
This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Google™ books

<https://books.google.com>

U487

ALMANAC FOR COMPUTERS

ALMANAC FOR COMPUTERS

for the year

1978

LeRoy E. Doggett
George H. Kaplan
P. Kenneth Seidelmann

Nautical Almanac Office
United States Naval Observatory
Washington, D. C. 20390

UNIVERSITY OF MICHIGAN LIBRARIES

Table of Contents

Explanation	A	Navigational Tables	C
Introduction	A1	Aries, Sun and Navigational Planets	C1
Calendar	A2	Moon	C7
Explanation of Navigational Tables (Section C)	A5	 Astronomical Tables	D
Explanation of Astronomical Tables (Section D)	A8	Sidereal Time, Equation of Equinoxes, Nutation	D1
Explanation of Expressions for Extended Periods of Time (Section E)	A11	Sun	D5
Explanation of Stellar Tables (Section F)	A18	Moon	D7
 Applications	B	Mercury and Venus	D19
Introduction	B1	Mars and Jupiter	D23
Day of the Year	B1	Saturn and Uranus	D25
Julian Date	B2	Neptune and Pluto	D27
Sidereal Time	B3	 Expressions for Extended Periods of Time	E
Hour Angles	B4	 Chebyshev Series:	
Altitude and Azimuth	B4	Sidereal Time, Equation of Equinoxes, Nutation	E1
Sunrise, Sunset and Twilight .	B5	Sun	E1
Moonrise and Moonset	B8	Mercury and Venus	E2
Equation of Time	B10	Mars, Jupiter, Saturn, Uranus	E3
Polaris (Pole Star)	B10	Neptune and Pluto	E4
Equation of Position Line . . .	B11	 Trigonometric Series:	
Motion of Body and Motion of Observer	B11	Sun	E5
Sextant Altitude Corrections .	B12	Moon	E8
Dip of Horizon	B12	Mercury	E11
Coriolis Correction	B13	Venus	E14
Atmospheric Refraction . .	B13	Mars	E16
Semi-diameter of the Sun & Planets	B14	Jupiter	E19
Semi-diameter of the Moon .	B14	 Stellar Tables	F
Parallax in Altitude	B15	176 Stars	F1
Correction for the Phase of Venus	B15		

11 447PM
XL1 1330
12/99 02-013-01 sec

Section A: EXPLANATION

Introduction

The *Almanac for Computers* has been designed to facilitate the application of digital computers and small calculators to problems of astronomy and navigation which require coordinates of celestial bodies. For such applications the fixed-interval tabulations of the *American Ephemeris and Nautical Almanac* (*AE*), the *Nautical Almanac* (*NA*) and the *Air Almanac* (*AA*), with the inevitable requirement of interpolation, should ideally be replaced by concise mathematical expressions for direct calculations. Such expressions must take the form of mathematical approximations, however, since the precise data contained in the above publications are calculated from extensive theories which are not readily adaptable to the majority of astronomical and navigational applications. Using the expressions in this almanac, it is possible to calculate, with minimal loss of precision, the basic data in the *AE*, *NA* and *AA* for specific times and conditions. More specific information on precision is given in Tables 1, 2, 3 and 4 of this section.

While retaining the basic approach of the previous edition, changes in the format and contents should make this edition somewhat easier to use and generally more useful than its predecessor. Improvements in the current edition are directly attributable to the large body of constructive criticism from users of the previous edition. Unfortunately some very sound suggestions have not been implemented, simply because it was not practicable to include them this year. With further time for development, they may be used in future editions.

In Section E of this edition we provide expressions for extended time spans. The trigonometric series in this section were developed by T. C. Van Flandern and K. F. Pulkkinen of the Nautical Almanac Office, who offer them here in advance of full publication.

For most efficient use with computers, the data in Sections D and F and the Chebyshev series in Section E are available on punched cards or magnetic tape.

Continued improvements in the *Almanac for Computers* will depend on further input from users. Inquiries, suggestions and comments should be sent to the Director, Nautical Almanac Office, U. S. Naval Observatory, Washington, D. C. 20390.

CALENDAR, 1978

Day of Month	JANUARY			FEBRUARY			MARCH			APRIL		
	Julian Date at 0 ^h	Day of Week	Day of Year									
1	2443 509.5	Sun.	1	2443 540.5	Wed.	32	2443 568.5	Wed.	60	2443 599.5	Sat.	91
2	510.5	Mon.	2	541.5	Thu.	33	569.5	Thu.	61	600.5	Sun.	92
3	511.5	Tue.	3	542.5	Fri.	34	570.5	Fri.	62	601.5	Mon.	93
4	512.5	Wed.	4	543.5	Sat.	35	571.5	Sat.	63	602.5	Tue.	94
5	513.5	Thu.	5	544.5	Sun.	36	572.5	Sun.	64	603.5	Wed.	95
6	514.5	Fri.	6	545.5	Mon.	37	573.5	Mon.	65	604.5	Thu.	96
7	515.5	Sat.	7	546.5	Tue.	38	574.5	Tue.	66	605.5	Fri.	97
8	516.5	Sun.	8	547.5	Wed.	39	575.5	Wed.	67	606.5	Sat.	98
9	517.5	Mon.	9	548.5	Thu.	40	576.5	Thu.	68	607.5	Sun.	99
10	518.5	Tue.	10	549.5	Fri.	41	577.5	Fri.	69	608.5	Mon.	100
11	519.5	Wed.	11	550.5	Sat.	42	578.5	Sat.	70	609.5	Tue.	101
12	520.5	Thu.	12	551.5	Sun.	43	579.5	Sun.	71	610.5	Wed.	102
13	521.5	Fri.	13	552.5	Mon.	44	580.5	Mon.	72	611.5	Thu.	103
14	522.5	Sat.	14	553.5	Tue.	45	581.5	Tue.	73	612.5	Fri.	104
15	523.5	Sun.	15	554.5	Wed.	46	582.5	Wed.	74	613.5	Sat.	105
16	524.5	Mon.	16	555.5	Thu.	47	583.5	Thu.	75	614.5	Sun.	106
17	525.5	Tue.	17	556.5	Fri.	48	584.5	Fri.	76	615.5	Mon.	107
18	526.5	Wed.	18	557.5	Sat.	49	585.5	Sat.	77	616.5	Tue.	108
19	527.5	Thu.	19	558.5	Sun.	50	586.5	Sun.	78	617.5	Wed.	109
20	528.5	Fri.	20	559.5	Mon.	51	587.5	Mon.	79	618.5	Thu.	110
21	529.5	Sat.	21	560.5	Tue.	52	588.5	Tue.	80	619.5	Fri.	111
22	530.5	Sun.	22	561.5	Wed.	53	589.5	Wed.	81	620.5	Sat.	112
23	531.5	Mon.	23	562.5	Thu.	54	590.5	Thu.	82	621.5	Sun.	113
24	532.5	Tue.	24	563.5	Fri.	55	591.5	Fri.	83	622.5	Mon.	114
25	533.5	Wed.	25	564.5	Sat.	56	592.5	Sat.	84	623.5	Tue.	115
26	534.5	Thu.	26	565.5	Sun.	57	593.5	Sun.	85	624.5	Wed.	116
27	535.5	Fri.	27	566.5	Mon.	58	594.5	Mon.	86	625.5	Thu.	117
28	536.5	Sat.	28	567.5	Tue.	59	595.5	Tue.	87	626.5	Fri.	118
29	537.5	Sun.	29				596.5	Wed.	88	627.5	Sat.	119
30	538.5	Mon.	30				597.5	Thu.	89	628.5	Sun.	120
31	539.5	Tue.	31				598.5	Fri.	90			

The Julian Day begins at noon.

CALENDAR, 1978

A3

Day of Month	MAY			JUNE			JULY			AUGUST		
	Julian Date at 0 ^b	Day of Week	Day of Year									
1	243 629.5	Mon.	121	243 660.5	Thu.	152	243 690.5	Sat.	182	243 721.5	Tue.	213
2	630.5	Tue.	122	661.5	Fri.	153	691.5	Sun.	183	722.5	Wed.	214
3	631.5	Wed.	123	662.5	Sat.	154	692.5	Mon.	184	723.5	Thu.	215
4	632.5	Thu.	124	663.5	Sun.	155	693.5	Tue.	185	724.5	Fri.	216
5	633.5	Fri.	125	664.5	Mon.	156	694.5	Wed.	186	725.5	Sat.	217
6	634.5	Sat.	126	665.5	Tue.	157	695.5	Thu.	187	726.5	Sun.	218
7	635.5	Sun.	127	666.5	Wed.	158	696.5	Fri.	188	727.5	Mon.	219
8	636.5	Mon.	128	667.5	Thu.	159	697.5	Sat.	189	728.5	Tue.	220
9	637.5	Tue.	129	668.5	Fri.	160	698.5	Sun.	190	729.5	Wed.	221
10	638.5	Wed.	130	669.5	Sat.	161	699.5	Mon.	191	730.5	Thu.	222
11	639.5	Thu.	131	670.5	Sun.	162	700.5	Tue.	192	731.5	Fri.	223
12	640.5	Fri.	132	671.5	Mon.	163	701.5	Wed.	193	732.5	Sat.	224
13	641.5	Sat.	133	672.5	Tue.	164	702.5	Thu.	194	733.5	Sun.	225
14	642.5	Sun.	134	673.5	Wed.	165	703.5	Fri.	195	734.5	Mon.	226
15	643.5	Mon.	135	674.5	Thu.	166	704.5	Sat.	196	735.5	Tue.	227
16	644.5	Tue.	136	675.5	Fri.	167	705.5	Sun.	197	736.5	Wed.	228
17	645.5	Wed.	137	676.5	Sat.	168	706.5	Mon.	198	737.5	Thu.	229
18	646.5	Thu.	138	677.5	Sun.	169	707.5	Tue.	199	738.5	Fri.	230
19	647.5	Fri.	139	678.5	Mon.	170	708.5	Wed.	200	739.5	Sat.	231
20	648.5	Sat.	140	679.5	Tue.	171	709.5	Thu.	201	740.5	Sun.	232
21	649.5	Sun.	141	680.5	Wed.	172	710.5	Fri.	202	741.5	Mon.	233
22	650.5	Mon.	142	681.5	Thu.	173	711.5	Sat.	203	742.5	Tue.	234
23	651.5	Tue.	143	682.5	Fri.	174	712.5	Sun.	204	743.5	Wed.	235
24	652.5	Wed.	144	683.5	Sat.	175	713.5	Mon.	205	744.5	Thu.	236
25	653.5	Thu.	145	684.5	Sun.	176	714.5	Tue.	206	745.5	Fri.	237
26	654.5	Fri.	146	685.5	Mon.	177	715.5	Wed.	207	746.5	Sat.	238
27	655.5	Sat.	147	686.5	Tue.	178	716.5	Thu.	208	747.5	Sun.	239
28	656.5	Sun.	148	687.5	Wed.	179	717.5	Fri.	209	748.5	Mon.	240
29	657.5	Mon.	149	688.5	Thu.	180	718.5	Sat.	210	749.5	Tue.	241
30	658.5	Tue.	150	689.5	Fri.	181	719.5	Sun.	211	750.5	Wed.	242
31	659.5	Wed.	151				720.5	Mon.	212	751.5	Thu.	243

The Julian Day begins at noon.

CALENDAR, 1978

Day of Month	SEPTEMBER			OCTOBER			NOVEMBER			DECEMBER		
	Julian Date at 0 ^b	Day of Week	Day of Year									
1	2443 752.5	Fri.	244 782.5	Sun.	274 813.5	Wed.	305 843.5	Fri.	335	2443 753.5	Sat.	335
2	2443 753.5	Sat.	245 783.5	Mon.	275 814.5	Thu.	306 844.5	Sat.	336	2443 754.5	Sun.	336
3	2443 754.5	Sun.	246 784.5	Tue.	276 815.5	Fri.	307 845.5	Sun.	337	2443 755.5	Mon.	338
4	2443 755.5	Mon.	247 785.5	Wed.	277 816.5	Sat.	308 846.5	Mon.	338	2443 756.5	Tue.	339
5	2443 756.5	Tue.	248 786.5	Thu.	278 817.5	Sun.	309 847.5	Tue.	339	2443 757.5	Wed.	340
6	2443 757.5	Wed.	249 787.5	Fri.	279 818.5	Mon.	310 848.5	Wed.	340	2443 758.5	Thu.	341
7	2443 758.5	Thu.	250 788.5	Sat.	280 819.5	Tue.	311 849.5	Thu.	341	2443 759.5	Fri.	342
8	2443 759.5	Fri.	251 789.5	Sun.	281 820.5	Wed.	312 850.5	Fri.	342	2443 760.5	Sat.	343
9	2443 760.5	Sat.	252 790.5	Mon.	282 821.5	Thu.	313 851.5	Sat.	343	2443 761.5	Sun.	344
10	2443 761.5	Sun.	253 791.5	Tue.	283 822.5	Fri.	314 852.5	Sun.	344	2443 762.5	Mon.	345
11	2443 762.5	Mon.	254 792.5	Wed.	284 823.5	Sat.	315 853.5	Mon.	345	2443 763.5	Tue.	346
12	2443 763.5	Tue.	255 793.5	Thu.	285 824.5	Sun.	316 854.5	Tue.	346	2443 764.5	Wed.	347
13	2443 764.5	Wed.	256 794.5	Fri.	286 825.5	Mon.	317 855.5	Wed.	347	2443 765.5	Thu.	348
14	2443 765.5	Thu.	257 795.5	Sat.	287 826.5	Tue.	318 856.5	Thu.	348	2443 766.5	Fri.	349
15	2443 766.5	Fri.	258 796.5	Sun.	288 827.5	Wed.	319 857.5	Fri.	349	2443 767.5	Sat.	350
16	2443 767.5	Sat.	259 797.5	Mon.	289 828.5	Thu.	320 858.5	Sat.	350	2443 768.5	Sun.	351
17	2443 768.5	Sun.	260 798.5	Tue.	290 829.5	Fri.	321 859.5	Sun.	351	2443 769.5	Mon.	352
18	2443 769.5	Mon.	261 799.5	Wed.	291 830.5	Sat.	322 860.5	Mon.	352	2443 770.5	Tue.	353
19	2443 770.5	Tue.	262 800.5	Thu.	292 831.5	Sun.	323 861.5	Tue.	353	2443 771.5	Wed.	354
20	2443 771.5	Wed.	263 801.5	Fri.	293 832.5	Mon.	324 862.5	Wed.	354	2443 772.5	Thu.	355
21	2443 772.5	Thu.	264 802.5	Sat.	294 833.5	Tue.	325 863.5	Thu.	355	2443 773.5	Fri.	356
22	2443 773.5	Fri.	265 803.5	Sun.	295 834.5	Wed.	326 864.5	Fri.	356	2443 774.5	Sat.	357
23	2443 774.5	Sat.	266 804.5	Mon.	296 835.5	Thu.	327 865.5	Sat.	357	2443 775.5	Sun.	358
24	2443 775.5	Sun.	267 805.5	Tue.	297 836.5	Fri.	328 866.5	Sun.	358	2443 776.5	Mon.	359
25	2443 776.5	Mon.	268 806.5	Wed.	298 837.5	Sat.	329 867.5	Mon.	359	2443 777.5	Tue.	360
26	2443 777.5	Tue.	269 807.5	Thu.	299 838.5	Sun.	330 868.5	Tue.	360	2443 778.5	Wed.	361
27	2443 778.5	Wed.	270 808.5	Fri.	300 839.5	Mon.	331 869.5	Wed.	361	2443 779.5	Thu.	362
28	2443 779.5	Thu.	271 809.5	Sat.	301 840.5	Tue.	332 870.5	Thu.	362	2443 780.5	Fri.	363
29	2443 780.5	Fri.	272 810.5	Sun.	302 841.5	Wed.	333 871.5	Fri.	363	2443 781.5	Sat.	364
30	2443 781.5	Sat.	273 811.5	Mon.	303 842.5	Thu.	334 872.5	Sat.	364	2443 782.5	Sun.	365
31				812.5	Tue.	304				2443 783.5	Sun.	365

The Julian Day begins at noon.

Navigational Tables

Section C contains mathematical representations of the following functions that are tabulated in the *Nautical Almanac* (N.A): the GHA of Aries, the GHA and declination of the Sun, Moon and navigational planets, the semi-diameter of the Sun and Moon, and the horizontal parallax of the Moon. These functions are expressed for a specified time span by a power series of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$$

In the series x is a time-like variable which takes on values between -1 and $+1$ over the specified time span; $a_0, a_1, a_2, a_3, a_4, a_5$ are coefficients which are tabulated in Section C for the specified time span; and $f(x)$ represents the value of the function (e.g., the GHA of Aries) evaluated at time x .

To evaluate the series for one of the navigational functions, one must first find the set of coefficients in Section C that is applicable for the desired date. Constants A and B are given there for the purpose of converting the calendar date and GMT to the time-like variable x . To obtain the value of x for the desired time, first determine t , the GMT measured in days and fractions thereof from 0 January, 0^h GMT, from the relation $t = N + \text{GMT}/24$, where N is the day of the year at Greenwich and GMT is the Greenwich Mean Time expressed in hours. A calendar is provided on pages A2–A4 for finding the day of the year; alternatively the day of the year can be computed from the following formula, valid for 1978 and other non-leap years:

$$N = \left\langle \frac{275M}{9} \right\rangle - 2 \left\langle \frac{M+9}{12} \right\rangle + I - 30$$

where M is the month number and I is the day of the month. The angular brackets indicate that the integral part of the enclosed quantity is to be taken. (See the Applications Section (Section B) for a fuller explanation of this and other formulas for computing the day of the year.) Once t has been determined, x is computed from the relation $x = t/A + B$. If computed correctly, the value of x should fall in the range $-1 \leq x \leq +1$.

Example: Compute x for later use in computing the position of the Sun at 15^h22^m00^s GMT (=0^d6402778) on 2 November 1978.

From the calendar on page A4, 2 November is found to be day 306; alternatively, substituting $M = 11$ and $I = 2$ in the formula given above yields

$$N = \left\langle \frac{275 \cdot 11}{9} \right\rangle - 2 \left\langle \frac{11+9}{12} \right\rangle + 2 - 30 = 336 - 2 \cdot 1 + 2 - 30 = 306$$

Thus $t = 306 + 0.6402778$.

This date is in the interval 1 November through 2 December (days 305 through 336) for which coefficients for the Sun are given on page C6. The constants for this interval are $A = 16.0$ and $B = -20.0625$. Therefore $x = 306.6402778/16.0 - 20.0625 = -0.8974826$.

Once the variable x has been computed and the coefficients a_i have been found, the series $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$ can be evaluated. The series can be evaluated most efficiently by computing a set of five auxiliary variables, b_1, b_2, b_3, b_4, b_5 , in the following order:

$$\begin{aligned}b_5 &= x a_5 \\b_4 &= x(a_4 + b_5) \\b_3 &= x(a_3 + b_4) \\b_2 &= x(a_2 + b_3) \\b_1 &= x(a_1 + b_2) \\f(x) &= a_0 + b_1\end{aligned}$$

By using this algorithm, the series is evaluated in its nested form $f(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + x(a_4 + x a_5))))$.

Example: Compute the GHA of the Sun at $15^{\text{h}}22^{\text{m}}00^{\text{s}}$ GMT on 2 November 1978.

From the previous example $x = -0.8974826$.

The coefficients for the Sun's GHA may be found on page C6.

$$\begin{aligned}b_5 &= -0.8974826(0.0043) &= -0.0039 \\b_4 &= -0.8974826(0.0172 - 0.0039) &= -0.0120 \\b_3 &= -0.8974826(0.0055 - 0.0120) &= +0.0058 \\b_2 &= -0.8974826(-0.4531 + 0.0058) &= +0.4014 \\b_1 &= -0.8974826(5759.2528 + 0.4014) &= -5169.1895 \\f(-0.8974826) &= 5943.7871 - 5169.1895 &= 774^{\circ}5976\end{aligned}$$

Therefore GHA = $54^{\circ}5976 = 54^{\circ}35'9$

Note that when computing the GHA, it may be necessary to reduce the final result to the range $0^{\circ}-360^{\circ}$ by subtracting multiples of 360° .

Example: Compute the declination of the Moon at $03^{\text{h}}15^{\text{m}}30^{\text{s}}$ GMT on 22 May 1978.

The constants A and B and the series coefficients are found on page C14.

$$x = 142.1357639 / 3.0 - 47.3333333 = +0.0452546$$

$$\begin{aligned}
 b_5 &= 0.0452546 (-0.1251) & = -0.0057 \\
 b_4 &= 0.0452546 (-0.1789 - 0.0057) & = -0.0084 \\
 b_3 &= 0.0452546 (1.2985 - 0.0084) & = +0.0584 \\
 b_2 &= 0.0452546 (4.0308 + 0.0584) & = +0.1851 \\
 b_1 &= 0.0452546 (-8.3716 + 0.1851) & = -0.3705 \\
 f(0.0452546) &= -14.8136 - 0.3705 & = -15^{\circ}18'41 \\
 \text{declination} &= -15^{\circ}11'0
 \end{aligned}$$

Although the series are designed to provide precision comparable to that published in the N.A., there will be small discrepancies between the tabulated values and the values computed from the series. In such cases it should be understood that the N.A. represents the standard. Table 1 lists the largest discrepancies found from evaluating and comparing the series with the data in the N.A.

Under no circumstances should the series be used to extrapolate data beyond the specified time interval. Such extrapolation will lead to erroneous and useless results.

In accordance with standard practice for navigational almanacs, the time argument used in this almanac is Greenwich Mean Time (GMT), or more specifically UT1. To obtain full precision in the determined positions, the radio time signals in UTC must be corrected to UT1, or GMT, according to standard procedures. (See the paper by R. L. Duncombe and P. K. Seidelmann, 'The New UTC Time Signals', *Narigation*, 24, 160–165, 1977.)

Table 1: Comparison of Almanac for Computers with N.A.

Function	No. of Terms	Span of Validity	Maximum Error
GHA of Aries	6	32 days	0'2
Sun: GHA	"	"	0'1
Declination	"	"	0'2
Semi-Diameter	"	"	0'1
Moon: GHA	"	6 days	0'2*
Declination	"	"	0'2
Horizontal Parallax	"	"	0'2
Semi-Diameter	"	"	0'1
Navigational Planets: GHA	"	32 days	0'2†
Declination	"	"	0'2†

*Except for the span 18–23 July, when the error in GHA may reach 0'3.

†Except for Venus during November, when errors in GHA and declination may reach 0'3.

Astronomical Tables

Section D contains mathematical representations of data published in the *American Ephemeris and Nautical Almanac (AE)*. Chebyshev expansions have been chosen as the means of representation since they provide efficient and accurate expressions that can be easily evaluated with a small computer. The coefficients a_i of the Chebyshev expansion

$$f(x) = a_0/2 + \sum_{i=1}^n a_i T_i(x)$$

are tabulated for prescribed time spans, where $f(x)$ is the function being represented, $T_i(x)$ is the Chebyshev polynomial of the first kind of the i -th degree, and x is the normalized time variable. Although Chebyshev polynomials appear in the formal series expansions, the series can be evaluated without explicitly computing these polynomials. No *a priori* knowledge of Chebyshev analysis is required to use the series in this almanac. Interested readers can find information on Chebyshev analysis in *Applied Analysis* by C. Lanczos and *Chebyshev Polynomials in Numerical Analysis* by L. Fox and I. B. Parker.

It must be emphasized that the series are valid only over the specified time intervals. Attempts to extrapolate data using these series will yield erroneous and useless results.

An advantageous feature of approximations in Chebyshev series is that a reliable estimate can be made of the precision of the approximation. Using the full series as published will provide values of the astronomical functions to a precision comparable to that published in the *AE*. However, in the frequent cases in which values computed from the series differ slightly from the *AE*, it should be understood that the *AE* represents the standard. Table 2 lists the largest errors resulting from evaluating and comparing the full series with the data printed in the *AE*. If lower precision is sufficient, the series can be truncated according to the following precept to obtain shorter series with the desired precision. Beginning with the last coefficient, add the absolute values of the coefficients until the required limit of precision is accumulated. The series may be safely truncated at this point.

Example: Find the number of terms required to compute the apparent right ascension of the Sun to a precision of $\pm 1^s$ ($= \pm 0^h.00028$) during the period 1 July through 3 October 1978.

The required series coefficients are found on page D6. Summing the absolute values of coefficients 23 through 6 for the Sun's right ascension gives a total of $0^h.00023$; adding to this the absolute value of coefficient 5 increases the total to $0^h.00063$, which exceeds the limit of precision. Therefore terms 6 through 23 can be dropped safely, and terms 0 through 5 yield right ascensions to approximately $\pm 1^s$ during this period.

To evaluate the approximations, one must first normalize the time variable to the interval for which the series is valid. The normalized time x is determined from a relation of the form $x = t/A + B$, where values of A and B are given for

Table 2: Comparison of *Almanac for Computers* and AE

Function	No. of Terms	Span of Validity	Maximum Error
Apparent Sidereal Time at 0 ^h UT	36	95 days	0 ^s .001
Equation of the Equinoxes	"	"	0 ^s .001
Nutation in Longitude	"	"	0." ^s 09
Nutation in Obliquity	"	"	0." ^s 05
Sun: Right Ascension	24	95 days	0 ^s .01
Declination	"	"	0." ^s 1
Distance	"	"	2x10 ⁻⁷ AU
Semi-Diameter	"	"	0." ^s 01
Ephemeris Transit	"	"	0 ^s .01
Moon: Right Ascension	38	32 days	0 ^s .002
Declination	"	"	0." ^s 02
Horizontal Parallax	"	"	0." ^s 01
Geocentric Rectangular Coords.	"	"	1x10 ⁻⁶ Earth radii
Mercury: Right Ascension	40	95 days	0 ^s .02
Declination	"	"	0." ^s 2
Distance	"	"	1x10 ⁻⁶ AU
Venus: Right Ascension	40	95 days	0 ^s .02
Declination	"	"	0." ^s 1
Distance	"	"	1x10 ⁻⁶ AU
Mars: Right Ascension	22	95 days	0 ^s .02
Declination	"	"	0." ^s 2
Distance	"	"	1x10 ⁻⁶ AU
Jupiter: Right Ascension	22	95 days	0 ^s .02
Declination	"	"	0." ^s 2
Distance	"	"	1x10 ⁻⁶ AU
Saturn: Right Ascension	22	95 days	0 ^s .02
Declination	"	"	0." ^s 2
Distance	"	"	1x10 ⁻⁶ AU
Uranus: Right Ascension	22	95 days	0 ^s .02
Declination	"	"	0." ^s 2
Distance	"	"	9x10 ⁻⁶ AU
Neptune: Right Ascension	22	95 days	0 ^s .02
Declination	"	"	0." ^s 2
Distance	"	"	8x10 ⁻⁶ AU
Pluto: Right Ascension (astrometric)	22	95 days	0 ^s .001
Declination (astrometric)	"	"	0." ^s 01
Distance	"	"	1x10 ⁻⁶ AU

each set of coefficients and t is reckoned in days and fractions thereof from 0 January. If correctly computed, the value of x will fall in the range $-1 \leq x \leq +1$.

For the functions Apparent Sidereal Time at 0^h UT, the Equation of the Equinoxes, Nutation in Longitude and Nutation in Latitude, the variable t is measured in days of Universal Time from 0 January, 0^h UT. For all other functions in Section D, t is measured in days of ephemeris time from 0 January, 0^h ET. These latter functions can be evaluated for Universal Times, however, by using the normalizing relation $x = (t' + \Delta T)/A + B$, where t' is the Universal Time measured in days from 0 January, 0^h UT. As this volume goes to press, $\Delta T = 49^s.3 (=0^d.000571)$ appears to be a reliable value to use in 1978. Care should be taken to verify that the sum $t' + \Delta T$ falls within the time span for which the series is valid; if it falls outside, the series and constants for the next span should be used.

Once the normalized time variable x is determined, the approximation

$$f(x) = a_0/2 + \sum_{i=1}^n a_i T_i(x)$$

where the a_i are the printed coefficients, can be evaluated as follows:

$$\text{let } b_{n+1} = b_{n+2} = 0,$$

$$\text{compute } b_i = 2xb_{i+1} - b_{i+2} + a_i, \text{ for } i = n, n-1, \dots, 0,$$

$$\text{then } f(x) = (b_0 - b_2)/2.$$

Example: Compute the apparent right ascension of the Sun to a precision of $\pm 1^s$ at 14^h10^m25^s ($=0^d.590567$) UT on 28 July 1978.

From the previous example we know that terms 0 through 5 must be carried to ensure the required precision on this date. Using the calendar (page A3) or the formulas on page B2, it is found that 28 July is day 209. Since the series for the solar coordinates are based on ephemeris time, it is necessary to add ΔT to the specified Universal Time. Therefore

$$t = 209 + 0.590567 + 0.000571 = 209.591138$$

On page D6 are found the constants for the time span: $A = 47.5$ and $B = -4.83157895$. Therefore

$$x = 209.591138/47.5 - 4.83157895 = -0.419133939$$

With this value of x and the coefficients from page D6, the algorithm works as follows:

$$b_{n+2} = b_7 = 0$$

$$b_{n+1} = b_6 = 0$$

$$b_n = b_5 = 2xb_6 - b_7 + a_5 = -0.0004006$$

$$b_4 = 2xb_5 - b_6 + a_4 = +0.0041015$$

$$b_3 = 2xb_4 - b_5 + a_3 = +0.0079027$$

$$b_2 = 2xb_3 - b_4 + a_2 = -0.0756807$$

$$b_1 = 2xb_2 - b_3 + a_1 = +3.0443100$$

$$b_0 = 2xb_1 - b_2 + a_0 = +16.9239355$$

$$f(x) = (b_0 - b_2)/2 = (16.9239355 + 0.0756807)/2$$

$$\text{RA} = 8^h 49\text{m} 08\text{s} = 8^h 29\text{m} 59\text{s}$$

Expressions for Extended Periods of Time

Section E contains reduced-precision mathematical representations of astronomical data, valid for extended periods of time. The expressions presented in this section are of two types: (1) Chebyshev series similar to those in Section D, but valid for all of the current year; and (2) trigonometric series, valid for the years 1800 through 2100, approximately. Although these representations are of lower precision than those contained in Section D, the precision is sufficient for many applications, including navigation and telescope pointing. Tables 3 and 4 list the maximum errors that may arise from using the data in Section E.

The Chebyshev series presented on pages E1–E4 represent the same astronomical functions as the series in Section D, except that series for the Moon's coordinates have not been included. For a description of Chebyshev series and their evaluation, see pages A8–A10.

The trigonometric series on pages E5–E21 were provided by Thomas C. Van Flandern and Kenneth F. Pulkkinen in advance of eventual publication as a Naval Observatory Circular. Included here are series for generating the apparent right ascension, declination and geocentric distance of the Sun, Moon, Mercury, Venus, Mars and Jupiter. In addition series are provided for the equatorial, rectangular coordinate and velocity components of the Sun, referred to the mean equator and equinox of 1950.0.

Evaluation of the trigonometric series is accomplished by computing the necessary fundamental arguments for the desired date, computing the value of each trigonometric term, and then summing the values of the individual terms. These steps should be carried out in the following manner:

- (1) For the desired date and time, determine T , the interval in Julian Centuries from 0 January 1900, 12^h ET. This is obtained from the formula

$$T = (\text{JED} - 2415020.0) / 36525$$

where JED is the Julian Ephemeris Date corresponding to the specified date and time. (A formula for computing Julian Dates is given in the Applications Section, page B2.) For dates before 1900, T will be negative.

- (2) Using the expressions in Table 5, compute the values of the fundamental arguments G, L, A, C, N , etc., as necessary (not all of the fundamental arguments are used in every series). It may be necessary or desirable to reduce these values to the range 0° – 360° .

- (3) Compute the value of each term in the series. The format of the trigonometric series is one term per line. Each term should be computed in the following manner:

- (a) Compute the value of the expression within parentheses, comprised of the sum of integer multiples of the fundamental arguments. It may be necessary or desirable to reduce this value to the range 0° – 360° .

Table 3: Precision of Chebyshev Series in Section E
 (series are valid for year 1978 only)

Function	No. of Terms	Maximum Error
Apparent Sidereal Time at 0 ^h UT	14	0 ^s .03
Equation of the Equinoxes	"	0 ^s .03
Nutation in Longitude	"	0 ^{".} 4
Nutation in Obliquity	"	0 ^{".} 2
Sun: Right Ascension	24	0 ^s .6
Declination	"	3"
Distance	"	4x10 ⁻⁵ AU
Semi-Diameter	"	0 ^{".} 05
Ephemeris Transit	"	0 ^s .6
Mercury: Right Ascension	50	6 ^s
Declination	"	51"
Distance	"	3x10 ⁻⁴ AU
Venus: Right Ascension	50	0 ^s .05
Declination	"	0 ^{".} 5
Distance	"	2x10 ⁻⁶ AU
Mars: Right Ascension	24	0 ^s .7
Declination	"	3"
Distance	"	4x10 ⁻⁵ AU
Jupiter: Right Ascension	24	0 ^s .2
Declination	"	0 ^{".} 5
Distance	"	4x10 ⁻⁵ AU
Saturn: Right Ascension	24	0 ^s .1
Declination	"	0 ^{".} 4
Distance	"	4x10 ⁻⁵ AU
Uranus: Right Ascension	24	0 ^s .1
Declination	"	0 ^{".} 3
Distance	"	5x10 ⁻⁵ AU
Neptune: Right Ascension	24	0 ^s .05
Declination	"	0 ^{".} 3
Distance	"	5x10 ⁻⁵ AU
Pluto: Right Ascension (Astrometric)	24	0 ^s .02
Declination (Astrometric)	"	0 ^{".} 2
Distance	"	4x10 ⁻⁵ AU

Table 4: Precision of the Trigonometric Series in Section E
 (series are valid for years 1800–2100, approximately)

Function	Maximum Error
Sun:	1×10^{-4} AU
	1×10^{-5} AU/day
	1×10^{-4} AU
	1×10^{-4} AU ²
	$0^m 1$
	$1'$
Right Ascension (from θ, ρ, ϕ)	5×10^{-5} AU
Declination (from θ, ρ)	0.01 Earth radii
Distance (from ρ)	0.01 Earth radii ²
Moon:	
θ, ϕ	$0^m 1$
ρ	$1'$
Right Ascension (from θ, ρ, ϕ)	1×10^{-4} Earth radii
Declination (from θ, ρ)	
Distance (from ρ)	
Mercury, Venus, Mars:	
θ, ϕ	1×10^{-4} AU
ρ	1×10^{-4} AU ²
Right Ascension (from θ, ρ, ϕ)	$0^m 1$
Declination (from θ, ρ)	$1'$
Distance (from ρ)	2×10^{-4} AU
Jupiter:	
θ, ϕ	1×10^{-3} AU
ρ	1×10^{-3} AU ²
Right Ascension (from θ, ρ, ϕ)	$0^m 1$
Declination (from θ, ρ)	$1'$
Distance (from ρ)	2×10^{-4} AU

- (b) Compute the indicated trigonometric function (sine or cosine), using the result from step (3a) as the argument.
- (c) Multiply the result from step (3b) by the indicated coefficient, the numerical value at the left side of the line. Note that the coefficient may be either positive or negative.
- (d) If the symbol T is present in the term, multiply the result from step (3c) by the value of T computed in step (1).

It should be noted that there may be one or two terms in a series with no trigonometric factor, *i.e.*, steps (3a) and (3b) cannot be performed. For such a term consider the results of steps (3a) and (3b) to have the value 1, and continue with step (3c).

- (4) Sum all the values of the terms in the series. To obtain the highest numerical precision, begin with the terms of smallest absolute value; *i.e.*, sum the series from the bottom to the top.

Example: The following is a sample series similar to those found in Section E. Evaluate this series for $22^{\text{h}}05^{\text{m}}$ ET on 24 April 1978.

SAMPLE SERIES

AU						
0.732580	SIN (L)
- 0.004617	SIN (G		- 2L)	
- 0.001068	T	COS (4G	- N	+ 6L)
+ 0.000624						
+ 0.000020		COS (- G	+ 3N)

The Julian Ephemeris Date for the desired epoch is JED = 2443623.4201; therefore $T = +0.78311896$. In the above series, only the fundamental arguments G , N and L are required. Their values for the desired epoch are computed from the expressions in Table 5:

$$G = 110^\circ.0141 \quad N = 184^\circ.5213 \quad L = 32^\circ.5816$$

Substituting the computed values of T , G , N and L , the series becomes:

$$\begin{aligned} 0.732580 &\quad \times \sin(32^\circ.5816) \\ -0.004617 &\quad \times \sin(44^\circ.8509) \\ -0.001068 \times 0.78311896 &\quad \times \cos(91^\circ.0247) \\ +0.000624 & \\ +0.000020 &\quad \times \cos(83^\circ.5498) \end{aligned}$$

Carrying out the indicated operations within each term, the series becomes:

$$0.394494 - 0.003256 + 0.000015 + 0.000624 + 0.000002$$

Summing these terms gives the value of the sample series for the desired epoch: 0.391879 AU.

If astronomical data of very low precision is sufficient, the Chebyshev and trigonometric series in Section E can be truncated according to the following precept. Take from Table 3 or 4, as appropriate, the listed error for the series of interest. Add to this value the absolute values of the coefficients of the series, beginning with the last term and working upward until the required limit of precision is accumulated. The series can be truncated at this point, and the small terms omitted.

The apparent right ascension, declination and geocentric distance of a body can be obtained from the trigonometric series for the quantities θ , ρ and ϕ . Once values of θ , ρ and ϕ have been computed, the apparent place is obtained from the relations

$$\text{apparent right ascension: } \text{RA} = l + \arcsin(\phi/\sqrt{\rho-\theta^2})$$

$$\text{apparent declination: } \text{decl} = \arcsin(\theta/\sqrt{\rho})$$

$$\text{true geometric distance: } \Delta = \sqrt{\rho}$$

where the principal value of the arcsine function (-90° to $+90^\circ$) should be used. For the Sun, Moon, Mars and Jupiter, l represents the mean longitude of the body on the desired date; for Mercury and Venus, l represents the mean longitude of the Sun on the desired date. Expressions for computing mean longitudes are given in Table 5.

Example: Compute the apparent geocentric coordinates of the Sun at 0^h ET on 7 October 1978.

The Julian Ephemeris Date for the desired epoch is JED = 2443788.500; therefore $T = +0.78763860$. The required series for the parameters θ , ρ and ϕ are found on page E7. Evaluation of these series yields

$$\theta = -0.0920 \quad \rho = +0.9990 \quad \phi = -0.0519$$

In this case l is the mean longitude of the Sun, which is designated L in Table 5. Evaluating the expression in Table 5 yields $l = 195^\circ 2921$. Therefore $\text{RA} = 195^\circ 2921 + \arcsin(-0.0519/0.9953) = 192^\circ 3031 = 12^h 49^m 13^s$ $\text{decl} = \arcsin(-0.0920/0.9995) = -5^\circ 2813 = -5^\circ 16' 9''$ $\Delta = 0.9995 \text{ AU}$

Table 5: Fundamental Arguments of Trigonometric Series

Mean anomaly of the Sun:

$$G = 358^\circ 475833 + 35999^\circ 049750T - 0^\circ 000150T^2$$

* Mean longitude of the Sun:

$$L = 279^\circ 696678 + 36000^\circ 768920T + 0^\circ 000303T^2$$

Mean anomaly of the Moon:

$$A = 296^\circ 104608 + 477000^\circ 0T + 198^\circ 849108T + 0^\circ 009192T^2$$

* Mean longitude of the Moon:

$$C = 270^\circ 434164 + 480960^\circ 0T + 307^\circ 883142T - 0^\circ 001133T^2$$

* Longitude of the ascending node of the Moon's orbit:

$$N = 259^\circ 183275 - 1800^\circ 0T - 134^\circ 142008T + 0^\circ 002078T^2$$

Elongation of the Moon from the Sun:

$$D = 350^\circ 737486 + 444960^\circ 0T + 307^\circ 114217T - 0^\circ 001436T^2$$

Argument of latitude of the Moon:

$$B = 11^\circ 250889 + 483120^\circ 0T + 82^\circ 025150T - 0^\circ 003211T^2$$

Longitude of the Earth, equator and equinox of 1900.0:

$$E = 98^\circ 998753 + 35640^\circ 0T + 359^\circ 372886T$$

* For evaluation of the series for the Sun's equatorial, rectangular coordinate and velocity components ($X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$) referred to the equator and equinox of 1950.0, the expressions given above for the arguments L, C and N should be replaced by the following:

$$L = 279^\circ 696678 + 36000^\circ 76892T + 0^\circ 000303T^2 - p$$

$$C = 270^\circ 434164 + 480960^\circ 0T + 307^\circ 883142T - 0^\circ 001133T^2 - p$$

$$N = 259^\circ 183275 - 1800^\circ 0T - 134^\circ 142008T + 0^\circ 002078T^2 - p$$

In these expressions p is the precession in longitude from 1950.0 to the desired date; it can be computed from

$$p = [1^\circ 396041 + 0^\circ 000308(T + 0.5)](T - 0.499998)$$

(Table 5 continued on next page)

Table 5: Fundamental Arguments (continued)

Mean anomaly of Mercury:

$$H = 102^\circ 279381 + 149400^\circ 0T + 72^\circ 515289T + 0^\circ 000007T^2$$

Mean longitude of Mercury:

$$K = 178^\circ 179078 + 149400^\circ 0T + 74^\circ 070778T + 0^\circ 000301T^2$$

Argument of latitude of Mercury:

$$F = 131^\circ 033133 + 149400^\circ 0T + 72^\circ 885569T + 0^\circ 000127T^2$$

Mean anomaly of Venus:

$$V = 212^\circ 603219 + 58320^\circ 0T + 197^\circ 803875T + 0^\circ 001286T^2$$

Mean longitude of Venus:

$$W = 342^\circ 767053 + 58320^\circ 0T + 199^\circ 211911T + 0^\circ 000310T^2$$

Argument of latitude of Venus:

$$R = 266^\circ 987406 + 58320^\circ 0T + 198^\circ 312061T - 0^\circ 000100T^2$$

Mean anomaly of Mars:

$$M = 319^\circ 529425 + 19080^\circ 0T + 59^\circ 858500T + 0^\circ 000181T^2$$

Mean longitude of Mars:

$$P = 293^\circ 747628 + 19080^\circ 0T + 61^\circ 699258T + 0^\circ 000311T^2$$

Argument of latitude of Mars:

$$X = 244^\circ 961186 + 19080^\circ 0T + 60^\circ 928267T + 0^\circ 000312T^2$$

Mean anomaly of Jupiter:

$$J = 225^\circ 444651 + 2880^\circ 0T + 154^\circ 906654T$$

Mean longitude of Jupiter:

$$Q = 237^\circ 352073 + 2880^\circ 0T + 154^\circ 906654T$$

Argument of latitude of Jupiter:

$$Y = 138^\circ 419251 + 2880^\circ 0T + 154^\circ 906654T$$

Mean anomaly of Saturn:

$$S = 175^\circ 758444 + 1080^\circ 0T + 142^\circ 116782T$$

Mean anomaly of Uranus:

$$U = 72^\circ 759796 + 360^\circ 0T + 68^\circ 513410T + 0^\circ 047410T^2$$

To ensure full precision in evaluating the formulas in this table, terms consisting of a coefficient multiplied by T have often been separated into two parts. In the first part the coefficient is a multiple of 360° ; in the second part the coefficient is less than 360° .

Stellar Tables

The Stellar Tables (Section F) list the mean and apparent places of 176 stars for the current year, along with coefficients for converting from mean to apparent place for any date in the year. The list of stars is essentially the same as that for the star tables on pages 268–273 of the *Nautical Almanac*. The stars are arranged in order of increasing right ascension (decreasing sidereal hour angle), except where both components of a binary system are listed, in which case the brighter component is listed first. For binary stars which can be resolved in small instruments, the position of one or both components is listed rather than the position of the center of gravity or the center of light. For convenience of navigators the sidereal hour angle (SHA) is tabulated rather than right ascension (RA); astronomers can obtain the right ascension in degrees from the relation $RA = 360^\circ - SHA$.

The quantities tabulated for each star are, from left to right on the page:

- (1) An identification number.
 - (2) The navigational star number, provided the star is one of the 57 selected navigation stars listed in the *Nautical Almanac* and *Air Almanac*.
 - (3) The star name. The Bayer designation is on the first line and the proper name, if any, is on the second line.
 - (4) The magnitude and spectral type. The visual magnitude is on the first line and the spectral type is on the second line. A composite spectrum is denoted by *.
 - (5) The mean place of the star for 1978.0. SHA in degrees is on the first line, and declination in degrees is on the second line.
 - (6) Four coefficients (H, R, S, C) in degrees for conversion from mean to apparent place. The coefficients on the first line are for the conversion of SHA; these will hereafter be designated H_S, R_S, S_S, C_S . The coefficients on the second line are for the conversion of declination; these will hereafter be designated H_D, R_D, S_D, C_D .
 - (7) The apparent place of the star for 1978.5. SHA in degrees is on the first line, and declination in degrees is on the second line.
- The mean place of a star is to be regarded as a fundamental reference point with no simple geometric or observational significance. The apparent place of a star is the geocentric position, referred to the true equator and equinox of date, at which the star is observed. The apparent place is the position needed for navigational purposes, calibration of telescope setting circles, computation of transit times, etc. For work requiring accuracies of no better than $\pm 1'.3$, the tabulated apparent place for 1978.5 can be used for any date during the year. To obtain apparent places to greater accuracy, the following procedures should be used:

For the desired date in 1978, determine τ , the fraction of the year elapsed. If the day of the year is t , τ can be computed from the quantities A and B listed at the beginning of the table: $\tau = t/A + B$.

Star positions accurate to better than $\pm 0'.5$ can then be obtained by using the following formulas:

$$\begin{aligned}\text{apparent SHA} &= \text{mean SHA} + H_S + R_S \tau \\ \text{apparent decl.} &= \text{mean decl.} + H_D + R_D \tau\end{aligned}$$

Star positions accurate to better than $\pm 0'.1$ (and generally better than $\pm 0'.05$) can be obtained by using the following formulas:

$$\begin{aligned}\text{apparent SHA} &= \text{mean SHA} + H_S + R_S \tau + S_S \sin 360^\circ \tau + C_S \cos 360^\circ \tau \\ \text{apparent decl.} &= \text{mean decl.} + H_D + R_D \tau + S_D \sin 360^\circ \tau + C_D \cos 360^\circ \tau\end{aligned}$$

The tabulated apparent places for 1978.5 were computed using these latter formulas with $\tau = 0.500$.

Example: Compute the apparent place of Aldebaran (α Tauri) on 12 November 1978 to an accuracy of $0'.1$.

From the calendar on page A4 or from the algorithm on page B1, 12 November is found to be day 316. From page F1, $A = 365.0000$ and $B = -0.0027$. Therefore $\tau = 316/365.000 - 0.0027 = 0.863$ and $360^\circ \tau = 310^\circ 7$. Using the data for Aldebaran on page F2 (Aldebaran is star 26), we find:

Mean SHA	291°3358	Mean decl.	+16°4661
$+H_S$	- 0.0012	$+H_D$	- 0.0022
$+R_S \tau$	- 0.0110	$+R_D \tau$	+ 0.0014
$+S_S \sin 360^\circ \tau$	- 0.0022	$+S_D \sin 360^\circ \tau$	+ 0.0007
$+C_S \cos 360^\circ \tau$	- <u>0.0033</u>	$+C_D \cos 360^\circ \tau$	+ <u>0.0003</u>
Apparent SHA	291°3181	Apparent decl.	+16°4663

Section B: APPLICATIONS

This section contains formulas and algorithms of general utility in astronomy and navigation.

Introduction

In this section reference will be made to the following functions:

Sign function. The sign function serves to extract the algebraic sign from a number. The notation $\text{sign}(x)$ is defined to be $\text{sign}(x) = 1$ for $x \geq 0$, $\text{sign}(x) = -1$ for $x < 0$. An equivalent definition is $\text{sign}(x) = x/|x|$ for $x \neq 0$, $\text{sign}(x) = 1$ for $x = 0$. Examples: $\text{sign}(247) = 1$, $\text{sign}(-6.28) = -1$.

Truncation or largest-integer function. The truncation function extracts the integral part of a number. The algebraic sign of the result is the same as that of the original number. $\langle x \rangle$ is defined to be $\langle x \rangle = \text{sign}(x) \cdot N$, where N is the largest non-negative integer such that $N \leq |x|$.

Examples: $\langle 17.835 \rangle = 17$, $\langle -3.1416 \rangle = -3$.

Modulus or remainder function. The modulus function yields the remainder of the division x/y , when the quotient is constrained to be an integral value. Thus $\text{mod}(x,y)$ is defined to be $\text{mod}(x,y) = x - \langle x/y \rangle \cdot y$.

Examples: $\text{mod}(11,3) = 2$, $\text{mod}(-764.3,360.0) = -44.3$.

Note that $\langle x \rangle = x - \text{mod}(x,1.0)$. Therefore the truncation function can be defined in terms of the modulus function and *vice versa*. If either modulus or truncation is available on a calculator or computer, the other function can be simply obtained.

In this almanac Universal Time (UT) is to be identified with UT1, which is equivalent to the standard navigational time argument Greenwich Mean Time (GMT). The symbols UT and GMT may therefore be considered interchangeable. For detailed information on time systems the reader should consult the Explanation of a current edition of the *American Ephemeris and Nautical Almanac*.

Day of the Year

The day of the year, N , is defined as the integer $N = \langle t \rangle$, where t is the time elapsed in days since 0 January, 0^h UT, of the current year. Thus N takes on integer values between 1 and 365 (or 366 in leap years). The day of the year can be computed from either of the following formulas:

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle \cdot \left(1 + \left\langle \frac{K - 4\langle K/4 \rangle + 2}{3} \right\rangle \right) + I - 30$$

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle \cdot \left(1 + \left\langle \frac{\text{mod}(K,4) + 2}{3} \right\rangle \right) + I - 30$$

where N is the day of the year, K is the year (e.g., 1978), M is the month ($1 \leq M \leq 12$), and I is the day of the month ($1 \leq I \leq 31$).

These formulas are equivalent and are valid for any year, except those century years that are not evenly divisible by 400. Therefore the formulas given

B2

above are valid for the year 2000, but not for 1900 or 2100. In the above formulas the factor within the parentheses has the value 1 for leap years and 2 for non-leap years. Thus for a non-leap year, the following expression can be used:

$$N = \left\langle \frac{275M}{9} \right\rangle - 2 \left\langle \frac{M+9}{12} \right\rangle + I - 30$$

For leap years the equivalent expression is

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle + I - 30$$

Many expressions in this almanac require the value of t , the time elapsed in days since 0 January, 0^h UT, of the current year. By inverting the definition of N , we obtain $t = N + \text{UT}/24$, where UT is the Universal Time expressed in hours.

Julian Date

The Julian Date (JD) is a continuous count of days and fractions thereof from 1 January 4713 B.C. ($= -4712$ January 1), Greenwich Mean Noon ($= 12^{\text{h}}$ UT). For example A.D. 1978 January 1, 0^h UT, is JD 2443509.5 and A.D. 1978 July 21, 15^h UT, is JD 2443711.125. Conversion of Gregorian Calendar Date to Julian Date for the years A.D. 1801 through A.D. 2099 can be carried out with the following formula:

$$\begin{aligned} \text{JD} = & 367K - \left\langle \frac{7(K + \langle(M+9)/12 \rangle)}{4} \right\rangle + \left\langle \frac{275M}{9} \right\rangle + I + 1721013.5 \\ & + \text{UT}/24 - 0.5 \text{sign}(100K + M - 190002.5) + 0.5 \end{aligned}$$

where K is the year ($1801 \leq K \leq 2099$), M is the month ($1 \leq M \leq 12$), I is the day of the month ($1 \leq I \leq 31$), and UT is the Universal Time in hours. The last two terms in the formula add up to zero for all dates after 1900 February 28, so these two terms can be omitted for subsequent dates. Note that the formula makes use of the truncation and sign functions defined on page B1.

Example: Compute the JD corresponding to 1877 August 11, 7^h30^m UT.

Substituting $K = 1877$, $M = 8$, $I = 11$, and $\text{UT} = 7.5$ in the formula yields

$$\begin{aligned} \text{JD} = & 688859 - 3286 + 244 + 11 + 1721013.5 + 0.3125 + 0.5 + 0.5 \\ = & 2406842.8125 \end{aligned}$$

The Modified Julian Date (MJD) is sometimes used to specify current dates; it is defined as $\text{MJD} = \text{JD} - 2400000.5$. Use of the Modified Julian Date, rather than the Julian Date, is recommended with computers and calculators of limited precision. Note that for 0^h UT on any date the Julian Date has a fractional part of .5, while the corresponding Modified Julian Date is an integer.

If ephemeris time (ET) is used in the above formula instead of Universal Time (UT), the resulting quantity is designated Julian Ephemeris Date (JED).

Sidereal Time

The following formulas are relevant to the computation of sidereal time:

$$(1) \text{ GMST} = 6^{\text{h}}.62035556 + 0^{\text{h}}.0657098232N + 1.0027379093\text{UT}$$

$$(2) \text{ GMST} = 6^{\text{h}}.67170278 + 0^{\text{h}}.0657098232(\text{JD}_0 - 2433282.5) \\ + 1.0027379093\text{UT}$$

$$(3) \Omega = 190^{\circ}.6067 - 0^{\circ}.0529539(N + \text{UT}/24)$$

$$(4) \Omega = 372^{\circ}.1133 - 0^{\circ}.0529539(\text{JD} - 2433282.5)$$

$$(5) E = -0^{\text{h}}.00029 \sin \Omega$$

$$(6) \text{GAST} = \text{GMST} + E$$

$$(7) \text{GAST} = \Sigma(t_0) + 1.0027379093\text{UT} = \Sigma(t) + \text{UT}$$

$$(8) \text{LAST} = \text{GAST} - \lambda/15$$

where

GMST is the Greenwich mean sidereal time in hours;

Ω is the mean longitude of the ascending node of the Moon's orbit, measured in degrees;

E is the equation of the equinoxes in hours;

GAST is the Greenwich apparent sidereal time in hours;

LAST is the local apparent sidereal time in hours;

N is the day of the year ($1 \leq N \leq 365$ or, during a leap year, $1 \leq N \leq 366$);

UT is the Universal Time in hours;

JD_0 and JD are the Julian Dates at 0^{h} UT of the day of interest and at the instant of interest, respectively;

$\Sigma(t_0)$ and $\Sigma(t)$ are values obtained by evaluating the Chebyshev series for Apparent Sidereal Time (pp. D1–D4 or E1) at 0^{h} UT of the day of interest and at the instant of interest, respectively;

λ is the local longitude in degrees (west is positive; east is negative).

When using the above formulas, it may be necessary to reduce the resulting hour values to the range $0^{\text{h}} - 24^{\text{h}}$ by adding or subtracting multiples of 24^{h} .

Formulas (1) and (3) are specifically for the current year; the other formulas are valid at least over the latter half of this century. Formula (5) is an approximation that is accurate to about $\pm 0.^{\circ}2$. If more accuracy is required, the Chebyshev series for the Equation of the Equinoxes (pp. D1–D4 or E1) can be used in place of Formula (5). If sidereal time is to be computed to an accuracy better than $\pm 0.^{\circ}2$ (rarely justified for practical applications), then either the Chebyshev series for the Equation of the Equinoxes should be used in place of Formula (5) or Formula (7) should be used in place of Formula (6).

The above formulas can be easily adapted to allow the Modified Julian Date to be used in place of the Julian Date.

Hour Angles

The following formulas are useful if astronomical data, such as that given in Sections C and E, are applied to navigational purposes:

$$\text{GHA} = 15(\text{GAST} - \text{RA})$$

$$\text{LHA} = 15(\text{LAST} - \text{RA}) = \text{GHA} - \lambda$$

$$\text{GHA Aries} = 15 \text{ GAST}$$

$$\text{SHA} = 360^\circ - 15 \text{ RA}$$

$$\text{GHA} = \text{GHA Aries} + \text{SHA}$$

where

GHA is the Greenwich hour angle in degrees;

LHA is the local hour angle in degrees;

GHA Aries is the Greenwich hour angle of the First Point of Aries (the origin of right ascension) in degrees;

SHA is the sidereal hour angle in degrees;

RA is the apparent right ascension (referred to the true equator and equinox of date) in hours;

λ is the local longitude in degrees (west is positive; east is negative)

GAST is the Greenwich apparent sidereal time in hours;

LAST is the local apparent sidereal time in hours.

When using the above formulas, it may be necessary to add or subtract 360° to reduce the resulting hour angles to the range $0^\circ - 360^\circ$. Often local hour angle values are reduced to the range -180° to $+180^\circ$, in which case they are called meridian angles. In all cases positive hour angle values are measured westward from the meridian.

Altitude and Azimuth

The following formulas can be used to compute the altitude (a) and azimuth (A) of a celestial body:

$$(1) \sin a = \cos z = \sin \phi \sin \delta + \cos \phi \cos \delta \cos \text{LHA}$$

$$(2) \tan x = (-\cos \delta \sin \text{LHA}) / (\cos \phi \sin \delta - \sin \phi \cos \delta \cos \text{LHA})$$

$A = 360^\circ + x$ if in Eq. (2) the denominator is positive and the numerator is negative;

$A = x$ if both the denominator and numerator in Eq. (2) are positive;

$A = 180^\circ + x$ if the denominator of Eq. (2) is negative;

where

- a is the altitude of the body above the horizon;
- x is an auxiliary angle in the range $-90^\circ \leq x \leq +90^\circ$;
- A is the azimuth of the body measured East from North over the range $0^\circ \leq A \leq 360^\circ$;
- ϕ is the observer's latitude (north is positive; south is negative);
- δ is the declination of the body;
- LHA is the local hour angle of the body;
- z is the zenith distance of the body ($z = 90^\circ - a$).

If the computed value of $\sin a$ is negative, the body is below the horizon. The standard navigational notation for altitude is H_c , and the navigational notation for azimuth is Z_n . Equations (1) and (2) are the basic expressions used in preparing Sight Reduction Tables.

Sunrise, Sunset and Twilight

The following algorithm provides a means of computing times of sunrise, sunset and twilight for the current year for specified locations. Between latitudes 65° North and 65° South the phenomena can be computed to an accuracy of $\pm 2^m$. Although the algorithm can be used at higher latitudes, its accuracy deteriorates near dates on which the Sun remains above or below the horizon for more than twenty-four hours.

Notation:

- ϕ = latitude of observer (north is positive; south is negative)
- λ = longitude of observer (west is positive; east is negative)
- M = Sun's mean anomaly
- L = Sun's true longitude
- a = Sun's right ascension
- δ = Sun's declination
- H = Sun's local hour angle
- z = Sun's zenith distance at rise, set or twilight *
- t = approximate time of phenomenon in days since 0 Jan., 0^hUT
- T = local mean time of phenomenon
- UT = Universal Time of phenomenon

*The proper value of z should be chosen from the following:

	z	$\cos z$
Sunrise and Sunset	$90^\circ 50'$	-0.01454
Civil Twilight	96°	-0.10453
Nautical Twilight	102°	-0.20791
Astronomical Twilight	108°	-0.30902

Formulas for 1978:

- (1) $M = 0^{\circ}985600t - 3^{\circ}251$
- (2) $L = M + 1^{\circ}916 \sin M + 0^{\circ}020 \sin 2M + 282^{\circ}565$
- (3) $\tan a = 0.91746 \tan L$
- (4) $\sin \delta = 0.39782 \sin L$
- (5) $\cos H = (\cos z - \sin \delta \sin \phi) / (\cos \delta \cos \phi)$
- (6) $T = H + a - 0^{\text{h}}065710t - 6^{\text{h}}620$
- (7) $UT = T + \lambda$

Procedure:

1. With an initial value of t , compute M from Eq. (1) and then L from Eq. (2). If a morning phenomenon (sunrise or the beginning of morning twilight) is being computed, construct an initial value of t from the formula

$$t = N + (6^{\text{h}} + \lambda)/24$$

where N is the day of the year (see the calendar on pages A2–A4 or the formulas on page B1) and λ is the observer's longitude expressed in hours. If an evening phenomenon is being computed, use

$$t = N + (18^{\text{h}} + \lambda)/24$$

2. Solve Eq. (3) for a , noting that a is in the same quadrant as L . Transform a to hours for later use in Eq. (6).
3. Solve Eq. (4) for $\sin \delta$ which appears in Eq. (5); $\cos \delta$, which also is required in Eq. (5), should be determined from $\sin \delta$. While $\sin \delta$ may be positive or negative, $\cos \delta$ is always positive.
4. Solve Eq. (5) for H . Since computers and calculators normally give the arccosine in the range 0° – 180° , the correct quadrant for H can be selected according to the following rules:
 - (a) rising phenomena, $H = 360^{\circ} - \arccos H$;
 - (b) setting phenomena, $H = \arccos H$.
 In other words, for rising phenomena H must be either in quadrant 3 or 4 (depending on the sign of $\cos H$), whereas H must be either in quadrant 1 or 2 for setting phenomena. Convert H from degrees to hours for use in Eq. (6).
5. Compute T from Eq. (6), recalling that H and a must be expressed in hours. If T is negative or greater than 24^{h} , it should be converted to the range 0^{h} – 24^{h} by adding or subtracting multiples of 24^{h} .
6. Compute UT from Eq. (7), where λ must be expressed in hours. UT is an approximation to the time of sunrise, sunset or twilight, referred to the Greenwich meridian. If UT is greater than 24^{h} , the phenomenon occurs on the following day, Greenwich time. If UT is negative, the phenomenon occurs on the previous day, Greenwich time.

To ensure that precision is not lost during the computations, t should be carried to four decimal places. Angles should be expressed to three decimals of a degree and, upon conversion, to three decimals of an hour. Five significant digits should be carried for the trigonometric functions.

Under certain conditions Eq. (5) will yield a value of $|\cos H| > 1$. This mathematical embarrassment indicates the absence of the phenomenon on that day. At far northern latitudes, for example, there is continuous illumination during certain summer days and continuous darkness during winter days.

Example: Compute the time of sunset on 4 July at Washington, D.C.

$$\begin{aligned} \text{Latitude} &= 38^\circ 54' \text{ North} & \text{Longitude} &= 77^\circ 04' \text{ West} \\ \lambda &= +77^\circ 067/15 = +5^{\text{h}}.138 \\ \phi &= +38.9 & \sin \phi &= 0.62796 & \cos \phi &= 0.77824 \\ \text{For sunset: } z &= 90^\circ 50' & \cos z &= -0.01454 \\ t &= 185^{\text{d}} + (18^{\text{h}} + 5^{\text{h}}.138)/24 = 185^{\text{d}}.9641 \\ M &= 0.985600(185.9641) - 3^\circ 251 = 180^\circ 035 \\ L &= 180^\circ 035 + 1^\circ 916(-0.00061) + 0^\circ 020(0.00122) + 282^\circ 565 \\ &= 462^\circ 599 = 102^\circ 599 \\ \tan a &= 0.91746(-4.47411) = -4.10482 \\ a &= 103^\circ 691 = 6^{\text{h}}.913 \quad \text{Since } L \text{ is in quadrant 2, so is } a. \\ \sin \delta &= 0.39782(0.97592) = 0.38824 \\ \cos \delta &= 0.92156 \\ \cos H &= [-0.01454 - (0.38824)(0.62796)]/[(0.92156)(0.77824)] \\ &= -0.36021 \end{aligned}$$

Since sunset is being computed and $\cos H$ is negative, H is in the second quadrant: $H = 111^\circ 113 = 7^{\text{h}}.408$

$$\begin{aligned} T &= 7^{\text{h}}.408 + 6^{\text{h}}.913 - 0^{\text{h}}.065710(185.9641) - 6^{\text{h}}.620 = -4^{\text{h}}.519 \\ &= 19^{\text{h}}.481 \end{aligned}$$

$$UT = 19^{\text{h}}.481 + 5^{\text{h}}.138 = 24^{\text{h}}.619$$

Sunset occurred at $0^{\text{h}}.37^{\text{m}}$ UT on 5 July = $20^{\text{h}}.37^{\text{m}}$ EDT on 4 July.

Example: Compute the beginning of nautical twilight on 12 January at latitude $62^\circ 5$ South, longitude $7^\circ 0$ East.

$$\begin{aligned} \lambda &= -7^\circ 0/15 = -0^{\text{h}}.467 \\ \phi &= -62.5 & \sin \phi &= -0.88701 & \cos \phi &= 0.46175 \\ \text{For nautical twilight: } z &= 102^\circ & \cos z &= -0.20791 \\ t &= 12^{\text{d}} + (6^{\text{h}} - 0^{\text{h}}.467)/24 = 12^{\text{d}}.2305 \\ M &= 0.985600(12.2305) - 3^\circ 251 = 8^\circ 803 \\ L &= 8^\circ 803 + 1^\circ 916(0.15304) + 0^\circ 020(0.30247) + 282^\circ 565 \\ &= 291^\circ 667 \\ \tan a &= 0.91746(-2.51711) = -2.30935 \\ a &= 293^\circ 414 = 19^{\text{h}}.561 \quad \text{Since } L \text{ is in quadrant 4, so is } a. \\ \sin \delta &= 0.39782(-0.92935) = -0.36971 \\ \cos \delta &= 0.92915 \\ \cos H &= [-0.20791 - (-0.36971)(-0.88701)]/[(0.92915)(0.46175)] \\ &= -1.24896 \end{aligned}$$

Since the computed absolute value of $\cos H$ is greater than 1, there is no beginning time for morning nautical twilight on this date.

Moonrise and Moonset

Times of moonrise and moonset can be computed for specified locations using the following algorithm. Between latitudes 60° North and 60° South, the phenomena can be computed to an accuracy of $\pm 5^{\text{m}}$. Although the algorithm can be used at higher latitudes, its accuracy deteriorates near dates on which the Moon remains above or below the horizon for more than twenty-four hours.

Notation:

- ϕ = latitude of observer (north is positive; south is negative)
- λ = longitude of observer (west is positive; east is negative)
- t_i = i -th approximation to Universal Time of phenomenon,
expressed in days from 0 January, 0^h UT
- GHA_i = Moon's GHA at time t_i
- δ_i = Moon's declination at time t_i
- τ_i = i -th correction to t_0 , thus $t_i = t_0 + \tau_i$
- H_i = i -th approximation to Moon's LHA at time of rise or set
- ΔH_i = i -th approximation to Moon's daily rate of change in GHA

Formulas:

- (1) $\Delta H_i = (GHA_i - GHA_0)/\tau_i$ for $i = 0$, let $\Delta H_0 = 347.81$
- (2) $\cos H_{i+1} = (0.00233 - \sin \phi \sin \delta_i) / (\cos \phi \cos \delta_i)$
- (3) $\tau_{i+1} = (H_{i+1} - H_0) / \Delta H_i$
- (4) $t_{i+1} = t_0 + \tau_{i+1}$

Procedure:

1. Let $t_0 = N + (12^{\text{h}} + \lambda)/24$, where N is the day of the year (see the calendar on pages A2–A4 or the formulas on page B1) and λ is the observer's longitude expressed in hours. Set $i = 0$ and begin the following iterative process.
2. For time t_i compute the Moon's GHA and declination to navigational precision ($\pm 0.1'$). Label these quantities GHA_i and δ_i , respectively, where i specifies the iteration number. For $i = 0$, compute $H_0 = GHA_0 - \lambda$.
3. If $i = 0$, let $\Delta H_0 = 347.81$. Otherwise compute ΔH_i from Eq. (1). If $\Delta H_i < 0$, add $360^{\circ}/|\tau_i|$ to ΔH_i .
4. Solve Eq. (2) for H_{i+1} . Since computers and calculators normally give the arc-cosine in the range 0° – 180° , the correct quadrant for H_{i+1} can be selected according to the following rules:
 - (a) moonrise computations, $H_{i+1} = 360^{\circ} - \arccos H_{i+1}$;
 - (b) moonset computations, $H_{i+1} = \arccos H_{i+1}$.
 In other words, near the time of moonrise H_{i+1} must be either in quadrant 3 or 4 (depending on the sign of $\cos H_{i+1}$); near moonset H_{i+1} must be either in quadrant 1 or 2. For latitudes higher than 60° (i.e., $|\phi| > 60^{\circ}$), the condition $|\cos H_{i+1}| > 1$ can occur, thereby indicating the absence of the phenomenon on that day.

5. Compute τ_{i+1} from Eq. (3). If $|\tau_{i+1}| < 0^d 5$, proceed to Step 6. If $|\tau_{i+1}| > 0^d 5$, the phenomenon being computed occurs on the day prior to the day desired (if τ_{i+1} is negative) or on the day following the day desired (if τ_{i+1} is positive). Normally the phenomenon on the desired day can be obtained by adding to τ_{i+1} (if τ_{i+1} is negative), or subtracting from τ_{i+1} (if τ_{i+1} is positive), $360^\circ/\Delta H_i$. If successful this technique will produce a new value of τ_{i+1} in the required range. However, two conditions may prevent the reduction to $|\tau_{i+1}| < 0^d 5$:
- (a) for low values of i , τ_{i+1} may be a fairly crude approximation to the ultimate value, τ_n ;
 - (b) each month there is one day (near last quarter) on which there is no moonrise, and another day (near first quarter) on which there is no moonset.
- If $|\tau_{i+1}| \approx 0^d 5$, it is probably worth attempting another iteration to see if $|\tau_{i+2}| < 0^d 5$.
6. Compute t_{i+1} from Eq. (4). If $|t_{i+1} - t_i| < 0^d 01$, t_{i+1} is accurate to $\pm 5^m$. Otherwise it is necessary to iterate the solution by setting $i = i + 1$ and executing Steps 2 through 6 again.

Example: Compute the time of moonset on 16 March 1978 at latitude $38^\circ 54'$ South and longitude $77^\circ 04'$ West.

$$\lambda = +77^\circ 067 = +5^h 138$$

$$\phi = -38^\circ 9 \quad \sin \phi = -0.62796 \quad \cos \phi = 0.77824$$

From the calendar on pages A2–A4 or the formulas on page B1, 16 March is found to be day 75, so $t_0 = 75^d + (12^h + 5^m 138)/24 = 75^d 71408$.

$i = 0$:

$$GHA_0 = 346^\circ 028 \quad \delta_0 = +18^\circ 170$$

$$H_0 = 346^\circ 028 - 77^\circ 067 = 268^\circ 961$$

$$\Delta H_0 = 347^\circ 81$$

$$\begin{aligned} \cos H_1 &= [0.00233 - (-0.62796)(0.31184)] / [(0.77824)(0.95014)] \\ &= +0.26798 \end{aligned}$$

Since moonset is sought, H_1 is in quadrant 1 or 2: $H_1 = 74^\circ 456$

$$\tau_1 = (74^\circ 456 - 268^\circ 961) / 347^\circ 81 = -0^d 55923$$

Since $|\tau_1| > 0^d 5$, we try

$$\tau_1 = -0^d 55923 + 360^\circ / 347^\circ 81 = +0^d 47582, \text{ which is satisfactory.}$$

$$\begin{aligned} t_1 &= 75^d 71408 + 0^d 47582 = 76^d 1899 = 17 \text{ March } 04^h 33^m \text{ UT} \\ &= 16 \text{ March } 23^h 33^m, 75^\circ \text{ Meridian West} \end{aligned}$$

$i = 1$:

$$GHA_1 = 151^\circ 862 \quad \delta_1 = +18^\circ 179$$

$$\Delta H_1 = (151^\circ 862 - 346^\circ 028) / 0.47582 = -408^\circ 066$$

Since a negative value of ΔH_1 cannot be used, we set

$$\Delta H_1 = -408^\circ 066 + 360^\circ / 0.47582 = +348^\circ 523$$

$$\begin{aligned} \cos H_2 &= [0.00233 - (-0.62796)(0.31199)] / [(0.77824)(0.95009)] \\ &= +0.26812 \end{aligned}$$

Since moonset is sought, H_2 is in quadrant 1 or 2: $H_2 = 74^\circ 448$

$$\tau_2 = (74^\circ 448 - 268^\circ 961) / 348^\circ 523 = -0^\text{d} 55811$$

Again we seek $|\tau_2| < 0^\text{d} 5$, so

$$\tau_2 = -0^\text{d} 55811 + 360^\circ / 348^\circ 523 = +0^\text{d} 47482$$

$$\begin{aligned} t_2 &= 75^\text{d} 71408 + 0^\text{d} 47482 = 76^\text{d} 1889 = 17 \text{ March } 04^\text{h} 32^\text{m} \text{ UT} \\ &= 16 \text{ March } 23^\text{h} 32^\text{m}, 75^\text{th} \text{ Meridian West} \end{aligned}$$

Since $|t_2 - t_1| = 0^\text{d} 001 < 0^\text{d} 01$, t_2 is accurate to $\pm 5^\text{m}$.

The extremely rapid convergence illustrated in this example occurs frequently but not invariably. Although the first approximation (t_1) will often give adequate precision for most purposes, it is recommended that the solution be iterated and that the convergence criterion ($|t_{i+1} - t_i| < 0^\text{d} 01$) be tested.

Equation of Time

The equation of time, the hour angle of the apparent (true) Sun minus the hour angle of the mean (fictitious) Sun, can be represented to reasonable precision by the following formula:

$$\begin{aligned} \text{EqT} &= -97^\text{s} 8 \sin l - 431^\text{s} 3 \cos l + 596^\text{s} 6 \sin 2l - 1^\text{s} 9 \cos 2l \\ &\quad + 4^\text{s} 0 \sin 3l + 19^\text{s} 3 \cos 3l - 12^\text{s} 7 \sin 4l \end{aligned}$$

where EqT is the equation of time in seconds and l is the Sun's mean longitude.

$$l = 279^\circ 697 + 0^\circ 98564734(\text{JD} - 2415020.0) = 279^\circ 311 + 0^\circ 98564734t$$

In the equation for l , JD is the Julian Date and t is the elapsed time in days and fractions thereof since 0 January 1978, 0^h UT. Formulas for computing JD and t are given on pages B1–B2. Values of l and its multiples may have to be reduced to the range 0° – 360° by adding or subtracting multiples of 360° .

The local mean time of solar transit is given by 12^h minus EqT. Thus EqT represents the difference local apparent (sundial) time minus local mean time.

Polaris (Pole Star)

The following formulas are relevant to observations of Polaris:

$$(1) \quad \phi = a - p \cosh h + 0.5 p \sin p \sin^2 h \tan \phi$$

$$(2) \quad A \cos \phi = p \sin h + p \sin p \sin h \cosh \tan \phi$$

where p is the polar distance of Polaris: $p = 90^\circ$ – declination of Polaris

h is the LHA of Polaris: $h = \text{GHA Aries} + \text{SHA Polaris} + \text{east} (\text{--west})$
longitude of observer

ϕ is the observer's latitude;

A is the azimuth of Polaris;

a is the corrected altitude of Polaris.

Eq. (1) permits the observer's latitude to be determined from an observation of the altitude of Polaris (corrected for refraction, dip, etc.). Assumed values of the observer's latitude and longitude can be used for the right side of Eq. (1).

Eq. (2) yields the azimuth of Polaris if the observer's position is known. These expressions are accurate only for Polaris, since they depend on p being a small quantity. The SHA and declination of Polaris to be used in these formulas should be referred to the true equator and equinox of date; *i.e.*, the apparent place of Polaris should be computed (see Section F 'Stellar Tables'; Polaris is star number 17).

Equation of Position Line

The following formula can be used to obtain a line of position (LOP) directly from an observation of the altitude of a celestial body:

$$\lambda = \text{GHA} \pm \arccos[(\sin a - \sin \phi \sin d) / \cos \phi \cos d]$$

where: λ is the computed longitude;

GHA is the GHA of the body for the time of observation;

a is the corrected altitude of the body;

d is the declination of the body for the time of observation;

ϕ is an estimate of the observer's latitude.

North latitudes and west longitudes are positive; south latitudes and east longitudes are negative. Longitudes with absolute values greater than 180° may be encountered. The operation connecting the two terms is + for bodies east of the meridian (rising) and - for bodies west of the meridian (setting).

The formula yields the longitude λ at which the position line crosses the parallel of latitude ϕ . Repeated application of the formula using different latitude values yields a locus of points all lying on the LOP. Note that no assumed position is necessary, although an estimate of the observer's latitude is helpful in reducing the number of times the formula is applied.

The formula becomes indeterminate at the transit time of a body and for latitudes which the position line does not cross at any point.

Motion of Body and Motion of Observer

The following formula gives the change of altitude of a celestial body, due to the rotation of the Earth, in the time interval Δt (*e.g.*, the interval between a sextant observation and the time of a fix). This correction may be applied to the observed altitude to permit the use of a common assumed position and LHA Aries for observations made at different times.

$$MOB = 15.04 \Delta t \cos \phi \sin A$$

where MOB is the altitude correction in minutes of arc, Δt is the time difference in minutes, ϕ is the latitude of the observer, and A is the azimuth of the observed body. If the time of the fix is later than the time of observation, MOB should be added to the observed altitude.

The following formula gives the change of altitude of a celestial body, due to

the motion of the observer, in the time interval Δt (e.g., the interval between a sextant observation and the time of a fix). This correction may be applied to the altitude in lieu of advancing or retiring a line of position.

$$MOO = \frac{v \Delta t}{60} \cos(A - C)$$

where MOO is the altitude correction in minutes of arc, Δt is the time difference in minutes, A is the azimuth of the observed body, C is the track/course angle, and v is the ground speed in knots. If the time of the fix is later than the time of observation, MOO should be added to the observed altitude.

Sextant Altitude Corrections

Several corrections must be applied to a sextant altitude (hs) in order to obtain a corrected altitude (Ho). Ho can then be either (a) compared with the computed altitude (Hc) to obtain the altitude difference (Δa); or (b) used in the 'Equation of Position Line' (see page B11) in order to obtain directly the location of the LOP for the sight.

The corrections, in the order in which they should be applied, are:

- (1) Instrument and/or index correction, IC;
- (2a) Dip of horizon, D (marine sextant);
or
- (2b) Coriolis correction, Δz (bubble sextant);
- (3) Atmospheric refraction, R;
- (4) Semi-diameter, SD (marine sextant, Sun and Moon observations);
- (5) Parallax in altitude, PA (Moon, Venus and Mars observations).

In mathematical notation:

$$Ho = hs + IC + (D \text{ or } \Delta z) - R + SD + PA$$

If Venus is observed, an additional correction for the phase of the planet may be necessary. This correction can be made either to the sextant altitude or to the GHA or LHA of Venus.

Descriptions and formulas for D, Δz , R, SD, PA and the phase correction for Venus are given in the following pages.

Dip of Horizon

The dip of the apparent horizon from a horizontal plane is given by

$$D = -0.97\sqrt{h}$$

where h is the height of eye level of the observer in feet and D is the dip of the horizon in minutes of arc. For observations of a celestial body made with a marine sextant or similar instrument, D should be added to the observed altitude to obtain the corrected altitude. This formula is an approximation; the apparent dip varies with atmospheric conditions.

Coriolis Correction

Any object moving across or above the surface of the rotating Earth is subject to an apparent force tending to push the object to the right in the northern hemisphere and to the left in the southern hemisphere. This Coriolis acceleration manifests itself as a deflection of the apparent vertical by an amount Z :

$$(1) \quad Z = 2.62 V \sin \phi + 0.146 V^2 \sin C \tan \phi - 5.25 VC'$$

where: Z is the deflection in minutes of arc;

V is the speed in hundreds of knots;

ϕ is the latitude;

C is the true track/course angle;

C' is the rate of change of true track/course angle in degrees per minute of time.

Usually only the first term on the right of Eq. (1) is significant.

Observations of the altitudes of celestial bodies made with bubble sextants or similar artificial horizon instruments must be corrected for the Coriolis effect. The correction Δz , which can be added to the observed (e.g., bubble sextant) altitude, is given approximately by

$$(2) \quad \Delta z = Z \sin(A - C)$$

where: Δz is the altitude correction in minutes of arc;

Z is the deflection of the vertical determined from Eq. (1);

A is the azimuth of observed body;

C is the true track/course angle.

In the northern hemisphere the correction Δz is positive for stars on the right and negative for stars on the left of the aircraft. In the southern hemisphere the correction is negative for stars on the right and positive for stars on the left.

Atmospheric Refraction

The Earth's atmosphere tends to refract light in such a way that celestial bodies appear slightly higher in the sky than they would if there were no atmosphere. The formulas below can be used to determine R , the angle of refraction. R should be subtracted from an observed (e.g., sextant) altitude to obtain the corrected altitude.

$$(1) \quad R = \frac{P}{273 + T} [3.430289(z - \arcsin[0.9986047 \sin(0.9967614z)]) - 0.01115929z]$$

$$(2) \quad R = \exp(-h/27000) \tan z = 1 / [\exp(h/27000) \tan a]$$

where: R is the refraction correction in minutes of arc;

a is the observed altitude

z is the observed zenith distance in degrees: $z = 90^\circ - a$

T is the temperature in degrees Celsius;
 P is the atmospheric pressure in millibars;
 h is the height of the observer above sea level in feet.

Eq. (1) is more suitable for surface observations, while Eq. (2) is more suitable for observations from aircraft. Both formulas are approximations and are not equivalent to a complete theory of refraction. Eq. (2), which should be used only for altitudes greater than 10° , is accurate to about $0'.2$. Eq. (1) can be used for all altitudes: for altitudes greater than 15° , it is accurate to $0'.1$ or better; for altitudes between 3° and 15° , errors between $0'.1$ and $1'.0$ may arise; for altitudes less than 3° , errors between $1'$ and $3'$ may be expected.

Semi-diameter of the Sun and Planets

When not available directly from almanac data, the semi-diameters of the Sun and planets can be computed from

$$SD = S/d = S\pi/8.794$$

where: SD is the semi-diameter in seconds of arc;
 S is the semi-diameter at unit distance (1 AU) in seconds of arc;
 d is the geocentric distance in AU;
 π is the horizontal parallax in seconds of arc.

The following values of S should be used:

Sun	959".63	Jupiter	98".47
Mercury	3.34	Saturn	83.33
Venus	8.41	Uranus	34.28
Mars	4.68	Neptune	36.56

These values apply to the equatorial dimensions of the bodies and do not include any adjustments for irradiation.

Semi-diameter of the Moon

When not available directly from almanac data, the semi-diameter of the Moon can be computed from

$$(1) \quad SD = 56204.92/d = 0.272476\pi$$

where SD is the semi-diameter in seconds of arc, d is the geocentric distance of the Moon in units of the Earth's equatorial radius, and π is the horizontal parallax of the Moon in seconds of arc.

Computed this way, the semi-diameter applies to a fictitious observer located at the center of the Earth. The observed semi-diameter of the Moon will be slightly greater than the geocentric semi-diameter, since a real observer located on the surface of the Earth will be slightly closer to the Moon (assuming it is above the horizon). For navigational and certain other purposes the *augmented semi-diameter* of the Moon should be used:

(2)

$$SD_{\text{aug}} = SD[1 + (\sin a)/d]$$

where SD_{aug} is the augmented semi-diameter in seconds of arc, a is the altitude of the Moon (for navigational purposes $a = H_o$, but hs or H_c can be used instead with negligible error), d is the geocentric distance of the Moon in units of the Earth's equatorial radius, and SD is the geocentric semi-diameter computed from Eq. (1). For navigational purposes a constant value of $d = 60.27$ can be used to sufficient accuracy. The increase in the Moon's semi-diameter due to augmentation is zero when the Moon is on the horizon and is about $0'.3$ when the Moon is at the zenith.

Parallax in Altitude

The finite size of the Earth causes a parallactic shift in the apparent positions of nearby celestial objects. The resulting parallax in altitude can be computed from

$$\sin PA = \sin \pi \cos a$$

where PA is the parallax in altitude, π is the horizontal parallax, and a is the observed altitude. When the horizontal parallax of a body is not available, it may be computed from the relation $\pi = 8.^{\circ}794/d$, where d is the geocentric distance of the body in astronomical units. The parallax in altitude can exceed $1'$ only for the Moon. Since parallax tends to decrease the apparent altitude of a body, the quantity PA should be added to an observed (e.g., sextant) altitude in order to obtain the corrected altitude. To a reasonable approximation, PA can also be computed from

$$PA = \pi \cos a$$

Correction for the Phase of Venus

When the altitude of Venus is observed with a small instrument, a correction to the observed altitude is required to account for the fact that the center of light, rather than the center of the disk, is observed. This correction has the form $-k \cos \theta$, where k is a correction factor (given below) and θ is the angle on the celestial sphere, at the position of Venus, between the observer's vertical and the direction of the Sun. The correction, which should be added to the observed (e.g., sextant) altitude, is positive when the Sun is lower than Venus, zero when they have the same altitude, and negative when the Sun is higher.

In sight reduction this effect can be approximately taken into account by correcting the GHA (or LHA) of Venus rather than correcting the observed altitude. Simply add k to the GHA (or LHA) of Venus when Venus is east of the Sun (*i.e.*, when Venus is an evening planet), and subtract k from the GHA (or LHA) when Venus is west of the Sun (morning planet). The correction should not be applied in this way near the time of superior or inferior conjunction.

Venus is at superior conjunction on 22 January 1978 and at inferior conjunction on 7 November 1978. Between these two dates Venus is in the evening sky. Before 22 January and after 7 November Venus is in the morning sky.

The values of k for 1978 are:

Jan.	1	k
July	23	0'0
Sept.	10	0.1
Oct.	3	0.2
Oct.	19	0.3
Nov.	30	0.4
Dec.	15	0.3
Dec.	31	0.2

Section C: NAVIGATIONAL TABLES

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C1

DAYS 1 THRU 32 JD 2443509.5 TO 2443541.5 DATES JAN 1 THRU FEB 1
A = 16.00000000 B = -1.06250000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN SD
0	0	0	0	0
1	6236.0627	6297.5195	-20.8507	0.2717
2	5775.7708	5758.6564	3.0968	0.0
3	-0.0036	0.3829	0.8462	0.0
4	-0.0029	0.0441	-0.0642	0.0
5	0.0031	-0.0206	-0.0058	0.0
	0.0027	0.0013	0.0044	0.0

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	6298.6757	-21.9415	6469.0319	23.5672	6148.2945	23.2308	6444.0467	13.0731
2	5754.3506	3.1818	5782.3633	1.7888	5777.5882	0.0174	5776.6874	0.3893
3	0.5050	1.4160	0.5520	-0.2339	-0.3261	-0.0067	0.1582	0.0494
4	0.1106	-0.0903	-0.5464	-0.1630	-0.0474	0.0025	-0.0159	-0.0113
5	-0.0287	-0.0192	-0.0352	0.0211	0.0066	0.0017	-0.0022	0.0002
	-0.0003	0.0001	0.0211	0.0073	-0.0020	0.0009	-0.0038	0.0014

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 32 THRU 63 JD 2443540.5 TO 2443572.5 DATES FEB 1 THRU MAR 4
A = 16.00000000 B = -3.00000000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN SD
0	0	0	0	0
1	5906.6176	5936.4739	-12.1805	0.2699
2	5775.7704	5760.2680	5.5699	0.0007
3	-0.0027	0.3863	0.4151	0.0004
4	-0.0005	-0.0411	-0.0755	-0.0031
5	0.0019	-0.0124	-0.0007	0.0006
	0.0003	0.0028	-0.0017	0.0015

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5930.0280	-11.3297	6150.5664	25.4444	5820.8753	23.2701	6116.7975	13.9407
2	5756.7377	7.2618	5778.8838	0.0538	5775.9499	0.0342	5777.0151	0.4675
3	0.5409	0.6408	-1.8261	-0.4126	-0.4674	0.0107	0.0016	-0.0099
4	-0.0823	-0.1442	-0.0564	0.0605	0.0046	0.0001	-0.0258	-0.0102
5	-0.0191	0.0020	0.0888	0.0034	0.0053	-0.0003	-0.0007	-0.0012
	0.0028	-0.0020	-0.0185	-0.0043	-0.0032	0.0006	-0.0041	-0.0009

C2

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 60 THRU 91 JD 2443568.5 TO 2443600.5 DATES MAR 1 THRU APR 1
 A = 16.00000000 B = -4.75000000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
0	0	0	0	0
1	5934.2152	5937.8493	-1.5738	0.2681
2	5775.7702	5761.1494	6.3239	0.0
3	0.0006	0.1165	0.0217	0.0041
4	0.0009	-0.0638	-0.0760	-0.0022
5	-0.0008	-0.0044	0.0020	-0.0039
	-0.0009	0.0046	0.0045	0.0004

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5925.4155	2.5712	5818.2529	24.5618	5847.3993	23.3605	6146.4187	14.6688
2	5757.6440	8.1900	5773.0678	-0.9464	5774.3992	0.0611	5776.7515	0.3373
3	-0.0430	-0.1058	-1.3243	-0.2088	-0.4013	-0.0013	-0.1455	-0.0591
4	-0.1210	-0.1381	0.1755	0.0103	0.0312	0.0008	-0.0212	-0.0093
5	-0.0017	0.0014	0.0017	-0.0097	0.0029	0.0003	0.0036	0.0013
	0.0030	-0.0022	-0.0155	0.0013	-0.0081	-0.0040	-0.0003	0.0030

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 91 THRU 122 JD 2443599.5 TO 2443631.5 DATES APR 1 THRU MAY 2
 A = 16.00000000 B = -6.68750000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
0	0	0	0	0
1	5964.7700	5940.0687	10.2699	0.2665
2	5775.7718	5760.9434	5.6549	-0.0019
3	0.0007	-0.1937	-0.3632	-0.0026
4	-0.0033	-0.0455	-0.0628	0.0016
5	-0.0006	0.0013	0.0017	0.0020
	0.0018	0.0017	-0.0003	-0.0005

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5919.8714	17.0287	5839.6762	21.9457	5873.9660	23.4500	5818.2079	15.0666
2	5756.2899	6.2030	5769.5084	-1.7652	5773.1079	0.0150	5776.0134	0.0600
3	-0.5588	-0.9228	-0.5843	-0.2226	-0.2637	-0.0280	-0.2217	-0.0782
4	-0.0297	-0.1332	0.1036	-0.0009	0.0232	-0.0048	-0.0029	0.0042
5	0.0199	0.0030	-0.0117	0.0023	-0.0042	0.0028	0.0038	0.0012
	0.0024	-0.0024	-0.0066	-0.0013	-0.0007	-0.0001	-0.0008	-0.0029

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C3

DAYS 121 THRU 152 JD 2443629.5 TO 2443661.5 DATES MAY 1 THRU JUNE 1
 A = 16.00000000 B = -8.56250000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN SD
0	0	0	0	0
1	5994.3389	5940.9262	19.1941	0.2642
2	5775.7707	5759.9108	3.6563	-0.0033
3	0.0036	-0.2952	-0.6943	0.0
4	-0.0026	0.0095	-0.0530	0.0061
5	-0.0031	0.0076	0.0038	0.0
	0.0025	0.0009	0.0015	-0.0037

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5911.0781	24.5849	5855.9431	17.8494	5897.7485	23.3624	5847.4571	14.9130
2	5754.5962	1.4828	5768.0480	-2.6059	5772.3344	-0.1199	5775.1942	-0.2214
3	-0.1392	-1.5019	-0.2369	-0.2202	-0.1501	-0.0412	-0.2073	-0.0698
4	0.1751	-0.0375	0.0494	0.0030	0.0182	-0.0017	0.0057	0.0039
5	0.0137	0.0228	-0.0077	-0.0007	0.0005	-0.0032	0.0009	-0.0006
	-0.0089	0.0002	-0.0060	0.0012	-0.0005	-0.0001	0.0012	-0.0016

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 152 THRU 183 JD 2443660.5 TO 2443692.5 DATES JUNE 1 THRU JULY 2
 A = 16.00000000 B = -10.50000000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN SD
0	0	0	0	0
1	6024.8941	5939.8385	23.3613	0.2633
2	5775.7686	5759.1417	0.5232	0.0
3	0.0001	-0.0375	-0.8772	0.0
4	0.0043	0.0599	-0.0043	0.0
5	-0.0001	-0.0018	0.0048	0.0
	-0.0027	0.0010	-0.0016	0.0

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5901.3565	21.8592	5870.8590	12.0138	5921.2143	22.9532	5876.1813	14.2395
2	5755.9633	-4.1147	5767.4274	-3.3890	5771.9551	-0.3058	5774.4952	-0.4649
3	0.7499	-1.2289	-0.1035	-0.1793	-0.0493	-0.0516	-0.1500	-0.0550
4	0.0808	0.1155	0.0104	0.0094	0.0136	-0.0060	0.0094	0.0045
5	-0.0284	0.0096	-0.0079	0.0022	-0.0007	0.0009	-0.0001	0.0013
	-0.0040	-0.0024	0.0	0.0	0.0007	0.0040	0.0004	-0.0002

C4

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 182 THRU 213 JD 2443690.5 TO 2443722.5 DATES JULY 1 THRU AUG 1
 A = 16.00000000 B = -12.37500000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
0	0	0	0	0
1	6054.4635	5938.4967	21.2958	0.2633
2	5775.7702	5759.6428	-2.6588	0.0
3	0.0007	0.2825	-0.7734	0.0
4	0.0011	0.0211	0.0412	0.0
5	-0.0008	-0.0119	0.0066	0.0
	-0.0011	0.0057	0.0007	0.0

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5896.6046	10.6574	5884.4301	5.1074	5943.5517	22.2047	5902.9042	13.2024
2	5758.9354	-7.3645	5767.0501	-3.9319	5771.9235	-0.4837	5774.0508	-0.6289
3	0.7171	-0.4876	-0.1032	-0.1059	0.0337	-0.0432	-0.0852	-0.0337
4	-0.0587	0.1286	-0.0117	0.0105	0.0200	-0.0028	0.0119	0.0053
5	-0.0083	-0.0060	-0.0039	-0.0015	-0.0003	0.0019	0.0002	0.0002
	0.0027	0.0003	0.0043	0.0033	-0.0050	0.0050	-0.0001	-0.0024

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 213 THRU 244 JD 2443721.5 TO 2443753.5 DATES AUG 1 THRU SEPT 1
 A = 16.00000000 B = -14.31250000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
0	0	0	0	0
1	6085.0183	5938.9517	13.6057	0.2633
2	5775.7720	5760.8345	-5.0776	-0.0007
3	0.0	0.2812	-0.4625	0.0004
4	-0.0028	-0.0384	0.0620	0.0031
5	0.0013	0.0045	-0.0021	-0.0015

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5896.7959	-4.5521	5897.6211	-2.8063	5966.8844	21.1356	5929.8902	11.8861
2	5761.0920	-7.8853	5766.5259	-4.1765	5772.2154	-0.6033	5773.8468	-0.7136
3	0.4690	0.2089	-0.1711	-0.0130	0.1190	-0.0203	-0.0205	-0.0112
4	0.0006	0.1159	-0.0171	0.0259	0.0100	0.0072	0.0155	-0.0038
5	0.0167	-0.0017	-0.0013	0.0009	-0.0017	0.0033	0.0012	0.0007
	0.0043	-0.0022	0.0003	-0.0059	0.0047	-0.0021	-0.0034	0.0066

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C5

DAYS 244 THRU 275 JD 2443752.5 TO 2443784.5 DATES SEPT 1 THRU OCT 2
 A = 16.00000000 B = -16.25000000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
0	0	0	0	0
1	6115.5733	5941.3078	2.4801	0.2651
2	5775.7720	5761.4295	-6.1748	0.0019
3	0.0	0.0093	-0.1026	0.0026
4	-0.0028	-0.0663	0.0570	-0.0016
5	0.0	-0.0053	-0.0014	-0.0020
	0.0013	0.0039	0.0042	0.0005

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5901.0892	-18.2286	5909.4963	-10.7931	5991.1043	19.9470	5956.7296	10.4937
2	5763.8823	-5.8038	5765.6720	-3.9865	5772.8464	-0.5978	5773.8987	-0.7045
3	1.3477	0.8775	-0.2667	0.1165	0.2100	0.0185	0.0456	0.0162
4	0.3675	0.1254	-0.0200	0.0307	0.0226	0.0070	0.0167	0.0062
5	0.0729	0.0094	-0.0012	0.0017	0.0024	0.0033	0.0012	0.0009
	0.0116	0.0047	0.0022	-0.0035	-0.0040	0.0	-0.0039	-0.0011

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 274 THRU 305 JD 2443782.5 TO 2443814.5 DATES OCT 1 THRU NOV 1
 A = 16.00000000 B = -18.12500000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
0	0	0	0	0
1	6145.1425	5943.6153	-9.0398	0.2675
2	5775.7686	5760.8433	-5.8729	0.0033
3	0.0001	-0.3123	0.2751	0.0
4	0.0043	-0.0634	0.0705	-0.0061
5	-0.0001	0.0043	0.0014	0.0
	-0.0027	0.0077	0.0008	0.0037

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5916.6421	-24.9601	5919.0810	-17.6717	6016.0611	18.9570	5983.0324	9.2671
2	5775.1180	-0.5663	5764.5087	-3.2490	5773.8407	-0.4286	5774.1986	-0.5832
3	4.9413	2.2437	-0.3415	0.2805	0.3191	0.0690	0.1129	0.0466
4	0.3968	0.4239	-0.0098	0.0314	0.0189	0.0136	0.0094	-0.0040
5	-0.3992	-0.0316	0.0030	0.0020	-0.0001	0.0002	0.0002	-0.0001
	-0.1447	-0.0635	0.0017	0.0	0.0002	-0.0041	0.0017	0.0071

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 305 THRU 336 JD 2443813.5 TO 2443845.5 DATES NOV 1 THRU DEC 2
 A = 16.00000000 B = -20.06250000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN SD
0	0	0	0	0
1	5815.6975	5943.7871	-18.8412	0.2701
2	5775.7686	5759.2528	-3.9588	-0.0007
3	0.0001	-0.4531	0.7137	-0.0004
4	0.0043	0.0055	0.0768	0.0031
5	-0.0001	0.0172	-0.0023	-0.0006
	-0.0027	0.0043	-0.0040	-0.0015

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5958.8877	-17.2363	5926.5353	-22.6753	6044.2141	18.4476	6011.0494	8.3458
2	5781.6126	6.2334	5763.2177	-1.7953	5775.2860	-0.0710	5774.7671	-0.3456
3	-4.1740	-1.1924	-0.2963	0.4650	0.4195	0.1094	0.1785	0.0778
4	-1.3197	-1.2759	0.0192	0.0306	0.0092	0.0008	0.0053	0.0033
5	0.6910	0.2926	0.0035	-0.0009	-0.0045	-0.0008	0.0001	-0.0019
	0.0359	0.1442	0.0025	-0.0028	0.0005	0.0022	0.0040	0.0006

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 335 THRU 365 JD 2443843.5 TO 2443874.5 DATES DEC 1 THRU DEC 31
 A = 16.00000000 B = -21.87500000

POWERS OF TIME COEFFICIENTS

	ARIES GHA	SUN GHA	SUN DEC	SUN SD
0	0	0	0	0
1	5844.2812	5941.1769	-23.2879	0.2718
2	5775.7695	5758.0734	-0.7771	-0.0004
3	0.0005	-0.1315	0.9934	-0.0027
4	0.0025	0.0786	0.0201	0.0046
5	-0.0001	0.0055	-0.0117	0.0017
	-0.0020	0.0057	-0.0016	-0.0036

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	0	0	0	0	0	0	0	0
1	5983.0954	-12.9294	5931.5705	-24.2526	6073.3175	18.6821	6038.4548	7.9908
2	5766.3856	-1.2954	5762.4637	0.1190	5776.8180	0.3227	5775.4963	-0.0379
3	-2.8544	-1.4232	-0.0968	0.5703	0.4008	0.0972	0.2184	0.0906
4	0.5022	0.4243	0.0386	0.0093	-0.0243	-0.0086	0.0099	0.0048
5	-0.0551	-0.0017	-0.0011	-0.0025	-0.0104	-0.0016	-0.0014	-0.0005
	-0.0033	-0.0206	0.0035	-0.0015	0.0010	0.0	-0.0046	-0.0029

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C7

DAYS 1 THRU 6 JD 2443509.5 TO 2443515.5 DATES JAN 1 THRU JAN 6
 A = 3.00000000 B = -1.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1692.8001	-10.4113	0.9789	0.2667
2	1042.0994	-11.0599	0.0446	0.0122
3	-3.3752	2.0764	-0.0006	-0.0002
4	-0.4961	1.2281	-0.0056	-0.0015
5	0.3013	0.0939	-0.0011	-0.0003
	0.1017	-0.0434	-0.0001	0.0

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 7 THRU 12 JD 2443515.5 TO 2443521.5 DATES JAN 7 THRU JAN 12
 A = 3.00000000 B = -3.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1246.7846	-15.3444	1.0156	0.2767
2	1036.8710	8.2244	-0.0218	-0.0059
3	2.9182	4.5024	-0.0193	-0.0053
4	0.9362	-1.3533	-0.0035	-0.0010
5	-0.5022	-0.2584	-0.0002	-0.0001
	-0.0365	0.1462	0.0055	0.0015

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 13 THRU 18 JD 2443521.5 TO 2443527.5 DATES JAN 13 THRU JAN 18
 A = 3.00000000 B = -5.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1172.3261	8.1105	0.9307	0.2536
2	1046.5591	10.7694	-0.0391	-0.0106
3	0.5031	-2.0543	0.0097	0.0026
4	-0.6179	-0.5154	0.0072	0.0020
5	0.1042	0.0907	-0.0001	0.0
	0.0191	-0.0231	-0.0040	-0.0011

C8

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY 19 THRU 24 JD 2443527.5 TO 2443533.5 DATES JAN 19 THRU JAN 24
 A = 3.00000000 B = -7.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1104.6720	18.2815	0.9004	0.2453
2	1045.5511	-1.6953	0.0040	0.0011
3	0.0646	-3.6315	0.0097	0.0026
4	0.3267	0.0761	0.0003	0.0001
5	-0.0084	0.1151	-0.0018	-0.0005
	-0.0430	0.0056	-0.0005	-0.0001

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY 25 THRU 30 JD 2443533.5 TO 2443539.5 DATES JAN 25 THRU JAN 30
 A = 3.00000000 B = -9.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1397.3389	2.7633	0.9333	0.2543
2	1046.7636	-11.8904	0.0257	0.0070
3	-0.5113	-0.8233	0.0039	0.0011
4	-0.6102	0.7265	-0.0011	-0.0003
5	-0.0849	0.0530	0.0005	0.0001
	0.0263	0.0063	0.0009	0.0002

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY 31 THRU 36 JD 2443539.5 TO 2443545.5 DATES JAN 31 THRU FEB 5
 A = 3.00000000 B = -11.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1323.7594	-17.4597	0.9956	0.2713
2	1037.9464	-4.3955	0.0287	0.0078
3	-2.4669	4.9148	-0.0080	-0.0022
4	0.8579	0.8514	-0.0044	-0.0012
5	0.3804	-0.2595	-0.0004	-0.0001
	-0.0564	-0.0951	0.0003	0.0001

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C9

DAYS 37 THRU 42 JD 2443545.5 TO 2443551.5 DATES FEB 6 THRU FEB 11
 A = 3.00000000 B = -13.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1239.4942	-6.1180	0.9904	0.2699
2	1041.7278	12.7962	-0.0369	-0.0100
3	2.6153	1.0644	-0.0135	-0.0037
4	-0.3468	-1.3634	0.0039	0.0011
5	-0.2306	0.1033	0.0023	0.0006
	0.0792	0.0599	0.0005	0.0001

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 43 THRU 48 JD 2443551.5 TO 2443557.5 DATES FEB 12 THRU FEB 17
 A = 3.00000000 B = -15.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1169.2037	15.5724	0.9132	0.2488
2	1045.9670	6.1239	-0.0244	-0.0067
3	-0.1595	-3.2461	0.0117	0.0032
4	-0.1474	-0.2625	0.0042	0.0011
5	0.1119	0.0732	-0.0008	-0.0002
	-0.0023	-0.0027	-0.0023	-0.0006

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 49 THRU 54 JD 2443557.5 TO 2443563.5 DATES FEB 18 THRU FEB 23
 A = 3.00000000 B = -17.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1100.7814	13.8936	0.9131	0.2488
2	1046.1062	-7.6230	0.0213	0.0058
3	0.3500	-2.9263	0.0067	0.0018
4	-0.0329	0.4344	-0.0106	-0.0029
5	-0.0983	0.0967	-0.0010	-0.0003
	-0.0135	-0.0055	0.0067	0.0018

C10

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 55 THRU 60 JD 2443563.5 TO 2443569.5 DATES FEB 24 THRU MAR 1
 A = 3.00000000 B = -19.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1392.4262	-8.1667	0.9600	0.2616
2	1043.8849	-11.3604	0.C243	0.0366
3	-1.9534	1.6391	-0.C002	-0.0001
4	-0.4382	0.9987	-0.0044	-0.0012
5	0.1206	0.0195	-0.0008	-0.0002
	0.0536	-0.0167	0.0032	0.0009

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 61 THRU 66 JD 2443569.5 TO 2443575.5 DATES MAR 2 THRU MAR 7
 A = 3.00000000 B = -21.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1312.3237	-17.0059	0.9958	0.2713
2	1038.0410	5.0320	0.0043	0.0012
3	0.8371	4.9438	-0.0121	-0.0033
4	0.9489	-0.5590	0.0	0.0
5	-0.1640	-0.3175	0.0015	0.0004
	-0.0854	0.0346	-0.0014	-0.0004

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 67 THRU 72 JD 2443575.5 TO 2443581.5 DATES MAR 8 THRU MAR 13
 A = 3.00000000 B = -23.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1235.1272	4.8338	0.9573	0.2608
2	1044.5499	12.1245	-0.0376	-0.0103
3	0.9012	-1.5822	-0.C016	-0.C004
4	-0.4203	-0.8567	0.0045	0.0012
5	0.0336	0.1474	-0.0008	-0.0002
	0.0304	0.0034	0.0001	0.0

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C11

DAYS 73 THRU 78 JD 2443581.5 TO 2443587.5 DATES MAR 14 THRU MAR 19
 A = 3.00000000 B = -25.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1165.6759	18.1972	0.9040	0.2463
2	1045.5820	-0.0552	-0.0036	-0.0010
3	0.2177	-3.6163	0.0145	0.0039
4	0.1117	0.0395	-0.0051	-0.0014
5	-0.0060	0.0754	-0.0018	-0.0005
	-0.0286	0.0018	0.0031	0.0008

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 79 THRU 84 JD 2443587.5 TO 2443593.5 DATES MAR 20 THRU MAR 25
 A = 3.00000000 B = -27.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1097.8112	5.1591	0.9373	0.2554
2	1046.0180	-11.5783	0.0298	0.0081
3	-0.6192	-1.4675	0.0047	0.0013
4	-0.4383	0.7370	0.0002	0.0001
5	-0.0431	0.1098	-0.0029	-0.0008
	0.0158	0.0001	-0.0020	-0.0006

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 85 THRU 90 JD 2443593.5 TO 2443599.5 DATES MAR 26 THRU MAR 31
 A = 3.00000000 B = -29.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1384.0249	-16.4210	0.9840	0.2681
2	1039.2746	-5.8432	0.0083	0.0023
3	-1.6118	4.4672	-0.0052	-0.0014
4	0.6656	0.7525	0.0068	0.0018
5	0.2254	-0.2344	-0.0014	-0.0004
	-0.0480	-0.0578	-0.0050	-0.0014

C12

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY 91 THRU 96 JD 2443599.5 TO 2443605.5 DATES APR 1 THRU APR 6
 A = 3.00000000 B = -31.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1302.8563	-9.0982	0.9784	0.2666
2	1042.1935	11.4066	-0.0148	-0.0040
3	1.8300	2.1199	-0.0085	-0.0023
4	-0.2635	-1.1191	-0.0028	-0.0008
5	-0.1664	-0.0323	0.0022	0.0006
	0.0599	0.0379	0.0027	0.0007

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY 97 THRU 102 JD 2443605.5 TO 2443611.5 DATES APR 7 THRU APR 12
 A = 3.00000000 B = -33.33333333

A PARTIAL ECLIPSE OF THE SUN OCCURS ON APRIL 7. THE ECLIPSE BEGINS AT 13 02 GMT AND ENDS AT 17 04 GMT.

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY 103 THRU 108 JD 2443611.5 TO 2443617.5 DATES APR 13 THRU APR 18
 A = 3.00000000 B = -35.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1162.4036	15.4203	0.9073	0.2472
2	1046.4162	-6.0946	0.0157	0.0043
3	0.5020	-3.0829	0.0115	0.0031
4	-0.1754	0.3117	-0.0061	-0.0017
5	-0.1079	0.0539	0.0011	0.0003
	-0.0012	0.0009	0.0032	0.0009

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C13

DAYS 109 THRU 114 JD 2443617.5 TO 2443623.5 DATES APR 19 THRU APR 24
 A = 3.00000000 B = -37.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1094.2726	-5.5408	0.9702	0.2643
1	1043.4256	-12.3376	0.0352	0.0096
2	-2.3478	0.8347	-0.0058	-0.0016
3	-0.4365	1.1629	-0.0040	-0.0011
4	0.1661	0.1035	-0.0005	-0.0001
5	0.0635	-0.0388	0.0010	0.0003

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 115 THRU 120 JD 2443623.5 TO 2443629.5 DATES APR 25 THRU APR 30
 A = 3.00000000 B = -39.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1372.6329	-17.7139	0.9951	0.2711
1	1037.8075	3.4012	-0.0134	-0.0036
2	1.5017	5.0923	-0.0099	-0.0027
3	1.0099	-0.5850	0.0076	0.0021
4	-0.2686	-0.3074	0.0008	0.0002
5	-0.0937	0.0725	-0.0049	-0.0013

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 121 THRU 126 JD 2443629.5 TO 2443635.5 DATES MAY 1 THRU MAY 6
 A = 3.00000000 B = -41.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1296.7163	2.1078	0.9514	0.2592
1	1045.3135	12.3417	-0.0255	-0.0070
2	0.5973	-0.7389	-0.0023	-0.0006
3	-0.5563	-0.8664	0.0016	0.0004
4	0.0705	0.0665	0.0023	0.0006
5	0.0351	0.0004	-0.0004	-0.0001

C14

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 127 THRU 132 JD 2443635.5 TO 2443641.5 DATES MAY 7 THRU MAY 12
 A = 3.00000000 B = -43.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1227.2431	18.1467	0.9074	0.2472
2	1045.0796	1.6514	-0.0125	-0.0034
3	0.3197	-3.7210	0.0053	0.0014
4	0.3364	-0.0051	-0.0026	-0.0007
5	-0.0157	0.1221	0.0024	0.0007
	-0.0458	-0.0107	0.0038	0.0010

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 133 THRU 138 JD 2443641.5 TO 2443647.5 DATES MAY 13 THRU MAY 18
 A = 3.00000000 B = -45.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1159.9450	8.0485	0.9220	0.2512
2	1047.2297	-10.4892	0.0321	0.0088
3	-0.3064	-1.9086	0.0098	0.0027
4	-0.6206	0.4992	-0.0036	-0.0010
5	-0.0890	0.0701	0.0007	0.0002
	0.0223	0.0163	0.0007	0.0002

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 139 THRU 144 JD 2443647.5 TO 2443653.5 DATES MAY 19 THRU MAY 24
 A = 3.00000000 B = -47.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1087.7294	-14.8136	1.0012	0.2728
2	1038.3518	-8.3716	0.0293	0.0080
3	-3.0071	4.0308	-0.0183	-0.0050
4	0.6426	1.2985	-0.0067	-0.0018
5	0.4523	-0.1789	0.0037	0.0010
	-0.0088	-0.1251	0.0024	0.0007

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C15

DAYS 145 THRU 150 JD 2443653.5 TO 2443659.5 DATES MAY 25 THRU MAY 30
 A = 3.00000000 B = -49.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1362.4502	-11.0990	0.9868	0.2689
1	1041.1930	10.7758	-0.0352	-0.0096
2	3.0173	2.5055	-0.0058	-0.0016
3	-0.3114	-1.2440	0.0085	0.0023
4	-0.3266	0.0254	0.0006	0.0002
5	0.0946	0.0597	-0.0030	-0.0008

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 151 THRU 156 JD 2443659.5 TO 2443665.5 DATES MAY 31 THRU JUNE
 A = 3.00000000 B = -51.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1292.0152	12.0953	0.9249	0.2520
1	1045.8354	9.0334	-0.0245	-0.0067
2	-0.4134	-2.6550	0.0023	0.0006
3	-0.1869	-0.5408	0.0049	0.0013
4	0.1697	0.0818	0.0022	0.0006
5	0.0058	0.0062	-0.0036	-0.0010

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 157 THRU 162 JD 2443665.5 TO 2443671.5 DATES JUNE 6 THRU JUNE 11
 A = 3.00000000 B = -53.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1222.9668	16.8340	0.8996	0.2451
1	1046.2679	-4.6866	0.0015	0.0004
2	0.9420	-3.2366	0.0084	0.0023
3	0.0801	0.3511	0.0027	0.0007
4	-0.1494	0.0683	0.0007	0.0002
5	-0.0140	-0.0207	-0.0017	-0.0005

C16

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 163 THRU 168 JD 2443671.5 TO 2443677.5 DATES JUNE 12 THRU JUNE 17
 A = 3.00000000 B = -55.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1157.3668	-2.0427	0.9455	0.2576
2	1046.0622	-12.1881	0.0439	0.0120
3	-2.0305	-0.1552	0.0068	0.0018
4	-0.8478	0.8023	0.0005	0.0001
5	0.0292	0.1387	-0.0003	-0.0001
	0.0578	0.0170	-0.0048	-0.0013

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 169 THRU 174 JD 2443677.5 TO 2443683.5 DATES JUNE 18 THRU JUNE 23
 A = 3.00000000 B = -57.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1077.4088	-18.4241	1.0211	0.2782
2	1034.8632	0.4671	0.0075	0.0020
3	-0.2451	6.0034	-0.0231	-0.0063
4	1.9140	0.0214	0.0013	0.0004
5	0.0133	-0.5309	0.0012	0.0003
	-0.2391	-0.0102	-0.0012	-0.0003

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 175 THRU 180 JD 2443683.5 TO 2443689.5 DATES JUNE 24 THRU JUNE 29
 A = 3.00000000 B = -59.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1355.7851	-0.2527	0.9643	0.2628
2	1044.5781	12.7649	-0.0450	-0.0123
3	1.7937	-0.5214	0.0034	0.0009
4	-0.7901	-0.9091	0.0086	0.0024
5	-0.0140	0.1456	-0.0012	-0.0003
	0.0608	-0.0136	-0.0035	-0.0010

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C17

DAYS 181 THRU 186 JD 2443689.5 TO 2443695.5 DATES JUNE 30 THRU JULY 5
 A = 3.00000000 B = -61.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
	0	0	0	0
0	1287.1356	17.7359	0.9059	0.2468
1	1045.3941	3.1926	-0.0145	-0.0039
2	-0.1849	-3.5948	0.0078	0.0021
3	0.2809	-0.1650	0.0007	0.0002
4	0.0982	0.1114	-0.0011	-0.0003
5	-0.0391	0.0114	-0.0009	-0.0002

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 187 THRU 192 JD 2443695.5 TO 2443701.5 DATES JULY 6 THRU JULY 11
 A = 3.00000000 B = -63.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
	0	0	0	0
0	1219.6365	10.3293	0.9066	0.2470
1	1047.7580	-9.4786	0.0148	0.0040
2	0.5588	-2.0286	0.0079	0.0022
3	-0.3945	0.5198	0.0024	0.0007
4	-0.1396	0.0283	0.0004	0.0001
5	0.0072	-0.0032	-0.0005	-0.0001

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 193 THRU 198 JD 2443701.5 TO 2443707.5 DATES JULY 12 THRU JULY 17
 A = 3.00000000 B = -65.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
	0	0	0	0
0	1152.4588	-12.0064	0.9732	0.2652
1	1042.1290	-9.9599	0.0475	0.0129
2	-3.5301	2.4768	-0.0031	-0.0008
3	-0.4022	1.1846	-0.0081	-0.0022
4	0.3289	0.0697	0.0025	0.0007
5	0.1043	-0.0520	0.0022	0.0006

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 199 THRU 204 JD 2443707.5 TO 2443713.5 DATES JULY 18 THRU JULY 23
 A = 3.00000000 B = -67.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1066.6524	-13.9960	1.0194	0.2777
2	1037.0592	9.4801	-0.0188	-0.0051
3	2.7145	4.1201	-0.0194	-0.0053
4	0.7592	-1.4398	0.0056	0.0015
5	-0.4746	-0.2270	-0.0012	-0.0003
	-0.0125	0.1448	-0.0017	-0.0005

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 205 THRU 210 JD 2443713.5 TO 2443719.5 DATES JULY 24 THRU JULY 29
 A = 3.00000000 B = -69.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1351.2012	10.1346	0.9382	0.2556
2	1045.4888	10.1250	-0.0393	-0.0107
3	0.4114	-2.5537	0.0096	0.0026
4	-0.4658	-0.5060	0.0001	0.0
5	0.1266	0.1069	-0.0016	-0.0004
	0.0158	-0.0126	0.0018	0.0005

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 211 THRU 216 JD 2443719.5 TO 2443725.5 DATES JULY 30 THRU AUG 4
 A = 3.00000000 B = -71.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1282.3672	17.5589	0.8998	0.2452
2	1045.9426	-3.3072	-0.0015	-0.0004
3	0.6168	-3.4294	0.0058	0.0016
4	0.2329	0.2452	0.0002	0.0
5	-0.0643	0.0974	0.0015	0.0004
	-0.0337	-0.0061	-0.0005	-0.0001

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C19

DAYS 217 THRU 222 JD 2443725.5 TO 2443731.5 DATES AUG 5 THRU AUG 10
 A = 3.00000000 B = -73.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1216.7874	0.4653	0.9248	0.2520
2	1047.5033	-11.7025	0.0271	0.0074
3	-0.8109	-0.3654	0.0044	0.0012
4	-0.6684	0.6812	-0.0071	-0.0019
5	-0.0526	0.0496	0.0022	0.0006
	0.0277	0.0125	0.0055	0.0015

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 223 THRU 228 JD 2443731.5 TO 2443737.5 DATES AUG 11 THRU AUG 16
 A = 3.00000000 B = -75.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1143.5254	-17.8686	0.9949	0.2711
2	1037.7675	-2.8613	0.0361	0.0098
3	-2.4236	5.0856	-0.0080	-0.0022
4	0.9623	0.7510	-0.0039	-0.0011
5	0.3418	-0.2857	-0.0002	-0.0001
	-0.0751	-0.0985	-0.0022	-0.0006

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 229 THRU 234 JD 2443737.5 TO 2443743.5 DATES AUG 17 THRU AUG 22
 A = 3.00000000 B = -77.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1058.9896	-3.8855	0.9993	0.2723
2	1041.2693	13.3727	-0.0388	-0.0106
3	2.2705	0.5140	-0.0128	-0.0035
4	-0.3708	-1.3963	0.0118	0.0032
5	-0.1838	0.1241	-0.0009	-0.0002
	0.0806	0.0526	-0.0040	-0.0011

C20

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY 235 THRU 240 JD 2443743.5 TO 2443749.5 DATES AUG 23 THRU AUG 28
 A = 3.00000000 B = -79.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
	0	0	0	0
0	1346.9031	16.7410	0.9172	0.2499
1	1045.1365	4.6190	-0.0286	-0.0078
2	0.1988	-3.5828	0.0089	0.0024
3	0.0137	-0.1422	0.0009	0.0002
4	0.0907	0.0969	0.0024	0.0007
5	-0.0127	-0.0031	0.0010	0.0003

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY 241 THRU 246 JD 2443749.5 TO 2443755.5 DATES AUG 29 THRU SEPT 3
 A = 3.00000000 B = -81.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
	0	0	0	0
0	1278.8448	11.9288	0.9063	0.2469
1	1047.1605	-8.6337	0.0142	0.0039
2	0.5406	-2.4004	0.0087	0.0024
3	-0.1979	0.5062	-0.0045	-0.0012
4	-0.0977	0.0661	-0.0014	-0.0004
5	-0.0049	-0.0063	0.0023	0.0006

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY 247 THRU 252 JD 2443755.5 TO 2443761.5 DATES SEPT 4 THRU SEPT 9
 A = 3.00000000 B = -83.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
	0	0	0	0
0	1212.3181	-9.9856	0.9501	0.2589
1	1044.3460	-10.3714	0.0277	0.0075
2	-2.2324	1.9599	0.0003	0.0001
3	-0.4096	0.9233	-0.0022	-0.0006
4	0.1418	0.0227	0.0013	0.0004
5	0.0455	-0.0148	0.0009	0.0003

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C21

DAYS 253 THRU 258 JD 2443761.5 TO 2443767.5 DATES SEPT 10 THRU SEPT 15
 A = 3.00000000 B = -85.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1132.3883	-16.1159	1.0015	0.2729
2	1037.8955	6.4680	0.0152	0.0041
3	0.7059	4.8177	-0.0114	-0.0031
4	0.8911	-0.6659	-0.0077	-0.0021
5	-0.1804	-0.3302	-0.0011	-0.0003
	-0.0821	0.0378	0.0029	0.0008

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 259 THRU 264 JD 2443767.5 TO 2443773.5 DATES SEPT 16 THRU SEPT 21
 A = 3.00000000 B = -87.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1413.9262	7.2011	0.9675	0.2636
2	1043.3849	11.7927	-0.0407	-0.0111
3	0.7463	-2.2207	-0.0031	-0.0009
4	-0.2956	-0.8488	0.0046	0.0013
5	0.0632	0.1804	0.0001	0.0
	0.0265	0.0041	0.0	0.0

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 265 THRU 270 JD 2443773.5 TO 2443779.5 DATES SEPT 22 THRU SEPT 27
 A = 3.00000000 B = -89.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1342.7692	17.9177	0.9048	0.2465
2	1045.5969	-1.8734	-0.0102	-0.0028
3	0.7911	-3.5483	0.0153	0.0042
4	0.0737	0.2099	-0.0035	-0.0009
5	-0.0571	0.0700	-0.0027	-0.0007
	-0.0193	-0.0055	0.0032	0.0009

C22

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 271 THRU 276 JD 2443779.5 TO 2443785.5 DATES SEPT 28 THRU OCT 3
 A = 3.00000000 B = -91.33333333

A PARTIAL ECLIPSE OF THE SUN OCCURS ON OCTOBER 2. THE ECLIPSE BEGINS AT 04 31 GMT AND ENDS AT 08 25 GMT.

