DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID

Análisis de Variable Real. Curso 20-21. Sucesiones de números reales. Hoja 4

65 Usando la definición de límite de una sucesión, probar los siguientes límites:

$$i) \lim_{n \to \infty} \frac{2n}{n+1} = 2$$

i)
$$\lim_{n \to \infty} \frac{2n}{n+1} = 2$$
 ii) $\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 + 3} = 1/2$ iii) $\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0$

$$iii) \lim_{n \to \infty} \frac{n}{n^2 + 1} = 0$$

66 Probar que

- i) Si $\alpha > 0$ entonces $\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0$. ii) Si $r \in \mathbb{R}$ entonces $\lim_{n \to \infty} r^n = 0$ si |r| < 1. Si r > 1 entonces $\lim_{n \to \infty} r^n = \infty$. ¿Que ocurre si r < -1?.
- iii) Para todo c > 0 se tiene $\lim_{n \to \infty} \sqrt[n]{c} = 1$. Indicación: Distinguir entre 0 < c < 1, c = 1 y c > 1.

67 Probar que

$$i) \lim_{n \to \infty} \frac{1}{\sqrt{n+7}} = 0 \quad ii) \lim_{n \to \infty} \frac{\sqrt{n}}{n+1} = 0 \quad iii) \lim_{n \to \infty} \frac{(-1)^n n}{n^2+1} = 0 \quad iv) \lim_{n \to \infty} (\sqrt{n^2+1} - n) = 0$$

v)
$$\lim_{n \to \infty} \frac{3n^2 + 5}{n^2 + n + 1} = 3$$
 vi) $z_n = 2 + (-1)^n$ no tiene límite. vii) $\lim_{n \to \infty} 3^{2n-1} = \infty$

68 Estudiar la convergencia de la sucesión $X = \{x_n\}_n$ donde x_n viene dado por:

i)
$$x_n = \frac{n}{n+1}$$
 ii) $x_n = \frac{(-1)^n n}{n+1}$ iii) $x_n = \frac{n^2}{n+1}$ iv) $x_n = \frac{2n^2 + 3}{n^2 + 1}$

- **69** Probar que si $x_n = \frac{P(n)}{Q(n)}$ donde $P(z) = \sum_{k=0}^m a_k z^k$ y $Q(z) = \sum_{k=0}^l b_k z^k$ son polinomios con $a_m > 0, b_l > 0, se tiene$
- i) Si m = l entonces $\lim_{n \to \infty} x_n = \frac{a_m}{b_l}$.
- ii) si m > l entonces $\lim_{n \to \infty} x_n = \infty$.
- iii) si m < l entonces $\lim_{n \to \infty} x_n = 0$.
- 70 i) Probar que $\lim_{n\to\infty} x_n = 0$ si y sólo si $\lim_{n\to\infty} |x_n| = 0$. ii) Dar un ejemplo de una sucesión $\{x_n\}_n$ que verifique que existe $\lim_{n\to\infty} |x_n|$ pero no existe $\lim_{n\to\infty} x_n$.
- **71** Probar que si $\lim_{n\to\infty} x_n = x > 0$ entonces existe $N \in \mathbb{N}$ tal que $x_n > 0$ para todo $n \ge N$.
- 72 i) ¿Pueden existir dos sucesiones de números reales que tengan infinitos términos iguales y distinto límite?
- ii) ¿ Pueden existir dos sucesiones de números reales $\{a_n\}_n$ y $\{b_n\}_n$ tales que $a_n \neq b_n$ para todo n y con el mismo límite?
- iii) Una sucesión es convergente y tiene sus términos alternativamente positivos y negativos. ¿Cual es su límite?.
- **73** Demostrar que si $\lim_{n\to\infty} a_n = 0$ y $\{b_n\}_n$ es acotada entonces $\lim_{n\to\infty} a_n b_n = 0$.

Poner ejemplos en los que $\lim_{n\to\infty} a_n = 0$ pero $\{b_n\}_n$ es no acotada y que se verifique, respectivamente, que $\lim_{n\to\infty} a_n b_n = \infty$, $\lim_{n\to\infty} a_n b_n = 0$ y $\lim_{n\to\infty} a_n b_n$ no existe.

