Digital Communication IC Design

Homework #3

(Due on 2024/10/30)

Please upload your codes and reports (with simulation results and explanations) to the NTUCool.

Total points: 130 points

1. Consider one channel power delay profile listed in the following table.

Table 1: Channel power delay profile

1 7 1		
Tap	Power	Delay (τ_i)
0	0 dB	0 ns
1	-3 dB	10 ns
2	-4 dB	40 ns
3	-8 dB	80 ns
4	-15 dB	100 ns

- (a) Please list the power ratio of 5 taps in linear scale. (5%)
- (b) Please calculate the mean excess delay. (5%)
- (c) Please calculate the RMS excess delay (τ_{RMS}). (5%)
- 2. Please generate complex Gaussian random variable (Z=X+jY) with zero mean and unit variance (i.e. the variance of both X and Y is 0.5) to obtain γ_i , i = 0,1,...,4.
 - (a) Assume that both $h_i(t)$ and $\tau_i(t)$ are time-invariant so that $h_i(t) = h_i$ and $\tau_i(t) = \tau_i$. $g_i = \alpha_i * \gamma_i$, where α_i is the path **magnitude** gain (not power) from Question 1. Now normalize g_i so that $h_i = Kg_i$ and $\sum_{i=0}^4 |h_i|^2 = 1$, which can keep the same signal energy under the multipath fading channel effect. Please write down your h_i , i = 0,1,...,4. (10%)
 - (b) Given that the channel impulse response is written as $\sum_{i=0}^{4} h_i \delta(t-\tau_i)$. Now, use Fourier transform to derive its frequency domain channel response. Write down the equation. (10%)
 - (c) Plot the magnitude and phase of channel frequency response in the range of -100 MHz and 100 MHz. (10%)
 - (d) If the coherence bandwidth is defined as $B_c = 1/(5\tau_{RMS})$, where τ_{RMS} comes from Q1. Please calculate the coherence bandwidth. (5%) How many subcarriers should be allocated in a 100MHz bandwidth if we want to produce a flat-fading channel in each subcarrier of an OFDM systems? (5%)

3. If the transmitted RF signal is denoted as

$$\tilde{y}(t) = Re\{(x_I(t) + jx_O(t))(C(t) + jS(t))\}$$

Ideally, $C(t) = \cos(\omega_c t)$ and $S(t) = \sin(\omega_c t)$ Assume at the **transmitter side**,

IQ imbalance exists, and thus
$$C(t) = \left(1 + \frac{\varepsilon}{2}\right)\cos\left(\omega_c t + \frac{\phi}{2}\right)$$
 and $S(t) = \left(1 - \frac{\varepsilon}{2}\right)$

 $\frac{\varepsilon}{2}$) sin $(\omega_c t - \frac{\emptyset}{2})$. Please demodulate the input signal $\tilde{y}(t)$ and express $\tilde{x}_I(t)$ and

 $\tilde{x}_Q(t)$ in terms of $x_I(t)$ and $x_Q(t)$ as well as the IQ imbalance parameters with the assumption of perfect demodulation, i.e. $s_I(t) = \cos(\omega_c t)$ and $s_Q(t) = -\sin(\omega_c t)$. (15%).

- 4. Given the OFDM systems. The whole bandwidth is 100MHz and is partitioned into 64 subcarriers. The sampling frequency (f_s) is also 100MHz. Cyclic prefix (CP) of 16 samples is used in the guard interval.
 - (a) Please randomly generate BPSK data X_k for each subcarrier k, k = 0, 1, ..., 63.
 - (b) Obtain the time-domain signal x[n] for n = 0, 1, ..., 63. Then, insert CP, which is indicated by x[n] for n = -16, -15, ..., -1. Draw the real part and imaginary part of the baseband transmitted waveform (10%)
 - (c) Note that the discrete baseband equivalent channel in Q2(a) can be described by $h[n] = \sum_{i=0}^4 h_i \delta[n n_{\tau_i}]$, where $n_{\tau_i} = \frac{\tau_i}{T_s}$ denote the normalized delay from Table 1 and T_s is the sampling period. Assume the OFDM signal generated in Q4(b) passes through the channel. The received signal y[n] is

generated in Q4(b) passes through the channel. The received signal y[n] is expressed as $y[n] = h[n] \otimes x[n]$. Draw the real part and imaginary part of the baseband received signal y[n] for n = -16, -15, ..., 63, 64, ... Note that you need to draw the entire output sequence of y[n] considering the length of channel impulse response h[n]. (10%)

(d) Now, remove CP and transform y[n], for n = 0, 1, ..., 63, into frequency domain to obtain the received frequency domain data Y_k . Calculate $H_k = \frac{Y_k}{X_k}$. Draw the magnitude and phase of H_k . (10%)

- (e) Compare Q4(d) and Q2(c). How to interpret the results given that one of their X-axes is expressed by Hertz and other is expressed by index? (10%)
- (f) Let's observe the results to see what will happen if the CP is not inserted. Now, generate $z[n] = h[n] \otimes x[n]$ for n = 0,1,...,63. Transform z[n] into frequency domain to obtain the received frequency domain data Z_k . Calculate $H'_k = \frac{Z_k}{X_k}$. Draw the magnitude and phase of H'_k . (10%)
- (g) Compare Q4(d) and Q4(f). Please explain why H'_k can not acquire the proper channel frequency response. (10%)