日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年12月11日

出 願 番 号 Application Number:

特願2002-359805

[ST. 10/C]:

[J P 2 0 0 2 - 3 5 9 8 0 5]

出 願 人
Applicant(s):

ペンタックス株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年10月 6日

【書類名】

【整理番号】 P4990

【あて先】 特許庁長官殿

【国際特許分類】 G02B 7/00

G02B 7/04

特許願

【発明者】

【住所又は居所】 東京都板橋区前野町2丁目36番9号 ペンタックス株

式会社内

【氏名】 野村 博

【発明者】

【住所又は居所】 東京都板橋区前野町2丁目36番9号 ペンタックス株

式会社内

【氏名】 田中 均

【発明者】

【住所又は居所】 東京都板橋区前野町2丁目36番9号 ペンタックス株

式会社内

【氏名】 佐々木 啓光

【特許出願人】

【識別番号】 000000527

【氏名又は名称】 ペンタックス株式会社

【代理人】

【識別番号】 100083286

【弁理士】

【氏名又は名称】 三浦 邦夫

【手数料の表示】

【予納台帳番号】 001971

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

ページ: 2/E

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9704590

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 レンズ間隔可変機構

【特許請求の範囲】

【請求項1】 第1のレンズ群を支持した、光軸方向の直進移動が可能な第 1レンズ枠;

第2のレンズ群を支持し、上記第1レンズ枠に対して一定角度の相対回転が可能な光軸方向移動を規制した第2レンズ枠;

上記第1レンズ枠と第2レンズ枠にそれぞれ形成した互いに嵌合関係となる一 対の筒状部;

この一対の筒状部の嵌合面のいずれか一方に周方向に間隔をおいて形成した、 周方向及び軸方向の双方に対して傾斜した複数の傾斜カム面と、他方に形成した 、この傾斜カム面に対応するフォロア突起;

この傾斜カム面とフォロア突起とが常時当接する方向に上記第1レンズ枠を移動付勢するばね手段;及び

上記第2レンズ枠に正逆の回転を与える正逆回転駆動手段;

を有することを特徴とするレンズ間隔可変機構。

【請求項2】 請求項1記載のレンズ間隔可変機構において、傾斜カム面の両端部には、上記フォロア突起を安定して保持するための凹部が形成されているレンズ間隔可変機構。

【請求項3】 請求項1または2記載のレンズ間隔可変機構において、上記第1のレンズと第2のレンズは、ズームレンズ系を構成するレンズ群中の2つのレンズ群であって、短焦点距離端から中間焦点距離に至る領域と該中間焦点距離から長焦点距離端に至る領域とで間隔を二段階に変化させ、

上記第1レンズ枠と第2レンズ枠は、光軸方向に直進案内された2レンズ群ブロックに支持されており、

この2レンズ群ブロックの移動位置は、回転駆動されるカム環によって制御され、

上記第2レンズ枠の正逆回転駆動手段は、

このカム環と相対回転は自在で光軸方向には一緒に移動する直進案内環の周面

に、一定角度の往復回動を可能に支持された切替駒と;

この切替駒を上記カム環の回転に連動させて上記中間焦点距離において往復移 動させる切替駒移動機構と;

この切替駒の往復移動を第2レンズ枠に伝達して往復回動させる伝達機構と; を有しているレンズ間隔可変機構。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【技術分野】

本発明は、レンズ間隔可変機構に関する。

[0002]

【従来技術及びその問題点】

本出願人は、中間の焦点距離で構成レンズ群のうちの2つのレンズ群の間隔を切り替えるズームレンズ系を提案した。具体的には、焦点距離を変化させる可動の複数の変倍レンズ群を有すること;少なくとも一つの変倍レンズ群は、2つのサブ群を有し、その一方のサブ群が、他方のサブ群との関係において光軸方向の両移動端のいずれか一方に選択して位置する可動サブ群である切替群であること;短焦点距離端から中間焦点距離に至る短焦点距離側ズーミング域と、中間焦点距離から長焦点距離端に至る長焦点距離側ズーミング域とで、切替群中の可動サブ群は互いに異なるいずれか一方の移動端に位置すること;及び切替群と他の変倍レンズ群のズーミング基礎軌跡は、中間焦点距離において不連続であり、可動サブ群の位置に応じ、所定の像面に結像するように定められていること;を特徴とするズームレンズ系である(特開2000-275518号)。

[0003]

このズームレンズ系を実現するには、中間焦点距離で2つのサブ群 (レンズ群) の間隔を変化させなければならない。

 $[0\ 0\ 0\ 4\]$

【特許文献】

特開2000-275518号公報

[0005]

