یک الگوریتم یادگیری ماشین با نظارت برای شناسایی و پیش بینی تقلب در تراکنشهای کارت اعتباری

A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions

Stu.: Mahdi Mahdiani

Prof.: Dr Rezvanian

Machine Learning Presentation-Dey 1402

سرفصل مطالب

- 1. مقدمه
- 2. پیشینه پژوهش
- 3. بررسی داده ها
- 4. معرفی روش ها

 - آنالیز داده ها
 - 6. نتايج
 - 7. نتیجه گیری

مقدمه

- ارائه خدمات شخصی و حضوری تا سال ۱۹۹۶
- معرفی بانکداری اینترنتی توسط Citibank و Fargo Bank
 - تغییر روش مدیریت یول در زندگی روزانه
 - امکان تراکنش مالی به صورت اینترنتی از خانه یا دفتر کار
- · چالش کاهبرداری کارت های اعتباری در تراکنش های آنلاین
 - رشد قابل توجه میزان جرایم مربوط به تراکنش های مالی
 - ضرر ۱.۴۶ میلیون دلاری در بانک غنا

پیشینه پژوهش

نتيجه	توضيحات	الگوريتم/مدل/روش	سال	رديف
AUC : 99	استفاده از روش XGboost	XGboost	7.77	1
الگوریتم Majority Voting به عنوان الگوریتم برتر معرفی شد	در این مقاله از این دو الگوریتم استفاده شد با اضافه کردن نویز ۱۰، ۲۰، ۳۰ درصد	AdaBoost Majority Voting	7.14	۲
LR :97.46 NB:99.23 RF:99.96 MLP:99.93	استفاده از روش SMOTE و الگوریتم های ذکر شده	LR,NB,RF,Multilayer perceptron	7.19	٣
Accuracy : 80	استفاده از Baum-welch برای تعبین پار امتر های مدل مارکوف	Hidden Markov Model	۲۰۰۸	۴
Accuracy : 99.96 بعد از ۱۰۰۰	memory based deep learning neural network	Deep Convolution Neural Network	7.71	۵

Page: 4/29

داده ها

- تراکنش های شبیه سازی شده سال ۲۰۲۰ شامل تراکنش های تقلبی (کلاهبر داری) و عادی
 - شامل اطلاعاتی مثل نام مشتری و فروشنده و نوع خرید و طبقه بندی و ...
 - - دیتاست دارای ۵۵۵۷۱۹ ردیف و ۲۳ ستون است
 - ۱۲ مورد از متغیر ها کیفی است

پیش پردازش داده ها

- تمیز کردن داده ها و حذف داده های گم شده
- 2. با استفاده از feature scaling داده های عددی را بین ۱ قرار دادن
- 2. با السعادة از Teature Scaring داده های عددی را بین به تا با قرار دادن
- 3. نمونه گیری از داده های نامتعادل جهت جلوگیری از سوگیری به سمت اکثریت

4. استفاده از تکنیک SMOTE

Page : 7/29

خلاصه آماری

Table 1Basic Statistics for the character variables.

Name	Count	Unique	Тор	Frequency
Transaction date and time	555 719	544 760	2020-12-19 16:02:22	4
Merchant	555719	693	fraud_Kilback LLC	1859
Category	555719	14	gas_transport	56 370
First	555719	341	Christopher	11 443
Last	555719	471	Smith	12146
Gender	555719	2	F	304886
Street	555719	924	444 Robert Mews	1474
City	555719	849	Birmingham	2423
State	555719	50	TX	40 393
Job	555719	478	Film/video editor	4119
Date of birth	555719	910	1977-03-23	2408
Transaction number	555 719	555 719	2da90c7d74bd46a	1

خلاصه آماری

Table 2Basic Statistics for the numeric variables.

Name	Count	Mean	Std	Min	25%	50%	75%	Max
Unique identifier	555 719	277 859	160 422.4	0	138 929.5	277 859	416788.5	555718
Credit card number of customers	555719	4178387	1 309 837	6 041 621	1800429	3 521 417	4635331	4 992 346
Amount	555 719	69.39	156.75	1	9.63	47.29	83.01	22768.11
Zip	555719	48 842.63	26 855.28	1257	26 292	48 174	72 011	99 921
Latitude	555719	38.54	5.061	20.03	34.67	39.37	41.89	65.69
Longitude	555719	-90.23	13.72	-165.67	-96.8	-87.48	-80.18	-67.95
City population	555719	88 221.89	300 390.9	23	741	2408	19 685	2906700
Time (s)	555719	1 380 679	5 201 104	1 371 817	1 376 029	1 380 762	1 385 867	1 388 534
Merchant latitude	555719	38.54	5.1	19.03	34.76	39.38	41.95	66.68
Merchant longitude	555719	-90.23	13.73	-166.67	-96.91	-87.45	-80.27	-66.95
Fraud status	555 719	0.0039	0.062	0	0	0	0	1

Page: 9/29

روش ها

- 1. Decision Tree
- 2. Logistic Regression
- 3. Random Forest

Page: 10/29

درخت تصميم

- یک الگوریتم یادگیری با نظارت برای طبقه بندی است
 - یک ساختار درختی برای تصمیم گیری تولید می کند
 - اجزای اصلی آن گره ها و لبه ها هستند
- گره های برگ به عنوان نمایشی از کلاس ها برای طبقه بندی عمل می کنند

