Chap-2 Periodic Table &	2 feriodic Properties PAGENO.: DATE: 1 1	
Periodic Table:- Tabular arrangements periodic -fable	of clements is called	
* first Plassification	by Lavosier into metals and	
-> Difference blw me	tals and non-metals.	
Metals	1700-11)61012	
1. They are sonorous	No such property	
2. They are hard but	They are soft and brittle	
3. They are good conductor of heat and electricity.	In general, they are not a good conductor of heat	
4. They are Lustrous.	Non-lustrous	. — . ?}_
* Electron Soa Model		, , , , , , , , , , , , , , , , , , ,
M>	Mtn - The	. :
11		· —
ne _	national earlier	- - jr!

Transition Triad: - Fe, Co, Ni PAGE HO.: DATE: 1 1	
Dobereiger Priad Rule.	
(i) He made groups of three elements having chemical properties called triads	-0- -7)-
(ii) In Doberrainer triad, atomic weight of middle element is equal to the average at weight of the first and something.	
Ex- CL Br I U Nak	9
39.5 80 127 7 23 39	0
Limitations:-	<u> </u>
Capital totis.	0
It worked only for a few elements	<u>_</u>
Newland Octave Rule	<u>€</u>
vero in 29 octions if ale	- <u>y</u> -
He arranged the elements in the increasing order	9
of their atamic mans and observed that properties of every 8th element was similar to 1st one like	\$)
of every 80 element was similar to 13t one like in the case of musical vowels notation	<u> </u>
SA Re Ga Ma Pa Dha Ni Sa	-
2 3 4 5 6 7 8	
I; Be B C N O F	
Na Mg Al SP P S C	
K Ca -	
At that time, ment gases were not known.	
At that time, inert gases were not known.	 -

_	FAGE NC.: EATE: / /
	The properties of 11 are similar to 8th element Na
	Limitations:
	1) This rule is valid only upto Ca baz after Ca due to presence of d-block element there is difference of 18 elements instead of 8 element.
	2) After discovery of ment gases, this law had to be dropped out.
	c) He failed in the case heavier metals as fe has been placed with 0 and s.
	Lother Meyer's Curve
	i) the plothed a curve blu atomic weight and atomic volume of different elements.
	(ii) Elements having similar properties occupy similar position in the curve.
	(a) Most electropositive elements i.e. alkali metals occupy the peak positions.
- ·	(Be, Mg, Ca, Sr, Ba) occupy descending position
	(c) Metalloids and transition elements occupy bottom part

PAGE NO.: DATE: / /	0
Radioactive Elements	=0= -j-
(i) s-block - Fr, Ra	
(ii) p-block - Po, At	
(iii) d-block - Tc, la, Ac	
(iv) -f-block - Th → Lr and Pm	<u>,</u>
90 103	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
Drawbacks of Dobereizer Triad.	· · · · · · · · · · · · · · · · · · ·
This rule is not followed by the examples:	
(a) H $\frac{1}{2}$ Na $\frac{23+1}{2} = 12$	CO CO CO CO
1 7 23	
(b) 0 S Se 79+16 = 47.5	
16 32 79 2	
(c) N P As 75+14 = 44.5	
Y ₄ 31 75	1
Otto La Dia Pari	
Other Examples of Dobereigen Price	
1. 4, Bm, I G. Li, Na, K *11. H, F, Q	
2. 5, 5e, Te 7. 18, K, Rb, Cs	
3. P, As, Sh 8. Be, Ma, Ca	
4. Si, Ge, Sp 9. G, Sr / Ba	
S. Al, Ga, İn To. Sc, Y, La	
Ingration -> Elements of triad should be in same,	` <u></u>
1000 Some some chemical properties	
-> There should difference of 8 or 18 in atomic nor-time	
Joseph for some chemical properties There should difference of 8 or 18 is atomic no:-for following weight rule.	

PAGE NO.: DATE: / /
Mendeleev's Periodic Table
Periodic dan: - The physical and chemical properties of elements are the periodic function of their atomic weight
It is based on atomic wt.
63 elements were known, noble gases were not discovered.
He was the first scientist to classify elements in a systematic manner 1.e. in horizontal rows (series) and vertical columns (groups)
Harizontal rows called series were later called periods. There were 12 series (7 period) in Mendeleeu's Peniodic Table.
Vertical columns are called groups and there were 8 groups in Mendeleev's Periodic Pable.
Cach group upto III is divided into subgroup A and B subgroups. "A" subgroups elements are alled normal elements or "B" subgroups elements are Called transition elements.
The one was comists of a elements in

fe Co Ni Ry Rh Pd Os Ir Pt	-0- -0- -0-
Elements belonging to same group exhibit similar	0
Advantages of Mendeleev's Periodic Table	10
a) Study of elements - first time all known elements were classified in groups according to their similar properties. So, study of the properties	9
of elements become easien.	6
b) Prediction of new elements—He encouraged discovery of new elements as left some gags for unknown elements.	
Sc - Eka Boron	€
Ge-Eka Alluminium Ge-Eka Silicon To-Eka Manganese	
Sc, Ga, Ge, Tc were the elements for which position were left unoccupied and properties predict by Mandelser before their discovery (c) Correction of atomic weight - Correction were made in at weight of some elements.	ed

