CSC 480/580 Principles of Machine Learning

02 Limits of Learning

Chicheng Zhang

Department of Computer Science

Motivation

• Supervised learning is a general & useful framework

Understand when supervised learning will and will not work

Optimal classification with known D

test

• Suppose:

- I(A) = 1 if A happens, and = 0 otherwise
- Binary classification, 0-1 loss $\ell(y, \hat{y}) = I(y \neq \hat{y})$
- *D* is *known*: for every (x, y), $P_D(x, y)$ is known to us

ullet What is the f that has the smallest $generalization\ error$

$$L_D(f) = E_{(x,y)\sim D}I(y \neq f(x))?$$

• Note (alternative expression) : $L_D(f) = P_{(x,y)\sim D} \ (y \neq f(x))$

Generalization error: $L_D(f) = E_{(x,y)\sim D}I(y \neq f(x))$

Simple case: discrete domain ${\mathcal X}$

$P_D(x,y)$	x = 1	x = 2	x = 3		
y = -1	0.2	0.2	0.15		
y = +1	0.1	0.3	0.05		

Which classifier is better?

•
$$f_1(1) = -1$$
, $f_1(2) = -1$, $f_1(3) = -1$ \Rightarrow $L_D(f_1) = 0.1 + 0.3 + 0.05$

•
$$f_2(1) = -1$$
, $f_2(2) = +1$, $f_2(3) = -1$ \Rightarrow $L_D(f_2) = 0.1 + 0.2 + 0.05$

Is this the best classifier? Why?

- For any x, should choose y that has higher value of $P_D(x, y)$
- $f^*(1) = -1, f^*(2) = +1, f^*(3) = -1$

Bayes optimal classifier

Theorem f_{BO} achieves the smallest generalization error among all classifiers.

$$f_{BO}(x) = \arg\max_{y \in \mathcal{Y}} P_D(X = x, Y = y) = \arg\max_{y \in \mathcal{Y}} P_D(Y = y \mid X = x), \forall x \in \mathcal{X}$$

Example Iris dataset classification:

Iris Setosa

Iris Versicolor

Iris Virginica

Proof of theorem

Step 1 consider accuracy,

- $A_D(f) = 1 L_D(f) = P_D(Y = f(X)) = \sum_{x} P_D(X = x, Y = f(x))$
- Suffices to show f_{BO} has the highest accuracy

Step 2 comparison,

$$A_{D}(f_{BO}) - A_{D}(f) = \sum_{x} P_{D}(X = x, Y = f_{BO}(x)) - P_{D}(X = x, Y = f(x)) \ge 0$$

$$f_{BO}(x) = \arg\max_{y \in \mathcal{Y}} P_{D}(X = x, Y = y)$$

Remarks

- Similar reasoning can be used to prove the theorem with continuous domain $\mathcal X$ (sum -> integral)
- This just shows deterministic classifier, can be extended to show BO is 0-1 optimal for all classifiers

Bayes error rate: alternative form

$$L_{D}(f_{BD}) = P_{D}(Y \neq f_{BD}(X))$$

$$= \sum_{x} P_{D}(Y \neq f_{BD}(x) \mid X = x) P_{D}(X = x)$$

$$= \sum_{x} (1 - P_{D}(Y = f_{BD}(x) \mid X = x)) P_{D}(X = x)$$

$$= \sum_{x} \left(1 - \max_{y} P_{D}(Y = y \mid X = x)\right) P_{D}(X = x)$$

$$= E\left[1 - \max_{y} P_{D}(Y = y \mid X)\right]$$

- Special case: binary classification
 - $L_D(f_{BD}) = \sum_{x} P_D(Y \neq f_{BD}(x), X = x)$ = $\sum_{x} \min(P_D(Y = +1, X = x), P_D(Y = -1, X = x))$

When is the Bayes error rate nonzero?

$$L_D(f_{BO}) = \sum_{x} \min(P_D(Y = +1, X = x), P_D(Y = -1, X = x))$$

- Limited feature representation
- Noise in the training data
 - Feature noise
 - Label noise e.g. typo transcribing reviews
 - Sensor failure
 - Typo in reviews for sentiment classification
- May not have a single "correct" label

Overfitting vs Underfitting

High training error High test error

Low training error Low test error

Low training error High test error

Source: ibm.com

Overfitting vs Underfitting

Q: should I train a shallow or deep decision tree?

