Решение пробной задачи ИАД, 2022

Основные проблемы

- Понять, в чем недостаток основных теорем об аппроксимациях: теорем Колмогорова и Цыбенко
- Понять, почему предпочтительнее не увеличивать число нейронов в скрытом слое сети, а число слоев сети, с точки зрения аппроксимации функции
- На практике проверить, действительно ли увеличение числа слоев работает лучше, чем увеличение числа нейронов в одном слое

Модель простой нейронной сети

На изображении представлена сеть, содержащая L-1 скрытый слой, имеющая размерность входного вектора - d и выходного - n

$$\sigma(x)$$
 - функция активации $h^1 = \sigma(lin(x,W_0,b_0))$

 $\lim(x, W_i, b_i) = W^T x + b_i$

 $h^i = \sigma(lin(h^{i-1}, W_{i-1}, b_{i-1}))$ для i = 2...L

В качестве σ будем рассматривать:

$$\sigma(x) = \operatorname{sigmoid}(x) = \left(\frac{1}{1 + e^{-x_i}}\right)_{i=1...d}^T$$

$$\sigma(x) = \text{ReLU}(x) = (\max\{0, x_i\})_{i=1...d}^T$$

Основные теоремы аппроксимации

Теорема(Колмогоров, 1956): пусть непрерывная функция f(x) задана на $[0,1]^d$, $x = (x_1, ..., x_d)^T$. Тогда существуют непрерывные функции σ_i , g_{ij} , где i = 1...2d + 1, j = 1...d, такие что:

$$f(x) = \sum_{i=1}^{2d+1} \sigma_i \left(\sum_{j=1}^d g_{ij}(x_j) \right)$$

Кроме того, g_{ij} не зависят от f.

Торема(Цыбенко, 1989): пусть σ - любая непрерывная сигмоидная функция. Тогда для любой непрерывной функции f(x), заданной на $[0,1]^d$ и любого $\varepsilon>0$ существуют N>0, векторы $\{w^i\}_{i=1...N}$ $(w^i\in\mathbb{R}^d)$, $\theta=(\theta_1,...\theta_N)^T\in\mathbb{R}^N$, $\alpha=(\alpha_1,...,\alpha_N)^T\in\mathbb{R}^N$ такие, что:

$$\left|\sum_{i=1}^{N} \alpha_i \sigma(w^{iT} x + \theta_i)\right| - f(x)\right| < \varepsilon$$

Заметим, что $\sum_{i=1}^N \alpha_i \sigma(w^{iT}x+\theta_i)=W_1^T\sigma(W_0^Tx+\theta)=\ln(\sigma(\ln(x,W_0,\theta)),W_1,0)$, где $W_0=(w^1,...,w^N),\,W_1=\alpha,$ это как следует из опредления - неронная сеть с одним скрытым слоем.

Недостатки

- Теорема Колмогорова дает оценку количества нейронов в скрытом слое, однако не дает способ получения б и g, и, в общем случае, их сложно найти и они имеют сложный вид
- Теорема Цыбенко фиксирует все функции и, по сути, задает обычную нейронную сеть с одним скрытым слоем. Однако, теорема не говорит, сколько нейронов нужно.

Таким образом, теоремы утверждают, что нейронной сетью с одним открытым слоем можно сколь угодно приблизить любую непрерывную функцию. Однако не дают точного способа. Поэтому возникает вопрос, можно ли обойтись только такими сетями.

Нижние оценки

Зафиксируем $\sigma(x) = \text{ReLU}(x)$.

Лемма(Zhang, 2018): Пусть нейронная сеть с L скрытыми слоями и N нейронами задает функцию $f: \mathbb{R}^d \longrightarrow \mathbb{R}^D$. Тогда область определения функции можно разбить на K выпуклых множеств $\{S^i\} \in \mathbb{R}^d$, в которых сужение $f_{S^i}: S^i \longrightarrow \mathbb{R}^D$ является линейной функции, причем:

$$K \le \left(e\frac{N}{dL} + e\right)^{dL}$$

m—сильно выпуклой назовем функцию f, такую что для любых x, y

$$f(y) \ge f(y) + \nabla f(x)(y - x) + \frac{m}{2}||y - x||^2$$

Теорема: рассмотрим функцию $f: \mathbb{R} \longrightarrow \mathbb{R}$. Тогда пусть \widetilde{f} задается сетью с одним скрытым слоем и N нейронами. Тогда $||f-\widetilde{f}|| = \sup_{|x|<1} |f(x)-\widetilde{f}| \geq O\left(\frac{1}{N^2}\right)$. Причем константа зависит только от d и множества, на котором определена f.

Доказательство теоремы

По лемме, можно разбить область определения S на $K \leq (eN+e)$ выпуклых множеств $\{S^i\}$, на каждом из которых \widetilde{f}_{S^i} - линейная. Тогда найдется k, что $A = S^k$ и $m(A) \geq \frac{m(S)}{K} \geq \frac{m(S)}{eN+e}$. Из опредления ||.|| имеем: $||f-\widetilde{f}|| \geq ||f_A-\widetilde{f}_A|| = \varepsilon$.

Рассмотрим $g=f_A-\widetilde{f}_A$. Рассмотрим $z=\operatorname{argmin}_{x\in A}(g(x))$. Так как g - разность m—сильно выпуклой и линейной функции, то g - m-сильно выпуклая функция. Кроме того, g'(z)=0, значит, для любого g имеем: $\Delta g\geq \frac{m}{2}\Delta z^2$. На A $g(x)\in [-\varepsilon,\varepsilon]$. Тогда имеем, что G лежит в G0, где G1. Тогда G2. Тогда G3. Тогда G4. Тогда G4. Тогда G5. Тогда G6. Тогда G7.

Многослойные сети

Теорема (Ханин, 2017): пусть $f:[0,1]^d \to \mathbb{R}$ - выпуклая функция и Липшицева с константой L. Тогда существует константа C>0, такая что для любой m существует нейронная сеть N глубины m и со скрытыми слоями размера d+1, такая что:

$$||f - f_N|| \le CLd^{\frac{3}{2}}m^{-\frac{2}{d}}$$

Недостаток этих теорем

Теорема Ханина, как и теорема Цыбенко, говорит только существовании нейронной сети с заданной точностью, однако, она позволяет оценить глубину сети.

Глубокие сети обучать сложнее, для быстрой сходимости нужно использовать дополнительные приемы, в своей реализации я сделал батч-нормализацию после каждой функции активации.

