

ECAL and ES Alignment 2018 First Results

MoCa Meeting 9th May 2018

Tanvi Wamorkar¹, Pei-Rong Yu²

[1] Northeastern University[2] National Taiwan University

Outline

- Datasets used to perform ECAL/ES alignment
- Comparison of 2017 and 2018 alignment values:
 - ECAL
 - Pre-shower (ES)
- Alignment validation plots
- Conclusion
- Review of ECAL and ES alignment procedure (in Backup)

Datasets

- CMSSW release used: CMSSW 10 1 2 patch2
- MC dataset used to extract bias values : /DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8/RunIISpring18MiniAOD-NZSPU40to70_100X_upgrade2018_realistic_v10-v2/MINIAODSIM
- Global tag used: 101X_dataRun2_Prompt_v9
- /EGamma/Run2018A-ZElectron-PromptReco-v1/RAW-RECO
- DCS JSON used
- CMSSW release used : CMSSW 10 1 2 patch2
- Global tag used: 101X dataRun2 Prompt v9
- /EGamma/Run2018A-EcalESAlign-PromptReco-v1/ALCARECO
- DCS JSON used

ECAL Alignment

ES Alignment

3

Alignment values: ECAL barrel

- Δx , Δy , Δz values for EB + and compared for 2017 and 2018
- On y axis: Supermodule number
- Red circles: 2017 values
- Blue squares : 2018 values
- No significant change observed
 - Expected since during the winter shutdown, only the endcaps were opened and closed
- Alignment values are stored here:

/afs/cern.ch/user/t/twamorka/public/ECALalignment_2018/myEBAlignment_2018_combined_v0.txt

Alignment values: ECAL endcap

	ΔΦ	Δф	ΔΨ	Δχ	Δy	Δz	
EE - { Dee 0 Dee 1 Dee 2 Dee 2 Dee 3	0.00039112 0.00046148 -0.00026845 -0.00045037	0	0.00039112 0.00046148 0.00026845 0 -0.00045037		-0.53779 -0.64747 -0.74857 -0.84081	-0.63415 -0.46271 0.43904 0.41354	2017 values
EE - { Dee 0 Dee 1 Dee 2 Dee 3	0.00039112 0.00046148 -0.00026845 -0.00045037	0	0.00039112 0.00046148 -0.00026845 -0.00045037	-0.093372 -0.087034 0.07638 0.12154	-0.62537 -0.76022 -0.79304 -0.8734	-0.66182 -0.46897 0.46977 0.4397	2018 values

Units are cm

5

Biggest shift is seen in y-direction in EE- ~ 1 mm x-direction in EE+ ~ 2 mm

• Alignment values are stored here:

/afs/cern.ch/user/t/twamorka/public/ECALalignment_2018/myEEAlignment_2018_combined_v0.txt

Starting point & Final result

 Starting global coordinate of preshower with GlobalTag 101X_dataRun2_Prompt_v9

	Ti	ranslation(cn	n)	Rotation(mrad)			
	X	у	Z	α	β	γ	
-Rear	-0.017	-0.56	-308.899	1	0.2	-0.2	
-Front	0	-0.573	-304.259	0.9	0.4	0.3	
+Front	0.218	-0.844	304.139	-0.9	-0.1	1.3	
+Rear	0.226	-0.826	308.766	-1.2	0.3	1.1	
After 10 iterations							
-Rear	-0.047	-0.656	-308.941	1	0.3	-0.4	
-Front	-0.043	-0.667	-304.253	0.8	0.5	0	
+Front	-0.008	-0.881	304.127	-1	0	1.5	
+Rear	0.021	-0.856	308.816	-1.1	0.2	1.3	

• Iterated 10 times alignment to make sure all the parameters are stable.

Alignment values: Pre-shower (ES)

• ES values:

Plus Side

Before ES alignment

```
-Front X: 0, Y: -0.573, Z: -304.259
-Rear X: -0.0173998, Y: -0.5603, Z: -308.899
```

After ES alignment

```
-Front X: -0.0437978, Y: -0.667463, Z: -304.253
-Rear X: -0.0472656, Y: -0.655722, Z: -308.941
```

Minus Side

Before ES alignment

```
+Front X: 0.2182, Y: -0.844501, Z: 304.139
+Rear X: 0.225601, Y: -0.825701, Z: 308.766
```

After ES alignment

```
+Front X: -0.00831555, Y: -0.880701, Z: 304.127
+Rear X: 0.0208182, Y: -0.855631, Z: 308.816
```

Consistent with the shifts seen in Ecal Endcap!

