Reiter's Projection and Perturbation Algorithm Applied to a Search-and-Matching Model

Julien Pascal

05/03/2018

Sciences Po and LIEPP

Road map

Outline

Outline

- A typical Heterogeneous agents model
- The Krusell-Smith algorithm
- Reiter's projection and perturbation approach
- Application to a dynamic search-and-matching model

A typical heterogeneous agents model

Households with idiosyncratic labor income shocks:

• continuum of utility-maximizing households indexed by $j \in [0, 1]$:

$$\max_{\{c_{jt}\}_{t=0}^{\infty}} \left(\mathbb{E} \sum_{t=0}^{+\infty} \beta^t \frac{c_{jt}^{1-\sigma} - 1}{1-\sigma} \right)$$

such that:

$$c_{jt} + k_{jt+1} - (1 - \delta)k_{jt} = y_{jt}$$

• inelastic labor supply I, shock ε_{jt} independent across households, follows 2-state Markov process within households:

$$\varepsilon_{it} \in \{\varepsilon_0 = 0, \varepsilon_1 = 1\}$$

labor earnings:

$$y_{jt} = \begin{cases} w_t I \text{ if } \varepsilon_{jt} = 1 \text{ (employed)} \\ 0 \text{ if } \varepsilon_{jt} = 0 \text{ (unemployed)} \end{cases}$$

Representative Firm:

Production function:

$$Y_t = e^{z_t} K_t^{\alpha} L^{1-\alpha}$$

 z_t aggregate productivity shock, K_t aggregate capital shock, L aggregate labor supply, α capital share.

• AR(1) process for the TFP:

$$z_{t+1} = \rho_z z_t + \sigma_z \omega_{t+1}$$

with $\omega_{t+1} \sim \mathcal{N}(0, 1)$

4

Incomplete Market Arrangement:

• Factor prices:

$$r_t = \alpha e^{z_t} K_t^{\alpha - 1} L^{1 - \alpha} - \delta$$
$$w_t = (1 - \alpha) e^{z_t} K_t^{\alpha} L^{-\alpha}$$

• Borrowing constraint:

$$k \in [0, \infty)$$

Recursive competitive equilibrium

- Aggregate state (Γ, z) with Γ the measure of consumers over holdings of capital and employment status
- Law of motion $\Gamma' = H(\Gamma, z, z')$
- State variables $(k, \varepsilon; \Gamma, z)$

Households optimization problem:

$$v(k,\varepsilon;\Gamma,z) = \max_{c} \left(U(c) + \beta \mathbb{E} \left[v(k',\varepsilon';\Gamma',z') | z,\varepsilon \right] \right)$$

such that

$$c + k' = r(K, L, z)k + w(K, L, z)I\varepsilon + (1 - \delta)k$$
$$\Gamma' = H(\Gamma, z, z')$$
$$k' \ge 0$$

Model

Recursive competitive equilibrium

A recursive competitive equilibrium is a law of motion H, a pair of policy rule (v, f) with $k' = f(k, \varepsilon; \Gamma, z)$, and a pricing function such that

- (v, f) solves the consumer problem
- r and w are competitive
- *H* is generated by *f*

Krusell-Smith Algorithm

Krusell-Smith Algorithm

Step 1: dimension reduction

- only the first N moments of Γ are relevant for the pricing decision $\mathbf{m} = (\mathbf{m_1}, \mathbf{m_2}, ...)$
- Approximate law of motion $m' = H(\mathbf{m}, z, z' | \theta_N)$
- Approximate policy rule $k' = f(k, \varepsilon; \Gamma, z | \theta_N)$

Step 2: Monte-Carlo over H

Algorithm

- 1. Solve for the households optimization problem, holding $H(\mathbf{m},z,z'|\theta_N^{i-1})$ fixed
- 2. Simulate an economy for large number of period using the policy rule $f(k, \varepsilon; \Gamma, z | \theta_N^{i-1})$
- 3. Use the simulated data to update $H(\mathbf{m}, z, z' | \theta_N^i)$
- 4. Compare $d(\theta_N^{i-1}, \theta_N^i)$ and accuracy check for the forecasting rule.

