Diferencijalna geometrija

II

po predavanjima prof. Iljazovića

Autor: Lovro Malada

Verzija: v1.12.20240831

1 Nastavak teorije ploha

Definicija 1.1. Neka su $m, n \in \mathbb{N}$, V otvoren skup u \mathbb{R}^n te neka je funkcija $f: V \to \mathbb{R}^m$ klase C^{∞} . Za $y \in \mathbb{R}^m$ kažemo da je **regularna vrijednost** od f ako je $f^{-1}(\{y\}) \neq \emptyset$ te ako za svaki $x \in f^{-1}(\{y\})$ vrijedi kako je diferencijal $D(f)(x): \mathbb{R}^n \to \mathbb{R}^m$ surjekcija.

Neka je (X,d) metrički prostor te neka je \mathcal{F} neprazna familija povezanih skupova u (X,d) td. $\bigcap \mathcal{F} \neq \emptyset$. Tada je i $\bigcup \mathcal{F}$ povezan skup u (X,d). Naime, uzmimo $x_0 \in \bigcap \mathcal{F}$ te pretpostavimo kako je (U,V) separacija unije. Pretpostavimo npr. $x_0 \in U$. Za svaki $F \in \mathcal{F}$ imamo $F \cap U \neq \emptyset$ (jer oba sadrže x_0) pa budući su $F \cap U$ i $F \cap V$ otvoreni disjunktni skupovi u F te je F povezan, slijedi $F \cap V = \emptyset$. Stoga je $F \subseteq U$ za sve $F \in \mathcal{F}$ pa je i $\bigcup \mathcal{F} \subseteq U$ te dobivamo $V = \emptyset$, kontradikcija. Dakle, $\bigcup \mathcal{F}$ je zaista povezan skup.

Definicija 1.2. Neka je (X,d) metrički prostor i $x_0 \in X$. Za skup K, definiran kao

$$K = \bigcup_{\substack{P \subseteq X \ povezan \\ x_0 \in P}} P$$

kažemo kako je komponenta povezanosti od (X,d) određena točkom x_0 .

Uočimo kako je K povezan skup u (X,d). Nadalje, ako je P povezan skup u (X,d) td. je $x_0 \in P$, onda je $P \subseteq K$. Dakle, K je najveći (u smislu inkluzije) povezan skup koji sadrži x_0 . Nadalje, pretpostavimo kako su K i L dvije različite komponente povezanosti od (X,d). Tada im je presjek prazan. Naime, u protivnom bi $K \cup L$ bio povezan skup koji sadrži i K i L pa dobivamo $K = K \cup L = L$, kontradikcija. Zaključujemo kako je familija svih komponenata povezanosti od (X,d) particija skupa X.

Teorem 1.3.

Neka je V otvoren skup u \mathbb{R}^3 te $f:V\to\mathbb{R}$ klase C^∞ . Pretpostavimo kako je y_0 regularna vrijednost od f. Tada je svaka komponenta povezanosti od $f^{-1}(\{y_0\})$ ploha.

Dokaz. Neka je K komponenta povezanosti od $f^{-1}(\{y_0\})$ te neka je $x \in K$ po volji. Znamo kako je $D(f)(x) \colon \mathbb{R}^3 \to \mathbb{R}$ surjekcija pa $\nabla(f)(x)$ nije nul-matrica. BSOMP kako je npr. derivacija po trećoj varijabli različita od 0. Definiramo

$$F \colon V \to \mathbb{R}^3$$

$$F(u, v, w) = (u, v, f(u, v, w)).$$

Slijedi

$$\nabla F(u,v,w) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \partial_1 f(u,v,w) & \partial_2 f(u,v,w) & \partial_3 f(u,v,w) \end{bmatrix} \Longrightarrow \det(\nabla F(u,v,w)) = \partial_3 f(u,v,w).$$

Posebno, $\nabla(F)(x)$ je punog ranga pa je $D(F)(x) \colon \mathbb{R}^3 \to \mathbb{R}^3$ izomorfizam. Prema teoremu o inverznoj funkciji postoje otvoreni skupovi \widetilde{V} i W u \mathbb{R}^3 td.

- $x \in \widetilde{V} \subseteq V$
- $F(x) \in W, F(\widetilde{V}) \subseteq W$
- $F|_{\widetilde{V}|W} \colon \widetilde{V} \to W$ glatki difeomorfizam.

Neka je $G: W \to \widetilde{V}$ dana s $G = (F|_{\widetilde{V},W})^{-1}$ te neka su $g_1, g_2, g_3: W \to \mathbb{R}$ komponentne funkcije od G. Tada za sve $(u, v, w) \in W$ vrijedi

$$(u, v, w) = (F|_{\widetilde{V}, W} \circ G)(u, v, w) = F(g_1(u, v, w), g_2(u, v, w), g_3(u, v, w))$$

$$\implies \begin{cases} g_1(u, v, w) = u \\ g_2(u, v, w) = v \\ f(G(u, v, w)) = w. \end{cases}$$

Definiramo $U = \{(u, v) \in \mathbb{R}^2 \mid (u, v, y_0) \in W\}$ i uočimo kako je on otvoren skup u \mathbb{R}^2 . Zaista, vrijedi $U = \gamma^{-1}(W)$ pri čemu je $\gamma \colon \mathbb{R}^2 \to \mathbb{R}^3$ dana s $\gamma(u, v) = (u, v, y_0)$. Definiramo novu funkciju $\varphi \colon U \to \mathbb{R}^3$ s $\varphi(u, v) = G(u, v, y_0)$. Jasno, φ je klase C^{∞} te imamo $\varphi(u, v) = (u, v, g_3(u, v, y_0))$ pa je i injekcija. Vrijedi

$$\begin{split} \varphi(U) &= \{G(u,v,y_0) \mid (u,v) \in U\} = \\ &= \{G(u,v,y_0) \mid (u,v,y_0) \in W\} = \\ &= \{G(u,v,w) \mid (u,v,w) \in W \text{ i } f(G(u,v,w)) = y_0\} = \\ &= \{G(u,v,w) \mid (u,v,w) \in W\} \cap f^{-1}(\{y_0\}) = \\ &= \widetilde{V} \cap f^{-1}(\{y_0\}) \end{split}$$

pa je $\varphi(U)$ otvoren skup u $f^{-1}(\{y_0\})$. Uočimo kako je $x \in \varphi(U)$, tj. $\varphi(U)$ otvorena okolina od x u $f^{-1}(\{y_0\})$. Dokažimo još da je φ smještenje, tj. da je $\varphi^{-1} \colon \varphi(U) \to U$ neprekidna funkcija. Neka je $z \in \varphi(U)$ te neka je $\varphi^{-1}(z) = (u, v)$. Imamo $z = \varphi(u, v) = G(u, v, y_0)$ pa je $G^{-1}(z) = (u, v, y_0)$, tj. $(u, v) = \pi(G^{-1}(z))$, pri čemu je $\pi \colon \mathbb{R}^3 \to \mathbb{R}^2$ projekcija na prve dvije koordinate. Prema tome $\varphi^{-1} = \pi \circ (G|_{\varphi(U)})^{-1}$. Dakle, φ je smještenje.

Također, iz definicije φ slijedi $\nabla(\varphi)(u,v)$ ranga 2 za svaki $(u,v) \in U$, tj. $D(\varphi)(u,v) \colon \mathbb{R}^2 \to \mathbb{R}^3$ injekcija. Ovo bi bio kraj dokaza kada bi $f^{-1}(\{y_0\})$ bio povezan skup, međutim mi pokazujemo kako je K ploha,

stoga ćemo definirati parametriziranu plohu $\widetilde{\varphi}$ kao restrikciju od φ . Vrijedi

$$x \in \varphi(U) \Longrightarrow \exists (u,v) \in U \text{ td. } x = \varphi(u,v) \Longrightarrow \exists r > 0 \text{ td. } \widetilde{U} \coloneqq K((u,v),r) \subseteq U \Longrightarrow \widetilde{U} \text{ otvoren u } U \Longrightarrow \varphi(\widetilde{U}) \text{ otvoren u } \varphi(U),$$

odnosno skica

Dakle, imamo $\varphi(U)$ otvoren skup u $f^{-1}(\{y_0\})$ te $\varphi(\widetilde{U})$ otvoren u $\varphi(U) \Longrightarrow \varphi(\widetilde{U})$ otvoren u $f^{-1}(\{y_0\})$. Neka je $\widetilde{\varphi} = \varphi|_{\widetilde{U}} \colon \widetilde{U} \to \mathbb{R}^3$. Imamo

$$\begin{split} &(u,v)\in \widetilde{U}\Longrightarrow \varphi(u,v)\in \varphi(\widetilde{U})\Longrightarrow x\in \widetilde{\varphi}(\widetilde{U}).\\ &\widetilde{U} \text{ povezan skup u }U\Longrightarrow \varphi(\widetilde{U}) \text{ povezan u }\mathbb{R}^3\Longrightarrow \varphi(\widetilde{U}) \text{ povezan u }f^{-1}(\{y_0\}). \end{split}$$

Dakle, K je komponenta povezanosti od $f^{-1}(\{y_0\})$, $\varphi(\widetilde{U})$ povezan u $f^{-1}(\{y_0\})$ i $K \cap \widetilde{\varphi}(\widetilde{U}) \neq \emptyset$ (oba sadrže x). Slijedi kako je $K \cup \widetilde{\varphi}(\widetilde{U})$ povezan u $f^{-1}(\{y_0\})$, a jer je $K \subseteq K \cup \widetilde{\varphi}(\widetilde{U})$ imamo $K = K \cup \widetilde{\varphi}(\widetilde{U})$

$$\Longrightarrow \widetilde{\varphi}(\widetilde{U})\subseteq K\Longrightarrow \widetilde{\varphi}(\widetilde{U}) \text{ otvoren skup u } K\Longrightarrow \widetilde{\varphi}(\widetilde{U}) \text{ otvorena okolina od } x\text{ u } K.$$

Budući je $\widetilde{\varphi}$ restrikcija od φ imamo da je i $\widetilde{\varphi}$ smještenje. Iz istog razloga je $D(\widetilde{\varphi})(z) = D(\varphi)(z)$ za sve $z \in \widetilde{U}$. Posebno, $D(\widetilde{\varphi})(z) \colon \mathbb{R}^2 \to \mathbb{R}^3$ je injekcija za sve $z \in \widetilde{U}$. Time smo gotovi; za po volji odabranu točku $x \in K$ pronašli smo (uz dosta koraka između) parametriziranu plohu $\widetilde{\varphi}$ koja zadovoljava uvjete iz definicije plohe.

U sljedećim primjerima koristit ćemo dvije očite tvrdnje:

- \bullet Ako je L funkcional na \mathbb{R}^n tada je on ili nul-operator ili surjekcija na \mathbb{R}
- ullet Ako je (X,d) povezan metrički prostor, onda ima jednu komponentu povezanosti sam X.

Primjer 1.4

Neka su $a,b,c\in\mathbb{R},\,a,b,c>0$ te neka je

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 \,\middle|\, \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}.$$

Za skup S kažemo da je elipsoid (uočimo da za a=b=c=1 dobivamo $S=\mathbb{S}^2$). Tvrdimo da je S ploha. Neka je $f\colon \mathbb{R}^3 \to \mathbb{R}$ funkcija definirana s $f(x,y,z)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}$. Očito je f klase C^∞ te vrijedi

$$\nabla f(x,y,z) = \left(\frac{2x}{a^2} \ \frac{2y}{b^2} \ \frac{2z}{c^2}\right) \text{ za sve } (x,y,z) \in \mathbb{R}^3.$$

Ako je $(x, y, z) \in f^{-1}(\{1\})$, onda je $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ pa je bar jedan od x, y, z različit od 0, što povlači $D(f)(x, y, z) \neq 0$ pa je surjekcija. Dakle, 1 je regularna vrijednost od f. Po teoremu izlazi kako je svaka komponenta povezanosti od $f^{-1}(\{1\})$ ploha; stoga je dovoljno pokazati kako je $S = f^{-1}(\{1\})$ povezan.

Promatramo funkciju $g\colon \mathbb{S}^2\to S,\, g(x,y,z)=(ax,by,cz).$ To je dobro definirana i očito neprekidna funkcija. Ako je $(x,y,z)\in S$ onda je $(\frac{x}{a},\frac{y}{b},\frac{z}{c})\in \mathbb{S}^2$ i $g(\frac{x}{a},\frac{y}{b},\frac{z}{c})=(x,y,z)$ pa vidimo kako je g i surjekcija. Budući je \mathbb{S}^2 povezan, slijedi i $S=g(\mathbb{S}^2)$ povezan.

Elipsoid

Primjer 1.5.

Neka su $a, b \in \mathbb{R}$, a, b > 0 te neka je

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}.$$

Neka je $f \colon \mathbb{R}^3 \to \mathbb{R}$ funkcija definirana s $f(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2}$. Očito je f klase C^{∞} te vrijedi

$$\nabla f(x,y,z) = \left(\frac{2x}{a^2} \ \frac{2y}{b^2} \ 0\right) \text{ za sve } (x,y,z) \in \mathbb{R}^3.$$

Ako je $(x, y, z) \in f^{-1}(\{1\})$, onda je bar jedan od x, y različit od 0, što povlači $D(f)(x, y, z) \neq 0$ pa je surjekcija. Dakle 1 je regularna vrijednost od f. Po teoremu izlazi kako je svaka komponenta povezanosti od $f^{-1}(\{1\})$ ploha; stoga je dovoljno pokazati kako je $S = f^{-1}(\{1\})$ povezan.

Neka je $X = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1\}$ i $g \colon X \to \mathbb{R}^3$ dana s $g(x,y) = (a\cos 2\pi x, b\sin 2\pi x, y)$. Očito je X povezan skup (jer je konveksan pa povezan putevima) te je g neprekidna. Zato je i g(X) povezan skup. Sve što preostaje je uočiti g(X) = S.

Propozicija 1.6.

Neka je S ploha. Tada za sve $p \in S$ postoji lokalna parametrizacija $\varphi \colon U \to \mathbb{R}^3$ od S oko p te funkcija $f \colon U \to \mathbb{R}$ klase C^{∞} td. je

•
$$\varphi(x,y) = (x,y,f(x,y))$$
 za sve $(x,y) \in U$

ili

•
$$\varphi(x,y) = (x, f(x,y), y)$$
 za sve $(x,y) \in U$

ili

•
$$\varphi(x,y) = (f(x,y), x, y)$$
 za sve $(x,y) \in U$.

Dokaz. Neka je $p \in S$. Tada postoji lokalna parametrizacija $\psi \colon U_1 \to \mathbb{R}^3$ od S oko p takva da je $0 \in U_1$ te $\psi(0) = p$ (napomena 13.2 iz DG1). Imamo da je diferencijal $D(\psi)(0) \colon \mathbb{R}^2 \to \mathbb{R}^3$ injekcija, tj. da je $\nabla(\psi)(0)$ matrica ranga 2. Neka su ψ_1, ψ_2 i $\psi_3 \colon U_1 \to \mathbb{R}$ komponentne funkcije od ψ . Tada imamo

$$\nabla(\psi)(0) = \begin{bmatrix} \partial_1 \psi_1(0) & \partial_2 \psi_1(0) \\ \partial_1 \psi_2(0) & \partial_2 \psi_2(0) \\ \partial_1 \psi_3(0) & \partial_2 \psi_3(0) \end{bmatrix}$$

pa vidimo da su dva od tri retka linearno nezavisna. Pretpostavimo kako su to prva dva retka. Definiramo funkciju

$$F: U_1 \to \mathbb{R}^2$$
$$F(x, y) = (\psi_1(x, y), \psi_2(x, y))$$

Tada je

$$\nabla(F)(0) = \begin{bmatrix} \partial_1 \psi_1(0) & \partial_2 \psi_1(0) \\ \partial_1 \psi_2(0) & \partial_2 \psi_2(0) \end{bmatrix}.$$

Dakle, $\nabla(F)(0)$ je ranga 2, tj. regularna matrica pa je $D(F)(0) \colon \mathbb{R}^2 \to \mathbb{R}^2$ izomorfizam. Prema teoremu o inverznoj funkciji postoje otvoreni skupovi V, U u \mathbb{R}^2 td.

- $0 \in V \subseteq U_1$
- $F(0) \in U, F(V) \subseteq U$
- $F|_{V,U} \colon V \to U$ difeomorfizam.

Neka je $G: U \to V$ dana s $G = (F|_{V,U})^{-1}$. Definiramo $\varphi: U \to \mathbb{R}^3$ s $\varphi = \psi \circ G$. Tada za svaki $(u,v) \in U$ vrijedi

$$\varphi(u,v) = \psi(G(u,v)) = (\psi_1(G(u,v)), \psi_2(G(u,v)), \psi_3(G(u,v))).$$

S druge strane imamo

$$(\psi_1(G(u,v)),\psi_2(G(u,v))) = F(G(u,v)) = F((F|_{V,U})^{-1}(u,v)) = F|_{V,U}((F|_{V,U})^{-1}(u,v)) = (u,v).$$

Stoga je

$$\varphi(u,v) = (u,v,\psi_3(G(u,v))).$$

Iz napomena 13.2 i 13.3 iz DG1 imamo kako je $\varphi \colon U \to \mathbb{R}^3$ lokalna parametrizacija od S oko p (uočimo $p \in \varphi(U)$). Prema tome, imamo tvrdnju is iskaza propozicije (možemo definirati $f \colon U \to \mathbb{R}$, $f(u,v) = \psi_3(G(u,v))$). U preostala dva slučaja (kada su neka druga dva retka linearno nezavisna) argument je analogan.

Dakle, plohe su lokalno grafovi glatkih funkcija!

Napomena 1.7. Neka je $S \subseteq \mathbb{R}^3$ povezan skup td. za svaki $p \in S$ postoje otvoreni skup $U \subseteq \mathbb{R}^2$, funkcija $f \colon U \to \mathbb{R}$ klase C^{∞} te funkcija $\varphi \colon U \to \mathbb{R}^3$ td. je $\varphi(U)$ otvorena okolina od p u S te td. je $\varphi(x,y) = (x,y,f(x,y))$ za svaki $(x,y) \in U$ ili ... Tada je S ploha (dakle obrat prethodne propozicije). Argumentirati za DZ!

Primjer 1.8

Neka je

$$S = \left\{ \left(x, y, \sqrt{x^2 + y^2} \right) \middle| x, y \in \mathbb{R} \right\}.$$

Tada S nije ploha. Zaista, pretpostavimo suprotno i uzmimo $p=(0,0,0)\in S$. Prema propoziciji postoji lokalna parametrizacija $\varphi\colon U\to\mathbb{R}^3$ od S oko p te funkcija $f\colon U\to\mathbb{R}$ klase C^∞ td. je

$$\varphi(x,y) = (x,y,f(x,y))$$
 za svaki $(x,y) \in U$ ili ... ili ...

Znamo kako je $\varphi(U)$ otvorena okolina od p u S pa stoga postoji r > 0 td. je

$$K_S(p,r) \subseteq \varphi(U)$$
. (1)

Pretpostavimo kako vrijedi druga varijanta iz iskaza propozicije. Neka je $\pi \colon \mathbb{R}^3 \to \mathbb{R}^2$, $\pi(a,b,c)=(a,c)$. Za svaki $(x,y)\in U$ vrijedi $(\pi\circ\varphi)(x,y)=(x,y)$ pa zaključujemo kako je $\pi|_{\varphi(U)}$ injekcija. Promotrimo točke $p_1=(0,\frac{r}{2},\frac{r}{2})$ i $(0,-\frac{r}{2},\frac{r}{2})$. Uočimo kako $p_1,p_2\in S$ te

$$d(p, p_1) = \sqrt{\left(\frac{r}{2}\right)^2 + \left(\frac{r}{2}\right)^2} = \frac{r}{\sqrt{2}} < r.$$

Analogno $d(p, p_2) < r \Longrightarrow p_1, p_2 \in K_S(p, r)$ pa prema (1) imamo $p_1, p_2 \in \varphi(U)$. Znamo da je $\pi|_{\varphi(U)}$ injekcija pa iz $p_1 \neq p_2$ slijedi $\pi(p_1) \neq \pi(p_2)$. S druge strane imamo $\pi(p_1) = (0, \frac{r}{2}) = \pi(p_2)$, kontradikcija! Dakle, ne vrijedi druga varijanta, a analogno dobijemo kako ne vrijedi ni treća. Stoga je ispunjeno

$$\varphi(x,y) = (x,y,f(x,y))$$
 za svaki $(x,y) \in U$.

Za svaki $(x,y) \in U$ imamo kako je $\varphi(x,y) \in S$, tj. $(x,y,f(x,y)) \in S$ pa iz definicije od S slijedi

$$f(x,y) = \sqrt{x^2 + y^2}.$$

Obzirom da je $p \in \varphi(U)$, tj. $(0,0,0) \in \varphi(U)$ imamo $(0,0) \in U$. Budući je f klase C^{∞} ona sigurno ima parcijalnu derivaciju po prvoj varijabli u točki (0,0). Vrijedi

$$\partial_1 f(0,0) = \lim_{t \to 0} \frac{f(0+t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{|t|}{t}$$

što dovodi do kontradikcije budući posljednji limes ne postoji. Dakle, S nije ploha.

Važan je

Teorem 1.9.

Neka je S ploha te $\varphi \colon U \to \mathbb{R}^3$ parametrizirana ploha td. $\varphi(U) \subseteq S$. Tada je $\varphi(U)$ otvoren skup u S. Nadalje, za svaki $(x_0, y_0) \in U$ postoje otvorena okolina Ω od $\varphi(x_0, y_0)$ u \mathbb{R}^3 , glatka funkcija $\Phi \colon \Omega \to \mathbb{R}^2$ te otvorena okolina U_1 od (x_0, y_0) u U td. je $\varphi(U_1) \subseteq \Omega$ te $\Phi \circ \varphi|_{U_1} = id_{U_1}$. Posebno, ako je φ injekcija, funkcija $\varphi^{-1} \colon \varphi(U) \to U$ je neprekidna te imamo da je φ lokalna parametrizacija od S.

Dokaz. Neka je $p \in \varphi(U)$. Imamo $p = \varphi(x_0, y_0)$ za neki $(x_0, y_0) \in U$. Prema propoziciji 1.6 postoji lokalna parametrizacija $\psi \colon V \to \mathbb{R}^3$ od S oko p i funkcija $f \colon V \to \mathbb{R}$ klase C^{∞} td. vrijedi jedna od tri varijante iskaza. Pretpostavimo prvu, ostale se tretiraju analogno. Vidimo

 $\psi(V)$ otvorena okolina od p u $S \Longrightarrow \text{ postoji otvoren skup } W$ u \mathbb{R}^3 td. je $\psi(V) = W \cap S$. $\varphi \colon U \to \mathbb{R}^3$ neprekidna $\Longrightarrow \text{ skup } \varphi^{-1}(W)$ je otvoren u U (pa i u \mathbb{R}^2). $\varphi(x_0, y_0) = p \in \psi(V) \subseteq W \Longrightarrow (x_0, y_0) \in \varphi^{-1}(W)$.

Zato za $U_0 := \varphi^{-1}(W)$ imamo U_0 otvorena okolina od (x_0, y_0) u \mathbb{R}^2 , $U_0 \subseteq U$ i $\varphi(U_0) \subseteq W$. Nadalje, po pretpostavci teorema je $\varphi(U) \subseteq S \Longrightarrow \varphi(U_0) \subseteq S$. Slijedi

$$\varphi(U_0) \subseteq W \cap S = \psi(V).$$

Neka je $(x,y) \in U_0$. Imamo da je $\varphi(x,y)$ trojka oblika (a,b,f(a,b)) za neki $(a,b) \in V$ pa imamo $a = \varphi_1(x,y), b = \varphi_2(x,y), f(a,b) = \varphi_3(x,y)$ pri čemu su φ_i komponentne funkcije od φ . Stoga za sve $(x,y) \in U_0$ vrijedi

$$\varphi_3(x,y) = f(\varphi_1(x,y), \varphi_2(x,y)). \quad (1)$$

Definiramo funkciju $h: U_0 \to \mathbb{R}^2$ s $h(x,y) = (\varphi_1(x,y), \varphi_2(x,y))$. Očito je h glatka, a prema (1) vrijedi

 $\varphi_3|_{U_0}=f\circ h.$ Stoga za svaki $(x,y)\in U_0$ vrijedi

$$D(\varphi_3)(x,y) = D(f)(h(x,y)) \circ D(h)(x,y)$$

pa prelaskom na matrice imamo

$$\nabla(\varphi_3)(x,y) = \nabla(f)(h(x,y)) \cdot \nabla(h)(x,y)$$

tj.

$$\left[\partial_1 \varphi_3(x,y) \quad \partial_2 \varphi_3(x,y) \right] = \left[\partial_1 f(h(x,y)) \quad \partial_2 f(h(x,y)) \right] \cdot \left[\begin{matrix} \partial_1 \varphi_1(x,y) & \partial_2 \varphi_1(x,y) \\ \partial_1 \varphi_2(x,y) & \partial_2 \varphi_2(x,y) \end{matrix} \right].$$

Množenjem matrica slijedi

$$\begin{bmatrix} \partial_1 \varphi_3(x,y) \\ \partial_2 \varphi_3(x,y) \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \partial_1 f(h(x,y)) \partial_1 \varphi_1(x,y) + \partial_2 f(h(x,y)) \partial_1 \varphi_2(x,y) \\ \partial_1 f(h(x,y)) \partial_2 \varphi_1(x,y) + \partial_2 f(h(x,y)) \partial_2 \varphi_2(x,y) \end{bmatrix}^{\mathsf{T}} =$$

$$= \partial_1 f(h(x,y)) \begin{bmatrix} \partial_1 \varphi_1(x,y) & \partial_2 \varphi_1(x,y) \end{bmatrix} + \partial_2 f(h(x,y)) \begin{bmatrix} \partial_1 \varphi_2(x,y) & \partial_2 \varphi_2(x,y) \end{bmatrix}.$$

Vidimo kako je treći redak u matrici $\nabla(\varphi)(x,y)$ linearna kombinacija prva dva, a budući znamo kako je ona ranga 2 (jer je φ parametrizirana ploha), slijedi kako su prva dva retka linearno nezavisna. Međutim imamo

$$\nabla(h)(x,y) = \begin{bmatrix} \partial_1 \varphi_1(x,y) & \partial_2 \varphi_1(x,y) \\ \partial_1 \varphi_2(x,y) & \partial_2 \varphi_2(x,y) \end{bmatrix}$$

 $\Longrightarrow \nabla(h)(x,y)$ regularna $\Longrightarrow D(h)(x,y) \colon \mathbb{R}^2 \to \mathbb{R}^2$ izomorfizam. Posebno je $D(h)(x_0,y_0)$ izomorfizam pa iz teorema o inverznoj funkciji dobivamo U_1 i V_1 redom otvorene okoline od (x_0,y_0) i $h(x_0,y_0)$ u \mathbb{R}^2 td.

