Business Report ML 1 Coded Project

PGPDSBA

Chithira Raj

Table of Contents

List of Tables	2
List of Figures	3
1. Context	5
2. Objective	5
3. Data Dictionary	5
4. Data Overview	6
4.1. Import libraries and load the data	6
4.2. Check the structure of data	6
4.3. Check the types of the data	6
4.4. Check for and treat (if needed) missing values	7
4.5. Data Duplicates	7
4.6. Statistical Summary	7
4.7. Insights	7
5. Exploratory Data Analysis	8
5.1. Univariate Analysis	8
5.2. Bivariate Analysis	15
5.3. EDA Questions	18
6. Data Preprocessing	21
6.1. Missing Value treatment	21
6.2. Duplicate value check	21
6.4. Outlier Detection	21
6.5. Data Preparation for Modeling	22
7. Model building	23
7.1. Logistic Regression	23
7.2. KNN Classifier	25
7.3. Naive - Bayes Classifier	26
7.4. Decision Tree Classifier	28
8. Model Performance Improvement	29
8.1. Logistic Regression	29
8.2. KNN Classifier	34
8.3. Decision Tree Classifier	36
9. Model Performance Comparison and Final Model Selection	38
10. Actionable Insights and Recommendations	39
List of Tables	
List of Tables Table 1: Data Dictionary	6
Table 1. Data Dictionally	

List of Figures

Figure 1: Data Overview	6
Figure 2: Datatypes	6
Figure 3: Missing values check	7
Figure 4: Statistical Summary	7
Figure 5: no of adults	8
Figure 6: no_of_children	
Figure 7: no_of_weekend_nights	
Figure 8: no_of_week_nights	
Figure 9: type_of_meal_plan	
Figure 10: required_car_parking_space	
Figure 11: room_type_reserved	
Figure 12: lead time	
Figure 13: arrival_year	
Figure 14: no_of_previous_cancellations	
Figure 15: no_of_previous_bookings_ not_canceled	
Figure 16: avg_price_per_room	
Figure 17: no_of_special_requests	
Figure 18: repeated_guest	
Figure 19: Heatmap	
Figure 20: Cancellations vs. Lead Time	
Figure 21: Room Type vs. Booking Status	
Figure 22: Market Segment vs. Booking Trends	
Figure 23: Parking vs. Guest Type	
Figure 24: Arrival Month	
Figure 25: Market Segment	
Figure 26: avg_price_per_room vs market_segment_type	
Figure 27: Booking Status	
Figure 28: booking status vs repeated guest	
Figure 29: Outliers	
Figure 30: Encoding	
Figure 31: Model Statistics	
Figure 32: Model Performance	
Figure 33: Confusion Matrix	
Figure 34: Model Performance	
Figure 35: Confusion Matrix	
Figure 36: Model Performance	
Figure 37: Confusion Matrix	
Figure 38: Model Performance	
Figure 39: Confusion Matrix	
Figure 40: Model Performance	
Figure 41: Confusion Matrix	
Figure 42: Model Performance	
Figure 43: Confusion Matrix	
Figure 44: Model Performance	
Figure 45: Confusion Matrix	
Figure 46: Model Performance	
Figure 47: Confusion Matrix	
Figure 48: VIF	
Figure 49: VIF after removing dummy variables	
Figure 50: Dropped Columns	
rigare so. Dropped Columns	эт

Figure 51: ROC curve31	-
Figure 51: ROC curve	-
Figure 53: Model Performance	;
Figure 54: Confusion Matrix33	;
Figure 55: Model Performance	}
Figure 56: Confusion Matrix34	ļ
Figure 57: KNN Classifier Performance Improvement using different k values	ļ
Figure 58: Model Performance	ļ
Figure 59: Confusion Matrix35	,
Figure 60: Model Performance	,
Figure 61: Confusion Matrix35	,
Figure 62: Best Estimators	j
Figure 63: Model Performance	j
Figure 64: Confusion Matrix	;
Figure 65: Model Performance	j
Figure 66: Confusion Matrix	
Figure 67: Tree	7
Figure 68: Feature Importance	3
Figure 69: Train data Model Performance Comparison	
Figure 70: Test data Model Performance Comparison	}

1. Context

A significant number of hotel bookings are called off due to cancellations or no-shows. The typical reasons for cancellations include change of plans, scheduling conflicts, etc. This is often made easier by the option to do so free of charge or preferably at a low cost which is beneficial to hotel guests but it is a less desirable and possibly revenue-diminishing factor for hotels to deal with. Such losses are particularly high on last-minute cancellations.

