

Technische Grundlagen der Informatik WS 2023/24

Teil 1: Elektrotechnik

1- Grundbegriffe der Elektrotechnik

Dr. Solveig Schüßler

- 1. Grundbegriffe der Elektrotechnik
- 2. Stromkreis-(gesetze) und Arbeit und Leistung
- 3. Elektrisches Feld und Kondensator
- 4. Magnetisches Feld und Spule
- 5. Wechselspannung und Wechselstrom
- Leitungsmodell für Halbleiter und pn-Übergang / Diode
- 7. Transistor und Klausurvorbereitung

Literaturvorschläge

Fachbereich Elektrotechnik und Informationstechnik

•	[Bü1]	Büttner, Wolf-Ewald: <i>Grundlagen der Elektrotechnik 1</i> ; Oldenbourg-Verlag, ISBN 3-486-27295-0
•	[Bü2]	Büttner, Wolf-Ewald: <i>Grundlagen der Elektrotechnik 2</i> ; Oldenbourg-Verlag, ISBN 3-486-27296-9
•	[Mei]	Meister, Heinz: <i>Elektronische Grundlagen</i> ; Vogel Buchverlag; ISBN 3-8023-1519-7
•	[Schü]	Schütt, Reiner Johannes: Elektrotechnische Grundlagen für Wirtschaftsingenieure; Springer Vieweg
•	[Pla]	Plaßmann, Wilfried und Schulz, Detlef: Handbuch Elektrotechnik; Springer Vieweg

• [Beu] Beuth, Klaus und Beuth, Olaf: Elementare Elektronik; Vogel Buchverlag; ISBN 3-8023-1536-7

- Elektrische Ladung
- Elektrische Stromstärke
- Stromdichte
- Elektrische Spannung

•

Atome und Elektronen – Ein einfaches Atommodell

- Atomkern und Elektronen ziehen sich an: es wirken elektrische Kräfte
 Valenzelektronen:
- sind die Elektronen der äußeren Schale
- Bestimmen das elektrische und chemische Verhalten des Stoffes

Elektrische Ladung Q

- Ursache f
 ür die elektrischen Kr
 äfte sind elektrische
 Ladungen (und das Feld, das diese Ladung aufbaut)
- ! Es gibt zwei entgegengesetzte Ladungen
- Gleichnamige Ladungen stoßen sich ab
- Ungleichnamige Ladungen ziehen sich an

Definition:

- Ladung des Atomkerns: positiv
- Ladung der Elektronen: negativ

Technische Grundlagen der Informatik ET WS2023/24 VL1 - Folie 6

Elektrische Ladung Q

- Kleinste Ladung:
 Elementarladung e = 1,602 * 10⁻¹⁹C
- Ladung eines Elektrons
 Q_{Elektron}=

Ladung eines Protons:
 Q_{Proton}=

Eigenschaften: Elektrische Ladung Q

- Formelzeichen Q
- [Q] = C (Coulomb) = A·s
- $Q = N^*e$
- Q = 1C entspricht ungefähr der Ladung von 6,25*10¹⁸ Elementarladungen *e*
- Die Ladung Q ändert sich nur durch Ladungszufluss oder -abfluss
- ➤ Die Ladung ist stetig und springt nicht

Fachbereich Elektrotechnik und Informationstechnik

Erinnerung / Begriffe Ionen:

- positiv <u>oder</u> negativ geladene "Atome" (sie haben eine bestimmte Ladung Q)
- sie entstehen durch Abgabe oder Aufnahme von Elektronen

Elektrischer Strom

- Elektrischer Strom = gerichtete Bewegung von Ladungen
- In Elektrotechnik meist Bewegung von Elektronen
- Damit elektrischer Strom fließen kann, müssen genügend frei bewegliche Ladungsträger vorhanden sein!

Fachbereich Elektrotechnik und Informationstechnik

Leitertypen

(nach Dichte der frei beweglichen Ladungsträger)

Leiter

Hohe Dichte frei beweglicher Ladungsträger

Ionenleiter:
Elektrolyte
Elektronenleiter:
Metalle

Halbleiter

Leiten nur unter
bestimmten
Bedingungen
Valenzelektronen durch
Energiezufuhr (Licht,
Wärme, El. Energie...)
frei