- $U_1 \subseteq U_0$
- $h(U_1) = V_1$
- $h|_{U_1,V_1}:U_1\to V_1$ difeomorfizam,

odnosno skica govori tisuću simbola

Sada tvrdimo

$$\varphi(U_1) = \psi(V_1). \quad (2)$$

Za \subseteq , neka je $(x,y) \in U_1$. Imamo $\varphi(x,y) \in \varphi(U_1) \subseteq \varphi(U_0) \subseteq \psi(V)$. Stoga postoje $a,b \in \mathbb{R}$ td. $\varphi(x,y) = (a,b,f(a,b)) \Longrightarrow (a,b) = h(x,y) \in h(U_1) = V_1$. Dakle, imamo $\varphi(x,y) = \psi(a,b) \in \psi(V_1)$. Za \supseteq , neka je $(a,b) \in V_1$. Imamo (a,b) = h(x,y) za $(x,y) \in U_1 \Longrightarrow (a,b) = (\varphi_1(x,y),\varphi_2(x,y)) \in V \Longrightarrow (a,b,f(a,b)) = (\varphi_1(x,y),\varphi_2(x,y),f(\varphi_1(x,y),\varphi_2(x,y)))$. Iz (1) slijedi $\psi(a,b) = \varphi(x,y) \in \varphi(U_1)$. Time smo pokazali (2).

Imamo kako je $\psi \colon V \to \mathbb{R}^3$ smještenje pa budući je V_1 otvoren u V, imamo $\psi(V_1)$ otvoren u $\psi(V)$, a stoga i $\psi(V_1)$ otvoren u S (jer $\psi(V)$ otvoren). Nadalje, imamo $(x_0, y_0) \in U_1 \Longrightarrow \varphi(x_0, y_0) \in \varphi(U_1) \Longrightarrow \varphi(U_1)$. Iz (2) sada slijedi $\varphi(U_1)$ otvorena okolina od p u S. Jasno, $\varphi(U_1) \subseteq \varphi(U)$.

Dakle, pokazali smo kako za sve $p \in \varphi(U)$ postoji L_p otvorena okolina od p u S td. $L_p \subseteq \varphi(U)$

$$\Longrightarrow \varphi(U) = \bigcup_{p \in \varphi(U)} L_p.$$

Posebno, $\varphi(U)$ je otvoren u S. Time je pokazana prva izreka u iskazu teorema. Za nastavak, neka je $\pi \colon \mathbb{R}^3 \to \mathbb{R}^2$ projekcija na prve dvije koordinate. Za sve $(x,y) \in U_1$ imamo

$$\pi(\varphi(x,y)) = (\varphi_1(x,y), \varphi_2(x,y)) = h(x,y) \in V_1,$$

stoga imamo $\pi(\varphi(U_1)) \subseteq V_1 \Longrightarrow \varphi(U_1) \subseteq \pi^{-1}(V_1) \Longrightarrow p \in \pi^{-1}(V_1)$. Nadalje, jer je h difeomorfizam, možemo pisati

$$h^{-1}(\pi(\varphi(x,y))) = (x,y).$$

Slijedi

$$((h^{-1} \circ \pi|_{\pi^{-1}(V_1)}) \circ \varphi|_{U_1})(x,y) = (x,y) \Longrightarrow h^{-1} \circ \pi|_{\pi^{-1}(V_1)} \circ \varphi|_{U_1} = id_{U_1}.$$

Očito je $h^{-1} \circ \pi|_{\pi^{-1}(V_1)} \circ \varphi|_{U_1} \colon \pi^{-1}(V_1) \to \mathbb{R}^2$ klase C^{∞} . Definiramo $\Omega := \pi^{-1}(V_1)$ te $\Phi := h^{-1} \circ \pi|_{\Omega}$ pa imamo

$$\Phi \circ \varphi|_{U_1} = id_{U_1}$$
.

Konačno, pretpostavimo kako je φ injekcija. Moramo još pokazati kako je φ smještenje (kako bi φ bila lokalna parametrizacija), a za to jedino preostaje pokazati kako je φ^{-1} neprekidna. Neka je $p \in \varphi(U)$ te neka je $(x_0, y_0) \in U$ td. $p = \varphi(x_0, y_0)$. Dokazali smo kako postoje otvorena okolina Ω od p u \mathbb{R}^3 , $\Phi \colon \Omega \to \mathbb{R}^2$ klase C^{∞} i otvorena okolina U_1 od (x_0, y_0) u U td. $\varphi(U_1) \subseteq \Omega$ te $\Phi \circ \varphi|_{U_1} = id_{U_1}$. Slijedi

$$\Phi|_{\varphi(U_1)} \circ \varphi|_{U_1} = id_{U_1}.$$

Gledamo $\varphi^{-1}: \varphi(U) \to U$ te restrikciju $\varphi^{-1}|_{\varphi(U_1)}: \varphi(U_1) \to U$. Znamo $\varphi^{-1}|_{\varphi(U_1)} \circ \varphi|_{U_1} = id_{U_1}$ pa iz gornje jednakosti imamo $\varphi^{-1}|_{\varphi(U_1)} = \Phi|_{\varphi(U_1)} \Longrightarrow \varphi^{-1}|_{\varphi(U_1)}: \varphi(U_1) \to U$ neprekidna. Dakle, za sve $p \in \varphi(U)$ postoji otvorena okolina L od p u $\varphi(U)$ td. $\varphi^{-1}|_{L}$ neprekidna (naime, u prvom dijelu dokaza smo pokazali kako je $\varphi(U_1)$ otvoren u $\varphi(U)$). Uvažavajući sljedeću napomenu, slijedi kako je φ^{-1} neprekidna.

Napomena 1.10. Neka su (X, d) i (Y, d') metrički prostori, $f: X \to Y$ funkcija te $x_0 \in X$. Pretpostavimo kako postoji otvorena okolina U od x_0 u (X, d) td. $f|_U: U \to Y$ neprekidna u x_0 (s obzirom na $d|_{U \times U}$ i d'). Tada je f neprekidna u x_0 . Naime, ako je V otvorena okolina od $f(x_0)$ u (Y, d'), onda postoji otvorena okolina W od x_0 u U td. $f(W) \subseteq V$; dakle W je otvorena okolina od x_0 u (X, d) pa tvrdnja slijedi.

Napomena 1.11. Ako je $U \subseteq \mathbb{R}^2$ otvoren, $f: U \to \mathbb{R}^2$ funkcija te $r \in \mathbb{N} \cup \{\infty\}$ td. za svaki $x \in U$ postoji otvorena okolina U_1 od x u U td. $f|_{U_1}: U_1 \to \mathbb{R}^n$ klase C^r , onda je f klase C^r .

Korolar 1.12.

Neka je S ploha te neka su $\varphi \colon U \to \mathbb{R}^3$, $\psi \colon V \to \mathbb{R}^3$ lokalne parametrizacije od S td. je $\varphi(U) \cap \psi(V) \neq \emptyset$. Označimo $W := \varphi(U) \cap \psi(V)$. Tada je $\varphi^{-1}(W)$ otvoren skup u \mathbb{R}^2 te je funkcija

$$\psi^{-1} \circ \varphi|_{\varphi^{-1}(W)} \colon \varphi^{-1}(W) \to \mathbb{R}^2$$

klase C^{∞} .

Dokaz. Imamo da je W otvoren u S (jer su $\varphi(U)$ i $\psi(V)$ otvoreni u S) pa je $\varphi^{-1}(W)$ otvoren u U po neprekidnosti. No, U je otvoren u \mathbb{R}^2 pa je i $\varphi^{-1}(W)$ otvoren u \mathbb{R}^2 . Uzmimo sada $z \in \varphi^{-1}(W) \Longrightarrow \varphi(z) \in W \Longrightarrow \varphi(z) \in \psi(V) \Longrightarrow \varphi(z) = \psi(z')$ za neki $z' \in V$. Prema teoremu 1.9 postoje otvorena okolina V_1 od z' u V, otvorena okolina Ω od $\psi(z')$ u \mathbb{R}^3 te funkcija $\Phi \colon \Omega \to \mathbb{R}^2$ klase C^{∞} td.

- $\psi(V_1) \subset \Omega$
- $\bullet \Phi \circ \psi|_{V_1} = id_{V_1}.$

Ovo povlači da za svaki $y \in \psi(V_1)$ vrijedi $\psi^{-1}(y) = \Phi(y)$. (1)

Budući je $\psi(V_1)$ otvoren skup u $\psi(V)$ (smještenje), $\psi(V_1)$ je otvoren u S. Nadalje $\psi(z') \in \psi(V_1) \Longrightarrow \varphi(z) \in \psi(V_1)$. Konačno, imamo kako je $\varphi|_{\varphi^{-1}(W)} \colon \varphi^{-1}(W) \to S$ neprekidna funkcija pa postoji otvorena okolina U_1 od z u $\varphi^{-1}(W)$ td. $\varphi(U_1) \subseteq \psi(V_1)$. Skupa s (1) izlazi kako za sve $x \in U_1$ vrijedi

$$\psi^{-1}(\varphi(x)) = \Phi(\varphi(x)).$$

Dakle imamo $\psi^{-1}\circ\varphi|_{U_1}=\Phi\circ\varphi|_{U_1}\Longrightarrow\psi^{-1}\circ\varphi|_{U_1}$ je klase $C^\infty.$ Jasno, vrijedi

$$\psi^{-1} \circ \varphi|_{U_1} = \left(\psi^{-1} \circ \varphi|_{\varphi^{-1}(W)}\right)|_{U_1}.$$

Zaključak: za svaki $z \in \varphi^{-1}(W)$ postoji otvorena okolina U_1 od z u $\varphi^{-1}(W)$ td. je $(\psi^{-1} \circ \varphi|_{\varphi^{-1}(W)})|_{U_1}$ klase C^{∞} . Prema napomeni 1.11 imamo kako je $\psi^{-1} \circ \varphi|_{\varphi^{-1}(W)}$ klase C^{∞} .

Definicija 1.13. Neka je $n \in \mathbb{N}$ te $S \subseteq \mathbb{R}^n$. Neka je $p \in S$. Za $v \in \mathbb{R}^n$ kažemo da je tangencijalni vektor na S u p ako postoje $\varepsilon > 0$ i parametrizirana krivulja $c: \langle -\varepsilon, \varepsilon \rangle \to \mathbb{R}^n$ td. je $c(\langle -\varepsilon, \varepsilon \rangle) \subseteq S$, c(0) = p i $\dot{c}(0) = v$. Skup svih tangencijalnih vektora na S u p označavamo s T_pS i nazivamo tangencijalni konus od S u p.

Primier 1.14.

Neka je $A=\{(x,0,0)\,|\,x\in\mathbb{R}\}$ te $B=\{(0,y,0)\,|\,y\in\mathbb{R}\}$. Neka su nadalje $S=A\cup B\subseteq\mathbb{R}^3$ i $p=(0,0,0)\in S$. Vrijedi

$$T_p S = S$$
.

Dokazati za DZ (posebno, $T_p S$ ne mora biti vektorski prostor).

Propozicija 1.15.

Neka je S ploha te neka je $p \in S$. Pretpostavimo da je $\varphi \colon U \to \mathbb{R}^3$ lokalna parametrizacija od S u p te da je $x_0 \in U$ td. $\varphi(x_0) = p$. Tada je

$$D(\varphi)(x_0)(\mathbb{R}^2) = T_p S.$$

Dokaz. Dokazujemo dvije inkluzije.

Neka je $v \in \mathbb{R}^2$. Budući je U otvoren skup, postoji r > 0 td. $K(x_0, r) \subseteq U$. Odaberimo $\varepsilon > 0$ td. $\varepsilon ||v|| < r$. Tada za sve $t \in \langle -\varepsilon, \varepsilon \rangle$ vrijedi

$$||tv|| = |t| ||v|| < \varepsilon ||v|| < r \Longrightarrow x_0 + tv \in K(x_0, r).$$

Stoga za funkciju $\alpha \colon \langle -\varepsilon, \varepsilon \rangle \to \mathbb{R}^2$ danu s $\alpha(t) = x_0 + tv$ vrijedi $\alpha(\langle -\varepsilon, \varepsilon \rangle) \subseteq U$. Definiramo $c \colon \langle -\varepsilon, \varepsilon \rangle \to \mathbb{R}^3$ s $c = \varphi \circ \alpha$. Imamo $c(0) = \varphi(\alpha(0)) = \varphi(x_0) = p$. Nadalje, $c(\langle -\varepsilon, \varepsilon \rangle) = \varphi(\alpha(\langle -\varepsilon, \varepsilon \rangle)) \subseteq \varphi(U) \subseteq S \Longrightarrow \dot{c}(0)$ je tangencijalni vektor na S u p te je stoga $\dot{c}(0) \in T_pS$. (1) Neka su $c_1, c_2, c_3 \colon \langle -\varepsilon, \varepsilon \rangle \to \mathbb{R}$ komponentne funkcije od c. Imamo

$$\dot{c}(0) = (c_1'(0), c_2'(0), c_3'(0)).$$

Znamo kako za linearan operator $D(c)(0): \mathbb{R} \to \mathbb{R}^3$ vrijedi $D(c)(0)(\lambda) = \lambda \cdot \dot{c}(0) = (\lambda c_1'(0), \lambda c_2'(0), \lambda c_3'(0))$. Posebno, $\dot{c}(0) = D(c)(0)(1)$. Iz definicije od c imamo

$$D(c)(0) = D(\varphi)(\alpha(0)) \circ D(\alpha)(0) = D(\varphi)(x_0) \circ D(\alpha)(0),$$

dok iz definicije od α imamo

$$D(\alpha)(0)(1) = \dot{\alpha}(0) = v.$$

Kombinacijom gornje tri jednakosti dobivamo

$$\dot{c}(0) = D(c)(0)(1) = D(\varphi)(x_0)(D(\alpha)(0)(1)) = D(\varphi)(x_0)(v)$$

pa iz (1) dobivamo $D(\varphi)(x_0)(v) \in T_pS$. Time je pokazana jedna inkluzija.

Obratno, neka je $v \in T_pS$. Tada postoje $\varepsilon > 0$ i parametrizirana krivulja $c: \langle -\varepsilon, \varepsilon \rangle \to \mathbb{R}^3$ td. je $c(0) = p, \ c(\langle -\varepsilon, \varepsilon \rangle) \subseteq S$ i $\dot{c}(0) = v$. Prema teoremu 1.9 postoje otvorena okolina U_1 od x_0 u U, otvorena okolina Ω od p u \mathbb{R}^3 te funkcija $\Phi: \Omega \to \mathbb{R}^2$ klase C^{∞} td. je $\varphi(U_1) \subseteq \Omega$ te $\Phi \circ \varphi|_{U_1} = id_{U_1}$

$$\Longrightarrow \varphi^{-1}(y) = \Phi(y) \text{ za sve } y \in \varphi(U_1).$$
 (2)

Imamo da je c neprekidna kao funkcija $\langle -\varepsilon, \varepsilon \rangle \to S$ pa budući je $\varphi(U_1)$ otvorena okolina od p u S, postoji $\delta > 0$ td. je $c(\langle -\delta, \delta \rangle) \subseteq \varphi(U_1)$. Definiramo $\alpha \colon \langle -\delta, \delta \rangle \to \mathbb{R}^2$, $\alpha = \varphi^{-1} \circ c|_{\langle -\delta, \delta \rangle}$. Iz (2) slijedi $\alpha = \Phi \circ c|_{\langle -\delta, \delta \rangle}$ pa vidimo kako je α funkcija klase C^{∞} . S druge strane, iz definicije od α slijedi da je

 $\varphi \circ \alpha = c|_{\langle -\delta, \delta \rangle}.$ Kao i maloprije imamo

$$v=\dot{c}(0)=(c|_{\langle -\delta,\delta\rangle})(0)=D(c|_{\langle -\delta,\delta\rangle})(0)(1)=D(\varphi)(x_0)(D(\alpha)(0)(1))\Longrightarrow v\in D(\varphi)(x_0)(\mathbb{R}^2).$$

Time smo pokazali i obratnu inkluziju.

Direktno slijedi

Korolar 1.16.

Neka je S ploha te $p \in S$. Tada je T_pS potprostor od \mathbb{R}^3 dimenzije 2.

Definicija 1.17. Neka je S ploha te $p \in S$. Za T_pS kažemo da je tangencijalna ravnina na S u p.

Definicija 2.1. Neka je X topološki prostor te $n \in \mathbb{N}$. Za uređeni par (U, φ) kažemo da je n-karta za X ako je U otvoren skup u X, $\varphi \colon U \to \mathbb{R}^n$ smještenje te $\varphi(U)$ otvoren skup u \mathbb{R}^n .

Definicija 2.2. Neka je X topološki prostor te $n \in \mathbb{N}$. Neka je A familija n-karata za X td. je

$$\bigcup_{(U,\varphi)\in\mathcal{A}} U = X.$$

Tada za A kažemo da je n-atlas za X.

Definicija 2.3. Neka je X topološki prostor te $n \in \mathbb{N}$. Kažemo da je X lokalno n-euklidski ako postoji n-atlas za X.

Uočimo da je X lokalno n—euklidski ako i samo ako svaka točka od X ima otvorenu okolinu koja je homeomorfna otvorenom podskupu od \mathbb{R}^n . Svaka otvorena kugla u \mathbb{R}^n je homeomorfna s \mathbb{R}^n ; baci oko na skriptu iz normiranih.

Napomena 2.4. Neka je X topološki prostor te $n \in \mathbb{N}$. Tada je X lokalno n-euklidski ako i samo ako svaki $x \in X$ ima otvorenu okolinu u X koja je homeomorfna s \mathbb{R}^n . Dovoljnost je očita, pokažimo nužnost. Neka je X lokalno n-euklidski i $x \in X$. Tada postoje otvorena okolina U od x u X, V otvoren skup u \mathbb{R}^n i $\varphi \colon U \to V$ homeomorfizam. Imamo $\varphi(x) \in V$ pa budući je V otvoren skup u \mathbb{R}^n postoji r > 0 td. je $K(\varphi(x), r) \subseteq V$. Definiramo $U_1 = \varphi^{-1}(K(\varphi(x), r))$. Imamo da je U_1 otvorena okolina od x u X, a $\varphi|_{U_1,K(\varphi(x),r)} \colon U_1 \to K(\varphi(x),r)$ je homeomorfizam. Dakle, x ima otvorenu okolinu u X koja je homeomorfna otvorenoj kugli u \mathbb{R}^n , a time i \mathbb{R}^n .

Definicija 2.5. Neka je X topološki prostor te $n \in \mathbb{N}$. Kažemo da je X n-mnogostrukost ako vrijedi

- (1) X je lokalno n-euklidski
- (2) X zadovoljava drugi aksiom prebrojivosti
- (3) X je Hausdorffov.

Primjer 2.6

Neka je S ploha (u \mathbb{R}^3). Neka je \mathcal{E} euklidska topologija na S. Tada je (S, \mathcal{E}) 2—mnogostrukost. Naime, prema definiciji plohe svaki x ima otvorenu okolinu u (S, \mathcal{E}) koja je homeomorfna otvorenom podskupu od \mathbb{R}^2 . Prema tome, (S, \mathcal{E}) je lokalno 2—euklidski.

Očito je (S, \mathcal{E}) i Hausdorffov prostor (topologija \mathcal{E} je po definiciji inducirana euklidskom metrikom na S, dakle (S, \mathcal{E}) je metrizabilan).

Konačno, imamo kako je (S,\mathcal{E}) potprostor od $(\mathbb{R}^3,\mathcal{T})$, gdje je \mathcal{T} euklidska topologija na \mathbb{R}^3 . Jasno, $(\mathbb{R}^3,\mathcal{T})$ je separabilan (DZ) i metrizabilan $\Longrightarrow (\mathbb{R}^3,\mathcal{T})$ zadovoljava drugi aksiom prebrojivosti. Sada koristimo sljedeću općenitu tvrdnju: ako su (X,\mathcal{T}) i (Y,\mathcal{S}) topološki prostori td. (Y,\mathcal{S}) potprostor od (X,\mathcal{T}) te td. (X,\mathcal{T}) zadovoljava drugi aksiom prebrojivosti, onda i (Y,\mathcal{S}) zadovoljava drugi aksiom prebrojivosti (DZ). Uvažavajući ovu napomenu slijedi kako (S,\mathcal{E}) zadovoljava drugi aksiom prebrojivosti

$$\implies$$
 (S, \mathcal{E}) je 2 – mnogostrukost.

Primjer 2.7

$$(1) \land (2) \Rightarrow (3).$$

Neka je \mathcal{E} euklidska topologija na $\langle -1, 1 \rangle$ i $X = \langle -1, 1 \rangle \cup \{2\}$. Definiramo

$$\mathcal{T} = \mathcal{E} \cup \{U \cup \{2\} \mid U \in \mathcal{E} \text{ takav da } U \cup \{0\} \in \mathcal{E}\}.$$

 \mathcal{T} je topologija na X (DZ). Tvrdimo da je (X, \mathcal{T}) lokalno 1-euklidski te da zadovoljava drugi aksiom prebrojivosti, ali da nije Hausdorffov.

Kako bi pokazali da je lokalno 1– euklidski, trebamo oko svake točke $x \in X$ naći otvorenu okolinu u (X, \mathcal{T}) homeomorfnu otvorenom podskupu od \mathbb{R} . Promatramo slučaj $x \in \langle -1, 1 \rangle$ i slučaj x = 2.

Prvo, uočimo kako je $(\langle -1, 1 \rangle, \mathcal{E})$ potprostor od (X, \mathcal{T}) . Stoga za svaki $x \in \langle -1, 1 \rangle$ vrijedi kako je $\langle -1, 1 \rangle$ otvorena okolina od x u (X, \mathcal{T}) i to homeomorfna otvorenom podskupu od \mathbb{R} .

Sada tvrdimo kako je $\langle -1,0\rangle \cup \langle 0,1\rangle \cup \{2\}$ otvorena okolina od 2 u (X,\mathcal{T}) te da je homeomorfna otvorenom podskupu od \mathbb{R} . Prva tvrdnja slijedi iz definicije, zato se fokusiramo drugu. Neka

je S relativna topologija na $\langle -1, 0 \rangle \cup \langle 0, 1 \rangle \cup \{2\}$. Tvrdimo kako su topološki prostori

$$(\langle -1, 0 \rangle \cup \langle 0, 1 \rangle \cup \{2\}, \mathcal{S})$$
 i $(\langle -1, 1 \rangle, \mathcal{E})$ homeomorfni.

Definiramo $f: \langle -1, 0 \rangle \cup \langle 0, 1 \rangle \cup \{2\} \rightarrow \langle -1, 1 \rangle$ s

$$f(x) = \begin{cases} x & \text{ako } x \neq 2\\ 0 & \text{ako } x = 2. \end{cases}$$

Očito je f bijekcija; pokažimo kako je i neprekidna (s obzirom na \mathcal{S} i \mathcal{E}), a zatim kako je i f^{-1} neprekidna. Neka je $U \in \mathcal{E}$, tvrdimo $f^{-1}(U) \in \mathcal{S}$.

1°
$$0 \notin U \Longrightarrow f^{-1}(U) = U \in \mathcal{T}$$
. Jasno, $f^{-1}(U) = (\langle -1, 0 \rangle \cup \langle 0, 1 \rangle \cup \{2\}) \cap f^{-1}(U) \in \mathcal{S} \Longrightarrow f^{-1}(U) \in \mathcal{S}$.

$$2^{\circ} \ 0 \in U \Longrightarrow f^{-1}(U) = (U \setminus \{0\}) \cup \{2\} \Longrightarrow f^{-1}(U) \in \mathcal{S}.$$

Dakle, f je neprekidna s obzirom na \mathcal{S} i \mathcal{E} . Sada pokazujemo neprekidnost od f^{-1} s obzirom na \mathcal{E} i \mathcal{S} .