【発明の目的】

本発明は、例えば以上のようなズームレンズ系に使用できる、構成が簡単なレンズ間隔可変機構を得ることを目的とする。

[0006]

【発明の概要】

本発明は、第1のレンズ群を支持した、光軸方向の直進移動が可能な第1レンズ枠;第2のレンズ群を支持し、第1レンズ枠に対して一定角度の相対回転が可能な光軸方向移動を規制した第2レンズ枠;第1レンズ枠と第2レンズ枠にそれぞれ形成した互いに嵌合関係となる一対の筒状部;この一対の筒状部の嵌合面のいずれか一方に周方向に間隔をおいて形成した、周方向及び軸方向の双方に対して傾斜した複数の傾斜カム面と、他方に形成した、この傾斜カム面に対応するフォロア突起;この傾斜カム面とフォロア突起とが常時当接する方向に第1レンズ枠を移動付勢するばね手段;及び第2レンズ枠に正逆の回転を与える正逆回転駆動手段;を有することを特徴としている。

[0007]

傾斜カム面の両端部には、フォロア突起を安定して保持するための凹部を形成 し、レンズ間隔精度及び同心精度を高めることが好ましい。

[0008]

第1のレンズと第2のレンズは、例えば上述の特開2000-275518号で提案した短焦点距離端から中間焦点距離に至る領域と該中間焦点距離から長焦点距離端に至る領域とで間隔を二段階に変化させる、ズームレンズ系を構成するレンズ群中の2つのレンズ群である。このズームレンズ鏡筒では、この第1、第2のレンズを支持した第1、第2レンズ枠は、光軸方向に直進案内された2レンズ群ブロックに支持し、この2レンズ群ブロックの移動位置は、回転駆動されるカム環によって制御する。そして、第2レンズ枠の正逆回転駆動手段は、このカム環と相対回転は自在で光軸方向には一緒に移動する直進案内環の周面に、一定角度の往復回動を可能に支持された切替駒と;この切替駒をカム環の回転に連動させて中間焦点距離において往復移動させる切替駒移動機構と;この切替駒の往

復移動を第2レンズ枠に伝達して往復回動させる伝達機構と;によって構成する ことができる。

[0009]

【発明の実施の形態】

最初に、図1について、本実施形態のズームレンズ鏡筒を適用するズームレン ズ光学系を説明する。このズームレンズ系は、物体側から順に、正のパワーの第 1レンズ群L1、負のパワーの第2レンズ群L2、正のパワーの第3レンズ群L 3、及び負のパワーの第4レンズ群L4からなっている。第2レンズ群L2と第 3レンズ群L3は、中間焦点距離域(モード切替区間)において互いの間隔を変 化させる(ワイド域(ワイドモード)での長間隔をテレ域(テレモード)での短 間隔に変化させる)間隔変化群(L23とする)であり、ワイド域、テレ域では それぞれ一体に移動する。第1レンズ群L1と第4レンズ群L4は、常時一体に 移動する。第1レンズ群L1、間隔変化群L23及び第4レンズ群L4は、短焦 点距離端(ワイド端、W)から長焦点距離端(テレ端、T)に至る全ズーム域に おいて像側から被写体側に単調に移動する。この実施形態のズームレンズ鏡筒は 、焦点距離を複数段(6段)に設定したステップズームレンズ鏡筒であり、間隔 変化群L23は、このステップズームレンズ鏡筒におけるフォーカス群として作 用する。すなわち、図1の実線は、フォーカス動作を含むカム軌跡であり、間隔 変化群(フォーカスレンズ群)L23の無限遠物体撮影時のズーミング基礎軌跡 は一点鎖線で示した。

[0010]

以上のような中間焦点距離における間隔変化群を有するズームレンズ系は、本出願人が特開2000-275518号で提案した。このズームレンズ系は、焦点距離を変化させる可動の複数の変倍レンズ群を有すること;少なくとも一つの変倍レンズ群は、2つのサブ群を有し、その一方のサブ群が、他方のサブ群との関係において光軸方向の両移動端のいずれか一方に選択して位置する可動サブ群である切替群であること;短焦点距離端から中間焦点距離に至る短焦点距離側ズーミング域と、中間焦点距離から長焦点距離端に至る長焦点距離側ズーミング域とで、切替群中の可動サブ群は互いに異なるいずれか一方の移動端に位置するこ

