## Aula 29 - Teoria do Aprendizado (Parte I)

João B. Florindo

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas - Brasil jbflorindo@ime.unicamp.br

## Outline

Viés/Variância

2 Preliminares Matemáticos







- Erro de generalização: erro esperado do modelo quando aplicado a exemplos que não foram vistos no conjunto de treino.
- Os modelos à esquerda e à direita possuem ambos um alto erro de generalização, mas as causas são totalmente diferentes.









- Erro de generalização: erro esperado do modelo quando aplicado a exemplos que não foram vistos no conjunto de treino.
- Os modelos à esquerda e à direita possuem ambos um alto erro de generalização, mas as causas são totalmente diferentes.

- O primeiro sofre de um viés alto (underfit).
- Viés é o erro de generalização esperado quando temos um conjunto de treino muito grande (teoricamente infinito).
- Já o segundo tem alta variância.
- Alto risco de se ajustar a padrões específicos de um conjunto pequeno de treino, mas que não expressam a relação ampla entre x e y.
- *Trade-off*: frequentemente, modelo muito "simples" (poucos parâmetros) tem viés alto e variância baixa.
- Já os muito complexos (muitos parâmetros) têm variância alta e viés baixo.



- O primeiro sofre de um viés alto (underfit).
- Viés é o erro de generalização esperado quando temos um conjunto de treino muito grande (teoricamente infinito).
- Já o segundo tem alta variância.
- Alto risco de se ajustar a padrões específicos de um conjunto pequeno de treino, mas que não expressam a relação ampla entre x e y.
- *Trade-off*: frequentemente, modelo muito "simples" (poucos parâmetros) tem viés alto e variância baixa.
- Já os muito complexos (muitos parâmetros) têm variância alta e viés baixo.



- O primeiro sofre de um viés alto (underfit).
- Viés é o erro de generalização esperado quando temos um conjunto de treino muito grande (teoricamente infinito).
- Já o segundo tem alta variância.
- Alto risco de se ajustar a padrões específicos de um conjunto pequeno de treino, mas que não expressam a relação ampla entre x e y.
- *Trade-off*: frequentemente, modelo muito "simples" (poucos parâmetros) tem viés alto e variância baixa.
- Já os muito complexos (muitos parâmetros) têm variância alta e viés baixo.



- O primeiro sofre de um viés alto (underfit).
- Viés é o erro de generalização esperado quando temos um conjunto de treino muito grande (teoricamente infinito).
- Já o segundo tem alta variância.
- Alto risco de se ajustar a padrões específicos de um conjunto pequeno de treino, mas que não expressam a relação ampla entre x e y.
- *Trade-off*: frequentemente, modelo muito "simples" (poucos parâmetros) tem viés alto e variância baixa.
- Já os muito complexos (muitos parâmetros) têm variância alta e viés baixo.



- O primeiro sofre de um viés alto (underfit).
- Viés é o erro de generalização esperado quando temos um conjunto de treino muito grande (teoricamente infinito).
- Já o segundo tem alta variância.
- Alto risco de se ajustar a padrões específicos de um conjunto pequeno de treino, mas que não expressam a relação ampla entre x e y.
- *Trade-off*: frequentemente, modelo muito "simples" (poucos parâmetros) tem viés alto e variância baixa.
- Já os muito complexos (muitos parâmetros) têm variância alta e viés baixo.



- O primeiro sofre de um viés alto (underfit).
- Viés é o erro de generalização esperado quando temos um conjunto de treino muito grande (teoricamente infinito).
- Já o segundo tem alta variância.
- Alto risco de se ajustar a padrões específicos de um conjunto pequeno de treino, mas que não expressam a relação ampla entre x e y.
- *Trade-off*: frequentemente, modelo muito "simples" (poucos parâmetros) tem viés alto e variância baixa.
- Já os muito complexos (muitos parâmetros) têm variância alta e viés baixo.



## Outline

Viés/Variância

Preliminares Matemáticos

Limitante da união (Desigualdade de Boole)

**Lema.** Sejam  $A_1, A_2, \dots, A_k$  eventos distintos (podendo não ser independentes). Então:

$$P(A_1 \cup \cdots \cup A_k) \leq P(A_1) + \cdots + P(A_k).$$

Desigualdade de Hoeffding (limitante de Chernoff)

**Lema.** Sejam  $Z_1, \dots, Z_n$  n variáveis aleatórias independentes e identicamente distribuídas (iid) amostradas a partir de uma distribuição Bernoulli $(\phi)$ , i.e.,  $P(Z_i=1)=\phi$  e  $P(Z_i=0)=1-\phi$ . Seja  $\hat{\phi}=(1/n)\sum_{i=1}^n Z_i$  a média destas variáveis aleatórias e seja  $\gamma>0$  fixado. Então

$$P(|\phi - \hat{\phi}| > \gamma) \le 2 \exp(-2\gamma^2 n).$$



- O segundo lema diz que se tomarmos  $\hat{\phi}$  (média de n variáveis aleatórias Bernoulli $(\phi)$ ) como estimador de  $\phi$ , então a probabilidade de estarmos distantes do valor verdadeiro é pequena se n for grande.
- Ou ainda: se temos uma moeda enviesada com probabilidade  $\phi$  para "cara" e lançamos n vezes, então a fração de "caras" vai ser uma boa estimativa para  $\phi$  com alta probabilidade se n for grande.
- Estes dois lemas serão base para vários resultados aqui!

