(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 July 2001 (19.07.2001)

PCT

(10) International Publication Number WO 01/51659 A2

(51) International Patent Classification7:

C12Q 1/68

(21) International Application Number: PCT/IB01/00116

(22) International Filing Date: 11 January 2001 (11.01.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/175,854

13 January 2000 (13.01.2000) US

(71) Applicant (for all designated States except US): GENSET [FR/FR]; Intellectual Property Dept., 24, rue Royale, F-75008 Paris (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHU, Tom [US/US]; 5394 Camino Playa Norte, San Diego, CA 92124 (US). BLUMENFELD, Marta [FR/FR]; 5, rue Tagore, F-75013 Paris (FR). COHEN, Daniel [FR/FR]; 1, boulevard Richard Wallace, F-92200 Neuilly-sur-Seine (FR). (74) Common Representative: GENSET; Intellectual Property Dept., 24, rue Royale, F-75008 Paris (FR).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

 \forall

(54) Title: BIALLELIC MARKERS DERIVED FROM GENOMIC REGIONS CARRYING GENES INVOLVED IN CENTRAL NERVOUS SYSTEM DISORDERS

(57) Abstract: The invention provides polynucleotides including biallelic markers derived from genes involved in CNS disorders and from genomic regions flanking those genes. Primers hybridizing to regions flanking these biallelic markers are also provided. This invention also provides polynucleotides and methods suitable for genotyping a nucleic acid containing sample for one or more biallelic markers of the invention. Further, the invention provides methods to detect a statistical correlation between a biallelic marker allele and a phenotype and/or between a biallelic marker haplotype and a phenotype.

BIALLELIC MARKERS DERIVED FROM GENOMIC REGIONS CARRYING GENES INVOLVED IN CENTRAL NERVOUS SYSTEM DISORDERS

FIELD OF THE INVENTION

The present invention is in the field of pharmacogenomics, and is primarily directed to biallelic markers that are located in or in the vicinity of genes that play a role in disorders of the brain and nervous system and to the uses of these markers. The present invention encompasses methods of establishing associations between these markers and central nervous system (CNS) disorders such as psychiatric disorders and neurodegenerative diseases as well as associations between these markers and treatment response to a variety of therapeutic agents. The present invention also provides means to determine the genetic predisposition of individuals to such diseases and means to predict responses to such drugs.

BACKGROUND OF THE INVENTION

Advances in the technological armamentarium available to basic and clinical investigators have enabled increasingly sophisticated studies of brain and nervous system function in health and disease. Numerous hypotheses both neurobiological and pharmacological have been advanced with respect to the neurochemical and genetic mechanisms involved in central nervous system (CNS) disorders, including psychiatric disorders and neurodegenerative diseases. However, CNS disorders have complex and poorly understood etiologies, as well as symptoms that are overlapping, poorly characterized, and difficult to measure. As a result future treatment regimes and drug development efforts will be required to be more sophisticated and focused on multigenic causes, and will need new assays to segment disease populations, and provide more accurate diagnostic and prognostic information on patients suffering from CNS disorders.

A. Neurological Basis of CNS Disorders

Neurotransmitters serve as signal transmitters throughout the body; therefore, diseases that affect neurotransmission can have serious consequences. For example, for over 30 years the leading theory to explain the biological basis of many psychiatric disorders such as depression has been the monoamine hypothesis. This hypothesis proposes that depression is partially due to a deficiency in one of the three major biogenic monoamines, namely dopamine, norepinephrine and serotonin. However, this hypothesis has been replaced by one that takes into account the overall function of the brain and no longer only considers a single neuronal system.

Dopamine

5

10

15

20

25

30

35

Dopamine is synthesized via the hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA), involving the enzyme tyrosine hydroxylase (TH) and catechol O-methyl transferase (see Table 2: TH and COMT). Tyrosine hydroxylase is the rate-limiting enzyme in the synthesis

of catecholamines such as dopamine and norepinephrine. Dopamine and the enzymes involved in its biosynthesis and degradation are known to be involved in the pathophysiology of a depression, schizophrenia and Parkinson's disease. For example, it is believed tyrosine hydroxylase may be involved in the pathophysiology of psychiatric disorders and positive associations have been reported for tyrosine hydroxylase gene markers in mood disorders. However, a recent study was unable to conclude tyrosine hydroxylase variants are related with depressive symptomatology in subjects affected by mood disorder (Serretti A. et al.; American Journal of Medical Genetics 81(2):127-130, 1998).

Dopamine, released from the nerve terminals, is largely recaptured by a re-uptake mechanism involving dopamine transporter (DAT) (see Table 2: DAT). Following re-uptake, dopamine is metabolized by monoamine oxidases A and B (MAOA/B) (see Table 2: MAOA and MAOB). Monoamine oxidase A and B are critical enzymes in deamination of biogenic amines and may be involved in the pathophysiology of major psychoses, including mood disorder, Parkinson's disease and schizophrenia. Recently, evidence for genetic association between the MAOA gene and bipolar mood disorder was demonstrated in a Caucasian population, but not seen in a Japanese population (Sasaki T. et al.; *Biological Psychiatry* 44(9):922-924, 1998).

Receptors for dopamine regulate dopaminergic neurotransmission. A plethora of dopamine receptors exist, including the presynaptic dopamine transporter and at least five pharmacologic subtypes (D₁-which is linked to the enzyme adenyl cyclase, D₂-not linked to adenyl cyclase, D₃, D₄, and D₅). Classically, the most extensively investigated dopamine receptor is the D₂ receptor, as it is stimulated by dopaminergic agonists for the treatment of Parkinson's disease and blocked by dopamine antagonist neuroleptics for the treatment of schizophrenia (see Table 2: DRD2). Recently, other dopamine receptors, particularly the D₄ receptor, have become targets for new antipsychotics in the treatment of Parkinson's disease (see Table 2: DRD4). It appears the interaction of all or some of the dopamine receptors play a role in many CNS disorders. However, only a limited number of studies investigating the association of such disorders with genes of the dopaminergic pathway have been completed and often with conflicting results.

Norepinephrine

10

15

20

25

30

35

The noradrenergic system is known to play a large role in the determination of mood, dysfunction of contributes to the "functional" disorders of depression, mania and anxiety. It is believed depressed patients are unable to produce sufficient norepinephrine in some parts of the brain for neuronal transmission, while mania may result from excessive activity or sensitivity of this system.

The amino acid tyrosine, having been actively taken up by adrenergic neurons, is converted to DOPA by means of tyrosine hydroxylase. DOPA is then converted to dopamine and later into norepinephrine in the synaptic vesicles. Conversion of norepinephrine to

epinephrine occurs in the adrenal medulla and also in certain restricted parts of the brain. Catecholamine degradation is enzymatically controlled by MAOA/B intraneuronally, with the main norepinephrine metabolite being 3-methoxy-4-hydroxyphenylglycol.

The noradrenergic neuron is regulated by a multiplicity of receptors and for norepinephrine, these being designated α_1 , α_2 , β_1 and β_2 . Postsynaptic norepinephrine receptors bind norepinephrine released from the presynaptic neuron and activate a molecular cascade in the postsynaptic neuron. Specifically, the activation of α_2 receptors causes inhibition of norepinephrine, whereas activation of β_1 receptors leads to increased release of norepinephrine from adrenergic terminals (see Table 2: ADRB1R). Systemically, the adrenoreceptor subtypes α_1 , α_2 , β_1 and β_2 are functional in a variety of other ways ranging from vasodilatation to initiating smooth muscle relaxation. The action of norepinephrine is terminated by the norepinephrine transporter (NET), a membrane protein that serves as a reuptake pump for synaptic norepinephrine (see Table 2: NET). These receptors and transporter are the target of many therapeutic agents currently used to treat psychiatric disorders particularly depression.

Serotonin (5-hydroxytryptamine, 5HT)

5

10

15

20

25

30

35

The serotoninergic system is an anatomically diverse system with pathways that follow closely those of the noradrenergic system, but are quite different from those of the dopaminergic distribution. The physiological functions in which the serotoninergic system is involved include sleep, appetite, nociception, diurnal rhythmicity, neuroendocrine regulation and mood. At the level of consciousness there is also the suggestion that rational thought processes arise, using previously stored information, with the aid of the serotoninergic system. Serotoninergic projections innervating the hypothalamus influence the secretion of several anterior pituitary hormones. There is evidence that serotonin may serve as the final common pathway by which other neurotransmitters act in controlling secretion of many hormones.

Tryptophan is taken up by active transport into the neurons where it is hydroxylated by tryptophan hydroxylase to 5-hydroxytryptophan (5HTP). The latter is then decarboxylated to serotonin which, following release from the neurons, is recovered by a re-uptake mechanism. Degradation of serotonin occurs by way of MAOA/B and the majority of the metabolites are excreted in the urine.

Serotonin receptors come in 13 or more subtypes that can vary in their sensitivity to serotonin and in the effects they produce. An increasingly complex series of serotonin receptors is being identified. Presynaptic serotonin uptake sites and serotonin receptors designated 5HT₁ (and further subdivided into 5HT₁₈, 5HT_{1b}, 5HT_{1c}), 5HT₂, 5HT₃, 5HT₄, and 5HT₆, have been identified by means of pharmacological studies (see Table 2: 5HTT, 5HT1A, 5HTR2C, 5HTR6, and 5HTR7). As a whole, communication between two neurons is complex and may be

mediated by more than one neurotransmitter; for example, the serotonergic system may co-exist with other neurotransmitter in the same synapses.

Gamma aminobutyric acid (GABA)

Gamma aminobutyric acid (GABA) is an important amino acid which functions as the most prevalent inhibitory neurotransmitter in the central nervous system. Gamma aminobutyric acid works in partnership with a derivative of Vitamin B-6, pyridoxine, to cross from the axons to the dendrites through the synaptic cleft, in response to an electrical signal in the neuron and inhibits message transmission. This helps control the nerve cells from firing too fast, which would overload the system.

The gamma aminobutyric acid (a) receptor (see Table 2: GABRA5 and GABRG2) appears to play a key role in modulating anxiety and could be involved in either the etiology or the pathogenesis of anxiety disorders (Crowe et al. *Am J Psychiatry* 154:8). A benzodiazepine binding site is located on this receptor, and ligands that bind to this site can either increase or decrease anxiety.

Growth associated protein (GAP43)

Growth associated protein (GAP43) is localized exclusively to nerve tissue and is known to play a role in synaptic transmission and membrane permeability. The expression of GAP43 is associated with mammalian peripheral nerve regeneration (Kosik et al. *Neuron* 1:127-132, 1988). A polymorphism in the 3'-untranslated region of GAP43 is found at slightly lower frequencies in Alzheimers and Parkinson's patients (Poduslo. *Hum Genet.* 92:635-636, 1993).

Subreceptor Activity

10

15

20

25

30

35

The activity of subreceptors has also been investigated in recent years for its role in a wide range of CNS disorders. When neurotransmitters bind to receptors on the membranes of postsynaptic neurons, they elicit a target response in the cell via a second or third messenger. Several different messenger chemicals are known including cyclic adenosine monophosphate (AMP). G proteins serve as signal transduction subunits in the cyclic AMP pathway (see Table 2: Gbeta3). G protein coupled receptors are thought to have seven membrane spanning domains and have been divided into 2 subclasses: those in which the binding site is in the extracellular domain for example receptors for glycoprotein hormones, such as thyroid stimulating hormone (TSH) and follicle stimulating hormone (FSH) and those in which the ligand binding site is likely to be in the plane of the 7 transmembrane domains for example rhodopsin and receptors for small neurotransmitters and hormones for example muscarinic acetylcholine receptor. However, orphan G-protein coupled receptor (see Table 2: HM77) does not contain N-linked glycosylation sites near the N-terminus like other members of this protein family.

There is evidence that various monoamine or monoaminergic receptors are able to alter cyclic AMP levels through the same G protein. Therefore, G proteins serve as an important cross-talk mechanism between transmitter systems in the CNS. An abnormality in a G protein or

11/2

in the responsiveness of cyclic AMP to any of the receptors may result in an alteration in monoaminergic neurotransmission. For example, guanine nucleotide binding protein olfactory type (see Table 2: GOLF) is believed to play a role in signaling involving the cAMP mediated signaling pathway as well as the norepinephrine pathway.

5 B. Endocrine Basis of CNS Disorders

10

20

25

30

35

Biological theories of many CNS disorders have long revolved around the main monoamine systems, namely dopamine, norepinephrine and serotonin. It is apparent, however, that these three systems do not completely explain the pathophysiology of many CNS disorders. The hypothalamic-pituitary-adrenal (HPA) axis, including the effects of corticotrophin-releasing factor and glucocorticoids, plays an important role in the pathophysiology of CNS disorders.

The hypothalamus lies at the top of the hierarchy regulating hormone secretion via the hypothalamus-pituitary-adrenal (HPA) axis. It manufactures and releases peptides that act on the pituitary, thus stimulating or inhibiting the pituitary's release of various hormones into the blood. These hormones, among them growth hormone, thyroid-stimulating hormone and adrenocorticotrophic hormone (ACTH), control the release of other hormones from target glands. In addition to functioning outside the nervous system, the hormones released in response to pituitary hormones feed back to the pituitary and hypothalamus. There they deliver inhibitory signals that serve to limit excess hormone biosynthesis.

Also included in the regulation of the HPA axis is vasopressin receptor 1A (see Table 2: AVPR1A). Vasopressin receptors are present in a number of tissues including the anterior pituitary, where they stimulate adrenocorticotrophic hormone (ACTH) release (Thibonnier et al. *Genomics* 31: 327-334, 1996).

Dysregulation of the HPA axis appears to be an important feature of many psychiatric disorders and neurodegenerative diseases. When a threat to physical or psychological well-being is detected, the hypothalamus amplifies production of corticotrophin-releasing factor (CRF), which induces the pituitary to secrete ACTH (see Table 2: CRF, CRHBP, CRFR1 and CRFR2). ACTH then instructs the adrenal glands to release cortisol. Therefore, it is believed chronic activation of the HPA axis may lay the ground for illness.

The increased HPA drive is primarily mediated by hypersecretion of corticotrophin-releasing factor. Patients with major depression show increased levels of lumbar cerebrospinal fluid (CSF) corticotrophin-releasing factor as compared to matched controls or patients with other neurologic illnesses (Plotsky, P.M., Psych. Clin. Of North Am., 21(2):293-307, 1998). Dysregulation of hypothalamic corticotrophin-releasing factor neurons, whether intrinsic or extrinsic to these neurons, can result in corticotrophin-releasing factor hypersectretion leading to elevations in corticol followed by adaptive down regulation of both pituitary and central glucocorticoid receptors and corticotrophic-releasing receptors.

The anxiolytic effects of corticotrophin-releasing factor appear to be mediated by the activation of the central noradrenergic system. A CRF-positive projection has been identified linking limbic structures to the noradrenergic locus ceruleus, stimulation of which plays an important role in emotional memory and increases tyrosine hydroxylase activity. Therefore, primary or secondary dysfunction of corticotrophin-releasing factor would be expected to initiate a cascade of maladaptations.

Glucocorticoids and mineralocorticoids are both classes of steroid hormones that play an important role in the HPA axis; and have therefore been implicated in the pathophysiology of various psychiatric disorders and neurodegenerative diseases (see Table 2: GRL and MLR). Glucocorticoids exert numerous effects on metabolism, reproduction, inflammation and immunity. In addition, glucocorticoids serve as the primary negative feedback mechanism that regulates the HPA axis. Mineralocorticoids maintain electrolyte balance by regulating salt and water retention in the kidneys.

Brain-derived neurotrophic factor (see Table 2: BDNF) is a member of a group of proteins that includes neurotrophin-3/4/5 and nerve growth factor (NGF) and are believed to play a role in the etiology of a number of CNS-related disorders including schizophrenia and Parkinson's disease (Hawi et al. *Psychiatry Research* 81: 111-116, 1998 and Gasser et al. *Annals of Neurology* 36(3)387-396, 1994). BDNF plays an important role in promoting growth and maintenance during normal development and differentiation of the vertebrate system (Hanson et al. *Genomics* 13: 1331-1333, 1992). Further, it is believed BDNF has an effect on the differentiation of dopaminergic and serotonergic neurons (Studer et al. *Euro. J. of Neuroscience* 7: 223-233, 1995).

C. Examples of CNS Disorders

5

10

15

20

25

30

35

Neurotransmitter and hormonal abnormalities are implicated in disorders of movement (e.g. Parkinson's disease, Huntington's disease, motor neuron disease, etc.), disorders of mood (e.g. unipolar depression, bipolar disorder, anxiety, etc.) and diseases involving the intellect (e.g. Alzheimer's disease, Lewy body dementia, schizophrenia, etc.). In addition, Neurotransmitter and hormonal abnormalities have been implicated in a wide range of disorders, such as coma, head injury, cerebral infarction, epilepsy, alcoholism and the mental retardation states of metabolic origin seen particularly in childhood.

Schizophrenia

In developed countries schizophrenia occurs in approximately one per cent of the adult population at some point during their lives. There are an estimated 45 million people with schizophrenia in the world, with more than 33 million of them in the developing countries.

Moreover, schizophrenia accounts for a fourth of all mental health costs and takes up one in three psychiatric hospital beds. Most schizophrenia patients are never able to work. The cost of schizophrenia to society is enormous. In the United States, for example, the direct cost of

treatment of schizophrenia has been estimated to be close to 0.5% of the gross national product. Standardized mortality ratios (SMRs) for schizophrenic patients are estimated to be two to four times higher than the general population and their life expectancy overall is 20 % shorter than for the general population.

The most common cause of death among schizophrenic patients is suicide (in 10% of patients) which represents a 20 times higher risk than for the general population. Deaths from heart disease and from diseases of the respiratory and digestive system are also increased among schizophrenic patients.

Schizophrenia comprises a group of psychoses with either 'positive' or 'negative' symptoms. Positive symptoms consist of hallucinations, delusions and disorders of thought; negative symptoms include emotional flattening, lack of volition and a decrease in motor activity.

A number of biochemical abnormalities have been identified and, in consequence, several neurotransmitter-based hypotheses have been advanced over recent years; the most popular one has been "the dopamine hypothesis," one variant of which states that there is overactivity of the mesolimbic dopamine pathways at the level of the D₂ receptor. However, researchers have been unable to consistently find an association between various receptors of the dopaminergic system and schizophrenia.

In addition to the hypotheses which are briefly presented here, and which attempt to draw together the neurochemical observations in schizophrenia, one should add that some abnormalities of cortical neuropeptides are well documented. These abnormalities include changes in the levels of somatostatin, substance P, cholecystokinin (CCK) and vasoactive intestinal peptide (VIP) found in association with negative symptom defect states in the temporal area of the brain (i.e. the hippocampus, amygdala and neocortex), in particular.

Bipolar Disorder

5

. 15

20

: 25

. 30

35

Bipolar disorders are relatively common, occurring in about 1.3% of the population, and have been reported to constitute about half of the mood disorders seen in psychiatric clinics. Bipolar disorders have been found to vary with gender depending of the type of disorder; for example, bipolar disorder I is found equally among men and women, while bipolar disorder II is reportedly more common in women. The age of onset of bipolar disorders is typically in the teenage years and diagnosis is typically made in the patient's early twenties. Bipolar disorders also occur among the elderly, generally as a result of a neurological disorder or other medical conditions. In addition to the severe effects on patients' social development, suicide completion rates among bipolar patients are reported to be about 15%.

Bipolar disorders are characterized by phases of excitement and depression; the excitement phases (mania) and depressive phases can alternate or occur in numerous admixtures with varying degrees of severity and duration. Because bipolar disorders can exist in different

forms and display different symptoms, the classification of bipolar disorder has been the subject of extensive studies resulting in the definition of bipolar disorder subtypes and widening of the overall concept to include patients previously thought to be suffering from different disorders. Bipolar disorders often share certain clinical signs, symptoms, treatments and neurobiological features with psychotic illnesses in general and therefore present a challenge to the psychiatrist to make an accurate diagnosis. Furthermore, because the course of bipolar disorders and various mood and psychotic disorders can differ greatly, it is critical to characterize the illness as early as possible in order to offer means to manage the illness over a long term.

Diagnosis of bipolar disorder can be very challenging. One particularly troublesome difficulty is that some patients exhibit mixed states, simultaneously manic and dysphoric or depressive, but do not fall into the DSM-IV classification because not all required criteria for mania and major depression are met daily for at least one week. Other difficulties include classification of patients in the DSM-IV groups based on duration of phase since patients often cycle between excited and depressive episodes at different rates. In particular, it is reported that the use of antidepressants may alter the course of the disease for the worse by causing "rapid-cycling". Also making diagnosis more difficult is the fact that bipolar patients, particularly at what is known as Stage III mania, share symptoms of disorganized thinking and behavior with bipolar disorder patients. Furthermore, psychiatrists must distinguish between agitated depression and mixed mania; it is common that patients with major depression exhibit agitation, resulting in bipolar-like features.

10

15

20

25

30

35

For both schizophrenia and bipolar disorder, all the known molecules used for treatment have side effects and act only against the symptoms of the disease. There is a strong need for new molecules without associated side effects or reduced side effects which are directed against targets that are involved in the causal mechanisms of schizophrenia and bipolar disorder.

Therefore, tools facilitating the discovery and characterization of these targets are necessary and useful.

The aggregation of schizophrenia and bipolar disorder in families, the evidence from twin and adoption studies, and the lack of variation in incidence worldwide, indicate that schizophrenia and bipolar disorder are primarily genetic conditions, although environmental risk factors are also involved at some level as necessary, sufficient, or interactive causes. For example, schizophrenia occurs in 1% of the general population. However, if a subject has one grandparent with schizophrenia, the risk of getting the illness increases to about 3%, while one parent with Schizophrenia increases risk to about 10%. When both parents have schizophrenia, the risk rises to approximately 40%. Consequently, there is a strong need to identify genes involved in schizophrenia and bipolar disorder. The knowledge of these genes will allow researchers to understand the etiology of schizophrenia and bipolar disorder and could lead to

drugs and medications which are directed against the cause of the diseases, not just against their symptoms.

There is also a great need for new methods to detect susceptibility to schizophrenia and bipolar disorder, as well as for preventing or following up the development of the disease. Diagnostic tools could also prove extremely useful. Indeed, early identification of subjects at risk of developing schizophrenia would enable early and/or prophylactic treatment to be administered. Moreover, accurate assessments of the eventual efficacy of a medicament as well as the patent's eventual tolerance to it may enable clinicians to enhance the benefit/risk ratio of schizophrenia and bipolar disorder treatment regimes.

Depression

10

15

20

25

35

Depression is a serious medical illness that affects 340 million people worldwide. In contrast to the normal emotional experiences of sadness, loss, or passing mood states, clinical depression is persistent and can interfere significantly with an individual's ability to function. As a result, depression is the leading cause of disability throughout the world with an estimated cost of \$53 billion each year in the United States alone.

Symptoms of depression include depressed mood, diminished interest or pleasure in activities, change in appetite or weight, insomnia or hypersomnia, psycho-motor agitation or retardation, fatigue or loss of energy, feelings of worthlessness or excessive guilt, anxiety, inability to concentrate or act decisively, and recurrent thoughts of death or suicide. A diagnosis of unipolar major depression (or major depressive disorder) is made if a person has five or more of these symptoms and impairment in usual functioning nearly every day during the same two-week period. The onset of depression generally begins in late adolescence or early adult life; however, recent evidence suggests depression may be occurring earlier in life in people born in the past thirty years.

The World Health Organization predicts that by the year 2020 depression will be the greatest burden of ill-health to people in the developing world, and that by then depression will be the second largest cause of death and disability. Beyond the almost unbearable misery it causes, the big risk in major depression is suicide. Within five years of suffering a major depression, an estimated 25% of sufferers try to kill themselves. In addition, depression is a frequent and serious complication of heart attack, stroke, diabetes, and cancer. According to one recent study that covered a 13-year period, individuals with a history of major depression were four times as likely to suffer a heart attack compared to people without such a history.

Depression may be a feature in up to 50% of patients with CNS disorders such as Parkinson's disease and Alzheimer's disease. The neuronal loss in the locus ceruleus, typical of Alzheimer's disease, is greatest in those patients who have depression; such patients also have lower norepinephrine levels than do those who lack depressive features. Approximately 50% of

patients with Alzheimer's disease have less norepinephrine than normal in the majority of cortical and subcortical areas of the brain that have been examined to date.

Many neurochemical findings are coming to light implicating a biological basis for the depression, at least for certain subtypes. Abnormalities of monoamine function have been recognized in depression for many years involving norepinephrine, serotonin and dopamine. Changes in adrenoceptor density and function as well as changes in adrenoceptors associated with the pituitary-adrenal axis function strongly implicate a disorder in central noradrenergic transmission in depression. This dysfunction may be caused by changes in the activity of tyrosine hydroxylase. The effect of corticotrophin releasing factor in modulating the activity of noradrenergic neurons in the locus ceruleus may provide the link between environmental trigger factors and central noradrenergic dysfunction, along with dysfunction of the HPA axis.

10

15

20

25

35

Dysfunction of serotonin metabolism, as shown by decreased concentrations of the metabolite 5HIAA in cerebrospinal fluid (CSF), is linked with depression; nevertheless, it is not a feature in all patients with depression. Therefore, a subgroup entitled "serotonin depression" has been proposed. Often included among those who suffer from serotonin depression are patients who also suffer a number of neurological diseases. A reduction in the number of serotonin-containing neurons in the median raphe in Parkinson's disease, Alzheimer's disease and, possibly, the elderly, is associated with the development of depression.

Low levels of the dopamine metabolite HVA are found in the CSF in patients with depression. In addition, dopamine agonists produce a therapeutic response in depression.

Presently, antidepressants are designed to address many of the symptoms of depression by increasing neurotransmitter concentration in aminergic synapses. Distinct pharmacologic mechanisms allow the antidepressants to be separated into seven different classes. The two classical mechanisms are those of tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs). The most widely prescribed agents are the serotonin selective reuptake inhibitors (SSRIs). Three other classes of antidepressants, like the SSRIs, increase serotonergic neurotransmission, but they also have additional actions, namely dual serotonin and norepinephrine reuptake inhibition; serotonin-2 antagonism/reuptake inhibition; and α_2 antagonism plus serotonin-2 and -3 antagonism. The selective norepinephrine and dopamine reuptake inhibitors define a novel class of antidepressant that has no direct actions on the serotonin system.

Recent findings suggest some re-appraisal and modifications of the monoamine hypothesis are necessary. The increased levels of monoamine transmitters at the synapses, although quickly produced in response to antidepressant therapy, are in contrast with the much slower clinical recovery of the patient from depression, which takes about two weeks to begin and may only reach maximal levels several weeks later. Moreover, should acute depletion of either norepinephrine and/or serotonin occur experimentally in a normal individual, then

depression does not, in the short-term, occur. Not in keeping with the hypothesis, too, is the cerebral resistance generated in response to the pharmacological changes induced by antidepressant compounds. These counteractive changes comprise reduction in the number of post-synaptic β -receptors, together with a lowered firing rate of noradrenergic neurons.

5

10

15

20

25 .

30

35

In addition, there are subsets of patients with differential responses to antidepressants. Thus far, biochemical predictors of treatment response have failed to identify definite parameters that could correctly identify patients more likely to respond to particular classes of antidepressants (Schatzberg, Alan F., *Journal of Clinical Psychiatry*, 59:15-18, 1998). As a result, psychiatrists often must choose a treatment based on intuition or trail and error. However, probes such as biallelic markers could serve as an invaluable tool to successfully identify patients who might respond preferentially to existing and new antidepressants (Charney, Dennis S, *Journal of Clinical Psychiatry*, 59:11-14, 1998). In particular, markers from genes known to affect drug response such as transcription factors (see Table 2: SEF-1B) and drug metabolizing enzymes (see Table 2: CYP3A4) need to be investigated to determine "responders" and "non-responders" to medicaments.

While modulating monoamine activity as a therapeutic strategy continues to dominate research, an important new development has been the emergence of novel mechanisms of action, notably modulation of the activity of neuropeptides, namely through the neuropeptide receptor Y1, the tachykinin NK1 receptor and nicotinic receptors (see Table 2: NPY1R, TACR1 and CHRNA7). Recent clinical trails showed that tachykinin NK1 receptor antagonists are effective in treating depression and chemotherapy-induced emesis. Therefore, it is well possible that such antagonists will be clinically useful for treatment of specific CNS disorders. Nicotinic receptors are known to serve as important ligand-gated ion channels active in classical, excitatory neurotransmission and perhaps more novel forms of neurochemical signaling. Their critical functional roles both centrally and peripherally make them ideal targets for regulation of the nervous system. Finally, new antidepressants that may render the HPA axis more sensitive to glucocorticoid feedback are being investigated as well.

In addition to monoamine dysfunction as a possible cause of depression, researchers have reported increased activity in the HPA axis in untreated depressed patients, as evinced by raised levels of cortisol in urine, blood and cerebrospinal fluid, as well as by other measures. Numerous studies have confirmed that substantial numbers of depressed patients, particularly those most severely affected, display HPA axis hyperactivity. Patients with depression frequently have symptom clusters which point strongly to involvement of the HPA system as a relay station between neurocircuitries in the brain and peripheral hormone and autonomic nervous function. It has been proposed that this increased, state-dependent hyperactivity of the HPA system in depression is probably initiated and/or maintained by the combination of enhanced central production of corticotrophin-releasing factor and desensitization of the binary,

glucocorticoid receptor binding system in the hippocampus, which is the central regulator of HPA system activity.

Deeper investigation of the phenomenon has now revealed alterations at each level of the HPA axis in depressed patients. For instance, both the adrenal gland and the pituitary are enlarged, and the adrenal gland hypersecretes cortisol. But many researchers, have become persuaded that aberrations in CRF-producing neurons of the hypothalamus and elsewhere bear most of the responsibility for HPA axis hyperactivity and the emergence of depressive symptoms.

Many studies have shown corticotrophin-releasing factor concentrations in cerebrospinal fluid to be elevated in depressed patients, compared with control subjects or individuals with other psychiatric disorders. This magnification of corticotrophin-releasing factor levels is reduced by treatment with antidepressants and by effective electroconvulsive therapy. Further, postmortem brain tissue studies have revealed a marked exaggeration both in the number of CRF-producing neurons in the hypothalamus and in the expression of the corticotrophinreleasing factor gene (resulting in elevated corticotrophin-releasing factor synthesis) in depressed patients as compared with controls. Moreover, delivery of corticotrophin-releasing factor to the brains of laboratory animals produces behavioral effects that are cardinal features of depression in humans, namely, insomnia, decreased appetite, decreased libido and anxiety.

Geneticists have provided some of the oldest proof of a biological component to depression in many people. Depression and manic-depression frequently run in families. Thus, close blood relatives of patients with severe depressive or bipolar disorder are much more likely to suffer from those or related conditions than are members of the general population. Studies of identical and fraternal twins also support an inherited component. Illness in both members of a pair is much higher for manic-depression in identical twins than in fraternal and is somewhat 25 elevated for depression alone.

In the past 20 years, genetic researchers have expended great effort trying to identify the genes which contribute to depression. So far, though, those genes have evaded discovery. perhaps because a predisposition to depression involves several genes, each of which makes only a small, hard-to-detect contribution. As a result, psychiatrists today have to choose antidepressant medications by intuition and trial and error; a situation that can put suicidal patients in jeopardy for weeks or months until the right compound is selected. Therefore, there is a strong need to successfully identify genes involved in depression; thus allowing researchers to understand the etiology of depression and address its cause, rather than symptoms.

Alzheimer's Disease

5

10

15

20

30

35

Alzheimer's disease is characterized by the onset in middle age of a slowly progressive dementia; there is loss of memory for past events, inability to develop new memories and impairment of intellect, all leading to a lessened capacity for dealing with the tasks and problems

of daily living. It is the most common cause of both presenile and senile dementia. Alzheimer's disease is not the non-specific degenerative disorder of the CNS that it was once thought to be, as neurochemical studies on postmortem material now reveal the degeneration to be selective for certain neuronal populations in the subcortical and cortical areas; other cell populations seem to be unaffected. Senile plaques and neurofibrillary tangles are the characteristic histological feature, found throughout the cerebral cortex and especially in certain regions of the limbic system (the amygdala and hippocampus), perhaps accounting for the memory loss so typical of the early phase of the disease. In addition, there is reduction of acetylcholine, norepinephrine, serotonin and somatostatin in the subcortical areas in Alzheimer's disease.

5

10

. 25

30

35

The activity of CAT, the enzyme involved in acetylcholine synthesis, is markedly decreased in Alzheimer's disease. This decrease does not occur in all areas of the brain, but does so particularly in the hippocampus and amygdala, which are some of the main sites where senile plaques and neurofibrillary tangles accumulate. The loss of such cortical cholinergic activity correlates well with the degree of dementia in patients with this disease. A further finding is that 15 • nerve growth factor (NGF) is now known to be involved in the maintenance of cholinergic: neurons in the forebrain; also, nicotine, a cholinomimetic compound, is able to stimulate dopaminergic neurons via their nicotinic receptors; thus, seemingly, to provide smokers with some protection against degeneration of the dopaminergic neurons. The forebrain cholinergic system degenerates not only in Alzheimer's disease, but also in alcohol-induced dementia, Pick's 20 . disease, Lewy body dementia, progressive supranuclear palsy and in Parkinson's disease.

In Alzheimer's disease there is a reduction of both serotonin and its receptor proteins in the temporal lobe of the brain, as revealed from studies on autopsy and biopsy material. The loss of serotonin is, however, less than in Parkinson's disease and it would be unlikely, therefore, that the severe memory loss of Alzheimer's disease could be accounted for on this basis alone, although in Parkinson's disease there is an important difference in that the 5HT2 receptor is not decreased. Of interest in this context, but not necessarily related, is the bradyphrenia (characterized by difficulty in concentration, slowing of thought processes and inability to associate ideas) of Parkinson's disease where serotonin is low in most of the cortical regions. In the Lewy body type of senile dementia it is common for visual hallucinations to occur, and it is of great interest that in the temporal lobe the serotonergic activity is higher (as shown by the raised serotonergic:cholinergic ratio) in those patients who suffer from hallucinations compared with those who do not.

In addition to the involvement of serotonin in Alzheimer's disease, patients also suffer from decreased levels of norepinephrine and several neuropeptides. It is in those patients with Alzheimer's disease who also have depression that there is not only greatest reduction in the number of neurons within the locus ceruleus but also a markedly reduced norepinephrine content. There is also associated reduction in cortical somatostatin and corticotrophin-releasing factor,

and loss of the somatostatin content of neurons in the temporal cortex develops early in the condition.

There is no known definitive cure for Alzheimer's disease; therefore, treatment is aimed at relief of symptoms and protection from the effects of the deteriorating condition. Most treatments are still considered experimental or have had variable results. Treatment is also aimed at underlying disorders that contribute to confusion such as heart failure, hypoxia, thyroid disorders, anemia, nutritional disorders, infections, and psychiatric conditions such as depression. The correction of coexisting medical and psychiatric disorders often improves the patient's mental function.

Parkinson's Disease

5

10

20

25

30

35

Parkinson's disease is a disabling progressive neurodegenerative disorder characterized by tremor, rigidity, bradykinesia, and loss of postural reflexes. In the United States, about a million people are believed to suffer from Parkinson's disease, and about 50,000 new cases are reported every year. Because the symptoms typically appear later in life, these Tables are expected to grow as the average age of the population increases over the next several decades. The disorder is most frequent among people in there 70s and 80s, and appears to be slightly more common in men than in women. Parkinson's disease is found all over the world. The rates vary from country to country, but it is not clear whether this reflects true ethnic or geographic differences or simply variations in data collection.

The pathology is not completely understood, but there appears to be consistent changes in the melanin-containing nerve cells in the brainstem (substantia nigra, locus ceruleus), where there are varying degrees of nerve cell loss with reactive gliosis along with eosinophilic intracytoplasmic inclusions (Lewy bodies). As a result, the primary neurochemical defect in Parkinson's disease is the loss of dopaminergic projections to the striatum. Moreover, the loss of these populations of neurons also leads to neurotransmitter deficits, but to a lesser extent than that which accompanies the massive degeneration of dopaminergic neurons. For example, norepinephrine, serotonin and acetylcholine are variably decreased in Parkinson's disease due to loss of neurons in the locus ceruleus, raphe nuclei and the nucleus basalis of Meynert. Thus, some of the secondary clinical features of Parkinson's disease have been ascribed to these neurotransmitter deficits.

The neurochemical defect associated with Parkinson's disease can be partially corrected by L-DOPA, which helps replace the brain's dopamine, but cannot reverse the progression of the disease. There is no specific biological test for the diagnosis of Parkinson's disease. Twin studies have shown variable results and suggest that the genetics of this disorder will prove to be complex. Despite the importance and severity of Parkinson's disease and many years of research, a cause has not been identified and there is neither means of preventing the disease nor a proven permanent cure.

Findings of considerable importance in this search would be the location of a genetic marker, determination of the probability of penetrance, determination of possible genetic heterogeneity, and evidence of multifactorial inheritance with environmental interaction. Genetic factors determining susceptibility to Parkinson's disease will enhance epidemiological studies and possibly lead to identification of susceptible groups and of significant risk factors.

Huntington's Disease

10

15

30

35

Huntington's disease is a hereditary neurodegenerative disease that generally develops subtly in a person's thirties or forties; though it can begin any time between childhood and old age. In the United States alone, about 30,000 people have Huntington's disease, while at least 150,000 others have a 50 percent risk of developing the disease and thousands more of their relatives live with the possibility that they, too, might develop Huntington's disease.

Huntington's disease is characterized by difficulties in three areas: a movement disorder, dementia, and psychiatric disturbances. The movement disorder consists of two parts: involuntary twitching movement which first tend to involve the fingers and toes and then progress to include the whole body, and difficulties with voluntary movements in the form of clumsiness, stiffness, or trouble with walking. Dementia refers to a gradual loss of intellectual abilities such as memory, concentration, problem solving, and judgment. Psychiatric disturbances do not strike every person with Huntington's disease, but when they do, usually take the form of depression, irritability, and apathy. Depression and other psychiatric conditions in people with Huntington's disease, which seem to result from damage to the brain, can be debilitating.

Loss of neurotransmitter receptors, especially glutamate and dopamine receptors, is one of the pathologic hallmarks of patients with Huntington's disease (Cha J.H. et al.; *Proc National Acad Sci USA* may 26;95(11):6480-5, 1998). In addition, deficiency of GABA permits excessive dopaminergic activity in the corpus striatum resulting in onset of Huntington's disease, on account of the imbalance generated between cholinergic and dopaminergic systems.

Researchers have identified a single gene product thought to be causal when mutated by a tri-nucleotide repeat expansion. However, there is at present no cure for Huntington's disease or even any direct treatments, although researchers are presently working on a number of treatments which may slow down the progression of the disease. In the early and middle stages of the disease, medications called neuroleptics, which are given in larger doses for psychiatric complaints, can be given in small doses to Huntington's disease patients to suppress the involuntary movements. Drugs that cause increased dopamine release in the brain and dopamine receptor agonists are used, but both precipitate nausea and vomiting as side effects and dopamine antagonists are anti-emetic.

Pharmacogenomics and CNS Disorders

The vast majority of common diseases, such as all of the CNS disorders described above, are polygenic, meaning multiple genes cause them. In addition, these diseases are modulated by environmental factors such as pollutants, chemicals and diet. This is why many diseases are considered to be multifactorial; they result from a synergistic combination of factors, both genetic and environmental. Therapeutic management and drug development could be markedly improved by the identification of specific genetic polymorphisms that determine and predict patient susceptibility to diseases or patient responses to drugs.

To assess the origins of individual variations in disease susceptibility or drug response, pharmacogenomics uses the genomic technologies to identify polymorphisms within genes which are part of biological pathways involved in disease susceptibility, etiology, and development, or more specifically in drug response pathways responsible for a drug's efficacy, tolerance or toxicity. Pharmacogenomics can also provide tools to refine the design of drug development by decreasing the incidence of adverse events in drug tolerance studies, by better defining patient subpopulations of responders and non-responders in efficacy studies and, by combining the results obtained therefrom, to further allow better enlightened individualized drug usage based on efficacy/tolerance prognosis. Pharmacogenomics can also provide tools to identify new targets for designing drugs and to optimize the use of already existing drugs, in order to either increase their response rate and/or exclude non-responders from corresponding treatment, or decrease their undesirable side effects and/or exclude from corresponding treatment patients with marked susceptibility to undesirable side effects. However, for pharmacogenomics to become clinically useful on a large scale, additional molecular tools and diagnostics tests must become available.

Genetic Analysis of Complex Traits

Until recently, the identification of genes linked with detectable traits has relied mainly on a statistical approach called linkage analysis. Linkage analysis is based upon establishing a correlation between the transmission of genetic markers and that of a specific trait throughout generations within a family. Linkage analysis involves the study of families with multiple affected individuals and is useful in the detection of inherited-traits, which are caused by a single gene, or possibly a very small number of genes. Linkage analysis has been successfully applied to map simple genetic traits that show clear Mendelian inheritance patterns and which have a high penetrance (the probability that a person with a given genotype will exhibit a trait). About 100 pathological trait-causing genes have been discovered using linkage analysis over the last 10 years. But, linkage studies have proven difficult when applied to complex genetic traits. Most traits of medical relevance do not follow simple Mendelian monogenic inheritance. However, complex diseases often aggregate in families, which suggests that there is a genetic component to be found. Such complex traits are often due to the combined action of multiple genes as well as environmental factors. Such complex trait, include susceptibilities to heart disease, hypertension.

diabetes, cancer and inflammatory diseases. Drug efficacy, response and tolerance/toxicity can also be considered as multifactoral traits involving a genetic component in the same way as complex diseases. Linkage analysis cannot be applied to the study of such traits for which no large informative families are available. Moreover, because of their low penetrance, such complex traits do not segregate in a clear-cut Mendelian manner as they are passed from one generation to the next. Attempts to map such diseases have been plagued by inconclusive results, demonstrating the need for more sophisticated genetic tools.

Knowledge of genetic variation in the neuronal and endocrine systems is important for understanding why some people are more susceptible to disease or respond differently to treatments. Ways to identify genetic polymorphism and to analyze how they impact and predict disease susceptibility and response to treatment are needed.

Although the genes involved in the neuronal and endocrine systems represent major drug targets and are of high relevance to pharmaceutical research, we still have scant knowledge concerning the extent and nature of, sequence variation in these genes and their regulatory elements. In the case where polymorphisms have been identified the relevance of the variation is rarely understood. While polymorphisms hold promise for use as genetic markers in determining which genes contribute to multigenic or quantitative traits, suitable markers and suitable methods for exploiting those markers have not been found and brought to bare on the genes related to disorders of the brain and nervous system.

In the cases where polymorphisms have been identified, the relevance of the variation is rarely understood. While polymorphisms hold promise for use as genetic markers in determining which genes contribute to multigenic or quantitative traits, suitable markers and suitable methods for exploiting those markers have not been found and brought to bare on the genes related to central nervous system disorders.

25

30

35

10

15

20

SUMMARY OF THE INVENTION

The present invention is based on the discovery of a set of novel CNS disorder-related biallelic markers. See Table 7. These markers are located in the coding regions as well as non-coding regions adjacent to genes which express proteins associated with CNS disorders. The position of these markers and knowledge of the surrounding sequence has been used to design polynucleotide compositions which are useful in determining the identity of nucleotides at the marker position, as well as more complex association and haplotyping studies which are useful in determining the genetic basis for disease states involving the neuronal and endocrine systems. In addition, the compositions and methods of the invention find use in the identification of the targets for the development of pharmaceutical agents and diagnostic methods, as well as the characterization of the differential efficacious responses to and side effects from pharmaceutical agents acting on CNS disorders. Further, the compositions and methods of the invention may be

5

15

20

35

employed in a process for screening for antagonists and/or agonists for the polypeptides of the invention. Such molecules may prove useful as therapeutics in the diagnosis and/or treatment of CNS disorders, particularly depression.

A first embodiment of the invention encompasses polynucleotides consisting of, consisting essentially of, or comprising a contiguous span of nucleotides of a sequence selected as an individual or in any combination from the group consisting of SEQ ID NO: 1-542, the complements thereof, the sequences described in any one or more of Tables 8, 9, 10, 11, 12, 13 and 14 and the complements thereof, wherein said contiguous span is at least 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 50, 75, 100, 200, 500 or 1000 nucleotides in length, to the extent that such a length is consistent with the lengths of the particular Sequence ID. The present invention also relates to polynucleotides hybridizing under stringent or intermediate conditions to a sequence selected from the group consisting of SEO ID NO: 1-542; and the complements thereof. In addition, the polynucleotides of the invention encompass polynucleotides with any further limitation described in this disclosure, or those following, specified alone or in any combination: Said contiguous span may optionally include the CNS disorder-related biallelic marker in said sequence; Optionally either the original or the alternative allele of Table 9 may be specified as being present at said CNS disorder-related biallelic marker; Optionally either the first or the second allele of Tables 8 or 10 may be specified as being present at said CNS disorder-related biallelic marker; Optionally, said polynucleotide may consists of, or consist essentially of a. contiguous span which ranges in length from 8, 10, 12, 15, 18 or 20 to 25, 35, 40, 50, 60, 70, or 80 nucleotides, or be specified as being 12, 15, 18, 20, 25, 35, 40, or 50 nucleotides in length and including a CNS disorder-related biallelic marker of said sequence, and optionally the original allele of Table 9 is present at said biallelic marker; Optionally, said biallelic marker may be within 6, 5, 4, 3, 2, or 1 nucleotides of the center of said polynucleotide or at the center of said polynucleotide; Optionally, the 3' end of said contiguous span may be present at the 3' end of said polynucleotide; Optionally, biallelic marker may be present at the 3' end of said polynucleotide; Optionally, the 3' end of said polynucleotide may be located within or at least 2. 4, 6, 8, 10, 12, 15, 18, 20, 25, 50, 100, 250, 500 or 1000 nucleotides upstream of a CNS disorderrelated biallelic marker in said sequence, to the extent that such a distance is consistent with the lengths of the particular Sequence ID; Optionally, the 3' end of said polynucleotide may be located 1 nucleotide upstream of a CNS disorder-related biallelic marker in said sequence; and Optionally, said polynucleotide may further comprise a label.

A second embodiment of the invention encompasses any polynucleotide of the invention attached to a solid support. In addition, the polynucleotides of the invention which are attached to a solid support encompass polynucleotides with any further limitation described in this disclosure, or those following, specified alone or in any combination: Optionally, said polynucleotides may be specified as attached individually or in groups of at least 2, 5, 8, 10, 12,

15, 20, or 25 distinct polynucleotides of the inventions to a single solid support; Optionally, polynucleotides other than those of the invention may be attached to the same solid support as polynucleotides of the invention; Optionally, when multiple polynucleotides are attached to a solid support they may be attached at random locations, or in an ordered array; Optionally, said ordered array may be addressable.

- 5

10

15 :.

20

.25

.30

A third embodiment of the invention encompasses the use of any polynucleotide for, or any polynucleotide for use in, determining the identity of one or more nucleotides at a CNS disorder-related biallelic marker. Microsequencing primers are provided in Table 12. In addition, the polynucleotides of the invention for use in determining the identity of one or more nucleotides at a CNS disorder-related biallelic marker encompass polynucleotides with any further limitation described in this disclosure, or those following, specified alone or in any combination. Optionally, said CNS disorder-related biallelic marker may be in a sequence selected individually or in any combination from the group consisting of SEQ ID NO: 1-542; and the complements thereof; Optionally, said polynucleotide may comprise a sequence disclosed in the present specification; Optionally, said polynucleotide may consist of, or consist essentially of any polynucleotide described in the present specification; Optionally, said determining may be performed in a hybridization assay, sequencing assay, microsequencing assay, or an enzyme-based mismatch detection assay; Optionally, said polynucleotide may be attached to a solid support, array, or addressable array; Optionally, said polynucleotide may be labeled.

A fourth embodiment of the invention encompasses the use of any polynucleotide for, or any polynucleotide for use in, amplifying a segment of nucleotides comprising a CNS disorderrelated biallelic marker. Amplification primers are provided in Table 13. In addition, the polynucleotides of the invention for use in amplifying a segment of nucleotides comprising a CNS disorder-related biallelic marker encompass polynucleotides with any further limitation described in this disclosure, or those following, specified alone or in any combination: Optionally, said CNS disorder-related biallelic marker may be in a sequence selected individually or in any combination from the group consisting of SEQ ID 1-130; and the complements thereof; Optionally, said CNS disorder-related biallelic marker may be selected individually or in any combination from the biallelic markers described in Table 7; Optionally, said CNS disorderrelated biallelic marker may be selected from the following biallelic markers: 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 99-28106-185, 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, 99-30853-364, 19-56-140, 19-28-136, 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 16-50-196, 8-19-372, 12-254-180, 10-214-279, 10-217-91, 18-194-130, 18-186-391, 18-198-252, 18-242-300, 20-205-302, 19-58-162, 19-9-45, 19-22-74, 19-88-185, 19-18-310, 19-19-174, 19-17-188, 19-16-127, 99-32148-315, 19-46-322, 99-32131-312, 99-32065-303, 19-44-251, 19-29-303, 18-355-67, 18-353-267, 18-338-305, 16-88-185, 24-243-346. 99-62531-351, 99-54279-152, 99-28171-458, 99-28173-395, 18-186-394, 8-15-126, 99-2409-

298, 99-28722-90 and 99-32306-409; Optionally, said CNS disorder-related biallelic marker may be selected from the following biallelic markers: 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 19-28-136, 16-50-196, 19-58-162, 19-9-45, 20-205-302, 24-243-346, 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 19-17-188 and 19-19-174; Optionally, said polynucleotide may comprise a sequence disclosed in the present specification; Optionally, said polynucleotide may consist of, or consist essentially of any polynucleotide described in the present specification; Optionally, said amplifying may be performed by a PCR or LCR. Optionally, said polynucleotide may be attached to a solid support, array, or addressable array. Optionally, said polynucleotide may be labeled.

5

10

15

-20

25

35

A fifth embodiment of the invention encompasses methods of genotyping a biological sample comprising determining the identity of a nucleotide at a CNS disorder-related biallelic marker. In addition, the genotyping methods of the invention encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination: Optionally, said CNS disorder-related biallelic marker may be in a sequence selected individually or in any combination from the group consisting of SEQ ID NO: 1-542, and the complements thereof; Optionally, said CNS disorder-related biallelic marker may be selected individually or in any combination from the biallelic markers described in Table 7: Optionally, said CNS disorder-related biallelic marker may be selected from the following biallelic markers: 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 99-28106-185, 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, 99-30853-364, 19-56-140, 19-28-136, 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 16-50-196, 8-19-372, 12-254-180, 10-214-279, 10-217-91, 18-194-130, 18-186-391, 18-198-252, 18-242-300, 20-205-302, 19-58-162, 19-9-45, 19-22-74, 19-88-185, 19-18-310, 19-19-174, 19-17-188, 19-16-127, 99-32148-315, 19-46-322, 99-32131-312, 99-32065-303, 19-44-251, 19-29-303, 18-355-67, 18-353-267, 18-338-305, 16-88-185, 24-243-346, 99-62531-351, 99-54279-152, 99-28171-458, 99-28173-395, 18-186-394, 8-15-126, 99-2409-298, 99-28722-90 and 99-32306-409; Optionally, said CNS disorder-related biallelic marker may be selected from the following biallelic markers: 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 19-28-136, 16-50-196, 19-58-162, 19-9-45, 20-205-302, 24-243-346, 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 19-17-188 and 19-19-174; Optionally, said method further comprises determining the identity of a second nucleotide at said biallelic marker, wherein said first nucleotide and second nucleotide are not base paired (by Watson & Crick base pairing) to one another; Optionally, said biological sample is derived from a single individual or subject; Optionally, said method is performed in vitro; Optionally, said biallelic marker is determined for both copies of said biallelic marker present in said individual's genome; Optionally, said biological sample is derived from multiple subjects or individuals; Optionally, said method further comprises amplifying a portion of said sequence comprising the biallelic marker prior to said determining step; Optionally, wherein said amplifying is performed

5

10

15

25

30

35

by PCR, LCR, or replication of a recombinant vector comprising an origin of replication and said portion in a host cell; Optionally, wherein said determining is performed by a hybridization assay, sequencing assay, microsequencing assay, or an enzyme-based mismatch detection assay.

A sixth embodiment of the invention comprises methods of estimating the frequency of an allele in a population comprising genotyping individuals from said population for a CNS disorder-related biallelic marker and determining the proportional representation of said biallelic marker in said population. In addition, the methods of estimating the frequency of an allele in a population of the invention encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination: Optionally, said CNS disorder-related biallelic marker may be in a sequence selected individually or in any combination from the group consisting of SEQ NO: 1-542; and the complements thereof; Optionally, said CNS disorder-related biallelic marker may be selected from the biallelic markers described in Table 7; Optionally, said CNS disorder-related biallelic marker may be selected from the following biallelic markers: 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192. 99-28106-185, 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, 99-30853-364, 19-56-140, 19-28-136, 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 16-50-196, 8-19-372, 12-254-180, 10-214-279, 10-217-91, 18-194-130, 18-186-391, 18-198-252, 18-242-300, 20-205-302, 19-58-162, 19-9-45, 19-22-74, 19-88-185, 19-18-310, 19-19-174, 19-17-188, 19-16-127, 99-32148-315, 19-46-322, 99-32131-312, 99-32065-303, 19-44-251, 19-29-303, 18-355-67. 18-353-267, 18-338-305, 16-88-185, 24-243-346, 99-62531-351, 99-54279-152, 99-28171-458, 99-28173-395, 18-186-394, 8-15-126, 99-2409-298, 99-28722-90 and 99-32306-409; Optionally, said CNS disorder-related biallelic marker may be selected from the following biallelic markers: 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 19-28-136, 16-50-196, 19-58-162, 19-9-45, 20-205-302, 24-243-346, 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 19-17-188 and 19-19-174; Optionally, determining the frequency of a biallelic marker allele in a population may be accomplished by determining the identity of the nucleotides: for both copies of said biallelic marker present in the genome of each individual in said population and calculating the proportional representation of said nucleotide at said CNS disorder-related biallelic marker for the population; Optionally, determining the frequency of a biallelic marker allele in a population may be accomplished by performing a genotyping method on a pooled biological sample derived from a representative number of individuals, or each individual, in said population, and calculating the proportional amount of said nucleotide compared with the total.

A seventh embodiment of the invention comprises methods of detecting an association between an allele and a phenotype, comprising the steps of a) determining the frequency of at least one CNS disorder-related biallelic marker allele in a trait positive population, b) determining the frequency of said CNS disorder-related biallelic marker allele in a control

population and; c) determining whether a statistically significant association exists between said genotype and said phenotype. In addition, the methods of detecting an association between an allele and a phenotype of the invention encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination: Optionally, said CNS disorder-related biallelic marker may be in a sequence selected individually or in any combination from the group consisting of SEQ ID NO: 1-542, and the complements thereof; Optionally, said CNS disorder-related biallelic marker may be selected from the biallelic markers described in Table 7; Optionally, said control population may be a trait negative population, or a random population; Optionally, said phenotype is a CNS disorder, a response to an agent acting on a CNS disorder, or side effect to an agent acting on a CNS disorder; Optionally, the identity of the nucleotides at the biallelic markers in everyone of the following sequences: SEQ ID NO: 1-542 is determined in steps a) and b).

5

10

15

20

25

30

35

An eighth embodiment of the present invention encompasses methods of estimating the frequency of a haplotype for a set of biallelic markers in a population, comprising the steps of: a) genotyping each individual in said population for at least one CNS disorder-related biallelic marker, b) genotyping each individual in said population for a second biallelic marker by determining the identity of the nucleotides at said second biallelic marker for both copies of said second biallelic marker present in the genome; and c) applying a haplotype determination method to the identities of the nucleotides determined in steps a) and b) to obtain an estimate of said frequency. In addition, the methods of estimating the frequency of a haplotype of the invention encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination: Optionally said haplotype determination method is selected from the group consisting of asymmetric PCR amplification, double PCR amplification of specific alleles, the Clark method, or an expectation maximization algorithm; Optionally, said second biallelic marker is a CNS disorder-related biallelic marker in a sequence selected from the group consisting of the biallelic markers of SEQ ID NO: 1-542, and the complements thereof: Optionally, said CNS disorder-related biallelic markers may be selected individually or in any combination from the biallelic markers described in Table 7; Optionally, said CNS disorderrelated biallelic marker may be selected from the following biallelic markers: 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 99-28106-185, 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, 99-30853-364, 19-56-140, 19-28-136, 99-28788-300, 99-32061-304. 99-32121-242, 19-14-241, 16-50-196, 8-19-372, 12-254-180, 10-214-279, 10-217-91, 18-194-130, 18-186-391, 18-198-252, 18-242-300, 20-205-302, 19-58-162, 19-9-45, 19-22-74, 19-88-185, 19-18-310, 19-19-174, 19-17-188, 19-16-127, 99-32148-315, 19-46-322, 99-32131-312, 99-32065-303, 19-44-251, 19-29-303, 18-355-67, 18-353-267, 18-338-305, 16-88-185, 24-243-346, 99-62531-351, 99-54279-152, 99-28171-458, 99-28173-395, 18-186-394, 8-15-126, 99-2409-298, 99-28722-90 and 99-32306-4097; Optionally, said CNS disorder-related biallelic marker

may be selected from the following biallelic markers: 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 19-28-136, 16-50-196, 19-58-162, 19-9-45, 20-205-302, 24-243-346, 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 19-17-188 and 19-19-174; Optionally, the identity of the nucleotides at the biallelic markers in everyone of the sequences of SEQ ID NO: 1-542 is determined in steps a) and b).

10

15

20

25

30

35

A ninth embodiment of the present invention encompasses methods of detecting an association between a haplotype and a phenotype, comprising the steps of: a) estimating the frequency of at least one haplotype in a trait positive population according to a method of estimating the frequency of a haplotype of the invention; b) estimating the frequency of said haplotype in a control population according to the method of estimating the frequency of a haplotype of the invention; and c) determining whether a statistically significant association exists between said haplotype and said phenotype. In addition, the methods of detecting an association between a haplotype and a phenotype of the invention encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination: Optionally, said CNS disorder-related biallelic marker may be in a sequence selected individually or in any combination from the group consisting of SEQ ID NO: 1-542, and the complements thereof; Optionally, said CNS disorder-related biallelic markers may be selected individually or in any combination from the biallelic markers described in Table 7; Optionally, said CNS disorder-related biallelic marker may be selected from the following biallelic markers: 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 99-28106-185, 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, 99-30853-364, 19-56-140, 19-28-136, 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 16-50-196, 8-19-372, 12-254-180, 10-214-279, 10-217-91, 18-194-130, 18-186-391, 18-198-252, 18-242-300, 20-205-302, 19-58-162, 19-9-45, 19-22-74, 19-88-185, 19-18-310, 19-19-174, 19-17-188, 19-16-127, 99-32148-315, 19-46-322, 99-32131-312, 99-32065-303, 19-44-251, 19-29-303, 18-355-67, 18-353-267, 18-338-305, 16-88-185, 24-243-346, 99-62531-351, 99-54279-152, 99-28171-458, 99-28173-395, 18-186-394, 8-15-126, 99-2409-298, 99-28722-90 and 99-32306-409; Optionally, said CNS disorder-related biallelic marker may be selected from the following biallelic markers: 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 19-28-136, 16-50-196, 19-58-162, 19-9-45, 20-205-302, 24-243-346, 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 19-17-188 and 19-19-174; Optionally, said control population may be a trait negative population, or a random population; Optionally, said phenotype is a CNS disorder, a response to an agent acting on a CNS disorder, or side effect to an agent acting on a CNS disorder. Optionally, the identity of the nucleotides at the biallelic markers in everyone of the following sequences: SEQ ID NO: 1-542 is included in the estimating steps a) and b).

A tenth embodiment of the present invention encompasses polypeptides encoded by SEQ ID NO: 543 or 544, as well as antisense analogs thereof and biologically active and

PCT/IB01/00116 WO 01/51659

diagnostically or therapeutically useful fragments and derivatives thereof. The polypeptides of the present invention are of human origin. In accordance with a further aspect of the present invention, there is provided a method for producing such polypeptides by recombinant techniques which comprises culturing recombinant prokaryotic and/or eukaryotic host cells, containing a nucleic acid sequence encoding a polypeptide of the present invention, under conditions promoting expression of said protein and subsequent recovery of said protein. A further embodiment of the present invention encompasses antibodies against such polypeptides.

5

10

20

25

30

35

An eleventh embodiment of the present invention is a method for using one or more of the polypeptides according to the invention to screen for polypeptide antagonists and/or agonists and/or receptor ligands. A further embodiment of the present invention is a method of using such agonists to activate the polypeptides of the present invention for the treatment of conditions related to the underexpression of the polypeptide of the present invention, preferably depression. In accordance with another aspect of the present invention there is provided a method of using such antagonists for inhibiting the polypeptide of the present invention for treating conditions associated with overexpression of the polypeptides of the present invention.

A twelfth embodiment of the present invention encompasses non-naturally occurring synthetic, isolated and/or recombinant polypeptides which are fragments, consensus fragments and/or sequences having conservative amino acid substitutions, of at least one transmembrane domain, such that the polypeptides of the present invention may bind ligands, or which may also modulate, quantitatively or qualitatively, ligand binding to the polypeptides of the present invention. A further embodiment of the present invention encompasses synthetic or recombinant polypeptides, conservative substitution derivatives thereof, antibodies, anti-idiotype antibodies. compositions and methods that can be useful as potential modulators of CNS-related protein function, by binding to ligands or modulating ligand binding, due to their expected biological properties, which may be used in diagnostic, therapeutic and/or research applications relating to CNS disorders. In yet a further embodiment of the present invention, there is provided synthetic. isolated or recombinant polypeptides which are designed to inhibit or mimic various polypeptides of the invention or fragments thereof, as receptor types and subtypes.

A thirteenth embodiment of the present invention encompasses a diagnostic assay for detecting a disease or susceptibility to a disease related to a mutation in a nucleic acid sequence encoding a polypeptide of the present invention. Preferably said disease is depression.

A fourteenth embodiment of the present invention is a method of administering a drug or a treatment comprising the steps of: a) obtaining a nucleic acid sample from an individual; b) determining the identity of the polymorphic base of at least one CNS disorder-related biallelic marker which is associated with a positive response to the treatment or the drug; or at least one biallelic CNS disorder-related marker which is associated with a negative response to the treatment or the drug; and c) administering the treatment or the drug to the individual if the

nucleic acid sample contains said biallelic marker associated with a positive response to the treatment or the drug or if the nucleic acid sample lacks said biallelic marker associated with a negative response to the treatment or the drug. In addition, the methods of the present invention for administering a drug or a treatment encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination: optionally, said CNS disorder-related biallelic marker may be in a sequence selected individually or in any combination from the group consisting of SEQ. ID. NO: 1-542 and the complements thereof-, or optionally, the administering step comprises administering the drug or the treatment to the individual if the nucleic acid sample contains said biallelic marker associated with a positive response to the treatment or the drug and the nucleic acid sample lacks said biallelic marker associated with a negative response to the treatment or the drug.

10

15

20

25

30

35

A fifteenth embodiment of the present invention is a method of selecting an individual for inclusion in a clinical trial of a treatment or drug comprising the steps of: a) obtaining a nucleic acid sample from an individual; b) determining the identity of the polymorphic base of at least one CNS disorder-related biallelic marker which is associated with a positive response to the treatment or the drug, or at least one CNS disorder-related biallelic marker which is associated with a negative response to the treatment or the drug in the nucleic acid sample, and c) including the individual in the clinical trial if the nucleic acid sample contains said CNS disorderrelated biallelic marker associated with a positive response to the treatment or the drug or if the nucleic acid sample lacks said biallelic marker associated with a negative response to the treatment or the drug. In addition, the methods of the present invention for selecting an individual for inclusion in a clinical trial of a treatment or drug encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination: Optionally, said CNS disorder-related biallelic marker may be in a sequence selected individually or in any combination from the group consisting of SEQ. ID. NO: 1-542 and the complements thereof, optionally, the including step comprises administering the drug or the treatment to the individual if the nucleic acid sample contains said biallelic marker associated with a positive response to the treatment or the drug and the nucleic acid sample lacks said biallelic marker associated with a negative response to the treatment or the drug.

Additional embodiments are set forth in the Detailed Description of the Invention and in the Examples.

BRIEF DESCRIPTION OF THE TABLES

Tables 7A and 7C are charts containing a list of all of the CNS-related biallelic markers for each gene with an indication of the gene for which the marker is in closest physical proximity, an indication of whether the markers have been validated by microsequencing (with a Y indicating that the markers have been validated by microsequencing and an N indicating that it

has not), and an indication of the identity and frequency of the least common allele determined by genotyping (with a blank left to indicate that the frequency has not yet been reported for some markers).

Tables 7B and 7D contain all of the CNS-related biallelic markers provided in Tables 7A and 7C; however, they are provided in shorter, easier to search sequences of 47 nucleotides. Accordingly, Table 7A begins with SEQ ID NO: 1 and ends with SEQ ID NO: 130, while corresponding Table 7B begins with SEQ ID NO: 131 and ends with SEQ ID NO: 260. Also Table 7C begins with SEQ ID NO: 261 and ends with SEQ ID NO: 401, while corresponding Table 7D begins with SEQ ID NO: 402 and ends with SEQ ID NO: 542. Table 1 contains the first five markers listed in the sequence listing and their corresponding SEQ ID numbers in Tables 7A and 7C to illustrate the relationship between Tables 7A and 7B:

Table 1

5

10

20

25

BIALLELIC	SEQ ID NO.	BIALLELIC	SEQ ID	BIALLELIC
MARKER ID	IN TABLE	MARKER	NO. IN	MARKER
1	7A	POSITION IN SEQ	TABLE	POSITION IN SEQ
		ID NO.	7B	ID NO.
99-27199-207	1	207	131	24
99-27207-117	2	117	132	24
99-27213-53	3	53	133	24
99-27218-333	4	333	134	24
99-28108-233	5	233	135	24

Tables 7B and 7D are the same as Tables 7A and 7C, respectively, in that they are a list of all of the CNS-related biallelic markers for each gene with an indication of the gene for which the marker is in closest physical proximity, an indication of whether the markers have been validated by microsequencing (with a Y indicating that the markers have been validated by microsequencing and an N indicating that it has not), and an indication of the identity and frequency of the least common allele determined by genotyping (with a blank left to indicate that the frequency has not yet been reported for some markers). However, the "Biallelic Marker Position in SEQ ID No." for all of the CNS-related biallelic markers provided in Tables 7B and 7D is position 24 (representing the midpoint of the 47mers that make up Tables 7B and 7D).

Tables 8, 9, and 10 are charts containing lists of the CNS disorder-related biallelic markers. Each marker is described by indicating its SEQ ID, the biallelic marker ID, and the two most common alleles. Table 8 is a chart containing a list of biallelic markers surrounded by preferred sequences. In the column labeled, "POSITION RANGE OF PREFERRED SEQUENCE" of Table 8 regions of particularly preferred sequences are listed for each SEQ ID, which contain a CNS disorder-related biallelic marker, as well as particularly preferred regions

of sequences that do not contain a CNS disorder-related biallelic marker but, which are in sufficiently close proximity to a CNS disorder-related biallelic marker to be useful as amplification or sequencing primers.

5

10

15

20

25

30

35

Table 11 is a chart listing particular sequences that are useful for designing some of the primers and probes of the invention. Each sequence is described by indicating its Sequence ID and the positions of the first and last nucleotides (position range) of the particular sequence in the Sequence ID.

Table 12 is a chart listing microsequencing primers which have been used to genotype CNS disorder-related biallelic markers (indicated by an *) and other preferred microsequencing primers for use in genotyping CNS disorder-related biallelic markers. Each of the primers which falls within the strand of nucleotides included in the Sequence Listing are described by indicating their Sequence ID number and the positions of the first and last nucleotides (position range) of the primers in the Sequence ID. Since the sequences in the Sequence Listing are single stranded and half the possible microsequencing primers are composed of nucleotide sequences from the complementary strand, the primers that are composed of nucleotides in the complementary strand are described by indicating their SEQ ID numbers and the positions of the first and last nucleotides to which they are complementary (complementary position range) in the Sequence ID.

Table 13 is a chart listing amplification primers which have been used to amplify polynucleotides containing one or more CNS disorder-related biallelic markers. Each of the primers which falls within the strand of nucleotides included in the Sequence Listing are described by indicating their Sequence ID number and the positions of the first and last nucleotides (position range) of the primers in the Sequence ID. Since the sequences in the Sequence Listing are single stranded and half the possible amplification primers are composed of nucleotide sequences from the complementary strand, the primers that are composed of nucleotides in the complementary strand are defined by the SEQ ID numbers and the positions of the first and last nucleotides to which they are complementary (complementary position range) in the Sequence ID.

Table 14 is a chart listing preferred probes useful in genotyping CNS disorder-related biallelic markers by hybridization assays. The probes are 25-mers with a CNS disorder-related biallelic markers in the center position, and described by indicating their Sequence ID number and the positions of the first and last nucleotides (position range) of the probes in the Sequence ID. The probes complementary to the sequences in each position range in each Sequence ID are also understood to be a part of this preferred list even though they are not specified separately:

Table 15 is a table showing the results of single marker association tests between both biallelic marker alleles and genotypes of candidate genes and major depression.

Table 16 is a table showing the results of the LR rank of haplotypes using combinations of 2, 3 and 4 biallelic markers from each gene.

Table 17 is a table showing the rank of permutation tests for individual haplotypes confirming the statistical significance of the association between biallelic marker haplotypes from the candidate genes and major depression.

Table 18 is a table showing the results of single marker association tests between both biallelic marker alleles and genotypes of candidate genes and major depression using additional markers and a new population set as described in Example 4.

Table 19 is a table showing the results of the LR rank of haplotypes using combinations of 2, 3 and 4 biallelic markers from additional candidate genes and using data from a new population set as described in Example 4.

Table 20 is a table showing the rank of permutation tests for individual haplotypes from Table 19 confirming the statistical significance of the association between biallelic marker haplotypes from additional candidate genes and major depression.

DETAILED DESCRIPTION OF THE INVENTION.

I. Candidate Genes of the Present Invention

Different approaches can be employed to perform association studies: genome-wide association studies, candidate region association studies and candidate gene association studies. Genome-wide association studies rely on the screening of genetic markers evenly spaced and covering the entire genome. Candidate region association studies rely on the screening of genetic markers evenly spaced covering a region identified as linked to the trait of interest. The candidate gene approach is based on the study of genetic markers specifically derived from genes potentially involved in the pathophysiology of a disease. In the present invention, genes involved in the central nervous system and/or the endocrine system have been chosen as candidate genes. The candidate genes of the present invention are listed in Table 2.

Table 2

5

10

15

20

25

Candidate Gene Name	Gene Symbol	Description
Serotonin receptor 6	5HTR6	A postsynaptic serotonin receptor.
Serotonin receptor 7	5HTR7	A postsynaptic serotonin receptor.
Neuronal nicotinic acid receptor α7	CHRNA7	An ion channel in the reward pathway.
Corticotrophin releasing factor receptor 1	CRFR1	A corticotrophin releasing factor receptor in the hypothalamus-pituitary-adrenal axis.
Mineralocorticoid receptor	MLR	A mineralocorticoid receptor.

Corticotrophin releasing	CRFR2	A corticotrophin releasing factor receptor in
factor receptor 2		the hypothalamus-pituitary-adrenal axis.
Glucocorticoid receptor	GRL	A glucocorticoid receptor in the hypothalamus-
,		pituitary-adrenal axis.
Monoamine oxidase A	MAOA	Key enzyme in catecholamine metabolism.
William Caldase A	WAOA	Rey chayine in categorianine metabolism.
Monoamine oxidase B	MAOB	Vocania in code de la lamina de de la line
		Key enzyme in catecholamine metabolism.
Serotonin receptor 2C	5HTR2c	Postsynaptic receptor for serotonin.
Tyrosine hydroxylase	TH	The rate-limiting enzyme in the synthesis of
,		dopamine and norepinephrine.
Corticotrophin releasing	CRF	A hormone released by the hypothalamus that
factor	{	stimulates the release of corticotrophin by the
·		anterior pituitary gland.
Dopamine receptor 4	DRD4	A postsynaptic dopamine receptor.
Serotonin transporter	5HTT	A presynaptic membrane receptor that serves
•		as a reuptake mechanism for serotonin.
Dopamine receptor 3	DRD3	A postsynaptic dopamine receptor.
Cytochrome P450 3A4	CYP3A4	A principal drug metabolizing enzyme.
Norepinephrine transporter	NET	A membrane protein responsible for
		termination of the action of synaptic
·	·	norepinephrine.
Neurokinin or tachykinin	NK1/TACR1	A receptor for the neuropeptide substance P.
receptor 1		
Neuropeptide Y1 receptor	NPY1R	A receptor for the neuropeptide Y1. Belongs
		to family of g-protein coupled receptors with it
		highest similarity to tachykinins receptors.
Dopamine receptor 2	DRD2	G protein-coupled dopamine receptor.
Guanine nucleotide binding	Gbeta3	An important component of cAMP mediated
protein, β3		signaling pathways.
Wolfram Syndrome 1 gene	WFS1	A gene that plays a role in the etiology of
A STRUM PARTICULAR I Selle	WLDI	
Pote 1 adecuação escentar	ADDDID	Wolfram syndrome.
Beta 1 adrenergic receptor	ADRB1R	An important component of the norepinephrine
		signaling pathway. Antidepressants are known
		to suppress expression.
Brain derived neurotrophic	BDNF	A protein known to affect the differentiation of
factor		dopaminergic and serotonergic neurons.

		Increased by antidepressants and electro-
		convulsive therapy.
Orphan G-protein coupled	HM74	A putative chemokine receptor.
	IIIVI/4	A putative chemokine receptor.
receptor		
Vasopressin receptor 1A	AVPR1A	A receptor that stimulates adrenocorticotrophic
	1	hormone (ACTH) release in the anterior
	\$	pituitary.
Serotonin receptor 1-A	5HT1A	A receptor that is misregulated in depression,
		as well as anxiety and stress.
Growth associated protein 43	GAP43	A protein known to play a role in synaptic
		plasticity. Increased levels in suicide victims.
Guanine nucleotide binding	GOLF (GNAL)	A protein known to play a role in signaling:
protein, α subunit, olfactory		possibly in cAMP mediated signaling
type	-	pathways and norepinephrine-related
		pathways.
Clock protein	CLOCK	A protein associated with sleeping patterns in
		humans.
Corticotrophin hormone	CRHBP	A protein capable of binding to corticotrophin
binding protein		releasing factor.
Dopamine transporter	DAT (SLC6A3)	A protein involved in the re-uptake of
		dopamine.
Phosphodiesterase type 4b	PDE4b	An enzyme believed to be involved in
		mediating central nervous system effects of
		therapeutic agents ranging from
. •		antidepressants to anti-inflammatory agents.
Catechol O-methyl	COMT	An enzyme that catalyzes the transfer of a
transferase		methyl group from s-adenosylmethionine to a
		catecholamine such as dopamine, epinephrine,
		or norepinephrine.
Melanin concentrating	SLC1	A transmembrane protein that serves as the
hormone receptor		functional receptor of melanin concentrating
		hormone.
Transcription factor	SEF2-1B	A transcription factor that binds to the e-box
	(TCF4)	present in the somatostatin receptor 2 initiator
		element (sstr2-inr) to activate transcription (by
		similarity).
L	L	<u> </u>

Heat shock protein	HSP70	A protein believed to interact with polypeptides during a variety of assembly processes in such a way as to prevent the formation of nonfunctional structures.
GABA-A receptor subunit	GABRG2	A receptor known to mediate inhibitory neurotransmission, complexing with DRD5 and promoting mutually inhibitory functional interactions between these receptor systems, putatively involved in the physiological dependence on alcohol, and in the maintenance of psychomotor disease states.
GABA-A receptor subunit 5	GABRA5	A receptor known to be part of the ligand-gated ionic channels protein family. Associated with bipolar disorder.

Both the central nervous system and the endocrine system play an important role in the pathophysiology of CNS disorders, moreover, these systems contain important drug targets and genetic polymorphisms in these genes are highly relevant in the response to a number of drugs. The candidate gene analysis clearly provides a short-cut approach to the identification of genes and gene polymorphisms related to a particular disease when some information concerning the pathophysiology of the disorder is available as is the case for many CNS disorders. However, it should be noted that all of the biallelic markers disclosed in the instant application can be employed as part of genome-wide association studies or as part of candidate region association studies and such uses are specifically contemplated in the present invention and claims. All of the markers are known to be in close proximity to the genes with which they are listed in Table 7. For a portion of the markers, the precise position of the marker with respect to the various coding and non-coding elements of the genes has also been determined.

15 II. Definitions

10

20

Before describing the invention in greater detail, the following definitions are set forth to illustrate and define the meaning and scope of the terms used to describe the invention herein.

As used interchangeably herein, the terms "nucleic acid molecule", "oligonucleotide", and "polynucleotide", unless specifically stated otherwise, include RNA or, DNA (either single or double stranded, coding, complementary or antisense), or RNA/DNA hybrid sequences of more than one nucleotide in either single chain or duplex form (although each of the above species may be particularly specified). The term "nucleotide" as used herein as an adjective to describe molecules comprising RNA, DNA, or RNA/DNA hybrid sequences of any length in

5

10

15

20

25

35

single-stranded or duplex form. More precisely, the expression "nucleotide sequence" encompasses the nucleic material itself and is thus not restricted to the sequence information (i.e. the succession of letters chosen among the four base letters) that biochemically characterizes a specific DNA or RNA molecule. The term "nucleotide" is also used herein as a noun to refer to individual nucleotides or varieties of nucleotides, meaning a molecule, or individual unit in a larger nucleic acid molecule, comprising a purine or pyrimidine, a ribose or deoxyribose sugar moiety, and a phosphate group, or phosphodiester linkage in the case of nucleotides within an oligonucleotide or polynucleotide. Although the term "nucleotide" is also used herein to encompass "modified nucleotides" which comprise at least one modifications (a) an alternative linking group, (b) an analogous form of purine, (c) an analogous form of pyrimidine, or (d) an analogous sugar, for examples of analogous linking groups, purine, pyrimidines, and sugars see for example PCT publication No. WO 95/04064. Preferred modifications of the present invention include, but are not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil. beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6isopentenyladenine, uracil-5-oxyacetic acid (v) ybutoxosine, pseudouracil, queosine, 2thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, 5-methyl-2-thiouracil, 3-(3-amino-3-N-2carboxypropyl) uracil, and 2,6-diaminopurine. The polynucleotide sequences of the invention may be prepared by any known method, including synthetic, recombinant, ex vivo generation, or a combination thereof, as well as utilizing any purification methods known in the art. Methylenemethylimino linked oligonucleosides as well as mixed backbone compounds having, may be prepared as described in U.S. Pat. Nos. 5,378,825; 5,386,023; 5,489,677; 5,602,240; and 5,610,289. Formacetal and thioformacetal linked oligonucleosides may be prepared as described in U.S. Pat. Nos. 5,264,562 and 5,264,564. Ethylene oxide linked oligonucleosides may be 30 prepared as described in U.S. Pat. No. 5,223,618. Phosphinate oligonucleotides may be prepared as described in U.S. Pat. No. 5,508,270.. Alkyl phosphonate oligonucleotides may be prepared as described in U.S. Pat. No. 4,469,863. 3'-Deoxy-3'-methylene phosphonate oligonucleotides may be prepared as described in U.S. Pat. Nos. 5,610,289 or 5,625,050. Phosphoramidite oligonucleotides may be prepared as described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878. Alkylphosphonothioate oligonucleotides may be prepared as described in published PCT applications WO 94/17093 and WO 94/02499. 3'-Deoxy-3'-amino phosphoramidate oligonucleotides may be prepared as described in U.S. Pat. No. 5,476,925. Phosphotriester

oligonucleotides may be prepared as described in U.S. Pat. No. 5,023,243. Borano phosphate oligonucleotides may be prepared as described in U.S. Pat. Nos. 5,130,302 and 5,177,198. The polynucleotide sequences of the invention may be prepared by any known method, including synthetic, recombinant, ex vivo generation, or a combination thereof, as well as utilizing any purification methods known in the art.

5

10

15

20

25

30

35

The term "isolated" further requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturallyoccurring polynucleotide present in a living animal is not isolated, but the same polynucleotide, separated from some or all of the coexisting materials in the natural system, is isolated. Specifically excluded from the definition of "isolated" are: naturally-occurring chromosomes (such as chromosome spreads), artificial chromosome libraries, genomic libraries, and cDNA libraries that exist either as an in vitro nucleic acid molecule preparation or as a transfected/transformed host cell preparation, wherein the host cells are either an in vitro heterogeneous preparation or plated as a heterogeneous population of single colonies. Also specifically excluded are the above libraries wherein a specified polynucleotide of the present invention makes up less than 5% of the number of nucleic acid molecule inserts in the vector molecules. Further specifically excluded are whole cell genomic DNA or whole cell RNA or mRNA preparations (including said whole cell preparations which are mechanically sheared or enzymatically digested). Further specifically excluded are the above whole cell preparations as either an in vitro preparation or as a heterogeneous mixture separated by electrophoresis (including blot transfers of the same) wherein the polynucleotide of the invention has not further been separated from the heterologous polynucleotides in the electrophoresis medium (e.g., further separating by excising a single band from a heterogeneous band population in an agarose gel or nylon blot).

As used herein, the term "purified" does not require absolute purity; rather, it is intended as a relative definition. Individual 5' EST clones isolated from a cDNA library have been conventionally purified to electrophoretic homogeneity. The sequences obtained from these clones could not be obtained directly either from the library or from total human DNA. The cDNA clones are not naturally occurring as such, but rather are obtained via manipulation of a partially purified naturally occurring substance (messenger RNA). The conversion of mRNA into a cDNA library involves the creation of a synthetic substance (cDNA) and pure individual cDNA clones can be isolated from the synthetic library by clonal selection. Thus, creating a cDNA library from messenger RNA and subsequently isolating individual clones from that library results in an approximately 10⁴-10⁶ fold purification of the native message. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated. Alternatively, purification may be expressed as "at least" a percent purity relative to heterologous polynucleotides (DNA, RNA)

or both). As a preferred embodiment, the polynucleotides of the present invention are at least; 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 96%, 98%, 99%, or 100% pure relative to heterologous polynucleotides. As a further preferred embodiment the polynucleotides have an "at least" purity ranging from any number, to the thousandth position, between 90% and 100% (e.g., 5' EST at least 99.995% pure) relative to heterologous polynucleotides. Additionally, purity of the polynucleotides may be expressed as a percentage (as described above) relative to all materials and compounds other than the carrier solution. Each number, to the thousandth position, may be claimed as individual species of purity.

5

10

20

25

30

35

The term "primer" denotes a specific oligonucleotide sequence which is complementary to a target nucleotide sequence and used to hybridize to the target nucleotide sequence. A primer serves as an initiation point for nucleotide polymerization catalyzed by DNA polymerase, RNA polymerase or reverse transcriptase.

The term "probe" denotes a defined nucleic acid segment (or nucleotide analog segment, e.g., polynucleotide as defined herein) which can be used to identify a specific polynucleotide sequence present in samples, said nucleic acid segment comprising a nucleotide sequence complementary of the specific polynucleotide sequence to be identified.

The term "CNS disorder" refers to any condition linked to dysfunction of the central nervous system which is known in the art. A CNS disorder includes dysfunction of one or several physiological systems contributing to the function of the central nervous system, which includes the endocrine system and the peripheral nervous system. A CNS disorder further refers to disorders in neurotransmitter synthesis and degradation, neurotransmitter function, neurotransmitter receptor function, neurotransmitter signal transduction, neurotransmitter transporter function, motor neuron function, hormone synthesis and degradation, hormone function, hormone receptor function and hormone signal transduction. "CNS disorders" include mood disorders such as depression, bipolar disorder, anxiety, attention deficit disorder and schizophrenia. "CNS disorders" also include neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Pick's disease, progressive supranuclear palsy, Lewy body dementia and Wolfram syndrome (diabetes insipidus, diabetes mellitus, optic atrophy and deafness). "CNS disorders" also include disorders of movement such as motor neuron disease as well as diseases involving the intellect such as Alzheimer's disease, Wernicke's encephalopathy and Jakob-Creutzfeldt disease. "CNS disorders" further include other disorders such as coma, head injury, cerebral infarction, epilepsy, alcoholism and states of mental retardation. All of the possible CNS disorders listed herein are included in, or may be excluded from, the present invention as individual species.

The term "depression" as used herein refers to both unipolar major depression (or major depressive disorder) and bipolar disorder.

5

10

15

20 '

25

30

35

An "agent acting on a CNS disorder" includes any drug or compound known in the art that addresses, reduces or alleviates one or more symptoms of a CNS disorder. "Agents acting on a CNS disorder" includes any drug or a compound modulating the activity or concentration of an enzyme or regulatory molecule involved in a CNS disorder that is known in the art. An agent acting on a CNS disorder includes but is not limited to tyrosine hydroxylase, monoamine oxidase A/B, dopamine β-hydroxylase, aldehyde dehydrogenase, phenylethanolamine Nmethyltransferase, catechol o-methyltransferase, tryptophan hydroxylase, acetyl coenzyme A, proteinases, oestrogens, glucocorticoids, mineralocorticoids, nicotine, substance P and precursors to neurotransmitters such as tryptophan. "Agent acting on a CNS disorder" further refers to compounds modulating the synthesis, degradation, reuptake and action of neurotransmitters and hormones such as tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs), serotonin selective reuptake inhibitors (SSRIs), selective norepinephrine reuptake inhibitor (NRI) such as reboxetine, dual serotonin and norepinephrine reuptake inhibitor (SNRI), serotonin-2 antagonist/reuptake inhibitors (SARIs), noradrenergic and specific serotonergic antidepressants (NaSSAs), drugs that cause increased dopamine release in the brain such as levodopa, dopamine receptor agonists such as bromocriptine, dopamine antagonists such as metoclopramide, neuroleptic drugs such as phenothiazines, adrenergic agonists such as clonidine, N-methyl-Dasparate antagonists such as phencyclidine, anticholinergic compounds, benzodiazepine drugs and anxiolytic compounds. Preferably, "agent acting on a CNS disorder" refers to the antidepressant drug Reboxetine.

The terms "response to an agent acting on a CNS disorder" refer to drug efficacy, including but not limited to the ability to metabolize a compound, the ability to convert a prodrug to an active drug, and to the pharmacokinetics (absorption, distribution, elimination) and the pharmacodynamics (receptor-related) of a drug in an individual.

The terms "side effects to an agent acting on a CNS disorder" refer to adverse effects of therapy resulting from extensions of the principal pharmacological action of the drug or to idiosyncratic adverse reactions resulting from an interaction of the drug with unique host factors. "Side effects to an agent acting on a CNS disorder" include, but are not limited to autonomic side effects such as orthostatic hypotension, blurred vision, dry mouth, nasal congestion and constipation. "Side effects to an agent acting on a CNS disorder" also include anxiety, sleep disturbances, sexual dysfunction, gastrointestinal disturbances, nausea, diarrhea, orthostasis, dizziness, sedation, hypertension and shock.

The terms "trait" and "phenotype" are used interchangeably herein and refer to any visible, detectable or otherwise measurable property of an organism such as symptoms of, or susceptibility to a disease for example. Typically the terms "trait" or "phenotype" are used herein to refer to symptoms of, or susceptibility to a CNS disorder; or to refer to an individual's

response to an agent acting on a CNS disorder; or to refer to symptoms of, or susceptibility to side effects to an agent acting on a CNS disorder.

The term "allele" is used herein to refer to variants of a nucleotide sequence. A biallelic polymorphism has two forms. Typically the first identified allele is designated as the original allele whereas other alleles are designated as alternative alleles. Diploid organisms may be homozygous or heterozygous for an allelic form.

5

10

15

20

25

35

The term "heterozygosity rate" is used herein to refer to the incidence of individuals in a population, which are heterozygous at a particular allele. In a biallelic system the heterozygosity rate is on average equal to $2P_a(1-P_a)$, where P_a is the frequency of the least common allele. In order to be useful in genetic studies a genetic marker should have an adequate level of heterozygosity to allow a reasonable probability that a randomly selected person will be heterozygous.

The term "genotype" as used herein refers to the identity of the alleles present in an individual or a sample. In the context of the present invention a genotype preferably refers to the description of the biallelic marker alleles present in an individual or a sample. The term "genotyping" a sample or an individual for a biallelic marker consists of determining the specific allele or the specific nucleotide carried by an individual at a biallelic marker.

The term "mutation" as used herein refers to a difference in DNA sequence between or among different genomes or individuals which has a frequency below 1%.

The term "haplotype" refers to a combination of alleles present in an individual or a sample. In the context of the present invention a haplotype preferably refers to a combination of biallelic marker alleles found in a given individual and which may be associated with a phenotype.

The term "polymorphism" as used herein refers to the occurrence of two or more alternative genomic sequences or alleles between or among different genomes or individuals. "Polymorphic" refers to the condition in which two or more variants of a specific genomic sequence can be found in a population. A "polymorphic site" is the locus at which the variation occurs. A single nucleotide polymorphism is a single base pair change. Typically a single nucleotide polymorphism is the replacement of one nucleotide by another nucleotide at the polymorphic site. Deletion of a single nucleotide or insertion of a single nucleotide, also give rise to single nucleotide polymorphisms. In the context of the present invention "single nucleotide polymorphism" preferably refers to a single nucleotide substitution. Typically, between different genomes or between different individuals, the polymorphic site may be occupied by two different nucleotides.

The terms "biallelic polymorphism" and "biallelic marker" are used interchangeably herein to refer to a polymorphism having two alleles at a fairly high frequency in the population, preferably a single nucleotide polymorphism. A "biallelic marker allele" refers to the nucleotide

variants present at a biallelic marker site. Typically the frequency of the less common allele of the biallelic markers of the present invention has been validated to be greater than 1%, preferably the frequency is greater than 10%, more preferably the frequency is at least 20% (i.e. heterozygosity rate of at least 0.32), even more preferably the frequency is at least 30% (i.e. heterozygosity rate of at least 0.42). A biallelic marker wherein the frequency of the less common allele is 30% or more is termed a "high quality biallelic marker."

10

15

- 20

30

35

The location of nucleotides in a polynucleotide with respect to the center of the polynucleotide are described herein in the following manner. When a polynucleotide has an odd number of nucleotides, the nucleotide at an equal distance from the 3' and 5' ends of the polynucleotide is considered to be "at the center" of the polynucleotide, and any nucleotide immediately adjacent to the nucleotide at the center, or the nucleotide at the center itself is considered to be "within 1 nucleotide of the center." With an odd number of nucleotides in a polynucleotide any of the five nucleotide positions in the middle of the polynucleotide would be considered to be within 2 nucleotides of the center, and so on. When a polynucleotide has an even number of nucleotides, there would be a bond and not a nucleotide at the center of the polynucleotide. Thus, either of the two central nucleotides would be considered to be "within 1 nucleotide of the center" and any of the four nucleotides in the middle of the polynucleotide would be considered to be "within 2 nucleotides of the center", and so on. For polymorphisms which involve the substitution, insertion or deletion of 1 or more nucleotides, the polymorphism, allele or biallelic marker is "at the center" of a polynucleotide if the difference between the distance from the substituted, inserted, or deleted polynucleotides of the polymorphism and the 3' end of the polynucleotide, and the distance from the substituted, inserted, or deleted polynucleotides of the polymorphism and the 5' end of the polynucleotide is zero or one nucleotide. If this difference is 0 to 3, then the polymorphism is considered to be "within 1 nucleotide of the center." If the difference is 0 to 5, the polymorphism is considered to be "within 2 nucleotides of the center." If the difference is 0 to 7, the polymorphism is considered to be "within 3 nucleotides of the center," and so on. For polymorphisms which involve the substitution, insertion or deletion of 1 or more nucleotides, the polymorphism, allele or biallelic marker is "at the center" of a polynucleotide if the difference between the distance from the substituted, inserted, or deleted polynucleotides of the polymorphism and the 3' end of the polynucleotide, and the distance from the substituted, inserted, or deleted polynucleotides of the polymorphism and the 5' end of the polynucleotide is zero or one nucleotide. If this difference is 0 to 3, then the polymorphism is considered to be "within 1 nucleotide of the center." If the difference is 0 to 5, the polymorphism is considered to be "within 2 nucleotides of the center." If the difference is 0 to 7, the polymorphism is considered to be "within 3 nucleotides of the center," and so on.

The term "upstream" is used herein to refer to a location which is toward the 5' end of the polynucleotide from a specific reference point.

The terms "base paired" and "Watson & Crick base paired" are used interchangeably herein to refer to nucleotides which can be hydrogen bonded to one another be virtue of their sequence identities in a manner like that found in double-helical DNA with thymine or uracil residues linked to adenine residues by two hydrogen bonds and cytosine and guanine residues linked by three hydrogen bonds (See Stryer, L., *Biochemistry*, 4th edition, 1995).

The terms "complementary" or "complement thereof" are used herein to refer to the sequences of polynucleotides which is capable of forming Watson & Crick base pairing with another specified polynucleotide throughout the entirety of the complementary region. This term is applied to pairs of polynucleotides based solely upon their sequences and not any particular set of conditions under which the two polynucleotides would actually bind.

10

20

As used herein the term "CNS disorder-related biallelic marker" relates to a set of biallelic markers in linkage disequilibrium with genes disclosed in Tables 7(A-D) which express proteins that are involved in the pathophysiology CNS disorders. The term CNS disorder-related biallelic marker encompasses all of the biallelic markers disclosed in Tables 7(A-D). The preferred CNS disorder-related biallelic marker alleles of the present invention include each one of the alleles described in Tables 7, 8, 9, and 10 individually or in groups consisting of all the possible combinations of the alleles included in Tables 7, 8, 9, and 10. In addition, Table 7 may include Tables 7A-7D, or Tables 7A, 7B, 7C or 7D as individual embodiments of the present invention or in any combination of the four.

The term "sequence described in Table 8" is used herein to refer to the entire collection of nucleotide sequences or any individual sequence defined in Table 8. The SEQ ID that contains each "sequence described in Table 8" is provided in the column labeled, "SEQ ID NO."

25 The range of nucleotide positions within the Sequence ID of which each sequence consists is provided in the same row as the Sequence ID in a column labeled, "POSITION RANGE OF PREFERRED SEQUENCE". It should be noted that some of the Sequence ID numbers have multiple sequence ranges listed, because they contain multiple "sequences described in Table 8."

Unless otherwise noted the term "sequence described in Table 8" is to be construed as encompassing sequences that contain either of the two alleles listed in the columns labeled, "1ST ALLELE" and "2ND ALLELE" at the position identified in field <222> of the allele feature in the appended Sequence Listing for each Sequence ID number referenced in Table 8.

The term "sequence described in Table 9" is used herein to refer to the entire collection of nucleotide sequences or any individual sequence defined in Table 9. Unless otherwise noted, the "sequences described in Table 9" consist of the entire sequence of each Sequence ID provided in the column labeled, "SEQ ID NO." Also unless otherwise noted the term "sequence described in Table 9" is to be construed as encompassing sequences that contain either of the two

alleles listed in the columns labeled, "ORIGINAL ALLELE" and "ALTERNATIVE ALLELE" at the position identified in field <222> of the allele feature in the appended Sequence Listing for each Sequence ID number referenced in Table 9.

The term "sequence described in Table 10" is used herein to refer to the entire collection of nucleotide sequences or any individual sequence defined in Table 10. Unless otherwise noted, the "sequences described in Table 10" consist of the entire sequence of each Sequence ID provided in the column labeled, "SEQ ID NO." Also unless otherwise noted the term "sequence described in Table 10" is to be construed as encompassing sequences that contain either of the two alleles listed in the columns labeled, "1ST ALLELE" and "2ND ALLELE" at the position identified in field <222> of the allele feature in the appended Sequence Listing for each Sequence ID number referenced in Table 10:

5

10

20

. 25

30

35

The term "sequence described in Table 11" is used herein to refer to the entire collection of nucleotide sequences or any individual sequence defined in Table 11. The SEQ ID that contains each "sequence described in Table 11" is provided in the column labeled, "SEQ ID NO." The range of nucleotide positions within the Sequence ID of which each sequence consists is provided in the same row as the Sequence ID in a column labeled, "POSITION RANGE OF PREFERRED SEQUENCE". It should be noted that some of the Sequence ID numbers have multiple sequence ranges listed, because they contain multiple "sequences described in Table 11."

The term "sequence described in Table 12" is used herein to refer to the entire collection of nucleotide sequences or any individual sequence defined in Table 12. The SEQ ID that contains each "sequence described in Table 12" is provided in the column labeled, "SEQ ID NO." The range of nucleotide positions within the Sequence ID of which half of the sequences consists is provided in the same row as the Sequence ID in a column labeled, "POSITION RANGE OF MICROSEQUENCING PRIMERS". The remaining half of the sequences described in Table 12 are complementary to the range of nucleotide positions within the Sequence ID provided in the same row as the Sequence ID in a column labeled, "COMPLEMENTARY POSITION RANGE OF MICROSEQUENCING PRIMERS".

The term "sequence described in Table 13" is used herein to refer to the entire collection of nucleotide sequences or any individual sequence defined in Table 13. The SEQ ID that contains each "sequence described in Table 13" is provided in the column labeled, "SEQ ID NO." The range of nucleotide positions within the Sequence ID of which half of the sequences consists is provided in the same row as the Sequence ID in a column labeled, "POSITION RANGE OF AMPLIFICATION PRIMERS". The remaining half of the sequences described in Table 13 are complementary to the range of nucleotide positions within the Sequence ID provided in the same row as the Sequence ID in a column labeled, "COMPLEMENTARY POSITION RANGE OF AMPLIFICATION PRIMERS".

The term "sequence described in Table 14" is used herein to refer to the entire collection of nucleotide sequences or any individual sequence defined in Table 14. The SEO ID that contains each "sequence described in Table 14" is provided in the column labeled. "SEO ID NO.". The range of nucleotide positions within the Sequence ID of which each sequence consists is provided in the same row as the Sequence ID in a column labeled, "POSITION RANGE OF PROBES". The sequences which are complementary to the ranges listed in the column labeled, "POSITION RANGE OF PROBES" are also encompassed by the term, "sequence described in Table 14." Unless otherwise noted the term "sequence described in Table 14" is to be construed as encompassing sequences that contain either of the two alleles listed in the allele feature in the appended Sequence Listing for each Sequence ID number referenced in Table 14.

5

10

20

The terms "biallelic marker described in Table" and "allele described in Table" are used herein to refer to any or all alleles which are listed in the allele feature in the appended Sequence Listing for each Sequence ID number referenced in the particular Table being mentioned.

The following abbreviations are used in this disclosure: serotonin receptor 6 gene is 15 abbreviated 5HTR6; serotonin receptor 7 gene is abbreviated 5HTR7; neuronal nicotinic acid receptor α7 gene is abbreviated CHRNA7; corticotrophin releasing factor receptor 1 gene is abbreviated CRFR1; mineralocorticoid receptor gene is abbreviated MLR; corticotrophin releasing factor receptor 2 gene is abbreviated CRFR2; glucocorticoid receptor gene is abbreviated GRL; monoamine oxidases A and B genes are abbreviated MAOA/B; serotonin receptor 2C gene is abbreviated 5HTR2c; tyrosine hydroxylase gene is abbreviated TH; corticotrophin releasing factor gene is abbreviated CRF; dopamine receptor 4 gene is abbreviated DRD4; serotonin transporter gene is abbreviated 5HTT; dopamine receptor 3 gene is abbreviated DRD3; cytochrome P450 3A4 gene is abbreviated CYP3A4; norepinephrine transporter gene is abbreviated NET; neurokinin or tachykinin receptor 1 gene is abbreviated NK1/TACR1; 25 dopamine receptor 4 gene is abbreviated DRD2; guanine nucleotide binding protein, 63 gene is abbreviated Gbeta3; Wolfram Syndrome 1 gene is abbreviated WFS1; Beta 1 adrenergic receptor gene is abbreviated ADRB1R; Brain derived neurotrophic factor gene is abbreviated BDNF; Orphan G-protein coupled receptor gene is abbreviated HM74; Vasopressin receptor 1A gene is abbreviated AVPR1A; Serotonin receptor 1-A gene is abbreviated 5HT1A; Growth associated protien 43 gene is abbreviated GAP43; Guanine nucleotide binding protein, a subunit, olfactory 30 type gene is abbreviated GOLF (GNAL); Clock protein gene is abbreviated CLOCK; Corticotrophin hormone binding protein gene is abbreviated CRHBP; Dopamine transporter gene is abbreviated DAT (SLC6A3); Phosphodiesterase type 4b gene is abbreviated PDE4b; Catechol O-methyl transferase gene is abbreviated COMT; Melanin concentrating hormone receptor gene 35 is abbreviated SLC1; Transcription factor gene is abbreviated SEF2-1B (TCF4); Heat shock protein gene is abbreviated HSP70; GABA-A receptor subunit gene is abbreviated GABRG2; and GABA-A receptor subunit 5 gene is abbreviated GABRA5.

III. Biallelic Markers and Polynucleotides Comprising Biallelic Markers

5

10

20

25

30

A. Advantages of the Biallelic Markers of the Present Invention

The CNS disorder-related biallelic markers of the present invention offer a number of important advantages over other genetic markers such as RFLP (Restriction fragment length polymorphism) and VNTR (Variable Number of Tandem Repeats) markers.

The first generation of markers, were RFLPs, which are variations that modify the length of a restriction fragment. But methods used to identify and to type RFLPs are relatively wasteful of materials, effort, and time. The second generation of genetic markers were VNTRs, which can be categorized as either minisatellites or microsatellites. Minisatellites are tandemly repeated DNA sequences present in units of 5-50 repeats which are distributed along regions of the human chromosomes ranging from 0.1 to 20 kilobases in length. Since they present many possible alleles, their informative content is very high. Minisatellites are scored by performing Southern blots to identify the number of tandem repeats present in a nucleic acid sample from the individual being tested. However, there are only 10⁴ potential VNTRs that can be typed by Southern blotting. Moreover, both RFLP and VNTR markers are costly and time-consuming to develop and assay in large numbers.

Single nucleotide polymorphism or biallelic markers can be used in the same manner as RFLPs and VNTRs but offer several advantages. Single nucleotide polymorphisms are densely spaced in the human genome and represent the most frequent type of variation. An estimated number of more than 10⁷ sites are scattered along the 3x10⁹ base pairs of the human genome. Therefore, single nucleotide polymorphism occur at a greater frequency and with greater uniformity than RFLP or VNTR markers which means that there is a greater probability that such a marker will be found in close proximity to a genetic locus of interest. Single nucleotide polymorphisms are less variable than VNTR markers but are mutationally more stable.

Also, the different forms of a characterized single nucleotide polymorphism, such as the biallelic markers of the present invention, are often easier to distinguish and can therefore be typed easily on a routine basis. Biallelic markers have single nucleotide based alleles and they have only two common alleles, which allows highly parallel detection and automated scoring. The biallelic markers of the present invention offer the possibility of rapid, high-throughput genotyping of a large number of individuals.

Biallelic markers are densely spaced in the genome, sufficiently informative and can be assayed in large numbers. The combined effects of these advantages make biallelic markers extremely valuable in genetic studies. Biallelic markers can be used in linkage studies in families, in allele sharing methods, in linkage disequilibrium studies in populations, in association studies of case-control populations. An important aspect of the present invention is that biallelic markers allow association studies to be performed to identify genes involved in

complex traits. Association studies examine the frequency of marker alleles in unrelated caseand control-populations and are generally employed in the detection of polygenic or sporadic
traits. Association studies may be conducted within the general population and are not limited to
studies performed on related individuals in affected families (linkage studies). Biallelic markers
in different genes can be screened in parallel for direct association with disease or response to a
treatment. This multiple gene approach is a powerful tool for a variety of human genetic studies
as it provides the necessary statistical power to examine the synergistic effect of multiple genetic
factors on a particular phenotype, drug response, sporadic trait, or disease state with a complex
genetic etiology.

B. Polynucleotides of the Present Invention

5

10

15

25

30

35

The present invention encompasses polynucleotides for use as primers and probes in the methods of the invention. These polynucleotides may consist of, consist essentially of, or comprise a contiguous span of nucleotides of a sequence from any sequence in the Sequence Listing as well as sequences which are complementary thereto ("complements thereof"). The "contiguous span" may be at least 8, 10, 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 250, 500, 1000, 2000 or 3000 nucleotides in length, to the extent that a contiguous span of these lengths is consistent with the lengths of the particular Sequence ID. It should be noted that the polynucleotides of the present invention are not limited to having the exact flanking sequences surrounding the polymorphic bases which, are enumerated in the Sequence Listing. Rather, it will be appreciated that the flanking sequences surrounding the biallelic markers, or any of the primers of probes of the invention which, are more distant from the markers, may be lengthened or shortened to any extent compatible with their intended use and the present invention specifically contemplates such sequences. It will be appreciated that the polynucleotides referred to in the Sequence Listing may be of any length compatible with their intended use. Also the flanking regions outside of the contiguous span need not be homologous to native flanking sequences which actually occur in human subjects. The addition of any nucleotide sequence, which is compatible with the nucleotides intended use is specifically contemplated. The contiguous span may optionally include the CNS disorder-related biallelic marker in said sequence. Biallelic markers generally consist of a polymorphism at one single base position. Each biallelic marker therefore corresponds to two forms of a polynucleotide sequence which, when compared with one another, present a nucleotide modification at one position. Usually, the nucleotide modification involves the substitution of one nucleotide for another. Optionally either the original or the alternative allele of the biallelic markers disclosed in Table 9, or the first or second allele disclosed in Table 8 and 10 may be specified as being present at the CNS disorderrelated biallelic marker.

The invention also relates to polynucleotides that hybridize, under conditions of high or intermediate stringency, to a polynucleotide of a sequence from any sequence in the Sequence

Listing as well as sequences, which are complementary thereto. Preferably such polynucleotides are at least 20, 25, 35, 40, 50, 70, 80, 100, 250, 500, 1000, 2000 or 3000 nucleotides in length, to the extent that a polynucleotide of these lengths is consistent with the lengths of the particular Sequence ID. Preferred polynucleotides comprise a CNS disorder-related biallelic marker. Optionally either the original or the alternative allele of the biallelic markers disclosed in Table 9 may be specified as being present at the CNS disorder-related biallelic marker. Conditions of

high and intermediate stringency are further described herein.

10

20 .

25 :

30

35

The preferred polynucleotides of the invention include the sequence ranges included in any one the sequence ranges of Tables 8 and 11 to 14 individually or in groups consisting of all the possible combinations of the ranges of included in Tables 8, and 11 to 14. The preferred polynucleotides of the invention also include fragments of at least 8, 10, 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 250, 500 or 1000 consecutive nucleotides of the sequence ranges included in any one of the sequence ranges of Tables 9, and 12 to 15 to the extent that fragments of these lengths are consistent with the lengths of the particular sequence range. The preferred polynucleotides of the invention also include fragments of at least 8, 10, 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 250, 500 or 1000 consecutive nucleotides of the sequence complementary to the sequence ranges included in any one of the sequence ranges of Tables 8 and 11 to 14 to the extent that fragments of these lengths are consistent with the lengths of the particular sequence range.

The primers of the present invention may be designed from the disclosed sequences for any method known in the art. A preferred set of primers is fashioned such that the 3' end of the contiguous span of identity with the sequences of the Sequence Listing is present at the 3' end of the primer. Such a configuration allows the 3' end of the primer to hybridize to a selected nucleic acid sequence and dramatically increases the efficiency of the primer for amplification or sequencing reactions. In a preferred set of primers the contiguous span is found in one of the sequences described in Table 11. Allele specific primers may be designed such that a biallelic marker is at the 3' end of the contiguous span and the contiguous span is present at the 3' end of the primer. Such allele specific primers tend to selectively prime an amplification or sequencing reaction so long as they are used with a nucleic acid sample that contains one of the two alleles present at a biallelic marker. The 3' end of primer of the invention may be located within or at least 2, 4, 6, 8, 10, 12, 15, 18, 20, 25, 50, 100, 250, 500, 1000, 2000 or 3000 to the extent that this distance is consistent with the particular Sequence ID, nucleotides upstream of a CNS disorderrelated biallelic marker in said sequence or at any other location which is appropriate for their intended use in sequencing, amplification or the location of novel sequences or markers. A list of preferred amplification primers is disclosed in Table 13. Primers with their 3' ends located 1 nucleotide upstream of a CNS disorder-related biallelic marker have a special utility as microsequencing assays. Preferred microsequencing primers are described in Tables 12.

The probes of the present invention may be designed from the disclosed sequences for any method known in the art, particularly methods which allow for testing if a particular sequence or marker disclosed herein is present. A preferred set of probes may be designed for use in the hybridization assays of the invention in any manner known in the art such that they selectively bind to one allele of a biallelic marker, but not the other under any particular set of assay conditions. Preferred hybridization probes may consists of, consist essentially of, or comprise a contiguous span which ranges in length from 8, 10, 12, 15, 18 or 20 to 25, 35, 40, 50, 60, 70, or 80 nucleotides, or be specified as being 12, 15, 18, 20, 25, 35, 40, or 50 nucleotides in length and including a CNS disorder-related biallelic marker of said sequence. Optionally the original allele or alternative allele disclosed in Table 9 and the first or second allele disclosed in Tables 8 and 10 may be specified as being present at the biallelic marker site. Optionally, said biallelic marker may be within 6, 5, 4, 3, 2, or 1 nucleotides of the center of the hybridization probe or at the center of said probe. A particularly preferred set of hybridization probes is disclosed in Table 14 or a sequence complementary thereto.

10

15

30

35

Any of the polynucleotides of the present invention can be labeled, if desired, by incorporating a label detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive substances, fluorescent dyes or biotin. Preferably, polynucleotides are labeled at their 3' and 5' ends. A label can also be used • to capture the primer, so as to facilitate the immobilization of either the primer or a primer 20 extension product, such as amplified DNA, on a solid support. A capture label is attached to the primers or probes and can be a specific binding member which forms a binding pair with the solid's phase reagent's specific binding member (e.g. biotin and streptavidin). Therefore depending upon the type of label carried by a polynucleotide or a probe, it may be employed to capture or to detect the target DNA. Further, it will be understood that the polynucleotides, primers or probes provided herein, may, themselves, serve as the capture label. For example, in the case where a solid phase reagent's binding member is a nucleic acid sequence, it may be selected such that it binds a complementary portion of a primer or probe to thereby immobilize the primer or probe to the solid phase. In cases where a polynucleotide probe itself serves as the binding member, those skilled in the art will recognize that the probe will contain a sequence or "tail" that is not complementary to the target. In the case where a polynucleotide primer itself serves as the capture label, at least a portion of the primer will be free to hybridize with a nucleic acid on a solid phase. DNA Labeling techniques are well known to the skilled technician.

Any of the polynucleotides, primers and probes of the present invention can be conveniently immobilized on a solid support. Solid supports are known to those skilled in the art and include the walls of wells of a reaction tray, test tubes, polystyrene beads, magnetic beads, nitrocellulose strips, membranes, microparticles such as latex particles, sheep (or other animal) red blood cells, duracytes® and others. The solid support is not critical and can be selected by

one skilled in the art. Thus, latex particles, microparticles, magnetic or non-magnetic beads, membranes, plastic tubes, walls of microtiter wells, glass or silicon chips, sheep (or other suitable animal's) red blood cells and duracytes are all suitable examples. Suitable methods for immobilizing nucleic acids on solid phases include ionic, hydrophobic, covalent interactions and the like. A solid support, as used herein, refers to any material which is insoluble, or can be made insoluble by a subsequent reaction. The solid support can be chosen for its intrinsic ability to attract and immobilize the capture reagent. Alternatively, the solid phase can retain an additional receptor which has the ability to attract and immobilize the capture reagent. The additional receptor can include a charged substance that is oppositely charged with respect to the capture reagent itself or to a charged substance conjugated to the capture reagent. As yet another alternative, the receptor molecule can be any specific binding member which is immobilized upon (attached to) the solid support and which has the ability to immobilize the capture reagent through a specific binding reaction. The receptor molecule enables the indirect binding of the capture reagent to a solid support material before the performance of the assay or during the performance of the assay. The solid phase thus can be a plastic, derivatized plastic, magnetic or non-magnetic metal, glass or silicon surface of a test tube, microtiter well, sheet, bead, microparticle, chip, sheep (or other suitable animal's) red blood cells, duracytes® and other configurations known to those of ordinary skill in the art. The polynucleotides of the invention can be attached to or immobilized on a solid support individually or in groups of at least 2, 5, 8, 10, 12, 15, 20, or 25 distinct polynucleotides of the inventions to a single solid support. In addition, polynucleotides other than those of the invention may be attached to the same solid support as one or more polynucleotides of the invention.

10

15

20

25

30

35

Any polynucleotide provided herein may be attached in overlapping areas or at random locations on the solid support. Alternatively the polynucleotides of the invention may be attached in an ordered array wherein each polynucleotide is attached to a distinct region of the solid support which does not overlap with the attachment site of any other polynucleotide. Preferably, such an ordered array of polynucleotides is designed to be "addressable" where the distinct locations are recorded and can be accessed as part of an assay procedure. Addressable polynucleotide arrays typically comprise a plurality of different oligonucleotide probes that are coupled to a surface of a substrate in different known locations. The knowledge of the precise location of each polynucleotides location makes these "addressable" arrays particularly useful in hybridization assays. Any addressable array technology known in the art can be employed with the polynucleotides of the invention. One particular embodiment of these polynucleotide arrays is known as the GenechipsTM, and has been generally described in US Patent 5,143,854; PCT publications WO 90/15070 and 92/10092. These arrays may generally be produced using mechanical synthesis methods or light directed synthesis methods, which incorporate a combination of photolithographic methods and solid phase oligonucleotide synthesis (Fodor et

al., Science, 251:767-777, 1991). The immobilization of arrays of oligonucleotides on solid supports has been rendered possible by the development of a technology generally identified as "Very Large Scale Immobilized Polymer Synthesis" (VLSIPSTM) in which, typically, probes are immobilized in a high density array on a solid surface of a chip. Examples of VLSIPSTM technologies are provided in US Patents 5,143,854 and 5,412,087 and in PCT Publications WO 90/15070, WO 92/10092 and WO 95/11995, which describe methods for forming oligonucleotide arrays through techniques such as light-directed synthesis techniques. In designing strategies aimed at providing arrays of nucleotides immobilized on solid supports, further presentation strategies were developed to order and display the oligonucleotide arrays on the chips in an attempt to maximize hybridization patterns and sequence information. Examples of such presentation strategies are disclosed in PCT Publications WO 94/12305, WO 94/11530, WO 97/29212 and WO 97/31256.

5

10

15

20

25

30

35

Oligonucleotide arrays may comprise at least one of the sequences selected from the group consisting of SEQ ID No. 1-130; and the sequences complementary thereto or a fragment thereof of at least 8, 10, 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 250, 500, 1000, 2000 or 3000 consecutive nucleotides, to the extent that fragments of these lengths is consistent with the lengths of the particular Sequence ID, for determining whether a sample contains one or more alleles of the biallelic markers of the present invention. Oligonucleotide arrays may also comprise at least one of the sequences selected from the group consisting of SEQ ID No. 1-130; and the sequences complementary thereto or a fragment thereof of at least 8, 10, 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 250, 500, 1000, 2000 or 3000 consecutive nucleotides, to the extent that fragments of these lengths is consistent with the lengths of the particular Sequence ID, for amplifying one or more alleles of the biallelic markers of Table 7. In other embodiments, arrays may also comprise at least one of the sequences selected from the group consisting of SEQ ID No. 1-130; and the sequences complementary thereto or a fragment thereof of at least 8, 10, 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 250, 500, 1000, 2000 or 3000 consecutive nucleotides, to the extent that fragments of these lengths is consistent with the lengths of the particular Sequence ID, for conducting microsequencing analyses to determine whether a sample contains one or more alleles of the biallelic markers of the invention. In still further embodiments, the oligonucleotide array may comprise at least one of the sequences selecting from the group consisting of SEQ ID No. 1-130; and the sequences complementary thereto or a fragment thereof of at least 8, 10, 12, 15, 18, 20, 25, 35, 40, 50, 70, 80, 100, 250, 500, 1000, 2000 or 3000 nucleotides in length, to the extent that fragments of these lengths is consistent with the lengths of the particular Sequence ID, for determining whether a sample contains one or more alleles of the biallelic markers of the present invention. In still further embodiments, the oligonucleotide array may comprise at least one of the novel sequences listed in the fifth column of Table 8 or the sequences complementary thereto or a fragment comprising at least 8, 10, 12, 15, 18, 20, 25, 35,

40, 50, 70, 80, 100, 250, 500 or 1000 consecutive nucleotides thereof to the extent that fragments of these lengths are consistent with the lengths of the particular novel sequences.

The present invention also encompasses diagnostic kits comprising one or more polynucleotides of the invention, optionally with a portion or all of the necessary reagents and instructions for genotyping a test subject by determining the identity of a nucleotide at a CNS disorder-related biallelic marker. The determining of the identity may optionally be at a CNS disorder-related biallelic marker that predicts the response of a therapeutic agent, preferably Reboxetine, when administered to a patient suffering from depression. The polynucleotides of a kit may optionally be attached to a solid support, or be part of an array or addressable array of 10 polynucleotides. The kit may provide for the determination of the identity of the nucleotide at a marker position by any method known in the art including, but not limited to, a sequencing assay method, a microsequencing assay method, a hybridization assay method, or an allele specific amplification method. Optionally such a kit may include instructions for scoring the results of the determination with respect to the test subjects' risk of contracting a CNS disorder, or likely response to an agent acting on CNS disorders, or chances of suffering from side effects to an agent acting on CNS disorders.

C. Polypeptides of the Invention

5

15

35 -

The polynucleotides which encode the WFS1 and the NET polypeptide may include: only the coding sequence for the mature polypeptide; the coding sequence for the polypeptide 20 and additional coding sequence such as a leader or secretory sequence or a proprotein sequence; the coding sequence for the polypeptide (and optionally additional coding sequence) and noncoding sequence, such as introns or non-coding sequence 5' and/or 3' of the coding sequence for · · · the mature polypeptide.

Thus, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide 25 which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.

As hereinabove indicated, the polynucleotides may have a coding sequence which is a naturally occurring allelic variant of the coding sequence of SEQ ID NO: 543 or 544. As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a 30 substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide.

D. Host Cells

· Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector: The vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the WFS1 or NET gene. The culture

conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

The polynucleotides of the present invention may be employed for producing polypeptides by recombinant techniques. Thus, for example, the polynucleotide may be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host.

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the E. coli. lac or trp, the phage lambda P.sub.L promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.

As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as E. coli, Streptomyces, Salmonella typhimurium; fungal cells, such as yeast; insect cells such as Drosophila S2 and Spodoptera Sf9; animal cells such as CHO, COS or Bowes melanoma; adenoviruses; plant cells, etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

E. Screening Assays

5

10

15

20

25

. 30

35

The polynucleotides of the present invention may be employed for producing polypeptides by recombinant techniques. Thus, for example, the polynucleotide may be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include

chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used as long as it is replicable and viable in the host.

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.

10

15

20

25

30

35

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the E. coli. lac or trp, the phage lambda P.sub.L promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in *E. coli*.

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.

As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as E. coli, Streptomyces, Salmonella typhimurium; fungal cells, such as yeast; insect cells such as Drosophila S2 and Spodoptera Sf9; animal cells such as CHO, COS or Bowes melanoma; adenoviruses; plant cells, etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example.

Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pbs, pD10, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3,

pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, PSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are PKK232-8 and PCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P.sub.R, P.sub.L and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

5

10

15

20

25

30

35

In a further embodiment, the present invention relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation. (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)).

The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.

Transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are cisacting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples including the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alpha.-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is

assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

5

10

· 15

20

25

30

35

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

As a representative but nonlimiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, Wis., USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell, 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

The WFS1 and NET polypeptides can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The polypeptides of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue.

F. Screening Assays

10

15

20

25

35

The WFS1 protein receptor of the present invention may be employed in a process for screening for antagonists and/or agonists for the receptor.

In general, such screening procedures involve providing appropriate cells which express the receptor on the surface thereof. In particular, a polynucleotide encoding the receptor of the present invention is employed to transfect cells to thereby express the WFS1 receptor. Such transfection may be accomplished by procedures as hereinabove described.

One such screening procedure involves the use of the melanophores which are transfected to express the WFS1 receptor of the present invention. Such a screening technique is described in PCT WO 92/01810 published Feb. 6, 1992.

Thus, for example, such assay may be employed for screening for a receptor antagonist by contacting the melanophore cells which encode the WFS1 receptor with both the receptor ligand and a compound to be screened. Inhibition of the signal generated by the ligand indicates that a compound is a potential antagonist for the receptor, i.e., inhibits activation of the receptor.

The screen may be employed for determining an agonist by contacting such cells with compounds to be screened and determining whether such compound generates a signal, i.e., activates the receptor.

Other screening techniques include the use of cells which express WFS1 receptor (for example, transfected CHO cells) in a system which measures extracellular pH changes caused by receptor activation, for example, as described in Science, volume 246, pages 181-296 (October 1989). For example, potential agonists or antagonists may be contacted with a cell which expresses the WFS1 receptor and a second messenger response, e.g. signal transduction or pH changes, may be measured to determine whether the potential agonist or antagonist is effective.

Another such screening technique involves introducing RNA encoding the WFS1 receptor into xenopus oocytes to transiently express the receptor. The receptor oocytes may then be contacted in the case of antagonist screening with the receptor ligand and a compound to be screened, followed by detection of inhibition of a calcium signal.

5 -

10

15

35

Another screening technique involves expressing the WFS1 receptor in which the receptor is linked to a phospholipase C or D. As representative examples of such cells, there may be mentioned endothelial cells, smooth muscle cells, embryonic kidney cells, etc. The screening for an antagonist or agonist may be accomplished as hereinabove described by detecting activation of the receptor or inhibition of activation of the receptor from the phospholipase second signal.

Another method involves screening for antagonists by determining inhibition of binding of labeled ligand to cells which have the receptor on the surface thereof. Such a method involves transfecting a eukaryotic cell with DNA encoding the WFS1 receptor such that the cell expresses the receptor on its surface and contacting the cell with a potential antagonist in the presence of a labeled form of a known ligand. The ligand can be labeled, e.g., by radioactivity. The amount of labeled ligand bound to the receptors is measured, e.g., by measuring radioactivity of the receptors. If the potential antagonist binds to the receptor as determined by a reduction of labeled ligand which binds to the receptors, the binding of labeled ligand to the receptor is inhibited.

The present invention also provides a method for determining whether a ligand not known to be capable of binding to a WFS1 receptor can bind to such receptor which comprises contacting a mammalian cell which expresses a WFS1 receptor with the ligand under conditions permitting binding of ligands to the WFS1 receptor, detecting the presence of a ligand which binds to the receptor and thereby determining whether the ligand binds to the WFS1 receptor. The systems hereinabove described for determining agonists and/or antagonists may also be employed for determining ligands which bind to the receptor.

In general, antagonists for WFS1 receptors which are determined by screening procedures may be employed for a variety of therapeutic purposes. For example, such antagonists have been employed for treatment of hypertension, angina pectoris, myocardial infarction, ulcers, asthma, allergies, psychoses, depression, migraine, vomiting, stroke, eating disorders, migraine headaches, cancer and benign prostatic hypertrophy.

Agonists for WFS1 receptors are also useful for therapeutic purposes, such as the treatment of Wolfram syndrome and/or depression.

Examples of WFS1 receptor antagonists include an antibody, or in some cases an oligonucleotide, which binds to the WFS1 receptor but does not elicit a second messenger response such that the activity of the WFS1 receptor is prevented. Antibodies include anti-idiotypic antibodies which recognize unique determinants generally associated with the antigenbinding site of an antibody.

Potential antagonists also include proteins which are closely related to the ligand of the WFS1 receptor, i.e. a fragment of the ligand, which have lost biological function and when binding to the WFS1 receptor, elicit no response.

A potential antagonist also includes an antisense construct prepared through the use of antisense technology. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes for the mature polypeptides of the present invention, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix -see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al, Science, 241:456 (1988); and Dervan et al., Science, 251: 1360 (1991)), thereby preventing transcription and the production of WFS1 receptor. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the WFS1 receptor (antisense-Okano, J. Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, Fla. (1988)). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of WFS1 receptor.

Another potential antagonist is a small molecule which binds to the WFS1 receptor, making it inaccessible to ligands such that normal biological activity is prevented. Examples of small molecules include but are not limited to small peptides or peptide-like molecules.

Potential antagonists also include a soluble form of a WFS1 receptor, e.g. a fragment of the receptor, which binds to the ligand and prevents the ligand from interacting with membrane bound WFS1 receptors.

The WFS1 receptor and antagonists or agonists may be employed in combination with a suitable pharmaceutical carrier. Such compositions comprise a therapeutically effective amount of the polypeptide, and a pharmaceutically acceptable carrier or excipient. Such a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The formulation should suit the mode of administration.

G. Antibodies

. 5

10

15

20

25

30

35

The polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can be used as an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodies. The present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.

Antibodies generated against the polypeptides corresponding to a sequence of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.

IV. Methods for De Novo Identification of Biallelic Markers

10

15

20

25

30

35

Large fragments of human DNA, carrying genes of interest involved in CNS disorders; were cloned, sequenced and screened for biallelic markers. Biallelic markers within the candidate genes themselves as well as markers located on the same genomic fragment were identified. It will be clear to one of skill in the art that large fragments of human genomic DNA may be obtained from any appropriate source and may be cloned into a number of suitable vectors.

In a preferred embodiment of the invention, BAC (Bacterial Artificial Chromosomes) vectors were used to construct DNA libraries covering the entire human genome. Specific amplification primers were designed for each candidate gene and the BAC library was screened by PCR until there was at least one positive BAC clone per candidate gene. Genomic sequence, screened for biallelic markers, was generated by sequencing ends of BAC subclones. Details of a preferred embodiment are provided in Example 1. As a preferred alternative to sequencing the ends of an adequate number of BAC subclones, high throughput deletion-based sequencing vectors, which allow the generation of a high quality sequence information covering fragments of about 6kb, may be used. Having sequence fragments longer than 2.5 or 3kb enhances the chances of identifying biallelic markers therein. Methods of constructing and sequencing a nested set of deletions are disclosed in the related U.S. Patent Application entitled "High Throughput DNA Sequencing Vector" (Serial No. 09/058,746).

In another embodiment of the invention, genomic sequences of candidate genes were available in public databases allowing direct screening for biallelic markers.

Any of a variety of methods can be used to screen a genomic fragment for single nucleotide

polymorphisms such as differential hybridization with oligonucleotide probes, detection of changes in the mobility measured by gel electrophoresis or direct sequencing of the amplified nucleic acid. A preferred method for identifying biallelic markers involves comparative sequencing of genomic DNA fragments from an appropriate number of unrelated individuals.

In a first embodiment, DNA samples from unrelated individuals are pooled together, following which the genomic DNA of interest is amplified and sequenced. The nucleotide sequences thus obtained are then analyzed to identify significant polymorphisms. One of the

major advantages of this method resides in the fact that the pooling of the DNA samples substantially reduces the number of DNA amplification reactions and sequencing reactions, which must be carried out. Moreover, this method is sufficiently sensitive so that a biallelic marker obtained thereby usually demonstrates a sufficient frequency of its less common allele to be useful in conducting association studies. Usually, the frequency of the least common allele of a biallelic marker identified by this method is at least 10%.

In a second embodiment, the DNA samples are not pooled and are therefore amplified and sequenced individually. This method is usually preferred when biallelic markers need to be identified in order to perform association studies within candidate genes. Preferably, highly relevant gene regions such as promoter regions or exon regions may be screened for biallelic markers. A biallelic marker obtained using this method may show a lower degree of informativeness for conducting association studies, e.g. if the frequency of its less frequent allele may be less than about 10%. Such a biallelic marker will however be sufficiently informative to conduct association studies and it will further be appreciated that including less informative biallelic markers in the genetic analysis studies of the present invention, may allow in some cases the direct identification of causal mutations, which may, depending on their penetrance, be rare mutations.

The following is a description of the various parameters of a preferred method used by the inventors for the identification of the biallelic markers of the present invention.

A. Genomic DNA Samples

5

10

15

20 .

25

30

35

The genomic DNA samples from which the biallelic markers of the present invention are generated are preferably obtained from unrelated individuals corresponding to a heterogeneous population of known ethnic background. The number of individuals from whom DNA samples are obtained can vary substantially, preferably from about 10 to about 1000, more preferably from about 50 to about 200 individuals. Usually, DNA samples are collected from at least about 100 individuals in order to have sufficient polymorphic diversity in a given population to identify as many markers as possible and to generate statistically significant results.

As for the source of the genomic DNA to be subjected to analysis, any test sample can be foreseen without any particular limitation. These test samples include biological samples, which can be tested by the methods of the present invention described herein, and include human and animal body fluids such as whole blood, serum, plasma, cerebrospinal fluid, urine, lymph fluids, and various external secretions of the respiratory, intestinal and genitourinary tracts, tears, saliva, milk, white blood cells, myelomas and the like; biological fluids such as cell culture supernatants; fixed tissue specimens including tumor and non-tumor tissue and lymph node tissues; bone marrow aspirates and fixed cell specimens. The preferred source of genomic DNA used in the present invention is from peripheral venous blood of each donor. Techniques to prepare genomic DNA from biological samples are well known to the skilled technician. Details

of a preferred embodiment are provided in Example 1. The person skilled in the art can choose to amplify pooled or unpooled DNA samples.

B. DNA Amplification

10

15

20

25

30

35

The identification of biallelic markers in a sample of genomic DNA may be facilitated through the use of DNA amplification methods. DNA samples can be pooled or unpooled for the amplification step. DNA amplification techniques are well known to those skilled in the art. Various methods to amplify DNA fragments carrying biallelic markers are further described herein. The PCR technology is the preferred amplification technique used to identify new biallelic markers.

In a first embodiment, biallelic markers are identified using genomic sequence information generated by the inventors. Genomic DNA fragments, such as the inserts of the BAC clones described above, are sequenced and used to design primers for the amplification of 500 bp fragments. These 500 bp fragments are amplified from genomic DNA and are scanned for biallelic markers. Primers may be designed using the OSP software (Hillier L. and Green P., 1991). All primers may contain, upstream of the specific target bases, a common oligonucleotide tail that serves as a sequencing primer. Those skilled in the art are familiar with primer extensions, which can be used for these purposes.

In another embodiment of the invention, genomic sequences of candidate genes are available in public databases allowing direct screening for biallelic markers. Preferred primers, useful for the amplification of genomic sequences encoding the candidate genes, focus on promoters, exons and splice sites of the genes. A biallelic marker present in these functional regions of the gene has a higher probability to be a causal mutation.

Preferred primers include those disclosed in Table 13.

C. Sequencing of Amplified Genomic DNA and Identification of Single Nucleotide

Polymorphisms

The amplification products generated as described above, are then sequenced using any method known and available to the skilled technician. Methods for sequencing DNA using either the dideoxy-mediated method (Sanger method) or the Maxam-Gilbert method are widely known to those of ordinary skill in the art. Such methods are for example disclosed in Maniatis et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Second Edition, 1989). Alternative approaches include hybridization to high-density DNA probe arrays as described in Chee et al. (Science 274, 610, 1996).

Preferably, the amplified DNA is subjected to automated dideoxy terminator sequencing reactions using a dye-primer cycle sequencing protocol. The products of the sequencing reactions are run on sequencing gels and the sequences are determined using gel image analysis. The polymorphism search is based on the presence of superimposed peaks in the electrophoresis pattern resulting from different bases occurring at the same position. Because each dideoxy

terminator is labeled with a different fluorescent molecule, the two peaks corresponding to a biallelic site present distinct colors corresponding to two different nucleotides at the same position on the sequence. However, the presence of two peaks can be an artifact due to background noise. To exclude such an artifact, the two DNA strands are sequenced and a comparison between the peaks is carried out. In order to be registered as a polymorphic sequence, the polymorphism has to be detected on both strands.

The above procedure permits those amplification products, which contain biallelic markers to be identified. The detection limit for the frequency of biallelic polymorphisms detected by sequencing pools of 100 individuals is approximately 0.1 for the minor allele, as verified by sequencing pools of known allelic frequencies. However, more than 90% of the biallelic polymorphisms detected by the pooling method have a frequency for the minor allele higher than 0.25. Therefore, the biallelic markers selected by this method have a frequency of at least 0.1 for the minor allele and less than 0.9 for the major allele. Preferably at least 0.2 for the minor allele and less than 0.8 for the major allele, more preferably at least 0.3 for the minor allele and less than 0.7 for the major allele, thus a heterozygosity rate higher than 0.18, preferably higher than 0.32, more preferably higher than 0.42.

10

20

25

35

In another embodiment, biallelic markers are detected by sequencing individual DNA samples; the frequency of the minor allele of such a biallelic marker may be less than 0.1.

The markers carried by the same fragment of genomic DNA, such as the insert in a BAC clone, need not necessarily be ordered with respect to one another within the genomic fragment to conduct association studies. However, in some embodiments of the present invention, the order of biallelic markers carried by the same fragment of genomic DNA are determined.

D. Validation of the Biallelic Markers of the Present Invention

The polymorphisms are evaluated for their usefulness as genetic markers by validating that both alleles are present in a population. Validation of the biallelic markers is accomplished by genotyping a group of individuals by a method of the invention and demonstrating that both alleles are present. Microsequencing is a preferred method of genotyping alleles. The validation by genotyping step may be performed on individual samples derived from each individual in the group or by genotyping a pooled sample derived from more than one individual. The group can be as small as one individual if that individual is heterozygous for the allele in question.

Preferably the group contains at least three individuals, more preferably the group contains five or six individuals, so that a single validation test will be more likely to result in the validation of more of the biallelic markers that are being tested. It should be noted, however, that when the validation test is performed on a small group it may result in a false negative result if as a result of sampling error none of the individuals tested carries one of the two alleles. Thus, the validation process is less useful in demonstrating that a particular initial result is an artifact, than it is at demonstrating that there is a bona fide biallelic marker at a particular position in a

sequence. For an indication of whether a particular biallelic marker has been validated see Table 7. All of the genotyping, haplotyping, association, and interaction study methods of the invention may optionally be performed solely with validated biallelic markers.

E. Evaluation of the Frequency of the Biallelic Markers of the Present Invention

The validated biallelic markers are further evaluated for their usefulness as genetic markers by determining the frequency of the least common allele at the biallelic marker site. The determination of the least common allele is accomplished by genotyping a group of individuals by a method of the invention and demonstrating that both alleles are present. This determination of frequency by genotyping step may be performed on individual samples derived from each individual in the group or by genotyping a pooled sample derived from more than one individual. The group must be large enough to be representative of the population as a whole. Preferably the group contains at least 20 individuals, more preferably the group contains at least 50 individuals, most preferably the group contains at least 100 individuals. Of course the larger the group the greater the accuracy of the frequency determination because of reduced sampling error. For an indication of the frequency for the less common allele of a particular biallelic marker of the invention see Table 7. A biallelic marker wherein the frequency of the less common allele is 30% or more is termed a "high quality biallelic marker." All of the genotyping, haplotyping, association, and interaction study methods of the invention may optionally be performed solely with high quality biallelic markers.

20

25

30

35

5

10

15

V. Methods of Genotyping an Individual for Biallelic Markers

Methods are provided to genotype a biological sample for one or more biallelic markers of the present invention, all of which may be performed *in vitro*. Such methods of genotyping comprise determining the identity of a nucleotide at a CNS disorder-related biallelic marker by any method known in the art. These methods find use in genotyping case-control populations in association studies as well as individuals in the context of detection of alleles of biallelic markers which, are known to be associated with a given trait, in which case both copies of the biallelic marker present in individual's genome are determined so that an individual may be classified as homozygous or heterozygous for a particular allele.

These genotyping methods can be performed nucleic acid samples derived from a single individual or pooled DNA samples.

Genotyping can be performed using similar methods as those described above for the identification of the biallelic markers, or using other genotyping methods such as those further described below. In preferred embodiments, the comparison of sequences of amplified genomic fragments from different individuals is used to identify new biallelic markers whereas microsequencing is used for genotyping known biallelic markers in diagnostic and association study applications.

A. Source of DNA for Genotyping

5

10

15

20

25.

30

35

Any source of nucleic acids, in purified or non-purified form, can be utilized as the starting nucleic acid, provided it contains or is suspected of containing the specific nucleic acid sequence desired. DNA or RNA may be extracted from cells, tissues, body fluids and the like as described herein. While nucleic acids for use in the genotyping methods of the invention can be derived from any mammalian source, the test subjects and individuals from which nucleic acid samples are taken are generally understood to be human.

B. Amplification of DNA Fragments Comprising Biallelic Markers

Methods and polynucleotides are provided to amplify a segment of nucleotides comprising one or more biallelic marker of the present invention. It will be appreciated that amplification of DNA fragments comprising biallelic markers may be used in various methods and for various purposes and is not restricted to genotyping. Nevertheless, many genotyping methods, although not all, require the previous amplification of the DNA region carrying the biallelic marker of interest. Such methods specifically increase the concentration or total number of sequences that span the biallelic marker or include that site and sequences located either distal or proximal to it. Diagnostic assays may also rely on amplification of DNA segments carrying a biallelic marker of the present invention.

Amplification of DNA may be achieved by any method known in the art. The established PCR (polymerase chain reaction) method or by developments thereof or alternatives. Amplification methods which can be utilized herein include but are not limited to Ligase Chain Reaction (LCR) as described in EP A 320 308 and EP A 439 182, Gap LCR (Wolcott, M.J., Clin. Microbiol. Rev. 5:370-386), the so-called "NASBA" or "3SR" technique described in Guatelli J.C. et al. (Proc. Natl. Acad. Sci. USA 87:1874-1878, 1990) and in Compton J. (Nature 350:91-92, 1991), Q-beta amplification as described in European Patent Application no 4544610, strand displacement amplification as described in Walker et al. (Clin. Chem. 42:9-13, 1996) and EP A 684 315 and, target mediated amplification as described in PCT Publication WO 9322461.

LCR and Gap LCR are exponential amplification techniques, both depend on DNA ligase to join adjacent primers annealed to a DNA molecule. In Ligase Chain Reaction (LCR), probe pairs are used which include two primary (first and second) and two secondary (third and fourth) probes, all of which are employed in molar excess to target. The first probe hybridizes to a first segment of the target strand and the second probe hybridizes to a second segment of the target strand, the first and second segments being contiguous so that the primary probes abut one another in 5' phosphate-3'hydroxyl relationship, and so that a ligase can covalently fuse or ligate the two probes into a fused product. In addition, a third (secondary) probe can hybridize to a portion of the first probe and a fourth (secondary) probe can hybridize to a portion of the second probe in a similar abutting fashion. Of course, if the target is initially double stranded, the secondary probes also will hybridize to the target complement in the first instance. Once the

ligated strand of primary probes is separated from the target strand, it will hybridize with the third and fourth probes which can be ligated to form a complementary, secondary ligated product. It is important to realize that the ligated products are functionally equivalent to either the target or its complement. By repeated cycles of hybridization and ligation, amplification of the target sequence is achieved. A method for multiplex LCR has also been described (WO 9320227). Gap LCR (GLCR) is a version of LCR where the probes are not adjacent but are separated by 2 to 3 bases.

5

10

15

20

25

30

35

For amplification of mRNAs, it is within the scope of the present invention to reverse transcribe mRNA into cDNA followed by polymerase chain reaction (RT-PCR); or, to use a single enzyme for both steps as described in U.S. Patent No. 5,322,770 or, to use Asymmetric Gap LCR (RT-AGLCR) as described by Marshall R.L. et al. (*PCR Methods and Applications* 4:80-84, 1994). AGLCR is a modification of GLCR that allows the amplification of RNA.

Some of these amplification methods are particularly suited for the detection of single nucleotide polymorphisms and allow the simultaneous amplification of a target sequence and the identification of the polymorphic nucleotide as it is further described herein.

The PCR technology is the preferred amplification technique used in the present invention. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see Molecular Cloning to Genetic Engineering White, B.A. Ed. in *Methods in Molecular Biology* 67: Humana Press, Totowa (1997) and the publication entitled "PCR Methods and Applications" (1991, Cold Spring Harbor Laboratory Press). In each of these PCR procedures, PCR primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites. PCR has further been described in several patents including US Patents 4,683,195, 4,683,202 and 4,965,188.

The identification of biallelic markers as described above allows the design of appropriate oligonucleotides, which can be used as primers to amplify DNA fragments comprising the biallelic markers of the present invention. Amplification can be performed using the primers initially used to discover new biallelic markers which are described herein or any set of primers allowing the amplification of a DNA fragment comprising a biallelic marker of the present invention. Primers can be prepared by any suitable method. As for example, direct chemical synthesis by a method such as the phosphodiester method of Narang S.A. et al. (Methods Enzymol. 68:90-98, 1979), the phosphodiester method of Brown E.L. et al. (Methods

Enzymol. 68:109-151, 1979), the diethylphosphoramidite method of Beaucage et al. (Tetrahedron Lett. 22:1859-1862, 1981) and the solid support method described in EP 0 707 592.

In some embodiments the present invention provides primers for amplifying a DNA fragment containing one or more biallelic markers of the present invention. Preferred amplification primers are listed in Table 13. It will be appreciated that the primers listed are merely exemplary and that any other set of primers which produce amplification products containing one or more biallelic markers of the present invention.

5

10.

15

20

25

30

35

The primers are selected to be substantially complementary to the different strands of each specific sequence to be amplified. The length of the primers of the present invention can range from 8 to 100 nucleotides, preferably from 8 to 50, 8 to 30 or more preferably 8 to 25 nucleotides. Shorter primers tend to lack specificity for a target nucleic acid sequence and generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. Longer primers are expensive to produce and can sometimes self-hybridize to form hairpin structures. The formation of stable hybrids depends on the melting temperature (Tm) of the DNA. The Tm depends on the length of the primer, the ionic strength of the solution and the G+C content. The higher the G+C content of the primer, the higher is the melting temperature because G:C pairs are held by three H bonds whereas A:T pairs have only two. The G+C content of the amplification primers of the present invention preferably ranges between 10 and 75 %, more preferably between 35 and 60 %, and most preferably between 40 and 55 %. The appropriate length for primers under a particular set of assay conditions may be empirically determined by one of skill in the art.

The spacing of the primers determines the length of the segment to be amplified. In the context of the present invention amplified segments carrying biallelic markers can range in size from at least about 25 bp to 35 kbp. Amplification fragments from 25-3000 bp are typical, fragments from 50-1000 bp are preferred and fragments from 100-600 bp are highly preferred. It will be appreciated that amplification primers for the biallelic markers may be any sequence which allow the specific amplification of any DNA fragment carrying the markers.

Amplification primers may be labeled or immobilized on a solid support as described in I.

C. Methods of Genotyping DNA samples for Biallelic Markers

Any method known in the art can be used to identify the nucleotide present at a biallelic marker site. Since the biallelic marker allele to be detected has been identified and specified in the present invention, detection will prove simple for one of ordinary skill in the art by employing any of a number of techniques. Many genotyping methods require the previous amplification of the DNA region carrying the biallelic marker of interest. While the amplification of target or signal is often preferred at present, ultrasensitive detection methods which do not require amplification are also encompassed by the present genotyping methods. Methods well-known to those skilled in the art that can be used to detect biallelic polymorphisms

include methods such as, conventional dot blot analyzes, single strand conformational polymorphism analysis (SSCP) described by Orita et al. (*Proc. Natl. Acad. Sci. U.S.A* 86:27776-2770, 1989), denaturing gradient gel electrophoresis (DGGE), heteroduplex analysis, mismatch cleavage detection, and other conventional techniques as described in Sheffield, V.C. et al. (*Proc. Natl. Acad. Sci. USA* 49:699-706, 1991), White et al. (*Genomics* 12:301-306, 1992), Grompe, M. et al. (*Proc. Natl. Acad. Sci. USA* 86:5855-5892, 1989) and Grompe, M. (*Nature Genetics* 5:111-117, 1993). Another method for determining the identity of the nucleotide present at a particular polymorphic site employs a specialized exonuclease-resistant nucleotide derivative as described in US patent 4,656,127.

Preferred methods involve directly determining the identity of the nucleotide present at a biallelic marker site by sequencing assay, enzyme-based mismatch detection assay, or hybridization assay. The following is a description of some preferred methods. A highly preferred method is the microsequencing technique. The term "sequencing assay" is used herein to refer to polymerase extension of duplex primer/template complexes and includes both traditional sequencing and microsequencing.

i) Sequencing assays

10

15

20

25

30

35

The nucleotide present at a polymorphic site can be determined by sequencing methods. In a preferred embodiment, DNA samples are subjected to PCR amplification before sequencing as described above. DNA sequencing methods are described herein.

Preferably, the amplified DNA is subjected to automated dideoxy terminator sequencing reactions using a dye-primer cycle sequencing protocol. Sequence analysis allows the identification of the base present at the biallelic marker site.

ii) Microsequencing assays

In microsequencing methods, a nucleotide at the polymorphic site that is unique to one of the alleles in a target DNA is detected by a single nucleotide primer extension reaction. This method involves appropriate microsequencing primers which, hybridize just upstream of a polymorphic base of interest in the target nucleic acid. A polymerase is used to specifically extend the 3' end of the primer with one single ddNTP (chain terminator) complementary to the selected nucleotide at the polymorphic site. Next the identity of the incorporated nucleotide is determined in any suitable way.

Typically, microsequencing reactions are carried out using fluorescent ddNTPs and the extended microsequencing primers are analyzed by electrophoresis on ABI 377 sequencing machines to determine the identity of the incorporated nucleotide as described in EP 412 883. Alternatively capillary electrophoresis can be used in order to process a higher number of assays simultaneously. An example of a typical microsequencing procedure that can be used in the context of the present invention is provided in Example 2.

Different approaches can be used to detect the nucleotide added to the microsequencing primer. A homogeneous phase detection method based on fluorescence resonance energy transfer has been described by Chen and Kwok (Nucleic Acids Research 25:347-353 1997) and Chen et al. (Proc. Natl. Acad. Sci. USA 94/20 10756-10761,1997). In this method amplified genomic DNA fragments containing polymorphic sites are incubated with a 5'-fluorescein-labeled primer in the presence of allelic dye-labeled dideoxyribonucleoside triphosphates and a modified Taq polymerase. The dye-labeled primer is extended one base by the dye-terminator specific for the allele present on the template. At the end of the genotyping reaction, the fluorescence intensities of the two dyes in the reaction mixture are analyzed directly without separation or purification. All these steps can be performed in the same tube and the fluorescence changes can be monitored in real time. Alternatively, the extended primer may be analyzed by MALDI-TOF Mass Spectrometry. The base at the polymorphic site is identified by the mass added onto the microsequencing primer (see Haff L.A. and Smirnov I.P., Genome Research, 7:378-388, 1997).

Microsequencing may be achieved by the established microsequencing method or by

15

20

25

30

35

developments or derivatives thereof. Alternative methods include several solid-phase microsequencing techniques. The basic microsequencing protocol is the same as described previously, except that the method is conducted as a heterogenous phase assay, in which the primer or the target molecule is immobilized or captured onto a solid support. To simplify the primer separation and the terminal nucleotide addition analysis, oligonucleotides are attached to solid supports or are modified in such ways that permit affinity separation as well as polymerase extension. The 5' ends and internal nucleotides of synthetic oligonucleotides can be modified in a number of different ways to permit different affinity separation approaches, e.g., biotinylation. If a single affinity group is used on the oligonucleotides, the oligonucleotides can be separated from the incorporated terminator reagent. This eliminates the need of physical or size separation. More than one oligonucleotide can be separated from the terminator reagent and analyzed simultaneously if more than one affinity group is used. This permits the analysis of several nucleic acid species or more nucleic acid sequence information per extension reaction. The affinity group need not be on the priming oligonucleotide but could alternatively be present on the template. For example, immobilization can be carried out via an interaction between biotinylated DNA and streptavidin-coated microtitration wells or avidin-coated polystyrene particles. In the same manner oligonucleotides or templates may be attached to a solid support in a high-density format. In such solid phase microsequencing reactions, incorporated ddNTPs can be radiolabeled (Syvänen, Clinica Chimica Acta 226:225-236, 1994) or linked to fluorescein (Livak and Hainer, Human Mutation 3:379-385,1994). The detection of radiolabeled ddNTPs can be achieved through scintillation-based techniques. The detection of fluorescein-linked ddNTPs can be based on the binding of antifluorescein antibody conjugated with alkaline phosphatase, followed by incubation with a chromogenic substrate (such as p-nitrophenyl

phosphate). Other possible reporter-detection pairs include: ddNTP linked to dinitrophenyl (DNP) and anti-DNP alkaline phosphatase conjugate (Harju et al., Clin. Chem. 39/11 2282-2287, 1993) or biotinylated ddNTP and horseradish peroxidase-conjugated streptavidin with ophenylenediamine as a substrate (WO 92/15712). As yet another alternative solid-phase microsequencing procedure, Nyren et al. (Analytical Biochemistry 208:171-175, 1993) described a method relying on the detection of DNA polymerase activity by an enzymatic luminometric inorganic pyrophosphate detection assay (ELIDA).

Pastinen et al. (*Genome research* 7:606-614, 1997) describe a method for multiplex detection of single nucleotide polymorphism in which the solid phase minisequencing principle is applied to an oligonucleotide array format. High-density arrays of DNA probes attached to a solid support (DNA chips) are further described herein.

In one aspect the present invention provides polynucleotides and methods to genotype one or more biallelic markers of the present invention by performing a microsequencing assay. Preferred microsequencing primers include those being featured in Table 12. It will be appreciated that the microsequencing primers listed in Table 12 are merely exemplary and that, any primer having a 3' end immediately adjacent to a polymorphic nucleotide may be used. Similarly, it will be appreciated that microsequencing analysis may be performed for any biallelic marker or any combination of biallelic markers of the present invention. One aspect of the present invention is a solid support which includes one or more microsequencing primers listed in Table 12, or fragments comprising at least 8, at least 12, at least 15, or at least 20 consecutive nucleotides thereof and having a 3' terminus immediately upstream of the corresponding biallelic marker, for determining the identity of a nucleotide at a biallelic marker site.

iii) Mismatch detection assays based on polymerases and ligases

In one aspect the present invention provides polynucleotides and methods to determine the allele of one or more biallelic markers of the present invention in a biological sample, by mismatch detection assays based on polymerases and/or ligases. These assays are based on the specificity of polymerases and ligases. Polymerization reactions places particularly stringent requirements on correct base pairing of the 3' end of the amplification primer and the joining of two oligonucleotides hybridized to a target DNA sequence is quite sensitive to mismatches close to the ligation site, especially at the 3' end. The terms "enzyme based mismatch detection assay" are used herein to refer to any method of determining the allele of a biallelic marker based on the specificity of ligases and polymerases. Preferred methods are described below. Methods, primers and various parameters to amplify DNA fragments comprising biallelic markers of the present invention are further described herein.

1. Allele specific amplification

10

15

20

25.

j.

30

35

Discrimination between the two alleles of a biallelic marker can also be achieved by allele specific amplification, a selective strategy, whereby one of the alleles is amplified without amplification of the other allele. This is accomplished by placing a polymorphic base at the 3' end of one of the amplification primers. Because the extension forms from the 3'end of the primer, a mismatch at or near this position has an inhibitory effect on amplification. Therefore, under appropriate amplification conditions, these primers only direct amplification on their complementary allele. Designing the appropriate allele-specific primer and the corresponding assay conditions are well with the ordinary skill in the art.

2. Ligation/amplification based methods

10

20

30

35

The "Oligonucleotide Ligation Assay" (OLA) uses two oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of target molecules. One of the oligonucleotides is biotinylated, and the other is detectably labeled. If the precise complementary sequence is found in a target molecule, the oligonucleotides will hybridize such that their termini abut, and create a ligation substrate that can be captured and 15 detected. OLA is capable of detecting biallelic markers and may be advantageously combined with PCR as described by Nickerson D.A. et al. (Proc. Natl. Acad. Sci. U.S.A. 87:8923-8927, 1990). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.

Other methods which are particularly suited for the detection of biallelic markers include LCR (ligase chain reaction), Gap LCR (GLCR) which are described herein. As mentioned above LCR uses two pairs of probes to exponentially amplify a specific target. The sequences of each pair of oligonucleotides, is selected to permit the pair to hybridize to abutting sequences of the same strand of the target. Such hybridization forms a substrate for a template-dependant ligase. In accordance with the present invention, LCR can be performed with oligonucleotides having the proximal and distal sequences of the same strand of a biallelic marker site. In one embodiment, either oligonucleotide will be designed to include the biallelic marker site. In such an embodiment, the reaction conditions are selected such that the oligonucleotides can be ligated. together only if the target molecule either contains or lacks the specific nucleotide(s) that is complementary to the biallelic marker on the oligonucleotide. In an alternative embodiment, the oligonucleotides will not include the biallelic marker, such that when they hybridize to the target molecule, a "gap" is created as described in WO 90/01069. This gap is then "filled" with complementary dNTPs (as mediated by DNA polymerase), or by an additional pair of oligonucleotides. Thus at the end of each cycle, each single strand has a complement capable of serving as a target during the next cycle and exponential allele-specific amplification of the desired sequence is obtained.

Ligase/Polymerase-mediated Genetic Bit AnalysisTM is another method for determining the identity of a nucleotide at a preselected site in a nucleic acid molecule (WO 95/21271). This

method involves the incorporation of a nucleoside triphosphate that is complementary to the nucleotide present at the preselected site onto the terminus of a primer molecule, and their subsequent ligation to a second oligonucleotide. The reaction is monitored by detecting a specific label attached to the reaction's solid phase or by detection in solution.

iv) Hybridization assay methods

5

10

. 15

25

30

35

A preferred method of determining the identity of the nucleotide present at a biallelic marker site involves nucleic acid hybridization. The hybridization probes, which can be conveniently used in such reactions, preferably include the probes defined herein. Any hybridization assay may be used including Southern hybridization, Northern hybridization, dot blot hybridization and solid-phase hybridization (see Sambrook et al., Molecular Cloning - A Laboratory Manual, Second Edition, Cold Spring Harbor Press, N.Y., 1989).

Hybridization refers to the formation of a duplex structure by two single stranded nucleic acids due to complementary base pairing. Hybridization can occur between exactly complementary nucleic acid strands or between nucleic acid strands that contain minor regions of mismatch. Specific probes can be designed that hybridize to one form of a biallelic marker and not to the other and therefore are able to discriminate between different allelic forms. Allelespecific probes are often used in pairs, one member of a pair showing perfect match to a target sequence containing the original allele and the other showing a perfect match to the target sequence containing the alternative allele. Hybridization conditions should be sufficiently 20 stringent that there is a significant difference in hybridization intensity between alleles, and preferably an essentially binary response, whereby a probe hybridizes to only one of the alleles. Stringent, sequence specific hybridization conditions, under which a probe will hybridize only to the exactly complementary target sequence are well known in the art (Sambrook et al., Molecular Cloning - A Laboratory Manual, Second Edition, Cold Spring Harbor Press, N.Y., 1989). Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. By way of example and not limitation, procedures using conditions of high stringency are as follows: Prehybridization of filters containing DNA is carried out for 8 h to overnight at 65°C in buffer composed of 6X SSC. 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 μg/ml denatured salmon sperm DNA. Filters are hybridized for 48 h at 65°C, the preferred hybridization temperature, in prehybridization mixture containing 100 µg/ml denatured salmon sperm DNA and 5-20 X 10⁶ cpm of ³²P-labeled probe. Alternatively, the hybridization step can be performed at 65°C in the presence of SSC buffer, 1 x SSC corresponding to 0.15M NaCl and 0.05 M Sodium citrate. Subsequently, filter washes can be done at 37°C for 1 h in a solution containing 2X SSC, 0.01% PVP, 0.01% Ficoll, and 0.01% BSA, followed by a wash in 0.1X SSC at 50°C for 45 min. Alternatively, filter washes can be performed in a solution containing 2

x SSC and 0.1% SDS, or 0.5 x SSC and 0.1% SDS, or 0.1 x SSC and 0.1% SDS at 68°C for 15 minute intervals. Following the wash steps, the hybridized probes are detectable by autoradiography. By way of example and not limitation, procedures using conditions of intermediate stringency are as follows: Filters containing DNA are prehybridized, and then hybridized at a temperature of 60°C in the presence of a 5 x SSC buffer and labeled probe. Subsequently, filters washes are performed in a solution containing 2x SSC at 50°C and the hybridized probes are detectable by autoradiography. Other conditions of high and intermediate stringency which may be used are well known in the art and as cited in Sambrook et al. (Molecular Cloning - A Laboratory Manual, Second Edition, Cold Spring Harbor Press, N.Y., 1989) and Ausubel et al. (Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y., 1989).

10

15

120

25

35

Although such hybridizations can be performed in solution, it is preferred to employ a solid-phase hybridization assay. The target DNA comprising a biallelic marker of the present invention may be amplified prior to the hybridization reaction. The presence of a specific allele in the sample is determined by detecting the presence or the absence of stable hybrid duplexes formed between the probe and the target DNA. The detection of hybrid duplexes can be carried out by a number of methods. Various detection assay formats are well known which utilize detectable labels bound to either the target or the probe to enable detection of the hybrid duplexes. Typically, hybridization duplexes are separated from unhybridized nucleic acids and the labels bound to the duplexes are then detected. Those skilled in the art will recognize that wash steps may be employed to wash away excess target DNA or probe. Standard heterogeneous assay formats are suitable for detecting the hybrids using the labels present on the primers and probes.

Two recently developed assays allow hybridization-based allele discrimination with no need for separations or washes (see Landegren U. et al., Genome Research, 8:769-776,1998).

The TaqMan assay takes advantage of the 5' nuclease activity of Taq DNA polymerase to digest a DNA probe annealed specifically to the accumulating amplification product. TaqMan probes are labeled with a donor-acceptor dye pair that interacts via fluorescence energy transfer.

Cleavage of the TaqMan probe by the advancing polymerase during amplification dissociates the donor dye from the quenching acceptor dye, greatly increasing the donor fluorescence. All reagents necessary to detect two allelic variants can be assembled at the beginning of the reaction and the results are monitored in real time (see Livak et al., Nature Genetics, 9:341-342, 1995).

In an alternative homogeneous hybridization-based procedure, molecular beacons are used for allele discriminations. Molecular beacons are hairpin-shaped oligonucleotide probes that report the presence of specific nucleic acids in homogeneous solutions. When they bind to their targets they undergo a conformational reorganization that restores the fluorescence of an internally quenched fluorophore (Tyagi et al., Nature Biotechnology, 16:49-53, 1998).

5

10

20

30

35

The polynucleotides provided herein can be used in hybridization assays for the detection of biallelic marker alleles in biological samples. These probes are characterized in that they preferably comprise between 8 and 50 nucleotides, and in that they are sufficiently complementary to a sequence comprising a biallelic marker of the present invention to hybridize thereto and preferably sufficiently specific to be able to discriminate the targeted sequence for only one nucleotide variation. The GC content in the probes of the invention usually ranges between 10 and 75 %, preferably between 35 and 60 %, and more preferably between 40 and 55 %. The length of these probes can range from 10, 15, 20, or 30 to at least 100 nucleotides, preferably from 10 to 50, more preferably from 18 to 35 nucleotides. A particularly preferred probe is 25 nucleotides in length. Preferably the biallelic marker is within 4 nucleotides of the center of the polynucleotide probe. In particularly preferred probes the biallelic marker is at the center of said polynucleotide. Shorter probes may lack specificity for a target nucleic acid sequence and generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. Longer probes are expensive to produce and can sometimes self-hybridize to form hairpin structures. Methods for the synthesis of oligonucleotide probes have been described above and can be applied to the probes of the present invention.

Preferably the probes of the present invention are labeled or immobilized on a solid support. Labels and solid supports are further described in I. Detection probes are generally nucleic acid sequences or uncharged nucleic acid analogs such as, for example peptide nucleic acids which are disclosed in International Patent Application WO 92/20702, morpholino analogs which are described in U.S. Patents Numbered 5,185,444; 5,034,506 and 5,142,047. The probe may have to be rendered "non-extendable" in that additional dNTPs cannot be added to the probe. In and of themselves analogs usually are non-extendable and nucleic acid probes can be rendered non-extendable by modifying the 3' end of the probe such that the hydroxyl group is no 25 longer capable of participating in elongation. For example, the 3' end of the probe can be functionalized with the capture or detection label to thereby consume or otherwise block the hydroxyl group. Alternatively, the 3' hydroxyl group simply can be cleaved, replaced or modified, U.S. Patent Application Serial No. 07/049,061 filed April 19, 1993 describes modifications, which can be used to render a probe non-extendable.

The probes of the present invention are useful for a number of purposes. They can be used in Southern hybridization to genomic DNA or Northern hybridization to mRNA. The probes can also be used to detect PCR amplification products. By assaying the hybridization to an allele specific probe, one can detect the presence or absence of a biallelic marker allele in a given sample.

High-Throughput parallel hybridizations in array format are specifically encompassed within "hybridization assays" and are described below.

i. Hybridization to addressable arrays of oligonucleotides

Hybridization assays based on oligonucleotide arrays rely on the differences in hybridization stability of short oligonucleotides to perfectly matched and mismatched target sequence variants. Efficient access to polymorphism information is obtained through a basic structure comprising high-density arrays of oligonucleotide probes attached to a solid support (the chip) at selected positions. Each DNA chip can contain thousands to millions of individual synthetic DNA probes arranged in a grid-like pattern and miniaturized to the size of a dime.