Bsp: Si, Se, Ge, GaAs

Nichtleiter

Nur wenige frei bewegliche Ladungsträger

Bsp: Kunststoffe, Gummi, Glas, Porzellan, reines Wasser, bestimmte Gase

Fachbereich Elektrotechnik und Informationstechnik

Metallbindung

Viele freie/frei bewegliche Elektronen ermöglichen

- gute elektrische Leitfähigkeit
- gute Wärmeleitfähigkeit

Wärmeleitfähigkeit wird zudem auch durch die Schwingungen des Metallgitters ermöglicht

Nur durch eine äußere Kraft (Spannung) werden die frei beweglichen Elektronen in eine bestimmte Richtung bewegt → elektrischer Strom

Elektronenleiter (Bemerkungen)

(1) Elektronengeschwindigkeit in Metallen ≈ 3mm/s
 Aber Ausbreitung des Anstoßimpulses:
 Lichtgeschwindigkeit c ≈ 300.000km/s = 30cm/ns

Elektronenleiter (Bemerkungen)

(2) Anzahl beweglicher Ladungsträger in 10cm Kupferdraht mit 2,5mm² Querschnitt

$$(\rho_{Cu}=8.96\ ^g/_{cm^3}$$
, $M=64\ ^g/_{mol}$, $N_A=6.022\cdot 10^{22}\ ^1/_{mol}$
Kupfer kann 1 Valenzelektron abgeben)

Damit ein Stromfluss zustande kommt, sind folgende Bedingungen notwendig:

- Es muss eine Kraft geben, die die gerichtete Bewegung der freien Ladungsträger verursacht.
- Der Stromfluss kommt nur bei einem geschlossenen Stromkreis zustande.

Fachbereich Elektrotechnik und Informationstechnik

https://www.leifiphysik.de/elektrizitaetslehre/einfachestromkreise/downloads/stromkreise-simulation

Fachbereich Elektrotechnik und Informationstechnik

Stromkreis – Technische Stromrichtung/ Physikalische Stromrichtung

Warum diese Verwirrung?

- Die Stromflussrichtung wurde definiert, bevor die physikalische Ursache des Stromflusses bekannt war (nur Effekte bekannt).
- André-Marie Ampère legte die Stromrichtung willkürlich von fest (von Plus zu Minus)
- → Dies wird als Technische Stromflussrichtung bezeichnet
- Erst später stellte man fest, dass der Stromfluss eine Bewegung von Elektronen in die entgegengesetzte Richtung ist.

Trotzdem wird weiterhin zur Analyse elektrischer Schaltungen die **technische Stromrichtung** verwendet!

Stromkreis – Technische Stromrichtung

Willkürliche Festlegung!

Deshalb merken und beachten!

Merke:

Die Elektronenstromrichtung und die technische Stromrichtung sind entgegengesetzt!

Falls nichts anderes angegeben ist , ist i.d.R. die technische Stromrichtung gemeint!

Elektrische Stromstärke I

 Annahme: Die Elektronen bewegen sich mit konstanter Geschwindigkeit v durch den Leiter

Fachbereich Elektrotechnik und Informationstechnik

Elektrische Stromstärke I

Annahme: Die Elektronen bewegen sich mit konstanter Geschwindigkeit v durch den Leiter

- In der Zeit Δt wird dann eine bestimmte Ladung ΔQ verschoben
- Es fließt ein konstanter Strom mit der konstanten Stromstärke

$$I(t) = I = \frac{\Delta Q}{\Delta t}$$

Fachbereich Elektrotechnik und Informationstechnik

Elektrische Stromstärke I

Allgemeiner Fall:

kein konstanter Stromfluss / kein konstanter Ladungstransport

^{*} Die Ladung Q, die den Pkt x₀ passiert

Einschub 1. Ableitung und Anstieg

Fachbereich Elektrotechnik und Informationstechnik

Fachbereich Elektrotechnik und Informationstechnik

Elektrische Stromstärke I

Allgemeiner Fall:

kein konstanter Stromfluss / kein konstanter Ladungstransport

$$> \Delta t \rightarrow dt$$

$$I(t) = \frac{dq(t)}{dt}$$

• Die Ladungsmenge Q_0 , die in der Zeit t_1 bis t_2 die Ort x_0 passiert, errechnet sich damit zu: t_2

$$Q_0 = \int_{t_1}^{\tilde{L}} I(t)dt$$

Elektrische Stromstärke

- Formelzeichen: I
- Einheit: $[I] = \frac{[Q]}{[t]} = \frac{1C}{1s} = 1A$ A Ampere
- GLEICHSTROM (zeitlich konst. Verschiebung der Ladung)

$$I = \frac{\Delta Q}{\Delta t} = \frac{Q_0}{t_0}$$

- Beliebige Stromverläufe $i(t) = \frac{dq(t)}{dt}$
- I hat eine Richtung!
- Im unverzweigten Stromkreis ist / konstant

