OCYAKAN PROPERTY OF THE SERVICE OF T

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

LAB SHEET **PENGOLAHAN SINYAL DIGITAL**

Semester II		Filter Analog d	100 menit	
No. LST/DKA6226/06		Revisi : 03	Tgl : 1 Feb 2021	Hal 1 dari 5

1. Kompetensi

Setelah mengikuti praktikum ini, mahasiswa dapat merancang suatu filter analog sederhana

2. Sub Kompetensi

Setelah mengikuti praktikum ini, mahasiswa dapat :

- a. Merancang filter analog, khususnya yang menggunakan pendekatan Butterworth
- **b.** Merancang filter digital IIR berbasis rancangan filter analog
- **c.** Menerapkan filter analog untuk memfilter sinyal

3. Dasar Teori

Filter prototype adalah filter low pass dengan frekuensi cut off 1 rad/detik.

Orde Filter ditentukan oleh pangkat tertinggi dari polinomial s yang ada pada penyebut fungsi alih suatu filter.

Contoh: Filter orde 1 :
$$G(s) = \frac{1}{s+1}$$

Filter orde 2 :
$$G(s) = \frac{1}{s^2 + 1.414s + 1}$$

Filter orde 3 :
$$G(s) = \frac{1}{s^3 + 2s^2 + 2s + 1}$$

Transformasi frekuensi adalah proses transformasi dari fungsi alih filter *prototype* ke fungsi alih filter yang dikehendaki dapat dilihat pada Tabel 1, dengan $\omega = 2\pi f$ radian dan f adalah frekuensi *cut-off* filter dalam Hz.

Referensi tentang *function* yang dipakai, dapat dilihat pada link: https://octave.sourceforge.io/signal/overview.html

Dibuat oleh : Dr. Aris Nasuha, MT	Dilarang memperbanyak sebagian atau seluruh isi dokumen tanpa ijin tertulis dari Fakultas Teknik Universitas Negeri Yogyakarta	Diperiksa oleh :
DI. Alis Nasulia, Wil	taripa ijiri tertulis dari i akultas Tekriik Orliversitas Negeri Togyakarta	

LAB SHEET PENGOLAHAN SINYAL DIGITAL

Semester II	1	Filter Analog d	100 menit	
No. LST/DKA6226/06		Revisi : 03	Tgl : 1 Feb 2021	Hal 2 dari 5

Tabel 1. Transformasi Frekuensi

Prototype orde n	Transformasi frekuensi ke frekuensi	Orde
Lowpass ke lowpass	$s = \frac{s}{\omega_0}$	n
Lowpass ke highpass	$s = \frac{\omega_0}{s}$	n
Lowpass ke bandpass	$s = \frac{s^2 + \omega_1 \omega_2}{s(\omega_2 - \omega_1)}$	2n
Lowpass ke bandstop	$s = \frac{s(\omega_2 - \omega_1)}{s^2 + \omega_1 \omega_2}$	2n

4. Alat dan Bahan

PC (personal computer) yang sudah terinstal perangkat lunak Octave dan package signal.

5. Keselamatan Kerja

- a. Buat folder kerja untuk setiap mahasiswa di drive selain C.
- b. Aktifkan folder kerja tersebut setiap memulai Octave
- c. Setiap kali selesai menulis program segera simpan file program tersebut

6. Langkah kerja

Ketik program-program berikut dalam Editor Octave, beri nama yang sesuai dengan isinya, kemudian di-*run*. Perhatikan dan catat hal-hal yang penting, lalu kerjakan tugas-tugas yang diberikan.

LAB SHEET **PENGOLAHAN SINYAL DIGITAL**

Semester II	I	Filter Analog d	100 menit	
No. LST/DKA6226/06		Revisi: 03	Tgl : 1 Feb 2021	Hal 3 dari 5

```
% Program 5.1
% Filter prototype Butterworth
pkg load signal
orde = input('Masukkan orde dari filter prototype : ');
[num,den] = butter(orde,1,"s");
w = logspace(-1,2);
sys1 = tf(num,den);
[mag,phase] = bode(sys1,w);
sys2 = tf(0.707,1);
[m1,ph1] = bode(sys2,w);
logmag = 20*log10(mag);
logm1 = 20*log10(m1);  % garis -3 dB
semilogx(w,logm1,w,logmag), grid;
```

<u>Tugas 5.1</u>.

