

«Московский государственный технический университет имени Н.Э.Баумана (национальный исследовательский университет)» Кафедра «Ракетные двигатели»

Топлива и рабочие процессы в ЖРД

Твердые ракетные топлива.

Лекции 1, 2. Определения, классификация, состав БТРТ и СТРТ. Специальные требования к ТРТ

РДТТ. Определение и принцип работы

Ракетный двигатель на твердом топливе (РДТТ) — двигатель прямой реакции, в котором химическая энергия твердого топлива (ТТ) преобразуется сначала в тепловую, а затем в кинетическую энергию продуктов сгорания, истекающих с высокой скоростью из соплового блока.

РДТТ. Утопленное сопло

Сопловой блок стартового двигателя

1 — силовая часть сопла, 2 — фланец, 3 — конический переходник, 4,5,6 — тепло- и эрозионно-стойкие элементы, 7 — вкладыш критического сечения, 8 — облицовка раструба из углепластика, 9 — заднее днище корпуса, 10 — каркас, 11 — корпус хвостового отсека, 12 — торец хвостового отсека

Сопловой блок высотной ступени

1 — раздвижной тонкостенный насадок, 2 — заднее днище корпуса, 3 — каркас, 4 — корпус отсека

РДТТ. Классификация

Современные ракеты с РДТТ имеют разнообразные характеристики, которые удовлетворяются конструкцией ракеты, заряда и свойствами твердого ракетного топлива (TPT).

Классификация по назначению:

• Стартовые РДТТ (интенсивный набор скорости)

• Маршевые РДТТ (большое время работы)

• Вспомогательного назначения

По области применения:

• в военной технике (от стрелкового оружия до БМР)

• в народно-хозяйственной сфере (от фейерверков до систем добычи полезных ископаемых)

РДТТ. Преимущества и недостатки

Преимущества:

- Простота и компактность конструкции
- Высокая надежность и постоянная готовность к работе
- Возможность длительного хранения в снаряженном виде
- Возможность обеспечения высокой тяговооруженности

Недостатки:

- Меньшие значения удельного импульса по сравнению с ЖРД (< 2700 м/с)
- Чувствительность к начальной температуре заряда
- Сложность регулирования тяги по величине и многократного включения
- Технологические трудности изготовления крупногабаритных зарядов
- Ограниченное время работы

ТРТ. Определения

Современные представления о ТРТ позволяют сформулировать несколько определений.

Физико-химическое: TPT — это многокомпонентная конденсированная система, обладающая различными размерами, формой и структурой.

Термодинамическое: ТРТ — это энергообогащенная система, в которой физико-химические процессы могут протекать самопроизвольно с уменьшением энергии Гиббса (увеличением энтропии).

Являясь термодинамическими неравновесными системами, ТРТ могут претерпевать в зависимости от мощности начального импульса *три основных вида физико-химических превращений*:

- Термическое разложение
- Горение
- Детонация

ТРТ. Определения

Все виды химического превращения (термическое разложение, горение, детонация) связаны друг с другом и могут переходить один в другой.

При горении механизмом передачи энергии от слоя к слою является теплопроводность и диффузия, а при детонации – ударная волна.

Для горения истечение противоположно перемещению фронта горения.

Военно-техническое: ТРТ составляет группу метательных ВВ, основным видом взрывчатого превращения которых при выстреле из ствольного оружия и при работе ракетного двигателя является горение — процесс физико-химического превращения с умеренной и регулируемой скоростью (в отличие от взрыва и детонации) с образованием газообразных и конденсированных продуктов, сжатых при высокой температуре в малом объеме КС до высоких давлений.

Исторически выделяют **два больших класса ТРТ**.

БТРТ и СТРТ

Баллиститное твердое ракетное топливо (БТРТ) — это термопластичная полимерная двухосновная энергетическая конденсированная система, включающая нитраты целлюлозы и энергоёмкий пластификатор. В отличие от баллиститного пороха БТРТ содержит также ряд специфических добавок.