TTTTTTTTTTT

1111111111

770

Tue, Three sankalp erel floor FREENO.: DATE: 1 1
Initially, it was found eq. wt of Be was 4.5 and it was trivalent, so to its al. weight was 13.5 but there was no space for this element in mendacer table so after correction, it was found that Be is divalent.
There was space blu liand B., Be was placed
Correction in At. wt> U, Be, In, Au, Pt
(d) Noble gases when discovered could be placed without disturbing.
Demerito
(i) Position of hydrogen is not certain in peniodic table boz it resemble both alkali. metal and halogens. Thus, its position remains underided
(ii) Position of isotopes - at weight of isotopes differ , so they should be placed at different position in mendelees pensiodic table but no such place were given in his table
(iii) Analogous pair of clements - There were some pairs of clements which do not tallow order of atomic weight
(Ar, K); (Co, Ni) (Te, I) (Th, Pa) 39.9 39.1 58.9 58.6 127.5 127 232 232

PAGE NO.:	
PAGE NO.: DATE: / /	9
like elements were placed in different group fex - Pt & Au	
	C
More readine netals were placed with	
coinage métals.	(,) ——
<u> </u>	0 0
<u> </u>	· · · · · · · · · · · · · · · · · · ·
IA >> IB	٠.)
IV. IV.	9
alkali K a J Coinage Metal Metal Rb Ag Coinage Metal	
riem (so w)	
	9
Modern Rriadic Pable	٠
	9
Modern Poriodic davi - Physical and Chemical properties of elements are periodic function of their	<u> </u>
of elements are periodic furction of their	-
athmic No.	
$M \sim 1.1$	
It is based on Moseley's experiment.	
Modern periodic -fable is based on atomic no:-	<u>(</u>)
He bombarded high speed electron on different surface	· .
and obtained X rays	
· · · · · · · · · · · · · · · · · · ·	
H ₂	' \-
11Z	
✓	
Atomic No:-	

Atomic wt. te found that $\nabla \propto z$ where, ν is the rd chemical properties of elements are revised that physical revised properties of elements are zariodic in order of their increasing atomic nox Eternent having similar properties get repeated Itier a certain regular interval. This is also Known as modern periodic Jaw. Modern / long -form of periodic Pable. 14 is born-bury electronic configuration concept and atomic no: It was proposed by Rong and Wenner It consists seven harizontal periods and 18 vertical columns (groups.

				PAGE N DATE :	10.:	2
Correlation	blw an	oi quo	long form		peniodic	== =
-table an	e given	below	. 0	0		
TA	-1	IB -	- § 11			~ _
T. A	,		一相 12		_	
TII B	-3	_	- # 13			
区区	-4		- 煜 14			- (.).
	-5		- 6 15			
	3 -6		一片 16			<u> </u>
	B -7		1-#s 17			-
<u> </u>	-8,9,10	- Jew) -18			
Elements	belonging	to on	ne group	Min	lom0.	
not of v	alence	electrona.	So, there	properti	PA) (Imp	 (3)
sirollar	<u> </u>	geown	<u> </u>	-bioboit a	V y W1V	Ç
, , , , , , , , , , , , , , , , , , ,						0
Peniod						0
	·			no - of	elements	
1	Shortest	bouiog	S	2	H- He	è
2	short		Sp	8	li -Ne	
3	Short		Sd.	<u>8</u> 18	Na - AY	_0_
S	long		Sdp	18	K - Kr Rb Xe	
6	long longest		8d p 8f dp	38	Cs - Rn	
7	incomp.		std	mann		
	V/) so. / [-	ಪ	J			`-
		ab Sb	2. 8 8			
		dp dp	18 18 32			
	<u> </u>	-dp				
	\$ 6 \$10	446	50 50 72			
	\$h.	g falp	72			

C

Ę

•

C

C

C

C

t

C

C

C

** 8-block	$\rightarrow \eta s^{1-2}$		
	IA - ns	•	1 7
	IIA ns		
			- not alkaline
- NEP 1		ean	th metal.
7 77000	1 vs aurear	uran mejar	rth metal. bcz they form hydroxi are strongly
alkaline	in notine	water with with	wie offinials
LEP T	· Marc		
	2 elements are	called alkaline	earth metal bez
			he is between and
			the earth's crust
	ns2 np1-6	V 	
	$\frac{ns^2 np^{1-6}}{ns^2 np^1} = 1$	3 Bron 1 amil	y Note:- He=162
	$\frac{ns^2 np^{1-6}}{ns^2 np^1} = 1$	3 Bron 1 amil	y Note:- He=162
	$\frac{ns^{2} np^{1-6}}{ns^{2} np^{2}} = 1$ $\frac{ns^{2} np^{2}}{ns^{2} np^{3}} = 1$ $\frac{ns^{2} np^{3}}{ns^{2} nq^{4}} = 1$	3 Bron 1 amil	y Note: - $He = 16^2$ He group = 18
** p - block	$\frac{ns^{2} np^{1-6}}{ns^{2} np^{2}} = 1$ $\frac{ns^{2} np^{2}}{ns^{2} np^{3}} = 1$ $\frac{ns^{2} np^{3}}{ns^{2} np^{4}} = 1$	3 Bron damil 4 Cambon damil 5 Picagens 6 Chalmoens	y Note:- He=16 ² He group=18 decided by moderation
** p - block	$\frac{ns^{2} np^{1-6}}{ns^{2} np^{2}} = 1$ $\frac{ns^{2} np^{2}}{ns^{2} np^{3}} = 1$ $\frac{ns^{2} np^{3}}{ns^{2} np^{4}} = 1$	3 Bron damil 4 Cambon damil 5 Picagens 6 Chalmoens	y Note:- He=16 ² He group=18 decided by moderation
** p - block	$\frac{ns^{2} np^{1-6}}{ns^{2} np^{2}} = 1$ $\frac{ns^{2} np^{2}}{ns^{2} np^{3}} = 1$ $\frac{ns^{2} np^{3}}{ns^{2} np^{4}} = 1$	3 Bron damil 4 Cambon damil 5 Picagens 6 Chalmoens	y Note:- He=16 ² He group=18 decided by moderation
** p - block	$\frac{ns^{2} np^{1-6}}{ns^{2} np^{2}} = 1$ $\frac{ns^{2} np^{2}}{ns^{2} np^{3}} = 1$ $\frac{ns^{2} np^{3}}{ns^{2} np^{4}} = 1$	3 Bron damil 4 Cambon damil 5 Picagens 6 Chalmoens	y Note: - $He = 16^2$ He group = 18
** p - block ** d - block		3 Bron family 4 Carbon family 5 Picagens 16 Chalogens 17 halogens 18 Noble gase 10 ns 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	y Note:- He=15 ² ily He group=18 decided by propertion S. He = S-block decided by configuration o only in case of palladium
** p - block ** d - block d - block	$ns^{2} np^{1-6}$ $ns^{2} np^{1} = 1$ $ns^{2} np^{2} = 1$ $ns^{2} np^{3} = 1$ $ns^{2} np^{4} = 1$ $ns^{2} np^{5} = 1$	3 Bison family 4 Cambon family 5 Picagens 16 Challogens 17 halagens 18 Noble gase 10 ns 2 3 sem	y Note:- He=15 ² ily He group=18 decided by propertion S. He = S-block decided by configuration o only in case of palladium
** p-block ** d-block ginc,	ns ² np ¹ = 1 ns ² np ² = 1 ns ² np ³ = 1 ns ² np ⁴ = 1 ns ² np ⁵ = 1 ns ² np ⁵ = 1 n n n n n n n n n n	3 Bron family 4 Cambon family 5 Pricagens 16 Challogens 17 halagens 18 Noble gade 10 ns 2 2em 10 ns 2 2em	y Note:- He=15 ² ily He group=18 decided by propertion S. He = S-block decided by configuration o only in case of palladium