と;及び切替群と他の変倍レンズ群のズーミング基礎軌跡は、上記中間焦点距離において不連続であり、可動サブ群の位置に応じ、所定の像面に結像するように定められていること;を特徴としている。図1に示したステップズームレンズ鏡筒のズーミング軌跡では、中間焦点距離におけるズーミング基礎軌跡の不連続性をなくしている。また、図1では、第1レンズ群L1ないし第4レンズ群L4を単レンズとして図示したが、これらは勿論複数のレンズから構成するのが普通である。

[0011]

図1ないし図19は、本実施形態のズームレンズ鏡筒の全体構造を示している。カメラボディに固定される固定筒11には、図2ないし図5に示すように、その内周面に雌へリコイド11aと、光軸と平行な方向の直進案内溝11bとが形成されている。この固定筒11の雌へリコイド11aには、ヘリコイド環12の後端部に形成した雄へリコイド12aが螺合する。ヘリコイド環12の内周面には、第2直進案内環13が相対回転自在に、光軸方向にはヘリコイド環12と一緒に移動する態様で嵌まっている。すなわち、ヘリコイド環12の内周面には周方向溝12cが形成されており、この周方向溝12cに、第2直進案内環13の外周面に形成した案内突起13aが相対回転自在に嵌まっている。周方向溝12cと案内突起13aは、ヘリコイド環12と第2直進案内環13の使用状態では係合を保持する。第2直進案内環13の後端部には、固定筒11の直進案内溝11bに嵌まる径方向突起13bが形成されている。

[0012]

雄へリコイド12aの山部には平歯車12bが形成されていて、この平歯車12bが、固定筒11の内面凹部11c(図2)に位置させて回動自在に支持した駆動ピニオン14と常時噛み合う。したがって、駆動ピニオン14が正逆に回転駆動されると、ヘリコイド環12が回転しながら光軸方向に進退し、ヘリコイド環12と一緒に第2直進案内環13が直進移動する。

$[0\ 0\ 1\ 3]$

第2直進案内環13の内周には、カム環15が嵌まっている。図6はこのカム環15の展開形状を示している。このカム環15の後端部外周には、雄ヘリコイ

ド15aと、この雄へリコイド15aの一部から径方向に突出させたガイドピン15bが形成されている。雄へリコイド15aは、第2直進案内環13の内周面に形成した雌へリコイド13cに螺合し、ガイドピン15bは第2直進案内環13に貫通させて形成した、周方向成分と光軸方向成分を有する逃がし溝13dに嵌まっている。このガイドピン15bはさらに、逃がし溝13dを貫通してへリコイド環12の内周面に形成された光軸と平行な方向の直進ガイド溝12d(図2)に嵌まっている。従って、カム環15は、ヘリコイド環12が回転すると、雌へリコイド13cと雄へリコイド15aの螺合関係に従って回転しながら光軸方向に直進移動する。カム環15の内周面には、雌へリコイド15cと有底カム溝15d(図6、図19)が形成されている。

[0014]

カム環15の内側には、切替環16、第1レンズ群L1を支持する1群支持環17及び第1直進案内環18が順番に嵌まっている(図9参照)。図7は切替環16単体の展開形状を示している。切替環16と1群支持環17は相対回転は自在で光軸方向には一緒に移動する一対の環状体である。1群支持環17の後端部外周には、雄へリコイド17aが形成されており、この雄へリコイド17aの直前に、切替環16の後端部内周に形成した周方向溝16a(図7)に相対回転自在に嵌まるガイド突起17bが形成されている。

[0015]

そして、1群支持環17の雄へリコイド17aはカム環15の雌へリコイド15cに螺合し、切替環16の後端部外周に突出形成した回転伝達突起16bは、カム環15の内周面に形成した光軸と平行な回転伝達溝15eに嵌まっている。

[0016]

一方、第1直進案内環18の後端部外周に形成したガイド突起18aは、第2 直進案内環13の内周面に形成した光軸と平行な直進案内溝13eに嵌まっており、また、この第1直進案内環18の外周面に形成した光軸と平行な直進案内溝18b(図9参照)に、1群支持環17の内周面に形成した直進ガイド突起17c(同)が摺動自在に嵌まっている。つまり、第2直進案内環13、第1直進案内環18、1群支持環17は回転せずに、光軸方向に移動する部材である。また 、第1直進案内環18の後端部に形成したフランジ18f(図9)は、カム環15の後端部内周に形成した周方向溝15f(図6)に相対回転自在で光軸方向には一緒に移動するように係合している。

[0017]

従って、カム環15の回転が回転伝達溝15eと回転伝達突起16bを介して 切替環16に伝達されると、雌ヘリコイド15cに噛み合う雄ヘリコイド17a を有し第1直進案内環18によって回転を規制されている1群支持枠17が光軸 方向に移動する。