Смесевое твердое ракетное топливо (СТРТ) — это гетерогенная высоконаполненная полимерная система, состоящая из твердых порошкообразных наполнителей (окислителей, металлических горючих) и жидких компонентов: горючих-связующих (ГСВ), технологических, баллистических и прочих добавок.

Нитроцеллюлозные пороха

Нитроцеллюлозные пороха представляют собой продукты нитрации целлюлозы смесью кислот (тройная смесь $HNO_3/H_2SO_4/H_2O$), пластифицированные растворителями.

В зависимости от степени нитрации, летучести растворителей и особенностей производства могут быть получены следующие разновидности нитроцеллюлозных порохов:

- *Одноосновные (пироксилиновые)* на основе пироксилина (12,3..13,5% N) с летучим растворителем (остаточное содержание не выше 5%) применяются в артиллерийских системах
- Двухосновные (баллиститные) на основе коллоксилина (11,5..12.3% N) с нелетучим растворителем, полностью остающимся в смеси широко применяются как в артиллерийских системах, так и в РДТТ

Состав БТРТ

Тип компонента	Примеры (назначение)	Содержание	
		Без эн. доб.	С эн. доб.
Основа	НЦ в виде коллоксилина	40-60	25-35
Энергоёмкий пластификатор	Нитроглицерин (НГЦ), этиленгликоль, диэтиленгликоль (ДЭГ) и т.д.	25-40	25-35
Дополнительный пластификатор	Динитротолуол (ДНТ), дибутилфталат (ДБФ), триацетин		
Стабилизатор химической стойкости	Централит I и II, дифениламин (ДФА) Связывают продукты распада НЦ и пластификатора, исключают их автокаталитическое воздействие	1,5-3	1,5-2

Состав БТРТ

Тип компонента	Примеры (назначение)	Содержание	
		Без эн. доб.	С эн. доб.
Энергетические добавки	Мощные ВВ (гексоген, октоген), порошки алюминия и его сплавов с магнием. Эти вещества обладают высокой энтальпией образования и высокой теплотой сгорания, увеличивают J_y	1	30-40
Стабилизаторы горения	MgO, TiO ₂ , Al ₂ O ₃ и др. Устраняют высокочастотную нестабильность процесса горения	1.5-3	До 1
Катализаторы и ингибиторы горения	Неорганические и металлорганические соединения Pb, Cu, Co, Fe, Ni и др. Уменьшают или увеличивают скорость горения топлива и влияют на её зависимость от давления	До 4	До 1

Состав БТРТ

Тип компонента	Примеры (назначение)	Содержание	
		Без эн. доб.	С эн. доб.
Технологические добавки	Вазелин, индустриальное масло, графит и др. Снижают чувствительность к различным импульсам (трению, удару, свету) и показатели пожаро- и взрывоопасности.	До 1	До 1
Пламегасящие добавки	Ингибиторы основных пламенных реакций, т.е. ингибируют поздние стадии горения. Это, в основном, соединения калия: KNO ₃ , K ₂ SO ₄ .	До 1	До 1
Удельный импульс, м/с		1750	2400
Плотность, кг/м³		1550	1700

Состав СТРТ. Окислитель

Основу СТРТ составляет окислитель, который занимает до 90% массы СТРТ.

Для производства СТРТ применяют **4 класса окислителей**:

- **перхлораты** (перхлорат аммония, перхлорат калия, перхлорат лития, перхлорат нитрония NO2ClO4 и т.д.),
- нитраты (аммония NH4NO3, калия KNO3),
- нитросоединения (энергетические соединения, содержащие связи –С- NO₂ в молекулярной структуре: динитротолуол, тринитротолуол, нитроформат гидразина),
- **нитрамины** (характеризуются связями –N NO2 : гексоген C3H6N6O6, октоген C4H8N8O8, динитрамид аммония (АДНА) NH4N(NO2)2).

