Introduktion til numerisk analyse

Blok 1, 2020

Date: 2.09.2020

Test eksamen I

Ansvarlige: M. Bladt og S. Talebi

Opgave 1. For hver af de følgende funktioner, foreslå en metode til beregning af y for små x så vi undgår tab af præcision:

(a)
$$y = x^2 - \sin^2 x$$
 (Ignorer led af orden $o(x^7)$.)

(a)
$$y = x^2 - \sin^2 x$$
 (Ignorer led af orden $o(x^7)$.)
(b) $y = \frac{x^2 - \sin^2 x}{2 - \sqrt{x + 4}}$ (Ignorer led af orden $o(x^6)$.)
(c) $y = 2x + e^x - e^{3x}$ (Ignorer led af orden $o(x^3)$.)

(c)
$$y = 2x + e^x - e^{3x}$$
 (Ignorer led af orden $o(x^3)$.)

(d)
$$y = \sqrt{1 + \tan x} - \sqrt{1 + \sin x}$$
 (Ignorer led af orden $o(x^5)$.)

Opgave 2. Betragt differensligningen $x_{n+3} - 2x_{n+1} - x_n = 0$.

- (a) Hvad er dens karateristiske polynomium?
- (b) Hvilken af følgende muligheder er løsning? Forklar hvorfor.
 - (i) $x_n = \alpha(-1)^n$ for et eller andet α .
 - (ii) $x_n = \beta$ for et eller andet β .
 - (iii) $x_n = \gamma \left(\frac{1}{2}\right)^n$ for et eller andet γ .
- (c) Find alle andre generiske løsninger.
- (d) Er differensligningen stabil? Forklar.

Opgave 3. Plastikkonstanten ρ er defineret som den entydig bestemte reelle løsning til

$$x^3 = x + 1$$
.

Beregn plastikkonstanten med 4 decimalers præcision via Newton's metode. Der skal redegøres for detaljerne i udregningen såsom initialpunkt, iterationer, og begrundelse for stopkriteriet.

Opgave 4. Vis at matricen

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$$

er positiv definit, og find Cholesky dekompositionen. Find også Doolittle faktoriseringen.

Opgave 5. Betagt funktionen

$$f(x) = x^{\ln(x)}.$$

Udregn den afledte i punktet x = 5 med h = 0.1 ved brug af

- (a) $f'(5) \approx \phi_1(h) = \frac{f(5+h) f(5-h)}{2h}$;
- (b) Richardson ekstrapolation af $\phi_1(h)$;
- (c) dobbelt Richardson ekstrapolation af $\phi_1(h)$;
- (d) udregn den eksakte differentialkvotient i 5 og sammenlign

Opgave 6. Betragt integralet

$$\int_{1}^{2^{m}} \frac{1}{y} dy.$$

(a) Vis, at dette integral kan udregnes via Trapez formlen med en fejl på højst

$$\frac{(2^m-1)h^2}{12}$$

for en given step længde på h.

- (b) For en præcision på 4 decimaler, find antal inddelinger som garanterer denne præcision (som funktion af m).
- (c) Ved at udnytte, at integralet er lig med logaritmefunktionen, bedes I designe en alternativ metode til udregning af dette via Trapez formlen således at fejlen er domineret af

$$\frac{mh^2}{12}$$

(d) For en præcision på 4 decimaler, find antal inddelinger som garanterer denne præcision med denne forbedring.