:
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$AC = 0$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$AC = 0$$

$$AC = 0 \qquad \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = AC \quad \text{but} \quad C \neq B.$$

Invertible matrices

Definition (Matrix inverse)

A **square** matrix $M \in \mathbb{R}^{n \times n}$ is called *invertible* if there exists a matrix $M^{-1} \in \mathbb{R}^{n \times n}$ such that

$$MM^{-1} = M^{-1}M = \mathrm{Id}_n.$$

Such matrix M^{-1} is unique and is called the *inverse* of M.

Exercise: Let $A, B \in \mathbb{R}^{n \times n}$. Show that if $AB = \mathrm{Id}_n$ then $BA = \mathrm{Id}_n$.

If
$$AB = AC$$
 and A is invertible
then $A^{-1}AB = A^{-1}AC$ hence $B = C$

Operations on matrices 15/2

Kernel and image

Kernel and image 16/27

Definitions

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation.

Definition (Kernel)

The kernel Ker(L) (or nullspace) of L is defined as the set of all

vectors
$$\underline{v}\in\mathbb{R}^m$$
 such that $\underline{L}(v)=0$, i.e.
$$\ker(L)\stackrel{\mathrm{def}}{=}\{v\in\mathbb{R}^m\,|\,L(v)=0\}.$$

Definition (Image)

The image Im(L) (or column space) of L is defined as the set of all vectors $u \in \mathbb{R}^n$ such that there exists $v \in \mathbb{R}^m$ such that L(v) = u.

Kernel and image

Picture

Kernel and image

18/27

Remarks

Let $L:\mathbb{R}^m o\mathbb{R}^n$ be a linear transformation.

Proposition

- $ightharpoonup \operatorname{Ker}(L)$ is a subspace of \mathbb{R}^m .
- $\operatorname{Im}(L)$ is a subspace of \mathbb{R}^n .

proved in HW2.

Remark: $\operatorname{Im}(L)$ is also the Span of the columns of the matrix representation of L.

$$L = \begin{pmatrix} 1 & 1 & 1 \\ C_1 & \dots & C_m \end{pmatrix} = a_1 C_1 + \dots + a_m C_m$$

$$Im(2) = Span(c_4, ..., c_m)$$

Kernel and image 19/27

Example: orthogonal projection

Kernel and image 20/27

Linear systems

Assume that we given a dataset:

$$a_i = (a_{i,1}, \dots, a_{i,m}) \in \mathbb{R}^m, \quad y_i \in \mathbb{R} \quad \text{for} \quad i = 1, \dots, n.$$

We would like to find $x \in \mathbb{R}^m$ such that

$$x_1a_{i,1}+\cdots+x_ma_{i,m}=y_i$$
 for all $i\in\{1,\ldots,n\}$.

Matrix notation

Let's write

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} \in \mathbb{R}^{n \times m} \quad \text{and} \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n.$$
Then the system of equations becomes $A = y$.

• Case 1: $y \notin \text{Im}(A)$: my system does not

have cony solution.

. Case 2: y E Im (A), then there exists

20 € Rm such that A20 = q.

Let's find all solutions!

Why do we care about this?

24/27

Conclusion: 3 possible cases

- 1. $y \notin \operatorname{Im}(A)$: there is no solution to Ax = y.
- 2. $y \in \text{Im}(A)$, then there exists $x_0 \in \mathbb{R}^m$ such that $Ax_0 = y$. The set of solutions in then

$$S = \{x_0 + v \mid v \in \operatorname{Ker}(A)\}.$$

- If $Ker(A) = \{0\}$, then $S = \{x_0\}$: x_0 is the unique solution.
- If $Ker(A) \neq \{0\}$, then Ker(A) contains infinitely many vectors: there are infinitely many solutions.

$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ -1 & 5 & 2 & 0 \end{pmatrix} \in \mathbb{R}^{n \times m} \quad \text{and} \quad y = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \in \mathbb{R}^{n}.$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{4} = 1 \\ (\chi_{1}) & + \chi_{3} - \chi_{4} = 1 \\ (\chi_{2}) & + \chi_{3} - \chi_{4} = 1 \end{cases} \quad (\chi_{2})$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{2} & + \chi_{4} = 1 \end{cases} \quad (\chi_{2})$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \end{cases} \quad (\chi_{2}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \end{cases} \quad (\chi_{2}) - \chi_{3} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \end{cases} \quad (\chi_{2}) - \chi_{3} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \end{cases} \quad (\chi_{2}) - \chi_{3} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \end{cases} \quad (\chi_{2}) - \chi_{3} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) & + \chi_{3} = 1 \end{cases} \quad (\chi_{2}) - \chi_{3} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{2}) - \chi_{3} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{2}) - \chi_{3} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{3} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1}) - \chi_{2} & + \chi_{3} = 1 \\ (\chi_{1}) - \chi_{3} & + \chi_{4} = 1 \end{cases} \quad (\chi_{1}) - \chi_{2} = 1$$

$$\begin{cases} (\chi_{1$$

The set of solution
$$S = \left\{ \begin{array}{c} 1 - \alpha_3/2 \\ 1 - \alpha_3/2 \\ 1 \end{array} \right\}$$

$$= \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + 0$$

$$= \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + 0$$

$$= \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + 0$$

$$= \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right\} + \left\{$$

Why do we care about this?

27/27

