Global United Technology Service Co., Ltd.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Email: szsale@gtstest.com

Report No.: GTSE10070012401

Page: 1 of 32

FCC REPORT

Application No:	o : GTSE100700124RF	
Applicant:	Shenzhen Dianxuntong Electronics Co., Ltd.	
Address of Applicant:	5-6 floor, D building, Huafong First Technology Park, Sanwei, Baoan, Shenzhen, China	
Equipment Under Test (EUT)	
EUT Name:	wireless 2.4GHz optical mouse	
	DXT-612RF, DXT-616RF, DXT-618RF, DXT-622RF, DXT-628RF,	
Model No.	DXT-635RF, DXT-638RF, DXT-639RF, DXT-660RF, iMouse M20,	
	iMouse M21, iMouse M30, iMouse M31, iMouse M40, iMouse M41	
Trademark:	N/A	
Operation Frequency:	2400MHz to 2483.5MHz	
FCC ID:	YBPDXT-612RF	
Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247:2008	
Date of Receipt:	28 July, 2010	
Date of Test:	29~31 July, 2010	
Date of Issue:	02 August, 2010	
Test Result :	PASS *	

^{*} In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: GTSE10070012401 Page: 2 of 32

2 **Contents**

			Page
1	CC	OVER PAGE	1
2	CC	ONTENTS	2
3		ST SUMMARY	
4	GE	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF E.U.T.	4
	4.3	E.U.T OPERATION MODE	6
	4.4	TEST FACILITY	
	4.5	TEST LOCATION	
	4.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.7	TEST INSTRUMENTS LIST	8
5	TE	ST RESULTS AND MEASUREMENT DATA	9
	5.1	Antenna requirement:	9
	5.2	CONDUCTED PEAK OUTPUT POWER	10
	5.3	20DB OCCUPY BANDWIDTH	11
	5.4	CARRIER FREQUENCIES SEPARATION	14
	5.5	HOPPING CHANNEL NUMBER.	18
	5.6	DWELL TIME	
	5.7	BAND EDGE	
	5.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	5.9	RADIATED EMISSION	
	5.9	11 110000000000000000000000000000000000	
	5.9	2.2 Transmitter emission above IGHz	31

Report No.: GTSE10070012401 Page: 3 of 32

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Passed
Conducted Peak Output Power	15.247 (b)(1)	Passed
20dB Occupied Bandwidth	15.247 (a)(1)	Passed
Carrier Frequencies Separation	15.247 (a)(1)	Passed
Hopping Channel Number	15.247 (a)(1)	Passed
Dwell Time	15.247 (a)(1)	Passed
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List	Passed
Radiated Emission	15.205/15.209	Passed
	15.247(b)(4)&	
RF Exposure Compliance Requirement	TCB Exclusion List	Passed
	(7 July 2002)	

Remark:

Passed: The EUT complies with the essential requirements in the standard.

Failed: The EUT does not comply with the essential requirements in the standard.

Tx: In this whole report Tx (or tx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver.

Report No.: GTSE10070012401

4 of 32 Page:

General Information

4.1 Client Information

Applicant:	Shenzhen Dianxuntong Electronics Co., Ltd.
Address of Applicant:	5-6 floor, D building, Huafong First Technology Park, Sanwei, Baoan, Shenzhen, China
Manufacturer/Factory:	Shenzhen Dianxuntong Electronics Co., Ltd.
Address of Manufacturer/Factory:	5-6 floor, D building, Huafong First Technology Park, Sanwei, Baoan, Shenzhen, China

4.2 General Description of E.U.T.

EUT Name:	wireless 2.4GHz optical mouse
Model No.:	DXT-612RF, DXT-616RF, DXT-618RF, DXT-622RF,
	DXT-628RF, DXT-635RF, DXT-638RF, DXT-639RF,
	DXT-660RF, iMouse M20, iMouse M21, iMouse M30,
	iMouse M31, iMouse M40, iMouse M41
Operation Frequency:	2400MHz~2483.5MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK
Antenna Type:	Integral
Antenna gain:	2dBi
Power supply:	Battery 3V

Remark:

Model no:

DXT-612RF, DXT-616RF, DXT-618RF, DXT-622RF, DXT-628RF, DXT-635RF, DXT-639RF, DXT-660RF, iMouse M20, iMouse M21, iMouse M30, iMouse M31, iMouse M40, iMouse M41 Only the model No. DXT-612RF was tested, since the electrical circuit design, PCB layout, Electrical Parts and figure are identical to the basic model, except the outer decoration.

