EE708: Fundamentals of Data Science and Machine Intelligence

Assignment 4

Based on Module 4B: Decision Trees and Module 5: Gaussian Mixture Modeling

- 1. A dataset contains 200 samples classified into two classes: 120 positive and 80 negatives.
 - a. Compute the Gini index before splitting.
 - b. If a split results in subsets:

Left: (50 positive, 10 negative)

Right: (70 positive, 70 negative)

Compute the weighted Gini index and determine whether the split improves purity.

- 2. Consider the given dataset with two independent variables (x_1, x_2) and one dependent variable (y):
 - a. Use the sum of squared errors (SSE) to determine the best splitting point for x_1 .
 - b. Construct the first split of a regression tree using SSE as the impurity measure.
- 3. Consider a 2-dimensional feature space with a dataset of N = 10points. A vector quantization (VQ) system maps these points into K = 3 clusters using a codebook. The distortion function is the squared Euclidean distance between the original points and their assigned cluster centroids. Given the following initial cluster centroids:

x_1	x_2	y
1	x ₂ 5	10
2	6	12
3	8	15
4	10	18
5	12	21
6	15	25
7	18	28
8	20	30

 $C_1 = (2,3), \quad C_2 = (5,8), \quad C_3 = (9,4)$ Assign the following data points to their closest centroid using squared Euclidean distance:

- a. Compute the new centroids after one iteration of vector quantization.
- b. Show whether the distortion decreases after this iteration.
- 4. Show that if we maximize the first equation with respect to Σ_k and π_k while keeping the responsibilities $\gamma(z_{nk})$ fixed, we obtain the closed-form solutions given by the following equations:

$$E_{Z}[\ln p (X, Z | \mu, \Sigma, \pi)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left(\ln \pi_{k} + \ln \mathcal{N} (x_{n} | \mu_{k}, \Sigma_{k})\right)$$

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T}$$

$$\pi_{k} = \frac{N_{k}}{N}$$

5. Consider a density model given by a mixture distribution

$$p(x) = \sum_{k=1}^{K} \pi_k p(x \mid k)$$

and suppose that we partition the vector \mathbf{x} into two parts so that $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$. Show that the conditional density $p(x_b \mid x_a)$ is itself a mixture distribution and find expressions for the mixing coefficients and component densities.

6. Consider a mixture of Gaussian distributions given by

$$p(x|\Theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

where:

K: number of Gaussian components

 π_k : mixing coefficients such that $\sum_{k=1}^K \pi_k = 1$ and $\pi_k > 0$

 $\mathcal{N}(x|\mu_k, \Sigma_k)$: Gaussian density with mean μ_k and covariance Σ_k

- $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ represents the parameters of the model.
- a. Write down the complete log-likelihood function for a dataset $\{x_1, x_2, ..., x_N\}$ assuming that the data points are drawn independently from the mixture model.
- b. Derive the Maximum Likelihood Estimation (MLE) update rules for π_k , μ_k and Σ_k assuming that the component that generated each data point is known.

Programming Questions:

- 7. Write a code to obtain a fully grown regression tree for the data given in Q2 and visualize the regression tree.
- 8. Binary classification tree:
 - a. Train a fully grown binary classification tree based on Gini impurity using the dataset *A4 train.csv* and visualize it.
 - b. Compute the Sum of Squared Errors (SSE) on the test dataset (A4_test.csv) at each depth and plot the variation of SSE with depth.
 - c. Determine the optimal pruning depth by selecting the depth where SSE change is minimal.
 - d. Visualize the pruned tree.