Decomposition and Features

DS-5740 Advanced Statistics

Overview

Overview: Week 2

Overview | Week 2 Preliminaries

Preliminaries

None

Overview | Week 2 Goals

Goals for the Week

- Check and test model residuals
- TSLM Pipeline
- Identify trend and seasonal patterns
- Learn about decomposition to trend and seasonal patterns

Residuals

Assume residuals to be white noise

```
# Set seed for reproducibility
set.seed(1234)

# Random noise
y_wn <- tsibble(sample = 1:50, wn = rnorm(50, 0, 1), index = sample)

# Plot
y_wn %>% autoplot(wn) + labs(x = "", y = "")
```



```
# Random noise
y_wn %>% ACF(wn) %>% autoplot()
```


$$r_k = \frac{\sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})}{\sum_{t=1}^{T} (y_t - \bar{y})^2}$$

```
[,1] [,2] [,3] [,4] [,5] [,6] sample 1.000 2.000 3.000 4.000 5.000 6.000 wn -1.207 0.277 1.084 -2.346 0.429 0.506
```

```
[,1] [,2] [,3] [,4] [,5] [,6] sample 1.000 2.000 3.000 4.000 5.000 6.000 wn -1.207 0.277 1.084 -2.346 0.429 0.506 

[,1] [,2] [,3] [,4] [,5] [,6] sample 1.000 2.000 3.000 4.000 5.000 6.000 wn -1.207 0.277 1.084 -2.346 0.429 0.506 wn_lag1 NA -1.207 0.277 1.084 -2.346 0.429 wn lag2 NA NA -1.207 0.277 1.084 -2.346
```

```
# Lag-1 correlation
sum(
 (wn - mean(wn)) *
   (wn_lag1 - mean(wn)),
 na rm = TRUE
) / sum((wn - mean(wn))^2)
Γ17 -0.01080718
# Lag-2 correlation
sum(
 (wn - mean(wn)) *
    (wn_lag2 - mean(wn)),
 na.rm = TRUE
) / sum((wn - mean(wn))^2)
[1] -0.04598648
# 'acf' from {tseries}
acf(wn, lag.max = 2, plot = FALSE)
Autocorrelations of series 'wn', by lag
 1 000 -0 011 -0 046
```

test statistic

Box-Pierce Test

Ljung-Box Test lags
$$\frac{\mathbf{C}}{\mathbf{C}} = T \sum_{k=1}^{\ell} r_k^2$$

$$\mathbf{C} = T \sum_{k=1}^{\ell} r_k^2$$

$$\mathbf{C} = T \sum_{k=1}^{\ell} (T - k)^{-1} r_k^2$$

Usually ℓ = 10 for non-seasonal data and h = 2m for seasonal data (m = seasonal period)

Statistical test with χ^2 distribution

autocorrelations

Pipeline with TSLM

Pipeline with TSLM

Pipeline with TSLM

- Prepare data
- Visualize data
- Model estimation
- Forecast
- Visualize (and quantify) forecast

1. Prepare data

Fried, E. I., Papanikolaou, F., & Epskamp, S. (2022). Mental health and social contact during the COVID-19 pandemic: an ecological momentary assessment study. *Clinical Psychological Science*, *10*(2), 340-354. https://doi.org/10.1177/21677026211017839