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 277 THRU 282 JD 2443785.5 TO 2443791.5 DATES OCT 4 THRU OCT 9
 A = 3.00000000 B = -93.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MCON S D
0	0	0	0	0
1	1204.0569	-17.1851	0.9756	0.2658
2	1039.7643	-4.3772	0.0194	0.0053
3	-1.6787	4.5202	-0.0055	-0.0015
4	0.6602	0.6363	-0.0069	-0.0019
5	0.1982	-0.2206	0.0013	0.0003
	-0.0506	-0.0476	0.0051	0.0014

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 283 THRU 288 JD 2443791.5 TO 2443797.5 DATES OCT 10 THRU OCT 15
 A = 3.00000000 B = -95.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1123.1474	-7.2959	0.9895	0.2696
2	1041.6560	12.3057	-0.0089	-0.0024
3	1.3915	1.8084	-0.0131	-0.0036
4	-0.2613	-1.2144	-0.0019	-0.0005
5	-0.1398	-0.0478	0.0029	0.0008
	0.0544	0.0463	0.0020	0.0005

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C23

DAYS 289 THRU 294 JD 2443797.5 TO 2443803.5 DATES OCT 16 THRU OCT 21
 A = 3.00000000 B = -97.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1409.4062	15.3969	0.9366	0.2552
2	1043.7198	6.6027	-0.0353	-0.0096
3	0.2695	-3.6819	0.0031	0.0008
4	0.2138	-0.3138	0.0094	0.0026
5	0.0779	0.1718	0.0	0.0
	-0.0291	-0.0045	-0.0042	-0.0012

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 295 THRU 300 JD 2443803.5 TO 2443809.5 DATES OCT 22 THRU OCT 27
 A = 3.00000000 B = -99.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1339.7911	13.7350	0.9057	0.2468
2	1047.1224	-7.4803	0.0103	0.0028
3	0.7745	-2.6662	0.0096	0.0026
4	-0.3321	0.4131	-0.0078	-0.0021
5	-0.1075	0.0332	0.0025	0.0007
	0.0101	-0.0015	0.0047	0.0013

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 301 THRU 306 JD 2443809.5 TO 2443815.5 DATES OCT 28 THRU NOV 2
 A = 3.00000000 B = -101.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1273.2040	-7.8529	0.9575	0.2609
2	1044.0036	-11.4856	0.0315	0.0086
3	-2.4481	1.3843	-0.0024	-0.0006
4	-0.3741	1.0866	-0.0005	-0.0001
5	0.1895	0.0650	-0.0006	-0.0002
	0.0576	-0.0384	-0.0018	-0.0005

C24

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY S 307 THRU 312 JD 2443815.5 TO 2443821.5 DATES NOV 3 THRU NOV 8
 A = 3.00000000 B = -103.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1192.8385	-17.2030	0.9903	0.2698
2	1038.5138	4.7616	-0.0011	-0.0003
3	1.3305	4.8361	-0.0079	-0.0021
4	0.8165	-0.6177	-0.0053	-0.0014
5	-0.2701	-0.2726	0.0003	0.0001
	-0.0620	0.0585	0.0053	0.0014

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY S 313 THRU 318 JD 2443821.5 TO 2443827.5 DATES NOV 9 THRU NOV 14
 A = 3.00000000 B = -105.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1116.6748	4.2166	0.9636	0.2626
2	1044.1980	12.4659	-0.0230	-0.0063
3	0.1709	-1.2029	-0.0063	-0.0017
4	-0.4439	-0.9598	0.0011	0.0003
5	0.1995	0.0728	0.0019	0.0005
	0.0331	0.0168	0.0003	0.0001

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY S 319 THRU 324 JD 2443827.5 TO 2443833.5 DATES NOV 15 THRU NOV 20
 A = 3.00000000 B = -107.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1404.6855	18.3999	0.9133	0.2488
2	1044.4941	-0.1039	-0.0217	-0.0059
3	0.9693	-3.8472	0.0076	0.0021
4	0.3716	0.1952	0.0109	0.0030
5	-0.0908	0.1246	-0.0003	-0.0001
	-0.0432	-0.0236	-0.0067	-0.0018

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C25

DAYS 325 THRU 330 JD 2443833.5 TO 2443839.5 DATES NOV 21 THRU NOV 26
 A = 3.00000000 B = -109.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1338.1368	5.5946	0.9167	0.2498
2	1047.9880	-11.0015	0.0253	0.0069
3	-0.3944	-1.3703	0.0126	0.0034
4	-0.7109	0.5143	0.0024	0.0007
5	-0.0581	0.0594	-0.0019	-0.0005
	0.0203	0.0263	-0.0036	-0.0010

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 331 THRU 336 JD 2443839.5 TO 2443845.5 DATES NOV 27 THRU DEC 2
 A = 3.00000000 B = -111.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1266.8569	-16.1098	0.9913	0.2701
2	1038.7040	-6.8236	0.0306	0.0083
3	-2.8441	4.3249	-0.0148	-0.0040
4	0.7784	1.1184	-0.0066	-0.0018
5	0.4176	-0.2091	0.0019	0.0005
	-0.0357	-0.1123	0.0028	0.0008

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAYS 337 THRU 342 JD 2443845.5 TO 2443851.5 DATES DEC 3 THRU DEC 8
 A = 3.00000000 B = -113.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1182.8111	-9.5571	0.9883	0.2693
2	1041.5122	11.6026	-0.0271	-0.0074
3	2.5422	2.1447	-0.0056	-0.0015
4	-0.3977	-1.2195	0.0094	0.0026
5	-0.2747	0.0278	0.0	0.0
	0.0888	0.0434	-0.0048	-0.0013

C26

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY S 343 THRU 348 JD 2443851.5 TO 2443857.5 DATES DEC 9 THRU DEC 14
 A = 3.00000000 B = -115.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1111.0942	13.7910	0.9343	0.2546
2	1044.5107	8.2285	-0.0240	-0.0065
3	-0.4664	-3.1579	0.0024	0.0007
4	0.0316	-0.5329	0.0044	0.0012
5	0.1863	0.1182	-0.0004	-0.0001
	-0.0108	0.0135	-0.0039	-0.0011

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY S 349 THRU 354 JD 2443857.5 TO 2443863.5 DATES DEC 15 THRU DEC 20
 A = 3.00000000 B = -117.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1400.6894	15.6348	0.9016	0.2457
2	1046.6127	-6.1742	-0.0034	-0.0009
3	1.3817	-2.9281	0.0097	0.0026
4	-0.0646	0.4831	-0.0017	-0.0005
5	-0.1779	0.0380	-0.0012	-0.0003
	-0.0001	-0.0237	0.0028	0.0008

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

DAY S 355 THRU 360 JD 2443863.5 TO 2443869.5 DATES DEC 21 THRU DEC 26
 A = 3.00000000 B = -119.33333333

POWERS OF TIME COEFFICIENTS

	MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0	0
1	1336.3592	-4.4113	0.9372	0.2554
2	1046.5418	-11.7575	0.0396	0.0108
3	-2.2261	0.3563	0.0076	0.0021
4	-0.8484	0.7764	0.0026	0.0007
5	0.0596	0.1257	0.0009	0.0003
	0.0586	0.0219	-0.0045	-0.0012

CHEBYSHEV APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1978

C27

DAYS 360 THRU 365 JD 2443868.5 TO 2443874.5 DATES DEC 26 THRU DEC 31
A = 3.00000000 B = -121.00000000

POWERS OF TIME COEFFICIENTS

MOON GHA	MOON DEC	MOON H P	MOON S D
0	0	0	0
1271.8409	-18.3554	1.0098	0.2751
1036.0261	-1.8079	0.0271	0.0074
-1.8322	5.6506	-0.0239	-0.0065
1.6076	0.5923	-0.0008	-0.0002
0.2822	-0.4402	0.0060	0.0016
-0.1775	-0.0943	-0.0028	-0.0007

Section D: ASTRONOMICAL TABLES

With two exceptions the series in this section provide data referred to the true equator and equinox of date. The exceptions are

1. the Moon's geocentric, rectangular coordinates (X, Y, Z), which are referred to the mean equator and equinox of 1950.0;
2. the right ascension and declination of Pluto, which are astrometric (*i.e.*, free of the effect of stellar aberration, except for the elliptic part) and are referred to the mean equator and equinox of 1950.0.

The unit of distance for the Sun and planets is the Astronomical Unit; the unit of distance for the Moon is the Earth's radius.

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1978

D1

DAYS 1 THRU 95 JD 2443509.5 TO 2443604.5 DATES JAN 1 THRU APR 5
 A = 47.50000000 B = -'.02105263

CHEBYSHEV COEFFICIENTS

	APP S T	EQ OF EQ	NUT LON	NUT OBL
0	19.61466720	0.3717	6.0773	" "
1	3.12119454	-0.0795	-1.2990	0.5244
2	-0.00001112	-0.0400	-0.6544	-0.1166
3	0.00000262	0.0094	0.1544	-0.0838
4	0.00000073	0.0026	0.0427	0.0324
5	0.00000056	0.0020	0.0327	0.0018
6	0.00000017	0.0006	0.0099	0.0231
7	-0.00000026	-0.0009	-0.0154	0.0015
8	0.00000035	0.0013	0.0208	0.0189
9	-0.00000137	-0.0049	-0.0804	0.0044
10	-0.00000010	-0.0003	-0.0057	0.0055
11	-0.00000076	-0.0027	-0.0450	0.0037
12	-0.00000007	-0.0002	-0.0040	-0.0231
13	-0.00000015	-0.0005	-0.0090	0.0014
14	-0.00000023	-0.0008	-0.0135	-0.0247
15	0.000000120	0.0043	0.0708	-0.0042
16	0.00000003	0.0001	0.0015	0.0137
17	0.000000033	0.0012	0.0194	-0.0023
18	0.000000020	0.0007	0.0117	0.0261
19	-0.000000133	-0.0048	-0.0785	0.0039
20	-0.00000017	-0.0006	-0.0101	-0.0311
21	0.000000103	0.0037	0.0608	-0.0033
22	0.000000016	0.0006	0.0092	0.0197
23	-0.000000061	-0.0022	-0.0361	0.0031
24	-0.000000011	-0.0004	-0.0064	-0.0114
25	0.000000032	0.0011	0.0187	-0.0013
26	0.000000001	0.0	0.0007	0.0042
27	-0.000000004	-0.0001	-0.0024	-0.0005
28	0.000000004	0.0002	0.0026	0.0015
29	-0.000000011	-0.0004	-0.0063	0.0012
30	-0.000000006	-0.0002	-0.0035	-0.0031
31	0.000000011	0.0004	0.0066	-0.0014
32	0.000000006	0.0002	0.0034	0.0024
33	-0.000000008	-0.0003	-0.0045	0.0011
34	-0.000000004	-0.0001	-0.0022	-0.0015
35	0.000000005	0.0002	0.0027	-0.0005

D2

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1978

DAY 91 THRU 185 JD 2443599.5 TO 2443694.5 DATES APR 1 THRU JULY 4
 A = 47.50000000 B = -2.91578947

CHEBYSHEV COEFFICIENTS

	APP S T	EQ OF EQ	NUT LON	NUT OBL
	H	S	"	"
0	31.44235163	0.0701	1.1457	-18.7716
1	3.12121160	-0.0181	-0.2954	-0.6088
2	0.00001053	0.0379	0.6195	0.1081
3	-0.00000189	-0.0068	-0.1111	0.0650
4	-0.00000010	-0.0003	-0.0056	-0.0260
5	-0.00000030	-0.0011	-0.0177	-0.0058
6	0.00000015	0.0005	0.0088	-0.0209
7	0.00000004	0.0001	0.0024	0.0036
8	-0.00000005	-0.0002	-0.0031	-0.0183
9	0.00000077	0.0028	0.0452	0.0122
10	0.00000049	0.0018	0.0288	-0.0052
11	0.00000088	0.0032	0.0517	0.0093
12	-0.00000055	-0.0020	-0.0325	0.0178
13	0.00000008	0.0003	0.0050	0.0015
14	-0.00000043	-0.0015	-0.0253	0.0201
15	-0.00000100	-0.0036	-0.0587	-0.0126
16	0.00000019	0.0007	0.0111	-0.0135
17	-0.00000019	-0.0007	-0.0114	-0.0047
18	0.00000051	0.0018	0.0298	-0.0213
19	0.00000128	0.0046	0.0753	0.0133
20	-0.00000049	-0.0018	-0.0288	0.0324
21	-0.00000113	-0.0041	-0.0664	-0.0088
22	0.00000030	0.0011	0.0175	-0.0197
23	0.00000049	0.0018	0.0288	0.0064
24	-0.00000024	-0.0009	-0.0144	0.0063
25	-0.00000014	-0.0005	-0.0080	-0.0048
26	0.00000012	0.0004	0.0069	-0.0022
27	0.00000009	0.0003	0.0052	0.0004
28	0.00000007	0.0003	0.0042	0.0022
29	-0.00000009	-0.0003	-0.0053	0.0031
30	-0.00000014	-0.0005	-0.0085	-0.0019
31	0.00000006	0.0002	0.0037	-0.0032
32	0.00000010	0.0004	0.0058	0.0012
33	-0.00000004	-0.0002	-0.0026	0.0016
34	-0.00000004	-0.0002	-0.0025	-0.0009
35	0.00000003	0.0001	0.0017	-0.0007

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1978

D3

DAYS 182 THRU 276 JD 2443690.5 TO 2443785.5 DATES JULY 1 THRU OCT 3
 A = 47.50000000 B = -4.83157895

CHEBYSHEV COEFFICIENTS

APP S T	EQ OF EQ	NUT LON	NUT OBL
0 H	S	"	"
1 43.40151950	-0.0019	-0.0316	-18.4165
1 3.12119411	-0.0810	-1.3244	0.6265
2 -0.00001093	-0.0394	-0.6434	-0.0830
3 0.00000072	0.0026	0.0426	-0.0576
4 -0.00000009	-0.0003	-0.0054	0.0071
5 -0.00000041	-0.0015	-0.0241	0.0141
6 -0.00000086	-0.0031	-0.0508	0.0045
7 -0.00000019	-0.0007	-0.0113	-0.0027
8 -0.00000084	-0.0030	-0.0494	0.0044
9 0.00000046	0.0017	0.0270	-0.0199
10 -0.00000021	-0.0008	-0.0124	-0.0002
11 -0.00000055	-0.0020	-0.0321	-0.0204
12 0.00000073	0.0026	0.0430	-0.0035
13 0.00000007	0.0002	0.0040	-0.0026
14 0.00000081	0.0029	0.0479	-0.0042
15 0.00000020	0.0007	0.0117	0.0250
16 -0.00000060	-0.0022	-0.0355	0.0025
17 0.00000009	0.0003	0.0052	0.0036
18 -0.00000086	-0.0031	-0.0508	0.0045
19 -0.00000030	-0.0011	-0.0175	-0.0329
20 0.00000143	0.0052	0.0843	-0.0060
21 0.00000023	0.0008	0.0133	0.0306
22 -0.00000089	-0.0032	-0.0521	0.0034
23 -0.00000010	-0.0004	-0.0058	-0.0126
24 0.00000023	0.0008	0.0133	-0.0013
25 0.00000004	0.0002	0.0025	0.0017
26 -0.00000003	-0.0001	-0.0020	0.0008
27 -0.00000003	-0.0001	-0.0019	-0.0018
28 0.00000013	0.0005	0.0079	-0.0006
29 0.00000002	0.0001	0.0011	0.0044
30 -0.00000019	-0.0007	-0.0111	0.0002
31 0.0	0.0	0.0	-0.0041
32 0.00000013	0.0005	0.0074	0.0002
33 -0.00000001	0.0	-0.0005	0.0020
34 -0.00000005	-0.0002	-0.0027	-0.0002
35 0.0	0.0	0.0001	-0.0007

D4

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1978

DAYS 274 THRU 368 JD 2443782.5 TO 2443877.5 DATES OCT 1 THRU JAN 3
 A = 47.50000000 B = -6.76842105

CHEBYSHEV COEFFICIENTS

	APP S T	EQ OF EQ	NUT LON	NUT OBL
	H	S	"	"
0	7.49204071	-0.3126	-5.1115	-18.6313
1	3.12121447	-0.0077	-0.1265	-0.5667
2	0.00001181	0.0425	0.6949	0.1258
3	-0.00000028	-0.0010	-0.0164	0.0845
4	-0.00000044	-0.0016	-0.0260	0.0155
5	0.00000064	0.0023	0.0377	-0.0345
6	0.00000062	0.0022	0.0366	0.0232
7	-0.00000016	-0.0006	-0.0092	0.0034
8	0.00000043	0.0015	0.0250	0.0193
9	-0.00000119	-0.0043	-0.0703	0.0082
10	-0.00000033	-0.0012	-0.0192	0.0059
11	-0.00000081	-0.0029	-0.0477	0.0079
12	-0.00000022	-0.0008	-0.0131	-0.0211
13	-0.00000021	-0.0008	-0.0124	-0.0001
14	-0.00000035	-0.0013	-0.0205	-0.0237
15	0.000000111	0.0040	0.0651	-0.0097
16	0.000000^20	0.0007	0.0118	0.0126
17	0.00000035	0.0012	0.0204	-0.0037
18	0.00000033	0.0012	0.0197	0.0242
19	-0.00000130	-0.0047	-0.0762	0.0095
20	-0.00000030	-0.0011	-0.0177	-0.0310
21	0.00000108	0.0039	0.0635	-0.0055
22	0.00000018	0.0007	0.0108	0.0203
23	-0.00000061	-0.0022	-0.0356	0.0047
24	-0.00000019	-0.0007	-0.0110	-0.0099
25	0.00000025	0.0009	0.0146	-0.0038
26	0.00000009	0.0003	0.0052	0.0031
27	-0.00000004	-0.0001	-0.0021	0.0003
28	0.00000005	0.0002	0.0028	0.0005
29	-0.00000006	-0.0002	-0.0038	0.0022
30	-0.00000010	-0.0003	-0.0056	-0.0020
31	0.00000009	0.0003	0.0053	-0.0023
32	0.00000008	0.0003	0.0046	0.0019
33	-0.00000006	-0.0002	-0.0037	0.0016
34	-0.00000005	-0.0002	-0.0030	-0.0010
35	0.00000002	0.0001	0.0015	-0.0010

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1978

D5

DAYS 1 THRU 95 JD 2443509.5 TO 2443604.5 DATES JAN 1 THRU APR 5
A = 47.50000000 B = -1.02105263

CHEBYSHEV COEFFICIENTS

	R A	DEC	DISTANCE	S D	EPHEM TR
	H	0	AU	*	H
0	43.8895889	-20.411748	1.98032230	32.35908	24.2752379
1	3.1045216	15.122394	0.00896022	-0.14613	-0.0202270
2	-0.0926256	1.800386	0.00188097	-0.03013	-0.0919054
3	0.0121068	-0.488968	-0.00027369	0.00477	0.0124798
4	0.0042544	-0.001180	-0.00002072	0.00033	0.0041732
5	-0.0007390	0.005207	0.00001654	-0.00028	-0.0007367
6	0.0000030	-0.001227	-0.00000089	0.00003	0.0000061
7	0.0000400	0.000255	0.00001125	-0.00019	0.0000443
8	0.0000648	0.000258	-0.00000884	0.00014	0.0000603
9	-0.0000337	-0.000160	-0.00001630	0.00024	-0.0000391
10	-0.0000447	-0.000174	0.00000594	-0.00009	-0.0000418
11	0.0000134	0.000047	0.00000684	-0.00009	0.0000166
12	0.0000138	0.000063	-0.00000177	0.00003	0.0000128
13	-0.0000036	-0.000017	-0.00000197	0.00003	-0.0000045
14	-0.0000041	-0.000016	0.00000043	-0.00002	-0.0000039
15	0.0000024	0.000006	0.00000046	-0.00001	0.0000016
16	0.0000001	0.0	-0.00000011	0.0	0.0
17	-0.0000001	0.000007	0.00000022	-0.00001	-0.0000001
18	0.0000020	0.0	-0.00000007	0.00001	0.0000012
19	-0.0000020	-0.000009	-0.00000039	0.00001	-0.0000007
20	-0.0000017	-0.000003	0.00000010	0.00001	-0.0000014
21	0.0000013	0.000005	0.00000025	-0.00001	0.0000008
22	0.0000008	0.000002	-0.00000003	-0.00001	0.0000007
23	-0.0000007	-0.000004	-0.00000009	0.00002	-0.0000003

DAYS 91 THRU 185 JD 2443599.5 TO 2443694.5 DATES APR 1 THRU JULY 4
A = 47.50000000 B = -2.91578947

CHEBYSHEV COEFFICIENTS

	R A	DEC	DISTANCE	S D	EPHEM TR
	H	0	AU	*	H
0	7.4616235	33.035860	2.01950829	31.73115	24.0190620
1	3.1298562	9.549755	0.00895039	-0.14087	0.0110102
2	0.0656227	-2.976516	-0.00179709	0.02883	0.0651947
3	-0.0066525	-0.293889	-0.00023926	0.00352	-0.0070404
4	-0.0049863	0.036143	0.00003423	-0.00054	-0.0049724
5	0.0001242	0.006054	0.00001216	-0.00017	0.0001467
6	0.0001683	0.000068	-0.00000213	0.00003	0.0001697
7	0.0000522	-0.000211	0.00000851	-0.00013	0.0000550
8	0.0000496	0.000178	-0.00001355	0.00022	0.0000427
9	-0.0000517	-0.000080	-0.00001325	0.00022	-0.0000582
10	-0.0000395	-0.000082	0.00000914	-0.00016	-0.0000362
11	0.0000221	0.000070	0.00000608	-0.00008	0.0000239
12	0.0000125	0.000016	-0.00000285	0.00004	0.0000121
13	-0.0000055	-0.000020	-0.00000124	0.00002	-0.0000060
14	-0.0000021	0.000002	0.00000080	-0.00001	-0.0000015
15	0.0000007	0.000002	0.00000010	0.0	0.0000016
16	0.0000009	-0.000001	-0.00000012	0.00001	0.0000006
17	0.0000001	-0.000001	-0.00000028	0.0	-0.0000004
18	-0.0000006	-0.000006	-0.00000021	0.0	-0.0000013
19	0.0000004	0.000003	0.00000035	-0.00002	-0.0000007
20	0.0000005	0.000005	0.00000023	0.00001	0.0000013
21	-0.0000005	-0.000002	-0.00000020	0.00002	0.0000002
22	-0.0000002	-0.000003	-0.00000010	0.0	-0.0000003
23	0.0000003	0.000002	0.00000007	0.0	-0.0000001

D6

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1978

DAYS 182 THRU 276 JD 2443690.5 TO 2443785.5 DATES JULY 1 THRU OCT 3
 A = 47.50000000 B = -4.83157895

CHEBYSHEV COEFFICIENTS

	R A	DEC	DISTANCE	S D	EPHEM TR
0	H 19.4002021	0 22.935748	AU 2.02079423	* 31.71080	H 23.9965533
1	2.9887720	-14.010239	-0.00836683	0.13154	-0.1348150
2	-0.0649546	-1.968420	-0.001190349	0.03037	-0.0642675
3	0.0109403	0.377967	0.00022749	-0.00334	0.0112542
4	0.0037657	0.010847	0.00003873	-0.00062	0.0037194
5	-0.0004006	-0.002783	0.00000233	-0.00005	-0.0004034
6	-0.0000251	0.000690	-0.00000255	0.00003	-0.0000222
7	0.0000574	-0.000232	0.00000286	-0.00003	0.0000585
8	0.0000160	-0.000006	-0.00001836	0.00029	0.0000097
9	-0.0000684	0.000245	-0.00000449	0.00008	-0.0000701
10	-0.0000124	0.000052	0.00001332	-0.00023	-0.000062
11	0.0000310	-0.000104	0.00000194	-0.00003	0.0000320
12	0.0000039	-0.000028	-0.00000420	0.00007	0.0000015
13	-0.0000065	0.000019	-0.00000042	0.0	-0.0000063
14	0.0000005	0.000003	0.00000045	0.00001	-0.0000002
15	0.0000002	-0.000002	0.00000009	-0.00001	0.0000004
16	-0.0000002	0.000001	-0.00000019	0.0	0.0
17	-0.0000012	0.000009	-0.00000010	0.00001	-0.0000013
18	-0.0000014	0.000007	0.00000047	0.00001	0.0000001
19	0.0000014	-0.000012	0.00000008	0.0	0.0000016
20	0.0000017	-0.000006	-0.00000038	0.00001	-0.0000001
21	-0.0000007	0.000009	-0.00000001	0.0	-0.0000012
22	-0.0000010	0.000004	0.00000018	0.0	0.0000002
23	0.0	-0.000003	-0.00000001	-0.00001	0.0000005

DAYS 274 THRU 368 JD 2443782.5 TO 2443877.5 DATES OCT 1 THRU JAN 3
 A = 47.50000000 B = -6.76842105

CHEBYSHEV COEFFICIENTS

	R A	DEC	DISTANCE	S D	EPHEM TR
0	H 31.2084693	0 -31.774703	AU 1.98095544	* 32.34881	H 23.7186764
1	3.2515418	-10.321917	-0.00924620	0.15071	0.1340667
2	0.1022721	3.041691	0.00181921	-0.02905	0.1017471
3	-0.0082774	0.412674	0.00028456	-0.00492	-0.0087923
4	-0.0066161	-0.035608	-0.00001366	0.00022	-0.0066293
5	-0.0001118	-0.011013	-0.00000992	0.00016	-0.0000908
6	0.0002257	-0.000556	-0.00000193	0.00003	0.0002291
7	0.0000818	0.000085	-0.00000574	0.00010	0.0000786
8	-0.0000412	0.000052	-0.00001744	0.00030	-0.0000495
9	-0.0000695	0.000184	0.00000839	-0.00016	-0.0000647
10	0.0000233	-0.000078	0.00001147	-0.00019	0.0000283
11	0.0000269	-0.000067	-0.00000377	0.00004	0.0000267
12	-0.0000078	0.000035	-0.00000362	0.00005	-0.0000088
13	-0.0000084	0.000018	0.00000091	-0.00002	-0.0000078
14	0.0000004	-0.000001	0.00000101	-0.00002	0.0000016
15	0.0000032	-0.000006	-0.00000005	-0.00001	0.0000023
16	0.0000003	0.000004	-0.00000008	0.0	0.0000004
17	0.0000012	0.0	0.00000001	0.0	0.0000011
18	0.0000004	-0.000011	-0.00000034	0.0	0.0
19	-0.0000031	0.000006	-0.00000007	0.00001	-0.0000015
20	-0.0000006	0.000010	0.00000030	0.0	0.0000002
21	0.0000020	-0.000007	0.00000004	-0.00001	0.0000011
22	0.0000004	-0.000005	-0.00000017	0.0	-0.0000002
23	-0.0000011	0.000003	0.0	0.00001	-0.0000005

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1978

D7

DAYS 1 THRU 32 JD 2443509.5 TO 2443541.5 DATES JAN 1 THRU FEB 1
 A = 16.00000000 B = -1.06250000

CHEBYSHEV COEFFICIENTS

	R A	DEC	H P	X	Y	Z
	H	0	*			
0	51.60673997	-5.1089651	114.8156979	-44.0826759	-11.2354283	-4.3331104
1	14.03288316	1.7823426	-0.7018198	-4.2358598	5.2911430	1.8528126
2	-0.44191556	-8.1049926	0.7771724	-46.2838904	-23.8090561	-8.5815876
3	0.10025645	-12.8887133	2.6059660	23.5939362	-40.7684238	-13.2639775
4	0.17082232	4.7349885	-0.8705798	24.1839214	13.3549661	4.7862038
5	-0.10611126	2.4643574	-0.4603912	-6.6363012	8.8204111	2.8253102
6	0.04959533	-1.1694206	0.4836206	-2.4079463	-2.6744623	-0.9245403
7	0.04827931	0.2345860	-0.0703782	1.1321237	-0.1349777	-0.0254557
8	-0.03674343	0.1272112	-0.1223582	-0.2983517	0.3902050	0.1254534
9	-0.00296345	-0.1879277	0.0602316	-0.1080507	-0.2340656	-0.0797364
10	0.00902969	0.0803271	0.0013708	0.1364905	0.0010546	0.0024315
11	-0.00408982	0.0339029	-0.0176963	-0.0280643	0.0580976	0.0189320
12	0.00046949	-0.0448391	0.0090868	-0.0216405	-0.0233679	-0.0081164
13	0.00125550	0.0088901	0.0012211	0.0152121	-0.0043860	-0.0012286
14	-0.00126593	0.0080230	-0.0032986	-0.0012674	0.0071865	0.0023746
15	0.00020291	-0.0069080	0.0011620	-0.0030267	-0.0021592	-0.0007666
16	0.00040012	0.0018225	0.0004216	0.0017543	-0.0008014	-0.0002395
17	-0.00026892	0.0012441	-0.0005397	-0.0000169	0.0009602	0.0003200
18	0.00001824	-0.0015052	0.0001367	-0.0004696	-0.0002211	-0.0000813
19	0.00007421	0.0004339	0.0000955	0.0002144	-0.0001593	-0.0000499
20	-0.00005736	0.00003027	-0.0000880	0.0000294	0.0001302	0.0000441
21	0.00001136	-0.0003150	0.0000136	-0.0000709	-0.0000164	-0.0000068
22	0.00001682	0.0000778	0.0000203	0.0000247	-0.0000279	-0.0000091
23	-0.00001540	0.0000587	-0.0000138	0.0000084	0.0000176	0.0000060
24	0.00000253	-0.0000639	0.0000006	-0.0000109	-0.0000002	-0.0000002
25	0.00000424	0.0000196	0.0000040	0.0000024	-0.0000050	-0.0000016
26	-0.00000346	0.0000115	-0.0000021	0.0000020	0.0000021	0.0000008
27	0.00000065	-0.0000145	-0.0000003	-0.0000014	0.0000004	0.0000001
28	0.00000089	0.0000044	0.0000007	0.0000002	-0.0000006	-0.0000002
29	-0.00000087	0.0000024	-0.0000005	0.0000003	0.0000003	0.0000001
30	0.00000020	-0.0000033	0.0	-0.0000003	0.0	0.0
31	0.00000024	0.0000012	0.0000002	0.0	-0.0000002	0.0
32	-0.00000022	0.0000007	0.0	0.0000002	0.0000001	0.0
33	0.00000007	-0.0000008	-0.0000001	-0.0000001	0.0000001	-0.0000001
34	0.00000004	0.0000002	0.0000002	-0.0000002	-0.0000002	-0.0000001
35	-0.00000006	0.0000004	-0.0000001	0.0000001	-0.0000001	0.0000001
36	0.00000002	-0.0000002	0.0000001	0.0	0.0000001	0.0
37	0.00000001	0.0000001	0.0000001	-0.0000001	0.0	-0.0000001

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1978

DAY 32 THRU 63 JD 2443540.5 TO 2443572.5 DATES FEB 1 THRU MAR 4
 A = 16.0000000 B = -3.0000000

CHEBYSHEV COEFFICIENTS

	R A	DEC	H P	X	Y	Z
	H	O	'			
0	58.27531635	-12.8690752	116.1146347	-13.0412184	-36.5183468	-12.2075362
1	14.04882989	0.2059674	-0.4097016	-6.8334192	0.6357679	0.2284548
2	-0.20844662	-15.9118195	2.1461427	-11.6552963	-49.1068729	-16.3773086
3	0.33179065	-2.7344051	1.1070218	48.3332301	-9.9206100	-2.7769944
4	0.05476678	8.2766887	-1.4187710	5.6626900	25.9622131	8.6317570
5	-0.02927490	0.1399453	0.0865721	-10.7428046	1.6227659	0.4106114
6	0.04250389	-0.6039325	0.3263043	-0.0861189	-2.8415174	-0.9361537
7	-0.03649387	0.2138314	-0.1621411	0.3703575	0.2601396	0.0919259
8	-0.01370631	-0.1855424	-0.0209379	-0.1880521	-0.1813874	-0.0624496
9	0.01021970	0.0150527	0.0304331	0.1871319	-0.0640863	-0.0192045
10	-0.00119756	0.0338937	-0.0148992	0.0031027	0.0955628	0.0316413
11	0.00010447	-0.0333124	0.0037697	-0.0408495	-0.0135239	-0.0049431
12	0.000047329	0.0072354	0.0043346	0.0124056	-0.0115342	-0.0036691
13	-0.000038754	0.0052622	-0.0029830	0.0012920	0.0062901	0.0020978
14	0.000034250	-0.0032682	0.0001682	-0.0024577	-0.0013720	-0.0004832
15	-0.000005314	0.0012415	0.0005212	0.0014138	-0.0004334	-0.0001274
16	-0.000012546	-0.0000062	-0.0003261	-0.0002117	0.0007612	0.0002492
17	0.000005808	-0.0003231	0.0000718	-0.0003229	-0.0002678	-0.0000923
18	-0.00000699	0.0002160	0.0000552	0.0001865	-0.0000743	-0.0000221
19	-0.000000471	-0.00000959	-0.00000535	-0.00000117	0.0000842	0.0000277
20	0.000000640	-0.00000169	0.0000013	-0.00000296	-0.00000258	-0.0000089
21	-0.000006456	0.00000379	0.0000079	0.00000193	-0.00000032	-0.0000009
22	0.000000200	-0.00000151	-0.0000066	-0.00000044	0.00000088	0.00000027
23	0.000000GCG76	0.00000020	0.00000019	-0.00000028	-0.00000043	-0.00000016
24	-0.0000000122	0.00000018	0.00000009	0.00000029	0.0	0.00000001
25	0.000000040	-0.00000020	-0.00000011	-0.00000008	0.00000013	0.00000005
26	0.000000003	0.00000010	0.00000005	-0.00000004	-0.00000006	-0.00000002
27	-0.000000010	-0.00000004	0.00000001	0.00000004	0.0	0.0
28	0.000000007	-0.00000001	-0.00000002	-0.00000001	0.00000002	0.0
29	-0.000000003	0.00000001	0.00000001	-0.00000001	0.0	0.0
30	0.000000002	-0.00000001	0.00000001	-0.00000001	0.00000001	0.0
31	0.000000001	-0.00000001	0.0	0.0	-0.00000001	0.0
32	0.000000001	0.00000001	0.0	0.0	0.0	0.0
33	-0.000000001	-0.00000001	-0.00000001	0.00000001	0.0	0.0
34	-0.000000001	0.00000001	0.0	0.0	0.0	0.0
35	0.000000001	0.0	-0.00000001	0.0	0.00000001	0.0
36	-0.000000001	0.0	0.0	0.0	-0.00000001	0.00000001
37	0.000000002	0.0	0.0	0.0	0.00000001	0.0

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1978

D9

DAYS 60 THRU 91 JD 2443568.5 TO 2443600.5 DATES MAR 1 THRU APR 1
 A = 16.00000000 B = -4.75000000

CHEBYSHEV COEFFICIENTS

	R A	DEC	H P	X	Y	Z
	H	G	P			
0	59.56895278	-13.2930496	115.9800399	-4.3631708	-38.7126742	-12.7810749
1	14.07169784	-0.0131193	-0.1275365	-6.5190571	0.1576875	0.0158945
2	-0.08455530	-16.0707342	1.9217386	-2.9594441	-50.3279699	-16.5746540
3	0.31790254	-0.3421681	0.5282666	49.2519136	-2.7193307	-0.4316063
4	0.03651995	8.3914919	-1.4053855	1.4012161	26.6161730	8.7595061
5	-0.02981112	-0.0998346	-0.0657647	-10.9469782	0.3494873	0.0078335
6	0.00285585	-0.5977659	0.3806857	0.0932446	-2.8906089	-0.9473489
7	-0.03512191	0.1084234	-0.0317586	0.3580760	0.1512025	0.0537324
8	-0.00151630	-0.1894028	-0.0482737	-0.1031881	-0.1957986	-0.0655791
9	0.00870266	-0.0137751	0.0131095	0.1959749	-0.0428442	-0.0122456
10	-0.00074334	0.0329424	-0.0089515	0.0115443	0.0995985	0.0328468
11	0.00042430	-0.0054931	-0.0016561	-0.0432706	-0.0006692	-0.0006406
12	0.00028521	0.0047132	0.0052382	0.0033043	-0.0131536	-0.0042882
13	-0.00019812	0.0014328	-0.0004482	0.0025367	0.0023689	0.0008048
14	0.00002407	-0.0017576	-0.00008527	-0.0013081	-0.0006617	-0.0002306
15	-0.00010953	0.0001954	0.0002609	0.0010727	-0.0004922	-0.0001516
16	-0.00001486	0.0000541	-0.0000731	0.0001287	0.0006812	0.0002251
17	0.00003666	-0.0000977	-0.0000458	-0.0003570	-0.0000095	-0.0000066
18	-0.00000506	-0.0000024	0.0000688	0.0000400	-0.0001315	-0.0000426
19	0.00000154	0.0000005	-0.0000051	0.0000367	0.0000298	0.0000102
20	0.000000230	0.00000164	-0.00000145	-0.00000175	0.0000002	-0.0000002
21	-0.000000124	0.00000012	0.00000047	0.00000078	-0.00000071	-0.00000023
22	0.000000017	-0.00000016	-0.00000001	0.00000023	0.00000060	0.00000020
23	-0.000000046	0.00000014	-0.00000008	-0.00000035	0.00000002	0.0
24	-0.000000012	-0.00000013	0.00000009	0.00000006	-0.00000013	-0.00000005
25	0.000000021	-0.00000001	-0.00000001	0.00000004	0.00000005	0.00000001
26	-0.000000005	0.00000002	-0.00000003	-0.00000003	-0.00000001	0.0
27	0.000000001	-0.00000003	0.00000001	0.00000001	-0.00000001	0.0
28	-0.000000001	0.00000003	0.0	0.00000002	0.00000001	0.00000001
29	0.0	0.00000001	0.0	0.0	0.00000001	0.00000001
30	0.000000001	-0.00000001	0.0	-0.00000001	0.0	-0.00000001
31	-0.000000003	0.0	0.00000001	0.0	-0.00000001	0.0
32	-0.000000001	0.0	0.0	0.0	0.0	0.0
33	-0.000000001	0.00000002	0.0	0.0	0.0	0.0
34	0.000000001	-0.00000001	0.0	-0.00000001	0.0	0.0
35	0.000000001	-0.00000001	0.0	0.0	0.00000001	0.0
36	-0.000000002	0.0	0.0	0.00000001	0.0	0.00000001
37	0.0	0.0	0.00000001	0.0	0.0	0.0

D10

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1978

DAYS 91 THRU 122 JD 2443599.5 TO 2443631.5 DATES APR 1 THRU MAY 2
 A = 16.00000000 B = -6.68750000

CHEBYSHEV COEFFICIENTS

	R A	DEC	H P	X	Y	Z
	H	O	P			
0	66.34407115	-8.0794457	115.5677113	34.4948955	-24.2487552	-7.6851659
1	14.05350654	-1.4111875	0.2063989	-4.6903231	-4.3918384	-1.5318185
2	0.24426119	-10.5977730	1.4666023	37.7524397	-35.1227525	-11.2162999
3	0.20113874	11.2830305	-1.4405886	34.0449374	33.7552003	11.4118993
4	-0.10475062	5.7425646	-1.1186884	-19.8583256	18.8709291	6.0370724
5	-0.08525151	-2.1103037	0.4646945	-8.2035094	-7.1789080	-2.4265372
6	-0.04730393	-0.8401880	0.3427488	1.8329174	-2.6341476	-0.8507356
7	0.02182403	-0.2409083	-0.0617057	0.7356935	-0.0031305	0.0039679
8	0.02772925	-0.0017877	-0.0689986	0.3085377	0.1351613	0.0471072
9	0.00080669	0.1359847	-0.0147685	0.0011004	0.2126345	0.0700531
10	-0.00395856	0.0574417	0.0045397	-0.1128158	0.0225769	0.0064714
11	-0.00220654	-0.0133405	0.0103649	-0.0193513	-0.0435778	-0.0144965
12	-0.00098350	-0.0209135	0.0023510	0.0147938	-0.0115573	-0.0036814
13	0.00020174	-0.0058938	-0.0024082	0.0066130	0.0027312	0.0009527
14	0.00060582	0.0019125	-0.0011287	0.0006541	0.0030523	0.0010114
15	0.00026667	0.0024890	0.0000858	-0.0013676	0.0011030	0.0003512
16	-0.00007957	0.0010510	0.0002822	-0.0008427	-0.0004503	-0.0001559
17	-0.00010999	-0.0001063	0.0001328	0.0001017	-0.0004454	-0.0001456
18	-0.00003789	-0.0004034	-0.0000318	0.0002175	-0.0000236	-0.0000057
19	0.00000409	-0.0002088	-0.0000516	0.0000476	0.0000798	0.0000267
20	0.00001696	0.0000085	-0.0000084	-0.0000241	0.0000359	0.0000115
21	0.00001115	0.0000650	0.0000091	-0.0000226	-0.0000017	-0.0000007
22	0.00000041	0.0000038	0.0000057	-0.0000040	-0.0000107	-0.0000037
23	-0.00000384	0.0000032	0.0000003	0.0000047	-0.0000039	-0.0000013
24	-0.00000229	-0.0000083	-0.0000015	0.0000027	0.0000014	0.0000005
25	-0.00000013	-0.0000071	-0.0000006	-0.0000001	0.0000014	0.0000005
26	0.0000063	-0.0000017	0.0000003	-0.0000006	0.0000003	0.0000001
27	0.00000045	0.0000015	0.0000003	-0.0000003	-0.0000002	-0.0000002
28	0.00000007	0.0000013	0.0	0.0000001	-0.0000001	0.0
29	-0.30000011	0.0000006	0.0	0.0000001	0.0000001	0.0
30	-0.00000013	-0.0000002	0.0000001	0.0000001	0.0	0.0
31	-0.00000003	-0.0000003	0.0	0.0	0.0000001	-0.0000001
32	0.00000001	-0.0000002	0.0	0.0	0.0000001	0.0
33	0.00000002	-0.0000001	-0.0000001	0.0	0.0	0.0
34	0.00000001	0.0000003	0.u	0.0	-0.0000001	0.0
35	-0.00000001	0.0000001	0.0	0.0	0.0	-0.0000001
36	0.0	0.0000002	0.0000001	-0.0000001	0.0000001	0.0
37	-0.00000002	0.0	-0.0000001	0.0000001	0.0000001	0.0000001

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1978

D11

DAYS 121 THRU 152 JD 2443629.5 TO 2443661.5 DATES MAY 1 THRU JUNE 1
 A = 16.00000000 B = -8.56250000

CHEBYSHEV COEFFICIENTS

	R	A	DEC	H P	X	Y	Z
	H	O					
0	71.13902058	0.5991782	114.4695295	47.2230999	2.6993993	1.2202946	
1	14.05989143	-2.1447850	0.4677978	-1.4155330	-6.2567804	-2.1757997	
2	0.34823514	-1.6256864	0.2784077	51.6667755	-7.5813574	-2.1317513	
3	0.01660414	14.7633659	-2.3994145	6.7788399	46.0400937	15.2936855	
4	-0.18954080	1.2677957	-0.4942180	-27.6816549	4.6161924	1.3522026	
5	-0.10531101	-3.4112684	0.7671189	-2.7879875	-10.7458948	-3.5619452	
6	0.02607684	-0.8209161	0.3252007	3.5323104	-1.6624530	-0.5301242	
7	0.07130322	0.1202113	-0.1338398	1.0207357	0.7070248	0.2383221	
8	0.00811420	0.3195098	-0.1209301	0.0002668	0.5258329	0.1742929	
9	-0.01847583	0.1606150	-0.0059827	-0.2646243	0.1172995	0.0373222	
10	-0.00806271	-0.0550777	0.0283094	-0.0995392	-0.1038921	-0.0349827	
11	0.00039126	-0.0811389	0.0144299	0.0368881	-0.0577045	-0.0188796	
12	0.00294884	-0.0106095	-0.0031071	0.0323619	0.0071735	0.0025608	
13	0.00186259	0.0203715	-0.0055916	0.0018956	0.0147910	0.0049075	
14	-0.00030742	0.0116363	-0.0009990	-0.0066922	0.0034615	0.0011072	
15	-0.00092385	-0.0005088	0.0012265	-0.0029332	-0.0023237	-0.0007869	
16	-0.00027576	-0.0042586	0.0007346	0.0006395	-0.0017591	-0.0005782	
17	0.00019709	-0.0020644	-0.0000750	0.0010060	-0.0000161	0.0000007	
18	0.00018761	0.0005752	-0.0002472	0.0001804	0.0004578	0.0001522	
19	0.00003138	0.0010251	-0.0000710	-0.0001998	0.0001622	0.0000524	
20	-0.00005512	0.0002680	0.0000473	-0.0001174	-0.0000623	-0.0000212	
21	-0.00004375	-0.0002282	0.0000386	0.0000105	-0.0000655	-0.0000216	
22	-0.00000015	-0.00002039	0.0000005	0.0000357	-0.0000071	-0.0000022	
23	0.00001740	-0.00000229	-0.0000115	0.0000101	0.0000157	0.0000053	
24	0.00000860	0.0000630	-0.0000044	-0.0000065	0.0000075	0.0000024	
25	-0.000000227	0.00000414	0.0000018	-0.0000050	-0.0000017	-0.0000006	
26	-0.00000446	-0.0000029	0.0000020	0.0	-0.0000027	-0.0000009	
27	-0.00000149	-0.0000171	0.0000002	0.0000014	-0.0000004	-0.0000001	
28	0.00000097	-0.0000073	-0.0000004	0.0000005	0.0000005	0.0000001	
29	0.00000114	0.0000025	-0.0000003	-0.0000001	0.0000003	0.0000002	
30	0.00000019	0.0000039	0.0	-0.0000002	0.0	0.0	
31	-0.00000034	0.0000011	0.0000001	0.0	0.0	-0.0000001	
32	-0.00000026	-0.0000008	0.0000001	0.0000001	0.0	0.0	
33	0.0	-0.0000007	0.0	-0.0000001	0.0	0.0	
34	0.00000010	0.0	-0.0000002	0.0	0.0	0.0	
35	0.00000005	0.0000004	0.0000001	0.0	-0.0000001	-0.0000001	
36	0.00000001	0.0	0.0	0.0	0.0000001	-0.0000001	
37	-0.00000003	0.0	0.0000001	0.0000001	0.0	0.0000001	

D12

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1978

DAYS 152 THRU 183 JD 2443660.5 TO 2443692.5 DATES JUNE 1 THRU JULY 2
 A = 16.00000000 B = -10.50000000

CHEBYSHEV COEFFICIENTS

	R	A	DEC	H	P	X	Y	Z
	H	G	*					
0	29.54396332	11.8009893	112.7553120	34.1422977	39.5107454	13.2487825		
1	14.12201311	-1.857494	0.5182826	4.2562009	-5.3368508	-1.8608030		
2	0.285C5415	10.3024385	-1.6101760	39.4289790	31.1310602	10.5128952		
3	-0.18376195	10.8673635	-2.3192817	-31.6244003	35.0278151	11.5729083		
4	-0.21352658	-5.4286411	0.7093663	-21.9797225	-16.6724176	-5.5793401		
5	0.02714347	-3.3126571	0.9601479	7.1508297	-9.6435732	-3.1769588		
6	0.12676395	0.5484441	-0.0184464	4.2992185	1.9480451	0.6513491		
7	0.01204269	0.8245333	-0.3196739	-0.3113674	1.7195281	0.5689525		
8	-0.04912667	0.1724249	-0.0625841	-0.7962168	0.1232037	0.0397914		
9	-0.01247933	-0.2404960	0.0814308	-0.1688324	-0.3359987	-0.1118108		
10	0.01196341	-0.1412135	0.0386094	0.1530961	-0.1184921	-0.0390734		
11	0.00775568	0.0586548	-0.0141013	0.0785354	0.0585373	0.0195758		
12	-0.00156245	0.0656400	-0.0159584	-0.0218353	0.0434897	0.0144000		
13	-0.00375692	-0.0046192	0.0002564	-0.0252513	-0.0053325	-0.0018159		
14	-0.00049315	-0.0241141	0.0051587	-0.0001576	-0.0126326	-0.0041949		
15	0.00143768	-0.0054657	0.0012364	0.0066906	-0.0016146	-0.0005238		
16	0.00058509	0.0072991	-0.0013218	0.0016887	0.0030398	0.0010122		
17	-0.00040720	0.0043205	-0.0007355	-0.0014364	0.0012033	0.0003969		
18	-0.00035260	-0.0015778	0.0002302	-0.0008326	-0.0005573	-0.0001862		
19	0.00005554	-0.0021362	0.0002964	0.0002026	-0.0004810	-0.0001594		
20	0.000016376	0.0000061	0.0000038	0.0002894	0.0000410	0.00000139		
21	0.00002756	0.0008314	-0.0000949	0.0000129	0.00001495	0.0000498		
22	-0.00006105	0.0002410	-0.0000261	-0.0000813	0.0000249	0.0000082		
23	-0.00002995	-0.0002564	0.0000241	-0.0000236	-0.0000378	-0.0000125		
24	0.00001679	-0.00001731	0.0000147	0.0000182	-0.0000165	-0.0000055		
25	0.00001771	0.0000514	-0.0000040	0.0000113	0.0000070	0.0000022		
26	-0.00000167	0.0000849	-0.0000057	-0.0000025	0.0000065	0.0000022		
27	-0.00000807	0.0000046	-0.0000003	-0.0000039	-0.0000004	-0.0000001		
28	-0.00000176	-0.0000332	0.0000018	-0.0000002	-0.0000020	-0.0000006		
29	0.00000292	-0.00000118	0.0000005	0.0000012	-0.0000004	-0.0000001		
30	0.00000166	0.0000103	-0.0000004	0.0000003	0.0000006	0.0000003		
31	-0.00000075	0.0000081	-0.0000003	-0.0000003	0.0000002	0.0000001		
32	-0.00000095	-0.0000019	0.0000001	-0.0000002	-0.0000002	0.0		
33	0.00000001	-0.0000036	0.0000001	0.0000001	-0.0000001	0.0		
34	0.00000042	-0.0000003	0.0	0.0000001	0.0	0.0		
35	0.00000010	0.0000014	0.0	0.0	0.0	0.0		
36	-0.000000014	0.0000006	-0.0000001	0.0	0.0	0.0		
37	-0.000000009	-0.0000002	0.0	0.0	0.0	0.0000001		

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1978

D13

DAYS 182 THRU 213 JD 2443690.5 TO 2443722.5 DATES JULY 1 THRU AUG 1
 A = 16.00000000 B = -12.37500000

CHEBYSHEV COEFFICIENTS

	R A	DEC	H P	X	Y	Z
	H	0	*			
0	34.19703353	15.8182341	111.9006182	7.8178215	53.4525678	17.7481941
1	14.15642133	-0.7434956	0.4384565	6.9482932	-2.0134664	-0.7684215
2	0.21153383	14.7978870	-2.5402029	13.2684777	46.6656510	15.5209780
3	-0.26695309	3.4737710	-1.5337624	-46.8471211	11.3357077	3.8604065
4	-0.15131283	-8.2565429	1.3515927	-7.7148848	-25.7378218	-8.5047213
5	0.12939970	-1.3902383	0.7684101	12.1279406	-3.7484117	-1.2605329
6	0.08404521	1.6299278	-0.2829129	2.0903957	4.4331087	1.4594941
7	-0.05842410	0.5900444	-0.3228416	-1.7228784	1.0719887	0.3580061
8	-0.03698362	-0.3266419	0.0394818	-0.6354244	-0.6112486	-0.2005832
9	0.01728071	-0.2714955	0.1084009	0.2438528	-0.3373376	-0.1122341
10	0.01438925	0.0785798	0.0059309	0.1961361	0.0842073	0.0274093
11	-0.00358979	0.1140869	-0.0322803	-0.0278473	0.1009341	0.0334888
12	-0.00594970	-0.0144094	-0.0079460	-0.0565251	-0.0050100	-0.0015249
13	0.00050212	-0.0433107	0.0088234	-0.0019934	-0.0279902	-0.0092647
14	0.00251207	-0.0010802	0.0042359	0.0150473	-0.0033164	-0.0011334
15	0.00010659	0.0156372	-0.0020807	0.0030903	0.0071379	0.0023569
16	-0.00101315	0.0028230	-0.0017701	-0.0036590	0.0021527	0.0007212
17	-0.00017674	-0.0055079	0.0003515	-0.0015139	-0.0016400	-0.0005400
18	0.00038890	-0.0018878	0.0006455	0.0007806	-0.0009076	-0.0003025
19	0.00012875	0.0018639	0.0000054	0.005784	0.0003145	0.0001032
20	-0.00014346	0.0009948	-0.0002116	-0.0001261	0.0003223	0.0001072
21	-0.00007463	-0.0005891	-0.0000416	-0.0001932	-0.0000359	-0.0000116
22	0.00005009	-0.0004738	0.0000621	0.0000034	-0.0001021	-0.0000339
23	0.00003866	0.0001664	0.0000254	0.0000581	-0.0000073	-0.0000025
24	-0.00001588	0.0002123	-0.0000159	0.0000091	0.0000291	0.0000097
25	-0.00001871	-0.0000371	-0.0000116	-0.0000156	0.0000073	0.0000024
26	0.00000414	-0.0000910	0.0000031	-0.0000056	-0.0000073	-0.0000025
27	0.00000863	0.0000024	0.0000044	0.0000038	-0.0000036	-0.0000012
28	-0.00000056	0.0000376	-0.0000002	0.0000023	0.0000016	0.0000006
29	-0.000000379	0.0000042	-0.0000016	-0.0000008	0.0000014	0.0000004
30	-0.000000030	-0.0000149	-0.0000002	-0.0000007	-0.0000002	-0.0000002
31	0.00000161	-0.0000037	0.0000005	0.0	-0.0000004	-0.0000002
32	0.00000036	0.0000057	0.0000002	0.0000002	0.0000001	0.0000001
33	-0.00000065	0.0000023	0.0	-0.0000001	0.0000002	0.0
34	-0.00000026	-0.0000019	-0.0000001	0.0	-0.0000001	-0.0000001
35	0.00000024	-0.0000012	0.0	0.0	0.0	0.0
36	0.00000015	0.0000004	-0.0000001	0.0	-0.0000001	0.0
37	-0.00000007	0.0000008	0.0000001	0.0	0.0000001	0.0

DAYS 213 THRU 244 JD 2443721.5 TO 2443753.5 DATES AUG 1 THRU SEPT 1
 A = 16.00000000 B = -14.31250000

CHEBYSHEV COEFFICIENTS

	R A	DEC	H P	X	Y	Z
	H	0	*			
0	40.52062903	13.5098176	111.7106333	-31.0761595	46.0011197	15.3394688
1	14.15074726	1.2249492	0.1083985	6.2879506	3.8696644	1.2042211
2	0.03318958	12.6812617	-2.7483669	-27.4946597	40.3146080	13.4785920
3	-0.33606864	-7.8232127	0.2065078	-40.4205231	-25.4338311	-8.1747934
4	0.01017856	-7.1727878	1.6622575	15.3139570	-22.3807612	-7.4418836
5	0.13571115	2.2574610	0.1028716	10.7275570	6.7640432	2.1751875
6	-0.04656524	1.5849940	-0.5301219	-2.8710405	4.0985423	1.3607138
7	-0.05103928	-0.5142105	-0.0966010	-1.7423309	-1.1216792	-0.3606085
8	0.02673879	-0.4065533	0.1674488	0.5015810	-0.7215366	-0.2397840
9	0.01693941	0.1687437	0.0366665	0.3625655	0.2128686	0.0682388
10	-0.01013891	0.1286156	-0.0507538	-0.1008553	0.1735992	0.0576470
11	-0.00510806	-0.0647850	-0.0127921	-0.0946061	-0.0435346	-0.0138498
12	0.00393843	-0.0411235	0.0152769	0.0208585	-0.0469703	-0.0155691
13	0.00144715	0.0245999	0.0046945	0.0259881	0.0091438	0.0028779
14	-0.00165911	0.0127847	-0.0046134	-0.0044502	0.0130171	0.0043079
15	-0.00036551	-0.0092059	-0.0017270	-0.0072593	-0.0019590	-0.0006085
16	0.00069733	-0.0038239	0.0013954	0.0009394	-0.0036686	-0.0012121
17	0.00007080	0.0034813	0.0006230	0.0020651	0.0003988	0.0001214
18	-0.00028454	0.0010680	-0.0004221	-0.0001792	0.0010530	0.0003475
19	0.00000023	-0.0013294	-0.0002211	-0.0005974	-0.0000685	-0.0000199
20	0.000011346	-0.0002616	0.0001270	0.0000252	-0.0003065	-0.00001011
21	-0.000001175	0.00005072	0.0000777	0.0001747	0.0000060	0.0000013
22	-0.000004446	0.0000452	-0.0000379	0.0000008	0.0000899	0.0000295
23	0.000000951	-0.00001921	-0.0000271	-0.0000513	0.0000026	0.0000010
24	0.000001707	0.0000036	0.0000111	-0.0000028	-0.0000265	-0.0000087
25	-0.000000569	0.00000719	0.0000095	0.0000152	-0.0000022	-0.0000007
26	-0.000000640	-0.0000094	-0.0000032	0.0000016	0.0000078	0.0000025
27	0.000000303	-0.0000264	-0.0000033	-0.0000045	0.0000011	0.0000004
28	0.000000232	0.0000065	0.0000008	-0.0000007	-0.0000024	-0.0000008
29	-0.000000150	0.0000097	0.0000012	0.0000013	-0.0000005	-0.0000001
30	-0.000000080	-0.0000039	-0.0000003	0.0000004	0.0000006	0.0000003
31	0.000000071	-0.0000032	-0.0000002	-0.0000003	0.0000002	0.0
32	0.000000028	0.0000017	0.0000001	-0.0000002	-0.0000002	-0.0000001
33	-0.000000031	0.0000012	0.0000002	0.0000001	-0.0000001	0.0
34	-0.000000008	-0.0000007	0.0000001	0.0000001	0.0	0.0000001
35	0.000000013	-0.0000004	-0.0000001	0.0	0.0	0.0
36	0.0	0.0000004	-0.0000001	-0.0000001	0.0	0.0
37	-0.000000006	0.0000001	-0.0000001	-0.0000001	-0.0000001	0.0

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1978

D15

DAYS 244 THRU 275 JD 2443752.5 TO 2443784.5 DATES SEPT 1 THRU OCT 2
 A = 16.00000000 B = -16.25000000

CHEBYSHEV COEFFICIENTS

	R A	DEC	H P	X	Y	Z
	H	0	*			
0	46.76714597	3.9530020	112.7410458	-51.9623674	13.9849865	4.9106888
1	14.09498887	2.3088226	-0.1389609	1.0795612	7.1273992	2.3238654
2	-0.20541223	2.6024272	-1.5806444	-50.2815125	7.3569104	2.7292322
3	-0.25721925	-14.2506480	1.7003029	-7.4681323	-45.9290131	-15.0308090
4	0.13577429	-1.2289951	1.0596368	27.6896809	-3.6902123	-1.3798667
5	0.02561552	3.9391002	-0.4973387	1.1709483	11.8011791	3.8631024
6	-0.04815248	-0.1774272	-0.3739109	-4.7473648	-0.0698738	0.0057158
7	0.02895887	-0.7472502	0.1191811	0.3490587	-1.6967797	-0.5582371
8	0.01408941	0.1975870	0.1071174	0.7070886	0.2736052	0.0854842
9	-0.01530702	0.1520955	-0.0439253	-0.1725552	0.2905699	0.0963244
10	-0.00163158	-0.0802334	-0.0262024	-0.1395760	-0.0873710	-0.0278061
11	0.00512771	-0.0221147	0.0164231	0.0468985	-0.0617344	-0.0205352
12	-0.00081501	0.0267683	0.0061774	0.0303885	0.0230508	0.0073745
13	-0.00127222	-0.0010213	-0.0054324	-0.0128426	0.0134522	0.0044914
14	0.00067783	-0.0073565	-0.0013926	-0.0065954	-0.0066147	-0.0021291
15	0.00015173	0.0022931	0.0017058	0.0037954	-0.0028964	-0.0009732
16	-0.00030074	0.0014432	0.0002769	0.0014025	0.0019650	0.0006354
17	0.00006140	-0.0010474	-0.0005330	-0.0011186	0.0006018	0.0002039
18	0.000009214	-0.0000691	-0.0000397	-0.0002818	-0.0005715	-0.0001855
19	-0.000005484	0.00003094	0.0001650	0.0003221	-0.0001148	-0.0000394
20	-0.000001596	-0.00000999	-0.0000016	0.0000501	0.0001633	0.0000531
21	0.000002506	-0.00000507	-0.00000500	-0.00000917	0.0000182	0.0000065
22	-0.000000261	0.00000571	0.0000047	-0.0000065	-0.0000464	-0.0000151
23	-0.000000802	-0.00000082	0.00000147	0.00000261	-0.0000014	-0.0000007
24	0.000000377	-0.00000184	-0.0000027	-0.0000002	0.00000132	0.0000042
25	0.000000156	0.00000109	-0.0000042	-0.0000074	-0.0000006	-0.0000002
26	-0.000000195	0.00000032	0.0000011	0.0000006	-0.0000038	-0.0000012
27	0.000000012	-0.00000055	0.0000012	0.0000020	0.0000006	0.0000001
28	0.000000070	0.00000009	-0.0000004	-0.0000004	0.0000011	0.0000003
29	-0.000000031	0.00000018	-0.0000003	-0.0000006	-0.0000002	0.0
30	-0.000000015	-0.00000009	0.0000003	0.0000002	-0.0000002	-0.0000001
31	0.000000018	-0.00000003	0.0	0.0000002	0.0000001	0.0
32	0.000000003	0.00000004	-0.0000001	0.0	0.0000001	0.0
33	-0.000000005	-0.00000001	0.0000002	0.0	-0.0000001	0.0000001
34	0.000000001	-0.00000001	0.0	0.0	0.0	0.0
35	0.0	0.0	-0.0000001	0.0	-0.0000001	0.0
36	0.000000001	0.0	-0.0000001	-0.0000001	0.0	0.0
37	-0.000000001	0.00000001	0.0	0.0	0.0	0.0

DAYS 274 THRU 305 JD 2443782.5 TO 2443814.5 DATES OCT 1 THRU NOV 1
 A = 16.00000000 B = -18.12500000

CHEBYSHEV COEFFICIENTS

	R A	DEC	H P	X	Y	Z
	H	0				
0	51.36256130	-4.6196912	114.1045756	-47.0029580	-13.5791307	-4.1575850
1	14.04775894	2.0003730	-0.1402479	-3.4701478	6.5191531	2.1651160
2	-0.31664660	-6.6114305	-0.0149410	-46.0475311	-21.8260479	-6.9203384
3	-0.05751943	-13.4032958	2.1252686	21.8512682	-41.9936373	-13.9739714
4	0.15532460	3.7883325	0.2550629	24.6940037	12.1854075	3.8325245
5	-0.00946164	2.9901149	-0.5713899	-6.0774361	9.6858986	3.2264745
6	0.02382322	-1.0854390	-0.1970876	-3.1479333	-2.5352182	-0.8087577
7	0.01998479	-0.1588867	0.0958383	1.2022615	-0.6948846	-0.2360717
8	-0.02305299	0.2789699	0.0503714	0.0954280	0.5307911	0.1736148
9	-0.00344492	-0.0222002	-0.0315525	-0.2569497	-0.0134463	-0.0026920
10	0.00741538	-0.0344623	-0.0052068	0.0160528	-0.1079738	-0.0356075
11	-0.00114325	0.0050699	0.0115992	0.0485031	0.0082545	0.0023705
12	-0.00139158	-0.0030159	-0.0004211	-0.0047043	0.0194965	0.0064407
13	0.00056893	0.0013699	-0.0030964	-0.0089045	-0.0028318	-0.0008685
14	-0.00003976	0.0017069	0.0004615	0.0019539	-0.0038088	-0.0012652
15	-0.00004122	-0.0014303	0.0006842	0.0018546	0.0011783	0.0003747
16	0.000011210	-0.0000582	-0.0002112	-0.0007359	0.0008071	0.0002705
17	-0.00006181	0.0004597	-0.0001525	-0.0003769	-0.0003948	-0.0001271
18	-0.00002723	-0.00001645	0.0000769	0.0002250	-0.0001491	-0.0000508
19	0.000003540	-0.00000325	0.0000341	0.0000609	0.0001129	0.0000367
20	-0.000000269	0.00000677	-0.00000248	-0.00000618	0.0000199	0.0000071
21	-0.000000916	-0.00000352	-0.00000064	-0.00000060	-0.00000300	-0.00000099
22	0.000000375	-0.00000071	0.00000076	0.00000161	-0.0000006	-0.00000033
23	0.000000031	0.00000182	0.00000007	-0.00000007	0.00000076	0.00000027
24	-0.00000095	-0.00000050	-0.00000022	-0.00000040	-0.00000009	-0.00000002
25	0.000000070	-0.00000040	0.0	0.00000007	-0.00000018	-0.00000005
26	-0.000000013	0.00000030	0.00000007	0.00000010	0.00000005	0.00000001
27	-0.000000026	0.0	-0.00000001	-0.00000003	0.00000004	0.00000001
28	0.000000020	-0.00000008	-0.00000002	-0.00000001	-0.00000002	0.0
29	0.0	0.00000001	0.00000001	0.00000001	-0.00000001	0.0
30	-0.000000008	0.00000002	0.00000002	0.0	0.00000001	-0.00000001
31	0.0	0.0	-0.00000001	0.0	0.0	0.0
32	0.000000004	0.00000001	0.00000001	0.0	0.0	0.0
33	-0.000000002	-0.00000002	0.0	-0.00000001	0.0	0.0
34	0.0	0.00000003	0.00000001	0.0	0.0	0.0
35	0.0	0.0	0.00000001	0.00000001	0.0	0.00000001
36	0.000000001	-0.00000001	0.00000001	0.0	0.00000001	0.0
37	-0.000000002	-0.00000001	0.0	0.00000001	0.0	0.0

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1978

D17

DAYS 305 THRU 336 JD 2443813.5 TO 2443845.5 DATES NOV 1 THRU DEC 2
 A = 16.00000000 B = -20.06250000

CHEBYSHEV COEFFICIENTS

	R	A	DEC	H	P	X	Y	Z
	H	O	*					
0	57.93222316	-12.7187824	115.9674154	-15.8620481	-37.0305180	-12.1402563		
1	14.02909024	0.4845394	0.0558440	-7.2807962	2.1089274	0.7256683		
2	-0.20380638	-15.5292118	2.0613127	-13.0701260	-48.0238974	-15.8999820		
3	0.27134181	-4.3968155	1.4657875	48.0851575	-12.3108621	-4.5279727		
4	0.11991252	8.0133077	-0.8036643	6.7525392	25.4763816	8.3671826		
5	0.02741163	0.5107403	-0.5081677	-10.7939722	2.1644290	0.8221452		
6	0.013111580	-0.7538002	-0.0936182	-0.1541252	-3.0188094	-0.9908753		
7	-0.05283896	0.3120929	0.0852515	0.6416980	0.3469870	0.1087470		
8	-0.00806815	0.0053847	0.0404923	-0.3196035	0.0408808	0.0158161		
9	0.01224817	-0.0718590	-0.01111190	0.0231308	-0.1649239	-0.0548552		
10	-0.00223533	-0.0391405	0.0058960	0.0735570	0.0069276	0.0015624		
11	-0.00129213	-0.0031247	0.0028765	0.0020510	0.0242909	0.0080095		
12	0.00095535	0.0164180	-0.0035855	-0.0075663	0.0022025	0.0008089		
13	0.00045666	-0.0011040	-0.0007279	-0.0006216	-0.0020283	-0.0006616		
14	0.00010516	-0.0026602	0.0004774	0.0007765	0.0003427	0.0001074		
15	-0.00025397	0.0018948	0.0000221	-0.0005296	0.0003905	0.0001337		
16	-0.00004319	0.0003514	-0.0000381	-0.0002363	-0.0003548	-0.0001154		
17	0.00008730	-0.0003635	0.0000376	0.0001942	-0.0001078	-0.00030371		
18	-0.00002163	-0.0001390	0.0000208	0.0000416	0.0000792	0.0000258		
19	-0.000002230	-0.0000087	-0.00000107	-0.00000313	0.00000074	0.00000024		
20	0.00000795	0.0000639	-0.0000062	0.0000026	-0.0000108	-0.0000036		
21	0.00000528	-0.0000104	0.0000021	0.0000045	0.0000036	0.0000013		
22	0.00000012	-0.0000219	0.0000003	-0.0000024	0.0000019	0.0000006		
23	-0.00000193	0.00000113	-0.0000007	-0.0000008	-0.0000011	-0.0000003		
24	-0.00000008	0.0000052	0.0000002	0.0000005	-0.0000004	-0.0000001		
25	0.00000092	-0.0000024	0.0000003	0.0000001	0.0	0.0000001		
26	-0.00000021	-0.0000012	-0.0000001	-0.0000001	0.0	-0.0000001		
27	-0.00000028	0.0000001	-0.0000001	0.0000002	0.0	-0.0000001		
28	0.00000008	0.0000004	-0.0000001	0.0	0.0000001	0.0		
29	0.00000006	-0.0000003	-0.0000001	-0.0000001	0.0	0.0		
30	0.0	-0.0000003	0.0	0.0	0.0	0.0		
31	-0.00000002	-0.0000002	0.0	0.0	-0.0000001	-0.0000001		
32	0.00000002	0.0000001	0.0000001	0.0	0.0	0.0		
33	0.00000001	0.0	-0.0000001	0.0	0.0	0.0		
34	0.00000002	0.0000001	0.0	0.0	0.0000001	0.0		
35	0.00000002	0.0000001	0.0	0.0	0.0	0.0		
36	-0.00000001	0.0000002	-0.0000001	0.0	0.0000001	0.0		
37	-0.00000001	0.0000001	-0.0000001	0.0000001	0.0	0.0		

DAYS 335 THRU 366 JD 2443843.5 TO 2443875.5 DATES DEC 1 THRU JAN 1
 A = 16.00000000 B = -21.93750000

CHEBYSHEV COEFFICIENTS

	R A	DEC	H P	X	Y	Z
	H	O	*			
0	62.86248762	-12.4143317	116.8515237	13.0937999	-34.3656436	-11.6231572
1	13.99259809	-0.6700162	0.2462767	-7.4550694	-2.1044936	-0.6615280
2	0.02782904	-15.5240933	3.1026649	19.1162981	-46.4725478	-15.8562948
3	0.39468903	5.0008989	0.2535462	46.8886959	16.7424951	4.9395562
4	0.05486266	7.8162682	-1.2683750	-9.8339958	24.3616248	8.2317701
5	0.00529916	-0.8832694	-0.3564975	-9.9101028	-3.5734019	-1.0445926
6	-0.07142833	-0.3575617	-0.1124634	1.0341016	-2.3294339	-0.7806101
7	-0.05218701	0.0349267	0.1168220	0.1608839	0.1768898	0.0553697
8	0.01991955	-0.1629544	0.0705317	-0.0327950	-0.2098454	-0.0701709
9	0.00813934	-0.0916844	-0.0041391	0.1397518	-0.0272035	-0.0110457
10	-0.00105207	-0.0133173	0.0026134	0.0296109	0.0435707	0.0140053
11	0.00173694	0.0426610	-0.0030428	-0.0050660	0.0188071	0.0063430
12	0.00089775	0.0125216	-0.0040070	-0.0092895	0.0038163	0.0014151
13	-0.00042857	-0.0043134	-0.0004281	-0.0029851	-0.0027315	-0.0008615
14	-0.00076279	0.0011620	0.0002979	0.0002522	-0.0008748	-0.0002926
15	-0.00006950	-0.0002474	0.0003064	-0.0000768	-0.0003194	-0.0001059
16	0.00015082	-0.0014309	0.0001197	0.0002462	-0.0002618	-0.0000909
17	-0.00000937	-0.0005357	0.0000086	0.0001904	0.0000806	0.0000234
18	0.00000512	0.0002307	-0.0000079	-0.0000020	0.0000774	0.0000256
19	0.00003054	0.0002294	-0.0000198	-0.0000208	0.0000158	0.0000058
20	0.00000491	-0.0000027	-0.0000083	-0.0000111	0.000009	0.0000037
21	-0.00001080	0.0000029	0.0000011	-0.0000040	-0.0000034	-0.0000012
22	-0.00000500	0.0000196	0.0000013	-0.0000003	-0.0000021	-0.0000006
23	0.00000146	-0.00000120	0.0000008	0.0000005	-0.0000010	-0.0000034
24	0.00000027	-0.00000139	0.0000003	0.0000009	-0.0000003	-0.0000002
25	-0.00000041	-0.0000009	0.0	0.0000004	0.0000004	0.0000032
26	0.00000047	0.0000029	-0.0000002	-0.0000001	0.0000003	0.0000001
27	0.00000038	0.0000006	-0.0000001	-0.0000001	-0.0000001	-0.0000001
28	-0.00000008	-0.0000001	0.0	0.0000001	-0.0000001	0.0
29	-0.00000012	0.0000004	0.0000001	0.0000001	0.0	-0.0000001
30	0.00000001	0.0	0.0	0.0000001	0.0000001	0.0
31	0.00000001	-0.0000002	0.0	-0.0000001	0.0	0.0
32	-0.00000001	0.0	0.0	0.0	0.0	0.0
33	0.00000001	0.0000001	-0.0000001	0.0	0.0	0.0
34	0.00000001	0.0000002	0.0	0.0	0.0000001	0.0000001
35	0.0	-0.0000001	0.0	0.0	0.0	-0.0000001
36	0.0	0.0000001	0.0000001	0.0	0.0	0.0
37	0.00000002	0.0	0.0	0.0	0.0	-0.0000001

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
MERCURY AND VENUS

D19

DAYS 1 THRU 95 JD 2443509.5 TO 2443604.5 DATES JAN 1 THRU APR 5
 A = 47.50000000 B = -1.02105263

CHEBYSHEV COEFFICIENTS

	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
0	43.1421890	-16.439472	2.0689663	44.7050103	-16.701831	3.3533490
1	4.5329579	19.491584	-0.0866083	3.8480043	18.899807	-0.0480735
2	-0.0999196	6.601210	-0.3453646	-0.1167310	2.738903	-0.0241943
3	-0.4187500	-2.916734	-0.0145614	0.0257465	-0.907535	-0.0006824
4	-0.0690946	-1.968878	0.0219494	0.0094687	-0.016435	-0.0000820
5	-0.0735305	-0.302725	0.0211784	-0.0019803	0.011339	0.0000276
6	0.0117228	-0.006396	0.0100668	-0.0000477	-0.003844	0.0000028
7	0.0087157	0.141680	-0.0015938	0.0000889	0.000408	0.0000138
8	0.0086200	0.050556	-0.0024349	0.0000189	0.000282	-0.0000071
9	0.0010123	0.002398	-0.0015150	-0.0000149	-0.000112	-0.0000165
10	-0.0010262	-0.014355	0.0000531	-0.0000236	-0.000103	0.0000041
11	-0.0007639	-0.008013	0.0004130	0.0000042	0.000020	0.0000064
12	-0.0002065	0.000565	0.0002532	0.0000073	0.000035	-0.0000012
13	0.0001932	0.002712	0.0000170	-0.0000014	-0.000014	-0.0000017
14	0.0001333	0.001785	-0.0000741	-0.0000022	-0.000008	0.0000003
15	0.0000382	0.000085	-0.0000516	0.0000019	0.000004	0.0000004
16	-0.0000377	-0.000524	-0.0000081	-0.0000001	0.000002	-0.0000001
17	-0.0000319	-0.000383	0.0000138	0.000002	0.000005	0.0000063
18	-0.0000076	-0.000069	0.0000111	0.0000010	0.000001	-0.0000001
19	0.0000044	0.000082	0.0000022	-0.0000015	-0.000010	-0.0000004
20	0.0000061	0.000081	-0.0000023	-0.0000010	-0.000001	0.0
21	0.0000038	0.000025	-0.0000024	0.0000013	0.000004	0.0000002
22	-0.0000004	-0.000013	-0.0000007	0.0000006	0.000001	0.0
23	-0.0000022	-0.000020	0.0000004	-0.0000007	-0.000002	-0.0000001
24	-0.0000011	-0.000004	0.0000006	-0.0000001	-0.000003	0.0000001
25	0.0000005	0.000004	0.0000002	0.0000004	0.000001	0.0
26	0.0000002	0.000001	-0.0000001	0.0	0.000001	0.0
27	-0.0000001	0.000002	-0.0000001	-0.0000001	0.000003	0.0
28	-0.0000001	-0.000001	0.0	-0.0000001	0.000002	0.0000001
29	0.0	-0.000003	0.0000001	0.0	0.0	0.0
30	0.0000001	0.000001	0.0	-0.0000002	0.000001	0.0
31	0.0000001	0.000001	-0.0000001	-0.0000001	0.000001	0.0
32	0.0000001	-0.000002	0.0	0.0000001	0.000001	0.0
33	-0.0000003	0.0	0.0	-0.0000001	-0.000001	0.0000031
34	-0.0000001	0.000001	0.0	0.0	-0.000003	-0.0000001
35	0.0	0.000001	-0.0000001	0.0000001	0.000001	-0.0000001
36	0.0000003	-0.000002	0.0	-0.0000001	0.0	0.0
37	0.0000001	0.0	0.0	0.0	0.000001	0.0
38	0.0	0.000001	0.0	0.0	0.0	-0.0000001
39	-0.0000001	0.000003	0.0	-0.0000002	0.0	0.0

D20

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
MERCURY AND VENUS

DAYS 91 THRU 185 JD 2443599.5 TO 2443694.5 DATES APR 1 THRU JULY 4
 A = 47.50000000 B = -2.91578947

CHEBYSHEV COEFFICIENTS

	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
	H	0	AU	H	0	AU
0	7.3563421	30.104016	1.8894814	11.3842395	37.294499	2.7866932
1	3.6102197	7.587839	0.3514286	4.0128104	3.053340	-0.2534054
2	1.4756829	3.769676	-0.0362494	0.0037012	-5.875954	-0.0268546
3	-0.1963318	-4.710271	-0.1602519	-0.0537880	-0.156179	0.0011438
4	-0.1466418	-1.768517	0.0053406	-0.0049774	0.180945	0.0002577
5	0.0058061	0.961246	0.0049178	0.0037726	0.007970	0.0000052
6	-0.0465935	-0.075051	0.0094426	0.0003629	-0.006697	-0.0000037
7	0.0236891	0.158288	0.0042847	-0.0002121	-0.000838	0.0000138
8	0.0110157	0.048270	-0.0024533	0.0000224	0.000394	-0.0000053
9	-0.0031982	-0.089897	-0.0014601	0.0000032	0.000085	-0.0000172
10	0.0003174	0.002993	-0.0003444	-0.0000328	-0.000019	0.0000030
11	-0.0020227	0.000388	0.0001953	0.0000025	0.000020	0.0000070
12	-0.0004530	0.000735	0.0003338	0.0000097	-0.000004	-0.0000009
13	0.0006705	0.007787	0.0000778	-0.0000011	-0.000011	-0.0000014
14	0.0001361	-0.001586	-0.0000602	-0.0000025	0.000005	0.0000004
15	0.0000746	-0.001445	-0.0000544	-0.0000006	-0.000001	0.0000003
16	-0.00000513	-0.000127	-0.0000191	0.0000009	-0.000003	-0.0000001
17	-0.00000844	-0.000366	0.0000108	0.0000005	-0.000002	-0.0000003
18	0.00000002	0.000357	0.0000134	0.0000002	-0.000006	-0.0000004
19	0.0000147	0.000199	0.0000037	0.0000004	0.000003	0.0000001
20	0.00000117	-0.000053	-0.0000022	-0.0000003	0.000008	0.0000003
21	0.00000031	-0.000031	-0.0000031	-0.0000005	0.0	0.0
22	-0.00000046	-0.000042	-0.0000009	0.0000003	-0.000003	-0.0000001
23	-0.00000022	0.0	0.0000007	0.0000004	0.000003	0.0
24	-0.00000005	0.000014	0.0000006	-0.0000003	0.000001	0.0
25	0.00000006	0.000002	0.0000002	0.0	0.0	0.0
26	0.00000011	0.000001	-0.0000002	0.0000001	0.0	-0.0000001
27	0.00000002	-0.000004	-0.0000001	0.0	-0.000001	0.0
28	0.00000002	0.000001	0.0	0.0000001	0.000002	0.0
29	-0.00000003	0.000002	0.0	-0.0000001	0.000001	0.0
30	-0.00000002	-0.000001	0.0000001	-0.0000003	-0.000001	0.0
31	0.00000002	0.000001	0.0000001	0.0	-0.000003	0.0
32	0.00000001	0.000001	0.0	0.0000001	0.000001	0.0000001
33	-0.00000001	0.000001	0.0	-0.0000001	-0.000001	-0.0000001
34	-0.00000002	0.000002	0.0	0.0000002	-0.000001	0.0000001
35	0.00000003	-0.000002	0.0000001	0.0000001	0.0	0.0
36	0.0	-0.000003	-0.0000001	-0.0000001	0.000002	0.0000001
37	-0.00000002	0.0	-0.0000001	-0.0000001	-0.000001	0.0
38	-0.00000001	0.0	0.0000001	0.0	-0.000001	0.0
39	0.0	0.000002	0.0	0.0	0.000001	0.0000001

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
MERCURY AND VENUS

D21

DAYS 182 THRU 276 JD 2443690.5 TO 2443785.5 DATES JULY 1 THRU OCT 3
 A = 47.50000000 B = -4.83157895

CHEBYSHEV COEFFICIENTS

	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
	H	0	AU	H	0	AU
0	20.3960181	20.378545	2.0871126	24.7899801	-7.710137	1.5575683
1	1.8513216	-9.713193	0.1667142	2.8526538	-21.093231	-0.3674259
2	0.2986031	-0.164383	0.3234938	-0.2004915	0.938256	0.0005578
3	0.7639073	-5.069318	-0.0443120	-0.0224138	0.768403	0.0036259
4	-0.1184504	-1.208470	-0.0875643	-0.0173991	-0.003177	0.0004290
5	-0.2313785	1.663199	-0.0127584	-0.0040614	0.006322	0.0001480
6	-0.0096237	0.576937	0.0193231	-0.0004175	0.001521	0.0000317
7	0.0782143	-0.379889	0.0093706	0.0000106	0.000288	0.0000163
8	0.0162351	-0.234346	-0.0029284	0.0000987	-0.000166	-0.0000091
9	-0.0231904	0.085718	-0.0031026	-0.0000351	0.000162	-0.0000156
10	-0.0082185	0.072920	-0.0001376	-0.0000624	0.000266	0.0000069
11	0.0062840	-0.023372	0.0006127	0.0000097	-0.000013	0.0000072
12	0.0029754	-0.020141	0.0001729	0.0000207	-0.000067	-0.0000021
13	-0.0018291	0.010559	-0.0000102	0.0000014	-0.000001	-0.0000015
14	-0.0008970	0.006432	0.0000043	-0.0000015	-0.000002	0.0000001
15	0.0006868	-0.005746	-0.0000300	-0.0000005	-0.000001	0.0000001
16	0.0002874	-0.003041	-0.0000447	-0.0000006	-0.000004	0.0
17	-0.0003146	0.002752	-0.0000013	-0.0000014	0.000003	-0.0000003
18	-0.0001292	0.001725	0.0000267	-0.0000027	0.000023	0.0000003
19	0.0001413	-0.001081	0.0000111	0.0000008	-0.000001	0.0000004
20	0.0000719	-0.000902	-0.0000086	0.0000031	-0.000015	-0.0000003
21	-0.00006557	0.000352	-0.0000072	-0.0000006	0.000002	-0.0000002
22	-0.00000374	0.000409	0.0000011	-0.0000016	0.000009	0.0000001
23	0.00000183	-0.000100	0.0000028	0.0	-0.000001	0.0000001
24	0.00000166	-0.000164	0.0000005	0.0000004	-0.000001	-0.0000001
25	-0.0000052	0.000028	-0.0000006	0.0	-0.000001	-0.0000001
26	-0.0000066	0.000062	-0.0000002	-0.0000001	0.000002	0.0
27	0.00000018	-0.000014	0.0000001	0.0000001	-0.000002	0.0000001
28	0.00000025	-0.000029	0.0	0.0000005	-0.000005	0.0
29	-0.0000008	0.000008	-0.0000001	0.0000002	0.0	0.0
30	-0.0000011	0.000013	0.0	-0.0000003	0.000001	0.0000001
31	0.0000006	-0.000003	-0.0000001	0.0000001	0.0	-0.0000001
32	0.0000006	-0.000005	0.0	0.0000003	-0.000003	0.0
33	-0.0000002	0.000004	0.0	0.0	0.000002	0.0
34	-0.0000003	0.000003	0.0	0.0	-0.000001	0.0000001
35	0.0000001	0.0	0.0	0.0	-0.000001	0.0
36	0.0000003	-0.000002	0.0	-0.0000001	0.000002	0.0
37	-0.0000002	-0.000002	-0.0000001	-0.0000001	0.0	0.0
38	-0.0000002	0.000003	0.0000001	-0.0000001	0.0	0.0
39	0.0	-0.000002	0.0	-0.0000001	0.000001	0.0000001

D22

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
MERCURY AND VENUS

DAYS 274 THRU 368 JD 2443782.5 TO 2443877.5 DATES OCT 1 THRU JAN 3

A = 47.50000000 B = -6.76842105

CHEBYSHEV COEFFICIENTS

	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
0	31.1786963	-34.244342	2.2885297	29.9812524	-37.377089	0.7956211
1	2.1818763	-7.801381	-0.2295146	0.1060692	5.794901	0.0725998
2	-0.9110578	6.026791	0.1810788	0.4007416	-0.891525	0.1092093
3	0.2726210	-2.884391	0.1718242	0.3330750	-2.893768	-0.0106184
4	0.4490500	-1.700988	-0.0123704	-0.1088043	0.520212	-0.0073076
5	0.1147212	0.139615	-0.0531866	-0.0399436	0.557236	0.0020795
6	-0.1429333	0.668173	-0.0217292	0.0297294	-0.157977	0.0007895
7	-0.1149738	0.361686	0.0105273	0.0029871	-0.110984	-0.0004641
8	0.0089513	-0.063857	0.0131018	-0.0073124	0.053859	-0.0000943
9	0.0569195	-0.202226	0.0020401	0.0005227	0.021186	0.0001148
10	0.0240856	-0.098727	-0.0044592	0.0017122	-0.017452	0.0000153
11	-0.0150019	0.038261	-0.0030432	-0.0003637	-0.003379	-0.0000309
12	-0.0192230	0.074163	0.0004400	-0.0003873	0.005326	-0.0000028
13	-0.0024946	0.025933	0.0015622	0.0001373	0.000249	0.0000083
14	0.0082007	-0.023209	0.000C5830	0.0000802	-0.001523	0.0000004
15	0.0054776	-0.027802	-0.0004167	-0.0000421	0.000114	-0.0000019
16	-0.0012702	-0.004173	-0.0004785	-0.0000142	0.000406	0.0000001
17	-0.0034236	0.012496	-0.0000494	0.0000153	-0.0000090	0.0000004
18	-0.0011437	0.009591	0.0001987	0.0000018	-0.000113	-0.0000003
19	0.0011455	-0.001180	0.0001256	-0.0000095	0.000054	-0.0000001
20	0.0011893	-0.005900	-0.0000300	0.0000005	0.000035	0.0000005
21	0.0000376	-0.002768	-0.0000759	0.0000060	-0.000032	0.0
22	-0.0005961	0.001630	-0.0000249	-0.0000006	-0.000013	-0.0000002
23	-0.0000351	0.002452	0.0000241	-0.0000034	0.000021	0.0
24	0.0001334	0.000501	0.0000248	0.0000006	0.000003	0.0000002
25	0.00002456	-0.001059	0.0000012	0.0000010	-0.000010	0.0
26	0.00000606	-0.000874	-0.0000117	-0.0000003	-0.000001	-0.0000001
27	-0.00000971	0.000088	-0.0000068	-0.0000002	0.000004	0.0
28	-0.00000834	0.000531	0.0000023	0.0000001	0.000001	0.0
29	0.0000067	0.000251	0.0000046	0.0	-0.000001	0.0
30	0.00000477	-0.000150	0.0000013	0.0000006	-0.000002	-0.0000001
31	0.00000222	-0.000223	-0.0000017	0.0000001	0.0	-0.0000001
32	-0.00000138	-0.0000043	-0.0000014	-0.0000005	0.000002	0.0
33	-0.00000192	0.000099	0.0	0.0000002	-0.000002	0.0
34	-0.00000030	0.000080	0.0000009	0.0	0.000002	0.0
35	0.00000088	-0.000010	0.0000004	0.0	0.000002	0.0
36	0.00000062	-0.0000050	-0.0000002	0.0000002	0.0	0.0
37	-0.00000013	-0.0000022	-0.0000003	0.0000002	-0.000001	0.0
38	-0.00000039	0.000017	-0.0000001	-0.0000003	0.000003	0.0000001
39	-0.00000013	0.000022	0.0000001	-0.0000002	0.000001	0.0

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
MARS AND JUPITER

D23

DAYS 1 THRU 95 JD 2443509.5 TO 2443604.5 DATES JAN 1 THRU APR 5
A = 47.50000000 B = -1.02105263

CHEBYSHEV COEFFICIENTS

	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
	H	0	AU	H	0	AU
0	16.2618885	47.671713	1.6577676	11.6873666	46.600003	9.3907611
1	-0.4430188	0.626457	0.2345748	-0.0270159	0.110915	0.6208241
2	0.3600652	-1.533549	0.0825676	0.1247956	0.022696	0.0732349
3	0.0581673	0.085730	-0.0136334	0.0016995	0.001583	-0.0203576
4	-0.0376050	0.082848	-0.0011470	-0.0030999	-0.005876	-0.0000459
5	0.0029188	-0.049761	0.0008744	0.0003753	-0.000138	0.0003048
6	0.0027570	0.004877	-0.0001030	0.0000231	0.000273	-0.0000254
7	-0.0009224	0.005046	-0.0000402	-0.0000172	-0.000030	-0.0000011
8	-0.0001254	-0.001962	0.0000298	0.0000005	-0.000016	0.0000160
9	0.0001985	-0.000399	0.0000094	0.0000161	0.000002	0.0000004
10	0.0000284	0.000356	-0.0000165	-0.0000001	0.000021	-0.0000171
11	-0.0000741	0.000147	-0.0000054	-0.0000115	-0.000003	0.0
12	-0.0000108	-0.000102	0.0000068	0.0000003	-0.000015	0.0000071
13	0.0000245	-0.000048	0.0000017	0.0000034	0.000001	0.0
14	0.0000023	0.000029	-0.0000019	-0.0000004	-0.000007	-0.0000020
15	-0.0000060	0.000007	-0.0000005	0.0000005	0.000003	0.0
16	0.0000001	-0.000006	0.0000004	0.0000004	0.000002	0.0000005
17	0.00000013	0.000002	-0.0000001	0.0000004	0.0	-0.0000001
18	-0.00000012	0.000008	0.0000001	0.0000002	0.000007	0.0000032
19	-0.0000001	-0.000002	0.0000003	-0.0000015	0.000001	0.0000001
20	0.00000013	-0.000008	-0.0000003	-0.0000001	-0.000008	-0.0000005
21	0.0	0.000005	-0.0000001	0.0000011	0.0	-0.0000002

DAYS 91 THRU 185 JD 2443599.5 TO 2443694.5 DATES APR 1 THRU JULY 4
A = 47.50000000 B = -2.91578947

CHEBYSHEV COEFFICIENTS

	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
	H	0	AU	H	0	AU
0	18.7038731	33.326509	3.0128249	13.0085242	46.324262	11.6853918
1	1.4852801	-7.777222	0.4085862	0.6610020	-0.421637	0.4704578
2	0.0804816	-0.930154	-0.0153084	0.0436257	-0.185978	-0.0888183
3	-0.0174865	0.026494	-0.0028249	-0.0082217	-0.014029	-0.0066962
4	0.0032945	0.009228	0.0003782	0.0003066	0.002998	0.0008721
5	-0.0003304	-0.000274	-0.0000290	-0.0000075	0.000102	-0.0000207
6	0.0000447	-0.000182	0.0000097	0.0000032	-0.000035	0.0000010
7	-0.0000204	0.000087	0.0000055	0.0000002	-0.000005	0.0000045
8	0.0000330	-0.000191	0.0000104	0.0000115	-0.000010	-0.0000012
9	0.0000308	-0.000045	-0.0000159	-0.0000001	0.000023	-0.0000194
10	-0.0000336	0.000131	-0.0000093	-0.0000110	0.000003	0.0000012
11	-0.0000115	0.000020	0.0000081	0.0000016	-0.000006	0.0000112
12	0.0000127	-0.000040	0.0000033	0.0000040	0.000003	-0.0000003
13	0.0000025	-0.000002	-0.0000024	-0.0000002	0.000001	-0.0000032
14	-0.0000037	0.000016	-0.0000004	-0.0000012	0.000006	0.0000003
15	-0.0000010	0.0	0.0000005	-0.0000010	-0.000005	0.0000007
16	0.0000008	-0.000007	0.0000001	0.0000004	-0.000007	-0.0000002
17	0.0000002	-0.000002	0.0	-0.0000005	0.000001	-0.0000002
18	0.0000007	-0.000009	-0.0000003	0.0000008	-0.000008	-0.0000004
19	0.0000003	-0.000001	-0.0000003	0.0000013	0.000003	0.0000002
20	-0.0000007	0.000008	0.0000004	-0.0000004	0.000011	0.0000004
21	-0.0000006	-0.000001	0.0000002	-0.0000010	-0.000005	0.0

D24

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
MARS AND JUPITER

DAYS 182 THRU 276 JD 2443690.5 TO 2443785.5 DATES JULY 1 THRU OCT 3
A = 47.50000000 B = -4.83157895

CHEBYSHEV COEFFICIENTS

	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
	H	0	AU	H	0	AU
0	25.1295782	-5.923370	4.2466145	15.6953203	42.105141	11.9822103
1	1.8511270	-12.018157	0.2264185	0.6822835	-1.685922	-0.3241707
2	0.0528556	-0.017277	-0.0276057	-0.0354869	-0.060461	-0.1003464
3	0.0062253	0.127005	0.0000975	-0.0066984	0.036060	0.0045636
4	0.0004165	0.007322	0.0001103	-0.0001551	0.003150	0.0008224
5	-0.0000793	0.000330	0.0000111	-0.0000145	-0.000066	0.0000282
6	0.0000033	-0.000010	-0.0000026	-0.0000005	-0.000007	-0.0000073
7	0.0000048	-0.000040	0.0000074	0.0000031	-0.000003	-0.0000013
8	0.0000262	-0.000129	-0.0000092	-0.0000034	0.000025	-0.0000152
9	-0.0000174	0.000079	-0.0000163	-0.0000120	0.000014	0.0000048
10	-0.0000214	0.000100	0.0000079	0.0000023	-0.000018	0.0000161
11	0.0000096	-0.000041	0.0000082	0.0000067	-0.000017	-0.0000029
12	0.0000081	-0.000031	-0.0000029	-0.0000001	0.000006	-0.0000066
13	-0.0000023	0.000008	-0.0000019	-0.0000021	0.000003	0.0000009
14	0.0000001	0.0	0.0000004	0.0000010	-0.000004	0.0000012
15	0.0000003	-0.000003	0.0000002	0.0000007	0.000004	0.0
16	-0.0000005	0.0	-0.0000001	-0.0000005	0.000003	-0.0000002
17	-0.0000001	-0.000002	-0.0000004	-0.0000002	-0.000001	0.0000001
18	-0.0000015	0.000013	0.0000002	-0.0000010	0.000003	0.0000004
19	0.0000005	0.0	0.0000004	-0.0000003	-0.000008	-0.0000001
20	0.0000018	-0.000013	-0.0000003	0.0000014	-0.000005	-0.0000005
21	-0.0000002	-0.000001	-0.0000002	0.0000002	0.000006	0.0000002

DAYS 274 THRU 368 JD 2443782.5 TO 2443877.5 DATES OCT 1 THRU JAN 3
A = 47.50000000 B = -6.76842105

CHEBYSHEV COEFFICIENTS

	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
	H	0	AU	H	0	AU
0	33.4318886	-41.433267	4.7482655	17.2981902	37.784198	9.8792759
1	2.4581145	-4.726420	0.0398046	0.0809682	-0.142742	-0.6499238
2	0.0765978	1.997467	-0.0183676	-0.1155402	0.434399	0.0438198
3	-0.0099283	0.166204	0.0013689	-0.0026708	0.013715	0.0202112
4	-0.0023262	-0.016765	0.0000554	0.0019063	-0.012008	0.0005485
5	0.0001174	-0.003711	-0.0000100	0.0003434	-0.001593	-0.0002208
6	0.0000679	0.000025	-0.0000059	0.0000082	0.000097	-0.0000275
7	0.0000208	0.000035	-0.0000017	-0.0000092	0.000068	-0.0000034
8	-0.0000074	-0.000048	-0.0000184	-0.0000092	0.000024	0.0000112
9	-0.0000337	0.000055	0.0000033	0.0000096	-0.000039	0.0000143
10	0.0000046	-0.000003	0.0000140	0.0000100	-0.000015	-0.0000118
11	0.0000138	-0.000024	-0.0000019	-0.0000070	0.000034	-0.0000085
12	-0.0000021	0.000009	-0.0000048	-0.0000047	0.000006	0.0000050
13	-0.0000047	0.000005	0.0000004	0.0000015	-0.000006	0.0000027
14	-0.0000002	0.000008	0.0000011	0.0000008	-0.000008	-0.0000011
15	0.0000021	-0.000002	0.0	0.0000008	-0.000003	-0.0000008
16	0.0000004	0.000001	-0.0000001	0.0	0.000003	0.0000001
17	0.0000006	0.000003	0.0	0.0000003	-0.000004	-0.0000001
18	0.0000005	-0.000011	-0.0000003	0.0000006	0.000005	-0.0000001
19	-0.0000023	-0.000003	-0.0000002	-0.0000014	0.000005	0.0000004
20	-0.0000005	0.000009	0.0000004	-0.0000001	-0.000007	0.0
21	0.0000014	-0.000006	0.0	0.0000011	-0.000004	-0.0000003

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
SATURN AND URANUS

D25

DAYS 1 THRU 95 JD 2443509.5 TO 2443604.5 DATES JAN 1 THRU APR 5
A = 47.50000000 B = -1.02105263

CHEBYSHEV COEFFICIENTS

	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE
	H	0	AU	H	0	AU
0	19.9717857	27.815876	16.8117560	29.8083807	-32.441633	36.8350282
1	-0.2092422	1.185106	0.0191586	0.0077014	-0.024410	-0.7262628
2	0.0004624	-0.044843	0.1651094	-0.0324088	0.139947	0.0339495
3	0.0119938	-0.064369	-0.0010801	0.0004513	-0.002602	0.0219334
4	-0.0000545	0.002513	-0.0031408	0.0005344	-0.001990	-0.0003351
5	-0.0002508	0.001351	0.0000351	0.0000162	-0.000069	-0.0002290
6	-0.0000025	-0.000079	0.0000522	-0.0000061	0.000009	-0.0000112
7	0.0000048	-0.000031	-0.000024	-0.000003	0.0	0.0
8	-0.0000056	0.000025	0.0000057	-0.0000017	-0.000002	-0.0000116
9	0.0000022	-0.000016	0.0000170	-0.0000051	0.000017	0.0000123
10	0.0000072	-0.000029	-0.0000082	0.0000021	-0.000004	0.0000130
11	-0.0000032	0.000022	-0.0000107	0.0000011	-0.000005	-0.0000068
12	-0.0000029	0.000006	0.0000033	-0.0000007	0.000007	-0.0000054
13	0.0000004	-0.000006	0.0000035	-0.0000004	0.000004	0.0000019
14	0.0000004	-0.000008	-0.0000009	0.0000001	0.000006	0.0000019
15	0.0000010	-0.000006	-0.0000012	0.0000016	-0.000008	-0.0000013
16	-0.0000001	0.000002	0.0000002	0.0000003	-0.000001	-0.0000003
17	0.0000001	-0.000001	0.0	0.0000004	0.0	0.0000005
18	0.0000003	0.000003	0.0000001	0.0000001	-0.000006	0.0000002
19	-0.0000012	0.000008	0.0000004	-0.0000013	0.000005	0.0000001
20	-0.0000005	-0.000003	-0.0000001	-0.0000001	0.000008	0.0000003
21	0.0000008	-0.000005	-0.0000004	0.0000010	-0.000005	-0.0000007

DAYS 91 THRU 185 JD 2443599.5 TO 2443694.5 DATES APR 1 THRU JULY 4
A = 47.50000000 B = -2.91578947

CHEBYSHEV COEFFICIENTS

	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE
	H	0	AU	H	0	AU
0	19.7085149	29.178459	18.4836193	29.5498625	-31.291477	35.5992007
1	0.1127933	-0.650847	0.7331804	-0.1135740	0.499276	0.1646340
2	0.0577647	-0.300384	-0.0050085	0.0079234	-0.035553	0.1539944
3	-0.0027978	0.014102	-0.0185954	0.0047422	-0.021715	-0.0057072
4	-0.0006216	0.002207	0.0007497	-0.0002100	0.000707	-0.0022765
5	0.0000933	-0.000349	0.0001040	-0.0000577	0.000292	0.0000852
6	-0.0000016	0.000021	-0.0000078	0.0000032	-0.000001	0.0000255
7	-0.0000019	0.000006	0.0000031	0.0000001	-0.000003	-0.0000023
8	0.0000041	-0.000025	0.0000102	-0.0000018	0.000010	0.0000118
9	0.0000067	-0.000017	-0.0000141	0.0000046	-0.000016	0.0000097
10	-0.0000043	0.000022	-0.0000120	0.0000026	-0.000011	-0.0000151
11	-0.0000023	0.000008	0.0000086	-0.0000013	-0.000001	-0.0000058
12	0.0000018	-0.000005	0.0000050	-0.0000015	0.000003	0.0000052
13	0.0000009	-0.000001	-0.0000027	0.0000009	-0.000002	0.0000017
14	-0.0000008	0.000010	-0.0000009	-0.0000005	0.0	-0.0000013
15	-0.00000010	0.000003	0.0000008	-0.0000013	0.000005	-0.0000004
16	0.0000003	-0.000004	0.0000001	0.0000001	-0.000003	-0.0000001
17	0.0000001	0.000002	-0.0000002	-0.0000002	0.000001	0.0000002
18	0.0000003	-0.000005	-0.0000003	0.0000007	0.000001	0.0000005
19	0.00000012	-0.000006	-0.0000002	0.0000017	-0.000011	0.0
20	-0.00000003	0.000008	0.0000003	-0.0000006	-0.000001	-0.0000001
21	-0.00000010	0.000002	0.0000003	-0.0000016	0.000007	0.0000008

D26

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
SATURN AND URANUS

DAY 182 THRU 276 JD 2443690.5 TO 2443785.5 DATES JULY 1 THRU OCT 3
 A = 47.5000000 B = -4.83157895

CHEBYSHEV COEFFICIENTS

	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE
	H	0	AU	H	0	AU
0	20.7025915	23.644150	20.2828477	29.4324340	-30.833889	37.5810931
1	0.3658803	-2.040450	0.1109599	0.0684664	-0.333740	0.7278549
2	0.0054054	-0.040415	-0.1303726	0.0292685	-0.131359	-0.0293380
3	-0.0049469	0.028617	-0.0024842	-0.0011852	0.007022	-0.0191959
4	0.0000001	0.000807	0.0011699	-0.0003203	0.001649	0.0005221
5	-0.0000023	-0.000006	0.0000231	0.0000191	-0.000121	0.0001326
6	0.0	-0.000004	-0.0000078	0.0000012	-0.000010	-0.0000039
7	0.0000011	-0.000007	0.0000011	-0.0000005	0.0000005	0.0000032
8	0.0000015	0.000001	-0.0000139	0.0000018	-0.000007	0.0000009
9	-0.0000060	0.000025	-0.0000074	0.0000008	0.000001	-0.0000230
10	-0.0000030	0.000005	0.0000155	-0.0000036	0.000012	-0.0000015
11	0.0000034	-0.000019	0.0000045	-0.0000005	0.000009	0.0000127
12	0.0000017	-0.000002	-0.0000064	0.0000021	-0.000009	-0.0000010
13	-0.0000013	0.000003	-0.0000012	-0.0000001	-0.000002	-0.0000030
14	0.0000008	-0.000001	0.0000011	0.0000007	-0.000004	-0.0000002
15	0.0000007	0.000002	0.0000001	0.0000003	-0.000004	0.0000012
16	-0.0000007	0.000004	0.0	-0.0000007	0.000002	0.0000003
17	0.0	0.000003	-0.0000002	-0.0000001	-0.000003	-0.0000011
18	-0.0000013	0.000006	0.0000004	-0.0000008	0.000004	-0.0000014
19	-0.0000002	-0.000004	0.0000002	-0.0000002	0.000004	0.0000005
20	0.0000015	-0.000009	-0.0000003	0.0000017	-0.000007	-0.0000008
21	0.0000003	0.000004	-0.0000001	0.0000001	-0.000008	-0.0000005

DAY 274 THRU 368 JD 2443782.5 TO 2443877.5 DATES OCT 1 THRU JAN 3
 A = 47.5000000 B = -6.76842105

CHEBYSHEV COEFFICIENTS

	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE
	H	0	AU	H	0	AU
0	21.8536989	17.326060	19.0220136	29.9737860	-33.252104	38.9733769
1	0.1840337	-0.934141	-0.6941174	0.1853901	-0.789080	-0.1035774
2	-0.0513797	0.324585	-0.0425751	-0.0033514	0.027436	-0.1489455
3	-0.0040409	0.025415	0.0179384	-0.0037362	0.015362	0.0020894
4	0.0003850	-0.003127	0.0011897	-0.0000182	-0.000394	0.0019440
5	0.0000782	-0.000575	-0.00001010	0.0000219	-0.000087	0.0000071
6	0.0000029	-0.000017	-0.0000143	0.0000006	-0.000006	-0.0000180
7	-0.0000011	0.000007	-0.0000040	0.0000005	-0.000003	-0.0000009
8	-0.0000053	0.000027	0.0000028	-0.0000011	-0.000006	-0.0000120
9	-0.0000001	-0.000006	0.0000194	-0.0000044	0.000020	0.0000125
10	0.0000059	-0.000026	-0.0000029	0.0000013	-0.000003	0.0000135
11	-0.0000013	0.000013	-0.0000114	0.0000011	-0.000007	-0.0000074
12	-0.0000030	0.000015	0.0000013	-0.0000011	0.000009	-0.0000064
13	0.0	0.000001	0.0000037	-0.0000006	0.000004	0.0000025
14	0.0000002	-0.000001	0.0	0.0	0.000007	0.0000014
15	0.00000011	-0.000010	-0.0000009	0.0000018	-0.000001	-0.000003
16	0.0	0.000004	-0.0000002	0.0	-0.000004	-0.0000003
17	0.0000002	-0.000002	0.0000001	0.0000003	-0.000002	0.0000002
18	0.0000003	-0.000001	0.0	0.0000006	-0.000007	-0.0000001
19	-0.0000012	0.000011	0.0000004	-0.0000016	0.000006	0.0000002
20	-0.0000005	-0.000003	0.0000001	-0.0000001	0.000008	0.0000005
21	0.0000016	-0.000007	-0.0000003	0.0000014	-0.000005	0.0000003

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
NEPTUNE AND PLUTO

D27

DAYS 1 THRU 95 JD 2443509.5 TO 2443604.5 DATES JAN 1 THRU APR 5
A = 47.50000000 B = -1.02105263

CHEBYSHEV COEFFICIENTS

	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE
	H	0	AU	H	0	AU
0	34.2465634	-42.875564	61.0982175	26.83522593	19.6885643	59.7215562
1	0.0550379	-0.042024	-0.7086448	-0.03173990	0.5565650	-0.5537392
2	-0.0196614	0.028850	-0.0526271	-0.01622054	0.0367476	0.1038179
3	-0.0011500	-0.000209	0.0205875	0.00150688	-0.0211409	0.0163549
4	0.0002684	-0.000308	0.0008007	0.00028267	-0.0007829	-0.0016402
5	0.0000172	0.000010	-0.0001834	-0.00001283	0.0002494	-0.0001850
6	-0.0000010	-0.000010	-0.0000172	-0.00000427	0.0000207	0.0000090
7	-0.0000003	-0.000002	0.0000001	0.00000012	-0.0000014	-0.0000004
8	0.0000003	-0.000006	-0.0000158	-0.00000160	0.0000108	-0.0000058
9	-0.0000043	0.000005	0.0000020	-0.00000112	-0.0000052	0.0000172
10	0.0000002	-0.000003	0.0000162	0.00000189	-0.0000128	0.0000064
11	0.0000006	-0.000004	-0.0000016	0.00000068	0.0000029	-0.00000104
12	-0.0000003	0.000004	-0.0000067	-0.00000076	0.0000055	-0.0000026
13	-0.0000009	0.000002	-0.0000003	-0.00000025	-0.0000007	0.0000033
14	-0.0000003	0.000008	0.0000010	0.00000021	-0.0000016	0.0000008
15	0.0000017	0.0	-0.0000003	0.00000008	0.0000004	-0.0000009
16	0.0000001	-0.000002	-0.0000007	-0.00000005	0.0000003	-0.0000002
17	0.0000003	0.000001	0.0000005	0.0	-0.0000003	0.0
18	0.0	-0.000006	-0.0000010	0.0	0.0000003	0.0
19	-0.0000015	0.0	0.0000004	-0.00000001	-0.0000001	0.0000003
20	-0.0000004	0.000008	0.0000009	0.0	-0.0000005	0.0000002
21	0.0000012	0.0	0.0	0.00000001	0.0000001	-0.0000003

DAYS 91 THRU 185 JD 2443599.5 TO 2443694.5 DATES APR 1 THRU JULY 4
A = 47.50000000 B = -2.91578947

CHEBYSHEV COEFFICIENTS

	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE
	H	0	AU	H	0	AU
0	34.1913980	-42.717675	58.9675225	26.63294883	21.0739454	59.5263722
1	-0.0753147	0.107517	-0.2655239	-0.0526355	0.0407840	0.4548547
2	-0.0078590	0.004735	0.1471976	0.01118858	-0.1403820	0.1100011
3	0.0028854	-0.003814	0.0073483	0.00206329	-0.0025311	-0.0144231
4	0.0001222	-0.000161	-0.0021417	-0.00020897	0.0021959	-0.0013662
5	-0.0000310	0.000023	-0.0000681	-0.00001680	-0.0000399	0.00001507
6	-0.0000025	0.000012	0.0000183	0.00000217	-0.0000218	0.0000146
7	0.0	-0.000001	-0.0000009	-0.00000025	0.0000029	-0.0000012
8	-0.0000021	0.000008	0.0000056	-0.00000038	-0.0000068	0.0000138
9	0.0000020	-0.000004	0.0000185	0.00000240	-0.0000119	0.0000013
10	0.0000025	-0.000003	-0.0000074	0.00000041	0.0000078	-0.0000164
11	0.0000004	-0.000005	-0.0000122	-0.00000149	0.0000079	-0.0000012
12	-0.0000016	-0.000004	0.0000030	-0.00000019	-0.0000032	0.0000070
13	0.0000005	0.000001	0.0000041	0.00000045	-0.0000027	0.0000003
14	-0.0000005	-0.000005	-0.0000013	-0.00000001	0.0000008	-0.00000018
15	-0.0000014	0.000004	0.0000001	-0.00000010	0.0000003	0.0000003
16	0.0000003	0.000003	-0.0000002	0.00000004	-0.0000001	0.0000004
17	-0.0000003	0.000001	-0.0000010	0.00000004	0.0	0.0
18	0.0000003	0.000006	0.0000001	0.00000002	-0.0000001	-0.0000001
19	0.0000014	-0.000005	0.0000003	-0.00000002	0.0000003	-0.0000003
20	-0.0000007	-0.000012	-0.0000007	-0.00000004	0.0	0.0
21	-0.0000008	0.000007	0.0000002	0.0	-0.0000003	0.0000004

* ASTROMETRIC POSITION, EQUATOR AND EQUINOX 1950.0

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
 NEPTUNE AND PLUTO

DAYS 182 THRU 276 JD 2443690.5 TO 2443785.5 DATES JULY 1 THRU OCT 3
 A = 47.50000000 B = -4.83157895

CHEBYSHEV COEFFICIENTS

	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE
	H	0	AU	H	0	AU
0	33.9745026	-42.486341	59.9161910	26.65150025	19.5699077	61.7039605
1	-0.0165751	-0.014835	0.6902770	0.06641873	-0.7419498	0.5270445
2	0.0196952	-0.031123	0.0563770	0.01457837	-0.0326004	-0.0909115
3	0.0008976	-0.000512	-0.0195359	-0.00130845	0.0163588	-0.0145439
4	-0.0002847	0.000555	-0.0007123	-0.00015865	0.0002453	0.0011244
5	-0.0000036	0.000010	0.0001667	0.00001010	-0.0000935	0.0001042
6	0.0000022	-0.000004	0.0000088	0.00000124	-0.0000013	-0.0000073
7	-0.0000004	0.000002	0.0000010	0.00000006	-0.0000018	0.0000023
8	0.0000008	-0.000005	0.0000081	0.00000167	-0.0000050	-0.0000056
9	0.0000022	0.000001	-0.00000152	-0.00000078	0.0000126	-0.00000170
10	-0.0000024	-0.000001	-0.0000104	-0.00000194	0.0000052	0.0000066
11	-0.0000017	0.000008	0.0000104	0.00000054	-0.0000081	0.0000108
12	0.0000015	-0.000002	0.0000047	0.00000082	-0.0000021	-0.0000030
13	0.0000004	-0.000003	-0.0000042	-0.00000015	0.0000023	-0.0000032
14	0.0000008	-0.000003	-0.0000015	-0.00000016	0.0000004	0.0000006
15	0.0000005	-0.000008	0.0000002	0.0	-0.0000002	0.0000004
16	-0.0000006	0.0	0.0000004	0.00000002	0.0	0.0
17	0.0	-0.000002	-0.0000001	0.00000001	0.0000003	-0.0000002
18	-0.0000012	0.000001	-0.0000005	-0.00000005	-0.0000001	0.0000001
19	-0.0000003	0.000010	0.0	0.00000001	-0.0000006	0.0000005
20	0.0000019	0.000001	0.0000001	0.00000006	0.0000001	-0.0000002
21	0.0	-0.000008	-0.0000001	-0.00000002	0.0000004	-0.0000004

DAYS 274 THRU 368 JD 2443782.5 TO 2443877.5 DATES OCT 1 THRU JAN 3
 A = 47.50000000 B = -6.76842105

CHEBYSHEV COEFFICIENTS

	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE
	H	0	AU	H	0	AU
0	34.1781479	-42.883945	62.0983945	26.99903370	17.2856440	61.8815256
1	0.1121966	-0.164852	0.2780200	0.09460111	-0.3100050	-0.4576095
2	0.0077281	0.000655	-0.1434147	-0.00880468	0.1288476	-0.1183156
3	-0.0024999	0.004193	-0.0082713	-0.00216739	0.0071207	0.0116549
4	-0.0001017	-0.000125	0.0019502	0.00007563	-0.0015541	0.0018073
5	0.0000189	-0.000046	0.0000803	0.00001909	-0.0001043	-0.0000758
6	0.0000010	-0.000009	-0.0000202	-0.00000059	0.0000104	-0.0000183
7	0.0	-0.000002	-0.0000004	0.00000008	0.0000018	-0.0000025
8	0.0000002	-0.000010	-0.0000138	-0.00000154	0.0000105	-0.0000064
9	-0.0000038	-0.000002	0.0000017	-0.00000123	-0.0000030	0.0000168
10	-0.0000003	0.000002	0.0000169	0.00000170	-0.0000119	0.0000074
11	0.0000006	-0.000003	-0.0000005	0.00000073	0.0000015	-0.0000102
12	-0.0000002	0.000003	-0.0000059	-0.00000070	0.0000050	-0.0000029
13	-0.0000009	0.000002	0.0000004	-0.00000024	-0.0000001	0.0000032
14	-0.0000006	0.000007	0.0000014	0.00000018	-0.0000015	0.0000009
15	0.0000013	0.000003	0.0000005	0.00000008	-0.0000002	-0.0000006
16	0.0000005	-0.000006	-0.0000007	-0.00000002	0.0000004	-0.0000003
17	0.0000003	0.000001	0.0000007	-0.00000003	0.0	0.0
18	0.0000003	-0.000011	-0.0000007	-0.00000003	0.0	-0.0000001
19	-0.00000013	-0.000003	-0.0000009	-0.00000001	0.0	0.0000002
20	-0.00000001	0.000009	0.0000009	0.00000001	-0.00000001	0.0000003
21	0.00000012	0.000001	-0.0000002	0.00000005	0.00000001	-0.00000002

* ASTROMETRIC POSITION, EQUATOR AND EQUINOX 1950.0

Section E: EXPRESSIONS FOR EXTENDED PERIODS OF TIME

With one exception the Chebyshev series of this section provide data referred to the equator and equinox of date. The exception concerns the right ascension and declination of Pluto, which are astrometric (*i.e.*, free of the effect of stellar aberration, except for the elliptic part) and are referred to the mean equator and equinox of 1950.0.

The trigonometric series provide data referred to the equator and equinox of date, again with one exception. This exception is the series for the Sun's geocentric, rectangular coordinates and velocities ($X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$), which are referred to the mean equator and equinox of 1950.0.

The unit of distance for the Sun and planets is the Astronomical Unit; the unit of distance for the Moon is the Earth's radius.