Example Krusell-Smith Algorithm

• $\mathbf{m}' = H(\mathbf{m}, z, z' | \theta_N^i)$ with N = 1 (the mean of Γ is enough for making accurate forecasts)

$$\log(\bar{k}') = \begin{cases} a_{0i} + a_{1i} \log(\bar{k}) \text{ if } z = z_g \\ b_{0i} + b_{1i} \log(\bar{k}) \text{ if } z = z_b \end{cases}$$

Convergence reached in 2 hours on my laptop

Reiter's projection and perturbation

method

General Idea

- Circumvent the need for finding *H* by Monte-Carlo
- Projection: finite representation of the infinite dimensional problem by using an histogram to approximate Γ
- **Perturbation**: solve for a steady-state of the finite model and use perturbation method around the steady-state

Reiter (2009) is Krusell and Smith (1998) with 2 modifications:

• stochastic tax rate following an AR(1) process:

$$\tau_{t+1} - \tau^* = \rho_t(\tau_t - \tau^*) + \varepsilon_{\tau,t+1}$$

The government taxes end-of-the period capital k_{t-1} . Lump sum redistribution to households at the beginning of period t. Balanced budget at every period.

• **Continuous** distribution of idiosyncratic shocks ξ_{it} , **i.i.d**, with pdf $f_{\xi}(.)$ and cdf $F_{\xi}(.)$. Normalization:

$$\mathbb{E}_t[\xi_{it}] = \mathbb{E}_{t-1}[\xi_{it}] = 1$$

Equilibrium

State variables

$$\Omega_t = (Z_t, \tau_t, \Psi_{k,t-1}(.))$$

with

- Z_t the aggregate productivity variable in period t
- τ_t the tax rate in period t
- $\Psi_{k,t-1}(.)$ the cross-sectional distribution of capital holdings inherited from period t-1

Equilibrium

Definition An equilibrium consists in:

• a consumption function $C(\chi, \Omega_t)$ with χ after-transfer disposable income in period t

$$\chi_{it} = (1 + r_t)k_{t-1} + w_t \xi_{it} + T_t$$

- a stochastic process of cross-sectional distribution $\Psi_{k,t}(.)$
- ullet a process of lump sum transfers T_t

such that:

- $C(\chi, \Omega_t)$ satisfies the Euler equation
- $\Psi_{k,t}(.)$ is consistent with the dynamic equation implied by the Euler equation
- Transfers satisfy the balanced budget condition

(Reiter, 2009) 3-step approach

1. Provide a finite representation of the model

Replace infinite-dimensional objects by discrete counterparts to represent the dynamic system as

$$F(X_t, X_{t-1}, \eta_t, \varepsilon_t) = 0$$

with
$$\dim(\mathbf{X_t}) = \dim(\mathbf{X_{t-1}}) = (n_X \times 1)$$
, $\dim(\eta_{\mathbf{t}}) = (n_\eta \times 1)$, $\dim(\varepsilon_{\mathbf{t}}) = (n_\varepsilon \times 1)$

2. Solve for a steady-state of the discrete model

$$F(\mathbf{X}^{\star}, \mathbf{X}^{\star}, \mathbf{0}, \mathbf{0}) = \mathbf{0}$$

Define the steady-state as the state of the system when there is no aggregate uncertainty ($\varepsilon_t = 0$) and no expectation errors ($\eta_t = 0$)

3. Linearize F around its steady-state and use a rational expectation solver to solve for $\eta_{\mathbf{t}}$

$$F_1(\mathbf{X_t} - \mathbf{X_{ss}}) + F_2(\mathbf{X_{t-1}} - \mathbf{X_{ss}}) + F_3\eta_t + F_4\varepsilon_t = \mathbf{0}$$

$$F_1 = \frac{\partial F}{\partial \mathbf{X_t}} | \mathbf{X_{ss}}, \, F_2 = \frac{\partial F}{\partial \mathbf{X_{t-1}}} | \mathbf{X_{ss}}, \, F_3 = \frac{\partial F}{\partial \eta_t} | \mathbf{X_{ss}}, \, F_4 = \frac{\partial F}{\partial \varepsilon_t} | \mathbf{X_{ss}}$$

Savings function
$$K(\chi, \Omega_t) = \chi - C(\chi, \Omega_t)$$

- Approximate $K(\chi, \Omega_t)$) by $n_p + 1$ points collected in $\mathbf{s_t}$.
- Use the collocation method: the Euler equation has to be exactly satisfied at the n_p knots points $[\chi_{t,1},...,\chi_{t,n_p}]$.
- Knots points are chosen such that the borrowing constraint is not binding (Euler equation holds with equality)

