Speech Signal Analysis

Dr. Mathew Magimai Doss

September 21, 2022

Outline

Speech signal acquisition

Time domain analysis

Frequency domain analysis

Outline

Speech signal acquisition

Time domain analysis

Frequency domain analysis

Speech Acquisition

- Convert acoustic signal to electrical analog signal
- Low pass filter the electrical analog signal with a cut-off frequency F_c
- Discretization of the low pass filtered electrical signal across time (Sampling)
- Discretization of amplitude of each sample (Quantization)

Sampling

- Apply Nyquist-Shannon's sampling theorem
- Low pass filter the electrical signal with a cut-off frequency F_c
 - Telephone speech: 4000 Hz (dictated by analog speech transmission bandwidth)
 - Microphone speech: 8000 Hz
 - CD quality speech: 22050 Hz (covers the entire auditory frequency range)
- Sample the low pass filtered electrical signal at frequency F_s (sampling frequency)

$$F_s = 2 \times F_c$$

Telephone speech: 8000 Hz
Microphone speech: 16000 Hz
CD quality speech: 44100 Hz

Guarantees reconstruction of the analog signal without aliasing

Quantization

- Sampling yields discrete signal, i.e. time is discrete but amplitude is continuous
- Quantize the amplitude of each sample to get the digital signal
- How many bits for quantization 8 bits or 16 bits?
 - 8 bits: minimum amplitude is 1 and maximum is 255

largest sound =
$$20 \cdot \log 10(\frac{255}{1})$$
 = 48 dB

■ 16 bits: minimum amplitdue is 1 and maximum is 65535

largest sound =
$$20 \cdot \log 10(\frac{65535}{1})$$
 = $96 dB$

- Digital speech signal can be stored and read as an array of short integers (2 bytes)
- Bitrate (bits per second) = $F_s \times (\# \text{ of bits per sample})$
 - Telephone speech: 8000×16 bps (2 bytes per sample) or 8000×8 bps (1 byte per sample through dynamic range companding, see μ -law algorithm, A-law algorithm)
 - Microphone speech: 16000 × 16 bps
 - CD quality speech: 44100 × 16 bps

Outline

Speech signal acquisition

Time domain analysis

Frequency domain analysis

Time domain speech signal

Some statistical measures

Mean:
$$\mu_s = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} s(n)$$

- DC component can removed by subtracting each sample by mean of the signal
- speech signal has zero mean

Variance:
$$\sigma_s^2 = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} s^2(n)$$

Signal energy at time
$$n$$
: $E(n) = \sum_{k=-N}^{N} s^2(n+k)$

Zero crossing rate differs for vowels and consonants (in particular fricatives)

Autocorrelation (1)

Autocorrelation Function:

$$R_{x}(k) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} s(n) \cdot s(n+k)$$

Autocorrelation Coefficient:

$$RC_{x}(k) = R_{x}(k)/R_{x}(0)$$
(a) Voiced segment in speech
$$\begin{bmatrix}
0.6 \\
0.4 \\
0.2 \\
-0.2 \\
-0.4
\end{bmatrix}$$
(b) Autocorrelation function
$$\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-10
\end{bmatrix}$$
(b) Autocorrelation function

Autocorrelation (2)

- Second order property of the signal (relation between samples)
- Autocorrelation "signal" is periodic if the signal is periodic (property used for pitch frequency estimation)
- Peak of the autocorrelation signal occurs at time 0, i.e. $R_x(0)$ (measures energy of the signal)
- Threshold the second peak $RC_x(k)$ to detect if the speech signal is voiced or unvoiced

Pitch frequency (F_0)

Fundamental (pitch) frequency: acoustic correlate of rate of periodic vibration of vocal cords.

- Between 70 and 250 Hz for men
- Between 150 and 400 Hz for women
- Between 200 and 600 Hz for children

Pitch frequency evolution for sentence "Les techniques de traitement numérique de la parole"; frequency in log scale.

Outline

Speech signal acquisition

Time domain analysis

Frequency domain analysis

Frequency domain processing

- Human speech perception studies shows that human is able to distinguish between sounds mainly using frequency content of the signal
- Time domain information can be affected during transmission, e.g. time delay (shift), change of amplitude of signal (scaling).

Power spectrum

Fourier transform of the autocorrelation function:

$$S_x(\theta) = \sum_{k=-\infty}^{\infty} R_x(k) \cdot e^{-jk\theta}; \quad \theta = \omega.T_s$$

 ω - Frequency, k - Time

- Difficulty: Speech signal is inherently "nonstationary"
 Vocal fold vibration and shape of the vocal tract keeps changing over the time, so the spectral (frequency) properties
- Solution: Short-term spectral processing with quasi-stationary assumption

$$S_x(\theta) = \sum_{k=-N}^{k=+N} R_x(k) \cdot w(k) \cdot e^{-jk\theta}, \ w(.)$$
 denotes a window function (typically Hamming or Hanning)

Short-term spectral processing (1)

Short-term spectral processing (2)

Time-frequency dilemma

similar to uncertainty principle in quantum mechanics

Wideband spectrogram (short analysis window)

Narrowband spectrogram (long analysis window)

Analysis window hyper-parameters

- Thumb rule for window size: should cover at least 2-3 pitch periods
 - Assuming 80 Hz (12.5 ms pitch period) or 100 Hz (10 ms pitch period) as the minimum pitch frequency
 - Window size is typically between 20-40 ms
- in the spectrum both source (vocal fold related) information and system (vocal tract related) information can be observed
- Enables speech signal to be decomposed into source component and system component (analysis) and then put them back together (synthesis)
- Window shift is typically 10 ms
- Number of frames: $\frac{(\text{length of signal-window size})}{\text{window shift}} + 1$ all quantities in terms of # of samples

Power spectrum density (example)

Unvoiced sound ("ch" of "baluchon"):

Spectrum of voiced sounds

 F_0 - Fundamental Frequency, F_1 - First Formant, F_2 - Second formant, F_3 - Third formant, F_4 - Fourth formant

SAME PITCH AS (b)

LOWER PITCH

Spectral envelop of different vowels

(Courtesy: Elements of Acoustic Phonetics by Peter Ladefoged)

Formants and Vowels (French)

Spectrogram

word "parenthèse": narrow band spectrogram (top) and wide band spectrogram (bottom)

- 3D: time, frequency, energy
- Narrowband spectrogram
 - long analysis window (60-100 ms)
 - time resolution is low and frequency resolution is high
 - Can observe well *F*₀ not Formants
- Wideband spectrogram
 - short analysis window (20-40 ms)
 - time resolution is high and frequency resolution is low
 - Can observe well
 Formants and F₀
 (vertical strips)

Thank you for your attention!

Dr. Mathew Magimai Doss

Idiap Research Institute, Martigny, Switzerland

