	Lecture 5: Evaluation
Itow	do I choose among the various models?
	es. choose le fer LNN
	e.g. choose design for OLS
We	verd some way to evaluate which model building process is going to perform beter.
	model building process is going to perform better.
	-> USC JENN W/ le=5
	-> 1000 POND CONDE DALCILLO
	→ vsc lenn ad optimize over possible valves of te
A (maybe not always great) way of doing this!
	1
	Calculate some perfomence metric on f
	Calculate some perfomence metric on f from the training data
	,
6	
	1) training residual sums of squares
	$O(C) = \sum_{i=1}^{N} (i + i + i)^2$
	$2SS_{train} = \sum_{h=1}^{N} (y_h - \hat{y}_h)^2$
	2) training mean Sq. error
	MSE train
	- train
,	DAGE - MOE
	3) trains roof mean & err: RMSEtrain = MSEtrain

4	training Restrain Tostrain
TSS	$\frac{1}{100} = \frac{1}{100} \left(\frac{y_n - y_n^2}{y_n^2} \right)$
	isnit a training metric always a good measure of performance?
\rightarrow	I don't actually care about performence on my trains dates (I diready know the answer)
	on new/unseen data.
ER	(generalization performance) M: N: N: N: N: N: N: N: N: N:
	N n=1 (yn, f(xn)) ~ [E[L(1, f(x))] avg. (or, over actual loss trainly data
Simil	
	Metric (34n, f(2h)) ~ [Metric (84, f(x))] training metric (perf. generalization performance

Focusing too much on training metric can be misteading. This happens ble when I evalvate f on my training data I am evaluating it on the same data used to build f. So my model builds proces has alrealy seen the traing duta - its not a fair evaluation. Analogg: Test 1: I give you le practice

problems and a week

eval. on from now I give excur

trains data weekly those to problems. Test 2: I give you lo practice problem ad a week from now I give excum w/ 10 related but hot exactly the same grestions. Ex. This can happen in SML too. Consider optimizing the value of R fer ENN by choosing the value of R that minimizes RSS train. What value of k do I choose? k = 1

How do me solve this? let's estimate generalization perf. Need independent set of (unseen) duta to evaluate av model on. Testing Data: { (Ktest, h, Ytest, h) } h=1 Procedure: (1) use traing data to build of (2) eval. perf. of Î on testiy duta RSS test MSE test) () an estimate of generalization perf. of my model buildit process. How do I get testing data? Do a test/train split. p = 90,80,50 p 90 Sdata trains date

One	can do this split multiple times which is called cross-validation
K-	old Cross Validation Cycle through folds
	Fold 2 (1) train model on all
- Idah	(2) test model on
	Fold K Call this fest metric Me
So	at the end of loop I have $m_1, m_2,, m_K$
Can	combine to get averall perf. metric m = median(M,, Mx)
	nait! If I train K different models hich do I use?
None	. I train a model vsirg all of my data