Neka je $V \in \mathcal{S}$. Imamo da je $(f^{-1})^{-1}(V) = f(V)$ pa je dovoljno dokazati da je $f(V) \in \mathcal{E}$. Imamo

$$V \in \mathcal{S} \Longrightarrow V = V' \cap (\langle -1, 0 \rangle \cup \langle 0, 1 \rangle \cup \{2\})$$
 za neki $V' \in \mathcal{T} \Longrightarrow V \in \mathcal{T}$.

Ponovno promatramo dva slučaja.

$$1^{\circ} \ V \in \mathcal{E} \Longrightarrow \{2\} \notin V \Longrightarrow V \subseteq \langle -1, 0 \rangle \cup \langle 0, 1 \rangle \Longrightarrow f(V) = V \Longrightarrow f(V) \in \mathcal{E}.$$

$$2^{\circ} V = U \cup \{2\}$$
, gdje je $U \in \mathcal{E}$ td. je $U \cup \{0\} \in \mathcal{E} \Longrightarrow f(V) = f(U) \cup \{0\} \Longrightarrow f(V) \in \mathcal{E}$.

Dakle, f^{-1} je neprekidna $\Longrightarrow f$ je homeomorfizam topoloških prostora $(\langle -1, 0 \rangle \cup \langle 0, 1 \rangle \cup \{2\}, \mathcal{S})$ i $(\langle -1, 1 \rangle, \mathcal{E})$. Prema tome, $\langle -1, 0 \rangle \cup \langle 0, 1 \rangle \cup \{2\}$ je otvorena okolina od 2 u (X, \mathcal{T}) homeomorfna otvorenom podskupu u \mathbb{R} , a time smo konačno pokazali

$$(X, \mathcal{T})$$
 je 1 – euklidski.

Prelazimo na drugi aksiom prebrojivosti. Znamo kako \mathbb{R} (s euklidskom topologijom) zadovoljava drugi aksiom prebrojivosti \Longrightarrow ($\langle -1,1\rangle,\mathcal{E}$), kao njegov potprostor, zadovoljava drugi aksiom prebrojivosti \Longrightarrow postoji prebrojiva baza \mathcal{B}_1 topologije \mathcal{E} . Definiramo

$$\mathcal{B} = \mathcal{B}_1 \cup \left\{ \left\langle -\frac{1}{n}, 0 \right\rangle \cup \left\langle 0, \frac{1}{n} \right\rangle \cup \{2\} \ \middle| \ n \in \mathbb{N} \right\}.$$

Pokazat ćemo kako je \mathcal{B} baza topologije \mathcal{T} . Budući je prebrojiva, po definiciji će sljediti kako (X, \mathcal{T}) zadovoljava drugi aksiom prebrojivosti.

Vrijedi da je $\mathcal{B} \subseteq \mathcal{T}$. Neka je $U \in \mathcal{E}$ t
d. je $U \cup \{0\} \in \mathcal{E}$. Dokažimo da se $U \cup \{2\}$ može zapisati kao unija elemenata od
 \mathcal{B} . Neka je $x \in U \cup \{2\}$. Za divno čudo, dva slučaja.

- 1° Ako je $x \in U$, budući $U \in \mathcal{E}$, onda postoji $\mathcal{B} \in \mathcal{B}_1$ td. $x \in B \subseteq U$, odnosno imamo $B \in \mathcal{B}$ i $x \in B \subseteq U \cup \{2\}$.
- 2° Pretpostavimo sada x=2.

 $U \cup \{0\} \in \mathcal{E} \Longrightarrow \exists r > 0$ td. je r < 1i $\langle -r, r \rangle \subseteq U \cup \{0\}$. Neka je $n \in \mathbb{N}$ td. $\frac{1}{n} < r$ pa imamo

$$\left\langle -\frac{1}{n},\frac{1}{n}\right\rangle \subseteq U \cup \{0\} \Longrightarrow \left\langle -\frac{1}{n},0\right\rangle \cup \left\langle 0,\frac{1}{n}\right\rangle \subseteq U \Longrightarrow \left\langle -\frac{1}{n},0\right\rangle \cup \left\langle 0,\frac{1}{n}\right\rangle \cup \{2\} \subseteq U \cup \{2\}.$$

Prema tome, postoji $B \in \mathcal{B}$ td. je $x \in B \subseteq U \cup \{2\}$.

Zaključak: za svaki $x \in U \cup \{2\}$ postoji $B \in \mathcal{B}$ td. je $x \in B \subseteq U \cup \{2\} \Longrightarrow U \cup \{2\}$ se može napisati kao unija elemenata iz $\mathcal{B} \Longrightarrow \mathcal{B}$ je baza topologije \mathcal{T}

 $\Longrightarrow (X, \mathcal{T})$ zadovoljava drugi aksiom prebrojivosti.

Pretpostavimo sada da je (X, \mathcal{T}) Hausdorffov prostor

$$\implies$$
 postoje $V, W \in \mathcal{T}$ td. $0 \in V, 2 \in W \implies$
 $\implies W = U \cup \{2\}, \text{ gdje je } U \in \mathcal{E} \text{ td. } U \cup \{0\} \in \mathcal{E} \implies$
 \implies postoji $r > 0$ td. $\langle -r, r \rangle \subseteq U \cup \{0\}$. (1)

Jasno, $2 \notin V \Longrightarrow V \in \mathcal{E}$. Budući je $0 \in V$, postoji s > 0 td. je

$$\langle -s, s \rangle \subseteq V.$$
 (2)

Odaberimo t > 0 td. je t < r i t < s. Iz (1) i (2) redom slijedi $t \in U$ i $t \in V$ \bot

$$\Longrightarrow (X, \mathcal{T})$$
 nije Hausdorffov.

Primjer 2.8

$$(1) \wedge (3) \Rightarrow (2).$$

Neka je Ane
prebrojiv skup. Za $\alpha \in A$ neka je \mathcal{T}_α topologija na
 $\mathbb{R} \times \{\alpha\}$ definirana s

$$\mathcal{T}_{\alpha} = \{U \times \{\alpha\} \mid U \text{ otvoren u } \mathbb{R}\}.$$

Uočimo da je za $\alpha \in A$ funkcija $\mathbb{R} \to \mathbb{R} \times \{\alpha\}, x \mapsto (x, \alpha)$ homoemorfizam. Neka je

$$X = \bigcup_{\alpha \in A} \mathbb{R} \times \{\alpha\}$$

te neka je

$$\mathcal{T} = \{ W \subseteq X \mid W \cap (\mathbb{R} \times \{\alpha\}) \in \mathcal{T}_{\alpha} \text{ za sve } \alpha \in A \}.$$

Lako se provjeri kako je \mathcal{T} topologija na X (DZ) te kako je $(\mathbb{R} \times \{\alpha\}, \mathcal{T}_{\alpha})$ potprostor od (X, \mathcal{T}) . Uočimo još kako je $\mathbb{R} \times \{\alpha\} \in \mathcal{T}$ za sve $\alpha \in A$. Zaključak: ako je $\alpha \in A$ i $x \in \mathbb{R} \times \{\alpha\}$, onda je $\mathbb{R} \times \{\alpha\}$ otvorena okolina od x u (X, \mathcal{T}) homeomorfna s \mathbb{R}

$$\Longrightarrow (X, \mathcal{T})$$
 je lokalno 1 – euklidski.

Neka su $x \neq y \in X$. Promatramo dva slučaja.

- 1° Postoji $\alpha \in A$ td. je $x, y \in \mathbb{R} \times \{\alpha\} \Longrightarrow$ postoje $U, V \in \mathcal{T}_{\alpha}$ td. je $x \in U, y \in V$ i $U \cap V = \emptyset$.
- 2° $x \in \mathbb{R} \times \{\alpha\}$ i $y \in \mathbb{R} \times \{\beta\}$ za $\alpha, \beta \in A$, td. $\alpha \neq \beta \Longrightarrow \mathbb{R} \times \{\alpha\}$ i $\mathbb{R} \times \{\beta\}$ su disjunktne otvorene okoline točaka x i y u (X, \mathcal{T})

$$\Longrightarrow (X, \mathcal{T})$$
 je Hausdorffov.

Konačno, pretpostavimo kako (X, \mathcal{T}) zadovoljava drugi aksiom prebrojivosti \Longrightarrow postoji prebrojiva baza \mathcal{B} topologije \mathcal{T} . Za svaki $\alpha \in A$ imamo

$$(0,\alpha) \in \mathbb{R} \times \{\alpha\} \Longrightarrow \text{postoji } \mathcal{B}_{\alpha} \in \mathcal{B} \text{ td. je } (0,\alpha) \in \mathcal{B}_{\alpha} \subseteq \mathbb{R} \times \{\alpha\}.$$

Imamo funkciju $A \to \mathcal{B}, \alpha \mapsto \mathcal{B}_{\alpha}$ koja je injekcija (DZ). To je nemoguće jer je A neprebrojiv, a \mathcal{B} prebrojiv

 $\Longrightarrow (X, \mathcal{T})$ ne zadovoljava drugi aksiom prebrojivosti.

Definicija 2.9. Neka je X topološki prostor, $n \in \mathbb{N}$ te neka su (U, φ) , (V, ψ) n-karte za X. Definiramo funkciju

$$\delta_{(U,\varphi),(V,\psi)} \colon \varphi(U \cap V) \to \psi(U \cap V)$$
$$\delta_{(U,\varphi),(V,\psi)}(x) = \psi(\varphi^{-1}(x)).$$

Uočimo kako su skupovi $\varphi(U \cap V)$ i $\psi(U \cap V)$ otvoreni u \mathbb{R}^n . Za funkciju $\delta_{(U,\varphi),(V,\psi)}$ kažemo kako je funkcija prijelaza karata (U,φ) i (V,ψ) . Za karte (U,φ) i (V,ψ) kažemo da su glatko povezane ili C^{∞} povezane ako je funkcija $\delta_{(U,\varphi),(V,\psi)}$ glatka, tj. klase C^{∞} .

Napomena 2.10. Uočimo kako su (U, φ) i (V, ψ) glatko povezane u slučaju $U \cap V = \emptyset$.

Funkcija prijelaza (koristimo injektivnost od φ)

Definicija 2.11. Neka je X n-mnogostrukost te neka je Φ n-atlas za X. Ako su (U, φ) i $(V, \psi) \in \Phi$, onda za $\delta_{(U,\varphi),(V,\psi)}$ kažemo da je funkcija prijelaza atlasa Φ . Za Φ kažemo da je gladak n-atlas za X ako je svaka funkcija prijelaza od Φ klase C^{∞} , tj. ako su svake dvije karte iz Φ glatko povezane.

Definicija 2.12. Pretpostavimo kako je Φ gladak n-atlas za X. Kažemo da je Φ maksimalan gladak n-atlas za X ako za svaki gladak n-atlas Φ' za X td. je $\Phi \subseteq \Phi'$ vrijedi $\Phi = \Phi'$.

Teorem 2.13.

Neka je Φ gladak n-atlas za X. Tada postoji jedinstveni maksimalan gladak n-atlas Λ za X td. je $\Phi \subseteq \Lambda$.

Dokaz. Neka je \mathcal{A} familija svih glatkih n-atlasa za X. Na \mathcal{A} definiramo binarnu relaciju \sim s

$$\begin{split} \Psi_1 \sim \Psi_2 &\iff (\forall (U_1, \varphi_1) \in \Psi_1)(\forall (U_2, \varphi_2) \in \Psi_2) \text{ vrijedi } (U_1, \varphi_1) \text{ i } (U_2, \varphi_2) \\ &\text{glatko povezane te } (U_2, \varphi_2) \text{ i } (U_1, \varphi_1) \text{ glatko povezane.} \end{split}$$

Tvrdimo kako je ~ relacija ekvivalencije. Refleksivnost i simetričnost su očite pa prelazimo na tranzitivnost. Pretpostavimo $\Psi_1, \Psi_2, \Psi_3 \in \mathcal{A}$ td. $\Psi_1 \sim \Psi_2$ i $\Psi_2 \sim \Psi_3$. Pokažimo $\Psi_1 \sim \Psi_3$.

Neka je $(U_1, \varphi_1) \in \Psi_1$ i $(U_3, \varphi_3) \in \Psi_3$ te neka je $x_0 \in \varphi_1(U_1 \cap U_3)$. Imamo $\varphi_1^{-1}(x_0) \in X$ pa jer je Ψ_2 atlas postoji $(U_2, \varphi_2) \in \Psi_2$ td. je $\varphi_1^{-1}(x_0) \in U_2$. No, $x_0 \in \varphi_1(U_1 \cap U_3) \Longrightarrow \varphi_1^{-1}(x_0) \in U_1 \cap U_3 \Longrightarrow \varphi_1^{-1}(x_0) \in U_1 \cap U_2 \cap U_3 \Longrightarrow x_0 \in \varphi_1(U_1 \cap U_2 \cap U_3)$. Označimo

$$W \coloneqq \varphi_1(U_1 \cap U_2 \cap U_3).$$

Imamo kako je W otvoren skup u \mathbb{R}^n te za svaki $x \in W$ vrijedi

$$\delta_{(U_1,\varphi_1),(U_3,\varphi_3)}(x) = \varphi_3(\varphi_1^{-1}(x)) = \varphi_3(\varphi_2^{-1}(\varphi_2(\varphi_1^{-1}(x)))) = \delta_{(U_2,\varphi_2),(U_3,\varphi_3)}(\delta_{(U_1,\varphi_1),(U_2,\varphi_2)}(x)).$$

Dakle, $\delta_{(U_1,\varphi_1),(U_3,\varphi_3)}|_W = \delta_{(U_2,\varphi_2),(U_3,\varphi_3)} \circ (\delta_{(U_1,\varphi_1),(U_2,\varphi_2)}|_W)$. Znamo $\Psi_1 \sim \Psi_2 \Longrightarrow \delta_{(U_1,\varphi_1),(U_2,\varphi_2)}$ klase C^{∞} pa je takva i njena restrikcija na W. Isto tako, $\Psi_2 \sim \Psi_3 \Longrightarrow \delta_{(U_2,\varphi_2),(U_3,\varphi_3)}$ klase C^{∞} . Sve skupa, $\delta_{(U_1,\varphi_1),(U_3,\varphi_3)}|_W$ je klase C^{∞} . Po lokalnom svojstvu diferencijabilnosti sada slijedi kako je i $\delta_{(U_1,\varphi_1),(U_3,\varphi_3)}$ klase C^{∞} .

Dakle, (U_1, φ_1) i (U_3, φ_3) su glatko povezane, a analogno slijedi kako su (U_3, φ_3) i (U_1, φ_1) glatko povezane

$$\Longrightarrow \Psi_1 \sim \Psi_3$$
.

Dakle, \sim je relacija ekvivalencije na \mathcal{A} . Kao i obično, prethodni dokaz je puno jasniji kada se nacrta nego isparsira pa zato (na kraju samo faktoriziramo funkciju prijelaza preko plavih skupova)

Sada konstruiramo maksimalan gladak n-atlas za X. Očito je $\Phi \in \mathcal{A}$. Definiramo

$$\Lambda = \bigcup_{\substack{\Psi \in \mathcal{A} \\ \Psi \sim \Phi}} \Psi.$$

Imamo da je Λ familija n-karata za X pa iz $\Phi \subseteq \Lambda$ (i što je Φ n-atlas za X) slijedi kako je Λ n-atlas za X. Nadalje, ako su (U, φ) , $(V, \psi) \in \Lambda$, onda postoje Ψ_1 , $\Psi_2 \in \mathcal{A}$ td.

$$\Psi_1 \sim \Phi$$
i $\Psi_2 \sim \Phi$ te $(U,\varphi) \in \Psi_1$ i $(V,\psi) \in \Psi_2$

 $\Longrightarrow \Psi_1 \sim \Psi_2 \Longrightarrow (U, \varphi), (V, \psi)$ glatko povezani. Dakle, Λ je gladak n-atlas.

Uočimo sljedeće: ako je Φ' gladak n-atlas za X td. je $\Phi\subseteq\Phi'$, onda za svaki $(U,\varphi)\in\Phi$ i svaki $(V,\psi)\in\Phi'$ vrijedi kako su (U,φ) i (V,ψ) glatko povezani i (V,ψ) i (U,φ) glatko povezani. Naime, imamo kako su obe karte u Φ' , a Φ' je gladak n-atlas. Stoga vrijedi $\Phi\sim\Phi'$, odnosno $\Phi'\subseteq\Lambda$. Dakle, vrijedi implikacija

$$(\Phi' \text{ je gladak } n - \text{atlas } \land \Phi \subseteq \Phi') \Longrightarrow \Phi' \subseteq \Lambda.$$
 (1)

Pretpostavimo sada kako je Φ' gladak n-atlas za X td. je $\Lambda \subseteq \Phi'$. Iz (1) onda slijedi $\Phi' \subseteq \Lambda$, tj. $\Phi' = \Lambda$. Dakle, Λ je maksimalan gladak n-atlas za X (i sadrži Φ). Preostaje još pokazati jedinstvenost pa pretpostavimo kako postoji još jedan maksimalan gladak n-atlas za X koji sadrži Φ , nazovimo ga Λ' . Opet, (1) daje $\Lambda' \subseteq \Lambda$ pa iz maksimalnosti od Λ' slijedi $\Lambda' = \Lambda$, što je i trebalo pokazati.

Propozicija 2.14.

Pretpostavimo kako je Φ maksimalan gladak n-atlas za X. Neka je $(U,\varphi)\in \Phi$ te neka je $W\neq\emptyset$ otvoren skup u X td. $W\subseteq U$. Tada je $(W,\varphi|_W)\in\Phi$.

Dokaz. Jasno, $\varphi(W)$ otvoren skup u \mathbb{R}^n te $\varphi|_W \colon W \to \mathbb{R}^n$ smještenje. Dakle $(W, \varphi|_W)$ je n-karta za X. Stoga je

$$\Phi \cup \{(W, \varphi|_W)\}$$

n—atlas za X. Prema tome, dovoljno je pokazati kako je gornji atlas gladak. Neka je $(V, \psi) \in \Phi$ po volji (budući je Φ gladak n—atlas trebamo ispitati samo funkcije prijelaza između ove karte i karte $(W, \varphi|_W)$). Imamo funkciju prijelaza $\delta_{(W, \varphi|_W), (V, \psi)} \colon \varphi(W \cap V) \to \psi(W \cap V)$ te za svaki $x \in \varphi(W \cap V)$ vrijedi

$$\delta_{(W,\varphi|_W),(V,\psi)}(x) = \psi((\varphi|_W)^{-1}(x)) = \psi(\varphi^{-1}(x)) = \delta_{(U,\varphi),(V,\psi)}(x).$$

Dakle,

$$\delta_{(W,\varphi|_W),(V,\psi)} = \delta_{(U,\varphi),(V,\psi)}|_{\varphi(W\cap V)}.$$

Budući je $\delta_{(U,\varphi),(V,\psi)}$ klase C^{∞} (jer su obe karte u Φ), slijedi kako je $\delta_{(W,\varphi|_W),(V,\psi)}$ klase C^{∞} pa stoga imamo kako su $(W,\varphi|_W)$ i (V,ψ) glatko povezane. Analogno dobijemo i obrnuti poredak \Longrightarrow

 $\Longrightarrow \Phi \cup \{(W, \varphi|_W)\}$ je gladak n-atlas za X i time smo gotovi (jer sadrži Φ pa iz maksimalnosti slijedi $(W, \varphi|_W) \in \Phi$).

Možda treba odustati od zapisivanja ovih dokaza i samo crtati krugove

Sada ćemo uvesti diferencijalne mnogostrukosti; ipak, prije toga malo svijesti o tome što radimo.

Maksimalni glatki atlasi predstavljaju dobar okvir za naša razmatranja! Naime, prema propoziciji 2.14, oni se dobro ponašaju prema restrikcijama. S druge strane, ne podigravaju prevelikim zahtjevima, budući se prema teoremu 2.13 bilo koji gladak atlas nalazi u jedinstvenom maksimalnom glatkom. Stoga ćemo uzeti maksimalne glatke atlase kao ambijent za našu teoriju (, a prethodna dva rezultata onda možemo uzeti kao pripremne). U svjetlu toga:

Definicija 2.15. Neka je $n \in \mathbb{N}$, X n-mnogostrukost te Φ maksimalan gladak n-atlas za X. Tada za (X,Φ) kažemo kako je **diferencijalna** n-mnogostrukost. Koristimo još i nazive diferencijabilna n-mnogostrukost i glatka n-mnogostrukost.

Napomena 2.16. Neka je Φ gladak n-atlas za X. Tada za sve $(U,\varphi),(V,\psi) \in \Phi$ vrijedi kako je funkcija prijelaza $\delta_{(U,\varphi),(V,\psi)} \colon \varphi(U \cap V) \to \psi(U \cap V)$ difeomorfizam (koristit ćemo u narednom primjeru).

Primjer 2.17.

Neka je S ploha u (\mathbb{R}^3) . Neka je \mathcal{E} euklidska topologija na S. Znamo kako je (S,\mathcal{E}) 2-mnogostrukost. Ako je $\varphi \colon U \to \mathbb{R}^3$ lokalna parametrizacija od S, neka je $\varphi^{-1} \colon \varphi(U) \to \mathbb{R}^2$ inverz od φ . Neka je

$$\Phi = \left\{ (\varphi(U), \varphi^{-1}) \, \middle| \, \varphi \colon U \to \mathbb{R}^3 \text{ lokalna parametrizacija od } S \right\}.$$

Tvrdimo kako je $((S, \mathcal{E}), \Phi)$ diferencijalna 2-mnogostrukost (tj. kako je Φ maksimalan gladak 2-atlas za (S, \mathcal{E})). Naravno, nacrtati ...

Jasno, ako je $\varphi: U \to \mathbb{R}^3$ lokalna parametrizacija od S, onda je $(\varphi(U), \varphi^{-1})$ 2-karta za (S, \mathcal{E}) . Stoga je Φ je 2 – atlas za (S, \mathcal{E}) . Dokažimo sada kako je Φ gladak 2-atlas za (S, \mathcal{E}) .

Neka su $\varphi \colon U \to \mathbb{R}^3$ te $\psi \colon V \to \mathbb{R}^3$ lokalne parametrizacije od S. Želimo dokazati kako su 2-karte $(\varphi(U), \varphi^{-1})$ i $(\psi(V), \psi^{-1})$ glatko povezane, tj. da je funkcija

$$\delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})} \colon \varphi^{-1}(\varphi(U) \cap \psi(V)) \to \psi^{-1}(\varphi(U) \cap \psi(V))$$

klase C^{∞} . Za svaki $x \in \varphi^{-1}(\varphi(U) \cap \psi(V))$ vrijedi

$$\delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})}(x) = \psi^{-1}(\varphi(x))$$

pa vidimo kako je $\delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})}$ upravo funkcija iz korolara 1.12. Posebno je klase C^{∞} pa zaključujemo kako je Φ gladak 2—atlas za (S,\mathcal{E}) . Dokažimo još kako je Φ maksimalan gladak 2—atlas za (S,\mathcal{E}) .

Pretpostavimo Ψ gladak 2-atlas za (S,\mathcal{E}) td. $\Phi \subseteq \Psi$. Uzmimo $(V,\psi) \in \Psi$ po volji; pokazat ćemo $(V,\psi) \in \Phi$. Jasno, $\psi(V)$ otvoren u \mathbb{R}^2 i $\psi^{-1} \colon \psi(V) \to V$ je homeomorfizam, dakle ψ^{-1} kao funkcija $\psi(V) \to \mathbb{R}^3$ je smještenje čija je slika otvoren skup u S. Dokažimo još da je $\psi^{-1} \colon \psi(V) \to \mathbb{R}^3$ glatka funkcija čiji je diferencijal u svakoj točki injektivan. Neka je $x \in \psi(V)$. Prvo imamo

$$\psi^{-1}(x) \in V \Longrightarrow \psi^{-1}(x) \in S \Longrightarrow \text{ postoji lokalna parametrizacija } \varphi \colon U \to \mathbb{R}^3 \text{ od } S \text{ oko } \psi^{-1}(x),$$

a zatim

$$(\varphi(U),\varphi^{-1})\in\Phi\overset{\Phi\subseteq\Psi}{\Longrightarrow}(\varphi(U),\varphi^{-1})\in\Psi\overset{\Psi}{\Longrightarrow}(V,\psi),(\varphi(U),\varphi^{-1})\text{ glatko povezane }.$$

Stoga je

$$\delta_{(V,\psi),(\varphi(U),\varphi^{-1})} \colon \psi(V \cap \varphi(U)) \to \varphi^{-1}(V \cap \varphi(U))$$
$$\delta_{(V,\psi),(\varphi(U),\varphi^{-1})}(z) = \varphi^{-1}(\psi^{-1}(z))$$

klase C^{∞} . Uočimo kako je $\psi(V \cap \varphi(U))$ otvorena okolina od x u $\psi(V)$ (pa i u \mathbb{R}^2). Imamo kako je

$$\varphi \circ \delta \colon \psi(V \cap \varphi(U)) \to \mathbb{R}^3$$

klase C^{∞} , a to je funkcija

$$\psi(V \cap \varphi(U)) \ni z \mapsto \varphi(\varphi^{-1}(\psi^{-1}(z))) = \psi^{-1}(z).$$

Dakle, $\psi^{-1}\mid_{\psi(V\cap\varphi(U))}$ je klase C^{∞} . Po lokalnom svojstvu diferencijabilnosti slijedi kako je $\psi^{-1}\colon \psi(V)\to \mathbb{R}^3$ klase C^{∞} . Iz $\psi^{-1}|_{\psi(V\cap\varphi(U))}=\varphi\circ\delta$ slijedi

$$D(\psi^{-1})(x) = D(\varphi)(\delta(x)) \circ D(\delta)(x).$$

Prvi diferencijal je injekcija jer je lokalna parametrizacija, a drugi je izomorfizam prema napomeni 2.16. Dakle, $D(\psi^{-1})(x)$ je injekcija, što kompletira dokaz kako je $\psi^{-1} \colon \psi(V) \to \mathbb{R}^3$ lokalna parametrizacija od S

$$\implies (\psi^{-1}(\psi(V)), (\psi^{-1})^{-1}) \in \Phi \implies (V, \psi) \in \Phi.$$

Kako je (V, ψ) bio proizvoljan, slijedi $\Psi \subseteq \Phi$, odnosno $\Psi = \Phi$. Stoga je Φ maksimalan gladak 2-atlas za (S, \mathcal{E}) i time smo gotovi.

