Yuhang Zhang

Beijing Institute of Technology(BIT)

October 27, 2019





### Outline

- 1 Overview
- 2 Feedforward Network
  - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- 3 Feedback Network
  - Hopfield Network
  - Long Short-Term Memory
- 4 Review





### Outline

- 1 Overview
- - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- - Hopfield Network
  - Long Short-Term Memory



















Figure: Artificial Neuron





Figure: Artificial Neuron







#### Main problems

Architecture





- Architecture
  - feedforward (static)





### Main problems

Architecture

0000

- feedforward (static)
- feedback (dynamic)





- Architecture
  - feedforward (static)
  - feedback (dynamic)
- Learning Approach





- Architecture
  - feedforward (static)
  - feedback (dynamic)
- Learning Approach
  - Incremental vs. Batch





- Architecture
  - feedforward (static)
  - feedback (dynamic)
- Learning Approach
  - Incremental vs. Batch
  - Supervised vs. Unsupervised





- Architecture
  - feedforward (static)
  - feedback (dynamic)
- Learning Approach
  - Incremental vs. Batch
  - Supervised vs. Unsupervised
  - Error Correction vs. Hebbrian Learning vs. Competitive Learning











### Outline

- 2 Feedforward Network
  - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- - Hopfield Network
  - Long Short-Term Memory





•0000

### Outline

- 2 Feedforward Network
  - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- - Hopfield Network
  - Long Short-Term Memory





00000

# Single-layer vs. Multi-layer



Figure: Single-layer Perceptron



Figure: Multi-layer Perceptron



# Single-layer vs. Multi-layer

■ Single-layer : only linear functions



### Single-layer vs. Multi-layer

- Single-layer : only linear functions
- Multi-layer : non-linear operations hidden layer added
  - ▶ BP : Use sigmoid activation function



# Multi-layer ► BP Network



Figure: BP Structure



## Multi-layer ► BP Network



Figure: BP Structure

- objectiveness (measuring criterion)
  - ► MSE :

$$e(\omega) = \frac{1}{2} \sum_{i=1}^{n} [d_i - y_i]^2$$





## Multi-layer ► BP Network



Figure: BP Structure

- objectiveness (measuring criterion)
  - ► MSE :

$$e(\omega) = \frac{1}{2} \sum_{i=1}^{n} [d_i - y_i]^2$$

- optimization
  - ► Gradient Descent :

$$\omega = \omega - \eta rac{\partial e}{\partial \omega}$$
 北京理工大学 велию натити с от теснологу

# Multi-layer ► BP Network

Problems: (especially for deeper layers)

lacktriangle Diffusion of Gradient o early layers not trained well





# Multi-layer ► BP Network

Problems: (especially for deeper layers)

- Diffusion of Gradient  $\rightarrow$  early layers not trained well
- lacksquare Supervised learning o not enough labeled data

00000





•0000

### Outline

- 2 Feedforward Network
  - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- - Hopfield Network
  - Long Short-Term Memory







Figure: DBN Structure





### Key points :

Figure: DBN Structure





Key points :

Feedforward Network

00000

Unsupervised pre-learning

Figure: DBN Structure





Figure: DBN Structure

#### Key points :

Feedforward Network

00000

- Unsupervised pre-learning
- Greedy layer-wise training





00000

Deep Network

# Deep Belifef Network (DBN)



Figure: DBN Structure

#### Key points :

- Unsupervised pre-learning
- Greedy layer-wise training
- Use softmax for output layer





00000

# Deep Belifef Network (DBN)



Figure: DBN Structure

- Key points :
  - Unsupervised pre-learning
  - Greedy layer-wise training
  - Use softmax for output layer
- objectiveness: MLE





00000

# Deep Belifef Network (DBN)



- Key points :
  - Unsupervised pre-learning
  - Greedy layer-wise training
  - Use softmax for output layer
- objectiveness: MLE
- optimization: Gradient Ascent