Euler equation: For $i = 0, 1, ..., n_p$:

$$U'(\hat{C}(\chi_{t-1,i}; \mathbf{s_{t-1}})) = \beta \sum_{j=1}^{n_{\zeta}} w_j^{\zeta} \left[(1 + r(\mathbf{p_{t-1}}, Z_t) U'(\hat{C}(\hat{X}_{ij}, \mathbf{s_t})) + \eta_{i,j}^{c} \right]$$
(1)

with the approximate disposable income for an individual i facing an idiosyncratic shock j

$$\hat{X}_{ij} = (1 + r(\mathbf{p_{t-1}}, Z_t))(K(\chi_{t-1,i}; \mathbf{s_{t-1}})) + w(\mathbf{p_{t-1}}, Z_t) + T_t$$
 (2)

- ω_j^{ζ} Gaussian quadrature weights, to approximate the expectation with respect to idiosyncratic risks
- The vector \mathbf{s}_t is a function of the aggregate state vector Ω_t . The dependency of \mathbf{s}_t on Ω_t is solved at the perturbation stage
- Directly solving for $\mathbf{s_t}(\Omega_t)$ would require knowing the law of motion for Ω_t (back to the Krusell-Smith algorithm)

Off-knots values are calculated by interpolation:

$$\hat{K}(\chi_{t,i}, \mathbf{s_t}) = \begin{cases} \underline{k} & \text{for } \chi \leq \mathcal{X}_t \\ CSI(\chi_{t,i}, \mathbf{s_t}) & \text{for } \mathcal{X}_t < \chi \leq \chi_{t,n_p} \\ k_{t,n_p} + CSI'(\chi_{t,i})(\chi_{t,i} - \chi_{t,n_p}) & \text{for } \chi > \chi_{t,n_p} \end{cases}$$
(3)

- \underline{k} the borrowing constraint (= 0 in Krusell and Smith (1998))
- \mathcal{X}_t the value for which the borrowing constraint starts to be binding
- n_p+1 time-dependent knot points $[\chi_{t,0},\chi_{t,1},...,\chi_{t,n_p}]$ $\chi_{t,0}=\mathcal{X}_t$ and $\chi_{t,0}=\mathcal{X}_t+X_i,\ i=1,...,n_p$
- \bullet "CSI" stands for a cubic spline interpolation using the points s_t
- k_{t,n_p} is the capital invested when disposable income is $\chi_{t,n-p}$

Wealth Distribution: approximate the cross-sectional distribution of capital $\Psi_{k,t}(.)$

Summarize the cdf using a vector $\mathbf{p_t}$ of n_d points with

$$p_t^i = \Psi_t(\kappa_i) - \Psi_t(\kappa_i - 1)$$

$$, i = 1, ..., n_d$$

Assume constant density within each interval $[\kappa_{i-1}, \kappa_i]$

Linear dynamic equation:

$$p_t = \Pi(\boldsymbol{\hat{\Omega}}_t)p_{t-1}$$

with
$$\mathbf{\hat{\Omega}_t} = (\mathbf{p_{t-1}}, Z_t, au_t)$$

Expectation errors

Expectation errors result from the aggregate shock (Gaussian quadrature for idiosyncratic shock)

Replace the expectation operator \mathbb{E} by defining $\mathbb{E}_{\hat{\Omega}_t}[x_t] = x_t + \eta_t$

 n_p+1 expectation errors (Euler equation solved by collocation on the grid with n_p+1 points)

Solving for a steady-state

Set $\eta^* = \mathbf{0}$, $\varepsilon^* = \mathbf{0}$; Solving a **one-dimensional** fixed-point:

1. Guess an aggregate capital $K^* \to \text{determines } r^*$, w^* and $T^* \to \text{solve for } \mathbf{s}^*$ using the Euler equation For $i = 0, 1, ..., n_p$:

$$U'(\hat{C}(\chi_i^*; \mathbf{s}^*)) = \beta \sum_{j=1}^{n_{\zeta}} w_j^{\zeta} \left[(1 + r(K^*, Z^*) U'(\hat{C}(\hat{X}_{ij}^*, \mathbf{s}^*)) \right]$$
(4)

2. Given r^* , T^* and s^* find p^* :

$$\mathbf{p}^* = \Pi^*(r^*, T^*, s^*)\mathbf{p}^*$$

3. Check whether the guess K^* is consistent with the one implied by \mathbf{p}^*

Linearization and solving for rational expectation errors

Define the column vector $\mathbf{X_t} = (\mathbf{s_t}, \mathbf{p_t}, Z_t, \tau_t, T_t)'$ with $(n_p + 1) + n_d + 3 = n_p + n_d + 4$ elements.