Definicija 2.18. Neka je (X, Φ) diferencijalna n-mnogostrukost te neka je (Y, Ψ) diferencijalna m-mnogostrukost. Neka je $f: X \to Y$ neprekidna funkcija. Kažemo da je f glatka funkcija ili funkcija klase C^{∞} (s obzirom na (X, Φ) , (Y, Ψ)) ako za sve $(U, \varphi) \in \Phi$ i $(V, \psi) \in \Psi$ takve da je $f(U) \subseteq V$ vrijedi da je funkcija

$$\varphi(U) \to \mathbb{R}^m$$
$$x \mapsto \psi(f(\varphi^{-1}(x)))$$

klase C^{∞} (to je funkcija $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}^m$).

Propozicija 2.19.

Neka je (X, Φ) diferencijalna n-mnogostrukost, (Y, Ψ) diferencijalna m-mnogostrukost te neka je $f: X \to Y$ funkcija. Tada je f glatka ako i samo ako vrijedi izreka

$$(1) \begin{cases} \text{za sve } x \in X \text{ postoje } (U, \varphi \in \Phi) \text{ i } (V, \psi) \in \Psi \text{ td.} \\ x \in U, \ f(U) \subseteq V \text{ te } \psi \circ f \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}^m \text{ klase } C^{\infty}. \end{cases}$$

Dokaz. Dokazujemo dva smjera.

Pretpostavimo da je f glatka. Neka je $x \in X$. Imamo $f(x) \in Y \Longrightarrow \exists (V, \psi) \in \Psi$ td. je $f(x) \in V$. Slično, postoji $(U, \varphi) \in \Phi$ td. je $x \in U$. Budući je f neprekidna, imamo da je $f^{-1}(V)$ otvoren skup u X. Definiramo

$$U' = U \cap f^{-1}(V).$$

Imamo da je U' otvorena okolina od x u X. Očito je $U' \subseteq U$ pa iz propozicije 2.14 slijedi

$$(U', \varphi|_{U'}) \in \Phi.$$

Također vrijedi $f(U') \subseteq f(f^{-1}(V)) \subseteq V$. Zaključujemo $x \in U', (U', \varphi|_{U'}) \in \Phi, (V, \psi) \in \Psi, f(U') \subseteq V$ te je $\psi \circ f \circ (\varphi|_{U'})^{-1} \colon \varphi(U') \to \mathbb{R}^m$ klase C^{∞} jer je f glatka.

Obratno, pretpostavimo kako vrijedi (1). Uzmimo $x \in X$. Sada (1) daje $(U, \varphi) \in \Phi$, $(V, \psi) \in \Psi$ td. $x \in U$, $f(U) \subseteq V$ i $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}^m$ klase C^{∞} . Posebno, $\psi \circ f \circ \varphi^{-1}$ je neprekidna kao funkcija $\varphi(U) \to \psi(V)$. Budući je $\varphi : U \to \varphi(U)$ neprekidna slijedi

$$(\psi \circ f \circ \varphi^{-1}) \circ \varphi \colon U \to \psi(V)$$

neprekidna, odnosno $\psi \circ f : U \to \psi(V)$ neprekidna. Sada, jer je $\psi^{-1} : \psi(V) \to V$ neprekidna, slijedi

$$\psi^{-1} \circ (\psi \circ f) \colon U \to V$$

neprekidna, odnosno $f|_U: U \to Y$ neprekidna. Pokazali smo dakle, kako za svaki $x \in X$ postoji otvorena okolina U od x u X td. je funkcija $f|_U: U \to Y$ neprekidna. Iz ovoga lako zaključujemo (DZ) kako je f neprekidna.

Neka su sada $(U_0, \varphi_0) \in \Phi$, $(V_0, \psi_0) \in \Psi$ td. $f(U_0) \subseteq V_0$ po volji. Želimo dokazati kako je funkcija

$$\psi_0 \circ f \circ \varphi_0^{-1} \colon \varphi_0(U_0) \to \mathbb{R}^m$$

klase C^{∞} . Neka je zato $z \in \varphi_0(U_0)$. Imamo $\varphi_0^{-1}(z) \in U_0 \Longrightarrow \varphi_0^{-1}(z) \in X \Longrightarrow$ postoje $(U, \varphi) \in \Phi$, $(V, \psi) \in \Psi$ td. je $\varphi_0^{-1}(z) \in U$, $f(U) \subseteq V$ te da je $\psi \circ f \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}^m$ klase C^{∞} . Imamo $\varphi_0^{-1}(z) \in U_0$ i $\varphi_0^{-1}(z) \in U \Longrightarrow \Longrightarrow \varphi_0^{-1}(z) \in U_0 \cap U \Longrightarrow z \in \varphi_0(U_0 \cap U)$. Nadalje, iz $f(U_0) \subseteq V_0$ i $f(U) \subseteq V$ slijedi $f(U_0 \cap U) \subseteq V_0 \cap V$. Označimo

$$W := \varphi_0(U_0 \cap U).$$

Ideja je dekomponirati funkciju preko plavih skupova

Imamo kako je W otvorena okolina od z u \mathbb{R}^n , a za svaki $y \in W$ vrijedi

$$(\psi_0 \circ f \circ \varphi_0^{-1})(y) = \psi_0(f(\varphi_0^{-1}(y))) =$$

$$= \psi_0(\psi^{-1}(\psi(f(\varphi^{-1}(\varphi(\varphi_0^{-1}(y))))))) =$$

$$= \delta_{(V,\psi),(V_0,\psi_0)}((\psi \circ f \circ \varphi^{-1})(\delta_{(U_0,\varphi_0),(U,\varphi)}(y))).$$

Stoga je

$$(\psi_0 \circ f \circ \varphi_0^{-1})|_W = \delta_{(V,\psi),(V_0,\psi_0)} \circ (\psi \circ f \circ \varphi^{-1}) \circ \delta_{(U_0,\varphi_0),(U,\varphi)}.$$

Uočimo sada kako su sve tri funkcije iz gornje dekompozicije klase C^{∞} , redom jer su $(V, \psi), (V_0, \psi_0) \in \Psi$, po pretpostavci te jer su $(U_0, \varphi_0), (U, \varphi) \in \Phi$

$$\Longrightarrow (\psi_0 \circ f \circ \varphi_0^{-1})|_W$$
 je klase C^{∞} .

Iz lokalnog svojstva diferencijabilnosti slijedi kako je $\psi_0 \circ f \circ \varphi_0^{-1} \colon \varphi_0(U_0) \to \mathbb{R}^m$ klase C^{∞} .

 ${
m Primjer} \,\, 2.20$

Neka je $n \in \mathbb{N}$ te neka je $U \neq \emptyset$ otvoren skup u \mathbb{R}^n . Tada je (U, id_U) n-karta za U (pri čemu U gledamo kao topološki prostor s euklidskom topologijom). Lako vidimo kako je U

n—mnogostrukost (DZ). Stoga je $\{(U, id_U)\}$ gladak n—atlas za U pa prema teoremu 2.13 postoji jedinstven maksimalan gladak n—atlas za U koji sadrži (U, id_U) .

S druge strane, definirajmo Φ kao familiju svih n-karata (V, ψ) za U, pri čemu je $\psi \colon V \to \psi(V)$ difeomorfizam (klase C^{∞}). Lako vidimo kako je Φ gladak n-atlas za U te $(U, id_U) \in \Phi$. Tvrdimo kako je i maksimalan gladak pa pretpostavimo kako je Φ' gladak n-atlas za U td. vrijedi $\Phi \subseteq \Phi'$. Neka je $(V, \psi) \in \Phi'$. Imamo

$$(U, id_U) \in \Phi \Longrightarrow (U, id_U) \in \Phi' \stackrel{\Phi' \text{ gladak}}{\Longrightarrow}$$

 $\Longrightarrow (U, id_U) \text{ i } (V, \psi) \text{ glatko povezane te } (V, \psi) \text{ i } (U, id_U) \text{ glatko povezane.}$

Stoga su $\delta_{(U,id_U),(V,\psi)}$ i $\delta_{(V,\psi),(U,id_U)}$ klase C^{∞} . Uočimo kako je funkcija prijelaza $\delta_{(U,id_U),(V,\psi)}: id_U(U\cap V) \to \psi(U\cap V)$ zapravo funkcija

$$\delta_{(U,id_U),(V,\psi)} \colon V \to \psi(V)$$

$$\delta_{(U,id_U),(V,\psi)}(x) = \psi(x),$$

tj. funkcija $\psi \colon V \to \psi(V)$. Dakle, $\psi \colon V \to \psi(V)$ je klase C^{∞} . Nadalje, funkcija prijelaza $\delta_{(V,\psi),(U,id_U)} \colon \psi(U \cap V) \to id_U(U \cap V)$ je zapravo funkcija

$$\delta_{(V,\psi),(U,id_U)} \colon \psi(V) \to V$$

$$\delta_{(V,\psi),(U,id_U)}(x) = \psi^{-1}(x).$$

tj. funkcija $\psi^{-1}: \psi(V) \to V$. Stoga je i $\psi^{-1}: \psi(V) \to V$ klase C^{∞} . Dakle, $\psi: V \to \psi(V)$ je difeomorfizam, što po definiciji povlači $(V, \psi) \in \Phi$. Time smo pokazali $\Phi = \Phi'$, tj. Φ je maksimalan gladak n-atlas za U. Prema tome, Φ je onaj jedinstveni maksimalan gladak n-atlas za U koji sadrži (U, id_U) .

Definicija 2.21. Za Φ iz gornjeg primjera kažemo kako je kanonski n-atlas za U.

Primier 2.22.

Neka je $n \in \mathbb{N}$ te neka je $h : \mathbb{R}^n \to \mathbb{R}^n$ homeomorfizam. Tada je $\{(\mathbb{R}^n, h)\}$ gladak n-atlas za \mathbb{R}^n pa prema teoremu 2.13 postoji jedinstven maksimalan gladak n-atlas Λ za \mathbb{R}^n td. $(\mathbb{R}^n, h) \in \Lambda$. Tvrdimo

$$\Lambda$$
kanonski $n-$ atlas za $\mathbb{R}^n \Longleftrightarrow h$ difeomorfizam.

Ako je Λ kanonski n-atlas za \mathbb{R}^n , onda iz $(\mathbb{R}^n,h)\in \Lambda$ i definicije kanonskog atlasa imamo kako je $h\colon \mathbb{R}^n \to \mathbb{R}^n$ difeomorfizam. Obratno, pretpostavimo kako je h difeomorfizam. Neka je Φ kanonski n-atlas za \mathbb{R}^n . Tada je $(\mathbb{R}^n,h)\in \Phi$, a znamo kako je Φ maksimalan gladak n-atlas za \mathbb{R}^n . Iz jedinstvenosti od Λ slijedi $\Phi=\Lambda$, tj. Λ je kanonski n-atlas za \mathbb{R}^n .

Primjer 2.23.

Neka je $f : \mathbb{R} \to \mathbb{R}$ funkcija definirana s $f(x) = x^3$. Tada je f homeomorfizam, ali f nije difeomorfizam jer $f^{-1} : \mathbb{R} \to \mathbb{R}$ nije klase C^1 (nije derivabilna u 0). Neka je $n \in \mathbb{N}$ te neka je $h : \mathbb{R}^n \to \mathbb{R}^n$ funkcija definirana s

$$h(x_1, \ldots, x_n) = (x_1, \ldots, x_{n-1}, f(x_n)).$$

Za funkciju $g \colon \mathbb{R}^n \to \mathbb{R}^n$ definiranu s

$$g(x_1, \ldots, x_n) = (x_1, \ldots, x_{n-1}, f^{-1}(x_n))$$

vrijedi kako je $g \circ h = id_{\mathbb{R}^n}$ i $f \circ g = id_{\mathbb{R}^n}$, a očito su h, g neprekidne. Stoga je h homeomorfizam, ali ne i difeomorfizam jer g nije klase C^1 . Neka je Λ maksimalan gladak n-atlas za \mathbb{R}^n td. je $(\mathbb{R}^n, h) \in \Lambda$. Prema prethodnom primjeru Λ nije kanonski n-atlas za \mathbb{R}^n .

Definicija 2.24. Neka su (X, Φ) i (Y, Ψ) diferencijalne mnogostrukosti te neka je $f: X \to Y$ funkcija. Kažemo kako je f difeomorfizam mnogostrukosti (X, Φ) i (Y, Ψ) ako je f glatka funkcija, f bijekcija i $f^{-1}: Y \to X$ glatka funkcija.

Propozicija 2.25.

Neka je (X, Φ) diferencijalna n-mnogostrukost, Y topološki prostor te neka je $f \colon X \to Y$ homeomorfizam. Neka je

$$\Psi = \left\{ (f(U), \varphi \circ (f^{-1})|_{f(U)}) \, \middle| \, (U, \varphi) \in \Phi \right\}.$$

Tada je (Y, Ψ) diferencijalna n-mnogostrukost te je f difeomorfizam mnogostrukosti (X, Φ) i (Y, Ψ) .

Dokaz. Uočimo kako je svaki element od Ψ n-karta za Y. Nadalje, imamo kako je Ψ n-atlas za Y. Iz ovoga odmah imamo kako je Y lokalno n-euklidski. Iz činjenice da je X Hausdorffov te da zadovoljava drugi aksiom prebrojivosti te iz činjenice da je f homeomorfizam lako slijedi da je Y Hausdorffov te da zadovoljava drugi aksiom prebrojivosti

$$\Longrightarrow Y$$
 je n – mnogostrukost.

Sada se fokusiramo na glatkoću atlasa iz iskaza. Neka su zato $(U_1, \varphi_1), (U_2, \varphi_2) \in \Phi$. Slika

Vrijedi

$$\delta_{(f(U_1),\varphi_1\circ(f^{-1})|_{f(U_1)}),(f(U_2),\varphi_2\circ(f^{-1})|_{f(U_2)})} = \delta_{(U_1,\varphi_1),(U_2,\varphi_2)}. \quad (1)$$

Funkcija s desne strane znaka jednakosti je klase C^{∞} jer su njene dvije karte iz $\Phi \Longrightarrow \Psi$ je gladak n-atlas za Y. Za maksimalnost, pretpostavimo kako je Ψ' gladak n-atlas za Y td. je $\Psi \subseteq \Psi'$. Neka je $(V, \psi) \in \Psi'$. Definiramo

$$U = f^{-1}(V)$$
 i $\varphi = \psi \circ f|_U$.

Tada je (U,φ) $n{\rm -karta}$ za Xte je

$$(f(U), \varphi \circ (f^{-1})|_{f(U)}) = (V, \psi).$$
 (2)

Po definiciji od $\Psi,$ dovoljno je dokazati $(U,\varphi)\in\Phi.$ Neka je $(U_1,\varphi_1)\in\Phi$ po volji. Karte

$$(f(U_1), \varphi_1 \circ (f^{-1})|_{f(U_1)}) \text{ i } (f(U), \varphi \circ (f^{-1})|_{f(U)})$$

su glatko povezane jer su elementi od Ψ' . Uočimo kako (1) vrijedi (sama jednakost) za bilo koje dvije karte na X; stoga su (U_1, φ_1) i (U, φ) glatko povezane. Isto tako, (U, φ) i (U_1, φ_1) su glatko povezane. Kombinirajući to dvoje izlazi kako je

$$\Phi \cup \{(U,\varphi)\}$$

gladak n-atlas za X. Iz maksimalnosti od Φ slijedi $\Phi = \Phi \cup \{(U, \varphi)\} \Longrightarrow (U, \varphi) \in \Phi$ pa (2) daje $(V, \psi) \in \Psi$.

Prema tome, $\Psi' = \Psi \Longrightarrow \Psi$ je maksimalan gladak n-atlas za Y

 $\Longrightarrow (Y, \Psi)$ je diferencijalna n-mnogostrukost.

Koristeći propoziciju 2.19 lako vidimo kako je f difeomorfizam mnogostrukosti (X, Φ) i (Y, Ψ) .

Propozicija 2.26.

Neka je (X, Φ) diferencijalna n-mnogostrukost. Neka je $V \neq \emptyset$ otvoren skup u X. Definiramo

$$\Psi = \{(U, \varphi) \in \Phi \,|\, U \subseteq V\} \,.$$

Tada je (V, Ψ) diferencijalna n-mnogostrukost.

Dokaz. Prvo, ako $(U, \varphi) \in \Phi$ td. $U \subseteq V$, onda je (U, φ) n−karta za V. Neka je $x \in V \Longrightarrow x \in X \Longrightarrow \exists (U, \varphi) \in \Phi$ td. $x \in U \Longrightarrow x \in U \cap V$. Dakle, $U \cap V$ je neprazan otvoren skup u X i $U \cap V \subseteq U$. Propozicija 2.14 daje

$$(U \cap V, \varphi|_{U \cap V}) \in \Phi.$$

Očito je $(U \cap V, \varphi|_{U \cap V}) \in \Psi$. Zaključak: Ψ je n-atlas za V. Posebno je V lokalno n-euklidski; kao potprostor Hausdorffovog prostora i sam V je Hausdorffov, a isto tako imamo kako V zadovoljava drugi aksiom prebrojivosti

$$\Longrightarrow V$$
 je n – mnogostrukost.

Očito je $\Psi \subseteq \Phi$ pa odmah dobivamo kako je Ψ gladak n-atlas za V. Želimo još pokazati maksimalnost pa uzmimo Ψ' gladak n-atlas za V td. je $\Psi \subseteq \Psi'$. Neka je $(W,\psi) \in \Psi'$ te neka je $(U,\varphi) \in \Phi$. Imamo funkciju prijelaza

$$\delta_{(U,\varphi),(W,\psi)} \colon \varphi(U \cap W) \to \psi(U \cap W)$$
$$\delta_{(U,\varphi),(W,\psi)}(x) = \psi(\varphi^{-1}(x)).$$

Znamo kako je $(U \cap V, \varphi \mid_{U \cap V}) \in \Psi$ pa je $(U \cap V, \varphi \mid_{U \cap V}) \in \Psi'$ te je funkcija

$$\delta_{(U\cap V,\varphi|_{U\cap V}),(W,\psi)} \colon \varphi(U\cap V\cap W) \to \psi(U\cap V\cap W)$$
$$\delta_{(U\cap V,\varphi|_{U\cap V}),(W,\psi)}(x) = \psi(\varphi^{-1}(x))$$

klase C^{∞} . No $U \cap V \cap W = U \cap W$, stoga je $\delta_{(U \cap V, \varphi|_{U \cap V}), (W, \psi)} = \delta_{(U, \varphi), (W, \psi)} \Longrightarrow \delta_{(U, \varphi), (W, \psi)}$ klase $C^{\infty} \Longrightarrow (U, \varphi), (W, \psi)$ glatko povezane. Analogno vidimo i kako su $(W, \psi), (U, \varphi)$ glatko povezane.

Slijedi kako je

$$\Phi \cup \{(W, \psi)\}$$

gladak n-atlas za X. Iz maksimalnosti Φ slijedi $(W, \psi) \in \Phi \stackrel{W \subseteq V}{\Longrightarrow} (W, \psi) \in \Psi$. Dakle, Ψ je maksimalan gladak n-atlas za V

 $\Longrightarrow (V, \Psi)$ je diferencijalna n – mnogostrukost.

Propozicija 2.27.

Neka je (X, Φ) diferencijalna n-mnogostrukost, (Y, Ψ) diferencijalna m-mnogostrukost te (Z, Λ) diferencijalna k-mnogostrukost. Pretpostavimo kako su $f: X \to Y$ i $g: Y \to Z$ glatke funkcije. Tada je $g \circ f: X \to Z$ glatka funkcija.

Dokaz. Neka je $x \in X$. Prema propoziciji 2.19 postoje $(V, \psi) \in \Psi$ i $(W, \lambda) \in \Lambda$ td. je $f(x) \in V$, $g(V) \subseteq W$ te td. je

$$\lambda \circ g \circ \psi^{-1} \colon \psi(V) \to \mathbb{R}^k \quad (1)$$

klase C^{∞} . Budući je f neprekidna, postoji otvorena okolina U' od x u X td. je $f(U') \subseteq V$. Budući je Φ atlas za X, postoji $(U,\varphi) \in \Phi$ td. je $x \in U$. Možemo pretpostaviti da je $U \subseteq U'$ (inače, umjesto (U,φ) uzmemo kartu $(U \cap U',\varphi \mid_{U \cap U'})$, a to možemo zbog propozicije 2.14). Imamo $f(U) \subseteq V$ pa iz činjenice da je f glatka funkcija slijedi kako je

$$\psi \circ f \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}^m \quad (2)$$

klase C^{∞} . Vrijedi kako je $(g \circ f)(U) \subseteq W$. Kompozicija funkcija (1) i (2) je klase C^{∞} , a ta kompozicija je zapravo jednaka funkciji

$$\lambda \circ (g \circ f) \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}^k.$$

Iz propozicije 2.19 slijedi kako je $g \circ f : X \to Z$ glatka funkcija.

Napomena 2.28. Neka su $n, m \in \mathbb{N}$, neka je U neprazan otvoren skup u \mathbb{R}^n te neka je V neprazan otvoren skup u \mathbb{R}^m . Neka je Φ kanonski n-atlas za U te neka je Ψ kanonski m-atlas za V. Pretpostavimo kako je $f \colon U \to V$. Tada vrijedi

f klase $C^{\infty} \iff f$ glatka s obzirom na mnogostrukosti (U, Φ) i (V, Ψ) .

Napomena 2.29. Neka je $n \in \mathbb{N}$, neka je U otvoren neprazan skup u \mathbb{R}^n te neka je Φ kanonski n-atlas za U. Nadalje neka je S ploha (u \mathbb{R}^3) te neka je

$$\Psi = \{ (\psi(V), \psi^{-1}) \mid \psi \colon V \to \mathbb{R}^3 \text{ lokalna parametrizacija od } S \}.$$

Znamo kako je (S, Ψ) diferencijalna 2-mnogostrukost. Neka je $f: U \to S$. Tada vrijedi

fklase $C^{\infty}($ kao funkcija
 $U\to\mathbb{R}^3)\Longleftrightarrow f$ glatka s obzirom na mnogostrukosti
 (U,Φ) i $(S,\Psi).$

U prvoj napomeni je nužnost (desne izreke) jasna, dok za dovoljnost treba iskoristiti lokalno svojstvo diferencijabilnosti. Dovoljnost u drugoj napomeni je analogna, dok za nužnost ne možemo koristiti ψ^{-1} klase C^{∞} već zaobilazimo pomoću teorema 1.9.

3 Tangencijalni prostori

Konstrukcija će biti donekle komplicirana, ali zasniva se na klasičnim topološkim objektima, a svakako ćemo ih obraditi i na općoj topologiji.

Definicija 3.1. Neka su X,Y,Z topološki prostori. Neka je $\mathcal B$ familija podskupova od $X\times Y\times Z$ definirana s

$$\mathcal{B} = \{U \times V \times W \mid U \text{ otvoren } u \text{ } X, V \text{ otvoren } u \text{ } Y, W \text{ otvoren } u \text{ } Z\}.$$

Lako se vidi kako je

$$\bigcup \mathcal{B} = X \times Y \times Z$$

te kako je $B_1 \cap B_2 \in \mathcal{B}$ za sve B_1 , $B_2 \in \mathcal{B}$. Stoga postoji jedinstvena topologija na $X \times Y \times Z$ kojoj je \mathcal{B} baza i zovemo ju produktna topologija na $X \times Y \times Z$, a za $X \times Y \times Z$ s tom topologijom kažemo kako je produkt topoloških prostora X, Y i Z te ga označavamo s $X \times Y \times Z$.

Lako se vidi kako su projekcije $p_1: X \times Y \times Z \to X$, $p_2: X \times Y \times Z \to Y$ i $p_3: X \times Y \times Z \to Z$ na prvu, drugu, odnosno treću koordinatu neprekidne te kako je funkcija $f: A \to X \times Y \times Z$ neprekidna (gdje je A neki topološki prostor) ako i samo ako su sve $p_i \circ f$ neprekidne funkcije, i = 1, 2, 3.

Napomena 3.2. Neka je za i = 1, 2, 3 \mathcal{B}_i baza topologije X, Y, Z redom. Tada je

$$\{U \times V \times W \mid U \in \mathcal{B}_1, V \in \mathcal{B}_2, W \in \mathcal{B}_3\}$$

baza produktne topologije na $X \times Y \times Z$.