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1978

E1

DAYS 1 THRU 365 JD 2443509.5 TO 2443874.5 DATES JAN 1 THRU DEC 31
 A = 182.50000000 B = -1.00547945

CHEBYSHEV COEFFICIENTS

	APP S T	EQ OF EQ	NUT LON	NUT CRL
	H	S	"	"
0	37.35622812	0.0427	0.6973	-18.7150
1	11.99198297	-0.2153	-3.5207	-0.1319
2	0.00000387	0.0139	0.2280	-0.2363
3	-0.00000002	-0.0001	-0.0010	-0.0170
4	0.00000539	0.0194	0.3173	-0.3327
5	0.00001527	0.0550	0.8990	0.1528
6	-0.00000393	-0.0141	-0.2313	0.2909
7	-0.00000544	-0.0196	-0.3202	-0.0685
8	0.00000064	0.0023	0.0378	-0.0669
9	0.00000191	0.0069	0.1124	-0.0202
10	0.00000066	0.0002	0.0034	0.0056
11	0.00000057	0.0021	0.0337	-0.0126
12	0.00000035	0.0012	0.0203	0.0043
13	-0.0000048	-0.0017	-0.0284	0.0143

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1978

DAYS 1 THRU 365 JD 2443509.5 TO 2443874.5 DATES JAN 1 THRU DEC 31
 A = 182.50000000 B = -1.00547945

CHEBYSHEV COEFFICIENTS

	R A	DEC	DISTANCE	S D	EPHEM TR
	H	D	AU	"	H
0	61.3777303	-13.370167	1.99009689	32.20343	24.0233964
1	11.8530741	-2.397552	0.00039803	-0.00646	-0.1384803
2	0.0271321	-22.516807	-0.01626805	0.26193	0.0297828
3	0.0705458	2.718050	-0.00046131	0.00737	0.0706606
4	0.0402596	6.596643	0.00494387	-0.07779	0.0417551
5	0.1048693	-0.366341	0.00036414	-0.00088	0.1040937
6	-0.0304652	-0.493342	-0.00039801	0.00516	-0.0318255
7	-0.0436908	0.065245	0.00000387	-0.00012	-0.0433244
8	0.0070793	0.073290	0.00000641	0.00018	0.0073673
9	0.0073884	-0.038222	0.00000441	-0.00006	0.0073185
10	-0.0020107	-0.035710	0.00000103	-0.00006	-0.0020844
11	-0.0017174	0.011904	0.00000464	-0.00006	-0.0016747
12	0.0010052	0.008590	-0.00000410	0.00009	0.0010431
13	0.0006983	-0.003012	0.00000265	-0.00004	0.0006806
14	-0.0003295	-0.001756	-0.00000646	0.00013	-0.0003468
15	-0.0001964	0.001044	-0.00000035	0.00001	-0.0001903
16	0.0001270	0.000514	-0.00000566	0.00008	0.0001269
17	0.0000224	-0.000450	-0.00000441	0.00007	0.0000178
18	-0.0000362	-0.000096	-0.00000084	0.00002	-0.0000385
19	-0.0000393	0.000094	-0.00000439	0.00007	-0.0000397
20	-0.0000029	0.000091	0.00000548	-0.00008	0.0000009
21	0.0000005	0.000017	-0.00000073	-0.00001	0.0000002
22	-0.0000221	-0.000027	0.00000617	-0.00012	-0.0000200
23	0.0000248	0.000073	0.00000438	-0.00006	0.0000269

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
 MERCURY AND VENUS

DAY 1 THRU 365 JD 2443509.5 TO 2443874.5 DATES JAN 1 THRU DEC 31
 A = 182.50000000 B = -1.00547945

CHEBYSHEV COEFFICIENTS

	MERCURY RA	MERCURY DEC	MERCURY DISTANCE	VENUS RA	VENUS DEC	VENUS DISTANCE
	H	0	AU	H	0	AU
0	60.6029250	-15.472620	2.0543854	62.0285632	-15.772561	2.1253347
1	12.2314584	-2.041124	-0.0153936	10.8691958	-2.307388	-0.7800691
2	-0.8429873	-20.130912	0.0031274	-2.3848494	-15.908980	0.0013969
3	-0.2059361	3.336578	-0.0073951	-0.7-17821	12.337441	0.2041857
4	-0.5265800	7.120997	-0.1055700	0.1614079	6.580347	0.0710333
5	-0.0673903	0.075813	0.1500388	0.4390146	-6.116075	0.0069102
6	-0.1794524	1.871633	-0.00C6999	0.2054785	-2.691617	-0.0082314
7	-0.3833354	-2.875041	0.1643405	0.1136393	-0.200616	-0.0106922
8	0.7947932	-1.565392	0.1395674	0.0163161	0.014286	-0.0079185
9	0.5543501	-0.686788	-0.1554153	-0.1084050	0.302755	-0.0022740
10	-0.3602587	-2.31025	-0.0995715	-0.0926771	0.573953	0.0015332
11	-0.1550878	2.455662	0.0642637	-0.0173136	0.372695	0.0023755
12	0.2314640	2.422425	0.0079484	0.0229551	0.005700	0.0015354
13	-0.0058069	-2.351656	-0.0313658	0.0283778	-0.149411	0.0003683
14	-0.1004941	-0.895188	-0.0060876	0.0200708	-0.157140	-0.0004113
15	-0.0986354	1.801806	-0.0100912	0.0050320	-0.108314	-0.0005876
16	-0.1150092	0.382193	0.0126711	-0.0081162	-0.021929	-0.0003822
17	0.0454394	-0.385620	0.0234203	-0.0107442	0.049711	-0.00030741
18	0.1047902	-0.157514	0.0014858	-0.0056135	0.064992	0.0001281
19	-0.0020538	-0.438027	-0.0024463	-0.0000113	0.037865	0.0001642
20	-0.0070485	0.042624	-0.0049604	0.0029933	0.003269	0.0001086
21	0.0105446	0.369185	-0.0075252	0.0032887	-0.018950	0.0000129
22	-0.0052359	-0.140408	0.0068660	0.0017019	-0.023363	-0.0000370
23	0.0307387	-0.192598	0.0050056	-0.0002061	-0.013699	-0.0000475
24	0.0152232	0.028423	-0.0092354	-0.0012067	-0.000366	-0.0000321
25	-0.0497811	0.010089	-0.0045978	-0.0010745	0.007942	0.0000010
26	-0.0281642	0.139210	0.0043163	-0.0004193	0.004681	0.0000078
27	0.0207267	0.132890	0.0030196	0.0001538	0.004505	0.0000124
28	0.0110486	-0.136481	0.0003683	0.0004197	-0.000234	0.0000095
29	-0.0049341	-0.102774	-0.0006301	0.0003225	-0.003047	-0.0000048
30	-0.0028270	0.106408	-0.0004052	0.0000808	-0.003142	0.0000013
31	0.0000165	0.047013	0.0003113	-0.0006680	-0.001419	0.0000014
32	0.0071072	-0.072586	-0.0000239	-0.0001220	0.000192	-0.0000044
33	0.0080189	-0.034321	0.0001802	-0.0000766	0.000962	0.0000032
34	-0.0022631	0.008714	0.0001281	-0.0000025	0.001064	-0.0000029
35	-0.0057975	0.006329	-0.0009973	-0.0000031	0.000650	-0.0000096
36	-0.0019678	0.017120	-0.0005644	-0.0000064	0.000036	0.0000055
37	-0.0003225	0.007080	0.0007158	0.0000413	-0.00423	0.0000114
38	0.0009628	-0.012442	0.0005078	0.0000520	-0.000522	-0.0000028
39	0.0007145	0.003882	-0.0002034	-0.0000012	-0.00259	-0.0000075
40	-0.0022257	0.012590	-0.0002348	-0.0000329	0.000086	0.0000004
41	-0.0016214	-0.002455	0.0001324	-0.0000204	0.000204	0.0000028
42	0.0029835	-0.003465	0.0002250	-0.0000034	0.000150	0.0
43	0.0019253	-0.003921	-0.0001152	0.0000040	0.000073	-0.0000038
44	-0.0012415	0.007863	-0.0001187	0.0000066	-0.000006	0.0000003
45	-0.0007562	0.005048	0.0001272	0.0000073	-0.000066	0.0000005
46	0.0004859	0.005840	-0.0000734	0.0000032	-0.000078	-0.0000001
47	0.0000263	-0.009184	-0.0001831	-0.0000012	-0.000034	-0.0000002
48	-0.0003230	-0.001748	0.0000928	-0.0000022	0.000010	-0.0000002
49	-0.0003567	0.010023	0.0001245	-0.0000024	0.000027	-0.0000002

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
MARS, JUPITER, SATURN AND URANUS

E3

DAYS 1 THRU 365 JD 2443509.5 TO 2443874.5 DATES JAN 1 THRU DEC 31
A = 182.50000000 B = -1.00547945

CHEBYSHEV COEFFICIENTS

	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
0	24.3557647	5.655744	3.2986465	14.4662398	42.790571	10.1170935
1	5.5113294	-27.853498	0.9914935	1.7239435	-2.708411	0.1646593
2	1.6411076	-4.658261	-0.1708485	0.0813145	-0.664463	-0.9747384
3	-0.4288501	5.089712	-0.1225425	-0.4121890	0.649583	-0.0633543
4	0.2277385	0.963602	0.0639043	0.0042284	0.488425	0.1855238
5	-0.0138651	0.216105	-0.0162985	0.0045694	0.008755	0.0006541
6	-0.0726165	-0.120077	0.0030548	-0.0050163	-0.066600	0.0030952
7	0.0452942	-0.026168	0.0010899	0.0064896	-0.004264	0.0009218
8	-0.0234877	0.037397	-0.0016752	-0.0003054	-0.005939	-0.0016022
9	0.0069529	-0.061536	0.0011133	0.0004530	-0.002247	0.0000850
10	0.0017149	0.037728	-0.0005114	0.0001156	0.001280	-0.0001325
11	-0.0033933	-0.012712	0.0001343	-0.0001261	-0.000087	-0.0000191
12	0.0028046	-0.000762	0.0000361	0.0000263	0.000223	0.0000151
13	-0.0014470	0.006155	-0.0000742	-0.0000254	0.000082	-0.0000096
14	0.0003806	-0.005627	0.0000542	-0.0000052	-0.000021	0.0000079
15	0.0001568	0.003219	-0.0000316	-0.0000007	0.000030	-0.0000023
16	-0.0002924	-0.001065	0.0000039	-0.0000052	-0.000001	0.0000058
17	0.0002349	-0.000251	-0.0000016	0.0000027	-0.000002	0.0000016
18	-0.0001289	0.000650	-0.0000095	-0.0000034	-0.000003	0.0000041
19	0.0000299	-0.000592	0.0000049	0.0000051	-0.000011	0.0000054
20	0.0000061	0.000351	-0.0000052	0.0000005	-0.000005	-0.0000005
21	-0.00000415	-0.000101	0.0000067	0.0000031	-0.000010	0.0000047
22	0.00000367	-0.000036	0.0000013	0.0000051	0.0	-0.0000055
23	-0.00000318	0.000117	0.0000043	-0.0000011	-0.000005	-0.0000009

	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE
0	20.7555956	23.422497	18.2771026	29.7894961	-32.389969	37.6102236
1	0.5682255	-3.146616	0.5799302	0.0788627	-0.366195	0.5186157
2	0.3122959	-1.695790	-0.5999110	0.1605015	-0.709447	0.5614589
3	-0.1549186	0.907720	-0.4850582	0.0765813	-0.316234	-0.5361226
4	-0.0664692	0.364774	0.1694809	-0.0508631	0.236335	-0.1602679
5	0.0258438	-0.110119	0.0457164	-0.0092337	0.043294	0.0853018
6	-0.0042931	0.022239	-0.0146777	0.0064268	-0.031844	0.0101913
7	-0.0014758	-0.002911	0.0040556	-0.0003473	-0.001225	-0.0068492
8	0.0019592	-0.008090	-0.0001104	-0.0006704	0.003859	0.0007631
9	-0.0003990	0.003021	-0.0008563	0.0002261	-0.000506	0.0004581
10	-0.0000799	-0.000494	0.0002615	0.0000546	-0.000471	-0.0002244
11	0.0001117	-0.000334	-0.0000262	-0.0000395	0.000152	-0.0000254
12	-0.00000416	0.000299	-0.0000325	0.0000010	0.000039	0.0000271
13	-0.0000011	-0.000083	0.0000121	0.0000080	-0.000037	-0.0000040
14	0.0000047	0.0	-0.0000033	-0.0000014	-0.000002	-0.0000096
15	-0.0000037	0.000023	-0.0000030	-0.0000005	-0.000001	0.0000010
16	-0.00000017	0.000003	0.0000005	0.0000013	-0.0000013	-0.0000069
17	0.0000007	-0.000002	0.0000038	-0.0000006	0.000002	0.0000022
18	-0.0000016	0.000008	-0.0000003	0.0000004	-0.000005	-0.0000026
19	-0.0000004	-0.000003	0.0000001	-0.0000017	0.000005	0.0000031
20	0.0000012	-0.000005	0.0000003	0.0000003	0.000001	0.0000036
21	-0.0000011	0.000009	0.00000054	-0.0000019	0.000005	0.0000013
22	0.0000042	-0.000015	0.0000002	0.0000012	-0.000007	0.0000080
23	0.0	0.000003	-0.0000033	0.0000005	-0.000006	-0.0000001

E4

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1978
NEPTUNE AND PLUTO

DAY S 1 THRU 365 JD 2443509.5 TO 2443874.5 DATES JAN 1 THRU DEC 31
A = 182.50000000 B = -1.00547945

CHEBYSHEV COEFFICIENTS

	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE
	H	0	AU	H	0	AU
0	34.1771922	-42.807957	61.0896634	26.84970548	18.9181859	60.7807382
1	0.0042950	-0.032879	0.2263967	0.05859624	-0.6883743	0.5030085
2	0.0501485	-0.109967	0.8947204	0.11247165	-0.7684338	0.0977836
3	0.0821494	-0.096029	-0.2590711	0.01717135	0.2896562	-0.6259871
4	-0.0162613	0.036155	-0.2717071	-0.03413246	0.2230020	-0.0225434
5	-0.0129226	0.017471	0.0419996	-0.00113413	-0.0524997	0.0913019
6	0.0021417	-0.002586	0.0246672	0.00310459	-0.0140615	-0.0019569
7	0.0009377	-0.002292	-0.0035185	-0.00345532	0.0058753	-0.0041846
8	-0.0002587	-0.000105	-0.0009335	-0.0009681	-0.0011085	0.0010065
9	-0.0000503	0.000331	0.0002901	0.00010433	-0.0005054	-0.0001665
10	0.0000333	0.000027	0.0000052	-0.00001116	0.0002698	-0.0001254
11	0.0000044	-0.000047	-0.0000293	-0.00000918	0.0000033	0.0000347
12	-0.00000029	-0.000007	-0.0000040	0.00000269	-0.0000278	0.0000026
13	0.0000013	0.000012	0.0000049	0.00000085	0.0000071	-0.0000075
14	0.0000006	0.000001	-0.0000062	-0.00000096	0.0000065	-0.0000041
15	-0.0000005	-0.000005	0.0	0.00000012	-0.0000016	-0.0000003
16	0.0000016	-0.000007	-0.0000087	-0.00000054	0.0000063	-0.0000057
17	-0.0000007	0.0	-0.0000006	-0.00000046	0.0000003	0.0000034
18	0.0000007	-0.000005	-0.0000040	-0.00000028	0.0000027	-0.0000025
19	-0.0000014	0.000001	-0.0000017	-0.00000075	0.0000003	0.0000056
20	-0.0000002	0.0	0.0000045	0.00000029	-0.0000026	0.0000026
21	-0.00000013	-0.000004	-0.0000007	-0.00000044	0.0000006	0.0000031
22	0.0000003	-0.000007	0.0000086	0.00000065	-0.0000061	0.0000054
23	0.0000009	-0.000004	0.0000003	0.00000034	-0.0000002	-0.0000028

* ASTROMETRIC POSITION, EQUATOR AND EQUINOX 1950.0

TRIGONOMETRIC SERIES FOR THE COORDINATES OF THE SUN

E5

SUN X_{1950.0}

AU						
0.999860	COS (L)
- 0.025127	COS (G	- L)
+ 0.008374	COS (G	+ L)
+ 0.000105	COS (2G	+ L)
+ 0.000063	T COS (G	- L)
+ 0.000035	COS (2G	- L)
- 0.000026	SIN (G	- L		- J)
- 0.000021	T COS (G	+ L)
+ 0.000018	SIN (2G	+ L	- 2V)
+ 0.000017	COS (C)
- 0.000014	COS (C	- 2L)
+ 0.000012	COS (4G	+ L		- 8M + 3J)
- 0.000012	COS (4G	- L		- 8M + 3J)
- 0.000012	COS (G	+ L	- V)
+ 0.000011	COS (2G	+ L	- 2V)
+ 0.000011	COS (2G	- L		- 2J)

SUN Y_{1950.0}

AU						
0.917308	SIN (L)
+ 0.023053	SIN (G	- L)
+ 0.037683	SIN (G	+ L)
+ 0.000097	SIN (2G	+ L)
- 0.000057	T SIN (G	- L)
- 0.000032	SIN (2G	- L)
- 0.000024	COS (G	- L		- J)
- 0.000019	T SIN (G	+ L)
- 0.000017	COS (2G	+ L	- 2V)
+ 0.000016	SIN (C)
+ 0.000013	SIN (C	- 2L)
+ 0.000011	SIN (4G	+ L		- 8M + 3J)
+ 0.000011	SIN (4G	- L		- 8M + 3J)
- 0.000011	SIN (G	+ L	- V)
+ 0.000010	SIN (2G	+ L	- 2V)
- 0.000010	SIN (2G	- L		- 2J)

SUN Z_{1950.0}

AU						
0.397825	SIN (L)
+ 0.009998	SIN (G	- L)
+ 0.003332	SIN (G	+ L)
+ 0.000042	SIN (2G	+ L)
- 0.000025	T SIN (G	- L)
- 0.000014	SIN (2G	- L)
- 0.000010	COS (G	- L		- J)

E6

TRIGONOMETRIC SERIES FOR THE COORDINATES OF THE SUN

SUN $\dot{x}_{1950.0}$

		AU/DAY				
-	0.017200	SIN (L)
-	0.000288	SIN (G		+ L)
-	0.000005	SIN (2G		+ L)
-	0.000004	SIN (C)
+	0.000003	SIN (C	- 2L)
+	0.000001	T	SIN (G	+ L)
-	0.000001	SIN (2G		- L)

SUN $\dot{y}_{1950.0}$

		AU/DAY				
	0.015780	COS (L)
+	0.000264	COS (G		+ L)
+	0.000005	COS (2G		+ L)
+	0.000004	COS (C)
+	0.000003	COS (C	- 2L)
-	0.000001	T	COS (G	+ L)

SUN $\dot{z}_{1950.0}$

		AU/DAY				
	0.006843	COS (L)
+	0.000115	COS (G		+ L)
+	0.000002	COS (2G		+ L)
+	0.000002	COS (C)
+	0.000001	COS (C	- 2L)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF THE SUN

E7

SUN THETA

AU						
0.397930	SIN (L)
+ 0.009999	SIN (G		- L)
+ 0.003334	SIN (G		+ L)
- 0.000208	T SIN (L)
+ 0.000042	SIN (2G		+ L)
- 0.000040	COS (L)
- 0.000039	SIN (N	- L)
- 0.000030	T SIN (G		- L)
- 0.000014	SIN (2G		- L)
- 0.000010	COS (G		- L	- J)
- 0.000010	T SIN (G		+ L)

SUN RHO

AU						
1.000421)
- 0.033503	COS (G)
- 0.000140	COS (2G)
+ 0.000084	T COS (G			- J)
- 0.000033	SIN (G)
+ 0.000027	SIN (2G		- 2V)

SUN PHI

AU						
- 0.041295	SIN (2L)
+ 0.032116	SIN (G)
- 0.001038	SIN (G		- 2L)
- 0.000346	SIN (G		+ 2L)
- 0.000095						
- 0.000080	T SIN (G)
- 0.000079	SIN (N)
+ 0.000068	SIN (2G)
+ 0.000046	T SIN (2L)
+ 0.000030	SIN (C - L)
- 0.000025	COS (G			- J)
+ 0.000024	SIN (4G			+ 3J)
- 0.000019	SIN (G		- V)
- 0.000017	COS (2G		- 2V)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF THE MOON
 MOON THETA

● RADII	SIN (B	+ N	
23.89684	SIN (B	+ N)
+ 4.95372	SIN (B	- N)
+ 1.96763	SIN (A	- B	- N)	
+ 0.65973	SIN (A	+ B	+ N)	
+ 0.40248	SIN (A	- B	- N)	
- 0.38899	SIN (A	+ B	- 2D + N)	
- 0.20017	SIN (B	- 2D + N)	
- 0.18354	SIN (B	- 2D + N)	
- 0.14511	SIN (A	- B	- 2D - N)	
+ 0.13622	SIN (A	+ B	- 2D - N)	
- 0.06505	SIN (A	+ B	- 2D)	
- 0.04771	SIN (B	- N)	
+ 0.04732	SIN (B	+ 2D + N)	
- 0.03982	SIN (G	- B	- N)	
- 0.03759	SIN (G	+ B	+ N)	
- 0.02994	SIN (A	- B	- 2D + N)	
+ 0.02700	SIN (2A	+ B	+ N)	
- 0.01868	SIN (2A	+ B	- 2D + N)	
- 0.01652	SIN (A + G	+ B	- 2D + N)	
- 0.01434	SIN (G	+ B	- 2D + N)	
- 0.01250	SIN (B	+ N)	
+ 0.01064	SIN (B	- D + N)	
+ 0.00970	SIN (B	+ 2D)	
+ 0.00965	SIN (A - G	- B	- N)	
- 0.00947	SIN (2A	- B	- N)	
- 0.00929	SIN (G	+ B	- 2D)	
- 0.00713	SIN (A + G	- B	- 2D - N)	
- 0.00638	SIN (A + G	- B	- N)	
+ 0.00564	SIN (A - G	+ B	+ N)	
+ 0.00561	SIN (2A	+ B	- N)	
+ 0.00490	SIN (2A	- B	- N)	
+ 0.00466	SIN (A	+ B	+ 2D + N)	
- 0.00456	SIN (3B	- 2D + N)	
+ 0.00449	SIN (A	- B	+ 2D)	
- 0.00442	SIN (2A	- B	- 2D - N)	
- 0.00411	SIN (A + G	+ B	+ N)	
- 0.00383	SIN (G	- B	+ D + N)	
- 0.00347	SIN (A	- B	+ 2D)	
+ 0.00345	SIN (A	- B	+ N)	
- 0.00339	SIN (G	- B	- 2D - N)	
- 0.00283	SIN (A + G	+ B	- 2D)	
- 0.00262	SIN (2A	+ B	- 2D)	
+ 0.00246	SIN (A	- 3B	- N)	
+ 0.00235	SIN (A - G	- B	- N)	
- 0.00205	SIN (A + G	- B	- N)	
+ 0.00200	SIN (B	- D)	
- 0.00196	SIN (G	- B	+ 2D - N)	
- 0.00194	SIN (B	- 2D - N)	
+ 0.00184	SIN (A - G	+ B	- N)	
- 0.00159	SIN (G	- B	- 2D + N)	
+ 0.00157	SIN (G	- B	+ D - N)	
- 0.00149	SIN (A + G	- B	- 2D)	
- 0.00145	SIN (G	+ B	- N)	
+ 0.00136	SIN (A	+ B	- D + N)	
- 0.00131	SIN (A	+ B	- N)	
+ 0.00130	SIN (3A	+ B	+ N)	
- 0.00121	SIN (2A	- B	- 4D - N)	
+ 0.00107	SIN (A - G	- B	- 2D - N)	
- 0.00103	SIN (A	- B	- N)	
- 0.00102	SIN (A	- B	- 4D - N)	
- 0.00101	SIN (A	+ B	- 4D)	

TRIGONOMETRIC SERIES FOR THE COORDINATES OF THE MOON

E9

MOON RHO

● RADII²

3649.33705	COS (A)
- 395.13669	COS (A	- 2D)
- 68.62152	COS (A	2D)
- 53.97626	COS (2A	- 2D)
+ 6.60763	COS (2A	- 2D)
- 5.37817	COS (2A	- 2D)
- 3.83002	COS (G	- 2D)
- 2.74067	COS (A + G	- 2D)
- 2.45500	COS (A - G)
+ 2.07579	COS (A + G	D)
+ 1.99463	COS (A + G)
- 1.67417	COS (A	+ 2D)
+ 1.50534	COS (A	- 2B)
+ 0.86170	COS (G)
+ 0.63844	COS (G	+ 2D)
+ 0.47999	COS (A - G	- 2D)
- 0.36333	COS (A	- 4D)
- 0.31717	COS (G	+ D)
+ 0.24454	COS (2A + G	- 2D)
+ 0.22594	COS (3A	- 2D)
+ 0.22383	COS (2B	- 2D)
- 0.19482	COS (2G	- 2D)
- 0.18815	COS (2A	- 4D)
+ 0.17697	COS (A	+ 2B	- 2D)
- 0.16949	COS (A	- D)
- 0.16070	COS (A - G	+ 2D)
- 0.14986	COS (3A)
- 0.12428	COS (A + G	- 4D)
- 0.12291	COS (2A	- 2B)
- 0.12291	COS (2B)
- 0.10243	COS (A + 2G	- 2D)
+ 0.10225	COS (A + G	+ 2D)
+ 0.10177	COS (A	- 2B	+ 2D)
- 0.09261	COS (A		+ 4D)
+ 0.08119	COS (A		- 3D)
- 0.07369	COS (G	- 4D)
- 0.06652	COS (2A - G)
- 0.06444	COS (4D)
+ 0.06290	COS (A		+ D)
+ 0.05491	COS (2A + G)

MOON PHI

● RADII	SIN (A)
6.32962	SIN (2B	+ 2N)
- 2.47970	SIN (A	- 2D)
- 1.28658	SIN (2B	+ N)
- 1.07447	SIN (N)
+ 1.07142	SIN (2D)
+ 0.59616	SIN (A	- 2B	- 2N)
- 0.20417	SIN (G)
- 0.18647	SIN (2B)
- 0.11463	SIN (A		+ N)
- 0.08724	SIN (A	- 2B	- N)
- 0.08724	SIN (A	+ 2B	+ 2N)
- 0.06846	SIN (A + G	- 2D)
- 0.05697	SIN (2A)
- 0.05566	SIN (2B	- 2D)
- 0.04273	SIN (G	- 2D)
+ 0.04221	SIN (2A)
+ 0.04037	SIN (A	+ 2B	- 2D)
+ 0.04037	SIN (2B	- 2D	+ N)
+ 0.03983	SIN (2D	+ N)
- 0.03983	SIN (A - G)
+ 0.03684	SIN (D)
- 0.03487	SIN (A + 2B		+ N)
- 0.02952	SIN (A)

(SERIES CONTINUED ON FOLLOWING PAGE)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF THE MOON
(SERIES CONTINUED FROM PRECEDING PAGE)

● RADII					
-	0.02952	SIN (A	-	N
-	0.02527	SIN (A + G	-)
+	0.02077	SIN (2B - 2D	+ 2N
-	0.01567	SIN (2B - 2D)
+	0.01506	SIN (A	- 2B	- 2N
+	0.01424	SIN (A	- 2B)
+	0.01410	SIN (A	+ 2B	- 2D + N
+	0.01410	SIN (A		- 2D - N
+	0.01122	SIN (A		+ 2D
+	0.00700	SIN (A - G)
+	0.00648	SIN (A	- 2D)
+	0.00648	SIN (A	- 2D	+ N
-	0.00621	SIN (- 2D	- N
+	0.00516	SIN (A	+ 2D)
+	0.00504	SIN (G	- D)
-	0.00491	SIN (G	+ 0)
-	0.00490	SIN (2B + 2D	+ 2N
+	0.00490	SIN (2N
+	0.00413	SIN (G - 2B	- 2N
+	0.00390	SIN (G + 2B	+ 2N
-	0.00350	SIN (A		+16E -18W
-	0.00317	SIN (A	+ 2B)
+	0.00312	SIN (3A)
-	0.00280	SIN (2A	+ 2B	+ 2N
+	0.00279	SIN (2A	2B	+ 2N
-	0.00253	SIN (A	- 2B	+ 2D
-	0.00247	SIN (A		- 4D
-	0.00215	SIN (3A		- 2D
-	0.00213	SIN (2B	+ 2D + N
-	0.00213	SIN (20	- N
-	0.00210	SIN (2G)
-	0.00207	SIN (A + 2G)
+	0.00201	SIN (G + 2B	- 2D	+ N
+	0.00201	SIN (G	- 2D	- N
+	0.00194	SIN (2A	+ 2B	+ 2N
+	0.00193	COS (A		+16E -18W
-	0.00190	SIN (2G)
-	0.00175	SIN (2A + G	- 2D)
+	0.00171	SIN (A + G	+ 2B	- 2D + 2N
-	0.00157	SIN (2A		- 4D
+	0.00149	SIN (G + 2B	- 2D + 2N
-	0.00122	SIN (2A	+ 2B	+ N
-	0.00122	SIN (2A		- N
+	0.00112	SIN (4D
-	0.00110	SIN (2B	- 0 + 2N
-	0.00109	SIN (A	+ 2B	- 2D
-	0.00106	SIN (2A		+ N
-	0.00106	SIN (2A	- 2B	- N
+	0.00102	SIN (A - G		+ 2D
+	0.00102	SIN (A - G)
-	0.00100	SIN (A + G		- 4D
-	0.00100	SIN (A - G	- 2B	- 2N

TRIGONOMETRIC SERIES FOR THE COORDINATES OF MERCURY
MERCURY THETA

E11

AU			L	
0.397930	SIN (K)
+ 0.150237	SIN (K	- H)
- 0.047338	SIN (K	+ H)
+ 0.042380	SIN (K	H - F)
+ 0.015282	SIN (K	+ H)
+ 0.013354	SIN (K	H - F)
+ 0.009999	SIN (G)
+ 0.004311	SIN (G	H + F)
+ 0.003334	SIN (G	- L)
+ 0.002331	SIN (K	+ 2H)
+ 0.000822	SIN (K	- 2H)
+ 0.000658	SIN (K	2H + F)
+ 0.000563	SIN (K	- 2F)
+ 0.000422	SIN (K	+ 3H)
- 0.000232	SIN (K	2H - F)
- 0.000208	T SIN (K)
- 0.000177	SIN (K	+ H - 2F)
+ 0.000119	SIN (K	3H + F)
+ 0.000084	SIN (K	+ 4H)
- 0.000079	T SIN (K)
- 0.000068	COS (K)
+ 0.000057	SIN (K	- H - 2F)
+ 0.000056	SIN (K	- 3H)
+ 0.000042	SIN (2G	+ L)
+ 0.000039	SIN (G	- L	- N
- 0.000030	T SIN (K)
+ 0.000024	SIN (K	4H + F)
+ 0.000023	COS (K	- H)
+ 0.000021	T SIN (K	- H)
+ 0.000017	SIN (K	+ 5H)
- 0.000016	SIN (K	3H - F)
+ 0.000015	SIN (K		- N
- 0.000014	SIN (2G	- L)
- 0.000013	COS (2K	- L)
- 0.000013	COS (G	- L)
- 0.000010	T SIN (G	+ L	- J

MERCURY RHO

AU				
1.159768)
+ 0.754886	COS (K)
- 0.237857	COS (K	- H)
+ 0.076786	COS (K	+ H)
- 0.061297	COS (K	H)
- 0.033490	COS (G)
- 0.018968	COS (K	+ G)
+ 0.011714	COS (K	+ 2H)
+ 0.006324	COS (K	- G)
+ 0.005977	COS (K	+ G - H)
+ 0.004132	COS (K	- 2H)
- 0.003130	COS (2H)
+ 0.002827	COS (K	- 2F)
+ 0.002119	COS (K	+ 3H)
- 0.001993	COS (K	- G - H)
- 0.001929	COS (K	+ G + H)
- 0.000892	COS (K	+ H - 2F)
+ 0.000643	COS (K	- G + H)
+ 0.000423	COS (K	+ 4H)
+ 0.000344	SIN (K)
- 0.000314	COS (3H)
- 0.000294	COS (K	+ G + 2H)
+ 0.000287	COS (K	- H - 2F)
+ 0.000283	COS (K	- 3H)
- 0.000140	COS (2G)

(SERIES CONTINUED ON FOLLOWING PAGE)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF MERCURY
(SERIES CONTINUED FROM PRECEDING PAGE)

AU

- 0.000115	SIN (K	- H	- L
- 0.000104	COS (K	+ G - 2H	- L
+ 0.000098	COS (K	- G + 2H	- L
+ 0.000087	T COS (G		
+ 0.000087	COS (K	+ 5H	- L
+ 0.000080	COS (K	- 2G	- L
- 0.000071	COS (K	+ G - 2F	- L
+ 0.000063	SIN (2K		- 2L
- 0.000053	COS (K	+ G + 3H	- L
- 0.000051	SIN (G		- J
+ 0.000048	T COS (K	+ G	- L
- 0.000047	COS (4H	
+ 0.000043	COS (K	- 2H - 2F	- L
+ 0.000036	SIN (2G		- 2V
+ 0.000035	COS (K	- G - 2H	- L
+ 0.000031	SIN (K	+ H	- L
+ 0.000031	COS (K	- 4H	- L
+ 0.000027	SIN (H	
+ 0.000026	COS (K	+ 2G	- L
- 0.000025	SIN (2K	- H	- 2L
- 0.000025	COS (K	- 2G - H	- L
+ 0.000024	COS (K	- G - 2F	- L
+ 0.000022	COS (K	+ G + H - 2F	- L

MERCURY PHI

AU

0.361903	SIN (K		- L
- 0.114032	SIN (K	- H	- L
- 0.041295	SIN (2L
+ 0.036812	SIN (K	+ H	- L
+ 0.032116	SIN (G		
- 0.015591	SIN (K		+ L
- 0.009193	SIN (F	+ L
- 0.009193	SIN (F	- L
+ 0.005616	SIN (2K	+ 2H	- L
+ 0.004912	SIN (K	- H	+ L
- 0.002897	SIN (K	H - F	+ L
- 0.002897	SIN (H - F	- L
+ 0.001981	SIN (K	- 2H	- L
- 0.001586	SIN (K	+ H	+ L
+ 0.001355	SIN (K	- 2F	- L
- 0.001038	SIN (G		- 2L
+ 0.001016	SIN (K	+ 3H	- L
- 0.000935	SIN (H + F	+ L
- 0.000935	SIN (H + F	- L
- 0.000428	SIN (K	+ H - 2F	- L
- 0.000346	SIN (G		+ 2L
- 0.000242	SIN (K	+ 2H	+ L
+ 0.000203	SIN (2K	+ 4H	- L
- 0.000165	COS (K		- L
- 0.000143	SIN (2H + F	+ L
- 0.000143	SIN (2H + F	- L
+ 0.000138	SIN (K	- H - 2F	- L
+ 0.000136	SIN (K	- 3H	- L
- 0.000085	SIN (K	- 2H	+ L
- 0.000080	T SIN (G		
- 0.000079	SIN (
+ 0.000068	SIN (2G		
- 0.000058	SIN (K	- 2F	+ L
+ 0.000055	COS (K	- H	- L
+ 0.000050	SIN (2H - F	+ L
+ 0.000050	SIN (2H - F	- L
+ 0.000046	T SIN (2L
- 0.000044	SIN (K	+ 3H	+ L
+ 0.000041	SIN (K	+ 5H	- L

N

(SERIES CONTINUED ON FOLLOWING PAGE)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF MERCURY
 (SERIES CONTINUED FROM PRECEDING PAGE)

E13

AU						
- 0.000030	COS (2K		- 2L)
- 0.000030	SIN (C - L)
+ 0.000030	SIN (3H + F	+ L)
- 0.000026	SIN (3H + F	- L)
- 0.000026	COS (G)
+ 0.000024	SIN (4G			- 8M + 3J)
+ 0.000021	SIN (K	- 2H - 2F	- L)
- 0.000019	SIN (G			- V)
+ 0.000018	SIN (K	+ H - 2F	+ L)
+ 0.000018	T SIN (K		+ L)
+ 0.000018	T SIN (K		- L)
- 0.000017	COS (2G		- 2V)
- 0.000017	SIN (K		- L	+ N)
- 0.000015	COS (K	+ H	- L)
+ 0.000015	SIN (K	- 4H	- L)
+ 0.000014	SIN (K		- L	- N)
+ 0.000012	COS (H)
+ 0.000012	COS (2K	- H	- 2L)

E14

TRIGONOMETRIC SERIES FOR THE COORDINATES OF VENUS

VENUS THETA

AU							
0.397930	SIN (L)
+ 0.287616	SIN (W)
+ 0.039280	SIN (R)
+ 0.009999	SIN (G		- L)
+ 0.003334	SIN (G		+ L)
- 0.002942	SIN (W				- V)
+ 0.000982	SIN (W				+ V)
- 0.000402	SIN (W		R		- V)
+ 0.000252	SIN (W		- 2R)
- 0.000208	T SIN (L)
- 0.000163	T SIN (W)
+ 0.000134	SIN (R		+ V)
- 0.000062	COS (W)
+ 0.000042	SIN (2G		+ L)
+ 0.000039	SIN (- L		- N
- 0.000030	T SIN (G		- L		- N
+ 0.000028	SIN (W)
- 0.000017	COS (2W)
- 0.000017	COS (- L)
- 0.000014	SIN (2G		- L)
- 0.000014	T SIN (W			+ V)
+ 0.000014	T SIN (W			- V)
- 0.000010	COS (G		- L		- J
- 0.000010	T SIN (G		+ L)

VENUS RHO

AU							
1.523667)
+ 1.445164	COS (W			- L)
- 0.036312	COS (W	+ G		- L)
- 0.033490	COS (G		- L	- V)
- 0.014783	COS (W			- L	- V)
+ 0.012106	COS (W	- G		- L	+ V)
- 0.007131	COS (- L	- V)
+ 0.004932	COS (W			- L	- V)
+ 0.001268	COS (W		- 2R	- L	- V)
+ 0.000386	COS (W	+ G		- L	- V)
+ 0.000310	SIN (W			- L	- V)
+ 0.000152	COS (W	- 2G		- L)
- 0.000140	COS (2G		- L)
- 0.000124	COS (W	+ G		- L	+ V)
- 0.000124	COS (W	- G		- L	- V)
+ 0.000094	T COS (W	+ G		- L)
+ 0.000087	T COS (W	G		- L)
+ 0.000084	SIN (2W			- 2L)
- 0.000069	T COS (W			- L	+ V)
+ 0.000069	T COS (W			- L	- V)
- 0.000061	T COS (W			- L)
- 0.000051	SIN (G			- J)
+ 0.000050	COS (W	+ 2G		- L)
- 0.000043	T SIN (W	+ G		- L	- J)
- 0.000037	SIN (W	+ G		- L	- J)
+ 0.000036	SIN (2G		- L	- 2V)
+ 0.000034	SIN (W	+ 2G		- L	- 2V)
- 0.000032	COS (W	+ G	- 2R	- L)
- 0.000031	T COS (W	- G		- L)
+ 0.000030	COS (W			- L)
+ 0.000027	COS (W	- G		- L	+ 2V)
- 0.000025	SIN (W	+ 3G		- L	+ V)
- 0.000025	SIN (W	- 3G		- L	- 3V)
- 0.000022	COS (W			- L	+ 3V)
+ 0.000022	COS (W		+ C	- 2L)
+ 0.000022	COS (W		- C	- L	- 2V)
+ 0.000021	COS (W	+ 2G		- L	- 2V)
- 0.000021	COS (W	- 2G		- L	+ 2V)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF VENUS
VENUS PHI

E15

AU							
0.692832	SIN (W		-	L)
- 0.041295	SIN (-	2L)
+ 0.032116	SIN (G)
- 0.029847	SIN (W		+	L)
- 0.008520	SIN (R	+ L)
- 0.008520	SIN (R	- L)
- 0.007087	SIN (W		- L - V)
+ 0.002364	SIN (W		- L + V)
- 0.001038	SIN (G	- 2L)
+ 0.000608	SIN (W	- 2R	- L)
- 0.000346	SIN (G	+ 2L)
+ 0.000305	SIN (W		+ L - V)
- 0.000148	COS (W		- L)
- 0.000102	SIN (W		+ L + V)
+ 0.000087	SIN (R	+ L - V)
+ 0.000087	SIN (R	- L - V)
- 0.000080	T	SIN (N)
- 0.000079	SIN (G)
+ 0.000068	SIN (2G)
+ 0.000046	T	SIN (2L)
- 0.000040	COS (2W		- 2L)
- 0.000040)
+ 0.000035	T	SIN (W		+ L)
- 0.000033	T	SIN (W	- L + V)
+ 0.000033	T	SIN (W	- L - V)
- 0.000032	SIN (W		- L		+ N)
+ 0.000030	SIN (- L)
- 0.000029	SIN (R	+ L + V)
- 0.000029	SIN (R	- L + V)
- 0.000026	SIN (W	- 2R	+ L)
+ 0.000025	SIN (W		- L		- N)
- 0.000025	COS (G)
+ 0.000024	SIN (4G			- 8M + 3J)
- 0.000019	SIN (G	- V)
- 0.000017	COS (2G	- 2V)
- 0.000016	COS (W	+ 2G	- L - 2V)
- 0.000016	COS (W	- 2G	- L + 2V)
+ 0.000014	SIN (W		- L + 2V)
+ 0.000012	COS (W	+ 3G	- L - 3V)
+ 0.000012	COS (W	- 3G	- L + 3V)
+ 0.000010	SIN (W		- L - 2V)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF MARS

MARS THETA

AU							
0.603602	SIN (P			L		
+ 0.397930	SIN (- M)
- 0.084850	SIN (P				+ M)
+ 0.044939	SIN (X)
+ 0.028101	SIN (P			- L)
+ 0.009999	SIN (G			+ M)
- 0.006317	SIN (X			- M)
+ 0.003334	SIN (G			+ L)
+ 0.002092	SIN (X			+ M)
+ 0.001962	SIN (P				+ 2M)
+ 0.000661	SIN (P				- 2M)
- 0.000326	T SIN (P			L)
- 0.000208	T SIN (+ 3M	,
+ 0.000162	SIN (P)
+ 0.000152	SIN (P	- 2X)
+ 0.000145	SIN (X			+ 2M)
- 0.000062	COS (P)
+ 0.000059	SIN (P				- N)
+ 0.000050	SIN (X			- 2M)
- 0.000043	COS (P				- M + 2J)
+ 0.000042	SIN (2G		+ L)
+ 0.000040	SIN (P				- M + J)
+ 0.000039	SIN (L)
- 0.000037	COS (P				- 2M + 2J)
- 0.000035	T SIN (P				- M)
+ 0.000034	COS (P				- M + J)
- 0.000030	T SIN (G		- L)
- 0.000022	SIN (P	- 2X			+ M)
- 0.000021	COS (P				+ M - 2J)
+ 0.000021	SIN (P				- 3M)
+ 0.000019	COS (P + G				- 2M)
+ 0.000019	COS (P - G				+ 2M)
- 0.000017	SIN (P				+ M - J)
- 0.000016	COS (2P			- L)
- 0.000016	COS ()
+ 0.000015	T SIN (P				+ M)
+ 0.000015	COS (P				+ M - J)
- 0.000014	SIN (2G		- L)
+ 0.000012	SIN (X			+ 3M)
+ 0.000010	COS (P + G				- M)
+ 0.000010	COS (P - G				+ M)
- 0.000010	COS (G			- L)
- 0.000010	COS (P + 2G				- 3M)
- 0.000010	COS (P - 2G				+ 3M)
- 0.000010	T SIN (G			+ L)

MARS RHO

AU							
3.352333							
+ 3.032879	COS (P			- L)
- 0.432759	COS (M)
- 0.426341	COS (P			- L	- M)
+ 0.141198	COS (P			- L	+ M)
- 0.076207	COS (P + G			- L)
- 0.033490	COS (G)
+ 0.025407	COS (P - G			- L)
+ 0.010676	COS (P + G			- L	- M)
- 0.010061	COS (2M)
+ 0.009859	COS (P			- L	+ 2M)
- 0.003572	COS (P - G			- L	- M)
- 0.003548	COS (P + G			- L	+ M)
+ 0.003321	COS (P			- L	- 2M)
+ 0.001219	COS (P - G			- L	+ M)
+ 0.000812	COS (P			- L	+ 3M)
+ 0.000768	COS (P - 2X			- L)

(SERIES CONTINUED ON FOLLOWING PAGE)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF MARS

E17

(SERIES CONTINUED FROM PRECEDING PAGE)

AU						
- 0.000479	COS (P	- L	3M)
- 0.000399	T COS (P	- L	- M)
- 0.000385	T COS (P	- L	M)
+ 0.000320	COS (P - 2G	- L)
+ 0.000313	SIN (P	- L)
- 0.000248	COS (P + G	- L	+ 2M)
+ 0.000214	SIN (P	- L	- M + 2J)
- 0.000213	SIN (P	- L	2M - 2J)
+ 0.000199	COS (P	- L	- M + J)
+ 0.000197	T COS (P + G	- L)
+ 0.000187	SIN (P	- L	- 2M + 2J)
- 0.000173	SIN (P	- L	- M + J)
+ 0.000172	COS (P	- L	M - J)
+ 0.000150	SIN (P	- L	M - J)
+ 0.000142	T COS (P	- L	+ M)
- 0.000140	COS (2G	- L)
- 0.000122	SIN (P	- L	M - 2J)
- 0.000120	COS (P + G	- L	- 2M)
+ 0.000119	COS (P - G	- L	+ 2M)
- 0.000111	COS (P	- L	+ M)
+ 0.000107	SIN (P	- L	+ M - 2J)
+ 0.000106	COS (P + 2G	- L)
+ 0.000104	COS (P	- L	- 3M)
- 0.000097	COS (P	- L	4M)
- 0.000097	SIN (P + G	- L	- 2M)
- 0.000097	SIN (P - G	- L	+ 2M)
+ 0.000087	T COS (G	- L)
- 0.000085	COS (P	- L	+ M - J)
+ 0.000081	SIN (2P	- L)
- 0.000078	SIN (P + G	- L	- J)
- 0.000074	SIN (P	- L	+ M - J)
- 0.000067	SIN (P	- L	M)
- 0.000065	T COS (P - G	- L)
- 0.000057	T COS (P	- L	2M)
- 0.000055	SIN (P - 2G	- L	+ 2V)
- 0.000052	SIN (P + G	- L	- M)
- 0.000052	SIN (P - G	- L	+ M)
- 0.000051	SIN (P	- L	- J)
+ 0.000051	SIN (P + 2G	- L	- 3M)
+ 0.000051	SIN (P - 2G	- L	+ 3M)
+ 0.000050	COS (P	- L	+ 4M)
- 0.000047	COS (P	+ C	- 2L)
+ 0.000047	COS (P	- C)
+ 0.000046	SIN (P	- L	+ 2M - 2J)
- 0.000046	SIN (P	- L	2J)
- 0.000045	COS (P - 2G	- L	- M)
- 0.000044	T COS (P	- L)
- 0.000042	COS (P	- L	J)
- 0.000040	COS (P	- L	+ V - 3M)
+ 0.000040	COS (P	- L	- V + 3M)
+ 0.000038	COS (P	- 2X	- M)
+ 0.000037	SIN (P	- L	J)
+ 0.000036	SIN (2G	- L	- 2V)

MARS PHI

AU						
- 0.958565	SIN (P	- L)
+ 0.272086	SIN (P	- L	M)
- 0.062639	SIN (2P	- L)
- 0.041295	SIN (P	+ L)
+ 0.024086	SIN (P + G	- L)
- 0.009748	SIN (P + X	- L)
+ 0.009748	SIN (P - X	- L)
+ 0.008805	SIN (2P	- L	- M)
- 0.008030	SIN (P - G	- L)

(SERIES CONTINUED ON FOLLOWING PAGE)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF MARS

(SERIES CONTINUED FROM PRECEDING PAGE)

AU					
+ 0.003134	SIN (2M
- 0.002916	SIN (2P			+ M
+ 0.001371	SIN (P	+ X		- M
- 0.001371	SIN (P	- X		+ M
+ 0.001038	SIN (P - G		+ L)
- 0.000454	SIN (P	+ X)
+ 0.000454	SIN (P	- X)
- 0.000368	SIN (2X)
- 0.000346	SIN (P + G		+ L)
+ 0.000339	SIN (3M
+ 0.000275	SIN (M
- 0.000204	SIN (2P		+ 2M)
- 0.000154	COS (M - 2J)
- 0.000150)
- 0.000136	SIN (M - J	N
- 0.000121	SIN ()
+ 0.000119	COS (M - J)
- 0.000112	COS (2M - 2J)
- 0.000101	SIN (P - 2G		- L)
+ 0.000093	COS (G			- 2M
- 0.000077	COS (P		- L)
+ 0.000072	T SIN (2P)
- 0.000069	SIN (2P		- 2M)
- 0.000060	T SIN (P + G		- L)
+ 0.000053	SIN (2X		- M
+ 0.000050	COS (G		- M
- 0.000049	COS (2G		- 3M
+ 0.000046	T SIN (P		+ L)
- 0.000046	T SIN (P		- L)
+ 0.000044	SIN (P		- L	- N
- 0.000038	SIN (V - 3M
- 0.000035	SIN (G		- M
- 0.000035	SIN (P		- L	+ N
- 0.000035	SIN (G		- 2M
- 0.000033	SIN (P + 2G		- L)
- 0.000032	SIN (P	+ X		+ 2M
+ 0.000032	SIN (P	- X		- 2M
- 0.000031	COS (2G		- 4M
- 0.000025	COS (P + G		- L	- J
+ 0.000024	SIN (4M
+ 0.000020	T SIN (P - G		- L)
- 0.000018	SIN (2X		+ M
- 0.000018	SIN (2P	- 2X)
- 0.000017	COS (P - 2G		- L + 2V)
- 0.000017	SIN (2P			+ 3M
+ 0.000015	SIN (P	+ C - 2L)
- 0.000015	SIN (P	- C)
- 0.000011	SIN (P	+ X		- 2M
+ 0.000011	SIN (P	- X		+ 2M

TRIGONOMETRIC SERIES FOR THE COORDINATES OF JUPITER

E19

JUPITER THETA

AU						
2.067889	SIN (Q)
+ 0.397930	SIN (Q	L	- J)
- 0.150094	SIN (Q		- J)
- 0.108763	COS (Q)
+ 0.050332	T COS (Q		+ J)
+ 0.049985	SIN (Q)
+ 0.025047	COS (Q)
+ 0.009999	SIN (Q	G	- L)
+ 0.007889)
+ 0.006005	SIN (Q		J)
+ 0.005489	COS (Q		+ 2J - 5S)
+ 0.005469	COS (Q		- 2J + 5S)
- 0.004214	T COS (Q		- J)
+ 0.003334	SIN (Q	G	+ L)
- 0.002624	COS (Q		2J)
- 0.002499	SIN (Q		+ 2J - 5S)
+ 0.002288	SIN (Q		- 2J + 5S)
- 0.002095	COS (Q		- J)
- 0.001729	T SIN (Q)
+ 0.001681	SIN (Q		+ 2J)
+ 0.001403	SIN (Q		- 2J + 2S)
- 0.001191	SIN (Q		- 3J + 5S)
+ 0.001035	T COS (Q		+ J)
+ 0.000764	SIN (Q		- J + 2S)
+ 0.000695	T SIN (Q		J)
- 0.000615	SIN (Q)
- 0.000587	COS (Q		- 2J + 2S)
- 0.000565	SIN (Q		+ J - 2S)
+ 0.000520	COS (Q		- J + S)
+ 0.000511	COS (Q		+ J)
+ 0.000484	T COS (Q)
+ 0.000483	SIN (Q		- 2J)
+ 0.000467	COS (Q		- 2J + 3S)
- 0.000424	SIN (Q		+ 2J - 2S)
- 0.000383	T SIN (Q		- J)
+ 0.000364	SIN (Q		3J - 5S)
- 0.000349	T SIN (Q		- 2J + 3S)
+ 0.000340	COS (Q		+ 2J - 5S)
- 0.000296	SIN (Q		+ 3J - 5S)
+ 0.000284	COS (Q		J - 5S)
+ 0.000278	SIN (Q		- J + 5S)
+ 0.000271	COS (Q		+ 3J - 5S)
- 0.000208	T SIN (Q	L	+ J - S)
+ 0.000201	SIN (Q)
+ 0.000193	COS (Q		+ 2J - 3S)
- 0.000168	COS (Q		+ 2J - 2S)
- 0.000161	T COS (Q		+ 2J - 5S)
+ 0.000151	COS (Q		3J - 5S)
+ 0.000145	SIN (Q		+ 2J - 3S)
+ 0.000136	SIN (Q		2J)
+ 0.000135	T SIN (Q		+ J)
+ 0.000126	SIN (3Q)
+ 0.000121	SIN (Q		- J + 5S)
+ 0.000113	COS (Q		- 3J + 3S)
- 0.000108	COS (Q		J - 5S)
			- N)

JUPITER RHO

AU						
28.163503)
+ 10.389747	COS (Q		- L)
- 2.615916	COS (Q)
- 0.754092	COS (Q		- L - J)
- 0.261061	COS (Q + G		- L)
- 0.252992	T SIN (Q		- L)

(SERIES CONTINUED ON FOLLOWING PAGE)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF JUPITER

(SERIES CONTINUED FROM PRECEDING PAGE)

AU							
+ 0.251110	COS (Q		- L	+ J)
- 0.127118	SIN (Q		- L)
+ 0.087037	COS (Q - G		- L)
- 0.033490	COS (G)
- 0.031175	COS (2J)
- 0.027578	SIN (Q		- L	+ 2J - 5S)
- 0.027479	SIN (Q		- L	- 2J + 5S)
+ 0.027112	COS (2J - 2S)
+ 0.021175	T SIN (Q		- L - J)
+ 0.018948	COS (Q + G		- L - J)
- 0.017677	COS (Q			3J - 5S)
- 0.012556	COS (Q		- L + 2J - 5S)
+ 0.011496	COS (Q		- L - 2J + 5S)
- 0.011382	SIN (2J - 2S)
+ 0.010554	SIN (Q		- L - J)
- 0.009853	T SIN (Q			J)
- 0.009062	T COS (J)
+ 0.008450	COS (Q		- L + 2J)
+ 0.007176	SIN (2J - 3S)
+ 0.007047	COS (Q		- L - 2J + 2S)
+ 0.006790	SIN (Q			3J - 5S)
+ 0.006481	SIN (J - S)
- 0.006416	SIN (J - 5S)
+ 0.006357	T SIN (Q + G		- L + J)
- 0.006317	COS (Q - G		- L - J)
- 0.006310	COS (Q + G		- L + J)
- 0.005986	COS (Q		- L - 3J + 5S)
- 0.005328	COS (2J - 3S)
- 0.005198	T SIN (Q		- L + J)
- 0.004804	SIN (J)
+ 0.003837	COS (Q		- L - J + 2S)
- 0.003217	T COS (Q)
+ 0.003168	SIN (Q + G		- L)
- 0.003088	COS (Q		- L)
+ 0.002949	SIN (Q		- L - 2J + 2S)
- 0.002839	COS (Q		- L + J - 2S)
+ 0.002827	SIN (Q			3J - 3S)
- 0.002750	COS (J - 5S)
- 0.002611	SIN (Q		- L - J + S)
- 0.002587	SIN (Q		- L + J)
+ 0.002527	COS (Q			J - 2S)
+ 0.002424	COS (Q		- L - 2J)
- 0.002348	SIN (Q		- L - 2J + 3S)
- 0.002268	T COS (Q		- L - J)
- 0.002129	COS (Q		- L + 2J - 2S)
- 0.002119	T SIN (Q - G		- L)
+ 0.002104	COS (Q - G		- L + J)
- 0.002040	SIN (2J - 5S)
- 0.001803	COS (2S)
- 0.001756	COS (Q		- L - 2J + 3S)
- 0.001756	T COS (Q		- L + 2J - 5S)
- 0.001708	SIN (Q		- L + 3J - 5S)
- 0.001426	SIN (Q		- L - J + 5S)
+ 0.001395	COS (Q		- L + 3J - 5S)
- 0.001363	SIN (Q		- L + J)
+ 0.001284	COS (3J - 3S)
+ 0.001112	SIN (J - 2S)
+ 0.001095	COS (Q - 2G		- L)
- 0.001056	SIN (Q - G		- L)
+ 0.000985	SIN (Q			S)
- 0.000968	SIN (Q		- L + 2J - 3S)
- 0.000886	SIN (J - 3S)
- 0.000845	T SIN (Q			J - 2S)
+ 0.000844	SIN (Q		- L + 2J - 2S)
+ 0.000842	SIN (2J - S)
+ 0.000808	T SIN (Q		- L + 2J - 5S)
+ 0.000787	T COS (Q		- L + J)
+ 0.000731	COS (Q		- L + 2J - 3S)
- 0.000696	COS (Q		+ L)
+ 0.000693	SIN (Q + G		- L + 2J - 5S)

(SERIES CONTINUED ON FOLLOWING PAGE)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF JUPITER

E21

(SERIES CONTINUED FROM PRECEDING PAGE)

AU							
+ 0.000690	SIN (Q + G		- L	- 2J	+ 5S)
- 0.000689	SIN (3J	- 2S)
+ 0.000666	COS (2Q		- J)
+ 0.000662	COS (J	- 3S)
+ 0.000662	T	COS (3J	- 5S)
+ 0.000662	T	COS (Q + G	- L)
+ 0.000645	COS (4J	- 5S)
+ 0.000634	COS (3Q		- L)
+ 0.000609	COS (Q		- L	- J	+ 5S)
- 0.000599	T	COS (2J)
+ 0.000593	SIN (4J	- 5S)
+ 0.000569	T	SIN (2J)
- 0.000567	SIN (Q		- L	- 3J	+ 3S)
- 0.000532	T	SIN (Q + G	- L	- J)
+ 0.000495	SIN (5S)
- 0.000472	SIN (Q		- J	+ 5S)
+ 0.000453	T	SIN (3J	- 5S)
- 0.000435	SIN (2Q			- 2J)
+ 0.000432	COS (Q		- N	- L)
- 0.000429	SIN (Q		- L	+ 2J	- 4S)
- 0.000429	SIN (Q		- L	- 2J	+ 4S)
+ 0.000424	T	COS (Q	- L	- 2J	+ 5S)
- 0.000421	COS (2G)
- 0.000373	T	COS (2J	- 2S)
- 0.000365	COS (Q		- L	+ J	- S)
+ 0.000365	COS (Q		- L	- J	+ S)
- 0.000359	COS (Q		+ N	- L)
- 0.000340	COS (Q		- L	+ 3J	- 4S)
+ 0.000340	COS (Q		- L	- 3J	+ 4S)
+ 0.000330	T	COS (J	- S)
- 0.000327	COS (2Q			+ J)
+ 0.000315	COS (Q + G		- L	+ 2J	- 5S)
+ 0.000311	COS (Q		- L	+ 3J)
- 0.000310	SIN (Q			- J	+ 2S)
+ 0.000300	COS (Q		- L	- 3J	+ 3S)
+ 0.000297	T	COS (2J	- 3S)
- 0.000289	COS (Q + G		- L	- 2J	+ 5S)

JUPITER PHI

AU								
- 0.958565	SIN (Q		- L)	
+ 0.481906	SIN (J)	
- 0.213974	SIN (2Q)	
+ 0.121291	T							
+ 0.060452								
- 0.041295	SIN (Q		+ L)	
+ 0.026395	COS (2J	- 5S)	
+ 0.024086	SIN (Q + G		- L)	
+ 0.023592	COS (Q			+ J)	
+ 0.023592	COS (Q			- J)	
+ 0.015537	SIN (2Q			- J)	
- 0.011531	SIN (2J	- 5S)	
- 0.008030	SIN (Q - G		- L)	
- 0.007660	T	COS (J)	
- 0.005240	T	COS (2Q)	
- 0.005164	SIN (2Q			+ J)	
- 0.004399	SIN (2J	- 2S)	
- 0.003820	COS (J)	
+ 0.003539	SIN (3J	- 5S)	
- 0.003422	COS (Q)	
- 0.003200	SIN (J	- 2S)	
+ 0.002889	SIN (2J)	
- 0.002829	COS (2Q				J - S)	
+ 0.001905	COS (2J	- 2S)
- 0.001819	COS ()	

(SERIES CONTINUED ON FOLLOWING PAGE)

TRIGONOMETRIC SERIES FOR THE COORDINATES OF JUPITER

(SERIES CONTINUED FROM PRECEDING PAGE)

		AU				
+	0.001590	COS (2J	- 3S)
+	0.001499	T SIN (J)
-	0.001304	SIN (0		+ J)
+	0.001304	SIN (0		- J)
+	0.001192	SIN (2J	- 3S)
-	0.001045	T SIN (2J	- 5S)
+	0.001038	SIN (Q - G	+ L)
+	0.000951	COS (3J	- 5S)
+	0.000684	COS (J	- 5S)
+	0.000571	COS (Q		+ 2J)
+	0.000571	COS (Q		- 2J)
-	0.000570	COS (2Q		+ 2J	- 5S)
-	0.000568	COS (2Q		- 2J	+ 5S)
-	0.000480	T COS (2J	- 5S)
+	0.000437	T COS (2Q		- J)
-	0.000412	SIN (N)
+	0.000411	COS (2J	- 4S)
-	0.000350	SIN (J	- S)
-	0.000346	SIN (Q + G	+ L)
+	0.000343	COS (3J	- 3S)
-	0.000326	SIN (3J	- 4S)
+	0.000303	T SIN (2Q)
-	0.000292	SIN (J	- 5S)
+	0.000259	SIN (2Q		+ 2J	- 5S)
-	0.000237	SIN (2Q		- 2J	+ 5S)
+	0.000231	COS (2Q		- J)
-	0.000217	SIN (S)
+	0.000212	COS (S)
+	0.000208	SIN (3U	+ 2J	- 6S)
-	0.000199	COS (4J	- 10S)
-	0.000195	SIN (J	- 3S)
+	0.000180	COS (3J	- 4S)
-	0.000177	SIN (4J	- 10S)
-	0.000176	COS (J	- 3S)
-	0.000176	SIN (2Q		+ 2J)
+	0.000167	T COS (2J)
-	0.000150	T SIN (Q		+ J)
+	0.000150	T SIN (Q		- J)
-	0.000145	SIN (2Q		- 2J	+ 2S)
-	0.000144	SIN (3J	- 3S)
+	0.000137	COS (S)
+	0.000124	SIN (2Q		- 3J	+ 5S)
-	0.000120	T COS (Q		+ J)
-	0.000120	T COS (Q		- J)
-	0.000107	T COS (2Q		+ J)
-	0.000107	SIN (J)
-	0.000101	SIN (Q - 2G	- L)

Section F: STELLAR TABLES

STAR POSITIONS FOR YEAR 1978

F1

DAYS 1 THRU 365			JD 2443509.5 TO 2443874.5				DATES JAN 1 THRU DEC 31				
			A =	365.00000000		B =	-0.00273973		C	APPT	PLACE
ID	NAV	NAME	MAG/SP	MEAN PLACE		H	R	S			
1	1	ALPHA AND ALPHERATZ	2.1 A0	SHA DEC	358.1883 28.9689	0 0.0022 0.0003	0 -0.0115 0.0049	0 0.0059 -0.0024	0 0.0009 0.0024	0 0.0009 0.0024	358.1795 28.9692
2		BETA CAS CAPH	2.4 F5	SHA DEC	358.0013 59.0286	-0.0050 0.0003	-0.0119 0.0049	0.0100 -0.0019	0.0014 0.0046	357.9889 59.0267	
3		GAMMA PEG ALGENIB	2.9 B2	SHA DEC	356.9750 15.0614	-0.0015 0.0002	-0.0115 0.0049	0.0054 -0.0023	0.0007 0.0011	356.9671 15.0630	
4		BETA HYI	2.9 G0	SHA DEC	353.8463 -77.3781	0.0105 0.0001	-0.0083 0.0049	0.0239 -0.0000	0.0015 -0.0056	353.8511 -77.3699	
5	2	ALPHA PHE ANKAA	2.4 K0	SHA DEC	353.7004 -42.4256	0.0015 0.0001	-0.0107 0.0049	0.0071 -0.0013	0.0004 -0.0041	353.6962 -42.4189	
6	3	ALPHA CAS SCHEDAR	2.3 K0	SHA DEC	350.1879 56.4169	-0.0046 -0.0001	-0.0129 0.0048	0.0095 -0.0013	-0.0001 0.0045	350.1769 56.4148	
7	4	BETA CET DIPHDA	2.2 K0	SHA DEC	349.3788 -18.1072	0.0000 -0.0001	-0.0110 0.0048	0.0055 -0.0021	-0.0001 -0.0021	349.3734 -18.1028	
8		GAMMA CAS	2-3 B0	SHA DEC	346.1579 60.5981	-0.0053 -0.0003	-0.0137 0.0048	0.0107 -0.0009	-0.0009 0.0047	346.1467 60.5954	
9		BETA AND MIRACH	2.4 M0	SHA DEC	342.8763 35.5042	-0.0026 -0.0004	-0.0125 0.0047	0.0064 -0.0015	-0.0009 0.0029	342.8683 35.5032	
10		DELTA CAS RUCHBAH	2.8 A5	SHA DEC	338.9092 60.1214	-0.0051 -0.0006	-0.0147 0.0045	0.0104 -0.0003	-0.0023 0.0046	338.8990 60.1185	
11	5	ALPHA ERI ACHERNAR	0.6 B5	SHA DEC	335.7762 -57.3483	0.0030 -0.0007	-0.0080 0.0044	0.0095 -0.0022	-0.0027 -0.0048	335.7779 -57.3420	
12		BETA ARI SHERATAN	2.7 A5	SHA DEC	331.6450 20.7011	-0.0017 -0.0009	-0.0123 0.0043	0.0054 -0.0015	-0.0020 0.0015	331.6391 20.7008	
13		ALPHA HYI	3.0 F0	SHA DEC	330.4808 -61.6764	0.0036 -0.0009	-0.0066 0.0042	0.0105 -0.0025	-0.0041 -0.0049	330.4852 -61.6703	
14		GAMMA-1 AND ALMAK	2.3 K0	SHA DEC	329.3646 42.2247	-0.0029 -0.0010	-0.0138 0.0042	0.0067 -0.0005	-0.0028 0.0033	329.3575 42.2226	
15	6	ALPHA ARI HAMAL	2.2 K2	SHA DEC	328.5179 23.3589	-0.0018 -0.0010	-0.0125 0.0041	0.0054 -0.0013	-0.0023 0.0017	328.5122 23.3582	
16		BETA TRI	3.1 A5	SHA DEC	327.9429 34.8839	-0.0024 -0.0010	-0.0133 0.0041	0.0060 -0.0008	-0.0027 0.0027	327.9365 34.8822	
17		ALPHA UMI POLARIS	2.1 F8	SHA DEC	327.4950 89.1642	-0.1591 -0.0011	-0.2022 0.0041	0.3346 0.0019	-0.1524 0.0052	327.3872 89.1599	
18	7	THETA ERI ACAMAR	3.4 A2	SHA DEC	315.6433 -40.3922	0.0009 -0.0015	-0.0083 0.0034	0.0058 -0.0036	-0.0043 -0.0033	315.6444 -40.3887	
19	8	ALPHA CET MENKAR	2.8 M0	SHA DEC	314.7183 4.0042	-0.0009 -0.0015	-0.0116 0.0034	0.0043 -0.0020	-0.0033 -0.0001	314.7149 4.0044	
20		BETA PER ALGOL	2-3 B8	SHA DEC	313.3171 40.8719	-0.0025 -0.0016	-0.0145 0.0033	0.0056 0.0003	-0.0045 0.0027	313.3118 40.8693	

F2

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
					0 0	0 -0.0030	0 -0.0160	0 0.0063	0 -0.0058	0 309.3090
21	9	ALPHA PER MIRFAK	1.9 F5	SHA DEC	309.3142 49.7842	-0.0017	0.0030	0.0011	0.0030	49.7809
22		ETA TAU ALCYONE	3.0 B5	SHA DEC	303.4567 24.0381	-0.0016 -0.0019	-0.0132 0.0026	0.0040 -0.0005	-0.0046 0.0012	303.4531 24.0362
23		ZETA PER	2.9 B1	SHA DEC	301.8138 31.8194	-0.0018 -0.0020	-0.0140 0.0025	0.0042 0.0001	-0.0050 0.0016	301.8100 31.8171
24		EPSILON PER	3.0 B1	SHA DEC	300.9067 39.9478	-0.0021 -0.0020	-0.0150 0.0024	0.0046 0.0008	-0.0056 0.0021	300.9027 39.9449
25		GAMMA ERI	3.2 K5	SHA DEC	300.7496 -13.5703	-0.0004 -0.0020	-0.0103 0.0024	0.0036 -0.0031	-0.0045 -0.0013	300.7485 -13.5698
26	10	ALPHA TAU ALDEBARAN	1.1 K5	SHA DEC	291.3358 16.4661	-0.0012 -0.0022	-0.0127 0.0016	0.0029 -0.0009	-0.0051 0.0004	291.3334 16.4643
27		IOTA AUR	2.9 K2	SHA DEC	286.1104 33.1325	-0.0015 -0.0023	-0.0145 0.0012	0.0029 0.0007	-0.0061 0.0010	286.1078 33.1298
28		BETA ERI	2.9 A3	SHA DEC	283.3083 -5.1139	-0.0007 -0.0024	-0.0109 0.0010	0.0022 -0.0026	-0.0053 -0.0006	283.3074 -5.1152
29	11	BETA ORI RIGEL	0.3 B8	SHA DEC	281.6300 -8.2261	-0.0007 -0.0024	-0.0106 0.0008	0.0021 -0.0029	-0.0054 -0.0007	281.6293 -8.2274
30	12	ALPHA AUR CAPELLA	0.2 G0	SHA DEC	281.2346 45.9772	-0.0017 -0.0024	-0.0164 0.0008	0.0029 0.0019	-0.0076 0.0012	281.2324 45.9741
31	13	GAMMA ORI BELLATRIX	1.7 B2	SHA DEC	279.0125 6.3308	-0.0009 -0.0024	-0.0119 0.0006	0.0018 -0.0017	-0.0054 -0.0002	279.0111 6.3289
32	14	BETA TAU ELNATH	1.8 B8	SHA DEC	278.7750 28.5903	-0.0012 -0.0024	-0.0140 0.0006	0.0020 0.0004	-0.0061 0.0005	278.7729 28.5876
33		BETA LEP	3.0 G0	SHA DEC	278.1746 -20.7761	-0.0005 -0.0024	-0.0095 0.0005	0.0019 -0.0038	-0.0058 -0.0010	278.1751 -20.7773
34		DELTA ORI	2.5 B0	SHA DEC	277.2796 -0.3144	-0.0008 -0.0025	-0.0113 0.0005	0.0017 -0.0023	-0.0054 -0.0004	277.2786 -0.3162
35		ALPHA LEP	2.7 F0	SHA DEC	277.0604 -17.8369	-0.0006 -0.0025	-0.0098 0.0004	0.0017 -0.0036	-0.0057 -0.0009	277.0607 -17.8383
36		IOTA ORI	2.9 O5	SHA DEC	276.4108 -5.9233	-0.0007 -0.0025	-0.0108 0.0004	0.0016 -0.0027	-0.0055 -0.0006	276.4102 -5.9250
37	15	EPSILON ORI ALNILAM	1.7 B0	SHA DEC	276.2258 -1.2150	-0.0008 -0.0025	-0.0112 0.0004	0.0016 -0.0023	-0.0055 -0.0004	276.2249 -1.2168
38		ZETA TAU	3.0 B3	SHA DEC	275.9179 21.1303	-0.0010 -0.0025	-0.0133 0.0004	0.0017 -0.0003	-0.0059 0.0002	275.9161 21.1278
39		ALPHA COL PHACT	2.7 B5	SHA DEC	275.2871 -34.0850	-0.0004 -0.0025	-0.0080 0.0003	0.0018 -0.0047	-0.0066 -0.0011	275.2893 -34.0862
40		ZETA ORI ALNITAK	2.0 B0	SHA DEC	275.0879 -1.9533	-0.0008 -0.0025	-0.0112 0.0003	0.0015 -0.0024	-0.0055 -0.0005	275.0870 -1.9552
41		KAPPA ORI	2.2 B0	SHA DEC	273.3221 -9.6764	-0.0007 -0.0025	-0.0105 0.0001	0.0013 -0.0030	-0.0056 -0.0006	273.3217 -9.6782
42	16	ALPHA ORI BETELGEUSE	0-1 M0	SHA DEC	271.5050 7.4042	-0.0009 -0.0025	-0.0120 -0.0000	0.0012 -0.0016	-0.0056 -0.0003	271.5038 7.4019
43		BETA AUR MENKALINAN	2.1 A0	SHA DEC	270.5213 44.9467	-0.0012 -0.0025	-0.0163 -0.0001	0.0015 0.0020	-0.0079 0.0004	270.5198 44.9437

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
44		THETA AUR	2.7 A0	SHA DEC	0 270.4450 37.2122	0 -0.0011 -0.0025	0 -0.0151 -0.0001	0 0.0013 0.0013	0 -0.0070 0.0003	0 270.4434 37.2094
45		BETA CMA MIRZAM	2.0 B1	SHA DEC	264.5675 -17.9442	-0.0008 -0.0025	-0.0098 -0.0006	0.0006 -0.0037	-0.0060 -0.0005	264.5678 -17.9465
46	17	ALPHA CAR CANOPUS	-0.9 F0	SHA DEC	264.1342 -52.6833	-0.0007 -0.0025	-0.0049 -0.0007	0.0008 -0.0055	-0.0093 -0.0005	264.1404 -52.6857
47		GAMMA GEM ALHENNA	1.9 A0	SHA DEC	260.8896 16.4192	-0.0008 -0.0025	-0.0128 -0.0009	0.0002 -0.0007	-0.0059 -0.0004	260.8883 16.4165
48	18	ALPHA CMA A SIRIUS	-1.6 A0	SHA DEC	258.9563 -16.6856	-0.0008 -0.0025	-0.0099 -0.0011	0.0000 -0.0036	-0.0059 -0.0003	258.9564 -16.6883
49		TAU PUP	2.8 K0	SHA DEC	257.6529 -50.5881	-0.0010 -0.0025	-0.0055 -0.0012	-0.0002 -0.0055	-0.0089 -0.0000	257.6580 -50.5912
50	19	EPSILON CMA ADHARA	1.6 B1	SHA DEC	255.5596 -28.9414	-0.0010 -0.0025	-0.0087 -0.0014	-0.0003 -0.0045	-0.0065 -0.0001	255.5607 -28.9445
51		OMICRON-2 CMA	3.1 B5	SHA DEC	254.4738 -23.8003	-0.0010 -0.0025	-0.0093 -0.0015	-0.0004 -0.0041	-0.0062 -0.0001	254.4743 -23.8034
52		DELTA CMA WEZEN	2.0 F8	SHA DEC	253.1258 -26.3575	-0.0010 -0.0025	-0.0090 -0.0016	-0.0006 -0.0043	-0.0063 -0.0000	253.1266 -26.3608
53		PI PUP	2.7 K5	SHA DEC	250.9083 -37.0572	-0.0012 -0.0025	-0.0079 -0.0018	-0.0009 -0.0049	-0.0070 0.0002	250.9102 -37.0608
54		ETA CMA	2.4 B5	SHA DEC	249.1938 -29.2594	-0.0011 -0.0025	-0.0088 -0.0019	-0.0010 -0.0045	-0.0064 0.0002	249.1946 -29.2631
55		BETA CMI	3.1 B8	SHA DEC	248.5104 8.3347	-0.0007 -0.0025	-0.0120 -0.0020	-0.0009 -0.0015	-0.0056 -0.0006	248.5093 8.3318
56		SIGMA PUP	3.3 K5	SHA DEC	247.8671 -43.2564	-0.0014 -0.0025	-0.0071 -0.0020	-0.0014 -0.0051	-0.0076 0.0006	247.8697 -43.2604
57		ALPHA GEM A CASTOR	2.0 A0	SHA DEC	246.7013 31.9378	-0.0004 -0.0024	-0.0141 -0.0021	-0.0013 0.0008	-0.0065 -0.0011	246.7003 31.9353
58		ALPHA GEM B	2.8 A0	SHA DEC	246.7004 31.9378	-0.0004 -0.0024	-0.0141 -0.0021	-0.0013 0.0008	-0.0065 -0.0011	246.6995 31.9353
59	20	ALPHA CMI A PROCYON	0.5 F5	SHA DEC	245.4625 5.2822	-0.0007 -0.0024	-0.0118 -0.0022	-0.0012 -0.0017	-0.0055 -0.0005	245.4614 5.2792
60	21	BETA GEM POLLUX	1.2 K0	SHA DEC	244.0071 28.0806	-0.0004 -0.0024	-0.0137 -0.0023	-0.0015 0.0004	-0.0062 -0.0011	244.0060 28.0781
61		ZETA PUP	2.3 0	SHA DEC	239.2975 -39.9406	-0.0016 -0.0023	-0.0079 -0.0027	-0.0023 -0.0049	-0.0069 0.0010	239.2988 -39.9452
62		RHO PUP	2.9 F5	SHA DEC	238.3483 -24.2400	-0.0013 -0.0023	-0.0095 -0.0027	-0.0020 -0.0040	-0.0058 0.0005	238.3481 -24.2442
63		GAMMA-2 VEL	1.9 0	SHA DEC	237.7867 -47.2711	-0.0019 -0.0023	-0.0069 -0.0028	-0.0028 -0.0051	-0.0077 0.0013	237.7890 -47.2761
64	22	EPSILON CAR AVIOR	1.7 *	SHA DEC	234.4842 -59.4383	-0.0028 -0.0023	-0.0047 -0.0030	-0.0042 -0.0052	-0.0100 0.0019	234.4891 -59.4440
65		DELTA VEL	2.0 A0	SHA DEC	228.9758 -54.6275	-0.0028 -0.0021	-0.0063 -0.0034	-0.0045 -0.0050	-0.0084 0.0022	228.9783 -54.6335
66		IOTA UMA	3.1 A5	SHA DEC	225.5729 48.1289	0.0009 -0.0020	-0.0152 -0.0036	-0.0043 0.0018	-0.0070 -0.0027	225.5732 48.1278

F4

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT	PLACE
67	23	LAMBDA VEL SUHAIL	2.2 K5	SHA DEC	0 223.2038 -43.3433	0 -0.0023 -0.0020	0 -0.0083 -0.0037	0 -0.0042 -0.0045	0 -0.0062 0.0021	0 223.2035 -43.3492	
68	24	BETA CAR MIAPLACIDUS	1.8 A0	SHA DEC	221.7583 -69.6267	-0.0052 -0.0019	-0.0028 -0.0038	-0.0091 -0.0047	-0.0127 0.0032	221.7644 -69.6337	
69		IOTA CAR	2.2 F0	SHA DEC	220.8746 -59.1828	-0.0036 -0.0019	-0.0061 -0.0038	-0.0063 -0.0047	-0.0085 0.0029	220.8764 -59.1895	
70		KAPPA VEL	2.6 B3	SHA DEC	219.6421 -54.9164	-0.0032 -0.0019	-0.0070 -0.0039	-0.0058 -0.0046	-0.0075 0.0028	219.6428 -54.9230	
71	25	ALPHA HYA ALPHARD	2.2 K2	SHA DEC	218.3733 -8.5625	-0.0011 -0.0018	-0.0109 -0.0040	-0.0034 -0.0028	-0.0043 0.0002	218.3711 -8.5665	
72		N VEL	3.0 K5	SHA DEC	217.3621 -56.9369	-0.0036 -0.0018	-0.0069 -0.0040	-0.0064 -0.0045	-0.0076 0.0030	217.3627 -56.9438	
73		EPSILON LEO	3.1 G0	SHA DEC	213.8488 23.8761	0.0000 -0.0017	-0.0125 -0.0042	-0.0040 -0.0005	-0.0043 -0.0020	213.8468 23.8744	
74	26	ALPHA LEO REGULUS	1.3 B8	SHA DEC	208.1996 12.0753	-0.0004 -0.0015	-0.0118 -0.0044	-0.0041 -0.0015	-0.0035 -0.0013	208.1969 12.0729	
75		GAMMA-1 LEO ALGEIBA	2.6 K0	SHA DEC	205.3096 19.9533	-0.0000 -0.0014	-0.0121 -0.0045	-0.0045 -0.0010	-0.0034 -0.0020	205.3070 19.9517	
76		THETA CAR	3.0 B0	SHA DEC	199.4579 -64.2789	-0.0055 -0.0012	-0.0082 -0.0047	-0.0104 -0.0034	-0.0063 0.0043	199.4546 -64.2867	
77		MU VEL	2.8 G5	SHA DEC	198.5454 -49.3036	-0.0034 -0.0011	-0.0097 -0.0047	-0.0070 -0.0034	-0.0041 0.0035	198.5412 -49.3106	
78		BETA UMA MERAK	2.4 A0	SHA DEC	194.8692 56.5006	0.0027 -0.0010	-0.0130 -0.0048	-0.0085 0.0007	-0.0042 -0.0045	194.8696 56.5017	
79	27	ALPHA UMA DUBHE	1.9 K0	SHA DEC	194.4046 61.8700	0.0036 -0.0010	-0.0134 -0.0048	-0.0100 0.0009	-0.0049 -0.0048	194.4064 61.8714	
80		PSI UMA	3.1 K0	SHA DEC	192.8921 44.6181	0.0015 -0.0009	-0.0123 -0.0048	-0.0067 -0.0001	-0.0030 -0.0040	192.8905 44.6187	
81		DELTA LEO	2.6 A3	SHA DEC	191.7650 20.6444	0.0001 -0.0009	-0.0117 -0.0049	-0.0052 -0.0014	-0.0022 -0.0022	191.7615 20.6434	
82	28	BETA LEO DENEBOLA	2.2 A2	SHA DEC	183.0154 14.6950	-0.0002 -0.0005	-0.0114 -0.0049	-0.0053 -0.0018	-0.0013 -0.0018	183.0108 14.6938	
83		GAMMA UMA PHECDA	2.5 A0	SHA DEC	181.8304 53.8169	0.0026 -0.0004	-0.0113 -0.0049	-0.0086 -0.0004	-0.0019 -0.0047	181.8292 53.8188	
84		DELTA CEN	2.9 B3	SHA DEC	178.1971 -50.6000	-0.0039 -0.0003	-0.0117 -0.0049	-0.0081 -0.0021	-0.0012 0.0041	178.1885 -50.6068	
85	29	GAMMA CRV GIENAH	2.8 B8	SHA DEC	176.3321 -17.4200	-0.0016 -0.0002	-0.0115 -0.0049	-0.0054 -0.0023	-0.0006 0.0013	176.3253 -17.4239	
86	30	ALPHA CRU A ACRUX	1.6 B1	SHA DEC	173.6592 -62.9772	-0.0058 -0.0001	-0.0127 -0.0049	-0.0115 -0.0014	-0.0007 0.0049	173.6477 -62.9846	
87		ALPHA CRU B	2.1 B3	SHA DEC	173.6567 -62.9778	-0.0058 -0.0001	-0.0127 -0.0049	-0.0115 -0.0014	-0.0007 0.0049	173.6452 -62.9852	
88	31	GAMMA CRU GACRUX	1.6 M3	SHA DEC	172.5158 -56.9903	-0.0047 -0.0000	-0.0126 -0.0049	-0.0096 -0.0015	-0.0004 0.0045	172.5052 -56.9973	
89		BETA CRV	2.8 G5	SHA DEC	171.6929 -23.2753	-0.0019 0.0000	-0.0117 -0.0049	-0.0057 -0.0022	-0.0001 0.0019	171.6853 -23.2796	

ID	NAV	NAME	MAG/SP	MEAN PLACE	H	R	S	C	APPT	PLACE
90		ALPHA MUS	2.9 B3	SHA DEC 0 -69.0144	171.0358 0.0000	-0.0074 -0.0048	-0.0138 -0.0010	-0.0146 0.0052	-0.0001 0.0001	171.0217 -69.0220
91		GAMMA CEN MUHLIFAIN	2.4 A0	SHA DEC 169.9263 -48.8392	169.9263 0.0001	-0.0037 -0.0048	-0.0125 -0.0015	-0.0080 0.0040	0.0001 0.0040	169.9162 -48.8455
92		GAMMA VIR	2.9 F0	SHA DEC 169.8642 -1.3292	169.8642 0.0001	-0.0009 -0.0048	-0.0114 -0.0022	-0.0052 -0.0003	0.0001 -0.0003	169.8575 -1.3312
93		BETA CRU MIMOSA	1.5 B1	SHA DEC 168.3938 -59.5689	168.3938 0.0002	-0.0051 -0.0048	-0.0133 -0.0011	-0.0103 0.0047	0.0004 0.0047	168.3816 -59.5758
94	32	EPSILON UMA ALIOTH	1.7 A0	SHA DEC 166.7338 56.0789	166.7338 0.0002	0.0030 -0.0048	-0.0094 -0.0014	-0.0094 -0.0049	0.0007 -0.0049	166.7313 56.0817
95		ALPHA-2 CVN COR CAROLI	2.9 A0	SHA DEC 166.2500 38.4367	166.2500 0.0003	0.0012 -0.0048	-0.0103 -0.0019	-0.0067 -0.0038	0.0005 0.0038	166.2455 38.4384
96		EPSILON VIR	2.9 K0	SHA DEC 164.7300 11.0769	164.7300 0.0003	-0.0003 -0.0047	-0.0111 -0.0023	-0.0053 -0.0015	0.0006 -0.0015	164.7236 11.0764
97		IOTA CEN	2.9 A2	SHA DEC 160.1613 -36.5967	160.1613 0.0005	-0.0026 -0.0046	-0.0127 -0.0013	-0.0065 0.0030	0.0013 0.0030	160.1510 -36.6014
98		ZETA UMA MIZAR	2.4 A2	SHA DEC 159.2396 55.0397	159.2396 0.0006	0.0027 -0.0046	-0.0086 -0.0020	-0.0090 -0.0048	0.0019 -0.0048	159.2361 55.0428
99	33	ALPHA VIR SPICA	1.2 B2	SHA DEC 158.9921 -11.0469	158.9921 0.0006	-0.0013 -0.0045	-0.0117 -0.0020	-0.0053 0.0012	0.0012 0.0007	158.9838 -11.0493
100		EPSILON CEN	2.6 B1	SHA DEC 155.3792 -53.3550	155.3792 0.0007	-0.0041 -0.0044	-0.0143 -0.0004	-0.0085 0.0042	0.0025 0.0042	155.3655 -53.3606
101	34	ETA UMA ALKAIID	1.9 B3	SHA DEC 153.3313 49.4225	153.3313 0.0008	0.0020 -0.0043	-0.0086 -0.0025	-0.0078 -0.0044	0.0026 -0.0044	153.3264 49.4255
102		ETA BOO	2.8 G0	SHA DEC 151.5908 18.5075	151.5908 0.0009	-0.0000 -0.0043	-0.0105 -0.0026	-0.0053 -0.0021	0.0019 -0.0021	151.5836 18.5083
103		ZETA CEN	3.1 B2	SHA DEC 151.4604 -47.1806	151.4604 0.0009	-0.0034 -0.0043	-0.0140 -0.0004	-0.0074 0.0027	0.0027 0.0037	151.4473 -47.1855
104	35	BETA CEN HADAR	0.9 B1	SHA DEC 149.4354 -60.2678	149.4354 0.0010	-0.0049 -0.0042	-0.0160 -0.0004	-0.0100 0.0041	0.0041 0.0044	149.4184 -60.2733
105	36	THETA CEN MENKENT	2.3 K0	SHA DEC 148.6546 -36.2625	148.6546 0.0010	-0.0025 -0.0041	-0.0133 -0.0007	-0.0061 0.0028	0.0026 0.0028	148.6428 -36.2663
106	37	ALPHA BOO ARCTURUS	0.2 K0	SHA DEC 146.3358 19.2964	146.3358 0.0011	-0.0000 -0.0040	-0.0103 -0.0028	-0.0051 -0.0021	0.0025 0.0021	146.3282 19.2976
107		GAMMA BOO	3.0 F0	SHA DEC 142.2021 38.4039	142.2021 0.0013	0.0009 -0.0038	-0.0089 -0.0032	-0.0060 -0.0034	0.0034 -0.0034	142.1952 38.4067
108		ETA CEN	2.6 *	SHA DEC 141.4742 -42.0619	141.4742 0.0013	-0.0028 -0.0038	-0.0142 -0.0000	-0.0063 0.0030	0.0037 0.0030	141.4606 -42.0656
109	38	ALPHA CEN A RIGEL KENT.	0.3 G0	SHA DEC 140.4733 -60.7431	140.4733 0.0013	-0.0047 -0.0037	-0.0172 0.0011	-0.0094 0.0041	0.0058 0.0041	140.4543 -60.7477
110		ALPHA CEN B	1.7 K5	SHA DEC 140.4792 -60.7483	140.4792 0.0013	-0.0047 -0.0037	-0.0172 0.0011	-0.0094 0.0058	0.0058 0.0041	140.4601 -60.7529
111		ALPHA LUP	2.9 B2	SHA DEC 139.8854 -47.2947	139.8854 0.0014	-0.0031 -0.0037	-0.0149 0.0004	-0.0068 0.0033	0.0043 0.0033	139.8706 -47.2985
112		EPSILON BOO	2.7 K0	SHA DEC 138.9938 27.1661	138.9938 0.0014	0.0003 -0.0036	-0.0096 -0.0032	-0.0051 -0.0026	0.0033 0.0026	138.9859 27.1683

F6

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT	PLACE
113	39	ALPHA-2 LIB ZUBENELGENUBI	2.9 A3	SHA DEC	0 137.5854 -15.9514	0 -0.0014 0.0014	0 -0.0123 -0.0035	0 -0.0047 -0.0014	0 0.0032 0.0009	0 137.5746 -15.9526	0
114	40	BETA UMI KOCHAB	2.2 K5	SHA DEC	137.3113 74.2453	0.0066 0.0014	0.0009 -0.0035	-0.0165 -0.0032	0.0115 -0.0047	137.3068 74.2496	
115		BETA LUP	2.8 B2	SHA DEC	135.7292 -43.0464	-0.0027 0.0015	-0.0147 -0.0034	-0.0060 0.0003	0.0044 0.0029	135.7147 -43.0495	
116		BETA LIB	2.7 B8	SHA DEC	131.0450 -9.3028	-0.0011 0.0017	-0.0120 -0.0031	-0.0042 -0.0017	0.0037 0.0003	131.0342 -9.3030	
117		GAMMA TRA	3.1 A0	SHA DEC	130.7913 -68.5997	-0.0057 0.0017	-0.0211 -0.0031	-0.0113 0.0022	0.0100 0.0039	130.7651 -68.6035	
118		GAMMA UMI	3.1 A2	SHA DEC	129.8121 71.9122	0.0049 0.0017	0.0006 -0.0030	-0.0131 -0.0038	0.0119 -0.0042	129.8054 71.9166	
119		GAMMA LUP	2.9 B3	SHA DEC	126.5829 -41.0939	-0.0024 0.0018	-0.0149 -0.0028	-0.0051 0.0006	0.0052 0.0024	126.5679 -41.0959	
120	41	ALPHA CRB ALPHECCA	2.3 A0	SHA DEC	126.5613 26.7878	0.0001 0.0018	-0.0093 -0.0028	-0.0043 -0.0036	0.0044 -0.0022	126.5523 26.7904	
121		ALPHA SER	2.7 K0	SHA DEC	124.2046 6.4939	-0.0006 0.0019	-0.0109 -0.0026	-0.0038 -0.0026	0.0041 -0.0008	124.1944 6.4953	
122		BETA TRA	3.0 F0	SHA DEC	121.7025 -63.3644	-0.0040 0.0020	-0.0199 -0.0025	-0.0080 0.0024	0.0095 0.0032	121.6790 -63.3669	
123		PI SCO	3.0 B2	SHA DEC	120.6208 -26.0519	-0.0016 0.0020	-0.0135 -0.0024	-0.0039 -0.0003	0.0048 0.0012	120.6077 -26.0524	
124		DELTA SCO DSCHUBBA	2.5 B0	SHA DEC	120.2429 -22.5603	-0.0015 0.0020	-0.0132 -0.0023	-0.0038 -0.0006	0.0047 0.0010	120.2302 -22.5605	
125		BETA-1 SCO	2.9 B1	SHA DEC	118.9613 -19.7464	-0.0014 0.0020	-0.0129 -0.0023	-0.0036 -0.0007	0.0047 0.0008	118.9487 -19.7463	
126		DELTA OPH	3.0 M0	SHA DEC	116.7025 -3.6389	-0.0009 0.0021	-0.0116 -0.0021	-0.0032 -0.0020	0.0046 -0.0002	116.6912 -3.6376	
127		ETA DRA	2.9 G5	SHA DEC	114.0779 61.5636	0.0017 0.0022	-0.0029 -0.0019	-0.0064 -0.0048	0.0099 -0.0030	114.0682 61.5678	
128	42	ALPHA SCO A ANTARES	1.2 M0	SHA DEC	112.9863 -26.3844	-0.0015 0.0022	-0.0136 -0.0018	-0.0033 -0.0001	0.0053 0.0010	112.9726 -26.3841	
129		BETA HER	2.8 K0	SHA DEC	112.6821 21.5364	-0.0003 0.0022	-0.0095 -0.0018	-0.0031 -0.0037	0.0052 -0.0015	112.6719 21.5392	
130		TAU SCO	2.9 B0	SHA DEC	111.3725 -28.1717	-0.0015 0.0022	-0.0138 -0.0017	-0.0032 0.0001	0.0055 0.0010	111.3586 -28.1713	
131		ZETA OPH	2.7 B0	SHA DEC	111.0138 -10.5239	-0.0010 0.0022	-0.0122 -0.0016	-0.0028 -0.0014	0.0050 0.0001	111.0016 -10.5226	
132		ZETA HER	3.0 G0	SHA DEC	109.8858 31.6417	-0.0001 0.0022	-0.0085 -0.0015	-0.0032 -0.0043	0.0058 -0.0018	109.8757 31.6450	
133	43	ALPHA TRA ATRIÄ	1.9 K2	SHA DEC	108.4196 -68.9894	-0.0037 0.0023	-0.0237 -0.0014	-0.0072 0.0035	0.0140 0.0023	108.3900 -68.9902	
134		EPSILON SCO	2.4 K0	SHA DEC	107.8163 -34.2547	-0.0016 0.0023	-0.0146 -0.0014	-0.0031 0.0007	0.0061 0.0011	107.8013 -34.2542	
135		ZETA ARA	3.1 K5	SHA DEC	105.8017 -55.9569	-0.0023 0.0023	-0.0184 -0.0012	-0.0042 0.0026	0.0092 0.0018	105.7810 -55.9570	

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
136	44	ETA OPH SABIK	2.6 A2	SHA DEC	0 102.7217 -15.6989	0 -0.0011 0.0024	0 -0.0127 -0.0009	0 -0.0022 -0.0008	0 0.0055 0.0002	0 102.7088 -15.6972
137		ALPHA HER	3-4 M3	SHA DEC	0 101.5892 14.4144	0 -0.0006 0.0024	0 -0.0101 -0.0008	0 -0.0021 -0.0034	0 0.0055 -0.0009	0 101.5781 14.4173
138		BETA ARA	2.8 K2	SHA DEC	0 99.1338 -55.5108	0 -0.0019 0.0024	0 -0.0185 -0.0006	0 -0.0032 0.0028	0 0.0095 0.0013	0 99.1131 -55.5100
139		UPSILON SCO	2.8 B3	SHA DEC	0 97.6838 -37.2797	0 -0.0013 0.0024	0 -0.0151 -0.0005	0 -0.0021 0.0012	0 0.0068 0.0007	0 97.6681 -37.2782
140		BETA DRA	3.0 G0	SHA DEC	0 97.5167 52.3169	0 0.0001 0.0024	0 -0.0050 -0.0005	0 -0.0028 -0.0053	0 0.0089 -0.0016	0 97.5054 52.3207
141		ALPHA ARA	3.0 B3	SHA DEC	0 97.4658 -49.8606	0 -0.0016 0.0024	0 -0.0172 -0.0005	0 -0.0026 0.0024	0 0.0084 0.0010	0 97.4472 -49.8594
142	45	LAMBDA SCO SHAULA	1.7 B2	SHA DEC	0 96.9721 -37.0892	0 -0.0013 0.0025	0 -0.0151 -0.0004	0 -0.0020 0.0012	0 0.0068 0.0006	0 96.9564 -37.0876
143	46	ALPHA OPH RASALHAGUE	2-1 A5	SHA DEC	0 96.5221 12.5750	0 -0.0007 0.0025	0 -0.0103 -0.0004	0 -0.0016 -0.0033	0 0.0056 -0.0007	0 96.5107 12.5780
144		THETA SCO	2.0 F0	SHA DEC	0 96.0663 -42.9853	0 -0.0014 0.0025	0 -0.0159 -0.0004	0 -0.0021 0.0018	0 0.0075 0.0007	0 96.0494 -42.9837
145		KAPPA SCO	2.5 B2	SHA DEC	0 94.7592 -39.0203	0 -0.0013 0.0025	0 -0.0153 -0.0003	0 -0.0019 0.0014	0 0.0071 0.0006	0 94.7432 -39.0185
146		BETA OPH	2.9 K0	SHA DEC	0 94.4042 4.5753	0 -0.0008 0.0025	0 -0.0110 -0.0002	0 -0.0014 -0.0026	0 0.0055 -0.0005	0 94.3924 4.5782
147	47	GAMMA DRA ELTANIN	2.4 K5	SHA DEC	0 90.9767 51.4908	0 -0.0003 0.0025	0 -0.0051 0.0001	0 -0.0018 -0.0054	0 0.0090 -0.0011	0 90.9648 51.4944
148		GAMMA SGR	3.1 K0	SHA DEC	0 88.9017 -30.4258	0 -0.0010 0.0025	0 -0.0142 0.0003	0 -0.0011 0.0007	0 0.0065 0.0001	0 88.8870 -30.4233
149		DELTA SGR	2.8 K0	SHA DEC	0 85.1038 -29.8389	0 -0.0009 0.0025	0 -0.0142 0.0006	0 -0.0007 0.0007	0 0.0065 -0.0001	0 85.0893 -29.8359
150	48	EPSILON SGR KAUS AUST.	1.9 A0	SHA DEC	0 84.3225 -34.3967	0 -0.0009 0.0025	0 -0.0147 0.0006	0 -0.0006 0.0011	0 0.0069 -0.0001	0 84.3074 -34.3937
151		LAMBDA SGR	2.9 K0	SHA DEC	0 83.3471 -25.4353	0 -0.0008 0.0025	0 -0.0137 0.0007	0 -0.0005 0.0002	0 0.0063 -0.0002	0 83.3331 -25.4321
152	49	ALPHA LYR VEGA	0.1 A0	SHA DEC	0 80.9521 38.7622	0 -0.0008 0.0025	0 -0.0075 0.0009	0 -0.0003 -0.0050	0 0.0073 -0.0003	0 80.9402 38.7656
153	50	SIGMA SGR NUNKI	2.1 B3	SHA DEC	0 76.5250 -26.3256	0 -0.0007 0.0025	0 -0.0137 0.0013	0 0.0002 0.0003	0 0.0063 -0.0005	0 76.5111 -26.3218
154		ZETA SGR	2.7 A2	SHA DEC	0 74.6971 -29.9131	0 -0.0006 0.0025	0 -0.0141 0.0015	0 0.0004 0.0007	0 0.0065 -0.0006	0 74.6829 -29.9092
155		ZETA AQL	3.0 A0	SHA DEC	0 73.9004 13.8297	0 -0.0009 0.0025	0 -0.0102 0.0015	0 0.0005 -0.0034	0 0.0058 -0.0002	0 73.8886 13.8332
156		PI SGR	3.0 F2	SHA DEC	0 72.8863 -21.0600	0 -0.0006 0.0025	0 -0.0131 0.0016	0 0.0006 -0.0002	0 0.0060 -0.0006	0 72.8730 -21.0560
157		BETA-1 CYG ALBIREO	3.2 *	SHA DEC	0 67.5417 27.9125	0 -0.0011 0.0025	0 -0.0090 0.0020	0 0.0012 -0.0044	0 0.0063 0.0002	0 67.5298 27.9157
158		DELTA CYG	3.0 A0	SHA DEC	0 63.9288 45.0764	0 -0.0016 0.0024	0 -0.0070 0.0023	0 0.0019 -0.0052	0 0.0077 0.0009	0 63.9160 45.0791

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT	PLACE
159		GAMMA AQL	2.8 K2	SHA DEC	0 63.6967 10.5586	0 -0.0010 0.0024	0 -0.0105 0.0023	0 0.0014 -0.0031	0 0.0055 -0.0001	0 63.6849 10.5623	
160	51	ALPHA AQL ALTAIR	0.9 A5	SHA DEC	62.5729 8.8092	-0.0009 0.0024	-0.0107 0.0024	0.0015 -0.0030	0.0055 -0.0001	62.5612 8.8129	
161		GAMMA CYG	2.3 F8	SHA DEC	54.6408 40.1856	-0.0018 0.0023	-0.0080 0.0030	0.0028 -0.0048	0.0067 0.0013	54.6283 40.1880	
162	52	ALPHA PAV PEACOCK	2.1 B3	SHA DEC	54.0217 -56.8069	0.0010 0.0022	-0.0173 0.0030	0.0040 0.0028	0.0093 -0.0023	54.0048 -56.8008	
163		ALPHA IND	3.2 K0	SHA DEC	50.9942 -47.3694	0.0006 0.0022	-0.0154 0.0032	0.0036 0.0019	0.0073 -0.0023	50.9798 -47.3633	
164	53	ALPHA CYG DENEB	1.3 A2	SHA DEC	49.8300 45.2011	-0.0022 0.0021	-0.0077 0.0033	0.0036 -0.0048	0.0069 0.0018	49.8171 45.2031	
165		EPSILON CYG	2.6 K0	SHA DEC	48.6700 33.8872	-0.0017 0.0021	-0.0089 0.0034	0.0032 -0.0044	0.0058 0.0013	48.6580 33.8897	
166		ALPHA CEP ALDERAMIN	2.6 A5	SHA DEC	40.4867 62.4919	-0.0040 0.0019	-0.0054 0.0039	0.0070 -0.0047	0.0094 0.0031	40.4705 62.4927	
167		BETA AQR	3.1 G0	SHA DEC	37.4000 -5.6686	-0.0006 0.0018	-0.0116 0.0040	0.0035 -0.0018	0.0042 -0.0008	37.3894 -5.6640	
168	54	EPSILON PEG ENIF	2.5 K0	SHA DEC	34.2242 9.7736	-0.0011 0.0017	-0.0109 0.0042	0.0037 -0.0028	0.0040 0.0003	34.2136 9.7771	
169		DELTA CAP	3.0 A5	SHA DEC	33.5433 -16.2278	-0.0003 0.0017	-0.0121 0.0042	0.0039 -0.0011	0.0040 -0.0015	33.5330 -16.2224	
170	55	ALPHA GRU AL NA'IR	2.2 B5	SHA DEC	28.2871 -47.0683	0.0014 0.0015	-0.0137 0.0044	0.0059 0.0009	0.0051 -0.0036	28.2765 -47.0611	
171		ALPHA TUC	2.9 K2	SHA DEC	25.7488 -60.3700	0.0029 0.0014	-0.0149 0.0045	0.0085 0.0016	0.0066 -0.0042	25.7376 -60.3621	
172		BETA GRU	2.2 M3	SHA DEC	19.6604 -47.0003	0.0016 0.0012	-0.0130 0.0047	0.0066 0.0004	0.0041 -0.0039	19.6515 -46.9928	
173	56	ALPHA PSA FOMALHAUT	1.3 A3	SHA DEC	15.8908 -29.7392	0.0005 0.0010	-0.0120 0.0048	0.0054 -0.0008	0.0028 -0.0029	15.8825 -29.7329	
174		BETA PEG SCHEAT	2.6 M0	SHA DEC	14.3238 27.9631	-0.0021 0.0010	-0.0108 0.0048	0.0054 -0.0030	0.0026 0.0021	14.3137 27.9643	
175	57	ALPHA PEG MARKAB	2.6 A0	SHA DEC	14.0842 15.0867	-0.0014 0.0010	-0.0111 0.0048	0.0049 -0.0027	0.0023 0.0010	14.0748 15.0891	
176		GAMMA CEP	3.4 K0	SHA DEC	5.3921 77.5097	-0.0120 0.0006	-0.0100 0.0049	0.0232 -0.0019	0.0067 0.0053	5.3684 77.5075	

IVERSITY OF MICHIGAN

15 03794 1542

Astronomy
QB
8
.U487
1979

Periodicals

ALMANAC FOR COMPUTERS

For the Year

1979

Nautical Almanac Office
United States Naval Observatory
Washington, D. C. 20390

FER 10/10/79

The Nautical
Almanac Office
United States Naval Observatory
Washington, D. C. 20390

D. F. Farnham

ALMANAC FOR COMPUTERS, 1979 — CORRECTIONS

Page A10, lines 18, 19: the suggested value of ΔT for 1979 is $50\text{:}3 = 0\text{:}000582$.

Page A10, Example 2, line 2: data in this example is for 6 May 1979 not 6 May 1978.

Page A12, line 12: $f(x) = (b_0 - b_2)/2 = (5.815733 - 0.0728500)/2$

Page A14, example for computing the declination of Betelgeuse:

$$+S_D \sin 360^\circ \tau = -0.0014$$

$$\text{Apparent decl.} = +7^\circ 4003$$

Page B3, lines 7 and 15 from the bottom of the page: references to pages D1—D4 and E1 should be to pages D3—D6 and D31.

Page B6, line 1: the formulas are for 1979 not 1978.

Page B7, the example for computing the time of sunset at Washington, D.C., beginning with line 8:

$$\begin{aligned} L &= 179^\circ 779 + 1^\circ 916(+0.00385) + 0^\circ 020(-0.00771) + 282^\circ 588 \\ &= 462^\circ 374 = 102^\circ 374 \end{aligned}$$

$$\tan a = 0.91746(-4.5581) = -4.1819$$

$$a = 103^\circ 448 = 6^\text{h} 897 \quad \text{Since } L \text{ is in quadrant 2, so is } a.$$

$$\sin \delta = 0.39782(0.97677) = 0.38858$$

$$\cos \delta = 0.92142$$

$$\begin{aligned} \cos H &= [-0.01454 - (0.38858)(0.62796)] / [(0.92142)(0.77824)] \\ &= -0.36056 \end{aligned}$$

Since sunset is being computed and $\cos H$ is negative, H is in the second quadrant:

$$H = 111^\circ 135 = 7^\text{h} 409$$

$$\begin{aligned} T &= 7^\text{h} 409 + 6^\text{h} 897 - 0^\text{h} 065710(185.9641) - 6^\text{h} 604 = -4^\text{h} 518 \\ &= 19^\text{h} 482 \end{aligned}$$

$$UT = 19^\text{h} 482 + 5^\text{h} 138 = 24^\text{h} 620$$

Sunset occurred at $0^\text{h} 37^\text{m}$ UT on 5 July = $20^\text{h} 37^\text{m}$ EDT on 4 July.

Page B11, line 5: the reference to Section F should be to Section E.

Page C10: the series for days 55 – 60 (Feb 24 – Mar 1) should be replaced by the following:

DAYS 55 THRU 60 JD 2443928.5 TO 2443934.5 DATES FEB 24 THRU MAR 1
A = 3.00000000 B = -19.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1252.9840	-6.5824	1.0180	0.2774
1	1039.3249	13.3525	-0.0197	-0.0054
2	1.9263	1.6657	-0.0233	-0.0064
3	-0.0267	-1.6005	0.0135	0.0037
4	-0.2507	-0.0168	0.0020	0.0005
5	0.0649	0.0976	-0.0093	-0.0025
SUMS	2294.0227	6.9161	0.9812	0.2673

Page C17: the series for days 229 – 234 (Aug 17 – Aug 22) should be replaced by the following:

DAYS 229 THRU 234 JD 2444102.5 TO 2444108.5 DATES AUG 17 THRU AUG 22
A = 3.00000000 B = -77.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1289.6416	17.3475	0.9074	0.2472
1	1045.4753	-4.3141	-0.0178	-0.0049
2	1.3969	-3.4252	0.0059	0.0016
3	0.1791	0.4336	0.0095	0.0026
4	-0.1130	0.0831	0.0014	0.0004
5	-0.0255	-0.0154	-0.0071	-0.0019
SUMS	2336.5544	10.1095	0.8993	0.2450

2-8-79

Table of Contents

Explanation	A	Navigational Tables	C
Introduction	A1	Aries, Sun and Navigational	
Calendar	A2	Planets	C2
Explanation of Navigational Tables (Section C)	A5	Moon	C8
Explanation of Astronomical Tables (Section D)	A8		
Explanation of Stellar Tables (Section E)	A13	Astronomical Tables	D
 Applications	 B	Full Precision:	
Introduction	B1	Sidereal Time, Equation of Equinoxes, Nutation	D3
Day of the Year	B1	Sun	D7
Julian Date	B2	Moon	D9
Sidereal Time	B3	Mercury and Venus	D21
Hour Angles	B4	Mars and Jupiter	D25
Altitude and Azimuth	B4	Saturn and Uranus	D27
Sunrise, Sunset and Twilight .	B5	Neptune and Pluto	D29
Moonrise and Moonset	B8	 Low Precision:	
Equation of Time	B10	Sidereal Time, Equation of Equinoxes, Nutation	D31
Polaris (Pole Star)	B10	Sun	D31
Equation of Position Line . .	B11	Mercury and Venus	D32
Motion of Body and Motion of Observer	B11	Mars, Jupiter, Saturn and Uranus	D33
Sextant Altitude Corrections .	B12	Neptune and Pluto	D34
Dip of Horizon	B12	 Stellar Tables	 E
Coriolis Correction	B13	176 Stars	E3
Atmospheric Refraction . .	B13		
Semi-diameter of the Sun & Planets	B14		
Semi-diameter of the Moon .	B14		
Parallax in Altitude	B15		
Correction for the Phase of Venus	B15		

Section A: EXPLANATION

Introduction

The *Almanac for Computers* has been designed to facilitate the application of digital computers and small calculators to problems of astronomy and navigation which require coordinates of celestial bodies. For such applications the fixed-interval tabulations of the *American Ephemeris and Nautical Almanac (AE)*, the *Nautical Almanac (NA)* and the *Air Almanac (AA)*, with the inevitable requirements of interpolation, should ideally be replaced by concise mathematical expression for direct calculations. Such expressions must take the form of mathematical approximations, however, since the precise data contained in the above publications are calculated from extensive theories which are not readily adaptable to the majority of astronomical and navigational applications. Using the expressions in this almanac, it is possible to calculate, with minimal loss of precision, the basic data in the *AE*, *NA* and *AA* for specific times and conditions. More specific information on precision is given in Tables 1, 2 and 3 of this section.

In this third edition we retain the basic methods of the previous edition. However, the format of the publication continues to evolve as suggestions from users are evaluated and implemented. In the 1978 edition there appeared trigonometric series which provided low precision approximations of planetary positions for several centuries. These series are not included in the present edition. Instead an expanded version of this work will soon be published in the standard astronomical literature. Further information may be obtained from the Director, Nautical Almanac Office.

For most efficient use with computers, the data in Sections D and E are available on punched cards or magnetic tape.

Continued improvements in the *Almanac for Computers* will depend on further input from users. Inquiries, suggestions and comments should be sent to the Director, Nautical Almanac Office, U. S. Naval Observatory, Washington, D.C. 20390.

CALENDAR, 1979

Day of Month	JANUARY			FEBRUARY			MARCH			APRIL		
	Julian Date at 0 ^h	Day of Week	Day of Year									
1	2443 874.5	Mon.	1 905.5	Thu.	32 906.5	933.5	Thu.	60 907.5	943.5	2443 964.5	Sun.	91
2	875.5	Tue.	2 908.5	Fri.	33 909.5	934.5	Fri.	61 910.5	938.5	965.5	Mon.	92
3	876.5	Wed.	3 911.5	Sat.	34 912.5	935.5	Sat.	62 913.5	940.5	966.5	Tue.	93
4	877.5	Thu.	4 914.5	Sun.	35 915.5	936.5	Sun.	63 916.5	941.5	967.5	Wed.	94
5	878.5	Fri.	5 917.5	Mon.	36 918.5	937.5	Mon.	64 919.5	942.5	968.5	Thu.	95
6	879.5	Sat.	6 919.5	Tue.	37 920.5	938.5	Tue.	65 921.5	948.5	969.5	Fri.	96
7	880.5	Sun.	7 921.5	Wed.	38 922.5	939.5	Wed.	66 923.5	949.5	970.5	Sat.	97
8	881.5	Mon.	8 923.5	Thu.	39 924.5	940.5	Thu.	67 925.5	950.5	971.5	Sun.	98
9	882.5	Tue.	9 925.5	Fri.	40 926.5	941.5	Fri.	68 927.5	951.5	972.5	Mon.	99
10	883.5	Wed.	10 927.5	Sat.	41 928.5	942.5	Sat.	69 929.5	952.5	973.5	Tue.	100
11	884.5	Thu.	11 929.5	Sun.	42 930.5	943.5	Sun.	70 931.5	948.5	974.5	Wed.	101
12	885.5	Fri.	12 931.5	Mon.	43 932.5	944.5	Mon.	71 932.5	949.5	975.5	Thu.	102
13	886.5	Sat.	13 932.5	Tue.	44 933.5	945.5	Tue.	72 934.5	950.5	976.5	Fri.	103
14	887.5	Sun.	14 933.5	Wed.	45 934.5	946.5	Wed.	73 935.5	951.5	977.5	Sat.	104
15	888.5	Mon.	15 935.5	Thu.	46 936.5	947.5	Thu.	74 937.5	952.5	978.5	Sun.	105
16	889.5	Tue.	16 937.5	Fri.	47 938.5	948.5	Fri.	75 939.5	949.5	979.5	Mon.	106
17	890.5	Wed.	17 939.5	Sat.	48 940.5	949.5	Sat.	76 941.5	950.5	980.5	Tue.	107
18	891.5	Thu.	18 941.5	Sun.	49 942.5	950.5	Sun.	77 943.5	951.5	981.5	Wed.	108
19	892.5	Fri.	19 943.5	Mon.	50 944.5	951.5	Mon.	78 945.5	952.5	982.5	Thu.	109
20	893.5	Sat.	20 945.5	Tue.	51 946.5	952.5	Tue.	79 947.5	957.5	983.5	Fri.	110
21	894.5	Sun.	21 948.5	Wed.	52 949.5	953.5	Wed.	80 950.5	958.5	984.5	Sat.	111
22	895.5	Mon.	22 950.5	Thu.	53 951.5	954.5	Thu.	81 952.5	959.5	985.5	Sun.	112
23	896.5	Tue.	23 952.5	Fri.	54 953.5	955.5	Fri.	82 954.5	960.5	986.5	Mon.	113
24	897.5	Wed.	24 954.5	Sat.	55 955.5	956.5	Sat.	83 956.5	961.5	987.5	Tue.	114
25	898.5	Thu.	25 956.5	Sun.	56 957.5	957.5	Sun.	84 958.5	962.5	988.5	Wed.	115
26	899.5	Fri.	26 958.5	Mon.	57 959.5	958.5	Mon.	85 960.5	961.5	989.5	Thu.	116
27	900.5	Sat.	27 960.5	Tue.	58 961.5	959.5	Tue.	86 962.5	961.5	990.5	Fri.	117
28	901.5	Sun.	28 962.5	Wed.	59 963.5	960.5	Wed.	87 963.5	962.5	991.5	Sat.	118
29	902.5	Mon.	29 963.5					88 963.5	963.5	992.5	Sun.	119
30	903.5	Tue.	30 963.5					89 963.5	963.5	993.5	Mon.	120
31	904.5	Wed.	31 963.5					90 963.5	963.5			

The Julian Day begins at noon.

CALENDAR, 1979

A3

Day of Month	MAY			JUNE			JULY			AUGUST		
	Julian Date at 0 ^h	Day of Week	Day of Year									
1	244 994.5	Tue.	121	025.5	Fri.	152	055.5	Sun.	182	086.5	Wed.	213
2	244 995.5	Wed.	122	026.5	Sat.	153	056.5	Mon.	183	087.5	Thu.	214
3	244 996.5	Thu.	123	027.5	Sun.	154	057.5	Tue.	184	088.5	Fri.	215
4	244 997.5	Fri.	124	028.5	Mon.	155	058.5	Wed.	185	089.5	Sat.	216
5	244 998.5	Sat.	125	029.5	Tue.	156	059.5	Thu.	186	090.5	Sun.	217
6	244 999.5	Sun.	126	030.5	Wed.	157	060.5	Fri.	187	091.5	Mon.	218
7	*000.5	Mon.	127	031.5	Thu.	158	061.5	Sat.	188	092.5	Tue.	219
8	*001.5	Tue.	128	032.5	Fri.	159	062.5	Sun.	189	093.5	Wed.	220
9	*002.5	Wed.	129	033.5	Sat.	160	063.5	Mon.	190	094.5	Thu.	221
10	*003.5	Thu.	130	034.5	Sun.	161	064.5	Tue.	191	095.5	Fri.	222
11	*004.5	Fri.	131	035.5	Mon.	162	065.5	Wed.	192	096.5	Sat.	223
12	*005.5	Sat.	132	036.5	Tue.	163	066.5	Thu.	193	097.5	Sun.	224
13	*006.5	Sun.	133	037.5	Wed.	164	067.5	Fri.	194	098.5	Mon.	225
14	*007.5	Mon.	134	038.5	Thu.	165	068.5	Sat.	195	099.5	Tue.	226
15	*008.5	Tue.	135	039.5	Fri.	166	069.5	Sun.	196	100.5	Wed.	227
16	*009.5	Wed.	136	040.5	Sat.	167	070.5	Mon.	197	101.5	Thu.	228
17	*010.5	Thu.	137	041.5	Sun.	168	071.5	Tue.	198	102.5	Fri.	229
18	*011.5	Fri.	138	042.5	Mon.	169	072.5	Wed.	199	103.5	Sat.	230
19	*012.5	Sat.	139	043.5	Tue.	170	073.5	Thu.	200	104.5	Sun.	231
20	*013.5	Sun.	140	044.5	Wed.	171	074.5	Fri.	201	105.5	Mon.	232
21	*014.5	Mon.	141	045.5	Thu.	172	075.5	Sat.	202	106.5	Tue.	233
22	*015.5	Tue.	142	046.5	Fri.	173	076.5	Sun.	203	107.5	Wed.	234
23	*016.5	Wed.	143	047.5	Sat.	174	077.5	Mon.	204	108.5	Thu.	235
24	*017.5	Thu.	144	048.5	Sun.	175	078.5	Tue.	205	109.5	Fri.	236
25	*018.5	Fri.	145	049.5	Mon.	176	079.5	Wed.	206	110.5	Sat.	237
26	*019.5	Sat.	146	050.5	Tue.	177	080.5	Thu.	207	111.5	Sun.	238
27	*020.5	Sun.	147	051.5	Wed.	178	081.5	Fri.	208	112.5	Mon.	239
28	*021.5	Mon.	148	052.5	Thu.	179	082.5	Sat.	209	113.5	Tue.	240
29	*022.5	Tue.	149	053.5	Fri.	180	083.5	Sun.	210	114.5	Wed.	241
30	*023.5	Wed.	150	054.5	Sat.	181	084.5	Mon.	211	115.5	Thu.	242
31	*024.5	Thu.	151				085.5	Tue.	212	116.5	Fri.	243

The Julian Day begins at noon.