[0018]

1群支持環17には、4群支持環19が光軸方向の直進移動を自在にして支持されている。すなわち、第4レンズ群L4を支持する4群支持環19の周囲には、3本の光軸平行腕19aが形成されており、この光軸平行腕19aが1群支持環17の光軸と平行な直進案内溝17dに嵌まっている。

[0019]

また、第2レンズ群L2と第3レンズ群L3を支持する2-3群ブロック20の周囲には、3本の光軸と平行な方向の直進案内腕20aが形成されており、この直進案内腕20aは、第1直進案内環18に形成した光軸と平行な方向の直進案内溝18cに嵌まっている。さらに、この直進案内腕20aの先端に固定したカムフォロア20bは、カム環15の有底カム溝15dに嵌まっている。図10と図11は、この2-3群ブロック20の組立状態と分解状態を示している。このカム溝15dは、図6、図19に示すように、2-3群ブロック20を撮影可能位置に位置させる撮影領域(図19のワイドモード、モード切替区間、テレモード)15d1と、撮影を行わない収納位置に位置させる収納領域(収納位置)15d2と、撮影領域15d1から収納位置15d2に移行させるモード切替領域15d3を有している。このカム溝15の撮影領域15d1の全部とモード切替領域15d3の収納領域15d2側の端部を除く領域は、カムフォロア20bが最小のクリアランスで嵌まる幅狭領域であり、収納領域15d2及びモード切替領域15d3の収納位置側の端部領域は、後方が開放された開放カム領域である。従って、カム環15が回転すると、2-3群ブロック20が有底カム溝15

dに従って光軸方向に直進移動する。なお、カム環15の周方向溝15fに相対 回転自在に嵌まる第1直進案内環18のフランジ18fには、2-3群ブロック 20が収納位置に位置するときに収納領域15d2の後方に位置してカムフォロ ア20bを逃げる切欠18f'(図3、図9、図18)が形成されている。

[0020]

そして、この2-3群ブロック20と4群支持環19の間には、該4群支持環19を後方に移動付勢圧縮ばね31が挿入されている。4群支持環19の光軸平行腕19aには、この圧縮ばね31の力に抗して4群支持環19の後退端を規制する、1群支持環17の抜け止め突起17e(図8、図9)に係合する係合突起19b(図8)が形成されており、4群支持環19は、常時は(撮影状態では)1群支持環17に対する後退端に位置する。

[0021]

2-3群ブロック20の具体的構成を説明する前に、以上の構成による動作を纏めて説明すると、次のようになる。駆動ピニオン14を介してヘリコイド環12を回転駆動すると、ヘリコイド環12は回転しながら光軸方向に移動し、回転を規制されている第2直進案内環13がヘリコイド環12と一緒に光軸方向に進退する。ヘリコイド環12の回転は、カム環15に伝達され、カム環15は直進案内されている第1直進案内環18を伴い、回転しながら光軸方向に進退する。そして、カム環15が回転すると、切替環16が直進案内されている1群支持環17を伴いながら、光軸方向に進退する。1群支持環17が収納位置から前方に移動するときには、圧縮ばね31が徐々に伸張して4群支持環19を1群支持環17に対する後退端に位置させる。この後退端が撮影位置(ワイド端)であり、それ以後は1群支持環17と4群支持環19は第4レンズ群L4を搭載しているから、図1のように、第1レンズ群L1と第4レンズ群L4を搭載しているから、図1のように、第1レンズ群L1と第4レンズ群L4はズーム域ではヘリコイド環12の回転角に対しリニアに(間隔を変化させることなく)一緒に移動する。

[0022]

また、収納位置では、図3に明らかなように、2-3群ブロック20の前端面

が第1レンズ群L1を固定した1群枠29の後端面に極めて接近しまたは当接する。1群枠29は、1群支持環17の先端部に固定された部材である。このとき、カム溝15dの収納領域15d2は後方が開放されているため、1群枠29を介して、圧縮ばね31の力に抗し2−3群ブロック20が後方に押圧されると、カムフォロア20bがカム溝15dの前側カム面から離れて後退することができ、レンズ鏡筒の収納長が短縮される。収納位置では同時に、第4レンズ群L4を固定した4群枠30が、圧縮ばね31の力により遮光枠35に当接する位置まで後退する。4群枠30は4群支持環19に固定された部材であり、遮光枠35は、ヘリコイド環12の後端面に固定された部材である。

[0023]