PAGE NO. : Na = 152252p6 35 5-block peniad = 3 dromb = Tor IY B = 1822822p1 group = ns2 np1-6+10 Block = P period = 2 0 group = 10 +3=13 9 group = no:- of (n-1) de + Valence Electrons Block = d - block peniod = 4 anom = 6 as IB Transition Elements elements in which d-orbitals is d-block partially filled is ground state or stable oxidation state Note: - 2n = 3d10 482 32+ = 3d10 480 not transition elements Period /3d series 5 c - . . . Zn 3d10 4s2 - 1st Prarrition Series 4d10 Se2 Sd10 6s2 S period / 4d series > ______ 6 period/sd series La Ha Note: - Cy = 3d10 481 (472 = 3d9 yes transition elements $\omega^{7} = 3410$

HOW -> NEERT (Ferriodic Table) FAGE NO.: EATE: 1 1
f - block	
(i) last electron entened in .	f subshell
Ce-Lu 4-f series - Lanthanide 5 Th-Lr 5-f Series - Activide 90 p3	Series - 6th period Series - 7th period
(ii) All J-block element have son	re group WB.
(iii) They are also called inner Pra	nsition elements.
TUPAC Nomenclat	[une
0 = pil	
$I = u_0$ I_{01} U_1	nniturium = Unu
	nnilbium = Unb
3 = tri 103 U	nniltrium = Unt
4 = quad 104 1	Innilquadium=Ung
S = pent 108	Un nil pentium = Unp
	Un nil hexium = Unh
7 = oet sept 107	Unnilseptium = Uns
8 = oct 108	Unpilotium = Uno
9 = enp. 109	Unniternium = Une
110	Ununnilium = Um
Diagonal Relationship	<u> </u>
	Cause: - It is du
<u>li Be</u> B C	N to similarity in
	ionic sizes or
Now May Mal 3 Si	P hange radius ratio
0	of elements.
$\phi = change density$	= drange
(stage	sign .

		Race#	5 , 112 nc	raged, typical s. menclature	PAGE NO.: DATE: / /	
Typical	alamata				· ,})
grad	elements					
Second	and	third	peniod	elements	are called	
typical	elements					
						\
					· .	
						(
						C
						€
						(
					· · · · · · · · · · · · · · · · · · ·	<u> </u>
						<u> </u>
•						
						
			· ···			

			PAGE NC. : DATE: / /
* Properties of	c 11-12	almate	
* Liobules of	s - block	_ elements	
			V 100 1
			And a
-			VIVA PLANTA IN THE PROPERTY OF
	100		
	•		
			
	7.40		
		· ··	
	······································		
——————————————————————————————————————			A. Van Barrer B. C.
		······································	
	W. 4		
		-	

erer recommendation of the second sec

PAGE NO.: DATE: / /	
Properties of p-dak Elements	
Electropic Configuration: They ns2np'-6 configuration. The s- erbital is completely filled and if p erbital is talf- filled (group1s), they show extra stability and if p- erbital is fully filled, they show very low or no reactivitys, called noble gases.	
Atomic Radii - It increases down the group Consider increases from 2nd to 3nd period group Consider increases	6
Electron gain enthalpy	
- The two groups of balages and chalcoges have very high dectron gain enthalpy and readily add one or mere electrons to attain the stable pas configuration Metallic and Non-metallic Character.	
The non-roptalic character increases as we move from left to right across a period and metallic character increases as we go down the group.	
	· · · · · · · · · · · · · · · · · · ·

	PAGE NC.: DATE: /
Properties of d-block Elements	
They are all metals.	
They mostly form coloured ion variable valence (oxidation states and oftenly used as catalyst	ps, exhibit , paramagnelism s
Zn, Cd, Hg	