CALENDAR, 1979

Day of Month	SEPTEMBER			OCTOBER			NOVEMBER			DECEMBER		
	Julian Date at 0 ^h	Day of Week	Day of Year									
1	244 117.5	Sat.	244 147.5	Mon.	274 178.5	Thu.	305 208.5	Sat.	335	244 117.5	Sat.	335
2	244 118.5	Sun.	245 148.5	Tue.	275 179.5	Fri.	306 209.5	Sun.	336	244 119.5	Sun.	336
3	244 119.5	Mon.	246 149.5	Wed.	276 180.5	Sat.	307 210.5	Mon.	337	244 120.5	Tue.	338
4	244 120.5	Tue.	247 150.5	Thu.	277 181.5	Sun.	308 211.5	Tue.	338	244 121.5	Wed.	339
5	244 121.5	Wed.	248 151.5	Fri.	278 182.5	Mon.	309 212.5			244 122.5		
6	244 122.5	Thu.	249 152.5	Sat.	279 183.5	Tue.	310 213.5	Thu.	340	244 123.5		
7	244 123.5	Fri.	250 153.5	Sun.	280 184.5	Wed.	311 214.5	Fri.	341	244 124.5		
8	244 124.5	Sat.	251 154.5	Mon.	281 185.5	Thu.	312 215.5	Sat.	342	244 125.5		
9	244 125.5	Sun.	252 155.5	Tue.	282 186.5	Fri.	313 216.5	Sun.	343	244 126.5		
10	244 126.5	Mon.	253 156.5	Wed.	283 187.5	Sat.	314 217.5	Mon.	344	244 127.5		
11	244 127.5	Tue.	254 157.5	Thu.	284 188.5	Sun.	315 218.5	Tue.	345	244 128.5		
12	244 128.5	Wed.	255 158.5	Fri.	285 189.5	Mon.	316 219.5	Wed.	346	244 129.5		
13	244 129.5	Thu.	256 159.5	Sat.	286 190.5	Tue.	317 220.5	Thu.	347	244 130.5		
14	244 130.5	Fri.	257 160.5	Sun.	287 191.5	Wed.	318 221.5	Fri.	348	244 131.5		
15	244 131.5	Sat.	258 161.5	Mon.	288 192.5	Thu.	319 222.5	Sat.	349	244 132.5		
16	244 132.5	Sun.	259 162.5	Tue.	289 193.5	Fri.	320 223.5	Sun.	350	244 133.5		
17	244 133.5	Mon.	260 163.5	Wed.	290 194.5	Sat.	321 224.5	Mon.	351	244 134.5		
18	244 134.5	Tue.	261 164.5	Thu.	291 195.5	Sun.	322 225.5	Tue.	352	244 135.5		
19	244 135.5	Wed.	262 165.5	Fri.	292 196.5	Mon.	323 226.5	Wed.	353	244 136.5		
20	244 136.5	Thu.	263 166.5	Sat.	293 197.5	Tue.	324 227.5	Thu.	354	244 137.5		
21	244 137.5	Fri.	264 167.5	Sun.	294 198.5	Wed.	325 228.5	Fri.	355	244 138.5		
22	244 138.5	Sat.	265 168.5	Mon.	295 199.5	Thu.	326 229.5	Sat.	356	244 139.5		
23	244 139.5	Sun.	266 169.5	Tue.	296 200.5	Fri.	327 230.5	Sun.	357	244 140.5		
24	244 140.5	Mon.	267 170.5	Wed.	297 201.5	Sat.	328 231.5	Mon.	358	244 141.5		
25	244 141.5	Tue.	268 171.5	Thu.	298 202.5	Sun.	329 232.5	Tue.	359	244 142.5		
26	244 142.5	Wed.	269 172.5	Fri.	299 203.5	Mon.	330 233.5	Wed.	360	244 143.5		
27	244 143.5	Thu.	270 173.5	Sat.	300 204.5	Tue.	331 234.5	Thu.	361	244 144.5		
28	244 144.5	Fri.	271 174.5	Sun.	301 205.5	Wed.	332 235.5	Fri.	362	244 145.5		
29	244 145.5	Sat.	272 175.5	Mon.	302 206.5	Thu.	333 236.5	Sat.	363	244 146.5		
30	244 146.5	Sun.	273 176.5	Tue.	303 207.5	Fri.	334 237.5	Sun.	364	244 177.5		
31				244 177.5	Wed.	304 238.5		Mon.	365			

The Julian Day begins at noon.

Navigational Tables

Section C contains mathematical representations of the following functions that are tabulated in the *Nautical Almanac (NA)*: the GHA of Aries, the GHA and declination of the Sun, Moon and navigational planets, the semi-diameter of the Sun and Moon, and the horizontal parallax of the Moon. These functions are expressed for a specified time span by a power series of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$$

In the series x is a time-like variable which takes on values between -1 and $+1$ over the specified time span; $a_0, a_1, a_2, a_3, a_4, a_5$ are coefficients which are tabulated in Section C for the specified time span; and $f(x)$ represents the value of the function (e.g., the GHA of Aries) evaluated at time x .

To evaluate the series for one of the navigational functions, one must first find the set of coefficients in Section C that is applicable for the desired date. Constants A and B are given there for the purpose of converting the calendar date and GMT to the time-like variable x . To obtain the value of x for the desired time, first determine t , the GMT measured in days and fractions thereof from 0 January, 0^h GMT, from the relation $t = N + \text{GMT}/24$, where N is the day of the year at Greenwich and GMT is the Greenwich Mean Time expressed in hours. A calendar is provided on pages A2–A4 for finding the day of the year; alternatively the day of the year can be computed from the formulas given on pages B1 and B2. Once t has been determined, x is computed from the relation $x = t/A + B$. If computed correctly, the value of x should fall in the range of $-1 \leq x \leq +1$.

Example 1: Compute x for later use in computing the position of the Sun at 10^h 35^m 00^s GMT ($=0^d 4409722$) on 14 May 1979.

From the calendar on page A3, 14 May is found to be day 134. Thus $t = 134 + 0.4409722$. This date is in the interval 1 May through 1 June (days 121 through 152) for which coefficients for the Sun are given on page C4. The constants for this interval are $A = 16.0$ and $B = -8.5625$. Therefore $x = 134.4409722/16.0 - 8.5625 = -0.1599392$.

Once the variable x has been computed and the coefficients a_i have been found, the series $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$ can be evaluated. The series can be evaluated most efficiently by computing a set of five auxiliary variables, b_1, b_2, b_3, b_4, b_5 , in the following order:

$$\begin{aligned}
 b_5 &= xa_5 \\
 b_4 &= x(a_4 + b_5) \\
 b_3 &= x(a_3 + b_4) \\
 b_2 &= x(a_2 + b_3) \\
 b_1 &= x(a_1 + b_2) \\
 f(x) &= a_0 + b_1
 \end{aligned}$$

By using this algorithm, the series is evaluated in its nested form $f(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + x(a_4 + x(a_5))))).$

Example 2: Compute the GHA of the Sun at $10^{\text{h}} 35^{\text{m}} 00^{\text{s}}$ GMT on 14 May 1979.

From the previous example $x = -0.1599392$. The coefficients for the Sun's GHA are found on page C4.

$$\begin{aligned}
 b_5 &= -0.1599392 (-0.0004) &= +0.0001 \\
 b_4 &= -0.1599392 (0.0123 + 0.0001) &= -0.0020 \\
 b_3 &= -0.1599392 (0.0101 - 0.0020) &= -0.0013 \\
 b_2 &= -0.1599392 (-0.3067 - 0.0013) &= +0.0493 \\
 b_1 &= -0.1599392 (5759.9199 + 0.0493) &= -921.2449 \\
 f(-0.1599392) &= 5940.9244 - 921.2449 &= 5019^{\circ}6795
 \end{aligned}$$

Therefore GHA = $339^{\circ}6795 = 339^{\circ}40'8$

Note that when computing the GHA, it may be necessary to reduce the final result to the range $0^{\circ}-360^{\circ}$ by subtracting multiples of 360° .

Example 3: Compute the declination of the Moon at $21^{\text{h}} 40^{\text{m}} 25^{\text{s}}$ GMT on 2 October 1979.

The constants A and B and series coefficients are found on page C19.

$$\begin{aligned}
 x &= 275.9030671 / 3.0 - 91.3333333 &= +0.6343557 \\
 b_5 &= 0.6343557 (-0.0027) &= -0.0017 \\
 b_4 &= 0.6343557 (-0.3237 - 0.0017) &= -0.2064 \\
 b_3 &= 0.6343557 (-0.3415 - 0.2064) &= -0.3476 \\
 b_2 &= 0.6343557 (4.9584 - 0.3476) &= +2.9249 \\
 b_1 &= 0.6343557 (6.0133 + 2.9249) &= +5.6700 \\
 f(0.6343557) &= -16.8809 + 5.6700 &= -11^{\circ}2109 \\
 \text{declination} &= -11^{\circ}12'7
 \end{aligned}$$

Although the series are designed to provide precision comparable to that published in the *NA*, there will be small discrepancies between the tabulated values and the values computed from the series. In such cases it should be understood that the *NA* represents the standard. Table 1 lists the largest discrepancies found from evaluating and comparing the series with the data in the *NA*.

Under no circumstances should the series be used to extrapolate data beyond the specified time interval. Such extrapolation will lead to erroneous and useless results.

In accordance with standard practice for navigational almanacs, the time argument used in this almanac is Greenwich Mean Time (GMT), or more specifically UT1. To obtain full precision in the determined positions, the radio time signals in UTC must be corrected to UT1, or GMT, according to standard procedures. (See the paper by R. L. Duncombe and P. K. Seidelmann, 'The New UTC Time Signals', *Navigation*, 24, 160–165, 1977.)

Beneath each set of coefficients in Section C is printed the sum of the coefficients. As a check on whether the coefficients have been entered accurately into the calculator, it is recommended that the coefficients be summed and that the resulting sum be compared with the printed sum.

Table 1: Comparison of *Almanac for Computers* with *NA*

Function	No. of Terms	Span of Validity	Maximum Error
GHA of Aries	6	32 days	0'2
Sun: GHA	"	"	0'2
Declination	"	"	0'2
Semi-Diameter	"	"	0'1
Moon: GHA	"	6 days	0'2
Declination	"	"	0'2
Horizontal Parallax	"	"	0'2
Semi-Diameter	"	"	0'1
Navigational Planets: GHA	"	32 days	0'2
Declination	"	"	0'2

Astronomical Tables

Section D contains mathematical representations of data published in the *American Ephemeris and Nautical Almanac (AE)*. Chebyshev expansions have been chosen as the means of representation since they provide efficient and accurate expressions that can be easily evaluated with a small computer. The coefficients a_i of the Chebyshev expansion

$$f(x) = a_0/2 + \sum_{i=1}^n a_i T_i(x)$$

are tabulated for prescribed time spans, where $f(x)$ is the function being represented, $T_i(x)$ is the Chebyshev polynomial of the first kind of the i -th degree, and x is the normalized time variable. Although Chebyshev polynomials appear in the formal series expansions, the series can be evaluated without explicitly computing these polynomials. No *a priori* knowledge of Chebyshev analysis is required to use the series in this almanac. Interested readers can find information on Chebyshev analysis in *Applied Analysis* by C. Lanczos and *Chebyshev Polynomials in Numerical Analysis* by L. Fox and I. B. Parker.

It must be emphasized that the series are valid only over the specified time intervals. Attempts to extrapolate data using these series will yield erroneous and useless results.

If precision comparable to that of the *AE* is required, the series on pages D3 – D30 should be used. With the exception of the series for the Moon, these series are valid for time spans of approximately three months; for the Moon the span of validity is approximately one month. Table 2 lists the largest errors found by evaluating the series and comparing the results with the data printed in the *AE*.

It is possible to develop series which are valid for longer time spans, if one is willing to relax the precision of the approximations. Pages D31 – D34 contain series which are valid for one full year, but which are not as precise as the series on pages D3 – D30. The precision criteria of these less precise series are summarized in Table 3.

Chebyshev series can be truncated according to the following precept to obtain shorter series meeting imposed precision limits. Beginning with the last coefficient, add the absolute values of the coefficients until the required limit of precision is accumulated. The series may be safely truncated at this point, and the small terms omitted.

Example 1: For use in the next example, determine the number of terms required to compute the apparent right ascension of the Sun to a precision of $\pm 0^{\circ}5$ ($= \pm 0^{\text{h}}00014$) on 6 May 1979.

From Table 3 it is seen that the lower precision series on page D31 cannot be relied upon to give the required precision. As shown in Table 2 the higher precision series on page D7 provide higher precision than is necessary, and

**Table 2: Comparison of *Almanac for Computers* and AE
(High Precision Series, pp. D3 – D30)**

A9

Function	No. of Terms	Span of Validity	Maximum Error
Apparent Sidereal Time at 0 ^h UT	36	95 days	0°001
Equation of the Equinoxes	"	"	0°001
Nutation in Longitude	"	"	0.°007
Nutation in Obliquity	"	"	0.°003
Sun: Right Ascension	22	95 days	0°02
Declination	"	"	0.°1
Distance	"	"	4×10^{-7} AU
Semi-Diameter	"	"	0.°02
Ephemeris Transit	"	"	0°01
Moon: Right Ascension	36	32 days	0°002
Declination	"	"	0.°02
Horizontal Parallax	"	"	0.°01
Geocentric Rectangular Coords.	"	"	1×10^{-6} Earth radii
Mercury: Right Ascension	40	95 days	0°04
Declination	"	"	0.°3
Distance	"	"	1×10^{-6} AU
Venus: Right Ascension	40	95 days	0°01
Declination	"	"	0.°1
Distance	"	"	1×10^{-6} AU
Mars: Right Ascension	22	95 days	0°02
Declination	"	"	0.°2
Distance	"	"	1×10^{-6} AU
Jupiter: Right Ascension	22	95 days	0°02
Declination	"	"	0.°2
Distance	"	"	1×10^{-6} AU
Saturn: Right Ascension	22	95 days	0°02
Declination	"	"	0.°2
Distance	"	"	1×10^{-6} AU
Uranus: Right Ascension	22	95 days	0°02
Declination	"	"	0.°2
Distance	"	"	7×10^{-6} AU
Neptune: Right Ascension	22	95 days	0°02
Declination	"	"	0.°2
Distance	"	"	9×10^{-6} AU
Pluto: Right Ascension (astrometric)	22	95 days	0°001
Declination (astrometric)	"	"	0.°01
Distance	"	"	1×10^{-6} AU

therefore can be truncated. Summing the absolute values of coefficients 22 through 9 for the Sun's right ascension gives a total of $0^h 0000898$; adding to this the absolute value of coefficient 8 increases the total to $0^h 0001695$, which exceeds the limit of precision. Therfore terms 9 through 22 can be safely dropped, and terms 0 through 8 of this series provide precision of $\pm 0^s 5$.

To evaluate the approximations, one must first normalize the time variable to the interval for which the series is valid. The normalized time x is determined from a relation of the form $x = t/A + B$, where values of A and B are given for each set of coefficients and t is reckoned in days and fractions thereof from 0 January. If correctly computed, the value of x will fall in the range $-1 < x < +1$.

For the functions Apparent Sidereal Time at 0^h UT, the Equation of the Equinoxes, Nutation in Longitude and Nutation in Latitude, the variable t is measured in days of Universal Time from 0 January, 0^h UT. For all other functions in Section D, t is measured in days of ephemeris time from 0 January, 0^h ET. These latter functions can be evaluated for Universal Times, however, by using the normalizing relation $x = (t' + \Delta T)/A + B$, where t' is the Universal Time measured in days from 0 January, 0^h UT. As this volume goes to press, $\Delta T = 49^s 3 (=0^d 000571)$ appears to be a reliable value to use in 1978. Care should be taken to verify that the sum $t' + \Delta T$ falls within the time span for which the series is valid; if it falls outside, the series and constants for the next span should be used.

Once the normalized time variable x is determined, the approximation

$$f(x) = a_0/2 + \sum_{i=1}^n a_i T_i(x)$$

where the a_i are the printed coefficients, can be evaluated as follows:

let $b_{n+1} = b_{n+2} = 0$,
 compute $b_i = 2x b_{i+1} - b_{i+2} + a_i$, for $i = n, n-1, \dots, 0$,
 then $f(x) = (b_0 - b_2)/2$.

Example 2: Compute the apparent right ascension of the Sun to a precision of $\pm 0^s 5$ at $16^h 08^m 04^s$ UT ($=0^d 672269$) on 6 May 1978.

From the previous example we know that terms 0 through 8 of the series on page D7 must be carried to ensure the required precision on this date. Using the calendar (page A3) or the formulas on page B2, it is found that 6 May is day 126. Since the series for solar coordinates are based on ephemeris time, it is necessary to add ΔT to the specified Universal Time. Therefore

$$t = 126 + 0.672269 + 0.000581 = 126.672850$$

On page D7 are found the constants for the time span $A = 47.5$ and $B = 2.91578947$. Therefore

$$x = 126.672850 / 47.5 - 2.91578947 = -0.248992628$$

With this value of x and the coefficients from page D7, the algorithm works as follows:

**Table 3: Comparison of *Almanac for Computers* and AE
(Low Precision Series, pp. D31 – D34)**

A11

Function	No. of Terms	Maximum Error
Apparent Sidereal Time at 0 ^h UT	10	0 ⁰ 03
Equation of the Equinoxes	"	0 ⁰ 03
Nutation in Longitude	"	0. ³ 3
Nutation in Obliquity	"	0. ² 2
Sun: Right Ascension	22	0 ⁰ 6
Declination	"	3"
Distance	"	4x10 ⁻⁵ AU
Semi-Diameter	"	0. ⁰ 05
Ephemeris Transit	"	0 ⁰ 6
Mercury: Right Ascension	50	9 ^s
Declination	"	1'.1
Distance	"	5x10 ⁻⁴ AU
Venus: Right Ascension	50	0 ⁰ 03
Declination	"	0. ⁰ 2
Distance	"	2x10 ⁻⁶ AU
Mars: Right Ascension	22	0 ⁰ 4
Declination	"	2"
Distance	"	4x10 ⁻⁵ AU
Jupiter: Right Ascension	22	0 ⁰ 2
Declination	"	0. ⁰ 4
Distance	"	4x10 ⁻⁵ AU
Saturn: Right Ascension	22	0 ⁰ 1
Declination	"	0. ⁰ 4
Distance	"	4x10 ⁻⁵ AU
Uranus: Right Ascension	22	0 ⁰ 1
Declination	"	0. ⁰ 3
Distance	"	4x10 ⁻⁵ AU
Neptune: Right Ascension	22	0 ⁰ 05
Declination	"	0. ⁰ 3
Distance	"	5x10 ⁻⁵ AU
Pluto: Right Ascension (Astrometric)	22	0 ⁰ 02
Declination (Astrometric)	"	0. ⁰ 2
Distance	"	4x10 ⁻⁵ AU

$$\begin{aligned}
 b_{n+2} &= b_{10} = 0 \\
 b_{n+1} &= b_9 = 0 \\
 b_n &= b_8 = 2xb_9 - b_{10} + a_8 = -0.0000797 \\
 b_7 &= 2xb_8 - b_9 + a_7 = +0.0000575 \\
 b_6 &= 2xb_7 - b_8 + a_6 = +0.0001991 \\
 b_5 &= 2xb_6 - b_7 + a_5 = -0.0000755 \\
 b_4 &= 2xb_5 - b_6 + a_4 = -0.0050687 \\
 b_3 &= 2xb_4 - b_5 + a_3 = -0.0038659 \\
 b_2 &= 2xb_3 - b_4 + a_2 = +0.0728500 \\
 b_1 &= 2xb_2 - b_3 + a_1 = +3.0962149 \\
 b_0 &= 2xb_1 - b_2 + a_0 = +5.8157333 \\
 f(x) &= (b_0 - b_2)/2 = (16.9239355 + 0.0756807)/2 \\
 &\quad \text{RA} = 2^{\text{h}} 8714416 = 2^{\text{h}} 52^{\text{m}} 17\text{:}2
 \end{aligned}$$

Beneath each set of coefficients is printed the sum of the coefficients. This may be used as an easy means of verifying the accuracy with which the coefficients have been entered in the computer.

With two exceptions the series in Section D provide data referred to the true equator and equinox of date. The exceptions are

1. the Moon's geocentric, rectangular coordinates (X , Y , Z), which are referred to the mean equator and equinox of 1950.0;
2. the right ascension and declination of Pluto, which are astrometric (*i.e.*, free of the effect of stellar aberration, except for the elliptic part) and are referred to the mean equator and equinox of 1950.0.

The unit of distance for the Sun and planets is the Astronomical Unit; the unit of distance for the Moon is the Earth's equatorial radius.

Stellar Tables

The Stellar Tables (Section E) list the mean and apparent places of 176 stars for the current year, along with coefficients for converting from mean to apparent place for any date in the year. The list of stars is essentially the same as that for the star tables on pages 268–273 of the *Nautical Almanac*. The stars are arranged in order of increasing right ascension (decreasing sidereal hour angle), except where both components of a binary system are listed, in which case the brighter component is listed first. For binary stars which can be resolved in small instruments, the position of one or both components is listed rather than the position of the center of gravity or the center of light. For convenience of navigators the sidereal hour angle (SHA) is tabulated rather than right ascension (RA); astronomers can obtain the right ascension in degrees from the relation $RA = 360^\circ - SHA$.

The quantities tabulated for each star are, from left to right on the page:

- (1) An identification number.
 - (2) The navigational star number, provided the star is one of the 57 selected navigation stars listed in the *Nautical Almanac* and *Air Almanac*.
 - (3) The star name. The Bayer designation is on the first line and the proper name, if any, is on the second line.
 - (4) The magnitude and spectral type. The visual magnitude is on the first line and the spectral type is on the second line. A composite spectrum is denoted by *.
 - (5) The mean place of the star for 1979.0. SHA in degrees is on the first line, and declination in degrees is on the second line.
 - (6) Four coefficients (H, R, S, C) in degrees for conversion from mean to apparent place. The coefficients on the first line are for the conversion of SHA; these will hereafter be designated H_S, R_S, S_S, C_S . The coefficients on the second line are for the conversion of declination; these will hereafter be designated H_D, R_D, S_D, C_D .
 - (7) The apparent place of the star for 1979.5. SHA in degrees is on the first line, and declination in degrees is on the second line.
- The mean place of a star is to be regarded as a fundamental reference point with no simple geometric or observational significance. The apparent place of a star is the geocentric position, referred to the true equator and equinox of date, at which the star is observed. The apparent place is the position needed for navigational purposes, calibration of telescope setting circles, computation of transit times, etc. For work requiring accuracies of no better than $\pm 1'.3$, the tabulated apparent place for 1979.5 can be used for any date during the year. To obtain apparent places to greater accuracy, the following procedures should be used:

For the desired date in 1979, determine τ , the fraction of the year elapsed. If the day of the year is t , τ can be computed from the quantities A and B listed at the beginning of the table: $\tau = t/A + B$.

Star positions accurate to better than $\pm 0'.5$ can then be obtained by using the following formulas:

$$\begin{aligned}\text{apparent SHA} &= \text{mean SHA} + H_S + R_S \tau \\ \text{apparent decl.} &= \text{mean decl.} + H_D + R_D \tau\end{aligned}$$

Star positions accurate to better than $\pm 0'.1$ (and generally better than $\pm 0'.05$) can be obtained by using the following formulas:

$$\text{apparent SHA} = \text{mean SHA} + H_S + R_S \tau + S_S \sin 360^\circ \tau + C_S \cos 360^\circ \tau$$

$$\text{apparent decl.} = \text{mean decl.} + H_D + R_D \tau + S_D \sin 360^\circ \tau + C_D \cos 360^\circ \tau$$

The tabulated apparent places for 1979.5 were computed using these latter formulas with $\tau = 0.500$.

Example: Compute the apparent place of Betelgeuse (α Orionis) on 5 March 1979 to an accuracy of $0'.1$.

From the calendar on pages A2–A4 or the algorithm on pages B1–B2, 5 March is found to be day 64. From page E3, $A = 365.0000$ and $B = -0.0027$. Therefore $\tau = 64 / 365.0000 - 0.0027 = 0.1726$ and $360^\circ \tau = 62^\circ 15'$. Using the data for Betelgeuse on page E4 (Betelgeuse is star 42), we find:

Mean SHA	271°4913	Mean decl.	+ 7°4042
+ H_S	+ 0.0007	+ H_D	- 0.0025
+ $R_S \tau$	- 0.0021	+ $R_D \tau$	+ 0.0001
+ $S_S \sin 360^\circ \tau$	+ 0.0010	+ $S_D \sin 360^\circ \tau$	+ 0.0014
+ $C_S \cos 360^\circ \tau$	- 0.0026	+ $C_D \cos 360^\circ \tau$	- 0.0001
Apparent SHA	271°4883	Apparent decl.	+ 7°4031

Section B: APPLICATIONS

Introduction

In this section reference will be made to the following functions:

Sign function. The sign function serves to extract the algebraic sign from a number. The notation $\text{sign}(x)$ is defined to be $\text{sign}(x) = 1$ for $x \geq 0$, $\text{sign}(x) = -1$ for $x < 0$. An equivalent definition is $\text{sign}(x) = x/|x|$ for $x \neq 0$, $\text{sign}(x) = 1$ for $x = 0$. Examples: $\text{sign}(247) = 1$, $\text{sign}(-6.28) = -1$.

Truncation or largest-integer function. The truncation function extracts the integral part of a number. The algebraic sign of the result is the same as that of the original number. $\langle x \rangle$ is defined to be $\langle x \rangle = \text{sign}(x) \cdot N$, where N is the largest non-negative integer such that $N \leq |x|$.

Examples: $\langle 17.835 \rangle = 17$, $\langle -3.1416 \rangle = -3$.

Modulus or remainder function. The modulus function yields the remainder of the division x/y , when the quotient is constrained to be an integral value. Thus $\text{mod}(x,y)$ is defined to be $\text{mod}(x,y) = x - \langle x/y \rangle \cdot y$.

Examples: $\text{mod}(11,3) = 2$, $\text{mod}(-764.3,360.0) = -44.3$.

Note that $\langle x \rangle = x - \text{mod}(x,1.0)$. Therefore the truncation function can be defined in terms of the modulus function and vice versa. If either modulus or truncation is available on a calculator or computer, the other function can be simply obtained.

In this almanac Universal Time (UT) is to be identified with UT1, which is equivalent to the standard navigational time argument Greenwich Mean Time (GMT). The symbols UT and GMT may therefore be considered interchangable. For detailed information on time systems the reader should consult the Explanation of a current edition of the *American Ephemeris and Nautical Almanac*.

Day of the Year

The day of the year, N , is defined as the integer $N = \langle t \rangle$, where t is the time elapsed in days since 0 January, 0^h UT, of the current year. Thus N takes on integer values between 1 and 365 (or 366 in leap years). The day of the year can be computed from either of the following formulas:

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle \cdot \left(1 + \left\langle \frac{K - 4\langle K/4 \rangle + 2}{3} \right\rangle \right) + I - 30$$

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle \cdot \left(1 + \left\langle \frac{\text{mod}(K,4) + 2}{3} \right\rangle \right) + I - 30$$

where N is the day of the year, K is the year (e.g., 1978), M is the month ($1 \leq M \leq 12$), and I is the day of the month ($1 \leq I \leq 31$).

These formulas are equivalent and are valid for any year, except those century years that are not evenly divisible by 400. Therefore the formulas given

above are valid for the year 2000, but not for 1900 or 2100. In the above formulas the factor within the parentheses has the value 1 for leap years and 2 for non-leap years. Thus for a non-leap year, the following expression can be used:

$$N = \left\langle \frac{275M}{9} \right\rangle - 2 \left\langle \frac{M+9}{12} \right\rangle + I - 30$$

For leap years the equivalent expression is

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle + I - 30$$

Many expressions in this almanac require the value of t , the time elapsed in days since 0 January, 0^h UT, of the current year. By inverting the definition of N , we obtain $t = N + \text{UT}/24$, where UT is the Universal Time expressed in hours.

Julian Date

The Julian Date (JD) is a continuous count of days and fractions thereof from 1 January 4713 B.C. ($= -4712$ January 1), Greenwich Mean Noon ($= 12^{\text{h}}$ UT). For example A.D. 1978 January 1, 0^h UT, is JD 2443509.5 and A.D. 1978 July 21, 15^h UT, is JD 2443711.125. Conversion of Gregorian Calendar Date to Julian Date for the years A.D. 1801 through A.D. 2099 can be carried out with the following formula:

$$\begin{aligned} \text{JD} = & 367K - \left\langle \frac{7(K + \langle(M+9)/12\rangle)}{4} \right\rangle + \left\langle \frac{275M}{9} \right\rangle + I + 1721013.5 \\ & + \text{UT}/24 - 0.5 \text{sign}(100K + M - 190002.5) + 0.5 \end{aligned}$$

where K is the year ($1801 \leq K \leq 2099$), M is the month ($1 \leq M \leq 12$), I is the day of the month ($1 \leq I \leq 31$), and UT is the Universal Time in hours. The last two terms in the formula add up to zero for all dates after 1900 February 28, so these two terms can be omitted for subsequent dates. Note that the formula makes use of the truncation and sign functions defined on page B1.

Example: Compute the JD corresponding to 1877 August 11, 7^h30^m UT.

Substituting $K = 1877$, $M = 8$, $I = 11$, and $\text{UT} = 7.5$ in the formula yields

$$\begin{aligned} \text{JD} = & 688859 - 3286 + 244 + 11 + 1721013.5 + 0.3125 + 0.5 + 0.5 \\ = & 2406842.8125 \end{aligned}$$

The Modified Julian Date (MJD) is sometimes used to specify current dates; it is defined as $\text{MJD} = \text{JD} - 2400000.5$. Use of the Modified Julian Date, rather than the Julian Date, is recommended with computers and calculators of limited precision. Note that for 0^h UT on any date the Julian Date has a fractional part of .5, while the corresponding Modified Julian Date is an integer.

If ephemeris time (ET) is used in the above formula instead of Universal Time (UT), the resulting quantity is designated Julian Ephemeris Date (JED).

Sidereal Time

The following formulas are relevant to the computation of sidereal time:

- (1) $GMST = 6^{\text{h}}60444111 + 0^{\text{h}}0657098232N + 1.0027379093\text{UT}$
- (2) $GMST = 6^{\text{h}}67170278 + 0^{\text{h}}0657098232(\text{JD}_0 - 2433282.5)$
+ 1.0027379093UT
- (3) $\Omega = 171^{\circ}2785 - 0^{\circ}0529539(N + \text{UT}/24)$
- (4) $\Omega = 372^{\circ}1133 - 0^{\circ}0529539(\text{JD} - 2433282.5)$
- (5) $E = -0^{\text{h}}00029 \sin \Omega$
- (6) $GAST = GMST + E$
- (7) $GAST = \Sigma(t_0) + 1.0027379093\text{UT} = \Sigma(t) + \text{UT}$
- (8) $LAST = GAST - \lambda/15$

where

$GMST$ is the Greenwich mean sidereal time in hours;

Ω is the mean longitude of the ascending node of the Moon's orbit, measured in degrees;

E is the equation of the equinoxes in hours;

$GAST$ is the Greenwich apparent sidereal time in hours;

$LAST$ is the local apparent sidereal time in hours;

N is the day of the year ($1 \leq N \leq 365$ or, during a leap year, $1 \leq N \leq 366$);

UT is the Universal Time in hours;

JD_0 and JD are the Julian Dates at 0^{h} UT of the day of interest and at the instant of interest, respectively;

$\Sigma(t_0)$ and $\Sigma(t)$ are values obtained by evaluating the Chebyshev series for Apparent Sidereal Time (pp. D1–D4 or E1) at 0^{h} UT of the day of interest and at the instant of interest, respectively;

λ is the local longitude in degrees (west is positive; east is negative).

When using the above formulas, it may be necessary to reduce the resulting hour values to the range $0^{\text{h}} - 24^{\text{h}}$ by adding or subtracting multiples of 24^{h} .

Formulas (1) and (3) are specifically for the current year; the other formulas are valid at least over the latter half of this century. Formula (5) is an approximation that is accurate to about $\pm 0^{\circ}2$. If more accuracy is required, the Chebyshev series for the Equation of the Equinoxes (pp. D1–D4 or E1) can be used in place of Formula (5). If sidereal time is to be computed to an accuracy better than $\pm 0^{\circ}2$ (rarely justified for practical applications), then either the Chebyshev series for the Equation of the Equinoxes should be used in place of Formula (5) or Formula (7) should be used in place of Formula (6).

The above formulas can be easily adapted to allow the Modified Julian Date to be used in place of the Julian Date.

B4

Hour Angles

The following formulas are useful if astronomical data, such as that given in Sections C and E, are applied to navigational purposes:

$$\text{GHA} = 15(\text{GAST} - \text{RA})$$

$$\text{LHA} = 15(\text{LAST} - \text{RA}) = \text{GHA} - \lambda$$

$$\text{GHA Aries} = 15 \text{ GAST}$$

$$\text{SHA} = 360^\circ - 15 \text{ RA}$$

$$\text{GHA} = \text{GHA Aries} + \text{SHA}$$

where

GHA is the Greenwich hour angle in degrees;

LHA is the local hour angle in degrees;

GHA Aries is the Greenwich hour angle of the First Point of Aries (the origin of right ascension) in degrees;

SHA is the sidereal hour angle in degrees;

RA is the apparent right ascension (referred to the true equator and equinox of date) in hours;

λ is the local longitude in degrees (west is positive; east is negative)

GAST is the Greenwich apparent sidereal time in hours;

LAST is the local apparent sidereal time in hours.

When using the above formulas, it may be necessary to add or subtract 360° to reduce the resulting hour angles to the range $0^\circ - 360^\circ$. Often local hour angle values are reduced to the range -180° to $+180^\circ$, in which case they are called meridian angles. In all cases positive hour angle values are measured westward from the meridian.

Altitude and Azimuth

The following formulas can be used to compute the altitude (a) and azimuth (A) of a celestial body:

$$(1) \sin a = \cos z = \sin \phi \sin \delta + \cos \phi \cos \delta \cos \text{LHA}$$

$$(2) \tan x = (-\cos \delta \sin \text{LHA}) / (\cos \phi \sin \delta - \sin \phi \cos \delta \cos \text{LHA})$$

$A = 360^\circ + x$ if in Eq. (2) the denominator is positive and the numerator is negative;

$A = x$ if both the denominator and numerator in Eq. (2) are positive;

$A = 180^\circ + x$ if the denominator of Eq. (2) is negative;

where

- a is the altitude of the body above the horizon;
- x is an auxiliary angle in the range $-90^\circ < x < +90^\circ$;
- A is the azimuth of the body measured East from North over the range $0^\circ < A < 360^\circ$;
- ϕ is the observer's latitude (north is positive; south is negative);
- δ is the declination of the body (north is positive; south is negative);
- LHA is the local hour angle of the body;
- z is the zenith distance of the body ($z = 90^\circ - a$).

If the computed value of $\sin a$ is negative, the body is below the horizon. The standard navigational notation for altitude is Hc, and the navigational notation for azimuth is Zn. Equations (1) and (2) are the basic expressions used in preparing Sight Reduction Tables.

Sunrise, Sunset and Twilight

The following algorithm provides a means of computing times of sunrise, sunset and twilight for the current year for specified locations. Between latitudes 65° North and 65° South the phenomena can be computed to an accuracy of $\pm 2^m$. Although the algorithm can be used at higher latitudes, its accuracy deteriorates near dates on which the Sun remains above or below the horizon for more than twenty-four hours.

- Notation:
- ϕ = latitude of observer (north is positive; south is negative)
 - λ = longitude of observer (west is positive; east is negative)
 - M = Sun's mean anomaly
 - L = Sun's true longitude
 - a = Sun's right ascension
 - δ = Sun's declination
 - H = Sun's local hour angle
 - z = Sun's zenith distance at rise, set or twilight *
 - t = approximate time of phenomenon in days since 0 Jan., 0^hUT
 - T = local mean time of phenomenon
 - UT = Universal Time of phenomenon

*The proper value of z should be chosen from the following:

	z	$\cos z$
Sunrise and Sunset	$90^\circ 50'$	-0.01454
Civil Twilight	96°	-0.10453
Nautical Twilight	102°	-0.20791
Astronomical Twilight	108°	-0.30902

B6

Formulas for 1978:

- (1) $M = 0^\circ 985600t - 3^\circ 507$
- (2) $L = M + 1^\circ 916 \sin M + 0^\circ 020 \sin 2M + 282^\circ 588$
- (3) $\tan a = 0.91746 \tan L$
- (4) $\sin \delta = 0.39782 \sin L$
- (5) $\cos H = (\cos z - \sin \delta \sin \phi) / (\cos \delta \cos \phi)$
- (6) $T = H + a - 0^h 065710t - 6^h 604$
- (7) $UT = T + \lambda$

Procedure:

1. With an initial value of t , compute M from Eq. (1) and then L from Eq. (2). If a morning phenomenon (sunrise or the beginning of morning twilight) is being computed, construct an initial value of t from the formula

$$t = N + (6^h + \lambda)/24$$

where N is the day of the year (see the calendar on pages A2–A4 or the formulas on page B1) and λ is the observer's longitude expressed in hours. If an evening phenomenon is being computed, use

$$t = N + (18^h + \lambda)/24$$

2. Solve Eq. (3) for a , noting that a is in the same quadrant as L . Transform a to hours for later use in Eq. (6).
3. Solve Eq. (4) for $\sin \delta$ which appears in Eq. (5); $\cos \delta$, which also is required in Eq. (5), should be determined from $\sin \delta$. While $\sin \delta$ may be positive or negative, $\cos \delta$ is always positive.
4. Solve Eq. (5) for H . Since computers and calculators normally give the arccosine in the range 0° – 180° , the correct quadrant for H can be selected according to the following rules:
 - (a) rising phenomena, $H = 360^\circ - \arccos H$;
 - (b) setting phenomena, $H = \arccos H$.In other words, for rising phenomena H must be either in quadrant 3 or 4 (depending on the sign of $\cos H$), whereas H must be either in quadrant 1 or 2 for setting phenomena. Convert H from degrees to hours for use in Eq. (6).
5. Compute T from Eq. (6), recalling that H and a must be expressed in hours. If T is negative or greater than 24^h , it should be converted to the range 0^h – 24^h by adding or subtracting multiples of 24^h .
6. Compute UT from Eq. (7), where λ must be expressed in hours. UT is an approximation to the time of sunrise, sunset or twilight, referred to the Greenwich meridian. If UT is greater than 24^h , the phenomenon occurs on the following day, Greenwich time. If UT is negative, the phenomenon occurs on the previous day, Greenwich time.

To ensure that precision is not lost during the computations, t should be carried to four decimal places. Angles should be expressed to three decimals of a degree and, upon conversion, to three decimals of an hour. Five significant digits should be carried for the trigonometric functions.

Under certain conditions Eq. (5) will yield a value of $|\cos H| > 1$. This mathematical embarrassment indicates the absence of the phenomenon on that day. At far northern latitudes, for example, there is continuous illumination during certain summer days and continuous darkness during winter days.

Example: Compute the time of sunset on 4 July at Washington, D.C.

$$\text{Latitude} = 38^\circ 54' \text{ North} \quad \text{Longitude} = 77^\circ 04' \text{ West}$$

$$\lambda = +77^\circ 067/15 = +5^\circ 138$$

$$\phi = +38^\circ 9' \quad \sin \phi = 0.62796 \quad \cos \phi = 0.77824$$

$$\text{For sunset: } z = 90^\circ 50' \quad \cos z = -0.01454$$

$$t = 185^\text{d} + (18^\text{h} + 5^\circ 138)/24 = 185^\text{d} 9641$$

$$M = 0^\circ 985600(185.9641) - 3^\circ 507 = 179^\circ 779$$

$$L = 179^\circ 779 + 1^\circ 916(-0.00385) + 0^\circ 020(0.00771) + 282^\circ 588 \\ = 462^\circ 360 = 102^\circ 360$$

$$\tan a = 0.91746(-4.56345) = -4.18678$$

$$a = 103^\circ 433 = 6^\text{h} 896 \quad \text{Since } L \text{ is in quadrant 2, so is } a.$$

$$\sin \delta = 0.39782(0.97682) = 0.38860$$

$$\cos \delta = 0.92141$$

$$\cos H = [-0.01454 - (0.38860)(0.62796)] / [(0.92141)(0.77824)] \\ = -0.36058$$

Since sunset is being computed and $\cos H$ is negative, H is in the second quadrant: $H = 111^\circ 136 = 7^\text{h} 409$

$$T = 7^\text{h} 409 + 6^\text{h} 896 - 0^\text{h} 065710(185.9641) - 6^\text{h} 604 = -4^\text{h} 519 \\ = 19^\text{h} 481$$

$$UT = 19^\text{h} 481 + 5^\text{h} 138 = 24^\text{h} 619$$

Sunset occurred at $0^\text{h} 37^\text{m}$ UT on 5 July = $20^\text{h} 37^\text{m}$ EDT on 4 July.

Example: Compute the beginning of nautical twilight on 12 January at latitude $62^\circ 5'$ South, longitude $7^\circ 0'$ East.

$$\lambda = -7^\circ 0/15 = -0^\text{h} 467$$

$$\phi = -62^\circ 5' \quad \sin \phi = -0.88701 \quad \cos \phi = 0.46175$$

$$\text{For nautical twilight: } z = 102^\circ \quad \cos z = -0.20791$$

$$t = 12^\text{d} + (6^\text{h} - 0^\text{h} 467)/24 = 12^\text{d} 2305$$

$$M = 0^\circ 985600(12.2305) - 3^\circ 507 = 8^\circ 547$$

$$L = 8^\circ 547 + 1^\circ 916(0.14862) + 0^\circ 020(0.29394) + 282^\circ 588 \\ = 291^\circ 426$$

$$\tan a = 0.91746(-2.54829) = -2.33795$$

$$a = 293^\circ 158 = 19^\text{h} 544 \quad \text{Since } L \text{ is in quadrant 4, so is } a.$$

$$\sin \delta = 0.39782(-0.93089) = -0.37033$$

$$\cos \delta = 0.92890$$

$$\cos H = [-0.20791 - (-0.37033)(-0.88701)] / [(0.92890)(0.46175)] \\ = -1.25058$$

Since the computed absolute value of $\cos H$ is greater than 1, there is no beginning time for morning nautical twilight on this date.

Moonrise and Moonset

Times of moonrise and moonset can be computed for specified locations using the following algorithm. Between latitudes 60° North and 60° South, the phenomena can be computed to an accuracy of $\pm 5^{\text{m}}$. Although the algorithm can be used at higher latitudes, its accuracy deteriorates near dates on which the Moon remains above or below the horizon for more than twenty-four hours.

Notation: ϕ = latitude of observer (north is positive; south is negative)

λ = longitude of observer (west is positive; east is negative)

t_i = i -th approximation to Universal Time of phenomenon,
expressed in days from 0 January, 0^h UT

GHA_i = Moon's GHA at time t_i

δ_i = Moon's declination at time t_i (north is positive; south is negative)

τ_i = i -th correction to t_0 , thus $t_i = t_0 + \tau_i$

H_i = i -th approximation to Moon's LHA at time of rise or set

ΔH_i = i -th approximation to Moon's daily rate of change in GHA

Formulas:

$$(1) \quad \Delta H_i = (GHA_i - GHA_0) / \tau_i \quad \text{for } i = 0, \text{ let } \Delta H_0 = 347^{\circ} 81$$

$$(2) \quad \cos H_{i+1} = (0.00233 - \sin \phi \sin \delta_i) / (\cos \phi \cos \delta_i)$$

$$(3) \quad \tau_{i+1} = (H_{i+1} - H_0) / \Delta H_i$$

$$(4) \quad t_{i+1} = t_0 + \tau_{i+1}$$

Procedure:

1. Let $t_0 = N + (12^{\text{h}} + \lambda)/24$, where N is the day of the year (see the calendar on pages A2–A4 or the formulas on page B1) and λ is the observer's longitude expressed in hours. Set $i = 0$ and begin the following iterative process.

2. For time t_i compute the Moon's GHA and declination to navigational precision ($\pm 0' 1$). Label these quantities GHA_i and δ_i , respectively, where i specifies the iteration number. For $i = 0$, compute $H_0 = GHA_0 - \lambda$.

3. If $i = 0$, let $\Delta H_0 = 347^{\circ} 81$. Otherwise compute ΔH_i from Eq. (1). If $\Delta H_i < 0$, add $360^{\circ}/|\tau_i|$ to ΔH_i .

4. Solve Eq. (2) for H_{i+1} . Since computers and calculators normally give the arc-cosine in the range 0° – 180° , the correct quadrant for H_{i+1} can be selected according to the following rules:

(a) moonrise computations, $H_{i+1} = 360^{\circ} - \arccos H_{i+1}$;

(b) moonset computations, $H_{i+1} = \arccos H_{i+1}$.

In other words, near the time of moonrise H_{i+1} must be either in quadrant 3 or 4 (depending on the sign of $\cos H_{i+1}$); near moonset H_{i+1} must be either in quadrant 1 or 2. For latitudes higher than 60° (i.e., $|\phi| > 60^{\circ}$), the condition $|\cos H_{i+1}| > 1$ can occur, thereby indicating the absence of the phenomenon on that day.

5. Compute τ_{i+1} from Eq. (3). If $|\tau_{i+1}| < 0^d 5$, proceed to Step 6. If $|\tau_{i+1}| > 0^d 5$, the phenomenon being computed occurs on the day prior to the day desired (if τ_{i+1} is negative) or on the day following the day desired (if τ_{i+1} is positive). Normally the phenomenon on the desired day can be obtained by adding to τ_{i+1} (if τ_{i+1} is negative), or subtracting from τ_{i+1} (if τ_{i+1} is positive), $360^\circ/\Delta H_i$. If successful this technique will produce a new value of τ_{i+1} in the required range. However, two conditions may prevent the reduction to $|\tau_{i+1}| < 0^d 5$:
- (a) for low values of i , τ_{i+1} may be a fairly crude approximation to the ultimate value, τ_n ;
 - (b) each month there is one day (near last quarter) on which there is no moonrise, and another day (near first quarter) on which there is no moonset.
- If $|\tau_{i+1}| \approx 0^d 5$, it is probably worth attempting another iteration to see if $|\tau_{i+2}| < 0^d 5$.
6. Compute t_{i+1} from Eq. (4). If $|t_{i+1} - t_i| < 0^d 01$, t_{i+1} is accurate to $\pm 5^m$. Otherwise it is necessary to iterate the solution by setting $i = i + 1$ and executing Steps 2 through 6 again.

Example: Compute the time of moonrise on 19 April 1979 at latitude $42^\circ 05'$ North and longitude $92^\circ 54'$ West.

$$\phi = +42^\circ 083 \quad \sin\phi = 0.67021 \quad \cos\phi = 0.74217$$

$$\lambda = +92^\circ 900 = +6^\text{h}193$$

From the calendar on pages A2–A4 or the formulas on pages B1–B2, 19 April is found to be day 109; therefore

$$t_0 = 109^\text{d} + (12^\text{h} + 6^\text{m}193)/24 = 109^\text{d}75804$$

$i = 0$:

$$GHA_0 = 179^\circ 909 \quad \delta_0 = -16^\circ 621$$

$$H_0 = 179^\circ 909 - 92^\circ 900 = 87^\circ 009$$

$$\Delta H_0 = 347^\circ 81$$

$$\begin{aligned} \cos H_1 &= [0.00233 - (0.67021)(-0.28604)] / [(0.74217)(0.95822)] \\ &= 0.27284 \end{aligned}$$

Since moonrise is sought, H_1 is in quadrant 3 or 4: $H_1 = 285^\circ 834$

$$\tau_1 = (285^\circ 834 - 87^\circ 009)/347^\circ 81 = 0^d 57165$$

Since $|\tau_1| > 0^d 5$, we try

$$\tau_1 = 0^d 57165 - 360^\circ/347^\circ 81 = -0^d 46340, \text{ which is satisfactory.}$$

$$\begin{aligned} t_1 &= 109^\text{d}75804 - 0^d 46340 = 109^\text{d}29464 = 19 \text{ April } 07^\text{h}04^\text{m} \text{ UT} \\ &= 19 \text{ April } 01^\text{h}04^\text{m}, 90^\text{th} \text{ Meridian West} \end{aligned}$$

$i = 1$:

$$GHA_1 = 19^\circ 381 \quad \delta_1 = -17^\circ 427$$

$$\Delta H_1 = (19^\circ 381 - 179^\circ 909)/-0^d 46340 = 346^\circ 413$$

$$\begin{aligned} \cos H_2 &= [0.00233 - (0.67021)(-0.29949)] / [(0.74217)(0.95410)] \\ &= 0.28675 \end{aligned}$$

Since moonrise is sought, H_2 is in quadrant 3 or 4: $H_2 = 286^\circ 664$

$$\tau_2 = (286^\circ 664 - 87^\circ 009) / 346^\circ 413 = 0^\text{d} 57635$$

Since $|\tau_2| > 0^\text{d} 5$, we try

$$\tau_2 = 0^\text{d} 57635 - 360^\circ / 346^\circ 413 = -0^\text{d} 46287, \text{ which is satisfactory.}$$

$$t_2 = 109^\text{d} 75804 - 0^\text{d} 46287 = 109^\text{d} 29517 = 19 \text{ April } 07^\text{h} 05^\text{m} \text{ UT}$$

= 19 April 01^h05^m, 90th Meridian West

Since $|t_2 - t_1| = 0^\text{d} 0005 < 0^\text{d} 01$, t_2 is accurate to $\pm 5^\text{m}$.

The extremely rapid convergence illustrated in this example occurs frequently but not invariably. Although the first approximation (t_1) will often give adequate precision for most purposes, it is recommended that the solution be iterated and that the convergence criterion ($|t_{i+1} - t_i| < 0^\text{d} 01$) be tested.

Equation of Time

The equation of time, the hour angle of the apparent (true) Sun minus the hour angle of the mean (fictitious) Sun, can be represented to reasonable precision by the following formula:

$$\begin{aligned} \text{EqT} = & -97^\circ 8 \sin l - 431^\circ 3 \cos l + 596^\circ 6 \sin 2l - 1^\circ 9 \cos 2l \\ & + 4^\circ 0 \sin 3l + 19^\circ 3 \cos 3l - 12^\circ 7 \sin 4l \end{aligned}$$

where EqT is the equation of time in seconds and l is the Sun's mean longitude.

$$l = 279^\circ 697 + 0^\circ 98564734(\text{JD} - 2415020.0) = 279^\circ 073 + 0^\circ 98564734t$$

In the equation for l , JD is the Julian Date and t is the elapsed time in days and fractions thereof since 0 January 1979, 0^h UT. Formulas for computing JD and t are given on pages B1–B2. Values of l and its multiples may have to be reduced to the range 0°–360° by adding or subtracting multiples of 360°.

The local mean time of solar transit is given by 12^h minus EqT. Thus EqT represents the difference local apparent (sundial) time minus local mean time.

Polaris (Pole Star)

The following formulas are relevant to observations of Polaris:

$$(1) \quad \phi = a - p \cosh + 0.5 p \sin p \sin^2 h \tan \phi$$

$$(2) \quad A \cos \phi = p \sin h + p \sin p \sin h \cosh \tan \phi$$

where p is the polar distance of Polaris: $p = 90^\circ - \text{declination of Polaris}$

h is the LHA of Polaris: $h = \text{GHA Aries} + \text{SHA Polaris} + \text{east} (-\text{west})$
longitude of observer

ϕ is the observer's latitude;

A is the azimuth of Polaris;

a is the corrected altitude of Polaris.

Eq. (1) permits the observer's latitude to be determined from an observation of the altitude of Polaris (corrected for refraction, dip, etc.). Assumed values of the observer's latitude and longitude can be used for the right side of Eq. (1).

Eq. (2) yields the azimuth of Polaris if the observer's position is known. These expressions are accurate only for Polaris, since they depend on p being a small quantity. The SHA and declination of Polaris to be used in these formulas should be referred to the true equator and equinox of date; i.e., the apparent place of Polaris should be computed (see Section F 'Stellar Tables'; Polaris is star number 17).

Equation of Position Line

The following formula can be used to obtain a line of position (LOP) directly from an observation of the altitude of a celestial body:

$$\lambda = \text{GHA} \pm \arccos[(\sin a - \sin \phi \sin d) / \cos \phi \cos d]$$

where: λ is the computed longitude;

GHA is the GHA of the body for the time of observation;

a is the corrected altitude of the body;

d is the declination of the body for the time of observation;

ϕ is an estimate of the observer's latitude.

North latitudes and west longitudes are positive; south latitudes and east longitudes are negative. Longitudes with absolute values greater than 180° may be encountered. The operation connecting the two terms is + for bodies east of the meridian (rising) and - for bodies west of the meridian (setting).

The formula yields the longitude λ at which the position line crosses the parallel of latitude ϕ . Repeated application of the formula using different latitude values yields a locus of points all lying on the LOP. Note that no assumed position is necessary, although an estimate of the observer's latitude is helpful in reducing the number of times the formula is applied.

The formula becomes indeterminate at the transit time of a body and for latitudes which the position line does not cross at any point.

Motion of Body and Motion of Observer

The following formula gives the change of altitude of a celestial body, due to the rotation of the Earth, in the time interval Δt (e.g., the interval between a sextant observation and the time of a fix). This correction may be applied to the observed altitude to permit the use of a common assumed position and LHA Aries for observations made at different times.

$$MOB = 15.04 \Delta t \cos \phi \sin A$$

where MOB is the altitude correction in minutes of arc, Δt is the time difference in minutes, ϕ is the latitude of the observer, and A is the azimuth of the observed body. If the time of the fix is later than the time of observation, MOB should be added to the observed altitude.

The following formula gives the change of altitude of a celestial body, due to the motion of the observer, in the time interval Δt (e.g., the interval between a

sextant observation and the time of a fix). This correction may be applied to the altitude in lieu of advancing or retiring a line of position.

$$MOO = \frac{v \Delta t}{60} \cos(A - C)$$

where MOO is the altitude correction in minutes of arc, Δt is the time difference in minutes, A is the azimuth of the observed body, C is the track/course angle, and v is the ground speed in knots. If the time of the fix is later than the time of observation, MOO should be added to the observed altitude.

These formulas are approximations; they become unreliable for values of Δt greater than 5 minutes.

Sextant Altitude Corrections

Several corrections must be applied to a sextant altitude (hs) in order to obtain a corrected altitude (Ho). Ho can then be either (a) compared with the computed altitude (Hc) to obtain the altitude difference (Δa); or (b) used in the 'Equation of Position Line' (see page B11) in order to obtain directly the location of the LOP for the sight.

The corrections, in the order in which they should be applied, are:

- (1) Instrument and/or index correction, IC;
- (2a) Dip of horizon, D (marine sextant);
or
- (2b) Coriolis correction, Δz (bubble sextant);
- (3) Atmospheric refraction, R;
- (4) Semi-diameter, SD (marine sextant, Sun and Moon observations);
- (5) Parallax in altitude, PA (Moon, Venus and Mars observations).

In mathematical notation:

$$Ho = hs + IC + (D \text{ or } \Delta z) - R + SD + PA$$

If Venus is observed, an additional correction for the phase of the planet may be necessary. This correction can be made either to the sextant altitude or to the GHA or LHA of Venus.

Descriptions and formulas for D, Δz , R, SD, PA and the phase correction for Venus are given in the following pages.

Dip of Horizon

The dip of the apparent horizon from a horizontal plane is given by

$$D = -0.97\sqrt{h}$$

where h is the height of eye level of the observer in feet and D is the dip of the horizon in minutes of arc. For observations of a celestial body made with a marine sextant or similar instrument, D should be added to the observed altitude to obtain the corrected altitude. This formula is an approximation; the apparent dip varies with atmospheric conditions.

Coriolis Correction

Any object moving across or above the surface of the rotating Earth is subject to an apparent force tending to push the object to the right in the northern hemisphere and to the left in the southern hemisphere. This Coriolis acceleration manifests itself as a deflection of the apparent vertical by an amount Z :

$$(1) \quad Z = 2.62 V \sin \phi + 0.146 V^2 \sin C \tan \phi - 5.25 VC'$$

where: Z is the deflection in minutes of arc;

V is the speed in hundreds of knots;

ϕ is the latitude;

C is the true track/course angle;

C' is the rate of change of true track/course angle in degrees per minute of time.

Usually only the first term on the right of Eq. (1) is significant.

Observations of the altitudes of celestial bodies made with bubble sextants or similar artificial horizon instruments must be corrected for the Coriolis effect. The correction Δz , which can be added to the observed (e.g., bubble sextant) altitude, is given approximately by

$$(2) \quad \Delta z = Z \sin(A - C)$$

where: Δz is the altitude correction in minutes of arc;

Z is the deflection of the vertical determined from Eq. (1);

A is the azimuth of observed body;

C is the true track/course angle.

In the northern hemisphere the correction Δz is positive for stars on the right and negative for stars on the left of the aircraft. In the southern hemisphere the correction is negative for stars on the right and positive for stars on the left.

Atmospheric Refraction

The Earth's atmosphere tends to refract light in such a way that celestial bodies appear slightly higher in the sky than they would if there were no atmosphere. The formulas below can be used to determine R , the angle of refraction. R should be subtracted from an observed (e.g., sextant) altitude to obtain the corrected altitude.

$$(1) \quad R = \frac{P}{273 + T} [3.430289(z - \arcsin[0.9986047 \sin(0.9967614z)]) - 0.01115929z]$$

$$(2) \quad R = \exp(-h/27000) \tan z = 1/\exp(h/27000) \tan a$$

where: R is the refraction correction in minutes of arc;

a is the observed altitude

z is the observed zenith distance in degrees: $z = 90^\circ - a$

T is the temperature in degrees Celsius;
 P is the atmospheric pressure in millibars;
 h is the height of the observer above sea level in feet.

Eq. (1) is more suitable for surface observations, while Eq. (2) is more suitable for observations from aircraft. Both formulas are approximations and are not equivalent to a complete theory of refraction. Eq. (2), which should be used only for altitudes greater than 10° , is accurate to about $0'.2$. Eq. (1) can be used for all altitudes: for altitudes greater than 15° , it is accurate to $0'.1$ or better; for altitudes between 3° and 15° , errors between $0'.1$ and $1'.0$ may arise; for altitudes less than 3° , errors between $1'$ and $3'$ may be expected.

Semi-diameter of the Sun and Planets

When not available directly from almanac data, the semi-diameters of the Sun and planets can be computed from

$$SD = S/d = S\pi/8.794$$

where: SD is the semi-diameter in seconds of arc;
 S is the semi-diameter at unit distance (1 AU) in seconds of arc;
 d is the geocentric distance in AU;
 π is the horizontal parallax in seconds of arc.

The following values of S should be used:

Sun	959".63	Jupiter	98".47
Mercury	3.34	Saturn	83.33
Venus	8.41	Uranus	34.28
Mars	4.68	Neptune	36.56

These values apply to the equatorial dimensions of the bodies and do not include any adjustments for irradiation.

Semi-diameter of the Moon

When not available directly from almanac data, the semi-diameter of the Moon can be computed from

$$(1) \quad SD = 56204.92/d = 0.272476\pi$$

where SD is the semi-diameter in seconds of arc, d is the geocentric distance of the Moon in units of the Earth's equatorial radius, and π is the horizontal parallax of the Moon in seconds of arc.

Computed this way, the semi-diameter applies to a fictitious observer located at the center of the Earth. The observed semi-diameter of the Moon will be slightly greater than the geocentric semi-diameter, since a real observer located on the surface of the Earth will be slightly closer to the Moon (assuming it is above the horizon). For navigational and certain other purposes the *augmented semi-diameter* of the Moon should be used:

$$(2) \quad SD_{\text{aug}} = SD[1 + (\sin a)/d]$$

where SD_{aug} is the augmented semi-diameter in seconds of arc, a is the altitude of the Moon (for navigational purposes $a = H_o$, but h_s or H_c can be used instead with negligible error), d is the geocentric distance of the Moon in units of the Earth's equatorial radius, and SD is the geocentric semi-diameter computed from Eq. (1). For navigational purposes a constant value of $d = 60.27$ can be used to sufficient accuracy. The increase in the Moon's semi-diameter due to augmentation is zero when the Moon is on the horizon and is about $0'.3$ when the Moon is at the zenith.

Parallax in Altitude

The finite size of the Earth causes a parallactic shift in the apparent positions of nearby celestial objects. The resulting parallax in altitude can be computed from

$$\sin PA = \sin \pi \cos a$$

where PA is the parallax in altitude, π is the horizontal parallax, and a is the observed altitude. When the horizontal parallax of a body is not available, it may be computed from the relation $\pi = 8.^{\circ}794/d$, where d is the geocentric distance of the body in astronomical units. The parallax in altitude can exceed $1'$ only for the Moon. Since parallax tends to decrease the apparent altitude of a body, the quantity PA should be added to an observed (e.g., sextant) altitude in order to obtain the corrected altitude. To a reasonable approximation, PA can also be computed from

$$PA = \pi \cos a$$

Correction for the Phase of Venus

When the altitude of Venus is observed with a small instrument, a correction to the observed altitude is required to account for the fact that the center of light, rather than the center of the disk, is observed. This correction has the form $-k \cos \theta$, where k is a correction factor (given below) and θ is the angle on the celestial sphere, at the position of Venus, between the observer's vertical and the direction of the Sun. The correction, which should be added to the observed (e.g., sextant) altitude, is positive when the Sun is lower than Venus, zero when they have the same altitude, and negative when the Sun is higher.

In sight reduction this effect can be approximately taken into account by correcting the GHA (or LHA) of Venus rather than correcting the observed altitude. Simply add k to the GHA (or LHA) of Venus when Venus is east of the Sun (*i.e.*, when Venus is an evening planet), and subtract k from the GHA (or LHA) when Venus is west of the Sun (morning planet). The correction should not be applied in this way near the time of superior or inferior conjunction.

Venus is at superior conjunction on 25 August 1979. Prior to this date Venus is in the morning sky. Following superior conjunction Venus is in the evening sky.

B16

The values of k for 1979 are:

		k
Jan.	1	0.2
Jan.	8	
Mar.	1	0.1
Dec.	31	0.0

Section C: NAVIGATIONAL TABLES

C2

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

DAY	1 THRU	32	JD 2443874.5 TO 2443906.5	DATES JAN	1 THRU FEB	1
			A = 16.00000000	B = -1.06250000		
			ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM			DEG	DEG	DEG	DEG
0	6235.8221	6297.5440	-20.8978	0.2717		
1	5775.7697	5758.6473	3.0711	0.0		
2	-0.0002	0.3619	0.8510	0.0		
3	0.0023	0.0377	-0.0606	0.0		
4	-0.0001	-0.0074	-0.0069	0.0		
5	-0.0019	0.0055	0.0003	0.0		
SUMS	12011.5919	12056.5890	-17.0429	0.2717		
DAY	32 THRU	63	JD 2443905.5 TO 2443937.5	DATES FEB	1 THRU MAR	4
			A = 16.00000000	B = -3.00000000		
			ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM			DEG	DEG	DEG	DEG
0	5906.3771	5936.4716	-12.2645	0.2698		
1	5775.7697	5760.2557	5.5586	0.0004		
2	-0.0002	0.3707	0.4184	0.0027		
3	0.0023	-0.0410	-0.0826	-0.0046		
4	-0.0001	-0.0020	0.0003	-0.0017		
5	-0.0019	0.0024	0.0050	0.0036		
SUMS	11682.1469	11697.0574	-6.3648	0.2702		
DAY	60 THRU	91	JD 2443933.5 TO 2443965.5	DATES MAR	1 THRU APR	1
			A = 16.00000000	B = -4.75000000		
			ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM			DEG	DEG	DEG	DEG
0	5933.9750	5937.8303	-1.6689	0.2681		
1	5775.7720	5761.1477	6.3219	0.0		
2	0.0	0.1061	0.0258	0.0041		
3	-0.0028	-0.0649	-0.0715	-0.0022		
4	0.0	0.0033	0.0022	-0.0039		
5	0.0013	0.0026	0.0017	0.0004		
SUMS	11709.7455	11699.0251	4.6112	0.2665		
DAY	91 THRU	122	JD 2443964.5 TO 2443996.5	DATES APR	1 THRU MAY	2
			A = 16.00000000	B = -6.68750000		
			ARIES GHA	SUN GHA	SUN DEC	SUN S C
TERM			DEG	DEG	DEG	DEG
0	5964.5298	5940.0515	10.1856	0.2665		
1	5775.7702	5760.9491	5.6672	-0.0019		
2	-0.0007	-0.2055	-0.3592	-0.0026		
3	0.0011	-0.0429	-0.0670	0.0016		
4	0.0008	0.0095	0.0011	0.0020		
5	-0.0011	-0.0011	0.0020	-0.0005		
SUMS	11740.3001	11700.7606	15.4297	0.2651		

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

C3

DAYS 1 THRU 32 JD 2443874.5 TO 2443906.5 DATES JAN 1 THRU FEB 1

A = 16.00000000 B = -1.06250000

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	6347.6975	-18.2565	6296.4573	-21.7299	6468.2514	19.6150	6430.3250	8.2744
1	5759.0796	-2.8000	5762.5937	2.3699	5777.9206	0.5484	5776.3566	0.3109
2	-1.1845	0.4415	0.1466	0.5213	0.1096	0.0065	0.1955	0.0762
3	0.1641	0.2131	0.0340	-0.0237	-0.0631	-0.0225	-0.0151	-0.0093
4	-0.0014	-0.0193	-0.0022	-0.0022	-0.0036	-0.0010	-0.0036	-0.0003
5	-0.0024	-0.0023	-0.0044	0.0005	-0.0034	0.0034	0.0018	0.0017
SUMS	12105.5529	-20.4235	12059.2250	-18.8641	12246.2115	20.1498	12206.8602	8.6516

DAYS 32 THRU 63 JD 2443905.5 TO 2443937.5 DATES FEB 1 THRU MAR 4

A = 16.00000000 B = -3.00000000

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5982.4342	-20.7838	5942.1990	-15.3839	6142.8721	20.5756	6102.6189	9.0944
1	5756.2886	0.6654	5763.3831	4.0634	5777.5633	0.3907	5776.9017	0.5004
2	-0.2573	1.1743	0.2203	0.3408	-0.2756	-0.0743	0.0742	0.3195
3	0.1705	0.0384	-0.0064	-0.0439	-0.3547	-0.0018	-0.0277	-0.0173
4	0.0015	-0.0242	-0.0009	-0.0049	0.0048	0.0021	-0.0018	-0.0016
5	-0.0072	-0.0024	0.0015	0.0034	0.0021	-0.0043	0.0007	0.0042
SUMS	11738.6303	-18.9323	11705.7966	-11.0251	11920.1120	20.8880	11879.5660	9.5996

DAYS 60 THRU 91 JD 2443933.5 TO 2443965.5 DATES MAR 1 THRU APR 1

A = 16.00000000 B = -4.75000000

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5975.9623	-16.0455	5948.7557	-7.4543	5812.5408	21.0083	6132.2697	9.9636
1	5756.6653	4.6297	5764.0748	4.8794	5776.2569	0.0948	5776.8966	0.4554
2	0.3399	0.9780	0.1555	0.1333	-0.4293	-0.0905	-0.0751	-0.3431
3	0.0439	-0.0952	-0.0261	-0.0342	-0.0078	-0.0029	-0.0247	-0.0154
4	-0.0190	-0.0126	-0.0019	-0.0005	0.0064	0.0028	0.0011	0.0007
5	-0.0031	0.0021	0.0035	-0.0020	0.0007	0.0029	-0.0009	0.0049
SUMS	11732.9893	-10.5435	11712.9615	-2.4783	11588.3677	21.0154	11909.0667	10.3631

DAYS 91 THRU 122 JD 2443964.5 TO 2443996.5 DATES APR 1 THRU MAY 2

A = 16.00000000 B = -6.68750000

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5970.8028	-4.1998	5957.0761	2.2243	5842.4461	20.8676	5804.5588	10.6207
1	5757.8766	7.1604	5764.4316	4.9737	5774.6502	-0.2348	5776.3623	0.2034
2	0.1516	0.3067	0.0241	-0.0793	-0.3777	-0.0812	-0.1871	-0.0800
3	-0.0809	-0.1238	-0.0166	-0.0419	0.0167	0.0038	-0.0171	-0.0027
4	-0.0046	-0.0026	0.0036	-0.0011	0.0030	0.0012	0.0016	-0.0002
5	0.0011	-0.0092	-0.0028	0.0056	0.0011	-0.0013	0.0034	-0.0014
SUMS	11728.7466	3.1407	11721.5160	7.0813	11616.7394	20.5553	11580.7219	10.7398

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

DAYS 121 THRU 152 JD 2443994.5 TO 2444026.5 DATES MAY 1 THRU JUNE 1

	A = 16.00000000	B = -8.56250000		
	ARIES GHA	SUN GHA	SUN DEC	SUN SD
TERM	DEG	DEG	DEG	DEG
0	5994.0992	5940.9244	19.1397	0.2642
1	5775.7686	5759.9199	3.6773	-0.0033
2	-0.0001	-0.3067	-0.6914	0.0
3	0.0043	0.0101	-0.0559	0.0061
4	0.0001	0.0123	0.0033	0.0
5	-0.0027	-0.0004	0.0036	-0.0037
SUMS	11769.8694	11700.5596	22.0766	0.2633

DAYS 152 THRU 183 JD 2444025.5 TO 2444057.5 DATES JUNE 1 THRU JULY 2

	A = 16.00000000	B = -10.50000000		
	ARIES GHA	SUN GHA	SUN DEC	SUN SD
TERM	DEG	DEG	DEG	DEG
0	6024.6542	5939.8499	23.3536	0.2633
1	5775.7708	5759.1420	0.5525	0.0
2	-0.0019	-0.0560	-0.8806	0.0
3	-0.0044	0.0593	-0.0144	0.0
4	0.0019	0.0088	0.0088	0.0
5	0.0040	0.0030	0.0052	0.0
SUMS	11800.4246	11699.0070	23.0251	0.2633

DAYS 182 THRU 213 JD 2444055.5 TO 2444087.5 DATES JULY 1 THRU AUG 1

	A = 16.00000000	B = -12.37500000		
	ARIES GHA	SUN GHA	SUN DEC	SUN SD
TERM	DEG	DEG	DEG	DEG
0	6054.2233	5938.5038	21.3352	0.2633
1	5775.7720	5759.6304	-2.6348	0.0
2	0.0	0.2668	-0.7718	0.0
3	-0.0028	0.0325	0.0394	0.0
4	0.0	-0.0029	0.0037	0.0
5	0.0013	0.0010	0.0011	0.0
SUMS	11829.9938	11698.4316	17.9728	0.2633

DAYS 213 THRU 244 JD 2444086.5 TO 2444118.5 DATES AUG 1 THRU SEPT 1

	A = 16.00000000	B = -14.31250000		
	ARIES GHA	SUN GHA	SUN DEC	SUN SD
TERM	DEG	DEG	DEG	DEG
0	6084.7781	5938.9424	13.6827	0.2633
1	5775.7702	5760.8218	-5.0632	-0.0007
2	-0.0006	0.2702	-0.4633	0.0004
3	0.0009	-0.0292	0.0595	0.0031
4	0.0008	-0.0019	0.0005	0.0006
5	-0.0009	0.0013	0.0005	-0.0015
SUMS	11860.5485	11700.0046	8.2167	0.2652

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

C5

DAYS 121 THRU 152 JD 2443994.5 TO 2444026.5 DATES MAY 1 THRU JUNE 1

	A = 16.00000000				B = -8.56250000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5966.7619	9.4684	5965.3581	11.0467	5868.7283	20.1573	5834.5252	10.7062
1	5757.4691	6.9728	5764.3396	4.3297	5773.4623	-0.5167	5775.5883	-0.1137
2	-0.3816	-0.4091	-0.0702	-0.2576	-0.2539	-0.0690	-0.2104	-0.0820
3	-0.0812	-0.1384	-0.0073	-0.0314	0.0231	-0.0012	0.0101	0.0033
4	0.0094	-0.0038	0.0036	0.0023	-0.0011	-0.0020	0.0027	-0.0009
5	-0.0027	0.0055	-0.0025	0.0029	-0.0016	0.0021	-0.0060	-0.0009
SUMS	11723.7749	15.8954	11729.6213	15.0926	11641.9571	19.5705	11609.9099	10.5120

DAYS 152 THRU 183 JD 2444025.5 TO 2444057.5 DATES JUNE 1 THRU JULY 2

	A = 16.00000000				B = -10.50000000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5959.9777	20.4629	5973.4661	18.2853	5894.0090	18.9003	5863.9784	10.1914
1	5755.4039	3.8843	5764.0198	3.0568	5772.7104	-0.7737	5774.8365	-0.4084
2	-0.5546	-1.1658	-0.0808	-0.3914	-0.1402	-0.0631	-0.1676	-0.0689
3	0.0542	-0.1104	0.0145	-0.0181	0.0135	-0.0033	0.0125	0.0022
4	0.0277	0.0102	0.0061	0.0025	0.0006	0.0010	-0.0032	0.0019
5	-0.0003	0.0004	-0.0033	-0.0009	0.0021	0.0045	-0.0011	0.0016
SUMS	11714.9086	23.0816	11737.4224	20.9342	11666.5954	18.0657	11638.6555	9.7198

DAYS 182 THRU 213 JD 2444055.5 TO 2444087.5 DATES JULY 1 THRU AUG 1

	A = 16.00000000				B = -12.37500000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5950.0681	23.0814	5980.8303	22.5481	5917.4603	17.2493	5891.2620	9.2143
1	5754.4833	-1.2777	5763.8965	1.4594	5772.3626	-0.9772	5774.2994	-0.6198
2	0.1514	-1.4538	0.0243	-0.4439	-0.0501	-0.0445	-0.1135	-0.0448
3	0.1565	0.0274	0.0278	-0.0111	0.0112	0.0131	0.0129	0.0048
4	-0.0048	0.0223	0.0038	-0.0001	0.0	0.0004	-0.0037	0.0
5	-0.0071	-0.0014	0.0005	0.0075	0.0028	-0.0074	-0.0017	-0.0006
SUMS	11704.8454	20.3982	11744.7832	23.5599	11689.7868	16.2337	11665.4584	8.5539

DAYS 213 THRU 244 JD 2444086.5 TO 2444118.5 DATES AUG 1 THRU SEPT 1

	A = 16.00000000				B = -14.31250000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5940.8127	15.6161	5988.6927	23.7167	5941.3244	15.2223	5918.6201	7.8772
1	5756.2262	-6.0774	5764.3251	-0.2214	5772.3190	-1.1042	5773.9795	-0.7445
2	0.5576	-0.9216	0.1929	-0.4015	0.0234	-0.0190	-0.0508	-0.0223
3	-0.0312	0.1382	0.0293	0.0156	0.0167	0.0134	0.0176	0.0031
4	-0.0216	0.0040	-0.0002	0.0022	0.0029	-0.0006	-0.0001	0.0019
5	0.0067	-0.0072	0.0009	0.0	-0.0027	-0.0058	-0.0049	0.0011
SUMS	11697.5504	8.7521	11753.2407	23.1116	11713.6837	14.1061	11692.5614	7.1165

DAYS 244 THRU 275 JD 2444117.5 TO 2444149.5 DATES SEPT 1 THRU OCT 2

A = 16.00000000 B = -16.25000000

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6115.3329	5941.2896	2.5749	0.2651
1	5775.7697	5761.4215	-6.1742	0.0019
2	0.0002	0.0026	-0.1058	0.0026
3	0.0024	-0.0533	0.0641	-0.0016
4	0.0001	0.0014	-0.0013	-0.0020
5	-0.0019	-0.0002	-0.0010	0.0005
SUMS	11891.1034	11702.6616	-3.6433	0.2665

DAYS 274 THRU 305 JD 2444147.5 TO 2444179.5 DATES OCT 1 THRU NOV 1

A = 16.00000000 B = -18.12500000

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6144.9025	5943.6057	-8.9497	0.2675
1	5775.7686	5760.8437	-5.8829	0.0033
2	-0.0001	-0.3137	0.2719	0.0
3	0.0043	-0.0500	0.0736	-0.0061
4	0.0001	0.0062	0.0014	0.0
5	-0.0027	0.0042	-0.0004	0.0037
SUMS	11920.6727	11704.0961	-14.4861	0.2684

DAYS 305 THRU 336 JD 2444178.5 TO 2444210.5 DATES NOV 1 THRU DEC 2

A = 16.00000000 B = -20.06250000

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5815.4575	5943.8008	-18.7795	0.2701
1	5775.7685	5759.2535	-3.9821	-0.0007
2	0.0002	-0.4533	0.7066	-0.0004
3	0.0043	0.0306	0.0799	0.0031
4	-0.0006	0.0165	0.0005	-0.0006
5	-0.0022	-0.0083	-0.0052	-0.0015
SUMS	11591.2277	11702.6398	-21.9798	0.2700

DAYS 334 THRU 365 JD 2444207.5 TO 2444239.5 DATES NOV 30 THRU DEC 31

A = 16.00000000 B = -21.87500000

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5844.0406	5941.2094	-23.2762	0.2718
1	5775.7708	5758.0677	-0.8085	-0.0004
2	0.0036	-0.1430	0.9925	-0.0027
3	-0.0028	0.0940	0.0207	0.0046
4	-0.0032	0.0112	-0.0118	0.0017
5	0.0026	0.0004	-0.0003	-0.0036
SUMS	11619.8116	11699.2397	-23.0836	0.2714

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

C7

DAYS 244 THRU 275			JD 2444117.5 TO 2444149.5			DATES SEPT 1 THRU OCT 2		
			A = 16.00000000		B = -16.25000000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5935.1543	1.3695	5997.9893	21.9196	5965.3846	13.0567	5945.6004	6.3945
1	5757.6029	-8.1141	5765.3486	-1.5488	5772.5651	-1.1117	5773.9123	-0.7682
2	0.0616	-0.1244	0.3239	-0.2701	0.1025	0.0168	0.0124	0.0082
3	-0.1192	0.1419	0.0291	0.0275	0.0121	0.0114	0.0090	0.0112
4	-0.0019	0.0	-0.0007	-0.0001	-0.0006	-0.0007	0.0011	0.0002
5	0.0033	-0.0028	-0.0069	0.0003	0.0013	-0.0040	0.0010	-0.0055
SUMS	11692.7010	-6.7299	11763.6833	20.1284	11738.0650	11.9685	11719.5362	5.6404
DAYS 274 THRU 305			JD 2444147.5 TO 2444179.5			DATES OCT 1 THRU NOV 1		
			A = 16.00000000		B = -18.12500000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5930.1045	-13.3529	6009.2656	18.2521	5989.3939	11.0796	5971.8061	5.0201
1	5756.6134	-7.0837	5766.7195	-2.2577	5773.0970	-0.9702	5774.0817	-0.6810
2	-0.5559	0.6817	0.4088	-0.0990	0.1864	0.0606	0.0791	0.0375
3	-0.0712	0.1473	0.0258	0.0374	0.0163	0.0097	0.0151	0.0024
4	0.0168	0.0047	-0.0021	-0.0014	-0.0008	0.0002	-0.0003	-0.0003
5	-0.0015	0.0015	-0.0061	-0.0033	0.0001	-0.0005	-0.0016	0.0033
SUMS	11686.1061	-19.6014	11776.4115	15.9281	11762.6929	10.1794	11745.9801	4.3820
DAYS 305 THRU 336			JD 2444178.5 TO 2444210.5			DATES NOV 1 THRU DEC 2		
			A = 16.00000000		B = -20.06250000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5921.2138	-23.4270	6023.9446	13.7476	6015.5914	9.4943	5999.4753	3.8820
1	5754.2706	-2.7937	5768.5125	-2.2590	5774.0125	-0.6303	5774.5236	-0.4753
2	-0.4429	1.4729	0.5430	0.1077	0.2906	0.1142	0.1463	0.0704
3	0.1387	0.0931	0.0337	0.0327	0.0230	0.0023	0.0096	0.0089
4	0.0290	-0.0188	0.0025	-0.0008	-0.0012	-0.0003	0.0010	-0.0019
5	-0.0040	-0.0036	0.0039	0.0059	-0.0044	0.0053	0.0019	-0.0029
SUMS	11675.2052	-24.6771	11793.0402	11.6341	11789.9119	8.9855	11774.1568	3.4812
DAYS 334 THRU 365			JD 2444207.5 TO 2444239.5			DATES NOV 30 THRU DEC 31		
			A = 16.00000000		B = -21.87500000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5910.4028	-23.3551	6041.4249	10.2471	6042.0466	8.7733	6026.3476	3.2743
1	5754.4013	2.8826	5770.9673	-1.4545	5775.2298	-0.1397	5775.1610	-0.1834
2	0.5122	1.4866	0.8688	0.3487	0.3756	0.1529	0.2008	0.0864
3	0.1402	-0.0911	0.0976	0.0514	0.0122	0.0033	0.0117	-0.0036
4	-0.0237	-0.0193	0.0061	0.0023	-0.0027	-0.0013	-0.0036	0.0025
5	-0.0020	0.0047	-0.0056	-0.0023	-0.0091	-0.0004	-0.0037	0.0026
SUMS	11665.4308	-19.0916	11813.3591	9.1927	11817.6614	8.7881	11801.7168	3.1818

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

DAY	1 THRU	6	JD 2443874.5 TO 2443880.5	DATES JAN	1 THRU JAN	.6
	A =	3.00000000	B =	-1.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D		
TERM	DEG	DEG	DEG	DEG		
0	1548.0058	-2.5928	0.9844	0.2682		
1	1042.9091	13.2194	-0.0415	-0.0113		
2	2.1212	0.0756	-0.0050	-0.0014		
3	-0.7230	-1.1388	0.0117	0.0032		
4	-0.1049	0.1501	0.0009	0.0002		
5	0.0902	0.0049	-0.0056	-0.0015		
SUMS	2592.2984	9.7184	0.9449	0.2574		
DAY	7 THRU	12	JD 2443880.5 TO 2443886.5	DATES JAN	7 THRU JAN	12
	A =	3.00000000	B =	-3.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D		
TERM	DEG	DEG	DEG	DEG		
0	1117.1438	17.3166	0.9175	0.2500		
1	1044.6182	4.2042	-0.0220	-0.0060		
2	-0.1158	-3.7133	0.0091	0.0025		
3	0.2786	-0.1986	0.0016	0.0004		
4	0.1282	0.1262	-0.0028	-0.0008		
5	-0.0391	0.0057	-0.0004	-0.0001		
SUMS	2162.0139	17.7408	0.9030	0.2460		
DAY	13 THRU	18	JD 2443886.5 TO 2443892.5	DATES JAN	13 THRU JAN	18
	A =	3.00000000	B =	-5.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D		
TERM	DEG	DEG	DEG	DEG		
0	1408.7414	11.3783	0.9007	0.2454		
1	1047.9249	-8.9598	0.0042	0.0011		
2	1.0241	-2.0782	0.0053	0.0014		
3	-0.3318	0.5409	0.0019	0.0005		
4	-0.1448	0.0140	0.0024	0.0007		
5	0.0147	-0.0073	-0.0004	-0.0001		
SUMS	2457.2285	0.8879	0.9141	0.2490		
DAY	19 THRU	24	JD 2443892.5 TO 2443898.5	DATES JAN	19 THRU JAN	24
	A =	3.00000000	B =	-7.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D		
TERM	DEG	DEG	DEG	DEG		
0	1344.2192	-10.3556	0.9476	0.2582		
1	1044.7060	-10.2966	0.0415	0.0113		
2	-3.0541	1.7831	0.0082	0.0022		
3	-0.6689	0.9505	0.0033	0.0009		
4	0.1860	0.1043	-0.0015	-0.0004		
5	0.0862	-0.0109	-0.0041	-0.0011		
SUMS	2385.4744	-17.8252	0.9950	0.2711		

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

C9

DAYS 25 THRU 30 JD 2443898.5 TO 2443904.5 DATES JAN 25 THRU JAN 30

		A = 3.00000000	B = -9.33333333	
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1261.5365	-15.8036	1.0238	0.2789
1	1035.9265	7.6262	0.0080	0.0022
2	1.3882	5.0806	-0.0268	-0.0073
3	1.3061	-1.0355	-0.0030	-0.0008
4	-0.3384	-0.4125	0.0339	0.0011
5	-0.1196	0.1010	0.0008	0.0002
SUMS	2299.6993	-4.4438	1.0067	0.2743

DAYS 31 THRU 36 JD 2443904.5 TO 2443910.5 DATES JAN 31 THRU FEB 5

		A = 3.00000000	B = -11.33333333	
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1182.3706	8.5064	0.9619	0.2621
1	1044.0127	11.2949	-0.0475	-0.0129
2	0.7801	-2.4954	0.0016	0.0004
3	-0.4992	-0.6581	0.0083	0.0023
4	0.1003	0.1614	0.0008	0.0002
5	0.0355	-0.0213	-0.0032	-0.0009
SUMS	2226.8000	16.7879	0.9219	0.2512

DAYS 37 THRU 42 JD 2443910.5 TO 2443916.5 DATES FEB 6 THRU FEB 11

		A = 3.00000000	B = -13.33333333	
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1111.7770	17.9173	0.9029	0.2460
1	1045.5656	-2.5671	-0.0398	-0.0027
2	0.8521	-3.5372	0.0093	0.0025
3	0.2464	0.2606	-0.0018	-0.0005
4	-0.0517	0.0942	-0.0009	-0.0002
5	-0.0345	-0.0075	0.0004	0.0001
SUMS	2158.3549	12.1603	0.9001	0.2452

DAYS 43 THRU 48 JD 2443916.5 TO 2443922.5 DATES FEB 12 THRU FEB 17

		A = 3.00000000	B = -15.33333333	
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1406.6401	1.9376	0.9998	0.2479
1	1048.5055	-11.3447	0.0165	0.0045
2	-0.3040	-0.5190	0.0060	0.0016
3	-0.5987	0.6266	0.0025	0.0007
4	-0.0577	0.0253	0.0013	0.0003
5	0.0165	0.0015	-0.0020	-0.0005
SUMS	2454.2017	-9.2727	0.9341	0.2545

DAYS 49 THRU 54		JD 2443922.5 TO 2443928.5		DATES FEB 18 THRU FEB 23	
		A = 3.00000000		B = -17.33333333	
		MOON GHA	MOON DEC	MOON H P	MOON S D
TERM		DEG	DEG	DEG	DEG
0	1337.3882	-17.2087	0.9725	0.2650	
1	1040.1645	-4.5646	0.0423	0.0115	
2	-2.9855	4.3121	0.0020	0.0005	
3	0.3760	0.8901	-0.0028	-0.0008	
4	0.3474	-0.1312	-0.0021	-0.0006	
5	0.0070	-0.0803	-0.0006	-0.0002	
SUMS		2375.2976	-16.7826	1.0113	0.2754
DAYS 55 THRU 60		JD 2443928.5 TO 2443934.5		DATES FEB 24 THRU MAR 1	
		A = 3.00000000		B = -19.33333333	
		MOON GHA	MOON DEC	MOON H P	MOON S D
TERM		DEG	DEG	DEG	DEG
0	1062.4544	-3.0650	0.5931	0.1616	
1	344.4755	6.2264	0.8415	0.2293	
2	41.5078	-11.5570	1.5741	0.4288	
3	1247.0755	20.9552	-2.7124	-0.7390	
4	-31.0502	10.2721	-1.2410	-0.3381	
5	-751.5982	-15.9154	1.9258	0.5247	
SUMS		1912.8648	6.9163	0.9811	0.2673
DAYS 61 THRU 66		JD 2443934.5 TO 2443940.5		DATES MAR 2 THRU MAR 7	
		A = 3.00000000		B = -21.33333333	
		MOON GHA	MOON DEC	MOON H P	MOON S D
TERM		DEG	DEG	DEG	DEG
0	1177.2051	16.1756	0.9357	0.2550	
1	1043.7952	5.7394	-0.0401	-0.0109	
2	0.5801	-3.8302	0.0123	0.0034	
3	0.0633	-0.1546	0.0023	0.0006	
4	0.0780	0.1389	-0.0036	-0.0010	
5	-0.0182	-0.0155	0.0003	0.0001	
SUMS		2221.7035	18.0536	0.9069	0.2472
DAYS 67 THRU 72		JD 2443940.5 TO 2443946.5		DATES MAR 8 THRU MAR 13	
		A = 3.00000000		B = -23.33333333	
		MOON GHA	MOON DEC	MOON H P	MOON S D
TERM		DEG	DEG	DEG	DEG
0	1108.1359	12.8772	0.9008	0.2454	
1	1047.4738	-8.0607	0.0039	0.0011	
2	0.9066	-2.4408	0.0086	0.0023	
3	-0.2308	0.4916	-0.0028	-0.0008	
4	-0.0891	0.0436	-0.0003	-0.0001	
5	0.0071	-0.0046	0.0009	0.0002	
SUMS		2156.2035	2.9063	0.9111	0.2481

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

C11

DAYS 73 THRU 78 JD 2443946.5 TO 2443952.5 DATES MAR 14 THRU MAR 19

A = 3.00000000 B = -25.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1403.6805	-8.4426	0.9315	0.2538
1	1046.1387	-10.6573	0.0231	0.0063
2	-1.8727	1.4703	0.0014	0.0004
3	-0.4857	0.8199	0.0047	0.0013
4	0.0865	0.0322	0.0024	0.0007
5	0.0388	-0.0097	-0.0040	-0.0011
SUMS	2447.5861	-16.7872	0.9591	0.2614

DAYS 79 THRU 84 JD 2443952.5 TO 2443958.5 DATES MAR 20 THRU MAR 25

A = 3.00000000 B = -27.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1327.1558	-17.3730	0.9910	0.2700
1	1038.3873	4.3936	0.0292	0.0079
2	-0.3361	5.0693	-0.0063	-0.0017
3	0.8831	-0.2297	-0.0041	-0.0011
4	-0.0558	-0.3276	-0.0005	-0.0001
5	-0.0929	-0.0072	0.0007	0.0002
SUMS	2365.9414	-8.4746	1.0100	0.2752

DAYS 85 THRU 90 JD 2443958.5 TO 2443964.5 DATES MAR 26 THRU MAR 31

A = 3.00000000 B = -29.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1246.7032	5.0507	0.9939	0.2708
1	1041.6036	13.1095	-0.0333	-0.0091
2	0.6071	-1.7498	-0.0151	-0.0041
3	-0.2115	-1.1942	0.0038	0.0010
4	0.0593	0.1775	0.0020	0.0006
5	0.0353	0.0365	0.0003	0.0001
SUMS	2288.7970	15.4302	0.9516	0.2593

DAYS 91 THRU 96 JD 2443964.5 TO 2443970.5 DATES APR 1 THRU APR 6

A = 3.00000000 B = -31.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1172.2584	18.2707	0.9159	0.2496
1	1044.6033	-1.1496	-0.0261	-0.0071
2	1.3570	-3.7874	0.0127	0.0034
3	0.1447	0.3016	0.0017	0.0005
4	-0.0905	0.0804	-0.0011	-0.0003
5	-0.0195	-0.0174	0.0003	0.0001
SUMS	2218.2534	13.6983	0.9034	0.2462

DAY	97 THRU 102	JD 2443970.5 TO 2443976.5	DATES APR	7 THRU APR 12
	A = 3.00000000	B = -33.33333333		
TERM	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1106.2443	4.0348	0.9122	0.2486
1	1048.2224	-11.2230	0.0188	0.0051
2	-0.2864	-0.9937	0.0032	0.0009
3	-0.5575	0.6121	-0.0064	-0.0017
4	-0.3233	0.0548	0.0038	0.0010
5	0.3172	0.0084	0.0033	0.0009
SUMS	2153.6167	-7.5066	0.9349	0.2548
DAY	103 THRU 108	JD 2443976.5 TO 2443982.5	DATES APR	13 THRU APR 18
	A = 3.00000000	B = -35.33333333		
TERM	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1397.3919	-16.4636	0.9583	0.2611
1	1041.4798	-5.8870	0.0244	0.0067
2	-2.1503	3.9431	-0.0003	-0.0001
3	0.3934	0.7851	-0.0046	-0.0012
4	0.2280	-0.1433	-0.0007	-0.0032
5	-0.0208	-0.0549	0.0032	0.0009
SUMS	2437.3220	-17.8206	0.9803	0.2672
DAY	109 THRU 114	JD 2443982.5 TO 2443988.5	DATES APR	19 THRU APR 24
	A = 3.00000000	B = -37.33333333		
TERM	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1317.1285	-9.8676	0.9943	0.2709
1	1040.8240	11.6388	0.0060	0.0016
2	1.1157	2.7246	-0.0099	-0.0027
3	-0.1276	-1.1347	-0.0015	-0.0004
4	-0.1836	-0.1293	0.0004	0.0001
5	0.0427	0.0437	-0.0003	-0.0001
SUMS	2358.7997	3.2755	0.9890	0.2694
DAY	115 THRU 120	JD 2443988.5 TO 2443994.5	DATES APR	25 THRU APR 30
	A = 3.00000000	B = -39.33333333		
TERM	MOON GHA	MOON DEC	MOON H P	MOON S D
0	1240.9099	14.5104	0.9602	0.2616
1	1042.0430	8.1386	-0.0367	-0.0100
2	0.1060	-3.8404	-0.0018	-0.0005
3	0.3351	-0.5219	0.0048	0.0013
4	0.1287	0.2261	-0.0015	-0.0004
5	-0.0337	0.0033	0.0001	0.0
SUMS	2283.4890	18.5161	0.9251	0.2520

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

C13

DAYS 121 THRU 126 JD 2443994.5 TO 2444000.5 DATES MAY 1 THRU MAY 6

A = 3.00000000 B = -41.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1168.7128	14.6660	0.9057	0.2468
1	1046.8746	-7.0567	-0.0080	-0.0022
2	1.4862	-2.7199	0.0138	0.0038
3	-0.3211	0.5019	-0.0018	-0.0005
4	-0.1373	0.0053	-0.0020	-0.0005
5	0.0199	-0.0101	0.0029	0.0008
SUMS	2216.6351	5.3865	0.9106	0.2482

DAYS 127 THRU 132 JD 2444000.5 TO 2444006.5 DATES MAY 7 THRU MAY 12

A = 3.00000000 B = -43.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1104.2970	-6.2233	0.9358	0.2550
1	1046.2179	-11.5326	0.0316	0.0086
2	-2.0885	0.8601	-0.0006	-0.0002
3	-0.5722	0.8744	-0.0082	-0.0022
4	0.1256	0.0858	0.0020	0.0005
5	0.0534	-0.0061	0.0042	0.0011
SUMS	2148.0332	-15.9417	0.9648	0.2628

DAYS 133 THRU 138 JD 2444006.5 TO 2444012.5 DATES MAY 13 THRU MAY 18

A = 3.00000000 B = -45.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1387.3359	-18.2551	0.9834	0.2680
1	1038.5031	2.7137	0.0100	0.0027
2	0.2858	5.1314	-0.0060	-0.0016
3	1.0649	-0.2417	0.0038	0.0010
4	-0.1409	-0.3230	-0.0007	-0.0002
5	-0.1198	0.0236	-0.0024	-0.0006
SUMS	2426.9290	-10.9511	0.9881	0.2693

DAYS 139 THRU 144 JD 2444012.5 TO 2444018.5 DATES MAY 19 THRU MAY 24

A = 3.00000000 B = -47.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1309.3607	1.8326	0.9791	0.2668
1	1043.1976	13.3210	-0.0172	-0.0047
2	0.2106	-0.5989	-0.0042	-0.0011
3	-0.5432	-1.1105	0.0061	0.0017
4	0.0719	0.0443	-0.0012	-0.0003
5	0.0581	0.0180	-0.0039	-0.0011
SUMS	2352.3557	13.5065	0.9587	0.2613

DAYS 145 THRU 150 JD 2444018.5 TO 2444024.5 DATES MAY 25 THRU MAY 30

A = 3.00000000 B = -49.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1234.8538	18.6282	0.9298	0.2534
1	1042.9724	0.9202	-0.0275	-0.0075
2	1.0730	-4.2305	0.0022	0.0006
3	0.5891	0.1820	-0.0001	0.0
4	-0.0795	0.1810	0.0011	0.0003
5	-0.0692	-0.0306	0.0027	0.0037
SUMS	2279.3396	15.6503	0.9082	0.2475

DAYS 151 THRU 156 JD 2444024.5 TO 2444030.5 DATES MAY 31 THRU JUNE 5

A = 3.00000000 B = -51.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1167.0372	6.8327	0.9063	0.2469
1	1048.6528	-10.6773	0.0125	0.0034
2	0.3477	-1.3448	0.0130	0.0035
3	-0.6973	0.5133	-0.0068	-0.0018
4	-0.0717	0.0128	-0.0004	-0.0001
5	0.0174	0.0149	0.0055	0.0015
SUMS	2215.2861	-4.6484	0.9301	0.2534

DAYS 157 THRU 162 JD 2444030.5 TO 2444036.5 DATES JUNE 6 THRU JUNE 11

A = 3.00000000 B = -53.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1099.7515	-15.0077	0.9663	0.2633
1	1041.4214	-8.0199	0.0366	0.0100
2	-3.1989	3.4379	-0.0053	-0.0014
3	0.1925	1.1253	-0.0052	-0.0014
4	0.3847	-0.0626	0.0009	0.0002
5	0.0353	-0.0900	0.0013	0.0004
SUMS	2138.5865	-18.6170	0.9946	0.2711

DAYS 163 THRU 168 JD 2444036.5 TO 2444042.5 DATES JUNE 12 THRU JUNE 17

A = 3.00000000 B = -55.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1376.8324	-12.0491	0.9968	0.2716
1	1040.0890	10.7763	-0.0111	-0.0030
2	2.2599	3.1308	-0.0134	-0.0036
3	0.0023	-1.2348	0.0028	0.0008
4	-0.3577	-0.0829	0.0030	0.0008
5	0.0598	0.0735	-0.0002	0.0
SUMS	2418.8857	0.6138	0.9779	0.2666

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

C15

DAYS 169 THRU 174 JD 2444042.5 TO 2444048.5 DATES JUNE 18 THRU JUNE 23

A = 3.00000000 B = -57.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1302.5805	12.5448	0.9532	0.2597
1	1043.4326	9.6250	-0.0232	-0.0063
2	-0.5269	-3.1069	0.0007	0.0002
3	-0.0522	-0.6924	-0.0076	-0.0021
4	0.2153	0.1279	-0.0005	-0.0001
5	0.0015	0.0201	0.0064	0.0018
SUMS	2345.6508	18.5185	0.9290	0.2532

DAYS 175 THRU 180 JD 2444048.5 TO 2444054.5 DATES JUNE 24 THRU JUNE 29

A = 3.00000000 B = -59.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1229.8293	16.4586	0.9090	0.2477
1	1045.7147	-5.7063	-0.0166	-0.0045
2	1.7831	-3.1649	0.0070	0.0019
3	0.0518	0.5645	0.0051	0.0014
4	-0.1962	0.3475	-0.0005	-0.0001
5	-0.0006	-0.0350	-0.0018	-0.0005
SUMS	2277.1821	8.1644	0.9022	0.2459

DAYS 181 THRU 186 JD 2444054.5 TO 2444060.5 DATES JUNE 30 THRU JULY 5

A = 3.00000000 B = -61.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1165.9464	-3.0685	0.9193	0.2505
1	1048.0994	-11.6137	0.0279	0.0076
2	-1.4846	0.1992	0.0098	0.0027
3	-0.8404	0.6390	0.0015	0.0004
4	0.0149	0.0817	0.0009	0.0002
5	0.0366	0.0219	-0.0027	-0.0007
SUMS	2211.7723	-13.7404	0.9567	0.2607

DAYS 187 THRU 192 JD 2444060.5 TO 2444066.5 DATES JULY 6 THRU JULY 11

A = 3.00000000 B = -63.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1091.3156	-18.7219	0.9981	0.2719
1	1036.8803	-0.1131	0.0305	0.0083
2	-1.5246	5.5930	-0.0135	-0.0037
3	1.4918	0.3751	-0.0028	-0.0008
4	0.1854	-0.4181	-0.0008	-0.0002
5	-0.1694	-0.0680	-0.0002	0.0
SUMS	2128.1791	-13.3530	1.0113	0.2755

DAYS 193 THRU 198 JD 2444066.5 TO 2444072.5 DATES JULY 12 THRU JULY 17

A = 3.00000000 B = -65.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1368.6893	-0.7020	0.9901	0.2698
1	1042.5502	13.6594	-0.0337	-0.0092
2	1.5161	-0.2937	-0.0090	-0.0025
3	-0.6614	-1.1869	0.0086	0.0023
4	-0.0624	0.1336	0.0027	0.0007
5	0.0752	0.0167	-0.0033	-0.0009
SUMS	2412.1970	11.6271	0.9554	0.2602

DAYS 199 THRU 204 JD 2444072.5 TO 2444078.5 DATES JULY 18 THRU JULY 23

A = 3.00000000 B = -67.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1295.6433	18.2406	0.9263	0.2524
1	1043.5022	2.7492	-0.0239	-0.0065
2	0.2937	-4.0865	0.0060	0.0016
3	0.4580	-0.0657	-0.0011	-0.0003
4	0.0772	0.1591	-0.0009	-0.0002
5	-0.0526	0.0035	0.0016	0.0004
SUMS	2339.9218	17.0002	0.9080	0.2474

DAYS 205 THRU 210 JD 2444078.5 TO 2444084.5 DATES JULY 24 THRU JULY 29

A = 3.00000000 B = -69.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1226.9885	9.2503	0.9001	0.2452
1	1048.4669	-9.9501	-0.0007	-0.0002
2	1.0717	-1.6141	0.0073	0.0020
3	-0.4658	0.5844	0.0029	0.0008
4	-0.1229	-0.0060	0.0013	0.0003
5	0.0146	-0.0045	-0.0013	-0.0004
SUMS	2275.9530	-1.7400	0.9096	0.2477

DAYS 211 THRU 216 JD 2444084.5 TO 2444090.5 DATES JULY 30 THRU AUG 4

A = 3.00000000 B = -71.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1163.0840	-12.4818	0.9408	0.2563
1	1044.7007	-9.2892	0.0433	0.0118
2	-3.1982	2.2846	0.0107	0.0029
3	-0.5345	0.9299	-0.0075	-0.0020
4	0.2173	0.0753	-0.0031	-0.0008
5	0.0738	-0.0226	0.0033	0.0009
SUMS	2204.4331	-18.5038	0.9875	0.2691

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

C17

DAYS 217 THRU 222 JD 2444090.5 TO 2444096.5 DATES AUG 5 THRU AUG 10

	A = 3.00000000	B = -73.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1081.2185	-14.7560	1.0203	0.2780
1	1036.8359	9.0962	0.0152	0.0041
2	1.3113	4.6668	-0.0254	-0.0069
3	0.9921	-1.1391	-0.0074	-0.0020
4	-0.3411	-0.3598	0.0036	0.0010
5	-0.0712	0.0996	0.0023	0.0006
SUMS	2119.9455	-2.3923	1.0086	0.2748

DAYS 223 THRU 228 JD 2444096.5 TO 2444102.5 DATES AUG 11 THRU AUG 16

	A = 3.00000000	B = -75.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1362.0554	10.5992	0.9692	0.2641
1	1042.9581	10.8299	-0.0424	-0.0116
2	0.4347	-3.0230	-0.0007	-0.0002
3	-0.3950	-0.6722	0.0005	0.0001
4	0.1310	0.1785	0.0012	0.0003
5	0.0210	-0.0109	0.0025	0.0007
SUMS	2405.2952	17.9015	0.9303	0.2534

DAYS 229 THRU 234 JD 2444102.5 TO 2444108.5 DATES AUG 17 THRU AUG 22

	A = 3.00000000	B = -77.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1269.4149	18.6175	1.0059	0.2741
1	972.6399	3.5453	0.5921	0.1613
2	294.6108	-16.9620	-1.0431	-0.2842
3	506.2972	-41.0331	-3.2087	-0.8742
4	-470.3541	11.7497	0.9068	0.2471
5	-646.0181	34.1721	2.6461	0.7209
SUMS	1926.5906	10.1095	0.8991	0.2450

DAYS 235 THRU 240 JD 2444108.5 TO 2444114.5 DATES AUG 23 THRU AUG 28

	A = 3.00000000	B = -79.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1225.4503	-0.7050	0.9047	0.2465
1	1049.0076	-11.4217	0.0127	0.0035
2	-0.4886	-0.0121	0.0086	0.0024
3	-0.6532	0.6043	0.0023	0.0006
4	-0.0346	0.0194	-0.0004	-0.0001
5	0.0170	0.0105	-0.0004	-0.0001
SUMS	2273.2985	-11.5046	0.9275	0.2528

DAYS 241 THRU 246 JD 2444114.5 TO 2444120.5 DATES AUG 29 THRU SEPT 3

A = 3.00000000 B = -81.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1156.4928	-18.1565	0.9675	0.2636
1	1040.2239	-2.9283	0.0441	0.0120
2	-2.7934	4.5782	0.0048	0.0013
3	0.4959	0.7744	-0.0010	-0.0003
4	0.3062	-0.1643	-0.0039	-0.0011
5	-0.0143	-0.0838	-0.0016	-0.0004
SUMS	2194.7111	-15.9803	1.3099	0.2751

DAYS 247 THRU 252 JD 2444120.5 TO 2444126.5 DATES SEPT 4 THRU SEPT 9

A = 3.00000000 B = -83.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1072.8058	-4.4693	1.0220	0.2785
1	1039.4030	14.1756	-0.0146	-0.0040
2	1.4337	1.1034	-0.0254	-0.0069
3	-0.1291	-1.6523	0.0052	0.0014
4	-0.1851	0.0039	0.0026	0.0007
5	0.0707	0.0947	-0.0016	-0.0004
SUMS	2113.3990	9.2560	0.9882	0.2693

DAYS 253 THRU 258 JD 2444126.5 TO 2444132.5 DATES SEPT 10 THRU SEPT 15

A = 3.00000000 B = -85.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1355.4836	17.5426	0.9422	0.2567
1	1042.7444	4.2506	-0.0424	-0.0116
2	0.8492	-4.2443	0.0109	0.0030
3	0.2725	-0.0158	0.0068	0.0019
4	0.0446	0.1672	-0.0037	-0.0010
5	-0.0387	-0.0250	-0.0035	-0.0010
SUMS	2399.3556	17.6753	0.9103	0.2480

DAYS 259 THRU 264 JD 2444132.5 TO 2444138.5 DATES SEPT 16 THRU SEPT 21

A = 3.00000000 B = -87.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1286.1025	10.9022	0.8996	0.2451
1	1048.0996	-9.2966	-0.0007	-0.0002
2	1.0840	-1.9774	0.0097	0.0026
3	-0.3686	0.5734	-0.0064	-0.0018
4	-0.0825	0.0193	-0.0018	-0.0005
5	0.0177	-0.0077	0.0042	0.0011
SUMS	2334.8527	0.2132	0.9046	0.2463

DAYS 265 THRU 270 JD 2444138.5 TO 2444144.5 DATES SEPT 22 THRU SEPT 27

A = 3.00000000 B = -89.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1222.8277	-10.7852	0.9217	0.2511
1	1046.4875	-9.8189	0.0239	0.0065
2	-2.0036	1.9138	0.0081	0.0022
3	-0.4469	0.7689	-0.0019	-0.0005
4	0.1065	0.0207	-0.0018	-0.0005
5	0.0373	-0.0144	0.0015	0.0004
SUMS	2267.0085	-17.9151	0.9515	0.2592

DAYS 271 THRU 276 JD 2444144.5 TO 2444150.5 DATES SEPT 28 THRU OCT 3

A = 3.00000000 B = -91.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1146.9424	-16.8809	0.9901	0.2698
1	1038.8137	6.0133	0.0381	0.0104
2	-0.3658	4.9584	-0.0060	-0.0016
3	0.7429	-0.3415	-0.0077	-0.0021
4	-0.0867	-0.3237	-0.0003	-0.0001
5	-0.0748	-0.0027	0.0017	0.0005
SUMS	2185.9717	-6.5771	1.0159	0.2769

DAYS 277 THRU 282 JD 2444150.5 TO 2444156.5 DATES OCT 4 THRU OCT 9

A = 3.00000000 B = -93.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1066.1214	7.4996	1.0036	0.2735
1	1040.5036	13.0250	-0.0335	-0.0091
2	0.2088	-2.4656	-0.0186	-0.0051
3	-0.0593	-1.2455	0.0080	0.0022
4	0.1167	0.2182	0.0032	0.0009
5	0.0305	0.0490	-0.0029	-0.0008
SUMS	2106.9217	17.0807	0.9598	0.2616

DAYS 283 THRU 288 JD 2444156.5 TO 2444162.5 DATES OCT 10 THRU OCT 15

A = 3.00000000 B = -95.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1349.6197	18.1222	0.9205	0.2508
1	1044.4999	-3.0943	-0.0307	-0.0084
2	1.9351	-3.7363	0.0111	0.0030
3	0.0769	0.4898	0.0011	0.0003
4	-0.1511	0.0641	-0.0009	-0.0002
5	-0.0040	-0.0256	0.0003	0.0001
SUMS	2395.8865	11.8199	0.9014	0.2456

DAYS 289 THRU 294 JD 2444162.5 TO 2444168.5 DATES OCT 16 THRU OCT 21

A = 3.00000000 B = -97.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1284.5518	1.2729	0.9062	0.2469
1	1048.8733	-11.5568	0.0124	0.0034
2	-0.3780	-0.6170	0.0065	0.0018
3	-0.5990	0.6252	-0.0031	-0.0008
4	0.0056	0.0397	-0.0003	-0.0001
5	0.0180	0.0079	0.0012	0.0003
SUMS	2332.4717	-10.0281	0.9229	0.2515

DAYS 295 THRU 300 JD 2444168.5 TO 2444174.5 DATES OCT 22 THRU OCT 27

A = 3.00000000 B = -99.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1216.7286	-17.7694	0.9468	0.2580
1	1042.0666	-4.3616	0.0258	0.0070
2	-1.9844	4.1199	0.0037	0.0010
3	0.4181	0.6449	-0.0006	-0.0002
4	0.1883	-0.1416	-0.0020	-0.0005
5	-0.0249	-0.0465	0.0008	0.0002
SUMS	2257.3923	-17.5543	0.9745	0.2655

DAYS 301 THRU 306 JD 2444174.5 TO 2444180.5 DATES OCT 28 THRU NOV 2

A = 3.00000000 B = -101.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1137.7381	-8.3005	0.9987	0.2721
1	1040.9294	12.7079	0.0153	0.0042
2	0.5394	2.4579	-0.0133	-0.0036
3	-0.2350	-1.1799	0.0024	0.0007
4	-0.1432	-0.1533	0.0025	0.0007
5	0.0495	0.0305	-0.0043	-0.0012
SUMS	2178.8782	5.5626	1.0013	0.2729

DAYS 307 THRU 312 JD 2444180.5 TO 2444186.5 DATES NOV 3 THRU NOV 8

A = 3.00000000 B = -103.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1059.4352	16.3562	0.9729	0.2651
1	1040.3766	6.9580	-0.0394	-0.0107
2	0.3062	-4.5421	-0.0060	-0.0016
3	0.6660	-0.4121	0.0059	0.0016
4	0.1083	0.2958	0.0006	0.0002
5	-0.0717	0.0003	-0.0009	-0.0003
SUMS	2100.8206	18.6561	0.9331	0.2543

DAYS 313 THRU 318 JD 2444186.5 TO 2444192.5 DATES NOV 9 THRU NOV 14

A = 3.00000000 B = -105.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1346.1152	12.9478	0.9067	0.2470
1	1047.3897	-8.6025	-0.0148	-0.0040
2	1.7505	-2.2910	0.0136	0.0037
3	-0.5037	0.5893	0.0044	0.0012
4	-0.1248	-0.0212	-0.0008	-0.0002
5	0.0353	-0.0064	-0.0033	-0.0009
SUMS	2394.6622	2.6160	0.9058	0.2468

DAYS 319 THRU 324 JD 2444192.5 TO 2444198.5 DATES NOV 15 THRU NOV 20

A = 3.00000000 B = -107.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1282.8068	-8.9263	0.9248	0.2520
1	1046.5872	-10.8784	0.0261	0.0071
2	-2.1522	1.4392	0.0068	0.0018
3	-0.4860	0.8469	-0.0039	-0.0011
4	0.1547	0.0585	-0.0029	-0.0008
5	0.0464	-0.0146	0.0002	0.0
SUMS	2326.9569	-17.4747	0.9511	0.2590

DAYS 325 THRU 330 JD 2444198.5 TO 2444204.5 DATES NOV 21 THRU NOV 26

A = 3.00000000 B = -109.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1207.1676	-18.1348	0.9728	0.2651
1	1039.6679	4.2607	0.0182	0.0050
2	0.3769	4.8822	-0.0029	-0.0008
3	0.8204	-0.3335	-0.0005	-0.0001
4	-0.1838	-0.2741	-0.0006	-0.0002
5	-0.0831	0.0221	-0.0003	-0.0001
SUMS	2247.7659	-9.5774	0.9867	0.2689

DAYS 331 THRU 336 JD 2444204.5 TO 2444210.5 DATES NOV 27 THRU DEC 2

A = 3.00000000 B = -111.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1130.1362	3.8773	0.9895	0.2696
1	1042.4129	13.6710	-0.0053	-0.0014
2	-0.5150	-1.0038	-0.0127	-0.0035
3	-0.4884	-1.2304	-0.0041	-0.0011
4	0.1347	0.0244	0.0030	0.0008
5	0.0649	0.0342	0.0025	0.0007
SUMS	2171.7453	15.3727	0.9729	0.2651

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

DAYS 337 THRU 342		JD 2444210.5 TO 2444216.5		DATES DEC	3 THRU DEC	8
		A = 3.00000000	B = -113.33333333			
		MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM		DEG	DEG	DEG	DEG	
0	1412.6776	19.0557		0.9417	0.2566	
1	1041.9256	-0.9833		-0.0335	-0.0091	
2	1.7966	-4.4746		0.0016	0.0004	
3	0.6809	0.4400		0.0048	0.0013	
4	-0.1894	0.1944		-0.0004	-0.0001	
5	-0.0662	-0.0539		-0.0014	-0.0004	
SUMS	2456.8251	14.1783		0.9128	0.2487	
DAYS 343 THRU 348		JD 2444216.5 TO 2444222.5		DATES DEC	9 THRU DEC	14
		A = 3.00000000	B = -115.33333333			
		MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM		DEG	DEG	DEG	DEG	
0	1345.0065	4.1540		0.9039	0.2463	
1	1049.2053	-11.3563		0.0042	0.0011	
2	0.2885	-0.7887		0.0154	0.0042	
3	-0.7929	0.5264		0.0026	0.0007	
4	-0.0356	0.0044		-0.0022	-0.0006	
5	0.0200	0.0220		-0.0026	-0.0007	
SUMS	2393.6918	-7.4382		0.9213	0.2510	
DAYS 349 THRU 354		JD 2444222.5 TO 2444228.5		DATES DEC	15 THRU DEC	20
		A = 3.00000000	B = -117.33333333			
		MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM		DEG	DEG	DEG	DEG	
0	1278.4222	-16.7705		0.9550	0.2602	
1	1041.7858	-6.4965		0.0356	0.0097	
2	-2.9327	3.8273		-0.0041	-0.0011	
3	0.3674	0.9728		-0.0068	-0.0019	
4	0.3569	-0.1023		0.0017	0.0005	
5	0.0002	-0.0844		0.0017	0.0005	
SUMS	2317.9998	-18.6536		0.9831	0.2679	
DAYS 355 THRU 360		JD 2444228.5 TO 2444234.5		DATES DEC	21 THRU DEC	26
		A = 3.00000000	B = -119.33333333			
		MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM		DEG	DEG	DEG	DEG	
0	1197.4381	-10.7180		0.9910	0.2700	
1	1041.0567	11.7553		-0.0038	-0.0010	
2	1.7967	2.7477		-0.0093	-0.0025	
3	-0.1868	-1.2002		0.0081	0.0022	
4	-0.3034	-0.0705		0.0009	0.0002	
5	0.0631	0.0575		-0.0048	-0.0013	
SUMS	2239.8644	2.5718		0.9821	0.2676	

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1979

C23

DAYS 360 THRU 365		JD 2444233.5 TO 2444239.5		DATES DEC 26 THRU DEC 31	
		A = 3.00000000		B = -121.00000000	
	MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM	DEG	DEG	DEG	DEG	
0	1135.1978	10.9959	0.9709	0.2645	
1	1042.5866	11.1813	-0.0171	-0.0047	
2	-0.8532	-2.8434	-0.0013	-0.0004	
3	-0.2049	-0.9251	-0.0044	-0.0012	
4	0.2430	0.1132	-0.0020	-0.0005	
5	0.0377	0.0315	0.0032	0.0009	
SUMS	2177.0070	18.5534	0.9493	0.2586	

Section D: ASTRONOMICAL TABLES

With two exceptions the series in this section provide data referred to the true equator and equinox of date. The exceptions are

1. the Moon's geocentric, rectangular coordinates (X , Y , Z), which are referred to the mean equator and equinox of 1950.0;
 2. the right ascension and declination of Pluto, which are astrometric (*i.e.*, free of the effect of stellar aberration, except for the elliptic part) and are referred to the mean equator and equinox of 1950.0.
- The unit of distance for the Sun and planets is the Astronomical Unit; the unit of distance for the Moon is the Earth's radius.