- 74 Probar que se tienen los siguientes límites:
 - i) Si $b \in \mathbb{R}$ con 0 < b < 1, entonces $\lim_{n \to \infty} nb^n = 0$

ii)
$$\lim_{n \to \infty} (2n)^{1/n} = 1$$
 iii) $\lim_{n \to \infty} n^2/n! = 0$ *iv)* $\lim_{n \to \infty} 2^n/n! = 0$

$$(iii) \lim_{n \to \infty} n^2/n! = 0$$

$$iv) \lim_{n \to \infty} 2^n/n! = 0$$

75 Probar que si x_n es una sucesión de números reales no nulos tales que

- $\begin{array}{l} i) \lim_{n \to \infty} |\frac{x_{n+1}}{x_n}| < 1 \ entonces \ \lim_{n \to \infty} x_n = 0. \\ ii) \lim_{n \to \infty} |\frac{x_{n+1}}{x_n}| > 1 \ entonces \ \lim_{n \to \infty} |x_n| = \infty. \end{array}$
- iii) $\lim_{n\to\infty} \sqrt[n]{|x_n|} < 1$ entonces $\lim_{n\to\infty} x_n = 0$.
- iv) $\lim_{n\to\infty} \sqrt[n]{|x_n|} > 1$ entonces $\lim_{n\to\infty} |x_n| = \infty$.

76 Calcular el límite de la sucesión $X = \{x_n\}_n$ donde:

$$i) \ x_n = \sqrt{n}(\sqrt{n+1} - \sqrt{n}) \qquad ii) \ x_n = \sqrt{4n^2 + n} - 2n \qquad iii) \ x_n = (3\sqrt{n})^{1/2n}$$

$$iv) \ x_n = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}, \quad para \ 0 < a < b \qquad v) \ x_n = \sqrt{(n+a)(n+b)} - n, \quad para \ a \ge 0, \ b \ge 0.$$

$$vi) \ x_n = n^{1/n^2} \qquad vii) \ x_n = (n!)^{1/n^2} \qquad viii) \ x_n = (a^n + b^n)^{1/n}, \quad para \ 0 < a \le b.$$

77 Calcular

$$i) \lim_{n \to \infty} \frac{1}{n^2} (3 + 6 + \dots + 3n), \quad ii) \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}, \quad iii) \lim_{n \to \infty} \sqrt{n^2 + n} - n, \quad iv) \lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right), \quad v) \lim_{n \to \infty} \left(n^{-2} + (n+1)^{-2} + \dots + (2n)^{-2} \right), \quad vi) \lim_{n \to \infty} \frac{3\left(\sqrt[3]{n+1} - \sqrt[3]{n}\right)}{2\left(\sqrt{n+1} - \sqrt{n}\right)}, \quad vii) \lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right) \sqrt{\frac{n+1}{2}}, \quad viii) \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+\sqrt{n+\sqrt{n}}}}$$

78 Estudiar la convergencia o divergencia de la sucesión $\{x_n\}_n$ donde

$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n}$$

79 Sea $X = \{x_n\}_n \ con$

$$x_n = \frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2}.$$

Probar que la sucesión es monótona creciente y acotada y por lo tanto convergente.

Indicación: Usar que $\frac{1}{n^2} \leq \frac{1}{n(n-1)}$ y descomponer en fracciones simples.

- **80** i) Sea $x_1 = 8$ y $x_{n+1} = \frac{1}{2}x_n + 2$ para $n \in \mathbb{N}$. Probar que la sucesión $\{x_n\}_n$ es monótona y acotada. Calcular su límite.
- ii) Sea $x_1 > 1$ y $x_{n+1} = 2 \frac{1}{x_n}$ para $n \in \mathbb{N}$. Probar que la sucesión $\{x_n\}_n$ es monótona y acotada. Calcular su límite.
- **81** Probar que la sucesión definida por

$$x_1 = 1, \quad x_{n+1} = \sqrt{1 + x_n}, \qquad n \in \mathbb{N}$$

es monótona creciente y acotada y calcular su límite.