5

10

15

30

35

The chip technology has already been applied with success in numerous cases. For example, the screening of mutations has been undertaken in the BRCA1 gene, in S. cerevisiae mutant strains, and in the protease gene of HIV-1 virus (Hacia et al., Nature Genetics, 14(4):441-447, 1996; Shoemaker et al., Nature Genetics, 14(4):450-456, 1996; Kozal et al., Nature Medicine, 2:753-759, 1996). Chips of various formats for use in detecting biallelic polymorphisms can be produced on a customized basis by Affymetrix (GeneChip™), Hyseq (HyChip and HyGnostics), and Protogene Laboratories.

In general, these methods employ arrays of oligonucleotide probes that are complementary to target nucleic acid sequence segments from an individual which, target sequences include a polymorphic marker. EP785280 describes a tiling strategy for the detection of single nucleotide polymorphisms. Briefly, arrays may generally be "tiled" for a large number of specific polymorphisms. By "tiling" is generally meant the synthesis of a defined set of oligonucleotide probes which is made up of a sequence complementary to the target sequence of 20 interest, as well as preselected variations of that sequence, e.g., substitution of one or more given positions with one or more members of the basis set of monomers, i.e. nucleotides. Tiling strategies are further described in PCT application No. WO 95/11995. In a particular aspect, arrays are tiled for a number of specific, identified biallelic marker sequences. In particular the array is tiled to include a number of detection blocks, each detection block being specific for a 25 specific biallelic marker or a set of biallelic markers. For example, a detection block may be tiled to include a number of probes, which span the sequence segment that includes a specific polymorphism. To ensure probes that are complementary to each allele, the probes are synthesized in pairs differing at the biallelic marker. In addition to the probes differing at the polymorphic base, monosubstituted probes are also generally tiled within the detection block. These monosubstituted probes have bases at and up to a certain number of bases in either direction from the polymorphism, substituted with the remaining nucleotides (selected from A, T, G, C and U). Typically the probes in a tiled detection block will include substitutions of the sequence positions up to and including those that are 5 bases away from the biallelic marker. The monosubstituted probes provide internal controls for the tiled array, to distinguish actual hybridization from artefactual cross-hybridization. Upon completion of hybridization with the target sequence and washing of the array, the array is scanned to determine the position on the array to which the target sequence hybridizes. The hybridization data from the scanned array is

then analyzed to identify which allele or alleles of the biallelic marker are present in the sample. Hybridization and scanning may be carried out as described in PCT application No. WO 92/10092 and WO 95/11995 and US patent No. 5,424,186.

Thus, in some embodiments, the chips may comprise an array of nucleic acid sequences of fragments of about 15 nucleotides in length. In further embodiments, the chip may comprise an array including at least one of the sequences selected from the group consisting of SEQ ID No. 1-130 and the sequences complementary thereto, or a fragment thereof at least about 8 consecutive nucleotides, preferably 10, 15, 20, more preferably 25, 30, 40, 47, or 50 consecutive nucleotides. In some embodiments, the chip may comprise an array of at least 2, 3, 4, 5, 6, 7, 8 or more of these polynucleotides of the invention. Solid supports and polynucleotides of the present invention attached to solid supports are further described in I.

v) Integrated systems

Another technique, which may be used to analyze polymorphisms, includes multicomponent integrated systems, which miniaturize and compartmentalize processes such as PCR and capillary electrophoresis reactions in a single functional device. An example of such technique is disclosed in US patent 5,589,136, which describes the integration of PCR amplification and capillary electrophoresis in chips.

Integrated systems can be envisaged mainly when microfluidic systems are used. These systems comprise a pattern of microchannels designed onto a glass, silicon, quartz, or plastic wafer included on a microchip. The movements of the samples are controlled by electric, electroosmotic or hydrostatic forces applied across different areas of the microchip. For genotyping biallelic markers, the microfluidic system may integrate nucleic acid amplification, microsequencing, capillary electrophoresis and a detection method such as laser-induced fluorescence detection.

25

30

35

5

10

15

20

VI. Methods of Genetic Analysis Using the Biallelic Markers of the Present Invention

Different methods are available for the genetic analysis of complex traits (see Lander and Schork, Science, 265, 2037-2048, 1994). The search for disease-susceptibility genes is conducted using two main methods: the linkage approach in which evidence is sought for cosegregation between a locus and a putative trait locus using family studies, and the association approach in which evidence is sought for a statistically significant association between an allele and a trait or a trait causing allele (Khoury J. et al., Fundamentals of Genetic Epidemiology, Oxford University Press, NY, 1993). In general, the biallelic markers of the present invention find use in any method known in the art to demonstrate a statistically significant correlation between a genotype and a phenotype. The biallelic markers may be used in parametric and non-parametric linkage analysis methods. Preferably, the biallelic markers of the present invention are used to identify genes associated with detectable traits using association studies, an approach

which does not require the use of affected families and which permits the identification of genes associated with complex and sporadic traits.

The genetic analysis using the biallelic markers of the present invention may be conducted on any scale. The whole set of biallelic markers of the present invention or any subset of biallelic markers of the present invention may be used. In some embodiments a subset of biallelic markers corresponding to one or several candidate genes of the present invention may be used. In other embodiments a subset of biallelic markers corresponding to CNS disorder candidate genes may be used. Alternatively, a subset of biallelic markers of the present invention localised on a specific chromosome segment may be used. Further, any set of genetic markers including a biallelic marker of the present invention may be used. A set of biallelic polymorphisms that, could be used as genetic markers in combination with the biallelic markers of the present invention, has been described in WO 98/20165. As mentioned above, it should be noted that the biallelic markers of the present invention may be included in any complete or partial genetic map of the human genome. These different uses are specifically contemplated in the present invention and claims.

A. Linkage Analysis

5

10

15

20

25

30

35

Linkage analysis is based upon establishing a correlation between the transmission of genetic markers and that of a specific trait throughout generations within a family. Thus, the aim of linkage analysis is to detect marker loci that show cosegregation with a trait of interest in pedigrees.

i. Parametric methods

When data are available from successive generations there is the opportunity to study the degree of linkage between pairs of loci. Estimates of the recombination fraction enable loci to be ordered and placed onto a genetic map. With loci that are genetic markers, a genetic map can be established, and then the strength of linkage between markers and traits can be calculated and used to indicate the relative positions of markers and genes affecting those traits (Weir, B.S., Genetic data Analysis II: Methods for Discrete population genetic Data, Sinauer Assoc., Inc., Sunderland, MA, USA, 1996). The classical method for linkage analysis is the logarithm of odds (lod) score method (see Morton N.E., Am.J. Hum. Genet., 7:277-318, 1955; Ott J., Analysis of Human Genetic Linkage, John Hopkins University Press, Baltimore, 1991). Calculation of lod scores requires specification of the mode of inheritance for the disease (parametric method). Generally, the length of the candidate region identified using linkage analysis is between 2 and 20Mb. Once a candidate region is identified as described above, analysis of recombinant individuals using additional markers allows further delineation of the candidate region. Linkage analysis studies have generally relied on the use of a maximum of 5,000 microsatellite markers. thus limiting the maximum theoretical attainable resolution of linkage analysis to about 600 kb on average.

Linkage analysis has been successfully applied to map simple genetic traits that show clear Mendelian inheritance patterns and which have a high penetrance (i.e., the ratio between the number of trait positive carriers of allele a and the total number of a carriers in the population). However, parametric linkage analysis suffers from a variety of drawbacks. First, it is limited by its reliance on the choice of a genetic model suitable for each studied trait. Furthermore, as already mentioned, the resolution attainable using linkage analysis is limited, and complementary studies are required to refine the analysis of the typical 2Mb to 20Mb regions initially identified through linkage analysis. In addition, parametric linkage analysis approaches have proven difficult when applied to complex genetic traits, such as those due to the combined action of multiple genes and/or environmental factors. It is very difficult to model these factors adequately in a lod score analysis. In such cases, too large an effort and cost are needed to recruit the adequate number of affected families required for applying linkage analysis to these situations, as recently discussed by Risch, N. and Merikangas, K. (Science, 273:1516-1517, 1996).

ii. Non-parametric methods

10

15

20

25

30

35

The advantage of the so-called non-parametric methods for linkage analysis is that they do not require specification of the mode of inheritance for the disease, they tend to be more useful for the analysis of complex traits. In non-parametric methods, one tries to prove that the inheritance pattern of a chromosomal region is not consistent with random Mendelian segregation by showing that affected relatives inherit identical copies of the region more often than expected by chance. Affected relatives should show excess "allele sharing" even in the presence of incomplete penetrance and polygenic inheritance. In non-parametric linkage analysis the degree of agreement at a marker locus in two individuals can be measured either by the number of alleles identical by state (IBS) or by the number of alleles identical by descent (IBD). Affected sib pair analysis is a well-known special case and is the simplest form of these methods.

The biallelic markers of the present invention may be used in both parametric and non-parametric linkage analysis. Preferably biallelic markers may be used in non-parametric methods which allow the mapping of genes involved in complex traits. The biallelic markers of the present invention may be used in both IBD- and IBS- methods to map genes affecting a complex trait. In such studies, taking advantage of the high density of biallelic markers, several adjacent biallelic marker loci may be pooled to achieve the efficiency attained by multi-allelic markers (Zhao et al., Am. J. Hum. Genet., 63:225-240, 1998).

However, both parametric and non-parametric linkage analysis methods analyse affected relatives, they tend to be of limited value in the genetic analysis of drug responses or in the analysis of side effects to treatments. This type of analysis is impractical in such cases due to the lack of availability of familial cases. In fact, the likelihood of having more than one individual in a family being exposed to the same drug at the same time is extremely low.

B. Population Association Studies

The present invention comprises methods for identifying one or several genes among a set of candidate genes that are associated with a detectable trait using the biallelic markers of the present invention. In one embodiment the present invention comprises methods to detect an association between a biallelic marker allele or a biallelic marker haplotype and a trait. Further, the invention comprises methods to identify a trait causing allele in linkage disequilibrium with any biallelic marker allele of the present invention.

5

10

15

20

25

30

35

As described above, alternative approaches can be employed to perform association studies: genome-wide association studies, candidate region association studies and candidate gene association studies. In a preferred embodiment, the biallelic markers of the present invention are used to perform candidate gene association studies. The candidate gene analysis clearly provides a short-cut approach to the identification of genes and gene polymorphisms related to a particular trait when some information concerning the biology of the trait is available. Further, the biallelic markers of the present invention may be incorporated in any map of genetic markers of the human genome in order to perform genome-wide association studies. Methods to generate a high-density map of biallelic markers has been described in US Provisional Patent application serial number 60/082,614. The biallelic markers of the present invention may further be incorporated in any map of a specific candidate region of the genome (a specific chromosome or a specific chromosomal segment for example).

As mentioned above, association studies may be conducted within the general population and are not limited to studies performed on related individuals in affected families. Association studies are extremely valuable as they permit the analysis of sporadic or multifactor traits.

Moreover, association studies represent a powerful method for fine-scale mapping enabling much finer mapping of trait causing alleles than linkage studies. Studies based on pedigrees often only narrow the location of the trait causing allele. Association studies using the biallelic markers of the present invention can therefore be used to refine the location of a trait causing allele in a candidate region identified by Linkage Analysis methods. Moreover, once a chromosome segment of interest has been identified, the presence of a candidate gene such as a candidate gene of the present invention, in the region of interest can provide a shortcut to the identification of the trait causing allele. Biallelic markers of the present invention can be used to demonstrate that a candidate gene is associated with a trait. Such uses are specifically contemplated in the present invention and claims.

i. Determining the frequency of a biallelic marker allele or of a biallelic marker haplotype in a population

Association studies explore the relationships among frequencies for sets of alleles between loci.

1) Determining the frequency of an allele in a population

Allelic frequencies of the biallelic markers in a population can be determined using one of the methods described above under the heading "Methods for genotyping an individual for biallelic markers", or any genotyping procedure suitable for this intended purpose. Genotyping pooled samples or individual samples can determine the frequency of a biallelic marker allele in a population. One way to reduce the number of genotypings required is to use pooled samples. A major obstacle in using pooled samples is in terms of accuracy and reproducibility for determining accurate DNA concentrations in setting up the pools. Genotyping individual samples provides higher sensitivity, reproducibility and accuracy and; is the preferred method used in the present invention. Preferably, each individual is genotyped separately and simple gene counting is applied to determine the frequency of an allele of a biallelic marker or of a genotype in a given population.

2) Determining the frequency of a haplotype in a population

10

15

20

25

30

35

The gametic phase of haplotypes is unknown when diploid individuals are heterozygous at more than one locus. Using genealogical information in families gametic phase can sometimes be inferred (Perlin et al., Am. J. Hum. Genet., 55:777-787, 1994). When no genealogical: information is available different strategies may be used. One possibility is that the multiple-site heterozygous diploids can be eliminated from the analysis, keeping only the homozygotes and the single-site heterozygote individuals, but this approach might lead to a possible bias in the sample composition and the underestimation of low-frequency haplotypes. Another possibility is that single chromosomes can be studied independently, for example, by asymmetric PCR amplification (see Newton et al., Nucleic Acids Res., 17:2503-2516, 1989; Wu et al., Proc. Natl. Acad. Sci. USA, 86:2757, 1989) or by isolation of single chromosome by limit dilution followed by PCR amplification (see Ruano et al., Proc. Natl. Acad. Sci. USA, 87:6296-6300, 1990). Further, a sample may be haplotyped for sufficiently close biallelic markers by double PCR amplification of specific alleles (Sarkar, G. and Sommer S.S., Biotechniques, 1991). These approaches are not entirely satisfying either because of their technical complexity, the additional cost they entail, their lack of generalisation at a large scale, or the possible biases they introduce. To overcome these difficulties, an algorithm to infer the phase of PCR-amplified DNA genotypes introduced by Clark A.G. (Mol. Biol. Evol., 7:111-122, 1990) may be used. Briefly, the principle is to start filling a preliminary list of haplotypes present in the sample by examining unambiguous individuals, that is, the complete homozygotes and the single-site heterozygotes. Then other individuals in the same sample are screened for the possible occurrence of previously recognized haplotypes. For each positive identification, the complementary haplotype is added to the list of recognized haplotypes, until the phase information for all individuals is either resolved or identified as unresolved. This method assigns a single haplotype to each multiheterozygous individual, whereas several haplotypes are possible when there are more than one heterozygous site. Alternatively, one can use methods estimating haplotype frequencies in a population without

assigning haplotypes to each individual. Preferably, a method based on an expectation-maximization (EM) algorithm (Dempster et al., J. R. Stat. Soc., 39B: 1-38, 1977) leading to maximum-likelihood estimates of haplotype frequencies under the assumption of Hardy-Weinberg proportions (random mating) is used (see Excoffier L. and Slatkin M., Mol. Biol. Evol., 12(5): 921-927, 1995). The EM algorithm is a generalized iterative maximum-likelihood approach to estimation that is useful when data are ambiguous and/or incomplete. The EM algorithm is used to resolve heterozygotes into haplotypes. Haplotype estimations are further described below under the heading "Statistical methods". Any other method known in the art to determine or to estimate the frequency of a haplotype in a population may also be used.

ii. Linkage disequilibrium analysis

10

15

20

25

30

35

Linkage disequilibrium is the non-random association of alleles at two or more loci and represents a powerful tool for mapping genes involved in disease traits (see Ajioka R.S. et al., Am. J. Hum. Genet., 60:1439-1447, 1997). Biallelic markers, because they are densely spaced in the human genome and can be genotyped in more numerous numbers than other types of genetic markers (such as RFLP or VNTR markers), are particularly useful in genetic analysis based on linkage disequilibrium. The biallelic markers of the present invention may be used in any linkage disequilibrium analysis method known in the art.

Briefly, when a disease mutation is first introduced into a population (by a new mutation or the immigration of a mutation carrier), it necessarily resides on a single chromosome and thus on a single "background" or "ancestral" haplotype of linked markers. Consequently, there is complete disequilibrium between these markers and the disease mutation: one finds the disease mutation only in the presence of a specific set of marker alleles. Through subsequent generations recombinations occur between the disease mutation and these marker polymorphisms, and the disequilibrium gradually dissipates. The pace of this dissipation is a function of the recombination frequency, so the markers closest to the disease gene will manifest higher levels of disequilibrium than those further away. When not broken up by recombination, "ancestral" haplotypes and linkage disequilibrium between marker alleles at different loci can be tracked not only through pedigrees but also through populations. Linkage disequilibrium is usually seen as an association between one specific allele at one locus and another specific allele at a second locus.

The pattern or curve of disequilibrium between disease and marker loci is expected to exhibit a maximum that occurs at the disease locus. Consequently, the amount of linkage disequilibrium between a disease allele and closely linked genetic markers may yield valuable information regarding the location of the disease gene. For fine-scale mapping of a disease locus, it is useful to have some knowledge of the patterns of linkage disequilibrium that exist between markers in the studied region. As mentioned above the mapping resolution achieved through the analysis of linkage disequilibrium is much higher than that of linkage studies. The

high density of biallelic markers combined with linkage disequilibrium analysis provides powerful tools for fine-scale mapping. Different methods to calculate linkage disequilibrium are described below under the heading "Statistical Methods".

iii. Population-based case-control studies of trait-marker associations

5

10

15

: .

30

35

As mentioned above, the occurrence of pairs of specific alleles at different loci on the same chromosome is not random and the deviation from random is called linkage disequilibrium. Association studies focus on population frequencies and rely on the phenomenon of linkage disequilibrium. If a specific allele in a given gene is directly involved in causing a particular trait, its frequency will be statistically increased in an affected (trait positive) population, when compared to the frequency in a trait negative population or in a random control population. As a consequence of the existence of linkage disequilibrium, the frequency of all other alleles present in the haplotype carrying the trait-causing allele will also be increased in trait positive individuals compared to trait negative individuals or random controls. Therefore, association between the trait and any allele (specifically a biallelic marker allele) in linkage disequilibrium with the traitcausing allele will suffice to suggest the presence of a trait-related gene in that particular region. Case-control populations can be genotyped for biallelic markers to identify associations that narrowly locate a trait causing allele. As any marker in linkage disequilibrium with one given marker associated with a trait will be associated with the trait. Linkage disequilibrium allows the relative frequencies in case-control populations of a limited number of genetic polymorphisms (specifically biallelic markers) to be analyzed as an alternative to screening all possible functional polymorphisms in order to find trait-causing alleles. Association studies compare the frequency of marker alleles in unrelated case-control populations, and represent powerful tools for the dissection of complex traits.

1) Case-control populations (inclusion criteria)

Population-based association studies do not concern familial inheritance but compare the 25 . prevalence of a particular genetic marker, or a set of markers, in case-control populations. They are case-control studies based on comparison of unrelated case (affected or trait positive) individuals and unrelated control (unaffected or trait negative or random) individuals. Preferably the control group is composed of unaffected or trait negative individuals. Further, the control group is ethnically matched to the case population. Moreover, the control group is preferably matched to the case-population for the main known confusion factor for the trait under study (for example age-matched for an age-dependent trait). Ideally, individuals in the two samples are paired in such a way that they are expected to differ only in their disease status. In the following "trait positive population", "case population" and "affected population" are used interchangeably.

An important step in the dissection of complex traits using association studies is the choice of case-control populations (see Lander and Schork, Science, 265, 2037-2048, 1994). A

major step in the choice of case-control populations is the clinical definition of a given trait or phenotype. Any genetic trait may be analyzed by the association method proposed here by carefully selecting the individuals to be included in the trait positive and trait negative phenotypic groups. Four criteria are often useful: clinical phenotype, age at onset, family history and severity. The selection procedure for continuous or quantitative traits (such as blood pressure for example) involves selecting individuals at opposite ends of the phenotype distribution of the trait under study, so as to include in these trait positive and trait negative populations individuals with non-overlapping phenotypes. Preferably, case-control populations consist of phenotypically homogeneous populations. Trait positive and trait negative populations consist of phenotypically uniform populations of individuals representing each between 1 and 98%, preferably between 1 and 80%, more preferably between 1 and 50%, and more preferably between 1 and 30%, most preferably between 1 and 20% of the total population under study, and selected among individuals exhibiting non-overlapping phenotypes. The clearer the difference between the two trait phenotypes, the greater the probability of detecting an association with biallelic markers. The selection of those drastically different but relatively uniform phenotypes enables efficient comparisons in association studies and the possible detection of marked differences at the genetic level, provided that the sample sizes of the populations under study are significant enough.

In preferred embodiments, a first group of between 50 and 300 trait positive individuals, preferably about 100 individuals, are recruited according to their phenotypes. A similar number of trait negative individuals are included in such studies.

In the present invention, typical examples of inclusion criteria include a CNS disorder or the evaluation of the response to a drug acting on a CNS disorder or side effects to treatment with drugs acting on a CNS disorder.

Suitable examples of association studies using biallelic markers including the biallelic markers of the present invention, are studies involving the following populations:

a case population suffering from a CNS disorder and a healthy unaffected control population, or

a case population treated with agents acting on a CNS disorder suffering from sideeffects resulting from the treatment and a control population treated with the same agents showing no side-effects, or

a case population treated with agents acting on a CNS disorder showing a beneficial response and a control population treated with same agents showing no beneficial response.

2) Association analysis

10

15

20

25

30

35

The general strategy to perform association studies using biallelic markers derived from a region carrying a candidate gene is to scan two groups of individuals (case-control populations)

in order to measure and statistically compare the allele frequencies of the biallelic markers of the present invention in both groups.

If a statistically significant association with a trait is identified for at least one or more of the analyzed biallelic markers, one can assume that: either the associated allele is directly responsible for causing the trait (the associated allele is the trait causing allele), or more likely the associated allele is in linkage disequilibrium with the trait causing allele. The specific characteristics of the associated allele with respect to the candidate gene function usually gives further insight into the relationship between the associated allele and the trait (causal or in linkage disequilibrium). If the evidence indicates that the associated allele within the candidate gene is most probably not the trait causing allele but is in linkage disequilibrium with the real trait causing allele, then the trait causing allele can be found by sequencing the vicinity of the associated marker.

Association studies are usually run in two successive steps. In a first phase, the frequencies of a reduced number of biallelic markers from one or several candidate genes are determined in the trait positive and trait negative populations. In a second phase of the analysis, the identity of the candidate gene and the position of the genetic loci responsible for the given trait is further refined using a higher density of markers from the relevant region. However, if the candidate gene under study is relatively small in length, as it is the case for many of the candidate genes analyzed included in the present invention, a single phase may be sufficient to establish significant associations.

3) Haplotype analysis

10

15

20

25

30

35

As described above, when a chromosome carrying a disease allele first appears in a population as a result of either mutation or migration, the mutant allele necessarily resides on a chromosome having a set of linked markers: the ancestral haplotype. This haplotype can be tracked through populations and its statistical association with a given trait can be analyzed. Complementing single point (allelic) association studies with multi-point association studies also called haplotype studies increases the statistical power of association studies. Thus, a haplotype association study allows one to define the frequency and the type of the ancestral carrier haplotype. A haplotype analysis is important in that it increases the statistical power of an analysis involving individual markers.

In a first stage of a haplotype frequency analysis, the frequency of the possible haplotypes based on various combinations of the identified biallelic markers of the invention is determined. The haplotype frequency is then compared for distinct populations of trait positive and control individuals. The number of trait positive individuals, which should be, subjected to this analysis to obtain statistically significant results usually ranges between 30 and 300, with a preferred number of individuals ranging between 50 and 150. The same considerations apply to the number of unaffected individuals (or random control) used in the study. The results of this

first analysis provide haplotype frequencies in case-control populations, for each evaluated haplotype frequency a p-value and an odd ratio are calculated. If a statistically significant association is found the relative risk for an individual carrying the given haplotype of being affected with the trait under study can be approximated.

4) Interaction analysis

5

15

25

30

The biallelic markers of the present invention may also be used to identify patterns of biallelic markers associated with detectable traits resulting from polygenic interactions. The analysis of genetic interaction between alleles at unlinked loci requires individual genotyping using the techniques described herein. The analysis of allelic interaction among a selected set of biallelic markers with appropriate level of statistical significance can be considered as a haplotype analysis. Interaction analysis consists in stratifying the case-control populations with respect to a given haplotype for the first loci and performing a haplotype analysis with the second loci with each subpopulation.

Statistical methods used in association studies are further described below in IV.C. iv. Testing for linkage in the presence of association

The biallelic markers of the present invention may further be used in TDT (transmission/disequilibrium test). TDT tests for both linkage and association and is not affected by population stratification. TDT requires data from affected individuals and their parents or data from unaffected sibs instead of from parents (see Spielmann S. et al., Am. J. Hum. Genet., 52:506-516, 1993; Schaid D.J. et al., Genet. Epidemiol., 13:423-450, 1996, Spielmann S. and Ewens W.J., Am. J. Hum. Genet., 62:450-458, 1998). Such combined tests generally reduce the false – positive errors produced by separate analyses.

C. Statistical Methods

In general, any method known in the art to test whether a trait and a genotype show a statistically significant correlation may be used.

i. Methods in linkage analysis

Statistical methods and computer programs useful for linkage analysis are well-known to those skilled in the art (see Terwilliger J.D. and Ott J., Handbook of Human Genetic Linkage, John Hopkins University Press, London, 1994; Ott J., Analysis of Human Genetic Linkage, John Hopkins University Press, Baltimore, 1991).

ii. Methods to estimate haplotype frequencies in a population

As described above, when genotypes are scored, it is often not possible to distinguish heterozygotes so that haplotype frequencies cannot be easily inferred. When the gametic phase is not known, haplotype frequencies can be estimated from the multilocus genotypic data. Any method known to person skilled in the art can be used to estimate haplotype frequencies (see Lange K., Mathematical and Statistical Methods for Genetic Analysis, Springer, New York, 1997; Weir, B.S., Genetic data Analysis II: Methods for Discrete population genetic Data, Sinauer

Assoc., Inc., Sunderland, MA, USA, 1996). Preferably, maximum-likelihood haplotype frequencies are computed using an Expectation-Maximization (EM) algorithm (see Dempster et al., J. R. Stat. Soc., 39B:1-38, 1977; Excoffier L. and Slatkin M., Mol. Biol. Evol., 12(5): 921-927, 1995). This procedure is an iterative process aiming at obtaining maximum-likelihood estimates of haplotype frequencies from multi-locus genotype data when the gametic phase is unknown. Haplotype estimations are usually performed by applying the EM algorithm using for example the EM-HAPLO program (Hawley M.E. et al., Am. J. Phys. Anthropol., 18:104, 1994) or the Arlequin program (Schneider et al., Arlequin: a software for population genetics data analysis, University of Geneva, 1997). The EM algorithm is a generalized iterative maximum likelihood approach to estimation and is briefly described below.

In what follows, phenotypes will refer to multi-locus genotypes with unknown haplotypic phase. Genotypes will refer to multi-locus genotypes with known haplotypic phase.

Suppose one has a sample of N unrelated individuals typed for K markers. The data observed are the unknown-phase K-locus phenotypes that can be categorized with F different phenotypes. Further, suppose that we have H possible haplotypes (in the case of K biallelic markers, we have for the maximum number of possible haplotypes $H=2^K$). For phenotype j with c_j possible genotypes, we have:

$$P_{j} = \sum_{l=1}^{c_{j}} P(genotype(i)) = \sum_{l=1}^{c_{j}} P(h_{k}, h_{l}).$$
 Equation 1

10

15

20

25

30

Here, P_j is the probability of the j^{th} phenotype, and $P(h_k h_l)$ is the probability of the i^{th} genotype composed of haplotypes h_k and h_l . Under random mating (i.e. Hardy-Weinberg Equilibrium), $P(h_k h_l)$ is expressed as:

$$P(h_k, h_l) = P(h_k)^2$$
 for $h_k = h_l$, and
$$P(h_k, h_l) = 2P(h_k)P(h_l)$$
 for $h_k \neq h_l$. Equation 2

The E-M algorithm is composed of the following steps: First, the genotype frequencies are estimated from a set of initial values of haplotype frequencies. These haplotype frequencies are denoted $P_1^{(0)}$, $P_2^{(0)}$, $P_3^{(0)}$,..., $P_H^{(0)}$. The initial values for the haplotype frequencies may be obtained from a random number generator or in some other way well known in the art. This step is referred to the Expectation step. The next step in the method, called the Maximization step, consists of using the estimates for the genotype frequencies to re-calculate the haplotype frequencies. The first iteration haplotype frequency estimates are denoted by $P_1^{(1)}$, $P_2^{(1)}$, $P_3^{(1)}$,..., $P_H^{(1)}$. In general, the Expectation step at the s^{th} iteration consists of calculating the probability of placing each phenotype into the different possible genotypes based on the haplotype frequencies of the previous iteration:

$$P(h_k, h_l)^{(s)} = \frac{n_J}{N} \left[\frac{P_J(h_k, h_l)^{(s)}}{P_J} \right],$$
 Equation 3

where n_i is the number of individuals with the j^{th} phenotype and $P_j(h_k, h_i)^{(s)}$ is the probability of genotype $h_k h_i$ in phenotype j. In the Maximization step, which is equivalent to the genecounting method (Smith, Ann. Hum. Genet., 21:254-276, 1957), the haplotype frequencies are reestimated based on the genotype estimates:

$$P_{t}^{(s+1)} = \frac{1}{2} \sum_{i=1}^{F} \sum_{l=1}^{c_{i}} \delta_{it} P_{j}(h_{k}, h_{l})^{(s)}.$$
 Equation 4

5

10

15

20

30

Here, δ_{tt} is an indicator variable which counts the number of occurrences that haplotype t is present in i^{th} genotype; it takes on values 0, 1, and 2.

The E-M iterations cease when the following criterion has been reached. Using Maximum Likelihood Estimation (MLE) theory, one assumes that the phenotypes j are distributed multinomially. At each iteration s, one can compute the likelihood function L. Convergence is achieved when the difference of the log-likehood between two consecutive iterations is less than some small number, preferably 10^{-7} .

iii. Methods to calculate linkage disequilibrium between markers

A number of methods can be used to calculate linkage disequilibrium between any two genetic positions, in practice linkage disequilibrium is measured by applying a statistical association test to haplotype data taken from a population.

Linkage disequilibrium between any pair of biallelic markers comprising at least one of the biallelic markers of the present invention (M_i, M_j) having alleles (a_i/b_i) at marker M_i and alleles (a_i/b_j) at marker M_j can be calculated for every allele combination $(a_i, a_j : a_i, b_j; b_i, a_j \text{ and } b_i, b_j)$, according to the Piazza formula:

$$\Delta_{\text{aiaj}} = \sqrt{\theta 4} - \sqrt{(\theta 4 + \theta 3)(\theta 4 + \theta 2)}$$
, where :

 $\theta 4 = - - =$ frequency of genotypes not having allele a_i at M_i and not having allele a_i at M_i

 $\theta 3 = - + =$ frequency of genotypes not having allele a_i at M_i and having allele a_j at M_j

θ2= + - = frequency of genotypes having allele a_i at M_i and not having allele a_j at M_j
Linkage disequilibrium (LD) between pairs of biallelic markers (M_i, M_j) can also be calculated for every allele combination (ai,aj,ai,bj ; b_i,a_j and b_i,b_j), according to the maximum-likelihood estimate (MLE) for delta (the composite genotypic disequilibrium coefficient), as described by Weir (Weir B.S., Genetic Data Analysis, Sinauer Ass. Eds, 1996). The MLE for the composite linkage disequilibrium is:

$$D_{aiaj} = (2n_1 + n_2 + n_3 + n_4/2)/N - 2(pr(a_i).pr(a_i))$$

Where $n_1 = \Sigma$ phenotype $(a_i/a_i, a_j/a_j)$, $n_2 = \Sigma$ phenotype $(a_i/a_i, a_j/b_j)$, $n_3 = \Sigma$ phenotype $(a_i/b_i, a_j/a_j)$, $n_4 = \Sigma$ phenotype $(a_i/b_i, a_j/b_j)$ and N is the number of individuals in the sample.

This formula allows linkage disequilibrium between alleles to be estimated when only genotype, and not haplotype, data are available.

Another means of calculating the linkage disequilibrium between markers is as follows. For a couple of biallelic markers, $M_i(a_i/b_i)$ and $M_j(a_j/b_j)$, fitting the Hardy-Weinberg equilibrium, one can estimate the four possible haplotype frequencies in a given population according to the approach described above.

The estimation of gametic disequilibrium between ai and aj is simply:

$$D_{aiai} = pr(haplotype(a_i, a_i)) - pr(a_i).pr(a_i).$$

10

15

20

25

30

35

Where $pr(a_i)$ is the probability of allele a_i and $pr(a_i)$ is the probability of allele a_j and where $pr(haplotype(a_i, a_i))$ is estimated as in Equation 3 above.

For a couple of biallelic marker only one measure of disequilibrium is necessary to describe the association between M_l and M_i .

Then a normalised value of the above is calculated as follows:

$$D'_{aiaj} = D_{aiaj} / max (-pr(a_i).pr(a_j), -pr(b_i).pr(b_j))$$
 with $D_{aiaj} < 0$

$$D'_{aiaj} = D_{aiaj} / \max (pr(b_i).pr(a_j), pr(a_i).pr(b_j)) \quad \text{with } D_{aiaj} > 0$$

The skilled person will readily appreciate that other LD calculation methods can be used without undue experimentation.

Linkage disequilibrium among a set of biallelic markers having an adequate heterozygosity rate can be determined by genotyping between 50 and 1000 unrelated individuals, preferably between 75 and 200, more preferably around 100.

iv. Testing for association

Methods for determining the statistical significance of a correlation between a phenotype and a genotype, in this case an allele at a biallelic marker or a haplotype made up of such alleles, may be determined by any statistical test known in the art and with any accepted threshold of statistical significance being required. The application of particular methods and thresholds of significance are well with in the skill of the ordinary practitioner of the art.

Testing for association is performed by determining the frequency of a biallelic marker allele in case and control populations and comparing these frequencies with a statistical test to determine if their is a statistically significant difference in frequency which would indicate a correlation between the trait and the biallelic marker allele under study. Similarly, a haplotype analysis is performed by estimating the frequencies of all possible haplotypes for a given set of biallelic markers in case and control populations, and comparing these frequencies with a statistical test to determine if their is a statistically significant correlation between the haplotype and the phenotype (trait) under study. Any statistical tool useful to test for a statistically significant association between a genotype and a phenotype may be used. Preferably the statistical test employed is a chi-square test with one degree of freedom. A p-value is then

determined (the P-value is the probability that a statistic as large or larger than the observed one would occur by chance).

1) Statistical significance

5

10

15

20

25

30

35

In preferred embodiments, significance for diagnostic purposes, either as a positive basis for further diagnostic tests or as a preliminary starting point for early preventive therapy, the p value related to a biallelic marker association is preferably about 1 x 10-2 or less, more preferably about 1 x 10-4 or less, for a single biallelic marker analysis and about 1 x 10-3 or less, still more preferably 1 x 10-6 or less and most preferably of about 1 x 10-8 or less, for a haplotype analysis involving several markers. These values are believed to be applicable to any association studies involving single or multiple marker combinations.

The skilled person can use the range of values set forth above as a starting point in order to carry out association studies with biallelic markers of the present invention. In doing so, significant associations between the biallelic markers of the present invention and CNS disorders can be revealed and used for diagnosis and drug screening purposes.

2) Phenotypic permutation

In order to confirm the statistical significance of the first stage haplotype analysis described above, it might be suitable to perform further analyses in which genotyping data from case-control individuals are pooled and randomized with respect to the trait phenotype. Each individual genotyping data is randomly allocated to two groups, which contain the same number of individuals as the case-control populations used to compile the data obtained in the first stage. A second stage haplotype analysis is preferably run on these artificial groups, preferably for the markers included in the haplotype of the first stage analysis showing the highest relative risk coefficient. This experiment is re-iterated preferably at least between 100 and 10000 times. The repeated iterations allow the determination of the percentage of obtained haplotypes with a significant p-value level.

3) Assessment of statistical association

To address the problem of false positives similar analysis may be performed with the same case-control populations in random genomic regions. Results in random regions and the candidate region are compared as described in US Provisional Patent Application entitled "Methods, software and apparati for identifying genomic regions harbouring a gene associated with a detectable trait".

v. Evaluation of risk factors

The association between a risk factor (in genetic epidemiology the risk factor is the presence or the absence of a certain allele or haplotype at marker loci) and a disease is measured by the odds ratio (OR) and by the relative risk (RR). If $P(R^+)$ is the probability of developing the disease for individuals with risk factor R and $P(R^-)$ is the probability for individuals without the risk factor, then the relative risk is simply the ratio of the two probabilities, that is:

 $RR = P(R^{+})/P(R^{-})$

10

25

30

In case-control studies, direct measures of the relative risk cannot be obtained because of the sampling design. However, the odds ratio allows a good approximation of the relative risk for low-incidence diseases and can be calculated:

$$OR = \left[\frac{F^+}{1 - F^+} \right] / \left[\frac{F^-}{(1 - F^-)} \right]$$

$$OR = \left[F^+ / (1 - F^+) \right] / \left[F / (1 - F) \right]$$

F⁺ is the frequency of the exposure to the risk factor in cases and F is the frequency of the exposure to the risk factor in controls. F⁺ and F are calculated using the allelic or haplotype frequencies of the study and further depend on the underlying genetic model (dominant, recessive, additive...).

One can further estimate the attributable risk (AR) which describes the proportion of individuals in a population exhibiting a trait due to a given risk factor. This measure is important in quantitating the role of a specific factor in disease etiology and in terms of the public health impact of a risk factor. The public health relevance of this measure lies in estimating the proportion of cases of disease in the population that could be prevented if the exposure of interest were absent. AR is determined as follows:

$$AR = P_E(RR-1) / (P_E(RR-1)+1)$$

AR is the risk attributable to a biallelic marker allele or a biallelic marker haplotype. P_E is the frequency of exposure to an allele or a haplotype within the population at large; and RR is the relative risk which is approximated with the odds ratio when the trait under study has a relatively low incidence in the general population.

D. Association of Biallelic Markers of the Invention with Major Depression

In the context of the present invention, an association between biallelic marker alleles from candidate genes of the present invention and a CNS disorder was demonstrated. The considered CNS disorder was major depression.

Depression is a serious medical illness that affects 340 million people worldwide. In contrast to the normal emotional experiences of sadness, loss, or passing mood states, clinical depression is persistent and can interfere significantly with an individual's ability to function. Many neurochemical findings are coming to light implicating a biological basis for the depression, at least for certain subtypes. Abnormalities of monoamine function as well as over stimulation of the HPA axis have been recognized in depression for many years. Patterns of clustering and segregation in depressive families have suggested a genetic component to depression. However, the lack of a defined and specific depression phenotype and of suitable markers for genetic analysis is proving to be a major hurdle for reliably identifying genes associated with depression. As a result, psychiatrists today have to choose antidepressant

medications by intuition and trial and error; a situation that can put suicidal patients in jeopardy for weeks or months until the right compound is selected. Clearly, there is a strong need to successfully identify genes involved in depression; thus allowing researchers to understand the etiology of depression and address its cause, rather than symptoms.

As mentioned above, both the nervous system and endocrine system play a major role in the etiology of depression. More specifically, the neurotransmitters dopamine, norepinephrine and serotonin as well as the hormones corticotrophin releasing factor, glucocorticoids, mineralocorticoids and various neuropeptides are thought to play a major role in the pathophysiology of depression.

5

10

20

25

30

35

In order to investigate and identify a genetic origin of depression, a candidate gene scan for depression was conducted. The rational of this approach was to: 1) select candidate genes potentially involved in the pathophysiology of interest, in this case major depression, 2) to identify biallelic markers in those genes and finally 3) to measure the frequency of biallelic marker alleles in order to determine if some alleles are more frequent in depressed populations than in non-affected populations. Results were further validated by haplotype studies.

Significant associations between biallelic marker alleles from the serotonin receptor 6 (5HTR6), serotonin 7 (5HTR7), serotonin transporter (5HTT), dopamine receptor 3 (DRD3), norepinephrine transporter (NET), guanine nucleotide binding protein, β3 (Gbeta3), glucocorticoid receptor (GRL), drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) and Wolfram Syndrome 1 (WFS1) genes and depression were demonstrated in the context of the present invention. Association studies are further described in Examples 3, 4 and 5.

This information is extremely valuable. The knowledge of a potential genetic predisposition, even if this predisposition is not absolute, might contribute in a very significant manner to treatment efficacy of depressed patients and to the development of diagnostic tools.

E. Identification of Biallelic Markers in Linkage Disequilibrium with the Biallelic Markers of the Invention

Once a first biallelic marker has been identified in a genomic region of interest, the practitioner of ordinary skill in the art, using the teachings of the present invention, can easily identify additional biallelic markers in linkage disequilibrium with this first marker. As mentioned before any marker in linkage disequilibrium with a first marker associated with a trait will be associated with the trait. Therefore, once an association has been demonstrated between a given biallelic marker and a trait, the discovery of additional biallelic markers associated with this trait is of great interest in order to increase the density of biallelic markers in this particular region. The causal gene or mutation will be found in the vicinity of the marker or set of markers showing the highest correlation with the trait.

Identification of additional markers in linkage disequilibrium with a given marker involves: (a) amplifying a genomic fragment comprising a first biallelic marker from a plurality

of individuals; (b) identifying of second biallelic markers in the genomic region harboring said first biallelic marker; (c) conducting a linkage disequilibrium analysis between said first biallelic marker and second biallelic markers; and (d) selecting said second biallelic markers as being in linkage disequilibrium with said first marker. Subcombinations comprising steps (b) and (c) are also contemplated.

Methods to identify biallelic markers and to conduct linkage disequilibrium analysis are described herein and can be carried out by the skilled person without undue experimentation. The present invention then also concerns biallelic markers which are in linkage disequilibrium with the specific biallelic markers shown in Table 7 and which are expected to present similar characteristics in terms of their respective association with a given trait.

F. Identification of Functional Mutations

5

10

15

20

25

35

Once a positive association is confirmed with a biallelic marker of the present invention, the associated candidate gene can be scanned for mutations by comparing the sequences of a selected number of trait positive and trait negative individuals. In a preferred embodiment, functional regions such as exons and splice sites, promoters and other regulatory regions of the candidate gene are scanned for mutations. Preferably, trait positive individuals carry the haplotype shown to be associated with the trait and trait negative individuals do not carry the haplotype or allele associated with the trait. The mutation detection procedure is essentially similar to that used for biallelic site identification.

The method used to detect such mutations generally comprises the following steps: (a) amplification of a region of the candidate gene comprising a biallelic marker or a group of biallelic markers associated with the trait from DNA samples of trait positive patients and trait negative controls; (b) sequencing of the amplified region; (c) comparison of DNA sequences from trait-positive patients and trait-negative controls; and (d) determination of mutations specific to trait-positive patients. Subcombinations which comprise steps (b) and (c) are specifically contemplated.

It is preferred that candidate polymorphisms be then verified by screening a larger population of cases and controls by means of any genotyping procedure such as those described herein, preferably using a microsequencing technique in an individual test format.

Polymorphisms are considered as candidate mutations when present in cases and controls at

frequencies compatible with the expected association results.

VII. Biallelic Markers of the Invention in Methods of Genetic Diagnostics

The biallelic markers of the present invention can also be used to develop diagnostics tests capable of identifying individuals who express a detectable trait as the result of a specific genotype or individuals whose genotype places them at risk of developing a detectable trait at a subsequent time. The trait analyzed using the present diagnostics may be any detectable trait,

including a CNS disorder, a response to an agent acting on a CNS disorder or side effects to an agent acting on a CNS disorder.

The diagnostic techniques of the present invention may employ a variety of methodologies to determine whether a test subject has a biallelic marker pattern associated with an increased risk of developing a detectable trait or whether the individual suffers from a detectable trait as a result of a particular mutation, including methods which enable the analysis of individual chromosomes for haplotyping, such as family studies, single sperm DNA analysis or somatic hybrids.

The present invention provides diagnostic methods to determine whether an individual is at risk of developing a disease or suffers from a disease resulting from a mutation or a polymorphism in a candidate gene of the present invention. The present invention also provides methods to determine whether an individual is likely to respond positively to an agent acting on a CNS disorder or whether an individual is at risk of developing an adverse side effect to an agent acting on a CNS disorder.

10

15

20

25

30

35

These methods involve obtaining a nucleic acid sample from the individual and, determining, whether the nucleic acid sample contains at least one allele or at least one biallelic marker haplotype, indicative of a risk of developing the trait or indicative that the individual expresses the trait as a result of possessing a particular candidate gene polymorphism or mutation (trait-causing allele).

Preferably, in such diagnostic methods, a nucleic acid sample is obtained from the individual and this sample is genotyped using methods described herein. The diagnostics may be based on a single biallelic marker or on a group of biallelic markers.

In each of these methods, a nucleic acid sample is obtained from the test subject and the biallelic marker pattern of one or more of the biallelic markers listed in Table 7 is determined.

In one embodiment, PCR amplification is conducted on the nucleic acid sample to amplify regions in which polymorphisms associated with a detectable phenotype have been identified. The amplification products are sequenced to determine whether the individual possesses one or more polymorphisms associated with a detectable phenotype. The primers used to generate amplification products may comprise the primers listed in Table 13. Alternatively, the nucleic acid sample is subjected to microsequencing reactions as described above to determine whether the individual possesses one or more polymorphisms associated with a detectable phenotype resulting from a mutation or a polymorphism in a candidate gene. The primers used in the microsequencing reactions may include the primers listed in Table 12. In another embodiment, the nucleic acid sample is contacted with one or more allele specific oligonucleotide probes which, specifically hybridize to one or more candidate gene alleles associated with a detectable phenotype. The probes used in the hybridization assay may include the probes listed in Table 14.

In a preferred embodiment the identity of the nucleotide present at, at least one, 5HTR6 related biallelic marker selected from the group consisting of 99-27207-117, 99-28110-75, and 99-28134-215, is determined and the detectable trait is depression.

In a preferred embodiment the identity of the nucleotide present at, at least one, 5HTR7 related biallelic marker selected from the group consisting of 99-32181-192 and 99-28106-185, is determined and the detectable trait is depression.

5

10

20

30 ·

35

In a preferred embodiment the identity of the nucleotide present at, at least one, GRL related biallelic marker selected from the group consisting of 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, and 99-30853-364, is determined and the detectable trait is depression.

In a preferred embodiment the identity of the nucleotide present at, at least one, NET related biallelic marker selected from the group consisting of 19-56-140, 19-28-136, 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, and 16-50-196, is determined and the detectable trait is depression.

In a preferred embodiment the identity of the nucleotide present at, at least one, DRD3 related biallelic marker selected from the group consisting of 8-19-372, is determined and the detectable trait is depression.

In a preferred embodiment the identity of the nucleotide present at, at least one, CYP3A4 related biallelic marker selected from the group consisting of 12-254-180, 10-214-279, and 10-217-91, is determined and the detectable trait is depression.

In a preferred embodiment the identity of the nucleotide present at, at least one, 5HTT related biallelic marker selected from the group consisting of 18-194-130, 18-186-391, 18-198-252, and 18-242-300, is determined and the detectable trait is depression.

In a preferred embodiment the identity of the nucleotide present at, at least one, Gbeta3 related biallelic marker selected from the group consisting of 20-205-302, 19-58-162, 19-9-45, 19-22-74, and 19-88-185, is determined and the detectable trait is depression.

In a preferred embodiment the identity of the nucleotide present at, at least one, WFS1 related biallelic marker selected from the group consisting of 19-18-310, 19-19-174, 19-17-188, and 19-16-127, is determined and the detectable trait is depression.

Diagnostic kits comprising polynucleotides of the present invention are further described in section I.

These diagnostic methods are extremely valuable as they can, in certain circumstances, be used to initiate preventive treatments or to allow an individual carrying a significant haplotype to foresee warning signs such as minor symptoms. In diseases in which attacks may be extremely violent and sometimes fatal if not treated on time, such as asthma, the knowledge of a potential predisposition, even if this predisposition is not absolute, might contribute in a very significant manner to treatment efficacy. Similarly, a diagnosed predisposition to a potential side

effect could immediately direct the physician toward a treatment for which such side effects have not been observed during clinical trials.

Diagnostics, which analyze and predict response to a drug or side effects to a drug, may be used to determine whether an individual should be treated with a particular drug. For example, if the diagnostic indicates a likelihood that an individual will respond positively to treatment with a particular drug, the drug may be administered to the individual. Conversely, if the diagnostic indicates that an individual is likely to respond negatively to treatment with a particular drug, an alternative course of treatment may be prescribed. A negative response may be defined as either the absence of an efficacious response or the presence of toxic side effects.

Clinical drug trials represent another application for the markers of the present invention. One or more markers indicative of response to an agent acting on a CNS disorder or to side effects to an agent acting on a CNS disorder may be identified using the methods described above. Thereafter, potential participants in clinical trials of such an agent may be screened to identify those individuals most likely to respond favorably to the drug and exclude those likely to experience side effects. In that way, the effectiveness of drug treatment may be measured in individuals who respond positively to the drug, without lowering the measurement as a result of the inclusion of individuals who are unlikely to respond positively in the study and without risking undesirable safety problems.

20 VIII. DNA Typing Methods and Systems

5

10

: 25

30

The present invention also encompasses a DNA typing system having a much higher discriminatory power than currently available typing systems. The systems and associated methods are particularly applicable in the identification of individuals for forensic science and paternity determinations. These applications have become increasingly important; in forensic science, for example, the identification of individuals by polymorphism analysis has become widely accepted by courts as evidence.

While forensic geneticists have developed many techniques to compare homologous segments of DNA to determine if the segments are identical or if they differ in one or more nucleotides, each technique still has certain disadvantages. In particular, the techniques vary widely in terms of expense of analysis, time required to carry out an analysis and statistical power.

RFLP analysis methods

The best known and most widespread method in forensic DNA typing is the restriction fragment length polymorphism (RFLP) analysis. In RFLP testing, a repetitive DNA sequence referred to as a variable number tandem repeat (VNTR) which varies between individuals is analyzed. The core repeat is typically a sequence of about 15 base pairs in length, and highly polymorphic VNTR loci can have an average of about 20 alleles. DNA restriction sites located

on either site of the VNTR are exploited to create DNA fragments from about 0.5Kb to less than 10Kb which are then separated by electrophoresis, indicating the number of repeats found in the individual at the particular loci. RFLP methods generally consist of (1) extraction and isolation of DNA, (2) restriction endonuclease digestion; (3) separation of DNA fragments by electrophoresis; (4) capillary transfer; (5) hybridization with radiolabelled probes; (6) autoradiography; and (7) interpretation of results (Lee, H.C. et al., Am. J. Forensic. Med. Pathol. 15(4): 269-282 (1994)). RFLP methods generally combine analysis at about 5 loci and have much higher discriminate potential than other available test due the highly polymorphic nature of the VNTRs. However, autoradiography is costly and time consuming and an analysis generally takes weeks or months for turnaround. Additionally, a large amount of sample DNA is required, which is often not available at a crime scene. Furthermore, the reliability of the system and its credibility as evidence is decreased because the analysis of tightly spaced bands on electrophoresis results in a high rate of error.

PCR methods

10

15

20

25

30

35

PCR based methods offer an alternative to RFLP methods. In a first method called AmpFLP, DNA fragments containing VNTRs are amplified and then separated electrophoretically, without the restriction step of RFLP method. While this method allows small quantities of sample DNA to be used, decreases analysis time by avoiding autoradiography, and retains high discriminatory potential, it nevertheless requires electrophoretic separation which takes substantial time and introduces an significant error rate. In another AmpFLP method, short tandem repeats (STRs) of 2 to 8 base pairs are analyzed. STRs are more suitable to analysis of degraded DNA samples since they require smaller amplified fragments but have the disadvantage of requiring separation of the amplified fragments. While STRs are far less informative than longer repeats, similar discriminatory potential can be achieved if enough STRs are used in a single analysis.

Other methods include sequencing of mitochondrial DNA, which is especially suitable for situations where sample DNA is very degraded or in small quantities. However, only a small region of 1Kb of the mitochondrial DNA referred to as the D-Loop locus has been found useful for typing because of its polymorphic nature, resulting in lower discriminatory potential than with RFLP or AmpFLP methods. Furthermore, DNA sequencing is expensive to carry out on a large number of samples.

Further available methods include dot-blot methods, which involve using allele specific oligonucleotide probes which hybridize sequence specifically to one allele of a polymorphic site. Systems include the HLA DQ-alpha kit developed by Cetus Corp. which has a discriminatory value of about 1 in 20, and a dot-blot strip referred to as the Polymarker strip combining five genetic loci for a discriminatory value of about one in a few thousand. (Weedn, V., Clinics in Lab. Med. 16(1): 187-196 (1996)).

In addition to difficulties in analysis and time consuming laboratory procedures, it remains desirable for all DNA typing systems to have a higher discriminatory power. Several applications exist in which even the most discriminating tests need improvement in order to remove the considerable remaining doubt resulting from such analyses. Table 3 below lists characteristics of currently available forensic testing systems (Weedn, (1996)) and compares them with the method of the invention.

Table 3

Test type	Technology	Turnaround	Discriminatory	Sensitivity	Sample
		time	potential	(amount	
				DNA)	
RFLP	VNTR	Weeks or		10ng .	Highly intact
	(autoradiography)	months	10 ⁶ to 10 ⁹		DNA
AmpFLP	VNTR	Days		100pg	Moderate
	(PCR based)		10 ³ to 10 ⁶		degradation
Dot blot (ex.	Sequence specific	Days		1ng	Moderate
HLADQA1)	oligonucleotide		10 ¹ to 10 ³		degradation
•	probes				
Mitochondrial	D-loop sequence	Days		1pg	Severe
DNA	(PCR based)		102		degradation
Present marker	Biallelic Markers	Hours to	106, 1047, 10238	100pg	Moderate
set	(set of 13, set of	Days	105, 1047, 10250		degradation
	100, set of 200, set	(throughput			
•	of 270)	dependent)			

Applications

10

15

20

As described above, an important application of DNA typing tests is to determine whether a DNA sample (e.g. from a crime scene) originated from an individual suspected of leaving said DNA sample.

There are several applications for DNA typing which require a particularly powerful genotyping system. In a first application, a high powered typing system is advantageous when for example a suspect is identified by searching a DNA profile database such as that maintained by the U.S. Federal Bureau of Investigation. Since databases may contain large numbers of data entries that are expected to increase consistently, currently used forensic systems can be expected to identify several matching DNA profiles due to their relative lack of power. While database searches generally reinforce the evidence by excluding other possible suspects, low powered typing systems resulting in the identification of several individuals may often tend to diminish the overall case against a defendant.

In another application, a target population is systematically tested to identify an individual having the same DNA profile as that of a DNA sample. In such a situation, a defendant is chosen at random based on DNA profile from a large population of innocent individuals. Since the population tested can often be large enough that at least one positive match is identified, and it is usually not possible to exhaustively test a population, the usefulness of the evidence will depend on the level of significance of the forensic test. In order to render such an application useful as a sole or primary source of evidence, DNA typing systems of extremely high discriminatory potential are required.

In yet another application, it is desirable to be able to discriminate between related individuals. Because related individuals will be expected to share a large portion of alleles at polymorphic sites, a very high powered DNA typing assay would be required to discriminate between them. This can have important effects if a sample is found to match the defendant's DNA profile and no evidence that the perpetrator is a relative can be found.

10

: 15

20

25

30

35

Accordingly, there a need in this art for a rapid, simple, inexpensive and accurate technique having a very high resolution value to determine relationships between individuals and differences in degree of relationships. Also, there is a need in the art for a very accurate genetic relationship test procedure which uses very small amounts of an original DNA sample, yet produces very accurate results.

The present invention thus involves methods for the identification of individuals comprising determining the identity of the nucleotides at set of genetic markers in a biological sample, wherein said set of genetic markers comprises at least one CNS disorder-related marker. The present invention provides an extensive set of biallelic markers allowing a higher discriminatory potential than the genetic markers used in current forensic typing systems. Also, biallelic markers can be genotyped in individuals with much higher efficiency and accuracy than the genetic markers used in current forensic typing systems. In preferred embodiments, the invention comprises determining the identity of a nucleotide at a CNS disorder-related marker by single nucleotide primer extension, which does not require electrophoresis as in techniques described above and results in lower rate of experimental error. As shown in Table 3, above, in comparison with PCR based VNTR based methods which allow discriminatory potential of thousands to millions, and RFLP based methods which allow discriminatory potential of merely millions to billions under optimal assumptions, the biallelic marker based method of the present invention provides a radical increase in discriminatory potential.

Any suitable set of genetic markers and biallelic markers of the invention may be used, and may be selected according to the discriminatory power desired. Biallelic markers, sets of biallelic markers, probes, primers, and methods for determining the identity of said biallelic markers are further described herein.

Discriminatory potential of biallelic marker typing

Calculating discriminatory potential

The discriminatory potential of the forensic test can be determined in terms of the profile frequency, also referred to as the random match probability, by applying the product rule. The product rule involves multiplying the allelic frequencies of all the individual alleles tested, and multiplying by an additional factor of 2 for each heterozygous locus.

In one example discussed below, the discriminatory potential of biallelic marker typing can be considered in the context of forensic science. In order to determine the discriminatory potential with respect to the numbers of biallelic markers to be used in a genetic typing system, the formulas and calculations below assume that (1) the population under study is sufficiently large (so that we can assume no consanguinity); (2) all markers chosen are not correlated, so that the product rule (Lander and Budlowle (1992)) can be applied; and (3) the ceiling rule can be applied or that the allelic frequencies of markers in the population under study are known with sufficient accuracy.

As noted in Weir, B.S., Genetic data Analysis II: Methods for Discrete population genetic Data, Sinauer Assoc., Inc., Sunderland, MA, USA, 1996, the example assumes a crime has been committed and a sample of DNA from the perpetrator (P) is available for analysis. The genotype of this DNA sample can be determined for several genetic markers, and the profile A of the perpetrator can thereby be determined.

In this example, one suspect (S) is available for typing. The same set of genetic markers, such as the biallelic markers of the invention, are typed and the same profile A is obtained for (S) and (P). Two hypotheses are thus presented as follows:

- (1) either S is P (event C)
- (2) either S is not P (event C).

The ratio L of both probabilities can then be calculated using the following equation:

25

30

5

15

20.

$$L = \frac{pr(S = A, P = A/C)}{pr(S = A, P = A/\overline{C})}$$

L can then further be calculated by the following equation:

$$L = \frac{1}{pr(P = A/S = A, \overline{C})}$$
 (1) Equation 1

These probabilities as well as L can be calculated in several settings, notably for different kinship coefficients between P and S for a genetic marker (see Weir, (1996)).

Assuming that all genetic markers chosen are independent of each other, the global ratio L for a set of genetic markers will be the product over each genetic marker of all L.

It is further possible to estimate the mean number of biallelic markers or VNTRs required to have a ratio L equal to 10⁸ or 10⁶ by calculating the expectancy of the random variable L using the following equation:

$$E(L) = \prod_{i=1}^{N} E(L_i)$$
 where N is the number of loci

$$E(L_i) = \sum_{j=1}^{G_i} pr(P = A_{ij} / S = A_{ij}, \overline{C}) L_{ij}$$
, where A_{ij} is the genotype j at the ith marker,

 L_{ij} the ratio associated with such genotype, G_i being the number of genotypes at locus i.

From equation 1, it can easily be derived that the expectancy of L_i is G_i , the number of possible genotypes of this marker.

The general expectancy for a set of genetic markers can then be expressed by the following equation:

$$E(L) = \prod_{i=1}^{N} G_i \qquad (2) \; \underline{\text{Equation 2}}$$

Biallelic marker-based DNA typing systems

Using the equations described above, it is possible to select biallelic marker-based DNA typing systems having a desired discriminatory potential.

Using biallelic markers, E(L) can thus be expressed as 3^N. When using VNTR-based DNA typing systems, assuming the VNTRs have 10 alleles, E(L) can be expressed as 55^N. Based on these results, the number of biallelic markers or VNTRs needed to obtain, in mean, a ratio of at least 10⁶ or 10⁸ can calculated, and are set forth below in Table 4.

Table 4

Marker sets	L=10 ⁶	Ļ=10 ⁸
Biallelic	13	17
5-allele markers (e.g. VNTR)	5	7
10-allele markers (e.g. VNTR)	4	. 5

15

20

5

10

Thus, in a first embodiment, DNA typing systems and methods of the invention may comprise genotyping a set of at least 13 or at least 17 biallelic markers to obtain a ratio of at least 10^6 or 10^8 , assuming a flat distribution of L across the biallelic markers. In preferred embodiments, a greater number of biallelic markers is genotyped to obtain a higher L value. Preferably at least 1, 2, 3, 4, 5, 10, 13, 15, 17, 20, 25, 30, 40, 50, 70, 85, 100, 150, 200, 250 or all of the CNS disorder-related markers are genotyped. Said DNA typing systems of the invention would result in L values as listed in Table 5 below as an indication of the discriminate potential of the systems of the invention.

Table 5

Number of biallelic	L
markers	

5

10

15

20

50	7.2 * 10 ²³	
100	5*10 ⁴⁷	
271	3^271	

In situations where the distribution of L is not flat, such as in the worst case when the perpetrator is homozygous for the major allele at each genetic locus and L thus takes the lowest value, a larger number of biallelic markers is required for the same discriminatory potential.

Therefore is professed embediments. DNA trains systems and mathods of the investigation.

Therefore, in preferred embodiments, DNA typing systems and methods of the invention using a larger number of biallelic markers allow for uneven distributions of L across the biallelic markers. For example, assuming unrelated individuals, a set of independent markers having an allelic frequency of 0.1/0.9, and the genetic profile of a homozygote at each genetic loci for the major allele, 66 biallelic markers are required to obtain a ratio of 10⁶, and 88 biallelic markers are required to obtain a ratio of 10⁸. Thus, in preferred embodiments based on the use of markers having a major allele of sufficiently high frequency, this is a first estimation of the upper bound of markers required in a DNA typing system.

In further embodiments, it is also desirable to have the ability to discriminate between relatives. Although unrelated individuals have a low probability of sharing genetic profiles, the probability is greatly increased for relatives. For example, the DNA profile of a suspect matches the DNA profile of a sample at a crime scene, and the probability of obtaining the same DNA profile if left by an untyped relative is required. Table 6 below (Weir (1996)) lists probabilities for several different types of relationships, assuming alleles A_i and A_j , and population frequencies p_i and p_j , and lists likelihood ratios assuming genetic loci having allele frequencies of 0.1.

Table 6

Genotype	Relationship	Pr(p=A S=A)	L
A _i A _j	Full brothers	$(1+p_i+p_j+2p_i p_j)/4$	3.3
	Father and son	(p _i +p _j)/2	10.0
. •	Half brothers	(p _i +p _j +4p _i p _j)/4	16.7
,	Uncle and nephew	$(1+p_i+p_j+2p_i p_j)/4$	16.7
·	First cousins	$(1+p_i+p_j+12p_i p_j)/8$	25.0
	Unrelated	2p _i p _j	50.0

l A _i A _i	Full brothers	(1) 244	3 3
1-7-7	= =:: O: O a.o. 3	$(1+p_i)^2/4$	7.5
ł		1 ` **	
•			

Father and son	Pi	10.0
Half brothers	p _i (1+p _i)/2	18.2
Uncle and nephew	p _i (1+p _i)/2	18.2
First cousins	p _i (1+3p _i)/4	30.8
Unrelated	p _i ²	100.0

In one example, where the suspect is the full brother of the perpetrator, the number of required biallelic markers will be 187 assuming the profile is that of a homozygote for the major allele at each biallelic marker.

5

15

20

25

30

In yet further embodiments, the DNA typing systems and methods of the present invention may further take into account effects of subpopulations on the discriminatory potential. In embodiments described above for example, DNA typing systems consider close familial relationships, but do not take into account membership in the same population. While population membership is expected to have little effect, the invention may further comprise genotyping a larger set of biallelic markers to achieve higher discriminatory potential. Alternatively, a larger set of biallelic markers may be optimized for typing selected populations; alternatively, the ceiling principle may be used to study allele frequencies from individuals in various populations of interest, taking for any particular genotype the maximum allele frequency found among the populations.

The invention thus encompasses methods for genotyping comprising determining the identity of a nucleotide at least 13, 15, 17, 20, 25, 30, 40, 50, 66, 70, 85, 88, 100, 187, 200, or 250, 500, 700, 1000 or 2000 biallelic markers in a biological sample, wherein at least 1, 2, 3, 4, 5, 10, 13, 17, 20, 25, 30, 40, 50, 70, 85, 100, 150, 200, 250 or all of said biallelic markers are CNS disorder-related markers selected from the group consisting of SEQ ID NOS: 1-271.

Any markers known in the art may be used with the CNS disorder-related markers of the present invention in the DNA typing methods and systems described herein, for example in anyone of the following web sites offering collections of SNPs and information about those SNPs:

The Genetic Annotation Initiative (http://cgap.nci.nih.gov/GAI/). An NIH run site which contains information on candidate SNPs thought to be related to cancer and tumorigenesis generally.

dbSNP Polymorphism Repository (http://www.ncbi.nlm.nih.gov/SNP/). A more comprehensive NIH-run database containing information on SNPs with broad applicability in biomedical research.

HUGO Mutation Database Initiative
(http://ariel.ucs.unimelb.edu.au;80/~cotton/mdi.htm). A database meant to provide systematic

access to information about human mutations including SNPs. This site is maintained by the Human Genome Organisation (HUGO).

Human SNP Database (http://www-genome.wi.mit.edu/SNP/human/index.html).

Managed by the Whitehead Institute for Biomedical Research Genome Institute, this site contains information about SNPs resulting from the many Whitehead research projects on mapping and sequencing.

SNPs in the Human-Genome SNP database (http://www.ibc.wustl.edu/SNP). This website provides access to SNPs that have been organized by chromosomes and cytogenetic location. The site is run by Washington University.

10

15

20

30

35

HGBase (http://hgbase.cgr.ki.se/). HGBASE is an attempt to summarize all known sequence variations in the human genome, to facilitate research into how genotypes affect common diseases, drug responses, and other complex phenotypes, and is run by the Karolinska Institute of Sweden.

The SNP Consortium Database (http://snp.cshl.org/db/snp/map). A collection of SNPs and related information resulting from the collaborative effort of a number of large pharmaceutical and information processing companies.

GeneSNPs (http://www.genome.utah.edu/genesnps/). Run by the University of Utah, this site contains information about SNPs resulting from the U.S. National Institute of Environmental Health's initiative to understand the relationship between genetic variation and response to environmental stimuli and xenobiotics.

In addition, biallelic markers provided in the following patents and patent applications may also be used with the map-related biallelic markers of the invention in the DNA typing methods and systems described above: US Serial No. 60/206,615, filed 24 March 2000; US Serial No. 60/216,745, filed 30 June 2000; WIPO Serial No. PCT/IB00/00184, filed 11 February 2000; WIPO Serial No. PCT/IB98/01193, filed 17 July 1998; PCT Publication No. WO 99/54500, filed 21 April 1999; and WIPO Serial No. PCT/IB00/00403, filed 24 March 2000.

Biallelic markers, sets of biallelic markers, probes, primers, and methods for determining the identity of a nucleotide at said biallelic markers are also encompassed and are further described herein, and may encompass any further limitation described in this disclosure, alone or in any combination.

Forensic matching by microsequencing is further described in Example 6 below.

Throughout this application, various publications, patents, and published patent applications are cited. The disclosures of the publications, patents, and published patent specifications referenced in this application are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

EXAMPLES

Several of the methods of the present invention are described in the following examples, which are offered by way of illustration and not by way of limitation. Many other modifications and variations of the invention as herein set forth can be made without departing from the spirit and scope thereof and therefore only such limitations should be imposed as are indicated by the appended claims.

Example 1: De Novo Identification of Biallelic Markers

The biallelic markers set forth in this application were isolated from human genomic sequences. To identify biallelic markers, genomic fragments were amplified, sequenced and compared in a plurality of individuals.

DNA samples

10

15

20

25

30

35

Donors were unrelated and healthy. They represented a sufficient diversity for being representative of a French heterogeneous population. The DNA from 100 individuals was extracted and tested for the *de novo* identification of biallelic markers.

DNA samples were prepared peripheral venous blood as follows. 30 ml of peripheral venous blood were taken from each donor in the presence of EDTA. Cells (pellet) were collected after centrifugation for 10 minutes at 2000 rpm. Red cells were lysed in a lysis solution (50 ml final volume: 10 mM Tris pH7.6; 5 mM MgCl₂; 10 mM NaCl). The solution was centrifuged (10 minutes, 2000 rpm) as many times as necessary to eliminate the residual red cells present in the supernatant, after resuspension of the pellet in the lysis solution. The pellet of white cells was lysed overnight at 42°C with 3.7 ml of lysis solution composed of: (a) 3 ml TE 10-2 (Tris-HCl 10 mM, EDTA 2 mM) / NaCl 0.4 M; (b) 200 µl SDS 10%; and (c) 500 µl proteinase K (2 mg proteinase K in TE 10-2 / NaCl 0.4 M).

For the extraction of proteins, 1 ml saturated NaCl (6M) (1/3.5 v/v) was added. After vigorous agitation, the solution was centrifuged for 20 minutes at 10000 rpm. For the precipitation of DNA, 2 to 3 volumes of 100% ethanol were added to the previous supernatant, and the solution was centrifuged for 30 minutes at 2000 rpm. The DNA solution was rinsed three times with 70% ethanol to eliminate salts, and centrifuged for 20 minutes at 2000 rpm. The pellet was dried at 37°C, and resuspended in 1 ml TE 10-1 or 1 ml water. The DNA concentration was evaluated by measuring the optical density (OD) at 260 nm (1 unit OD = 50 µg/ml DNA). To determine the presence of proteins in the DNA solution, the OD 260 / OD 280 ratio was determined. Only DNA preparations having a OD 260 / OD 280 ratio between 1.8 and 2 were used in the subsequent examples described below. DNA pools were constituted by mixing equivalent quantities of DNA from each individual.

Amplification of genomic DNA by PCR

Amplification of specific genomic sequences was carried out on pooled DNA samples obtained as described above.

Amplification primers

5

10

25

30

35

The primers used for the amplification of human genomic DNA fragments were defined with the OSP software (Hillier & Green, 1991). Preferably, primers included, upstream of the specific bases targeted for amplification, a common oligonucleotide tail useful for sequencing. Primers PU contain the following additional PU 5' sequence: TGTAAAACGACGCCAGT; primers RP contain the following RP 5' sequence: CAGGAAACAGCTATGACC. Primers are listed in Table 12.

Amplification

PCR assays were performed using the following protocol:

	Final volume		25 μl
15	DNA		2 ng/μl
	$MgCl_2$		2 mM
	dNTP (each)		200 μΜ
	primer (each)		2.9 ng/µl
	Ampli Taq Gold DNA polymerase		0.05 unit/μ1
20	PCR buffer (10x = 0.1 M TrisHCl pH8.3 0.5M KCl)	1x	

DNA amplification was performed on a Genius II thermocycler. After heating at 94°C for 10 min, 40 cycles were performed. Cycling times and temperatures were: 30 sec at 94°C, 55°C for 1 min and 30 sec at 72°C. Holding for 7 min at 72°C allowed final elongation. The quantities of the amplification products obtained were determined on 96-well microtiter plates, using a fluorometer and Picogreen as intercalant agent (Molecular Probes).

Sequencing of amplified genomic DNA and identification of biallelic polymorphisms

Sequencing of the amplified DNA was carried out on ABI 377 sequencers. The sequences of the amplification products were determined using automated dideoxy terminator sequencing reactions with a dye terminator cycle sequencing protocol. The products of the sequencing reactions were run on sequencing gels and the sequences were determined using gel image analysis (ABI Prism DNA Sequencing Analysis software 2.1.2 version).

The sequence data were further evaluated to detect the presence of biallelic markers within the amplified fragments. The polymorphism search was based on the presence of superimposed peaks in the electrophoresis pattern resulting from different bases occurring at the same position. However, the presence of two peaks can be an artifact due to background noise.

To exclude such an artifact, the two DNA strands were sequenced and a comparison between the two strands was carried out. In order to be registered as a polymorphic sequence, the polymorphism had to be detected on both strands. Further, some biallelic single nucleotide polymorphisms were confirmed by microsequencing as described below.

Biallelic markers were identified in the analyzed fragments and are shown in Table 7.

Example 2: Genotyping of Biallelic Markers

The biallelic markers identified as described above were further confirmed and their respective frequencies were determined through microsequencing. Microsequencing was carried out on individual DNA samples obtained as described herein.

Microsequencing primers

5

10

15

20

25

30

35

Amplification of genomic DNA fragments from individual DNA samples was performed as described in Example 1 using the same set of PCR primers (Table 12). Microsequencing was carried out on the amplified fragments using specific primers. See Table 13. The preferred primers used in microsequencing had about 19 nucleotides in length and hybridized just upstream of the considered polymorphic base.

The microsequencing reactions were performed as follows: 5 µl of PCR products were added to 5 µl purification mix (2U SAP (Shrimp alkaline phosphate) (Amersham E70092X)); 2U Exonuclease I (Amersham E70073Z); and 1 µl SAP buffer (200 mM Tris-HCl pH8, 100 mM MgCl₂) in a microtiter plate. The reaction mixture was incubated 30 minutes at 37°C, and denatured 10 minutes at 94°C afterwards. To each well was then added 20 µl of microsequencing reaction mixture containing: 10 pmol microsequencing oligonucleotide (19mers, GENSET, crude synthesis, 5 OD), 1 U Thermosequenase (Amersham E79000G), 1.25 µl Thermosequenase buffer (260 mM Tris HCl pH 9.5, 65 mM MgCl₂), and the two appropriate fluorescent ddNTPs complementary to the nucleotides at the polymorphic site corresponding to both polymorphic bases (11.25 nM TAMRA-ddTTP; 16.25 nM ROX-ddCTP; 1.675 nM REGddATP; 1.25 nM RHO-ddGTP; Perkin Elmer, Dye Terminator Set 401095). After 4 minutes at 94°C, 20 PCR cycles of 15 sec at 55°C, 5 sec at 72°C, and 10 sec at 94°C were carried out in a Tetrad PTC-225 thermocycler (MJ Research). The microtiter plate was centrifuged 10 sec at 1500 rpm. The unincorporated dye terminators were removed by precipitation with 19 µl MgCl₂ 2mM and 55 µl 100 % ethanol. After 15 minute incubation at room temperature, the microtiter plate was centrifuged at 3300 rpm 15 minutes at 4°C. After discarding the supernatants, the microplate was evaporated to dryness under reduced pressure (Speed Vac). Samples were resuspended in 2.5 µl formamide EDTA loading buffer and heated for 2 min at 95°C. 0.8 µl microsequencing reaction were loaded on a 10 % (19:1) polyacrylamide sequencing gel. The

data were collected by an ABI PRISM 377 DNA sequencer and processed using the GENESCAN software (Perkin Elmer).

Frequency of biallelic markers

Frequencies are reported for the less common allele only and are shown in Table 7.

5

10

15

20

30

35

Example 3: Association Study Between Major Depression and the Biallelic Markers of Candidate Genes

Collection of DNA samples from affected and non-affected individuals

The disease trait followed in this association study was major depression, a complex disorder believed to involve several neurotransmitter pathways including those utilizing norepinephrine and serotonin. The depressed patient population consists of 140 individuals that participated in a clinical study for the evaluation of the anti-depressant compound Reboxetine (Montgomery S.A. and Schatzberg A.F.; Journal Clin. Psychiatry 59(suppl 14): 3-7, 1998).

Approximately 90% of these individuals were from a Caucasian ethnic background. The control population consisted of 94 individuals from a Caucasian population that had been found not to have any personal or family evidence of psychiatric disease.

Genotyping of affected and control individuals

The general strategy was to individually determine allele frequencies of biallelic markers in all individuals from each population described above. Allele frequencies of the biallelic markers were determined by performing microsequencing reactions on amplified DNA fragments obtained from genomic PCR performed on DNA samples from each individual. Genomic PCR and microsequencing were performed as detailed above in Examples 1 and 2.

25 Frequency of the biallelic markers alleles and genotypes of candidate gene and association with major depression

Frequencies of biallelic marker alleles were compared in the case-control populations described above. The data in Table 15 show the p-value obtained for each marker typed for each candidate gene for individual alleles and genotypes. Nine markers from 7 of 19 candidate genes were significant at the 5% level for allele frequency differences while seven markers from 6 of 19 candidate genes were significant at the 5% level for genotype frequency differences. In 4 cases, the same marker was significant at the 5% level for both allele and genotype frequency differences. This occurred for markers from the genes 5HTR6, 5HTR7, NET, and Gbeta3. These genes all participate in the mechanism of either serotonin or norepinephrine neurotransmission.

Haplotype frequency analysis

The results of the haplotype analysis using combinations of 2, 3, and 4 biallelic markers from each gene are shown in Tables 17 and 18. Haplotype analyses for the candidate genes were performed by estimating the frequencies of all 2, 3, and 4 marker haplotypes in the depressed and control populations. Haplotype estimations were performed by applying the Expectation-Maximization (EM) algorithm (Excoffier and Slatkin, *Mol. Biol. Evol.*, 12:921-927, 1995). Estimated haplotype frequencies in the depressed and control populations were compared by means of permutation tests based on individual haplotypes (Permutation test) as well as the distribution of frequencies from all possible haplotypes derived from a particular combination of given markers (Omnibus LR test).

The results of the Omnibus LR test are shown in Table 16. Listed are the top 10 marker combinations for each category of 4, 3, and 2 marker combinations and boxed in a double line border are the top 5% of each category (by p-value based on phenotypic reiteration of at least 1000 simulations). It is remarkable that several of the same genes identified by single marker association tests also appear in the top 5% of the Omnibus LR test. In particular, markers from the genes NET and Gbeta3 appear as top 5% in each category of combinations for the Omnibus LR test.

10

15

20

25

30

35

The results of the Permutation test for individual haplotypes are shown in Table 17. Listed are the top 20 haplotypes for each category of 4, 3, and 2 marker haplotypes and boxed in a double line border are the top 1% of each category (by p-value based on phenotypic reiteration of at least 1000 simulations). Again it is remarkable that several of the same genes identified by single marker association tests and Omnibus LR test also contribute haplotypes that appear in the top 1% of the Permutation test for individual haplotypes. Of all genes, only NET contributes to the top percentiles of each category of testing (individual markers for allele and genotype frequencies, Omnibus LR 4,3 and 2 marker combinations, and Permutation test for individual 4, 3, and 2 marker haplotypes). However several other genes contribute to several testing categories including previously mentioned Gbeta3 and 5HTR7 as well as WFS1, GRL, 5HTT and DRD3.

Two preferred haplotypes can be constructed from markers derived from the NET gene. One consists of markers 99-28788/300, 99-32061/304, and 99-32121/242 each manifesting the G allele. The GGG haplotype is present in only 1% of depressed cases vs. 7% of controls. While this haplotype is low in overall frequency, the p-value by permutation test is 2 X 10⁻⁴ and the p-value for this group of markers is 2 X 10⁻³ by Omnibus LR test suggesting that the result is highly significant. A second haplotype consists of markers 16-3/199, 16-28/93, and 16-50/196 manifesting alleles TCT respectively. The haplotype TCT is present in only 30% of cases vs. 43% of controls. The p-value by permutation test is 9 X 10⁻⁴ and the p-value for this group of markers is 8.9 X 10⁻⁴ by Omnibus LR test, also indicating a high level of significance.

Another example of a preferred haplotype comes from markers 16-16/285, 16-17/121, and 16-106/364 which are derived from the gene Gbeta3. The haplotype TTC is present in 21% of cases vs. 35% of controls. The p-value by permutation test is 1 X 10⁻³ and the p-value for this group of markers is 1 X 10⁻⁴ by Omnibus LR test, indicating a high level of significance.

5

15

20

25

35

Example 4: Association Study Between Major Depression and the Biallelic Markers of Candidate Genes

The association analysis of Example 3 was repeated using a different population set as described below. In general, these estimates agreed with the frequencies observed in the first screening within a few percent. Statistical assessments of haplotype frequency differences between depressed cases and controls were made by Omnibus LR tests and individual haplotype tests.

For Omnibus analyses, WFS1 marker combinations showed the most significant (p<0.01) differences between the depressed cases and controls for 2, 3, and 4 locus haplotypes. Strongest among these associations were combinations of markers spanning the core exonic region of the WFS1 gene including 19-17/188, 19-19/174, and 24-243/346. Several NET marker combinations showed significant associations (p<0.05) including those from the 5' flanking region and those from the exonic region. When compared to the distribution of Omnibus p-values observed in the 1st screening, 11 WFS1 marker combinations would have been among the top 5% of observed Omnibus p-values whereas 2 NET marker combinations would have been among the top 5%.

For individual haplotypes, haplotype GT from WFS1 markers 19-17/188 and 24-243/346 showed an 11% difference (37% cases vs. 26% controls, p<0.001). A similar difference was observed for haplotype GC from WFS1 markers 19-17/188 and 19-19/174 and GCT from all three markers (p<0.005). Several NET haplotypes showed >10% frequency differences between cases and controls (p<0.01). When compared to the distribution of individual haplotype p-values observed in the first screening, 6 WFS1 marker combinations would have been among the top 1% of observed individual haplotype p-values.

Frequency of the biallelic markers alleles and genotypes of candidate gene and association with

30: major depression

Frequencies of biallelic marker alleles were compared in the case-control populations described above. The data in Table 18 show the p-value obtained for each marker typed for each candidate gene for individual alleles and genotypes. Nine markers from 7 of 19 candidate genes were significant at the 5% level for allele frequency differences while seven markers from 6 of 19 candidate genes were significant at the 5% level for genotype frequency differences. In 4 cases, the same marker was significant at the 5% level for both allele and genotype frequency differences. This occurred for markers from the genes 5HTR6, 5HTR7, and WFS1.

Haplotype frequency analysis

10

20

25

35

The results of the haplotype analysis using combinations of 2, 3, and 4 biallelic markers from each gene are shown in Tables 19 and 20. Haplotype analyses for the candidate genes were performed by estimating the frequencies of all 2, 3, and 4 marker haplotypes in the depressed and control populations. Haplotype estimations were performed by applying the Expectation-Maximization (EM) algorithm (Excoffier and Slatkin, *Mol. Biol. Evol.*, 12:921-927, 1995). Estimated haplotype frequencies in the depressed and control populations were compared by means of permutation tests based on individual haplotypes (Permutation test) as well as the distribution of frequencies from all possible haplotypes derived from a particular combination of given markers (Omnibus LR test).

The results of the Omnibus LR test are shown in Table 19. Listed are the top 10 marker combinations for each category of 4, 3, and 2 marker combinations and boxed in a double line border are the top 5% of each category (by p-value based on phenotypic reiteration of at least 1000 simulations). It is remarkable that several of the same genes identified by single marker association tests also appear in the top 5% of the Omnibus LR test. In particular, markers from the gene WFS1 appears as top 5% in each category of combinations for the Omnibus LR test.

The results of the Permutation test for individual haplotypes are shown in Table 20. Listed are the top 20 haplotypes for each category of 4, 3, and 2 marker haplotypes and boxed in a double line border are the top 1% of each category (by p-value based on phenotypic reiteration of at least 1000 simulations). Again it is remarkable that several of the same genes identified by single marker association tests and Omnibus LR test also contribute haplotypes that appear in the top 1% of the Permutation test for individual haplotypes. Of all genes, WFS1 contributes to the top percentiles of nearly all categories of testing (individual markers for allele and genotype frequencies, Omnibus LR 4,3 and 2 marker combinations, and Permutation test for individual 3 and 2 marker haplotypes). However several other genes contribute to several testing categories including previously mentioned 5HTR7 as well as NET, GRL, 5HTT and DRD3.

A preferred haplotype can be constructed from markers derived from the WFS1 gene. This consists of markers 19-17/188, 19-19/174, and 24-243/176 manifesting alleles GCT respectively. The GCT haplotype is present in 34% of depressed cases vs. 24% of controls. While this haplotype is low in overall frequency, the p-value by permutation test is 3 X 10⁻³ and the p-value for this group of markers is 1 X 10⁻³ by Omnibus LR test suggesting that the result is highly significant.

Example 5: Response to Reboxetine in Depressed Patients

Single point analyses were also performed on data from the candidate genes to determine Reboxetine response among depressed patients as compared to controls. Two markers from NET

(99-32061/304 and 99-32121/242) showed allelic and genotypic association (p<0.05). A single marker from Gbeta3 (18-355/67) showed allelic association with drug response (p=0.05).

Multipoint analyses on the data revealed Omnibus LR-based associations to be minimal for these genes with only two marker combinations from NET achieving a level of significance of p<0.05. At the individual haplotype level, a number of NET haplotypes achieved this level of significance with 10-15% responder/non-responder differences in haplotype frequencies. Also of note is the observation that a few individual haplotypes from Gbeta3 showed a remarkable level of significance (p<0.0005) corresponding to a nearly infinite relative risk (15-20% in non-responders vs. 0% in responders). This difference in estimated haplotype frequency is based largely on the observation that one particular haplotype cannot be unambiguously detected in the 204 responder haplotypes although there are at least 9 copies in 182 non-responder haplotypes.

In conclusion, modest association is present between NET and drug response. In addition, select individual haplotypes from Gbeta3 show a strong statistical association with drug response.

15

20

25

30

35

10

Example 6: Forensic Matching by Microsequencing

DNA samples are isolated from forensic specimens of, for example, hair, semen, blood or skin cells by conventional methods. A panel of PCR primers based on a number of the sequences of SEQ ID NOS: 1 to 542 is then utilized according to the methods described herein to amplify DNA of approximately 500 bases in length from the forensic specimen. The alleles present at each of the selected biallelic markers site according to biallelic markers SEQ ID NOS: 1 to 542 are then identified according Example 2. A simple database comparison of the analysis results determines the differences, if any, between the sequences from a subject individual or from a database and those from the forensic sample. In a preferred method, statistically significant differences between the suspect's DNA sequences and those from the sample conclusively prove a lack of identity. This lack of identity can be proven, for example, with only one sequence. Identity, on the other hand, should be demonstrated with a large number of sequences, all matching. Preferably, a minimum of 13, 17, 20, 25, 30, 40, 50, 66, 70, 85, 88, 100, 187, 200 or 250 biallelic markers are used to test identity between the suspect and the sample.

In accordance with the regulations relating to Sequence Listings, the following codes have been used in the Sequence Listing to indicate the locations of biallelic markers within the sequences and to identify each of the alleles present at the polymorphic base. The code "r" in the sequences indicates that one allele of the polymorphic base is a guanine, while the other allele is an adenine. The code "y" in the sequences indicates that one allele of the polymorphic base is a thymine, while the other allele is a cytosine. The code "m" in the sequences indicates that one

allele of the polymorphic base is an adenine, while the other allele is an cytosine. The code "k" in the sequences indicates that one allele of the polymorphic base is a guanine, while the other allele is a thymine. The code "s" in the sequences indicates that one allele of the polymorphic base is a guanine, while the other allele is a cytosine. The code "w" in the sequences indicates that one allele of the polymorphic base is an adenine, while the other allele is an thymine.

TABLE 7A

GENE	BIALLELIC SEQ ID NO.		BIALLELIC MARKER POSITION IN SEQ ID NO.	VALIDATION MICRO- SEQUENCING	GENOTYPING LEAST COMMON ALLELE FREQUENCY	
5HTR6	99-27199-207	1	207	Y	T	0.30
5HTR6	99-27207-117	2	117	Ŷ	Ċ	0.37
5HTR6	99-27213-53	3	53	Ÿ	 	0.57
5HTR6	99-27218-333	4	333	Ý	<u> </u>	
5HTR6	99-28108-233	5	233	Ϋ́	 	
5HTR6	99-28109-275	6	275	N	 	<u> </u>
5HTR6	99-28110-75	7	74	Y	Т	0.48
5HTR6	99-28125-81	8	81	Y		0.40
5HTR6	99-28134-215	9	215	Y	T	0.37
5HTR6	99-28137-96	10	96	Y	-	10.37
5HTR6	99-32204-305	11		N	·	
5HTR7	99-28149-118	12	305	Y		0.04
			118		C	0.31
5HTR7	99-28160-285	13	285	Y	G	0.49
5HTR7 5HTR7	99-28171-458	14	457	Y	Α	0.38
	99-28173-395	15	395	Υ	<u> </u>	
5HTR7	99-32177-113	16	113	Υ		<u> </u>
5HTR7	99-32181-192	17	192	Υ	С	0.38
5HTR7	99-32193-258	18	257	Υ	T	0.65
CHRNA7	99-28722-90	19	90	Υ	C	0.32
CHRNA7	99-28730-351	20	351	Υ	Α	0.38
CHRNA7	99-32306-409	21	407	Υ	G	0.33
CRFR1	99-27088-246	22	246	Υ	Α	0.38
CRFR1	99-27090-203	23	204	Υ	G	0.22
CRFR1	99-27091-220	24	221	Υ	Α	0.49
CRFR1	99-27093-145	25	145	N ·		
CRFR1	99-27094-406	26	406	Υ	Τ:	0.21
CRFR1	99-27096-410	27	410	N		
CRFR1	99-27097-83	28	83	Υ	T	0.47
CRFR1	99-27098-162	29	162	N		
CRFR1	99-27550-48	30	48	Υ	Α	0.26
CRFR1	99-27558-335	31	335	Υ		
CRFR1	99-27561-106	32	106	Υ .		
CRFR1	99-27562-366	33	364	N		
MLR	16-31-738	34	738	Υ	G	0.47
MLR	99-27110-301	35	300	Υ	·	
MLR	99-27563-400	36	400	Ý	Α	0.44
MLR	99-27573-443	37	443	Υ		
MLR	99-28732-133	38	133	Υ	A	0.31
MLR	99-28735-56	39	56	Y	Т	0.30
MLR	99-28736-399	40	399	Ý	l	-
MLR	99-28738-319	41	319	Ÿ	С	0.37
MLR	99-28739-364	42	364	Ÿ		
CRFR2	99-27875-185	43	185	Y	С	0.40
CRFR2	99-27880-176	44	176	Ÿ	T	0.44
CRFR2	99-28747-371	45	373	Ÿ	Ċ	0.44
CRFR2	99-28753-353	46	352	Ÿ	C	0.39
CRFR2	99-28755-206	47	207	Ÿ	G	0.41
CRFR2	99-32333-366	48	366	N	C	J.71
GRL	16-38-323	49	323	Y	A	0.33
GRL	99-28484-179	50	179	Y	A	0.40

TABLE 7A (cont)

			MDLE IM	(cont)		
GRL	99-30853-364	51	364	Υ	G	0.42
GRL	99-28485-198	52	198	Υ	G	0.20
GRL	99-30858-354	53	354	Υ	T	0.16
GRL	99-32002-313	54	311	Υ	Α	0.48
GRL	18-15-366	55	366	Υ		
GRL	18-20-174	56	174	Υ	G	0.27
GRL	18-31-178	57	178	Υ	С	0.35
GRL	18-38-395	58	395	Υ	Ť	0.37
MAOA	18-2-192	59	192	Υ	Т	0.32 .
MAOB	99-26921-210	60	211	Υ	G	0.48
MAOA	16-215-80	61	250	Υ	Т	0.33
MAOA-B	18-132-368	62	368	Υ	С	0.34
MAOA	18-133-293	63	292	Υ	Α	0.27
5HTR2c	18-12-191	64	191	Υ	Α	0.14
5HTR2c	18-11-137	65	138	Y	G	0.27
5HTR2c	18-93-96	66	96	Υ		
TH	16-115-343	67	343	Y	С	0.24
TH	16-42-140	68	140	Y	G	0.30
TH	18-251-176	69	176	Ý	Ť	0.43
TH	18-269-44	70	44	Ý	À	0.38
CRF	16-218-624	71	624	N		- 3.33
CRF	18-393-330	72	330	Y		
CRF	18-394-402	73	402	Y		
DRD4	16-217-55	74	55	Ŷ		
DRD4	18-284-139	75	139	Ŷ		
DRD4	18-285-305	76	305	Ý		
DRD4	18-289-239	77	239	Ŷ		
DRD4	18-291-91	78	91	Ý		
5HTT	18-186-391	79	391	Ý	т т	0.47
5HTT	18-194-130	80	130	ΪΥ	Ť	0.48
5HTT	18-198-252	81	252	Υ	A	0.49
5HTT.	18-242-300	82	299	Y	G	0.46
DRD3	8-15-126	83	1501	Ŷ	G	0.30
DRD3	8-19-372	84	1501	İΥ	A	0.28
DRD3	99-2409-298	85	428	Ϋ́	A	0.40
DRD3	99-339-54	86	1501	Ϋ́	G	0.46
CYP3A4-7	12-254-180	87	311	Y	Ğ	0.46
CYP3A4-7	10-214-279	88	1501	Y	Ċ	0.12
CYP3A4-7	10-217-91	89	1501	Y	Ť	0.07
NET	99-28779-168	90	168	Υ		- G.G.
NET	99-28788-300	91	300	Y	Α	0.47
NET	99-32052-262	92	263	Ŷ		31.7
NET	99-32121-242	93	244	Y	G	0.48
NET	99-32059-169	94	169	N		10.10
NET	99-32061-304	95	304	Y	Α	0.39
NET	99-32065-303	96	303	Y		
NET	99-32123-118	97	118	Ÿ		
NET	99-32148-315	98	314	ΪΥ		
NET	16-2-76	99	95	Ÿ	A	0.27
NET	16-28-93	100	120	Y	Ĉ	0.44
NET	16-3-199	101	342	Ϋ́	C	0.32
NET	16-50-197	102	197	Y	c	0.21
NET	16-1-59	103	181	Y		
NET	16-2-187	104	206	Ϋ́		
TACR1	99-28761-311	105	311	Y	A	0.22

TABLE 7A (cont)

				. (_
TACR1	99-28771-86	106	86	Υ	T	0.48
TACR1	99-28791-291	107	291	Y	Α	0.26
TACR1	99-32077-66	108	66	Υ		
TACR1	99-32078-466	109	467	Y		
TACR1	99-32376-426	110	426	Υ		
TACR1	99-32361-419	111	420	Y	T	0.48
DRD2	16-21-228	112	228	Υ	Α	0.16
DRD2	16-22-156	113	156	Υ	С	0.45
DRD2	16-23-404	114	404	Y	G	0.47
DRD2	16-24-175	115	175	Υ	Α	0.16
DRD2	16-25-286	116	286	Υ	T .	0.37
DRD2	16-25-279	117	279	Υ		
DRD2	16-23-393	118	393	Υ		
Gbeta3	16-106-364	119	364	Υ	T	0.01
Gbeta3	16-16-285	120	285	Υ	T	0.38
Gbeta3	16-17-121	121	121	Υ	T	0.36
Gbeta3	16-84-185	122	185	Υ	С	0.40
Gbeta3	16-87-74	123	74	Υ	Α	0.34
Gbeta3	16-91-333	124	333	Υ	Α	0.43
WFS1	16-128-142	125	142	Υ	С	0.27
WFS1	16-133-205	126	245	Υ	G	0.34
WFS1	16-135-181	127	232	Υ	A	0.28
WFS1	16-145-405	128	455	Υ	С	0.11
WFS1	16-177-320	129	320	Y	Α	0.07
WFS1	16-4-354	130	354	Y	С	0.36

TABLE 7B

GENE	BIALLELIC MARKER ID	SEQ ID NO.	BIALLELIC MARKER POSITION IN SEQ ID NO.	VALIDATION MICRO- SEQUENCING	GENOTYPING LEAST COMMON ALLELE FREQUENCY	
5HTR6	99-27199-207	131	24	Υ	T	0.30
5HTR6	99-27207-117	132	24	Υ	C	0.37
5HTR6	99-27213-53	133	24	Υ	4	:
5HTR6	99-27218-333	134	24	Υ	. 1	
5HTR6	99-28108-233	135	24	Υ		;
5HTR6	99-28109-275	136	24	N		•
5HTR6	99-28110-75	137	24	Υ	T	0.48
5HTR6	99-28125-81	138	24	Υ	3.44	,
5HTR6	99-28134-215	139	24	Υ	Τ	0.37
5HTR6	99-28137-96	140	24	Υ		
5HTR6	99-32204-305	141	24	N		
5HTR7	99-28149-118	142	24	Υ	C 11 7	0.31
5HTR7	99-28160-285	143	24	Υ	G	0.49
5HTR7	99-28171-458	144	24	Υ	Α	0.38
5HTR7	99-28173-395	145	24	Υ	·	
5HTR7	99-32177-113	146	24	Υ		
5HTR7	99-32181-192	147	24	Υ	С	0.38
5HTR7	99-32193-258	148	24	Y	Τ	0.65
CHRNA7	99-28722-90	149	24	Y	С	0.32
CHRNA7	99-28730-351	150	24	Y	A i	0.38
CHRNA7	99-32306-409	151	24	Υ	G	0.33
CRFR1	99-27088-246	152	24	Y	A	0.38
CRFR1	99-27090-203	153		Y	G	0.22

TABLE 7B (cont)

		IAE	PLE / B	(cont)		
CRFR1	99-27091-220	154	24	ΙΥ	Α	0.49
CRFR1	99-27093-145	155	24	N		
CRFR1	99-27094-406	156	24	Y	T	0.21
CRFR1	99-27096-410	157	24	N		
CRFR1	99-27097-83	158	24	Y	T	0.47
CRFR1	99-27098-162	159	24	N		
CRFR1	99-27550-48	160	24	Υ	Α	0.26
CRFR1	99-27558-335	161	24	Y		
CRFR1	99-27561-106	162	24	Y		
CRFR1	99-27562-366	163	24	N		
MLR	16-31-738	164	24	Y	G	0.47
MLR	99-27110-301	165	24	Υ		
MLR	99-27563-400	166	24	Y	Α :	0.44
MLR	99-27573-443	167	24	Y		
MLR	99-28732-133	168	24	Y	Α	0.31
MLR	99-28735-56	169	24	Υ	T	0.30
MLR ·	99-28736-399	170	24	Y		
MLR	99-28738-319	171	24	Y	С	0.37
MLR	99-28739-364	172	24	Ý	7.	10.0.
CRFR2	99-27875-185	173	24	Ý	С	0.40
CRFR2	99-27880-176	174	24	Ý	T	0.44
CRFR2	99-28747-371	175	24	Ý	Ċ ·	0.44
CRFR2	99-28753-353	176	24	Ý	C	0.39
CRFR2	99-28755-206	177	24	- ·	G	0.41
CRFR2	99-32333-366	178	24	N	C	0.41
GRL	16-38-323	179	24	Y	A ·	0.33
GRL	99-28484-179	180	24	· Y	A .	0.40
GRL	99-30853-364	181	24	Ý	G	0.42
GRL	99-28485-198	. 182	24	Ϋ́	G	0.20
GRL	99-30858-354	183	24	Ý	T	0.16
GRL	99-32002-313	184	24	Ÿ	A	0.48
GRL	18-15-366	185	24	Ÿ		0.40
GRL	18-20-174	186	24	Y	G ,	0.27
GRL	18-31-178	187	24	Ý	c	0.35
GRL	18-38-395	188	24	Ý	T	0.37
MAOA	18-2-192	189	24	Ϋ́	· T	0.32
MAOB	99-26921-210	190	24	Ý	G	0.48
MAOA	16-215-80	191	24	Ÿ	T	0.33
MAOA-B	18-132-368	192	24	Y		0.34
MAOA	18-133-293	193	24	Ý	A	0.27
5HTR2c	18-12-191	194	24	Ý	A	0.14
5HTR2c	18-11-137	195	24	Ý	G	0.27
5HTR2c.	18-93-96	196	24	Ý		0.27
TH	16-115-343	197	24	Y	c .	0.24
TH	16-42-140	198	24	Ý	G ,	0.30
TH	18-251-176	199	24			0.43
TH	18-269-44	200	24	TY Y	- la	0.38
CRF	16-218-624	201	24	N N	<u>^</u>	0.00
CRF	18-393-330	202	24	- Y		
CRF	18-394-402	203	24	$-\frac{1}{V}$		-
DRD4	16-217-55	204	24	Y		
			24	- '		
UKU4	18-284-139	2051				
DRD4 DRD4	18-284-139 18-285-305	205				
DRD4 DRD4 DRD4	18-284-139 18-285-305 18-289-239	205 206 207	24	Y		

TABLE 7B (cont)

			ADEL /	D (CONT)		
5HTT	18-186-391	209	24	Υ	T	0.47
5HTT	18-194-130	210	24	Υ	T	0.48
5HTT	18-198-252	211	24	Υ	Α	0.49
5HTT	18-242-300	212	24	Υ	G	0.46
DRD3	8-15-126	213	24	Υ	G	0.30
DRD3	8-19-372	214	24	Υ	Α	0.28
DRD3	99-2409-298	215	24	Υ	Α	0.40
DRD3	99-339-54	216	24	Υ	G	0.46
CYP3A4-7	12-254-180	217	24	Y	G	0.46
CYP3A4-7	10-214-279	218	24	Υ	С	0.12
CYP3A4-7	10-217-91	219	24	Y	T ·	0.07
NET	99-28779-168	220	24	Y	:	
NET	99-28788-300	221	24	Υ	Α	0.47
NET	99-32052-262	222	24	Y		
NET	99-32121-242	223	24	Υ	G	0.48
NET	99-32059-169	224	24	N	,	
NET	99-32061-304	225	24	Y	A	0.39
NET	99-32065-303	226	24	Y	1	0.00
NET	99-32123-118	227	24	Y		
NET	99-32148-315	228	24	Y		
NET	16-2-76	229	24	Y	A	0.27
NET	16-28-93	230	24	Ý	Ċ	0.44
NET	16-3-199	231	24	Ý	C ·	0.32
NET	16-50-197	232	24	Ý	C:	0.21
NET	16-1-59	233	24	Ý		0.21
NET	16-2-187	234	24	Ý		- : -
TACR1	99-28761-311	235	24	Ý	A	0.22
TACR1	99-28771-86	236	24	Ý	T	0.48
TACR1	99-28791-291	237	24	Y	A	0.26
TACR1	99-32077-66	238	24	Ý		- 0.20
TACR1	99-32078-466	· 239	24	Y		
TACR1	99-32376-426	240	24	Y		
TACR1	99-32361-419	241	24	Y	T	0.48
DRD2	16-21-228	242	24	Y	A	0.16
DRD2	16-22-156	243	24	Ŷ	C	0.45
DRD2	16-23-404	244	24	Y	G	0.47
DRD2	16-24-175	245	24	Ý	A	0.16
DRD2	16-25-286	246	24	Ý	7	0.37
DRD2	16-25-279	247	24	Y	٠.	-
DRD2	16-23-393	248	24	Ý	1.	
Gbeta3	16-106-364	249	24	Ý	- - -	0.01
Gbeta3	16-16-285	250	24	Ϋ́	7	0.38
Gbeta3	16-17-121	251	24	Y	+	0.36
Gbeta3	16-84-185	252	24	Ÿ	C	0.40
Gbeta3	16-87-74	253	24	Y	A	0.40
Gbeta3	16-91-333	254	24	Y	Â	0.43
WFS1	16-128-142	255	24	Y	 	0.43
WFS1	16-133-205	256	24	Y	G ···	0.27
WFS1	16-135-181	257	24	- 'Y	A	0.28
WFS1	16-145-405	258	24	Y	Ĉ	0.28
WFS1	16-177-320	259	24	Y		
WFS1	16-4-354	260			<u>A</u>	0.07
	10-7-004	200]	24	Y	<u> C</u>	0.36

TABLE 7C

			IADLE /	<u> </u>		
GENE	BIALLELIC MARKER ID	SEQ ID NO.	BIALLELIC MARKER	VALIDATION	GENOTYPING LEAST	
	MARKERID	INO.	POSITION IN	MICRO-	COMMON ALLELE	
			SEQ ID NO.	SEQUENCING	FREQUENC	ΣΥ
MAO A/B	18-473-362	261	362	Y	С	0.43
MAO A/B	99-12361-88	262	88	Y	С	0.36
MAO A/B	99-12368-335	263	335	Y	С	0.36
MAO A/B	99-12370-67	264	67	Y	A	0.29
NET	99-32148-315	265	314	Ÿ	Ĉ	0.27
NET	19-46-322	266	322	Ý	C	0.31
NET	19-47-315	267	315	Ÿ	T	0.14
NET	19-51-347	268	346	Y	-	0.14
NET	99-32052-262	269	263	Ÿ	Т	0.38
CYP3A4/7	10-213-292	270	1501	Ÿ	Ġ	0.11
5HTT	18-419-135	271	135	Y		10
5HTT	18-424-419	272	419	Y	 	
5HTT	18-429-289	273	290	Ÿ		
5HTT	18-246-256	274	256	Y	С	0.48
Gbeta3	18-355-67	275	68	Y	C	0.49
Gbeta3	18-353-267	276	266	Y	T	0.49
Gbeta3	18-338-305	277	306	Ÿ	G	0.3
WFS1	24-243-346	278	1501	Y	T	0.3
WFS1	99-62531-351	279	1501	Y	 	*
WFS1	99-54279-152	280	1501	Ϋ́		0.36
DRD2	18-168-245	281	245	Y	G	0.44
DRD2	18-171-291	282	291	Y	C	0.45
DRD2	18-172-346	283	346	Y	T	0.37
DRD2	18-177-406	284		Y	T	0.45
HM74	18-298-338	285	406	Y	<u> </u>	0.37
HM74	18-298-110	286	338	Y	G	0.49
HM74	18-299-105	287	110		•	
HM74	18-884-30		104	Y	10	0.00
HM74	18-299-343	288	31	Y	C	0.26
HM74		289	342	Y	ļ	-
HM74	99-61513-139	290	140	Y	A	0.26
	99-61514-179	291	179	Y	G	0.27
HM74	99-61516-323	292	323	Υ	С	0.33
CRHBP CRHBP	18-204-70	293	70	Υ	C	0.20
	18-207-441	294	442	Y	С	0.41
CRHBP	18-210-65	295	65	Υ	<u> _ </u>	<u> </u>
CRHBP	18-212-200	296	200	Y	T	0.31
CRHBP	18-229-334	297	334	Υ	<u> </u>	0.33
CRHBP	18-230-332	298	332	Y	T .	0.32
AVPR1A	18-966-378	299	378	Υ	C	0.41
AVPR1A	18-987-308	300	307	Υ	A	0.35
AVPR1A	18-1169-118	301	118	Υ		
AVPR1A	18-1172-138	302	138	Υ	G	0.16
AVPR1A	18-1173-92	303	92	Υ	T	0.32
AVPR1A	18-1174-387	304	387	Υ	C :	0.21
AVPR1A	18-1175-416	305	416	Υ	G	0.21
AVPR1A	18-542-146	306	146	Υ	G	0.21
5HT1A	8-42-211	307	1501	Υ	G	0.46
5HT1A	8-45-389	308	1501	Υ	G	0.01
5HT1A	18-994-270	309	270	Υ	С	0.25
5HT1A	18-912-165	310	165	Υ	T	0.46
5HT1A	18-991-124	311	124	Υ	T	0.45

TABLE 7C (cont)

			ADLE /	` 		
5HT1A	18-920-219	312	219	Υ		
5HT1A	18-911-312	313	312	Υ		
5HT1A	99-65963-368	314	368	Υ		
5HT1A	99-65966-225	315	225	Υ		
5HT1A	99-65968-75	316	75	Υ		
5HT1A	99-5069-331	317	1501	Y		
5HT1A	99-5070-176	318	175	Υ	T	0.02
GABRG2	18-511-348	319	348	Ÿ		0.02
GABRG2	18-523-352	320	352	Ÿ	С	0.49
GABRG2	18-545-478	321	480	Ý	Ğ	0.45
GABRG2	18-522-194	322	194	Ŷ	G	0.32
GABRG2	18-524-284	323	284	Ý	C	0.36
ADRB1R	18-626-52	324	52	Ý	G	0.36
ADRB1R	18-629-189	325	189	Y	T T	0.40
ADRB1R	18-1131-71	326	71	Tr Tr	Tr -	0.41
ADRB1R	18-534-126	327	126	Ý		0.41
ADRB1R	18-596-59	328	59	Ÿ		
		329	27	Y	 	0.20
ADRB1R	18-597-27			Y	A G	
GABRA5	18-730-203	330	203	Y	C	0.48
GABRA5	18-734-89	331	89			0.48
GABRA5 GABRA5	18-895-321	332	321	Υ	Α	0.27
	18-896-69	333	69	Y		
GABRA5 GOLF	18-903-58	334	58	Y		10.40
GOLF	18-590-216 18-817-436	335	216	Υ	G	0.42
GOLF GOLF		336	433	Y	T	0.41
GOLF	18-829-85	337	85	Υ	<u> </u>	0.39
GOLF	18-832-387	338	387	Υ	- · ·	- !
	18-833-259	339	259	Y		
GOLF	18-839-271	340	271	Y	C	0.40
GOLF	18-770-194	341	194	Υ	T	0.37
GOLF	18-771-302	342	302	Υ	G	0.30
GOLF	18-827-53	343	53	Υ	G	0.34
GOLF	18-768-318	344	318	Υ	G	0.31
GOLF	18-769-26	345	26	Υ	Α .	0:17
SLC6A3	18-709-321	346	320	Υ	С	0.46
SLC6A3	18-714-280	347	281	Υ	Т	0.17
SLC6A3	18-843-271	348	271	Υ	С	0.37
SLC6A3	18-850-265	349	265	Υ	Т	0.34
SLC6A3	18-853-296	350	296	_ Y	T	0.23
SLC6A3	18-867-331	351	332	Υ	С	0.48
SLC6A3	18-877-73	352	73	Υ		
SLC6A3	18-856-85	353	85	Υ	C	0.42
SLC6A3	18-861-101	354	101	Υ	Т	0.33
PDE4b	18-635-323	355	323	Υ		
PDE4b	18-636-205	356	205	Υ	Α	0.36
PDE4b	18-649-427	357	427	Υ	С	0.46
PDE4b	18-1134-316	358	316	Υ	G	0.38
PDE4b	18-633-316	359	316	Υ		
COMT	18-489-425	360	425	Υ		
COMT	18-492-212	361	212	Υ	C	0.41
COMT	18-488-156	362	156	Υ	Т	0.45
COMT	18-491-266	363	266	Υ	T	0.42
COMT	18-497-141	364	141	Υ	T	0.43
COMT	18-503-174	365	174	Y	c	0.31
COMT	18-490-95	366	95	Ŷ	A	0.31

TABLE 7C (cont)

				Colley		
NPY1R	18-699-115	367	114	Y		
NPY1R	18-1099-293	368	293	Y		1
NPY1R	18-1105-22	369	22	Y		
SLC1	18-562-418	370	418	Y	С	0.49
SLC1	18-564-204	371	204	Υ	С	0.50
SEF2-1B	18-1032-262	372	261	Υ	С	0.33
SEF2-1B	18-1035-412	373	412	Υ	С	0.50
SEF2-1B	18-1036-293	374	293	Y	С	0.34
SEF2-1B	18-1038-95	375	95	Υ	T	0.34
SEF2-1B	18-1040-361	376	361	Y	G	0.44
SEF2-1B	18-748-356	377	356	Υ	T	0.47
BDNF	18-937-181	378	179	Υ	Α	0.26
BDNF	18-942-175	379	175	Υ	T	0.29
BDNF	18-1213-221	380	221	Υ		
BDNF	18-937-147	381	145	Υ		
BDNF	18-946-408	382	407	Υ	С	0.20
GAP43	18-787-133	383	133	Υ	Α	0.39
GAP43	18-1149-239	384	239	Υ	Α	0.49
GAP43	18-1159-291	385	291	Y	G	0.23
GAP43	18-1135-273	386	273	Υ	T	0.43
GAP43	18-1136-108	387	108	Υ		
GAP43	18-1147-68	388	68	Υ		
GAP43	18-1157-295	389	295	Υ		:
GAP43	18-802-460	390	459	Υ	Α .	0.32
CLOCK	18-1064-110	391	109	Υ	С	0.36
CLOCK	18-1068-327	392	327	Υ	Т	0.32
CLOCK	18-1069-365	393	365	Υ .	Α	0.23
CLOCK	18-1073-367	394	367	Υ .	Α	0.35
CLOCK	18-1070-272	395	272	Υ	T	0.36
CLOCK	18-1057-35	396	35	Υ .	;	;
CLOCK	18-1062-415	397	415	Υ		
CLOCK	18-1082-165	398	165	Υ		
CLOCK	18-1080-361	399	363	Υ	С	0.18
HSP70	18-506-297	400	297	Y		
HSP70	18-570-38	401	38	Y		

TABLE 7D

GENE	BIALLELIC	SEQ ID	BIALLELIC	VALIDATION	GENOTYPING LEAST	
	MARKER ID	NO.	MARKER	MICRO-	COMMON	
	ļ		POSITION IN	SEQUENCING	FREQUEN	CY :
			SEQ ID NO.			
MAO A/B	18-473-362	402	24	Υ	С	0.43
MAO A/B	99-12361-88	403	24	Υ	C	0.36
MAO A/B	99-12368-335	404	24	Υ	С	0.36
MAO A/B	99-12370-67	405	24	Υ	Α	0.29
NET	99-32148-315	406	24	Υ	C ·	0.27
NET	19-46-322	407	24	Y	С	0.31
NET	19-47-315	408	24	Υ	T	0.14
NET	19-51-347	409	24	Υ	1	:
NET	99-32052-262	410	24	Υ	T	0.38
CYP3A4/7	10-213-292	411	24	Υ	G	0.11
5HTT	18-419-135	412	24	Υ		
5HTT	18-424-419	413	24	Υ		
5HTT	18-429-289	414	24	Υ		1
5HTT	18-246-256	415	24	Y	С	0.48

TABLE 7D (cont)

			ADLE /L	(cont)		
Gbeta3	18-355-67	416	24.	Υ	C	0.49
Gbeta3	18-353-267	417	24	Υ	T	0.27
Gbeta3	18-338-305	418	24	Y	G	0.3
WFS1	24-243-346	419	24	Y	T	0.3
WFS1	99-62531-351	420	24	Y	T	0.36
WFS1	99-54279-152	421	24	Υ	G	0.44
DRD2	18-168-245	422	24	Ŷ	Ā	0.45
DRD2	18-171-291	423	24	Y	lc c	0.37
DRD2	18-172-346	424	24	Ý	T	0.45
DRD2	18-177-406	425	24	Ÿ	Ť	0.37
HM74	18-298-338	426	24	Y	Ġ	0.49
HM74	18-298-110	427	24	Ÿ		0.49
HM74	18-299-105	428	24	TY Y		
HM74	18-884-30	429	24	Y Y	С	
HM74		430		$-\frac{1}{Y}$	<u> </u>	0.26
	18-299-343		24		<u>'</u>	
HM74	99-61513-139	431	24	Y	A	0.26
HM74	99-61514-179	432	24	Y	G	0.21
HM74	99-61516-323	433	24	Υ	С	0.33
CRHBP	18-204-70	434	24	Υ	C	
CRHBP	18-207-441	435	24	Υ	C	0.41
CRHBP	18-210-65	436	24	Υ		
CRHBP	18-212-200	437	24	Υ	T	0.31
CRHBP	18-229-334	438	24	Υ	T	0.33
CRHBP	18-230-332	439	24	Υ	Τ ,	0.32
AVPR1A	18-966-378	440	24	Υ	C	0.41
AVPR1A	18-987-308	441	24	Υ	Α	0.35
AVPR1A	18-1169-118	442	24	Υ		
AVPR1A	18-1172-138	443	24	Υ	G	0.16
AVPR1A	18-1173-92	444	24	Υ	T	0.32
AVPR1A	18-1174-387	445	24	Y	С	0.21
AVPR1A	18-1175-416	446	24	Y	G	0.21
AVPR1A	18-542-146	447	24	Y	G	0.21
5HT1A	8-42-211	448	24	Y	G	0.46
5HT1A	8-45-389	449	24	Υ	G	0.01
5HT1A	18-994-270	450	24	Y	C	0.25
5HT1A	18-912-165	451	24	Ϋ́	T :	0.46
5HT1A	18-991-124	452	24	Ý	i i	0.45
5HT1A	18-920-219	453	24	Y	•	- 0.43
5HT1A	18-911-312	454	24	Ϋ́		
5HT1A	99-65963-368	455	24	Ϋ́		
5HT1A	99-65966-225	456	24	Y		
5HT1A	99-65968-75	457	24	Y		<u> </u>
5HT1A	99-5069-331	458	24	Y		
5HT1A	99-5070-176	459				
GABRG2	18-511-348		24	Y	T	0.02
GABRG2		460	24	Υ		
	18-523-352	461	24	Υ	С	0.49
GABRG2	18-545-478	462	24	Y	G	0.45
GABRG2	18-522-194	463	24	Υ	G	0.32
GABRG2	18-524-284	464	24	Υ	C	0.36
ADRB1R	18-626-52	465	24	Υ	G	0.36
ADRB1R	18-629-189	466	24	Υ	T	0.40
ADRB1R	18-1131-71	467	24	Y	Τ	0.41
ADRB1R	18-534-126	468	24	Υ		
ADRB1R	18-596-59	469	24	Υ		
ADRB1R	18-597-27	470	24	Y	Α	0.20

TABLE 7D (cont)

				D (00111)		
GABRA5	18-730-203	471	24	Υ	G	0.48
GABRA5	18-734-89	472	24	Y	С	0.48
GABRA5	18-895-321	473	24	Υ	Α	0.27
GABRA5	18-896-69	474	24	Y		1.
GABRA5	18-903-58	475	24	Υ		
GOLF	18-590-216	476	24	Υ	G	0.42
GOLF	18-817-436	477	24	Υ	T	0.41
GOLF	18-829-85	478	24	Υ	G	0.39
GOLF	18-832-387	479	24	Y		
GOLF	18-833-259	480	24	Y		
GOLF	18-839-271	. 481	24	Y	C	0.40
GOLF	18-770-194	482	24	Y	Т	0.37
GOLF	18-771-302	483	24	Y	G	0.30
GOLF	18-827-53	484	24	Y	G	0.34
GOLF	18-768-318	485	24	Υ	G	0.31
GOLF	18-769-26	486	24	Y	Α	0.17
SLC6A3	18-709-321	487	24	Y	C	0.46
SLC6A3	18-714-280	488	24	Y	T	0.17、
SLC6A3	18-843-271	489	24	Y	С	0.37
SLC6A3	18-850-265	490	24	Y	T	0.34
SLC6A3	18-853-296	491	24	Ϋ́	T	0.23
SLC6A3	18-867-331	492	24	Ý	C	0.48
SLC6A3	18-877-73	493	24	Ý		10.40
SLC6A3	18-856-85	494	24	Ý	С	0.42
SLC6A3	18-861-101	495	24	Ϋ́	Τ	0.33
PDE4b	18-635-323	496	24	Ý		- 0.00
PDE4b	18-636-205	497	24	Ý	Α .	0.36
PDE4b	18-649-427	498	24	Ý	c	0.46
PDE4b	18-1134-316	499	24	Ý	G	0.38
PDE4b	18-633-316	500	24	Ϋ́		0.00
COMT	18-489-425	501	24	Y		
COMT	18-492-212	502	24	Ý	C	0.41
COMT	18-488-156	503	24	Y	T	0.45
COMT	18-491-266	504	24	Y	Ť	0.42
COMT	18-497-141	505	24	Y	T	0.43
COMT	18-503-174	506	24	Ý	С	0.31
COMT ·	18-490-95	507	24	Ý	A	0.31
NPY1R	18-699-115	508	24	Y		0.01
NPY1R	18-1099-293	509	24	Υ'		
NPY1R	18-1105-22	510	24	Ý		-
SLC1	18-562-418	511	24	Ϋ́	С	0.49
SLC1	18-564-204	512	24	Y	C	0.496
SEF2-1B	18-1032-262	513	24	Ý	C	0.33
SEF2-1B	18-1035-412	514	24	Ÿ	Č	0.50
SEF2-1B	18-1036-293	515	24	Ÿ	C	0.34
SEF2-1B	18-1038-95	516	24	Ý	T T	
SEF2-1B	18-1040-361	517	24	Ý	G	0.44
SEF2-1B	18-748-356	518	24	Ý	- - - - - - - - - -	0.47
BDNF	18-937-181	519	24	Y	A	0.47
BDNF	18-942-175	520	24	- Y	- 	0.29
BDNF	18-1213-221	521	24	Y		0.25
BDNF	18-937-147	522	24	Y	· ·	
BDNF	18-946-408	523	24	TY T	c	0.20
GAP43	18-787-133	524	24	- -	A	0.20
104-40						

TABLE 7D (cont)

GAP43	18-1159-291	526	24	Υ	G	0.23
GAP43	18-1135-273	527	24	Y	T	0.43
GAP43	18-1136-108	528	24	Υ		
GAP43	18-1147-68	529	24	Υ		
GAP43	18-1157-295	530	24	Υ		
GAP43	18-802-460	531	24	Y	Α	0.32
CLOCK	18-1064-110	532	24	Υ	С	0.36
CLOCK	18-1068-327	533	24	Y	T	0.32
CLOCK	18-1069-365	534	24	Υ	Α	0.23
CLOCK	18-1073-367	535	24	Υ	Α	0.35
CLOCK	18-1070-272	536	24	Υ	T	0.36
CLOCK	18-1057-35	537	24	Y		
CLOCK	18-1062-415	538	24	Υ		
CLOCK	18-1082-165	539	24	Υ		
CLOCK	18-1080-361	540	24	Υ	С	0.18
HSP70	18-506-297	541	24	Υ		
HSP70	18-570-38	542	24	Υ	· ·	

TABLE 8

SEQ ID	BIALLELIC	1 ST	2 ND	POSITION RANGE OF PREFERRED
NO.	MARKER ID	ALLELE	ALLELE	SEQUENCE
12	99-28149-118	С	T	[1-478]
13	99-28160-285	Α	G	[1-456]
14	99-28171-458	Α	G	[1-48],[141-514]
15	99-28173-395	С	T	[1-550]
16	99-32177-113	С	Т	[1-466]
17	99-32181-192	С	T	[1-449]
18	99-32193-258	G	Τ	[1-458]
20	99-28730-351	Α	G	[1-452]
21	99-32306-409	G	С	[1-455]
28	99-27097-83	С	Т	[1-273]
29	99-27098-162	С	T	[226-421]
32	99-27561-106	Α	G	[1-465]
33·	99-27562-366	G	T	[1-470]
35	99-27110-301	G	С	[1-455]
37	99-27573-443	G	T	[1-513]
38	99-28732-133	Α	G	[1-411]
40	99-28736-399	С	T	[1-453]
41	99-28738-319	С	T ·	[1-458]
42 .	99-28739-364	С	T	[1-509]
62	18-132-368	С	T	[1-480]
64	18-12-191	Α	C	[1-450]
65	18-11-137	Α	G	[1-157],[348-390]
66	18-93-96	G	Τ	[1-454]
69	18-251-176	С	T	[104-494]
72	18-393-330	G	С	[1-93],[146-479]
73	18-394-402	Α		[1-21],[119-518]
75	18-284-139	С	T	[146-450] ;
76	18-285-305	Α	G	[1-520]
77	18-289-239	С	T	[1-486]
78	18-291-91	С	T	[1-453]
80	18-194-130	С	T	[1-460]
81	18-198-252	Α	G	[1-316],[349-459]
82	18-242-300	Α	G	[224-476]
85	99-2409-298	Α	G	[117-127],[160-359],[395-711]
86	99-339-54	G	С	[1-247],[293-1514],[1544-2128],[2159-3001]
98	99-32148-315	G	С	[1-24]
108	99-32077-66	Α	G	[37-63]
110	99-32376-426	Α	G	[235-470]

TABLE 9A

SEQ. ID	BIALLELIC	ORIGINAL	ALTERNATIVE
NO.	MARKER ID	ALLELE	ALLELE
1	99-27199-207	Τ	С
2	99-27207-117	С	T
3	99-27213-53	Α	G
4	99-27218-333	T	G
6	99-28109-275	G	Α
7	99-28110-75	С	Т
8	99-28125-81	Α	С
9	99-28134-215	С	T
10	99-28137-96	Α	G
11	99-32204-305	G	Α
19	99-28722-90	T	С
22	99-27088-246	G	Α
23	99-27090-203	G	Α
24	99-27091-220	G	Α
25	99-27093-145	T	C .
26	99-27094-406	T	С
27	99-27096-410	G	Α
30 .	99-27550-48	Α	G
31	99-27558-335	С	T
34	16-31-738	С	G
39	99-28735-56	С	T
43	99-27875-185	T	С
44	99-27880-176	Т	С
46	99-28753-353	T	С
47	99-28755-206	· A	G
48	99-32333-366	T	С
49	16-38-323	Α	С
50	99-28484-179	Α	T
51	99-30853-364	G .	Α
52	99-28485-198	G	T
53	99-30858-354	T	С
54	99-32002-313	G	Α
55	18-15-366	С	Т
56	18-20-174	G	Α
59	18-2-192	G	T ·
60	99-26921-210	G	Α
63	18-133-293	С	Α
68	16-42-140	Α	G
70	18-269-44	Α	G
71	16-218-624	G	С
74	16-217-55	Α	G
88	10-214-79	С	Т
90	99-28779-168	Т	C
91	99-28788-300	G	A

TABLE 9B

94	99-32059-169	Т	С
95	99-32061-304	Α	G
96	99-32065-303	T	G
97	99-32123-118	G	Α
99	16-2-76	Α	G
101	16-3-199	С	T
102	16-50-197	С	Т
103	16-1-59	С	Τ .
104	16-2-187	Α	G
105	99-28761-311	Α	G
106	99-28771-86	T	С
109	99-32078-466	С	T
111	99-32361-419	T	G
112	16-21-228	G	Α
117	16-25-279	G	С
118	16-23-393	G	T
119	16-106-364	T	С
122	16-84-185	T	С
124	16-91-333	G	Α
126	16-133-205	Α	G
127	16-135-181	Т	Α
128	16-145-405	С	Τ Τ
129	16-177-320	Α	Ģ

TABLE 10

SEQ ID NO.	BIALLELIC MARKER ID	1 ST ALLELE	2 ND ALLELE
5	99-28108-233	Α	С
36	99-27563-400	Α	G
45	99-28747-371	С	Т
61	16-215-80	С	T
67	16-115-343	Α	С
79	18-186-391	G	Τ
83	8-15-126	Α	G
87	12-254-180	Α	G
92	99-32052-262	C .	Т
93	99-32121-242	Α	G
100	16-28-93	Α	С
107	99-28791-291	Α	G
113	16-22-156	C .	Т
114	16-23-404	A ·	G
115	16-24-175	Α	С
116	16-25-286	С	Τ
120	16-16-285	С	T
121	16-17-121	С	T
123	16-87-74	Α	G
125	16-128-142	С	G
130	16-4-354	С	T

TABLE 11

1 [103-147] 7 [1-25] 8 [508-518] 9 [398-432] 10 [295-364] 11 [301-342] 23 [246-287] 25 [369-413] 30 [126-153],[182-468] 31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	SEQ. ID NO.	POSITION RANGE OF PREFERRED SEQUENCE
7 [1-25] 8 [508-518] 9 [398-432] 10 [295-364] 11 [301-342] 23 [246-287] 25 [369-413] 30 [126-153],[182-468] 31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]		
8 [508-518] 9 [398-432] 10 [295-364] 11 [301-342] 23 [246-287] 25 [369-413] 30 [126-153],[182-468] 31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366],[1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435]		
9 [398-432] 10 [295-364] 11 [301-342] 23 [246-287] 25 [369-413] 30 [126-153],[182-468] 31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	1	<u> </u>
10 [295-364] 11 [301-342] 23 [246-287] 25 [369-413] 30 [126-153],[182-468] 31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]		
11 [301-342] 23 [246-287] 25 [369-413] 30 [126-153],[182-468] 31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]		
23 [246-287] 25 [369-413] 30 [126-153],[182-468] 31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]		
25 [369-413] 30 [126-153],[182-468] 31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]		<u> </u>
30 [126-153],[182-468] 31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]		<u> </u>
31 [271-313],[443-452] 34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]		<u> </u>
34 [408-461] 39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]		
39 [147-235],[438-457] 43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]		[271-313],[443-452]
43 [498-549] 46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	34	[408-461]
46 [432-448] 49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	39	[147-235],[438-457]
49 [263-320] 54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366], [1823-1908],[2336-2365],[2398-3001] 88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	43	[498-549]
54 [472-489] 59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366],	46	[432-448]
59 [280-321] 63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366],	49	[263-320]
63 [486-505] 71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366],	54	[472-489]
71 [258-437],[669-927] 74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366],	59	[280-321]
74 [90-165] 79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366],	63	[486-505]
79 [1-82],[150-191] 83 [1-16],[144-498],[620-800],[1300-1366],	71	[258-437],[669-927]
83 [1-16],[144-498],[620-800],[1300-1366],	74	[90-165]
[1823-1908],[2336-2365],[2398-3001] 88	79	[1-82],[150-191]
88 [1-1297],[1998-2689],[2895-2965] 92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	83	
92 [255-348],[493-499] 93 [445-467] 94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	88	
94 [1-16],[396-438] 96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	92	[255-348],[493-499]
96 [246-288] 97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	93	[445-467]
97 [1-91],[420-541] 111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	94	[1-16],[396-438]
111 [443-457] 121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	96	[246-288]
121 [130-181] 122 [160-399] 123 [144-145],[351-435] 128 [283-551]	97	[1-91],[420-541]
122 [160-399] 123 [144-145],[351-435] 128 [283-551]	111	[443-457]
122 [160-399] 123 [144-145],[351-435] 128 [283-551]	121	[130-181]
123 [144-145],[351-435] 128 [283-551]	122	
128 [283-551]	123	
	129	[375-458]

TABLE 12

SEQ ID	POSITION RANGE OF	COMPLEMENTARY
NO.	MICROSEQUENCING	POSITION RANGE OF
	PRIMERS	MICROSEQUENCING
		PRIMERS
1	188-206*	208-227
2	98-116*	118-136*
3	34-52*	54-73
4	314-332*	334-353
5	214-232*	234-253
6	255-274	276-295
7	54-73	75-94
8	62-80*	82-101
9	196-214*	216-235
10	77-95*	97-116
11	285-304	306-325
12	98-117	119-137*
13	266-284*	286-305
14	438-456*	458-477
15	375-394	396-414*
16	93-112	114-132*
17	172-191	193-212
18	238-256*	258-277
19	71-89*	91-110
20	332-350*	352-370*
21	387-406	408-427
22	226-245	247-266
23	185-203*	205-224
· 24	201-220	222-241
25	125-144	146-165
26	387-405*	407-426
27	390-409	411-430
28	63-82	84-103
29	142-161	163-182
30	28-47	49-67*
31	316-334*	336-355
32	87-105*	107-126
33	344-363	365-384
34	715-737*	739-761*
35	281-299*	301-319*
36	381-399*	401-420
37	423-442	444-462*
38	114-132*	134-153
39	36-55	57-76
40	379-398	400-418*
41	299-318	320-338*
42	345-363*	365-384
43	165-184	186-204*

TABLE 12 (cont)

	TABLE IZ (C	, <u> </u>
44	156-175	177-195*
45	353-372	374-392*
46	332-351	353-371*
47	187-206	208-226*
48	346-365	367-386
49	300-322*	324-346*
50	160-178*	180-199
51	345-363*	365-384
52	179-197*	199-217*
53	334-353	355-373*
54	292-310*	312-331
55	347-365*	367-385*
56	155-173*	175-194
57		
	158-177	179-197*
58	375-394	396-414*
59	172-191	193-211*
60	192-210*	. 212-231
61	231-249*	251-270
62	348-367	369-387*
63	273-291*	293-311*
64	172-190*	192-210*
65	118-137	139-157*
66	77-95*	97-115*
67	320-342*	344-366*
68	121-139*	141-163*
69	157-175*	177-196
70	25-43*	45-64
71	601-623*	625-644
72	311-329*	331-349*
73	382-401	403-421*
74	32-54*	56-74*
75	120-138*	140-159
76	286-304*	306-325
77	219-238	240-258*
78	71-90	92-110*
79	371-390	392-410*
80	110-129	131-149*
81	233-251*	253-272
82	280-298*	300-319
83	1481-1500	1502-1520*
84	1481-1500	1502-1520*
85	408-427	429-447*
86	1482-1500*	1502-1521
87	292-310*	312-331
88	1482-1500*	1502-1521
89	1482-1500*	1502-1521
90	149-167*	169-187*

TABLE 12 (cont.)

64		·
91	281-299*	301-320
92	244-262*	264-282*
93	225-243*	245-264
94	149-168	170-189
95	285-303*	305-324
96	284-302*	304-322*
97	99-117*	119-138
98	294-313	315-333*
99	76-94*	96-114*
100	101-119*	121-143*
101	323-341*	343-361*
102	178-196*	198-216*
103	158-180*	182-200*
104	183-205*	207-225*
105	292-310*	.312-331
106	67-85*	87-106
107	272-290*	292-311
108	47-65*	67-85*
109	448-466*	468-486*
110	407-425*	427-446
111	400-419	421-439*
112	205-227*	229-251*
113	133-155*	157-175*
114	381-403*	405-427*
115	156-174*	176-194*
116	267-285*	287-305*
117	260-278*	280-298*
118	370-392*	394-416*
119 :	345-363*	365-383*
120	265-284	286-304*
121	102-120*	122-140*
122	162-184*	186-208*
123	51-73*	75-97*
124	310-332*	334-356*
125	123-141*	143-161*
126	222-244*	246-268*
127	209-231*	233-251*
128	436-454*	456-474*
129	297-319*	321-343*
130	335-353*	355-373*
261	343-361*	363-382
262	68-87	89-107*
263	316-334*	336-355
264	48-66*	68-87

TABLE 12 (cont.)

		
265	295-313*	315-333*
266	302-321	323-341*
267	296-314*	316-334*
268	327-345*	347-366
269	244-262*	264-282*
270	1482-1500*	1502-1521
271	115-134	136-154*
272	400-418*	420-439
273	271-289*	291-309*
274	237-255*	257-276
275	48-67	69-87*
276	246-265	267-285*
277	287-305*	307-326
278	1482-1500*	1502-1521
279	1482-1500*	
280	1482-1500*	1502-1521
281	225-244	1502-1521
282		246-264*
283	271-290 327-345*	292-310*
284		347-366
285	387-405*	407-426
286	319-337*	339-357*
287	91-109*	111-130
288	85-103*	105-124
289	12-30*	32-50*
290	323-341*	343-362
291	121-139*	141-160
292	160-178*	180-199
293	304-322*	324-343
294	50-69	71-89*
	422-441	443-461*
295	46-64*	66-85
296	181-199*	201-220
297	314-333	335-353*
298	313-331*	333-352
299	358-377	379-397*
300	288-306*	308-327
301 302	99-117*	119-138
	119-137*	139-158
303	72-91	93-111*
304	368-386*	388-407
305	397-415*	417-436
306	127-145*	147-165*
307	1481-1500	1482-1500*
308	1481-1500	1502-1520*
309	250-269	271-289*
310	146-164*	166-184*
311	105-123*	125-144
312	199-218	220-238*
313	293-311*	313-331*
314	349-367*	369-388
315	206-224*	226-245
316	56-74*	76-95
317	1482-1500*	1502-1521

TABLE. 12 (cont.)

318	156-174*	176 1049
319	328-347	176-194*
320	332-351	349-367*
321	461-479*	353-371*
322	175-193*	481-500
323	265-283*	195-214
324	33-51*	285-304
325		53-72
326	169-188	190-208*
327	51-70	72-90*
	106-125	127-145*
328	40-58*	60-79
329	7-26	28-46*
330	184-202*	204-223
331	70-88*	90-108*
332	302-320*	322-341
333	50-68*	70-89
334	39-57*	59-77*
335	197-215*	217-236
336	414-432*	434-452*
337	66-84*	86-105
338	368-386*	388-407
339	239-258	260-278*
340	252-270*	272-291
341	175-193*	195-213*
342	283-301*	303-321*
343	33-52	54-72*
344	299-317*	319-338
345	6-25	27-45*
346	300-319	321-339*
347	262-280*	282-300*
348	252-270*	272-290*
349	246-264*	266-284*
350	277-295*	297-315*
351	313-331*	333-352
352	54-72*	74-93
353	66-84*	86-104*
354	82-100*	102-120*
355	304-322*	324-343
356	186-204*	206-225
357	408-426*	428-447
358	297-315*	317-336
359	297-315*	317-336
360	406-424*	426-445
361	193-211*	213-231*
362	137-155*	
363	247-265*	157-175*
364	122-140*	267-285*
365	155-173*	142-160*
366	75-94	175-194
367	95-113*	96-114*
368		115-134
369	274-292*	294-312*
370	3-21*	23-42
0,0	399-417*	419-438

TABLE 12 (cont.)

371 185-203* 205-224 372 242-260* 262-281 373 393-411* 413-431* 374 274-292* 294-313 375 75-94 96-114* 376 342-360* 362-381 377 336-355 357-375* 378 160-178* 180-198* 379 156-174* 176-195 380 202-220* 222-241 381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387	074	405 000*	225.224
373 393-411* 413-431* 374 274-292* 294-313 375 75-94 96-114* 376 342-360* 362-381 377 336-355 357-375* 378 160-178* 180-198* 379 156-174* 176-195 380 202-220* 222-241 381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-38*	371	185-203*	205-224
374 274-292* 294-313 375 75-94 96-114* 376 342-360* 362-381 377 336-355 357-375* 378 160-178* 180-198* 379 156-174* 176-195 380 202-220* 222-241 381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 <			
375 75-94 96-114* 376 342-360* 362-381 377 336-355 357-375* 378 160-178* 180-198* 379 156-174* 176-195 380 202-220* 222-241 381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* <td></td> <td> </td> <td>413-431*</td>		 	413-431*
376 342-360* 362-381 377 336-355 357-375* 378 160-178* 180-198* 379 156-174* 176-195 380 202-220* 222-241 381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 399 343-362 364-382* 400 278-296* 298-317			
377 336-355 357-375* 378 160-178* 180-198* 379 156-174* 176-195 380 202-220* 222-241 381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 399 343-362 364-382* 400 278-296* 298-317			96-114*
378 160-178* 180-198* 379 156-174* 176-195 380 202-220* 222-241 381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 399 343-362 364-382* 400 278-296* 298-317	376		362-381
379 156-174* 176-195 380 202-220* 222-241 381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 399 343-362 364-382* 400 278-296* 298-317	377	336-355	357-375*
380 202-220* 222-241 381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 399 343-362 364-382* 400 278-296* 298-317	378	160-178*	180-198*
381 126-144* 146-165 382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317		156-174*	176-195
382 387-406 408-426* 383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 399 343-362 364-382* 400 278-296* 298-317	380		222-241
383 113-132 134-152* 384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	381	126-144*	146-165
384 220-238* 240-259 385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317			408-426*
385 272-290* 292-311 386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	383		134-152*
386 254-272* 274-293 387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	384	220-238*	240-259
387 89-107* 109-128 388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	385	272-290*	292-311
388 49-67* 69-88 389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	386	254-272*	274-293
389 276-294* 296-315 390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317			109-128
390 440-458* 460-479 391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317		49-67*	69-88
391 89-108 110-128* 392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	389	276-294*	296-315
392 307-326 328-346* 393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	390	440-458*	460-479
393 345-364 366-384* 394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317		89-108	110-128*
394 348-366* 368-387 395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	392	307-326	328-346*
395 253-271* 273-292 396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	393	345-364	366-384*
396 16-34* 36-54* 397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	394	348-366*	368-387
397 396-414* 416-435 398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317	395	253-271*	273-292
398 146-164* 166-185 399 343-362 364-382* 400 278-296* 298-317		16-34*	36-54*
399 343-362 364-382* 400 278-296* 298-317	397	396-414*	416-435
400 278-296* 298-317	398	146-164*	166-185
	399	343-362	364-382*
401 19-37* 39-58	400	278-296*	298-317
	401	19-37*	39-58

TABLE 13

SEQ ID	POSITION RANGE OF	COMPLEMENTARY
NO.	AMPLIFICATION	POSITION RANGE OF
	PRIMERS	AMPLIFICATION
		PRIMERS
11	1-20	431-450
2	1-21	432-452
3	1-18	446-464
4	1-20	528-546
5	1-18	394-413
6	1-18	434-454
7	1-18	530-549
8	1-18	500-518
9	1-20	453-472
10	1-18	529-546
11	1-20	384-401
12	1-19	459-478
13	1-19	439-456
14	1-18	494-514
15	1-18	532-550
16	1-19	446-466
17	1-18	432-449
18	1-19	438-458
19	1-17	429-449
20	1-18	435-451
21	1-18	437-454
22	1-19	510-527
23	1-20	431-451
24	1-20	455-473
25	1-20	453-472
26	1-20	436-455
27	1-18	432-450
28	1-18	486-504
29	1-19	404-421
30	1-19	448-468
31	1-18	432-452
32	1-19	446-465
33	1-19	450-470
34	1-25	975-1003
35	1-18	438-455
36	1-18	526-546
37	1-18	496-513
38	1-19	391-410
39	1-19	438-456
40	1-20	434-452
41	1-18	441-457
42	1-17	489-508
43	1-18	531-549
	1-10	001-048

TABLE 13 (cont)

44	1-18	444-462
45	1-19	478-496
46	1-20	427-447
47	1-17	452-470
48	1-20	520-540
49	1-28	389-416
50	1-17	
51		488-505
	1-17	465-485
52	1-17	449-466
53	1-17	456-473
54	1-19	472-488
55	1-20	507-525
56	1-17	408-425
57	1-19	437-457
58	1-19	456-473
59	1-19	450-468
60	1-21	431-451
61	171-188	284-303
62	1-18	461-479
63	1-17	487-504
64	1-18	431-449
65	1-18	516-535
66	1-17	436-453
67	1-24	533-553
68	1-18	154-171
69	1-19	474-493
70	1-17	457-477
71	1-22	906-927
72	1-18	459-479
73	1-20	500-518
74	1-20	568-587
75	1-17	430-449
76	1-17	499-519
77	1-17	466-485
78	1-17	432-452
79		
	1-18	442-459
80	1-17	439-459
81	1-17	438-458
82	1-17	455-475
83	1376-1395	1792-1810
84	1130-1148	1534-1552
85	131-148	560-580
86	1448-1467	1883-1902
87	132-152	586-603
88	1225-1244	1747-1764
89	1414-1430	1759-1775
90	1-17	390-409

TABLE 13 (cont)

	111222 10 (0	
91	1-17	458-478
92	1-18	478-498
93	1-17	448-466
94	1-17	448-468
95	1-19	430-449
96	1-17	469-486
97	1-20	520-540
98	1-18	428-448
99	20-39	240-260
100	28-47	354-374
101	143-162	374-393
102	1-20	227-245
103	123-142	290-309
104	20-39	240-260
105	1-18	446-465
106	1-18	444-461
107	1-18	432-451
108	1-18	471-488
109	1-17	470-488
110	1-18	449-469
111	1-18	442-456
112	1-25	399-424
113	1-24	458-481
114	1-26	455-478
115	1-22	405-428
116	1-22	412-433
117	1-22	412-433
118	1-26	455-478
119	1-22	723-742
120	1-19	516-535
121	1-19	508-529
122	1-22	525-540
123	1-22	504-525
124	1-19	641-665
125	1-20	308-327
126	41-59	472-490
127	52-71	482-501
128	51-69	523-540
129	1-22	472-492
130	1-20	740-759
261	1-21	482-502
262	1-21	438-457
263	1-20	482-502
264	1-19	441-461
265	1-18	428-448
266	1-19	409-426
267	1-19	403-422
268	1-19	401-419
269	1-18	478-498

TABLE 13(cont.)

		
270	1211-1229	1588-1606
271	1-18	448-465
272	1-20	507-527
273	1-18	434-451
274	1-17	466-486
275	1-19	436-453
276	1-18	452-471
277	1-18	450-468
278	1156-1173	1652-1672
279	1149-1166	1591-1608
280	1170-1187	1635-1652
281	1-18	440-460
282	1-18	433-453
283	1-17	538-558
284	1-17	450-467
285	1-18	439-456
286	1-18	439-456
287	1-20	431-451
288	1-20	431-451
289	1-20	431-451
290	1-19	458-476
290	1-19	
292		497-517
293	1-18	419-436
	1-17	487-504
294	1-17	443-463
295	1-18	438-455
296	1-18	463-483
297	1-20	464-484
298	1-19	439-456
299	1-18	458-478
300	1-18	443-463
301	. 1-18	, 442-460
302	1-18	457-475
303	1-18	515-533
304	1-18	443-463
305	1-19	434-451
306	1-21	430-450
307	1263-1281	1694-1711
308	1114-1133	1516-1533
309	1-19	481-498
310	1-18	447-467
311	1-20	444-463
312	1-19	534-551
313	1-19	437-457
314	1-19	459-477
315	1-19	486-502
316	1-18	432-452
317	1171-1189	1702-1719
318	1-18	476-493
319	1-20	430-450
320	1-20	455-475
321	1-21	489-509
322	1-21	457-477
	<u></u>	

TABLE 13 (cont.)

323	1-19	430-450
324	1-21	485-505
325	1-20	466-486
326	1-21	437-457
327	1-19	497-517
328	1-20	495-514
329	1-20	450-470
330	1-18	456-476
331	1-20	433-453
332	1-19	435-455
333	1-19	544-561
334	1-18	442-459
335	1-20	434-453
336	1-21	514-534
337	1-20	464-483
338	1-21	580-597
339	1-18	441-461
340	1-20	430-450
341	1-18	479-496
342	1-21	461-481
343	1-21	429-449
344	1-21	409-429
345	1-21	430-450
346	1-20	433-453
347	1-19	495-514
348	1-19	
349	1-20	433-451
350	1-20	443-460
351	1-18	440-459 445-463
352	1-18	
353	1-19	432-449 430-450
354	1-19	
355		462-480
	1-21	445-465
356	1-18	473-493
357	1-18	570-589
358	1-20	412-432
359	1-20	412-432
360	1-20	515-533
361	1-20	465-485
362	1-18	550-570
363	1-20	430-450
364	1-21	416-435
365	1-20	455-475
366	1-20	481-501
367	1-21	428-448
368	1-19	459-478
369	1-18	456-476
370	1-20	475-495
371	1-18	456-476
372	1-20	447-467
373	1-21	447-466
374	1-18	467-484
375	1-18	466-484

TABLE 13 (cont.)

		
376	1-19	437-455
377	1-20	383-403
378	1-20	428-448
379	1-20	431-449
380	1-18	434-452
381	1-20	428-448
382	1-19	453-473
383	1-21	480-497
384	1-21	532-552
385	1-20	480-500
386	1-18	429-449
387	1-21	433-450
388	1-21	430-450
389	1-21	576-595
390	1-21	549-569
391	1-18	438-455
392	1-19	496-516
393	1-19	455-472
394	1-20	441-458
395	1-19	455-475
396	1-18	449-469
397	1-18	557-577
398	1-18	433-453
399	1-18	475-494
400	1-20	491-511
401	1-21	380-400

TABLE 14

SEQ ID	POSITION RANGE
NO.	OF PROBES
1	195-219
2	105-129
3	41-65
4	321-345
5	221-245
6	263-287
7	62-86
8	69-93
9	203-227
10	84-108
11	293-317
12	106-130
13	273-297
14	445-469
15	383-407
16	101-125
17	180-204
18	245-269
19	78-102
20	339-363
21	395-419
22	234-258
23	192-216
24	209-233
25	133-157
26	394-418
27	398-422
28	71-95
29	150-174
30	36-60
31	323-347
32	94-118
33	352-376
34	726-750
35	288-312
36	388-412
37	431-455
. 38	121-145
39	44-68
40	387-411
41	307-331
42	352-376
43	173-197
44	164-188
45	361-385

TABLE 14 (cont.)

TABLE 14 (cont.)

46	340-364
47	195-219
48	354-378
49	311-335
50	167-191
51	352-376
52	186-210
53	342-366
54	299-323
55	299-323 354-378
56	
57	162-186
58	166-190
	383-407
59	180-204
60	199-223
61	238-262
· 62	356-380
63	280-304
64	179-203
65	126-150
66	84-108
67	331-355
68	128-152
69	164-188
70	32-56
71	612-636
72	318-342
73	390-414
74	43-67
75	127-151
76	293-317
77	227-251
78	79-103
79	379-403
80	118-142
81	240-264
82	287-311
83	1489-1513
84	1489-1513
85	416-440
86	1489-1513
87	299-323
88	1489-1513
89	1489-1513
90	156-180
91	288-312
92	251-275
93	232-256
94	157-181
95	292-316
96	291-315
97	106-130
	100-130

98	302-326
99	83-107
100	108-132
101	330-354
102	185-209
103	169-193
104	194-218
105	299-323
106	74-98
107	279-303
108	54-78
109	455-479
110	414-438
111	408-432
112	216-240
113	144-168
114	392-416
115	163-187
116	274-298
117	267-291
118	381-405
119	352-376
120	273-297
121	
	109-133
122	173-197
123	62-86
124	321-345
125	130-154
126	233-257
127	220-244
128	443-467
129	308-332
130	342-366
261	350-374
262	76-100
263	323-347
264	55-79
265	302-326
266	310-334
267	303-327
268	334-358
269	251-275
270	1489-1513
271	123-147
272	407-431
273	278-302
274	244-268
275	56-80
276	254-278
277	294-318
278	1489-1513
279	1489-1513
280	1489-1513

TABLE 14 (cont.)

281	233-257
282	279-303
283	334-358
284	394-418
285	326-350
286	98-122
287	92-116
288	19-43
289	330-354
290	128-152
291	167-191
292	311-335
293	58-82
294	430-454
295	53-77
296	188-212
297	322-346
298	320-344
299	366-390
300	295-319
301	106-130
302	126-150
303	80-104
304	375-399
305	404-428
306	134-158
307	1489-1513
308	1489-1513
309	258-282
310	153-177
311	112-136
312	207-231
313	300-324
314	356-380
315	213-237
316	63-87
317	1489-1513
318	163-187
319	336-360
320	340-364
321	468-492
322	182-206
323	272-296
324	40-64
325	177-201
326	59-83
327	114-138
328	47-71
329	15-39
330	191-215
331	77-101
332	309-333
333	57-81

TABLE 14 (cont.)

334	46-70
335	204-228
336	421-445
337	73-97
338	375-399
339	247-271
340	259-283
341	182-206
342	290-314
343	41-65
344	306-330
345	14-38
346	308-332
347	269-293
348	259-283
349	253-277
350	284-308
351	320-344
352	61-85
353	73-97
354	89-113
355	311-335
356	193-217
357	415-439
358	304-328
359	304-328
360	413-437
361	200-224
362	144-168
363	254-278
364	129-153
365	162-186
366	83-107
367	102-126
368	281-305
369	10-34
370	406-430
371	192-216
372	249-273
373	
	400-424
374	281-305
375	83-107
376	349-373
377	344-368
·378	167-191
379	163-187
380	209-233
381	133-157
382	395-419
383	121-145
384	227-251
385	279-303
386	261-285

TABLE 14 (cont.)

