

Programação de Sistemas Informáticos

TGPSI António Beirós

230 Programação e Sistemas de Informação	624
1 1.1 Introdução à Programação e Algoritmia	30
2 1.2 Mecanismo de Controlo de Execução	36
3 1.3 Programação Estruturada	36
4 1.4 Estruturas de Dados Estáticas	30
5 1.5 Estruturas de Dados Compostas	30
6 1.6 Estruturas de Dados Dinâmicas	36
7 1.7 Tratamento de Ficheiros	30

Critérios de Avaliação

Assiduidade e Pontualidade 5%

Comportamentos e Atitudes 5%

Avaliação continua 30%

Testes, trabalhos 60%

Algoritmo

– Sequência finita e não ambígua de instruções elementares bem definidas, conducente à solução de um determinado problema, cada uma das quais pode ser executada mecanicamente numa quantidade finita de tempo e com uma quantidade finita de esforço.

Algoritmo

- Características
 - Entradas: Quantidades inicialmente especificadas (por exemplo através de instruções de leitura.)
 - Saídas: Uma ou mais saídas (habitualmente por instruções de escrita)
 - Finitude: A execução deve terminar sempre num número finito de passos.

Algoritmo

- Características (cont.)
 - Precisão: Todos os passos do algoritmo devem ter um significado preciso não ambíguo, especificando exactamente o que deve ser feito. Para evitar a ambiguidade das linguagens humanas (linguagens naturais), linguagens especiais (denominadas linguagens de programação) foram criadas para exprimir algoritmos.

Algoritmo

- Características (cont.)
 - Eficácia: Os passos devem conduzir à resolução do problema proposto. Devem ainda ser executáveis numa quantidade finita de tempo e com uma quantidade finita de esforço.
 - Eficiência: Quando o algoritmo resolve um problema no menor espaço de tempo e energia possivel.

- Algoritmo
 - É representado por uma linguagem com uma determinada sintaxe e semântica associada
 - Formas de representação
 - Diagramas de fluxo → Fluxogramas

- Algoritmo
 - Formas de representação
 - Fluxogramas
 - Virtudes: podem ajudar a visualizar melhor algumas estruturas da programação
 - Defeitos: difíceis de concretizar, pois podem exigir muito espaço

- Algoritmo
 - -Formas de representação
 - Pseudocódigo
 - Revela-se mais prático e vantajoso na estruturação de um raciocínio e dos elementos (acções/instruções e dados) a incluir num programa.

- Programa
 - Sequência de ordens (instruções)
 lógica e organizada que a partir dos dados iniciais nos permite atingir um determinado objectivo

Programa

- Elementos e estruturas fundamentais
 - Dados;
 - Instruções básicas;
 - Expressões;
 - Estruturas de controlo;
 - Subprogramas.

- Programa
 - Elementos e estruturas fundamentais
 - Dados
 - Tipos de dados
 - » Numéricos
 - » Alfanuméricos
 - » Lógicos
 - Num programa podem ser armazenados em "Variáveis" ou "Constantes"

- Programa
 - Elementos e estruturas fundamentais
 - Instruções básicas
 - De atribuição;
 - De escrita ou de output;
 - De leitura ou de input.

- Programa
 - Elementos e estruturas fundamentais
 - Instruções básicas

```
De atribuição.
Ex.:

... = ...

» nome = "Silva"

» quantia = 1000

» b = a
```


- Programa
 - Elementos e estruturas fundamentais
 - Instruções básicas
 - De escrita ou de output;

Ex.:

```
WRITELINE(...)
```

- » WRITELINE(400)
- » WRITELINE("O meu nome é Joaquim")
- » WRITELINE(quantidade)
- » WRITELINE("O valor a pagar é " & quantidade)

- Programa
 - Elementos e estruturas fundamentais
 - Instruções básicas

```
De leitura ou de input;
Ex.:

..=READLINE()

» quantia= READLINE()

» nome= READLINE()

» salário= READLINE()
```


Programa

- Elementos e estruturas fundamentais
 - Expressões
 - Uma expressão é um conjunto de operandos, articulados entre si por operadores
 - Os operandos são os dados
 - Operadores
 - » Aritméticos
 - » Relacionais ou de Comparação
 - » Lógicos ou Booleanos