Download Dataset

- Emotions over two weeks, queried 4 times per day, between March 11-April 4, 2020
- Our goal: Forecast a person's level of feeling worried

```
# Load data
emotions <- read.csv("../data/fried_mental_2022.csv")

# Data variables
head(emotions)</pre>
```

```
TD
                        Scheduled
                                                   Tasmed
1 User #25290 2020-03-16 12:00:00 2020-03-16 12:00:00 CET
2 User #25290 2020-03-16 15:00:00 2020-03-16 15:00:00 CET
3 User #25290 2020-03-16 18:00:00 2020-03-16 18:00:00 CET
4 User #25290 2020-03-16 21:00:00 2020-03-16 21:00:00 CET
5 User #25290 2020-03-17 12:00:00 2020-03-17 12:00:00 CET
6 User #25290 2020-03-17 15:00:00 2020-03-17 15:00:00 CET
                 Response Duration Q1 Q2 Q3 Q4 Q5 Q6 Q7
1 2020-03-16 12:04:45 CET
                          285 734
2 2020-03-16 15:30:22 CET 1822.742
3 2020-03-16 18:03:58 CET 238 774
4 2020-03-16 21:16:07 CET 967 132
5 2020-03-17 12:33:15 CET 1995.54
6 2020-03-17 15:12:01 CET 721 237
  014 015 016 017 018
                                                 Day beepvar
                                     time
                    5 2020-03-16 12:00:00 2020-03-16
                    5 2020-03-16 15:00:00 2020-03-16
               1 5 2020-03-16 18:00:00 2020-03-16
                    5 2020-03-16 21:00:00 2020-03-16
                    5 2020-03-17 12:00:00 2020-03-17
                    4 2020-03-17 15:00:00 2020-03-17
```

Obtain data for the fourth participant

```
# Participant four
participant <- emotions[emotions$ID == unique(emotions$ID)[4],]
# Obtain time and question variables
questions <- data.frame(
   time = participant$time, # time
   participant[,grep(
       "Q", colnames(participant) # questions
   )]
)</pre>
```

Questions from Fried, Papanikolaou, and Epskamp (2022)

Table 1. Ecological Momentary Assessment Items, Queried Four Times per Day Over 2 Weeks

No.	Abbreviation	Item	Change	p
1	Relax	I found it difficult to relax	-0.11	.00
2	Irritable	I felt (very) irritable	-0.08	.00
3	Worry	I was worried about different things	-0.12	.00
4	Nervous	I felt nervous, anxious, or on edge	-0.13	.00
5	Future	I felt that I had nothing to look forward	-0.05	.00
6	Anhedonia	I couldn't seem to experience any positive feeling at all	-0.03	.07
7	Tired	I felt tired	-0.05	.00
8	Alone	I felt like I lack companionship, or that I am not close to people	-0.04	.02
9	Social_offline	I spent on meaningful, offline, social interaction	-0.02	.14
10	Social_online	I spent using social media to kill/pass the time	-0.06	.00
11	Outdoors	I spent outside (outdoors)	-0.03	.08
12	C19_occupied	I spent occupied with the coronavirus (e.g., watching news, thinking about it, talking to friends about it)	-0.18	.00
13	C19_worry	I spent thinking about my own health or that of my close friends and family members regarding the coronavirus	-0.16	.00
14	Home	I spent at home (including the home of parents/partner)	0.03	.03

Note: All items had five answer options. Items 1 through 8: 1 = not at all, 2 = slightly, 3 = moderately, 4 = very, 5 = extremely. Items 9 through 14: 1 = 0 min, 2 = 1-15 min, 3 = 15-60 min, 4 = 1-2 br, 5 = >2 br. The "Change" column displays standardized coefficients of change from univariate regression models over the 54 assessment points, followed by p values for these changes.

Obtain first 8 questions

```
# First eight questions
data <- questions[,c(</pre>
  1, # time
  2:9 # first eight questions
)]
# Relabel questions
colnames(data)[2:9] <- c(
  "relax", "irritable", "worry",
  "nervous", "future", "anhedonia",
  "tired", "alone"
```

Convert to tsibble format

```
# Remove missing data
data <- na.omit(data)

# Convert to `tsibble`
ts <- data %>%
mutate(
    time = ymd_hms(time)
) %>%
as_tsibble(
    index = time
)

# Convert to `tsibble`
ts_fill <- ts %>%
fill_gaps() # fill in time gaps
# for plotting residuals later
```

Frequency	Function
Annual	start:end
Quarterly	yearquarter()
Monthly	yearmonth()
Weekly	yearweek()
Daily	as_date(), ymd()
Sub-daily	as_datetime() , ymd_hms()

```
# Length of time series
ts_length <- nrow(ts)
ts_fill_length <- nrow(ts_fill)
# Remove last four time points (we'll make a prediction later)
prediction <- ts[
  -c((ts_length - 7):ts_length), # remove last 4 points
# For modeling residuals
prediction fill <- ts fill[
 1:which(
   ts_fill$time ==
    prediction$time[nrow(prediction)]
 ), # match time points
# Save last four time points (we'll compare with prediction)
actual <- ts[
 c((ts_length - 7):ts_length), # keeps last 4 points
1 %>%
 fill_gaps()
```

