3. INDUCTION AND REDUCTION

- (a) If E is a Banach space and $S \subseteq L(E)$ a semigroup of bounded operators, then a closed subspace F is called S-invariant, if $SF \subseteq F$ for all $S \in S$. We call the semigroup $S_{||} := \{S_{||}F : S \in S\}$ the reduced semigroup. Note that for a one-parameter semigroup T (resp., pseudoresolvent R) the reduced semigroup is again strongly continuous (resp. $R_{||}$ is again a pseudo-resolvent) (compare the construction in A-I,3.2).
- (b) Let M be a W*-algebra, p \in M a projection and S \in L(M) such that S(p $^{\bot}$ M) \subseteq p $^{\bot}$ M and S(Mp $^{\bot}$) \subseteq Mp $^{\bot}$, where p $^{\bot}$:= 1-p . Since for all x \in M:

$$p[S(x) - S(pxp)] = p[S(p^{\perp}xp) + S(xp^{\perp})]p = 0$$
,

we obtain p(Sx)p = p(S(pxp))p. Therefore the map

$$S_p := (x \rightarrow p(Sx)p): pMp \rightarrow pMp$$

is well defined. We call S_p the <u>induced</u> map. If S is an identity preserving Schwarz map, then it is easy to see that S_p is again a Schwarz map such that $S_p(p) = p$.

- If $T = (T(t))_{t \ge 0}$ is a weak*-semigroup on M which is of Schwarz type and if $T(t)(p^{\perp}) \le p^{\perp}$ for all $t \in \mathbb{R}_+$, then T leaves $p^{\perp}M$ and Mp^{\perp} invariant. It is easy to see that the induced semigroup $T_p = (T(t)_p)_{t \ge 0}$ is again a weak*-semigroup.
- If R is an identity preserving pseudo-resolvent of Schwarz type on D = $\{\lambda \in \mathbb{C} : \text{Re}(\lambda) > 0\}$ with values in M such that $R(\mu)p^{\perp} \leq p^{\perp}$ for some $\mu \in \mathbb{R}_+$ then $p^{\perp}M$ and Mp^{\perp} are R-invariant. Again, the induced pseudo-resolvent R_p is of Schwarz type and identity preserving.
- (c) Let $_{\varphi}$ be a positive normal linear functional on a W*-algebra M such that $T_{\star,\varphi} = _{\varphi}$ for some identity preserving Schwarz map T on M with preadjoint $T_{\star} \in L(M_{\star})$. Then $T(s(_{\varphi})^{\perp}) \leq s(_{\varphi})^{\perp}$ where $s(_{\varphi})$ is the support projection of $_{\varphi}$. To see this let $L_{_{\varphi}} := \{x \in M: _{\varphi}(xx^{\star}) = 0\}$ and $M_{_{\varphi}} := L_{_{\varphi}} \cap L_{_{\varphi}}^{\star}$. Since $_{\varphi}$ is T_{\star} -invariant, and T is a Schwarz map, the subspaces $L_{_{\varphi}}$ and $M_{_{\varphi}}$ are T-invariant. From $M_{_{\varphi}} = s(_{\varphi})^{\perp}Ms(_{\varphi})^{\perp}$ and $T(s(_{\varphi})^{\perp}) \leq 1$ it follows that $T(s(_{\varphi})^{\perp}) \leq s(_{\varphi})^{\perp}$.