Numerical differentiation of $F(\mathbf{X_t}, \mathbf{X_{t-1}}, \eta_t, \varepsilon_t)$ around its non-stochastic steady-state to obtain F_1 , F_2 , F_3 , F_4 evaluated at $\mathbf{X_t} = \mathbf{X_{t-1}} = \mathbf{X^*}$ $\eta^* = \mathbf{0}$ and $\varepsilon^* = \mathbf{0}$.

The linearized system can be written into **Sims (2002)** canonical form:

$$\Gamma_0 \mathbf{y_t} = \Gamma_1 \mathbf{y_{t-1}} + \mathbf{C} + \Psi \mathbf{z_t} + \Pi \eta_t$$

with
$$\mathbf{y_t} = \mathbf{X_t} - \mathbf{X_{ss}}$$
, $\Gamma_0 = -F_1$, $\Gamma_1 = -F_2$, $\mathbf{C} = \mathbf{0}, \Psi = F_3, \Phi = F_4$

Linearization and solving for rational expectation errors

Outcome of Sims (2002) gensys solver: matrix A and B such that:

$$\mathbf{y_t} = A\mathbf{y_{t-1}} + B\varepsilon_{\mathbf{t}}$$

Projection and Perturbation in a

Search-and-Matching Model

Countercyclical Left Skewness of Income Shocks

Figure 1: Distribution of income shocks: recessions versus expansions

Countercyclical Left Skewness of Income Shocks

Figure 2: Distribution of income shocks: recessions versus expansions

Our Contribution

Main Question

What are the impacts of payroll taxation on labor income risks along the business cycle?

Contribution

- Build a dynamic history-dependent model with non-linear

 Technical contribution taxes on wages, frictional unemployment and heterogeneous workers
- Counter-factual: "flat-tax"

Literature

Empirical Literature

• Guvenen, Ozkan, and Song (2014) Busch, Domeij, Guvenen, and Madera (2015)

Costs of Business Cycle

- Lucas Jr (2003) Gali, Gertler, and Lopez-Salido (2007)
- Clark and Oswald (1994) Wolfers (2003) Clark, Diener, Georgellis, and Lucas (2008) Aghion, Akcigit, Deaton, and Roulet (2015)

Optimal Labor Taxation

Mirrlees (1971), Saez (2001), Kleven, Kreiner, and Saez (2009)

Taxation in Search-and-Matching Models

• Chéron, Hairault, and Langot (2008) Carbonnier et al. (2014), Breda, Haywood, and Haomin (2016)

Model

Model

Figure 3: Timing of events

Model: Stochastic Equilibrium

Finding an equilibrium involves solving a system of "coupled" fixed point:

$$\begin{cases} \underbrace{\left(\triangle(x, w, z, h(.))}_{\text{Worker surplus}}, \underbrace{S(x, w, z, h(.))}_{\text{Joint surplus}} \right) = \Phi(\triangle(x, w, z, h(.)), S(x, w, z, h(.)), h(.)|h(.)|}_{\text{Joint surplus}} \\ \underbrace{h(.)}_{\text{Distribution of Employment}} = \Gamma(h(.)|\triangle(x, w, z, h(.)), S(x, w, z, h(.))) \end{cases}$$

- Similar to a mean field game with "common noise"
- Coupling through the probability of a meeting $\lambda(z,h)$

Model

Model: Steady-state

Fix
$$z = z^*$$

 \approx Mean field game without common noise:

$$\begin{cases} \underbrace{\left(\triangle(x,w,z^*,h^*(.))}_{\text{Worker surplus}},\underbrace{S(x,w,z^*,h^*(.))}_{\text{Joint surplus}} \right)}_{\text{Joint surplus}} \\ = \Phi^*(\triangle(x,w,z^*,h^*(.)),S(x,w,z^*,h^*(.)),h^*(.)|h^*(.)) \\ \underbrace{h^*(.)}_{\text{Distribution of Employment}} = \Gamma^*(h^*(.)|\triangle(x,w,z^*,h^*(.)),S(x,w,z^*,h^*(.))) \end{cases}$$