Page: 11/29

$$E(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

$$(1)$$

$$E(X) = 1$$

$$E(X) = 1 - \sum_{i=1}^{n} p(x_i)^2$$

Gini

$$E(X) = -p(Fraud)\log_2 p(Fraud) - p(Not Fraud)\log_2 p(Not Fraud)$$
 (2)

$$G(X,Y) = E(X) - E(X|Y)$$

$$G(X,Y) = -p(Fraud)\log_2 p(Fraud) - p(Not Fraud)\log_2 p(Not Fraud)$$

$$-\sum \frac{|Sv|}{S}entropy(Sv)$$
(5

Page: 12/29

Entropy

(1)

$$-\sum \frac{|Sv|}{S}entropy(Sv)$$

Information Gain

Formula

$$\ln \left[\frac{p(y=1)}{1 - p(y=1)} \right] = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$

where;

 α_0 is the intercept of the model

 α_i are the model coefficients, i = 1, 2, 3, ..., n x_i are the independent variables, i = 1, 2, 3, ..., n

y is the dichotomous dependent variable

$$p(y) = \begin{cases} 1, & fraud \\ 0, & no \ fraud \end{cases}$$

رگرسیون لجستیک

Using Sigmoid Function

$$p(y) = \frac{exp(\alpha + \beta x)}{1 + exp(\alpha + \beta x)}$$

منحنی یادگیری رگرسیون لجستیک

Fig.3 Learning Curve

جنگل تصادفی

- ۱. تعریف و هدف
- الگوريتم يادگيرى با نظارت
- استفاده از گروهی از مدل های در خت تصمیم برای طبقه بندی

 - Weak Learners .7
 - Ensemble Learning .
 - Bagging Method . 4
 - Forest of Decision tree . 4

$$D(X) = \arg\max\left\{\sum_{i=1}^{N} dK_{i}(X) = Fraud, \sum_{i=1}^{N} dK_{i}(X) = Not \ fraud,\right\}$$

جنگل تصادفی (ادامه)

معيارهاى عملكرد

$$Accuracy = \frac{TN + TP}{TN + TP + FN + FP}$$

$$Precision = \frac{TP}{FP + TP}$$

$$Recall/Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

$$F1 \, Score = \frac{2 \times precision \times recall}{precision + recall}$$

آنالیز داده ها

Table 4
Transaction description.

Description	Fraud	Non-Frauc
Total	2135	482672
Percentage (%)	0.4%	99.6

Page: 18/29

آنالیز داده ها(ادامه)

Page: 19/29

آنالیز داده ها(ادامه)

Page: 20/29 •

آنالیز داده ها(ادامه)

Page: 21/29

I dibit o							
Confusion	matrix	of	prediction	using	decision	tree.	

	Reference	
Prediction	Fraud	Not Fraud
Fraud	397	8085
Not Fraud	30	88 449

Table	6
-------	---

Table 5

Performance of the decision tree algorithm.	
Metric measure	Estimate
Accuracy	0.92

Sensitivity 0.93 Specificity 0.92

درخت تصمیم نهایی

نتایج جنگل تصادفی

Table 7							
Confusion	matrix	of	prediction	using	random	forest.	

	Reference	
Prediction	Fraud	Not Fraud
Fraud	409	4052
Not Fraud	18	92 482

Table 8

Performance of the random forest algorithm.	
Metric measure	Estimate
Accuracy	0.96
Sensitivity	0.97
Specificity	0.96

نتایج رگرسیون لجستیک

Table 9
Confusion matrix of prediction using logistics regression.

	Reference	
Prediction	Fraud	Not Fraud
Fraud	325	7731
Not Fraud	102	88 803

Table 10

Performance of the logistic regression algorithm.

Metric measure	Estimate
Accuracy	0.92
Sensitivity	0.76
Specificity	0.92

Table 11 Comparing the models' performances.

Model name	Accuracy	F1-Score	Recall	Precision	Specificity
Decision tree	0.92	0.09	0.93	0.05	0.92
Random forest	0.96	0.17	0.97	0.09	0.96
Logistics regression	0.92	0.08	0.76	0.04	0.92

مقایسه مدل ها

نتيجه گيري

- 1. در این مطالعه از سه مدل دستهبندی (رگرسیون لجستیک، درخت تصمیم، و جنگل تصادفی) استفاده شده است
 - 2. با استفاده از تکنیک کاهش نمونه و جنگل تصادفی با دقت ۹۶ در صد بهترین عملکر د را ارائه کر ده است
 - بر اساس آنالیز دیتا , کلاهبر داری ها بین ساعت ۱۰ شب تا ۵ صبح رخ اتفاق افتاده است
 - بر اساس آنالیز دیتا , افراد بالای ۶۰ سال بیشتر در خطر کلاهبرداری قرار دارند
 - ۴. بر ۱۳۰۸ میشود به افد اد مسن خدمات حضوری دا در او آورت قد از دهند همچنین بین ساعت و د شر تا ۵
 - 5. توصیه می شود به افراد مسن خدمات حضوری را در اولویت قرار دهند همچنین بین ساعت ۱۰ شب تا ۵ صبح تدابیر امنیتی را افزایش دهند

برای آینده

- 1. سایر الگوریتم های یادگیری ماشینی تحت نظارت را می توان در مطالعات آینده با داده های سطح ملی یا بین منطقه ای در نظر گرفت.
 - 2. مطالعه حاضر همچنین میتواند در بخش بهداشت و سایر بخشها برای اهداف طبقهبندی گسترش یا اعمال شود.

با تشكر

پرسش و پاسخ

ارتباط با من: mahdimahdiani@ymail.com