_ _

	Perio	dic	Proper	ties		
Atomic	Rpdii		V			
1. It is the oute	the rmost	distance shell	e l	petween	leux of	electron f an âti
2. Atomic determined have	size V c	aperinon defined	fells be	ated cause any	atom	earit doox ri
be emp can't so, for of the radio	ressed ressed be estinai ssociated	position as a defined bing sp	ilatery eus eus eus eus eus eus eus eu	ar lity · Si interior wed	electron bown lange injudear to	car c long distu distu calculate
g. X b			ovalent x and	radius	than y	
(i) y ?	> y > X		("i) (m)	$\begin{array}{c} x = y \\ cost \end{array}$	be pradio	ted
Note:-						

	PAGE NO.:	e G
(a) Covalent Radii		=(-:)
1. It is defined for atoms which forms bond with themseles (non-metals)	cavalent	—(—() —()
(a) Homodiatomic species: - molecules formed by He same elemen	Λ.	
d_ = insternacteur distance / Cond la	ngth	- C
Titemucker distance is the distance nuclei of two aterns.	botween	6
** Note:- Atomie Radii > Covalent Radii	· · · · · · · · · · · · · · · · · · ·	
3. If bond length of the molecule is notice of the	198 pm. find	<u> </u>
Ans. Radius of U= 198 = 99 pm.		
2. Caralent radii is always less than at However, difference is pegligible. So, could used to compane the atomic size	urgic radii ent modii is	
3. Experimentally bord leight can be found	h by	
(i) NMR (Nuclear Magnetic Resonance)		

2) réteranuclear diatamic molecule: reduces the bond length from x +xB. Shomaker and Stevensen $\frac{\partial}{A-B} = x + x_B - 0.09(\Delta x)$, in A° x + x = - 9 (AX) , in pm DX = E.N. difference TA = covalent radius of A in A° or pm TB = covalent radius of B is A° or pm $9. 4 \gamma = 0.74 A^{\circ} \qquad d = 198 \text{ pm}$ 17 1 1.730 180. $= 0.74 + 0.99 - 0.09 \times 1.9$ 1.649 = 1.649 Due to small size, N has higher Zeff (ii)

PAGE NO.:	
DATE: / /	
Λ Ο	-(5-
Anionic Radii	
X < x - < x - ≥	
<u>e</u> = 10 12	· -
P 10 10 10 Repulsion b/w e results	(4) (7)
e = 10 12 P 10 10 0 Repulsion b/w e results — ive change ↑ size ↑ in decrease in Zeff:	
-ive change 1 size 1	<u> </u>
$ex - (a) 0 < 0^{-2}$	6
ex = (a) 0 < 0 < 0	(2)
- (p) N < N_ < N < N 3	0
	<u> </u>
I soelectronic Semies	<u>)</u> (£
(i) $N^{-3} > 0^{-2} > f^{-} > Na^{+} > Ma^{+2} > Al^{+3}$	<u> </u>
(1) 10 / 7 / 100 / 1.50 / 1.50	9
$\frac{6}{6} = \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10}$	9
P 7 8 9 11 12 13	9
199 1.73 -2 07 + 11 12 +5	
(ii) N-3 0-2 F- Ne Nat Mg+2 AL+3	
$(Ne) > N^{-3} > 0^{-2} > f^{-} > Na^{+} > Mg^{+2} > Al^{+3}$	
due to vandrowaal radii	

X. find order of radii	
Lit Mgtz Kt Alt3 / Use	,
lit Matz Kt Alt3 / Use [i) change 1 size 1	· .
K+ > Li + > Mg+2 > Al+3 (ii) shell companison	
when some shortest	
only in ions, notin atoms. Li < Mg.	• •

Atomic Radin B=88 A1=143 Sp = 135 In = 167 Th = 170 DATE: <u>li</u>+ <u>Q.</u> Be + 2 Ma (violates aux statement) 9=6.4 6 O = change 6.4 = +2size sige = 0.4 size = 0.5 , Ca⁺² y⁻ 52 > U > & K+> & ca+2 size affecting factor radius radius & 1 1, radius 1 4. radius

** TOP					PAGE NO.: DATE: / /	
Note:-	1. Smallest 2. Smallest 3. langest 4. langest	Cation	$= H^{\dagger}$ $= F^{-}$ $) = Cs^{\dagger}$ $) = I^{-}$	梵 ==	= Br	
0.068	Na+ 0.095	0.133	NH+ 0.148	Cs ⁺	[N (CH3)4] 0.347	0
Be+2	Mg+2	Fe ⁺²	Ca ^{+ 2}	Bg+2	5	0 0
AL+3	Fe ⁺³ 0.064	la ^{+ 3}				©
F - 0 · 136	0H ~ 0·176		3r I =	<u>Noz</u> 0.264		
	ilong the	period				
li		Zeff J	S T	0	F	
. Ne >>	aaf rodii > li >	Be > B	>c >N	>0 > F		
Noble g	aven periods.	ue high	ent sig	w in	their	
					· · · · · · · · · · · · · · · · · · ·	 ;

PAGE NO.: DATE: / /	
radii down the group n1 siget	* . 三 、ノー
exception - in DA group B <ai <="" =="" gq="" in="" td="" th<=""><td>-O-</td></ai>	-O-
Penetralian effect s>p>d>f	707
S P d	
Cause: - Due to lower possible shell is compensated	(a)
and size remains almost same. This is called sandide contraction / 4 - block contraction	6
called scandide contraction / d-block contraction	
	**/
D-block	6
along the period	<u> </u>
	\bigcirc
$3d^{1}46^{2}$ $3d^{2}46^{2}$ $3d^{3}4s^{2}$ $3d^{5}4s^{2}$ $3d^{5}4s^{2}$ $3d^{6}4s^{2}$ $3d^{$	
Zeff 1 size 1	
→In d- block, along the period size decreases till middle of the block, remains almost constant till Ni, then size increases	
At the beginning, size demeases because Zeff,	

