Linear Regression

Dr Mehrdad Ghaziasgar

Content - Part 1

- Simple (Univariate) Linear Regression
 - · Model Representation
 - Cost Function
- Gradient Descent
 - Formulation
 - Algorithm
 - · Application to Linear Regression

Simple Linear Regression Model Representation

- Simple (Univariate) Linear Regression
 - Model RepresentationCost Function
- Gradient Descent
 - Formulation
 - Algorithm
 - Application to Linear Regression

- Running example: predicting housing prices
- We obtain information about:
 - Houses e.g. size (sq. metres), no. of bedrooms, no. of bathrooms, no. of garages, frontage (metres), no. of storeys, garden size (sq. metres) etc. etc.
 - Price that each house last (recently) sold for
- Use a learning algorithm to build a model to predict housing prices

Size (sq. m) (x)	Price (1000s of R) (y)
460	6639
70	1681
155	3969
429	5095
•••	•••

Training set of house sizes and prices

We obtain the data above

Supervised learning:

 Given the "right" answer for each data point

Regression:

Predict a real-valued (continuous) output e.g. price

(Side note: the other branch of supervised learning is classification i.e. predict discrete output e.g. category)

Model Representation - Notation

Size (sq. m) (x)	Price (1000s of R) (<i>y</i>)
460	6639
70	1681
155	3969
429	5095
•••	•••

Training set of house sizes and prices

- x: Input variable; "features" used to make predictions e.g. 460 sq. metres
- y: Output variable; "target" output e.g. R 6639000
- m: Number of examples in the training set
- (x,y): A specific sample in the training set
- $(x^{(i)}, y^{(i)})$: the *i*th training example e.g. $x^{(1)} = 460, x^{(2)} = 70...; y^{(1)} = 6639, y^{(2)} = 1681$

Model Representation - Project Design

h: Mapping of x values (sizes) onto \mathbf{v} values (prices)

What does h look like?

Equation of a straight line with gradient θ_1 and y-intercept θ_0

Simple Linear Regression
Price y
1 0 0 0 Model Representation - Deciphering $h_{\theta}(x)$ Price y

Size x

 $\theta_0 = 1; \theta_1 = 0$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Size x

 $\theta_0 = 0; \theta_1 = 1$

Model Representation - Deciphering $h_{ heta}(x)$

Model Representation - Using $h_{\theta}(x)$ to Make Predictions

Given the best fit
$$\theta_0$$
 = 1740; θ_1 = 8.4, predict:

•
$$h_{\theta}(320)$$

= 1740 + 8.4(320)

•
$$h_{\theta}(580)$$

$$= 1740 + 8.4(580)$$

$$h_{\theta}(650)$$

= 1740 + 8.4(650)= 7200

= 6612

= 4428

Model Representation - Summary

- We need to fit a line $(h_{ heta})$ onto the housing data (price versus size)
- The line is determined by the parameters θ_0 and θ_1 • Once we have an appropriate line, we can make price predictions on any unknown values in future
- The values of $heta_0$ and $heta_1$ will determine how well the line fits the training data
- Very important: the parameter values also determine how accurate future price predictions based on size may be
 This is a simple / univariate linear regression problem
- This is a simple 7 dirival face thear regression probern
- Golden question: How do we determine the best $heta_0$ and $heta_1$ to use??

Simple Linear Regression

Cost Function

- Simple (Univariate) Linear Regression
 - Model Representation
- Cost Function
- Gradient Descent
 - Formulation Algorithm
 - Application to Linear Regression

• Given the points in the training set (x,y), choose θ_0 and θ_1 such that the line's predicted prices $(h_{\theta}(x))$ are "close" to the each actual price (y)

Given the points in the training set (x,y), choose θ_0 and θ_1 such that the line's predicted prices $(h_{\theta}(x))$ are "close" to the each actual price (y)

$$h_{ heta}ig(x^{(i)}ig) - y^{(i)}$$
 for all (i) from 1 to m

Compute the distance between $h_{\theta}(x)$ and y for all the data points:

Add/sum the distances up

$$\sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)$$

Similar to adding/summing the squares of the distances up

$$\sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2$$

Similar to adding/summing the squares of the distances up and dividing by the number of points m to get the total average square distance $\frac{1}{m}\sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}$

 $\frac{1}{2m}\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2$ The smaller this is, the better the line fits The larger this is, the worse the line fits This is the "cost function"

Similar to multiplying by a half to get half the total average square distance

$$\frac{1}{2m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^2$$
 The smaller this is, the better the line fits The larger this is, the worse the line fits This is the "cost function"

Remember that:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

So actually: $\frac{1}{2m}\sum_{i=1}^{m} \left(\boldsymbol{\theta_0} + \boldsymbol{\theta_1} \boldsymbol{x^{(i)}} - \boldsymbol{y^{(i)}}\right)^2$

• So the cost function (how well the line fits the data) depends directly on
$$\theta_0$$
 and θ_1