Definicija 3.3. Neka je $(X_{\alpha})_{\alpha \in A}$ indeksirana familija topoloških prostora. Za svaki $\alpha \in A$ na $X_{\alpha} \times \{\alpha\}$ promatramo topologiju definiranu s

$$\{U \times \{\alpha\} \mid U \text{ otvoren } u X_{\alpha}\}$$

(lako se vidi kako je zaista riječ o topologiji na $X_{\alpha} \times \{\alpha\}$). Sada na $\bigcup_{\alpha \in A} (X_{\alpha} \times \{\alpha\})$ promotrimo topologiji \mathcal{T} definiranu s

$$\mathcal{T} = \left\{ U \subseteq \bigcup_{\alpha \in A} (X_{\alpha} \times \{\alpha\}) \middle| U \cap (X_{\alpha} \times \{\alpha\}) \text{ otvoren } u \ X_{\alpha} \times \{\alpha\} \right\}.$$

Za topološki prostor $(\bigcup_{\alpha \in A} (X_{\alpha} \times \{\alpha\}), \mathcal{T})$ kažemo kako je disjunktna unija indeksirane familije topoloških prostora $(X_{\alpha})_{\alpha \in A}$ te ga označavamo s

$$\bigsqcup_{\alpha \in A} X_{\alpha}.$$

Uočimo kako je skup $V\subseteq \bigsqcup_{\alpha\in A} X_\alpha$ otvoren ako i samo ako vrijedi

$$V = \bigcup_{\alpha \in A} (U_{\alpha} \times \{\alpha\}),$$

za neku indeskiranu familiju skupova $(U_{\alpha})_{\alpha \in A}$, gdje je, za svaki $\alpha \in A$, U_{α} otvoren u X_{α} .

Napomena 3.4. Neka je $(X_{\alpha})_{\alpha \in A}$ indeksirana familija topoloških prostora. Pretpostavimo kako je za svaki $\alpha \in A$, \mathcal{B}_{α} baza topologije od X_{α} . Tada je

$$\bigcup_{\alpha \in A} \{ B \times \{ \alpha \} \mid B \in \mathcal{B}_{\alpha} \}$$

baza topologije od $\bigsqcup_{\alpha \in A} X_{\alpha}$ (DZ).

Na sljedeću napomenu ćemo se dosta pozivati tokom ovog poglavlja.

Napomena 3.5. Neka je (X, Φ) diferencijalna n-mnogostrukost. Neka je

$$F = \{(x, (U, \varphi), v) \in X \times \Phi \times \mathbb{R}^n \mid x \in U\}.$$

Očito je $F \subseteq X \times \Phi \times \mathbb{R}^n$. Promotrimo $X \times \Phi \times \mathbb{R}^n$ kao produkt topoloških prostora, pri čemu na Φ uzimamo diskretnu topologiju. Promotrimo sada F s relativnom topologijom u odnosu na topologiju od $X \times \Phi \times \mathbb{R}^n$. Tvrdimo kako je F homeomorfan s

$$\bigsqcup_{(U,\varphi)\in\Phi} (U\times\mathbb{R}^n)$$

(ovdje se radi o disjunktnoj uniji indeksirane familije topoloških prostora, gdje je indeksni skup Φ , a svakom (U,φ) se pridružuje topološki prostor $U\times\mathbb{R}^n$, dakle $\bigsqcup_{(U,\varphi)\in\Phi}U\times\mathbb{R}^n=\bigcup_{(U,\varphi)\in\Phi}U\times\mathbb{R}^n\times\{(U,\varphi)\}$).

Promatramo funkciju $f\colon F\to \bigsqcup_{(U,\varphi)\in\Phi}(U\times\mathbb{R}^n)$ definiranu s

$$f(x, (U, \varphi), v) = (x, v, (U, \varphi)).$$

Očito je f bijekcija. Imamo kako je

$$\{V \times \{(U,\varphi)\} \times W \mid V \text{ otvoren u } X,W \text{ otvoren u } \mathbb{R}^n, (U,\varphi) \in \Phi\}$$

baza topologije od $X \times \Phi \times \mathbb{R}^n$. Općenito vrijedi: ako je A_2 potprostor topološkog prostora A_1 te \mathcal{B} baza topologije od A_1 , onda je $\{B \cap A_2 \mid B \in \mathcal{B}\}$ baza topologije od A_2 . Uočimo da za V otvoren u X, W otvoren u \mathbb{R}^n i $(U, \varphi) \in \Phi$ vrijedi

$$(V \times \{(U, \varphi)\} \times W) \cap F = (V \cap U) \times \{(U, \varphi)\} \times W.$$

Stoga je

$$\mathcal{B}' = \{V' \times \{(U,\varphi)\} \times W \mid V' \text{ otvoren u } X, W \text{ otvoren u } \mathbb{R}^n, (U,\varphi) \in \Phi, V' \subseteq U\}$$

baza topologije od F. Za takve V', W i (U,φ) imamo

$$f(V' \times \{(U, \varphi)\} \times W) = V' \times W \times \{(U, \varphi)\}, \quad (1)$$

a to je otvoren skup u $U \times \mathbb{R}^n \times \{(U,\varphi)\}$ pa je otvoren i u $\bigsqcup_{(U,\varphi)\in\Phi}(U\times\mathbb{R}^n)$. Prema tome, f je otvoreno preslikavanje. Preostaje pokazati kako je f neprekidna. Ako je $(U,\varphi)\in\Phi$, onda je

$$\{V' \times W \mid V' \text{ otvoren u } U, W \text{ otvoren u } \mathbb{R}^n\}$$

baza topologije od $U \times \mathbb{R}^n$ pa je prema napomeni 3.4

$$\bigcup_{(U,\varphi)\in\Phi}\{(V'\times W)\times\{(U,\varphi)\}\mid V'\text{ otvoren u }U,W\text{ otvoren u }\mathbb{R}^n\}$$

baza topologije od $\bigsqcup_{(U,\varphi)\in\Phi}(U\times\mathbb{R}^n)$. Iz (1) slijedi kako je praslika pri f svakog elementa te baze element familije \mathcal{B}' , dakle otvoren skup u F pa zaključujemo kako je f neprekidna funkcija. Stoga je f homeomorfizam.

Definicija 3.6. Neka je (X, \mathcal{T}) topološki prostor te neka je \mathcal{F} particija skupa X. Neka je $q: X \to \mathcal{F}$ preslikavanje definirano tako da je, za $x \in X$, q(x) onaj (jedinstveni) element od \mathcal{F} koji sadrži x. Za q kažemo kako je kvocijentno preslikavanje od \mathcal{F} . Uočimo kako je q surjektivno preslikavanje. Neka je nadalje

$$\mathcal{T}_{\mathcal{F}} = \left\{ \mathcal{U} \subseteq \mathcal{F} \mid q^{-1}(\mathcal{U}) \in \mathcal{T} \right\}.$$

Lako se vidi kako je $\mathcal{T}_{\mathcal{F}}$ topologija na \mathcal{F} . Zovemo ju **kvocijentna topologija** na \mathcal{F} (određena s \mathcal{T}), a za topološki prostor $(\mathcal{F}, \mathcal{T}_{\mathcal{F}})$ kažemo kako je **kvocijentni prostor** od (X, \mathcal{T}) . Uočimo još kako je $q: X \to \mathcal{F}$ neprekidna funkcija (s obzirom na \mathcal{T} i $\mathcal{T}_{\mathcal{F}}$).

Definicija 3.7. Neka je (X, Φ) diferencijalna n-mnogostrukost. Neka je

$$F = \{(x, (U, \varphi), v) \in X \times \Phi \times \mathbb{R}^n \mid x \in U\}.$$

Neka je \sim relacija na F definirana s

$$(x, (U, \varphi), v) \sim (y, (V, \psi), w) \iff (x = y \land D(\delta_{(U, \varphi), (V, \psi)})(\varphi(x))(v) = w).$$

Nije teško provjeriti kako je \sim relacija ekvivalencije na F (DZ). Neka je $F/_{\sim}$ skup svih klasa ekvivalencije s obzirom na relaciju \sim . Imamo kako je $F/_{\sim}$ particija od F. Na F gledamo topologiju definiranu u napomeni 3.5. Sada na $F/_{\sim}$ gledamo pripadnu kvocijentnu topologiju te $F/_{\sim}$ s tom topologijom nazivamo totalni tangencijalni prostor od (X, Φ) te ga označavamo s $T(X, \Phi)$.

Napomena 3.8. Neka su X, Y topološki prostori te $f: X \to Y$ neprekidna funkcija. Pretpostavimo kako je \mathcal{F} particija od X td. je f konstantna na svakom članu od \mathcal{F} . Neka je $q: X \to \mathcal{F}$ kvocijentno preslikavanje. Tada postoji jedinstvena funkcija $\widetilde{f}: \mathcal{F} \to Y$ td.

$$f = \widetilde{f} \circ q, \quad (1)$$

odnosno tako da sljedeći dijagram komutira

Nadalje, za tu funkciju vrijedi kako je neprekidna (pri čemu na \mathcal{F} gledamo kvocijentnu topologiju). Naime, budući je q surjekcija, iz (1) zaključujemo kako takva funkcija \widetilde{f} , ako postoji, mora biti jedinstvena. Definiramo $\widetilde{f} \colon \mathcal{F} \to Y$ td. za $A \in \mathcal{F}$ stavimo

$$\widetilde{f}(A) = f(x),$$

gdje je $x \in A$. Očito je da za tako definiranu funkciju \tilde{f} vrijedi (1). Neka je V otvoren skup u Y. Želimo dokazati kako je $\tilde{f}^{-1}(V)$ otvoren u \mathcal{F} . U tu svrhu, dovoljno je dokazati kako je $q^{-1}(\tilde{f}^{-1}(V))$ otvoren skup u X. Vrijedi

$$q^{-1}(\widetilde{f}^{-1}(V)) = (\widetilde{f} \circ q)^{-1}(V) = f^{-1}(V),$$

što je otvoreno u X jer je f neprekidna. Dakle, \widetilde{f} je neprekidna.

Definicija 3.9. Neka je (X, Φ) diferencijalna n-mnogostrukost i neka je F kao u napomeni 3.5. Neka je $f: F \to X$ restrikcija projekcije na prvu koordinatu (sjetimo se kako je $F \subseteq X \times \Phi \times \mathbb{R}^n$). Jasno, f je neprekidna funkcija. Neka je \sim relacija na F iz definicije 3.7. Svaka klasa ekvivalencije od \sim je neki skup uređenih trojki od kojih svaka na prvoj koordinati ima istu točku. To znači kako je f konstantna na elementima od $F/_{\sim}$, f in a elementima od f (f in a prvoj koordinati ima istu točku. Prema napomeni 3.8, postoji jedinstvena funkcija f: f (f in a prvoj koordinati ima istu točku.

$$f = \pi \circ q$$
,

gdje je $q: F \to T(X,Y)$ kvocijentno preslikavanje. Znamo kako je π neprekidna funkcija. Za uređeni par $(T(X,\Phi),\pi)$ kažemo da je **tangencijalni svežanj** od (X,Φ) . Ako je $x \in X$, onda za potprostor $\pi^{-1}(\{x\})$ od $T(X,\Phi)$ kažemo da je **tangencijalni prostor** od (X,Φ) u x te ga označavamo s $T_x(X,\Phi)$.

Naš sljedeći cilj je pokazati kako smo u definiciji totalnog tangencijalnog prostora na X mogli proći jeftinije, odnosno uzeti samo atlas $\Phi' \subseteq \Phi$. Argument će biti malo duži.

Napomena 3.10. Neka je (X, Φ) diferencijalna n-mnogostrukost. Pretpostavimo kako je Φ' n-atlas za X td. $\Phi' \subseteq \Phi$. Neka je

$$F' = \{(x, (U, \varphi), v) \in X \times \Phi' \times \mathbb{R}^n \mid x \in U\}.$$

Imamo $F' \subseteq X \times \Phi' \times \mathbb{R}^n$ te uzmimo na F' relativnu topologiju u odnosu na produktnu topologiju od $X \times \Phi' \times \mathbb{R}^n$ (na Φ' uzimamo diskretnu topologiju). Neka je \sim' relacija na F' definirana s

$$(x,(U,\varphi),v) \sim' (y,(V,\psi),w) \Longleftrightarrow \left(x=y \ \land \ D(\delta_{(U,\varphi),(V,\psi)})(\varphi(x))(v)=w\right).$$

Kao i prije, imamo kako je \sim' relacija ekvivalencije na F'. Na particiji $F'/_{\sim'}$ uzmimo kvocijentnu topologiju. Tvrdimo kako je kvocijenti prostor $F'/_{\sim'}$ homeomorfan s $T(X,\Phi)$. Neka su F i \sim iz

definicije 3.7, zatim neka su $q' \colon F' \to F'/_{\sim'}$ i $q \colon F \to F/_{\sim}$ kvocijentna preslikavanja. Očito je $F' \subseteq F$. Neka je $i \colon F' \to F$ inkluzija. Uočimo kako je $X \times \Phi' \times \mathbb{R}^n$ potprostor od $X \times \Phi \times \mathbb{R}^n$. Stoga je inkluzija $j \colon X \times \Phi' \times \mathbb{R}^n \to X \times \Phi \times \mathbb{R}^n$ neprekidna funkcija pa je i

$$j \mid_{F'} : F' \to X \times \Phi \times \mathbb{R}^n$$

neprekidna funkcija, a onda je i neprekidna kao funkcija $F' \to F$; dakle $i \colon F' \to F$ je neprekidna. Funkcija $q \circ i \colon F' \to F/_{\sim}$ je neprekidna i konstantna je na elementima od $F'/_{\sim'}$. Stoga, postoji neprekidna funkcija $f \colon F'/_{\sim'} \to F/_{\sim}$ td. sljedeći dijagram komutira

Klasu elementa $(x, (U, \varphi), v) \in F'$ pri relaciji \sim' označimo s $[(x, (U, \varphi), v)]'$, a pri relaciji \sim s $[(x, (U, \varphi), v)]$. Uočimo kako je

$$f([(x,(U,\varphi),v)]') = [(x,(U,\varphi),v)], \text{ za sve } (x,(U,\varphi),v) \in F'.$$

Nadalje, očito je da za sve $(x, (U, \varphi), v), (y, (V, \psi), w) \in F'$ vrijedi sljedeće

$$(x,(U,\varphi),v) \not\sim' (y,(V,\psi),w) \Longrightarrow (x,(U,\varphi),v) \not\sim (y,(V,\psi),w).$$

Iz ovoga slijedi kako je f injekcija. Neka je $(x,(U,\varphi),v)\in F$. Imamo $x\in X\Longrightarrow \exists (V,\psi)\in \Phi'$ td. $x\in V$. Označimo

$$w = D(\delta_{(U,\varphi),(V,\psi)})(\varphi(x))(v).$$

Očito je tada

$$(x, (U, \varphi), v) \sim (x, (V, \psi), w),$$

pri tom je $(x, (V, \psi), w) \in F'$. Stoga je klasa od $(x, (U, \varphi), v)$ pri relaciji \sim jednaka $[(x, (V, \psi), w)]$, tj. $f\left([(x, (V, \psi), w)]'\right)$. Prema tome, f je surjekcija. Dakle, $f: F'/_{\sim'} \to F/_{\sim}$ je neprekidna bijekcija. Da bismo dokazali kako je f homeomorfizam, dovoljno je dokazati kako je f otvoreno preslikavanje. Dokažimo prvo kako je f otvoreno preslikavanje. Prema napomeni 3.5 imamo kako je

$$\mathcal{B} = \{U' \times \{(U, \varphi)\} \times W \mid (U, \varphi) \in \Phi, U' \text{ otvoren } u \ U, W \text{ otvoren } u \ \mathbb{R}^n\}$$

baza topologije od F. Dovoljno je dokazati kako je q(B) otvoren u $F/_{\sim}$ za svaki $B \in \mathcal{B}$. Neka je $(U,\varphi) \in \Phi$, U' otvoren u U te W otvoren u \mathbb{R}^n . Želimo dokazati da je $q(U' \times \{(U,\varphi)\} \times W)$ otvoren skup u $F/_{\sim}$. U tu svrhu, prema definiciji kvocijentne topologije, dovoljno je dokazati kako je

 $q^{-1}(q(U' \times \{(U,\varphi)\} \times W))$ otvoren u F. Imamo

$$(x,(V,\psi),v) \in q^{-1}(q(U' \times \{(U,\varphi)\} \times W)) \Longrightarrow q(x,(V,\psi),v) \in q(U' \times \{(U,\varphi)\} \times W) \Longrightarrow$$

$$\Longrightarrow q(x,(V,\psi),v) = q(x',(U,\varphi),w) \text{ za neke } x' \in U' \text{ i } w \in W \Longrightarrow$$

$$\Longrightarrow (x,(V,\psi),v) \sim (x',(U,\varphi),w) \Longrightarrow$$

$$\Longrightarrow x = x' \text{ i } D(\delta_{(V,\psi),(U,\varphi)})(\psi(x))(v) = w \quad (1)$$

(posebno $x \in U'$). Imamo kako je funkcija $\delta_{(V,\psi),(U,\varphi)} \colon \psi(V \cap U) \to \mathbb{R}^n$ klase C^{∞} pa zaključujemo kako je funkcija

$$\Delta \colon (V \cap U) \times \mathbb{R}^n \to \mathbb{R}^n$$

$$\Delta(z, u) = D(\delta_{(V, \psi), (U, \varphi)})(\psi(z))(u)$$

neprekidna. Naime, označimo li $h = \delta_{(V,\psi),(U,\varphi)}$, imamo

$$\begin{bmatrix} \partial_1 h_1(\psi(z)) & \cdots & \partial_n h_1(\psi(z)) \\ \vdots & \ddots & \vdots \\ \partial_1 h_n(\psi(z)) & \cdots & \partial_n h_n(\psi(z)) \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} \partial_1 h_1(\psi(z)) u_1 + \cdots + \partial_n h_1(\psi(z)) u_n \\ \vdots \\ \partial_1 h_n(\psi(z)) u_1 + \cdots + \partial_n h_n(\psi(z)) u_n \end{bmatrix}.$$

Komponentne funkcije od Δ su u retcima desne matrice pa lako vidimo kako su neprekidne. Jasno, $x \in V$ pa je $x \in V \cap U' \subseteq V \cap U$. Prema (1) vrijedi $\Delta(x,v) = w \in W$. Budući je Δ neprekidna funkcija (pa neprekidna i u točki (x,v)), postoje otvoren skup V' u $V \cap U$ i otvoren skup W' u \mathbb{R}^n td. je $(x,v) \in V' \times W'$ i $\Delta(V' \times W') \subseteq W$. (2)

Pritom možemo pretpostaviti kako je $V' \subseteq V \cap U'$ (inače umjesto V' uzmemo $V' \cap V \cap U'$). Jasno, $x \in V'$ i $v \in W'$ pa je $V' \times \{(V, \psi)\} \times W'$ otvorena okolina od $(x, (V, \psi), v)$ u F. Tvrdimo

$$V' \times \{(V, \psi)\} \times W' \subseteq q^{-1}(q(U' \times \{(U, \varphi)\} \times W)). \tag{4}$$

Neka su $y \in V'$, $u \in W'$. Želimo dokazati kako je

$$(y,(V,\psi),u)\in q^{-1}(q(U'\times\{(U,\varphi)\}\times W)),$$

tj. da je

$$q(y, (V, \psi), u) \in q(U' \times \{(U, \varphi)\} \times W).$$
 (3)

Prema (2) je $\Delta(y,u) \in W$, tj. $D(\delta_{(V,\psi),(U,\varphi)})(\psi(y))(u) \in W$ pa je

$$(y, (V, \psi), u) \sim (y, (U, \varphi), D(\delta_{(V, \psi), (U, \varphi)})(\psi(y))(u)) \in U' \times \{(U, \varphi)\} \times W$$

 \Longrightarrow vrijedi (3) \Longrightarrow vrijedi (4). To znači da za svaku točku od $q^{-1}(q(U \times \{(U,\varphi)\} \times W))$ postoji otvorena okolina te točke sadržana u $q^{-1}(q(U \times \{(U,\varphi)\} \times W)) \Longrightarrow q^{-1}(q(U' \times \{(U,\varphi)\} \times W))$ je otvoren skup u F. Time smo pokazali kako je

$$q \colon F \to F/_{\sim}$$

otvoreno preslikavanje. Posve isti argumenti pokazuju kako je $q': F' \to F'/_{\sim'}$ otvoreno preslikavanje; pri tome vrijedi i analogon tvrdnje iz napomene 3.5 za bazu topologije od F, tj. vrijedi kako je familija

$$\mathcal{B}' = \{U' \times \{(U, \varphi)\} \times W \mid (U, \varphi) \in \Phi', U' \text{ otvoren u } U, W \text{ otvoren u } \mathbb{R}^n\}$$

baza topologije od F'. Iz ovoga odmah zaključujemo kako je inkluzija $i\colon F'\to F$ otvoreno preslikavanje. Sada iz komutativnog dijagrama

lako zaključujemo kako je f otvoreno preslikavanje. Naime U otvoren u $F'/_{\sim'} \Longrightarrow f(U) = f(q'((q')^{-1}(U))) = (f \circ q')((q')^{-1}(U)) = (q \circ i)((q')^{-1}(U))$. S desne strane imamo sliku otvorenog skupa pri otvorenom preslikavanju, stoga otvoren skup u $F/_{\sim}$. Dakle, f je homeomorfizam, tj. $F'/_{\sim'}$ je homeomorfan s $T(X, \Phi)$.

Lema 3.11.

Neka je (X, Φ) diferencijalna n-mnogostrukost. Tada postoji prebrojiv n-atlas Φ' za X td. je $\Phi' \subseteq \Phi$.

Dokaz. Budući je X n—mnogostrukost, postoji prebrojiva baza \mathcal{B} topologije od X. Stoga, za svaki $x \in X$ postoji $(U_x, \varphi_x) \in \Phi$ td. je $x \in U_x$, i nadalje, za svaki $x \in X$ postoji $B_x \in \mathcal{B}$ td. je $x \in B_x \subseteq U_x$. Neka je

$$\mathcal{F} = \{ B_x \mid x \in X \}.$$

Imamo kako je \mathcal{F} prebrojiva familija (jer je $\mathcal{F} \subseteq \mathcal{B}$), stoga postoji niz $(x_n)_n$ u X td. je

$$\mathcal{F} = \{B_{x_1}, B_{x_2}, \dots\}.$$

Iz definicije od \mathcal{F} je jasno kako je \mathcal{F} otvoren pokrivač od X, dakle

$$X = \bigcup_{i \in \mathbb{N}} B_{x_i}.$$

Za svaki $i \in \mathbb{N}$ vrijedi $B_{x_i} \subseteq U_{x_i} \Longrightarrow X = \bigcup_{i \in \mathbb{N}} U_{x_i}$. Stoga je $\{(U_{x_i}, \varphi_{x_i}) \mid i \in \mathbb{N}\}$ traženi n-atlas. \square

Propozicija 3.12.

Neka je (X, Φ) diferencijalna n-mnogostrukost. Tada je $T(X, \Phi)$ Hausdorffov te zadovoljava drugi aksiom prebrojivosti.

Dokaz. Prema lemi 3.11 postoji prebrojiv n-atlas Φ' za X td. je $\Phi' \subseteq \Phi$. Prema napomeni 3.10 onda imamo kako je $T(X,\Phi)$ homeomorfan s $F'/_{\sim'}$, gdje je $F' = \{(x,(U,\varphi),v) \in X \times \Phi' \times \mathbb{R}^n \mid x \in U\}$ te \sim' relacija ekvivalencije na F' kao u 3.10. Pri tome znamo kako je kvocijentno preslikavanje $q' \colon F' \to F'/_{\sim'}$ otvoreno preslikavanje, a F' gledamo kao potprostor od $(X \times \Phi' \times \mathbb{R}^n)$.

Iz napomene 3.2 slijedi: ako su X, Y i Z topološki prostori koji zadovoljavaju drugi aksiom prebrojivosti, onda ga zadovoljava i $X \times Y \times Z$. Stoga $X \times \Phi' \times \mathbb{R}^n$ zadovoljava drugi aksiom prebrojivosti, a onda ga zadovoljava i F'. Sada iz činjenice kako je $q' \colon F' \to F'/_{\sim'}$ neprekidno i otvoreno preslikavanje te surjekcija, lako slijedi kako $F'/_{\sim'}$ zadovoljava drugi aksiom prebrojivosti (DZ). Stoga i $T(X, \Phi)$ zadovoljava drugi aksiom prebrojivosti.

Dokažmo sada kako je $T(X, \Phi)$ Hausdorffov prostor. Neka su F i \sim iz definicije 3.7 te neka je $q: F \to F/_{\sim}$ kvocijentno preslikavanje. Neka su $\alpha \neq \beta \in T(X, \Phi)$ (tj. $\alpha, \beta \in F/_{\sim}$). Imamo

$$\alpha = q(x, (U, \varphi), v)$$

$$\beta = q(y, (V, \psi), w),$$

za neke $(x,(U,\varphi),v)$ i $(y,(V,\psi),w) \in F$. Iz $\alpha \neq \beta$ slijedi $(x,(U,\varphi),v) \not\sim (y,(V,\psi),w)$.

 $1^{\circ} \ x \neq y$.