一方、第1直進案内環18によって直進案内されている2-3群ブロック20の移動位置は、カム環15の内周面に形成されている有底カム溝15dによって規制される(定まる)。2-3群ブロック20は、第2レンズ群L2と第3レンズ群L3を支持しており、カム環15と切替環16は、その連続回転により、第2レンズ群L2と第3レンズ群L3に図1に示す移動軌跡を与える。以下、特に図9ないし図18について、この2-3群ブロック20、カム環15及び切替環16の関連構造を説明する。

[0024]

直進案内腕20aとカムフォロア20bは、2-3群移動環21に設けられている。この2-3群移動環21と、先端部押え板22との間に、前方から順に、第2レンズ群L2を支持した2群枠23、第3レンズ群L3を支持した3群枠24、差動連係環25、差動環26及び差動ばね27が収納されている。先端部押え板22は、光軸と平行な直進ガイドピン22aを有し、2群枠23は、この直進ガイドピン22aに摺動自在に嵌まるガイドボス23aを有している。直進ガイドピン22aには2群枠23を後方に押圧する圧縮ばね22bが挿入されている。

[0025]

3群枠24 (伝達機構)、差動連係環25 (伝達機構)、差動環26 (伝達機構)は、光軸を中心とする回転部材である。2群枠23と3群枠24は、互いに

嵌合関係となる筒状部を有し、2群枠23の筒状部の外周面には傾斜カム面23 bが形成され、3群枠24の筒状部の内周面には、この傾斜カム面23bに係合するフォロア突起24 aが形成されている。傾斜カム面23bは、周方向及び軸方向の双方に対して傾斜した直線カム面である。また3群枠24の外周面には、回転伝達突起24bが形成されている。差動連係環25の内周面には、回転伝達溝25 aが形成されており、この回転伝達溝25 aには3群枠24の回転伝達突起24bが嵌まっていて、差動連係環25と3群枠24が常に一緒に回動する。3群枠24は圧縮ばね22bの付勢力によって後方に押されており、2-3群移動環21に当て付くことにより、その光軸方向位置が定められている。また、差動連係環25の外周面には、強制回転伝達突起25bが形成されており、この強制回転伝達突起25bは差動環26の内周面に形成した強制回転伝達溝26aに嵌まっている。強制回転伝達突起25bと強制回転伝達溝26aに嵌まっている。強制回転伝達突起25bと強制回転伝達溝26aに

[0026]

差動ばね(伝達機構) 2 7 は、トーションばねからなるもので、光軸中心のコイル部 2 7 a は、差動連係環 2 5 の内面に収納されて摩擦係合し、該コイル部 2 7 a から突出させた一対の脚部 2 7 b は、差動連係環 2 5 に穿設したばね穴 2 5 c から径方向外方に突出している。 2 5 d (図 1 1) は、差動ばね 2 7 が差動連係環 2 5 から脱落するのを防ぐ突起である。差動ばね 2 7 の一対の脚部 2 7 b は、回転伝達突起 2 6 b の周方向の両側面に当接するようにトーションが掛けられており、差動環 2 6 が回転すると、通常は差動ばね 2 7 を介して差動連係環 2 5 が連れ回りする。一方、差動連係環 2 5 が回動端に達する(差動連係環 2 5 に一定以上の回動抵抗が存在する)と、一対の脚部 2 7 b が開くように差動ばね 2 7 が弾性変形し、差動連係環 2 5 に対して差動環 2 6 が相対回転する。

[0027]

差動環26の回転伝達突起26bには、径方向の連動ピン26cが固定されており、この連動ピン26cが切替駒28の内面に形成した光軸と平行な方向の回転伝達溝28aに嵌まっている。切替駒28は、図9に示すように、第1直進案内環18に形成した受け溝18dに一定角度だけ周方向に移動できるように支持

されている。そして、その外面に形成したフォロア突起28bが、切替環16の 内面に形成した有底切替溝16cに嵌まっている。

[0028]

有底切替溝16cは、図7、図18に示すように、テレ区間16cT、切替区間16cK、及びワイド区間16cWを有する。テレ区間16cTとワイド区間16cWは、カム環15の雌へリコイド15cと同一リードで逆傾斜をなし、切替区間16cKは、光軸と平行をなしている。このため、カム環15と切替環16が一緒に回転するとき、切替駒28のフォロア突起28bがテレ区間16cTとワイド区間16cWに位置している間は、第1直進案内環18と切替駒28には相対回転が生じない。これに対し、フォロア突起28bが切替区間16cKに係合しているときには、第1直進案内環18に対する切替駒28の相対回転が生じる。この相対回転により、図1のワイド域では第2レンズ群L2と第3レンズ群L3を離間位置に保持し、モード切替区間で、第2レンズ群L2と第3レンズ群L3を接近位置に移動させ、テレ域では、第2レンズ群L2と第3レンズ群L3を接近位置に移動させ、テレ域では、第2レンズ群L2と第3レンズ群L3を接近位置に移動させ、テレ域では、第2レンズ群L2と第3レンズ群L3を接近位置に移動させ、テレ域では、第2レンズ群L2と第3レンズ群L3を接近位置に保持する。