• In mathematical terms: it is a "function" of $heta_0$ and $heta_1$

- So the cost function (how well the line fits the data) depends directly on θ_0 and θ_1 In mathematical terms: it is a "function" of θ_0 and θ_1
 - Conventionally, the function is denoted as I
 - Also known as the squared error function

$$J(\boldsymbol{\theta_0}, \boldsymbol{\theta_1}) = \frac{1}{2m} \sum_{i=1}^{m} (\boldsymbol{h_{\theta}}(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)})^2$$

$$J(\boldsymbol{\theta_0}, \boldsymbol{\theta_1}) = \frac{1}{2m} \sum_{i=1}^{m} (\boldsymbol{\theta_0} + \boldsymbol{\theta_1} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)})^2$$

To choose the best θ₀ and θ₁ for a given training set, find θ₀ and θ₁ for which the cost function *J* has the smallest value i.e. minimize *J* Mathematically:

minimize
$$J(\theta_0, \theta_1)$$
 or
$$\min_{\theta_0, \theta_1} \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2$$
 or

or
$$\min_{\theta_0, \theta_1} \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Cost Function - Deciphering the Cost Function J

To understand what minimizing the cost function means, let's assume:

$$\theta_0 = 0$$

$$heta_0 = 0$$
 $h_{ heta}(x)$ is a line that passes through the

Therefore the cost function now only depends on θ_1 :

minimize $\frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$

Cost Function - Deciphering the Cost Function J

Linear Regressior Cost Function - Deciphering the Cost Function / With Two Params To understand what minimizing the cost The cost function depends on both θ_0 and

function means, now let's take the original cost function: $I(\theta_0,\theta_1)$

An arbitrary line with any gradient and y-

 θ_1 :

$$\underset{\boldsymbol{\theta}_0,\boldsymbol{\theta}_1}{\text{minimize}} \ J(\boldsymbol{\theta}_0,\boldsymbol{\theta}_1)$$

intercept so:

Size x

Price y

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

 $h_{\theta}(x) = 2 + 0.333x$ minimize $\frac{1}{\theta_0, \theta_1} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)}\right)^2$

inear Regressior. Cost Function - Deciphering the Cost Function J With Two Params 100 80 $J(\theta_0, \theta_1)$

Size x

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

The cost function is a 3D bowl-shaped surface:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

inear Regressior. Cost Function - Deciphering the Cost Function J With Two Params Size x $h_{\theta}(x) = \theta_0 + \theta_1 x$

The cost function as a contour plot:

Regression Cost Function - Deciphering the Cost Function / With Two Params Given this bostothesist, sytheths/bbehesist? 800 700 2.0 500 500 400 300 200 1.5 1.0 9 0.5 0.0 -0.5 100 0 -1.0-200 0 400 600 100 200 500 700 0 $J(\boldsymbol{\theta_0}, \boldsymbol{\theta_1}) = \frac{1}{2m} \sum_{i=1}^{m} (\boldsymbol{\theta_0} + \boldsymbol{\theta_1} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)})^2$ Size (sq. metres) $h_{\theta}(x) = \theta_0 + \theta_1 x$

Gradient Descent

Formulation

- Simple (Univariate) Linear Regression
 - Model RepresentationCost Function
 - Gradient Descent
 - Formulation
 - Algorithm
 - Application to Linear Regression

Formulation - Introduction

How would you go about reaching the minimum (water) below?

Formulation - Minimizing the Cost Function

- Strategy:
 - Initialize θ_0 , θ_1 to some random values
 - Continuously make updates to θ_0 and θ_1 in the direction of "descent"
 - Until the minimum is reached

Formulation - Minimizing the Cost Function

Starting at $heta_0 = 0.7$ and $heta_1 = 0.4$

Formulation - Minimizing the Cost Function

Starting at $heta_0 = 0.67$ and $heta_1 = 0.43$

Formulation - Gradient Descent With One Parameter

To show you how to formulate gradient descent, let's again assume:

$$\theta_0 = 0$$

 $h_{\theta}(x)$ is a line that passes through the origin (0,0), with changing gradients so:

 $h_{\theta}(x) = \theta_1 x \cdots$

Size x

depends on θ_1 :

minimize $\frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$

Therefore the cost function now only

minimize
$$J(\theta_1)$$

$$\min_{\theta_1} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Formulation - Gradient Descent With One Parameter Subtract θ_1 by

Formulation - Gradient Descent With One Parameter

Formulation - Gradient Descent With One Parameter

Gradient Descent

Algorithm

- Simple (Univariate) Linear Regression
 - Model RepresentationCost Function
 - Gradient Descent
 - Formulation
 - Algorithm
 - Application to Linear Regression

Algorithm - Gradient Descent With One Parameter

For a cost function $J(\theta_1)$:

• With no learning rate:

$$\theta_1 \leftarrow \theta_1 - \frac{d}{d\theta_1} J(\theta_1)$$

- No learning rate: no controls on convergence
 - Could be too slowCould be too fast
- Codid be too las
- Learning rate is very cost-function specific
- In this case:
 - Too slow
 - 20 steps to convergence

