Assignment 4 Arjun Posarajah (1004881737) Oct 15, 2023

Question 2

Massi	gnment	4 (puest	on	2	_	-	+	-									
L=	1500 n	m	c=	30n	m			8		-6	00	мро						
	35 mm		d=	t	+ 0	٤		de	=	-4	-5	мро		y I				
	= 3.5m		€ =				a	Zc	5	2.	6 N	IPa	-		1			
Mich	o buckl	129																
	P=	46d L	tof					-,										
	=	-65	66,	J			1			a	-							
core	shear								100									
	P =	2601 6097						-				-						
			15		27.		3/0											
Elastic	P = b	tatio	o ²d€	₊ 8	2 ')"	3			5								
		5.89	200	-	11.70	-		7.6	~				-					-
						1		-			3.		E					
the	hest 1 + -69	oad 66N	that b	can	t	e ·	tak	ghe	st	s fo	カル	re gu	The	4uca	04	JCK	11~	9
	load	15	at	E	1057	sc	Z	den	to	the	n	-	at	18	97	.6~	-	
	with the fi																re	
	tirst								-		-		-		-			

```
Code:
L=1500;%mm
b=35;%mm
t=3.5;
c=30;%mm
d=t+c;%mm
E=75000; %MPa
SigmaF=-600; %MPa Composite Compressive Strength
SigmaC= -4.5; %MPa Polymer Compressive Strength
TaoC= 2.6; %MPa Polymer Shear Strength
%Elastic Indentation
Pelasticindentation b*t*((((pi^2)*d*E*(SigmaC^2))/(3*L)))^(1/3))
%Core Shear
Pcoreshear 2*b*d*TaoC
%Face Microbukling
Pmicrobuckling (4*b*d*t*SigmaF)/L
```