Test Case 02

Author: <u>Alexandros G.Paspatis, Alkistis Kontou</u> Project: <u>ERIGRID 2.0</u> Version: <u>2</u> Date: <u>13/04/2020</u>

Name of the Test Case	Complying with the fault-ride-through (FRT) requirements in inverter-based droop-controlled microgrids	
Narrative	An inverter-based microgrid is considered, with inverter-interfaced distributed energy resources (DERs) operating in parallel to feed the microgrid load. At some point, a network fault occurs, either inside the microgrid (when considering an islanded microgrid) or at the main grid (when considering a grid-connected microgrid).	
	Through the control design of the inverter-interfaced distributed energy resources, power sharing is achieved between the multiple inverters during normal grid conditions. In this way, all inverters are equally stressed while the voltage and frequency of the microgrid are regulated close to their nominal values (droop control operation).	
	Furthermore, when the network fault occurs, the inverters inject power according to the international standards to provide grid voltage support.	
Function(s) under Investigation (Ful) "the referenced specification of a function realized (operationalized) by the object under investigation"	Power sharing in inverter-based microgrids and grid voltage support from inverters, during grid faults	
Object under Investigation (Oul) "the component(s) (1n) that are to be qualified by the test"	Inverter-interfaced distributed energy resources controllers	
Domain under Investigation (<i>Dul</i>): "the relevant domains or sub-domains of test parameters and connectivity."	Electrical Power	
Purpose of Investigation (Pol) The test purpose in terms of Characterization, Verification, or Validation	 Transition to future smart-grids, where inverter-interfaced DERs provide multiple ancillary services Characterization and validation of the SuT Verification and validation of the Oul Verification and validation of the FuT 	
System under Test (SuT): Systems, subsystems, components included in the test case or test setup.	An inverter-based microgrid consisting of multiple inverter-interfaced distributed energy resources (DERs), lines, loads, etc.	
Functions under Test (FuT) Functions relevant to the operation of the system under test, including Ful and	A unified inverter controller that incorporates droop control and fault-ride-through techniques.	

relevant interaction	ns btw. Oul and SuT.		
based on proper	riteria for each Pol ties of SuT; encom- of test signals and	Microgr rithm	id operation according to the designed control algo-
Target Metrics Measures requidentified test cr	ired to quantify each		Is power sharing achieved according to the droop control technique? Is voltage support provided to the grid when grid faults occur according to the international standards?
	butes (VA) uncontrollable factors d variability; ref. to Pol.	1. 2.	Different microgrid loading Different grid faults
	for test result quality definition of a decision		During the normal operation, the acceptable load voltages values should be inside the $\pm 5\%$ of the nominal voltage and the acceptable frequency values should be inside $\pm 1\%$ of the nominal frequency Reactive power injection during grid faults, as a percentage of S_{max} Inverter currents below their maximum threshold I_{max}

Qualification Strategy

The major ancillary services required from inverter-interfaced DERs during i) normal operation (droop control) and ii) during grid faulty operation (fault-ride-through) will be investigated through a single test where the inverters are equipped with the appropriate smart control algorithms.

Test Specification 02.01

Target measures	Inverter power injection, load voltage and frequency, inverter cur-		
Tanget measures	rents		
Input and output parameters	Input:		
mparama carpar parameters	• Load		
	Inverter power injection set-points		
	Grid conditions		
	Output:		
	Power, voltage, current and frequency measurements		
Test Design	Operate multiple inverters in parallel		
Test Design	2. Perform a network fault when the microgrid operates ei-		
	ther in islanded (non-interconnected) mode or in grid-		
	connected mode		
	3. Save the experimental results		
Initial system state	Inverter controllers enabled		
	Hardware or simulated network and devices up and		
	running		
	Computer displaying and saving data		
	, , , , ,		
Freshitian of sustain state and			
Evolution of system state and	The system goes from normal operation (operation close to nomi-		
test signals	nal voltage and frequency) to operation under grid faults, to test		
Other peremeters	the inverter control algorithms		
Other parameters	N/A		
Temporal resolution	N/A		
Source of uncertainty	Impedance of load and lines, inverter sensors operation		
Suspension criteria / Stopping	Abnormal current/ power injections from inverters		
criteria			

Mapping to Research Infrastructure

Experiment Specification 02.01.01

Reference to Test Specification	02.01		
Title of Experiment	Hardware-in-the-Loop for inverter controller validation in real		
	conditions		
Research Infrastructure	Electric Energy Systems (ICCS-NTUA)		
Experiment Realisation	Multiple inverters forming a microgrid, both through hardware		
	setup and through simulated components in the RTDS		
Experiment Setup	Real Time Digital Simulator (RTDS)		
(concrete lab equipment)	2. PC for RSCAD (UI of RTDS)		
	Hardware controller (Triphase)		
	4. Interfacing I/O cards		
Experimental Design and Justification	 In RSCAD an inverter-based microgrid will be designed. The inverters will be simulated as controlled voltage sources to facilitate testing of the control scheme under faults. FRT curve according to Grid Codes, will be used. A hardware controller will be connected to RTDS to perform CHIL experiments and validate the control algorithm under real conditions. 		
Precision of equipment and	Software real-time measurements from RTDS, 50µs simulation		
measurement uncertainty	step		
Storage of experiment data	Matlab files and Excel files		