PUCP

FACULTAD DE CIENCIAS SOCIALES

MATEMÁTICAS PARA ECONOMISTAS IV

PRÁCTICA DIRIGIDA 1

PROFESOR: JORGE R. CHÁVEZ

JEFES DE PRÁCTICA: JOAQUÍN RIVADENERYA & MARCELO GALLARDO

SEMESTRE 2022-2

FECHA 23-08-2022

Elementos de Topología en \mathbb{R}^n

1. Calcule la norma de los siguientes vectores:

1.1)
$$\overline{x} = (2, -3)$$
.

1.2)
$$\overline{y} = (2, 4, 1)$$
.

1.3)
$$\overline{z} = (4, 5, -6)$$
.

1.4)
$$\overline{w} = (6, -0, 3)$$
.

1.5)
$$\overline{y} + 2\overline{z}$$
.

1.6)
$$3\overline{y} - \overline{w}$$
.

2. Como sabemos, una bola abierta centrada en x_0 y de radio r>0, en \mathbb{R}^n , es un conjunto de la forma

$$\mathcal{B}(x_0, r) = \{ x \in \mathbb{R}^n : ||x - x_0|| < r \}.$$

Sean $x_0 = (0,0)$ y r = 1.

- 2.1) Verifique si los puntos P = (1,1) y Q = (-1,0.5) pertenecen a $\mathcal{B}(x_0,r)$.
- (2.2); Cuál de los dos puntos P o Q está más cerca del centro de la bola?
- 2.3) Grafique el conjunto $\mathbb{R}^n \setminus \mathcal{B}(x_0, r)$. Luego, caracterice cualquier punto de este conjunto.
- **3.** Identifique si los siguientes conjuntos son cerrados, abiertos o ninguno de los dos. Luego, provea el borde de cada conjunto y determine gráficamente si es un conjunto acotado.

3.1)
$$\Omega_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 1 < x_1^2 + x_2^2 < 16\}$$

3.2)
$$\Omega_2 = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 - x_2^2 = 1\}$$

3.3)
$$\Omega_3 = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1\} \cup \{(x_1, x_2) \in \mathbb{R}^2 : (1 - x_1)^2 + (1 - x_2)^2 \le 1\}.$$

1

Introducción al análisis convexo

- **4.** Sean $\overline{x} = (2,3)$ e $\overline{y} = (4,10)$ dos puntos de \mathbb{R}^2 .
- 4.1) ¿Es el punto (3,5) combinación convexa de \overline{x} e \overline{y} ?
- 4.2) Proporcione un punto de \mathbb{R}^2 que no sea combinación convexa de \bar{x} e \bar{y} .
- 4.3) Exprese (7/2, 33/4) como combinación convexa de \overline{x} e \overline{y} .
- 5. En base a argumentos geométricos, determine si los siguientes conjuntos son convexos o no:
- 5.1) $\Omega_1 = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \ge x_1\}.$
- 5.2) $\Omega_2 = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \le \ln(x_1)\}.$
- 5.3) $\Omega_3 = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2/9 + x_2^2/9 \le 1\}.$
- 5.4) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : 2x_1 x_2 + x_3 \le 2\}.$
- 6. ¿Es la unión, diferencia e intersección de conjuntos convexos un conjunto convexo?
- 7. Por definición, pruebe que el conjunto S es convexo

$$S = \{(x_1, x_2) \in \mathbb{R}^2 : 1 \le x_1 \le 3, \ 1 \le x_2 \le 4\}.$$

8. Pruebe que el conjunto que se da a continuación no es convexo.

$$S = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \le x_1^2 + 1\}.$$

- **9.** Sea $\overline{p} = (2,3)$ un vector de precios e I = 10, el ingreso de un consumidor.
- 9.1) Grafique la región de presupuesto.
- 9.2) Proporcione dos canastas factibles.
- 9.3) Proporcione una canasta no factible.
- 9.4) Sin cambiar los precios, cómo podría mejorar el ingreso para que la canasta NO factible se convierta en factible. Realice el mismo ejercicio, pero ahora manteniendo fijo el ingreso.

Relaciones de preferencias

- **10.** Si $U(x_1, x_2) = \sqrt{x_1} + x_1 x_2$ determine si $x \leq y$, donde x = (1, 2) y y = (2, 1).
- **11.** Si $(1,1) \leq (2,0)$, ¿la función $U(x_1,x_2) = x_1x_2$ representa correctamente dicha relación de preferencia?

- 12. A continuación, se definen relaciones binarias en \mathbb{R}^2 . En cada caso, analice si se trata de una relación de preferencias racional, esboce una curva de indiferencia que satisfaga las relaciones de preferencias y analice si las relaciones de preferencias halladas tienen la propiedad de convexidad.
- 11.1) $(x_1, x_2) \leq (y_1, y_2) \Leftrightarrow x_1 \leq y_1 \land x_2 \leq y_2$.
- 11.2) $(x_1, x_2) \leq (y_1, y_2) \Leftrightarrow x_1 + x_2 \leq y_1 + y_2$.
- 11.3) $(x_1, x_2) \leq (y_1, y_2) \Leftrightarrow x_1 x_2 \leq y_1 y_2$.
- 11.4) $(x_1, x_2) \leq (y_1, y_2) \Leftrightarrow \min\{x_1, x_2\} \leq \min\{y_1, y_2\}.$
- 11.5) $\overline{x} = (x_1, x_2) \preceq \overline{y} = (y_1, y_2)$ si y solamente si se cumple: $(x_1 < y_1)$, o bien,
- $(x_1 = y_1 \text{ y } x_2 < y_2).$ Esto implica que $x \sim y$ si y solamente si x = y.
- 11.6) Dado $x_0 = (x_{10}, x_{20}), x = (x_1, x_2) \leq y = (y_1, y_2)$ si y solamente si $||x x_0||_2 > ||y x_0||_2$. Recuerde que $||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$.