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1979

D3

DAY	1 THRU 95	JD 2443874.5 TO 2443969.5	DATES JAN	1 THRU APR	S
		A = 47.50000000	B = -1.02105263		
		APP S T	EQ OF EQ	NUT LON	NUT DBL
TERM	H	S	"	"	"
0	19.58263826	-0.3485	-5.6980	-18.0263	
1	3.12119355	-0.0830	-1.3575	0.6524	
2	-0.00001002	-0.0361	-0.5898	-0.1388	
3	0.00000144	0.0052	0.0849	-0.0965	
4	0.00000171	0.0062	0.1006	0.0047	
5	-0.00000014	-0.0005	-0.0082	-0.0050	
6	0.00000066	0.0024	0.0391	-0.0072	
7	0.00000005	0.0002	0.0028	0.0049	
8	0.00000026	0.0009	0.0153	-0.0073	
9	-0.00000005	-0.0002	-0.0028	0.0203	
10	0.000000369	0.0025	0.0409	-0.0048	
11	0.000000051	0.0018	0.0297	0.0236	
12	-0.00000100	-0.0036	-0.0589	0.0069	
13	0.0	0.0	0.0	0.0030	
14	-0.000000384	-0.0030	-0.0494	0.0366	
15	-0.000000038	-0.0014	-0.0223	-0.0253	
16	0.00000049	0.0018	0.0290	-0.0066	
17	-0.00000003	-0.0001	-0.0020	-0.0073	
18	0.00000088	0.0032	0.0521	-0.0083	
19	0.00000063	0.0023	0.0368	0.0298	
20	-0.000000115	-0.0042	-0.0679	0.0165	
21	-0.000000059	-0.0021	-0.0346	-0.0245	
22	0.00000076	0.0027	0.0445	-0.0090	
23	0.00000018	0.0006	0.0104	0.0139	
24	-0.00000040	-0.0014	-0.0235	0.0009	
25	0.0	0.0	0.0002	-0.0064	
26	0.00000013	0.0035	0.0077	-0.0003	
27	0.00000005	0.0002	0.0032	0.0006	
28	0.00000006	0.0002	0.0037	0.0024	
29	-0.00000012	-0.0004	-0.0070	0.0025	
30	-0.00000012	-0.0004	-0.0071	-0.0033	
31	0.00000013	0.0005	0.0075	-0.0024	
32	0.00000008	0.0003	0.0046	0.0029	
33	-0.00000010	-0.0004	-0.0059	0.0012	
34	-0.00000003	-0.0001	-0.0019	-0.0019	
35	0.00000005	0.0002	0.0030	-0.0005	
SUMS	22.70382560	-0.4537	-7.4208	-17.5886	

CHEBYSHEV APPROXIMATION OF STDREAL TIME FOR YEAR 1979

DAY 91 THRU 185 JD 2443964.5 TO 2444059.5 DATES APR 1 THRU JULY 4

A = 47.50000000 B = -2.91578947

	APP S T	EQ OF EQ	NUT LON	NUT OBL
TERM	H	S	"	"
0	31.41032190	-0.6530	-10.6765	-18.0358
1	3.12121219	-0.0162	-0.2656	-0.4407
2	0.00000949	0.0342	0.5587	0.1199
3	-0.00000188	-0.0068	-0.1105	0.0926
4	-0.00000129	-0.0047	-0.0762	-0.0099
5	-0.00000046	-0.0016	-0.0268	0.0099
6	-0.00000101	-0.0036	-0.0593	-0.0029
7	-0.00000001	0.0	-0.0004	-0.0016
8	-0.00000094	-0.0034	-0.0555	-0.0029
9	0.00000058	0.0021	0.0341	-0.0191
10	-0.00000015	-0.0006	-0.0091	-0.0005
11	-0.00000021	-0.0007	-0.0121	-0.0223
12	0.00000068	0.0025	0.0401	0.0020
13	0.00000015	0.0005	0.0088	-0.0026
14	0.00000085	0.0031	0.0503	0.0028
15	-0.00000015	-0.0005	-0.0087	0.0252
16	-0.00000058	-0.0021	-0.0344	-0.0015
17	-0.00000006	-0.0002	-0.0036	0.0041
18	-0.00000090	-0.0033	-0.0532	-0.0030
19	0.00000020	0.0007	0.0116	-0.0334
20	0.00000146	0.0052	0.0858	0.0043
21	-0.00000016	-0.0006	-0.0093	0.0312
22	-0.00000092	-0.0033	-0.0542	-0.0026
23	0.00000007	0.0002	0.0039	-0.0137
24	0.00000027	0.0010	0.0160	0.0009
25	-0.00000002	-0.0001	-0.0010	0.0025
26	-0.00000004	-0.0001	-0.0022	-0.0002
27	0.00000001	0.0	0.0007	-0.0011
28	0.00000008	0.0003	0.0047	0.0002
29	-0.00000001	-0.0001	-0.0008	0.0029
30	-0.00000014	-0.0005	-0.0080	-0.0003
31	0.00000001	0.0	0.0006	-0.0033
32	0.00000012	0.0004	0.0070	0.0002
33	0.0	0.0	-0.0003	0.0023
34	-0.00000006	-0.0002	-0.0036	-0.0001
35	0.0	0.0	0.0001	-0.0009
SUMS	34.53153898	-0.6514	-10.6489	-18.2994

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1979

D5

DAYS 182 THRU 276		JD 2444055.5 TO 2444150.5		DATES JULY 1 THRU OCT 3	
		A = 47.50000000	B = -4.83157895		
TERM		APP S T	EQ OF EQ	NUT LON	NUT OBL
0	43.36949367		-0.7110	-11.6246	-17.1532
1	3.12119588		-0.0746	-1.2203	0.7350
2	-0.000001034		-0.0372	-0.6083	-0.0705
3	0.000000156		0.0056	0.0917	-0.0837
4	0.000000087		0.0031	0.0511	0.0215
5	0.000000043		0.0015	0.0250	-0.0008
6	0.000000085		0.0030	0.0498	0.0213
7	-0.000000005		-0.0002	-0.0030	0.0947
8	0.000000105		0.0038	0.0617	0.0198
9	-0.000000087		-0.0031	-0.0513	0.0132
10	-0.000000055		-0.0020	-0.0325	0.0054
11	-0.000000081		-0.0029	-0.0477	0.0121
12	-0.000000018		-0.0007	-0.0108	-0.0180
13	-0.000000008		-0.0003	-0.0046	0.0024
14	-0.000000061		-0.0022	-0.0360	-0.0200
15	0.000000096		0.0035	0.0566	-0.0138
16	0.000000019		0.0007	0.0114	0.0132
17	0.000000017		0.0006	0.0101	-0.0059
18	0.000000054		0.0019	0.0316	0.0213
19	-0.000000120		-0.0043	-0.0707	0.0139
20	-0.000000051		-0.0018	-0.0298	-0.0316
21	0.000000105		0.0038	0.0620	-0.0100
22	0.000000037		0.0013	0.0216	0.0192
23	-0.000000049		-0.0018	-0.0289	0.0083
24	-0.000000029		-0.0011	-0.0173	-0.0074
25	0.000000018		0.0006	0.0103	-0.0052
26	0.000000010		0.0004	0.0058	0.0026
27	-0.000000006		-0.0002	-0.0035	-0.0005
28	0.000000011		0.0004	0.0062	-0.0007
29	0.000000001		0.0	0.0008	0.0040
30	-0.000000017		-0.0006	-0.0102	0.0003
31	-0.000000002		-0.0001	-0.0011	-0.0041
32	0.000000014		0.0005	0.0382	-0.0008
33	0.000000003		0.0001	0.0020	0.0327
34	-0.000000008		-0.0003	-0.0047	0.0008
35	-0.000000002		-0.0001	-0.0012	-0.0013
SUMS	46.49068183		-0.8137	-13.3006	-16.5058

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1979

DAYS 274 THRU 368		JD 2444147.5 TO 2444242.5		DATES OCT	1 THRU JAN	3
		A = 47.5000000	B = -6.76842105			
TERM		APP S T	EQ OF EQ	NUT LON	NUT OBL	
0	7.46001951		-1.0051	-16.4321	-16.8710	"
1	3.12121451		-0.0076	-0.1241	-0.4429	
2	0.00031248		0.0449	0.7346	0.0965	
3	-0.00000115		-0.0041	-0.0676	0.0763	
4	-0.00000006		-0.0002	-0.0033	-0.0173	
5	0.00000024		0.0009	0.0140	-0.0081	
6	0.00000058		0.0021	0.0340	-0.0131	
7	0.00000019		0.0007	0.0114	0.0063	
8	0.00000053		0.0019	0.0311	-0.0110	
9	-0.00000004		-0.0002	-0.0025	0.0183	
10	0.00000048		0.0017	0.0285	-0.0041	
11	0.00000082		0.0029	0.0481	0.0243	
12	-0.00000094		-0.0034	-0.0553	0.0108	
13	-0.00000004		-0.0001	-0.0021	0.0018	
14	-0.00000089		-0.0032	-0.0523	0.0123	
15	-0.00000054		-0.0019	-0.0317	-0.0256	
16	0.00000044		0.0016	0.0262	-0.0074	
17	-0.00000009		-0.0003	-0.0051	-0.0085	
18	0.00000097		0.0035	0.0570	-0.0121	
19	0.00000068		0.0024	0.0397	0.0290	
20	-0.00000111		-0.0040	-0.0654	0.0188	
21	-0.00000066		-0.0024	-0.0387	-0.0223	
22	0.00000071		0.0026	0.0419	-0.0126	
23	0.00000031		0.0011	0.0182	0.0135	
24	-0.00000041		-0.0015	-0.0243	0.0042	
25	-0.00000007		-0.0002	-0.0040	-0.0070	
26	0.00000015		0.0005	0.0390	-0.0008	
27	0.00000003		0.0001	0.0017	0.0010	
28	0.00000005		0.0002	0.0028	0.0007	
29	-0.00000003		-0.0001	-0.0019	0.0026	
30	-0.00000013		-0.0005	-0.0075	-0.0005	
31	0.00000002		0.0001	0.0010	-0.0032	
32	0.00000011		0.0004	0.0067	0.0002	
33	-0.00000001		0.0	-0.0006	0.0022	
34	-0.00000007		-0.0002	-0.0038	-0.0003	
35	0.00000001		0.0001	0.0008	-0.0011	
SUMS	10.58124658		-0.9673	-15.8156	-17.1501	

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1979

D7

DAY 1 THRU 95 JD 2443874.5 TO 2443969.5 DATES JAN 1 THRU APR 5
 A = 47.50000000 B = -1.02105263

	R A	DEC	DISTANCE	S D	EPHEM TR
TERM	H	CEG	AU	'	H
0	43.8577461	-20.549753	1.98018037	32.36140	24.2754532
1	3.1064843	15.086874	0.00892328	-0.14557	-0.0182740
2	-0.0928485	1.815646	0.00189982	-0.03044	-0.0921423
3	0.0119072	-0.488865	-0.00028165	0.00489	0.0122811
4	0.0043867	-0.001138	-0.00002204	0.00035	0.0043041
5	-0.0007466	0.005281	-0.00001085	0.00015	-0.0007555
6	-0.0000155	-0.001176	-0.0000056	0.00002	-0.0000117
7	0.0000451	0.000048	-0.00001157	C.00019	0.0000394
8	-0.0000746	-0.000243	-0.00000747	C.00012	-0.0000775
9	-0.0000283	-0.000107	0.00001672	-0.00027	-0.0000212
10	0.0000482	0.000166	0.00000559	-C.00009	0.0000497
11	0.0000132	0.000067	-0.00000714	0.00013	0.0000092
12	-0.0000165	-0.000051	-0.00000168	0.00003	-0.0000158
13	-0.0000017	-0.000020	0.00000193	-0.00003	-0.0000003
14	0.0000027	0.000006	0.00000002	-C.00002	0.0000039
15	-0.0000006	0.000004	-0.00000038	0.0	-0.0000006
16	0.0000003	0.0	-0.00000014	-C.00001	0.0000001
17	-0.0000012	-0.000008	-0.00000018	C.00002	-0.0000014
18	-0.0000002	0.000005	0.00000036	0.00001	-0.0000009
19	0.0000022	0.000005	0.00000028	-0.00002	0.0000018
20	-0.0000002	-0.000005	-0.00000033	0.0	0.0000005
21	-0.0000020	-0.000006	-0.00000017	C.00001	-0.0000012
SUMS	46.8869001	-4.133270	1.99068421	32.19087	24.1808406

DAY 91 THRU 185 JD 2443964.5 TO 2444059.5 DATES APR 1 THRU JULY 4
 A = 47.50000000 B = -2.91578947

	R A	DEC	DISTANCE	S D	EPHEM TR
TERM	H	CEG	AU	'	H
0	7.4304526	32.948801	2.01943950	31.73224	24.0199017
1	3.1286272	9.607632	0.00902054	-0.14199	0.0097870
2	0.0658562	-2.967648	-0.00180345	0.02891	0.0654362
3	-0.0064655	-0.295429	-0.00025030	0.00368	-0.0068578
4	-0.0049072	0.036151	0.00002722	-C.00045	-0.0048968
5	0.0000811	0.005978	-0.00001323	C.00023	0.0000932
6	0.0001480	0.000186	-0.0000036	0.0	0.0001514
7	0.0000178	0.0	-0.00001176	C.00020	0.0000124
8	-0.0000797	-0.000213	-0.00000212	C.00001	-0.0000791
9	-0.0000081	-0.000069	0.00001817	-0.00029	-0.0000008
10	0.0000540	0.000140	0.00000157	-0.00002	0.0000541
11	0.0000045	-0.000009	-0.00000840	0.00012	0.0000012
12	-0.0000162	-0.000052	-0.00000053	0.0	-0.0000172
13	-0.0000012	0.000008	0.00000178	-0.00003	-0.0000004
14	0.0000032	0.000011	0.00000006	0.0	0.0000022
15	0.0	0.000004	-0.00000010	-0.00001	0.0000001
16	-0.0000012	-0.000002	-0.00000001	-0.00001	-0.0000004
17	-0.0000003	0.000001	0.00000021	0.00001	-0.0000002
18	-0.0000001	-0.000002	0.00000005	0.00001	0.00000010
19	0.0000003	-0.000007	-0.00000032	0.00001	0.0000001
20	0.0000003	0.000002	-0.00000006	0.0	-0.0000014
21	-0.0000004	0.000004	0.00000025	-0.00001	-0.0000002
SUMS	10.6137653	39.335487	2.02641871	31.62261	24.0835863

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1979

DAYS 182 THRU 276		JD 2444055.5 TO 2444150.5		DATES JULY 1 THRU OCT 3		
		A =	47.50000000	B =	-4.83157895	
TERM	H	DEC	DISTANCE	S D	EPHEM TR	
C	19.3692472	23.068389	2.02090351	31.70909	23.9976259	
1	2.9897698	-13.965749	-0.00834605	0.13122	-0.1338289	
2	-0.0651569	-1.979982	-0.00193638	0.03091	-0.0644887	
3	0.0107568	0.377207	0.00022102	-0.00322	0.0110699	
4	0.0038452	0.010929	0.00002169	-C.00033	0.0037913	
5	-0.0004805	-0.002649	-0.00001524	0.00022	-0.0004904	
6	-0.0000326	0.000801	0.C000086	-0.0003	-0.0000302	
7	-0.0000012	0.000157	-0.00001097	0.00015	-0.0000063	
8	-0.0000699	0.000187	0.00000805	-0.00012	-0.0000675	
9	0.0000302	-0.000093	0.00001653	-0.00027	0.0000373	
10	0.0000452	-0.000156	-0.00000609	0.00008	0.0000429	
11	-0.0000162	0.000027	-0.00000715	0.00009	-0.0000181	
12	-0.0000146	0.000060	0.00000185	-0.00004	-0.0000134	
13	0.0000030	0.000011	0.00000201	-0.00003	0.0000031	
14	0.0000035	-0.000018	-0.00000011	0.00001	0.C000036	
15	0.0000010	-0.000006	-0.00000041	C.00001	-0.0000002	
16	0.0	-0.000001	0.00000013	-0.00001	-0.0000001	
17	0.0000011	-0.000007	-0.00000023	0.0	0.0000007	
18	-0.0000005	0.000005	-0.00000036	-0.00001	-0.0000014	
19	-0.0000026	0.000012	0.00000033	0.0	-0.C000011	
20	0.0000005	-0.000008	0.00000032	0.0	0.0000010	
21	0.0000020	-0.000009	-0.00000019	0.0	0.C000006	
SUMS	22.3079305	7.505107	2.01085312	31.86772	23.8136300	
DAYS 274 THRU 368		JD 2444147.5 TO 2444242.5		DATES OCT 1 THRU JAN 3		
		A =	47.50000000	B =	-6.76842105	
TERM	H	DEC	DISTANCE	S D	EPHEM TR	
0	31.1750839	-31.679976	1.981C0625	32.34800	23.7172770	
1	3.2497390	-10.383545	-0.00928620	0.15138	0.1322761	
2	0.1025289	3.029362	0.00178759	-C.02852	0.1020058	
3	-0.0080610	0.414252	0.00028487	-C.00493	-0.0085757	
4	-0.0066181	-0.035353	-0.00003673	0.00061	-0.0066427	
5	-0.0002351	-0.010753	-0.00000877	0.00014	-0.0002131	
6	0.0002143	-0.000828	0.00000223	-0.00001	0.0002204	
7	-0.0000104	0.000362	-0.00000482	0.00006	-0.0000119	
8	-0.0000307	0.000255	0.00001811	-0.00031	-0.0000236	
9	0.0000661	-0.000187	0.00000697	-0.00011	0.0000685	
10	0.0000224	-0.000076	-0.00001196	0.00019	0.0000166	
11	-0.0000271	0.000097	-0.00000315	0.00006	-0.0000291	
12	-0.0000084	0.000018	0.00000378	-0.00006	-0.0000063	
13	0.0000072	-0.000040	0.00000073	0.0	0.0000077	
14	0.0000003	-0.000002	-0.00000105	0.C0002	0.C000004	
15	-0.0000028	0.000013	0.0	0.0	-0.0000017	
16	0.0000003	-0.000002	0.00000010	-C.00001	0.0	
17	-0.0000006	0.000007	0.00000005	0.0	-0.0000003	
18	0.0000016	0.000004	0.00000030	-C.00001	0.0000009	
19	0.0000022	-0.000015	-0.00000012	0.00001	0.0000012	
20	-0.0000016	0.0	-0.00000031	0.0	-0.0000007	
21	-0.0000018	0.000007	0.00000006	-0.00002	-0.0000010	
SUMS	34.5126686	-38.666400	1.97375793	32.46649	23.9363685	

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1979

D9

DAYS	1 THRU 32	JD 2443874.5 TO 2443906.5		DATES JAN 1 THRU FEB 1		
		A = 16.00000000	B = -1.06250000	X	Y	Z
TERM	H	DEC	H P			
0	69.57903896	-3.4606433	116.44941C9	39.2686947	-6.3891394	-2.8277223
1	13.95134072	-2.0364143	0.5446774	-3.6704016	-6.5359125	-2.1948767
2	0.31433657	-6.0066344	2-7219761	49.8515524	-16.4868565	-6.4734233
3	0.29282920	14.1574017	-1.7484791	17.4584513	44.2739743	14.4095202
4	-0.07496529	3.3978201	-1.3103162	-25.7597475	9.2632820	3.5454142
5	-0.11718436	-2.4785799	-0.1534466	-4.5950584	-9.18C6348	-2.9528508
6	-0.07750610	-0.6750195	0.1030224	2.2902437	-1.64C9277	-0.5829063
7	0.03591643	-0.2788834	0.2386781	0.5799255	0.0428174	0.0010785
8	0.03332330	-0.0430359	0.0458324	0.2819688	0.12C4932	0.0342219
9	-0.00000017	0.1095859	-0.0271058	0.0230763	0.1574914	0.0518220
10	-0.00319482	0.1010281	-0.0184265	-0.0530489	0.0467473	0.0165518
11	-0.00277586	0.0077197	-0.0095573	-0.0355938	-0.0035205	-0.0004517
12	-0.00208299	-0.0270568	0.0002543	-0.0083827	-0.0162831	-0.0052400
13	0.00007924	-0.0113420	0.0026179	0.0053244	-0.0066384	-0.0023038
14	0.00104702	-0.0018158	0.0015587	0.0035524	0.0002727	0.0000199
15	0.00041462	0.0017522	0.0002490	0.0009694	0.0011437	0.0003588
16	-0.00010920	0.0026436	-0.0003114	-0.0001331	0.C0C743C	0.0002485
17	-0.00013561	0.0010025	-0.0002216	-0.0003679	0.0001662	0.0000628
18	-0.00007613	-0.0004367	-0.0000607	-0.0001743	-0.C0C0934	-0.0000273
19	-0.00001611	-0.0005267	0.0000205	-0.0000126	-0.C0C0936	-0.0000308
20	0.00002875	-0.0001525	0.0000306	0.0000367	-0.C0C0317	-0.0000113
21	0.00002517	0.0000406	0.0000131	0.0000239	0.C0C0054	0.0000014
22	0.000000245	0.00000796	0.0	0.0000049	0.C0C0106	0.0000034
23	-0.000000636	0.00000481	-0.0000039	-0.C0C0030	0.C0C0051	0.0000017
24	-0.000000432	-0.0000004	-0.0000022	-0.0000033	0.C0C0C01	0.0000002
25	-0.000000118	-0.0000183	-0.0000002	-0.0000C10	-0.C0C0013	-0.0000004
26	0.00000077	-0.0000104	0.0000003	0.0000C03	-C.C0C0CC7	-0.0000002
27	0.000000117	-0.0000002	0.0000003	0.0000002	-0.C0C0CC1	0.0
28	0.000000042	0.0000030	0.0000001	0.0000002	0.C0C0CC1	0.0
29	-0.000000016	0.0000021	0.0	0.0000001	0.C0C0C02	0.0
30	-0.000000025	0.0000004	0.0	0.0	0.C0C0CC1	0.0000001
31	-0.000000010	-0.0000004	-0.0000001	0.0	0.C0C0CC1	0.0
32	0.000000004	-0.0000008	0.0	0.0	0.C	0.0
33	0.000000003	-0.0000001	0.0	0.0	-0.00C0001	0.0
34	0.000000003	0.0	0.0000001	0.0000001	0.0	0.0
35	0.000000002	0.0	0.0	0.0	0.C	0.0000001
SUMS	83.93032590	2.7585558	116.8404106	75.6408972	13.6470191	3.0194606

!

D10

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1979

	DAY	32 THRU 63	JD 2443905.5 TO 2443937.5	DATES FEB 1 THRU MAR 4
		A = 16.00000000	B = -3.00000000	
TERM	R A	DEC	H P	X Y Z
0	28.08662826	8.4510801	114.7277738	33.6567235 30.0026519 9.2369240
1	13.98990886	-2.3069660	0.7457748	2.6544885 -6.9868468 -2.4199789
2	0.39584558	7.2668969	0.8768237	45.9678298 24.6394841 7.1628248
3	0.10411406	13.3351541	-2.8156104	-23.1826113 40.8794184 14.0203725
4	-0.19160254	-3.3033711	-0.6561151	-24.7695165 -12.1775813 -3.5046592
5	-0.09339354	-3.3374477	0.2490881	4.0658040 -10.0421041 -3.3996825
6	0.05127150	-0.3044084	0.3404139	3.6977768 0.4382085 0.0662389
7	0.05267822	0.3115857	0.1798009	0.4974230 1.0236294 0.3264663
8	-0.00865142	0.3164381	-0.0620264	-0.2189110 0.4092018 0.1399042
9	-0.01549363	0.0820621	-0.0652120	-0.2189963 0.0172731 0.0104496
10	-0.00348812	-0.0706842	-0.0147540	-0.0609185 -0.0740113 -0.0231163
11	0.00225991	-0.0587218	0.0087307	0.0145047 -0.0442238 -0.0149211
12	0.00281590	0.0000541	0.0088188	0.0253015 -0.0050246 -0.0022073
13	0.00048922	0.0165074	0.0021574	0.0080304 0.0098860 0.0030921
14	-0.00093614	0.0069594	-0.0012581	-0.0027546 0.0053642 0.0018302
15	-0.00051927	-0.0016495	-0.0013691	-0.003068 0.0001200 0.0001047
16	0.00011800	-0.0031170	-0.0003418	-0.0007905 -0.0011828 -0.0003727
17	0.00021716	-0.0008268	0.0002267	0.0003395 -0.0006125 -0.0002096
18	0.00006129	0.0006994	0.0002115	0.0003659 -0.0001117 -0.0000121
19	-0.00005024	0.0005494	0.0000462	0.00001001 0.0001504 0.0000475
20	-0.000004803	0.0000008	-0.0000366	-0.0000453 0.0000805 0.0000277
21	-0.000000195	-0.0001780	-0.0000330	-0.0000502 0.0000003 0.0000012
22	0.00001729	-0.0000778	-0.0000068	-0.0000125 -0.000217 0.0000068
23	0.00000811	0.0000277	0.0000062	0.0000073 -0.0000105 -0.0000036
24	-0.00000272	0.0000392	0.0000052	0.0000067 0.0000008 0.0
25	-0.00000423	0.0000068	0.0000010	0.0000014 0.0000029 0.0000009
26	-0.00000097	-0.0000110	-0.0000011	-0.0000010 0.0000012 0.0000005
27	0.000000119	-0.0000071	-0.0000009	-0.0000008 0.0 0.0
28	0.00000089	0.0000010	-0.0000001	-0.0000002 -0.0000004 -0.0000001
29	-0.00000004	0.0000028	0.0000002	0.0000001 -0.0000001 0.0
30	-0.00000038	0.0000009	0.0000001	0.0000001 0.0000001 0.0000001
31	-0.00000013	-0.0000007	0.0	0.0 0.0000001 0.0
32	0.00000007	-0.0000005	-0.0000002	0.0 0.0 0.0000001
33	0.00000010	0.0	-0.0000002	0.0 -0.0000001 0.0
34	0.00000002	0.0000004	-0.0000002	0.0 0.0000001 0.0
35	-0.00000004	0.0000003	0.0	-0.0000001 0.0 0.0
SUMS	42.37224224	20.4005990	113.5231f32	42.1310877 68.0938421 21.6031151

	DAY	60 THRU 91	JD 2443933.5 TO 2443965.5	DATES MAR 1 THRU APR 1		
		A = 16.00000000	B = -4.75000C00			
TERM	R A	DEC	H P	X	Y	Z
0	29.23804087	9.8700092	114.7993786	29.2629514	33.8163932	10.5465352
1	13.98446988	-2.1341046	0.5331283	4.1907234	-6.6184194	-2.2592237
2	0.34573242	9.3093377	0.9852712	41.2577693	30.8538822	9.3123347
3	0.10755174	12.2347003	-2.6236804	-29.6278532	37.1839266	12.9386355
4	-0.18048460	-4.4472720	-0.4372378	-22.3607402	-15.6630210	-4.6843812
5	-0.05034667	-3.1328361	0.1680429	5.7812058	-9.2456004	-3.1836216
6	0.05927321	-0.0620080	0.1295685	3.5106864	1.0899188	0.2810765
7	0.02672312	0.3925725	0.1727318	0.2161011	1.0789486	0.3516513
8	-0.01631433	0.2545621	-0.0033927	-0.3111349	0.2950767	0.1046039
9	-0.01047823	0.0013473	-0.0435925	-0.1671527	-0.0501939	-0.0128553
10	0.00042394	-0.0601907	-0.0174706	-0.0166500	-0.0549549	-0.01178050
11	0.00308578	-0.0235267	0.0016555	0.0095319	-0.0213793	-0.0072895
12	0.00146298	0.0066781	0.0053452	0.0136C62	-0.0041946	-0.0016882
13	-0.00056707	0.0084921	0.0018339	0.0056612	0.0052166	0.0016010
14	-0.00071031	0.0011151	-0.0000812	-0.0011595	0.0034774	0.0011753
15	-0.00003485	-0.0019728	-0.0005222	-0.0017983	0.0003210	0.0001455
16	0.00021166	-0.0009872	-0.0003125	-0.0005598	-0.0006458	-0.0002008
17	0.00008662	0.0003199	-0.0000197	0.0001559	-0.0003590	-0.0001220
18	-0.00003655	0.0003896	0.0000761	0.0001829	-0.000214	-0.0000114
19	-0.00004487	0.0000093	0.0000475	0.0000552	0.000608	0.0000188
20	-0.00000411	-0.0001183	0.0000032	-0.0000100	0.0000372	0.0000127
21	0.00001451	-0.0000415	-0.0000111	-0.0000196	0.0000061	0.0000024
22	0.00000672	0.0000260	-0.0000062	-0.0000079	-0.0000065	-0.0000020
23	-0.000000258	0.00000238	-0.0000004	0.0000010	-0.0000047	-0.0000017
24	-0.00000331	-0.0000007	0.0000014	0.0000023	-0.0000006	-0.0000003
25	-0.00000034	-0.0000085	0.0000007	0.0000008	0.0000006	0.0000002
26	0.00000105	-0.0000030	0.0000001	0.0	0.0000005	0.0000002
27	0.00000052	0.0000018	-0.0000003	-0.0000001	0.0000002	0.0000001
28	-0.00000018	0.0000019	-0.0000001	-0.0000002	0.0	-0.0000001
29	-0.00000024	0.0000001	0.0	0.0000001	-0.0000001	0.0
30	-0.00000003	-0.0000007	0.0000002	0.0	-0.0000001	0.0
31	0.00000009	-0.0000004	0.0000001	0.0	0.0	0.0
32	0.00000005	0.0	0.0	0.0	0.0	0.0000001
33	-0.00000002	0.0000002	0.0000001	0.0	0.0	-0.0000001
34	0.00000001	0.0000001	0.0	0.0	0.0000001	-0.0000001
35	0.00000001	-0.0000001	0.0000001	-0.0000001	-0.0000001	0.0
SUMS	43.50805689	22.2165158	113.6907577	31.7695884	72.6644648	23.3705904

DAYS 91 THRU 122			JD 2443964.5 TC 2443996.5		DATES APR 1 THRU MAY 2		
	A =	16.00000000	B =	-6.68750000	X	Y	Z
TERM.	R A	DEC	H P				
0	35.67356672	15.2935685	112.8836818	-4.3808426	49.4044734	16.5338311	
1	14.06480700	-0.4660518	0.43290C9	7.8852204	-1.1855467	-0.4779824	
2	0.30320850	15.6206826	-1.1640441	3.4567857	49.2291608	16.3297277	
3	-0.09348003	1.7898896	-2.03861C9	-48.3325748	3.4785872	2.2500717	
4	-0.14678547	-8.4160824	0.5262275	-2.558C087	-26.5030448	-8.7483564	
5	0.07479788	-1.0744675	0.2968989	11.9472428	-1.7789431	-0.8728591	
6	0.02264513	1.3566442	0.0885138	1.3086947	4.C839C77	1.3250019	
7	-0.04394647	0.4910004	0.0560339	-1.3683917	0.7690995	0.2884151	
8	-0.00909917	-0.1680970	-0.05C1662	-0.4329538	-0.3860445	-0.1179765	
9	0.01392909	-0.1229375	-0.0354754	0.1018917	-0.1850470	-0.0639479	
10	0.00554229	0.0305469	0.0044200	0.0737633	0.C134821	0.0027008	
11	-0.00307342	0.0215501	0.0112621	0.0067C86	0.C2C7C21	0.0067269	
12	-0.002223308	-0.0096723	0.0018495	-0.0032609	C.069576	0.0024027	
13	0.00072954	-0.0055988	-0.0020829	-0.0042150	C.015913	0.0006289	
14	0.00073146	0.0033727	-0.00C90C1	-0.0021595	-0.C016666	-0.0005053	
15	-0.00022637	0.0023511	0.0000774	0.0004690	-C.C014276	-0.0004861	
16	-C.00026062	-0.0009591	0.00C1865	0.00C08442	-0.C0C0C78	-0.0000223	
17	0.00006724	-0.0009519	0.00C0822	0.00C1301	0.C0C3856	0.0001251	
18	0.00010327	0.0002177	-0.C0C00C1	-0.0001675	0.00C1C72	0.0000396	
19	-0.00001420	0.00003495	-0.00C0284	-0.0000725	-C.CCC0544	-0.0000163	
20	-0.00003949	-0.00000366	-0.0000138	0.0000129	-C.CCC036C	-0.0000122	
21	0.00000097	-0.0001244	0.00C0036	0.0000171	-0.00C0C09	-0.0000007	
22	0.000001416	0.0	0.0000051	0.0000C35	0.CCCCC59	0.0000018	
23	0.00000089	0.00000435	0.00000C8	-0.0C0CC14	0.CCC0C26	0.0000009	
24	-0.00000499	0.00000043	-0.0000010	-0.C00CC15	C.C	0.C000001	
25	-0.00000071	-0.00000150	-0.00C000C4	-C.C00CC05	-C.CCCCCC5	-0.0000002	
26	0.000000176	-0.0000029	-0.C0C00C1	0.C00CC02	-0.CCC0CC5	-0.0000003	
27	0.00000041	0.0000049	0.00C0001	0.C00CC03	-C.CCCCCC1	0.0	
28	-0.00000063	0.00000014	0.0	0.C00CC01	0.CCC0CC1	0.0000001	
29	-0.00000023	-0.00000014	0.0	-0.C00CC01	0.0	0.0	
30	0.00000022	-0.0000008	0.0	-0.C00CC01	-C.CCCCCC1	0.0	
31	0.00000009	0.0000005	-0.00C0001	-0.C00CC01	-0.C0C0CC1	0.0000001	
32	-C.00000006	0.0000003	0.00000C1	0.C	0.C	0.0	
33	-0.00000005	-0.0000001	0.0	0.0000CC1	0.C0C0CC1	0.0	
34	0.0	-0.0000002	0.C0C00C1	-0.0000C01	0.C0C0001	-0.0000001	
35	0.00000003	0.0	-0.0000001	0.C	C.C	-0.0000001	
SUMS	49.86098166	24.3452285	111.0108207	-32.3008661	76.9666426	26.4575086	

DAYS 121 THRU 152			JD 2443994.5 TO 2444026.5		DATES MAY 1 THRU JUNE 1			
	A =	16.00000000	B =	-8.56250000	X	Y	Z	
TERM	R A	DEC	H P					
0	40.29427661	13.7369310	112.0646350	-30.8413424	42.9621693	15.2035874		
1	14.09048905	1.1359632	0.1118565	6.8830077	3.5989783	1.1724931		
2	0.17234000	13.8712878	-2.1173620	-26.6530940	41.8222052	14.7470114		
3	-0.23604798	-6.7205217	-0.8479938	-41.6053048	-23.3566702	-6.7869430		
4	-0.04630589	-7.7514915	1.0471652	14.2625598	-22.9297407	-8.0466889		
5	0.08394303	1.5801667	0.0519845	10.9167335	5.7425350	1.6344727		
6	-0.05973707	1.6596302	-0.0577432	-2.1264031	4.0931536	1.4239046		
7	-0.03228689	-0.1841383	0.0696366	-1.6599315	-0.6364796	-0.1689146		
8	0.03215475	-0.3215053	-0.0234532	0.2039167	-0.6078212	-0.2085709		
9	0.01337229	0.0729070	-0.0319603	0.2451830	0.0658112	0.0155903		
10	-0.00945764	0.0500541	0.0075025	-0.0260470	0.08294C9	0.0283848		
11	-0.00422249	-0.0443466	0.01C3172	-0.0276162	-0.0112876	-0.0030507		
12	0.00280309	-0.0069056	-0.0017045	0.0059882	-0.0064075	-0.0022851		
13	0.00081648	0.0195233	-0.0025528	0.0006183	0.00318C8	0.0010475		
14	-0.00108256	0.0016104	0.0003596	-0.0019375	-0.00C6966	-0.0001860		
15	-0.00003617	-0.0069053	0.0004709	0.0007148	-0.0010474	-0.0003693		
16	0.00046832	-0.0002765	-0.0000921	0.0006141	0.00C4489	0.0001347		
17	-0.00004015	0.0021890	-0.0000541	-0.0002628	0.00C3C53	0.0001092		
18	-0.00018850	-0.0001439	0.0000325	-0.0001626	-0.00C1293	-0.0000390		
19	0.00002618	-0.0006930	-0.0000028	0.00000657	-0.00C0728	-0.0000259		
20	0.00006727	0.0001578	-0.0000121	0.0000346	0.00C0293	0.0000088		
21	-0.00001550	0.0002315	0.00C0040	-0.0000140	0.0000134	0.0000047		
22	-0.00002215	-0.0000887	0.0000038	-0.0000053	-0.00C0061	-0.0000019		
23	0.00000894	-0.0000780	-0.0000013	0.00000C30	-0.00C0014	-0.0000006		
24	0.00000718	0.0000402	-0.00000C9	0.00000C03	0.00C0012	0.0000004		
25	-0.00000463	0.0000248	0.00C0005	-0.00000C06	-0.00C0001	0.0		
26	-0.00000233	-0.0000171	0.00C0001	0.00C0002	-0.00C0004	0.0		
27	0.00000211	-0.0000070	-0.0000001	0.00C0001	0.00C0002	0.0000001		
28	0.00000070	0.0000071	0.0000001	-0.0000001	0.00C0001	0.0		
29	-0.00000089	0.0000015	0.0	-0.00000C01	-0.00C0002	0.0000001		
30	-0.00000017	-0.0000030	-0.0000001	0.00000C01	-0.00C0001	-0.0000001		
31	0.00000037	-0.0000002	0.0000001	-0.0000001	0.00C0001	-0.0000001		
32	0.00000004	0.0000013	0.0	0.0	0.C	-0.0000001		
33	-0.00000015	0.0	-0.0000001	0.00000C01	0.C	0.0		
34	0.00000001	-0.0000008	0.0	0.0	C.0	-0.0000001		
35	0.00000004	0.0000001	-0.0000001	0.00000C01	0.0	0.0		
SUMS	54.30132530	17.0936045	110.2810356	-70.4226818	50.8194916	19.0096735		

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1979

DAYS 152 THRU 183 JD 2444025.5 TO 2444057.5 DATES JUNE 1 THRU JULY 2

A = 16.00000000 B = -10.50000000

TERM	R A	DEC	H P	X	Y	Z
	H	DEG	'	E RAD	E RAD	E RAD
0	46.50325615	5.3805203	111.9470413	-53.1395854	14.3244623	6.4264629
1	14.07665770	2.5605969	-0.3501943	1.1745382	7.2056782	2.5456962
2	-0.13569478	4.3579633	-2.2576218	-50.7754555	9.2921951	4.6581382
3	-0.31277642	-14.0606754	1.0738584	-9.6171913	-44.7000308	-14.7923726
4	0.09362744	-2.2264929	1.0229834	27.7333581	-4.7379172	-2.4219903
5	-0.00420628	4.0463435	-0.3925862	1.9229363	11.6990161	3.8705410
6	-0.05909087	0.1952173	0.0233267	-4.8658133	0.3344279	0.2567948
7	0.05441600	-0.7904668	0.1200437	0.0754475	-1.7290826	-0.5823543
8	0.02294823	0.1098105	-0.0702363	0.6923446	0.1634538	0.0278139
9	-0.02419200	0.1046140	-0.0256377	-0.1116254	0.2428592	0.0848368
10	-0.00456243	-0.0858307	0.0267479	-0.0882788	-0.0669208	-0.0199141
11	0.00734531	0.0175003	0.0021411	0.0394984	-0.0232512	-0.0089566
12	-0.00054931	0.0358262	-0.0076176	0.0036160	0.0197708	0.0065468
13	-0.00152278	-0.0186585	0.0010238	-0.0102628	-0.0020303	-0.0003861
14	0.00102759	-0.0096309	0.0016341	0.0026338	-0.044548	-0.0015765
15	0.00002363	0.0083179	-0.0006783	0.0020010	0.0018755	0.00005730
16	-0.00055485	0.0010119	-0.0002114	-0.0012153	0.0007078	0.0002741
17	0.00017731	-0.0026615	0.0002485	-0.0002328	-0.0006486	-0.0002116
18	0.00019019	0.0006609	-0.0000205	0.0003544	-0.0000309	-0.0000210
19	-0.00011419	0.0005806	-0.0000661	-0.0000237	0.0001638	0.0000558
20	-0.00003505	-0.00005261	0.0000256	-0.0000786	-0.0000312	-0.0000081
21	0.00004835	-0.0000183	0.0000122	0.0000251	-0.0000311	-0.0000112
22	-0.00000690	0.00002258	-0.0000105	0.0000121	0.0000156	0.0000049
23	-0.00001476	-0.0000647	-0.0000006	-0.0000096	0.0000032	0.0000014
24	0.00000978	-0.0000647	0.0000031	-0.0000002	-0.0000048	-0.0000016
25	0.00000239	0.0000425	-0.0000007	0.0000025	0.0000005	0.0000001
26	-0.00000522	0.0000078	-0.0000007	-0.0000007	0.0000011	0.0000005
27	0.00000075	-0.0000177	0.0000004	-0.0000005	-0.0000005	-0.0000001
28	0.00000186	0.0000042	0.0	0.0000003	-0.0000001	-0.0000001
29	-0.00000086	0.0000051	-0.0000002	0.0000001	0.0000002	0.0000001
30	-0.00000038	-0.0000038	0.0	-0.0000001	0.0	0.0000001
31	0.00000047	-0.0000009	-0.0000001	0.0000001	-0.0000001	0.0
32	-0.00000006	0.0000020	0.0	0.0	0.0	0.0
33	-0.00000016	-0.0000001	-0.0000001	0.0	0.0	0.0
34	0.00000010	-0.0000006	0.0000001	0.0	0.0000001	0.0000001
35	0.00000002	0.0000005	0.0	0.0	0.0	0.0
SUMS	60.21640597	-0.3758621	111.1142072	-86.9630055	-7.6998038	0.0499365

DAYS 182 THRU 213 JD 2444055.5 TO 2444087.5 DATES JULY 1 THRU AUG 1

A = 16.00000000 B = -12.37500000

TERM	R	A	DEC	H P	X	Y	Z
			DEG	'	E RAD	E RAD	E RAD
0	51.00353361	-2.7403472	112.5867838	-52.0158623	-12.0064000	-2.2735224	
1	14.05893874	2.3362516	-0.6523871	-3.7478362	6.2304840	2.3357576	
2	-0.37770399	-4.7559992	-1.5569982	-47.7349155	-20.0367096	-5.1319176	
3	-0.22268501	-14.0169096	2.2537755	19.2543193	-41.7285307	-14.7066391	
4	0.16683338	3.0568248	0.5412597	25.5401777	11.4913843	3.0044443	
5	-0.03813652	3.5492834	-0.6336641	-5.9363860	10.0838796	3.5827095	
6	0.00812024	-1.1687956	0.2168268	-3.6693352	-2.7588087	-0.8043369	
7	0.05954891	-0.3796304	0.1141925	1.3882013	-0.9528318	-0.3654359	
8	-0.02273044	0.3388331	-0.1294321	0.2005904	0.6292427	0.2048716	
9	-0.01803805	-0.0683918	0.0002248	-0.2958080	-0.0204848	0.0028384	
10	0.01156605	-0.0361710	0.0360892	0.0564924	-0.1130941	-0.0399042	
11	0.00170366	0.0615107	-0.0114135	0.0417778	0.0448043	0.0137009	
12	-0.00321186	-0.0195395	-0.0061538	-0.0296385	0.0597586	0.0042785	
13	0.000104724	-0.0183040	0.00052513	0.0000420	-0.0153170	-0.0051571	
14	0.00010243	0.0138189	-0.0001785	0.0078040	0.0025786	0.0006086	
15	-0.00060145	0.0013061	-0.0014451	-0.0025028	0.0031353	0.0011385	
16	0.00038327	-0.0045354	0.0006007	-0.0011936	-0.0016492	-0.0005152	
17	0.00010990	0.0014135	0.0002129	0.0010166	-0.002651	-0.0001231	
18	-0.000221164	0.0005745	-0.0002594	-0.0000299	0.000562	0.0001713	
19	0.00003872	-0.0007561	0.0000290	-0.0002510	-0.001022	-0.0000259	
20	0.000005543	0.0002611	0.0000677	0.0000540	-0.0000974	-0.0000359	
21	-0.000003557	0.0001576	-0.0000326	0.0000343	0.0000610	0.0000193	
22	0.000000115	-0.00001916	-0.0000086	-0.0000372	0.0000052	0.0000030	
23	0.000000159	0.00000275	0.0000126	0.0000034	-0.0000182	-0.0000062	
24	-0.000000817	0.00000574	-0.0000019	0.0000087	0.0000048	0.0000012	
25	-0.000000020	-0.00000346	-0.0000030	-0.0000039	0.0000031	0.0000013	
26	0.000000380	-0.00000026	0.0000018	-0.0000010	-0.0000024	-0.0000007	
27	-0.000000176	0.00000128	0.0000003	0.0000016	0.0000001	-0.0000001	
28	-0.000000069	-0.00000061	-0.0000005	-0.0000002	0.0000007	0.0000003	
29	0.000000097	-0.00000011	0.0000003	-0.0000003	-0.0000002	0.0	
30	-0.000000022	0.00000030	0.0000003	0.0000001	-0.0000001	-0.0000001	
31	-0.000000024	-0.00000013	-0.0000001	0.0	0.0000002	-0.0000001	
32	0.000000023	-0.00000009	0.0	-0.0000002	0.0	0.0000001	
33	-0.000000004	0.00000006	0.0	0.0	-0.0000001	0.0000001	
34	-0.000000006	-0.00000002	0.0000001	0.0	0.0	0.0	
35	0.000000007	-0.00000002	-0.0000001	0.0000001	0.0	0.0	
SUMS	64.62863348	-13.8492818	112.7623507	-66.9432381	-49.1384229	-14.1770760	

DAYS 213 THRU 244		JD 2444086.5 TO 2444118.5		DATES AUG 1 THRU SEPT 1		
		A = 16.00000000	B = -14.31250000			
TERM	H	DEC	H P	X	Y	Z
0	57.36318059	-12.0442579	114.3285271	-25.6328103	-38.2074338	-11.8960964
1	14.03472944	0.5947840	-0.7656341	-7.5119974	1.1062073	0.6801525
2	-0.49568146	-14.6244733	0.3787376	-16.7831402	-47.3702679	-15.2939418
3	0.08703294	-6.2422304	2.8847363	46.4445420	-13.790349	-6.3003439
4	0.19292529	7.9828692	-0.4941669	7.9832748	25.4766330	8.2528243
5	-0.00976071	0.5656804	-0.4127283	-11.3422708	1.9033544	1.0427048
6	0.04636801	-1.3159082	0.3943022	0.2220707	-3.7221002	-1.2541445
7	-0.01754800	0.4771219	-0.1086244	1.1087869	0.6729428	0.1863888
8	-0.02522833	0.0597723	-0.1054887	-0.4996932	0.1974264	0.0838573
9	0.01341536	-0.1055745	0.0636384	0.0293126	-0.2365794	-0.0803974
10	0.00137964	0.0533204	-0.0010808	0.0945104	0.0657818	0.0187047
11	-0.00420885	-0.0188184	-0.0159808	-0.0523496	0.0218350	0.0091902
12	0.00122497	-0.0127667	0.0083136	0.0014325	-0.0280455	-0.0094593
13	0.00018555	0.0144276	0.0004964	0.0133277	0.0066192	0.0017447
14	-0.00014762	-0.0034200	-0.0026343	-0.0057609	0.0042444	0.0016302
15	0.00021114	-0.0027877	0.0011923	-0.0007427	-0.0033179	-0.0010863
16	-0.00016683	0.0022854	0.0002151	0.0017062	0.004552	0.0000908
17	-0.00000122	-0.0003118	-0.0004550	-0.0005995	0.0006163	0.0002279
18	0.000007982	-0.00003333	0.0001545	-0.0001574	-0.00044C4C	-0.0001292
19	-0.000003954	0.0002377	0.0000570	0.0002307	0.00029C	0.0000016
20	-0.00000699	-0.00000855	-0.00000739	-0.00000670	0.0000948	0.0000340
21	0.000001288	-0.0000007	0.0000195	-0.0000315	-0.000522	-0.0000164
22	-0.000000477	0.00000354	0.0000126	0.00000328	-0.0000019	-0.0000017
23	0.000000057	-0.00000269	-0.00000120	-0.00000063	0.0000151	0.0000052
24	0.000000082	0.00000035	0.0000021	-0.00000060	-0.0000061	-0.0000019
25	-0.00000130	0.00000070	0.0000026	0.0000043	-0.0000012	-0.0000006
26	0.00000077	-0.00000043	-0.0000019	-0.0000003	0.000002C	0.0000007
27	0.00000011	0.00000007	0.0000003	-0.0000009	-0.0000006	-0.0000002
28	-0.00000040	0.0000006	0.0000005	0.0000006	-0.0000001	-0.0000001
29	0.00000016	-0.0000007	-0.0000003	-0.0000001	0.0000004	0.0000001
30	0.0	0.0000002	0.0	-0.0000003	-0.0000002	-0.0000001
31	-0.00000006	-0.0000001	0.0000001	0.0000001	0.0	0.0
32	0.00000003	-0.0000002	-0.0000001	0.0	0.0000001	0.0
33	0.0	0.0	0.0	0.0	0.0	0.0
34	0.0	-0.0000001	0.0	0.0	0.0	0.0
35	0.0	0.0	-0.0000001	0.0	0.0	0.0
SUMS	71.18795001	-24.6204544	116.1535266	-5.930421	-73.9019887	-24.5580620

DAYS 244 THRU 275			JD 2444117.5 TO 2444149.5		DATES SEPT 1 THRU OCT 2		
	A =	16.00000000	B =	-16.25000000	X	Y	Z
TERM	H	DEC	H P		X	Y	Z
0	64.02272733	-13.0406494	116.1386503	13.4577455	-36.5698924	-12.7826564	
1	14.00414882	-1.2455782	-0.5876510	-5.9119863	-4.5782244	-1.3523375	
2	-0.29485558	-15.0474429	2.3386087	26.4162452	-43.1490193	-15.4306689	
3	0.33035310	6.4748711	2.0201606	42.4860918	24.6030839	6.7072533	
4	0.13135941	7.5283654	-1.2604142	-14.5141697	22.22C6350	7.9892722	
5	-0.02952326	-1.8336198	0.0534179	-8.7000847	-6.1996311	-1.7555032	
6	-0.03763401	-0.2496366	0.2119342	2.3121C19	-1.8587182	-0.7084172	
7	-0.02553184	0.2718209	-0.2344684	-0.0574577	0.6673C30	0.2247455	
8	0.01377973	-0.2343445	0.0137668	-0.1361585	-0.3031632	-0.0966862	
9	0.00300314	0.0027988	0.0403650	0.1848C77	0.C310319	0.0036755	
10	-0.00292434	0.0211524	-0.0211042	-0.0564755	0.0557338	0.0220798	
11	0.00203311	-0.0104486	0.0060589	-0.0084522	-0.C380782	-0.0124484	
12	0.00029281	0.0075088	0.0033628	0.0198C45	0.0067691	0.0015452	
13	-0.00056938	-0.0000699	-0.0035345	-0.0071842	0.0063421	0.0023887	
14	-0.00005645	-0.0007609	0.0011417	-0.0008733	-0.C039424	-0.0012891	
15	0.00003506	0.0007968	0.0003269	0.0016589	0.C0C8155	0.0002102	
16	0.00001980	-0.00005834	-0.0005077	-0.0008595	0.0003787	0.0001590	
17	-0.00001866	-0.0000099	0.0001844	0.0000732	-0.C0C4556	-0.0001546	
18	0.00000517	0.0001785	0.00002C5	0.0001811	0.C0C1555	0.0000449	
19	0.00001321	-0.0000428	-0.0000627	-0.C0001171	0.CCC0268	0.0000130	
20	-0.00000543	-0.00000150	0.00000328	0.0000201	-0.CCC0542	-0.0000186	
21	-0.00000239	0.00000214	-0.C000017	0.0000186	C.CCC0233	0.0000072	
22	0.00000157	-0.0000018	-0.0000082	-0.0000154	0.C0C0007	0.0000008	
23	-0.00000020	-0.00000049	0.00000055	0.0000C40	-0.C0C0063	-0.0000023	
24	-0.00000033	0.0000009	-0.0000008	0.0000C20	0.C0C0034	0.0000010	
25	0.00000010	0.0000006	-0.00000011	-0.0000C21	-0.C0C00C1	-0.0000001	
26	0.00000014	-0.0000004	0.0000008	0.0000C05	-0.C0C00C8	-0.0000002	
27	-0.00000003	0.0000001	-0.0000003	0.0000C01	C.CCCCCC4	0.0000003	
28	-0.00000003	0.0	-0.0000001	-0.0000C02	-0.C0C00C1	0.0	
29	0.00000004	-0.0000002	0.0000002	0.CCCCC01	0.0	0.0	
30	0.0	0.0000003	-0.0000001	0.0	0.C	0.0	
31	0.0	0.0	0.0	-0.0000C01	0.C	0.0000001	
32	0.00000001	-0.0000001	0.0	0.0000001	0.0	0.0	
33	-0.00000001	0.0000001	0.0000001	0.0000C01	0.C0CCCCC1	0.0000001	
34	0.00000002	0.0	0.0	-0.0000C01	-0.C0C00C1	0.0	
35	0.0	0.0000001	0.0000002	0.0	0.C	0.0	
SUMS	78.11665063	-17.3557831	118.72C2833	55.4849588	-45.1048832	-17.1887859	

DAYS 274 THRU 305			JC 2444147.5 TC 2444179.5		DATES OCT 1 THRU NOV 1		
	A = 16.00000000		B = -18.12500000				
TERM	R A	DEC	H P	X	Y	Z	
0	68.91118785	-7.1873934	116.6180417	34.4796794	-17.0765903	-7.0818267	
1	13.98066335	-2.0501009	-0.3990606	-2.1714275	-6.71C8706	-2.2633035	
2	-0.09753119	-8.2510603	2.7914267	48.1901701	-20.1090567	-8.5462285	
3	0.32434902	13.6844764	0.7016031	19.6798131	43.5228812	13.9871932	
4	0.03425648	4.0399146	-1.3969009	-25.4101789	10.1313338	4.3868743	
5	-0.10917537	-2.7142762	0.2883716	-3.8227294	-9.4778922	-3.0478796	
6	-0.03920026	-0.0743875	0.0883190	2.6440425	-0.7055655	-0.3419103	
7	0.03047213	-0.1390295	-0.1920927	-0.0863159	0.2589128	0.0884842	
8	0.01457259	-0.1396654	0.0405438	0.1957363	-0.1193962	-0.0472591	
9	-0.00458030	0.1210301	0.0156540	0.0380729	0.1528533	0.0502154	
10	0.00029746	0.0199356	-0.0085882	-0.0741896	-0.0127082	-0.0015035	
11	-0.00060037	-0.0183627	0.0082642	0.0209523	-0.C222395	-0.0082668	
12	-0.00145266	0.0009761	-0.0017252	0.0037973	0.0128C98	0.0041724	
13	0.00035153	-0.0006932	-0.0016621	-0.0055401	-0.C014285	-0.0002731	
14	0.00044483	-0.0012739	0.0010923	0.0016444	-0.C011098	-0.0004344	
15	-0.00004523	0.0007385	-0.0002591	-0.0003176	0.C0C7932	0.0002785	
16	-0.000003320	0.0005155	-0.0000984	-0.0002429	-0.C0C47C8	-0.0001495	
17	0.00000582	-0.0000671	0.0001140	0.0003C07	0.C0C0186	-0.0000051	
18	-0.000002718	-0.0001107	-0.0000550	-0.0000729	0.00011C9	0.0000400	
19	-0.00000570	-0.0000167	0.0000046	-0.0000238	-0.C0C05C9	-0.0000160	
20	0.00001257	-0.0000047	0.0000144	0.0000246	0.C0C0073	0.0000016	
21	0.000000208	-0.0000032	-0.0000084	-0.0000105	0.C0C0057	0.0000022	
22	-0.000000203	0.0000123	0.0000013	0.0000C11	-0.C0C0C56	-0.0000019	
23	0.000000015	0.0000049	0.0000010	0.0000020	0.C0C0023	0.0000006	
24	-0.000000027	-0.0000042	-0.0000010	-0.0000017	0.0	0.C000001	
25	-0.000000041	-0.0000011	0.0000004	0.0000004	-0.C0C0C07	-0.0000002	
26	0.000000022	0.0000006	0.0000001	0.0000004	0.00C0004	0.0000001	
27	0.000000016	-0.0000003	-0.0000001	-0.0000002	0.0	0.0000001	
28	-0.000000006	0.0	0.0	0.0	0.0	0.0	
29	-0.000000002	0.0000002	-0.0000001	0.0	0.C	0.0000001	
30	0.000000002	-0.0000001	0.0	0.0000001	-0.00C00C1	0.0000001	
31	-0.000000001	-0.0000003	0.0000001	0.0	0.0	0.0	
32	0.0	0.0	0.0000001	-0.0000001	0.C	0.0	
33	-0.000000001	0.0	0.0000002	0.0	0.C0C0C01	0.0	
34	-0.000000001	-0.0000001	0.0000001	0.0000001	0.0	0.0	
35	0.0	-0.0000001	-0.00C00C2	0.C000001	0.0	0.0	
SUMS	83.04396198	-2.7088468	118.5530007	73.6831867	-0.1576562	-2.8217953	

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1979

D19

DAYS 305 THRU 336			JC 2444178.5 TC 2444210.5		DATES NOV 1 THRU DEC 2		
	A =	16.0000000	B =	-20.0625000	X	Y	Z
TERM	R A	DEC	H P		E RAD	E RAD	E RAD
C	75.54474443	5.6119364	116.0733287	35.4016455	20.998512	5.7402509	
1	13.99303692	-2.1806775	-0.0959756	3.5473376	-6.1853093	-2.3167562	
2	0.10383678	5.6402273	2.1595027	47.4711877	21.4242045	5.4996034	
3	0.22100831	14.7774386	-1.2335061	-21.6782434	42.1678817	15.2870802	
4	-0.12247983	-2.7857959	-0.9148823	-25.1334901	-11.2736415	-2.8146561	
5	-0.09227935	-3.0810240	0.5192123	4.3268907	-9.5023511	-3.4113300	
6	0.08021913	-0.0798625	-0.0506540	3.0003897	0.79877C6	0.1423494	
7	0.03898356	0.0541235	-0.11C09E5	0.1983183	0.5911486	0.1923981	
8	-0.02193749	0.2626143	0.0328004	-0.0576350	0.2752255	0.0970800	
9	-0.01021382	0.0420290	0.0106396	-0.1745380	0.00E632C	0.0100948	
10	-0.00078947	-0.0943390	0.0069217	-0.0011421	-0.0730189	-0.0248255	
11	0.00169582	-0.0106494	-0.0004365	0.0275C45	0.C044848	0.0004013	
12	0.00250033	0.0174373	-0.0040098	-0.0030345	0.C076965	0.0027367	
13	-0.00022807	0.0063795	0.00C2407	-0.0021368	-0.C0C6997	-0.0001463	
14	-0.00098504	0.0005201	0.00C5682	-0.0004321	-0.C0C5990	-0.0001874	
15	-0.00007627	-0.0030290	0.0000036	0.0002889	-0.C0C5743	-0.0002085	
16	0.00019605	-0.0015377	-0.0000173	C.0004223	0.C0C165C	0.0000392	
17	0.00010729	0.0007977	-0.0000504	-0.0000863	0.C0C2037	0.0000729	
18	0.00000613	0.0006057	0.0000068	-0.0000891	-0.C0C0319	-0.0000071	
19	-0.000005541	-0.0000318	0.0000179	0.0000049	-0.C0C0254	-0.0000103	
20	-0.000002178	-0.0001538	-0.0000030	0.00000C96	-0.C0C0037	-0.0000017	
21	0.00001533	-0.0000791	-0.0000030	0.0000CC50	0.C0C0C3C	0.0000009	
22	0.00001040	0.0000214	-0.0000002	-0.00000C13	0.C0C0C3C	0.0000012	
23	-0.00000054	0.0000430	0.0	-0.C0C0C17	-0.CCCCCC6	-0.0000002	
24	-0.000000335	0.0000048	0.0000004	0.0000002	-0.C0C0C06	-0.0000003	
25	-0.000000174	-0.00000122	-0.0000001	0.00000C03	0.C0C0CC1	0.0	
26	0.00000069	-0.0000054	-0.00C00C2	0.0	0.00C0001	0.0000001	
27	0.00000100	0.0000010	0.0	0.0	0.0	0.0	
28	0.00000004	0.0000027	0.0	0.0	0.C	-0.0000001	
29	-0.00000028	0.0000007	0.0	0.0	0.C	0.0	
30	-0.000000014	-0.0000006	-0.0000001	0.0	0.C0C0CC1	-0.0000001	
31	0.00000002	-0.0000006	0.0	-0.00000C01	0.C	0.0	
32	0.00000007	0.0	0.0	-0.00000C01	0.C	-0.0000001	
33	0.0	0.0000002	0.0000001	0.0000001	0.0	0.0	
34	-0.000000003	0.0	0.0000001	0.0.C	0.C	0.0	
35	0.0	0.0	0.0	0.C	0.C	0.0	
SUMS	89.73728969	18.1769847	116.3936081	46.9231747	59.2330104	18.4039792	

DAYS 335 THRU 366			JD 2444208.5 TO 2444240.5		DATES DEC 1 THRU JAN 1		
	A =	16.00000000	B =	-21.93750000			
TERM	R A	DEC	H P	X	Y	Z	
0	32.34566850	13.1202314	114.7651418	15.5854107	41.77C8467	13.6648526	
1	14.06292781	-1.4404546	0.0982506	6.5401159	-3.2045191	-1.4430413	
2	0.21106435	13.5113468	0.6690074	25.4384460	42.9575755	13.7101786	
3	0.09951542	8.9111819	-2.0147812	-43.3769662	21.8475C57	9.4561623	
4	-0.18633223	-7.0038033	-0.2031921	-13.9533622	-22.9531872	-7.2371587	
5	0.02026769	-2.4200420	0.6982477	9.7134512	-5.6548474	-2.4425845	
6	0.11194378	0.5319597	-0.0755098	2.6229848	2.65383C4	0.7846566	
7	-0.02213882	0.5278191	-0.1550296	-0.4624903	1.03C1144	0.3740053	
8	-0.03962031	0.1613964	0.0087458	-0.4870821	0.0613414	0.0438397	
9	-0.00056677	-0.1916258	0.0331056	-0.1054831	-0.21C5422	-0.0674461	
10	0.00864033	-0.0661395	0.0118090	0.C973C71	-0.0572233	-0.0240403	
11	0.00438132	0.0611733	-0.0071285	0.0301609	0.C3E2650	0.0117410	
12	-0.00200088	0.0256972	-0.0055496	-0.0150342	0.0136188	0.0053512	
13	-0.00234084	-0.0109848	0.0011079	-0.0074965	-0.00484C3	-0.0013153	
14	0.00051390	-0.0117355	0.0015173	0.0013555	-0.C037868	-0.0013612	
15	0.00088739	-0.0000815	0.0000440	0.0021412	0.C0C1598	-0.0000295	
16	0.00001112	0.0045983	-0.00C3651	0.0001236	0.C010362	0.0003501	
17	-0.00030163	0.0009564	-0.0CC1034	-0.0005242	0.C0C1404	0.0000721	
18	-0.00010453	-0.0014153	0.0CC0829	-0.0001212	-0.C0C2239	-0.0000715	
19	0.00009452	-0.0006033	0.0CC0453	0.0000979	-0.C0C0745	-0.0000029	
20	0.00006655	0.0003282	-0.0000143	0.C000488	0.C0C0362	0.0000102	
21	-0.00002298	0.0003054	-0.00C0151	-0.C000128	0.C0C0261	0.0000094	
22	-0.00002999	-0.0000409	0.0CC0005	-0.0000150	-0.C0C0033	-0.0000004	
23	0.00000136	-0.0001281	0.0CC0043	C.0000001	-C.C0C0C73	-0.0000025	
24	0.000001178	-0.0000143	0.0000008	0.0000037	-C.0000006	-0.0000003	
25	0.00000273	0.0000442	-0.00C0011	0.C0CCC07	0.CCC0016	0.0000006	
26	-0.00000406	0.0000156	-0.00C004	-C.C000C07	0.CCCCC05	0.0000001	
27	-0.00000215	-0.0000126	0.00C00C3	-0.0000003	-0.C0C0C3	-0.0000002	
28	0.00000112	-0.0000092	0.00C0001	0.00000C01	-0.C0C0C02	0.0000001	
29	0.00000111	0.0000025	0.0	0.00000C02	0.CCCCCC1	0.0000001	
30	-0.00000014	0.0000042	-0.0000001	0.C	0.C	0.0	
31	-0.00000049	0.0000002	0.0	0.0	0.C	0.0	
32	-0.00000007	-0.0000015	0.00C0001	-0.00000C01	0.0	0.0000001	
33	0.00000018	-0.0000006	-0.C0C0001	0.0	-0.C0C0C01	0.0000001	
34	0.00000007	0.0000006	0.0000001	0.C000C01	C.C	0.0	
35	-0.00000006	0.0000003	-0.00C0001	0.C	0.C	0.0	
SUMS	46.61253508	25.7100049	113.825421C	1.6230596	78.0852823	26.8341485	

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
 MERCURY AND VENUS

D21

TERMS	DAYS	1 THRU 95	JD 2443874.5 TO 2443969.5	DATES JAN	1 THRU APR	S	
			A = 47.50000000	B = -1.02105263			
		MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
0	42.9364325	42.9364325	-20.623274	2.0847585	38.1035737	-32.442769	1.7869239
1	3.6006026	3.6006026	15.235784	-0.3724531	3.6694589	2.897766	0.3466851
2	-1.0825111	-1.0825111	-0.994390	-0.1969909	0.0865340	4.331464	-0.0071480
3	-0.4643137	-0.4643137	-6.113469	0.1178436	-0.0594888	0.247743	-0.0017251
4	0.0312930	0.0312930	-0.993953	0.0694441	0.0051711	-0.205330	0.0002406
5	0.1269109	0.1269109	1.044464	0.0092021	0.0017504	0.0C8287	-0.0000758
6	0.0790225	0.0790225	0.778301	-0.0163275	0.0001976	0.003554	0.0000095
7	0.0060341	0.0060341	0.161663	-0.0094044	-0.0001889	0.000020	-0.0000144
8	-0.0196046	-0.0196046	-0.123736	0.0008343	-0.0000835	-0.0C0272	0.0000075
9	-0.0127679	-0.0127679	-0.101359	0.0029909	0.0000432	-0.0C0002	0.0000169
10	-0.0012321	-0.0012321	-0.021275	0.0008280	0.0000519	0.0C00082	-0.0000044
11	0.0026053	0.0026053	0.010312	-0.0006210	-0.0000186	0.000036	-0.0000071
12	0.0015458	0.0015458	0.006690	-0.0004364	-0.0000153	-0.0C0032	0.0000016
13	0.0001606	0.0001606	0.001124	0.0000803	0.0000071	-0.0C0022	0.0000015
14	-0.0001786	-0.0001786	0.001234	0.0001766	0.0000006	0.0C0009	-0.0000007
15	-0.0000636	-0.0000636	0.001725	0.0000218	-0.0000021	0.0C0005	-0.0000002
16	-0.0000176	-0.0000176	0.000332	-0.0000640	0.0000008	-0.0C0009	-0.0000001
17	-0.0000497	-0.0000497	-0.000990	-0.0000317	-0.0000018	0.0C0005	0.0000001
18	-0.0000374	-0.0000374	-0.000888	0.0000152	0.0000011	0.0C0008	0.0000004
19	0.0000094	0.0000094	-0.000095	0.0000192	0.0000030	-0.0C0006	0.0000001
20	0.0000277	0.0000277	0.000335	0.0000012	-0.0000018	-0.0C0006	-0.0000004
21	0.0000129	0.0000129	0.000234	-0.0000074	-0.0000021	0.0C001	0.0000001
22	-0.0000040	-0.0000040	0.000002	-0.0000032	0.0000015	0.0C0002	0.0000001
23	-0.0000082	-0.0000082	-0.000087	0.0000016	0.0000008	-0.0C0003	0.0
24	-0.0000031	-0.0000031	-0.000040	0.0000019	-0.0000006	-0.0C0001	-0.0000001
25	0.0000018	0.0000018	0.000009	0.0000002	-0.0000002	0.0	0.0
26	0.0000020	0.0000020	0.000013	-0.0000007	0.0000002	0.0	0.0
27	0.0000003	0.0000003	0.000002	-0.0000003	0.0000001	0.0	-0.0000001
28	-0.0000005	-0.0000005	-0.000005	0.0000002	0.0000001	0.0C0003	0.0000001
29	-0.0000001	-0.0000001	-0.000001	0.0000002	-0.0000001	0.0C0002	0.0
30	-0.0000002	-0.0000002	0.000001	0.0	-0.0000003	-0.0C0002	0.0
31	0.0000002	0.0000002	0.000004	-0.0000002	0.0000001	0.0C0003	0.0
32	0.0	0.0	-0.000001	-0.0000001	0.0000002	-0.0C0001	0.0
33	-0.0000002	-0.0000002	0.0	0.0	-0.0000002	0.0C0001	0.0
34	0.0000001	0.0000001	0.000001	0.0	-0.0000001	0.0C0001	0.0
35	0.0	0.0	-0.000002	-0.0000001	0.0000001	0.000001	0.0
36	0.0000003	0.0000003	-0.000001	0.0	0.0000001	-0.0C0001	0.0
37	0.0	0.0	0.000002	0.0	0.0000001	-0.0C0001	-0.0000001
38	-0.0000002	-0.0000002	0.0	0.0	-0.0000002	-0.0C0002	0.0000001
39	-0.0000001	-0.0000001	-0.000003	0.0000001	0.0	-0.0000001	0.0
SUMS	45.2038691	-11.731337	1.6898790	41.8069921	-25.159467	2.1249111	

D22

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
MERCURY AND VENUS

	DAY	91 THRU 185	JD 2443964.5 TO 2444059.5	DATES APR 1 THRU JULY 4			
		A = 47.50000000	B = -2.91578947				
TERM		MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
0		55.2778092	22.846099	1.8868357	52.0748993	16.255194	2.9080678
1		4.9088270	13.596165	0.1616044	3.7268688	17.968054	0.2337714
2		0.6934067	-2.943500	-0.2693424	0.0943757	-1.990310	-0.0227797
3		-0.4418111	-5.455437	-0.0718807	0.0270711	-0.840083	-0.0015358
4		-0.1067710	0.648183	0.0396252	-0.0060082	0.003190	-0.0000025
5		-0.0234228	0.729392	0.0203542	-0.0018432	0.006380	0.0000040
6		0.0411942	0.200152	-0.0007757	-0.0000179	0.062571	0.0000011
7		0.0118636	-0.117925	-0.0079550	0.000257	0.000446	-0.0000134
8		-0.0097181	-0.110021	-0.0013043	-0.0000322	-0.000270	0.0000066
9		-0.0053625	0.018141	0.0020576	0.0000190	0.000043	0.0000166
10		0.0007465	0.033041	0.0010744	0.0000297	0.000111	-0.0000044
11		0.0024088	0.007555	-0.0003845	-0.0000079	-0.000048	-0.0000071
12		0.0003428	-0.10301	-0.0005070	-0.0000077	-0.000030	0.0000012
13		-0.00007142	-0.005589	-0.00000116	0.0000016	0.000012	0.0000013
14		-0.00003524	0.001984	0.0001822	0.0000017	0.000010	-0.0000003
15		0.00001534	0.002644	0.00000623	-0.0000002	0.000001	0.0
16		0.0001834	0.000132	-0.0000504	-0.0000010	-0.000003	0.0
17		-0.0000030	-0.000989	-0.00000397	0.0	0.000002	0.0000002
18		-0.00000713	-0.000362	0.00000071	0.0000002	-0.000009	-0.0000001
19		-0.00000216	0.000261	0.00000178	-0.0000001	-0.000004	-0.0000003
20		0.00000222	0.000230	0.00000030	0.0000008	0.000005	0.0000001
21		0.00000155	-0.000032	-0.0000060	-0.0000001	0.000005	0.0000002
22		-0.0000041	-0.000102	-0.00000032	-0.0000005	-0.000003	0.0
23		-0.00000075	-0.000022	0.00000014	0.0000001	-0.000001	0.0
24		-0.00000010	0.000037	0.00000019	0.0000002	0.000002	0.0
25		0.00000029	0.000023	0.0	0.0000001	0.000002	0.0
26		0.00000013	-0.000011	-0.0000009	-0.0000001	-0.000002	0.0
27		-0.00000007	-0.000009	-0.0000002	-0.0000001	-0.000002	0.0
28		-0.00000006	0.000002	0.0000002	0.0	0.000002	0.0
29		0.00000002	0.000006	0.0000002	-0.0000001	0.0	-0.0000001
30		0.0	0.000002	0.0	-0.0000003	-0.000001	0.0000001
31		-0.00000001	-0.000003	-0.0000001	0.0000001	-0.000002	0.0
32		0.00000001	0.0	0.0	0.0000001	-0.000001	0.0
33		-0.00000001	0.000001	0.0	0.000002	-0.000001	0.0
34		-0.00000002	0.0	0.0	-0.0000001	0.000001	0.0
35		0.0	0.0	0.0	-0.0000001	0.0	0.0
36		0.00000001	0.0	0.0	0.0	0.0	0.0
37		-0.00000001	0.0	-0.0000001	0.0	0.0	0.0
38		0.0	-0.0000003	0.0000001	0.0000002	0.0	0.0
39		0.00000001	0.0	-0.0000001	-0.0000001	0.000002	0.0
SUMS		60.3487156	29.439744	1.7595658	55.9153747	31.345263	3.1175269

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
MERCURY AND VENUS

D23

DAYS 182 THRU 276		JD 2444055.5 TO 2444150.5		DATES JULY 1 THRU OCT 3		
A = 47.50000000	B = -4.83157895	MERCURY	MERCURY	VENUS	VENUS	VENUS
R A	DEC	DISTANCE	R A	DEC	DEC	DISTANCE
TERM	H	DEG	AU	H	DEG	AU
0	20.4207465	18.39087	2.0316187	19.0281771	23.144103	3.3952672
1	2.3948868	-12.347965	0.3792631	3.8846341	-15.812991	0.0142966
2	1.1212470	-5.784379	0.1177313	-0.1117828	-3.796383	-0.0307318
3	0.1184936	-3.396792	-0.1784279	0.0057844	0.767629	0.0006114
4	-0.4302639	2.004774	-0.0248976	0.0121387	0.060020	0.0001624
5	0.0569766	0.933398	0.0412408	-0.0010384	-0.017903	-0.0000272
6	0.1196740	-0.602447	0.0069373	-0.0003742	0.02752	-0.0000024
7	-0.0320064	-0.176317	-0.0102809	0.0001027	0.000554	-0.0000127
8	-0.0286027	0.133954	-0.0026093	-0.0000457	-0.00104	0.0000090
9	0.0115838	0.030616	0.0021251	0.0000118	-0.000039	0.0000156
10	0.0045198	-0.012605	0.0010826	0.0000248	-0.000072	-0.0000060
11	-0.0026899	-0.005698	-0.0001998	-0.0000096	0.00016	-0.0000060
12	0.0002481	-0.008603	-0.0004568	-0.0000073	0.000032	0.0000017
13	0.0000174	0.002345	-0.0001190	0.0000016	0.000008	0.0000017
14	-0.0005679	0.006970	0.0001801	0.0000011	-0.000008	-0.0000001
15	0.0003925	-0.001405	0.0001028	0.0000010	-0.000006	-0.0000003
16	0.0002815	-0.003283	-0.0000618	-0.0000001	0.000002	0.0000002
17	-0.0002599	0.000662	-0.0000540	0.0000010	-0.000008	-0.0000002
18	-0.0000976	0.001187	0.0000162	0.0	0.000006	-0.0000004
19	0.00001120	-0.0000204	0.00000235	-0.0000021	0.000011	0.0000004
20	0.0000271	-0.0000334	-0.0000016	-0.0000001	-0.000004	0.0000003
21	-0.00000352	0.000008	-0.0000090	0.0000015	-0.000006	-0.0000003
22	-0.0000068	0.000063	-0.0000015	0.0000002	0.000001	-0.0000001
23	0.0000066	0.000038	0.0000029	-0.0000007	0.000003	0.0
24	0.0000019	-0.0000001	0.0000015	-0.0000002	0.0	0.0
25	0.0000005	-0.0000034	-0.0000008	0.0000003	-0.000001	-0.0000001
26	-0.0000010	-0.0000010	-0.0000009	0.0000001	-0.000001	0.0000001
27	-0.0000015	0.0000018	0.0000001	-0.0000001	-0.000002	0.0000001
28	0.0000008	0.000006	0.0000004	0.0	-0.000001	-0.0000001
29	0.0000008	-0.0000003	0.0	-0.0000001	-0.000002	0.0
30	-0.0000003	-0.0000003	-0.0000002	-0.0000001	0.000002	0.0
31	-0.0000004	0.000001	-0.0000001	-0.0000001	0.0	0.0
32	0.0	0.000002	0.0	0.0000002	-0.000001	0.0
33	0.0000006	0.000001	0.0	0.0	0.000001	0.0
34	0.0	0.0	-0.0000001	-0.0000001	0.0	0.0
35	-0.0000002	0.0000001	0.0	0.0	0.000002	0.0
36	0.0000001	-0.0000001	0.0000001	-0.0000001	0.0	0.0
37	-0.0000001	-0.0000001	0.0	-0.0000001	-0.000001	-0.0000001
38	0.0	0.0	-0.0000001	0.0000001	0.0	0.0
39	0.0	-0.0000001	0.0	0.0000001	-0.000002	0.0
SUMS	23.7546842	-1.146955	2.3632051	22.8176189	4.347607	3.3795744

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
MERCURY AND VENUS

DAYS 274 THRU 368		JD 2444147.5 TO 2444242.5		DATES OCT 1 THRU JAN 3		
		A = 47.5000000	B = -6.76842105			
	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
TERM	H	DEG	AU	H	DEG	AU
0	31.3516510	-37.100303	2.3150766	34.1570451	-35.048436	3.0580633
1	1.9152345	-5.232892	0.0107909	4.1092901	-6.564085	-0.1791579
2	-0.0020091	1.827916	0.3067556	0.0721792	5.814683	-0.0193334
3	0.7482792	-4.152580	0.0142679	-0.0452996	0.442685	0.0006333
4	0.0845551	0.456841	-0.1078416	-0.0110049	-0.169747	-0.0001141
5	-0.2868954	1.819937	-0.0145141	0.0028318	-0.023057	-0.0000093
6	-0.0563138	0.171921	0.0365946	0.0008815	0.004331	0.0000009
7	0.1273285	-0.765850	0.0093156	-0.0001395	0.001576	-0.0000102
8	0.0342927	-0.212288	-0.0138639	-0.0001062	-0.000034	0.0000145
9	-0.0582338	0.334534	-0.0052788	0.0000339	-0.000147	0.0000122
10	-0.0209210	0.157966	0.0053942	0.0000301	-0.000020	-0.0000084
11	0.0270067	-0.145946	0.0028675	-0.0000101	0.000040	-0.0000050
12	0.0125219	-0.102651	-0.0021218	-0.0000C91	0.0000C6	0.0000025
13	-0.0125615	0.062118	-0.0015195	0.0000C29	-0.000022	0.0000011
14	-0.0073581	0.062582	0.0008263	0.000006	-0.000001	-0.0000008
15	0.0058129	-0.025052	0.0007927	-0.0000C14	0.0000C10	-0.0000C02
16	0.0042553	-0.036748	-0.0003122	0.0000C03	-0.0000C02	0.0
17	-0.0026576	0.009083	-0.0004090	-0.0000C07	0.0000C7	-0.0000001
18	-0.0024272	0.021035	0.0001109	0.0000C12	0.0000C5	0.0000003
19	0.0011902	-0.002532	0.0002093	C.0000C16	-0.000011	0.0
20	0.0013696	-0.011800	-0.0000345	-0.0000C12	-0.0000C02	-0.0000002
21	-0.0005153	0.000084	-0.0001064	-0.0000C12	0.0000C6	0.0
22	-0.0007657	0.006511	0.0000072	0.0000007	0.0	0.0000002
23	0.0002103	0.000651	0.0000538	0.0000C05	-0.0000C4	0.0
24	0.0004245	-0.003536	0.0000014	-0.0000C03	-0.0000C01	-0.0000001
25	-0.0000776	-0.000731	-0.0000271	0.0	0.000002	0.0
26	-0.0002333	0.001888	-0.0000032	0.0000C02	0.000002	-0.0000001
27	0.0000225	0.000601	0.0000135	0.0000001	0.0	0.0
28	0.0001274	-0.000995	0.0000028	-0.0000C01	-0.0000C2	0.0
29	-0.0000017	-0.000436	-0.0000066	0.0	0.0	0.0000001
30	-0.0000691	0.000514	-0.0000020	-0.0000C02	-0.000001	0.0
31	-0.0000043	0.000298	0.0000033	-0.0000C01	0.0	0.0
32	0.0000372	-0.000259	0.0000014	0.0	0.0	0.0
33	0.0000056	-0.000192	-0.0000016	-0.0000C01	0.0	0.0000001
34	-0.0000199	0.000127	-0.0000008	0.0	0.000002	0.0
35	-0.0000046	0.000120	0.0000007	0.0000001	0.0	0.0
36	0.0000105	-0.000061	0.0000004	0.0	0.000001	0.0
37	0.0000033	-0.000076	-0.0000004	0.0	0.0	0.0
38	-0.0000054	0.000027	-0.0000003	0.0000002	0.0	0.0
39	-0.0000023	0.000043	0.0000002	0.0000001	0.000001	0.0
SUMS	33.8632622	-42.860131	2.5570430	38.2857255	-35.542215	2.8600887

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
 MARS AND JUPITER

D25

DAYS 1 THRU 95			JD 2443874.5 TO 2443969.5		DATES JAN 1 THRU APR 5		
	A = 47.50000000		B = -1.02105263				
	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	43.1571048	-27.627972	4.7210680	16.6044087	40.6C1869	9.0660808	
1	2.4518742	11.400431	-0.0426075	-0.2882974	1.0C0446	0.3135167	
2	-0.0569303	1.433614	-0.0042219	0.0689906	-0.273029	0.1440533	
3	0.0005249	-0.234553	0.0005705	0.0202870	-0.051029	-0.0130240	
4	0.0021783	-0.008652	-0.0001421	-0.0031415	0.013330	-0.0025868	
5	-0.0001905	0.002745	-0.0000209	-0.0003989	-0.0C0415	0.0004009	
6	-0.0000307	-0.000213	-0.0000003	0.0001386	-0.000544	0.0000287	
7	0.0000134	-0.000044	-0.0000100	0.0000035	0.0C0087	-0.0000106	
8	-0.0000299	-0.000107	-0.0000052	0.0000078	-0.0C0017	-0.0000010	
9	-0.0000096	-0.000018	0.0000179	-0.000002	0.0C0C19	-0.0000186	
10	0.0000029	0.000080	0.0000045	-0.0000148	0.0C0035	0.0000008	
11	0.0000054	0.000017	-0.0000082	0.0000011	-0.0C0C10	0.0000124	
12	-0.0000087	-0.000028	-0.0000015	0.0000056	-0.000010	-0.0000003	
13	-0.0000005	-0.000006	0.0000023	-0.0000004	0.0C0007	-0.0000039	
14	0.0000008	-0.000003	0.0	-0.0000028	0.0C0C10	0.0000005	
15	-0.0000006	0.000002	-0.0000005	-0.0000002	-0.0C0007	0.0000009	
16	0.0000007	-0.000002	-0.0000002	0.0000009	C.0	-0.0000001	
17	-0.0000005	-0.000002	-0.0000002	0.0000001	-0.0C0002	-0.0000001	
18	0.0000005	0.000010	0.0000004	0.0000007	-0.0C00C1	-0.0000002	
19	0.0000014	-0.000001	0.0000003	0.0000002	0.0C0003	-0.0000001	
20	-0.0000007	-0.000008	-0.0000003	-0.0000017	0.0C0006	0.0000005	
21	-0.0000014	0.000001	0.0	-0.0000006	-0.0C0005	0.0	
SUMS	45.5545239	-15.034709	4.6746451	16.4019863	41.290743	9.5084498	
DAYS 91 THRU 185			JD 2443964.5 TO 2444059.5		DATES APR 1 THRU JULY 4		
	A = 47.50000000		B = -2.91578947				
	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	52.0085775	20.635131	4.4891719	16.8922726	39.594630	11.1853577	
1	2.2768597	12.174992	-0.0841726	0.4384801	-1.543913	0.6598655	
2	0.0154222	-1.121826	-0.0100688	0.0736599	-0.310909	-0.0479034	
3	0.0038688	-0.175991	-0.0014027	-0.0090777	0.010892	-0.0122642	
4	-0.0013184	0.010632	-0.0000667	0.0001246	0.0C0416	0.0010474	
5	-0.0001230	0.000780	-0.0000041	0.0000965	0.000153	-0.0000322	
6	-0.0000004	0.000076	0.0000017	-0.0000231	0.0C0019	-0.0000142	
7	-0.0000055	0.000007	-0.0000093	0.0000049	-0.0C0013	0.0000004	
8	-0.0000299	-0.000145	0.0000061	-0.0000033	0.0C0027	-0.0000149	
9	0.0000106	0.000023	0.0000177	-0.0000129	0.0C0020	0.0000054	
10	0.0000230	0.000094	-0.0000046	0.0000032	-0.0C0020	0.0000161	
11	-0.0000047	-0.000021	-0.0000088	0.0000078	-0.0C0020	-0.0000035	
12	-0.0000073	-0.000030	0.0000016	-0.0000011	0.0C0004	-0.0000067	
13	0.0000010	0.000004	0.0000020	-0.0000023	0.0C00C2	0.0000011	
14	0.0000021	0.000012	-0.0000003	0.0000014	-0.0C0006	0.0000013	
15	-0.0000002	0.000001	-0.0000002	0.0000005	0.0C0004	-0.0000001	
16	-0.0000010	-0.000002	0.0	-0.0000005	-0.0C0001	-0.0000001	
17	0.0000001	0.000001	0.00000C2	0.0	0.0C0003	0.0000001	
18	-0.0000007	-0.000006	0.0	-0.0000010	0.0C00C1	0.0000003	
19	0.0000002	-0.000007	-0.0000003	0.0000008	-0.0C00C1	0.0	
20	0.0000010	0.000007	0.0000002	0.0000015	-0.0C0004	-0.0000003	
21	-0.0000002	0.000001	0.0000002	-0.0000001	0.0C0009	0.0000001	
SUMS	54.3032749	31.523733	4.3934632	17.3955318	37.751284	11.7860558	

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
 MARS AND JUPITER

DAYS 182 THRU 276		JD 2444055.5 TO 2444150.5		DATES JULY 1 THRU OCT 3		
		A = 47.50000000	B = -4.83157895			
	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
TERM	H	CEG	AU	H	DEG	AU
0	12.7466979	43.998655	3.9213586	19.1254793	30.223153	12.4773722
1	2.2279850	-0.423391	-0.2240805	0.6657937	-3.170890	-0.0343041
2	-0.0556431	-1.692048	-0.0254679	-0.0080268	-0.074C40	-0.1131323
3	-0.0112226	0.101120	-0.00C7930	-0.0056356	0.034336	0.0001090
4	0.0005058	0.018406	0.0001360	0.0000197	0.CC2178	0.0007381
5	0.0001142	-0.001228	0.CCC0078	-0.C000370	0.000065	0.0000030
6	-0.0000352	-0.000057	0.0000061	-0.0000043	0.C00013	0.0000077
7	-0.0000224	0.000058	-0.0000025	-0.0000025	0.C000C08	-0.0000040
8	-0.0000085	-0.000059	0.0000177	-0.C000C79	0.C00026	0.0000073
9	0.0000372	-0.000009	0.0000051	0.0000046	-0.C00020	0.0000170
10	0.0000087	0.000018	-0.0000143	0.0000081	-0.C00027	-0.0000082
11	-0.0000193	0.000006	-0.0000023	-0.0000043	C.00019	-0.0000096
12	-0.0000039	0.000002	0.0000049	-0.0000037	0.000008	0.0000033
13	0.0000045	0.000005	0.0000010	0.0000007	C.00001	0.0000030
14	0.0000011	-0.000008	-0.0000010	0.0000003	-0.CC0003	-0.0000004
15	0.0000003	-0.000004	-0.0000005	0.0000011	-0.C00008	-0.0000009
16	-0.0000001	0.000001	0.0000001	-0.0000002	0.C00001	0.0
17	0.0000003	-0.000003	-0.0000003	0.0000004	-0.C00005	-0.0000001
18	-0.0000004	0.000007	0.0	0.0000003	C.C0004	-0.0000003
19	-0.0000014	0.000004	0.0000004	-0.0000011	0.C00007	0.0000003
20	0.0000006	-0.000008	-0.0000001	-0.0000004	-0.C00003	0.0000004
21	C.0000010	-0.000003	-0.0000004	0.C000014	-0.C00008	-0.0000003
SUMS	14.9083997	42.001464	3.6711749	19.7775875	27.014820	12.3308011
DAYS 274 THRU 368		JD 2444147.5 TO 2444242.5		DATES OCT 1 THRU JAN 3		
		A = 47.50000000	B = -6.76842105			
	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
TERM	H	CEG	AU	H	DEG	AU
0	19.8934072	28.390727	2.6942564	21.1527985	19.945175	10.9599861
1	1.3765874	-5.903638	-0.3991440	0.3214257	-1.689747	-0.6838571
2	-0.1724591	0.530085	-0.0113214	-0.0847241	0.454704	-0.0279231
3	-0.0184445	0.264172	0.0044201	-0.0073458	0.053191	0.0159100
4	-0.0032835	0.012032	0.0006775	0.0002571	-0.C03071	0.0012018
5	-0.0004408	0.000909	0.0000848	0.0001407	-0.C1120	-0.0000167
6	0.0000250	-0.000237	0.0000110	0.0000306	-0.C00177	-0.0000092
7	0.0000102	-0.000162	0.0000072	0.0000012	-0.C0007	0.0000007
8	0.00000517	-0.0000252	0.0000073	0.0000095	-0.C00045	0.0000088
9	0.0000265	-0.000076	-0.00000178	0.0000078	-0.C00029	-0.00000161
10	-0.0000368	0.000148	-0.0000069	-0.0000085	C.000038	-0.0000097
11	-0.0000161	0.000067	0.0000088	-0.0000038	0.C00021	0.0000092
12	0.0000108	-0.000042	0.0000028	0.0000025	-0.C0007	0.0000042
13	0.0000050	-0.000021	-0.0000026	0.0000015	-0.C00004	-0.0000028
14	-0.0000040	0.000019	-0.0000005	-0.0000019	0.C00008	-0.0000009
15	-0.0000016	0.000001	0.0000007	-0.0000009	0.C00002	0.0000010
16	0.0000015	-0.000004	0.0	0.0000005	-0.C0007	0.0
17	0.0000001	-0.000005	0.0	-0.0000003	-0.C0001	0.0000001
18	0.00000017	-0.000009	0.0	0.00000010	-0.C0008	0.0
19	0.0000005	0.000003	-0.0000004	0.0000008	-0.C0003	-0.0000004
20	-0.0000020	0.000014	0.0	-0.C000C11	0.000009	-0.0000001
21	-0.0000008	-0.000003	0.0000003	-0.0000009	C.000001	0.0000003
SUMS	21.0754384	23.293728	2.2889833	21.3825901	18.798923	10.2652861

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
 SATURN AND URANUS

D27

DAYS 1 THRU 95			JD 2443874.5 TO 2443969.5		DATES JAN 1 THRU APR 5		
			A = 47.50000000		B = -1.02105263		
	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	21.7916830	18.358076	17.0488692	30.4186314	-35.082243	37.0866301	
1	-0.1912013	1.268245	-0.1611983	0.0206603	-0.075189	-0.7363390	
2	-0.0184110	0.067124	0.1603472	-0.0328686	0.129309	0.0207288	
3	0.0108227	-0.070115	0.0057646	0.0000363	-0.0C0992	0.0220497	
4	0.0005507	-0.001696	-0.0030148	0.0005217	-0.0C1712	-0.0001318	
5	-0.0002123	0.001494	-0.0000829	0.0000145	-0.0C0C48	-0.0002174	
6	-0.0000103	0.000014	0.0000499	-0.0000C36	0.0C0CC8	0.0000086	
7	0.0000040	-0.000032	0.0000303	-0.0000008	0.0C0003	0.0000003	
8	0.0000058	-0.000028	0.0000076	-0.0C000C03	0.0C0005	0.0000146	
9	0.0000053	-0.000015	-0.0000154	0.0000C40	-0.0C0C13	0.C000047	
10	-0.0000052	0.000025	-0.0C00105	0.0000019	-0.0C0C09	-0.0000166	
11	-0.0000026	0.000012	0.0000095	-0.0000017	-0.0C0C02	-0.0000039	
12	0.0000014	-0.000006	0.0000048	-0.0000C15	0.0C0007	0.0000079	
13	0.0000012	-0.000005	-0.0000032	0.C0000C04	-0.0C0003	0.0000005	
14	-0.0000017	0.000008	-0.0000009	-0.0000009	0.0	-0.0000027	
15	-0.0000007	0.0	0.0000009	-0.00000C05	0.0C0C10	0.0000004	
16	0.0000006	-0.000006	0.0000001	0.C000008	0.0C0C02	0.0C00005	
17	0.0000002	-0.000001	-0.0000001	-0.00000C01	0.0C0004	-0.0000002	
18	0.0000012	-0.000006	-0.0000001	0.00000010	-0.0C0CC1	0.0000006	
19	0.0000006	0.0	-0.0000004	0.0000008	-0.0C0011	-0.0000006	
20	-0.0000014	0.000008	0.0000003	-0.00000C16	0.0	0.C000014	
21	-0.0000003	0.000002	0.0C00004	-0.00000C10	0.0C0CC9	0.0000001	
SUMS	21.5932299	19.623098	17.05073C9	30.4069925	-35.030866	36.3927360	
DAYS 91 THRU 185			JD 2443964.5 TC 2444059.5		DATES APR 1 THRU JULY 4		
			A = 47.50000000		B = -2.91578947		
	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	21.3966091	20.683318	18.2956459	30.1812210	-34.122060	35.6905889	
1	0.0404583	-0.352692	0.7180713	-0.1173022	0.4703C9	0.1021309	
2	0.0579524	-0.349404	0.0288757	0.0049985	-0.019479	0.1566285	
3	-0.0008038	0.008731	-0.0196875	0.0049263	-0.C20443	-0.0037106	
4	-0.0008598	0.004128	0.0003517	-0.0001513	0.0C0320	-0.0023453	
5	0.0001021	-0.000586	0.0001536	-0.0000595	0.0C0272	0.0000837	
6	0.0000007	0.000038	-0.0000292	0.0000047	-0.0C0005	0.0000166	
7	-0.0000011	0.000005	0.0000013	0.0C00005	-0.0C0004	0.0000016	
8	0.0000014	-0.000002	-0.00000136	0.0000020	-0.0C0CC4	-0.0000001	
9	-0.0000071	0.000031	-0.0000056	0.0000003	-0.0C0C06	-0.0000184	
10	-0.0000022	0.000005	0.0000166	-0.0C00040	0.0C0017	0.0000008	
11	0.0000046	-0.000020	0.0000035	-0.00000C01	0.C0C012	0.0000126	
12	0.0000015	-0.000006	-0.0000072	0.0000027	-0.0C0011	-0.0000008	
13	-0.0000014	0.000007	-0.0000011	0.0000001	-0.0C0002	-0.0000032	
14	0.0000010	-0.000005	0.0000015	0.0000007	-0.0C0CC5	0.0000001	
15	0.0000002	0.000001	0.0000001	-0.0C00004	-0.0C0001	0.0000002	
16	-0.0000004	0.000004	0.0000001	-0.0C00007	0.0C0C03	0.0000006	
17	-0.0000003	-0.000002	-0.0000001	0.0	-0.0C0001	-0.0000010	
18	-0.00000013	0.000005	0.0000003	-0.0000015	0.0C0003	0.0000007	
19	-0.0000001	-0.000005	0.0000002	0.0000003	0.C0C008	-0.0000011	
20	0.00000014	-0.000009	-0.0000002	0.00000C13	-0.0C0008	0.0000003	
21	-0.0000003	0.000004	-0.0000002	-0.00000C04	-0.0C0008	-0.0000013	
SUMS	21.4934549	19.993546	19.0233771	30.0736383	-33.691C93	35.9433837	

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
 SATURN AND URANUS

DAYS 182 THRU 276		JD 2444055.5 TO 2444150.5		DATES JULY 1 THRU OCT 3			
		A = 47.50000000	B = -4.83157895	SATURN	SATURN	URANUS	URANUS
		R A	DEC	DISTANCE	R A	DEC	DISTANCE
TERM	H	DEG	AU	H	DEG	AU	
0	22.1908285	15.541971	20.3903975	30.0287546	-33.559351	37.5585670	
1	0.3402604	-2.124985	0.2589038	0.0569869	-0.258038	0.7381471	
2	0.0144457	-0.081690	-0.1243321	0.0302785	-0.125228	-0.0171841	
3	-0.0047880	0.030071	-0.0054124	-0.0009053	0.0C5242	-0.0196636	
4	-0.0000099	.0.000516	0.0011465	-0.0003458	0.001693	0.0003840	
5	-0.0000028	0.000019	0.0000007	0.0000230	-0.0C00124	0.0001176	
6	-0.0000045	0.000014	0.0000026	-0.0C00002	-0.0C00013	-0.00000160	
7	0.0000004	0.000001	-0.0000032	0.0000001	-0.0C00002	-0.0000017	
8	-0.0000045	0.000022	0.0000009	-0.0C00004	-0.0C00008	-0.00000123	
9	-0.0000002	0.000001	0.00000193	-0.0000042	0.0C00014	0.0000095	
10	0.0000055	-0.000024	-0.0000017	0.0000011	-0.0C0002	0.0000146	
11	-0.0000013	0.000009	-0.0000115	0.0000012	-0.0C00011	-0.0000066	
12	-0.0000025	0.000012	0.0000007	-0.0000010	C.0C0008	-0.0000063	
13	0.0	0.000001	0.0000035	-0.0C00009	0.0C0004	0.0000022	
14	0.0000001	0.000001	0.0000001	-0.0000003	0.0C00008	0.0000018	
15	0.0000012	-0.000006	-0.0000008	0.0000012	-0.0C0002	0.0	
16	0.0000001	-0.000001	-0.0000001	0.0000002	-0.0C0003	-0.0000004	
17	0.0000001	-0.000004	0.0	0.0000002	-0.0C0001	0.0000006	
18	0.0000007	-0.000002	-0.0000004	0.0000005	-0.0C0005	0.0000002	
19	-0.0000011	0.000010	0.0000003	-0.0000016	0.0C0003	-0.0000009	
20	-0.0000007	0.000005	0.0000004	-0.0000003	0.0C00010	0.0000003	
21	0.0000015	-0.000006	-0.0000001	0.0000012	-0.0C00006	0.0000002	
SUMS	22.5407287	13.365935	20.5207140	30.1147887	-33.935812	38.2603532	
DAYS 274 THRU 368		JD 2444147.5 TO 2444242.5		DATES OCT 1 THRU JAN 3			
		A = 47.50000000	B = -6.76842105	SATURN	SATURN	URANUS	URANUS
		R A	DEC	DISTANCE	R A	DEC	DISTANCE
TERM	H	DEG	AU	H	DEG	AU	
0	23.3831509	8.329775	19.5857431	30.5510764	-35.695694	39.1070877	
1	0.2306670	-1.303440	-0.6333113	0.1883731	70.731287	-0.0436536	
2	-0.0429617	0.295835	-0.0708072	-0.0011396	0.017969	-0.1500870	
3	-0.0046993	0.029646	0.0153903	-0.0037787	0.014371	0.0005752	
4	0.0002082	-0.001937	0.0013702	-0.0000343	-0.0C00357	0.0019365	
5	0.0000530	-0.000406	-0.0000379	0.0C000156	-0.0C00C66	0.00000181	
6	0.0000096	-0.000052	-0.0000035	0.0000013	0.0C00011	0.00000033	
7	-0.0000008	0.0	0.0000008	-0.0C00004	-0.0C0001	-0.0000011	
8	0.0000040	-0.000024	0.0000120	-0.0C00004	0.0C00007	0.00000143	
9	0.0000058	-0.000028	-0.0C000123	0.0C000038	-0.0C00018	0.0000057	
10	-0.0000034	0.000014	-0.0000134	0.0C000016	-0.0C00009	-0.00000155	
11	-0.0000025	0.000012	0.0000070	-0.0C000012	0.0	-0.00000050	
12	0.0000005	-0.000004	0.0000055	-0.0C000017	0.0C00005	0.00000066	
13	0.0000010	-0.000007	-0.0000000	0.0000010	-0.0C00002	0.00000013	
14	-0.0000014	0.000007	-0.0000015	-0.0000008	0.0C00001	-0.0000016	
15	-0.0000011	0.000003	0.0000007	-0.0000008	0.0C00006	-0.0000007	
16	0.0000004	-0.000005	0.0000001	0.0000006	0.0	0.0000005	
17	-0.0000001	-0.000002	-0.0000001	-0.0000001	-0.0C00002	-0.0000004	
18	0.0000010	-0.000006	0.0000001	0.0000013	-0.0C00003	0.0000001	
19	0.0000011	-0.000007	-0.0000003	0.0000008	-0.0C00009	0.0	
20	-0.0000011	0.000009	0.0	-0.0C00012	-0.0C00001	-0.0000014	
21	-0.0000006	0.000006	0.0000004	-0.0C00007	0.0C00008	0.0000010	
SUMS	23.5664305	7.349389	18.8983405	30.7353156	-36.395071	38.9158840	

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
 NEPTUNE AND PLUTO

D29

DAYS 1 THRU 95 JD 2443874.5 TO 2443969.5				DATES JAN 1 THRU APR 5			
	A = 47.50000000	B = -1.02105263					
	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	34.5514179	-43.308972	61.1564133	27.14006294	17.8684518	59.5477953	
1	0.0590532	-0.035956	-0.6973045	-0.02826496	0.05431041	-0.5750656	
2	-0.0193485	0.024525	-0.0587153	-0.01674724	0.0422377	0.0979665	
3	-0.0012576	-0.000343	0.0202194	0.00138529	-0.0206764	0.0170556	
4	0.0002623	-0.000248	0.0008794	0.00028940	-0.0008798	-0.0015408	
5	0.0000129	0.000017	-0.0001872	-0.00001379	0.0002412	-0.0001748	
6	-0.0000014	0.000003	0.0000014	-0.00000268	0.0000057	0.00000236	
7	0.0	-0.000004	0.0000006	-0.00000017	-0.0000016	0.0000017	
8	-0.0000011	0.000003	0.0000012	0.00000040	-0.0000095	0.0000136	
9	0.0000015	-0.000007	0.00000145	0.00000236	-0.0000085	-0.0000046	
10	0.0000024	-0.000003	-0.00000120	-0.00000036	0.0000105	-0.0000162	
11	-0.0000003	-0.000005	-0.00000097	-0.00000148	0.0000057	0.0000025	
12	-0.0000017	-0.000002	0.00000045	0.00000009	-0.0000044	0.0000069	
13	0.0000003	0.000001	0.00000023	0.00000044	-0.0000017	-0.0000010	
14	-0.0000008	-0.000003	-0.00000018	-0.00000006	0.0000013	-0.0000016	
15	-0.0000005	0.000006	0.0	-0.00000008	0.0000006	0.0000004	
16	0.0000006	-0.000002	0.0000003	0.00000003	-0.0000003	0.0000003	
17	0.0000001	0.000003	0.0000002	0.00000001	0.0	0.0000002	
18	0.0000009	0.000003	0.0	0.00000003	0.0	-0.0000001	
19	0.0000009	-0.000006	-0.0000009	-0.00000001	-0.0000001	-0.0000005	
20	-0.0000015	-0.000003	0.0000007	-0.00000005	0.0000002	0.0	
21	-0.0000011	0.000008	0.0000002	0.00000001	-0.0000003	0.0000003	
SUMS	34.5901385	-43.320985	60.4213166	27.09671012	18.4324762	59.0860617	
DAYS 91 THRU 185 JD 2443964.5 TO 2444059.5				DATES APR 1 THRU JULY 4			
	A = 47.50000000	B = -2.91578947					
	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	34.5084236	-43.179266	58.9867160	26.93976849	19.2760044	59.2491258	
1	-0.0738240	0.089386	-0.2948016	-0.05681649	0.0629741	0.4296537	
2	-0.0087605	0.004178	0.1446556	0.01049649	-0.1387542	0.1148607	
3	0.0028341	-0.003090	0.0082564	0.00216184	-0.0034012	-0.0136934	
4	0.0001361	-0.000149	-0.0021043	-0.00019987	0.0022010	-0.0014497	
5	-0.0000305	0.000013	-0.0000495	-0.00001568	-0.0000488	0.00001598	
6	-0.0000012	0.000004	0.0000184	0.00000362	-0.0000198	-0.0000019	
7	-0.0000003	0.000004	0.0000025	0.00000010	-0.0000004	0.0000004	
8	0.0000006	0.000002	0.0000073	0.00000154	-0.0000038	-0.0000074	
9	0.0000023	0.000002	-0.00000155	-0.000000107	0.0000137	-0.0000155	
10	-0.0000021	0.000004	-0.0000082	-0.00000191	0.0000044	0.00000089	
11	-0.0000013	0.000009	0.0000113	0.00000073	-0.0000090	0.0000103	
12	0.0000015	-0.000003	0.0000031	0.00000082	-0.0000017	-0.0000038	
13	0.0000004	0.0	-0.0000033	-0.0000022	0.0000029	-0.0000031	
14	0.0000008	-0.000001	0.0000001	-0.00000014	0.0000001	0.0000009	
15	-0.0000003	-0.000004	-0.0000005	0.00000003	-0.0000002	0.0000003	
16	-0.0000009	0.000002	-0.0000001	0.00000003	-0.0000001	-0.0000001	
17	0.0000001	0.0	0.0000003	-0.00000001	0.0000001	-0.0000001	
18	-0.0000012	0.000001	-0.0000005	-0.00000004	0.0000001	0.0000001	
19	0.0000003	0.000009	0.0000007	0.0	-0.0000005	0.0000003	
20	0.0000017	-0.000002	0.0000003	0.00000001	0.0000001	-0.0000001	
21	-0.0000001	-0.000010	-0.0000005	-0.00000002	0.0000003	-0.0000003	
SUMS	34.4287791	-43.088911	58.8426880	26.89539825	19.1989615	59.7786458	

* ASTRONOMICAL POSITION, EQUATOR AND EQUINOX 1950.0

D30

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
NEPTUNE AND PLUTO

DAYS 182 THRU 276			JD 2444055.5 TO 2444150.5			DATES JULY 1 THRU OCT 3				
			A = 47.50000000			B = -4.83157895				
	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE				
TERM	H	DEG	AU	H	DEG	AU				
0	34.2857655	-42.985783	59.8439276	26.94576846	17.8360251	61.4197164				
1	-0.0205396	-0.012522	0.6784921	0.06334091	-0.7352879	0.5488808				
2	0.0194761	-0.026600	0.0624755	0.01508256	-0.0370157	-0.0856260				
3	0.0010264	-0.000552	-0.0192493	-0.00123612	0.0162334	-0.0151241				
4	-0.0002840	0.000488	-0.0007986	-0.00016517	C.00C2839	0.0010667				
5	-0.0000006	0.000009	0.0001543	0.000001C52	-0.00000854	0.00000812				
6	0.0000028	-0.000014	-0.0000110	-0.00000119	0.00C0111	-0.00000087				
7	0.0000001	-0.000004	-0.00000C4	0.00C00C11	-0.00C00C02	-0.00000019				
8	0.0000013	-0.000006	-0.00000159	-0.000000144	0.00C0110	-0.00000075				
9	-0.0000037	0.000001	-0.0000003	-0.000000128	-0.00C00C10	0.00000164				
10	-0.000004	0.000002	0.00000179	0.000000173	-0.00C00124	0.00000080				
11	0.000007	-0.000007	-0.0000020	0.000000C74	0.00C0013	-0.00000103				
12	-0.0000004	0.000006	-0.00000076	-0.000000C73	0.00C00C52	-0.00000032				
13	-0.0000005	-0.000001	0.00000005	-0.000000026	-0.00C00006	0.00000032				
14	-0.0000009	0.000007	0.00000008	0.000000017	-0.00C00013	0.00000013				
15	0.0000013	0.000005	-0.0000001	0.00000009	-0.00C00001	-0.0000006				
16	0.0000001	-0.000002	0.0000003	-0.00000004	0.00C0003	-0.0000003				
17	0.0000001	0.0	0.0000005	0.00000001	-0.00C0001	0.0				
18	0.0000006	-0.000008	-0.0000007	0.00000001	0.C	-0.0000003				
19	-0.0000018	-0.000001	-0.0000006	-0.00000005	0.00C0003	0.0000001				
20	-0.0000005	0.0000011	-0.0000003	0.0	-0.00C0001	0.0000005				
21	0.0000011	0.000005	0.0	0.00000005	-0.00C0003	0.0				
SUMS	34.2854437	-43.024966	60.5649827	27.02279908	17.08C1665	61.8689917				
DAYS 274 THRU 368			JD 2444147.5 TO 2444242.5			DATES OCT 1 THRU JAN 3				
			A = 47.50000000			B = -6.76842105				
	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE				
TERM	H	DEG	AU	H	DEG	AU				
0	34.4779096	-43.325156	62.0641191	27.29145078	15.5146849	61.7092348				
1	0.1109937	-0.140323	0.3065564	0.09686694	-0.3344738	-0.4289481				
2	0.0084929	0.001121	-0.1409492	-0.00812157	0.1262032	-0.1223180				
3	-0.0024763	0.003699	-0.0090594	-0.00221459	0.075904	0.0108554				
4	-0.0001089	-0.000122	0.0019129	0.00006653	-0.0015C21	0.0018422				
5	0.0000155	-0.000043	0.0000741	0.000001611	-0.00C00980	-0.00000524				
6	-0.0000003	0.000011	-0.0000002	0.000000C78	-0.00C0044	-0.00000016				
7	0.0	-0.000006	-0.00000042	-0.000000033	0.00C00C22	0.0				
8	-0.00000010	0.000005	0.00000108	0.000000017	-0.00C00078	0.00000144				
9	0.00000020	-0.000005	0.00000141	0.000000226	-0.00C00094	-0.00000037				
10	0.00000020	-0.000004	-0.00000119	-0.000000024	0.00C00084	-0.00000164				
11	0.00000001	-0.000009	-0.00000082	-0.0000000139	0.00C0059	0.00000019				
12	-0.00000018	-0.000001	0.00000041	0.000000007	-0.00C00034	0.00000067				
13	0.00000003	-0.000002	0.00000025	0.000000043	-0.00C00021	-0.00000006				
14	-0.00000009	-0.000002	-0.00000009	-0.000000004	0.00C00012	-0.00000018				
15	-0.00000009	0.000009	0.0000002	-0.000000007	0.00C0004	0.0000005				
16	0.00000002	0.000003	0.0000005	0.000000002	-0.00C00002	0.00000003				
17	0.0	0.000004	-0.0000001	0.0	-0.00000001	-0.00000001				
18	0.00000012	0.000003	-0.0000006	0.000000001	-0.00C00001	0.00000001				
19	0.00000008	-0.000008	-0.0000016	0.0	-0.00C00002	-0.00000003				
20	-0.00000014	-0.000008	-0.0000011	-0.000000003	0.00C00002	-0.00000003				
21	-0.00000007	0.000006	0.0000009	-0.000000001	0.00C00003	0.00000003				
SUMS	34.5948261	-43.460828	62.2226582	27.37806585	15.3123955	61.1706133				

* ASTRONOMETRIC POSITION, EQUATOR AND EQUINOX 1950.0

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1979

D31

DAY	1 THRU 365	JD 2443874.5	TC 2444239.5	DATES JAN	1 THRU DEC	31
		A = 182.50000000	B = -1.00547945			
TERM	H	S	"	NUT LON	NUT CBL	"
0	37.32420358	-0.6618	-10.8201	-17.7370		
1	11.99198462	-0.2094	-3.4235	0.4169		
2	0.00000483	0.0174	0.2840	-0.2481		
3	0.00000053	0.0019	0.0315	-0.0057		
4	0.00000502	0.0181	0.2955	-0.3356		
5	0.00001361	0.0490	0.8013	0.1223		
6	-0.00000360	-0.0130	-0.2119	0.2783		
7	-0.00000705	-0.0254	-0.4152	-0.0642		
8	0.00000044	0.0016	0.0261	-0.0319		
9	-0.00000011	-0.0004	-0.0063	-0.0020		
SUMS	49.31620187	-0.8220	-13.4386	-17.6070		

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1979

DAY	1 THRU 365	JD 2443874.5	TO 2444239.5	DATES JAN	1 THRU DEC	31
		A = 182.50000000	B = -1.00547945			
TERM	R A	DEC	DISTANCE	S D	EPHEM	TR
0	61.3448724	-13.380097	1.99008225	32.20372	24.0225654	
1	11.8527402	-2.340966	0.00044802	-0.00726	-0.1380330	
2	0.0257325	-22.536594	-0.01629200	0.26232	0.0283864	
3	0.0706431	2.654884	-0.00052061	0.00832	0.0707569	
4	0.0395956	6.600442	0.00495640	-0.07797	0.0410919	
5	0.1051524	-0.359591	0.00006146	-0.00083	0.1043912	
6	-0.0297548	-0.493380	-0.00040669	0.00530	-0.0311217	
7	-0.0437322	0.064318	-0.00000686	0.00005	-0.0434658	
8	0.0069594	0.073749	0.00000329	0.00024	0.0072458	
9	0.0073847	-0.037586	-0.00000825	0.00013	0.0073116	
10	-0.0019809	-0.035912	0.00000189	-0.00005	-0.0020556	
11	-0.0017665	0.011594	-0.00000773	0.00013	-0.0017297	
12	0.0009522	0.008687	0.00000014	0.00001	0.0009934	
13	0.0006890	-0.002960	-0.00000463	0.00008	0.0006696	
14	-0.0003785	-0.001763	0.00000059	-0.00002	-0.0003924	
15	-0.0001951	0.001119	0.00000125	0.0	-0.0001884	
16	0.0000766	0.000514	0.00000067	-0.00001	0.0000814	
17	0.0000481	-0.000307	0.00000674	-0.00009	0.0000485	
18	-0.0000420	-0.000148	0.00000006	-0.00002	-0.0000433	
19	-0.0000105	0.0000121	0.00000782	-0.00012	-0.0000069	
20	0.0000431	0.0000047	-0.00000036	0.0	0.0000431	
21	0.0000060	-0.000127	0.00000099	-0.00001	0.0000056	
SUMS	73.3770348	-29.773956	1.97832444	32.39392	24.0657540	

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
 MERCURY AND VENUS

	DAY	1 THRU 365	JD 2443874.5	TC 2444239.5	DATES JAN	1 THRU DEC	31
			A = 182.50000000	B = -1.00547945			
	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	60.7164580	-15.860172	2.2052043	59.8303421	-18.331440	2.5623673	
1	12.0203143	-1.907649	-0.0246621	14.7577503	-1.3C1573	0.4271790	
2	-0.7222327	-20.575351	0.1632608	0.2498791	-17.880668	-0.3542841	
3	-0.1459661	3.169640	-0.0158124	-0.0141930	-2.128017	-0.0256888	
4	-0.3844047	6.462962	0.0434383	0.C630440	11.889996	0.0187842	
5	0.3921675	0.4928C1	0.14C4830	0.C404407	1.623855	0.0020154	
6	-0.1254820	-1.633556	0.0113015	0.0348256	-2.119599	-0.0018215	
7	0.2273619	-4.233418	0.1543527	-0.0979381	-0.1373C5	-0.0009592	
8	0.8921450	0.494072	-0.0789673	-0.0245940	0.160451	0.0004336	
9	-0.2088037	-0.769596	-0.2174807	0.C325371	0.046188	0.0000725	
10	-0.5973241	0.355016	0.0317680	0.0080981	-0.088322	-0.0000266	
11	0.0862888	4.169756	0.0752897	-0.C066E49	-0.041818	-0.0000276	
12	0.0888636	-0.528069	-0.0194359	-0.CC16617	0.046673	0.0000039	
13	-0.0989202	-2.364020	0.0008439	0.0021932	0.020464	-0.0000064	
14	-0.0464498	1.157922	0.0085155	0.0011561	-0.014228	0.0000020	
15	-0.0187648	0.488866	0.0148056	-0.0011920	-0.0C5958	-0.0000046	
16	0.1445635	-0.903634	0.0171705	-0.0007740	0.CC3725	0.0000018	
17	0.1364592	-0.362151	-0.0166439	0.0004792	C.0C1977	0.0000027	
18	-0.0776552	-0.258265	-0.0157677	C.C002640	-C.0C13C3	0.0000015	
19	-0.0690461	0.380561	-0.0039169	-0.0001352	-0.0C1042	0.0000081	
20	-0.0077905	0.584134	-0.0040750	-0.0000558	0.0C0539	-0.0000005	
21	-0.0251561	-0.162599	0.0109181	0.0000501	0.0C0515	0.0000056	
22	0.0177606	-0.050154	0.0072839	0.0000833	-0.0C0204	-0.0000021	
23	0.0069283	0.106152	-0.0075685	-0.0000324	-0.0C0212	-0.0000041	
24	-0.0260449	-0.171714	0.00C9029	-0.0000108	0.0C0C59	-0.0000008	
25	0.0289586	0.000331	0.0061650	0.0000C30	0.0C0C56	-0.0000085	
26	0.0385588	-0.002610	-0.00143C5	-0.C000169	-0.0CCCC4	0.0000023	
27	-0.0102263	-0.192132	-0.0038762	0.0000C87	0.0CCC32	0.0000020	
28	-0.0190445	0.053850	-0.C021885	-C.C000216	-0.0C0005	0.0000013	
29	-0.0109102	0.166841	0.00C2440	0.C000C63	C.0C0C1	0.0000093	
30	-0.0022403	0.001295	0.0014535	0.0000283	-C.CC0C16	-0.0000028	
31	0.0056902	-0.004305	0.C0C4884	-0.0000102	-0.0C0110	-0.0000050	
32	-0.0029384	0.012011	0.0007576	0.0000C45	C.0CC37	-0.0000003	
33	-0.0013030	-0.026954	0.0004359	C.0C00C22	C.0C0134	-C.0000064	
34	0.0096874	-0.016251	-0.00C8158	-0.0000275	-0.0C0C49	0.0000032	
35	0.0039898	-0.026992	-0.00C0412	0.C000CC87	-C.CC0C47	0.0000117	
36	-0.0021604	-0.019269	0.0004179	0.0000283	0.0C0C31	-0.0000037	
37	-0.0010814	0.023799	-0.0006315	-0.C000C95	-C.0C0C30	-0.0000101	
38	-0.0036638	0.010263	-0.0006426	0.0000180	-0.0C0C02	0.0000027	
39	-0.0027172	0.001052	0.00C2697	C.0C00C74	C.0C0C52	0.0000058	
40	0.0011910	0.025185	0.CCC4967	C.C000CC82	-0.0CCCC3	-0.0000014	
41	0.0002463	0.004380	0.00C1236	-0.C000C20	-0.0C0C41	-0.0000026	
42	0.0002314	-0.019380	0.00C0045	-0.0000C39	0.0C0CC6	0.0000004	
43	0.0021662	-0.005551	0.CCC0640	C.C000C09	0.0C0C23	0.0000011	
44	0.0011560	-0.004967	-0.0001488	0.00CCC21	-0.0C0C08	-0.0000003	
45	-0.0004433	-0.007080	-0.0001884	-0.C000C15	-0.0C0CC8	-0.0000003	
46	-0.0008446	0.006478	0.0000753	-0.C000C01	0.0C0CC2	0.0000001	
47	-0.0008127	0.005049	0.C000558	-0.C000C07	0.0C0002	0.0000001	
48	-0.0001387	-0.000471	-0.0001214	0.0000CC3	0.0C0CC3	0.0000001	
49	-0.0001534	0.004872	-0.0000377	0.0000C06	-0.0C00C4	-0.0000001	
SUMS	72.2084673	-31.929042	2.4821376	74.8738242	-28.25765	2.6280499	

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
MARS AND JUPITER

D33

DAYS 1 THRU 365			JD 2443874.5 TC 2444239.5			DATES JAN 1 THRU DEC 31		
			A = 182.50000000			B = -1.00547945		
TERM	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE		
0	55.5257706	7.443811	3.8162926	18.7064460	31.297933	10.4301798		
1	8.2222229	18.318084	-0.6844430	1.3887292	-6.391390	0.5351174		
2	-0.5587902	-13.864197	-0.2376710	0.4224567	-2.095129	-0.7821097		
3	-0.2121606	-2.114677	-0.0410842	-0.3348908	1.271405	-0.3235912		
4	-0.1294355	3.101906	0.0109828	-0.0351982	0.363814	0.1732416		
5	0.0137364	0.172078	0.0096495	0.0291045	-0.007917	0.0094629		
6	0.0124625	-0.155396	0.0008957	-0.0189744	0.020066	-0.0046977		
7	-0.0120046	-0.009520	0.0001513	0.0049817	-0.023516	0.0052773		
8	-0.0034760	0.016765	0.0001544	0.0011874	0.004530	-0.0018821		
9	0.0008606	0.011923	0.0000199	-0.0011520	-0.001211	0.0000491		
10	0.0006876	-0.003509	0.0000144	0.0006602	-0.001791	0.0001619		
11	-0.0000559	-0.002511	0.0000043	-0.0001287	0.001178	-0.0001309		
12	-0.0002024	0.000409	0.0000072	-0.0000456	-0.000422	0.0000442		
13	0.0000208	0.000377	0.0000013	0.0000510	0.000025	0.0000018		
14	0.0000429	-0.000074	0.0000050	-0.0000215	0.000082	-0.0000026		
15	0.0000164	-0.000147	0.0000040	0.0000013	-0.000059	0.0000072		
16	-0.0000039	-0.000082	0.0000009	0.0000082	0.000002	0.0000035		
17	0.0000151	-0.000022	0.0000043	-0.0000016	-0.000004	-0.0000021		
18	0.0000143	-0.000068	-0.0000048	0.0000043	-0.000024	0.0000036		
19	0.0000102	-0.000050	0.0000015	0.0000043	-0.000010	-0.0000064		
20	0.0000116	-0.000017	-0.0000067	-0.0000011	-0.000009	-0.0000011		
21	-0.0000071	-0.000015	-0.0000034	0.0000040	-0.000004	-0.0000049		
SUMS	62.8597357	12.915068	2.8749760	20.1632249	24.437549	10.0411216		