Δη Distributions: ECAL barrel

Post-Alignment

Δη Distributions: ECAL endcap

EE -

05-4-3-2-1 0 1 2 3

 $<\Delta\eta>_{DATA} = -0.16 \times 10^{\circ}$

0.05

DATA

Post-Alignment

Δφ Distributions: ECAL barrel

Post-Alignment

Δφ Distributions: ECAL endcap

EE +

 $<\Delta \phi>_{DATA} = -0.07 \times 10^{-3}$

 $\sigma_{DATA} = 4.07 \times 10^{-3}$

 $\triangle 0.14 \quad <\Delta \phi >_{MC} = -0.02 \times$

0.06

0.04

0.02

Post-Alignment

EE -

ES Alignment: Performance

Work by Pei-Rong Yu (National Taiwan University) and Chia-Ming Kuo (National Central University, Taiwan)

Conclusion

- ECAL barrel and endcap plus Pre-shower (ES) alignment performed with 2018 data.
- New ECAL DB shows improved agreement between Data and MC.
- New ECAL EB and EE alignment values here: /afs/cern.ch/user/t/twamorka/public/ECALalignment_2018/myEBAlignment_2018_combined_v0.txt /afs/cern.ch/user/t/twamorka/public/ECALalignment_2018/myEEAlignment_2018_combined_v0.txt
- Shifts seen in ECAL EE and ES are consistent!
- ECAL and ES alignment validated and are ready to be deployed! ECAL DPG

Backup

Backup

0	0	0	-0.030205	-0.010513	0.0059165
0	0	0	0.020805	-0.019818	0.027511
0	0	0	0.024368	0.0021255	0.030943
0	0	0	-0.010725	0.015078	0.018728
0	0	0	0.0083447	0.018832	0.036616
0	0	0	0.0026953	0.0014639	0.027583
0	0	0	-0.024597	0.030849	0.04396
0	0	0	-0.014708	-0.016936	-0.0015252
0	0	0	-0.023765	-0.024946	0.016137
0	0	0	-0.038689	-0.042868	0.032129
0	0	0	-0.0063553	-0.056835	0.020229
0	0	0	0.074584	-0.021453	-0.0079159
0	0	0	0.059957	-0.067997	0.027082
0	0	0	0.046182	-0.026456	0.029626
0	0	0	-0.03922	-0.013426	0.0066461
0	0	0	-0.05598	-0.017511	0.0096386
0	0	0	-0.053563	-0.070452	0.024857
0	0	0	0.015049	-0.025962	0.024303
0	0	0	0.0058137	-0.012952	-0.0041128
0	0	0	-0.0083776	-0.052647	0.019064
0	0	0	-0.022586	-0.058122	0.024516
0	0	0	0.016053	0.0092857	0.014064
0	0	0	0.021024	0.021458	-0.0080467
0	0	0	-0.026797	0.00034987	0.014887
0	0	0	-0.04931	-0.017304	-0.0070399
0	0	0	-0.0037254	-0.040976	0.011542
0	0	0	-0.0072039	-0.037526	0.014459
0	0	0	0.0090411	-0.0068026	-0.0014003
0	0	0	0.01299	-0.044767	0.0031752
0	0	0	0.00010993	-0.048688	0.0058803
0	0	0	0.043883	0.065846	0.043642
0	0	0	0.018258	-0.05576	0.0013514
0	0	0	-0.024014	-0.10016	-0.022005
0	0	0	-0.0020234	-0.033327	-0.0059957
0	0	0	-0.0080323	-0.019199	-0.00031756
0	0	0	0.042269	-0.04066	-0.017216

2018 alignment values EB (Units are in cm)

ECAL Alignment: Quick Review

- Alignment of ECAL barrel and endcap with respect to tracking system.
- Measured using electrons from Z→ee events.
- The alignment procedure is based on a minimization of χ^2 (sum of χ_+^2 for positrons and χ_-^2 for electrons). $\chi^2 = \chi_+^2 + \chi_-^2$
- The is based on $\Delta\eta$ and $\Delta\phi$ and it minimizes the differences b/w MC and Data for these variables. Under the assumption that in a perfectly aligned system MC and data should agree in these variables, by means of minimization we are effectively aligning ECAL.

$$\chi_{\pm}^{2} = \sum_{lepton} \frac{(\Delta \varphi - \langle \Delta \varphi_{\pm}^{MC} \rangle)^{2}}{\varepsilon_{\varphi}^{2}} + \frac{(\Delta \eta - \langle \Delta \eta^{MC} \rangle)^{2}}{\varepsilon_{\eta}^{2}}$$

- More details on the alignment procedure can be found here:
 - CMS AN-2013/328 CMS ECAL alignment in the LHC RUN1
 - CMS DN-2015/026 CMS ECAL alignment in the LHC RUN II

ES Alignment: Quick Review

- Preshower (ES) sits between the strip tracker and ECAL endcap crystals.
- Each side consists of 2 detect disks (front and rear) set to different directions. Thus, the front (rear) plane is sensitive to X (Y) axis.
- The coordinate of each plane are aligned with the tracker.
 - Done by matching the expected hit point of reconstructed tracks with trajectory extrapolation to data.
 - Minimization of χ^2 value is performed for several iterations until a stable final result is reached with respect to the tracker.

Work by Pei-Rong Yu (National Taiwan University) and Chia-Ming Kuo (National Central University, Taiwan)

Δφ Distributions: ECAL barrel (Electrons)

EB +

Post-Alignment

EB -

Δφ Distributions: ECAL endcap (Electrons)

Post-Alignment

Δφ Distributions: ECAL barrel (Positron)

Post-Alignment

Δφ Distributions: ECAL endcap (Positron)

Post-Alignment

