

planetmath.org

Math for the people, by the people.

in a vector space, $\lambda v = 0$ if and only if $\lambda = 0$ or v is the zero vector

 $Canonical\ name \qquad In A Vector Spacel amb da V0 If And Only If lamb da 0 Or VIs The Zero Vector$

Date of creation 2013-03-22 13:37:34 Last modified on 2013-03-22 13:37:34

Owner aoh45 (5079) Last modified by aoh45 (5079)

Numerical id 10

Author aoh45 (5079)
Entry type Theorem
Classification msc 15-00
Classification msc 13-00
Classification msc 16-00

Theorem Let V be a vector space over the field F. Further, let $\lambda \in F$ and $v \in V$. Then $\lambda v = 0$ if and only if λ is zero, or if v is the zero vector, or if both λ and v are zero.

Proof. Let us denote by 0_F and by 1_F the zero and unit elements in F respectively. Similarly, we denote by 0_V the zero vector in V. Suppose $\lambda = 0_F$. Then, by http://planetmath.org/VectorSpaceaxiom 8, we have that

$$1_F v + 0_F v = 1_F v,$$

for all $v \in V$. By http://planetmath.org/VectorSpaceaxiom 6, there is an element in V that cancels $1_F v$. Adding this element to both yields $0_F v = 0_V$. Next, suppose that $v = 0_V$. We claim that $\lambda 0_V = 0_V$ for all $\lambda \in F$. This follows from the previous claim if $\lambda = 0$, so let us assume that $\lambda \neq 0_F$. Then λ^{-1} exists, and http://planetmath.org/VectorSpaceaxiom 7 implies that

$$\lambda \lambda^{-1} v + \lambda 0_V = \lambda (\lambda^{-1} v + 0_V)$$

holds for all $v \in V$. Then using http://planetmath.org/VectorSpaceaxiom 3, we have that

$$v + \lambda 0_V = v$$

for all $v \in V$. Thus $\lambda 0_V$ satisfies the axiom for the zero vector, and $\lambda 0_V = 0_V$ for all $\lambda \in F$.

For the other direction, suppose $\lambda v = 0_V$ and $\lambda \neq 0_F$. Then, using http://planetmath.org/VectorSpaceaxiom 3, we have that

$$v = 1_F v = \lambda^{-1} \lambda v = \lambda^{-1} 0_V = 0_V.$$

On the other hand, suppose $\lambda v = 0_V$ and $v \neq 0_V$. If $\lambda \neq 0$, then the above calculation for v is again valid whence

$$0_V \neq v = 0_V,$$

which is a contradiction, so $\lambda = 0$. \square

This result with proof can be found in [?], page 6.

References

[1] W. Greub, Linear Algebra, Springer-Verlag, Fourth edition, 1975.