Report No.: GTSE10070012401 Page: 5 of 32

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Report No.: GTSE10070012401 Page: 6 of 32

4.3 E.U.T Operation mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	63 % RH		
Atmospheric Pressure:	1050 mbar		
Test mode:			
Transmitting mode: Keep the EUT in transmitting mode with modulation.			

Report No.: GTSE10070012401

7 of 32 Page:

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Service Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 600491, July 20, 2010.

4.5 Test Location

All tests were performed at:

Global United Technology Service Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

4.6 Other Information Requested by the Customer

None.

Report No.: GTSE10070012401 Page: 8 of 32

4.7 Test Instruments list

Radia	Radiated Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS201	Mar. 30 2010	Mar. 30 2011	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS202	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Sep. 10 2009	Sep. 10 2010	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS204	Feb 26 2009	Sep. 10 2010	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS205	June 30 2010	June 30 2011	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Coaxial Cable	GTS	N/A	GTS400	Apr. 01 2010	Apr. 01 2011	
8	Coaxial Cable	GTS	N/A	GTS401	Apr. 01 2010	Apr. 01 2011	
9	Coaxial cable	GTS	N/A	GTS402	Apr. 01 2010	Apr. 01 2011	
10	Coaxial Cable	GTS	N/A	GTS407	Apr. 01 2010	Apr. 01 2011	
11	Coaxial Cable	GTS	N/A	GTS408	Apr. 01 2010	Apr. 01 2011	
12	Amplifier(10KHz- 5GHz)	Sonnoma Instrument	305-1052	GTS210	Apr. 01 2010	Apr. 01 2011	
13	Amplifier(2GHz- 20GHz)	HP	8349B	GTS231	Apr. 01 2010	Apr. 01 2011	
14	Power Meter	Rohde & Schwarz	NRVD	GTS234	June 23 2010	June 23 2011	

Report No.: GTSE10070012401

Page: 9 of 32

Test results and Measurement Data 5

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The typical gain of the antenna is 2dBi.

Report No.: GTSE10070012401 Page: 10 of 32

5.2 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Limit:	30 dBm	
Test setup:	Power meter E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test mode:	Non-hopping transmitting with modulation.	
Test results:	Passed	

Measurement Data

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	1.02	30.00	Pass
Middle	0.55	30.00	Pass
Highest	1.45	30.00	Pass

Report No.: GTSE10070012401 Page: 11 of 32

5.3 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=30KHz, VBW=100KHz,detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test mode:	Transmitting mode	
Test results:	Passed	

Measurement Data							
Test channel	Lowest	Middle	Highest				
20dB Occupy	1011	1040	4050				
Bandwidth (KHz)	1044	1048	1052				

Report No.: GTSE10070012401 Page: 12 of 32

Test plot as follows:

Test channel: Lowest

Test channel: Middle

Report No.: GTSE10070012401 Page: 13 of 32

Report No.: GTSE10070012401 Page: 14 of 32

5.4 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.4:2003 and KDB DA00-705
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 4.7 for details
Test mode:	Hopping transmitting with modulation.
Test results:	Passed

Report No.: GTSE10070012401 Page: 15 of 32

Measurement Data			
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result
Lowest	1004	701	Pass
Middle	1004	701	Pass
Highest	1000	701	Pass

Note: According to section 5.4,

Mode	20dB bandwidth (KHz)	Limit (KHz)
Mode	(worse case)	(Carrier Frequencies Separation)
GFSK	1052	701

Report No.: GTSE10070012401 Page: 16 of 32

Test plot as follows:

