Course Project: Structural Analysis of the Hemoglobin Complex

Proteomes Interactomes and Biological Networks

December 2 and 3, 2019

Emidio Capriotti http://biofold.org/

Department of Pharmacy and Biotechnology (FaBiT) University of Bologna

Hemoglobin

Hemoglobin is an oxygen-transport protein. It is a tetramer composed by two subunits designated α and β , with stoichiometry $\alpha 2\beta 2$.

The four subunits of hemoglobin sit roughly at the corners of a tetrahedron, facing each other across a cavity at the center of the molecule. Each of the subunits contains a heme prosthetic group.

Each individual heme molecule contains one Fe2+ atom. The heme group binds oxygen while still attached to the hemoglobin monomer.

Subunit Alpha

All-alpha chain A and C of the PDB structure 1GZX composed by 141 residues

Sequence Chain View

Site Record Legend

BINDING SITE FOR RESIDUE HEM B1290 (Software)
 BINDING SITE FOR RESIDUE HEM A1142 (Software)

BINDING SITE FOR RESIDUE OXY A1143 (Software)

empty: no secondary structure assigned

S: bend

T: turn

DSSP Legend

G: 3/10-helix

H: alpha helix

Subunit Beta

All-alpha chain B and D of the PDB structure 1GZX composed by 146 residues

Sequence Chain View

Site Record Legend

- BINDING SITE FOR RESIDUE HEM C1542 (Software)
- BINDING SITE FOR RESIDUE HEM B1290 (Software)

DSSP Legend

empty: no secondary structure assigned

S: bend

H: alpha helix

Sequence Comparison

The alignment of the two sequences shows that they share ~44% of the residues

```
n-w bits E(1)
The best scores are:
                                                    ( 147) 373 65.3 1.4e-161
HBB HUMAN 147 bp
>>HBB HUMAN 147 bp
                                                           (147 aa)
n-w opt: 373 Z-score: 320.6 bits: 65.3 E(1): 1.4e-161
global/local score: 373; 43.6% identity (74.5% similar) in 149 aa overlap (1-142:1-147)
HBA HU MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS----HGS
       :: :.: .:. : : :::: .. : :.::: :... .: :. .: : :::
HBB HU MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGN
               10
                           20
                                      30
                                                40
                      70
                                80
                                           90
                                                    100
HBA HU AQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAH
        .::.:::: : :...... :..... ::.... ::.... ::.... ::.... ::.... :. .:. ::
HBB HU PKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHH
       60
                 70
                           80
                                      90
                                               100
                                                         110
           120
                     130
HBA HU LPAEFTPAVHASLDKFLASVSTVLTSKYR
       . :::: :.:. .: .:.:...:. ::.
HBB HU FGKEFTPPVOAAYOKVVAGVANALAHKYH
      120
                130
                          140
```

Heme and Oxygen

Anchoring of the heme is facilitated by a histidine nitrogen that binds to the iron. A second histidine is near the bound oxygen.

Problem 1

Given the PDB structure 1GZX for each monomer:

- Considering a minimum atom distance of 3.5 Å, identify the residues in proximity of the heme and oxygen group.
- Using the same procedure identify the possible interacting residues among the monomers.

Suggestions:

- Modify the program for parsing a PDB file including the file 'HETATM' that includes the coordinate of the Heme and Oxy groups
- The distance between two group of atoms is minimum distance between all possible pairs combinations
- The functions used to calculate the distance between prostetic groups and monomers can be modified to calculate the distance between monomer

Problem 2

Given the PDB structure 1GZX:

- Generate the dssp file of the whole structure and the substructures and calculate the surface of interaction between all the monomers.
- Evaluating the differences in relative solvent accessibility, identify the interacting residues among all the monomers.
- Compare the results obtained for each monomer.

Suggestions:

- Generate the dssp of the single monomers and the four structures excluding one monomer.
- The comparison of the different dssp allows to calculate the surface of interaction that each monomer has with the remaining ones.