

United International University (UIU)

Dept. of Computer Science and Engineering (CSE)

Final Exam Year: 2021

Trimester: Fall

Course: CSE 2215 Data Structure and Algorithms I

Total Marks: 40, Time: 2 hours, Upload & Download Time: 15 min

(Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules)

There are FOUR questions. Answer all of them. Figures in the right-hand margin indicate full marks.

1.	a) Draw a binary tree using the data given below, where x, y, z, p, r, t, u and v are nodes of the tree.	[1]
	y p z x r t u v Here, x=last two digits of your student id+2, y=x+3, z=x+y, p=y+z, r=x+2, t=p+r, u=800, v=900	
	b) Traverse the binary tree of Ques. 1(a) using the preoder, inorder, and postorder techniques. Also find the height of the tree.	[4]
	c) Draw a binary tree from the following Inorder and Postorder sequences Inorder: v p y r x t z u Postorder: v p r y t u z x Here, x=last two digits of your student id+2, y=x+3, z=x+y, p=y+z, r=x+2, t=p+r, u=800, v=900	[2]
	d) Show the simulation of level order technique using a QUEUE for the tree in Ques. 1(a)	[3]
2.	a) Show the status of a QUEUE and a Priority QUEUE (Data in Descending Order) for the following operations, where both QUEUEs are implemented by an array of size, $m=3$. Here, Enqueue and Dequeue mean insert and delete respectively, and $x=last$ two digits of your student $id+2$, $y=x+3$, $z=x+y$ and $p=y+z$.	[3]
	Enqueue(z), Enqueue(p), Dequeue(), Enqueue(y), Dequeue()	
	b) Draw a complete binary tree and then build the min-heap tree from the following data, where $x=$ last two digits of your student id+100, $y=x+30$, and $z=x+y$. Finally, sort the data in descending order using the heapsort algorithm. 10 x 20 8 y z	[5]
	c) Two disjoint sets $\{y, p, z, x\}$ and $\{r, t\}$ are given, where maximum one of a set is the representative of that set. Determine UNION(Find(x), Find(t)). How can you check x and y are in the same set using Find operation? Here, x=last two digits of your student id+2, y=x+3, z=x+y, p=y+z, r=x+2, t=900.	[2]
3.	a) Draw a directed acyclic graph using the vertices y , p , z , x , r and u , where x =last two digits of your student id+2, y = x +3, z = x + y , p = y + z , r = x +2, u = p + r	[1]
	b) Construct an Adjacency Marix and an Adjacency List for the graph in Ques. 3(a).	[3]
	c) Write an algorithm for Topological Sorting. Show the simulation of your algorithm using the graph in Ques. 3(a).	[4]
	d) Draw a sparse and a dense graph using the vertices y, p, z, x, and r, where x=last two digits of	[2]

your student id+2, y=x+3, z=x+y, p=y+z, r=x+2

- 4. a) Draw an undirected graph using the vertices y, p, z, x and r, where x=last two digits of your student id+2, y=x+3, z=x+y, p=y+z, r=x+2. Also find the Depth First Search (DFS) sequence from the graph considering x is the starting vertex.
 - b) Construct a binary search tree (BST) using the nodes y, p, z, x, r and t, where x=last two digits of your student id+2, y=x+3, z=x+y, p=y+z, r=x+2, t=900. Show the insertion and deletion of p+r and p, respectively in/from the BST.
 - c) Find the space complexity of a undirected graph using Adjacency Matrix and List. [2]
 - d) Convert the infix expression a+(c-b)/d into postfix. Evaluate the postfix expression for a= [3] last digit of your student id+2, b=a+1, c=a+b and d=1 using a STACK.