- Programa
 - Elementos e estruturas fundamentais
 - Expressões
 - Operadores
 - » Aritméticos

+	Adição	5 + 6
-	Subtracção	a – b
*	Multiplicação	2 * a
1	Divisão	b/2
1	Quociente da divisão inteira	b\2
MOD	Resto da divisão Inteira	b MOD 2
٨	Potência	h ^ 2

Programa

- Elementos e estruturas fundamentais
 - Expressões
 - Operadores
 - » Relacionais ou de Comparação

=	lgual	a = b
<	Menor	b< 5
<=	Menor ou igual	c < = h
>	Maior	a > b
>=	Maior ou igual	b >= c
<>	Diferente	d <> 7

- Programa
 - Elementos e estruturas fundamentais
 - Expressões
 - Operadores
 - » Lógicos ou Booleanos

NOT	Não (negação)	NOT a	
AND	E lógico	a AND b	
OR	Ou lógico	c OR d	

- Programa
 - -Elementos e estruturas fundamentais
 - Estruturas de Controlo
 - Estruturas de decisão
 - » Com base numa condição
 - » Com base num selector ou de escolha múltipla
 - Estruturas de repetição
 - » Com contador (de um valor inicial até um final)
 - » Com base numa condição
 - Enquanto se verifica a condição
 - Até que se verifique uma condição

- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo
 - Estruturas de decisão
 - » Com base numa condição

```
IF <condição> THEN <instrução/ões>
[ELSE <instrução/ões>]
END IF
```


- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo

```
    Estruturas de decisão
```

» Com base numa condição

Ex.:

IF nota >=10 THEN

WRITELINE("Aprovado")

END IF

IF nota >=10 THEN

WRITELINE ("Aprovado")

ELSE

WRITELINE("Reprovado")

END IF

- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo
 - Estruturas de decisão
 - » Com base num selector ou de escolha múltipla

- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo
 - Estruturas de decisão
 - » Com base num selector ou de escolha múltipla Ex.:

- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo
 - Estruturas de repetição
 - » Com contador

```
FOR <variável>= <valor inicial> TO <valor final> <instrução/ões> NEXT
```


- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo

```
    Estruturas de repetição
    » Com contador
    Ex.:
    numero = 1
    FOR contador = 0 TO 6 DO
    multiplo = numero * contador
    WRITELINE (multiplo)
    NEXT
```


- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo
 - Estruturas de repetição
 - » Com base numa condição
 - Enquanto se verifica a condição

DO WHILE <condição> <instrução/ões> LOOP

- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo
 - Estruturas de repetição
 - » Com base numa condição
 - Enquanto se verifica a condição

Ex.:

```
n = 0
DO WHILE n < 10
    n = n + 1
    quadrado = n * n
    WRITELINE (quadrado)
LOOP</pre>
```


- Realize uma apresentação em PowerPoint sobre o tema :
 "Introdução à programação em Visual Basic"
 - Definição de Algoritmo
 - Características de um Algoritmo
 - Tipos de Dados e Declaração de variáveis
 - Operadores
 - Aritméticos
 - Lógicos
 - Relacionais
 - Estruturas de Controlo
 - Decisão
 - Repetição
- Trabalho de Grupo(2 ou 3 Alunos)
- Data de Apresentação 7.10.2020

- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo
 - Estruturas de repetição
 - » Com base numa condição
 - Até que se verifique uma condição

DO

<instrução/ões>
LOOP UNTIL <condição>

- Programa
 - Elementos e estruturas fundamentais
 - Estruturas de Controlo
 - Estruturas de repetição
 - » Com base numa condição
 - Até que se verifique uma condição

Ex.:

```
n = READLINE()
Dobro = n * 2
WRITELINE ("o dobro de " & n & "é"& dobro)
LOOP UNTIL dobro=0
```


- Programa
 - Elementos e estruturas fundamentais
 - Subprogramas.

SUB <nome do subprograma> <instrução/ões> END SUB

- Programa
 - Elementos e estruturas fundamentais
 - Subprogramas.

Ex.:

```
SUB LeDados

WRITELINE("ntroduza os valores")

a=READLINE()

b=READLINE()

END SUB

PROGRAM Multiplica

LeDados()

WRITELINE (a * b)

END
```