UC Berkeley·CS294-158 | Deep Unsupervised Learning (2020)

CS294 (2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方筆记翻译

代码

作业项目解析

视频·B 站[扫码或点击链接]

https://www.bilibili.com/video/BV1ug4v1p7fG

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/cs294-158

Berkeley 强化学习

自监督学习

降噪

深度学习

GAN

VAE

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP20+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和读查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复[添砖加瓦]

CS294-158 Deep Unsupervised Learning

Lecture 3 Likelihood Models: Flow Models

Pieter Abbeel, Xi (Peter) Chen, Jonathan Ho, Aravind Srinivas, Alex Li, Wilson Yan

UC Berkeley

Our Goal Today

- lacksquare How to fit a density model $p_{ heta}(x)$ with continuous $x \in \mathbb{R}^n$
- What do we want from this model?
 - Good fit to the training data (really, the underlying distribution!)

$$p_{\theta}(x)$$

- For new x, ability to eve $p_{\theta}(x)$
- Ability to sample from
- And, ideally, a latent representation that's meaningful

Our Goal Today

- lacksquare How to fit a density model $p_{ heta}(x)$ with continuous $x \in \mathbb{R}^n$
- What do we want from this model?
 - Good fit to the training data (really, the underlying distribution!)

$$p_{\theta}(x)$$

- For new x, ability to eve $p_{\theta}(x)$
- Ability to sample from
- And, ideally, a latent representation that's meaningful

Differences from Autoregressive Models from last lecture

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
- Dequantization

Quick Refresher: Probability Density Models

$$P(x \in [a, b]) = \int_a^b p(x)dx$$

How to fit a density model?

Continuous data

```
0.22159854, 0.84525919, 0.09121633, 0.364252 , 0.30738086,
0.32240615, 0.24371194, 0.22400792, 0.39181847, 0.16407012,
0.84685229, 0.15944969, 0.79142357, 0.6505366, 0.33123603,
0.81409325, 0.74042126, 0.67950372, 0.74073271, 0.37091554,
0.83476616, 0.38346571, 0.33561352, 0.74100048, 0.32061713,
0.09172335, 0.39037131, 0.80496586, 0.80301971, 0.32048452,
0.79428266, 0.6961708, 0.20183965, 0.82621227, 0.367292,
0.76095756, 0.10125199, 0.41495427, 0.85999877, 0.23004346,
0.28881973, 0.41211802, 0.24764836, 0.72743029, 0.20749136,
0.29877091, 0.75781455, 0.29219608, 0.79681589, 0.86823823,
0.29936483, 0.02948181, 0.78528968, 0.84015573, 0.40391632,
0.77816356, 0.75039186, 0.84709016, 0.76950307, 0.29772759,
0.41163966, 0.24862007, 0.34249207, 0.74363912, 0.38303383, ...
```

Maximum Likelihood:

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)})$$

Equivalently:

$$\min_{\theta} \mathbb{E}_x \left[-\log p_{\theta}(x) \right]$$

Example Density Model: Mixtures of Gaussians

$$p_{\theta}(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x; \mu_i, \sigma_i^2)$$

Parameters: means and variances of components, mixture weights

$$\theta = (\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k, \sigma_1, \dots, \sigma_k)$$

Aside on Mixtures of Gaussians

Do mixtures of Gaussians work for highdimensional data?

Not really. The sampling process is:

- 1. Pick a cluster center
- 2. Add Gaussian noise

Imagine this for modeling natural images! The only way a realistic image can be generated is if it is a cluster center, i.e. if it is already stored directly in the parameters.

How to fit a general density model?

How to ensure proper distribution?

$$\int_{-\infty}^{+\infty} p_{\theta}(x) dx = 1 \qquad p_{\theta}(x) \ge 0 \quad \forall x$$

- How to sample?
- Latent representation?

Flows: Main Idea

$$x \longrightarrow \boxed{ } \longrightarrow \boxed{ } \longrightarrow \cdots \bigcirc \boxed{ } \longrightarrow p_{\theta}(x)$$
 $z = f_{\theta}(x)$

Generally: $z \sim p_Z(z)$

Normalizing Flow: $z \sim \mathcal{N}(0, 1)$

How to train? How to evaluate $p_{\theta}(x)$? How to sample?

