Instructions. (100 points) You have 60 minutes. Closed book, closed notes, and no calculators allowed. Show all your work in order to receive full credit.

- (17^{pts}) **1.** Consider points A(4, -3, 2) and B(2, 1, c) and vectors $\mathbf{u} = \langle 1, -2, 3 \rangle$ and $\mathbf{v} = \langle -1, -1, 2 \rangle$.
 - (a) (4 pts) Find the vector projection of **u** along **v**.

(b) (4 pts) Find the area of the parallelogram with adjacent sides \mathbf{u} and \mathbf{v} .

(c) (3 pts) Find all values of c such that the length of \overrightarrow{AB} equals 5.

(d) (3 pts) Find all values of c such that \overrightarrow{AB} is parallel to \mathbf{u} .

(e) (3 pts) Find all values of c such that \overrightarrow{AB} is orthogonal to \mathbf{v} .

 (15^{pts}) **2.** Below is a sketch of the space curve:

$$\mathbf{r}(t) = \langle t \cos t, t \sin t, t \rangle$$
 , $0 \le t \le \frac{7\pi}{3}$.

(a) (8 pts) Draw on the above the position and velocity vectors for $t = \frac{3\pi}{2}$.

(b) (4 pts) Find the speed at time t and simplify your result.

(c) (3 pts) At what time (s) is the acceleration horizontal (i.e. normal to $\mathbf{k})?$

(15^{pts}) **3.** Time to sketch some surfaces!

(a) (10 pts) For $x^2 + \frac{y^2}{4} - z^2 = -1$, sketch the given traces, then the surface in 3D.

traces: $z = 0, \pm \sqrt{5}$

trace: y = 0

(b) (5 pts) Sketch the surface $y = z^2 + 1$.

(21^{pts}) 4. Consider the following point, line, and plane:

$$A = (3, -2, 5),$$

$$\vec{\ell}(t) = \langle 1 - 2t, t, 3 + 4t \rangle,$$

$$P: 2x - 3y + z = -4,$$

(a) (5 pts) Give the equation of a plane parallel to the plane P that passes through A.

(b) (4 pts) Find the point of intersection of the line $\vec{\ell}(t)$ and the plane P.

(c) (5 pts) Find the angle the line $\vec{\ell}(t)$ makes with the normal to the plane P. (Your answer may involve an inverse trigonometric function.)

(d) (7 pts) Find an equation for the plane containing the point A and the line $\vec{\ell}(t)$.

(9^{pts}) **5.** A bicycle pedal is attached to a 17 cm crank. When the crank is at an angle of 30° with the vertical (as shown) a foot applies a downward force of 200 N.

- (b) (3 pts) What is the magnitude of the torque? Indicate units.
- (c) (2 pts) What is the direction of the torque vector? (Into the page \bigotimes , or out of the page \bigodot , in the figure).
- (8^{pts}) **6.** An object moves in the plane with acceleration

$$\mathbf{a}(t) = \left\langle \frac{1}{t^2}, \frac{t}{(1+t^2)^2} \right\rangle.$$

At time t=1 it is located at the point (1,0) and has velocity (2,1). Find a function $\mathbf{r}(t)$ giving its position at all times t>0.

- (15^{pts}) 7. A particle moves with velocity $\mathbf{v}(t) = \langle t^2, 2t, 2 \rangle$.
 - (a) (7 pts) Find the distance the particle travels between times t = 1 and 2.

(b) (8 pts) Calculate the curvature of the trajectory at time t = 1.

(c) Extra Credit (5pts) Find the unit tangent vector $\mathbf{T}(t)$ and the tangential component of acceleration $a_{\mathbf{T}}$ at t=1.