The new technologies involving online booking channels have dramatically changed customers' booking possibilities and behavior. This adds a further dimension to the challenge of how hotels handle cancellations, which are no longer limited to traditional booking and guest characteristics.

The cancellation of bookings impacts a hotel on various fronts:

- 1. Loss of resources (revenue) when the hotel cannot resell the room.
- 2. Additional costs of distribution channels by increasing commissions or paying for publicity to help sell these rooms.
- 3. Lowering prices last minute, so the hotel can resell a room, resulting in reducing the profit margin.
- 4. Human resources to make arrangements for the guests.

2. Objective

The increasing number of cancellations calls for a Machine Learning based solution that can help in predicting which booking is likely to be canceled. INN Hotels Group has a chain of hotels in Portugal, they are facing problems with the high number of booking cancellations and have reached out to your firm for data-driven solutions. You as a data scientist have to analyze the data provided to find which factors have a high influence on booking cancellations, build a predictive model that can predict which booking is going to be canceled in advance, and help in formulating profitable policies for cancellations and refunds.

3. Data Dictionary

S.No.	Variables	Description	
1	Booking_ID	the unique identifier of each booking	
2	no_of_adults	Number of adults	
3	no_of_children	Number of Children	
4	no_of_weekend_nights		
		stayed or booked to stay at the hotel	
5 no_of_week_nights Number of weeknights (Monday to		Number of weeknights (Monday to Friday) the guest stayed	
		or booked to stay at the hotel	
6	type_of_meal_plan	Type of meal plan booked by the customer:	
		Not Selected – No meal plan selected	
		Meal Plan 1 – Breakfast	
		Meal Plan 2 – Half board (breakfast and one other meal)	
		Meal Plan 3 – Full board (breakfast, lunch, and dinner)	
		Does the customer require a car parking space? (0 - No, 1-	
		Yes)	
8	room_type_reserved	Type of room reserved by the customer. The values are	
		ciphered (encoded) by INN Hotels Group	
9	lead_time	Number of days between the date of booking and the arrival	
		date	
10	arrival_year	Year of arrival date	
11	arrival_month	Month of arrival date	
12	arrival_date	Date of the month	
13	market_segment_type	Market segment designation	
14	repeated_guest	Is the customer a repeated guest? (0 - No, 1- Yes)	

15	no_of_previous_cancellations	Number of previous bookings that were canceled by the
		customer prior to the current booking
16	no_of_previous_bookings_not_canceled	Number of previous bookings not canceled by the customer
		prior to the current booking
17	avg_price_per_room	Average price per day of the reservation; prices of the rooms
		are dynamic. (in euros)
18	no_of_special_requests	Total number of special requests made by the customer (e.g.
		high floor, view from the room, etc)
19	booking_status	Flag indicating if the booking was canceled or not.

Table 1: Data Dictionary

4. Data Overview

4.1. Import libraries and load the data

Booking_ID	no_of_adults	no_of_children	no_of_weekend_nights	no_of_week_nights	<pre>type_of_meal_plan</pre>	required_car_parking_space	room_type_reserved	<pre>lead_time</pre>	arrival_year
INN00001	2	0	1	2	Meal Plan 1	0	Room_Type 1	224	2017
INN00002	2	0	2	3	Not Selected	0	Room_Type 1	5	2018
INN00003	1	0	2	1	Meal Plan 1	0	Room_Type 1	1	2018
INN00004	2	0	0	2	Meal Plan 1	0	Room_Type 1	211	2018
INN00005	2	0	1	1	Not Selected	0	Room_Type 1	48	2018

Figure 1: Data Overview

4.2. Check the structure of data

Shape of the dataset: 36275 rows and 19 columns

4.3. Check the types of the data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36275 entries, 0 to 36274
Data columns (total 19 columns):

	columns (cocal 19 columns).		
#	Column	Non-Null Count	Dtype
0	Booking_ID	36275 non-null	object
1	no_of_adults	36275 non-null	int64
2	no_of_children	36275 non-null	int64
3	no_of_weekend_nights	36275 non-null	int64
4	no_of_week_nights	36275 non-null	int64
5	type_of_meal_plan	36275 non-null	object
6	required_car_parking_space	36275 non-null	int64
7	room_type_reserved	36275 non-null	object
8	<pre>lead_time</pre>	36275 non-null	int64
9	arrival_year	36275 non-null	int64
10	arrival_month	36275 non-null	int64
11	arrival_date	36275 non-null	int64
12	market_segment_type	36275 non-null	object
13	repeated_guest	36275 non-null	int64
14	no_of_previous_cancellations	36275 non-null	int64
15	no_of_previous_bookings_not_canceled	36275 non-null	int64
16	avg_price_per_room	36275 non-null	float64
17	no_of_special_requests	36275 non-null	int64
18	booking_status	36275 non-null	object
dtyp	es: float64(1), int64(13), object(5)		-

Figure 2: Datatypes

memory usage: 5.3+ MB

4.4. Check for and treat (if needed) missing values

Figure 3: Missing values check

4.5. Data Duplicates

There are no duplicate rows.