Flows: Training

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)})$$

Change of Variables

$$z = f_{\theta}(x)$$

$$p_{\theta}(x) dx = p(z) dz$$

$$p_{\theta}(x) = p(f_{\theta}(x)) \left| \frac{\partial f_{\theta}(x)}{\partial x} \right|$$

Note: requires f_{θ} invertible & differentiable

Flows: Training

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) \qquad z^{(i)} = f_{\theta}(x^{(i)})$$

$$p_{\theta}(x^{(i)}) = p_{Z}(z^{(i)}) \left| \frac{\partial z}{\partial x}(x^{(i)}) \right|$$

$$= p_{Z}(f_{\theta}(x^{(i)})) \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

$$\max_{\theta} \sum_{i} \log p_{\theta}(x^{(i)}) = \max_{\theta} \sum_{i} \log p_{Z}(f_{\theta}(x^{(i)})) + \log \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

 \rightarrow assuming we have an expression for p_Z this can be optimized with Stochastic Gradient Descent

Flows: Sampling

Step 1: sample
$$z \sim p_Z(z)$$

Step 2:
$$x = f_{\theta}^{-1}(z)$$

What do we need to keep in mind for f?

Recall, change of variable formula requires

- f_{θ} Invertible & differentiable

Example: Flow to Uniform z

Example: Flow to Beta(5,5) z

Example: Flow to Gaussian z

Practical Parameterizations of Flows

Requirement: Invertible and Differentiable

- Cumulative Density Functions
 - E.g. Gaussian mixture density, mixture of logistics
- Neural Net
 - If each layer flow, then sequencing of layers = flow
 - Each layer:
 - ReLU?
 - Sigmoid?
 - Tanh?

How general are flows?

 Can every (smooth) distribution be represented by a (normalizing) flow? [considering 1-D for now]

Refresher: Cumulative Density Function (CDF)

$$f_{\theta}(x) = \int_{-\infty}^{x} p_{\theta}(t) dt$$

Sampling via inverse CDF

Sampling from the model:

$$z \sim \text{Uniform}([0,1])$$

$$x = f_{\theta}^{-1}(z)$$

The CDF is an invertible, differentiable map from data to [0, 1]

$$f_{\theta}(x) = \int_{-\infty}^{x} p_{\theta}(t) dt$$

How general are flows?

- CDF turns any density into uniform
- Inverse flow is flow

 \rightarrow can turn any (smooth) p(x) into any (smooth) p(z)

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
- Dequantization

2-D Autoregressive Flow

$$x_1 \to z_1 = f_{\theta}(x_1)$$
$$x_2 \to z_2 = f_{\theta}(x_1, x_2)$$

2-D Autoregressive Flow: Two Moons

Architecture:

- Base distribution: Uniform[0,1]^2
- x1: mixture of 5 Gaussians
- x2: mixture of 5 Gaussians, conditioned on x1

2-D Autoregressive Flow: Face

Architecture:

- Base distribution: Uniform[0,1]^2
- x1: mixture of 5 Gaussians
- x2: mixture of 5 Gaussians, conditioned on x1

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
- Dequantization

High-dimensional data

x and z must have the same dimension

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
 - Autoregressive Flows and Inverse Autoregressive Flows
 - RealNVP (like) architectures
 - Glow, Flow++, FFJORD
- Dequantization

Autoregressive flows

- The sampling process of a Bayes net is a flow
 - If autoregressive, this flow is called an autoregressive flow

$$x_1 \sim p_{\theta}(x_1)$$
 $x_1 = f_{\theta}^{-1}(z_1)$ $x_2 \sim p_{\theta}(x_2|x_1)$ $x_2 = f_{\theta}^{-1}(z_2;x_1)$ $x_3 \sim p_{\theta}(x_3|x_1,x_2)$ $x_3 = f_{\theta}^{-1}(z_3;x_1,x_2)$

Sampling is an invertible mapping from z to x

Autoregressive flows

- How to fit autoregressive flows?
 - Map x to z
 - Fully parallelizable

$$p_{\theta}(\mathbf{x}) = p(f_{\theta}(\mathbf{x})) \left| \det \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right|$$