Discussion existence of a steady-state

Resolution method

We use the 3-step (Reiter, 2009) method:

1. Provide a finite representation of the model

Replace infinite dimensional (S, \triangle, h) objects by discrete value on grids: $F(\mathbf{X_t}, \mathbf{X_{t-1}}, \eta_t, \varepsilon_t) \rightarrow \mathbf{Linear}$ interpolation for S, \triangle and h: $\mathbf{X_t}$ contains values on grid $(S_{ij}, \triangle_{ij}, h_k)_t + \text{aggregates}$ at time t.

2. Solve for a steady-state of the discrete model

- Solve for S and \triangle holding fixed h
- ullet Solve for h holding fixed S and \triangle
- 3. Linearize F around its steady-state and use a rational expectation solver

$$F_1(\mathbf{X_t} - \mathbf{X_{ss}}) + F_2(\mathbf{X_{t-1}} - \mathbf{X_{ss}}) + F_3\eta_t + F_4\varepsilon_t = \mathbf{0}$$

Flat tax counter-factual

Flat tax counter-factual: Idea

Figure 4: The Hall-Rabushka flat tax (1985)

Flat tax counter-factual: experiment

- 1. Estimate the model using Italian data
- 2. Find a flat tax such that the government revenue = constant
- Simulate "step function" and "flat" tax economies and compare

Flat tax counter-factual: experiment

Figure 5: Marginal tax rate: step function versus flat tax

Flat tax counter-factual: Amplification

Figure 6: Amplification

Flat tax counter-factual: Levels

Figure 7: Levels

Flat tax counter-factual: Volatility

Figure 8: Volatility

Conclusion

Conclusion

Main Question

What are the impacts of payroll taxation on labor income risks along the business cycle?

Preliminary Answers

- payroll taxation as a tool to mitigate labor income shocks
- trade-off level volatility

Work In Progress

- Estimation
- Counter-factuals
- Firm heterogeneity

Questions?

References I

References

- Aghion, P., Akcigit, U., Deaton, A., & Roulet, A. (2015). *Creative destruction and subjective wellbeing* (Tech. Rep.). National Bureau of Economic Research.
- Breda, T., Haywood, L., & Haomin, W. (2016). Labor market responses to taxes and minimum wage policies. *Working Paper*.
- Busch, C., Domeij, D., Guvenen, F., & Madera, R. (2015).

 Asymmetric business cycle risk and government insurance (Tech. Rep.). Working Paper.

References II

- Carbonnier, C., et al. (2014). Payroll taxation and the structure of qualifications and wages in a segmented frictional labor market with intrafirm bargaining (Tech. Rep.). THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Chéron, A., Hairault, J.-O., & Langot, F. (2008). A quantitative evaluation of payroll tax subsidies for low-wage workers: An equilibrium search approach. *Journal of Public Economics*, 92(3), 817–843.
- Clark, A. E., Diener, E., Georgellis, Y., & Lucas, R. E. (2008). Lags and leads in life satisfaction: A test of the baseline hypothesis. *The Economic Journal*, 118(529).

References III

- Clark, A. E., & Oswald, A. J. (1994). Unhappiness and unemployment. *The Economic Journal*, 104(424), 648–659.
- Gali, J., Gertler, M., & Lopez-Salido, J. D. (2007). Markups, gaps, and the welfare costs of business fluctuations. *The review of economics and statistics*, 89(1), 44–59.
- Guvenen, F., Ozkan, S., & Song, J. (2014). The nature of countercyclical income risk. *Journal of Political Economy*, 122(3), 621–660.
- Kleven, H. J., Kreiner, C. T., & Saez, E. (2009). The optimal income taxation of couples. *Econometrica*, 77(2), 537–560.
- Krusell, P., & Smith, A. A., Jr. (1998). Income and wealth heterogeneity in the macroeconomy. *Journal of political Economy*, *106*(5), 867–896.

