Undergraduate Complexity Theory Lecture 23: The Polynomial Hierarchy

Marcythm

July 25, 2022

1 Lecture Notes

motivation:

recall: NP and coNP

Observation 1.1. $P = NP \implies NP = coNP$ (contra: $NP \neq coNP \implies P \neq NP$)

 $\mathsf{ECLIQUE} = \{ \langle G, k \rangle : G \text{ is a graph with a largest clique of exactly size } k \}$

 $\mathsf{SMALLEST\text{-}CIRCUIT} = \{\langle C \rangle : C \text{ is the smallest circuit computing the function } C_f \text{ that } C \text{ computes} \}$

Notation 1.2. $Q^n u$ means $Qu, |u| \leq m$ where $Q \in \{\exists, \forall\}$.

Definition 1.3. $L \in \Sigma_2$ if \exists poly-time TM V, \exists polynomial p s.t.

$$x \in L \iff \exists^{p(x)} u_1 \forall^{p(x)} u_2 : V(x, u_1, u_2) = 1$$

Definition 1.4. $L \in \Pi_2$ if \exists poly-time TM V, \exists polynomial p s.t.

$$x \in L \iff \forall^{p(x)} u_1 \exists^{p(x)} u_2 : V(x, u_1, u_2) = 1$$

Observation 1.5. $\Pi_2 = \text{co-}\Sigma_2$.

Claim 1.6. ECLIQUE $\in \Sigma_2$.

Exercise 1.7. SMALLEST-CIRCUIT $\in \Pi_2$.

Notation 1.8. $\Sigma_0 = \Pi_0 = P, \Sigma_1 = NP = \exists P, \Pi_1 = \mathsf{coNP} = \forall P, \dots, \Sigma_i = \exists \Pi_{i-1}, \Pi_i = \forall \Sigma_{i-1}.$

Observation 1.9. $\Sigma_i \subseteq \Sigma_{i+1} \cap \Pi_{i+1}, \ \Pi_i \subseteq \Pi_{i+1} \cap \Sigma_{i+1}.$

Definition 1.10 (Polynomial Hierarchy). PH = $\bigcup_{k \in \mathbb{N}} \Sigma_k = \bigcup_{k \in \mathbb{N}} \Pi_k$ contains those languages can be described by constant number of quantifiers.

Claim 1.11. $PH \subseteq PSPACE$.

Theorem 1.12. $P = NP \implies P = PH$.

Theorem 1.13. $\Sigma_i = \Pi_i \implies \Sigma_i = \Pi_i = \mathsf{PH}$. (hierarchy "collapses" to the ith level)

Complete problems for Σ_i, Π_i, PH : Let $\varphi(y_1, y_2, \dots, y_i)$ be a boolean formula where each y_j is a vector (or sequence) of boolean variables.

Definition 1.14. Σ_i -SAT = { $\langle \varphi(y_1, y_2, ..., y_i) \rangle : \exists z_1 \forall z_2 ... \varphi(z_1, z_2, ..., z_i) = 1$ }

Exercise 1.15. Σ_i -SAT is Σ_i -complete.

the same for Π_i .

Claim 1.16. If $\exists L \ s.t. \ L \ is \ \mathsf{PH}\text{-}complete, \ then } \exists i \ s.t. \ \mathsf{PH} = \Sigma_i.$

2 Reading

2.1 sipser 10.3 (Alternation)

definition of Alternating Turing Machine, ATIME, ASPACE, AP, APSPACE, AL

 $\begin{array}{l} \textbf{Theorem 2.1.} \ \ For \ f(n) \geq n, \ we \ have \ \mathsf{ATIME}(f(n)) \subseteq \mathsf{SPACE}(f(n)) \subseteq \mathsf{ATIME}(f^2(n)). \\ For \ f(n) \geq \log n, \ we \ have \ \mathsf{ASPACE}(f(n)) = \mathsf{TIME}(2^{O(f(n))}). \end{array}$

 $\label{eq:corollary 2.2.} \textbf{Corollary 2.2.} \ \ \mathsf{AL} = \mathsf{P}, \mathsf{AP} = \mathsf{PSPACE}, \mathsf{APSPACE} = \mathsf{EXP}.$ definition of PH.