- Notice
 - **x** \rightarrow **z** has the same structure as the **log likelihood** computation of an autoregressive model
 - z → x has the same structure as the sampling procedure of an autoregressive model

$$z_1 = f_{\theta}(x_1)$$
 $x_1 = f_{\theta}^{-1}(z_1)$ $z_2 = f_{\theta}(x_2; x_1)$ $x_2 = f_{\theta}^{-1}(z_2; x_1)$ $z_3 = f_{\theta}(x_3; x_1, x_2)$ $x_3 = f_{\theta}^{-1}(z_3; x_1, x_2)$

Inverse autoregressive flows

- The inverse of an autoregressive flow is also a flow, called the **inverse** autoregressive flow (IAF)
 - $\mathbf{z} \rightarrow \mathbf{z}$ has the same structure as the **sampling** in an autoregressive model
 - **z** → **x** has the same structure as **log likelihood** computation of an autoregressive model. So, **IAF sampling is fast**

$$egin{align} z_1 &= f_{ heta}^{-1}(x_1) & x_1 &= f_{ heta}(z_1) \ z_2 &= f_{ heta}^{-1}(x_2;z_1) & x_2 &= f_{ heta}(z_2;z_1) \ z_3 &= f_{ heta}^{-1}(x_3;z_1,z_2) & x_3 &= f_{ heta}(z_3;z_1,z_2) \ \end{array}$$

AF vs IAF

- Autoregressive flow
 - Fast evaluation of p(x) for arbitrary x
 - Slow sampling
- Inverse autoregressive flow
 - Slow evaluation of p(x) for arbitrary x, so training directly by maximum likelihood is slow.
 - Fast sampling
 - Fast evaluation of p(x) if x is a sample
- There are models (Parallel WaveNet, IAF-VAE) that exploit IAF's fast sampling

AF and IAF

Naively, both end up being as deep as the number of variables!

E.g. 1MP image \rightarrow 1M layers...

Can do parameter sharing as in Autoregressive Models from lecture 2 [e.g. RNN, masking]

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
 - Autoregressive Flows and Inverse Autoregressive Flows
 - RealNVP (like) architectures
 - Glow, Flow++, FFJORD
- Dequantization

Change of MANY variables

For $z \sim p(z)$, sampling process f^{-1} linearly transforms a small cube dz to a small parallelepiped dx. Probability is conserved:

$$p(x) = p(z) \frac{\operatorname{vol}(dz)}{\operatorname{vol}(dx)} = p(z) \left| \det \frac{dz}{dx} \right|$$

Intuition: x is likely if it maps to a "large" region in z space

Flow models: training

Change-of-variables formula lets us compute the density over x:

$$p_{\theta}(\mathbf{x}) = p(f_{\theta}(\mathbf{x})) \left| \det \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right|$$

Train with maximum likelihood:

$$\arg\min_{\theta} \mathbb{E}_{\mathbf{x}} \left[-\log p_{\theta}(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{x}} \left[-\log p(f_{\theta}(\mathbf{x})) - \log \det \left| \frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right| \right]$$

New key requirement: the Jacobian determinant must be easy to calculate and differentiate!

Constructing flows: composition

Flows can be composed

$$x \to f_1 \to f_2 \to \dots f_k \to z$$

$$z = f_k \circ \dots \circ f_1(x)$$

$$x = f_1^{-1} \circ \dots \circ f_k^{-1}(z)$$

$$\log p_{\theta}(x) = \log p_{\theta}(z) + \sum_{i=1}^k \log \left| \det \frac{\partial f_i}{\partial f_{i-1}} \right|$$

Easy way to increase expressiveness

Affine flows

- Another name for affine flow: multivariate Gaussian.
 - Parameters: an invertible matrix A and a vector b
 - $f(x) = A^{-1}(x b)$
- Sampling: x = Az + b, where $z \sim N(0, I)$
- Log likelihood is expensive when dimension is large.
 - The Jacobian of f is A-1
 - Log likelihood involves calculating det(A)

Elementwise flows

$$f_{\theta}((x_1,\ldots,x_d)) = (f_{\theta}(x_1),\ldots,f_{\theta}(x_d))$$

- Lots of freedom in elementwise flow
 - Can use elementwise affine functions or CDF flows.
- The Jacobian is diagonal, so the determinant is easy to evaluate.