Report No.: GTSE10070012401 Page: 17 of 32

Report No.: GTSE10070012401 Page: 18 of 32

5.5 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.4:2003 and KDB DA00-705				
Receiver setup:	RBW=100KHz, VBW=300KHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak				
Limit:	Least 75channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 4.7 for details				
Test mode:	Hopping transmitting with modulation.				
Test results:	Passed				

Measurement Data	
Hopping channel numbers	79 channel

Test plot as follows

Report No.: GTSE10070012401 Page: 19 of 32

5.6 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.4:2003 and KDB DA00-705
Receiver setup:	RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test mode:	Hopping transmitting with modulation.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 4.7 for details
Test results:	Passed

Measurement	Measurement Data								
Mode	Packet	Channel	Pulse wide (msec)	Dwell time (sec)	Limit (sec)	Result			
		Low Channel	0.492	0.1574	0.4	Pass			
	DH1	Mid Channel	0.480	0.1536	0.4	Pass			
		High Channel	0.468	0.1498	0.4	Pass			
		Low Channel	1.808	0.2893	0.4	Pass			
GFSK	DH3	Mid Channel	1.736	0.2778	0.4	Pass			
		High Channel	1.736	0.2778	0.4	Pass			
		Low Channel	3.008	0.3209	0.4	Pass			
	DH5	Mid Channel	3.056	0.3260	0.4	Pass			
		High Channel	2.992	0.3191	0.4	Pass			

Dwell time

DH1: Dwell time = Pulse time*(1600/2/79)*31.6S;

DH3: Dwell time = Pulse time*(1600/4/79)*31.6S;

DH5: Dwell time = Pulse time*(1600/6/79)*31.6S;

Report No.: GTSE10070012401 Page: 20 of 32

Center 2.441 GHz

200 µs/

Report No.: GTSE10070012401 Page: 21 of 32

Report No.: GTSE10070012401 Page: 22 of 32

Report No.: GTSE10070012401

Page: 23 of 32

Report No.: GTSE10070012401 Page: 24 of 32

Report No.: GTSE10070012401 Page: 25 of 32

5.7 Band Edge

Tes	t Requirement:	FCC Part15 C Section 15.209 and 15.205					
Tes	t Method:	ANSI C63.4: 20	003				
Tes	t Frequency Range:	2400MHz to 24	83.5MHz				
Tes	t site:	Measurement D	Distance: 3m (Se	emi-Anecho	ic Chambei	r)	
Rec	eiver setup:			1			
		Frequency Detector Above 1GHz Peak		RBW	VBW	Remark	
				1MHz 1MHz	3MHz 10Hz	Peak Value Average Value	
Limi	it·		i eak	TIVITIZ	10112	Average value	
2		Above 1	ICH7	54.0)	Average Value	
				74.0		Peak Value	
	t Procedure:	the ground rotated 360 radiation. b. The EUT wantenna, witower. c. The antennation ground to depress and the measured. for each succase and the meters and degrees to e. The test-reading street in the limit specified B. If the emission the limit specified B. If the emission of the EUT have 10dB peak or aversheet. g. The radiation	at a 3 meter ser degrees to determine the maind vertical polar ement. Uspected emissionen the rotable tablifind the maximulative system when the and width with Maion level of the secified, then test would be report	mi-anechoice mi-anechoice ermine the property away from a control on the total of the control on the EUT was tuned as set to Perform the could be c	the interference of the interference of a varial meter to folge of the fiethe antennation heights field from 0 decays and the meter of the end	he highest ence-receiving able-height antenna ur meters above the able trength. Both a are set to make ged to its worst rom 1 meter to 4 egrees to 360 Function and a 10dB lower than and the peak values essions that did not using peak, quasi- ported in a data Y, Z axis eport. enna Tower Antenna	
Tes	t Instruments:	Refer to section	4.7 for details				
	t mode:		ansmitting with r	nodulation.			
Tes	t results:	Passed					