4.6. Statistical Summary

	count	mean	std	min	25%	50%	75%	max
no_of_adults	36275.00000	1.84496	0.51871	0.00000	2.00000	2.00000	2.00000	4.00000
no_of_children	36275.00000	0.10528	0.40265	0.00000	0.00000	0.00000	0.00000	10.00000
no_of_weekend_nights	36275.00000	0.81072	0.87064	0.00000	0.00000	1.00000	2.00000	7.00000
no_of_week_nights	36275.00000	2.20430	1.41090	0.00000	1.00000	2.00000	3.00000	17.00000
required_car_parking_space	36275.00000	0.03099	0.17328	0.00000	0.00000	0.00000	0.00000	1.00000
lead_time	36275.00000	85.23256	85.93082	0.00000	17.00000	57.00000	126.00000	443.00000
arrival_year	36275.00000	2017.82043	0.38384	2017.00000	2018.00000	2018.00000	2018.00000	2018.00000
arrival_month	36275.00000	7.42365	3.06989	1.00000	5.00000	8.00000	10.00000	12.00000
arrival_date	36275.00000	15.59700	8.74045	1.00000	8.00000	16.00000	23.00000	31.00000
repeated_guest	36275.00000	0.02564	0.15805	0.00000	0.00000	0.00000	0.00000	1.00000
no_of_previous_cancellations	36275.00000	0.02335	0.36833	0.00000	0.00000	0.00000	0.00000	13.00000
no_of_previous_bookings_not_canceled	36275.00000	0.15341	1.75417	0.00000	0.00000	0.00000	0.00000	58.00000
avg_price_per_room	36275.00000	103.42354	35.08942	0.00000	80.30000	99.45000	120.00000	540.00000
no_of_special_requests	36275.00000	0.61966	0.78624	0.00000	0.00000	0.00000	1.00000	5.00000

Figure 4: Statistical Summary

4.7. Insights

- The majority of bookings are made for 2 adults, which is evident from the mean (1.84) and the median (2.00) of the no of adults column. This suggests that most guests are couples or pairs.
- The average stay includes slightly less than one weekend night (mean of 0.81) and about two weekday nights (mean of 2.20). This suggests that many guests might be staying for a long weekend or a short weekday trip.
- The average lead_time is around 85 days, showing that guests generally book well in advance, which can be beneficial for managing hotel occupancy and revenue strategies.
- The avg_price_per_room shows a mean of approximately 103.42, indicating the average price point for rooms. The large range (from 0 to 540) suggests varied pricing options, likely based on room types or seasons.
- The arrival_year and arrival_month suggest most data is from 2018, and bookings are spread across months with a peak around October. This indicates potential seasonality, with likely higher demand during summer months.

5. Exploratory Data Analysis

5.1. Univariate Analysis

Figure 5: no_of_adults

Figure 6: no_of_children

Figure 7: no_of_weekend_nights

Figure 8: no_of_week_nights

Figure 9: type_of_meal_plan

Figure 10: required_car_parking_space

Figure 11: room_type_reserved

Figure 12: lead_time

Figure 13: arrival_year

Figure 14: no_of_previous_cancellations

Figure 15: no_of_previous_bookings_ not_canceled

Figure 16: avg_price_per_room

Figure 17: no_of_special_requests

Figure 18: repeated_guest

5.2. Bivariate Analysis

Correlation Check

Figure 19: Heatmap

Insights

- Repeat Guest and No. of Previous Cancellations: A correlation of 0.39 suggests that guests who have previously canceled are moderately more likely to be repeat guests.
- Repeat Guest and No. of Previous Bookings Not Canceled: A correlation of 0.54 indicates a stronger likelihood of repeat bookings from guests who have not canceled before.
- Average Price Per Room and No. of Children: The correlation of 0.34 is quite notable, suggesting that rooms booked with children tend to be priced higher, possibly due to larger room types or additional amenities being booked.

Figure 20: Cancellations vs. Lead Time

Room Type vs. Booking Status

Figure 21: Room Type vs. Booking Status

Figure 22: Market Segment vs. Booking Trends

Parking vs. Guest Type

Figure 23: Parking vs. Guest Type

5.3. EDA Questions

Q1: What are the busiest months in the hotel?

Figure 24: Arrival Month

Q2: Which market segment do most of the guests come from?