[0029]

3群枠24と2-3群移動環21には、図14、図15に示すように、3群枠24の回動角をワイド位置とテレ位置の切替に必要充分な角度に規制する回動範囲規制溝24cとストッパ突起21aが形成されている。これに対し、切替駒28及び差動環26の回動角は、この3群枠24の回動角より大きい角度回転するように設定されており、その差を差動ばね27が吸収する。

[0030]

すなわち、いま、図14に示すように、第2レンズ群L2と第3レンズ群L3 が隔離している状態において、有底切替溝16c(切替駒移動機構)とフォロア 突起(切替駒移動機構)28bを介して、切替駒28に図16の反時計方向の回 転が与えられると、差動環26が回転し、その回転が回転伝達突起26bと差動 ばね27の一対の脚部27bの係合関係で差動連係環25に伝達され、3群枠2 4が同方向に回転する。3群枠24の回動範囲規制溝24cがストッパ突起21 aに当接すると、常時3群枠24と一緒に回動する差動連係環25の回動も規制 される。差動連係環25の回動が規制された後も差動環26は同方向に回転し、そのオーバチャージ分を差動ばね27が弾性変形して吸収する。そして、3群枠24が回転すると、圧縮ばね22bによって後方に移動付勢されている2群枠23は、フォロア突起24aと傾斜カム面23bの関係に従って後方に移動し、第2レンズ群L2と第3レンズ群L3を接近させる(図15、図17)。なお、差動環26の強制回転伝達溝26aと差動連係環25の強制回転伝達突起25bは、差動連係環25に何らかの原因で大きい回動抵抗が存在する結果差動環26の回転初期に差動ばね27の一対の脚部27bが開いてしまったときに、互いに当接して、差動環26の回転を強制的に差動連係環25に伝達する作用を有する。

[0031]

図15と図17の状態から切替駒28が逆方向(時計方向)に回転すれば、以上とは逆に、第2レンズ群L2と第3レンズ群L3が隔離する。差動環25、差動連係環26及び差動ばね27のオーバチャージ吸収作用は上述の正方向(反時計方向)への回転時と同様である。傾斜カム面23bの両端部には、フォロア突起24aをテレ位置とワイド位置に安定して保持するための凹部23b1と23b2を有する傾斜カム面23b(及び対応するフォロア突起24a)は、2群枠23(3群枠24)の周方向に等角度間隔で4個設けられており、2群枠23と3群枠24の嵌合関係と相俟ち、ワイド位置とテレ位置でのレンズ群L2とL3のレンズ間隔精度及び同心性を確保する。

-[0032]

なお、以上のズームレンズ鏡筒において、2-3群ブロック20の2-3群移動枠21の後方にはシャッタブロック32が固定されており、このシャッタブロック32からは、カメラ本体の制御回路に接続されるFPC基板33が出ている。また、1群枠17の先端面の内面と、2-3群ブロック20の前端面との間には、遮光蛇腹34が位置している。

[0033]

次に、図19に基づいて、本ステップズームレンズ鏡筒のフォーカス動作を説明する。本実施形態では、カム環15のカム溝15dによって(カム環15の回

転によって)フォーカシングも行う。このため、ワイドモードで4段(ステップ 1、2、3、4)、テレ側で2段(ステップ5、6)の合計6段の焦点距離ステップを有し、各焦点距離ステップにおいてそれぞれ、無限遠撮影位置(∞位置)と最短撮影位置(N位置)の間で2-3群ブロック20(第2レンズ群L2と第3レンズ群L3)を光軸方向に移動させるべく、カム溝15d形状が設定されている。より具体的には、カム溝15dは、回転方向の順に、ステップ1の∞位置、N位置、ステップ2のN位置、∞位置、ステップ3の∞位置、N位置、ステップ4のN位置、∞位置を順番に有し、モード切替区間を挟んで、ステップ5の∞位置、N位置、ステップ6のN位置、∞位置を順番に有している。カム環15の回転角(位置)は、設定焦点距離及び被写体距離情報に応じて制御される。

[0034]

