NOMBRE: Bryan Mendoza

EJERCICIO 2

Ejercicio 2

Genere el árbol de evaluación para el siguiente AFN-e. Considere las siguientes cadenas:

- 1001
- 0001
- 01011

Tiempo estimado: 20 -25 minutos

CADENA: 1001

CADENA RECHAZADA

CADENA RECHAZADA

CADENA ACEPTADA

EJERCICIO 3

El siguiente AFN acepta cadenas que terminan con aaa.

Obtenga su AFD equivalente. **Muestre paso a paso el proceso.**

PASO 1: Definición formal del AFN

$$\mathbf{Q} = \{s, t, u, v\}$$

$$\Sigma = \{a, b\}$$

$$\delta = \Sigma x Q$$

	а	b
S	{s,t}	S
t	u	Ø
u	V	Ø
V	Ø	Ø

$$q0 = s$$

$$F = \{v\}$$

Definición formal del AFD

PASO 2: Calcular el número de estados de AFD

$$Q = 2^4 = 16$$

PASO 3: Determinar los estados del AFD

$$\mathbf{Q} = \{\emptyset, s, t, u, v, \{s, t\}, \{s, u\}, \{s, v\}, \{t, u\}, \{t, v\}, \{u, v\}, \{s, t, u\}, \{s, t, v\}, \{s, u, v\}, \{t, u, v\}, \{s, t, u, v\}\}$$

PASO 4: Defino el lenguaje del AFD

$$\Sigma = \{a, b\}$$

PASO 5: Determino la función transición del AFD

$$\delta = \Sigma x Q$$

	а	b
Ø	Ø	Ø
$\rightarrow s$	{s,t}	S
t	u	Ø
u	V	Ø
*v	Ø	Ø
{s,t}	{s,t,u}	S
{s,u}	{s,t,v}	S
{s,v}	{s,t}	S
{t,u}	{u,v}	Ø
{t,v}	u	Ø
{u,v}	V	Ø
{s,t,u}	{s,t,u,v}	S
{s,t,v}	{s,t,u}	S
{s,u,v}	{s,t,v}	S
{t,u,v}	{u,v}	Ø
*{s,t,u,v}	{s,t,u,v}	S

NOTA: Los estados sombreados son los que nos sirven, ya que son los únicos a los que se puede llegar desde el estado inicial s.

PASO 6: Determino el estado de inicialización y finalización del AFD

$$q0 = s$$

$$F = \{ \{s, t, u, v\} \}$$

PASO 7: Grafico solo con los estados que sirven