Budući je X Hausdorffov, postoje disjunktni otvoreni skupovi U' i V' u X td. je $x \in U'$ i $y \in V'$. Definiramo

$$A = (U' \cap U) \times \{(U, \varphi)\} \times \mathbb{R}^n$$

$$B = (V' \cap V) \times \{(V, \psi)\} \times \mathbb{R}^n.$$

Tada su A i B otvoreni skupovi u F td. je $(x,(U,\varphi),v)\in A$ i $(y,(V,\psi),w)\in B$ pa je $\alpha\in q(A)$ i $\beta\in q(B)$. Prema napomeni 3.10, q je otvoreno preslikavanje pa su stoga q(A) i q(B) otvoreni skupovi u $T(X,\Phi)$. Kada bi vrijedilo $q(A)\cap q(B)\neq\emptyset$, postojali bi $a\in A$ i $b\in B$ td. je q(a)=q(b), tj. $a\sim b$. No, to je nemoguće jer je a uređena trojka kojoj je prva koordinata element od $U'\cap U$, a prva koordinata od b je element od $V'\cap V$ (a znamo kako je $U'\cap V'=\emptyset$). Dakle, $q(A)\cap q(B)=\emptyset$.

 $2^{\circ} \ x = y.$

Zbog $(x,(U,\varphi),v) \not\sim (y,(V,\psi),w)$ imamo $D(\delta_{(U,\varphi),(V,\psi)})(\varphi(x))(v) \neq w$. Stoga postoje disjunktni otvoreni skupovi W_1 i W_2 u \mathbb{R}^n td. je $D(\delta_{(U,\varphi),(V,\psi)})(\varphi(x))(v) \in W_1$ i $w \in W_2$. Neka je $\Delta \colon (U \cap V) \times \mathbb{R}^n \to \mathbb{R}^n$ funkcija dana s

$$\Delta(z, u) = D(\delta_{(U, \varphi), (V, \psi)})(\varphi(z))(u)$$

Kao u napomeni 3.10 imamo kako je Δ neprekidna funkcija, a imamo kako je $\Delta(x,v) \in W_1$. Stoga postoji otvorena okolina U' od x u $U \cap V$ i W' od v u \mathbb{R}^n td. je

$$\Delta(U' \times W') \subseteq W_1.$$
 (1)

Neka su

$$A = U' \times \{(U, \varphi)\} \times W'$$

$$B = U' \times \{(V, \psi)\} \times W_2.$$

Imamo

$$(x, (U, \varphi), v) \in A \Longrightarrow \alpha \in q(A)$$

 $(y, (V, \psi), w) \in B \Longrightarrow \beta \in q(B).$

Skupovi q(A) i q(B) su otvoreni u $T(X, \Phi)$. Za sve $a \in A$ i $b \in B$ imamo $a \not\sim b$ (što slijedi iz (1) i $W_1 \cap W_2 = \emptyset$) $\Longrightarrow q(a) \neq q(b) \Longrightarrow q(A) \cap q(B) = \emptyset$.

U oba slučaja α i β imaju disjunktne otvorene okoline u $T(X,\Phi)$ pa zaključujemo kako je $T(X,\Phi)$ Hausdorffov prostor.

Napomena 3.13. Neka je (X, Φ) diferencijalna n-mnogostrukost te neka su F i \sim iz definicije 3.7. Neka je $q: F \to F/_{\sim}$ kvocijentno preslikavanje. Definiramo

$$G = \{(x, (U, \varphi), 0) \mid (U, \varphi) \in \Phi, x \in U\}.$$

Očito je $G \subseteq F$. Tvrdimo kako je q(G), kao potprostor od $T(X, \Phi)$, homeomorfan s X te kako je

$$\pi\mid_{q(G)}: q(G)\to X$$

homeomorfizam, pri čemu je π td. $(T(X,\Phi),\pi)$ tangencijalni svežanj od (X,Φ) , tj. za $(x,(U,\varphi),v) \in F$ imamo $\pi([(x,(U,\varphi),v)]) = x$, pri čemu je $[x,(U,\varphi),v]$ pripadna klasa elementa pri \sim . Jasno, $\pi\mid_{q(G)}:q(G)\to X$ je neprekidna surjekcija. Vrijedi $q(G)=\{[(x,(U,\varphi),0)]\mid (U,\varphi)\in\Phi,x\in U\}$ te za $(U,\varphi)\in\Phi$ i $x\in U$ imamo

$$[(x, (U, \varphi), 0)] = \{(x, (V, \psi), 0) \mid (V, \psi) \in \Phi, x \in V\}.$$

Stoga je $\pi \mid_{q(G)}: q(G) \to X$ neprekidna bijekcija. Preostaje pokazati kako je i otvoreno preslikavanje. Promotrimo komutativni dijagram

$$G \xrightarrow{p} X \\ \downarrow q \\ \downarrow q(G) \qquad \downarrow q(G) \qquad ,$$

gdje je p projekcija na prvu koordinatu (tj. restrikcija projekcije $X \times \Phi \times \mathbb{R}^n \to X$ na prvu koordinatu). Ako je p otvoreno preslikavanje, onda na isti način kao u napomeni 3.10, odnosno iz

$$\pi \mid_{q(G)} (U) = \pi \mid_{q(G)} (q \mid_{G} ((q \mid_{G})^{-1}(U))) = p((q \mid_{G})^{-1}(U)),$$

vidimo kako je $\pi\mid_{q(G)}$ otvoreno preslikavanje. Prema tome, dovoljno je pokazati kako je p otvoreno preslikavanje. Imamo kako je G potprostor od F i nadalje, prema napomeni 3.5, imamo kako je $\{U'\times\{(U,\varphi)\}\times W\mid (U,\varphi)\in\Phi, U' \text{ otvoren u }U,W \text{ otvoren u }\mathbb{R}^n\}$ baza topologije od F pa slijedi kako je $\{G\cap (U'\times\{(U,\varphi)\}\times W)\mid (U,\varphi)\in\Phi, U' \text{ otvoren u }U,W \text{ otvoren u }\mathbb{R}^n\}$ baza topologije od G, odnosno kako je

$$\{U' \times \{(U,\varphi)\} \times \{0\} \mid (U,\varphi) \in \Phi, U' \text{ otvoren u } U\}$$

baza topologije od G. Za sve $(U,\varphi) \in \Phi$ i za svaki U' otvoren u U očito vrijedi

$$p(U' \times \{(U, \varphi)\} \times \{0\}) = U'$$

 $\implies p \colon G \to X$ je otvoreno preslikavanje $\implies \pi|_{q(G)} \colon q(G) \to X$ je homeomorfizam. Za potprostor q(G) od $T(X,\Phi)$, tj. za $\{[(x,(U,\varphi),0)] \mid (U,\varphi) \in \Phi, x \in U\}$, kažemo da je 0-preze od π .

Napomena 3.14. Neka je (X, Φ) diferencijalna n-mnogostrukost te neka je $x \in X$. Tada je

$$T_x(X,\Phi) = \{ [(x,(U,\varphi),v)] \mid (U,\varphi) \in \Phi, x \in U, v \in \mathbb{R}^n \},$$

gdje je [z] klasa elementa $z \in F$ pri relaciji \sim (iz definicije 3.7).

Propozicija 3.15.

Neka je (X, Φ) diferencijalna n-mnogostrukost te neka su F i \sim iz definicije 3.7. Neka je $q \colon F \to F/_{\sim}$ kvocijentno preslikavanje. Neka je $x \in X$ te neka je $(U, \varphi) \in \Phi$ td. je $x \in U$. Tada je $\{x\} \times \{(U, \varphi)\} \times \mathbb{R}^n \subseteq F$ (očito), $q(\{x\} \times \{(U, \varphi)\} \times \mathbb{R}^n) \subseteq T_x(X, \Phi)$ i vrijedi kako je

$$q|_{\{x\}\times\{(U,\varphi)\}\times\mathbb{R}^n}$$

kao funkcija $\{x\} \times \{(U,\varphi)\} \times \mathbb{R}^n \to T_x(X,\Phi)$ homeomorfizam.

Dokaz. Iz napomene 3.14 je jasno $q(\lbrace x\rbrace \times \lbrace (U,\varphi)\rbrace \times \mathbb{R}^n)\subseteq T_x(X,\Phi)$. Imamo kako je

$$f := q|_{\{x\} \times \{(U,\varphi)\} \times \mathbb{R}^n, T_x(X,\Phi)} \colon \{x\} \times \{(U,\varphi)\} \times \mathbb{R}^n \to T_x(X,\Phi)$$

neprekidna funkcija. Ako su $v, w \in \mathbb{R}^n$ td. je $f(x, (U, \varphi), v) = f(x, (U, \varphi), w)$, onda imamo

$$\begin{split} f(x,(U,\varphi),v) &= f(x,(U,\varphi),w) \Longrightarrow (x,(U,\varphi),v) \sim (x,(U,\varphi),w) \Longrightarrow \\ &\Longrightarrow D(\delta_{(U,\varphi),(U,\varphi)})(\varphi(x))(v) = w \Longrightarrow \\ &[\text{diferencijal identitete}] \Longrightarrow v = w \Longrightarrow \\ &\Longrightarrow (x,(U,\varphi),v) = (x,(U,\varphi),w). \end{split}$$

Dakle, f je injekcija. Neka je $\alpha \in T_x(X, \Phi) \Longrightarrow \alpha = [(x, (V, \psi), w)]$, gdje je $(V, \psi) \in \Phi$ td. je $x \in V$ i $w \in \mathbb{R}^n$. Želimo naći $v \in \mathbb{R}^n$ td. je $(x, (U, \varphi), v) \sim (x, (V, \psi), w)$. No, ako stavimo

$$v := D(\delta_{(V,\psi),(U,\varphi)})(\psi(x))(w),$$

onda očito imamo $(x, (V, \psi), w) \sim (x, (U, \varphi), v) \Longrightarrow (x, (U, \varphi), v) \sim (x, (V, \psi), w)$. Zaključujemo kako je $(x, (U, \varphi), v) \in \{x\} \times \{(U, \varphi)\} \times \mathbb{R}^n$ i $f(x, (U, \varphi), v) = [(x, (U, \varphi), v)]$. Dakle, $f(x, (U, \varphi), v) = \alpha$. Prema tome, f je surjekcija. Dakle,

$$f: \{x\} \times \{(U,\varphi)\} \times \mathbb{R}^n \to T_x(X,\Phi)$$

je neprekidna bijekcija. Uzimajući u obzir kako je

$$\{V' \times \{(V, \psi)\} \times W \mid (V, \psi) \in \Phi, V' \text{ otvoren u } V, W \text{ otvoren u } \mathbb{R}^n\}$$

baza topologije od F, imamo kako je

$$\{\{x\} \times \{(U,\varphi)\} \times W \mid W \text{ otvoren u } \mathbb{R}^n\}$$

baza topologije od $\{x\} \times \{(U,\varphi)\} \times \mathbb{R}^n$ (zapravo je to topologija tog potprostora). Neka je W otvoren skup u \mathbb{R}^n . Imamo

$$f(\lbrace x\rbrace \times \lbrace (U,\varphi)\rbrace \times W) = q(\lbrace x\rbrace \times \lbrace (U,\varphi)\rbrace \times W) =$$

$$= q(\lbrace x\rbrace \times \lbrace (U,\varphi)\rbrace \times \mathbb{R}^n) \cap q(U \times \lbrace (U,\varphi)\rbrace \times W) =$$

$$= T_x(X,\Phi) \cap q(U \times \lbrace (U,\varphi)\rbrace \times W).$$

Skup s desne strane znaka presjeka je otvoren u $T(X, \Phi) \Longrightarrow f(\{x\} \times \{(U, \varphi)\} \times W)$ otvoren u $T_x(X, \Phi) \Longrightarrow f$ je otvoreno preslikavanje. Prema tome, f je homeomorfizam.

Korolar 3.16.

Neka je (X, Φ) diferencijalna n-mnogostrukost te neka je $x \in X$. Tada je $T_x(X, \Phi)$ homeomorfan (kao potprostor od $T(X, \Phi)$) s \mathbb{R}^n .

Dokaz. Prema propoziciji 3.15 dovoljno je dokazati kako je $\{x\} \times \{(U,\varphi)\} \times \mathbb{R}^n$ homeomorfan s \mathbb{R}^n , pri čemu je $(U,\varphi) \in \Phi$ td. je $x \in U$ i pri čemu na $\{x\} \times \{(U,\varphi)\} \times \mathbb{R}^n$ gledamo kao na potprostor od F (iz definicije 3.7). Funkcija

$$f: \{x\} \times \{(U, \varphi)\} \times \mathbb{R}^n \to \mathbb{R}^n$$

 $f(x, (U, \varphi), v) = v$

je neprekidna jer je restrikcija projekcije na zadnju koordinatu, a inverz od f je funkcija

$$\mathbb{R}^n \to \{x\} \times \{(U, \varphi)\} \times \mathbb{R}^n$$
$$v \mapsto (x, (U, \varphi), v),$$

koja je neprekidna kao funkcija $\mathbb{R}^n \to X \times \Phi \times \mathbb{R}^n$, jer su joj komponentne funkcije neprekidne. \square

Napomena 3.17. Neka je $(V, +, \cdot)$ (realni) vektorski prostor, neka je W skup te neka je $f: V \to W$ bijekcija. Tada postoje jedinstvena binarna relacija +' na W i jedinstvena funkcija $\cdot': \mathbb{R} \times W \to W$ td. je $(W, +', \cdot')$ vektorski prostor te da je f izomorfizam vektorskih prostora $(V, +, \cdot)$ i $(W, +', \cdot')$. Naime, definirajmo +' i \cdot' (za sve $x, y \in W$ i sve $\lambda \in \mathbb{R}$) s

$$x +' y = f(f^{-1}(x) + f^{-1}(y))$$

 $\lambda \cdot' x = f(\lambda \cdot f^{-1}(x)).$

Uočimo kako je tada

$$f^{-1}(x +' y) = f^{-1}(x) + f^{-1}(y),$$

$$f^{-1}(\lambda \cdot' x) = \lambda \cdot f^{-1}(x)$$

za sve $x, y \in W$ i za sve $\lambda \in \mathbb{R}$ te

$$f(a+b) = f(a) +' f(b),$$

$$f(\lambda \cdot a) = \lambda \cdot' f(a)$$

za sve $a, b \in V$ i za sve $\lambda \in \mathbb{R}$. Lako se provjeri kako je $(W, +', \cdot')$ vektorski prostor te znamo kako je f izomorfizam vektorskih prostora $(V, +, \cdot)$ i $(W, +', \cdot')$.

Ako su +" i ·" td. je $(W, +", \cdot")$ vektorski prostor te da je f izomorfizam od $(V, +, \cdot)$ i $(W, +", \cdot")$, onda je f^{-1} izomorfizam od $(W, +", \cdot")$ i $(V, +, \cdot)$ pa za sve $x, y \in W$ vrijedi

$$f^{-1}(x + y) = f^{-1}(x) + f^{-1}(y)$$

 $\Longrightarrow x+^{\prime\prime}y=f(f^{-1}(x)+f^{-1}(y))\Longrightarrow +^{\prime\prime}=+^{\prime}.$ Analogno dobivamo i $\cdot^{\prime\prime}=\cdot^{\prime}.$

Kažemo da je $(W, +', \cdot')$ vektorski prostor induciran s $(V, +, \cdot)$ i f.

Neka je (X, Φ) diferencijalna n-mnogostrukost te neka je $x \in X$. Odaberimo $(U, \varphi) \in \Phi$ td. je $x \in U$. Funkcija $f \colon \mathbb{R}^n \to T_x(X, \Phi)$ dana s

$$f(v) = [(x, (U, \varphi), v)]$$

je bijekcija kao kompozicija funkcije $\mathbb{R}^n \to \{x\} \times \{(U,\varphi)\} \times \mathbb{R}^n$, $v \mapsto (x,(U,\varphi),v)$ koja je očito bijekcija, i funkcije $\{x\} \times \{(U,\varphi)\} \times \mathbb{R}^n \to T_x(X,\Phi), \ (x,(U,\varphi),v) \mapsto [(x,(U,\varphi),v)],$ koja je bijekcija prema propoziciji 3.15. Neka su + i · td. je $(T_x(X,\Phi),+,\cdot)$ vektorski prostor induciran s \mathbb{R}^n (standardni

vektorski prostor) i f. Tvrdimo da ovako uvedeni + i · ne ovise o izboru karte (U, φ) . Pretpostavimo kako je $(V, \psi) \in \Phi$ td. je $x \in V$. Neka je $g: \mathbb{R}^n \to T_x(X, \Phi)$ dana s

$$g(v) = [(x, (V, \psi), v)].$$

Neka su +' i ·' td. je $(T_x(X, \Phi), +', \cdot')$ vektorski prostor induciran s \mathbb{R}^n i g. Neka su $\alpha, \beta \in T_x(X, \Phi)$. Imamo $\alpha = f(v)$ i $\beta = f(w)$ za neke $v, w \in \mathbb{R}^n$ pa je

$$\alpha + \beta = f(v + w) = [(x, (U, \varphi), v + w)].$$
 (1)

S druge strane, imamo $\alpha = g(v')$ i $\beta = g(w')$ pa je

$$\alpha +' \beta = g(v' + w') = [(x, (V, \psi), v' + w')].$$
 (2)

Iz f(v) = g(v') i f(w) = g(w') slijedi

$$\begin{cases} [(x,(U,\varphi),v)] = [(x,(V,\psi),v')] \\ [(x,(U,\varphi),w)] = [(x,(V,\psi),w')] \end{cases} \implies \begin{cases} D(\delta_{(U,\varphi),(V,\psi)})(\varphi(x))(v) = v' \\ D(\delta_{(U,\varphi),(V,\psi)})(\varphi(x))(w) = w' \end{cases} \implies D(\delta_{(U,\varphi),(V,\psi)})(\varphi(x))(v+w) = v'+w' \implies [(x,(U,\varphi),v+w)] = [(x,(V,\psi),v'+w')].$$

Iz (1) i (2) sada slijedi $\alpha + \beta = \alpha + \beta$. Prema tome, $+ = + \beta$. Analogno dobivamo kako je $\cdot = -\beta$.

Od sada pa nadalje, ako je (X, Φ) diferencijalna n-mnogostrukost i $x \in X$, na $T_x(X, \Phi)$ promatramo strukturu vektorskog prostora dobivenu na gore opisan način. Uočimo: ako je $(U, \varphi) \in \Phi$ td. je $x \in U$, onda je funkcija $\mathbb{R}^n \to T_x(X, \Phi), v \mapsto [(x, (U, \varphi), v)]$ izomorfizam.

Lema 3.18.

Neka su $n, m \in \mathbb{N}$ te neka je $h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^{n+m}$ funkcija definirana s

$$h((x_1,\ldots,x_n),(y_1,\ldots,y_m))=(x_1,\ldots,x_n,y_1,\ldots,y_m).$$

Tada je h homeomorfizam.

Dokaz. Neka je $i \in \{1, \ldots, n\}$. Tada je i—ta komponentna funkcija od h jednaka kompoziciji projekcije $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ na prvu koordinatu i projekcije $\mathbb{R}^n \to \mathbb{R}$ na i—tu koordinatu. Dakle, i—ta komponentna funkcija od h je neprekidna (kao funkcija $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$). Analogno vidimo kako isto vrijedi i za svaki $i \in \{n+1, \ldots, n+m\}$. Prema tome, h je neprekidna.

S druge strane, funkcija $h^{-1}: \mathbb{R}^{n+m} \to \mathbb{R}^n \times \mathbb{R}^m$ je neprekidna jer su joj obje komponentne funkcije neprekidne.

Napomena 3.19. Ako su $f: X \to X'$ i $g: Y \to Y'$ homeomorfizmi, onda je funkcija

$$X \times Y \to X' \times Y'$$

 $(x,y) \mapsto (f(x),g(y))$

homeomorfizam.

Teorem 3.20.

Neka je (X, Φ) diferencijalna n-mnogostrukost. Tada je $T(X, \Phi)$ 2n-mnogostrukost.

Dokaz. Prema propoziciji 3.12 imamo kako je $T(X, \Phi)$ Hausdorffov prostor te kako zadovoljava drugi aksiom prebrojivosti. Dokažimo još kako je $T(X, \Phi)$ lokalno 2n-euklidski prostor.

Neka je $(U,\varphi) \in \Phi$, pri čemu je $U \neq \emptyset$ te neka je $q \colon F \to F/_{\sim}$ kvocijentno preslikavanje (gdje su F i \sim iz definicije 3.7). Skup $U \times \{(U,\varphi)\} \times \mathbb{R}^n$ je otvoren u F pa je $q(U \times \{(U,\varphi)\} \times \mathbb{R}^n)$ otvoren skup u $T(X,\Phi)$ (jer je q otvoreno preslikavanje). Uočimo kako su sljedeća preslikavanja homeomorfizmi.

- $f = q|_{U \times \{(U,\varphi)\} \times \mathbb{R}^n, q(U \times \{(U,\varphi)\} \times \mathbb{R}^n)} \colon U \times \{(U,\varphi)\} \times \mathbb{R}^n \to q(U \times \{(U,\varphi)\} \times \mathbb{R}^n).$ Imamo kako je f neprekidna surjekcija, ali i otvoreno preslikavanje (jer je q otvoreno preslikavanje, a $U \times \{(U,\varphi)\} \times \mathbb{R}^n$ je otvoren skup u F). Pokažimo još i kako je injekcija. Neka su $(x,(U,\varphi),v) \neq (y,(U,\varphi),w) \in U \times \{(U,\varphi)\} \times \mathbb{R}^n.$
 - 1° Ako je $x \neq y$, onda je jasno $[(x,(U,\varphi),v)] \neq [(y,(U,\varphi),w)]$, tj. $f(x,(U,\varphi),v) \neq f(y,(U,\varphi),w)$.
 - 2° Ako je x = y onda iz propozicije 3.15 slijedi kako je $f(x, (U, \varphi), v) \neq f(x, (U, \varphi), w)$.
- $U \times \mathbb{R}^n \to U \times \{(U, \varphi)\} \times \mathbb{R}^n, (x, v) \mapsto (x, (U, \varphi), v).$
- $\varphi(U) \times \mathbb{R}^n \to U \times \mathbb{R}^n$, $(x, v) \mapsto (\varphi^{-1}(x), v)$; prema napomeni 3.19.
- $h: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^{2n}$ kao funkcija iz leme 3.18 (za m=n).

Skup $\varphi(U) \times \mathbb{R}^n$ je otvoren u $\mathbb{R}^n \times \mathbb{R}^n$ pa je $h(\varphi(U) \times \mathbb{R}^n)$ otvoren u \mathbb{R}^{2n} . Jasno je kako h inducira homeomorfizam $\varphi(U) \times \mathbb{R}^n \to h(\varphi(U) \times \mathbb{R}^n)$; pri tome na $\varphi(U) \times \mathbb{R}^n$ imamo relativnu topologiju s obzirom na topologiju za $\mathbb{R}^n \times \mathbb{R}^n$. No, općenito vrijedi: ako su A i B potprostori od X i Y redom, onda je $A \times B$ potprostor od $X \times Y$ (DZ). Prema tome, topologija na $\varphi(U) \times \mathbb{R}^n$ (kao potprostoru od $\mathbb{R}^n \times \mathbb{R}^n$) je ista kao produktna topologija. Sve skupa, imamo

$$h(\varphi(U) \times \mathbb{R}^n) \cong \varphi(U) \times \mathbb{R}^n \cong U \times \mathbb{R}^n \cong U \times \{(U, \varphi)\} \times \mathbb{R}^n \cong q(U \times \{(U, \varphi)\} \times \mathbb{R}^n).$$

Skup na lijevoj strani je otvoren skup u \mathbb{R}^{2n} pa je $q(U \times \{(U, \varphi)\} \times \mathbb{R}^n)$ homeomorfan otvorenom skupu u \mathbb{R}^{2n} . Budući takvi skupovi pokrivaju $T(X, \Phi)$ (za $(U, \varphi) \in \Phi$), dokazali smo kako svaka točka iz $T(X, \Phi)$ ima otvorenu okolinu homeomorfan otvorenom podskupu od \mathbb{R}^{2n} . Prema tome, $T(X, \Phi)$ je lokalno 2n-euklidski, dakle $T(X, \Phi)$ je 2n-mnogostrukost.

Neka je (X, Φ) diferencijalna n-mnogostrukost, $(U, \varphi) \in \Phi$. Uz oznake iz prethodnog dokaza, promotrimo sljedeću kompoziciju

$$q(U \times \{(U,\varphi)\} \times \mathbb{R}^n) \xrightarrow{-q^{-1}} U \times \{(U,\varphi)\} \times \mathbb{R}^n \xrightarrow{\text{proj.}} U \times \mathbb{R}^n \xrightarrow[(\varphi(z),v)]{} \varphi(U) \times \mathbb{R}^n \xrightarrow{h} h(\varphi(U) \times \mathbb{R}^n)$$

Imamo kako je to homeomorfizam. Označimo ga, kao funkciju $q(U \times \{(U, \varphi)\} \times \mathbb{R}^n) \to \mathbb{R}^{2n}$, sa $\xi_{(U, \varphi)}$. Dakle, $\xi_{(U, \varphi)} \colon q(U \times \{(U, \varphi)\} \times \mathbb{R}^n) \to \mathbb{R}^{2n}$ je smještenje pa zaključujemo kako je

$$(q(U \times \{(U,\varphi)\} \times \mathbb{R}^n), \xi_{(U,\varphi)})$$

2n-karta za $T(X,\Phi)$. Neka je Σ_{Φ} skup svih ovakvih karata (za $(U,\varphi)\in\Phi$).