Состав СТРТ. Окислитель

Эффективность окислителя как компонента ТРТ определяется:

- Химической активностью
- Коэффициентом обеспеченности окислительными элементами
- Содержанием свободного или активного окислителя
- Энтальпией образования
- Плотностью
- Удельным объёмом газообразных продуктов разложения и др.

Горючее связующее вещество (ГСВ) представляет собой многокомпонентную полимерную композицию преимущественно горючих веществ, способную связывать порошкообразные компоненты в пластичную топливную массу и в результате отверждения формировать механические и другие свойства заряда.

ГСВ современных ТРТ является *многофункциональным компонентом*.

ГСВ, являясь матрицей СТРТ, наряду с механическими характеристиками определяет реологические характеристики топливных масс и соответственно технологический способ формирования зарядов.

Химический состав ГСВ, энтальпия образования и плотность его компонентов оказывают существенное влияние на энергомассовые, а также баллистические и другие характеристики топлив.

Необходимость обеспечения комплекса требований предопределяет многокомпонентность ГСВ. *Основными компонентами являются*:

- Полимерная основа
- Пластификатор
- Компоненты системы отверждения полимера
- Специальные добавки (стабилизаторы, поверхностно-активные вещества, адгезивы, диспергаторы и др.)

По химическому составу с учётом энергетических характеристик условно принято выделять:

- Инертине ГСВ, к которым относятся композиции, состоящие в основном из атомов горючих элементов и имеющие, как правило, отрицательную энтальпию образования (бутилкаучук, полиуретановый каучук, дибутилсебацинат и др.).
- **Активные ГСВ**, обогащенные окислительными элементами, способные к самостоятельному горению в инертной среде, а также имеющие высокую положительную энтальпию образования (бисазидометилоксетан (БАМО), глицидилазидный полимер (ГАП)).

Специальные требования к ТРТ

Энергетические требования (требования к энергомассовым характеристикам) вытекают из общей теории реактивного движения и предусматривают возможность достижения ракетой наибольшей дальности при заданной массе полезной нагрузки или наоборот возможность доставки максимальной полезной нагрузки на заданную дальность.

Внутрибаллистические требования определяют необходимую скорость горения, максимальную концентрацию конденсированной фазы, теплопроводность топлива и т.д.

Специальные требования к ТРТ

Требования к механической прочности зарядов определяют их поведение при действии различных сил, тепловой энергии и других внешних и внутренних факторов. В значительной мере обусловливают конструкцию заряда (форму, способ монтажа в камере сгорания и др.) и двигателя, массогабаритные характеристики РДТТ и ракеты в целом.

Эксплуатационные требования обусловливают возможность сохранения свойств топлив, характеристик двигателей, их стойкость к воздействию различных эксплуатационных и других факторов, необходимый уровень безопасности обращения и надежности функционирования в различных климатических условиях в течение гарантийных сроков эксплуатации.

Производственно-экономические требования определяют возможность массового изготовления топлив в мирное и военное время с минимальными затратами.

Энергетические требования

Одной из важнейших энергетических характеристик топлива является удельный импульс.

$$I_{_{\mathrm{YA}}} = \sqrt{2c_{_{p}}T_{_{\mathrm{K}}}\eta_{_{T}}} = \sqrt{2\frac{k}{k-1}RT_{_{\mathrm{K}}}\eta_{_{T}}} = \sqrt{2H_{_{U}}\eta_{_{T}}} = \sqrt{2\eta_{_{T}}\left(I_{_{T}} - I_{_{\Pi \mathrm{C}}}\right)}; \quad \eta_{_{T}} = 1 - \left(\frac{p_{_{\alpha}}}{p_{_{\mathrm{KC}}}}\right)^{\frac{k-1}{k}}$$