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \operatorname{diag}(f'_{\theta}(x_1), \dots, f'_{\theta}(x_d))$$
$$\det \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \prod_{i=1}^{d} f'_{\theta}(x_i)$$

NICE/RealNVP

Affine coupling layer

■ Split variables in half: $x_{1:d/2}$, $x_{d/2+1:d}$

$$\mathbf{z}_{1:d/2} = \mathbf{x}_{1:d/2}$$

$$\mathbf{z}_{d/2:d} = \mathbf{x}_{d/2:d} \cdot s_{\theta}(\mathbf{x}_{1:d/2}) + t_{\theta}(\mathbf{x}_{1:d/2})$$

- Invertible! Note that s_{θ} and t_{θ} can be arbitrary neural nets with **no restrictions**.
 - Think of them as data-parameterized elementwise flows.

NICE/RealNVP

It also has a tractable Jacobian determinant

$$\mathbf{z}_{1:d/2} = \mathbf{x}_{1:d/2}$$
 $\mathbf{z}_{d/2:d} = \mathbf{x}_{d/2:d} \cdot s_{\theta}(\mathbf{x}_{1:d/2}) + t_{\theta}(\mathbf{x}_{1:d/2})$
 $\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{bmatrix} I & 0 \\ \frac{\partial \mathbf{z}_{d/2:d}}{\partial \mathbf{x}_{1:d/2}} & \operatorname{diag}(s_{\theta}(\mathbf{x}_{1:d/2})) \end{bmatrix}$

The Jacobian is triangular, so its determinant is the product of diagonal entries.

$$\det \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \prod_{k=1}^{d} s_{\theta}(\mathbf{x}_{1:d/2})_{k}$$

RealNVP

 Takeaway: coupling layers allow unrestricted neural nets to be used in flows, while preserving invertibility and tractability

[Dinh et al. Density estimation using Real NVP. ICLR 2017]

RealNVP Architecture

Input x: 32x32xc image

- Layer 1: (Checkerboard x3, channel squeeze, channel x3)
 - Split result to get x1: 16x16x2c and z1: 16x16x2c (fine-grained latents)
- Layer 2: (Checkerboard x3, channel squeeze, channel x3)
 - Split result to get x2: 8x8x4c and z2: 8x8x4c (coarser latents)
- Layer 3: (Checkerboard x3, channel squeeze, channel x3)
 - Get z3: 4x4x16c (latents for highest-level details)

RealNVP: How to partition variables?

Good vs Bad Partitioning

Checkerboard x4; channel squeeze; channel x3; channel unsqueeze; checkerboard x3

(Mask top half; mask bottom half; mask left half; mask right half) x2

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
 - Autoregressive Flows and Inverse Autoregressive Flows
 - RealNVP (like) architectures
 - Glow, Flow++, FFJORD
- Dequantization

Choice of coupling transformation

 A Bayes net defines coupling dependency, but what invertible transformation f to use is a design question

$$\mathbf{x}_i = f_{\theta}(\mathbf{z}_i; parent(\mathbf{x}_i))$$

 Affine transformation is the most commonly used one (NICE, RealNVP, IAF-VAE, ...)

$$\mathbf{x}_i = \mathbf{z}_i \cdot \mathbf{a}_{\theta}(\operatorname{parent}(\mathbf{x}_i)) + \mathbf{b}_{\theta}(\operatorname{parent}(\mathbf{x}_i))$$

- More complex, nonlinear transformations -> better performance
 - CDFs and inverse CDFs for Mixture of Gaussians or Logistics (Flow++)
 - Piecewise linear/quadratic functions (Neural Importance Sampling)

NN architecture also matters

- Flow++ = MoL transformation + self-attention in NN
 - Bayes net (coupling dependency), transformation function class, NN architecture all play a role in a flow's performance. Still an

Table 2. CIFAR10 ablation results after 400 epochs of training. Models not converged for the purposes of ablation study.

Ablation	bits/dim	parameters
	2 202	22.27.5
uniform dequantization	3.292	32.3M
affine coupling	3.200	32.0M
no self-attention	3.193	31.4M
Flow++ (not converged for ablation)	3.165	31.4M

Other classes of flows

- Glow (<u>link</u>)
 - Invertible 1x1 convolutions
 - Large-scale training

- Continuous time flows (FFJORD)
 - Allows for unrestricted architectures. Invertibility and fast log probability computation guaranteed.