このように、隣り合うステップのN位置同士、∞位置同士を隣接させることにより、カム溝15dの形状を単純化し、全長を短くすることができる。

[0035]

以上の実施形態において、第1レンズ群L1、第2レンズ群L2、第3レンズ群L3及び第4レンズ群L4はズームレンズ系を構成し、そのうちの第2レンズ群L2と第3レンズ群L3は、短焦点距離端から中間焦点距離に至る領域と該中間焦点距離から長焦点距離端に至る領域とで、間隔を二段階に変化させる(図1)。そして、この間隔可変の第2レンズ群(第1のレンズ群)L2と第3レンズ群(第2のレンズ群)L3は、それぞれ2群枠(第1レンズ枠)23と3群枠(第2レンズ枠)24に支持(固定)されている。2群枠23は光軸方向に直進案内され、3群枠24は光軸方向移動を規制して回転のみ可能である。

[0036]

2群枠23と3群枠24は、互いに嵌合関係となる筒状部を有し、2群枠23の筒状部の外周面には傾斜カム面23bが形成され、3群枠24の筒状部の内周面には、この傾斜カム面23bに係合するフォロア突起24aが形成されている。傾斜カム面23bは、周方向及び軸方向の双方に対して傾斜している。この2群枠23と3群枠24は、圧縮ばね22bによって、傾斜カム面23bとフォロア突起24aが常時当接する方向に付勢されている。

[0037]

このため、切替駒28、差動環26、差動ばね27及び差動連係環25を介して3群枠24が正逆にさせることにより、圧縮ばね22bによって後方に移動付勢されている2群枠23を、フォロア突起24aと傾斜カム面23bの関係に従って光軸方向に移動させ、第2レンズ群L2と第3レンズ群L3の間隔を広狭二段階に変化させることができる。

[0038]

また、傾斜カム面23bの両端部には、フォロア突起24aをワイド位置とテレ位置に安定して保持するための凹部23b1と23b2とが形成されていて、この傾斜カム面23bは周方向に等角度間隔で3個設けられているので、2群枠23と3群枠24の嵌合関係と相俟ち、ワイド位置とテレ位置でのレンズ群L2とL3のレンズ間隔精度及び同心性を確保することができる。

[0039]

以上の実施形態では、切替駒28の周方向の往復移動で3群枠24を正逆に回転させたが、他の機構で2群枠24を正逆に往復回動させてもよい。

[0040]

また、以上の実施形態は、図1のズームレンズ系に適用したものであるが、本 発明は、間隔を広狭二段階に変化させる2つのレンズ群を有するレンズ間隔可変 機構一般に用いることができる。

[0041]

【発明の効果】

本発明によれば、第2レンズ枠の正逆回転で間隔を変化させることができる、 構成が簡単なレンズ間隔可変機構を得ることができる。

【図面の簡単な説明】

【図1】

本発明によるズームレンズ鏡筒を適用する、切替群を有するステップズームレンズ系のズーミング基礎軌跡を示す図である。

【図2】

本発明によるズームレンズ鏡筒の一実施形態を示す分解斜視図である。

【図3】

同ズームレンズ鏡筒の収納状態における上半断面図である。

【図4】

同ズームレンズ鏡筒のワイド端無限遠撮影状態における上半断面図である。

【図5】

同ズームレンズ鏡筒のテレ端無限遠撮影状態における上半断面図である。

図6

同ズームレンズ鏡筒のカム環の内周面の展開図である。

【図7】

同ズームレンズ鏡筒の切替環の内周面の展開図である。

【図8】

同ズームレンズ鏡筒の1群支持環と4群枠との係止構造を示す上半断面図である。

【図9】

同ズームレンズ鏡筒の切替環、1群支持環及び第1直進案内環の分解斜視図である。

【図10】

同ズームレンズ鏡筒の2-3群ブロックの斜視図である。

【図11】

同2-3群ブロックの分解斜視図である。

【図12】

同2-3群ブロックを含む切替機構部分の上半断面図である。

【図13】

同2-3群ブロック中の差動連係環、差動環及び差動ばねによるオーバチャージ機構を示す斜視図である。

【図14】

同2-3群ブロックのワイドモード時の状態を示す展開図である。

【図15】

同2-3群ブロックのテレモード時の状態を示す展開図である。

【図16】

同2-3群ブロックのワイドモード時の状態を示す正面図である。

【図17】

同2-3群ブロックのテレモード時の状態を示す正面図である。

【図18】

同2-3群ブロックのワイドモードとテレモードの切替状態を示す展開図であ

る。

【図19】

カム環のカム形状の展開図である。

【符号の説明】

- L1 第1レンズ群
- L 2 第 2 レンズ群 (第 1 のレンズ群)
- L3 第3レンズ群 (第2のレンズ群)
- L4 第4レンズ群
- L23 間隔変化群
- 11 固定筒
- 11a 雌ヘリコイド
- 11b 直進案内溝
- 11 c 内面凹部
- ・ 12 ヘリコイド環
 - 12a 雄ヘリコイド
 - 12b 平歯車
 - 12c 周方向溝
 - 12 d 直進ガイド溝
 - 13 第2直進案内環
 - 13a 案内突起
 - 13b 径方向突起
 - 13 c 雌ヘリコイド