Propozicija 3.21.

Neka je (X, Φ) diferencijalna n-mnogostrukost. Tada je Σ_{Φ} gladak 2n-atlas za $T(X, \Phi)$.

Dokaz. Prema dokazu teorema 3.20, imamo kako je Σ_{Φ} 2n-atlas za $T(X, \Phi)$. Ostaje još pokazati kako su svake dvije karte ovog atlasa glatko povezane.

Neka su (U,φ) , $(V,\psi) \in \Phi$ td. je $q(U \times \{(U,\varphi)\} \times \mathbb{R}^n) \cap q(V \times \{(V,\psi)\} \times \mathbb{R}^n) \neq \emptyset$. Promotrimo funkciju η prijelaza karata $(q(U \times \{(U,\varphi)\} \times \mathbb{R}^n), \xi_{(U,\varphi)})$ i $(q(V \times \{(V,\psi)\} \times \mathbb{R}^n), \xi_{(V,\psi)})$ kao funkciju u \mathbb{R}^{2n} . Imamo

$$\eta \colon \xi_{(U,\varphi)} \left(q(U \times \{(U,\varphi)\} \times \mathbb{R}^n) \cap q(V \times \{(V,\psi)\} \times \mathbb{R}^n) \right) \to \mathbb{R}^{2n}$$
$$\eta(z) = \xi_{(V,\psi)} (\xi_{(U,\varphi)}^{-1}(z)).$$

Uočimo kako vrijedi

$$q(U \times \{(U,\varphi)\} \times \mathbb{R}^n) \cap q(V \times \{(V,\psi)\} \times \mathbb{R}^n) = q((U \cap V) \times \{(U,\varphi)\} \times \mathbb{R}^n) = q((U \cap V) \times \{(V,\psi)\} \times \mathbb{R}^n);$$

dokazati za DZ. Stoga je domena od η jednaka

$$\xi_{(U,\varphi)}(q((U\cap V)\times\{(U,\varphi)\}\times\mathbb{R}^n))=h(\varphi(U\cap V)\times\mathbb{R}^n)$$

te imamo kako je η kompozicija sljedećih funkcija

Stoga je za
$$z \in \varphi(U \cap V)$$
 i $v \in \mathbb{R}^n$, $\eta(z,v) = (\psi(\varphi^{-1}(z)), D(\delta_{(U,\varphi),(V,\psi)})(z)(v))$

$$\Longrightarrow \eta(z,v) = (\delta_{(U,\varphi),(V,\psi)}(z), D(\delta_{(U,\varphi),(V,\psi)})(z)(v)).$$

Funkcija $\delta_{(U,\varphi),(V,\psi)} \colon \varphi(U \cap V) \to \mathbb{R}^n$ je glatka (jer su (U,φ) , $(V,\psi) \in \Phi$), a lako zaključujemo kako je funkcija $\varphi(U \cap V) \times \mathbb{R}^n \to \mathbb{R}^n$, $(z,v) \mapsto D(\delta_{(U,\varphi),(V,\psi)})(z)(v)$ također glatka (kao u napomeni 3.10 za funkciju Δ). Prema tome, η je glatka funkcija. Dakle, Σ_{Φ} je gladak 2n-atlas za $T(X,\Phi)$.

Neka je (X, Φ) diferencijalna n-mnogostrukost. Imamo kako je Σ_{Φ} gladak 2n-atlas za $T(X, \Phi)$ pa prema teoremu 2.13 postoji jedinstveni maksimalan gladak 2n-atlas Λ_{Φ} za $T(X, \Phi)$ td. je $\Sigma_{\Phi} \subseteq \Lambda_{\Phi}$. Imamo kako je $(T(X, \Phi), \Lambda_{\Phi})$ diferencijalna 2n-mnogostrukost.

Propozicija 3.22.

Neka je (X, Φ) diferencijalna n-mnogostrukost te neka je $(T(X, \Phi), \pi)$ tangencijalni svežanj od (X, Φ) . Tada je π glatka funkcija s obzirom na $(T(X, \Phi), \Lambda_{\Phi})$ i (X, Φ) .

Dokaz. Neka je $\alpha \in T(X, \Phi)$. Imamo $\alpha = [(x, (U, \varphi), v)]$ za neke $(U, \varphi) \in \Phi, x \in U$ i $v \in \mathbb{R}^n$. Vrijedi

•
$$\pi(q(U \times \{(U, \varphi)\} \times \mathbb{R}^n)) \subseteq U$$

•
$$(q(U \times \{(U,\varphi)\} \times \mathbb{R}^n), \xi_{(U,\varphi)}) \in \Lambda_{\Phi}$$

• $(U, \varphi) \in \Phi$.

Imamo sliku

Dovoljno je, prema propoziciji 2.19, dokazati kako je funkcija

$$\varphi \circ \pi \circ \xi_{(U,\varphi)}^{-1} \colon \varphi(U) \times \mathbb{R}^n \to \mathbb{R}^n$$

klase C^{∞} . Za $z \in \varphi(U)$ i $v \in \mathbb{R}^n$ vrijedi

$$\begin{split} (\varphi \circ \pi \circ \xi_{(U,\varphi)}^{-1})(z,v) &= \varphi(\pi(\xi_{(U,\varphi)}^{-1}(z,v))) \\ &= \varphi(\pi([(\varphi^{-1}(z),(U,\varphi),v)])) \\ &= \varphi(\varphi^{-1}(z)) = z \end{split}$$

$$\Longrightarrow \varphi \circ \pi \circ \xi_{(U,\varphi)}^{-1}$$
 je klase C^{∞} .

Napomena 3.23. Prema primjeru 2.17, ukoliko je S ploha (u \mathbb{R}^3), imamo kako je (S, Φ) diferencijalna 2-mnogostrukost, pri čemu je $\Phi = \{(\varphi(U), \varphi^{-1}) \mid \varphi \colon U \to \mathbb{R}^3 \text{ lokalna parametrizacija od } S\}$. Neka je $p \in S$. Ranije smo definirali T_pS , tangencijalnu ravninu na S u p; znamo kako je to dvodimenzionalni vektorski potprostor od \mathbb{R}^3 te kako je $T_pS = D(\varphi)(x_0)(\mathbb{R}^2)$ za bilo koju lokalnu parametrizaciju $\varphi \colon U \to \mathbb{R}^3$ od S td. je $p = \varphi(x_0)$ za neki $x_0 \in U$. Definiramo funkciju $g \colon T_pS \to T_p(S, \Phi)$ na sljedeći

način. Fiksirajmo lokalnu parametrizaciju $\varphi \colon U \to \mathbb{R}^3$ od S oko p. Neka je $x_0 \in U$ td. je $\varphi(x_0) = p$. Definiramo

$$g(u) = [(p, (\varphi(U), \varphi^{-1}), (D(\varphi)(x_0))^{-1}(u))] \in T_p(S, \Phi).$$

Ovdje gledamo na $D(\varphi)(x_0)$ kao na izomorfizam $\mathbb{R}^2 \to T_p S$. Uočimo kako je g kompozicija izomorfizma $(D(\varphi)(x_0))^{-1}: T_p S \to \mathbb{R}^2$ i izomorfizma $\mathbb{R}^2 \to T_p(S, \Phi), v \mapsto [(p, (\varphi(U), \varphi^{-1}), v)]$. Dakle, g je izomorfizam. Tvrdimo kako g ne ovisi o izboru lokalne parametrizacije φ . Neka je zato $\psi: V \to \mathbb{R}^3$ lokalna parametrizacija od S oko p te neka su $y_0 \in V$ td. je $\psi(y_0) = p$ i $v \in T_p S$. Trebamo pokazati

$$[(p,(\varphi(U),\varphi^{-1}),(D(\varphi)(x_0))^{-1}(v))] = [(p,(\psi(V),\psi^{-1}),(D(\psi)(y_0))^{-1}(v))].$$

Ovo je redom ekvivalentno s

$$D(\delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})})(\varphi^{-1}(p))((D(\varphi)(x_0))^{-1}(v)) = (D(\psi)(y_0))^{-1}(v) \iff D(\psi)(y_0)(D(\delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})})(x_0)((D(\varphi)(x_0))^{-1}(v))) = v \iff \iff (D(\psi)(y_0) \circ D(\delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})})(x_0))((D(\varphi)(x_0))^{-1}(v)) = v \iff \iff D(\psi \circ \delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})})(x_0)((D(\varphi)(x_0))^{-1}(v)) = v.$$
 (1)

Imamo

$$\psi \circ \delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})} \colon \varphi^{-1}(\varphi(U) \cap \psi(V)) \to \mathbb{R}^3$$
$$x \mapsto \psi(\psi^{-1}(\varphi(x))) = \varphi(x)$$

 $\Longrightarrow \psi \circ \delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})} = \varphi|_{\varphi^{-1}(\varphi(U)\cap\psi(V))}$. Prema lokalnom svojstvu diferencijabilnosti imamo

$$D(\psi \circ \delta_{(\varphi(U),\varphi^{-1}),(\psi(V),\psi^{-1})})(x_0) = D(\varphi)(x_0),$$

stoga vrijedi (1) pa smo gotovi.

Neka je (X, Φ) diferencijalna n-mnogostrukost, (Y, Ψ) diferencijalna m-mnogostrukost te $f: X \to Y$ glatka funkcija. Definiramo funkciju $Df: T(X, \Phi) \to T(Y, \Psi)$ na sljedeći način. Neka je $\alpha \in T(X, \Phi)$. Imamo kako je $\alpha \in T_x(X, \Phi)$ za neki $x \in X$. Odaberimo $(U, \varphi) \in \Phi$ i $(V, \psi) \in \Psi$ td. je $x \in U$, $f(U) \subseteq V$ te $\psi \circ f \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}^m$ klase C^{∞} (propozicija 2.19). Prema propoziciji 3.15 postoji jedinstveni $v \in \mathbb{R}^n$ td. je $\alpha = [x, (U, \varphi), v]$. Definiramo

$$(Df)(\alpha) = [(f(x), (V, \psi), D(\psi \circ f \circ \varphi^{-1})(\varphi(x))(v))].$$

Definicija 3.24. Neka je (X, Φ) diferencijalna n-mnogostrukost, (Y, Ψ) diferencijalna m-mnogostrukost te $f: X \to Y$ glatka funkcija. Za $Df: T(X, \Phi) \to T(Y, \Psi)$ kao gore kažemo da je **derivacija** funkcije f (s obzirom na (X, Φ) i (Y, Ψ)).

Nije teško pokazati (DZ) kako ova definicija ne ovisi o izboru karata (U, φ) i (V, ψ) . Nadalje, za sve $x \in X$ imamo kako je $(Df)(T_x(X, \Phi)) \subseteq T_{f(x)}(Y, \Psi)$ te vrijedi kako je

$$Df|_{T_x(X,\Phi),T_{f(x)}(Y,\psi)}:T_x(X,\Phi)\to T_{f(x)}(Y,\Psi)$$

linearan operator (DZ).

Propozicija 3.25.

Neka je (X, Φ) diferencijalna n-mnogostrukost, (Y, Ψ) diferencijalna m-mnogostrukost te $f \colon X \to Y$ glatka funkcija. Tada je $Df \colon T(X, \Phi) \to T(Y, \Psi)$ glatko preslikavanje mnogostrukosti $(T(X, \Phi), \Lambda_{\Phi})$ i $(T(Y, \Psi), \Lambda_{\Psi})$.

Dokaz. Neka je $\alpha \in T(X, \Phi)$. Tada je $\alpha \in T_x(X, \Phi)$ za neki $x \in X$. Nadalje, postoje $(U, \varphi) \in \Phi$, $(V, \psi) \in \Psi$ td. je

- \bullet $x \in U$
- $f(U) \subseteq V$
- $\psi \circ f \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}^m$ klase C^{∞} .

Vrijedi $\alpha = [(x, (U, \varphi), v)]$ za neki $v \in \mathbb{R}^n$. Očito je $[(x, (U, \varphi), v)] \in q(U \times \{(U, \varphi)\} \times \mathbb{R}^n)$, pri čemu je q pripadno kvocijentno preslikavanje iz definicije 3.7, tj. $\alpha \in q(U \times \{(U, \varphi)\} \times \mathbb{R}^n)$. Za $y \in U$ i $w \in \mathbb{R}^n$ vrijedi

$$(Df)([(y,(U,\varphi),w)]) = [(f(y),(V,\psi),D(\psi \circ f \circ \varphi^{-1})(\varphi(y))(w))]. \quad (1)$$

Stoga je $(Df)(q(U\times \{(U,\varphi)\}\times \mathbb{R}^n))\subseteq q(V\times \{(V,\psi)\}\times \mathbb{R}^m).$

Dovoljno je, prema propoziciji 2.19, dokazati kako je

$$\xi_{(V,\psi)} \circ Df \circ (\xi_{(U,\varphi)})^{-1} \colon \varphi(U) \times \mathbb{R}^n \to \mathbb{R}^{2m}$$

klase C^{∞} . Podsjetimo se kako je za $y \in U$ i $w \in \mathbb{R}^n$, $\xi_{(U,\varphi)}([(y,(U,\varphi),w)]) = (\varphi(y),w)$. Za $z \in \varphi(U)$ i $u \in \mathbb{R}^n$ imamo

$$\begin{split} \left(\xi_{(V,\psi)} \circ Df \circ \xi_{(U,\varphi)}^{-1}\right)(z,u) &= \xi_{(V,\psi)}(Df(\xi_{(U,\varphi)}^{-1}(z,u))) = \\ &= \xi_{(V,\psi)}(Df([(\varphi^{-1}(z),(U,\varphi),u)])) \stackrel{(1)}{=} \\ &\stackrel{(1)}{=} \xi_{(V,\psi)}([(f(\varphi^{-1}(z)),(V,\psi),D(\psi \circ f \circ \varphi^{-1})(z)(u))]) = \\ &= (\psi(f(\varphi^{-1}(z))),D(\psi \circ f \circ \varphi^{-1})(z)(u)) = \\ &= ((\psi \circ f \circ \varphi^{-1})(z),D(\psi \circ f \circ \varphi^{-1})(z)(u)). \end{split}$$

Budući su obe funkcije klase C^{∞} , zaključujemo kako je $\xi_{(V,\psi)} \circ Df \circ (\xi_{(U,\varphi)})^{-1} \colon \varphi(U) \times \mathbb{R}^n \to \mathbb{R}^{2m}$ klase C^{∞} pa smo gotovi.

Propozicija 3.26.

Neka je (X,Φ) diferencijalna n-mnogostrukost, (Y,Ψ) diferencijalna m-mnogostrukost te (Z,Θ) diferencijalna l-mnogostrukost. Pretpostavimo kako su $f\colon X\to Y$ i $g\colon Y\to Z$ glatke funkcije. Tada vrijedi

$$D(g \circ f) = D(g) \circ D(f).$$

Dokaz. DZ.

Napomena 3.27. Neka je (X, Φ) diferencijalna n-mnogostrukost. Neka je $(U, \varphi) \in \Phi$. Budući je U otvoren skup u X, prema propoziciji 2.26 imamo kako za skup $\Phi_U = \{(V, \psi) \in \Phi \mid V \subseteq U\}$ vrijedi da je (U, Φ_U) diferencijalna n-mnogostrukost. Nadalje, neka je \mathcal{K} kanonski n-atlas za \mathbb{R}^n . Je li $\varphi \colon U \to \mathbb{R}^n$ glatko preslikavanje mnogostrukosti (U, Φ_U) i $(\mathbb{R}^n, \mathcal{K})$?

Dovoljno je, prema propoziciji 2.19, dokazati kako je funkcija

$$id_{\mathbb{R}^n} \circ \varphi \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}^n$$

klase C^{∞} , no ovo je očito jer se radi o funkciji $id_{\varphi(U)} \colon \varphi(U) \to \mathbb{R}^n$. Nadalje, čemu je jednaka funkcija $D\varphi \colon T(U, \Phi_U) \to T(\mathbb{R}^n, \mathcal{K})$? Za $x \in U$ i $v \in \mathbb{R}^n$ imamo

$$D\varphi([(x,(U,\varphi),v)]) = [(\varphi(x),(\mathbb{R}^n,id_{\mathbb{R}^n}),D(id_{\mathbb{R}^n}\circ\varphi\circ\varphi^{-1})(\varphi(x))(v))]$$
$$= [(\varphi(x),(\mathbb{R}^n,id_{\mathbb{R}^n}),v)].$$

Propozicija 3.28.

Neka je (X, Φ) diferencijalna n- mnogostrukost te neka su $f, g \colon X \to \mathbb{R}$ glatke funkcije (mnogostrukosti (X, Φ) i $(\mathbb{R}, \mathcal{K})$, gdje je \mathcal{K} kanonski 1-atlas za \mathbb{R}). Tada su $f+g \colon X \to \mathbb{R}$ i $f \cdot g \colon X \to \mathbb{R}$ također glatke funkcije.

Dokaz. Neka je $x \in X$. Odaberimo $(U, \varphi) \in \Phi$ td. je $x \in U$. Imamo $(\mathbb{R}, id_{\mathbb{R}}) \in \mathcal{K}$ te je $f(U), g(U) \subseteq \mathbb{R}$ pa po definiciji glatkog preslikavanja slijedi kako je $f \circ \varphi^{-1} = id_{\mathbb{R}} \circ f \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}$ klase C^{∞} .

Isto tako je $g \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}$ klase C^{∞} . Stoga su

$$f \circ \varphi^{-1} + g \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R} \ \mathrm{i} \ (f \circ \varphi^{-1}) \cdot (g \circ \varphi^{-1}) \colon \varphi(U) \to \mathbb{R}$$

klase C^{∞} . Dakle

$$id_{\mathbb{R}} \circ (f+g) \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R} \ i \ id_{\mathbb{R}} \circ (f \cdot g) \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}$$

su klase C^{∞} pa prema propoziciji 2.19 slijedi kako su f + g i $f \cdot g$ glatke funkcije.

Napomena 3.29. Neka je (X, Φ) diferencijalna n-mnogostrukost te neka je (Y, Ψ) diferencijalna m-mnogostrukost. Tada je svaka konstantna funkcija $X \to Y$ glatka (DZ). Nadalje, ako je $f \colon X \to \mathbb{R}$ glatka funkcija te $\lambda \in \mathbb{R}$, onda kao u prethodnom dokazu vidimo kako je $\lambda f \colon X \to \mathbb{R}$ glatka funkcija (to zapravo slijedi iz prvog dijela ove napomene i propozicije 3.28). Posebno, $-f \colon X \to \mathbb{R}$ je glatka funkcija.

Neka je (X, Φ) diferencijalna n-mnogostrukost. Označimo s $C^{\infty}(X, \Phi)$ skup svih glatkih funkcija $f \colon X \to \mathbb{R}$. Uz zbrajanje i množenje funkcija (po točkama) imamo kako je $C^{\infty}(X, \Phi)$ prsten (propozicija 3.28). Fiksirajmo $p \in X$. Na $C^{\infty}(X, \Phi)$ definiramo relaciju \sim_p s

$$f \sim_p g \iff$$
 postoji U otvorena okolina od p u X td. je $f|_U = g|_U$.

Lako se vidi kako je \sim_p relacija ekvivalencije na $C^\infty(X,\Phi)$. Za $f\in C^\infty(X,\Phi)$ neka je $[f]_p$ pripadna klase ekvivalencije od f, tj. $[f]_p=\{g\in C^\infty(X,\Phi)\mid f\sim_p g\}$. Označimo s $C_p^\infty(X,\Phi)$ skup svih pripadnih klasa ekvivalencije; dakle $C_p^\infty(X,\Phi)=\{[f]_p\mid f\in C^\infty(X,\Phi)\}$. Na $C_p^\infty(X,\Phi)$ definiramo linearne operacije + i \cdot s

$$[f]_p + [g]_p = [f+g]_p \text{ i } [f]_p \cdot [g]_p = [f \cdot g]_p$$

(za DZ provjeriti kako je definicija dobra, tj. kako ne ovisi o izboru predstavnika klasa).

Definicija 3.30. Neka je (X, Φ) diferencijalna n-mnogostrukost te $p \in X$. Tada je $C_p^{\infty}(X, \Phi)$ uz operacije $+ i \cdot (sve\ kao\ gore)$ također prsten kojeg zovemo prsten klica glatkih funkcija na X u p.

Napomena 3.31. Neka je (X, Φ) diferencijalna n-mnogostrukost. Prema napomeni 3.29 i propoziciji 3.28 imamo kako je $C^{\infty}(X, \Phi)$ vektorski prostor. Stoga, za $p \in X$, uz operacije

$$[f]_p + [g]_p = [f + g]_p \text{ i } \lambda [f]_p = [\lambda f]_p,$$

 $C_p^{\infty}(X,\Phi)$ dobiva strukturu vektorskog prostora.

Neka je (X, Φ) diferencijalna n-mnogostrukost te neka je $p \in X$. Označimo s $D_p(X, \Phi)$ skup svih funkcija $\tau \colon C^{\infty}(X, \Phi) \to \mathbb{R}$ koja imaju sljedeća svojstva

1.
$$\tau(\alpha f + \beta g) = \alpha \tau(f) + \beta \tau(g)$$
 za sve $\alpha, \beta \in \mathbb{R}$ i sve $f, g \in C^{\infty}(X, \Phi)$

2.
$$\tau(f \cdot g) = f(p)\tau(g) + g(p)\tau(f)$$
 za sve $f, g \in C^{\infty}(X, \Phi)$

3. $f, g \in C^{\infty}(X, \Phi)$ td. $f|_{U} = g|_{U}$ za neku otvorenu okolinu U od p u $X \Longrightarrow \tau(f) = \tau(g)$.

Intuitivno: τ je derivacija.

Neka su $\tau_1, \tau_2 \in D_p(X, \Phi)$ te $\alpha_1, \alpha_2 \in \mathbb{R}$. Tada je $\alpha \tau_1 + \alpha_2 \tau_2 : C^{\infty}(X, \Phi) \to \mathbb{R}$ funkcija za koju tvrdimo kako je element od $D_p(X, \Phi)$:

1. Za $\alpha, \beta \in \mathbb{R}$ i $f,g \in C^{\infty}(X,\Phi)$ vrijedi

$$(\alpha_{1}\tau_{1} + \alpha_{2}\tau_{2})(\alpha f + \beta g) = \alpha_{1}\tau_{1}(\alpha f + \beta g) + \alpha_{2}\tau_{2}(\alpha f + \beta g) =$$

$$= \alpha_{1}(\alpha \tau_{1}(f) + \beta \tau_{1}(g)) + \alpha_{2}(\alpha \tau_{1}(f) + \beta \tau_{2}(g)) =$$

$$= \alpha(\alpha_{1}\tau_{1}(f) + \alpha_{2}\tau_{2}(f)) + \beta(\alpha_{1}\tau_{1}(g) + \alpha_{2}\tau_{2}(g)) =$$

$$= \alpha(\alpha_{1}\tau_{1} + \alpha_{2}\tau_{2})(f) + \beta(\alpha_{1}\tau_{1} + \alpha_{2}\tau_{2})(g).$$

2. Neka su $f,g \in C^{\infty}(X,\Phi)$. Imamo

$$(\alpha_1 \tau_1 + \alpha_2 \tau_2)(f \cdot g) = \alpha_1 \tau_1(f \cdot g) + \alpha_2 \tau_2(f \cdot g) =$$

$$= \alpha_1(f(p) \cdot \tau_1(g) + g(p) \cdot \tau_1(f)) + \alpha_2(f(p)\tau_2(g) + g(p)\tau_2(f)) =$$

$$= f(p) \cdot (\alpha_1 \tau_1 + \alpha_2 \tau_2)(g) + g(p) \cdot (\alpha_1 \tau_1 + \alpha_2 \tau_2)(f).$$

3. Ako su $f,g \in C^{\infty}(X,\Phi)$ td. je $f|_U = g|_U$ za neku otvorenu okolinu U od p u X, onda je $\tau_1(f) = \tau_1(g)$ i $\tau_2(f) = \tau_2(g)$ pa je $(\alpha_1\tau_1 + \alpha_2\tau_2)(f) = (\alpha_1\tau_1 + \alpha_2\tau_2)(g)$.

Prema tome, $\alpha_1\tau_1 + \alpha_2\tau_2 \in D_p(X,\Phi)$. Dakle, $D_p(X,\Phi)$ ima strukturu vektorskog prostora (uz standardno zbrajanje i množenje skalarom). Definirajmo sada funkciju $\Theta \colon T_p(X,\Phi) \to D_p(X,\Phi)$ na sljedeći način. Neka je $v \in T_p(X,\Phi)$. Definiramo $\Theta(v) \colon C^\infty(X,\Phi) \to \mathbb{R}$ tako da za $f \in C^\infty(X,\Phi)$ stavimo

$$(\Theta(v))(f) = (Df)(v) \in T_{f(p)}(\mathbb{R}, \mathcal{K}) \cong \mathbb{R},$$

pri čemu je K kanonski 1–atlas za \mathbb{R} , a $T_u(\mathbb{R},K)$ $(y \in \mathbb{R})$ identificiramo s \mathbb{R} koristeći izomorfizam

$$T_y(\mathbb{R}, \mathcal{K}) \to \mathbb{R}$$

 $[(y, (\mathbb{R}, id_{\mathbb{R}}), u)] \mapsto u$

(komentar prije leme 3.18). Kako bismo dokazali da je $\Theta(v) \in D_p(X, \Phi)$, trebamo pokazati kako $\Theta(v)$ zadovoljava svojstva 1, 2 i 3. Uzmimo $\alpha, \beta \in \mathbb{R}$ te $f, g \in C^{\infty}(X, \Phi)$.