 With appropriate learning rate e.g. α = 1.5:

$$\boldsymbol{\theta}_1 \leftarrow \boldsymbol{\theta}_1 - 1.5 \frac{d}{d\boldsymbol{\theta}_1} J(\boldsymbol{\theta}_1)$$

• 12 (vs 20) steps to convergence (for this specific cost function)

convergence

specific

- Note: learning rate is cost-function
 - · Higher learning rate doesn't necessarily mean faster

- With learning rate too large:
- First possibility: convergence becomes very slow

- With learning rate too large:
- Second possibility: the algorithm diverges (doesn't converge)

Algorithm - Gradient Descent With Two Parameters

For a cost function $J(\theta_0, \theta_1)$:

Repeat until convergence: Update
$$\theta_0, \theta_1$$
 simultaneously:
$$\theta_0 \leftarrow \theta_0 - \alpha \left[\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \right]$$
 $\theta_1 \leftarrow \theta_1 - \alpha \left[\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \right]$ Slope of J in the θ_1 direction

Repeat until convergence: $\begin{array}{ll} \text{tmptheta0} &= \text{theta0} - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \text{tmptheta1} &= \text{theta1} - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \text{theta0} &= \text{tmptheta0} \\ \text{theta1} &= \text{tmptheta1} \\ \end{array}$

Slope of J in the $\boldsymbol{\theta_0}$ direction

Cost Function Algorithm - Illustration Ok now, let's start somewhere and "descend" the cost function down to the minimum 800 700 600 Price (10000s of R) 000 of S 000 of S 000 $J(\theta_0,\theta_1)$ 100 0 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$ 0 100 500 600 700 200 Size (sq. metres) $h_{\theta}(x) = \theta_0 + \theta_1 x$

Algorithm - Gradient Descent With Generic Cost Function

For a cost function $J(\theta_0,...,\theta_n)$ with parameters $\theta_0,...,\theta_n$:

Repeat until convergence:

Update all θ_i simultaneously:

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, ..., \theta_n)$$

Repeat until convergence: $\begin{array}{ll} \text{tmptheta0} &= \text{theta0} - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0,...,\theta_n) \\ ... \\ \text{tmpthetaj} &= \text{thetaj} - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0,...,\theta_n) \end{array}$

tmpthetan = thetan - $\alpha \frac{\partial}{\partial \theta} J(\theta_0, ..., \theta_n)$

theta0 = tmptheta0

thetaj = tmpthetaj

. . . 41- - 4

thetan = tmpthetan

Gradient Descent Gradient Descent Applied to Linear Regression

- Simple (Univariate) Linear Regression
 - Model Representation
- Cost Function
- Gradient Descent
 - Formulation
 - Algorithm
 - Application to Linear Regression

For a cost function $J(\theta_0, \theta_1)$:

Repeat until convergence: Update
$$\theta_0, \theta_1$$
 simultaneously:
$$\theta_0 \leftarrow \theta_0 - \alpha \left[\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \right]$$

$$\theta_1 \leftarrow \theta_1 - \alpha \left[\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \right]$$

Linear Regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x^{(i)}$$

$$J(\boldsymbol{\theta_0}, \boldsymbol{\theta_1}) = \frac{1}{2m} \sum_{i=1}^{m} (\boldsymbol{h_{\theta}}(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)})^2$$

$$\frac{1}{2m} \sum_{i=1}^{m} (\boldsymbol{h}_{\theta}(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)})$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

$$2m \sum_{i=1}^{\infty} (0 + 1)^{i}$$

$$\frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1}) = ?$$

$$\frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1}) = ?$$

$$1 \sum_{m=1}^{m}$$

For any parameter
$$\theta_j$$
:
$$\frac{\partial}{\partial a_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial a_j} \cdot \frac{1}{2} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 = \frac{\partial}{\partial a_j} \cdot \frac{1}{2} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)^2$$

For θ_0 :

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})$$

For θ_1 :

Repeat until convergence: Update
$$\theta_0, \theta_1$$
 simultaneously:
$$\theta_0 \leftarrow \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})$$

$$\boldsymbol{\theta_1} \leftarrow \boldsymbol{\theta_1} - \boldsymbol{\alpha} \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta_0} + \boldsymbol{\theta_1} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)}) \cdot \boldsymbol{x}^{(i)}$$

FOR
$$\theta_1$$
:
$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) \cdot x^{(i)}$$

- Gradient descent works for minimizing any generic cost function
- Cost function may have many different local minima

- The cost function of linear regression is "convex" i.e. it has only one minimum global minimum
- With the right learning rate lpha, it always converges
- Starting point only affects how quickly it converges (i.e. starting out close VS far)