References IV

- Lucas Jr, R. E. (2003). Macroeconomic priorities. *American* economic review, 93(1), 1–14.
- Mirrlees, J. A. (1971). An exploration in the theory of optimum income taxation. *The review of economic studies*, 38(2), 175–208.
- Reiter, M. (2009). Solving heterogeneous-agent models by projection and perturbation. *Journal of Economic Dynamics* and Control, 33(3), 649–665.
- Robin, J.-M. (2011). On the dynamics of unemployment and wage distributions. *Econometrica*, 79(5), 1327–1355.
- Saez, E. (2001). Using elasticities to derive optimal income tax rates. *The review of economic studies*, *68*(1), 205–229.

References V

- Sims, C. A. (2002). Solving linear rational expectations models. *Computational economics*, 20(1), 1–20.
- Wolfers, J. (2003). Is business cycle volatility costly? evidence from surveys of subjective well-being. *International finance*, 6(1), 1–26.

Model

Workers, Firms and Production

- continuum of infinitely-lived workers differing in their individual productivity, indexed by x.
- distribution of ability x is exogenous and denoted by $\ell(x)$.
- firms are identical and can freely enter the market, incurring an exogenous cost c(v) when posting v vacancies.
- when matched firms and workers produce a per period output $p(x, z_t)$.

Shocks:

• aggregate productivity z follows and AR(1) process

Frictional matching market

- Number of per period meetings, M_t , is determined by a matching function $M(L_t, V_t)$ increasing, concave and homogeneous of degree 1
- V_t is the aggregate number of vacancies and aggregate search effort L_t.

$$L_{t} = \int_{0}^{1} u_{t+}(x) dx + s \int_{0}^{1} h_{t+}(x) dx$$

- Unemployed and employed workers meet a job with probability $\lambda_t = M_t/L_t$ and $s\lambda_t$
- Free entry determines the number of vacancies

Vacancy creation

State variable $\Omega_t = (z_t, h_t(.))$

$$\lambda_t = M_t/L_t = M(1, V_t/L_t) = f(\Omega_t)$$

Search effort:

$$L_t = L(\Omega_t) = 1 - (1 - s)(1 - \delta) \int_0^1 \mathbb{1} \{S(x, w, \Omega_t) \ge 0\} h(x) dx$$

Free entry condition $c'(V_t) = q_t J_t$ with c(.) a strictly increasing and convex cost function, J_t the expected value of a filled vacancy, q_t the probability for meeting a worker

$$V_t = V(\Omega_t) = (c')^{-1} \left(M(\frac{1}{V_t L_t}, \frac{1}{L_t}) \int_0^1 (\ell(x) - (1 - \delta)h(x)) \max\{S(x, w, \Omega_t), 0\} \right)$$

L.h.s strictly increasing in V_t , r.h.s strictly decreasing in V_t . $\to V_t$ uniquely determined at every period t.

Model - Wage Setting

Wages are set as in (Robin, 2011):

- ullet Unemployed workers receive their reservation wage $\phi^0(x,\Omega_t)$
- Bertrand competition when an employee meets another firm \rightarrow employed workers receive the firm's reservation wage $\phi^1(x,\Omega_t)$

At time t, only 2 wages are offered:

$$\phi_t^1(x) \equiv \phi^1(x, \Omega_t) \text{ s.t. } \triangle(x, \phi^1(x), \Omega_t)) = S(x, \phi^1(x, \Omega_t), \Omega_t).$$

$$\phi_t^0(x) \equiv \phi^0(x, \Omega_t) \text{ s.t. } \triangle(x, \phi^0(x, \Omega_t), \Omega_t) = 0.$$

Back

Dynamic system - Match Surplus

State variable
$$\Omega_t = (z_t, h_t(.))$$

$$S(x, w, \Omega_t) = \underbrace{p(x, z_t) - \tau_w(w)w - b(x)}_{\text{flow value}} + \underbrace{\frac{1 - \delta}{1 + r}}_{\text{flow value}} \mathbb{E} \left[\underbrace{\mathbb{1} \left\{ S(x, w, \Omega_{t+1}) < 0 \right\} \max\{0, S(x, \phi_{t+1}^1(x), \Omega_{t+1}) \right\}}_{\text{renegotiation or separation if surplus at } w < 0} + \mathbb{1} \left\{ S(x, w, \Omega_{t+1}) \geq 0 \right\} \left[s\lambda(\Omega_{t+1}) \underbrace{\left(S(x, \phi_{t+1}^1(x), \Omega_{t+1}) \right)}_{\text{continuation value if poaching}} + (1 - s\lambda(\Omega_{t+1})) \underbrace{\left(A^S(x, w, \Omega_{t+1}) \right) \right]}_{\text{continuation value if no poaching}}$$

