	Weight	Arm Aft Datum	Moment
	(Lbs)	(Inches)	(In-Lbs)
Basic Empty Weight	?	?	?
Pilot and Front Passenger	420	?	33810.00
Passenger rear Seat	340	?	40154.00
Fuel (102 Gallons Max)	150	?	14100.00
Baggage Forward	180	?	25704.00

Table 6.1

	(T) 1 1 1/-leas)			
	μ_r (Typical Values)			
Surface	Brakes off	Brakes on		
Dry concrete/asphalt	0.03-0.05	0.3-0.5		
Wet concrete/asphalt	0.05	0.15-0.3		
Icy concrete/asphait	0.02	0.06-0.10		
Hard turf	0.05	0.4		
Firm dirt	0.04	0.3		
Soft turf	0.07	0.2		
Wet grass	0.08	0.2		

Course Progression

Flight Planning
Weight and Balance
Pre-Flight
Take-Off Roll

Ground Effect Landing Roll

Figure 6.12 Illustration of ground roll s_g , airborne distance s_a , and total takeoff distance.

PA-28-181

Climb Performance

There are three types of climb that you may use at the start of a cross-country flight:

- 1. The maximum angle climb at speed V_X allows you to gain the maximum altitude in the shortest distance. It is normally used only immediately after the takeoff to provide a steep climb-out gradient over any obstacles, after which the airplane nose is lowered slightly and the airspeed allowed to increase to normal climb speed. Since this type of climb is only of short duration, no performance tables (in terms of fuel flow and distance covered) are provided.
- 2. The maximum rate of climb at speed V_Y allows you to gain the maximum altitude in the shortest time. This climb speed is used when you want to reach cruise altitude as quickly as possible. Performance charts or tables, such as that shown Figure 11-5, are provided, since this type of climb may be prolonged and used all the way up to cruise altitude. The important figures from a flight planning point of view are the time, fuel and distance to top of climb. A wind will not affect the time, fuel and air distance to reach the required altitude, but it will affect the ground distance covered.
- 3. The **normal climb** at the specified climb speed is somewhat faster than the maximum rate climb speed, and is sometimes called a *cruise* climb. Performance tables or charts are provided.

Figure 11-4. The different types of climb

Figure 11-4. The different types of climb

MAXIMUM RATE OF CLIMB

WEIGHT LBS	PRESS ALT FT	RATE OF CLIMB FPM	FROM SEA LEVEL		
			TIME	FUEL USED POUNDS	DISTANCE NM
4000	S.L.	605	0	0	0
	4000	570	7	14	13
	8000	530	14	28	27
	12,000	485	22	44	43
	16,000	430	31	62	63
	20,000	365	41	82	87
3700	S.L.	700	0	0	0
	4000	665	6	12	11
	8000	625	12	24	23
	12,000	580	19	37	37
	16,000	525	26	52	53
	20,000	460	34	68	72
3400	S.L.	810	0	0	0
	4000	775	5	10	9
	8000	735	10	21	20
	12,000	690	16	32	31
	16,000	635	22	44	45
	20,000	565	29	57	61

CONDITIONS:

Flaps Up Gear Up 2600 RPM Cowl Flaps Open Standard Temperature

NOTES:

- 1. Add 16 pounds of fuel for engine start, taxi and takeoff allowance.
- Increase time, fuel and distance by 10% for each 10°C above standard temperature.
- 3. Distances shown are based on zero wind.

Figure 26-5. Take-Off Distance, Normal Performance (Flaps Up)

Figure 27-2. Normal Power Climb, Fuel (Sheet 3 of 3)

Figure 27-2. Normal Power Climb, Time (Sheet 1 of 3)

Figure 26-7. Take-Off Distance, STOL Performance (Flaps 20°)

Figure 26-5. Take-Off Distance, Normal Performance (Flaps Up)

