Detecção de objetos

Fernando Pujaico Rivera

1 Detetando cores

Conhecida uma imagem \mathbf{A} com L pixels codificados em RGB (como na Figura 1a), onde $a_l = (r_l, g_l, b_l) \in \mathbb{R}^3$ representa o pixel $l, \forall 1 \leq l \leq L$ em \mathbf{A} , de modo que r_l indica o valor da componente em vermelho do pixel, g_l indica o valor da componente em verde do pixel e b_l indica o valor da componente em azul do pixel. Definimos um detector de cores mediante a função $func_compare$ descrita na Equação (1),

$$func_compare(\mathbf{a}, \mathbf{c}, \epsilon) = \begin{cases} 1 & if & \frac{||\mathbf{a} - \mathbf{c}||}{||\mathbf{c}||} < |\epsilon| \\ 0 & else \end{cases}, \tag{1}$$

que recebe como entrada os vetores \mathbf{a} e \mathbf{c} (representando pixeis), e se procura se estes tem uma diferença relativa menor a $|\epsilon|$, em caso afirmativo, é dizer se os vetores são semelhantes, se retorna 1 em caso contrario se retorna 0. Na Equação (1) o operador $||\mathbf{c}||$ indica a norma euclidiana de \mathbf{c} .

Assim, para obter a linha detetada em branco e preto da Figura 1b a partir da linha projetada em cores da Figura 1a, é utilizada a função $func_compare()$, de modo que primeiro selecionamos um pixel \mathbf{a}_c na imagem \mathbf{A} , representando este pixel a cor a detetar, e logo comparamos cada pixel $\mathbf{a}_l \in \mathbf{A}$, obtendo como resultado desta comparação \mathbf{d}_l , é dizer

$$\mathbf{d}_l \leftarrow func_compare(\mathbf{a}_l, \mathbf{a}_c, \epsilon), \quad \forall \ 1 \le l \le L,$$
 (2)

apos estes cálculos os valores \mathbf{d}_l são ordenados para formar a imagem \mathbf{D} , como exemplifica a Figura 1b, onde a cor branca representa um valor 1 e a cor preta um valor 0. No caso da Figura 1 é usado o valor $\epsilon = 0.25$.

(a) Imagem ${\bf A}$ em RGB.

(b) Imagem \mathbf{D} em BW.

Figure 1: Detecção de cores.