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
SATURN AND URANUS

DAYS 1 THRU 365			JD 2443874.5 TC 2444239.5			DATES JAN 1 THRU DEC 31		
			A = 182.50000000			B = -1.00547945		
TERM	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE		
0	22.4058048	14.422383	18.5814802	30.3878798	-34.989085	37.7633104		
1	0.4896527	-3.049467	0.6582290	0.0715432	-0.3055541	0.4893521		
2	0.3432852	-2.076998	-0.4061595	0.1518985	-0.612133	0.6249978		
3	-0.1033403	0.743531	-0.5621481	0.0863187	-0.328031	-0.5033486		
4	-0.0809567	0.474734	0.1261051	-0.0486070	0.207157	-0.1806610		
5	0.0241771	-0.138726	0.0601640	-0.011248	0.049067	0.0810852		
6	-0.0011789	0.014995	-0.0163555	0.0064349	-0.028636	0.0128302		
7	-0.0032874	0.011253	0.0028992	-0.000452	-0.003100	-0.0068838		
8	0.0019647	-0.011776	0.0010125	-0.0007435	0.003701	0.0004581		
9	-0.0000982	0.002377	-0.0010639	0.0001825	-0.000098	0.0005323		
10	-0.0002440	0.000754	0.0001909	0.0000755	-0.000522	-0.0001940		
11	0.0001274	-0.000833	0.0000626	-0.0000403	0.000107	-0.0000451		
12	-0.0000137	0.000267	-0.0000536	-0.0000045	0.000069	0.0000328		
13	-0.00000203	0.0000054	0.00000176	0.00000058	-0.0000026	-0.0000027		
14	0.0000114	-0.000081	0.0000092	-0.0000009	0.000002	0.0000027		
15	-0.0000025	0.000035	-0.0000029	-0.0000017	0.000013	-0.0000005		
16	0.0	-0.000006	0.0000083	-0.0000004	0.000005	0.0000060		
17	0.0000020	-0.0000012	-0.0000014	0.0000005	-0.0000001	0.0000024		
18	0.0000003	-0.0000001	0.0000037	-0.0000006	-0.0000002	0.0000031		
19	0.0000037	-0.0000021	-0.0000033	0.0000018	-0.0000010	0.0000039		
20	-0.0000004	-0.0000001	-0.0000027	0.0000010	0.0000003	-0.0000024		
21	0.0000020	-0.0000009	-0.0000021	0.0000009	-0.0000006	0.0000034		
SUMS	23.0758889	10.392452	18.4443893	30.6436742	-36.007067	38.2814823		

D34

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1979
NEPTUNE AND PLUTO

TERMS	DAYS	1 THRU 365	JD 2443874.5 TC 2444239.5	DATES JAN 1 THRU DEC 31		
		A = 182.5000000	B = -1.00547945			
	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A *	PLUTO DEC *	PLUTO DISTANCE
0	34.4823233	-43.256577	61.0914517	27.14860611	17.1311119	60.5817966
1	0.0032295	-0.030780	0.2039818	0.05569550	-0.6791536	0.5039932
2	0.0452844	-0.092987	0.9097240	0.11149649	-0.7793116	0.1421360
3	0.0837663	-0.081219	-0.2334107	0.02073848	0.2685544	-0.6221441
4	-0.0147092	0.030504	-0.2765672	-0.03396975	0.2273592	-0.0358806
5	-0.0132612	0.015054	0.0379528	-0.00169650	-0.04989C3	0.0912618
6	0.0019551	-0.001709	0.0252794	0.00316956	-0.C150656	-0.0008424
7	0.0009918	-0.002079	-0.0032282	-0.00041924	0.C05946C	-0.0043685
8	-0.0002394	-0.000241	-0.0010103	-0.00011923	-0.0009355	0.0009871
9	-0.0000626	0.000312	0.0002632	0.00010299	-0.C0C5564	-0.0001262
10	0.0000319	0.000050	0.0000148	-0.00000807	0.C0C2782	-0.0001333
11	0.0000037	-0.000044	-0.0000354	-0.00001149	0.0000186	0.0000363
12	-0.0000049	-0.000003	0.0000007	0.00000267	-0.C0C0327	0.0000100
13	-0.0000001	0.000006	-0.0000005	-0.000000C19	0.C0C0101	-0.0000045
14	-0.0000004	0.000008	0.0000024	-0.000000C57	-0.C0C0007	0.0000075
15	-0.0000009	0.000005	-0.0000004	-0.000000C06	-0.00C0007	0.0000003
16	-0.0000008	0.000005	0.0000030	-0.000000C15	-0.00C0026	0.0000074
17	-0.0000002	0.000002	0.0000049	0.000000C58	-0.C0C0028	0.0000008
18	-0.0000003	0.000001	0.0000013	-0.000000012	-0.00C0013	0.0000033
19	0.0000012	-0.000005	0.0000072	0.000000C97	-0.C0C0C50	0.0000010
20	0.0000011	0.000003	0.0	0.000000C09	0.00C0012	-0.0000034
21	0.0000004	0.000002	0.0000037	0.000000C52	-0.C0C0C31	0.0000005
SUMS	34.5893087	-43.419692	61.7544382	27.30358859	16.1083177	60.6567388

* ASTRONOMICAL POSITION, EQUATOR AND EQUINOX 1950.0

Section E: STELLAR TABLES

STAR POSITIONS FOR YEAR 1979

E3

DAYS	1 THRU 365	JD 2443874.5 TO 2444239.5	DATES JAN 1 THRU DEC 31
		A = 365.00000000	B = -0.00273973

ID	NAV	NAME	MAG/SP	MEAN PLACE	H	R	S	C	APPT PLACE
1	1	ALPHA AND ALPHERATZ	2.1 A0	SHA DEC 358.1754 28.9744	0 -0.0007 -0.0004	0 -0.0114 0.0049	0 0.0059 -0.0024	0 C.0008 C.0024	0 358.1682 28.9742
2		BETA CAS CAPH	2.4 F5	SHA DEC 357.9879 59.0339	-0.0035 -0.0004	-0.0114 0.0049	0.0101 -C.0018	C.0014 C.0046	357.9773 59.0313
3		GAMMA PEG ALGENIB	2.9 B2	SHA DEC 356.9621 15.0669	-0.0000 -0.0004	-0.0114 0.0049	0.0054 -0.0023	0.0006 0.0011	356.9558 15.0679
4		BETA HYI	2.9 G0	SHA DEC 353.8333 -77.3725	0.0118 -0.0006	-0.0096 0.0049	0.0239 -0.0001	0.0014 -C.0056	353.8389 -77.3650
5	2	ALPHA PHE ANKAA	2.4 K0	SHA DEC 353.6879 -42.4200	0.0029 -0.0006	-0.0110 0.0049	C.0071 -0.0014	C.0004 -C.0041	353.6850 -42.4140
6	3	ALPHA CAS SCHEDAR	2.3 K0	SHA DEC 350.1738 56.4225	-0.0030 -0.0007	-0.0124 0.0049	0.0095 -0.0013	-C.0001 0.0045	350.1646 56.4197
7	4	BETA CET DIPHDA	2.2 K0	SHA DEC 349.3663 -18.1017	0.0015 -0.0008	-0.0111 0.0049	0.0055 -0.0021	-C.0001 -C.0021	349.3623 -18.0978
8		GAMMA CAS	2-3 B0	SHA DEC 346.1429 60.6033	-0.0036 -0.0009	-0.0132 0.0048	0.0107 -C.0009	-0.0009 C.0047	346.1337 60.6001
9		BETA AND MIRACH	2.4 M0	SHA DEC 342.8625 35.5094	-0.0010 -0.0010	-0.0123 0.0048	0.0064 -0.0015	-C.0010 C.0029	342.8563 35.5079
10		DELTA CAS RUCHBAH	2.8 AS	SHA DEC 338.8929 60.1267	-0.0033 -0.0012	-0.0142 0.0046	0.0104 -0.0003	-0.0023 0.0046	338.8849 60.1232
11	5	ALPHA ERI ACHERNAR	0.6 B5	SHA DEC 335.7667 -57.3433	0.0041 -0.0013	-0.0084 0.0046	0.0094 -0.0022	-0.0027 -C.0048	335.7693 -57.3375
12		BETA ARI SHERATAN	2.7 A5	SHA DEC 331.6308 20.7058	-0.0001 -0.0015	-0.0122 0.0044	0.0053 -0.0015	-C.0020 C.0015	331.6266 20.7050
13		ALPHA HYI	3.0 F0	SHA DEC 330.4729 -61.6717	0.0045 -0.0015	-0.0070 0.0044	0.0105 -0.0025	-0.0041 -C.0049	330.4780 -61.6661
14		GAMMA-1 AND ALMAK	2.3 K0	SHA DEC 329.3492 42.2297	-0.0012 -0.0015	-0.0135 C.0043	0.0067 -C.0005	-C.0028 C.0033	329.3440 42.2271
15	6	ALPHA ARI HAMAL	2.2 K2	SHA DEC 328.5038 23.3636	-0.0002 -0.0016	-0.0124 0.0043	0.0053 -C.0013	-0.0023 C.0017	328.4997 23.3625
16		BETA TRI	3.1 A5	SHA DEC 327.9279 34.8886	-0.0007 -0.0016	-0.0131 0.0042	0.0060 -0.0007	-C.0027 C.0027	327.9233 34.8865
17		ALPHA UMI POLARIS	2.1 F8	SHA DEC 327.2754 89.1689	-0.1351 -0.0016	-0.1875 0.0042	0.3354 0.0019	-0.1560 0.0052	327.2026 89.1642
18	7	THETA ERI ACAMAR	3.4 A2	SHA DEC 315.6342 -40.3883	0.0020 -0.0020	-0.0085 0.0036	0.0057 -C.0036	-0.0043 -0.0033	315.6362 -40.3852
19	8	ALPHA CET MENKAR	2.8 M0	SHA DEC 314.7050 4.0081	0.0006 -0.0020	-0.0116 0.0036	0.0043 -0.0020	-C.0034 -0.0001	314.7031 4.0079
20		BETA PER ALGOL	2-3 B8	SHA DEC 313.3008 40.8758	-0.0006 -0.0020	-0.0144 0.0035	0.0056 0.0003	-C.0046 0.0027	313.2976 40.8729

E4

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
21	9	ALPHA PER MIRFAK	1.9 F5	SHA DEC	0 309.2963 49.7875	0 -0.0010 -0.0021	0 -0.0158 0.0032	0 0.0062 C.0011	0 -C.0058 C.0030	0 309.2932 49.7840
22		ETA TAU ALCYONE	3.0 B5	SHA DEC	303.4417 24.0411	0.0002 -0.0023	-0.0131 0.0028	0.0040 -C.0005	-0.0046 C.0012	303.4398 24.0390
23		ZETA PER	2.9 B1	SHA DEC	301.7579 31.8222	-0.0000 -0.0023	-0.0139 0.0027	0.0042 0.0001	-C.0050 0.0016	301.7960 31.8196
24		EPSILON PER	3.0 B1	SHA DEC	300.8900 39.9506	-C.0002 -C.0023	-0.0148 0.0026	0.0046 0.0008	-0.0057 0.0020	300.8880 39.9475
25		GAMMA ERI	3.2 K5	SHA DEC	300.7379 -13.5675	0.0009 -0.0023	-0.0103 0.0026	0.0036 -C.0031	-C.0045 -C.0012	300.7381 -13.5673
26	10	ALPHA TAU ALDEBARAN	1.1 K5	SHA DEC	291.3217 16.4681	0.0005 -0.0025	-0.0127 0.0019	0.0025 -0.0005	-0.0051 C.0004	291.3209 16.4661
27		IOTA AUR	2.9 K2	SHA DEC	286.0942 33.1342	0.0004 -0.0025	-0.0144 0.0015	0.0028 C.0007	-C.0061 C.0010	286.0935 33.1314
28		BETA ERI	2.9 A3	SHA DEC	283.2958 -5.1125	0.0007 -0.0025	-0.0109 0.0013	0.0022 -0.0026	-0.0053 -C.0006	283.2963 -5.1138
29	11	BETA CRI RIGEL	0.3 B8	SHA DEC	281.6179 -8.2250	0.0007 -0.0025	-0.0106 0.0011	0.0020 -0.0025	-0.0054 -0.0007	281.6187 -8.2263
30	12	ALPHA AUR CAPELLA	0.2 G0	SHA DEC	281.2163 45.9781	0.0005 -0.0025	-0.0163 0.0011	0.0028 0.0019	-C.0077 0.0012	281.2162 45.9749
31	13	GAMMA CRI BELLATRIX	1.7 B2	SHA DEC	278.9992 6.3317	0.0007 -0.0025	-0.0119 0.0009	0.0018 -0.0017	-C.0054 -C.0002	278.9993 6.3298
32	14	BETA TAU ELNATH	1.8 B8	SHA DEC	278.7592 28.5908	0.0006 -0.0025	-0.0140 0.0009	0.0020 C.0004	-C.0062 C.0005	278.7589 28.5882
33		BETA LEP	3.0 G0	SHA DEC	278.1638 -20.7753	0.0007 -0.0025	-0.0095 0.0008	0.0018 -0.0038	-0.0058 -C.0010	278.1655 -20.7764
34		DELTA ORI	2.5 B0	SHA DEC	277.2667 -0.3136	0.0007 -0.0025	-0.0113 0.0008	0.0016 -0.0023	-C.0054 -0.0004	277.2671 -0.3154
35		ALPHA LEP	2.7 F0	SHA DEC	277.0492 -17.8364	0.0007 -0.0025	-0.0098 0.0007	0.0017 -C.0036	-C.0057 -C.0009	277.0507 -17.8377
36		IOTA CRI	2.9 C5	SHA DEC	276.3987 -5.9228	0.0007 -0.0025	-0.0108 0.0007	0.0016 -C.0027	-0.0055 -C.0006	276.3995 -5.9244
37	15	EPSILON ORI ALNILAM	1.7 B0	SHA DEC	276.2133 -1.2142	0.0007 -0.0025	-0.0112 0.0007	0.0015 -0.0023	-C.0055 -C.0004	276.2139 -1.2160
38		ZETA TAU	3.0 B3	SHA DEC	275.9029 21.1308	0.0007 -0.0025	-0.0132 0.0006	0.0016 -0.0003	-0.0059 0.0002	275.9029 21.1284
39		ALPHA COL PHACT	2.7 B5	SHA DEC	275.2779 -34.0847	0.0006 -0.0025	-0.0080 0.0006	0.0018 -0.0047	-C.0066 -C.0011	275.2812 -34.0858
40		ZETA ORI ALNITAK	2.0 B0	SHA DEC	275.0754 -1.9528	0.0007 -0.0025	-0.0112 0.0006	0.0014 -0.0024	-0.0055 -C.0004	275.0760 -1.9546
41		KAPPA ORI	2.2 B0	SHA DEC	273.3100 -9.6761	0.0006 -0.0025	-0.0105 0.0004	0.0013 -0.0031	-C.0056 -C.0006	273.3110 -9.6778
42	16	ALPHA CRI BETELGEUSE	0-1 M0	SHA DEC	271.4913 7.4042	0.0007 -0.0025	-0.0120 0.0003	0.0011 -0.0016	-0.0056 -0.0003	271.4916 7.4020
43		BETA AUR MENKALINAN	2.1 A0	SHA DEC	270.5029 44.9467	0.0009 -0.0025	-0.0163 0.0002	0.0015 0.0020	-0.0079 0.0004	270.5036 44.9438

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
44		THETA AUR	2.7 A0	SHA DEC	0 270.4279 37.2122	0 0.0009 -0.0025	0 -0.0151 0.0002	0 0.0013 0.0013	0 -0.0070 0.0003	0 270.4283 37.2095
45		BETA CMA MIRZAH	2.0 B1	SHA DEC	264.5563 -17.9447	0.0005 -0.0025	-0.0097 -0.0003	0.0005 -0.0037	-C.0060 -C.0005	264.5578 -17.9469
46	17	ALPHA CAR CANOPUS	-0.9 F0	SHA DEC	264.1288 -52.6839	-0.0000 -0.0025	-0.0049 -0.0004	0.0008 -0.0055	-0.0094 -0.0005	264.1356 -52.6861
47		GAMMA GEM ALHENNA	1.9 A0	SHA DEC	260.8754 16.4183	0.0009 -0.0025	-0.0128 -0.0007	0.0002 -0.0007	-0.0059 -0.0004	260.8758 16.4159
48	18	ALPHA CMA A SIRIUS	-1.6 A0	SHA DEC	258.9450 -16.6869	0.0004 -0.0024	-0.0099 -0.0008	-C.0000 -0.0036	-C.0059 -0.0003	258.9464 -16.6895
49		TAU PUP	2.8 K0	SHA DEC	257.6467 -50.5892	-0.0003 -0.0024	-0.0054 -0.0009	-0.0002 -0.0055	-C.0089 -0.0000	257.6525 -50.5920
50	19	EPSILON CMA ADHARA	1.6 B1	SHA DEC	255.5500 -28.9428	0.0002 -0.0024	-0.0087 -C.0011	-0.0004 -C.0045	-0.0065 -C.0001	255.5523 -28.9456
51		OMICRON-2 CMA	3.1 B5	SHA DEC	254.4633 -23.8019	C.0002 -0.0024	-0.0092 -0.0012	-0.0005 -0.0041	-0.0062 -C.0001	254.4651 -23.8048
52		DELTA CMA WEZEN	2.0 F8	SHA DEC	253.1158 -26.3592	0.0002 -0.0023	-0.0090 -0.0013	-0.0006 -0.0043	-0.0063 -0.0000	253.1178 -26.3621
53		PI PUP	2.7 K5	SHA DEC	250.8996 -37.0592	-0.0002 -0.0023	-0.0078 -0.0015	-C.0009 -0.0049	-C.0070 0.0003	250.9025 -37.0625
54		ETA CMA	2.4 B5	SHA DEC	249.1842 -29.2614	0.0000 -0.0023	-0.0087 -0.0016	-0.0010 -0.0045	-0.0064 0.0002	249.1862 -29.2647
55		BETA CMI	3.1 B8	SHA DEC	248.4971 8.3325	0.0008 -0.0022	-0.0120 -0.0017	-0.0010 -0.0015	-C.0056 -0.0006	248.4975 8.3300
56		SIGMA PUP	3.3 K5	SHA DEC	247.8592 -43.2583	-0.0005 -0.0022	-0.0070 -0.0017	-0.0014 -0.0051	-C.0076 C.0006	247.8628 -43.2620
57		ALPHA GEM A CASTOR	2.0 A0	SHA DEC	246.6850 31.9356	0.0015 -0.0022	-0.0142 -0.0018	-0.0013 0.0008	-C.0065 -0.0011	246.6859 31.9335
58		ALPHA GEM B	2.8 A0	SHA DEC	246.6846 31.9356	0.0015 -0.0022	-0.0142 -0.0018	-0.0013 0.0008	-C.0065 -C.0011	246.6854 31.9335
59	20	ALPHA CMI A PROCYON	0.5 F5	SHA DEC	245.4492 5.2794	0.0008 -0.0022	-0.0118 -0.0019	-0.0012 -C.0018	-0.0055 -C.0005	245.4496 5.2768
60	21	BETA GEM POLLUX	1.2 K0	SHA DEC	243.9917 28.0781	0.0014 -0.0021	-0.0137 -0.0019	-0.0015 C.0004	-C.0062 -0.0011	243.9924 28.0760
61		ZETA PUP	2.3 0	SHA DEC	239.2888 -39.9433	-0.0006 -0.0020	-0.0077 -0.0024	-0.0023 -C.0049	-C.0069 0.0010	239.2912 -39.9476
62		RHO PUP	2.9 F5	SHA DEC	238.3379 -24.2431	-0.0000 -0.0020	-0.0094 -0.0025	-0.0020 -0.0040	-0.0058 C.0005	238.3389 -24.2468
63		GAMMA-2 VEL	1.9 0	SHA DEC	237.7788 -47.2742	-0.0011 -0.0020	-0.0067 -0.0025	-0.0028 -0.0051	-0.0077 0.0014	237.7820 -47.2788
64	22	EPSILON CAR AVIOR	1.7 +	SHA DEC	234.4788 -59.4417	-0.0022 -0.0019	-0.0044 -0.0028	-0.0043 -0.0052	-0.0100 0.0020	234.4843 -59.4469
65		DELTA VEL	2.0 A0	SHA DEC	228.9692 -54.6311	-0.0020 -0.0017	-0.0060 -0.0031	-0.0045 -C.0050	-0.0083 C.0022	228.9725 -54.6366
66		IOTA UMA	3.1 A5	SHA DEC	225.5563 48.1250	0.0029 -0.0016	-0.0154 -0.0034	-C.0043 C.0018	-0.0070 -C.0027	225.5584 48.1244

E6

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT	PLACE
67	23	LAMBDA VEL SUHAIL	2.2 K5	SHA DEC	0 223.1946 -43.3475	0 -0.0013 -0.0015	0 -0.0081 -0.0035	0 -0.0042 -0.0045	0 -0.0062 0.0021	0 223.1955 -43.3529	
68	24	BETA CAR MIAPLACIDUS	1.8 A0	SHA DEC	0 221.7558 -69.6306	0 -0.0049 -0.0015	0 -0.0022 -0.0036	0 -0.0091 -0.0047	0 -0.0127 0.0032	0 221.7625 -69.6370	
69		IOTA CAR	2.2 F0	SHA DEC	0 220.8679 -59.1869	0 -0.0029 -0.0014	0 -0.0058 -0.0036	0 -0.0063 -0.0047	0 -0.0085 C.0029	0 220.8707 -59.1931	
70		KAPPA VEL	2.6 B3	SHA DEC	0 219.6342 -54.9208	0 -0.0024 -0.0014	0 -0.0067 -0.0037	0 -0.0058 -0.0046	0 -C.0074 0.0028	0 219.6359 -54.9269	
71	25	ALPHA HYA ALPHARD	2.2 K2	SHA DEC	0 218.3613 -8.5669	0 -0.0003 -0.0013	0 -0.0109 -0.0038	0 -0.0035 -0.0028	0 -0.0042 0.0002	0 218.3604 -8.5704	
72		N VEL	3.0 K5	SHA DEC	0 217.3542 -56.9414	0 -0.0027 -0.0013	0 -0.0066 -0.0038	0 -0.0064 -0.0045	0 -0.0076 0.0031	0 217.3558 -56.9477	
73		EPSILCN LEO	3.1 G0	SHA DEC	0 213.8346 23.8714	0 -0.0017 -0.0012	0 -0.0126 -0.0040	0 -0.0041 -C.0005	0 -0.0042 -0.0020	0 213.8342 23.8703	
74	26	ALPHA LEO REGULUS	1.3 B8	SHA DEC	0 208.1863 12.0703	0 -0.0012 -0.0009	0 -0.0119 -0.0043	0 -0.0042 -0.0015	0 -0.0035 -C.0013	0 208.1850 12.0685	
75		GAMMA-1 LEO ALGEIBA	2.6 K0	SHA DEC	0 205.2958 19.9483	0 -0.0015 -0.0008	0 -0.0121 -0.0044	0 -0.0045 -0.0010	0 -0.0034 -0.0020	0 205.2947 19.9473	
76		THETA CAR	3.0 B0	SHA DEC	0 199.4488 -64.2842	0 -0.0045 -0.0006	0 -0.0077 -0.0046	0 -0.0104 -0.0034	0 -0.0063 0.0043	0 199.4467 -64.2914	
77		MU VEL	2.8 G5	SHA DEC	0 198.5346 -49.3089	0 -0.0022 -0.0005	0 -0.0094 -0.0046	0 -0.0070 -0.0034	0 -C.0041 0.0036	0 198.5317 -49.3153	
78		BETA UMA MERAK	2.4 A0	SHA DEC	0 194.8542 56.4953	0 -0.0045 -0.0004	0 -0.0134 -0.0047	0 -0.0085 C.0007	0 -0.0042 -0.0045	0 194.8561 56.4971	
79	27	ALPHA UMA DUBHE	1.9 K0	SHA DEC	0 194.3892 61.8644	0 -0.0054 -0.0003	0 -0.0139 -0.0047	0 -0.0100 0.0009	0 -0.0048 -C.0048	0 194.3924 61.8665	
80		PSI UMA	3.1 K0	SHA DEC	0 192.8779 44.6125	0 -0.0032 -0.0003	0 -0.0126 -0.0048	0 -0.0067 -0.0001	0 -C.0030 -0.0040	0 192.8778 44.6138	
81		DELTA LEO	2.6 A3	SHA DEC	0 191.7517 20.6389	0 -0.0016 -0.0002	0 -0.0118 -0.0048	0 -0.0052 -0.0014	0 -0.0022 -0.0022	0 191.7496 20.6385	
82	28	BETA LEO DENEBOLA	2.2 A2	SHA DEC	0 183.0029 14.6894	0 -0.0013 -0.0002	0 -0.0114 -0.0049	0 -0.0053 -0.0018	0 -0.0012 -0.0018	0 182.9998 14.6889	
83		GAMMA UMA PHECDA	2.5 A0	SHA DEC	0 181.8171 53.8114	0 -0.0041 -0.0002	0 -0.0117 -0.0049	0 -0.0087 -0.0004	0 -C.0018 -0.0047	0 181.8172 53.8139	
84		DELTA CEN	2.9 B3	SHA DEC	0 178.1842 -50.6056	0 -0.0024 -0.0004	0 -0.0114 -C.0049	0 -0.0081 -0.0C21	0 -0.0012 C.0041	0 178.1772 -50.6118	
85	29	GAMMA CRV GIENAH	2.8 B8	SHA DEC	0 176.3192 -17.4256	0 -0.0001 -0.0005	0 -0.0114 -0.0049	0 -0.0054 -0.0023	0 -0.0006 0.0013	0 176.3139 -17.4289	
86	30	ALPHA CRU A ACRUX	1.6 B1	SHA DEC	0 173.6450 -62.9828	0 -0.0042 -0.0006	0 -0.0122 -0.0049	0 -0.0115 -0.0014	0 -0.0006 C.0049	0 173.6354 -62.9895	
87		ALPHA CRU B	2.1 B3	SHA DEC	0 173.6425 -62.9831	0 -0.0042 -0.0006	0 -0.0122 -0.0049	0 -0.0115 -0.0014	0 -0.0006 C.0049	0 173.6329 -62.9898	
88	31	GAMMA CRU GACRUX	1.6 M3	SHA DEC	0 172.5021 -56.9958	0 -0.0031 -0.0006	0 -0.0121 -0.0049	0 -0.0096 -0.0015	0 -0.0003 0.0045	0 172.4932 -57.0022	
89		BETA CRV	2.8 G5	SHA DEC	0 171.6800 -23.2808	0 -0.0004 -0.0007	0 -0.0116 -0.0049	0 -0.0057 -0.0021	0 -0.0001 0.0019	0 171.6739 -23.2845	

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
90		ALPHA MUS	2.9 83	SHA DEC	0 171.0208 -69.0200	0 -0.0057 0.0007	0 -0.0130 -0.0049	0 -0.0146 -0.0010	0 0.0001 0.0052	0 171.0087 -69.0269
91		GAMMA CEN MUHLIFAIN	2.4 A0	SHA DEC	169.9125 -48.8447	-0.0021 0.0007	-0.0122 -0.0049	-C.008C -C.0015	C.0001 0.0040	169.9042 -48.8504
92		GAMMA VIR	2.9 F0	SHA DEC	169.8517 -1.3344	0.0006 C.0007	-0.0114 -0.0049	-0.0052 -C.0022	0.0001 -0.0003	169.8465 -1.3359
93		BETA CRU MIMOSA	1.5 B1	SHA DEC	168.3792 -59.5742	-0.0034 0.0008	-0.0128 -0.0049	-0.01C3 -C.0011	0.0005 C.0047	168.3688 -59.5805
94	32	EPSILON UMA ALIOTH	1.7 A0	SHA DEC	166.7229 56.0736	0.0042 0.0009	-0.0098 -0.0048	-C.0094 -0.0014	C.0007 -0.0049	166.7215 56.0770
95		ALPHA-2 CVN COR CAROLI	2.9 A0	SHA DEC	166.2383 38.4314	C.0026 0.0009	-0.01C5 -C.0048	-C.0067 -C.CC15	C.0006 -0.0038	166.2351 38.4337
96		EPSILON VIR	2.9 K0	SHA DEC	164.7175 11.0717	C.0011 0.0009	-0.0111 -0.0048	-0.0053 -C.CC23	C.0006 -C.0015	164.7125 11.0717
97		IOTA CEN	2.9 A2	SHA DEC	160.1471 -36.6019	-0.0010 0.0011	-0.0125 -0.0047	-0.0064 -0.0013	C.0013 C.0030	160.1385 -36.6062
98		ZETA UMA MIZAR	2.4 A2	SHA DEC	159.2296 55.0344	C.0039 0.0012	-0.0090 -0.0047	-0.009C -C.CC2C	C.0020 -C.0048	159.2270 55.0381
99	33	ALPHA VIR SPICA	1.2 B2	SHA DEC	158.9792 -11.0522	0.0002 0.0012	-0.0117 -0.0047	-0.0C53 -C.CC2C	0.0012 C.0007	158.9724 -11.0540
100		EPSILON CEN	2.6 B1	SHA DEC	155.3629 -53.3603	-0.0023 C.0013	-0.0139 -0.0045	-0.0085 -0.0003	0.0025 C.0042	155.3512 -53.3654
101	34	ETA UMA ALKAI	1.9 B3	SHA DEC	153.3217 49.4175	0.0032 0.0014	-0.0089 -0.0045	-0.0C7E -0.0C25	C.0026 -C.0044	153.3178 49.4210
102		ETA BOO	2.8 G0	SHA DEC	151.5792 18.5025	0.0014 0.0015	-0.0106 -0.0044	-0.0053 -0.0026	C.0020 -C.0021	151.5733 18.5038
103		ZETA CEN	3.1 B2	SHA DEC	151.4446 -47.1856	-C.0016 C.0015	-0.0138 -0.0044	-0.0073 -C.0004	C.0028 C.0037	151.4334 -47.1900
104	35	BETA CEN HADAR	0.9 B1	SHA DEC	149.4179 -60.2725	-0.0029 0.0015	-0.0155 -0.0043	-0.0095 C.CC04	C.0042 C.0044	149.4031 -60.2775
105	36	THETA CEN MENKENT	2.3 K0	SHA DEC	148.6400 -36.2672	-0.0008 0.0016	-0.0131 -0.0043	-0.0061 -C.0007	C.0027 C.0028	148.6300 -36.2706
106	37	ALPHA BOO ARCTURUS	0.2 K0	SHA DEC	146.3246 19.2911	0.0014 0.0016	-0.0104 -0.0042	-C.0051 -C.0028	0.0025 -C.0021	146.3182 19.2927
107		GAMMA BOO	3.0 F0	SHA DEC	142.1921 38.3994	0.0021 0.0018	-0.0090 -0.0040	-0.006C -C.0032	0.0035 -C.0034	142.1862 38.4026
108		ETA CEN	2.6 *	SHA DEC	141.4583 -42.0664	-0.0010 0.0018	-0.0140 -0.0039	-0.0063 -C.000C	0.0037 C.0030	141.4466 -42.0696
109	38	ALPHA CEN A RIGEL KENT.	0.3 G0	SHA DEC	140.4563 -60.7472	-0.0025 0.0018	-0.0168 -0.0039	-C.0094 0.0011	0.0059 0.0041	140.4395 -60.7514
110		ALPHA CEN B	1.7 K5	SHA DEC	140.4625 -60.7525	-C.0025 0.0018	-0.0168 -0.0039	-C.0094 0.0011	C.0059 0.0041	140.4458 -60.7567
111		ALPHA LUP	2.9 B2	SHA DEC	139.8688 -47.2989	-0.0012 0.0019	-0.0147 -0.0039	-0.0067 0.0004	C.0043 C.0033	139.8559 -47.3023
112		EPSILON BOO	2.7 K0	SHA DEC	138.9829 27.1619	0.0016 0.0019	-0.0097 -0.0038	-C.0051 -C.0032	C.0034 -0.0026	138.9762 27.1645

E10

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
159		GAMMA AQL	2.8 K2	SHA DEC	0 63.6850 10.5611	0 0.0004 0.0021	0 -0.0105 0.0021	0 0.0014 -0.0031	0 0.0055 -C.0001	0 63.6746 10.5644
160	51	ALPHA AQL ALTAIR	0.9 A5	SHA DEC	62.5604 8.8119	0.0004 0.0021	-0.0107 0.0022	0.0015 -0.0030	0.0055 -C.0001	62.5501 8.8153
161		GAMMA CYG	2.3 F8	SHA DEC	54.6317 40.1889	-0.0008 0.0019	-0.0079 0.0027	0.0028 -0.0048	0.0067 C.0013	54.6203 40.1908
162	52	ALPHA PAV PEACOCK	2.1 B3	SHA DEC	54.0017 -56.8036	0.0033 0.0019	-0.0176 0.0028	0.0041 0.0027	0.0093 -C.0024	53.9869 -56.7980
163		ALPHA IND	3.2 K0	SHA DEC	50.9767 -47.3658	0.0026 0.0018	-0.0156 0.0030	0.0036 0.0015	0.0073 -C.0023	50.9642 -47.3602
164	53	ALPHA CYG DENEB	1.3 A2	SHA DEC	49.8217 45.2047	-0.0012 0.0017	-0.0075 0.0031	0.0036 -0.0048	0.0069 C.0018	49.8098 45.2062
165		EPSILON CYG	2.6 K0	SHA DEC	48.6600 33.8908	-0.0006 0.0017	-0.0088 0.0032	0.0032 -0.0044	0.0058 C.0014	48.6492 33.8928
166		ALPHA CEP ALDERAMIN	2.6 A5	SHA DEC	40.4804 62.4964	-0.0034 0.0014	-0.0050 0.0037	0.0071 -C.0047	0.0094 C.0031	40.4651 62.4966
167		BETA AGR	3.1 G0	SHA DEC	37.3867 -5.6642	0.0009 0.0013	-0.0116 C.0038	0.0035 -0.0018	0.0041 -C.0008	37.3776 -5.6602
168	54	EPSILON PEG ENIF	2.5 K0	SHA DEC	34.2117 9.7781	0.0003 0.0012	-0.0108 0.0040	0.0037 -0.0028	0.0040 C.0003	34.2026 9.7809
169		DELTA CAP	3.0 A5	SHA DEC	33.5296 -16.2233	0.0013 0.0012	-0.0122 0.0040	0.0039 -0.0011	C.0040 -0.0015	33.5208 -16.2186
170	55	ALPHA GRU AL NA'IR	2.2 B5	SHA DEC	28.2717 -47.0633	0.0032 0.0009	-0.0140 0.0043	0.0060 0.0009	0.0051 -C.0036	28.2628 -47.0567
171		ALPHA TUC	2.9 K2	SHA DEC	25.7317 -60.3650	0.0049 0.0008	-0.0153 0.0044	0.0085 0.0016	C.0066 -C.0042	25.7223 -60.3577
172		BETA GRU	2.2 M3	SHA DEC	19.6454 -46.9950	C.0033 0.0006	-0.0133 0.0046	0.0066 0.0004	C.0040 -0.0039	19.6381 -46.9882
173	56	ALPHA PSA FOMALHAUT	1.3 A3	SHA DEC	15.8771 -29.7339	0.0021 0.0004	-0.0122 0.0047	0.0054 -C.0008	C.0028 -0.0029	15.8703 -29.7282
174		BETA PEG SCHEAT	2.6 M0	SHA DEC	14.3117 27.9686	-0.0007 0.0003	-0.0106 0.0047	C.0054 -C.0030	C.0026 C.0021	14.3031 27.9692
175	57	ALPHA PEG MARKAB	2.6 A0	SHA DEC	14.0721 15.0919	-0.0000 0.0003	-0.0110 C.0048	0.0049 -0.0027	C.0023 C.0010	14.0643 15.0937
176		GAMMA CEP	3.4 K0	SHA DEC	5.3817 77.5153	-0.0108 -0.0001	-C.0087 0.0049	0.0233 -0.0019	C.0066 0.0053	5.3599 77.5124

Astronomy
QB
8
U487
1980

Printed in U.S.A.

JAN 9 1980

AEC 80

Nautical Almanac Office
U. S. Naval Observatory

**ALMANAC
FOR
COMPUTERS
1980**

**Nautical Almanac Office
United States Naval Observatory
Washington, D. C. 20390**

Table of Contents

Explanation	A	Navigational Tables	C																																																																																																																																																										
Introduction	A1	Aries, Sun and Navigational																																																																																																																																																											
Calendar	A2	Planets	C2																																																																																																																																																										
Explanation of Navigational Tables (Section C)	A5	Moon	C8																																																																																																																																																										
Explanation of Astronomical Tables (Section D)	A8	Astronomical Tables	D																																																																																																																																																										
Explanation of Stellar Tables (Section E)	A13			Full Precision:				Sidereal Time, Equation of Equinoxes, Nutation	D2			Sun	D6			Moon	D8			Mercury and Venus	D20			Mars and Jupiter	D24			Saturn and Uranus	D26			Neptune and Pluto	D28			Low Precision:				Sidereal Time, Equation of Equinoxes, Nutation	D30			Sun	D30			Mercury and Venus	D31			Mars, Jupiter, Saturn and Uranus	D32			Neptune and Pluto	D33			Stellar Tables	E			Index of the 57 Standard Navi- gation Stars	E2			176 Stars	E3	Applications	B			Introduction	B1			Day of the Year	B1			Julian Date	B2			Sidereal Time	B3			Hour Angles	B4			Altitude and Azimuth	B4			Sunrise, Sunset & Twilight	B5			Solar Coordinates	B8			Equation of Time and Time of Solar Transit	B8			Moonrise and Moonset	B9			Polaris	B11			Equation of Position Line	B12			Motion of Body and Motion of Observer	B12			Sextant Altitude Corrections	B13			Dip of Horizon	B13			Coriolis Correction	B14			Atmospheric Refraction	B14			Semi-diameter of Sun & Planets	B15			Semi-diameter of Moon	B15			Parallax in Altitude	B16			Correction for the Phase of Venus	B16		
		Full Precision:																																																																																																																																																											
		Sidereal Time, Equation of Equinoxes, Nutation	D2																																																																																																																																																										
		Sun	D6																																																																																																																																																										
		Moon	D8																																																																																																																																																										
		Mercury and Venus	D20																																																																																																																																																										
		Mars and Jupiter	D24																																																																																																																																																										
		Saturn and Uranus	D26																																																																																																																																																										
		Neptune and Pluto	D28																																																																																																																																																										
		Low Precision:																																																																																																																																																											
		Sidereal Time, Equation of Equinoxes, Nutation	D30																																																																																																																																																										
		Sun	D30																																																																																																																																																										
		Mercury and Venus	D31																																																																																																																																																										
		Mars, Jupiter, Saturn and Uranus	D32																																																																																																																																																										
		Neptune and Pluto	D33																																																																																																																																																										
		Stellar Tables	E																																																																																																																																																										
		Index of the 57 Standard Navi- gation Stars	E2																																																																																																																																																										
		176 Stars	E3																																																																																																																																																										
Applications	B																																																																																																																																																												
Introduction	B1																																																																																																																																																												
Day of the Year	B1																																																																																																																																																												
Julian Date	B2																																																																																																																																																												
Sidereal Time	B3																																																																																																																																																												
Hour Angles	B4																																																																																																																																																												
Altitude and Azimuth	B4																																																																																																																																																												
Sunrise, Sunset & Twilight	B5																																																																																																																																																												
Solar Coordinates	B8																																																																																																																																																												
Equation of Time and Time of Solar Transit	B8																																																																																																																																																												
Moonrise and Moonset	B9																																																																																																																																																												
Polaris	B11																																																																																																																																																												
Equation of Position Line	B12																																																																																																																																																												
Motion of Body and Motion of Observer	B12																																																																																																																																																												
Sextant Altitude Corrections	B13																																																																																																																																																												
Dip of Horizon	B13																																																																																																																																																												
Coriolis Correction	B14																																																																																																																																																												
Atmospheric Refraction	B14																																																																																																																																																												
Semi-diameter of Sun & Planets	B15																																																																																																																																																												
Semi-diameter of Moon	B15																																																																																																																																																												
Parallax in Altitude	B16																																																																																																																																																												
Correction for the Phase of Venus	B16																																																																																																																																																												

Section A: EXPLANATION

Introduction

This edition of the *Almanac for Computers (A/C 80)* employs the basic methods of previous editions to provide astronomical data, in a form suitable for small computers and calculators, for navigation and positional astronomy. Instead of the fixed-interval tabulations of *The American Ephemeris and Nautical Almanac (AE)*, *The Nautical Almanac (NA)* and *The Air Almanac (AA)*, this volume contains concise mathematical expressions to make possible direct calculations of the coordinates of celestial bodies. Such expressions must take the form of mathematical approximations, however, because the fundamental equations are too complex for direct use in the majority of astronomical and navigational applications. Using the expressions in this volume it is possible to calculate, with minimal loss of precision, the basic data in the *AE*, *NA* and *AA* for specific times and conditions. More specific information about precision is given in Tables 1, 2 and 3 of this section.

New material concerning solar coordinates has been added to the Applications section (Section B). First is a procedure for computing the Sun's position to low precision over a few centuries. The second addition concerns the equation of time and the time of local solar transit. New formulas for the equation of time were derived by Dr. James Brimhall, West Virginia State University; they are published here for the first time.

For most efficient use with computers, the data in Sections D and E are available on punched cards or magnetic tape.

Continued improvements in the *Almanac for Computers* will depend on further input from users. Inquiries, suggestions and comments should be sent to The Director, Nautical Almanac Office, U. S. Naval Observatory, Washington, D. C. 20390.

CALENDAR, 1980

Day of Month	JANUARY			FEBRUARY			MARCH			APRIL		
	Julian Date at 0 ^h	Day of Week	Day of Year									
1	244 239.5	Tue.	1	244 270.5	Fri.	32	244 299.5	Sat.	61	244 330.5	Tue.	92
2	240.5	Wed.	2	271.5	Sat.	33	300.5	Sun.	62	331.5	Wed.	93
3	241.5	Thu.	3	272.5	Sun.	34	301.5	Mon.	63	332.5	Thu.	94
4	242.5	Fri.	4	273.5	Mon.	35	302.5	Tue.	64	333.5	Fri.	95
5	243.5	Sat.	5	274.5	Tue.	36	303.5	Wed.	65	334.5	Sat.	96
6	244.5	Sun.	6	275.5	Wed.	37	304.5	Thu.	66	335.5	Sun.	97
7	245.5	Mon.	7	276.5	Thu.	38	305.5	Fri.	67	336.5	Mon.	98
8	246.5	Tue.	8	277.5	Fri.	39	306.5	Sat.	68	337.5	Tue.	99
9	247.5	Wed.	9	278.5	Sat.	40	307.5	Sun.	69	338.5	Wed.	100
10	248.5	Thu.	10	279.5	Sun.	41	308.5	Mon.	70	339.5	Thu.	101
11	249.5	Fri.	11	280.5	Mon.	42	309.5	Tue.	71	340.5	Fri.	102
12	250.5	Sat.	12	281.5	Tue.	43	310.5	Wed.	72	341.5	Sat.	103
13	251.5	Sun.	13	282.5	Wed.	44	311.5	Thu.	73	342.5	Sun.	104
14	252.5	Mon.	14	283.5	Thu.	45	312.5	Fri.	74	343.5	Mon.	105
15	253.5	Tue.	15	284.5	Fri.	46	313.5	Sat.	75	344.5	Tue.	106
16	254.5	Wed.	16	285.5	Sat.	47	314.5	Sun.	76	345.5	Wed.	107
17	255.5	Thu.	17	286.5	Sun.	48	315.5	Mon.	77	346.5	Thu.	108
18	256.5	Fri.	18	287.5	Mon.	49	316.5	Tue.	78	347.5	Fri.	109
19	257.5	Sat.	19	288.5	Tue.	50	317.5	Wed.	79	348.5	Sat.	110
20	258.5	Sun.	20	289.5	Wed.	51	318.5	Thu.	80	349.5	Sun.	111
21	259.5	Mon.	21	290.5	Thu.	52	319.5	Fri.	81	350.5	Mon.	112
22	260.5	Tue.	22	291.5	Fri.	53	320.5	Sat.	82	351.5	Tue.	113
23	261.5	Wed.	23	292.5	Sat.	54	321.5	Sun.	83	352.5	Wed.	114
24	262.5	Thu.	24	293.5	Sun.	55	322.5	Mon.	84	353.5	Thu.	115
25	263.5	Fri.	25	294.5	Mon.	56	323.5	Tue.	85	354.5	Fri.	116
26	264.5	Sat.	26	295.5	Tue.	57	324.5	Wed.	86	355.5	Sat.	117
27	265.5	Sun.	27	296.5	Wed.	58	325.5	Thu.	87	356.5	Sun.	118
28	266.5	Mon.	28	297.5	Thu.	59	326.5	Fri.	88	357.5	Mon.	119
29	267.5	Tue.	29	298.5	Fri.	60	327.5	Sat.	89	358.5	Tue.	120
30	268.5	Wed.	30				328.5	Sun.	90	359.5	Wed.	121
31	269.5	Thu.	31				329.5	Mon.	91			

The Julian Day begins at noon.

CALENDAR, 1980

A3

Day of Month	MAY			JUNE			JULY			AUGUST		
	Julian Date at 0 ^h	Day of Week	Day of Year	Julian Date at 0 ^h	Day of Week	Day of Year	Julian Date at 0 ^h	Day of Week	Day of Year	Julian Date at 0 ^h	Day of Week	Day of Year
1	2444 360.5	Thu.	122	391.5	Sun.	153	421.5	Tue.	183	452.5	Fri.	214
2	361.5	Fri.	123	392.5	Mon.	154	422.5	Wed.	184	453.5	Sat.	215
3	362.5	Sat.	124	393.5	Tue.	155	423.5	Thu.	185	454.5	Sun.	216
4	363.5	Sun.	125	394.5	Wed.	156	424.5	Fri.	186	455.5	Mon.	217
5	364.5	Mon.	126	395.5	Thu.	157	425.5	Sat.	187	456.5	Tue.	218
6	365.5	Tue.	127	396.5	Fri.	158	426.5	Sun.	188	457.5	Wed.	219
7	366.5	Wed.	128	397.5	Sat.	159	427.5	Mon.	189	458.5	Thu.	220
8	367.5	Thu.	129	398.5	Sun.	160	428.5	Tue.	190	459.5	Fri.	221
9	368.5	Fri.	130	399.5	Mon.	161	429.5	Wed.	191	460.5	Sat.	222
10	369.5	Sat.	131	400.5	Tue.	162	430.5	Thu.	192	461.5	Sun.	223
11	370.5	Sun.	132	401.5	Wed.	163	431.5	Fri.	193	462.5	Mon.	224
12	371.5	Mon.	133	402.5	Thu.	164	432.5	Sat.	194	463.5	Tue.	225
13	372.5	Tue.	134	403.5	Fri.	165	433.5	Sun.	195	464.5	Wed.	226
14	373.5	Wed.	135	404.5	Sat.	166	434.5	Mon.	196	465.5	Thu.	227
15	374.5	Thu.	136	405.5	Sun.	167	435.5	Tue.	197	466.5	Fri.	228
16	375.5	Fri.	137	406.5	Mon.	168	436.5	Wed.	198	467.5	Sat.	229
17	376.5	Sat.	138	407.5	Tue.	169	437.5	Thu.	199	468.5	Sun.	230
18	377.5	Sun.	139	408.5	Wed.	170	438.5	Fri.	200	469.5	Mon.	231
19	378.5	Mon.	140	409.5	Thu.	171	439.5	Sat.	201	470.5	Tue.	232
20	379.5	Tue.	141	410.5	Fri.	172	440.5	Sun.	202	471.5	Wed.	233
21	380.5	Wed.	142	411.5	Sat.	173	441.5	Mon.	203	472.5	Thu.	234
22	381.5	Thu.	143	412.5	Sun.	174	442.5	Tue.	204	473.5	Fri.	235
23	382.5	Fri.	144	413.5	Mon.	175	443.5	Wed.	205	474.5	Sat.	236
24	383.5	Sat.	145	414.5	Tue.	176	444.5	Thu.	206	475.5	Sun.	237
25	384.5	Sun.	146	415.5	Wed.	177	445.5	Fri.	207	476.5	Mon.	238
26	385.5	Mon.	147	416.5	Thu.	178	446.5	Sat.	208	477.5	Tue.	239
27	386.5	Tue.	148	417.5	Fri.	179	447.5	Sun.	209	478.5	Wed.	240
28	387.5	Wed.	149	418.5	Sat.	180	448.5	Mon.	210	479.5	Thu.	241
29	388.5	Thu.	150	419.5	Sun.	181	449.5	Tue.	211	480.5	Fri.	242
30	389.5	Fri.	151	420.5	Mon.	182	450.5	Wed.	212	481.5	Sat.	243
31	390.5	Sat.	152				451.5	Thu.	213	482.5	Sun.	244

The Julian Day begins at noon.

A4

CALENDAR, 1980

Day of Month	SEPTEMBER			OCTOBER			NOVEMBER			DECEMBER		
	Julian Date at 0 ^h	Day of Week	Day of Year									
1	2444 483.5	Mon.	245 513.5	Wed.	275 544.5	Sat.	306 574.5	Mon.	336	2444 574.5	Mon.	336
2	484.5	Tue.	246 514.5	Thu.	276 545.5	Sun.	307 575.5	Tue.	337	484.5 575.5	Tue.	337
3	485.5	Wed.	247 515.5	Fri.	277 546.5	Mon.	308 576.5	Wed.	338	485.5 576.5	Wed.	338
4	486.5	Thu.	248 516.5	Sat.	278 547.5	Tue.	309 577.5	Thu.	339	486.5 577.5	Thu.	339
5	487.5	Fri.	249 517.5	Sun.	279 548.5	Wed.	310 578.5	Fri.	340	487.5 578.5	Fri.	340
6	488.5	Sat.	250 518.5	Mon.	280 549.5	Thu.	311 579.5	Sat.	341	488.5 579.5	Sat.	341
7	489.5	Sun.	251 519.5	Tue.	281 550.5	Fri.	312 580.5	Sun.	342	489.5 580.5	Sun.	342
8	490.5	Mon.	252 520.5	Wed.	282 551.5	Sat.	313 581.5	Mon.	343	490.5 581.5	Mon.	343
9	491.5	Tue.	253 521.5	Thu.	283 552.5	Sun.	314 582.5	Tue.	344	491.5 582.5	Tue.	344
10	492.5	Wed.	254 522.5	Fri.	284 553.5	Mon.	315 583.5	Wed.	345	492.5 583.5	Wed.	345
11	493.5	Thu.	255 523.5	Sat.	285 554.5	Tue.	316 584.5	Thu.	346	493.5 584.5	Thu.	346
12	494.5	Fri.	256 524.5	Sun.	286 555.5	Wed.	317 585.5	Fri.	347	494.5 585.5	Fri.	347
13	495.5	Sat.	257 525.5	Mon.	287 556.5	Thu.	318 586.5	Sat.	348	495.5 586.5	Sat.	348
14	496.5	Sun.	258 526.5	Tue.	288 557.5	Fri.	319 587.5	Sun.	349	496.5 587.5	Sun.	349
15	497.5	Mon.	259 527.5	Wed.	289 558.5	Sat.	320 588.5	Mon.	350	497.5 588.5	Mon.	350
16	498.5	Tue.	260 528.5	Thu.	290 559.5	Sun.	321 589.5	Tue.	351	498.5 589.5	Tue.	351
17	499.5	Wed.	261 529.5	Fri.	291 560.5	Mon.	322 590.5	Wed.	352	499.5 590.5	Wed.	352
18	500.5	Thu.	262 530.5	Sat.	292 561.5	Tue.	323 591.5	Thu.	353	500.5 591.5	Thu.	353
19	501.5	Fri.	263 531.5	Sun.	293 562.5	Wed.	324 592.5	Fri.	354	501.5 592.5	Fri.	354
20	502.5	Sat.	264 532.5	Mon.	294 563.5	Thu.	325 593.5	Sat.	355	502.5 593.5	Sat.	355
21	503.5	Sun.	265 533.5	Tue.	295 564.5	Fri.	326 594.5	Sun.	356	503.5 594.5	Sun.	356
22	504.5	Mon.	266 534.5	Wed.	296 565.5	Sat.	327 595.5	Mon.	357	504.5 595.5	Mon.	357
23	505.5	Tue.	267 535.5	Thu.	297 566.5	Sun.	328 596.5	Tue.	358	505.5 596.5	Tue.	358
24	506.5	Wed.	268 536.5	Fri.	298 567.5	Mon.	329 597.5	Wed.	359	506.5 597.5	Wed.	359
25	507.5	Thu.	269 537.5	Sat.	299 568.5	Tue.	330 598.5	Thu.	360	507.5 598.5	Thu.	360
26	508.5	Fri.	270 538.5	Sun.	300 569.5	Wed.	331 599.5	Fri.	361	508.5 599.5	Fri.	361
27	509.5	Sat.	271 539.5	Mon.	301 570.5	Thu.	332 600.5	Sat.	362	509.5 600.5	Sat.	362
28	510.5	Sun.	272 540.5	Tue.	302 571.5	Fri.	333 601.5	Sun.	363	510.5 601.5	Sun.	363
29	511.5	Mon.	273 541.5	Wed.	303 572.5	Sat.	334 602.5	Mon.	364	511.5 602.5	Mon.	364
30	512.5	Tue.	274 542.5	Thu.	304 573.5	Sun.	335 603.5	Tue.	365	512.5 603.5	Tue.	365
31				543.5	Fri.	305				604.5	Wed.	366

The Julian Day begins at noon.

Navigational Tables

Section C contains mathematical representations of the following functions that are tabulated in the *Nautical Almanac (NA)*: the GHA of Aries, the GHA and declination of the Sun, Moon and navigational planets, the semi-diameter of the Sun and Moon, and the horizontal parallax of the Moon. These functions are expressed for a specified time span by a power series of the form

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$$

In the series x is a time-like variable that takes on values between -1 and $+1$ over the specified time span; $a_0, a_1, a_2, a_3, a_4, a_5$, are coefficients that are tabulated in Section C for the specified time span; and $f(x)$ represents the value of the function (*e.g.*, the GHA of Aries) evaluated at time x .

To evaluate the series for one of the navigational functions, one must first find the set of coefficients in Section C that is applicable for the desired date. Constants A and B are given there for the purpose of converting the calendar date and GMT to the time-like variable x . To obtain the value of x for the desired time, first determine t , the GMT measured in days and fractions thereof from 0 January, 0^h GMT, from the relation $t = N + \text{GMT}/24$, where N is the day of the year at Greenwich and GMT is the Greenwich Mean Time expressed in hours. A calendar is provided on pages A2–A4 for finding the day of the year; alternatively the day of the year can be computed from the formulas given on pages B1 and B2. Once t has been determined, x is computed from the relation $x = t/A + B$. If computed correctly, the value of x will fall in the range of $-1 \leq x \leq +1$.

Example 1: Compute x for later use in computing the position of the Sun at 10^h 11^m 00^s GMT ($= 0^d 4243056$) on 25 December 1980.

From the calendar 25 December is found to be day 360. Thus $t = 360 + 0.4243056$. This date is in the interval 30 November through 31 December (days 335 through 366) for which coefficients for the Sun are given on page C6. The constants for this interval are $A = 16.0$ and $B = -21.9375000$. Therefore $x = 360.4243056/16.0 - 21.9375000 = +0.5890191$.

Once the variable x has been computed and the coefficients a_i have been found, the series $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$ can be evaluated. The series can be evaluated most efficiently by computing a set of five auxiliary variables, b_1, b_2, b_3, b_4, b_5 , in the following order:

A6

$$\begin{aligned}
 b_5 &= xa_5 \\
 b_4 &= x(a_4 + b_5) \\
 b_3 &= x(a_3 + b_4) \\
 b_2 &= x(a_2 + b_3) \\
 b_1 &= x(a_1 + b_2) \\
 f(x) &= a_0 + b_1
 \end{aligned}$$

By using this algorithm, the series is evaluated in its nested form

$$f(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + x(a_4 + xa_5)))).$$

Example 2: Compute the GHA of the Sun at $10^{\text{h}} 11^{\text{m}} 00^{\text{s}}$ GMT on 25 December 1980.

From the previous example $x = +0.5890191$. The coefficients for the Sun's GHA are found on page C6.

$$\begin{aligned}
 b_5 &= .5890191 (-0.0059) &= -0.0035 \\
 b_4 &= .5890191 (-0.0038 - 0.0035) &= -0.0043 \\
 b_3 &= .5890191 (0.0985 - 0.0043) &= +0.0555 \\
 b_2 &= .5890191 (-0.1087 + 0.0555) &= -0.0313 \\
 b_1 &= .5890191 (5758.0576 - 0.0313) &= +3391.5875 \\
 f(+0.5890191) &= 5941.1098 + 3391.5875 &= 9332.6973 \\
 \text{Therefore GHA} &= 332^\circ 6973 = +332^\circ 41'8
 \end{aligned}$$

Note that when computing the GHA, it may be necessary to reduce the final result to the range $0^\circ - 360^\circ$ by subtracting multiples of 360° .

Example 3: Compute the declination of the Moon at $15^{\text{h}} 12^{\text{m}} 30^{\text{s}}$ GMT on 10 July 1980.

The constants A and B and series coefficients are found on page C15.

$$\begin{aligned}
 x &= 192.6336806 / 3.0 - 63.333333 = +0.8778935 \\
 b_5 &= .8778935 (0.0444) &= +0.0390 \\
 b_4 &= .8778935 (0.1465 + 0.0390) &= +0.1628 \\
 b_3 &= .8778935 (-0.9998 + 0.1628) &= -0.7348 \\
 b_2 &= .8778935 (-3.4800 - 0.7348) &= -3.7001 \\
 b_1 &= .8778935 (10.7363 - 3.7001) &= +6.1770 \\
 f(+0.8778935) &= 13.1208 + 6.1770 &= +19^\circ 2978 \\
 \text{declination} &= +19^\circ 17'9
 \end{aligned}$$

Although the series are designed to provide precision comparable to that published in the *NA*, there will be small discrepancies between the tabulated values and the values computed from the series. In such cases it should be understood that the *NA* represents the standard. Table 1 lists the largest discrepancies found from evaluating and comparing the series with the data in the *NA*.

Under no circumstances should the series be used to extrapolate data beyond the specified time intervals. Such extrapolation will lead to erroneous and useless results.

In accordance with standard practice for navigational almanacs, the time argument used in this almanac is Greenwich Mean Time (GMT), or more specifically UT1. To obtain full precision in the determined positions, the radio time signals in UTC must be corrected to UT1, or GMT, according to standard procedures. (See the paper by R.L. Duncombe and P.K. Seidelmann, 'The New UTC Time Signals', *Navigational*, 24, 160–165, 1977.)

Beneath each set of coefficients in Section C is printed the sum of the coefficients. As a check on whether the coefficients have been entered accurately into the calculator, it is recommended that the coefficients be summed and that the resulting sum be compared with the printed sum.

Table 1: Comparison of *Almanac for Computers* with *NA*

Function	No. of Terms	Span of Validity	Maximum Error
GHA of Aries	6	32 days	0'2
Sun: GHA	"	"	0'2
Declination	"	"	0'2
Semi-Diameter	"	"	0'1
Moon: GHA	"	6 days	0'2
Declination	"	"	0'2
Horizontal Parallax	"	"	0'2
Semi-Diameter	"	"	0'1
Navigational Planets: GHA	"	32 days	0'2
Declination	"	"	0'2

Astronomical Tables

Section D contains mathematical representations of data published in the *American Ephemeris and Nautical Almanac (AE)*. Chebyshev expansions have been chosen as the means of representation since they provide efficient and accurate expressions that can be easily evaluated with a small computer. The coefficients a_i of the Chebyshev expansion

$$f(x) = a_0/2 + \sum_{i=1}^n a_i T_i(x)$$

are tabulated for prescribed time spans, where $f(x)$ is the function being represented, $T_i(x)$ is the Chebyshev polynomial of the first kind of the i -th degree, and x is the normalized time variable. Although Chebyshev polynomials appear in the series expansions, the series can be evaluated without explicitly computing these polynomials. No *a priori* knowledge of Chebyshev analysis is required to use the series in this almanac. Interested readers can find information on Chebyshev analysis in *Applied Analysis* by C. Lanczos and *Chebyshev Polynomials in Numerical Analysis* by L. Fox and I. B. Parker.

It must be emphasized that the series are valid only over the specified time intervals. Attempts to extrapolate data using these series will yield erroneous and useless results.

If precision comparable to that of the *AE* is required, the series on pages D3 – D30 should be used. With the exception of the series for the Moon, these series are valid for time spans of approximately three months; for the Moon the span of validity is approximately one month. Table 2 lists the largest errors found by evaluating these series and comparing the results with data printed in the *AE*.

It is possible to develop series that are valid for longer time spans if the precision requirements are relaxed. Such series, valid for one full year, are given on pages D31–D34. Precision criteria of these less precise series are summarized in Table 3.

Chebyshev series can be truncated according to the following precept to obtain shorter series meeting imposed precision limits. Beginning with the last coefficient, add the absolute values of the coefficients until the required limit of precision is accumulated. The series may be safely truncated at this point, and the small terms omitted.

Example 1: For use in the next example, determine the number of terms required to compute the apparent declination of the Sun to $\pm 1''$ ($= 0^\circ 00028$) on 22 March 1980.

From Table 3 it is seen that the lower precision series on page D31 do not provide the required precision. As shown in Table 2, however, the higher precision series on page D7 provide higher precision than is necessary and

Table 2: Comparison of *Almanac for Computers* and *AE*
(High Precision Series, pp. D3 – D30)

Function	No. of Terms	Span of Validity	Maximum Error
Apparent Sidereal Time at 0 ^h UT	36	95 days	0 [°] 001
Equation of the Equinoxes	"	"	0 [°] 001
Nutation in Longitude	"	"	0 ^{''} 008
Nutation in Obliquity	"	"	0 ^{''} 003
Sun: Right Ascension	22	95 days	0 [°] 02
Declination	"	"	0 ^{''} 2
Distance	"	"	4×10^{-7} AU
Semi-Diameter	"	"	0 ^{''} 01
Ephemeris Transit	"	"	0 [°] 02
Moon: Right Ascension	34	32 days	0 [°] 002
Declination	"	"	0 ^{''} 02
Horizontal Parallax	"	"	0 ^{''} 01
Geocentric Rectangular Coords.	"	"	1×10^{-6} Earth radii
Mercury: Right Ascension	38	95 days	0 [°] 02
Declination	"	"	0 ^{''} 3
Distance	"	"	1×10^{-6} AU
Venus: Right Ascension	38	95 days	0 [°] 01
Declination	"	"	0 ^{''} 1
Distance	"	"	1×10^{-6} AU
Mars: Right Ascension	22	95 days	0 [°] 02
Declination	"	"	0 ^{''} 2
Distance	"	"	1×10^{-6} AU
Jupiter: Right Ascension	22	95 days	0 [°] 01
Declination	"	"	0 ^{''} 1
Distance	"	"	1×10^{-6} AU
Saturn: Right Ascension	14	95 days	0 [°] 02
Declination	"	"	0 ^{''} 2
Distance	"	"	3×10^{-6} AU
Uranus: Right Ascension	14	95 days	0 [°] 02
Declination	"	"	0 ^{''} 2
Distance	"	"	3×10^{-6} AU
Neptune: Right Ascension	12	95 days	0 [°] 02
Declination	"	"	0 ^{''} 2
Distance	"	"	1×10^{-5} AU
Pluto: Right Ascension (astrometric)	12	95 days	0 [°] 004
Declination (astrometric)	"	"	0 ^{''} 04
Distance	"	"	9×10^{-6} AU

therefore can be truncated. Summing the absolute values of terms 21 through 10 gives a total of $0^{\circ}000212$; adding the absolute value of coefficient 9 gives $0^{\circ}000455$, which exceeds the limit of precision. Therefore terms 10 through 21 can be safely dropped, and terms 0 through 9 provide the Sun's declination to $\pm 1''$.

To evaluate the approximations, one must first normalize the time variable to the interval for which the series is valid. The normalized time x is determined from a relation of the form $x = t/A + B$, where values of A and B are given for each set of coefficients and t is reckoned in days and fractions thereof from 0 January. If correctly computed, the value of x will fall in the range $-1 \leq x \leq +1$.

For the functions Apparent Sidereal Time at 0^{h} UT, Equation of the Equinoxes, Nutation in Longitude and Nutation in Latitude, the variable t is measured in days of universal time (UT1 to be precise) from 0 January, 0^{h} UT. For all other functions in Section D, t is measured in days of ephemeris time from 0 January, 0^{h} ET. These latter functions can be evaluated for universal times, however, by using the normalizing relation $x = (t' + \Delta T)/A + B$, where t' is the universal time measured in days from 0 January, 0^{h} UT. As this volume goes to press, $\Delta T = 51^{\text{s}}.1 (= 0^{\text{d}}000591)$ appears to be a reliable value to use in 1980. Care should be taken to verify that the sum $t' + \Delta T$ falls within the time span for which the series is valid; if it falls outside, the series and constants for the next span should be used.

Once the normalized time variable x is determined, the approximation

$$f(x) = a_0/2 + \sum_{i=1}^n a_i T_i(x)$$

where the a_i are the printed coefficients, can be evaluated as follows:

let $b_{n+1} = b_{n+2} = 0$,

compute $b_i = 2x b_{i+1} - b_{i+2} + a_i$, for $i = n, n-1, \dots, 0$,

then $f(x) = (b_0 - b_2)/2$.

Example 2: Compute the apparent declination of the Sun to a precision of $\pm 1''$ at $9^{\text{h}}44^{\text{m}}18^{\text{s}}$ UT ($= 0^{\text{d}}405764$) on 22 March 1980.

From the previous example we know that terms 0 through 9 of the series on page D7 will provide the required precision. From the calendar (pages A2–A4) or the formulas on pages B1–B2 it is found that 22 March is day 82. Since the series for solar coordinates are based on ephemeris time, it is necessary to add ΔT to the specified universal time. Therefore

**Table 3: Comparison of *Almanac for Computers* and AE
(Low Precision Series, pp. D31 – D34)**

Function	No. of Terms	Maximum Error
Apparent Sidereal Time at 0 ^h UT	10	0 ^s 03
Equation of the Equinoxes	"	0 ^s 03
Nutation in Longitude	"	0".4
Nutation in Obliquity	"	0".2
Sun: Right Ascension	22	0 ^s 6
Declination	"	3"
Distance	"	4×10^{-5} AU
Semi-Diameter	"	0".04
Ephemeris Transit	"	0 ^s 6
Mercury: Right Ascension	50	14 ^s
Declination	"	2'.2
Distance	"	5×10^{-4} AU
Venus: Right Ascension	50	0 ^s 3
Declination	"	3"
Distance	"	2×10^{-6} AU
Mars: Right Ascension	24	0 ^s 8
Declination	"	4"
Distance	"	4×10^{-5} AU
Jupiter: Right Ascension	24	0 ^s 2
Declination	"	0".6
Distance	"	4×10^{-5} AU
Saturn: Right Ascension	16	0 ^s 1
Declination	"	0".5
Distance	"	4×10^{-5} AU
Uranus: Right Ascension	16	0 ^s 1
Declination	"	0".2
Distance	"	4×10^{-5} AU
Neptune: Right Ascension	14	0 ^s 1
Declination	"	0".2
Distance	"	5×10^{-5} AU
Pluto: Right Ascension (astrometric)	14	0 ^s 1
Declination (astrometric)	"	0".2
Distance	"	5×10^{-5} AU

$$t = 82^d + 0^d 405764 + 0^d 000591 = 82^d 406355$$

On page D7 are found the constants for the time span: $A = 47.5$ and $B = -1.02105263$.

$$x = 82.406355/47.5 - 1.02105263 = 0.7138180$$

With this value of x and the coefficients on page D7, the algorithm works as follows:

$$\begin{aligned}
 b_{n+2} &= b_{11} = 0 \\
 b_{n+1} &= b_{10} = 0 \\
 b_n &= b_9 = 2xb_{10} - b_{11} + a_9 = +0.000243 \\
 &\quad b_8 = 2xb_9 - b_{10} + a_8 = +0.000480 \\
 &\quad b_7 = 2xb_8 - b_9 + a_7 = +0.000331 \\
 &\quad b_6 = 2xb_7 - b_8 + a_6 = -0.001386 \\
 &\quad b_5 = 2xb_6 - b_7 + a_5 = +0.002813 \\
 &\quad b_4 = 2xb_5 - b_6 + a_4 = +0.003637 \\
 &\quad b_3 = 2xb_4 - b_5 + a_3 = -0.486495 \\
 &\quad b_2 = 2xb_3 - b_4 + a_2 = +1.132172 \\
 &\quad b_1 = 2xb_2 - b_3 + a_1 = +17.152409 \\
 &\quad b_0 = 2xb_1 - b_2 + a_0 = +2.664561 \\
 f(x) &= (b_0 - b_2)/2 = (2.664561 - 1.132172)/2 \\
 \text{declination} &= +0^\circ 766194 = +0^\circ 45'58"
 \end{aligned}$$

Beneath each set of coefficients is printed the sum of the coefficients. This may be used as an easy means of verifying the accuracy with which the coefficients have been entered in the computer.

With two exceptions the series in Section D provide data referred to the true equinox and equator of date. The exceptions are

1. the Moon's geocentric, rectangular coordinates (X, Y, Z), which are referred to the mean equator and equinox of 1950.0;
2. the right ascension and declination of Pluto, which are astrometric (*i.e.*, free of the effect of stellar aberration, except for the elliptic part) and are referred to the mean equinox and equator of 1950.0.

The unit of distance for the Sun and planets is the Astronomical Unit; the unit of distance for the Moon is the Earth's equatorial radius.

Stellar Tables

The Stellar Tables (Section E) list the mean and apparent places of 176 stars for the current year, along with coefficients for converting from mean to apparent place for any date in the year. The list of stars is essentially the same as that for the star tables on pages 268–273 of the *Nautical Almanac*. The stars are arranged in order of increasing right ascension (decreasing sidereal hour angle), except where both components of a binary system are listed, in which case the brighter component is listed first. For binary stars that can be resolved in small instruments, the position of one or both components is listed rather than the position of the center of gravity or the center of light. For convenience of navigators the sidereal hour angle (SHA) is tabulated rather than right ascension (RA); astronomers can obtain the right ascension in degrees from the relation $RA = 360^\circ - SHA$.

The quantities tabulated for each star are, from left to right on the page:

1. Identification number.
2. Navigational star number, provided the star is one of the 57 selected navigation stars listed in the *Nautical Almanac* and *Air Almanac*.
3. Star name. The Bayer designation is on the first line and the proper name, if any, is on the second line.
4. Magnitude and spectral type. The visual magnitude is on the first line, and the spectral type is on the second line. A composite spectrum is denoted by *.
5. Mean place of the star for 1980.0. The SHA in degrees is on the first line; the declination in degrees is on the second line.
6. Four coefficients (H , R , S , C) used in computing the apparent place of the star. The coefficients on the first line are for the computation of apparent SHA; these will hereafter be designated H_S , R_S , S_S , C_S . The coefficients on the second line are for the computation of apparent declination; these will hereafter be designated with the subscript D : H_D , etc.
7. Apparent place of the star for 1980.5. The SHA in degrees is on the first line; the declination is on the second line.

The mean place of a star is to be regarded as a fundamental reference point with no simple geometric or observational significance. The apparent place of a star is the geocentric position, referred to the true equinox and equator of date, at which the star is observed. Thus the apparent place is the position needed for navigation, calibration of telescope setting circles, computation of transit times, etc. For work requiring accuracies of no better than $\pm 1'.3$, the tabulated apparent place for 1980.5 can be used for any date during the year. To obtain apparent places to greater accuracy, the following procedures should be used:

A14

For the desired date in 1980, determine τ , the fraction of the year elapsed. If the day of the year is t , τ can be computed from the quantities A and B listed at the top of page E3: $\tau = t/A + B$.

Star positions accurate to better than $\pm 0'.5$ can be obtained by using the following formulas:

$$\text{apparent SHA} = \text{mean SHA} + H_S + R_S\tau$$

$$\text{apparent decl.} = \text{mean decl.} + H_D + R_D\tau$$

Star positions accurate to better than $\pm 0'.1$ (and generally better than $\pm 0'.05$) can be obtained from the following formulas:

$$\text{apparent SHA} = \text{mean SHA} + H_S + R_S\tau + S_S \sin 360^\circ\tau + C_S \cos 360^\circ\tau$$

$$\text{apparent decl.} = \text{mean decl.} + H_D + R_D\tau + S_D \sin 360^\circ\tau + C_D \cos 360^\circ\tau$$

The tabulated apparent places for 1980.5 were computed using the latter formulas with $\tau = 0.5$.

To facilitate identification of the 57 standard navigation stars, an index for these stars is provided on page E2.

Example: Compute the apparent place of Rigel (β Orionis) on 14 November to an accuracy of $\pm 0'.1$.

From the calendar on pages A2–A4 or the formulas on pages B1–B2, 14 November is found to be day 319. From page E3, $A = 366.0$ and $B = -0.0027$. Data for Rigel (Nav. No. 11; A/C ID 29) is found on page E4.

$$\tau = 319/366.0 - 0.0027 = +0.8689$$

	SHA	decl.
Mean place	281°6058	-8°2239
+ H	+ 0.0020	-0.0024
+ $R\tau$	- 0.0094	+0.0012
+ $S \sin 360^\circ\tau$	- 0.0015	+0.0021
+ $C \cos 360^\circ\tau$	<u>- 0.0037</u>	<u>-0.0005</u>
Apparent place	281°593	-8°224

Section B: APPLICATIONS

Introduction

In this section reference will be made to the following functions:

Sign function. The sign function serves to extract the algebraic sign from a number. The notation $\text{sign}(x)$ is defined to be $\text{sign}(x) = 1$ for $x \geq 0$, $\text{sign}(x) = -1$ for $x < 0$. An equivalent definition is $\text{sign}(x) = x/|x|$ for $x \neq 0$, $\text{sign}(x) = 1$ for $x = 0$. Examples: $\text{sign}(247) = 1$, $\text{sign}(-6.28) = -1$.

Truncation or largest-integer function. The truncation function extracts the integral part of a number. The algebraic sign of the result is the same as that of the original number. $\langle x \rangle$ is defined to be $\langle x \rangle = \text{sign}(x) \cdot N$, where N is the largest nonnegative integer such that $N \leq |x|$.

Examples: $\langle 17.835 \rangle = 17$, $\langle -3.1416 \rangle = -3$.

Modulus or remainder function. The modulus function yields the remainder of the division x/y , when the quotient is constrained to be an integral value. Thus $\text{mod}(x,y)$ is defined to be $\text{mod}(x,y) = x - \langle x/y \rangle \cdot y$.

Examples: $\text{mod}(11,3) = 2$, $\text{mod}(-764.3,360.0) = -44.3$.

Note that $\langle x \rangle = x - \text{mod}(x,1.0)$. Therefore the truncation function can be defined in terms of the modulus function and *vice versa*. If either modulus or truncation is available on a calculator or computer, the other function can be simply obtained.

In this almanac universal time (UT) is to be identified with UT1, which is equivalent to the standard navigational time argument Greenwich Mean Time (GMT). The symbols UT and GMT may therefore be considered interchangeable. For detailed information on time systems the reader should consult the Explanation of a current edition of the *American Ephemeris and Nautical Almanac*.

Day of the Year

The day of the year (N) is defined as the integer $N = \langle t \rangle$, where t is the time elapsed in days since 0 January of the current year. Thus N is an integer running from 1 through 365 (or 366 in leap years). The day of the year can be computed from either of the following formulas:

$$\begin{aligned} N &= \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle 1 + \left\langle \frac{K - 4\langle K/4 \rangle + 2}{3} \right\rangle + I - 30 \\ N &= \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle 1 + \left\langle \frac{\text{mod}(K,4) + 2}{3} \right\rangle + I - 30 \end{aligned}$$

where N is the day of the year, K is the year (e.g., 1980), M is the month ($1 \leq M \leq 12$), and I is the day of the month ($1 \leq I \leq 31$).

These formulas are equivalent and are valid for any year, except those century years that are not evenly divisible by 400. Therefore the formulas given above are

B2

valid for the year 2000, but not for 1900 or 2100. In the above formulas the factor within the parentheses has the value 1 for leap years and 2 for non-leap years. Thus for a non-leap year, the following expression can be used:

$$N = \left\langle \frac{275M}{9} \right\rangle - 2 \left\langle \frac{M+9}{12} \right\rangle + I - 30$$

For leap years the equivalent expression is

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle + I - 30$$

Many expressions in this almanac require the value of t , the time elapsed in days since 0 January, 0^h UT, of the current year. By inverting the definition of N , we obtain $t = N + UT/24$, where UT is the universal time expressed in hours.

Julian Date

The Julian Date (JD) is a continuous count of days and fractions thereof from 1 January 4713 B.C. (=−4712 January 1), Greenwich Mean Noon (=12^h UT). For example A.D. 1978 January 1, 0^h UT, is JD 2443509.5 and A.D. 1978 July 21, 15^h UT, is JD 2443711.125. Conversion of Gregorian Calendar Date to Julian Date for the years A.D. 1801 through A.D. 2099 can be carried out with the following formula:

$$\begin{aligned} JD = 367K - & \left\langle \frac{7(K + \langle(M+9)/12\rangle)}{4} \right\rangle + \left\langle \frac{275M}{9} \right\rangle + I + 1721013.5 \\ & + UT / 24 - 0.5 \operatorname{sign}(100K + M - 190002.5) + 0.5 \end{aligned}$$

where K is the year ($1801 \leq K \leq 2099$), M is the month ($1 \leq M \leq 12$), I is the day of the month ($1 \leq I \leq 31$), and UT is the universal time in hours. The last two terms in the formula add up to zero for all dates after 1900 February 28, so these two terms can be omitted for subsequent dates. Note that the formula makes use of the truncation and sign functions defined on page B1.

Example: Compute the JD corresponding to 1877 August 11, 7^h30^m UT.

Substituting $K = 1877$, $M = 8$, $I = 11$, and $UT = 7.5$ in the formula yields

$$\begin{aligned} JD = 688859 - 3286 + 244 + 11 + 1721013.5 + 0.3125 + 0.5 + 0.5 \\ = 2406842.8125 \end{aligned}$$

The Modified Julian Date (MJD) is sometimes used to specify current dates; it is defined as $MJD = JD - 2400000.5$. Use of the Modified Julian Date, rather than the Julian Date, is recommended with computers and calculators of limited precision. Note that for 0^h UT on any date the Julian Date has a fractional part of .5, while the corresponding Modified Julian Date is an integer.

If ephemeris time (ET) is used in the above formula instead of universal time (UT), the resulting quantity is designated Julian Ephemeris Date (JED).

Sidereal Time

The following formulas are relevant to the computation of sidereal time:

- (1) $GMST = 6^{\text{h}} 58852667 + 0^{\text{h}} 0657098232N + 1.0027379093UT$
- (2) $GMST = 6^{\text{h}} 67170278 + 0^{\text{h}} 0657098232(\text{JD}0 - 2433282.5)$
+ $1.0027379093UT$
- (3) $\Omega = 151^{\circ} 9504 - 0^{\circ} 0529539(N + UT/24)$
- (4) $\Omega = 372^{\circ} 1133 - 0^{\circ} 0529539(\text{JD} - 2433282.5)$
- (5) $E = -0^{\text{h}} 00029\sin\Omega$
- (6) $GAST = GMST + E$
- (7) $GAST = \Sigma(t_0) + 1.0027379093UT = \Sigma(t) + UT$
- (8) $LAST = GAST - \lambda/15$

where

$GMST$ is the Greenwich mean sidereal time in hours;

Ω is the mean longitude of the ascending node of the Moon's orbit, measured in degrees;

E is the equation of the equinoxes in hours;

$GAST$ is the Greenwich apparent sidereal time in hours;

$LAST$ is the local apparent sidereal time in hours;

N is the day of the year ($1 \leq N \leq 365$ or, during a leap year, $1 \leq N \leq 366$);

UT is the universal time in hours;

$\text{JD}0$ and JD are the Julian Dates at 0^{h} UT and at an arbitrary time of the day, respectively;

$\Sigma(t_0)$ and $\Sigma(t)$ are values obtained by evaluating the Chebyshev series for Apparent Sidereal Time (pp. D3–D6 or D31) at 0^{h} UT and at an arbitrary time of the day, respectively;

λ is the local longitude in degrees (west is positive; east is negative).

When using the above formulas, it may be necessary to reduce the resulting hour values to the range $0^{\text{h}} - 24^{\text{h}}$ by adding or subtracting multiples of 24^{h} .

Formulas (1) and (3) are specifically for the current year; the other formulas are valid at least over the latter half of this century. Formula (5) is an approximation that is accurate to about $\pm 0^{\circ}.2$. If more accuracy is required, the Chebyshev series for the Equation of the Equinoxes (pp. D3–D6 or D31) can be used in place of Formula (5). If sidereal time is to be computed to an accuracy better than $\pm 0^{\circ}.2$ (rarely justified for practical applications), then either the Chebyshev series for the Equation of the Equinoxes should be used in place of Formula (5) or Formula (7) should be used in place of Formula (6).

The above formulas can be easily adapted to allow the Modified Julian Date to be used in place of the Julian Date.

B4

Hour Angles

The following formulas are useful if astronomical data, such as that given in Sections C and E, are applied to navigational purposes:

$$GHA = 15(GAST - RA)$$

$$LHA = 15(LAST - RA) = GHA - \lambda$$

$$GHA_{\text{Aries}} = 15 \text{ GAST}$$

$$SHA = 360^\circ - 15 RA$$

$$GHA = GHA_{\text{Aries}} + SHA$$

where

GHA is the Greenwich hour angle in degrees;

LHA is the local hour angle in degrees;

GHA Aries is the Greenwich hour angle of the First Point of Aries (the origin of right ascension) in degrees;

SHA is the sidereal hour angle in degrees;

RA is the apparent right ascension (referred to the true equator and equinox of date) in hours;

λ is the local longitude in degrees (west is positive; east is negative)

GAST is the Greenwich apparent sidereal time in hours;

LAST is the local apparent sidereal time in hours.

When using the above formulas, it may be necessary to add or subtract 360° to reduce the resulting hour angles to the range $0^\circ - 360^\circ$. Often the local hour angle values are reduced to the range -180° to $+180^\circ$, in which case they are called meridian angles. In all cases positive hour angle values are measured westward from the meridian.

Altitude and Azimuth

The following formulas can be used to compute the altitude (a) and azimuth (A) of a celestial body:

$$(1) \quad \sin a = \cos z = \sin \phi \sin \delta + \cos \phi \cos \delta \cos LHA$$

$$(2) \quad x = \tan A = \sin LHA / (\cos LHA \sin \phi - \tan \delta \cos \phi)$$

Since computers and calculators normally give the arctangent in the range -90° to $+90^\circ$, the correct quadrant for A can be selected according to the following rules:

If $0^\circ \leq LHA \leq 180^\circ$,

$$A = 180^\circ + \arctan x, \text{ if } x \text{ is positive,}$$

$$A = 360^\circ + \arctan x, \text{ if } x \text{ is negative.}$$

If $180^\circ \leq LHA < 360^\circ$,

$$A = \arctan x, \text{ if } x \text{ is positive,}$$

$$A = 180^\circ + \arctan x, \text{ if } x \text{ is negative.}$$

Notation:

- a = altitude of body above (if $\sin a > 0$) or below (if $\sin a < 0$) the horizon;
 A = azimuth of body measured eastward from north over the range
 $0^\circ \leq A \leq 360^\circ$;
 ϕ = latitude of observer (north is positive; south is negative);
 δ = declination of body (north is positive; south is negative);
LHA = local hour angle of body;
 z = zenith distance of body ($z = 90^\circ - a$).

The standard navigational notation for altitude is Hc, and the navigational notation for azimuth is Zn. Equations (1) and (2) are the basic formulas used in preparing sight reduction tables.

Sunrise, Sunset and Twilight

The following algorithm provides a means of computing times of sunrise, sunset and twilight for the current year for specified locations. Between latitudes 65° North and 65° South the phenomena can be computed to an accuracy of $\pm 2^m$. Although the algorithm can be used at higher latitudes, its accuracy deteriorates near dates on which the Sun remains above or below the horizon for more than twenty-four hours.

Notation:

- ϕ = latitude of observer (north is positive; south is negative)
 λ = longitude of observer (west is positive; east is negative)
 M = Sun's mean anomaly
 L = Sun's true longitude
 RA = Sun's right ascension
 δ = Sun's declination
 H = Sun's local hour angle
 z = Sun's zenith distance at rise, set or twilight *
 t = approximate time of phenomenon in days since 0 Jan., 0^h UT
 T = local mean time of phenomenon
 UT = universal time of phenomenon

*The proper value of z should be chosen from the following:

	z	$\cos z$
Sunrise and Sunset	$90^\circ 50'$	-0.01454
Civil Twilight	96°	-0.10453
Nautical Twilight	102°	-0.20791
Astronomical Twilight	108°	-0.30902

Formulas for 1980:

- (1) $M = 0.985600t - 3.763$
- (2) $L = M + 1.916 \sin M + 0.020 \sin 2M + 282.605$
- (3) $\tan RA = 0.91746 \tan L$
- (4) $\sin \delta = 0.39782 \sin L$
- (5) $x = \cos H = (\cos z - \sin \delta \sin \phi) / (\cos \delta \cos \phi)$
- (6) $T = H + RA - 0^{\text{h}} 065710t - 6^{\text{h}} 589$
- (7) $UT = T + \lambda$

Procedure:

1. With an initial value of t , compute M from Eq. (1) and then L from Eq. (2). If a morning phenomenon (sunrise or the beginning of morning twilight) is being computed, construct an initial value of t from the formula

$$t = N + (6^{\text{h}} + \lambda)/24$$

where N is the day of the year (see the calendar on pages A2–A4 or the formulas on page B1) and λ is the observer's longitude expressed in hours. If an evening phenomenon is being computed, use

$$t = N + (18^{\text{h}} + \lambda)/24$$

2. Solve Eq. (3) for RA , noting that RA is in the same quadrant as L . Transform RA to hours for later use in Eq. (6).
3. Solve Eq. (4) for $\sin \delta$ which appears in Eq. (5); $\cos \delta$, which also is required in Eq. (5), should be determined from $\sin \delta$. While $\sin \delta$ may be positive or negative, $\cos \delta$ is always positive.
4. Solve Eq. (5) for H . Since computers and calculators normally give the arccosine in the range $0^{\circ} – 180^{\circ}$, the correct quadrant for H can be selected according to the following rules:
 - (a) rising phenomena, $H = 360^{\circ} – \arccos x$;
 - (b) setting phenomena, $H = \arccos x$.

In other words, for rising phenomena H must be either in quadrant 3 or 4 (depending on the sign of $\cos H$), whereas H must be either in quadrant 1 or 2 for setting phenomena. Convert H from degrees to hours for use in Eq. (6).

5. Compute T from Eq. (6), recalling that H and RA must be expressed in hours. If T is negative or greater than 24^{h} , it should be converted to the range $0^{\text{h}} – 24^{\text{h}}$ by adding or subtracting multiples of 24^{h} .
6. Compute UT from Eq. (7), where λ must be expressed in hours. UT is an approximation to the time of sunrise, sunset or twilight, referred to the Greenwich meridian. If UT is greater than 24^{h} , the phenomenon occurs on the following day, Greenwich time. If UT is negative, the phenomenon occurs on the previous day, Greenwich time.

To ensure that precision is not lost during the computations, t should be carried to four decimal places. Angles should be expressed to three decimals of a degree and, upon conversion, to three decimals of an hour. Five significant digits should be carried for the trigonometric functions.

Under certain conditions Eq. (5) will yield a value of $|\cos H| > 1$. This mathematical embarrassment indicates the absence of the phenomenon on that day. At far northern latitudes, for example, there is continuous illumination during certain summer days and continuous darkness during winter days.

Example: Compute the time of sunrise on 25 June at Wayne, New Jersey.

$$\text{Latitude: } = 40^\circ 9 \text{ North} \quad \text{Longitude: } = 74^\circ 3 \text{ West}$$

$$\lambda = +74^\circ 3 / 15 = 4^\text{h} 95$$

$$\phi = +40^\circ 9 \quad \sin\phi = 0.65474 \quad \cos\phi = 0.75585$$

$$\text{For sunrise: } z = 90^\circ 50' \quad \cos z = -0.01454$$

$$t = 177^\text{d} + (6^\text{h} + 4^\text{h} 95) / 24 = 177^\text{d} 456$$

$$M = 0^\circ 985600 (177^\text{d} 456) - 3^\circ 763 = 171^\circ 138$$

$$L = 171^\circ 138 + 1^\circ 916 (0.15406) \quad 0^\circ 020 (-0.30444) + 282^\circ 605 \\ = 454^\circ 032 = 94^\circ 032$$

$$\tan RA = 0.91746 (-14.187) = -13.016$$

$RA = 94^\circ 393 = 6^\text{h} 293$ Since L is in quadrant 2, so is RA .

$$\sin\delta = 0.39782 (0.99752) = 0.39684$$

$$\cos\delta = 0.91789$$

$$x = \cos H = [-0.01454 - (0.39684)(0.65474)] / [(0.91789)(0.75585)] \\ = -0.39546$$

Since sunrise is being computed, $H = 360^\circ - 113^\circ 295 = 246^\circ 705 = 16^\text{h} 447$

$$T = 16^\text{h} 447 + 6^\text{h} 293 - 0^\text{h} 065710 (177^\text{d} 456) - 6^\text{h} 589 = 4^\text{h} 490$$

$$UT = 4^\text{h} 490 + 4^\text{h} 95 = 9^\text{h} 44$$

Sunrise occurs at $9^\text{h} 26^\text{m}$ UT = $5^\text{h} 26^\text{m}$ EDT

Example: Compute the end of nautical evening twilight on 1 October at latitude $6^\circ 0$ South, longitude $117^\circ 0$ East.

$$\lambda = -117^\circ 0 / 15 = -7^\text{h} 80$$

$$\phi = -6^\circ 0 \quad \sin\phi = -0.10453 \quad \cos\phi = 0.99452$$

$$\text{For nautical twilight: } z = 102^\circ \quad \cos z = -0.20791$$

$$t = 275^\text{d} + (18^\text{h} - 7^\text{h} 80) / 24 = 275^\text{d} 425$$

$$M = 0^\circ 985600 (275^\text{d} 425) - 3^\circ 763 = 267^\circ 696$$

$$L = 267^\circ 696 + 1^\circ 916 (-0.99919) + 0^\circ 020 (0.08034) + 282^\circ 605 \\ = 548^\circ 388 = 188^\circ 388$$

$$\tan RA = 0.91746 (0.14746) = 0.13528$$

$RA = 187^\circ 704 = 12^\text{h} 514$ Since L is in quadrant 3, so is RA .

$$\sin\delta = 0.39782 (-0.14588) = -0.05803$$

$$\cos\delta = 0.99831$$

$$x = \cos H = [-0.20791 - (-0.05803)(-0.10453)] / [(0.99831)(0.99452)] \\ = -0.21552$$

Since the end of nautical evening twilight is being computed, $H = 102^\circ 446$

$$H = 6^\text{h} 830$$

$$T = 6^\text{h} 830 + 12^\text{h} 514 - 0^\text{h} 065710 (275^\text{d} 425) - 6^\text{h} 589 = -5^\text{h} 343 \\ = 18^\text{h} 657$$

$$UT = 18^\text{h} 657 - 7^\text{h} 800 = 10^\text{h} 857$$

End of evening nautical twilight occurs at $10^\text{h} 51^\text{m}$ UT

Solar Coordinates

The true geocentric longitude of the Sun (λ) can be computed to an accuracy of ± 1 minute of arc from the following formulas:

$$M = 358^\circ 476 + 35999^\circ 050T$$

$$L = 279^\circ 691 + 36000^\circ 769T$$

$$\lambda = L + (1^\circ 919 - 0^\circ 0048T) \sin M + 0^\circ 020 \sin 2M$$

where $T = (\text{JD} - 2415020.0) / 36525$ and JD is the Julian Date (see page B2).

If we consider the Sun's latitude to be identically zero, the right ascension (RA) and declination (δ) of the Sun can also be computed to ± 1 minute of arc from

$$\tan RA = \cos \epsilon \tan \lambda$$

$$\sin \delta = \sin \epsilon \sin \lambda$$

where ϵ , the obliquity of the ecliptic, can be computed from $\epsilon = 23^\circ 452 - 0^\circ 013T$. The right ascension is always in the same quadrant as the true longitude.

Because the obliquity varies slowly, a single value can be used for an extended period of time. During the last quarter of the twentieth century, $\epsilon = 23^\circ 441$ is sufficiently accurate. Similarly the coefficient of $\sin M$ in the equation for λ changes slowly; for the last half of the twentieth century a value of $1^\circ 916$ can be safely used.

Although there is no rigorous limit on the time span for which these formulas are valid, their accuracy gradually deteriorates for values of T greater than a couple of centuries.

Equation of Time and Time of Solar Transit

The equation of time (EqT) is the hour angle of the true Sun minus the hour angle of the mean sun. Thus it is the difference: apparent solar (sundial) time minus mean solar (clock) time.

For the current year EqT can be computed to an accuracy of ± 0.8 minute from the following formula:

$$(1) EqT = -7^\mathrm{m} 64 \sin(0^\circ 9856 t) + 0^\mathrm{m} 56 \cos(0^\circ 9856 t) \\ - 9^\mathrm{m} 37 \sin(1^\circ 9712 t) - 2^\mathrm{m} 83 \cos(1^\circ 9712 t)$$

where t is the number of days since 0 January, 0^h UT.

If higher accuracy is required the following formulas will give EqT to an accuracy of ± 2 seconds during the current year:

$$(2) \theta = 8^\circ 825 + 0^\circ 98561 t + 1^\circ 916 \sin(0^\circ 9856 t - 3^\circ 780) \\ + 0^\circ 020 \sin(1^\circ 9712 t - 7^\circ 560)$$

$$(3) EqT = 35^\mathrm{m} 302 + 3^\mathrm{m} 94244 t - 4^\mathrm{m} 0 \arctan[(\tan \theta) / 0.91746]$$

where t is the number of days, and fractions thereof, since 0 January, 0^h UT. In Eq. (3) the arctangent should yield a result in degrees that is in the same quadrant as θ . Near the end of the year θ becomes greater than 360° . When this occurs the arctangent in Eq. (3) should also be greater than 360° .

Eqs. (2) and (3) can be used to compute the time at which the Sun transits the local meridian. First use Eqs. (2) and (3) to compute EqT for $t = N + (12^h + \lambda)/24$, where N is the day of the year (see the calendar on pages A2–A4 or the formulas on pages B1–B2) and λ is the west longitude expressed in hours. Then the local mean time (LMT) of transit is given to an accuracy of ± 2 seconds by $LMT = 12^h - EqT$. The universal time of local transit is then obtained from $UT = LMT + \lambda$.

Example: Compute the time of solar transit at longitude $81^\circ 38' 0$ West on 22 September 1980.

$$\lambda = +81^\circ 633/15 = +5^h 4422$$

$$\text{For solar transit: } t = 266^d + (12^h + 5^h 4422)/24 = 266^d 72676$$

$$\theta = 8^\circ 825 + 0^\circ 98561(266^d 72676) + 1^\circ 916(-0.9820) \\ + 0^\circ 020(+0.3712) = 269^\circ 839$$

$$EqT = 35^\circ 302 + 3^\circ 94244(266^d 72676) - 4^\circ 0 \arctan [355.8735 / 0.91746] \\ = 35^\circ 302 + 1051^\circ 554 - 4^\circ 0(269^\circ 852) = 7^\circ 447$$

$$LMT = 12^h 00^m - 7^\circ 447 = 11^h 52^m 553$$

$$UT = 11^h 52^m 553 + 5^h 26^m 533 = 17^h 19^m 05^s \text{ UT}$$

$$\text{Eastern Daylight Time} = 13^h 19^m 05^s$$

Moonrise and Moonset

Times of moonrise and moonset can be computed for specified locations using the following algorithm. Between latitudes 60° North and 60° South, the phenomena can be computed to an accuracy of $\pm 5^m$. Although the algorithm can be used at higher latitudes, its accuracy deteriorates near dates on which the Moon remains above or below the horizon for more than twenty-four hours.

Notation: ϕ = latitude of observer (north is positive; south is negative)

λ = longitude of observer (west is positive; east is negative)

t_i = i -th approximation to universal time of phenomenon, expressed in days from 0 January, 0^h UT

GHA_i = Moon's GHA at time t_i

δ_i = Moon's declination at time t_i (north is positive; south is negative)

τ_i = i -th correction to t_0 , thus $t_i = t_0 + \tau_i$

H_i = i -th approximation to Moon's LHA at time of rise or set

ΔH_i = i -th approximation to Moon's daily rate of change in GHA

Formulas:

$$(1) \quad \Delta H_i = (GHA_i - (GHA_0)) / \tau_i \quad \text{for } i = 0, \text{ let } \Delta H_0 = 347^\circ 81$$

$$(2) \quad x_{i+1} = \cos H_{i+1} = (.00233 - \sin \phi \sin \delta_i) / (\cos \phi \cos \delta_i)$$

$$(3) \quad \tau_{i+1} = (H_{i+1} - H_0) / \Delta H_i$$

$$(4) \quad t_{i+1} = t_0 + \tau_{i+1}$$

Procedure:

1. Let $t_0 = N + (12^h + \lambda)/24$, where N is the day of the year (see the calendar on pages A2–A4 or the formulas on page B1) and λ is the observer's longitude expressed in hours. Set $i = 0$ and begin the following iterative process.
2. For time t_i compute the Moon's GHA and declination to navigational precision ($\pm 0'1$). Label these quantities GHA_i and δ_i , respectively, where i specifies the iteration number. For $i = 0$, compute $H_0 = GHA_0 - \lambda$.
3. If $i = 0$, let $\Delta H_0 = 347.81$. Otherwise compute ΔH_i from Eq. (1). If $\Delta H_i < 0$, add $360^\circ / |\tau_i|$ to ΔH_i .
4. Solve Eq. (2) for H_{i+1} . Since computers and calculators normally give the arc-cosine in the range $0^\circ - 180^\circ$, the correct quadrant for H_{i+1} can be selected according to the following rules:
 - (a) moonrise computations, $H_{i+1} = 360^\circ - \arccos x_{i+1}$;
 - (b) moonset computations, $H_{i+1} = \arccos x_{i+1}$.
 In other words, near the time of moonrise H_{i+1} must be either in quadrant 3 or 4 (depending on the sign of $\cos H_{i+1}$); near moonset H_{i+1} must be either in quadrant 1 or 2. For latitudes higher than 60° (i.e., $|\phi| > 60^\circ$), the condition $|\cos H_{i+1}| > 1$ can occur, thereby indicating the absence of the phenomenon on that day.
5. Compute τ_{i+1} from Eq. (3). If $|\tau_{i+1}| < 0.^d 5$, proceed to Step 6. If $|\tau_{i+1}| > 0.^d 5$, the phenomenon being computed occurs on the day prior to the day desired (if τ_{i+1} is negative) or on the day following the day desired (if τ_{i+1} is positive). Normally the phenomenon on the desired day can be obtained by adding to τ_{i+1} (if τ_{i+1} is negative), or subtracting from τ_{i+1} (if τ_{i+1} is positive), $360^\circ / \Delta H_i$. If successful this technique will produce a new value of τ_{i+1} in the required range. However, two conditions may prevent the reduction to $|\tau_{i+1}| < 0.^d 5$:
 - (a) for low values of i , τ_{i+1} may be a fairly crude approximation to the ultimate value, τ_n ;
 - (b) each month there is one day (near last quarter) on which there is no moonrise, and another day (near first quarter) on which there is no moonset.
 If $|\tau_{i+1}| \approx 0.^d 5$, it is probably worth attempting another iteration to see if $|\tau_{i+2}| < 0.^d 5$.
6. Compute t_{i+1} from Eq. (4). If $|t_{i+1} - t_i| < 0.^d 01$, t_{i+1} is accurate to $\pm 5^m$. Otherwise it is necessary to iterate the solution by setting $i = i + 1$ and executing Steps 2 through 6 again.

Example: Compute moonrise on 29 June 1980 at latitude $60^\circ 10'$ North and longitude $24^\circ 57'$ East.

$$\phi = +60^\circ 16' \quad \sin \phi = 0.86748 \quad \cos \phi = 0.49748$$

$$\lambda = -24^\circ 950 = -1^\text{h} 663$$

From the calendar on pages A2–A4 or the formulas on pages B1–B2, 29 June

is found to be day 181; therefore

$$t_0 = 181^d + (12^h - 1^h 663)/24 = 181^d 43069$$

$i = 0$:

$$GHA_0 = 140^\circ 380 \quad \delta_0 = -19^\circ 260$$

$$H_0 = 140^\circ 380 + 24^\circ 950 = 165^\circ 330$$

$$\Delta H_0 = 347^\circ 81$$

$$\cos H_1 = [0.00233 - (0.86748)(-0.32986)] / [(0.49748)(0.94403)] \\ = 0.61426$$

Since moonset is sought, H_1 is in quadrant 1 or 2:

$$H_1 = 52^\circ 102$$

$$\tau_1 = (52^\circ 102 - 165^\circ 330) / 347^\circ 81 = -0^d 32555$$

$|\tau_1| < 0^d 5$ as is required.

$$t_1 = 181^d 43069 - 0^d 32555 = 181^d 10514 = 29 \text{ June } 02^h 31^m \text{ UT}$$

$i = 1$:

$$GHA_1 = 27^\circ 546 \quad \delta_1 = -19^\circ 526$$

$$\Delta H_1 = (27^\circ 546 - 140^\circ 380) / -0^d 32555 = 346^\circ 595$$

$$\cos H_2 = [0.00233 - (0.86748)(-0.33423)] / (0.49748)(0.94249) \\ = 0.62335$$

Since moonset is sought, H_2 is in quadrant 1 or 2:

$$H_2 = 51^\circ 439$$

$$\tau_2 = (51^\circ 439 - 165^\circ 330) / 346.595 = -0^d 32860$$

$$t_2 = 181^d 43069 - 0^d 32860 = 181^d 10209 = 29 \text{ June } 02^h 27^m \text{ UT}$$

$$|t_2 - t_1| = 0^d 003 < 0^d 01$$

The extremely rapid convergence illustrated in this example occurs frequently but not invariably. Although the first approximation (t_1) will often give adequate precision for most purposes, it is recommended that the solution be iterated and that the convergence criterion ($|t_{i+1} - t_i| < 0^d 01$) be tested.

Polaris (Pole Star)

The following formulas are relevant to observations of Polaris:

$$(1) \quad \phi = a - p \cosh + 0.5p \sin p \sin^2 h \tan \phi$$

$$(2) \quad A \cos \phi = p \sinh + p \sin p \sinh \cosh \tan \phi$$

where p is the polar distance of Polaris: $p = 90^\circ$ – declination of Polaris

h is the LHA of Polaris: $h = \text{GHA Aries} + \text{SHA Polaris} + \text{east} (-\text{west})$
longitude of observer

ϕ is the observer's latitude;

A is the azimuth of Polaris;

a is the corrected altitude of Polaris.

Eq. (1) permits the observer's latitude to be determined from an observation of the altitude of Polaris (corrected for refraction, dip, etc.). Assumed values of the observer's latitude and longitude can be used for the right side of Eq. (1). Eq. (2) yields the azimuth of Polaris if the observer's position is known. These expressions are accurate only for Polaris, since they depend on p being a small quantity. The SHA and declination of Polaris to be used in these formulas should be referred to the true equator and equinox of date; i.e., the apparent place of Polaris should be computed (see Section E 'Stellar Tables'; Polaris is star number 17).

Equation of Position Line

The following formula can be used to obtain a line of position (LOP) directly from an observation of the altitude of a celestial body:

$$\lambda = \text{GHA} \pm \arccos [(\sin a - \sin \phi \sin d) / \cos \phi \cos d]$$

where: λ is the computed longitude;

GHA is the GHA of the body for the time of observation;

a is the corrected altitude of the body;

d is the declination of the body for the time of observation;

ϕ is an estimate of the observer's latitude.

North latitudes and west longitudes are positive; south latitudes and east longitudes are negative. Longitudes with absolute values greater than 180° may be encountered. In the above formula, + is used for bodies east of the meridian (rising) and - for bodies west of the meridian (setting).

The formula gives the longitude λ at which the position line crosses the parallel of latitude ϕ . Repeated application of the formula using different values of latitude yields a locus of points all lying in the LOP. Note that no assumed position is necessary, although an estimate of the observer's latitude is helpful in reducing the number of times the formula is applied.

The formula becomes indeterminate at the transit time of a body and for latitudes that the position line does not cross at any point.

Motion of Body and Motion of Observer

The following formula gives the change of altitude of a celestial body, due to the rotation of the Earth, in the time interval Δt (e.g., the interval between a sextant observation and the time of a fix). This correction may be applied to the observed altitude to permit the use of a common assumed position and LHA Aries for observations made at different times.

$$MOB = 15.04 \Delta t \cos \phi \sin A$$

where MOB is the altitude correction in minutes of arc, Δt is the time difference in minutes, ϕ is the latitude of the observer, and A is the azimuth of the observed body. If the time of the fix is later than the time of observation, MOB should be added to the observed altitude.

The following formula gives the change of altitude of a celestial body, due to the motion of the observer, in the time interval Δt (e.g., the interval between a sextant observation and the time of a fix). This correction may be applied to the altitude in lieu of advancing or retiring a line of position.

$$MOO = \frac{v \Delta t}{60} \cos(A - C)$$

where MOO is the altitude correction in minutes of arc, Δt is the time difference in minutes, A is the azimuth of the observed body, C is the track/course angle, and v is the ground speed in knots. If the time of the fix is later than the time of observation, MOO should be added to the observed altitude.

These formulas are approximations; they become unreliable for values of Δt greater than 5 minutes.

Sextant Altitude Corrections

Several corrections must be applied to a sextant altitude (hs) in order to obtain a corrected altitude (Ho). Ho can then be either (a) compared with the computed altitude (Hc) to obtain the altitude difference (Δa); or (b) used in the 'Equation of Position Line' (see p. B12) to obtain directly the location of the LOP for the sight.

The corrections, in the order in which they should be applied, are:

- (1) Instrument and/or index correction, IC;
- (2) Dip of Horizon, D (marine sextant); or Coriolis correction, Δz (bubble sextant);
- (3) Atmospheric refraction, R;
- (4) Semi-diameter, SD (marine sextant, Sun and Moon observations);
- (5) Parallax in altitude, PA (Moon, Venus and Mars observation).

In mathematical notation:

$$Ho = hs + IC + (D \text{ or } \Delta z) - R + SD + PA$$

If Venus is observed, an additional correction for the phase of the planet may be necessary. This correction can be made either to the sextant altitude or to the GHA or LHA of Venus.

Descriptions and formulas for D, Δz , R, SD, PA and the phase correction for Venus are given on the following pages.

Dip of Horizon

The dip of the apparent horizon from a horizontal plane is given by

$$D = -0.97\sqrt{h}$$

where h is the height of eye level of the observer in feet and D is the dip of the horizon in minutes of arc. For observations of a celestial body made with a marine sextant or similar instrument, D should be added to the observed altitude to obtain the corrected altitude. This formula is an approximation; the apparent dip varies with atmospheric conditions.

Coriolis Correction

Any object moving across or above the surface of the rotating Earth is subject to an apparent force tending to push the object to the right in the northern hemisphere and to the left in the southern hemisphere. This Coriolis acceleration manifests itself as a deflection of the apparent vertical by an amount Z :

$$(1) \quad Z = 2.62 V \sin \phi + 0.146 V^2 \sin C \tan \phi - 5.25 VC'$$

where: Z is the deflection in minutes of arc;

V is the speed in hundreds of knots;

ϕ is the latitude;

C is the true track/course angle;

C' is the rate of change of true track/course angle in degrees per minute of time.

Usually only the first term on the right of Eq. (1) is significant.

Observations of the altitudes of celestial bodies made with bubble sextants or similar artificial horizon instruments must be corrected for the Coriolis effect. The correction Δz , which can be added to the observed (e.g., bubble sextant) altitude, is given approximately by

$$(2) \quad \Delta z = Z \sin(A - C)$$

where: Δz is the altitude correction in minutes of arc;

Z is the deflection of the vertical determined from Eq. (1);

A is the azimuth of observed body;

C is the true track/course angle.

In the northern hemisphere the correction Δz is positive for stars on the right and negative for stars on the left of the aircraft. In the southern hemisphere the correction is negative for stars on the right and positive for stars on the left.

Atmospheric Refraction

The Earth's atmosphere tends to refract light in such a way that celestial bodies appear slightly higher in the sky than they would if there were no atmosphere. The formulas below can be used to determine R , the angle of refraction. R should be subtracted from an observed (e.g., sextant) altitude to obtain the corrected altitude.

$$(1) \quad R = \frac{P}{273 + T} [3.430289 (z - \arcsin [0.9986047 \sin (0.9967614z)]) - 0.01115929z]$$

$$(2) \quad R = \exp(-h/27000) \tan z = 1/\exp(h/27000) \tan a$$

where: R is the refraction correction in minutes of arc;

a is the observed altitude

z is the observed zenith distance in degrees: $z = 90^\circ - a$

T is the temperature in degrees Celsius;
P is the atmospheric pressure in millibars;
h is the height of the observer above sea level in feet.

Eq. (1) is more suitable for surface observations, while Eq. (2) is more suitable for observations from aircraft. Both formulas are approximations and are not equivalent to a complete theory of refraction. Eq. (2), which should be used only for altitudes greater than 10° , is accurate to about $0'2$. Eq. (1) can be used for all altitudes: for altitudes greater than 15° , it is accurate to $0'1$ or better; for altitudes between 3° and 15° , errors between $0'1$ and $1'0$ may arise; for altitudes less than 3° , errors between $1'$ and $3'$ may be expected.

Semi-diameter of the Sun and Planets

When not available directly from almanac data, the semi-diameters of the Sun and planets can be computed from

$$SD = S/d = S\pi/8.794$$

where: *SD* is the semi-diameter in seconds of arc;
S is the semi-diameter at unit distance (1 AU) in seconds of arc;
d is the geocentric distance in AU;
 π is the horizontal parallax in seconds of arc.

The following values of *S* should be used:

Sun	959".63	Jupiter	98".47
Mercury	3.34	Saturn	83.33
Venus	8.41	Uranus	34.28
Mars	4.68	Neptune	36.56

These values apply to the equatorial dimensions of the bodies and do not include any adjustments for irradiation.

Semi-diameter of the Moon

When not available directly from almanac data, the semi-diameter of the Moon can be computed from

$$(1) \quad SD = 56204.92/d = 0.272476\pi$$

where *SD* is the semi-diameter in seconds of arc, *d* is the geocentric distance of the Moon in units of the Earth's equatorial radius, and π is the horizontal parallax of the Moon in seconds of arc.

Computed this way, the semi-diameter applies to a fictitious observer located at the center of the Earth. The observed semi-diameter of the Moon will be slightly greater than the geocentric semi-diameter, since a real observer located on the surface of the Earth will be slightly closer to the Moon (assuming it is above the horizon). For navigation and certain other purposes the *augmented semi-diameter* of

the Moon should be used:

$$(2) \quad SD_{\text{aug}} = SD[1 + (\sin a)/d]$$

where SD_{aug} is the augmented semi-diameter in seconds of arc, a is the altitude of the Moon (for navigational purposes $a = H_o$, but h_s or H_c can be used instead with negligible error), d is the geocentric distance of the Moon in units of the Earth's equatorial radius, and SD is the geocentric semi-diameter computed from Eq.(1). For navigational purposes a constant value of $d = 60.27$ can be used to sufficient accuracy. The increase in the Moon's semi-diameter due to augmentation is zero when the Moon is on the horizon and is about $0'.3$ when the Moon is at the zenith.

Parallax in Altitude

The finite size of the Earth causes a parallactic shift in the apparent positions of nearby celestial objects. The resulting parallax in altitude can be computed from

$$\sin PA = \sin \pi \cos a$$

where PA is the parallax in altitude, π is the horizontal parallax, and a is the observed altitude. When the horizontal parallax of a body is not available, it may be computed from the relation $\pi = 8.^{\circ}794/d$, where d is the geocentric distance of the body in astronomical units. The parallax in altitude can exceed $1'$ only for the Moon. Since parallax tends to decrease the apparent altitude of a body, the quantity PA should be added to an observed (e.g., sextant) altitude in order to obtain the corrected altitude. To a reasonable approximation, PA can also be computed from

$$PA = \pi \cos a$$

Correction for the Phase of Venus

When the altitude of Venus is observed with a small instrument, a correction to the observed altitude is required to account for the fact that the center of light, rather than the center of the disk, is observed. This correction has the form $-k \cos \theta$, where k is a correction factor (given below) and θ is the angle on the celestial sphere, at the position of Venus, between the observer's vertical and the direction of the Sun. The correction, which should be added to the observed (e.g., sextant) altitude, is positive when the Sun is lower than Venus, zero when they have the same altitude, and negative when the Sun is higher.

In sight reduction this effect can be approximately taken into account by correcting the GHA (or LHA) of Venus rather than correcting the observed altitude. Simply add k to the GHA (or LHA) of Venus when Venus is east of the Sun (*i.e.*, when Venus is an evening planet), and subtract k from the GHA (or LHA) when Venus is west of the Sun (morning planet). The correction should not be applied in this way near the time of superior or inferior conjunction.

Venus is at inferior conjunction on 15 June 1980. Prior to this date Venus is in the evening sky. Following inferior conjunction Venus is in the morning sky.

