LINEAR-SEARCH(A, x, n)

- 1. index = NIL
- 2. **for** i = 1 **to** n
- 3. **if** A[i] = x
- 4. index = i
- 5. return index

Loop Invariant: After the i^{th} iteration of the for loop in lines 2-4, if the sub-array A[1:i] contains x, then A[index] = x, otherwise index = NIL.

Initialisation: Before the 1^{st} iteration, x obviously cannot be in the sub-array A[1:0], since it has no elements. Accordingly, x = NIL.

Maintenance: Before the i^{th} iteration, let us say $index = k \ni A[k] = x$ if x is present in the sub-array A[1:i-1] and NIL if not. If A[i] = x, then after the i^{th} iteration, index holds i. This satisfies our loop invariant, since it means A[1:i] contains x with A[index] = A[i] = x.

Now let us take the alternate case, if $A[x] \neq i$, then index equals to k or NIL depending on if A[1:i-1] contains x. This also satisfies our loop invariant, since if both A[1:i-1] and A[i] don't contain x, then A[1:i] doesn't contain x, and accordingly index = NIL. Otherwise, if A[1:i-1] does contain x, then so does A[1:i], with A[index] = A[k] = x.

Termination: The for loop has i go from 1 to n, which means there are n iterations of the loop. Thus after the n^{th} iteration, if A[1:n] doesn't contain x index = NIL, otherwise A[index] = x.