Figure 25: Market Segment

Q3: Hotel rates are dynamic and change according to demand and customer demographics. What are the differences in room prices in different market segments?

Figure 26: avg_price_per_room vs market_segment_type

Q4: What percentage of bookings are cancelled?

Figure 27: Booking Status

Q5: Repeating guests are the guests who stay in the hotel often and are important to brand equity. What percentage of repeating guests cancel?

Figure 28: booking_status vs repeated_guest

Q6: Many guests have special requirements when booking a hotel room. Do these requirements affect booking cancellation?

Figure 29: Special Requests vs. Cancellations

Insights

- Hotel bookings are high from August to October, with a peak in October.
- Customers prefer online bookings based on the distribution of market segment types.
- We observe that 32% of bookings are cancelled for various reasons.
- Around 28% of cancellations may be due to special requests.
- Prices are higher for rooms booked online, while offline and corporate bookings have similar room prices.
- Less than 1% of repeat guests cancel their bookings.

6. Data Preprocessing

6.1. Missing Value treatment

There are no missing values.

6.2. Duplicate value check

There are no duplicate rows.

6.3. Feature Engineering

Removing features from the dataset that have constant values and those that do not positively impact the prediction model.

Features removed: Booking ID, Arrival Year and Arrival date.

6.4. Outlier Detection

Figure 29: Outliers

There are outliers in the few columns like avg_price_per_room. We have a few options for handling these outliers:

- Use the IQR (Interquartile Range) to determine the lower and upper bounds of the column and either replace or remove the outliers.
- However, since we lack additional information from a subject matter expert, we may decide not to treat these
 outliers for now.
- The price varies with the seasons, so we can hold off on removing these outliers for the time being.

6.5. Data Preparation for Modeling

- 1. Our goal is to predict which bookings will be cancelled in advance, helping us develop profitable policies for cancellations and refunds.
- 2. Before building the model, we'll need to encode the categorical features.
- 3. We will split the data into training and testing sets to evaluate the model built on the training data.

6.5.1. Encoding Categorical Features

Figure 30: Encoding

6.5.2. Train - Test Split

- Number of rows in train data = 25392
- Number of rows in test data = 10883

7. Model building

7.1. Logistic Regression

7.1. Logistic Regress	31011						
	Logit	Regression	Results				
Dep. Variable: boo	oking_status_Not	 _Canceled	No. Observ	ations:		25392	
Model:		Logit	Df Residua	ls:		25366	
Method:		MLE	Df Model:			25	
Date:	Fri, 09	Aug 2024	Pseudo R-s	qu.:		0.3258	
Time:		19:32:02	Log-Likeli	hood:	-	10808.	
converged:		False	LL-Null:		-	16030.	
Covariance Type:		nonrobust	LLR p-valu	e:		0.000	
		coef	std err	Z	P> z	[0.025	0.975]
const		2.7511	0.272	10.132	0.000	2.219	3.283
no of adults		-0.1119	0.038	-2.978	0.003	-0.186	-0.038
no_of_children		-0.1152	0.059	-1.951	0.051	-0.231	0.001
no_of_weekend_nights		-0.1229	0.020	-6.208	0.000	-0.162	-0.084
no of week nights		-0.0333	0.012	-2.703	0.007	-0.057	-0.009
required_car_parking_s	space	1.7183	0.142	12.082	0.000	1.440	1.997
lead_time		-0.0160	0.000	-62.435	0.000	-0.016	-0.015
arrival_month		0.0613	0.006	10.193	0.000	0.050	0.073
repeated_guest		2.5769	0.656	3.930	0.000	1.292	3.862
no_of_previous_cancell	lations	-0.2653	0.078	-3.409	0.001	-0.418	-0.113
no_of_previous_booking	gs_not_canceled	0.0662	0.087	0.761	0.446	-0.104	0.237
avg_price_per_room		-0.0199	0.001	-27.746	0.000	-0.021	-0.018
no_of_special_requests	S	1.4736	0.030	48.973	0.000	1.415	1.533
type_of_meal_plan_Meal	l Plan 2	-0.0653	0.064	-1.024	0.306	-0.190	0.060
type_of_meal_plan_Meal	l Plan 3	-28.4637	1.27e+06	-2.24e-05	1.000	-2.49e+06	2.49e+06
<pre>type_of_meal_plan_Not</pre>	Selected	-0.2533	0.052	-4.826	0.000	-0.356	-0.150
room_type_reserved_Roo	om_Type 2	0.4408	0.130	3.389	0.001	0.186	0.696
room_type_reserved_Roo	om_Type 3	-1.1876	2.013	-0.590	0.555	-5.133	2.758
room_type_reserved_Roo		0.2623	0.053	4.953	0.000	0.159	0.366
room_type_reserved_Roo	om_Type 5	0.6550	0.208	3.152	0.002	0.248	1.062
room_type_reserved_Roo	om_Type 6	1.0005	0.150	6.684	0.000	0.707	1.294
room_type_reserved_Roo	om_Type 7	1.2899	0.305	4.227	0.000	0.692	1.888
market_segment_type_Co		42.1259	1.27e+06	3.32e-05	1.000	-2.49e+06	2.49e+06
market_segment_type_Co	· ·	0.9436	0.274	3.438	0.001	0.406	1.481
market_segment_type_Of		1.9494	0.263	7.403	0.000	1.433	2.466
manket comment tune or	-1:	0 4375	0.200	0 400	0.624	0 202	0 630