Note on Gradient Descent

- This kind of gradient descent is actually called "Batch Gradient Descent"
 - One update uses all the training samples
- Other types of gradient descent (not covered in this course feel free to look them up):
 - Mini-Batch Gradient Descent
 - Stochastic Gradient Descent

Content - Part 2

- Linear Regression With Multiple Variables
 - Model Representation
 - Gradient Descent With Multiple Variables
- Practical Tips On Implementing Linear Regression
 - Diagnosing the Learning Rate
 - Feature Scaling

Linear Regression With Multiple Variables Model Representation

- Linear Regression With Multiple Variables
 - Model Representation
 - Gradient Descent With Multiple Variables
- Practical Tips On Implementing Linear Regression
 - Diagnosing the Learning Rate
 - Feature Scaling

Previously (With Simple Linear Regression)

, ,	
Size (sq. m)	Price (1000s of R)
460	6639
70	1681
155	3969
429	5095
•••	•••

Training set of house sizes and prices

- x: Input variable; "features" used to make predictions e.g. 460 sq. metres
- y: Output variable; "target" output e.g. R 6639000
- m: Number of examples in the training set
- (x,y): A specific samples in the training set
- $(x^{(i)}, y^{(i)})$: the *i*th training example e.g. $x^{(1)} = 460, x^{(2)} = 70...; y^{(1)} = 6639, y^{(2)} = 1681$

Model Representation - Notation With Multiple Variables Y Y Y Y

λ	λ_2	~ 3	λ_4	<u> </u>
Size (sq. m)	No. of Rooms	Age (years)	No. of Garages	Price (1000s of R) (y)
460	4	12	2	6639
70	1	5	0	1681
155	3	8	2	3969
429	6	10	3	5095
•••	•••	•••	•••	•••

Training set of house features and prices

- y: Output variable; "target" output e.g. R6639000
- m: Number of examples in the training set
- $(x^{(i)}, y^{(i)})$: the *i*th training example
- $y^{(i)}$: the *i*th target e.g. $y^{(1)}$ = 6639, $y^{(2)}$ = R1681 etc.

Model Representation - Notation With Multiple Variables

x_1	x_2	χ_3	x_4	<u> </u>
Size (sq. m)	No. of Rooms	Age (years)	No. of Garages	Price (1000s of R) (y)
460	4	12	2	6639
70	1	5	0	1681
155	3	8	2	3969
429	6	10	3	5095
•••	•••	•••	•••	•••

Training set of house features and prices

- n: Number of features; in the above case n=4
- x_j : the jth input variable (column); e.g. x_1 is the size, x_2 is the no. of rooms etc.
- $x^{(i)}$: is now a set of n values i.e a vector
- $\boldsymbol{x}_{i}^{(i)}$: is the jth feature of the ith example i.e. a number

Model Representation - Notation With Multiple Variables

x_1	x_2	x_3	x_4	<u>y</u>
Size (sq. m)	No. of Rooms	Age (years)	No. of Garages	Price (1000s of R) (y)
460	4	12	2	6639
70	1	5	0	1681
155	3	8	2	3969
429	6	10	3	5095
•••	•••	•••	•••	•••

Training set of house features and prices

$$X = \begin{bmatrix} 460 & 4 & 12 & 2 \\ 70 & 1 & 5 & 0 \\ 155 & 3 & 8 & 2 \\ 429 & 6 & 10 & 3 \end{bmatrix}$$

Model Representation - Hypothesis

• The previous hypothesis (with simple linear regression) with only one variable x:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

With more variables: $x_1,...,x_4$: Size #Rooms Age $h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3+\theta_4x_4$

E.g.
$$h_{\theta}(x) = 174 + 0.84x_1 + 1.8x_2 - 1.5x_3 + 3x_4$$

Model Representation - Notation With Multiple Variables

In the generic case with $m{n}$ features:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

- n-dimensional hypothesis
 - We can't plot/visualize it for n>2

For consistency in the notation we add a 0th feature $x_0 = 1$ so that:

$$h_{\theta}(x) = \theta_0 \frac{x_0}{x_0} + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Model Representation - Vectorized Representation

In the generic case with n features:

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• Given the two matrix-representations above, $h_{\theta}(x)$ can be computed using the matrix operation:

$$h_{\theta}(x) = X\theta$$

Model Representation - Vectorized Representation

In the specific case with 4 features (in the example):

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$X = \begin{bmatrix} 1 & 460 & 4 & 12 & 2 \\ 1 & 70 & 1 & 5 & 0 \\ 1 & 155 & 3 & 8 & 2 \\ 1 & 429 & 6 & 10 & 3 \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix}$$

Given the two matrix-representations above, $h_{\theta}(x)$ can be computed using the matrix operation:

$$h_{\theta}(x) = X\theta$$

Linear Regression With Multiple Variables Gradient Descent With Multiple Variables

- Linear Regression With Multiple Variables
 - Model Representation
 - Gradient Descent With Multiple Variables
- Practical Tips On Implementing Linear Regression
 - Diagnosing the Learning Rate
 - Feature Scaling