• Shallow tree:

Deep tree:

- Underfitting: have the opportunity to learn something but didn't
- Overfitting: pay too much attention to idiosyncrasies to training data, and do not generalize well
- A model that neither overfits nor underfits is expected to do best

Unbiased model evaluation using test data

- Your boss says: I will allow your recommendation system to run on our website only if the error is <= 10%!
- How to prove it?
- Idea: reserve some data as test data for evaluating predictors

- $L_{\text{test}}(\hat{f}) = \frac{1}{|S_{\text{test}}|} \sum_{(x,y) \in S_{\text{test}}} I(y \neq \hat{f}(x))$
- Law of large numbers $\Rightarrow L_{\text{test}}(\hat{f}) \rightarrow L_D(\hat{f})$

Law of large numbers (LLN)

- Suppose v_1,\ldots,v_n are IID (independent & identically distributed) random variables, the sample average $\bar{v}=\frac{1}{n}\sum_{i=1}^n v_i$ converges to $\mathrm{E}[v_1]$ as $n\to\infty$
- Useful in e.g. election poll
- Foundation of statistics

Training: 800 examples

Can we apply LLN to conclude that

• $L_{\text{train}}(\hat{f}) = \frac{1}{|S_{\text{train}}|} \sum_{(x,y) \in S_{\text{train}}} I(y \neq \hat{f}(x)) \to L_D(\hat{f}) \text{ as } |S_{\text{train}}| \to \infty$?

Test: 200 examples

predictor \hat{f}

Never touch your test data!

- More precisely: test data should only be used <u>once</u>, only for final evaluation
- If \hat{f} depends on test examples, $L_{\text{test}}(\hat{f})$ may no longer estimate $L_D(\hat{f})$ accurately
- Be mindful about indirect dependence as well:
 - adaptive data analysis choose a new learning algorithm, after seeing that the previous algorithm produces a high-test-error model

Case Study: MNIST Dataset

All publications use standard train/test split

Hundreds of publications compare to each other

0	0	0	0	0	O	0	0	0	٥	0	0	0	0	0
1	l	1	1	1	/	/	(1	1	1	1	1	1	/
2	J	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	٤	Ч	4	4	4	4	#	4	4	4	4	ч	4
5	5	5	5	5	\$	5	5	5	5	5	5	5	5	5
6	G	6	6	6	P	6	6	P	6	6	6	6	6	6
Ŧ	7	7	7	7	7	7	7	7	77	7	7	7	7	7
8	\mathcal{E}	8	8	8	8	8	8	8	8	8	8	8	8	8
9	૧	9	9	9	9	9	9	٩	Ф	9	9	9	9	9

Type \$	Classifier \$	Distortion +	Preprocessing +	Error rate \$
Linear classifier	Pairwise linear classifier	None	Deskewing	7.6 ^[10]
Decision stream with Extremely randomized trees	Single model (depth > 400 levels)	None	None	2.7[28]
K-Nearest Neighbors	K-NN with rigid transformations	None	None	0.96 ^[29]
K-Nearest Neighbors	K-NN with non-linear deformation (P2DHMDM)	None	Shiftable edges	0.52[30]
Boosted Stumps	Product of stumps on Haar features	None	Haar features	0.87[31]
Non-linear classifier	40 PCA + quadratic classifier	None	None	3.3[10]
Random Forest	Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC) ^[32]	None	Simple statistical pixel importance	2.8 ^[33]
Support-vector machine (SVM)	Virtual SVM, deg-9 poly, 2-pixel jittered	None	Deskewing	0.56 ^[34]
Deep neural network (DNN)	2-layer 784-800-10	None	None	1.6 ^[35]
Deep neural network	2-layer 784-800-10	Elastic distortions	None	0.7 ^[35]
Deep neural network	6-layer 784-2500-2000-1500-1000-500-10	Elastic distortions	None	0.35[36]
Convolutional neural network (CNN)	6-layer 784-40-80-500-1000-2000-10	None	Expansion of the training data	0.31[37]
Convolutional neural network	6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.27 ^[38]
Convolutional neural network (CNN)	13-layer 64-128(5x)-256(3x)-512-2048-256-256-10	None	None	0.25 ^[22]
Convolutional neural network	Committee of 35 CNNs, 1-20-P-40-P-150-10	Elastic distortions	Width normalizations	0.23 ^[17]
Convolutional neural network	Committee of 5 CNNs, 6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.21[24][25]
Random Multimodel Deep Learning (RMDL)	10 NN-10 RNN - 10 CNN	None	None	0.18 ^[27]
Convolutional neural network	Committee of 20 CNNS with Squeeze-and-Excitation Networks[39]	None	Data augmentation	0.17[40]
Convolutional neural network	Ensemble of 3 CNNs with varying kernel sizes	None	Data augmentation consisting of rotation and translation	0.09 ^[41]

