آمار و احتمال مهندسی

نيمسال اول ۱۴۰۰-۱۴۰۱

گردآورندگان: آریا جلالی، امیرحسین ندائیپور

دانشکدهی مهندسی کامپیوت

آزمونک شماره ۳

متغیرهای تصادفی پیوسته و توزیع توام

مسئلهی ۱. فرار از پلیس

هر روز صبح، هنگام عبور از کنار محل کارتان، میخواهید به جای عبور از بلوک دوربرگردان بزنید. متاسفانه دوربرگردان در این محله غیرقانونی است، و پلیس با توجه به یک فرایند پوآسون با نرخ λ از کنار شما عبور میکنند. شما تصمیم میگیرید که اگر برای مدت زمان τ پلیسی نبینید، دوربرگردان بزنید. متغیر تصادفی N را برابر با تعداد ماشین پلیسهایی که قبل از دوربرگردان میبینید تعریف میکنیم. مقدار E[N] را به دست آورید.

حل. طبق فرایند پوآسون متغیر تصادفی N برابر با تعداد بازههای متوالی بین دیده شدن پلیس است که دارای طول کمتر از au با احتمال $1-e^{-\lambda au}$ هستند، حال خواهیم داشت:

$$P(N=\bullet)=e^{-\lambda\tau}, \quad P(N=\bullet)=e^{-\lambda\tau}(\bullet-e^{-\lambda\tau}), \quad P(N=k)=e^{-\lambda\tau}(\bullet-e^{-\lambda\tau})^k$$

پس N دارای یک توزیع هندسی با پارامتر $p=e^{-\lambda \tau}$ است ولی یکی به سمت چپ شیفت داده شده است تا مقادیر آن از • شروع شوند. در نهایت خواهیم داشت:

$$E[N] = \frac{1}{p} - 1 = e^{\lambda \tau} - 1$$

 \triangleright

مسئلهی ۲. کمتر صحبت کن!

یک شرکت تلفن هزینه خدمات خود را به این شکل حساب میکند: مشترک میتواند با پرداخت ماهانه ۴۰ تومان تا سقف ۱۰۰۰ دقیقه تماس تلفنی داشته باشد و به ازای هر یک دقیقه بیشتر از این سقف، ۱ تومان به هزینه فرد اضافه می شود. اگر مقدار استفاده شما از تلفن توزیعی نرمال با میانگین ۹۰۰ و واریانس ۱۰۰۰۰ داشته باشد، میانگین هزینه قبض تلفن خود را حساب کنید.

حل.

منبع: سوال ٢

فرض کنید T مدت زمان استفاده شما از تلفن و تابع C تابع محاسبه هزینه شرکت باشد. در این صورت داریم:

$$C(T) = \begin{cases} \mathbf{f} \cdot & T \leqslant 1 \cdot \cdot \cdot \\ \mathbf{f} \cdot + (T - 1 \cdot \cdot \cdot \cdot) & T > 1 \cdot \cdot \cdot \end{cases}$$

بنابراین:

$$\mathbb{E}(C(T)) = \int_{-\infty}^{\infty} C(t) f_T(t) dt =$$

$$\int_{-\infty}^{\infty} \mathbf{f} \cdot f_T(t) dt + \int_{\infty}^{\infty} (\mathbf{f} \cdot + (t - \mathbf{i} \cdot \mathbf{i})) f_T(t) dt =$$

$$\mathbf{f} \cdot + \int_{1 \dots}^{\infty} (t - \mathbf{1} \cdot \mathbf{i} \cdot \mathbf{j}) f_T(t) dt = \mathbf{f} \cdot + \int_{1 \dots}^{\infty} (t - \mathbf{1} \cdot \mathbf{i} \cdot \mathbf{j}) \frac{e^{-\frac{(t - \mathbf{q} \cdot \mathbf{i})^{\mathsf{q}}}{\mathsf{q} \cdot \mathbf{i}}}}{\mathbf{1} \cdot \mathbf{i} \cdot \sqrt{\mathsf{q} \pi}} dt$$
با تغییر متغیر متغیر $u = \frac{t - \mathbf{q} \cdot \mathbf{i}}{\mathbf{1} \cdot \mathbf{i}}$ عداریم:

$$\begin{split} \mathbb{E}(C(T)) &= \mathbf{f} \boldsymbol{\cdot} + \mathbf{1} \boldsymbol{\cdot} \boldsymbol{\cdot} \int_{\mathbf{1}}^{\infty} (u - \mathbf{1}) \frac{e^{-\frac{u^{\mathsf{T}}}{\Upsilon}}}{\sqrt{\mathsf{T}\pi}} du \\ \int_{\mathbf{1}}^{\infty} (u - \mathbf{1}) \frac{e^{-\frac{u^{\mathsf{T}}}{\Upsilon}}}{\sqrt{\mathsf{T}\pi}} du &= \int_{\mathbf{1}}^{\infty} u \frac{e^{-\frac{u^{\mathsf{T}}}{\Upsilon}}}{\sqrt{\mathsf{T}\pi}} du - \int_{\mathbf{1}}^{\infty} \frac{e^{-\frac{u^{\mathsf{T}}}{\Upsilon}}}{\sqrt{\mathsf{T}\pi}} du = \frac{e^{-\boldsymbol{\cdot}/\Delta}}{\sqrt{\mathsf{T}\pi}} - (\mathbf{1} - \Phi(\mathbf{1})) \end{split}$$

$$\implies \mathbb{E}(C(T)) = \mathbf{f} \boldsymbol{\cdot} + \mathbf{1} \boldsymbol{\cdot} \boldsymbol{\cdot} (\frac{e^{-\boldsymbol{\cdot}/\Delta}}{\sqrt{\mathsf{T}\pi}} - (\mathbf{1} - \Phi(\mathbf{1}))) \approx \mathbf{f} \mathcal{N} \mathbf{f} \end{split}$$

 \triangleright

موفق باشيد :)