

DATA: Differentiable ArchiTecture Approximation

33nd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada Jianlong Chang, Xinbang Zhang, Yiwen Guo, Gaofeng Meng, Zhouchen Lin, Shiming Xiang, Chunhong Pan

Differentiable Architecture Search

Intrinsically, the goal in NAS is to find a graph that minimizes the validation loss, where the network weights associated with the architecture α*are obtained by minimizing the training loss.

$$\min_{\alpha \in \mathcal{A}} \mathcal{L}_{val}(\mathcal{N}(\alpha, w^*)), \quad s.t. \ w^* = \arg\min_{w} \mathcal{L}_{train}(\mathcal{N}(\alpha^*, w))$$

This implies that the essence of NAS is to solve a bi-level optimization problem, which is hard to optimize because of the nested relationship between architecture parameters and network weights. To handle this issue, we parameterize architectures with binary codes, and devote to jointly learning architectures and network weights in a differentiable way.

Parameterizing Architectures with Binary Codes

The function in the edge (i,j) can be decomposed into a superposition of primitive operations, i.e.,

$$o^{(i,j)}(x^{(i)}) = \sum_{k=1}^{K} A_k^{(i,j)} \cdot o_k(x^{(i)}), \quad s.t. \ A_k^{(i,j)} \in \{0,1\}, \ 1 \le k \le K,$$

Benefiting from the uniqueness property of our architecture code A, the task of learning an architecture can therefore be converted to learning the optimal binary code A.

From Probability Vectors to Binary Codes - Ensemble Gumbel-Softmax

We introduce a binary function $f(\cdot)$ to approach the optimal binary codes with probability vectors, which can be easily obtained in deep models. The function $f(\cdot)$ is formulated with the ensemble Gumbel-softmax. During the forward propagation, with three candidate primitive operations (i.e., green, orange and cyan lines), the binary function $f(\cdot)$ is employed to generate a network in a differentiable manner. During the backward propagation, the standard back-propagation algorithm is utilized to simultaneously calculate the gradients of the both architecture parameters and network weights.

For a probability vector p=[0.5,0.5], Gumbel-Softmax solely pertains to sample only two binary codes with the same probability, i.e., P([1,0])=P([0,1])=0.5. The ensemble Gumbel-Softmax is capable of sampling more binary codes, *i.e.*, [1,0], [1,1] and [0,1]. Furthermore, the probabilities of sampling these binary codes are logical. It is intuitive that the probability of sampling [1,1] is larger than the probabilities of sampling the others since the probabilities in p=[0.5,0.5] are equal.

Architectures on CIFAR-10

Experiments

Table 1 gives the searched architectures and classification results on CIFAR-10, which shows that DATA achieves comparable results with the state-of-the-art with less computation resources.

Table 2 indicates that the cell searched on CIFAR-10 can be smoothly employed to deal with the large-scale classification task.

Table 1: Comparison with state-of-the-art image classifiers on CIFAR-10 (lower test error is better) Architecture

	(%)	(M)	(GPU days)	r	
DenseNet-BC [22]	3.46	25.6	-	-	manual
PNAS [31] Hierarchical evolution [33] AmoebaNet-A [44] AmoebaNet-B + cutout [44] NASNet-A + cutout [60] ENAS + cutout [42]	3.41 3.75 3.34 2.55 2.65 2.89	3.2 15.7 3.2 2.8 3.3 4.6	225 300 3150 3150 2000 0.5	8 6 19 19 13 6	SMBO evolution evolution evolution RL RL
DARTS (1-th order) + cutout [34] DARTS (2-th order) + cutout [34] SNAS + mild + cutout [53] SNAS + moderate + cutout [53] SNAS + aggressive + cutout [53]	3.00 2.76 2.98 2.85 3.10	3.3 3.3 2.9 2.8 2.3	1.5 4 1.5 1.5 1.5	7 7 - -	gradient-based gradient-based gradient-based gradient-based gradient-based
Random search baseline + cutout DATA $(M = 4)$ + cutout DATA $(M = 7)$ + cutout	3.29 2.70 2.59	3.2 3.2 3.4	4 1 1	7 7 7	random gradient-based gradient-based