- O segundo lema diz que se tomarmos  $\hat{\phi}$  (média de n variáveis aleatórias Bernoulli( $\phi$ )) como estimador de  $\phi$ , então a probabilidade de estarmos distantes do valor verdadeiro é pequena se n for grande.
- Ou ainda: se temos uma moeda enviesada com probabilidade  $\phi$  para "cara" e lançamos n vezes, então a fração de "caras" vai ser uma boa estimativa para  $\phi$  com alta probabilidade se n for grande.
- Estes dois lemas serão base para vários resultados aqui!

- O segundo lema diz que se tomarmos  $\hat{\phi}$  (média de n variáveis aleatórias Bernoulli $(\phi)$ ) como estimador de  $\phi$ , então a probabilidade de estarmos distantes do valor verdadeiro é pequena se n for grande.
- Ou ainda: se temos uma moeda enviesada com probabilidade  $\phi$  para "cara" e lançamos n vezes, então a fração de "caras" vai ser uma boa estimativa para  $\phi$  com alta probabilidade se n for grande.
- Estes dois lemas serão base para vários resultados aqui!

- Vamos nos restringir à classificação binária  $y \in \{0, 1\}$ .
- Mas a teoria se generaliza.
- Conjunto de treinamento

$$S = \{(x^{(i)}, y^{(i)}), i = 1, \dots, n\}$$

- Cada exemplo  $(x^{(i)}, y^{(i)})$  obtido iid de uma distribuição  $\mathcal{D}$ .
- Definimos o erro de treinamento (risco empírico ou erro empírico na teoria do aprendizado) para a hipótese h por

$$\hat{\varepsilon}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\}.$$



- Vamos nos restringir à classificação binária  $y \in \{0, 1\}$ .
- Mas a teoria se generaliza.
- Conjunto de treinamento

$$S = \{(x^{(i)}, y^{(i)}), i = 1, \dots, n\}.$$

- Cada exemplo  $(x^{(i)}, y^{(i)})$  obtido iid de uma distribuição  $\mathcal{D}$ .
- Definimos o erro de treinamento (risco empírico ou erro empírico na teoria do aprendizado) para a hipótese h por

$$\hat{\varepsilon}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\}.$$



- Vamos nos restringir à classificação binária  $y \in \{0, 1\}$ .
- Mas a teoria se generaliza.
- Conjunto de treinamento

$$S = \{(x^{(i)}, y^{(i)}), i = 1, \dots, n\}.$$

- Cada exemplo  $(x^{(i)}, y^{(i)})$  obtido iid de uma distribuição  $\mathcal{D}$ .
- Definimos o erro de treinamento (risco empírico ou erro empírico na teoria do aprendizado) para a hipótese h por

$$\hat{\varepsilon}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\}.$$



- Vamos nos restringir à classificação binária  $y \in \{0, 1\}$ .
- Mas a teoria se generaliza.
- Conjunto de treinamento

$$S = \{(x^{(i)}, y^{(i)}), i = 1, \dots, n\}.$$

- Cada exemplo  $(x^{(i)}, y^{(i)})$  obtido iid de uma distribuição  $\mathcal{D}$ .
- Definimos o erro de treinamento (**risco empírico** ou **erro empírico** na teoria do aprendizado) para a hipótese *h* por

$$\hat{\varepsilon}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\}.$$



- Vamos nos restringir à classificação binária  $y \in \{0, 1\}$ .
- Mas a teoria se generaliza.
- Conjunto de treinamento

$$S = \{(x^{(i)}, y^{(i)}), i = 1, \dots, n\}.$$

- Cada exemplo  $(x^{(i)}, y^{(i)})$  obtido iid de uma distribuição  $\mathcal{D}$ .
- Definimos o erro de treinamento (risco empírico ou erro empírico na teoria do aprendizado) para a hipótese h por

$$\hat{\varepsilon}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\}.$$



• Já o erro de generalização é dado por

$$\varepsilon(h) = P_{(x,y)\sim\mathcal{D}}(h(x) \neq y).$$

 O fato de treino e teste serem obtidos da mesma distribuição D e dos exemplos de treino serem independentes são as mais importantes condições PAC (probably approximately correct). Já o erro de generalização é dado por

$$\varepsilon(h) = P_{(x,y)\sim\mathcal{D}}(h(x) \neq y).$$

• O fato de treino e teste serem obtidos da *mesma* distribuição  $\mathcal{D}$  e dos exemplos de treino serem independentes são as mais importantes condições **PAC** (*probably approximately correct*).

$$h_{\theta}(x) = \mathbb{1}\{\theta^T x \ge 0\}$$

• A abordagem mais "básica" para obter  $\theta$  e na qual focaremos é a minimização do risco empírico (ERM).