- Свойства самого топлива представлены энтальпией топлива. Свойства продуктов сгорания представлены тремя характеристиками: удельной теплоёмкостью, газовой постоянной и показателем адиабаты.
- Для оценки влияния каждой из величин на удельный импульс рекомендуется фиксировать свойства топлива как источника тепла. Т.е. при заданном Н_и удельный импульс зависит от термического КПД, а он тем больше, чем больше показатель адиабаты. Для этого желательно, чтобы ПС обладали возможно меньшей атомностью и температурой. Эти же факторы уменьшают потери удельного импульса на диссоциацию.
- Желательно также увеличивать теплоёмкость ПС. Рекомендуется достигать этого за счёт уменьшения молекулярной массы ПС (или за счет увеличения их газовой постоянной).

$$I_{\tau} \uparrow I_{nc} \downarrow \eta_{\tau} \uparrow k \uparrow T_{nc} \downarrow c_{\rho} \uparrow \mu \downarrow R \uparrow$$

Энергетические требования к ТРТ

Удельный импульс с учётом потерь энергии на неполноту сгорания топлива и диссоциацию продуктов сгорания:

$$I_{\rm yd} = \sqrt{2H_u\eta_{\scriptscriptstyle T}\varphi_{\scriptscriptstyle \Gamma}\varphi_{\rm дис}}$$

Потери энергии на неполноту сгорания топлива зависят от организации процесса горения в двигателе, так что при заданном отношении давления p_{κ} : p_{a} величина удельного импульса целиком определяется свойствами топлива.

Ввод добавок в компоненты топлива или подбор самих компонентов с расчетом, чтобы при этом увеличивалась энтальпия топлива, а продукты сгорания обогащались низкоэнтальпийными веществами, будет способствовать росту удельного импульса.

Энергетические требования к ТРТ

При наличии в ПС жидких и твердых частиц конденсированной фазы (к-фазы) наблюдается их скоростное отставание от газовой части (механическая неравновесность) и температурное (тепловая неравновесность). В результате указанных неравновесностей скорость ПС на выходе из сопла ниже, а энтальпия ПС больше, чем в случае равновесного движения среды.

С увеличением относительного содержания к-фазы в ПС уменьшается (n-1)/n, где n — показатель политропы, что приводит к уменьшению термического КПД, т.к.

$$\eta_T = 1 - \left(\frac{p_a}{p_{\kappa c}}\right)^{\frac{n-1}{n}}$$

Суть этой закономерности состоит в том, что с увеличением доли к-фазы уменьшается доля «работающей» газовой фазы ПС.

Энергетические требования к ТРТ

Для совместного учёта влияния плотности топлива и удельного импульса на несущую способность (отношение массы полезного груза на собственную массу ракеты) используют понятие эффективного удельного импульса:

$$I_{\mathrm{y}\mathrm{d}}^{\mathrm{s}\mathrm{\phi}} = I_{\mathrm{y}\mathrm{d}} \rho_{\mathrm{T}}^{\mathrm{y}}$$

$$\frac{\Delta I_{\mathrm{y}\mathrm{d}}^{\mathrm{s}\mathrm{\phi}}}{I_{\mathrm{y}\mathrm{d}}^{\mathrm{s}\mathrm{\phi}}} \cong \frac{\Delta I_{\mathrm{y}\mathrm{d}}}{I_{\mathrm{y}\mathrm{d}}} + \gamma \frac{\Delta \rho_{\mathrm{T}}}{\rho_{\mathrm{T}}}$$

Относительное изменением удельного импульса в 1% вызывает однозначное изменение эффективного импульса также на 1%, тогда как такое же изменение плотности даёт изменение всего на γ % (γ < 0,8).

Твердое ракетное топливо и его ПС должны обеспечивать максимально возможные удельный импульс и плотность

Влияние состава ТРТ (ПХА+окт+БК+АІ) на параметры ПС и удельный импульс

Влияние состава ТРТ (ПХА+окт+БК+Al) на параметры ПС и удельный импульс

Влияние состава ТРТ (ПХА+окт+БК+Al) на параметры ПС и удельный импульс

Лекции 1,2 g3 2

Внутрибаллистические требования к ТРТ

Основным внутрибаллистическим параметром ТРТ является его **скорость горения**, под которой понимается скорость линейного перемещения поверхности горения топлива в направлении нормали к ней. Эта характеристика *является основой для расчета геометрических и внутрикамерных параметров двигателя*.