2. Visualize data

```
# Visualize time series
prediction %>%
  gather(
    "Measure", "Change",
    relax, irritable, worry,
    nervous, future, anhedonia,
    tired, alone
  ) %>%
  ggplot(aes(x = time, y = Change, colour = Measure)) +
  geom line() +
  facet grid(vars(Measure), scales = "free y") +
  labs(v="") +
  guides(colour="none")
```


Notice any patterns?

```
# Plot correlations
prediction %>%
  select(-time) %>%
  GGally::ggpairs()
```


Pipeline with TSLM | Model estimation

3. Model estimation

Pipeline with TSLM | Model estimation

```
# Fit linear model
fit <- prediction_fill %>% # our data
  model( # model for time series
  tslm = TSLM( # time series linear model
    worry ~ relax + irritable +
    nervous + future + anhedonia +
    tired + alone
  )
)
```

```
# Report fit
report(fit)
Series: worry
Model: TSLM
Residuals:
    Min
              10
                  Median
                              30
                                      Max
-1.20989 -0.30489 -0.02129 0.30248 1.34452
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.12718 0.57276
                               0.222 0.82543
relax
           0.23974 0.11095
                               2.161 0.03691 *
irritable -0.11367 0.13216 -0.860 0.39497
nervous 0.49036 0.15300 3.205 0.00269 **
           0.37748 0.34810 1.084 0.28485
future
anhedonia
           0.21384 0.25910 0.825 0.41420
tired
           0.13977 0.09411 1.485 0.14556
           -0.14978
                   0.12527 -1.196 0.23904
alone
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.5465 on 39 degrees of freedom
Multiple R-squared: 0.4921, Adjusted R-squared: 0.4009
F-statistic: 5.398 on 7 and 39 DF, p-value: 0.00022108
```

 $0.401 \ 0.395 \ -47.6 \ -42.7 \ -30.9 \ -33.9$

```
# Plot model
augment(fit) %>%
  # Plot quarter on x-axis
 ggplot(aes(x = time)) +
  # Plot actual values
 geom line(aes(y = worry, colour = "Data")) +
  # Plot fit values
  geom line(aes(y = .fitted, colour = "Fitted")) +
 labs(
    # No y-axis label
    y = NULL,
    # Change title
    title = "Worry across time".
    subtitle = "Participant 4"
 ) +
  # Change colors
 scale_colour_manual(
    values = c(
      Data = "black", # Make data line black
      Fitted = "orange" # Make fitted line orange
 ) +
  # No title for legend
 guides(colour = guide_legend(title = NULL)) +
  scale v continuous(
   limits = c(1, 5), # minimum and maximum of y-axis
    breaks = seg(1, 5, 1) # breaks on y-axis
 )
```



```
# Plot residuals
fit %>%
   gg_tsresiduals()
```


Forecasting | Model estimation

Box-Pierce

```
# Plot residuals
fit %>%
 augment() %>%
 na.omit() %>%
 features(.resid, box_pierce, lag = 10)
# A tibble: 1 x 3
  .model bp_stat bp_pvalue
 <chr> <dbl> <dbl>
1 tslm 14.2 0.164
```

Ljung-Box

1 tslm 17.1 0.0715

Forecasting | Forecast

```
# Make forecast
fc_actual <- fit %>%
forecast(new_data = actual)
```