387	96-120
388	56-80
389	283-307
390	447-471
391	97-121
392	315-339
393	353-377
394	355-379
395	260-284
396	23-47
397	403-427
398	153-177
399	351-375
400	285-309
401	26-50

ABLE 15

Gene	Marker	Allele 1	Allele 2	A :	Allele 1			Genoty	Genotype Frequencies	lencies				Numbers	bers
				Cases	Cases Control p-value	p-value	Cases			Control			p-value	Cases	Control
)		#	12	22	÷ =	12	22			,
5HTR6	99-27199/207	ပ	F	0.72	0.70	0.71	0.51	0.41	90.0	0.48	0.45	0.07	0.83	140	94
5HTR6	99-27207/117	ပ	F	0.48	0.37	0.02	0.24	0.47	0.29	0.13	0.47	0.40	90.0	139	93
5HTR6	99-28110/75	ပ	L	0.64	0.52	0.01	0.41	0.45	0.14	0.27	0.51	0.22	0.05	139	90
5HTR6	99-28134/215	ပ	T	0.51	0.63	0.01	0.26	0.50	0.24	0.42	0.43	0.15	0.04	138	93
5HTR7	99-28160/285	٨		0.49	0.51	0.73	0.27	0.44	0.29	0.24	0.53	0.23	0.37	140	91
5HTR7	99-28171/458	A	၅	0.34	0.38	0.44	0.13	0.42	0.45	0.17	0.42	0.41	0.74	136	90
5HTR7	99-28173/395	ပ	_	0.51	0.55	0.33	0.27	0.47	0.28	0.27	0.57	0.18	0.18	137	94
5HTR7	99-32181/192	ပ	⊢	0.28	0.38	0.02	0.09	0.38	0.54	0.13	0.51	98.0	0.04	136	85
5HTR7	99-32193/258	ပ	T	0.70	0.65	0.26	0.53	0.34	0.12	0.41	0.48	0.11	0.12	137	85
CHRNA7	CHRNA7 99-28722/90	ပ	T	0.27	0.32	0.27	0.00	0.54	0.46	0.01	0.62	0.37	0.22	140	94
CHRNA7	CHRNA7 99-28730/351	4	5	0.32	0.38	0.17	0.04	93.0	0.41	0.03	69.0	0.28	60'0	139	94
CHRNA7	99-32306/409	ပ	၅	0.62	29.0	0.31	0.26	0.72	0.01	0.34	99.0	0.00	0.25	137	9
CRFR1	99-27088/246	A	9	0.42	0.38	0.31	0.20	0.44	0.36	0.15	0.45	0.40	0.57	138	93
CRFR1	99-27091/220	A	9	0.44	0.49	0.32	0.19	0.50	0.31	0.24	0.50	0.28	0.59	137	95
CRFR1	99-27097/83	၁	1	0.55	0.53	0.73	0.34	0.41	0.24	0.26	0.56	0.19	0.11	140	90
CRFR1	99-27550/48	٧	၅	0.20	0.26	0.17	0.04	0.32	0.64	20.0	0.38	0.55	0.38	138	91
MLR	19- 26/204/A23	ပ	ල	0.55	0.53	0.70	0.28	0.55	0.18	0.28	0.50	0.22	69.0	137	95
MLR	99-27563/400	٧	9	0.46	0.44	0.79	0.19	0.54	0.28	0.21	0.46	0.33	0.54	138	88
MLR	99-28732/133	A	ව	0.39	0.31	60.0	0.16	0.47	0.37	60.0	0.44	0.47	0.23	137	86
MLR	99-28735/56	ပ	⊥	0.71	0.70	0.87	0.50	0.41	0.09	0.50	- 0.40	0.10	0.93	136	88
					•										
CRFR2	99-27875/185	ပ	⊥	0.36	0.40	0.30	0.16	0.39	0.45	0.16	0.49	0.35	0.25	140	94
CRFR2	99-27880/176	၁	T	0.53	0.56	0.47	0.30	0.46	0.24	0.32	0.47	0.20	0.76	139	93
CRFR2	99-28747/371	ပ	ı-	0.39	0.44	0.34	0.16	0.47	0.37	0.23	0.42	0.35	0.39	138	91
CRFR2	99-28755/206	A	၅	0.56	0.59	0.65	0.32	0.50	0.19	0.37	0.44	0.19	0.68	139	93
				٠											
								ļ							

8 8 8 8 8

8888

888

	139	140	134	140	140	140	140	140	138	139	140	134	136	140	140	140	140	140	140	140	140	49	2	140	140	140	140	140	140
	0.87	0.13	0.25	0.10	0.55	0.49	0.17	0.78	0.96	0.20	0.77	0.03	0.88	0.02	0.11	0.85	0.92	0.16	0.09	0.18	0.42	0.84	0.13	0.004	0.07	0.25	90.0	0.79	0.39
	0.23	0.02	0.61	0.19	0.07	0.45	0.10	0.20	0.21	0.28	0.60	0.48	0.45	0.15	09.0	0.28	0.35	0.24	0.57	0.19	0.53	0.22	0.08	0.47	0.30	0.19	0.23	0.79	0.01
	0.39	0.27	0.38	0.65	0.39	0.40	0.54	0.24	0.24	0.41	0.26	0.49	0.45	0.57	0.38	0.51	0.51	0.47	0.41	0.57	0.43	0.52	0.47	0.50	0.60	0.53	0.45	0.19	0.13
_	0.39	0.71	. 0.01	0.16	0.53	0.15	0.36	0.56	0.54	0.31	0.14	0.02	0.10	0.28	0.02	0.21	0.14	0.29	0.01	0.23	0.04	0.26	0.47	0.03	0.11	0.28	0.32	0.02	0.86
TABLE 15 (cont.)	0.24	0.06	0.66	0.26	0.04	0.51	0.18	0.17	0.20	0.37	0.55	0.44	0.43	0.08	09.0	0.24	0.34	0.15	0.56	0.29	0.53	0.23	0.15	0.62	0.42	0.24	0.34	0.75	0.02
E 15 (0.41	0.34	.0.30	0.51	0.39	0.38	0.46	0.26	0.26	0.30	0.29	0.44	0.46	0.48	0.31	0.54	0.51	0.49	0.36	0.46	0.39	0.49	0.42	0.29	0.44	0.42	0.47	0.23	0.19
TABL	0.35	0.59	0.04	0.23	0.57	0.11	0.36	0.56	0.54	0.33	0.16	0.12	0.12	0.44	60.0	0.22	0.16	0.36	0.07	0.24	0.09	0.29	0.43	0.09	0.14	0.34	0.19	0.02	0.79
•	0.62	0.04	0.68	0.97	0.38	0.21	0.38	0.66	1.00	0.47	0.46	0.11	0.64	0.01	0.40	0.65	0.71	0.07	0.38	0.33	0.58	0.79	0.16	0.22	0.30	0.93	0.02	0.55	0.16
	0.58	0.84	0.20	0.48	0.73	0.35	0.63	0.68	0.67	0.52	0.27	0.27	0.32	0.56	0.21	0.47	0.39	0.52	0.22	0.52	0.26	0.52	0.70	0.28	0.40	0.54	0.54	0.12	0.93
	0.56	0.76	0.19	0.48	0.76	08.0	0.59	0.70	29.0	0.48	0.30	0.34	0.35	99.0	0.24	0.49	0.41	0.61	0.25	0.48	0.28	0.53	0.64	0.23	0.36	0.55	0.43	0.14	0.89
	ပ	T	⊥	9	9	1	1	1		9	၁	9	1	ပ	T	၅	ပ	၅	၅	T	9	Ţ	G	9	9	G	9	1	1
	4	ပ	တ	Ψ.	٧	၁	٧	9	၁	٧	۷	٧	3	4	ပ	V	A	¥	4	ပ	A	9	А	A	٧	C	٧	3 .	၁
	99-30853/364	99-30858/354	99-28485/198	99-32002/313	18-20/174	18-31/178	18-38/395	18-2/192	19-25/407	99-26921/210	18-133/293	19-56/140	19-14/241	19-28/136	19-44/251	99-28788/300	99-32061/304	99-32121/242	99-28761/311	99-28771/86	99-28791/291	99-32361/419	8-15/126	8-19/372	99-2409/298	99-339/54	12-254/180	10-214/279	10-217/91
	GRL	GRL	GRL	GRL	GRL	GRL	GRL	MAO A/B	MAO A/B	MAO A/B	MAO A/B	NET	NET	NET	NET	NET	NET	NET	TACR1	1			DRD3	DRD3	DRD3	DRD3	CYP3A4	CYP3A4	CYP3A4

8 2 8 8 2 2

8 8 8 8

8 8 8 8

	٠	
	(tuo:)
!	T)
1	Ц	
1	M	Ì
1	9	

						7 -			71117					!	
SHTT	18-194/130	ပ	T	0.54	0.52	0.67	0.31	0.44	0.24	0.20	69.0	0.17	0.02	140	84
SHTT	18-198/252	4	9	0.52	0.49	0.57	0.29	0.47	0.24	0.20	0.59	0.21	0.20	140	94
SHTT	18-242/300	٧	၅	0.46	0.54	0.09	0.24	0.44	0.32	0.27	0.54	0.19	60'0	140	\$
5HTT	18-186/391		T	0.50	0.53	0.52	0.27	0.45	0.28	0.26	0.54	0.20	0.31	140	94
DRD2	19-23/215	٧	9	0.21	0.16	0.24	90'0	0.31	0.64	0.04	0.24	0.72	0.44	139	93
DRD2	19-5/377	4	O	0.55	0.53	92.0	0.30	0.50	0.20	0.26	0.55	0.19	0.78	139	83
DRD2	19-6/171	4	ပ	0.22	0.16	0.15	90.0	0.32	0.62	0.04	0.24	0.72	0.34	138	95
DRD2	19-7/275	ပ	1 —	0.70	0.63	0.12	0.48	0.43	0.08	0.38	0.52	0.11	0.24	135	83
DRD2	19-4/118	ပ	Ţ	0.48	0.45	0.79	0.21	0:20	0.29	0.17	0.56	0.27	0.63	140	93
Gbeta3	19-58/162	ပ	F	0.70	0.62	0.07	0.49	0.42	0.09	0.36	0.51	0.13	0.16	139	91
Gbeta3	19-9/45	ပ	 -	0.71	0.64	0.12	0.49	0.43	0.08	0.40	0.47	0.13	0.28	139	85
Gbeta3	19-88/185	ပ	-	0.43	0.40	0.50	0.24	0.38	0.38	0.25	0.29	0.46	0.41	133	85
Gbeta3	19-22/74	Y	ပ	0.33	0.34	0.79	0.09	0.49	0.43	0.14	0.40	0.46	0.30	140	94
Gbeta3	20-205/302	၁	Τ	0.94	0.99	0.002	0.88	0.12	0.00	0.99	0.01	0.00	0.002	140	84
WFS1	19-19/174	ပ	F	0.43	0.36	0.15	0.17	0.51	0.32	0.11	0.51	0.39	0.30	139	94
WFS1	19-16/127	၁	9	0.33	0.27	0.19	60.0	0.49	0.43	90.0	0.44	15.0	0.38	140	94
WFS1	19-17/188	٧	9	0.58	99.0	0.07	0.32	0.51	0.16	0.43	0.46	0.11	0.18	140	93
WFS1	19-18/310	А	G	0.14	0.07	0.04	0.02	0.23	0.75	0.01	0.13	98.0	0.12	140	94
													_		
프	19-15/324	Α	ပ	69'0	92.0	0.10	0.51	0.37	0.12	09.0	0.32	80.0	0.31	132	91
Ŧ	18-251/176	ပ	L	82'0	0.57	0.87	0.36	0.44	0.20	0.29	0.57	0.14	0.11	140	94
Ħ	18-269/44	А	Э	96.0	0.38	0.71	0.11	0.51	0.39	0.15	0.46	0.39	0.58	140	94
5HTR2c	18-12/191	٧	ပ	0.15	0.14	0.73	99.0	0.17	0.77	0.03	0.21	92.0	0.40	137	8

ABLE 16A

OMNIBUS LR RANK of HAPLOTYPES

OMNIBUS LR Rank of 4-locus combinations

Gene	Cases	Controls	Marker1	Marker2	Marker3	Marker4	p-value	-log p-value
NET	Genset	Argent	19-56/140	99-28788/300	99-28788/300 99-32061/304 99-32121/242	99-32121/242	0.001	3.00
NET	Genset	Argent	19-28/136	99-28788/300	99-28788/300 99-32061/304 99-32121/242 0.001	99-32121/242	0.001	3.00
Gbeta3	Genset	Argent	19-58/162	19-9/45	19-22/74	20-202/302	0.002	2.70
NET	Genset	Argent	16-3/199	19-28/136	99-32061/304	99-32061/304 99-32121/242	0.002	2.70
Gbeta3	Genset	Argent	19-58/162	19-9/45	19-88/185	20-202/302	0.003	2.52
NET	Genset	Argent	19-56/140	19-28/136	99-32061/304	99-32061/304 99-32121/242	0.003	2.52
NET	Genset	Argent	19-56/140	16-3/199	99-32061/304	99-32061/304 99-32121/242 0.005	0.005	2.30
NET	Genset	Argent	19-28/136	16-50/196	99-32061/304	99-32061/304 99-32121/242	0.010	2.00
SHTT	Genset	Argent	18-186/391	18-194/130	18-198/252	18-242/300	0.013	1.89
NET	Genset	Argent	19-56/140	16-50/196	99-32061/304	99-32061/304 99-32121/242 0.014	0.014	1.85
1 1 00	1 - 1 - 1							

92 total combinations

TABLE 16B

OMNIBUS LR	CK Kank o	Rank of 3-locus combinations	moinations					
Gene	Cases	Controls	Marker1	Marker2	Marker3	Marker4	p-value	-log p-value
Gbeta3	Genset	Argent	19-58/162	19-9/45	20-205/302	0	0.0001	4.00
WFS1	Genset	Argent	19-19/174	19-17/188	19-18/310	0	0.0003	3.55
NET	Genset	Argent	16-3/199	19-28/136	16-50/196	0	6000.0	3.05
NET	Genset	Argent	19-28/136	99-32061/304 99-32121/242	99-32121/242	0	0.001	3.00
WFS1	Genset	Argent	19-19/174	19-16/127	19-17/188	0	0.001	3.00
Gbeta3	Genset	Argent	19-58/162	19-22/74	20-202/302	0	0.002	2.70
RET	Genset	Argent	99-28788/300	99-28788/300 99-32061/304 99-32121/242	99-32121/242	0	0.002	2.70
NET	Genset	Argent	19-56/140	99-32061/304 99-32121/242	99-32121/242	0	0.004	2.40
NET	Genset	Argent	16-3/199	19-28/136	16-50/196	0	0.004	2.40
Gbeta3	Genset	Argent	19-9/45	19-22/74	20-202/302	0	0.006	2.22

136 total combinations

ABLE 16 C

OMNIBUS LR Rank of 2-locus combinations

Gene	Cases	Controls	Marker1	Marker2	Marker3	Marker4	p-value	-log p-value
Gbeta3	Genset	Argent	19-58/162	20-205/302	0	0	0.00003	4.52
WFS1	Genset	Argent	19-19/174	19-17/188	0	0	0.00021	3.68
Gbeta3	Genset	Argent	19-9/45	20-205/302	0	0	0.001	3.00
NET	Genset	Argent	99-32061/304	99-32121/242	0	0	0.003	2.52
Gbeta3	Genset	Argent	19-22/74	20-205/302	0	0	900.0	2.22
5HTR7	Genset	Argent	99-28106/185	99-32181/192	0	0	0.007	2.15
DRD3	Genset	Argent	8-15/126	99-2409/298	0	0	0.014	1.87
Gbeta3	Genset	Argent	19-88/185	20-205/302	0	0	0.014	1.85
5HTR7	Genset	Argent	99-32181/192	99-32193/258	0	0	0.015	1.82
5HTT	Genset	Argent	18-186/394	18-242/300	0	0	0.016	1.80
125 total combinati	ombinations							

TABLE 17A

Rank of Permutation Tests for Individual Haplotypes

₫
2
멅
Ē
٩
臣
٩.
<u></u>
2
ŏ
÷
4

					EM Methods	thods					Реги	Permutation Test	Test	ō	Omnibus LR	αź	
Gene	Marker1	Marker2	Marker3	Marker4	Haplotyp e	Case	Control	Differenc 6	Odds Ratio	Chl- Square	number	p-value	-log p- vafue	LR statistic	р-уаји	-log p- value	
NET	19-56/140	19-14/241	19-28/136	16-50/198	стст	0.28	0.41	-0.13	95.0	4.02	100000	0.002	2.61	19.59	0.075	1.12	
GRL	18-20/174	99-32002/313	18-31/178	18-38/395	AGCA	0.06	0.17	-0.12	0.28	8.19	100000	0.003	2.57	16.09	0.360	0.44	
GRL	18-20/174	18-31/178	18-38/395	99-30858/354	GTAC	0.11	0.22	-0.10	0.46	4.56	100000	0.003	2.55	25.70	0.045	1.35	
GRL	18-20/174	18-38/395	99-30853/364	99-30858/354	GAAC	0.03	0.12	60.0-	0.28	6.37	1000	0.003	2.52	21.83	0.078	1.1	
GRL	99-32002/313	18-31/178	18-38/395	99-30858/354	GCAC	90.0	0.14	60'0-	98.0	4.91	1000	0.003	252	20.00	0.159	0.80	
GRL	99-32002/313	18-31/178	18-38/395	99-30858/354	GTAT	0.13	0.05	60'0	3.26	4.77	1000	0.003	2.52	20.00	0.159	0.80	
SHTT	18-186/391	18-194/130	18-198/252	18-242/300	GCAA	0.02	0.08	-0.08	0.27	4.13	1000	0.003	2.52	25.66	0.013	1.89	
NET	19-28/136	99-28788/300	99-28788/300 99-32061/304	99-32121/242	AGGG	0.01	0.05	-0.04	0.14	4.28	1000	0.004	2.40	31.97	0.001	3.00	
GRL	99-32002/313	18-31/178	89-30853/364	99-30858/354	GTAT	0.18	0.08	0.10	2.42	4.20	1000	0.004	2.38	16.19	0.314	0.50	
5HTR7	5HTR7 99-28106/185 99-28171/458 99-28173/395	99-28171/458	99-28173/395	99-32181/192	AACC	0.27	0.38	-0.11	09:0	2.90	1000	0.005	2.30	13.67	0.034	1.47	
NET	19-14/241	19-28/136	16-50/198	99-32061/304	тств	0.17	0.28	-0.11	0.53	3.88	1000	900'0	277	20.75	0.084	1.08	
GRL	18-31/178	18-38/395	99-30853/364	99-30858/354	TAAT	0.14	0.05	0.09	3.06	4.68	1000	900.0	222	22.38	0.080	1.05	
DRD3	8-15/126	8-19/372	99-2409/298	99-339/54	GGAG	90.0	0.01	90.0	9.29	4.64	1000	900.0	2.22	23.14	0.045	1.35	
GRL	18-20/174	99-32002/313	18-38/395	99-30858/354	GAAC	90.0	0.15	-0.09	0.34	5.65	1000	0.007	2.15	18.83	0.175	0.78	
NET	16-50/196	99-28788/300 99-32061/304	99-32061/304	99-32121/242	TGGG	0.01	0.05	-0.05	0.10	5.15	1000	0.008	2.10	24.11	0.034	1.47	
NET	19-56/140	16-50/196	99-28788/300	99-32121/242	ATAA	0.18	90.0	0.12	3.45	6.78	1000	0.00	2.05	19.07	0.240	0.62	
NET	19-14/241	16-50/196	99-32061/304	99-32121/242	TTGG	0.00	90.0	-0.05	0.08	5.70	1000	600.0	2.05	27.52	0.053	1.28	
5HTR7	99-28106/185	99-28106/185 99-28173/395 99-32181/192		99-32193/258	ACCG	0.27	0.38	-0.11	0.60	2.65	1000	0.012	1.92	14.10	0.023	<u>1</u> .	
5HTR7	99-28171/458	99-28171/458 99-28173/395 99-32181/192	99-32181/192	99-32193/258	ACCG	0.27	0.38	-0.11	0.61	2.56	1000	0.012	1.92	10.14	0.067	1.17	
NET	19-14/241	99-28788/300 99-32061/304		99-32121/242	TGGG	0.01	0.05	-0.04	0.15	3.82	1000	0.012	1.92	25.41	0.025	1.60	
846 Tot	846 Total Haplotypes																

TABLE 17B

3-Locus Combination

-tog p-value 3.05 3.55 0.45 4.00 1.38 1.82 1.42 3.00 1.9 1.9 1.3 1.51 3.27 0.012 0.049 0.042 0.015 0.038 0.002 0.000 0.000 0.188 0.109 0.028 0.355 0.000 0.00 9. 8. 0.031 0.004 0.081 0.021 0.00 LR statistic 16.28 22.08 15.29 15.16 23.24 25.36 25.36 21.73 20.54 28.52 14.23 20.70 12.79 25.29 17.54 11.57 24.66 9.36 18.07 7.06 -tog p-value 3.05 2.40 3.77 3.68 3.11 2.98 2.96 2.70 2.70 2.52 2.52 2.52 2.46 2.41 2.40 2.40 2.30 2.30 Permutation Test p-value 0.0009 0.0002 0.0002 0.0008 0.004 0.004 0.005 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 100000 100000 100001 100000 100000 100000 100000 10000 Number 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 6 <u>5</u> 1000 Chl-Square 4.53 7.92 8.34 5.18 4.89 4.41 6.12 4.09 3.83 4.08 5.11 4.31 3.44 2.92 6.87 4.83 4.15 4.02 2.32 6.51 0.24 3.28 2.16 Odds Ratio 0.08 0.06 0.55 4.0 0.51 0.08 0.09 0.24 0.61 0.11 2.17 0.11 0.57 2.24 0.27 0.27 0.21 differenc 0.05 -0.08 0.14 **6**.11 -0.13 -0.14 0.10 -0.06 -0.06 0.04 -0.11 -0.06 -0.05 0.10 0.08 0.12 90.0 -0.04 -0.07 -0.07 Control 0.43 0.35 0.09 90.0 0.52 0.19 0.08 90.0 0.08 0.07 0.07 0.23 0.08 0.09 0.04 0.14 0.08 0.07 0.41 0.07 Sase 0.00 0.30 0.38 0.18 0.19 0.12 0.01 0.02 0.02 0.11 0.0 0.30 0.02 0.11 0.01 0.26 90 EM Methods 0.0 0.21 0.01 Haplotyp 999 CAG **TGG** GAC 2 |-ATC 166 GCA GAA GGA GTC 8 89 88 8 8 둳 157 TAT SC ᄪ . Marker4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99-32121/242 16-50/198 32121/242 99-30858/354 99-30858/354 99-32121242 99-30858/354 20-205/302 18-242/300 99-2409/298 18-145/405 99-28134/215 19-17/188 18-242/300 18-242/300 32121/242 19-18/310 10-217/91 19-28/136 19-18/310 Marker3 8 99-32061/304 99-32061/304 19-28/136 99-30853/364 99-32061/304 99-27207/117 19-16/127 19-17/188 18-198/252 18-198/252 10-214/279 18-31/178 18-194/130 19-17/188 32061/304 19-17/188 18-38/395 19-14/241 19-9/45 8-19/372 Marker2 g 369 Total Haplotypes 99-28788/300 99-32002/313 99-27199/207 18-194/130 12-254/180 18-186/391 19-19/174 19-19/174 19-14/241 18-20/174 19-58/162 18-31/178 19-19/174 19-56/140 19-56/140 19-19/174 16-50/196 19-14/241 18-186/391 8-15/126 Marker1 Gbeta3 WFS1 WFS1 DRD3 сур3а4 WFS1 WFS1 ة SHIT Gene Ē NET GRL GRL GRL 널 Ā Ę,

TABLE 17C

2-Locus Combination

				•												
					· 		EM Methods	thods			Permutation Test	ation T	est	Omnibus LR	IS L.R	
Gene	Marker1	Marker2	Marker3	Marker4	Haplotyp e	Case	Control	differenc	Odds Ratio	Chi- Square	number	p-value	-log p- value	LR statistic	p-value	-log p- value
WFS1	19-19/174	19-17/188	0	o	క	0.02	90.0	-0.08	0.21	5.19	100000	0.0005	3.30	20.22	0.000	3.68
Gbeta3	19-58/162	20-205/302	0	0	70	0.25	98.0	-0.13	0.53	4.68	100000	0.0009	3.04	21.82	0.000	4.52
DRD3	8-15/126	99-2409/298	0	. 0	₩.	0.23	28.0	-0.13	0.52	4.95	100000	0.0012	2.93	10.17	0.014	1.87
WFS1	19-19/174	19-17/188	0	0	ဗ္ပ	0,41	0.28	0.13	1.79	4.09	100000	0.0016	2.79	20.22	0.0002	3.68
PE	19-14/241	19-28/136	0	0	7	0.31	0.43	-0.12	0.59	3.46	1000	0.002	2.70	8.47	0.044	1.36
NET	99- 32061/304	99- 32121/242	0	0	99	0.01	60.0	-0.08	0.15	7.53	1000	0.002	2.70	19.47	0.003	2.52
Gbeta3	_	20-205/302	0	0	. TC	0.24	0.36	-0.12	0.58	3.58	1000	0.002	2.70	17.27	0.001	3.00
GRL	18-31/178	99- 30858/354	0	0	ш	0.20	0.10	0.10	2.31	4.19	1000	0.003	2.52	8.22	0.029	1.54
SHIT	18-186/394	18-242/300	0	0 ·	₽9	0.03	0.11	-0.08	0.25	6.36	1000	0.003	2.52	13.34	0.018	1.80
SHTT	18-198/252	18-242/300	0	0	₩	0.02	0.09	-0.08	0.24	4.92	1000	0.003	2.52	10.72	0.021	1.68
CHRNA 7	99-28722/90	99- 32306/409	0	0	CC	0.07	0.29	-0.22	0.19	19.25	1000	0.003	2.52	9.19	0.042	1.38
DRD3	8-15/128	99-2409/298	. 0	0	GA	0.13	0.04	0.09	3.58	5.16	100000	0.003	2.49	10.17	0.014	1.87
WFS1	19-19/174	19-17/188	0	0	TG	0.01	. 0.06	-0.04	0.24	3.46	100000	0.004	2.45	20.22	0.000	3.68
5HTR7	99- 32181/192	99- 32193/258	0	0	TG	0.42	0.28	0.14	1.87	4.16	1000	0.004	2.40	9.27	0.015	1.82
GRL	18-38/395	99- 30858/354	0	0	AC	0.44	0.58	-0.14	0.58	4.11	1000	0.004	2.40	8.98	0.023	29.
CRFR1	99- 27091/220	99-27550/48	0	0	99	0.36	0.25	0.11	1.72	3.20	1000	0.004	2.40	9.03	0.022	1.66
сурза4	,	10-214/279	0	0	AT	0.39	0.52	-0.13	0.60	3.69	1000	0.005	2.30	7.10	0.085	1.07
NET	19-56/140	19-14/241	0	0	GT	0.35	0.48	6.10	0.65	2.43	1000	0.005	2.30	5.05	0.134	0.87
CHRNA 7	99-28722/90	99- 28730/351	0	0	16	0.55	0.38	0.19	2.17	8.05	1000	0.005	2.30	3.95	0.214	0.67
сур3а4	12-254/180	10-217/91	0	0	AC	0.41	0.53	-0.13	0.60	3.57	100000	900.0	2.26	7.40	0.084	1.08
485 Tota	485 Total Haplotype															

⋖
00
-
e
Tab
М

							37	Taora Too	1								
					Allele 1 F	Allele 1 Frequencies	S			හි	notype F	Genotype Frequencies	38			Num	Numbers
						ਓ			Cases			Controls		년	_,		
Gene	Marker	Allele 1	Allele 1 Allele 2	Cases	Controls	Square	p-value	11	12	22	11	12	22	square	p-value	Cases	Controls
5HTR6	99-27199-207	ပ	H	0.72	0.70	0.14	0.71	0.51	0.41	0.08	0.48	0.45	0.07	0.38	0.83	140	8
5HTR6	99-27207-117	ပ	۰	0.48	0.37	5.78	0.05	0.24	0.47	0.29	0.13	0.47	0.40	5.79	90.0	139	93
5HTR6	99-28110-75	ပ	-	0.64	0.52	5.93	0.01	0.41	0.45	0.14	0.27	0.51	0.22	5.91	0.05	139	06
5HTR6	99-28134-215	ပ	-	0.51	0.63	6.43	0.01	0.26	0.50	0.24	0.42	0.43	0.15	6.58	0.04	138	83
5HTR7	99-28160-285	∢	Ø	0.49	0.51	0.12	0.73	0.27	0.44	0.29	0.24	0.53	0.23		0.37	•	91
5HTR7	99-28171-458	∢	တ	0.34	0.38	0.61	0.44	0.13	0.42	0.45	0.17	0.42	0.41		0.74	136	06
5HTR7	99-28173-395	ပ	۲	0.51	0.55	0.94	0.33	0.27	0.47	0.26	0.27	0.57	0.16		0.18	•	8
5HTR7	99-32181-192	ပ	-	0.28	0.38	5.50	0.02	0.09	0.38	0.54	0.13	0.51	0.38	_	0.04	•	82
5HTR7	99-32193-258	Ø	۳	0.70	0.65	1.29	0.26	0.53	0.34	0.12	0.41	0.48	0.11		0.12	•	82
CHRNA7	99-28722-90	ပ	, -	0.27	0.32	1.24	0.27	0.00	0.54	0.46	0.01	0.62	0.37		0.22	-	25
CHRNA7	99-28730-351	∢	တ	0.32	0.38	1.86	0.17	0.04	0.55	0.41	0.03	0.69	0.28		60.0	•	\$
CHRNA7	99-32306-409	ပ	თ	0.62	0.67	1.02	0.31	0.26	0.72	0.01	0.34	99.0	0.00		0.25	•	91
CRFR1	99-27088-246	∢	ŋ	0.42	0.38	1.04	0.31	0.20	0.44	0.36	0.15	0.45	0.40	1.12	0.57	•	93
CRFR1	99-27091-220	∢	တ	0.44	0.49	1.00	0.32	0.19	0.50	0.31	0.24	0.50	0.26		0.59	•	95
CRFR1	99-27097-83	ပ	-	0.55	0.53	0.12	0.73	0.34	0.41	0.24	0.26	0.56	0.19		0.11	•	06
CRFR1	99-27550-48	∢	O	0.20	0.26	1.93	0.17	0.04	0.32	0.64	0.02	0.38	0.55		0.38	138	91
MLR	16-31-738-A23	ပ	Ø	0.55	0.53	0.15	0.70	0.28	0.55	0.18	0.28	0.50	0.22		69.0	137	85
MLR	99-27563-400	∢	ဖ	0.46	0.44	0.07	0.79	0.19	0.54	0.28	0.21	0.46	0.33	1.25	0.54	138	83
MLR	99-28732-133	∢	ဖ	0.39	0.31	2.94	0.09	0.16	0.47	0.37	. 60.0	0.44	0.47	2.98	0.23	137	98
MLR	99-28735-56	ပ	-	0.71	0.70	0.03	0.87	0.50	0.41	0.09	0.50	0.40	0.10	0.14	0.93	136	88
CRFR2	99-27875-185	ပ	-	0.36	0.40	1.06	0:30	0.16	0.39	0.45	0.16	0.49	0.35	2.76	0.25	140	.
CRFR2	99-27880-176	ပ	۲	. 0.53	0.56	0.52	0.47	0.30	0.46	0.24	0.32	0.47	0.20	0.55	0.76	139	93
CRFR2	99-28747-371	ပ	⊢	0.39	0.44	0.90	0.3 4	0.16	0.47	0.37	0.23	0.42	0.35	1.88	0.39	138	91
CRFR2	99-28755-206	∢	တ	0.56	0.59	∴ 0.21	. 0.65	0.32	0.50	0.19	0.37	0.44	0.19	0.77	99.0	139	93

							Ta	Table 18B	8			;					
			•		Allele 1 Ft	Allele 1 Frequencies	,,,			Gen	otype Fr	Genotype Frequencies	ies			Numbers	ers
						된			Cases			Controls	_	충			
Gene	Marker	Allele 1	Allele 1 Allele 2	Cases	Controls	Square	p-value	=	12	22	11	12	22	ø	p-value	Cases	Controls
GRL	99-30853-364	∢	ဖ	0.56	0.58	0.24	0.62	0.35	0.41	0.24	0.39	0.39	0.23	0.29	0.87	139	93
GRL	99-30858-354	ပ	-	0.76	0.84	4.10	0.04	0.59	0.34	90.0	0.71	0.27	0.02	4.04	0.13	140	88
GRL	99-28485-198	တ	H	0.19	0.20	0.17	99.0	0.04	0.30	99.0	0.01	0.38	0.61	2.75	0.25	134	88
GRL	99-32002-313	∢	ဖ	0.48	0.48	0.00	0.97	0.23	0.51	0.28	0.16	0.65	0.19	4.61	0.10	140	94
GRL	18-20-174	∢	တ	0.76	0.73	0.76	0.38	0.57	0.39	0.04	0.53	0.39	0.07	1.18	0.55	140	. 46
GRL	18-31-178	ပ	-	0.30	0.35	1.55	0.21	0.11	0.38	0.51	0.15	0.40	0.45	1.41	0.49	140	94
GRL	18-38-395	∢	-	0.59	0.63	0.76	0.38	0.36	0.46	0.18	0.36	0.54	0.10	3.49	0.17	140	94
MAO A-B	18-2-192	ပ	۲	0.70	99.0	0.19	99.0	0.56	0.26	0.17	0.56	0.24	0.20	0.50	0.78	140	93
MAO A-B	16-215-80	O	۰	0.67	0.67	0.00	1.00	0.54	0.26	0.20	0.54	0.24	0.21	0.08	96.0	138	8
MAO A-B	99-26921-210	∢	တ	0.48	0.52	0.52	0.47	0.33	0:30	0.37	0.31	0.41	0.28	3.17	0.20	139	93
MAO A-B	18-133-293	∢	ပ	0.30	0.27	0.55	0.46	0.16	0.29	0.55	0.14	0.26	0.60	0.52	0.77	140	85
NET	99-28788-300	∢	တ	0.49	0.47	0.25	0.62	0.23	0.51	0.26	0.21	0.53	0.27	0.32	0.85	314	178
NET	99-32061-304	∢	o	0.43	0.40	0.32	0.57	0.19	0.47	0.34	0.14	0.52	0.34	1.41	0.50	320	88
NET	99-32121-242	∢	တ	0.57	0.54	0.78	0.38	0.34	0.47	0.19	0.30	0.48	0.22	0.74	69.0	313	181
NET	99-32148-315	O	ဖ	0.31	0.27	2.08	0.15	0.09	0.46	0.46	0.09	0.36	0.55	4.23	0.12	315	181
NET	19-28-136	∢	ပ	0.68	0.61	4.35	0.04	0.44	0.47	0.09	0.37	0.49	0.14	4.77	0.09	322	183
NET	19-29-303	ပ	H	0.21	0.19	0.77	0.38	0.05	0.33	0.63	0.02	0.34	0.64	3.52	0.17	326	183
NET	19-46-322	ပ	۳	0.31	0.31	0.01	0.92	0.07	0.48	0.45	0.07	0.47	0.45	0.03	0.99	317	177
NET	99-32065-303	တ	H	0.42	0.43	0.04	0.85	0.18	0.49	0.34	0.14	0.57	0.29	3.02	0.22	317	182
NET	99-32131-312	O	H	0.68	0.71	0.62	0.43	0.47	0.42	0.11	0.49	0.43	0.08	1.12	0.57	315	178
TACR1	99-28761-311	4	ტ	0.25	0.22	0.78	0.38	0.07	0.36	0.56	0.01	0.41	0.57	4.81	60.0	140	25
TACR1	99-28771-86	ပ	-	0.48	0.52	96.0	0.33	0.24	0.46	0.29	0.23	0.57	0.19	3.65	0.16	140	9
TACR1	99-28791-291	∢	တ	0.28	0.26	0.31	0.58	0.09	0.39	0.53	0.04	0.43	0.53	1.76	0.42	140	94
TACR1	99-32361-419	ဟ	H	0.53	0.52	0.07	0.79	0.29	0.49	0.23	0.26	0.52	0.22	0.34	0.84	140	94

Table 18B (cont)

26	94	98	8
140	140	140	140
0.13	0.004	0.07	0.25
4.10	11.32	5.31	2.77
90.0	0.47	0.30	0.19
0.47	0.50	0.60	0.53
0.47	0.03	0.11	0.28
0.15	0.62	0.42	0.24
0.42	0.29	0.44	0.42
0.43	0.09	0.14	0.34
0.16	0.22	0.30	0.93
1.99	1.48	1.06	0.01
0.70	0.28	0.40	0.54
0.64	0.23	0.36	0.55
ဖ	ტ	တ	ဖ
4	∢	∢	ပ
8-15-126	8-19-372	99-2409-298	99-339-54
DRD3	DRD3	DRD3	DRD3

Fable 180

					Allele 1 F	Allele 1 Fraguencies				්	Genotype Frequencies	Fredu	encies			N	Numbers
						ਰ			Cases			Controls	8	를			
Gene	Marker	Allele 1	Allele 1 Allele 2	Cases	Controls	Square	p-value	11	12	22	11	12	22	square	p-value	Cases	Controls
CVP3A4	CVP3A4 12,254,180	٥	ď	0.43	0.54	2,86	0.00	0.19	0.47	0.34	0.39	0.45	0 23	5 73	90 0	140	8
	12-27-100	() f		5 6	0.0		2 6		5 6	7 6	2			0 6	2 ;	5 3
CYP3A4	CYP3A4 10-214-279	ပ	-	0.14	0.12	0.35	0.55	0.02	0.23	0.75	0.02	0.19	0.79	0.46	0.79	140	94
CYP3A4	CYP3A4 10-217-91	ပ	-	0.89	0.93	2.01	0.16	0.79	0.19	0.02	98.0	0.13	0.01	1.88	0.39	140	94
SHIT	18-194-130	ပ	-	0.54	0.52	0.18	29.0	0.31	0.44	0.24	0.20	0.63	0.17	7.73	0.02	140	8
5HT	18-198-252	4	ပ	0.52	0.49	0.32	0.57	0.29	0.47	0.24	0.20	0.59	0.21	3.19	0.20	140	94
SHTT	18-242-300	∢	Ø	0.48	0.54	2.89	0.09	0.24	0. 44	0.32	0.27	0.54	0.19	4.89	0.09	140	94
SHIT	18-186-391	တ	ب	0.50	0.53	0.41	0.52	0.27	0.45	0.28	0.26	0.54	0.20	2.37	0.31	140	8
DRD2	16-21-228	∢	ဖ	0.21	0.16	1.40	0.24	0.05	0.31	0.64	0.04	0.24	0.72	1.65	0.44	139	93
DRD2	16-23-404	∢	Ø	0.55	0.53	0.09	0.76	0.30	0.50	0.20	0.26	0.55	0.19	0.50	0.78	139	93
DRD2	16-24-175	∢	ပ	0.22	0.16	2.07	0.15	90.0	0.32	0.62	0.0 42	0.24	0.72	2.19	0.34	138	85
DRD2	16-25-286	ပ	F	0.70	0.63	2.41	0.12	0.49	0.43	0.08	0.38	0.52	0.11	2.87	0.24	135	63
DRD2	16-22-156	ပ	-	0.46	0.45	0.07	0.79	0.21	0.50	0.29	0.17	0.56	0.27	0.94	0.63	140	93
Gbeta3	Gbeta3 19-58-162	ပ	۰	0.68	0.63	2.24	0.13	0.45	0.47	0.00	0.41	0.43	0.15	4.35	0.11	229	182
Gbeta3 19-9-45	19-9-45	ပ	F	0.69	99.0	0.60	0.44	0.45	0.48	0.07	0.45	0.42	0.12	4.45	0.11	321	185
Gbeta3	Gbeta3 18-355-67	ပ	-	0.47	0.49	0.43	0.51	0.20	0.55	0.26	0.25	0.47	0.27	2.95	0.23		173
Gbeta3	Gbeta3 18-353-267	ပ	۲	0.78	0.73	3.58	0.0	0.60	0.37	0.03	0.54	0.38	0.08	6.14	0.05	302	180
Gbeta3	Gbeta3 18-388-305	4	တ	0.65	0.70	2.05	0.15	0.43	0.44	0.13	0.47	0.45	0.08	2.78	0.25		174

4
A
0
ب
$\overline{}$
C
∞
T
P
2
ap
r .

							THE PARTY										
WFS1	19-17-188	∢.	ტ	0.57	99.0		0.003	0.32	0.50	0.18	0.43	0.47	0.10		0.01	318	180
WFS1	19-19-174	ပ	-	0.40	0.31		, 0.006	0.16	0.48	0.36	0.09	0.43	0.47		0.05	311	173
WFS1	24-243-348	ပ	F	0.62	0.70	5.29	×0.02	0.37	0.50	0.13	0.48	0.43	0.09	5.70	90.0	321	166
WFS1	99-62531-351	ပ	 -	0.59	0.64		0.10	0.34	0.51	0.16	0.40	0.49	0.11		0.23	316	171
WFS1	99-54279-152	ပ	ტ	0.59	0.58		0.37	0.33	0.52	0.15	0.32	0.49	0.20		0.44	306	174
Ŧ	16-115-343	∢	ပ	0.69	0.76	2.67	0.10	0.51	0.37	0.12	0.60	0.32	0.08	2.37	0.31	132	91
푠	18-251-176	O	-	0.58	0.57	0.02	0.87	0.36	0.44	0.20	0.29	0.57	0.14	4.43	0.11	140	98
Ŧ	18-269-44	⋖	Ø	0.36	0.38	0.14	0.71	0.11	0.51	0.39	0.15	0.46	0.39	1.09	0.58	140	96
											•						
5HTR2c	5HTR2c 18-12-191	∢	O	0.15	0.14	0.12	0.73	99.0	0.17	0.77	0.03	0.21	0.76	1.84	0.40	137	94

OMNIBUS LR Rank of Haplotypes Table 19

ſ			₁								1			-							
-log p- value	2.49	2.47	2.17	1.89	1.69	1.65	1.50	1.45	1.42	1.40		3.00	2.85	2.62	2.34	2.11	1.76	1.57	1.56	1.44	1.41
p-value	0.003	0.003	0.007	0.013	0.020	0.023	0.032	0.035	0.038	0.040		0.001	0.001	0.002	0.005	0.008	0.017	0.027	0.027	0.037	0.039
Marker4	99-62531-351	99-54279-152	99-54279-152	18-242-300	99-32131-312	99-54279-152	19-46-322	99-32131-312	99-32065-303	99-32131-312											
Marker3	24-243-346	24-243-346	99-62531-351	18-198-252	19-28-136	99-62531-351	19-28-136	19-48-322	19-28-136	19-28-136		24-243-346	99-54279-152	99-54279-152	99-62531-351	99-62531-351	99-32131-312	19-48-322	99-54279-152	19-28-136	18-355-67
Marker2	19-19-174	19-19-174	19-19-174	18-194-130	99-32121-242	24-243-346	99-32121-242	19-28-136	99-32121-242	99-32061-304		19-19-174	19-19-174	24-243-346	19-19-174	24-243-346	19-28-136	19-29-303	99-62531-351	99-32121-242	19-9-45
Marker1	19-17-188	19-17-188	19-17-188	18-186-391	99-32061-304	19-17-188	99-32061-304	99-32061-304	99-32061-304	99-28788-300		19-17-188	19-17-188	19-17-188	19-17-188	19-17-188	99-32061-304	19-28-136	19-17-188	99-32061-304	19-58-162
Control	148	2 2	157	96	79	148	78	73	85	92		158	166	156	167	150	79	170	159	82	167
Affected Control Marker1	288	277	274	140	283	283	290	292	291	291		297	. 282	291	293	302	302	309	287	300	217
GENE	WFS1		WFS1	SHIT	NET	WFS1	NET	NET	NET	NET	GENE	WFS1	WFS1	WFS1	WFS1	WFS1	NET	RET	WFS1	NET T	Gbeta3
		<u> </u>	က	4	2	9	7	8	8	10		-	a	က	4	ιρ	တ	7	œ	6	9

Table 19 (cont)

	GENE						
	WFS1	303	178	19-17-188	19-19-174	0.001	2.92
0	WFS1	312	160	19-17-188	24-243-346	0.001	2.92
<u></u>	5HTR7	136	83	99-28106-185	99-32181-192	0.007	2.15
4	Gbeta3	228	180	19-58-162	19-9-45	0.008	2.11
	WFS1	307	169	19-17-188	99-62531-351	0.012	4. 29.
و	WFS1	296	168	19-17-188	99-54279-152	0.012	1.94
~	DRD3	140	8	8-15-126	99-2409-298	0.014	1.87
89	5HTR7	133	92	99-32181-192	99-32193-258	0.015	1.82
6	돼	140	22	18-186-394	18-242-300	0.016	1.80
9	Gbeta3	76	168	18-353-267	18-338-305	0.033	1.48

	I Haplotype
Table 20A	Tests for Indivdual Haplot
	Rank of Permutation 7

												-			
		`						EM methods	ş		Pe	Permutation Test	est	Omn	Omnibus LR
	Gene	Marker1	Marker2	Marker3	Marker4	Haptotype	Case	Control	difference	Chi- Square	number	t- enjev-d	enjex-a enjex-a poj- enjex-a		-log p-value
ᆫᆂ	GR.	18-20-174	99-32002-313	18-31-178	18-38-395	AGCA	و ا	0.17	-0.12	16.39	10000	0.003	2.57	ł	0.44
-04	GRL	18-20-174	18-31-178	18-38-395	99-30858-354	GTAC	0.11	0.22	-0.10	9.13	100001	0.003	2.55	0.045	1.35
	GRL	18-20-174	18-38-395	99-30853-364	99-30858-354	GAAC	0.03	0.12	60.0	12.74	1000	0.003	2.52	0.078	1.11
4	GRL	99-32002-313	18-31-178	18-38-395	99-30858-354	GCAC	90.0	0.14	-0.09	9.82	1000	0.003	2.52	0.159	0.80
_10	GRL	99-32002-313	18-31-178	18-38-395	99-30858-354	GTAT	0.13	0.05	0.09	9.55	1000	0.003	2.52	0.159	0.80
ဖ	SHIT	18-186-391	18-194-130	18-198-252	18-242-300	GCAA	0.02	0.08	-0.06	8.26	1000	0.003	2.52	0.013	1.89
~	GRL	99-32002-313	18-31-178	99-30853-364	99-30858-354	GTAT	0.18	0.08	0.10	8.40	1000	0.004	2.38	0.314	0.50
80	5HTR7	99-28106-185	99-28171-458	99-28173-395	99-32181-192	AACC	0.27	0.38	-0.11	2.90	1000	0.005	2.30	0.034	1.47
ျ	NET	99-32121-242	99-32148-315	19-46-322	99-32131-312	AGTT	0.02	0.07	-0.05	13.54	5000	900.0	2.25	0.273	0.56
5	10 GRL	18-31-178	18-38-395	99-30853-364	99-30858-354	TAAT	0.14	0.05	0.09	9.35	1000	900.0	2.22	0.000	1.05
Ξ	DRD3	8-15-128	8-19-372	99-2409-298	99-339-54	GGAG	90.0	0.0	90.0	9.29	1000	900.0	2.22	0.045	1.35
7	Ř	99-32061-304	19-28-136	19-46-322	99-32065-303	вст	0.18	0.30	-0.12	11.71	2000	0.007	2.15	0.155	0.81
5	NET	99-28788-300	99-32061-304	99-32121-242	19-28-136	AGAC	0.18	0.26	-0.11	9.89	2000	0.007	2.14	0.073	1.14
4	GRL	18-20-174	99-32002-313	18-38-395	99-30858-354	GAAC	90.0	0.15	-0.09	11.29	1000	0.007	2.15	0.175	92.0
5	NET	99-32061-304	99-32121-242	19-28-136	99-32065-303	GACT	0.18	0.29	-0.11	10.22	2000	0.008	2.11	0.038	1.42
9	NET	99-32061-304	99-32148-315	19-29-303	99-32065-303	ACTG	0.11	0.03	0.08	9.73	2000	0.008	2.11	0.464	0.33
17	NET	99-32061-304	19-28-136	19-29-303	19-48-322	СТТ	0.17	0.29	-0.12	11.84	2000	0.008	2.10	0.186	0.73
8	NET	99-32061-304	99-32121-242	19-28-136	19-46-322	GACT	0.18	0.30	-0.12	11.06	2000	600.0	2.07	0.032	1.50
5	NET	99-32061-304	99-32148-315	19-28-136	19-46-322	GGCT	0.11	0.22	-0.11	12.79	2000	0.009	2.07	0.218	99.0
20	NET	99-28788-300	99-32061-304	99-32148-315	19-28-136	AGGC	0.11	0.21	-0.10	11.33	2000	0.00	2.08	0.140	0.85

le 20B	ts for Indivdual Haplotypes
ap	est
Η	H
	Permutation
	of
	Rank

		٠					EM methods	spc		P	Permutation Test	Fest	Оши	Omnibus LR
	(•				1		,	훙					
Ĺ	Gene	Marker1	Marker2	Marker3	Haplotype	Case	Souta	difference	Square	number	p-value	-log p-value p-value	ı	-log p-value
		18-20-174	18-38-395	99-30858-354	GAC	0.11	0.23	-0.11	10.35	100000	0.001	2.98	. 0.05	1.31
a	WFS1	19-17-188	19-19-174	99-62531-351	ACC	0.01	0.05	-0.04	12.09	2000	0.002	2.80	0.00	2.34
	сур3а4	12-254-180	10-214-279	10-217-91	ATC	0.38	0.52	-0.14	8.82	1000	0.005	2.70	0.04	1.38
4	WFS1	19-17-188	19-19-174	24-243-346	GCT	0.34	0.24	0.10	9.80	2000	0.003	2.52	0.00	3.00
ις.	GRL	99-32002-313	18-31-178	99-30858-354	GTT	0.18	0.09	0.10	8.18	1000	0.003	2.52	0.19	0.73
9	GRL	18-31-178	99-30853-364	99-30858-354	TAT	0.19	0.10	0.10	7.65	1000	0.003	2.52	0.11	96:0
	SHIT	18-186-391	18-194-130	18-242-300	GCA	0.02	0.08	-0.06	8.17	1000	-0.003	2.52	0.03	1.55
,	5HTT	18-186-394	18-198-252	18-242-300	GAA	0.02	0.09	-0.06	10.22	1000	0.003	2.52	0.03	1.51
6	DRD3	8-15-128	8-19-372	99-2409-298	GGA	0.11	9.0	0.08	8.62	100000	0.003	2.46	0.04	1.42
5	WFS1	19-17-188	24-243-346	99-54279-152	ATG	0.01	0.0	-0.03	9.90	2000	0.004	2.36	0.00	2.62
F	5HTR6	99-27199-207	99-27207-117	99-28134-215	Gd	0.26	0.14	0.12	9.66	1000	0.004	2.40	0.08	1.09
12	SHTT	18-194-130	18-198-252	18-242-300	CAA	0.02	0.08	-0.06	8.29	1000	0.004	2.40	0.02	1.68
13	NET	99-32061-304	99-32148-315	19-29-303	ACT	0.11	0.03	0.08	10.38	2000	9000	2.25	0.38	0.42
4	NET	99-32148-315	19-28-136	19-29-303	GCT	0.21	0.30	-0.09	9.23	2000	9000	2.24	0.42	0.38
5	сурза4	12-254-180	10-214-279	10-217-91	GTC	0.48	0.36	0.12	6.41	1000	9000	2.22	0.04	1.38
9	NET	99-32061-304	19-28-136	19-46-322	GCT	0.17	0.29	-0.12	11.46	2000	0.007	2.18	0.05	1.33
4	5HTR7	99-28171-458	99-28173-395	99-32181-192	ACC	0.27	0.38	-0.11	5.71	1000	0.007	2.15	0.05	1.28
18	GRL	99-32002-313	18-31-178	18-38-395	GCA	0.07	0.18	-0.11	14.17	1000	0.007	2.15	0.25	0.61
6	GRL	18-31-178	18-38-395	99-30858-354	TAT	0.14	0.05	0.09	8.81	1000	0.008	2.10	90.0	1.25
20	CHRNA7	CHRNA7 99-28722-90	99-28730-351	99-32306-409	CAC	0.04	0.05	-0.05	10.75	1000	0.008	2.10	0.04	1.46

	Haplotyp
ည	ivdua
Table 20C	Tests for Indi
	Rank of Permutation
	Rank

			R3	Rank of Permutation Tests for Indivdual Haplotypes	nutat	ion Te	sts for I	ndivdual	Haple	types				
						EM methods	spoi		Å	Permutation Test	ſæt	Omn	Omnibus LR	
	Gene	Marker1	Marker2	Haplotype	Case	Control	difference	Chl-Square	number	p-value	-log p-value p-value		-log p-value	
	WFS1	19-17-188	24-243-346	GT	0.37	0.26	0.11	12.09	2000	0.0006	3.22	0.001	2.92	
<u> </u>	WFS1	19-17-188	19-19-174	ပ္ပ	0.38	0.27	0.11	11.49	2000	0.0012	2.92	0.001	2.82	
n	DRD3	8-15-126	99-2409-298	*	0.23	0.37	-0.13	9.91	100000	0.0012	2.93	0.014	1.87	
4	WFS1	19-17-188	99-62531-351	Ą	0.44	0.55	-0.11	10.05	2000	0.002	2.74	0.012	1.94	
LΩ	WFS1	19-17-188	24-243-346	AT	0.02	0.05	-0.03	8.82	2000	0.003	2.52	0.001	2.92	
ω	GRL	18-31-178	99-30858-354	Þ	0.20	0.10	0.10	8.38	1000	0.003	2.52	0.029	1.54	
4	SHIT	18-186-394	18-242-300	GA G	0.03	0.11	-0.08	12.72	1000	0.003	2.52	0.016	1.80	
_ &	SHIT	18-198-252	18-242-300	¥	0.05	0.09	-0.06	9.84	1000	0.003	2.52	0.021	1.68	-
6	CHRNA7	99-28722-90	99-32306-409	ည	0.07	0.29	-0.22	19.25	1000	0.003	2.52	0.042	1.38	
9	Gbeta3	19-58-162	19-9-45	5	90.0	0.01	0.04	10.37	2000	0.003	2.49	0.008	2.11	
7	DRD3	8-15-126	99-2409-298	GA	0.13	0.04	0.09	10.32	100000	0.003	2.49	0.014	1.87	
12	5HTR7	99-32181-192	99-32193-258	5	0.42	0.28	0.14	8.33	1000	0.004	2.40	0.015	1.82	
13	GRL	18-38-395	99-30858-354	ΑC	0.44	0.58	-0.14	8.22	1000	0.004	2.40	0.023	1.64	
4	CRFR1	99-27091-220	99-27550-48	99	0.36	0.25	0.11	6.39	1000	0.004	2.40	0.022	1.66	
15	сур3а4	12-254-180	10-214-279	AT	0.39	0.52	-0.13	7.37	1000	0.005	2.30	0.085	1.07	
18	CHRNA7	99-28722-90	99-28730-351	TG	0.55	0.36	0.19	8.05	1000	0.005	2.30	0.214	0.67	
17	сур3а4	12-254-180	10-217-91	AC	0.41	0.53	-0.13	7.14	100000	9000	2.26	0.084	1.08	
18	NET	99-32061-304	19-28-136	ပ္တ	0.17	0.27	0.11	9.91	2000	0.006	2.22	0.039	1.41	
19	SHIT	18-194-133	18-242-300	5	0.02	0.08	-0.06	9.41	1000	0.006	2.22	0.03	1.51	
20	5HTR6	99-27207-117	99-28110-75	F	0.32	0.44	-0.12	6.64	1000	9000	2.22	90.0	1.22	

WHAT IS CLAIMED IS:

5

20

25

30

35

An isolated polynucleotide comprising a contiguous span of at least 12
 nucleotides of a sequence selected from the group consisting of the sequences described in Table
 7 and the complements thereof.

- 2. The polynucleotide according to claim 1, wherein said span includes a CNS disorder-related biallelic marker in said sequence.
- 10 3. An isolated polynucleotide comprising a contiguous span of at least 12 nucleotides of a sequence selected from the group consisting of the sequences described in Table 9 and the complements thereof, wherein said span includes a CNS disorder-related biallelic marker in said sequence with the alternative allele present at said biallelic marker.
- 4. An isolated polynucleotide consisting essentially of a contiguous span of 8 to 50 nucleotides of a sequence selected from the group consisting of the sequences described in Table 9 and the complements thereof, wherein said span includes a CNS disorder-related biallelic marker in said sequence with the original allele present at said biallelic marker.
 - 5. An isolated polynucleotide consisting essentially of a contiguous span of 8 to 50 nucleotides of a sequence selected from the group consisting of the sequences described in Table 10 and the complements thereof, wherein said span includes a CNS disorder-related biallelic marker in said sequence.
 - 6. The polynucleotide according to any one of claims 2 to 5, wherein said contiguous span is 18 to 35 nucleotides in length and said biallelic marker is within 4 nucleotides of the center of said polynucleotide.
 - 7. The polynucleotide according to claim 6, wherein said polynucleotide consists of said contiguous span and said contiguous span is 25 nucleotides in length and said biallelic marker is at the center of said polynucleotide.
 - 8. A polynucleotide for use in a hybridization assay for determining the identity of a nucleotide at a CNS disorder-related biallelic marker.
 - 9. A polynucleotide for use in a sequencing assay for determining the identity of a nucleotide at a CNS disorder-related biallelic marker.

10. A polynucleotide for use in an allele specific amplification assay for determining the identity of a CNS disorder-related biallelic marker.

- 5 11. A polynucleotide for use in amplifying a segment of nucleotides comprising a CNS disorder-related biallelic marker.
 - 12. A use according to any one of claims 8 to 11, wherein said polynucleotide is selected from the sequences described in Table 7.

10

30

- 13. A method of genotyping an individual comprising: (a) obtaining a biological sample comprising a nucleic acid from said individual; (b) determining the identity of a polymorphic base at a biallelic marker from said nucleic acid; wherein said biallelic marker is selected from any one biallelic marker of Table 7; wherein the identity of the polymorphic base determines the genotype of the individual at said position.
 - 14. A method according to claim 13, wherein said CNS disorder-related biallelic marker is selected from the biallelic markers described in Table 7.
- 15. The method according to claim 14, wherein said CNS disorder-related biallelic marker is selected from the group consisting of 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 99-28106-185, 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, 99-30853-364, 19-56-140, 19-28-136, 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 16-50-196, 8-19-372, 12-254-180, 10-214-279, 10-217-91, 18-194-130, 18-186-391, 18-198-252, 18-242-300, 20-205-302, 19-58-162, 19-9-45, 19-22-74, 19-88-185, 19-18-310, 19-19-174, 19-17-188, 19-16-127, 99-32148-315, 19-46-322, 99-32131-312, 99-32065-303, 19-44-251, 19-29-303, 18-355-67, 18-353-267, 18-338-305, 16-88-185, 24-243-346, 99-62531-351, 99-54279-152, 99-28171-458, 99-28173-395, 18-186-394, 8-15-126, 99-2409-298, 99-28722-90 and 99-32306-409.
 - 16. The method according to claim 14, wherein said CNS disorder-related biallelic marker is selected from the group consisting of 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 19-28-136, 16-50-196, 19-58-162, 19-9-45, 20-205-302, 24-243-346, 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 19-17-188 and 19-19-174.
 - 17. The method according to claim 13, wherein said biological sample is derived from a single subject.

18. The method according to claim 17, wherein the identity of the nucleotides at said biallelic marker is determined for both copies of said biallelic marker present in said subject's genome.

5

15

25

30

- 19. The method according claim 13, wherein said biological sample is derived from multiple subjects.
- 20. The method according to claim 13, further comprising amplifying a portion of said sequence comprising the biallelic marker prior to said determining step.
 - 21. A method of determining the frequency in a population of an allele of a CNS disorder-related biallelic marker, comprising:
 - a) genotyping individuals from said population for said biallelic marker according to the method of claim 13; and
 - b) determining the proportional representation of said biallelic marker in said population.
- 22. The method according to claim 21, wherein said CNS disorder-related biallelic marker is selected from the biallelic markers described in Table 7.
 - 23. The method according to claim 22, wherein said CNS disorder-related biallelic marker is selected from the group consisting of 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 99-28106-185, 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, 99-30853-364, 19-56-140, 19-28-136, 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 16-50-196, 8-19-372, 12-254-180, 10-214-279, 10-217-91, 18-194-130, 18-186-391, 18-198-252, 18-242-300, 20-205-302, 19-58-162, 19-9-45, 19-22-74, 19-88-185, 19-18-310, 19-19-174, 19-17-188, 19-16-127, 99-32148-315, 19-46-322, 99-32131-312, 99-32065-303, 19-44-251, 19-29-303, 18-355-67, 18-353-267, 18-338-305, 16-88-185, 24-243-346, 99-62531-351, 99-54279-152, 99-28171-458, 99-28173-395, 18-186-394, 8-15-126, 99-2409-298, 99-28722-90 and 99-32306-409.
 - 24. The method according to claim 22, wherein said CNS disorder-related biallelic marker is selected from the group consisting of 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 19-28-136, 16-50-196, 19-58-162, 19-9-45, 20-205-302, 24-243-346, 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 19-17-188 and 19-19-174.

25. The method of detecting an association between an allele and a phenotype, comprising the steps of:

5

10

15

20

25

30

- a) determining the frequency of at least one CNS disorder-related biallelic marker allele in a trait positive population according to the method of claim 21;
- b) determining the frequency of said CNS disorder-related biallelic marker allele in a control population according to the method of claim 21; and
- c) determining whether a statistically significant association exists between said allele and said phenotype.
- 26. The method of estimating the frequency of a haplotype for a set of biallelic markers in a population, comprising:
 - a) genotyping each individual in said population for at least one CNS disorderrelated biallelic marker according to claim 13;
 - b) genotyping each individual in said population for a second biallelic marker by determining the identity of the nucleotides at said second biallelic marker for both copies of said second biallelic marker present in the genome; and
 - c) applying a haplotype determination method to the identities of the nucleotides determined in steps a) and b) to obtain an estimate of said frequency.
- 27. The method according to claim 26, wherein said haplotype determination method is selected from the group consisting of asymmetric PCR amplification, double PCR amplification of specific alleles, the Clark method, or an expectation maximization algorithm.
- 28. The method according to claim 26, wherein said CNS disorder-related biallelic marker is selected from the biallelic markers described in Table 7.
 - 29. The method according to claim 28, wherein said CNS disorder-related biallelic marker is selected from the group consisting of 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 99-28106-185, 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, 99-30853-364, 19-56-140, 19-28-136, 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 16-50-196, 8-19-372, 12-254-180, 10-214-279, 10-217-91, 18-194-130, 18-186-391, 18-198-252, 18-242-300, 20-205-302, 19-58-162, 19-9-45, 19-22-74, 19-88-185, 19-18-310, 19-19-174, 19-17-188, 19-16-127, 99-32148-315, 19-46-322, 99-32131-312, 99-32065-303, 19-44-251, 19-29-303, 18-355-67, 18-353-267, 18-338-305, 16-88-185, 24-243-346, 99-62531-351, 99-54279-152, 99-28171-458, 99-28173-395, 18-186-394, 8-15-126, 99-2409-298, 99-28722-90 and 99-32306-409.

30. The method according to claim 28, wherein said CNS disorder-related biallelic marker is selected from the group consisting of 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 19-28-136, 16-50-196, 19-58-162, 19-9-45, 20-205-302, 24-243-346, 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 19-17-188 and 19-19-174.

5

31. The method according to claim 28, wherein said haplotype comprises one of the following sets of biallelic markers:

99-28106-185, and 99-32181-192; 18-20-174, 99-32002-313, 18-31-178, and 18-38-395; 18-20-174, 18-31-178, 18-38-395, and 99-30858-354; 10 18-20-174, 18-38-395, 99-30853-364, and 99-30858-354; 99-32002-313, 18-31-178, 18-38-395, and 99-30858-354; 18-20-174, 18-38-395, and 99-30858-354; 99-32002-313, 18-31-178, and 99-30858-354; 15 18-31-178, 99-30853-364, and 99-30858-354; 19-56-140, 99-28788-300, 99-32061-304, and 99-32121-242; 19-28-136, 99-28788-300, 99-32061-304, and 99-32121-242; 19-14-241, 19-28-136, 99-32061-304, and 99-32121-242; 19-56-140, 19-28-136, 99-32061-304, and 99-32121-242; 20 19-14-241, 19-28-136, and 16-50-196; 19-28-136, 99-32061-304, and 99-32121-242; 99-28788-300, 99-32061-304, and 99-32121-242; 99-32061-304, and 99-32121-242; 19-56-140, 19-14-241, 19-28-136, and 16-50-196; 25. 99-28788-300, 99-32061-304, and 99-32121-242; 16-50-196, 99-32061-304, and 99-32121-242; 19-14-241, 19-28-136, and 16-50-196; 19-14-241, 99-32061-304, and 99-32121-242; 19-14-241, and 19-28-136; 30 99-32061-304, and 99-32121-242; 8-15/126, and 99-2409/298; 12-254/180, 10-214/279, and 10-217/91; 18-186/391, 18-194/130, and 18-242/300; 18-186/394, 18-198/252, and 18-242/300; 35 19-58-162, 19-9-45, 19-22-74, and 20-205-302; 19-58-162, 19-9-45, 19-88-185, and 20-205-302;

19-58-162, 19-9-45, and 20-205-302;

35

```
19-58-162, 19-22-74, and 20-205-302;
                     19-58-162, and 20-205-302;
                     19-9-45, and 20-205-302;
                     19-22-74, and 20-205-302;
5
                    19-19-174, 19-17-188, and 19-18-310;
                    19-19-174, 19-16-127, and 19-17-188;
                     19-19-174, and 19-17-188; and
                     19-17-188, 19-19-174, 24-243-346, and 99-62531-351;
                     19-17-188, 19-19-174, 24-243-346, and 99-54279-152;
10
                    19-17-188, 19-19-174, 99-62531-351, and 99-54279-152;
                    99-32002-313, 18-31-178, 99-30853-364, and 99-30858-354;
                    99-32121-242, 99-32148-315, 19-46-322, and 99-32131-312;
                    99-28106-185, 99-28171-458, 99-28173-395, and 99-32181-192;
                     18-186-391, 18-194-130, 18-198-252, and 18-242-300.
15
                     19-17-188, 19-19-174, and 24-243-346;
                     19-17-188, 19-19-174, and 99-54279-152;
                     19-17-188, 24-243-346, and 99-54279-152;
                     19-17-188, 19-19-174, and 99-62531-351;
                    19-17-188, 24-243-346, and 99-62531-351;
20
                    99-32061-304, 19-28-136, and 99-32131-312;
                     12-254-180, 10-214-279, and 10-217-91;
                    18-186-391, 18-194-130, and 18-242-300;
                     18-186-394, 18-198-252, and 18-242-300;
                    8-15-126, 8-19-372, and 99-2409-298.
25
                    19-17-188, and 19-19-174;
                    19-17-188, and 24-243-346;
                    19-17-188, and 99-62531-351;
                     19-17-188, and 99-54279-152;
                    19-58-162, and 19-9-45;
30
                    8-15-126, and 99-2409-298;
                    18-31-178, and 99-30858-354;
                    18-186-394, and 18-242-300;
                     18-198-252, and 18-242-300; and
                     99-28722-90, and 99-32306-409.
```

32. The method according to claim 28, wherein said CNS disorder-related biallelic marker comprises one of the following sets of biallelic markers:

WO 01/51659

99-28788-300, 99-32061-304, and 99-32121-242; 19-14-241, 19-28-136, and 16-50-196; 19-17-188, 19-19-174, and 24-243-176; and 19-58-162, 19-9-45, and 20-205-302.

5

- 33. The method of detecting an association between a haplotype and a phenotype, comprising the steps of:
 - a) estimating the frequency of at least one haplotype in a trait positive population according to the method of claim 26;

10

- b) estimating the frequency of said haplotype in a control population according to the method of claim 26; and
- c) determining whether a statistically significant association exists between said haplotype and said phenotype.

15

- 34. The method according to either claim 25 or 33, wherein said control population is a trait negative population.
- 35. The method according to either claim 25 or 33, wherein said case control population is a random population.

20

25

36. The method according to claim 56, wherein said CNS disorder-related biallelic marker is selected from the group consisting of 99-27207-117, 99-28110-75, 99-28134-215, 99-32181-192, 99-28106-185, 99-30858-354, 18-20-174, 99-32002-313, 18-31-178, 18-38-395, 99-30853-364, 19-56-140, 19-28-136, 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 16-50-196, 8-19-372, 12-254-180, 10-214-279, 10-217-91, 18-194-130, 18-186-391, 18-198-252, 18-242-300, 20-205-302, 19-58-162, 19-9-45, 19-22-74, 19-88-185, 19-18-310, 19-19-174, 19-17-188, and 19-16-127.

30 m

- 37. The method according to claim 33, wherein said CNS disorder-related biallelic marker is selected from the group consisting of 99-28788-300, 99-32061-304, 99-32121-242, 19-14-241, 19-28-136, 16-50-196, 19-58-162, 19-9-45, and 20-205-302.
- 38. The method according to claim 33, wherein said haplotype comprises one of the following sets of biallelic markers:

35

99-28106-185, and 99-32181-192; 18-20-174, 99-32002-313, 18-31-178, and 18-38-395; 18-20-174, 18-31-178, 18-38-395, and 99-30858-354;

	18-20-174, 18-38-395, 99-30853-364, and 99-30858-354;
	99-32002-313, 18-31-178, 18-38-395, and 99-30858-354;
	18-20-174, 18-38-395, and 99-30858-354;
	99-32002-313, 18-31-178, and 99-30858-354;
5	18-31-178, 99-30853-364, and 99-30858-354;
	19-56-140, 99-28788-300, 99-32061-304, and 99-32121-242;
	19-28-136, 99-28788-300, 99-32061-304, and 99-32121-242;
	19-14-241, 19-28-136, 99-32061-304, and 99-32121-242;
	19-56-140, 19-28-136, 99-32061-304, and 99-32121-242;
10	19-14-241, 19-28-136, and 16-50-196;
	19-28-136, 99-32061-304, and 99-32121-242;
	99-28788-300, 99-32061-304, and 99-32121-242;
	99-32061-304, and 99-32121-242;
	19-56-140, 19-14-241, 19-28-136, and 16-50-196;
15	99-28788-300, 99-32061-304, and 99-32121-242;
	16-50-196, 99-32061-304, and 99-32121-242;
	19-14-241, 19-28-136, and 16-50-196;
	19-14-241, 99-32061-304, and 99-32121-242;
	19-14-241, and 19-28-136;
20	99-32061-304, and 99-32121-242;
	8-15/126, and 99-2409/298;
	12-254/180, 10-214/279, and 10-217/91;
	18-186/391, 18-194/130, and 18-242/300;
	18-186/394, 18-198/252, and 18-242/300;
25	19-58-162, 19-9-45, 19-22-74, and 20-205-302;
•	19-58-162, 19-9-45, 19-88-185, and 20-205-302;
	19-58-162, 19-9-45, and 20-205-302;
	19-58-162, 19-22-74, and 20-205-302;
	19-58-162, and 20-205-302;
30	19-9-45, and 20-205-302;
	19-22-74, and 20-205-302;
	19-19-174, 19-17-188, and 19-18-310;
	19-19-174, 19-16-127, and 19-17-188;
•	19-19-174, and 19-17-188; and
35	19-17-188, 19-19-174, 24-243-346, and 99-62531-351;
	19-17-188, 19-19-174, 24-243-346, and 99-54279-152;
	19-17-188, 19-19-174, 99-62531-351, and 99-54279-152;

35

```
99-32002-313, 18-31-178, 99-30853-364, and 99-30858-354;
                     99-32121-242, 99-32148-315, 19-46-322, and 99-32131-312:
                     99-28106-185, 99-28171-458, 99-28173-395, and 99-32181-192:
                     18-186-391, 18-194-130, 18-198-252, and 18-242-300.
 5
                     19-17-188, 19-19-174, and 24-243-346;
                     19-17-188, 19-19-174, and 99-54279-152;
                     19-17-188, 24-243-346, and 99-54279-152;
                     19-17-188, 19-19-174, and 99-62531-351;
                     19-17-188, 24-243-346, and 99-62531-351;
10
                     99-32061-304, 19-28-136, and 99-32131-312;
                     12-254-180, 10-214-279, and 10-217-91;
                     18-186-391, 18-194-130, and 18-242-300;
                     18-186-394, 18-198-252, and 18-242-300;
                     8-15-126, 8-19-372, and 99-2409-298.
15
                     19-17-188, and 19-19-174;
                     19-17-188, and 24-243-346;
                     19-17-188, and 99-62531-351;
                     19-17-188, and 99-54279-152;
                     19-58-162, and 19-9-45;
20
                     8-15-126, and 99-2409-298;
                     18-31-178, and 99-30858-354;
                     18-186-394, and 18-242-300;
                     18-198-252, and 18-242-300; and
                     99-28722-90, and 99-32306-409.
25
             39.
                     The method according to claim 33, wherein said haplotype comprises one of the
      following sets of biallelic markers:
                     99-28788-300, 99-32061-304, and 99-32121-242;
                     19-14-241, 19-28-136, and 16-50-196;
30
                     19-17-188, 19-19-174, and 24-243-176; and
```

- 40. The method according to either claim 25 or 33, wherein said phenotype is a CNS disorder.
- 41. The method according to either claim 25 or 33, wherein said phenotype is a response to an agent acting on a CNS disorder.

19-58-162, 19-9-45, and 20-205-302.

42. The method according to either claim 25 or 33, wherein said phenotype is a side effect to an agent acting on a CNS disorder.

- 43. The method according to claim 25, wherein the identity of the nucleotides at all of the biallelic markers described in Table 7 is determined in steps a) and b).
 - 44. The method of administering a drug or treatment comprising:
 - a) obtaining a nucleic acid sample from an individual;

10

15

5

- b) determining the identity of the polymorphic base of at least one CNS disorderrelated biallelic marker according to the method of claim 13 which is associated with a positive response to said drug or treatment, or at least one CNS disorder-related marker which is associated with a negative response to said drug or treatment; and
- c) administering said drug or treatment to said individual if said nucleic acid sample contains at least one biallelic marker associated with a positive response to said drug or treatment, or if said nucleic acid sample lacks at least one bialleic marker associated with a negative response to said drug or treatment.
- 45. The method of selecting an individual for inclusion in a clinical trial of a drug or treatment comprising:
 - a) obtaining a nucleic acid sample from an individual:
 - b) determining the identity of the polymorphic base of at least one CNS disorderrelated biallelic marker according to the method of claim 13 which is associated with a positive response to said drug or treatment, or at least one biallelic marker associated with a negative response to said drug or treatment in said nucleic acid sample; and

25

c) including said individual in said clinical trial if said nucleic acid sample contains at least one biallelic marker which is associated with a positive response to said drug or treatment, or if said nucleic acid sample lacks at least one biallelic marker associated with a negative response to said drug or treatment.

- 46. The diagnostic kit comprising a polynucleotide according to any one of claims 2, 3, 4 and 5.
- 47. The use of a polynucleotide in a hybridization assay for determining the identity of a nucleotide at a CNS disorder-related biallelic marker.

48. The use of a polynucleotide in a sequencing assay for determining the identity of a nucleotide at a CNS disorder-related biallelic marker.

- 49. The use of a polynucleotide in an allele specific amplification assay for determining the identity of a CNS disorder-related biallelic marker.
 - 50. The use of a polynucleotide in amplifying a segment of nucleotides comprising a CNS disorder-related biallelic marker.

SEQUENCE LISTING <110> GENSET <120> BIALLELIC MARKERS DERIVED FROM GENOMIC REGIONS CARRYING GENES INVOLVED IN CENTRAL NERVOUS SYSTEM DISORDERS. <130> 75.WO1 <150> 60/175,854 <151> 2000-01-13 <160> 544 <170> Patent.pm <210> 1 <211> 450 <212> DNA <213> Homo Sapiens <220> <221> allele <222> 207 <223> 99-27199-207 : polymorphic base C or T <220> <221> misc binding <222> 188..206 <223> 99-27199-207.mis1 <220> <221> misc binding <222> 208..227 <223> 99-27199-207.mis2, potential complement <220> <221> primer_bind <222> 1..20 <223> upstream amplification primer <220> <221> primer_bind <222> 431..450 <223> downstream amplification primer, complement <220> <221> misc binding <222> 195..219 <223> 99-27199-207 potential probe <400> 1 tataagaggc ttgattcagg.ttctggaact cagtaggtag aagcctccat gcctatccat 60 geatgtttge gtgtttgeat gtgtgtacat geacatttge acatgattgt ceacgtteae 120 gtgtgtgcat gtgtatgtgt gtgacattca tctcctccac tgctgttgga gtccctccca 180 gcacccaatg tggccaggga cactgayggc cttttctggg gtcttttgcc agattgccaa 240 ggaatcatcg aggacgtcat cctgctgggt gcgcctgtgg agggagaagc caagcattgg 300

<210> 2 <211> 452

gttggggaca catatttgag acctaatccc

360

420

450

gagcetttee ggaaggtggt gteegggagg ateateaacg getactgeag gtetgteeaa

acctcgtgcc agcggggaag tgacaatgct tacggagcac ttagtatgcc caggctctgt

```
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 117
<223> 99-27207-117 : polymorphic base C or T
<220>
<221> misc binding
<222> 98..116
<223> 99-27207-117.mis1
<220>
<221> misc_binding
<222> 118..136
<223> 99-27207-117.mis2, complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 432..452
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 105..129
<223> 99-27207-117 potential probe
ccaaaaagaa atcacagcaa cgtgaaggtt aaggctaact tttcaaacat cagaatcctg
                                                                       60
acaatggttg cagtagcttt caaggagaca tggtgtgtgg ccagcccctc cagggcygtg
                                                                       120
tggacagctt tttgtgtatt ttcctgggtg actcacagca tcaaagggag aaaggaggta
                                                                       180
gtaattgttc agcacttgac atgtgcttga acacttcgta atcgcaatct gtgccaggca
                                                                      240
gtggcaccat ctcccctttt tagatgaaga aaccgaggca ccgagataaa aagtaacttg
                                                                      300
ctcaaggcaa tttaggaagt tgtaaaacca accaacacat atggaatgtg tattatctgc
                                                                      360
taggeteatt taatatetea tetgaeette eagataceea tetgatgtag gtaceaetee
                                                                      420
cagctccaat tgtgagattc agaggggaga aa
                                                                       452
<210> 3
<211> 464
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 53
<223> 99-27213-53 : polymorphic base A or G
<220>
<221> misc_binding
<222> 34..52
<223> 99-27213-53.mis1
<220>
<221> misc_binding
<222> 54..73
<223> 99-27213-53.mis2, potential complement
```

```
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<221> primer_bind
<222> 446..464
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 41..65
<223> 99-27213-53 potential probe
<400> 3
tatgtagact ctttccccag gaaaaggctt cacacatgta attgtttatg carcgttagg
                                                                       60
gacteteaga ttetgtggte tetggaagga tetgagaeee agggaageea tagcaaetgt
                                                                      120
tcagccagga gacctggctc tcagtttgat tctgctacta accctctgtg tggccttggg
                                                                      180
cacgtgtctt tecetecetg gacaccagca cacattttct ttttttacet atacaattaa
                                                                      240
gggattgaat gatacgtaaa tttctcttga ctgtaaggtt ttgtgtttct gggaggtgag
                                                                      300
ttcatcactg ggccgaccaa ggtgactctt tgcagctgag gtctagagtg tgacgtacca
                                                                      360
cocctetget cetgggtece tgtctgagec ctaaggecac ceggettece teacttgttt
                                                                      420
agtgacttca cctctcctct ctgtgcctca tttcttcatc tctc
                                                                      464
<210> 4
<211> 546
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 333
<223> 99-27218-333 : polymorphic base G or T
<220>
<221> misc binding
<222> 314..332
<223> 99-27218-333.mis1
<220>
<221> misc_binding
<222> 334..353
<223> 99-27218-333.mis2, potential complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 528..546
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 321..345
<223> 99-27218-333 potential probe
gaagagtaga ggtaaaagag ttaaaatgat taacacattt accctgatct tggctattgt
                                                                       60
gggtcgtagg tgggtcttat tgtgggtcgt ggctattgta ggtctgataa tcaatattca
                                                                       120
```

```
tgtttatata tgtaatagta atcattaatg tgtacttctt qaaacaattt agtaccaggt
                                                                         180
   attgtggtaa gccttggcag ggggtggcac acaggtgaat aggcactggc cctaccctcg
                                                                         240
   aggggettae tgeettgagg aatgtgaaaa ggatgaggga catttgacce ceattttgga
                                                                         300
   aaatatgcag atatttaata ggtggaccag gtkggggagt gtgtttcact ccttgaaggt
                                                                         360
   gtcccaaagg agagggatac tttggttcct tctgggaatg atgagaatga ccatcactta
                                                                         420
   ttgagcactt aaccgcatgc caggcacggt gctgagcatg ttatatttta catcattatc
                                                                         480
   tcatatcctt gtaagatatt tctccatttt tacaatggaa gctcatggtg gcagaatccc
                                                                         540
   tccttt
                                                                         546
· · <210> 5
   <211> 413
   <212> DNA
   <213> Homo Sapiens
   <220>
   <221> allele
   <222> 233
   <223> 99-28108-233 : polymorphic base A or C
   <220>
   <221> misc_binding
   <222> 214..232
   <223> 99-28108-233.mis1
   <220>
   <221> misc_binding
   <222> 234..253
   <223> 99-28108-233.mis2, potential complement
   <220>
   <221> primer bind
   <222> 1..18
   <223> upstream amplification primer
   <220>
   <221> primer_bind
   <222> 394..413
   <223> downstream amplification primer, complement
   <220>
   <221> misc_binding
   <222> 221..245
   <223> 99-28108-233 potential probe
   <400> 5
   catgcctgtt cttccatcca cactccaggg ctgcccacca gctgacaggc accatcaact
                                                                          60
   ggcagcaaca gagcaggcgc aggtacaaag aaggcagctc actcctgctc ttaggagatc
                                                                         120
   caatcagatc tgccctgtac agccatgtag gctgtgcgct gcataactcc agggacatga
                                                                         180
   gtcacacaga cacaatgtga gtgtgctccc ccgtcatgca acatctggac acmactaaca
                                                                         240
   gagcatggtg aatacatgct gaattgcatt cagtatggct gtgaactagg cctggggaca
                                                                         300
   agaatgaatt ttacatggaa agaatttcct gtagcaggaa cagaggggat aacaacagca
                                                                         360
   ataaataata ataagaagaa gctaccactt cttgagcatg taccacatac caa
                                                                         413
   <210> 6
   <211> 454
   <212> DNA
   <213> Homo Sapiens
   <220>
   <221> allele
   <222> 275
 <223> 99-28109-275 : polymorphic base A or G
```

```
<220>
<221> misc binding
<222> 255..274
<223> 99-28109-275.mis1, potential
<220>
<221> misc_binding
<222> 276..295
<223> 99-28109-275.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 434..454
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 263..287
<223> 99-28109-275 potential probe
caatgtcatc gacaaccct ggggggtgtg tctccatcga tcagcagagg ttggcaagca
cctggcccac atectgctct cccggcagca ggtacctggg aatggctgtg tgggcgtggc
                                                                      120
attgagcaag aggggaagtc aggtgctgac ttqttcacaq atatcaqcct tagaqqcaaq
                                                                      180
gctacttgga gataactcaa tggttttggg ggtgtgggca gtccttgctg cctctccagt
                                                                      240
tcaagtaatg aatgtgtcct aggatgaaca gtaaraatta tagactctgc agctctagca
                                                                      300
ggtatttagg taaggactga ataacagggc atctgcaggt aggaacaagt ctqqqqqact
                                                                      360
ctggcagaag caaaagtggc tcctatgtat cagctcttca ttcaagtgtt taggataatc
                                                                      420
actgggctca tttgggtgat atttcagtgg aaac
                                                                      454
<210> 7
<211> 549
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 74
<223> 99-28110-75 : polymorphic base C or T
<220>
<221> misc binding
<222> 54..73
<223> 99-28110-75.misl, potential
<220>
<221> misc_binding
<222> 75..94
<223> 99-28110-75.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 530..549
```

```
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 62..86
<223> 99-28110-75 potential probe
<400> 7
aaccacttct cactcacctc tgtgcccaca gccagccccg cacatcgtgg ggtttccgtg
                                                                     60
ggaaccagat cccygcaggt acaaatgggg cccagccctt cctgtttcct gcctcaaaag
                                                                    120
acaccccaac ttacccaaac agaggctgcc atcacccacc tccatctgcc ccagtgactc
                                                                    180
cttccaagcc catcaggccc ctttgggttc tttcacttct tggacctcaa tttcctcatg
                                                                    240
tataaaatga ggctaataaa gagacctata ccacgtgggc tggctgtgtg gctttgataa
                                                                    300
tacatgtaac aggettattg geacagggtt agaggeeact accagaaget acagagatgt
                                                                    360
gtgaatgcag gcagtactga agcagtggtt aacagcccag gttcatccgg ctctaccact
                                                                    420
cacatgoogt aggactocat gragosticag titticacaec tgtacaacgg gitactacca
                                                                    480
ctatgcagga cctctatgag gatcaaatga cttaccccgt aaaacatgtg agttgttggc
                                                                    540
tactgcggt
                                                                    549
<210> 8
<211> 518
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 81
<223> 99-28125-81 : polymorphic base A or C
<220>
<221> misc binding
<222> 62..80
<223> 99-28125-81.mis1
<220>
<221> misc binding
<222> 82..101
<223> 99-28125-81.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 500..518
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 69..93
<223> 99-28125-81 potential probe
<400> 8
ggggagtgtt gttaaaagta cagattcyta agccctaccc cagatctcct gcatgtggga
                                                                     60
ccgaggaagc tgtaattcca maagctctct gggaccttga tgttccctaa actctaagaa
                                                                    120
ccactgtccc gctgtgactg tcaagtctcc acatgaccct gttgctgttg ggctgtttca
                                                                    180
agttcatttg accttgggct ttaaaggtct ctccttgtga ggaggaacag gtaccctgag
                                                                    240
gctgaccctc agatetetga getggaaagg acetetggat accagetect ttggteette
                                                                    300
360
caatgggggg atgttgcagc acccattgat catgggctga tttagaagga ggccgtgagg
                                                                    420
aaggggtgca ggctggaagc atgggcgggc ttcggggaga ggtgtgtggc tggaagacag
```

```
tgttctgcta gctcgtgccc tccttcccac ttcatggt
                                                                       518
<210> 9
<211> 472
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 215
<223> 99-28134-215 : polymorphic base C or T
<220>
<221> misc_binding
<222> 196..214
<223> 99-28134-215.mis1
<220>
<221> misc_binding
<222> 216..235
<223> 99-28134-215.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 453..472
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 203..227
<223> 99-28134-215 potential probe
<400> 9
tggatggatg gggcttctac tcaggccagt cttagagggc tcagttttgg gtttaatctt
                                                                       60
ecctectgee ccaaagtetg agteacaget ttggetgaaa eccegeaggt ectecttete
                                                                      120
aaaccccaaa gggttgcttc ctttctagcc ctgcagccgc cagccttcac gggccccctc
                                                                      180
ctctggctgg agggtctgtc accctgtttg ggtayaggct cctgcacgct ggcggcctcc
                                                                      240
tgttctagca ccctgccctg tctccaaggc agcactcaga aagctcagcc taggcccctc
                                                                      300
cagecectee etecaceace aaagactaae acagaageet eteagacett gtteaaagae
                                                                      360
ctccctgtgg yccwatcttt gtttttcagt ctgtgtccac tcgcccatgt cccttccccc
                                                                      420
agetecaace agecaageeg ecceageete teetgteate etgetgetet ca
                                                                      472
<210> 10
<211> 546
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 96
<223> 99-28137-96 : polymorphic base A or G
<220>
<221> misc binding
<222> 77..95
<223> 99-28137-96.misl
<220>
```

```
<221> misc binding
<222> 97..116
<223> 99-28137-96.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 529..546
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 84..108
<223> 99-28137-96 potential probe
<400> 10
caggaatget getattacca cegetggeca caaggggtee cagecetgea ggeageegea
                                                                       60
ccaaggctcg aaaagcagtc ccagctctta gcaggrcaga ctctgccagg cagagaaggc
                                                                      120
gccctgaatg gccggccccc agagaaagct gctgagctca tggttatccc tgggtccaca
                                                                      180
accatttggc actgtaggag caacgataac ccgcatatga tcactgtgca cgttgttatt
                                                                      240
gcagacagca gagagaaagg ccccagggac cagcagctct gcgtgcagtc tgcgttctgc
                                                                      300
teccaggett atteteattg getgtgtgae ettgggeaag eeccateece tetetgaeee
                                                                      360
tgtttcctcg tcttccaagg gaaatcgcgt tgatctctaa gggccttttc agcaacagcc
                                                                      420
ttgccaacaa caaaagcacc tgaagtagcc tttatgttgg agggatatct gagccatcct
                                                                      480
tgctattcac cacaaactgt cagcttactg aagttttaaa ttcttctgcc agattgtcat
                                                                      540
tgtcct
                                                                      546
<210> 11
<211> 401
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 305
<223> 99-32204-305 : polymorphic base A or G
<220>
<221> misc_binding
<222> 285..304
<223> 99-32204-305.misl, potential
<220>
<221> misc binding
<222> 306..325
<223> 99-32204-305.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 384..401
<223> downstream amplification primer, complement
<220>
<221> misc_binding
```

```
<222> 293..317
<223> 99-32204-305 potential probe
<400> 11
gtttggttta cttagccatc ccctccccaa atacatacct cattaccacc ccaaggtaat
                                                                       60
cccagtaaat tgcagtgggg caaattataa tcactgtggt agcagtagct aacatttatc
                                                                      120
cagggttcac tggtgccaga cagtgttacc atgccattta acctgcccaa ctcacctgtg
                                                                      180
aggcaggtcc tgttattatc cacatgttat ctcagaggga aatgaagctg agaggtaaag
                                                                      240
tgaggacaca aagccaattt ccaggggaac caggactccc ccaggtggtt ggacttcaga
                                                                      300
gtccractct taaccccatc ctccactgcc tccctctgcc accttgtaaa tcaaaataac
                                                                      360
gatactagct aacatcgttt ttagtctcat gtagttgagc c
                                                                      401
<210> 12
<211> 478
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 118
<223> 99-28149-118 : polymorphic base C or T
<220>
<221> misc_binding
<222> 98..117
<223> 99-28149-118.mis1, potential
<220>
<221> misc_binding
<222> 119..137
<223> 99-28149-118.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 459..478
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 106..130
<223> 99-28149-118 potential probe
<400> 12
cagcaaattg ctagtgaact tgcaactttt tcaccttttt cttcatctta atgaactagg
                                                                       60
aaggtcattt tctagatggc tttgcctgaa taagcccaca tacgatactg tgaccttyga
                                                                      120
tgggaggagc tagcatgtga tgttaaggcc aagtccatgg aatggacagc aatgcacaac
                                                                      180
agataattee teatgtetea egacagtegt aagatteeea gtggetgett tggtqaqage
                                                                      240
ttttaattgg ggttcttagg aacttgtatt attatttaaa ccagagtgtg agctcctaga
                                                                      300
gaacacegge tgtcatggte ettttttaag tactecaeta tettgegtat aatgagteet
                                                                      360
ccttacagtt tgttgagtca ataagtacat gttgaactta gcatatcagg gtacagcata
                                                                       420
ggggacctgg ccaaattctg ctcgttgtta gtcaccagct ggatgtccac attcatca
                                                                      478
<210> 13
<211> 456
<212> DNA
<213> Homo Sapiens
<220>
```

```
<221> allele
<222> 285
<223> 99-28160-285 : polymorphic base A or G
<220>
<221> misc binding
<222> 266..284
<223> 99-28160-285.mis1
<220>
<221> misc binding
<222> 286..305
<223> 99-28160-285.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 439..456
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 273..297
<223> 99-28160-285 potential probe
caaaagagtc aaagcagagg ccttgagaat tgcttgagaa tttatgctac tttcaggagc
tttttgtggt ataacaatgc agagcataga aggaggaagg aaatggtatt tgtttcaaag
                                                                      120
gatcattatt tacttctggt ttcagtagtc agttagccag tagatatact gagaaactta
agaaagtccc catcatctct gttgaagaag gataagttgg tgcacgatga caatataaca
                                                                      240
ttatattgca tcatagtgtt atggatcaag tgctagggga tcgcrataat gggagtaagt
                                                                      300
agctggggtg gggtgcagat aggaaggacc ttacagtaga ggtgacactt gagcaaggtc
                                                                      360
ttaagggata aataggagtt tgctaggcta tgaagtgggg actagaagtg cagacacttt
                                                                      420
ctgtcttctc cactttggcc tgttactcta tttccc
                                                                      456
<210> 14
<211> 514
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 457
<223> 99-28171-458 : polymorphic base A or G
<220>
<221> misc_binding
<222> 438..456
<223> 99-28171-458.mis1
<220>
<221> misc binding
<222> 458..477
<223> 99-28171-458.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
```

```
<220>
<221> primer bind
<222> 494..514
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 445..469
<223> 99-28171-458 potential probe
<400> 14
ggaaggttgg ggattgtgaa rgagggccca ggagctctat agcataccaa acactccatt
                                                                       60
tgtgtacttt gcagctcttt tcccttttgt catcttcact gtatgcttag ggcaccataa
                                                                      120
tttcaattat gcaatttcct ctaaaatctc ccacaaacct cttctggagt ctaagtaact
                                                                      180
tqtcatcqca tttctgtcat gtgatagatg tgtttctaaa aaattggatt ccactccttt
                                                                      240
tettgaataa teacatgaet teagattatt tageatttta tgacataage agtttgatae
                                                                      300
ctgctttggc ccagcagttt tgggatgggg tagatgttaa ttatctccat atgcaggtaa
                                                                      360
tacagtagaa tettaggtag tteatggtte acacagttaa atgaetetet caaggggttg
                                                                      420
acaagggatt tgtactcaag ctttgattcc aaatctrctg ttatttccta ctgggaaatg
                                                                      480
ctttttaaag ttactttaca gcagaactct ttgt
                                                                      514
<210> 15
<211> 550
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 395
<223> 99-28173-395 : polymorphic base C or T
<220>
<221> misc binding
<222> 375..394
<223> 99-28173-395.misl, potential
<220>
<221> misc_binding
<222> 396..414
<223> 99-28173-395.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 532..550
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 383..407
<223> 99-28173-395 potential probe
<400> 15
agagecaatg agatacaegt teaactagga cagaaataet atettaacaa atgteattee
                                                                       60
cagaaataat caacacaggt gaaagaatta gagatgggga aaagtcaaaa aatgagagag
                                                                      120
ggaaaggttg cagtgtggaa aatagcattt aaattctaac caaactagaa tcagacatat
                                                                      180
aggaaaatct aaaataaaat ctgggagcct tgaagccgga ggaagaatta aggaaatctg
                                                                      240
tgttcgggag ggaaaagcag aaggggcctt caagtacaac tgaattaaat caagatggac
                                                                      300
```

```
tgccagttct agaaaaagac aagtttctcc attccccqta aatgctcagg agtaaacccc
                                                                      360
agtagtcaca gctgggccag tcccaactta tactytgggc aatcgaaact catttgccaa
                                                                      420
gcagagactt ggaccatact gcctagaaca tgcctaccat tctttctta ttctttgaa
                                                                      480
agagtactgc cactcaagtg acttttgcaa ttgagagtct gattatcatc tctatgctga
                                                                      540
aaatccttca
                                                                      550
<210> 16
<211> 466
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 113
<223> 99-32177-113 : polymorphic base C or T
<220>
<221> misc binding
<222> 93..112
<223> 99-32177-113.mis1, potential
<220>
<221> misc binding
<222> 114..132
<223> 99-32177-113.mis2, complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 446..466
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 101..125
<223> 99-32177-113 potential probe
cccagaaata gaaaccaact atcaggcaaa gccttcgtga ggcaatttgg ggttgtaaca
                                                                       60
ctacattacc tacaaatcaa tggatatttt aggagaaatt aaaaagggat gaygtactct
                                                                      120
gttcaaaaaa aaggtttgaa acccagcaga ttcctgtggg ctttgcatcc ccagccctag
                                                                      180
gcatctctgt ttaaagaggc agcttagtga taagggagga ggagagaatt tctaagaagg
                                                                      240
ggtagaagtg tagacttata tttatatata tttttaaaaa gtttttattg tttagcagct
                                                                      300
tcagtaaggt ataatttcaa gatcataaaa ttacccaggg taagtgggta tagataagta
                                                                      360
tataggtcat ttattttgag tgaattttta gagttttgta tctatcaaca caattcagtt
                                                                      420
ttagaacatt ttttaatatc tcttacttca ttttgggttg ctgtaa
                                                                      466
<210> 17
<211> 449
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 192
<223> 99-32181-192 : polymorphic base C or T
<220>
<221> misc binding
```

```
<222> 172..191
<223> 99-32181-192.misl, potential
<221> misc_binding
<222> 193..212
<223> 99-32181-192.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 432..449
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 180..204
<223> 99-32181-192 potential probe
<400> 17
gtcagacatt cctcatggsc aaacctgata ccactccttt cttgctgtgt actcctaacc
tctatcagcc tccctgtcct catcacccag gagtaggggt gggggtgtga gtgtgcccac
                                                                      120
agagtggtca tggggattaa atgagatgaa tcatgcatag cccttggcac ccaacaatgg
                                                                      180
gattgctact gycagttcct atgctcctct acttgggtat tgccttcatg gctgacaccc
                                                                      240
atggctttct ttctgggatg tgtggccttc atcaaaaatg tgtttattta gtgaaaaaa
                                                                      300
aaaaaaggac cctgagattt tcatttaatt ttgcctatgt tctcacactg ctccatagca
cagcactgat gatactaaaa agctaactcc tggatctaag ctgctaagac cttcacatca
                                                                      420
ctggcagttt gctaatgtcg gtgttctgc
<210> 18
<211> 458
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 257
<223> 99-32193-258 : polymorphic base G or T
<220>
<221> misc_binding
<222> 238..256
<223> 99-32193-258.mis1
<220>
<221> misc binding
<222> 258..277
<223> 99-32193-258.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 438..458
<223> downstream amplification primer, complement
```

```
<220>
<221> misc binding
<222> 245..269
<223> 99-32193-258 potential probe
<400> 18
gaaqqaqatq aqattaqaqa agtqttqcaa attatattqq qattcagacc aqqtaaaqaq
tttggacttt attctaagtg cggcagaacc actggagact ttgaaacata gggtgaaatg
                                                                      120
gtctggcttt taattttaat ggttcattgt ggttactttg tggagaatga aatggaggag
                                                                      180
ggtgagaatg aaaacttgga gaccaatggg aaggcttcta cgttagtcaa ggcaagaggt
                                                                      240
aatcgtagct tggactkggt tggagtagtg gagacagaga caactggaga aattccggat
                                                                      300
ctgtcttgga ggtgtatcgg caggccttgc tgatggactg gatgtaggcg ctgagggaga
                                                                      360
caggcatgaa qgatgactct tgtgcttttg gctcaagcaa ttcagtagat ggtgatactg
                                                                      420
tttaccaaga catgatggta gtagaattgg tggtaaaa
                                                                      458
<210> 19
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 90
<223> 99-28722-90 : polymorphic base C or T
<221> misc binding
<222> 71..89
<223> 99-28722-90.misl
<220>
<221> misc binding
<222> 91..110
<223> 99-28722-90.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 429..449
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 78..102
<223> 99-28722-90 potential probe
<400> 19
atacgataca ctctgccaag tccattttga attccatggc ctgaatcatt aactttcaaa
                                                                       60
gccaaagcat ttaaaagata aaattatccy cttggcactc ctcaaactgt gctcttgacc
                                                                      120
tettetgtta ggetacagtt ttgtttetgg etgtgeaaat gteacataat geeactgeae
                                                                      180
coggoagtat cttcttcata gcaacagatc ataataaaag tccctcggag gctgtttgtg
                                                                      240
tttcacatac acatggaatg aaagaaaaat gcagtgtgct atataaagcg agagaaatgc
                                                                      . 300
ataagcttca tctttcattt qcaqccaatt qqttttaata aqcttttatq ctqaqaqqtq
                                                                      360
aataattagc atatgttctt aattaagatt gttctagagc agtagagtgc tccaggtcgt
                                                                       420
taaaaatggt tttgtgtctc aatgtcttaa
                                                                       450
<210> 20
<211> 452
<212> DNA
```

```
<213> Homo Sapiens
<220>
<221> allele
<222> 351
<223> 99-28730-351 : polymorphic base A or G
<220>
<221> misc binding
<222> 332..350
<223> 99-28730-351.mis1
<220>
<221> misc binding
<222> 352..370
<223> 99-28730-351.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 435..451
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 339..363
<223> 99-28730-351 potential probe
<400> 20
attettggta teetacaega aatetattta tateeaacat aactaatgtt etgaggaace
                                                                       60
cactttatga aacaggattt tgtactgcta ttagtggtga gtcacaataa gaagggaaag
                                                                      120
atacccaage tegeattgtg agaggteata cagagatggg tecaaatgga ateaggagtt
                                                                      180
gaaaggcata gagatgtccc tagaaactgg aggagaccac caagttgttc taaagccagg
                                                                      240
agaagaatct aacattggcc tgaaagctaa agcctacctg tgggtacaaa ttggacaaag
                                                                      300
gatactttgc tggacagtca gaaattcagc tgtggagcac caggctggca rtgagctctg
                                                                      360
ccctcaggca cgccacatag gcagcaccag gactgaggac atctgaggct gagaacggat
                                                                      420
gtaagaacca tcttggtgtt gtgagatgaa tt
                                                                      452
<210> 21
<211> 455
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 407
<223> 99-32306-409 : polymorphic base G or C
<220>
<221> misc_binding
<222> 387..406
<223> 99-32306-409.mis1, potential
<220>
<221> misc_binding
<222> 408..427
<223> 99-32306-409.mis2, potential complement
<220>
```

```
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 437..454
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 395..419
<223> 99-32306-409 potential probe
<220>
<221> misc feature
<222> 162
<223> n=a, g, c or t
<400> 21
catttgcacc tgcactcccc tgaccttgca ctgtggtaga ccagttgctc tctaagtctg
                                                                       60
ctgctcagtt gtcatctgag atagtccttt attgtcttga ggtggggcta tgtctccttt
                                                                      120
tgtctaggat ttttattggt tttactgcag aatatcatca angatttatc tttttcactg
                                                                      180
aagatgcata aagggtaaac attctgaggc ctaggatgac tgaaaatgtg tttatttggc
                                                                      240
atogacacto agtataattt ttttttacca ggtgtagaat totaagttda waataattto
                                                                      300
ctctgtggac tttgaagtta ctgcctcatt gtttccagtg ttactaatga gaaatctsat ·
                                                                      360
gcgagtttga ctgtgatttc tttacagatg ccctgttttg ttccttstct tctaaaacat
                                                                      420
cacaatgatg catttagggg tgggtgattt tttta
                                                                      455
<210> 22
<211> 527
<212> DNA
<213> Homo Sapiens ·
<220>
<221> allele
<222> 246
<223> 99-27088-246 : polymorphic base A or G
<220>
<221> misc_binding
<222> 226..245
<223> 99-27088-246.misl, potential
<220>
<221> misc_binding
<222> 247..266
<223> 99-27088-246.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 510..527
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 234..258
<223> 99-27088-246 potential probe
```

```
<400> 22
gtttttctta gcttgctggt gtttttaact caataaaatg tcaattaact tcgtgagctt
                                                                       60
tcctttaact ctatataatc tttgcgtttg aatggctgcc aatcaaacgc aaagatagat
                                                                      120
gttttctttg aatatgggcc aatttccgtg tatgcacctt gttgtcagga tcagctagat
                                                                      180
tatggtgtag taacaatgtc gatatctcaa tggcttgaca aaagtttggt ttccgctcat
                                                                      240
gctacrtgtt ctgtgagatc agtggggagc tcggagtttc cacagttacc agcaaacgga
                                                                      300
gagaattctg gagggcctcg aacaggcaag caaatgatct agcccggaag tgatgtttgt
                                                                      360
caetttcctt cacatctcat tggtctgaac tggtcacatg accccaggca accccagagg
                                                                      420
gccaggaaat tegggeteet tgtgettgee aggaaaggag agtggeeetg ttgaaacege
                                                                      480
ctgtgactga gacagtgaaa gaaatttgac ctaaccaact ccatctt
                                                                      527
<210> 23
<211> 451
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 204
<223> 99-27090-203 : polymorphic base A or G
<220>
<221> misc_binding
<222> 185..203
<223> 99-27090-203.mis1
<220>
<221> misc_binding
<222> 205..224
<223> 99-27090-203.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 431..451
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 192..216
<223> 99-27090-203 potential probe
<400> 23
gaactctcct ctaatagaac ttccaagttg gccccgcagg cactattttg gtgcagagga
                                                                       60
accepteaag ettgaettta aatetggete tgecactaaa teacceaggg cettteetet
                                                                      120
ttgggccccc gtttccctgt ctgtaaaatg agaggattga acagggcagt ccctagagtc
                                                                      180
tgttcagaag ttctcagact gggrcttggg ttcttgcact tttcattttg tcactgttga
                                                                      240
tgtcatcaca cacaccca cgcacagagt ggagtgagga tttcggctgc acagcaggat
                                                                      300
ggcccagatg ataggaggag gcagggggcg atcactggct gggaggatgg ctgggaaaag
                                                                      360
aggaggaagg ggaaaggcac gcgaggtcac aaatgcacca aaaggcattt cctggcmtag
                                                                      420
ccctgtgcct cccttctaaa gagccatcac a
                                                                      451
<210> 24
<211> 473
<212> DNA
<213> Homo Sapiens
<220>
```

```
<221> allele
<222> 221
<223> 99-27091-220 : polymorphic base A or G
<220>
<221> misc binding
<222> 201..220
<223> 99-27091-220.mis1, potential
<220>
<221> misc_binding
<222> 222..241
<223> 99-27091-220.mis2, potential complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 455..473
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 209..233
<223> 99-27091-220 potential probe
<400> 24
atcagcggat ggtgaagagg agatcagcgg atggtgggag gaaaaatgca ggaaatctct
                                                                       60
ggacttttca tggaagtatg attcaggaat aaggcagaag ccctcacaaa ccttccacag
                                                                       120
agcaagaggt ggcacaggca cagattctgc tacagagcag acctttccag agaggaaagg
                                                                       180
ttggtttggg aattttaaga agcatttttc tttgcataac rcaacaccag tcctctgtgt
                                                                      240
ttagaaaatg cctgtgtgaa ccatcacatt caagagaggg acacaagtgt cagggttcta
                                                                      300
ggcagccaag ggaagactag ccctttgcct ggaatttggc ttcattttct gacgaatcaa
                                                                      360
gatttgctct gctcctctgt gcacgccagg acattaagat gcgagaataa gaacttatag
                                                                      420
cctgtatatt tgccatctaa ttagtgtctt gggtcctaag tgctttgtgc cga
                                                                       473
<210> 25
<211> 472
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 145
<223> 99-27093-145 : polymorphic base C or T
<220>
<221> misc_binding
<222> 125..144
<223> 99-27093-145.misl, potential
<220>
<221> misc binding
<222> 146..165
<223> 99-27093-145.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
```

```
<220>
<221> primer bind
<222> 453..472
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 133..157
<223> 99-27093-145 potential probe
<400> 25
aggctaggag atgaggagtg gggctgggct gcctctgcac atcatcaaag ccaacactca
                                                                       60
gtctaatcca aatcttgcta gagcatagaa cataaggtag aatgagtctt taagcaactg
                                                                      120
ggagtcatct cgaggtaaac agaaytccaa gagtaacgaa ggcccagagt gaatttattt
                                                                      180
tgagagagtt tcctgttgga gtagcagaca ctctgcagta gtgtttttct ctctcctggg
                                                                      240
tgggactgcc ctgcctatat gcacttaagg catagagttt cctgttcttg cctcttctca
                                                                      300
gageettgea ttgaaactea aatgtattet cagaaattte tetecacaca atgacatate
                                                                      360
qcctctqtqc ttttactctc tttgtctttc tctttctctc aaccattgtt ttccacccat
                                                                      420
cctctttttc ctaaacttct taagattgtt ggccatttcc ctttctccct cc
                                                                      472
<210> 26.
<211> 455
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 406
<223> 99-27094-406 : polymorphic base C or T
<220>
<221> misc binding
<222> 387..405
<223> 99-27094-406.mis1
<220>
<221> misc binding
<222> 407..426
<223> 99-27094-406.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 436..455
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 394..418
<223> 99-27094-406 potential probe
<400> 26
ttataggtcc caagaagcag ggcctagaaa ccaagagctt gacacgcagt caaactccaa
                                                                       60
agcagtgtgt gagtgaagga aggaaagacg ggtgttgaaa agcaggtgac tttgagaagg
                                                                      120
gaggggtccc tggcagcacc tcccttcctc cccgtttcta ggctctaggg tggggctgaa
                                                                      180
tgatcatgag gcacaaaggt gggtgacatg caagtgctga gaagcactga gctcacaacg
                                                                      240
geceteatea tetteteaga gecaceaagg agetactgge caceaaggag etactecata
                                                                      300
ggccttcctg ttggaattac agaacccact tgaaaccaga gatcaagtcc agccctatcc
                                                                      360
```

```
accaggcatc ccaggagaag ccaagaccct atgcccagtt ccgccyggcc accaaggccc
                                                                   420
ttctgaagga gcaccctcat tggggaacct ctcca
                                                                   455
<210> 27
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 410
<223> 99-27096-410 : polymorphic base A or G
<220>
<221> misc binding
<222> 390..409
<223> 99-27096-410.misl, potential
<220>
<221> misc_binding
<222> 411..430
<223> 99-27096-410.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 432..450
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 398..422
<223> 99-27096-410 potential probe
<400> 27
gagtggagag atttgtagct cagctgcaag ttttatttgg agccttgggg ctgccaggct
gtgcacggaa gtgaggcatt agccagtgag tgaacctcgt gctctgccag cttcagcttc
                                                                   120
agtgccgttt tgattttctc tactagttgg aagatagtaa atcacatgaa gtcttgaaaa
                                                                   180
cttggttctg aaaggagcgc cagtggctgg gactggtgat ggagtggagg agcaagaggc
                                                                   240
300
ccccatttac catatgcttc gactgtagtt cccactgttt cagggtgcta gttgttggtg
                                                                   360
agaagtggag gaagccaaga acceteceeg ggaaaatggt ttteateaer cacaccaact
                                                                   420
gcatttattt gcaaatcttc acactgcccg
                                                                   450
<210> 28
<211> 504
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 99-27097-83 : polymorphic base C or T
<220>
<221> misc_binding
<222> 63..82
<223> 99-27097-83.mis1, potential
```

```
<220>
<221> misc_binding
<222> 84..103
<223> 99-27097-83.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 486..504
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 71..95
<223> 99-27097-83 potential probe
<220>
<221> misc_feature
<222> 213
<223> n=a, g, c or t
<400> 28
gttcttttca ctacctcctg cttaattttt aatttctaag attagaccct tcatctatcc
                                                                       60
atgacacctg cctgtcatcc ccygaaaaaa ggtgaacgcc gttcagaaat ttttctagcc
                                                                      120
tgageteact eccagtteac ttatttttge tttgteatgg etgeecagte eccaettgta
                                                                      180
gaccaggaat aggtcatggc tgcggggact acnacctgtc gctgctgcaa gggccggcct
                                                                      240
ctgtttccgg ggctgagtgg gggccagacc tgccaggagc accatcttct gtgggtcctg
                                                                      300
cotggatgto acatecegge eccaagaagt cactgeaaac ettegtatta ttgagettea
                                                                      360
catectagaa tttgctgtca ctgtggctgc tgcatgaagt tgtcctgaga gaaacgggca
                                                                      420
ttgtcattaa cagggaaatt gatggtctgg gggaaaagtc atcctcattc tcttgcagat
                                                                      480
ctatgggtga ttgagactgg ctga
                                                                      504
<210> 29
<211> 421
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 162
<223> 99-27098-162 : polymorphic base C or T
<220>
<221> misc binding
<222> 142..161
<223> 99-27098-162.mis1, potential
<220>
<221> misc_binding
<222> 163..182
<223> 99-27098-162.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
```

<222> 404..421

```
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 150..174
<223> 99-27098-162 potential probe
<400> 29
acttctgccc agtttggtgc aggggagctg ggtagttgcc gacttttcct atcttgatcc
                                                                       60
ctactcagtg taacaattta tetgtacaac tgattecate accaggatet ttagacceet
                                                                      120
etggtcattc agccaatcac aagcactcat ccacaggaca cygccgatga tgccatttac
                                                                      180
tgagcagtta ctatgtgett ggccctagtg agtaccgggt tagcttgtgt gaaccccatg
                                                                      240
gcaacccgtg agacaggtac catcatactc caagttgtgg atgacaaaaa actctccaag
                                                                      300
cagctaaaca atatggctta ggtctcacag tgagcaggga gctgggattt gtgcccagga
                                                                      360
ggcccgatca gagcctacct ccttaaccat taggccaaac tgcctccaca tgcagaacac
                                                                      420
t
                                                                      421
<210> 30
<211> 468
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 48
<223> 99-27550-48 : polymorphic base A or G
<220>
<221> misc_binding
<222> 28..47
<223> 99-27550-48.mis1, potential
<220>
<221> misc_binding
<222> 49..67
<223> 99-27550-48.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 448..468
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 36..60
<223> 99-27550-48 potential probe
<400> 30
tgtgtgtgtg gggtatgtgt gaacattttt catgcttgat gtgagccrga agaaaaatga
                                                                       60
gcttctctat ttgataagtg tggacctgcc cacagcacta aatttggttc tgccgtcacc
                                                                      120
ggcgccatga agcagcagcc tggtttagag gcttgccttt ggtttcaaat aatttctcca
                                                                      180
ggctcatgtt acatatgacc cattcacaga ggctggaggg catggcttct ccagtcctta
                                                                      240
gcactaaaga cgtgtctttt ggctcctgca cgactagcac aggcagtaga accagatggg
                                                                      300
ggatgctctg aggttgcaga ggcaggaagg caagcgggag agagcttggg cctggacaga
                                                                      360
gggatgaget ggctccctcc ccagctgtga aatctctgag tctcagtttg cttctctgca
                                                                      420
aaatgaggat aataatcccc acctcgggac tgaggattaa cgaggcaa
                                                                      468
```

```
<210> 31
<211> 452
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 335
<223> 99-27558-335 : polymorphic base C or T
<220>
<221> misc binding
<222> 316..334
<223> 99-27558-335.mis1
<220>
<221> misc_binding
<222> 336..355
<223> 99-27558-335.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 432..452
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 323..347
<223> 99-27558-335 potential probe
<400> 31
gtcaaatcaa cactcgtcta cattcaaatt tcacattttt ccccctctaa gataacagta
                                                                        60
taattgagaa ctgacaggga cctaatgaca gtatggtccc ctcacactga atggtcacat
                                                                       120
ttgcctaaat tgaaataacg tatgctagaa acaatcttaa gcagatctgt cattttaact
                                                                       180
atatgtgatg tagagttgaa tgttcattcc agataattta gtcaatgtag gtaactaatg
                                                                      240
gctcacacta attcaggcca agaaaatgca ttccctctct ttcttcctgt ccctttctct
                                                                       300
tgctgaaaga gaaatctcat ggccgcatat gttayacaat catgcccact tatgtaggat
                                                                       360
cacagaaggc agaatagcag agaagaaaga aaactggaga gttgggtcct gatcctagcc
                                                                       420
atcttgtatg accttagaca attcattacc tt
                                                                       452
<210> 32
<211> 465
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 106
<223> 99-27561-106 : polymorphic base A or G
<220>
<221> misc binding
<222> 87..105
<223> 99-27561-106.mis1
<220>
<221> misc_binding
<222> 107..126
```

```
<223> 99-27561-106.mis2, potential complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 446..465
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 94..118
<223> 99-27561-106 potential probe
<400> 32
cagtcactca aacaatgtca caaagaaccc tttgacagga atgtatcctg tgttgactct
                                                                       60
actttgctct gagtagtctt tccccaggtg atgataaaaa tggtcrtcat cgccaggctt
                                                                      120
gtgtcctgtt tagtaggaat atacaagaag agctcagtaa atgctggccc caccactaag
                                                                      180
caaaaacaaa acttttgttg ttgttattgt tgttttaaat aacagcttag acctttcttc
                                                                      240
ttteettgtt attetette atetgtaate eagtttteta ettetgaagt atagaatgtt
                                                                      300
ctgatgattt attcttcatt acccacaact tgcacatgtt tatttaaaaa tgccaggatt
                                                                      360
gcctggccgt tgtgtgctgt taacctttgt ttgctgttag tggatccctg aagttcaggc
                                                                      420
tcccagggga gcagataatg ggtatccagt tcctgcaata tccac
                                                                      465
<210> 33
<211> 470
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 364
<223> 99-27562-366 : polymorphic base G or T
<220>
<221> misc_binding
<222> 344..363
<223> 99-27562-366.misl, potential
<220>
<221> misc binding
<222> 365..384
<223> 99-27562-366.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 450..470
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 352..376
<223> 99-27562-366 potential probe
<400> 33
```

```
ttcctccacc accaetttcc tcatcaccgt gttcaqaqac ccccaaagsc ccctyamamt
cccagaaaca ccccctggc cactcctaac ttqccatqcc caqqaqttaq qtqcttccac
                                                                      120
tagtgacatg gagctggcgt ttggggggca cctcaqcaqq tqacqqqaaq aqaaqacccc
                                                                      180
agceteacea getgggetge ageagggaga ggagteetea tgtteeagea gggaetetea
                                                                      240
getgttttcc tgtaaaacca tggttctcaa ctgggggcca ctgagatgtc tagagagatg
                                                                      300
tttttgtttt cacaactcgg ggagggtgct actgacatct tgtgggtaga ggccaggaat
                                                                      360
gctkttaaac atcctacaag gaaggcacag gacagtctcc tacatcaaaa tatgacccag
                                                                      420
ccccaatgtc accactgctg gggttgacac tggcactgct atcttaatta
                                                                      470
<210> 34
<211> 1003
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 738
<223> 16-31-738 : polymorphic base C or G
<220>
<221> misc binding
<222> 715..737
<223> 16-31-738.mis1
<220>
<221> misc binding
<222> 739..761
<223> 16-31-738.mis2, complement
<220>
<221> primer bind
<222> 1..25
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 975..1003
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 726..750
<223> 16-31-738 potential probe
<400> 34
ccactttgga taaatgccct ctaactagca gcttttaact gcctttgcga tgggaggtct
                                                                       60
accacccttc ctttacccaa agatgaattt cggatcattt tctgtacaat ttttaaagga
                                                                      120
cgtttgaata atatttcttt ctttatcatt gcggacgctc ccaaatctca gcggaggtgt
                                                                      180
agcgcataag ggcagttgaa ggagatatag atcctataga tcctgtataa aagggggtct
                                                                      240
ggaattetge atttecegtt egetageatt egegaaacte ttgagacage gtacgettee
                                                                      300
tatggcatca gttggaattt aagggcaagg gagaagggtg ctcggcgtgc ggccgcggcg
                                                                      360
taccggagct gcactttgca gggagaagtg gctgcgtaat ccggagcaca gtcagtatgg
                                                                      420
tgctgtgtgc ttgttgtttt gttttgtttt ccacttttct cccccttttc ccgccacacc
                                                                      480
actattttgg aaagtttggc cactttggat aaatgccctc taactagcag cttttaactg
                                                                      540
cctttgcgat gggaggtcta ccacccttcc tttacccaaa gatgaatttc ggatcatttt
                                                                      600
ctgtacaatt tttaaaggac gtttgaataa tatttctttc tttatcattg cggacgctcc
                                                                      660
caaatctcag ccggaggtgt agcgcataag ggcagttgaa ggagatatag atcctaatag
                                                                      720
atcctgtata aaaggggstc tggaaattcg tgcatttccc gttcgctagc attcgcgaaa
                                                                      780
ctcttgagac aggctacgct tcctatggca tcagttggaa ttttaagggc aagggagaag
                                                                      840
gggacgaagc ttcttttggt ggcatcctta ctctgctact gaattttagg tgcgtggctt
                                                                      900
tgcctactca atttaaaaag accaggttta aataataatg gtttatggca ccatcagttt
                                                                      960
taattattta ttatgacata ggagttagga aaacttttga tag
                                                                     1003
```

```
<210> 35
<211> 455
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 300
<223> 99-27110-301 : polymorphic base G or C
<220>
<221> misc binding
<222> 281..299
<223> 99-27110-301.mis1
<220>
<221> misc_binding
<222> 301..319
<223> 99-27110-301.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 438..455
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 288..312
<223> 99-27110-301 potential probe
<400> 35
ttcacattgg gtggcagctg gtcgaaacat tcctgtcagt gactgcagga cagtaacctt
                                                                        60
cagacetega atgececeta attitetgaa atgaagitae agiteetiti etgiteaaet
                                                                       120
agcaagctaa agttcagccc tcttacctga ttccacactg atcatctgga aggaaggtag
                                                                       180
gattcaagga gaactctttg agtggaagag cagtcagaga tgtaattctg.cgcctgttct
                                                                       240
cttacagcaa aaccaagaac ttttgctcta agagagtgga ctttgggagt gaactttgts
                                                                       300
agatgattag atggtgatgt cctttcttgt taaaggagga aatccatgta ggagcctcag
                                                                       360
gatcgcacag gctgaggact gagtgttaaa catggcaggc cttccttcat ggggcttgag
                                                                       420
ggatttcctg cagtgccctt cctcctctc ctgac
                                                                       455
<210> 36
<211> 546
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 400
<223> 99-27563-400 : polymorphic base A or G
<220>
<221> misc_binding
<222> 381..399
<223> 99-27563-400.mis1
<220>
<221> misc_binding
<222> 401..420
```

```
<223> 99-27563-400.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 526..546
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 388..412
<223> 99-27563-400 potential probe
taaccacact gaaacctctt cggttgtctt gaaacctttc tactttttct gtactttttg
ttttgttctt ggtctcccgc ttggggcatt tgtgggactc cagcacgttt tctggcttct
                                                                      120
gcttcatcct gctccatcgg ggaatgacac actgcggtgt ctgcagctcc tggaaggtgt
                                                                      180
catttgacaa cacatgtggg agaggaggtc cttggagtgc tgcagctttg ggaaagctgc
                                                                      240
ctegtttecc ttttecteta gaageagaac cagetetacg agagtgagae tgggaacttg
                                                                      300
atggeteaga gageatettt teeteeeatt ttagaaaate agattttete etgtgggaaa
                                                                      360
aaaaaattee atgeactete tetetgttaa agateagetr tteeettetg atettggaaa
                                                                      420
gaggttctgc actcctggaa ccggtcacag gaacgcacag atcatggcag gatgcgctgg
                                                                      480
gacggcccat cttggcaagg ttcagtctga atggcatgga gaccgggaga tagaqqqqtt
                                                                      540
ttagat
                                                                      546
<210> 37
<211> 513
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 443
<223> 99-27573-443 : polymorphic base G or T
<220>
<221> misc binding
<222> 423..442
<223> 99-27573-443.mis1, potential
<220>
<221> misc_binding
<222> 444..462
<223> 99-27573-443.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 496..513
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 431..455
<223> 99-27573-443 potential probe
```

```
<400> 37
gtotogttto attoagtgac attttgaaca cacacgtgtt coctgtotgc agcacccagg
                                                                       60
tgctcttcac ctaagatace ccgtcttctg ctaaaccagt acaccagttt ccacgagcag
                                                                      120
tttcccgagg cttctgcact cctcagcatg ctctcagatt gtttcccctg ccggagaact
                                                                      180
ageaccgtgt tettcagtae cagcatggte teetggeeag ceectaggtg caateeteea
                                                                      240
acacggtgac actcagcaac ctagggccaa gtttacccac ttgtctccct atacacaatg
                                                                      300
ctcctgcacc tgctcaccta ccaggggccg tcccgccca gcagcctacc ctgtctgcca
                                                                      360
cagetetget teetggeatt eccacetetg ceteaagett tgeettteet etcaagetee
                                                                      420
ecgecetget ctaatettge eckteettgg etcageteca gttecacete ecceaataet
                                                                      480
cccctgtgg cctctctaac ccatacacct tcc
                                                                      513
<210> 38
<211> 411
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 133
<223> 99-28732-133 : polymorphic base A or G
<220>
<221> misc_binding
<222> 114..132
<223> 99-28732-133.mis1
<220>
<221> misc_binding
<222> 134..153
<223> 99-28732-133.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 391..410
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 121..145
<223> 99-28732-133 potential probe
<400> 38
ctgttgttgt tececectca caegcataaa ceagtgtaeg tgaateetaa ettgecaata
                                                                       60
cctcagagat aggaaaatat attttgatgt acagacgctt tatgggcttg tgctggaagg
                                                                      120
tcacgtgcct tartggtcat gagatcctgg tgcaaagtgg atagaaagtg cttctttgta
                                                                      180
tgcagcgtcc tccccttcgt agatggccag ttcccccgaa tgtctttaat atctgaactt
                                                                      240
gagaatgagg atgttgattt ctaattctag ccccaaccta gattgtctat ggctcttcag
                                                                      300
ttatcctgga aaatcaaaat atattttact atcttgaagt attggcaagt taggattcat
                                                                      360
aaacacttgg atgaccagcc acaaggcaat gtggcattgt ggttaagagg c
                                                                      411
<210> 39
<211> 457
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
```

```
<222> 56
<223> 99-28735-56 : polymorphic base C or T
<221> misc binding
<222> 36..55
<223> 99-28735-56.mis1, potential
<220>
<221> misc binding
<222> 57..76
<223> 99-28735-56.mis2, potential complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 438..456
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 44..68
<223> 99-28735-56 potential probe
<400> 39
ttgtcctgat taccatttct aagactaaag aatctttacg tggtgaaagt cctagycagc
                                                                       60
catcattcgg cacaacagtg gcttgtcaaa agggtatgta gcaggtcata ccagcctcag
                                                                      120
gagggtagag caaagcaaaa aaggaaatct tgccatgtca tgtttcaaag ctcttgtgaa
                                                                      180
tettgagate teattagaaa tetgteacag ttttaataga gteecaceaa gatgtgetet
                                                                      240
gcctgctctt ttgcaggttg gtcaggatag gaagcagggc ctccccagtg ccagttcctc
                                                                      300
ggggaacaat tcacgagaat ctaaggagtt gtctcccagc agtgccagga aagagtggct
                                                                      360
gccaaaatgt tactagtaat taaggactag gcacctgagg gcagcaacta agcacatact
                                                                      420
agttattata acatccagta gaacaaatga aactcct
                                                                      457
<210> 40
<211> 453
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 399
<223> 99-28736-399 : polymorphic base C or T
<220>
<221> misc_binding
<222> 379..398
<223> 99-28736-399.misl, potential
<220>
<221> misc_binding
<222> 400..418
<223> 99-28736-399.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
```

```
<220>
 <221> primer bind
 <222> 434..452
 <223> downstream amplification primer, complement
 <220>
 <221> misc binding
 <222> 387..411
 <223> 99-28736-399 potential probe
 <400> 40
gtttcttatt actgattctg aacatctgtc acaaagcaga ttttgttcag gacattatga
                                                                     60
 acaactgcat cattcattac cgggtgaaat aagtgtaaca ccaccaggcc actataccac
                                                                     120
 180
 aatggcatga atacaatgat tattcaatgt atagtctaaa tatttcttat ccttttaatc
                                                                    240
 cacttgtatg aaattccttt tctcaagata gatgaggggt aaaagtgaca ttttctaacc
                                                                     300
 ttctcctcta cttcgaaatt ctgtgaactt cctctaatca gaactaagta gcggtgcagt
                                                                     360
 ttctctttaa tgataaatga tttgttggtt ttttgtgtyc attgcttaga agcagtgagt
                                                                     420
 gttaaggaca acaccttaaa agtgttagct ccc
                                                                     453
 <210> 41
 <211> 458
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 319
 <223> 99-28738-319 : polymorphic base C or T .
 <220>
 <221> misc_binding
 <222> 299..318
<223> 99-28738-319.mis1, potential
 <220>
 <221> misc_binding
 <222> 320..338
 <223> 99-28738-319.mis2, complement
 <220>
 <221> primer_bind
 <222> 1..18
 <223> upstream amplification primer
 <220>
 <221> primer bind
 <222> 441..457
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 307..331
 <223> 99-28738-319 potential probe
 <400> 41
ggagagacac actgagacat tetettetag tecagactat gagageatgt aacacatata
                                                                      60
 acatgagacc cagcacctag caccgtgtca gacacatgat tatctgtgta atgactgagt
                                                                     120
 aagcaaattc agagatgtgc tctcaaagcg atctggcagc aagttacttc cttcatgcct
                                                                     180
 tcactgacct tgactctgac attgttcttc ataccaggat ttttagagac ttctcacttc
                                                                     240
 atccaaacac cccagctggc agtgctacta gtgtgcagcc accatcaggg aaaagctttg
                                                                     300
 gattctatgc aaaacaggyc ctcagggttg taacaatgtg ggggcctgag tggcaagggg
                                                                     360
 cccagggctg aagtcagagc cctagaggag actcctggct acctagatgc atctgggaaa
                                                                     420
```

```
ttaacccctg ggccttgctc gctgtwacct gcaatacq
                                                                      458
<210> 42
<211> 509
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 364
<223> 99-28739-364 : polymorphic base C or T
<220>
<221> misc binding
<222> 345..363
<223> 99-28739-364.mis1
<220>
<221> misc_binding
<222> 365..384
<223> 99-28739-364.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 489..508
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 352..376
<223> 99-28739-364 potential probe
ctcctcctcc aaaacacacg gagacactgg tatttgtgtg cacatgtgtg tacatatgta
                                                                       60
caaatgtgtg actatgtatg tgtacgtgtg tacacgcaca ctttctttt aggaagactc
                                                                      120
caaatcatct cgggacttta gacctggaga acgtaagtct cctgggtcag acgcctacca
                                                                      180
ggctgtcctc ttttatccaa actggcagat ctgcattggc tttaggcact gaccctcatt
                                                                      240
cacatggctg tgtgcccaga gcaggtatcc tataccccgt gtgattctca ttggtctaaa
                                                                      300
teettgeaaa tgatggatgt agggtaagea tgtgaeteag ttetgeatae tgggatgtga
                                                                      360
ggayggtaa actaggaaga aattcctgga aaagttttct cattcttaaa ggaacacaag
                                                                      420
gatgagacac ctccttccgc cagagtgtgg ccatgataca tggaactgtg gtagtcatct
                                                                      480
cgtcccgcca gggaaacaag acagaggcc
                                                                      509
<210> 43
<211> 549
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 185
<223> 99-27875-185 : polymorphic base C or T
<220>
<221> misc_binding
<222> 165..184
<223> 99-27875-185.mis1, potential
```

```
<220>
<221> misc_binding
<222> 186..204
<223> 99-27875-185.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 531..549
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 173..197
<223> 99-27875-185 potential probe
<400> 43
taagggtaaa ggagagagat ttaagattaa tatagtaaaa accctataaa cctaacttta
                                                                       60
agttaactat taagtatcta tattaactca tgaaaagttt atcttttaaa aaatatcaac
                                                                      120
ttcctagetc agatcactga caaggtttat aattagtgat caataccatc cccactaata
                                                                      180
agtaycaagt accaggqctc cttqgagaaa tgtctgattc caagtctggg acaggaaatg
                                                                      240
tataagatga gatggcaata tettgtcata ttaaaggaag ttttcagaga etacaaggge
                                                                      300
tgtgtcaaaa ggactcagca gagaactcct agtcaccaaa gactggacaa tttaaccacc
                                                                      360
aataagataa ctgcaactga ctgaatatca aatatttgaa tctaaagttc acaacagtag
                                                                      420
gaggaaaaaa cgaaaaggca ggcaggaact cgtgcatttc tgaaggatgt tagggaacca
                                                                      480
actaatggaa aacaggttta aaaagacaag gggtgggaga atggatgaag macttattct
                                                                      540
cacctttct
                                                                      549
<210> 44
<211> 462
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 176
<223> 99-27880-176 : polymorphic base C or T
<220>
<221> misc_binding
<222> 156..175
<223> 99-27880-176.mis1, potential
<220>
<221> misc_binding
<222> 177..195
<223> 99-27880-176.mis2, complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 444..462
<223> downstream amplification primer, complement
<220>
```

```
<221> misc binding
<222> 164..188
<223> 99-27880-176 potential probe
<400> 44
gtagggtgaa agttgtggca ggaggattgt tctagatatc tagggcagac aacattgctq
                                                                       60
aagttggggt gaggatgtat cagtaaccaa ctggagttct ggaaacaacc tccgtccagg
                                                                      120
tatttggggg gcctatatga cagaaaggcc agcaagcaag cttaccctca tcactyactt
                                                                      180
ggcctctatt caaatagcct acttttgtct gatctatcca gggatgtgtg ggaaggcata
                                                                      240
ttggggctgg tgagttctat atttctttag aaatttatta tgactcagct gtttatgact
                                                                      300
taagtttttt gtgatttcta tacgttattc ctggtatcat ctcttagagt aatacattcc
                                                                      360
atataaaata cgaggtgtag ctaaacataa ctttctaagg ccccaaagtg ttttcccagc
                                                                      420
eccagegece acceatttee tgtettetet tettaeteae tg
                                                                      462
<210> 45
<211> 497
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 373
<223> 99-28747-371 : polymorphic base C or T
<220>
<221> misc_binding
<222> 353..372
<223> 99-28747-371.mis1, potential
<220>
<221> misc_binding
<222> 374..392
<223> 99-28747-371.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 478..496
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 361..385
<223> 99-28747-371 potential probe
agcaacactc agtgggetcg tegecatgae gecageetgt ggaggaaagt ggggagggga
                                                                       60
ccaacacagg acccctgtgg cagaagctgc cttggaactg agaaacatca ctagaactca
                                                                      120
tcaagccctc cacccacctg gtgcagatga actgaggtct gaagagggga gaccacctgc
                                                                      180
ccaaagggag aaaagcagtc agtaggatgg ccgggattag atctggctct cagttcctag
                                                                      240
ttcctatgaa gtaatgcagg gagaagacag ctggctggca ggatgccagc agcatccctc
                                                                      300
caggggggca aggggctgcc tttctctaca ggcttttagg gaccagacct tctcaatcta
                                                                      360
gatagacaga atyctccctc ccaggacatc cccagaagcc acagagttct gggggctctc
                                                                      420
agagatagca ggagaccacc accccagaat gaggatagcc attcttggtg tgagcrggat
                                                                      480
ttcccctacc caaggac
                                                                      497
<210> 46
<211> 448
<212> DNA
```

```
<213> Homo Sapiens
<220>
<221> allele
<222> 352
<223> 99-28753-353 : polymorphic base C or T
<220>
<221> misc binding
<222> 332..351
<223> 99-28753-353.mis1, potential
<220>
<221> misc_binding
<222> 353..371
<223> 99-28753-353.mis2, complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 427..447
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 340..364
<223> 99-28753-353 potential probe
<400> 46
ccacagccct cgctattaac catggggcag tactccctcc acaagaggca ttcggtttgc
gaggagagct tagaggtttg gaaagaagac tcatacctcc ggcctggagg atcagggagg
                                                                      120
acttagccct ctgagctgga cttctgggga caggttggat tttagcaggt gagtqtaata
                                                                      180
ggcacaggag aggccctcta ggctgagggg actgagcaaa ggcaaggaga caggctgggc
                                                                      240
tttgtgcctt gggaggagtg tgttgtatgg agaacaggga gtaggagaaa gaaacaatga
                                                                      300
ggctggggag gggcatggag gtcaggtgat gcagggcatt ctacagggct tyaccatctg
                                                                      360
gagagggagc ctgggtgagc ttgtgagcag agaagctcaa ttttgggagc acactgtcct
                                                                      420
ctggaggaaa ggagaagtaa ggggattt
                                                                      448
<210> 47
<211> 471
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 207
<223> 99-28755-206 : polymorphic base A or G
<220>
<221> misc binding
<222> 187..206
<223> 99-28755-206.mis1, potential
<220>
<221> misc binding
<222> 208..226
<223> 99-28755-206.mis2, complement
<220>
```

```
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 452..470
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 195..219
<223> 99-28755-206 potential probe
<400> 47
tettgaggga tatgaggeat tataaaaatt cetgggttgt gggagaatga gtaettatea
                                                                        60
tottotott tgagttaaat ttttttgtgc ccaattttat agaaatcatg tggatccctt
                                                                       120
ttgcaaatgg atgaatgctg ttagaagctg aacaggcaag gctgtatgtt tggagaagct
                                                                       180
gggaccetat cegetgeact cagagerggg accateegce aagggagaca gggaagggte
                                                                       240
tgtgccacct gctggaggga gggcagagga aaggcagggag aaggctatgg gtctgctgac
                                                                       300
aaacccacgc tgcctctgag ggtgagggaa ggttgggctt tcctgaaggg aggggcctcc
                                                                       360
atttectgte tgatgetgge atggeetgtg ctaggtgtee cegtgggete teatteagee
                                                                       420
ttcactgtga gcctccgagg tggacttaga tccattgcta aacagatgag g
                                                                       471
<210> 48
<211> 541
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 366
<223> 99-32333-366 : polymorphic base C or T
<220>
<221> misc binding
<222> 346..365
<223> 99-32333-366.mis1, potential
<220>
<221> misc_binding
 <222> 367..386
<223> 99-32333-366.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 520..540
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 354..378
<223> 99-32333-366 potential probe
<400> 48
acttagttca ttctttgagg ttaaatgtcc tagaaagaac yayacggttg atgtctaaca
                                                                        60
ttacgtacac tcaagcttta gaatggccaa gtggatgacg ctgtttcttt caattaacct
                                                                       120
gacatataca accteteett tetagecatt ettetggttg gettteetag taatetgeee
                                                                       180
```

```
aggagtgtaa cttctgcagg cagaggtgag gtaaaaaatgg tgaagtaagg caaggagata
 aagaggaaga aggcaaggag cagtgattca gaagcatcag accgaaaaga aaatttqtqq
                                                                       300
 gagetgatga agaettetta taaaetteta tetteageaa taettgaatg etaggaaagg
                                                                       360
 ctatayccca gacaactatt atcccattta tgatctgtca agctttcaca gtgaaatcac
                                                                       420
 traggattet tattttttt aaaaaaacce cagatecetg ggtetragae ctagtgaate
                                                                       480
 agcateteca gagtagaace taggaattea catetttace ecaaaagtac eccagacaat
                                                                       540
                                                                       541
 <210> 49
 <211> 416
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 323
 <223> 16-38-323 : polymorphic base A or C
 <220>
 <221> misc_binding
 <222> 300..322
 <223> 16-38-323.mis1
 <220>
 <221> misc_binding
 <222> 324..346
 <223> 16-38-323.mis2, complement
 <220>
 <221> primer_bind
 <222> 1..28
<223> upstream amplification primer
 <220>
 <221> primer_bind
 <222> 389..416
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 311..335
 <223> 16-38-323 potential probe
 <400> 49
 agttgetett ttatgttttg catettacet ggtattgeet ttgeecattt eactgetgea
                                                                         60
 atcacttgcc gccctcctaa catgttgagc gtagtcatga tcctccaagt tgagtctgga
                                                                        120
 acagagetat catatectge atataacaet teaggtteaa taaceteeaa eagtgacaee
                                                                        180
 agggtagggg tgagttgtgg taacgttgca ggaactattg ttttgttacc aggattttca
                                                                        240
 gaggtttctt gtgagactcc tgtagtggcc tgctgaattc cttttatttt tttctttgtt
                                                                        300
 tttcgagctg tgggtattta aamaaataca tagaaatgaa ctgtaatggg aaggtctgcg
                                                                        360
 ctacacagtt tattcaagaa gtattttac tttctaaaac tattaagatg ggagaa
                                                                        416
 <210> 50
 <211> 506
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 179
 <223> 99-28484-179 : polymorphic base A or T
 <220>
```

```
<221> misc binding
<222> 160..178
<223> 99-28484-179.mis1
<220>
<221> misc_binding
<222> 180..199
<223> 99-28484-179.mis2, potential complement
<220>
<221> primer bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 488..505
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 167..191
<223> 99-28484-179 potential probe
<400> 50
geggetacaa aatattetgg tactecatee tagaccagag tttcaaggtt cgttateatt
                                                                       60
tgtagcatga tactggatcc tcacagtgct tgcctttcat tcaggtgcca ggaaacgtct
                                                                      120
gcctgaatga atgggtgtaa tttacctgca cattttacat gcttctctag gtgtgtgawt
                                                                      180
aactcataat ccatccatga ctttcaccca taatcctcct tgtagcaatt gctttgcttg
                                                                      240
caacaaaact aagtagacat atctagcttt atgcatggtt ttctctctc gaactctaac
                                                                      300
ataaactcag cctcaggaat tattcggttt ctactacatt tgccattctg attgggaacc
                                                                      360
accagcattc aggtattcac ctggaacaag gcattttgtt ccaagggttc ctcacttaaa
                                                                      420
agcaagcacc ctagcaatag ttcataatgg aacttcttaa cattctcaga atgtttggca
                                                                      480
cagctgtgag tgaacacaca ttgagc
                                                                      506
<210> 51
<211> 486
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 364
<223> 99-30853-364 : polymorphic base A or G
<220>
<221> misc_binding
<222> 345..363
<223> 99-30853-364.mis1
<220>
<221> misc binding
<222> 365..384
<223> 99-30853-364.mis2, potential complement
<220>
<221> primer bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 465..485
```

```
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 352..376
<223> 99-30853-364 potential probe
<400> 51
tgttctcaag caaggtcggc aaactatgac ctgcccgtca aatccaacct gccacctgtc
                                                                       60
acctaacaat totgtaactg otoccacata caacatggto gtoatcataa atoctatagg
                                                                      120
tattgttgag agcaggagga aagtttggtt gagtgagtga gagaccttac ccaagccttc
                                                                      180
ctgtggtctc taggagtcat ggcagagttc gctgacactg gtctgctttt aaccagcctt
                                                                      240
gccagtgacc tttcaaattc cctgaggagc aaaaggccaa attgaacctg aaagaaaaca
                                                                      300
cctctcagtg ttgactgagt tgcagtagaa aatggacctg acaaaacgtt agtacacttt
                                                                      360
ctcrattggg ttagctcaaa atatgttatt aggtcttttt tccagaggaa aatgcttaca
                                                                      420
cagaccetet tectececae teetteaeet etacaggaga aaatgaggmw wyacagaaca
                                                                      480
ctatta
                                                                      486
<210> 52
<211> 467
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 198
<223> 99-28485-198 : polymorphic base G or T
<220>
<221> misc binding
<222> 179..197
<223> 99-28485-198.mis1
<220>
<221> misc binding
<222> 199..217
<223> 99-28485-198.mis2, complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 449..466
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 186..210
<223> 99-28485-198 potential probe
<400> 52
gcattataag gcaacacctg gatctgaatt cagctctgcc taattccaaa atctatgcac
                                                                       60
ctcataacct tgtgactgtt gcctggcagg ggcctgcaga gtagcatcca ttaagcttga
                                                                      120
cagagttttt taagattatg tgggtcactt aacagacagt cttaaggtaa ggttaaacat
                                                                      180
caaagttaat ttctgttktc tatctatcct gccccttcta tccttcatat cacaatggag
                                                                      240
cacaaattat aattaagaga tacaaaagca ttcagtcact tccatttttt tctttagata
                                                                      300
cttactatat taagtettaa atgaacatat tggcatteca aattattaag ataatgteat
                                                                      360
gctggtcatt gaaatgctaa attaacatga agactacatt tcaaaaatac aaaagtataa
                                                                      420
ataggagtgt tttgtatatt cataccacga tttttgccct tagagga
                                                                      467
```

```
<210> 53
<211> 474
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 354
<223> 99-30858-354 : polymorphic base C or T
<220>
<221> misc_binding
<222> 334..353
<223> 99-30858-354.mis1, potential
<220>
<221> misc binding
<222> 355..373
<223> 99-30858-354.mis2, complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 456..473
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 342..366
<223> 99-30858-354 potential probe
aatctactgg gaaactgtcc atttcaacaa gagcacctca gacagtaact ggaaagagaa
                                                                       60
atagctcata ttctcaggaa cgttagtcat cttgaagcag catgattcgt gatacctgga
                                                                      120
aaatgcacat ggcagtcact aaaattgggt tctagggata cttttaataa gatttgagag
                                                                      180
gagetggate catteattee catggtacet aacacageae cactacacag caggeetgte
                                                                      240
ccaaatttcc tttgctgctg gagaacatcc tcatggggga gcccccaagc tgcctaggaa
                                                                      300
atgggttaac aggagggcac tcagggatct ccttcagttt ctccagccat cttygctgcc
                                                                      360
acgcccaagc ccaggccacc ttcacctctc acctgggege ttccactggc cgcctgacac
                                                                      420
atcttgtcac tggcttccac tcttgctccc agaacccctt cttcacatag cage
                                                                      474
<210> 54
<211> 489
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 311
<223> 99-32002-313 : polymorphic base A or G
<220>
<221> misc_binding
<222> 292..310
<223> 99-32002-313.mis1
<220>
<221> misc_binding
<222> 312..331
```

```
<223> 99-32002-313.mis2, potential complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 472..488
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 299..323
<223> 99-32002-313 potential probe
aagaccacat ttcagcaagg actggctctg aatgacacct ggattctatg gcctttccct
                                                                       60
ccactttggg aagctcttta gttagacagg tactgtaggc ggcaggagaa aaaaagctaa
                                                                      120
ttattacttg ttggagtett gteteaggea tgetgtgggg etgtgeaaga ttegetgete
                                                                      180
tgctqctqtt qtcattttga tgctacaatt acagagaggc ggttcagcac ccagccgate
                                                                      240
ggtgtggctg ccaaacacat ttgagcatga caagataaat ttgttagaca ccagcacaqq
                                                                      300
gtgggtgaga rgacatcctg ctgactttat aaagtgatgt ggggcagggt tgtcgaggta
                                                                      360
agtgatgatt gtcaagtttg ccagagatga tagataactc ctttggcaga acacctaggt
                                                                      420
catteetttt aaagteaggt agetaagagg etgtttggtt tetgeagege tgetacetae
                                                                      480
ttggggaac
                                                                      489
<210> 55
<211> 526
<212> DNA '
<213> Homo Sapiens
<220>
<221> allele
<222> 366
<223> 18-15-366 : polymorphic base C or T
<220>
<221> misc binding
<222> 347..365
<223> 18-15-366.mis1
<220>
<221> misc_binding
<222> 367..385
<223> 18-15-366.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 507..525
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 354..378
<223> 18-15-366 potential probe
```

```
<400> 55
atgaaattag aatgacctac atcaaagagc taggaaaagc cattgtcaag agggaaggaa
                                                                       60
actccaqcca qaactggcag cggttttatc aactqacaaa actcttggat tctatgcatg
                                                                      120
aagtaagtgt caaacataaa gccaaatata agagttttct gggacaaagt atgttttgat
                                                                      180
tagtgaatat aattatatac cagcagegee eccaeeeeeg ecceeagttt gtggatgttg
                                                                      240
gtgatagctt gagttcaact tatgaacttc agttttgtag acatttttcc taaggccaat
                                                                      300
tatgaaatat cctttcacct agtcatgtgt atataaaatc accatgttat tacagaattt
                                                                      360
agtaayactg tttttaaaaa gtatgattaa tccattaaat tagaataatg cacccttcat
                                                                      420
atattatggt actacagtga ttcatgaaat aattctatat aattctacat acaatcaaag
                                                                      480
aaatataaaa tgtgttttgt acggaagtgc ttatttttca tctggg
                                                                      526
<210> 56
<211> 426
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 174
<223> 18-20-174 : polymorphic base A or G
<220>
<221> misc binding
<222> 155..173
<223> 18-20-174.mis1
<220>
<221> misc binding
<222> 175..194
<223> 18-20-174.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 408..425
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 162..186
<223> 18-20-174 potential probe
<400> 56
ttetetette agtgtteatg aaccacagat aagtteettt eecacatttt eacagteata
                                                                        60
ggatccagta aggaaggccc gagtgatact tgctgggtca ctgagctggt gatgcctggg
                                                                       120
ctcagctcca gacatgctgg gtcccaggcc tgagcttgtg tcttcaaact aggratacat
                                                                       180
caattactta attattgctg gtacaaaaca gggtctaagg aaggccaggc tcaagagcac
                                                                       240
agttaaaaaa gaaatcccct ccacagctgc ccttgccctg gttggggtgg aggccagcag
                                                                       300
gcccctcatt gccaggtagg aagcattaga tacgcctgat gagctagaag ctttcttttt
                                                                       360
tadacaatga agtagaggca aggtgttcta actccccgtc cagagaagag smaggaaagc
                                                                       420
tagaac
                                                                       426
<210> 57
<211> 458
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
```

```
<222> 178
<223> 18-31-178 : polymorphic base C or T
<220>
<221> misc_binding
<222> 158...177
<223> 18-31-178.misl, potential
<220>
<221> misc_binding
<222> 179..197
<223> 18-31-178.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 437..457
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 166..190
<223> 18-31-178 potential probe
<400> 57
gtttttgtat gattcagtgt gaattaaatc ccacagtgta aaggacttta ctttcttaat
                                                                       60
gtagattttc aaatacacaa ttactgatgt ttataagtag atttattaca ccaaagcacc
                                                                       120
tagcaaattc ttgaatggat caggtcttat ttttcagtct tactttgcaa atttaagyca
                                                                       180
aataattaag gatttgttaa atatttgtct taatatcaag cttttgcata tcggggccct
                                                                       240
cttttataag ctttataagc aatcttttgt tttctctgct tgctcaaagt agctatgttt
                                                                       300
gttgtatctg ttagtatttg ctctataaca aacatactgg gtgccttccc acttagattt
                                                                       360
ggcaattatc actcctgtaa atgagatatt acataagata ggaaaaagaa cagtatcttt
                                                                       420
ccaagaagaa tagtatcctt ccatattaac agtttaga
                                                                       458
<210> 58
<211> 474
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 395
<223> 18-38-395 : polymorphic base A or T
<220>
<221> misc_binding
<222> 375..394
<223> 18-38-395.mis1, potential
<220>
<221> misc_binding
<222> 396..414
<223> 18-38-395.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
```

```
<220>
<221> primer_bind
<222> 456..473
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 383..407
<223> 18-38-395 potential probe
<400> 58
actgtaattg tatggtaaca tttaactgta caggacttgg gaagttaggt ctagctgtga
                                                                    60
120
aatgtgagtg ggggccctaa aaatccccac tgttttcgcc attctgacta ccacccactc
                                                                   180
cccaccaaag gtccctgggg cacaccctgc agaccttatt actttagggc acacattttg
                                                                   240
aaaagggctg actttgctaa tttgacttgg cattttgatt aaagttactt tcatattttg
                                                                   300
attaaagtta taactgcatg atacaggcat actcttatca ccagtgcttt aagaacatga
                                                                   360
aacgggaagc tgatgacttc taaaccattt cacawtgagt ctaaattcac tgcttaataa
                                                                   420
taaataacaa tgataataat agtaacagat gtgtaccact cacatatacc acca
                                                                   474
<210> 59
<211> 469
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 192
<223> 18-2-192 : polymorphic base G or T
<220>
<221> misc_binding
<222> 172..191
<223> 18-2-192.mis1, potential
<220>
<221> misc_binding
<222> 193..211
<223> 18-2-192.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 450..468
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 180..204
<223> 18-2-192 potential probe
<400> 59
catcaaaata tcccaaaaga tgtttggaaa atatgttttt ataagaccta tagattgtga
                                                                     60
ttgagtaggt ttgaggtggg gcctgtgtat ttgtattttt caacaagctt ttcaggtgat
                                                                    120
tatgataagc aaccagattt agaaaccagt gaataagttc aacgagatga tttgcacagt
                                                                    180
ggcctctttt aktcatcact taggttctgt tatttttaga gccaaattaa tcaatcagtg
                                                                    240
cattgtttta acatccttgc cttacatatc ttttccaaaa atttttaatt ttaaagggaa
                                                                    300
gaagggaaag ggaaagataa tttcctatgt ttgtgtgaac acatccttgg ctcttctaat
                                                                   360
aatatgaaat acagtaaata atgacttgta actattataa ttgtttttaa cattcatgaa
                                                                    420
```

```
tgaaaactaa ctacaatgtg ggttgattgg attccaggtt tcactctgc
                                                                      469
<210> 60
<211> 451
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 211
<223> 99-26921-210 : polymorphic base A or G
<220>
<221> misc_binding
<222> 192..210
<223> 99-26921-210.mis1
<220>
<221> misc binding
<222> 212..231
<223> 99-26921-210.mis2, potential complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer bind
<222> 431..451
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 199..223
<223> 99-26921-210 potential probe
<400> 60
gaggaagatg ggttacttat ccatcaaatc atgttagtca cagactcatg gctgcttttc
                                                                       60
ggggggcatt agccccaccò gcactgctca cctgcctggg tttgagccaa gaggagctcc
                                                                      120
agtggccaga gaaagcctgc aggcaaaaac ttgcatcaga cagaggcctt aagttcatgt
                                                                      180
gtatgaaaat aagtgccaag gagatttggt rggatccctg caatgtctgc tacaaatgtc
                                                                      240
aagactettg getggaaace tggecagaat atggtteeac tteetgaaac eggaaacatt
                                                                      300
ggtggccaaa gaagaaggag caggcaaagg aagggagctg gcaaaggaga ctggtggagc
                                                                      360
actagcgatt taggagggaa gcaggaaatt gtactatcat gggagtgatg agaagtgacg
                                                                      420
ttttagaatg cccakttaat acatagccca a
                                                                      451
<210> 61
<211> 327
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 250
<223> 16-215-80 : polymorphic base C or T
<220>
<221> misc binding
<222> 231..249
<223> 16-215-80.misl
<220>
```

```
<221> misc binding
<222> 251..270
<223> 16-215-80.mis2, potential complement
<220>
<221> primer bind
<222> 171..188
<223> upstream amplification primer
<220>
<221> primer bind
<222> 284..303
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 238..262
<223> 16-215-80 potential probe
<220>
<221> misc feature
<222> 29
<223> n=a, g, c or t
<400> 61
ccctgcccac cttccaagta actctgtgna acctcttggt tcccttgaag ggtgattcgt
                                                                       60
caacccgtgg gcaggatttt ctttgcgggc acagagactg ccacaaagtg gagcggctac
                                                                      120
atggaagggg cagttgaggc tggagaacga gcagctaggg aggtaagcag gaaagcccag
                                                                      180
getetetece tecceeatgg tgactttett teaggtetta aatggteteg ggaaggtgae
                                                                      240
cgagaaagay atctgggtac aagaacctga atcaaaggta agtttggtga ctctgggcac
                                                                      300
tatctctct tagaccaatc atggaac
                                                                      327
<210> 62
<211> 480
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 368
<223> 18-132-368 : polymorphic base C or T
<220>
<221> misc_binding
<222> 348..367
<223> 18-132-368.mis1, potential
<220>
<221> misc binding
<222> 369..387
<223> 18-132-368.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 461..479
<223> downstream amplification primer, complement
<220>
```

```
<221> misc binding
<222> 356..380
<223> 18-132-368 potential probe
<400> 62
ccccaactaa ttctcccctg ttgttcagaa tgaaattcag aatatagtgt catggaaatt
                                                                       60
gaactggcct ttttaactgt atcaaacatg gtagaaagat tggtgagcat gagaaaacac
                                                                      120
caaaagattt atcgaagtac acagtgtcct ctggctgttg gcccctgtgc cttgtctgca
                                                                      180
gattggggaa tcaccccagg tcgggcaatg cttgctctcc attggcctcc catgtattcg
                                                                      240
aattagcatt gagagcaaga gagaggcagg aacgagaaac agggtcctgg aaatttqttc
                                                                      300
tettggggca agtgcatggc cactgatgcc tgaagatttg gatgcagacc agacaacctc
                                                                      360
ttggggtyct tttctgcatt gaggtttgat ttttattgag ttaaaatctt aacaataaag
                                                                      420
atattttagg atggggccag actgcaaagt acataaaagt caggaaggag aacacaaaga
                                                                      480
<210> 63
<211> 505
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 292
<223> 18-133-293 : polymorphic base A or C
<220>
<221> misc_binding
<222> 273..291
<223> 18-133-293.mis1
<220>
<221> misc binding
<222> 293..311
<223> 18-133-293.mis2, complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221>.primer bind
<222> 487..504
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 280..304
<223> 18-133-293 potential probe
<400> 63
agatgtgaga agtgtggcta gctgacagcc ccttgctgtg attttcttca ggatctgcct
                                                                       60
cagctttagt gttaacttca caatattctt ggggaaacac aagccaatga ctaaacaaaa
                                                                      120
cagtetteat aggaaaacce geagtgaatg actaageaag geagtggtat ggagetagae
                                                                      180
atttattcca gttgagtaac tccgggcttc tctgagaagt atctttcact gggaactccc
                                                                      240
acttggctgg cagagacttt ccagatctgc atctggatag ccctcttctg amgtttcctt
                                                                      300
tcagaaagag agataaagtt tatttttgt ttgtatgaag atgaatttct tttgccttca
                                                                      360
caattgaata acaacttacc ttggtaaagg atttttggct caaaataact tttcctctga
                                                                      420
accepttctc cccagtgcct aatattgagc aaatgtcaag cctagagaac agttaaaaga
                                                                      480
atatttgacc aacaccaaca tagtc
                                                                      505
<210> 64
<211> 450
<212> DNA
```

```
<213> Homo Sapiens
<220>
<221> allele
<222> 191
<223> 18-12-191 : polymorphic base A or C
<221> misc_binding
<222> 172..190
<223> 18-12-191.mis1
<220>
<221> misc binding
<222> 192..210
<223> 18-12-191.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 431..449
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 179..203
<223> 18-12-191 potential probe
<400> 64
tttgcctagt tttgactgtt ggagcatcat attaaagttt tacatattaa aaaataaagt
                                                                       60
caacaaggtt ggggaataca tgcaaaaaca aaacaaaatc cctaaatgtg aacaattggt
                                                                      120
atcagaacca cagagaaaaa aaattcaaac taatcctagc attttgaaga caatgctttg
                                                                      180
actatatgcc mttggtggaa aacattctaa agataaaatt gcaatgaaat tttaaacatt
                                                                      240
gcatttcatt tattggtagt ggtatgggta tagaaattct gaaattaatt tcttgtatgg
                                                                      300
taggatatag aaaatataaa taataaatat atcaatggtt tggggacaaa gttactcact
                                                                      360
gtgagaaaaa tgaggaaaaa taaagaattg gaaagtagca agagtcctgt gttcgtgaat
                                                                      420
tgggattaaa ggtattgata tataggagca
<210> 65
<211> 536
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 138
<223> 18-11-137 : polymorphic base A or G
<220>
<221> misc_binding
<222> 118..137
<223> 18-11-137.mis1, potential
<220>
<221> misc_binding
<222> 139..157
<223> 18-11-137.mis2, complement
<220>
```

```
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 516..535
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 126..150
<223> 18-11-137 potential probe
<400> 65
tttctcaagt ggctctggca tctgttaaaa tgccaaactc gtggtcctta acaccttgtg
                                                                       60
atgctggcac ctctctgcag acttttctca atgtaacctc agaagttggg gaggactggg
                                                                      120
gagaagggag gtcctgcrgg gaggagaaaa gggaaagtgg gcaactccac tgaaggctgt
                                                                      180
cacacatttg ggggctgttc ccgacagttt taccttcctc tttgggcccc tcctttctct
                                                                      240
teceteteag teceettgte agatggttga tggggateae tgggagttgg ggtgaetgte
                                                                      300
aggaaggcag agaggggtt tgggcagcag gtgggaagtg gggccaggtg gcctctcggg
                                                                      360
gttctcccac ctcacagttc tggggagttc agggttctgc aagcagagtg atccttaatt
                                                                      420
aataaacagc ggggcagget cgggctccac gtcaggaaaa ctgcagtcag ccacgctggg
                                                                      480
ccaccegece tetgcagage acacgeaaca gegcagteat taaagetgaa etgage
                                                                      536
<210> 66
<211> 454
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 96
<223> 18-93-96 : polymorphic base G or T
<220>
<221> misc binding
<222> 77..95
<223> 18-93-96.misl
<220>
<221> misc binding
<222> 97..115
<223> 18-93-96.mis2, complement
<220>
<221> primer bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 436..453
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 84..108
<223> 18-93-96 potential probe
<400> 66
caaatgccaa agggttcaca atgctgagat ttatcttact gttattttat aattttgagc
                                                                       60
agcatttggt tttagtgggt tgtggcagaa attgtktctc tacagaatat tatcttaaga
                                                                      120
```

```
gaacatattg aacataaagt taaaagtttt ccatcccttg aaattcacta gtqqtaactt
                                                                      180
tgaacttcaa gaaaatgtca tttgagtttg ataatgtctc aataaagcct ctctctgatg
                                                                      240
actaattett agteatetet ceettetett actteatatq quaettatta tagetttqte
                                                                      300
actigateta gactactetg cattgettit tattititt tetggaaaca teaaggitag
                                                                      360
gaatcatgtg ttatggttct gtgtcactcg tacctggggc acctaagtgt acatatatat
                                                                      420
gtgtgtgtgt gcgctctggg ctgtttaacc ttat
                                                                      454
<210> 67
<211> 553
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 343
<223> 16-115-343 : polymorphic base A or C
<220>
<221> misc binding
<222> 320..342
<223> 16-115-343.misl
<220>
<221> misc_binding
<222> 344..366
<223> 16-115-343.mis2, complement
<220>
<221> primer bind
<222> 1..24
<223> upstream amplification primer
<220>
<221> primer bind
<222> 533..553
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 331..355
<223> 16-115-343 potential probe
<400> 67
caccetcaca ataaaagaaa ctgtggtctc tacacctgcc tggccccaca tctgtgccac
                                                                       60
agagacagac cctgggatcc tcagactccc acacccccac cccagcctca ctcagaggtt
                                                                      120
tegecetgge etectteete etetgggaga tggetggeeg eeetggeeag geagetggee
                                                                      180
cctccgggcc tggtttcccc gctcaccctg aggccccgcc cagctctgag ccccaagcag
                                                                      240
ctccagaggc tcgggcaccc tggccgagct gccccatctc cgtggggtgc cctcccaagg
                                                                      300
tggggagcca cgtgacagtg ggagggcctc tctcaggcct ggmagggagc aggggtcaca
                                                                      360
aactgtgctg gctgggggtg gtctcagagg tgggcctgca ggcctaaccc tccctgctga
                                                                      420
cagggetece agecettgag agaaacaggg atggaggaac agetgeeetg atgeeeteac
                                                                      480
ccacccggag caggccctgc gaaccaaggg gaacctcagt gtggccccca gcatgtgtgc
                                                                      540
tgatggggag ggt
<210> 68
<211> 171
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 140
<223> 16-42-140 : polymorphic base A or G
```

```
<220>
<221> misc binding
<222> 121..139
<223> 16-42-140.mis1
<220>
<221> misc_binding
<222> 141..163
<223> 16-42-140.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 154..171
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 128..152
<223> 16-42-140 potential probe
<400> 68
cattgggcgc aggcagagcc tcatcgagga cgcccgcaag gagcgggagg cggcggtggc
                                                                       60
agcagcggcc gctgcagtcc cctcggagcc cggggacccc ctggaggctg tggcctttga
                                                                       120
ggagaaggag gggaaggccr tgctaaacct gctcttctcc ccgagggcca c
                                                                       171
<210> 69
<211> 494
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 176
<223> 18-251-176 : polymorphic base C or T
<220>
<221> misc binding
<222> 157..175
<223> 18-251-176.mis1
<220>
<221> misc_binding
<222> 177..196
<223> 18-251-176.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 474..493
<223> downstream amplification primer, complement
<220>
<221> misc_binding
```

```
<222> 164..188
<223> 18-251-176 potential probe
<400> 69
gaaaccccct cacacatcct ggcctctact cgtacacaat attttctttt ttttaacttg
                                                                       60
gctgcagtga aaaagaatat ttttagtaag ctacttgttg tttacctaaa gcagccttaa
                                                                      120
gaagcccaga gcaggggatc tgttaagtga acgtagaagt ggaagacaga tttgcytctc
                                                                      180
tcaggcacta gggcacttgg ctgtagaggg gtgagtatgg caaacatcat gggaattatg
                                                                      240
agtagtgege ecacatecaa agetgeaegt gggtttteet gggeaaagaa aeteaatgae
                                                                      300
tgtgcatcaa gagtgtaccc agtctgacag caggaaattg acagaaacga acagccccaa
                                                                      360
gccccagggc acatggaggc actcacctca ggcacracat ttcagcagga gccaaaatca
                                                                      420
aaataaataa tattttatta caattttta aaagacagga tctaacaggg ccagatgagg
                                                                      480
gtaaagcgag tgaa
                                                                      494
<210> 70
<211> 478
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 44
<223> 18-269-44 : polymorphic base A or G
<220>
<221> misc binding
<222> 25..43
<223> 18-269-44.mis1
<220>
<221> misc binding
<222> 45..64
<223> 18-269-44.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 457..477
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 32..56
<223> 18-269-44 potential probe
<400> 70
ctcatggtca gttgctcctg gcttggcmag atggatggtc aggracttga aaggaacaca
                                                                       60
tttgggaaaa cggtagcagg aggtgtgggg aagtgttgtg tggttagagg tctctgaaag
                                                                      120
ggcagagcgt gaagatcctc gcagcccatg tgacatttgc caaagggcaa ccgcctcagc
                                                                      180
cgaggagaag ctcagtgacc aggtagacaa gatggccctt tctttgggca tcagtcaggc
                                                                      240
tccttcccca gccaccctgt cattgtcagc aggctggtga agatagagac tgtggtagca
                                                                      300
gggatggagg tcacacatgg gatcggcaca ggggctccac tcaccaaggc ccatccacta
                                                                      360
agtgcccgcc tgccccagtg ttgcagggga tctgccagcc tccaggtgga gtggatgata
                                                                      420
tgagacaget geeggeatgg aactggeace getgegettt caccaggata gaggettg
                                                                      478
<210> 71
<211> 927
<212> DNA
<213> Homo Sapiens
```

```
<220>
<221> allele
<222> 624
<223> 16-218-624 : polymorphic base C or G
<220>
<221> misc binding
<222> 601..623
<223> 16-218-624.mis1
<220>
<221> misc binding
<222> 625..644
<223> 16-218-624.mis2, potential complement
<220>
<221> primer_bind
<222> 1..22
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 906..927
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 612..636
<223> 16-218-624 potential probe
<400> 71
gaatcccttt caccctccat actgtatcca aagatcactt ttttcaaagg tcacctaggc
                                                                       60
agaataatca aattaatgct tttaatttgg taatactgaa aagtaaattg caatgtatgc
                                                                      120
acacacagat tgaaaatcag gtgccacaga catgagcatg cacagagaat ttctgcattc
                                                                      180
tcatgcctta gtttatcaaa taaggaaaat gtataaaaag ctactccaca attggtgtgt
                                                                      240
gaatatatta ctttatctaa atgcatcttc tcaggccagg catggtgatt gatgcctata
                                                                      300
attocaactg ctcaggagtc tgaggatcgc ttgagtcctg gagttctagg ctgcagtgag
                                                                      360
tatcacagtg ccttcagcct gggcaagaaa gtgagattct agctctaaaa tattttaaaa
                                                                      420
ttcatctttt cacctcagtt tgtgtgcctc tgctggaaaa gaaagtccaa aggttattgt
                                                                      480
tacattatgc aaataatatg ggcttgcaat caaaagagct ggttcctaat tctcacttta
                                                                      540
ccactaactt getgagtgac ttcaggtaag tcacttaact tctctggttc tcatttaaac
                                                                      600
caagtgatct ctttaagtca tttstaatgt gaaaactgcg tgatttaatg agatatacat
                                                                      660
tttggataat gatatggtta gattgtgtcc ccacccaaat ctcatcttga attgtagccc
                                                                      720
ccataattcc cacgtgttgt gggagagacc tggtgggagg taactgaatc ataagggtgg
                                                                      780
gttgttccca tgctgttctt gtgatagtaa ataagtctca tcagatctga tggttttaga
                                                                      840
aaggggagtt ctctttcaca tgctctctct tgcctgccac catgtaagac gtgtctttgc
                                                                      900
ttctccattg ccttctgcca tgattgt
                                                                      927
<210> 72
<211> 479
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 330
<223> 18-393-330 : polymorphic base G or C
<220>
<221> misc binding
<222> 311..329
<223> 18-393-330.misl
```

```
<220>
<221> misc binding
<222> 331..349
<223> 18-393-330.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<221> primer_bind
<222> 459..479
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 318..342
<223> 18-393-330 potential probe
<220>
<221> misc feature
<222> 457
<223> n=a, g, c or t
<400> 72
agtgtacttc gtgattgggg caaactctgg gccagatctt gtggtctgaa attcagactc
                                                                       60
tgcagtttac taactgtgtg attttgagtg actgcttaat ctctctgggc cccttttctt
                                                                      120
catctgtaaa gtgggggtaa taatggcatc cacttcttag ggtagttgta accaataaat
                                                                      180
gagttaatac aggaaaggcc ctttaataac tatgccataa tgtttttgct attattttta
                                                                      240
ttcctgtaag aaaaggagcc aaagagtgga ataagatgag tttatattga gatcctaaaa
                                                                      300
gacagaaagc tagtccctgt ttctcaatcs tccttctaaa gtcactttaa ccatcagctc
                                                                      360
ccatctatgc agacagcaaa ctcagcaaca agaaagagcc cttaatactt catctcaagt
                                                                      420
caccagaaac tcataggaag gcacagaaga ccaagtnaca aactactcct ttcattcct
                                                                      479
<210> 73
<211> 518
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 402
<223> 18-394-402 : polymorphic base A or C
<220>
<221> misc binding
<222> 382..401
<223> 18-394-402.mis1, potential
<220>
<221> misc_binding
<222> 403..421
<223> 18-394-402.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
```

```
<222> 500..518
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 390..414
<223> 18-394-402 potential probe
<400> 73
cttctgagga taacaaacac cmatgggaaa ggcaacttat taaggtacat attacagtct
                                                                       60
tctaatgtct aaagccagct agacatacat ttaaatccca gcagaaattc tctgaaaggt
                                                                      120
ttgcctccac cctaggtctt ccaacattag aagaacttca gagagaaagt aggacatttt
                                                                      180
gtctctcttg ggtatttggg aatcaaggtg cagacttggg gtagcattgg gggtcccatg
                                                                      240
aagaattgaa tacctagget tatatcaaag cegeceetae etatacatge teeccagtgg
                                                                      300
cccctgtggc ccaatattcc aagaatggct cggggaatgg ccagctcccc cacagtcatt
                                                                      360
tcagattgga gcaggctcct tagaagtcct tggtgtccga gmcttagtcc cacaatggat
                                                                      420
gctggatatg ggtcaacatc ctggattcat ggagagagga gggcatgtgg caaaatatag
                                                                      480
ttaacttaca ttatttcttc ctcattatcc cctcaatt
                                                                      518
<210> 74
<211> 587
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 55
<223> 16-217-55 : polymorphic base A or G
<220>
<221> misc_binding
<222> 32..54
<223> 16-217-55.mis1
<220>
<221> misc_binding
<222> 56..74
<223> 16-217-55.mis2, complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 568..587
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 43..67
<223> 16-217-55 potential probe
<400> 74
aacaggcgac tttgtcaagc ccagtcccct ccgtagctgg atttcacctc caggrcagcc
                                                                       60
agctggacag acaggcagat gcaggctcag cccctggct gccgtgggac acacacaca
                                                                      120
acactgccac agccactgcc caccacaca acctagtgca gatgctggca cacccccaga
                                                                      180
aggaggetea cagetegeag gggagaeetg ggetggaeaa aacceagggg aggggagggt
                                                                      240
gtgtggggac caggcccctg ctgagaaccc tggggggaag cctgaggggg aattggggga
                                                                      300
tggagcccac actccacacc aggtctggcc ctcgagtggg tcggccttgg tgccagcccc
                                                                      360
tetgeggeea gagaaaagea gettaggget gagetggaga egeggtgtee eegactgtgg
                                                                      420
gggaggggga ctcgaggttt ccccttgatg gacacagtga atccaggcgg ctggggcaga
                                                                      480
```

```
gaccagcagc acgggacacg cgtgacctgt gctcctttcg agccgcagac gtcacagtga
                                                                       540
cgacgtttaa gctcctaatc tccccaaatc ggcgggaagg attagag
                                                                       587
<210> 75
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 139
<223> 18-284-139 : polymorphic base C or T
<220>
<221> misc_binding
<222> 120..138
<223> 18-284-139.mis1
<220>
<221> misc_binding
<222> 140..159
<223> 18-284-139.mis2, potential complement
<220>
<221> primer bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 430..449
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 127..151
<223> 18-284-139 potential probe
<400> 75
gactcctagc ctcattgaag gatggttaga gaggcacggg gagctatcta gtggcaggcc
                                                                        60
cacggtatat gtttgctgct ttctacaaat acgagatcaa aggaaaataa agcaggggtg
                                                                       120
gttcctgtca gtgtggagyg agacccggga aagcatcctg gtggctgtca ggccttgctc
                                                                      180
acggcccctt tctctttcag ggagaggatc ctccacagtg gtatcctgct gcgtgcccct
                                                                      240
ccaggacago acccagaggo ccgaattgot gotgoacaga gagcactogg cotcaccoca
                                                                       300
cgttttccct aagttctgtc tagtaattcc actttggaga ggggggtgtt ccttgacaga
                                                                      360
tttagagagt tgatgtaact tcctcggatc agttctgctg gctccatccc ctacctgctc
                                                                       420
agccctgcac aaagtggcta agcacgccac
                                                                       450
<210> 76
<211> 520
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 305
<223> 18-285-305 : polymorphic base A or G
<220>
<221> misc_binding
<222> 286..304
<223> 18-285-305.mis1
```

```
<220>
<221> misc binding
<222> 306..325
<223> 18-285-305.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 499..519
<223> downstream amplification primer, complement
<221> misc binding
<222> 293..317
<223> 18-285-305 potential probe
<400> 76 -
gaggtgggag aaattacagc tgaggtagaa gctgcctcgg aaggccaggt gaagagccac
                                                                       60
acctgtcaga tgggcttgtg gcctgcgttg ggcagggact cccagcaggc tgctgtccgg
                                                                      120
ccacagttca gcctctgccy gaggcccggc cctgcctgtg ctccttatcc tatagctgca
                                                                      180
gggccagctg aaagaagcaa ggcgtttccc tcccccatat cctgttctcg tagcatttat
                                                                      240
ggtgcagtct cccacgcctg actgctgtct acttagaaaa ctgctgaaag ccagttgcat
                                                                      300
ttcaratagt gtctgtgcca ccttcagagc ccttttgtga tcatgtttta tcagcttatt
                                                                      360
ttatgtttta tgtgtgggct tcggcgatct ggggacatct ggtcaaccag ggcaggcaac
                                                                      420
cttgtttcca agtggcagat gccagggtgg gtccagtctc cagaaaggga ttttccctgg-
                                                                      480
gaccattggc acctgttact tgtagtcttt tcagccttgg
                                                                      520
<210> 77
<211> 486
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 239
<223> 18-289-239 : polymorphic base C or T
<220>
<221> misc_binding
<222> 219..238
<223> 18-289-239.misl, potential
<220>
<221> misc_binding
<222> 240..258
<223> 18-289-239.mis2, complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 466..485
<223> downstream amplification primer, complement
<221> misc_binding
```

```
<222> 227..251
<223> 18-289-239 potential probe
<220>
<221> misc_feature
<222> 154,156
<223> n=a, g, c or t
taaaaagcag ccgtgtccca cagcaaggct gccctgtgtc ccacagcaag gctgcctctc
                                                                    60
cagctcaaaa aaaaatcctg gcgacagatc ttgagactct gctgctgtgg gactcttcct
                                                                   120
gcacccacca cccagggcct caggaaggag ctgnancagg gtgttttaga aagaccttac
                                                                   180
tctataaatg caaaaaccca gacttagtta acaaaagcct attacaaaga cattttctyc
                                                                   240
tattgctacc tctccccatt taaatcctgt ctgtacaaaa aaataaaaac attagctggg
                                                                   300
catggtggca cgtgcctgtg gtcccagcta cttgggaggc tgaggtgaga gcagtgcctg
                                                                   360
agectgggag geegaggetg cagegageeg ggateetgae geegeeetee ageeeggeea
                                                                   420
caqaqaaaqa cccacaqagc ttskccgcag ccctcgtcca gcgcactgag atccctcacc
                                                                   480
aaggac
                                                                   486
<210> 78
<211> 453
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 91
<223> 18-291-91 : polymorphic base C or T
<220>
<221> misc binding
<222> 71..90
<223> 18-291-91.mis1, potential
<220>
<221> misc_binding
<222> 92..110
<223> 18-291-91.mis2, complement
<220>
<221> primer bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 432..452
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 79..103
<223> 18-291-91 potential probe
<400> 78
cctccatgca ggaacagcct accctggact ggatccagct ctctcccagg cccaggttgt
                                                                    60
gggagaaatg ggggacctcc gcctcccaat ygtgctggct ggaactttcc tgtgctgggg
                                                                   120
attoggogtt tgcagccagg gtggccagtc agggtgccag gctcccatct gaacactgac
                                                                    180
agactgtggg ctgtgcagtc tacagcattg ggcacaacct cagcttgcta aaatactcag
                                                                    240
tgcaggctgg gtgtggtggt cacgcctgta atcccagcta ctcgggaggc tgaggcagga
                                                                   300
ggatccctta aagctaggga gtcaaagctg cagtgagccg agatcgtgcc actgcactcc
                                                                   360
420
aggaccaagc ccaattacta ctttagtgcg gct
                                                                    453
```

```
<210> 79
<211> 460
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 391
<223> 18-186-391 : polymorphic base G or T
<220>
<221> misc binding
<222> 371..390
<223> 18-186-391.mis1, potential
<220>
<221> misc binding
<222> 392..410
<223> 18-186-391.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 442..459
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 379..403
<223> 18-186-391 potential probe
<400> 79
taggggtcaa ataaatgcat actatgcgga cagacagaga ttttcgattt tttttttta
                                                                        60
gtttaataaa gtttgaaaac tttcaaagct cctgtacaat tccattaata ccaqacttqq
                                                                       120
caaaacgcta attctgtttg aaaaggtgtt tttttaaaag tagtatattt gaacaatgtc
                                                                       180
taagtatgtg gggtggggag aatccatatc cgaatatctt cataaagcaa gttcttaaaa
                                                                       .240
tttgcaaagc tattaggtta gtgcaaaagt aatcatggtt tttcttttgc accaactaat
                                                                       300
atttaccact gaacacgctg gcatttagat cacttccttc tttcagcatg ctagacagta
                                                                       360
aagagaatgg gcatgaggtg gcaggaagaa kgaaagagtg aagataatgg agttaggtca
                                                                       420
gtgagggata tttcctaaat tccccacttc ttttcctcta
                                                                       460
<210> 80
<211> 460
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 130
<223> 18-194-130 : polymorphic base C or T
<220>
<221> misc_binding
<222> 110..129
<223> 18-194-130.mis1, potential
<221> misc_binding
```

```
<222> 131..149
<223> 18-194-130.mis2, complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 439..459
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 118..142
<223> 18-194-130 potential probe
<400> 80
agctggaagc ctgtttggct tactattggt aagaaaaagt taaaatttta atctgtctga
                                                                       60
acattatagt acatccaaat caataaaatg ttttagttgt ggtttttcat cagttttaat
                                                                       120
cagataatgy cttacttctg tagatatagt ctagtatagt tcaaataaaa agacagttgt
                                                                       180
acatagataa gacaaagcat attgtgaaaa tgttgggaaa tttaggttat tttaatgatg
                                                                      240
gctgagaatt tgtgaacttt tctcatatgc tattaaactg aattactagt aaatttatgg
                                                                      300
taccgagtat atcaaacagt gagggattta aagtaatttt gcaatttgct aaaatttcat
                                                                      360
ccttaacata ctggctaaga gtgaaaaagc aagaagagag aaaaggaaaa ggatggaact
                                                                       420
aagacaatto tattagaagt ggggagatgg caagaaaatt
                                                                       460
<210> 81
<211> 459
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 252
<223> 18-198-252 : polymorphic base A or G
<220>
<221> misc binding
<222> 233..251
<223> 18-198-252.mis1
<220>
<221> misc_binding
<222> 253..272
<223> 18-198-252.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 438..458
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 240..264
<223> 18-198-252 potential probe
```

```
<400> 81
ctgaaaaaag agctgacaaa attcaatccc taattaaaat qtttagcaac taaagttatt
                                                                       60
ggttaatttt gagaattgat cetgtgttaa caaacatcae caaagtetea aggettacaa
                                                                      120
tacaaaggtt tatttetege teatgetaca tgtecattgt ggaeggetgt ggeteeteac
                                                                      180
tgtetteatt etaggaetga agetgaagge acagtaeeta tatgeaacat attgtteata
                                                                      240
tggcagaggg grgaaaagca atgacttaat caagcaatga ctcctgaagt tttgctcaga
                                                                      300
tacagcatac atcacttcca ctggctaaag caagcctcat ggctaagcct gatatcaaga
                                                                      360
aggtaggaag tatactctct cacagggagg tgcacctggt agaaggactc tattatagag
                                                                      420
ataaactcag tagagaggat tgccgaatag ttgtaaata
                                                                      459
<210> 82
<211> 476
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 299
<223> 18-242-300 : polymorphic base A or G
<220>
<221> misc binding
<222> 280..298
<223> 18-242-300.mis1
<220>
<221> misc binding
<222> 300..319
<223> 18-242-300.mis2, potential complement
<220>
<221> primer bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 455..475
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 287..311
<223> 18-242-300 potential probe
<400> 82
acctgacatt aagagacaag cageegggat ggeteetaac cagatettet tteeetgtte
                                                                       60
ccaaaccatc tttcttcata gccggctctg gggatgagga gcctgggtta ggaggaaggt
                                                                      120
ttgcaattga ccaggttcct gttttgaagg cttccaccta gacttaagat agcaccgctc
                                                                      180
agaagatgga tgtgtgttta gcaatttccc attttattac ctgcagacaa agaaaaaaa
                                                                      240
agatataaat agatgtttaa ccacacaaat aattcacatt actgtcttct ttatgactrt
                                                                      300
gaaataataa aataaaatta aatcaacagc aataacaatt teggeacagt ggttactagg
                                                                      360
                                                                      420
caaaatctgg aaaccaaatt gaaataagaa aactcataaa ctgggtgttg ggagcacact
gtggaatttt tettggteaa aatteteaca gagtgtteaa gtgaaaggtg tattaa
                                                                      476
<210> 83
<211> 3001
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
```

```
<223> 8-15-126 : polymorphic base A or G
<221> misc binding
<222> 1481..1500
<223> 8-15-126.mis1, potential
<220>
<221> misc_binding
<222> 1502..1520
<223> 8-15-126.mis2, complement
<220>
<221> primer bind
<222> 1376..1395
<223> upstream amplification primer
<220>
<221> primer bind
<222> 1792..1810
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 1489..1513
<223> 8-15-126 potential probe
<220>
<221> misc feature
<222> 15,619,631,646,2196,2462
<223> n=a, g, c or t
<400> 83
ttggaaacag gctcntgagc agttgggtag agaattccct gagtgtggtc tagacagggt
                                                                       60
tgtaaactta gtggaccttc tccttggcac tgtgggaggt tacaacatca ttctatagag
                                                                      120
gttagaggca taaccagtag agggtgcctt agtccttttg ggctgctatc acaaaatacc
                                                                      180
ataaactgag tagtttataa acaacagata tctatttttg acagttctga aggctgggaa
                                                                      240
gtccaagatc aaggcaccag aagattcagt gtctggtgag ggcctgcttt ctggttcata
                                                                      300
gatggctgtc ttttcactat gtcttcccat ggtgaaagag attagctagc tctctgggtc
                                                                      360
tettttataa aageaetaat ettatteatg agggetetge eeteataace taateacete
                                                                      420
tcaaagaccc ccacctccta ataccatcat attgggaatt aggatttcta catatgaatt
                                                                      480
tagggagaca caaacaccga gaccacagca gaagaccaga gtggactcct ctatagcacc
                                                                      540
tectetagag ettggggeaa gagteaettt tgettgggtt teagggttae tecetaagte
                                                                      600
acaggeetta tgtetteene etageettea ngaaetgtga gacaantaaa tttetgetet
                                                                      660
ttataaatta cccagactca ggtgttctgt tatagcaacc caaaatggac taagatagat
                                                                      720
gggtttcatt attcccacat tttacatggg aagaatctgg agctcagaga ggtaaagtaa
                                                                      780
tatgcataag gtcccagagt taggaagcag cagagctggg attgtaatcc tgcaacagct
                                                                      840
toccatotca otcagagtec aagcatggta otttcaatag cootgcacaa totgtctaco
                                                                      900
teacaccete etattetaet cetgeeteae ttggetecag ceteaccaga eteceteeta
                                                                      960
tgacttctat gtgctagccc ttcctgctgg cccgtgttgt tctcactgct cagactgcta
                                                                     1020
teacatetga taactgeatg gtetgettee tgateteete caggteaaga etcaattget
                                                                     1080
gatttctcca tgaggagttc ctgattatac tcagatactc actcacatac gcacaatctt
                                                                     1140
caccegitae tracetgeet etergating terecaatat aegiateatt attgaacaca
                                                                     1200
ccacatettt tatttatett gtttattate tgtettetee tetagaatgg gagetteaaa
                                                                     1260
gggaaggaat taaaatttta totgttttgt toattgotot atotocaact otcacaacag
                                                                     1320
tgcctactat atagaaaatg ctcaataaat atttgctgat gcaataaata aaaaaatgta
                                                                     1380
actaagcaac caagccccaa agagtctgat tttattaata ttgttttctg tctcctcaca
                                                                     1440
ggaagcccct tggcatcacg cacctccctc tgggctatgg catctctgag ccagctgagt
                                                                     1500
rgccacctga actacacctg tggggcagag aactccacag gtgccagcca ggcccgccca
                                                                     1560
catgcctact atgccctctc ctactgcgcg ctcatcctgg ccatcgtctt cggcaatggc
                                                                     1620
ctggtgtgca tggctgtgct gaaggagcgg gccctgcaga ctaccaccaa ctacttagta
                                                                     1680
gtgagcctgg ctgtggcaga cttgctggtg gccaccttgg tgatgccctg ggtggtatac
                                                                     1740
ctggaggtga gtagacttca ggtgcatgtt gtctctatga ctgtgctagt acttgtcttc
                                                                     1800
```

```
cctgagttct ggcctttggg gctcaaaaga ctccccagac agtcaggaac tgaggaagga
 aggagagete teattetece tgtaatgaga gagttaaage tetggaaaac agtcaccate
                                                                      1920
 ctgtccctca tccacatcag aaccaaggag ctgagaatga ttctgttcat gggtctccag
                                                                      1980
 tgttcaggtg actggatttg agtgacggga ctcttcctaa tatggcctag agtttattct
                                                                      2040
 ctgtgccaga catgtctcaa tgacatggtg ggctgggtga agcagtccag aagacctctt
                                                                      2100
 caccagtgtt taatgtatat gagggtgagg gtgtgcagga gggatgtgag gccaggagga
                                                                      2160
 aaaaggaatt atagaaaaaa aaaattagtg aatgtnaagg gaagatagaa agaatgacca
                                                                      2220
 gcgaacagat cagacttett tegatggete agteeetett tgetetttee teetgggtae
                                                                      2280
 cagtteteca tagactetge taccaaagga acagacaaaa ceetcaaatg tatatttee
                                                                     2340
 atgtgtccat gaatagtaca gagcctttgc cagagagata gtgcagcaga tcctggtgaa
                                                                     2400
 ttettttggg gagaaacatt tattaaattt gaaagtattt teaattggga gtgcaaaaca
                                                                     2460
 gnagccaggg ggtggtcaag acaaaacacc catttgctaa caaagaaatc agggtgacca
                                                                     2520
 tatctgttca agaaacagat attcttacca ggaaaacatg caattactta agatatgttt
                                                                     2580
 ttttaaaaaa acctgagtat actattaata tttctcctct gcactgtgtg tcatttaaa
                                                                     2640
 gaggtatcca atgaaggatc aaaatgatgc tatgattaag agaaattaag attcatcaaa
                                                                     2700
 ttaatatctc agttaatatt gatagtaaaa gtgacagtta attaagtatg acatatcacg
                                                                     2760
 ggagagcaaa aaccttgtac atagactgcc tgtgctaata cctttgttaa agaatggctg
                                                                     2820
 ggaactaaaa ttagacttat gatctcaagg gggagacata aagagagaaa aaaagaaaac
                                                                     2880
 agagaaataa aaggaaaaga agaaaaacaa ctaggctgtg tagatctaaa ggctaaggga
                                                                     2940
 atacttgagg aaaaaatatg catttattct tcccagttag gataatccta gttgggaggg
                                                                     3000
                                                                     3001
<210> 84
<211> 2684
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 8-19-372 : polymorphic base A or G
<220>
<221> misc_binding
<222> 1481..1500
<223> 8-19-372.mis1, potential
<220>
<221> misc binding
<222> 1502..1520
<223> 8-19-372.mis2, complement
<220>
<221> primer_bind
<222> 1130..1148
<223> upstream amplification primer
<220>
<221> primer bind
<222> 1534..1552
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 1489..1513
<223> 8-19-372 potential probe
<220>
<221> misc_feature
<222> 240
<223> n=a, g, c or t
<400> 84
```

```
aaggccaact ttgaggttgg agaatcccca accetttatg aagactggcc gggtgtacca
                                                                      60
acagttgttg ctcacagtgc tggatgaagc acagatgttc catgtcacaa tggtaaagag
                                                                     120
ggatggggag ttaaaattat agaaagaaca ttggcttggg cataaaactg gctgcaagaa
                                                                     180
catatttttc aggtgcagcc ttgggctact tactgaacct ctctgagctt taatctgctn
                                                                     240
catccgaaaa gagagacagt aataatggca cctgtctcat ataacgttgc cataattatt
                                                                     300
aggtgggata aggggtacaa agctcttggc tcatcgcctg gcagatatta gtttgctttt
                                                                     360
cttttctttt tcaagatggg gcacgtttca ggcccatctt gggccttgga ggaatctcag
                                                                      420
catctgctat gaagaaggca aagctagagg gacctcccaa ggagaaatgg caggaacatt
                                                                     480
tcaggatata aagcagggac aaggaccett ctaagtgcac attetecatg tcacaatate
                                                                     540
attacctgcc tttttcccat cccacctctg acaagtgctg ggattccctg aaaaatcaaa
                                                                      600
tototgtott gtattcagcc gccatctgcc ctccatccca gattcaaaat tggagaactg
                                                                      660
geatteteag caaataagge ttetteettt cattgeatte aaacaattet ccaatgeete
                                                                      720
cgcaccagca qqcccttttc tqaqqqctqc atccctcctq qqaqcctctq ccctqttqcc
                                                                      780
etgtaatget etecceagee teecaggetg catgtetetg tgtgacaett gtgacateet
                                                                      840
atgaaaggga tcatctgtct atctagactg tttgctccct tgagagaaga catggtgtct
                                                                     900
cattcatctt tgtagccca gtgtctggcg tatgattgtt ggtaactttt tattttaagc
                                                                     960
aagctqtaaq aaactcaaag atgaattaga ccttctaccc tcaaggacct gacagtatac
                                                                    1020
qtatctqaqa ctgcatcctt cccacccct gtgcagcaga aagtgcaggc accacacgtg
                                                                    1080
acatggagee gtgttttatg etecttaetg agttetgata ettgetaaet getttaeett
                                                                    1140
ccccttctc atccacaggg gaccccactg tctgctccat ctccaaccct gattttgtca
                                                                    1200
tctactcttc agtggtgtcc ttctacctgc cctttggagt gactgtcctt gtctatgcca
                                                                    1260
qaatctatqt qqtqctqaaa caaaggagac ggaaaaggat cctcactcga cagaacagtc
                                                                    1320
agtgcaacag tgtcaggcct ggcttccccc aacaagtaag taccctggag ggggtagagg
                                                                    1380
gaagacaaca cccaatctcc tgacttccca gcctgtgtcc agcagtgcat gattttgccg
                                                                    1440
tttagctaaa ttggagacac aaatctgaca ccgactttgg aatctgctaa ttttggctgc
                                                                    1500
retttgaagg taggaaatee aateteaaga aaacattgat agttgeetet agageetgee
                                                                    1560
ttacctggca aagtgattgg agageteetg ggettgttet getteeette aaagtettte
                                                                    1620
attttcccca aatgggcagc agetcagatg teccacaggt tttgaagttt aagtgcagca
                                                                    1680
gttgtacctt gcactgctgg tgggttccca gaactgactt tttgtctaaa ccactcatgc
                                                                    1740
caagaatcac tggggtccat caaagccttt tttccttact ggatctgtcc gtgtgtcaag
                                                                    1800
gaactgacaa gctggtggga tagggtgctg ataaagcatt ttattggatc tttctaggct
                                                                    1860
ctgaaaagaa atgtcattgc ctctgcaatg atcttctaat tgctagggct ttaatttctc
                                                                    1920
ettaccccat tgcctggcac ttagtagttt tcccacgatg tacttgaagc atgaatggat
atataccgat cacttgaaat ctactaggga agggacagtg gtaacattaa acagcatctg
                                                                    2040
ccttcatgga gcttagaatc tagaaaagca aataaagcac ccctccactc aatgttaatg
                                                                    2100
aagatcccag agctgaatag gatgtttgcc aaatgtgagg tgaagacaat taagcactca
                                                                    2160
attatgaagt gctctggagg ttatagaaga gaaaacccaa tatgctcagt gatatggttt
                                                                    2220
ggctgtgtcc ccacccaaat ctcatcttga attgtagetc ccacaattcc catgtgtcat
                                                                    2280
gggagggacc cagtgggagg taactgaatg atgggggtgg gtctttccct tgctgttctc
                                                                    2340
atgatagtga ataagtotca ogagatotga tggttttatg agggggagtt tocotqoaca
                                                                    2400
aattttetet tgtetgetge catgeaagae gtgeetttea eetteeacea tgattqtqaq
                                                                    2460
gcctccccag ccacatggaa ctgtqaatcc attaaacttc tttttcttta taaattaccc
                                                                    2520
agtotcaggt atgtotttat tagcagcatg aaaacaggot aatacactca ggaaaggot
                                                                    2580
ccatagacag agtaagaatt gagtttgatc ttgaagacag atccaatttg ggtgtctaga
                                                                    2640
ttaatctttg atgacctaga taatcttttt ttttttttt tttt
                                                                    2684
<210> 85
<211> 711
<212> DNA
<213> Homo Sapiens
.<220>
<221> allele
<222> 428
<223> 99-2409-298 : polymorphic base A or G
<220>
<221> misc_binding
<222> 408..427
<223> 99-2409-298.mis1, potential
<220>
<221> misc_binding
```

```
<222> 429..447
<223> 99-2409-298.mis2, complement
<220>
<221> primer bind
<222> 131..148
<223> upstream amplification primer
<221> primer bind
<222> 560..580
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 416..440
<223> 99-2409-298 potential probe
<220>
<221> misc feature
<222> 27,108,118
<223> n=a, g, c or t
<400> 85
ctcaaagatg tcgttgacga aggagtncat gatccccatg gccttagagg agatgccggt
                                                                    60
gtcagagtgg acctgcttca gcaccttgtg caagtacacg gagtagentc cettgcgntg
                                                                   120
cgcttggttt cttgccgtac ttcttctgcg ccgtagtcac ccacctcttg gaagccctaa
                                                                   180
ttgggatcag gagcggactt tgttggctct ggcatgtcga gggcgcacta caggtcgagg
                                                                   240
300
tgtaagtttc gtgagattag gaccatattt gcatcattca ttattatgtc tctgggaccc
                                                                   360
agcacaatgc ctagtacata ttaggacttc aataaacaaa tgcaaagtag cgcatggggc
                                                                   420
tgcagccrca gatetcctgg gatetgggtc tgggagcagg cagtggcatc tgacacttca
                                                                   480
tatcccttaa agaagacaaa atgtattcta tgacagatag ggaaccagag ccagggacta
                                                                   540
gagtgtgact ccctgacttg ttagaggagg ttgggaaaaa tggccttgac tatcttccta
                                                                   600
ggcagaggcg ggcaaactat gcaccccagc ccaaatccag ccctctgcct gttttggtaa
                                                                   660
ataaagtttt attggaacac agttacatac ttttttttt tttttttt t
                                                                   711
<210> 86
<211> 3001
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 99-339-54 : polymorphic base G or C
<220>
<221> misc binding
<222> 1482..1500
<223> 99-339-54.misl
<220>
<221> misc binding
<222> 1502..1521
<223> 99-339-54.mis2, potential complement
<220>
<221> primer bind
<222> 1448..1467
<223> upstream amplification primer
<220>
```

```
<221> primer_bind
<222> 1883..1902
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 1489..1513
<223> 99-339-54 potential probe
<220>
<221> misc feature
<222> 120,890,929,2457
<223> n=a, g, c or t
<400> 86
atactataaa gattcagaga ctttccacat tagtaaaatt tttagaggtc cagtaggctg
                                                                       60
gggaatgctg agacatgcac ttcaaagtaa aggacaaatt attgtaactt gcatttcccn
                                                                     120
ataactaaga aggaaaccca gcaccaataa gcgtcttctg gttctgaaag cagcacattt
                                                                     180
cacactcaga gacactactc tagcacatac gccagctgaa acatgagtct accagatttg
                                                                     240
gagagagccc agagcaggaa agggctctgc agcaggacca ggcagtagtg caagctqctc
                                                                     300
tgtcatatga tgattttggt cacatgatgt ggtagagcct acagtatagg aggtatcatt
                                                                     360
gatagaaaaa ggctgtgtac attttatggc aggcctcaat aggcaaacac aaatagaccc
                                                                     420
ctaggattca gaagcaagac aagcaatttg cagcagagaa ctatacgttt agataaatat
                                                                     480
teetggtgee etactggtte etagtaggaa cacagcacce aactatggga tgccaagggt
                                                                     540
ccacacagca aggactgccc attgcgaatt ctgacagacc cccaaatcat gaaggcaggc
                                                                     600
aggcctacca acaattgtaa ggaaggaaat gatacgtttg ggatcaggca ttagcagagc
                                                                     660
cagagagcac aaataagttg cacgcatatg tggcccagac tactagggtc atccatcaca
                                                                     720
tttgcactga tgcctcaccc ttagctcaca cttacggcag cataaagtga gggcaaaagc
                                                                     780
tgagtttgat ttatgtacgg gtaagattgg aatgtagtag caagctaaaa atagactatt
                                                                    . 840
gctatataac aggaccacat ccttagcgtg tcccagaaaa ttagggatgn agagaaattc
                                                                    . 900
ttcctaatgg ataaagcatc agatggtgnc ctttgtcgag agaaatactc tgagataaga
                                                                     960
tatgtatcac ttataggcag tagtgaatta tttggacagt tgactctata caacctggga
                                                                    1020 -
agtagaatgt cttagccagt tgatgtcagc cagctcctat cagtgctggc acaataggca
                                                                    1080
cattaatgga ccatgggtaa ggaatggaga caccatccta acaagactaa ttgactttat
                                                                    1140
ttttatttt tttgagacgg agtttcactc ttgtcaccca ggctggagtg caatggtacc
                                                                    1200
atctcggctc actgcaacct ctgcctccca ggttcaagtg attctcctct gtcagcctcc
                                                                    1260
caagtagetg ggattacagg cacetgeeac caageeetge taatttttgt atttttagta
                                                                    1320
gacatggggt ttcaccatgt tggccaggct ggtctctaac tcctgacctc aggtgatctg
                                                                    1380
ctggcctcgg cctccaaaag tgctgggatt acaggtgtga gccgcagtga ctggcctaat
                                                                    1440
tgactttctt aatcaggaga agatagctct tctcttacat gatggcgaca gaaaagaata
                                                                    1500
stoccttgcc taattttgat gataaatgga taagtacaac aaccatgact gagaaacagt
                                                                    1560
ggtggtgatg gaagetattt ataggeecaa caacaegtge teteaettge taaggetgat
                                                                    1620
ctagttactg ccactgctga agatccagcc tgacagcaac agataccatc actgagtctc
                                                                    1680
cagtatggct ccatccctca agaagaccaa ccagcttctt aatggcaaat tattcttctt
                                                                    1740
aatgacaaaa tgggtccttt ccaccatgtg attccaccct gtgattttga tacgaatgga
                                                                    1800
cacttateet atteatacaa etteagetag acagtgeeta tgtageattt gateeactga
                                                                    1860
aacaggatcc tgccaaacat tgcattggac taaagtaact gcttatgtta atggaagttt
                                                                    1920
aaccttaatt actteettat aggeettaac tecaaataca gteacattgg gggttataga
                                                                    1980
ttcaacatat gaattttgga aggctcttct tttcccagaa ttgtctttgc tgaaaatcaa
                                                                    2040
ttgaccataa atataacgat ttatttctgg actgtcaatt ctgttccatt ggtctatatg
                                                                    2100
tettettaet geaaatacea taetgttgat aactgeaget ttatagttag ttttgaaate
                                                                    2160
aaggattaaa cattetecaa eteettett eecaegeatg gaaaateaet gatetettt
                                                                    2220
ctgtctctac agatttacct attctaggta cttttcttt taaacagtgt cttttggcta
                                                                    2280
ttctaggtct tttgtacttc tatgtaaatt ttacaatctg cttgtcagtt cgtgatgaaa
                                                                    2340
aaggctggtg gaattttgag agggattgtg ttgtctatat atcaatttgt agaaagttgc
                                                                    2400
catcttaaca tattgagttt tcaaatctca gaacatagaa tgttagaggt ccctgtntct
                                                                    2460
tttttaattt taaatttctt ttcataattt aaacattttt tctattgagg taaaattcat
                                                                    2520
atagataaaa ttaactattt taaagtgaac aattaagtgg catttattac attcacaata
                                                                    2580
tegtacaaca actaceteta tetagtteca aaatatttte atcaceacaa aagaaaactg
                                                                    2640
tgtacccatc aaacagttac tcctctttcc tttttctccc aacctcggac accacagtct
                                                                    2700
tettetgte tetatggatt tacetgttae tetgaatatt teatataaat gaagteatae
                                                                    2760
aacatgtgac ctttgtgtct gacttctttc gttagcacag tgagtgtctt caaggttcat
                                                                    2820
tcacattgta gcatgtatca acttcattcc ttttgatgac caaatgatat cctattatat
```

```
gtatatacca cagtttgttt attcattgat gaatatttga attctttcta ccttttggct
attgtgaata gtgcttctat gaatatttgt gtataagtac tcatttgaat actttttta
                                                                     3000
                                                                     3001
<210> 87
<211> 1127
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 311
<223> 12-254-180 : polymorphic base A or G
<220>
<221> misc_binding
<222> 292..310
<223> 12-254-180.mis1
<220>
<221> misc_binding
<222> 312..331
<223> 12-254-180.mis2, potential complement
<220>
<221> primer bind
<222> 132..152
<223> upstream amplification primer
<220>
<221> primer bind
<222> 586..603
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 299..323
<223> 12-254-180 potential probe
<220>
<221> misc_feature
<222> 952,958
<223> n=a, g, c or t
<400> 87
ctgccacaat ctcctgagtc cagacaatct agagcagaag ggtagactga ggaaaatata
                                                                       60
cacagtataa aaaagtaaca aaatcaaaac ctgaaacaaa gatcaacatc caataaatgc
                                                                      120
ttctgaataa agggagagta gataagaact ggattttaat cccaacactg ccatttacca
                                                                      180
gctggccaat actgagctag ttactctaaa gagttcagtt ttctcatttg tacaaatagg
                                                                      240
atttgtcttt ccatctcact gagttgtgat gagagtcata tgcaacagca tatgaagagg
                                                                      300
ctagcaaaag rtatttaaca agcgttcaac attctcatga tgacatgaat aacactgtac
                                                                      360
atacaacata ccaacttgat aaatacacag cacagttaat agctgagggc agagttatgg
                                                                      420
ttgggaagag agagagtgca acataggcag agtgagggg gattcccaca attttctaag
                                                                      480
acagaaaagt gggggaatca gtagttactg gaaagaatag gcaatgcctg actggataga
                                                                      540
aaaagattct atgcctttgt caaatttcac aaaagtgact taagcctata ctgcgggatg
                                                                      600
ttcacactac gtccctttag tgcagttacg gtacttcagg ctgcaagtaa ccaaatacaa
                                                                      660
ctaaaattgt cttatacaat aagggcgtaa ttatctcata taacaagaag cttggcatga
                                                                      720
aggaaatttc aacaatttca caacggcaac aaaaactctg tttcttctac ctttccacca
                                                                      780
tteetgtgtt eteagtteea atatggetge taacatecat atgtetteec egeacatete
                                                                      840
tttaaaagct acaaaaagat ttcccaaaag cgtcttggaa aatttcctgt cccatctcca
                                                                      900
ttggccagac ccacctccca tgggactgcc tcttgtgaag cacacaaagg gncagatncc
                                                                      960
aaacggtacc gttagggaga cccagaagat ggaccatcca ggatagagac atgaagggca
                                                                     1020
gaagagggcc cagggatgtg tgtccctcag ctggactaca gggaaggagt tttggtcagg
                                                                     1080
```

```
ggaagaaaag cctcatttcc tatcagtcac tggtggaatg actaaag
                                                                     1127
<210> 88
<211> 3001
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 10-214-279 : polymorphic base C or T
<220>
<221> misc_binding
<222> 1482..1500
<223> 10-214-279.mis1
<220>
<221> misc binding
<222> 1502..1521
<223> 10-214-279.mis2, potential complement
<220>
<221> primer_bind
<222> 1225..1244
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 1747..1764
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 1489..1513
<223> 10-214-279 potential probe
<220>
<221> misc_feature
<222> 2368..2369,2372..2373
<223> n=a, g, c or t
<400> 88
aatcattgag ttttgttctc tatattttct ctttatctaa gaatgtcttc ccccctccat
                                                                       60
taacaatatc ctctcatttt attccattta aaatatccca gtggtgcctt gcaagtgacc
                                                                      120
tcatctaact caagcatttg gtcatttggt aaatgtttaa ggagtgatat gcagtcgatt
                                                                      180
ggtttgcata caaatattaa gttttttaat gtgaacattt agcaaatgac attcatgtat
                                                                      240
ttgcatgtgt gtgtgcttgc acatgtgcac atgcatgtct gtctgcaggg aaaatatatt
                                                                      300
catgcctttt gaaaattttt aaataatgtg ttatatttat agaaagattt ggaacctttt
                                                                      360
ctctgaagaa gttaaagaac agatgtcatt gattcatatt aagcaagacc ctataaatct
                                                                      420
tatttctagg tctcatgtat ttattaagca actccacacc ttaagcaggc tttctacata
                                                                      480
gaagaggaag aagatagaga tggtttccat attattttca tattccacat tatttgtggc
                                                                      540
tttaggccag ctatgtagct atcctgtatg tgtgctcaga caggagactc agccctgaga
                                                                      600
gaaggcggtc ctctggcaca cctaggatgg ggaaggtact cccttggaag tcccaagctg
                                                                      660
gcacttctgg atctccatgg caattttctt gcccatcact ccatggagat cagaatatca
                                                                      720
ctctattgtg tcccctcaac actgaaggag tgtctcaata agaaaagttg agtcaaaaca
                                                                      780
ctgtaggaat tgagaggttc cccacttgca ctacccttgt aaaccaagag aagatgttaa
                                                                      840
aaaataaaac gataatgctt cctgaaggtg tcttcccatc tttacactag atgggttcaa
                                                                      900
ttgagaggaa ttactggact gtggaagttg aagactgtcc acataattaa aatgtacaat
                                                                     960
agetacteag gattacettg caagttteaa catacacaaa attaacttea taagatggtt
                                                                    1020
taaaaagttt accgttatac ctaataatct ggtttaaatt tttaaaactc atccattttc
                                                                    1080
gttaaaattt aaatcaaaaa agaacacggg ttcccatgaa tttgtctcag gtcaaacctc
                                                                    1140
acacagaata ggtgctccat gaatattttg ttaaatgata gatgatgaat gttctcacta
                                                                    1200
```

```
tccaatcttc acacatctta tagagtaagt ataacgaatc caagatttat agtgctgaaa
                                                                     1260
gtagttttta tatgtttaca aagcattatt gtcagtaatt tttttttact ttgatgctat
                                                                     1320
actttctact tttgctttat ttaatgcttc tcaatatgct cgtttaactg ttgcagatcc
                                                                     1380
ccctgaaatt acgctttgga ggacttcttc taacagaaaa acccattgtt ctaaaggctg
                                                                     1440
agtcaaggga tgagaccgta agtggagcct gatttcccta aggacttctg gtttgctctt
                                                                     1500
yaagaaagct gtgccccaga acaccagaga cctcaaatta ctttacaaat agaaccctga
aatgaagacg ggcttcatcc aatgtgctgc ataaataatc agggattctg tacgtgcatt
                                                                     1620
gtgctctctc atggtctgta tagagtgtta tacttggtaa tatagaggag atgaccaaat
                                                                     1680
cagtgctggg gaagtagatt tggcttctct gcttctcata ggactatctc caccacccc
                                                                     1740
agttagcacc attaactcct cctgagctct gataacataa ttaacatttc tcaataattt
                                                                     1800
caaccacaat cattaataaa aataggaatt attttgatgg ctctaacagt qacatttata
                                                                     1860
tcatgtgtta tatctgtagt attctatagt aagctttata ttaagcaaat caataaaaac
                                                                     1920
ctctttacaa aagtattatt ggatgtttcc tgcacattaa ggagaaatct atagaactqa
                                                                     1980
atgactgaga accaacaact aaatattttg atcattgtaa tcactgttgg tgtgggaact
                                                                     2040
ggagtgcagt ggtgcaatct tggctcactg cgagctctgc ctcccaggtt cacqccattc
                                                                     2100
tectgeetea accteetgag tagetgggat tacaggtgee tgecaccaeg eeeggetaat
                                                                     2160
ttttctattt ttagtacaga cggagtttca ctgtgttagc caggatgctc tcgatctcct
                                                                     2220
gacettatga tecacetgee tgggcetece aaagtgetgg gattacagge atgagecacg
                                                                     2280
gtgcccagcc caatttgatt attaacatag gtgagagtta acccactatg actttgccca
                                                                     2340
ttgtttagaa agaatattca tagtttannt annacatttt tgatgagaca cagtgqctca
                                                                     2400
cacctgtaat cccagcactt tgggaggcca aggcaggcag atcatctgag gccaggagtt
                                                                     2460
caagaccage etgaccaaca tggtgaagee ceetttetae taaaaataca aaaattaget
                                                                    2520
aggtatggtg gcacacgcct gtaatctcag ctacccagga ggctgaggca ggggaattqc
                                                                    2580
ttgaacctgg gaggtggagg ctgcagtgag ccaagatcat gccactgaac tccaqcctga
                                                                    2640
gtgacagagt gagactgcat ctaaaaaata aaattatgcc tttttgtagc acatatattt
                                                                    2700
tgtaacatac aactgaagcc agtattatat tattagtttt catttaatgt tttcagccca
                                                                    2760
teteceetga tatttetggg agacaggaaa tatgttttet tacacetett geatteeate
                                                                     2820
ctcaactccc aactgtctaa atgcaatgaa catttaataa aaaaaacagt tgattggtca
                                                                    2880
attgattgga caacaaggct gaaactactc atttctttc ttttcctatt tcttccttta
                                                                    2940
ttttcccttt ctgaataatt tagccctaga gccattaggt gggtggcagc cagatggtgg
                                                                    3000
                                                                     3001
<210> 89
<211> 3001
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 10-217-91 : polymorphic base C or T
<220>
<221> misc_binding
<222> 1482..1500
<223> 10-217-91.mis1
<220>
<221> misc binding
<222> 1502..1521
<223> 10-217-91.mis2, potential complement
<220>
<221> primer_bind
<222> 1414..1430
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 1759..1775
<223> downstream amplification primer, complement
<220>
```