Fachbereich Elektrotechnik und Informationstechnik

Elektrische Stromstärke (Strom)

Größenordnung typ. Ströme

Beispiel	Größenordnung	
Blitzstrom	einige kA	
PKW-Startermotoren	einige 10A	
Bemerkbarer Strom durch einen Menschen	einige mA	
LCD-Quarzuhr	einige μA	

WS2023/24

Fachbereich Elektrotechnik und Informationstechnik

Gemeinsame Übung (ähnlich Aufgabe 1) In 1 h wird eine Ladung von 360C über eine Leitung transportiert.

- a) Wie groß ist die Stromstärke, wenn von einem gleich mäßigen Ladungstransport ausgegangen werden kann?
- b) Wie viele Elektronen wurden in der Zeit insgesamt bewegt?

Stromdichte J

- Stromstärke pro durchströmter Flächeneinheit
- Formelzeichen: J
- Einheit: $[J] = \frac{A}{mm^2}$
- $J = \frac{I}{A}$

Wichtigste Belastungsgröße für elektrische Leiter.

Fachbereich Elektrotechnik und Informationstechnik

Durch einen Kupfer-Leiter mit dem Querschnitt 1,5mm² fließt ein Strom von *I*=12A. (ähnlich Aufgabe 3)

a) Bestimmen Sie die Stromdichte im Leiter.

b) Welchen Querschnitt müsste der Leister haben, um eine zulässige Stromdichte von $J = 7.5 \, ^{\text{A}}/_{\text{mm}^2}$ nicht zu überschreiten? Welchen Durchmesser hat dann der Kupferdraht?

Stromdichte J

Zu große Stromdichten führen zu unzulässig hoher Erwärmung von Leiter und Isolationsmaterial und u.U. zur Zerstörung.

 Mehradrige Kupferleitungen müssen folgendermaßen geschützt sein (nach VDE 0100 Teil 430.6.81):
 10 A bei Leiterquerschnitt 1,5 mm², 20 A bei 2,5 mm².

Aufgabe 2 und 3 – Hausaufgabe

Elektrisches Potential φ / Elektrische Spannung U

Es gilt z.B.:
$$\varphi_{10} = \frac{W_{10}}{Q}$$

$$U_{21} = \boldsymbol{\varphi}_{20} - \boldsymbol{\varphi}_{10} = \frac{W_{21}}{Q}$$

Elektrisches Potential φ / Elektrische Spannung U

Elektrische Spannung U

- zwischen 2 Punkten ist gleich der Differenz ihrer Potentiale
- ist die Ursache für den elektrischen Strom
- Entspricht einem Unterschied in Elektronenkonzentration ("elektrische Druck")
- $U = \frac{W}{Q}$ Die Spannung gibt an, wieviel Arbeit pro Ladung Q für die Trennung aufgebracht wurde bzw. wieviel Arbeit pro Ladung geleistet wird

Elektrische Spannung U

- Formelzeichen: U
- Einheit:

$$[U] = \frac{[W]}{[Q]} = 1 \frac{J}{C} = 1 \frac{W * S}{A * S} = 1 \frac{N * m}{A * S} = 1 \frac{kg * m^2}{A * S^3}$$

$$[U] = 1V$$

U hat eine Richtung (+ → -)
 (vom größeren zum kleineren Potential)

Spannungen im Stromkreis

Spannung der Quelle bewirkt Spannung an Verbrauchern -> Spannungsabfall am Verbraucher

Fachbereich Elektrotechnik und Informationstechnik

Größenordnungen typischer Spannungen (aus (2))

Beispiel	Größenordnung	Hinweis
Eingangsspannung Empfangsantenne	einige 10 μV	Hochfrequenzspannung
Monokristalline Solarzelle	0,5 V =	Gleichspannung
Autobatterie	12 V =	Gleichspannung
Typische zulässige Berührungsspannung	50 <i>V</i> ∼	Wechselspannung
Netzspannung (Haushalt)	1 x 230 V~	Einphasige Wechselspannung
Niederspannung	3 x 400 V~	Dreiphasige Wechselspannung
Mittelspannung	3 x 20 kV~	Dreiphasige Wechselspannung
Hochspannung	3 x 110 kV∼	Dreiphasige Wechselspannung
Höchstspannung	3 x 380 kV∼	Dreiphasige Wechselspannung
Elektrostatische Aufladung bei einem Gewitter	bis zu einigen 100MV	Gleichspannung

