上海大学 2022~2023 学	年冬李学期 A	卷
------------------	---------	---

成	
绩	

课程名: <u>常微分方程 A</u> 课程号: <u>01015043</u> 学分: <u>5</u>

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人 ______ 应试人学号 _____ 应试人所在院系 _

Ι.							
	题 号	_	1 1	三	四	五.	六
	得 分						

得 分	评卷人	1			
		 - ,	填空题	(每空 3 分	,共 15 分)

- 2. 设某首项系数为 1 的二阶齐次线性方程的通解为 $y = C_1 e^x \cos x + C_2 e^x \sin x$ 则该方程为______.
- 3. 若 n 阶方阵 $\Phi(t)$ 是线性方程组 $\vec{x}' = A_{n \times n} \vec{x}(t)$ 的基解矩阵, 则该方程组满足初始条件 $\vec{x}(t_0) = \vec{\eta}$ 的解 $\vec{\varphi}(t)$ 用 $\Phi(t)$ 表示为 ______.
- 4. 当 M(x,y) = 时, 方程 $M(x,y)dx + x \sin y dy = 0$ 是恰当方程.

分	评卷人
	分

二. 求解下列方程(每小题7分,共35分)

5. (本题 7 分) 求方程的解: $\frac{dy}{dx} = \frac{y}{2x - y^2}$

6. (本题 7 分) 求方程的解
$$\frac{dy}{dx} = \frac{x - y + 2}{x + y^2 + 4}$$

7. (本题 7 分) 求解
$$\frac{dy}{dx} + 2xy + xy^4 = 0$$

8. (本题 7 分) 求解
$$y''' - y'' - y' + y = 0$$

9. (本题 7 分) 求解 $y'' - 7y' + 12y = 6 \sin x$

得	分	评卷人	

三, 方程组 (本题共 16 分)

10. (本题共 16 分) 已知方程组 $\dot{x} = Ax$, 其中

$$A = \begin{pmatrix} 3 & -2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- 1°. (10 分) 计算标准基解矩阵 e^{At} .
- 2° . (6 分) 说明是否存在一个常数 K > 0, 使得

$$||e^{At}|| \le Ke^{2t}, \quad \forall t \ge 0$$

得	分	评卷人

四、综合题(本题共 16 分)

11. (本题共 16 分) 考虑如下二维非线性方程组:

$$\begin{cases} \frac{dx}{dt} = bx^2 + \sin y \\ \frac{dy}{dt} = x(a^2 - x^2) - by \end{cases}$$

其中 $a, b \in \mathbb{R}$.

- 1°. (8分)给出该方程组在(0,0)点附近的线性化方程组,系数矩阵及其特征值.
- 2° . (8 分) 当 $a \neq 0$ 时, 讨论该方程组零解的稳定性.

F卷人

五、综合题(本题共 18 分)

12. (本题共 18 分) 考虑如下二维非线性方程组:

$$\begin{cases} \frac{dx}{dt} = -y - ax^3 \\ \frac{dy}{dt} = x - ay^3 \end{cases}$$

其中 a > 0 为常数

- 1°. (2分)给出该方程组的所有平衡点.
- 2°. (4分)给出该方程组在平衡点附近的线性化方程组,并确定其特征值.
- 3°. (6分)应用 Lyapunov 函数法证明该平衡点的稳定性.
- 4°. (6 分) 请说明从集合 $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ 中的点出发的轨道, 在时间 $t \ge 0$ 时不会跑出该集合.