Fejér's Theorem for Fourier Series

Department of Mathematics

Anmol Aggarwal, Yohance Osborne, Anđela Marković, Thevin Degamboda, Tinashe Dingwiza

Introduction

On the 9th of February 1880, Lipót Féjer was born as Leopold Weiss in Pécs, Hungary. Around 1900, he abandoned his Germanic name in favor of a Hungarian equivalent so as to express his solidarity with Hungarian culture. Remarkably, at the age of 19 years, he proved what is now called $Fej\acute{e}r$'s Theorem which may be used to approximate continuous, periodic functions of one variable defined over the real numbers \mathbb{R} .

Lipót Fejér

Definitions

Let f be a locally integrable, 2π -periodic function over \mathbb{R} .

• Uniform Convergence: We say that a sequence of functions $\{f_n(x)\}_{n\in\mathbb{N}}$ converges uniformly to f on $[-\pi,\pi]$ if

$$\lim_{n \to \infty} \left(\sup_{x \in [-\pi, \pi]} |f_n(x) - f(x)| \right) = 0.$$

- Fourier Coefficient \hat{f}_k : Corresponding to a given integer k, this is a number given by $\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} e^{-ikt} f(t) dt$.
- Fourier Series N-th Partial Sum: Given a natural number $N \geq 0$ and x in the interval $[-\pi,\pi]$, this is the finite sum $S_N(x) = \sum_{k=-N}^N \hat{f}_k e^{ikx}$.
- n-th Cesáro average: For any non-negative integer n, this is the average of the first n+1 partial sums $\{S_N(x)\}_{N=0}^n$. We denote it by $\sigma_n(x) = \frac{1}{n+1} \sum_{N=0}^n S_N(x)$.

Fejér's Theorem

If $f: [-\pi, \pi] \to \mathbb{C}$ is continuous at $x \in [-\pi, \pi]$ and f is Riemann integrable, then:

 $\sigma_n(x)$ converges to f(x) as $n \to \infty$.

Furthermore, if f is continuous, then:

 σ_n converges to f uniformly on $[-\pi, \pi]$.

The first part of the theorem gives conditions which ensure that the sequence of Cesáro averages give good approximations of the value of the function f wherever it is continuous. The final result of the theorem follows quite naturally if f is continuous everywhere on its domain.

Consequences

While Fejér's theorem has uses in advanced topics, such as Functional Analysis (see [4]), here three relatively elementary consequences are shared:

• If $f: [-\pi, \pi] \to \mathbb{C}$ is continuous, then there exists a sequence of trigonometric polynomials which converge uniformly to f on $[-\pi, \pi]$. An example of a sequence of trigonometric polynomials would be $\{S_N(x)\}_{N=0}^{\infty}$.

ullet If $f,g:[-\pi,\pi] \to \mathbb{C}$ are continuous and

$$\int_{0}^{2\pi} e^{-ikt} f(t) dt = \int_{0}^{2\pi} e^{-ikt} g(t) dt$$

for all $k \in \mathbb{Z}$, then $f \equiv g$. In other words, any two continuous functions which have identical Fourier coefficients, describe the same function.

• Fejér's theorem can be used to derive *Weierstrass' approximation theorem* for continuous functions on $[-\pi,\pi]$, which states that there exists a sequence of polynomials which converge uniformly to f.

Example

Consider the function:

$$h(x) = \frac{\pi}{2} - |x|$$
 $x \in [-\pi, \pi].$

We may express the N-th partial sum of the Fourier series for h and the associated n-th Cesáro average as follows:

$$S_N(x) = \sum_{k=0}^{N} \frac{4\cos[(2k+1)x]}{\pi(2k+1)^2},$$

$$\sigma_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{\pi}{2} - |t|\right) \frac{1}{n+1} \left(\frac{\sin[(n+1)\frac{(x-t)}{2}]}{\sin(\frac{x-t}{2})}\right)^2 dt.$$

Since h is continuous on $[-\pi,\pi]$, we can apply Fejér's theorem to deduce that

 σ_n converges to h uniformly as $n \to \infty$.

This is an illustration of uniform convergence as it shows how σ_n better approximates h, over all of $[-\pi, \pi]$, as n is increased.

Acknowledgement

This poster summarizes the second-year project which was undertaken in June 2018. We would like to give special thanks to Prof Alex Sobolev and Prof Michael Singer for all their help.

References

- [1] Körner, T. (1988), 'Proof of Fejér's theorem', 'Introduction', and 'The circle T' in *Fourier Analysis*. Cambridge: Cambridge University Press.
- [2] Haggstrom, P. (2016), The nitty gritty of Fejér's Theorem
- [3] Krishnapur, M. (2017), Topics in Analysis (pp. 1-6)
- [4] Crioranescu I. Lizama C. (1997), Some Applications of Fejer's Theorem to Operator Cosine Functions in Banach Spaces in Volume 125 Proceedings of the American Mathematical Society.