82 Probar que las siquientes sucesiones son monótonas y acotadas. Calcula su límite.

- i) $y_{n+1} = \frac{1}{4}(2y_n + 3), y_1 = 1, n \in \mathbb{N}.$
- *ii)* $z_{n+1} = \sqrt{2z_n}, z_1 = 1, n \in \mathbb{N}.$
- **83** $Dado \ a > 0 \ sea$

$$s_{n+1} = \frac{1}{2}(s_n + \frac{a}{s_n}), \quad s_1 > 0$$

Probar que $s_{n+1}^2 \geq a$, para $n \geq 1$, s_n es decreciente y converge a \sqrt{a} .

84 Calcular el límite de la sucesión

$$a_1 = \sqrt{a}, \quad a_2 = \sqrt{a + \sqrt{a}}, \quad a_3 = \sqrt{a + \sqrt{a + \sqrt{a}}}, \dots$$

 $siendo \ a > 0.$

85 Sea $x_1 = a > 0$ y $x_{n+1} = x_n + \frac{1}{x_n}$ para $n \in \mathbb{N}$. Determinar si la sucesión $X = \{x_n\}_n$ tiene límite

86 Sea $A \subset \mathbb{R}$ un conjunto infinito acotado superiormente y sea $S = \sup A$. Probar que existe una sucesión creciente $\{x_n\}_n \subset A$ tal que $\lim_{n \to \infty} x_n = S$.

Probar algo análogo para el ínfimo de un conjunto infinito acotado inferiormente.

87 Usar el criterio de Stolz para probar

i) $Si \ m \in \mathbb{N}$

$$\lim_{n \to \infty} \frac{1}{n^{m+1}} \sum_{j=1}^{n} j^{m} = \frac{1}{m+1}.$$

- ii) $\lim_{n\to\infty} \frac{1}{n} \sum_{j=1}^n \frac{1}{j} = 0.$
- iii) Si $\{x_n\}_n$ es una sucesion tal que $\lim_{n\to\infty}x_n=\ell\in\overline{\mathbb{R}}$. Entonces las medias aritméticas verifican

$$\sigma_n = \frac{1}{n} \sum_{j=1}^n x_j = \ell \in \overline{\mathbb{R}}$$

Poner ejemplos que muestren que el reciproco es falso.

88 i) Dar un ejemplo de una sucesión no acotada que contiene una subsucesión convergente.

ii) Probar que si $X = \{x_n\}_n$ es una sucesión no acotada, entonces existe una subsucesión $\{x_{n_k}\}_k$ tal que $\lim_{k \to \infty} x_{n_k} = \infty$ o $\lim_{k \to \infty} x_{n_k} = -\infty$.

89 Límite superior e inferior de una sucesión

Sea $\{x_n\}_n \subset \mathbb{R}$ una sucesión acotada y definimos para $N \in \mathbb{N}$

$$a_N = \inf\{x_n, \ n \ge N\}, \qquad b_N = \sup\{x_n, \ n \ge N\}.$$

Demostrar que

i) a_N es monótona creciente, b_N es decreciente, $a_N \leq x_N \leq b_N$, para todo $N \in \mathbb{N}$.

Definimos el límite inferior y superior de x_n como

$$\liminf_{n \to \infty} x_n = \lim_{N \to \infty} a_N, \qquad \limsup_{n \to \infty} x_n = \lim_{N \to \infty} b_N.$$

Probar que estan bien definidos y que por tanto siempre existen.

- ii) Probar que x_n converge si y sólo si $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$.
- iii) Si s > lím $\sup_{n \to \infty} x_n$ entonces, excepto posiblemente para una cantidad finita de índices, se tiene $x_n \leq s$.

Probar algo semejante para lím $\inf_{n\to\infty} x_n$.

- iv) Si x_{n_k} es una subsucesión de x_n que converge a x_0 entonces $\liminf_{n\to\infty} x_n \le x_0 \le \limsup_{n\to\infty} x_n$.
- v) Existe una subsucesión de x_n que converge a lím $\inf_{n\to\infty} x_n$ y otra que converge a lím $\sup_{n\to\infty} x_n$.

Por tanto lím $\inf_{n\to\infty} x_n$ y lím $\sup_{n\to\infty} x_n$ son el infimo y el supremo, respecivamente de todos los puntos que son límite de una subsucesión $de x_n$.