<221> misc binding

<222> 1489..1513 <223> 10-217-91 potential probe <400> 89 gattgttggt acatagaaac atgcttggct tttgtttgtt gatcttgtat catagaacct 60 tgcagagctg acttagtatt tctagaagtc tttttqtata ttcttqaqat tttatacatt 120 gacaattatg tcacttgaaa atagagacaa ttcttttatt tcctttccaa tctqtatqcc 180 ttttaattct ttttcccagt ataatgtcaa ataaatgtgt tgaatttttq aattgttcct 240 aatattagga aggaagcatt tggtctttca tcatcaagaa tgatttagat gaagtgggtt 300 tttttgtaga ttctctttat caaatggagg aattttctct ccctagtttg ctgaattttt 360 aacataaaag agtactgtaa gtactcatta taaaacaaaa tatggctgtg gaagatgaaa 420 gagagtttca agcatgctgg cttgataggc cagatccaag ctggcaaaaa taattatctc 480 tttcttcttt ttttctatcc atggaataaa aaattaagag gaaagaatgt taatagaatc 540 gcattatttc ttcaaaatac gttgtgagtt ttaaaagtat tatctacctt ttttattata 600 cttttttag ggtacatgtg cacaacgtgc aggtttgtta catatgtatg catgtgccat 660 gttggtgtgc tgtactcatt aactcatcat ttaacattag gtataactcc taatgctatc 720 cttcccccct ctccccaccc cacaacaggc cccagtgtgt gatgttcccc ttcctgtgtc 780 catgtgttct cattgtatat ttttttaaat ctaccacatc aaggcacctc tttttcatgt 840 tgcccatggt ttaggtgaac ataaagacag agctcgtctg aggcaacata cagtccaaca 900 aagccacctg cotototgtc tocactotot ctotacactg cacgcgtgct aggtgttgat 960 cctgtctatt ccagtggaag aacaggttcc gtaccatgtg gagaatttgc atgtaaaagg 1020 agactgggat atacaggctg gagaccacat caggtggctg ggcatgtggg ataaatccta 1080 ttgagcatct gtcatagggc ctgtcactta gtagacagtc actaaatatt tgttaaatac 1140 atgatgcctg tttaacacat tttctacaac catggagacc tccacaactg atgtaggaca 1200 aaatctttct gctttgaact ctagcctttc gggccagtgg gatttatgaa aaatgccatc 1260 tetatagetg aggatgaaga atggaagaga atacgateat tgetgtetee aacatteace 1320 agcggaaaac tcaaggaggt atgaaaataa cttgggtttt aattagaaac ttaaagaatg 1380 aatcaggtgg ggacaggtag aaagtaagat cagagtteet tteegaggag tagtetgetg 1440 aatttgagct tcctaaaaat agtcttttta tgtacagaaa acacatcata aaattcatta 1500 yacaatgtca cttattgttc catgccaggc aaagtcatgt ccttctggga cttatgtctg 1560 cacatttaac tatgggtggt gttgtgtttt gtgcttagat ggtccctatc attgcccagt 1620 atggagatgt gttggtgaga aatctgaggc gggaagcaga gacaggcaag cctgtcacct 1680 tgaaacagta agtaggagca cagccatggg gttctgagct gtcatgagcc cctccagctg 1740 cctgctatgg agctgatact cccgctgttg ggttattcca gtgaccagac aaaaggaggg 1800 ctgtggtaat gcaacttcaa tgggtctccc aagatggggc agctccgatg aggaggtggg 1860 gcagctggag gaaaaggatc ttctcccctg tgcacagagg tcagggttta catatctgtt 1920 aaattgtcac cttggatatt ctggaggact aaatacatcc tttaggggga aaagtgtgat 1980 tgtatcaaag ttttaagcat ggagtgtatg ggatggtgga aggggaaggc acttggtatc 2040 tgttggttgg cagtgagtag ggtgggaaag ttataatgga gaacttagaa taactttgat 2100 catttcatgt tttttttctg agggtatcag tagaatacta aatattaaac attcccacca 2160 tttctttttc ctccagtctc aaagagagag ggtggtaaaa acgctatagg tggggcaagc 2220 ctattatttg ctgtctacac ttatgcagga acaacaggtg taatctgagc ctgtcctggg 2280 cagacagggg atatgtggtc actcactata gaagtttcca aatcaaattt tgagagtttt 2340 ttttaaccag gacatcattt gtcattatat tttacaaaaa taattctgcc atcagggcaa 2400 cctcagctca ccacagctgg ggatagtgga attttccaaa gcttgagcag ggagtataga 2460 gaataaggat gatatttcta ggagctcagg acatggtact gttgctttgt aaagtgctga 2520 agaggaatcg gctctgggca tagagtctgt agtcaggcaa tgtcacctgt cttgagccc 2580 ttagaaagag tgaatttttc tactcttgtt ctgctgaagc acagtgctta cccatcttgt 2640 atcatccaca attaacacat gctactgcag ttgtctgata gtggatctct gtctttctat 2700 gactaggete ettgacetea gaggtaagte taacteagtt gagtgtetee ateaceecea 2760 gcggagagcc agctgtgtca ctgacacctg ataatcacct tctgagggag tgtgatggga 2820 gatgctccag taaatagttc tgaaagtctg tggctgtttg tctgtcttga ctggacatgt 2880 ggatttcctg ctgcacgcat agaggaagga tggtaaagag gtgctgattt taattttcca 2940 catctttctc cactcagcgt ctttggggcc tacagcatgg atgtgatcac tagcacatca 3000 3001 <210> 90 <211> 410 <212> DNA

<220>

<213> Homo Sapiens

```
<221> allele
 <222> 168
 <223> 99-28779-168 : polymorphic base C or T
<220>
<221> misc binding
<222> 149..167
<223> 99-28779-168.mis1
<220>
<221> misc binding
<222> 169..187
<223> 99-28779-168.mis2, complement
<220>
 <221> primer bind
 <222> 1..17
<223> upstream amplification primer
<221> primer_bind
 <222> 390..409
 <223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 156..180
<223> 99-28779-168 potential probe
<400> 90
tgactgctta acagaccaag ttgcttgcat tttgtatgtt tagccctcct ttgccactgc
                                                                        60
ttttagagcc ttggaaggct aagtgtgata gtaatgctag ctctaatgca tatttaaagg
                                                                       120
agactgcctc gcttttagaa gacatctggt ctgctctctg catgaggyac agcagtaaag
                                                                       180
ctctttgatt cccagaatca agaactctcc ccttcagact attaccgaat gcaaggtggt
                                                                       240
taattgaagg ccactaattg atgctcaaat agaaggatat tgactatatt ggaacagatg
                                                                       300
gagtctctac tacaaaagtc tttgggtatt tgtttcttac atagaaaatg ctaacatgaa
                                                                       360
tagaaagata ctggtgcaag accattcccg ggaaagtaga catacttaca
                                                                       410
<210> 91
<211> 479
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 300
<223> 99-28788-300 : polymorphic base A or G
<220>
<221> misc binding
<222> 281..299
<223> 99-28788-300.mis1
<220>
<221> misc_binding
<222> 301..320
<223> 99-28788-300.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
```

```
<220>
<221> primer bind
<222> 458..478
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 288..312
<223> 99-28788-300 potential probe
<400> 91
tctacccatt ctgcttctct gatttttaat gcattgtctc tatcccaggc tactttggag
                                                                        60
ggtcatcccg agtttgcaga taaattcttc cttcctcttt ggactcattt agaagaaaqt
                                                                      120
tgtaactatg gaaatgatgt aactagcctg ttaacatccc tcagcttcct gttagaaatc.
                                                                      180
cccagtgaaa tgtggagagg ttggcttttg acctttgtgt tcaccatcat caccatcata
                                                                      240
caatatttat gaaacaccac acacatataa ttctgaactg agccaagcac agagatcacr
                                                                      300
tccactttcc tcaagggact tgtaatttaa ccttggtctg gtgtgctact tagaccaggt
                                                                      360
gtggttacat aagaaggagg ctgctgccag caaccacaca ttaataacaa tctctctatt
                                                                      420
ttagaataag tccaggaata tgttaggcat ggatgtagta aagtagccaa gaaagggga
                                                                      479
<210> 92
<211> 499
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 263
<223> 99-32052-262 : polymorphic base C or T
<220>
<221> misc_binding
<222> 244..262
<223> 99-32052-262.mis1
<220>
<221> misc binding
<222> 264..282
<223> 99-32052-262.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 478..498
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 251..275
<223> 99-32052-262 potential probe
<400> 92
cagagtgaca aataagtgct atggcttgat agaagtgaag ctcttcacat atattcaaaa
                                                                       60
tacatatcac aaactttggt aaataggata gtaatctgaa gaacttttgc cctttttacc
                                                                      120
ccatttactg taactcttgt ttctaggtaa tcgttctctc tcaacaaact tctcaagcgt
                                                                      180
ctgtgtaaca agccacatgt tctaacaaat tgtctccatc gcacttcaac agccaggtcc
                                                                      240
ctatttttta taacgtatta acyttattat tttcttatta ttttaaaaga atctatgcac
                                                                      300
attagcaaaa tttaaaagat agagaaaaat ataaacagaa aaaattatgt ttacttctac
                                                                      360
caccctaaat caactattat caattttata catattttac tccatctttt ttcaaagttt
                                                                      420
```

```
cttacatttt ccaatgicat taaaattctc tgtgaatgta aattttaaaa actgtaccta
ctgttttttg gaatctgta
                                                                      499
<210> 93
<211> 467
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 244
<223> 99-32121-242 : polymorphic base A or G
<220>
<221> misc binding
<222> 225..243
<223> 99-32121-242.mis1
<220>
<221> misc_binding
<222> 245..264
<223> 99-32121-242.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 448..466
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 232..256
<223> 99-32121-242 potential probe
<220>
<221> misc_feature
<222> 72
<223> n=a, g, c or t
<400> 93
agcagtatga cagggaccat tetgggtete tgggaagtte teagetgegg ggagetetge
aggeogragt tnecagetaa atgaacaact ttaccaaatg attgtccgcc ggtatgetaa
                                                                      120
tgaagatgga gatatggatt ttaacaattt catcagctgc ttggtccgcc tggatgccat
                                                                      180
gtttcgtgcc ttcaagtctc tggatagaga tagagatggc ctgattcaag tgtctatcaa
                                                                      240
agartggctg cagttgacca tgtattcctg aagtgggaac tgagaagtca agatcctccc
                                                                      300
tggaggacag gactgaaaac cttgccaagc tgtacacagt tgctgatacc ctgtqcaaca
                                                                      360
gctctcattt cctggcaagc tctttcacaa ccctacatat ttctgatcat gtgctgcctt
                                                                      420
ttactgctga attaaaacag atattcacga aaaatgttct gagtggt
                                                                      467
<210> 94
<211> 469
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 169
<223> 99-32059-169 : polymorphic base C or T
```

```
<220>
<221> misc_binding
<222> 149..168
<223> 99-32059-169.mis1, potential
<220>
<221> misc binding
<222> 170..189
<223> 99-32059-169.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 448..468
<223> downstream amplification primer, complement
<221> misc binding
<222> 157..181
<223> 99-32059-169 potential probe
<400> 94
acaagaaccc acctacette eggettaaga aatagaatat eccatacetg acaageecac
                                                                       60
atgcacccca cgccccctaa gcacattcac ccctgttccc tgctctaaaa taaacactat
                                                                      120
cctgagtttg gcaaacacca cttctttgtt ttttctttat aatattacya tctatgaata
                                                                      180
tatttctaaa caatacattg ttagtttatt cttcttcaaa ttttatgtaa aaggaatcac
                                                                      240
actacagata ttgttctgtg acttatttgg cccaatatgt ttctgagatt catccttgct
                                                                      300
gatggggttg gctgcagttc acttgttttc agtgttgttt atagtaattc tattgtatga
                                                                      360
ataataacaa tttatttatt catccaactg tgaaggacat:ttggattgtt tccagttttt
                                                                      420
ttttcttttt ggattttgaa caatgctgtc tataaacgct ttaggatgt
                                                                      469
<210> 95
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 304
<223> 99-32061-304 : polymorphic base A or G
<220>
<221> misc_binding
<222> 285..303
<223> 99-32061-304.mis1
<220>
<221> misc_binding
<222> 305..324
<223> 99-32061-304.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 430..449
```

```
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 292..316
<223> 99-32061-304 potential probe
<400> 95
cacaaaactc actattgcca tagctgcaat taaaatttag ataatctggc tgcttactaa
                                                                       60
agcaaatagc ttgataaaat gtaccccaaa acagataaaa attatacagc aaaatatact
                                                                      120
attittitaa ticttaaatg tcaaatcagt atcatgataa gaattatigc acaatcittig
                                                                      180
gttcttttct ttaaaaccta ctgaggtccc caggaagaat tataaactta ataaaaaaaa
                                                                      240
atccagactt gaagatattt cagggccaca tttcaaagga gaccagctct ttggagggag
                                                                      300
geertaatee etecataace tgteetaate tggageecag agaagteeag agttagaact
                                                                      360
aaggagttac attgggtaag tacaaataga aaagataatg gtctcatgga aactccagac
                                                                      420
agtgggcccc atccctttcc tggaagtcag
                                                                      450
<210> 96
<211> 487
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 303
<223> 99-32065-303 : polymorphic base G or T
<220>
<221> misc_binding
<222> 284..302
<223> 99-32065-303.misl
<220>
<221> misc_binding
<222> 304..322
<223> 99-32065-303.mis2, complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 469..486
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 291..315
<223> 99-32065-303 potential probe
<400> 96
gcccaaatgc caactacatt atgataatct tctaaaagtt ataattgcct aatgttaaaa
                                                                       60
tattttgttt tctgagttat tgccaaatgc gatacatccc tagttcggaa agatacccaa
                                                                      120
ctactatact tgaaaccact gaagctacaa aataccttgc tctcagtttt cacatttgct
                                                                      180
tttctccctc tacagctttc tgcagtggca taagtggatt agttatacta tttttattaa
                                                                      240
ttactttagt agtaatttct attaaaacaa ttattaataa caattattaa ccagtacagt
                                                                      300
ctkgttattt taaacattag catgaggcag aatggaactg cttttcaggc attatctaat
                                                                      360
taagatggta atagaggaga aactgatcat gagttgacaa agctactggt aaaagtttat
                                                                      420
tottattgaa cagaaccaaa ttgttgtgat ctgtatgcct taaaagtgca gcctcttatg
                                                                      480
tggactc
                                                                      487
```

```
<210> 97
<211> 541
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 118
<223> 99-32123-118 : polymorphic base A or G
<220>
<221> misc_binding
<222> 99..117
<223> 99-32123-118.mis1
<220>
<221> misc_binding
<222> 119..138
<223> 99-32123-118.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 520..540
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 106..130
<223> 99-32123-118 potential probe
<400> 97
cagtaaatga atcagtaaag tacaatataa cacaaaagaa aacgaaatat tgcttgattt
tttccaataa aagcaaggtt aataaaaaca tttttagtaa gaaaatctat catttttrtt
                                                                      120
ttaaaaaatct ttcaatttta aacatcatta ccaacacatt aaaagtatta tcaataagtg
                                                                      180
cctttacaat ttcaagcaaa agctactgtg ttttccttat tggaaatact gctttcagtc
                                                                      240
atcttttttg tctgaggtac tctcttcatg cttttcaggg ctgactttat tactggeggt
                                                                      300
ggaggggtt gtctggactt cttttggtaa tgaaaacaca tggcacgtct ggaggtctag
                                                                      360
gtatgttgta aatatcttag catattctgg atgctttaag gcaaaacttt taaattcctc
                                                                      420
tagaagagaa agaaaaaaa tccaataagt tggggtgaat cttcttttgg catgatgcag
                                                                      480
attaataaat gactctaata atgcaattat tacaaaattc tactacccaa cacacaaaca
                                                                      540
                                                                      541
<210> 98
<211> 449
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 314
<223> 99-32148-315 : polymorphic base G or C
<221> misc_binding
<222> 294..313
<223> 99-32148-315.mis1, potential
<220>
```

```
<221> misc_binding
<222> 315..333
<223> 99-32148-315.mis2, complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 428..448
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 302..326
<223> 99-32148-315 potential probe
<400> 98
tgagtgcatt tgatgtgggs cagcaaagct tcattcaggt ggaaacagat taagaagacc
                                                                      60
aaagagtggt gaaatggcta agtaggaatg aaaaaacagc cagctacccg yggccagtgc
                                                                      120
cttattctaa aagaggacag ctagettgcc caaggactet tgcagaagga aacetgggag
                                                                      180
agtttccttc tcctcttgca gaagtaaact cttcaggttg aagagtcagg aaggagctcc
                                                                      240
agggatgagt gaagtcaact gaagttgcct cttttataaa cagctctgca gtggttctct
                                                                      300
ggaaaccgag gctsgttgca aacccctaaa aagtactgct ctgcaaggct tgtaactgcc
                                                                      360
atacttgtgt ggtcctgctc catctccatg tgtggcagtg ccagctgcaa ccagcctcac
                                                                      420
acagggtccg agagtctcag aactgcaag
                                                                      449
<210> 99
<211> 920
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 95
<223> 16-2-76 : polymorphic base A or G
<220>
<221> misc_binding
<222> 76..94
<223> 16-2-76.misl
<220>
<221> misc_binding
<222> 96..114
<223> 16-2-76.mis2, complement
<220>
<221> primer_bind
<222> 20..39
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 240..260
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 83..107
<223> 16-2-76 potential probe
```

```
<400> 99
ctggggcctg agactgaggt ccagggagac cctaattcct gcaccccacc cctcctggtt
                                                                       60
                                                                      120
coctocaqat qqqaqqcatq gaggetgtca teaerqqcet qqcagatgac ttccaggtcc
tgaagegaca eeggaaacte tteacatttg gegteacett eageacttte ettetegeee
                                                                      180
tgttetgcat aaccaaggtg agtaggggct gggctctggg tcacctgggg gcctctgagg
                                                                      240
ccqcatttca ataaagtcaa acattcctag ccttagaact gggctgagct cagggagaac
                                                                      300
aatgcaggat ccagcatcct caattcagcg gcctgaccca ctagggttag gcccagtagt
                                                                      360
cttcttccat ctctgassct gaggattcca ttcagccctg ttaattgcct tattgacttg
                                                                      420
agggscagca aaagtccctt tggaacccat ctaactcttt attggctgaa actgaggtga
                                                                      480
ctgtaacgtc aatacaacag caccacagcc ctatgccctg ggttttcaaa tagagctccg
                                                                      540
                                                                      600
agcaagtggg acagggggca ggtaagagtt gacagacaca acaatcagtt cccacgtttg
                                                                      660
accaaaqaqq qcctcttqqc ttcttctctc cctgtgccag ggtggaattt acgtcttgac
                                                                      720
cctcctgqac acctttgctg cgggcacctc catccttttt gctgtcctca tggaagccat
                                                                      780
eqqaqtttcc tqqttttatq gtatgtgagt gtgtggaaaa gcctcagctc ccagtcctcc
                                                                      840
tagaatcctg cacctggagg tgtgcaggga ggccttccat ttccaggaca gccacctaaa
                                                                      900
attccaqaqt ccagcaagtc acttattggg aacaaatctc aatcctcggc tcatctttgg
                                                                      920
atgaacctgc ccttaacagg
<210> 100
<211> 395
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 120
<223> 16-28-93 : polymorphic base A or C
<220>
<221> misc binding
<222> 101..119
<223> 16-28-93.mis1
<220>
<221> misc_binding
<222> 121..143
<223> 16-28-93.mis2, complement
<220>
<221> primer_bind
<222> 28..47
<223> upstream amplification primer
<220>
<221> primer bind
<222> 354..374
<223> downstream amplification primer, complement.
<220>
<221> misc binding
<222> 108..132
<223> 16-28-93 potential probe
totgttatot otaaacotgt gttotgtoog occacacatg acotaacaat tgggccccca
                                                                       60
gatactcccc tatcatgtgc agctcagacc aatggtttca gccattgatg aggtccttgm
                                                                      120
tgtttcttac aggagctggc ctagtgttca tcctgtatcc agaggccatt tctaccctgt
                                                                      180
ctggatctac attctgggct gttgtgtttt tcgtcatgct cctggcgctg ggccttgaca
                                                                      240
gctcagtgag tgaccctgct taggatacct atcccccatc ccactgggcc tgaccccctt
                                                                      300
ccccaacaca cagtgctggg cctgaagttc ccactattca aacaccaggt taacagttgt
                                                                      360
ttcccagaag gccctattta aattqcagac aaaaa
                                                                      395
```

```
<210> 101
<211> 922
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 342
<223> 16-3-199 : polymorphic base C or T
<220>
<221> misc binding
<222> 323..341
<223> 16-3-199.mis1
<220>
<221> misc_binding
<222> 343..361
<223> 16-3-199.mis2, complement
<220>
<221> primer_bind
<222> 143..162
<223> upstream amplification primer
<220>
<221> primer bind
<222> 374..393
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 330..354
<223> 16-3-199 potential probe
<220>
<221> misc feature
<222> 565,643
<223> n=a, g, c or t
<400> 101
ageteaagaa acagtgtetg gatgagtgae teaatggaee ageteeacaa acaaagetgg
                                                                       60
aggtgtcttg tacagacccc aaatgctatc catgtggggc tgcaggatca aatagcaggt
                                                                      120
ggccctcatc tgcaggtgca gccaggctgc ragaagggtg tccctgggcc aagctgaggc
                                                                      180
ctcctccct tctcttcctt tcagagactg gcctatggca tcacgccaga gaacgagcac
                                                                      240
cacctggtgg ctcagaggga catcagacag ttccaggtgg gtgaagccta gacccctggg
                                                                      300
gtggagatta caagggcggg ccctggctgt tccctgctgt gyactgccca aggctagaca
                                                                      360
tcacatccag aaaacccaga aacccagtgt gagctgcctt ttccccttgg aaacatcggg
                                                                      420
atgggggaca gggaggetea eettgageee atggeeteag gettgeeetg tgaetttggg
                                                                      480
gaggttctgc tgccctttct gggcctctgt gacaattagg gaatcaactt gcacgttccc
                                                                      540
tgaggtccgt gaaggaaggg ggtgnttttc tgccttctct ctacctcctg ctgcccccgc
                                                                      600
cagctggccc ttgctccttt ctgtccccac catgtcatca agncctcgct gtctttctct
                                                                      660
gcagttgcaa cactggctgg ccatctgagc ctgcctggag gagaaggagg aacccccatg
                                                                      720
ccaatgtcca ggtcacaggc atecgetgeg eteccaeete ggacaceate ttgggattee
                                                                      780
tcccctggaa gttgtccttt ctgatcctct cttcttttcc catttacaaa tgatttcgtg
                                                                      840
actgtagttt ttgttcacct tctgtgcatc tggcctgggg gctgttagct cagaggagag
                                                                      900
gagcaaacag gaaaatgact tc
                                                                      922
<210> 102
<211> 245
<212> DNA
<213> Homo Sapiens
```

```
<220>
<221> allele
<222> 197
<223> 16-50-197 : polymorphic base C or T
<220>
<221> misc_binding
<222> 178..196
<223> 16-50-197.mis1
<220>
<221> misc_binding
<222> 198..216
<223> 16-50-197.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 227..245
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 185..209
<223> 16-50-197 potential probe
<400> 102
agaaceteat gggaggacet ggeeetgget ateatggggg ceatggtaac aggeetgeee
tgtgtgtgca caggagtgga caggttcagc aacgacatcc agcagatgat ggggttcagg
                                                                      120
ccgggtctat actggagact gtgctggaag ttcgtcagtc ctgccttcct cctggtgtgt
                                                                      180
                                                                      240
agtgtctgca gggaagycct gcatgtgggg agggggctgt gtccaggatg gagctgggtg
aggat
                                                                      245
<210> 103
<211> 357
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 181
<223> 16-1-59 : polymorphic base C or T
<220>
<221> misc binding
<222> 158..180
<223> 16-1-59.mis1
<220>
<221> misc_binding
<222> 182..200
<223> 16-1-59.mis2, complement
<220>
<221> primer_bind
<222> 123..142
<223> upstream amplification primer
<220>
```

```
<221> primer bind
<222> 290..309
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 169..193
<223> 16-1-59 potential probe
<400> 103
gttgccaggg ctgcccatct ctggttcaga ccatgtttcc tctggtctca gagcatcccc
                                                                      60
agggtttctc agcccttccg gaccagtgag gtgttccagt gttgtaggaa gcagaggctg
                                                                     120
atggettttg tetgetggtt teaggtatgg attgatgeeg caacteagat attttttee
                                                                     180
ytgggggctg gatttggagt attgattgca tttgccagtt acaacaaatt tgacaacaac
                                                                     240
tgttacaggt aagattette teagaattet gagaagetet aaateetggg gattgactet
                                                                     300
tgtggggtgg cagagagggc tctggtctgg aagccaactc tccctgggca agccaaa
                                                                     357
<210> 104
<211> 920
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 206
<223> 16-2-187 : polymorphic base A or G
<220>
<221> misc binding
<222> 183..205
<223> 16-2-187.mis1
<220>
<221> misc binding
<222> 207..225
<223> 16-2-187.mis2, complement
<220>
<221> primer_bind
<222> 20..39
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 240..260
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 194..218
<223> 16-2-187 potential probe
                                                                       60
ctggggcctg agactgaggt ccagggagac cctaattect gcaccccacc cctcctggtt
                                                                      120
ccctccagat gggaggcatg gaggctgtca tcacgggcct ggcagatgac ttccaggtcc
tgaagegaca ceggaaacte tteacatttg gegteacett cageacttte ettetegeee
                                                                      180
tgttctgcat aaccaaggtg agtagrggct gggctctggg tcacctgggg gcctctgagg
                                                                      240
ccgcatttca ataaagtcaa acattcctag ccttagaact gggctgagct cagggagaac
                                                                      300
aatgcaggat ccagcatect caattcageg geetgaceca ctagggttag geecagtagt
                                                                      360
cttcttccat ctctgassct gaggattcca ttcagccctg ttaattgcct tattgacttg
                                                                      420
agggscagca aaagtccctt tggaacccat ctaactcttt attggctgaa actgaggtga
                                                                      480
ctgtaacgtc aatacaacag caccacagcc ctatgccctg ggttttcaaa tagagctccg
                                                                      540
agcaagtggg acagggggca ggtaagagtt gacagacaca acaatcagtt cccacgtttg
                                                                      600
```

```
accaaagagg gcctcttggc ttcttctctc cctgtgccag ggtggaattt acgtcttgac
                                                                       660
cctcctggac acctttgctg cgggcacctc catccttttt gctgtcctca tggaagccat
                                                                       720
cggagtttcc tggttttatg gtatgtgagt gtgtggaaaa gcctcagctc ccagtcctcc
                                                                      780
tagaatcctg cacctggagg tgtgcaggga ggccttccat ttccaggaca gccacctaaa
                                                                       840
attecagagt ccageaagte acttattggg aacaaatete aatectegge teatetttgg
                                                                       900
atgaacctgc ccttaacagg
                                                                       920
<210> 105
<211> 466
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 311
<223> 99-28761-311 : polymorphic base A or G
<220>
<221> misc binding
<222> 292..310
<223> 99-28761-311.misl
<220>
<221> misc_binding
<222> 312..331
<223> 99-28761-311.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 446..465
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 299..323
<223> 99-28761-311 potential probe
tttgtaactc taagaaggca tttttaaaaa gtaagtaggc aataaagaaa tggtacttct
                                                                       60
atgtaagtag tgcatgtgta gtagtgagtt ttgtgatcaa tatacattgc tttgtatgtg
                                                                      120
atttgctttt aagatgttgg aaatgagaat ctgatatatt agagaatttg acttacaaga
                                                                      180
tttgcaattt taagtgtaac acctaggagg atttaatgaa ttaattttgt agtcaatgtt
                                                                      240
tggatgctca ggagaacctg aatttatcag tttaattctc agcaggttga aatgctttaa
                                                                      300
gagaatttgt rtgctaaatt tagaagtttt gatttattag tcttacaaga actaagtaag
                                                                      360
tcctgagaaa gattttgttt cttctatttg taagtcttcc tgttagggat ttgaagattt
                                                                      420
taacaaagcc agatgtatca aatttgtgag tatagtttga aatgct
                                                                      466
<210> 106
<211> 462
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 86
<223> 99-28771-86 : polymorphic base C or T
<220>
```

```
<221> misc binding
<222> 67..85
<223> 99-28771-86.mis1
<220>
<221> misc binding
<222> 87..106
<223> 99-28771-86.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 444..461
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 74..98
<223> 99-28771-86 potential probe
ttcagagtag taacttccaa aggctaatgg atgaatgtga gtatttccat tctcattgtg
                                                                       60
gccaggaaag atagagataa tcatayagta cccagaaaat gactgcttca tatgatgagg
                                                                      120
ctttaatttc cattttaatg gaaacatgtt catttaaaag aaagaaaagc agatttctga
                                                                      180
actatgtctc ctctcccgt taacaacctg gatgtgcacc tagaattaat gagctacatt
                                                                      240
tttatttcta ttttgctaaa gaggctgacc agggctgttg cattacctga tgtctaatct
                                                                      300
ttccagtgct cctctcacgc ctcccctcac tgttttcccc cttctgaatg cgatgttagt
                                                                      360
attttggctt tgtctcaaat aaacttacaa gtcgggtttt tatttctccc caacggagcc
                                                                      420
tctcaaatcc cttatcttca gctcaacagg aaggagatta ct
<210> 107
<211> 452
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 291
<223> 99-28791-291 : polymorphic base A or G
<220>
<221> misc binding
<222> 272..290
<223> 99-28791-291.misl
<220>
<221> misc binding.
<222> 292..311
<223> 99-28791-291.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 432..451
<223> downstream amplification primer, complement
```

```
<220>
<221> misc_binding
<222> 279..303
<223> 99-28791-291 potential probe
<400> 107
taaaaaccca cactcaacat gggcagtcaa gccaaagact gggacctttg gagagcctct
                                                                       60
ggaatgagag ttctctgggg tacttccaaa gggagctggc agtcagtcca ggggacctaa
                                                                      120
aggaatttgg ttgaacagta tcatctctgt gcatagtaag agggaatgtt gggtggtccg
                                                                      180
qqcaqtttcc aatatqqcaa aqcatctqct tqqacaqtqc caqcaaqcct tcctctqacc
                                                                      240
cagtetecaa tgtecaetaa ettataaaaa tgteateaac teccaeatgt ragaaacaec
                                                                      300
atgatttgta ctgtgcatgg gtcacattct tattctagaa atgcatcacc ctgtgtttat
                                                                      360
ccaagtgtgt ttacttggtg taatgtccag tagtaataga atatgaaata tcaaggaacc
                                                                      420
atctttgtta cgtgacttcc aaaatgtgag at
<210> 108
<211> 489
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 66
<223> 99-32077-66 : polymorphic base A or G
<220>
<221> misc binding
<222> 47..65
<223> 99-32077-66.mis1
<220>
<221> misc binding
<222> 67..85
<223> 99-32077-66.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 471..488
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 54..78
<223> 99-32077-66 potential probe
<400> 108
gctggaggtg agataaggca tcttcaccgc tgcatttcca gctttgtagg gggaaaacaa
                                                                       60
tttgcrtttg ggaaataatc caacaagcaa tcctatggtt ttaatacaaa cactcaaaga
                                                                      120
ggttctggcc atgaccatct gggtccagcc cttcactgaa ttggaaagac ggcaacgata
                                                                      180
atggttgaac aggcccacat gtgttggctc tgattctgag tttcccctac ccaccgcacc
                                                                      240
ccatgattga agaggataca gggctccacc actgtcaggc atcaaggaag acacaggtct
                                                                      300
aggggagaaa tcaacacttc tcagggtcct tttcaaggac taccccagag atggaaggtc
                                                                      360
atctagtcta tggtgtcctg gacctgcctt ggcagtagtc gtggccattt tggggtaacc
                                                                      420
taaagaaaac agacaatgtt tgatttgtaa catattgaga gttgtttttg cccttttgat
                                                                      480
gacctgcag
                                                                      489
```

<210> 109

```
<211> 489
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 467
<223> 99-32078-466 : polymorphic base C or T
<220>
<221> misc_binding
<222> 448..466
<223> 99-32078-466.mis1
<220>
<221> misc_binding
<222> 468..486
<223> 99-32078-466.mis2, complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 470..488
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 455..479
<223> 99-32078-466 potential probe
<400> 109
agcacccagt ttgttagagt aagactgggc caaagcatcc tgggatgcag tagtggtatg
                                                                       60 :
                                                                      120
gtagactaac tgctgtaaca aatagacccc aaagcggatg gtagctcata cacaacagga
atttattett gtteteatta eagtagtgga tatgggaata ataageagge teeaatetat
                                                                      180
ctgggtcttt cagggaccca gaattgacaa ggctttgctt tcttcaacac ttggcttcaa
                                                                      240
ggttatcctg gggttgcctt ctattctggc cagccagaag gaacaaaaaa catgatgtat
                                                                      300 .
ttctatgcgg gaggctttta ggggcccagt ccacaaaagg cttacatcag ttccaccaac
                                                                      360
totocattgg otggaacgca ggcacagggt ggcacetgac tgtgtgggaa atgtggteca
                                                                      420
tggctgctca gcacttccca gcatgatgct tggagcaagc aggccayctc tgtctgagag
                                                                      480
aggatacag
                                                                      489
<210> 110
<211> 470
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 426
<223> 99-32376-426 : polymorphic base A or G
<220>
<221> misc_binding
<222> 407..425
<223> 99-32376-426.mis1
<220>
<221> misc_binding
<222> 427..446
```

```
<223> 99-32376-426.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 449..469
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 414..438
<223> 99-32376-426 potential probe
<400> 110
ggggctgaga attactggca ttgagacttt tgatgctggt agctgcaact gatgcagttc
                                                                       60
ctccttaaac ccagtgaaaa aacctgtggt cacgtagctt tcacacttta tcctatgtca
                                                                      120
caaacaaacc tgaatctgca aacctcctgg gatggtcctg caaatgcaag gtgaccatga
                                                                      180
acctgctgtt ccccagagcc ccctttgcat tgagggcttt tgaggccatc tctcatttga
                                                                      240
tacaagetga geagectegt teeteetget etteeteaaa tgteetteag getttetete
                                                                      300
cttctcacag catggtgcta gatgcttgac tttttacttc ctggaaaaaa aatttcaggt
                                                                      360
ccatgtggct tcttgatagt aaaagaaagc aatactcatg tatttattgg ttcactcaca
                                                                      420
tctggrtgtt agagccaaat tccaaagacc tttgaaagtt ctcttgcagg
                                                                      470
<210> 111
<211> 457
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 420
<223> 99-32361-419 : polymorphic base G or T
· <220>
<221> misc_binding
<222> 400..419
<223> 99-32361-419.mis1, potential
<220>
<221> misc_binding
<222> 421..439
<223> 99-32361-419.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 442..456
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 408..432
<223> 99-32361-419 potential probe
<400> 111
```

```
tototaatot totocatoat cattatotgt tgaaattaaa atqcatoctg aqqcatqctg
                                                                       60
cccagtggct ttatatcttg tctgcacaat gagattgtaa gctccttgag gaaaaggacc
                                                                      120
aggttgtgtg tgaattatgc attccttgtg gtgtctagaa taatatcaag ttcagaagac
                                                                      180
traggtatea cttgagatgt ctctttctgg cccctccaat ggtctgaata aatctgactc
                                                                      240
aaactcccag tttaacagtc ttgatgaagc ccaaagccct atccatgata cgtgagaatt
                                                                      300
cttattgttt ttcttttgat gggtcccatt gtgactagtt caaaatactg gagactatgt
                                                                      360
ctttttcct tctcattaac atggttacaa aactctctct tttataaact tccataaaak
                                                                      420
ctggtgagtc tcttaagaac tggtatttag agacctc
                                                                      457
<210> 112
<211> 424
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 228
<223> 16-21-228 : polymorphic base A or G
<220>
<221> misc binding
<222> 205..227
<223> 16-21-228.mis1
<220>
<221> misc binding
<222> 229..251
<223> 16-21-228.mis2, complement
<220>
<221> primer bind
<222> 1..25
<223> upstream amplification primer
<220>
<221> primer bind
<222> 399..424
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 216..240
<223> 16-21-228 potential probe
<400> 112
tagcaggeta agtecteett etaetteate ecagatgata eccaetteag gaagtettte
cettetgtgg gatgagatge ceattetgea gggettteae tecetgeate etgecaaace
                                                                      120
tcatcatctc ttacctggat tcctgctaca gcctcccagt tggtgtcccg cttccactct
                                                                      180
gggcccctcc tctccgttct ccacagtgct gtcagaatca cctattcraa aggcgaatcc
                                                                      240
gatcatgtgg ttcctgctgc ccttaggatc atgtataaac tcctagcatg acttttaagg
                                                                      300
cectetatga tettgeetat tgeaacetee eeagaeteaa eeettgeeag gteeetetge
                                                                      360
atcagctate cagaatetet ttgaggeeet ecacetgetg tetacetete tacetetgtg
                                                                      420
cttt
                                                                      424
<210> 113
<211> 481
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 156
<223> 16-22-156 : polymorphic base C or T
```

```
<220>
  <221> misc_binding
  <222> 133..155
  <223> 16-22-156.mis1
  <220>
  <221> misc_binding
  <222> 157..175
  <223> 16-22-156.mis2, complement
  <220>
  <221> primer_bind
 <222> 1..24
  <223> upstream amplification primer
  <220>
  <221> primer_bind
  <222> 458..481
 <223> downstream amplification primer, complement
 <220>
  <221> misc_binding
 <222> 144..168
 <223> 16-22-156 potential probe
 <400> 113
 gcctgacaca tggtaagtcc ttagtattat tacagttatt aggacttagc tgagccagct
                                                                         60
 cagggcctgt actgcaggtc tcagctttat gtgagcaaga gcattaagga atgatgcctg
                                                                        120
 gatgcctggg ggtgtgaaga aaagagcctt gggttygact agggaacctg gggccactcc
                                                                        180
 ttcctctgct actaaatcac caagtgatct tgttctgttt tcttctctga ccctccctag
                                                                        240
 ttttgtccac ccttgaaata atcatctttc cttttcacat ttcatgctta ccaagtactt
                                                                        300
 gtcacctaat tatctcctct cttgataagc tagatggtyc cttccagggc agcttagtag
                                                                        360
 agagcatggg atgtgatgtt tcagattcca gctctgctgc acacctgcca ggtgaacttg
                                                                        420
 gccacgttac atggcctctc tgggcttcag ttccctcacc tatgagtggg ataagcaagc
                                                                        480
                                                                        481
 <210> 114
 <211> 478
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 404
 <223> 16-23-404 : polymorphic base A or G
<220>
 <221> misc_binding
 <222> 381..403
 <223> 16-23-404.mis1
 <220>
 <221> misc_binding
 <222> 405..427
 <223> 16-23-404.mis2, complement
 <220>
 <221> primer_bind
 <222> 1..26
 <223> upstream amplification primer
 <220>
```

```
<221> primer bind
<222> 455..478
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 392..416
<223> 16-23-404 potential probe
<400> 114
ctaagtggga ataacgctaa acatacttgg attaatgcac aaggccctga gatagaggac
                                                                       60
aggcgtctgg tagacctaga agggcacgca aacatatgaa acacatagga acacaagtga
                                                                      120
gttcaacaga cagagccaag ttatcttgct gcaaacatta aaaggtggcc aacctctccc
                                                                      180
aatacacagg tcagactaaa aagatggttt actcttttaa aagttttctt gtgtcattct
                                                                      240
ttctggatac atcggcttca cttgttatgc ccagacatgg caaaactaat gaccaagtaa
                                                                      300
tgagggaata gtaatggaaa gacttgggag cagtccatca tcacagctta actttttgct
                                                                      360
cacaaccgtg tttttaatac tctggtatct gctgtgcgtt tgtrtatatc taagatgacc
                                                                      420
aggcagcctt aaacatctag ttgcgttcat attctctgta aaatcgctcc ttgttcct
                                                                      478
<210> 115
<211> 428
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 175
<223> 16-24-175 : polymorphic base A or C
<220>
<221> misc_binding
<222> 156..174
<223> 16-24-175.mis1
<220>
<221> misc_binding
<222> 176..194
<223> 16-24-175.mis2, complement
<220>
<221> primer bind
<222> 1..22
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 405..428
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 163..187
<223> 16-24-175 potential probe
<400> 115
tcgaaccgat cttcagttga cagaagagga aacaggctca gaaagattag gcaactcacc
                                                                       60
cgtctcaaga gttggtgaca ctaagcccag acctgtgtga ctctgaaatc cacacctgtg
                                                                      120
ttettteeae tgacatgage tgeettatgg atgggeaggt tetggggtag gacgmgeaga
                                                                      180
gcagctgcgg ggactggtgg cggassagtt tgtgtacata gagccctcag gtgcggaagc
                                                                      240
mmagcagacc ccagcctctg ccaggtggta gctgtaccaa catgcaagca gcaggcattc
                                                                      300
catcctccag agggatggag aacagggcca gagaacccac agagggccgc atacaaaatc
                                                                      360
caggiciggt giccigccti caccigcact gcaagggcag gactctaaga agcigttat
                                                                      420
gaggcagg
                                                                      428
```

```
<210> 116
<211> 433
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 286
<223> 16-25-286 : polymorphic base C or T
<220>
<221> misc binding
<222> 267..285
<223> 16-25-286.mis1
<220>
<221> misc_binding
<222> 287..305
<223> 16-25-286.mis2, complement
<220>
<221> primer_bind
<222> 1..22
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 412..433
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 274..298
<223> 16-25-286 potential probe
<400> 116
ggtcccatgc ctcagtgaca tccttgcctc cctggcaggg tgaccctgtg gtgtttgcag
                                                                      60
gagtetteag agggtgaaag ggaggggeea gtgagatggg tggetgatge etgggaaett
                                                                     120
gtccggcttt acccagagcc ctctgcctct ggtgcaggag gctgcccggc gagcccagga
                                                                     180
gctggagatg gagatgctct ccagcaccag cccacccgag aggacccggt acagccccat
                                                                     240
cccacccagc caccaccagc tgactctccc cgacccgtcc caccayggtc tccacagcac
                                                                     300
tccygacagc cccgccaaac cagagaagaa tgggcatgcc aaagaccacc ccaagattgc 360
caagatcttt gagatccaga ccatgcccaa tggcaaarcc cggacctccc tcaagaccat
                                                                      420
gagccgtagg aag
                                                                      433
<210> 117
<211> 433
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 279
<223> 16-25-279 : polymorphic base C or G
<220>
<221> misc binding
<222> 260..278
<223> 16-25-279.mis1
<220>
<221> misc_binding
```

```
<222> 280..298
<223> 16-25-279.mis2, complement
<220>
<221> primer_bind
<222> 1..22
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 412..433
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 267..291
<223> 16-25-279 potential probe
<400> 117
ggteccatge etcagtgaca teettgeete cetggeaggg tgaccetgtg gtgtttgeaq
                                                                       60
gagtetteag agggtgaaag ggagggeea gtgagatggg tggetgatge etgggaactt
                                                                      120
gteeggettt acceagagee etetgeetet ggtgeaggag getgeeegge gageeeagga
                                                                      180
gctggagatg gagatgctct ccagcaccag cccacccgag aggacccggt acagccccat
                                                                      240
cccaccage caccaccage tgactetece egaccegtse caccayggte tecacageae
                                                                      300
tecygacage ecegecaaac cagagaagaa tgggcatgec aaagaccace ccaagattge
                                                                      360
caagatettt gagatecaga ecatgeecaa tggeaaaree eggaceteee teaagaceat
                                                                      420
gagccgtagg aag
                                                                      433
<210> 118
<211> 478
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 393
<223> 16-23-393 : polymorphic base G or T
<220>
<221> misc binding
<222> 370..392
<223> 16-23-393.mis1
<220>
<221> misc binding
<222> 394..416
<223> 16-23-393.mis2, complement
<220>
<221> primer_bind
<222> 1..26
<223> upstream amplification primer
<220>
<221> primer bind
<222> 455..478
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 381..405
<223> 16-23-393 potential probe
```

```
<400> 118
ctaagtggga ataacgctaa acatacttgg attaatgcac aaggccctga gatagaggac
                                                                     60
aggcgtctgg tagacctaga agggcacgca aacatatgaa acacatagga acacaagtga
                                                                    120
gttcaacaga cagagccaag ttatcttgct gcaaacatta aaaggtggcc aacctctccc
                                                                    180
aatacacagg tcagactaaa aagatggttt actcttttaa aagttttctt gtgtcattct
                                                                    240
ttctggatac atcggcttca cttgttatgc ccagacatgg caaaactaat gaccaagtaa
                                                                    300
tgagggaata gtaatggaaa gacttgggag cagtccatca tcacagctta actttttgct
                                                                    360
cacaaccgtg tttttaatac tctggtatct gckgtgcgtt tgtgtatatc taagatgacc
                                                                    420
aggcagcctt aaacatctag ttgcgttcat attctctgta aaatcgctcc ttgttcct
                                                                    478
<210> 119
<211> 742
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 364
<223> 16-106-364 : polymorphic base C or T
<220>
<221> misc binding
<222> 345..363
<223> 16-106-364.mis1
<220>
<221> misc binding
<222> 365..383
<223> 16-106-364.mis2, complement
<220>
<221> primer bind
<222> 1..22
<223> upstream amplification primer
<220>
<221> primer bind
<222> 723..742
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 352..376
<223> 16-106-364 potential probe
<400> 119
cccagatggg tgatctacaa tgaccagaaa gtgtgtgcct ccgagaagcc gcccaaggac
                                                                     60
ctgggctaca tctacttcta ccagagagtg gccagctaag agcctgcctc accccttacc
                                                                    120
aatgagggca ggggaagacc acctggcatg agggagaggg gctgagggat ggacttcagc
                                                                    180
ccctctgctc tgtacccttt ttccttttgt ccccggcagc agggaagaag ctggaggccg
                                                                    240
tgggagaatg gctgggcaga gcagaggggc agcgatagac tctggggatg gagcaggacg
                                                                    300
gggacgggag gggccggcca cctgtctgta aggagacttt gttgcttccc ctgccccgg
                                                                    360
aatycacagt getetgette tetgtgtege eeegeecage eeeetggtgt ggagggaggg
                                                                    420
gtetegtttg tgcgcgtggg tgtagctttg tgcatcetet cccagtggag cgatcacetg
                                                                    480
540
tagggacccc ccgacttgcc ctcctgcctc agtctttccc ccaccctgtc tcttccttgt
                                                                    600
ccttctctgg aaaatgccaa aatacacgat gtgaataaaa gtacaacggc taaattgtgt
                                                                    660
cctgtttgat accttggggg agaggcttac cttcctgggg ttagcaggag ggcgcttaag
                                                                    720
aaaactccta actctggccg cc
                                                                    742
<210> 120
<211> 535
<212> DNA
```

```
<213> Homo Sapiens
<220>
<221> allele
<222> 285
<223> 16-16-285 : polymorphic base C or T
<220>
<221> misc binding
<222> 265..284
<223> 16-16-285.mis1, potential
<220>
<221> misc_binding
<222> 286..304
<223> 16-16-285.mis2, complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 516..535
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 273..297
<223> 16-16-285 potential probe
<400> 120
gttggcaggg ctgcttctca ccccaaacca agggagggac aggcagggag gctgagagca
                                                                       60
gcggcttgcc ctggagctgt caggtgggag gcagaggcg ggagaggctg tgggctgccc
                                                                      120
aggictgate cetgacecae tigecacecg tgeceteagt tettececaa tggagaggee
                                                                      180
atctgcacgg gctcggatga cgcttcctgc cgcttgtttg acctgcgggc agaccaggag
                                                                      240
ctgatctgct tctcccacga gagcatcatc tgcggcatca cgtcygtggc cttctccctc
                                                                      300
agtggccgcc tactattcgc tggctacgac gacttcaact gcaatgtctg ggactccatg
                                                                      360
aagtetgage gtgtgggtaa gggccageee tggetgetge tteetcaget ggaaggaeee
                                                                      420
tecccagece tecetececa ttetgtacee eccateaget eccatttegg actetettae
                                                                      480
tgctgtccct tgtcactggg tgactccacc cctggaatcc agtacccctt ggttc
                                                                      535
<210> 121
<211> 529
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 121
<223> 16-17-121 : polymorphic base C or T
<220>
<221> misc_binding
<222> 102..120
<223> 16-17-121.misl
<220>
<221> misc_binding
<222> 122..140
<223> 16-17-121.mis2, complement
```

```
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 508..529
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 109..133
<223> 16-17-121 potential probe
<400> 121
quaqquecaq cagaettgag tetgaggeee caggeeetag gatteeteee ceagageeae
                                                                       60
tacetttqtc caqqeetqqq tqqtatagqq cqtttgqccc tqtqactatq getetqqcac
                                                                      120
yactagggtc etggeeetet tettatteat gettteteet ttttetacet tttttetet
                                                                      180
cctaaqacac ctgcaataaa gtgtagcacc ctggtacatc tgtgatgttt gccttctact
                                                                      240
ctcttctqtt ccaaaaagac ccaggtccca tttaagggca gtaatgtgtt acaggtgctg
                                                                      300
tqataaaqqc tqqqtactqq ataqcttqtq ggcttatggg aggaggcctq agatqqqtca
                                                                      360
gggggagaag gtattcagca ggtggctggg ggactgtgtg cagcagttcg ctatggcctg
                                                                      420
cctgtggtgc ccatgtgttt gtacgggagg gttagcttga gaaggaatca gattataaaa
                                                                      480
ggtcttgaat gtcaagccag agagtccaga ctttttccta agggcaatg
                                                                      529
<210> 122
<211> 540
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 185
<223> 16-84-185 : polymorphic base C or T
<220>
<221> misc binding
<222> 162..184
<223> 16-84-185.mis1
<220>
<221> misc binding
<222> 186..208
<223> 16-84-185.mis2, complement
<220>
<221> primer bind
<222> 1..22
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 525..540
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 173..197
<223> 16-84-185 potential probe
<400> 122
tagaatgcct ttaatgagca gtaaatctaa ttttattaaa tctcaaccct tgggtacggt
                                                                       60
```

```
gtgtcatgaa atgggaagta gcacacagta ctatatgcta cagatgaagt acaatgctgt
                                                                 120
caaatagggg tacttgtgtt aattgttgga gtcgcaagct gaactagcgt tttctttct
                                                                 180
240
actotyteac teaggetaga gtgcagtggt gcaatcacgg ttcactgcag ceteaactte
                                                                 300
ctgggctcaa gcgatcctcc cacctcggcc tcctaaaatg ctgggattat aggcatgagc
                                                                 360
caccactccc agccccactt ttttcagact ggaaaacgca cactcacatg tgcatcttta
                                                                 420
aatgatcact tgggctgtgg tatggagaat ggcgaccagt gaggaggcag gagctgttgt
                                                                 480
ccgagcaagg gatgatattg gcatcttgga ttggcatggt ggcagtagtg gtagtgcaga
                                                                 540
<210> 123
<211> 525
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 74
<223> 16-87-74 : polymorphic base A or G
<220>
<221> misc binding
<222> 51..73
<223> 16-87-74.mis1
<220>
<221> misc_binding
<222> 75..97
<223> 16-87-74.mis2, complement
<220>
<221> primer bind
<222> 1..22
<223> upstream amplification primer
<220>
<221> primer bind
<222> 504..525
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 62..86
<223> 16-87-74 potential probe
<400> 123
gtccatttcc ctttgtccat gtgtccctcc caccctgcag ccggctccct cacatccacc
                                                                 60
ctgggctgca ggcrtgctcg gcaggctccc cacagatcaa agcttgtcca gggtctgcat
                                                                120
tgctgccaaa ggccaggagg actggtgtac agaccggaag gagctagagc ttagtggcag
                                                                180
cctgagaggg gaagctgaaa aaggagaaga ggcaaggggc attccagggg agcccgggag
                                                                240
agccagcacg gcctcctggt atatgaggca aagaggaaga cagacacaga cacagggagc
                                                                300
tgcaggctgg gggcataagc tgggggctgg gaagcataga tacagaaatg cacagatgtg
                                                                360
420
tgagggacca gagagccctc ccagcctctc tcggagtgct ggtatacagg atgctaccgt
                                                                480
actagggtaa gacacctctg gggacgctga gtatgggaat caaag
                                                                525
<210> 124
<211> 665
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 333
```

```
<223> 16-91-333 : polymorphic base A or G
<220>
<221> misc_binding
<222> 310..332
<223> 16-91-333.mis1
<220>
<221> misc binding
<222> 334..356
<223> 16-91-333.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 641..665
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 321..345
<223> 16-91-333 potential probe
<400> 124
geceatgete agggteagtt ggggaagggt ggaaacgggg agtgaagatt tgeetetget
                                                                       60
getateetga getecatete tetateeete eeatetgtet etggatttgt agttteaetg
                                                                      120
teagggetge atgggaacea teactteaca aggactetaa tittgeeetee tittggegeet
                                                                      180
gtgacaagct caggagatgg gcttccttct gccttgctgc ttctcacctt cctttatttt
                                                                      240
ccccctctt gctcttcttt gaactctcca gctaaggtat gtttgcacca gtgtttgaaa
                                                                      300
gaaccggcag ctgaacttgt ctgccagtgg gargggggct cttggagtta gctgtctggc
                                                                      360
ctctggagac caccttctcc agcactgcct ctgccccaag gatcaatgtg ctctaagtat
                                                                      420
tcatccccca acccctgacc ttgtcgctcc ctctccagtg ggcaatctgt cccaggctat
                                                                      480
agaaaatgtc ctgagtgtcc tgctcttcta cccggaggat gaggctgcca agagggctct
                                                                      540
gaaccagtac caggcccagc tgggagagcc gagacctggc ctcggaccca gagagqtaat
                                                                      600 ·
cccctctcca cgctcacctg ggaggtagcc ccaaatcaaa caaatagacc tgagaagtaa
                                                                      660
cctgg
                                                                      665
<210> 125
<211> 327
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 142
<223> 16-128-142 : polymorphic base C or G
<220>
<221> misc binding
<222> 123..141
<223> 16-128-142.misl
<220>
<221> misc_binding
<222> 143..161
<223> 16-128-142.mis2, complement
<220>
<221> primer_bind
```

```
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 308..327
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 130..154
<223> 16-128-142 potential probe
<400> 125
ctaggaacag tgcgccagtt tctggtgggc tgcagggcac gaggagatag tcaacttgtc
                                                                       60
tgactgttaa tccaccctgt cccctgcaga tggaggggcg cagccaggcc ccgtgcccaa
                                                                      120
gtccctgcag aagcagaggc gsatgctgga gcgcctggtc agcagcgagt gtgagtgcag
                                                                      180
cccetgccc gtctcaccca tgcctcccag cctgcacctg cagggcgacc tctccttcct
                                                                      240
gtgcgactcc atcctggcct gccctatctc acccgtgcct cccagcctgc gcctgcaggg
                                                                      300
                                                                      327
cgacctctcc ttcctgtgcg accccat
<210> 126
<211> 551
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 245
<223> 16-133-205 : polymorphic base A or G
<220>
<221> misc binding
<222> 222..244
<223> 16-133-205.mis1
<220>
<221> misc_binding
<222> 246..268
<223> 16-133-205.mis2, complement
<220>
<221> primer_bind
<222> 41..59
<223> upstream amplification primer
<220>
<221> primer bind
<222> 472..490
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 233..257
<223> 16-133-205 potential probe
<400> 126
gttctcctgg cactttgctc acctctgttt cccctccagc tcttcctgga gtacctgtcc
                                                                       60
tttgtgcaat acaceteetg gaactgtett tecagtetet getttttgte etgatgattt
                                                                      120
tcatgtgctt ttcctctaca tcatgaagca tttactccac attatcttcc agtttgctca
                                                                      180
tttgtcctca cctccactct tctctttctg aatttgcctg ttgctttttc agtctcttag
                                                                      240
ctccrtggag tatgttcagt gttgctgtgt tctgatagag gctccttaag ccatcttgta
                                                                      300
gattttttgt tgcacttcct ctcttccctt agacctccac aggaggaact tttcaatctg
                                                                      360
```

```
tectettete tetgettaat gageecetge aaagggtttg ggaagtgett cageetetet
                                                                      420
gtgattgtgt gttcacatta atatttatta ttttcttaaa tgtgcataaa tctcacaatg
                                                                      480
tgaacagtga tcatctttga gtgatttttt ttctcctttc tacttttagt aattctccaa
                                                                      540
                                                                      551
attttctaca g
<210> 127
<211> 551
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 232
<223> 16-135-181 : polymorphic base A or T
<220>
<221> misc binding
<222> 209..231
<223> 16-135-181.misl
<220>
<221> misc binding
<222> 233..251
<223> 16-135-181.mis2, complement
<220>
<221> primer bind
<222> 52..71
<223> upstream amplification primer
<220>
<221> primer bind
<222> 482..501
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 220..244
<223> 16-135-181 potential probe
ttggttgtgg ggaccagaga cagagcaggc agggtctcac gttccccagg gcctctcaag
                                                                       60
gatagaccct cgccctcatc tccaaaccac gcctcccaga caggaaccaa actcccagag
                                                                      120
totocaaact gootgagoot tgcccactco otgggotaac acacacttta aaggaatcoo
                                                                      180
acagtcaccg tgtgaaaagc ttgctacact gcatttgatt ctgggcactg awagcagtac
                                                                      240
ttggctgcag acactcgttt caaacaggcc ccatttttcc atctctgctg ctgttattag
                                                                      300
gggagccctt agactctctt gcagcgccgg aataggcgct caagacgtgt gttaatattg
                                                                      360
caacagcaaa tataatgaat ctgcagttgg ggacgctgag gccggagtgg tggatgaaag
                                                                      420
gtggccggag cettttccac gggtccaaac cacctgttac aggagaaggc gagcggcctc
                                                                      480
gctaagcaac tggacgttcc gcgggcgggg cgggggcggg gccggggccc gagtccgctc
                                                                      540
                                                                      551
ggaaactttc g
<210> 128
<211> 551
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 455
<223> 16-145-405 : polymorphic base C or T
<220>
```

```
<221> misc binding
<222> 436..454
<223> 16-145-405.misl
<220>
<221> misc_binding
<222> 456..474
<223> 16-145-405.mis2, complement
<220>
<221> primer_bind
<222> 51..69
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 523..540
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 443..467
<223> 16-145-405 potential probe
<400> 128
gtggaaaaaa ccatatggca ttgtcgcctt ctcagcctga cctggcatgc actctcaccc
                                                                       60
                                                                      120
teatetgtea tgcetcetge ttttecacet ggggggetga gaagteegge categaaace
                                                                      180
ttggttcctg ccagccacgg gagtttggaa gctttatcag attcctgaag cctcgtttcc
                                                                      240
tcatgggaac agtgcaggtg aaagcacctt cctctcggaa ccggggggaa gatgagaga
aattaaatag atgtatggcc ccgcagcagg actggcgctc tccattgtgt ctgaaattgg
                                                                      300
                                                                      360
caggttettg gteteaetta etteaagaat gaaaceaegg accetegegg tgaetgttae
                                                                      420
agttettaaa ggeggegtgt etggagtttg tteettetga tatteagatg tgtteegegt
                                                                      480
tttcctcctt ctggtgggtt cctcctctcg ctggytcagg agtgaagctg cagaccttca
                                                                      540
eggegagtgt cacageteat aaacgeagta cagacecaaa gagtgageag caattagate
tatcacaaag a
                                                                      551
<210> 129
<211> 492
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 320
<223> 16-177-320 : polymorphic base A or G
<220>
<221> misc_binding
<222> 297..319
<223> 16-177-320.mis1
<220>
<221> misc_binding
<222> 321..343
<223> 16-177-320.mis2, complement
<220>
<221> primer_bind
<222> 1..22
<223> upstream amplification primer
<220>
<221> primer_bind
```

```
<222> 472..492
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 308..332
<223> 16-177-320 potential probe
<400> 129
gaccctatcc gataaatggt gcttcctctt catgacaaag aaaatgaaca ctcattcact
                                                                       60
caaaatattc agcacctgct gtgtgcttca ctcttcctgg cacaggggat gcagaatgaa
                                                                      120
cagagagece etgececact gggaggggtg tttgtgggga gatggaccag gtaccagtca
                                                                      180
gtgaatatag cacaatggca ggtagagaaa agtgctacag tcatctaccg tgagcgctgt
                                                                      240
gatgetetge ecagttteae cacattaatg gageacceae tatatgetgg acacatacca
                                                                      300
tgcattttct catcctagcr gctgttgcaa aatagacacg tccattgtga agactgcggg
                                                                      360
eggtagaate geageececa aaggtgteea ggteetaate eecaaateet gtttgtgtgt
                                                                      420
tcccttgcat ggcaggaggg atgttgcaga tgggattcag ttaaagatct tgataccggg
                                                                   480
gagatgattc tg
                                                                      492
<210> 130
<211> 759
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 354
<223> 16-4-354 : polymorphic base C or T
<220>
<221> misc_binding
<222> 335..353
<223> 16-4-354.misl
<220>
<221> misc_binding
<222> 355..373
<223> 16-4-354.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 740..759
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 342..366
<223> 16-4-354 potential probe
<400> 130
cetegitece aegiaceate titececcag giggicaagi acceetiga egecateatg
                                                                       60
gagatcaagg agtacctgat tgacatggcc tccagggcag gcatgcactg gctgtccacc
                                                                      120
atcatcccca cgcaccacat caacgegete atettettet teategteag caaceteace
                                                                      180
atogacttct tegecttett catecegetg gteatettet acetgteett cateteeatg
                                                                      240
gtgatctgca ccctcaaggt gttccaggac agcaaggcct gggagaactt ccgcaccctc
                                                                      300
accgacctge tgctgcgctt cgagcccaac ctggatgtgg agcaggccga ggtyaacttc
                                                                      360
ggctggaacc acctggagcc ctatgcccat ttcctgctct ctgtcttctt cgtcatcttc
                                                                      420
tecttececa tegecageaa ggaetgeate ecetgetegg agetggetgt cateacegge
                                                                      480
```

```
ttetttaccg tgaccageta cetgageetg ageacceatg cagageeeta caegegeagg
                                                                      540
geoetggeea cegaggteac egeeggeetg ctategetge tgeectecat geecttgaat
                                                                      600
tggccctacc tgaaggtcct tggccagacc ttcatcaccg tgcctgtcgg ccacctggtc
                                                                      660
gtecteaacg teagegtece gtgcctgete tatgtetace tgctctatet ettetteege
                                                                       720
atggcacagc tgaggaattt caagggcacc tactgctac
                                                                       759
<210> 131
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27199-207 : polymorphic base C or T
cccaatgtgg ccagggacac tgayggcctt ttctggggtc ttttgcc
                                                                       47
<210> 132
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27207-117 : polymorphic base C or T
<400> 132
tgtgtggcca gcccctccag ggcygtgtgg acagcttttt gtgtatt
                                                                        47
<210> 133
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27213-53 : polymorphic base A or G
tcacacatgt aattgtttat gcarcgttag ggactctcag attctgt
                                                                        47
<210> 134
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27218-333 : polymorphic base G or T
<400> 134
gatatttaat aggtggacca ggtkggggag tgtgtttcac tccttga
                                                                        47
<210> 135
<211> 47
<212> DNA
<213> Homo Sapiens
```

```
<220>
<221> allele
<222> 24
<223> 99-28108-233 : polymorphic base A or C
cccgtcatgc aacatctgga cacmactaac agagcatggt gaataca
                                                                       47
<210> 136
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28109-275 : polymorphic base A or G
<400> 136
atgtgtccta ggatgaacag taaraattat agactctgca gctctag
                                                                       47
<210> 137
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28110-75 : polymorphic base C or T
<400> 137
                                                                       47
ggtttccgtg ggaaccagat cccygcaggt acaaatgggg cccagcc
<210> 138
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28125-81 : polymorphic base A or C
<400> 138
                                                                        47
ggaccgagga agctgtaatt ccamaagctc tctgggacct tgatgtt
<210> 139
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 99-28134-215 : polymorphic base C or T
<400> 139
gggtctgtca ccctgtttgg gtayaggctc ctgcacgctg gcggcct
                                                                        47
<210> 140
<211> 47
<212> DNA
```

```
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28137-96 : polymorphic base A or G
<400> 140
aagcagtccc agctcttagc aggrcagact ctgccaggca gagaagg
                                                                       47
<210> 141
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32204-305 : polymorphic base A or G
<400> 141
                                                                       47
caggtggttg gacttcagag tccractctt aaccccatcc tccactg
<210> 142
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28149-118 : polymorphic base C or T
<400> 142
                                                                        47
cccacatacg atactgtgac cttygatggg aggagctagc atgtgat
<210> 143
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28160-285 : polymorphic base A or G
                                                                        47
tggatcaagt gctaggggat cgcrataatg ggagtaagta gctgggg
<210> 144
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28171-458 : polymorphic base A or G
<400> 144
actcaagett tgattccaaa tetretgtta ttteetactg ggaaatg
                                                                        47
<210> 145
```

```
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28173-395 : polymorphic base C or T
<400> 145
ctgggccagt cccaacttat actytgggca atcgaaactc atttgcc
                                                                        47
<210> 146
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32177-113 : polymorphic base C or T
taggagaaat taaaaaggga tgaygtactc tgttcaaaaa aaaggtt
                                                                       47
<210> 147
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32181-192 : polymorphic base C or T
<400> 147
acccaacaat gggattgcta ctgycagttc ctatgctcct ctacttg
                                                                       47
<210> 148
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32193-258 : polymorphic base G or T
<400> 148
aagaggtaat cgtagcttgg actkggttgg agtagtggag acagaga
                                                                        47
<210> 149
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 99-28722-90 : polymorphic base C or T
<400> 149
gcatttaaaa gataaaatta tooyottggc actootcaaa otgtgot
                                                                        47
```

```
<210> 150·
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 99-28730-351 : polymorphic base A or G
 <400> 150
 agetgtggag caccaggetg geartgaget etgeceteag geacgee
                                                                         47
 <210> 151
  <211> 47
  <212> DNA
  <213> Homo Sapiens
  <220>
  <221> allele
  <222> 24
  <223> 99-32306-409 : polymorphic base G or C
                                                                         47
 acagatgccc tgttttgttc cttstcttct aaaacatcac aatgatg
 <210> 152
  <211> 47
  <212> DNA
  <213> Homo Sapiens
 <220>
  <221> allele
  <222> 24
  <223> 99-27088-246 : polymorphic base A or G
 <400> 152
 agtttggttt ccgctcatgc tacrtgttct gtgagatcag tggggag
                                                                         47
  <210> 153
  <211> 47
  <212> DNA
<213> Homo Sapiens
  <220>
  <221> allele
  <222> 24
  <223> 99-27090-203 : polymorphic base A or G
 tgttcagaag ttctcagact gggrcttggg ttcttgcact tttcatt
                                                                         47
  <210> 154
  <211> 47
  <212> DNA
 <213> Homo Sapiens
  <220>
  <221> allele
  <222> 24
  <223> 99-27091-220 : polymorphic base A or G
```

```
<400> 154
agaagcattt ttctttgcat aacrcaacac cagtcctctg tgtttag
                                                                        47
<210> 155
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27093-145 : polymorphic base C or T
<400> 155
gagtcatctc gaggtaaaca gaaytccaag agtaacgaag gcccaga
                                                                        47
<210> 156
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27094-406 : polymorphic base C or T
<400> 156
aagaccctat gcccagttcc gccyggccac caaggccctt ctgaagg
                                                                        47
<210> 157
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27096-410 : polymorphic base A or G
cccgggaaaa tggttttcat cacrcacacc aactgcattt atttgca
                                                                        47
<210> 158
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27097-83 : polymorphic base C or T
<400> 158
catgacacct gcctgtcatc cccygaaaaa aggtgaacgc cgttcag
                                                                        47
<210> 159
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
```

```
<223> 99-27098-162 : polymorphic base C or T
<400> 159
acaagcactc atccacagga cacygccgat gatgccattt actgagc
                                                                       47
<210> 160
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27550-48 : polymorphic base A or G
<400> 160
atttttcatg cttgatgtga gccrgaagaa aaatgagctt ctctatt
                                                                       47
<210> 161
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27558-335 : polymorphic base C or T
<400> 161
aaatctcatg gccgcatatg ttayacaatc atgcccactt atgtagg
                                                                       47
<210> 162
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27561-106 : polymorphic base A or G
<400> 162
cccaggtgat gataaaaatg gtcrtcatcg ccaggcttgt gtcctgt
                                                                       47
<210> 163
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27562-366 : polymorphic base G or T
<400> 163
tgtgggtaga ggccaggaat gctkttaaac atcctacaag gaaggca
                                                                       47
<210> 164
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
```

```
<221> allele
<222> 24
<223> 16-31-738 : polymorphic base C or G
taatagatcc tgtataaaag gggstctgga aattcgtgca tttcccg
                                                                        47
<210> 165
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27110-301 : polymorphic base G or C
<400> 165
tggactttgg gagtgaactt tgtsagatga ttagatggtg atgtcct
                                                                        47
<210> 166
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27563-400 : polymorphic base A or G
<400> 166
tetetetetg ttaaagatea getrtteeet tetgatettg gaaagag
                                                                        47
<210> 167
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27573-443 : polymorphic base G or T
<400> 167
cccgccctgc tctaatcttg cccktccttg gctcagctcc agttcca
                                                                        47
<210> 168
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28732-133 : polymorphic base A or G
gtgctggaag gtcacgtgcc ttartggtca tgagatcctg gtgcaaa
                                                                        47
<210> 169
<211> 47
<212> DNA
<213> Homo Sapiens
```

```
<220>
<221> allele
<222> 24
<223> 99-28735-56 : polymorphic base C or T
<400> 169
tctttacgtg gtgaaagtcc tagycagcca tcattcggca caacagt
                                                                        47
<210> 170
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28736-399 : polymorphic base C or T
<400> 170
aatgatttgt tggttttttg tgtycattgc ttagaagcag tgagtgt
                                                                        47
<210> 171
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28738-319 : polymorphic base C or T
<400> 171
ctttggattc tatgcaaaac aggycctcag ggttgtaaca atgtggg
                                                                       47
<210> 172
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28739-364 : polymorphic base C or T
<400> 172
ttctgcatac tgggatgtga ggaygggtaa actaggaaga aattcct
                                                                       47
<210> 173
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27875-185 : polymorphic base C or T
<400> 173
aataccatcc ccactaataa gtaycaagta ccagggctcc ttggaga
                                                                       47
<210> 174
<211> 47
```

```
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-27880-176 : polymorphic base C or T
caagcaagct taccctcatc actyacttgg cctctattca aatagcc
                                                                       47
<210> 175
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28747-371 : polymorphic base C or T
<400> 175
ttctcaatct agatagacag aatyctccct cccaggacat ccccaga
                                                                       47
<210> 176
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28753-353 : polymorphic base C or T
atgcagggca ttctacaggg cttyaccatc tggagaggga gcctggg
                                                                       47
<210> 177
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28755-206 : polymorphic base A or G
<400> 177
                                                                       47
accetatecg etgeacteag agergggace atecgecaag ggagaca
<210> 178
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32333-366 : polymorphic base C or T
<400> 178
cttgaatgct aggaaaggct ataycccaga caactattat cccattt
                                                                        47
```

```
<210> 179
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-38-323 : polymorphic base A or C
<400> 179
ttttcgagct gtgggtattt aaamaaatac atagaaatga actgtaa
                                                                        47
<210> 180
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28484-179 : polymorphic base A or T
<400> 180
tacatgette tetaggtgtg tgawtaacte ataateeate catgact
                                                                        47
<210> 181
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-30853-364 : polymorphic base A or G
acaaaacgtt agtacacttt ctcrattggg ttagctcaaa atatgtt
                                                                        47
<210> 182
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28485-198 : polymorphic base G or T
<400> 182
aaacatcaaa gttaatttct gttktctatc tatcctgccc cttctat
                                                                        47
<210> 183
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-30858-354 : polymorphic base C or T
<400> 183
```

```
ccttcagttt ctccagccat cttygctgcc acgcccaagc ccaggcc
                                                                        47
<210> 184
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32002-313 : polymorphic base A or G
<400> 184
acaccagcac agggtgggtg agargacatc ctgctgactt tataaag
                                                                        47
<210> 185
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-15-366 : polymorphic base C or T
<400> 185
catgttatta cagaatttag taayactgtt tttaaaaagt atgatta
                                                                        47
<210> 186
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-20-174 : polymorphic base A or G
tgagcttgtg tcttcaaact aggratacat caattactta attattg
                                                                        47
<210> 187
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-31-178 : polymorphic base C or T
<400> 187
cagtettact ttgcaaattt aagycaaata attaaggatt tgttaaa
                                                                        47
<210> 188
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-38-395 : polymorphic base A or T
```

```
<400> 188
gatgacttct aaaccatttc acawtgagtc taaattcact gcttaat
                                                                        47
<210> 189
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-2-192 : polymorphic base G or T
<400> 189
gatttgcaca gtggcctctt ttaktcatca cttaggttct gttattt
                                                                        47
<210> 190
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-26921-210 : polymorphic base A or G
<400> 190
aataagtgcc aaggagattt ggtrggatcc ctgcaatgtc tgctaca
                                                                        47
<210> 191
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-215-80 : polymorphic base C or T
ctcgggaagg tgaccgagaa agayatctgg gtacaagaac ctgaatc
                                                                        47
<210> 192
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-132-368 : polymorphic base C or T
<400> 192
cagaccagac aacctcttgg ggtycttttc tgcattgagg tttgatt
                                                                        47
<210> 193
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
```

```
<222> 24
<223> 18-133-293 : polymorphic base A or C
<400> 193
gcatctggat agccctcttc tgamgtttcc tttcagaaag agagata
                                                                       47
<210> 194
<211> 47
<212> DNA
<213> Homo Sapiens
<220> 、
<221> allele
<222> 24
<223> 18-12-191 : polymorphic base A or C
agacaatgct ttgactatat gccmttggtg gaaaacattc taaagat
                                                                       47
<210> 195
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-11-137 : polymorphic base A or G
<400> 195
                                                                       47
actggggaga agggaggtcc tgcrgggagg agaaaaggga aagtggg
<210> 196
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-93-96 : polymorphic base G or T
<400> 196
                                                                       47
tagtgggttg tggcagaaat tgtktctcta cagaatatta tcttaag
<210> 197
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-115-343 : polymorphic base A or C
<400> 197
gggagggcct ctctcaggcc tggmagggag caggggtcac aaactgt
                                                                       47
<210> 198
<211> 47
<212> DNA
<213> Homo Sapiens
```

```
<220>
 <221> allele
 <222> 24
 <223> 16-42-140 : polymorphic base A or G
 <400> 198
                                                                        47
 ttgaggagaa ggaggggaag gccrtgctaa acctgctctt ctccccg
 <210> 199
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-251-176 : polymorphic base C or T
 gtagaagtgg aagacagatt tgcytctctc aggcactagg gcacttg
                                                                        47
 <210> 200
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-269-44 : polymorphic base A or G
 <400> 200
                                                                        47
 gcttggcmag atggatggtc aggracttga aaggaacaca tttggga
 <210> 201
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 16-218-624 : polymorphic base C or G
<400> 201
 caagtgatct ctttaagtca tttstaatgt gaaaactgcg tgattta
                                                                        47
 <210> 202
 <211> 47
 <212> DNA
 <213> Homo Sapiens .
 <220>
 <221> allele
 <223> 18-393-330 : polymorphic base G or C
 <400> 202
 aagctagtcc ctgtttctca atcstccttc taaagtcact ttaacca
                                                                         47 ·
 <210> 203
 <211> 47
 <212> DNA
```

```
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-394-402 : polymorphic base A or C
<400> 203
cttagaagte cttggtgtee gagmettagt eccaeaatgg atgetgg
                                                                       47
<210> 204
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-217-55 : polymorphic base A or G
cgtagctgga tttcacctcc aggrcagcca gctggacaga caggcag
                                                                       47
<210> 205
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-284-139 : polymorphic base C or T
<400> 205
gggtggttcc tgtcagtgtg gagygagacc cgggaaagca tcctggt
                                                                       47
<210> 206
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-285-305 : polymorphic base A or G
<400> 206
tgctgaaagc cagttgcatt tcaratagtg tctgtgccac cttcaga
                                                                        47
<210> 207
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-289-239 : polymorphic base C or T
<400> 207
agcctattac aaagacattt tctyctattg ctacctctcc ccattta
                                                                        47
<210> 208
```

```
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-291-91 : polymorphic base C or T
<400> 208
atgggggacc tecgectece aatygtgetg getggaactt teetgtg
                                                                        47
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-186-391 : polymorphic base G or T
<400> 209
tgggcatgag gtggcaggaa gaakgaaaga gtgaagataa tggagtt
                                                                        47
<210> 210
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-194-130 : polymorphic base C or T
<400> 210
tcatcagttt taatcagata atgycttact tctgtagata tagtcta
                                                                        47
<210> 211
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-198-252 : polymorphic base A or G
<400> 211
atattgttca tatggcagag gggrgaaaag caatgactta atcaagc
                                                                        47 .
<210> 212
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-242-300 : polymorphic base A or G
<400> 212
acattactgt cttctttatg actrtgaaat aataaaataa aattaaa
                                                                        47
```

```
<210> 213
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 8-15-126 : polymorphic base A or G
<400> 213
tggcatctct gagccagctg agtrgccacc tgaactacac ctgtggg
                                                                        47
<210> 214
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 8-19-372 : polymorphic base A or G
<400> 214
tggaatctgc taattttggc tgcrctttga aggtaggaaa tccaatc
                                                                        47
<210> 215
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-2409-298 : polymorphic base A or G
<400> 215
aagtagcgca tggggctgca gccrcagatc tcctgggctc tgggtct
                                                                        47
<210> 216
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-339-54 : polymorphic base G or C
<400> 216
catgatggcg acagaaaaga atastccctt gcctaatttt gatgata
                                                                        47
<210> 217
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 12-254-180 : polymorphic base A or G
```

```
<400> 217
gcatatgaag aggctagcaa aagrtattta acaagcgttc aacattc
                                                                       47
<210> 218
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 10-214-279 : polymorphic base C or T
<400> 218
ctaaggactt ctggtttgct cttyaagaaa gctgtgcccc agaacac
                                                                       47
<210> 219
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 10-217-91 : polymorphic base C or T
<400> 219
aaaacacatc ataaaattca ttayacaatg tcacttattg ttccatg
                                                                       47
<210> 220
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28779-168 : polymorphic base C or T
<400> 220
tctggtctgc tctctgcatg aggyacagca gtaaagctct ttgattc
                                                                       47
<210> 221
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28788-300 : polymorphic base A or G
actgagccaa gcacagagat cacrtccact ttcctcaagg gacttgt
                                                                       47
<210> 222
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
```

```
<223> 99-32052-262 : polymorphic base C or T
 <400> 222
 cctatttttt ataacgtatt aacyttatta ttttcttatt attttaa
                                                                         47
 <210> 223
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
<222> 24
 <223> 99-32121-242 : polymorphic base A or G
 <400> 223
 ctgattcaag tgtctatcaa agartggctg cagttgacca tgtattc
                                                                         47
 <210> 224
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 99-32059-169 : polymorphic base C or T
 ttgttttttc tttataatat tacyatctat gaatatattt ctaaaca
                                                                         47
 <210> 225
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 99-32061-304 : polymorphic base A or G
 <400> 225
 gaccagetet ttggagggag geertaatee etecataace tgteeta
                                                                         47
 <210> 226
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 99-32065-303 : polymorphic base G or T
 <400> 226
 acaattatta accagtacag totkgttatt ttaaacatta gcatgag
                                                                         47
 <210> 227
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
```

```
<221> allele
<222> 24
<223> 99-32123-118 : polymorphic base A or G
<400> 227
tagtaagaaa atctatcatt tttrttttaa aaatctttca attttaa
                                                                        47
<210> 228
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32148-315 : polymorphic base G or C
<400> 228
                                                                        47
gtggttctct ggaaaccgag gctsgttgca aacccctaaa aagtact
<210> 229
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-2-76 : polymorphic base A or G
ggaggcatgg aggctgtcat cacrggcctg gcagatgact tccaggt
                                                                        47
<210> 230
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-28-93 : polymorphic base A or C
<400> 230
ttcagccatt gatgaggtcc ttgmtgtttc ttacaggagc tggccta
                                                                        47
<210> 231
<211> 39
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 20
<223> 16-3-199 : polymorphic base C or T
ctggctgttc cctgctgtgy actgcccaag gctagacat
                                                                        39
<210> 232
<211> 47
<212> DNA
<213> Homo Sapiens
```

```
<220>
  <221> allele
  <222> 24
  <223> 16-50-197 : polymorphic base C or T
  <400> 232
 ggtgtgtagt gtctgcaggg aagycctgca tgtggggagg gggctgt
                                                                          47
 <210> 233
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 16-1-59 : polymorphic base C or T
 <400> 233
 ccgcaactca gatattttt tccytggggg ctggatttgg agtattg
                                                                         47
 <210> 234
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 16-2-187 : polymorphic base A or G
 <400> 234
ttctgcataa ccaaggtgag tagrggctgg gctctgggtc acctggg
                                                                         47
 <210> 235
 <211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28761-311 : polymorphic base A or {\tt G}
<400> 235
tgaaatgctt taagagaatt tgtrtgctaa atttagaagt tttgatt
                                                                        47
<210> 236
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28771-86 : polymorphic base C or T
caggaaagat agagataatc atayagtacc cagaaaatga ctgcttc
                                                                        47
<210> 237
<211> 47
```

```
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-28791-291 : polymorphic base A or G
aaatgtcatc aactcccaca tgtragaaac accatgattt gtactgt
                                                                        47
<210> 238
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32077-66 : polymorphic base A or G
<400> 238
tttgtagggg gaaaacaatt tgcrtttggg aaataatcca acaagca
                                                                        47
<210> 239
<211> 46
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32078-466 : polymorphic base C or T
tgatgcttgg agcaagcagg ccayctctgt ctgagagagg atacag
                                                                        46
<210> 240
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32376-426 : polymorphic base A or G
tttattggtt cactcacatc tggrtgttag agccaaattc caaagac
                                                                        47
<210> 241
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32361-419 : polymorphic base G or T
<400> 241
ctcttttata aacttccata aaakctggtg agtctcttaa gaactgg
                                                                        47
```

```
<210> 242
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-21-228 : polymorphic base A or G
agtgctgtca gaatcaccta ttcraaaggc gaatccgatc atgtggt
                                                                       47
<210> 243
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-22-156 : polymorphic base C or T
<400> 243
tgtgaagaaa agagccttgg gttygactag ggaacctggg gccactc
                                                                       47
<210> 244
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-23-404 : polymorphic base A or G
tctggtatct gctgtgcgtt tgtrtatatc taagatgacc aggcagc
                                                                       47
<210> 245
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-24-175 : polymorphic base A or C
<400> 245
tgggcaggtt ctggggtagg acgmgcagag cagctgcggg gactggt
                                                                       47
<210> 246
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-25-286 : polymorphic base C or T
<400> 246
```

```
actotococg accogtocca ccayggtoto cacagoacto cygacag
                                                                        47
<210> 247
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-25-279 : polymorphic base C or G
ccagctgact ctccccgacc cgtsccacca yggtctccac agcactc
                                                                        47
<210> 248
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-23-393 : polymorphic base G or T
<400> 248
                                                                        47
gtttttaata ctctggtatc tgckgtgcgt ttgtgtatat ctaagat
<210> 249
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-106-364 : polymorphic base C or T
<400> 249
gttgcttccc ctgcccccgg aatycacagt gctctgcttc tctgtgt
                                                                        47
<210> 250
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-16-285 : polymorphic base C or T
<400> 250
agcatcatct gcggcatcac gtcygtggcc ttctccctca gtggccg
                                                                        47
<210> 251
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-17-121 : polymorphic base C or T
```

```
ccctgtgact atggctctgg cacyactagg gtcctggccc tcttctt
                                                                       47
<210> 252
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-84-185 : polymorphic base C or T
<400> 252
aactagcgtt ttctttctt ttcytttctt ttcttttttt
                                                                       47
<210> 253
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-87-74 : polymorphic base A or G
<400> 253
cacatccacc ctgggctgca ggcrtgctcg gcaggctccc cacagat
                                                                       47
<210> 254
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-91-333 : polymorphic base A or G
gctgaacttg tctgccagtg ggargggggc tcttggagtt agctgtc
                                                                      47
<210> 255
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-128-142 : polymorphic base C or G
<400> 255
aagtccctgc agaagcagag gcgsatgctg gagcgcctgg tcagcag
                                                                       47
<210> 256
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
```

```
<222> 24
<223> 16-133-205 : polymorphic base A or G
tgctttttca gtctcttagc tccrtggagt atgttcagtg ttgctgt
                                                                        47
<210> 257
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-135-181 : polymorphic base A or T
<400> 257
ctgcatttga ttctgggcac tgawagcagt acttggctgc agacact
                                                                        47
<210> 258
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-145-405 : polymorphic base C or T
tggtgggttc ctcctctcgc tggytcagga gtgaagctgc agacctt
                                                                        47
<210> 259
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-177-320 : polymorphic base A or G
<400> 259
accatgcatt ttctcatcct agergetgtt gcaaaataga cacgtcc
                                                                       47
<210> 260
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 16-4-354 : polymorphic base C or T
<400> 260
ctggatgtgg agcaggccga ggtyaacttc ggctggaacc acctgga
                                                                       47
<210> 261
<211> 502
<212> DNA
<213> Homo Sapiens
```

```
<220>
<221> allele
<222> 362
<223> 18-473-362 : polymorphic base C or T
<220>
<221> misc_binding
<222> 343..361
<223> 18-473-362.mis1
<220>
<221> misc binding
<222> 363..382
<223> 18-473-362.mis2, potential complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 482..502
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 350..374
<223> 18-473-362 potential probe
<400> 261
ggcattttag caagagatga ctaatcagag aggagttact agtggagaaa agtaatttga
                                                                       60
gatgtatttt tgaagtagga atcatagtag accacaaaga gatcctttat ttctttaaag
                                                                      120
ctatcattta ttgttagtac tgtaacaact tcacttatgt gatcctattg aatgctcaga
                                                                      180
acaactgaac agctagetee atttaacaga taagaaaatg catgttcaat accaagatte
                                                                      240
aaacccaggc ctagccagct ccagaaacct gagcttttaa catttacgct ttcctacaaa
                                                                      300
acagggtgac ttaacaaagt atctgtttct aaagacagtt cttagggcta agaaatcaga
                                                                      360
aygtgccttt agaaataata agtattccta gttgtgtgtt aaaggtagga agctgaaacc
                                                                      420
aacagacttt cctgtcccta agctaaacaa tactgaacca gtcaaaataa cttggctact
                                                                      480
tgtcccagga aatacttgct cc
                                                                      502
<210> 262
<211> 457
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 88
<223> 99-12361-88 : polymorphic base C or T
<220>
<221> misc binding
<222> 68..87
<223> 99-12361-88.mis1, potential
<220>
<221> misc_binding
<222> 89..107
<223> 99-12361-88.mis2, complement
<220>
<221> primer_bind
```

```
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer bind
<222> 438..457
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 76..100
<223> 99-12361-88 potential probe
<400> 262
caaggaacac aagagtttga ggscacttct ttagcctttg aactggttat tcatcctcat
tcttacctgg cattatttgg aatgettyat ttcctctgta cctggccttc actcttggga
                                                                      120
agtctagctt gtttgtgcag tttcctactg tttaaacaag agattgttta aactctagcc
                                                                      180
actgatttcc acagctgttg ccagtgtttt tctttctcac tgaagccaaa catggagtgg
                                                                      240
ctggagtctg gaaacatgcc ttgagaaatc aaagttccca tctgacattg cagcctactt
                                                                      300
cctagagcta gtgtcactga ggaaggggtc atttactcat tctaatgtca ggattcccac
                                                                      360
accaataacc acatcatttc tcaacaaata catcccttcc cctactccac ctcgggcaat
                                                                      420
aactgtgggt ccggaggcta cagggctttg ggtgtgt
                                                                      457
<210> 263
<211> 502
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 335
<223> 99-12368-335 : polymorphic base A or C
<220>
<221> misc binding
<222> 316..334
<223> 99-12368-335.mis1
<220>
<221> misc_binding
<222> 336..355
<223> 99-12368-335.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 482..502
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 323..347
<223> 99-12368-335 potential probe
<400> 263
gaacagaagg tattgaacag aaacaaagta ttttcaaact ggtagaaaaa ggattagaaa
                                                                        60
tottggtctg tcaatttcct catatccttg gccacacata atgaccccaa gagcacttgt
                                                                       120
tggcaatggg agggaagaag gagatcacat cagtcataag gccaccattg ccctgactcc
                                                                       180
tggcatctgt cctgcttctt actttttatg agcagagtga ggtcaacagg caccatggaa
                                                                      240
```

```
agagcactgc gttgaagtta cacattccgg gacttcgctt gcttgctagc atcagtctgt
                                                                      300
agctgtaaag tggtgacagt aatacctacc actamggtgt tgtgagaatt aaatgaggca
                                                                      360
ggatettgga ettagaaage tgeecagata tggtggetae tgttgataag cattetggtt
                                                                      420
atactcateg gattecetec teccacetet tecetggatt gggteattec etecaatgea
                                                                      480
gecettetet tteeteatgt at
                                                                      502
<210> 264
<211> 461
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 67
<223> 99-12370-67 : polymorphic base A or G
<220>
<221> misc_binding
<222> 48..66
<223> 99-12370-67.mis1
<220>
<221> misc binding
<222> 68..87
<223> 99-12370-67.mis2, potential complement
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 441..461
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 55..79
<223> 99-12370-67 potential probe
<400> 264
attacgcaag cactacgcca attaatccaa gacctgtgcc aaatttaaaa ggaaaagcag
                                                                       60
agttcartgc aaattctaga aatagttgtc aaaatcccca tttcttatgt cctagataat
                                                                      120
acttgtatat ttctggatgt ccatagaaaa ataaggatgt cattacatag aacaatagct
                                                                      180
gtcagcatac agaacaatag cagaacagtg gggaggattt cagatgtgaa cagtgcttgt
                                                                      240
gagaatgaag caagctacag tgtcctccaa ggggacttcg tgagctcaac ttgacattta
                                                                      300
gtctcacatg actgccttag gctccttggc accagtcaac acagaaggac attggatgtg
                                                                      360
tttatccaac acttctgtct tgccaacaga gcagcatcag cagacagtcc tcttcagggg
                                                                      420
aagagtcctc actgtataca gttgagatgt gaggaaatga c
                                                                      461
<210> 265
<211> 449
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 314
<223> 99-32148-315 : polymorphic base G or C
<220>
<221> misc_binding
```

```
<222> 295..313
<223> 99-32148-315.mis1
<220>
<221> misc binding
<222> 315..333
<223> 99-32148-315.mis2, complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 428..448
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 302..326
<223> 99-32148-315 potential probe
<400> 265
tgagtgcatt tgatgtgggs cagcaaagct tcattcaggt ggaaacagat taagaagacc
                                                                       60
aaagagtggt gaaatggcta agtaggaatg aaaaaacagc cagctacccg yggccagtgc
                                                                      120
cttattctaa aagaggacag ctagcttgcc caaggactct tgcagaagga aacctgggag
                                                                      180
agtttccttc tcctcttgca gaagtaaact cttcaggttg aagagtcagg aaggagctcc
                                                                      240
agggatgagt gaagtcaact gaagttgcct cttttataaa cagctctgca gtggttctct
                                                                      300
ggaaaccgag gctsgttgca aacccctaaa aagtactgct ctgcaaggct tgtaactgcc
                                                                      360
atacttgtgt ggtcctgctc catctccatg tgtggcagtg ccagctgcaa ccagcctcac
                                                                      420
acagggtccg agagtctcag aactgcaag
                                                                      449
<210> 266
<211> 426
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 322
<223> 19-46-322 : polymorphic base C or T
<220>
<221> misc_binding
<222> 302..321
<223> 19-46-322.mis1, potential
<220>
<221> misc_binding
<222> 323..341
<223> 19-46-322.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 409..426
<223> downstream amplification primer, complement
```

```
<220>
<221> misc binding
<222> 310..334
<223> 19-46-322 potential probe
<400> 266
                                                                       60
gatgagtgac tcaatggacc agctccacaa acaaagctgg aggtgtcttg tacagacccc
                                                                      120
aaatgctatc catgtggggc tgcaggatca aatagcaggt ggccctcatc tgggggtgca
gccaggctgc cagaagggtg tccctgggcc aagctgaggc ctcctcccct tctcttcctt
                                                                      180
                                                                      240
tcagagactg gcctatggca tcacgccaga gaacgagcac cacctggtgg ctcagaggga
                                                                      300
catcagacag ttccaggtgg gtgaagccta gacccctggg gtggagatta caagggcggg
                                                                      360
ccctqqctqt tccctgctgt gyactgccca aggctagaca tcacatccag aaaacccaga
aacccaqtqt gagctgcctt ttccccttgg aaacatcggg atgggggaca gggagcctca
                                                                      420
ccttga
                                                                      426
<210> 267
<211> 422
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 315
<223> 19-47-315 : polymorphic base C or T
<220>
<221> misc_binding
<222> 296..314
<223> 19-47-315.mis1
<220>
<221> misc_binding
<222> 316..334
<223> 19-47-315.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 403..422
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 303..327
<223> 19-47-315 potential probe
<220>
<221> misc feature
<222> 103
<223> n=a, g, c or t
<400> 267
tectegetgt etttetetge agttgeaaca etggetggee atetgageet geetggagga
                                                                       60
gaaggaggaa cccccatgcc aatgtccagg tcacaggcat yenctgcgct cccacctcgg
                                                                      120
acaccatctt gggattcctc ccctggaagt tgtcctttct gatcctctct tcttttccca
                                                                      180
tttacaaatg atttcgtgac tgtagttttt gttcaccttc tgtgcatctg gcctgggggc
                                                                      240
tgttagctca gaggagagga gcaaacagga aaatgacttc tgttctgtcc ccgctgtttt
                                                                      300
gggggaagtc tctcycactt tgggatcctg ctgaagctag gttcatgagg tcggaaatcc
                                                                      360
ccaccacatt tgcctagact ttgggcacag gagttcttag tccaccaaat cagagagagg
                                                                      420
```

```
at
                                                                      422
<210> 268
<211> 419
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 346
<223> 19-51-347 : polymorphic base A or G
<220>
<221> misc_binding
<222> 327..345
<223> 19-51-347.misl
<220>
<221> misc binding
<222> 347..366
<223> 19-51-347.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 401..419
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 334..358
<223> 19-51-347 potential probe
<400> 268
atcaggtcaa gcccatgtgg tgcatggcag tggctagggt ccctgagtta ggggagagtg
                                                                       60
gccaggtcct gtctccatca gcatgcattt gcagggactg gtctgtggtc acggcctctg
                                                                      120
tegtectece tgacgacatt taccetggte eceteceete teetetggge aggegtggtg
                                                                      180
teetgeacet teacgagage agegggatte atgacategg cetgeeceag tggcagetet
                                                                      240
tgctctgtct gatggtcgtc gtcatcgtct tgtattttag cctctggaaa ggggtgaaga
                                                                      300
catcaggaaa ggtaatatct ctgtgtttct ctttcactta cttggrtgat caaccttggg
                                                                      360
gggtgtgatt atttctagca ataattatgt agctggtgga caaaaaagat ggagctgga
                                                                      419
<210> 269
<211> 499
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 263
<223> 99-32052-262 : polymorphic base C or T
<220>
<221> misc_binding
<222> 244..262
<223> 99-32052-262.mis1
<220>
<221> misc_binding
```

```
<222> 264..282
<223> 99-32052-262.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 478..498
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 251..275
<223> 99-32052-262 potential probe
<400> 269
cagagtgaca aataagtgct atggcttgat agaagtgaag ctcttcacat atattcaaaa
                                                                       60
tacatatcac aaactttggt aaataggata gtaatctgaa gaacttttgc cctttttacc
                                                                      120
ccatttactg taactcttgt ttctaggtaa tcgttctctc tcaacaaact tctcaagcgt
                                                                      180
ctgtgtaaca agccacatgt tctaacaaat tgtctccatc gcacttcaac agccaggtcc
                                                                      240
ctatttttta taacgtatta acyttattat tttcttatta ttttaaaaga atctatgcac
                                                                      300
attagcaaaa tttaaaagat agagaaaaat ataaacagaa aaaattatgt ttacttctac
                                                                      360
caccctaaat caactattat caattttata catattttac tccatctttt ttcaaagttt
                                                                      420
cttacatttt ccaatgtcat taaaattctc tgtgaatgta aattttaaaa actgtaccta
                                                                      480
ctgttttttg gaatctgta
                                                                      499
<210> 270
<211> 3001
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 10-213-292 : polymorphic base G or C
<220>
<221> misc binding
<222> 1482..1500
<223> 10-213-292.mis1
<220>
<221> misc_binding
<222> 1502..1521
<223> 10-213-292.mis2, potential complement
<220>
<221> primer bind
<222> 1211..1229
<223> upstream amplification primer
<220>
<221> primer bind
<222> 1588..1606
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 1489..1513
<223> 10-213-292 potential probe
```

```
<400> 270
gcagaagtat aagatetttg taaaacagte etetecetgg tteatetget ttetgttace
                                                                      60
acaataatgc taagtaaaaa aacatccaaa aacctccctg gcatttaaca atatgcatat
                                                                     120
tgctcacacg tcttgatagt gagctctgct gatattggca ggacttgctc tggtctggct
                                                                    180
gtgatctgat ggagcctggc cctgggtgcg ctgtgcaggt tgactcagct ctgccccaca
                                                                    240
tgtgtctcat gtttcagtca ggtaaccact ggtgaagaag caagctagga accagggtat
                                                                    300
ctgacttctg agctaaactc ttaaactcta taatattgcc tttcaaatat aacactaagt
                                                                    360
actaggtgcc tatcaaccac actgttttca gacctctgcc aaaacttgga ttctttgtgc
                                                                     420
480
tgttcttcag agattacagt ccagccctga agcaacaact aggagactgt ttcagcaagt
                                                                     540
gaggacaggg ctgtgtgggg ttctatcctt ttcataactt tgcctggcac tgaaatcaca
                                                                     600
tgctctgata acatccacca gaactttctt ttgtcatatt tgggatagaa agggactagt
                                                                     660
ttttcctcaa attattgata gagattttat ataatatagt gtttctctcc acattttatg
                                                                    720
tatataacaa aagccctgct tttgtgtata tatgcatata tatatatata cacacacaca
                                                                     780
cacacacata tatataatac aaatcctgct ttgtaactgt ttttgtttgt atatataaca
                                                                     840
                                                                     900
aaaaqagtta tgaaccagaa gtttggccaa taatccttgt cgcacagaga atttgctttt
tctatctgtt ttcactttct tggttacaga cgtgtaacct cttttttgaa tggtgacaat
                                                                     960
                                                                    1020
cactttgtca tattttattt gatgctagtg gtcatagcct attagtcatg tttgcttcca
tgagaaagaa aaaccactac atggttatgc taaggatttc agtcattggg gttagagcct
                                                                    1080
tcccgaatgt ctcctgcttt cataactcct ccacacatct tagtgggcca ttgagcacat
                                                                    1140
caaagggcat gacagttatt aaaatacttt atgaatgcta caatcctttg ccagtatgag
                                                                    1200
                                                                    1260
ttgttctctg gaacttctaa cagttcaaca gtactacatg gactgagtta aaagttaatt
caaaaatctc aatttatcca aatctgtttc tttcttttca ggcaccaccc acctatgata
                                                                    1320
                                                                    1380
ctgtgctaca gttggagtat cttgacatgg tggtgaatga aacactcaga ttattcccag
ttgctatgag acttgagagg gtctgcaaaa aagatgttga aatcaatggg atgtttattc
                                                                    1440
                                                                    1500
ccaaaggggt ggtggtgatg attccaagct atgttcttca tcatgaccca aagtactgga
sagageetga gaagtteete eetgaaaggt aggaggeece tgggaaggga geeeteeetg
                                                                    1560
aaccagcetg gttcaagcat attetgeete tetacaggac agtetggget tgtacaatca
                                                                    1620
                                                                    1680
tttgcttgtc tttttatgtt taaaaggttt tttcaaatca tgaaattgat cattgtcaca
                                                                    1740
ctttacaaac cacagactag ataaaagaaa actatagcca gtcacagtcc cagcaactta
                                                                    1800
agatgaaggt cctcaattat gtccttatgg gtcataagtg tccaaaatgt aaggactctt
                                                                    1860
ttaaaaacac atgatcacaa tgctattatt atgtcccaca aatgaatatt ttttcctgaa
                                                                    1920
tataatcaaa tottoaggaa toaaatttga ataaaaaaca tgogtotaat ottoaaagaa
tttataggtt agtgcaacag atagacaaag aaagcagtga tgacactgct ttccatcaat
                                                                    1980
                                                                    2040
acagtagcat catatgcctg tgtaaattat ctgacttaaa ctattctatg gaggtgtggg
ggagaaagaa ggagagatgg agattagaag aaggaggaga aggaggagag aaggaggggt
                                                                    2100
aaqacaaggt agggaggaga aggaggagaa ttagaaaaac aagagacgag aggagaagga
                                                                    2160
aaqtgcaaaa taacaatttt gaagtagtgc aagacaattt cttctccttc ctcatgacca
                                                                    2220
acataagggt gacttgaggc aggaatctac ttttctgtca gtcattctca tcacttatgt
                                                                    2280
gccttttgta gtgtgaacac atcaccatcc tgactataat ttgagtgttt agaaataaat
                                                                    2340
                                                                    2400
atactttgca acagtattta tctcctctca acaagactga aagctcctat aatgtaagga
gagtagaaag gatctgtacc ttacaattct catagcaaaa tatgcatagc aggatttcag
                                                                    2460
                                                                    2520
tgactagccc acaaaagtat cctgtgtact gctagtagag gggtgggccc taagtaagaa
                                                                    2580
accctaacat gtaactctta gaggtattat gtctttaact tttaaaatat ctaccaatat
                                                                    2640
ggaaccaggt tcagtaaaaa gaacaaggac aacatagatc cttacatata cacacccttt
ggaagtggac ccagaaactg cattggcatg aggtttgctc tcgtgaacat gaaacttgct
                                                                    2700
ctagtcagag tecttcagaa etteteette aaacettgta aagaaacaca ggtcagtcaa
                                                                    2760
ttttctgcat taataatgtt ttattaacaa ttattttaac tgaatggtct atatatttaa
                                                                    2820
aaaagaatac actcacttaa tcttttaata atttgttcta tgggccaagg aatctatttg
                                                                    2880
gacccatcta tgatctttaa gggtgcttca gttctggagt tcaaaagctg tagcattaaa
                                                                    2940
                                                                    3000
aacatcatgc aatgtcaatg tagactagca tgacatgatt atctacagtc tccttgaact
                                                                    3001
<210> 271
<211> 465
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 135
<223> 18-419-135 : polymorphic base C or T
```

```
<220>
<221> misc binding
<222> 115..134
<223> 18-419-135.mis1, potential
<220>
<221> misc binding
<222> 136..154
<223> 18-419-135.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 448..465
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 123..147
<223> 18-419-135 potential probe
<400> 271
ttccaaccct gttaagactc ttctacagtt gctttttgtg tagctgacca acataacaat
                                                                       60
catgttcttt attctacatt ccttgataca tttcaaccct tccatactga tcacttccct
                                                                      120
tctgttgggg caaaytcagt tttttttgtg aaaatgtttt ctattttacc cttgttcttg
                                                                      180
aaagggtggc ccaatctcag taagataact tactgaccta ttctaaggct gggcccaaca
                                                                      240
gagcctcact ccccaccett gtagggaccc tggatctggg tagaacattt atgcggtagg
                                                                      300
ggaacagtcc ttcttaaaca ggcgcttgga agccctttgc agatgccggt gagaatcggc
                                                                      360
ggtctgggaa agagtacaca tcttgcagag aagctgaaga gggaagccct tttcctgttt
                                                                      420
tttcactttc aagaacatga gccacctggc tgctttcttt tgtag
                                                                      465
<210> 272
<211> 527
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 419
<223> 18-424-419 : polymorphic base G or C
<220>
<221> misc_binding
<222> 400..418
<223> 18-424-419.mis1
<220>
<221> misc binding
<222> 420..439
<223> 18-424-419.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
```

```
<222> 507..527
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 407..431
<223> 18-424-419 potential probe
<220>
<221> misc_feature
<222> 478
<223> n=a, g, c or t
<400> 272
coctttaatt tttagggttc caaaccaaaa gtggcaatca ccatggcata tgtgtacctg
                                                                       60
tgagcatgta gattcatgtg tgctgggggc attttatagc cagttctttc tcagagtccc
                                                                      120
                                                                      180
tttttcttt agccaatgga ttctggctag gaaaaacatt aaccgcacct tagtagacta
qttaqaaqac tgagaagaac caggtaggga agccagagaa gtgacattca gagatatttg
                                                                      240
gaaacaaact tgagcataca ttttacccaa caggaattag ccaggcattt tatttttaaa
                                                                      300
aaaagaaaga aaaagaaatt ttagcaactc tttgttgttg cccctctctg tgtttagaat
                                                                      360
cgtgattttc cagctatgtt cctcacagcc gtaggatttc caagggtaaa aggtagagsa
                                                                      420
gggggtgtgg aggtttggat atgagcatat gggacttcca tagctcctat ttgaaaanwt
                                                                      480
                                                                      527
gctgttttag aagagcctgt taagctgagt tttgaacttg acagcat
<210> 273
<211> 451
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 290
<223> 18-429-289 : polymorphic base A or C
<220>
<221> misc_binding
<222> 271..289
<223> 18-429-289 mis1
<220>
<221> misc_binding
<222> 291..309
<223> 18-429-289.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 434..451
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 278..302
<223> 18-429-289 potential probe
<220>
<221> misc_feature
<222> 110
<223> n=a, g, c or t
```

```
<400> 273
gtccagcttc tttagttcca tgctgccaga cagaccgtca gagcagaaca gataccttca
                                                                        60
ttttgtcata actttttaa aaatggcaaa aaataatagc cacatacagn tttgttagtg
                                                                      120
aggtgaaatt cctcatagaa caaagacaac aaagaatata aaatgtttct aatatgttaa
                                                                      180
aatatatttt atattetttg tattetttag tetgaaagge ttaaatetta catttetggt
                                                                      240
gggatttcag aaaaaaaagt tttcttaggt aaagcgtctt ttttcccttm aactagccca
                                                                      300
tttgaaactc ttctgtttct gaatgaattt cacctaacct gtctacagct atattcacag
                                                                      360
acactgtttt tccctttaca gactgaccct accctttctg ttacaaaata cagaaacgtt
                                                                      420
gccagtgttt tttggttggt tggttggttt g
                                                                      451
<210> 274
<211> 487
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 256
<223> 18-246-256 : polymorphic base C or T
<221> misc_binding
<222> 237..255
<223> 18-246-256.mis1
<220>
<221> misc_binding
<222> 257..276
<223> 18-246-256.mis2, potential complement
<220>
<221> primer bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 466..486
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 244..268
<223> 18-246-256 potential probe
<400> 274
tcataggaag acgagagcaa atatttaatg tgttttgcct tcagttacat aggaaaaatg
                                                                       60
tctaagaagg tgacattggg acttgtgttt aatgaaacag agaactgtgg gcagcgtcag
                                                                      120
tgttgggttt ttaggagcgt agggagcaca cagctttgac tctttgtccc attacttgct
                                                                      180
tetgtgtgaa gecaetgagg eeceagggtt egggttttee tgecaegeae tetggggtgg
                                                                      240
cagtgaccgt tccaayatgg atgagtgaga agcaggttct tatgaggttt gtgcaaattg
                                                                      300
agcaagccac ttggggcatg ggtttttcct cttttctttc tttctttctt tttcccacta
                                                                      360
aagaacagat tgaaagtgct tcacaattaa tcaaaagtcc cctcaacact ctggtgatcc
                                                                      420
atctaagacc tctcagagat ataaccacca gcacagatat tcaaacccat ttttttcaat
                                                                      480
ctccttg
                                                                      487
<210> 275
<211> 453
<212> DNA
<213> Homo Sapiens
<220>
```

```
<221> allele
<222> 68
<223> 18-355-67 : polymorphic base C or T
<220>
<221> misc binding
<222> 48..67
<223> 18-355-67.misl, potential
<220>
<221> misc_binding
<222> 69..87
<223> 18-355-67.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 436..453
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 56..80
<223> 18-355-67 potential probe
<220>
<221> misc_feature
<222> 32,51
<223> n=a, g, c or t
<400> 275
tgccctgttt ctggttctgg tgctgggagg tnaggagtgg agaagactag ntcccctaga
                                                                      60
gctgaggyct gtcttgaagg actcactggg gccctcatcc tcagggggct gattggcagc
                                                                      120
cacccctcag tgtggtggac atggagaaag gaaaggctgg ggaaggtaag gatgctagag
                                                                      180
geocgagtet cetttggagg ceceaaagga ggaatgteag ggagettaet ttetttgttg
                                                                      240
cctcagctcc acacccctac caagttggca aatccactta ctcagggaca ctaacaccag
                                                                      300
taagccaacc ctgatgatgt tctatgttgt acctctggac ctctaagcca ggccactgtg
                                                                      360
gggagaccaa ggtcctaccc cagatcctgt cccctgggtg cttatgtgac ttaaggtaga
                                                                      420
cataaggtag tgtgccagtt tagtgcatgt acg
                                                                      453
<210> 276
<211> 471
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 266
<223> 18-353-267 : polymorphic base C or T
<220>
<221> misc_binding
<222> 246..265
<223> 18-353-267.mis1, potential
<220>
<221> misc_binding
<222> 267..285
<223> 18-353-267.mis2, complement
```

```
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 452..471
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 254..278
<223> 18-353-267 potential probe
<400> 276
agttgcctac gtggctgggg aagcggggcg ccggttgtac tcacctcagc tcagggtcct
                                                                       60
agagacetge gggttttget ggtegetgag gtetececea ettececace teaettaage
                                                                      120
catcacttcc acctggtctc ccaaattgag gtcctgaagt cctgagaccc atgtcccacc
                                                                      180
caactccgac gtctttagat cccctttccc tcggtgccag ccttctgaga gtcccaacgt
                                                                      240
tctggcctct aggggatctg cagttygggc ggtgggcggt tctgattggc cagtcttcca
                                                                      300
                                                                      360
tgaggetetg gggeaeceag agtgtgtgte tggggtaggg tggggagget ggeeaggggg
cagaggtetg coccegtee cagggetetg atgecetect coettegeet ceteagttga
                                                                      420
                                                                      471
agaagctgga tetggeaget geggeassac acacettett tgtageaaac e
<210> 277
<211> 468
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 306
<223> 18-338-305 : polymorphic base A or G
<220>
<221> misc_binding
<222> 287..305
<223> 18-338-305.mis1
<220>
<221> misc binding
<222> 307..326
<223> 18-338-305.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 450..468
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 294..318
<223> 18-338-305 potential probe
<220>
<221> misc_feature
```

```
<222> 84
<223> n=a, g, c or t
<400> 277
ttgtaggtcc ccaagatggt gggggtgcag ggacagagag cttgctgttc tgctcctgat
                                                                       60
gtcacacagg ggcttcctgb gcgncctggc atcaagatgg ccttccacaa gtcaagtggc
                                                                      120
cacatectea aggagetgge teagecacte acagetecte eegaaceega ggtgeeette
                                                                      180
cagtettgte ttggaccete tggtgcetge ggctaggggg ctctggggaa gggtetttge
                                                                      240
                                                                      300
tgggcattte tteetettee tetteeteet eeteetgtga eteetgeage agttetttgg
cttctrtcca ctcctggggt tggggaggag agtgtggccc attccctgca cccaccttcc
                                                                      360
ctgggtcagc tcagcccctg accctcaccg actgtgagcc ttctcggggg ctccttgccc
                                                                      420
accettcacg caccaggaga accacatece ttectaacce geteetta
                                                                      468
<210> 278
<211> 3001
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 24-243-346 : polymorphic base C or T
<220>
<221> misc binding
<222> 1482..1500
<223> 24-243-346.mis1
<220>
<221> misc_binding
<222> 1502..1521
<223> 24-243-346.mis2, potential complement
<220>
<221> primer bind
<222> 1156..1173
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 1652..1672
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 1489..1513
<223> 24-243-346 potential probe
<220>
<221> misc_feature
<222> 1556,2069,2084
<223> n=a, g, c or t
<400> 278
agaatctctc tototttttt attattattt tttgagacag agtttcactc tcatcgccca
                                                                       60
ggctggaatg caatgacaaa atctcggctc gccacaacct ctgcctctcg ggttcaagcg
                                                                      120
attottctgc ctcagcctcc tgagtagctg ggaatacagg cggccgccac catgcccagc
                                                                      180
taagtttttt tgtattttta gtagagacag ggtttcacca tgttggccag gctggtctcg
                                                                      240
aacccctgac ctcaggtgat ctgctgcctc agcctcccaa agtgctggga ttacaggtct
                                                                      300
gagccactgc gcccagccca gaatctcttt gagatggaca cacaccctct tcattattcc
                                                                      360
agettecata tggcagtggt gggetegtee tgcagaccag ttageteagt ccatgaagta
                                                                      420
ggagccttcg tgggctcaaa ggcaaatccc agcatgctca ctgctcagtg ccagaaagat
                                                                      480
caccccaga agccggctgc atcagtgtgg accaccaaga accatcaaac acacgtgttt
```

```
totgtgtgct cgacctccgt tccttgcttt ttctgatgac tqcaccttga tqtccctttt
                                                                     600
ggggaacccc gccactctca gtcctcatgg tctgggtggc actgcccct cccctgcgct
                                                                     660
gcacaqaaqq cccgcacccc cacctggcca atcaqaqttq ccaqqtcatc tccctqacta
                                                                     720
cagcacctgg ttcagggatg gacacagccc agcggagttt gtgctagaac tgctgggaaa
                                                                     780
tgggetttca cettetgete atettggeac gtggatgeca gettgaactg tggaaggtea
                                                                     840
ccctgtgggc agagcccctg agacacaggc agcacaggaa agcagagtgg aatgggggcg
                                                                     900
ggggagtact tectgatgac atcatetgag eccetggate cageegtgee tgaagcaaac
                                                                     960
tactctaggc tctacagatc tatggactca tcaatccctt gcccctctac ttttttggct
                                                                    1020
tgtgtcaatt tatattgaga ttttgtcact tacaactaaa agggtcctga atctaactca
                                                                    1080
ttctttgaaa gtctgcctat caatcacaaa atagcagtgt gatcagagct ggataccatg
                                                                    1140
ggcaggtctc cttccctctg tgaggttcta tggagaacac cctacatctt tttaattatt
                                                                    1200
tgtcatgcac gggccctatg gatttgagag attcatggat gccacgtgga atcagtcaat
                                                                    1260
gacceteact tteteaggea ctacetaggg cateetecag gatgegeeec tteeeggeac
                                                                    1320
ageceactge catatettge tggaacetgg gteategtee ategtetate acaggeteeg
                                                                    1380
ccagcetteg tggatgecat ctatgteegt gggteteace egtetegeca ccagetteea
                                                                    1440
ctacgacgct ggacagtaca cagggagcag acggggattc caggaggaag ccactgcaaa
                                                                    1500
yagggcctgc agctgccctc tctccttctg aaatcctagc atagtccagg acacangcac
                                                                    1560
ctccctqqct qaqcaqctga actgccaagc tcaactccct gattgagcag atattctgca
                                                                    1620
qaaataqaaa aqqatqqagq gaaggcttct tcccacacaa tgaacatcaa acccacccaa
                                                                    1680
ggggcagtgg ctggggcctc ccttcccaaa cagctggctc aaaacatgca caaaattttc
                                                                    1740
ccaaagtggg ctgggagcag ggcagctggc ttccactttc atattactga tgcatccaga
                                                                    1800
catacttcca tagtqtttaa aaatttttqq atqtatqtca aatqctctta aqaqtqcqat
                                                                    1860
cttaggcatg tggtaaataa atatgatgta atcctcccgt ctccaagggt gctgctgccc
                                                                    1920
tetecetece teceteacty gteetgggea agecettgae etecaegate tetetgegee
                                                                    1980
tctcgtgacg cccacaacaa ggggctgtgc caaagggaaa ggtagaaaga aaagaggatg
                                                                    2040
tgctgtgtgc tgtcatcatc cctgtgccna gagacagggc acangggtgg tggccttgca
                                                                    2100
ccaccggcgc atcccccaca tggggaagct ggggtcaccc tgcaccacag gcatcccatc
                                                                    2160
agcctctgtg acactgacaa tgattctcgt gaatggacag gctgaatggt cctcagccct
                                                                    2220
ctctttctat gctggctgaa ctctgaggcg ggaacaggac agacagtggc tggaggccct
                                                                    2280
ggcagggagg gcaccettet aacaggeest gcgtageega gggcaccaaa etgacaggea
                                                                    2340
ggacccctga gctcaccacg gcctgccctg ggccaggcaa gaacgagcac gtccacccat
                                                                    2400
gagagttggg gctgtgtagg tgactgtaga catcacccac agtgggaggg ttcctggagg
                                                                    2460
tgacgtccga ggcttggagc gcaaagtagg acaggcacac tgccaagttc ccagaagact
                                                                    2520
gagtgccacc agatcctgtg gccagtcctc agtgtggtgt ggggggctca gcaggagcac
                                                                    2580
atcagcaatc agatgggcca ggtcaggata aagaacaggc gtgacagctg cttcctaaat
                                                                    2640
aatcaacggt gggtgccctg agtagcacct cctgctgtgc ctgtccccag ggcagcaggg
                                                                    2700
getcagegca etcecacate tgcatcagag ecceagtece teetgggeec cettgtacee
                                                                    2760
tctaagacta agctcggacc ccgccgggaa ccacccccag gaccctacct caggctgtgc
                                                                    2820
caccaccgtc cacctggcag ccccagccag aaacctggag gccaccctgg ctttctcccc
                                                                  2880
tocatgicta cotgicocto agosticity tygostygot actostotot otgotocyco
                                                                    2940
tcctggctgg cctttaatgt aaacaatcca tctaacagct gagccccact cacgacaatg
                                                                    3000
                                                                    3001
<210> 279
<211> 3001
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 99-62531-351 : polymorphic base C or T
<220>
<221> misc_binding
<222> 1482..1500
<223> 99-62531-351.mis1
<220>
<221> misc_binding
<222> 1502..1521
<223> 99-62531-351.mis2, potential complement
```

```
<220>
<221> primer_bind
<222> 1149..1166
<223> upstream amplification primer
<220>
<221> primer bind
<222> 1591..1608
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 1489..1513
<223> 99-62531-351 potential probe
<220>
<221> misc_feature
<222> 755,890,893,1406,1412,2220,2222,2224,2232,2241
<223> n=a, g, c or t
<400> 279
tgtggtttcc ctttccaggg agtgatggct ctgtaggctc tgggattgct ttttcatttg
                                                                      60
tttgttgttt tgggacagag ttttactctg tcacccaggc tagactgcag tggtaaatca
                                                                      120
cageteactg cagtetetge etecceagge teaggtgate etectgeete eccaggetea
                                                                      180
ggtgatcctc ctgcctcaac ctcctgaata gctgggacta cggtcatttt taattttttt
                                                                      240
ttgtagaggt ggagtctcgc tatgttgtcc aggctggtct tgaactccta ggctgaagca
                                                                      300
atcctcccac cggggcctcc caaagtcctg ggattatggg cgtgagcccc cacacctggg
                                                                      360
cttatttctc gagaaggggc ttgtgctcct cctcacctga tgcctctcct tctcccacca
                                                                      420
                                                                      480
gcgtcatcat gaccggggcc tacaacaact tcttccgcat gttcgatcgg aacaccaagc
gggacgtgac cetggaggec tegagggaaa geageaagee eegggetgtg eteaageeae
                                                                      540
ggcgcgtgtg cgtgggggc aagcgccggc gtgatgacat cagtgtggac agcttggact
                                                                      600
tcaccaagaa gatcctgcac acggcctggc acccggctga gaacatcatt gccatcgccg
                                                                      660
ccaccaacaa cctgtacatc ttccaggaca aggtaaactc tgacatgcac taggtatgtg
                                                                      720
                                                                      780
cagttcccgg ccctgccac ccagcctcat gcaangtcat ccccgacatg accttcacga
                                                                      840
ccgcaatgca aggagggaa gaaagtcaca gcactgatga ggacagctgc agaggtggca
                                                                      900
gtgtgtggac acaggaagtt tgggccccct ccctgcccca gctttcctan ggnccagaat
                                                                      960
tgtgtttggc agtaattgtc tgtttaaaaa aataaaaagg aaaggaagcg ttcaccgcca
caaatcataa aatggacatg actgtggagt cttacagttc agggttcttt cattcacgtc
                                                                     1020
                                                                     1080
ccttcctgtc teggtctgcg gtctttacca catcaatagg actttttatg cgtccgggtt
                                                                     1140
aatttttcac tecagtgegt eetgttgeag ggaceggage tgatgggage tgetteteec
                                                                     1200
ccatgcctca ctggtcccag atcagggctc cagggacaga tgatgagtct caaacgagcc
agccaggggt tottttggtt ataaatgggg caattcgccc tgtctcagag ctgatgacct
                                                                     1260
                                                                     1320
caccgttgtt ttttggatgg tgaattcatg ctgagaattt gcagatgcaa gctcctctcc
                                                                     1380
taggtcttct gaatgtcttg aaacatccca ggtcccaggt ctggtgcggt ttcccgagag
                                                                     1440
.gagcggagtg gggtttgtct tctgtngtgc cntgtgtcct catctgattc acctgccatt
                                                                     1500
tgctgagcct ctgctgtgta ccaggcgtgg tgctcagccc tagaggcagt tgacttaccc
yetgeageec teeetgeege eteaceette ageatteact gggcacette eeggagegga
                                                                     1560
                                                                     1620
cactgactcc catgcacgat tttttggaat cttcctcctg actgtgaggt gggtgttcat
tcatttcctc cataaacacc aacttctcqa aqcqtgccag gctctgggct ggatgctggg
                                                                     1680
gataagcggg aaccettagg atcccetctg tecacgagaa gaagctgagg etetgagcgg
                                                                     1740
atgcacaggt cacccatggc aggtgccgtg cagtggtgtc aggaacccgt ccgggtcttc
                                                                     1800
                                                                     1860
acacaaggtt ctctccagtc catctcgtgg gcggctcatg ttagagcgac attcaaatgg
                                                                     1920
aaggtttgga aaggaatgcc tctgtcttgt gaagtaggac atggcagact tggcgacgac
                                                                     1980
aagggtccag gagaactgag acgcaggatg gaagacagag aagacccccc ggagctcctc
getetgettg gtggetteag gagtgtggee etececagga etecaettea teetgggett
                                                                     2040
gcaccctcct tgagccaatg cactgaactg cctttgaaag gaaattgcat gttctgacca
                                                                     2100
ttttaggata cctttacttt aaggaccaca cagtcccaga ggacacatcc ctcgggaact
                                                                     2160
ctgccctct gacaatgagg gccacagaga aggtggtgtt tccatggtag atgctcctgn
                                                                     2220
tntnggtgat anccaaacct ngcccaccc tctgagtcgt ctttgctcat ggacttgcag
                                                                     2280
cagagccacg tagtttggca ttttgattca gaaagtgggg agcagagacc cagccaaatc
                                                                     2340
caaacttttt ttttggtttt gttttgtttt gtttttaca agatataaca taacccagga
                                                                     2400
aacagaccca gctgaggtta ttctcagtgg attacagtat acttttgtgt gtgtaaaagc
                                                                     2460
acaaagtgca tgtgtactca cttctggcca tataacattt acacagggaa atggatcatt
```

```
gattttttt taatcaacgt gaatgaagaa tgtttgttta tatatcacta taaaatccag
                                                                    2580
ttgacctgga cagtattata tgtacatatc tattctaatt aaatttaaca atcaaaggat
                                                                    2640
tggattactt ttttccccct tgtaaagagg ttcgagaatg tggtcaattg tatagatagc
                                                                     2700
gtgttaaagc caaaacccag ctctgagggc cttacccatt acttggatat ttgctacgat
                                                                     2760
ccatctccct ttgtgagtca aatgttaaga gaagaaactt gtatttgcag ctagaggtta
                                                                     2820
ctgtcacatc atagatttaa catttaccat cttcaaagta caaatcttac atgtccttca
                                                                     2880
aaaggaggte ttaatacagt teetagttee ttaettetgt tttaaaettt gggtaccaaa
                                                                     2940
ccaaaaagaa gaaaaagaa aggaaaagat cttctttgaa gaaaagtatg tctctggatc
                                                                     3000
                                                                     3001
C
<210> 280
<211> 3001
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 99-54279-152 : polymorphic base C or G
<220>
<221> misc_binding
<222> 1502..1521
<223> 99-54279-152.mis1, potential complement
<220>
<221> misc_binding
<222> 1482..1500
<223> 99-54279-152.mis2
<220>
<221> primer_bind
<222> 1635..1652
<223> upstream amplification primer, complement
<220>
<221> primer_bind
<222> 1170..1187
<223> downstream amplification primer
<220>
<221> misc binding
<222> 1489..1513
<223> 99-54279-152 potential probe
<220>
<221> misc feature
<222> 44,377,423,696,723,1501
 <223> n=a, g, c or t
 <400> 280
 ctaaagtgac agagttcaga ctttgagagt ctgaatgagg caanggtaag gattttcata
                                                                        60
 getetgagag agggttetee tgagagggga eagaeatgge gtttgeaegg acteaeaege 🕟
                                                                       120
 tgtggtatga gacacatgat cacactcact catttctctc ataaatcttc acttccttag
                                                                       180
 aacctaccct cccgttagac actagctgtg tcttcttcag cctgacggtc ctctccggaa
                                                                       240
 ggtgcgcgtc tgtctctcag cccaattcaa agaggtggga gaggcggcca cagcctctgt
                                                                       300
 cggcctgctg ggcacctggg gctatagaag agggaccgag gctcagcgag attaagtgac
                                                                       360
 cacateceae agetaentat ggetgetgea ggatttgaat ttaggaegat etegetggge
                                                                       420
 contactoco agogagacaa attaacacaa agococaggg agacaaatta acccaaacco
                                                                       480
 ctggaagaat tttaaaagca gaagctcaag cccccaccc caacacagat tttgattccg
                                                                       540
 ttggtctggg tgaggctacc cagaaggccc tgctgggtgg cttggggggcc tgtgcagaag
                                                                       600
 gccaggtgca ctgctccatg atggcaaaac cagcccagct ccctgctctc ttgcaagggc
                                                                       660
 tcagcatctg gtaccagagc aggagatgct cacaangtga gaatttctgt aggggtctac
                                                                       720
```

```
aanagcaggt gctttcaaaa acagtgctca aagaaagtgg gaattgagag gcaaacgagg
                                                                     780
gtgtttctac ctggggtgca ggaaggagca ggcacgtggc atttgagctt agctttcgtg
                                                                     840
aacatatagg cgttctccga acacagcttg cagggagggg ctcaggtaga tggaatggca
                                                                     900
totgcagggg ttcaggttta cggaaacggg tcacctccca tggtctcccc acttcctccc
                                                                     960
ctgtctgccc tccaggctca ccggagcagc cagtgatgtc tgggctcatc agtccttgga
                                                                    1020
caaagccctc caggagctct gtcttctcaa tgtaaaagcc aaagtccttc caatgccccc
                                                                    1080
aaggeettge gtggeetgge ggtgteacee gtgggeecea teteceacet ceactgtttt
                                                                    1140
tttgctcact ggcctcaagc tggccttgct ggtcctggaa catgctgagc ctactcctgc
                                                                    1200
ctcaggtcct tacacttgct gttccctctg cctggatgct acacagccac gcccagagtt
                                                                    1260
catgatecca acacatgtge caecttetea gacacectee etggecaece taggggacae
                                                                    1320
tgcagccctc ccatcccgtc ccccttcctt cctccctgct gggtgccata agcttagctg
                                                                    1380
ttgatttett egeetgeete eeattagaac atgagteeaa agagggaggg eteegtttge
                                                                    1440
teaceattge eccegagtge ctagageact geetggeace eggeagggge tetataaata
                                                                    1500
nagatggaaa qaqqqaqqtq qqcqggcatg cgtgggctta ggtgggccca gcaagagatg
                                                                    1560
cccttqqqca qqacaqcttq qtqtqcatgq ccaaggaggg tqgqtcccaa gccaaaggca
                                                                    1620
ttgaacacca ggctgaggag tgaggatgcc acctgctgta tcacccaggc aatagggagc
                                                                    1680
ctctaaaggc tttttctttc ccccaagatg aagtcttgct cttgtcgccc aggctggagg
                                                                    1740
gcagtggtgg gatctcagct cactgcaacc tctgcctcct gggttcaagc gattttcctg
                                                                    1800
cctcccgagt agctgggatt acaggtgggc accaccacgc ctggctaatt tttgtatttt
                                                                    1860
tagtagagat ggggtttcac catattggcc aggctggtct cgaactcctg gccttgtgat
                                                                    1920
ccgcacgcct cggcctccca aagtgctgag attacaggct tgagccactg tgcccggccc
                                                                    1980
ctagaggctt taagcagggg agtggcctgg tcagagccat gctctgggat ggtatggcct
                                                                    2040
accactgtgg cccagcaggc ttgagggtcc cagttagtgc ccctggagcc aagcagagga
                                                                    2100
ctggacagga tccagcgtgg ggagggagcc ctccctgctc ttgttacctt ggcagaaacc
                                                                    2160
ccgagaacac taggtccgtg ggcagcccct gcaggcctgt cctgctctgc tggccaaggc
                                                                    2220
                                                                    2280
ttggagetet geetggggea ggaggtgeee atgagaatge cagggagtge gageteeeee
agagacceag geaacaagea eccaetegae tecagggete agageceteg etaggatgee
                                                                    2340
                                                                    2400
gtcagcattt gggctgctgc cttttgcact ccaatacttg agttcaagtc ctggctccac
cactgactcc gggctacagg gacctgggct atagccatgt cctcctctga accttggttt
                                                                    2460
                                                                    2520
ccccatctgt gaaatggetg gatttgtgcc ctcagctctg ccctctctta cctcgcacct
coctacceat geocagagee teettgacae agacaaatgt gecategeet etggaatget
                                                                    2580
gggcacetta acagtecagg cetgecagae actecaaatt etagggcete ceagggcett
                                                                    2640
aaatgacagg aagaagac catcttatct ctggagacag aagcttgggg cttggttcta
                                                                    2700
tttccctggc aaattctggg gcacaaacca gaaagctgca acaggaaaag acccatacta
                                                                    2760
tgcaageeta ggetttaaaa eegagaggga eeeegggaat etegegegee aactgeetge
                                                                    2820
actttaagga tagaggcacg cgggccagga gagaagtgac ttgcccaagg tcacctggtg
                                                                    2880
gcagtgagtg ccgtgcaagc cccaaacccc ccagtcctgg gttcccacat ccctgcaggc
                                                                    2940
tggetcaact gtagggeetc cgetgtggaa atcagteetc cgacetcaga tetggaggee
                                                                    3000
                                                                    3001
<210> 281
<211> 461
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 245
<223> 18-168-245 : polymorphic base A or T
<220>
<221> misc binding
<222> 225..244
<223> 18-168-245.mis1, potential
<220>
<221> misc binding
<222> 246..264
<223> 18-168-245.mis2, complement
<220>
<221> primer_bind
<222> 1..18
```

```
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 440..460
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 233..257
<223> 18-168-245 potential probe
<220>
<221> misc_feature
<222> 445
<223> n=a, g, c or t
<400> 281
ttccaactaa cctctatcag tgcattttgt ttgggcagat tgaagatgga agtgttctgg
                                                                       60
atttggagtt attaaatgaa ttttgtgtgt atgtgtgatt gtctttgggg aacctaagat
                                                                      120
ttttagcctg ctcctcccag acaagtgagc tggtacagga gctctgcaat actttagaag
                                                                      180
atgctgaaat ctgatgtgag cctttcccca aaccggaatg acaagctatt tgcatatagg
                                                                      240
                                                                      300
gaagwttccc agtctgcccc tgttctccac cctgcaaaca tgtcacggag aaccctggac
aggttctggc aggccccagc ctctggtagc ttgtgtactg aggttggtca ggataaagga
                                                                      360
atgtatgcag gaaagtggaa catctgttca ggaagcagga ctcccagagt gaaagggatt
                                                                      420
gaatgaggca ataggaacag ggttnaaatg tgggagtgag t
                                                                      461
<210> 282
<211> 454
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 291
<223> 18-171-291 : polymorphic base C or T
<220>
<221> misc_binding
<222> 271..290
<223> 18-171-291.misl, potential
<220>
<221> misc binding
<222> 292..310
<223> 18-171-291.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 433..453
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 279..303
<223> 18-171-291 potential probe
<220>
```

```
<221> misc_feature
 <222> 24
 <223> n=a, g, c or t
 <400> 282
 tgtcatcagg gagaccagga ggtnaagagg atgtttcata ccttctactg ggagggtgaa
                                                                        60
 catggagact gggaaggtga ccagccaccc agctctgcgg aagtttgact gaggcccgat
                                                                       120
 ctttgacatt cagcgagacc tatctcagct cctggaggaa ataccaaggg tgaatggcct
                                                                       180
 gagtcatttc agcagttccc cttgatccac ttatacctga agtggctctc cagggagagg
                                                                       240
 aagtaaccag aagctgccat tgtctgcctg cagagactgt cacaggaata ytgaagaaag
                                                                       300
 catcattcct agaagaggg acacccaggg ctcaaggcat gttgccagaa tcccgaacaa
                                                                       360
 aatacctctg aatttctcac aggggtggag gtggaggaac tgcagggtca gggcgtatta
                                                                       420
                                                                       454
 ctgctgaccc acctgttgaa actctctgct gtgg
 <210> 283
 <211> 559
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 346
 <223> 18-172-346 : polymorphic base C or T
<220>
 <221> misc_binding
 <222> 327..345
 <223> 18-172-346.mis1
 <220>
 <221> misc_binding
 <222> 347..366
 <223> 18-172-346.mis2, potential complement
 <220>
 <221> primer_bind
 <222> 1..17
 <223> upstream amplification primer
 <220>
 <221> primer_bind
 <222> 538..558
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 334..358
 <223> 18-172-346 potential probe
 <400> 283
 tgaggaaata gaaagggaca caccgtcctc tctaggtgct gagtccagtt aggatgtgtg
                                                                        60
                                                                       120
 cattgtcaca tagtgagggg gcctagctgc ttatgtctgc caggacaaag ccaagatggt
 cttagactgt tgtctcatct gtgctattca ggttcattag cagtcatctt caagaccgaa
                                                                       180
 gaaaataggt ttaaattggt gaaggatgaa tctgaactaa ctgtaaaaca aataaattat
                                                                       240
 ttttgacagc aggagcactg gaatccattc ctgaagatgt tagggatttg cagaagcttg
                                                                       300
 gcgtcacctg ggcccttaga aaccatccag tcaagcccca ctcagyatag atgtcctctg
                                                                       360
 cgtaccccca tacagcctgt qcatqqtqcc ctccaqqqga gatgccagca gttttcatta
                                                                       420
 tttttaatct ccatttgatt cgggatgggc actaacgcag ctaatagact gagtggagga
                                                                       480
 agtotttccc caattagcga gaggotgtgg atotcacctc ccaaggtagc caactgtcca
                                                                       540
 tttcaagaca gttctgatt
                                                                       559
 <210> 284
```