Deep Network

### DBN ▶ Bases

#### Statistical distribution

random variable for each neuron

$$P(v, h^1, h^2, \dots, h^l) = P(v|h^1)P(h^1|h^2)\dots P(h^{l-2}|h^{l-1})P(h^{l-1}, h^l)$$

$$P(h^{i}|h^{i+1}) = \prod_{j=1}^{n^{i}} P(h_{j}^{i}|h^{i+1})$$





00000

### DBN ► Bases

#### Statistical distribution

random variable for each neuron

$$P(v, h^1, h^2, \dots, h^l) = P(v|h^1)P(h^1|h^2)\dots P(h^{l-2}|h^{l-1})P(h^{l-1}, h^l)$$

$$P(h^{i}|h^{i+1}) = \prod_{j=1}^{n^{i}} P(h_{j}^{i}|h^{i+1})$$

RBM for distribution between layers





# DBN ► Training



Figure: Greedy Layer-wise Training



00000

# DBN ► Training



Greedy Layer-wise Training

Figure: Greedy Layer-wise Training





Feedforward Network

00000

# DBN ► Training



Figure: Greedy Layer-wise Training

Greedy Layer-wise Training i construct a RBM with v and  $h^1$ 



00000

# DBN ► Training



Figure: Greedy Layer-wise Training

- Greedy Layer-wise Training
  - construct a RBM with v and  $h^1$
  - ii form a new RBM with  $h^1$  and  $h^2$





Feedforward Network

00000

# DBN ► Training



Figure: Greedy Layer-wise Training

#### Greedy Layer-wise Training

- construct a RBM with v and  $h^1$
- ii form a new RBM with  $h^1$  and  $h^2$
- iii continued...





Feedforward Network

00000

Deep Network

# DBN ► Training



Figure: Greedy Layer-wise Training

- Greedy Layer-wise Training
  - i construct a RBM with v and  $h^1$
  - ii form a new RBM with  $h^1$  and  $h^2$
  - iii continued...
- Fine-tuning





# DBN ► Training



Figure: Greedy Layer-wise Training

- Greedy Layer-wise Training
  - construct a RBM with v and  $h^1$
  - ii form a new RBM with  $h^1$  and  $h^2$
  - iii continued...
- Fine-tuning

Feedforward Network

00000

Generative (unsupervised): Up-down algorithm





# DBN ► Training



Figure: Greedy Layer-wise Training

- Greedy Layer-wise Training
  - construct a RBM with  $\nu$  and  $h^1$
  - ii form a new RBM with  $h^1$  and  $h^2$
  - iii continued...
- Fine-tuning

Feedforward Network

00000

- Generative (unsupervised): Up-down algorithm
- Discriminative (supervised): Back propagation



### Auto-encoder



### Auto-encoder

- Bases
  - Encoder



00000

### Auto-encoder

- Bases
  - Encoder
  - Decoder



00000

### Auto-encoder

- Bases
  - Encoder
  - Decoder
- AutoEncoder vs. RBM





#### Auto-encoder

- Bases
  - Encoder
  - Decoder
- AutoEncoder vs. RBM
  - AutoEncoder: reconstruct each training data

00000





#### Auto-encoder

- Bases
  - Encoder
  - Decoder
- AutoEncoder vs. RBM
  - AutoEncoder: reconstruct each training data

00000

RBM: reconstruct distribution of data





#### Outline

- 2 Feedforward Network
  - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- - Hopfield Network
  - Long Short-Term Memory





### **SOFM**



Figure: SOFM structure



### **SOFM**



Fundamental idea Dimensionality reduction



Self-Organizing Feature Map

### **SOFM**



- Fundamental ideaDimensionality reduction
- Principles



### **SOFM**



- Fundamental idea Dimensionality reduction
- Principles
  - Self-reinforcing





Feedforward Network

# **SOFM**



- Fundamental idea Dimensionality reduction
- Principles
  - Self-reinforcing
  - Competition





