ASSIGNMENT 8

1

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ 2022 June 26, SHIFT 1

a) 0

is:

a) $\frac{275}{65}$

1) If $\vec{a} \cdot \vec{b} = 1$, $\vec{b} \cdot \vec{c} = 2$ and $\vec{c} \cdot \vec{a} = 3$, then the value of $\left[\vec{a} \times \left(\vec{b} \times \vec{c}\right), \vec{b} \times \left(\vec{c} \times \vec{a}\right), \vec{c} \times \left(\vec{b} \times \vec{a}\right)\right]$ is:

2) Let a biased coin be tossed 5 times. If the probability of getting 4 heads is equal to the probability of getting 5 heads, then the probability of getting at most two heads

c) $\frac{181}{55}$

b) $\frac{36}{54}$

b) $-6\vec{a}\cdot\left(\vec{b}\times\vec{c}\right)$ c) $12\vec{c}\cdot\left(\vec{a}\times\vec{b}\right)$ d) $-12\vec{b}\cdot(\vec{c}\times\vec{a})$

d) $\frac{46}{64}$

3) The mean of the numbers a , b , 8, 5, 10 is 6 and their variance is 6.8. If M is the mean deviation of the numbers about the mean, then $25M$ is equal to:							
	a) 60	b) 55	c) 50	d) 45			
4) Let $f(x) = 2\cos^{-1}x + 4\cot^{-1}x - 3x^2 - 2x + 10$, $x \in [-1, 1]$. If $[a, b]$ is the range of the function, then $4a - b$ is equal to:							
	a) 11	b) $11 - \pi$	c) $11 + \pi$	d) $15 - \pi$			
5) Let \land , \lor , ϵ $[\land$, $\lor]$ be such that $p \lor q \Rightarrow [(p \land q) \lor r]$ is a tautology. Then $(p \lor q) \land r$ is logically equivalent to:							
	a) $[(p \wedge r) \vee q]$	b) $[(p \wedge r) \wedge q]$	c) $[(p \wedge r) \wedge q]$	d) $[(p \lor r) \land q]$			
6) The sum of the cubes of all the roots of the equation $x^4 - 3x^3 - 2x^2 + 3x + 1 = 10$ is:							
	a) 10	b) 27	c) 36	d) 45			
7) There are ten boys B_1, B_2, \ldots, B_{10} and five girls G_1, G_2, \ldots, G_5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B_1 and B_2 together should not be the members of a group, is:							

d) 1200

d) 4

9)	Let $f(x) = \max(x+1 , x+2 ,, x+5)$. Then $\int_{-6}^{6} f(x) dx$ is equal to:					
	a) 11	b) 21	c) 13	d) 23		
10)	Let the solution curve $y=y\left(x\right)$ of the differential equation $\left(4+x^{2}\right)dy-2x\left(x^{2}+3y+4\right)dx=0$ pass through the origin. Then $y\left(2\right)$ is equal to:					
	a) 11	b) 12	c) 13	d) 14		
11)) If $\sin^2(10^\circ)\sin(20^\circ)\sin(40^\circ)\sin(50^\circ)\sin(70^\circ) = \alpha - \frac{1}{16}\sin(10^\circ)$, then $16 + \alpha^-$ is equal to:					
	a) 20	b) 40	c) 80	d) 160		
12)	2) Let $A=[n\in\mathbb{N}: \text{H.C.F.}(n,45)=1]$ and $B=[2k:k\in[1,2,\ldots,100]].$ Then sum of all the elements of $A\cap B$ is:					
	a) 1000	b) 1020	c) 1040	d) 1060		
13)	The value of the integral $\frac{48}{\pi^4} \int_0^{\pi} \left(\frac{3\pi x^2}{2} - x^3 \right) \frac{\sin x}{1 + \cos^2 x} dx$ is equal to:					
	a) 9	b) 12	c) 15	d) 18		
14)) Let $A = \sum_{i=1}^{10} \sum_{j=1}^{10} \min{(i,j)}$ and $B = \sum_{i=1}^{10} \sum_{j=1}^{10} \max{(i,j)}$. Then $A + B$ is equal to:					
	a) 1000	b) 1100	c) 1200	d) 1300		
15)	Let $S=(0,2\pi)-\left[\frac{\pi}{2},\frac{3\pi}{4},\frac{3\pi}{2},\frac{7\pi}{4}\right]$. Let $y=y\left(x\right),x\in S$, be the solution curve of the differential equation $\frac{dy}{dx}=\frac{1}{1+\sin2x},y\left(\frac{\pi}{4}\right)=\frac{1}{2}.$ If the sum of abscissas of all the points of intersection of the curve $y=y\left(x\right)$ with the curve $y=\sqrt{2}\sin x$ is $\frac{k\pi}{12}$, then k is equal to:					

c) 1080

c) 25

8) Let the common tangents to the curves $4(x^2 + y^2) = 9$ and $y^2 = 4x$ intersect at the point Q. Let an ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to OQ and 6, respectively. If e and e respectively denote the eccentricity and the length of the latusrectum of this ellipse, then $\frac{l}{e^2}$ is equal to:

a) 1120

a) 16

b) 960

b) 32

a) 11 b) 13 c) 15 d) 17