<210> 284 <211> 468

```
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 406
<223> 18-177-406 : polymorphic base C or T
<220>
<221> misc_binding
<222> 387..405
<223> 18-177-406.mis1
<220>
<221> misc binding
<222> 407..426
<223> 18-177-406.mis2, potential complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 450..467
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 394..418
<223> 18-177-406 potential probe
<220>
<221> misc_feature
<222> 416
<223> n=a, g, c or t
<400> 284
cactecete tatttaceta gegaaggtet acteaetatt cagettaace ateaeeteet
                                                                       60
cagggagete ttecetgate tactecagta ggtececatt atatgcette actgtacete
                                                                      120
tgattctcca tattactaac cccaacatag gtatataatc attagtgaaa cactttcatt
                                                                      180
aatgactgga ccccctattt gaataagtat ttacgaggat atggagtgtg tgtgttggca
                                                                      240
gggggtgtct catttttctt atctgctgcc cagtccttgg tccacagcct tcctggccct
                                                                      300
caatgcatgg ccaacttgac aagtgaatga ctcagtggat gggagcaaag ggaagataaa
                                                                      360
tgtccatggt gtgtttcagg gcccccggag gtgcaatgaa tagctyaccg aagggnscaa
                                                                      420
cttcattcat agtctctgga taataacacc taccacatcc taactaca
                                                                      468
<210> 285
<211> 456
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 338
<223> 18-298-338 : polymorphic base A or G
<220>
<221> misc binding
<222> 319..337
<223> 18-298-338.mis1
```

```
<220>
 <221> misc_binding
 <222> 339..357
 <223> 18-298-338.mis2, complement
 <220>
 <221> primer bind
 <222> 1..18
 <223> upstream amplification primer
 <220>
 <221> primer_bind
 <222> 439..456
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 326..350
 <223> 18-298-338 potential probe
 acattgtcac caagaaccag gatctctgga gaaacagttg ggctgttgca tcgagtaatg
                                                                        60
tcactggact cggcctaagg tttcctggaa cttccagatt cagagaatsy gatttaggga
                                                                       120
 aackgtggca gatgagtggg agactggttg caaggtgtga ccgcagaatc ctggaggaay
                                                                       180
 agagagtaaa gcttctaggc atctgaaact tttgcttcat ctctgacgct cgcaggactg
                                                                       240
 aagatgggca aattgtaggc rtttctgctg agcagagttg gagccagaga tctacttgtg
                                                                       300
 acttgttggc cttcttccca catctgcctc agactggrgg gggctcagct cctggggtga
                                                                       360
 tatctagcct gcttgtgagc tctagcaggg ataaggagag ctgagattgg agggaattgt
                                                                       420
 gttgctcctg gagggagccc caggcatcat taaaca
                                                                       456
 <210> 286
 <211> 456
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 110
 <223> 18-298-110 : polymorphic base C or T
 <220>
 <221> misc binding
 <222> 91..109
 <223> 18-298-110.misl
 <220>
 <221> misc binding
 <222> 111..130
 <223> 18-298-110.mis2, potential complement
 <220>
 <221> primer_bind
 <222> 1..18
 <223> upstream amplification primer
 <220>
 <221> primer_bind
 <222> 439..456
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 98..122
```

<223> 18-298-110 potential probe <400> 286 acattgtcac caagaaccag gatctctgga gaaacagttg ggctgttgca tcgagtaatg tcactggact cggcctaagg tttcctggaa cttccagatt cagagaatsy gatttaggga 120 aackgtggca gatgagtggg agactggttg caaggtgtga ccgcagaatc ctggaggaay 180 agagagtaaa gcttctaggc atctgaaact tttgcttcat ctctgacgct cgcaggactg 240 aagatgggca aattgtaggc rtttctgctg agcagagttg gagccagaga tctacttgtg 300 acttgttggc cttcttccca catctgcctc agactggagg gggctcagct cctggggtga 360 tatctaqcct gcttgtgagc tctagcaggg ataaggagag ctgagattgg agggaattgt 420 gttgctcctg gagggagccc caggcatcat taaaca 456 <210> 287 <211> 451 <212> DNA <213> Homo Sapiens <220> <221> allele <222> 104 <223> 18-299-105 : polymorphic base A or C <220> <221> misc binding <222> 85..103 <223> 18-299-105.mis1 <220> <221> misc_binding <222> 105..124 <223> 18-299-105.mis2, potential complement <220> <221> primer_bind <222> 1..20 . <223> upstream amplification primer <220> <221> primer bind <222> 431..451 <223> downstream amplification primer, complement <220> <221> misc binding <222> 92..116 <223> 18-299-105 potential probe <220> <221> misc_feature <222> 437 <223> n=a, g, c or t <400> 287 ttcttggact gggggctaac tgtagcaccq tctctaccag cagggtgttg ccaactcatg 60 gtgcatggat tcaaatgcaa taaacagtcc tggggagatg tccmgctcct gtagccccat 120 catgggtgtc tgatttggtg agtattctag gtgcttccaa caacctcatc cttctgacct 180 gctggcctct ctgaagggg tgtctgctct aactggatca agaatagggg acttgtttgg 240 aggaacattc ttggtttgtg atttggtctq qagtctctgt ctgcaagtcc ttctgcttgt 300 ctttttcact tgagtgtttg tgtatqtaca qqaattgctg atggaagtcc aacaggctct 360 cctagtttgt ctggtctgtc acatttgctg aaccctgaag gaactgttag cggaagcgca 420 acaggeetga etegtgntga ttttecattq t 451

<210> 288

```
<211> 451
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 31
<223> 18-884-30 : polymorphic base G or C
<220>
<221> misc binding
<222> 12..30
<223> 18-884-30.misl
<220>
<221> misc_binding
<222> 32..50
<223> 18-884-30.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 431..451
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 19..43
<223> 18-884-30 potential probe
<220>
<221> misc_feature
<222> 438
<223> n=a, g, c or t
<400> 288
tgtagttgct ttccttactc ttcagatagt sataaaggac attaaaccta agcaaacaca
                                                                       60
ttagaactat gttactataa cttttcatga aacacttctt ctgtagtgtc tataattcaa
                                                                      120
tttagtggta aataaacctt gagacactga attctgtttt tttttcttta aaaagttttt
                                                                      180
tttaagtata aattaaaatt attoctottt atttgtattt otgooctttg tgaacaaagt
                                                                      240
taattetgtt ttgattgtga agaatttget tettttgetg gtttetteet gtaggtattt
                                                                      300
aattgtcgct tggtagatct tgacctggcg ttgggttact gcactctctt acctcaaaaa
                                                                      360
gatgtgtttg aaaatctctg gaagctcata gataaagcat ggcagaatta cgacaaaatc
                                                                      420
ttggtatgtc ctaaggangc acaccttcaa t
                                                                      451
<210> 289
<211> 451
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 342
<223> 18-299-343 : polymorphic base C or T
<220>
<221> misc_binding
<222> 323..341
<223> 18-299-343.mis1
```

```
<220>
<221> misc_binding
<222> 343..362
<223> 18-299-343.mis2, potential complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 431..451
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 330..354
<223> 18-299-343 potential probe
<220>
<221> misc_feature
<222> 437
<223> n=a, g, c or t
<400> 289
ttcttggact gggggctaac tgtagcaccg tctctaccag cagggtgttg ccaactcatg
                                                                       60
                                                                      120
gtgcatggat tcaaatgcaa taaacagtcc tggggagatg tcccgctcct gtagccccat
catgggtgtc tgatttggtg agtattctag gtgcttccaa caacctcatc cttctgacct
                                                                      180
gctggcctct ctgaaggggg tgtctgctct aactggatca agaatagggg acttgtttgg
                                                                      240
aggaacattc ttggtttgtg atttggtctg gagtctctgt ctgcaagtcc ttctgcttgt
                                                                      300
ctttttcact tgagtgtttg tgtatgtaca ggaattgctg ayggaagtcc aacaggctct
                                                                      360
cctagtttgt ctggtctgtc acatttgctg aaccctgaag gaactgttag cggaagcgca
                                                                      420
acaggeetga etegtgntga ttttecattg t
                                                                      451
<210> 290
<211> 476
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 140
<223> 99-61513-139 : polymorphic base A or G
<220>
<221> misc_binding
<222> 121..139
<223> 99-61513-139.mis1
<220>
<221> misc_binding
<222> 141..160
<223> 99-61513-139.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
```

```
<222> 458..476
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 128..152
<223> 99-61513-139 potential probe
<220>
<221> misc_feature
<222> 60
<223> n=a, g, c or t
<400> 290
aagaaggaca ctgggacact cargettete tetgteteea cagaacettg atgeeteten
                                                                       60
tacatggegt ccctgtggcc tctctgtgtg gcccctctat gtggcatcta cacacagcct
                                                                      120
cttcacatct tctttccacr acatagtctg gactttgtac atggacatac ttagggcttc
                                                                      180
tgaaggcaca caggcagacc ttctccatcc ctgggcttgg aaaccccaga acatcacctc
                                                                      240
caccacattc aatcaggcaa aacaaatcac agagccagtc catattccac tgggaggtgc
                                                                      300
cacctaaggg tgggagtgcc aggaggtaca gcacattggg gctattcaga ctcaccacta
                                                                      360
cagaatatag atgacactga gtcaggaccc ttggctagca ggaaataagg ggcccctggg
                                                                      420
cccccaacga aggagatgta gttgtagaag ctgggaagta agggggtaga gaggaa
                                                                      476
<210> 291
<211> 517
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 179
<223> 99-61514-179 : polymorphic base A or G
<220>
<221> misc_binding
<222> 160..178
<223> 99-61514-179.mis1
<220>
<221> misc_binding
<222> 180..199
<223> 99-61514-179.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 497..517
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 167..191
<223> 99-61514-179 potential probe
<400> 291
atgttcacac agaatcggtc tagaaactgt attccgtgaa aggatgaaag ctcttaactt
                                                                       60
ctctgtcccc accccccaa aaaactttac tgtcacataa gagttgacta atgaccctcc
                                                                      120
actaaaaatt acacagtata ctgcctgcca ccaaatacga attcagtaaa tacttggara
                                                                      180
ataagtgaat aatttcaatt cacagtcaca tgacaagttg tcaaaagcaa ttataaaagc
                                                                      240
```

```
aattgtattg gactcagcac atcccactgg agaagccagg gcaaggaaac agatccctca
gcaccttctt tgaaatacaa agatttgaag aaggtcagag cagattgttt tgttgttgtt
                                                                      360
cttcttgggc taccaggaag tcacaatgat gacagacgta cagatgtaca tttggacaaa
                                                                      420
atgtacagat gtacaaagaa atgtaaagat gaaaattgat agatcaatag atcccaatct
                                                                      480
aaagagcctc attcggcctg aaataaagca ttgattg
                                                                      517
<210> 292
<211> 436
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 323
<223> 99-61516-323 : polymorphic base C or T
<220>
<221> misc_binding
<222> 304..322
<223> 99-61516-323.mis1
<220>
<221> misc_binding
<222> 324..343
<223> 99-61516-323.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 419..436
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 311..335
<223> 99-61516-323 potential probe
<400> 292
ggagactttc tcttagacac acgcctggag gcgtctgaga gggacaggct gggctcacca
                                                                       60
attegaactt ctgccaatge cetgcatgte teteteacta agagetaage caagaettee
                                                                      120
cctgtcatca ccactgcctg tggtcagtcc tctattacca acagagggaa acagaatgca
                                                                      180
attgaggaga accaactaat tgcgaaagca aagcctgaga aaccccatga gtgatggatc
                                                                      240
caccaattct ggtggccaca gggaggtccc tggtgtctgg ctgcatgctg gccatggtga
                                                                      300
ccaggtgtcc ttgggcagga gayggcttca aatgcagacc ggagtcctag cgatccaagt
                                                                      360
ggttctttga gaaaccaaaa caccacaaag ctcccscwgg actgtaccat tgagctctca
                                                                      420
atcacaaatt cagccg
                                                                      436
<210> 293
<211> 505
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 70
<223> 18-204-70 : polymorphic base C or T
<220>
<221> misc_binding
```

```
<222> 50..69
<223> 18-204-70.mis1, potential
<220>
<221> misc binding
<222> 71..89
<223> 18-204-70.mis2, complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 487..504
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 58..82
<223> 18-204-70 potential probe
<400> 293
agaaaagtct gtagcacttc gtaattttat atatggttaa ggggatctca gagataacta
taggatttty aatttggata ataagaagat ggtaatatca ttaaccaaga aaggaaatgt
                                                                      120
gagaaggaga gggggaacag attgtaacca ttgttatttt actgacacat atcttcacga
                                                                      180
attogttgaa acttgatgta atgttataag atagtgatgt ttaagagtat tctccctgt
                                                                      240
tccctcgtat ctacccaccc ttctccagga tttgaactca gaggatcaaa aagccttcag
                                                                      300
tgttgaacat acaagctgca atgaggaaga aaatttcgca aatatgaaaa agaaggccaa
                                                                      360
aataggcatt catcacaaaa atagtccccc caaagtcact gttccaacta gtggaaatac
                                                                      420
tatagagtct cctcttcatg aaaacatctc taattcaaca tcatttaaag atgagaaaat
                                                                      480
catggagact gatagtgaac cagag
                                                                      505
<210> 294
<211> 464
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 442
<223> 18-207-441 : polymorphic base C or T
<220>
<221> misc_binding
<222> 422..441
<223> 18-207-441.mis1, potential
<220>
<221> misc_binding
<222> 443..461
<223> 18-207-441.mis2, complement
<220>
<221> primer_bind
<222> 1..17
<223> upstream amplification primer
<220>
<221> primer bind
<222> 443..463
<223> downstream amplification primer, complement
```

```
<220>
<221> misc_binding
<222> 430..454
<223> 18-207-441 potential probe
<220>
<221> misc_feature
<222> 449
<223> n=a, g, c or t
<400> 294
catecattat ageccagatg aaagttgget gtgacaacae tgtggtgege atggteteea
                                                                       60
gtggaaaaca cgtaaatcgt gtgacttttg agtatcgtca gctggagccg tacgagctgg
                                                                      120
aaaacccaaa tggaaacagt atcggggaat tctgtttgtc tggtctttga ataaccaacc
                                                                      180
cagtgattta catgctgata gctaagtgag tttttaatgg ccattgtgta tgattttgat
                                                                      240
gcacaactaq ttaaaaqcct ttcataccag tcagtattcc cagccttgag cgcacqcqcq
                                                                      300
cacacacaca cacacataca cacacgcatt aatttttgta ctttgcttct tttatgtttg
                                                                      360
taatetgtaa atgaacacat ggcagaaaat aacceetgat tggtaggate atagttetaa
                                                                      420
atggaaatgt ttgtaattct tygatgtgnt acaaacctga aact
                                                                      464
<210> 295
<211> 456
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 65
<223> 18-210-65 : polymorphic base A or G
<220>
<221> misc binding
<222> 46..64
<223> 18-210-65.mis1
<220>
<221> misc binding
<222> 66..85
<223> 18-210-65.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 438..455
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 53..77
<223> 18-210-65 potential probe
<400> 295
ataatatcca tgtagctgaa ttcataatgt atacttttta aagacaactt gtttttctct
                                                                       60
ctcarttaca aaagtagact acaaatatct aacccactaa aacagcctta atctatattt
                                                                      120
taagattaga atccaggtaa cctggctttg tattctactg actatgccat tcaatacaat
                                                                      180
gaaaccttct gaaggtctaa gtattagtca tttattcaca tcctactctc taagaataac
                                                                      240
caagtggcaa cccacaacat tttcaataac atcattaaaa taatgtttac tttctggcag
                                                                      300
atatactaca actcactaac atttttaatg gttttgctct tttatagtta ccagactggg
                                                                      360
```

```
ctatttactt aaataatgat tatttactca ccttcatcct cactatcttc tgcagttaca
                                                                      420
ttgccttcac tggtaatggc ttcgtcataa ctatcc
                                                                      456
<210> 296
<211> 484
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 200
<223> 18-212-200 : polymorphic base C or T
<220>
<221> misc binding
<222> 181..199
<223> 18-212-200.mis1
<220>
<221> misc_binding
<222> 201..220
<223> 18-212-200.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 463..483
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 188..212
<223> 18-212-200 potential probe
<400> 296
tttggctagt acaacttctt ggaaattaca cacactttaa gcatttatat tcctggtgaa
                                                                       60
caattagttt taatatactt attgggctga gttaatatga agtacttaca gttaattcaa
                                                                      120
agatcagctt tgtggggtga gattcatgtg attattcagc catactgcct gaggagcata
                                                                      180
ctctgatact tgtggagggy atatcctgat aaagcagcga tttgaagtat tgtgggttgc
                                                                      240
ctactattta tagaacacta gatatgagga ggcagatatg aagccttgac tcttgtggtc
                                                                      300
agcetgactg gacaataaca cagacagcat cactetgttg gtettgacta ettaattaca
                                                                      360
                                                                      420
catatctaga aaagtttatt ttgaacaatt gcaaataatg tttacaatac aacaactctt
                                                                      480
tttctctttt tttagactaa aaaatcattt agaaaaataa cacacatata aacatactct
ctct
                                                                      484
<210> 297
<211> 485
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 334
<223> 18-229-334 : polymorphic base C or T
<220>
<221> misc_binding
<222> 314..333
<223> 18-229-334.mis1, potential
```

```
<220>
<221> misc_binding
<222> 335..353
<223> 18-229-334.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 464..484
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 322..346
<223> 18-229-334 potential probe
<400> 297
aaaccatage catcatette tgecatttat tattagaaaa acattaatgt atactttatg
                                                                       60
tttattttgt tggttggctt ttggcttgga tacttatgaa atttttaaaa cttatctttg
                                                                      120
agactggaaa tttttactgt aattatatat gtgaagtctc tttttgcttg aaacatagtg.
                                                                      180
cgctaagctt ggagtttatc ctgaggtagt tttaggcaag agagttacat ggtgagaact
                                                                      240
atgttttaaa tataccacct caggcaagta tgagggatgt gtttggaaaa agtacagact
                                                                      300
agagetgagt agaceagttg gaetgttgga ataytgtagg eeagaactga gatattttta
                                                                      360
agattcagcc tgttcaatat gtagcaggaa gtaataaaca agagaataga tgggagatgg
                                                                      420
agttggtaag aagtaactcc aatgtggtct geggttccca tgtctcactg ctgwgtgtta
                                                                      480
ctggc
                                                                      485
<210> 298
<211> 457
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 332
<223> 18-230-332 : polymorphic base C or T
<220>
<221> misc_binding
<222> 313..331
<223> 18-230-332.mis1
<220>
<221> misc binding
<222> 333..352
<223> 18-230-332.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 439..456
<223> downstream amplification primer, complement
<220>
```

```
<221> misc binding
 <222> 320..344
 <223> 18-230-332 potential probe
 acaaacacaa tggattctgc cctccacatt gacacctgtt tcatttgcta tactgaggag
                                                                        60
 aatcaacaaa tgcctacatt tgtttgggtt tcatgaaatt cctttgcatt atttttcata
                                                                       120
 aactgaatat tgctttgtca ctacatatac ttgtttcact ttattggcac ttttgtcctt
                                                                       180
 cacatttgct tcaagtgtct cccagaatat aatggaaccc tgggtgtcag gtgcccaccc
                                                                       240
 acatccctgg gaaatagtga agctgagatc agtaacacag acatggaagg aaccttagcc
                                                                       300
 atcatgcagt tcaaaattct tgacataaag ayaaagatgt tgagttccag aaagaaacca
                                                                       360
 tetgeetggg catecatgga ctateteget tatteagacg cateatggee caetaatate
                                                                       420
 atactaatat catagttaca ttagcatcgc tcctttg
                                                                       457
 <210> 299
 <211> 478
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 378
<223> 18-966-378 : polymorphic base A or C
<220>
<221> misc_binding
<222> 358..377
<223> 18-966-378.mis1, potential
<220>
<221> misc binding
<222> 379..397
<223> 18-966-378.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 458..478
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 366..390
<223> 18-966-378 potential probe
<220>
<221> misc_feature
<222> 55
<223> n=a, g, c or t
<400> 299
gtacaggagg tgttcatcac agtttggcca ctggttccta tgtatgccct ttggnaagca
                                                                       60
gtatagcatg gtggctttgg catcaaatag acccagcatc aagtactggc tcctttactg
                                                                      120
ttatgagaaa aacctgagat tgtaatgtcc ccccaaactg ggaaggagct gatagtgcaa
                                                                      180
agaatgactc agacaagtcc agcttgaaga gtggatgagc tcactcactt acagagaatt
                                                                      240
cctgggcagc agcaagacag ctccagccat cttccccacc tcccatctct aagttgcttt
                                                                      300
gaagctaatt ttctggctct ttgattactg catatgtgca atgagaatgt tttcctagga
                                                                      360
atgttccaag ctatgctmca ggatgttgag tttctcaggg acacctgctc ctctgctggg
                                                                      420
caccatggcc ttggctcacc gcctggcctt cagggttcaa gcagtggaca tacaccct
                                                                      478
```

```
<210> 300
<211> 463
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 307
<223> 18-987-308 : polymorphic base A or C
<220>
<221> misc_binding
<222> 288..306
<223> 18-987-308.mis1
<220>
<221> misc binding
<222> 308..327
<223> 18-987-308.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 443..463
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 295..319
<223> 18-987-308 potential probe
agagacctaa cattcaccca tttgtagcag ttgttttaga acagtgattg ccaaggaggg
                                                                       60
gaaaaatgag gaagcatagc agaatttctg gggaactgta gaaagagaga gcatattggg
                                                                      120
aaggtettgt gatatttgaa aattactetg aaatgtttet gaaacteett ecaetgatte
                                                                      180
tcatggaaga agtctaacct cttaggatgt gcaagttcaa tggaataaat ttaacacttc
atcttgtgca tgaagtgcta tattcagaag caaaatatta aaagctacag gtttttaaaa
aattaamttt taattaaaaq caactcaaca ttttaaaqat attctacatt ctccctttcc
cccgatattt gaaattccca atgatgtctt tcctgagaca tttaaataga cattcaacat / 420
tatgagagtt cettettttg tggggtttta taagtacgaa gca
<210> 301
<211> 460
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 118
<223> 18-1169-118 : polymorphic base G or C
<220>
<221> misc binding
<222> 99..117
<223> 18-1169-118.mis1
<220>
<221> misc_binding
```

```
<222> 119..138
<223> 18-1169-118.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 442..460
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 106..130
<223> 18-1169-118 potential probe
<400> 301
gaccaagttc atgttgccaa tttattgaaa catctcactc cttagggcac aaccacaaaa
                                                                       60
                                                                      120
tgccttttgt tccccaataa ctgctttcta actgggccat gttgaaccca ctttccastg
gggagcagtt cctttaatta caagttggcc agattttgta agttgcagtg atgtttaaaa
                                                                      180
aagtaatttt aaccctatgc agtttaaaat ttcaatctca acttaactca gagctctcct
                                                                      240
teettteeac taataaagac caaacetgee aetggettta attggtggtg agggggttgt
                                                                      300
ctcattacac acttatccct cctccctttt tgagggctag ctcttccagt tcttgggtca
                                                                      360
gggagaagag caaaaagagg aaatatetet tacteetetg gacagggttg cagtettete
                                                                      420
                                                                      460
cccgaatggc agacagtttt cctggttact actgatttgc
<210> 302
<211> 475
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 138
<223> 18-1172-138 : polymorphic base G or C
<220>
<221> misc_binding
<222> 119..137
<223> 18-1172-138.mis1
<220>
<221> misc_binding
<222> 139..158
<223> 18-1172-138.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 457..475
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 126..150
<223> 18-1172-138 potential probe
```

```
<400> 302
qcaaacaqqt aagacatctg atatataaca qqcccccqac cqatqttagt tqccttcatt
qccaacaaat qtqqaatqat cccctcctc tqaqttccat aqaqaatqaq aataaaqaqt
                                                                      120
aggaaggggt ttctcagstt gtaaaacttt caatgctaac atcctggcaa accaggacac
                                                                      180
attgttcaaa gggctacatt tgataaacta tcccaagtat tcaatatgtg gctgttatct
                                                                      240
ccttcctaat atcctgaata gcgttttcta ttgtttcagg gagtagggtt gaaaaacagg
                                                                      300
tattcgtgat gtaaataatt tgttttttca atcacataat tgaagactgt taactggctt
                                                                     360
tacagcagtg attttcaatg gggagtgcag ttttgcccct cccaagagac ttttagtaat
                                                                      420
tccggaaaga tttttggtta tcataaccag ggagtgggag agggttcttc tgcat
                                                                      475
<210> 303
<211> 533
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 92
<223> 18-1173-92 : polymorphic base C or T
<220>
<221> misc_binding
<222> 72..91
<223> 18-1173-92.mis1, potential
<220>
<221> misc binding
<222> 93..111
<223> 18-1173-92.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 515..533
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 80..104
<223> 18-1173-92 potential probe
<400> 303
ttattgtcag gttgggtctt ccttctgaag actcctgtgt attgtgcctt tgcaagttga
                                                                       60
tttttcagtg aaacttcaga gggccaagat tyccccttgg ctcccacact gtagtgatta
                                                                      120
agatagtgag ataacagcag ggggatagat atggggtaga tatatacatc atatcaaagt
                                                                      180
actocccaag ttottattga ttagatatta agtaataagt tcaaaattat tatataactt
                                                                      240
tatagtagag aagtttggca tacatcaaat taaccaggta ttaaaagttc actgcgccag
                                                                      300
taatgggaca aatcaacgtc atgtgcctcc tcatgtgctg caccgagaag gacacagtat
                                                                      360
cacttcagca gtgttctggg gccaaaaatq taaaacctca agttgcttat gagtaaaccc
                                                                      420
cagccaaact caaaacaatq gacattctac aaaqcaactq gcctgtactt ttcacaggca
                                                                      480
ttgaggtcat gaaagacaag acagaagagc tgctccagag tgaagaagac cga
                                                                      533
<210> 304
<211> 463
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
```

```
<222> 387
<223> 18-1174-387 : polymorphic base C or T
<221> misc binding
<222> 368..386
<223> 18-1174-387.mis1
<220>
<221> misc binding
<222> 388..407
<223> 18-1174-387.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 443..463
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 375..399
<223> 18-1174-387 potential probe
<400> 304
gccatttcct tgctttagat atttgaccta attttttcag acctgtttaa tcaccagttt
                                                                       60
agettteagg acceteteta gaggtggtea tgtgttattg tggaaagtae agattttgga
                                                                      120
ttcaaacaaa tgcagattca aaccttgggt ataccatcta taagatgttg aaaagtaacc
                                                                      180
tgaccttgca gtctcagttt cctcaactat aaaatagtgt ctacttgtgt ggtaaagggt
                                                                      240
taatccagca ggtctgcaca gtctaaatcc tgcacattcc aaagaaaggt ttagtcctta
                                                                      300
ctctactcct gggagataac ctctaagctt ctagaatata ctgcctgtta agaatgtttt
                                                                      360
tgtttatcta agcccttggg ctacacyaaa tagtttaagc taagaaagtg ggaaatgtgt
                                                                      420
gattaaatct gagagttgtc ttggtgactt caaaactact tct
                                                                      463
<210> 305
<211> 451
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 416
<223> 18-1175-416 : polymorphic base G or C
<220>
<221> misc_binding
<222> 397..415
<223> 18-1175-416.mis1
<220>
<221> misc binding
<222> 417..436
<223> 18-1175-416.mis2, potential complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
```

```
<220>
<221> primer_bind
<222> 434..451
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 404..428
<223> 18-1175-416 potential probe
<220>
<221> misc_feature
<222> 428
<223> n=a, g, c or t
<400> 305
gactagaagt tactttccca tgtctctttt ttaaaaacaa ttttcaaaga ccctagaaaa
                                                                       60
tcaaatagtg acttaaggtt tcagaaattt tcaagcctac tagcggagtg atgtggcaga
                                                                      120
atgaacacag acttgagatt gagaaacact tggagctgaa ccttgctcta cctcttgcca
                                                                      180
gctatgtgta cggggcaagg ttctgcatta gggtttcagc ttcttcattt gtaatatgga
                                                                      240
accacctatc tagatggcta ctgtgaggat gaagtgatgc aaacaggtaa gacatctgat
                                                                      300
atataacagg cccccgaccg atgttagttg ccttcattgc caacaaatgt ggaatgatcc
                                                                      360
ccctcctctg agttccatag agaatgagaa taaagagtag gaaggggttt ctcagsttgt
                                                                      420
aaaactbnca atgctaacat cctgcaaacc a
                                                                      451
<210> 306
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 146
<223> 18-542-146 : polymorphic base A or G
<220>
<221> misc binding
<222> 127..145
<223> 18-542-146.mis1
<220>
<221> misc_binding
<222> 147..165
<223> 18-542-146.mis2, complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 430..450
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 134..158
<223> 18-542-146 potential probe
<400> 306
aaactgtgtc ctagagtcag ccaagcaact acaaagccga agaatgactt ttgctaaatc
                                                                        60
actagctact gtattaacac catttcaggt ctattggatt cagggaaata tttttactgt
                                                                       120
```

```
cacaactgct ttttgttgga ttgtgraaag tattacaatt aattttaaaa atgtgtagaa
                                                                      180
atgcctcagg ggcaaggata gaaacagata tatatttcta aagaaagctg gagaaaaatt
                                                                      240
ctttagaagg tgagtaattc caatttggca tttagctaat aatgttcctt tctcgttata
                                                                      300
atctattttt ttctaacaat gattaatagt ttttcttgg tatttcaaag cagaattatt
                                                                      360
gataaactaa attcattaga ctaattcatt agtctttcac cactcatttg accacacggc
                                                                      420
tctacatctc tccacccaac tcttacagta
                                                                      450
<210> 307
<211> 3000
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 8-42-211 : polymorphic base C or G
<220>
<221> misc_binding
<222> 1481..1500
<223> 8-42-211.mis1, potential
<220>
<221> misc binding
<222> 1482..1500
<223> 8-42-211.mis2, complement
<220>
<221> primer bind
<222> 1694..1711
<223> upstream amplification primer, complement
<220>
<221> primer_bind
<222> 1263..1281
<223> downstream amplification primer
<220>
<221> misc_binding
<222> 1489..1513
<223> 8-42-211 potential probe
<400> 307
caagtgageg agatgagege ageggegege eggggegtee tettgtteae gtagtegatg
                                                                       60
                                                                      120
gggtccgtga tggcccagta cctgtccagc gcgatggcgc acaggtgcaa gatggatgag
                                                                      180
gtgcagcaca gcacgtcgag ggcgatgaac aggtcgcagg ttacctggcc cagtgtccac
ttgttgagca cetgatacag egeggecatg ggeagcacca acacegacae catgaggteg
                                                                      240
gtgaccgcca aagagccaat aagataattg gccacgttct gcagggagcg ctccaaggcg
                                                                      300
atggcagcca ccacgcacgc attgcccagc accgcgcaga agatgagcgt gcccagcagc
                                                                      360
agagaggtga teaettggta getgaeggte aegteggaga taccagtagt gttgeegeeg
                                                                      420
gtctcaaagg gagccggtgg tgatgtggtg ttgttgccct gaccagggct gagcacatcc
                                                                      480
                                                                      540
atgcctgcgc gcccggcgcg ggaaggggga gggaagaaaa agcagcgcga agattcgcct
egeceettee cetggggtet teegecette teetgggaag ttteggagga agggaatgea
                                                                      600
gagacccaag caggaagttc ttactgcttc ggcgaagggt atctccgagg agcagctttc
                                                                      660
aggegeteee tgggeteteg eagteeageg egtteagaag eteeagetgg gaaactggag
                                                                      720
ttggcctgaa agcagctcca ggatctcccg gcggcggaga ggtggctgga acgtctgtct
                                                                      780
gtcgctgtcc attttacttt gccgctcccg aactggctgc cggagctgga gtctccccac
                                                                      840
tagcaaacag totocaatoo cagaaatato tagaaccgag aagcoccato otocacggto
                                                                      900
actotytyac cotoctotoc ctatttoott cottocotot otoccootot ctoctoctot
                                                                      960
ettetetete ttetgeetet ttegteecee tteteceeae etgeetteee ttteagtete
                                                                     1020
cetetteete eteaetteee tttatttate cetetgtgag tegettegaa agecaggete
                                                                     1080
cttccctccc actctaaccc tccctccta atacttcccc aaccccgagg agtgcctctt
                                                                     1140
tectetgggt coccectet etetecetet ageteagegt etttgeatte gagtetettt
                                                                     1200
```

```
ttgtcaacag agactcagaa ctcacttaca cacaccagat ccctgccggt cagaccaagg
                                                                    1260
ttgtaacaaa taaactccgc ctccaaccca gcaaaactgg ggttggaaaa acttggggga
                                                                    1320
gggaattcca actactcctt gcctcatatt atctgccaaa ttcttaaatc gtgtcagcat
                                                                    1380
cccagagtgg caataggaga tgagaaaagg aagcataggg agcctgaatg ggaaggtgaa
                                                                    1440
cagtectggg teagtetece aattattget aattgatgga agaagaeega gtgtgtette
                                                                    1500
stitttaaaa agctacetee gitetegege cattgeacte cageetggge gacagagega
                                                                    1560
gactccgtct ccaaaaacaa acgaacaacg acgacaacaa caacaaaacg gtacctccgt
tatcatctaa cagtccagcc ttactccctc agggagaata ttgcctgtga ctttttttt
aacgttgggg aaccgggaga gaacqaaatt ataaaqqacq tqtcaaaqqa caaqqaqaqq
                                                                    1740
taaacaactg catctcgaaa tgaagaacaa aactcagtgt gatatatatt ctaaacacac
                                                                    1800
acacactttt ccatcactac tacacttgta atttcagtga cactgccact tcccatagct
                                                                    1860
ttgtggctag taaattcagg gatggaaata ttttgcatat gtgttctaag tgaagcctgg
                                                                    1920
catttcacat ggccttttgc acttcttacc agagectgca aacctctggg ggaaacttgg
                                                                    1980
tggaatcccg gttcgctagc cggctagcct ctcttaatct cagaaactgg gttcagcacc
                                                                    2040
tgggacagtt ctaagcaatg aggttttatg tcgccacctt ctggcaaatg ttttagagtg
                                                                    2100
ccatctggaa acccttatgc agaaatgaag caagtattga ggaaatacaa caacttttag
                                                                    2160
aaagaggaag acagttatta aaagacaagg tagtattgag ttttgtctcc ttcctatttt
                                                                    2220
ctttaaaaat ttattttagt gccctctttt gctctgaacc ttatatatca ggcctattat
                                                                    2280
atgttttagc ttccttcgaa agcctgaagt atctgtcatt cacaagttct aactgggaat
                                                                    2340
gccattttaa taaagctagg ctaacacttt cacctgtgtt ggttttgtgc tgtcataacc
                                                                    2400
tgaactttgg aactgacata aatttacctt ttgttggaga aacgaatagt attgcatttt
                                                                    2460
ccaaatgatt taacatttgg aaatgttaaa tcactgaaaa taaagatact tacaagggtt
                                                                    2520
tgttctaagc tgtttccttt aacaagaaaa acaaatttaa tcacatttga gcattggtaa
                                                                    2580
agaatgggac ttctaagcaa ctacagtaaa cataccacac aacatttcac ttatacatcc
                                                                    2640
tgattgcatg cctgaggtga aaggaatgca atctcaaaag cagttgacac tggataacat
                                                                    2700
gaacagattc actacagatt gcaataatct taatattgtg ttcaaatctg agctctgaat
                                                                    2760
ttcatagctc tgaattctcc aagcccaaac aaaagagcaa tcaccaaagc atcaaaaaga
                                                                    2820
atccacttgg gccaatgcat tacaatacag gacagtgtgt ttggataagg ttttgtttgt
                                                                    2880
ttttttttt tatagttcag tgctgggcac agttcccact caatcatttc agcatgccac
                                                                    2940
cacaatgagc ctgccatttg tgatgattca tggcattgaa aagaaagaga taagtataca
                                                                    3000
<210> 308 .
<211> 3001
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 8-45-389 : polymorphic base A or G
<220>
<221> misc_binding
<222> 1481..1500
<223> 8-45-389.mis1, potential
<220>
<221> misc binding
<222> 1502..1520
<223> 8-45-389.mis2, complement
<220>
<221> primer bind
<222> 1114..1133
<223> upstream amplification primer
<220>
<221> primer bind
<222> 1516..1533
<223> downstream amplification primer, complement
<221> misc binding
```

```
<222> 1489..1513
<223> 8-45-389 potential probe
<220>
<221> misc feature
<222> 11,126,133,286,315,1042,1228,2645..2646,2799,2964,2986..2987
<223> n=a, g, c or t
<400> 308
catatgcaaa natatttcca tccctgaatt tactagccac aaagctatgg gaagtggcag
                                                                      60
tgtcactgaa attacaagtg tagtagtgat ggaaaagtgt gtgtgtgttt agaatatata
                                                                     120
tcacantgag ttntgttctt catttcgaga tgcagttgtt tacctctcct tgtcctttga
                                                                     180
cacgtccttt ataatttcgt tctctcccgg ttccccaacg ttaaaaaaaa agtcacaggc
                                                                     240
aatattctcc ctgagggagt aaggctggac tgttagatga taacgnaggt accgttttgt
                                                                    300
tgttgttgtc gtcgntgttc gtttgttttt ggagacggag tctcgctctg tcgcccaggc
                                                                     360
tggagtgcaa tggcgcgaga acggaggtag ctttttaaaa acgaagacac actcggtctt
                                                                     420
cttccatcaa ttagcaataa ttgggagact gacccaggac tgttcacctt cccattcagg
                                                                     480
ctccctatgc ttccttttct catctcctat tgccactctg ggatgctgac acgatttaag.
                                                                    540
aatttggcag ataatatgac ccaaggagta gttggaattc cctcccccaa gtttttccaa
                                                                    600 ·
ccccagtttt gctgggttgg aggcggagtt tatttgttac aaccttggtc tgaccqqcaq
                                                                    660
ggacctggtg tgtgtaagtg agttctgagt ctctgttgac aaaaagagac tcgaatqcaa
                                                                    720
agacgctgag ctagagggag aggagggcgg ggacccagag gaaagaggca ctcctcgggg
                                                                    780
840
actcacagag ggataaataa agggaagtga ggaggaagag ggagacttaa agggaaggca
                                                                    900
ggtgggaga agggggacga aagaggcaga agagagagaa gagagggga gagagggga .
                                                                    960
gagagggaag gaaggaaata gcgagaggag ggtcacagag tgaccgtgga ggatggggct
                                                                   1020
teteggttet agatatttet gngattggag actgtttget agtggggaga etceagetee
                                                                   1080
ggcagccagt tcgggagcgg caaagtaaaa tggacagcga cagacagacg ttccagccac
                                                                   1140
ctctccgccg ccgggagatc ctggagctgc tttcaggcca actccagttt cccagctgga
                                                                   1200
gettetgaac gegetggaet gegagagnee agggagegee tgaaagetge teeteggaga
                                                                   1260
taccettege egaageagta agaactteet gettgggtet etgeatteee tteeteegaa
                                                                   1320
acttcccagg agaagggcgg aagaccccag gggaaggggc gaggcgaatc ttcgcgctgc
                                                                   1380
tttttcttcc ctccccttc ccgcgccggg cgcgcaggca tggatgtgct cagccctggt
                                                                   1440
cagggcaaca acaccacatc accaccggct ccctttgaga ccggcggcaa cactactggt
                                                                   1500
rtctccgacg tgaccgtcag ctaccaagtg atcacctctc tgctgctggg cacgctcatc
                                                                   1560
ttctgcgcgg tgctgggcaa tgcgtgcgtg gtggctgcca tcgccttgga gcgctccctg
                                                                   1620
cagaacgtgg ccaattatct tattggctct ttggcggtca ccgacctcat ggtgtcggtg
                                                                   1680
ttggtgctgc ccatggccgc gctgtatcag gtgctcaaca agtggacact gggccaggta
                                                                   1740
acctgcgacc tgttcatcgc cctcgacgtg ctgtgctgca cctcatccat cttgcacctg
                                                                   1800
tgcgccatcg cgctggacag gtactgggcc atcacggacc ccatcgacta cgtgaacaag
                                                                   1860
aggacgcccc ggcgccgcccgc tgcgctcatc tcgctcactt ggcttattgg cttcctcatc
                                                                   1920
tetatecege ceatgetggg etggegeace eeggaagace geteggacee egacgeatge
                                                                   1980
accattagea aggateatgg ctacactate tattecacet ttggagettt ctacateceg
                                                                   2040
ctgctgctca tgctggttct ctatgggcgc atattccgag ctgcgcgctt ccgcatccgc
                                                                   2100
aagacggtca aaaaggtgga gaagaccgga gcggacaccc gccatggagc atctcccgcc
                                                                   2160
ccgcagccca agaagagtgt gaatggagag tcggggagca ggaactggag gctgggcgtg
                                                                   2220
gagagcaagg ctgggggtgc tctgtgcgcc aatggcgcgg tgaggcaagg tgacgatggc
                                                                   2280
gccgccctgg aggtgatcga ggtgcaccga gtgggcaact ccaaagagca cttgcctctg
                                                                   2340
cccagcgagg ctggtcctac cccttgtgcc cccgcctctt tcgagaggaa aaatgagcgc
                                                                   2400
aacgccgagg cgaagcgcaa gatggccctg gcccgagaga ggaagacagt gaagacgctg
                                                                   2460
ggcatcatca tgggcacctt catcctctgc tggctgccct tcttcatcgt ggctcttgtt
                                                                   2520
ctgcccttct gcgagagcag ctgccacatg cccaccctgt tgggcgccat aatcaattgg
                                                                   2580
ctgggctact ccaactctct gcttaacccc gtcatttacg catacttcaa caaggacttt
                                                                   2640
caaanngcgt ttaagaagat cattaagtgt aagttctgcc gccagtgatg acggaggagt
                                                                   2700
agccggccag tcgaggctac aggatccgtc ccattcacta tgcttccccc aaccctaggg
                                                                   2760
aatcaacact taagataatt cgccacttct cctctttcnt ctctgctccg ctcacggctt
                                                                   2820
gcagacctgg tecetecee aetteetget ccaeggcagg geeetttgtg caaaggagae
                                                                   2880
ccagcggagg agcgttgaga gcccaggaaa ttcagagagt ttgtgagaag cgacattggc
                                                                   2940
tcagactttg cctgtatcat cagnttttga tcccagcaat tgcctnnttc tctcttctat
                                                                   3000
                                                                   3001
```

<210> 309 <211> 498

```
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 270
<223> 18-994-270 : polymorphic base C or T
<220>
<221> misc binding
<222> 250..269
<223> 18-994-270.mis1, potential
<220>
<221> misc binding
<222> 271..289
<223> 18-994-270.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 481..498
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 258..282
<223> 18-994-270 potential probe
<220>
<221> misc feature
<222> 477
<223> n=a, g, c or t
<400> 309
actatggaaa accacatact tctctgcaaa tgtaattctt ggcaaagatt tgtctccatt
                                                                       60
ctggacattt gaaatttett teecagttta gaatgatagt gteecagett acacetaaaa
                                                                      120
tattgcttta atattctttg tttgagtgtt tagtgaaaag ggagtgcaaa ggaaattcac
                                                                      180
tcaactctcc actggaaatg aataccccat catttttatc atgagttccc gtagcaataa
                                                                      240
agcattgtaa atgtgtagca attactgaay ctgtggtata acaattttct ccacacaaat
                                                                      300
ataattttat atttctttaa agaagatttt aaaaatatct aacaaagaga aagcctgcca · 360
agataatctt aagcaaatcc ttgtttgatg tgcaacagtg gatgggaaag taggaccagg
                                                                      420
ggtcctgctg ggatgttctg tccaacattg aactcctcaa agaacccttg tcaaagncaa
                                                                      480
gttcctctgt ccttagaa
                                                                      498
<210> 310
<211> 467
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 165
<223> 18-912-165 : polymorphic base C or T
<220>
<221> misc_binding
<222> 146..164
<223> 18-912-165.mis1
```

```
<220>
<221> misc_binding
<222> 166..184
<223> 18-912-165.mis2, complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 447..467
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 153..177
<223> 18-912-165 potential probe
<221> misc feature
<222> 450
<223> n=a, g, c or t
<400> 310
catttttctc accccgacta tgctcttact ctttcaaaag tgaacaataa aaatattgac
                                                                       60
agaaggacag cattgtaaaa gtacatttat taatgcttgt cactataaat ctgataattt
                                                                       120
ctcacaataa aaatactctt tttgggtttt tactgaactt taaayatttt attaggactt
                                                                      180
acaaatttca aatacttatt ttatgctttt gaacaaatgc atgaacttcc agggaaagag
                                                                      240
tagggtegtt tteaatactg atcattgaac ttteattgge atgttetttt atteeettea
                                                                      300
ctaacttctg attatgtaaa gaagtctcag aatgcagcaa tcacatcttg ttttctactt
                                                                      360
gtottttact cagaatttcc cagagaactg gaagcttacc aaatacttta aagaatgggg
                                                                       420
agaatgtaac atccacatgc aaatctcttn cctaatatat cctccca
                                                                       467
<210> 311
<211> 463
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 124
<223> 18-991-124 : polymorphic base C or T
<220>
<221> misc binding
<222> 105..123
<223> 18-991-124.mis1
<220>
<221> misc_binding
<222> 125..144
<223> 18-991-124.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
```

```
<222> 444..463
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 112..136
<223> 18-991-124 potential probe
<400> 311
cattecteat atacteatee aaatggeaga ttgttetaat getgtgatat gtatttatae
                                                                       60
cttttcagca ggcccctgcc atctggattt ggaattcttt tagcagaaga caaagccttt
                                                                      120
tcaygtttac cgatgaagct gcaaaaggaa agacccacag gaaaaacaat ccctgacttt
                                                                      180
ccctttctgt cattcgccca aatctccctg gctcaaaacc tcatcagcat cttctactcc
                                                                      240
ctctctcttc acatccagac accaagtcct gccagttcct tctttgatgc atttttcatc
                                                                      300
atcttacttg ttttccattc cttctgccag cttcccatat tcaggccttt attgctctac
                                                                      360
acctgcctca ttgaaatcac ctccaaagag aacacatctg ctttcgttat tagtggtctc
                                                                      420
cactggctaa aaccacagtt tcagcttttt aacctggcat aag
                                                                      463
<210> 312
<211> 551
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 219
<223> 18-920-219 : polymorphic base C or T
<220>
<221> misc binding
<222> 199..218
<223> 18-920-219.mis1, potential
<220>
<221> misc_binding
<222> 220..238
<223> 18-920-219.mis2, complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 534..551
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 207..231
<223> 18-920-219 potential probe
<220>
<221> misc_feature
<222> 536
<223> n=a, g, c or t
<400> 312
tacccctaaa cacaactaca atctctggac attatatata aaaaatgatt taaaaaaattt
                                                                        60
aaacagtgga tagagacaga ctggctaggg acctcaaaat atgaagagca acttatggtc
                                                                       120
cttgggtttt tcttttctta cattaatatc ttagacatag agtttatgaa gccagcaacc
                                                                       180
tggaaaggcc aatgggcata gataaaaact gccccacayc cccaagtaaa agtctgctct
                                                                       240
```

```
ctctagggaa aaattcagga aagaagcatc caagaagaga aaaaaatttt agataataac
tactcaattt agccaaacat tggaaagaaa aaacaaagta ttctgtcccc tgccccacac
                                                                      360
cagcaaagac catatgagta acctagactt tcacccacag cagcctgaaa taatctcctc
                                                                      420
caagcetett agaggtggta ttaaaaaaaag tecaagtagg aaaaaacatg actttateet
                                                                      480
tectaggtgg taacaagace ceeteetgat geaaggteag tggtgacaat ttaggnagta
                                                                      540
tgggcttcta t
                                                                      551
<210> 313
<211> 457
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 312
<223> 18-911-312 : polymorphic base A or G
<220>
<221> misc_binding
<222> 293..311
<223> 18-911-312.mis1
<220>
<221> misc_binding
<222> 313..331
<223> 18-911-312.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 437..457
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 300..324
<223> 18-911-312 potential probe
<400> 313
ccacatttcc caaattatgt aaggaaaatt tcctataaqt tgtttctcct aqtcatttcc
                                                                       60
aatcaaaatt catagttctg aacaaaacac aattgcccta ctgctacagt atttggggat
                                                                      120
tgggaagaat taaatttaga ataatatttt taacctaaca aaataattga ttctaatttc
                                                                      180
aattacatga aaaaaagta aaaacttttt tttcagtagg agcttttaga aacaactttt
                                                                      240
ataatctcat aagcaaatat tcaactcttt actgtataga ttctttcttc agtaataaaa
                                                                      300
acaattcagc crtagtttgg ggataatgga caaacatacc aattactgag aaactccaac
                                                                      360
catcagcctt cagtaatgat agggcttcaa ggttcacagc aaaacttcag cttaaatctt
                                                                      420
tttagtttgt gtccctggtc aaggaatwac attgaaa
                                                                      457
<210> 314
<211> 477
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 368
<223> 99-65963-368 : polymorphic base A or G
<220>
```

```
<221> misc binding
<222> 349..367
<223> 99-65963-368.misl
<220>
<221> misc_binding
<222> 369..388
<223> 99-65963-368.mis2, potential complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 459..477
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 356..380
<223> 99-65963-368 potential probe
<220>
<221> misc_feature
<222> 460
<223> n=a, g, c or t
<400> 314
gcttctgtat tctaaactgg aagtagacat catatcccag ctaaacaggg aaagttttag
                                                                       60
aactttggga atagtttgtc tatgcatgta taatqctgag aagggtctgc aqtqaaqaaq
                                                                      120
ataagataga cttctccagc acaactatta ctcatttgat aattcagttt catttttgct
                                                                      180
cacataatct aagtaaagcc atatcagaaa ccaagttttt ctgtatgtta cactaaattt
                                                                      240
taagaacaaa gtctatattt aaaataatcc aaaccccaaa tttgctcatc caaattatgt
                                                                      300
cttggccagc aagttttaca ttagaagttt tgagacttcc atttatttgt gtcttttaca
                                                                      360
gaattgtrtg acaatgactt ttggacattt gttctttcgg ctttggaata tttacacaag
                                                                      420
aatggagaag gaacatccaa ctggagcata attgtcaagn caatagagaa tttagag
                                                                      477
<210> 315
<211> 502
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 225
<223> 99-65966-225 : polymorphic base C or T
<220>
<221> misc binding
<222> 206..224
<223> 99-65966-225.mis1
<220>
<221> misc binding
<222> 226..245
<223> 99-65966-225.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
```

```
<220>
<221> primer bind
<222> 486..502
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 213..237
<223> 99-65966-225 potential probe
<220>
<221> misc feature
<222> 485,490
<223> n=a, g, c or t
<400> 315
tacctccata tacaatctct agcacctttt tctgtactta acactactct gtgaaccttc
                                                                       60
tgctttagct aaaatgttct aattggtatt tctaaccaga tctgctactt caaatttaaq
                                                                      120
tggcacatta tgtgtaaaaa ccaggtggca aaattataaa cattatataa gtttgaattt
                                                                      180
tttgccttgt acctaccct ggccaccctg ttgcaactct ttaayggtta atgattctct
                                                                      240
ceteattetg atgeteteet cettactetg etcaaaactt tetteetete atetageeat
                                                                      300
tectttgget ttagacccat etttteetet etetteeaag accetttegg gttaatacaa
                                                                      360
cacatgggag gttttgagtc tgcatctttc tcaaggatca acatttgcat aatcaaccca
                                                                      420
ggcaattaat caacatccag caatcagata gaaatttcat actaggccct cacttgccag
                                                                      480
gaagnaaggn atcagggtgt tt
                                                                      502
<210> 316
<211> 452
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 75
<223> 99-65968-75 : polymorphic base C or T
<220>
<221> misc_binding
<222> 56..74
<223> 99-65968-75.mis1
<220>
<221> misc binding
<222> 76..95
<223> 99-65968-75.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 432..452
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 63..87
<223> 99-65968-75 potential probe
<220>
```

```
<221> misc_feature
<222> 439
<223> n=a, g, c or t
<400> 316
cotgacettt gtttactgga ggtttaccca tgctcacttt gccctgcage catcattctq
acaccagaaa gcagyagaat gaacaacat aacaacagaa acaagaggtg tttttgacta
                                                                   120
cttaagtagg gaaataatag agcataataa ttaattttaa catagtaata cgtcatatat
                                                                   180
acaaaaccct actatggaag aagacccagc cagaaaataa aatgcccctc tacttttaat
                                                                   240
tgatgaaccc caaaacaatc aactgtttct tttgaaacag gggaggttat tttcctccag
                                                                   300
ctgaatgttg cagggtagac agaggaggga tctcagcacc acccactgtt ttaaaaaggc
                                                                   360
agattggacc cctgttgctt tccccagaga ctgtagtttt cctccatata tcttcaattc
                                                                   420
tgtccatgtt agaaagaanc ctatatgtta cc
                                                                   452
<210> 317
<211> 2512
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 1501
<223> 99-5069-331 : polymorphic base C or T
<220>
<221> misc binding
<222> 1482..1500
<223> 99-5069-331.mis1
<220>
<221> misc binding
<222> 1502..1521
<223> 99-5069-331.mis2, potential complement
<220>
<221> primer bind
<222> 1171..1189
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 1702..1719
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 1489..1513
<223> 99-5069-331 potential probe
<220>
<221> misc_feature
<222> 572,758,2175..2176,2329,2494
<223> n=a, g, c or t
<400> 317
cccattcagg ctccctatgc ttccttttct catctcctat tgccactctg ggatgctgac
                                                                    60
acgatttaag aatttggcag ataatatgac ccaaggaqta gttggaattc cctccccaa
                                                                   120
gtttttccaa ccccagtttt gctgggttgg aggcggagtt tatttgttac aaccttggtc
                                                                   180
tgaccggcag ggacctggtg tgtgtaagtg agttctgagt ctctgttgac aaaaagagac
                                                                   240
tegaatgeaa agaegetgag etagagggag aggagggegg ggaeecagag gaaagaggea
                                                                   300
360
tttcgaagcg actcacagag ggataaataa agggaagtga ggaggaagag ggagacttaa
                                                                   420
agggaaggca ggtggggaga agggggacga aagaggcaga agagagagaa gagaggagga
                                                                   480
```

```
540
gagagggga gagagggaag gaaggaaata gcgagaggag ggtcacagag tgaccgtgga
                                                                     600
ggatggggct teteggttet agatatttet gngattggag actgtttget agtggggaga
ctccagctcc ggcagccagt tcgggagcgg caaagtaaaa tggacagcga cagacagacg
                                                                     660
ttccagccac ctctccgccg ccgggagatc ctggagctgc tttcaggcca actccagttt
                                                                     720
cccagetgga gettetgaac gegetggaet gegagagnee aqqqaqeqee tqaaaqetqe
                                                                     780
tectoggaga taccettege egaageagta agaactteet gettgggtet etgeatteee
                                                                     840
ttcctccgaa acttcccagg agaagggcgq aagaccccag qqqaaqqqqc qaqqcqaatc
                                                                     900
ttcgcgctgc ttttcttcc ctccccttc ccgcgccggg cgcgcaggca tggatgtgct
                                                                     960
cagecetggt cagggcaaca acaccacate accaeegget ceetttgaga eeggeggcaa
                                                                    1020
cactactggt atctccgacg tgaccgtcag ctaccaagtg atcacctctc tgctgctgqg
                                                                    1080
cacgeteate thetgegegg tgetgggeaa tgegtgegtg gtggetgeea tegeettgga
                                                                    1140
gegetecetg cagaacgtgg ccaattatet tattggetet ttggeggtea ccgaceteat
                                                                    1200
ggtgtcggtg ttggtgctgc ccatggccgc gctgtatcag gtgctcaaca agtggacact
                                                                    1260
gggccaggta acctgcgacc tgttcatcgc cctcgacgtg ctgtgctgca cctcatccat
                                                                    1320
cttgcacctg tgcgccatcg cgctggacag gtactgggcc atcacggacc ccatcgacta
                                                                    1380
cgtgaacaag aggacgcccc ggcgcgccgc tgcgctcatc tcgctcactt ggcttattgg
                                                                    1440
cttcctcatc tctatcccgc ccatgctggg ctggcgcacc ccggaagacc gctcggaccc
                                                                    1500
ygacgcatgc accattagca aggatcatgg ctacactatc tattccacct ttggagcttt
                                                                    1560
ctacatcccg ctgctgctca tgctggttct ctatgggcgc atattccgag ctgcgcgctt
                                                                    1620
ccqcatccgc aagacggtca aaaaggtgga gaagaccgga gcggacaccc gccatggagc
                                                                    1680
atttcccgcc ccgcagccca agaagagtgt gaatggagag tcggggagca ggaactggag
                                                                    1740
getgggegtg gagageaagg etgggggtge tetgtgegee aatggegegg tgaggeaagg
                                                                    1800
tgacgatggc gccgccctgg aggtgatcga ggtgcaccga gtgggcaact ccaaagagca
                                                                    1860
cttgcctctg cccagcgagg ctggtcctac cccttgtgcc cccgcctctt tcgagaggaa
                                                                    1920
aaatgagege aacgeegagg egaagegeaa gatggeeetg geeegagaga ggaagacagt
                                                                    1980
gaagacgctg ggcatcatca tgggcacctt catcctctgc tggctgccct tcttcatcgt
                                                                    2040
ggetettgtt etgecettet gegagageag etgecacatg eccaecetgt tgggegecat
                                                                    ,2100
aatcaattgg ctgggctact ccaactctct gcttaacccc gtcatttacg catacttcaa
                                                                    2160
caaggacttt caaanngcgt ttaagaagat cattaagtgt aagttctqcc qccaqtqatq
                                                                    2220
acggaggagt agccggccag tcgaggctac aggatccgtc ccattcacta tgcttcccc
                                                                    2280
aaccctaggg aatcaacact taagataatt cgccacttct cctctttcnt ctctgctccg
                                                                    2340
ctcacggctt gcagacctgg tcccctccc acttcctgct ccacggcagg gccctttgtg
                                                                    2400
                                                                    2460
caaaggagac ccagcggagg agcgttgaga gcccaggaaa ttcagagagt ttgtgagaag
cgacattggc tcagactttg cctgtatcat cagnttttga tcccagcaat tg
                                                                    2512
<210> 318
<211> 493
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 175
<223> 99-5070-176 : polymorphic base G or T
<220>
<221> misc_binding
<222> 156..174
<223> 99-5070-176.mis1
<220>
<221> misc_binding
<222> 176..194
<223> 99-5070-176.mis2, complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 476..493
```

```
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 163..187
<223> 99-5070-176 potential probe
<400> 318
cttattggct tectcatete twtecegeee atgetgggtg gegeaceeeg gaagaceget
                                                                       60
eggaceega egeatgeace attageaagg atcatggeta cactatetat tecacetttg
                                                                      120
gagettteta catecegetg etgeteatge tggtteteta tgggegeata tteckagtge
                                                                      180
gcgcttccgc atccgcaaga cggtcaaaaa ggtggagaag accggagcgg acacccgcca
                                                                      240
tggagcatct cccgccccgc agcccaagaa gagtgtgaat ggagagtcgg ggagcaggaa
                                                                      300
ctggaggctg ggcgtggaga gcaaggctgg gggtgctctg tcgccaatgg cgggtgaggc
                                                                      360
aaggtgacga tggcgccgcc ctggaggtga tcgaggtgca ccgagtgggc aactccaaag
                                                                      420
agcacttgcc totgcccago gaggotggto otacccottg tgcccccgcc totttcgaga
                                                                      480
ggaaaaatga gcg
                                                                      493
<210> 319
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 348
<223> 18-511-348 : polymorphic base C or T
<220>
<221> misc_binding
<222> 328..347
<223> 18-511-348.mis1, potential
<220>
<221> misc binding
<222> 349..367
<223> 18-511-348.mis2, complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 430..450
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 336..360
<223> 18-511-348 potential probe
<400> 319
agtattagat gtgacattgg ttacatgaag gcatttgatg gtgctgcatg tgagtggaac
                                                                       60
agagaaataa aaatgcatca attctgaaat caaatattgt gtcatgctta gttataggca
                                                                      120
aatagaaaac ccattactct gagcaaatgt attaaatgtt aatagaaaat qttaaaatat
                                                                      180
atataaatac agaattttcc tgattgtata ccacaatggt atggcttatg ttttaaagga
                                                                      240
ctatgattct ttttctaata ttcaccatct ataagcttaa gaatgtcaac aatgtttacc
                                                                      300
tacatgtgaa tggaaattga gaaaagaagg ttactacttg tcaaattycc tgctagacca
                                                                      360
gttggtaaat ttctatgcaa ctaaatgata tatttaatgt taatttggat gatttcattt
                                                                      420
tagcataatc taaacagaaa ttctaacgtc
                                                                      450
```

```
<210> 320
<211> 475
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 352
<223> 18-523-352 : polymorphic base A or G
<220>
<221> misc binding
<222> 332..351
<223> 18-523-352.mis1, potential
<220>
<221> misc binding
<222> 353..371
<223> 18-523-352.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 455..475
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 340..364
<223> 18-523-352 potential probe
<400> 320
ttcagccctt tctcgtcacc gagcccgttg aaatagtact acacacaaaa tacaaaccag
cagggtgagg agtgggagag aaggccaact gtgaaggcta ttcacaatat taggatgcac
                                                                      120
aaaggagttg atgagatcag ttacatgatg gtactcagtg tgaaatgtag tatcttttca
                                                                      180
atactgtttt gctgtgattt ccttaggaag attaatagcc ttgtgagacc ttgttaatta
                                                                      240
tttttgctat gcttaaagta agtagataat tttctcccac aagtgtctcc taatagatag
                                                                      300
taaattccct agatcatcct ccacacgaga cattggggag gtggtaatgt trggctctgt
                                                                      360
gatgtaaaat caaccettet gtetecacca ttagttette ataccactet tgggeteaaa
                                                                      420
acaactaaac aagaaatctt ctagtcacga gtttgtggkt tctgttttag agtgc
                                                                      475
<210> 321
<211> 509
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 480
<223> 18-545-478 : polymorphic base A or G
<220>
<221> misc_binding
<222> 461..479
<223> 18-545-478.mis1
<220>
<221> misc binding
<222> 481..500
```

```
<223> 18-545-478.mis2, potential complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 489..509
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 468..492
<223> 18-545-478 potential probe
<400> 321
cattcatatt tcctgaagaa ccactggaaa cagttattta atagtgtggc taaatgtata
                                                                        60
ttcagagaaa cacttcctgt atatttgcac atttatgtat atttatgtcc tattcctgga
                                                                       120
atagatttac aagttttgtt tttcagaaaa tttcagaatt tctggaatgt gcagaagtat
                                                                       180
taacaggtaa cttagatttg gaatacactg tattagagat aactggaaaa atgagaggct
                                                                       240
tcctacactg gaaggtcaaa gatctttcct ggaggggagt taggaatttg cctttactta
                                                                       300
ccattattct gttaaaagag attatgaata atgcagtttc acaaaaggaa tgggacaatg
                                                                       360
gtgtaagtaa acctccccat cacgttttca gtggctttcc tttgagtctt gaacgttttc
                                                                       420
cactgggtgt tatagtcgag agtcccccac ctcctgagga agcaagacct ggcaaacccr
                                                                       480
agacgatgcg ctcttacttg tgttgtttg
                                                                       509
<210> 322
<211> 477
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 194
<223> 18-522-194 : polymorphic base G or C
<220>
<221> misc binding
<222> 175..193
<223> 18-522-194.mis1
<220>
<221> misc binding
<222> 195..214
<223> 18-522-194.mis2, potential complement
<220>
<221> primer bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 457..477
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 182..206
<223> 18-522-194 potential probe
```

```
<400> 322
gtagcaaaat aggattttca gctgggttag aaaataccaa caacttggat taaaaaaaaa
                                                                        60
atgctttttt gatctggttg gttttgatag actgtcaaaa atattaatct taaaatttat
                                                                       120
cgtaaatagt agtcatgcaa acctttcatt atatattctc tcaaattgat ttttttcaaa
                                                                       180
gaacaagttt tcasaaatac actggattca acaatttttg aattacagtc agatttgaat
                                                                       240
ggtcttgtgc agatccactt aacttgtgag tagtaatgac cacttaacta gtaaataata
                                                                       300
ctatctcata agcagtaaat aacttttatg aaaaatgaaa cgatataatt gctaaattaa
                                                                       360
gtttctcact ttatactttt gctgtatcta aagataattg gtattcctac aggttaacat
                                                                       420
attgttgatt catatatatg gctaccatat taagtgctaa tacttcattg ttgcatg
                                                                       477
<210> 323
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 284
<223> 18-524-284 : polymorphic base A or G
<220>
<221> misc binding
<222> 265..283
<223> 18-524-284.mis1
<220>
<221> misc_binding
<222> 285..304
<223> 18-524-284.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 430..450
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 272..296
<223> 18-524-284 potential probe
<400> 323
actacttcgg tggtatttct tagaccaaca aatgagaatt gataaagcct ccaggatctt
                                                                       60.
gtgtcgccca cttcaacaga acttcgcttc cattgataaa caatttcttc acgtggatag
                                                                      120.
ccatctgccg tgagatagga aagctcacat taaaaatgat tataaattag catatgtagc
                                                                      180
aaccatcttc tatgaacatg acactgaggt aaagactgag aaagatagtt acaagctaaa
                                                                      240
tgaggatctt ggaccaaagg gcattgcaat gagaacataa attrcaatga ctttgcatcc
                                                                      300
taatgggaag ttagattcaa aaatccaaag gtcaaattta ctcttgaaaa taatttaaat
                                                                      360
gacatagaag gtatactaca tgtgatttta tatatgccat atgcatactt tacatcatct
                                                                      420
ggaatagtgc ataccaagtg accagtctat
                                                                      450
<210> 324
<211> 505
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 52
```

```
<223> 18-626-52 : polymorphic base C or T
<220>
<221> misc_binding
<222> 33..51
<223> 18-626-52.mis1
<220>
<221> misc binding
<222> 53..72
<223> 18-626-52.mis2, potential complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 485..505
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 40..64
<223> 18-626-52 potential probe
<400> 324
gaaacagaga ggaagteetg geacetgtgg aaagttggtt tggttgagea gygagggata
                                                                       60
aattgagggg gtagaagtet attetgtagg aagtggaggg ceeetagggg tttatgagea
                                                                      120
ggacagtcac ttgttggtag ctgcatcctg cagctggcag caggggagag gtgaggagca
                                                                      180
tctggctcgg gaaggcagag gtgggaaggg agagaggcat aaggagaatg tgaaagggag
                                                                      240
tgagacaaga tttggcagct gaatctgtct gggcttcaaa gcatcacatt tattcttcca
                                                                      300
gtcagcactt ccactgggtg accectecca ggcccateca agatgacect ttctqaaaag
                                                                      360
eccecaaget gtggttgete etgaaatetg ettttgggag aatecetett gettettgee
                                                                      420
catggctgct gctggatttg gctgaaggtc tatttccttg ggtatcctgg actcattagt
                                                                      480
gtgtgcgaca agttgaagtg ctctc
                                                                      505
<210> 325
<211> 486
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 189
<223> 18-629-189 : polymorphic base C or T
<220>
<221> misc_binding
<222> 169..188
<223> 18-629-189.misl, potential
<220>
<221> misc_binding
<222> 190..208
<223> 18-629-189.mis2, complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
```

```
<220>
 <221> primer bind
 <222> 466..486
 <223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 177..201
<223> 18-629-189 potential probe
<220>
<221> misc_feature
<222> 470
<223> n=a, g, c or t
<400> 325
cgtcatcact tattgtgtgc actacaggtc atcaataacc tgtaaataat gataaaaatt
                                                                        60
tagtgtttca caagtgtatt tgggtttcac ataggctgac tctagargct gtgggcgtac
                                                                      120
atcaccctgc tgtttggctt ccacaggttc tgactaccct aaaagtaaga tgattgcctt
                                                                      180
tttcccttyg aaccaaatga aaagatgaga agagactata gcttgcatgt agcgctaagg
                                                                      240
agaccagetg geageaggtt caegtggaaa tactetgaat caagcaagtt tgeetagett 300
agctcggtat ccagtctttg gaatggaagt ggaaattgtt ctccgcattg ggcacgccat
                                                                      360
tgtcacatcc acatccaaad atgccttctg agcatgacag ccgcgttatc ctgaaagaca
                                                                      420
atacatcaag ccaagggcaa ataatatcca atgtcaaatg ctctcggggn tttgagaggt
                                                                      480
ggatat
                                                                       486
<210> 326
<211> 457
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 71
<223> 18-1131-71 : polymorphic base C or T
<220>
<221> misc_binding
<222> 51..70
<223> 18-1131-71.mis1, potential
<220>
<221> misc binding
<222> 72..90
<223> 18-1131-71.mis2, complement
<220>
<221> primer bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer bind
<222> 437..457
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 59..83
<223> 18-1131-71 potential probe
cgaagaccaa aaaagaggaa gcattcagcc agctcaaaga aattattgca tcatttcctt
```

```
gtgtgcggtt yaggttaaaa ataacctcta atccttgtca agagtaaact gtcttgtcaa
                                                                    120
agagaattag gaaattacct cagggcgggg gttacagggt ggggtagaga aggagcagtt
                                                                    180
catcaggaag aaattacttg ctgcattttg agatgaacat ttctgaatga ctgaagaaaa
                                                                    240
tgtggggcta agggaatagg gactccgatg ggagacagga ggaacgtgca tggggcatgt
                                                                    300
gtgtgtgttg tgggggtagg tgaagaggga ggcactggag tgtccctgcc atggaggtgg
                                                                    360
420
agectgettt ggeettgggt geteacagag atagagt
                                                                    457
<210> 327
<211> 517
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 126
<223> 18-534-126 : polymorphic base C or T
<220>
<221> misc_binding
<222> 106..125
<223> 18-534-126.mis1, potential
<220>
<221> misc_binding
<222> 127..145
<223> 18-534-126.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 497..517
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 114..138
<223> 18-534-126 potential probe
<220>
<221> misc_feature
<222> 443
<223> n=a, g, c or t
<400> 327
gtagttagtt gcaccagagt ataaatactt ggtaaaacac acaagaggaa gtagaattta
                                                                    60
cacacaagtg btaactttca ccagcaaatt cacgtgggca cttggacata aaaaaaaata
                                                                   120
aaaaaycctt aagataatta tatttataat atggatacag ttacagtacc atgataaagg
                                                                   180
agtataaaaa ggtattttcc caatgaatca ttagctcaat aacatactag acaacagaag
                                                                   240
tagagtttga attttattta agatctgccc agcccctctc cctttaaaaa atatttaatt
                                                                   300
totttttgtg caagtaacat ottotgtgga ttttgtaatt ootaacactg tgcaaaaatg
                                                                   360
gcattttgaa ccactccttt tttttgtttt tgtttttatc cacatgtgca gtaatctgaa
                                                                   420
etgtttetet etetegetet ebntttaatg teetgtette aattgacaga gteacatgte
                                                                   480
acagagagag gctctgcgcc tggtccttcc aactaat
                                                                   517
<210> 328
<211> 514
<212> DNA
<213> Homo Sapiens
```

```
<220>
<221> allele
<222> 59
<223> 18-596-59 : polymorphic base A or G
<220>
<221> misc_binding
<222> 40..58
<223> 18-596-59.mis1
<220>
<221> misc binding
<222> 60..79
<223> 18-596-59.mis2, potential complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 495..514
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 47..71
<223> 18-596-59 potential probe
<400> 328
tcaactccag taggtggcag gtatatagat atctgtttct aattatggtt acttttctrt
                                                                       60
tctcttcact tttctgttta acaaaatgta aaatgttaag gaaaaggaaa acctagttga
                                                                      120
gttcaacaga accaaatgat ggatgggtgg aaccatgaat gaagtagctg ttattggaag
                                                                      180
gaaacaatca taaactccaa tgttcaaaaa taaaatctga tgttcctttg tttaattctt
                                                                      240
ggatgaaaat gaaccatcca tcgaacagaa acctcctgat gctgctgttg gtaacgtctg
                                                                      300
gttgtcacca gccacggacc ttgttttctt ttcatcactg tcatgtttct tctccctctt
                                                                      360
tggggatctg tcttccatgt gttttctata aaatcagcat aacagttcct agtgaaaaaa
                                                                      420
tattttactg cacatgtgta agatttggga gtatagacta aaggcaggca aattacaagt
                                                                      480
aagtttctgc catgctgtcg tttcaccttg attc
                                                                      514
<210> 329
<211> 470
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 27
<223> 18-597-27 : polymorphic base G or C
<220>
<221> misc_binding
<222> 7..26
<223> 18-597-27.misl, potential
<220>
<221> misc_binding
<222> 28..46
<223> 18-597-27.mis2, complement
```

<220>

```
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 450..470
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 15..39
<223> 18-597-27 potential probe
<220>
<221> misc_feature
<222> 428,455
<223> n=a, g, c or t
<400> 329
atgtgggage ttgcgttctg tcaagasctg acaccaaaca gttattgggc actccaagat
                                                                       60
ttaatteete eetagtetee caeteacage aatetacetg atteaactte etetgtttte
                                                                      120
caagetettg tggctaggae agattetett ageeteteag etactgetee teattittga
                                                                      180
gatetgtett ttgeggetge cagetgatgt etttattetg tgetggteat ttttecagee
                                                                      240
ctgcaatttg aaattactca tctgatttca tgggtggctg gcaaagggat ctgtcaaatc
                                                                      300
tgcatacatt taggggaaac tgaaaatgaa actacatgct ggaatttttt aaagtataga
                                                                      360
cttttctata gagaaaagaa aaatgtagaa atacagggca ggggaggtag atatctgtag
                                                                      420
ctactggntg acccccgcc ccccaaaatc agttnctagt tctccatgct
                                                                      470
<210> 330
<211> 476
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 203
<223> 18-730-203 : polymorphic base A or C
<220>
<221> misc_binding
<222> 184..202
<223> 18-730-203.mis1
<220>
<221> misc_binding
<222> 204..223
<223> 18-730-203.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 456..476
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 191..215
<223> 18-730-203 potential probe
```

```
<220>
<221> misc feature
 <222> 458
<223> n=a, g, c or t
<400> 330
tgaagctgga ctcttgactg gaggcagagt gatgatcaga cgggagcacc cctgtgccac
                                                                        60
tcactcctga actccctgtg ctcttgatca gcctacaccc tggggggagca ttaagataaa
                                                                       120
atgcacgcta atattttcct gctttggaaa ggaaactgca atagcaaatg ctgatgtgtg
                                                                       180
aatcgtactt tacagtttac aamgatgtga gcatccagga tcacgactga ctggcaaaac
                                                                       240
tgectttagt atetteetga atetgaggaa getgagette gaggtaatta agaeteagae
                                                                       300
gctcaactgt gcctgctggg ccgaggtacc tcctgagtta gagctctccc aatttagttt .
                                                                       360
atgtcttagg gatgtaaaat gatgctgctc tagattctta ccaggtatat atatttaatt
                                                                       420
tattactatt gtatctcatt gattgttatt tggtggtnaa ttttaaagtg gcaggc
                                                                       476
<210> 331
<211> 453
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 89
<223> 18-734-89 : polymorphic base A or G
<220>
<221> misc binding
<222> 70..88
<223> 18-734-89.mis1
<220>
<221> misc_binding
<222> 90..108
<223> 18-734-89.mis2, complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 433..453
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 77..101
<223> 18-734-89 potential probe
<220>
<221> misc_feature
<222> 435
<223> n=a, g, c or t
<400> 331
tcagccgatg aggagctaac aactcaatgc caaatctgct caaggatgaa agggaagcag
                                                                       60
ggagaggaag agaaggagag atgcagggrg gaggatatag gggtcctctg ggacttgtag
                                                                      120
aggtetgagg gtggagagge eteetgeaaa ggeetggagg gaggeagaet gaggaeatga
                                                                      180
gacgcgatgg gattcgtgaa gtgtggaggc tgtggcccac tcatcacttt cctcaatcgg
                                                                      240
actggggacg gcacagtcac tgatggctcc tcctggactc gaggccaagt ggcatactaa
                                                                      300
cccgagacca ggggcacgtg cctgagcact gccagcaagg agagctgtgg ggaggccggc
                                                                      360
```

. .

```
tggggccgag gccagcctga cctgaggcct cgctgggtgc aagtcctgtg agccgctttc
                                                                       420
tccatggtta ggggncagag gttggatgat aat
                                                                       453
<210> 332
<211> 455
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 321
<223> 18-895-321 : polymorphic base A or C
<220>
<221> misc binding
<222> 302..320
<223> 18-895-321.mis1
<220>
<221> misc_binding
<222> 322..341
<223> 18-895-321.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 435..455
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 309..333
<223> 18-895-321 potential probe
<220>
<221> misc_feature
<222> 428
<223> n=a, g, c or t
<400> 332
aggaagggaa ataaataggg gcttgatgta ttttatgatg tcttttgtgg ctgttgaaaa
                                                                       60
acatgccctg ctggccagaa tgtgtgaacc tggcttcccg ctttgctaga aaccccactt
                                                                      120
cttcaaaagc aattgggcgc gcagggtcaa gagtgaaaag tgctcaaaga acctgatgta
                                                                      180
aaattcctct tacaaaaata tcttctaata taaataatct caaataccta agaaaacttg
                                                                      240
taagccaaat acgttcacta caggaaaatt tataacagca aaatcattca ctacgtaaac
                                                                      300
atccccaatt agggaagaag mtaacacaag gegetettge cetgteaaat atgcagecat
                                                                      360
ttaaaataat acattttaaa gaaattgtga tcatgtattg ggtaggaaaa aagcacagta
                                                                      420
ccaaactngc acagcctgat cccaactgta taaaa
                                                                      455
<210> 333
<211> 561
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 69
<223> 18-896-69 : polymorphic base A or G
```

```
<220>
 <221> misc binding
 <222> 50..68
 <223> 18-896-69.misl
 <220>
 <221> misc_binding
 <222> 70..89
 <223> 18-896-69.mis2, potential complement
 <220>
 <221> primer_bind
 <222> 1..19
 <223> upstream amplification primer
 <220>
 <221> primer_bind
 <222> 544..561
 <223> downstream amplification primer, complement
 <220>
 <221> misc binding
 <222> 57..81
 <223> 18-896-69 potential probe
 <400> 333
 ttttaccaca catcgtttca tttaaaaata tacagctctt ggaaacatgc gtctatttcc
                                                                        60
 cettatgera acageaacag aaaageatte ttteaacaga tgageatgtt gaatetaget
                                                                       120
 cctggccaaa gtcttgtgtg tgatttttca ggccaactac agacaattac agatgcttta
                                                                       180
 cctggcagtc tcatggggta agctgccctc cccacaccag acctggtgca cagtcagtgc
                                                                       240
 actgcagtct ctgatgggag cggctgcaac taccaggccc tggccagcca tgctgttagg
                                                                       300
 catctctcta ttcctatctc ccaggcctgt tgactgggga cccttcttat caggcataga
                                                                       360
 tgactttgaa ggcacgttct ccactgtgac tcagggttta gtacttttcc actcctagcc
                                                                       420
 cttgccctga cccatcctcg tagcccccag gttcataaat gtaagcagcc tttctttgga
                                                                       480
 gaagagetat gatececace tetgagetga tecacetgee ceacacetta caetgttetg
                                                                       540
 tgggaaaatg ggctggtgag t
                                                                       561
 <210> 334
 <211> 459
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 58
<223> 18-903-58 : polymorphic base A or G
 <220>
 <221> misc binding
 <222> 39..57
 <223> 18-903-58.mis1
<220>
<221> misc_binding
 <222> 59..77
<223> 18-903-58.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
```

```
<221> primer_bind
<222> 442..459
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 46..70
<223> 18-903-58 potential probe
<400> 334
cagggttcca aataacagct ttcccctctt aaggtggaaa acatggacag gcaccacrtt
                                                                       60
gttttatgag gctctgagtc tgtgccatgg aacatcatgc tagaactctc cgatattcct
                                                                      120
gccaaatcct aaaatccccc agttctccct gcagctcctg aaatcctact gaagtgtatt
                                                                      180
cctcaatctt catggaggtt ctccattctt gcccttggca ctgctgccca actcagaatc
                                                                      240
ctgctgccca caaggtaaaa cccaagccct atggccccac aggccagagc cacctctccc
                                                                      300
accetgeest cettestaga etcageestg treetestes cagecacaet gggggtestg
                                                                      360
cataggtgat gacacagtga tgttccatcc cagtccttac acacattctc cccattctct
                                                                      420
tgccatgccc atcagcaagc acatccgctc taataccac
                                                                      459
<210> 335
<211> 453
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 216
<223> 18-590-216 : polymorphic base G or T
<220>
<221> misc_binding
<222> 197..215
<223> 18-590-216.mis1
<220>
<221> misc_binding
<222> 217..236
<223> 18-590-216.mis2, potential complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 434..453
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 204..228
<223> 18-590-216 potential probe
<220>
<221> misc_feature
<222> 417..418
<223> n=a, g, c or t
<400> 335
cattgtgggg tggcgttttg tgttctgaac cgtttcgtct ccctcttgcc cacactgagg
                                                                       60
ttcacaggcg cctgcagagg agctggtgtg ggacgatggg gagattggga ggcaacatcg
                                                                      120
cctcctctgc atgaaatgct catgggcaca tgtctgctgc ctctacctac caaaggacag
                                                                      180
```

```
aaccagccaa ctggcatggc aggcagggag ccagckcagc ctccaggccg tccatcctct
ctcctcagta ccagggcctc ccgtcaacgc cagcgccaac agagagcctg ggcccccccg
                                                                      300
accectecet cetgetgget etecttette ettetaggge ceetgetgee eetetgtete
                                                                      360
cagaattgtc ccctgcttgc catttaaccc attcccagtg cttgttktcc ccgaggnncc
                                                                      420
cageetetea geeeteaatg gteacetgte eca
                                                                      453
<210> 336
<211> 534
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 433
<223> 18-817-436 : polymorphic base G or C
<220>
<221> misc_binding
<222> 414..432
<223> 18-817-436.misl
<220>
<221> misc binding
<222> 434..452
<223> 18-817-436.mis2, complement
<220>
<221> primer bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 514..534
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 421..445
<223> 18-817-436 potential probe
<400> 336
ccatcatttt cacttgaata cttcttgcag ttttattcat ttccttgcct catactacaa
                                                                       60
aaatttaatt gtgcagtcat taacaaaaat taggatggaa aatatcaacc tggggttgtt
                                                                      120
ttttccactc atatggagaa ggcttcttca gcttactgag ccagtaaaag atgtctgtca
                                                                      180
tcatttgctg ttgattgtgg catatatacc attgcaacat gcatcattag cgcagttagt
                                                                      240
accttgttac agcttttggc tttatattct tactgtgtct tagggtctca gatggtttgc
                                                                      300
gttacatttc tcagatgtaa tacaagtata tctctgtgac aagtttctat ttttaatttt
                                                                      360
tttaacctct ttttatgtgc agttacctaa aattattctg tagggacttg actccaatcc
                                                                      420
ctgaagtaga ggsatttttg catagtcacq ttcctqctqt cttgtccaqq gacttttcct
                                                                      480
gtgtgctgtg tttatatatt tgattcctaa cacqtaaqac ctttttcqqa gcaa
                                                                      534
<210> 337
<211> 483
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-829-85 : polymorphic base G or T
<220>
```

```
<221> misc_binding
 <222> 66..84
 <223> 18-829-85.mis1
 <220>
 <221> misc_binding
 <222> 86..105
 <223> 18-829-85.mis2, potential complement
 <220>
 <221> primer_bind
 <222> 1..20
 <223> upstream amplification primer
 <220>
 <221> primer bind
 <222> 464..483
 <223> downstream amplification primer, complement
 <220>
 <221> misc binding
 <222> 73..97
<223> 18-829-85 potential probe
<400> 337
caagggteta gtgtttttag ctgtcttccc agccctgctc cagagccccc atgtaacctg
                                                                        60
ctgccctgca gtgcccagca cagakcagtg tctgttgaat gcgtgagtca agcaaacat
                                                                       120
caaacagaat cettgacatg ggaaaaacat geteecagee accaceaget gaacattgac
                                                                       180
atccagctgc tttcccactg ggcagtggct tgtgaagatg gggacagagt atcataaatc
                                                                       240
atctcctttg tggacagcag ggatgatcct gaccttcttg tcacagacta aacagactaa
                                                                       300
gtagccagaa gaaaaaaaa gaaagaaaga aaaaaggggc ttaaaggcac tcagctgtca
                                                                       360
aaattataag gagggtttgt taaaactatt ttttaaaaaa gaaaagtggt taagttatgc
                                                                       420
agtaggatat aatattetat aataaettat taccaaaett ttageettaa tecagttget
                                                                       480
att
                                                                       483
<210> 338
<211> 597
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 387
<223> 18-832-387 : polymorphic base A or G
<220>
<221> misc_binding
<222> 368..386
<223> 18-832-387.mis1
<220>
<221> misc_binding
<222> 388..407
<223> 18-832-387.mis2, potential complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 580..597
```

```
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 375..399
<223> 18-832-387 potential probe
<400> 338
cagtetatgt gttgttcctt gtgtaagage aggtacttta ccataaatce tgcccttagg
                                                                       60
tcaaacaacc gtgatatcat atttcaattg tcctacacat ctcttctgaa gcatctacac
                                                                      120
cctttcccga tggtgtgtaa accctgggtc tggggatgat ggcgcagggt ctaccatctc
                                                                      180
aactogcagt gaccagagac acaaacotgg cttctgtttg taagtoccta ttaaatqttt
                                                                      240
ctttctaaga aactggattt gtcagcctcc tttttgggcc tctcagcttc cttqqatttq
                                                                      300
ggaggcaggt ttgcatagac ctgctcacca caaaacaggt agctaccaac cttagggttq
                                                                      360
gggaaacagg ggcagaggtt gaggttrtca gaacctggaa gctgggagga ggagtqtcac
                                                                      420
agagetggga getggacete tgtgcaggae actgetgeag etgecatgge aggeteagag
                                                                      480
ggggacttta aggaatggct ggtgcyatga cccctgcagg gcacagagag tctggctcag
                                                                      540
agtgtgggga gagctggagg gaggccgaca aggacaqcaq qtqaqcaqqt cccttct
                                                                      597
<210> 339
<211> 461
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 259
<223> 18-833-259 : polymorphic base C or T
<220>
<221> misc_binding
<222> 239..258
<223> 18-833-259.mis1, potential
<220>
<221> misc_binding
<222> 260..278
<223> 18-833-259.mis2, complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 441..461
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 247..271
<223> 18-833-259 potential probe
<400> 339
tagcttgttg tcttcgagtt tttggtagag ccttgtgctg ggggtggcag gaagagagag
                                                                       60
gggacacagc atggccagtg ctatatagca tggaatgctt ttaacagaga acaaagtgtt
                                                                      120
tgtactaaaa ggcaggaatc tggggctcag taggtgttga gtaactgaat tgctatgaat
                                                                      180
gattttccgt caaaatctaa ataacattcc agcctttgcc agcttcatag gggaattaga
                                                                      240
tagtaggaat gcactgagyt tgtgctcctg ggaagactcc acgattgggg gaaggaaggc
                                                                      300
aacagaaatg agggcaggga tgttgtttat ctccgtccaa gcacaggagg ccccgggtgg
                                                                      360
gatgacaggt gggatgacct ccgtttactg gtggcccaaa agcacaccta tgccttcagg
                                                                      420
atgaagtgcg ctctgctcct cacccaaagg tttatttctg g
                                                                      461
```

```
<210> 340
 <211> 450
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 271
 <223> 18-839-271 : polymorphic base G or T
 <220>
 <221> misc binding
 <222> 252..270
 <223> 18-839-271.misl
 <220>
 <221> misc binding
 <222> 272..291
 <223> 18-839-271.mis2, potential complement
 <220>
 <221> primer_bind
 <222> 1..20
 <223> upstream amplification primer
 <220>
 <221> primer bind
 <222> 430..450
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 259..283
 <223> 18-839-271 potential probe
 <220>
 <221> misc feature
 <222> 434
 <223> n=a, g, c or t
 <400> 340
 ctacagcact tacacaagcc accaactggc acccacagca cttatcactc catgtgtctg
                                                                        60
 ctcaaccagc ctgggtaagg aaccctaccc tctctgtctc tgtccacctc caacaggcca
                                                                        120
 tggtgcaccc tgcatggggg ctgcctcatg ggggtctcca ggaacacctg ctgagtgaat
                                                                        180
 gcataaagag tccttggctg ctgcacactg agctcacagt taactaaatg ctagaagatt
                                                                        240
 ttgtaatatg tccttttgtg tcaccttatc kaagctcact ggtatttata cactcagttt
                                                                       300
 tccacattca aaacatacac agctgtgtgt gtggaggagg cgggtgctgg gggcccttgg
                                                                       360
 ggcagcttgg agaatgctgc aatctgggtg tgtccgccag gaaaacaggg ccgagtcatg
                                                                       420
 ggttacagag tggnaagagt ggattcagag
                                                                        450
 <210> 341
 <211> 496
 <212> DNA
 <213> Homo Sapiens
<220>
 <221> allele
 <222> 194
 <223> 18-770-194 : polymorphic base G or C
 <220>
 <221> misc_binding
```

```
<222> 175..193
 <223> 18-770-194.mis1
 <220>
 <221> misc_binding
 <222> 195..213
 <223> 18-770-194.mis2, complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
 <220>
 <221> primer_bind
 <222> 479..496
 <223> downstream amplification primer, complement
<220>
 <221> misc_binding
<222> 182..206
<223> 18-770-194 potential probe
<400> 341
ccaggtgata actaagtcat gaacgtttca gcaaacacct gctctagcct gggcactctg
                                                                        60
cttgttgaca tgcaaggtga tgagagtcac actgtgacat gaattagcat cacgacaccc
                                                                       120
tggcaaacct tttgtgatgc ctcccgtgaa agcacgtcat agttctcctt aaatgggatg
                                                                       180
tecettteet etgsaggage agegtettee ceagaacagt tageateact teteegatae
                                                                       240
agaggataat gctgtccggg gtggagagag gagttcaggc ggctatcgtg aaaccacagg
                                                                       300
ctgcctgctg tctgccatga gccctttcct cccccagctc acctgcagga ggacaggggc
                                                                       360
agacgtgggc agcagaggcc caggtccaca ccggctggag ccacgtgcct gctgggtaca
                                                                       420
agtcaggcca ttaatccgca cacctgaccc tcatcaaagg gcaagaagcg ctagggggct
                                                                       480
gagtgagcaa ccgaag
                                                                       496
<210> 342
<211> 481
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 302
<223> 18-771-302 : polymorphic base A or G
<220>
<221> misc_binding
<222> 283..301
<223> 18-771-302.mis1
<220>
<221> misc_binding
<222> 303..321
<223> 18-771-302.mis2, complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 461..481
<223> downstream amplification primer, complement
```

```
<220>
<221> misc binding
<222> 290..314
<223> 18-771-302 potential probe
<400> 342
cttaaacaca cacttagagg gaaataattc aaactgtatc atgcttctat tatgagtcag
                                                                       60
cagagaaagc cacctactag agactctgcc ttcctggcag agggaaaggt gagcattggt
                                                                       120
ggtgaagcca ctggacagaa atgacctcac ctgcagacct gctgtgtcca aggtcaacag
                                                                       180
agtgctgggc acccacagga aggacaagat taaaagagaa aaggcttcca ctcccacctg
                                                                       240
ttttetecac egegtetata atcagtatag agtatagagt cetgtecact gtgetgeage
                                                                      300
creatacaca geceagaaag gatgtagaga tgggcactga ggtggeeteg cagageggga
                                                                      360
gctgctcatg gtcaggctaa gggtcaggat gctctggtct aaaagcccag gccaatggag
                                                                      420
atgggtggca cagagctaca gaggaactgt gacacacttg ccaccaaatc ccatagtagt
                                                                      480
                                                                       481
<210> 343
<211> 449
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 53
<223> 18-827-53 : polymorphic base G or T
<220>
<221> misc binding
<222> 33..52
<223> 18-827-53.mis1, potential
<220>
<221> misc_binding
<222> 54..72
<223> 18-827-53.mis2, complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer bind
<222> 429..449
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 41..65
<223> 18-827-53 potential probe
<220>
<221> misc_feature
<222> 431
<223> n=a, g, c or t
<400> 343
gtttgggatg gaaggcagta ggtattggca ggacagctat tgcacaaaat taktcattga
                                                                       60
cctgaacatt ctcaattctt gtttctttgg aagttataaa ggcagatatt taacatgctt
                                                                      120
taattaataa agttettttg caetttegaa gaetattega tggataacae atteegteee
                                                                      180
etgeetteee agegtggget geetetggee tagaaatgea aatgtttget tgttegtaaa
                                                                      240
aaatgcgtag ccgagagctt caaaatgtga gcaagaacat catatttgtt tgcaagtaac
```

300

```
tagcaaagca gcagaaacat tggctgactc caataatctt taatcattat ccccttccct
                                                                       360
gcagtttcct tcagaaaccg tttacctgta atttgttagg agacagctct gagcttctca
                                                                       420
ttatgagcct ncactaattc caccagctc
                                                                       449
<210> 344
<211> 429
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 318
<223> 18-768-318 : polymorphic base A or G
<220>
<221> misc binding
<222> 299..317
<223> 18-768-318.mis1
<220>
<221> misc binding
<222> 319..338
<223> 18-768-318.mis2, potential complement
<220>
<221> primer bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer bind
<222> 409..429
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 306..330
<223> 18-768-318 potential probe
gtggaaatct cattgcagtt catcactgcc ttgctctacc cgcagcctga tgatgtgctt
                                                                       60
tccaggactg aggccgggtg ccgcttgccc atggcacatc atcagagcat ggcttctgct
                                                                      120
gcgctttctg tggctggcat tgccagtttc ccagcaagct gggtctttaa ttctcccgct
                                                                      180
aaccgcctct tgccacctcc tgtcactcag ctcaggcagt ggctcggcgg ccggggggtc
                                                                      240
cttccaacag ggtctgcctc cccaggccct tccctctttc cctcctcatg gctgtggtcc
                                                                      300
aggeceteae tecteterte teageagetg ceaeagette etgeetgaee teetgtaget
                                                                      360
ggtcactcac ctttccagaa cattctgtga actaccaaag tcacccttct gagacacaac
                                                                      420
cttacctgc
                                                                      429
<210> 345
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 26
<223> 18-769-26 : polymorphic base G or C
<220>
<221> misc_binding
<222> 6..25
<223> 18-769-26.mis1, potential
```

```
<220>
<221> misc_binding
<222> 27..45
<223> 18-769-26.mis2, complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 430..450
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 14..38
<223> 18-769-26 potential probe
<400> 345 ·
agttatgctg agagcaccag gcacasgttg aacaccgcag tcttagaaac agcagaggga
                                                                        60
agactgcctt ctcaggtccc cctcaggtga ggcagggaac gggccctcct cacctgagac
                                                                       120
caagggggcc cagecttete cetgcacage teaceceega ceageceagg etecageagg
                                                                       180
agagacaagt aaggcccaag tgtgcctgag tggaaaatgt ctgggacact gacctgtcaa
                                                                       240
aactggcccc tggctcactg ggttcccatc aaatatagtg ggggatccat aacagagatt
                                                                       300
cagagaggca ccgtggagtt ccagggtcat cggtcagcga ggaacaagga gggaaaggtg
                                                                       360
tettectgee cettgatget caactaagea tetgtteeet agaaatacat gtgtecaggt
                                                                       420
cgtctccatg ggcttttctt tgcagatact
                                                                       450
<210> 346
<211> 453
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 320
<223> 18-709-321 : polymorphic base C or T
<220>
<221> misc binding
<222> 300..319
<223> 18-709-321.mis1, potential
<220>
<221> misc_binding
<222> 321..339
<223> 18-709-321.mis2, complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 433..453
<223> downstream amplification primer, complement
<220>
<221> misc_binding
```

```
<222> 308..332
 <223> 18-709-321 potential probe
<400> 346
ttagacgtgg ctgcacttgg ccaatgtgct gtgaacccac agtgagcggg tccctgcgag
                                                                        60
tgaagettgg tagaggagtg tgtggeteet teaceacete ceetgeeacg gggteeegea
                                                                       120
ggccatattg agacaggctc ctgtcagctg gggccctgag ggctcagagg agcagcacat
                                                                       180
cctgatggat acaggggccc agatggtggc ttcggagata agagacaaac ctgctacctt
                                                                       240
gctatccctg caagcgaggg gcacgccagg ctgagggcgg catggcaaag gcggaggagg
                                                                       300
tgttccccca cagctctcty gggaaacgac acgtgcttcc tgctaccagc aggcagactc
                                                                       360
ggatggaggt ggaggggacg agagtgtggc aggcaggcga ccaaaagtca acgcagtttg
                                                                       420
gtctctgatg accccaaagt aaaaaccagt ccc
                                                                       453
<210> 347
<211> 514
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 281
<223> 18-714-280 : polymorphic base C or T
<220>
<221> misc_binding
<222> 262..280
<223> 18-714-280.mis1
<220>
<221> misc_binding
<222> 282..300
<223> 18-714-280.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 495..514
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 269..293
<223> 18-714-280 potential probe
acttgaagga ctccgacagc ctcatgggcg actgtattaa gccccagcaa tcggagaggt
                                                                       60
gggctccggg gctgggtggg. tctcctctgc caggtgggtc tcctctgcct gtggtcccag
                                                                       120
cageteggea geaggggeeg geecagatgg cegttggtea cagagacage tgggetttge
                                                                      180
tgagtgcgtc gtggtccagc ctaggcccat gccactgaag cctttctcag aggtgtgggg
                                                                       240 .
tctgcaggga ccggtcacat gtgagcccag gatcagggca ytgggggaag aaccagctga
                                                                      300
ggacattccc cagccccaaa acaaaggcac ggcagtcctc gagcagggag gagtgaggag
                                                                      360
ccacatgtgg gatcccgcct ctctggcgtg tgagctgtgg atggcatctg gtaccagccc
                                                                      420
catgcccgct ggccgctggc gagcttgcag gctctgcagg caaccggaac agcatactgc
                                                                      480
aggtgcacrc gggktcctcg tgccgagtga ttta
                                                                      514
<210> 348
<211> 451
<212> DNA
<213> Homo Sapiens
```

```
<220>
<221> allele
<222> 271
<223> 18-843-271 : polymorphic base C or T
<220>
<221> misc_binding
<222> 252..270
<223> 18-843-271.mis1
<220>
<221> misc_binding
<222> 272..290
<223> 18-843-271.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 433..451
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 259..283
<223> 18-843-271 potential probe
<220>
<221> misc feature
<222> 438
<223> n=a, g, c or t
<400> 348
ggagagacat ttgctttcag tggctcatca ataattcaca tagaaacgag catttctaaa
gcacagtgag gagacagagc tggaacagtt tcttgccagg acatatcatg ggcaactgga
                                                                      120
acccaagttt aggcaagaca ggaaaaacca ccacctgcaa attatctttt ccctcaaatg
                                                                      180
gataaacagg cgcagggtgc ggtgaaagcc gtcattccgt tcagcagcag ccacgccgct
                                                                      240
gagacggagc aacggccgag catacgcagc ygcactcacc accgctggta caggtagacc
                                                                    - 300
agaaacacca cgtcgtcccg gaagcaggcc agccggtgag acgtgggcat ggtgatgatg
                                                                      360
aaggcaaaga cgtcatcaat gaaggtgttg aaagcctgca gggccagacg ggaggagggt
                                                                     420
gaaccccagt tgctgggnct ggaatcctac t
                                                                      451
<210> 349
<211> 460
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 265
<223> 18-850-265 : polymorphic base C or T
<220>
<221> misc_binding
<222> 246..264
<223> 18-850-265.mis1
<220>
<221> misc_binding
```

```
<222> 266..284
 <223> 18-850-265.mis2, complement
 <220>
 <221> primer_bind
 <222> 1..20
 <223> upstream amplification primer
 <220>
 <221> primer bind
 <222> 443..460
 <223> downstream amplification primer, complement
 <220>
 <221> misc binding
 <222> 253..277
 <223> 18-850-265 potential probe
 <400> 349
 gaagacatta ttgaatgctc ttagaagatt gtaarattgc tctctggaag tgtgggggaa
                                                                        60
 ggtggaagtg atatccatgc attgttagta gaaagccacg ctagagctca cacagccttg
                                                                       120
 cactttgata ggagtgggga ggggtgcagg ggaaggagar gcaaaccaga gtgtctgtct
                                                                       180
 tgaggcetcc atgggccagt gccccagccc tgtggtgagg gctggcactt cccagctccc
                                                                       240
 gtgccccagc tgtaccatct caggygctga gaacgcaccc atcccttccc agaggaatgc
                                                                       300
 ccgtgaatgc ctcggggctc tgccctccgc accaggtatg tccctagccc tggctgctga
                                                                       360
attgttgcgt tcctgttgtg tgtttatttt tcatattggc tgaagaccaa gagggaagaa
                                                                       420
 gcacagaatt cctcaactcc cagtgtgccc atgagtaaga
                                                                       460
<210> 350
 <211> 459
 <212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 296
<223> 18-853-296 : polymorphic base C or T
<220>
<221> misc_binding
<222> 277..295
<223> 18-853-296.mis1
<220>
<221> misc_binding
<222> 297..315
<223> 18-853-296.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 440..459
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 284..308
<223> 18-853-296 potential probe
```

```
<220>
<221> misc feature
<222> 441
<223> n=a, g, c or t
<400> 350
atgcccactg cacagatgag gagccgaggc caggaagggt tttgccagat gcctgggctg
                                                                       60
gggccagggc tcaggaccac ccactgaact gcctgctcgg cccaccctgg caagtgtgtg
                                                                      120
caagggcccg gtggtgccga cgaggagggc catggggagg agatgttgtt gtcctgagac
                                                                      180
teccageece acetgagggg gaagaggtg ggagageaag getgggagee accettgggg
                                                                      240
gctgtgcatg tgcccctga cattggagga cacaggccac gccacacctg tgccayccag
                                                                      300
ggagtgggaa ggaagcacgt ggccgtggag aggccagcag gtggcaggaa gggctgcaag
                                                                      360
ccccsaacca cggggtcaca cgtaggggac ccagcaccc atgcaggagc tggctgtgcc
                                                                      420
ctgcatctgc acaggccggg ncatgaactg gcatcagca
                                                                      459
<210> 351
<211> 463
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 332
<223> 18-867-331 : polymorphic base A or C
<220>
<221> misc_binding
<222> 313..331
<223> 18-867-331.mis1
<220>
<221> misc_binding
<222> 333..352
<223> 18-867-331.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 445..463
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 320..344
<223> 18-867-331 potential probe
<220>
<221> misc_feature
<222> 424
<223> n=a, g, c or t
<400> 351
tgtgaactgc tctatgtctc cttgcagttc tatcagtttt tgccgaattc attatgaagc
                                                                       60
tatgttatta ggtacataaa catttgtcct tttggtgaac tgatgctatc ataaaatgac
                                                                      120
attgtttaga catgatctgt tttgaggatt cctatggctt gcatattagg tggcttgaag
                                                                      180
tcccacagtt ctctgatgct tggttcattt ttttgtcttt tttctttatt tcattttgaa
                                                                      240
cagtttgcac tgccatctat gtcttcaagt tcatgtatcc ttttcttctg agatgttgaa
                                                                      300
tccacccctc ctctcaacca gtgcattttg cmtctgagac attgtggttt tcatctctag
                                                                      360
aatttggatt cgtgtctttt aaaaaatatc tgtcatgtct ctattaaaca tattcagtct
                                                                      420
```

```
cgcntttggc tagctcttgg aatkgaggta acagttatga ttg
                                                                       463
<210> 352
<211> 449
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 73
<223> 18-877-73 : polymorphic base C or T
<220>
<221> misc binding
<222> 54..72
<223> 18-877-73.mis1
<220>
<221> misc binding
<222> 74..93
<223> 18-877-73.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 432..449
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 61..85
<223> 18-877-73 potential probe
<220>
<221> misc_feature
<222> 377,402
<223> n=a, g, c or t
<400> 352
ctgataccac ccgaacacgc atttccttgc tctccacttg ttcaaagcct ttacacccac
                                                                       60
tgcctgccat ccyacagett ccagaacact gaggccatcg ggaacaagca cacaggette
                                                                      120
cacagaaggt ctcaggtccc ggggctgaaa gcctttcctg agtgcgtgga ggcacatgga
                                                                      180
ceteagacag tteaggteac tgeceggaac teaceteaat ggeggeteea acaeeegeeg
                                                                      240
ggaccagcac cagcaggetc gtctgctcgt ccagcaggaa cagaaagatg accacggtgc
                                                                      300
tgaagcagcg ccagagcact ggggacagga tggtcgggct gggagggggt gcagggcaga
                                                                      360
ccccacctgt gttcccncaa gtcacacaca tacccccagt cnccccatcc caacccacca
                                                                      420
cgcccaagaa gcttcaggta ctccccagt
<210> 353
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-856-85 : polymorphic base C or T
<220>
```

```
<221> misc binding
<222> 66..84
<223> 18-856-85.mis1
<221> misc_binding
<222> 86..104
<223> 18-856-85.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<221> primer bind
<222> 430..450
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 73..97
<223> 18-856-85 potential probe
<400> 353
ctgcttcctc tctcaagaca gcacctctcg aatctggccc caagtgagac acagcaacag
                                                                       60
cgacacatga gagagactgt gattyggggg aaaagctgct gtcggcacac gtgtctccat
                                                                      120
aaccactgga acgcaggcca ccactggcac agctgcgccg caaagcctgc cccgggcctc
                                                                      180
taacaagaca gatctgcaga cagacacaca gggcagcctt ctgcagctgc ctgccctgt
                                                                      240
ccaccatctc ctgaatgcct gcaaggagtc agcggcatga ggcttcacaa gaggtgacca
                                                                      300
cgagctggtg ccacagctca cacagctctg tatggggcat tttagcagaa cttgctgtcc
                                                                      360
tgaggtttgt cagcagcaca ccagcaaact ccagcaaaca gagaaagagg ttggaattgc
                                                                      420
aggggccgac agagaaacta ctcagggata
                                                                      450
<210> 354
<211> 480
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 101
<223> 18-861-101 : polymorphic base C or T
<220>
<221> misc_binding
<222> 82..100
<223> 18-861-101.mis1
<220>
<221> misc_binding
<222> 102..120
<223> 18-861-101.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 462..480
<223> downstream amplification primer, complement
```

```
<220>
<221> misc_binding
<222> 89..113
<223> 18-861-101 potential probe
<400> 354
ccctcaaatg gataaacagg cgcagggtgc ggtgaaagcc gtcattccgt tcagcagcag
                                                                        60
ccacgccgct gagacggagc aacggccgag catacgcagc ygcactcacc accgctggta
                                                                      120
caggtagacc agaaacacca cgtcgtcccg gaagcaggcc agccggtgag acgtgggcat
                                                                      180
ggtgatgatg aaggcaaaga cgtcatcaat gaaggtgttg aaagcctgca gggccagacg
                                                                      240
ggaggagggt gaaccccagt tgctggggct ggaatcctac tgtttttggt aacctaacca
                                                                      300
agccaacggc ttttggcaga tgcttggaac taactggaac tcctcacagc aacaacaaaa
                                                                      360
agagcagaaa gccggcaagt ggagatacgg agctctgttc cctcatgggc tccccacagc
                                                                      420
tgctggcacc cgacacactg cgggtettgc ccaggetccc acatcgggga accaaagaga
                                                                      480
<210> 355
<211> 465
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 323
<223> 18-635-323 : polymorphic base A or G
<220>
<221> misc_binding
<222> 304..322
<223> 18-635-323.mis1
<220>
<221> misc_binding
<222> 324..343
<223> 18-635-323.mis2, potential complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer bind
<222> 445..465
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 311..335
<223> 18-635-323 potential probe
<220>
<221> misc_feature
<222> 81
<223> n=a, g, c or t
<400> 355
gataattgtc tcaggttaag cttgagcata acatgcacca tgacacatat gatataaggc
                                                                       60
aatgaggcca sggagtggtg nctcacgcct gtaatcccag cactttggga ggtcgaggca
                                                                      120
gcactttggg attgcttgag cccaggagtt cgagataatg caatgcaaac atttttgtgg
                                                                      180
ccaccagaaa gaaattgatc tacaccagtt ctttgggaac tgaattatcc atggcaaaaa
                                                                      240
aaaactatat tocatattca gttttcaatg ttgctgaaat tatctgagat ttccatccaa
                                                                      300
gttgacatct taaaacttta tertgatcat cactecettt actatgtagt ettatttgge
```

360

```
catattttgc ttacccttat caactaagga gccagtgtaa atctctgagt tgcagatctg
                                                                      420
gaagtgatgt 'gaagaaatgt tatagaggga gtgtacttat cagtg
                                                                      465
<210> 356
<211> 493
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 205
<223> 18-636-205 : polymorphic base C or T
<220>
<221> misc_binding
<222> 186..204
<223> 18-636-205.mis1
<220>
<221> misc_binding
<222> 206..225
<223> 18-636-205.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 473..493
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 193..217
<223> 18-636-205 potential probe
<220>
<221> misc_feature
<222> 36
<223> n=a, g, c or t
<400> 356
cgcccttagc ataagatgca tccatttgct gggccntgtg ctgtaatcag agggccttag
cctggccttc cttctgctgc cctccaccca aggaagtaag gagttggccg ggccaaggga
                                                                      120
gcagetttgc tecectetet aaactacatt ttgcatetgc tggacececa cattetetgt
ccaaatggct ttgaacccac ttccyggcca cacaagcctc ttcctgggat gtgctgcagg
                                                                      240
catacacacc cttaggccta aggagtttaa ccaagaggca gcaatgagag gtgtgaagag
                                                                      300
acttgtgtag gaggaacttg ggtaagcagg ctgcggtcca gggctcacga cggctgctca
                                                                     360
caggtccctg gagatggaag gacatgggga aagaagaggg ccaacccata tccaaggagt
                                                                      420
tcaagaattc taaattcaac ctgaccttcc aggctgttat ggagggatat ctgtcaaggt
                                                                      480
aaaggagata gct
                                                                      493
<210> 357
<211> 589
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 427
<223> 18-649-427 : polymorphic base G or T
```

```
<220>
<221> misc binding
<222> 408..426
<223> 18-649-427.mis1
<221> misc_binding
<222> 428..447
<223> 18-649-427.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 570..589
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 415..439
<223> 18-649-427 potential probe
<220>
<221> misc feature
<222> 536
<223> n=a, g, c or t
<400> 357
tctgtgtaat gcccaacgat ttttcattag ctgggagctg ttttagggac attttacagg
ttaatgactg tgggagagga gaataaaatc aaaactgcaa gaacccattt ttgtcttcat
                                                                      120
aagcattgca ttttaaaata cgagggcttg aagacttctc agaagagaca ctcactactg
                                                                      180
gagttaaagt tatatgaagt ccctgagccc ttaatcatcc aagactggac ctaagcagtc
                                                                      240
ctettegttt gtagtetett teaatatetg ettateaagg acaacgagaa tatettagte
                                                                     . 300
tactaattaa totttttat caccatagto taccaagaaa gaaagotgat aagataataa
                                                                      360
agatgattca ttcctcagag taggaaaaaa taaaaagaaa aatttaaaaa gatgctaaat
                                                                      420
atgagckctg agtctcaaca ctgtctcaag atgaggcaga tgtcaacttt cttgcctatt
                                                                      480
ctgcttgcta tttaggcata tctcttgagc aaaaccagtc atttgtcttc tcattntycc
                                                                      540
aaaaattaaa ttcaagaaca aattgttgag gaaggttatt agaatctca
                                                                      589
<210> 358
<211> 432
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 316
<223> 18-1134-316 : polymorphic base A or G
<220>
<221> misc_binding
<222> 297..315
<223> 18-1134-316.mis1
<220>
<221> misc_binding
<222> 317..336
<223> 18-1134-316.mis2, potential complement
```

```
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 412..432
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 304..328
<223> 18-1134-316 potential probe
<400> 358
catcttgttg tctacgtttc tggggctgag aagatatttt gctccacacc tgccagcatg
                                                                        60
ccctttccag ccctgaggtg caccagtgag tgtgtgtccc ttctccagct ttcctggggt
                                                                       120
aaaagtacca cctttggatc aaggettget ggetgegget cagaggatet gegeagagga
                                                                       180
agcagtgtgt cetcaggaga teetgaagga ggggaggggg gaetetteet aettggaaet
                                                                       240
ctttgtttat tggttaatga aagggcaaaa ataagtccct ttctaaaatt ttagtttaga
                                                                       300
gtttaagttg gaaggraaaa aaaaagaaaa gaacacattt gaggattaac tatttattga
                                                                       360
cttttctctg aagttctcaa ttgaaggtta aactcaggga ttttccaggc tggggtaaaa
                                                                       420
ctcaaccaac tg
                                                                       432
<210> 359
<211> 432
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 316
<223> 18-633-316 : polymorphic base A or G
<220>
<221> misc_binding
<222> 297..315
<223> 18-633-316.mis1
<220>
<221> misc_binding
<222> 317..336
<223> 18-633-316.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 412..432
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 304..328
<223> 18-633-316 potential probe
<400> 359
catcttgttg tetacgttte tggggetgag aagatatttt getecaeace tgecageatg
ccctttccag ccctgaggtg caccagtgag tgtgtgtccc ttctccagct ttcctggggt
                                                                       120
```

```
aaaagtacca cctttggatc aaggcttgct ggctgcggct cagaggatct gcgcagagga
                                                                      180
agcagtgtgt cctcaggaga tcctgaagga ggggaggggg gactcttcct acttggaact
                                                                      240
ctttgtttat tggttaatga aagggcaaaa ataagtccct ttctaaaatt ttagtttaga
                                                                      300
gtttaagttg gaaggraaaa aaaaagaaaa gaacacattt gaggattaac tatttattga
                                                                      360
cttttctctg aagttctcaa ttgaaggtta aactcaggga ttttccaggc tggggtaaaa
                                                                      420
ctcaaccaac tg
                                                                      432
<210> 360
<211> 533
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 425
<223> 18-489-425 : polymorphic base C or T
<220>
<221> misc_binding
<222> 406..424
<223> 18-489-425.misl
<220>
<221> misc_binding
<222> 426..445
<223> 18-489-425.mis2, potential complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 515..533
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 413..437
<223> 18-489-425 potential probe
<400> 360
tagectetat geteacgetg gtecetatet tttecaccet teetggetgg ceccagtgtg
                                                                      60
tcctaacaca gagctgccct ctctgaatca ccgaaccgcc caccttgggg ccctggggcg
                                                                      120
gcactagttc cctgagtcac tccgtgagcc cggtaacaca tcctgtgccc caggctgaag
                                                                      180
ttcaagcggg aggcgggccc aggagaacct gtctgactgg tccccaggca ggtcccatgg
                                                                      240
tggccagaac agagttcaag gggaactgca ccaccgtcag accctgtgag tgtgggggcc
                                                                      300
tgttgtcctg gggcagcagg cagcagggcc tgcaggggtc atcagggacc ctggcaccct
                                                                      360
gggactccag aggagcccc cagccctatc tgggcatatc ccagggttcc cagcccctg
                                                                      420
gaaayggggt gataacagct teteetgtaa gggetttgat geetggteet gggteeetgt
                                                                      480
cccagagetg ageacetget ggeceggace ceaeetttet tgtegeceae gtt
                                                                      533
<210> 361
<211> 485
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 212
<223> 18-492-212 : polymorphic base C or T
```

```
<220>
 <221> misc_binding
 <222> 193..211
 <223> 18-492-212.mis1
<220>
<221> misc binding
<222> 213..231
<223> 18-492-212.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 465..485
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 200..224
<223> 18-492-212 potential probe
<400> 361
agtcggggag acaagcatag agccacaggc gtgatgacaa acaggacaca gatggcagga
                                                                        60
aggaggccag ttctaagcgt ttacacacgg ggcagctctg ctcggcacac aggtccccca
                                                                       120
cgggggctgc agagggccct acctggggct tgctcaacag ggctggaaac ccccagcaaa
                                                                       180
ggctggaact gctgcaagaa gccctgccct tyggggctga tccggtgtga taaaggggga
                                                                       240
ccaggattct ggcaggggat tcgactgcga tccagtaatc cagggagagc cagtacaggt
                                                                       300
gcgtagagac aggccaggca gcaccaggta ggccacacgc ttgggcagcg cctgtggaca
                                                                       360
ggctgagagg acacctggag gccagcctgg gagaccccac aggctgcagc caggccccgc
                                                                       420
gctcatctct ggacccaggg gctggccact cacctccatc cagcctctgg gaatctaaag
                                                                       480
gaatg
                                                                       485
<210> 362
<211> 570
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 156
<223> 18-488-156 : polymorphic base C or T
<220>
<221> misc_binding
<222> 137..155
<223> 18-488-156.mis1
<220>
<221> misc_binding
<222> 157..175
<223> 18-488-156.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
```

```
<222> 550..570
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 144..168
<223> 18-488-156 potential probe
<400> 362
tgtctagcct cactcggggc actcagggtc ctcgccagtg gggctgggtt gggggvatgc
                                                                        60
acaagatggg gcctcaggag gaagatctgc aggagacaca tgctttcttt gcacgagcag
                                                                       120
tggcttgctt gggggagagc aggctgggcc cagagyggcc cttccccacc ccatctcctt
                                                                      180
ggtcctgtgc cgtttctgcc ctggtgtctg gtctggggtg tgcaccccac ttctgccacc
                                                                      240
cattttgcac ctgcacaggc agctggctcc ccagttccca acaggccacc cagccaggcc
                                                                      300
cetggeceag etececacee atetecacee accaeagge etecteagte ecceacacte
                                                                      360
ccagacctca ggtggtgcct ccagagcgag ctgtgtccac acagggctct actggaatgc
                                                                      420
ctggctcttt ggagaggctg aggctgactg aatgggctct gggcagcagc tggcacggat
                                                                      480
gccatcctgg ttggggctca cctccaagag aagcgtgtcc ggcaggtacc ggtccttcca
                                                                      540
gtggtcgagg aagaccatgt ccagtgtgtc
                                                                      570
<210> 363
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 266
<223> 18-491-266 : polymorphic base C or T
<220>
<221> misc binding
<222> 247...265
<223> 18-491-266.mis1
<220>
<221> misc_binding
<222> 267..285
<223> 18-491-266.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 430..450
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 254..278
<223> 18-491-266 potential probe
<400> 363
ggtagagcca tacaatgagg tatgattcag ttattaaaat gaataaagta cagatgaatt
                                                                       60
cacggttcat caaaatggat gaaccttctg caccggctgc ctggccatcg gctcgcaagc
                                                                      120
tcatgagacc cccgtgaggt ccacattccc tcctctgtga aacggctgat ggtcttacct
                                                                      180
ctccagcaca gtagagggca ggcatgatcg tgcccacaca gcacctgcac atgcttgcca
                                                                      240
catgcacgcc acatgcagat gcacgygtga gggcatcctc agtgcctcac agtgcggcca
                                                                      300
ggacacaggc agctgggctt gacacctctg gctctaaaga gcatgaagct tctgggcctc
                                                                      360
agtgccaggc ctgcccaagc ttctctgccc agcagtctgc tgcagagcta gagagtccat
                                                                      420
```

```
cacctctgtc acctgktcag tattctctct
                                                                   450
<210> 364
<211> 435
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 141
<223> 18-497-141 : polymorphic base C or T
<220>
<221> misc binding
<222> 122..140
<223> 18-497-141.mis1
<220>
<221> misc_binding
<222> 142..160
<223> 18-497-141.mis2, complement
<220>
<221> primer bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer bind
<222> 416..435
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 129..153
<223> 18-497-141 potential probe
<400> 364
ctcatgttgt cagtagttac caagtaaaat ctgttttttc tgcattaact agtgtctcac
                                                                   60
tgggctctgc agggcagctc ctacggtccc tcaggcttgg agggtcactt taaacaataa
                                                                  120
aaagcaacag gacacaaaaa yccctggctg gaaaaatcca aaaagcaggt ctgttagcag
                                                                  180
240
atcccccga ccctggggag tcctgggccc cttcctggtg gagcagcctc tctcttgcag
                                                                  300
ggaaaggccc tggggtaccc caaggcctcc aacagggagc ctgttggaga agtcaccaag
                                                                  360
gccctctgag tctggggctc cacagaccct ccccaggcc tcctgcaact ctccagctct
                                                                  420
gagagtctga tccca
                                                                  435
<210> 365
<211> 475
<212> DNA
<213> Homo Sapiens ·
<220>
<221> allele
<222> 174
<223> 18-503-174 : polymorphic base A or G
<220>
<221> misc_binding
<222> 155..173
<223> 18-503-174.mis1
<220>
```

```
<221> misc binding
<222> 175..194
<223> 18-503-174.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 455..475
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 162..186
<223> 18-503-174 potential probe
<220>
<221> misc feature
<222> 57,422
<223> n=a, g, c or t
<400> 365
agtgctgcat tetettgggc cttgctatga getetggget cetgetettt getggentgt
accaggcagt gggttcaaag aggagcagaa aattaatgga caatatgtca gaaggcagag
                                                                      120
gcaagacaga cacttgctgg ggccaagccc tgcaggtgga gagggtatgc ctgrctaaag
                                                                      180
tgggtgaaag gcaaggttat gaggttctcc aggacactgg agtgcacagg tggtgtccc
                                                                      240
ccaggtaacg cctgccaccc agcccttcct cccacagaac agcatctgcc ctacccacct
                                                                      300
ttgaggtact ttggggtcct tccttcccag caggctaccc aagcccttcc aagtgcttaa
                                                                      360
aggcagattt cctatgcttg caaacgactg ccctatgcca gtgtttatca gcccgagagg
                                                                      420
gntcctgggt gtgcacaggg ggcgagcaag ctgcccaaga taagcacatc catac
                                                                      475
<210> 366
<211> 501
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 95
<223> 18-490-95 : polymorphic base A or G
<220>
<221> misc_binding
<222> 75..94
<223> 18-490-95.mis1, potential
<220>
<221> misc_binding
<222> 96..114
<223> 18-490-95.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 481..501
<223> downstream amplification primer, complement
```

```
<220>
 <221> misc_binding
 <222> 83..107
 <223> 18-490-95 potential probe
 <220>
 <221> misc_feature
 <222> 239
 <223> n=a, g, c or t
 <400> 366
 tgtgaaccac aagaggaggg aaccactctg ctcaagttgt atttcccctg aagagtcctt
                                                                        60
 agtaccttgg aaatgatgtg taagaccaag ggctrgttta ycaagaacat acacaaacca
                                                                       120
 gtaagaaaaa gatgatgaga cagataggtc acagtggcca acatgcagct cacaggaaaa
                                                                       180
 ggccaaaggc cagagccccg agcaggtgat ggaacccggt gcagggctca gtgacagtng
                                                                       240
 gggtgcccct gtccacagct gcaggagtgg gaatcgtgct gccttctgct gctacccttg
                                                                       300
 ggaagggtcc caggcctgca gggaaacccg tggcccactg tgtttcccag cggggcagga
                                                                       360
 cgtgccatga cccacagggc tcgtggggaa aaaacaagag atggtgcttc cctaaggaca
                                                                       420
 gtgtccttat tctggcagga agatgacagg gggaaccatg gtggagaggg accatgcaga
                                                                       480
 cctgaagcag ccagaacttt c
                                                                       501
 <210> 367
 <211> 448
 <212> DNA
 <213> Homo Sapiens
<220>
<221> allele
<222> 114
<223> 18-699-115 : polymorphic base G or C
<220>
<221> misc binding
<222> 95..113
<223> 18-699-115.mis1
<220>
<221> misc_binding
<222> 115..134
<223> 18-699-115.mis2, potential complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 428..448
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 102..126
<223> 18-699-115 potential probe
<400> 367
ccattcttct ctcatataaa ctgagagtga gatgaacata ttctactaaa taaagatggg
                                                                       60
atgagaattc ttaacttcat actttgctgt ttttccctta ccgaccctcc agcsaagaaa
                                                                      120
actgtgttaa actgttcaga aacccagcaa atctggctgg aaagagaaca ttatgtccaa
                                                                      180
gccacaggaa gcatgaaaag gaaataaaag aatttctctg gaagtataaa gttagaagtg
                                                                      240
ttaagatgcc ttggaagcca ggaacaattg aaatattttc aaagcacaaa gtttctgatt
```

300

```
tcctcaaagg caaaatattt gagtaagact taactatatt ctagcttcta atatattagc
                                                                       360
ttattttatt ttcaccctgt atttggctga cttaggtgca gacattctag taataatgag
                                                                       420
atatttggag tattagcatg gctattta
                                                                       448
<210> 368
<211> 478
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 293
<223> 18-1099-293 : polymorphic base C or T
<220>
<221> misc_binding
<222> 274..292
<223> 18-1099-293.mis1
<220>
<221> misc_binding
<222> 294..312
<223> 18-1099-293.mis2, complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 459..478
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 281..305
<223> 18-1099-293 potential probe
<400> 368
ttgatgtact ccgcctaccc cggttcaact gctaagtgac agcctcacag gggcagctgc
                                                                       60
tggaatcttg ggacaggaag gctggagagt gagagtctgt ccaagccctg ctgagatccc
                                                                      120
aattgagagt gttggtacag acttgttccc ctctagatag gacaaaaacc ttgagactgg
                                                                      180
aaattottgg agaagatcaa aacgotggga taaagotatg aaccaaagca aggggaagat
                                                                      240
tttttctgag gggacctgtg agtctccctg ccatctgggg agagaagaat gtygggcaga
                                                                      300
gtcctgtcta cctgtgaatg tggaagaaga gcagtggatg tgagatacac aaactgtagt
                                                                      360
gtctactatg acaatgaatc ttgcaataca catattcaat tttgaattaa gaatgttata
                                                                      420
cgataaataa tggtttctaa aatagaaaag tcatgtaagg ggaaagactg ataaaatc
                                                                      478
<210> 369
<211> 476
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 22
<223> 18-1105-22 : polymorphic base A or G
<220>
<221> misc binding
<222> 3..21
<223> 18-1105-22.mis1
```

```
<220>
<221> misc_binding
<222> 23..42
<223> 18-1105-22.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 456..476
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 10..34
<223> 18-1105-22 potential probe
ttctctcaag catagtggcc trtgccccag gaatgtagca taatgcatat ttacatctat
                                                                       60
ctctgtatag gcaggtgtag attaaattgc aacataattg gcacagcatt tgtctctatc
                                                                      120
ttaatgatga tacagatgga aaactaaaaa agatgagaga tttttcttct aaaaaaaact
                                                                      180
tttaaagtta tggagttaga acatatagtt actgtagacc caatcaccac aagtgctagc
                                                                      240
aattgtccat gtatatacag agacttaaag gcaaattgag aggcaagcag ttaattattt
                                                                      300
aaatgctgta gagctatgta gcagcccaga gataaaggtt aacgggaaag ttttcaatca
                                                                      360
caactttatt atgtaggtat acaccataag ctaaacttaa ctcaaacata atccaccttc
                                                                      420
agacctctga gcagcaagtt atatagggaa ggaaggatga cacaagtttg aatgac
                                                                      476
<210> 370
<211> 495
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 418
<223> 18-562-418 : polymorphic base C or T
<220>
<221> misc_binding
<222> 399..417
<223> 18-562-418.mis1
<220>
<221> misc binding
<222> 419..438
<223> 18-562-418.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 475..495
<223> downstream amplification primer, complement
<221> misc binding
```

```
<222> 406..430
<223> 18-562-418 potential probe
<400> 370
acttgcgatg tggatgaggg gaagcacagg cagaggtgag cgctgggttg ctggcgaggc
                                                                        60
attttcctga catcgctggt ggggatggtg gaccaagtgc agagctgggg tctgaggcac
                                                                       120
gaggggaact ttetttteet etteettaag cetggggatg tggccagaac ettggggage
                                                                       180
tgtggaggcc actgtgagct gcagacagag tccaagaagc gggtgaagac cctgcggtcc
                                                                       240
atctctttgc tcctttccct cttcccacat ttaacaatta gtttctccca tgggggcccc
                                                                      300
atcaagtcat ctcctcaaac ctggccagtg cttcatccac tgctgcctta tcttctcccc
                                                                      360
agaaaatact tcttccccaa ctgtgaggat tatgctccga aactaccccc cagcaccygg
                                                                      420
tagactttca cagctgagag acattgacct caaagtttag gttgcaaqtq aqtccacaga
                                                                      480
accacttccg cacat
                                                                      495
<210> 371
<211> 476
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 204
<223> 18-564-204 : polymorphic base C or T
<220>
<221> misc binding
<222> 185..203
<223> 18-564-204.mis1
<220>
<221> misc binding
<222> 205..224
<223> 18-564-204.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 456..476
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 192..216
<223> 18-564-204 potential probe
tcacgcattg ctttgaacac agcaggtact cactacatag tggttgattg ataccttgtt
                                                                       60
cacacctccc tagaagtgga cacctattgt cttgcctgcc aaacccatct tccttctctg
                                                                      120
gaagetgtte cetgtetete tacceegete tecceeatee teattgtaac gatggaagae
                                                                      180
tteettetet acagececeg eccygecatg caegtetete teagetecag agaggaaget
                                                                      240
acagtgtctc accaagctct tggaggagag cagcagttac agccaacatt tattgaacat
                                                                      300
gtgccagaga ctgttccaga tggtacataa actcttaatt caagctcatt aaaccctgac
                                                                      360
aagatcccta caaggcaggc aatattttta tccccatttt acacaggagg agaccaaggc
                                                                      420
agaggcctcc cggctgctgc gtctcccatg cagtacatag gtttatcaca ctccaa
                                                                      476
<210> 372
<211> 467
<212> DNA
<213> Homo Sapiens
```

```
<220>
 <221> allele
 <222> 261
 <223> 18-1032-262 : polymorphic base A or C
 <220>
 <221> misc binding
 <222> 242..260
 <223> 18-1032-262.mis1
 <220>
 <221> misc_binding
 <222> 262..281
 <223> 18-1032-262.mis2, potential complement
 <220>
 <221> primer_bind
 <222> 1..20
 <223> upstream amplification primer
 <220>
 <221> primer bind
 <222> 447..467
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 249..273
 <223> 18-1032-262 potential probe
' <400> 372
 ccactcaaat tctgatagac atttttccct aacctaaaat atttttatat ttaaaagtct
                                                                        60
 ttactcatca aacacacgca catcaaaaat gtgtagaaaa ttgaagttta tttttatttc
                                                                       120
 acgtcaccaa tatgccctaa tagtttcata aaattatact ggattgagct attattagaa
 ttattactag tatacaactg agaaaaatat tatgtataca gtataaatat taataatttt
                                                                       240
 aatatataaa tggtaaaaac maaatccatg gggaaaacat gtctaacaaa atatgcagaa
                                                                       300
 gtttctcttt tttcccagtt ttctcatgtc catggataga tattgcctat tggtttaata
                                                                       360
 gttgagtatt cataatcgat tcctactctt ctttttatat cgtatgcact gagaaaactt
                                                                       420
 gctcacataa ataggtaggt gggaatggga agagttttgc tacagta
 <210> 373
 <211> 466
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 412
 <223> 18-1035-412 : polymorphic base A or C
 <221> misc binding
 <222> 393..411
 <223> 18-1035-412.misl
 <220>
 <221> misc_binding
 <222> 413..431
 <223> 18-1035-412.mis2, complement
 <221> primer bind
```

```
<222> 1..21
 <223> upstream amplification primer
 <220>
 <221> primer_bind
 <222> 447..466
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 400..424
 <223> 18-1035-412 potential probe
 <400> 373
 cagatatgat ccactggaaa caggatcatt aacgcctttg catctaatga ggtcagataa
                                                                        60
 ttgattccag aaaactcaga accaattgag aaaattcctc attaatattc agcttcccct
                                                                       120
 gggcactctc agggcagctg gttaagccat tctctgtaag gtttactgtc tttgaacctg
                                                                       180
 aagcctctag tccacaggtc agagcaagga cagctggaat ccacaatcat gagctacaga
                                                                       240
gcaggataga ctgaaccagg tcagctcttg tctctgacct tgatggtgtg gatgccttgc
                                                                      300
catcageete eccaetgage ecageteace tagggggaga gggagettet aaaatgcaaa
                                                                      360
tegeateaga teactactet gettaaacte tteageaget eecagtgeee gmagacagte
                                                                      420
cagacteett actggtatga ggatecetee tecteceatt teteet
                                                                       466
<210> 374
<211> 484
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 293
<223> 18-1036-293 : polymorphic base A or C
<220>
<221> misc_binding
<222> 274..292
<223> 18-1036-293.mis1
<220>
<221> misc_binding
<222> 294..313
<223> 18-1036-293.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 467..484
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 281..305
<223> 18-1036-293 potential probe
<220>
<221> misc_feature
<222> 463
<223> n=a, g, c or t
```

```
<400> 374
  acaacacacc ttttctcctt aaattcatat ttccactcaa attctgatag acatttttcc
  ctaacctaaa atattttat atttaaaagt ctttactcat caaacacacg cacatcaaaa
                                                                         60
  atgtgtagaa aattgaagtt tatttttatt tcacgtcacc aatatgccct aatagtttca
                                                                        120
  taaaattata ctggattgag ctattattag aattattact agtatacaac tgagaaaaat
                                                                        180
  attatgtata cagtataaat attaataatt ttaatatata aatggtaaaa acmaaatcca
                                                                        240
  tggggaaaac atgtctaaca aaatatgcag aagtttctct tttttcccag ttttctcatg
                                                                        300
  tccatggata gatattgcct attggtttaa tagttgagta ttcataatcg attcctactc
                                                                        360
 ttctttttat atcgtatgca ctgagaaaac ttgctcacat aantaggtag gttgggaatg
                                                                        420
                                                                        480
 ggaa
                                                                        484
  <210> 375
  <211> 484
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 95
 <223> 18-1038-95 : polymorphic base C or T
 <220>
 <221> misc_binding
 <222> 75..94
 <223> 18-1038-95.mis1, potential
 <220>
 <221> misc_binding
 <222> 96..114
 <223> 18-1038-95.mis2, complement
 <220>
 <221> primer_bind
 <222> 1..18
 <223> upstream amplification primer
<220>
<221> primer bind
<222> 466..484
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 83..107
<223> 18-1038-95 potential probe
gccacaatga atgttgagga aaaagtctgg atatttaaga atgatcctta caatccagat
gtcaattctg taaactgtga atagcagttt gtcaytgata cttaagagtt gagaggctaa
                                                                       60
ctccattgct tctagcaact aacaaaatgg ggattccatc tgaggaagta aattctgggt
                                                                      120
gattatgaag tatgaggett ggaatggaaa agggatggat gaatagette atgteagett
                                                                      180
cccaatacta ttaggtgttt ttaaaccaag tatatgttgt ggtaacaaat atgaaatttt
                                                                      240
taaaagaaaa caaaaataat caacatatac acatataaaa aatgacattt atgattttaa
                                                                      300
gataaacaag ttactacctg aaagggtctc agagattgat gatttattag gagaactgag
                                                                      360
aacggcaaat gatacttgaa gtggttctat gttttcctaa acaaaggaaa agacagaagt
                                                                      420
                                                                      480
taga
                                                                      484
<210> 376
<211> 455
<212> DNA
<213> Homo Sapiens
<220>
```

```
<221> allele
<222> 361
<223> 18-1040-361 : polymorphic base A or G
<221> misc_binding
<222> 342..360
<223> 18-1040-361.mis1
<220>
<221> misc_binding
<222> 362..381
<223> 18-1040-361.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 437..455
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 349..373
<223> 18-1040-361 potential probe
<400> 376
ttcagacagg gggatcaact caagaaaaac cttgacagtt ggaaagtagc ctggtatatt
tgagggatct gagacagaat cagtttcatt agggttccct tttgaagtaa tgggaggtga
                                                                     120
ggttggccag ataagggtat acctcaaatg cctgtaggta gtgagggaac cttcttaatc
                                                                      180
aaaggaataa cagagaaagt gctgcttcag ataaccaagg ccaaggctga gttttgaatg
                                                                      240
ctgtctgggc ttagcttcca atgactgagg gagttatttc cctggatgaa ggtatgttct
                                                                      300
tatttcaatt gattcttaaa gtacttttta ttaatattta ttaaggagag ttatccaact
                                                                      360
reteatgaag titaggeggt tacactaggg caagatatgt ticectcate tictcateta
                                                                      420
ccaccttctt gaagtcctgr aaatctaagg aatgg
                                                                      455
<210> 377
<211> 403
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 356
<223> 18-748-356 : polymorphic base C or T
<220>
<221> misc_binding
<222> 336..355
<223> 18-748-356.mis1, potential
<220>
<221> misc_binding
<222> 357..375
<223> 18-748-356.mis2, complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
```

```
<220>
<221> primer_bind
<222> 383..403
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 344..368
<223> 18-748-356 potential probe
<220>
<221> misc_feature
<222> 27
<223> n=a, g, c or t
<400> 377
gagetggttc acattgatac tgaaagnaag acaacccatt agatgctgtt aacaaaaata
                                                                        60
ctatcagaaa agaagagcca aaagaagagc caaagttatc catccacctg acctttttcc
                                                                       120
catectecat cttgtctttt tetectetag ccaecagggg geactttggg getageteet
                                                                       180
tgaggacact ggagattctg agctttcaca agtacctcaa tattggcggt ggggtcagtg
                                                                       240
gatggggatg gaatgaatca gaaagtagag ctaaaggaga aacctaggga ttctgtagag
                                                                       300
cagaaaggtg agttcccaaa atcttcagct caaatatacc cctctaatct aatcaytaaa
                                                                       360
tgctgaattc actaagaaac tacccgagcc cgacagattt tta
                                                                       403
<210> 378
<211> 448
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 179
<223> 18-937-181 : polymorphic base A or C
<220>
<221> misc_binding
<222> 160..178
<223> 18-937-181.mis1
<220>
<221> misc_binding
<222> 180..198
<223> 18-937-181.mis2, complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 428..448
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 167..191
<223> 18-937-181 potential probe
<400> 378
cccaatctct ctaccccaac ccacttccaa catcctccca tgatagcaga atgatctctc
                                                                       60
tgaaggttca atgacaataa tgaacatgaa aacacttcgt aatacgttac acaaatagca
```

```
acacctacct atacacaaat gtaccgatgt ggcaggagag acagaaatgc tgtctttamt
                                                                       180
cactgttgac tatgcaggtg taaaggccag tgcattgcaa gggaatgaaa tcgatagact
                                                                       240
aagaggaatg tttctgggaa ataatggtct aagttggcac acacagtatt ggaaccctca
                                                                       300
aacgagtcaa aaaggcattc aaggtggact tgcctgcttg gcaattgtat gtcactgtga
                                                                       360
taaacctgat gagagatgta agatgtagat ctaattatgc ctattttca ggtaactgag
                                                                       420
gctgagagag gcagtaattt gcagaaga
                                                                       448
<210> 379
<211> 449
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 175
<223> 18-942-175 : polymorphic base C or T
<220>
<221> misc_binding
<222> 156..174
<223> 18-942-175.misl
<220>
<221> misc_binding
<222> 176..195
<223> 18-942-175.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer bind
<222> 431..449
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 163..187
<223> 18-942-175 potential probe
<400> 379
gactcctgtg tttctgagcc ctggataatt tcacacacat gtctggtttg gggctccaca
                                                                       60
ttttcagaaa aatatagaaa tcttggagga ggtccagggt agaccaaggg aaatgattaa
                                                                      120
tgggttgaaa gttggagttt atgaagaaag gttgtgagat ctgatctttt gctaygagaa
                                                                      180
aagtetgagt ggtgaettaa taacataagg aggttagtaa geagetgtte tecatettea
                                                                      240
ctaaggttga atgaaatgaa ataagatata aattgcaaca ggaacaaaaa tgcattacaa
                                                                      300
gtgaggactt ccaagcacca gcattgctgg attctagata gctccccaaa agaaggatgt
                                                                      360
gtagtetaet tecetggtet geaatgacag geetataaat agtgagaaag atgagataat
                                                                      420
ctcttaagat cccttctgga cctatcttt
                                                                      449
<210> 380
<211> 452
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 221
<223> 18-1213-221 : polymorphic base A or T
<220>
```

```
<221> misc_binding
<222> 202..220
<223> 18-1213-221.mis1
<221> misc_binding
<222> 222..241
<223> 18-1213-221.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 434..452
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 209..233
<223> 18-1213-221 potential probe
<220>
<221> misc_feature
<222> 403
<223> n=a, g, c or t
<400> 380
ctttcgggtt ctcatttgcc tgtagccaag acccttgaag agaacttata tggctagggt
                                                                       60
ccagaggaca ttttcaatta tccatttgat gaactctgtc aaccgtctac ctgtgtttct
                                                                      120
gctttaaagc tgaattttct tctcattagt tcaaccaatt tgtgcagacc ttaaaattta
                                                                      180
gaataaagaa taagacagca gtaccgtact taacttggag wccctggacc tcctcggagc
                                                                      240
ataaaaatca cctgggtgag tgttaaaatg aaggtccctc ctcctgaaat tgtgatttag
                                                                      300
taggggtggg gcagggccca ggagttataa ttttaataaa taccacaagc aattcgaabg
                                                                      360
cagacaatcb gaagtcacac tttgagaaac actctcttgg ggntacaaca ctgggtatca
                                                                      420
gaggaatete ceaccaagee cacacceaaa tt
<210> 381
<211> 448
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 145
<223> 18-937-147 : polymorphic base C or T
<220>
<221> misc binding.
<222> 126..144
<223> 18-937-147.mis1
<220>
<221> misc_binding
<222> 146..165
<223> 18-937-147.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
```

```
<220>
 <221> primer bind
 <222> 428..448
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 133..157
 <223> 18-937-147 potential probe
 <400> 381
 cccaatctct ctaccccaac ccacttccaa catcctccca tgatagcaga atgatctctc
                                                                        60
 tgaaggttca atgacaataa tgaacatgaa aacacttcgt aatacgttac acaaatagca
                                                                       120
 acacctacct atacacaaat gtacygatgt ggcaggagag acagaaatgc tqtctttact
                                                                       180
cactgttgac tatgcaggtg taaaggccag tgcattgcaa gggaatgaaa tcgatagact
                                                                       240
aagaggaatg tttctgggaa ataatggtct aagttggcac acacagtatt ggaaccctca
                                                                       300
aacgagtcaa aaaggcattc aaggtggact tgcctgcttg gcaattgtat gtcactgtga
                                                                      360
taaacctgat gagagatgta agatgtagat ctaattatgc ctattttca ggtaactgag
                                                                      420
gctgagagag gcagtaattt gcagaaga
                                                                       448
<210> 382
<211> 473
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 407
<223> 18-946-408 : polymorphic base C or T
<220>
<221> misc_binding
<222> 387..406
<223> 18-946-408.mis1, potential
<220>
<221> misc_binding
<222> 408..426
<223> 18-946-408.mis2, complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 453..473
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 395..419
<223> 18-946-408 potential probe
<400> 382
aattagtttt tgtgtgcgga caagatggaa ggtaatggaa atttggcttg caaagtagtt
                                                                       60
ctaacatgat ctacatccac aatctggtta taatgctata agaatattat gtgggaatag
                                                                      120
tagttcaaat cagtatttag tatgaacata aagggacaaa caatgcaaag ctaacttaag
                                                                      180
ttgtttacac ttggaactta tttaaattaa aaaggccagt ggatggtcat atgtttggct
                                                                      240
cattettete aaggeettea ggaaaacatg cetatgaaat aaaagateet caatattaaa
                                                                      300
cattttactg catttggggg acacatgaaa tctggtaata aaggaagtgt tggtcttcat
```