Feedforward Network

### SOFM



- Fundamental idea Dimensionality reduction
- Principles
  - Self-reinforcing
  - Competition
  - Cooperation





- - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- 3 Feedback Network
  - Hopfield Network
  - Long Short-Term Memory





# Feedback (Recurrent) Network (RNN)

(1) Stable feedback network



- (1) Stable feedback network
  - Hopfield Network





# Feedback (Recurrent) Network (RNN)

- (1) Stable feedback network
  - Hopfield Network
- (2) Sequential feedback network \to Deep Network





# Feedback (Recurrent) Network (RNN)

- (1) Stable feedback network
  - Hopfield Network
- (2) Sequential feedback network \to Deep Network
  - LSTM





### Outline

- - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- 3 Feedback Network
  - Hopfield Network
  - Long Short-Term Memory







Figure: Hopfield Network Structure



Network.png



Network.png Figure: Hopfield Network Structure ■ Full link network





Figure: Hopfield Network Structure

- Full link network
- Training method : change network state







Figure: Hopfield Network Structure

- Full link network
- Training method : change network state
  - asynchronous







Figure: Hopfield Network Structure

- Full link network
- Training method : change network state
  - asynchronous
  - synchronous





# **Energy Function**

$$E = -\frac{1}{2} \sum_{i=0}^{n} \sum_{j=0}^{n} \omega_{ij} s_{i} s_{j} \quad \left(-\sum_{i=1}^{n} I_{i} s_{i}\right)$$



Hopfield Network

# **Energy Function**

$$E = -\frac{1}{2} \sum_{i=0}^{n} \sum_{j=0}^{n} \omega_{ij} s_{i} s_{j} \quad (-\sum_{i=1}^{n} I_{i} s_{i})$$

Stability condition

$$\omega_{ij} = \begin{cases} \omega_{ji} & i \neq j \\ 0 & i = j \end{cases}$$



## **Application**

- Associative memory (CRM)
  - ▶ each local minimum represents one memorized data





Hopfield Network

#### Application

- Associative memory (CRM)
  - ▶ each local minimum represents one memorized data
- Combinatorial Optimization
  - ► TSP



#### Outline

- - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- 3 Feedback Network
  - Hopfield Network
  - Long Short-Term Memory





Long Short-Term Memory

#### Back-Propagation Through Time (BPTT)



Figure: BPTT Structure





#### Back-Propagation Through Time (BPTT)



**Problems** 

Figure: BPTT Structure



#### Back-Propagation Through Time (BPTT)



- **Problems** 
  - **Gradient Vanishing**

Figure: BPTT Structure



#### Back-Propagation Through Time (BPTT)



Figure: BPTT Structure

#### **Problems**

- **Gradient Vanishing**
- **Gradient Exploding**





Figure: LSTM Memory Cell





Internal state (constant error carousel): kernel, linear activation function, self-cycling edge(weight fixed to 1)

Figure: LSTM Memory Cell





Figure: LSTM Memory Cell

- Internal state (constant error carousel): kernel, linear activation function, self-cycling edge(weight fixed to 1)
- Input node : receive earlier signals





Long Short-Term Memory

## LSTM Memory Cell



Figure: LSTM Memory Cell

- Internal state (constant error carousel): kernel, linear activation function, self-cycling edge(weight fixed to 1)
- Input node : receive earlier signals
- Input gate : same as Input node, control result of input







Figure: LSTM Memory Cell







Forget gate: eliminate previous internal state value

Figure: LSTM Memory Cell





Figure: LSTM Memory Cell

Forget gate: eliminate previous internal state value

Feedback Network

00000

Output gate : control result of output



#### LSTM Structure



structure.png

Figure: LSTM structure



#### Outline

- - Perceptron
  - Deep Network
  - Self-Organizing Feature Map
- - Hopfield Network
  - Long Short-Term Memory
- 4 Review





#### Review







#### Thank you

# Thank you for listening!