Forecasting | Forecast

Peek at forecast
head(fc_actual)

```
# A fable: 6 x 11 [3h] <UTC>
          .model [1]
# Key:
  .model time
                                 worry .mean relax irritable nervous future
 <chr> <dttm>
                                 <dist> <dbl> <int>
                                                       <int>
                                                               <int> <int>
1 tslm
        2020-03-27 21:00:00 N(1.9, 0.32) 1.92
                                                                   2
                                                                          1
2 tslm 2020-03-28 00:00:00 N(NA, NA) NA
                                                          NA
                                                                         NΑ
3 tslm 2020-03-28 03:00:00 N(NA, NA) NA
                                                NA
                                                          NA
                                                                         NA
4 tslm 2020-03-28 06:00:00 N(NA, NA) NA
                                                NA
                                                          NA
                                                                         NA
5 tslm 2020-03-28 09:00:00 N(NA, NA) NA
                                                 NA
                                                                  NA
                                                                         NA
                                                          NA
6 tslm
        2020-03-28 12:00:00 N(2, 0.38) 2.02
                                                                          1
# i 3 more variables: anhedonia <int>, tired <int>, alone <int>
```

Forecasting | Visualize forecast

```
# Plot forecast
ts %>%
  # Plot quarter on x-axis
 ggplot(aes(x = time)) +
  # Plot actual values
 geom line(aes(y = worry, colour = "Data")) +
  # Plot predicted values
 geom_line(
    data = na.omit(fc_actual),
    aes(y = .mean, colour = "Forecast"),
    size = 1
  ) +
 labs(
    # No y-axis label
   y = NULL,
    # Change title
    title = "Worry across time".
    subtitle = "Participant 4"
 ) +
  # Change colors
  scale_colour_manual(
    values = c(
      Data = "black", # Make data line black
      Forecast = "orange" # Make fitted line orange
    )
  ) +
  # No title for legend
 guides(colour = guide legend(title = NULL)) +
  scale y continuous(
    limits = c(1, 5), # minimum and maximum of y-axis
    breaks = seq(1, 5, 1) # breaks on y-axis
```

Forecasting | Visualize forecast

Forecasting | Quantify forecast

Point Estimates

```
R-squared
[1] 0.5085333
MAF.
[1] 0.4901048
RMSF.
[1] 0.6034543
MBF.
[1] 0.03328566
```

Forecasting | Quantify forecast

Distributional Estimates (see Section 5.9 of FPP3)

```
# Winkler and Continuous Ranked Probability Scale
fc_actual %>%
  accuracy(ts_fill, list(
    winkler = winkler_score,
    crps = CRPS,
    skill = skill_score(ME)
))
```

- Winkler: penalizes estimates outside of interval proportional to distance from interval
- Continuous Ranked Probability Score (CRPS): average quantile scores over all time series values
- Skill score: scale-free comparison based on relative measure (e.g., RMSE, CRPS)

What if you want to forecast without actual data?

Forecasting | Forecast (no actual data)

Random

$$x_i$$
 drawn from X_i
textbfbased on probability of x_i
across all time points
$$x_{ih} = \sum_{n=1}^{N} \frac{x_i \in X_i}{N}$$
predictor x_i for forecast h

What if you want to forecast without actual data?

```
# Obtain useful functions
source("../Useful Functions/lm new data.R")
# Make future possibilities
future scenarios <- scenarios(</pre>
  random = lm_new_data( # Random forecasts
    model = fit, # set model
    df = prediction, # set data
    iterations = 10, # number of iterations
    h = nrow(actual), type = "random"
  ),
  names to = "Scenario")
# Make forecast
fc <- fit %>% forecast(new_data = future_scenarios)
```

Forecasting | Visualize Forecast (no actual data)

```
# Plot forecasts simultaneously
ts %>%
  autoplot(worry) +
  autolayer(fc, alpha = 0.333) +
  labs(
    # No y-axis label
    v = NULL.
    # Change title
    title = "Worry across time",
    subtitle = "Participant 4"
  scale_y_continuous(
    limits = c(1, 5), # minimum and maximum of y-axis
    breaks = seq(1, 5, 1) # breaks on y-axis
```