	PAGE NO.: DATE: / /
then size remain	s same as nuclear changer gets increased screening effect.
→ In the middle because of e-	e repulsion due to poining of
At the end of significantly and zeff, so size	the period, e-e-increases very increasement in a is more than
along the gr	oup
5c T; V	Zŋ
¥ 7	b
La Hf - 72	ia Hg
89 104	
In case of 3d to 4d 4d to 5f &	d-black on moving down from , since increases but known increases almost some due

	PAGE NO. :	(4)
	DATE: / /	© 1∩=
to lanthanide contraction /4f contraction		-
		·()-
On moving from 4d to 5d semi- lantharum along lantharide senies increases by I unit at each sur but a new electron is added to Due to poor shielding effect A increasement in 6 is very less, unable to courterbalance increased	es after	(
Contrarum along lanthanide series	nudear change	. نیک ص
is a coop sur	cessive element	T
but a new electron we added to	t substell.	``` (``)
Due to poor shielding effect of	t-abshell,	191 71 -
increasement in 6 U is very less,	so this	
mable to counterbalance increased	nudear	
change, so Zeff increase significant	ly. This	*
charge, so Zeff increase significant nullifies the effect of increasent no:-	of atenic	•
no: - due to increase is stell no:	This results	
in contraction of atomic size Known as lanthanide contraction.	· Thu w	•
Known as lanthanide contraction.		<u> </u>
		\$
Contraction due to of subshell	h activoids	⊕
is called activide antraction. It	w stronger	7
than lanthanide and soundide because 5f is large more-diffused	murring,	
compared to 4f.	0,2	<u> </u>
unjured to 47.		<u>1.2</u>
** Noje:- Activide > Lanthanide > Soundide.		<u> </u>
1 color lange mande > sandade.		
		-1. :
		-, '-
		,

FAGE N DATE:	10.:
Ionisation & Prengy	
Amount of required energy to remove from isolated gasaaus atom.	one electron
$Na \xrightarrow{-e} Na^{t} \rightarrow not I.e$ (s)	
Nag) -e Nat(g) I.E/I.P	
Unit :- lev/atom = 96.4 KJ/mole lev/atom = 23.1 Kcol/mole.	
$A \xrightarrow{-e} A^{+} \xrightarrow{-e} A^{+2}$ $I \cdot e_{1}$ $I \cdot e_{2}$	$\frac{-c}{1 \cdot \ell^3} \rightarrow A^{+3}$
e 10 9 8, P 10 10 10	
Nofe:-I.E3 > I.E2 > I.E1 always	
$\frac{Na}{2s^2 2p^6 3s^1} \xrightarrow{I \cdot E_1} \frac{-e}{2s^2 2p^6} \xrightarrow{I \cdot E_2} \frac{Na^{+2}}{2s^2 2p^5}$	$\frac{-e}{\text{I} \cdot \text{E}_3} \rightarrow \text{Na}^{+3}$
$I.\ell_3 > I.\ell_2 > I.\ell_1$	
- joitars afficiling I. E	
1 · Z↑ I.€↑ 2 · Zol+ ↑ I.€↑	
3. 6 7 I.€↓ 4. n ↑ I.€↓	

PAGE NO.: DATE: / /	ė
5. half-filled / fully-filled - extra stable configuration	= *
N >0 26 ² 2p ³ 26 ² 2p ⁴	
P > S	
3p ³ 3p ⁴	C,
As >se	()
	———»
6. Peretralian effect 3>p>d>f -> closeness favands	١.
ructous	4
Be > B 15 ² 25 ² 15 ² 25 ² 2p1	Ę
	Ę
Mg > Al	4
ca > Gg	<u>(</u>
ω > 0 0	Ć
Trends along the period	<u>\</u>
	 4
penetration effect half-filled config.	`
Na < Al < Mg < Si < S < p < Cl < Ar	<u>.</u>
U	
K < Ga < Ca < Ge < Se < As < Br < Kr	
	 .
Afer this, trend is regular,	
Rb C Sr C In C Sn C Sb C Te C I (Xe	
es < By < P1 < Pb < Bi < Po < At< Ry	
Moble gaves have highest ionization energy along	
the peniods	

	DATE: / /
Trends alor	of the group
A	J
В	AL < Ga
Al	(due to poor shielding effect of 3d-orbital)
Ga	
In	* Tn < Pl
<u>Tl</u>	(due to poor shielding effect of 4f subshi
& Experi	mental value
	Tl > Ga > Al > In
(i) A	
С	> due to poor s.E.of
Si	** 4f subshell
Ge	c > Si > Ge > [Pb > Sn]
Sn	no such effect in
Pb	sixe .
119	V
	· · · · · · · · · · · · · · · · · · ·
N	
P	
As	N > P > As > Sb > Bi
Sh	
Bi	
115	

			PAGE NO.: DATE: / /	् (क्र
$\overline{\mathbb{Q}}$			DATE: / /	
0				
S	0>s>Se	>Te		
Se				
Te				
Po				
116				0
- Sul				
C				- -
d				© © ©
Br	F > 4 > Br > 1	L ·		9
\mathcal{I}				*
At				
117				
				®
				- •
0 ox 18				
He				
Ne Fpr	11	- A - A - A		
kr	He > Ne	>Ar> Kr> Xe		
Xe				<u> </u>
Ro Ro				

Mote: - 11 He the period	has highest ic table.	ionization	energy in	
W Cs pariodic	has buest		energy in the	1

