

Bijlage 1: vuistregels kolommen uit hout en beton en betonnen liggers(Herdrukt van CT2053 Constructief Ontwerpen 2, Dictaat Constructief Ontwerpen.(p.42;p.179), Abspoel, R., Pasterkamp, S., Vries de, P.A., Terwel, K.C., Es van, S.H.J., (2012). TU Delft. en Jellema 3 Draagstructuur. tweede druk. Spierings, T.G.M., van Amerongenm, R.Ph., Millekamp, H. (2004) ThiemeMeulenhoff. Utrecht/Zutphen.)

Globaal dimensioneren betonnen ligger:

hatting $^+\%\phi$ wape l. Hoogte h_{iigg}

 $^{\rm higger}$ = $^{\rm d_{schatting}}$ + $^{\rm 2/2}$ $^{\rm Wapening}$ + $^{\rm 4}$ $^{\rm beugel}$ +C (afronden naar boven in hele tientallen) $\not\!\! Q$ (cb4, beams and colomns) (cb5, cover)

d_{schatting}: zie tabel

ø 2. Nuttige hoogte d: $d = h_{ligger} - \% \phi_{wapening}$

3. Breedte bligger: b_{ligger}=0.5* h_{ligge}

Schemafisering	Randvoorwaarden	$\frac{d_{\text{schatting}}}{l}$
₩ - + + + + + + + + + + + + + + + + + +	Aan beide zijden vrij opgelegd (schamierend).	1/10
T	Aan één zijde vrij opgelegd (schamierend) en aan één zijde ingeklemd of doorgaand.	1/12.5
	Aan beide zijden ingeklemd of doorgaand.	1/15

Bijlage 2: 3D→2D krachtsverloop (Herdrukt van CT2052-09 Constructief Ontwerpen 1, dictaat Constructief Ontwerp (p. 15; p. 19), Rij van, T.L.J., Es van S.H.J., Vries, J., (2010). T∪ Delft.)

Bijlage 4: Toetsing UGT (Dimensioneringsformules CT2053 practicum (2012/2013). TU Delft.)

Rekenwaarde van de sterkte:

1. Enkelvoudige		ηC:	
krachten en	maximaal optre	maximaal optredende spanningen ≤ de rekenwaarde	≤ de rekenwaarde
momenten:	voor de sterkte: $\sigma_d/f_d \le 1$	$\sigma_d/f_d \le 1$	
Snedekracht	staal	hout	beton
N(+) Normaaltrekkracht	$\frac{\sigma_{t,d}}{f_{y,d}} \le \frac{N_{t,d}}{N_{E,d}} \le 1$ $A * f_{y,d} \le 1$	$rac{\sigma_{t,d}}{f_{t;0;k}} \leq rac{f_{t;0,k}}{F_{t;d}} \leq rac{F_{t;0,k}}{A^*f_{t;0;k}} \leq 1$	$\frac{N_{E,d}}{f_{y,d}*A_s} \le 1$
N(-) Normaaldrukkracht (knik)	$\frac{\sigma_{c,d}}{f_{y,d}*\omega_{buc}} \le \frac{N_{c,d}}{N_{E,d}} \le \frac{N_{E,d}}{A*f_{y,d}*\omega_{buc}} \le 1$	$\frac{\sigma_{c,d}}{f_{c;0;k}*k_c} \le \frac{F_{c;0;k}*k_c}{F_{c;0}} \le 1$ $\frac{A*f_{c;0;k}*k_c}{A*f_{c;0;k}*k_c} \le 1$	$\frac{N_{E,d}}{f_{c,d^*}A_c^*\omega_{buc}} \leq 1$
M Buigend moment (kip)	$\frac{\sigma_{m,d}}{f_{y,d}} \le \frac{\int_{y,d} M_{E,d}}{W_{e^*\omega_k ip^* f_{y,d}}} \le 1$	$\frac{\sigma_{m,d}}{f_{m;0;d}} \le \frac{\sigma_{m,d}}{M_d}$ $\frac{M_d}{W_e * \omega_{kip} * f_{m;0;d}} \le 1$	Grove bepaling wapening: $A_{s} = \frac{N_{s}}{f_{y,d}} = \frac{M_{E,d}}{0.75*h*f_{y,d}}$ $\rho = \frac{A_{s}}{b*d}*100\%$ $(0.8\% \le \rho_{balk} \ge 1.2\%)$ $\frac{M_{E,d}}{M_{R,d}} \le 1$ $M_{R,d} = A_{s}*f_{y,d}*0.9*d$
V Dwarskracht (schuifspanning t; gemiddelde vergelijkingswaarde schuifspanning v _{Ed})	$\frac{\tau_d * \sqrt{3}}{f_{y,d}} \le \frac{\int_{y,d} V_d * \sqrt{3}}{A_{\text{lijf}^*} f_{y,d}} \le 1$	$\frac{\tau_d}{f_{v;d}} \le \frac{\int_{v;d}}{3*V_d} \le \frac{1}{2*A*f_{v;d}} \le 1$	Geen dwarskrachtwapening nodig als $\frac{v_{Ed}}{v_{Rd,c}} \le 1$ $v_{Ed} = \frac{v_{Ed}}{b * d}$ $v_{Rd,c} = 0.12 k (100 \rho f_{ck})^{1/3}$
ω_{buc} k: geen kans op knik =1.0 ω_{buc} : Staal, HE-profielen: ω_{buc} =0.75 (I_{k}/b =1.0 Beton: ω_{buc} =1.5 (I_{k}/b ≤15) of ω_{buc} =0.75 k_{c} : Hout, rechthoekige doorsnede k_{c} =0.75 (I_{k} = I_{buc} (sd10); b=de kleinste afmeting bij hout) A_{1ij} = h_{w} * t_{w} (I - en HE-profielen) ω_{kin} = 1.0	knik =1.0 fielen: ω_{buc} =0.75 (1.5 (l_{k} /b≤15) of ω_{buc} vekige doorsnede k_{k} deinste afmeting bij	geen kans op knik =1.0 Staal, HE-profielen: ω_{buc} =0.75 (I_h/b =18, vakwerk) of ω_{buc} =0.5 (I_h/b =25) Beton: ω_{buc} =1.5 (I_h/b ≤15) of ω_{buc} =0.75 (I_h/b =15) of ω_{buc} =1.0(in het werk g Hout, rechthoekige doorsnede κ_c =0.75 (I_h/b =15) of κ_c =0.5 (I_h/b =24) (sd10); b=de kleinste afmeting bij hout) t_{hw} * t_{hw} (I - en HE-profielen)	geen kans op knik =1.0 Staal, HE-profielen: ω_{buc} =0.75 (l_b/b =18, vakwerk) of ω_{buc} =0.5 (l_b/b =25) Beton: ω_{buc} =1.5 (l_b/b ≤15) of ω_{buc} =0.75 (prefab) of ω_{buc} =1.0(in het werk gestort) Hout, rechthoekige doorsnede k_c =0.75 (l_b/b =15) of k_c =0.5 (l_b/b =24) l_b/w * l_b/w (l_b/w) =0.7 (l_b/w) l_b/w (l_b/w)

$\stackrel{\vee}{\Box}$ 1.1*NEd 2. Combinaties van krachten en momenten (alleen staal) $\frac{\mathsf{UC}}{1.1*\mathsf{MEd}} + \frac{1.1}{A*\omega_t}$ Druk en buiging Combinatie N(-) + M

Vuistregels kolom beton/hout (diameter d):

Constructie- element Beton	Aanzicht kolom en plattegrond gebouw		Verhouding b/lk	Verhouding d/lk
	<u> </u>	ter plaatse gestort beton	-	$\frac{1}{25}\sqrt{n}$ $\frac{1}{35} - \frac{1}{40}\sqrt{n}$
KONDE KOLOM		prefab-beton	- -	$\frac{1}{30} - \frac{1}{35} \sqrt{n}$ $\frac{1}{45} - \frac{1}{55} \sqrt{n}$
		ter plaatse gestort beton	1 2	$\frac{1}{25} - \frac{1}{35}\sqrt{n}$ $\frac{1}{40} - \frac{1}{50}\sqrt{n}$
VIETKATILE KOLOTI	-	prefab-beton	2 1	$\frac{1}{35} - \frac{1}{45}\sqrt{n}$ $\frac{1}{55} - \frac{1}{65}\sqrt{n}$
€ ≤ 4m Constructle-element Hout	ent Doorsnede	e Kniklengte & in m		Verhouding $\frac{d}{\ell_k}$
Ronde massief houten kolom	en kolom	2.4		$\frac{1}{20} - \frac{1}{25}$
Vierkante massief houten kolom	outen kolom	4.2		$\frac{1}{20} - \frac{1}{25}$

Bijlage 3: Vergeet-me-nietjes (http://www.werktuigbouw.nl/calculators/image/vergeetmenietjes.jpg)