Figure 31: Model Statistics

0.1275

Interpreting the Regression Results:

market_segment_type_Online

• Intercept: The constant (intercept) of 2.7511 suggests that when all other variables are held constant, there is a positive baseline log-odds of a booking not being canceled.

0.260

0.490

0.624

-0.383

0.638

- Number of Adults and Children: For every additional adult, the log-odds of a booking not being canceled decrease by 0.1119, indicating a negative association. Similarly, for each additional child, the log-odds of a booking not being canceled decrease by 0.1152, with the result being marginally significant (p = 0.051).
- Number of Nights: An increase in the number of weekend nights booked decreases the log-odds of a booking not being canceled by 0.1229, suggesting that bookings with more weekend nights are more likely to be canceled. Likewise, each additional weeknight decreases the log-odds of a booking not being canceled by 0.0333.
- Required Car Parking Space: Bookings with required car parking space have significantly higher log-odds (1.7183) of not being canceled, indicating that this feature strongly predicts bookings that are likely to be fulfilled.
- Lead Time: A longer lead time significantly reduces the log-odds of a booking not being canceled by 0.0160 per day, implying that bookings made well in advance are more likely to be canceled.
- Arrival Month: The positive coefficient of 0.0613 for the arrival month suggests a seasonal effect, where bookings made closer to certain months (e.g., peak travel season) have higher chances of being fulfilled.
- Repeated Guests: Being a repeated guest increases the log-odds of a booking not being canceled by 2.5769, indicating that repeat customers are much more likely to follow through with their bookings.
- Previous Cancellations: A history of previous cancellations decreases the log-odds of a booking not being canceled by 0.2653, reflecting a negative impact on the likelihood of fulfilling the current booking.

- Average Price Per Room: An increase in the average price per room slightly decreases the log-odds of a booking
 not being canceled by 0.0199 per unit increase in price, suggesting that higher-priced rooms might be associated
 with a higher likelihood of cancellations.
- Number of Special Requests: The number of special requests significantly increases the log-odds of a booking not being canceled by 1.4736, suggesting that guests making special requests are more committed to their bookings.
- Type of Meal Plan: Meal Plan 3 has a very high negative coefficient, indicating an estimation issue possibly due to perfect separation, as the p-value suggests no significance. Not selecting a meal plan decreases the log-odds of a booking not being canceled by 0.2533.
- Room Type Reserved: Certain room types (e.g., Room Type 6 and 7) are associated with significantly higher logodds of a booking not being canceled, indicating a preference or higher commitment to specific room types.
- Market Segment Type: The market_segment_type_Complementary has an unusually large coefficient and p-value suggesting estimation issues. Bookings made through the Corporate and Offline segments are significantly more likely to not be canceled, with coefficients of 0.9436 and 1.9494, respectively.

7.1.1. Model Performance

Train Data

Accuracy	Recall	Precision	F1
0.80289	0.88910	0.83043	0.85876

Figure 32: Model Performance

Figure 33: Confusion Matrix

Test Data

Figure 34: Model Performance

Figure 35: Confusion Matrix

7.2. KNN Classifier

In this study, a k-Nearest Neighbors (k-NN) algorithm was implemented with k = 3 to classify bookings.

7.2.1. Model Performance

Train Data

Accuracy	Recall	Precision	F1	
0.91671	0.94992	0.92818	0.93892	

Figure 36: Model Performance

Figure 37: Confusion Matrix

Figure 38: Model Performance

Figure 39: Confusion Matrix

7.3. Naive- Bayes Classifier

7.3.1. Model Performance

Train Data

Accuracy	Recall	Precision	F1
0.40855	0.14029	0.88729	0.24228

Figure 40: Model Performance

Figure 41: Confusion Matrix

Test Data

Figure 42: Model Performance

Figure 43: Confusion Matrix

7.4. Decision Tree Classifier

7.4.1. Model Performance

Train Data

Figure 44: Model Performance

Figure 45: Confusion Matrix

Test Data

Accuracy	Recall	Precision	F1
0.86364	0.89321	0.90189	0.89753

Figure 46: Model Performance

Figure 47: Confusion Matrix

8. Model Performance Improvement

8.1. Logistic Regression

8.1.1. Dealing with Multicollinearity

VIF is used to measure how much the variance of an estimated regression coefficient increases when your predictors are correlated.