Outline

- Foundations of Flows (1-D)
- 2-D Flows
- N-D Flows
- Dequantization

Flow on Discrete Data Without Dequantization...

Continuous flows for discrete data

- A problem arises when fitting continuous density models to discrete data: degeneracy
 - lacksquare When the data are 3-bit pixel values, $\mathbf{x} \in \{0,1,2,\ldots,255\}$
 - What density does a model assign to values between bins like 0.4, 0.42...?
- Correct semantics: we want the integral of probability density within a discrete interval to approximate discrete probability mass

$$P_{\text{model}}(\mathbf{x}) \coloneqq \int_{[0,1)^D} p_{\text{model}}(\mathbf{x} + \mathbf{u}) d\mathbf{u}$$

Continuous flows for discrete data

Solution: Dequantization. Add noise to data.

$$\mathbf{x} \in \{0,1,2,\dots,255\}$$
 We draw noise u uniformly from $[0,1)^D$

$$\mathbb{E}_{\mathbf{y} \sim p_{\text{data}}} \left[\log p_{\text{model}}(\mathbf{y}) \right] = \sum_{\mathbf{x}} P_{\text{data}}(\mathbf{x}) \int_{[0,1)^D} \log p_{\text{model}}(\mathbf{x} + \mathbf{u}) d\mathbf{u}$$

$$\leq \sum_{\mathbf{x}} P_{\text{data}}(\mathbf{x}) \log \int_{[0,1)^D} p_{\text{model}}(\mathbf{x} + \mathbf{u}) d\mathbf{u}$$

$$= \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log P_{\text{model}}(\mathbf{x}) \right]$$

[Theis, Oord, Bethge, 2016]

Flow on Discrete Data With Dequantization

Future directions

- The ultimate goal: a likelihood-based model with
 - fast sampling
 - fast inference
 - fast training
 - good samples
 - good compression
- Flows seem to let us achieve some of these criteria.
- But how exactly do we design and compose flows for great performance? That's an open question.

Bibliography

NICE: Dinh, Laurent, David Krueger, and Yoshua Bengio. "NICE: Non-linear independent components estimation." *arXiv preprint arXiv:1410.8516* (2014).

RealNVP: Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. "Density estimation using Real NVP." arXiv preprint arXiv:1605.08803 (2016).

AF:Chen, Xi, et al. "Variational lossy autoencoder." *arXiv preprint arXiv:1611.02731* (2016).; Papamakarios, George, Theo Pavlakou, and Iain Murray. "Masked autoregressive flow for density estimation." *Advances in Neural Information Processing Systems*. 2017.

IAF: Kingma, Durk P., et al. "Improved variational inference with inverse autoregressive flow." *Advances in neural information processing systems*. 2016.

Flow++: Ho, Jonathan, et al. "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design." *arXiv* preprint arXiv:1902.00275 (2019).

Neural Importance Sampling: Müller, Thomas, et al. "Neural importance sampling." arXiv preprint arXiv:1808.03

Glow: Kingma, Durk P., and Prafulla Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." *Advances in Neural Information Processing Systems*. 2018.

FFJORD: Grathwohl, Will, et al. "Ffjord: Free-form continuous dynamics for scalable reversible generative models." *arXiv preprint arXiv:1810.01367* (2018).

Neural Autoregressive Flow: Huang, Chin-Wei, et al. "Neural autoregressive flows." arXiv preprint arXiv:1804.00779 (2018)

Residual Flows for invertible generative modeling, Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, Jörn-Henrik Jacobsen, arXiv: 1906.02735

Normalizing Flows for Probabilistic Modeling and Inference, George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan https://arxiv.org/abs/1912.02762 [tutorial]

UC Berkeley·CS294-158 | Deep Unsupervised Learning (2020)

CS294 (2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方筆记翻译

代码 作业项目解析

视频·B 站[扫码或点击链接]

https://www.bilibili.com/video/BV1ug4y1p7fG

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/cs294-158

Berkeley 强化学习

自监督学习

降噪

深度学习

目凹り た监督学ヌ

GAN

VAE

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP20+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和读查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复[添砖加瓦]