Report No.: GTSE10070012401 Page: 26 of 32

Test mode:	Trans	mitting	Test chann	nel: Lov	vest	Remark:	Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2390	6.28	32.24	39.03	59.25	58.74	74	-15.26	Vertical
2400	6.34	32.25	38.87	58.41	58.13	74	-15.87	Vertical
2390	6.28	32.24	39.03	57.14	56.63	74	-17.37	Horizontal
2400	6.34	32.25	38.87	56.24	55.96	74	-18.04	Horizontal
Test mode:	Trans	mitting	Test chann	nel: Lov	vest	Remark:	Ave	rage
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2390	6.28	32.24	39.03	47.50	46.99	54	-7.01	Vertical
2400	6.34	32.25	38.87	46.10	45.82	54	-8.18	Vertical
2390	6.28	32.24	39.03	45.04	44.53	54	-9.47	Horizontal
2400	6.34	32.25	38.87	43.27	42.99	54	-11.01	Horizontal
						.		Honzontai
				191-1		<u> </u>	1 1101	Honzontar
Test mode:		mitting	Test chann	l	hest	Remark:	Pea	
Test mode:				l				
Test mode: Frequency (MHz)				l				
Frequency	Trans	mitting Antenna Factor	Test chann Preamp Factor	nel: Hig Read Level	hest Level	Remark:	Pea Over Limit	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	hest Level (dBuV/m)	Remark: Limit Line (dBuV/m)	Over Limit (dB)	k polarization
Frequency (MHz) 2483.5	Cable Loss (dB)	Antenna Factor (dB/m) 32.29	Preamp Factor (dB) 39.53	Read Level (dBuV) 59.22	Level (dBuV/m) 58.2	Remark: Limit Line (dBuV/m) 74	Over Limit (dB) -15.8	k polarization Vertical
Frequency (MHz) 2483.5 2500	Cable Loss (dB) 6.22 5.76	Antenna Factor (dB/m) 32.29 32.30	Preamp Factor (dB) 39.53 39.15	Read Level (dBuV) 59.22 61.65	Level (dBuV/m) 58.2 60.56	Remark: Limit Line (dBuV/m) 74 74	Over Limit (dB) -15.8	polarization Vertical Vertical
Frequency (MHz) 2483.5 2500 2483.5	Cable Loss (dB) 6.22 5.76 6.22	Antenna Factor (dB/m) 32.29 32.30 32.29	Preamp Factor (dB) 39.53 39.15 39.53	Read Level (dBuV) 59.22 61.65 58.3	Level (dBuV/m) 58.2 60.56 57.28	Remark: Limit Line (dBuV/m) 74 74 74	Over Limit (dB) -15.8 -13.44 -16.72	polarization Vertical Vertical Horizontal
Frequency (MHz) 2483.5 2500 2483.5	Cable Loss (dB) 6.22 5.76 6.22 5.76	Antenna Factor (dB/m) 32.29 32.30 32.29	Preamp Factor (dB) 39.53 39.15 39.53	Read Level (dBuV) 59.22 61.65 58.3 59.32	Level (dBuV/m) 58.2 60.56 57.28	Remark: Limit Line (dBuV/m) 74 74 74	Over Limit (dB) -15.8 -13.44 -16.72 -15.77	polarization Vertical Vertical Horizontal
Frequency (MHz) 2483.5 2500 2483.5 2500	Cable Loss (dB) 6.22 5.76 6.22 5.76	Antenna Factor (dB/m) 32.29 32.30 32.29 32.30	Preamp Factor (dB) 39.53 39.15 39.53 39.15	Read Level (dBuV) 59.22 61.65 58.3 59.32	Level (dBuV/m) 58.2 60.56 57.28 58.23	Remark: Limit Line (dBuV/m) 74 74 74 74	Over Limit (dB) -15.8 -13.44 -16.72 -15.77	polarization Vertical Vertical Horizontal Horizontal
Frequency (MHz) 2483.5 2500 2483.5 2500	Cable Loss (dB) 6.22 5.76 6.22 5.76	Antenna Factor (dB/m) 32.29 32.30 32.29 32.30	Preamp Factor (dB) 39.53 39.15 39.53 39.15	Read Level (dBuV) 59.22 61.65 58.3 59.32	Level (dBuV/m) 58.2 60.56 57.28 58.23	Remark: Limit Line (dBuV/m) 74 74 74 74	Over Limit (dB) -15.8 -13.44 -16.72 -15.77	polarization Vertical Vertical Horizontal Horizontal
Frequency (MHz) 2483.5 2500 2483.5 2500 Test mode:	Cable Loss (dB) 6.22 5.76 6.22 5.76 Trans	Antenna Factor (dB/m) 32.29 32.30 32.30 32.30 mitting Antenna Factor	Preamp Factor (dB) 39.53 39.15 39.53 39.15 Test channer	Read Level (dBuV) 59.22 61.65 58.3 59.32 Hel: Hig	Level (dBuV/m) 58.2 60.56 57.28 58.23 hest	Remark: Limit Line (dBuV/m) 74 74 74 74 Remark: Limit Line	Over Limit (dB) -15.8 -13.44 -16.72 -15.77 Ave	polarization Vertical Vertical Horizontal Horizontal
Frequency (MHz) 2483.5 2500 2483.5 2500 Test mode: Frequency (MHz)	Cable Loss (dB) 6.22 5.76 6.22 5.76 Trans Cable Loss (dB)	Antenna Factor (dB/m) 32.29 32.30 32.29 32.30 mitting Antenna Factor (dB/m)	Preamp Factor (dB) 39.53 39.15 39.53 39.15 Test channer Preamp Factor (dB)	Read Level (dBuV) 59.22 61.65 58.3 59.32 nel: Hig Read Level (dBuV)	Level (dBuV/m) 58.2 60.56 57.28 58.23 hest	Remark: Limit Line (dBuV/m) 74 74 74 74 Remark: Limit Line (dBuV/m)	Over Limit (dB) -15.8 -13.44 -16.72 -15.77 Ave Over Limit (dB)	polarization Vertical Vertical Horizontal Horizontal rage
Frequency (MHz) 2483.5 2500 2483.5 2500 Test mode: Frequency (MHz) 2483.5	Cable Loss (dB) 6.22 5.76 6.22 5.76 Trans Cable Loss (dB) 6.22	Antenna Factor (dB/m) 32.29 32.30 32.30 mitting Antenna Factor (dB/m) 32.29	Preamp Factor (dB) 39.53 39.15 39.53 39.15 Test chann Preamp Factor (dB) 39.53	Read Level (dBuV) 59.22 61.65 58.3 59.32 Hel: High Read Level (dBuV) 47.12	Level (dBuV/m) 58.2 60.56 57.28 58.23 hest Level (dBuV/m) 46.10	Remark: Limit Line (dBuV/m) 74 74 74 74 Remark: Limit Line (dBuV/m) 54	Over Limit (dB) -15.8 -13.44 -16.72 -15.77 Ave Over Limit (dB) -7.90	polarization Vertical Vertical Horizontal Horizontal rage polarization Vertical