Скорость горения (*u*) зависит от состава и состояния компонентов в топливе, от давления в КС, начальной температуры топлива, наличия обдувающего горящую поверхность потока газов и т.д.

Внутрибаллистические требования к ТРТ

Комплекс баллистических характеристик должен обеспечивать:

- стабильность и надежность воспламенения зарядов от штатных воспламенительных средств;
- стабильное устойчивое горение с минимальными потерями энергии в широком интервале давлений и начальной температуры зарядов;
- возможность регулирования скорости горения в широком диапазоне значений (единицы—сотни миллиметров в секунду) без существенного ухудшения энергомассовых и других характеристик;
- для неуправляемых двигателей низкую чувствительность скорости горения к давлению (v = 0,2...0,3) и температуре. Для двигателей с управляемой тягой в полете оптимальное значение v ≥ 0,8.

Требования к механическим свойствам ТРТ определяются прежде всего условиями эксплуатации и боевого применения РДТТ:

- хранение горизонтальное или вертикальное,
- нахождение ракеты на подвижной пусковой установке или в шахте,
- полет заряда при работающем или неработающем двигателе.

Один из основных критериев возможности применения топлив в конкретной конструкции РДТТ — накопление повреждений, или *длительная прочность*, что позволяет определить запас прочности и установить основные нормы требований к стандартным механическим характеристикам топлив.

На заряды РДТТ в общем случае действуют следующие виды нагрузок:

- температурные (обусловлены наличием температурной или полимеризационной усадки или резко изменяющимся по своду и длине заряда температурным полем);
- от массовых сил (тяжести, инерции) и давления.

Основными **стандартными характеристиками механических свойств ТРТ** являются **прочность**, **деформируемость** и **упругость**.

Прочность характеризуется:

- предельным (разрушающим) напряжением при растяжении (σ_p) и сжатии ($\sigma_{cж}$);
- удельной ударной вязкостью (а_к), характеризующей прочность при действии динамических нагрузок, и численно равна отношению работы, затраченной на разрушение, к площади образца в плоскости удара;
- долговечностью временем, прошедшим от начала действия деформирующей силы до разрушения ($\tau_{\rm p}$).

Деформируемость характеризуется:

- предельной относительной деформацией при растяжении (ϵ_{p}) и сжатии ($\epsilon_{cж}$);
- относительной поперечной деформацией коэффициентом Пуассона (μ);
- ползучестью величиной кажущейся остаточной деформации (Ползучестью называется процесс увеличения во времени линейных размеров образца при действии постоянного напряжения).

ТРТ по своим механическим свойствам занимают промежуточное положение между идеально упругими материалами и вязкими жидкостями; возникающие в них напряжения зависят как от уровня деформаций, так и от скоростей деформирования, температуры и т.д.

Ползучесть оценивают условным модулем – **модулем ползучести** или обратной величиной (**податливостью**).

 $E_{\rm n}(\tau) = \sigma_0/\epsilon(\tau)$

Релаксацией называется процесс возвращения параметров возмущенной системы в исходное или новое равновесное состояние. Если при этом состояние системы характеризуют напряжением, то говорят о релаксации напряжения.