Here's a quick overview of what the VIF values indicate:

- VIF = 1: No correlation between the variable and other variables.
- 1 < VIF < 5: Moderate correlation; generally considered acceptable.
- VIF >= 5: High correlation; may indicate problematic multicollinearity.
- VIF > 10: Very high correlation; suggests significant multicollinearity issues.

```
Variance Inflation Factors:
                                  Variable
                                                  VIF
0
                                     const 326.53376
1
                             no_of_adults
                                             1.34103
2
                           no_of_children
                                              2.00531
                     no_of_weekend_nights
3
                                             1.06289
4
                        no_of_week_nights
                                             1.09128
5
               required_car_parking_space
                                             1.03706
6
                                 lead time
                                             1.24328
7
                            arrival_month
                                             1.04936
                           repeated_guest
8
                                             1.76556
            no_of_previous_cancellations
9
                                             1.36938
10
    no_of_previous_bookings_not_canceled
                                             1.61311
                   avg_price_per_room
no_of_special_requests
11
                                             1.92811
12
                                             1,24369
           type of meal plan Meal Plan 2
13
                                             1.19892
14
           type_of_meal_plan_Meal Plan 3
                                             1,00600
15
          type_of_meal_plan_Not Selected
                                             1.23946
          room type reserved Room Type 2
                                             1.09085
16
17
          room_type_reserved_Room_Type 3
                                             1.00484
18
          room_type_reserved_Room_Type 4
                                             1.35215
19
          room_type_reserved_Room_Type 5
                                             1.03285
20
          room_type_reserved_Room_Type 6
                                             1.97980
21
          room_type_reserved_Room_Type 7
                                             1.10427
22
                                             4,49241
       market_segment_type_Complementary
23
           market_segment_type_Corporate
                                            17.19096
24
             market_segment_type_Offline
                                            64.26317
25
              market_segment_type_Online
                                            71.31989
```

Figure 48: VIF

Removing some dummy variables of market_segment_type to remove multicollinearity.

Figure 49: VIF after removing dummy variables

8.1.2. Dealing with high p-value variables

```
Optimization terminated successfully.
         Current function value: 0.426183
         Iterations 10
Dropping column room_type_reserved_Room_Type 3 with p-value: 0.6257719482026117
Optimization terminated successfully.
         Current function value: 0.426188
         Iterations 10
Dropping column no_of_previous_bookings_not_canceled with p-value: 0.4368540065144816
Optimization terminated successfully.
         Current function value: 0.426205
         Iterations 9
Dropping column type_of_meal_plan_Meal Plan 2 with p-value: 0.34777192684515545
Optimization terminated successfully.
         Current function value: 0.426222
         Iterations 9
Dropping column type_of_meal_plan_Meal Plan 3 with p-value: 0.32806390350922154
Optimization terminated successfully.
         Current function value: 0.426253
         Iterations 9
Dropping column no_of_children with p-value: 0.06007277921533484
Optimization terminated successfully.
         Current function value: 0.426321
         Iterations 9
Dropping column no_of_adults with p-value: 0.009257527645957633
```

Figure 50: Dropped Columns

Selected Features:

['const', 'no_of_adults', 'no_of_weekend_nights', 'no_of_week_nights', 'required_car_parking_space', 'lead_time', 'arrival_month', 'repeated_guest', 'no_of_previous_cancellations', 'avg_price_per_room', 'no_of_special_requests', 'type_of_meal_plan_Not Selected', 'room_type_reserved_Room_Type 2', 'room_type_reserved_Room_Type 4', 'room_type_reserved_Room_Type 5', 'room_type_reserved_Room_Type 6', 'room_type_reserved_Room_Type 7', 'market_segment_type_Offline', 'market_segment_type_Online']