360

```
ttttctaatt cagcatggaa actatcttga ggaaaactga ctatggyctt agtttgtgtc
                                                                       420
 tcagaaatat atttagtctg aatcatggcg tcgacatctg acttccaaaa ttg
                                                                       473
 <210> 383
 <211> 497
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 133
 <223> 18-787-133 : polymorphic base A or G
 <220>
 <221> misc_binding
 <222> 113..132
 <223> 18-787-133.mis1, potential
 <220>
 <221> misc_binding
 <222> 134..152
 <223> 18-787-133.mis2, complement
 <220>
 <221> primer_bind
 <222> 1..21
 <223> upstream amplification primer
 <220>
 <221> primer_bind
 <222> 480..497
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 121..145
<223> 18-787-133 potential probe
 <400> 383
 cactgtgaac tactttaata cttgcacatt ttccctaaag tcaattgcca tggtatcaat
                                                                       60
 gatgcttaaa aatagagtga aattttgtta tgtgactttc acctcaataa attattaata
                                                                       120
 aaaaataaag tgrgccataa gtaggtactt cccagatttt atttatattt atcaacactt
                                                                       180
 tattctggtt cctttacagg ctgtagaaga ttctgatagg catgaaaact acaacatatt
                                                                       240
 taaaaaaaaa ttgcttagga tatctccggc ctttcaagtt tgttctcaaa aataactttg
                                                                       300
 cttgatcaaa tgaactatat tttggtttac taaagatgtt ctcagaaaga agaatatgtg
                                                                       360
 tacatcaatg atttgtaatg catttaaaat tcaatactat tttttaaaaa tttaagtatt
                                                                       420
 ataatggtac tatttatagc tagcagaagt agatataggg ccaagtttta atttgcttgg
                                                                       480
 aaggttgagg cattcct
                                                                       497
 <210> 384
 <211> 552
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 239
 <223> 18-1149-239 : polymorphic base A or G
 <220>
 <221> misc_binding
 <222> 220..238
 <223> 18-1149-239.misl
```

```
<220>
<221> misc_binding
<222> 240..259
<223> 18-1149-239.mis2, potential complement
<220>
<221> primer bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 532..552
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 227..251
<223> 18-1149-239 potential probe
<400> 384
ggggactaga gcaagagatt gaaaaaagaa tgaaaataag catacattca cacagaaaca
                                                                       60
cacacatgca cacaacttga gatcaccaaa gccaaacttc tcttttgctc ttcttgcttg
                                                                      120
ggacataccc aaagtgtggc agttcaacag taagctgtag ggataagtgc tcgagctctg
                                                                      180
gagttagaga aaatgggttc tgaccctaat tcatttcttt gtatctatat tacttgctrc
                                                                      240
aagttactga atctttctga cccttaattt ccttcatctg caaaaaggga taataacact
                                                                      300
tatttcttag gagtgttgtg aagattaaat aagatgatgt atactgagtg attggcacag
                                                                      360
tgcctaatac ataataaatc aaattaaagg gcagtgagct tcagtataca tttgggagga
                                                                      420
ctcttggctt ttaggaaaga agtcagaaga ccccaagtcc ctcccatctc ctctgctgca
                                                                      480
ttatttttct ggaacggatt agggagggt tggcaagaaa gaacagatga tgtccctatg
                                                                      540
ctattcacac tg
                                                                      552
<210> 385
<211> 500
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 291
<223> 18-1159-291 : polymorphic base A or G
<220>
<221> misc_binding
<222> 272..290
<223> 18-1159-291.mis1
<220>
<221> misc_binding
<222> 292..311
<223> 18-1159-291.mis2, potential complement
<220>
<221> primer bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 480..500
<223> downstream amplification primer, complement
```

```
<220>
<221> misc binding
<222> 279..303
<223> 18-1159-291 potential probe
<400> 385
atgtgtctgg tcagtgaaag caaacagcac tcttctctgc cttaaatgtt acagattctg
                                                                       60
acagaaaaat atcttaatta atcagacttt atcatgggca ttcaaaggtq attgaaacaa
                                                                      120
taggtgaagt tcaacttgaa ggtaatcaca aagggcaatt tacagtgttt cttagagttg
                                                                      180
ggtaggtact gtcctcttgg ttagattcag aaatgctgcc tgtcgtttct ttctqqqttq
                                                                      240
aggtatctag tagccttgcc tgctcttatg tgacaagcac aaattactcc rctgtgatga
                                                                      300
atctcatggg atcacagaag gtagaggtga caaggagatc tatcacatca tatcaggtcc
                                                                      360
aaattcccag gtgccctgta ctgcatttcc tctgccttcc actgtatttc attttaacct
                                                                      420
gggttaaagt agcagcatet tecaetggge tgtaetgtte ggaaatgggt ggetaccatg
                                                                      480
ggttgcttta ggattctaca
                                                                      500
<210> 386
<211> 449
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 273
<223> 18-1135-273 : polymorphic base C or T
<220>
<221> misc_binding
<222> 254..272
<223> 18-1135-273.mis1
<220>
<221> misc_binding
<222> 274..293
<223> 18-1135-273.mis2, potential complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 429..449
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 261..285
<223> 18-1135-273 potential probe
<400> 386
gcaagcgatg agctaaagtg gaagtgtagg agaggtgagt tgcttaggtc taaggagaaa
                                                                       60
gactgcttag gtgtgtttc acccccagga cgaagaaagg aacactgggt gagattttgt
                                                                      120
tcaactaccc atagttacca ccagatggtg aaactgatcc cgggcctctt gggtattgat
                                                                      180
cagtttatgg ggagatgggg agaagactat ctttcacttg ttaattcatt aatttctttc
                                                                      240
gcaaatattt tttcagtacc tgctaagtcc cayggactat gctaggagct gctgttaaaa
                                                                      300
tgacaaacca gataaggtca ctgcccttaa tcaacttaca gttgggtgag aagctatcag
                                                                      360
gtacaagtat ggccctagaa caaattagtc ttttctagtt aataatctta tgtgatgaga
                                                                      420
tttggcttct cctttggtga cttgcctca
                                                                      449
```

<210> 387 <211> 450

```
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 108
<223> 18-1136-108 : polymorphic base G or C
<220>
<221> misc_binding
<222> 89..107
<223> 18-1136-108.mis1
<220>
<221> misc_binding
<222> 109..128
<223> 18-1136-108.mis2, potential complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer bind
<222> 433..450
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 96..120
<223> 18-1136-108 potential probe
<400> 387
gtattactaa attcctcatc cctggtaaca tttccatgtt agctgttttc tatttgtttt
                                                                   60
ttcttttcca caatggtgcg gcctagaaac agttaacctt cttcgggsta ttacatacct
                                                                  120
tagacatata aaaaagctat gagcattcaa cactgaaata atcatataaa ccaaacatac
                                                                  180
aaatacgatg taaagaactg acacaaatca tcggagttta gagaacaacg tgacgggcag
                                                                  300
cagaggagag gagagggttg aagcaaactt ttttggtttt tttttcctaa gtagggctgg
ttctggcttg tcttccttct ccccactttg cttcttactc ttgggcttac aaactgcctg
                                                                  420
gtttcccttc tccaagtcag ggcttcgttt
                                                                  450
<210> 388
<211> 450
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 68
<223> 18-1147-68 : polymorphic base A or G
<220>
<221> misc binding
<222> 49..67
<223> 18-1147-68.mis1
<220>
<221> misc_binding
<222> 69..88
<223> 18-1147-68.mis2, potential complement
```

```
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 430..450
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 56..80
<223> 18-1147-68 potential probe
<400> 388
atctggattt aaagttctgg gaagggaaag ttgaccttct agacagggca acacttgccc
                                                                       60
ttgccctrtg tatttacctc agtaagcaac aagctgtagc tgtaacctaa tgtgtggcca
                                                                      120
aggaatggga atttcaatgg tttcactagg aatatttggt caaatgctga tgggtgtctg
                                                                      180
tattaaagct aagctatgcg ttttctgata aatgtataaa tttattcttt cccttattaa
                                                                      240
acaaatgttt attgagtacc tactgtgtac cagacacagt tccatgcact gagaatacat
                                                                      300
cagctaaaaa cataatcaaa attcctagct ttcatggagt ttattatatt ctatttgggg
                                                                      360
agtgggaatg aggtagcagt tggtgaaatg gaaacagaga ccatgactag tctggttaac
                                                                      420
agaaaactac agaaggacaa acactcagac
                                                                      450
<210> 389
<211> 595
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 295
<223> 18-1157-295 : polymorphic base A or T
<220>
<221> misc_binding
<222> 276..294
<223> 18-1157-295.mis1
<220>
<221> misc_binding
<222> 296..315
<223> 18-1157-295.mis2, potential complement
<220>
<221> primer bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer bind
<222> 576..595
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 283..307
<223> 18-1157-295 potential probe
<220>
<221> misc_feature
<222> 568
```

```
<223> n=a, g, c or t
<400> 389
gagtcactag agagtctttt gtggacacct gctccttctg aaacaattga cttqtctact
                                                                     60
ttcacaaaca gcagtatttg tattaaagaa ccagttggca tcaatgccca agtgcaggtg
                                                                    120
tcctaatata taagatggtg cttcattcag aaaactcaag gtagagtaaa ataaattatc
                                                                    180
aacatettgg etceatgete catteacaac tgttaatttt acagggttat gettecatet
                                                                    240
ctgagcagag aactcctggc agggacagct gctcctgtgt ctcacattgg gctgwgctca
                                                                    300
tcccagtagg agtcatcaag agcagcaggt tagcgagaag gtgatagtac atcagagaac
                                                                    360
tgagcagtgg aggagggaga aggatgggcc tctccaaagt gcttttcatt tactccttta
                                                                    420
atctttgtgt gtatatacat gcatggttaa ctaaggaaaa aggaaaagtt gacttgaatt
                                                                    480
tgactgagaa aattatcara cctgctttta cttgtacatg tagctcattt tcaaaaatac
                                                                    540
ttttgtgtat ccactggtat gttgatgntc ctatscagca ataggtctgt acqct
                                                                    595
<210> 390
<211> 569
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 459
<223> 18-802-460 : polymorphic base A or G
<220>
<221> misc binding
<222> 440..458
<223> 18-802-460.mis1
<220>
<221> misc binding
<222> 460..479
<223> 18-802-460.mis2, potential complement
<220>
<221> primer_bind
<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind -
<222> 549..569
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 447..471
<223> 18-802-460 potential probe
<400> 390
60
aggttcagag catgagtttc agagcatgat aaacctgggg ttaaatccat ggtctgtcaa
                                                                    120
gtactgacca tgtgaatttg gacaacttac taaccctcta taaacttgtc ttctctttca
                                                                    180
taaaatgggg ttaatcatat ttacttccta gggctaatta tttggataaa gaggatatct
                                                                    240
aaaacctatt agagtgccga catgcagtaa atgactatac attaaatttt ctattcagaa
                                                                    300
tattattctt ttatactaat attcccaata ttagtaagat taaatgaatg atattttatt
                                                                    360
tcctagtcct ctgttttgtt accctattta ttctgattga aagagtcttg ttattggtga
                                                                    420
tgtcagaaga agaaaggccc tattaatatt ttcagaacrt ggaattttga attaatataa
                                                                    480
actggaagag tcctttgaca attgtaagct attccaaagt cacataaaga ataacaatgg
                                                                    540
acctctctgt gcagcatttt tatgatgcc
<210> 391
```

<211> 455

```
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 109
<223> 18-1064-110 : polymorphic base C or T
<220>
<221> misc binding
<222> 89..108
<223> 18-1064-110.mis1, potential
<220>
<221> misc_binding
<222> 110..128
<223> 18-1064-110.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 438..455
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 97..121
<223> 18-1064-110 potential probe
tctgtgactg taaatcccaa ggatttaaat gaaaaataga aaaatgccca ctaattagtc
                                                                        60
attcactttg ggcatttaac agaaattctt tgagtatatt ttatatcayc tctattacaa
                                                                       120
tcacactcct ttctaaagtc atagcttgcc ttccagcaag atattcaaga ctaattcatt
                                                                      180
ctcagttacc acgagtcatt cctttgtggt tatatttccc ccagagtaat atatcctgcc
                                                                      240
acticitict cigicatati gicatatigi tagaatgatg aattotagca tacticccaa
                                                                      300
ataattattt tcagttaatc tgtctataaa atctctttat ttttaacaga gtcaacaaaa
                                                                      360
tgtactgagt gggcacagtc agcaaacatc tctacccagt cagacacaga gcactcttac
                                                                      420
agccccactg tataacacta tggtgatttc tcagc
                                                                      455
<210> 392
<211> 516
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 327
<223> 18-1068-327 : polymorphic base C or T
<220>
<221> misc_binding
<222> 307..326
<223> 18-1068-327.mis1, potential
<220>
<221> misc_binding
<222> 328..346
<223> 18-1068-327.mis2, complement
```

```
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 496..516
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 315..339
<223> 18-1068-327 potential probe
ctactagatt ttgcacagga aaaatattca catataagta tcaaggttaa cgttaccaaa
                                                                       60
tgattttaaa tttggattaa ccaagatatt tactaaatgc taccatctgg gataaatcca
                                                                      120
ttctcactta atctttcaca cagattgagc ttcacatggt acaagatatt tcccacgaag
                                                                      180
tataccagag gataagagct tgggatttaa attccaacag gcagggttca ggtaccaccc
                                                                      240
ttgctagtac tagcateact gcacaactgc tatcttctaa gcttgagtct gcatgtgtgt
                                                                      300
aaatgggaat aatgacaata acatctycct cacaggtcca ctgtgaggat taaatgagga
                                                                      360
aaggcacgta ctccttagta gtcatcacat aatcatatat gtaaacattt agtcaatggt
                                                                      420
ggttactatt tataaaccag taaaatctct cccacatgct ccttagccat tagcacattt
                                                                      480
ttttaaatga taaaagtgat aagcatcttg tgaatg
                                                                      516
<210> 393
<211> 472
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 365
<223> 18-1069-365 : polymorphic base A or G
<220>
<221> misc binding
<222> 345..364
<223> 18-1069-365.mis1, potential
<220>
<221> misc_binding
<222> 366..384
<223> 18-1069-365.mis2, complement
<220>
<221> primer bind
<222> 1..19
<223> upstream amplification primer
<220>
<221> primer bind
<222> 455..472
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 353..377
<223> 18-1069-365 potential probe
<400> 393
tcaggacagg cagataaggt agttgtcata tttcatttgt tatttttaaa attgtaaacc
                                                                        60
```

```
gattgattag aaaacaataa tttgatttct taatcaaatt ttttaatgtg attttaatga
                                                                       120
gatgctcact gcagccaatg ttcttaaatt tgaaataaaa acactgaatg tattcattgt
                                                                       180
ttaaagactt cataattaaa gggtaacaac aaatttttt tcttgtccaa aaatatgcta
                                                                       240
caaaatatta tagaatacaa attctgcagc acactgttag aaaaggttta tgacaggctc
                                                                       300
tgtgtcactg tgaagctttt gtctttcaa tatagatgct agagaatttc catgtagtaa
                                                                       360
cagtrgttag ggtagcttac cttttttaag tttgttaaat gctcaaaata tattatctca
                                                                       420
aatagtcatt tattaaaaga aaatgtatgt gaggcctcct tttatttccc ag
                                                                      472
<210> 394
<211> 458
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 367
<223> 18-1073-367 : polymorphic base A or G
<220>
<221> misc_binding
<222> 348..366
<223> 18-1073-367.mis1
<220>
<221> misc_binding
<222> 368..387
<223> 18-1073-367.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 441..458
<223> downstream amplification primer, complement
<220>
<221> misc binding
<222> 355..379
<223> 18-1073-367 potential probe
<400> 394
agagagacga ctttcacggg gcactcatac caaaatctaa cctgaggagg aagctcactc
                                                                       60
acagattgtt ggaaatcgct agacctcagc ctgagtttac aaggatggac agggcagctg
                                                                      120
aaaacatgga gccctgggtt tagagacaat ggtcattaca gacctacggg gtctagactg
                                                                      180
acagatacta aggetgeaag gteaggttaa eeteageaet ataaaeteat teeeateaee
                                                                      240
ccaagcgact tgaattcttt ataatcatgc attgttttta caaaaatggt agtcatatgt
                                                                      300
gttaggtaat gtcccctcct ccccccataa aacaaaaaat ccatttcatt tccttctcgt
                                                                      360
aaacaargtc atggtttggc tcccctcttc ctggctagtg agagcttaga gactaaaaca
                                                                      420
caattttcac taccacagta ctctttgtcc tctcctct
                                                                      458
<210> 395
<211> 475
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 272
<223> 18-1070-272 : polymorphic base A or T
```

```
<220>
<221> misc_binding
<222> 253..271
<223> 18-1070-272.mis1
<220>
<221> misc_binding
<222> 273..292
<223> 18-1070-272.mis2, potential complement
<220>
<221> primer_bind
<222> 1..19
<223> upstream amplification primer
<221> primer_bind
<222> 455..475
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 260..284
<223> 18-1070-272 potential probe
atcagacatt tctactaggt ccattgacaa atttatttga ccggagtacc tcattttctt
                                                                       60
catatattac cctgtataaa atccagaatt gttacagcag tacatttcac cattagctat
                                                                      120
tagatacett gtttaateae ettttteatt atttttaaat gtgteteate tgetaataet
                                                                      180
gacattatct taaagattct ttgtatttga atcctcaaat tctatagcat actqtctaaa
                                                                      240
aattgagata cacacacaca cacacacaca cwcacacaaa tttgtgtgta tctataactt
                                                                      300
tggtaagagt ggatggcctt tcagcgagag ttgagaaaaa ctagacttgg agaattcatt
                                                                     360
tcaagcettg ttttaaaace aagtteatat gacattgace attaggeeae tetagtetgg
                                                                      420
tacttagaaa gatgtaggct gtatataata gatacctaca attagtattt gaagc
                                                                      475
<210> 396
<211> 469
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 35
<223> 18-1057-35 : polymorphic base C or T
<220>
<221> misc binding
<222> 16..34
<223> 18-1057-35.misl
<220>
<221> misc binding
<222> 36..54
<223> 18-1057-35.mis2, complement
<220>
<221> primer_bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 449..469
```

```
<223> downstream amplification primer, complement
 <220>
 <221> misc binding
 <222> 23..47
 <223> 18-1057-35 potential probe
 <400> 396
 caagcagtcc attacacctc tcataaattt attayacacc tgcattttta taactattat
                                                                        60
 gctttttaat tgttggccac catttttagt gcttctgaat tgttatggtt ctcaagcagc
                                                                       120
 agttgtcacc ttggttttga attaatgctg tgacgcttgc ttccaggacc cctatggtgt
                                                                       180
agccgtgggt ggaactgtgg ggcactgcct gtgcacggga ttggcagtaa ttggaggaag
                                                                       240
 aatgatagca cagaaaatct ctgtcagaac tggtaagtct tgaaaattac aaatcagata
                                                                       300
 acattttaga atcactgaga gattaaaggg tgttagcttt gattatttaa atttctgctg
                                                                       360
 ctgaagtata cttggttttt ctaattacct accatctctt ataataagag gtattaawcc
                                                                       420
 tggtatwgca aatacggact tttttcacct gtgtagaagt tagcaaaat
                                                                       469
 <210> 397
 <211> 577
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 415
 <223> 18-1062-415 : polymorphic base C or T
 <220>
 <221> misc_binding
 <222> 396..414
 <223> 18-1062-415.misl
 <220>
 <221> misc_binding
 <222> 416..435
 <223> 18-1062-415.mis2, potential complement
 <220>
 <221> primer bind
 <222> 1..18
 <223> upstream amplification primer
 <220>
 <221> primer bind
 <222> 557..577
 <223> downstream amplification primer, complement
 <220>
 <221> misc_binding
 <222> 403..427
 <223> 18-1062-415 potential probe
 <400> 397
 acagcacaag tacctagcaa attagataca tctaacaaat gactgtttaa taaagtagat
                                                                        60
aatttatctt tatatttaat aattttaaaa gaaacataga aatttttcc agtttgagtg
                                                                       120
tccaattggt taacaatggt gaaaattaga atgtttaatt ttcccttatt aaatacagta
                                                                       180
aagttttatt tataaattaa taacaatata ttgccaggtc tcacttttgc ataaaataca
                                                                       240
gctttatggc ataatgggag tccaggattt attataacaa ataagatggg atttcaatat
                                                                       300
acactgaaat agattacaga tttttaatat ggtcacaatt tcattttata tatattttaa
                                                                       360
tattgaaaaa ggacctaata gggcatatgg agtaatgctg tatttaaaga agtcygtatt
                                                                       420
tttcataaac ttgcaaaagg atagtgctac tgaatacaac atttgacttt tttgttaaca
                                                                       480
gctactactt acattttaaa tattctgggg ttaatgaatc actttccagc agatgagtag
                                                                       540
agagtatttt ataaacctct gaatgttccc cttctgg
```

577

```
<210> 398
<211> 453
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 165
<223> 18-1082-165 : polymorphic base A or G
<220>
<221> misc binding
<222> 146..164
<223> 18-1082-165.mis1
<220>
<221> misc binding
<222> 166..185
<223> 18-1082-165.mis2, potential complement
<220>
<221> primer bind
<222> 1..18
<223> upstream amplification primer
<220>
<221> primer bind
<222> 433..453
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 153..177
<223> 18-1082-165 potential probe
<220>
<221> misc_feature
<222> 50
<223> n=a, g, c or t
<400> 398
cctcattttt tcatggcgct tcagtcgtca ccctcgtttg agtatatttn gatttgacta
ctacttcacc caagtagcat aacagctgct ttctctcagc cttttatatt ctagaatcat
atgcagtaac attcccatta atagcctcac taaattgaag gacarttcta cagaaacatc
                                                                      180
catgitatti gigigaggia taataggaga cccagagcaa ticaggitta igagciacta
                                                                      240
caaaggtcca caatgtagtc tgcaatttga agagattgtg aaagaaccca gttaatcatc
                                                                      300
cagcactgta ggatgcagca attgtcctac atggtaactc tgtgaggaag atgatagcta
                                                                      360
ctactgtgga gatcttaaga ggagttttca gcttaaatgc caagttagaa gtagcacatg
                                                                      420
ttggtaaaaa aggtcatatt tgtagttttc tgc
                                                                      453
<210> 399
<211> 494
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 363
<223> 18-1080-361 : polymorphic base C or T
<221> misc_binding
```

```
<222> 343..362
 <223> 18-1080-361.mis1, potential
 <220>
 <221> misc_binding
 <222> 364..382
 <223> 18-1080-361.mis2, complement
 <220>
 <221> primer_bind
 <222> 1..18
 <223> upstream amplification primer
 <220>
 <221> primer_bind
 <222> 475..494
 <223> downstream amplification primer, complement
 <221> misc_binding
 <222> 351..375
 <223> 18-1080-361 potential probe
 <220>
 <221> misc_feature
 <222> 342
<223> n=a, g, c or t
<400> 399
ttatcggacc taaggctgca actttgcctt catatttatg atgcttttaa ataatattaa
                                                                        60
tatttaatet ttattaagaa eccaatgtgg taggeactgt tatteetatt ttetaaagaa
                                                                       120
agaaactgag gcccagagaa gtaaacagct tgaccaagtc acacatgtgg taagtagggc
                                                                       180
agcccaagtt tgaaccattc agtctacctc agggcccacc acgctcctgg ccacttaact
                                                                       240
gtgccgctct aaccagctga gcgaacctgt gtgcagaagg cattgtctgt ctggcctcag
                                                                       300
agtatttgtt tttcatatag tcataactat gctcaaattt tntaatttaa aatatgggtc
                                                                       360
ttyaggacat aaagtgaaag aacgtgtgtg atttggctca agatatagat tgctttctat
                                                                       420
accataaaat ctgtagctca gattccttta aaaaatgaaa ctctctcata cttyagaaag
                                                                      480
agggaagccc ataa
                                                                       494
<210> 400
<211> 511
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 297
<223> 18-506-297 : polymorphic base G or T
<220>
<221> misc_binding
<222> 278..296
<223> 18-506-297.mis1
<220>
<221> misc_binding
<222> 298..317
<223> 18-506-297.mis2, potential complement
<220>
<221> primer_bind
<222> 1..20
<223> upstream amplification primer
```

```
<220>
<221> primer bind
<222> 491..511
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 285..309
<223> 18-506-297 potential probe
<220>
<221> misc_feature
<222> 46,100..101,104,123,166
<223> n=a, g, c or t
<400> 400
atctccacct tgccgtgttg gaacaccccc acgcaggagt aggtgntgcc caggtcgatg
                                                                       60
cogatogoog eggetttggc catgooggtk coctgetetn ngtnggetes getetgagay
                                                                      .120
yanggottgg aaacggmrsa ckggatccgc gasaagagct crgtcnttcs gracgccgga
                                                                       180
aacteracre geeggtgeet geageegeac aggttegete tggaaageet tgggaeegeg
                                                                      240
ggagtcactc tcgaaagacg aagcggaccc tcgcagcagc tcctcaggct ggccgtkwtc
                                                                      300
eggacegeky geceetsgge ttttataagt egteryggag accegeettt yeeettetga
gccaatcacc ragetegatg aggetgecag gtegggaata ttecaggggt ttegectece
                                                                      420
gtcctgcccc ccagccttcc ttggaccaat cagaggscag rgtgccgccc yctgctcaga
                                                                      480
astctccaga gtcttctggg attcactgga g
                                                                      511
<210> 401
<211> 400
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 38
<223> 18-570-38 : polymorphic base A or G
<220>
<221> misc binding
<222> 19..37
<223> 18-570-38.mis1
<220>
<221> misc_binding
<222> 39..58
<223> 18-570-38.mis2, potential complement
<220>
<221> primer_bind
'<222> 1..21
<223> upstream amplification primer
<220>
<221> primer_bind
<222> 380..400
<223> downstream amplification primer, complement
<220>
<221> misc_binding
<222> 26..50
<223> 18-570-38 potential probe
<400> 401
```

```
gaagaactgc ttcattcggg gctcagtggt ccgatacrtg cagytgccag cagaygaggt
                                                                         60
 csacamacag ttgctacagg atgcrgcaag gaaggaascc ctgcagcaga aacagtgatg
                                                                        120
 getectecte etetteceet yeetettea ttggtgacce ataaccecaa gteccagece
                                                                        180
 agaaccccta acccccaata cttgaagggg ttttgttttt ttactaatga tggttttgtg
                                                                        240 -
 ggttttttt aagggatgag tggatgagag gagtaatagg gaacagctat cctctcttga
                                                                        300
 gaaggggagg ataagtaggc tgggaaactt caaagccttc ccagtcccca gcacctgcct
                                                                        360
 ttctcactac ttctctggag atggtaggag agtttcctag
                                                                        400
 <210> 402
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-473-362 : polymorphic base C or T
 ttcttagggc taagaaatca gaaygtgcct ttagaaataa taagtat
                                                                        47
 <210> 403
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 99-12361-88 : polymorphic base C or T
 <400> 403
 acctggcatt atttggaatg cttyatttcc tctgtacctg gccttca
                                                                        47
 <210> 404
 <211> 47
 <212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-12368-335 : polymorphic base A or C
<400> 404
ggtgacagta atacctacca ctamggtgtt gtgagaatta aatgagg
                                                                        47
<210> 405
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-12370-67 : polymorphic base A or G
tttaaaagga aaagcagagt tcartgcaaa ttctagaaat agttgtc
                                                                        47
<210> 406
<211> 47
```

<212> DNA

```
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32148-315 : polymorphic base G or C
<400> 406
gtggttctct ggaaaccgag gctsgttgca aacccctaaa aagtact
                                                                        47
<210> 407
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 19-46-322 : polymorphic base C or T
<400> 407
ggccctggct gttccctgct gtgyactgcc caaggctaga catcaca
                                                                        47
<210> 408
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 19-47-315 : polymorphic base C or T
cgctgttttg ggggaagtct ctcycacttt gggatcctgc tgaagct
                                                                        47
<210> 409
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 19-51-347 : polymorphic base A or G
<400> 409
gtgtttetet tteacttact tggrtgatea accttggggg gtgtgat
                                                                        47
<210> 410
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-32052-262 : polymorphic base C or T
cctatttttt ataacgtatt aacyttatta ttttcttatt attttaa
                                                                        47
<210> 411
```

```
WO 01/51659
                                                            PCT/IB01/00116
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 10-213-292 : polymorphic base G or C
tcatcatgac ccaaagtact ggasagacc tgagaagttc ctccctg
                                                                        47
<210> 412
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-419-135 : polymorphic base C or T
<400> 412
cacttccctt ctgttggggc aaaytcagtt ttttttgtga aaatgtt
                                                                        47
<210> 413
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-424-419 : polymorphic base G or C
<400> 413
atttccaagg gtaaaaggta gagsaggggg tgtggaggtt tggatat
                                                                        47
<210> 414
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-429-289 : polymorphic base A or C
aggtaaagcg tetttttee ettmaactag eccatttgaa actette
                                                                        47
<210> 415
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-246-256 : polymorphic base C or T
```

47

tggggtggca gtgaccgttc caayatggat gagtgagaag caggttc

```
<210> 416
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-355-67 : polymorphic base C or T
<220>
<221> misc_feature
<222> 7
<223> n=a, g, c or t
<400> 416
gactagnic cctagagctg aggyctgtct tgaaggactc actgggg
                                                                        47
<210> 417
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-353-267 : polymorphic base C or T
<400> 417
tggcctctag gggatctgca gttygggcgg tgggcggttc tgattgg
                                                                       47
<210> 418
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-338-305 : polymorphic base A or G
<400> 418
cctgcagcag ttctttggct tctrtccact cctggggttg gggagga
                                                                       47
<210> 419
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 24-243-346 : polymorphic base C or T
ttccaggagg aagccactgc aaayagggcc tgcagctgcc ctctctc
                                                                       47
<210> 420
<211> 47
<212> DNA
<213> Homo Sapiens
```

```
<220>
  <221> allele
  <222> 24
  <223> 99-62531-351 : polymorphic base C or T
  ccctagaggc agttgactta cccyctgcag ccctccctgc cgcctca
                                                                          47
  <210> 421
  <211> 47
  <212> DNA
  <213> Homo Sapiens
  <220>
  <221> allele
  <222> 24
  <223> 99-54279-152 : polymorphic base C or G
 <220>
 <221> misc_feature
 <222> 9
 <223> n=a, g, c or t
 <400> 421
 acceggeang ggetetataa atasagatgg aaagagggag gtgggeg
                                                                         47
 <210> 422
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <223> 18-168-245 : polymorphic base A or T
 <400> 422
 caagetattt gcatataggg aagwtteeca gtetgeeest gttetee
                                                                         47
 <210> 423
 <211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-171-291 : polymorphic base C or T
<400> 423
ctgcagagac tgtcacagga ataytgaaga aagcatcatt cctagaa
                                                                        47
<210> 424
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-172-346 : polymorphic base C or T
<400> 424
```

```
ccatccagtc aagccccact cagyatagat gtcctctgcg taccccc
                                                                         47
 <210> 425
 <211> 47
 <212> DNA
 <213> Homo Sapiens
<220>
<221> allele
 <222> 24
<223> 18-177-406 : polymorphic base C or T
<220>
<221> misc feature
<222> 34
<223> n=a, g, c or t
<400> 425
ccccggaggt gcaatgaata gctyaccgaa gggmscaact tcattca
                                                                        47
<210> 426
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-298-338 : polymorphic base A or G
<400> 426
ttcccacatc tgcctcagac tggrggggc tcagctcctg gggtgat
                                                                        47
<210> 427
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-298-110 : polymorphic base C or T
<400> 427
ggaacttcca gattcagaga atsygattta gggaaackgt ggcagat
                                                                        47
<210> 428
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-299-105 : polymorphic base A or C
<400> 428
taaacagtcc tggggagatg tccmgctcct gtagccccat catgggt
                                                                        47
<210> 429
<211> 47
<212> DNA
<213> Homo Sapiens
```

```
<220>
  <221> allele
  <222> 24
  <223> 18-884-30 : polymorphic base G or C
  <400> 429
  gctttcctta ctcttcagat agtsataaag gacattaaac ctaagca
                                                                          47
  <210> 430
  <211> 47
  <212> DNA
  <213> Homo Sapiens
  <220>
  <221> allele
  <222> 24
 <223> 18-299-343 : polymorphic base C or T
 <400> 430
 tgtgtatgta caggaattgc tgayggaagt ccaacaggct ctcctag
                                                                         47
 <210> 431
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 99-61513-139 : polymorphic base A or G
 geetetteac atettette cacracatag tetggaettt gtacatg
                                                                         47
 <210> 432
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
<222> 24
<223> 99-61514-179 : polymorphic base A or G
<400> 432
tacgaattca gtaaatactt ggaraataag tgaataattt caattca
                                                                        47
<210> 433
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-61516-323 : polymorphic base C or T
accaggtgtc cttgggcagg agayggcttc aaatgcagac cggagtc
                                                                       47
<210> 434
<211> 47
```

```
<212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-204-70 : polymorphic base C or T
 ctcagagata actataggat tttyaatttg gataataaga agatggt
                                                                         47
 <210> 435
 <211> 46
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-207-441 : polymorphic base C or T
 <220>
 <221> misc_feature
 <222> 31
 <223> n=a, g, c or t
 <400> 435
aaatggaaat gtttgtaatt cttygatgtg ntacaaacct gaaact
                                                                        46
 <210> 436
 <211> 47
 <212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-210-65 : polymorphic base A or G
<400> 436
agacaacttg tttttctctc tcarttacaa aagtagacta caaatat
                                                                        47
<210> 437
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-212-200 : polymorphic base C or T
<400> 437
catactctga tacttgtgga gggyatatcc tgataaagca gcgattt
                                                                        47
<210> 438
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
```

```
<223> 18-229-334 : polymorphic base C or T
agaccagttg gactgttgga ataytgtagg ccagaactga gatattt
                                                                       47
<210> 439
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-230-332 : polymorphic base C or T
gttcaaaatt cttgacataa agayaaagat gttgagttcc agaaaga
                                                                       47
<210> 440
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-966-378 : polymorphic base A or C
<400> 440
ctaggaatgt tccaagctat gctmcaggat gttgagtttc tcaggga
                                                                       47
<210> 441
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-987-308 : polymorphic base A or C
<400> 441
gctacaggtt tttaaaaaat taamttttaa ttaaaagcaa ctcaaca
                                                                        47
<210> 442
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-1169-118 : polymorphic base G or C
ggccatgttg aacccacttt ccastgggga gcagttcctt taattac
                                                                        47
<210> 443
<211> 47
<212> DNA
<213> Homo Sapiens
```

<220>

```
<221> allele
 <222> 24
<223> 18-1172-138 : polymorphic base G or C
<400> 443
aagagtagga aggggtttct cagsttgtaa aactttcaat gctaaca
                                                                         47
<210> 444
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1173-92 : polymorphic base C or T
<400> 444
tgaaacttca gagggccaag attycccctt ggctcccaca ctgtagt
                                                                        47
<210> 445
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1174-387 : polymorphic base C or T
ttatctaagc ccttgggcta cacyaaatag tttaagctaa gaaagtg
                                                                        47
<210> 446
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1175-416 : polymorphic base G or C
<220>
<221> misc feature
<222> 36
<223> n=a, g, c or t
<400> 446
aagagtagga aggggtttct cagsttgtaa aactbncaat gctaaca
                                                                        47
<210> 447
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-542-146 : polymorphic base A or G
<400> 447
caactgcttt ttgttggatt gtgraaagta ttacaattaa ttttaaa
                                                                        47
```

```
- . . .
  <210> 448
  <211> 47
  <212> DNA
  <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 8-42-211 : polymorphic base C or G
 <400> 448
 ggaagaagac cgagtgtgtc ttcsttttta aaaagctacc tccgttc
                                                                         47
 <210> 449
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 8-45-389: polymorphic base A or G
 <400> 449
 agaccggcgg caacactact ggtrtctccg acgtgaccgt cagctac
                                                                         47
 <210> 450
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
<223> 18-994-270 : polymorphic base C or T
gtaaatgtgt agcaattact gaayctgtgg tataacaatt ttctcca
                                                                        47
<210> 451
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-912-165 : polymorphic base C or T
<400> 451
ttgggttttt actgaacttt aaayatttta ttaggactta caaatt
                                                                        47
<210> 452
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-991-124 : polymorphic base C or T
```

```
<400> 452
  tagcagaaga caaagccttt tcaygtttac cgatgaagct gcaaaag
                                                                           47
  <210> 453
  <211> 47
  <212> DNA
  <213> Homo Sapiens
  <220>
 <221> allele
  <222> 24
 <223> 18-920-219 : polymorphic base C or T
 <400> 453
 gcatagataa aaactgcccc acayccccaa gtaaaagtct gctctct
                                                                          47
 <210> 454
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-911-312 : polymorphic base A or G
 <400> 454
 tcagtaataa aaacaattca gccrtagttt ggggataatg gacaaac
                                                                         47
 <210> 455
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
<222> 24
<223> 99-65963-368 : polymorphic base A or G
atttgtgtct tttacagaat tgtrtgacaa tgacttttgg acatttg
                                                                         47
<210> 456
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 99-65966-225 : polymorphic base {\tt C} or {\tt T}
<400> 456
gccaccctgt tgcaactctt taayggttaa tgattctctc ctcattc
                                                                         47
<210> 457
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
```

```
<223> 99-65968-75 : polymorphic base C or T
   atcattctga caccagaaag cagyagaatg aacaaacata acaacag
                                                                           47
   <210> 458
   <211> 47
   <212> DNA
   <213> Homo Sapiens
   <220>
   <221> allele
   <222> 24
   <223> 99-5069-331 : polymorphic base C or T
   <400> 458
   accceggaag accgetegga eccygaegea tgeaccatta geaagga
                                                                          47
   <210> 459
  <211> 47
  <212> DNA
  <213> Homo Sapiens
  <220>
  <221> allele
  <222> 24
  <223> 99-5070-176 : polymorphic base G or T
  <400> 459
 ggttetetat gggegeatat teckagtgeg egetteegea teegeaa
                                                                         47
 <210> 460
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-511-348 : polymorphic base C or T
 <400> 460
 agaaggttac tacttgtcaa attycctgct agaccagttg gtaaatt
                                                                        47 ..
 <210> 461
 <211> 47
 <212> DNA
 <213> Homo Sapiens
<220>
<221> allele
<223> 18-523-352 : polymorphic base A or G
<400> 461
gacattgggg aggtggtaat gttrggctct gtgatgtaaa atcaacc
                                                                        47
<210> 462
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
```

```
<221> allele
<222> 24
<223> 18-545-478 : polymorphic base A or G
<400> 462
aggaagcaag acctggcaaa cccragacga tgcgctctta cttgtgt
                                                                        47
<210> 463
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-522-194 : polymorphic base G or C
<400> 463
ttttttcaaa gaacaagttt tcasaaatac actggattca acaattt
                                                                        47
<210> 464
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-524-284 : polymorphic base A or G
<400> 464
gcattgcaat gagaacataa attrcaatga ctttgcatcc taatggg
                                                                        47
<210> 465
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-626-52 : polymorphic base C or T
<400> 465
ggaaagttgg tttggttgag cagygaggga taaattgagg gggtaga
                                                                        47
<210> 466
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-629-189 : polymorphic base C or T
taagatgatt gcctttttcc cttygaacca aatgaaaaga tgagaag
                                                                        47
<210> 467
<211> 47
<212> DNA
<213> Homo Sapiens
```

```
<220>
 <221> allele
 <222> 24
 <223> 18-1131-71 : polymorphic base C or T
 <400> 467
 gcatcatttc cttgtgtgcg gttyaggtta aaaataacct ctaatcc
                                                                         47
 <210> 468
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-534-126 : polymorphic base C or T
 <400> 468
 tggacataaa aaaaaataaa aaayccttaa gataattata tttataa
                                                                         47
 <210> 469
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-596-59 : polymorphic base A or G
 <400> 469
 tttctaatta tggttacttt tctrttctct tcacttttct gtttaac
                                                                         47
 <210> 470
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-597-27 : polymorphic base G or C
tgggagettg egttetgtea agasetgaea ecaaacagtt attggge
                                                                         47
 <210> 471
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-730-203 : polymorphic base A or C
 gaatcgtact ttacagttta caamgatgtg agcatccagg atcacga
                                                                         47
 <210> 472
 <211> 47
```

```
<212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-734-89 : polymorphic base A or G
 <400> 472
 ggaagagaag gagagatgca gggrggagga tataggggtc ctctggg
                                                                         47
 <210> 473
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
<223> 18-895-321 : polymorphic base A or C
 <400> 473
 aacatcccca attagggaag aagmtaacac aaggcgctct tgccctg
                                                                         47
 <210> 474
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-896-69 : polymorphic base A or G
 catgogtota tttcccctta tgcraacaqc aacaqaaaaq cattott
                                                                         47
 <210> 475
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-903-58 : polymorphic base A or G
 <400> 475
 tggaaaacat ggacaggcac cacrttgttt tatgaggctc tgagtct
                                                                         47
 <210> 476
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-590-216 : polymorphic base G or T
 <400> 476
 ggcatggcag gcagggagcc agckcaqcct ccaggccgtc catcctc
                                                                         47
```

```
<210> 477
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-817-436 : polymorphic base G or C
 <400> 477
 gactccaatc cctgaagtag aggsattttt gcatagtcac gttcctg
                                                                         47
 <210> 478
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-829-85 : polymorphic base G or T
 <400> 478
                                                                         47
 tgccctgcag tgcccagcac agakcagtgt ctgttgaatg cgtgagt
 <210> 479
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-832-387 : polymorphic base A or G
aaacaggggc agaggttgag gttrtcagaa cctggaagct gggagga
                                                                         47
 <210> 480
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-833-259 : polymorphic base C or T
 <400> 480
 ttagatagta ggaatgcact gagyttgtgc tcctgggaag actccac
                                                                         47
 <210> 481
 <211> 47
 <212> DNA
 <213> Homo Sapiens
 <220>
 <221> allele
 <222> 24
 <223> 18-839-271 : polymorphic base G or T
 <400> 481
```

```
atgtcctttt gtgtcacctt atckaagctc actggtattt atacact
                                                                        47
<210> 482
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-770-194 : polymorphic base G or C
<400> 482
aaatgggatg teeettteet etgsaggage agegtettee eeagaac
                                                                      . 47
<210> 483
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-771-302 : polymorphic base A or G
<400> 483
gtcctgtcca ctgtgctgca gccrcataca cagcccagaa aggatgt
                                                                        47
<210> 484
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-827-53 : polymorphic base G or T
<400> 484
aggacageta ttgcacaaaa ttaktcattg acctgaacat tctcaat
                                                                        47
<210> 485
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-768-318 : polymorphic base A or G
<400> 485
tggtccaggc cctcactcct ctcrtctcag cagctgccac agcttcc
                                                                        47
<210> 486
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-769-26 : polymorphic base G or C
```

```
<400> 486
ttatgctgag agcaccaggc acasgttgaa caccgcagtc ttagaaa
                                                                       47
<210> 487
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-709-321 : polymorphic base C or T
gaggtgttcc cccacagctc tctygggaaa cgacacgtgc ttcctgc
                                                                       47
<210> 488
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-714-280 : polymorphic base C or T
<400> 488
catgtgagcc caggatcagg gcaytggggg aagaaccagc tgaggac
                                                                       47
<210> 489
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-843-271 : polymorphic base C or T
<400> 489
agcaacggcc gagcatacgc agcygcactc accaccgctg gtacagg
                                                                       47
<210> 490
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-850-265 : polymorphic base C or T
tgccccagct gtaccatctc aggygctgag aacgcaccca tcccttc
                                                                       47
<210> 491
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
```

```
<222> 24
<223> 18-853-296 : polymorphic base C or T
<400> 491
caggccacgc cacacctgtg ccayccaggg agtgggaagg aagcacg
                                                                        47
<210> 492
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-867-331 : polymorphic base A or C
<400> 492
tcctctcaac cagtgcattt tgcmtctgag acattgtggt tttcatc
                                                                        47
<210> 493
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-877-73 : polymorphic base C or T
tttacaccca ctgcctgcca tccyacagct tccagaacac tgaggcc
                                                                        47
<210> 494
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-856-85 : polymorphic base C or T
gacacatgag agagactgtg attyggggga aaagctgctg tcggcac
                                                                        47
<210> 495
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-861-101 : polymorphic base C or T
<400> 495
agcaacggcc gagcatacgc agcygcactc accaccgctg gtacagg
                                                                        47
<210> 496
<211> 47
<212> DNA
<213> Homo Sapiens
```

```
<220>
<221> allele
<222> 24
<223> 18-635-323 : polymorphic base A or G
<400> 496
agttgacatc ttaaaacttt atcrtgatca tcactccctt tactatg
                                                                47
<210> 497
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-636-205 : polymorphic base C or T
<400> 497
caaatggctt tgaacccact tccyggccac acaagcctct tcctggg
                                                               47
<210> 498
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-649-427 : polymorphic base G or T
<400> 498
ttaaaaagat gctaaatatg agckctgagt ctcaacactg tctcaag
                                                               47
<210> 499
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1134-316 : polymorphic base A or G
<400> 499
47
<210> 500
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-633-316 : polymorphic base A or G
<400> 500
47
<210> 501
<211> 47
<212> DNA
```

```
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-489-425 : polymorphic base C or T
<400> 501
cagggttccc agcccctgg aaayggggtg ataacaqctt ctcctqt
                                                                        47
<210> 502
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-492-212 : polymorphic base C or T
ctgctgcaag aagccctgcc cttyggggct gatccggtgt gataaag
                                                                        47
<210> 503
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-488-156 : polymorphic base C or T
<400> 503
gggagagcag gctgggccca gagyggccct tccccacccc atctcct
                                                                        47
<210> 504
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-491-266 : polymorphic base C or T
<400> 504
tgcacgccac atgcagatgc acgygtgagg gcatcctcag tgcctca
                                                                        47
<210> 505
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-497-141 : polymorphic base C or T
<400> 505
taaaaagcaa caggacacaa aaayccctgg ctggaaaaat ccaaaaa
                                                                        47
<210> 506
```

```
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-503-174 : polymorphic base A or G
tgcaggtgga gagggtatgc ctgrctaaag tgggtgaaag gcaaggt
                                                                        47
<210> 507
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-490-95 : polymorphic base A or G
<400> 507
aatgatgtgt aagaccaagg gctrgtttay caagaacata cacaaac
                                                                        47
<210> 508
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-699-115 : polymorphic base G or C
<400> 508
ttttccctta ccgaccctcc agcsaagaaa actgtgttaa actgttc
                                                                        47
<210> 509
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1099-293 : polymorphic base C or T
gccatctggg gagagaagaa tgtygggcag agtcctgtct acctgtg
                                                                        47
<210> 510
<211> 45
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<223> 18-1105-22 : polymorphic base A or G
<400> 510
ttctctcaag catagtggcc trtgccccag gaatgtagca taatg
                                                                        45
```

```
<210> 511
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-562-418 : polymorphic base C or T
<400> 511
ctccgaaact acccccagc accyggtaga ctttcacagc tgagaga
                                                                        47
<210> 512
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-564-204 : polymorphic base C or T
<400> 512
ttccttctct acagcccccg cccygccatg cacgtctctc tcagctc
                                                                        47
<210> 513
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1032-262 : polymorphic base A or C
<400> 513
tttaatatat aaatggtaaa aacmaaatcc atggggaaaa catgtct
                                                                        47
<210> 514
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1035-412 : polymorphic base A or C
<400> 514
tetteageag etcecagtge cegmagacag tecagactee ttactgg
                                                                        47
<210> 515
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1036-293 : polymorphic base A or C
```

```
<400> 515
tttaatatat aaatggtaaa aacmaaatcc atggggaaaa catgtct
                                                                       47
<210> 516
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1038-95 : polymorphic base C or T
<400> 516
aaactgtgaa tagcagtttg tcaytgatac ttaagagttg agaggct
                                                                       47
<210> 517
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1040-361 : polymorphic base A or G
ttattaagga gagttatcca actrctcatg aagtttaggc ggttaca
                                                                       47
<210> 518
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-748-356 : polymorphic base C or T
<400> 518
aatatacccc tctaatctaa tcaytaaatg ctgaattcac taagaaa
                                                                       47
<210> 519
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-937-181 : polymorphic base A or C
gagagacaga aatgctgtct ttamtcactg ttgactatgc aggtgta
                                                                       47
<210> 520
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
```

```
<223> 18-942-175 : polymorphic base C or T
<400> 520
ttgtgagatc tgatcttttg ctaygagaaa agtctgagtg gtgactt
                                                                       47
<210> 521
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1213-221 : polymorphic base A or T
<400> 521
gcagtaccgt acttaacttg gagwccctgg acctcctcgg agcataa
                                                                       47
<210> 522
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-937-147 : polymorphic base C or T
cacctaccta tacacaaatg tacygatgtg gcaggagaga cagaaat
                                                                       47
<210> 523
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-946-408 : polymorphic base C or T
<400> 523
atcttgagga aaactgacta tggycttagt ttgtgtctca gaaatat
                                                                       47
<210> 524
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-787-133 : polymorphic base A or G
<400> 524
aattattaat aaaaaataaa gtgrgccata agtaggtact tcccaga
                                                                       47
<210> 525
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
```

```
<221> allele
<222> 24
<223> 18-1149-239 : polymorphic base A or G
<400> 525
tctttgtatc tatattactt gctrcaagtt actgaatctt tctgacc
                                                                        47
<210> 526
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1159-291 : polymorphic base A or G
atgtgacaag cacaaattac tccrctgtga tgaatctcat gggatca
                                                                        47
<210> 527
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1135-273 : polymorphic base C or T
ttttcagtac ctgctaagtc ccayggacta tgctaggagc tgctgtt
                                                                        47
<210> 528
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1136-108 : polymorphic base G or C
<400> 528
agaaacagtt aaccttcttc gggstattac ataccttaga catataa
                                                                        47
<210> 529
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1147-68 : polymorphic base A or G
agggcaacac ttgcccttgc cctrtgtatt tacctcagta agcaaca
                                                                        47
<210> 530
<211> 47
<212> DNA
<213> Homo Sapiens
```

```
<220>
<221> allele
<222> 24
<223> 18-1157-295 : polymorphic base A or T
<400> 530
ctcctgtgtc tcacattggg ctgwgctcat cccagtagga gtcatca
                                                                     47
<210> 531
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-802-460 : polymorphic base A or G
<400> 531
ggccctatta atattttcag aacrtggaat tttgaattaa tataaac
                                                                       47
<210> 532
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1064-110 : polymorphic base C or T
ttctttgagt atattttata tcayctctat tacaatcaca ctccttt
                                                                       47
<210> 533
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1068-327 : polymorphic base C or T
<400> 533
tgggaataat gacaataaca tctycctcac aggtccactg tgaggat
                                                                       47
<210> 534
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1069-365 : polymorphic base A or G
<400> 534
gagaatttcc atgtagtaac agtrgttagg gtagcttacc tttttta
                                                                       47
<210> 535
<211> 47
```

```
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1073-367 : polymorphic base A or G
<400> 535
tttcatttcc ttctcgtaaa caargtcatg gtttggctcc cctcttc
                                                                       47
<210> 536
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1070-272 : polymorphic base A or T
<400> 536
tacacacaca cacacaca cacwcacaca aatttgtgtg tatctat
                                                                       47
<210> 537
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1057-35 : polymorphic base C or T
ttacacctct cataaattta ttayacacct gcatttttat aactatt
                                                                       47
<210> 538
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1062-415 : polymorphic base C or T
<400> 538
gtaatgctgt atttaaagaa gtcygtattt ttcataaact tgcaaaa
                                                                       47
<210> 539
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1082-165 : polymorphic base A or G
<400> 539
tagcctcact aaattgaagg acarttctac agaaacatcc atgttat
                                                                       47
```

```
<210> 540
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-1080-361 : polymorphic base C or T
<220>
<221> misc_feature
<222> 3
<223> n=a, g, c or t
<400> 540
ttntaattta aaatatgggt cttyaggaca taaagtgaaa gaacgtg
                                                                        47
<210> 541
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-506-297 : polymorphic base G or T
cagcagetee teaggetgge egtkwteegg accgekygee eetsgge
                                                                        47
<210> 542
<211> 47
<212> DNA
<213> Homo Sapiens
<220>
<221> allele
<222> 24
<223> 18-570-38 : polymorphic base A or G
ttcggggctc agtggtccga tacrtgcagy tgccagcaga ygaggtc
                                                                        47
<210> 543 '
<211> 123219
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 53695..55695
<223> 5'regulatory region
<220>
<221> exon
<222> 55696..55860
<223> exon 1
<220>
<221> exon
<222> 63298..63534
<223> exon 2
```

```
<220>
<221> exon
<222> 72940..73022
<223> exon 3
<220>
<221> exon
<222> 74834..74978
<223> exon 4
<220>
<221> exon
<222> 77044..77214
<223> exon 5
<220>
<221> exon
<222> 77764..77844
<223> exon 6
<220>
<221> exon
<222> 80888..81036
<223> exon 7
<220>
<221> exon
<222> 86504..89112
<223> exon 8
<220>
<221> misc_feature
<222> 89113..123219
<223> 3'regulatory region
<220>
<221> allele
<222> 68753
<223> 24-243-346 : polymorphic base A or G
<220>
<221> allele
<222> 108366
<223> 99-62531-351 : polymorphic base A or G
<220>
<221> primer_bind
<222> 68583..68603
<223> 24-243.rp
<220>
<221> primer_bind
<222> 69081..69098
<223> 24-243.pu complement
<220>
<221> primer_bind
<222> 108259..108276
<223> 99-62531.rp
<220>
<221> primer_bind
```

```
<222> 108699..108716
<223> 99-62531.pu complement
<220>
<221> primer bind
<222> 68734..68752
<223> 24-243-346.mis
<220>
<221> primer bind
<222> 68754..68772
<223> 24-243-346.mis complement
<220>
<221> primer bind
<222> 108347..108365
<223> 99-62531-351.mis
<220>
<221> primer bind
<222> 108367..108385
<223> 99-62531-351.mis complement
<220>
<221> misc binding
<222> 68741..68765
<223> 24-243-346.probe
<220>
<221> misc binding
<222> 108354..108378
<223> 99-62531-351.probe
<400> 543
aggacagggg tttgagacca gcctgggaaa cataatgaga ccccatttct ataaaaaaaa
                                                                      60
aaataaaaaa ggtagccagg tgtggtggtg catgcctgta gtcccagcta cctgggaggc
                                                                      120
tgaggctgga ggatcacttg tgcccaggag ttcaaggctg caatgagtta tggtcacccc
                                                                      180
agtgcactct agccttggca acagagtgag actttgtctc taaaataata atgataataa
                                                                      240
tatagtcaat attttccttt gtgatgtgag ctttttgtgt tttgttaaag aaatgcttcc
                                                                     300
ttttcttgag gcaataaaat attctcccat attccctttt aaatgttttt aagttttact
                                                                     360
gcttgttttg agaataaatg cttctggaat tgtgttttat gtacaatggg acctagagag
                                                                     420
tctatttatt ttttctctca tggcaacaac cagttgccta accagttgtc ctggcattac
                                                                     480
ttatttagaa ctccatcctt tttcaattca acctgtgaca tatattaagc ttccatgaat
                                                                     540
gcatggcctg cttattttat tccattcgtc tatttccatg ctaatatcac actggcataa
                                                                      600
ttectttage tttatageaa gtettgatat etgteaeagt aagtteeee aacttgttea
                                                                      660
tottottcag agcaattaag ctattottag ttottttctc ttttatataa aatttggaac
                                                                      720
tagcttggca acttttgcaa agaaccctgt tgggattttg attggaattg tattgaaccc
                                                                      780
atcacacaat ttggagaggc atgacatctt ataagactga gttccctcat ttatgaatcc
                                                                      840
tectatttat gtaggtette ttaaacatet ttetatatgg aagtataatt ttetgtgcaa
                                                                      900
aggtcttgca catatgccaa tagatttatt ttcagtaaat tttatttcac tattgtaaat
                                                                      960
ggtatcattc ttaaaattat gcgttcttta tgtgagaggc agaggattct gcatgtgctc
                                                                     1020
attaaatcaa gaatattaat tgtgttgttc aaatcttttc tattcttacc aatttttctt
                                                                     1080
ttttactctt tggcctgtca atgaaagacg tatgttgaaa catcacaccc attaggatgg
                                                                     1140
ctgctatgat ttgaatgtgt cctcccaaaa tttatatgtt gaaacagaat ccccaatgtg
                                                                     1200
atagtattaa gaggtgaggc cctgtgggag gtgattaagt attgaggtgg gaccttcatg
                                                                     1260
aatgagatta ataagaggcc caaaggagtc tgttttctca ttctggcatg taaagacaat
                                                                     1320
gccagaaggc accatctatg aagcaaagaa caaaccctca ccagacacag aatttgctgg
                                                                     1380
tgagttaatc ttgtactttc cagcctccag aactgtgagc aataaatttc tacggcttat
                                                                     1440
aaattaccca gtctatagtg ctttttata gcagcccaaa cagactgatg caatgactat
                                                                     1500
tattgtttaa aaaaacaaaa acaaaaagta ggaagtgttg gtgagcatat ggaggaatta
                                                                     1560
gaaccctcat atgctgttga tagggatcta aaatagttaa gtcactgtgg aaagcaacat
                                                                     1620
ggctatttcg caaaaaaaa aaaaaaaaa aaaaagcata aaattaacat acaattctgc
                                                                     1680
tgtgccactt ctgggtatac ctaaaagtag tgaaagcaga gacttgaaca aatatttgca
                                                                     1740
```

					•	
cactcatgtt	catagcagca	ttagccacaa	cagcggaaag	gtggaggcaa	cccaggtgtc	1800
gtccatcaac	agatgaatga	gaatatgatg	tggcaggtac	ctgcaatgga	atgttattca	1860
cccttaaaaa	ggaagacatt	ctgacacata	ttataacatg	gattacatta	tgctaagtgg	1920
	ttacaaagaa					1980
	atagatacaa					2040
	gtttaatggg					2100
						2160
	tgatggttgc		-	_		
	tggttaaaat					2220
	atatgttaaa					2280
	tcttcatttt					2340
tagaattggg	atctcttcat	ggtgaattta	ttatttggta	gtaaacctct	ttatcctaat	2400
tattacttaa	tctaatctta	atcgaatgat	tttgttcaat	attcagagct	gcagcagcta	2460
tcttttactt	cacgtgcctt	tttccatcct	ttgactttca	acatttctgt	gtcctcctcg	2520
	acatctcttg					2580
	cagcgtattc					2640
	tgattttgta					2700
	cttcttttgg					2760
	atacagttta					2820
	gtaaaataaa					2880
	ctttaacctc					2940
tgacatgaat	tatattatgc	taagtgagat	aagccagtta	caaaggacaa	atattttatg	3000
	tatgaagctc					3060
	gtggagggag					3120
	catttttaac					3180
	tcttaaatat					3240
						3300
	ccatgtatta					
	tctcattgtt				_	3360
	tcacattttc					3420
	tatgccgttg				_	3480
	ccaacattta					3540
ttaatttttg	ttaggtttgg	tcttagggtt	gcttttacat	gagcacttgg	tcagcccttt	3600
acctaagtca	tgaccattct	gggctctcta	ctgaatgcca	agggaattta	gcaagatctt	3660
	ctgattagaa					3720
	gctcccttgt					3780
	tagtattcat		_	_		3840
	atggctccct					3900
	cttctacctc					3960
		_	-		_	
	ttacagttga					4020
	gagattactg					4080
	gtttgtccaa					4140
	atcttgaata					4200
caactctgtg	gccagtttac	cacatttcat	tcataaatgt	tcataagata	ccactgaata	4260
tgcaatccat	cattatttta	ttgacagtaa	gagataaaaa	actgccaatt	ataattgtaa	4320
gactccatca	atgataagat	tagtcccaat	ttcaaacgtg	ttaaattgtg	ggaaaataca	4380
	ttgatgaaat					4440
	tgatttatct					4500
	tacactgctt					4560
	tgaaaaattc					4620
						4680
	gtcttctgga					
	aaacctctct					4740
	atctgtcctc					4800
	gaggtttcaa					4860
tgtttgtttt	aaagacagag	tctcactatg	ttgcctaggc	tggtctcaaa	ccccggcact	4920
caacagatcc	tcctgcttca	gcctcttgag	tagctgggac	aataggtatg	tgccaccatg	4980
cctagcacat	tcactatatt	tcttactaca	agatqcttta	gttggttctt	tctcaattct	5040
	tttgtttgac					5100
	atgtttatac					5160
	ggacctaaat					5220
						5280
	tgtgttgggt					
actagactga	ggatgctttt	ctccagacag	cactggcatt	Egettettet	aggctccagg	5340
aggcactacc	aatctgtaac	tataatattt	taatttcgtt	gcccgggtga	tgtttcttga	5400
cattaggggc	agtataaatt	tgaacctcag	tcacacgaca	gagcagtcct	ctggctacaa	5460
aagttcagga	aagactctct	agctttgtgt	acatgtttcc	acccagaggc	agcagagatg	5520

gctgtgttca	tctgtcctct	atatccgtat	gaatccctcc	agcttgaagt	tcctgttgca ·	5580
ggtgcctgta	cccattgggg	cctggatttc	cattttcata	gccactctag	tttgggctga	5640
ttattcctgt	tttttgtgaa	gaggcataat	ctttgggcat	ttctctggat	tctcctgtga	5700
	gcattttgag					5760
gaaggtgttt	cagttgacat	tttcagatga	gcataccatt	gggatcccaa	agcettettg	5820
	attgtttact					5880
	ataatgccag					5940
	attaatttat					6000
	atgttctaga					6060
	tatcaacacc					6120
	ctcgagtctc					6180
	gtttcagaga					6240
	cacttaattg					6300
cacttggaca	agccacttac	cctcttccag	actcagtttc	tgccactaag	gaaggatggg	6360
ctagtgccct	agacctctgg	gctccttgcc	ggctctagaa	tcccagcccg	gattggcttc	6420
tccttaagca	ctggacaaca	tgcagtgata	agaacagctg	tttgtatgtg	tgtatttttg	6480
	agacaaagtc					6540
	aacatcaaaa					6600
ctootactac	aggcatgcac	caccattctq	agctaatttt	ttaaaaagag	atggggtctt	6660
ceggeactac	ccatgctgtt	ctcaaacccc	tgecctcaag	toattettee	caccttacct	6720
becauseta	ttgggattac	acctatacccc	caccacacac	agettttt	tattattatt	6780
	cgcatgtcag					6840
	tcctcaggca					6900
	aactaaagaa					6960
	gaaacaaggg					7020.
ttatgttatt	acataattag.	tgcacattgt	tcttgataca	tgaagaagcc	ctcagtaata	7080
	cgtttattga					7140
	ttagctaata					7200
gccccaggta	tgtgaagtca	ccagcccacc	ggcacccagc	agaggtggct	gatgagccca	7260
gaccgctagg	ctccagggac	tgtgccgtct	ctaggcaacc	gcaaaaatta	ccacccacag	7320
atatggcgaa	ccctgtgatt	gtcaccagct	cacctgtctc	gggtgggaag	gggatgtgca	7380
aacatggaag	cgttgccatt	ggaaggaggg	atggagctcg	tggccatttc	taatgtttaa	7440
aactatcgtt	taaattatac	tttgaatgtt	tttatgtaaa	ggaggtgcac	caaagggtta	7500
	gactctggaa					7560
gctacactgg	tgatgtatca	tgtattcctg	tgtgattcga	aaatgttaaa	agtcatataa	7620
taatgtagaa	gacgaccctt	cgcgagcgag	gcccccacc	tctggccact	gagggcactt	7680
acgtaactgc	ggggcgggcg	caggcctcca	ctgggtgagc	ggcaggcggg	ggcggggctg	7740
	cggccccgcc					7800
ctgctcggaa	aggccggagt	ccggagcaca	qcaacqcqcq	qaqcqqcccq	acceptetaa	7860
tggtcccgcc	cacgcgaccc	qqqcqcaqcq	acaaacacca	gacagetgee	ccaacaaaca	7920
aacgacatgc	agcggaaccg	cadaaaacta	caattcaata	gctggacttg	catececese	7980
ctcctctatc	gcgcgtgccc	tactccccaa	tgagggggtc	cctaggatag	gatetgggeg	8040
cccaacacaa	cgcggctgac	aacagccgag	caattccaat	acactaacac	ataactcaaa	8100
	cggcctggcc					8160
ccccaccatc	teegeeegge	accacatata	gtgtttttg	gegeaggege	actacasas	8220
ctacctctac	asactoosco	geegeeege	ccgaaggagc	cacgeeeegg	gccccggagc	
cegeeeeege	aaagtccagg	ceegeggege	geaggreagg	geegetgete	egggeggaeg	8280
tatesaces	gtcacaggca	acteetgtee	caagggcaag	tgagacagga	ccagggccgg	8340
tacgaaggca	tctccattag	cagggaacca	gacacettee	acetgaetge	tetgetatee	8400
teegeatget	gcctcatggt	ccaaagtggc	tgctgagcac	cagcettegt	gtctgcattc	8460
tagecageag	gaacgaggta	agagtgaaaa	aagatgccat	ttctttatga	atatgtccca	8520
gcagttcatg	tagatcacaa	gaagccagtc	cactttacag	gcagaggtgg	actccaaaag	8580
gtctgatgac	tctcagaagg	taatgtgtgc	agcgggggag	caggattcaa	atgtaagtgg	8640
actgccatcc	gtacaatagc	agccaaccgg	agggcttcct	gcagtccagc	acctatccag	8700
cgcttaccta	gtcgtttaat	cctcacagct	agtgagagaa	gagctggtta	ccctattgta	8760
cagaggaggt	cactgaggct	cagagagggt	aggtgatgtg	ctcaagactt	cagagccagt	8820
acatggagag	gttgggactc	caatccgggc	agtetgetee	agaatccaca	ctttgaccac	8880
caccctccac	tgtcgctcag	ccttgtaaac	tetecettg	gaatcctqtc	tgcaaacctq	8940
gttcaagttg	agatgagaaa	tgaggcaagg	gagggccatt	ggtgtctaac	agtcccatat	9000
tcaaaaataa	taaagtacag	cgtgggcaac	atagtaagac	caccgtctct	acaaaaaata	9060
aaaattaact	gggcgtcatg	gtgtgtgcct	gtagtcctag	ctacttagga	gactaaaata	9120
agaggatcgc	ttgaacctgg	aagattgagg	ctgcagtgag	ccaaqttcac	accactorac	9180
tccagcctgg	gtgactgagt	gagaccctat	ctcaaaaata	acaataataa	taataataaa	9240
gtacttcttt	tgcactgtat	tcqtcacett	ggcctgccat	aacaatatac	catagacaga	9300
-		-5-00000	33-3-3-00-			2200

	caacagaaat					9360
ccagcagggt	ccagttctgg	taacgaacta	tecetggett	getggetgee	tcgctatgtc	9420
ctcacatggt	ggagagaaag	atttctctgc	tttcttctta	gaaggtgaca	atcctattaa	9480
	caccctcatg					9540
	catattgggg					9600
ggatgcaatt	cagtccacag	cacagggtta	gtttacttca	gaaataaatg	aactagaatt	9660
	gactacagta					9720
	tagaacaatg					9780
	aaagttcttg					9840
taaacccaca	gaggccatgg	gccatttcct	gacagtaact	gtaatcatct	tccgagcttg	9900
gatctaattc	ccaaatgata	cattgcataa	actaaaatqc	ttttcccttt	gaggettget	9960
	cagaatctgg					10020
	gaaggcatgt					10080
ctccccgacc	ccaccactgc	tccttgttgc	ttcccagtta	gcagcttggg	ggtaaaggag	10140
ctctcagggt	cacaccatgt	cagagetggg	ggtgagccca	gagetgteat	tcaaqcccct	10200
	gctcctgctg					10260
	taaatatcca					10320
gcaaaagtaa	ttgcagtttt	caaagtaatt	gaaattgcca	ttgaaagtaa	tggctaaaac	10380
tgaaaatact	tttgcaccaa	cctaataaaa	gggttgtgct	ggtgaaaact	cctgttggaa	10440
tggatttttc	cccttggaat	cttgccaatc	aattaattto	cagetetget	actggccttt	10500
cygactette			anatanaaa	20250000	200330000	
ctaaaacttg	aacctgggag	gergaggerg	caytyaycca	agaccacacc	actguacted	10560
aacctgggtg	acagagggag	accctgtctc	aaaataatag	gtttttcagc	cttcccttgg	10620
tgggccatgc	tctcttcctc	tgtttcctct	gtagctgaca	cattactgtg	tgtgggcaat	10680
	tagtaacacc					10740
					aaaagcttca	10800
	tcctgcagcc					10860
agaaaacact	caagaaggtt	ttctttttt	ttaatggagc	tgaagcacag	agcctcagat	10920
gggcacaaaa	tgatgaacac	atttattttg	attttttact	tataatacta	gcatatagag	10980
aagtacggta	aatataatat	tccctccaat	taacaacaac	aacaacaaaa	aaccttctct	11040
	agggaggctg					11100
						11160
	tggcccacct					
	aacaagagct					11220
	cacatcatcc					11280
cttcaaccag	aaaaggtgag	actcagattc	agggttttgt	gtgtatttga	attagagccg	11340
	ttgggagctc					11400
	gtgcatagga					11460
	ctggcttcct					11520
	ggcctcagct					11580
accaacatgt	gtgtggcctg	accgcctctg	tcctttggtc	tgtacaacaa	ctggcttgcc	11640
	ccacccagcc					11700
	gacttgggct					11760
	tcttgattat					11820
ttgaaactga	accgtgagga	caggggcatt	caggctatca	tcctataacc	ccactcccct	11880
gtgctggact	gttacaatta	tttctataaa	atcagcctcc	ccatggcact	gtgagccact	11940
	gcctgtgcct					12000
	gagctcagtc					12060
						12120
	tggatttctg					
	cctctgcact					12180
tgcatgaata	tcaacatttc	caatcctcac	tgaaacccac	gatataggga	ctatgatcct	12240
cattttacaa	atggggaaac	tgagtcaaag	agctatgcat	aacttgccaa	ataccacaca	12300
	tgcagggctg					12360
	accggtcctg					12420
aaaaccccgg	gtgacttact	Lgattgtgcc	cagtgaccgt	cacgeagett	ggacgggagg	12480
	gctcccacac					12540
cttcagttcc	ctcaacttca	gggggaggct	cactcctacc	atggaactgc	tgggaggtca	12600
	gtgtgaagcc					12660
tatgatcagt	cgttattgat	gatettaaca	ttttcccata	togtatttct	ttttcacaaa	12720
audaaaddd	actagactes	22222222	200000000000000000000000000000000000000	-55-200000	tootoayaaa	
~224aa3999	gctggcctaa	ayycaagaag	agadaccccc	-9ayyyacct	racidiceed	12780
Lytteecacg	acagggtaag	atgcagggag	attactctga	cccaacgttg	aagtaatctg	12840
cagggctcac	catgtggcct	gggccacatg	gcggggttgg	tacgatccca	tctcagcctt	12900
tacctgttct	tttagggtgc	ttggttagct	agggggcctg	acaccactgg	gagtgtgggg	12960
tgggctgctt	agttctttaa	gctqtaatqa	gatectagte	ctggaggaga	gaggacagaa	13020
gaaccaggtt	tgggttccag	acaggaaaag	agatagatat	gggcttaata	gatchachth	13080
5 55-			3334433-3-		2922290000	

		A			L	
	cttgaagaca					13140
					aatcttgcgc	13200
	aggtcccatg					13260
ctagaagctt	gtacacttta	tcctcagggt	tcacacggct	ctaacgctga	ggggcttcct	13320
tcagtattcc	tgtggctcac	atggatgaaa	ctggtttggc	cacagccttt	ctccctcccc	13380
ttcaaaagaa	gtccttgagc	aggagggga	ggggcctgca	cctggagtat	taggccacac	13440
ctgtgagcag	gtggcattat	qttcattata	caaaqqqqa	aacggaggct	cagatgggtt	13500
	tccacataat					13560
	tcatacacct					13620
	ctgggttaac					13680
						13740
	gaacaagatg					
	tggccggctc					13800
	acatgatatt					13860
	tcacagaaat					13920
	ggtaagtcct					13980
	cagcccgcag					14040
ccacagccag	agggaaccct	ctagagtgca	gacatgagat	gccactcact	cacccattta	14100
gagcaattaa	tgggtcccct	tgcttttggc	agcatctcct	aaactgggtc	aggcagaatg	14160
	gaatcatggg					14220
	tttctccctc					14280
	gcctggcacc					14340
	tgtcctggag					14400
	tctctacgtg					14460
						14520
	tttcacagag					
	ccaaattatg					14580
	acttctgcca					14640
	caagccatgc					14700
	tctgacctca					14760
	ttgagtcaaa					14820
ccaccinge	tttagtcata	gaaaactctt	gtttaacaat	tgacaaaatc	ctaatggggg	14880
geteagetag	taacatccct	CECCEECCE	cccacgtttc	caaccaacta	ggaactatcc	14940
agrageeagr	cagatggaga	ttaaatgtca	gctgtattca	cgcaaagcga	gggggagggt	15000
	cagtggctcc					15060
ageaggeeee	tgagcatgtg	gccaagagca	gtgcagagcc	ttcgctgcct	gccagcggat	15120
	aagagagagg					15180
	gtcactagtg					15240
	tcattgaaga					15300
	agtcatcaga					15360
ccagttgatg	ggaaggaaaa	cagtgccatt	caaacaagga	atgaacttgc	ttggaggtag	15420
	gtccctggag					15480
cctaaagagc	cccaaggagg	ttggacaaga	ggatgcccag	cctccatccc	catcccaacc	15540
	agcgcctcag					15600
ggacgaggac	aagtagggct	atgtctgcga	gctacaggcc	ttccagagct	ctgaggccta	15660
ccgagctttc	ctgcagaggt	gtgcagccca	caaggcgctg	tgtgggatgc	aggagtggac	15720
tggagttcac	ctctcccaag	ccggggtctg	ggatgtttac	gcagcagaaa	gtacgctggg	15780
aaagcccttg	gtgttactcc	acctccttca	gcgctcacac	cagtcgcctt	gattgaagag	15840
ccaaagcagt	tggacatcca	gtctcttcct	tttcagccca	tcctggaccg	gttaaagatt	15900
aaagataaga	ggcagcttgt	tccctcctac	ctgggagggt	cagtggacat	tcagggagtg	15960
ctgaggcagc	ggttactttg	tagtgtttag	aaaagggaaa	ggaatcacag	tgacaggcct	16020
ggcacttctc	aaattccagc	atqcacacqq	tcaccgaggg	tcttactaat	aggcaggttc	16080
tgctccagca	ggttcagggt	gagacctaga	agtctgcatt	tctgacatgc	ccatgggcca	16140
taactactac	tgctccaggg	cccacactga	ctatactaca	gattaattaa	tacagcactc	16200
accactccta	catgccgcgg	caccetecea	cadcccadca	tetetaceat	agacttttct	16260
cagatggcca	tggggccaca	tatacaggg	adadctadca	aactgacgt	ctatctaaac	16320
ccacacadac	agctttccac	caccaccacc	ataataaaa	aaatoccaa	taaattaaat	16380
acccagaga	gttcccataa	gactgaccgcc	cattootota	atacacactac	agaggeeeat	16440
gactcacttc	gttcccatgg	gatagttact	carrectly ta	CCCaaacaa	ccayccayct	
ragastroto	cagccctact	agragation and a	tassassas	ctcaaacada	ggagggagag	16500
ctatccattc	atctgggggg	otagette:	coccagage	actt	ggagggaacc	16560
tttastast	tctactcact	arycottcac	cacggaggac	accedent	CACCECTCEE	16620
gaggagaga	tttgaaagta	tectcaatcg	cagagcccat	cagcagcact	tttacattga	16680
gacccacagg	gcggccaccg	gccaccagga	ttccagtctt	cccgagggg	cacaggcctg	16740
eagggeagea	ttgaagtgtc	cccgccagtg	ggggtccagg	cyccagtoto	rggccccacc	16800
ageggeegee	ccagggcaga	ggtaggette	tcccagtggt	cerdadreca	ccccgttca	16860

ccctgcatgt	tcctgccctg	cacgctccat	ggtcagggct	ggcccgcgtc	cctaggacgt	16920
cacagcaagg	cctgcctatc	tttcacgttg	ctgcctctcc	ggctgagcac	cggaggaagc	16980
atgcatcagg	ggctctgcca	tccacgagac	tccaggacca	gccacgtgtg	tcccatgctc	17040
ccaccgggac	tggctgagag	agctgccttc	ctggtgacca	gggtgtgggc	tccagagtcc	17100
aagtgcccag	gttggaatgg	cagctctacc	actcggtggc	tetgtggeet	tgcacaaatt	17160
gctggaacac	tcactqcctc	agtttcttca	tctgaaaaat	ggggctgtca	caggcccttc	
	tcagtgagga					17280
ggtacatgg	aagtgttcac	acttocoota	antottoaga	cttactccc	ctccctctcc	17340
	ggccccacc					17400
	atagcaactg					17460
	gcttgtagca					17520
					gtccacaggt	
					ttcaatcaag	17640
tgcctgtaga	taaaaataat	caactggaaa	atctctggtc	tggcatagaa	ctagcagata	17700
tacccacgca	tggtggcgtc	tctgatggtt	ccaggggagc	tgcaaggcct	ctggtcctca	17760
tcatgaatgt	cagatetett	ggtaccagag	ttaagcagag	ggtgcctgag	aacagctgtc	17820
					agaacagctt	
					ttgggggatt	
					actccaacac	
					atagtaattt	
					gtatcaccta	
					catcttcatt	
					cctcttggct	
					cagcaggtaa	
					cctctgattg	
					cacctctatc	
	ctagcacttt					18480
	tgctcagaaa					18540
					tgattttatg	
ccagagaag	getggateae	ctgcgcctcc	tccctgctca	cctgaaaccc	tttctgtcct	
	aactcaatga					18720
					gtaaccagcc	
rgggccaggc	ggctcagccg	caaacgctgg	ccttgactcc	acctgcgcca	gaggtcacca	18840
acaggeggee	cacgtgacac	ctcttgttat	taaaatgcaa	ttttaagaca	gactctagtc	18900
aagcccactt	accaccaggt	gggtgtttag	gacagggtag	gtcttccact	atatctgttt	18960
tcctcttagt	tcgccaggcc	cgcctgctct	gggccacgca	ggacacggac	gtcagcttct	19020
cctggagcgc	tcgctcactt	tattccatct	ctacgagctc	ctcaagtatc	ccagagcatc	19080
cccaggcctg	tggccacctc	gggtctggat	gccgcattct	ctgacctgtg	gcacattctg	19140.
ggtgcccatg	attatgatga	ggttctgtgc	ccatgtggcc	tcagggctct	tgagaccacc	19200
cttcaaccag	gtctttgctc	acctgtctcc	tgcccaggga	cgccacccag	gtcaccggtg	19260
caaacctcca	gcccctgccc	gtttctctcc	atgagtgcat	tgccacctcg	cagcctcttc	. 19320 -
cacttgctca	ttcctggtgt	tattgcctgt	ctcccactgg	aagagaaggc	cctcgagttc	·19380
					ccacgcctgg	
					atgtgttcaa	
caaatgaccc	tagagcgtgt	attccttcca	gggacagagc	gaggtactgg	ggacacagga	19560
aggacgaggc	agageteege	gctgacgaaa	ccaagggcca	agcgtgcgag	tgaatacgaa	19620
catcctggcg	ttaaaacgtc	ttgcattcta	qtqaaatqaq	acccattgga	cacagagaag.	19680
cccaccaca	attgcatctg	tqtaaaatcq	agagaaagat	cqtqaaaaca	gccatggcag	19740
	aaggggtgac					19800
	gatctcacgt					19860
	agctaccgtg					19920
	gggctctcct					19980
					ctccccaggg	
					tactgtccca	
caacacacat	tacacacae	accatacaaa	cacatocatt	ctacacacac	acaacataca	20160
catgcactac	atataacaca	catteteese	attacasaca	Caacacacac	consendent	
						20220
cacatactac	acacacatac	accaccaca	Lacactccaa	acaeteegea	cacatacaaa	20280
actatataa	atacaacaca	CCCATACCAC	acacatgcac	tactes	yyagggcggt	20340
actators	gctccaggcg	caccccgat	ccatageaga	Laccgaatat	LEGETGAAGG	20400
tatattatt	agacttgtgc	cacgtctggt	gtttgaaagg	aaacgaactg	ttettggtaa	20460
agaggaaaa	agggtgaata	acggcactga	agacagaaaa	totacctat	cacctgctct	20520
gyaycaaaac	atottton:	ggatgcatag	agttattcta	rgradattac	ccaccagaga	
gaacccayge	atgtttcaaa	acctataaaa	ccgtgtgctg	aaaaccaca	aaaagttgta	20640

gatgcacgtg	gccgtgaacc	actgtaactc	tctgggggcc	tgcgtgaccg	tttaaaagga	20700
aacagacatg	ggcaaacctc	gtttcatctt	ctctctaaat	cacctacaat	tttacagtag	20760
cagtcgggct	cttgagagct	ttcccatttc	cacttttctt	ggtggatctt	gctggaaatc	20820
agtgcttttg	gcagctgcag	tctctgaggc	ggggccctga	ttggggatgg	ggtgttaacc	20880
ttgcattctt	tggggttcag	gtctcaaatg	gctcttgtag	ccctgggatc	tgaggagcga	20940
gaccaggact	cagctatctc	caccccggaa	gaaccttccc	tgctcttcca	catccagccc	21000
aggeetegge	ttcctcgtct	gcaaaacgag	ggtgctgaga	agatgggagc	aggggtccag	21060
cgttttcatc	agcagggctg	ttgagatgta	attcccatgc	catagtgccc	actggttgaa	21120
agtctataca	gttcagtggt	ttctagtgta	ttttcagata	tatgcagcca	tcactgtggt	21180
ggactttaga	acatctctgt	caccccaaag	agcaaccccg	tttccattgg	totcactocc	21240
ggggctccqc	attcccagcc	caqcaqccta	ggacaagttt	tetaceteta	caggaaggcc	21300
ccaagtttca	gatcttgatg	teteettet	atagggaatc	cagraggest	ctccacctta	21360
gggacagett	agtggacagt	actatatcac	catcaaggg	ctgaatccc	actetatase	21420
ctactacctc	ttttaccttg	gacaaattat	tcaccattta	cegaaceeee	sttaggtgac	21420
	tcgtgctgac					21540
	gtgtggcaca					21600
	tgactttctg					21660
	catgctgtgt					21720
	ccagtcttgc					21780
	aagcatgtag					21840
	gagaatggtc					21900
	teegeteegg					21960
ggactctgtt	ctttaccact	ttctatgtgt	acacccaaag	aactgcaaat	gtatgatcaa	22020
ccaaaaatat	gaacatgaac	gctcatcgcg	gcacagttcg	taatagccaa	aaagtggaaa	22080
caaaccaaac	gcccatcaag	ggttgaatgg	ataaacaaaa	cgtggcccat	ccttacaaca	22140
gcgtaacctt	gggccgtaca	gaggagtgaa	gtatgatatg	caccacgatg	cggaggaaac	22200
ttgagaacat	agtaagtgaa	agaaaccaga	cacaaaggac	cacacacggt	gtgattccat	22260
tcacaccaga	tgtccagagc	aggagatetg	tagaggcaga	aaggagattg	ctaattatct	22320
agggctgggt	ttcgggagga	taagggagtg	atagccaaag	gctgcgagtt	tctttataaa	22380
ggatgaaaat	gtcctaaaat	tggggtgatg	gttgcatgtc	totoaaccta	ctaaaaacca	22440
ctgaatcaca	cacttacttt	atttttattt	ctttatttat	atttattat	ttatttatto	22500
agtcaagqtc	tcactctgtc	gtccaggctg	gagtccagtg	gtacaatcac	aactcactcc	22560
agcetcaace	tcccaggttc	agctgatect	cccacctcag	cctcctgagt	adctdddact '	22620
gctggcgttg	gtcaccatgc	ctggctaatt	attttgtaga	gatgggtttt	acaccacatt	22680
acccagcatg	gtttcgaact	cctggactca	agggatetat	ccacctcggc	cacccasact	22740
gctgagatta	caggcgtgag	ccactgcacc	caaccatgat	atotoaacta	catctcaata	22800
aaggtgttag	gcaaaaaaca	aaacaaaaca	22222727	ateteaatea	acceccate	22860
ctccaggagg	cctcctctgc	taacatataa	ccctacctaa	tecteacea	aggaccccca	
ctatetetet	gtccaccaaa	caggereege	tanaganaga	ceteggegeg	ccccgcctgc	22920
acadadddcc	accetacaa	caggggaccc	ttatatata	getggttege	ceacatgtgg	22980
ggatttgttt	aggcctggaa	gractactaa	cicicigete	grgggergae	etetgtgaea	23040
ggacctctcc	gctttttagg	ggaatttaaa	aaagateetg	ccacgtacte	aaagcacctg	23100
gageeeeegg	aggaagagag	ggacaaatga	ggtcaagtca	gaggaggaag	ctgagggccc	23160
tttattaass	ctgctcagat	greegearee	agagaggagt	tetgettete	tcaacctgtg	23220
standard	gagtttatct	ataaattgct	gaaaaatggg	taatcaagtt	cagcaactcc	23280
ctggcatctg	tgatgaccta	tggtttgtaa	tcctagtcag	aatcacctac	atagaggata	23340
taatattaat	cagaacaaaa	cagaaaagtc	gctagaggaa	taacaatagt	aaaatttaca	23400
accagacgaa	gaataaagtt	ttcaatgagg	cacagttcta	agcacttcat	acaaataacc	23460
tgtcttaatt	ctcataaaag	tactgcaagg	caggtgataa	tatcatctcc	ttctaaagat	23520
aaaatgcagc	acagagaggt	taagtaactt	gtccaatgtt	gaacagctag	tgagtggtca	23580
atctgagatt	taaatccagg	ctgtctgggt	ccaagaactc	tgttcttcac	tacttctcaa	23640
caacatcaac	tatgtaaaat	gacacacata	cataaaccca	catcaatggt	aatggtggta	23700
atctctggcc	ggcaagatga	aagaagatgt	tatgcaattc	ttcagtcctt	tctgtgtctg	23760
ccacattttc	cccaatggat	agatgtcact	taaattatca	gaggaagaaa	caaactctat	23820
taaaaggaat	ttcaagggcc	gggcaagatg	gatcacacct	gtaatcccag	cactttggga	23880
ggccgaggtg	ggcggatcac	ctgaggtcag	cagttcgaga	ccagcctggc	caacatggcg	23940
aaaccctgtc	tctactaaac	atacaaaaaa	attagccggg	catggtqqca	catgcctgta	24000
atcccaacta	cttgggaagc	tgaggcagga	gaatcacttg	aatctaggag	gtggaggttg	24060
cagtgagcca	agatcgcacc.	actgcactca	agcctagaca	acagaggaag	gcttcatctc	24120
aaaaaaataa	aataaaataa	aattattott	ttattctcct	tataaaatta	gcatattcat	24180
tgaagctagq	cacagtggct	cctacctata	atcocacece	tttaggagag	Cagggggggg	24240
agatcactto	aggccaggag	ttcgagage	acctaaccaa	Catagrass	CCCCatctot	24300
aatgaaaata	caaaaattag	ctagattta	page 3 gooda	Ctotastoo	agetactec	24360
qaqqctqaqq	cacgagaatc	acttasses	-22-423-40	tattaceata	agetgagett	24420
J JJ -J-JJ		Jacchaaccc	~~y~yycyy	-sscageg	~gccgaggct	27#4U

		_				
	actccaacct					24480
	attaattgaa					24540
aaacactatc	agtagagaag	tgttgttagc	atttcagtgc	agtgtttcta	gtcttatttt	24600
ctataaatat	ctgaatctac	ccgcctattt	ctctatctct	ctacctaaat	atatctgcat	24660
gttatttgta	tatctgcata	tttatcttat	atttatctaa	ataaatatat	ctaactatat	24720
ctctatatag	agatagagat	agaaagatgg	agagaaagag	agatagagag	atggacatga	24780
	cgtcctgcag					24840
	tttaggcatc					24900
	gcccagttcc					24960
	ctgtcgccca					25020
	agttcaagtg					25080
	aaccaggctg					25140
	gctaggatta					25200
	cctggttctt					25260
						25320
	ccattcttgt					25320
	aagccttgct					
	ggcctggcca					25440
	gctttcctca					25500
	tcatggcgat					25560
	ctggcgccct					25620
	aggcccttca					25680
	gagtaacttt					25740
gtgggtgtta	aatttttaa	aagaaagaaa	acattccagt	aatccaaagc	catcacgcaa	25800
tagcccaccc	gacagaggtc	cctgaaaaac	agcccacagg	ggtccttggg	gtttgcgtcc	25860
acgaccctct	aagcaaggtg	cctcacctgg	cggagctcct	gaagacggga	gctcctgaag	25920
acaggcgccc	cctcctagga	tgccaaaggt	cagaggccgc	agtgggagag	gcctggctga	25980
	tccagtgggc					26040
	gggacctgat					26100
	ctcaggtcca					26160
	acctctggac					26220
aaaatgaggc	aggcatgcct	ctctgagggt	ctggtgagct	cttgagctcc	tgcaaacggc	26280
ccagagtgaa	gtaataggag	tttttqaqct	gaattctcag	tetattacte	aggctggagc	26340
acagtggtgc	aatcqtaqqt	cactgcaacc	tccacttccc	aggttcaagt	gattcttctg.	26400
cctcaqcctc	ctgagtagct	aattttttct	acttttagta	gagacaggg	ttcaccatgt	26460
	ggtctcaaac					26520
	acaggcatga					26580
	tgggtgggc					26640
	tctcaggtgc					26700
	atttattcac					26760
	catatgtatt					26820
	atttactctt					26880
						26940
	aggccagggc					
	gctggcaggg					27000
	gctgatgctg					27060
	ggcgctcgct					27120
geteetteeg	gtcctcacta	ggccatacag	ccaaggccct	gggacactcc	tgtctgtcca	27180
ttgacttatt	cgtacatgct	tcactcttt	cttcactcaa	caaacattcc	tgtgtgtcag	27240
	ctatgctgtg					27300
	cccatgggta					27360
	cctggtaagg					27420
	aaggtgccgt					27480
gctcagcgaa	gggccagata	gaggccagag	ccttccagcg	gggcccatgg	ggacagttac	27540
	atcaaagggg					27600
aaggagattg	gaaatgcaga	ggaagggagg	gagggaggag	agcagtagat	gatgcatcct	27660
	cggaggatac					27720
	tggagtgcag					27780
	ttcctgcctc					27840
	tttttttt					27900
	tctcctgacc					27960
	gccaccatgc					28020
	gtcctaaaat					28080
	tctccctgga					28140
	ctatttatga					28200
	3 · ·	J -3334	J : JJ		33	

ctcaggacac	caccagcaag	caggctttgt	ccttggagca	gggtccctgg	gggtcatgtg	28260
ctgagccagg	tttcagcacc	ttagatggtg	gatggtctgg	gggacatttg	ccaaacagac	28320
ctgatgtggc	cccactagtg	cgtttctgac	cagccgtcag	caccatacaa	acactagcag	28380
agaagctcgc	ctgtcagcag	cgtgattcct	atttcttacc	catgggaggg	cactgttcat	28440
attgttcttg	gtgtgctgtt	ctgcgcctga	cttagcactc	cttcccatct	acatgtagtc	28500
	tcacctgtgt					28560
	cagtggggac					28620
	cacggctgga					28680
gacccaggcc	cctggcatga	gaggggtggg	tagatectae	tgctgcagaa	gettggagag	28740
	tccatgcccc					28800
	tgtgaaattt					28860
	ctaaggaaga					28920
	acactcttta					28980
	caattcctgc					29040
	ttgggcagtg					29100
	gtgtgatgga					29160
	tcagaaagca					29220
	agattcagct					29280
	ccgctcacta					29340
	cctgggcttg					29400
	agtctcagaa					29460
	gggtgacctt					29520
	tcagccttca					29580
	taggtctcca					29640
	tccccagct					29700
	ccatgtcctg					29760
tgtagctccc	atagcagcaa	aggaaggatg	caaagtctca	gggctttgca	ggtggacagt	29820
cagacagctt	tgctgaccaa	ggagaaaata	agtttgtgtg	tgtgtgtctg	tgtgtgtgtt	29880
catgagtgtg	catgtgtgtg	catgcatgtg	catgtatgtg	tgcacgtgtg	agtctgtgtg	29940
agcaaccagc	tcagtctgtg	tctgtgtctg	gggctcagca	gagcatctgc	tctgtaagtg	30000
ttcctactgt	ggactataac	ctgggcagca	ttgatttggg	aagattttgg	taacatggct	30060
ccatctttcc	acacctgaca	tcccttagag	ggacatgtac	acacccactc	tgaccatgtg	30120
cacaggcgcc	aagcagccat	ggggaccaga	gcgcttacgg	tettggeete	tggagccctg	30180
attttgagcc	cattgctacc	tcctgtgggc	caccacggtg	acttggggca	cagttggttt	30240
tctccattga	ggagacaacc	aacaacatta	ggtcaataat	cgctacttgt	cagccttaaa.	30300
tggtggggtg	aagatggagt	aaggcaatca	acttgtccaa	gtttcggtcc	ccaagaaacc	30360
aaccccaaga	tcagcatttg	cctgcaagcg	ggttatctgg	gaggtaatcc	caggtagggg	30420
atgttataaa	taaattttca	tggcactcgg	acataaattt	aattttctca	gcaaggcaat	30480
tttacttcta	tagaagggtg	tgattcgtgg	atggagcaat	ggcaaaagca	cacctgaaca	30540
agggaggga	aggggttttt	atttctgact	caagcagccc	ctcctgctgt	gtcattcccc	30600
tattggctag	tgttggactg	cacagtctaa	gctaattcca	actggccatt	tcaaagagag	30660
caggggtacg	agctggagtg	gcggggtgag	tagtttggca	ggaaagatgg	ttacagaaca	30720
ggtgactcag	gatgactcag	gtcagagcag	gtgaccaggg	gtaactcggg	acagagctgg.	30780
tgatagaggc	aaggagggg	ttgtttactg	aaactaqqqq	caaqqaqacq	aaaaaacga	30840
ggaagttaaa	ctttaaaacg	aagaacaaag	aacaggggag	ctgaacatac	tgatacatta	30900
gttatttgga	gaggatetea	gaacccattg	tactcaacaa	tttacaggct	aaaacctttg	30960
aagaggaatt	tattatatgc	tatagggagt	tagggaagag	aaactgggaa	gggaagacag ·	31020
ctttgtgagt	tagggggtta	tcctagccac	tggagctggg	aaaqccaqaa	gccagcgcag ·	31080
cgcgtgcatc	tgagagtcaa	cacqtqatqq	cqaqqaaqcc	agggtgtttg	tgcagcagct	31140
ccctccagtc	tgcaggagga	ccqcttccaq	gaggacttcc	aacctactac	accagtggca	
acctgagcac	agaaggccag	aagagcccct	gagcagagag	tacaatactc	cccctaggaa	31260
gctgtgccct	gggtgctcgg	atataaaaat	cacccacact	cctagaaacc	gagcaaggg	31320
gcgcaccccg	cagtgggaga	gagacttect	acacaacaca	ggaggagett	ccadascada	31380
agctatctaa	ggcagagccc	tggctacggt	gacatagaga	Cacaddaaa	32233	31440
tgcgcaqtcq	ggaggcgctt	actetecata	cadacccccd	aatacacaca	cacaatacet	31500
gcagccatcg	ccctacgggg	cctcgcgact	cadacated	ccctactctc	caddcadcac	31560
tagagettee	agaaagtccc	adddcaddcc	tegeggatege	Caddadacaca	acadacasts	31620
caaagcctgc	tgggaggtgt	agttttccct	raacaccac	ctacacacac	acasaccae	31620
ataaactaca	-333~33cAc	ccatcotco	yaayacyyyy	acaccagag	aggagg	
tetaaettea	gagcaagaag	ctacters-	ogeggegtet	acattata-	ageageceet	31740
atgacagttc	cgaaggccgc	.gaagggetge	tototocageg	acacacteec	agecaggegg	31800
cattteetee	ccagcgcctc.	-aaaaacccac	acctocacc	atttaccest	cacacgattg	31860 31920
agggggagag	acgcagecce	ccggcgggge	aggregagee	ganttatt	ggaagagagg	
-3	cttgttggag	anderdread	caaaygcgag	22000000000	ccatcctgac	31980

tgtgtctgtt	ctctgctctg	accgcggggc	ctgcagggct	gttagcccca	tttgcaggag	32040
gaagggcacc	cttttctttc	cagaccagtc	tctccctccg	ggcagttacc	acctcctccc	32100
taccggccct	gccctcccac	tttaccccct	ccccacggta	tccggcattc	tecetgette	32160
ccctctgggc	tgggagctct	tccagagccc	ggaccctggt	gccagctggg	ccaaccttga	32220
tgagtgatta	acagtcagat	tctccaaatt	agactatgaa	taggattcac	agataaagca	32280
gataaaaata	cagacaccac	cagctaaatc	tcaatttcag	atagacaact	ttcagtgtaa	32340
gtcttacagt	aggtaggtag	tcagacagga	acadadcada	agagggagga	ccaccccca	32400
tgcagccagt	gccagggaaa	attaatetee	cactccgtag	aaacactgga	anctontoat	32460
cagcagettt	ccgaatagat	cacagnantt	aaacsaataa	actossacst	toaccataac	32520
accessate	atagaattta	actoototot	9990499199	geceaageae	ctacgctaag	
aggeadadey	gtggagttta	taggtong	tataataaa	gagaacceca	ccggcaaggg	32580
aagcacgcct	caagagagca	chanataga	tetggtaaac	acaccycaat	gcageceete	32640
ccaagtactg	gcaggccact	grgaaracag	acageceace	ccaaaggaag	aatcagggag	32700
	accccgaaga					32760
	tctctcaagt					32820
	ctaaaacttt					32880
	tcttatgccc					32940
	acccatatgg					33000
gggatatact	tatataaaag	ttatccgttg	tttatgtgaa	attcaaatct	aactggatgt	33060
attagtctgg	gttctgtaga	gggacagaag	taataggata	gatctatata	taaggagaat	33120
ttattaagta	ttaactcaca	tgatcagaag	gtcccacaat	aggccaaatg	caagctgagg	33180
agcaaggaga	gccagtccga	gtcccaaaac	tgaagaactt	ggagtctgat	gtttgagggc	33240
	cagcgtggga					33300
	gcctgcttta					33360
	gtgggtctgc					33420
	cagacacatc					33480
	atcacactgg					33540
	agctcagccc.					33600
	cccagacaca					33660
	tttccacaga					33720
tgccatggtc	caggaggtgc.	agtgcgtgtc	ttgggcagca	agaggaagga	tttacctgca	33780
gatggtgggc	agggttaatt	ctaacettaa	tactacetee	agaagectoc	aggacctgaa	33840
gcccacccct	tcgccttttt	tecceactec	cacaaccaac	ttagaetagg	tagaaastat	33900
aatacttcca	gtctcgatgt	caccacacac	acceptage	cagaacage	chtatataa	33960
ccttacctca	ggtggggcac	tagaagaaaa	actccctctc	tcaccctaac	atttacata	34020
tataaaatgg	gatatcaata	cctcacccc	ttactccaac	cageceag	catacattt	
tttaaagtgg	cctatatast	acttatataa	tagagaga	gacgaaagca	ttotto	34080
tattattaac	cctgtgtgat	geeegeacee	tastasasas	tagacetag	ctatteatgt	34140
catactactac	agtcactctc	ccaggaccaa	cgccgggaga	tgcagtgata	acaaaaccca	34200
	ctggcatgtg					34260
	ctaaagtgat					34320
gutteatgee	tggccagcaa	gcaageceee	cagetgagge	gcccacacat	ctccacccaa	34380
tgageeegea	cttacaggac	ctagggccac	cattetgggt	cattggggat	gaaacagcca	34440
aacctgggcc	ttcagcattg.	cgggtgaggt	cgaggagcag	agaggagtga	cagacacaga	34500
	catgcgcccc					34560
	gggtcccaag					34620
ccaggaaacc	aaatcactag	gggtaacaga	gcaagcagag	ctgtggcatc	acagtctcag	34680
					ccagcacaca	34740
gatataacta	agaccaagcc	cttgcccaac	aatatttact	ccacttcaga	ggtgcgctct	34800
	tttctttct					34860
	cttcctaata					34920
	ttaaatttga					34980
gtgaactatt	tectetette	acgccgggaa	gtgcctagac	cacagtgggg	ggccggccag	35040
cccttccatc	ccaagagcca	gcccctgtgg	ctcctgcggc	ccctgcataa	atatggaact	35100
ctcaggccag	gatgggaact	gccagggctc	aagcagtaaa	ctttataagt	tattacaaaa	35160
	cacagggaca					35220
aagtttagaa	tctctggttt	caaaaactat	tgcaacatta	taataaacaa	atatccaaaa	35280
gcttagaaat	agaaattaaa	gataaagatg	gtcacgtttq	accaaaaqaa	caatattttc	35340
	ttgatgatac					35400
	agatacagtg					35460
	ccaccgctgg					35520
tgaaacatta	aaataccact	atctatctac	atttaaaatt	aaattcacat	tcacatases	35580
atgatttgta	taaagagtta	aatatttt	gaaaaattgt	tctgcaagae	teateagete	35640
	aacatttgta					35700
	ctcttaatag					35760
		ualada	aaacycacca	23~aaggt	Coccoccaaa	33700

	tcctaaaatg					35820
ttcaattata	tcgattgaaa	acaaagttgc	taaaagtgta	agctttgata	acctaataaa	35880
tgaatttgca	gaaaagtgag	ccagggaaag	cttctaatcc	agttatcaca	taaagtatta	35940
tttgttttat	tgtataaata	atcacaccca	aaatattatt	ttgacaaatt	tgtaagttta	36000
tgttgttact	catgcatcac	tattatccct	attacattgc	ataagtaata	aatttttcaa	36060
gggaaaagct	ttctatttca	ccctgtaac	tgcactttcc	tcctgctttt	tgaataaggg	36120
gcctgaattt	ttattttgca	ctgggctttt	caaattatgc	agcaagggat	gatccagcag	36180
	ctgagctccg					36240
	cgatatgtta					36300
	cccatgeata					36360
ctttgacgtc	aggtagtgag	atggcacagg	gaagegeete	ctqtqqqcac	ctqcataqaq	36420
	gtggctctta					36480
	tcgacatcac					36540
agacctatto	agaaagaatc	aggattttaa	taatattcca	agatgatctg	taggeetagg	36600
agueteuceg	aagcgtggcc	ctacacaaac	gacttagaga	ttacctgagt	actttqccqt	36660
ttaatttaa	tcctaactat	taatattaa	acactcacca	ctacacgage	caadadtcaa	36720
ctadatttag	coccaactac	cgccacccaa	agagegaeea	20222222	aatotcacaa	36780
gtgattagtt	gtttgatttg	ccaaccayya	atattaatat	202000000	tanganagan	36840
acagggctgg	gagttacctc	caagagtcaa	aceccecce	acacececga	coccaccoc	
aaagacaaga	gctttctgct	gacetectea	aaagcacggg	tttttttgg	gagggccaag	36900
gtgagggttg	ggttttttgt	rrgrrrgggg	ggttttgttt	tegetetete	gaggcagagt	36960
cttgctctgt	cactcaggat	ggggtgcagt	ggcatgatca	tagctcactg	cagcctcaac	37020
ctcccaggct	gaagcaatcc	tccccatcag	cttcccaagt	aactgaaacc	acaggtgtgc	37080
	ccagctaatt					37140
tgctcaggct	ggtctcgaac	tcctgagctc	aagtgatcct	cccacatcag	cctcccaaag	37200
	acaggtgcga					37260
	catgggcctc					37320
ctacagttga	gccagcctgc	agggatgtgg	gaacccagga	ctggggggtt	tggggcttgc	37380
acggcactca	ctgccaccag	gtgaccttgg	gcaagtcact	tctctcctgg	cccgcgtgcc	37440
tctatcctta	aagtgcaggc	agttggcgcg	cgagattccc	ggggtccctc	tcggttttaa	37500
agcctaggct	tgcatagtat	gggtcttttc	ctgttgcagc	tttctggttt	gtgccccaga	37560
atttgccagg	gaaatagaac	caagccccaa	gcttctgtct	ccagagataa	gatggccttc	37620
tcttcctgtc	atttaaggcc	ctgggaggcc	ctagaatttg	gagtgtctgg	caggcctgga	37680
	gcccagcatt					37740
	agggaggtgc					37800
	ggggaaacca					37860
	agtggtggag					37920
	tgacggcatc		-			37980
	ctctggggga					38040
	ccaagccttg					38100
	tcggggtttc					38160
	ccagtcctct					38220
	tggtaggcca					38280
	ctaggggccg					38340
	gcggatcaca					38400
	actaaaaata					38460
						38520
	gaggcaggaa					
	ctgccctcca					38580
	agaggeteee					38640
	tcaatgcctt					38700
	agggcatctc					38760
	tctstattta					38820
	gtgagcaaac					38880
	tcaacagcta					38940
	tgcagtgtcc					39000
	catgaactct					39060
	tgaggcagga					39120
	caaaaaaaca					39180
ccacgcaagg	ccttgggggc	attggaagga	ctttggcttt	tacattgaga	agacagagct	39240
cctggagggc	tttgtccaag	gactgatgag	cccagacatc	actggctgct	ccggtgagcc	39300
	acaggggagg					39360
	cagatgccat					39420
	tgttcacgaa					39480
					ctgtttttga	39540

aagracetge	tttgtagacc	cctacacaa	ttctcacttc	tasaastata	atactatact	39600
aagcacccgc	cocgeagace	cccacagaaa	ccccacccg	teageacece	ctgetetggt	
accagacget	gagcccttgc	aagagagcag	ggagetggge	rggttttgee	atcatggage	39660
	gccttctgca					39720
cacccagacc	aacggaatca	aaatctgtgt	tggggtgggg	ggcttgagct	tctgctttta	39780
aaattcttcc	aggggtttgg	gttaatttgt	ctccctgggg	ctttgtgtta	atttgtctcg	39840
	gggcccagcg					39900
	tggtcactta					39960
	cgacagaggc					40020
	ccttccggag					40080
	ttctaaggaa					40140
tctcatacca	cagcgtgtga	gtccgtgcaa	acgccatgtc	tgtcccctct	caggagaacc	40200
ctctctcaga	gctatgaaaa	tccttaccat	tgcctcattc	agactctcaa	agtctgaact	40260
ctgtcacttt	agagcacagg	actcaaatgt	gactgtgctc	aggaatcaga	tgggggttgg	40320
					atttctagct .	40380
	gatgctggca					40440
	cctactgaca					40500
	gtttgagaat					40560
	tagagagagg					40620
	cttggtttat					40680
cacaaaagcc	ctatgtgagt	gtgtgcagtc	atgtctggcc	cccagtggag	gagtggcaga	40740
gggtgtgtgg	tggcccggga	aaggtgtggg	ttctgcagag	agggaaatta	actttggtta .	40800
	ctgggtgcca					40860
	acagcagcct					40920
	aggaggaaag					40980
						41040
	tcaggcttgt					
	ttgcaggagc					41100
	ctggttgatg					41160
catccagcet	gtggtatcac	tctccccagg	gcctcggaga	gcccactcsg	tggctggcag	41220
ttggaggatg	actgtgtaga	gacggtagag	tcttcttaa	acccatagcg	cagaagtggg	41280
actcatcatt	tcccaggctt	cccattggtg	agaagcagtc	acatagtcac	acgcacggtg	41340
	gagctgtcac					41400
ccttgaactc	ctgggctcca	gtgatcctcc	agecteagte	tctagagtag	ctgggactac	41460
aggtgtgggc	caccatgctg	gctaattaat	tatttatgta	tttatattt	ttatacacac	41520
agtastata	ttaggctttg	tatecceaec	casatetest	cttcaactct	aatotooata	41580
					cgtttcccc	41640
	cgtcacggtg					41700
	ctcagtgctt					41760
	caccgtgatt					41820
cctatttcct	ttataaatta	cccagccttg	ggcaattctt	tacagtagtg	tgaaaatgga.	41880
ctaatacaga	cgtggtctca	ttgtgttgct	cagggtagtc	tgaaactctt	gggctcaagc	41940
gatcctccca	gcttggcttc	ccaaagcact	gggattacag	gtgtgagcca	ccqtacctqq	42000
ctagaattat	gatgttgaaa	aatcacacag	ccttggagcg	agaaaggete	tgaggttctg	42060
ttcatccatc	cggcacctga	aggtgctctg	caaagctggg	aagatgatca	tccagcccct	42120
accadacato	aggccacagc	caacccaata	acctonante	acceteteet	aaggaataata	42180
ccctagaec	tgcgtttctg	agatactact	gaggtgtgc	atacagasta	adgetgetg	42240
					cctcccagtc ·	
					aatcaataga ·	
	tggttgctag					42420
	agcctcagaa					42480
aagggaagat	gagttcatta	tgtgaccggc	ggcaataccc	tgacattcct	agtgggttgg	42540
ggaagccttc	tcctgccctg	ctcatgtctg	tctcaccacc	tgtagcagct	aggagggcc	42600
ctactctgag	gactggtgcc	cttttaagaa	аадаадсаа	gcacagtagc	tcacgcctat	42660
aatcccagca	ctttcagagg	ctaagggagg	ctaaaatcaa	gagttgaaga	ccagcctggc	42720
caacatooto	aaaacccatc	tetactass	2522330033	tageceage	teateacas	
tacctatest	aaaacccatc	angenerate	acayaaaaac	attentina	cascascascas	42780
agacet	cccagctact	caggaggetg	aggcaggaga	actycetgaa	cccaggaggc	42840
ggagguegea	gtgagccaag	attgcggcac	tgcactccag	cctgagagac	agagcgagat	42900
cctgtctcag	aaaaaaaaa	aataaaaaca	gaagaggaaa	ctggatacag	acacagagaa	42960
gctaatgcca	tataaacaga	gacaaggaag	actgtggaac	aacggagacg	cgatgggagc	43020
gatgctgcca	caaagaccgc	cagcaaccag	cgaagccagg	agagaagcaa	ggacccagga	43080
					gtttgggaga	43140
gtgcatttct	gttggccgaa	gccactcatt	gtggcacttt	gttacggcag	ccagggcacc	43200
accagcgagg	ggcagaaacc	agcagatasa	tcatatacaa	gccaqqaacq	gagaaagagg	43260
aagaggcaat	tcacaggcaa	agacacgaac	ABBACACAAA	Caagggagag	caagagcgcc	43320
		-Ju-gaac			Jangugue	-3320

tgcattgagc	aggggtggga	gggtgcggtg	gagggcagca	ggagaggacg	ctgtgtgagg	43380
gtggggaagg	agggctgaga	gtgggcgcct	tcgtgaagca	gggactctgg	gcagagagaa	43440
	gaaggctctg					43500
	gctgagtggg					43560
cactetees	200223033	accactacc	2++++4+4	209490049	0333343335	
	ggccacagga					43620
ggagggtttt	aagcaagaga	grgacargar	gggattgatg	tcatttggac	tgctgtgtgg	43680
aggatgtgaa	agcattcatt	cattcattca	ttcattcctt	catttcaaca	agtaataata	43740
caaacaacct	caggaccgtg	accaggcctg	tggacaaaag	aaatggcaga	gagatcacag	43800
ccttggggag	tcagggctgt	cagagaattc	ccctctaaga	tgacctggag	caggggggtg	43860
gaacagccat	aggagggctg	addaaddata	ctccacacta	caceatasas	24333324443	43920
actactacet	angagggetg	33344333543	ctccagggtg	cycaycyayc	teathere	
	cacacccctg					43980
	cacgactttc					44040
tctgacaaag	agctcaattg	ttcctcaggc	ggtaccaatc	ttaatcgtta	tagtcaagaa	44100
gttttataag	cacttttta	tttattttt	tttaattttt	tgagacagag	tcttgctttc	44160
	tggagtgcag					44220
	gcctcagcct					44280
	gtaattttag					44340
	caagtgattc					44400
catcaccatg	cctagttaat	ttttgtattt	ttagtagaga	tgtggaggga	ggggtttcac	44460
catqttqqcc	aggctggtct	cgaactcctg	acctcaagtg	atetgecete	cttggcctcc	44520
	ggattacagg					44580
	ttctgcaatt					44640
	gcacacagat					44700
	cgctgtgcaa					44760
cactgatgtg	aaacattcac	ccgtcattca	actcccagag	gggcctcaga	ggcagcagtc	44820
taaaatgtgg	caggttgata	acaagetggt	accaggtcag	ggtgtgtctg	caggcacaga	44880
	aggagggaga					44940
	ttctgagcct					45000
ctctgagcca	tcaagagtgg	atcaactaa	acctagasca	ataactasta	ottotaggagg	45060
caccacttte	coaagagagag	gecaggeegg	gcccggcacg	geggeteatg	tersere	
cagcactttg	ggaggccgag	gegggeagat	cacctgaggt	caggagttca	tgaccagcct	45120
ggccaacatg	gtgaaactcc	atctctacta	aaaatacaaa	attagctgat	cgtgggggcc	45180
agcgccagct	acttgggagg	ctgaggcata	agaattgctt	gaactcggga	ggtggaggtt	45240
	aagatcgcgc					45300
caaaaaaaa	aaaaaaama	aaaqassccq	ggcscaagrt	ggctmaacgc	catotaaatc	45360
cmarcamttt	tgsgargccr	aagggggggg	ratcacaarc	gtccarcara	traaracrat	45420
ccwkactass	cacacrtras	2000001010	tactacaart	geccargara	tagaccac	
cowngccada	cacagrtraa	accecette.	Lactadadat	acaaaaagt	casmeaggeg	45480
egregrerrg	cgcctgtagt	mccagmtact	cgggaggytg	aggcaggaga	atggcgwgac	45540
cccgggaggt	ggaayttgca	gtaagccgag	cttgcaccay	tgcactccag	cctgggcgac	45600
tctgtctcaa	aaaaaaaaa	aaaaaaaag	agtgggtcag	gctgggcatg	aattcgcctc	45660
	cacctgaccc					45720
gagtgataga	acccacctga	tagctattct	ttctttaaga	ctgaggtgga	atateacect	45780
ttccccagcc	cctcgcagtc	catctcccca	cotcaccata	catactataa	agttgggagg	45840
atasaastas	ttacassast	caccccgga	cccaccycc	catgetetge	het et e	
ccgageccca	ttccgaaaat	acetgeeegt	getgecetea	aagctcagca	tgtcttgggc	45900
ceceagegee	tctccaggca	ggttctctgc	acagatgtca	ggccagactg	tccctctttg	45960
ctcagggaaa	aagaagatga	gctctcaagg	tgccagectg	tagtccctgc	actggggcag	46020
gacaaaggta	agtagaatca	agaatcgcca	ccaggactac	actttcccca	ggaaaaactt	46080
gaaacgagtt	cacgtagcat	tttggatccc	accmkwwcag	cagcmctaga	gaaagtgcca	46140
	tatacccaag					46200
	tgcaaccaga					46260
atgactigitg	atcacggcaa	gettetgggt	aacctacacc	tetaaagatt	greaaaaca	46320
atateteett	cgctaaaact	gttcaaattg	ctcccacaaa	catcaaaagt	gctccccacc	46380
ctgcccccca	ctttctctgc	ccgtctctat	ggcaacgtgg	agctgtgcta	ttctgatcac	46440
tgctaccaag	ccaagcaggt	gtccggaaag	ttttggggag	gattttgagt	tgggtaattt	46500
ttggctcttc	ttgacatttc	ctaagtgccg	tgatgcctaa	aattttgttc	tattotttcc	46560
toctaaaoto	aacaagaagt	tecetetece	accagetete	actttttta	tataatttt	46620
ttt++++++	++++++++	tagagaga	+0++~0+0+0	toposses	antabassb	
~~~	tagetaset	-yayacayag		ccaccagget	ggtgtgcatt	46680
ggcgtgatet	tggctcactg	caacctccac	ctcctggatt	caaatgattc	tcttgcctca	46740
geeteetgag	tagctgagac	taaaggtgca	tgccaccatt	cccagttaat	ctttgtattt	46800
ttagtaaaga	tggggtttca	ccatgttggc	cagaatggtc	tegatetett	gacctcatga	46860
tecgeetgee	tcagcctccc	aaagtgctgg	gattacaggc	gtgagccacc	gtgcctgacc	46920
wakmtytkrr	wtttgagawm	gatcacagga	gggactcagg	gctgaaagaa	gtgagggagg	46980
aggccaggcg	tggtggctat	tacctatest	cccaccactt	tagatageta	3-3-335-33	47040
attacttasa	cccaggagtt	Caararara	otagaaaaa	totaposcot	catatata-	47100
55-5		-aayaccage	Grande	-gcaagacct	cacciccaca	- 1 TOO

_						
	aaaaaaaaa					47160
	ggctgggatg					47220
gtggtgaacc	gagatcatgc	cactgcactc	tagcctgggt	gacagaacaa	gactctgtct	47280
caaaaaaaaa	gaaagaaaga	aagaaaaaaa	aaaagaagtg	aggagatgtt	gcaaatgccc	47340
	aaccacacct					47400
	tttacagcca					47460
	ggtggcattg					47520
	gggcacagga					47580
aggacgatcc	tacctcccag	grigicaggi	ggatttaatg	ggccaccagg	Lycaaccage	47640
	ggatggtaat					47700
	acgcaggtta					47760
tactgagttg	acgcccaggg	aggtccaatg	agttgctcca	ggtctaacga	cattgcctaa	47820
gcgtgtcata	geceeteece	atgctcagtt	ccctgattta	aagtcagtgc	ctcttggaag	47880
caatcaccgt	gtccttcggg	aggtgagtag	atacataagt	ggatacgtaa	gctgtggtcc	47940
	tggactatta					48000
	aactgageeg					48060
	ttccaactct					48120
cactgcactg	tteeaacccc	gegaeaceec	ggacagggca	eaccatagea	tatasaasaa	48180
agaceageeg	ttgccaggag	geagegggag	ggagggacga	agcagcggag	cyccaagagc	
	tgacgctgct					48240
	cacagaatgc					48300
	aatgtgtcaa					48360
tggggaggtg	tgggatctac	gggaactgtc	tgcactttcc	actcagcttt	gctgggaatc	48420
ccaaactgcc	cttagaaata	aggtctatta	aaaaggggta	gggggcggct	gggtgtgggg	48480
	gtactcctgg					48540
	caagaccagc					48600.
	agatgtggtg					48660
	ctgagcctag					48720
	aacctggggg					48780
						48840
	ccaccatcac					
	cctctggtta					48900
	aagcccctcc					48960
	cacccagtga					49020
	agtgactgac					49080
	ttgatgtact					49140
gtcctggtga	cacagccctg	ggacctgaga	cctgtgccca	ggccccatgc	tggctgctgt	49200
catggtctcc	ctgcatccag	ggcaggctgg	gcccatttcg	aaggtgaggg	ctgggggagg	49260
	cagctggcac					49320
	cgtctctccc					49380
gcatcctggc	ttttttttt	ttttaattcc	ccaaatgaaa	cttcccagtg	cacttootoa	49440
ctcatctata	ggctgtgaag	tagcattcac	tetetacett	cagagatgag	cacatcacca	49500
	tgggagggct					49560
						49620
	gcacgggggt					
	tggtvacack					49680
	acbhchgcyc					49740
nagggagbtv	dggttbhtag	dggtgdavac	tgggcaggvg	gdaggagtgr	tgggcbgagg	49800
gtgbgrtdtg	dghadtgadg	tgggavrggr	craaggabgv	gggtgggdgb	tgagagbcbh	49860
tabgbtctas	vdsctvgvag	stgbdgggwa	tgttwkgbtg	gdavbtttch	thhccbthad	49920
hccbtsggac	agtgagggaw	ggctgccccg	tgtgtcacat	tgtygttagg	aagatctgtc	49980
	agcaaagagk					50040
	gaggcyagtg					50100
	aaggcaccca					50160
	ttctggtcca					50220
	agctaagcac					50280
	aacagggtct					50340
toossett-	tgcccaagcc	coogaguac	cugggaetae	aggeatatge	- the termination	50400
	atgtgcatgc	aaaccccaag	ggcatcttat	caaaatgcaa	accetgactg	50460
aggaggtcca	tggttggcgc	gggattetge	attegtaaca	ggcgtccagg	tgactgagga	50520
atgctggatg	ctgatgttgc	tggtctggtg	gacccatcac	actatgaacc	acactgcttt	50580
atactcatgg	gtctcaaatg	ttcctatgtc	tcacaaaccc	cccaggaacc	tgttaaaatg	50640
cagattcctg	ggcctggctc	ccagggatgc	tgacaaggct	agtcctaggg	tttcgctgtg	50700
ctagaagtcc	aatgtgtggc	cgacatgccc	aaacatgttc	tgttcttttc	tattcttatc	50760
tcttttactt	tttctttcct	tatctctttt	actttttctt	ttcttttctc	ttctcttctc	50820
ttctcttctt	ttgagacagg	gtctcactct	gatgccagg	ctggagtgca	gtggtgcaat	50880
				JJ J-J	5 25 5	

cttggctcac	tgcagcctca	aactccccag	ttcaagcaat	cctcccattt	cagcttcctg	50940
agtagctggg	actatgggca	catoccacca	catctaacta	atttttaaat	ttttttataa	51000
anatomottt	ttaccetatt	acatacata	atattassat	teteeces	2222222	
	ttgccatgtt					51060
ctggcttggc	ctcccaaagt	gctgggatga	caggtgtgcg	ctaccatgcc	caaccagccg	51120
cacatgttgt	ttttttgttg	ttattttta	tatataataa	agtttcgctc	ttattaccca	51180
ggctagagtg	caatggtgtg	acectggete	accgcaacct	cagetteeeg	agtagctggg	51240
attacgggca	tgcgccatca	agcccggcta	attttgtatt	tttagtagag	acqqqqtttc	51300
accatottoo	tcaggctggt	ctcaaactcc	casantasaa	tratroacon	cccacctcca	
accatgetgg	ccaggeegge	CCCaaacccc	cyaccicagg	Lyacticatic	CCCaccccca	51360
ggcctcccaa	agtgctggga	tcacaggcgt	gagccaccat	gcctggccca	tgttgttctt	51420
atctcattaa	cccagtgggc	taaaaactca	ttgccacact	cagtagetta	aaccacagaa	51480
	ccacagttat					51540
caaggagaat	ctgttccctg	ctcttccaga	ttccagggac	tgcctgcatt	ccttgacttg	51600
	attcctatct					51660
	ctccgtgtgt					51720
ccaggctaat	ggccccttct	caaaatcctt	aatcacatct	gcaaaaaccc	ttttctaaat	51780
	tcacaggete					51840
						•
	cacactctgc					51900
ttctttgaat	acttggcatg	tagtccaatg	cctggaacag	gcaggatgtc	actaaatgtt	51960
	aatttttatt					52020
actctgtcgc	ccaggctgga	gtgcagtggc	atgatctctg	ctcactgcaa	cctccagttc	52080
ctgggatcaa	gcgattctcc	tacctcaacc	tectatataa	ctgggattac	aggcatgtgc	52140
	ggctaatttt					52200
aggctggtct	cgaactgctg	acctcaagtg	atccacccac	cteggcctcc	caaagggcta	52260
	tgtgagccac					52320
	tttaaatagg					52380
tgaaaatcat	gggcagacat	caaaggactg	aattgtgggg	ggtatatttg	gatgtcaggt	52440
	ggacactgtc					52500
****	2542445		gaaagageee	acacguagec	cccgcacagg	
tgatteatee	atccatccat	ccattcattc	attcaatact	cagcagcaac	atgcagagct	52560
cagctcttgg	gggaatgagg	acaggtgtcc	tagaaaaqat	agcattgaac	agctggctct	52620
ttctcccacc	agagttgtgt	tttaataagt	totagtattt	ctaggagtta	ctactttaaa	52680
	-5		th	ccagcagcca	cegeeeeaag	
Lgtgtggcta	ctagattttc	tggctcattc	agattcatga	caatgaaatc	tttgtggatt	52740
gtgcctggca	cccttacata	ataccactct	tcccgtgaat	gctttccatc	atgcgttctt	52800
ccttatcaat	agtaatttgc	catttttcaa	atatetaeta	tratcttcta	ottotosata.	52860
			acguergerg	Lyacoccca	CCCCCaaca	
cccccggcgc	gtttcttgta	aatagegett	aactggactt	tagtttttgc	cccaatctta	52920
cagactttgg	atgggaaatt	cagcccattc	accgtgttac	qaaqqcqqqt	agccatggct	52980
ttatttattt	tatctcatct	tatotttact	attattaagg	ttattottct	tactattatt	53040
4			accuccuage	ccaccyccc	cyclattatt	
tactttcccc	cttaattttg	cttccttact	CTCCCTCCAC	ccccccca	acttctacct	53100
agtaattcag	gagttctact	ctgcttcttt	cccqtqaqtt	gctactttcc	aattcctgag	53160
agtcataatt	caaccaatct	ftecetaata	atotattasa	antaaatnot	221022000	53220
		ceceegaca	acgcaccaaa	agradatygt	aacgaageee	
cctccccacc	accaataagg	CTTTCCTTCC	ccagctgaga	gtcataatta	aaccaatctt	53280
tccctgctaa	tgtattaaaa	gtaaatggta	atgaagcacc	cctcccaacc	accaataagg	53340
	ccactcacca					
	ccacccacca	aaccagaccc	CCCCacccc		CCCaaccaaa	53400
	aaatattctg					53460
ggctaataca	actttctctt	gaagcatgta	acttatattt	taagaatcct	tatotoocac	53520
	aaatcacagg					53580
	ccacttcctg					53640
gaactgtctc	ggtgacgggg	gaactctgaa	tatcttcctc	tgaaagggga	catcactgag	53700
atectttete	tgtcttgcca	cantonatat	tttatatatt	ttataaaast	202200	53760
5	cyccca	caguggatat		ctyttcatat	agacgaaccc	
tgtagtagcc	atggtaagga	tccttgatcc	tatcatcaga	gtccctggac	attgctccaa	53820
agtcccctag	gaaccacttc	aacttttctc	cccttagatg	tgacctgttc	tttctggaac	53880
tetecaacac	cgtctcttta	taattaaast	ataaaattta	232223222	+++++++++	
cocycaagac	cycccccca	rectiggeat	Cigggattic	cagggacacg	tteteetgge	53940
actttgctca	cctctgtttc	ccctccagct	cttcctggag	tacctgtcct	ttgtgcaata	54000
cacctcctgg	aactgtcttt	ccagteteta	ctttttatcc	tgatgatttt	catotocttt	54060
teetetaeat	catcaaccas	ttagtgag	ttatatata	A++4-+		_
tcctctacat			Lancintoca	gullyccat	LLYCCCCCAC	54120
ctccactctt		ccaccaca			=	
	ctctttctga	atttgcctgt	tgctttttca	gtctcttagc	tccgtggagt	54180
atgttcagto	ctctttctga	atttgcctgt	tgctttttca	gtctcttagc	tccgtggagt	_
atgttcagtg	ctctttctga ttgctgtgtt	atttgcctgt ctgatagagg	tgctttttca ctccttaagc	gtctcttagc catcttgtag	tccgtggagt attttttgtt	54240
atgttcagtg gcacttcctc	ctctttctga ttgctgtgtt tcttccctta	atttgcctgt ctgatagagg gacctccaca	tgctttttca ctccttaagc ggaggaactt	gtctcttagc catcttgtag ttcaatctgt	tccgtggagt attttttgtt cctcttctct	54240 54300
atgttcagtg gcacttcctc ctgcttaatg	ctctttctga ttgctgtgtt tcttccctta agcccctgca	atttgcctgt ctgatagagg gacctccaca aagggtttgg	tgcttttca ctccttaagc ggaggaactt gaagtgcttc	gtctcttagc catcttgtag ttcaatctgt agcctctctg	tccgtggagt atttttgtt cctcttctct tgattgtgtg	54240
atgttcagtg gcacttcctc ctgcttaatg	ctctttctga ttgctgtgtt tcttccctta agcccctgca	atttgcctgt ctgatagagg gacctccaca aagggtttgg	tgcttttca ctccttaagc ggaggaactt gaagtgcttc	gtctcttagc catcttgtag ttcaatctgt agcctctctg	tccgtggagt atttttgtt cctcttctct tgattgtgtg	54240 54300 54360
atgttcagtg gcacttcctc ctgcttaatg ttcacattaa	ctctttctga ttgctgtgtt tcttccctta agcccctgca tatttattat	atttgcctgt ctgatagagg gacctccaca aagggtttgg tttcttaaat	tgcttttca ctccttaagc ggaggaactt gaagtgcttc gtgcataaat	gtctcttagc catcttgtag ttcaatctgt agcctctctg ctcacaatgt	tccgtggagt atttttgtt cctcttctct tgattgtgtg gaacagtgat	54240 54300 54360 54420
atgttcagtg gcacttcctc ctgcttaatg ttcacattaa catctttgag	ctctttctga ttgctgtgtt tcttccctta agcccctgca tatttattat tgatttttt	atttgcctgt ctgatagagg gacctccaca aagggtttgg tttcttaaat tctcctttct	tgcttttca ctccttaagc ggaggaactt gaagtgcttc gtgcataaat acttttagta	gtctcttagc catcttgtag ttcaatctgt agcctctctg ctcacaatgt attctccaaa	tccgtggagt atttttgtt cctcttctct tgattgtgtg gaacagtgat ttttctacag	54240 54300 54360 54420 54480
atgttcagtg gcacttcctc ctgcttaatg ttcacattaa catctttgag ttagtgtgtg	ctctttctga ttgctgtgtt tcttccctta agcccctgca tatttattat tgatttttt ataaggtgga	atttgcctgt ctgatagagg gacctccaca aagggtttgg tttcttaaat tctcctttct aagacatctt	tgcttttca ctccttaagc ggaggaactt gaagtgcttc gtgcataaat acttttagta caagactttg	gtctcttagc catcttgtag ttcaatctgt agcctctctg ctcacaatgt attctccaaa ggcaaataac	tccgtggagt atttttgtt cctcttctct tgattgtgtg gaacagtgat ttttctacag tatgtctgag	54240 54300 54360 54420
atgttcagtg gcacttcctc ctgcttaatg ttcacattaa catctttgag ttagtgtgtg	ctctttctga ttgctgtgtt tcttccctta agcccctgca tatttattat tgatttttt ataaggtgga	atttgcctgt ctgatagagg gacctccaca aagggtttgg tttcttaaat tctcctttct aagacatctt	tgcttttca ctccttaagc ggaggaactt gaagtgcttc gtgcataaat acttttagta caagactttg	gtctcttagc catcttgtag ttcaatctgt agcctctctg ctcacaatgt attctccaaa ggcaaataac	tccgtggagt atttttgtt cctcttctct tgattgtgtg gaacagtgat ttttctacag tatgtctgag	54240 54300 54360 54420 54480 54540
atgttcagtg gcacttcctc ctgcttaatg ttcacattaa catctttgag ttagtgtgtg cctcaatttt	ctctttctga ttgctgtgtt tcttccctta agcccctgca tatttattat tgatttttt	atttgcctgt ctgatagagg gacctccaca aagggtttgg tttcttaaat tctcctttct aagacatctt aaaaatgggc	tgcttttca ctccttaagc ggaggaactt gaagtgcttc gtgcataaat acttttagta caagactttg tcagtgccac	gtctcttagc catcttgtag ttcaatctgt agcctctctg ctcacaatgt attctccaaa ggcaaataac ctccctctt	tccgtggagt atttttgtt cctcttctct tgattgtgtg gaacagtgat ttttctacag tatgtctgag gggtcactag	54240 54300 54360 54420 54480

cggcaggtgt	tcttccttcc	tctgtgagcc	tcacagggtc	acacgtgaac	attggggatc	54720
	agtgggggca					54780
ctttgacaaa	agtcctccga	agtagtgtgt	tcagaactca	tctccaaagc	catctggaat	54840
atttgctccc	aacatgttgg	taagcattat	ctctgacagt	cactccgagc	cccagtttct	54900
	ctaggacagg					54960
gggtctcacg	ttccccaggg	cctctcaagg	atagaccctc	gccctcatct	ccaaaccacg	55020
cctcccagac	aggaaccaaa	ctcccagagt	ctccaaactg	cctgagcctt	gcccactccc	55080
tgggctaaca	cacactttaa	aggaatccca	cagtcaccgt	gtgaaaagct	tgctacactg	55140
catttgattc	tgggcactga	aagcagtact	tggctgcaga	cactcgtttc	aaacaggccc	55200
catttttcca	tctctgctgc	tgttattagg	ggagccctta	gactctcttg	cagcgccgga	55260
	aagacgtgtg					55320
	ccggagtggt					55380
	ggagaaggcg					55440
	ccggggcccg					55500
	cctcgggccc					55560
	tggcggagat					55620
agetagegee	gcatccgggg	agccacatvt	ggagtggagg	qaqqccqaaa	qqcccqccc	55680
ctoveceace	ccctmgtgca	gaaggcgcg	ctagccggct	cttcagcagc	gagtgcagat	55740
tastacasa	cggccgcaga	teteceattt	acaccacatt	cagetgetee	cgaacaactt	55800
ttetecees	ccagaggccc	cadacatca	cadcaccaca	tacaacccac	tcacgggccg	55860
atasatsatt	cggcgctggg	acsataacac	antagetata	agcagcacac	aggaggggg	55920
graggeacer	gaggcactgt	cctcttcccc	cctcagtttc	cccttccgag	ctgatgggtg	55980
	aagtcccgac					56040
	aaggcgaccc					56100
cgcaacgcgc	gcgctgtcgc	ctgccccggg	accacacaca	ccacccgggg	ggegegeeee	56160
						56220
	gcgggcaggc					56280
	teccecgegg ctgggcecee					56340
						56400
	cccgcccgag					56460
	tggcagttcc					56520
atttatta	acctggaccc	stancenta	gaactecace	ctetggatea	tagettett	56580
staggeteta	cgaaaacttt	coggagaatt	tateceagee	cultiggatg	cottbatas	
	acccacttag					56640
	acccagattt					56700
	ccaggaagct					56760 56820
	agageetggt					56880
	tggacagtga					56940
	tgccagcatc					
	ctctgcagca					57000 57060
	cctgtttact					57060 57120
	agggatttgg					57180
	ctcccttcgc					_
	atggaagagc					57240
	tggacaggct					57300 57360
	tgtctgcact					57420
	ataggtcggg					57420
	agtggtacca					
	attecteact					57540 57600
	gttcaggacc					57660
	cctggctgca					_
	aggtccgcct					57720
	gctcactcag					57780
	tgttcctggc					57840
	cctgctggaa					57900
	ctcagtcaag					57960
	cccttctgtg					58020
	gctgctccaa					58080
agcacagtgc	ttggcacaag	arggacctac	cctcagtcca	cacctgctgc	ccatccaggc	58140
cayyeetgga	gcaggtgcca	ggtgtgtggt	gggggcttgg	ccactatggc	cgrcatgaat	58200
getgettggg	gcagtcccaa	ttcaaacccc	tetgtteetg	tgaatgtgcc	acattggata	58260
gagerggaat	gttccttggt	ttgtccctta	atactctgag	caaaaatagg	tacctgggat	58320
ccaccaaggg	ctttgtgccc	ttgtcttgag	gagcagccct	grgccagggg	gctgggtcag	58380
gccaggccag	agcagacatc	ccagggccag	gacctcctgg	gcctgctccc	ttagagettg	58440

	ggttttaaaa					58500
tagaaaacta	gggaaatatg	tttaaaagaa	gaataaaatg	aaaccgcgca	taagctttat	58560
ccccagagac	aacaagtatc	ttttttaggg	ggcgttttct	tccgtttttt	ggcagataaa	58620
	atcctaaaca					58680
	ggcccacctt					58740
	gcgttgcacc					58800
	aagtgccata					58860
actcccctgg	actggcatcc	tggaggcaga	ggcactgatc	agagagagtg	aacatcatct	58920
tggcttccca	caggggctgt	ttctgaggca	ctggcttggg	agatggggtt	gccccccaq	58980
agagaacaga	atgggggtgg	cctgggtgag	adccadadcc	cttagggcag	aaggccacgt	59040
	tgctgcgggt					59100
	ctgaactcct					59160
tcattgctca	tgaggaaaga	atgctagcaa	ctttggtttt	gtggatctta	cacagtgacg	59220
gcttctaagc	cattgctgtg	gtcaccagta	gggagttggg	gctgagtgcc	ccaccgtgca	59280
ggtggggatc	tgagggtgca	gagtggatgc	agctggagat	gcctggatgc	tggggtctgg	59340
	tgctaaggtc					59400
						59460
	aggettetge					
	gagtggataa					59520
gcaggaagac	tcagagaggg	aaggaccaga	cagcaggtcc	ttccaccggg	agatcttttc	59580
tgatcttcat	tgtccctgtg	accaaccatg	accaggaatt	gttgtgcttg	ttttgaaata	59640
acaagccctt	tgatccaaac	cagacttggc	caacccccaq	ggaacctgaa	aattaatcct	59700
	tccattctta					59760
	atacatggta					59820
	tccaactgaa					59880
	tttttcttt					59940
tggagtgcag	tggcgcgatc	tcggctcact	gcaagctcca	tctcctgggt	tcacaccatt	60000
ctcctgcctc	agcctcccca	gtagttggga	ctatcggcgc	ccgccaccac	gcctggctaa	60060
	tttttaatag					60120
	tgatctgccc					60180
accoccecto	gccggcttag	+++++++	atacacaata	atttaattta	tattataaaa	60240
acceptact	geeggeedag	cccccccca	acycccaata	beenstell		
Cacacycaat	ccccatagca	ceeetatgtg	ggaggtgcta	tececattt	acatatgggg	60300
aaacagacac	agtgaggtca	tgtggccact	agtaagggta	accgacgccc	cacaccatgt	60360
tgcttccagc	tgtaacctct	agcagaggga	gggctctgat	ggagaggtga	tcgcctgagt	60420
	tacctgagta					60480
	aggaggtatc					60540
	ggtaagaagg					60600
	gtatgctgat					60660
gagagagggt	gcagtggcat	ggeggtetga	tttcaaagtc	gtcttttca	gaaatgagct	60720
	ttagaattgg					60780
gtttgacctt	gagcaggtcc	ctcccctccc	tgcacctggg	ttectgtetg	tgaagtgggg	60840
tgaggttgaa	ggataaaaca	tttccccatc	tataactctg	ggatgacaat	aggatetace	60900
	atgcgaggaa					60960
	aaagacaagt					61020
						61080
2511000000	cagccctcag	atamage egec		gcccgagaaa	greaters	
acticggggc	agtgggaacc	argggagaga	aggtagacaa	ggeeaegtgt	catttgaaga	61140
cetgaetttt	caccatctca	ggtggtccgg	tggcctgcag	gaccgtggtt	ctgtttgccc	61200
acagcgtgtg	ggttctacgt	gcgatcctgt	atttctctgc	cacagctgac	taaggggaca	61260
cttaggtctg	cacgtgcagt	taaatggctg	cttttgtgga	aggtgccagt	tcccgggagc	61320
tgggaacttg	gaaacaggat	ggagcaggct	cccaagettg	accatgcatg	gtttgcacct	61380
	cccgggggtg					61440
tagaatagaa	gggggggtg	tacttacas	taastaattt	acacatagga	astatttta	61500
233323333	33333335	cgcccgacca	cycacyyccc	geaceegggg	gacgetttae	
actaagggct	cagtccctct	gagggaggaa	cgtgtggatt	gaaacccgca	gagttettga	61560
gegacaccag	tctgatcttt	aggactcatt	tgcagcggga	atggagcaga	aattgttgtg	61620
tgtggagcct	ggggccactc	ctgactcttc	cagtcacagc	tgcccccaaa	agtgacctct	61680
gggcacctac	tcagacctgg	ctgctcagtq	ccaagcgctg	ggtgttcaga	ggtggccagg	61740
ggactccctc	gtgctgccca	tggtatataa	tctcactaat	cctcacagtt	gcccatccc	61800
cattttcaga	tgaggaggct	gaggtggaga	acagastata	gactactean	gaccacacac	61860
ctaataaace	Cadaddoada	antananana	102222024	tagaaataa-	accordance	
tetettage	cagagccagg	agtatagege	tgcggcaget	-22226663	agegagaete	61920
acceptation	gcctctccct	gerergrace	tcagaggatg	gergeggeee	rgagettggg	61980
agggccattt	gggaatctga	ggaaaagttt	ccacageete	acacagcagc	aggttcaagg	62040
tccagcagtg	ccaggggttt	gcatcccacc	cctaacgccg	ctcatccagg	gcccatccgg	62100
gtccggggct	cgggatcctg	cagcgctttc	agctctgtgt	ctgtggccgg	tggttgtcct	62160
tcattacagg	gatggtggtg	tttttccato	ttgctaagca	gcatgtgagg	gcctctatta	62220
	•		- 5 5 -			

aataaaataa	agcccttgct	ccggcgtgac	acgggtcacg	ggatctctgc	tcactctagt	62280
ctcttctgat	gccccaccg	cactgtttgc	cttagtttgc	tttttactct	ctgtgttggt	62340
ttctggggca	tcagtcctct	gacttcggtg	ctgtggcttg	ggcctggggt	gggggctgtg	62400
	tctgggtatg					62460
	ctcccctccc					62520
taccagcgta	ttagttttct	agggcttccg	taagaaacta	ctggaaactt	ggtggcttaa	62580
	gtttgttctc					62640
	ccctcctgga					62700
	ccagtggtcc					62760
tottacactt	ctcttcctat	aggccatcag	ctcttggagc	cagggettee	ctactccacc	62820
ctgatctcat	ttcaagatcc	ttaaatacat	cttcaaagac	ctgtttttcc	aaataaggg	62880
	acattggtgg					62940
	gtgggctctg					63000
	tgtggctcat					63060
	taagtgccat					63120
	gaagcggtgc					63180
	tggcagetee					63240
	cgggctctgc					63300
	caacactgct					63360
	gcgttcccga					63420
	acccggaccc					63480
	ccaggcccag					63540
	ggaagcccag					63600
	ggagggtccc					63660
	aggcgtccat					63720
	cacccactcg					63780
tcccagggcc	tctgcagcac	ttcacagctt	ccatttgcaa	cagcgtccaa	acatgtggag	63840
	ggccctctgt					63900
tcgggagtga	ggccacatgc	gggcgaagcc	cttggtgctg	agtttcccct	ctccctgagg	63960
gagacttgtg	agggacgggc	gtccttcacc	tccatcctga	ggcgggatgc	tggggccctg	64020
ggtgttcaca	ggcagagctg	actgaggccc	ttggtcttca	caggccgagc	tgactgaggc	64080
cctgggtgtt	caaagcagag	ctgaggccct	tggtgttcac	aggcagagct	gacaggcttg	64140
ttggttcctg	ggtggtgatg	tgagggtggt	gggtgtgagc	caggggagtc	cggcccctgg	64200
gcaccttctc	cagctgactc	aggcctcggt	cagccttcac	ttttgctaga	gaggccgctg	64260
ccagggaggc	tcagtcccag	ctcatcactg	cccctcctgc	ccatgcagaa	gccccagacc	64320
catggtgagt	gcctgctgtg	tacaccagcc	ttttccatgt	gcctgcagga	ctcctcatgg	64380
cagtcctgag	aggggaaact	gagacaccga	gtctaggtga	cttgcccaag	agacccagcg	64440
ggtgagagac	gaggtgctcg	agtggtccag	gtttccttct	tgtcccagtc	accccactgg	64500
	gggcctccct					64560
tgctgggcgt	gcccttggaa	actcactgca	gccctgggcc	ctgtttgtct	ttgcatctcc .	64620
ttaaaagatc	actgtgctcc	tctgctttgt	tttggaggcc	tctgggcgga	tgagggcctg	64680
accccgggat	ttgggcccag	cctcacggct	tcaggggaac	agataccagg	gctcggaagc	64740
	tctgggtaat					64800
	agagtcagga					64860
gtggtgaaga	gcaagccctg	ggcgccgcct	gacageceag	tccccaccac	tagacctaca	64920
gctgggggca	gtgggcatcc	cgtctcccag	tcactqqtca	ctgatgtggc	caaagcaggc	64980
ctggccctgc	atgcccagtg	gccgcaqqqa	qqqcaqqqcc	cagggtccct	gccagtagca	65040
gctgctgcga	gaatctgtta	tttagctccc	ccatccagcc	aacataggtg	ggtgagcatc	65100
agttgaaata	ccaataggta	acaacaaggg	tagctattta	actgacactt	ccccaacta	65160
ggcatctttt	tagggcatta	gcccacttgc	ctctttaaca	accetaggag	acadacteta	65220
ctgctgccct	gtttttcaga	tgggaaaccg	aggatagag	ggcttaagta	gatgacccag	65280
cateceataa	ttggtgaagg	atagaaaaaa	gatttaaaca	taccatagea	cctatactca	65340
ctatgggcct	caggtcatct	202242222	atccccatct	cccagaggag	gagagtga	65400
cagagcaggt	tggcctgtcc	ctagatcagt	acctaaccaa	accetaataa	caccactcaa	65460
ggctcagtcc	tgccctccgg	gagccctcage	castatores	dacaccacta	aacaaccaac	65520
tacattetee	gactcatate	acacacacac	caucacygyd	tanastana	taggggg	
ccadaaaaa	ggctcatgta	5-9-99999d	caacccacat	agetageeee	cayyyycacc	65580
daddddaata	ctggtcactc	cttagggcat	cayyaayact	geerggagga	ggcatcgtcg	65640
gagattaga	tgagctgctc	gostaatta	acacceggga	aacaygagaa	gagcagcctt	65700
addaaddcc	ttctctggtt	gooteccega	ggaactgacc	cocccccag	CCCCCCACCC	65760
aguaagguug aguaagguug	gggagggget	yeccagaaa	cgtcactggg	ccggagcccc	acacttcctt	65820
at caractt	ctctgtggcc	cuggeaagte	accigccacc	rggggaacca	ctgccaacgg	65880
gccyyyycc	ggaageteag	gggctcctgg	gcccagacag	gcaaaggaaa	cagtgactcc	65940
ggccagaaag	gagactgcag	agagetgega	ageterragg	egrecergrg	ccagggcggg	66000

actecteatg	gcagccctga	gaggggaaac	rgrgrcctgt	gtggagcgtg	gatgcccacg	66060
tgctgagagg	tgttgtctgt	cctgattttt	gacagcagcc	caagtgatgt	gccagtgggc	66120
cagggccggc	acctgcctgt	cggtggctgc	cccagggctg	atgggcaggg	gccgtttctt	66180
cacaggcagc	tgtggtgagt	cctgtgatca	cctcagtgtt	gtctccagcc	ctggggggat	66240
ctattattct	gctcaacaag	agaataaagc	tagacttate	acacctggtc	ccaggtgacc	66300
Cadcaddcac	agagaggtag	agttracage	22222222	0000003300	~~~~~	
******	agagaggaag	ageegacace	aagccccacc	cagecacege	gacacggctg	66360
tgcgagtcca	cgccctggca	gagageeege	rergggeerg	ttctgtttag	ccctggggct	66420
aaagggcggg	ctcagatgca	cagagggaca	ggcctggtgc	aggtgggagg	aaggaaagca	66480
gactgtgtca	tcgtctcagc	ttcaggctgg	gcatgctgtg	gctatcatgt	gcttggcctg	66540
tgctaagtgt	gtgctaagca	tataacccta	gtgggcactc	aggeteetg	ggtaccagcc	66600
gaggggggag	cccttcccac	tatacaaccc	taaactetee	tactatatat	atcattcaca	66660
	taggacaagg					66720
gettteegag	tcgtacccgc	cactecgtet	ccgagcagca	gcactctcat	ctctacaagt	66780
	gtgctgccac					66840
ctcactgtga	gactctgggg	cagtcatatg	ccctttctgt	tgaccccagt	gggtggccag	66900
	tgctgaatct					66960
	ggacacagat					67020
	cccaccaatg					67080
	gggccttcgg					67140
accctgggca	gagagggagc	ccagtggggg	gcacccaaga	cccatgagga	attggctgtg	67200
gtgtcaagag	gtcagccagg	ccaagcaggg	ccctgagggt	cagggaaagg	agagggcatt	67260
	gggctcagct					67320
	aggagtagcc					67380
	ggtggcctcc					67440
	agggtcctgg					.67500
acaagggggc	ccaggaggga	ctggggctct	gatgcagatg	tgggagtgcg	ctgagcccct	67560
gctgccctgg	ggacaggcac	agcaggaggt	gctactcagg	gcacccaccg	ttgattattt	67620
aggaagcagc	tgtcacgcct	gttctttatc	ctgacctggc	ccatctgatt	gctgatgtgc	67680
tcctgctgag	cccccacac	cacactgagg	actooccaca	ggatctggtg	gcactcagtc	67740
ttctgggaac	ttggcagtgt	gcctgtccta	ctttgcgctc	caagectegg	acotcaccto	67800
caggaaccct	cccactgtgg	atastatata	gagtgaggt	0003000039	acgecacee	
ataggaaataa	toottotto	stance	cagicaccia	tacagececa	acceleateg	67860
gragacycyc	tcgttcttgc	erggeeeagg	gcaggccgrg	grgagereag	gggtcctgcc	67920
tgteagtttg	gtgccctcgg	ctacgcaggg	cctgttagaa	gggtgccctc	cctgccaggg	67980
cctccagcca	ctgtctgtcc	tgttcccgcc	tcagagttca	gccagcatag	aaagagaggg	68040
ctgaggacca	ttcagcctgt	ccattcacga	gaatcattgt	cagtgtcaca	gaggctgatg	68100
ggatgcctgt	ggtgcagggt	gaccccagct	tccccatqtq	ggggatgcgc	caataataca	68160
aggccaccac	cctgtgccct	gtctctggca	cagggatgat	gacagcacac	aggagatect	68220
cttttctttc	tacctttccc	tttoocacao	cccttatta	tagagatasa	agaaaaaaa	68280
gagagategt	gaagataaa	cocces	coccettee	cgggcgccac	gagaggegea	
gagagaccgc	ggaggtcaag	ggcttgcca	ggaccaguga	999a999a99	gagagggcag	68340
cagcaccett	ggagacggga	ggattacatc	atatttattt	accacatgcc	taagatcgca	68400
ctcttaagag	catttgacat	acatccaaaa	atttttaaac	actatggaag	tatgtctgga	68460·
tgcatcagta	atatgaaagt	ggaagccagc	tgccctgctc	ccagcccact	ttgggaaaat	68520
tttgtgcatg	ttttgagcca	gctgtttggg	aagggaggec	ccagccactq	ccccttagat	68580
gggtttgatg	ttcattgtgt	qqqaaqaaqc	cttccctcca	tccttttcta	tttctgcaga	68640
atatetecte	aatcagggag	ttgagettgg	canttraget	actracerac	agagggggg	68700
tateetaaa	tatoctaggs	tttaaaaaaa	ageceagee	setsesses	ggaggtgctg	
teestteete	tatgctagga	cccagaayg	agagagggca	getgeaggee	ctrtttgeag	68760
tggetteete	ctggaatccc	carcracrec	ctgtgtactg	tccagcgtcg	tagtggaagc	68820
rggrggcgag	acgggtgaga	cccacggaca	tagatggcat	ccacgaaggc	tggcggagcc	68880
tgtgatagac	gatggacgat	gacccaggtt	ccagcaagat	atggcagtgg	gctgtgccgg	68940
gaaggggcgc	atcctggagg	atgccctagg	tagtgcctga	gaaagtgagg	gtcattgact	69000
gattccacgt	ggcatccatg	aatctctcaa	atccataggg	cccgtgcatg	acaaataatt	69060
aaaaagatgt	agggtgttct	ccatagaacc	tracaraggg	aaggagagg	accestants	69120
tccacctcta	atcacactoc	tatttatas	ttactagaggg	coattt	geceaeggea	
anth-na	atcacactgc	-tacttigtga	ctgataggea	gaccccaaa	gaatgagtta	69180
gatteaggae	ccttttagtt	graagrgaca	aaatctcaat	ataaattgac	acaagccaaa	69240
aaagtagagg	ggcaagggat	tgatgagtcc	atagatctgt	agagcctaga	gtagtttgct	69300
tcaggcacgg	ctggatccag	gggctcagat	gatgtcatca	ggaagtactc	ccccgccccc	69360
attccactct	gctttcctgt	gctgcctata	teteagagag	tctgcccaca	gggtgacctt	69420
ccacaqttca	agctggcatc	cacataccaa	gatgaggage	aggtgaaagg	ccatttccca	69480
acaattetaa	cacaaactee	actacastat	atacatacat		statestas-	
gazactag	cacaaactcc	action and the second	gecoaccet	Janccayyrg	Luguagueag	69540
	tggcaactct					69600
yygagggggc	agtgccaccc	agaccatgag	gactgagagt	ggcggggttc	cccaaaaggg	69660
acatcaaggt	gcagtcatca	gaaaaagcaa	ggaacggagg	tcgagcacac	agaaaacacg	69720
tgtgtttgat	ggttcttggt	ggtccacact	gatgcagccg	gcttctgggg	gtgatctttc	69780
			- <del>-</del>	_	-	

	cagtgagcat					69840
tggactgagc	taactggtct	gcaggacgag	cccaccactg	ccatatggaa	gctggaataa	69900
tgaagagggt	gtgtgtccat	ctcaaagaga	ttctgggctg	ggcgcagtgg	ctcagacctg	69960
	actttgggag					70020
agcctggcca	acatggtgaa	accctgtctc	tactaaaaat	acaaaaaac	ttagctgggc	70080
	ccgcctgtat					70140
acccgagagg	cagaggttgt	ggcgagccga	gattttgtca	ttgcattcca	gcctgggcga	70200
tgagagtgaa	actetgtete	aaaaaataat	aataaaaaag	agagagat	tctgtatatc	70260
ggggagatgt	cttgaaatgt	caggctgtga	ataacttctg	tgaaaaatta	attatggact	70320
ggaagaatct	ttttagacca	ccatatagac	ttggaccttc	catgttttga	ttttttaaa	70380
	ataatatgac					70440
	gttgtggtgg					70500
	gaaagcctcc					70560
	cataaaccat					70620
	tgtggcctgc					70680
	gtgtcattgt					70740
	gtgtctgcag					70800
	ctggggggct					70860
	agcaccaagg					70920
	ctgatgccat					70980
	ctgtgcaaga					71040
	ggcgtccagg					71100
ttccagggac	ggggacatcc	agggagaggg	gcgtccagcg	agaggagcct	ctagggaggg	71160
gracatccag	ggaggtggcc	tgtcagggag	ggtggtgtcc	agggaaagca	gcatcaaggg	71220
agaggggtgt	ccagggatgg	gggcatccag	ggaggggggc	ttccagggag	aggggccttt	71280
gtgttggcga	gttgtccatc	cacagggctg	gagtgcgtgt	gcctgaccac	gagagettgt	71340
gaagaatcca	tctgattctt	tccttctcca	aacacatgcc	tcacccacac	agccttacct	71400
grgagggeer	cacctgccac	ctgcgacttt	tgagttgtcc	cagcctccct	ctgccctctc	71460
atacastast	gtgacccttc	crererect	ttgcacctgg	ccacatccca	tggtctccca	71520
taataaaaa	gtctcctgta	caccigggte	atctgaagge	agtggccagg	cagcacttgg	71580
	ccggttcaga					71640
	ggetggteet					71700
tettagga	ttgggtgaaa	cacaaactet	agttgatgt	ttasaatta	ctaggtaact	71760
tcaactggaag	taaaatgcag aacctgtgct	accadactge	etteeessa	gaaagaaag	gcccaacaac	71820
						71880
	aaaacaagag acctgactct					72000
	catcgtggga					72060
	attcatttgc					72120
	gtgatgaatc					72120
	gggagetece					72240
	caggccctca					72300
agtetecaga	atcgaaagaa	atacatttct	gatgtttgta	adccaccadc	ttggtctatg	.72360
gtattaatat	ttttgttata	acagetegaa	cagactaagg	cattcactct	taagaaggaa	72420
aaggtaatat	caagatgtat	atacactgat	tataatatcc	aaaaaatgtg	atttttatta	72480
gtacaatcat	ggaaaacatg	aacttgattt	attagaattc	tagacttcag	gtacaggtgc	72540
tttgtattat	ttaggtcatg	ggctgtcaaa	cttgagtcct	tqqatctttc	tagagececa	72600
gctagagcag	gcctaggcca	aggggtgtga	tggtgggact	tggctctgtg	ctcgcctcct	72660
tcccatgcct	cccaccccga	gcgctttgag	ttgctgttga	accacctcac	ccgcatagag	72720
tttgctcatc	ttgctctggc	gctgcttgtg	accggaaggc	aaacagtggc	tttctqqqca	72780
tcttccctgt	ctgtgtctgt	gtctctctgt	actcctggcc	tggatttgaa	agtgacaagc	72840
agcagcagat	ctgaagaccc	tcatgccttg	tccctccat	cctgacaagt	gacaaagtct	72900
ggctttgtga	catgtgtgtt	tgtttcttct	gtgttaaagg	gcctacaaag	ggagacatgg	72960
aaatcccctt	tgaagaagtc	ctggagaggg	ccaaggccgg	ggaccccaag	gcacagactg	73020
aggtgaggac	tgcggtgccg	gcagggactt	cgggacgcgg	ccccggcac	aacaggcctg	73080
gccacgagct	ccacagccca	cagagaagtg	teggtgeetg	agatcggggt	caggagccag	73140
cgtggtgcac	cctaccccac	ttgagcccca	tgttggtagg	gtgcccatgt	tcactgtgcc	73200
agttttcctc	ctggcactcc	tctggggagc	agcgctcatc	ccccttttgt	ccaactcaca	73260
cctcatcttg	ggcatcacct	cctccaggat	gacctcctgg	cttcctgcag	ctgcctgctc	73320
agtgccaccc	ctcaacatac	actgtgtatg	ctgcccactc	ttgtctccct	gactggcctt	73380
tcacctggct	gttagctgtg	tgcacggggc	cctcagagcg	gtgaccattc	acttgggcat	73440
cagccaaggg	ctgggctttg	tgccagtgct	ggggacatga	tgtggccctc	tcttcatggg	73500
tgacaggtta	gtggaagaag	cagacccaaa	aaacccaagt	agacaagaca	cagaaataca	73560

				•		
	attctggtga					73620
	tcctctgtgg					73680
gctcaagcaa	gtgaccacag	ttatcctgag	cagtttcctg	cccctcttc	tccctaaaga	73740
ggagaaaagc	ttccacgcga	aaccataaat	taagaatttc	tggctgggag	cggtggctca	73800
cgcctgtaat	cccagcactt	tgggaggctg	aggcgggtgg	atcacctgag	gtcaggagtt	73860
	ctggccaaca				-	73920
	gtgcatgcct					73980
						74040
	gaagtggagg					
	aagactctgt					74100
	tactttaaag					74160
	aagccctttt					74220
agaatgagaa	gactggacca	tttcagcagg	gattetttt	gcaaagggcc	agatagtgaa	74280
tattctggac	tctgcgcaat	ctctgccgtg	ttgctcagct	ttgctgtgga	gcacgtaaaa	74340
gcagcatgga	caacatgtaa	atgaatggtt	atggttgtat	ttcaataaaa	ctttatttgc	74400
	agtgggccag					74460
	ccctgactgt					74520
	ggtgagcctt					74580
	gcccgtgtct					74640
	agcgagtggc					74700
	ttctgcccct					74760
	gcagggagca					74820
gtctggcttg	caggtgggga	agcactacct	gcagttggcc	ggcgacacgg	atgaagaact	74880
	accgctgtgg					74940
					gaggettaga.	75000
	gagggttgag					75060
	aacgctggtg					75120
						75180
	agacactgtt					
	tggcttgtgt					75240
	tccaaactga					75300
	gagactgtaa					75360
	tctgggcaga					75420
atgttcactt	tgggaggagg	caggetgace	cttcatagat	aatctctttc	aaacagagag	75480
gcaggggagg	aaagggacgc	agctcaggcc	aggggtggtg	agttaggacg	ttgtcctgcg	75540
	ggctgtccct					75600
	tgaaagtggg					75660
	gtattttatg					75720
	tcataacctt					75780
	ttgttgttgt					75840
	tctcaagtca					75900
	gagtagctga					75960
	agacagggtt					76020
	cctccttggc					76080
	catattttaa					76140
aactgatgat	tttgaaaaac	taacagtggc	attgttagcc	agaatttctc	accaacccag	76200
cctgctgatt	ccagagcagt	tggaatgacc	tggaggggc	tcaggcggcc	cacacggctc	76260
	gccagggata					76320
	cgtgttcccc					76380
	aatacatgct					76440
	cgtgccagtc					76500
						76560
	gggaggaagg					
	ccttccttag					76620
	tggccctgcc					76680
	ctctgcctct					76740
	gtctgcacct					76800
	agggggcact					76860
	gtggcgcgat					76920
	acaccttcta					76980
	accgaaagcc					77040
	gtccgagaac					77100
						77160
~2~232~~3	catacacaca	geeetggtea	estate estate	gatesse===	aagaagaaga	
					cacggtgcga	77220
	tgggcaccag					77280
ceccataggg	gctgggacct	cccccaggg	gctgggtctt	cccacaggag	ccgggacctt	77340

		h	~~~~~~~~~	coagaacett	cctatagaga	77400
ccctgtgagg	acagggccct	teettgtggg	gaccagggga	ccayaacccc	tooctcaagt	77460
ccgtgcccta	gtggtgaggt	gegegggegg	stancesate	geatetgeee	acatetacea	77520
gctcactcat	tgaataaacc	agagggtatt	cigedeagtg	cicigigace	acycciacca	77580
atgggacgga	ctgtgtccat	caccaagtgg	gageaegeta	egeggegeeg	agtecatece	77640
agctactgga	ggtacagagg	tgtggccct	getetgeetg	ecetggggge	cctatgatet	77700
ccagaacgta	ggatgcccct	ggaactggcg	tgccctagga	acagtgcgcc	agtttetggt	
gggctgcagg	gcacgaggag	atagtcaact	tgtctgactg	ttaatccacc	ctgtcccctg	77760
cagatggagg	ggcgcagcca	ggccccgtgc	ccaagtccct	gcagaagcag	aggcgcatgc	77820
tggagcgcct	ggtcagcagc	gagtgtgagt	gcagcccctg	ccccgtctca	cccatgcctc	77880
ccaqcctgca	cctgcagggc	gacctctcct	tcctgtgcga	ctccatcctg	gcctgcccta	77940
tctcacccgt	gcctcccagc	ctgcgcctgc	agggcgacct	ctccttcctg	tgcgacccca	78000
tcctqqccct	gctaggatct	caggicggtcc	gtttggggct	cagtgttctg	gacgctggga	78060
gtagaccctg	cccacctgga	gcgcacgcac	tggagggaag	gcagacccag	gacagaaacc	78120
atgatgtgcc	agtccctctt	ggacaaggaa	atactggggg	tggggactgg	cgggggggtc	78180
ctgagtggg	aaggatgagg	agggcattag	gggaaggggc	tccgggcaga	gggaacagca	78240
taaaaaaaa	cccaggagac	ccagcagggt	qtqqaaqqqq	ctctgcccca	gcgtaggccc	78300
tyaycaaayy	ggcagggaac	agantagaca	gagcctaggt	tagaggatag	agtetetggg	78360
tttgtaggta	ctgggggtgc	ctctcccatc	trtataatca	aagactgaga	agagacgtca	78420
gcacactgag	etgggggtgt	ccccgggacg	tatattaat	ccacatagga	tagactetge	78480
catcctccac	gtgcagctgg	ceageceeae	agaagataga	caddagagag	acttagagac	78540
agtctgaggc	actgggagct	cetgteetyg	agaagataga	aggeaggag	cttataecat	78600
tcagtatcaa	tggggggatg	ggccaagacc	caggiciged	tetesseset	gagatgatas	78660
gggcaggtct	catttttctt	tctgggtgtc	agetteeeet	tetgaacagt	gagatgatta	78720
gacaagggga	ctgaaggacc	tegeceatee	tagaagcctc	tgtggcatgt	agggcagagt	
acaggtggga	gcacagatcc	caccttccca	ctgggcccgt	gaggaaaccg	tccatagggt	78780
gtggtcagag	ccctcgcctc	tgcgtgggcg	gacatgggtg	cttgcgctgc	tgttttcctg	78840
ctccatttgg	gggagacaaa	gaaacacctc	acatggaagt	gggaagaaat	ctgtgactct	78900
aggaagcccg	aggaccagag	aggctgtgac	agtgtcctgc	caccgaggtg	gcatggtgcc	78960
tgctgtcctg	aagtgaggtg	cctctgggca	ggagcagccc	agcctgggtc	tccatcctgg	79020
ggggcactgc	aggcagagtc	tggaccccaa	cctcacttcc	cagtcccaca	ggggtttgtg	79080
atgagccggg	cacacctgct	gctgggccct	gtcgctgttg	ctgggggcga	gttaggagtc	79140
agcgctgcca	gcctgtggtc	ccctccgcca	ggccctcagg	gacagggccc	cagcaccccc	79200
attotttccc	ctctatcaga	acgttcccat	caggcatcat	ctgtttctct	gccagctttt	79260
ccaacagaac	tcccagaaag	gggcgtctgt	catccccttc	tetegteete	cgtcctttgc	79320
teteaggeet	ctqccatqtt	attccaccaa	agcggctcgt	ctaggccatc	agtgaccccc	79380
cttoctcagt	cacttcttqt	ccttqtctqa	cttgatctgt	cagcagcgtg	ggcagagatg	79440
actoctcttc	tccttagagc	cctctcccc	accaggcccg	gggcccttgc	tgccacactg	79500
actactactt	cttagagtcc	ctagactgat	atcctatctc	tcaggacagg	acatectgee	79560
caecatette	atccctatga	ggacagggc	cttccttata	qqqaccaqqq	tcttcccgta	79620
caaggtatta	trtagtagg	agatototoo	gtggcattgg	tgaccactct	cgtgtgtcag	79680
aggactgtgt	ceeggeaggg	accccaacc	cacceagact	gcatccagcc	cgtgctcctt	79740
acyccyccc	tatacctaac	tateceataa	tracetraca	geteagteta	cagtgagcta	79800
ccacaccccc	tgtacttggt	cacttatata	CCCCCCCCC	aggetgeete	atctctttcc	79860
ctgaggeetg	Egetaeetge	cactegegeg	ggcccccca	generation	atctctttgc	79920
tgcagctaca	eetgggtget	geeeegaeee	teeestette	geacacacag	ctgatccatt	79980
aggaggtetg	Ecagogocca	ctattatggt	estatesest	gatgtagtt	geeteeteee	80040
tagggtttct	geageacect	ggettgtete	terestate	gccccagcac	ggtcctttct	80100
ttcccatcct	teceetggag	geeeteetgg	teaccatete	accacygoas	ctggggtcct	80160
tcaggggcct	cattccctcc	taggggatca	tgttggatag	aggggtcagt	gggcacgtag	80220
ctctcgcgga	tcacgttgga	tggagggatc	agtgggcacg	tageaggett	ttggtggaag	
atgttggatg	gaggggtaag	teggeceatg	gcaggacgca	tgttgaatgg	acgggttagc	80280
aggcatgtag	taggcccatg	gcagacactt	gttggatgga	ggtgtcagca	ggcacatagt	80340
aggtgtgtgg	cagatcatgt	tggatggagc	ggtttagcag	gtgcacagta	ggccctgggt	80400
ggatcacgtt	gaatggaggg	gttgggggcg	cagatcatgt	tcgatggag	ggttggcagg	80460
gtactgccct	acagggcggc	ttgtcacccg	tgctgtgaga	agccccacgo	tggctgaaga	80520
ggagggtgtc	agcatgcact	ggaggtgcat	gttgtaaggo	: ttggcaggtg	g aactgggtga	80580
aaggtgtggg	tgagtggccc	caggcataag	gagctaggca	gagagggaca	a cttggggtgg	80640
gggacagcac	acccaggggc	cgggggccag	gagtggaggc	tggcacttgg	g caaacctgcc	80700
cccttcctcc	tcacccaqcc	tggtcctcaa	ccctcaggc	gcccagggaa	gggtttcctc	80760
cacctgaacc	cactcactc	ctttcttagc	ttggccccac	gccaccgtc	ccagcccatt	80820
actictatata	aggataacaa	tagaactaca	atataaaacc	cccatgctgt	tttctctcat	80880
acttcaccca	agaactacat	cacactaast	gactttatac	agatcacta	a gaagtacgcc	80940
aaraarataa	tececagear	cctattecto	Caggacgacg	aagatgatg	a cgagctggcg	81000
aayyycycca	ctgaggagg	gccactgcgt	ctgaaggtga	gtgaccaag	a ccccggtcag	81060
gggaagagcc	geeteeee	gactegege	cctcaggcac	ggcaccttc	c aggaagctgc	81120
gccggagccc	guutuuaag	Jaccegegea		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

		_				
				cgtgccgctg		81180
gtcatcatct	atcgtcataa	ggatgtgtcc	tcgggagaga	ggcctttctt	ttctgcgccg	81240
				aggatggcaa		81300
				ctggacgcag		81360
				agtggaggcc		81420
				cagggaggac		81480
gcctactgcc	cctggatctg	caagggctca	gggagcgagg	ccagtgtggg	agcgtggtgg	81540
gtgacacttg	tgcagggtgc	cattgggcac	acctggagga	catgagcagc	tttggcggca	81600
				cgggccctac		81660
				cagagttgct		81720
				agagaacacc		81780
gaagcttggc	ctcctgaccc	aggatececa	agctgaggcc	agcacagggg	gccccagcag	81840
atgattgtca	cagaggctgc	gggcagtatc	atgcaggcac	cctggggttc	tgtcttctga	81900
				gatgggcgcg		81960
				gcagcaggct		82020
						82080
				ccggtggggg		
				gcaggcacag		82140
gcagggactc	ggagccagac	aggtctgagt	gtgagccccc	cgagtgccca	gagctgcgag	82200
tcctttaggg	taacaaataa	aaggctctgc	tcctcccact	tgggacaggc	tgtatgtcca	82260
				ggccaggatg		82320
				agagetggee		82380
				agatgaggaa		82440
tggcatggtt	ttggcaaaga	cactcccgaa	atgagagtga	gggtcacagg	tgaacgggtt	82500
aacttggaga	agacccttgg	gccaggcggc	catggcccag	gtgtcccagt	ttatgccatc	82560
				gtcctgttcg		82620
				ctgaaaatcc		82680
				-		82740
				gagtgcagtg		
				cccacctcag		82800
				ttttgaaaac		82860
gatgggggtc	tcactattgt	tatctacgct	ggtctcaaac	tcctgggtca	agcgagcctc	82920
ccactttggc	ctcccacact	gctgggattc	aggcgtgaga	cactgtatcc	agcctgaaag	82980
tcctttttag	aaqqqaqaqa	tttaagctgt	tttgacaaga	agtaaacaag	actototttc	83040
				gcagtttgtc		83100
				cagggctgag		83160
ccttttagta	gccttttgta	gaacaaggag	aggtcttcac	tcaaagtgaa	aatgacagac	83220
acctctttgt	gagccaccct	tactcccaca	aagaatgttc	cagactccac	acagttctct	83280
tctggagcct	ggaggtgcaa	gctgtcatcg	tagatagaat	cctctgaaaa	caaacttaat	83340
				gatccgacac		83400
				cccagcctg		83460
				tttctcgtgg		83520
				ctattcatag		83580
-ctcatagttt	ttaagtttcg	ttctttttcc	atctcaggag	ttgaatttgt	ttggaccttc	83640
tttgcagaaa	aggagactga	actttttaat	cccatgtcag	aggaaggtct	tgggtgtaca	83700
ttgcagggag	cagaaattgg	ggctttaaaa	aggggatcgt	tccctggtca	tcgagttcag	83760
				gacgccatcc		83820
				gtggttgtgt		83880
				atttatttt		83940
cccccttgct	accgtggcgg	tcgtgcgtga	aactggtggt	gagcagtggc	gggccaggcc	84000
acctttagtt	gtcctgctgt	tcgcaaggcc	cccatacggg	gattaactga	gcagcctgcc	84060
ggctgacgca	catgttgact	cgtgtagctg	ttgattttag	ccagctggcc	tggcgtcata	84120
				ttttcataaa		84180
				gcctggtctt		84240
necessaria	Lycyaycgcc	Lecetgetea	cgcagaaggc	tgttgacccc	agagagaget	84300
				ataaaacaga		84360
				acgtgtagac		84420
				tctcatctgt		84480
				tttcctccat		84540
ctctctctc	atctgtgge	gactcagtct	tetaattatt	tccaggtgtc	ctactactac	84600
ananchasta	grayaa	bacceage ce		atactate t		
ayayuuyaua	gecaggetgt	Lggcaggtga	gggccacatt	ctggtgttgt	cacctagttg	84660
CCACCCACCE	gggatccctc	cttggccttc	tggtgggcct	ggtggagaga	acctgcccca	84720
ggggatttgt	ggggtctggt	gcttccccga	ggcccggagc	tgatgggggg	ctccagcctg	84780
gatgtgtcat	gtagcccctc	agtgggccct	ggacatgcag	ccaggcttcc	ctacccccat	84840
gtggggccgc	cccctaggcq	tccacttcct	ggtgttgqtc	caggcccctg	gcacttctqa	84900
•						

agatgcacag	aacctgcttt	gtatgccacg	ccatgctgtg	tgagcactgg	caccatggcc	84960
actttgtccc	ccatcccctc	cagtccctct	gcctggctgc	cctgtgttct	ggcagggctc	85020
agggcctctg	agttctgcac	agaccaggaa	ggcatgaggg	ctggccctgg	gtggcagcgc	85080
tgcttcaccc	catcctgagg	ctgctcccag	catgcctccc	tcagccctct	getectettg	85140
gctgtggtga	aggccaagag	ctctttctga	ccttagcgct	gcatgcagag	caggggagca	85200
ggacccacag	gtcgggggaa	ggcagccttt	ggccttgact	atggggaggt	aggggtgcgc	85260
	gtgtaggtgc					85320
	gtgtgcacgt					85380
	gtgaatgtgt					85440
	aatgcaggta					85500
	ggggtgggtt					85560
	gtgaatgcgg					85620
	gtgtaggggt					85680
	gggttgtgtg					85740
	tgtgtgtgtg					85800
	tgtgtgtgca					85860
						85920
	ggccataggg					85980
	agagtggtgc					
	ctgccacccc					86040
	tcatggaggc					86100
	ctcccagaca					86160
	gaagtgggga					86220
	tgcatctagt					86280
	gcccagaaga					86340
	addaddadd					86400
	ttgcccagag					86460
	cagcctcgtt					86520
	atggagatca					86580
	accatcatcc					86640
	accatcgact					86700
	atggtgatct					86760
	ctcaccgacc					86820
	ttcggctgga					86880
	ttctccttcc					86940
tgtcatcacc	ggcttcttta	ccgtgaccag	ctacctgagc	ctgagcaccc	atgcagagcc	87000
	agggccctgg					87060
catgcccttg	aattggccct	acctgaaggt	ccttggccag	accttcatca	ccgtgcctgt	87120
cggccacctg	gtcgtcctca	acgtcagcgt	cccgtgcctg	ctctatgtct	acctgctcta	87180
tctcttcttc	cgcatggcac	agctgaggaa	tttcaagggc	acctactgct	accttgtgcc	87240
ctacctggtg	tgcttcatgt	ggtgtgagct	ctccgtggtc	atcctgctgg	agtccaccgg	87300
cctggggctg	ctccgcgcct	ccatcggcta	cttcctcttc	ctctttgccc	tccccatcct	87360
ggtggccggc	ctggccctgg	tgggcgtgct	gcagttcgcc	cggtggttca	cgtctctgga	87420
gctcaccaag	atcgcagtca	ccgtggcggt	ctgtagtgtg	cccctgctgt	tgcgctggtg	87480
gaccaaggcc	agcttctctg	tggtggggat	ggtgaagtcc	ctgacgcgga	gctccatggt	87540
	ctggtgtggc					87600
ctcagagggc	atgaaggtct	acaactccac	actgacctgg	cagcagtatg	gtgcgctgtg	87660
	gcctggaagg					87720
ggagggccac	agggtcacgt	ggaccggccg	cttcaagtac	gtccgcgtga	ctgacatcga	87780
	gagtctgcca					87840
cctctacggc	gaggcctacc	ctgcctgcag	ccctggcaac	acctccacgg	ccgaggagga	87900
	cttaagctgc					87960
	attaccgtgg					88020
					tcaagagcgt	88080
	ctgcgccagg					88140
	tggcctgtct					88200
	accaggcggc					88260
	ttcgccttcg					88320
	aggagettee					88380
	catgcaccag					88440
	atgtgtagat					88500
	aataccaagt					88560
	acatgggtgt					88620
	agattccctc					88680
J - 3						

	gatttgttta					88740
tcttatttgt	ttggtcactg	ctacacctta	gcagctcttc	ccctttcctg	ggggatgtgc	88800
acggcagctt	gagcctgtca	cgtggtcaag	gcccggcccc	atcagaggct	gggggaggcg	88860
gcacattggc	agtgtgtcac	actgagctgg	gcaccacagg	ctgcctcatg	accctcctgt	88920
ccagcaggta	gtgggtgaat	gtgtgaaggt	cttgcctgaa	tccatcagga	cttgggaaac	88980
agagaaccct	gtggggggg	ctgtggggga	ggtccctgcc	agtgtttaga	agagcctgac	89040
tgtgttcagt	gccttggagc	agaaagccag	ggtcctgagt	ggctgaaata	aaagcctctg	89100
gtggaacctg	cagcgctttc	cttcctttct	ttaccgaaaa	gaagtctttc	ttgtacqtqc	89160
gtgagaatca	gcagagcctg	cactcctgtt	gaatgaaatg	caaqtqcaat	ttgagttata	89220
	gttgatgttt					89280
atctccaqct	ggagggccc	ctqqqqcatc	tgccgtaact	atagaataac	ctgggcatgg	89340
	cagagagacc					89400
	tgagcggaaa					89460
	tacagggtga					89520
	tcctgtgttc					89580
	tgggggcacc					89640
	ctgtcccagc					89700
	gctcctgtcc					89760
	gtgggtggga					89820
	ggatgtggtt					89880
	gtcctctcat					89940
	ggtggtgtca					90000
	gtgaaaccac					90060
	gtttctttcc					90120
tccccattct	gtggatttgt	gaagccatgg	aaggccctcg	ccctgtgact	ctgcccccag	90180
gatccccact	gactgcagag	gagggaagtc	gcctgatgct	ttccaagtga	acaaagatga	90240
caacacagca	tctccctcac	aacccctgga	tgaggaagat	gctccaacat	ccccatcta	90300
cagaagacgg	caccgaggtt	cagagtggag	gccatagcac	attagcacgt	tatcacatgg	90360
	agcaggaagg					90420
	atccacaatt					90480
gtggtgctgt	cttttgggca	gagtccagaa	tgggcatggt	cccgggttcc	actcattctg	90540
ccacaaaccc	ctgtgccacc	cggcaccatt	taacacctgt	ccccaggcct	cagtgtccca	90600
atctgtaaaa	cggaaagcct	gggctaagtt	agtggttttc	aaaacttctt	agcaacaccg	90660
tttttgtttg	tttgtttgtt	tgaaataggg	tctcactttq	tcacccagge	tagaatataa	90720
tgctatctcg	gctcactgca	gcctccacat	ttattctaaa	ttttacagag	aggeteeceg	90780
ggccccgccg	accaccccac	ccaqqaaaqa	acctaccatc	tgcaggaaca	gccattattt	90840
aacaccccqt	cccggccacc	tactctaatc	tocccttca	ccqtatqqaq	ctotaggaca	90900
cccagggagg	gaccgggggc	agggtctcac	tttgcttcta	cgaagtagta	gcatttgaga	90960
					gagggtttgg ·	91020
	tccaagccct					91080
	attcttgggt					91140
	gaccagtcat					91200
atcctacatc	atgcaagtac	actoccaset	gecatecaag	22244	ttataaaaa	91260
accestasse	caggacctgt	ctctccaage	tagasatas	ggaggagata	statesease	
cccacctccc	aatcaccaca	atagaatata	agggatatta	330333030	cogcaaccac	91320
aacacotctc	aatcagcagg	tagagagaga	agggctatta	aacaaacagc	catgtggeee	91380
aacacgcccc	atccggcagc	ccggggaaag	cacactttga	cagecaggae	cctatccgat.	91440
adduggtgtt	tcctcttcat	gacaaagaaa	atgaacactc	atteaeteaa	aatattcagc	91500
accegatge	tgcttcactc	LLCCLggcac	aggggatgca	gaatgaacag	agagcccctg	91560
ceceaetggg	aggggtgttt	grggggagat	ggaccaggta	ccagtcagtg	aatatagcac	91620
aatggcaggt	agagaaaagt	gctacagtca	tctaccgtga	gcgctgtgat	gctctgccca	91680
	attaatggag					91740
	gttgcaaaat					91800
gcccccaaag	gtgtccaggt	cctaatcccc	aaatcctgtt	tgtgtgttcc	cttgcatggc	91860
aggagggatg	ttgcagatgg	gattcagtta	aagatcttga	taccggggag	atgattctgg	91920
actttcctat	ccagaagggc	ccaaagtaat	ttcaagtgtc	cttgtaagag	ggaggctgga	91980
gggtcagggt	gtgagattgg	aagatgccac	cctgcaagct	tcaagatggg	ggaaggggcc	92040
atgagccaag	gaatgtgggt	gtctctcacg	ctggaaaagg	tgaggagatg	gttctcgcct	92100
gcagcctcca	gagagacaca	gctgacagag	tcagactggg	ccactgacag	ggctctagcq	92160
tcccagattc	ccatgccccc	acccctctgc	atggctcctg	agcccctctc	tgaggtgtct	92220
cctggaaaac	ctttgggctc	ctgctcccta	cctgttatcc	ctgaatqttq	ctgcctttta	92280
cagcttgtct	gtccctctct	gaggeteate	atgtcatctg	cgtgggcccc	ccgcgtaatt	92340
ctaacagcac	ccaggtaaag	ataaaqqtqc	tttattattt	ttctaaaaaa	gacttcacta	92400
ttgcttgagt	cactcataac	ttgatcaatt	atttqqaqct	ctaaaagctt	cccaattact	92460
				3-30		

	accttggagg					92520
	actttggaaa					92580
actcgggttc	ccttttcttt	ccgtccagaa	gtgatcaaat	cagctaaact	cactgtttca	92640
agctttcctc	taactagatg	tgttttttc	tgccgttagc	cagaaaggcc	ctttccttcc	92700
	acagaataac					92760
	gggaagaact					92820
ataactgggg	ctgagagccg	agagcctggc	ccagcaagcc	aggcagtgag	gtgacccggt	92880
atcccgctcc	ccatttctgc	tggagctgga	agagccccaa	ggacaccagc	cccatcagag	92940
	ccagagctgg					93000
	ggtggctgct					93060
	tttatccagg					93120
	gcctccaaga					93180
	ataggtctgt					93240
	cttacaaaag					93300
	aggaagccat					93360
						93420
	aagccaactg					
	tgcggctccg					93480
	ccccacaga					93540
gataaccgat	acagtgccaa	cactggtaag	tgacgaggct	gcaatgaatc	ccaggtatcc	93600
tgtggctgca	tctccacctg	catgggccat	cctgtacctg	gcaggcccca	tccttagcct	93660
ctttaaaagt	ccaggaacct	tggaatgttt	ttctgacatc	tcctaggctg	ctggatttac	93720
caggaaaagg	gacggaccca	caccttttcc	ctgtttgaat	ccattgcatt	tcttccaggt	93780
	cttctgactc					93840
	tgtaacactg					93900
	tcgccttctc					93960
	tccacctggg					94020
	tttggaagct					94080
	gcaccttcct					94140
	cagcaggact					94200
	caagaatgaa					94260
	gagtttgttc					94320
						94380
	cctctcgctg					94440
	cgcagtacag					
	agcctccaca					94500
	ttttattccc					94560
	gattggtctg					94620
	tacaatccct					94680
	agcactgatt					94740
	acagtccctt					94800
gagcccagct	ggcttcacct	agtggatccc	ccaaccgggc	tgcaggtgga	getgeeegee	94860
agtcccgcgc	cctgcgccct	cactcctcag	cccttgggcg	gtcgatggga	cccggcgtgc	94920
	ggggcggcgc					94980
gggaggctcg	ggcatggtgg	gctgcaggtc	cccagccctg	ccctacgggg	aggcagctga	95040
cgcccggcga	gaattcgagc	gcagtgctgg	cactgctggg	ggacccggcg	aaccctccac	95100
	ccgggtgcta					95160
	aggccagctg					95220
	cccgttcccg					95280
	gcctcggcca					95340
	acggtgcagc					95400
	gcggggctgc					95460
	ctcagaccca					95520
	gtttaagtca					95580
	agcagaagtt					95640
			-		_	95700
	tgtgatggtt					
	aagcattgtt					95760
	gtggactggg					95820
	gcgcgcctcc					95880
	ccttcatctt					95940
	ctacaggttc					96000
	ctttctgcca					96060
	cgggctgagc					96120
	ttgctttgtg					96180
gacacataga	tcctataact	tctgtcactc	cggagaaccc	taatatagtt	accaatagaa	96240

accttacaac	tttccctaga	ttctgcaggc	tgggtggagt	tcaccaccct	ttgctttgag	96300
gtatcagtgg	aggaagaaca	gaggcactgg	ggtcaggaca	gaatggggcc	agaccccagc	96360
tccagaacct	atgaccgcat	aggtttgaga	gacctgcgtt	ccagcctggc	ctctgccttt	96420
	cctgggcagg					96480
	ataggacctg					96540
	gcccagcaca					96600
	cttgggcaca					96660
						96720
	aaagatctgc					
	catttacaca					96780
	catgaattta					96840
	tgggcatggt.					96900
ggcctgagga	agtgcaggga	ctgtcatcag	caaaccctgc	tccagagtgg	agacagagca	96960
gagcatgttc	cacccaggaa	ccccttggtt	tggaggcatc	tccatctcct	gccagcccag	97020
ctcaggttct	gccagtccct	gaacccttct	cacactctcc	accccaccca	tcaggagtca	97080
tatagcaggg	ctgtcgaggc	qtqtqaacca	gagcaactcc	atcttqaata	ggagatgggt	97140
	tgaaacctac					97200
	gaggttgaca					97260
ggcgagacag	agccggccaa	aatccaccaa	aaccaacaata	accatagaa	taacetetaa	97320
gcagtaaaga	ageeggeeaa	aacccaccaa	aaccaagacg	tacasataca	ataccastat	97380
tcgtctttgc	tgccacactc	ceaceacege	catgacaget	cacaaacycc	acygcaacyc	
caggaagtta	ccctatatgg	tetagaaagg	ggaggcatga	acaaccegee	ccccgcccag	97440
catatcatca	gaaataacca	taaaaatggg	caaccagcag	cccrcgggct	gctctgtcca	97500
tggagtagcc	attcttgtat	tcctttactt	tcctaataaa	cttgctttca	cttttctcca	97560
tggacttgcc	ctgaattctt	tcttccacga	gatccaagag	ccctctcttg	gggtctggat	97620
tgggacccct	ttccggcaac	atctttgctt	cctttctctt	taaattaaat	taaatgctca	97680
tggtttttaa	agcccctatc	cctttgctct	cacccccagt	tgccatgcct	cagaggaacg	97740
gcctccaccc	ctttcagctg	tttcttctgc	taattacctt	catgttttgg	aataacatgt	97800
	tttctgattt					97860
	atatggcccc					97920
	accatctcac					97980
	tcactgctgg					98040
	gactgagtct					98100
						98160
	acctccgcct					
	caggcacaca					98220
	ctgacctctg					98280
	cactgcggcc					98340
	ttgtttgtct	_	_			98400
	tctcaatgtg					98460
	ttgttgtttg					98520
	ccacccagct					98580
	tcctccgtgg					98640
caggctaggc	tgctataaca	aagagacccc	ccaatacaga	agtttatgca	aaccagaatt	98700
gtatttctct	ctcaggtcac	catctgagta	ggtggcctag	gctagtgtgc	tggctccagg	98760
caggtttctt	ctctcttgtc	gctctctctc	ttttgaccca	cattttctat	cttgagatct	98820
aaactagttg	ctccaggtcc	tgaaaccacc	tttacaaaat	tataactgag	gaaattatga	98880
cagtgaaaaa	aatcagacct	aaccgactcc	atcttccttc	taacctttaa	gctgtccttg	98940
ttcattcctg	gacataggcc	aaactaactt	tggaaaggaa	ttcagttcat	ggtttgactg	99000
	gataacagcc					99060
	ggactaacaa		_			99120
	tctaagagtc					99180
	agatcagtgc					99240
						99300
	gaccagtaat					99360
	aacctcactt					
	cccaagccc					99420
	tcacgcctgt					99480
	gtttgagacc					99540
	gccggtcatg					99600
gcaggagaat	cgcccgaacc	caggaggtgg	aggttgcagt	gagccaagat	cgtgccactg	99660
	tgggcgacag					99720
	taacactctg					99780
	tccctcacag					99840
gtcttgataa	atcggctctg	tccaggcagt	gggcaaggtg	aacccactoo	gtggttacac	99900
tttcagcact	gtgtctacag	tctggccage	ctttaggatg	ggagggcagg	tgaaagacag	99960
acttetecee	tcttacagta	atacctage	cagatcactt	ccattotect	cgctgttggc	
_	504	2-2-03343	3		- 3 3 2 3 -	

	. •.			_		
	tctgggggac					
	gatgtcaggg					
ggtttcgtgt	tagtggcgca	caccctccag	caacttcctg	agaaattgcc	tttatgtgaa	100200
cgggagccag	tctgaaaact	tcccaacata	ggtccatacc	tttgggtcat	ctccctcac	100260
ggtgacctgg	gcttgctcct	gtgacttgtt	ttggcccatg	agacgacagg	aaatatgaca	100320
	cttgagaggc					
	gacattggaa					
	tgctgggcta		_			
	gaacaagtga					
	gatgtcccga					
	gcgtggtggc					
	gaggtcaggg					
	caaaaaaata					
	gcaggagaag					
	cactccagca					
	aaaaaggttt					
	cttagtcacc					
ctttgtctta	tatatgaaca	agcactgtac	ctaaggcaca	tgtgttcctc	atcttgctct	101100
tgggaacacc	gtacgctgcc	tatggagtag	caattccttc	ttgcctttac	tgtcttaata	101160
aacttgcttt	cactttactc	tgtggactcg	tcccgaattc	tttcttgtgc	aagaaccaaa	101220
aaccctctct	tgagtctgga	ttgagaccgc	tttctggtaa	caactggggc	gatcacaggg	101280
ctggcctggg	agagcccgct	gggtgagaga	gatgcctgct	gatggcatct	gtgttgtcct	101340
	gcaaacctgt					
	acacggaatt					
	tggggtgttt					
	cttcatttcc					
	caagaatttc					
	ctgaagacat					
	tctgatcctc					
	tgtagtttct					
	atttcctcca					
	gttagctttg					
	ctctgtcacc					
	cgggttcaag					
	accacgcccg					
	tggtctcaaa					
	taacaggtgt					
	gggattctct					
	aatctttgca					
	gtctccacgt					
	ttatccgagt					
	ttccttcctc					
cagggctgtc	cttgagtgtc	tggcattctg	ggctgtctgc	ttctatctca	gcagctgcct	102600
ggaatctctg	tgtgcctgtg	gcagagtggg	gatgcgtgtc	aaactgccag	cttcccagtt	102660
ggatgctttg	gtggagcagt	acctttttt	tttttttt	tttgagatgg	agtctcactg	102720
tcgcccaggc	tggagtgcag	tggtgtaatc	ttggctcact	gcaacttcca	cctcccatgt	102780
tcaagccatt	ctcctccctc	tcagcctccc	gagtagctat	gattctaggt	gcatgccacc	102840
	aatttttgtg					
	cctgaccact					
	ccaccgtgtc					
	cttttctctc					
	ggtgggttgg					
	cggtccccgc					
	gggagaggga					
	gaggtccctg					
	ccttgtggtt					
cccattatat	actcccccat	Gaattatte-	actotocoacc	ctataaaa	asacstatt	103500
gatctgcagt	ttgttttgat	attatatata	attateasea	ccacccaet~	ttasasass	103550
	gttgagcagg					
	ctcagtaagt					
	tggtccctgg					
	ggaggaatcg					
acaguegget	tcaggcaggg	aaaggtgtga	gcagcggctg	yyaaaacaca	caccagaatg	T03800

A						
	aggcctgagg					
attaagacct	tggggctctg	cggacacgct	gcctggggtc	agaccctggc	cccaacactc	103920
acagtttgtg	gccatgaggg	actcacccac	ctcttcacgc	ttcagtttcc	ttatttataa	103980
	aaaatcacag					
	gccctccgta					
	tcagggagga					
atccctggac	ctagcccagt	gggtggaggt	caggtcgggc	aggagggtag	gtcacccagg	104220
	ccaagccaag					
	agatgagete					
	tcaaggccat					
	atccatgtgt					
	ccaccactcc					
tgctcactac	ctctgccacc	atctggctgc	ccctctgtcc	tetgeagece	cataaaccac	104580
	tccccaggaa					
	ctacaggccc					
	tgagcaggga					
	atatggggtc					
	tatttattat					
	caaggtgtgg					
	tttccagctt					
	atccagcacc					
	agctgtctcc					
	ggtcccacat					
	tgcaagatcc					
	aggctgcagg					
	ggtttgaatc					
	ctcatctctc					
	atgctctgca					
	ggtgacctcc					
	ggagcggcat					
	gacgcacatc					
tgtggaactg	agcgccaatg	aagcccctgc	cagcagaccc	gcagaatagc	acctgccttc	105720
ctcctgctga	acctgaagcc	cagaattccc	tcctgaaagc	cagaggcagg	geetggetee	105780
	cagggaaacc					
agercageea	ttgtggcagg	-9999cgggg	cctctctggc	ttcctgaaga	atccaggtac	105900
cetgtggttt	ctctccccg	caggetteca	ttetetggga	ccctcaggca	cgtctgtggg	105960
ggagcactgg	atgaggagtt	argreetace	tgtgtgattg	cgagctaatt	ctttaacctc	106020
tergaateag	tttcctcatc	tgtatcatat	teteatggag	agrgrgagrg	tgtgtggaga	106080
	ctatgcacac					
	agcactgtgt					
acaaacccac	aagataggtc	gtettattag	CECCAETECC	tcagtgatga	attcagagct	106260
	aagagctgca					
	aaagcccatg					
	ttggactcac					
	ttattggaaa					
	gagacaccaa					
	gacaacttga					
	tcgtcctcag tgactatgtg					
cccatcascs	aagtctgtga ccttttctta	CCACCACC	ggteetteea	atttastta	grantanta	106800
	atccagagac					
	ttggtaccca					
	gaaggacatg					
	aacctctagc					
	tcgtagcaaa					
actastocas	ctatctatac	aattyaccac	accecegaac	atatotacaa	ggggaaaaa	107220
CCACCTCCCAA	tcctttgatt	gulaaattta	accagaatag	tottont	acaatactgt	107280
aaaaaaataa	tggattttat	ayuyacacat	adacadacat	CCCCCactca	cyccgactaa	107440
	atgatccatt cttttacaca					
	cctgggttat					
aaaaatttaa	atttggctgg	gtctctcctc	cccactttct	gaatrasset	accodadd	107520
		geeeergeee	CCCACCCCCC	Junicadaal	guladactac	T01200

		_				
	tgcaagtcca					
	gagcatctac					
	cccgagggat					
	cagaacatgc					
	ccaggatgaa					
cagagcgagg	agctccgggg	ggtcttctct	gtcttccatc	ctgcgtctca	gttctcctgg	107940
	tcgccaagtc					
	ttgaatgtcg					
	acccggacgg					
	tcagagcctc					
	gcatccagcc					
	acacccacct					
	ctccgggaag					
	aagtcaactg					
	gcaggtgaat					
	ggaaaccgca					
	gagcttgcat					
	tcagctctga					
ggctggctcg	tttgagactc	atcatctgtc	cctggagccc	tgatctggga	ccagtgaggc	108720
atgggggaga	agcageteee	atcagctccg	gtccctgcaa	caggacgcac	tggagtgaaa	108780
aattaacccg	gacgcataaa	aagtcctatt	gatgtggtaa	agaccgcaga	ccgagacagg	108840
aagggacgtg	aatgaaagaa	ccctgaactg	taagactcca	cagtcatgtc	cattttatga	108900
	tgaacgcttc					
	gcctaggaaa					
	ctgcagctgt					
	gtcatgtcgg					
	agtgcatgtc					
	caatgatgtt					
	tgtccacact					
	gcacagcccg					
	tccgatcgaa					
	aaggagaggc					
geeeaggege	gggggctcac	gcccataatc	ccaggacttt	gggaggcccc	ggtgggagga	109560
ttgetteage	ctaggagttc	aagaccagcc	tggacaacat	agcgagactc	cacctctaca	109620
	aaaaatgacc					
	ggaggcagga					
	actgcagtct					
	aagcaatccc					
acctgcctct	attcccctgt	atcttggggt	ctcttatacc	ccctcacatg	tcagctgcca	109920
ccaacatgca	gactttgggg	ccaggagcta	agatcctttt	tatcctctgc	cccaatcatc	109980
	cctcctggcc					
	ggcagatcac					
	tctactaaaa					
	caggaggctg					
	tcgcgccact					
	gaaaagaaaa					
	ttccaaacag					
	ccaccaggcc					
	aacatgcatc					
	caccgtcccg					
	ggggttcctg					
	agcacagttc					
	cctggagcag					
	cataaagaag					
	ctgagctggg					
atccctgggt	ctccaggggt	tatgcacaga	ggacaaaagc	tcacacgtga	gctccggcac	110940
tgcagtcagg	ggcttgggct	ctggccagtc	cgcctgggtc	cggatcccag	ctctgcccta	111000
ccctgacatg	cgcactctct	tagttttcta	taagaactgg	gatcaacaaq	ggaacgcagc	111060
	cgtgaatcag					
gcactttgct	tcttgttatt	taccaddtac	tectegatee	taatcataca	tataaccaaa	111180
	ctttatatgt					
gccgggtgaa	cgagtcccac	agaaggggg	tacccaaaca	CCacagggra	actgggggag	111300
	ccccgcgcca					
_	- 5 - 5 - 5 - 5 - 5	J	3-333-3-	3-00	5556466	

attasasas	tassantana	+ c - + + +				
gereacagaa	tgaacctggg	rgattteaca	caatgctggt	tettetgate	catttagtgg	111420
aaggagagcg	acataattaa	agreatitge	aacccacaca	gttcctgatc	ctccccctgt	111480
regggrgrgg	aattcagctg	acacgtgctc	tgggggagag	ggaggggccc	ctctcatcct	111540
agageaceag	gccgcaccac	catgagagee	attcctcaca	ttcaggcagg	tttcttaaat	111600
tecagaaggt	tecettaaca	gggaaaaggg	caggggagct	gcttcacctc	tcctagcctc	111660
acctgcatgt	gggaccacaa	cgccggctgc	tttcagcccc	agtgctccgc	tectetttee	111720
tttggggaaa	gaaaggctcc	tgccctcgcc	acccgtggcg	cctgtaatcc	cagctacttg	111780
ggaggctgcg	gcaggagaag	tgtttgactc	caggaggcgg	aggttgcagc	gagccgagat	111840
ggcgccactg	cactccctat	ccctgtgagc	ggtcaatcac	agtgctctcc	tegeceettg	111900
gcctggccaa	cttgggcatg	tgatatccct	gtccatgctg	attggtgcaa	aaaqtqqqca	111960
agtgacccac	acagagccaa	tcagatcctt	ccatgagagt	tttacacagt	ccctgggagg	112020
ggttggctgg	ctgaggataa	tggaaagggg	aatgatttgg	gggtcatctc	tgaagaggga	112080
gaggatgagg	ccagtgtgta	agaagaagca	gggaggagcg	qaqatqqqqa	agcatggaga	112140
gaagaaaacg	gccggagaga	aaaaaacagc	cctagggata	cagcatgggc	ccctagagaa	112200
gccttgccca	ggactcctca	gagcaagtgt	aggtgtgttt	gactcccgca	CCCGagcaca	112260
ctcqqctqqc	acaaatctct	cccccagge	aggacagatc	aaggagaact	tratagaaga	112220
agagacatta	aagcctgttg	taggagggc	tacaggatte	ctccaaataa	ataacetaaa	112320
gaagggcagg	cctgccaata	ggatagtcca	cacaggates	ctorogogo	cctcccceta	112360
cgaactggga	tcttgctgaa	ggcatcacac	atoutctcat	ccccaaaccc	accedegeaca	112440
ccaatttcct	anaaccactt	treacrease	ctgacttag	ccccaaagcg	gccacgaagg	112500
gaggaggata	agaaccactt	cccagccgag	cryactragg	ggetteetea	agcacacggt	112560
ggcgagggca	gaatgtggac	cagagactga	gagagteeag	caggagaget	getgeetete	112620
cacageaege	tgcccatctg	egetetgeeg	gtgctaggaa	gccccacggc	aggggccatc	112680
gggcagccac	cacgcggcag	cagcggcgct	ctgcgggccg	gaccaactgt	cagagggggt	112740
caccaggaat	aagagggcag	caactgggag	cctgccagga	ttcgagtttg	ctttggtctg	112800
caaggatgtg	ggaacctggg	gggaatcctt	gettetetee	tgagcctctg	aggccctgga	112860
aggcaggacc	cagggtctgt	ttatcttggg	acccctgacc	atggggcatg	ttgttctcag	112920
aacagtgctc	aaagtgaact	gggaggtggc	acacctctat	gccttctaga	aacacccaca	112980
gccactggac	acacctgagg	tccccagtga	agggctcaga	acaggttgag	tcatagtagc	113040
ccccagggc	accccaccca	ttgcgggagg	caaacaagga	cagaggttcc	agccgggcag	113100
agcagagcca	gctgtggagc	gagagacagt	gaggcgggtg	ggggaccact	aggacagggc	113160
grggcrggcg	tgtaaagtgc	acgcaggaag	tggcgggtgg	gaggcaggac	aggagagece	113220
aggcctagac	accactgtca	gcctggggat	gcttggcggc	ttctccagtc	ctqqqaqcaq	113280
gcatcacctg	gccgcgggtg	cccctggtg	gcagcttgaa	ggaaggacgg	gcagtgggtc	113340
gcagccagcg	gggacctacc	ccgcaaaacg	cacataaaag	ctggaatcag	cttqttacag	113400
ctgcaggtcc	ctctcgtccg	atttggatag	accetettgg	gacccactgc	accagggaac	113460
cccaaatgca	gctcagcagc	atgggaggag	ccctqtctqc	tagagatate	toggatctat	113520
ctgggggcag	ggcctagaga	gaaggtcctq	tatectacta	acccagctgt	accaacccaa	113580
ccccgggtcg	ggcctccatc	ctggttttct	aaqcatcctt	tagtggcccc	ctgtgatcac	113640
catgccagcc	ccttgcctga	actcagactc	tactaaaaaa	ccctacaaa	ctggggggag	113700
tccaggatgt	tggcaactct	ctcagaaatc	tectteceta	gacacaatga	cttagecec	113760
cacttggatc	cagccctgct	tccagggggc	teceteetaa	tectatetet	accatataca	113700
qccctcccct	catcccacac	accaacctq	atoutcecag	ccctatacaa	acacacaca	113020
agagtcatag	tgcggcagct	ctcacatgac	caccacacte	ccccatgeee	agagecacag	113880
gggagagccc	agacctotca	tattaectae	taccatageg	aggetage	ccagaggtet	113940
aggtgatgcc	agacctgtca	ctactaacta	tgactacaa	agggtggaca	geeeeeaee	114000
acaggactgc	caagtcaggg	tracartara	tegestests	cccccgccc	accacactgg	114060
aceacceata	ggggaggagg	stanzanata	tatatatat	acaggtggta	ttctgatcta	114120
gaagacagcg	tagtctttat	stantant	tgtatcatct	ggagacccac	ttctgaatct	114180
ggggggccgg	acaaagaggc	atectgteet	tgaggaagca	gctgtaggag	acactgagag	114240
aatattaaa	agcttctgag	accgaaactc	acagatggag	agtaggettg	tccatttcag	114300
aatettaege	ctggcaggac	cctgagcaca	aagctgatgt	gatttgggag	ggcagaagag	114360
ggatttteee	acctccagaa	tggaggaaga	atcccagaga	agagacacag	aggtaaggac	114420
ccacgggtag	aggtcaggtc	aggagcccct	gccacagccc	ccttgtccat	gcccgccctg	114480
ggctgagccc	aggctaggga	gacacaggaa	ctcacttctg	gcactggggc	gccactttcc	114540
aggcaggtgg	ggttgagaga	cggctggact	tgtggattgt	gacaagccct	ggagggtgta	114600
ggagctccaa	ggtgcccctg	agcctcagcg	ggcccgagtg	gggtgtcacc	aggaagagag	114660
ggagacagta	gtggtgatgg	gaggagggt	gagtagaccg	atggtcaaag	ccacaggggt	114720
gcagggctgt	ctcaggacat	acaggtgtgg	atggatgatg	gtgaccgggt	gctgggctat	114780
agccctcgcc	cccgacaagc	tgggagaggg	gagcacatca	ccggggaccc	tqaattaact	114840
aaacatgttc	ccactactgc	ccatagggca	ggcgccaacg	tggctgtgag	gttcagtgac	114900
agaagatgaa	gaatttcatg	tectgeceet	tgaatctgag	cgctgagagt	tggacctgct	114960
ctggaaagcg	tgggcttcac	ccagacacct	ggacccattq	aggctgagta	gccccatact	115020
gegggteace	ggaatcccag	cccagacccc	tgcagggcag	aaaccctccc	tacqqtqaqq	115080
tgaggtgcgg	gctgaggtca	gggcttacct	gtcgctccca	ttccagggag	attcaaactt	115140
- <del></del>	<del>-</del>			-55440		-+214V

					- ••	445000
gtcgaaaatg	cagtcgttct	cgtacaggga	acagagettg	ctccgaaggt	agtcatggac	115200
ctggtgggat	aagggatgag	gtgagtggac	agaacarccc	gaccatcctg	gcccttccac	112200
aagaagggtc	tcaaagagca	gcgagggtct	gcatgccctg	acatggccca	gcgcagacct	115320
gctcatctca	gcgagggtct	gaatgctctg	acacagcccg	acacagccct	gctcatctca	115380
tcgggaggcc	catgaccagg	cacacggctg	accccgaccg	tgacacagcc	caatacagcc	115440
ctgctcatct	tatcgggggg	cccacgacca	ggcacacggc	tgacctccac	cgtgacacag	115500
cccaatacag	ccctgctcat	cttatcgggg	gcccacgacc	aggcacacgg	ctgacctctg	115560
agctgtggcc	agagacggga	gtagcaccag	ggagcagagt	ccactgtgac	aaacagaacg	115620
ctcacageac	aggggcagg	accacctqqq	gtccagatcc	tggctctgcc	ctcccagctg	115680
tataatetta	gacaagtgat	ttcatctctc	tgagcctcag	tttcttcaaa	cttaaagtga	115740
taagagggg	aacctcacag	taattetaae	attaagtgca	gggcaggcct	tttgagggta	115800
2503505	20220202	ataacaacca	traaraaagg	ggaagagga	acccacagag	115860
atgateteeg	agaacacagg	geggeggeea	asaatasa	ggaagaggga	gcctctaaga	115920
geetecate	catecadage	acyaggcacc	gaggeeeaca	adadadada	tasasacasa	115980
ggctgaccag	gaecetteee	caggarrece	gtaccccaca	ggagagaggg	tgacacccca	116040
ggacctgcat	ccacctgact	geageeggre	ctacaageee	tgtaceegga	gggccgcatg	116040
agtgccagcc	ctctgctgag	gctggagctg	ccaggacaac	agggcacggg	ctctgccctc	116100
tgggtgcgga	agggaaggta	actgggtgcc	atggagcctg	gttteaacte	ccaggagttg	110100
aaattaacaa	ctccaacgaa	cacagaaaat	gtgaagggtg	gtgtgaacgt	caatttcgtg.	116220
tgtcagcttg	gctgggccaa	ggtacccaga	tacttggtgt	ttctgtgaag	acattttgta	116280
gagaagatta	acatttaaqc	tgatatactg	agtaaagcag	gctgccctcc	atcatgtggg .	116340
gaggettate	caatcagtcg	aaggccctga	tagaacaaag	acagacctcc	ctgaggaccg	116400
agagatteca	ctaacagatg	catataggct	cgcatagtca	ctctcccctg	ggtcaccagc ·	116460
ctaccaact	getetgeaga	tttagaacat	gccacgtgag	ctaattcctt	caaatctccc	TT6250
ttcttctca	gtctctatcc	ccatcctgtt	aattetattt	ctctgagcca	tctgactaat	116580
ataataasa	gcactacaca	ggaaaacaga	gtggcactag	gggaagcagg	attgggagga	116640
acggcggcaa	attractors	cacadataa	ttagacaagg	ctacctgact	cccgcctggg	116700
agggcccgcc	teecteeses	cacaggacgg	cctcctaata	accettgeet	tccccttggg	116760
geeetgetea	coccocca	geceeegege	atcactatat	tectatetat	ctgggaccct	116820
cccctgggct	geagececae	taagetgagg	stantana	agtatage	tatattaaac	116880
cgagggtgag	geegaggtte	tteettetet	teresteres	ggcccagcac	tgtgttgggc	116940
acagggtact	ggctcagtat	gtgtaacaac	taaaatcaag	ggggatgaat	ggcagcaggt	117000
tttagtgttc	gtgtcccacc	cccäactcta	catttttgtg	tgteeteett	actcagctcc	117000
cagcagcctt	ggtgatgcac	gcgtccaaat	gcgcatgctg	ttetetetge	cgtgcactaa	117060
gcatctcctg	ccctctagtg	gcagggtgag	gaagagetet	ggagaaagac	tgtcaatcta	117120
aggtccgctg	cttgctggct	ctgtcacaga	tttgccattt	aactcaattg	tcttccaata	117180
aaatgggatg	gggagaatac	cggccccacc	tcccaggaca	gctgggaggc	ttagatgagg	117240
caaagcatat	tatggactta	cctcagtgtg	gctcattcaa	caaccgtccc	cagccccttc	117300
accettgeet	tcttcaacca	cagaggctgt	taaaccatta	atcttcccag	ccactatggt	117360
ggctgccagg	gacccattct	agacaatgag	gtgtaagaag	tcttctgaga	agcattctgg	117420
ggaagatttt	acaatcacag	tgaaacacgc	aacagacccc	aggggtgaga	tctagtgcat	117480
ttcctatttc	ctgcctggaa	tgtaggcaaa	gtgcttggag	gtgtggcagc	cactttgcca	117540
ccatgaggta	ccacatotoa	aggtggaaaa	ccaacqccca	aatgatggtg	gactggatca	117600
cadaaddaac	cactataaca	ctaccagaat	catggagggg	cccaccttc	ctggactgcc	117660
ctctccacac	tecetattat	uudadaaaa	tagggggat	ttattaagca	ccgcacacca	117720
gagaaagaa	atactactea	acacaatttc	tageocogae	caagecacea	aaaaatgttg	117780
geegaacgea	taattttata	tagttattgg	tattatttta	acatcaataa	gtcagctggg	117840
geegeege	agtereracy	ttagecacege	accatcacca	acactcattc	ccctccttca	117900
ccagatgcca	agtgeedage	tracggeere	acyccccaga	acagecaece	ccctccttcg	117960
tggggtcctt	catgagaatt	ccagaaagct	gracecee	teresteres	atgctcatag	110000
aacacattcc	acgtagtttc	aggggttcat	gggcetttgc	tgacctcagg	gatggaggta	118020
agtgaccgga	caaggggccg	gaggggttg	gaaatgttca	tttccctgag	ctgcctccag	118080
agggagccag	agagttgctc	ctgcaggctt	gagccgggct	tatcctgtcc	ctctcctagt	118140
ctggggtctc	tgccattccc	acagggacag	aggagggctg	agtectgeet	ggggtgtgca	118200
gtgtgaggag	ggggcctgag	ggaggagctg	gggcagtcgc	aagaactcaa	gtaaacacac	118260
gtggctgaca	aacaggcggt	ccccatagcg	gtccttgtgg	gtgtgtggct	tccaggagcg	118320
tgagctgttc	ctctggggcc	caggtcagat	cagagcagcc	caccctctga	gctctgcacc	118380
agttcccago	gaggeetgeg	CCaccagga	cgctttccta	ctaggtcttc	gcacggagga	118440
aaqqaaaqco	taggactcta	agcctgaact	ctgaatctgt	caccgcccaq	ccgagagaca	118500
catacatast	ctccctacct	ctcaatacca	gagttccctt	tccaccaaat	aggatgatgg	118560
ctccttctc	ccaacaata	aagaatggood	gtgacagatg	tcaagcacgt	ggcaccccat	118620
gratasaas	traracroto	. auguatyyay	tagaatttat	gatagaatat	tttcccaccc	118680
gryryayyay	ryacacygig	taggaaccygc	tossocce	gcacasatoo	cacctcctcc	118740
acycttycac	ggccagatet	. Laccoatcet	. ccaayyccca	ttosscoot	cocacattto	118800
aagaagcctc	cetgatetee	ccacctaact	ggaaceage	ttototaa	cccacatttc	119860
tttcaagtco	acattttatt	ttaacatcac	atgagtttt9	, cegectaccc	cctaacatat	110000
ctgaatggat	gataatagca	agataataaa	taatactgtc	. caayaayggc	ccaggcttca	110320

						110000
cctagactcc	aggettatag	geergreerg	aggatetgga	aaggaaacat	graceager	110300
	tgcactgctt					
	ccgatgcagg					
	cagcctgacg					
ggcccctggg	ccctggactg	caggccttgc	tcagggacat	ccaaagctcc	ctgtgaggca	119220
agactgagca	ctcctgccct	ctgccaagct	acgtgtgggg	atgagttgct	ggatttcttc	119280
	tcttcaccta					
	ggatctcagc					
	ggtaggtctc					
	cccgggtgag					
	tttccgagaa					
grggagacag	agaagcaatg	geegeeaetg	egetgeteee	geecatgggg	Liggialgae	119640
ggatgactct	gttttgcacc	rgggcccarg	ccctgcctat	teagteatte	atteatteet	119700
caaacctaga	actaaacact	taccagggaa	caagcctggt	aagattctgt	gctgtgcaga	119760
aatagccatt	actatcccca	ttcatagcca	agaaaatgga	ggagcagctg	gctaaaaccc	119820
atgcctgggg	agtcagtgct	ggaagaaggt	ggtagagtcg	ggatttgaag	ccaaagctat	119880
acttgatgtg	ctgccctcta	ctgcccccta	ctggtgatgc	tgaatgccag	attgcaaagg	119940
totcctgaca	ttctcaaatg	tgctggacaa	tgtcctctac	cagactgggc	actgcttgtg	120000
actetageac	taactggccc	tgggaccttg	ggccagtagt	tatctctgtt	catggtgtcc	120060
taggcaggca	tggctgagcc	ctacttataq	gtgggttttg	tttcattgcc	atggggtttg	120120
taacaaaatc	aaatctgact	gccacagagt	tggtacagtc	tcctgtatgc	catccactga	120180
ccatctcctt	ttttcttgga	gcacctgctc	tgcacaggaa	gttgcttatc	tggtccctaa	120240
aggcaacggt	ttgctgccca	cctggacaat	tatagactgg	gacagagtgg	qcaatqaqqa	120300
checceage	agtgtcccct	cccactacc	cccataacct	gacettecta	agctgcagaa	120360
	tgggacaagg					
	ggggctgaag					
	ctgggccaca					
	cattcaccag					
	gaaaccggct					
	ggaagcagag					
	ctcagccaca					
	gggaaatggc					
	cctctccaga					
	tggactcatt					
	ctctgtgcca					
	caacattctc					
	cagcaagtgc					
	gtgaacaggg					
ttggggagag	attggtggcg	atgcctggag	aggggtgtgc	tgggcagaag	ggacggcaca	121260
cgcaagggcc	ctgaggcagg	gacacgccaa	gggccgtgca	ggcagagaaa	ggagtgagca	121320
gggggaacag	ggacgcaagg	ggccacccac	gcaggatctc	atgggccacg	gagaggggtg	121380
aggaagtcac	cattagggaa	acgggagcca	ctgagggttc	agagacaggg	aggatgaaat	121440
	gaggtaggga					
	gcacccggtg					
	atgcagggag					
	aggctcccac					
	ggaaggtccc					
	cccctgaagc					
	agtggcagcc					
	tgagggcagg					
	ctagtttatc					
	ggtgtttaac					
	cectecacae					
	caggggggcc					
	ggaccagaaa					
	gggagagaac					
	tcacctccct					
	gaaggggcag					
	cgcaggcagc					
	ctgacttact					
	tectecettt					
	tetetete					
CTCCTCTTT	ctcttcttct	tecettecte	atttcctttc	ctcttcccc	ttetteteet	122700