What's the problem with this?

Supervised learning setup

Generalization error: $L_D(\hat{f}) = E_{(x,y)\sim D} \ell(y,\hat{f}(x))$

Terminologies

- Model: the predictor \hat{f}
 - Often from a model class \mathcal{F} ,
 - e.g. $\mathcal{F} = \{\text{decision trees}\}, \{\text{linear classifiers}\}$

- Parameter: specifics of \hat{f}
 - E.g. for decision tree \hat{f} : tree structure, questions in nodes, labels in leaves
 - For linear classifier: linear coefficients

- Hyperparameter: specifics of learning algorithm ${\mathcal A}$
 - E.g. in DecisionTreeTrain, constrain to output tree of depth $\leq h$
 - Tuning hyperparameters often results in {over, under}-fitting

Hyperparameter tuning using validation set

• E.g. in decision tree training, how to choose tree depth $h \in \{1, ..., H\}$?

- For each hyperparameter $h \in \{1, ..., H\}$:
 - Train ${\rm Tree}_h$ using ${\rm DecisionTreeTrain}$ by constraining the tree depth to be h
- Choose one from Tree₁, ..., Tree_H

• Idea 1: choose Tree_h that minimizes training error

• Idea 2: choose Tree_h that minimizes test error

• Idea 3: further split training set to training set and validation set (development/hold-out set), (1) train Tree_h 's using the (new) training set; (2) choose Tree_h that minimizes validation error

Training: 700 examples

Val:100 examples

Test: 200 examples

Hyperparameter tuning using validation set

• E.g. in decision tree training, how to choose tree depth $h \in \{1, ..., H\}$?

• Law of large numbers => Validation error closely approximates generalization error (& test error)

Overfitting vs Underfitting

Underfitting: performs poorly on both training and validation...

...overfitting: performs well on training but not on validation

Model Selection / Assessment

Partition your data into Train-Validation-Test sets

- Ideally, Test set is kept in a "vault" and only peek at it once model is selected
- Training-Validation-Test splits work if you have enough data ("data rich")
- As a general rule 50% Training, 25% Validation, 25% Test (very loose rule)

Source: Hastie, Tibishrani, Freidman

Hyperparameter tuning: cross-validation

Main idea: reuse data by splitting the training / validation data in multiple ways

N-fold Cross Validation: Partition training data into N "chunks" and for each run select one chunk to be validation data

For each run, fit to training data (N-1 chunks) and measure accuracy on validation set. Average model error across all runs.

Drawback Need a lot of training data to partition.

Cross-validation: formal description

- For hyperparameter $h \in \{1, ..., H\}$
 - For $k \in \{1, ..., K\}$
 - train \hat{f}_k^h with $S \setminus \text{fold}_k$
 - measure error rate $e_{h,k}$ of \hat{f}_k^h on fold_k
 - Compute the average error of the above: $\widehat{\text{err}}_h = \frac{1}{K} \sum_{k=1}^K e_{h,k}$
- Choose $\hat{h} = \arg\min_{h} \widehat{\operatorname{err}}_{h}$
- Train \hat{f} using S (all the training points) with hyperparameter \hat{h}

• k = |S|: leave one out cross validation (LOOCV)

Inductive bias

- What classification problem is class A vs. class B?
 - Birds vs. Non-birds
 - Flying animals vs. non-flying animals

- <u>Inductive bias</u>: in the absence of data that narrow down the target concept, what type of solutions are we likely to prefer?
- What is the inductive bias of learning shallow decision trees?

