2023 분석 미니프로젝트 1

즉제비즈

21기 분석 미니프로젝트 1 김범준 김도하 서재은 이건하 임수현

CONTENTS*

01 Intro

- 멀티 모달, VQA
- VQA Model

02 학습 과정

- 데이터셋
- 모델 학습 전략

03 실험 결과

- 평가 방법-유형 별 질문
- 모델 결과 비교

분석 미니 프로젝트1 최종 발표

VQA: Visual Question Answering

- 이미지 기반 질의응답 AI 모델 개발
- 이미지와 그 이미지에 대한 질문이 주어졌을 때 올바른 답변을 만들어 내는 task

Intro

멀티모달, VQA

Intro

멀티모달, VQA

VQA Model

• vision model을 이용하여 이미지를 처리하고 language model을 이용하여 질문을 해석하여 이미지와 질문에 맞는 정답을 도출한다

학습과정

데이터셋 전처리

데이터셋

- 이미지의 id
- 해당 이미지와 관련된 질문이 담긴 csv 파일이 실제 이미지와 함께 데이터셋
- Train 데이터: 107,231이미지, 359521질문
- Test 데이터: 11,915이미지, 40479질문

TRAIN_000029,train_000029,What game is the man playing?,tennis

▶ 데이터 전처리

- Closed Ended Questions 행 제거
- Closed Ended Question: yes/no 답변을 필요로 하는 질문

01

학습과정

모델 학습 전략

❷ 모델

데이콘에서 제공된 Baseline을 기반으로 다양한 Vision Model, Language Model을 조합

Vision Model: ResNet, VIT, EfficientNet, CLIP

Language Model: GPT-2, BERT

ResNet+ GPT2
ResNet+ BERT
VIT + GPT2
VIT + BERT
EfficientNet+ GPT2
EfficientNet+ BERT
CLIP + GPT2

• VQA Task에서 SOTA성능을 보여주는 BLIP을 fine-tune

Visual Question Answering (VQA) on VQA v2 val SOTA 성능을 보이고 있고 VQA Task에서도 뛰어난 성능을 보여주고있다 (출처 : https://paperswithcode.com/sota/visual-question-answering-on-vqa-v2-val)

01

학습된 모델 평가

❷ 질문 유형

Activity Recognition

(e.g., "Is this man crying?")

Object Detection

(e.g., "How many bikes are there?")

Fine-Grained Recognition

(e.g., What kind of cheese is on the pizza?")

Commonsense Reasoning

(e.g., "Does this person have 20/20 vision?", "Is this person expecting company?")

Knowledge Base Reasoning

(e.g., "Is this a vegetarian pizza?")

❷ 전체 맞춘 개수

실험결과

선정된 20개의 질문 중 답을 맞춘 개수 비교

- BLIP v1이 18 / 20개로 가장 많이 맞춤
- ViT+GPT2, ResNet+GPT2가 3/20로 가장 적게 맞춤

모델	ViT+BERT	ViT+GPT2	ResNet+BERT	ResNet+GPT2
맞춘 개수	1/3/3/2/1 10/20	0/0/1/0/2 3/20	0/3/0/1/1 5/20	0/2/1/0/0 3/20
_				
모델	EfficientNet+BERT	EfficientNet+GPT2	CLIP(ViT)+GPT2	BLIP v1

질문 유형 별 결과 비교

Activity Recognition

What activity is the person taking part in?

모델	BLIP v1	EfficientNet + BERT	ViT + BERT
답변	skateboarding	skateboarding	skateboarding

질문 유형 별 결과 비교

Object Detection

How many cookies can be seen?

모델	BLIP v1	EfficientNet + BERT	ViT + BERT
답변	0	3	0

질문 유형 별 결과 비교

Fine-Grained recognition

What is in the left corner?

모델	BLIP v1	EfficientNet + BERT	ViT + BERT
답변	surfing board	lamp	lamp

질문 유형 별 결과 비교

Commonsense Reasoning

What alphabet letter is formed where the two mountain look like they touch each other?

모델	BLIP v1	EfficientNet + BERT	ViT + BERT
답변	V	none	Т

질문 유형 별 결과 비교

Knowledge Base Reasoning

What time is it?

모델	BLIP v1	EfficientNet + BERT	ViT + BERT
답변	10:00	11:25	4:15

Vision Model과 Language Model의 조합

01

- GPT보다 BERT를 사용했을때 성능이 좋게 나왔다.
 - bert-base-uncased vs GPT2
 - Loss를 비교하면 같은 조건에서 BERT가 GPT보다 많이 낮음 (0.1 이상 차이)
 - 리소스의 제약으로 학습량이 적었는데 약 10배 이상 큰 모델인 GPT가 충분히 최적화할 시간이 적었다.
- ResNet 보다 EfficientNet, ViT가 성능이 더 우수하게 나왔다
 - 이미지 모델의 크기와 성능이 비례함.

BLIP

02

Vision Model과 Language Model을 2-track으로 적용할 때보다 BLIP모델을 사용했을때 성능이 월등하게 뛰어났다.

- Zero-Shot 성능 우수.
- 학습해도 큰 차이 없음.
 - Task가 복잡하지 않기 때문에 그 이상의 성능 향상 미미.

gath.	Mar.

Method	Pre-train	Flickr30K (1K test set)					
Method	# Images	TR			IR		
		R@1	R@5	R@10	R@1	R@5	R@10
CLIP	400M	88.0	98.7	99.4	68.7	90.6	95.2
ALIGN	1.8B	88.6	98.7	99.7	75.7	93.8	96.8
ALBEF	14M	94.1	99.5	99.7	82.8	96.3	98.1
BLIP	14M	94.8	99.7	100.0	84.9	96.7	98.3
BLIP	129M	96.0	99.9	100.0	85.0	96.8	98.6
BLIP _{CapFilt-L}	129M	96.0	99.9	100.0	85.5	96.8	98.7
BLIP _{ViT-L}	129M	96.7	100.0	100.0	86.7	97.3	98.7

2023 분석 미니 프로젝트1 최종발표

감사합니다

이미지 기반 질의응답

21기 족제비즈