Gradient Descent With Multiple Variables

In the generic case with
$$m{n}$$
 features/variables:

 $\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{M}_{\boldsymbol{\theta}} + \boldsymbol{\theta}_1 \boldsymbol{x}_1 + \boldsymbol{\theta}_2 \boldsymbol{x}_2 + \dots + \boldsymbol{\theta}_n \boldsymbol{x}_n$

ric case with
$$n$$
 features/variables:
 $h_n(x) = R(\theta + \theta_n x_n + \theta_n x_n + \dots + \theta_n x_$

$$X = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & \dots & x_n^{(1)} \\ x_0^{(2)} & x_1^{(2)} & \dots & x_n^{(2)} \\ \dots & \dots & \dots & \dots \\ x_0^{(m)} & x_1^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

Cost function:

$$J(\boldsymbol{\theta}_0, \boldsymbol{\theta}_1 \dots J(\boldsymbol{\theta}_n)) = \frac{1}{2m} \sum_{i=1}^m (\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)})^2$$

Generic gradient descent update equation (as seen before):

Update all
$$\theta_j$$
 simultaneously:
 $\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, ..., \theta_n)$

Repeat until convergence:

Gradient Descent With Multiple Variables

For any parameter θ_i :

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Previously with only one variable $x: \theta_0, \theta_1$: With variables n>1: $\theta_0, \theta_1, ..., \theta_n$:

Repeat until convergence: Update θ_0, θ_1 simultaneously:

 $\boldsymbol{\theta}_0 \leftarrow \boldsymbol{\theta}_0 - \alpha \frac{1}{m} \sum_{i=1 \atop \overline{m}} (\boldsymbol{\theta}_0 + \boldsymbol{\theta}_1 \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)})$ $\boldsymbol{\theta_1} \leftarrow \boldsymbol{\theta_1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta_0} + \boldsymbol{\theta_1} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)}) \cdot \boldsymbol{x}^{(i)}$ Update all θ simultaneously:

Update all
$$\theta$$
 simultaneously

Repeat until convergence:

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) \cdot x_0^{(i)}$$

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) \cdot x_1^{(i)}$$

 $\theta_n \leftarrow \theta_n - \alpha \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) \cdot x_n^{(i)}$

Gradient Descent With Multiple Variables - Vectorized Representation

Gradient Descent With Multiple Variables - Vectorized Representation Given:
$$X = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ x_0^{(2)} & x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ x_0^{(3)} & x_1^{(3)} & x_2^{(3)} & \dots & x_n^{(3)} \\ \dots & \dots & \dots & \dots & \dots \\ x_0^{(m)} & x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \quad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ \dots \\ y^{(m)} \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \dots \\ \theta_n \end{bmatrix}$$

$$h_{\theta}(x) = X\theta$$
The updates to all theta can be made simultaneously using:

$$(x) = X$$

The updates to all theta can be made simultaneously using:

$$\theta \leftarrow \theta - \frac{\alpha}{m} [X^T (X\theta - y)]$$

Gradient Descent With Multiple Variables - Vectorized Representation

Gradient Descent With Multiple Variables - Vectorized Representation As by the way: given:
$$X = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ x_0^{(2)} & x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ x_0^{(3)} & x_1^{(3)} & x_2^{(3)} & \dots & x_n^{(3)} \\ \dots & \dots & \dots & \dots & \dots \\ x_0^{(m)} & x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \quad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ \dots \\ y^{(m)} \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \dots \\ \theta_n \end{bmatrix}$$

$$h_{\theta}(x) = X\theta$$
The cost $J(\theta)$ can be computed as:

$$(x) = X$$

The cost $I(\theta)$ can be computed as:

$$J(\boldsymbol{\theta}) = \frac{1}{2m} (X\boldsymbol{\theta} - y)^T (X\boldsymbol{\theta} - y)$$

Practical Tips

Diagnosing the Learning Rate

- Linear Regression With Multiple Variables
 - Model Representation
 - Gradient Descent With Multiple Variables
- Practical Tips On Implementing Linear Regression
 - Diagnosing the Learning Rate
 - Feature Scaling

Diagnosing the Learning Rate Learning rate is specific to each problem

- Too small: slow convergence
- Too large:
 Slow convergence

Practical

- ergence
- Divergence (no convergence)
- Helpful tip: Proven that if the learning rate lpha is small enough, the cost J will reduce in every iteration of gradient descent
 - Possible strategy: keep track of the cost at each update
 Plot a graph of the cost at each update
 - Use the plot to determine if α is:
 - Too small
 - Too large
 Use a series of plots to pick the best lpha

Diagnosing the Learning Rate

• If α is just right:

Diagnosing the Learning Rate

• If α is too small:

Diagnosing the Learning Rate

• If α is too large :

Diagnosing the Learning Rate - Strategy

- Try a range of values for α on an increasing scale e.g. 0.001 0.003 0.01 0.03 0.1 0.3
- Plot the curve of $J(\theta)$ over the data for a number of iterations for every lpha
- Pick the lpha value that converges the fastest