The values of k for 1980 are:

	k
Jan. 1	0.0
Feb. 29	0.1
Apr. 21	0.2
May 14	0.3
May 30	0.4
July 1	0.3
July 17	0.2
Aug. 9	0.1
Sept. 29	0.0
Dec. 31	

Section C: NAVIGATIONAL TABLES

C2

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

DAY	1 THRU	32	JD 2444239.5 TO 2444271.5	DATES JAN	1 THRU FEB	1
			A = 16.00000000	B = -1.06250000		
			ARIES GHA	SUN GHA	SUN DEC	SUN S C
TERM			DEG	DEG	DEG	DEG
0	6235.5817		6297.5650		-20.9445	0.2717
1	5775.7718		5758.6292		3.0437	0.0
2	0.0009		0.3660		0.8508	0.0
3	-0.0035		0.0465		-0.0595	0.0
4	-0.0010		-0.0115		-0.0045	0.0
5	0.0023		0.0046		0.0007	0.0
SUMS	12011.3522		12056.5998		-17.1133	0.2717
DAY	32 THRU	63	JD 2444270.5 TO 2444302.5	DATES FEB	1 THRU MAR	3
			A = 16.00000000	B = -3.00000000		
			ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM			DEG	DEG	DEG	DEG
0	5906.1369		5936.4673		-12.3495	0.2698
1	5775.7702		5760.2361		5.5453	0.0004
2	0.0006		0.3806		0.4195	0.0027
3	0.0009		-0.0266		-0.0760	-0.0046
4	-0.0008		-0.0069		0.0023	-0.0017
5	-0.0009		-0.0028		-0.0018	0.0036
SUMS	11681.9069		11697.0477		-6.4602	0.2702
DAY	61 THRU	92	JD 2444299.5 TO 2444331.5	DATES MAR	1 THRU APR	1
			A = 16.00000000	B = -4.81250000		
			ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM			DEG	DEG	DEG	DEG
0	5934.7210		5937.8844		-1.3705	0.2681
1	5775.7704		5761.1486		6.3278	0.0
2	-0.0026		0.1050		0.0164	0.0041
3	-0.0004		-0.0539		-0.0775	-0.0022
4	0.0018		-0.0010		0.0015	-0.0039
5	0.0001		0.0017		0.0042	0.0004
SUMS	11710.4903		11699.0848		4.9019	0.2665
DAY	92 THRU	123	JD 2444330.5 TO 2444362.5	DATES APR	1 THRU MAY	2
			A = 16.00000000	B = -6.75000000		
			ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM			DEG	DEG	DEG	DEG
0	5965.2760		5940.0940		10.4524	0.2665
1	5775.7708		5760.9236		5.6317	-0.0019
2	-0.0026		-0.2005		-0.3682	-0.0026
3	-0.0014		-0.0321		-0.0650	0.0016
4	0.0018		0.0040		0.0010	0.0020
5	0.0008		-0.0043		0.0019	-0.0005
SUMS	11741.0454		11700.7847		15.6538	0.2651

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C3

	DAYS	1 THRU	32	JD 2444239.5 TO 2444271.5		DATES JAN	1 THRU FEB	1
	A = 16.00000000				B = -1.06250000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM		DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	6261.9255	-12.5863	6427.6466	9.1416	6434.0461	9.1120	6417.5123	3.2737
1	5757.2124	7.3402	5775.7071	0.5371	5776.7548	0.4675	5776.0088	0.1830
2	0.6686	0.6781	1.5286	0.6155	0.3506	0.1366	0.2093	0.0866
3	-0.0595	-0.1592	0.0826	0.0149	-0.0254	-0.0106	-0.0030	-0.0027
4	-0.0116	0.0044	-0.0301	-0.0157	-0.0035	-0.0043	-0.0008	0.0002
5	-0.0023	0.0072	-0.0027	-0.0035	0.0026	-0.0012	-0.0018	-0.0013
SUMS	12019.7331	-4.7156	12204.9321	10.2899	12211.1252	9.7000	12193.7248	3.5395
	DAYS	32 THRU	63	JD 2444270.5 TO 2444302.5		DATES FEB	1 THRU MAR	3
	A = 16.00000000				B = -3.00000000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM		DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5898.4370	3.1275	6103.8814	12.2580	6107.5855	10.4061	6089.2509	3.9177
1	5758.8304	8.3552	5781.3304	2.3347	5777.7027	0.7897	5776.6992	0.4543
2	0.1426	-0.1375	0.8734	0.0733	0.0993	0.0196	0.1293	0.0486
3	-0.0784	-0.1329	-0.4177	-0.2101	-0.0631	-0.0187	-0.0165	-0.0066
4	0.0123	0.0009	-0.0644	-0.0104	-0.0024	-0.0007	-0.0010	-0.0025
5	-0.0004	-0.0001	0.0203	0.0130	0.0026	-0.0034	-0.0038	-0.0019
SUMS	11657.3435	11.2131	11885.6234	14.4585	11885.3246	11.1926	11866.0581	4.4096
	DAYS	61 THRU	92	JD 2444299.5 TO 2444331.5		DATES MAR	1 THRU APR	1
	A = 16.00000000				B = -4.81250000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM		DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5896.4277	17.0482	6142.6590	15.6126	6139.6309	11.7609	6119.8054	4.8286
1	5758.8247	6.6020	5780.0151	0.9130	5777.4659	0.6314	5776.9303	0.5119
2	-0.0392	-0.8074	-1.4134	-0.6566	-0.2187	-0.0997	-0.0069	-0.0168
3	0.0551	-0.1105	-0.2292	-0.0132	-0.0545	-0.0196	-0.0296	-0.0178
4	0.0368	0.0073	0.0872	0.0320	0.0037	0.0013	-0.0021	0.0002
5	0.0017	0.0023	0.0029	-0.0023	0.0042	0.0022	0.0021	0.0043
SUMS	11655.3068	22.7419	11921.1216	15.8855	11916.8315	12.2765	11896.6992	5.3104
	DAYS	92 THRU	123	JD 2444330.5 TO 2444362.5		DATES APR	1 THRU MAY	2
	A = 16.00000000				B = -6.75000000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM		DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5894.9237	26.1660	5815.5924	15.1220	5812.3691	12.5214	5792.3817	5.6733
1	5760.3804	2.5868	5774.0986	-1.2542	5776.2299	0.1278	5776.6064	0.3261
2	1.1763	-1.1440	-1.3191	-0.4280	-0.3777	-0.1420	-0.1467	-0.0719
3	0.4200	0.0099	0.1314	0.0405	-0.0064	0.0011	-0.0145	-0.0068
4	0.0625	0.0197	0.0120	-0.0038	0.0063	0.0002	0.0027	0.0003
5	-0.0048	0.0003	-0.0064	0.0006	-0.0008	-0.0010	-0.0014	0.0008
SUMS	11656.9581	27.6387	11588.5089	13.4771	11588.2204	12.5075	11568.8282	5.9218

C4

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

DAYS 122 THRU 153		JD 2444360.5 TO 2444392.5		DATES MAY	1 THRU JUNE	1
		A = 16.00000000	B = -8.62500000			
		ARIES GHA	SUN GHA	SUN DEC	SUN S D	
TERM		DEG	DEG	DEG	DEG	
0	5994.8445	5940.9194	19.3117	0.2642		
1	5775.7697	5759.8833	3.6109	-0.0033		
2	0.0002	-0.2964	-0.6979	0.0		
3	0.0023	0.0278	-0.0503	0.0061		
4	0.0001	0.0086	0.0026	0.0		
5	-0.0019	-0.0063	-0.0004	-0.0037		
SUMS	11770.6149	11700.5364	22.1766	0.2633		
DAYS 153 THRU 184		JD 2444391.5 TO 2444423.5		DATES JUNE	1 THRU JULY	2
		A = 16.00000000	B = -10.56250000			
		ARIES GHA	SUN GHA	SUN DEC	SUN S D	
TERM		DEG	DEG	DEG	DEG	
0	6025.3996	5939.8090	23.3780	0.2633		
1	5775.7696	5759.1329	0.4695	0.0		
2	0.0001	-0.0294	-0.8805	0.0		
3	0.0026	0.0715	-0.0143	0.0		
4	0.0001	-0.0032	0.0079	0.0		
5	-0.0021	-0.0011	0.0064	0.0		
SUMS	11801.1699	11698.9797	22.9670	0.2633		
DAYS 183 THRU 214		JD 2444421.5 TO 2444453.5		DATES JULY	1 THRU AUG	1
		A = 16.00000000	B = -12.43750000			
		ARIES GHA	SUN GHA	SUN DEC	SUN S D	
TERM		DEG	DEG	DEG	DEG	
0	6054.9694	5938.4865	21.2100	0.2633		
1	5775.7708	5759.6542	-2.7073	0.0		
2	-0.0036	0.2914	-0.7673	0.0		
3	-0.0029	0.0328	0.0414	0.0		
4	0.0031	-0.0166	0.0047	0.0		
5	0.0027	0.0014	0.0005	0.0		
SUMS	11830.7395	11698.4497	17.7820	0.2633		
DAYS 214 THRU 245		JD 2444452.5 TO 2444484.5		DATES AUG	1 THRU SEPT	1
		A = 16.00000000	B = -14.37500000			
		ARIES GHA	SUN GHA	SUN DEC	SUN S D	
TERM		DEG	DEG	DEG	DEG	
0	6085.5243	5938.9819	13.4436	0.2633		
1	5775.7704	5760.8466	-5.1064	-0.0007		
2	-0.0026	0.2818	-0.4553	0.0004		
3	-0.0004	-0.0300	0.0616	0.0031		
4	0.0018	-0.0121	0.0011	0.0006		
5	0.0002	0.0016	-0.0019	-0.0015		
SUMS	11861.2937	11700.0698	7.9427	0.2652		

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C5

DAYS 122 THRU 153			JD 2444360.5 TO 2444392.5			DATES MAY		1 THRU JUNE 1	
						A =	16.0000000	R =	-8.6250000
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC	
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5903.2307	27.2792	5838.2597	11.4887	5841.4845	12.2694	5822.9180	6.0014	
1	5770.6880	-1.1768	5770.4875	-2.5247	5774.8521	-0.3867	5775.9294	0.0137	
2	4.7275	-0.8428	-0.6737	-0.2687	-0.3373	-0.1296	-0.2024	-0.0867	
3	0.7928	0.0055	0.0792	0.0210	0.0176	0.0038	-0.0012	0.0002	
4	-0.1035	-0.0352	-0.0041	-0.0035	0.0003	0.0034	0.0028	-0.0009	
5	-0.0997	0.0005	0.0051	-0.0016	-0.0025	0.0010	-0.0016	0.0005	
SUMS	11679.2358	25.2304	11608.1537	8.7112	11616.0147	11.7613	11598.6450	5.9282	
DAYS 153 THRU 184			JD 2444391.5 TO 2444423.5			DATES JUNE		1 THRU JULY 2	
						A =	16.0000000	B =	-10.5625000
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC	
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5942.6269	21.7145	5856.5710	5.7067	5869.1172	11.0844	5853.0281	5.7031	
1	5786.2395	-4.1522	5768.6115	-3.3862	5773.7387	-0.8153	5775.1606	-0.3143	
2	-1.1635	0.1733	-0.3583	-0.1780	-0.2341	-0.0964	-0.1859	-0.0771	
3	-2.7390	0.7797	0.0385	0.0233	0.0201	0.0052	0.0084	0.0030	
4	0.2547	0.0355	-0.0009	0.0016	-0.0007	0.0020	0.0002	0.0005	
5	0.3103	-0.1179	-0.0037	-0.0060	-0.0010	0.0005	-0.0012	0.0	
SUMS	11725.5289	18.4329	11624.8581	2.1614	11642.6402	10.1804	11628.0102	5.3152	
DAYS 183 THRU 214			JD 2444421.5 TO 2444453.5			DATES JULY		1 THRU AUG 1	
						A =	16.0000000	B =	-12.4375000
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC	
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5977.6505	17.8660	5871.6246	-1.1508	5894.1728	9.2603	5880.8528	4.8652	
1	5769.9726	0.3858	5767.4888	-3.8686	5773.0458	-1.1096	5774.5465	-0.5661	
2	-3.8847	0.8855	-0.2753	-0.0775	-0.1398	-0.0639	-0.1377	-0.0558	
3	0.6487	-0.3734	0.0032	0.0148	0.0140	0.0001	0.0168	0.0082	
4	-0.0152	-0.0155	-0.0015	-0.0027	0.0006	-0.0002	0.0005	0.0008	
5	-0.0411	0.0270	0.0006	0.0024	0.0022	0.0038	-0.0044	-0.0036	
SUMS	11744.3308	18.7754	11638.8404	-5.0824	11667.0956	8.0905	11655.2745	4.2487	
DAYS 214 THRU 245			JD 2444452.5 TO 2444484.5			DATES AUG		1 THRU SEPT 1	
						A =	16.0000000	B =	-14.3750000
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC	
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5986.2870	19.5145	5885.0945	-8.8052	5919.0341	6.9066	5908.5991	3.5947	
1	5760.5694	0.2945	5766.3918	-3.9510	5772.6669	-1.2977	5774.1328	-0.7286	
2	-1.3341	-0.6969	-0.3042	0.0445	-0.0585	-0.0304	-0.0777	-0.0271	
3	0.2669	-0.1567	-0.0070	0.0262	0.0163	0.0074	0.0033	0.0054	
4	-0.0307	0.0268	-0.0015	0.0008	-0.0015	-0.0016	0.0004	-0.0011	
5	0.0082	0.0006	-0.0019	-0.0018	-0.0029	-0.0017	0.0060	-0.0002	
SUMS	11745.7667	18.9828	11651.1717	-12.6865	11691.6544	5.5826	11682.6639	2.8431	

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

DAYS 245 THRU 276 JD 2444483.5 TO 2444515.5 DATES SEPT 1 THRU OCT 2

A = 16.00000000 B = -16.31250000

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6116.0794	5941.3560	2.2827	0.2651
1	5775.7708	5761.4253	-6.1868	0.0019
2	-0.0026	0.0093	-0.0953	0.0026
3	-0.0014	-0.0619	0.0716	-0.0016
4	0.0018	-0.0084	-0.0008	-0.0020
5	0.0008	0.0033	-0.0052	0.0005
SUMS	11891.8488	11702.7236	-3.9338	0.2665

DAYS 275 THRU 306 JD 2444513.5 TO 2444545.5 DATES OCT 1 THRU NOV 1

A = 16.00000000 B = -18.18750000

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6145.6479	5943.6412	-9.2273	0.2675
1	5775.7697	5760.8174	-5.8549	0.0333
2	0.0002	-0.3052	0.2816	0.0
3	0.0023	-0.0558	0.0649	-0.0061
4	0.0002	-0.0039	0.0025	0.0
5	-0.0019	0.0059	0.0067	0.0037
SUMS	11921.4184	11704.0996	-14.7265	0.2684

DAYS 306 THRU 337 JD 2444544.5 TO 2444576.5 DATES NOV 1 THRU DEC 2

A = 16.00000000 B = -20.12500000

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5816.2029	5943.7592	-18.9684	0.2701
1	5775.7697	5759.2200	-3.9122	-0.0007
2	0.0003	-0.4400	0.7237	-0.0004
3	0.0024	0.0122	0.0721	0.0031
4	0.0001	0.0098	-0.0047	-0.0006
5	-0.0020	0.0023	-0.0009	-0.0015
SUMS	11591.9734	11702.5635	-22.0904	0.2700

DAYS 335 THRU 366 JD 2444573.5 TO 2444605.5 DATES NOV 30 THRU DEC 31

A = 16.00000000 B = -21.93750000

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5844.7869	5941.1098	-23.3126	0.2717
1	5775.7702	5758.0576	-0.7148	-0.0007
2	0.0006	-0.1087	0.9931	-0.0004
3	0.0009	0.0985	0.0200	0.0031
4	-0.0008	-0.0038	-0.0095	-0.0006
5	-0.0009	-0.0059	-0.0011	-0.0015
SUMS	11620.5569	11699.1475	-23.0249	0.2716

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C7

DAYS 245 THRU 276 JD 2444483.5 TO 2444515.5				DATES SEPT 1 THRU OCT 2			
		A = 16.00000000		B = -16.31250000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA
TERM	DEG	DEG	DEG	DEG	DEG	DEG	SATURN DEC
0	5984.0602	16.7136	5896.2534	-16.1004	5943.4448	4.3143	5935.7641
1	5757.8952	-3.3896	5765.0815	-3.4735	5772.5765	-1.3575	5773.9503
2	-0.1709	-1.0184	-0.3656	0.2107	0.0096	0.0025	-0.0135
3	0.1186	0.0343	-0.0018	0.0393	0.0042	0.0094	0.0130
4	-0.0250	0.0148	0.0002	0.0014	0.0016	-0.0003	-0.0010
5	0.0002	-0.0050	-0.0030	-0.0059	0.0069	-0.0028	-0.0014
SUMS	11741.8783	12.3497	11660.9647	-19.3284	11716.0436	2.9656	11709.7115
							1.3327
DAYS 275 THRU 306 JD 2444513.5 TO 2444545.5				DATES OCT 1 THRU NOV 1			
		A = 16.00000000		B = -18.18750000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA
TERM	DEG	DEG	DEG	DEG	DEG	DEG	SATURN DEC
0	5980.0215	7.1625	5904.4645	-21.6476	5967.1426	1.8194	5961.9450
1	5757.9447	-6.5018	5763.6770	-2.3233	5772.7475	-1.2822	5774.0161
2	0.0530	-0.5561	-0.3575	0.4050	0.0831	0.0409	0.0457
3	-0.0480	0.1135	0.0148	0.0288	0.0177	0.0139	0.0034
4	-0.0151	0.0029	0.0029	-0.0030	0.0007	-0.0014	0.0033
5	0.0101	0.0006	0.0017	0.0035	-0.0036	-0.0056	0.0066
SUMS	11737.9662	0.2216	11667.8034	-23.5366	11739.9880	0.5850	11736.0201
							-0.0194
DAYS 306 THRU 337 JD 2444544.5 TO 2444576.5				DATES NOV 1 THRU DEC 2			
		A = 16.00000000		B = -20.12500000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA
TERM	DEG	DEG	DEG	DEG	DEG	DEG	SATURN DEC
0	5975.8123	-6.6219	5910.4041	-24.4122	5992.2626	-0.4600	5989.3683
1	5757.4421	-7.2248	5762.5678	-0.4250	5773.2428	-1.0443	5774.3401
2	-0.3626	0.2135	-0.1798	0.5584	0.1758	0.0805	0.1218
3	-0.0886	0.1405	0.0482	0.0096	0.0159	0.0113	0.0149
4	0.0042	0.0026	0.0022	-0.0025	0.0001	0.0029	-0.0023
5	0.0024	0.0041	-0.0027	0.0048	0.0010	-0.0035	-0.0027
SUMS	11732.8098	-13.4860	11672.8398	-24.2669	11765.6982	-1.4131	11763.8401
							-1.0867
DAYS 335 THRU 366 JD 2444573.5 TO 2444605.5				DATES NOV 30 THRU DEC 31			
		A = 16.00000000		B = -21.93750000			
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA
TERM	DEG	DEG	DEG	DEG	DEG	DEG	SATURN DEC
0	5969.5467	-18.1327	5914.7476	-23.2932	6016.9503	-2.0326	6015.8236
1	5755.4770	-4.9836	5762.3797	1.6671	5774.0614	-0.6658	5774.8892
2	-0.6203	1.0252	0.0818	0.5688	0.2756	0.1248	0.1806
3	0.0222	0.1407	0.0508	-0.0111	0.0193	0.0060	0.0071
4	0.0199	-0.0105	-0.0069	-0.0045	0.0015	-0.0001	-0.0009
5	-0.0032	-0.0015	-0.0065	-0.0022	-0.0004	0.0015	0.0018
SUMS	11724.4423	-21.9624	11677.2465	-21.0751	11791.3077	-2.5662	11790.9014
							-1.6012

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

DAY	1 THRU	6	JD 2444239.5 TO 2444245.5	DATES JAN	1 THRU JAN	6
			A = 3.00000000	B = -1.33333333		
			MOON GHA	MOON DEC	MOON H P	MOON S D
TERM			DEG	DEG	DEG	DEG
0	1419.4231		17.3977		0.9237	0.2517
1	1044.1274		-5.2880		-0.0239	-0.0065
2	2.2017		-3.5912		0.0034	0.0009
3	0.2601		0.6731		0.0024	0.0007
4	-0.2444		0.0852		-0.0001	0.0
5	-0.0130		-0.0470		-0.0011	-0.0003
SUMS	2465.7549		9.2298		0.9044	0.2465
DAY	7 THRU	12	JD 2444245.5 TO 2444251.5	DATES JAN	7 THRU JAN	12
			A = 3.00000000	B = -3.33333333		
			MOON GHA	MOON DEC	MOON H P	MOON S D
TERM			DEG	DEG	DEG	DEG
0	1354.8672		-2.0336		0.9067	0.2470
1	1049.1679		-11.6293		0.0134	0.0036
2	-0.7572		0.1794		0.0140	0.0038
3	-0.8426		0.5621		0.0028	0.0008
4	-0.0023		0.0356		-0.0015	-0.0004
5	0.0273		0.0192		-0.0022	-0.0006
SUMS	2402.4603		-12.8666		0.9332	0.2542
DAY	13 THRU	18	JD 2444251.5 TO 2444257.5	DATES JAN	13 THRU JAN	18
			A = 3.00000000	B = -5.33333333		
			MOON GHA	MOON DEC	MOON H P	MOON S D
TERM			DEG	DEG	DEG	DEG
0	1284.5047		-18.9532		0.9742	0.2654
1	1039.0235		-1.8762		0.0417	0.0114
2	-2.3849		5.0735		-0.0048	-0.0013
3	1.0351		0.6699		-0.0089	-0.0024
4	0.3052		-0.2840		-0.0008	-0.0002
5	-0.0948		-0.0905		0.0024	0.0007
SUMS	2322.3888		-15.4605		1.0038	0.2736
DAY	19 THRU	24	JD 2444257.5 TO 2444263.5	DATES JAN	19 THRU JAN	24
			A = 3.00000000	B = -7.33333333		
			MOON GHA	MOON DEC	MOON H P	MOON S D
TERM			DEG	DEG	DEG	DEG
0	1202.2304		-3.3948		0.9993	0.2723
1	1041.6472		14.0403		-0.0190	-0.0052
2	1.4980		0.5790		-0.0101	-0.0027
3	-0.5459		-1.3542		0.0043	0.0012
4	-0.1534		0.0768		-0.0005	-0.0001
5	0.0851		0.0348		-0.0004	-0.0001
SUMS	2244.7614		9.9819		0.9736	0.2654

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C9

DAY	25	THRU	30	JD 2444263.5 TO 2444269.5	DATES JAN	25	THRU	JAN	30
				A = 3.00000000	B = -9.33333333				
				MOON GHA	MOON DEC	MOON H P	MOON S D		
TERM				DEG	DEG	DEG	DEG		
0	1127.2002			18.1316	0.9451	0.2575			
1	1042.1549			4.1402	-0.0254	-0.0069			
2	0.0466			-4.3888	0.0019	0.0005			
3	0.5257			-0.1882	-0.0031	-0.0008			
4	0.1354			0.1955	0.0	0.0			
5	-0.0604			0.0047	0.0027	0.0007			
SUMS	2170.0024			17.8950	0.9212	0.2510			
DAY	31	THRU	36	JD 2444269.5 TO 2444275.5	DATES JAN	31	THRU	FEB	5
				A = 3.00000000	B = -11.33333333				
				MOON GHA	MOON DEC	MOON H P	MOON S D		
TERM				DEG	DEG	DEG	DEG		
0	1415.9829			10.3667	0.9049	0.2466			
1	1047.8536			-9.9748	-0.0128	-0.0035			
2	1.6308			-1.7566	0.0091	0.0025			
3	-0.4053			0.6844	0.0076	0.0021			
4	-0.1448			-0.0206	-0.0027	-0.0007			
5	0.0190			-0.0150	-0.0047	-0.0013			
SUMS	2464.9362			-0.7159	0.9014	0.2457			
DAY	37	THRU	42	JD 2444275.5 TO 2444281.5	DATES FEB	6	THRU	FEB	11
				A = 3.00000000	B = -13.33333333				
				MOON GHA	MOON DEC	MOON H P	MOON S D		
TERM				DEG	DEG	DEG	DEG		
0	1353.3972			-11.6370	0.9205	0.2508			
1	1046.7398			-9.6437	0.0302	0.0082			
2	-2.4364			1.9544	0.0119	0.0032			
3	-0.6342			0.7453	0.0013	0.0004			
4	0.1293			0.0676	-0.0015	-0.0004			
5	0.0486			-0.0012	-0.0023	-0.0006			
SUMS	2397.2443			-18.5146	0.9601	0.2616			
DAY	43	THRU	48	JD 2444281.5 TO 2444287.5	DATES FEB	12	THRU	FEB	17
				A = 3.00000000	B = -15.33333333				
				MOON GHA	MOON DEC	MOON H P	MOON S D		
TERM				DEG	DEG	DEG	DEG		
0	1275.8218			-16.6559	1.0045	0.2737			
1	1037.4810			7.2232	0.0332	0.0091			
2	0.0732			5.1911	-0.0167	-0.0045			
3	1.1250			-0.6127	-0.0053	-0.0014			
4	-0.1667			-0.4155	0.0012	0.0003			
5	-0.1225			0.0259	0.0013	0.0003			
SUMS	2314.2118			-5.2439	1.0182	0.2775			

C10

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

DAYS 49 THRU 54 JD 2444287.5 TO 2444293.5 DATES FEB 18 THRU FEB 23

A = 3.00000000 P = -17.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1195.1174	8.8135	0.9903	0.2698
1	1041.6343	12.4655	-0.0397	-0.0108
2	0.3417	-2.7740	-0.0069	-0.0019
3	-0.3183	-0.9794	0.0092	0.0025
4	0.1161	0.2112	0.0005	0.0001
5	0.0454	0.0066	-0.0034	-0.0009
SUMS	2236.9366	17.7434	0.9500	0.2588

DAYS 55 THRU 60 JD 2444293.5 TO 2444299.5 DATES FEB 24 THRU FEB 29

A = 3.00000000 B = -19.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1119.8316	18.2085	0.9199	0.2536
1	1044.1852	-3.7086	-0.0235	-0.0064
2	1.6623	-3.8144	0.0090	0.0024
3	0.2766	0.4851	-0.0005	-0.0001
4	-0.1253	0.1031	-0.0019	-0.0005
5	-0.0291	-0.0232	0.0010	0.0003
SUMS	2165.8013	11.2505	0.9040	0.2463

DAYS 61 THRU 66 JD 2444299.5 TO 2444305.5 DATES MAR 1 THRU MAR 6

A = 3.00000000 P = -21.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1414.6136	0.3330	0.8998	0.2452
1	1049.4067	-11.6069	0.0005	0.0001
2	0.0232	-0.0678	0.0075	0.0021
3	-0.6181	0.6061	0.0076	0.0021
4	-0.0312	-0.0066	0.0	0.0
5	0.0156	0.0100	-0.0042	-0.0012
SUMS	2463.4098	-10.7322	0.9112	0.2483

DAYS 67 THRU 72 JD 2444305.5 TO 2444311.5 DATES MAR 7 THRU MAR 12

A = 3.00000000 B = -23.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1348.6597	-18.1208	0.9422	0.2567
1	1042.6435	-4.1331	0.0404	0.0110
2	-2.6931	4.0164	0.0084	0.0023
3	0.1468	0.7450	-0.0019	-0.0005
4	0.2464	-0.0723	-0.0006	-0.0002
5	0.0122	-0.0572	0.0002	0.0001
SUMS	2389.0155	-17.6220	0.9887	0.2694

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C11

DAYS 73 THRU 78 JD 2444311.5 TO 2444317.5 DATES MAR 13 THRU MAR 18

A = 3.00000000 B = -25.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1267.6310	-7.4343	1.0219	0.2784
1	1039.0524	13.8630	0.0133	0.0036
2	0.7105	2.3704	-0.0253	-0.0069
3	0.0418	-1.5667	0.0010	0.0003
4	-0.1893	-0.1731	0.0035	0.0010
5	0.0437	0.0888	-0.0025	-0.0007
SUMS	2307.2901	7.1481	1.0119	0.2757

DAYS 79 THRU 84 JD 2444317.5 TO 2444323.5 DATES MAR 19 THRU MAR 24

A = 3.00000000 B = -27.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1187.5998	17.3096	0.9683	0.2638
1	1040.7373	5.9044	-0.0488	-0.0133
2	0.7763	-4.7111	0.0020	0.0005
3	0.4655	-0.1710	0.0101	0.0028
4	0.0668	0.2602	-0.0011	-0.0003
5	-0.0503	-0.0233	-0.0038	-0.0010
SUMS	2229.5954	18.5688	0.9267	0.2525

DAYS 85 THRU 90 JD 2444323.5 TO 2444329.5 DATES MAR 25 THRU MAR 30

A = 3.00000000 B = -29.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1115.3271	12.0705	0.9047	0.2465
1	1047.6316	-9.2569	-0.0142	-0.0039
2	1.6147	-2.1349	0.0079	0.0022
3	-0.4025	0.6258	0.0051	0.0014
4	-0.0956	-0.0019	0.0007	0.0002
5	0.0224	-0.0033	-0.0041	-0.0011
SUMS	2164.0977	1.2993	0.9001	0.2453

DAYS 91 THRU 96 JD 2444329.5 TO 2444335.5 DATES MAR 31 THRU APR 5

A = 3.00000000 B = -31.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1412.9510	-10.0011	0.9080	0.2474
1	1047.7635	-10.2841	0.0120	0.0033
2	-1.6136	1.6936	0.0088	0.0024
3	-0.4636	0.6924	0.0113	0.0031
4	0.0873	0.0131	-0.0015	-0.0004
5	0.0271	-0.0025	-0.0081	-0.0022
SUMS	2458.7517	-17.8886	0.9305	0.2536

C12

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

DAYS 97 THRU 102		JD 2444335.5 TO 2444341.5		DATES APR	6 THRU APR 11
		A = 3.00000000	B = -33.33333333		
		MOON GHA	MOON DEC	MOON H P	MOON S D
TERM		DEG	DEG	DEG	DEG
0	1340.4866	-18.3304	0.9673	0.2636	
1	1040.3327	4.2865	0.0426	0.0116	
2	-0.8195	4.9167	0.0036	0.0010	
3	0.6110	-0.0422	-0.0048	-0.0013	
4	-0.0403	-0.2555	-0.0025	-0.0007	
5	-0.0684	-0.0244	0.0002	0.0001	
SUMS	2380.5021	-9.4493	1.0064	0.2743	
DAYS 103 THRU 108		JD 2444341.5 TO 2444347.5		DATES APR	12 THRU APR 17
		A = 3.00000000	B = -35.33333333		
		MOON GHA	MOON DEC	MOON H P	MOON S D
TERM		DEG	DEG	DEG	DEG
0	1260.5167	5.0325	1.0189	0.2776	
1	1039.7469	14.5477	-0.0131	-0.0036	
2	-0.4936	-1.5602	-0.0236	-0.0064	
3	-0.1430	-1.6036	0.0055	0.0015	
4	0.1449	0.1057	0.0023	0.0006	
5	0.0615	0.0825	-0.0016	-0.0004	
SUMS	2299.8334	16.6046	0.9884	0.2693	
DAYS 109 THRU 114		JD 2444347.5 TO 2444353.5		DATES APR	18 THRU APR 23
		A = 3.00000000	B = -37.33333333		
		MOON GHA	MOON DEC	MOON H P	MOON S D
TERM		DEC	DEG	DEG	DEG
0	1180.2146	19.0493	0.9421	0.2567	
1	1042.2787	-2.3530	-0.0431	-0.0117	
2	2.4367	-4.3453	0.0050	0.0014	
3	0.3345	0.6280	0.0078	0.0021	
4	-0.2260	0.1166	0.0020	0.0005	
5	-0.0205	-0.0592	-0.0043	-0.0012	
SUMS	2225.0180	13.0364	0.9095	0.2478	
DAYS 115 THRU 120		JD 2444353.5 TO 2444359.5		DATES APR	24 THRU APR 29
		A = 3.00000000	B = -39.33333333		
		MOON GHA	MOON DEC	MOON H P	MOON S D
TERM		DEC	DEG	DEG	DEG
0	1113.6362	2.4007	0.9009	0.2455	
1	1049.4294	-11.6972	0.0038	0.0010	
2	0.1525	-0.4732	0.0075	0.0020	
3	-0.6706	0.5899	-0.0088	-0.0024	
4	0.0070	0.0147	0.0011	0.0003	
5	0.0182	0.0131	0.0050	0.0014	
SUMS	2162.5727	-9.1520	0.9095	0.2478	

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C13

DAYS 121 THRU 126 JD 2444359.5 TO 2444365.5 DATES APR 30 THRU MAY 5

A = 3.00000000 B = -41.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1408.4306	-17.6582	0.9286	0.2530
1	1043.7264	-5.4997	0.0242	0.0066
2	-2.0834	3.7420	0.0061	0.0017
3	0.2479	0.6741	0.0005	0.0001
4	0.1918	-0.0992	-0.0018	-0.0005
5	-0.0069	-0.0386	-0.0014	-0.0004
SUMS	2450.5064	-18.8796	0.9562	0.2605

DAYS 127 THRU 132 JD 2444365.5 TO 2444371.5 DATES MAY 6 THRU MAY 11

A = 3.00000000 B = -43.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1331.5787	-10.9743	0.9879	0.2692
1	1041.4002	11.8560	0.0311	0.0085
2	0.3492	3.1946	-0.0058	-0.0016
3	-0.2008	-0.9569	-0.0081	-0.0022
4	-0.1876	-0.1881	0.0007	0.0002
5	0.0361	0.0135	0.0029	0.0008
SUMS	2372.9758	2.9448	1.0087	0.2749

DAYS 133 THRU 138 JD 2444371.5 TO 2444377.5 DATES MAY 12 THRU MAY 17

A = 3.00000000 B = -45.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1252.8093	15.5128	0.9964	0.2715
1	1038.8186	9.0831	-0.0308	-0.0084
2	-0.5698	-4.6292	-0.0159	-0.0043
3	0.7613	-0.8574	0.0071	0.0019
4	0.2497	0.3385	0.0018	0.0005
5	-0.0679	0.0512	-0.0022	-0.0006
SUMS	2292.0012	19.4990	0.9564	0.2606

DAYS 139 THRU 144 JD 2444377.5 TO 2444383.5 DATES MAY 18 THRU MAY 23

A = 3.00000000 B = -47.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1175.3337	14.1995	0.9192	0.2505
1	1046.1435	-8.6296	-0.0282	-0.0077
2	2.5800	-2.5415	0.0101	0.0028
3	-0.4765	0.7612	-0.0010	-0.0003
4	-0.1918	-0.0465	0.0006	0.0002
5	0.0542	-0.0175	0.0026	0.0007
SUMS	2223.4431	3.7256	0.9033	0.2462

DAYS 145 THRU 150 JD 2444383.5 TO 2444389.5 DATES MAY 24 THRU MAY 29

A = 3.00000000 B = -49.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1112.5648	-8.0069	0.9100	0.2479
1	1048.1324	-11.1724	0.0155	0.0042
2	-1.6666	1.2213	0.0092	0.0025
3	-0.5945	0.7126	0.0006	0.0002
4	0.1137	0.0528	-0.0018	-0.0005
5	0.0309	0.0007	-0.0023	-0.0006
SUMS	2158.5807	-17.1919	0.9312	0.2537

DAYS 151 THRU 156 JD 2444389.5 TO 2444395.5 DATES MAY 30 THRU JUNE 4

A = 3.00000000 B = -51.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1400.3377	-19.3077	0.9568	0.2607
1	1040.6047	2.6062	0.0232	0.0063
2	-0.2961	4.9202	-0.0025	-0.0007
3	0.8742	-0.0691	0.0048	0.0013
4	-0.0824	-0.2648	0.0011	0.0003
5	-0.1006	0.0030	-0.0048	-0.0013
SUMS	2441.3375	-12.1122	0.9786	0.2666

DAYS 157 THRU 162 JD 2444395.5 TO 2444401.5 DATES JUNE 5 THRU JUNE 10

A = 3.00000000 B = -53.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1323.7223	1.2859	0.9932	0.2706
1	1042.3912	14.4426	0.0091	0.0025
2	-0.6278	-0.1793	-0.0070	-0.0019
3	-0.6400	-1.2867	-0.0033	-0.0009
4	0.0708	-0.0401	-0.0015	-0.0004
5	0.0754	0.0220	0.0001	0.0
SUMS	2364.9919	14.2444	0.9906	0.2699

DAYS 163 THRU 168 JD 2444401.5 TO 2444407.5 DATES JUNE 11 THRU JUNE 16

A = 3.00000000 B = -55.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1244.2784	19.6818	0.9633	0.2625
1	1039.7025	0.2898	-0.0342	-0.0093
2	1.5308	-5.1597	-0.0036	-0.0010
3	1.0864	0.3427	0.0004	0.0001
4	-0.1496	0.3027	-0.0001	0.0
5	-0.1208	-0.0526	0.0029	0.0008
SUMS	2286.3277	15.4047	0.9287	0.2531

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C15

DAYS 169 THRU 174 JD 2444407.5 TO 2444413.5 DATES JUNE 17 THRU JUNE 22

		A = 3.00000000	B = -57.33333333	
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1173.6042	5.2002	0.9067	0.2470
1	1049.0626	-11.6149	-0.0108	-0.0029
2	1.0437	-0.7643	0.0122	0.0033
3	-0.8179	0.5894	0.0026	0.0007
4	-0.0447	-0.0395	-0.0005	-0.0001
5	0.0304	0.0171	-0.0016	-0.0004
SUMS	2222.8783	-6.6120	0.9086	0.2476

DAYS 175 THRU 180 JD 2444413.5 TO 2444419.5 DATES JUNE 23 THRU JUNE 28

		A = 3.00000000	B = -59.33333333	
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1109.4769	-16.3825	0.9322	0.2540
1	1044.3630	-7.3096	0.0313	0.0085
2	-2.7885	3.3184	0.0033	0.0009
3	0.0190	0.8807	-0.0095	-0.0026
4	0.3030	-0.0348	-0.0002	0.0
5	0.0304	-0.0589	0.0057	0.0015
SUMS	2151.1038	-19.5867	0.9628	0.2623

DAYS 181 THRU 186 JD 2444419.5 TO 2444425.5 DATES JUNE 29 THRU JULY 4

		A = 3.00000000	B = -61.33333333	
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1391.1684	-13.1457	0.9834	0.2679
1	1041.0153	10.7819	0.0118	0.0032
2	1.3714	3.5097	-0.0083	-0.0023
3	0.0824	-1.0427	0.0023	0.0006
4	-0.3165	-0.1541	0.0	0.0
5	0.0230	0.0571	-0.0008	-0.0002
SUMS	2433.3440	0.0062	0.9884	0.2692

DAYS 187 THRU 192 JD 2444425.5 TO 2444431.5 DATES JULY 5 THRU JULY 10

		A = 3.00000000	B = -63.33333333	
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1315.6456	13.1208	0.9809	0.2673
1	1041.2327	10.7363	-0.0121	-0.0033
2	-1.3253	-3.4800	-0.0057	-0.0016
3	0.0321	-0.9998	-0.0035	-0.0009
4	0.3098	0.1465	-0.0006	-0.0002
5	0.0191	0.0444	0.0018	0.0005
SUMS	2355.9140	19.5682	0.9608	0.2618

DAYS 193 THRU 198 JD 2444431.5 TO 2444437.5 DATES JULY 11 THRU JULY 16

	A = 3.00000000	B = -65.33333333	MOON	MOON	MOON	MOON
TERM	GHA	DEC	H P	S D	DEG	DEG
0	1237.5233	16.4199	0.9328	0.2541		
1	1043.9374	-7.2853	-0.0288	-0.0078		
2	2.7232	-3.3614	0.0006	0.0002		
3	0.0794	0.8753	0.0017	0.0005		
4	-0.2966	0.0440	0.0022	0.0006		
5	0.0202	-0.0560	0.0014	C.0004		
SUMS	2283.9869	6.6365	0.9099	0.2480		

DAYS 199 THRU 204 JD 2444437.5 TO 2444443.5 DATES JULY 17 THRU JULY 22

	A = 3.00000000	B = -67.33333333	MOON	MOON	MOON	MOON
TERM	GHA	DEC	H P	S D	DEG	DEG
0	1173.2505	-5.1796	0.9056	0.2467		
1	1049.1577	-11.5857	0.0089	0.0024		
2	-0.9309	0.7927	0.0118	0.0032		
3	-0.8204	0.5698	0.0015	0.0004		
4	0.0363	0.0319	0.0006	0.0002		
5	0.0310	0.0243	-0.0020	-0.0006		
SUMS	2220.7242	-15.3466	0.9264	0.2523		

DAYS 205 THRU 210 JD 2444443.5 TO 2444449.5 DATES JULY 23 THRU JULY 28

	A = 3.00000000	B = -69.33333333	MOON	MOON	MOON	MOON
TERM	GHA	DEC	H P	S D	DEG	DEG
0	1103.0381	-19.6686	0.9626	0.2623		
1	1039.8599	0.1851	0.0401	0.0109		
2	-1.7194	5.1289	-0.0011	-0.0003		
3	1.0227	0.3950	-0.0116	-0.0032		
4	0.1799	-0.2888	-0.0022	-0.0006		
5	-0.1097	-0.0619	0.0052	0.0014		
SUMS	2142.2715	-14.3103	0.9930	0.2705		

DAYS 211 THRU 216 JD 2444449.5 TO 2444455.5 DATES JULY 29 THRU AUG 3

	A = 3.00000000	B = -71.33333333	MOON	MOON	MOON	MOON
TERM	GHA	DEC	H P	S D	DEG	DEG
0	1383.2179	-1.2653	0.9974	0.2718		
1	1042.0684	14.5702	-0.0083	-0.0023		
2	0.6830	0.1669	-0.0116	-0.0031		
3	-0.5973	-1.3442	0.0016	0.0004		
4	-0.0820	0.0452	0.0007	0.0002		
5	0.0778	0.0303	0.0006	0.0002		
SUMS	2425.3678	12.2031	0.9804	0.2672		

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C17

DAYS 217 THRU 222 JD 2444455.5 TO 2444461.5 DATES AUG 4 THRU AUG 9

A = 3.00000000 B = -73.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1306.3721	19.3347	0.9564	0.2606
1	1040.7055	2.5168	-0.0255	-0.0069
2	0.3541	-4.9165	-0.0018	-0.0005
3	0.8201	-0.0488	0.0020	0.0005
4	0.0769	0.2540	0.0013	0.0004
5	-0.0914	0.0013	-0.0013	-0.0004
SUMS	2348.2373	17.1415	0.9311	0.2537

DAYS 223 THRU 228 JD 2444461.5 TO 2444467.5 DATES AUG 10 THRU AUG 15

A = 3.00000000 B = -75.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1234.2814	7.8808	0.9103	0.2480
1	1048.1291	-11.2511	-0.0159	-0.0043
2	1.6576	-1.2145	0.0062	0.0017
3	-0.5800	0.7279	0.0022	0.0006
4	-0.1143	-0.0503	-0.0002	-0.0001
5	0.0383	-0.0012	-0.0011	-0.0003
SUMS	2283.4121	-3.9084	0.9015	0.2456

DAYS 229 THRU 234 JD 2444467.5 TO 2444473.5 DATES AUG 16 THRU AUG 21

A = 3.00000000 B = -77.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1171.6643	-14.3480	0.9154	0.2494
1	1046.3967	-8.5588	0.0271	0.0074
2	-2.4593	2.5564	0.0136	0.0037
3	-0.4734	0.7350	-0.0013	-0.0004
4	0.1772	0.0436	-0.0019	-0.0005
5	0.0475	-0.0162	-0.0004	-0.0001
SUMS	2215.3530	-19.5880	0.9525	0.2595

DAYS 235 THRU 240 JD 2444473.5 TO 2444479.5 DATES AUG 22 THRU AUG 27

A = 3.00000000 B = -79.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1094.8396	-15.6192	0.9950	0.2711
1	1038.9219	9.0832	0.0345	0.0094
2	0.3244	4.7082	-0.0121	-0.0033
3	0.7352	-0.7878	-0.0029	-0.0008
4	-0.2196	-0.3478	0.0005	0.0001
5	-0.0645	0.0350	-0.0016	-0.0004
SUMS	2134.5370	-2.9284	1.0134	0.2761

C18

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

DAYS 241 THRU 246		JD 2444479.5 TO 2444485.5		DATES AUG 28 THRU SEPT 2
		A = 3.00000000	B = -81.33333333	
		MOON GHA	MOON DEC	MOON H P
TERM		DEG	DEG	DEG
0	1375.4958	11.2423	0.9928	0.2705
1	1040.9157	12.0253	-0.0332	-0.0091
2	-0.3271	-3.3490	-0.0064	-0.0017
3	-0.1269	-1.0131	0.0075	0.0020
4	0.1886	0.2139	-0.0010	-0.0003
5	0.0291	0.0226	-0.0011	-0.0003
SUMS		2416.1752	19.1420	0.9586
				0.2611
DAYS 247 THRU 252		JD 2444485.5 TO 2444491.5		DATES SEPT 3 THRU SEPT 8
		A = 3.00000000	B = -83.33333333	
		MOON GHA	MOON DEC	MOON H P
TERM		DEG	DEG	DEG
0	1298.1861	17.6735	0.9284	0.2530
1	1043.8143	-5.7747	-0.0240	-0.0065
2	2.1883	-3.7372	0.0074	0.0020
3	0.1927	0.6918	-0.0012	-0.0003
4	-0.1960	0.0885	-0.0024	-0.0006
5	-0.0023	-0.0338	0.0005	0.0001
SUMS		2344.1831	8.9081	0.9087
				0.2477
DAYS 253 THRU 258		JD 2444491.5 TO 2444497.5		DATES SEPT 9 THRU SEPT 14
		A = 3.00000000	B = -85.33333333	
		MOON GHA	MOON DEC	MOON H P
TERM		DEG	DEG	DEG
0	1233.2216	-2.8459	0.8996	0.2451
1	1049.4983	-11.8527	-0.0023	-0.0006
2	-0.1766	0.5340	0.0092	0.0025
3	-0.6511	0.6046	-0.0001	0.0
4	0.0017	-0.0142	-0.0009	-0.0002
5	0.0161	0.0137	0.0017	0.0005
SUMS		2281.9100	-13.5605	0.9072
				0.2473
DAYS 259 THRU 264		JD 2444497.5 TO 2444503.5		DATES SEPT 15 THRU SEPT 20
		A = 3.00000000	B = -87.33333333	
		MOON GHA	MOON DEC	MOON H P
TERM		DEG	DEG	DEG
0	1166.9237	-19.4837	0.9365	0.2552
1	1042.6234	-2.2051	0.0402	0.0110
2	-2.2933	4.3726	0.0105	0.0029
3	0.3188	0.5937	-0.0019	-0.0005
4	0.2018	-0.1130	-0.0023	-0.0006
5	-0.0197	-0.0526	-0.0007	-0.0002
SUMS		2207.7547	-16.8881	0.9823
				0.2678

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C19

DAYS 265 THRU 270 JD 2444503.5 TO 2444509.5 DATES SEPT 21 THRU SEPT 26

A = 3.00000000 B = -89.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1087.4011	-5.0896	1.0195	3.2778
1	1039.8479	14.8995	0.0163	0.0044
2	0.2019	1.7149	-0.0270	-0.0073
3	-0.1792	-1.6107	0.0011	0.0003
4	-0.1242	-0.1469	0.0059	0.0016
5	0.0575	0.0774	-0.0022	-0.0006
SUMS	2127.2050	9.8446	1.0136	0.2762

DAYS 271 THRU 276 JD 2444509.5 TO 2444515.5 DATES SEPT 27 THRU OCT 2

A = 3.00000000 B = -91.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1366.5451	18.9618	0.9733	0.2652
1	1039.6291	4.2320	-0.0457	-0.0125
2	0.9417	-5.2237	0.0	0.0
3	0.7602	-0.0114	0.0052	0.0014
4	0.0218	0.2962	-0.0001	0.0
5	-0.0866	-0.0325	0.0009	0.0002
SUMS	2407.8113	18.2224	0.9336	0.2543

DAYS 277 THRU 282 JD 2444515.5 TO 2444521.5 DATES OCT 3 THRU OCT 8

A = 3.00000000 B = -93.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1293.6616	9.8522	0.9090	0.2477
1	1047.9617	-10.7513	-0.0168	-0.0046
2	1.6807	-1.6530	0.0070	0.0019
3	-0.5320	0.7073	-0.0010	-0.0003
4	-0.0753	-0.0226	-0.0002	-0.0001
5	0.0261	-0.0010	0.0004	0.0001
SUMS	2342.7228	-1.8684	0.8984	0.2447

DAYS 283 THRU 288 JD 2444521.5 TO 2444527.5 DATES OCT 9 THRU OCT 14

A = 3.00000000 B = -95.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1231.5736	-12.9231	0.9034	0.2461
1	1047.6286	-9.4352	0.0126	0.0034
2	-1.6744	2.2709	0.0076	0.0021
3	-0.3629	0.6516	-0.0014	-0.0004
4	0.1085	-0.0049	-0.0004	-0.0001
5	0.0201	-0.0058	0.0011	0.0003
SUMS	2277.2935	-19.4465	0.9229	0.2514

C20

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

DAYS 289 THRU 294		JD 2444527.5 TO 2444533.5		DATES OCT 15 THRU OCT 20	
		A = 3.00000000	B = -97.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM	DEG	DEG	DEG	DEG	
0	1159.5247	-17.9277	0.9617	0.2620	
1	1041.1971	6.2500	0.0479	0.0130	
2	-0.5602	4.7620	0.0042	0.0012	
3	0.4210	-0.1910	-0.0123	-0.0033	
4	-0.1038	-0.2433	-0.0009	-0.0002	
5	-0.0513	-0.0214	0.0061	0.0017	
SUMS	2200.4275	-7.3714	1.0067	0.2744	
DAYS 295 THRU 300		JD 2444533.5 TO 2444539.5		DATES OCT 21 THRU OCT 26	
		A = 3.00000000	B = -99.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM	DEG	DEG	DEG	DEG	
0	1080.4531	7.8077	1.0237	0.2789	
1	1039.0376	14.5601	-0.0076	-0.0021	
2	-1.1968	-2.3526	-0.0260	-0.0071	
3	-0.0206	-1.7035	0.0007	0.0002	
4	0.2489	0.1381	0.0033	0.0009	
5	0.0591	0.1083	0.0011	0.0003	
SUMS	2118.5813	18.5581	0.9952	0.2711	
DAYS 301 THRU 306		JD 2444539.5 TO 2444545.5		DATES OCT 27 THRU NOV 1	
		A = 3.00000000	B = -101.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM	DEG	DEG	DEG	DEG	
0	1358.0992	18.9190	0.9473	0.2581	
1	1042.0399	-4.6152	-0.0441	-0.0120	
2	3.0589	-4.2670	0.0060	0.0016	
3	0.2116	0.8528	0.0010	0.0003	
4	-0.3135	0.0808	0.0007	0.0002	
5	0.0138	-0.0629	0.0019	0.0005	
SUMS	2403.1099	10.9075	0.9128	0.2487	
DAYS 307 THRU 312		JD 2444545.5 TO 2444551.5		DATES NOV 2 THRU NOV 7	
		A = 3.00000000	B = -103.33333333		
	MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM	DEG	DEG	DEG	DEG	
0	1292.1218	-0.7840	0.9000	0.2452	
1	1049.6730	-12.1772	-0.0028	-0.0008	
2	-0.0506	0.1316	0.0084	0.0023	
3	-0.6869	0.6153	-0.0071	-0.0019	
4	0.0403	0.0086	-0.0002	-0.0001	
5	0.0152	0.0093	0.0055	0.0015	
SUMS	2341.1128	-12.1964	0.9038	0.2462	

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C21

DAYS 313 THRU 318 JD 2444551.5 TO 2444557.5 DATES NOV 8 THRU NOV 13

A = 3.00000000 B = -105.33333333

	MOON GHA	MOON DEC	MOCN H P	MOCN S D
TERM	DEG	DEG	DEG	DEG
0	1226.9690	-19.3890	0.9191	0.2504
1	1043.9693	-3.7344	0.0192	0.0052
2	-1.6860	4.0596	0.0060	0.0016
3	0.3786	0.5157	0.0103	0.0028
4	0.1464	-0.1215	-0.0002	-0.0001
5	-0.0312	-0.0353	-0.0081	-0.0022
SUMS	2269.7461	-18.7049	0.9463	0.2577

DAYS 319 THRU 324 JD 2444557.5 TO 2444563.5 DATES NOV 14 THRU NOV 19

A = 3.00000000 B = -107.33333333

	MOON GHA	MOON DEC	MOON H P	MOCN S D
TERM	DEG	DEG	DEG	DEG
0	1151.9749	-9.2305	0.9848	0.2683
1	1042.3145	13.0748	0.0385	0.0105
2	-0.1559	2.8219	-0.0034	-0.0009
3	-0.4388	-0.9701	-0.0055	-0.0015
4	-0.1489	-0.1951	-0.0008	-0.0002
5	0.0502	-0.0033	0.0009	0.0002
SUMS	2193.5960	5.4977	1.0145	0.2764

DAYS 325 THRU 330 JD 2444563.5 TO 2444569.5 DATES NOV 20 THRU NOV 25

A = 3.00000000 B = -109.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1072.0958	17.6526	1.0081	0.2747
1	1037.0274	7.8164	-0.0286	-0.0078
2	-0.6178	-5.5042	-0.0197	-0.0054
3	1.2485	-0.7798	0.0067	0.0016
4	0.2634	0.4408	0.0022	0.0006
5	-0.1328	0.0534	-0.0023	-0.0006
SUMS	2109.8845	19.6792	0.9664	0.2633

DAYS 331 THRU 336 JD 2444569.5 TO 2444575.5 DATES NOV 26 THRU DEC 1

A = 3.00000000 B = -111.33333333

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1353.1940	12.2056	0.9240	0.2518
1	1046.5637	-10.4071	-0.0349	-0.0095
2	2.7786	-2.0105	0.0098	0.0027
3	-0.7052	0.8377	0.0071	0.0019
4	-0.1624	-0.0916	0.0014	0.0004
5	0.0679	-0.0048	-0.0042	-0.0011
SUMS	2401.7366	0.5293	0.9032	0.2462

C22

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

DAYS 337 THRU 342		JD 2444575.5 TO 2444581.5	DATES DEC	2 THRU DEC	7
A = 3.00000000		B = -113.33333333			
	MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM	DEG	DEG	DEG	DEG	
0	1290.9501	-11.1849	0.9047	0.2465	
1	1048.0384	-10.5206	0.0101	0.0028	
2	-1.7842	1.8580	0.0086	0.0024	
3	-0.4851	0.7073	0.0013	0.0004	
4	0.1575	0.0327	-0.0016	-0.0004	
5	0.0338	-0.0112	-0.0021	-0.0006	
SUMS	2336.9105	-19.1187	0.9210	0.2511	
DAYS 343 THRU 348		JD 2444581.5 TO 2444587.5	DATES DEC	8 THRU DEC	13
A = 3.00000000		B = -115.33333333			
	MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM	DEG	DEG	DEG	DEG	
0	1219.3960	-19.2748	0.9448	0.2574	
1	1041.8991	4.5282	0.0238	0.0065	
2	0.1579	4.6673	0.0012	0.0003	
3	0.6541	-0.2494	0.0043	0.0012	
4	-0.1662	-0.2153	0.0	0.0	
5	-0.0754	0.0167	-0.0035	-0.0010	
SUMS	2261.8655	-10.5273	0.9706	0.2644	
DAYS 349 THRU 354		JD 2444587.5 TO 2444593.5	DATES DEC	14 THRU DEC	19
A = 3.00000000		B = -117.33333333			
	MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM	DEG	DEG	DEG	DEG	
0	1144.9689	3.5988	0.9952	0.2711	
1	1042.3269	14.7867	0.0196	0.0053	
2	-1.5325	-0.5889	-0.0065	-0.0018	
3	-0.7104	-1.3573	-0.0045	-0.0012	
4	0.1432	-0.0841	-0.0029	-0.0008	
5	0.0962	0.0238	0.0005	0.0001	
SUMS	2185.2923	16.3790	1.0014	0.2727	
DAYS 355 THRU 360		JD 2444593.5 TO 2444599.5	DATES DEC	20 THRU DEC	25
A = 3.00000000		B = -119.33333333			
	MOON GHA	MOON DEC	MOON H P	MOON S D	
TERM	DEG	DEG	DEG	DEG	
0	1062.8462	20.2065	0.9779	0.2664	
1	1038.3781	-1.9412	-0.0380	-0.0103	
2	2.2766	-5.5183	-0.0086	-0.0023	
3	1.2817	0.6825	0.0089	0.0024	
4	-0.3097	0.3378	-0.0001	0.0	
5	-0.1376	-0.0954	-0.0038	-0.0010	
SUMS	2104.3353	13.6719	0.9363	0.2552	

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1980

C23

DAY 351 THRU 366	JD 2444599.5 TO 2444605.5	DATES DEC 26 THRU DEC 31		
A = 3.00000000	B = -121.33333333			
	MOON GHA	MOON DEC	MOON H P	MCCN S D
TERM	DEG	DEG	DEG	DEG
0	1351.8590	2.3504	0.9088	0.2476
1	1049.3113	-12.4054	-0.0176	-0.0048
2	0.9131	-0.1119	0.0126	/ 0.0034
3	-0.9113	0.5894	0.0013	0.0004
4	-0.0020	-0.0542	-0.0005	-0.0001
5	0.0329	0.0285	-0.0004	-0.0001
SUMS	2401.2030	-9.9032	0.9042	0.2464

Section D: ASTRONOMICAL TABLES

With two exceptions the series in this section provide data referred to the true equinox and equator of date. The exceptions are

1. the Moon's geocentric, rectangular coordinates (X , Y , Z), which are referred to the mean equinox and equator of 1950.0;
2. the right ascension and declination of Pluto, which are astrometric (*i.e.*, free of stellar aberration, except for the elliptic part) and are referred to the mean equinox and equator of 1950.0.

The unit of distance for the Sun and planets is the Astronomical Unit; the unit of distance for the Moon is the Earth's radius.

D2

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1980

DAY	1 THRU 95	JD 2444239.5 TO 2444334.5	DATES JAN 1 THRU APR 4	
	A = 47.50000000	B = -1.02105263		
TERM	H	S	NUT LON	NUT OPL
0	19.55062063	-1.0281	-16.8090	-15.7391
1	3.12119476	-0.0787	-1.2864	0.8142
2	-0.00001131	-0.0407	-0.6655	-0.1437
3	0.00000070	0.0025	0.0410	-0.0699
4	0.00000016	0.0006	0.0094	-0.0048
5	-0.00000095	-0.0034	-0.0562	0.0095
6	-0.00000076	-0.0027	-0.0445	-0.0206
7	-0.00000007	-0.0003	-0.0042	-0.0322
8	-0.00000058	-0.0021	-0.0341	-0.0180
9	0.000000137	0.0049	0.0808	-0.0107
10	-0.00000005	-0.0002	-0.0028	-0.0318
11	0.00000028	0.0010	0.0164	-0.0148
12	0.00000038	0.0014	0.0222	0.0138
13	0.00000016	0.0006	0.0095	-0.0018
14	0.00000056	0.0020	0.0331	0.0171
15	-0.00000085	-0.0031	-0.0502	0.0165
16	-0.00000038	-0.0014	-0.0223	-0.0121
17	-0.00000009	-0.0003	-0.0053	0.0325
18	-0.00000059	-0.0021	-0.0346	-0.0180
19	0.000000105	0.0038	0.0618	-0.0223
20	0.00000097	0.0035	0.0568	0.0289
21	-0.00000098	-0.0035	-0.0576	0.0210
22	-0.00000059	-0.0021	-0.0350	-0.0175
23	0.00000040	0.0014	0.0235	-0.0386
24	0.00000014	0.0005	0.0084	0.0045
25	-0.00000006	-0.0002	-0.0036	0.0010
26	-0.00000001	0.0	-0.0007	-0.0010
27	0.00000007	0.0003	0.0042	-0.0010
28	0.00000009	0.0003	0.0051	0.0029
29	-0.00000015	-0.0005	-0.0087	0.0030
30	-0.00000014	-0.0005	-0.0079	-0.0037
31	0.00000013	0.0005	0.0074	-0.0030
32	0.00000010	0.0004	0.0058	0.0022
33	-0.00000005	-0.0002	-0.0031	0.0016
34	-0.00000004	-0.0001	-0.0024	-0.0007
35	0.00000002	0.0001	0.0011	-0.0006
SUMS	22.67180432	-1.1464	-18.7476	-15.1772

CHERYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1980

D3

DAY	92 THRU 186	JD 2444330.5 TO 2444425.5	DATES APR 1 THRU JULY 4	
	A = 47.50000000	B = -2.93684211		
TERM	H	S	NUT LON	NUT OBL
0	31.50973204	-1.3034	-21.3091	-15.2470
1	3.12121616	-0.0017	-0.0271	-0.3216
2	0.00000935	0.0337	0.5505	0.1435
3	-0.00000069	-0.0025	-0.0407	0.0759
4	-0.00000083	-0.0030	-0.0489	0.0130
5	0.00000038	0.0014	0.0224	0.0008
6	0.00000015	0.0005	0.0086	0.0268
7	-0.00000035	-0.0013	-0.0206	0.0004
8	0.00000023	0.0008	0.0138	0.0231
9	-0.00000086	-0.0031	-0.0507	-0.0016
10	-0.00000076	-0.0027	-0.0445	0.0010
11	-0.00000094	-0.0034	-0.0556	-0.0079
12	0.00000041	0.0015	0.0241	-0.0200
13	-0.00000010	-0.0004	-0.0060	-0.0007
14	0.00000020	0.0007	0.0118	-0.0241
15	0.000000112	0.0040	0.0661	0.0066
16	-0.00000017	-0.0006	-0.0100	0.0147
17	0.00000028	0.0010	0.0163	0.0
18	-0.00000029	-0.0011	-0.0172	0.0251
19	-0.00000134	-0.0048	-0.0791	-0.0110
20	0.00000058	0.0021	0.0343	-0.0336
21	0.00000111	0.0040	0.0651	0.0120
22	-0.00000034	-0.0012	-0.0202	0.0206
23	-0.00000057	-0.0020	-0.0334	-0.0032
24	0.0	0.0	-0.0002	-0.0096
25	0.00000025	0.0009	0.0149	-0.0015
26	0.00000003	0.0001	0.0016	0.0039
27	-0.00000007	-0.0003	-0.0044	-0.0011
28	0.00000011	0.0004	0.0066	-0.0003
29	-0.00000004	-0.0001	-0.0021	0.0038
30	-0.00000016	-0.0006	-0.0091	-0.0013
31	0.00000006	0.0002	0.0033	-0.0034
32	0.00000011	0.0004	0.0063	0.0010
33	-0.00000002	-0.0001	-0.0013	0.0020
34	-0.00000006	-0.0002	-0.0035	-0.0002
35	0.0	0.0	0.0002	-0.0011
SUMS	34.63095498	-1.2808	-20.9378	-15.3150

D4

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1980

DAYS 1&3 THRU 277		JD 2444421.5 TO 2444516.5		DATES JULY 1 THRU OCT 3
		A = 47.50000000	R = -4.85263158	
TERM	H	S	NUT LON	NUT ORL
0	43.46891292	-1.3286	-21.7212	-13.9006
1	3.12119702	-0.0705	-1.1534	0.8392
2	-0.00000906	-0.0326	-0.5330	-0.0955
3	0.00000129	0.0046	0.0757	-0.0875
4	0.00000168	0.0061	0.0990	0.0008
5	0.00000031	0.0011	0.0183	-0.0013
6	0.00000087	0.0031	0.0512	-0.0048
7	-0.00000001	0.0	-0.0004	0.0078
8	0.00000047	0.0017	0.0275	-0.0054
9	-0.00000043	-0.0015	-0.0250	0.0198
10	0.00000047	0.0017	0.0276	-0.0019
11	0.00000058	0.0021	0.0342	0.0291
12	-0.00000108	-0.0039	-0.0636	0.0052
13	-0.00000009	-0.0003	-0.0050	0.0016
14	-0.00000100	-0.0036	-0.0587	0.0049
15	-0.00000022	-0.0008	-0.0129	-0.0302
16	0.00000059	0.0021	0.0348	-0.0046
17	-0.00000005	-0.0002	-0.0027	-0.0090
18	0.00000107	0.0038	0.0629	-0.0062
19	0.00000038	0.0014	0.0226	0.0344
20	-0.00000129	-0.0047	-0.0760	0.0104
21	-0.00000033	-0.0012	-0.0192	-0.0266
22	0.00000082	0.0030	0.0483	-0.0053
23	0.00000010	0.0003	0.0057	0.0160
24	-0.00000049	-0.0017	-0.0286	0.0011
25	-0.00000002	-0.0001	-0.0013	-0.0084
26	0.00000018	0.0007	0.0107	-0.0009
27	0.00000004	0.0002	0.0026	0.0009
28	0.00000007	0.0002	0.0040	0.0013
29	-0.00000005	-0.0002	-0.0030	0.0032
30	-0.00000014	-0.0005	-0.0083	-0.0013
31	0.00000005	0.0002	0.0030	-0.0033
32	0.00000011	0.0004	0.0063	0.0012
33	-0.00000005	-0.0002	-0.0028	0.0021
34	-0.00000007	-0.0002	-0.0038	-0.0009
35	0.00000003	0.0001	0.0015	-0.0012
SUMS	46.59010467	-1.4180	-23.1830	-13.2159

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1980

D5

DAYS 275 THRU 369		JDN 2444513.5 TO 2444608.5		DATES OCT	1 THRU JAN	3
		A = 47.5000000	R = -6.78947368			
		APP S T	EQ OF EO	NUT LON	NUT OBL	
TERM	H	S		"	"	
0	7.55944755	-1.5910		-26.0114	-13.1825	
1	3.12121705	0.0016		0.0254	-0.3022	
2	0.00001169	0.0421		0.6881	0.1015	
3	-0.00000241	-0.0087		-0.1417	0.0910	
4	-0.00000080	-0.0029		-0.0471	-0.0245	
5	-0.00000093	-0.0033		-0.0546	-0.0016	
6	-0.00000036	-0.0013		-0.0213	-0.0261	
7	-0.00000001	0.0		-0.0008	-0.0005	
8	-0.00000064	-0.0023		-0.0375	-0.0253	
9	0.00000139	0.0050		0.0819	-0.0029	
10	0.00000028	0.0010		0.0163	-0.0018	
11	0.00000056	0.0020		0.0331	-0.0096	
12	0.00000014	0.0005		0.0081	0.0168	
13	0.00000025	0.0009		0.0148	0.0008	
14	0.00000023	0.0008		0.0136	0.0224	
15	-0.00000108	-0.0039		-0.0637	0.0090	
16	-0.00000027	-0.0010		-0.0158	-0.0146	
17	-0.00000022	-0.0008		-0.0129	-0.0001	
18	-0.00000023	-0.0008		-0.0137	-0.0233	
19	0.00000141	0.0051		0.0827	-0.0132	
20	0.00000054	0.0019		0.0317	0.0359	
21	-0.00000126	-0.0045		-0.0739	0.0133	
22	-0.00000032	-0.0012		-0.0189	-0.0222	
23	0.00000055	0.0020		0.0325	-0.0042	
24	0.00000001	0.0		0.0006	0.0072	
25	-0.00000013	-0.0005		-0.0079	-0.0009	
26	0.00000002	0.0001		0.0011	-0.0017	
27	0.00000006	0.0002		0.0037	-0.0012	
28	0.00000012	0.0004		0.0070	0.0017	
29	-0.00000009	-0.0003		-0.0055	0.0041	
30	-0.00000017	-0.0006		-0.0102	-0.0022	
31	0.00000010	0.0004		0.0058	-0.0038	
32	0.00000011	0.0004		0.0066	0.0020	
33	-0.00000007	-0.0003		-0.0043	0.0018	
34	-0.00000004	-0.0001		-0.0024	-0.0013	
35	0.00000003	0.0001		0.0020	-0.0006	
SUMS	10.68067306	-1.5590		-25.4886	-13.3588	

D6

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1980

TERMS	DAYS	1 THRU 95	JD 2444239.5 TO 2444334.5	DATES JAN	1 THRU APR	4
		A = 47.50000000	B = -1.02105263			
		R A	DEC	DISTANCE	S D	EPHEM TR
0	43.8252908	-20.690664	1.98007142	32.36316	24.2750322	H
1	3.1082617	15.049584	0.00888604	-0.14497	-0.0165095	
2	-0.0932496	1.830347	0.00188872	-0.03026	-0.0925624	
3	0.0117060	-0.488874	-0.00027364	0.00474	0.0120870	
4	0.0043653	-0.001765	-0.00003948	0.00063	0.0042775	
5	-0.0008231	0.005123	0.00000706	-0.00013	-0.0008233	
6	-0.0000001	-0.001379	0.00000200	-0.00003	0.0000055	
7	-0.00000231	-0.000111	0.00000339	-0.00005	-0.0000227	
8	0.0000136	0.000133	0.00001835	-0.00030	0.0000220	
9	0.0000706	0.000243	-0.00000509	0.00008	0.0000663	
10	-0.0000163	-0.000006	-0.00001300	0.00021	-0.0000218	
11	-0.0000308	-0.000117	0.00000220	-0.00004	-0.0000296	
12	0.0000062	-0.000018	0.00000401	-0.00007	0.0000070	
13	0.0000060	0.000033	-0.00000044	0.00001	0.0000059	
14	-0.0000003	0.000005	-0.00000043	0.00001	-0.0000010	
15	-0.0000011	-0.000012	0.00000006	0.0	-0.0000006	
16	0.0000004	0.000003	0.00000016	0.0	0.0000006	
17	0.0000013	0.000004	-0.00000012	0.0	0.0000013	
18	-0.0000012	-0.000006	-0.00000045	0.00001	-0.0000009	
19	-0.0000008	0.000002	0.00000012	0.0	-0.0000018	
20	0.0000015	0.000003	0.00000038	-0.00001	0.0000008	
21	0.0	-0.000003	-0.00000004	0.0	0.0000004	
SUMS	46.8555770	-4.297475	1.99055122	32.19299	24.1815329	

TERMS	DAYS	92 THRU 186	JD 2444330.5 TO 2444425.5	DATES APR	1 THRU JULY	4
		A = 47.50000000	B = -2.93684211			
		R A	DEC	DISTANCE	S D	EPHEM TR
0	7.5291624	33.224639	2.01971231	31.72792	24.0192352	H
1	3.1321042	9.423159	0.00891388	-0.14028	0.0132327	
2	0.0651046	-2.994778	-0.00184393	0.02955	0.0646454	
3	-0.0070801	-0.290505	-0.00023986	0.00351	-0.0074684	
4	-0.0049734	0.036977	0.00001763	-0.00028	-0.0049642	
5	0.0000614	0.005883	0.00001225	-0.00018	0.0000837	
6	0.0001644	0.000282	0.00000187	-0.00003	0.0001672	
7	-0.0000162	-0.000401	0.00000841	-0.00013	-0.0000126	
8	0.0000518	0.000059	0.00001375	-0.00022	0.0000568	
9	0.0000486	0.000204	-0.00001310	0.00021	0.0000439	
10	-0.0000388	-0.000121	-0.00000931	0.00014	-0.0000417	
11	-0.0000237	-0.000071	0.00000595	-0.00009	-0.0000198	
12	0.0000118	0.000050	0.00000293	-0.00005	0.0000127	
13	0.0000061	0.000009	-0.00000124	0.00002	0.0000061	
14	-0.0000011	-0.000016	-0.00000085	0.00001	-0.0000019	
15	-0.0000004	-0.000003	0.00000011	0.0	-0.0000020	
16	0.0000001	0.000005	0.00000011	0.0	0.0000005	
17	-0.0000002	0.000006	-0.00000025	0.0	-0.0000007	
18	-0.00000013	-0.000001	0.00000027	0.0	-0.0000014	
19	-0.0000002	-0.000007	0.00000032	-0.00001	0.0000016	
20	0.0000013	0.000002	-0.00000027	0.0	0.0000013	
21	0.0000006	0.000004	-0.00000017	0.0	-0.0000010	
SUMS	10.7145819	39.405376	2.02658081	31.62009	24.0849734	

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1980

D7

DAYS 183 THRU 277		JD 2444421.5 TO 2444516.5		DATES JULY 1 THRU OCT 3		
		A = 47.50000000	B = -4.85263158			
		R A	DEC	DISTANCE	S D	EPHEM TR
TERM	H	DEG	AU	*	H	
0	19.4649755	22.658960	2.02063543	31.71332	23.9938919	
1	2.9862415	-14.093162	-0.00849206	0.13353	-0.1373198	
2	-0.0642486	-1.944470	-0.00190943	0.03050	-0.0635514	
3	0.0112369	0.378959	0.00023658	-0.00346	0.0115486	
4	0.0036872	0.010840	0.00002399	-0.00038	0.0036332	
5	-0.0004706	-0.002460	0.00001362	-0.00022	-0.0004684	
6	-0.0000081	0.000818	0.00000047	-0.00001	-0.0000070	
7	0.0000015	-0.000090	0.00001186	-0.00019	0.0000055	
8	0.00000708	-0.000283	0.00000412	-0.0006	0.0000717	
9	0.00000144	-0.000081	-0.00001804	0.00028	0.0000067	
10	-0.00000502	0.0000141	-0.00000304	0.00005	-0.0000510	
11	-0.0000048	0.000074	0.00000771	-0.00012	-0.0000026	
12	0.00000145	-0.0000045	0.00000085	-0.00001	0.0000161	
13	0.0000006	-0.0000016	-0.00000216	0.00003	-0.0000001	
14	-0.0000055	0.0000023	-0.00000007	0.0	-0.0000044	
15	-0.00000002	0.0000004	0.00000055	-0.00001	0.0000005	
16	0.00000011	0.0	0.00000011	0.0	0.0000006	
17	0.00000002	-0.0000010	0.00000020	0.0	0.0000007	
18	0.00000023	-0.0000014	-0.00000016	0.0	0.0000012	
19	0.00000001	0.0000005	-0.00000040	0.00001	-0.0000009	
20	-0.00000026	0.0000014	0.00000013	0.0	-0.0000011	
21	0.0	-0.0000004	0.00000025	0.0	0.0000011	
SUMS	22.4014560	7.009203	2.01051051	31.87326	23.8077711	
DAYS 275 THRU 369		JD 2444513.5 TO 2444608.5		DATES OCT 1 THRU JAN 3		
		A = 47.50000000	B = -6.78947368			
		R A	DEC	DISTANCE	S D	EPHEM TR
TERM	H	DEG	AU	*	H	
0	31.2781359	-31.970707	1.98072699	32.35252	23.7209870	
1	3.2555932	-10.194306	-0.00915090	0.14920	0.1380913	
2	0.1015843	3.067872	0.00184227	-0.02945	0.1010255	
3	-0.0088604	0.409308	0.00028612	-0.00495	-0.0093719	
4	-0.0066965	-0.036714	-0.000001964	0.00030	-0.0067080	
5	-0.0001112	-0.011081	0.00000980	-0.00015	-0.0000804	
6	0.0002376	-0.000573	-0.00000084	0.00001	0.00002437	
7	0.0000669	0.000374	0.00001071	-0.00017	0.0000702	
8	0.0000606	-0.000198	-0.00000940	0.00015	0.0000570	
9	-0.0000366	0.000073	-0.00001597	0.00026	-0.0000443	
10	-0.0000478	0.000177	0.00000640	-0.00010	-0.0000451	
11	0.0000148	-0.000069	0.00000725	-0.00012	0.0000173	
12	0.0000151	-0.000059	-0.00000208	0.00003	0.0000143	
13	-0.0000026	0.000026	-0.00000140	0.00002	-0.0000034	
14	-0.0000013	0.0	0.00000045	-0.00001	-0.0000017	
15	-0.0000005	-0.000002	0.00000006	0.0	0.0000004	
16	0.0000005	-0.000004	0.0	0.0	0.0000010	
17	0.0000001	0.0	-0.00000033	0.00001	0.0000002	
18	-0.0000020	0.000014	-0.00000011	0.0	-0.0000013	
19	0.0000013	0.0	0.00000044	-0.00001	0.0	
20	0.0000020	-0.000015	0.00000006	0.0	0.0000009	
21	-0.0000015	-0.000001	-0.00000027	0.0	-0.0000003	
SUMS	34.6199519	-38.735885	1.97368961	32.46754	23.9442524	

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

	DAY	1 THRU	32	JD 2444239.5 TO 2444271.5	DATES JAN	1 THRU FEB	1
				A = 16.00000000	B = -1.06250000		
TERM	R	A	DEC	H P	X	Y	Z
0	38.88036949	15.2779045	112.9334524	-24.4148811	44.5533702	16.4995728	
1	14.12376638	0.3483010	C.1703020	7.1236324	2.4264076	0.4733133	
2	0.28110339	15.6594223	-1.3780563	-16.7677235	45.2109862	16.3965117	
3	-0.14100864	-3.4571673	-1.8489109	-46.1269545	-16.1257269	-3.2809740	
4	-0.15406673	-8.6793795	0.9440878	8.8380358	-24.9453956	-8.9795920	
5	0.12541922	0.3684133	0.6200385	11.9296774	3.3448934	0.5622967	
6	0.00416658	1.6870022	-0.3452754	-0.6924400	4.3642565	1.5262189	
7	-0.07210324	0.2873149	-0.1768422	-1.7739410	0.0724677	0.1123510	
8	0.00175507	-0.3953298	0.0907801	-0.2165768	-0.6850075	-0.2238642	
9	0.02489092	-0.1067571	0.0620679	0.3174423	-0.1414975	-0.0641163	
10	0.00323205	0.1386506	-0.0169519	0.0893345	0.1393204	0.0433624	
11	-0.00774136	0.0277511	-0.0215390	-0.0675499	0.0448902	0.0186985	
12	-0.00173189	-0.0490785	0.0022319	-0.0262760	-0.0297187	-0.0088955	
13	0.00274530	-0.0121634	0.0068136	0.0139932	-0.0134736	-0.0053054	
14	0.00051081	0.0165030	0.00003881	0.0080151	0.0059834	0.0016569	
15	-0.00107418	0.0057661	-0.0020307	-0.0026758	0.0041629	0.0015587	
16	-0.00019501	-0.0054923	-0.0002614	-0.0024332	-0.0010876	-0.0002531	
17	0.00043092	-0.0022739	0.0005872	0.0004336	-0.0012422	-0.0004472	
18	0.00010008	0.0018677	0.0001503	0.0007061	0.0001514	0.0000172	
19	-0.00016960	0.0008456	-0.0001632	-0.0000376	0.0003543	0.0001233	
20	-0.00004691	-0.0006640	-0.0000657	-0.0001972	-0.0000010	0.0000093	
21	0.00006567	-0.0003290	0.0000426	-0.0000123	-0.0000979	-0.0000329	
22	0.00002004	0.0002440	0.0000254	0.0000535	-0.0000109	-0.0000064	
23	-0.000002585	0.0001320	-0.0000101	0.0000296	0.0000263	0.0000085	
24	-0.00000861	-0.0000899	-0.0000089	-0.0000141	0.0000061	0.0000028	
25	0.00001043	-0.0000528	0.0000020	-0.0000043	-0.0000068	-0.0000020	
26	0.00000383	0.0000332	0.0000030	0.0000035	-0.0000025	-0.0000011	
27	-0.00000424	0.0000212	-0.0000003	0.0000017	0.0000018	0.0000005	
28	-0.00000169	-0.00000125	-0.0000010	-0.0000009	0.0000010	0.0000003	
29	0.00000168	-0.0000085	-0.0000001	-0.0000005	-0.0000004	-0.0000001	
30	0.00000074	0.0000048	0.0000005	0.0000002	-0.0000004	-0.0000001	
31	-0.00000067	0.0000034	0.0000001	0.0000002	0.0	0.0	
SUMS	53.07041398	21.1113824	111.0405563	-61.7703796	58.2240999	23.0722125	

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

D9

DAYS 32 THRU 63 JD 2444270.5 TO 2444302.5 DATES FEB 1 THRU MAR 3

A = 16.000000000 B = -3.000000000

	R A	DEC	H P	X	Y	Z
TERM	H	DEG	'	E RAD	E RAD	E RAD
0	45.18418615	7.9594502	111.7821600	-53.6801468	18.4708020	9.0328826
1	14.13635842	2.0803755	-0.0202589	2.8892821	6.5996993	2.1063120
2	0.11849323	7.7863282	-2.6827776	-46.6042319	17.6083161	8.3845762
3	-0.38241521	-13.0056962	-0.5247829	-18.8593681	-42.6035538	-13.6426994
4	-0.03092560	-4.5017339	1.6750525	25.8533167	-9.8916749	-4.6921813
5	0.09018804	3.6887256	0.0802352	5.1687902	11.2244832	3.5800959
6	-0.05796054	1.1601390	-0.5813700	-4.6780330	2.0035533	0.9223636
7	-0.00480967	-0.7853213	0.0095531	-0.9688879	-1.7840873	-0.5612083
8	0.03577371	-0.2859257	0.1914915	0.8019406	-0.4116580	-0.1814831
9	-0.000131069	0.2318430	-0.0025910	0.2164550	0.3615059	0.1127537
10	-0.01354029	0.0481371	-0.0597629	-0.1888489	0.0974100	0.0428928
11	0.00093983	-0.0788165	0.0001966	-0.0525563	-0.0925563	-0.0290212
12	0.00430408	-0.0007021	0.0189284	0.0502650	-0.0243071	-0.0108617
13	-0.00081382	0.0272039	-0.0001062	0.0135990	0.0250277	0.0078794
14	-0.00115998	-0.0036260	-0.0061235	-0.0137489	0.0065095	0.0029242
15	0.00055648	-0.0090754	0.0000742	-0.0037420	-0.0069220	-0.0021805
16	0.00025997	0.0022418	0.0020000	0.0038524	-0.0018244	-0.0008203
17	-0.00029921	0.0027692	-0.0000329	0.0010609	0.0019668	0.0006196
18	-0.00003902	-0.0010552	-0.0006575	-0.0011091	0.0005218	0.0002353
19	0.00013436	-0.0007326	0.0000123	-0.0003057	-0.0005732	-0.0001806
20	-0.00000642	0.00004486	0.0002172	0.0003265	-0.0001513	-0.0000686
21	-0.000005201	0.0001499	-0.0000046	0.0000892	0.0001702	0.0000537
22	0.000001084	-0.00001780	-0.00000721	-0.00000976	0.0000442	0.0000201
23	0.000001762	-0.00000112	0.00000015	-0.0000262	-0.00000514	-0.00000162
24	-0.000000748	0.00000653	0.0000241	0.0000296	-0.00000130	-0.00000060
25	-0.00000515	-0.00000108	-0.0000005	0.0000078	0.0000156	0.0000050
26	0.00000407	-0.00000213	-0.00000080	-0.0000092	0.0000038	0.0000020
27	0.000000117	0.00000087	0.00000002	-0.0000023	-0.0000048	-0.0000015
28	-0.000000189	0.00000059	0.00000028	0.0000028	-0.0000011	-0.0000005
29	-0.00000009	-0.00000048	-0.00000001	0.0000006	0.0000014	0.0000005
30	0.000000080	-0.00000013	-0.00000009	-0.0000008	0.0000004	0.0000002
31	-0.000000011	0.00000018	0.0	-0.0000002	-0.0000004	-0.0000002
SUMS	59.07788159	4.3149814	109.8814000	-90.0520965	1.5826522	5.0728874

D10

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

	DAY	61 THRU 92	JD 2444299.5 TO 2444331.5	DATES MAR 1 THRU APR 1
	A =	16.0000000	R =	-4.8125000
	R A	DEC	H P	X Y Z
TERM	H	DEG	'	E RAD E RAD E RAD
0	48.00221631	2.4978991	111.6215184	-58.0999984 0.2888843 3.0225666
1	14.14262056	2.4136078	-0.0290270	0.1047152 7.0047679 2.3905933
2	0.00796216	2.2262096	-2.8954424	-50.3379405 -0.0106378 2.4953849
3	-0.43234338	-14.8401684	0.0588382	-0.8409182 -45.8639998 -15.7264328
4	0.00774110	-1.3007822	1.7891658	28.0680845 0.0330432 -1.4197338
5	0.07369877	4.4014902	-0.0470592	0.1864378 12.2542577 4.2009050
6	-0.02324448	0.2989084	-0.6275584	-5.2580452 -0.0360607 0.2576925
7	0.01967131	-1.0191113	0.0266380	-0.0065902 -2.0573412 -0.7062114
8	0.01316539	-0.0538902	0.2097871	0.9630640 0.0211481 -0.0419362
9	-0.01440672	0.2687297	-0.0106903	-0.0077679 0.4385512 0.1510449
10	-0.00484041	-0.0025487	-0.0662378	-0.2334531 -0.0097318 0.0085340
11	0.00578805	-0.0670108	0.0040681	0.0045907 -0.1138318 -0.0393418
12	0.00132308	0.0080826	0.0213205	0.0627333 0.0038525 -0.0018657
13	-0.00186166	0.0150339	-0.0015749	-0.0019230 0.0311326 0.0107947
14	-0.000017821	-0.0045909	-0.0070359	-0.0174065 -0.0013906 0.0004074
15	0.00047566	-0.0029302	0.0006043	0.0007195 -0.0087500 -0.0030441
16	-0.00006864	0.0018702	0.0023410	0.0049625 0.0004883 -0.0000853
17	-0.00008152	0.0004516	-0.0002284	-0.0002611 0.0025288 0.0008828
18	0.00006859	-0.0006082	-0.0007826	-0.0014533 -0.0001713 0.0000157
19	-0.000000325	-0.0000424	0.0000857	0.0000938 -0.0007488 -0.0002623
20	-0.000003482	0.0001533	0.0002631	0.0004342 0.0000602 -0.0000018
21	0.000001116	0.00000015	-0.0000320	-0.0000333 0.0002252 0.0000792
22	0.000001304	-0.0000224	-0.0000889	-0.0001314 -0.0000211 -0.0000005
23	-0.000000656	-0.0000038	0.0000119	0.0000118 -0.0000684 -0.0000241
24	-0.000000364	-0.0000039	0.0000301	0.0000400 0.0000074 0.0000004
25	0.000000275	0.00000046	-0.00000044	-0.0000041 0.0000210 0.0000074
26	0.000000057	0.00000049	-0.0000102	-0.0000124 -0.0000025 -0.0000002
27	-0.000000098	-0.0000031	0.0000017	0.0000016 -0.0000064 -0.0000024
28	0.000000012	-0.0000022	0.0000033	0.0000038 0.0000009 0.0000001
29	0.000000026	0.0000016	-0.0000005	-0.0000004 0.0000019 0.0000008
30	-0.000000013	0.0000007	-0.0000011	-0.0000012 -0.0000003 0.0000001
31	-0.000000003	-0.0000010	0.0000004	0.0 -0.0000006 -0.0000001
SUMS	61.79768445	-5.1592700	110.0489036	-85.4100475 -28.0237619 -5.4000327

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

D11

	DAY	92 THRU 123	JD 2444330.5 TO 2444362.5	DATES APR	1 THRU MAY	2
			A = 16.00000000	B = -6.75000000		
TERM	H	DEC	H P	X	Y	Z
0	54.17443563	-9.2623436	112.2318916	-42.8854977	-34.6129894	-9.8354412
1	14.13489237	1.7285943	-0.2899608	-5.4216058	4.5256169	1.8073498
2	-0.29145028	-10.1188402	-2.2122576	-34.4396787	-35.6959301	-10.6999373
3	-0.30403136	-11.9473326	1.6343867	35.3291678	-30.9684001	-12.5817640
4	0.13874520	5.8644972	1.2976242	18.7966592	20.0053606	5.9580662
5	0.07580642	3.0318662	-0.7115367	-9.7520071	7.5133702	3.1169656
6	0.02419131	-1.6098592	-0.3808169	-2.7626367	-3.9906818	-1.2358750
7	-0.00979050	-0.3915583	0.2723103	1.8287763	-0.7388300	-0.3514603
8	-0.02520714	0.4695175	0.0909078	0.1931965	0.8136943	0.2717359
9	0.00458228	0.0554055	-0.0960010	-0.4219874	0.0167237	0.0276978
10	0.00982356	-0.1218312	-0.0136150	0.0155405	-0.1996020	-0.0700122
11	-0.00280469	-0.0119735	0.0319016	0.1057797	0.0210977	0.0018272
12	-0.00301976	0.0285587	-0.0006214	-0.0168520	0.0493867	0.0179995
13	0.00098141	0.0042356	-0.0101537	-0.0258077	-0.0117307	-0.0027293
14	0.00080712	-0.0069994	0.0016633	0.0078908	-0.0116970	-0.0044654
15	-0.00018340	-0.0018117	0.0030456	0.0059655	0.0047896	0.0013523
16	-0.00022739	0.0018887	-0.0009755	-0.0030189	0.0025804	0.0010517
17	-0.00001485	0.0006473	-0.0008474	-0.0012599	-0.0017119	-0.0005290
18	0.00008333	-0.0005200	0.0004418	0.0010389	-0.0004972	-0.0002266
19	0.00002901	-0.0001775	0.0002117	0.0002185	0.0005639	0.0001845
20	-0.00003500	0.0001202	-0.0001761	-0.0003330	0.0000660	0.0000404
21	-0.00001470	0.0000388	-0.0000437	-0.0000178	-0.0001749	-0.0000599
22	0.000001366	-0.00000123	0.00000645	0.0001008	0.0000048	-0.0000036
23	0.000000564	-0.00000080	0.00000048	-0.00000086	0.0000512	0.0000183
24	-0.000000452	-0.00000077	-0.0000218	-0.00000288	-0.00000085	-0.00000015
25	-0.00000211	0.0000026	0.0000017	0.0000065	-0.0000141	-0.0000052
26	0.00000123	0.0000064	0.0000071	0.0000078	0.0000044	0.0000012
27	0.00000086	-0.0000011	-0.0000017	-0.0300031	0.0000036	0.0000015
28	-0.00000028	-0.0000029	-0.0000021	-0.0000018	-0.0000019	-0.0000006
29	-0.00000036	0.0000006	0.0000009	0.0000013	-0.0000007	-0.0000003
30	0.00000005	0.0000010	0.0000007	0.0000004	0.0000007	0.0000001
31	0.00000015	-0.0000003	-0.0000001	-0.0000005	0.0000002	0.0000001
SUMS	67.92761289	-22.2878989	111.8474328	-39.4463950	-73.2789554	-23.5782193

D12

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

DAYS 122 THRU 153			JD 2444360.5 TO 2444392.5		DATES MAY 1 THRU JUNE 1		
	A =	16.00000000	B =	-8.62500000	X	Y	Z
TERM	R A	DEC	H P				
0	58.84281373	-14.8577044	113.3578375	-15.7641972	-46.9030981	-15.6197350	
1	14.12477910	0.4111467	-0.2906448	-7.1483915	0.7214326	0.5899588	
2	-0.34159832	-15.8835842	-0.9529978	-6.7437986	-48.0172072	-16.5692713	
3	-0.07883082	-4.5661791	2.1863562	48.4090394	-5.8215801	-4.6930302	
4	0.18891156	8.7687078	0.5441080	3.2383044	26.3164916	9.0369795	
5	0.09168467	0.5195581	-0.8353705	-12.1919825	0.4824252	0.8444612	
6	-0.00838265	-1.6381660	-0.1337773	0.4668526	-4.2250557	-1.4999795	
7	-0.05823528	0.3756668	0.2530662	1.5371725	0.6235676	0.1334774	
8	-0.00227300	0.3309236	0.0015371	-0.4772154	0.4909667	0.1975472	
9	0.02034493	-0.1550141	-0.0701948	-0.1883255	-0.2745630	-0.0858235	
10	-0.00350570	-0.0964787	0.0162283	0.1558104	-0.0597920	-0.0294575	
11	-0.00601644	0.0412648	0.0171485	0.0200409	0.0757901	0.0254376	
12	0.00203832	0.0290403	-0.0088922	-0.0397878	0.0022861	0.0029778	
13	0.00188175	-0.0146951	-0.0034056	0.0020891	-0.0183206	-0.0065279	
14	-0.00060214	-0.0083609	0.0033449	0.0093038	0.0029414	0.0005218	
15	-0.00066140	0.0059974	0.0003425	-0.0024106	0.0040532	0.0015507	
16	0.00020056	0.0022798	-0.0010692	-0.0019437	-0.0015958	-0.0004529	
17	0.00025800	-0.0021319	0.0001221	0.00010317	-0.0007588	-0.0003218	
18	-0.00009488	-0.0005944	0.0002999	0.0003172	0.0005777	0.0001852	
19	-0.00009857	0.0006926	-0.0001004	-0.0003404	0.0000902	0.0000501	
20	0.00004393	0.0001715	-0.0000710	-0.0000182	-0.0001745	-0.0000631	
21	0.00003478	-0.0002318	0.0000456	0.0000969	0.0000105	-0.0000016	
22	-0.00001822	-0.00000591	0.0000123	-0.0000145	0.0000462	0.0000170	
23	-0.00001215	0.00000832	-0.0000165	-0.0000242	-0.0000123	-0.0000030	
24	0.00000729	0.00000209	-0.0000003	0.0000089	-0.0000106	-0.0000043	
25	0.00000447	-0.0000314	0.0000052	0.0000051	0.0000056	0.0000016	
26	-0.00000299	-0.0000072	-0.0000011	-0.0000034	0.0000019	0.0000009	
27	-0.00000170	0.00000117	-0.0000013	-0.0000007	-0.0000020	-0.0000008	
28	0.00000126	0.0000024	0.0000005	0.0000011	-0.0000002	-0.0000001	
29	0.00000060	-0.0000044	0.0000003	-0.0000001	0.0000006	0.0000003	
30	-0.00000054	-0.0000010	-0.0000002	-0.0000004	-0.0000001	0.0	
31	-0.00000023	0.0000016	0.0	0.0000001	-0.0000001	-0.0000001	
SUMS	72.77266992	-26.7376745	114.0839121	11.2816194	-76.6014839	-27.6715025	

CHERYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

D13

DAYS 153 THRU 184			JD 2444391.5 TO 2444423.5			DATES JUNE 1 THRU JULY 2		
	A = 16.00000000	B = -10.56250000		X	Y	Z		
TERM	R A	DEC	H P					
0	65.47274394	-13.5775897	115.1402037	23.5502600	-35.6731159	-13.9781687		
1	14.07545704	-1.3153208	-0.1505018	-5.2772033	-4.3112663	-1.2829947		
2	-0.19718473	-14.4929847	1.0128166	34.4005291	-36.3335032	-14.9048715		
3	0.16892614	8.4477969	1.8507913	37.5792652	30.8426466	8.6644833		
4	0.17708236	7.5397717	-0.6381782	-18.6551761	19.2743665	7.8858404		
5	-0.00770896	-2.2512255	-0.6894814	-8.1185401	-7.7209446	-2.2314438		
6	-0.11387904	-0.5173719	0.1399673	2.9630384	-1.8871752	-0.8349861		
7	-0.01793717	0.4501025	0.1479582	0.1107942	0.9502014	0.3264378		
8	0.03860831	-0.2262666	-0.0447711	-0.3479414	-0.2495670	-0.0679243		
9	-0.00097088	-0.1617616	-0.0119837	0.2038280	-0.1130179	-0.0517058		
10	-0.00670343	0.0880989	0.0177329	0.0421079	0.1042796	0.0342375		
11	0.00465682	0.0492143	-0.0044905	-0.0500811	0.0092881	0.0062087		
12	0.00111236	-0.0269416	-0.0047889	0.0001617	-0.0196729	-0.0069258		
13	-0.00238034	-0.0048356	0.0023084	0.0081034	0.0029059	0.0005503		
14	-0.00027399	0.0098824	0.0006288	-0.0027152	0.0027131	0.0011131		
15	0.00079290	-0.0026191	-0.0006888	-0.0009272	-0.0017390	-0.0005584		
16	-0.00007656	-0.0034742	0.0000879	0.0010328	-0.0001720	-0.0001212		
17	-0.00022257	0.0015891	0.0001601	-0.0000277	0.0004896	0.0001741		
18	0.00012489	0.0008848	-0.0000786	-0.0002340	-0.0000763	-0.0000130		
19	0.00005819	-0.0006435	-0.0000236	0.0000667	-0.0000876	-0.0000348		
20	-0.00006755	-0.0000954	0.0000273	0.0000323	0.0000430	0.0000132		
21	-0.00000977	0.0002570	-0.0000018	-0.0000264	0.0000068	0.0000041		
22	0.00002561	-0.0000433	-0.0000065	0.0000003	-0.0000132	-0.0000047		
23	-0.00000318	-0.0000917	0.0000026	0.0000068	0.0000022	0.0000004		
24	-0.00000841	0.0000359	0.0000008	-0.0000019	0.0000026	0.0000010		
25	0.00000402	0.0000250	-0.0000011	-0.0000011	-0.0000013	-0.0000034		
26	0.00000240	-0.0000182	-0.0000001	0.0000008	-0.0000002	-0.0000002		
27	-0.00000222	-0.0000036	0.0000004	0.0000001	0.0000003	0.0000002		
28	-0.00000042	0.0000078	0.0	-0.0000002	0.0000001	0.0		
29	0.00000092	-0.0000005	0.0	0.0	-0.0000001	0.0		
30	-0.00000008	-0.0000028	0.0	-0.0000001	0.0000001	0.0		
31	-0.00000034	0.0000009	0.0000001	0.0	0.0	0.0		
SUMS	79.59216626	-15.9936231	116.7676903	66.4063519	-35.1234068	-16.4406893		

D14

CHERYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

DAYS 183 THRU 214			JD 2444421.5 TO 2444453.5		DATES JULY 1 THRU AUG 1		
	A =	16.00000000	B =	-12.43750000	X	Y	Z
TERM	H	DEC	H P		X	Y	Z
0	70.34480156	-5.9393932	116.1332955	39.1106108	-10.3701357	-6.0752359	
1	14.01423025	-2.0429043	0.1065862	-1.9813167	-6.2693969	-2.1313175	
2	-0.02954539	-6.5206635	2.1279726	51.3148129	-10.0531089	-6.7582641	
3	0.24226632	15.0387804	0.6799607	11.8055346	45.6620588	15.3669828	
4	0.08574896	3.3742718	-1.2154545	-27.1423770	5.3488235	3.5663018	
5	-0.12284466	-3.0969161	-0.4405596	-2.3465148	-10.1299726	-3.4160696	
6	-0.08820486	-0.0999967	0.1619945	2.9991038	-0.3051606	-0.2921106	
7	0.04982089	-0.0392440	0.1274464	-0.1728027	0.4090064	0.1533012	
8	0.02751156	-0.2550036	-0.0049083	0.1082520	-0.2092185	-0.0805760	
9	-0.01000059	0.0938129	-0.0048910	0.1445324	0.1127332	0.0308083	
10	0.00042372	0.1151797	0.0019104	-0.0548902	0.0670244	0.0270018	
11	0.00061939	-0.0206655	-0.0064580	-0.0294120	-0.0180244	-0.0045123	
12	-0.00321542	-0.0222839	-0.0015920	0.0047494	-0.0087001	-0.0033501	
13	-0.00000064	0.0053135	0.0016575	0.0016235	0.0012437	0.0002656	
14	0.03132609	-0.0024316	0.0003251	-0.0004105	-0.0005226	-0.0001605	
15	-0.00004044	-0.0023121	-0.0001048	0.0007403	-0.0002792	-0.0001444	
16	-0.00022436	0.0029030	0.0000512	0.0002211	0.0004485	0.0001447	
17	0.00009038	0.0007965	-0.0000204	-0.0002225	0.0001106	0.0000528	
18	-0.00004096	-0.0009062	-0.0000423	-0.0000491	-0.0000801	-0.0000253	
19	-0.00006290	-0.0000543	0.0000026	0.0000243	-0.0000099	-0.0000050	
20	0.00003831	0.0001283	0.0000091	-0.0000032	0.0000042	0.0000016	
21	0.00002123	-0.0001074	0.0	0.000003	-0.0000051	-0.0000019	
22	-0.00001279	0.0000141	-0.0000002	0.0000039	0.0000006	0.0	
23	-0.00000102	0.0000641	0.0000005	-0.0000003	0.0000019	0.0000006	
24	0.00000276	-0.0000153	-0.0000003	-0.0000009	-0.0000001	0.0	
25	-0.00000277	-0.0000168	-0.0000003	0.0000001	-0.0000003	0.0000001	
26	-0.00000033	0.0000068	0.0000002	0.0	0.0000001	0.0	
27	0.00000155	0.0000003	0.0000002	0.0	0.0	-0.0000001	
28	-0.00000008	-0.0000026	0.0000001	0.0000001	0.0	0.0	
29	-0.00000039	0.0000019	0.0000001	0.0	0.0	0.0	
30	0.00000014	0.0000009	-0.0000001	0.0	0.0000001	0.0	
31	0.00000001	-0.0000011	0.0	0.0000001	0.0	0.0	
SUMS	84.51270552	0.5883560	117.6671811	73.7622097	14.2366410	0.3830880	

CHERYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

D15

DAYS 214 THRU 245		JD 2444452.5 TO 2444484.5		DATES AUG 1 THRU SEPT 1		
		A = 16.00000000	B = -14.37500000			
TERM	R A	DEC	H P	X	Y	Z
0	28.98733725	7.6824072	116.0579149	29.6243569	27.2429078	7.7393527
1	14.01297665	-2.0274879	0.4289668	3.3493433	-5.5891125	-2.1704959
2	0.17594414	8.0320393	2.0804956	42.6758423	30.3950827	8.0179288
3	0.26021924	14.4726524	-1.3575657	-28.7582751	37.2836184	14.9510238
4	-0.09249938	-3.8848476	-1.3779290	-22.8118622	-15.6310751	-4.0631460
5	-0.13385284	-3.1381737	-0.0069820	5.7539865	-8.6222846	-3.4015157
6	0.05626672	-0.0565719	0.3341314	2.7990367	1.1863029	0.2392177
7	0.05286014	-0.0277623	0.1554678	0.1647694	0.4936673	0.1635040
8	-0.01617364	0.2490674	-0.0272339	0.0609366	0.2720350	0.0922184
9	-0.01058545	0.1521950	-0.0349772	-0.1560232	0.1180641	0.0514717
10	-0.00190634	-0.0636564	-0.0147091	-0.0866275	-0.0507498	-0.0124031
11	-0.00012798	-0.0474876	-0.0017480	0.0061988	-0.0409801	-0.0148325
12	0.00271456	0.0030380	0.0050460	0.0173145	-0.0053465	-0.0029828
13	0.00076625	0.0067636	0.0028021	0.0059001	0.0046296	0.0012574
14	-0.00092048	0.0048240	-0.0000651	-0.0001127	0.0031030	0.0011013
15	-0.00031453	0.0007364	-0.0006400	-0.0013039	0.0008886	0.0003961
16	0.00008765	-0.0023000	-0.0003291	-0.0008136	-0.0003000	-0.0000543
17	0.00009499	-0.0007282	-0.0000275	-0.0000594	-0.0004202	-0.0001445
18	0.00007005	0.0004701	0.0000790	0.0001771	-0.0001121	-0.0000507
19	-0.00002032	0.0002531	0.0000523	0.0000890	0.0000422	0.0000093
20	-0.00004156	0.0000327	0.0000048	0.0000056	0.0000428	0.0000146
21	-0.00000119	-0.0000637	-0.0000110	-0.0000164	0.0000136	0.0000058
22	0.000001066	-0.0000623	-0.0000068	-0.0000107	-0.0000027	-0.0000003
23	0.00000411	0.0000092	-0.0000010	-0.0000019	-0.0000052	-0.0000018
24	-0.00000019	0.0000246	0.0000013	0.0000018	-0.0000022	-0.0000009
25	-0.00000229	0.0000031	0.0000010	0.0000017	0.0000003	0.0
26	-0.00000111	-0.0000046	0.0000002	0.0000003	0.0000008	0.0000003
27	0.00000066	-0.0000033	-0.0000003	-0.0000003	0.0000002	0.0000001
28	0.00000054	-0.0000006	-0.0000003	-0.0000002	-0.0000001	-0.0000001
29	0.00000001	0.0000012	0.0000001	0.0	-0.0000001	0.0
30	-0.00000013	0.0000006	0.0	0.0	-0.0000001	-0.0000001
31	-0.00000009	-0.0000002	-0.0000001	0.0	-0.0000001	0.0000001
SUMS	43.29290610	21.3553676	116.2427372	32.6428535	67.0600079	21.5918734

D16

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

DAYS 245 THRU 276			JD 2444483.5 TO 2444515.5		DATES SEPT 1 THRU OCT 2			
	A =	16.00000000	B =	-16.31250000	X	Y	Z	
TERM	R A	DEC	H P		E RAD	F RAD	E RAD	
0	35.66066955	15.3596637	114.6012477	-6.9900576	43.3013215	15.7717212		
1	14.07531286	-0.8040207	0.6971338	6.8341446	-1.3771869	-0.8339499		
2	0.40171161	16.7080748	0.5296500	4.6483603	49.4868622	17.2343356		
3	0.15461389	3.6793991	-2.7057399	-48.6040776	3.1515879	4.1763059		
4	-0.21208501	-8.7571657	-0.7213657	-3.3176251	-26.3315531	-9.1156574		
5	-0.00359572	-1.6929298	0.5525758	11.2296820	-2.0394555	-1.4427202		
6	0.05775360	0.7834810	0.4680976	1.6845175	3.2873588	1.0572491		
7	-0.02648856	0.6380384	0.0294482	-0.6597636	2.9648454	0.3854730		
8	-0.01953831	0.1812656	-0.1352665	-0.5389986	0.0490285	0.0516679		
9	0.00416928	-0.1456730	-0.0539323	-0.1643881	-0.2189836	-0.0673292		
10	0.00676266	-0.0788737	0.0095569	0.0718661	-0.1133695	-0.0447862		
11	0.00218288	0.0137673	0.0198751	0.0690588	0.0096726	-0.0009480		
12	-0.00188344	0.0188165	0.0071376	0.0095120	0.0312196	0.0104747		
13	-0.00116106	0.0022545	-0.0029135	-0.0128681	0.0098107	0.0042982		
14	0.00037108	-0.0041204	-0.0034591	-0.0073515	-0.0034717	-0.0007651		
15	0.00034754	-0.0013070	-0.0006766	-0.0000230	-0.0038156	-0.0013537		
16	-0.00004123	0.0008856	0.0007177	0.0019502	-0.0008271	-0.0004115		
17	-0.00012120	0.0003755	0.0005252	0.0008400	0.0006430	0.0001756		
18	-0.00001011	-0.00001667	0.00000293	-0.00001316	0.00005072	0.0001886		
19	0.000004690	-0.00001002	-0.00001436	-0.00002829	0.00000455	0.00000338		
20	0.00001280	0.0000422	-0.0000763	-0.0000868	-0.0001163	-0.0000358		
21	-0.00001424	0.0000346	0.0000081	0.0000380	-0.0000631	-0.0000249		
22	-0.00000768	-0.0000183	0.0000269	0.0000408	0.0000036	-0.0000013		
23	0.00000291	-0.00000168	0.00000102	0.0000079	0.0000194	0.0000065		
24	0.00000342	0.0000060	-0.0000035	-0.0000084	0.0000076	0.0000032		
25	-0.00000026	0.0000083	-0.0000048	-0.0000057	-0.0000023	-0.0000005		
26	-0.000000125	0.0000003	-0.0000011	0.0000001	-0.0000032	-0.0000011		
27	-0.000000014	-0.0000033	0.0000011	0.0000015	-0.0000006	-0.0000003		
28	0.000000038	-0.0000011	0.0000008	0.0000006	0.0000007	0.0000002		
29	0.000000014	0.0000007	0.0000001	-0.0000002	0.0000004	0.0000002		
30	-0.000000014	0.0000007	-0.0000003	-0.0000002	0.0	-0.0000001		
31	-0.000000009	0.0	-0.0000002	-0.0000001	-0.0000002	-0.0000001		
SUMS	50.09901306	25.9025181	113.2924587	-35.7457487	70.2040859	27.1839484		

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

D17

DAYS 275 THRU 306		JD 2444513.5 TO 2444545.5		DATES OCT 1 THRU NOV 1			
		A = 16.0000000	P = -18.1875000	X	Y	Z	
TERM	R A	DEC	H P				
0	40.45432097	13.8307601	113.3633516	-35.1999589	34.0270479	14.4153756	
1	14.08391207	0.6605727	0.7895803	6.7272582	2.7299007	0.6895573	
2	0.49182004	15.7595767	-0.7750073	-26.1860190	41.9836205	16.7006960	
3	-0.03651265	-6.0289609	-2.8336945	-41.8217005	-23.8234675	-5.8595291	
4	-0.21833696	-8.7926973	-0.0114358	13.3287977	-23.0347851	-9.1064826	
5	0.02083877	0.5750670	0.7797409	10.9958133	4.6620387	0.9466352	
6	-0.01766290	1.6767278	0.3907347	-0.8106352	4.0509276	1.5041389	
7	-0.32333586	0.5092760	-0.1066191	-1.5566662	0.2852845	0.2052315	
8	0.01699604	-0.1996520	-0.1721453	-0.4355708	-0.5041756	-0.1525652	
9	0.01441100	-0.1835211	-0.0223130	0.1404639	-0.2745850	-0.1077208	
10	-0.00069207	-0.0199476	0.0386785	0.1607638	0.0111104	-0.0064556	
11	-0.00510747	0.0235843	0.0218746	0.0264230	0.0730195	0.0244902	
12	-0.00136670	0.0150716	-0.0024967	-0.0319806	0.0244366	0.0108422	
13	0.00090492	0.0035167	-0.0077907	-0.0183941	-0.0104436	-0.025536	
14	0.00041162	-0.0013360	-0.0024100	0.0018305	-0.0099732	-0.0036983	
15	-0.00004420	-0.0023054	0.0014683	0.0053760	-0.0008903	-0.0006688	
16	0.00000998	-0.0012361	0.0013451	0.0015243	0.0022687	0.0007164	
17	0.000003300	0.0003840	0.0000763	-0.0008581	0.0011054	0.0004526	
18	-0.000003599	0.0004907	-0.0003873	-0.0007481	-0.0001964	-0.0000226	
19	-0.000003967	0.0000329	-0.0001800	-0.0000493	-0.0003830	-0.0001345	
20	0.000000464	-0.0001214	0.0000480	0.0001910	-0.0000919	-0.0000453	
21	0.000001774	-0.0000247	0.0000764	0.0000874	0.0000732	0.0000206	
22	0.000000384	0.0000293	0.0000160	-0.0000211	0.0000543	0.0000210	
23	-0.000003396	0.0000051	-0.0000180	-0.0000332	-0.0000005	0.0000020	
24	-0.000000186	-0.00000110	-0.0000123	-0.0000062	-0.0000157	-0.0000055	
25	0.000000036	-0.0000029	0.0000008	0.0000072	-0.0000056	-0.0000025	
26	0.000000018	0.0000039	0.0000041	0.0000043	0.0000024	0.0000007	
27	-0.000000010	0.0000018	0.0000013	-0.0000004	0.0000024	0.0000010	
28	0.000000013	-0.0000009	-0.0000008	-0.0000013	0.0000002	0.0000001	
29	0.000000016	-0.0000036	-0.0000007	-0.0000005	-0.0000005	-0.0000002	
30	-0.000000005	0.0	-0.0000001	0.0000002	-0.0000004	-0.0000001	
31	-0.000000008	0.0000001	0.0000002	0.0000003	0.0000001	0.0	
SUMS	54.78054494	17.8254828	111.4524855	-74.6741024	40.1918788	19.2582966	

D18

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

DAYS 306 THRU 337		JD 2444544.5 TO 2444576.5		DATES NOV 1 THRU DEC 2			
A = 16.0000000	R = -20.1250000	X	Y	Z			
TERM	R A	DEC	H P				
0	46.75103224	4.3184311	112.0048451	-55.4674450	2.2242303	4.5115410	
1	14.09130020	2.5090668	0.5893207	2.0817843	6.7695231	2.4633706	
2	0.31753885	5.9185429	-2.2730086	-50.3902411	9.1313246	6.6611540	
3	-0.32042744	-14.8054295	-1.7747498	-9.6376485	-44.5317926	-15.4893831	
4	-0.14881310	-3.7053522	0.9891738	27.4206535	-5.4686353	-3.8406873	
5	-0.00609263	3.9641771	0.7716638	3.461781	11.3970398	3.8791821	
6	-0.00288551	1.2908559	0.0264284	-4.5354604	1.7346371	0.9389261	
7	0.05335607	-0.5721017	-0.2745956	-1.0896609	-1.5038677	-0.4685473	
8	0.02042123	-0.4092006	-0.0863564	0.5191187	-0.5639429	-0.2398943	
9	-0.01952371	-0.0073059	0.0684045	0.3297409	0.1488660	0.0312888	
10	-0.01162543	0.0835650	0.0410343	-0.0250335	0.1608970	0.0600174	
11	0.00337714	0.0534450	-0.0098284	-0.3854095	0.0091279	0.0091534	
12	0.00388800	0.0000884	-0.0147115	-0.0173406	-0.0386429	-0.0128202	
13	0.000041706	-0.0231240	-0.0010981	0.0181367	-0.0126863	-0.0058360	
14	-0.000056132	-0.0092496	0.0041927	0.0092274	0.0071891	0.0019757	
15	-0.000052459	0.0053243	0.0015398	-0.0025910	0.0051676	0.0020500	
16	-0.000022552	0.0047227	-0.0008862	-0.0031140	-0.0006485	-0.0000231	
17	0.000016431	-0.0001433	-0.0007361	-0.0000867	-0.0015576	-0.0005590	
18	0.000020101	-0.0013317	0.00003775	0.0008272	-0.0002241	-0.0001374	
19	0.000000136	-0.0004638	0.00002546	0.0002406	0.0003720	0.0001186	
20	-0.000007792	0.00001255	0.00000456	-0.0001683	0.0001609	0.0000698	
21	-0.000002661	0.00002101	-0.0000681	-0.0001126	-0.0000627	-0.0000153	
22	0.000001412	0.00000896	-0.00000332	0.0000181	-0.0000623	-0.0000239	
23	0.000001378	-0.00000357	0.00000126	0.0000369	0.00000015	-0.00000018	
24	0.000000318	-0.00000566	0.00000140	0.0000045	0.0000182	0.00000362	
25	-0.000000307	-0.00000114	0.00000001	-0.0000093	0.00000044	0.00000021	
26	-0.000000355	0.00000159	-0.00000045	-0.0000038	-0.00000040	-0.00000013	
27	-0.000000059	0.00000101	-0.00000013	0.00000016	-0.00000024	-0.00000039	
28	0.000000137	-0.00000004	0.00000011	0.00000015	0.00000005	0.00000001	
29	0.000000083	-0.00000033	0.00000007	-0.00000001	0.00000009	0.00000003	
30	-0.000000020	-0.00000018	0.0	-0.0000005	0.0000001	0.0	
31	-0.00000039	0.00000002	-0.00000002	-0.00000001	-0.00000002	0.0	
SUMS	60.73093917	-1.3851409	110.0609313	-87.4143559	-20.5335685	-1.4990777	

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1980

D19

DAYS 336 THRU 367 JD 2444574.5 TO 2444606.5 DATES DEC 1 THRU JAN 1

A = 16.00000000 P = -22.00000000

TERM	R A	DEC	H P	X	Y	Z
	H	DEG	'	E RAD	F RAD	E RAD
0	51.20436466	-4.5359168	111.7346408	-50.7559782	-23.8936687	-5.0937671
1	14.08514127	2.7651368	0.2864110	-2.8243700	6.6608826	2.7457239
2	0.05314651	-3.7969844	-2.5222804	-47.5525830	-19.6323064	-3.7859551
3	-0.36358346	-15.4513027	-0.4983779	18.9394673	-41.0710480	-16.3169374
4	-0.06146265	2.0065967	1.244237P	26.0567392	10.6324608	1.9962963
5	0.00536651	4.4844379	0.4095082	-4.6357264	10.8963426	4.2888998
6	0.06558846	-0.2965782	-0.1231130	-4.7104506	-1.6440838	-0.2569208
7	0.05704513	-0.9153214	-0.2061565	0.4988502	-1.7252382	-0.6622529
8	-0.02951078	-0.0732283	-0.0147838	0.7561934	0.1238029	-0.0097203
9	-0.02661301	0.1498136	0.0667233	0.0042660	0.3016613	0.1093317
10	0.00774960	0.0955697	0.0135972	-0.1366978	0.0264160	0.0195040
11	0.00857781	0.0026436	-0.0174010	-0.0295860	-0.0547746	-0.0177848
12	-0.00036122	-0.0485884	-0.0066479	0.0234457	-0.0192079	-0.0086862
13	-0.00204436	-0.0151307	0.0036720	0.0130445	0.0089302	0.0023076
14	-0.00100955	0.0165633	0.0024824	-0.0032857	0.0079007	0.0027851
15	0.00020750	0.0082863	-0.0004998	-0.0041064	-0.0010159	-0.0000735
16	0.000070351	-0.0036160	-0.0008255	0.0001366	-0.0020293	-0.0007485
17	0.000131341	-0.3332574	-0.0000377	0.0010947	-0.0000839	-0.0001093
18	-0.00029315	-0.0000058	0.00002412	0.0001543	0.0005098	0.0001747
19	-0.000011560	0.0010093	0.0000623	-0.0002543	0.0001127	0.0000593
20	0.00007870	0.00004870	-0.0000606	-0.0000873	-0.0001106	-0.0000342
21	0.000005946	-0.0002162	-0.0000308	0.0000493	-0.0000509	-0.0000220
22	-0.00000485	-0.0002969	0.0000122	0.0000328	0.0000188	0.0000046
23	-0.000002333	-0.0000004	0.00000116	-0.0000063	0.0000174	0.0000368
24	-0.000000935	0.0001161	-0.0000013	-0.0000102	-0.0000014	0.0000002
25	0.000000669	0.0000323	-0.0000037	-0.0000005	-0.0000052	-0.0000017
26	0.000000696	-0.0000305	-0.0000004	0.0000028	-0.0000008	-0.0000004
27	-0.000000076	-0.3000216	0.0000010	0.0000007	0.0000013	0.0000004
28	-0.000000315	0.0000025	0.0000004	-0.0000006	0.0000005	0.0000003
29	-0.000000061	0.0000094	-0.0000002	-0.0000004	-0.0000003	0.0
30	0.000000100	0.0000029	-0.0000001	0.0000001	-0.0000002	0.0
31	0.000000057	-0.0000028	0.0	0.0	0.0	0.0000001
SUMS	65.00313992	-15.6097911	110.3715608	-64.3596661	-59.3854685	-16.9879194

D20

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
MERCURY AND VENUS

	DAYS	1 THRU 95	JD 2444239.5 TO 2444334.5	DATES JAN	1 THRU APR	4	
			A = 47.50000000	B = -1.02105263			
TERM		MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
0		42.8368917	-26.179079	2.1359131	48.9825218	5.581965	2.0950774
1		2.5176216	10.234106	-0.3767459	3.4399835	22.192685	-0.3159943
2		-1.1598757	-4.665942	0.0901600	-0.0628360	-0.572267	-0.0161830
3		0.1745437	-2.563208	0.1849248	0.0264044	-0.857313	0.0006732
4		0.4115444	2.979593	-0.0028078	-0.0055704	0.026335	0.0002089
5		0.0762393	1.493280	-0.0499341	-0.0022259	0.002528	0.0000325
6		-0.1161255	-0.611452	-0.0102116	-0.0000797	0.001104	0.0000032
7		-0.0681098	-0.693164	0.0143245	-0.0000879	0.000249	-0.0000052
8		0.0207530	0.010008	0.0061526	-0.0000208	-0.000226	0.0000183
9		0.0325838	0.254567	-0.0035336	0.0000626	0.000226	0.0000076
10		0.0029877	0.077666	-0.0026666	0.0000236	0.000131	-0.0000117
11		-0.0111605	-0.066313	0.0006602	-0.0000217	-0.000081	-0.0000034
12		-0.0048600	-0.050728	0.0009412	-0.0000077	-0.000042	0.0000034
13		0.0024160	0.005246	-0.0000560	0.0000029	0.000014	0.0000007
14		0.0026228	0.020005	-0.0002753	0.0000013	0.000012	-0.0000033
15		0.0000907	0.006405	-0.0000115	-0.0000008	-0.000006	0.0
16		-0.0000902	-0.004386	0.0000666	-0.0000004	0.0	0.0000002
17		-0.0004022	-0.004578	-0.0000017	0.0000014	0.000003	0.0000001
18		0.0001590	-0.000642	-0.0000151	-0.0000002	-0.000001	-0.0000004
19		0.0002264	0.001642	0.0000088	-0.0000005	0.000001	-0.0000002
20		0.0000484	0.001215	0.0000057	0.0000003	0.000001	0.0000003
21		-0.0000711	-0.000148	-0.0000073	-0.0000003	-0.000002	0.0000001
22		-0.0000576	-0.000683	-0.0000040	-0.0000002	-0.000001	-0.0000001
23		0.0000038	-0.000261	0.0000039	0.0000003	-0.000001	-0.0000001
24		0.0000289	0.000221	0.0000028	0.0000001	-0.000002	0.0
25		0.0000117	0.000225	-0.0000015	0.0	0.000001	0.0
26		-0.0000086	-0.000015	-0.0000017	0.0	0.0	0.0
27		-0.0000092	-0.000110	0.0000004	-0.0000002	0.000001	0.0
28		0.0000004	-0.000037	0.0000008	0.0000001	0.000002	0.0
29		0.0000044	0.000034	0.0	0.0	0.0	0.0
30		0.0000013	0.000031	-0.0000003	-0.0000002	-0.000002	0.0
31		-0.0000012	-0.000002	0.0	0.0000001	0.000001	0.0
32		-0.0000011	-0.000014	0.0000001	0.0000001	0.000001	0.0
33		0.0000001	-0.000003	0.0	0.0000002	0.000001	0.0
34		0.0000005	0.000003	0.0	-0.0000001	-0.000001	0.0
35		0.0000001	0.000005	0.0	-0.0000001	-0.000001	0.0
36		-0.0000002	0.000001	0.0	0.0000001	0.0	0.0
37		-0.0000002	0.0	0.0	-0.0000001	-0.000001	0.0
SUMS		44.7171876	-19.756512	1.9868915	52.3781496	26.375314	1.7638269

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
MERCURY AND VENUS

D21

DAYS 92 THRU 186		JD 2444330.5 TO 2444425.5		DATES APR 1 THRU JULY 4		
		A = 47.50000000	B = -2.93684211	MERCURY	VENUS	VENUS
TERM	R A	MERCURY	MERCURY	MERCURY	R A	DEC DISTANCE
0	55.6026687	22.721076	1.8866920	10.1846453	47.034492	0.9349336
1	4.8396947	14.754238	-0.1943693	0.6443888	-2.844149	-0.2224222
2	-0.3998184	-8.123827	-0.2723891	-0.9024808	-3.459100	0.0783214
3	-0.5816916	-2.498531	0.0577183	0.0336605	0.623713	0.0229577
4	-0.0728440	1.961764	0.0576629	0.1382406	0.251221	0.0008856
5	0.0616088	0.569272	-0.0073143	0.0407204	0.135198	-0.0019321
6	0.0147039	-0.312825	-0.0129495	-0.0073519	0.041987	-0.0008172
7	-0.0187402	-0.139733	0.0033491	-0.0103769	-0.020590	-0.0000306
8	-0.0009694	0.093998	0.0043886	-0.0028330	-0.022308	0.0001364
9	0.0071948	0.039613	-0.0012339	0.0010908	-0.005267	0.0000482
10	0.0007941	-0.032601	-0.0014894	0.0009716	0.003041	-0.0000156
11	-0.0022903	-0.013366	0.0004649	0.0001007	0.002581	-0.0000076
12	-0.0001747	0.011614	0.0005240	-0.0001351	0.003449	0.0000022
13	0.0008283	0.004511	-0.0001905	-0.0000584	-0.000397	0.0000004
14	0.0000249	-0.004428	-0.0001938	0.0000016	-0.000275	-0.0000008
15	-0.0003212	-0.001581	0.00000793	0.0000090	-0.000026	-0.0000002
16	-0.0000039	0.001753	0.0000734	0.0000032	0.000048	0.0000003
17	0.0001247	0.000576	-0.0000339	0.0	0.000030	-0.0000001
18	-0.0000056	-0.000705	-0.0000281	-0.0000040	0.000001	0.0000001
19	-0.00000506	-0.000211	0.0000148	-0.0000003	-0.000015	0.0000004
20	0.0000050	0.000288	0.0000109	0.0000050	-0.000005	-0.0000001
21	0.00000213	0.000080	-0.0000065	0.0000010	0.000007	-0.0000003
22	-0.0000026	-0.000120	-0.0000044	-0.0000029	0.000002	0.0
23	-0.00000091	-0.000027	0.0000028	-0.0000011	-0.000005	0.0000001
24	0.00000012	0.000048	0.0000017	0.0000008	-0.000005	0.0
25	0.00000035	0.000011	-0.0000012	0.0000007	0.000001	0.0
26	-0.0000007	-0.000020	-0.0000007	-0.0000003	0.000001	0.0
27	-0.00000015	-0.000003	0.0000006	-0.0000001	0.0	0.0
28	0.00000004	0.000012	0.0000003	0.0000003	0.000002	0.0
29	0.00000007	0.000001	-0.0000002	-0.0000001	0.000003	0.0
30	-0.00000004	-0.000005	-0.0000001	-0.0000004	0.000001	0.0
31	-0.00000001	-0.000001	0.0000001	0.0	-0.000002	0.0
32	0.00000001	0.000001	0.0	0.0000003	0.000002	0.0
33	0.00000001	-0.000001	-0.0000001	-0.0000001	0.0	0.0
34	-0.00000001	-0.000001	0.0	-0.0000003	-0.000002	0.0
35	0.00000001	-0.000001	0.0	-0.0000001	0.000001	0.0
36	0.00000002	0.0	0.0	-0.0000001	-0.000002	0.0
37	0.0	-0.000001	0.0	0.0	0.0	0.0
SUMS	59.4507541	29.030868	1.5207787	10.1205947	41.737633	0.8120596