90 Para la sucesión
$$\{x_n\}_n$$
 con $x_n = (-1)^n + \frac{1}{n}$, calcular lím $\sup_{n \to \infty} x_n$ y lím $\inf_{n \to \infty} x_n$.

91 (Paso al límite en la exponencial) Con las notaciones del Problema 62 probar

- i) Si $\{x_n\}_n$ es una sucesión monotona y $\lim_{n\to\infty} x_n = x$ y a > 0 entonces $\lim_{n\to\infty} \overline{a^{x_n}} = a^x$. ii) Usando el Problema 89, si $\lim_{n\to\infty} x_n = x$ y a > 0 entonces $\lim_{n\to\infty} a^{x_n} = a^x$.

- **92** Supongamos que $x_n \leq y_n$ para todo $n \in \mathbb{N}$ y son sucesiones acotadas.
- i) Demostrar que si $\lim_{n\to\infty} y_n = y$ entonces

$$\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n \le y$$

ii) Demostrar que siempre se tiene

$$\liminf_{n \to \infty} x_n \le \liminf_{n \to \infty} y_n \quad y \quad \limsup_{n \to \infty} x_n \le \limsup_{n \to \infty} y_n$$

- **93** Si a_n es una sucesión de números reales positivos,
- i) Demostrar que

$$\liminf_{n\to\infty}\frac{a_{n+1}}{a_n}\leq \liminf_{n\to\infty}\sqrt[n]{a_n}\leq \limsup_{n\to\infty}\sqrt[n]{a_n}\leq \limsup_{n\to\infty}\frac{a_{n+1}}{a_n}$$

Indicación: $Si \ k = \limsup_{n \to \infty} \frac{a_{n+1}}{a_n} \ usar \ la \ propiedad \ iii) \ del \ Problema$ 89. ii) ¿Qué se puede deducir del límite de $\sqrt[n]{a_n}$ cuando existe el de $\frac{a_{n+1}}{a_n}$?.

Dar un ejemplo de una sucesión para la que no exista el límite de $\frac{a_{n+1}}{a_n}$ pero si el de $\sqrt[n]{a_n}$.

iii) Aplicar lo anterior al cálculo de los límites

$$\lim_{n \to \infty} \sqrt[n]{\frac{(n!)^2}{(2n)!}}, \qquad \lim_{n \to \infty} \sqrt[n]{\frac{(2n)!}{n!n^n}}$$

iv) Concluye el siquiente resultado sobre las medias geométricas de una sucesión de números positivos: Sea $\{x_n\}_n$ un sucesión tal que $x_n > 0$ para todo $n \in \mathbb{N}$ y tal que $\lim_{n \to \infty} x_n = \ell$.

Entonces las medias geométricas $a_n = \sqrt[n]{x_1 \dots x_n}$ verifican $\lim_{n \to \infty} a_n = \ell$.

- **94** Con las notaciones de los Problemas 60 y 61 probar

95 La exponencial de base variable

Siguiendo las notaciones del Problema 62, sea a > 0.

i) Supongamos $x \in \mathbb{R}$ fijo. Probar que si a_n es monótona convergente a a > 0 entonces $\lim_{n \to \infty} a_n^x = a^x$. Usando el Problema 89 probar que si $\lim_{n\to\infty} a_n = a > 0$ entonces $\lim_{n\to\infty} a_n^x = a^x$. Indicación: Distinguir los casos x > 0, x < 0 y = 0.

- ii) Si x > 0, probar que $a^x = \sup\{b^x, b < a\} = \inf\{c^x, a < c\}$.
 - Si x < 0, probar que $a^x = \inf\{b^x, b < a\} = \sup\{c^x, a < c\}$.

iii) Probar que si a_n es monótona convergente a a > 0 y x_n es monótona convergente a x, entonces $\lim_{n \to \infty} a_n^{x_n} = a^x.$

 \tilde{U} sando el Problema $\overset{\sim}{89}$ probar que si $\underset{n\to\infty}{\lim}$ $a_n=a>0$ y $\underset{n\to\infty}{\lim}$ $x_n=x$, entonces $\underset{n\to\infty}{\lim}$ $a_n^{x_n}=a^x$.