Practical Tips Feature Scaling

- Linear Regression With Multiple Variables
 - Model Representation
 - Gradient Descent With Multiple Variables
- Practical Tips On Implementing Linear Regression
 - Diagnosing the Learning Rate
 - Feature Scaling

	Feature Scaling - Concept
· cal	Concept: Having features on a similar

- Concept: Having features on a similar scale helps gradient descent converge faster
 Opposite: Having features on very different scales slows gradient descent down
- Concept: scale features to similar scales
- Features may be on different scales
- E.g.:
 - House size: 0 5000 sq. metres i.e. 0 5000
 No of bedrooms: 1 12 rooms i.e. 0 12
 - Age: 0 200 years i.e. 0 200

Feature Scaling - Intuition

- One example E.g.:
 - No of bedrooms: 0 12
 - House size: 0 5000

- More extreme example E.g.:
 - Feature 1: 0 5
 - Feature 2: 0 20000000

Feature Scaling - Intuition

- This can cause gradient descent to take a long time to reach the minimum
- May also meander around a lot

- Feature Scaling Intuition
- One example E.g.:
 - No of bedrooms: 0 12
 - House size: 0 5000

Scale the features:

Size Bedrooms

With a smaller and more circular cost function, gradient descent can converge faster

Applying the simple division:

Practical

$$\frac{\text{Bedrooms}}{12} \qquad \qquad x_2 = \frac{\text{Size}}{5000}$$

Has the effect of re-scaling x_1 and x_2 .

he effect of re-scaling
$$x_1$$
 and x_2 .

- x_1 : re-scaled to 0 1
- x₂: re-scaled to 0 1

range

• $0 \le x_1 \le 4$ • $-2 \le x_2 \le 1$ • $-0.5 \le x_3 \le 3$

• $-80 \le x_4 \le 90$

Approximately means all of the following are okay:

The following are examples of **not okay**:

• $-0.0001 \le x_5 \le 0.0004$

 $x_0 = 1$ in all cases, so no scaling is needed

For all other features: aim is to re-scale every feature to approximately $-1 \le x_1 \le 1$

Feature Scaling - Method

• Applied to every feature except
$$x_0$$

Results in the approximate range: • $-0.5 \le x_i \le 0.5$

This results in a 0 mean for this feature

$$(x_j)$$
 OR

 $x_j \leftarrow \frac{x_j - \mu_j}{S_i}$

$$X = \begin{bmatrix} 1 & 460 & 2 \\ 1 & 70 & 0 \\ 1 & 155 & 2 \\ 1 & 429 & 3 \end{bmatrix}$$

$$X_scaled = \begin{bmatrix} 1 & 0.46 & 0.08 \\ 1 & -0.53 & 0.58 \\ 1 & -0.32 & 0.08 \\ 1 & 0.38 & 0.42 \end{bmatrix}$$

Content - Part 3

- Linear Regression Using The Normal Equation
- Complex (Non-Linear) Features
- Model Evaluation
 - Testing a Model
 - · Comparing Models
 - · Getting More Mileage Out of Your Data

Linear Regression Using the Normal Equation

- Linear Regression Using The Normal Equation
 - Complex (Non-Linear) Features
- Model Evaluation
 - Testing a Model
 - Comparing Models

Getting More Mileage Out of Your Data

Intuition

A second analytical alternative to solving for parameters θ • (First one was gradient descent - algorithmic solution to θ)

For a very simple hypothesis $h_{\theta}(x) = \theta_1 x_1$ the cost function looks

Alternative to getting θ : solve for θ in: $\frac{d}{d \; \theta_1} J(\; \theta_1) = 0$

The only unknown is
$$\theta_1$$
. Solvable

- With many more features, concept is the same:
 - Solve for $\boldsymbol{\theta}$ in:

$$\frac{d}{d\theta_1}J(\theta_0,\theta_1,\ldots,\theta_n)=0$$

Equatior -R Using the Normal

Normal Equation Definition

Given a feature matrix X, and the corresponding output matrix y

The following equation solves for θ that best fits the data:

$$\boldsymbol{\theta} = (X^T X)^{-1} X^T y$$

Where:

• X^T is the transpose of X

• $(X^TX)^{-1}$ is the inverse of (X^TX)

• X includes feature x_0 which is a column of 1s

 $X = \begin{bmatrix} 1 & 460 & 4 & 12 & 2 \\ 1 & 70 & 1 & 5 & 0 \\ 1 & 155 & 3 & 8 & 2 \\ 1 & 429 & 6 & 10 & 3 \end{bmatrix}$

Price

6639

Normal Equation - Notes

- To get the inverse In SciPy: First import scipy. linalg as spla, then either
 - spla.inv(X) OR:
 - spla.pinv(X)
 - Rather use spla.pinv(X)
- To get matrix transpose in SciPy:
- Easiest way: X.T
- No need for scaling at all
 - It's not descending a function