Forecasting | Visualize Forecast (no actual data)


```
# Obtain metrics
random_scenario <- fc[
  fc$Scenario == "random",
]
random <- random_scenario[
  !is.na(match(random_scenario$time, actual$time)),
]$.mean</pre>
```

```
# Make data frame table
df table <- data.frame(</pre>
  "Measure" = c(
    "R-squared", "MAE",
    "RMSE", "MBE"
  ),
  "Random" = c(
    cor(random, actual$worry, use = "pairwise")^2, # R-squared
    mean(abs(random - actual$worry), na.rm = TRUE), # MAE
    sqrt(mean((random - actual$worry)^2, na.rm = TRUE)), # RMSE
    mean(random - actual$worry, na.rm = TRUE) # MBE
# Print data frame
df table
```

```
Measure Random
1 R-squared 0.60807556
2 MAE 0.70948627
3 RMSE 0.77819465
4 MBE -0.02694606
```

1 0.6105961 -0.8089913

```
# Make data frame table
df_table <- rbind.data.frame(
  random = fc[fc$Scenario == "random",] %>%
  accuracy(ts_fill, list(
    winkler = winkler_score,
    crps = CRPS
)),
  actual = fc_actual %>%
  accuracy(ts_fill, list(
    winkler = winkler_score,
    crps = CRPS
))
)

# Report table
df_table$.type <- c("random", "actual")
df_table</pre>
```

In your assignment, you will use generative AI to come up with alternative methods of creating new data for the TSLM to forecast on

Exploring Time Series

Exploring Time Series

Exploring Time Series

Is there a trend or seasonal component to the time series?

- trend: long-term increase or decrease in the time series (does not need to be linear)
- seasonal: time series is affected by seasonal factors (day of week, time of year)
- cyclic: rises and falls that are not on a fixed frequency (economic conditions, business cycle)

Decomposition

How can we know for certain?

 Examining autocorrelations can provide some inference into whether the data has a trend or seasonal pattern

autocorrelation for lag
$$k$$

$$r_{k} = \frac{\sum_{t=k+1}^{T} (y_{t} - \bar{y})(y_{t-k} - \bar{y})}{\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}}$$

Australian beer production

White noise

Austrailian antidiabetic drug sales

```
# Antidiabetic
a10 %>% # data
  as_tsibble() %>% # convert to `tsibble` format
autoplot(value) +
  labs(x = "", y = "")
```



```
# Antidiabetic
a10 %>% # data
  as_tsibble() %>% # convert to `tsibble` format
ACF(
  value, # sales from `tsibble`
  lag_max = 48 # maximum lag
) %>%
autoplot()
```


Austrailian antidiabetic drug sales

Decomposition | Autocorrelations

Decomposition | Autocorrelations

Linear trend with sine wave

Decomposition

Decomposition

Decomposition | Additive

outcome (at time
$$t$$
)
$$y_t = T_t + S_t + R_t$$
trend
remainder

- More appropriate if seasonal fluctuations do not vary with level (average of period)
- The model you'll use most often

Decomposition | Multiplicative

- More appropriate if seasonal fluctuations are proportional with level (average of period)
- More common with economic series
- Can be made into additive relationship with log-transformation (i.e., $\log_{y_t} = \log S_t + \log T_t + \log R_t$)

Decomposition | STL

Decomposition with STL

Decomposition | STL

- Seasonal and Trend decomposition using Loess (STL)
- Good general decomposition method
- Mainly uses additive decomposition (use log for multiplicative)
- Handles any type of seasonality
- Robust to outliers

Decomposition | Plot Time Series

```
# Select US retail data
us retail employment <- us employment %>%
  filter(year(Month) >= 1990, Title == "Retail Trade") %>%
  select(-Series ID)
# US retail employment time series
us retail employment %>%
  autoplot(Employed) +
  labs(
    v = "Persons (thousands)",
   title = "Total employment in US retail"
```

Decomposition | Plot Time Series

Decomposition | STL Trend

```
# Store components
us_comps <- us_retail_employment %>%
  model(stl = STL(Employed))
# STL Trend
us_retail_employment %>%
  autoplot(Employed, color = 'gray') +
  autolayer(
    components(us comps),
    trend, # plot trend
    color = '#D55E00'
  ) +
  labs(
    y = "Persons (thousands)",
    title = "Total employment in US retail"
```