```
ccctccccc tactccacta tcccccctc ttccttcttc cctcttatt ctctctcctt 123180
123219
<210> 544
<211> 160755
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 19206..21206
<223> 5'regulatory region
<220>
<221> exon
<222> 21207..21387
<223> exon 1A
<220>
<221> exon
<222> 21864..22188
<223> exon 1
<220>
<221> exon
<222> 34799..34930
<223> exon 2
<220>
<221> exon
<222> 37172..37409
<223> exon 3
<220>
<221> exon
<222> 50385..50523
<223> exon 4
<220>
<221> exon
<222> 57261..57395
<223> exon 5
<220>
<221> exon
<222> 59355..59458
<223> exon 6
<220>
<221> exon
<222> 60623..60747
<223> exon 7
<220>
<221> exon
```

<222> 61570..61682

```
<223> exon 8
<220>
<221> exon
<222> 63244..63372
<223> exon 9
<220>
<221> exon
<222> 63817..63916
<223> exon 10
<220>
<221> exon
<222> 64902..65002
<223> exon 11
<220>
<221> exon
<222> 65487..65654
<223> exon 12
<220>
<221> exon
<222> 67211..67282
<223> exon 13
<220>
<221> exon
<222> 67671..67928
<223> exon 14
<220>
<221> misc_feature
<222> 67929..160755
<223> 3'regulatory region
<220>
<221> allele
<222> 31547
<223> 99-32148-315 : polymorphic base G or C
<220>
<221> allele
<222> 50558
<223> 19-51-347 : polymorphic base A or G
<220>
<221> allele
<222> 63270
<223> 19-56-140 : polymorphic base A or G
<220>
<221> allele
<222> 65025
<223> 19-44-251 : polymorphic base C or T
<220>
<221> allele
<222> 67348
<223> 19-46-322 : polymorphic base C or T
<220>
```

```
<221> allele
<222> 67963
<223> 19-47-315 : polymorphic base C or T
<220>
<221> primer_bind
<222> 31412..31432
<223> 99-32148.rp
<220>
<221> primer bind
<222> 31844..31862
<223> 99-32148.pu complement
<220>
<221> primer_bind
<222> 50215..50233
<223> 19-51.pu
<220>
<221> primer_bind
<222> 50613..50631
<223> 19-51.rp complement
<220>
<221> primer_bind
<222> 63131..63150
<223> 19-56.pu
<220>
<221> primer bind
<222> 63543..63561
<223> 19-56.rp complement
<220>
<221> primer_bind
<222> 64775..64793
<223> 19-44.pu
<220>
<221> primer_bind
<222> 65176..65194
<223> 19-44.rp complement
<220>
<221> primer_bind
<222> 67027..67045
<223> 19-46.pu
<220>
<221> primer_bind
<222> 67435..67452
<223> 19-46.rp complement
<220>
<221> primer_bind
<222> 67649..67667
<223> 19-47.pu
<220>
<221> primer_bind
<222> 68051..68070
<223> 19-47.rp complement
```

```
<220>
<221> primer_bind
<222> 31528...31546
<223> 99-32148-315.mis
<220>
<221> primer_bind
<222> 31548..31566
<223> 99-32148-315.mis complement
<220>
<221> primer_bind
<222> 50539..50557
<223> 19-51-347.mis
<220>
<221> primer_bind
<222> 50559..50577
<223> 19-51-347.mis complement
<220>
<221> primer_bind
<222> 63251..63269
<223> 19-56-140.mis
<220>
<221> primer_bind
<222> 63271..63289
<223> 19-56-140.mis complement
<220>
<221> primer_bind
<222> 65006..65024
<223> 19-44-251.mis
<220>
<221> primer_bind
<222> 65026..65044
<223> 19-44-251.mis complement
<220>
<221> primer bind
<222> 67329..67347
<223> 19-46-322.mis
<220>
<221> primer_bind
<222> 67349..67367
<223> 19-46-322.mis complement
<220>
<221> primer_bind
<222> 67944..67962
<223> 19-47-315.mis
<220>
<221> primer_bind
<222> 67964..67982
<223> 19-47-315.mis complement
<220>
<221> misc_binding
```

```
<222> 31535..31559
<223> 99-32148-315.probe
<220>
<221> misc binding
<222> 50546..50570
<223> 19-51-347.probe
<220>
<221> misc binding
<222> 63258..63282
<223> 19-56-140.probe
<220>
<221> misc binding
<222> 65013..65037
<223> 19-44-251.probe
<220>
<221> misc binding
<222> 67336..67360
<223> 19-46-322.probe
<220>
<221> misc binding
<222> 67951..67975
<223> 19-47-315.probe
<220>
<221> misc feature
<222> 11925,11927,11929..11930,11933,11947,11975,11989,12068,12278
      12350,12475..12574,12622
<223> n=a, g, c or t
<400> 544
gaattettte ttetgaggag geaagaattg aggttgetge aggeeegtae agatteactg
                                                                     60
ctgctaacat aatcaaacat gcctgaccct tgccttcccg tcatggcccg aactagtttt
                                                                    120
teagatttae ttgggaatet cettggeeaa gaggeagggg ggeteeattt agtagtttgg.
                                                                    180
taggettaga attitattit tggtttacac tecaaacace aggtttgeet gatgtttgta-
                                                                    240
cagtgatgta caatgtccct tcctgagtgg tgtcactctg gagttcattt ctgcttcgtc
                                                                    300
caggacacca taaatgtgaa cacacattga gactctacag tcctttaagg gtagcaattt
                                                                    360
caattatttt atcagattat ataatcttct gtttcacgtg tgtagatctg agatcacact
                                                                    420
gcctgcaggg gctctgcttt ttcttctttc ctgtgggaaa gatgctaaag catgaaaaga
                                                                    480
tgcaaacaca taaaaacaac aaaaaaagta tgctaaggga gcccagggaa gtgaaggtcc
                                                                    540
acaccacaac accacgcact cagagaaagg gacatcaaag ctgatcctgc aggatggata
                                                                    600
ttcctttatc agacaatggg gtgggcagtg gggtacggtt gtggaggtgg ggaagggtgc
                                                                    660
cctaggtgga gagaatggca tgtgcaaaga cgagtagggc agggaacagc aggcaacact
                                                                    720
cccacaggta ggagttcagg tggatggcca gcaatggcta aggaggttgg tggqaatgga
                                                                    780
gaatectggg tgttcatata gaggcaaagt gatagteeet teecacacaq tqataqeeet
                                                                    840
ttccaccatc atcaggtcag tgctggtgca aagagatgga agtgtccagg gcagggatta
                                                                    900
caaactetca aacateacag aggetggtea gaaacataac geaggtagga agtaaggage
                                                                    960
ctgaggccca ccagaagagc ttgtgccctc tccaaaactc aagagtggcc agacagccgg
                                                                   1020
gcacagtgac tcacgcctgt aatctcagca ctttgggagg tggaggtggg cagatctttt
                                                                   1080
gaggtcagga gttcgagacc agcctgatca acatgacaaa atcttgtgtc tactaaaatt
                                                                   1140
acaaaattag ccaggtgtgg tagcacaccc ctgtaatccc aactactttg gagcccgagg
                                                                   1200
caggagagtc acttgaactg ggggggcaga ggttgcagta agccaagatt gcactattgc
                                                                   1260
1320
cacacacaca cacacacaca tacacacaag agtggtcaga cagageteet gatgetttat
                                                                   1380
gagaagccag aattgcaggg gttttatgtg aaatttcctg gattgcaaag cactgggtgt
                                                                   1440
accaaataaa caccactggg ggctgtagct ggcccacaag gcactggctg gtggtgactc
                                                                   1500
ctgctaataa aggtaactcc ttccatgatc cgccttgaac attgggctct gcaatgccac
                                                                   1560
agetgeecta gtgaccettg geaggeacet tettgagtga ttecaaatag ttatgacetg
                                                                   1620
teettggtga gagaggaggg geaggtetet tgagggtagt gaageagtae aaatgtttge
                                                                   1680
```

atttctcagg	gatgcaatcg	atgtaaacca	gataaatgaa	accacagaaa	gtcagtagct	1740
gaggcaggga	tgaaatgtgt	ccccgtggcc	tcttaaqcaa	ttagctttga	tatccctaac	1800
agctgctgaa	ttccaaaggc	aattccaggg	gctttgattt	gaagccagtc	tettaagace	1860
	cagggggtac					1920
ataaaaaaa	ggagtggttg	tteetateet	castatataa	agagttactt	tatttaaaaa	1980
tasatsaaas		atacatata	gagetaaag	agageegeee	testesses	2040
	cttcttttgt					
	cagatettga					2100
	gtttggaagt					2160
aatggccact	cttagggcta	caatggtaaa	gagaagtgtt	gttttggata	aactctgaag	2220
tcctttctat	cctagagatt	ttgtgattta	tcttattagc	aatatttcat	ggtgttcaac	2280
	atttggggtc					2340
	actccggaaa					2400
	tgatacttta					2460
	tgggaagagt	-				2520
	gatgggatac					2580
						2640
	tcaaagtctg					
	tgtaaagacc					2700
	gatgtgagcc					2760
	gcctggtcag					2820
	tcactcaaag					2880
	agtcactccc					2940
aacagatgtg	aatgctagga	attgtttcac	ccattacaca	gagggaaaaa	ctgtggcccg	3000
	cgtgtgtaaa					3060
	tgaattaaca	-				3120
	aaaaagcatc					3180
	gaggaacaga					3240
	aggtttgagg					3300
	tgaagagagc				_	3360
	aggcccaaag					3420
						3480
	aatcgtatct					
	atatttttt					3540
	agtcattaca					3600
ggagaagagc	ctcaactctt	CTCACACTCT	cccctcctgg	grggcrccag	ggcctcctga	
	cttcacccct					3720
	tgatcacact					3780
	ccatcctcct					3840
cttcttcatt	cactctcatc	tgcccttgct	cacaacttgg	gtggcactgc	ccttctttct	3900
	cgccttcctc					3960
ctaactcact	cctccctggc	tctctgcagg	gctgagctca	actcaagaga	acttgaagag	4020
gacatttctg	agcacctggc	cacagatcct	tcccagacaa	tcggagtcta	actcaccact	4080
ctggggactt	gtcaatatct	atccacatct	tacttatttc	cttgtttatt	tgtttctaga	4140
	ggcttgactt					4200
					tgagagggaa	4260
	gagagaagga					4320
	agattggagg					4380
	catattctag					4440
acttaaccat	ggactttatg	acctaagaac	aacaatottt	ggggggggg	aadaatagag	.4500
	caagtctcac					4560
	ggaaggcaaa					4620
	ttagccctta					4680
	aatgaatagc					4740
agagggttgg	tggagtgtaa	atgtttgggc	cagagaaagt	gagcaccttg	gagacggagc	4800
tccgaagttc	tgcaaatgca	atatcttcat	ttaaagactg	gtctgtaagt	ggcactccgc	4860
acacagttgt	gcaatttata	gatgatggca	tggggttctg	gaggctggct	ccagggagat	4920
gaggttgcat	ggaccttagg	cattgcagac	cacaagactc	ctatggatgg	aaataaaagc	4980
	accagcagag					5040
	agtttcattt					5100
actgcaacct	cttcctcctg	ggttcaagcg	attetectet	ctcagcctcc	caagtagctg	5160
ggattacagg	cacccgccac	catacctaac	taatttttt	gtattttag	tagagatggg	5220
gtttcaccat	gttggccagg	Ctaatataa	actectoses	tcagatgatg	cacteaceat	5280
ggtctcccaa	agtgctggga	tagagaaata	tettetaage	aagagagttg	tacacacaca	5340
actogacast	ttgccgggtg	addestasas	taactaaage	attoonsees	aactaatasa	5400
gatggtggtc	agaggcgcct	Jag-acgage	agattctata	acattcacac	-aggt-ceett	5460
J 35 - 55 - 5	5 55-5000	Jacaaaccic	agailliaid	cayac	Juggerlact	2400

tcctgctgat	gaccaagtgg	actctcagaa	gccatcagga	gggtgctcgg	ctcatcaggg	5520
gaaagtcaat	tccctggggc	tttcacttat	aactttgttt	gcagatagca	agccttttcc	5580
gcccggcttc	tcatcctgag	cctttctgcc	tgtaacaatc	acattattta	atttagatga	5640
gtgaagttac	cctagatcaa	ttatacttat	ttttcctgtg	taatttccaa	agcttaatat	5700
ctccattcgg	gcccagcctg	ggggacaggt	tgtctagcag	agtcctaaac	gatttcagcc	5760
tttaattcaa	ttgtactttt	accatagece	agcagcgagc	ataattcttt	tatccctaag	5820
atgtctcatt	agcaataatc	taataqcaca	tattaaaata	taggtcactg	aggtgggctg	5880
ccaaqtqqaa	ggcttgtcat	aactttgaag	gttggacage	taccttaata	ggacttggtc	5940
ccccaataac	acaccaccct	gactctaggc	ttaattctaa	aatgatcaat	aaaacacaac	6000
aaaaacagct	tactttctgc	agttcaaggt	taagaaccga	cattaactaa	gaaatagagg	6060
tatagagtag	ggtaagggag	aggggaatgt	tettaceae	atracrtart	accasacato	6120
tecgacetea	ggaacttggg	ctogaacctc	ateceaette	tacatasa	aggaaagacc	6180
acctgcagta	cagctgttat	accettae	cttaatataa	acacetetaa	acgeagaeeg	6240
	aaagccaatg					
						6300
	tgttttcctt					6360
	tcaagtatca					6420
	ccaactgtat					6480
	aaataaatct					6540
	tgacagggag					6600
	atgtagtttc					6660
	tgtgtgttaa					6720
	tttcatatat					6780
	taaatgtacg					6840
ataggtacat	atgcagtata	tgtatatatt	gagtatgtgt	gcatgtgtgt	atatagtatg	6900
	attcttaata					6960
	tatatgtatg					7020
	agtgaggatt					7080
	gagagcaggt					7140
tacatgcttg	ggaataatcc	acattttta	agttaacagt	aagaaataat	gaaagaaatt	7200
ttatactgtc	atcatgtaat	aaataaaaaa	ccaaaatcac	atgccataaa	tagataacta	7260
aaaataaagc	aacgaaaaga	aagcactgat	aggagattct	agtttcatgc	ggtttgggcc	7320
tgaaagttct	gacccaaagc	ctggcttcct	tctgttgaac	tggggattag	taagttagag	7380
tcattacaga	cacatgaaca	ccagattgag	actcactcct	tccgtaatca	gggctaaaaa	7440
agcatgaaaa	gcagtggaac	tttctccctc	tgtgattcaa	agtaattcaa	atcagggcct	7500
gcatagccct	gagccattgc	cccttttcct	tggggctgta	cttctctact	tcaggagaga	7560
tctgcaaggt	ccctccaagc	tccaactatc	ctagcttcta	agggatgcgg	gcatggcgaa	7620
aggtcttgtt	acaggtgggc	tggaggatag	ggagaaaaaa	atgggagaga	cgctattagc	7680
aaaattggaa	aattttgaaa	caaagcccca	ttcctttctc	cageteeeeg	gactggttct	7740
cacaaagcct	gagccagagg	caggggtggg	caggcacaca	ctccttggag	ggcagccccc	7800
agccttccca	gacacagccg	ttccacctgc	ctcctgggct	acactgaget	ggagcctgac	7860
tccttgaagt	gcgtgtttgt	ggctctgggc	ctgctcttgg	gccacacgga	atatatotoc	7920
agcaccccct	ggtgactgca	tgtccactcc	tgaggccagc	aggtetatee	ctcagtcttc	7980
tcctaaggcc	taagtctctc	caccaactgc	ctgacctgac	tctcccaga	acatgcactt	8040
cagetttage	ttcatggccc	acatccacac	ataaacaata	tagaccaget	accagteece	8100
ttacaagaga	actocototo	ctagagggct	cagtgaggat	tectatagee	cttggaacag	
gcagggtggc	ctcatgatga	cctctcccca	cctttattat	caccaaggat	ccttcccacc	8220
ctggatcctc	ccctcactgc	tgcccaacc	tagaccccca	agtetteeca	gcctcctcat	8280
caaaacctat	ctttcgtgca	cctccttcct	tcagagtgat	accadadcaa	tottcaacta	8340
tctgctctga	gaaatgttcc	aaagagagga	catagatata	ggaagaccct	accacca	8400
atcagaacca	gttctgatct	cttactctac	tactacceta	totaatttto	gggaccacgc	8460
taaaacaaaa	aggtacaaag	tagaccaaaa	aadtacaaaa	ttcttctaca	agaguggaag	8520
asaassaac	aaacctcatg	acacacaca	ttgagggggg	actoggae	ageraceegg	8580
	tgcgcaggac					8640
aaatgggggt	tggggcagat	CCCacaacta	atacascaca	togatotasa	aayayadaca	
						8700
atootoocto	ccttgaagag	atatatacet	tageteettg	ayyyyaaayg	gccagaggag	8760
tecesees	acaaaccaca	acycotyggt	ccayaaatgc	accayecatg	geeteaagtt	8820
	aaagagtgag					8880
	tgaggcccaa					8940
	cctggagcct					9000
agccatgaag	tccaggacag	gacgtctaac	cactttcagc	auggtettea	atctgtaaaa	9060
	gattgtcttg					9120
	gaactgccaa					9180
ccaccyctga	tgcactttgc	agregetgat	gcatttaagc	Colocaacto	ccccaacaga	9240

++	antoneases					
tagatactat	cataagccca	accetactac	cattattatt	attgcccagg	ctggagtgca	9300
gtggcatgat	catgcctcac	tgcagccttg	acctcctagg	ctcaagcgat	cctctcatgt	9360
cagccttcct	gagtagctgg	tactataggt	gtgcaccacc	acgcccggct	aatttttgta	9420
atttttgtat	tttttttgta	gagtcagggt	cttqccacqt	tocttaggct	ggtctcaaac	9480
ttetaggee	aggcaatcca	cetacetega	cctcccaaag	tactaggatt	322222	9540
20125555	caaaaaataa	gaggasttt	200000000		acaggegaga	
t	ccggccctaa	gacccattt	acaagegaga	aaactgagee	acgcatcagc	9600
cegaggtage	aaagcttgta	agtgaaagtc	aggatttgaa	ctcccaggca	gtacagaagt	9660
tgagtgccac	tactcctgct	gatcacatta	agggagccag	agatcaaggg	cctcctaaga	9720
aactaggaag	ggagggtggt	ggtattacca	gaaagagggg	tagcaaatca	ttaccctgca	9780
ccctacctcc	tagttcccct	gteettacee	aaagaccacc	carctttcat	tttaaaaaat	9840
gegetege	202200000	sttstssss	202505000	cagoccccac	ctcgagggct	
949444444	aggaggcaaa	-tt-t-	acatytttca	ggraggrar	cicigratge	9900
	gggtgaacta					9960
gatectggge	acgaatgcag	agcaggacca	gcccagacta	ggtgcatccc	ccaggccttg	10020
	agacaacctt					10080
	cccttcactc					10140
	atggtaccct					
						10200
	ccattcatga					10260
ttttgccaag	cagtcagagc	aaaaggagga	cacaccagtt	tgaggggaga.	aaggcattca	10320
aattgggcaa	agctgaattg	cccacaaatt	gccacagcca	ctctcaactt	gggacaaaqq	10380
	cgtcactaat					10440
	agacttcatt					
						10500
	gtctcagctg					10560
	tctttctctt					10620
atggcaacct	cagggaagtt	ggacttcaca	catggagact	gaaggttcca	agagagatc	10680
atgggcagag	ctgcaaggct	tcttttactt	acctcacttq	gaaagtccca	gagcattatt	10740
	tccactgctc					10800
	agtattggga					10860
tastttatt	astttaaaa	ttaattaat	acceggaage	tattgtgggt	googgotata	
	gctttgggca	ttaccttact	gaaragatic	igitgigatt	teacgtttae	10920
Calllalla	tagaggctat	tgcaaaggtt	atagatgaag	agataagtag	ggtggctttt	10980
gggggaaggg	gattggagct	tcatgctctc	cctggtgcac	aaccctccag	gaacctcccc	11040
gtgttcaact	atctgaaagc	tcaagttatt	ttttttaaa	caagaatata	catgccacaa	11100
acatgcagat	tectggetee	cactgcagac	ccactgaatt	caaatttctg	gattagaacc	11160
caggaatetg	cacttttaac	aaatctgcca	asaccatasa	ctataaaaat	3300333300	11220
cassaddcca	ctaccaacaa	202000000	5455656545	cegeaaaage	ggaaaagagg	
aataaaggeea	ctaggaagaa	agagegaeee	tyayyactca	actgccactg	cattgtagag	11280
gccaaagaaa	tgtgaccctt	catacagtgc	tacccgctaa	ttatcttcac	aggtgttgtc	11340
atccccattt	tatagttggg	aacgctaagg	cttagaagcc	aaaagtcacc	cagccagcaa	11400
gtaatgaagc	taggctttca	acccagcttt	tatttttaa	gtccaaaggc	cacagttgta	11460
atagttatgc	caacccatat	ttgctatttt	atcccaqtct	tqtaatttqa	agtcagataa	11520
atctaaatta	aaattctgga	gaagateeet	gootoccada	gacatagaga	aattaaatot	11580
tttgataacg	acaacaataa	gaagaacat	atatataata	Sacacagaga	tateaaacgc	
ttagatatat	acaacaataa	gaagtaatat	gcacgcgaca	ccaggcattg	reraggigee	11640
LLacatgrat	ttactcattc	aattetetea	gcaattctat	gagctaagtg	cccttatcct	11700
cctcatcatc	ttatccattt	cacagatgaa	gaaactgagg	ccaggtctgg	tggctcatgc	11760
cagtaatcca	agcatttcaa	gaggctgaga	tgggtggatt	gcttgaaccc	aggagtatga	11820
gaccagcctg	ggcaatataa	caaqacccca	tctataccaa	aaggaaggaa	agaaggaaaa	11880
aaqqaaaqaa	ggaaggaagg	aaggaaggaa	ggaaggaagg	addandunn		11940
gagggangga	aggaaggag		33~~33~~33	~33angngm	99114994999	
3-333-4334	~~~~~~~~	ggaggaagag	gggangagag	ggaaagggng	aggggaggga	12000
9990099999	gggagagaga	gggggaagg	aaaagagggg	aagggaggg	agaggagaaa	12060
gagagganag	agggagaggg	gaagggaaag	gagaaagaga	agggagagga	aggagggaga	12120
gggaagagga	gaggggaggg	ggaaaagagg	aaagggaggg	gagaagggaa	aggaggagac	12180
gaaggggaag	aggaaaaaga	gagacggaga	agcagagaag	gacgagcgcg	cacaaaaaac	12240
gggcaagacc	gagaacggag	acasacasaa	aacasamac	guadedddaa	-22	12300
adcacadade	2-2	**********	3303443436	agagegggaa	agegaeggae	
9500009090	ggacgacaga	caacggggcg	agegaggege	geageacagn	acgcgagcgc	12360
cgccgcacca	acggagaaag	agcgaagatc	gaagagagat	acgagagaga	gaggcaagag	12420
cacgcgaaga	gaagagagga	gagcgcagcg	gccaaaagga	cggacagcga	ggcannnnn	12480
מתתתתתתתת	nnnnnnnnn	nnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnn	12540
nnnnnnnnn	nnnnnnnnn	nnnnnnnn	nnnngttcag	gcaccctctc	tetegegege	12600
cacctatece	cccttccc	cnccaattec	atotatooce	Cacacacac	20000tast	12660
atgacataco	cacatecoo			3acayyyada	accygigett	
2032020203	cacatageeg	ggggcccgaa	yyyayyaya	aacaycccaa	gccaaagaat	12720
gcaagagaga	aagcaaagcg	acacgaggag	agaaaggagg	aagaagtacc	ggaggagga	12780
agggaaccag	agagagaaag	aaaaagaaga	aagaaataaa	ggaaagagag	aaaggagaga	12840
gagagaaaga	aagacaaaag	aaagagaaga	aaggaggaaa	ggaaagaaaq	aaggaaaaqa	12900
aactgagaca	cagagaagta	ggggaacttq	gccaggattt	cacagatagt	ccacagtoga	12960
gtcaggatta	aaattcaggt	tagtagetee	taagttcato	Cttttagget	coataceatt	13020
J	- ~330				Januardall	12020

	1					
ctgcctctcc	aggetecaca	aaagcttaat	ttgctgtttc	ccaagaatag	acatcagaag	13080
gccagtgaga	caagtaagaa	agaagtggga	agatagctgt	aagaatcact	ttggtccaaa	13140
tatattcctg	gtgaagccat	tggaaagtgt	tttctgagca	aaaagaaaag	agctcagaca	13200
	atcattttaa					13260
	ctatttaaaa					13320
	tggatgggaa					13380
	taatgcaata					13440
	gaaatttgta					13500
	gctccaccag					13560
	ttgggcacag					13620
	tacaaggaaa					13680
	ctacttaagg					13740
aataatgaag	tggaatccct	acctcacacc	ctatacaaaa	atcaactcca	ggtggacatc	13800
	acaaaactgt					13860
	aaaccagaca					13920
	taataacctc					13980
	aaaagatgtt					14040
						14100
	ttaataagaa					
	tcatagaaga					14160
	attagaagtc					14220
	tttggcaaaa					14280
	atgtgaagaa					14340
tttagagaat	ggtttggcat	tgcttgataa	agctaaataa	atacatactc	tacaaaccag	14400
caattcactc	ctaagaataa	accctaggaa	aactcttgca	catttgtgta	ggtgacatcc	14460
	atagacagca					14520
	tcacagttgg					14580
	actgaaaaca					14640
	gggccaaata					14700
	aagaataaac					14760
	aaaaacaaag					14820
	ggggtgaatg					14880
	atttcttaac					14940
	actgtgaaaa					15000
	atttgcaaat					15060
agacaaatac	atggaaagat	gtactgtgta	cactttttc	ttaagtacga	gaaatttcac	15120
actaaatttt	aaaatgctgt	gtgtgtgtgt	gtgcgcatat	ttctgggagg	aaattccatg	15180
tctcatcaga	ttatctaagg	aatacctggt	gttctaacag	agtgacaact	ggatgtaagg	15240
	tctgtccaga					15300
	gccaaacctc					15360
	aactcacatg					15420
ggggagggca	agttcctctt	tttctcctgg	gagactgagt	ccetttacce	tagacacete	15480
	tccttccctg					15540
						15600
	tattgctaat					
	cccatggtgc					15660
	cttctcccc					15720
	agctgggctt					15780
	cacggaagga					15840
	tggagtacag					15900
tcaagcaatc	ctcccacctc	accctcctga	gtagctggga	ctacaggtgc	gccccaccat	15960
	tatttttta					16020
ctggtttcga	acacctgggt	tcaagcactc	ctcccacctc	agccttccaa	agtgctgaga	16080
	gattttattc					16140
	tttccaaaag					16200
	gtcaggaagc					16260
						16320
	acagggacac					
	aggattggat					16380
	aggaactaga					16440
					acatagtgac	16500
					taaaggcaca	16560
	gggagcagcc					16620
gctctttaat	gccagtgcct	gaatatggtc	agctgggcta	ggaattaaga	gaaaaatcta	16680
					ctttagtggg	16740
					gtaaatccag	16800

ananasttat	~~~~~~~~	33tasattas				1.000
Cacaacttat	gccaatgatg	aatgaattta	gggcaggtca	getgeagtgt	aatatatgcc	16860
tattgtcccc	tgatcaagac	agaaagacag	aatgaaaagg	aagaaggaag	gaaggaaggg	16920
agggaggag	ggaaaaaaga	ggaaggaaag	aaatcaggga	gagaagaag	dasaddasadd	16980
-333-333-3	55	<b>7377777</b>		3434443443	9444994495	
aaggaaggtg	ggaaaggaga	gagaaagaaa	gggactaagg	gagaaagaaa	aaaggaagga	17040
aggaaagaaa	agagaaagaa	aaagaaagaa	agaaaaaaga	aaagaaaaga	aagaaggaag	17100
agaggaggg	agggaggaag	aggaaggaaa	gaagtgaggg	agggaaagaa	dcaaaddaad	17160
22.222.222			22-2-2-2	~555~~~	3044493443	
gaaxxyaggr	maggwsagmk	aaagmarkgk	arkawakgms	wawkiwumun	kgawsaaaga	17220
maagararas	agaawgaaaa	graagaagga	aggaaggaac	ggaggaaaga	aaagagggat	17280
	aatatgtagg					17340
334334444				ccccagccc	ccccaccygc	
gccatggagg	tgtaggttct	gatagegtee	tcagcggaca	caggcccttg	gattctaaat	17400
gtgtcccagc	ccagctgttg	tgtgtcaggg	ccccagtgtc	tqtqqqqaqa	tggccagaga	17460
togactcaca	gcatcagcca	ttacctttta	ccccatagaa	tatatasaas	20 22	
****	backageou		ccccacggcc	tgtgttatta	agracearge	17520
taagtggaag	tgatggctcc	ccagagatca	cattagctct	gataatgctc	cagcctccca	17580
tgcacaactt	gccctcaggc	cacctggctg	ggcaggaaga	agggctccca	gagaagccac	17640
atggcccat	ggcggtgagt	ctagacasas	gatggagga	gacgccttcc	cttttaccc	17700
	550550505		gacggagaga	gacgeeeee	·	
agceecagee	tagtgtcctc	accyccyacc	cccggtagtc	tctgaaacca	cagatggagc	17760
tcccagactt	gctgattggc	ccccgtgatg	gcgtgcgcat	taggaggaaa	tgcctccctc	17820
	gcaaacactt					17880
	cccaacccaa					17940
tttctctggc	agcaggacag	gctcatccct	cttatcagac	aggetggaet	tostoggaag	18000
	gggggcggcc					18060
	aggcgtgctc					18120
tttccccagc	agcaagtgct	ccttaatcta	ctttctcctq	gtttccttcc	ctttactatc	18180
	tctccccaac					18240
	gtttccagtt					18300
acaccaaacc	caacaaaaga	aagagaactc	ttctggttct	gtattgtaca	totttctooa	18360
gcaccattta	agtaacagaa	tacatcacoc	actotetto	acactaataa	rasaatatas	18420
ganataaata		*	habaaaaaa	acgccggcag	ggaggcccca	
Caaacaaccg	tacaggcaaa	taaacagcag	tataaaagag	gagtttgact	ctgttgtagg	18480
aggtggttat	cagggaaggc	ttcacagtga	gggtgactgg	aggttttgga	ggatgggtag	18540
gagtteteca	ggtagaaaaa	agaatgatgg	aaacagcata	ttaaaaaacc	cadaadtata.	18600
2222200202	agataataa	-33		t-t-t-t-t-	cagaagcgca	
aaaaaycaca	aggtactcag	gggaaccact	agtagtttag	tateteteat	actactggag	18660
aataaagcat	attttggaag	tgataaagga	tttgtaggaa	aaatgaggag	agaattagaa	18720
tagcaggagg	tgtggttaaa	tagccagagt	cttotctata	ctcctcaaag	tatttaaaca	18780
ttatcttcca	aanattaaaa	gattttt	225525222	******		
ccaccccgga	aaggttggag	gattttttaa	aactgtgggt	tatetttte	tgattgcata	18840
aatatcaaat	gctcattgtg	gaaaagttgg	catatacaga	gaagtataga	gaagaaaata	18900
aaattacctc	aaatccagag	ttaattaaat	cacatttato	tattaatata	tttcagagga	18960
attteaaaea	and and and	ataataana	ttasattata			
greecaggea	gaggagtgag	gragicac	LLyayttcla	ggragagete	cggcagccgg	19020
tgacgatcat	gcagctggaa	agatactgaa	cgtggggtga	ccagctagga	ggctgctgca	19080
qtqaqqqqtq	atgagggtcc	tctattataa	ctttacagag	tatttcagag	gtaggattet	19140
caccacttca	anactacttc	42 F4444F4F	~~~~		3033340000	
cagcacciga	aaactagttg	gatggggtgt	ggggragagg	agagaagggg	accatgacta	19200
ctagagagat	tctgagtgtc	tecaecatga	cttggtggag	ggagcagagg	ctggaggcca	19260
qqaqacttqq	gttctcattt	ccactctgtg	acttccaatc	tataggacct	tagacaaatc	19320
cctttactcc	202020020	actttcctca	actechact	~~~~		
ccccagccc	acagagccac	agitteetiga	ccigatacgi	ggaaagatga	rreretteet	19380
gctttcctta	caggattgtc	atgatcgtcc	aatagatcaa	aggagataaa	cacctttcat	19440
gtgtggaaac	ctacagttct	gaagetettg	tecteaaace	tctcctcaat	cttttccctc	19500
acctgccttc	tatcatatta	2003033000	2000000000	cotyccoate		
*****	tgtcatcttc	·	agggggaacc	Cacacccccc	Laggillecc	19560
rrccrcrcc	ctctgcatcc	tgcccagagg	acatttgtca	ygattgtccc	tctggtacag	19620
atgctctaaa	caccgccaca	caccaccatt	ctttcattca	ttaactcatt	cacttcavao	19680
actaattaat	gctctagtac	atteceaata	000000000	taatataaaa	<b>63606060</b>	
3003300340	beeterageac	guccaggug	ccagaacacg	cyccycaaaa	gacagacaag	19740
greeergrge	tcatggagct	cacataccac	ccaagggggg	acataaartt	aaacaactag	19800
gacaaattcg	gatagcgatg	taacaaatga	ataaataggg	tgataggata	gagtgagcgt	19860
gtattttcga	tttgagtcgt	cadasadas	cctctccact	dadacetes.	2.2.2.2.2.2.	
3030333	tttgagtcgt	~333aa333a	Cocceggact		caaccaagge	19920
ayayaaaaca	gcaagtgtaa	aggictiggg	gtgggtttga	gcttaggatg	tttacagaat	19980
ggaaaggtca	gtgtggctgg	gctgatccaa	gececaceca	acccacttag	cacqqccacc	20040
tctctgaage	ctccttggat	Caacaggatg	cttcccttcc	tgattcaget	ccaccotact	20100
+00200	******				- Lacticatic	
cocacacacc	tgtggtcaca	acacatectg	accacactgg	gccgcgatag	actctataca	20160
ctggtctggg	agctccttga	aggcaggggc	tatctcctct	ctagccagca	ctqttcacqc	20220
acacacaca				ttaatosses	detachtes	20280
	tgatcagcat	ctactasacc			-a-uauruad	
trastrasass	tgatcagcat	ctgctaaagg	gattaataca	****	5	
tgaatgagaa	tgatcagcat aacgactctc	aggtccaaat	ggctcactcc	tttacttgtc	taattgttac	20340
tgaatgagaa	tgatcagcat aacgactctc	aggtccaaat	ggctcactcc	tttacttgtc	taattgttac	
tgaatgagaa cttctcaaat	tgatcagcat aacgactctc tccctgaccc	aggtccaaat cgtatgcaaa	ggctcactcc ctgcagcccc	tttacttgtc actgtccccc	taattgttac sattccctca	20340 20400
tgaatgagaa cttctcaaat cccatcatat	tgatcagcat aacgactctc tccctgaccc aacgtgtgta	aggtccaaat cgtatgcaaa tttattatgt	ggctcactcc ctgcagcccc ttcccgtttc	tttacttgtc actgtccccc ctctgtctcc	taattgttac sattccctca gccagcagaa	20340 20400 20460
tgaatgagaa cttctcaaat cccatcatat tgttaaactc	tgatcagcat aacgactctc tccctgaccc aacgtgtgta catgaggtca	aggtccaaat cgtatgcaaa tttattatgt ggaatctccg	ggctcactcc ctgcagcccc ttcccgtttc agttatgttg	tttacttgtc actgtccccc ctctgtctcc cgccagtgta	taattgttac sattccctca gccagcagaa atccaagagc	20340 20400 20460 20520
tgaatgagaa cttctcaaat cccatcatat tgttaaactc	tgatcagcat aacgactctc tccctgaccc aacgtgtgta	aggtccaaat cgtatgcaaa tttattatgt ggaatctccg	ggctcactcc ctgcagcccc ttcccgtttc agttatgttg	tttacttgtc actgtccccc ctctgtctcc cgccagtgta	taattgttac sattccctca gccagcagaa atccaagagc	20340 20400 20460

gaatgaataa	ttgaaagaat	aaatagtagt	teteageete	20202200	cotonana	20640
tcaaatgacc	tgctaccctg	cccataaata	acagagatge	acagaacacg	ggtcacaacc	20700
gacctgtcaa	catgctaagc	coctcaaaca	asactacca	aggageaage	garagatet	20760
ttgcagcact	gggccctgag	ccccacattc	ccatttcatt	cataaacaaa	ctcaccacat	20820
agtttaagtg	gcctgctgcg	gaagagagra	ctaatactac	accountcact	ccgaccagac	20820
teettttta	gcctcctttc	taacacasca	cacacccac	ttataaaaa	tetetesete	20940
actececata	gtgggagatc	agaggggagg	tatacttaa	ecceggagag	catastass	
						21000
tecegeceet	aagggagtgc	gegeeegage	toacteteea	ttagggaace	egegeeacee	21060
accogcocc	gcccatcccc	ggttaatgg	atagagagat	tagegeraa	caggeredag	21120
ttaccaccc	ccgggcgctg	aggraargea	acceggegege	cacetgggge	geaggeraea	21180
ccccacacac	ggcccccgcc	aggeaeggee	agaaccagcc	ageeegegee	ergeeggeeg	21240
caccacacac	ccagctcttc	cccgggcccc	geeegaaege	cacacggcgg	ageecageee	21300
accaccacta	cctagagcct	gccaaggcgc	cgccggccgg	gggeeggeag	ggcgcaagge	21360
tetegggate	ccctcgccgc	cggacacgcg	agreegeeer	gagegeggga	tataataa	21420
teagettaag	aggcccgggc	cgagacgcgc	caycayayyy	tategegaget	cgragtgeag	21480
cgacgccaag	tgtccgagaa	ggcccccgcg	getgetgaag	tgtegeggae	etgagettgg	21540
	ggcacgctgc					21600
	gtgaaacgag					21660
	ccaactcttg					21720
	gctctttct					21780
	cccgggtggt					21840
	tttatccaag					21900
	atccatgctt					21960
	gggtccagag					22020
	caacggcgtc					22080
	gggcaagaag					22140
toggedadegt	gtggcgcttc	ccctacctct	gctacaagaa	cggcggcggt	gagcgtgggg	22200
togggerggg	aatttgaatc	tgggaggtcc	actgtctgca	geggeggeeg	ggacaggagc	22260
casascacat	acggaaggga	ggcgaggaga	caggggcaaa	tetggggege	agaaagaact	22320
	aacgggaaaa					22380
Cassacaca	gtacctcgag	atagagtast	cggaagtgtc	aggattgggc	accetggaag	22440
Caaaacagca Caaaacagca	gaagagtgaa	accyayicat	gaccccaaag	ccatggtagg	ggtatggatg	22500
tagaaggacag	aatctggggt	caaggitgg	tassaggage	geographes	gatggtetge	22560
acaaccacac	gtggagattc	cataaateta	cgaaggggca	ccagaagtgg	graggarrra	22620
gaccagaag	ccacagtgac agtgggaata	cttagatttt	geactergag	cergggggea	ggaacetttg	22680
togggataga	aacacacaag	aadaadccad	tatcacasat	eeggggagge	tangagaga	22740
cagcccaggt.	ggaatcaggc	cagtagetag	cascagaaac	catactacta	aaaaaaaaa	22800 22860
acccagatga	ttggggtgaa	acctctacct	caagaactgg	tagggggatt	aaggcaggag	22920
	ggcctgaaga					22920
ggatggtcca	actggccacc	tacctases	tasasaaata	gagatgaggt	agaggaata	
caggaagaat	aacatagaac	cccaaaccaa	cgagageeea	tagaectacce	acayccaacc	23040 23100
cccacccct	agctccttcc	tgaggggctt	tactactaca	ctcccactc	ggcgctggcc	23160
tactagasta	agctcagagg	taccetacea	agactataga	assatagee	ttttaagaaa	23220
gaaattggag	aagggggacc	cactetgaa	agagegeggg	tetecaetee	actacattac	23220
ttggcggtag	ctgtgactct	ggacttaagg	gaggtcagag	adsadssada	caacaatttc	23340
gagctgggta	gagggaaagc	tcatgacctg	ttcacaggct	ctaggactta	caacteteet	23400
tctatgtgta	ctctggacac	ttactttaaa	acqqqcaata	cttggtgttt	acaaaaaaaa	23460
agtagagca	ggcatggtgg	ctcatgccta	taatcctage	actttqqaaq	gacaaagtgg	23520
gcagattgcc	tgagctcagg	agttcgagac	cadectagge	aacatootoa	gaccacagegg	23520
ctactaaaaa	tacaaaaact	tagctgggcg	tagtggtgga	cacctateat	cccacctacc	23640
	aggcaggaga					23700
	tgcactccag					23760
aaaaaggagt	gggatcacca	tagaggagag	ataactetaa	qcaqaqqatq	ttgagtaaga	23780
aagcaqttaq	ctcttccaac	gagaaagtta	acccaacctt	ggaggtgaga	gatggaggtt	23880
tgcgtccatg	gtctccctga	cacctectes	gatoggtetg	tcattotcan	atactetose	23940
accagatage	tgggacagca	atcetaaget	tcagggggst	ctgaggtetg	agacctasta	24000
cgtggggaaa	caacttgtga	ctctacaaa	tcastottto	tatetagee	taggatagta	24060
atgggcagag	agagaaaggt	dadaaaaada	gaagetaate	Cadadatusa	actttcccac	24120
ctttaacaac	tgcagcctct	Caggcatter	tagacagatt	taaggatgga	tatttagggg	24120
caggaaqqqa	gaaaatgcag	atteteteta	tcttttaaga	ddcadaaaa	tgatgaatga	24240
gagaccttaa	gacccgccat	cccacctate	ctcagtgacc	QCCCcagact	acttatatat	24300
agacagtqqa	aggctctgtc	attaatcact	aatatttttc	tggttcctct	tagcatasaa	24360
		5			-5-5-55	

	cacaatgcta	ggctctgcag	gggtcacggt	caccaagagg	catgaaccac	cacttctgcc	24420
	tgccaggagc	tttaatcacc	cgagtcttta	ttqtcatqct	gctagaagtt	cttcccattq	24480
		ttgttgaaac					24540
	aastattaa	accettest	tanageate	tastatttas	tanttagana	coagotagac	
		gggctttcat					24600
		gtatgcagtg					24660
	ttgtcacgag	ttccagtctt	taggtgaagc	tgaccgaggg	cactttctcc	cgggcttgct	24720
		acagctcact					24780
		aaaggcacaa					24840
	atgcccaaga	taagtcctag	atcacaggaa	tgtggtagaa	ggtgcccaag	aaactgctgt	24900
	tgaataagct	aatgaaatgc	tccaagccct	caaagacctc	caaccotatt	caqaaacaac	24960
		ctcagtggta					25020
		ttagtggtct					25080
	tttggcaagt	ctccaagcct	cagtttcctc	acttgtcaaa	tggaaataat	ggtgctcagc	25140
	tcagaacatt	gttgtgggga	ccaaacataa	taactcatcg	agageetgge	atggattgtg	25200
		aggtggctgc					25260
							25320
		gtgctttaga					
		ggtgggctgt					25380
	agcggtgaga	agggaggaga	tctccagctg	tgcacctggg	gcaggaatgt	acatggaatc	25440
		acaggagtgc					25500
		gggccaggct					25560
		tttccctttc					25620
	ccctccatct	cagactatga	ggtaactcct	tctctcactt	acccctcatc	ccttcagaca	25680
	tactcaacta	gctccctctg	ggctttatct	ctgcggaggc	ctcctaactt	ctctatcttt	25740
		attctcatcc					25800
		ggtctttgca					25860
		tcactgtgtg					25920
	ccagccatag	gtgaacatga	cctgagataa	caccacaaga	tttattcctt	tccaatgccc	25980
		ttacactgaa					26040
		gtgccagtat					26100
		ggatattttg					26160
		gaattactgg					26220
	gctgggatgc	acgggctgca	ggaggctctg	ggaggggaaa	gccactctca	gaaattccgg	26280
	agctttgttc	agaaccttct	caaatagctg	gtctccatga	ggaggcagta	tcaggcagtg	26340
	attctagagt	ttccctttgc	acctgtgatc	ctaatctata	ctgatccctg	gggaagagga	26400
	ggaagattga	ctgggtgctc	atttttacct	ttcttccacc	daadtaacca	ctctcaatta	26460
	agatttaga	3tgggtggtt	statttasat	ceeeeeagg	gaageggeea		
		atggctgctt					26520
		atatagtctt					26580
	cgatagacaa	atcactcacc	tttgctgatc	tgagcttcag	tttccttaca	cagaagagga	26640
	gaataaccac	agcaccttct	tgcagggtga	gatggcatca	gagacaatat	atqtaaactc	26700
	cttgaaatga	tgtcacataa	tagggggtee	ataaatotao	tcattagtat	tttattatta	26760
		ttaactgcat					26820
•		atcctaagat					26880
	ttgggtctgg	agcccaagca	tgatagactc	aggaatcagg	ggatgggctt	tgctccattt	26940
	cctaacagcc	taaccttatc	tcaaaataga	ttcatcacct	ggtaaatggg	gtttataatt	27000
	cctgcatggg	gtcccatgac	cttctgtgat	tetacatece	cagoggacto	tetectetee	27060
	ccaaggaagc	tcagagtctt	300030000	acceptted	anacattat	aaaaaaaa	27120
	*******	****	agggaccccc	ageceeeegg	gageceerge	ggccaaaata	
	Leigggatee	ttaatactga	grargaagca	gragergera	cagaggtcag	gagtctgcaa	27180
	actcagtgct	cttatatctg	gcctggctgc	agggggctat	ctacaccctg	ggcttgccaa	27240
	gccagacact	gattgtcagc	tcagatgcac	aatgagccag	ccaqctqqtq	tggcactcag	27300
		tgtacatccc					27360
	atcactagea	taatttaact	tattaataa	2005505000	22002535400	222444	27420
	5t	tggtttggct		agettgttaa	aayyacctya	aaggggctgt	
	cectgacaag	attgggattt	aatagggata	aatgttatat	cctgccctgc	agtcccaaac	27480
	ctaactgcct	aagtaaggat	taggccacag	cacaagtgga	gaaaggcccc	agggctttca	27540
	ttagctgcat	ccttcatgtg	agtcactgct	gagatccatt	atttagccaa	aaaaaattta	27600
	ctaaatgcct	atcatatgcc	aggaatatoo	agatgagcaa	aagaaaatcc	ttgcctttaa	27660
	agageteato	atatgctgca	gatetegtas	aagtttgtca	tttttgattg	castattoos	27720
	ootattaato	CC222+C~~~	Jacob Cog Caa	satestate	tattatata	tastattyga	
	speareact	ccaaatgggg	yayytgaggt	cerdererar	Latitgtggg	ccatatttcc	27780
	eccegegatg	tagttctgag	caaccctctg	atgtgtttct	cttaaagaga	ctaagatgga	27840
	ggaaatggaa	accagaatct	tcacagagat	tttactaaag	ccacagettt	attaggaaaa	27900
	atcaagtcca	gatcctccaa	agtgacqaqc	agatqqaqaa	ttaccacato	aggaggggta	27960
	geceggegee	agtttccctg	aattccaccc	ccatttttct	acttagagga	actagattta	28020
	atccatcagg	ggagtgggtg	tattccctce	atagacetat	ttccaratet	ttcactcacc	28080
	aacaacaata	22-2-222-9	agetetete	2033300030	accepter	general and	
	~~~~~~~~~	aacacagaag	acycotytya	ccacatgui	3999911161	cecageacat	28140

caggcaagta	atcaagtctg	cagcagacac	cagctgagtg	cctccgattc	aattcaattc	28200
tggtgctgtc	tacctggaga	tagcatcaga	tcccacaggt	tgaggcattc	ccacaagaat	28260
gcccctcact	ttgtgttcct	ataatgagcc	ccaggttgtt	ttactgtgct	tctgacccac	28320
tgtctataaa	tcagggttcc	ccccacccct	tgcttgggtt	tgattaattt	gctagagtgg	28380
ctcacagaac	tcagaggaac	actttattac	attttctgct	atggtttaga	tatggtttgt	28440
ttgtctccac	taaaactcct	gttgaagttt	gaaccccagt	qtqqqaqtqt	taggaggagg	28500
	gaggtgtttg					28560
ttagagagag	taagtgagtt	ctcacqccac	tetettaatt	cccctcttac	catotoatct	28620
ctgtacccct	gateceettt	ccttttctac	catgaggga	200200030	acceccase	28680
agatacaget	gcccaacctt	gaactttcca	atasassas	tastasasas	tataaaaata	
ttttattat	gcccaacctt	gaaccccca	ttatattata	ccacyayaca	Lacadacete	28740
	agattcccta					28800
	accttcacct					28860
tactatgaaa	cctatctgtc	tatctatcta	tccatctgtc	tatctattgt	tctattgttc	28920
ctggctcaaa	ataccaatag	cccttgttgt	aacattgggg	cacgttaggc	ctcagaaaac	28980
agaacctctc	tctctttgac	cttctcctgc	cctccttcca	tctgctccct	tatctctcca	29040
aggtaggatt	tttccctggc	ttttctttct	tggagctggc	agtaacaaaa	ttctctgacc	29100
cactttctaa	ttgtgagtca	taaaaccccc	atttcagaag	gagtcctgcc	ccaggccctg	29160
	tgctgcacag					29220
	agcttattag					29280
	gacatctcca					29340
	tggaggttcc					29400
	tcagctaagg					29460
tccattccct	aaatctcttc	actocatoca	taccattee	actacettea	tacastactt	29520
	tacagggcat					29580
ccccgccctg	catttgctca	tggtcagcac	rettgtttge	acacaagagt	agagtageea	29640
geeceaettg	ggacagggac	Liggggatee	cagagcactg	ecgeagagee	crgrgrgrgg	29700
cereagety	gcgttcatgc	tgtgetecae	aaagggccca	gccaccctcc	accacacaag	29760
acageeeeea	cttcctgttt	ccagtggaca	gagetgetge	acatetgete	ttgagtataa	29820
tgacaagaca	tgagtcccat	ttacggagca	cccactaagt	gcctggcact	tcacctctgt	29880
catctctgat	tatcacagca	aaccagtgac	acaggtatta	ttatcgcatt	tacaaagggg	29940
gagctaaggc	tcagagaagg	cacatttaga	caagtcacat	agctatacat	agcagggctg	30000
agggacagga	ttatctttag	gtccaggcat	gaaggcctgc	cctacctcca	tgcttcagag	30060
	tgcccccttt					30120
ctccccatac	gaatacccca	ccaccctcca	atacccggac	ggtggaattc	cctgcccaaa	30180
cagcctcagg	caccettetg	ggtctacatg	aacatcttgc	tgggttccct	cttctgtggt	30240
gtgggctgtg	ctgcgggagg	tgggggtgtc	tgcaaggcgg	gtggacatag	cttggacacc	30300
tatgtgcaag	agccctgaca	tggctagatt	gagctgggag	gaagtagggg.	cagggcaaac	30360
gggtettece	ctgtacctcc	acattccagc	ctggagctcc	aagagctgag	aattccaacc	30420
ttgaacttta	taatagaact	actacaaagg	tctctttgtc	aaagtaggaa	gacagaacat	30480
gttttattta	acagttgttg	atttgtcacc	tttaaatgtg	tcgaagtgtg	agcagccttg	30540
tctcctgact	aaagtttcac	cttctcctga	tgcctactgt	gctgttaggg	cacccttggg	30600
	agggggacaa					30660
	tgacaccagc					30720
attctgtgga	ttggcacttc	ttgcatatat	caaggtgtgg	ccagaattca	cagttcgagg	30780
aatcctgtcc	tcaacaaact	aggtgtcagg	ggagcctctc	tccttcctga	agctcctctt	30840
tgaccacact	acctccacct	cccccqaqat	cctcagcagg	tcttqqccac	tgcacccctc	30900
	tcctccaggc					30960
	cacatcccac					31020
	cagaggcttc					31080
	gcagtgtggt					31140
tcatccaaag	gccactgttc	agagtttctt	tratagtras	cagttetttt	teteatetee	31200
	gcgttgacat					31260
tacatttata	tgcatgcata	taatttttaa	agactcacca	acectagaga	ctcacaggcg	31320
catgaggcat	gccctgcctg	tatttttaa	agacteceag	geactgggca	gaageetee	31380
adccaddaca	ttccaagata	agatteteca	attacaatta	tracagecea	gcacccacgc	31440
taaaactaat	taceactaca	agaccccggc	stangetee	agaccccc	ggaccetgtg	
	tgcagctggc					31500
	gccttgcaga					31560
agagaaccac	tgcagagctg	cccacaaaag	aggcaacttc	agttgacttc	actcatccct	31620
gyayeteett	cctgactctt	caacctgaag	agtttacttc	Lgcaagagga	gaaggaaact	31680
gastasse	teettetgea	agagtccttg	ggcaagctag	ccgccctctt	ttagaataag	31740
gcactygcca	cgggtagctg	gctgtttttt	cattcctact	cagccatttc	accactcttt	31800
ggccccctta	atctgtttcc	acctgaatga	agctttggct	ggcccacate	aaatgcactc	31860
acayagaaga	gccgcaggca	catgcagacc	catcatcttc	cctccttttc	ccatgttact	31920

gtgcctccca	gccagcagag	gaagaataac	tccaaactgg	gcagtttacc	tatgtgttgg	31980
cagtgtcacc	cagaggttta	gagttgagga	aactggccaa	agtgagatgc	ctggttaact	32040
	gcttttcccc					32100
	gcgaggtcgg					32160
	ttccatcttc					32220
	tttttctctc					32280
acccaggctg	cagggcagtg	gcatgatcat	agctcactga	gcctcaaact	ctgatgccca	32340
ggctgttctt	gagttcctgg	gctcaagtaa	gcctcctgcc	ttqqcctccc	taagtgctgg	32400
	atgagccact					32460
						32520
	cctggctcta					
	agatccaggt					32580
taacctttct	aagcctcagt	ttcctcatct	gtaaaaggga	ttgtggtaat	tctctctcag	32640
gggtggtttt	aaataaataa	ttatgtaaaa	acttgtgtgc	agcttggcat	ataacaggtg	32700
	ggtacttgtt					32760
	caccattact					32820
						32880
	atgtgggaga					
	acatggccac					32940
gccagcctat	gaccaataga	ccacatggct	tagctggtcc	cagatccccc	atttcagaac	33000
aacctaccct	ctgatcctat	tcagactcat	gtccttcatc	taggctggaa	tgttccagaa	33060
	atgttggaaa					33120
testasates	acaacttatc	accaccatas	gataataa	ctcatttaat	ttctccaacc	33180
tectagatee	acaacttace	agcaggacaa	ggccggccag	teteeeee	thtataata	
	tcatctgaaa					33240
gtgtaagtgg	gatcaagccc	aggtcctgct	tgatacacag	gagatgttca	tttcccagta	33300
gttttacctt	ttcccccttt	ctgccctgcc	ccccaccact	gatccatctt	ctactcacaa	33360
	ctctcagcat					33420
	agtggagact					33480
	ccacagttct					33540
	gatctttgat					33600
	caagtgtgag					33660
ttaaagtatt	tcctgttttc	ttgatgtggg	taggtcagag	agtatttggt	ttccagggtt	.33720
acaacacctt	agctaaaggc	cagtggtaac	aggagtttgg	atctggcctg	gccacctcca	33780
	gaaaggagct					33840
	cccagtgagt					33900
	actgagaatt					33960
	taattgctgc					34020
	ttccctggtc					34080
acagtgggga	cctagtgggt	cgcaaggccg	gaatgtgaat	ccggcttcca	tcacctacca	34140
gcagcaccaa	aaggagccat	tagactccct	tctctgcccc	tcagtttgcc	ctgggggtac	34200
	tgactggtta					34260
	gcttgggaaa					34320
	ccgtcatgta					34380
	aggaagggtt					34440
	gtgtttaaat					34500
catcacagca	tgcacttgtg	tatcaaaggc	taggagaagc	ctgcaagaag	caaacctatt	34560
	taacctagat					34620
	ccacaaatat					34680
	cagccagctg					34740
	ggaggggcag					34800
	tcccgtacac					34860
gagctggctc	tgggacagta	caaccgggag	ggggctgcca	ccgtttggaa	aatctgccca	34920
	gtaaagaagg					34980
	gaatctgctc					35040
	tgacaaggtc					35100
	atagcattag					35160
	ccagagaatc					35220
acccagcaca	tacaccacta	ctctctcctt	ttgctcccat	ggcaggcgtt	agaagttgat	35280
	tttgagccca					35340
	tgcagctgaa					35400
	agtaggcaga					35460
	agagttagtc					35520
	tgtgactccc					35580
	cagtcctgtg					35640
ttcgttactt	tttttgttgt	taattgtcag	aaattcaact	caaactggct	tcagtataaa	35700

	attatata					
agagaattga	cttctgttac	agradagece	ggggattggc	ttcaggtata	gatagatcca	35760
	taatgatgtc					35820
tetgttagea	tcagtctcag	gtaaattett	ctcaagtacc	tgcaaagatg	gccatcagca	35880
	taaattttac					35940
	tagagtcata					36000
	atgcccatct					36060
ttggccaggc	atacatcttg	cgatggagga	agagtgggga	gtagcctcgc	caacacctca	36120
caggctaatc	atagcttaag	gctaattcct	tgaaaagcaa	tgttgggcag	gtaaacaata	36180
catctaccct	agaaaaaagc	tatagaacta	cccctaaagg	agcttgtgat	acattgagga	36240
acacgatact	ggcacccgaa	gcaggtggct	gagagtagga	cccagaaagc	acacagggct	36300
gaagttccaa	tcagggagtg	cttgcttggg	tttccccaga	agcagttcgg	agacaaggat	36360
	agagttagtg					36420
	gccataaagg					36480
	ggagaatgtg					36540
	cgatccagct					
						36600
	gctccagtgg					36660
	aatctgctat					36720
	aaccgggcca					36780
	ctgctcccca					36840
	ctagattctc					36900
atctaggttg	tgtgctcctt	atgagaatct	aactaacgcc	tgatgacctg	aggtggaacg	36960
gtttcatctt	gaaactaccc	ccaccccaaa	atctgtggaa	aaattgtctt	ccatgcgaca	37020
ggtcactggt	gctgaaaagg	ttggggaccg	ctgttctgca	ggaaacgaga	gacagaggga	37080
atgggagtgc	agtggtggag	ccacacccaa.	ggagaggtgg	ctgtggggct	gggcctggga	37140
	ttaccccctg					37200
	gcttctacta					37260
	tcaacctgcc					37320
accgacccca	agctcctcaa	taactecata	cttggcaacc	acaccaagta	ctccaactac	37380
aagttcacgc	cggcagccga	atttatgag	taagtcacag	acceptate	ctagacetat	37440
tgaggcagt	gcttggtatg	acctoaccca	aacactaacc	according	2003300000	37500
cacataccat	carratatta	atotttacto	accaccaagg	adagtcacag	taataaaa	
actasaass	caggatatta	acgeteatty	agcagccacc	ggeetgatge	cgggcgagag	37560
geegaggaea	cgccacggtc	gaggragerg	gagaagettg	egetetgggg	cagggaagtg	37620
tommettese	agataataca	caaataaaca	ggcaagggag	tgagaatgtt	rtagagtgtg	37680
commerceag	ggaatgcaac	actttetggg	grargraact	gctcttaaag	aactgaaacc	37740
aggracgrag	gaaaaatcaa	tcatggaggg	aaaagaacgg	ttgcgtgggt	agtcaggaaa	37800
ggeetetetg	aggaggtgac	ataggaactg	atgatgtcag	agaagggaag	agctggggct	37860
ccagggcagg	cgatgagctg	caggttgaac	ccgagttgat	ttgaccctga	agctgtagtc	37 9 20
	tgggctgctg					37980
gagaaaattc	aagaagcggg	aagcaggcca	gctgtatgca	gctctgagaa	attatttgga	38040
ccatgtgtgc	acgagaagca	ctggccattg	gtgcaagaca	gaatatcatt	taaaaaaaga	38100
aacttttatg	ttgaaatacc	gttatacatt	aaaagtagta	aaaatagtgc	atatacccat	38160
cacccagttt	cccctaatgt	tgacaactta	cataaccatg	gtctgagttt	gaaaccggaa	38220
aattaacatt	gatacactgt	tagctaacaa	gctgcagacc	ttacttqaat	ttcaccaatt	38280
ttcccactca	tgttcttttc	aggtatttag	ttaccatatt	tctttaatct	tctccaatct	38340
ttgctcttcc	ttgattttca	tgaccttgac	acttgaaaag	tacogtcagt	tactttotoa	38400
aatattgatt	tgagtttgtt	tattatttc	tcataattaa	actgtggtta	tacattttaa	38460
cataattacc	ctaggaatga	tactataccc	tecteagtac	attccatcac	agaataaaaa	38520
gacatoctot	caatatettg	ttacttotoa	totteacctt	accounting	ttaaggtgg	38580
	ctcctcctgt					
taaggagata	anatanatt	gragagagag	ctaccttcct	-ttt-	acgegeeeee	38640
tattagacata	cactgaattt	acycaaacyc	cityattete	accatactt	tgtccacatt	38700
cttagtatt	tgttgatgat	tettgeaagt	aaggactatt	accatgatgt	ttatctagtt	38760
ataattteet	atttccatca	tttcttctat	tttattttat	ttttttgttt	tttgagacag	38820
agteteggte	tgttgcccac	gctggagtgc	agtggcacca	tctcagctca	ctgcaacttc	38880
cacttcccac	atttaagtga	ttctcctgcc	tcagcctcct	gagtagccgg	gattacaagt	38940
gtgcaccacc	atgcctggct	aatttttgta	tttttaatag	agatggggtt	tcaccatgtt	39000
ggccaggctg	gtctcaaact	cctggcctca	ggtgatccac	ccattttggc	ctcccaaagt	39060
gctgggatta	caggcgtgag	ccaccacccc	agcttatcat	tccttctaga	ttaattqqaa	39120
ttcttcttta	aggaagaatt	gtcccttctc	ccctatttat	ttattttttc	agttattcat	39180
ttatatcaqt	atgggctcct	ggatatttat	tttattccot	agtettaatt	cataactath	39240
attattatta	ttattattat	tatttattta	aactttcatt	ttagatttag	adatacaca	39300
gtaggttgtt	acatgggtac	attocatost	actasaattt	gagatatast	tasectace	39360
acceadataa	tgagcatagt	accesstses	tactttttc~	actettetee	contractor	39360
ctcactcctc	actcttgttg	toccoattet	ctactctttcg	tttctttc-	tagetatata	
		coccatige	CLACLYCCC	culculate	cecatgegea	39480

ctcaatattt	agcttccact	tataagtaag	aacatgcagt	atttggtttt	ctgttcctgg	39540
attaatttac	ttaggataat	ggcctccagc	tacatccatg	tccctgcaaa	ggacatgatt	39600
ttgtcctttt	tgtggctgca	tattattcca	tggtacatat	gtaccacatt	ttcttttct	39660
ttttctttt	ttttttgaga	ccgagtctct	ctctgtcact	caggctggag	tgcagtggtg	39720
tgatctcggc	tcactgcaac	ctctgtgtcc	caggttcaag	tgattctcct	gcctcagcct	39780
cctgagtagc	tgggattaca	ggcacccacc	acaacgcctg	gctaattttt	gaatttttag	39840
tagagacagg	gtttcaccat	gttggctagg	ctggtctcaa	actcctgacc	tcaggtgatc	39900
cacctgcctt	ggcctcccaa	agtgctggga	ttacaggcat	gagccattgc	acceggeeae	39960
	ttatccaatc					40020
	gggctgcaat					40080
tcttcctttq	ggtagatgcc	caqtaqtqqq	attactaggt	cgaatggtgg	ttctattttt	40140
agttcttaga	gaaatctcca	aactgctttc	cacattogct	taactaattt	acattcccac	40200
caacagtgta	taagcattcc	cttttctcgg	cageettgee	agcatctgtt	attttttta	40260
ttttttaaat	aatagccatt	ctattagata	trarcttata	accatcatta	tttaatttat	40320
	aatcctctca					40380
actracttot	tttcagccac	gtcatttaaa	atatttaat	agazetetet	tasasstata	
						40440
	tcttcatccc					40500
	aggtaagcag					40560
	tccaccctca					40620
	atagagtaaa					40680
	tattttacct					40740
	agctcagatt					40800
aagatttccc	aataaaactt	cccgccatga	tagaaatggt	ctatatctgt	gcaatccacc	40860
agagtaccca	cttgccacag	gtggttaccg	agcagttgaa	atgtggctag	tgtgactgat	40920
gagatatatt	tctaatttaa	ttttaattta	tttaccttta	aatagacatg	tgtggccagt	40980
tgctactgta	ttgggcagtg	caaaaaagtg	tggaaaaaaa	aaacatattc	acaaacaaca	41040
	gctcctctcc					41100
agtccagatt	atctggagat	tggggttatc	ctgggaccaa	ctctttccct	gccatcttgg	41160
tgcagcaggg	ccagggggat	ttagtttggt	tgaaagagac	ctctqqaaaq	tctactqcct	41220
cctggggctc	aggggagtca	gtgttctcag	gatccaggaa	ataccctcaa	tagttcactg	41280
cagagaattt	gctaagggtc	ctgtacctgc	atccacctgt	ctccatccat	gattcccatg	41340
gacttctaac	aggcatatgt	aaaaattato	tottttagaa	tttttcttgg	agagggtetg	41400
	caaattctca					41460
	atcagcatct					41520
taacctctta	ccatgtgtat	gaggttttct	gctaacttcc	tectatetat	tattttgatt	41580
taageeteae	ccacctaatg	aggittttat	aactcttatc	ctcatcacac	tettagggag	41640
gcttcatttc	acagttgaga	caatacagt	Cacaaccaca	caactattac	tacacagagag	41700
caagatttgg	acccagccag	tatacettta	caeaaccaca	agagtagaga	totocoattt	41760
tacaccataa	gagcttactt	ctcctcactc	taacccccg	catatatata	agggaaagtt	41820
cacaccator	accettaacc	tetetetet	attacatat	acceptings	agggaaacct	
attatocaca	accettaace	testeses	terestate	acceattata	thebabbas	41880
	aatattgtca					41940
	aaagcaccct					42000
atttataaat	gaatgggaaa	acaggcacaa	accagtaagt	gacttgtctg	aggtcataga	42060
tottacaage	ggcattaaaa	gretattegg	acccaggcag	tctatctcca	aagcccaagc	42120
cectageeea	gggttcaaaa	certgaetge	acatcagaat	cacctggaga	gcatggatgc	42180
etggatteta	catccagaga	ttctgatttc	attggtccgg	gtacaaccag	ggcatagaaa	42240
tttccatcag	tagctcccc	tgcaattcta	acatccagcc	aacgttggaa	gcccttgttt	42300 :
acacactgcg	ctcttctgtc	ttggagtagg	actcctactg	gaatcaggct	gacatctcta	42360
tagactcatg	tcatggaaaa	tctagggcct	ccttcactct	tctgaggagg	agtatggcct	42420
cagaaaattc	ccgaaccatc	agagagcttg	caggtggggg	ttttaggcct	ttctgtctta	42480
tgaacatggt	ttggagggga	aggtggtaaa	gatagtggag	cagagtgctg	ccgacacatg	42540
tgattggttg	caccctctcc	ccctcatcct	cccataaagg	aaaaagcatg	atttttcttt	42600
ttgctctcgg	caacccttgt	tttacaaatt	aaaatgggaa	atgatagett	tgcctctagt	42660 ·
ccagttagca	tttgattcct	ccgctgatgt	cttcatggct	agtatgtcgg	ccccagcaga	42720
ggccccagca	gagacaccca	gccagaggga	gaggtgagat	aggttttgag	accctactta	42780
ctttaattac	agccctaagc	ttcctccaga	ctcagctata	aggagagtog	tgggaaaaqa	42840
tggcatcttc	aggctgaaat	ggttqqqqqa	tgcaggtaga	actgaatgca	gagttgttt	42900
ttgtttgttt	gtttgtttgt	ttqttttaaa	aaaqacqqqq	tettacteta	tcacccagtg	42960
gcacagtctc	ggctcaatgc	agcettgace	teccaggete	aagtaatect	cccacctcac	43020
catcccaaqt	agctgggact	ataaggatgt	accaccacac	ctgactaact	ttttatatet	43080
tttgtagaga	tggggtttca	tcatotttca	caggetggte	ttgaactcct	gggctcaggt	43140
gatccaccca	cctccatctc	CCaaagtgat	gggattaceg	atataeacce	cctcaccccc	43200
cctacaggg	ttattttagg	ageettetee	cctaceaetc	ttccctctt	ttttcctctc	43260
			Journal			-23200

		cctccactaa					43320
	gatctcctca	catccaaatc	ccatttaatc	ttcacagttc	atggaggtag	aaattattcc	43380
		ataagagagt					43440
	aggggcctct	gcaagtagat	aggagttctt	ctcatgctgc	ccttgccctt	tctggcctgg	43500
	agcctgcctc	tgtgctttgt	aatgcacagc	actgtcatca	gctgcctctg	gactttttt	43560
	tttaatggcg	tgatgccctt	ttgtctaaat	gtttctgctt	gaaaaacatc	ccctcaactc	43620
		cccagtgagt					43680
		ccaacctgct					43740
		atcattcaag					43800
		ccacagctaa					43860
		aacatgtgcc					43920
		tctccctcca					43980
		ttagtgtgta					44040
		acttctggaa					44100
		ctgggggaag					44160
		cttttcactg					44220
							44280
		tgggacatca					
		ttttggcaag					44340
		atagtcaagt					44400
		gaagaagcgg					44460
		tttcttttt					44520
		tcaatcttgg					44580
		cccaagtagc					44640
		cagagaggcg					44700
		cacccgcctt					44760
		gtcctctgtc					44820
	ttttctctct	ctcttaggac	atagcagagg	ggtctaagtc	aggggattgt	tttgagttag	44880
	gactaacagg	atgagaagtt	agccaggcag	acaaattgag	ctcggacgtg	tgttctggct	·44940
	gaaggaacag	aaggtcccaa	ggcccagagc	catggatgca	ccctataact	ggggactgac	45000
	aagtagcttg	ctgctgctgg	ggtgaaaggc	agggtgtggc	aaggccaggg	atgaacttgg	45060
		actgtggaag					45120·
	ctcgatgctt	tcgacttttt	cggttggatg	attetttgtt	gggggacagg	ggtgcacact	45180
•		tctgtgatgt					45240
	ccagcagcat	ctccctcctc	tccagatgta	acaaccaaaa	atatctctct	agacatgcca	45300
		gatggcaggg					45360
		gaggctttgg					45420
		agtggcacag					45480
		agggtgggag					45540
	gttctctaga	gggacagact	aatgatatag	atctcatatg	agtttattaa	ggagtatcga	45600
	ctcacacgat	aacaaagtga	tgtcccacaa	taggctgtct	gcaagetgag	gagcaaggaa	45660
		gtcccaaagc					45720
		gtaagatgca					45780
		tgttctggct					45840
		ctttccgagt					45900
		caggaacagt					45960
		agacagaatg					46020
		caagagacag					46080
		gggtgagagt					46140
		gggagggggc					46200
		cgcatgctca					46260
		gctttctggc					46320
		ccctctactg					46380
							46440
		gcctaggact					
		tattatctga					46500
		ctcagtgatg					46560
		tggagccatc					46620
		agagcagagg					46680
		tggtggtaag					46740
		tgtgccacat					46800
		ggataaatga					46860
		cctgcctgga					46920
		agggtatatg					46980
	tgattccagc	aagggctgtc	atctgcctct	ggcagacaga	caattgatct	tatcccctgc	47040

				_	_	
	aatgttgcca					47100
gacgatatat	taagctgttt	gcctttaaca	ctttagtgta	aatttgtttt	gttttgtttt	47160
gtttttgaga	tggagtctcg	ctctgttgcc	caggctggag	tgcagtgaca	agateteege	47220
	ctccatctcc					47280
	ggcatgcact					47340
	gttgaccagg					47400
	agtgctggaa					47460
taagcagctg	ctttctgaat	ggacctctag	ttgagcgcaa	atgcctatag	aatgagacag	47520
ggaagtttcc	gtatgggaaa	atgtgtggtg	ccctgggcag	tatgaaagat	ctgggcaaaa	47580
gggttagaaa	tttgccacaa	gtgatgggag	gagttgctaa	gagaaagatt	gagagtgtgt	47640
	ccctctttcc					47700
	gggattgttg					47760
	tctcatgagc					47820
	ttaattcacc					47880
	caggcaggct					47940
	cctatcaagg					48000
ggctttgaag	ggtgttgggc	aatgtgcagc	tgactgttgc	ctctgagtgt	gaggcacaga	48060
gaagaaccca	gtgggatctc	gttttggggg	cccctgcagc	tcccttgaac	ctcccaacat	48120 -
	ttattgtgaa					48180
accaaccac	agtcaggacg	gtgcacgagc	agttectata	tatatacaaa	gcccagatgg	48240
accaaggcag	agccggcctt	gegedegege	tgeeccette	adataceasa	caaataccac	48300
getggeteae	ageeggeeee	cagigacaaa	esttesses	apacacasta	ataragarra	48360
accaagttgt	tcccatttct	gerrgerrrg	eccigcaagg	gracagagra	gccayyyaaa	
cccttctctc	ctgggacttg	ctgtactgtt	tcagcagtca	gtcttacttg	acctttcctt	48420
agctcctaac	caactttgat	tagattctca	ttagcaaacg	gtcattttgt	tttcaattct	48480
ctttatcatt	tcttcattgt	agattgtaca	agggacccca	atattctcag	accaccttgg	48540
	tttcttactt					48600
cccagcactt	tgggaggcca	aggcaggtgg	atagcctgag	gtcaggagtt	caagaccagc	48660
	tggtgaaaca					48720
	tgtaatccca					48780
	gttgcagtga					48840
						48900
	gtctcaaaca					
	aaacacttta					48960
	gcaaatgtta					49020
	aatgtcctga					49080
	gggtacacct					49140
tgaattttat	atgactggag	tcagacggaa	gtgctcttct	ggctttgact	tctttctctc	49200
	gctagagcca					49260
	ggctcacacc					49320
	ggagttcaag					49380
	aattagccag					49440
						49500
	aggaccacct					
	ccagectggg					49560
	aaactccact					49620
	actttgcgat					49680
agcatgtctt	ttggtgaaca	tgtgtacaat	attctattga	gtcaatacct	agggcacagg	49740
ataagcctat	cttcagcttt	agtagctatt	ccccaatagg	agaaatgttc	acttttgtct	49800
cagtctctag	accaggtatt	ctcagattca	gcaatatgga	ccttttgggc	aggatcattt	49860
	gagactgtcc					49920
	ccacctctcc	_			-	49980
	ggtgggggtc					50040
						50100
	gttctgtgag					
	cttaagagat					50160
	cctcttctag					50220
gggcccatgt	ggtgcatggc	agtggctagg	gtccctgagt	taggggagag	tggccaggtc	50280
ctgtctccat	cagcatgcat	ttgcagggac	tggtctgtgg	tcacggcctc	tgtcgtcctc	50340
cctgacgaca	tttaccctgg	tcccctccc	teteetetgg	gcaggcgtgg	tgtcctgcac	50400
	gcagcgggat					50460
	tcgtcatcgt					50520
	ctctgtgttt					50580
	caataattat					50640
	agcccctgtt					50700
	aaatctgtgt					50760
cccccatat	tttcctgcca	aaacctccct	aatagcagag	accagggact	yygatactgc	50820

caagggcctc	acgacaaagt	ctagagatac	tatcaacatg	cccttgataa	atcttgaatc	50880
ttgacctaaa	tcttcatgca	aatgttgcat	cctactctgg	aatatgacca	taaaatcaat	50940
aaatcccccc	tctgaatttt	tgagaaaaaa	ggatgctcta	gaagatattc	agatgtatgc	51000
tggattttgt	gtttcctcgg	atacagaaat	aagtgccccc	agggttccag	gtgccttgga	51060
	taggtttaga					51120
	gtcctcctat					51180
	ttagcccaag					51240
	aagcttgact					51300
	aatgctgtgc					51360
	ctctcacaat					51420
	ttccctggac					51480
	agcatttggc					51540
ttgggatgtt	tccatatagc	ctttctatgg	tgcttgggct	tctcacagca	tggcggctga	51600
gttccaagaa	catgtcccaa	gcagacaagc	cccagtgatg	tacaagtagc	tcttccagtc	51660
actgcttgca	tcattcttgc	tattgtccca	gtggccaaaa	caagtgttga	ggtaaaaccc	51720
accgtccata	tgggaggga	ttacacacag	gtgtgagttc	attgggggcc	acagcgcaac	51780
	aatcaggtgg					51840
	gtgcaccaga					51900
	aagtagcagg					51960
	tcctatcagc					52020
agagagaacc	accagggctt	acacaaaatc	taccattaaa	caaaaccadd	ataggaccac	52080
caaaacgcag	accagggett	ggagaaagcc	cagogoogag	tatttatta	ataggaccac	52140
taacattetg	atgcctggca	cetagtaggt	Ciliagiaaa	tatttattgg	graarryaay	
gatgggtggg	tatataagtt	tggggaactt	cattaagtat	tettttgaat	ttagttcaaa	52200
	aggagaccta					52260
	tccttcttca					52320
aaccaatgtc	actagcttct	tgggtctcta	tccagagaac	atatgtgtgt	gtcctcattt	52380
	tgtggtcaca					52440
	ttgaagtcaa					52500
	tttcaaaact					52560
	aagtctagat					52620
tgggatttt	gtttcagtta	cagcaatctc	taagtttatg	tgtagtttgt	cttgatattg	52680
	ttagcctgag					52740
ggaagctctt	tcaactgaaa	gtgtctccaa	agaccataga	gaaggtggca	ttcgagctgg	52800
gtctacaaag	tcaggtgcag	gtagaggtgg	ggtggaagga	agggattctt	agcagaagga	52860
	caaaactgta					52920
tgtgcctttc	ctgggtacca	ggagcagagt	tctcctggcc	tctgcaggca	cagacagaga	52980
ccctgagggg	agacagggct	caaccctgtg	aattgcagaa	gatatatgag	ctttatactg	53040
	tggcatagga					53100
	tcaccaaaga					53160
	gttgtctgca					53220
	ttctttccaa					53280
	gaaagccccc					53340
	ccgaaaccac					53400
	gccacaggca					53460
	tgtgctctgt					53520
	tttctttcta					53580
	ctcagagctg					53640
	ttgtgctggt					53700
						53760
	attcacacat					
	atcagtgcat					53820
	taaagggtaa					53880
	tcaagtcaac					53940
	tcactgaaat					54000
agcccgattc	agtggggatg	aggtgagaat	ttgcatttct	gacaagcacc	taggtgatgc	54060
	ggtctatgga					54120
	ggcttgcaca					54180
	gagageteta					54240
	tgagccattg					54300
	caggtatgga					54360
	caagaccaat					54420
accaagtcta	ggttctcatg	gccagagctg	tgttgcaagt	tgaaatgctg	agagctgaga	54480
agcctggggt	ggagatgaca	gagcccaagc	ctttcttctg	tttacccatt	gtgcattcag	54540
ggcacatttg	agcatgagtg	aactgttagc	caaagatcca	ggaatccttc	tttcaacaca	54600

						- 4 6 6 0
	cagctgaagt					54660
	ctttgaacac					54720
tgaactatag	tcagggtctc	agctcagtca	tggcctgatg	tattccttag	ggaaactgaa	54780
	acaaacatgg					54840
gaagtcagag	gtcaagatac	ggttttctga	tgggaggagt	gtagtctcac	ctgatttgct	54900
gggctgggca	ttgcagcagg	gctgcagcta	ttgacatgag	ttttaggaga	ccagagcagt	54960
taggaccagt	ctcaaggaga	tgtgagagct	ccttcttgtg	ccttttgcca	agggcttaca	55020
	ccagatcagg					55080
	cactttccag					55140
	ctccctgaaa					55200
	gtgatggaga					55260
	ccagaagatg					55320
	cattcacttg					55380
	acttacccac					55440
	aatcatctta					55500
	atccatttac					55560
	caataaacat					55620
	taggatttta					55680
	aaatccccat					55740
atatccccat	tttttgttta	gagcccatat	ctttttagcc	tggcaaagaa	ctttcgtgtt	55800
tcaaggtttc	cactttcccc	ttagggatat	gggaagattc	ctggggctac	gtagttccag	55860
ggatttgagg	ggtggaacca	tctggcattt	aagttatagg	ccttctcatg	tttcagctga	55920
	agtctgacta					55980
	ggctacccat					56040
	tcatctgggg					56100
	gaaactccaa					56160
	ttgaatgtgt					56220
	ctgtctctac					56280
						56340
	tagtttggag					56400
	catctgttcc					
	cttcctaggc					56460
	aagagataaa					56520
	gagggaggga					56580
	gagagagaga					56640
	cagataggtg					56700
	aggggagagc					56760
acgccttgat	ctaggcaatc	ctttgccaat	gcctgtattc	atagcaacac	tcgcacaact	56820
tcaatgacag	gtacctcacc	acctctctag	gctcttttcc	tttagagagc	tctatatatg	56880
ggaaagttct	tcattttatg	gagtcaggag	tctttccttg	aaggagtcag	gagaggtggc	56940
tttgtagatg	aggaggcatc	tggtgctatg	aggacctagt	ctttgccctt	ggctttcatc	57000
atagtgctat	ccccactgtg	gctgactctc	accctgggtt	ctgagcttct	ctagggtgtg	57060·
acctgtgtcc	gtttgctggt	ctagccctgg	attctggctt	cagggccttg	cctagagctg	57120
	catgtgcttt					57180
	tgtgccccac					57240
	cattgcccag					57300
	ggtccatggc					57360
	cttctaccgc					57420
	cttgtgggag					57480
	aatgtgcagt					57540
	accaatgcgg					57600
	ttctgtggtt					57660
	tgaagaggac					57720
	accccagcca					57780
	atcctgtgat					57840
	ccccaacacc					57900
						57960
	gtgaatttgg					58020
	aggtactcag					
	gcagggccc					58080
	atttgaaccc					58140
	caatatacat					58200
	aagagaaaac					58260
	agcctcgtaa					58320
ttatqccaaa	cctttcagat	gtgtagaagc	taagccctca	grgcagtete	aaggagcaga	58380

tetgtettee						
	cccatcagat	catgctgccc	tctgtttgca	caggcatctc	tgaaatctga	58440
	tgggcgcggt					58500
gggcggatca	cttgaggtca	ggagttcaag	accagcctgg	ccaacatggg	gaaaccccgt	58560
ctctactaaa	agtacaaaaa	ttagcggggc	acggtggcac	gcacttgtaa	tcccagccac	58620
tcaggatgct	tgaacccagg	gagtggaggt	tgcagtgagc	caagatcatg	ccactgcact	58680
ccagcctggg	tgacagagtg	agaccctgct	taaaaaaaa	aaaaatctga	attqcaqctt	58740
agtctgagtg	tgtgaggtat	aattatcccc	attatacaga	tgaggaaaca	gacagagaga	58800
agtgaacttg	accagggcta	gaacatgagg	cagagaagtt	aaaaannaat	tragatette	58860
aggettegg	ccatgtgcct	ttatcaccca	accoattasa	tacctaacc	ccagaccccc	58920
aggeocogg	agastatat	ataaattata	acggactaaa	cacgcaagcc	ctattggttt	
ccaaggagcc	accattgtct	acggeregea	gaageeteet	aggaatggte	etegetttet	58980
gaaaacgcca	tctccgtaac	Lectaagatg	gecataacce	rergreettg	ccccattcac	59040
actetageet	agaacttttc	attttgttaa	ctttctttga	aaatcagggc	atgaaattga	59100
	tcctacaggg					59160
gaggcccagc	ctctctctgc	agttgttttg	tacaggatgc	aggggaggga	gttgccaggg	59220
ctgcccatct	ctggttcaga	ccatgtttcc	tctggtctca	gagcatcccc	agggtttctc	59280
agcccttccg	gaccagtgag	gtgttccagt	gttgtaggaa	gcagaggctg	atggcttttg	59340
	tcaggtatgg					59400
					tgttacaggt	59460
	tcagaattct					59520
	tetggtetgg					59580
	ggcattctat					59640
	atgcctctta					59700
	gatgggtagt					59760
	tgcccaggca					59820
	agactgcagg					59880
	aatgctacct					59940
aaatttgggt	ccacttccat	tacactccat	ccaaggctta	aggcagaatc	acagtgtctt	60000
tggtacatga	cagagtccag	tgaattcata	ccagcgggac	aggctatagg	gaggtaagga	60060
aatggggtga	tcagccccct	gatagaagac	aagccagtgc	atggaggtga	atttgagatg	60120
	gatagttagg					60180
gggagaagcg	ggacaacaca	ggcaaatgca	aggaagtggt	ttgtttatgg	accaatttat	60240
ggtttgttca	gagtacacct	tgggagtcat	ggaagataaa	tatataagga	aggttgggtc	60300
ttcttagcaa	agctcttgaa	tgacaggatg	aggagttggg	aggcactggg	gaggaggat	60360
ggaaggtttg	ttgaaggaag	ctggtgactc	aattccctgg	caggagtaga	ctctggtatc	60420
aggetgttge	atccataagc	agttagccta	cttcctccac	cagtgatggt	gagggggtgt	60480
atccatqtqq	cagcaggagc	cactgaaggg	aggatageet	ttgaggctgg	gaccagacta	60540
caggttctat	agccagccca	gcagtcaaaa	cacagggttg	agggtgtcaa	gggacttgac	60600
ctcactgtgc	ttetteece	aggetagg	*	~3550500u	5554000540	
			TOCTOACCAO	caccatcaac	rararaaaaa	
actteatete	tagattcacc	atcttctcca	tectteetta	cagcatcaac	rgtatcacca	60660
gcttcgtctc	tgggttcgcc	atcttctcca	tccttggtta	catggcccat	gaacacaagg	60660 60720
gcttcgtctc tcaacattga	tgggttcgcc ggatgtggcc	atcttctcca acagaaggtg	tccttggtta ggtgggcagc	catggcccat ccacctgggc	gaacacaagg cccagcccac	60660 60720 60780
gcttcgtctc tcaacattga tgaggcggga	tgggttcgcc ggatgtggcc gctgagaagc	atcttctcca acagaaggtg ccaccttatt	tccttggtta ggtgggcagc cttggctgca	catggcccat ccacctgggc tggctcttcc	gaacacaagg cccagcccac gtggctgtag	60660 60720 60780 60840
gettegtete teaacattga tgaggeggga gaatactggg	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg	atcttctcca acagaaggtg ccaccttatt aggtgtccaa	tccttggtta ggtgggcagc cttggctgca accacccatg	catggcccat ccacctgggc tggctcttcc tgattgactt	gaacacaagg cccagcccac gtggctgtag tcctttgagg	60660 60720 60780 60840 60900
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt	tccttggtta ggtgggcagc cttggctgca accaccatg ccccatgcat	catggcccat ccacctgggc tggctcttcc tgattgactt gtaggagaac	gaacacaagg cccagcccac gtggctgtag tcctttgagg cttcctctga	60660 60720 60780 60840 60900 60960
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg	tccttggtta ggtgggcagc cttggctgca accaccatg ccccatgcat tcctctctgt	catggcccat ccacctgggc tggctcttcc tgattgactt gtaggagaac accagccctg	gaacacaagg cccagcccac gtggctgtag tcctttgagg cttcctctga ggctaagcac	60660 60720 60780 60840 60900 60960 61020
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg	tccttggtta ggtgggcagc cttggctgca accaccatg ccccatgcat tcctctctgt ctgccgggca	catggcccat ccacctgggc tggctcttcc tgattgactt gtaggagaac accagccctg agtgtcaata	gaacacaagg cccagcccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt	60660 60720 60780 60840 60900 60960 61020 61080
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc	gaacacaagg cccagcccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag	60660 60720 60780 60840 60900 60960 61020 61080
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc tggagcttgt	gaacacaagg cccagcccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct	60660 60720 60780 60840 60900 60960 61020 61080
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc tggagcttgt	gaacacaagg cccagcccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct	60660 60720 60780 60840 60900 60960 61020 61080 61140
gcttcgtctc tcaacattga tgaggcggga gaatactggg ttattagtgg gtcagggtgg ttgacatacc acgaatggga caattgtgca gcagcttccc	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc tggagcttgt ctggggaagg	gaacacaagg cccagcccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta	60660 60720 60780 60840 60900 60960 61020 61080 61140 61200
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca gcagettece atgeactecg	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat aggaccccaa	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag gctttagtga	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc tggagcttgt ctggggaagg atcccttata	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta	60660 60720 60780 60840 60900 60960 61020 61080 61140 61200 61260 61320
gcttcgtctc tcaacattga tgaggcggga gaatactggg ttattagtgg gtcagggtgg ttgacatacc acgaatggga caattgtgca gcagcttccc atgcactccg ggtggggttt	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat aggaccccaa gcagcatgta	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag gctttagtga gcctgtagct	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc tggagcttgt ctggggaagg atcccttata ggaactgctc	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta tccagactgg	60660 60720 60780 60840 60900 61020 61080 61140 61200 61320 61380
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca geagettece atgeacteeg ggtggggttt etgttgggg	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat aggaccccaa gcagcatgta tcaacctctc	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag gctttagtga gctttagtga gcctgtagct cgatgcacag	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc tggagcttgt ctggggaagg atcccttata ggaactgctc agttcatgct	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta tccagactgg gatttcatct	60660 60720 60780 60840 60900 61020 61080 61140 61200 61320 61380 61440
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca geagettece atgeacteeg ggtggggttt ctgttggggg gttateteta	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat aggaccccaa gcagcatgta tcaacctctc aacctgtgtt	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgccc	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc tggagcttgt ctggggaagg atcccttata ggaactgctc agttcatgct kaacaattgg	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta tccagactgg gatttcatct gccccagat	60660 60720 60780 60840 60900 61020 61080 61140 61200 61320 61380 61440 61500
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca geagettece atgeacteeg ggtggggttt ctgttggggg gttateteta acteecetat	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat aggaccccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgccc tcagaccaat	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc tggagcttgt ctggggaagg atcccttata ggaactgctc agttcatgct kaacaattgg attgatgagg	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta tccagactgg gatttcatct gccccagat tccttgatgt	60660 60720 60780 60840 60900 61020 61080 61140 61200 61320 61380 61440 61500 61560
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca geagettece atgeacteeg ggtggggttt ctgttggggg gttateteta acteccetat ttettacagg	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat aggaccccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc agctggccta	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgccc tcagaccaat gtgttcatcc	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc tgtatccaga	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagcctg agtgtcaata ggcgtcaccc tggagcttgt ctggggaagg atcccttata ggaactgctc agttcatgct kaacaattgg attgatgagg ggccattct	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta tccagactgg gattcatct gccccagat tccttgatgt accttgt	60660 60720 60780 60840 60900 61020 61080 61140 61260 61320 61380 61440 61500 61560 61620
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca geagettece atgeacteeg ggtggggttt ctgttggggg gttateteta actecectat ttettacagg gatetacatt	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat aggacccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc agctggccta ctgggctgtt	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa cacccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgcc tcagaccaat gtgttcatcc gtgtttttcg	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc tgtatccaga tcatgctc	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagcctg agtgtcaata ggcgtcacc tggagcttgt ctggggaagg atcccttata ggaactgctc agttcatgct kaacaattgg attgatgagg ggccatttct ggcgctgggc	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta tccagactgg gattcatct gccccagat tccttgatgt accttgatgt	60660 60720 60780 60840 60900 61020 61080 61140 61260 61320 61380 61440 61500 61620 61680
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca geagettece atgeacteeg ggtggggttt ctgttggggg gttateteta actecectat ttettacagg gatetacatt cagtgagtga	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat aggacccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc agctggcta ctgggctgtt cctggtcttag	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa cacccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgcc tcagaccaat gtgttcatcc gtgtttttcg gatacctatc	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc tgtatccaga tcatgctcct	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagcctg agtgtcaata ggcgtcacc tggagcttgt ctggggaagg atcccttata ggaactgctc agttcatgct kaacaattgg attgatgagg ggccatttct ggcgctgggc ctgggcctga	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttcct gctacctcta gagtatagta tccagactgg gattcatct gccccagat tccttgatgt accttgatgt acctgtctg cttgacagct ccccctccc	60660 60720 60780 60840 60900 61020 61080 61140 61260 61320 61380 61440 61500 61620 61680 61740
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca gcagettece atgeacteeg ggtggggttt ctgttggggg gttateteta actecectat ttettacagg gatetacatt cagtgagtga caacacacag	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca atatccttat aggacccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc agctggctta ctgggctgtt ccctgcttag tgctggcct	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa cacccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgccc tcagaccaat gtgttcatcc gtgtttttcg gatacctatc gaagttcca	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc tgtatccaga tcatgctcct ccccatccca ctattcaaac	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagcctg agtgtcaata ggcgtcacc tggagctgt ctggggaagg atccttata ggaactgctc agttcatgct kaacaattgg attgatgagg ggccatttct ggcgctgggc ctgggcctga accaggttaa	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttcct gctacctcta gagtatagta tccagactgg gatttcatct gccccagat tccttgatgt accttgtctg cttgacagct ccccttccc cagttgttc	60660 60720 60780 60840 60900 61020 61080 61140 61260 61320 61380 61440 61500 61620 61680 61740 61800
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca gcagettece atgeacteeg ggtggggttt ctgttggggg gttateteta actecectat ttettacagg gatetacatt cagtgagtga caacacacag ccagaaggce	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca agaccccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc agctggctta ctgggcttt ccctgcttag tgctgggcct ctatttaaat	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa cacccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgccc tcagaccaat gtgttcatcc gtgtttttcg gatacctatc gaagttcca tgaagacaaa	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc tgtatccaga tcatgctcct ccccatccca ctattcaaac aaaagtgagt	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagcctg agtgtcaata ggcgtcacc tggagcttgt ctggggaagg atccttata ggaactgctc agttcatgct kaacaattgg attgatgagg ggccatttct ggcgctgggc ctgggcctga accaggttaa cctcactcaa	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttcct gctacctcta gagtatagta tccagactgg gatttcatct gccccagat tccttgatgt acctgtctg cttgacagct ccccttccc cagttgtttc aagataaga	60660 60720 60780 60840 60900 61960 61020 61140 61200 61320 61380 61440 61500 61620 61680 61740 61860
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca gcagettece atgeacteeg ggtggggttt ctgttggggg gttateteta actecectat ttettacagg gatetacatt cagtgagtga caacacacac ccagaaggec cttaggccaa	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca agaccccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc agctggctt cctgggctt cctggttgtt cctggtctcaat tgctgggcct tgctgggcct ctatttaaat agccaagaac	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa cacccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgccc tcagaccaat gtgttcatcc gtgtttttcg gatacctatc gaagttcca cagagacaaa cataggaacc	tccttggtta ggtgggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc tgtatccaga tcatgctcct ccccatccca ctattcaaac aaaagtgagt cctttgacat	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagcctg agtgtcaata ggcgtcaccc tggagcttgt ctggggaagg atcccttata ggaactgctc agttcatgct kaacaattgg attgatgagg ggccatttct ggcgctgggc ctgggcctga accaggttaa cctcactcaa cttggaaatc	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttcct gctacctcta gagtatagta tccagactgg gatttcatct gccccagat tccttgatgt acctgtctg cttgacagct cccgttccc cagttgttc aagataaga caaaagaaga	60660 60720 60780 60840 60900 61920 61080 61140 61260 61320 61380 61440 61500 61620 61680 61740 61860 61920
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca geagettece atgeacteeg ggtggggtt ctgttggggg gttateteta actecectat ttettacagg gatetacate cagtgagtga caacacacac ccagaaggce cttaggecaa ggetteagat	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca agaccccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc agctggccta ctgggcttt ccctgcttag tgctggcct ctatttaaat agccaagaac aagccagccc	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgccc tcagaccaat gtgttctccg gtgtttttcg gatacctatc gagttcca cgagacaaa cataggaacc cacactgtcc	tccttggtta ggtggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc tgtatccaga tcatgctct ccccatccca ctattcaaac aaagtgagt cctttgacat tcttgcaggt	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagcctg agtgtcaata ggcgtcacc tggagcttgt ctggggaagg atccttata ggaactgctc agttcatgct kaacaattgg attgatgagg ggccattct ggcgctgggc ctgggcctga accaggttaa cctcactcaa cttggaaatg	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta tccagactgg gattcatct gccccagat tccttgatgt accctgtctg cttgacagct cccgttccc cagttgttc aagataaga caaaagaaga tcagaggca	60660 60720 60780 60840 60900 61920 61080 61140 61260 61320 61380 61440 61500 61620 61680 61740 61860 61920 61980
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca geagettece atgeacteeg ggtggggtt ctgttggggg gttateteta actecectat ttettacagg gatetacate cagtgagtga caacacacac ceagaaggce cttaggecaa ggetteagat acacagataa	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca agaccccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc agctggccta ctgggcttt ccctgcttag tgctgggcct ctatttaaat agccaagaac aagccagccc aatcttgtgc	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgccc tcagaccaat gtgttctccg gtgtttttcg gatacctatc gagttcca cgagacaaa cataggaacc cacactgtcc tctaaacaag	tccttggtta ggtggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc tgtatccaga tcatgctct ccccatccca ctattcaaac aaagtgagt cctttgacat tcttgcaggt cattttctca	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagcctg agtgtcaata ggcgtcacc tggagcttgt ctggggaagg atccttata ggaactgctc agttcatgct kaacaattgg attgatgagg ggccattct ggcgctgggc ctgggcctga accaggttaa cctcactcaa cttggaaatg ggggaaatga ttatattta	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta tccagactgg gattcatct gccccagat tccttgatgt accctgtctg cttgacagct ccccgttccc cagttgttc aagataaga tcagaggca ttatcaata	60660 60720 60780 60840 60900 61920 61080 61140 61260 61320 61380 61440 61500 61620 61680 61740 61860 61920 61980 62040
gettegtete teaacattga tgaggeggga gaatactggg ttattagtgg gteagggtgg ttgacatace acgaatggga caattgtgca geagettece atgeacteeg ggtggggtt ctgttggggg gttateteta actecectat ttettacagg gatetacate cagtgagtga caacacacac ceagaaggec cttaggecaa ggetteagat acacagataa teaataggee	tgggttcgcc ggatgtggcc gctgagaagc ttgtccatgg gcattccagg aaggaacgga tccacttagt agactgagat atagtattca agaccccaa gcagcatgta tcaacctctc aacctgtgtt catgtgcagc agctggccta ctgggcttt ccctgcttag tgctggcct ctatttaaat agccaagaac aagccagccc	atcttctcca acagaaggtg ccaccttatt aggtgtccaa cagtcacagt ttttggactg tctcacaagg gcaagctaaa caccccaatc ggccacagag gctttagtga gctttagtga gctgtagct cgatgcacag ctgtccgccc tcagaccaat gtgttctccg gtgtttttcg gatacctatc gagttcca caagttccca tgcagacaaa cataggaacc cacactgtcc tctaaacaag gctcactcct	tccttggtta ggtggcagc cttggctgca accacccatg ccccatgcat tcctctctgt ctgccgggca tacattgtct aatccagctc aagctgagac gtaagagtgg gtccaggcag gtgagctgta acacatgacc ggtttcagcc tgtatccaga tcatgctct ccccatccca ctattcaaac aaagtgagt cctttgacat tcttgcaggt cattttcca ataatccag	catggcccat ccacctgggc tggctctcc tgattgactt gtaggagaac accagccctg agtgtcaata ggcgtcaccc tggagcttgt ctggggaagg atcccttata ggaactgctc agttcatgct kaacaattgg attgatgagg ggccattct ggcgctgggc ctgggcctga accaggttaa cctcactcaa cttggaaatg ggcgaattg ggggaaatga ttatattta ggctgtgga	gaacacaagg cccagccac gtggctgtag tcctttgagg cttcctctga ggctaagcac gactcacttt agctagtgag gtccttccct gctacctcta gagtatagta tccagactgg gattcatct gccccagat tccttgatgt accctgtctg cttgacagct ccccgttccc cagttgttc aagataaga tcagaggagt tatcaataa ggctgaggtg	60660 60720 60780 60840 60900 61920 61080 61140 61260 61320 61380 61440 61500 61620 61680 61740 61860 61920 61980

ctctataaaa	aatttaaaaa	attagctgag	catggtgttg	tatgcctgta	gccctagcta	62220
ctcaggaggc	tgaggtggga	ggatcacatg	agcccaggag	ttggaggetg	cagtgageta	62280
toattatacc	actgcacttc	aacctcccta	agatagaaa	teettet	20303050	
	accecacece		gagugagacc	Lygittictaa	aaaacacccc	62340
aaaacccaaa	cgaacaaaca	aaaacatttt	gaacccagta	gtttcttaca	tccttttatt	62400
ttatccaaat	gtaagattgg	atttactgac	atctttttaa	atctatgtct	acccttagta	62460
cctcatqcct	ggacatttgc	aaaaaatctt	atggaaggg	tagcacttag	ttttcctccc	62520
	gctttcagtc					
	goodeagee	ageagaceeg	ccaggagcag	ggagttgaga	aggattttga	62580
ggctgcttct	gggcttataa	tgaagaatac	tgattttgat	taacagtgtc	tgccaagagg	62640
aggggagagg	agaggagagt	ggtagcttgc	attcttcttg	tctqccctca	cattqtcctc	62700
ataaggaagg	aatctgccca	taggagtagg	atatgagacc	ctttcacact	ctaacactct	62760
ccaatttcaa	atacagaatt	tasttastas	********	ccccagacc		
	gtgaccactt					62820
aactgctgcc	tgaagttccc	atcactagaa	gctcttctgc	aggagttgtt	tccagagaca	62880
cttattgaca	tgtaaacgta	tgacatgggt	tttggtgttt	tactgctttc	actccactat	62940
cagettatet	gtacccactc	aggetgagtg	agtgtcagga	gacaggtagc	tattacataa	63000
aaaaaaaa	tattasatts	200000000	tataaaaaa	24455445		
	tgttgactta					63060
	aggacagaaa					63120
cgagagaggc	aaggcagcct	acatgagtcc	tgggctgcag	gaggetetag	gaaccctggg	63180
	gaggtccagg					63240
	gcatggaggc					63300
cgacaccgga	aactcttcac	atttggcgtc	accttcagca	ctttccttct	cgccctgttc	63360
tgcataacca	aggtgagtag	gggctgggct	ctgggtcacc	tgggggcctc	tgaggccgca	63420
	gtcaaacatt					63480
	catcctcaat					63540
ttccatctct	gatgctgagg	attccattca	gccctgttaa	ttgccttatt	gacttgaggg	63600
gcagcaaaag	tccctttgga	acccatctaa	ctctttattg	gctgaaactg	aggtgactqt	63660
	caacagcacc					63720
	ggggcaggta					63780
	cttggcttct					63840
ctggacacct	ttgctgcggg	cacctccatc	ctttttgctg	tcctcatgga	agccatcgga	63900
gtttcctqqt	tttatggtat	gtgagtgtgt	ggaaaagcet	cageteceag	tectectaga	63960
atcctgcacc	tggaggtgtg	Caddaadacc	ttccatttcc	Sudacadda	actionate	
dagagtaga		cagggaggcc	t	aggacagcca	CCLadaaccc	64020
cagageeeag	caagtcactt	accgggaaca	aatctyaatc	ctcggctcat	ctttggatga	64080
acctgccctt	aacaggaggc	tgcaaaggcc	cctgggcatc	aactcctaaa	agaggaaccc	64140
ttaggaaaat	gctgaccccc	aagtcatata	attcatccta	ccagggggtt	qtcaqattta	64200
qcaaacacaa	cacgggttgc	ctacttaaac	ttgaatttca	gataaataac	aaataattat	64260
ttantataan	tatacctcas	atatteaste		54044444	hhtt	
thebetes	tatagctcaa	atattycatc	ggacatactt	accetaatet	ttttcattat	64320
ttatgtgaaa	ttcaaactta	actgggtatc	ttgtattttt	tctggcaaac	ttattctgga	64380
acagaactga	gagaatattt	tacaaaccct	taaatgtgtt	aattgtttgt	ttttccccac	64440
caagtgtcac	accaacatgt	tagtcctgtt	ctcactctqc	taccactcaa	aaagagatto	64500
aatggaagag	tctgggctct	cctatcagat	tasatcaaa	gaatgtggtg	tatggatagt	64560
tattattatt	*********	~~~		gaacgegeeg	catgcatagt	
	ttcagagcaa					64620
aactggctct	ggaatttggg	gcaaatcccc	tcacctcttt	gagcccaggt	ttccctctga	64680
caggtgaatt	ggggtgacac	atgaaagggg	atactgtcct	agagtttgtc	ctctccctca	64740
ttctgcatta	caaaggggcc	atececgagt	ctccctagtt	ccakkkkatc	agcatcttgc	64800
ctcactgccc	tactatacaa	ataaaaaaa	andstantag	ananastas		
	tgctctccac	cuggggccag	aacctcatgg	gaggacergg	ceetggetat	64860
catgggggcc	arggraacag	gcctgccctg	tgtgtgcaca	ggagtggaca	ggttcagcaa	64920
cgacatccag	cagatgatgg	ggttcaggcc	gggtctatac	tggagactgt	gctggaagtt	64980
cgtcagtcct	gccttcctcc	taatatataa	tatctacaga	gaagycctgc	atgtggggag	65040
gagactatat	ccaggatgga	actagatasa	gatatttggt	tettagggg	~~	65100
ggacccagag	gccctggtca	cgcagagggg	tcacttggga	rgcttggccc	tgtggataac	65160
gtggtagaca	tccaccttac	tagggggttc	tccagctggg	gccaggtccc	cgggggctgt	65220
tatgccttct	ccaaagtcac	cttctqttct	tcctctttc	ttactcccta	tcatatctcc	65280
	ttatcacttg					65340
tacactact	cottatte	taaatttaat	abanta-ta-	attatata ==		
name to the	ccttatttcc	Localtigot	graarderea	CLLCCCEECA	retetetece	65400
acctttcttc	cacctccttc	tctctttcct	ttettgtete	tettetgtee	tgtcttcctt	65460
tetetecett	ctctgcccat	ctctagttcq	tggttgtggt	cagcatcatc	aacttcaagc	65520
cactcaccta	cgacgactac	atcttccccc	cctagaccaa	Ctaggtgggg	tagagestes	65580
contatasts	catestact-	ataccess.			-ggggcattg	
	catggtcctg	gracecatet	acgreatera	caageteete	agcacgcagg	65640
getetettg	ggaggtgagc	tctggtcctc	cccaggggaa	cagggtggga	gggggctgag	65700
ggggaagacg	ggacgactct	cattcctqtt	ggggtgggg	aagggacaga	aggacacaga	65760
cactagggtc	aaacggaccc	accteattee	ccaggttatt	ttcccccata	adceteaatt	65820
tocacatoto	tatatteece	atastatta	atacacasa	acassassas	agectaget	
202000000	tatattgagg	acaacactdC	gcaccccaaa	~~aaaaaaga	agtacttage	65880
acayigiceg	gcgcacagga	ggtgttcagt	acatgttact	rgggggtgag	ctcagccctg	65940
		,				

gagttcacta	aggattgatt	agacagactg	cctgaaccca	gctcactgtg	atgtctctgt	66000
ctaagatttg	tcatttccca	agatgtccca	gctctcccca	tccaaqccca	ctataatcta	66060
ctccttctgg	ttttcacctg	cctctttcca	gaacctaata	atctgatcag	cctaaaccag	66120
acatttctca	actatttctt	totatocatt	ctccatatat	chanatatt	atacatatat	
agatttetga	actatttctt	chatageatt	ctycatatat	gccaatattt	atacatatgt	66180
atatatgtac	atgtgtgtgt	atatacatac	atgtatatat	acacacacac	acacatttat	66240
ataaatattt	aggaaactgc	cctttattct	gaaattatgt	cactcctatt	tgattaaaat	66300
	tcataaacta					66360
aaagatgatt	tcattccttc	attectttat	ccactcactt	anagantatt	tattoonaco	66420
cacatatata	ctagateate	ttccaccac	+202000000	thankana	******	
cagacacacg	ctgggtagta	teegaggeac	Lagacaaaaa	tteetgeeet	Latggagtte	66480
acattetaat	caagggcagg	taaacaaaat	gaggatggaa	ggcatcettg	ggagccacaa	66540
ggaaactcaa	ggaagggagt	aacagacaga	cagtccccat	cctcattctt	tgtgatacat	66600
ttcctgtctg	tgaaatccct	aagtctggtt	ccgggtcact	gggaggatca	atattcaata	66660
	agacatggga					66720
gagagette	ctgctaccag	tratraattr	ttaattaaa	nenenteest	44499994949	
						66780
	cactgcagga					66840
acactctccc	tgctgcactt	tctccattct	gggtctaaga	tgatgtgtgt	gtttgttcat	66900
tgccagtccc	ttacatgggc	ggtaagctcc	cccaaagtag	agactgtgtg	ggtctccttc	66960
	ccatagggcc					67020
						67080
	agtgactcaa					
	gctatccatg					67140
ggtgcagcca	ggctgccaga	agggtgtccc	tgggccaagc	tgaggcctcc	tccccttctc	67200
ttectttcag	agactggcct	atggcatcac	gccagagaac	gagcaccacc	tggtggctca	67260
	agacagttcc					67320
	ggctgttccc					
ggcgggcccc	ggctgttccc	tacatata	cycccaaggc	cagacaccac	acccagaaaa	67380
	cagtgtgagc					67440
ggctcacctt	gagcccatgg	cctcaggctt	gccctgtgac	tttggggagg	ttctgctgcc	67500
ctttctgggc	ctctgtgaca	attagggaat	caacttgcac	gttccctgag	gtccgtgaag	67560
	tttttctgcc					67620
tcctttctqt	ccccaccatg	tcatcaagtc	ctcactatet	ttctctgcag	ttgcaacact	67680
aactaaccat	ctgagggtgg	ctaceaaaa	2003003000	occorgons	totacacac	
3500550000	ctgagcctgc	ceggaggaga	aggaggaacc	cecacyceaa	tgtccaggtc	67740
acaggeacee	gctgcgctcc	caccccggac	accatettgg	gattcctccc	ctggaagttg	67800
tcctttctga	tcctctcttc	ttttcccatt	tacaaatgat	ttcgtgactg	tagtttttgt	67860
tcaccttctg	tgcatctggc	ctgggggctg	ttagctcaga	ggagaggagc	aaacaggaaa	67920
atgacttctg	ttctgtcccc	gctgttttgg	gggaagtete	tcvcactttg	ggatcctgct	67980
gaagetaggt	tcatgaggtc	ggaaatcccc	accacattto	cctacacttt	addasasaas	68040
	caccaaatca					68100
aaaaaaaaa	acaaaaacta	aagcaaaaat	caaacaaaat	ctggctgagt	ttagtggggt	68160
ggttggggaa	ggtacataga	ccctcctctt	gcccacccta	gacagccctc	tcatgtctga	68220
acctcagcct	gggagttaga	tttatttgtc	tctaaaatga	agtcagtgga	tagatgcttt	68280
gagggatttt	gagtagaaac	attcatagtt	aattttcact	ctggccaatc	tgagtttgat	68340
atatatatte	tggaacattc	ctccaccttt	taataataaa	atoggggggg	catatorogo	68400
acaggaggaa	gagggtaaat	gaaccacagt	gagcaggttc	taggaggtac	ctgcatcaga	68460
caagctggtg	gaggccacgt	ggcaagccac	atctactgag	gcctcatgct	gctcttgctc	68520
tgtaagacac	ggagcccaga	aacccatctg	cacttcctga	gacctgcctg	gggaaacggg ·	68580
ggcagggacc	aagtgaggcc	tcatgtgtgt	cttcaccgtg	ctgtcctcac	aaqqccaqqt	68640
gggtgccaa	agggagcctg	acaggetatt	gtgttaattt	attattetta	cacacctaca	68700
cagecteect	ctggggatcc	cacctgggg	202002200	tetterer	tacacacatta	68760
aataassa	atatastas	chocoggage	9940049999		cggagageeg	
getgeaaaa	ctctcatgca	ccagatgtgg	caccttggag	ggcagggtga	gacaagcagc	68820
ccagaaatac	tctctcaagt	ggagggaga	attttgagag	tggatggaac	agtttggtgg	68880
tttcagagaa	tttctaggtt	tctacttgga	tctacttctg	atacaaactt	gcacttggtg	68940
ccctctggtg	gtgtttagtt	ttagttccgt	aagagaaatg	attcctagtt	toctaaatto	69000
gtggcatctt	tgggaggggt	ttctgtttat	gattagagtc	tettacacce	ttattaaaaa	69060
cattettatt	ctgactgtgg	Gagatastat	tanaantat	tacasasas	tegeeggagg	
gatestatt	ctgactgtgg	gagereergt	Lycaygatet	ryyyaaaaaa	caaagaagcc	69120
getgeatteg	cacgtcaaga	aggtgctttg	cctcaaattg	gggtgttgtt	gagcctggtg	69180
gttcctgcat	gaagaggatt	atgaggggac	cagggtgggg	cagggagatg	gttttgtctc	69240
ccagggtcct	~~~~+++~~+	tactagatea	gggtcctcag	gtcattctat	agataaaaqa	69300
	gaggilleet	-3-4339044		· -		
gggaaaatca	ggagacttta	aatctttctc	tataaaaaaa	tcagctgaat	acctasasca	693E0
gggaaaatca	ggagactttg	aatctttctg	tataaaaagg	tcagctgaat	gcctgagaca	69360
gggaaaatca gcccaggtgg	ggagactttg caggtgtctt	aatctttctg ggagccctgt	tataaaaagg gaacagtgag	gcttaagaat	ggagaacaat	69420
gggaaaatca gcccaggtgg caggtcgggg	ggagactttg caggtgtctt tctgggccc	aatctttctg ggagccctgt attagtgact	tataaaaagg gaacagtgag ttatatcctc	gcttaagaat ccataaaagg	ggagaacaat taacttcttc	69420 69480
gggaaaatca gcccaggtgg caggtcgggg ctaggtgtta	ggagactttg caggtgtctt tctgggccc ccatttttct	aatctttctg ggagccctgt attagtgact tttcgttttt	tataaaaagg gaacagtgag ttatatcctc tgtttttgtt	gcttaagaat ccataaaagg tttgtttgtt	ggagaacaat taacttcttc tgtttgtttg	69420
gggaaaatca gcccaggtgg caggtcgggg ctaggtgtta tttgtaataa	ggagactttg caggtgtctt tctgggcccc ccattttct agcactttaa	aatctttctg ggagccctgt attagtgact tttcgttttt tgcacattac	tataaaaagg gaacagtgag ttatatcctc tgtttttgtt ctgccatctg	gcttaagaat ccataaaagg tttgtttgtt cccagtgagg	ggagaacaat taacttcttc tgtttgtttg actgcagggc	69420 69480
gggaaaatca gcccaggtgg caggtcgggg ctaggtgtta tttgtaataa tatagcttct	ggagactttg caggtgtctt tctgggccc ccattttct agcactttaa atctcccat	aatctttctg ggagcctgt attagtgact tttcgttttt tgcacattac ttcccaggtg	tataaaaagg gaacagtgag ttatatcctc tgtttttgtt ctgccatctg agagaaccaa	gcttaagaat ccataaaagg tttgtttgtt cccagtgagg ggcccagcat	ggagaacaat taacttcttc tgtttgtttg actgcagggc tttagtcact	69420 69480 69540
gggaaaatca gcccaggtgg caggtcgggg ctaggtgtta tttgtaataa tatagcttct	ggagactttg caggtgtctt tctgggccc ccatttttct	aatctttctg ggagcctgt attagtgact tttcgttttt tgcacattac ttcccaggtg	tataaaaagg gaacagtgag ttatatcctc tgtttttgtt ctgccatctg agagaaccaa	gcttaagaat ccataaaagg tttgtttgtt cccagtgagg ggcccagcat	ggagaacaat taacttcttc tgtttgtttg actgcagggc tttagtcact	69420 69480 69540 69600

actotoagec cagattattt tgaatattee etgeacaata gggtteacce cacceaggae tgtcattttt aaaaaactca ttcaaaccgc aaaggaaaat ttcttagcaa aagaacaatg 69840 tgttggagga tgggaagggg cgagagaatg ccatttattt tcctctagct ggtttccaga 69900 gaggaaatta tttagctgct ctcttttgat gaaaataatc actctttgga atagttggat 69960 gtgaaaaget gagtetaett ggttgaaatg agageaaaca gteageaaag cettttgeat 70020 tagagcaggg tegtgettee gagagageet gecattteet etttgeeate tgeatgtgge 70080 cccttctgcc tccagacatt tgtcccgggg tgaatcggag atgtggtgct agctgaacca 70140 70200 acaccaaacc aacgcagtgg tgctgccttg cggcggaagt tggctcctga atctgggatg ggaacctggc tccaagcctg ggtcccctgg gagggtgggg gtacccagaa agcccttgga 70260 agttctcggg gaggtgcttg gagatcattt gggtttacct ttccacccac atttaatgga 70320 gagagagtat gggctttatg ttaagtcatc tttgacttcc tttttgtagc ttgttttaa 70380 tagcagaggt caccegggac aagggtgetg tgtactgtat atgacacttg acgettttga 70440 tattttttca ggtttttaaa gaattattat ttttcatgaa atgtaaaata tcagtttgag 70500 aacatcacat ttacgtctac tcaatgtcta gttatttagc acceaccttt tagctttcat 70560 tctagatgaa aacgagacaa gggagaagga gagctaccaa ctcttgccag atatcctgct 70620 gaacagaaat ccctgaagct gccttaattc tcaaaaggag ttaccgctca gctgggagcc 70680 agttectget atatgatetg ttttctagee tegetaatgt gagaetgaag cattettace 70740 aaagaaatca tttcctagta aagaagccca ttgaactcac tttatttgtt tatttccttc 70800 70860 gaaagccacc gaagagagaa aaacagagaa ggtgtgtagt gtggcggaaa aagcacagca tatagtttta cagacttggg tctgcagctg actagctggg tggcctgggg atagtggctt 70920 catcttttgg ggcttcaaga ttctttgtct ttaaaatcag gggttatatc agatcatcaa 70980 agttcccatt ccattaaaga aaaccctgca tgtatccata atgatgctct cctgttaaat 71040 ttacaatgaa ggaaacacat cacttaactg taagaatttc ccaaaatgaa ctgatgacca 71100 gtgatctctc tatcagagaa atgtcagatt tctagcctcc agaactttga tttttctgga 71160 cattcaatag ttcctctttc tcagatattt ttcaactgat gccagaaaca cttggtattt .71220 gtttttaatc caaccctttt gttttgaggc tttggagggt aacacatttt cataccctgt 71280 gagtcccagg atccacagct ctgctgtggt ctcagaagcc actgaaacat tggtgaatgt 71340 gaagtcactt ttggggtgcc tgccctcatc cctctgtctc tctgcttccg tgtaaataaa gactgtttca attgtgtcct ctctgtgtca tggactgttc caatgtcatg cagatttctg 71460 tgtctgatat ggattttaaa agttgttctc tttgtggaat ataagtgtac agaataataa 71520 ataatgtttc ctgggctgtg tatctggtag cagagttctg aatgctttct tccatgaagg 71580 tggaatgcta caaattatgt aagggaggtg ggtgtatcta tgatcagctt ccaactagta 71640 aagaagagcg totggtoata gtgacocaco ttttaatoaa ataactottt ttataacota 71700 tggaaaagga gattggaagg agttaaatct gtaatcttag ctttgagatt aacatatatt 71760 aaggctgttt caaggagctc agaacctcct gttggattga attaaataca caatttggtg 71880 catgtgtgaa tttttctggg gagagggata cattcacatt tagaccttag aagatctaag 71940 totttgtttg gggaagatgt aagotgagta ttgtcattgt ttggagaaga tgtgaactta 72000 taggtaatta tttttaatgc aagccagcaa atagatagtg ataccaatgt aaaaggggtg 72060 ttgtcaaata actgttcagt caatgtcttc aaatatctaa aggctgtcag agagtgtgtg 72120 gtgggcccaa gtgctgaaat ggtgccaatg gtaggaagtc caggaagaca gcttgcaaga 72180 ttctaccaga atagagaatg ggctgttgct ggaagtggta actccagctc tagagatatg 72240 caagcagata gcaggcagtg tctcctgggg atgcaatgtc aggtggaatt ggggggaggg 72300 aggttgcaca acctctaaga ttccttccat ttggagttcc tagggttgtt ttttttcttt 72360 tttcttcttc tttttttt tttttttt tttgacagtc ataagcctgc cttgtacagc 72420 agcactggga gatgcaaata cattcatgcc aaggaccctg gggtaggagt ggtttggcct 72480 cacaaattag agttgggaag atatcccaga gaggctatta tcattctgat cattttgttt 72540 caacccagaa ttggagttgg gctttattat agtgaatcaa acagaagaca gctgcacttc 72600 72660 gaggctggtc cagagaagga aagggcagct gttttgtggg ggtgatggag aatctggtgg 72720 eccaggette caecetgtee ectaggetga caacacagta ggagaagteg gageagcaca 72780 gataagcctc accttaggca cttagtgggc ttctgaattt tccccaattt aattgcaccc 72840 catcctactt ctggagattg gatagcttca tttttatctc ctccccaaag gcactgatac 72900 acgtagtete tatetgggge teaatttgtt cetetacage ggategggag tggteagaae 72960 taagtgttca tgaatgggtt tcaaaatttt tcagaatctt ctgagattaa attcaaactt 73020 ctgtttgaat gaatttgtgc tcatttttgg ggaaaaagga tccatacatt catcaagttt 73080 tcaaatattt aaaacccaca agtatatatt acttttgggg gcctctctct tctgatgata catggcatcg gtctctgccc ttcaccccaa actaaatgag gatgacaata gaccttattt ctgaatctca gtcaccccgc attatgttga ctttgttttt ttgtctgttt gtttctgaga 73260 cagggtctca ctgtgtcgcc caggctggag tacagtggtg cgatgacagc tcacagcagt 73320 cttgacctcc tgggctcaaa gtgatcctcc cgcctcagcc tcctgagtag atgggattat 73380 aagtgcatgc caccacagtt gtctaatttt atttttggta gaaacagtga ctcactagat tgcccaggct ggtctcaaac tcctgacctc aagcaaacct cctgccttag cttcctgagt