- 13d 逃がし溝
- 14 駆動ピニオン
- 15 カム環
- 15a 雄ヘリコイド
- 15b ガイドピン
- 15 c 雌ヘリコイド
- 15 d 有底カム溝
- 15e 回転伝達溝
- 16 切替環
- 16a 周方向溝
- 16b 回転伝達突起
- 16c 有底切替溝(切替駒移動機構)
- 16 c T テレ区間
- 16cK 切替区間
- 16cW ワイド区間
- 17 1群支持環
- 17a 雄ヘリコイド
- 17b ガイド突起
- 17c 直進ガイド突起
- 17e 抜け止め突起
- 18 第1直進案内環
- 18a ガイド突起
- 18b 直進案内溝
- 18c 直進案内溝
- 18 d 受け溝
- 18f フランジ
- 18f' 切欠
- 19 4 群支持環
- 19a 光軸平行腕

- 19b 係合突起
- 20 2-3群ブロック
- 20a 直進案内腕
- 20b カムフォロア
- 21 2-3群移動環
- 21a ストッパ突起
- 22 先端部押え板
- 22a 直進ガイドピン
- 22b 圧縮ばね
- 23 2群枠(第1レンズ枠)
- 23a ガイドボス
- 23b 傾斜カム面
- 24 3群枠(第2レンズ枠) (伝達機構)
- 24a フォロア突起
- 24b 回転伝達突起
- 24c 回動範囲規制溝
- 25 差動連係環(伝達機構)
- 25a 回転伝達溝
- 25b 強制回転伝達突起
- 25 c ばね穴
- 26 差動環(伝達機構)
- 26 a 強制回転伝達溝
- 26b 回転伝達突起
- 26c 連動ピン
- 27 差動ばね(伝達機構)
- 27b 脚部
- 28 切替駒
- 28a 回転伝達溝
- 28b フォロア突起(切替駒移動機構)

- 29 1群枠
- 30 4群枠
- 31 圧縮ばね
- 32 シャッタブロック
- 33 FPC基板
- 3 4 遮光蛇腹
- 3 5 遮光板

【書類名】

図面

【図1】

【図2】

【図4】

出証特2003-3082156

【図5】

【図6】

出証特2003-3082156

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

出証特2003-3082156

【図19】

ページ: 1/E

【書類名】 要約書

【要約】

【目的】 第2レンズ枠の正逆回転で間隔を変化させることができる、構成が簡単なレンズ間隔可変機構を提供する。

【構成】 第1のレンズ群を支持した、光軸方向の直進移動が可能な第1レンズ枠;第2のレンズ群を支持し、上記第1レンズ枠に対して一定角度の相対回転が可能な光軸方向移動を規制した第2レンズ枠;上記第1レンズ枠と第2レンズ枠にそれぞれ形成した互いに嵌合関係となる一対の筒状部;この一対の筒状部の嵌合面のいずれか一方に周方向に間隔をおいて形成した、周方向及び軸方向の双方に対して傾斜した複数の傾斜カム面と、他方に形成した、この傾斜カム面に対応するフォロア突起;この傾斜カム面とフォロア突起とが常時当接する方向に上記第1レンズ枠を移動付勢するばね手段;及び上記第2レンズ枠に正逆の回転を与える正逆回転駆動手段;を有することを特徴とするレンズ間隔可変機構。

【選択図】 図11

ページ: 1/E

認定・付加情報

特許出願の番号

特願2002-359805

受付番号

5 0 2 0 1 8 7 7 7 7 2

書類名

特許願

担当官

小松 清

1 9 0 5

作成日

平成14年12月16日

<認定情報・付加情報>

【提出日】

平成14年12月11日

特願2002-359805

出願人履歴情報

識別番号

[000000527]

1. 変更年月日 [変更理由]

2002年10月 1日

住所

東京都板橋区前野町2丁目36番9号

氏 名

ペンタックス株式会社

名称変更

1