Normal Equation VS Gradient Descent

Normal Equation Pros

Doesn't need any iterations - finds the solution in one go immediately

No need to choose α Preferable over gradient descent if possible **Gradient Descent** Pros

Works well even for very large n

Cons

Can be impossibly slow to compute $(X^TX)^{-1}$ when n gets large (n > 10000) Cons

Need to choose α Could take many iterations to find

best θ fit

• $(X^TX)^{-1}$ can be non-invertible

• $O(n)^3$ time

E.g. when $n\gg m$

Complex (Non-Linear) Features

Equation

Linear Regression Using The Normal

- Complex (Non-Linear) Features
- Model Evaluation
 - Testing a Model
 Comparing Models
 - Getting More Mileage Out of Your Data

Concept

- Up to now, we've used simple linear features e.g. Size, No of Rooms etc.
- Possible to use linear regression to learn more complex features:
 - Combinations of features
 - Higher-order features

Complex (Non-Linear)

Combinations Of Features

Assume we've got 4 features: size, no of rooms, height and width of properties

Up to now: Linear combination of features

$$\boldsymbol{h_{\theta}(x)} = \boldsymbol{\theta_0} + \boldsymbol{\theta_1} \cdot \boldsymbol{x_{i}} = \boldsymbol{\theta_{2}} \boldsymbol{x_{i}} = \boldsymbol{\theta_{3}} \boldsymbol{x_{i}} = \boldsymbol{\theta_{4}} \boldsymbol{\theta_{4}} \boldsymbol{\theta_{4}}$$

Given insight into the problem, you can create new features using these basic features If you think they are more "telling" / "feature-ful"

Combinations Of Features

- E.g. Divide Size by the No of Rooms to get the "Size-to-rooms-ratio" (STRR)
 - (Maybe) cramming more rooms in a smaller area (smaller STRR) means lower quality i.e. price
 - Conversely, (maybe) placing fewer rooms in a larger area (larger STRR) means higher quality i.e. price

We can replace the two features x_1 and x_2 with just a single STRR feature:

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot \text{Size} + \theta_2 \cdot \text{Rieght} + \theta_3 \cdot \text{Weight} + \theta_4 \cdot \text{Width}$$

Where STRR is now feature $x_1 = (Size \cdot Rooms)$

Combinations Of Features

- E.g. 2: Multiply the frontal-width of the house by the height of the house to get the area of the frontal display (frontal-display area FDA)
 - (Maybe) Having a larger frontal display area leads to a better first impression \to higher demand \to higher price
 - Conversely (maybe) a smaller frontal display area leads to a let-down first impression \to lower demand \to lower price
- We can replace the two features x_2 and x_3 with just a single FDA feature:

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot \text{STRR} + \theta_{2} \text{Fibelight} + \theta_3 \cdot \text{Width}$$

• Where FDA is now feature $x_2 = (\text{Height} \cdot \text{Width})$

Closely related to previous idea

Maybe a second-order polynomial (quadratic function) makes more sense i.e. fits this data better

Or maybe a third-order polynomial makes more sense i.e. fits this data better

Another example: Price vs Size

Maybe a quadratic function fits better

 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

Another example: Price vs Size

Maybe a square root function actually

makes more sense

Complex Features - Important Points

- The list of feature possibilities (combinations / higher-order features) are endless
 - Provides flexibility VS Challenging to choose good features
 - Extremely important to scale features if you're using gradient descent with complex features:
 - If x_1 has the range $0 \le x_1 \le 1000$
 - Then:
 - x_1^2 has the range $0 \le x_2 \le 1,000,000$
 - x_1^3 has the range $0 \le x_3 \le 1,000,000,000$
 - $\sqrt{x_1}$ has the range $0 \le x_3 \le 32$
- When trying to predict on a set of test data, produce the same combination / higher-order features
 - Format has to be exactly the same as those used in training

Model Evaluation

Testing a Model

Complex (Non-Linear) Features

Linear Regression Using The Normal

Model Evaluation

Equation

- Testing a Model
 - Comparing Models
 Getting More Mileage Out of

Your Data

Testing a Model

- Given a training set: train a predictive model
- Question: how well does this predict?
 - One strategy: Test on the training data:
 - Model is tailor-made for the training data
 - Will (likely) give a good result Not a good indicator of accuracy
- Another strategy: Collect more data
- Very impractical
 - **Expensive**

Testing a Model

- Good strategy: Divide up the data that you have
 - Training portion (between 50% and 90%)
 - Testing portion (between 50% and 10%)
 - VERY important to randomize first
- Do not use testing data in training at all
 It is "unseen" to the model
 - It is unseen to the mode

- Once model is trained, pass testing data to model to make predictions
 - Then apply a metric to determine performance

Testing a Model

- Good strategy: Divide up the data that you have
 - Training portion (between 50% and 90%)
 - Testing portion (between 50% and 10%)
 - VERY important to randomize first