TEEL STATISTICS OF STATISTICS OF STATES OF STA

					PAGE NO.: DATE: /
Trends	် ပ်ာ	s-block			
	Be	Li >	· Na > K >	· Rb > Cs	3 < Fr
Rb Cs	Sr Ba Ra		> Na > K >	Rb>fr	> Cs
	.,(0)		> Mg > Ca		
Trends	in	d-block	> Mg > C	a > Sx > '	Ra>Ba
3d series	<u>Sc</u>	Ti	V	Zr)
4d series 5d series	У la	Ht Sx	<u>Nb</u>	· Cc	
3 9 301100		-	<u>Ha</u> -		19
,	3d	ænies >	4d Senie	s < 5d	series
				due to	poor S.E. (lanthani
1. Sc	> y > \	a > Ac		Ag <aw< td=""><td>. VL</td></aw<>	. V L
2 T:	> Z _Y	< Hf	4.Zn	> cd < Hg	Hg >

	/	FAGE NO.: DATE: / /
	$(\cdot, \epsilon_1) A = 10$ $(\cdot, \epsilon_2) A = 20$ $(\cdot, \epsilon_3) A = 30$ $(\cdot, \epsilon_4) A = 160$	A ³⁺ \rightarrow stable ion Belongs to 13 th group valence e^{Θ} - 3, stable oxidation sto
9. Which I.E	of the follow jump blow I.E.L	sing configuration large.
(s) (s)	s² 2s² 2p² ls²qs² 2p³	(3) 15 ² 25 ² 2p ⁴ (4) 16 ² 25 ² 2p ⁶ 35 ¹
<u>Q.</u>	$Na \xrightarrow{a} Na^{\dagger}$ $M_{q} \xrightarrow{c} M_{q}^{\dagger}$	$\frac{b}{A} \rightarrow Na^{+2} \xrightarrow{\varepsilon} Na^{+3}$ $\frac{d}{d} \rightarrow Mq^{+2} \xrightarrow{f} Mq^{+3}$
• • • •	c > a	b>a d>c>a
-f>e	a < b a < c b> a d c < d	Zett 1 dominates over configuration ** f > e > "due to stable e config."
Q. find		Cr Mn fe Co Mn fe Co 3d ⁶ 4s ² 3d ⁶ 4s ² 3d ⁷ 4s ²
	Mnt < f	$fe^{+} < \chi_{0}^{+} < Cr^{+} < C_{0}^{+}$ $fe^{+} < Cr^{+} < C_{0}^{+}$

observe the second of the seco

PAGE NO.: DATE: / /	0
Properties affected by ionisation every	≝(^` =,,
1. I. E I Ponic bond formation tendency 1	-(?) -(^)
Ealkali	
2. I. E dectropositive character 1	73 73
down the group, I.E. I electropositive character 1	J
3. Reducing power	0
* I. E. I , reducing power 1 but other factor also decides	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9
Reducing	\$
agent "	0
4.(i) If difference blu two successive I.E is 16 ev or greater, then lower o.s. is more stable but element does not variable o.s.	9 9 9
ex-Dron fe ⁺² , fe ⁺³ \rightarrow not applicable for it.	
(ii) If difference b/w two successive I.E is Nev or less than 11ev, then higher O.S. is more fable	
(iii) If difference b/w two successive I. E iso b/w 11 ev and 16 ev, then both 0.8 will enist:	-

FAGE NC.: EATE: / /
S. Metallic character
Gersians 1.E. Metallic Saracter 1
Always Alang the period, I.E. 1, so metallic character I down the group, I.E. 1, so metallic character 1
Electron Affinity.
H = heat content
AH = change in enthalpy
$\Delta H = P - R$
$A + B \rightarrow C + D$ $\Delta H = -ive$ Exathermic (energy absorbed) $A + B \rightarrow C + D$ $\Delta H = +ive$ Endothermic (energy absorbed)
Defn:-Amount of released energy when one electron is added in an isolated gaseaus atom is called electron affinity. ×g, + e × xg, AH = -ive
Note: (illonisation energy is always endothermic-elements only (generally)
exercity is required for addition of arother
elation again et e and e repulsion.

STEPPER TO THE STATE OF THE STA

B & 7 6 FAGENO.: Note: - (i) N for these (ii) II A (iii) Noble gas - extra stable config 6·A ≤0 N > DA > Noble gas B, C, N, O N<B<C<0 Al, Si, P, S Al < P < Si < S N = 2828p3 N = no Vocant d'orbital AH ey = tive. vacant d orbital is present As 86 β_i A. Which the following ion is least stable? (i) Lielectron gain : -> Highest enthalpy in the periodic table is \mathfrak{J} 0:F: B F<q P 5.Cl: 1 AL 2nd period < 3rd period

PAGE NO.: DATE: / /	0
Because of small size of 2p subshell and abence of d-subshell, electron density is significantly high and perce carring electron feels repulsion, so amount of energy released is less	
that expected value due to attraction	
→ Highest -ive electron gain enthalpy = Chlorine	
→ Highest electron gain enthalpy = Chlorine	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
→ Highest + ive electron gain enthalpy = Neon.	
Data:-	
$H = -73$ Be ≤ 0 (+18) ≤ 0 ≤ 0 ≤ 0 (+232) ≤ 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 $< $	
$N_{0} = -53$ cd = 186 2 Gg = -29 Ar = +96 K = -48	
Rb = -47 $Ba = -46$ $SD = -19$ $Xe = +77$ $Cs = -46$ $Rp = +68$	
Fr.	<u> </u>
$C = -122 \qquad N = +8 \qquad C0 = -14 \qquad 2F = -328$ $Si = -134 \qquad P = -72 \qquad 1S = -200 \qquad LQ = -348$	- <u>-</u>
$\frac{Ge}{Sn} = -116 \qquad AS = -78 \qquad 25e = -195 38r = -325$ $\frac{Sn}{Sn} = -116 \qquad Sb = -103 37e = -190 4I = -295$ $\frac{9}{7}e = -174 SAt = -270$	

