MODELLI E ALGORITMI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (9 punti) Sia dato il problema dell'albero di supporto a peso minimo con i seguenti pesi associati agli archi

	1	2	3	4	5	6
1	_	8	9	10	11	12
2		_	7	6	7	7
3			_	4	5	5
4				_	3	2
5					_	1
6						_

Lo si risolva con tutti e tre gli algoritmi visti a lezione. Cosa succede, secondo voi, se il costo dell'arco (4,5) scende da 3 a 2.

ESERCIZIO 2. (10 punti)

Sia data la rete G = (V, A) con

$$V = \{S, 1, 2, 3, 4, 5, 6, D\}$$

е

$$A = \{(S,1), (S,3), (1,6), (2,1), (3,2), (3,4), (5,4), (6,5), (4,D), (6,D)\}$$

con le capacità

$$c_{S1} = 8$$
 $c_{S3} = 2$ $c_{16} = 5$ $c_{21} = 6$ $c_{32} = 1$ $c_{34} = 3$ $c_{54} = 4$ $c_{65} = 3$ $c_{4D} = 5$ $c_{6D} = 4$.

Sia data la soluzione

$$x_{S1}=2$$
 $x_{S3}=2$ $x_{16}=3$ $x_{21}=1$ $x_{32}=1$ $x_{34}=1$ $x_{54}=3$ $x_{65}=3$ $x_{4D}=4$ $x_{6D}=0$.

Dopo aver mostrato che tale soluzione è un flusso ammissibile, si parta da essa per determinare il flusso massimo e il taglio minimo per questa rete. È vero che se aumento di 1 la capacità dell'arco (3,4), il flusso massimo aumenta di 1? È vero che se aumento di 1 la capacità dell'arco (1,6), il flusso massimo aumenta di 1?

ESERCIZIO 3. (6 punti) Si dimostri la correttezza dell'algoritmo di Ford-Fulkerson per il problema di flusso massimo e per il relativo problema di taglio minimo.

ESERCIZIO 4. (6 punti) Dopo aver dato la definizione di problema di ε -approssimazione per un problema di ottimizzazione, si illustrino i quattro diversi gradi di difficoltà dei problemi di ottimizzazione NP-completi basati sulla difficoltà dei rispettivi problemi di approssimazione.