8.1.3. Determining optimal threshold using ROC Curve

Figure 51: ROC curve

8.1.4. Tuning Logistic Regression model with significant features

Logit Regression Results							
Dep. Variable: booking statu	s Not Cance	eled No.	Observation	 s:	25392		
Model:			Df Residuals:		25373		
Method:			Df Model:		18		
Date: Fr	i, 09 Aug 2	2024 Pset	Pseudo R-squ.:		0.3247		
Time:	19:37	7:33 Log-	Likelihood:		-10825.		
converged:	-	True LL-M	ull:		-16030.		
Covariance Type:	nonrol	oust LLR	p-value:		0.000		
	coef	std err	z	P> z	[0.025	0.975]	
const	3,6751	0.122	30.107	0.000	3.436	3.914	
no of adults	-0.0967	0.037	-2.602	0.009	-0.170	-0.024	
no of weekend nights	-0.1275	0.020	-6.449	0.000	-0.166	-0.089	
no of week nights	-0.0363	0.012	-2.959	0.003	-0.060	-0.012	
required car parking space	1.7169	0.142	12.081	0.000	1.438	1.995	
lead time	-0.0160	0.000	-62.895	0.000	-0.016	-0.015	
arrival_month	0.0619	0.006	10.304	0.000	0.050	0.074	
repeated_guest	2.8076	0.616	4.562	0.000	1.601	4.014	
no_of_previous_cancellations	-0.2551	0.075	-3.391	0.001	-0.403	-0.108	
avg_price_per_room	-0.0204	0.001	-29.602	0.000	-0.022	-0.019	
no_of_special_requests	1.4707	0.030	49.021	0.000	1.412	1.529	
<pre>type_of_meal_plan_Not Selected</pre>	-0.2504	0.052	-4.787	0.000	-0.353	-0.148	
room_type_reserved_Room_Type 2	0.3841	0.127	3.031	0.002	0.136	0.632	
room_type_reserved_Room_Type 4	0.2696	0.053	5.132	0.000	0.167	0.373	
room_type_reserved_Room_Type 5	0.6873	0.207	3.315	0.001	0.281	1.094	
room_type_reserved_Room_Type 6	0.8482	0.117	7.228	0.000	0.618	1.078	
room_type_reserved_Room_Type 7	1.2391	0.299	4.143	0.000	0.653	1.825	
market_segment_type_Offline	1.0370	0.100	10.382	0.000	0.841	1.233	
market_segment_type_Online	-0.7701	0.097	-7.978	0.000	-0.959	-0.581	

Figure 52: Model Summary

Interpretations:

- Intercept (const): Coefficient: 3.6751, which indicates a strong positive log-odds of a booking not being canceled when all other predictors are at their reference levels.
- Number of Adults (no_of_adults): Coefficient: -0.0967, slightly negative, suggesting that an increase in the number of adults slightly decreases the likelihood of the booking being completed.
- Number of Weekend Nights (no_of_weekend_nights): Coefficient: -0.1275, indicating that bookings over the weekend are slightly more likely to be canceled compared to weekday bookings.
- Required Car Parking Space (required_car_parking_space): Coefficient: 1.7169, showing a strong positive association with the likelihood of a booking not being canceled, similar to previous interpretations.
- Lead Time (lead_time): Coefficient: -0.0160, confirms that longer lead times are associated with higher chances of cancellation.
- Repeated Guest (repeated_guest): Coefficient: 2.8076, a very strong positive effect, indicating that bookings made by repeat guests are much more likely to be completed.
- Average Price Per Room (avg_price_per_room): Coefficient: -0.0204, implying that higher room prices slightly deter bookings from being completed.
- Type of Meal Plan (type_of_meal_plan_Not Selected): Coefficient: -0.2504, suggesting that not selecting a meal plan is associated with a higher chance of cancellation.
- Market Segment (market_segment_type_Online): Coefficient: -0.7701, indicating that bookings made through online market segments are more likely to be canceled compared to other segments.

8.1.5. Tuned Model Performance

Train Data

Accuracy Recall Precision F1 0.80305 0.88886 0.83076 0.85883

Figure 53: Model Performance

Figure 54: Confusion Matrix

Test Data

Accuracy	Recall	Precision	F1	
0.80584	0.89761	0.82681	0.86076	

Figure 55: Model Performance

Figure 56: Confusion Matrix

8.2. KNN Classifier

With different k values,

```
Recall for k=2: 0.802913688840022
Recall for k=3: 0.9010445299615173
Recall for k=4: 0.8545904343045629
Recall for k=5: 0.909978009895547
Recall for k=6: 0.8767179769103903
Recall for k=7: 0.9092908191313909
Recall for k=8: 0.8840021990104453
Recall for k=9: 0.9097031335898845
Recall for k=10: 0.8919736118746564
Recall for k=11: 0.9125893347993403
Recall for k=12: 0.8919736118746564
Recall for k=13: 0.9131390874106652
Recall for k=14: 0.8993952721275426
Recall for k=15: 0.9171247938427708
Recall for k=16: 0.902693787795492
Recall for k=17: 0.9175371083012644
Recall for k=18: 0.903243540406817
Recall for k=19: 0.9153380978559648
```