An example real-world machine learning pipeline

- Any step can go wrong
 - E.g. data collection, data representation

- Debugging pipeline: run *oracle experiments*
 - Assuming all lower-level tasks are perfectly done, is this step achieving what we want?
- General suggestions:
 - Build the stupidest thing that could possibly work
 - Decide whether / where to fix it

	real world	increase		
1	goal	revenue		
		better ad		
2	real world			
	mechanism	display		
3	learning	classify		
)	problem	click-through		
4	1 . 11	interaction w/		
	data collection	current system		
5	collected data	query, ad, click		
6	data	1 2 . 1. 1		
	representation	bow ² , \pm click		
_	select model	decision trees,		
7	family	depth 20		
0	select training	subset from		
8	data	april'16		
	train model &	final decision		
9	hyperparams	tree		
40	predict on test	subset from		
10	data	may'16		
11	1t	zero/one loss		
	evaluate error	for \pm click		
		(hope we		
12	deploy!	achieve our		
		goal)		

Next lecture (1/23)

• Geometric view of supervised learning; nearest neighbor methods

Assigned reading: CIML Chap. 3 (Geometry and Nearest Neighbors)

• HW1

Simple case: discrete domain ${\mathcal X}$

$P_D(x,y)$	x = 1	x = 2	x = 3
y = -1	0.2	0.2	0.15
y = +1	0.1	0.3	0.05

Which classifier is better?

•
$$f_1(1) = -1$$
, $f_1(2) = -1$, $f_1(3) = -1$ \Rightarrow $L_D(f_1) = 0.1 + 0.3 + 0.05$

•
$$f_2(1) = -1$$
, $f_2(2) = +1$, $f_2(3) = -1$ \Rightarrow $L_D(f_2) = 0.1 + 0.2 + 0.05$

- What is the best classifier?
- For any x, should choose y that has higher value of $P_D(x,y)$

•
$$f^*(1) = -1, f^*(2) = +1, f^*(3) = -1$$

Bayes optimal classifier

- $f_{BO}(x) = \arg\max_{y \in \mathcal{Y}} P_D(X = x, Y = y) = \arg\max_{y \in \mathcal{Y}} P_D(Y = y \mid X = x), \forall x \in \mathcal{X}$
- Theorem: f_{BO} achieves the smallest error rate among all functions.
- Bayes error rate: $L_D(f_{BO})$

Proof of theorem

- Step 1: consider accuracy:
 - $A_D(f) = 1 L_D(f) = P_D(Y = f(X)) = \sum_{x} P_D(X = x, Y = f(x))$
 - Suffices to show f_{BO} has the highest accuracy
- Step 2: comparison:

$$A_{D}(f_{BO}) - A_{D}(f) = \sum_{x} P_{D}(X = x, Y = f_{BO}(x)) - P_{D}(X = x, Y = f(x)) \ge 0$$

$$f_{BO}(x) = \arg\max_{y \in \mathcal{Y}} P_{D}(X = x, Y = y)$$

• Remark: similar reasoning can be used to prove the theorem with continuous domain \mathcal{X} (sum -> integral)

When is the Bayes error rate nonzero?

•
$$L_D(f_{BO}) = \sum_{x} \min(P_D(Y = +1, X = x), P_D(Y = -1, X = x))$$

• Limited feature representation

- feature noise
 - Sensor failure
 - Typo in reviews for sentiment classification
- label noise
 - Crowdsourcing settings

Class Participation

- Asking review questions on Piazza (3pts)
 - Every week, I will ask two of you to post questions (related to the past week's material) on Piazza
 - 3 questions per student
- Other in-class / Piazza discussions (e.g. asking/answering in-class questions; Piazza Q&As)
- Extra credit: Catching errors in the CIML book
 - Post on Piazza; we'll discuss and confirm together, and hopefully send these back to the author
 - 1pt for every error found