PAGE NO.: DATE: / /	Ø
9. Endathermic	
$N + e^{\Theta} \longrightarrow N^{-} \Delta H = +ive$	
$\forall T N \longrightarrow N^{+}$ $N^{e} \longrightarrow N + e^{e} \Delta H = -ive$	
$(5) N_{-} \longrightarrow N$	
√ i · · · · · · · · · · · · · · · · · ·	()
$\begin{array}{ccccc} A & \longrightarrow & A^{-} & \triangle \operatorname{Heg} & A \\ A^{-} & \longrightarrow & A & \exists \in A A^{-} \end{array}$	
$A^- \longrightarrow A$ $\downarrow \tilde{I} \in A^- \downarrow$	0
AHegA = I.f of A	
AHeg A = I I. G of AT	6
A I.E of F F CI CI	9
Los older	(_)
F>q>q->f-	<u></u>
	9
F>F- 1	0
$Cl>Q^ \Rightarrow F>Cl>Q^-$	9
F >cl) A C=	6
position of F	<u> </u>
$F \xrightarrow{+e} F \Delta H_{eq} \Delta F$	
F - F 1.E A F-	
LALL A CL - IT. FA CT	
A Heg of F = I · E of F -	
Similarly, AHzg of al = I.E of a-	
	·-····································

_ _

Properties Affected by Electrain Affinity 1. Non-metallic donador Generally ive electron gain enthology 1, non-metallic chancelor 1. 2. Type of Earls for ionic bood formation, netal should have low I.f. and non-metal should have low I.f. and non-metal should have high electron gain enthology 3. Oxidising power There ive Atley 1, son-oxidising power of the power, overall oxidising power determined by 3 factors: 10 Dissociation Energy (ii) Atley (iii) Atley (iii) Hythatlor Energy The case of I-black dement, on moving from left down the common of t	FAGE NO.: DATE: / /
Servicing ive electron gain enthalpy 1, non-metallic character 1. Non-metallic character 1. 2. Type of Eard. for ionic band formation, metal should have low 1.f. and non-metal should have high electron gain enthalpy 3. Oxidising power Therefore, overall oxidising power determined by 3 factors: Dissociation Energy (ii) A Hea (iii) Hydration Energy	Properties Affected by Electroim Affinity
Piech moving left to right, non-retallic characters? 2. Type of Board: for ionic band formation, netal should have low I.f. and non-metal should have high electron gain enthalpy 3. Oxidising power	No.
2. Type of Bood for ionic bond formation, metal should have low I.f. and non-metal should have high electron gain enthalpy 3. Oxidising power When -ive Atley 1, non-oxidising power 1 ** Dissociation Energy (ii) Atley (iii) Hythatian Energy	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
for ionic bond formation, metal should have low I.E. and non-metal should have high electron gain enthalpy 3. Oxidising power Therefore, overall oxidising power determined by 3 factors: Dissociation Energy (ii) A Hea (iii) Hydration Energy	Awath moving left to right, non-metallic character 1.
3. Oxidising power The Atley 1, non-oxidising power 1 The power overall oxidising power determined by 3 failors: Dissociation Energy (ii) Atley (iii) Hydration Energy	2. Type of Bood
→ When —ive △Heg ↑, non—oxidising power ↑ → However, overall oxidising power determined by 3 factors:— (i) Dissociation Energy (ii) △ Heg (iii) Hydration Energy	for ionic bond formation, metal should have low I.f. and non-metal should have high electron gain enthalpy
→ However, overall oxidising power determined by 3 factors:— (i) Dissociation Energy (ii) A Hea (iii) Hydration Energy	3. Oxidising power
Towever, overall oxidising power determined by 3 factors:- (i) Dissociation Energy (ii) A Hea (iii) Hydration Energy	→ When -ive AHeg 1, non-oxidising power 1
(iii) Hydration Energy	Towerer, overall oxidising power determined by 3-factors:-
In case of d-black element, on moving from left to right -ive electron gain enthology increases and	(ii) Dissociation Energy
The Arrest Morales	

Electron	pegativity						1
It is altract bond.	defined shared	ov the pair	pe ter electro	ndency	in tsir	dom t gle cov	o valent
Differen	t x scale	es for	calculat	ion	of elec	tronegativ	ity_
Pauling	Scale						
<u> </u>	(E.N of A) - X _B (e.N M	B) 0=	$\sqrt{\Delta}$		
A	(3)14 0).1) B	- 14 - 5) — — — — — — — — — — — — — — — — — — —			
, where	$\Delta = \hat{a}$	nic resor	nance	energy			<u> </u>
	V = 6	- \	JE X	6)	
		A-B	A-A	B-B			
E A-B	is bond	energy	0	A-B	bond		
E _{A-A}		energy	of	A-A	Ŋ		
			<u> </u>			<u> </u>	
- 2 8-8	N 11	11	31	A - B		•	
⇒lonic of o bond	resonance ctual bon energy o	energy d energy A-800	is of bond.	equal A-B	to and	ii U0	enence refical
Theoretico	Jeanstrical geanstrical covalent	energy mear bond		A-B D+ EA-	bond and	is equa	l 1sing

-

-

Ē

-

3

Ć

9

9

9

PAGE NC.: DATE: / /
is measure of partial ionic character of Bond.
Δ = (Actual Bond Energy) - (Theoretical Bond Energy)
→ Pauling Scale is based on Bond energy of molecules.
The energy is formed energy is released which is called bond energy. The energy required for breaking a bond is Bond dissociation
er)ergy.
the value of partial ionic character and higher will be the value of Δ .
→Bond energy is given in Kacal/mol.
1 ey = 23.1 Kcal /mol = 96.4 KJ/mol
$X_A - X_B = 0.208 \sqrt{\Delta}$ in Kcal/mole
$X_{A} - X_{B} = 0.102 \sqrt{\Delta} \text{in } \text{kJ/mole}$
Actual Bond energy is more than theoretical Bond energy bezofn which results in more attraction, and hence more actual Bond Energy.