Decomposition | STL Trend

Decomposition | STL Trend + Season

```
# STL Trend.
us retail employment %>%
  autoplot(Employed, color = 'gray') +
  autolayer(
    components(us comps),
    trend + season_year, # plot trend + seasonlity
    color = '#D55E00'
  labs(
    v = "Persons (thousands)",
   title = "Total employment in US retail"
```

Decomposition | STL Trend + Season

Decomposition | STL

```
# STL decomposition
us_retail_employment %>% # dataset
model(stl = STL(Employed)) %>% # model (STL)
components() %>% # components of decomposition
autoplot() # plot
```

Decomposition | STL

Decomposition | STL by Month

```
# Monthly
us_retail_employment %>% # dataset
model(stl = STL(Employed)) %>% # model (STL)
components() %>% # components of decomposition
gg_subseries(season_year) # broken down by month
```

Decomposition | STL by Month

Decomposition | STL with Seasonal Adjustment

```
# STL Season Adjustment
us_retail_employment %>%
  autoplot(Employed, color = 'gray') +
  autolayer(
    components(us comps),
    season adjust, # plot season adjustment
    color = '#D55E00'
  ) +
  labs(
    v = "Persons (thousands)",
   title = "Total employment in US retail"
```

Decomposition | STL with Seasonal Adjustment

Decomposition | STL with Seasonal Adjustment

- Adjustments are based on past values to adjust current value
- Adjusted series reflect trend and remainders (error)

Decomposition | STL Parameters

- trend(window = nextodd(ceiling((1.5*period) /
 (1-(1.5/s.window))): controls smoothness of trend
 (should be odd)
- season(window = 13): controls variation of season
- season(window = "periodic"): "infinite" window
- robust: boolean (TRUE for robust estimates)

Decomposition | X Methods

X Methods

Decomposition | X Methods

- ABS uses X-12-ARIMA
- US Census Bureau uses X-13ARIMA-SEATS
- Statistics Canada uses X-12-ARIMA
- ONS (UK) uses X-12-ARIMA
- EuroStat use X-13ARIMA-SEATS

Decomposition | x-11

X-11

Advantages

- Relatively robust to outliers
- Completely automated choices for trend and seasonal changes
- Very widely tested on economic data over a long period of time.

Decomposition | X-11

X-11

Advantages

- Relatively robust to outliers
- Completely automated choices for trend and seasonal changes
- Very widely tested on economic data over a long period of time.

Disadvantages

- No prediction/confidence intervals
- Ad hoc method with no underlying model
- Only developed for quarterly and monthly data

Decomposition | X-13ARIMA-SEATS

X-13ARIMA-SEATS

- Mainly developed for economic data
- Trend and seasonal data only
- Allows seasons to change across time
- Allows adjustments for explanatory variables
- Outliers can be omitted
- Missing values can be estimated and replaced
- Holidays can be estimated

Decomposition | X-13ARIMA-SEATS

```
# X-13ARIMA-SEATS
us_retail_employment %>% # data
model(X_13ARIMA_SEATS(Employed)) %>% # X13 decomposition
components() %>% # get components from decomposition
autoplot() # plot decomposition
```

Decomposition | X-13ARIMA-SEATS

Decomposition Which is better?

```
# X-13ARTMA-SEATS
us_retail_employment %>%
 model(X 13ARIMA SEATS(Employed)) %>%
 report()
Series: Employed
Model: X-13ARTMA-SEATS
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
Easter[15]
                0.0008935 0.0002984 2.994 0.00275 **
               -0.0085821 0.0019577 -4.384 1.17e-05 ***
LS2001.Apr
LS2008 Nov
               -0.0079473 0.0019389 -4.099 4.15e-05 ***
AR-Nonseasonal-01 0.9284818 0.0344282 26.969 < 2e-16 ***
MA-Nonseasonal-01 0.7478066 0.0600573 12.452 < 2e-16 ***
                 0.5187352 0.0476718 10.881 < 2e-16 ***
MA-Seasonal-12
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
SEATS adj. ARIMA: (1 1 1)(0 1 1) Obs.: 357 Transform: log
AICc: 3422, BIC: 3449 QS (no seasonality in final):
Box-Liung (no autocorr.): 18.26 Shapiro (normality): 0.983 ***
```