1. Given $\frac{1}{N} \sum_{i=1}^{N} w_i = 1$ then $\sum_{i=1}^{N} w_i = N$ and therefore $w_i < N$. Assuming $\alpha \in (0,1)$, the quantity $\alpha \frac{w_i}{N}$ is less than 1.

Using fact that if P_i is null then, $P(P_i \le u) = u$ for $u \in [0, 1]$.

So, $u = \frac{\alpha * w_i}{N}$ and $P(P_i \le u) = \frac{\alpha * w_i}{N}$. Since $\frac{w_i}{N} < 1$ then $\alpha \frac{w_i}{N} < \alpha$ and the procedure controls the probability of at least one false discovery under level α .

2. $w_i = 1$ implies Bonferroni

3. (a) Uncorrelated Testing

(b) Bonferroni

(c) Benjamini-Hochberg

(d) Weighted with $w_i = \frac{2i}{501}$

(e) Weighted with $w_i = \frac{2(501-i)}{501}$

(f) Weighted with $w_i = 0.5$ for $1 \le i \le 450$ and $w_i = 5.5$ for i > 450

1.

1. Using LORD procedure

0.10 - 0.08 - 0.06 - 0.04 - 0.5 0.6 0.7 0.8 0.9

(a) Average FDP over 100 trials at each π

- (b) Average Sensitivity over 100 trials at each π
- (c) Highest average sensitivity came from scenario (i).

2. Using Benjamini-Hochberg:

(a) Average FDP over 100 trials at each π

- (b) Average Sensitivity over 100 trials at each π
- (c) Sensitivity in BH for scenarios (ii) and (iii) are similar to the LORD procedure in that they are very close to 0.

1. Given that all P-values are independent, the case of removing a random P_i from the set to obtain $P^{(-i)}$, results in the events:

 ${P_i \leq \frac{\alpha}{N}r, R = r}$ and ${P_i \leq \frac{\alpha}{N}r, R^{(-i)} = r - 1}$ being equal.

The case breaks down into two parts. Given these two cases, the argument should hold.

- (a) If the randomly removed P-value, P_i , is greater than or less than the maximum sorted P-value such that BH holds, then the set of rejected hypotheses will not change between P and $P^{(-i)}$.
- (b) If the randomly removed P-value, P_i , is equal to the would be maximum, R. In this case the set of rejected hypotheses also remains the same because from the definition of $R^{(-i)}$, the condition that $P_{(j)}^{(-i)} \leq \frac{\alpha}{N}(j+1)$

accounts for the size difference of 1 (single missing P-value) by requiring the right side of the comparison to be multiplied by the index +1 - i.e. (j+1).

- 2. $\frac{1}{R} \sum_{i \in H_0} 1\{P_i \le \frac{\alpha}{N}R, R > 0\} = \frac{1}{R} \sum_{i \in H_0} 1\{P_i \le \frac{\alpha}{N}R\} 1\{R > 0\}$ $= \frac{1}{R} \sum_{i \in H_0} 1\{P_i \le \frac{\alpha}{N}R\} \sum_{r=1}^{N} 1\{R = r\} = \frac{1}{R} \sum_{i \in H_0} \sum_{r=1}^{N} 1\{P_i \le \frac{\alpha}{N}R\} 1\{R = r\}$ $= \sum_{i \in H_0} \sum_{r=1}^{N} \frac{1}{r} 1\{P_i \le \frac{\alpha}{N}r, R = r\} \text{ and finally from part (a)}$ $= \sum_{i \in H_0} \sum_{r=1}^{N} \frac{1}{r} 1\{P_i \le \frac{\alpha}{N}r, R^{(-i)} = r 1\}$
- 3. Using the fact that the expectation of an indicator is just its probability: $FDR = \mathbb{E}(FDP)$

$$\mathbb{E}(\text{FDP}) = \mathbb{E}(\sum_{i \in H_0} \sum_{r=1}^{N} \frac{1}{r} 1\{P_i \le \frac{\alpha}{N} r, R^{(-i)} = r - 1\})$$

$$=\sum_{i\in H_0}\sum_{r=1}^{N}\frac{1}{r}P(P_i\leq \frac{\alpha}{N}r, R^{(-i)}=r-1)=\text{FDR}$$

4.

5.