Testing a Model - Metrics

Three metrics:

THE THEU

• Mean Absolute Error:

Mean Squared Error:

$$MAE = \frac{1}{m} \sum_{i=1}^{m} \left| y^{(i)} - y_{pred}^{(i)} \right|$$

The smaller the better

 $extbf{MSE} = rac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - y^{(i)}_{pred}
ight)^2$ The smaller the better

•

Chi-squared error R^2 : [Placeholder - Look it up]

-∞ - Very poor fit 1 - Perfect fit

 $-\infty - 1$

Evaluating a Model Comparing Models

- Linear Regression Using The Normal Equation
 - Complex (Non-Linear) Features
 - Model Evaluation
 - Testing a Model
 Comparing Models
 - Getting More Mileage Out of Your Data

Comparing Models

- The list of features to try are endless
- Given several models/options to compare e.g.
 - quadratic features <u>VS</u> square root features
 Using Size + No Of Rooms VS Size + No Of Garages VS No of Rooms + No Of Garages
- How to compare them?
- Possible strategy:
 - Use the same strategy used to test a single model i.e.
 - Divide available data into training and testing setsTrain all models on training sets
 - Test all models on testing set
 - Test all models on testing setsConclude which is the best
 - Technically not statistically valid; more valid strategy:
 - After nicking the "winner" we need to test it

 After picking the "winner" we need to test it on a final piece of data to quote its performance

Comparing Models

Valid strategy: Divide up the data that you have

- Training portion (between 50% and 80%)
- Cross-validation portion (between 25% and 10%)
- Testing portion (between 25% and 10%)
- VERY important to randomize first

Available Data

CV

Test

V _	[460]70]155]429]	4 1 3 6	12 5 8 10	2 0 2 3	- 27	6639 1681 3969 5095	Training portion
Λ =	313 56	3 2	4 1	1 0	— <i>y</i> —	3412 1234	CV portion
	434	1	9	3		2334	Testing portion

Evaluating a Model

Getting More Mileage Out of Your Data

- Linear Regression Using The Normal Equation
- Complex (Non-Linear) Features
- Model Evaluation
 - Testing a Model
 - Comparing Models
 - Getting More Mileage Out of Your Data

Getting More Mileage Out of Your Data

- Given a limited-size data set, possible to use
- techniques to stretch out "Training" and "CV" portions out further:
 - k-Fold Cross-validation

 - Leave-one-out Cross-validation

		70 155	1 3	5 8	0 2		6639 1681 3969	Training portion	e e e e e e
X	=	313 56	6 3 2	10 4 1	3 1 0	<u> </u>	5095 3412 1234	CV portion	
		434 123	1 7	9	3		2334 2786	Testing portion	3

- Given the Training + CV parts below
 - Treat them as one big "Training Set"
 - Divide it up into k-Folds
 - E.g. 4 folds below

Fold 1 Fold 2 Fold 3 Fold 4

- Given the Training + CV parts below
 - Treat them as one big "Training Set"
 - Divide it up into k-Folds
 - E.g. 4 folds below
 - Train *k* times:
 - Each time take 1 fold as the CV set and the remaining folds as training sets

- Given the Training + CV parts below
 - Treat them as one big "Training Set"
 - Divide it up into k-Folds
 - E.g. 4 folds below
 - Train k times:
 - Each time take 1 fold as the CV set and the remaining folds as training sets
 - Train on all the data marked as "Train"; Test on the data marked "CV"
 - Get an evaluation score for the model

- Given the Training + CV parts below
 - Treat them as one big "Training Set"
 - Divide it up into k-Folds
 - E.g. 4 folds below
 - Train *k* times:
 - Each time take 1 fold as the CV set and the remaining folds as training sets
 - Train on all the data marked as "Train"; Test on the data marked "CV"
 - Get an evaluation score for the model

- Given the Training + CV parts below
 - Treat them as one big "Training Set"
 - Divide it up into k-Folds
 - E.g. 4 folds below
 - Train *k* times:
 - Each time take 1 fold as the CV set and the remaining folds as training sets
 - Train on all the data marked as "Train"; Test on the data marked "CV"
 - Get an evaluation score for the model

k-Fold Cross Validation Given the Training + CV parts below

- - Treat them as one big "Training Set"
 - Divide it up into k-Folds
 - E.g. 4 folds below
 - Train *k* times:
 - Each time take 1 fold as the CV set and the remaining folds as training sets
 - Train on all the data marked as "Train"; Test on the data marked "CV"
 - Get an evaluation score for the model

- Given the Training + CV parts below
 - Treat them as one big "Training Set"
 - Divide it up into k-Folds
 - E.g. 4 folds below
 - Train *k* times:
 - Each time take 1 fold as the CV set and the remaining folds as training sets
 - Train on all the data marked as "Train"; Test on the data marked "CV"
 - Get an evaluation score for the model

Note: Once done, test on the test set (which was set aside)

THE END

Of Linear Regression