Если образец ТРТ достаточно быстро (в пределе - мгновенно) растянуть до деформации ε_0 и затем сохранить величину деформации неизменной, то в образце с течением времени будет наблюдаться уменьшение напряжения $\sigma(\tau)$.

$$E_{p}(\tau) = \sigma(\tau)/\epsilon_{0}$$

Ползучесть ТРТ

Релаксация ТРТ

Тип топлива	Деформируемость ε _p , %	Прочность σ_{p} , МПа	Применение
БТРТ	515	5,015,0	Вкладные заряды
СТРТ	3050	0,5	Прочноскрепленные заряды

Комплекс механических характеристик должен обеспечивать:

- создание зарядов совершенных форм с оптимальными массогабаритными характеристиками;
- сохранение формы и размера заряда, целостность его структуры под действием всех видов нагрузок;
- топлива скрепленных с корпусом зарядов должны находиться в высокоэластическом состоянии, обладать высоким уровнем относительной деформации (≥20%)
 (температура структурного стеклования топлива была меньше минимальной температуры эксплуатации заряда);
- для разгрузки скрепленных участков в процессе гарантийного хранения топливо должно иметь сравнительно низкое значение равновесного модуля упругости E = (20...30)·10⁵ Па. Однако для крупногабаритных зарядов модуль должен быть достаточно высоким для предотвращения ползучести заряда.

Комплекс механических характеристик должен обеспечивать:

- при боевом применении ракеты топливо должно выдерживать растяжения до деформации 20...30% в течение нескольких секунд без образования трещин. Контактные сдвиговые напряжения до (5...10)·10⁵ Па не должны вызывать отслоения заряда от стенки камеры двигателя в течение всего времени работы РДТТ;
- топлива вкладных зарядов должны обладать достаточно высоким уровнем прочности при растяжении $\sigma_p = (50...100)~10^5~\Pi$ а и сжатии $\sigma_{\rm cж} = (100...200)~10^5~\Pi$ а, при максимальной температуре и высокой удельной ударной вязкости $\sigma_{\rm cw} = (5...10)~{\rm кДж/m^2}$, при минимальной температуре эксплуатации. Для крупногабаритных зарядов модуль упругости топлив ограничивается снизу допустимым уровнем ползучести. Механические характеристики топлив должны в возможно меньшей степени зависеть от температуры эксплуатации зарядов (РДТТ).

Эти требования предусматривают наличие определенных физико-химических характеристик, обусловливающих возможность хранения и эксплуатации топлив и компонентов в особых условиях. Основными из них являются:

- физическая стабильность,
- химическая и радиационная стойкость,
- отсутствие коррозионной активности по отношению к конструкционным материалам,
- чувствительность к механическим и другим внешним воздействиям,
- пожаро- и взрывоопасность, восприимчивость к детонации и др.

Физическая стабильность — способность топлива и его компонентов сохранять свое агрегатное состояние и состав в условиях хранения и транспортирования.

- для жидких топлив и их компонентов это отсутствие расслаивания, выпадения осадков, испарения и выкристаллизации;
- для твердых исключение изменения состава по слоям, поглощения влаги, улетучивания компонентов, изоморфных переходов.

Низкая физическая стабильность влечет за собой ухудшение баллистических, эксплуатационных и других характеристик топлив.

Требуемый уровень физической стабильности обеспечивают подбором компонентов, введением в состав топлив (компонентов) специальных добавок и соответствующими условиями хранения.

Химическая стойкость — свойство топлива и его компонентов сохранять свой химический состав в допустимых пределах в период до его применения по назначению.

- Ракетные топлива, их компоненты являются химически активными соединениями, и поэтому химическое взаимодействие с компонентами окружающей среды и внутри топлив между отдельными составляющими процесс весьма вероятный.
- Процесс этого взаимодействия и термодинамическая неустойчивость могут приводить к медленному термодинамическому разложению, включающему начальную и автокаталитическую стадии. Последняя стадия наиболее опасная, так как могут накапливаться в значительных количествах активные продукты разложения. Для подавления каталитических реакций и обеспечения требуемого уровня химической стойкости в топлива (компоненты) вводят стабилизаторы химической стойкости. Скорость реакций первичного распада уменьшают в основном снижением температуры хранения.