1. Želimo

$$\Theta(v)(\alpha f + \beta g) = \alpha \Theta(v)(f) + \beta \Theta(v)(g).$$

Imamo $v = [(p, (U, \varphi), u)],$ gdje je $(U, \varphi) \in \Phi$ td. $p \in U, u \in \mathbb{R}^n$. Vrijedi

$$D(\alpha f + \beta g)(v) = D(\alpha f + \beta g)[(p, (U, \varphi), u)] =$$

$$= [((\alpha f + \beta g)(p), (\mathbb{R}, id_{\mathbb{R}}), D(id_{\mathbb{R}} \circ (\alpha f + \beta g) \circ \varphi^{-1})(\varphi(p))(u))]$$

te

$$Df(v) = Df[(p, (U, \varphi), u)] = [(f(p), (\mathbb{R}, id_{\mathbb{R}}), D(f \circ \varphi^{-1})(\varphi(p))(u))]$$
$$Dg(v) = [(g(p), (\mathbb{R}, id_{\mathbb{R}}), D(g \circ \varphi^{-1})(\varphi(p))(u))].$$

Stoga imamo

$$\Theta(v)(\alpha f + \beta g) = D(\alpha f + \beta g)(\varphi(p))(u)$$

$$\Theta(v)(f) = D(f \circ \varphi^{-1})(\varphi(p))(u)$$

$$\Theta(v)(g) = D(g \circ \varphi^{-1})(\varphi(p))(u).$$

Općenito, ako je $\Omega \subseteq \mathbb{R}^n$ otvoren i $f, g: \Omega \to \mathbb{R}$ klase C^1 te $p \in \Omega$, onda je $D(\alpha f + \beta g)(p) = \alpha D(f)(p) + \beta D(g)(p)$. Slijedi

$$\Theta(v)(\alpha f + \beta g) = D(\alpha(f \circ \varphi^{-1}) + \beta(g \circ \varphi^{-1}))(\varphi(p))(u) =$$

$$= \alpha D(f \circ \varphi^{-1})(\varphi(p))(u) + \beta D(g \circ \varphi^{-1})(\varphi(p))(u) =$$

$$= \alpha \Theta(v)(f) + \beta \Theta(v)(g).$$

2. Želimo

$$\Theta(v)(f \cdot g) = f(p)\Theta(v)(g) + g(p)\Theta(v)(f).$$

Koristimo činjenicu kako za $\Omega \subseteq \mathbb{R}^n$ otvoren, $f, g: \Omega \to \mathbb{R}$ klase C^1 te $p \in \Omega$ vrijedi

$$D(f \cdot g)(p) = f(p) \cdot D(g)(p) + g(p) \cdot D(f)(p),$$

što lako vidimo promatrajući parcijalne derivacije.

3. Ovo je očigledno, detalje za DZ.

Sada kada smo definirali Θ : $T_p(X, \Phi) \to D_p(X, \Phi)$, tvrdimo kako je linearno preslikavanje. Uzmimo $\alpha, \beta \in \mathbb{R}$ te $v, w \in T_p(X, \Phi)$. Želimo

$$\Theta(\alpha v + \beta w) = \alpha \Theta(v) + \beta \Theta(w)$$

(jednakost funkcija $C^{\infty}(X, \Phi) \to \mathbb{R}$). To vidimo na elementima domene. Zaista, za $f \in C^{\infty}(X, \Phi)$ uvjet $\Theta(\alpha v + \beta w)(f) = \alpha \Theta(v)(f) + \beta \Theta(w)(f)$ ekvivalentan je, prema definiciji od Θ , s

$$D(f)(\alpha v + \beta w) = \alpha D(f)(v) + \beta D(f)(w),$$

a to vrijedi jer je

$$Df|_{T_p(X,\Phi),T_{f(p)}(\mathbb{R},\mathcal{K})}:T_p(X,\Phi)\to T_{f(p)}(\mathbb{R},\mathcal{K})$$

linearan operator (ponovno koristimo identifikaciju prije leme 3.18).

Napomena 3.32. Neka je $n \in \mathbb{N}$, $f: \mathbb{R}^n \to \mathbb{R}$ klase C^1 to $x, y \in \mathbb{R}^n$. Tada postoji $z \in [x, y]$ td.

$$f(y) - f(x) = \langle (\partial_1 f(z), \dots, \partial_n f(z)), y - x \rangle.$$

Naime, definirajmo $\psi \colon \mathbb{R} \to \mathbb{R}^n$ s $\psi(t) = x + t(y - x)$ te primijenimo Lagrangeov teorem srednje vrijednosti na $f \circ \psi \colon \mathbb{R} \to \mathbb{R}$ (DZ).

Lema 3.33.

Neka je $h: \mathbb{R}^n \to \mathbb{R}$ funkcija klase C^1 te neka je $f: [0,1] \to \mathbb{R}$ neprekidna. Definiramo funkciju $g: \mathbb{R}^n \to \mathbb{R}$ s

$$g(x) := \int_0^1 h(tx)f(t) dt.$$

Tada je gneprekidna, za sve $i \in \{1, \dots, n\}$ postoji $\partial_i g$ te za sve $x \in \mathbb{R}^n$ vrijedi

$$\partial_i g(x) = \int_0^1 \partial h(tx) \cdot t f(t) dt.$$

Dokaz. Imamo kako je f omeđena pa postoji N>0 td. $|f(t)|\leq N$ za sve $t\in[0,1]$. Neka je M>0. Kako je h neprekidna, a $\overline{K}(0,M)$ je kompaktan skup u \mathbb{R}^n , imamo kako je h i uniformno neprekidna na $\overline{K}(0,M)$, tj. vrijedi

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x, y \in \overline{K}(0, M)) \left(\|x - y\| < \delta \Longrightarrow |h(x) - h(y)| < \frac{\varepsilon}{N} \right).$$

Uočimo kako je tada i tx, $ty \in \overline{K}(0, M)$, za sve $t \in [0, 1]$. Također imamo $||tx - ty|| = |t| \cdot ||x - y|| \le ||x - y|| < \delta$ pa slijedi

$$|g(x) - g(y)| = \left| \int_0^1 h(tx)f(t) dt - \int_0^1 h(ty)f(t) dt \right| =$$

$$= \left| \int_0^1 (h(tx) - h(ty))f(t) dt \right| \le$$

$$\le \int_0^1 |(h(tx) - h(ty))| \cdot |f(t)| dt \le$$

$$\le \int_0^1 \varepsilon dt = \varepsilon.$$

Dakle, za sve $x, y \in \overline{K}(0, M)$ vrijedi implikacija

$$||x - y|| < \delta \Longrightarrow ||q(x) - q(y)|| < \varepsilon.$$

Stoga je g uniformno neprekidna na $\overline{K}(0,M)$, za sve M>0. Iz toga slijedi (DZ) kako je $g:\mathbb{R}^n\to\mathbb{R}$ neprekidna. Neka je $x\in\mathbb{R}^n$, $i\in\{1,\ldots,n\}$ te $s\in\mathbb{R}\setminus\{0\}$. Imamo

$$\frac{g(x+se_i) - g(x)}{s} = \frac{\int_0^1 h(tx + tse_i) f(t) dt - \int_0^1 h(tx) f(t) dt}{s} = \int_0^1 \frac{h(tx + tse_i) - h(tx)}{s} f(t) dt.$$

Prema napomeni 3.32 imamo kako za sve $t \in [0,1]$ postoji $z_{s,t} \in \overline{tx,(tx+tse_i)}$ td. je

$$h(tx+tse_i)-h(tx)=\langle (\partial_1 h(z_{s,t}),\ldots,\partial_n h(z_{s,t})),tse_i\rangle=\partial_i h(z_{s,t})ts.$$

Iz ovoga slijedi

$$\frac{g(x+se_i) - g(x)}{s} = \int_0^1 \partial_i h(z_{s,t}) t f(t) dt \quad (1)$$

te $||z_{s,t} - tx|| \le ||(tx + tse_i) - tx|| = ||tse_i|| = t|s|$. (2)

Neka je M > 0 td. $x \in K(0, M)$ i uzmimo $\lambda > 0$ td. za sve $s \in \langle -\lambda, \lambda \rangle$ vrijedi $x + se_i \in K(0, M)$. Neka je $\varepsilon > 0$ po volji. Iz uniformne neprekidnosti slijedi kako postoji $\delta > 0$ td. za sve $u, v \in \overline{K}(0, M)$ vrijedi implikacija

$$||u - v|| < \delta \Longrightarrow |\partial_i h(u) - \partial_i h(v)| < \frac{\varepsilon}{N}.$$
 (3)

Konačno, odaberimo $\mu > 0$ td. $K(x, \mu) \subseteq K(0, M)$ te $\mu < \lambda$ i $\mu < \delta$. (4) Neka je $s \in \langle -\mu, \mu \rangle$, $s \neq 0$. Za sve $t \in \langle 0, 1 |$ prema (2) vrijedi

$$\left\| \frac{1}{t} z_{s,t} - x \right\| \leq |s| \Longrightarrow \left\| \frac{1}{t} z_{s,t} - x \right\| < \mu \stackrel{(4)}{\Longrightarrow}$$

$$\stackrel{(4)}{\Longrightarrow} \frac{1}{t} z_{s,t} \in K(0,M) \Longrightarrow z_{s,t} = t \cdot \frac{1}{t} z_{s,t} \in K(0,M).$$

Jasno, $tx \in K(0,M)$ jer $x \in K(0,M)$. Isto vrijedi i za t=0. Dakle, $z_{s,t} \in K(0,M)$, $tx \in K(0,M)$ i $\|z_{s,t} - tx\| \overset{(2)}{\leq} |s| < \mu < \delta$ pa iz (3) slijedi

$$|\partial_i h(z_{s,t}) - \partial_i h(tx)| < \frac{\varepsilon}{N},$$

za sve $t \in (0,1]$. Stoga je prema (1)

$$\left| \frac{g(x+se_i) - g(x)}{s} - \int_0^1 \partial_i h(tx) t f(t) dt \right| \stackrel{(1)}{=} \left| \int_0^1 \partial_i h(z_{s,t}) t f(t) dt - \int_0^1 \partial_i h(tx) t f(t) dt \right| \le \int_0^1 \left| \partial_i h(z_{s,t}) - \partial_i h(tx) \right| \cdot t \cdot |f(t)| dt \le \varepsilon$$

 $\Longrightarrow \lim_{s\to 0} \frac{g(x+se_i)-g(x)}{s} = \int_0^1 \partial_i h(tx) t f(t) dt$, iz čega slijedi tvrdnja leme.

Propozicija 3.34.

Neka je $f: \mathbb{R}^n \to \mathbb{R}$ funkcija klase C^{∞} . Tada postoje funkcije $g_1, \dots, g_n \colon \mathbb{R}^n \to \mathbb{R}$ klase C^{∞} td.

$$\partial_i f(0) = g_i(0)$$

za sve
$$i=1,\ldots,n$$
 te td.
$$f(x)=f(0)+\sum_{i=1}^n x_i g_i(x)$$

Dokaz. Neka je $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$. Funkcija $f_x\colon\mathbb{R}\to\mathbb{R}$ definirana s $f_x(t)=f(tx)$ je klase C^∞ te je prema osnovnom stavku diferencijalnog i integralnog računa

$$\int_0^1 f_x'(t) dt = f_x(1) - f_x(0) = f(x) - f(0).$$

Nadalje, za sve $t \in \mathbb{R}$ vrijedi $f'_x(t) = D(f)(tx)(x) = \partial_i f(tx)x_1 + \ldots + \partial_n f(tx)x_n$. Prema tome

$$f(x) - f(0) = \sum_{i=1}^{n} \left(x_i \int_0^1 \partial_i f(tx) dt \right). \quad (1)$$

Za $i \in \{1, \ldots, n\}$, neka je $g_i \colon \mathbb{R}^n \to \mathbb{R}$ dana s

$$g_i(x) = \int_0^1 \partial_i f(tx) dt.$$

Iz leme 3.33 lako zaključujemo kako su funkcije g_i klase C^{∞} , a očito je i $g_i(0) = \partial_i f(0)$. Konačno, prema (1) vrijedi

$$f(x) = f(0) + \sum_{i=1}^{n} x_i g_i(x)$$

za sve $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Lema 3.35.

Neka je (X, Φ) diferencijalna n-mnogostrukost te neka je $(U, \varphi) \in \Phi$. Pretpostavimo da je $\lambda \colon \varphi(U) \to \Omega$ difeomorfizam klase C^{∞} , gdje je Ω otvoren podskup od \mathbb{R}^n . Tada je $(U, \lambda \circ \varphi) \in \Phi$.

Dokaz. DZ.

Lema 3.36.

Neka je (X, Φ) diferencijalna n-mnogostrukost. Neka je $p \in X$ te neka je $(U, \varphi) \in \Phi$ td. $p \in U$. Tada postoji $(V, \psi) \in \Phi$ td. $p \in V \subseteq U$, $\psi(U) = \mathbb{R}^n$ te $\psi(p) = 0$.

Dokaz. Za sve $x_0 \in \mathbb{R}^n$ i sve r > 0, $K(x_0, r)$ i \mathbb{R}^n su C^{∞} difeomorfne; kombinirajući s lemom 3.35 slijedi tvrdnja. Detalje za DZ.

Propozicija 3.37.

Neka je (X, Φ) diferencijalna n-mnogostrukost, neka je $(U, \varphi) \in \Phi$, $p \in U$ te neka je $f : U \to \mathbb{R}$ glatka funkcija. Tada postoje $\hat{f} \in C^{\infty}(X, \Phi)$ i otvorena okolina V od p u U td. je $f|_{V} = \hat{f}|_{V}$.

Dokaz. Koristimo sljedeću činjenicu: ako su $a, b \in \mathbb{R}$, pri čemu vrijedi 0 < a < b, onda postoji funkcija $g \colon \mathbb{R} \to \mathbb{R}$ klase C^{∞} td. $g([-a,a]) = \{1\}$ i $g(\langle -\infty, -b] \cup [b,\infty \rangle) = \{0\}$.

Neka je sada $n \in \mathbb{N}$ te neka su $a, b \in \mathbb{R}$ td. 0 < a < b; neka je $g : \mathbb{R} \to \mathbb{R}$ funkcija iz gornjeg komentara za parametre $0 < a^2 < b^2$. Definiramo funkciju $h : \mathbb{R}^n \to \mathbb{R}$ s

$$h(x_1, \dots, x_n) = g(x_1^2 + \dots + x_n^2).$$

Tada je h klase C^{∞} te je h(x)=1 za sve $x\in\mathbb{R}^n$ td. $||x||\leq a$ i h(x)=0 za sve $x\in\mathbb{R}^n$ td. $||x||\geq b$. Neka je sada $x_0\in\mathbb{R}^n$; funkcija $\widetilde{h}\colon\mathbb{R}^n\to\mathbb{R}$ dana s $\widetilde{h}=h(x-x_0)$ je klase C^{∞} te za sve $x\in\mathbb{R}^n$ imamo

$$||x - x_0|| \le a \Longrightarrow \widetilde{h}(x) = 1$$

 $||x - x_0|| \ge b \Longrightarrow \widetilde{h}(x) = 0.$

Vrijedi $\varphi(p) \in \varphi(U)$, a kako je $\varphi(U)$ otvoren u \mathbb{R}^n , postoji b > 0 td. $\overline{K}(\varphi(p), b) \subseteq \varphi(U)$. Sada naprosto odaberemo $a \in \langle 0, b \rangle$ pa prema dokazanom postoji funkcija $h \colon \mathbb{R}^n \to \mathbb{R}$ klase C^{∞} td. za sve $x \in \mathbb{R}^n$

$$||x - \varphi(p)|| \le a \Longrightarrow h(x) = 1$$

 $||x - \varphi(p)|| \ge b \Longrightarrow h(x) = 0.$

Funkcija $f \circ \varphi^{-1} \colon \varphi(U) \to \mathbb{R}$ je klase C^{∞} pa imamo kako je

$$k = (f \circ \varphi^{-1}) \cdot h|_{\varphi(U)} \colon \varphi(U) \to \mathbb{R}$$

klase C^{∞} . Uočimo, za $x \in K(\varphi(p), a)$ je $k(x) = (f \circ \varphi^{-1})(x)$, za $x \in \varphi(U) \setminus \overline{K}(\varphi(p), b)$ je k(x) = 0. Promotrimo sada funkciju $k \circ \varphi \colon U \to \mathbb{R}$. Imamo $(k \circ \varphi)(x) = f(x)$ za $x \in \varphi^{-1}(K(\varphi(p), a))$ te $(k \circ \varphi)(x) = 0$ za $x \in U \setminus \varphi^{-1}(\overline{K}(\varphi(p), b))$. Definiramo $\hat{f} \colon X \to \mathbb{R}$ s

$$\hat{f}(x) = \begin{cases} (k \circ \varphi)(x), & \text{za } x \in U, \\ 0, & \text{inače } . \end{cases}$$

Imamo $\hat{f}(x) = f(x)$ za sve $x \in \varphi^{-1}(K(\varphi(p), a)) =: V$; uočimo kako je V otvorena okolina od p u U. Preostaje pokazati kako je \hat{f} glatka, za što je dovoljno provjeriti valjanost sljedeće izreke

$$(\forall x \in X)(\exists (V,\psi) \in \Phi) \text{ td. } x \in V \land \hat{f} \circ \psi^{-1} \colon \psi(V) \to \mathbb{R} \text{ klase } C^{\infty}.$$

Neka je stoga $x \in X$ po volji.

1° Ako je $x \in U$, (U, φ) je dobra karta.

 2° Pretpostavimo sada $x \notin U$. Imamo

$$\overline{K}(\varphi(p),b)\subseteq\varphi(U)\Longrightarrow\varphi^{-1}(\overline{K}(\varphi(p),b))\subseteq U\Longrightarrow x\notin\varphi^{-1}(\overline{K}(\varphi(p),b)).$$

No, posljednji skup je kompaktan u X (jer je $\overline{K}(\varphi(p),b)$ kompaktan skup u \mathbb{R}^n i φ^{-1} je neprekidna funkcija) pa je stoga i zatvoren u X. Dakle, $x \in X \setminus \varphi^{-1}(\overline{K}(\varphi(p),b))$ koji je otvoren pa možemo naći kartu $(V,\psi) \in \Phi$ td. $x \in V$ i $V \subseteq X \setminus \varphi^{-1}(\overline{K}(\varphi(p),b))$. Iz ovoga slijedi kako su skupovi V i $\varphi^{-1}(\overline{K}(\varphi(p),b))$ disjunktni, a to povlači kako je vrijednost funkcije \hat{f} jednaka 0 u svakoj točki skupa V (prema definiciji od \hat{f}). Stoga je $\hat{f} \circ \psi^{-1}$ nul-funkcija, a time i klase C^{∞} .

Teorem 3.38.

Neka je (X, Φ) diferencijalna n-mnogostrukost te $p \in X$. Tada je $\Theta \colon T_p(X, \Phi) \to D_p(X, \Phi)$ izomorfizam vektorskih prostora.

Dokaz. Prema lemi 3.36, postoji $(U,\varphi) \in \Phi$ td. $p \in U$, $\varphi(p) = 0$ i $\varphi(U) = \mathbb{R}^n$. Za sve $v \in \mathbb{R}^n$ i sve $f \in C^{\infty}(X,\mathbb{R})$ vrijedi

$$\Theta([(p, (U, \varphi), v)])(f) = Df([(p, (U, \varphi), v)]) = [(f(p), (\mathbb{R}, id_{\mathbb{R}}), D(f \circ \varphi^{-1})(\varphi(p))(v))].$$
(1)

Neka su e_1, \ldots, e_n vektori standardne baze za \mathbb{R}^n . Znamo kako je $\mathbb{R}^n \to T_p(X, \Phi), v \mapsto [(p, (U, \varphi), v)]$ izomorfizam vektorskih prostora. Za $i \in \{1, \ldots, n\}$, označimo $E_i \coloneqq [(p, (U, \varphi), e_i)]$, tako da je E_1, \ldots, E_n baza za $T_p(X, \Phi)$. Dovoljno je dokazati kako je $\Theta(E_1), \ldots, \Theta(E_n)$ baza za $D_p(X, \Phi)$. Uočimo kako za $i \in \{1, \ldots, n\}$ i $f \in C^\infty(X, \Phi)$ prema (1) vrijedi

$$(\Theta(E_i))(f) = D(f \circ \varphi^{-1})(0)(e_i) =$$

$$= \langle (\partial_1(f \circ \varphi^{-1})(0), \dots, \partial_n(f \circ \varphi^{-1})(0)), e_i \rangle =$$

$$= \partial_i(f \circ \varphi^{-1})(0).$$
(2)

Za svaki $i \in \{1, ..., n\}$ je funkcija $p_i \circ \varphi \colon U \to \mathbb{R}$ glatka $(p_i \colon \mathbb{R}^n \to \mathbb{R}$ je projekcija na i—tu koordinatu). Prema propoziciji 3.37 onda postoji $\widetilde{p}_i \in C^{\infty}(X, \Phi)$ td. se $p_i \circ \varphi$ i \widetilde{p}_i podudaraju na nekoj otvorenoj okolini od p u U.

Neka je $f \in C^{\infty}(X, \Phi) \Longrightarrow f \circ \varphi^{-1} \colon \mathbb{R}^n \to \mathbb{R}$ klase $C^{\infty} \stackrel{3.34}{\Longrightarrow}$ postoje $g_1, \dots, g_n \colon \mathbb{R}^n \to \mathbb{R}$ klase C^{∞} td. za sve $x \in \mathbb{R}^n$ vrijedi

$$f \circ \varphi^{-1}(x) = f \circ \varphi^{-1}(0) + \sum_{i=1}^{n} p_i(x)g_i(x)$$
 (3)

te za sve $i \in \{1, ..., n\}$ vrijedi $g_i(0) = \partial_i(f \circ \varphi^{-1})(0)$. Iz (3) imamo kako za sve $x \in U$ vrijedi

$$f(x) = f(p) + \sum_{i=1}^{n} (p_i \circ \varphi)(x)g_i(\varphi(x)). \quad (4)$$

Za sve $i \in \{1, ..., n\}$ postoji $\widetilde{g}_i \in C^{\infty}(X, \Phi)$ td. se $g_i \circ \varphi$ i \widetilde{g}_i podudaraju na nekoj otvorenoj okolini od p u U. Prema (4) onda postoji otvorena okolina W od p u U na kojoj se funkcije f i $C + \sum_{i=1}^n \widetilde{p}_i \widetilde{g}_i$ podudaraju, pri čemu je $C \colon X \to \mathbb{R}$ konstantna. Neka je sada $\tau \in D_p(X, \Phi)$. Imamo

$$\tau(f) = \tau \left(C + \sum_{i=1}^{n} \widetilde{p_i} \widetilde{g_i} \right) = \sum_{i=1}^{n} \tau(\widetilde{p_i} \widetilde{g_i}) =$$

$$= \sum_{i=1}^{n} (\tau(\widetilde{p_i}) \widetilde{g_i}(p) + \tau(\widetilde{g_i}) \widetilde{p_i}(p)) =$$

$$= \sum_{i=1}^{n} \tau(\widetilde{p_i}) g_i(0) =$$

$$= \sum_{i=1}^{n} \tau(\widetilde{p_i}) \partial_i (f \circ \varphi^{-1})(0) \stackrel{(2)}{=}$$

$$\stackrel{(2)}{=} \sum_{i=1}^{n} \tau(\widetilde{p_i}) (\Theta(E_i))(f) =$$

$$= \left(\sum_{i=1}^{n} \tau(\widetilde{p_i}) \Theta(E_i) \right) (f)$$

 $\Longrightarrow \tau = \sum_{i=1}^n \tau(\widetilde{p_i})\Theta(E_i) \Longrightarrow \{\Theta(E_i)\}_{i=1,\dots,n}$ generiraju $D_p(X,\Theta)$. Pokažimo još kako su i linearno nezavisne. Pretpostavimo kako su $\alpha_1,\dots,\alpha_n\in\mathbb{R}$ td.

$$\sum_{i=1}^{n} \alpha_i \Theta(E_i) = 0. \quad (5)$$

Neka je $j \in \{1, ..., n\}$. Za sve $i \in \{1, ..., n\}$ prema (2) vrijedi $\Theta(E_i)(\widetilde{p_j}) = \partial_i(\widetilde{p_j} \circ \varphi^{-1})(0)$, no $\widetilde{p_j} \circ \varphi^{-1}$ se podudara s p_j na nekoj okolini od 0 u \mathbb{R}^n . Stoga imamo $\Theta(E_i)(\widetilde{p_j}) = \partial_i(p_j)(0) = \delta_{ij}$ pa iz (5) slijedi

$$0 = \left(\sum_{i=1}^{n} \alpha_i \Theta(E_i)\right) (\widetilde{p_j}) = \sum_{i=1}^{n} \alpha_i \delta_{ij} = \alpha_j.$$

Dakle, $\alpha_j = 0$ za sve $j \in \{1, ..., n\}$. Stoga su $\{\Theta(E_i)\}_{i=1,...,n}$ linearno nezavisne i time smo gotovi. \square