Elektrischer Widerstand

 Ladungsträger können Leiter nicht ungehindert durchströmen

Elektronenbewegung im Metall

- ist ein Maß dafür, wie stark die Bewegung der Ladungsträger gehemmt wird
- Ist abhängig von Materialeigenschaften und Geometrie des Leiters

https://www.schule-bw.de/faecher-und-schularten/mathematisch-naturwissenschaftliche-faecher/physik/unterrichtsmaterialien/e_lehre_1/ohm/spezwider.htm

2. Stromkreisgesetze

Fachbereich Elektrotechnik und Informationstechnik

Elektrischer Widerstand R

 Bestimmung aus Geometrieund Materialeigenschaften (für einen Metalldraht)

$$R = \rho \cdot \frac{l}{A} = \frac{1}{\varkappa} \cdot \frac{l}{A}$$

l – Länge des Drahtes

A – Querschnittsfläche

и - spezifischer Leitwert

ρ – spezifischer Widerstand

(κ, ρ - Materialkonstanten)

	spezifischer Widerstand ρ	Leitfähigkeit K
	$\Omega \cdot mm^2$	m
	m	$\Omega \cdot mm^2$
	= μΩ · m	=1M / Ω · m = 1MS/m
Silber	0,016	62
Kupfer	0,018	56
Gold	0,022	44
Aluminium	0,028	36
Zink	0,06	16,7
Messing	0,07	14,3
Eisen	0,1	10
Platin	0,106	9,4
Zinn	0,11	9,1
Blei	0,208	4,8
Kohle	66,667	0,015

Elektrischer Widerstand

- Formelzeichen: R
- $[R] = 1\Omega (1 \text{ Ohm}) = 1V / 1 \text{ A}$
- Elektrische Definition:
 Der elektrische Widerstand R beträgt 1Ω, wenn bei einer Spannung von 1V genau 1A durch den Leiter fließt.
- Schaltsymbol des elektrischen Widerstandes:

R ≥ 0Ω !!! Der Widerstand ist NIE negativ!

Beispielrechnung

Fachbereich Elektrotechnik und Informationstechnik

Temperaturabhängigkeit des Elektrischen Widerstands

- Der elektrische Widerstand eines Materials ist temperaturabhängig!
- Der spezifischer Widerstand ρ wird daher für eine Normtemperatur angegeben.
- Angabe der relativen Änderung des elektrischen Widerstandes eines Materials bei Änderung der Temperatur: linearer Widerstands-Temperaturkoeffizient α
- α ist materialabhängig, z.B.
- $\alpha_{cu} \sim 3.9 \cdot 10^{-3} K^{-1}$
- $\alpha_{Konstantan} \sim 0.01 \cdot 10^{-3} \ K^{-1}$
- α_{Si} 75 $10^{-3} K^{-1}$

Temperaturabhängigkeit des Elektrischen Widerstands

• Für metallische Leiter gilt näherungsweise:

$$R(T) = R_{20}(1 + \alpha \cdot (T - 20 \text{ °C}))$$
oder

$$R(T) = R_{20}(1 + \alpha \cdot \Delta T)$$

(ΔT – Temperaturänderung zu 20 °C)

Vorgehen:

- Bestimmen des Widerstand bei T=20° C → R₂₀
- 2. Berechne auf Basis dieses Widerstandes R_{20} den Widerstand bei der gegebenen Temperatur R(T)

WS2023/24

Temperaturabhängigkeit des Elektrischen Widerstands

- Kaltleiter (PTC): $\alpha > 0$
 - Leiten im kalten Zustand besser
 - Widerstand steigt mit steigender Temperatur
 - z.B.: alle Metalle, verschiedene Verbindungshalbleiter

- Heißleiter (NTC): α <0
 - Leiten im heißen Zustand besser
 - Widerstand sinkt mit steigender Temperatur
 - z.B. reine Halbleiter, verschiedene Verbindungshalbleiter, verschiedene metallische Legierungen

Technische Grundlagen der Informatik ET WS2023/24 VL1 - Folie 43

Elektrischer Leitwert

- Umkehrwert des Widerstandes R
- Gibt an, wie gut die Ladungsträger das Material "durchqueren" können
- Formelzeichen: G

$$\bullet \ G = \frac{1}{R}$$

• Einheit:
$$[G] = 1S = \frac{1}{1\Omega} = 1\frac{A}{V}$$
 $S - Siemens$

Aufgabe 4 a-c