		_	_			
	acaggtgcag					73560
cagcaaatac	ctcattttat	cccgtgacaa	tgagcctgca	agataggcag	caacaggaac	73620
accgtgccca	ctggacagat	gagacaactg	aggctggagc	tgagaagtga	cccgcctaag	73680
	tactgaaggg					73740
	ccgccctatg					73800
	tgtgggaaga			-		73860
	tactgggaac					73920
	gggatcaatg					73980
	gagaccaact					74040
	gctctcccag					74100
	totgactota					74160
	agatgtaaat					74220
	tttgttcatc					74280
aggtctctgt	cacaacttct	cagctgctgt	tgtagcatga	aagtaacctt	atttataagt	74340
atcaggtggt	gggttggatt	tggcctgagg	tctgtggttt	gcagatctct	ggttaggtgg	74400
	gggtctggag					74460
	atcttggaca				_	74520
	gattcccaca					74580
	tctggggctg					74640
	gggcaagcca					74700
	gtgacccctg					74760
	acctacacag					74820
	ttecteetet					74880
	gaagccaaat					74940
atggtgccct	ccttaggatg	atgtccttga	acttgggtct	gggtagccaa	atccaagttt	75000
ccctgggcct	gagtgcatgc	aaccacctgg	gcagaagttc	aagcttctgg	aaatcccagg	75060
ctccacagac	cttgcctcct	gcaggaaccg	gcttccctgt	aagccctcag	ctgtcagccc	75120
ccattagacc	actggcatgg	gagatattac	tctaggctgg	ccctggtctt	ggctatgacc	75180
	ggagaccaga					75240
	atcagctacc					75300
	gggcatgagg					75360
	aggcccagca					75420
	cagagggtag					75480
	cagaccccag					75540
	agcacctggt					75600
	tcccaggacc					75660
						75720
	tegeetttga					
	ggagaaggga					75780
	gctctggcct					75840
	ggatctgggc					75900
	gacaacaaag					75960
	cctggccaca					76020
	ggacaaggcc					76080
accttttgtc	agttactatt	ctgagtgctt	tacaaatatc	agtcactgaa	ccctcctaac	76140
	gatagcatga					76200
	ctagttgttg					76260
	attgatctgc					76320
aggctggtgt	ggacatgagt	cctcctctac	ttccatccct	tcttcaattg	caaatgcata	76380
atactaaata	aataacttat	gtgtatacat	atgtaagttg	tacacatata	tgtaatttaa	76440
cacacatata	tgtgttatac	acatatatgc	ctatttttaa	caaaaatatq	taaatqtaaa	76500
	tacgtgtgtg					76560
	catatatata					76620
	tatatacata					76680
	cacatatata					76740
	atgtgatagg					76800
trantttore	caragretes	statetest.	gannanata	statestast	aayayyyaat	
	cagaggetee					76860
	tcctgtactc					76920
	gcaaaaagat					76980
agaaatgtaa	ctatagtttc	ttcataaatg	gacttttctt	atcctcttgt	aacaaacagg	77040
caatgggtca	gggagaaggt	gttgagcagg	aagaagatgg	agaagtaact	ttggtcctag	77100
agaaggactt	caacagggcc	ccctgcctgg	atgtgtccag	aagccccaga	tggctctgga	77160
gctgctttaa	aaagtaataa	aaaaattgga	tgccttccag	cttcttgttc	cactatccat	77220
agcatgtggt	actcatcctc	atggagaaaa	gatagtgaag	ccacctgcag	atgccttgcc	77280

	gcaggaggaa					77340
tcatctcttg	tcatgctgga	ggagcatggc	ttccccagaa	cccctccgca	gtctgcctac	77400
accccattgg	ccaaatctgt	gcaacacaga	acccgtgact	ataagagagt	ctggagaagt	77460
aagaactttt	gctgggtacg	ttgctgccct	gaacagaatc	atggttctct	tagggagagg	77520
atgggaagga	cattgaggag	atgctgatcg	ctqcctccct	ctctqcaqct	tectcacece	77580
	atctgctgag					77640
	gggcatctat					77700
	caggactcag					77760
cacagaggca	ccactgagct	ggcaggcaga	tatgtccatt	gagcagagca	tttctgccca	77820
	cctctcctct					77880
	ataatatgag					77940
	gctgaaccca					78000
	agtgaaaagc					78060
atcatatctt	ggttgcactc	attcgttcat	tcgtttattc	attgatcaga	atcatacatg	78120
	gttccaggaa					78180
	gtctaatggg					78240
	gctcatggaa					78300
	ctctctgtct					78360
	tccaagcaca					78420
	ctgaacctga					78480
	taacctatcc					78540
	attttgagac					78600
	gatctggcac					78660·
tgagacaagg	tcatctcata	acctagcaga	gaaatcatgc	acagagetee	atgtggggag	78720
atcagagagg	gctccccata	gcaggtggtg	ctagagttgc	gtcttaggga	aattccaggt	78780
catgagaaca	gtgaaagtgg	cagcacagag	gcatgaatca	gtagcagaga	gtacaatatc	78840
tacagaaatt	tgcagggtcc	aagcagaggg	gctgtagaag	agcataaaat	tcagaatatg	78900
	gtgctgagat					78960
	tgggtggaat					79020
	tagcgaacta					79080
	catctaggaa					79140
	gtctgtagct					79200
	tttccttcca					79260
	gacatgagta					79320
	ccatacatta					79320
	ggccattcag					79440
	taggaatctt					79500
tanastatas	ttttttaagt	teteetete	cittaatty	acatatagta	ctaggctett	79560
	ttgcagtttt					79620
	gtggttatgc					79680
	ttattacttg					79740
	gcaaatttga					79800
agacaactca	caacatcaac	aacacatttg	gcccaggaac	tgctaatgaa	catacggtgc	79860
	caagaagttt					79920
	agaagttaac					79980
	agaagttgct					80040
gatgcaaatt	ggaaaggtga	aaaacctcaa	taagtgggtt	cttaatgagc	tgagcaaaaa	80100
tttaaaaaaa	gtatttttga	agtgtcatct	tctcttattc	tatgcaacaa	caatgaacaa	80160
tttctcaact	ggattgtgac	atgtgatgaa	aagtggattt	tatacggcaa	ctggtgacaa	80220
	ggttggactt					80280
	aaggtcatgg					80340
	cccagtgaaa					80400
	ctgcaatgcc					80460
	ctgcacatcg					80520
agetettate	catccgccat	accuacetga	colocagoda	accyccacc	atticttcaa	80580
yyaccitgac	aactttttgc	yyayaaaatg	cttccacaaa	caycaggatg	cagaaaatgc	80640
	ttcatcgaat					80700
	tggcaaaaat					80760
	gttataatga					80820
	ttgtacatac					80880
	atcagggtaa					80940
gttgggaata	ttcagtattc	tcctagctat	ttggaactgc	atagtacatt	attgttaact	81000
atagtcattc	taaagtgcta	tagaacatta	gaatgtattc	ctcttattta	actgtaattt	81060

				taccettece		81120
atcctctgtt	ctagtttttt	cttttatgag	atcaactttt	taaagcttct	caggatgagt	81180
gagaccaagc	tttgtttgac	tttgtgttcc	taaaacaaag	gttttaataa	aacaatacaa	81240
aaggttgggc	aggccaaagc	taccccaaca	ttaaaggccc	ccaaagaagt	ctgatctatt	81300
				cgaccaaaaa		81360
				gtccctttgc		81420
gctggaaacc	caagctttgt	gcacatgagt	gggtgaaatg	gtcaggagtt	ggagaagaga	81480
aactccaggg	ctccttgata	ccaaagcccc	tatgtgctgt	ggtgaagccc	cagtgtgggc	81540
tatatacaga	attgtataca	gaatatataa	ttqtaaaqqc	tgatagggtt	atgaaagttg	81600
gaatatttga	acaggettta	totaagaaag	cagtgtctcc	tttgcctgag	tatttataa	81660
						81720
				gtattataaa		
grigatatag	tectaatgga	gactatagtt	aggaatagaa	gagttgaggg	aattaaggtg	81780
aacatttgga	tgaaaactaa	tatgtttggg	caggctttat	gtgaagtgct	tgcatctcct	81840
ttacatgatt	gtattatggg	actagacatt	gtatctgact	ggggaatgtt	tcccctacct	81900
				caatattaat		81960
				gactggaagc		82020
				aaacaaaaaa		82080
				gatgaacact		82140
actagagaat	ttccacctga	gggtcaatta	ttaccttgtg	attggacatt	aattgaagct	82200
acctcaqtqa	ctgaaggaca	taaaacgatc	ttaaatcctg	aaatacccat	gatatettgg	82260
				cagtgttcag		82320
						82380
				tttatacagg		
				ctttcaccct		82440
ccagagctgt	gtgaggagct	tctgaattat	attagttgta	cagtgcccta	taaaccattc	82500
ttaactgagc	actaagagct	gcttgttctg	tggacagcaa	ttccaaggtg	aacgaacatc	82560
				caaatcagct		82620
				agtgggaaaa		82680
				atggaaacct		82740
				gggtgcatta		82800
				ggtagttgga		82860
agatgtccct	gtgtgcttgc	ttaaggtgga	cacctggttc	catgaaatga	actgacactg	82920
gggtagggca	gccacgcagc	tggaatgaat	ctaggcatat	tccttttgca	tcctctgagg	82980
cacaaaatgc	caataagaac	tattctattt	qccaqcaqqa	gacagaggtt	ccagagggct	83040
				caagtgagac		83100
				atagatgctg		83160
				gccataaaag		83220
gaagatattg	caccaatttg	gatggcagat	tcacatttct	tcaggccaag	aaatacacaa	83280
tatagcctat	aatgtccaac	aatgggcaga	gagatctcct	cctcagaata	atagtttgat	83340
agaaaattgg	aacagacaac	taaaacattg	gttgtctgaa	atggagggag	ataaatqcat	83400
qaaaqqctqq	cttgcacatc	ttcacaagtg	tatoctcaca	ctcagcagga	ggagatgaag	83460
aagtgcccc	actagataga	ctcctctatt	tteeteetee	atctgggaaa	.aaaaaaataa	
aagegeeeee	actagacaga	toccucugue		accegggaaa	gaagagatgg	83520
				gaatatgctg		83580
tatttttta	tcttcttcac	actatatcaa	cttttttt	ctttttctta	tctgatgcag	83640
tggttataga	accagggctg	attccaacga	caacaaaaat	gtgtaaattc	ctaagggcct	83700
gatggggcag	attgtgctct	gateceatet	gtaaaaattg	gggttcatag	taaatgcatt	83760
				acctgtgtaa		83820
				tagcattgct		83880
tacecceas	agatacaaa	3033345344	acttaces	cascaccacc	bboossess	
				gatggaaagt		83940
acggggagaa	ggaggaagag	tagctaaggg	caaaggaatg	aataaatggg	ttgtgtgatg	.84000
acggaaatcc	aatatatatt	aacatctcaa	aagaggctca	gagcaagtga	tgatattgtc	84060
tcttagctcc	attatacaga	tgcctaaaag	gctaaagctg	tatgtttgca	gagtccagtc	84120
ttgcttttgg	aacccagcaa	gateteteca	acaaggctac	cagcccaagt	geteteteee	84180
				aattattaat		84240
22222222	20002000	abouttite	guidata	gtttgctgta	hamment.	84300
ggccagagtg	acceagaggg	argggctgtg	acatcataag	aaacacatat	tagggccctg	84360
geeceageea	gggacccctg	cagtctggaa	catccaacaa	aagaaacaca	ggcacagcac	84420
cagtgacagg	aggggcttcc	tccaaggtcc	aggagtgtac	ctggtaaggg	ggttaccttt	84480
ctcctccact	gcaatgcaga	gtatggctqc	aaatgaaagg	aaatacagag	aagccatact	84540
gctaagagcc	tatctactoc	ccattaccct	taagccactc	tgtatctttt	aagatotagt	84600
ggatcatage	ctaaactata	acatcases	tattttmata	ttatgccctc	ctatassac	84660
aaggggaage	atttaggga		actorigate	2001ta	tatassass	
~~355~~~34	andtana	aaataaagac	cecgaacaya	accttgacct	cctgaaaaca	84720
	aactyacaat	actcaactta	caccacagta	aaatgaacac	aaaccctccc	84780
agacgagaaa	Aggreed	aagaactctg	gcaactcaaa	aagccagagt	gtccccttac	84840

ataanantaa	ataasaksas	+++0000	A			
toccaaacga	gtccactaga	ccccaggaa	tggctcttaa	ccagactgaa	atgacaggca	84900
tagaactcag	aatgcagatg	gcaagaaagc	tcatcaagat	ttaggagaaa	gttgaaacct	84960
aacccaagga	atccagtaaa	acaatccaag	acctgaaaga	caaaatagcc	gttttaacaa	85020
agaaccaaac	tgaacttcca	gagctaaaaa	attcactaca	ataattctat	aatataatta	85080
aaagtattat	caacagaata	gaccaagatg	aggaaagaat	ctcagagctc	aaaggccagt	85140
acttcacatc	gacacagtca	gacgaaagtt	aaaaaaattt	tattttcaag	agaattaaat	85200
cgtttattga	ttacacgtga	taatggatga	tacacaaget	tcattcccat	Chataatttt	85260
atctggtacc	attattcaat	ttagatatat	tocatages	ataccecae	toochthtat	
aaccattcca	tgattttgct	tagataataa	attttaataa	gegeeaacaa	Theorem	85320
taactatoac	ttassatsas	cossectte	coccaacyy	cgaactttag	gccacaacag	85380
taaccaccag	ttcaactaca	ccaaggtttc	caaagacaat	ggcttctcca	cccaagcagg	85440
ttgtatataa	attccaaata	gaacctggca	tcaccctgaa	ggaattctaa	cttcacactg	85500
rrggggaaat	ttaccaagat	ggcttcagag	tagactaact	ttacacagca	cattaaaaaa	85560
aaagacattt	attcagcatc	acgatcagac	tattacattt	agcaatcaac	agcatgggtg	85620
caaaaaaaa	aatctacatt	aaaacccttt	gttggaatgc	tttacacttt	ccacagaaca	85680
gaaactaaaa	taacctgtta	tacaattagt	cacaaataca	gtccttgagt	tttttgccca	85740
tacacatgag	tatttgtcta	aaacatgtct	tctttgtagc	agetaggeee	tgccaccact	85800
gtgcttggct	gagttcacaa	atctqtcqta	acctgtagct	tecetateae	tteteteget	85860
ctcctctcct	gctaagcttt	gtttcctaat	taaaatette	aatgaagaaa	acttccaaca	85920
agtatgtaaa	gagaccaaat	ctocaattoa	ttaaaattaa	tangaacaaa	acccccaaga	
agoassotto	Casastatat	ataggastat	retestes	ryayayaaaa	aaayayaata	85980
agcaaccccg	caaaatatat	geggggatat	agcccacgaa	agttteteta	atctcactag	86040
agaggttaac	atgcaaattc	gggaaataca	gagaactcgc	tagatgctat	acaacatgac	86100
catcctcaag	gaacatagtc	atcagattca	cgaacatcaa	cccaaaagaa	aaaatcttaa	86160
aggcagctag	agagaagggt	caagtcacat	acagagagaa	ccccatcagg	ctagcagcag	86220
acctatcagc	agaaatctta	cacctcagaa	gatattgggg	gtctattttt	agtgtcctta	86280
aaggaaagaa	atttcaacca	agaattcata	ttccttcaaa	ctaaacttca	taaqtqaaqq	86340
agaaataaaa	tccttctcag	ataagcaaat	gctgagggac	attotttcaa	ctaaaccagc	86400
cttacaaqaq	gtcattaagg	gagtgctaaa	catogaatca	aaagagtgat	acttattaac	86460
acaaaaacac	actaagaata	tagecegeag	ctactatasa	acasatsasa	accegeeace	
acataacaac	aagctagcaa	cacactcaca	gcatcacaa	gtaattatat	tattata	86520
ctgaatgtaa	atggggggg	tacatacat	topoccaaaat	ccatatace	tattetaace	86580
2202222	atgggctaaa	retetedet	taaaagatat	agagtggcaa	gccagataaa	86640
aagacaagac	ccaaccatct	getgtettea	agagactcat	ctcacatgta	atgacaccca	86700
caggttcaaa	gtaaagggat	ggagaaatat	ctaccatgca	aatggaaaac	taaaaagaac	86760
cagtcactat	ttttatgtca	gataaaatag	atgttaaacc	gatttctatt	aagaaggaca	86820
aagaagggta	ttacgttatg	ctaaaatgta	caattcaaca	agaaaaatta	actatcctaa	86880
atatatacac	acccaacatt	ggagcacccc	aattcatgaa	acaattcttc	ttggactaca	86940
aaaagactta	gataaccaca	caataagagt	gggagtcttc	aacattccac	tgacagcatt	87000
agacagatca	ttgaggcaga	aaacaaacga	agaaactcta	gacttaaact	tgactcttgg ·	87060
ccagttagac	ctaatagaca	tctatagaac	actccaccaa	acaatggcag	aacaaatact	87120
cttctcacct	gcacacagag	ttccactatt	atcatccaaa	ctagagtaga	atoutacast	87180
cttggctcac	tgcaacctcc	acttecesaa	ttcaactcat	tottotogot	acggegegae	
agtatetete	gattatga	accettage	accadegat	anththeth	tagecteetg	87240
++~++*	ggattatgac	acceate	acggergger	aaccccgccc	cattgtttgt	87300
cigiligili	gtttgttgtt	griginging	tttgtatttt	tactagagac	cgggtttcac	87360
cacactggcc	aggctggtct	caaactcctg	acctcaaaag	atctgcctgc	cttggtctcc	87420
caaagtgetg	ggattacagg	tatgagccac	cacacctgac	cacacagaac	atattctaag	87480
attaactaca	cgctcagtca	taaagcaagt	gttaaaattt	tttttgtaaa	gttgaaatca	87540
taccaagcac	actctcggaa	cacagtgcaa	taaacataaa	aatattatca	agaacatctc	87600
tcaaaactgc	ataaatacat	ggaaattaaa	caacttactc	ctgaataact	cctgggtgaa	87660
tatcaaattt	aaggcataaa	tcaaaaaatt	ctttgaaatt	attgaaaata	gggatgcaac	87 7 20
ttaccaaaat	ctctgggatg	cagetaaage	agtgttaaga	ggaaagttta	gagcatgaaa	87780
tgccttcatc	aagaagttag	aaagatetea	aattaacaat	gtaagtttgc	acctasacca	87840
actagaaaaa	gagaacaaac	Caaccccaa	actacasas	geaugeeege	attagaga	
aatttgacac	tgagttgcaa	aaatcccaaa	gctagcaaaa	tanaactaaa	accagagaag	87900
tartasasat	anagergeaa	adalccatac	aaatgatcaa	taaaactaca	agttggttat	87960
caytaaaaac	aaaccagatc	aataggeeee	taactagatt	aacaaaatca	aagaagatcc	88020
aaataagcac	aatcagaaat	gacaaaaatg	atgttacacc	tgatcccaca	gaaatataaa	88080
agatecteag	ataatattat	gaataactct	atgtgcacaa	attagaaaat	ctggagaaaa	88140
taaataaatt	cctggaaata	atctcctaag	attgaatcag	gaagagattg	aaatcctgaa	88200
gagactaata	tggaactctg	aaattgaatc	agttacaaca	acaacaaaaa	aaccctacca	88260
atcaaaaaaa	gtcctggatc	agattaattc	acagccaaat	tctaccacat	qtacaaaqaa	88320
gaactgagac	caattctact	gaaactattc	caagaaaatc	Caaqaqqaqq	gactectete	88380
taactcattc	tatgaagcca	gcatcagcct	aatgccaaaa	tetggaagag	tcacaatcaa	88440
aaaaaaaac	ttctggctaa	tatecetest	Caacatadac	acaaaaatco	tossosses	88500
accaggaaac	caaatgcagc	ggranathan	aatottaata	Baccateste	and and a	
catecetgag	atgcaataat	tratta	aatyttaata	astante	aagtaggett	88560
	J-www.aat	cyguldada	aytacaaacc	~acaaacgcg	attcaccaca	88620

taaacagaat ttaaagcaaa aacaatatgt tcatctcaat agacaaagaa agaatttctt ataaaatctg acatcctttc atgttaaaaa ccctcaacag actcagcatt aaaggagcac atctcaaaac aataaaagcc atctatgaca aacccacagc caacatcata ctgaatgggc aaatctggaa gcattcccct tgagatatgg aacaagacat aaatgccaac tctcaccact cctattaaac atagccctgg aagtcctaac tagagcaatc aggcaagaaa aagaaataaa 88920 aggcatctaa acaggaaaag aagaagtcaa actatcttca ctgacaatat aattctatac 88980 ttagagaacc ctaaagaatc caccaaaagg ctactagaac tgacaaatta ttttagtaag 89040 gtttcaggat acaaagtcaa tgtacaaaaa ttactagcat ttctatacat caataacact 89100 caggetgaga gteaaateaa gaacacaate ecatttgeaa caaceacaaa taaatgaaat 89160 acctaggaat acagctgacc aaggaagtga aagatctctg caaggagaac tacaaaactq 89220 ctcaaacaaa tcagagatga cacaaataaa tggaaaaaca ttcaatgctc atggatagga 89280 aaaatcaatt tcattaaaat ggccatgctt cctaaagcaa tttacagatt caatgctatt tccatcaaac tacctgcacc aattcttcac agagttagaa aaaacaattc taaaattcat 89400 atccaaccaa aagagccaga atcatcatag caatcctaag caaaaagaac aaagctggag 89460 gcatcacatt acccaacttc agactatact ataaggctat agtaaccaaa atagcatggt actggtacaa aaatggactc atagaccaat ggaacagaag agaaaactca gaaataaagc 89580 cacaaaccta aaaccatctg atcttcgaca aggtcaacaa aaacaagcaa tggggaaagg 89640 actecetatt cagtaaatgg tgetgggata aetggecage catatgeaga agaatgaaac 89700 aattgaaaca cagccatgcc catttggata ggtatcgtcc atggctgtct ttactatcac 89760 agcagttgcc aaagagaaca tggcctgcaa agtccaaaat atttactatc tggcacttta tagaaaaagt ttgctgatac tctaatttgg atcactgagt gaccacatgg aagacaacca 89880 cattgttgac ctgaacaaca acactctact tctttacata aatgaaaaat aagccattga 89940 . aattotgggo otaattgota ocatagttta tootggtoto actaataatt ottootoago 90000 agtcacaggg tgattgactg atgaatgtac atggcccaat catcagttgt ttgagccatt 90060 gaggtggact agttatgccc atgggagtac agctctctcc tctacgaccc accacgagcc 90120 caaaatttcc tccagatact ctgaccagtc agtcctagga cctgattgac cccagggagt 90180 ctgaccccct aagtataaca cagcatcatg ggcagcatca tgggcctggg aaggtgtaaa 90240 cataatccaa tttctgccca ttgaactgaa tgttaacagg aagacgttcc ctgaagcaga 90300 aggaaatgac cttgatgacg atgaccettg ccaaaggtag gtaccettge cttgtcacet 90360 acctggtggt catgacggtg atcaaggctg gccctgcttt catgtaacta actggccttc 90420 gatggttcac ttttcccatt gagtgacttt tttcagttat acacttttgt aaactagaag 90480 tgtttttact ggcatttctt tatgtacttt tttattttta ccatcatttt aatttaaaaa 90540 atgcagteae acatttteea tgcatacete taatttatgg caggttatag aggtettgca 90600 tttatggcaa tggtataaag tctccttttt gagtgagcat gttgaagtaa aaagagtgac 90660 ttcatttaaa gaaaactgct catggaagta cagatgatat gctgataagg caaaaaacca 90720 tgatattagt atgagactaa ctgaggttcc agaaacactg cgtatgccca ggctgcagtg 90780 gagaatgtca tagaatcctg gattcataga gtgtggagcc atggtgaagg gtgcgtgaga 90840 gggtccctcc cccagagcca caccetgtct ttccacaagg aattcccaaa tgtcacccag 90900 tggattcaga cttctgtctc ccagttcagt gttctccacc acaaaatcta cacctgatca 90960 atcceatagt tcagagacaa agctgagtga ggggcccaga aagacatgtg tttgctgtgc 91020 ccaatgcctg ctctaacatg tgttttccac atatctgctg agcaaactga tggaggtgga 91080 gaagettggg agagtteatt tgaaggeece agatatgeec acteteecaa gteetaecea 91140 acctectatg taagecaggg gtggetttgg catgtgteca tggggatgtt cgcctcaaag 91200 tgatgcagga aggagtcaag gcagtcccct gatgggctga tcctttgctc tggaatcctt 91260 aagatcattg tagatcctta agaacattcc agaactctca cagcattctg gagtccatta 91320 tttaacacat gtttattgag cacctactgt gggccaggca tgttcttggg tccttggggt 91380 ccattagtga acaaagcaaa ggtccctaga ttcacggagc gtgcattcta gcagggggag 91440 acagataaga agaacatgca aattactcca tggatcatgt gatatgttag aacgggataa 91500 gtgccttgga aacaaagaag cagttaagca gatgagggag atcagaagga aggatcccat 91560 gaattccgct gtcttgaatt ttgacatagt aggggagagg agtgggccag gaggtgtgtg 91620 agtggcaagt gtactgaggt gtccagtcgg caagtgctca actctcaggt gtgcccagct 91680 ccctaatgct gaggagaaaa atggcaggtg tgtccattca ccctggccaa gctgggaaga 91740 aaagcccaaa ggttctaatt ggcctcacca cctctcccca gggtacaaag gaccctacag 91800 gcatcagaga agaccccatt catctcagca gccaggcatt tggagggttt ccagcagccc 91860 acctctagct goottotttt otttootttt ttaaaaaata atatttactg tttttatttt 91920 ctgactgcaa atgtaatgca tacttattac aaaaaaggta aagtattatg atttaaattt 91980 tgtttgtatt ccagtttttc tgcctgttgc tatactttct tcctttaaaa tggaatgtta 92040 agttcagata atttggatgc ttgctttgct cattaagtat atcatgagca tcattctatg 92100 ccattaaata gcatagcctg atattagcag ctgcatcaca tttggtattg caccacaatt 92160 aatttcccca agcttttatc tggggtcatt aggttacata tgaagttttt qataatatag 92220 agagcactgt gatgaatatt ttatagtgaa acctttatgc ccattcataa ttattttagg 92280 ataagttccc agaaatgaca tttctgagtc gaaaagtgta tatcttttgt taaaattcct tgccaaaata ttccaactac acttctccca ttgaaggatg aaaatctcca ttcatcagat

	gcttggggtt					92460
taataatagc	aatattattt	tcctatttag	tttgcattta	tctgaagacc	agtgaagttg	92520
agttetttt	ccctttcttc	acattggaat	gttgttttta	ttattattat	tattataatt	92580
	ttatgccact					92640
	gtetttgetg					92700
	cctcatgtac					92760
	ttgcttataa					92820
gctatgtaaa	cttgggcagg	ttctctaacc	tctctgggct	tcagttttct	catttgtaaa	92880
	tggaacctat					92940
	gaaacagtgc					93000
	tatccttgag					93060
						93120
	gaatcttggc					
	ggcagattgg					93180
aaatgtgtgg	gagagacaaa	actagagcac	agttctgacg	ttgtcccaca	aagattttac	93240
ccctaagata	ttgttggaaa	tgtcacctcc	aagggaggat	cagtgtattg	gtggtctccc	93300
	ctgggagttc					93360
	tcttaggaga					93420
	cactacaatg					93480
cctcccagtc	caaggcgctg	ccctagaaga	cacctcgcct	agatetgget	gaactteagg	93540
	tececeteeg					93600
	ccaaccgaaa					93660
ctcaatattt	acactcctgc	tgacttgacc	aagaaaaaca	ggctgctggt	aagttgtggg	93720
atcccctggt	caagacgtgt	cagtgccagt	accccagata	ttctaqtqta	gatcggaagg	93780
	agcttgggga					93840
	aacacaggtt					93900
						93960
	tgtgcctctt	_	_			
	gaatgattac					94020
	taagacatga					94080
ccaacacctc	aactcttcct	tttcagatag	agaaaccgag	gcccagacag	ggaaggggag	94140
gtcacccagt	aggatagttt	tggctcaagt	cttctgatct	tcaaactagt	gcttttgaca	94200
	cattgagatt					94260
	tgtccgggta					94320
	ctttggccaa					94380
	agggtgatga					94440
						94500
	gctgccagct					
	ggaaggggtg					94560
	gcggagcagg					94620
cgtgagacac	aggaagtggg	agaaaggttt	actcattaat	tcattcattc	ttctattgtg	94680
tactcagggc	cccatataca	cagttagacc	tggggcttca	cggaaaggag	gaacatgaac	94740
gcactccaca	ctgcccctgc	cttcaaqqat	cttgcctttt	gtggggtaga	ggcatatcct	94800
	tgttattgca					94860
	cctccacagg					94920
						94980
	aaggcaggaa					
	acttcgtaca					95040
	actattattt					95100
atgcaagaac	cttgagttag	gaattgtacc	tactctcatc	ctcgggtatt	agcagagtcc	95160
ctggcacata	gtaagttctc	agacagtgtt	agtccattga	ttgaaggcat	cctgaagagg	95220
	ggctgggctc					95280
	ggaagagaca					95340
	tttacttcac					95400
	gtacgcggag					95460
	aatccttagc					95520
ttgcgaggag	gaggcactgg	agactgggta	gaaaggaagg	ggcagccagg	gtatgtgcag	95580
tggggtggtg	gcttgggccc	cagttgggag	aattatggag	gagagagact	gccttttgca	95640
	gcacttgtga					95700
	caagatgccc					95760
	ctgcccaggt					95820
	ctgatgggcg					95880
	tgggcatctg					95940
	caacatgagg					96000
cttaactggg						~~~~
	ttcctcattg					96060
ctcactcccc	agccacacta	gtccactagc	ctctgagctt	ttgtatgtgg	tgttccctct	96120
ctcactcccc		gtccactagc	ctctgagctt	ttgtatgtgg	tgttccctct	

ttagetecae tgaaagaete ateteetttt catetgtget geteecacae attgeattte tetgtcatgg cagetageat geageceage tgttgaaggt tgacacatet gaetteteat ggaaaggagg gaaggggcag agtcatacag ggagttcagg gcatattgtg ggtgaaggaa 96360 tgggcgctgc agaaggtggg gtgtgggagc atctgactcc ttcctggagg agtgttggga 96420 cccactcacc ccattttctg cttgaaatct ggcaagtgtg ggaagcaaag atggagtcct 96480 cctcatcagg tctccatggg gacagaagtc cccatggcgt ggaggaattt ggtagctttg 96540 agagettgtt tggggaaage attcaaactt aaagggetgg tacattggag gagagaaaat ggggatgcca agaattttta gaatttttga gaatgttttt agaattcatt ggttataagc aacagtttcc cagtgaccag atttaagtca agacggacga ttggctaggt gtggtggctc 96720 atgcctgtaa tttctgagag tgatgtggcc ctcactcctg ctctggtgga gaagggtgac 96780 gtcaagcccc tggctgaggt aggtctcccg ctggatgccc ccaacccctt ggctctgtgc 96840 ttctgaattc tcagaggtta ttcttgccat gggttctagc tgatgttctc ctagaatcac 96900 tgaagcgatt gggaggtaga ggcggaagcc ttgcttgagc ccaggagtta gagaccagcc 96960 agggcaacaa agtgagatcc tgtctctaca aaaagcaaaa aattaagctg ggcatggtgg. 97020 tgcaagactg tgggcccatc tacatgggag getgaagtgg gaggatcacc tgagcccagg aggtetatge tgeagtgage tgtgtttgea ceaetgeaet eeagettggg aacaaageaa gaccttgtcc caaaatcttc tcttgaaaag gagaatttat ttttcaagga aatagagatc tgggaggatg ggctttgtgc aaaaacagga agcagaaatt acaaaatgat gggaatccta 97260 ctctctcacc ctctacttct ccctgtccct gtttatttat ttgagaaaca ctctgggcat 97380 tgattctgtc cgagatectg cacggggctc tgggggcatg tgcgcttgcc ctgactcccc gactgtggag cctgcctgct ctccctctgt gcccttcttt ctggctgcac tttgcttcca atctgcatga gcaccctatc tgcccctgag cttaaggact ctccttggtt ccagaaagta gtcaggctgt ctttcctgtt gtgaaaaatg agtgtttttt acattagcag ctctccaccc caattccagg tcacttaaga gagaggctca ctgtcccgtc tttgcttcga tgtccctgaa ctcttagaaa agtaggaaac cagagtatgc tgggcaaact gaccccaatg cctaggtcag gcagaaggga ccctgtccct cgggagggct ttttaaattt ttatattttt tacatttttt taaagatgaa aagaggttct tggtgtatta attattgtta ctttgtggct tgactcagga caaaggtgca gagaccatcg cccatggcca aatctggatc tatgcctgca tggcccttga 97920 gctaaggatg actttttta atcatatgaa attcaaattt cattgtccat aaaggaagtt 97980 ttcctcgaac acagtgacac ccattcattt accttgtgtc tctggctgtg tttcatgcca 98040 acagcagtet tgaagttgea geagagaeea catggeeeac aaageeteaa atatttaeta 98100 tttggtcttt gatgggcaca ttgctgacct gtggcctaaa gagtcatgtt tgattactgc 98160 ttgggactct agtacacaaa tgtgcaggtg gaaactcctg gctgtgccac agatgcctca 98220 ctcagctgag aaaccccatc tatgtcttgc aagggacgag accctgtttt tctttagaac 98280 tcaccattaa agcacatttg ctactttctg aagtggtcct gtgtgaatca tcttatctag 98340 gcctcctgca attctgcaca tctttattgt gtggaagaca tggcactctc ccacatgtat 98400 taactcatga ggtaggtgca gtcattatta ccatccatga gtggagaaac caaggcccag 98460 acaaatcagg tggactgcct gtggcctaat ggctggtaag tggagcagcc aggatttgga 98520 agcagacaag taaattcaag attccatcat ctcaacccca gctccacctc acctttcttg acacattcag cttgagatga ttatgtccat ttcaatagag ataaggtagc agagataaga gactgggtaa ttggctcata ctacaattgt gattagtaat agaggcaatg ctctgcggaa tccagaaccc acacatgtgg gtctagagtt tcttctgctg cccctgcca cttgtacaag 98760 tcaggcttag ttaggataga acatcttttt ccatattgat ggagggaagg gacttcgctc 98820 ttgaactctg ttgttgcttg tgatctttgc agcaaattgc taacactgtt gggtgtgaaa ccaccaactc agctgtcatg gctcactgtc tgcggcagaa gatggaagag gagctcttgg 98940 agacgacatt gaaaatggta ggttgcctgt tcccgtagcc caaaccctgt aaacttggtc 99000 ccagacttct tcatttcagc tgtcctcttg ccctgggaca gttacctggg gcaatttctc 99060 aagtctcagg agtctcagta tctgaatggg gaatctaatt tgtccttttt tttattgaaa 99120 aatgacacaa atgtaaaaac aaagtccaaa aataacatga taaaaaaact gaccaaattt 99180 actatttgac caaattttaa tattttgcca ttcttgtttt cagatgtatt tttgagaaac 99240 taaacattac atattcccag gggacaccat cattctgaat tttggggatg gagttattaa 99300 gctcaaagat tttcagaaag atgtcacaag ttatcttggt tgacttagaa actgtctgta 99360 ttagacctgg tagtggtcca gttttctaga ttttctgaga ctctgactca gttgtcattc 99420 taggatagtc gttcgtccac tcaatcatta atccatctac tatgatcttc ttatgcatct 99480 atgtgttcac taattcatcc cattcattga tatattttta tcaatctaat atcaacctgt 99540 tcataacttt ttatttttct attttcaatc tatccactgt tcatgcatca tccagccacc 99600 atatatetta aetetateae eccatteete caaaaceaae aatecagtta teaectatet 99660 gttagttttc acccactatt catgtatcca tccaattcaa ctgtactcca gctattggtg 99720 aagccatcca teeeteeatt tatecaeeca teeateeatg etaagtatgt aggggtgggt gttagaggta gtgaaacaga catgaagtgg acatagtccc tgctcacata tacttttcag gttgagtatg gtggcagcac agaggggaag cattcattgt agtcatcagg ggtgcttcac agagaaggtg gacgagccga atttgagacc agacagcgga attcgggaat tcatgccctt 99960

aaccetgact ccaccttatc tttcttgaga aattcagcat tgagatcatt gtgcccattt 100020 taatagaggt aacagagaca gagaaatttt gtaattggct catgtcacag ttccagttag 100080 tcagaggcaa cacagttcca gttaggaccc agaacccaca cctgtgggtc tagaatatct 100140 tetgccattc ctgctgtcct cacatattag gacttgggga cctttatgat tgacggacag 100200 ctgtggcagt ctctcaacac agggaagccc agcaggacaa acacccagat gacacagcac 100260 ccagggccat tgggaactat tccctttgag ggagaagggt gtgaattcca agctcatgag 100320 tagcctgatc tctggaatcc ctccttggac ctgaggctac tcctgggtcc caggtccggc 100380 tgctaccact ggactctgct tgtgtttaca tgggttgagt ccaatgtggt cttggagctt 100440 aggtettggt teaageteta aatgaceaaa gtgtteaagg aattaaaaca caactgettt 100500 ctaatgcctg gaaggaggca aacattccag caattctgca tgtggcatca gaggacccag 100560 cttaaaagga aaaacttggt aactttggga aaatccagcc ctaagatcct gggacatcct 100620 tetgagattt tetgagatet tgtgggageg cetecatgat tacceactge etceagtaca 100680 cacacatgca gacacacaga gaaacacaca cacatagaca cacacacaca gagaaacaca 100740 cacacacac cagacactcc tggctagtgg gactacaatc cttaatggag agacctgcac 100920 tggttacttc ctgcgaacag gccagacacg tgagctacag tgcagcgata caatcactgc 100980 aatcttcatg aacacacc aaagagaagc atggggtagg gtaagtttca gtgagttgta 101040 tgagtcagag ctgtgtaatg ggagatgaga aaactccccc aaggtgcctt gaatggaaaa 101100 aggaatgtgt tggaataaca tccttgtgtt aactgaaaaa ctcaggagtt gacagtttca 101160 ggcatggctg gatccagatg cctattgaat gttattgaga atctaccatt ctctatcctt 101220 cagetttgga caactetgtg ttgactteac tettcagcag atacatette tgggaaggtt 101280 aaagacaaca gcactctaga gttatatcct atctgcttcg aaaccctctg tccaaacaat 101340 tcctacaaaa gttctggggt aaactctatt ggattgacat ggatgtatac ctatccctga 101400 actaataccc gcaatcaggg aaatggagcg ccccaggtca catatagatg cctgaattca 101460 tggagtgata gggaaagaaa gagatccctg aaaaagaatg ggggtattct tccctgggga 101520 acaggaaggg gagagggatg ggggacaggg aaggctccaa aagcaggtgt cctatccaga 101580 getgtageaa tgetggetea gagtteetgg cecateette cegtgeeagt geceaetett 101640 tegttetatg cetteaccet gtgeteagge ceageagage cagagteegg cecaetteet 101700 etgggeccag ceagetegge aceaggaggg agaacetgae acetetgetg ceceaeteae 101760 ccagctcagt gttctcctgg gaagcctctt acccacatcc tctgcttttg tcttcacaga 101820 atttctgaac tetagaetta catggagace ecagagaggt aaggacattt tgtttetega 101880 ttgcgggttt tgagtcttag cacctttaag ctccaattaa ctataagtga aagaatcctc 101940 tetegggtaa ttataggaac teetgtgtge ttgatgetga ggeccagaga ggggcagtea 102000 ctcacctggg taacacagec aggaagacta gtggctggcc tggaacccat tttcctgact 102060 cccagtccag tgctcccagg catcacctct gtatgccctg ggctctgccc actcccctgc 102120 ttttttacat tttctgctcc ccaaaatggc actatgggag gaggttgaac cagaacattc 102180 cactatcggg aggcagagat aacagggatg attagccacg gagaggggaa gcctgaatct 102240 cagtecaagg acacteaact ceteceagea cacaggagte tecaacaata teetegtgat 102300 etecteacea ecceacete ecaatgggtt gacagtttet ggtgacatea ectetgacga 102360 atcttacaat cotgtoctot otgotgoott aatggaggto acagcactot ootaaatggt 102420 catgggcgga gtacatgaga atcattccag caaaagactt attaacactt tctatattcc 102480 aagaacttgt ttaaggagct gtgatatagg agtaaaccaa gaaagactcc ttgccttttt 102540 gggacettee attacagtgt agggagagtg caataaaaaa gcaattetag tatgtattet 102600 . gttggatggt gtgcatgcat taggggtaga gtttgcaggt ggattcaatt taagtcgcag 102660 gatcagggaa tggctcaata agaaggtggc atttgagcca agctctggag gaggcatgaa 102720 gccagctgtc aggaaacctg gggaagccta ttccaggcag agggaacagc cactgcaaag 102780 accccgatgg aagtggcagg tccagctgga gaggatggag tgtggggaca gactggcttg 102840 aggotgaaga ggtaatggga agtgggagag ggatcattta aagtagttgo atttggatto 102900 tgagcaagat gggaagcctt tggaggtttt gaacagagga gtcacatgat cttagatttc 102960 acaaaggtet etgeecetgg tgateaaata gaetgtagga aaegggeaga gtggatgeag 103020 ctgaccagct ggcgggccac tgcattgcca taatccaggc aatggctcct ggctgcttaa 103080 ggctgtagta gtggggatgg gaggaatggt tggagtctgg atatctttga aggaatagct 103140 gagaggattc gctgatggac aggatgctag gggtaagaaa gggagaggag tggaggatgt 103200 cctgagtttt cgggcagaag caaagtcata cccacacagg gcagccactt gaaaactcta 103260 agtggacaac aatcacttgt cattgttgct gatggcagtc ttcccacttg gctgccaccc 103320 aaccagggca atcctgtctc tctcctcaac ttttatcctt ttctacttca tatcctctac 103380 ccaattccgt gtctcatggt gcagccagat tggccttcct taacagagtt agagtgcgtc 103440 acceccactt ettaaaagee tgacetteet tatgagacaa attecettee etceatggag 103500 ttagtccttc aaaacacacc tgcgtgcgca ctatgtgcca gactatacag aaggtaggct 103560 etgeacetgt ecetecetet aaaacetgee ecaegataat titecaagee cagaacteet 103620 gagtgtttct ggaatttacc ctgcatagtg atatctatgt ccctttgctc acgtggttcc 103680 cgttttttag aaattctcac tcctttcctc acttgtcaat accagtcact gcccagagcc 103740

cactgcaggc	aggcggcacc	tectecacgt	agcctgccct	gcatcttcct	tgcagagaag	103800
ctgctcctct	tgctggcctc	ccacggcagc	cctgcctgaa	ctgcacagcc	tctcaaggag	103860
gccggacttg	caccccaatc	ctgttccgta	ttgtcagcca	tattggatta	ggatctqcac	103920
cttgtccagc	tggttctggt	ccacttcaca	gaacatttcc	cccaggcagc	ccgaactagc	103980
tcgtcattca	ttggcttttg	tagagcagaa	caaaggtcct	ggaagccata	gggtctcaaa	104040
aaagctagga	attgtccagt	tgcatctgat	atctgggagg	gaaaatacca	gcccataggg	104100
gcatgggagc	tgggaagatg	gcccagaagg	actgggggtc	tattgaaagg	ggacccacag	104160
caacctgact	aacaggtaat	acttacagtt	attcagccct	tccagacacc	aggtgctgcg	104220
ctaagtattt	tgcatgtgtt	cagccattta	attcctcaca	ataactcacc	tcttagatga	104280
gaaaactgag	gcccaaacag	gtgaaactcc	cagccagtaa	gtagcagagc	caggcttcag	104340
atccagttaa	tctggtttca	aagtccatac	tctgttttaa	ctgtacccag	aaccagctgc	104400
cctgatggca	atgcgtgaat	caggeteteg	ctaatctgtg	accatacaaa	aattattcat	104460
caaaggtaaa	acctaaaatt	aggacatgga	tcaatatact	gtgagttcat	cactgattct	104520
tttattcatg	attttctctc	taatagggaa	tctcgtccta	gtctaggctc	cttgagtgat	104580
gagggttccg	tacctcctca	aagccaccca	tggatcaata	acagetetea	tttaaataga	104640
gatagatage	acaatctctc	ctcattaatc	atggattetg	cgtttataaa	ttcacctgct	104700
tcctaaaatg	tccttataac	ccccaaatcg	atactggtgg	cactttcatg	gtcacacaca	104760
ggcaggtaca	gagtagggga	acceggatte	gcatgatggg	cacgttccat	ctgagatccg	104820
	ctctgtcttc					
	ccatgtgttc					
	gagtagcgct					
	ggcgcctgtg					
	ccacaaaact					
acatagaggetg	tgatgggaag	tgccaaagta	acacctactg	tgtgtgatgc	agctgtggaa	105180
gatggaaaa	gaaactgcat	rgggagatte	acgagacgac	gaaggaattt	ttaaaaagca	105240
Cassassta	cactgttgtg	tanastasta	caggaaaccc	acactcatct	tacccagggt	105300
actettteta	gaagggettt agaettatgt	attatatasa	ototattaaa	agtaatteta	cctataatta	105360
gaaggttgat	gaaaatgttg	taaccacaaa	tttacaacaa	acagaaacce	tatttagget	105420
ttgagtgatg	accetgtatt	ctctaattca	acactcataa	gagetttgtg	ggaaggaagt	105540
qctqqqacta	ccgaaaacaa	ctatagacac	agagaggga	atacatatac	ttcasattca	105540
agtatataga	catgtaattt	tatatagata	atacatotat	ttcagtctga	atasasttt	105660
cttcctctcc	tcgtcacctg	accagtotca	acctetacet	gaagttctgc	ccctgagtca	105720
cacatctatc	ctccttagtt	aggaccctgt	gtgtgcatac	ccatooccca	aagtcacgcc	105780
ggtctagggt	gctggtctca	ccctcagaca	ggcagagttg	gggacacagt	tataacctaa	105840
ggtgggaatc	acaggcgctg	tgttgctctc	tccccaqaq	ttacccccac	acacccacoo	105900
tgattgatgg	agtggtgctg	ccaaaaacac	ccgaggagct	tcaagctgaa	aggaagttcc	105960
acactgtccc	ctacattgtc	ggatttaaca	ggaaggaatt	tggctggttt	cttccaacag	106020
tgagaaggcg	caggcctctt	ggagggactc	acccacccc	atcagccctc	ccacctctga	106080
tcccaggagt	gcttccctct	ccaagcactg.	ctctgagtcc	tgggcagctg	ttcccttcag	106140
caggaggtaa	catttccatg	gaaaccttct	ccaggagggc	acagttgtca	ccgggatatc	106200
agggccctgg	gatcccctct	ccccagactc	tctgattgtc	ttcctattga	agaatcctga	106260
agtgtctgtg	ctgggaggac	cagtagataa	aataactgtg	cagatgggaa	aactgagggg	106320
gcctaggagg	ggaaaggagt	tgaggagtcc	ggagaggcag	tcgggggctt	cctggcttcc	106380
cactttgggc	tgggtatgca	tagttccccc	ataaatcact	catgctcttc	atcacctcat	106440
tgaaaagatc	caaaaaagtg	gcttcttttg	atttcccatt	gacttctagg	gaacagtaga	106500
caccagggtc	tacttgaggg	atgacggtca	gaggagggtg	aggatggaca	agttacctaa	106560
tegggtgetg	tgctcaatac	ctggtgacaa	aataatccat	acagcaaact	ccagagacac	106620
aatttaccca	tgtaacaaac	ctgcacctgt	acccccaacc	ctaaaataaa	aattgggaat	106680
aaaaagtgga	agaaagaaag	attgacttct	aaaattgaaa	aagcgttctc	cttccagtcg	106740
aggacacaca	aagctgacca	tgattaaagc	agtaggacag	aatttattca	gtaacacaac	106800
tgcacagagg	aaagaagagt	ccagtatgga	ttggactcaa	atccccaaaa	ctaactcctg	106860
gcactgttt	aaaggctgag	tgtgcaaaag	gataggcact	gtgtgctgtg	gagagggact	106920
rggtccatgt	gactagaccg	cctggatgtc	ttcatcctgg	ctcacctggg	gcagaaacaa	106980
acecceteta	tcgtcaggac	aggaagccat	gcattagact	gcaggaagaa	cccactgaag	107040
ccaggeteta	ctctttccac	agggactggg	aagatcagga	gtcagctccc	tgaatgtttg	107100
cattgcaaag	agaaggctct	aaggccctca	aggaaatggg	gttgggtggt	aaattccatc	107160
tonggen	gagaaagtgt	ttatcattgc	aggcttctaa	actaactgct	ctagttgggt	107220
ecayyyycct	gtctgcttct	ccccaggttt	rggcrggagc	agagtaaatt	gttctggcag	107280
taagetget	tcccaggcaa	gcatgttaag	gatactggag	ccattctagg	gacacagcct	107340
anttottte	gaagcgatgc	tatasatt	cogagiciet	yagtgcagag	gtttgggcag	107400
aaagaccass	tgtgaagaga	cacquagette	geceetcaya	ayyatttcag	aggttatacc	107460
	gccatgaagg	Cayyettetaa	ggeeeeage	scattegeg	acaggragag	10/520

PCT/IB01/00116

gtactaggga ggtctgcatc ctcttcccca gaaccctcta ttccacactg gcttggcaga 107580 caccttccct caccatgtca ctggccactg taggtatccc agcctgacac acacacaaaa 107640 cacacacaca Cacacacaca cactgcaaaa cactgccaca gcttctccac attttttt 107700 tttttgtaat etttgcaatg ettgagttte tggatataag eecatttgat teattgattt 107760 tgcccatttc agtaaaaacc catgccttta aaagcccaaa atattggagg actttcagtc 107820 tgcattgatt tggttggttc gtcagtttgt ttcttctcgt taattcccaa tgattcataa 107880 atgcttaact ttttttttt ttttaacagt tgatgagcta tctactctcc gaagggaaac 107940 tggaccagaa gacagccatg tcactcttct ggaagtccta tccctttgtt gtaagagtct 108000 aggaatcacg ggaattggct aggacccaca gagcgacaag gattgcccaa attatagagc 108060 aattaaatgg ccgaatgaag actggggcct cagggtttct cccatctttc cacctttccc 108120 actteacttt ccaccetage ggggagttge acagggettg tgggatteac cattgaggea 108180 gcccttcctg gtgggctgga gaagctacat cgctcaccag ggggtggttg tcactttatt 108240 gatctatttt agegcattcc taaggaattg attccagaag ccattgagaa gtacttagga 108300 ggaacagatg accetgtcaa gaagaaagac etgtteetgg acttaatggg ggacgtactg 108360 ttcggtgtcc catctgtgac tgtggcccgg aaccacagag gtgagtccta gaggtcgaac 108420 aggggaggga tatggacccc accagcttct gtatctgact cacctacctc ccagcataga 108480 cagatgtgga aacagccgag ggtcaggcct caaaggctga ttccatatgg catgggatga 108540 gcggtttttt taaggtggtg atcccagata tcagcagtag ggcggtgggg aagtgagaga 108660 ggaaagagat ggaatccaat ccaaggtgcc ttgacaaggg agtatcctct gtggacaact 108720 ggagctggga aactcaagga aacactgaga atacagcact caggggcatc ccatctgage 108780 accaagggag ctggggtatt tatccaccag ctcccacttg tcattgtttg aaggctcttg 108840 caaggagttg tttattccct gtgactttga cctgctgcac acaagggcag agtagtctct 108900 tgtgaccaga caaaggcctc aggccgggag ctgcagatgc tggaggtaga agtcaggctg 108960 gcatgcccag gaagaggga tatgggtgag acactgacag catctgctgc aagggctcca 109020 tgcctggagt tatcgtggga catagggctg ctgtaggaca aatattgaaa gatgagtctt 109080 ggaaggtttt taaggtccaa gttggctgca aacaagcttg ttaagcattg gagctggaag 109140 aacaatggga gtcctgcaca ggatccagag gattgtccag gaccaagaag gccaaaagta 109200 agagetatgg tgggtgtggg ggaggtggte ggaagaatgg caatgtetga ggetggettt 109260 tgtctatctc ggtgtgtgca ggaacatgca agcacagtgc caggacaggg tctatgcagg 109320 accttctacc actgacccaa ggctgtgtgg gtggggcatg aggttaggga tgcgtgggct 109380 cacctctaga gaagtgtett eteetgggtg ceaactagag gaggeteaca ggaeteetet 109440 ttttcttcca gctctcattc gcctagtctg caagccagga aatgtcctct ctctaaccat 109500 gctggaaagg tttttaaatt tggaacttca taagctaaag ctaaagctat agctaaagct 109560 gatgtcgcag gtgcccagac acacctttgc acaggaaggg gcaggtgctc ataactctca 109620 cttcttcaca aagtcctgat aaaaccctat aaccaggacc actggagttg aatcatttct 109680 gtcttaaact tggctttgcc ccatgttctg catctgatct atatatagtg ttcccatctc 109740 catcttccaa tggtttgagc aatactgaac ctctgttttt catctgattt cccacaactt 109800 tgagttcaga gttttttgtt gttgttgttg ttgttgtttg ccaggactac acagatctta 109860 tcaactttca cttattgttg tgtctcactc tttttgataa aaacaacatt tctgaacata 109920 aagttaatat gttaaagtta atatgaagaa agtttcaaaa atatggaaac acgtaaagaa 109980 gaaactacat atcactccta attcccccac ctggaggcaa gtggtataaa tttttttgta 110040 ctttcttcta aagatttttc atgtcctata tactttaaaa atcaatttta tatttcgctt 110100 ttgttcatag aacactatgt tgtgaggatt ttctcaatat tcatataaac tcatcaaaac 110160 attecttatt ccatgaaatg getgtgttaa atagaettta atatteetat eetattagat 110220 gtttagcctg gctgctcaca ttctgatact acaataacac tgagttcagc ctaatgttta 110280 taagteteta accacatgte tagtaatttt ettggaatte tttttagaag tgaataacta 110340 ggctggacca aagaaatatt tttgaactct tggcaaataa tgcaaatttg cattccagtg 110400 cataagaacg tggatttctt aatttacttt ctcatttggg ataccaaggt taaaagttaa 110460 tgctgccaat ttgccccacc aaaaagaagc acatcaccct gtattctttt gcatgtcttt 110520 catgacatgt ctttcattgt ctctgcttct cttcttgtgc ctatttgtca ttgcccaaaa 110580 ctgtgcccta ctttcctctg aagacttgtg ttgtgactgt aggaattcta tgaatatcaa 110640 tcactttagc caaaaaggtt tgacaaagta cattttgggc agcatgctgc ctataataat 110700 ttctatcatt cacaaaagct ctttcctcta tagttggctc tgagttcctt tggaaaatgt 110760 ttgaatggca aaggcaaggt caaaccctcc ttttagcaag ttttgcttga ccttqaaqca 110820 gccatttaac aggtggatta cagagccaca gaaggatggc atcttcccaa gtgcgcttcc 110880 tgctgagcca agggtgcagt gcaggaggct gacaaagatg agtgaataga ttattcttca 110940 ttcttacatt gaaatgacat gtgcgggtgg ggcgtgaggt tagggatgcg tgagctcctg 111000 ttgttaaatc cttttgtggc tgaatattta agaatgttaa gaaatgatgg ctggaggtgg 111060 tggctcatac ctatactctc agccctttgg gagactgaag tgggaggatt gtgagagcct 111120 aggatttcaa gatcagcctg ggcaacatag tgagatcctg tctctacaac aaaattgttt 111180 tcaaaaagtg atgatactat attacaaaat aacatatata atatcatccc aagtttatat 111240 acataaaaga gagatatgtt aaaataaaaa agaagcgttc tctgtggtag agttaccagt 111300

	atttgatttt					
gtggaaaatt	caaagtgctg	aggcacagga	ccaggtggcc	catgatgtag	cccagaaggg	111420
ccagtgattt	gtggctccaa	tgagccaatc	attgggaaac	tggcatcttc	ttcqqqctqq	111480
aacaggagag	ctttgttgtt	gggagagaag	gcaagcaaaa	agaagagagg	caagggaaaa	111540
gcaaggtcac	ccttgctcag	ccccttcttt	gatctaccat	genttactg	ccttaacaca	111600
atasasataa	22222222	200000000	ggcccgccac	gacticacty	ctttaacatt	111600
CCAACACCCC	caggccaggc	aggeageaag	acacacggag	acagegagae	acaaagcagc	111990
gagtgccgca	gattcctgag	acacaagagg	cagattgttc	cctctctgca	tatgtttgta	111720
tttaagtagc	ctcatgttca	gacaagcaac	ttggatttgc	ttcagtcttc	tcaggatggg	111780
tgagaaaaac	actggaagtg	ctcaaaatga	gggagaacag	aagacacctg	tcagagtgga	111840
gatggcgtcc	aagtgaacga	agtetgttat	caatgaatta	catccagtgt	aaccagatgt	111900
agagagattg	tcttgtgtga	gatgaga	acadacasa	castttaggs	gagagatat	111000
atataaataa	2000909090	24444	geaggeaaag	gggcccacga	ggcagagcca	111300
gegeeeerge	actggcagtt	accetgaacg	aattgaccca	gggtttccac	attcattcat	112020
taaacatttg	ttcattgaac	aaatatctgg	ctctaattcc	agttccacct	caaccagcta	112080
tgcagcccgg	agcatgtcgc	tgagctttcc	tgtgactctg	tttctctact	gtgctgacag	112140
	cctgcagagt					
	tgaatccttg					
toactaccat	ccaagcttct	catcacacat	-300332302	accatastas	ananaanaa	112200
	ttctccgtcc					
cgtgagcttg	gagttaggag	atctgggttc	ctgtcttggt	gtggtggctt	tcagcaagtt	112440
tettetete	tggtcttagt	ttactgattc	tctataacag	ggttgaatgt	cactgggttg	112500
tececcaget	tcctcccact	ctaacatatg	tgaggcggga	tgtgtattca	tgtgcccttt	112560
	tcagaatcct					
	ttcactatac					
	catgacgggg					
	acatcaacaa					
gagttgaatg	tcatcgggtt	gtccccccac	ctcctcccgc	tctaacatac	ctgagggagg	112860
atgtgtattc	atgtgccctc	tgcacaggcg	ttcagaatcc	tgttctgtga	catcaacaag	112920
	ggggggtctc					
	ttcctcctgc					
taccacagac	actcagaatc	ctgggctatg	tratrascas	assectant	acgements	113100
caccactact	ateaguace	cegggeeatg	teactaacaa	gacaggegge	gggacacacg	113100
tatasatasa	ctaggttgag	aagecaceaa	teaattteee	teteecagga	gegetgagaa	113160
rgrgagrgag	ggtgagatta	gagttggtgt	taaccctgag	tcaggtctaa	tgtgtgtcgg	113220
tttgtctttc	tgtctgtctc	taacaaaaac	tcataaacct	ttacatttat	tacatttaat	113280
aattgttagt	ttagaaatca	caggattatg	aattacgatt	tatagtcagc	aggattcact	113340
gtgacaggat	tgaatgtcat	tggcttgtcc	cccaqtttcc	tcctcctcta	acacacatga	113400
gggaggatgt	atatcatgtg	ccctctccca	ccgacactca	gaatectogo	ccatatcatc	113460
aacaagatag	gcggagggac	acatocagoo	costastata	gattagaga	cogogoodco	112520
atttccctct	cccacaactc	stansantat	coctgooda	ggccgagaaa	thanhahta	113520
acctenetes	cccagaagtg	ctgagaatat	gagtgagggt	gagattagaa	reggegeraa	113280
ceetgagtea	ggtctaatgt	grgreggere	grgrrrcrgc	ctttatgtct	ctaacaaaac	113640
ctcataaacc	tttaaattta	atataattaa	taattgttaa	tttagaaatc	acaggatgta	113700
tgaatttgga	atgggagagg	agactttatt	tttgatgtgg	tttatagtca	gcaaagttgc	113760
tatccctcaa	gctgggaagg	tgcctctggc.	caagcccaca	aacaggetea	tcgaacgagg	113820
aggggttggg	tagaagcttt	atacgaacag	attooctaaa	catacatott	caacacotta	113880
cagggggagg	aatggatatt	catgagaga	atactacea	atototatta	ancanageta	113040
catotaacat	tacagatatt	cacgaagaca	terreserve	atgigiacia	aacaaacacg	113940
tacgcattat	tgcccatgtt	-t-t-t-	cygagaccia	atatttaaat	gcaccacac	114000
tagggettat	aaatccaagg	gretteteag	gacacaaagc	ccagcaagtg	agcagcctct	114060
gracaccggc	caggtccagt	ccatggctgg	tgatgttctt	atctggagaa	aataactgaa	114120
atcagtctct	tatgcaatca	aagccgtagt	taaggctggt	gggcagggtt	ctgttcttcc	114180
gagtatccaa	gctgcagcca	ttttaattgt	tttcattttg	cttaactcca	ggccagtact	114240
ggtttagctg	tagacaaaaa	gaagcacctt	gcagcaggga	gaacagagtg	gattettaa	114300
gggtagagat	gcaggcctga	accettocce	gacatagact	trastattt	tttaatttaa	114360
tatattatta	202222022	totottate	5354539555	cogucoccc	tetaactegg	114300
	ccacaaggag					
	tggtgtctaa					
	tccaggcagg					
gagggtctgt	tcagtgagtt	gggggtgtta	ggattttatt	tttagtttac	attatacaat	114600
atttttaaaa	atcctttcat	gatgtcttct	aagccttaac	tctcagctgt	tacagatcac	114660
atgggactca	ccccatggct	gctcaggatg	caccatcocc	actoggcato	tcccaattat	114720
gcaccettag	gaggcttgag	ttctctrete	tttcaceato	toaattetee	atatataas	114700
Gadadadaa	2-22-c-242	togggggg	nanta-nata	25000	gegegegeaa	114040
	ccctgggagg	-agggcaage	acatygaaty	acycatgccc	accoccyage	114840
cclaggccag	ccatgcttaa	aggtaaagta	cacacaaatc	caccaggatc	ttctaaatgt	114900
gcagacctca	gctcagtggg	tgtggagcat	gcgccaagac	tatgtttcta	gcaggtttgc	114960
acgtgaagtt	gacaatgcag	gtccgcggac	cacactttga	gtaacaaagg	cttttttct	115020
tcttccccac	agagggtgcc	tcagaagagq	agatcagact	tagcaagatg	gtgatgaaat	115080
				- 5.5		

tetgggeeaa etttgetege aatgggtgag getettggea aagacacage acagetggtg 115140 agggtggggg gcggggcatg cctattggga aggggcagct tctaaggttc tagcgatcaa 115200 acttetgace etgtgaceat ageaetetga caatgagage tetetacaaa tggagaggee 115260 gcccccggag atagtgaact ccccgtctct ggagatatac aagcctcttg acggagataa 115320 cttgggcgtc ctcacacatc tctgaagatt gttggggaca cacagcagct ttggggcaat 115380 tctatttgat tttgtttcca gaaaccccaa tggagaaggg ctgccgcact ggccagagta 115440 caaccaggag gaagggtacc tgcagattgg tgctaacacc caggcagccc agaagctgaa 115500 ggacaaggaa gtagctttct ggaccaaact cttcgccaag aaggcagtgg agaagccacc 115560 ccagatagaa cacattgcgc tgtgaacgga aggtccatcc agcctcggga acctggagga 115620 gcaaagactg gggtcttttg ccaaagggat tgcaggttca gaaggcatct taccatggct 115680 ggggaattgt ctggtggtgg ggggtagggg gcagaggtca tgaaggagca agttttttat 115740 ttgtgacete agetttggca ataaaagate ttttgaaage caaateaetg ettgtgtett 115800 gtattagaga ttaatccatc ctcctcagag acagaacgat gatgaaagag gcaatgtgag 115860 aaggaagctg getttgetgg ggatggeetg geeteaggae gagtaeagte eagagggetg 115920 ggtcatggac agtgctcagg ggagctctgg gcctactgca tgtttctgag cccccaagaa 115980 tttccaacaa taggatttag gattgccaga gtgcagcatc cctatcctcc atttggatct 116040 gcctatggaa atggaaatgg cccaggctga gaatttgcct ggatcaggga agagagagg 116100 gtgccgaggt gatcccgtgg cactgttgga tggcctttat tgactcttgc acaggtctgc 116160 cacaccttcc tcagtatgta cactagcctc ctagacccct ccctgaggct gtctctttca 116220 acagetggte taaacteest etgtaacetg gaccacttet gttgegggca etgaccacet 116280 tagagcaagt ctccagaggg tcatcctaat actgtgtctt tcagaatctc aggggtgatt 116340 tetggattet getagaatgt ggaaaactet aaagagtgte acteetgeet tateageaag 116400 agaaaaaget ggattgteet caaaateata aetttteeta ttgeecagga gaaagattgg 116460 ggtagatagt cagactagag agggccaggc atggtggctc aagcctgtaa tccagcactt 116520 tgggaggceg aggcaggcag atgataaggt gagaagatcg agaccatcat ggctaacaca 116580 atgaaaccc gtctctacta aaaatacaaa aaattagctg ggtgtggtgg tgggcgcctg 116640 tagteccage tactegggag getgaggeaa gagaattgea tgaacceggg aggeagtget 116700 tgcagtgagc cgagatcatg ccactgcact ccagcctagg tgacagagca agactccacc 116760 taaaaaaaa aaaaaattc gccctgggca gagctgcagg ggagggtggg aagccgactc 116820 aggecetgea cetgggtage tgececaect ggtgetgece caggtaacge atgtacagga 116880 tgageeteee tteecceage agggacagat eccaeteagt ectgeeeege atgeteteet 116940 aaaagtttgt atcaagactg tgcctcatta ttccctgcga tggggaagggc tggggagaaa 117000 aaaacctacc ttaccacttg attgtgtcaa aatacaaggg aattcattgc aaagagcttg 117060 ctgtgctcca tgaacggggt ggagctcaag tctgaaatta aaggatgggt aggaaggggg 117120 atggccagec acaacgtggt ggaagtgtga eeetgagcag tgggggcaag ggggccagec 117180 cacgggcagc agggctggtg ttggcaaggt tgctggagca caccgtgggt gcctggagga 117240 cagettttet acettgacat gtaggaaaca gaettetete tttataggaa gataatgeca 117300 taaaatgtet gtetaeetat etgtetatet attatetate taecatetat caattateta 117360 tctatcatct attacctatc taatctattt atttcattaa ttacatttat ttatgtaatt 117420 gtatttcaag ctctatttac ctcctgaact tttcatgtga gagactacat tttattcaat 117480 atatgettta ggtaagttte agttggattt etettagtae atatgaeaga gteetgatta 117540 aaatcattgc tgcatttgat catttatatt ctatcctgta actataattt atgtgatcac 117600 cagtaatttt atctgtatca atcttgtctc ctgtattaga taacaggttc ttaaggtctg 117660 gtacaaacat ttcagttttt tattgaacat aacatacata taagaaatat atatatatac 117720 acatacacac aaacacacac atgetatgta tatattatga ettgataact teactaactg 117780 atcacactgt gtaattagga cccagatcaa gacacaatat taccagcatc ccagaagcca 117840 catggagete aattecagge cetgeteact tececeteet tgeetateta eccaaaatgg 117900 tcaccacagt cctgatgtct agcagcaata tttctttttc caggttttgt gctttatatg 117960 aacagaatca catactettg catetggttt ettteeetea atattatgtt tatgagatte 118020 acgtgtattg ttgtatatgg ctgtagtttg tcatcattgc tgtatagtca ttcattgtat 118080 ggatatgtca taatttactg gtgtagggca cttggagaat gtattagtct gctcgggctt 118140 ctgtaacaaa ataccacaga ctgggtggct taattaactg aaattcgcat ttgcatagtt 118200 ctcaaggcta gaagttccag aacaggacac aatgagaagg cagcagtctg caaacaagga 118260 ggagagccct caccaggaaa tcagtcagct taatcaacta aaatttgcat ttgcatagtt 118320 ctctaggcta taagatccag aacaggacac agtgagaagg cagcagtctg caaacaagga 118380 agagaggeet caccaggaaa tgagteaget taateaaetg aaatttgeat ttgeaaaaaa 118440 ggaagagagc cctcaccagg aaatgagtca gcttaatcaa ctaaaatttg cgtttgcata 118500 gttctctaga ctagaagttc cagaccagga cacagtgagg aggcagcagt ctgcaaacaa 118560 ggaagagagt cctcaccagg aaatgagtca gcttaatcaa ctaaaatttg cgtttgcata 118620 gttctctagg ctataagttc cagaacagga cacagtgagg aggcagcagt ctgcaaacaa 118680 ggaagagagg cctcaccagg aaatgagtca gcttaatcaa ctgaaatttg catttgcata 118740 gttctctagg ttagaagttc cagaccagga cacagtgagg aggcagcagt ctgcaaacaa 118800 ggaagagagc cctcaccagg aaatgagtca gcttaatcaa ctgaaattcg catttgcata 118860

gttctcqaqq	ctagaagttc	cagaccagga	cacagtgagg	aggrageagt	ctacaaaaa	110000
qqaaqaqaq	ccccaccagg	aaatgagtca	atttaatcaa	ctasasttte	Cogcaaccaa	110920
attetetage	ctatagette	anacgageea	geccaaccaa	ccaaaacttg	caccegeata	118380
Seceetagg	ctataagttc	cagaacagga	cacagegaga	aggcagcagc	ctacaaacaa	119040
ggaagagaac	cctcaccagg	aaatgagtca	gcttaatcaa	ctgaaattcg	catttgcata	119100
gcccccgagg	ctagaagttc	cagaccagga	cacagtgagg	aggcagcagt	ctgcaaacaa	119160
ggaagagagc	cctcaccagg	aaatcagtca	gctgttctca	tttaatgttc	tcactttaga	119220
agatcatgca	agggacaaaa	tetecagaat	ctttcctggg	cggggtcaca	gctagaataa	119280
gaaagttgta	gcccctctga	aacttcccgc	atagctgtcc	ttctatggag	qccaqqaqcq	119340
catcggggaa	ggtacagtcc	acagtccccc	tccatcccac	cagtcagget	ccaaggggtc	119400
ttcacatcca	caaaacacca	ttttcataga	tcaatagcac	acacaccaan	atococasat	110460
tcaaaccaga	tacccaaatg	gcactcactt	attgaatttg	caaccatttt	tagegeaaat	119460
cttttaataa	tagtgcctag	tagcaagaat	atagaaaaag	accasatatt	caccactact	119520
gtgacagate	agtagetect	aggetttagg	dagaatatt	toront	cagcactgat	119580
aagettatet	agtageteet	tastasatas	tagaattttg	cycagcccag	cttttggag	119640
aataaaatt	catttacgct	rgetgagtee	Lycytaagec	ccaaagccaa	gctttcacaa	119700
bossos	aggcagcttt	gaaaaggaga	agtttatett	ctaccctctc	aaagagggtg	119760
caggaggtte	cccttgagag	taaccactgg	tecetecaga	tggcttggct	gcttctgcca	119820
ggctctactt	tcagaaatgc	ccttcattgt	gcaattatca	gaattaaagc	ctttcagtgt	119880
ctcctcattg	tccagggatg	aagtctgttc	tecttggett	ggcattgaag	ctctctqtct	119940
tccattcccc	cttccattgc	aactggcctc	cccaagaagc	ccctgaatct	gccttqttcc	120000
aatgctaatt	tettetetge	ctctccaaat	tttgcccatc	tctcaatacc	togtaccatc	120060
aagagtcatc	acagetttgg	gcattaacat	atatoaatat	tgatagttct	Cadddcaada	120120
aaacacacac	aacatgcatc	tctatogagg	ccactctatt	cacctggatg	cttataatot	120120
aatctotagt	ttgagtttcc	acceptatt	ccacattata	attenatet	cccacacgc	120160
tatataaatt	tttacattgc	tttatasata	atattttta	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	caccccccg	120240
tanaganaga	attactactge	toccigaacc	accettette	ccattttatt	cttaacagge	120300
taaaggaagg	cttaatagag	tagecetaat	gaataggate	tgggtttata	atcgggcttt	120360
cgtgatttga	atcaaagaaa	tgcaaaaact	tagtgtttat	cagagtgtgc	tgcacttatt	120420
cctggagtta	tgcaagatca	ttttagatgg	cacacaaact	aaaaaccact	tatagaatgg	120480
ctgtttattt	attttgctgt	gtattaggga	aaaaaccctt	actatcaagt	ccatggttta	120540
arggaratta	cctgtgacaa	ggattgctgg	cagtctgtta	aaatctgtcc	caccttcctt	120600
ggtacacagc	cagattacat	tttccagcct	tcattgcaat	tagattgaac	acgtgaataa	120660
gttctcacca	atgtcctctg	agtgggagtg	gagagtgcca	cagecaggee	tggcccatac	120720
aaatgctcca	tggtcacact	tctgctcctg	cctcttccag	gtgacaggca	attgacacct	120780
atggcaactt	tagaaaccat	gagtgaagga	aggcaaagcc	accatageet	agatcaggac	120840
tgagtaaact	acageetgag	ggccaaatct	ggcctactgt	ctttttaaaa	ataaagtttt	120900
attgaagcac	agtcatgccc	attogcotao	gtattgttta	tagaccacct	tectaccaca	120500
gcagtcgcca	cagacagece	atggcctgca	aadtccaaad	toottactat	ctccaccaca	120900
atagagaaag	tttgctgata	tcctaatttt	astatatas	tooccattate	Coggeocette	121020
accttottoa	cctgaacaac	attetaatee	tttacctata	cgaccacacg	gacaacagee	121080
ttctgggcct	atttactacc	atactttace	strateters	Cyadadataa	geegeegaaa	121140
tracagggete	attgctacc	gradetace	ctacteteae	taataattet	rgcrcagcag	121200
acatasatsa	attgactgat	gaatgtacat.	ggcccgattt	ccggttgttt	gcgccattga	121260
gggcgactag	ttatgcccat	gggagtacag	CTCTCTCCTC	taagacccac	caccaggcca	121320
adatttette	cagatgctct	gaccagttag	tcctaggacc	tgattgaccc	caggtagtct	121380
gaccccctaa	atataacata	gcatcatggg	cctgggaagg	tgtaaacata	atacaatttc	121440
tgcccattga	actgaatgtt	aacaggaaga	cattccctga	agcagaagaa	aatqaccttq	121500
gtgatgatga	cccttgccaa	aggtaggtga	cccttgccaa	aggtagttaa	cccttacctt	121560
gtcacctacc	tggtggtcct	gatggtgatc	agttctttca	tqtaactaac	tggccttcaa	121620
tggttcactt	ttcccattga	gtgacttttt	tcaattatat	gcttttgtaa	attagaagtg	121680
tttttactgg	catttcttta	tgcacgtttt	tatttttacc	atcattttaa	tttaaaaaat	121740
gcagttacac	attttccatg	catacctcta	atttatogca	ggttatacag	gtcttgcagt	121800
tatggaaatg	gtataaagtc	tcctttttaa	ataaacatat	taaantaaaa	agagtgette	121060
atttaaagaa	aactgttcat	agaagtacag	accatatoct	datdadddaa	agagegeeee	121000
tattagtgtg	agaataagtg	aggttccaga	assactosat	statassaa	taaaccacga	121920
aatotcotao	aatcctggat	trataga	teeneeree	atgreeagge	rgcagrggag	121980
ccctcccc	ataccagac	ccacagagig	regagecacg	grgaagggrg	catgagagag	122040
atteteage	atagccaccc	cotgettte	cacaaggaat	teceaaatgt	cacccagtgg	122100
teceagas	ttctgtctcc	cattedagtg	LCCCCCCCC	caaaatctac	acctgatcga	122160
castacates	cagagacaaa	gergagrgag	gggctcagca	ggacatgggc	ttgctgtgcc	122220
caatyectge	tctaatatta	gctttccata	tatctgctga	gtaaactgat	ggaggtggag	122280
aggtttgggg	gagttcattt	gaagccccca	gatatgcccc	ctctcccaag	tcctaccccc	122340
tgcttagaag	ttaaggccag	ttcctcagat	tttactttcc	acgtcatata	gttccacatg	122400
ggaaaccaga	gggattcccc	agggaaaagc	aatgacccaa	atcaactocc	gcttaaacaa	122460
gagacgtact	gcttacagct	gaagtgatgc	aggggagtta	tatqtattaa	gcaaaaatga	122520
gatctactgg	aaggcttggt	aggeteeage	ttcacccatc	acaatctgca	gaatcatcat	122580
gaaccagaaa	toggcagtcc	caggagtggc	caaaaaattc	tctgtttgca	gaattgggtg	122640

					•	
gtgtcacaag	caggagtgtg	attgcgcagt	ggttcaggag	aagaactaat	ccttacatct	122700
tatattttgt	gaatacagca	ccacaaaatc	ttcataggcg	aagagccagg	actatttctc	122760
aggttgcaaa	ggtcagctga	ctaaggcaac	agggcaggat	ggttaacagg	cacqtqcatq	122820
tgtgcacatg	tgtgtgcgtg	tgtgtgttgt	gctgagtgag	tgggactagc	tttactttct	122880
acttaggagg	accacccaga	ttgtcccttg	tggatagaga	tagggatgct	ttttattagc	122940
atgcagttta	tcaaccaggt	ttctgtcctg	gataaaagta	aggaggaac	cctaagetea	123000
ggtcaacttt	tgtagagtcg	gttagttctg	gggactgatt	ctcatoctot	cagageatee	123060
tcattcccat	cacagaatgc	ccctcaccag	cctacacata	actagaatga	otoctaatoa	123120
gcatcccttt	ttgaatttgg	atctccagaa	acttcatttc	agatagaact	gegeraatya caccacatta	123120
ggcaagaatc	cattagcagg	tctagaecta	testatact	tataastast	categgeeeeg	123180
tettteetga	tgtcaatcgt	gatctagect	coacgegeee	acceptocc	ogtogodda	123240
ggaaagtaga	acatggctcc	ccasatacat	ggacaagggc	tatastatta	agigacatig	123300
ctttcttttc	ttttctttct	ttettttet	ttettteet	ttataatatt	CLCCCCCCC	123360
ctcctcctcc	ttcttagtct	tottottoot	tatttattat	tettettett	CCECCECEC	123420
ctttcctct	attattatt	stroctost	coccicciat	tatttettee	grettett	123480
ctcttttt	cttcttcttt		CECCECCECE	CCCCCCCC	TTTCTTCTTC	123540
	tcttctcctt	cetetttte	LECETCETEC	tttctcctta	ttcttgtaga	123600
gacagggccc	tactatgttt	cccaggttgg	tcttgaactc	ctctctcaag	caatccccc	123660
accttggcct	cccaaagtcc	taggattacc	aagcgggaag	ggttgccaca	gtgcccagcc	123720
tecectgget	atttctatcc	cttcagccct	accatgctca	gcctgggtca	atgagctgac	123780
aaggcaattt	gccttagata	aggctaccaa	ttagaatatc	tccctgatgt	ataaaagcaa	123840
gagaaatggc	tgccagccac	actgtgctgg	aaggcagaaa	cctcaagtac	tggttctgac	123900
tttgccactg	agttgctgtg	tggccttagg	caaaccctcc	ccatctctqq	gccttagttt	123960
cttttgggaa	taaataacgg	aattgagttg	agcctatgta	ttagtctact	taggctgcca	124020
gaagaaaata	tcacagactg	ggtggcttaa	acaacagaaa	tcaatttaag	attqtqaqac	124080
agcattaatc	tcatggggtt	attttgagaa	ctgagactga	gttcctgcat	acaaaactct	124140
cggcatagtg	tttgccacac	agtaagctct	cagtaaatat	ttgtcaatga	atqtatqaaq	124200
aaataaaagt	ggaaaatgca	aataagtaaa	aacactgaca	agattacage	caggaaatgg	124260
ctgttgtaat	tctaattagc	tatatagcct	tccaatattt	tcccatqcaa	ataaagacat	124320
atgttactac	caaaacggga	ccatattata	cctatctaga	ttttcaaaaa	tatttcatta	124380
ttttattgaa	atataagtca	catgtcataa	agtttacctt	tttaaagtgt	acaatctagt	124440
ggtgtttagt	atattcccaa	agttgcacta	acatcatcac	tatttaatcc	caggacattt	124500
ttaccacccc	caagataaaa	ctcatqccca	ttagcagtca	ctcctcatcc	ccgtctcttt	124560
ccccttcccc	agaccctgtc	aaacactttc	tototota	gatttgacta	ttctccaaat	124500
tacacataaa	aagcatcata	tgacatgtgg	ccttttataa	ctaacttett	teetttaeea	124600
taatgatttc	cagcttcatc	tacattotac	catottette	ttataactaa	atgatatgc	124740
tctqcacqaa	tacaccacac	tttatttaca	cattcatcag	atcatagacaga	tataaattat	124740
gcccactttt	tgactaggat	gaatgacact	actetttata	tacaactttt	ttateeacat	124800
gctttcagtt	ctgttcggta	gacacctagg	aggggaattg	ctccatcata	teangacat	124000
atottoaatt	tttggaggaa	ctacctacac	cacacaacca	tttatanact	cygaaactct	124920
cctttcacaa	cgcatcctgt	cttcattatt	astances	totacaaccc	gctattttt	124980
gtgaatacat	catatttcct	taccaccac	tatcaccatc	totttacte	actattttga	125040
attagecett	tastastoco	atraaarra	tattatagig	theethete	attecetatt	125100
ttataaataa	taataatccc	acyaaayayy	cccyagegae	tteettgtgt	ccccagcagc	125160
ttcacattcc	cagttttcca	ggtgtgeeea	gagcactctg	tatcccctta	atttggtgat	125220
atassacat	cttgacatca	cacctactge	teeteeacee	tatatgtgtt	gtctacaatg.	125280
ccacatacat	tgagaagctg	tasstate	Lyaactgacc	tttgtatcca	ctatacatgg	125340
cattered	ggcattttgg	cadatyttea	cagaatggat	gggtacatga	atggatggat	125400
gattadagec	aggagctatt	gagagacgga	accattttta	cattetgtee	aaaaattcct	125460
gereeggaag	gtagtgattt	acctgagatt	ggaagtgtgt	gagaaggett	ggctagttgg	125520
tteesseett	tgaagctaat	teaggeatea	gaaagtggac	tggataaaat	ttaggatcgc	125580
toothoos	gaaatcctgg	aacgctatga	aacacaagcc	ctgggagctg	agatatgtcc	125640
caacctacce	agctgagctg	tgaggtgtga	gtggctctaa	cattttccag	ttgtttctga	125700
ggaccccaga	tcaaagcttc	cctttgccta	aaagcatctg	cctgctggtg	cgggcctttg	125760
ggggccccca	gagagcacta	aggttagagt	cctgcaaggg	tgacaccgtt	atgccacaag	125820
cagttgggcg	agtttacagc	tctctgtaat	ctgagagtag	agtccagatt	ggtttgatga	125880
aagagggtaa	actgtgagtg	ggcgtggctt	gaggccccac	tggaaqccca	gggagatetg	125940
gggaaaggga	gggcttttct	gatctctccc	aattagagga	ttaggcaatt	ggcagtgcag	126000
ggcggtaact	gggggccagg	gtggcgccag	ggctggacag	cacagtccct	ctgagctgca	126060
cggagacete	gcaggccccc	ggaactgtcg	cccttccagg	atgtggctcc	ctactcttat	126120
cctggccact	ctcgctgctt	ccgcggcttg	gggtgagtcc	ttctgaagtc	aaatatqcqq	126180
ggcacttttt	gaaatccttg	ttctgggccg	aactgggcgc	agatgcqtaq	aaaqqcaaaq	126240
acacaaaagg	tccggctccg	tggcggggcg	cgacctccgt	acttggaatt	ggacttggag	126300
cagctgagcc	cagccagcct	ggcccacaca	gagacacagg	gagggtgaac	atactasas	126360
cgccctgcac	tgcttgcccc	aagaaggccg	gcagctagcc	Cacctgagte	Cacacacaa	126420
•	_		J - J J J		- 3	

agaaatttag	gcagctcagt	ttattgtccc	ataattcqtc	ccattataac	tcgataacgg	126480
atageggete	aggagaatat	taagagcatc	gactctggag	ccagagtgcc	togattcaaa	126540
tccccgctgg	gcgcttcctc	actatatata	cttaggcaag	agactgaget	attetatact	126600
tgggttaccc	cctctctgaa	acagaggtog	cagtgctacc	tacctcacto	gactttagta	126660
aggaggaaat	gggtggttgt	ttctaaagca	ctcttggaag	cacctaatat	gracesages	126720
tgaaaaaggg	gtggataaat	ttaaaggcgc	totttaaaaa	cotactotat	Geagaaagea	126780
tttgagctgt	ggtcaggcca	ctatatcago	acctcttgcc	attaaaaaga	Cantttetta	126940
ctcatgttct	caacaggagg	qqqacaccaq	tacacaaaac	acaaggggaa	acaacaaaa	126900
ctggggaggg	gacagggcgg	atctgaggc	aaggggttt	tactgtggct	treageagage	126960
qaaqaqqaaa	ggcagggcag	gcaggctgag	gactggcaag	ttaggatact	traccocce	127020
tggggcacag	gggctgttcc	taattotttt	gtacctage	ctagagataet	taggggccc	127020
gggtagtggc	cagggcatgg	caacccgatc	aaagagggag	ttaggatata	cagggcaggc	127140
tggctggacg	ctgggaggga	cagtttctcc	aaggtcaaca	aggetteaga	toccaracta	727200
tcagaataca	gaaaacaaaa	cacatootac	atagagggt	acsacasaaa	gcctcgaaat	127260
acccccatgo	cattttatag	acagagaaac	tgagactcac	acagggaaat	gtacttqccc	127320
agggtcaacc	cgaaaatcat	qcctaqqtct	atctctagat	cctgaatcct	gacageeee	127380
ccccgtctgc	atcctgtctt	ccttctqqca	gcctgacact	gcgagagete	togaactoto	127440
gggaagggca	gagaagagag	gaagectatt	togaactgaa	tottccttta	cctctcctta	127500
ctcctggcaa	tgccatccat	ttecttectt	aggaagacca	tacaggetge	ctccacttcc	127560
tcagtttcct	cctctgtaaa	atgggcatgt	tgatgcctac	ccagcaagg	ttatttgaag	127620
atggatttaa	acaaactgga	atgcatgcct	ggcacatagt	aggtgcccac	catatteata	127680
cttcatataa	catcagcagc	aactggtctt	gttctcacac	ttatttctac	ctcccccat	127740
tcacccactt	tttcaccctt	ggcaatctgg	ctaccatcca	cctcatccta	ttgaagggaa	127900
tccctgagct	gagcatgacc	agcccagtgg	tttcttctct	gacttgactc	tectecacet	127960
ccctgaagtc	ctcagcaatc	ttagetgett	cetegeeete	ttactacta	gacttcasag	127000
acatgggaac	gttctctctc	ccctattcta	atggatettt	gatettagee	gtactcaaag	127320
ctgtgtttga	cctttgttt	tttttctctt	coctotoaca	ctggcatett	castgaagee	120040
atacacatcc	accgtatgta	ccctcacagt	ccaggagaag	attetgeect	actecetese	120040
caggetteet	tccagctttg	aagtgcgctc	atcetatage	atcatcttqc	ctggatatcc	128160
cactcacatc	tccaccgagc	ctgtgtaaac	agggatccag	cattacaage	cagetette	128220
gtcttctttc	ccttccattt	ccccacctc	tggtcaggga	ccaagtettt	tetttteett	128280
tetttett	ccctccctcc	ctcactccca	cttacctacc	tacctaccta	cctacctacc	128340
tgcctgcctt	ccttccttcc	ttccttcctt	cetteettee	tteetteett	cettetttee	128400
ttccttcctt	ctttccttcc	ttccttccat	ccttccatct	ttcctttcct	tettteette	128460
ttctctctct	ctggaggagc	caggattaca	ggcacatgct	accacaccca	gctaattttt	128520
ctattttcag	tagagagggg	gtttcaccat	gttggccagg	ctggtcttga	actectgace	128580
tcaaatgatc	tgcctgcctt	ggcctcccaa	agtgctggga	ttacaggtga	tccactatac	128640
ctggtctcca	agtctttcaa	aatacctttt	agacatcatc	atatttctac	atattttttc	128700
ttttttatt	taaaatttta	aaataattaa	qatqqqqqq	aggatttcag	gtgaagaccg	128760
gaaatcccat	acagtgctga	aaaggtggaa	atcaccaaga	aaacaggcca	catotaatoc	128820
caccacccat	tgctatgtcg	ataaacatgc	ttccaaggaa	qttcatctca	gtattatttg	128880
taattagcaa	caacaacaaa	agaaaagaag	ctaaatattg	acattqcaqq	gttggctatt	128940
.aataagatga	gacatggatg	ctgttgtgta	actgggcttt	ccataatqqq	tttccattgt	129000
gattggatat	tcccctttaa	gaccaaatct	gaattgttct	gttctgctct	agccccacac	129060
tttgagggag	gtgttgacgt	cttgtctgta	tccaaagcag	agcagctggg	aggacaagag	129120
gctggaaatc	atttcctagg	agggaagctc	agagaaactg	aggtgactgg	agccagatag	129180
gacctgaggg	gtgggcagca	agatcaagtg	tctgaaaggc	cacaggetge	agatcagatc	129240
aggccagtat	agtcccatga	caggtagaac	cagaactgat	gcggaggctg	tgggaaatga	129300
atttcagctc	agtgaggaaa	cattgtccgt	gctgcaagaa	tggagcagac	ctqcccaqqq	129360
ccaccagaag	aatcttcctt	gacctgatca	catcctttat	ctggaacggt	tectactact	.129420
tatttgtcca	ttaaagaaaa	ctcaagcgct	tagcctggca	ttctaaqccc	tccctgacat	129480
gtgcggtctc	attccaggaa	tattttccac	tcccccaga	ctccacctqq	tacatataga	129540
ccatgccccc	ttccccaggc	aggctctgca	ttctgctgct	ctgagcctca	qcaaattccc	129600
ttctctctgc	tgtgtaccac	tctctgcttc	tcatctcccc	tcattcagtc	ctcccctgcc	129660
gcaagtccca	gctcctccat	gatgcccgca	atcagaaggc	cttgccccct	cttctaattc	129720
ctagactgcc	ttatgggtac	ctctcccagg	acatggccac	ttccttccca	gctgtagccc	129780
caggtgtata	tgtgaccctt	ccctataatg	gtcagtgctt	gtgagaatat	qqqacacccc	129840
tttttcatcc	tctcatccag	catgcggctc	agtgccagga	ttctaatgga	taaatgtttc	129900
cagagacttc	taagggggaa	gctaaatgtc	ttgttctttc	ctagtagete	tccttcttcc	129960
atttatttt	agctggatgt	ttttatgcct	ccaattctag	tttgcccatt	aaaccaqctc	130020
aatgggttag	ggaggacatt	gatcgtcatc	cctattqtac	atcaagagaa	actgaggcct	130080
agagggttta	ggtgacttat	ttaaggtcac	tcacttagaa	agcggcaaac	tccacctgga	130140
atctgggtcc	agccttttgc	ctctgatgca	tcctgattta	ttctccatgt	ccagcagggc	130200
		=	-	-		

		_				
atccgtcctc	gccacctgtg	gtggacaccg	tgcatggcaa	agtgctgggg	aagttcgtca	130260
gcttagaagg	atttgcacag	cctqtqqcca	ttttcctaga	aatccctttt	gccaagccgc	130320
ctcttggacc	cctgaggttt	acticaccoc	agectgeage	accatogage	tttatasaas	130380
atocoaceto	atacastast	2000000000		accacggage	cccgcgaaga	130360
acyccaccic	gtaccctcct	acgraagerg	cggcatgtgt	ccttggggat	gtttacctca	130440
aagtgatgca	ggaaggagtc	aaggcagtcc	cctgatgggc	tgatcctttg	ctctggactc	130500
cttaagatct	ttgtagatcc	ttaagaacat	tccagaactc	tcacagcatt	ctggagtcca	130560
ttatttaaca	catgtttatt	gaggaggtgg	tatataccea	acatatteta	anttattana	120620
atcosttact	G22222GG2	202500050	~505050005	3030300003	9900000999	130020
	gaaaaagcaa	agacccctag	greereggag	cgtgcattct	agcaggggga	T30680
gacagataag	aacaatatgc	aaattactcc	gtggattatg	tgatatgata	gaacaggaaa.	130740
agtgccttgg	aaacaaagaa	gcagttaagc	aggtgaggga	gatcagaagg	aaggatccca	130800
tgaattctgc	tgtcttgaat	tttgacatag	tcggggagag	gagtgggcca	ggaggtgtgt	130860
agataaraaa	tgtactgagg	tatacactea	acasataata	3-3-3333-04	55455454	130000
cctasaasas	252255225	chatches	bear grade	aacccccagg	Lycycciatt	130920
cccgaggaga	acaatggaag	gracecac	ccaccetgge	caageeggga	agaaaagccc	130980
aaaggttcta	attggcctca	ccatcactcc	ccagggtagg	aaggacccta	cagacatcag	131040
agcagaccct	gctcatctca	gcagccaggt	gttcggaggc	tttccagcag	cccaccagtg	131100
gccgccttct	tttcttccct	tttttaaaaa	ataatottta	ctotttttat	tttctgagtg	131160
caaatgtaat	atatacttat	tacagaaaat	ttaggaaata	Cadadaaadd	222422422	131220
2211227217	202120222	*********		cagagaaagg	adagcaayaa	131220
auccaagacc	acatacaata	CCCaccacc	Cagagagaac	aactateagt	actttagatg	131280
graaagratt	atgatgtaat	atattgtttg	tattccagtt	tttttgcctg	ttgatatact	131340
ttctttcttt	aaaagggaat	gctatattga	gataatttgg	atgcctgctt	tgctcattta	131400
taagtatatc	atgagcataa	ttccatgcca	ttaaatagca	cagectggta	ttaaaagctg	131460
cattacatto	ggtattgaac	cataattaat	ttccccaage	ttttatttaa	cotcattaac	121520
ttatatataa	totttttaat	aatataaaat	catecates	coccactegg	ggccactaag	131320
ccacacacya	tgtttttaat	aatataacat	catgaatgtg	aaacacttat	gcacattcat	131580
gaatagttta	ggataacttc	tcagaaatga	catttctgag	tcaaagagta	tatatttctt	131640
gtttgatttc	cctcccaaaa	tattccaact	acactcctcc	cattgacgta	tgaacatete	131700
catttggcag	actcttggca	atgcttggga	ttattaaaaa	tatttttggc	tattotatao	131760
gcaaaataat	aataacaata	ccagcaatat	tattttcctc	tttaatttaa	atttatetea	121020
anaccantna	gttottttt	actttatta	satterante	totactige	acceacciga	131020
agaccagega	gttcttttt	CCCCCCC	carragaarg	tattattatt	attattatta	131880
ctattattat	tgttattcct	cttgcacttg	gtgatcttag	gaaaatttcc	caggatggaa	131940
tcaagaagtc	atctttgctg	gctctgattc	tgtcacttga	gagctgtgtc	atcccagagt	132000
ctgagtgcct	cagtttcctc	atgtacctag	tgggggcggt	gatgactgcc	ttttggtaca	132060
ttgaggtctg	ggactgttgc	ttataatata	cttatatata	accaccacat	accetaceta	132120
tacctoocta	totaacetta	atazaattat	ctanactaca	tagaacttaac	bbbb-b-b-	132120
tatooggoca	tgtaaccttg	gccaggcccc	Ctaacctgcc	Laggerreag	LLLLCTCALC	132180
Lycaaaacgg	agataataga	acctacctaa	tgggactagt	ctgaggetta	aatgagttaa	132240
tatacaaaag	gtacttaaaa	cagtgcctgg	aacactggga	gaactaaata	actattacca	132300
gtgttcatct	atgttgcatc	cttgagatct	ttcatcaggg	caacacaaca	qcaactqcct	132360
qqqaqaqqqa	ggtggtagaa	tettogeato	tcagggctgc	aagactcatg	tagaaatcac	132420
tccactcact	taracetore	costtoccs	acacactata	2222222		130400
cocgeceace	tagacctggc	ggactgggac	gcagagcgca	aaayyaaccc	acceaaggre	132480
accccataaa	tgcatgggag	agacaaaact	agagcacaat	tctcctgatg	ttgtcccaca	132540
aagatatcac	ccctgagcta	ttgtgagaaa	tgtcacctcc	cagggaggat	cagtgtatta	132600
gtggtctccc	ctccttgatg	ctgggagttc	caaaggctct	ggaaagggaa	gaggtgtgaa	132660
qcccttctca	ctctgcttgg	tcttaggaga	ccttagtgag	teccagege	cccacctgaa	132720
gcccctgata	gcctcctacc	cactacaata	tootagagag	ctosegogoo	act coattte	132720
soccottana	5000000000			graacracca	aguccacuc	132/60
caggettaaa	cctcccagtc	caaggegerg	ccgcagaaaa	cacetegett	agatetgget	132840
gaactteagg	ggttcttctt	receeteee	caggtgcacc	caagatccca	aggcggggca	132900
gttactctca	gagctattta	caaaccgaaa	ggagaacatt	cctctcaagc	tttctgaaga	132960
ctgtctttac	ctcaatattt	acactcctgc	tgacttgacc	aagaaaaaca	gactaccaat	133020
aaqttqtqqq	accccctggt	caaggcgtgt	cagtgccagt	accececate	ttctggggca	133080
gaatggaagg	gagtgaaggc	ancttonge	acceptace	2222222	ttatttaaaa	133140
22333	3030300330	agecegggga	gggagctgca	caggecagga	cigiticaga	133140
gaccccaggg	cctccacagg	aaacactggt	tttccacaca	tcagtttacc	ctcgtgacat	133200
aggcactctg	ggggagtttg	ttttgcatct	ttaatgaaca	tcttaattgt	tccaagttcc	133260
ctcatgctaa	tagaaggatg	agaatgatta	cttttagtta	ctagattaaa	aatctgatac	133320
caagattggg	taagacatga	ttttcaatgt	tagtggtgga	aagaacttag	agaaaagcca	133380
acaccccaac	tcttccttt	casatagaga	aactgaggg	cadacadora	200003000	122440
accordance	******		aaccgaggcc	cagacaggga	aggggaggcc	133440
accoagragg	gtagttttgg	occaagecee	ccgatcttca	catcagtgct	tttgacatgg	133500
agragggcat	tgagcttgta	rgrggccttt	ctccagcaca	gcaacattca	tctggggtaa	133560
ctttcactgt	ccaggtacgg	atgttggggg	cggagcctgg	acaatcccag	aagctcttcc	133620
ttttgccttt	ggccaaatag	ctgggatttc	tttttatacc	taatttccct	ccctaattot	133680
cttggcaaag	gctgatgacc	cagtgagtga	gaatttccca	aataaatoss	adacsads	133740
tagagaeaaa	Caccacatec	227545004		totact	339cayyaca	133720
	cgccagctgc					
ccayggcgaa	aaaacaaagg	grgrtgtgtc	tagccagtct	cccaggggca	ccgtgggcat	133860
ggtgcctatg	agtgggggag	caggtctgcg	aacgtggaac	taaaagttgg	tcctacatgt	133920
gctttgtgag	acacaggaag	tgagagaaaq	gtttactcat	tcattcattc	attcattcat	133980
_	· - -		_			

	**	A				
tcattcattc	ttctattgtg	tactcagtge	cccatataca	cagttagacc	tggggcttca	134040
gggaaaggag	gaacatgaat	ccactccaca	cagcccctgc	cttcaaggat	cttgccttct	134100
gggctgtaga	gacatatcct	cccttcagca	ctttattgca	ggccagccct	caggctcagt	134160
cttcacacaa	agatgaatgc	acactcaatc	cctccccagg	aggcaggcag	ggattagagt	134220
tataggagaa	acaagggctc	taggaaccta	gagtcaggag	aacctccagg	aatggccaca	134280
aactetaaaa	ctacacggtc	tagatttaaa	tectecttet	acttttact	200500000	124240
ottooogat	tattaaatta	totaneete	tatttaataa	goodetagact	agecgagaga	134340
cccgggagcc	tcttaacttc	tetaageete	Lgccccca	aaatgggaat	catcacatat	134400
gatcagtcaa	gggtgaccac	taagegtgat	creagreeer	ggctaaaaag	gcagaggcag	134460
gctcataccc	ctgccctaac	agtggactca	ctgcactgtg	gccggcgcct	gcagtgtgct	134520
gggcagctca	acatgtggac	tctggaggca	gactgcctgg	gttaaagtcc	tgctgctacc	134580
acttttgagt	tgtaggacct	tgggcaggtt	aagtgcctcc	attttcccac	ctggataatg	134640
ggacattatc	agtacctacc	caatgtatag	tttattttac	totocttaga	acagcacttg	134700
ggacatagtt	tatgttacga	gttcttttat	atttcatgaa	taatattatt	acaatatcat	134760
tattttagcc	actctcactt	cttccccact	atotocogua	ttaaaatgca	agaatcatgo	134820
atgaggaatt	gtatccactc	tcatcctcca	atattagga	actocatoca	agaaccacgo	134000
tteteeses	tattoataa	ttanatana	gractageag	agreeergge	acacyclaay	134000
	tgttagtcca					
	gtggatagga					
	aggcacgtgt					
caccaagaga	tagttaactg	agatgaagct	gagatacaag	ggctgcccca	tgggtacgct	135120
gagtgcatga	atagtctagg	cttgagggtg	atgggagtgt	cctcccgaag	aggacatcct	135180
	tatgcccatg					
	ggtagaaagg					
	ggagaattat					
gtgaactttg	gatagcatcc	teetteeett	gteegeeee	catacatasa	cogggagoog	135420
stattatasa	tastasatas	statatata	totaccaaca	ggcaggccac	caaacaagac	135420
acciticityay	tgctccctgg	ccctgtgtcc	Lycaactygt	argregeree	ererergeee	135480
aggrgarggr	gtggatccac	ggaggggggc	rgarggrggg	tgcggcatca	acctatgatg	135540
ggctggccct	tgctgcccat	gaaaacgtgg	tggtggtgac	cattcaatat	cgcctgggca	135600
tctggggatt	cttcaggtaa	gaaatcggac	tctcctcact	gcactttggc	ccccagaacg	135660
aggatgctag	gacccagctc	tggtcatgcc	agccctcagg	ggagcttagc	taggttccac	135720
agtaaggcat	ccaagcccct	tcgtaattgg	acactaccta	ccctctcact	acccagccac	135780
tcatccactt	gcctctgagc	ttttgcatgt	gctgttccct	ctgcctggaa	tgcttattct	135840
	cacctcttca					
	ttcacctatg					
agtcagccca	gcaggtgaag	gttgacacat	ctgacttctc	atggaaagga	addaaddaac	136020
agantracan	agggagctca	acacatatta	tagatassaa	225244594	222442222	136080
	gcatctgacc					
	ttggcaagtg					
	cagateteet					
ccatccatgc	cagtcaggtt	tcttcctgaa	cacgccactc	agttggtctc	attgcggtca	136320
	cccctgctc					
ccactcagcc	tctgtgacat	gcttccttcc	cagccccttt	cctggtcctc	cctcctccct	136440
	ctctcttgtc					
	ccctgtttcc					
cctcctccc	acccctggct	gtctaaaggg	taccccactc	ttcccaggga	caagttgaat	136620
ccttgactcc	cactgcccct	ccccaacaga	gacccccttc	tecteccace	accetteac	136680
tragetteta	ctgccacatc	ctcccttaga	ctcaccacaa	accettataa	acaccccac	136740
statatatt	tatasassa	ctcttttggg	cccayyayaa	ggccccgcgg	acagecegga	136740
bbbcccctc	tctcacaacc	ctertggetg	egeetteaga	acceaeceag	agreecetae	136800
catgeaccic	ttccctggct	ectageceag	ccaaagetet	ctgtctgtca	ccttgattat	136860
gatettaae	actttcagat	ccctgccact	tttatataaa	gctgagttgc	acagtagcca	136920
gagtgatcac	ttaacacatg	cattgaatca	tgcgatgcct	ctgcacaaaa	ccctgcaggg	136980
gcttcccatg	ctccttacca	tgacagccga	agttcttgcc	aggccccagg	gccctctcta	137040
gctgcacctc	ctgactcaca	ctttctttca	ctgggcccca	ggccctttgc	acttgctttt	137100
tcttctgcct	ggaattcctt	tctttggata	tttacaaqgt	tcatgtgctc	attgtgcttg	137160
ttttatgaag	gtctttgcct	ccaaaacctc	aaatgtcact	qcctccaaaa	agcetteect	137220
gattgggatc	tgaaatggca	cccctatec	cactcctatt	tttttcctta	ctccattota	137280
tttacctcag	tgcactttga	ctacctgace	tcattatatt	ctctctatat	atctatttat	137340
ctacttatas	tctgtagtgg	maattearte	tratracare	ttttaaatat	tttaatata	127400
ratatasts+	acct catasa	according	ccaccacagg	gatage care	annhanther	127460
gargrycect	agctcataag	acagogceag	gcatacagta	gargereage	adatagttgc	13/460
caguigugug	aatgtagaac	Catacatcac	cacaatgctg	Lactaatgaa	agcagggtct	13/520
cagagatgct	gaagcccagc	cccattctta	agggttcact	gagaacccct	agccccatct	137580
gtggtcctga	aggtcctgca	tgacatctct	gctccccacc	ctcaacctgt	tctcttcctc	137640
acagcacagg	ggatgaacac	agccggggga	actggggtca	cctggaccag	gtggctgccc	137700
tgcgctgggt	ccaggacaac	attgccagct	ttggagggaa	cccaggetet	gtgaccatct	137760
			-			

ttggagagtc agcgggagga gaaagtgtct ctgttcttgt gagttttcct gtcaccaggc 137820 ccaaccccac gcttgatgtg atgctgatga gacctcttgg acacctgtca atccagctat 137880 ggatacetet gattacaata eetgaattea ggaetggeee taeteacage eeageateag 137940 ggggtagaaa gctaaagacc agctctcctt ggcccccagg aagctcagag ctcagcttag 138000 tgtcctgggg ccatatgaat ctccagttgc agcctgcaat ggtggcattc tcctcttcca 138060 gettggttga getetetete tetetetete tttetetete tectteacac teattttaac 138120 ataaggactc acatecette tettgggaag taggaatagg cataaattat gagtaaggge 138180 aggcagagag aagaggtgga cagaggtcat tgtttggcta aaccagacct acatgtggag 138240 gggacatgga cactgagcag gctgggaatt cctctggggt ggtctgatgg cttgtccatg 138300 cccaagaagg aggcgacagt ctttgtgact gtggggtcca gtgggctagg ggaggcaggc 138360 agaggaagga gggatggagc cgcggatagg gagggatggg gcaggggttg tgggtcatag 138420 acacaacctt gggtgtgagg ggtcctgctg ggattgggga ttgggttcag gagacactgg 138480 gggatctggg atgaaaaccc agatgagagg tgctgggagc tgtaggaaga cttccacctc 138540 cttgaggtgg gcagagggtc agcccactac tggattcctc agtcccgtgt tggttttata 138600 gtggagtaga tctagcctgg aatagcgagt gagtcactga ccccactcct gagcatgaac 138660 tetectecce tecactetge tgtcaggttt tgtctccatt ggccaagaac etettecace 138720 gggccatttc tgagagtggc gtggccctca cttctgttct ggtgaagaaa ggtgatgtca 138780 agecettgge tgaggtaggt etceggetgg tacgteteeg getggacace eccaceteet 138840 tggctctatg ctcctgaatc ctcagggatc tctcttgtgg tcggttgtag ctaatgttct 138900 cctagaatca ctgaggcacc aatggctgag caggaagggc gaggagacac cttgatcagc 138960 gtcccagttt cacagccagg caaaccgaca cagggcttgg aagggatttg ccaagggcag 139020 caggtgatca gggcagaget gggactccag etcatggccc tagcagccag tacagtgccc 139080 tatotgtgac cacactecte etatgtgeca gggeetggtg ceatgttggg cagtgatggt 139140 gtcttgtgtc tctctgggtc tgcctaatgg ctggtaagtg gaacaaccag gatttgaaag 139200 cagacaagga aattcaggat tccatgctct ctatcccagc tccacctcac atttcttgac 139260 acattcacct tgagatgatt atgtccattt caatggagat aaggtagcag agatgagaga 139320 ttacataatt gacccatgtt acaattgaga ttagtaacag aggcaacgct ccgtgggacc 139380 tggaacccac acceacgggt ctacagtate ttetgetget ceetgecact agtacaagtt 139440 gggcttggga tagaatgcca ctttcctctt tgatggaggg aagggatgtc gctcttgaac 139500 tetgttgttg cetgtgatet ttgcagcaaa ttgctateae tgctgggtgc aaaaccacca 139560 cctctgctgt catggttcac tgcctgcgac agaagacgga agaggagctc ttggagacga 139620 cattgaaaat ggtaggttgc ctgttcccgt agcccaaacc ctgtaaactt ggtcccagac 139680 ttcttcattt cagctgtcct cttgcccagg gacagtttcc tgggacaatt tctcaactct 139740 cagtatetga atggggaate tgatttgtee ttttttattg taaaatgeea caaatgtaaa 139800 aaaagaaagt caaaaaataa catgataaaa aattgtgtaa caatccccag tcctgaccaa 139860 aatttaatat tttgccattc ttgttttcag atgtattttt aagaaattaa atgttacata 139920 ttcccagggg acaccatcat cctgaatttg ggggatggag atattaagct caaagatttt 139980 cagaaagatg tcacaattta tcttggttga cttagaaact gtctgtatta gacctagtgg 140040 tggtccagtt ttctagattt tctgagactg actcagttgt catcctagga tagtcatcca 140100 tecaeccatt egitaateeg tetatetatg attgeettat ceatetatet giteaetaat 140160 teatecaatt cacteatate tttttateaa tetaatgtea acetatteat aactttgtat 140220 ttatctattt tcaatccatt caccattcat ggatcatcca gccaccttat atctcaactc 140280 catcacccat tcctccaaaa tcaacaatcc aattatcgcc tgtctgctag ttttcaccca 140340 tetatteatg tatecattea atteaactgt actecatgta ttgaccaact ccatecatec 140400 ctccattgat ccatccatcc atccatgcta aatatgtagg ggtgggtgtt agaggtagca 140460 aaacagacat gaagtggaca tagtccctgc tctcaaggaa ctatccaaag agaaatacat 140520 tcatatactt cgcaggttga gtatggtggc agcacagagg ggaagcattc attgtagtaa 140580 tcagggatgc ttcacagaga aggcggagga gccagatttg agaccagaca gtggaattca 140640 ggagttcatg cccttaatcc tgactccacc ttatctttcc tgagaaattc agctttcaga 140700 tcattgtgcc cattttaaca gaggtaacaa agacagataa attttgtaat tgccccatgt 140760 cacagttcaa attagtcaca gaggcaacac tgtaggaccc agaaccgaca cctgcgggtc 140820 tagagtatet tetgeettee etgeteeetg ceatecteae atattaggae ttggggaeet 140880 ttaggattgt tggatggcca tggcagtctc tcatcacagg gaagaccagg aggacaaaca 140940 cccagatgac acagcaccca gggccattgg gaactattcc ctttgagggg gaagagtgtg 141000 aattccaagc tcaggagtag cctggactct ctccttggac ctgaggctac tcctggatcc 141060 cagggetgge etetaceact ggactetget tgtgttteca tgagttgagt ccaatgtggt 141120 attggtgctt aggtcttggc tcaggctcta agtgaccaaa gtgttcaagg aatgaaaaca 141180 caactgtttt ctaacgcccg gaaggaggca aatattccag caattctgca tgtggcatca 141240 gaggacccag cttaaaaggg aagagttgag tctttgggaa aacccatccc taagatccta 141300 gaacattett ttgagttttt etgagatett gtggaageac etecatgatt aegegetgee 141360 agaaacacat acagacacac acacacagag acacacacag acacccacac acaaagagcc 141480 acacacagac acactcatac acacacacac acacactcct ggctagtggg acttcaatcc 141540

+++	anacta-net			*		
ccaacggagg	gacctgcact	ggccacaccc	cgagcacagg	ccagacctgg	gaactacagt	141600
gcaacactac	agtcactgca	accetggtga	acacacacca	aagagaagca	tggggtagga	141660
tgagactcag	tgagcttgcg	tgagtcaggg	ctttctaatg	ggagatgagg	aaactctccc	141720
aagtaccttg	aacagaaaaa	gaaatgtgtt	gcaatagcat	cgtcgtgtaa	actgaaaatc	141780
tcaggagttg	atggcttcag	qcataqctqq	atccagatga	tcataggata	ttattgagaa	141840
tctaccattc	tctgtccttc	agetttgeag	atctctctct	taacttcact	ctteccesce	141900
tatatetect	gggaaggtta	220203020	coctetacae	ttatatata	tetestana	141900
	gggaaggcca	aagacaacag	Caccccagac	ctatytteta	tetgettaaa	141960
aaccccccc	ctaaacaatt	cccgcaaaag	ttttggggta	aactctattg	gattgacatg	142020
agrgrargcc	catccctgaa	ctaatattca	tgttcaggga	gatggagcac	cgcaggtcac	142080
atatagatat	acgaattcac	ggagtgatgc	gggaagaacc	tgacacctct	gttgccccac	142140
tcacccagct	cagtgttctc	ctggtaagcc	tctcacccac	atcctctgcc	tttgtcttca	142200
cagaaattct	tatctctgga	cttacaggga	gaccccagag	aggtaaggac	cttttatttc	142260
togattacoo	gttttgagtc	ttagcacctt	taageteeaa	ttaactgtga	atassast	142320
catctcttgg	gtaattatag	taactcctgc	atatttattt	ctaacacaca	gegaaagaae	142320
	tgggtaacac					
gaereeeage	ccagtgctcc	caggeateae	erergrarge	cctgggctct	gcccactccc	142500
	acattttctg					
cttccacaat	caggaggcag	agataacagc	gatgattagc	caaggagagg	ggaagcctaa	142620
atctcagtcc	aaggacactc	gtctcctccc	agcacacagg	aaactccaac	agtattctcc	142680
caatctcctc	atccccactc	ccacccccac	ctcccagtgg	gttgacagtt	tctggtgaca	142740
tcacctctqa	cgaatcttac	aatcctqtcc	tctctactac	ctccctggag	atcacagcac	142800
	ggtcatgggc					
ttcctatata	ccaggacttg	tttaggaggt	agaretatee	cactcasass	agaagacto	142000
cctaccctct	tgggaccttc	cattacagta	ggggacacaa	cagegaaaaa	agaaagaccc	142920
atatatata	cetttestee	tatacagug	teaggacage	gcaacaaaa	agcadaccad	142980
grangrance	cgtttgatgg	tgrgcagear	caggggacag	agecegegg	tggcttcaat	143040
ttaagtagca	ggatcaggga	atggttcaat	gagaaggtgg	catttgagcc	aagctctgga	143100
ggaggcagga	agccagctgt	caggaaacct	ggagaagcct	attccaggca	gagggaacag	143160
tcactgcaaa	gaccctgaca	gaaggggcca	gtctggctgg	agaggaccga	gtgtggggac	143220
agactggctt	gaggctaaag	aggtaatggg	cagtgggaga	gagatcaatt	aaagtacttg	143280
gatttggatt	cagagcaaga	tgggaagcct	ttggaggttt	tgaacagagg	agtcacatga	143340
tcttagatct	cacaaaggtc	tctgtctctg	qtqttcaaat	agactgtagg	aaaqqqqcaa	143400
agtggatgca	gttgaccagc	tagacaacca	ctgcattgcc	ataatccagg	caagggctcc	143460
tooctoctta	gacagggctg	tagcagtaga	gatgggagga	gtagttggag	tctccatatc	143520
tttgaaggaa	tagctgacag	catttactaa	tacacacat	gcagcoggag	202334444	143520
2003449344	cascosacas	attatata	cggacaggac	gcaaggggca	agaaacgggg	143560
	gacgccctga					
acttgcaaac	tctaagtgga	gaacaatcac	ttgtcattgt	tgctgatggc	agtcttccag	143700
catggctgtc	acccaactga	ggtgctcccg	tctcttgcct	caacttttag	cctcttctac	143760
ttcaccttct	ctccccattt	ccatgtctca	tggtgcagcc	agactggcct	tccttaacag	143820
aattagagca	cgtcaccccc	acttcttaaa	agcctgacct	tccttatgag	acaaatcccc	143880
ttccctccat	ggagttagtc	cttcaaaaca	cacctgcgtg	cacactgtgt	gccagactqt	143940
gcagaaggta	ggctctgcac	ctgtccctcc	ctctagaccc	tgcccacag	catttctcca	144000
	tcttggttgt					
	ttcccactgt					
tasttasas	agcccaccgc	aggeaggegg	cgttttttt	acguagectg	toccycatet	144100
coccoccaga	ggggctgctc	ctettgetgg	ecteceacag	cagecetgee	tgaactgcac	144240
ageetettaa	ggaggctgga	cttgcacccc	aatcctgttc	ttcattgtca	gccatattgg	144300
attaggatet	gatcttgtcc	agctaggtct	ggtccacttt	tcagaacatc	tececcagge	144360
agtccgaact	agctcgtcat	tcattggctt	ttgtagagca	gaccaaaggt	cccagaagcc	144420
atagggtctc	aaaggctagg	aattgtccag	ttccatctga	tatccagaag.	ggaaatacag	144480
cccatggggc	gtggaactgg	gaagattcca	cagaggactg	gtgtctatga	gagggaccca	144540
cagcaacctt	gctaacaagt	aatacctaac	agttattcag	cctttccaga	caccaggtgc	144600
totoctaagt	attttacatg	tottcaocca	tttaatcctc	acaataactc	acctettaga	144660
	gaggcccaaa					
caratrosot	taatotoott	tannataa	tastatatat	taggagagag	agecaggeet	144720
catacasst	taatctggtt	coadaycoda	cyccocatot	tataaaaacacc	cacyccctat	144/8U
cycaycaact	acaccattgt	gactaaatat	gaaatataac	rgtacccaga	accagetgee	144840
ccgatggcaa	cacatgagtt	gggctctctc	taatctgtga	ccatataaaa	attattcatc	144900
aaaggtgaaa	cctaaaatta	agacatggat	caatatactg	tgagttaatc	actgattctt	144960
	ttttctctct					
agggttcggt	acctcctcaa	agccacccgt	ggatcaataa	cagctcttgt	ttaaatacag	145080
atagatagca	taatctcttc	ctcattaatc	atggattctg	tgtttataaa	ttcacctgct	145140
tgctaaaatq	tccttataac	ccccaaatca	atactootoo	cactttcato	gtcacacaca	145200
ggcaggtaca	gagcaggga	agctggattt	gcatgatggg	catottccat	ctgagatece	145260
gcgagggaac	ctctctctc	ttatttcata	tetastattt	acaagtatas	tetterere	145320

ctatttagtg ccgtgtgttc tgcatttttg tgctttttgt agtgatgtca ctgtttagag 145380 egaacceaag agtagegetg etgtetggeg tteetgaget aaacaggetg tgetgtgeet 145440 tacggggaag gtgcctgtgt gagacaagct tggatgaggc aggagctgca gtgctgctgg 145500 ccgtgcattt ggtgttgaaa aatccacata atagcacatt cagaaaaaagg agaaggaaat 145560 tggccgattc atacatgagg ctgtgataga aagggctaaa gtaacaccta ttgtgtggga 145620 tggagccgtg gaagtctctt tcaacagaaa cccacata aaagaaggtt gatgaaaatg 145680 ttgtggccag aggtttgcaa aaacctaacc cagtatttcc cccttgagtg atgaccctgt 145740 attetetaat teagtaetea egggggettt ateagaagea aetgeeagga etaeegaaaa 145800 tcaattgtgg acacacagag gaaaatgcat gcacttcaaa ttgaaatata tagacatgta 145860 attttacata gataatacat gtatttcaat atgagtgaag atttcttcct ctcctcatca 145920 cctgagcagt gtcagcctct gcctgaagtt ctgccctga gtcatggaga cctaccccc 145980 taagttagga teetgageat gtgeageeat ggegeatgge eatgeeggte tatggtaetg 146040 gtctcaccct cagacaggca gagttgggga catgggtgtg actagggagg gaatcacagg 146100 tgctgcactg ctctctcccc agagtcaacc ccttctgggc actgtgattg atgggatgct 146160 gctgctgaaa acacctgaag agcttcaagc tgaaaggaat ttccacactg tcccctacat 146220 ggtcggaatt aacaagcagg agtttggctg gttgattcca atggtgagaa ggcacatgtc 146280 tgttggaggg actcaaccac ccccatcagc cctcctgtct ctggtcccag gaatgcttcc 146340 ctctccgagc tgcactctga gtcctgggca gctgttccct tcagcaggag ttaacatttc 146400 cacggaaatc ttctccagga gggcacagtt ttcaccgggg tatcagggcc ctgggattcc 146460 ctctccccag actctcttat tgtcttccta ttgaagaatc ctgaagtgtc tgtgctggga 146520 gggccagtag agaaaataac tctgcagatg ggaaaacgga gggggcctag aagggggaag 146580 gagtggagga gtccggagaa gcagtcgggg gcttcctggc ttcccacctc gggctgggtg 146640 tgcgtaattc ccctgaaaat cactcatgct cttcatcacc tcattgaaaa tatccaaaga 146700 aagtggette ttettgagtt accattgact tetagggaac agcagacate agegtetaet 146760 aagagagtgg atggtcagag gaagatgagg atggaaaagc tacctaatcg ggtgctatgc 146820 tcaatacctg gtaacaaaat aatctataca gcaaactcca gagacccaaa ttacccatga 146880 tcaaacctgc acagttaccc ccaaacctaa aataaaagtt ggaaacaaat aaatggaaaa 146940 agtaattgag ttctaaaagt aaagaagtgt tctccttcca gttgaagata aacaaaactg 147000 accctggtta aagcagtagg acagatttat tcagtaatat gattgcaata ggggaaatag 147060 tecagegtgg agtggactca catecetgaa acaaaageet gatgaegttt cataggecag 147120 gtgtgccaag ggaaacactg tggtctatgg ggagaggett ggttcatgtg actagaccac 147180 ctggatgtct tcatcctggc tcacctgggg cagaaacaaa ctcctcttat ctttaggaca 147240 ggaagccatg cattagaccg caggaagaac ccactgaagt caggctctac tctttcgaca 147300 gggactggga agatcaggag tgagctccct gaatgtttgc attgcaaaga gaaggctctc 147360 aggtcctcaa ggaaatgggg ttgggtggta gattcacatc ccaaagggca gagaaagtgt 147420 ttatcattgc aggettetaa agtaactget etagttgggt teggggaeet ggetgettgt 147480 ctccaggttt tggctggagc agagtaaatt gtcctggcag ggttgagcct tcccaggcag 147540 ttatgttaag gatactgggg tcattctagg gacacagcct taagctgcta gaagcaatgc 147600 tagagattgg tcgagtccct gagtgcagag gtttgggaag agttgttatg tgcgtagaga 147660 tgtgcagttc gcccctcaga aggatttcag aggttatacc aaagaccaaa gccacgaaga 147720 caggatttaa ggatttcagt gtcatctgtg acaggtgggg gtactaggga ggtctacatc 147780 ctcttcccca gagccctcta ttccacactg gcctggcaga caccttgcat ctccatgtca 147840 actgcaaaac actgccacag cttctctgaa attttgtttt ttgtttttt tttttgtaaa 147960 ctttgcaatg cttgagtttc tggatataag cccatttgat tcattgattt cacccatttc 148020 agtaaagact catgccctta aaagccccca taattagagg actttcagac tgcattggtt 148080 tggttggttg gtcagtttgt ttcttatcat taattcccaa tgattcataa atgctgaact 148140 ttttttttt ttttagcagt tgatgagcta tccactctcc gaagggcaac tggaccagaa 148200 gacagccatg tcactcctgt ggaagtccta tccccttgtt gtaagagtct aggaatcatg 148260 ggaattggct gagacccaga gagggacaag gacttgccca aatcatagag caattaaatg 148320 gcagaatgaa gactggggcc tcagggtttc ccccatcttt ccacctttcc cacttcattt 148380 tccaccctag cggggagttg cacagggctt atggggttca ccattgaggc aggactttct 148440 ggtgggctgg agaagctgca tcgctcaccc ggggctggtg gtcacttttt gatctatttc 148500 agtgcattgc taaggaactg attccagaag ccactgagaa atacttagga ggaacagacg 148560 acactgtcaa aaagaaagac ctgttcctgg acttgatagc agatgtgatg tttggtgtcc 148620 catctgtgat tgtggcccgg aaccacagag gtgagtccca gaggtcgaac gggagggaca 148680 caaaccccac gagcttctgt atctgaccca cctacctccc agcatagaca gacatggaaa 148740 cagctgaggg tcaggcctca aaggctgatt ccatatggca tgggatgagg tgctgtctta 148800 ttttggttta tgccagcaga agactgtgag aaaaaaaaat ccagaggcaa gtggttttt 148860 taaggtgatg atcccagata acagcagtag ggaggtgggg aagtgagaga ggaaagagat 148920 ggaatccaat ccaagatgcg ttgtcaaggg agtatccact gtggacaact ggagcgggga 148980 aactcaagga aacaccaaga atacagggct caggggcatc ccatctgagt ggcaagggag 149040 ccgggtattt attcaccagc ttctacttgt cattggttga aggctcttgc aaggaattgt 149100

ttatteeetg	tgacttcgac	ctgctgcaca	caagggcaga	gtagtctctt	gtgaccagac	149160
aaaggcctca	ggcctggagc	tgcagatgct	ggaggtggaa	gtcaggctgg	catgcccagg	149220
aagagggat	ataggtgaga	ccctggcagc	atctgctgca	agggctccat	gcctggagtt	149280
attgtgggac	atagggctgc	tgtaggacaa	atattgaaag	atgagtcgtg	gaagggtttt	149340
aaggtctgag	ccagctgcaa	acaaqtttqt	taagtattgg	agctggataa	aaagtgggag	149400
ccctacatoa	gatccagagg	attotecago	200320033	~300330000	aaaaaaaaa	140460
anatataas	asactactat	stanators	accaagaagg	ccayagagag	gagccaggge	149460
9990909994	gaggtggtct	gragaargge	agegeeegag	ggrggttttt	atgcatctca	149520
gracacacac	tagcatgcaa	gcacagggca	agggcagggt	ctatgcagga	cctgctacca	149580
ctgacccaag	gctgtgtggg	tggggcatga	cgttagggat	gtgtgtgctc	acctagagag	149640
gagtgtctgt	tcctgcgtgc	cagctagagg	agattcacag	gattcctttt	cttccagctc	149700
tcattcgcct	agtctgcaag	ctaggaaatg	tectetetet	aaccatacta	gaagggtttt	149760
taaatttaga	acttcataag	catgataaaa	actacctaac	gcttaactag	caggtgccct	149820
gacacacctt	tgcacaggaa	agagcagata	ctcataaccc	tcatttcttc	acaccutcot	140000
gataaaaacc	tttaaccaag	accactggag	ttgeetgtgt	tatttatta	actions	140040
gccctatgct	ctgcgtctga	actatatata	asattacest	ctcccttaa	testestes	143340
acceptacte	andthatet	tttastata	gageteedat	CLCCALLE	tgatggtttg	150000
agcaacacty	aacttatgtt	Leteatetgg	tttcccatga	ctttaagttc	agggcttttt	150060
CCCCCCCCCC	ttttttgcc	aggactacac	agattttatc	tactttcact	tattgttgtc	150120
tcactctttt	tgataaaata	acatttctga	atataaaatt	aatatgttaa	attatagaaa	150180
ctttcaaaaa	tatggaaaca	caaaaagaag	aaactatgta	tcactcattt	ccactacctg	150240
gaggcaagtg	ctataaattt	tttgtgtttt	cgtctaaaga	ttttccatqt	cctatatact	150300
ttaaaaatca	attttatatt	ttacttttqt	tcatagaaca	ctatattata	aggattttct	150360
caatottoat	acaaactcat	caaagcattc	cttattccat	asstaata	tattaaataa	150300
actttastat	tcatatccta	ttagatgttt	accetecete	gaaacggccg	cyctaaatay	150420
tooccuacac	stacaccca	tragacyccc	agectggeta	CLCACALLEL	gatgetacaa	150480
caacactgag	ctcagcctaa	tgttcataag	tetetaaaca	catgtctaat	aattttttta	150540
ggattattt	tagaagtaaa	taactaggtt	ggacaatgca	aatgttttag	aactttgggc	150600
aaatattgta	aaattgcatt	ccactgcata	agaatgtgga	tttcttaatt	ctctttctca	150660
tttgggatgc	taagattaaa	aattagcata	acacttccag	tttcataagc	cttccccacc	150720
aacaagaagc	acatcagcct	gttttaatct	gcatgtcctc	catgactagc	cctctcattg	150780
tctctgcttc	tcttattatg	tctaattgtc	attacccaaa	tctatacact	actttcctct	150840
gaagacttgt	gttgtgattg	taaqaattqt	ataaatatca	atggetttag	ccaaagagtt	150900
ttacaaaqta	cgttttgggc	agcatactac	ctataataag	ttctatcatt	cacaaaaact	150960
ctttcttcta	tggttggctc	tgagtttctt	togaaaatgt	tecacacaca	aaggaaaget	151000
caaaccctcc	ttttaggaag	ttttattta	cotto	ccgaggggca	aaggcaaggc	151020
Cadaccccc	ttttagcaag	ctctgtttga	ccccgaagea	gecatttaae	aggeggaeta	151080
cagagecaea	gaaggatggc	acccceeag	grgegerree	tgctgagccg	agggtgcagt	151140
gcaggaggct	gacaaagatg	agtgaataga	ttattcttca	ttctcacatt	gaaatgacat	151200
grgcgggrgg	ggcatgaggt	tagggatgcg	tgagctccca	ttgttaaatc	cttttgtgaa	151260
cgaatttta	atgatgttaa	gaaatgatgg	ctggaggcgg	tggctcttgc	caacactctc	151320
agcattttgg	gaggctgagg	tgggaggatt	atgagagcct	aggatttcaa	gatcagcctg	151380
ggcagcatag	tgagaccctg	tctctacaaa	acaatttaaa	agggaagtga	ttacagtgta	151440
ctacaaaata	ccatatataa	tatcatcccc	agttaaatac	ataaaagaga	gatatgetaa	151500
aataaaaaag	aagcattctc	tgagtggtag	agttatgagt	catactttaa	atttgattgt	151560
taaaattoat	ttttaaatta	teteccetet	ccananttt	+000000000	toossess	151500
acataacaat	tacetasact	actaggatat	tanatantan	cagaaggaaa	tacaaaaaat	151620
geacygeeee	tgcctcaggt	agiggaatia	Lyagtyatat	ctagttttgc	tttatgcgtt	151680
tecatattt	tgtttcttct	aattatteet	aattgtttt	attttccaaa	tttcttactg	151740
tacccaaagg	ggaggacatt	gtaaattttc	tccaccagcc	tggcattgcc	ctgactcttt	151800
ccgtcttagt	gtcacttctc	agtgggtatc	atgaccagtg	caaagtgctg	aggcacaggg	151860
ccaggcggcc	cacgaggtag	ccctgaaggg	gcagcgatct	gtggctccaa	tgagccaatc	151920
attgggaaac	tggcatcttc	ctggggctgg	gacaggagag	ctttgttggt	qqqaqaqqaq	151980
ggcagagccg	aaggagagag	ggcaggggag	aggcaaggtc	accettacte	agegeettet	152040
tttctctqcc	agggctttac	tgccttaaca	ccctaacact	cccaaaccaa	acaddcadca	152100
agacacatog	ggacagtgag	ctataaagca	atasatacca	caccttcctc	geaggeagea	152160
agragattat	tccctctctg	catatattta	tatttaatt	caggeteetg	agacacaaga	152160
acttocattt	acttooctor	tatacgeery	cattlaaata,	geeteatget	cagacaagca	152220
acceggatet	gcttcagtct	ceceaggarg	ggtgagaaaa	acactggaaa	tgctcaaaac	152280
gaggeagaae	agaagacacc	tgtcatggtg	gagatggcat	ccaagtgaat	gaacgcgagt	152340
crgrrarcaa	tgaattatat	ccggtgtaac	cagatgtaga	gagattgtct	tgtgtgagaa	152400
tgcaccagca	ggcaaagggg	tttacgaggc	agagtcaggg	tccctgcacc	ggcagctgtt	152460
ttaaatgaat	tgacccaggg	tttccacatt	cattcattaa	acatttgttc	attgaacaaa	152520
tatttggctc	taattccgct	tecaceteag	acagctatoc	agcccqqaqc	acatcactga	152580
gctttcctga	gactctgttt	ctctactata	ctgacagcca	gaggtttact	acadadetad	152640
agaccttqqt	agcctccagg	tatatatata	gcaacatgaa	Ctatacataa	atecttatet	152700
tctcagator	tggagcaccc	acctacator	atgagettes	ataccataca	accttctcct	152760
cagacatgaa	acccaagacg	atasterese	accacacac	taaaatata	baaababbb.	150000
gggccccath	tttaassoot	aatooteet	accacyggya	agate accet	toegreeteg	152620
222000000	tttaaaaggt	unigoteett	congretgeg	ageraggage	cagagacttg	T25880

ggttccagtc ttggtgtggt ggccttcagc aattttgtcc tctcctggtc ttagtttcct 152940 gattetgtat aacagggttg aatgteactg ggttgteege eggetteete ceaetetaac 153000 acatgtgagg agggatgtgt attcatgtgc cctctgcaca gacgctcaga atcctgctgt 153060 gtgacatcaa gacaggtggt ggtgggggtc tcctgcagga ttcactatga cagggttgaa 153120 tgtcactggg ttgttccccg gcttcctccc gctctaacac acctgaggga ggatgtgtat 153180 catgtaccct ctgccacaga cactcagaat cctgggctgt gtcatcaaca agataggcgg 153240 tgggacacat gcggggccct gctctaggtt gagaagccac caatcaattt ccctctccca 153300 ggagcgctga gacagtgagt gagggtgaga ttagaattgg tgttaaccct aagtcaggtc 153360 taatgtgtgc ctgtttgtct ttctgtctgt ctctaacaaa aactcataaa cctttacatt 153420 tagtacattt aataattgtt gatttagaat tcacaggatg tatgaatttg gaacaggaga 153480 agagaatatt ttttatatgg tttatagtca gcaaggtggc catcccacag gctgggaagg 153540 tgcctctggc caagcccaga aacgggctca ttggaggagg ggttgggtag gagctttatg 153600 tgaacggatt ggctaaacat acatgttcaa caggttacag ggggagcaat ggatattcat 153660 gaagacagtc ctgacacatg tgtattaaac aaacatgtat gtaacatggc ccatgttcac 153720 ctggtggtgg agacctaata tttaaatgta ttacaattag ggcctgtaag tccaaaggtc 153780 tggctggtga tgttcttatc tggagaaagt tactgaaatc agtctcttat gcaatcaaag 153900 cagtagttaa gtctggcaag tcagggttct gtttgtctgc gtatcccagc tgcagccgtt 153960 "gttattgttt teettttget tageteeagg ceagtgetgg tttagetget agagaaagag 154020 aagcacctcg tggcagtgag aacaaagtgg attctttttt ttttttatta ttatacttta 154080 agttttaggg tacatgtgca cattgtgcag gttagttaca tatgtataca tgtgccgtgc 154140 tggtgcgctg cacccactaa ctcgtcatct agcattaggt atatctccca gtgctatccc 154200 teccecetee ecceaceca ccaeagteee cagagtgtga tatteceett cetgtgteea 154260 tgtgatctca ttgttcaatt cccacctatg agtgagaata tgcggtgttt ggttttttgt 154320 tettgegata gtttactgag aatgatggtt tecaatttea tecatgteee tacaaaggae 154380 atgaactcat cattttttat ggctgcatag tattccacgg tgtatatgtg ccacattttc 154440 ttaatccagt ctatcattgt tggacatttg ggttggttcc aagtctttgc tattgtgaat 154500 aatgccgcaa taaacatacg tgtgcatgtg tctttatagc agcatgattt atagtcattt 154560 gggtatatac ccagtaatgg gatggctggg tcaaatggta tttctagttc tagatccctg 154620 aggaatcgcc acactgactt ccacaatggt tgaactagtt tacagtccca ccaacagtgt 154680 aaaagtgttc ctatttctcc acatcctctc cagcacctgt tgtttcctga ctttttagag 154740 atgraggert gaaceettge cegacgtgge ettaggtete gittttaatt tggtgtetta 154800 ttgccacaaa gagtgtgttc tgtcagaatg atgaccttca ttttattgct gatgctggtc 154860 cggtggtgtc taaatcacaa aagggaggga gtattatgag gcgtgtctga cctcctgtcc 154920 gttcccaggc aggaacagag ttgaaggttt ttcgaggctc cccttagccc agagagggtc 154980 tgttcagtca gttgggggtg tcaggatttt atttttagtt tacattatac aatagtttaa 155040 aaaatccttt cacggtgtct tctaagtctt aactctcagc agttacagat cagatgggac 155100 tcaccccatg gctgctcaga acgcaccagc gcctctgggc atctcactgt gcatgcttag 155160 gcgccttgcg gctctgttgt ttttcagaat gtgaattgtg ggtgtgtgct ggggagggag 155220 aaaagaccca agagagagca accctggaaa gtggggttgc tgtagaggaa accctggggt 155280 ggggcatttc ctgtgaccct gagcggggag gaggcaggcg agggtcacag gagacaaagg 155340 cagccagcca atggaatgac gcatgcccat tgctgagccc taggtcagat atgctgaaag 155400 gtaaagtaca cacaaatcca ccacgatett:ctaaaagtgc agacetcage tcagtgggtg 155460 tggggcatgt gccaagacta tgtttccagc agactcgcat gtgatgttga cgctgcagtc 155520 cacggaccac actttgagta acaaaggett tttttettet teeceacaga gggtgeetea 155580 gaagaggaga tcagacttag caagatggtg atgaaattct gggccaactt tgctcgcaat 155640 gggtgaggct ggtggcaaag acagagcacg gctggtgagg gtggggggcg gggcatgcct 155700 attgggaagg ggcagcttct aaggttctag tgatcaaact tctgaccctg tgaccatagc 155760 actotgataa tgagagotot otgcaaacgg agaggoogco ootggagata gtgagototo 155820 catctctgga ggtatacaag cctcttgaca gagataactt gggcatcctc acacatctct 155880 gaagattgtt gggaacacac agcagctttg gggcaattct aattgattct gtttccagaa 155940, accccaatgg ggaagggctg ccccactggc cagagtacaa ccagaaggaa gggtatctgc 156000 agattggtgc caacacccag gcggcccaga agctgaagga caaagaagta gctttctgga 156060 ccaacctctt tgccaagaag gcagtggaga agccacccca gacagaacac atagagctgt 156120 gaatgaagat ccagccggcc ttgggagcct ggaggagcaa agactggggt cttttgcgaa 156180 agggattgca ggttcagaag gcatcttacc atggctgggg aattgtctgg tggtgggggg 156240 caggggacag aggccatgaa ggagcaagtt ttgtatttgt gacctcagct ttgggaataa 156300 aggatetttt gaaggeeaaa ttggtgettg tgtettgtae tggagattaa taetttgtee 156360 tcagagacag aacggtgatg aaagaggcga tgtgagaagg aaggtggctt tgctggggat 156420 ggcctggtct caggatgagc agagtccaga gggctgggtc atggacggtg ctcaggggag 156480 ctctgggcct gatgcacctt tctgggcccc caacaatttc caacaatacg agttggggtg 156540 gccagagtgc aggatcccta ccetctattt ggagttgccc atggaaatgg aagtggccca 156600 ggctgagaat gagtctggat cagggaagag ggagacgtgc tgaggtgatc ccgtggcact 156660

gttgcatggc acttactgac cattgcacag gcctgcaaca cctttctgag tatgtacact 156720 agocteccat acccetecat gaggttgtet ettecaceaa etggtegaaa etecttetgt 156780 ageetggace aettetggtg tgggeagtga ceaeettgga ggtggteeat tetteteeag 156840 agggtcatcc taaactgtgt ctttcagaat cccatgggtg atttctggat tctgttagta 156900 cgtagaaagc tctaaagcat gtcattcccg ccttatcagc aagaggaagc cggattgtcc 156960 tcaaaatcat aacttttcct gcaccaaaga gctgaagttg caaggcacat ggttccctcg 157020 aaatcgaagg gaagacaagc acctggggga gtggtgggat gtgaacactg gcttacttct 157080 cacctgcagg caggagacgg cgtgaccata atgagcagaa atactctatg aattttattc 157140 agtgctgaag gccaagggtg ggccactgtg agagtataaa acctctggga accatggacc 157200 catggggagt tgactccat cacagactct actccatggg tatttatcag ggcccatgag 157260 aaagattggg gtagacagtg agactggaga aagtctgcct tcaggaatgc aggcatgagc 157320 cetgetgaca ceetteacee etaaagaaca aaateettea ateattgegg aatggecagg 157380 aaatettgte eteeteaagg taetggtaga gacatattga ggttgaagat aaggaacett 157440 ttaaaactct ataccccttg gagagggaca gggagtcatc ttgggcccag attatcggtc 157500 ttttactgct ggggatggtc agtatctctg acaaacctcc atctccaaca gcaagaaatg 157560 aaggteetge etaaggttga ggetggaeca egacaagage aggeaeteet ggetgetaee 157620 atggagttag ccagtcccag gtaacagaaa tctgctgctg ggagagagag caaagcatgc 157680 agatcaaccc tcttgtaaaa gcaggtgcac aggacaggcc taaagctgag agtggaacaa 157740 gacattagga aaatcgttca gaaaaccggc ctttacacaa gcacaccaga accagcacaa 157800 ggtagcactg gaagcatttg aagcagatgg tgcattgatg atagccatag caacaacaaa 157860 actattcccc gatcaccaca ctcgaaatac acacgcacac acacacacac acgcatgcat 157920 gtacacacaa aatcagtcta gcagcagaag aaaagatatg tccacttcct gtcacggata 157980 ctacttactt cagtttcaac tcacttaccc atgatgtcaa gtattgaatt caaaattgca 158040 aaccttataa aggaagcaac acctatgaac aagagacaaa gcagttgggc acagtggtgc 158100 atgectgtag teccagetae ttaggagget gatgeaggag gattgettga acetgtgagt 158160 tcaaggctgt agtgcactgt aattgcacct atgaataacc acctgcactc tagtcatggt 158220 attatggtga aatagcatcg cttagagtga gagagagag gagagacaga cagacaaatc 158280 aatcaacaga accagattca gagataacct aggtgttaga ctaacagact gggaatttaa 158340 aataactata tggaatactt ccatgaacag atggctagtt tcagcagaga ggtagaaact 158400 atgagaaaga agcaaataga aatgttagaa atgaaaaaaa atagtaacag aaattagaaa 158460 tgcctctaat ggattcatca gtagatctga cacagctgac gaatgaatga gtgtagcaga 158520 agacaggcca atataaatta cccaacttaa aatgaagaaa atcagtgaaa aaaaaacaaa 158580 acagggaatc aaagaactgt cagataatat ccaatggtcc aacatatgca taactggaat 158640 cccagaaaga gaagacaaag caggcagaag aaaatatttg aagagataat ggctgagaat 158700 tttccaaaag taatgaaaaa catcaaggca tacgtccaag agcctggaaa accccaagca 158760 ggattcaaca acaacagcaa caacagcaac aaaaacatac acatttagac acacactgag 158820 aaaatattga aggcagccag aggaaaaaga cattgcatac aaagaaaggg attagagcag 158880 atttttcact ggaaactatg caagccaaaa aataatggag tgacaccttt aaagtattca 158940 aacgaaaaaa atctttgcag aattctatat ccagaaaaaa cactgttcaa aaaatacagg 159000 gaaaaatgtt ttcagatgaa caatagagag aatttatact tacatacttg tgctaccaaa 159060 aatgtaaaag gaaattetet aegeaaaagg tatatgatae aggataaaaa etttgatatt 159120 tatcaaagaa gtgaagetet acatataget ttaaaataaa ggtaatgtag getattttte 159180 ctatatttaa ttactgttta aaacaaaaat agcaccaatg aactgtggat ttagagcata 159240 cgtaagaata aaatatacaa caaaaataat atgaaagatg agagacaggt atttgaagca 159300 cacttttgta agattcttac actctgtgta attggtattg tctgaaggta taaggtgatt 159360 aatgtatatt gtatgtatat tgtataccca ggaaaaccaa taaataattt taaaaggaga 159420 catgaataat aacacaatag aggagataac atgaaatcat aaatactcgc tacacgagca 159480 agcagacaga agaagaacaa agacacagga acaaatgaaa aagtactgca gaagtgacag 159540 attttaatcc aaccgtatca ataactatac tacacaaaaa tgatgtaaac acaccaatta 159600 aaaatgattt tcagattgga ttaaagaaaa cacaaaacgc aacctaacgc tgcgtcgtag 159660 ttagtccaaa ttcacgtttc agtgtttgac tectggtggc ttttaagect cageetteee 159720 ttgtcccctc ttgctgacac ctggaaagct gataagaaag cctgggtgct tcctcctttg 159780 ttgctggagg aaaattcaaa gettaeegtg agaaagetga eeaeggeeee agtgeggaat 159840 cctcatacca cacctggtcg tcctgtccaa gacagcgtcc cagagctcct tgagcctcag 159900 cggggggaag aaacagcata ttttttcctc ctggtccaga gagaggggag acgctacaga 159960 gcaggggtcg gtaagctgca gcccacaggc caaacctgtc agaccgtggg atccttgggt 160020 caggaccaag gtcaaactcg ttttggggct ccccaagaag tgctgggcaa tgcaacctgg 160080 tggatggact gagagctgcc cagcagatgg atctgtaccc agggaagtgc acattggcct 160140 ttggtgaaca gtccatggta cccttgaact ctataataat agcagtaata ggccgggcgc 160200 ggtgactcgc acctgtaatc ccagcacttt gggaggccga ggtgggcgga tcacctgagg 160260 ttaggagttc gagaccagcc tggccaacac ggtgaaatct catgtctaca aaaaatacaa 160320 aaattagctg gacgtggtgg cgggtgcctg taatcccagc tagtcggggg gctgaggcag 160380 gagaateget tgaacceggg aggeggaggt ggcagtgage caagateatg etactgcact 160440

ccagcctggg	caacaagagt	gaaacaccgt	cataaaagaa	agaagaaaga	aagaaggaaa	160500
gaaggaaaga	aagaaagaaa	gagaaagaaa	gaaagaagga	aagaaggaga	gataaagaaa	160560
					aagaaagaaa	
					tatgtgttta	
					tgagcagttc	
atttggtatc		_		•		160755