Ficheros y Bases de Datos Curso 2012-2013 Primer Parcial. 26 de Junio de 2013

Nombre:
Se debe entregar esta hoja
1) (3,5 puntos) A partir de la información sobre la BD que se describe más abajo, se pide:
 a) (1,5 puntos) El esquema entidad-relación, incluyendo atributos clave, restricciones de cardinalidad y participación. b) (1 puntos) Pasar al modelo relacional haciendo uso de las transformaciones apropiadas c) (0,5 puntos) Indicar las restricciones de integridad referencial resultantes. d) (0,5 puntos) Indicar otras restricciones de integridad no reflejadas en el modelo relacional.
En el congreso español de informática participan un gran número de investigadores enviando y presentando artículos. Las normas del congreso indican que: - Un artículo debe tener un identificador, título, y debe ser firmado por entre uno y cuatro autores, unos de los cuales lo envía (main autor). Se debe conocer la posición de cada autor firmante (primero, segundo) - Se organizan diferentes sesiones, cada una con una fecha, hora, lugar y un autor que la organiza (chairman). Todos los artículos deben ser presentados en una sesión. - Los autores son identificados por su DNI, y debe conocerse su nombre, apellido, afiliación, correo electrónico, teléfono, y si asistirán a la cena de gala. - Se premiará el mejor artículo de cada sesión.
A continuación se representa un posible diagrama E-R resultante:

El modelo relacional derivado del diagrama E-R anterior:

Otras restricciones de integridad no reflejadas en el modelo relacional son:

Las restricciones de participación:

Artículo tiene entre uno y cuatro autores

Restricciones de participación total en relaciones muchos a muchos: Un artículo tiene al menos un autor

Las posiciones de los autores en un mismo artículo son distintas

2) (4 puntos) Dado el siguiente modelo relacional Autores(<u>DNI</u>, nombre, apellido, ciudad, universidad) Escribe(<u>DNI</u>, artículo, posición, autorEnvio) La columna posición es de tipo entero y autorEnvio es de tipo CHAR(2) con valores 'SI' o 'NO'.

Realizar las siguientes consultas SQL

 a) (0,5 puntos) Listar en orden alfabético de apellido y nombre los apellidos y nombres de los autores que son primeros autores de algún artículo. No usar subconsulta.

```
SELECT DISTICT apellido, nombre
FROM Autores A, Escribe E
WHERE A.DNI = E.DNI
AND posición = 1 )
ORDER BY 1,2
```

 b) (0,5 puntos) Listar en orden alfabético de apellido y nombre los apellidos y nombres de los autores que son primeros autores de algún artículo. Usar subconsulta no correlacionada.

```
SELECT apellido, nombre
FROM Autores
WHERE DNI IN (SELECT DNI
FROM Escribe
WHERE posición = 1)
ORDER BY 1,2
```

c) (0,5 puntos) Listar en orden alfabético de apellido y nombre los apellidos y nombres de los autores que son primeros autores de algún artículo. Usar subconsulta correlacionada..

```
SELECT apellido, nombre
FROM Autores A
WHERE EXISTS (SELECT *
FROM Escribe
WHERE DNI = A.DNI
AND posición = 1)
ORDER BY 1,2
```

 d) (0,5 puntos) Listar los apellidos y nombres de los autores junto a el número de artículos que han escrito. Deben aparecer primero los que más artículos han escrito.

```
SELECT apellido, nombre, count(*) AS NumArtículos
FROM Autores A, Escribe E
WHERE A.DNI = E.DNI
GROUP BY apellido, nombre
ORDER BY Numartículos DESC
```

e) (0,5 puntos) Listar el autor o autores que más artículos han escrito

```
SELECT apellido, nombre
FROM Autores A, Escribe E
WHERE A.DNI = E.DNI
GROUP BY apellido, nombre
HAVING COUNT(*) >= ALL (SELECT COUNT(*)
FROM Escribe
GROUP BY DNI
)
```

f) (0,5 puntos) Indicar los autores que nunca han sido autores de envío o que han escrito algún artículo en solitario.

```
SELECT apellido, nombre
FROM Autores
WHERE DNI NOT IN (SELECT autorEnvio
FROM Escribe)
UNION ALL

SELECT apellido, nombre
FROM Autores
WHERE DNI IN ( SELECT MAX(DNI)
FROM Escribe
GROUP BY artículo
HAVING COUNT(*) = 1
```

g) (0,5 puntos) No pueden haber artículos de más de 5 autores. Actualizar la base de datos.

```
DELETE FROM Escribe
WHERE artículo IN (SELECT artículo
FROM Escribe
GROUP BY artículo
HAVING COUNT(*)>5)
```

h) (0,5 puntos) Borrar los autores que no han escrito ningún artículo

```
DELETE FROM Autores
WHERE DNI NOT IN (SELECT DNI
FROM Escribe)
```

3) (2,5 puntos) Dado el esquema de relación Escribe (<u>DNI, artículo,</u> posición, nombre, apellido, autorEnvio)

- a) (0,5 puntos) Dar un conjunto minimal de dependencias funcionales, sabiendo que en la lista de restricciones tenemos que:
 - Cada artículo tiene un único autor de envío

- DNI→ nombre, apellido

```
S = { DNI, artículo → posición
    DNI → nombre
    DNI → apellido
    artículo → autorEnvio
}
```

b) (0,5 puntos) ¿En qué forma normal está Escribe?.

Envio está en 1FN. No está en 2FN porque hay DF incompletas

c) (0,5 puntos) Encuentra la 3FN de Escribe, subrayando las claves primarias.

```
Escribe(<u>DNI</u>, <u>artículo</u>, posición)
Autor(<u>DNI</u>, nombre, apellido)
Artículos(<u>artículo</u>, autorEnvio)
```

d) (0,5) Encuentra la FNBC de Escribe.

Igual que la 3FN

- e) (0,25 puntos) Describe que es una descomposición sin pérdida.
- (0,25 puntos) ¿Cómo se puede comprobar que una descomposición es sin pérdida?.

Una descomposición $D=\{R_1,\ldots,R_m\}$ del esquema R presenta la propiedad de reunión no aditiva (sin pérdida) con respecto al conjunto de dependencias funcionales S sobre R si para todo estado de la relación r de R que satisfaga S, se cumple

$$(\pi_{R1}(r), \ldots, \pi_{Rm}(r)) = r$$

Una descomposición $D=\{R_1,\ R_2\}$ del esquema R presenta la propiedad de reunión no aditiva con respecto al conjunto de dependencias funcionales S sobre R si y sólo si se cumple alguna de las dos condiciones siguientes:

$$((R_1 \cap R_2) \rightarrow (R_1 - R_2)) \in S^+$$

O bien

$$((R_1 \cap R_2) \rightarrow (R_2 - R_1)) \in S^+$$