Report No.: GTSE10070012401

Page: 27 of 32

5.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: GTSE10070012401 Page: 28 of 32

5.9 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	30MHz to 25GH	z						
Test site:	Measurement D	istance: 3m (S	emi-Anecho	ic Chambei	r)			
Receiver setup:								
·	Frequency Detector RBW VBW Remark							
	30MHz-1GHz Quasi-peak 100KHz 300KHz Quasi-peak Value							
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		Peak	1MHz	10Hz	Average Value			
Limit:	Fraguency Limit (dRu)//m @3m) Pemark							
	Frequency Limit (dBuV/m @3m) Remark							
	30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value							
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-		54.0		Quasi-peak Value			
	54.0 Average Value							
	Above 1GHz 74.0 Peak Valu							
Test Procedure:	the ground a rotated 360 radiation. b. The EUT was antenna, who tower. c. The antenna ground to do horizontal a the measured. d. For each succase and the meters and degrees to fee. The test-recessive of the EUT whave 10dB in peak or aves sheet. g. The radiation	at a 3 meter sed degrees to defended as set 3 meters and height is varied at height is	mi-anechoice ermine the parameter on the total ed from one aximum valuatizations of a was turned le reading. Otherwise re-tested as specified a lats are perfo	c camber. To position of the interference of a varial meter to foue of the fiethe antennation heights fied from 0 decade Detect Fold Mode. It is mode was a stopped a see the emissione by one and then reparted in X, Y	ence-receiving able-height antenna ur meters above the ld strength. Both a are set to make ged to its worst rom 1 meter to 4 agrees to 360. Function and and the peak values asions that did not using peak, quasi-ported in a data.			

