Specifying GAMs & GAMMs with mgcv

David Lawrence Miller

CREEM, University of St Andrews

SPOILER ALERT

your model is probably some kind of (fancy) GLM

General setup of GAMs in mgcv (and my brain)

General setup

$$y = X\beta + \epsilon$$
 with penalty $\beta^{\mathsf{T}}S\beta$

I think of this as "linear", in the sense that $X\beta$ is linear

X includes a column for each parametric covariate, plus one for each basis evaluation (at knots or pseudo-knots).

what about this penalty thing?

$$\beta^{\mathsf{T}} S \beta = \int_{\Omega} (D^m f(\mathbf{x}))^2 d\mathbf{x}$$

where D^m is some differential operator, commonly for univariate:

$$D^m f(x) = \frac{\partial^2 f(x)}{\partial x^2}$$

A quick tour of spline bases

How many different bases?

Currently ~17 (some bases are v. similar or inter-related) in mgcv:

```
"ad", "sf", "cc", "so", "cp", "sos", "cr", "sw", "cs", "t2", "ds", "tensor", "mrf", "tp", "ps", "ts", "re"
```

```
?smooth.terms
?smooth.construct.*.smooth.spec
?gam.models
```

cubic splines

- simple basis construction
- orthogonal (Hermite) polynomials defined by their knots

without knots, knots are placed evenly over x cp basis "more optimal" (see tprs)

thin plate splines

- multi-dimensional basis
- 2-part basis
 - global bits (orthogonal polynomial terms)
 - local bits (radial basis functions)
- requires 1 radial function per datum
- knots?

tprs basis

thin plate regression splines – Wood (2003)

- instead of knots, use all data but
- take eigendecomposition $X = UDU^T$
- \triangleright truncate to 1st k columns (D is in "eigen-order")
- "more optimal" than knot-based approaches

```
s(x,y,..., bs="tp", k=M+k.def, knots=NULL)
```

where M is nullspace size and k.def is 8 (1D), 27 (2D), 100 (3D+)

cyclic smoothers

- seasonality?
- temporal periodicity?
- ▶ angles?

wrap at range(x), unless knots specified

random effects

- ▶ IID normal random effects
- ▶ multivariate (s(x,y,z,bs="re") is ~x:y:z-1 interaction)
- exploits equivalence of random effects and splines
- useful when you just have a "few" random effects

```
s(x,bs="re")
?gam.vcomp
```

Duchon splines

- sometimes spatial smoothers curl up at the edges
- ▶ Duchon splines limit nullspace in 2D+

$$s(x,y,..., bs="ds", k=M+k.def, m=c(1,.5) knots=NULL)$$

tensor products

- tprs multivariate but assumes isotropy
- are space and time the same? (hint: NO)
- different smoothing parameters
- "push" 2D spatial smoother through time
- ▶ Marra et al (2011) give an example

```
te(x,y,t, bs=c("tp","cr"), d=c(2,1), k=c(100,10))
```

tensor products (space-time)

tensor products (slope-aspect)

by=

- what if you only have a couple of years?
- for factors: multiple smooths
- for numerics: "parametric" tensor
- need to add parameteric term

```
s(x,y,bs="tp",by=as.factor(year)) + as.factor(year)
```

Model checking

SECOND SPOILER

the default options are (almost definitely) wrong (for you)

Quick note on fitting

- by default gam uses GCV for smoothing parameter selection
- ► GCV prone to overfitting (Wood, 2011)
- GCV also problematic w. correlated covariates (Wood, 2006; pers. obsn.)
- ► REML better BUT can only compare nested models (ML?)

how do I best control flexibility?

- ▶ k parameter controls "basis size"
- look at output of summary and gam.check
- ?choose.k
- double k, see what happens?
- watch out, larger basis gives more, weirder functions

> gam.check(b)

Model rank = 37 / 37

Method: GCV Optimizer: magic Smoothing parameter selection converged after 8 iterations. The RMS GCV score gradiant at convergence was 1.072609e-05. The Hessian was positive definite. The estimated model rank was 37 (maximum possible: 37)

Basis dimension (k) checking results. Low p-value (k-index<1) maindicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value s(x0) 9.000 2.318 0.996 0.45 s(x1) 9.000 2.306 0.969 0.35 s(x2) 9.000 7.655 0.961 0.25 s(x3) 9.000 1.233 1.037 0.68

how do I know when I've got it right?

- plot the gam object over/under-fitting?
- ▶ looking at gam.check (brain scan example in Wood 2006)
 - left column response distribution correct?
 - ▶ right column non-constant variance?
- plot residuals vs. covariates

I've probably talked for too long already...

Other stuff

- randomised quantile residuals (Dunn and Smyth, 1996)
- bam for big additive models (Wood et al, 2014)
 - can do AR1 correlation structures (in order)
- gamm when you have "many" random effects or correlation
 - correlation specified as in 1me
 - useful link: http://glmm.wikidot.com/faq#modelspec
 - e.g. correlation=corAR1(form=~segment|tr.su)
 - ▶ smooth ↔ random effect relation
 - numerically unstable? (pers. opp.)
 - autocorrelogram can save you some stress :)

References (for later)

Dunn, P K, and G K Smyth. Randomized Quantile Residuals. Journal of Computational and Graphical Statistics 5(3) (1996): 236–244.

Marra, G, DL Miller, and L Zanin. Modelling the Spatiotemporal Distribution of the Incidence of Resident Foreign Population. Statistica Neerlandica 66(2) (2011): 133–160.

Wood, SN. Thin Plate Regression Splines. Journal of the Royal Statistical Society. Series B 65(1) (2003): 95–114.

Wood, SN. Generalized Additive Models: an Introduction with R, Chapman & Hall/CRC, 2006.

Wood, SN. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models. Journal of the Royal Statistical Society. Series B 73(1) (2011): 3–36.

Wood, SN, Y Goude, and S Shaw. Generalized Additive Models for Large Data Sets. Journal of the Royal Statistical Society Series C (2014).

Almost all figures stolen from Wood (2006) or (2011)

Thanks!

Talk available at:

converged.yt/talks/creemcrackers-splines/talk.pdf