Architecture	Test Error (%)		Params	FLOPs	Search Cost	Search
Arcintecture	Top 1	1 Top 5 (M)	(M)	(M)	(GPU days)	Search
Inception-v1 48 MobileNet 20 ShuffleNet-v2 2× 36	30.2 29.4 25.1	10.1 10.5	6.6 4.2 ~5	1448 569 591	- - -	manual manual manual
PNAS [31]	25.8	8.1	5.1	588	~225 3150 3150 3150 2000 2000 2000	SMBO
AmoebaNet-A [44]	25.5	8.0	5.1	555		evolution
AmoebaNet-B [44]	26.0	8.5	5.3	555		evolution
AmoebaNet-C [44]	24.3	7.6	6.4	570		evolution
NASNet-A [60]	26.0	8.4	5.3	564		RL
NASNet-B [60]	27.2	8.7	5.3	488		RL
NASNet-C [60]	27.5	9.0	4.9	558		RL
DARTS (on CIFAR-10) 34	26.7	8.7	4.7	574	4	gradient-based
SNAS (mild constraint) 53	27.3	9.2	4.3	522	1.5	gradient-based
GDAS 18	26.0	8.5	5.3	581	0.21	gradient-based
DATA $(M = 4)$	25.5	8.3	4.9	568	1	gradient-based
DATA $(M = 7)$	24.9	8.0	5.0	588	1	gradient-based

Table 3 signifies that DATA also is in a position to search recurrent architectures effectively.

Table 4 demonstrates that the transferability is also retentive on recurrent architectures.

Table 3: Comparison with state-of-the-art language models on PTB (lower perplexity is better). Architecture Variational RHN [57] LSTM [40] LSTM + skip connections [38] 58.1 DARTS (first order) [34] DARTS (second order) [34] ENAS [42] gradient-based 58.1 68.3 gradient-based

Architecture	Perpl	exity	Params	Search Cost	Search
Arcintecture	valid	test	(M)	(GPU days)	Search
LSTM + augmented loss [23]	91.5	87.0	28	-	manual
LSTM + cache pointer [16]	-	68.9	-	-	manual
LSTM [40]	69.1	66.0	33	-	manual
LSTM + skip connections [38]	69.1	65.9	24	-	manual
LSTM + 15 softmax experts [54]	66.0	63.3	33	-	manual
DARTS (searched on PTB) [34]	69.5	66.9	33	1	gradient-base
ENAS (searched on PTB) [42]	72.4	70.4	33	0.5	RL
DATA $(M=4)$	67.3	64.6	33	1	gradient-base
DATA (M = 7)	66.5	64.2	33	1	gradient-base

Ablation study

Table 5 means that larger M indicates higher performance, while more parameters will be introduced as M increases.

gradient-based

gradient-based

Table 6 verifies that DATA have more prominent superiority on more complex tasks, not just toy tasks on the tiny datasets, because of a large search space that is proportional to the sampling time M.

Table 5: Sensitivity to number of sampling tin					g times of	on CIFAR-10 (lower test error is better).				
	Sampling Times (M)	1	2	3	4	5	6	7	8	9
	Test Error (%) Params (M)	2.94 2.54	2.95 2.68	2.78 2.71	2.70 3.24	2.72 3.41	2.60 3.49	2.59 3.44	2.50 3.79	2.45 3.97

_	Table 6	: Semantic segn	nentation on the	e PASCAL VOC-2	2012 (higher mIO)	U is better).
_	Architecture	NASNet 58	DARTS [32]	DATA $(M=1)$	DATA $(M=4)$	DATA $(M=7)$
_	mIOU(%) Params (M)	73.7 12.4	73.2 11.8	73.4 10.8	74.1 11.7	75.6 12.7

Table 7 shows the stds of DATA and the variances of DATA with different sampling time M.

Table 8 reports the validation errors at the end of search and after architecture derivation without fine-tuning.

Figure (a) illustrates the search progresses of different models. Figure (b) and (c) study the influence of initializations and the contribution of ensemble Gumbel-Softmax.

Table 7: Number of operations on CIFAR-10. Model Error (%) Params (M) 3.30 4.00 5.20 2.80 DARTS(k=1) 3.00 ± 0.14 3.10 ± 0.12 DARTS(k=2) 2.95 ± 0.13 DARTS(k=3)SNAS 2.85 ± 0.02 **2.54** 3.24 3.44 DATA(M=1) 2.94 ± 0.09 2.70 ± 0.10 DATA(M=4) 2.59 ± 0.09 DATA(M=7)Table 8: Validation error on CIFAR-10

Random search baseline DATA (M=4)

DATA (M=7)

Table 8. V	andation em		AK-10.
Model	Search	Child	Gap
DARTS SNAS	12.33 11.46	45.34 9.33	33.01 2.13
DATA (M=7)	11.08	9.21	1.87
	_		

Figure 3: Ablation study.