

Continuous Assessment Test - I

Programme Name & Branch: B. Tech and ECE/BMD

Course Name & Code: Digital Signal Processing (ECE2006)

Class Number:

Slot: G1

Exam Duration: 1h 30 m

Maximum Marks: 50

lass r	lumber: Slot: G1 Exam Datation
S.No	Section – A (5x 4 = 20 Marks)
L.a	The response of a system is $y(n) = n x(n)$, where $x(n)$ is a input to the system. Find, whether the system is time variant or not.
b	Find whether the signal given below is energy or power signal $x(n) = \left(\frac{1}{2}\right)^n u(n)$ $E = \frac{9}{8}$
С	Find $x(n)$ if $X(e^{jw}) = e^{-jw} \left(\frac{1}{2} + \frac{1}{2}\cos w\right)$. Expland
d	Find the ROC of $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(-n-1)$.
е	The first five points of the 8-point DFT of a real valued sequence are $\{28, -4+j9.5, -4+j4, -4+j1.6, -4\}$. Determine the remaining three points.
	Section – B (3 x 10 = 30 Marks)
2	A LTI system is shown in Fig.1. The impulse responses are $h_1(n) = \left(\frac{1}{2}\right)^n [u(n) - u(n-3)]; h_2(n) = \delta(n); h_3(n) = \left(\frac{1}{2}\right) u(n); h_4(n) = u(n-1)$. Let the impulse response
	$u(n-3)$; $h_2(n) = o(n)$; $h_3(n) = {n \choose 2} u(n)$, $h_4(n) = u(n-3)$; of the overall system is denoted as $h(n)$. Evaluate $h(n)$.
	$h_4(n)$ $h_1(n)$ $h_2(n)$ Fig. 1 Interconnected LTI system
3.	a. Find the Fourier transform of $x(n) = \left(\frac{1}{2}\right)^{ n-1 }$.
	b. Find the inverse z-transform of $X(z) = \frac{1}{1+3z^{-1}+4z^{-2}}$ if $1 < z < 2$.
4	Given a continuous signal $f(t) = 5 + 2\cos(2\pi t - 90^0) + 3\cos(4\pi t)$. Find the DFT