Report No.: GTSE10070012401 Page: 29 of 32

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: GTSE10070012401 Page: 30 of 32

5.9.1 Radiated emission below 1GHz

Worst case:

Test channel: Middle

	I	Α .	_	<u> </u>				
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
66.266	0.79	11.89	25.7	40.29	27.27	40	-12.73	Vertical
99.528	1.15	14.37	25.67	37.13	26.98	43.5	-16.52	Vertical
121.549	1.33	11.01	25.65	42.4	29.09	43.5	-14.41	Vertical
152.664	1.53	10.56	25.64	45.38	31.83	43.5	-11.67	Vertical
333.687	2.14	16.89	25.58	35.32	28.77	46	-17.23	Vertical
535.707	2.51	19.47	25.55	45.23	41.66	46	-4.34	Vertical
48.163	0.67	11.73	25.72	46.87	33.55	40	-6.45	Horizontal
121.123	1.32	11.83	25.65	52.93	40.43	43.5	-3.07	Horizontal
135.982	1.43	10.64	25.64	42.19	28.62	43.5	-14.88	Horizontal
333.687	2.14	14.68	25.58	49.49	40.73	46	-5.27	Horizontal
399.03	2.26	16.69	25.57	41.36	34.74	46	-11.26	Horizontal
599.321	2.69	23.32	25.54	41.45	41.92	46	-4.08	Horizontal

Report No.: GTSE10070012401 Page: 31 of 32

5.9.2 Transmitter emission above 1GHz

Test channel:	Lowest	Remark:	Peak	
---------------	--------	---------	------	--

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2335	4.91	32.24	37.65	55.21	54.71	74	-19.29	Vertical
4804	9.36	34.25	41.53	41.12	43.2	74	-30.8	Vertical
7206	13.38	37.23	40.98	37.40	47.03	74	-26.97	Vertical
9608	13.39	37.99	37.56	35.10	48.92	74	-25.08	Vertical
12010	16.45	39.10	39.09	36.20	52.66	74	-21.34	Vertical
2335	4.91	32.24	37.65	53.76	53.26	74	-20.74	Horizontal
4804	9.36	34.25	41.53	39.58	41.66	74	-32.34	Horizontal
7206	13.38	37.23	40.98	38.65	48.28	74	-25.72	Horizontal
9608	13.39	37.99	37.56	34.62	48.44	74	-25.56	Horizontal
12010	16.45	39.10	39.09	34.97	51.43	74	-22.57	Horizontal

Test channel: Lo	owest Re	emark:	Average
------------------	----------	--------	---------

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2335	4.91	32.24	37.65	44.15	43.65	54	-10.35	Vertical
4804	9.36	34.25	41.53	30.16	32.24	54	-21.76	Vertical
7206	13.38	37.23	40.98	26.15	35.78	54	-18.22	Vertical
9608	13.39	37.99	37.56	24.39	38.21	54	-15.79	Vertical
12010	16.45	39.10	39.09	24.98	41.44	54	-12.56	Vertical
2335	4.91	32.24	37.65	41.30	40.8	54	-13.2	Horizontal
4804	9.36	34.25	41.53	28.14	30.22	54	-23.78	Horizontal
7206	13.38	37.23	40.98	26.41	36.04	54	-17.96	Horizontal
9608	13.39	37.99	37.56	23.41	37.23	54	-16.77	Horizontal
12010	16.45	39.10	39.09	23.97	40.43	54	-13.57	Horizontal