Minimizar o erro de treinamento:

$$\hat{ heta} = \operatorname*{argmin}_{ heta} \hat{arepsilon}(h_{ heta})$$

• A hipótese obtida é  $\hat{h} = h_{\hat{\theta}}$ .



$$h_{\theta}(x) = \mathbb{1}\{\theta^T x \ge 0\}$$

.

- A abordagem mais "básica" para obter  $\theta$  e na qual focaremos é a minimização do risco empírico (ERM).
- Minimizar o erro de treinamento:

$$\hat{\theta} = \operatorname*{argmin}_{\theta} \hat{\varepsilon}(h_{\theta})$$

ullet A hipótese obtida é  $\hat{h}=h_{\hat{ heta}}.$ 

$$h_{\theta}(x) = \mathbb{1}\{\theta^T x \ge 0\}$$

.

- A abordagem mais "básica" para obter  $\theta$  e na qual focaremos é a minimização do risco empírico (ERM).
- Minimizar o erro de treinamento:

$$\hat{ heta} = \operatorname*{argmin}_{ heta} \hat{arepsilon}(h_{ heta})$$

ullet A hipótese obtida é  $\hat{h}=h_{\hat{ heta}}.$ 

$$h_{\theta}(x) = \mathbb{1}\{\theta^T x \ge 0\}$$

.

- A abordagem mais "básica" para obter  $\theta$  e na qual focaremos é a minimização do risco empírico (ERM).
- Minimizar o erro de treinamento:

$$\hat{\theta} = \operatorname*{argmin}_{\theta} \hat{\varepsilon}(h_{\theta})$$

• A hipótese obtida é  $\hat{h} = h_{\hat{\theta}}$ .

- Não focamos aqui em hipóteses específicas, mas sim em uma classe de hipóteses  $\mathcal{H}$ .
- Na classificação linear, temos a classe de todos os classificadores com fronteira linear sobre o domínio de entradas X:

$$\mathcal{H} = \{h_{\theta} : h_{\theta}(x) = \mathbb{1}\{\theta^{T} x \geq 0\}, \theta \in \mathbb{R}^{d+1}\}\$$

- Similarmente, teríamos a classe das redes neurais, etc.
- ullet O ERM é feito sobre toda a classe  ${\cal H}$  da qual a hipótese foi retirada:

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{\varepsilon}(h)$$



- Não focamos aqui em hipóteses específicas, mas sim em uma classe de hipóteses  $\mathcal{H}.$
- Na classificação linear, temos a classe de todos os classificadores com fronteira linear sobre o domínio de entradas  $\mathcal{X}$ :

$$\mathcal{H} = \{h_{\theta} : h_{\theta}(x) = \mathbb{1}\{\theta^{T} x \ge 0\}, \theta \in \mathbb{R}^{d+1}\}\$$

- Similarmente, teríamos a classe das redes neurais, etc.
- ullet O ERM é feito sobre toda a classe  ${\cal H}$  da qual a hipótese foi retirada:

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{\varepsilon}(h)$$



- Não focamos aqui em hipóteses específicas, mas sim em uma classe de hipóteses  $\mathcal{H}$ .
- Na classificação linear, temos a classe de todos os classificadores com fronteira linear sobre o domínio de entradas  $\mathcal{X}$ :

$$\mathcal{H} = \{ h_{\theta} : h_{\theta}(x) = \mathbb{1}\{ \theta^{T} x \ge 0 \}, \theta \in \mathbb{R}^{d+1} \}$$

- Similarmente, teríamos a classe das redes neurais, etc.
- ullet O ERM é feito sobre toda a classe  ${\cal H}$  da qual a hipótese foi retirada:

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \, \hat{\varepsilon}(h)$$



- Não focamos aqui em hipóteses específicas, mas sim em uma classe de hipóteses  $\mathcal{H}$ .
- Na classificação linear, temos a classe de todos os classificadores com fronteira linear sobre o domínio de entradas  $\mathcal{X}$ :

$$\mathcal{H} = \{ h_{\theta} : h_{\theta}(x) = \mathbb{1}\{ \theta^{T} x \ge 0 \}, \theta \in \mathbb{R}^{d+1} \}$$

- Similarmente, teríamos a classe das redes neurais, etc.
- ullet O ERM é feito sobre toda a classe  ${\cal H}$  da qual a hipótese foi retirada:

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{\varepsilon}(h).$$