The best value of k is: 17 with a recall of: 0.9175371083012644

Figure 57: KNN Classifier Performance Improvement using different k values

8.2.1. Tuned Model Performance

Train Data

Accuracy	Recall	Precision	F1	
0.85944	0.91989	0.87749	0.89819	

Figure 58: Model Performance

Figure 59: Confusion Matrix

Test Data

Figure 60: Model Performance

Figure 61: Confusion Matrix

8.3. Decision Tree Classifier

8.3.2. Tuned Model Performance

8.3.1. Pre-Pruning the tree

DecisionTreeClassifier

DecisionTreeClassifier(max_depth=11, max_leaf_nodes=100, random_state=42)

Figure 62: Best Estimators

Train Data

Accuracy Recall Precision F1 0.87287 0.92924 0.88744 0.90786

Figure 63: Model Performance

Figure 64: Confusion Matrix

Test Data

Figure 65: Model Performance

Figure 66: Confusion Matrix

8.3.3. Visualizing decision tree

Figure 67: Tree

8.3.4. Feature Importance

Figure 68: Feature Importance

9. Model Performance Comparison and Final Model Selection

Train:

	Logistic Regression Base	Logistic Regression Tuned	Naive Bayes Base	KNN Base	KNN Tuned	Decision Tree Base	Decision Tree Tuned
Accuracy	0.80289	0.80305	0.40855	0.91671	0.85944	0.99374	0.87287
Recall	0.88910	0.88886	0.14029	0.94992	0.91989	0.99509	0.92924
Precision	0.83043	0.83076	0.88729	0.92818	0.87749	0.99562	0.88744
F1	0.85876	0.85883	0.24228	0.93892	0.89819	0.99535	0.90786

Figure 69: Train data Model Performance Comparison

Test:

	Logistic Regression Base	Logistic Regression Tuned	Naive Bayes Base	KNN Base	KNN Tuned	Decision Tree Base	Decision Tree Tuned
Accuracy	0.80289	0.80305	0.41459	0.85234	0.85087	0.86364	0.87108
Recall	0.88910	0.88886	0.14184	0.90104	0.91754	0.89321	0.93101
Precision	0.83043	0.83076	0.89042	0.88083	0.86713	0.90189	0.88261
F1	0.85876	0.85883	0.24469	0.89082	0.89162	0.89753	0.90616

Figure 70: Test data Model Performance Comparison

9.1. Insights and Final Model Selection - Decision Trees

- Logistic Regression: Since tuning only slightly improves the model, logistic regression may not be the best choice.
 However, its high recall indicates it's good for scenarios where missing a positive instance is costly. Further improvements might not yield substantial gains.
- Naive Bayes: Naive Bayes is not suitable for this problem due to poor performance in recall and accuracy. Consider removing it from the model set.
- KNN: The base KNN model performs exceptionally well, making it a strong candidate. The tuned model's decline suggests tuning may have negatively impacted its performance. Focus on optimizing hyperparameters or feature selection for potential gains.
- Decision Tree: The base decision tree model performs the best overall. It should be considered the primary
 model due to its superior balance of metrics. Further tuning seems to degrade its performance, so focus on
 maintaining its current state.

Given the high accuracy, recall, precision, and F1 score, decision trees are the most promising.

10. Actionable Insights and Recommendations

- Focus on Decision Trees: Given the high accuracy, recall, precision, and F1 score, decision trees (base version) are the most promising.
- Consider Ensemble Methods: Use ensemble methods like Random Forests or Gradient Boosting to potentially improve model performance further.
- Model Interpretability: Decision trees provide easily interpretable models, which can be an advantage in understanding the factors influencing predictions.
- Feature Engineering: Explore additional feature engineering to enhance model inputs, which might improve the performance of logistic regression or KNN models.
- Based on the Feature importance plot:
- Lead Time: This is the most important feature, suggesting that the amount of time between booking and arrival significantly influences the outcome.
- Market Segment Type (Online and Offline): These features also hold substantial importance, indicating that the channel through which the booking is made affects the results.
- Average Price Per Room: Another critical feature that impacts the model, likely reflecting the customer's budget or the quality of the room.
- Number of Special Requests: This feature's importance suggests that more personalized service requests may correlate with specific outcomes (like customer satisfaction or repeat bookings).
- Investigate creating new features that might capture the underlying processes better, such as categorizing 'lead time' into different time frames or deriving features from 'avg_price_per_room' that relate to service or amenities offered.