POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY

Michał Sut

25 października 2017

1 Treść zadania

Napisać program umożliwiający znalezienie maksimum funkcji dopasowania jednej zmiennej określonej dla liczb całkowitych w zadanym zakresie przy pomocy elementarnego algorytmu genetycznego (reprodukcja z użyciem nieproporcjonalnej ruletki, krzyżowanie proste, mutacja równomierna). Program powinien umożliwiać użycie różnych funkcji dopasowania, populacji o różnej liczebności oraz różnych parametrów operacji genetycznych (krzyżowania i mutacji). Program powinien zapewnić wizualizację wyników w postaci wykresów średniego, maksymalnego i minimalnego przystosowania dla kolejnych populacji oraz wykresu funkcji w zadanym przedziale.

Program przetestować dla funkcji $f(x) = -0.1x^2 + 4x + 7$ dla x = -1, 0, ...41

2 Instrukcja działania programu

2.1 Okno główne programu

2.2 Opis okna programu

- 1. Panel sterowania
 - (a) Parametry populacji
 - (b) Przyciski sterowania
 - (c) Wszystkie informacje gromadzone i wyliczone podczas działania programu
- 2. Wykres funkcji z zaznaczonymi osobnikami populacji
- 3. Wykres wartości średnich, maksymalnych i minimalnych dla kolejnych generacji. Pokazuje określoną liczbę ostatnich wyników.
- 4. Wykres kołowy przedstawiający "nieproporcjonalną ruletkę", czyli prawdopodobieństwo wylosowania danego osobnika
- 5. Panel umożliwiający podejrzenie całego wykresu, aż od początkowej generacji.

2.3 Zmiana ustawień programu

Ustawienia programu znajdują się w pliku settings.py. Zmianą podlegają następujące elementy:

- 1. FUNCTION Funkcja dopasowania
- 2. X START Początek zakresu
- 3. X END Koniec zakresu
- 4. MAX_HIST_SIZE Liczba wyników pokazywana na wykresie wartości min/max/avg

2.4 Użycie

2.4.1 Podstawowe operacje

- 1. Ustawić parametry populacji
- 2. Zainicjować populację klikając przycisk Apply
- 3. W tym momencie dostępne są trzy możliwości:
 - (a) Next Step Wykonanie tylko jednej generacji
 - (b) Start Auto Wykonywanie kolejnych generacji aż do wystąpienia warunku stopu
 - (c) Reset Wyczyszczenie populacji i jej parametrów
- 4. Rozpoczęty proces automatycznych generacji można zastopować przyciskiem Stop

Zaznaczając lub odznaczając pole Draw plots decydujemy o tym, czy kolejne generacje będą wyświetlane na wykresach.

Uwaga! Zaznaczenie pola powoduje wydłużenie czasu trwania wykonania jednego pełnego kroku. Ma to szczególne znaczenie podczas generacji automatycznych.

2.4.2 Otworzenie pełnego wykresu wartości średnich, maksymalnych i minimalnych

Przycisk Show more history powoduje otworzenie nowego okna z pełnym wykresem wartości, które zostały zaznaczone w polach, znajdujących się obok przycisku. Nowo otwarte okno wygląda następująco:

Możemy przybliżać i oddalać dowolne fragmenty wykresu, modyfikować wygląd wykresu, a także zapisać go do pliku *.png

2.5 Warunek stopu

Program powinien zatrzymać się po wykonaniu przynajmniej 1000 iteracji, w sytuacji gdy ostanie 20 wartości maksymalnych jest takich samych, a w populacji występują tylko osobniki o tym samym kodzie.

3 Opis eksperymentów

Eksperymenty przeprowadzone były dla funkcji $f(x) = -0.1x^2 + 4x + 7$, dla x = -1, 0, ..., 41. Dokładność znalezionego rozwiązania obliczona jest poprzez obliczenie stosunku znalezionej wartości maksymalnej do wartości obliczonej analitycznie. W tym przypadku, maksimum funkcji wynosi 47 i jest osiągane dla argumentu x = 20

3.1 Różna liczebność populacji

W celu przeprowadzenia tych eksperymentów, kilkukrotnie uruchomione zostanie automatyczne znajdowanie maksimum dla populacji z domyślnymi parametrami prawdopodobieństwa mutacji (0,001) i krzyżowania (1,00).

3.1.1 Populacja: 10 osobników

Wyniki prezentują się następująco:

lp	X	max	Dokładność X	Dokładność max
1				
2				
3				
4				
5				
6				
8				
9				
10				

3.1.2 Populacja: 50 osobników

Wyniki prezentują się następująco:

lp	X	max	Dokładność X	Dokładność max
1				
2				
3				
4				
5				
6				
8				
9				
10				

3.1.3 Populacja: 100 osobników

Wyniki prezentują się następująco:

lp	X	max	Dokładność X	Dokładność max
1				
2				
3				
4				
5				
6				
8				
9				
10				

3.2 Różne prawdopodobieństwa krzyżowania

Eksperymenty przeprowadzone będą dla populacji 20 osobników, z prawdopodobieństwem mutacji równym $0.001\,$

- 3.2.1 Krzyżowanie: prawdopodobieństwo = 1,00
- 3.2.2 Krzyżowanie: prawdopodobieństwo = 0,90
- 3.2.3 Krzyżowanie: prawdopodobieństwo =0.00

3.3 Różne prawdopodobieństwa mutacji

Eksperymenty przeprowadzone będą dla populacji 20 osobników, z prawdopodobieństwem krzyżowania równym $0.001\,$

- 3.3.1 Mutacja: prawdopodobieństwo = 0,000
- 3.3.2 Mutacja: prawdopodobieństwo = 0.001
- 3.3.3 Mutacja: prawdopodobieństwo = 0,004

4 Podsumowanie i wnioski