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882	10.57	34.35	40.33	41.96	46.55	74	-27.45	Vertical
7323	12.91	37.31	40.40	35.92	45.74	74	-28.26	Vertical
9764	13.89	38.03	37.94	32.05	46.03	74	-27.97	Vertical
12205	17.95	39.23	39.30	33.27	51.15	74	-22.85	Vertical
14646	17.18	41.27	45.96	32.04	44.53	74	-29.47	Vertical
4882	10.57	34.35	40.33	42.01	46.6	74	-27.4	Horizontal
7323	12.91	37.31	40.40	38.37	48.19	74	-25.81	Horizontal
9764	13.89	38.03	37.94	32.34	46.32	74	-27.68	Horizontal
12205	17.95	39.23	39.30	33.70	51.58	74	-22.42	Horizontal
14646	17.18	41.27	45.96	35.10	47.59	74	-26.41	Horizontal

Report No.: GTSE10070012401 Page: 32 of 32

Test channel:	Middle	Remark:	Average
---------------	--------	---------	---------

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882	10.57	34.35	40.33	30.12	34.71	54	-19.29	Vertical
7323	12.91	37.31	40.40	24.24	34.06	54	-19.94	Vertical
9764	13.89	38.03	37.94	21.18	35.16	54	-18.84	Vertical
12205	17.95	39.23	39.30	22.24	40.12	54	-13.88	Vertical
14646	17.18	41.27	45.96	21.10	33.59	54	-20.41	Vertical
4882	10.57	34.35	40.33	31.04	35.63	54	-18.37	Horizontal
7323	12.91	37.31	40.40	27.34	37.16	54	-16.84	Horizontal
9764	13.89	38.03	37.94	20.98	34.96	54	-19.04	Horizontal
12205	17.95	39.23	39.30	22.71	40.59	54	-13.41	Horizontal
14646	17.18	41.27	45.96	23.68	36.17	54	-17.83	Horizontal

Test channel: High	nest Remark:	Peak
--------------------	--------------	------

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2552	5.10	32.29	37.64	51.50	51.25	74	-22.75	Vertical
4960	10.43	34.45	41.03	42.10	45.95	74	-28.05	Vertical
7440	12.72	37.37	40.01	38.16	48.24	74	-25.76	Vertical
9920	14.24	38.08	37.78	31.76	46.3	74	-27.7	Vertical
12400	17.55	39.34	39.48	32.90	50.31	74	-23.69	Vertical
14880	16.69	41.16	46.61	32.85	44.09	74	-29.91	Vertical
2552	5.10	32.29	37.64	50.40	50.15	74	-23.85	Horizontal
4960	10.43	34.45	41.03	40.42	44.27	74	-29.73	Horizontal
7440	12.72	37.37	40.01	37.33	47.41	74	-26.59	Horizontal
9920	14.24	38.08	37.78	31.50	46.04	74	-27.96	Horizontal
12400	17.55	39.34	39.48	33.44	50.85	74	-23.15	Horizontal
14880	16.69	41.16	46.61	32.25	43.49	74	-30.51	Horizontal

		_	
Test channel:	Highest	Remark:	Average
resi Granner.	HIUHESI	i neman.	Avelaue

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2552	5.10	32.29	37.64	40.24	39.99	54	-14.01	Vertical
4960	10.43	34.45	41.03	30.75	34.6	54	-19.4	Vertical
7440	12.72	37.37	40.01	27.10	37.18	54	-16.82	Vertical
9920	14.24	38.08	37.78	20.47	35.01	54	-18.99	Vertical
12400	17.55	39.34	39.48	21.26	38.67	54	-15.33	Vertical
14880	16.69	41.16	46.61	21.15	32.39	54	-21.61	Vertical
2552	5.10	32.29	37.64	39.77	39.52	54	-14.48	Horizontal
4960	10.43	34.45	41.03	26.88	30.73	54	-23.27	Horizontal
7440	12.72	37.37	40.01	26.21	36.29	54	-17.71	Horizontal
9920	14.24	38.08	37.78	20.60	35.14	54	-18.86	Horizontal
12400	17.55	39.34	39.48	22.27	39.68	54	-14.32	Horizontal
14880	16.69	41.16	46.61	21.80	33.04	54	-20.96	Horizontal