PAGE NO.: DATE: / /	0
Mulikan Scale Jeffe	
$E \cdot N = I \cdot E + E \cdot A$ ev, $I \cdot E$ and EA in ev	-0-
$E \cdot N = I \cdot E + E \cdot A ev , I \cdot E and 6 \cdot A in \underline{KJ}$ $= 2 \times 96.4$	T();
$\varepsilon \cdot N = \overline{1 \cdot \varepsilon + \varepsilon \cdot A}$ ev , $\overline{1 \cdot \varepsilon}$ and $\varepsilon \cdot A$ in Keal $2 \times 23 \cdot 1$	
He considered the tendency to attract shared pair e should be average of tollowing:-	€ •
Tary es should be average of dollowing:-	
i $\pm i$ length i	6
2. Tendenay to gain eo	Ô
<i>'</i>	\$
$X_{p} = X_{m}$ 2.8	0
2.8	0
	9
Allred Rochow Scale	<u> </u>
	<u> </u>
$\Rightarrow f = Z_{eff} e^{2}, x_{cov} = radius (in A^{\circ})$	
cett effective include.	
on periphery.	
$\ell = \text{charge (in c)}$	— . ·-
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = 1$	
$X_{p} = X_{A-R} + 0.744$	

		-4		1 1		<u> </u>	二 》
solvent, it is	easier	B	break	<u>bonds</u>	Hio .	hgb)
EN difference							-0
In case of	gaslaus	/non - 1	olar	solvent	CC14.	CS.	
benzene,	there i		recluc	tion	of elect	rostatie	
	athaction.	Hence	, 17	1/8		to break	(_{v.} ;)
d bord	having	less	£.N	differen	œ·		- \\\
	U			ν 0			
A-B bond	<u>will</u>		`	easily	l l	w solvent	<u> </u>
However C-	,			`	1		4
polar solvent than that	1 H		differe	nce in	A-B_	is greater	•
than that	of c-	ン・				V	9
1. To decide	whether		X-0-F	/ mo	lecule	will	<u> </u>
~~~~	acidic	) Vo	basic.	character	× in v		C
~~ ~~	× ~		<u>×</u>		×	~~	<u></u>
X 0 -	1.9 H						0
1 (3.5	2.1						
1							<u> </u>
Li-0-H Na-0-H		<u>-</u>					(E)
k-0-H	down	tho.	UMUL	hasic chi	propter 1		
Rb - 0-H	1 .		Jul ditt	to some	x-01		
Cs-0-H	900000	<u> </u>	, 0	p	)		
find the	no. of	com	pound	which	are ba	sie/acid.	
	O	1 3	· ·	. N		· · · · · · · · · · · · · · · · · · ·	
Ba(OH) 2, B(	$OH)_3$ , $S_1$	(OH)4	, 1/e (	0H)6 -1	MOH, 02 8	(0H)2,0P(0H)	3
basic = Ba (oH)	Manu						
DUSIL - DU LOH)	) 1000m						

						PAGE DATE	NC.:	<u>,                                    </u>
Bas	sicity							
		Lioh	>	Be(OH)2				
		NaoH	>	Mg (0H) 2		most '	basic =	CsOH
		KOH A RboH A	> >	(a (OH) ₂ Sr (OH)	2			= 13e(0H
	ું →ૠ -→ A & ₂ (	Cs OH oil :	Se A	l Ga	and h	Cr. ⁺³ ydroxide	Ä	
$\rightarrow$ Only  () 3	for	Oxyacid —	atleast	one H	, one	oxygen.	- H	
* Hydro		- In method	case is	not of	these appliab	auds,	the	above
<u>63</u>	- HF .	< HU.	< HB	r. < H	Ī			
Kasa	ະ ເກັນ	1, bond	   _tos	nollo I	0 111	. •		









PAGE NO.: DATE: / /	
	<del></del> ^
	(
After water molecules are attrasted by ions, the new radius of species is called hydrated radius.	<u> </u>
Daygen ion does not exist in water because	4
'Oxygen ion does not exist in water because if his very strong base, so gets converted into	€
OH- ion, therefore life hydrated radius as t	
be measured 0	
Donic mobility / Electrical conductance/molar conductance - It is the ability by which an ion can	ؠٛ
- It is the ability by which an ion can move in the solution.	Ţ
$Na_20 \longrightarrow 2Na^+ + o^{-2}$	( (
$H_2O \longrightarrow H^{+} + OH^{-}$	
Nazo + Hzo -> NaoH + OH	
Born Haber Cycle	
It is a cycle which co-relates the thermodynamical data with the enthalpy of different physical and chemical nowtes.	





108.7	1027:26	788.	PAGE NO.: DATE: I I
→ Heat of formalise  formation of  element in	on = It is one mole their standan	the energy of compoded d state.	y associated with Ind from it constituent
Standard Stat	e:-1. $f_2$ , Cl 2. $Bh_2$ - 3. $J_2$ 4. Phosphore	→ liquid	solid)
X H ⁺	5. Sulphur	$\frac{-S_8}{\triangle H_f} \rightarrow 1$	solid)
H ₂	(a) I (2)	$\frac{\Delta H_f}{}$	19 (9)
→ fleat of Solva with the in a part	tion - It solvation icular solvent	is the of one 1	energy associated mode of a substance
→ Bond Dissoci to break of substance bonded.	ation Crengy the , but m	- It is bond polewle st	s the energy required need in one mole wall be covalent



