Lab 10

For this lab, you will implement a dynamic programming algorithm to estimate the state of the coin (Fair or Biased) for the fair bet casino. This will require two arrays (lists), VF_i and VB_i, where VF_i is the maximum probability of the path up to flip i (1-indexed) ends in state F. Likewise, VB_i is the maximum probability of the path up to flip i (1-indexed) ends in state B The main recursion is:

$$\begin{aligned} VF_{i} &= P_{x_{i}} max \begin{cases} 0.9 \ VF_{i\text{-}1} \\ 0.1 \ VB_{i\text{-}1} \end{cases} \\ VB_{i} &= P_{x_{i}} max \begin{cases} 0.9 \ VB_{i\text{-}1} \\ 0.1 \ VF_{i\text{-}1} \end{cases} \end{aligned}$$

where P_{x_i} is the probability of getting coin flip result x_i . Initialize VF₀ = VB₀ = 0.5.

Here is the pseudocode (where strings are 1-indexed):

Provide string x, the sequence of H and T for heads and tails and output string pi, the sequence of coins being used for the maximum probability path.

FairCasino(x)

```
Make arrays VF and VB for length(x)+1 states, 0-indexed VF_0 \leftarrow 0.5 VB_0 \leftarrow 0.5 for i=0 to length(x) if (xi = H) Px \leftarrow 0.75 else Px \leftarrow 0.25 VF_i \leftarrow 0.5 \times max(TP \times VF_{i-1}, (1-TP) \times VB_{i-1}) VB_i \leftarrow Px \times max(TP \times VB_{i-1}, (1-TP) \times VF_{i-1})
```

Traceback the path through pi (F or B) that gives the maximum probability.

One goal this week is for you to develop the traceback strategy on your own. However, the pseudocode with the traceback strategy will become available on blackboard at 4:15.

Run the algorithm with the sequence:

Try also changing TP to see how the results change. (Try 0.5, for example.)