(a). Isi orde filter pada berturut-turut dengan **1, 2,** dan **3**. Catat nilai variabel **num** dan **den** masing-masing. Kemudian amati dan catat perbedaan tampilannya. Berapa kemiringan *transition band* masing-masing? Nyatakan dalam satuan **db/oktav**.

Orde filter	Nilai num	Nilai den	Kemiringan transition band
1			
2			
3			

(b). Coba pula untuk mengganti fungsi **butter** dengan **cheby1**, lalu ulangi langkah (a). Apa perbedaan tampilan yang mencolok antara keduanya?

LAB SHEET PENGOLAHAN SINYAL DIGITAL

Semester II		Filter Analog d	100 menit	
No. LST/DKA6226/06		Revisi: 03	Tgl : 1 Feb 2021	Hal 4 dari 5

```
% Program 5.2
% Filter prototype Butterworth
pkg load signal
orde = 2;
wc = 10;
[num,den] = butter(orde,wc,"s");
w = logspace(-1,3);
sys1 = tf(num,den);
[mag,phase] = bode(sys1,w);
sys2 = tf(0.707,1);
[m1,ph1] = bode(sys2,w);
logmag = 20*log10(mag);
logm1 = 20*log10(m1); % garis -3 dB
semilogx(w,logm1,w,logmag), grid;
```

Tugas 5.2.

(a). Gantilah nilai variabel **wc** berturut-turut dengan **5** dan **50**. Amati nilai variabel **num**, **den** dan amati tampilannya.

	wc	num	den
1	5		
2	50		

- (b). Ubahlah parameter pada *function* **butter** di atas agar menjadi filter *high pass* dan ulangi tugas (a).
- (c). Ubahlah parameter pada *function* **butter** di atas agar menjadi filter *band pass*, untuk frekuensi *cut-off* 5 **dan** 50 rad/detik, dan ulangi tugas (a)
- (d). Ubahlah parameter pada *function* **butter** di atas agar menjadi filter *band stop*, untuk frekuensi *cut-off* 5 **dan** 50 rad/detik, dan ulangi tugas (a)

Dibuat oleh :	Dilarang memperbanyak sebagian atau seluruh isi dokumen	Diperiksa oleh :
Dr. Aris Nasuha, MT	tanpa ijin tertulis dari Fakultas Teknik Universitas Negeri Yogyakarta	

LAB SHEET PENGOLAHAN SINYAL DIGITAL

Semester II		Filter Analog d	100 menit	
No. LST/DKA6226/06		Revisi: 03	Tgl : 1 Feb 2021	Hal 5 dari 5

```
% Program 5.3
% Penerapan filter analog
pkg load signal
t = 0:0.001:2;
f1 = 2;
f2 = 30;
           % dalam Hz
x = \sin(2*pi*f1*t) + \sin(2*pi*f2*t);
subplot(211), plot(t,x), grid;
xlabel('waktu (detik)'), ylabel('simpangan');
title('Sinyal sebelum difilter');
orde = 3;
fc = 5;
                  % dalam Hz
wc = 2*pi*fc; % dalam radian/detik
[n,d] = butter(orde,wc,"s");
sys = tf(n,d);
y = lsim(sys,x,t);
subplot(212), plot(t,y), grid;
xlabel('waktu (detik)'), ylabel('simpangan');
title('Sinyal setelah difilter');
```

Tugas 5.3.

- (a). Ubahlah filter menjadi *high pass* dan carilah nilai variabel **wc** agar hasil filter hanya sinyal frekuensi tinggi.
- (b). Modifikasi program 5.3 di atas, agar mencampur 3 sinyal. Sinyal ketiga yaitu sinyal sinus frekuensi 100 Hz. Desainlah filter *bandpass* sehingga keluaran program adalah sinyal frekuensi tengah, atau sinyal sinus 30 Hz.