- Топливо должно обладать стабильностью основных характеристик (сохраняемостью основных свойств) под воздействием внутренних и внешних факторов в течение гарантийных сроков эксплуатации ракет (15...20 лет).
- Топливо должно быть стойким к воздействию поражающих факторов ядерного и другого оружия на новых физических принципах.
- Комплекс взрывчатых характеристик топлива должен быть на приемлемом уровне, обеспечивающем требования по безопасности личного состава в условиях производства, испытаний, эксплуатации, боевого применения и утилизации зарядов (РДТТ, ракет). Топливо в снаряженном двигателе не должно взрываться (детонировать) самопроизвольно, при простреле пулями, ударе осколками, а также при случайном падении двигателя с высоты.

- В процессе эксплуатации зарядов (РДТТ) из топлив не должны выделяться в значительных количествах (создающих концентрации, превосходящие допустимые) токсичные, пожаро- и взрывоопасные вещества.
- Продукты сгорания топлив не должны содержать в значительных количествах высокотоксичные вещества, поражающие личный состав, и вредные вещества, наносящие существенный ущерб окружающей среде.
- ПС должны иметь возможно меньшую дымность и интенсивность излучения в инфракрасном диапазоне спектра. Это требование обусловлено необходимостью снижения демаскирующих свойств и обеспечения функционирования систем наведения тактических ракет.

Производственно-экономические требования к ТРТ

Наиболее общими производственно-экономическими требованиями к ТРТ являются:

- наличие широкой отечественной сырьевой базы для получения исходных веществ;
- существование значительных производственных мощностей, обеспечивающих при необходимости массовое производство топлив;
- возможно меньшая стоимость топлив.

Эти требования обеспечиваются рядом факторов, в том числе следующими. Технологии топлив (зарядов) должны быть двойными, обеспечивающими наряду с топливами производство гражданской продукции, товаров народного потребления. Вместе с тем должны быть специальные технологии и производственные мощности по переработке некондиционных, с истекшими гарантийными сроками компонентов, топлив (зарядов) с целью их утилизации, использования в качестве мирной продукции.

Производственно-экономические требования к ТРТ

Наиболее общими производственно-экономическими требованиями к ТРТ являются:

- наличие широкой отечественной сырьевой базы для получения исходных веществ;
- существование значительных производственных мощностей, обеспечивающих при необходимости массовое производство топлив;
- возможно меньшая стоимость топлив.

Эти требования обеспечиваются рядом факторов, в том числе следующими. Технологии топлив (зарядов) должны быть двойными, обеспечивающими наряду с топливами производство гражданской продукции, товаров народного потребления. Вместе с тем должны быть специальные технологии и производственные мощности по переработке некондиционных, с истекшими гарантийными сроками компонентов, топлив (зарядов) с целью их утилизации, использования в качестве мирной продукции.

Требования к окислителям СТРТ

Направлены на обеспечение высоких энергетических, механических и эксплуатационных свойств топлива:

- Высокое содержание окислительных элементов. При этом содержание свободного окислителя желательно не менее 30%
- Возможно большие энтальпия образования окислителя и его плотность
- Отсутствие в молекуле элементов с большой молекулярной массой
- Высокие физическая и химическая стабильность
- Возможно меньшая чувствительность к внешним воздействиям
- Низкая токсичность ПС
- Возможность получения широкого спектра размера частиц
- Наличие сырьевой и промышленной базы

Требования к ГСВ СТРТ

Направлены на обеспечение высоких энергетических, механических и эксплуатационных свойств топлива:

- Возможно большие энтальпия образования и плотность
- Жидкие компоненты ГСВ должны обладать умеренной вязкостью и воспринимать до 90...95% дисперсного наполнителя
- Должно отверждаться в течение короткого времени при сравнительно низкой температуре с возможно меньшими тепловыделением и усадкой
- ГСВ должны обеспечивать сохраняемость реологических свойств топливной массы (жизнеспособность)
- В наполненном состоянии должны обеспечивать высокие механические характеристики
- Компоненты ГСВ должны сохранять физическое и фазовое состояние
- «Активные» компоненты должны иметь низкую чувствительность к импульсам
- Низкий уровень токсичности
- Должны иметь сырьевую и промышленную базу