$$A^S(x, w, \Omega_{t+1}) = \begin{cases} S(x, w, \Omega_{t+1}), & \text{if } 0 \leq \triangle(x, w, \Omega_{t+1}) \leq S_{t+1}(x, w, \Omega_{t+1}) \\ S(x, \phi_{t+1}^1(x), \Omega_{t+1}), & \text{if } \triangle(x, w, \Omega_{t+1}) > S(x, w, \Omega_{t+1}) \\ S(x, \phi_{t+1}^0(x), \Omega_{t+1}), & \text{if } \triangle(x, w, \Omega_{t+1}) < 0 \end{cases}$$

Back

Dynamic system - Worker Surplus

$$\triangle(x,w,\Omega_t) = \underbrace{ \begin{bmatrix} 1-\tau_w(w) \end{bmatrix} w - b(x)}_{\text{flow value}} + \\ \frac{1-\delta}{1+r} \mathbb{E} \left[\underbrace{ \mathbb{1} \left\{ S(x,w,\Omega_{t+1}) < 0 \right\} \max\{0,S(x,\phi_{t+1}^1(x),\Omega_{t+1}) \right\}}_{\text{renegotiation or separation if surplus at } w < 0} \right. \\ + \left. \mathbb{1} \left\{ S(x,w,\Omega_{t+1}) \geq 0 \right\} \left[s\lambda(\Omega_{t+1}) \underbrace{ \left(S(x,\phi_{t+1}^1(x),\Omega_{t+1}) \right)}_{\text{continuation value if poached}} \right. \\ + \left. \left(1-s\lambda(\Omega_{t+1}) \right) \underbrace{ \left(A^\triangle(x,w,\Omega_{t+1}) \right) \right]}_{\text{continuation value if not poached}} \right] \\ A^w(x,w,\Omega_t) = \begin{cases} \triangle(x,w,\Omega_t), & \text{if } 0 \leq \triangle(x,w,\Omega_t) \leq S(x,w,\Omega_t) \\ S(x,\phi_{t+1}^1(x),\Omega_t), & \text{if } \triangle(x,w,\Omega_t) > S(x,w,\Omega_t) \\ 0, & \text{if } \triangle(x,w,\Omega_t) < 0 \end{cases}$$

Idea of a proof

Discussion existence of a steady-state

Fix $z = z^*$. Study the function ϕ defined by:

$$\phi: E \to C(K) \times C(K) \to E$$

$$\phi: m \to (S(x, w; z^*, m), \triangle(x, w; z^*, m)) \to \tilde{m}$$
(6)

- with E a convex closed and compact subset of the space of measures
- C(K) the space of continuous functions $f: K \to \mathcal{R}$ with K the compact set in \mathcal{R}^2 defined by $K = [0,1] \times [\underline{w}, \overline{w}]$, $(\underline{w}$ and \overline{w} a lower bound and an upper bound on the wages)

Schauder fixed-point theorem: if the function ϕ is continuous, there exists a fixed point $\phi(h^*) = h^*$.

Idea of a proof

Discussion existence of a steady-state

Have to show that the function ψ is continuous

$$\psi: E \to C(K) \times C(K)$$

$$\psi: m \to (S(x, w; z^*, m), \triangle(x, w; z^*, m))$$
(7)

• ψ is the function that assigns to a measure m the solution of the fixed point problem $(S(x, w, z^*, m), \triangle(x, w, z^*, m)) = T(S(x, w, z^*, m), \triangle(x, w, z^*, m))$

T a contraction?

Continuity obvious?

Idea of a proof

Discussion existence of a steady-state

Have to show that the function γ , assigning a measure \tilde{m} to the functions S and \triangle , is continuous

$$\gamma: C(K) \times C(K) \to E$$

$$\gamma: (S(x, w; z^*, h), \triangle(x, w; z^*, h)) \to \tilde{h}$$
(8)

$$\forall x \in [0,1] : h^*(x) = \begin{cases} 0 & \text{if } S(x,w;z^*,h^*) \ge 0\\ \frac{\lambda(z^*,h^*)I(x)}{1-(1-\delta)(1-\lambda(z^*,h^*))} & \text{otherwise} \end{cases}$$
(9)

Back