- iv) Extender el apartado anterior al caso en que los límites $a \in (0,\infty]$ y $x \in \overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ (excepto los casos 1^{∞} e ∞^0).
- **96** Usando que $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ (es una sucesión monótona y acotada) probar que $\lim_{n\to\infty} (1-\frac{1}{n})^n = e$ $(\frac{1}{n})^{-n} = e.$

97 Usando que $\lim_{n\to\infty} (1+\frac{1}{n})^n = e \ y \lim_{n\to\infty} (1-\frac{1}{n})^{-n} = e, \ probar$ i) Si $\lim_{n\to\infty} a_n = \infty$ entonces $\lim_{n\to\infty} (1+\frac{1}{a_n})^{a_n} = e.$ Indicación: Usar la parte entera: si $x \in \mathbb{R}$, $[x] \in \mathbb{Z}$ y $[x] \le x < [x] + 1$

- ii) Si $\lim_{n\to\infty} a_n = -\infty$ entonces $\lim_{n\to\infty} (1 + \frac{1}{a_n})^{a_n} = e$.
- iii) Si $\lim_{n\to\infty} x_n = x \in \mathbb{R}$ y $\lim_{n\to\infty} a_n = \infty$ entonces $\lim_{n\to\infty} (1 + \frac{x_n}{a_n})^{a_n} = e^x$.
- iv) Si $\lim_{n\to\infty} x_n = 1$ $\lim_{n\to\infty} a_n = \infty$ y existe $\lim_{n\to\infty} a_n(x_n 1) = x$, entonces $\lim_{n\to\infty} x_n^{a_n} = e^x$.

98 Calcular

$$i) \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{n}, \quad ii) \lim_{n \to \infty} \left(1 + \frac{1}{n^{2}}\right)^{n}, \quad iii) \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n^{2}}, \quad iv) \lim_{n \to \infty} \left(1 - \frac{1}{n^{2}}\right)^{n}, \quad v)$$

$$\lim_{n \to \infty} \left(\frac{n^{2} - 5n + 6}{n^{2} - 2n + 1}\right)^{\frac{n^{2} + 5}{n + 2}}, \quad vi) \lim_{n \to \infty} \left(\frac{3n^{2} - n + 7}{8n^{2} + 4n - 1}\right)^{\frac{5n - 7}{3n}}, \quad vii) \lim_{n \to \infty} \left(\frac{3n + 1}{3n - 7}\right)^{5n}, \quad viii) \lim_{n \to \infty} \left(1 + \frac{n}{n^{2} + 1}\right)^{\sqrt{n}}.$$

$$ix) \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n + 1} \quad x) \lim_{n \to \infty} \left(1 + \frac{1}{n + 1}\right)^{2n} \quad xii) \lim_{n \to \infty} \left(1 - \frac{1}{n + 1}\right)^{n} \quad xii) \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{n},$$

$$xiii) \lim_{n \to \infty} \left(1 + \frac{1}{n^{2}}\right)^{n}, \quad xiv) \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n^{2}}, \quad xv) \lim_{n \to \infty} \left(1 - \frac{1}{n^{2}}\right)^{n}, \quad xvi) \lim_{n \to \infty} \left(\frac{n^{2} - 5n + 6}{n^{2} - 2n + 1}\right)^{\frac{n^{2} + 5}{n + 2}},$$

$$xvii) \lim_{n \to \infty} \left(\frac{3n^{2} - 5n + 7}{8n^{2} + 4n - 1}\right)^{\frac{5n - 7}{3n}}, \quad xviii) \lim_{n \to \infty} \left(\frac{3n + 1}{3n - 7}\right)^{5n}, \quad xix) \lim_{n \to \infty} \left(1 + \frac{n}{n^{2} + 1}\right)^{\sqrt{n}}$$

- 99 Probar que una sucesión de Cauchy en IR es acotada.
- 100 Dar un ejemplo de una sucesión acotada que no sea de Cauchy.
- 101 Probar directamente de la definición que las siguientes sucesiones son de Cauchy,

i)
$$\left(\frac{n+1}{n}\right)$$
 ii) $\left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right)$

102 Consideremos la sucesión $X = \{x_n\}_n$ con $x_n = \sqrt{n}$. Probar que $\lim_{n \to \infty} |x_{n+1} - x_n| = 0$ pero X no es una sucesión de Cauchy.