D22

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
MERCURY AND VENUS

DAYS 183 THRU 277		JD 2444421.5 TO 2444516.5		DATES JULY 1 THRU OCT 3			
		A = 47.5000000	R = -4.85263158	VENUS	VENUS	VENUS	
TERM		MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
0		20.1508585	14.748836	1.9883731	14.1794425	34.371102	1.3136485
1		3.6383024	-17.096790	0.3738980	2.6375854	-2.313409	0.3492321
2		0.9202776	-7.608744	-0.1832805	0.4615629	-2.076002	0.0082879
3		-0.5893100	0.583829	-0.126187	-0.1337695	-1.027811	-0.0073970
4		-0.0096849	2.117042	0.0623845	0.0194789	0.256625	0.0018462
5		0.1588618	-0.485761	0.0093227	-0.0021030	-0.002015	-0.0004301
6		-0.0559300	-0.385570	-0.0171772	0.0000819	-0.006935	0.0000842
7		-0.0196322	0.196163	-0.0001356	0.0004340	0.003231	0.0000008
8		0.0134518	0.075703	0.0047224	-0.0001259	-0.001596	-0.0000121
9		0.0029348	-0.059721	-0.0001672	0.0000030	0.303477	-0.0000144
10		-0.0023334	-0.020449	-0.0016069	-0.0000830	-0.0000058	0.0000067
11		-0.0020333	0.021877	0.0001678	0.0000472	0.000102	0.0000071
12		0.0011918	0.005860	0.0000605	0.0000134	-0.000035	-0.0000028
13		0.3008425	-0.008904	-0.0001341	-0.0000136	-0.000030	-0.0000016
14		-0.0007215	-0.001209	-0.00002180	-0.0000035	0.000025	0.0000009
15		-0.0001805	0.003558	0.0000783	0.0000030	-0.000002	0.0000004
16		0.0003016	0.000066	0.0000751	0.0000003	-0.000008	0.0
17		0.0000192	-0.001388	-0.0000382	0.0000008	-0.000009	0.0
18		-0.0001065	0.000106	-0.0000258	0.0000024	0.0	-0.0000004
19		0.3000003	0.000542	0.0000176	-0.0000022	0.000009	-0.0000002
20		0.00000409	-0.000096	0.00000087	-0.0000023	0.0000007	0.0000003
21		-0.0000027	-0.000214	-0.0000082	0.0000014	-0.000003	0.0000031
22		-0.00000175	0.000063	-0.0000028	0.0000009	-0.000002	-0.0000002
23		0.0000032	0.000081	0.0000037	-0.0000006	0.000005	0.0
24		0.0000068	-0.000034	0.0000007	-0.0000005	0.000001	0.0000001
25		-0.0000024	-0.000028	-0.0000016	0.0000002	0.0000001	0.0
26		-0.0000027	0.000021	-0.0000001	0.0000003	-0.000002	0.0
27		0.0000014	0.000008	0.0000007	-0.0000002	-0.000004	0.0
28		0.0000009	-0.000010	-0.0000001	0.0	-0.000002	0.0
29		-0.0000007	-0.000003	-0.0000003	0.0000001	0.000002	0.0
30		-0.0000003	0.000004	0.0000001	0.0000001	0.000001	0.0
31		0.0000002	0.300003	0.3000001	0.0	-0.300002	0.0
32		0.0000002	-0.000004	0.0	-0.0000001	0.000001	0.0
33		-0.0000001	0.0	0.0	0.0	-0.000001	0.0
34		-0.0000001	-0.000001	0.0	-0.0000001	0.0	0.0
35		0.0000001	-0.000001	0.0	0.0	-0.000001	0.0
36		0.0000003	-0.000001	0.0	0.0000001	-0.000001	0.0
37		-0.0000001	0.000001	0.0	0.0000001	0.000001	0.0
SUMS		24.2071374	-7.915165	2.1108437	17.1625544	29.203662	1.6652565

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
MERCURY AND VENUS

D23

DAYS 275 THRU 369			JD 2444513.5 TO 2444608.5		DATES OCT 1 THRU JAN 3		
	A = 47.5000000		B = -6.78947368				
	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	31.7040578	-37.988381	2.2857007	26.9982188	-11.575695	2.5500324	
1	2.2739625	-4.385185	0.2576528	3.7227294	-18.608468	0.2691867	
2	0.9470704	-2.509301	0.1864129	0.0990312	1.076440	-0.0194510	
3	0.3843283	-1.117240	-0.1667128	0.0265060	0.922485	-0.0005615	
4	-0.3971051	3.410885	-0.0360929	-0.0026101	0.015858	0.0001177	
5	0.0019589	-0.111689	0.0590060	-0.0021091	-0.007883	0.0000038	
6	0.1634942	-1.328881	-0.3050077	-0.0000823	-0.001515	-0.0000004	
7	-0.0624215	0.439340	-0.0208243	0.0000517	-0.000694	0.0000062	
8	-0.0512150	0.466726	0.0079220	0.0000390	-0.000140	-0.0000175	
9	0.0474972	-0.354287	0.0059597	-0.0000420	0.000226	-0.0000082	
10	0.0063421	-0.106849	-0.0050611	-0.0000143	0.000091	0.0000112	
11	-0.0246596	0.207740	-0.0009344	0.0000197	-0.000108	0.0000035	
12	0.0061134	-0.018660	0.0024466	0.000031	-0.000023	-0.0000033	
13	0.0095121	-0.096637	-0.0003729	-0.0000035	0.0000022	-0.0000005	
14	-0.0064828	0.043534	-C.0009474	0.0000008	-0.000006	0.0000004	
15	-0.0021758	0.033114	0.0004732	-0.0000010	C.0	0.0	
16	0.0039692	-0.034107	0.0002645	0.0000001	-0.000004	-0.0000001	
17	-0.0004364	-0.004380	-0.0003010	-0.0000006	0.000006	-0.0000004	
18	-0.0017829	0.019112	-0.0000172	-0.0000014	0.000013	0.0000001	
19	0.0008948	-0.004878	0.0001430	0.0000020	-0.000039	0.0000004	
20	0.0005407	-0.008050	-0.0000418	0.0000016	-0.000011	-0.0000001	
21	-0.0006517	0.005573	-0.0000511	-0.0000018	0.000007	-0.0000002	
22	-0.00003184	0.002061	0.0000376	-0.0000008	0.000002	0.0000001	
23	0.00003323	-0.003701	0.0000102	0.0000006	-0.000003	0.0000001	
24	-0.00001198	0.0000346	-0.0000213	0.0000002	-0.000001	0.0	
25	-0.00001197	0.001808	0.0000031	-0.0000003	0.000002	0.0	
26	0.00001073	-0.000882	0.0000089	-0.0000001	0.000001	0.0	
27	0.00000183	-0.000606	-0.0000049	0.0000002	0.0	0.0	
28	-0.00000616	0.0000704	-0.0000024	0.0000002	-0.000001	0.0	
29	0.00000151	0.0000044	0.0000033	0.0	0.0	0.0	
30	0.00000250	-0.000390	-0.0000001	-0.0000002	0.000002	0.0	
31	-0.00000176	0.000131	-0.00003016	0.0000002	0.000001	0.0	
32	-0.00000056	0.0000158	0.0000007	0.0	-0.000001	0.0	
33	0.00000113	-0.0000133	0.0000005	-0.0000002	-0.000002	0.0	
34	-0.00000016	-0.0000030	-0.0000005	0.0	-0.000001	0.0	
35	-0.00000054	0.0000084	0.0	0.0000002	-0.000001	0.0	
36	0.00000028	-0.0000018	0.0000003	0.0	0.000003	0.0	
37	0.00000015	-0.0000040	-0.0000001	0.0	0.000001	0.0	
SUMS	35.0029747	-43.442965	2.5696505	30.8417373	-28.179403	2.7993194	

D24

 CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
 MARS AND JUPITER

	DAYS	1 THRU 95	JD 2444239.5 TO 2444334.5	DATES	JAN	1 THRU APR	4
			A = 47.5000000	B = -1.02105263			
		MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
TERM		H	DEG	AU	H	DEG	AU
0	21.2886963	24.875374	1.5899321	21.0842682	21.0011115	9.1513068	
1	-0.6893847	4.047879	-0.0759599	-0.3118343	1.913898	-0.0962644	
2	-0.1388227	0.078165	0.1044347	-0.0228360	0.068201	0.1612640	
3	0.1233392	-0.811784	0.0049676	0.0227361	-0.139438	0.0037877	
4	0.0192713	-0.022145	-0.0042390	0.0010316	-0.0011556	-0.0035116	
5	-0.0089289	0.076260	-0.0005051	-0.0006308	0.004303	-0.0000978	
6	-0.0026360	0.005555	0.0002445	-0.0000490	0.000059	0.0000619	
7	0.0006864	-0.008418	0.0000582	0.0000209	-0.000161	0.0000034	
8	0.0003287	-0.001136	-0.0000307	-0.0000003	0.000006	-0.00000153	
9	-0.0001352	0.001333	-0.0000048	-0.0000149	0.000065	0.0000024	
10	-0.0000356	0.000101	0.0000189	0.0000017	-0.000011	0.0000174	
11	0.0000734	-0.000431	-0.0000004	0.0000111	-0.000051	-0.0000017	
12	0.0000063	0.000022	-0.0000086	-0.0000002	0.000034	-0.0000078	
13	-0.0000268	0.000143	0.0000001	-0.0000033	0.000015	0.0000005	
14	-0.0000018	-0.000014	0.0000020	0.0000008	-0.000003	0.0000016	
15	0.0000044	-0.000024	0.0	-0.0000004	0.000004	-0.0000001	
16	0.0000001	0.000002	-0.0000003	-0.0000005	0.000002	-0.0000002	
17	-0.0000017	0.000009	0.0	-0.0000003	0.000001	0.0000001	
18	-0.0000005	-0.000002	0.0000004	-0.0000006	0.000001	0.0000004	
19	0.0000037	-0.000019	-0.0000001	0.0000014	-0.000010	-0.0000001	
20	0.0000009	0.000001	-0.0000005	0.0000011	-0.000003	-0.0000005	
21	-0.0000032	0.000018	0.0	-0.0000012	0.000010	0.0	
SUMS	20.5924336	28.240889	1.6189091	20.7727011	22.846451	9.2165467	

	DAYS	92 THRU 186	JD 2444330.5 TO 2444425.5	DATES	APR	1 THRU JULY	4
			A = 47.5000000	B = -2.93684211			
		MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
TERM		H	DEG	AU	H	DEG	AU
0	21.3541572	20.079927	2.3292668	20.6507508	23.379420	10.5340420	
1	0.9635217	-7.244840	0.3749873	0.1757211	-1.126500	0.6981427	
2	0.2095336	-1.224167	0.0013802	0.0945365	-0.539022	0.0112719	
3	-0.0354662	0.139149	-0.0059625	-0.0057326	0.029143	-0.0172940	
4	0.0047636	-0.014364	0.0009833	-0.0009316	0.003151	0.0008736	
5	0.0000716	0.003806	-0.0001354	0.00002408	-0.0000931	0.00000533	
6	-0.0002227	-0.000273	0.0001943	-0.0000298	0.000190	-0.0000142	
7	0.0000659	-0.000043	-0.0000037	-0.0000018	-0.000004	0.0000005	
8	-0.0000638	0.000278	0.0000090	-0.0000078	0.000036	0.0000097	
9	0.0000390	-0.000190	0.0000162	0.0000078	-0.000033	0.0000149	
10	0.0000385	-0.000150	-0.0000100	0.0000082	-0.000032	-0.0000114	
11	-0.0000285	0.000108	-0.0000082	-0.0000072	0.000030	-0.0000087	
12	-0.00000105	0.000043	0.0000040	-0.0000030	0.000008	0.0000049	
13	0.0000076	-0.000021	0.0000023	0.0000018	-0.000007	0.0000026	
14	0.0000027	-0.000015	-0.0000007	0.0000010	-0.000008	-0.0000010	
15	0.0000001	-0.000007	-0.0000006	0.0000009	-0.000005	-0.0000007	
16	-0.0000009	0.000004	0.0000001	-0.0000004	0.000004	0.0000001	
17	0.0000011	-0.000009	0.0	0.000004	-0.000003	0.000001	
18	-0.0000035	0.000005	-0.0000003	-0.0000003	0.000005	-0.0000003	
19	-0.0000026	0.000011	0.0000002	-0.0000017	0.000007	0.0000003	
20	0.0000015	-0.000010	0.0000003	0.0000007	-0.000008	0.0000003	
21	0.0000018	-0.000012	-0.0000002	0.0000014	-0.000006	-0.0000002	
SUMS	22.4964102	11.739230	2.7005424	20.9145552	21.745435	11.2270864	

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
 MARS AND JUPITER

D25

DAYS 183 THRU 277			JD 2444421.5 TO 2444516.5		DATES JULY 1 THRU OCT 3			
	A =	47.50000000	P =	-4.85263158	MARS	MARS	JUPITER	JUPITER
TERM	R A	DEC	DISTANCE	R A	DEC	DISTANCE		
0	26.9454351	-17.390897	3.5809288	22.2464590	13.457850	12.5108416		
1	1.8717498	-11.230577	0.2620009	0.5981133	-3.747081	0.2442213		
2	0.0916653	0.241748	-0.0214732	0.0175925	-0.136932	-0.1076855		
3	0.0037077	0.164374	0.0001358	-0.0055782	0.037015	-0.004368		
4	0.0004149	0.008814	0.0001283	0.0001305	0.000555	0.0007379		
5	-0.0002279	0.000425	-0.0000040	-0.0000349	0.000108	0.0000155		
6	0.0000008	-0.000135	0.0000369	0.0000052	-0.000031	0.0000089		
7	-0.0000192	0.000092	0.0000028	-0.0000014	0.0000007	0.0000035		
8	0.0000138	-0.000015	0.0000176	0.0000084	-0.0000042	0.0000087		
9	0.0000367	-0.000197	-0.0000063	0.0000058	-0.000029	-0.0000164		
10	-0.0000116	0.000023	-0.0000141	-0.0000078	0.000032	-0.0000091		
11	-0.0000168	0.000085	0.000030	-0.0000027	0.000017	0.0000091		
12	0.0000034	-0.000008	0.0000048	0.0000020	-0.000007	0.0000035		
13	0.0000045	-0.000027	-0.0000011	0.0000059	-0.000005	-0.0000029		
14	-0.0000027	0.000014	-0.0000012	-0.0000019	0.000011	-0.0000008		
15	-0.0000014	0.000008	0.0000003	-0.0000005	0.000001	0.0000008		
16	0.0000008	0.0	0.0000002	0.0000008	-0.000004	0.0000002		
17	-0.0000002	0.000002	0.0000002	0.0	-0.000001	0.0000001		
18	0.0000017	-0.000011	0.0000002	0.0000012	-0.000009	-0.0000001		
19	0.0000009	-0.000010	-0.0000003	0.0000005	0.0	-0.0000004		
20	-0.0000019	0.000012	-0.0000002	-0.0000015	0.000010	0.0		
21	-0.0000008	0.000003	0.0000002	-0.0000004	0.0	0.0000003		
SUMS	28.9127529	-28.206277	3.8217296	22.8566908	9.611465	12.6440994		

DAYS 275 THRU 369			JD 2444513.5 TO 2444608.5		DATES OCT 1 THRU JAN 3			
	A =	47.50000000	B =	-6.78947368	MARS	MARS	JUPITER	JUPITER
TERM	R A	DEC	DISTANCE	R A	DEC	DISTANCE		
0	35.5906441	-44.108139	4.3172035	24.4302764	-0.243536	11.8421959		
1	2.5604384	-0.880998	0.1256320	0.4752187	-2.933307	-0.5666768		
2	0.0466516	2.338125	-0.0120180	-0.0530530	0.370994	-0.0774188		
3	-0.0174212	0.089622	0.0011640	-0.0075929	0.050096	0.0104754		
4	-0.0012439	-0.032640	-0.3000087	-0.0002244	0.000184	0.0012061		
5	0.0004397	-0.002671	0.0000065	0.0000423	-0.000319	0.0000207		
6	0.0000620	0.000485	0.0	0.0000120	-0.000061	-0.0000147		
7	-0.0000124	0.000165	0.0000100	0.0000037	-0.000021	-0.0000003		
8	0.0000328	-0.000032	0.0000008	0.0000003	-0.000007	-0.0000156		
9	0.0000029	-0.000035	-0.0000188	-0.0000101	0.000053	-0.0000028		
10	-0.0000275	0.000042	-0.0000008	-0.0000015	0.000016	0.0000166		
11	0.0000005	-0.000003	0.0000092	0.0000075	-0.000040	0.0000021		
12	0.0000096	-0.000021	0.0000002	0.0000011	-0.000010	-0.0000068		
13	-0.0000001	0.000010	-0.0000022	-0.0000017	0.000008	-0.0000005		
14	-0.0000009	-0.000006	0.0000002	0.0000001	-0.000001	0.0000013		
15	-0.0000008	-0.000005	0.0000002	-0.0000008	0.000006	-0.0000001		
16	0.0	0.000003	0.0000001	-0.0000003	0.000002	-0.0000001		
17	0.0	-0.000004	-0.0000002	-0.0000003	0.000002	-0.0000002		
18	-0.0000009	0.000008	-0.0000003	-0.0000004	0.000004	0.0000002		
19	0.0000008	0.000003	0.0000003	0.0000015	-0.000010	0.0000004		
20	0.0000014	-0.000011	0.0000003	0.0000007	-0.000005	-0.0000003		
21	-0.0000012	-0.000003	-0.0000002	-0.0000014	0.000008	-0.0000003		
SUMS	38.1795749	-42.596105	4.4319781	24.8446775	-2.755944	11.2097814		

D26

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
SATURN AND URANUS

	DAYS	1 THRU 95	JD 2444239.5 TO 2444334.5	DATES JAN	1 THRU APR	4
		A = 47.50000000		B = -1.02105263		
	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE
TERM	H	DEG	AU	H	DEG	AU
0	23.5115937	8.229227	17.3901946	31.0316476	-37.488010	37.3455443
1	-0.1586311	1.164811	-0.3273148	0.0338419	-0.116054	-0.7412192
2	-0.0336937	0.176734	0.1452910	-0.0330836	0.116968	0.0075887
3	0.0088205	-0.062991	0.0117148	-0.0003595	0.000188	0.0220189
4	0.0009625	-0.005319	-0.0025549	0.0005020	-0.001414	0.0000684
5	-0.0001309	0.001069	-0.0002006	0.0000214	-0.000051	-0.0001915
6	-0.0000236	0.000145	0.0000179	-0.0000017	0.0	-0.0000082
7	0.0000024	-0.000020	0.0000044	-0.0000002	0.0000001	0.0000034
8	0.0000010	-0.000006	-0.0000139	0.0000022	-0.0000005	-0.0000046
9	-0.0000066	0.000031	-0.0000039	0.0000002	-0.0000004	-0.0000182
10	-0.0000016	0.000008	0.0000170	-0.0000035	0.000014	0.0000054
11	0.0000055	-0.000029	0.0000026	0.0000011	0.000003	0.0000118
12	0.0000012	-0.000006	-0.0000075	0.0000019	-0.000010	-0.0000023
13	-0.0000015	0.000008	-0.0000009	0.0	0.0	-0.0000035
SUMS	23.3288978	9.505662	17.2171458	31.0325708	-37.488374	36.6337934

	DAYS	92 THRU 186	JD 2444330.5 TO 2444425.5	DATES APR	1 THRU JULY	4
		A = 47.50000000		B = -2.93684211		
	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE
TERM	H	DEG	AU	H	DEG	AU
0	23.0342732	11.259756	18.1763509	30.8141289	-36.701917	35.8015919
1	-0.0206035	-0.010497	0.6697809	-0.1196635	0.430649	0.0519279
2	0.0552174	-0.366537	0.0601599	0.0025930	-0.007704	0.1577865
3	0.0012970	-0.001823	-0.0196594	0.0050443	-0.018680	-0.0021234
4	-0.0010218	0.006013	-0.0001540	-0.0000989	0.000011	-0.0023774
5	0.0000736	-0.000572	0.0001844	-0.0000593	0.000231	0.0000378
6	0.0000033	0.000004	-0.0000131	0.0000005	0.000002	0.0000098
7	-0.0000025	0.000016	-0.0000024	0.0000005	-0.000002	-0.0000018
8	-0.0000052	0.000027	0.0000057	-0.0000022	0.0	-0.0000094
9	0.0000018	-0.000008	0.0000181	-0.0000038	0.000018	0.0000145
10	0.0000057	-0.000028	-0.0000066	0.0000021	-0.000005	0.0000112
11	-0.0000031	0.000016	-0.0000111	0.0000007	-0.000004	-0.0000096
12	-0.0000022	0.000010	0.0000030	-0.0000008	0.000006	-0.0000045
13	0.0000005	-0.000003	0.0000035	-0.0000007	0.000003	0.0000030
SUMS	23.0692342	10.886374	18.8866598	30.7019408	-36.297392	36.0068565

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
 SATURN AND URANUS

D27

DAYS 183 THRU 277		JD 2444421.5 TO 2444516.5		DATES JULY 1 THRU OCT 3		
		A = 47.50000000	B = -4.85263158			
	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE
TERM	H	DEG	AU	H	DEG	AU
0	23.6415692	6.899969	20.45C7016	30.6343897	-36.094330	37.5697455
1	0.3115565	-2.073800	0.3842483	0.0476022	-0.197721	0.7429020
2	0.0223440	-0.121832	-0.1144025	0.0310324	-0.116494	-0.0073517
3	-0.0046097	0.031161	-0.0080315	-0.0006734	0.003825	-0.0199436
4	-0.0000406	0.000361	0.0011210	-0.0003681	0.001679	0.0002611
5	-0.0000001	0.000001	0.0000290	0.0000165	-0.000089	0.0001304
6	0.0000015	-0.000013	0.0000090	0.0000009	-0.000006	0.0000073
7	-0.0000006	0.000003	0.0000025	-0.0000007	0.000001	-0.0000002
8	0.00000044	-0.000023	0.0000108	0.0000001	0.000005	0.0000150
9	0.00000044	-0.000023	-0.0000141	0.0000034	-0.000016	0.0000031
10	-0.0000039	0.000017	-0.0000118	0.0000011	-0.000009	-0.0000168
11	-0.0000021	0.000012	0.0000081	-0.0000019	0.0	-0.0000022
12	0.0000006	-0.000002	0.0000047	-0.0000014	0.000006	0.0000070
13	0.0000007	-0.000004	-0.0000027	0.0000007	-0.000003	0.0000005
SUMS	23.9708243	4.735827	20.7136724	30.7120015	-36.403152	38.2857574
DAYS 275 THRU 369		JD 2444513.5 TO 2444608.5		DATES OCT 1 THRU JAN 3		
		A = 47.50000000	B = -6.78947368			
	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE
TERM	H	DEG	AU	H	DEG	AU
0	24.8468048	-0.701260	20.0906069	31.1419407	-37.960748	39.2350056
1	0.2660950	-1.556049	-0.553856	0.1904794	-0.663966	0.0038347
2	-0.0351099	0.256223	-0.0926041	0.0006174	0.011572	-0.1503871
3	-0.0050706	0.030531	0.0128014	-0.0038077	0.013187	-0.0005941
4	0.0000976	-0.001266	0.0014735	-0.0000482	-0.000338	0.0019363
5	0.0000463	-0.000310	-0.0000208	0.0000186	-0.000070	0.0000422
6	0.0000063	-0.000034	-0.0000203	0.0000025	0.000003	-0.0000134
7	0.0000014	-0.000008	-0.0000004	0.0000004	0.0	0.0000018
8	0.0000003	-0.000003	-0.0000149	0.0000020	-0.000003	-0.0000071
9	-0.0000053	0.000028	-0.0000038	-0.0000003	-0.000002	-0.0000166
10	-0.0000011	0.000009	0.0000167	-0.0000026	0.000013	0.0000081
11	0.0000047	-0.000025	0.0000027	0.0000018	-0.000002	0.0000109
12	0.0000007	-0.000006	-0.0000069	0.0000013	-0.000009	-0.0000034
13	-0.0000010	0.000005	-0.0000007	0.0	-0.000001	-0.0000031
SUMS	25.0728692	-1.972165	19.4583727	31.3292053	-38.600364	39.0898148

D28

 CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
 NEPTUNE AND PLUTO

	DAY	1 THRU	95	JD 2444239.5 TO 2444334.5	DATES	JAN	1 THRU	APR	4
				A = 47.5000000	R =	-1.02105263			
TERM		NEPTUNE RA	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO RA †	PLUTO DEC †	PLUTO DISTANCE		
0		34.8571314	-43.680212	61.2147114	27.4458971	16.005800	59.3825988		
1		0.0630094	-0.028077	-0.6847495	-0.0246749	0.527751	-0.5953853		
2		-0.0190004	0.020279	-0.0646786	-0.0172406	0.047474	0.0918755		
3		-0.0013569	-0.000532	0.0198461	0.0012661	-0.020159	0.0177034		
4		0.0002525	-0.000194	0.0009616	0.0002953	-0.000972	-0.0014337		
5		0.0000137	0.000023	-0.0001582	-0.0000087	0.000212	-0.0001758		
6		-0.0000004	0.000004	-0.0000047	-0.0000020	0.000013	0.0000022		
7		-0.0000002	0.000001	0.0000032	0.000002	-0.000004	0.0000027		
8		0.00000012	0.000004	0.0000020	0.0000012	-0.000001	-0.00000109		
9		0.00000020	-0.000002	-0.0000192	-0.0000018	0.000014	-0.00000116		
10		-0.00000023	0.000004	-0.0000024	-0.0000014	0.000001	0.00000133		
11		0.00000001	0.000006	0.0000122	0.0000011	-0.000009	0.00000077		
SUMS		34.9000501	-43.688696	60.4859239	27.4055316	16.560120	58.8951893		

	DAY	92 THRU	186	JD 2444330.5 TO 2444425.5	DATES	APP	1 THRU	JULY	4
				A = 47.5000000	R =	-2.93684211			
TERM		NEPTUNE RA	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO RA †	PLUTO DEC †	PLUTO DISTANCE		
0		34.8239670	-43.571229	58.9973108	27.2459196	17.432864	58.9952347		
1		-0.0728711	0.071794	-0.3120575	-0.0584492	0.073561	0.4128334		
2		-0.0092948	0.002885	0.1429652	0.0100555	-0.137167	0.1178836		
3		0.0028038	-0.002406	0.0087633	0.0022226	-0.003869	-0.0132094		
4		0.0001470	-0.000133	-0.0020709	-0.0001927	0.002188	-0.0015055		
5		-0.0000258	0.0	-0.0000744	-0.0000170	-0.000025	0.0001292		
6		-0.0000016	-0.000005	0.0000016	0.0000009	-0.000009	0.0000027		
7		0.0	0.0	-0.0000003	0.0000001	0.000002	-0.0000028		
8		-0.00000034	-0.000007	-0.0000137	-0.0000018	0.000010	-0.0000019		
9		-0.00000036	0.000005	0.0000067	-0.0000005	-0.000007	0.00000185		
10		-0.00000001	0.000001	0.0000161	0.0000021	-0.000012	0.0000021		
11		0.00000035	0.000001	-0.0000046	0.0000003	0.000005	-0.00000120		
SUMS		34.7447209	-43.499094	58.8348423	27.1995399	17.367541	59.5113696		

† ASTROMETRIC POSITION, EQUATOR AND EQUINOX 1950.0

CHERYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
 NEPTUNE AND PLUTO

D29

DAYS 183 THRU 277			JD 2444421.5 TO 2444516.5		DATES JULY 1 THRU OCT 3			
			A = 47.50000000	B = -4.85263158				
	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A †	PLUTO DEC †	PLUTO DISTANCE		
TERM	H	DEG	AU	H	DEG	AU		
0	34.5980074	-43.422422	59.7990478	27.2439681	16.029177	61.1600479		
1	-0.0228926	-0.013780	0.6709387	0.0614276	-0.729897	0.5630712		
2	0.0193513	-0.022128	0.0660994	0.0154193	-0.039287	-0.0820724		
3	0.0011007	-0.007460	-0.3190704	-0.0011926	0.016118	-0.0154761		
4	-0.0002632	0.000425	-0.0008576	-0.0001706	0.000312	0.0010240		
5	-0.0000054	0.000016	0.0001433	0.0000077	-0.000082	0.0001026		
6	0.0000018	-0.00002	0.0000124	0.0000095	-0.000004	0.0000079		
7	-0.0000003	-0.000003	-0.0000015	-0.0000003	0.000001	0.0000008		
8	-0.0000008	0.000004	0.0000118	0.0000005	-0.000009	0.0000137		
9	0.0000015	-0.000007	0.0000120	0.0000022	-0.000009	-0.0000071		
10	0.0000020	-0.000004	-0.0000136	-0.0000007	0.000010	-0.0000157		
11	-0.0000006	-0.000007	-0.0000074	-0.0000013	0.000005	0.0000042		
SUMS	34.5952818	-43.458368	60.5163149	27.3194604	15.276335	61.6267010		
DAYS 275 THRU 369			JD 2444513.5 TO 2444608.5		DATES OCT 1 THRU JAN 3			
			A = 47.50000000	B = -6.78947368				
	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A †	PLUTO DEC †	PLUTO DISTANCE		
TERM	H	DEG	AU	H	DEG	AU		
0	34.7834642	-43.711545	62.0401324	27.5887690	13.692601	61.5238623		
1	0.1103422	-0.115743	0.3231833	0.3983855	-0.347503	-0.4095535		
2	0.0089369	0.002308	-0.1394339	-0.0077052	0.124210	-0.1247838		
3	-0.0024639	0.003179	-0.0094839	-0.0022432	0.007756	0.0103382		
4	-0.0001150	-0.000131	0.0018988	0.0000614	-0.001475	0.0018703		
5	0.0000156	-0.000039	0.0001038	0.0000195	-0.000115	-0.0000440		
6	0.0000016	0.000008	-0.0000098	0.0000013	0.000002	-0.0000228		
7	0.0	0.000001	0.0000020	0.0000003	-0.000001	0.0000036		
8	0.0000012	0.000005	-0.0000009	0.0000009	0.0	-0.0000127		
9	0.0000015	-0.000002	-0.0000192	-0.0000019	0.000014	-0.0000088		
10	-0.0000019	0.000004	0.0000008	-0.0000011	0.0	0.0000146		
11	0.0000007	0.000003	0.0000121	0.0000012	-0.000010	0.0000060		
SUMS	34.9001831	-43.821952	62.2163855	27.6772877	13.475479	61.0016664		

† ASTROMETRIC POSITION, EQUATOR AND EQUINOX 1950.0

D30

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1980

DAY	1 THRU 366	JD 2444239.5 TO 2444605.5	DATES JAN	1 THRU DEC 31
		A = 183.00000000	B = -1.00546448	
		APP S T	EQ OF EQ	NUT LON
TERM	H	S	"	"
0	37.35790861	-1.2952	-21.1753	-14.7326
1	12.02484819	-0.1782	-2.9141	0.9004
2	0.00000514	0.0185	0.3024	-0.2564
3	0.00000098	0.0035	0.0578	-0.0412
4	0.00000552	0.0199	0.3249	-0.3369
5	0.000001376	0.0495	0.8099	0.2100
6	-0.00000451	-0.0162	-0.2652	0.2816
7	-0.00000635	-0.0229	-0.3739	-0.0289
8	0.00000206	0.0074	0.1212	-0.0500
9	0.00000058	0.0021	0.0341	0.0254
SUMS	49.38277398	-1.4116	-23.0782	-14.0286

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1980

DAY	1 THRU 366	JD 2444239.5 TO 2444605.5	DATES JAN	1 THRU DEC 31
		A = 183.00000000	B = -1.00546448	
	R A	DEC	DISTANCE	S D EPHEM TR
TERM	H	DEG	AU	" H
0	61.3798984	-13.485026	1.98998373	32.20530 24.0239100
1	11.8882784	-2.371409	0.00040082	-0.00651 -0.1361512
2	0.0274567	-22.511744	-0.01629251	0.26234 0.0301137
3	0.0728274	2.734964	-0.00045237	0.00724 0.0729307
4	0.3999380	6.654348	0.00500746	-0.07879 0.0414091
5	0.1047579	-0.370476	0.00006182	-0.00085 0.1039803
6	-0.0307469	-0.499175	-0.00042170	0.00552 -0.0321237
7	-0.0441609	0.064997	0.00000621	-0.00016 -0.0438798
8	0.0071710	0.073062	0.00000367	0.00024 0.0074620
9	0.0074422	-0.038612	0.00000513	-0.00008 0.0073738
10	-0.0020151	-0.036087	0.00000209	-0.00006 -0.0020889
11	-0.0017746	0.012058	0.00000568	-0.00009 -0.0017310
12	0.0010209	0.008821	0.00000356	-0.00006 0.0010632
13	0.0006818	-0.003071	0.00000282	-0.00005 0.0006652
14	-0.0003326	-0.001719	0.00000528	-0.00009 -0.0003432
15	-0.0001905	0.001055	-0.00000141	0.00002 -0.0001853
16	0.0001304	0.000510	0.00000392	-0.00006 0.0001366
17	0.0000686	-0.000433	-0.00000569	0.00009 0.0000634
18	-0.0000403	-0.000207	0.00000007	0.0 -0.0000417
19	0.0000069	0.000130	-0.00000566	0.00009 0.0000048
20	-0.0000085	-0.000014	-0.00000470	0.00008 -0.0000094
21	0.0000025	0.000032	0.0	0.0 0.0000021
SUMS	73.4504117	-29.767996	1.97830822	32.39412 24.0725610

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
 MERCURY AND VENUS

D31

TERMS	1 THRU 366	JD 2444239.5 TO 2444605.5	DATES JAN 1 THRU DEC 31			
	A = 183.0000000	B = -1.00546448				
	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
0	61.1590076	-16.259388	2.2847451	61.3299771	3.886667	2.0389198
1	11.9348903	-2.057468	0.0138161	8.9954521	-4.091478	0.1263595
2	-0.2888502	-21.060221	0.2479819	0.5199066	-23.697362	0.5067310
3	-0.0962828	2.832695	-0.0263792	1.4227831	2.942652	-0.0623428
4	0.0098143	6.142098	0.1198710	-0.3064634	-1.087741	-0.1241152
5	0.6096034	-0.138879	0.0382059	-0.5823235	-0.456128	0.0288473
6	-0.1073015	-4.470863	0.0046127	0.2491301	3.250235	0.0372145
7	0.5496339	-1.590931	0.0425877	0.3340216	0.307474	-0.0159313
8	0.2654045	2.672040	-0.2308540	-0.1866950	-1.320137	-0.0135762
9	-0.8443272	-0.342205	-0.0648524	-0.1589771	-0.234689	0.0091161
10	-0.1787411	2.868818	0.1552987	0.1258262	0.568902	0.0053996
11	0.3264153	1.741017	0.0271610	0.0647372	0.169417	-0.005237
12	0.0366467	-3.501402	-0.0202559	-0.0830444	-0.287433	-0.0021362
13	-0.0036084	-0.774155	0.0004251	-0.0231529	-0.119475	0.0031704
14	-0.0149232	0.942527	-0.0012675	0.0539379	0.172299	0.0007660
15	0.0970612	-0.336210	0.0034000	0.0052171	0.076011	-0.0019054
16	0.0735285	0.053991	-0.0252246	-0.0344902	-0.118477	-0.0001739
17	-0.1812294	0.155360	-0.0113232	0.0021192	-0.043393	0.00111320
18	-0.3843557	0.552784	0.0152501	0.0217306	0.085470	-0.0000588
19	0.0705558	0.403835	0.0066619	-0.0046186	0.021436	-0.0006782
20	0.0325514	-0.628283	0.0111909	-0.3134260	-0.361908	0.0001233
21	0.0423270	-0.314780	0.0009469	0.0050258	-0.007617	0.0003983
22	0.0021333	-0.006256	-0.0147374	0.0080131	0.044169	-0.0001387
23	-0.0315672	-0.097653	-0.0013522	-0.0045534	-0.000119	-0.0002196
24	0.0109002	0.294234	0.0036468	-0.0045810	-0.030644	0.0001230
25	-0.0138464	0.156469	-0.0019786	0.0037148	0.003923	0.0001249
26	-0.0271697	-0.085244	0.0001683	0.0024932	0.020833	-0.0000880
27	0.0082170	0.064822	0.0023447	-0.0028483	-0.005576	-0.0000729
28	0.0157720	-0.048719	0.0027299	-0.0012219	-0.013970	0.0000646
29	0.0167985	-0.128854	-0.0001032	0.0021197	0.005914	0.0000326
30	0.0021263	-0.043188	-0.0025214	0.0004599	0.009053	-0.0000536
31	-0.0139513	-0.004782	-0.0008419	-0.0015255	-0.005407	-0.0000066
32	-0.0023279	0.090552	-0.0007373	-0.0000554	-0.005507	0.0000411
33	-0.0034039	0.072844	-0.0000843	0.0010371	0.004496	-0.0000007
34	-0.0063774	-0.011799	0.00019435	-0.0001084	0.003112	-0.0000248
35	0.0066281	-0.003810	0.0006568	-0.0006562	-0.003560	-0.0000020
36	0.0064063	-0.042260	-0.0008149	0.0001412	-0.001650	0.0000109
37	0.0008087	-0.048857	-0.0001013	0.0003888	0.002740	0.0000049
38	0.0003110	0.016440	0.0001124	-0.0001277	0.000809	-0.0000038
39	-0.0026660	0.013011	-0.0003807	-0.0002205	-0.002030	-0.0000051
40	-0.0023461	0.007402	-0.0003867	0.0001030	-0.000322	0.0000013
41	-0.0012548	0.027016	0.0001227	0.0001206	0.001454	0.0000036
42	-0.0010702	0.007254	0.0004236	-0.0000792	0.000050	-0.0000004
43	0.0022778	-0.011508	0.0002330	-0.0000637	-0.001005	-0.0000021
44	0.0026839	-0.017681	0.0000334	0.0000612	0.000092	0.0000006
45	0.0003451	-0.016073	-0.0001558	0.0000327	0.000660	0.0000009
46	-0.0006110	0.003918	-0.0003059	-0.0000455	-0.000155	-0.0000007
47	-0.0016256	0.010786	-0.0000559	-0.0000150	-0.000422	-0.0000004
48	-0.0009299	0.007535	0.0001976	0.0000319	0.000168	0.0000003
49	0.0005504	0.007287	0.0000362	0.0000049	0.000270	0.0000001
SUMS	73.3746316	-32.896734	2.5800896	71.7392939	-20.017869	2.5317255

D32

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
MARS AND JUPITER

TERMS	DAYS	1 THRU 366	JD 2444239.5 TO 2444605.5	DATES JAN	1 THRU DEC	31
		A = 183.00000000		B = -1.00546448		
		MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC
0	27.5760557	27.5760557	-7.064796	2.9848849	22.4681798	12.151181
1	4.6280926	4.6280926	-20.583065	0.8351646	1.0421526	-6.606497
2	2.0923938	2.0923938	-4.577975	0.3629403	0.59131P7	-3.641802
3	-0.2368154	-0.2368154	6.482392	-0.1897721	-0.1821501	1.153886
4	-0.1250909	-0.1250909	1.800034	0.0765457	-0.1031117	0.622222
5	0.1796563	0.1796563	-0.889939	-0.0032754	0.0489690	-0.238928
6	-0.1350057	-0.1350057	0.490966	-0.0126375	-0.0137619	0.078745
7	0.0145390	0.0145390	-0.278719	0.0094279	-0.0045810	0.004961
8	0.0326648	0.0326648	-0.051628	-0.0034218	0.0051162	-0.022584
9	-0.0286155	-0.0286155	0.125559	-0.0003556	-0.0015566	0.011598
10	0.0120543	0.0120543	-0.094044	0.0013718	-0.0001968	-0.001936
11	0.0020791	0.0020791	0.034671	-0.0009368	0.0004805	-0.001793
12	-0.0063966	-0.0063966	0.013216	0.0002554	-0.0002082	0.001504
13	0.0042612	0.0042612	-0.026173	0.0001424	0.0000096	-0.000477
14	-0.0009746	-0.0009746	0.017095	-0.0002014	0.0000467	-0.000118
15	-0.0009589	-0.0009589	-0.003585	0.0001183	-0.0000250	0.000167
16	0.0012191	0.0012191	-0.004525	-0.0000145	0.0000050	-0.000084
17	-0.0006015	-0.0006015	0.005608	-0.0000304	0.0000010	0.000015
18	0.0003165	0.0003165	-0.002938	0.0000297	-0.0000021	0.000015
19	0.0002474	0.0002474	0.000082	-0.0000181	-0.0000044	0.000013
20	-0.0002010	-0.0002010	0.001195	-0.0000028	0.0000005	0.000004
21	0.0000640	0.0000640	-0.001091	-0.0000010	-0.0000029	0.000015
22	0.0000197	0.0000197	0.000426	-0.0000037	-0.0000028	0.000016
23	-0.00000516	-0.00000516	0.000092	-0.0000014	0.0000025	-0.000007
SUMS	34.0086518	34.0086518	-24.607112	3.7602145	23.8506786	3.510116
						10.7152908

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
SATURN AND URANUS

TERMS	DAYS	1 THRU 366	JD 2444239.5 TO 2444605.5	DATES JAN	1 THRU DEC	31
		A = 183.00000000		B = -1.00546448		
		SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC
0	23.9798408	23.9798408	5.010270	18.9012558	30.9929843	-37.378023
1	0.4220933	0.4220933	-2.771143	0.6926401	0.0667601	-0.258487
2	0.3568716	0.3568716	-2.270906	-0.2055264	0.1432652	-0.518173
3	-0.0527793	-0.0527793	0.500078	-0.6119133	0.0951975	-0.327137
4	-0.0923571	-0.0923571	0.573656	0.0772683	-0.0465708	0.179421
5	0.0202729	0.0202729	-0.143690	0.0740550	-0.0131747	0.052587
6	0.0026637	0.0026637	-0.007569	-0.0162061	0.0064260	-0.025131
7	-0.0045859	-0.0045859	0.024929	0.0007589	0.0002614	-0.004675
8	0.0015934	0.0015934	-0.011899	0.0021175	-0.0008059	0.003385
9	0.0003089	0.0003089	-0.000267	-0.0010916	0.0001422	0.000260
10	-0.0003588	-0.0003588	0.002140	0.0000195	0.0000930	-0.000525
11	0.0000985	0.0000985	-0.000918	0.0001489	-0.0000347	0.000042
12	0.0000274	0.0000274	-0.000029	-0.0000634	-0.0000070	0.0000077
13	-0.00000277	-0.00000277	0.0000183	0.0000032	0.0000059	-0.0000018
14	0.00000068	0.00000068	-0.0000078	0.0000038	0.0000004	-0.0000009
15	0.00000029	0.00000029	-0.0000005	-0.00000038	-0.00000013	0.0000002
SUMS	24.6336714	24.6336714	0.904752	18.9134664	31.2445416	-38.276401
						38.4673378

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1980
NEPTUNE AND PLUTO

D33

TERMS	1 THRU 366	JD 2444239.5	TG 2444605.5	DATES JAN	1 THRU DEC	31
		A = 183.00000000	P = -1.00546448			
	NEPTUNE R A	NEPTUNE DEG	NEPTUNE DISTANCE	PLUTO R A †	PLUTO DEC †	PLUTO DISTANCE
0	34.7900039	-43.644709	61.0961104	27.4498229	15.297944	60.3841983
1	0.0035924	-0.030490	0.1835514	0.0538401	-3.671359	3.4980096
2	0.0413287	-0.078516	0.9202272	0.1105957	-0.784313	0.1787172
3	0.0853380	-0.065148	-0.2135232	0.0237818	0.252242	-0.6206938
4	-0.0135417	0.025959	-0.2823804	-0.0340854	0.231880	-0.0474400
5	-0.0136639	0.012482	0.0349932	-0.0022080	-0.048070	0.0921501
6	0.0018124	-0.000983	0.0261338	0.0032643	-0.016142	0.0002009
7	0.0010513	-0.001859	-0.0029916	-0.0003849	0.006017	-0.0045986
8	-0.0002257	-0.000367	-0.0010911	-0.0001407	-0.000786	0.0009801
9	-0.0000712	0.000282	0.0002591	0.0001054	-0.000614	-0.0000915
10	0.0000301	0.000066	0.0000253	-0.0000050	0.000268	-0.0001435
11	0.0000347	-0.000043	-0.0000150	-0.0000104	0.000014	0.0000455
12	-0.0000042	-0.000004	-0.0000038	0.0000022	-0.000032	0.0000104
13	0.0000002	0.000009	-0.0000017	0.0000002	0.000009	-0.0000075
SUMS	34.8956550	-43.783321	61.7612936	27.6045782	14.267058	60.4813372

† ASTROMETRIC POSITION, EQUATOR AND EQUINOX 1950.0

Section E: STELLAR TABLES

INDEX OF STANDARD NAVIGATION STARS

	Nav. No.	A/C ID		Nav. No.	A/C ID
Acamar	7	18	Gacrux	31	88
Achernar	5	11	Gienah	29	85
Crux	30	86	Hadar	35	104
Adhara	19	50	Hamal	6	15
Aldebaran	10	26	Kaus Australis	48	150
Alioth	32	94	Kochab	40	114
Alkaid	34	101	Markab	57	175
Al Na'ir	55	170	Menkar	8	19
Alnilam	15	37	Menkent	36	105
Alphard	25	71	Miaplacidus	24	68
Alphecca	41	120	Mirfak	9	21
Alpheratz	1	1	Nunki	50	153
Altair	51	160	Peacock	52	162
Ankaa	2	5	Pollux	21	60
Antares	42	128	Procyon	20	59
Arcturus	37	106	Rasalhague	46	143
Atria	43	133	Regulus	26	74
Avior	22	64	Rigel	11	29
Bellatrix	13	31	Rigil Kentaurus	38	109
Betelgeuse	16	42	Sabik	44	136
Canopus	17	46	Schedar	3	6
Capella	12	30	Shaula	45	142
Deneb	53	164	Sirius	18	48
Denebola	28	82	Spica	33	99
Diphda	4	7	Suhail	23	67
Dubhe	27	79	Vega	49	152
Elnath	14	32	Zubenelgenubi	39	113
Eltanin	47	147			
Enif	54	168			
Fomalhaut	56	173			

STAR POSITIONS FOR YEAR 1980

E3

DAYS 1 THRU 366			JD 2444239.5 TO 2444605.5			DATES JAN 1 THRU DEC 31						
			A =	366.00000000			B =	-0.00273224				
ID	NAV	NAME	MAG/SP	MEAN PLACE			H	R	S	C	APPT	PLACE
1	1	ALPHA AND ALPHERATZ	2.1 A0	SHA DEC	358.1625 28.9800	0 0.0008 -0.0010	0 -0.0114 0.0050	0 0.0059 -0.0023	0 0.0008 0.0024	0 0.0008 0.0024	358.1568 28.9791	
2		BETA CAS CAPH	2.4 F5	SHA DEC	357.9746 59.0394	-0.0016 -0.0010	-0.0111 0.0050	0.0101 -0.0018	0.0013 0.0046	357.9660 59.0363		
3		GAMMA PEG ALGENIB	2.9 B2	SHA DEC	356.9492 15.0725	0.0015 -0.0010	-0.0115 0.0050	0.0054 -0.0023	0.0006 0.0011	356.9443 15.0729		
4		BETA HYI	2.9 G0	SHA DEC	353.8204 -77.3669	0.0117 -0.0011	-0.0109 0.0050	0.0239 -0.0001	0.0013 -0.0056	353.8253 -77.3600		
5	2	ALPHA PHE ANKAA	2.4 K0	SHA DEC	353.6758 -42.4147	0.0040 -0.0011	-0.0114 0.0050	0.0071 -0.0014	0.0004 -0.0041	353.6738 -42.4092		
6	3	ALPHA CAS SCHEDAR	2.3 K0	SHA DEC	350.1592 56.4278	-0.0010 -0.0013	-0.0122 0.0050	0.0095 -0.0013	-0.0001 0.0045	350.1522 56.4245		
7	4	BETA CET DIPHDA	2.2 K0	SHA DEC	349.3538 -18.0961	0.0027 -0.0013	-0.0113 0.0050	0.0055 -0.0021	-0.0002 -0.0021	349.3510 -18.0928		
8		GAMMA CAS	2-3 B0	SHA DEC	346.1275 60.6089	-0.0014 -0.0014	-0.0129 0.0050	0.0107 -0.0008	-0.0010 0.0047	346.1206 60.6052		
9		BETA AND MIRACH	2.4 M0	SHA DEC	342.8483 35.5147	0.0007 -0.0015	-0.0123 0.0049	0.0064 -0.0015	-0.0010 0.0030	342.8439 35.5127		
10		DELTA CAS RUCHBAH	2.8 A5	SHA DEC	338.8763 60.1319	-0.0010 -0.0017	-0.0140 0.0048	0.0103 -0.0003	-0.0024 0.0046	338.8706 60.1281		
11	5	ALPHA ERI ACHERNAR	0.6 B5	SHA DEC	335.7575 -57.3381	0.0047 -0.0017	-0.0089 0.0047	0.0094 -0.0022	-0.0028 -0.0048	335.7605 -57.3326		
12		BETA ARI SHERATAN	2.7 A5	SHA DEC	331.6171 20.7108	0.0015 -0.0019	-0.0123 0.0046	0.0053 -0.0015	-0.0020 0.0015	331.6144 20.7097		
13		ALPHA HYI	3.0 F0	SHA DEC	330.4650 -61.6669	0.0049 -0.0019	-0.0076 0.0046	0.0104 -0.0025	-0.0042 -0.0049	330.4703 -61.6617		
14		GAMMA-1 AND ALMAK	2.3 K0	SHA DEC	329.3338 42.2344	0.0007 -0.0019	-0.0135 0.0045	0.0066 -0.0004	-0.0028 0.0033	329.3306 42.2315		
15	6	ALPHA ARI HAMAL	2.2 K2	SHA DEC	328.4896 23.3683	0.0014 -0.0019	-0.0125 0.0045	0.0053 -0.0013	-0.0024 0.0017	328.4872 23.3669		
16		BETA TRI	3.1 A5	SHA DEC	327.9129 34.8933	0.0011 -0.0020	-0.0131 0.0045	0.0059 -0.0007	-0.0027 0.0027	327.9101 34.8909		
17		ALPHA UMI POLARIS	2.1 F8	SHA DEC	327.0529 89.1736	-0.0954 -0.0020	-0.1763 0.0044	0.3361 0.0020	-0.1597 0.0052	327.0291 89.1687		
18	7	THETA ERI ACAMAR	3.4 A2	SHA DEC	315.6246 -40.3842	0.0029 -0.0022	-0.0088 0.0039	0.0057 -0.0036	-0.0043 -0.0033	315.6274 -40.3812		
19	8	ALPHA CET MENKAR	2.8 M0	SHA DEC	314.6921 4.0119	0.0020 -0.0022	-0.0117 0.0038	0.0043 -0.0020	-0.0034 -0.0001	314.6916 4.0117		
20		BETA PER ALGOL	2-3 B8	SHA DEC	313.2846 40.8794	0.0013 -0.0023	-0.0144 0.0037	0.0056 0.0003	-0.0046 0.0026	313.2833 40.8764		

Stars - E

E4

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
21	9	ALPHA PER MIRFAK	1.9 F5	SHA DEC	0 309.2783 49.7911	0 0.0012 -0.0023	0 -0.0158 0.0035	0 0.0062 0.0011	0 -0.0059 0.0030	0 309.2775 49.7875
22		ETA TAU ALCYONE	3.0 B5	SHA DEC	303.4267 24.0442	0.0019 -0.0024	-0.0133 0.0031	0.0040 -0.0005	-0.0046 0.0012	303.4265 24.0421
23		ZETA PER	2.9 B1	SHA DEC	301.7821 31.8253	0.0018 -0.0024	-0.0140 0.0030	0.0042 0.0001	-0.0051 0.0016	301.7819 31.8227
24		EPSILON PER	3.0 B1	SHA DEC	300.8733 39.9533	0.0017 -0.0024	-0.0149 0.0029	0.0045 0.0008	-0.0057 0.0020	300.8733 39.9503
25		GAMMA ERI	3.2 K5	SHA DEC	300.7263 -13.5647	0.0022 -0.0024	-0.0105 0.0029	0.0036 -0.0031	-0.0045 -0.0012	300.7276 -13.5644
26	10	ALPHA TAU ALDEBARAN	1.1 K5	SHA DEC	291.3071 16.4700	0.0021 -0.0024	-0.0128 0.0022	0.0029 -0.0009	-0.0051 0.0004	291.3079 16.4682
27		IOTA AUR	2.9 K2	SHA DEC	286.0779 33.1356	0.0022 -0.0024	-0.0146 0.0018	0.0028 0.0007	-0.0061 0.0010	286.0790 33.1330
28		BETA ERI	2.9 A3	SHA DEC	283.2838 -5.1114	0.0020 -0.0024	-0.0111 0.0015	0.0021 -0.0026	-0.0053 -0.0006	283.2855 -5.1124
29	11	BETA ORI RIGEL	0.3 B8	SHA DEC	281.6058 -8.2239	0.0020 -0.0024	-0.0108 0.0014	0.0020 -0.0029	-0.0054 -0.0007	281.6078 -8.2249
30	12	ALPHA AUR CAPELLA	0.2 G0	SHA DEC	281.1975 45.9792	0.0025 -0.0024	-0.0165 0.0014	0.0028 0.0019	-0.0077 0.0011	281.1995 45.9763
31	13	GAMMA ORI BELLATRIX	1.7 B2	SHA DEC	278.9858 6.3325	0.0021 -0.0024	-0.0120 0.0012	0.0018 -0.0017	-0.0054 -0.0002	278.9874 6.3309
32	14	BETA TAU ELNATH	1.8 B8	SHA DEC	278.7433 28.5917	0.0024 -0.0024	-0.0142 0.0012	0.0020 0.0004	-0.0062 0.0005	278.7448 28.5894
33		BETA LEP	3.0 G0	SHA DEC	278.1529 -20.7747	0.0019 -0.0024	-0.0096 0.0011	0.0018 -0.0038	-0.0058 -0.0010	278.1558 -20.7756
34		DELTA ORI	2.5 B0	SHA DEC	277.2542 -0.3131	0.0021 -0.0024	-0.0115 0.0010	0.0016 -0.0023	-0.0055 -0.0004	277.2560 -0.3145
35		ALPHA LEP	2.7 F0	SHA DEC	277.0383 -17.8356	0.0019 -0.0023	-0.0099 0.0010	0.0017 -0.0037	-0.0057 -0.0008	277.0410 -17.8365
36		IOTA ORI	2.9 O5	SHA DEC	276.3867 -5.9219	0.0020 -0.0023	-0.0110 0.0010	0.0015 -0.0027	-0.0055 -0.0005	276.3887 -5.9233
37	15	EPSILON ORI ALNILAM	1.7 B0	SHA DEC	276.2004 -1.2136	0.0021 -0.0023	-0.0114 0.0009	0.0015 -0.0023	-0.0055 -0.0004	276.2023 -1.2151
38		ZETA TAU	3.0 B3	SHA DEC	275.8879 21.1314	0.0023 -0.0023	-0.0134 0.0009	0.0016 -0.0003	-0.0059 0.0002	275.8894 21.1293
39		ALPHA COL PHACT	2.7 B5	SHA DEC	275.2692 -34.0842	0.0016 -0.0023	-0.0082 0.0009	0.0017 -0.0047	-0.0066 -0.0011	275.2733 -34.0850
40		ZETA ORI ALNITAK	2.0 B0	SHA DEC	275.0629 -1.9522	0.0020 -0.0023	-0.0113 0.0008	0.0014 -0.0024	-0.0055 -0.0004	275.0648 -1.9537
41		KAPPA ORI	2.2 B0	SHA DEC	273.2983 -9.6758	0.0019 -0.0023	-0.0107 0.0007	0.0013 -0.0031	-0.0056 -0.0006	273.3006 -9.6772
42	16	ALPHA ORI BETELGEUSE	0.1 M0	SHA DEC	271.4779 7.4044	0.0022 -0.0023	-0.0121 0.0005	0.0011 -0.0016	-0.0056 -0.0002	271.4797 7.4027
43		BETA AUR MENKALINAN	2.1 A0	SHA DEC	270.4846 44.9469	0.0029 -0.0023	-0.0165 0.0004	0.0014 0.0021	-0.0079 0.0004	270.4872 44.9445

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
44		THETA AUR	2.7 A0	SHA DEC	0 270.4108 37.2125	0 0.0027 -0.0023	0 -0.0153 0.0004	0 0.0013 0.0013	0 -0.0070 0.0003	0 270.4130 37.2102
45		BETA CMA MIRZAM	2.0 B1	SHA DEC	264.5454 -17.9453	0.0017 -0.0022	-0.0099 -0.0001	0.0005 -0.0037	-0.0060 -0.0005	264.5482 -17.9470
46	17	ALPHA CAR CANOPUS	-0.9 F0	SHA DEC	264.1229 -52.6844	0.0006 -0.0022	-0.0049 -0.0001	0.0007 -0.0055	-0.0094 -0.0005	264.1304 -52.6862
47		GAMMA GEM ALHENA	1.9 A0	SHA DEC	260.8608 16.4175	0.0024 -0.0021	-0.0130 -0.0004	0.0001 -0.0007	-0.0059 -0.0004	260.8627 16.4156
48	18	ALPHA CMA A SIRIUS	-1.6 A0	SHA DEC	258.9342 -16.6883	0.0017 -0.0020	-0.0100 -0.0006	-0.0000 -0.0036	-0.0059 -0.0003	258.9368 -16.6903
49		TAU PUP	2.8 K0	SHA DEC	257.6404 -50.5906	0.0004 -0.0020	-0.0054 -0.0007	-0.0002 -0.0055	-0.0089 0.0000	257.6470 -50.5929
50	19	EPSILON CMA ADHARA	1.6 B1	SHA DEC	255.5400 -28.9442	0.0013 -0.0020	-0.0088 -0.0009	-0.0004 -0.0045	-0.0065 -0.0001	255.5434 -28.9465
51		OMICRON-2 CMA	3.1 B5	SHA DEC	254.4525 -23.8033	0.0014 -0.0019	-0.0093 -0.0009	-0.0005 -0.0041	-0.0062 -0.0001	254.4554 -23.8056
52		DELTA CMA WEZEN	2.0 F8	SHA DEC	253.1054 -26.3606	0.0013 -0.0019	-0.0091 -0.0011	-0.0006 -0.0043	-0.0063 -0.0000	253.1085 -26.3630
53		PI PUP	2.7 K5	SHA DEC	250.8908 -37.0608	0.0009 -0.0016	-0.0078 -0.0013	-0.0010 -0.0049	-0.0070 0.0003	250.8948 -37.0636
54		ETA CMA	2.4 B5	SHA DEC	249.1742 -29.2633	0.0012 -0.0018	-0.0088 -0.0014	-0.0011 -0.0045	-0.0064 0.0002	249.1773 -29.2661
55		BETA CMI	3.1 B8	SHA DEC	248.4833 8.3306	0.0023 -0.0018	-0.0122 -0.0015	-0.0010 -0.0015	-0.0056 -0.0006	248.4852 8.3286
56		SIGMA PUP	3.3 K5	SHA DEC	247.8513 -43.2606	0.0005 -0.0018	-0.0070 -0.0015	-0.0014 -0.0051	-0.0076 0.0006	247.8558 -43.2637
57		ALPHA GEM A CASTOR	2.0 A0	SHA DEC	246.6692 31.9333	0.0031 -0.0017	-0.0145 -0.0016	-0.0014 0.0008	-0.0065 -0.0011	246.6716 31.9319
58		ALPHA GEM B	2.8 A0	SHA DEC	246.6683 31.9333	0.0031 -0.0017	-0.0145 -0.0016	-0.0014 0.0008	-0.0065 -0.0011	246.6707 31.9319
59	20	ALPHA CMI A PROCYON	0.5 F5	SHA DEC	245.4363 5.2769	0.0022 -0.0017	-0.0119 -0.0017	-0.0013 -0.0018	-0.0055 -0.0005	245.4380 5.2749
60	21	BETA GEM POLLUX	1.2 K0	SHA DEC	243.9767 28.0756	0.0030 -0.0016	-0.0140 -0.0018	-0.0016 0.0004	-0.0062 -0.0011	243.9789 28.0741
61		ZETA PUP	2.3 O	SHA DEC	239.2800 -39.9461	0.0005 -0.0015	-0.0077 -0.0022	-0.0023 -0.0049	-0.0069 0.0011	239.2835 -39.9497
62		RHO PUP	2.9 F5	SHA DEC	238.3271 -24.2458	0.0012 -0.0014	-0.0095 -0.0023	-0.0021 -0.0040	-0.0057 0.0005	238.3293 -24.2490
63		GAMMA-2 VEL	1.9 O	SHA DEC	237.7713 -47.2772	-0.0001 -0.0014	-0.0067 -0.0023	-0.0028 -0.0051	-0.0077 0.0014	237.7755 -47.2812
64	22	EPSILON CAR AVIOR	1.7 *	SHA DEC	234.4738 -59.4450	-0.0014 -0.0013	-0.0042 -0.0026	-0.0043 -0.0052	-0.0100 0.0020	234.4803 -59.4496
65		DELTA VEL	2.0 A0	SHA DEC	228.9621 -54.6347	-0.0010 -0.0011	-0.0058 -0.0030	-0.0046 -0.0050	-0.0083 0.0022	228.9665 -54.6396
66		IOTA UMA	3.1 A5	SHA DEC	225.5392 48.1208	0.0045 -0.0010	-0.0158 -0.0032	-0.0044 0.0018	-0.0069 -0.0027	225.5427 48.1210

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
67	23	LAMRDA VEL SUHAIL	2.2 K5	SHA DEC	0 223.1850 -43.3514	0 -0.0001 -0.0009	0 -0.0080 -0.0034	0 -0.0042 -0.0045	0 -0.0062 0.0021	0 223.1871 -43.3561
68	24	BETA CAR MIAPLACIDUS	1.8 A0	SHA DEC	221.7529 -69.6347	-0.0041 -0.0008	-0.0017 -0.0035	-0.0092 -0.0047	-0.0126 0.0032	221.7606 -69.6405
69		IOTA CAR	2.2 F0	SHA DEC	220.8613 -59.1911	-0.0018 -0.0008	-0.0055 -0.0035	-0.0064 -0.0047	-0.0085 0.0029	220.8652 -59.1966
70		KAPPA VEL	2.6 B3	SHA DEC	219.6267 -54.9250	-0.0012 -0.0007	-0.0065 -0.0036	-0.0058 -0.0046	-0.0074 0.0028	219.6296 -54.9304
71	25	ALPHA HYA ALPHARD	2.2 K2	SHA DEC	218.3488 -8.5714	0.0017 -0.0007	-0.0110 -0.0037	-0.0035 -0.0028	-0.0042 0.0002	218.3492 -8.5741
72		N VEL	3.0 K5	SHA DEC	217.3467 -56.9458	-0.0015 -0.0007	-0.0063 -0.0037	-0.0064 -0.0045	-0.0075 0.0031	217.3495 -56.9514
73		EPSILON LEO	3.1 G0	SHA DEC	213.8204 23.8669	0.0031 -0.0005	-0.0129 -0.0039	-0.0041 -0.0006	-0.0042 -0.0020	213.8213 23.8665
74	26	ALPHA LEO REGULUS	1.3 B8	SHA DEC	208.1729 12.0653	0.0026 -0.0003	-0.0121 -0.0042	-0.0042 -0.0015	-0.0035 -0.0013	208.1730 12.0642
75		GAMMA-1 LEO ALGEIBA	2.6 K0	SHA DEC	205.2821 19.9431	0.0030 -0.0002	-0.0124 -0.0043	-0.0045 -0.0010	-0.0034 -0.0020	205.2822 19.9427
76		THETA CAR	3.0 B0	SHA DEC	199.4400 -64.2894	-0.0030 0.0001	-0.0072 -0.0046	-0.0104 -0.0033	-0.0062 0.0043	199.4396 -64.2960
77		MU VEL	2.8 G5	SHA DEC	198.5238 -49.3142	-0.0008 0.0001	-0.0092 -0.0046	-0.0070 -0.0034	-0.0040 0.0036	198.5224 -49.3199
78		BETA UMA MERAK	2.4 A0	SHA DEC	194.8392 56.4897	0.0057 0.0003	-0.0140 -0.0047	-0.0086 0.0006	-0.0042 -0.0045	194.8420 56.4922
79	27	ALPHA UMA DUBHE	1.9 K0	SHA DEC	194.3742 61.8592	0.0066 0.0003	-0.0146 -0.0047	-0.0101 0.0009	-0.0048 -0.0048	194.3782 61.8619
80		PSI UMA	3.1 K0	SHA DEC	192.8642 44.6072	0.0044 0.0004	-0.0130 -0.0048	-0.0067 -0.0001	-0.0030 -0.0040	192.8651 44.6092
81		DELTA LEO	2.6 A3	SHA DEC	191.7383 20.6333	0.0030 0.0004	-0.0120 -0.0048	-0.0052 -0.0014	-0.0022 -0.0022	191.7374 20.6336
82	28	BETA LEO DENEBOILA	2.2 A2	SHA DEC	182.9900 14.6839	0.0027 0.0008	-0.0117 -0.0050	-0.0053 -0.0018	-0.0012 -0.0018	182.9881 14.6840
83		GAMMA UMA PHECDA	2.5 A0	SHA DEC	181.8042 53.8058	0.0052 0.0008	-0.0123 -0.0050	-0.0087 -0.0004	-0.0018 -0.0047	181.8050 53.8089
84		DELTA CEN	2.9 B3	SHA DEC	178.1713 -50.6111	-0.0006 0.0010	-0.0112 -0.0050	-0.0082 -0.0020	-0.0011 0.0041	178.1661 -50.6168
85	29	GAMMA CRV GIENAH	2.8 B8	SHA DEC	176.3063 -17.4311	0.0014 0.0010	-0.0115 -0.0050	-0.0054 -0.0023	-0.0006 0.0013	176.3024 -17.4339
86	30	ALPHA CRU A ACRUX	1.6 B1	SHA DEC	173.6308 -62.9883	-0.0021 0.0011	-0.0118 -0.0050	-0.0115 -0.0014	-0.0006 0.0049	173.6234 -62.9946
87		ALPHA CRU B	2.1 B3	SHA DEC	173.6288 -62.9886	-0.0021 0.0011	-0.0118 -0.0050	-0.0115 -0.0014	-0.0006 0.0049	173.6213 -62.9949
88	31	GAMMA CRU GACRUX	1.6 M3	SHA DEC	172.4879 -57.0014	-0.0012 0.0012	-0.0119 -0.0050	-0.0096 -0.0015	-0.0003 0.0046	172.4811 -57.0073
89		BETA CRV	2.8 G5	SHA DEC	171.6667 -23.2864	0.0012 0.0012	-0.0116 -0.0050	-0.0057 -0.0021	-0.0001 0.0019	171.6621 -23.2896

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT	PLACE
90		ALPHA MUS	2.9	SHA	0 171.0054	0 -0.0034	0 -0.0125	0 -0.0146	0 -0.0000	0 0.0052	0 170.9958
			B3	DEC	-69.0256	0.0012	-0.0050	-0.0009	0.0052		-69.0320
91		GAMMA CEN MUHLIFAIN	2.4	SHA	169.8983	-0.0003	-0.0120	-0.0080	0.0002		169.8919
			A0	DEC	-48.8500	0.0013	-0.0050	-0.0015	0.0040		-48.8552
92		GAMMA VIR	2.9	SHA	169.8388	0.0020	-0.0115	-0.0052	0.0001		169.8349
			F0	DEC	-1.3400	0.0013	-0.0050	-0.0022	-0.0003		-1.3410
93		BETA CRU MIMOSA	1.5	SHA	168.3642	-0.0014	-0.0125	-0.0103	0.0005		168.3560
			81	DEC	-59.5797	0.0013	-0.0050	-0.0011	0.0047		-59.5856
94	32	EPSILON UMA ALIOTH	1.7	SHA	166.7117	0.0050	-0.0104	-0.0094	0.0008		166.7107
			A0	DEC	56.0681	0.0014	-0.0050	-0.0014	-0.0049		56.0719
95		ALPHA-2 CVN COR CAROLI	2.9	SHA	166.2267	0.0036	-0.0109	-0.0067	0.0006		166.2243
			A0	DEC	38.4261	0.0014	-0.0050	-0.0019	-0.0038		38.4289
96		EPSILON VIR	2.9	SHA	164.7050	0.0024	-0.0113	-0.0053	0.0006		164.7012
			K0	DEC	11.0664	0.0015	-0.0049	-0.0023	-0.0015		11.0668
97		IOTA CEN	2.9	SHA	160.1329	0.0007	-0.0125	-0.0064	0.0013		160.1261
			A2	DEC	-36.6072	0.0016	-0.0048	-0.0013	0.0030		-36.6110
98		ZETA UMA MIZAR	2.4	SHA	159.2196	0.0046	-0.0095	-0.0090	0.0020		159.2174
			A2	DEC	55.0294	0.0016	-0.0048	-0.0020	-0.0048		55.0335
99	33	ALPHA VIR SPICA	1.2	SHA	158.9658	0.0017	-0.0118	-0.0052	0.0012		158.9605
			B2	DEC	-11.0575	0.0016	-0.0048	-0.0020	0.0007		-11.0589
100		EPSILON CEN	2.6	SHA	155.3471	-0.0002	-0.0138	-0.0085	0.0026		155.3374
			B1	DEC	-53.3653	0.0018	-0.0047	-0.0003	0.0042		-53.3700
101	34	ETA UMA ALKAIID	1.9	SHA	153.3117	0.0040	-0.0093	-0.0077	0.0026		153.3083
			B3	DEC	49.4125	0.0018	-0.0046	-0.0025	-0.0044		49.4164
102		ETA BOO	2.8	SHA	151.5671	0.0026	-0.0108	-0.0053	0.0020		151.5623
			G0	DEC	18.4975	0.0019	-0.0046	-0.0026	-0.0021		18.4991
103		ZETA CEN	3.1	SHA	151.4292	0.0004	-0.0137	-0.0073	0.0028		151.4199
			B2	DEC	-47.1906	0.0019	-0.0046	-0.0003	0.0037		-47.1946
104	35	BETA CEN HADAR	0.9	SHA	149.4000	-0.0005	-0.0153	-0.0099	0.0042		149.3876
			B1	DEC	-60.2772	0.0019	-0.0045	0.0004	0.0044		-60.2820
105	36	THETA CEN MENKENT	2.3	SHA	148.6250	0.0010	-0.0132	-0.0061	0.0027		148.6167
			K0	DEC	-36.2722	0.0019	-0.0045	-0.0007	0.0028		-36.2753
106	37	ALPHA BOO ARCTURUS	0.2	SHA	146.3129	0.0026	-0.0106	-0.0051	0.0025		146.3076
			K0	DEC	19.2858	0.0020	-0.0044	-0.0028	-0.0021		19.2877
107		GAMMA BOO	3.0	SHA	142.1821	0.0030	-0.0093	-0.0059	0.0035		142.1770
			F0	DEC	38.3950	0.0021	-0.0042	-0.0032	-0.0034		38.3984
108		ETA CEN	2.6	SHA	141.4425	0.0010	-0.0140	-0.0062	0.0038		141.4327
			*	DEC	-42.0706	0.0021	-0.0042	-0.0000	0.0030		-42.0736
109	38	ALPHA CEN A RIGEL KENT.	0.3	SHA	140.4392	-0.0000	-0.0166	-0.0094	0.0059		140.4249
			G0	DEC	-60.7511	0.0021	-0.0041	0.0011	0.0041		-60.7551
110		ALPHA CEN B	1.7	SHA	140.4454	-0.0000	-0.0166	-0.0094	0.0059		140.4312
			K5	DEC	-60.7564	0.0021	-0.0041	0.0011	0.0041		-60.7604
111		ALPHA LUP	2.9	SHA	139.8521	0.0008	-0.0147	-0.0067	0.0043		139.8413
			B2	DEC	-47.3033	0.0021	-0.0041	0.0004	0.0033		-47.3065
112		EPSILON BOO	2.7	SHA	138.9717	0.0026	-0.0100	-0.0051	0.0034		138.9659
			K0	DEC	27.1578	0.0022	-0.0040	-0.0032	-0.0025		27.1605

E8

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
					0	0	0	0	0	0
113	39	ALPHA-2 LIB ZUBENELGENURI	2.9 A3	SHA DEC	137.5579 -15.9594	0.0018 0.0022	-0.0124 -0.0040	-0.0046 -0.0014	0.0033 0.0009	137.5502 -15.9602
114	40	BETA UMI KOCHAB	2.2 K5	SHA DEC	137.3125 74.2372	0.0058 0.0022	-0.0006 -0.0040	-0.0164 -0.0033	0.0116 -0.0047	137.3064 74.2421
115		BETA LUP	2.8 B2	SHA DEC	135.6967 -43.0544	0.0011 0.0022	-0.0145 -0.0039	-0.0060 0.0003	0.0045 0.0029	135.6861 -43.0570
116		BETA LIB	2.7 B8	SHA DEC	131.0179 -9.3100	0.0019 0.0023	-0.0121 -0.0036	-0.0042 -0.0017	0.0037 0.0003	131.0101 -9.3098
117		GAMMA TRA	3.1 A0	SHA DEC	130.7442 -68.6069	0.0000 0.0023	-0.0205 -0.0036	-0.0112 0.0022	0.0101 0.0039	130.7239 -68.6103
118		GAMMA UMI	3.1 A2	SHA DEC	129.8125 71.9050	0.0044 0.0023	-0.0005 -0.0035	-0.0130 -0.0039	0.0120 -0.0042	129.8046 71.9097
119		GAMMA LUP	2.9 B3	SHA DEC	126.5496 -41.1006	0.0015 0.0023	-0.0148 -0.0033	-0.0051 0.0007	0.0053 0.0024	126.5384 -41.1022
120	41	ALPHA CRB ALPHECCA	2.3 A0	SHA DEC	126.5400 26.7811	0.0024 0.0023	-0.0096 -0.0033	-0.0043 -0.0036	0.0045 -0.0022	126.5331 26.7840
121		ALPHA SER	2.7 K0	SHA DEC	124.1800 6.4875	0.0021 0.0024	-0.0111 -0.0031	-0.0037 -0.0026	0.0042 -0.0008	124.1724 6.4891
122		BETA TRA	3.0 F0	SHA DEC	121.6583 -63.3706	0.0012 0.0024	-0.0196 -0.0030	-0.0079 0.0025	0.0096 0.0031	121.6402 -63.3728
123		PI SCO	3.0 B2	SHA DEC	120.5904 -26.0575	0.0019 0.0024	-0.0135 -0.0029	-0.0038 -0.0003	0.0049 0.0012	120.5807 -26.0578
124		DELTA SCO OSCHUBBA	2.5 B0	SHA DEC	120.2133 -22.5658	0.0019 0.0024	-0.0132 -0.0029	-0.0037 -0.0005	0.0048 0.0010	120.2039 -22.5659
125		BETA-1 SCO	2.9 B1	SHA DEC	118.9325 -19.7517	0.0020 0.0024	-0.0130 -0.0028	-0.0035 -0.0007	0.0048 0.0008	118.9232 -19.7515
126		DELTA OPH	3.0 M0	SHA DEC	116.6763 -3.6439	0.0021 0.0024	-0.0118 -0.0026	-0.0032 -0.0020	0.0046 -0.0002	116.6678 -3.6426
127		ETA DRA	2.9 G5	SHA DEC	114.0708 61.5592	0.0023 0.0024	-0.0034 -0.0024	-0.0063 -0.0048	0.0100 -0.0029	114.0614 61.5633
128	42	ALPHA SCO A ANTARES	1.2 M0	SHA DEC	112.9554 -26.3886	0.0020 0.0024	-0.0137 -0.0023	-0.0032 -0.0001	0.0054 0.0010	112.9452 -26.3883
129		BETA HER	2.8 K0	SHA DEC	112.6604 21.5322	0.0021 0.0024	-0.0097 -0.0023	-0.0031 -0.0037	0.0052 -0.0015	112.6524 21.5350
130		TAU SCO	2.9 B0	SHA DEC	111.3417 -28.1758	0.0021 0.0024	-0.0139 -0.0022	-0.0032 0.0001	0.0056 0.0010	111.3312 -28.1755
131		ZETA OPH	2.7 B0	SHA DEC	110.9863 -10.5278	0.0021 0.0024	-0.0123 -0.0022	-0.0028 -0.0014	0.0050 0.0001	110.9772 -10.5266
132		ZETA HER	3.0 G0	SHA DEC	109.8671 31.6381	0.0020 0.0024	-0.0087 -0.0021	-0.0031 -0.0043	0.0058 -0.0018	109.8589 31.6412
133	43	ALPHA TRA ATRIA	1.9 K2	SHA DEC	108.3663 -68.9931	0.0024 0.0024	-0.0235 -0.0020	-0.0071 0.0035	0.0141 0.0023	108.3429 -68.9939
134		EPSILON SCO	2.4 K0	SHA DEC	107.7838 -34.2581	0.0022 0.0024	-0.0147 -0.0019	-0.0030 0.0007	0.0061 0.0011	107.7725 -34.2577
135		ZETA ARA	3.1 K5	SHA DEC	105.7604 -55.9600	0.0024 0.0024	-0.0185 -0.0017	-0.0042 0.0026	0.0092 0.0018	105.7444 -55.9602

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
136	44	ETA OPH SABIK	2.6 A2	SHA DEC	0 102.6929 -15.7014	0 0.0022 0.0024	0 -0.0128 -0.0015	0 -0.0022 -0.0008	0 0.0055 0.0002	0 102.6832 -15.6999
137		ALPHA HER	3-4 M3	SHA DEC	101.5667 14.4122	0.0020 0.0024	-0.0103 -0.0014	-0.0020 -0.0034	0.0055 -0.0009	101.5580 14.4148
138		BETA ARA	2.8 K2	SHA DEC	99.0921 -55.5128	0.0028 0.0024	-0.0186 -0.0012	-0.0031 0.0028	0.0095 0.0012	99.0761 -55.5122
139		UPSILON SCO	2.8 B3	SHA DEC	97.6496 -37.2814	0.0025 0.0024	-0.0152 -0.0011	-0.0021 0.0012	0.0068 0.0007	97.6376 -37.2802
140		BETA DRA	3.0 G0	SHA DEC	97.5054 52.3156	0.0013 0.0024	-0.0052 -0.0011	-0.0027 -0.0053	0.0089 -0.0015	97.4952 52.3189
141		ALPHA ARA	3.0 B3	SHA DEC	97.4271 -49.8619	0.0028 0.0024	-0.0173 -0.0010	-0.0025 0.0024	0.0085 0.0010	97.4128 -49.8611
142	45	LAMBDA SCO SHAULA	1.7 B2	SHA DEC	96.9379 -37.0906	0.0025 0.0023	-0.0152 -0.0010	-0.0020 0.0012	0.0068 0.0006	96.9260 -37.0893
143	46	ALPHA OPH RASALHAGUE	2.1 A5	SHA DEC	96.4988 12.5736	0.0019 0.0023	-0.0104 -0.0010	-0.0016 -0.0033	0.0056 -0.0007	96.4899 12.5762
144		THETA SCO	2.0 F0	SHA DEC	96.0304 -42.9867	0.0027 0.0023	-0.0161 -0.0009	-0.0021 0.0018	0.0075 0.0007	96.0176 -42.9855
145		KAPPA SCO	2.5 B2	SHA DEC	94.7246 -39.0211	0.0026 0.0023	-0.0155 -0.0008	-0.0018 0.0014	0.0071 0.0005	94.7124 -39.0197
146		BETA OPH	2.9 K0	SHA DEC	94.3792 4.5744	0.0020 0.0023	-0.0111 -0.0008	-0.0014 -0.0026	0.0055 -0.0005	94.3701 4.5769
147	47	GAMMA DRA ELTANIN	2.4 K5	SHA DEC	90.9650 51.4908	0.0010 0.0023	-0.0052 -0.0005	-0.0017 -0.0054	0.0090 -0.0010	90.9544 51.4939
148		GAMMA SGR	3.1 K0	SHA DEC	88.8696 -30.4258	0.0026 0.0022	-0.0144 -0.0003	-0.0010 0.0007	0.0065 0.0001	88.8585 -30.4238
149		DELTA SGR	2.8 K0	SHA DEC	85.0717 -29.8381	0.0027 0.0022	-0.0144 0.0000	-0.0006 0.0007	0.0065 -0.0001	85.0606 -29.8357
150	48	EPSILON SGR KAUS AUST.	1.9 A0	SHA DEC	84.2892 -34.3956	0.0028 0.0022	-0.0149 0.0001	-0.0006 0.0011	0.0069 -0.0001	84.2777 -34.3932
151		LAMBDA SGR	2.9 K0	SHA DEC	83.3163 -25.4342	0.0026 0.0021	-0.0139 0.0002	-0.0004 0.0002	0.0063 -0.0002	83.3056 -25.4317
152	49	ALPHA LYR VEGA	0.1 A0	SHA DEC	80.9350 38.7642	0.0011 0.0021	-0.0075 0.0004	-0.0002 -0.0050	0.0073 -0.0003	80.9250 38.7667
153	50	SIGMA SGR NUNKI	2.1 B3	SHA DEC	76.4938 -26.3228	0.0028 0.0020	-0.0140 0.0008	0.0003 0.0003	0.0063 -0.0005	76.4832 -26.3199
154		ZETA SGR	2.7 A2	SHA DEC	74.6654 -29.9103	0.0029 0.0019	-0.0143 0.0009	0.0005 0.0007	0.0065 -0.0006	74.6546 -29.9072
155		ZETA AQL	3.0 A0	SHA DEC	73.8775 13.8328	0.0017 0.0019	-0.0103 0.0010	0.0005 -0.0034	0.0058 -0.0002	73.8683 13.8354
156		PI SGR	3.0 F2	SHA DEC	72.8567 -21.0567	0.0027 0.0019	-0.0134 0.0011	0.0006 -0.0002	0.0060 -0.0006	72.8466 -21.0536
157		BETA-1 CYG ALBIREO	3.2 *	SHA DEC	67.5217 27.9167	0.0012 0.0017	-0.0090 0.0015	0.0012 -0.0044	0.0063 0.0003	67.5121 27.9189
158		DELTA CYG	3.0 A0	SHA DEC	63.9129 45.0811	0.0003 0.0016	-0.0068 0.0018	0.0020 -0.0052	0.0077 0.0009	63.9021 45.0828

E10

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
159		GAMMA AQL	2.8 K2	SHA DEC	0 63.6729 10.5636	0 0.0017 0.0016	0 -0.0106 0.0019	0 0.0014 -0.0031	0 0.0055 -0.0001	0 63.6638 10.5662
160	51	ALPHA AQL ALTAIR	0.9 A5	SHA DEC	62.5483 8.8144	0.0018 0.0016	-0.0108 0.0019	0.0015 -0.0030	0.0055 -0.0001	62.5393 8.8171
161		GAMMA CYG	2.3 F8	SHA DEC	54.6229 40.1919	0.0003 0.0013	-0.0079 0.0026	0.0029 -0.0048	0.0067 0.0013	54.6127 40.1932
162	52	ALPHA PAV PEACOCK	2.1 B3	SHA DEC	53.9821 -56.8006	0.0052 0.0013	-0.0180 0.0026	0.0041 0.0027	0.0092 -0.0024	53.9690 -56.7956
163		ALPHA IND	3.2 K0	SHA DEC	50.9592 -47.3625	0.0044 0.0012	-0.0160 0.0028	0.0037 0.0019	0.0073 -0.0024	50.9483 -47.3575
164	53	ALPHA CYG DENEBO	1.3 A2	SHA DEC	49.8129 45.2083	-0.0001 0.0011	-0.0074 0.0029	0.0037 -0.0048	0.0069 0.0018	49.8022 45.2091
165		EPSILON CYG	2.6 K0	SHA DEC	48.6500 33.8947	0.0006 0.0011	-0.0088 0.0030	0.0032 -0.0044	0.0058 0.0014	48.6404 33.8959
166		ALPHA CEP ALDERAMIN	2.6 A5	SHA DEC	40.4746 62.5006	-0.0023 0.0008	-0.0047 0.0035	0.0071 -0.0046	0.0094 0.0031	40.4605 62.5000
167		BETA AQR	3.1 G0	SHA DEC	37.3738 -5.6597	0.0023 0.0007	-0.0118 0.0037	0.0035 -0.0018	0.0041 -0.0008	37.3660 -5.6564
168	54	EPSILON PEG ENIF	2.5 K0	SHA DEC	34.1996 9.7828	0.0017 0.0005	-0.0110 0.0039	0.0038 -0.0028	0.0039 0.0003	34.1918 9.7849
169		DELTA CAP	3.0 A5	SHA DEC	33.5158 -16.2186	0.0028 0.0005	-0.0124 0.0039	0.0039 -0.0011	0.0040 -0.0015	33.5084 -16.2146
170	55	ALPHA GRU AL NA'IR	2.2 B5	SHA DEC	28.2558 -47.0586	0.0047 0.0003	-0.0144 0.0042	0.0060 0.0009	0.0051 -0.0036	28.2482 -47.0527
171		ALPHA TUC	2.9 K2	SHA DEC	25.7146 -60.3600	0.0063 0.0002	-0.0160 0.0043	0.0085 0.0016	0.0065 -0.0042	25.7064 -60.3534
172		BETA GRU	2.2 M3	SHA DEC	19.6308 -46.9897	0.0047 -0.0001	-0.0137 0.0046	0.0066 0.0004	0.0040 -0.0039	19.6247 -46.9836
173	56	ALPHA PSA FOMALHAUT	1.3 A3	SHA DEC	15.8633 -29.7286	0.0035 -0.0002	-0.0125 0.0047	0.0054 -0.0008	0.0028 -0.0029	15.8578 -29.7236
174		BETA PEG SCHEAT	2.6 M0	SHA DEC	14.2996 27.9742	0.0008 -0.0003	-0.0106 0.0047	0.0054 -0.0030	0.0025 0.0021	14.2925 27.9741
175	57	ALPHA PEG MARKAB	2.6 A0	SHA DEC	14.0596 15.0972	0.0014 -0.0003	-0.0111 0.0048	0.0049 -0.0027	0.0023 0.0010	14.0532 15.0983
176		GAMMA CEP	3.4 K0	SHA DEC	5.3717 77.5208	-0.0085 -0.0007	-0.0076 0.0049	0.0233 -0.0019	0.0065 0.0053	5.3529 77.5173

ITY OF MICHIGAN

03794 1567

NOV 20 1980

Astronomy
QB
8
U487
1981

A F
L O
COMPUTERS
A N
R / C 81
C

NAUTICAL ALMANAC OFFICE
U. S. NAVAL OBSERVATORY

**ALMANAC
FOR
COMPUTERS
1981**

**Nautical Almanac Office
United States Naval Observatory
Washington, D. C. 20390**

Table of Contents

Explanation	A	Navigational Tables	C																																																																																																																																																										
Introduction	A1	Aries, Sun and Navigational																																																																																																																																																											
Calendar	A2	Planets	C2																																																																																																																																																										
Explanation of Navigational Tables (Section C)	A5	Moon	C8																																																																																																																																																										
Explanation of Astronomical Tables (Section D)	A8	Astronomical Tables	D																																																																																																																																																										
Explanation of Stellar Tables (Section E)	A13			Full Precision:				Sidereal Time, Equation of Equinoxes, Nutation . . .	D2			Sun	D6			Moon	D8			Mercury and Venus	D20			Mars and Jupiter	D24			Saturn and Uranus	D26			Neptune and Pluto	D28			Low Precision:				Sidereal Time, Equation of Equinoxes, Nutation . . .	D30			Sun	D30			Mercury and Venus	D31			Mars, Jupiter, Saturn and Uranus	D32			Neptune and Pluto	D33			Stellar Tables	E			Index of the 57 Standard Navi- gation Stars	E2			176 Stars	E3	Applications	B			Introduction	B1			Day of the Year	B1			Julian Date	B2			Sidereal Time	B3			Hour Angles	B4			Altitude and Azimuth	B4			Sunrise, Sunset & Twilight . . .	B5			Solar Coordinates	B8			Equation of Time and Time of Solar Transit	B8			Moonrise and Moonset	B9			Polaris	B11			Equation of Position Line	B12			Motion of Body and Motion of Observer	B12			Sextant Altitude Corrections . .	B13			Dip of Horizon	B13			Coriolis Correction	B14			Atmospheric Refraction	B14			Semidiameter of Sun and Planets	B16			Semidiameter of Moon	B16			Parallax in Altitude	B16			Correction for the Phase of Venus	B17		
		Full Precision:																																																																																																																																																											
		Sidereal Time, Equation of Equinoxes, Nutation . . .	D2																																																																																																																																																										
		Sun	D6																																																																																																																																																										
		Moon	D8																																																																																																																																																										
		Mercury and Venus	D20																																																																																																																																																										
		Mars and Jupiter	D24																																																																																																																																																										
		Saturn and Uranus	D26																																																																																																																																																										
		Neptune and Pluto	D28																																																																																																																																																										
		Low Precision:																																																																																																																																																											
		Sidereal Time, Equation of Equinoxes, Nutation . . .	D30																																																																																																																																																										
		Sun	D30																																																																																																																																																										
		Mercury and Venus	D31																																																																																																																																																										
		Mars, Jupiter, Saturn and Uranus	D32																																																																																																																																																										
		Neptune and Pluto	D33																																																																																																																																																										
		Stellar Tables	E																																																																																																																																																										
		Index of the 57 Standard Navi- gation Stars	E2																																																																																																																																																										
		176 Stars	E3																																																																																																																																																										
Applications	B																																																																																																																																																												
Introduction	B1																																																																																																																																																												
Day of the Year	B1																																																																																																																																																												
Julian Date	B2																																																																																																																																																												
Sidereal Time	B3																																																																																																																																																												
Hour Angles	B4																																																																																																																																																												
Altitude and Azimuth	B4																																																																																																																																																												
Sunrise, Sunset & Twilight . . .	B5																																																																																																																																																												
Solar Coordinates	B8																																																																																																																																																												
Equation of Time and Time of Solar Transit	B8																																																																																																																																																												
Moonrise and Moonset	B9																																																																																																																																																												
Polaris	B11																																																																																																																																																												
Equation of Position Line	B12																																																																																																																																																												
Motion of Body and Motion of Observer	B12																																																																																																																																																												
Sextant Altitude Corrections . .	B13																																																																																																																																																												
Dip of Horizon	B13																																																																																																																																																												
Coriolis Correction	B14																																																																																																																																																												
Atmospheric Refraction	B14																																																																																																																																																												
Semidiameter of Sun and Planets	B16																																																																																																																																																												
Semidiameter of Moon	B16																																																																																																																																																												
Parallax in Altitude	B16																																																																																																																																																												
Correction for the Phase of Venus	B17																																																																																																																																																												

Section A: EXPLANATION

Introduction

The *Almanac for Computers* provides astronomical data in a form to facilitate the application of small computers and calculators to navigation and positional astronomy. This edition, *A/C 81*, employs the basic methods established in previous editions. Instead of the fixed-interval tabulations of *The Astronomical Almanac* (*A²*), *The Nautical Almanac* (*NA*) and *The Air Almanac* (*AA*), concise mathematical expressions are used to represent the coordinates of celestial bodies for specified intervals of time. These expressions are necessarily approximations, because the fundamental equations of dynamical astronomy are too complex for direct use in the majority of applications. With minimal loss of precision the expressions in this volume will allow direct calculation of astronomical and navigational data for specific times and conditions. Further information concerning the precision of the approximations is given in Tables 1, 2 and 3 (pages A7, A9 and A11).

To simplify use of the power and Chebyshev series, a new relation for computing the normalized time x is introduced on pages A5 and A8. This new relation is particularly advantageous if data is entered in the calculator by hand. However, the method of previous editions can still be used.

A new algorithm for computing atmospheric refraction is presented on page B15. This method was developed by Dick Lewis of Balboa, California, to represent refraction for surface observations under standard atmospheric conditions. Given these restrictions, the algorithm provides high accuracy over a wide range of altitudes. It can be easily programmed for extremely efficient calculations.

For most efficient use with computers, the data in Sections D and E are available on punched cards or magnetic tape (data in Section C are not available in machine readable form). Inquiries about this service, as well as comments and suggestions concerning this volume, should be addressed to The Director, Nautical Almanac Office, U. S. Naval Observatory, Washington, D. C. 20390.

This volume was produced by LeRoy E. Doggett and Linda R. Gardner.

A2

CALENDAR, 1981

	JANUARY		FEBRUARY		MARCH		APRIL		MAY		JUNE	
Day of Month	Day of Week	Day of Year										
1	Thu.	1	Sun.	32	Sun.	60	Wed.	91	Fri.	121	Mon.	152
2	Fri.	2	Mon.	33	Mon.	61	Thu.	92	Sat.	122	Tue.	153
3	Sat.	3	Tue.	34	Tue.	62	Fri.	93	Sun.	123	Wed.	154
4	Sun.	4	Wed.	35	Wed.	63	Sat.	94	Mon.	124	Thu.	155
5	Mon.	5	Thu.	36	Thu.	64	Sun.	95	Tue.	125	Fri.	156
6	Tue.	6	Fri.	37	Fri.	65	Mon.	96	Wed.	126	Sat.	157
7	Wed.	7	Sat.	38	Sat.	66	Tue.	97	Thu.	127	Sun.	158
8	Thu.	8	Sun.	39	Sun.	67	Wed.	98	Fri.	128	Mon.	159
9	Fri.	9	Mon.	40	Mon.	68	Thu.	99	Sat.	129	Tue.	160
10	Sat.	10	Tue.	41	Tue.	69	Fri.	100	Sun.	130	Wed.	161
11	Sun.	11	Wed.	42	Wed.	70	Sat.	101	Mon.	131	Thu.	162
12	Mon.	12	Thu.	43	Thu.	71	Sun.	102	Tue.	132	Fri.	163
13	Tue.	13	Fri.	44	Fri.	72	Mon.	103	Wed.	133	Sat.	164
14	Wed.	14	Sat.	45	Sat.	73	Tue.	104	Thu.	134	Sun.	165
15	Thu.	15	Sun.	46	Sun.	74	Wed.	105	Fri.	135	Mon.	166
16	Fri.	16	Mon.	47	Mon.	75	Thu.	106	Sat.	136	Tue.	167
17	Sat.	17	Tue.	48	Tue.	76	Fri.	107	Sun.	137	Wed.	168
18	Sun.	18	Wed.	49	Wed.	77	Sat.	108	Mon.	138	Thu.	169
19	Mon.	19	Thu.	50	Thu.	78	Sun.	109	Tue.	139	Fri.	170
20	Tue.	20	Fri.	51	Fri.	79	Mon.	110	Wed.	140	Sat.	171
21	Wed.	21	Sat.	52	Sat.	80	Tue.	111	Thu.	141	Sun.	172
22	Thu.	22	Sun.	53	Sun.	81	Wed.	112	Fri.	142	Mon.	173
23	Fri.	23	Mon.	54	Mon.	82	Thu.	113	Sat.	143	Tue.	174
24	Sat.	24	Tue.	55	Tue.	83	Fri.	114	Sun.	144	Wed.	175
25	Sun.	25	Wed.	56	Wed.	84	Sat.	115	Mon.	145	Thu.	176
26	Mon.	26	Thu.	57	Thu.	85	Sun.	116	Tue.	146	Fri.	177
27	Tue.	27	Fri.	58	Fri.	86	Mon.	117	Wed.	147	Sat.	178
28	Wed.	28	Sat.	59	Sat.	87	Tue.	118	Thu.	148	Sun.	179
29	Thu.	29			Sun.	88	Wed.	119	Fri.	149	Mon.	180
30	Fri.	30			Mon.	89	Thu.	120	Sat.	150	Tue.	181
31	Sat.	31			Tue.	90			Sun.	151		

JULIAN DATE, 1981

0 ^h UT	0 ^h UT	0 ^h UT	0 ^h UT
Jan. 0 244 4604·5	Apr. 0 244 4694·5	July 0 244 4785·5	Oct. 0 244 4877·5
Feb. 0 244 4635·5	May 0 244 4724·5	Aug. 0 244 4816·5	Nov. 0 244 4908·5
Mar. 0 244 4663·5	June 0 244 4755·5	Sept. 0 244 4847·5	Dec. 0 244 4938·5

400-day date: JD 244 4800·5 = 1981 July 15·0

Standard epoch, 1900 January 0, 12^h UT = JD 241 5020-000

Standard epoch, 1950·0 = 1950 Jan. 0·923 = JD 243 3282·423

1981·0 = 1981 Jan. 0·432 = JD 244 4604·932

CALENDAR, 1981

A3

	JULY			AUGUST			SEPTEMBER			OCTOBER			NOVEMBER			DECEMBER		
Day of Month	Day of Week	Day of Year		Day of Week	Day of Year		Day of Week	Day of Year		Day of Week	Day of Year		Day of Week	Day of Year		Day of Week	Day of Year	
1	Wed.	182	Sat.	213	Tue.	244	Thu.	274	Sun.	305	Tue.	335						
2	Thu.	183	Sun.	214	Wed.	245	Fri.	275	Mon.	306	Wed.	336						
3	Fri.	184	Mon.	215	Thu.	246	Sat.	276	Tue.	307	Thu.	337						
4	Sat.	185	Tue.	216	Fri.	247	Sun.	277	Wed.	308	Fri.	338						
5	Sun.	186	Wed.	217	Sat.	248	Mon.	278	Thu.	309	Sat.	339						
6	Mon.	187	Thu.	218	Sun.	249	Tue.	279	Fri.	310	Sun.	340						
7	Tue.	188	Fri.	219	Mon.	250	Wed.	280	Sat.	311	Mon.	341						
8	Wed.	189	Sat.	220	Tue.	251	Thu.	281	Sun.	312	Tue.	342						
9	Thu.	190	Sun.	221	Wed.	252	Fri.	282	Mon.	313	Wed.	343						
10	Fri.	191	Mon.	222	Thu.	253	Sat.	283	Tue.	314	Thu.	344						
11	Sat.	192	Tue.	223	Fri.	254	Sun.	284	Wed.	315	Fri.	345						
12	Sun.	193	Wed.	224	Sat.	255	Mon.	285	Thu.	316	Sat.	346						
13	Mon.	194	Thu.	225	Sun.	256	Tue.	286	Fri.	317	Sun.	347						
14	Tue.	195	Fri.	226	Mon.	257	Wed.	287	Sat.	318	Mon.	348						
15	Wed.	196	Sat.	227	Tue.	258	Thu.	288	Sun.	319	Tue.	349						
16	Thu.	197	Sun.	228	Wed.	259	Fri.	289	Mon.	320	Wed.	350						
17	Fri.	198	Mon.	229	Thu.	260	Sat.	290	Tue.	321	Thu.	351						
18	Sat.	199	Tue.	230	Fri.	261	Sun.	291	Wed.	322	Fri.	352						
19	Sun.	200	Wed.	231	Sat.	262	Mon.	292	Thu.	323	Sat.	353						
20	Mon.	201	Thu.	232	Sun.	263	Tue.	293	Fri.	324	Sun.	354						
21	Tue.	202	Fri.	233	Mon.	264	Wed.	294	Sat.	325	Mon.	355						
22	Wed.	203	Sat.	234	Tue.	265	Thu.	295	Sun.	326	Tue.	356						
23	Thu.	204	Sun.	235	Wed.	266	Fri.	296	Mon.	327	Wed.	357						
24	Fri.	205	Mon.	236	Thu.	267	Sat.	297	Tue.	328	Thu.	358						
25	Sat.	206	Tue.	237	Fri.	268	Sun.	298	Wed.	329	Fri.	359						
26	Sun.	207	Wed.	238	Sat.	269	Mon.	299	Thu.	330	Sat.	360						
27	Mon.	208	Thu.	239	Sun.	270	Tue.	300	Fri.	331	Sun.	361						
28	Tue.	209	Fri.	240	Mon.	271	Wed.	301	Sat.	332	Mon.	362						
29	Wed.	210	Sat.	241	Tue.	272	Thu.	302	Sun.	333	Tue.	363						
30	Thu.	211	Sun.	242	Wed.	273	Fri.	303	Mon.	334	Wed.	364						
31	Fri.	212	Mon.	243			Sat.	304			Thu.	365						

SIDEREAL TIME, 1981

Greenwich sidereal time at 0^h UT

	h m		h m		h m		h m
Jan. 0	06 38.3	Apr. 0	12 33.1	July 0	18 31.9	Oct. 0	00 34.6
Feb. 0	08 40.5	May 0	14 31.4	Aug. 0	20 34.1	Nov. 0	02 36.8
Mar. 0	10 30.9	June 0	16 33.6	Sept. 0	22 36.3	Dec. 0	04 35.1

Greenwich sidereal time (GST) at hour t UT on day d of month
 $= \text{GST at } 0^{\text{h}} \text{ UT on day } 0 + 0^{\text{h}}.0657 d + 1^{\text{h}}.0027 t$

Local sidereal time = GST $+ \frac{\text{east}}{\text{west}}$ longitude

Navigational Tables

Section C contains mathematical representations of the following functions that are tabulated in the *Nautical Almanac (NA)*: the GHA of Aries, the GHA and declination of the Sun, Moon and navigational planets, the semidiameter of the Sun and Moon, and the horizontal parallax of the Moon. These functions are expressed for a specified time span by a power series of the form

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$$

In the series x is a time-like variable that takes on values between -1 and $+1$ over the specified time span; $a_0, a_1, a_2, a_3, a_4, a_5$, are coefficients that are tabulated in Section C for the specified time span; and $f(x)$ represents the value of the function (e.g., the GHA of Aries) evaluated at time x .

To evaluate the series for one of the navigational functions, one must first find the set of coefficients in Section C that is applicable for the desired date. As in previous editions, constants A and B are given for the purpose of converting the calendar date and GMT to the time-like variable x . An alternative and simpler method makes use of the constant W , which is also given. To obtain the value of x for the desired time, first determine t , the GMT measured in days and fractions thereof from 0 January, 0^h GMT, from the relation $t = N + \text{GMT}/24$, where N is the day of the year at Greenwich and GMT is the Greenwich Mean Time expressed in hours. A calendar is provided on pages A2–A3 for finding the day of the year; alternatively the day of the year can be computed from the formulas given on pages B1 and B2. Once t has been determined, x can be computed either from the relation $x = (t - W)/A - 1$ or from $x = t/A + B$. The use of the first of these relations is generally preferable, particularly if the constants are entered by hand. If computed correctly, the value of x will fall in the range of $-1 \leq x \leq +1$.

Example 1: Compute x for later use in computing the position of the Sun at 10^h11^m00^s GMT ($= 0^d 4243056$) on 25 December 1981.

From the calendar 25 December is found to be day 359. Thus $t = 359 + 0.4243056$. This date is in the interval 30 November through 31 December (days 334–365) for which coefficients for the Sun are given on page C6. The constants for this interval are $A = 16.0$ and $W = 334$. Therefore
 $x = (359.4243056 - 334)/16.0 - 1 = +0.5890191$.

Once the variable x has been computed and the coefficients a_i have been found, the series $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$ can be evaluated. The series can be evaluated most efficiently by computing a set of five auxiliary variables, b_1, b_2, b_3, b_4, b_5 , in the following order:

A6

$$\begin{aligned}b_5 &= xa_5 \\b_4 &= x(a_4 + b_5) \\b_3 &= x(a_3 + b_4) \\b_2 &= x(a_2 + b_3) \\b_1 &= x(a_1 + b_2) \\f(x) &= a_0 + b_1\end{aligned}$$

By using this algorithm, the series is evaluated in its nested form

$$f(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + x(a_4 + xa_5)))).$$

Example 2: Compute the GHA of the Sun at $10^{\text{h}} 11^{\text{m}} 00^{\text{s}}$ GMT on 25 December 1981.

From the previous example $x = +0.5890191$. The coefficients for the Sun's GHA are found on page C6.

$$\begin{aligned}b_5 &= .5890191 (0.0060) &= +0.0035 \\b_4 &= .5890191 (0.0069 + 0.0035) &= +0.0061 \\b_3 &= .5890191 (0.0797 + 0.0061) &= +0.0505 \\b_2 &= .5890191 (-0.1297 + 0.0505) &= -0.0467 \\b_1 &= .5890191 (5758.0672 - 0.0467) &= +3391.5841 \\f(+0.5890191) &= 5941.1443 + 3391.5841 &= +9332.7284 \\&\text{GHA} = 332^{\circ}.7284 = 332^{\circ} 43'7\end{aligned}$$

Note that when computing the GHA, it may be necessary to reduce the final result to the range $0^{\circ} - 360^{\circ}$ by subtracting multiples of 360° .

Example 3: Compute the declination of the Moon at $19^{\text{h}} 20^{\text{m}} 00^{\text{s}}$ GMT on 13 May 1981.

The constants A and W and series coefficients are found on page C13.

$$\begin{aligned}x &= (t - W)/A - 1 = (133.8055556 - 133)/3.0 - 1 = -0.7314815 \\b_5 &= -.7314815 (0.0113) &= -0.0083 \\b_4 &= -.7314815 (0.0020 - 0.0083) &= +0.0046 \\b_3 &= -.7314815 (0.6311 + 0.0046) &= -0.4650 \\b_2 &= -.7314815 (0.7711 - 0.4650) &= -0.2239 \\b_1 &= -.7314815 (-12.5205 - 0.2239) &= +9.3223 \\f(-0.7314815) &= (-4.1010 + 9.3223) &= +5.2213 \\&\text{declination} = +5^{\circ} 13'.3\end{aligned}$$

Although the series are designed to provide precision comparable to that published in the *NA*, there will be small discrepancies between the tabulated values and the values computed from the series. In such cases it should be understood that the *NA* represents the standard. Table 1 lists the largest discrepancies found from evaluating and comparing the series with the data in the *NA*.

Under no circumstances should the series be used to extrapolate data beyond the specified time intervals. Such extrapolation will lead to erroneous and useless results.

In accordance with standard practice for navigational almanacs, the time argument used in this almanac is Greenwich Mean Time (GMT), or more specifically UT1. To obtain full precision in the determined positions, the radio time signals in UTC must be corrected to UT1, or GMT, according to standard procedures. (See the paper by R.L. Duncombe and P.K. Seidelmann, 'The New UTC Time Signals', *Navigational*, 24, 160–165, 1977.)

Beneath each set of coefficients in Section C is printed the sum of the coefficients. As a check on whether the coefficients have been entered accurately into the calculator, it is recommended that the coefficients be summed and that the resulting sum be compared with the printed sum.

Table 1: Comparison of *Almanac for Computers* with *NA*

Function	No. of Terms	Span of Validity	Maximum Error
GHA of Aries	6	32 days	0'1
Sun: GHA	"	"	0'1
Declination	"	"	0'1
Semi-Diameter	"	"	0'1
Moon: GHA	"	6 days	0'2
Declination	"	"	0'2
Horizontal Parallax	"	"	0'1
Semi-Diameter	"	"	0'1
Navigational Planets: GHA	"	32 days	0'1
Declination	"	"	0'1

Astronomical Tables

Section D contains mathematical representations of data published in the *Astronomical Almanac (A²)*. Chebyshev expansions have been chosen as the means of representation since they provide efficient and accurate expressions that can be easily evaluated with a small computer. The coefficients a_i of the Chebyshev expansion

$$f(x) = a_0/2 + \sum_{i=1}^n a_i T_i(x)$$

are tabulated for prescribed time spans, where $f(x)$ is the function being represented, $T_i(x)$ is the Chebyshev polynomial of the first kind of the i -th degree, and x is the normalized time variable. Although Chebyshev polynomials appear in the series expansions, the series can be evaluated without explicitly computing these polynomials. No *a priori* knowledge of Chebyshev analysis is required to use the series in this almanac. Interested readers can find information on Chebyshev analysis in *Applied Analysis* by C. Lanczos and *Chebyshev Polynomials in Numerical Analysis* by L. Fox and I. B. Parker.

It must be emphasized that the series are valid only over the specified time intervals. Attempts to extrapolate data using these series will yield erroneous and useless results.

If precision comparable to that of the *A²* is required, the series on pages D2–D29 should be used. With the exception of the series for the Moon, these series are valid for time spans of approximately three months; for the Moon the span of validity is approximately one month. Table 2 lists the largest errors found by evaluating these series and comparing the results with data printed in the *A²*.

It is possible to develop series that are valid for longer time spans if the precision requirements are relaxed. Such series, valid for one full year, are given on pages D30–D33. Precision criteria of these less precise series are summarized in Table 3.

To evaluate a Chebyshev series, one must first normalize the time variable on the interval for which the series is valid. The normalized time x can be determined either from the relation $x = (t - W)/A - 1$ or from $x = t/A + B$, where t is reckoned in days and fractions thereof from 0 January. As in previous editions, constants A and B are given for each set of coefficients. The constant W is also given for use in the first of the relations listed above. Use of the first relation is particularly recommended if data is entered by hand. If correctly computed, the value of x will fall in the range $-1 \leq x \leq +1$.

For the functions Apparent Sidereal Time at 0^h UT, Equation of the Equinoxes, Nutation in Longitude and Nutation in Latitude, the variable t is measured in days of universal time (UT1 to be precise) from 0 January, 0^h UT. For all other functions in Section D, t is measured in days of ephemeris time from 0 January, 0^h ET. These latter functions can be evaluated for universal times, however, by

Table 2: Comparison of *Almanac for Computers* and A^2
(High Precision Series, pp. D2 – D29)

Function	No. of Terms	Span of Validity	Maximum Error
Apparent Sidereal Time at 0 ^h UT	36	95 days	0 ^s 001
Equation of the Equinoxes	"	"	0 ^s 001
Nutation in Longitude	"	"	0." ⁰⁰⁹
Nutation in Obliquity	"	"	0." ⁰⁰⁴
Sun: Right Ascension	24	95 days	0 ^s 01
Declination	"	"	0." ¹
Distance	"	"	2×10^{-7} AU
Semidiameter	"	"	0." ⁰¹
Ephemeris Transit	"	"	0 ^s 02
Moon: Right Ascension	34	32 days	0 ^s 005
Declination	"	"	0." ⁰⁴
Horizontal Parallax	"	"	0." ⁰¹
Geocentric Rectangular Coords.	"	"	1×10^{-6} Earth radii
Mercury: Right Ascension	34	95 days	0 ^s 02
Declination	"	"	0." ²
Distance	"	"	1×10^{-6} AU
Venus: Right Ascension	34	95 days	0 ^s 01
Declination	"	"	0." ¹
Distance	"	"	1×10^{-6} AU
Mars: Right Ascension	20	95 days	0 ^s 02
Declination	"	"	0." ¹
Distance	"	"	1×10^{-6} AU
Jupiter: Right Ascension	20	95 days	0 ^s 01
Declination	"	"	0." ¹
Distance	"	"	1×10^{-6} AU
Saturn: Right Ascension	14	95 days	0 ^s 02
Declination	"	"	0." ¹
Distance	"	"	1×10^{-6} AU
Uranus: Right Ascension	14	95 days	0 ^s 02
Declination	"	"	0." ¹
Distance	"	"	3×10^{-6} AU
Neptune: Right Ascension	12	95 days	0 ^s 02
Declination	"	"	0." ¹
Distance	"	"	3×10^{-6} AU
Pluto: Right Ascension (astrometric)	12	95 days	0 ^s 004
Declination (astrometric)	"	"	0." ⁰⁴
Distance	"	"	9×10^{-6} AU

using either the normalizing relation $x = ((t' + \Delta T) - W)/A - 1$ or the relation $x = (t' + \Delta T)/A + B$, where t' is the universal time measured in days from 0 January, 0^h UT. As this volume goes to press, $\Delta T = 51^{\circ}8$ ($= 0^d 000600$) appears to be a reliable value to use in 1981. Care should be taken to verify that the sum $t' + \Delta T$ falls within the time span for which the series is valid; if it falls outside, the series and constants for the next span should be used.

Once the normalized time variable x is determined, the approximation

$$f(x) = a_0/2 + \sum_{i=1}^n a_i T_i(x)$$

where the a_i are the printed coefficients, can be evaluated as follows:

let $b_{n+1} = b_{n+2} = 0$,

compute $b_i = 2xb_{i+1} - b_{i+2} + a_i$, for $i = n, n-1, \dots, 0$,

then $f(x) = (b_0 - b_2)/2$.

Example : Compute the equation of the equinoxes to a precision of $\pm 0^s.05$ at 10^h 10^m 00^s UT ($= 0^d 423611$) on 10 July 1981.

As shown in Table 3 the low precision series on page D30 provide the required precision. From the calendar on pages A2–A3 or the formulas on pages B1 and B2, 10 July is found to be day 191. Since universal time is the independent variable for the series for the equation of the equinoxes,

$$t = 191^d + 0^d 423611 = 191^d 423611$$

Constants for the series are $A = 183.0$ and $W = 1$.

$$x = (191.423611 - 1)/183.0 - 1 = +0.04056618$$

$$\begin{aligned} b_{n+2} &= b_{11} = 0 \\ b_{n+1} &= b_{10} = 0 \\ b_n &= b_9 = 2xb_{10} - b_{11} + a_9 = +0.0054 \\ &\quad b_8 = 2xb_9 - b_{10} + a_8 = +0.0049 \\ &\quad b_7 = 2xb_8 - b_9 + a_7 = -0.0225 \\ &\quad b_6 = 2xb_7 - b_8 + a_6 = -0.0252 \\ &\quad b_5 = 2xb_6 - b_7 + a_5 = +0.0821 \\ &\quad b_4 = 2xb_5 - b_6 + a_4 = +0.0522 \\ &\quad b_3 = 2xb_4 - b_5 + a_3 = -0.0811 \\ &\quad b_2 = 2xb_3 - b_4 + a_2 = -0.0354 \\ &\quad b_1 = 2xb_2 - b_3 + a_1 = -0.0502 \\ &\quad b_0 = 2xb_1 - b_2 + a_0 = -1.7426 \\ f(x) &= (b_0 - b_2)/2 = (-1.7426 + 0.0354)/2 \\ \text{equation of the equinoxes} &= -0^s.85 \end{aligned}$$

Table 3: Comparison of *Almanac for Computers* and A^2
(Low Precision Series, pp. D30 – D33)

Function	No. of Terms	Maximum Error
Apparent Sidereal Time at 0 ^h UT	10	0 ⁰ 03
Equation of the Equinoxes	"	0 ⁰ 03
Nutation in Longitude	"	0 ⁰ 5
Nutation in Obliquity	"	0 ⁰ 1
Sun: Right Ascension	22	0 ⁰ 5
Declination	"	3"
Distance	"	4×10^{-5} AU
Semidiameter	"	0 ⁰ 04
Ephemeris Transit	"	0 ⁰ 5
Mercury: Right Ascension	50	15 ^s
Declination	"	2 ⁹
Distance	"	4×10^{-4} AU
Venus: Right Ascension	50	0 ⁰ 03
Declination	"	0 ⁰ 2
Distance	"	1×10^{-6} AU
Mars: Right Ascension	22	0 ⁰ 3
Declination	"	1"
Distance	"	4×10^{-5} AU
Jupiter: Right Ascension	22	0 ⁰ 1
Declination	"	0 ⁰ 6
Distance	"	3×10^{-5} AU
Saturn: Right Ascension	16	0 ⁰ 1
Declination	"	0 ⁰ 4
Distance	"	4×10^{-5} AU
Uranus: Right Ascension	16	0 ⁰ 1
Declination	"	0 ⁰ 3
Distance	"	4×10^{-5} AU
Neptune: Right Ascension	14	0 ⁰ 04
Declination	"	0 ⁰ 2
Distance	"	4×10^{-5} AU
Pluto: Right Ascension (astrometric)	14	0 ⁰ 02
Declination (astrometric)	"	0 ⁰ 1
Distance	"	5×10^{-5} AU

Beneath each set of coefficients is printed the sum of the coefficients. This may be used as an easy means of verifying the accuracy with which the coefficients have been entered in the computer.

The series for Apparent Sidereal Time are designed to reproduce the table 'Apparent Sidereal Time at 0^h Universal Time' in *The Astronomical Almanac*. To compute the Greenwich apparent sidereal for any universal time,

- (1) evaluate the series for the desired UT,
- (2) add the desired UT to the result of step (1).

Local apparent sidereal time may be obtained by subtracting the local longitude from the Greenwich apparent sidereal time, where west longitudes are considered positive.

With two exceptions the series in Section D provide data referred to the true equinox and equator of date. The exceptions are

- (1) the Moon's geocentric, rectangular coordinates (X, Y, Z), which are referred to the mean equator and equinox of 1950.0;
- (2) the right ascension and declination of Pluto, which are astrometric (*i.e.*, free of the effect of stellar aberration, except for the elliptic part) and are referred to the mean equinox and equator of 1950.0.

The unit of distance for the Sun and planets is the astronomical unit; the unit of distance for the Moon is the Earth's equatorial radius.

Stellar Tables

The Stellar Tables (Section E) list the mean and apparent places of 176 stars for the current year, along with coefficients for converting from mean to apparent place for any date in the year. The selection of stars is essentially that of the star tables on pages 268–273 of the *Nautical Almanac*. Stars are arranged in order of increasing right ascension (decreasing sidereal hour angle), except where both components of a binary system are listed. For binary stars that can be resolved in small instruments, the position of one or both components is listed rather than the position of the center of gravity or the center of light. When both components of a binary system are included, the brighter star is listed first. For convenience of navigators the sidereal hour angle (SHA) is tabulated rather than right ascension (RA); right ascension in degrees can be obtained from the relation

$$\text{RA} = 360^\circ - \text{SHA}.$$

The quantities tabulated for each star are, from left to right on the page:

1. Identification number.
2. Navigational star number, provided the star is one of the 57 selected navigational stars listed in the *Nautical Almanac* and *Air Almanac*.
3. Star name. The Bayer designation is on the first line and the proper name, if any, is on the second line.
4. Magnitude and spectral type. The visual magnitude is on the first line, and the spectral type is on the second line. A composite spectrum is denoted by *.
5. Mean place of the star for 1981.0. The SHA in degrees is on the first line; the declination in degrees is on the second line.
6. Four coefficients (H , R , S , C) used in computing the apparent place of the star. The coefficients on the first line are for the computation of apparent SHA; these will hereafter be designated H_S , R_S , S_S , C_S . The coefficients on the second line are for the computation of apparent declination; these will be designated with the subscript D : H_D , etc.
7. Apparent place of the star for the middle of the year. SHA in degrees is on the first line; declination is on the second line.

The mean place of a star is a fundamental reference point with no simple geometric or observational significance. The apparent place of a star is the geocentric position, referred to the true equinox and equator of date, at which the star is observed. Thus the apparent place is the position needed for navigation, calibration of telescope setting circles, computation of transit times, etc. Except for Polaris the tabulated apparent places for the middle of the year can be used to an accuracy of $\pm 1.^{\circ}3$ for any date during the year. To obtain apparent places to greater accuracy, the following procedures should be used:

For the desired date in the current year determine τ , the fraction of the year elapsed. If t denotes the day of the year, τ can be computed either from the relation $\tau = (t - W)/A$ or from $\tau = t/A + B$. As in previous editions the constants A and B are given at the top of page E3. The constant W is also given there for use in the first of the above relations. The first relation is generally preferable, particularly if the constants are entered by hand.

Except for Polaris, star positions accurate to better than $\pm 0.5'$ can be obtained from the following formulas:

$$\text{apparent SHA} = \text{mean SHA} + H_S + R_S \tau$$

$$\text{apparent decl.} = \text{mean decl.} + H_D + R_D \tau$$

Except for Polaris, star positions accurate to better than $\pm 0.1'$ (and usually better than $\pm 0.05'$) can be obtained from the following formulas:

$$\text{apparent SHA} = \text{mean SHA} + H_S + R_S \tau + S_S \sin(360^\circ \tau) + C_S \cos(360^\circ \tau)$$

$$\text{apparent decl.} = \text{mean decl.} + H_D + R_D \tau + S_D \sin(360^\circ \tau) + C_D \cos(360^\circ \tau)$$

The tabulated apparent places for the middle of the year were computed using the latter formulas with $\tau = 0.5$.

To facilitate identification of the 57 standard navigational stars, an index for these stars is provided on page E2.

Example: Compute the apparent place of Deneb (α Cygni) on 22 October to an accuracy of $\pm 0.1'$.

From the calendar on pages A2–A3 or the formulas on pages B1–B2, 22 October is found to be day 295. From page E3, $A = 365.0$ and $W = 1$. Data for Deneb (Nav. No. 53; A/C ID 164) are found on page E10.

$$\tau = (295 - 1)/365.0 = +0.8055$$

	SHA	decl.
Mean place	49° 8046	+45° 2119
+ H	+ 0.0010	+ 0.0004
+ $R\tau$	- 0.0060	+ 0.0023
+ $S \sin(360^\circ \tau)$	- 0.0034	+ 0.0045
+ $C \cos(360^\circ \tau)$	+ 0.0024	+ 0.0006
Apparent place	49° 799	+45° 220

Because of the close proximity of Polaris to the north celestial pole, a small change in the position of Polaris on the celestial sphere causes a large change in the value of the SHA (or right ascension). This is purely due to the nature of the coordinate system rather than to extraordinary physical motion. Though the formulas given above will yield the declination of Polaris to an accuracy comparable to that of other stars, errors in SHA can reach $\pm 1.2'$, even if the more accurate formula is used.

Section B: APPLICATIONS

Introduction

In this section reference will be made to the following functions:

Sign function. The sign function serves to extract the algebraic sign from a number. The notation $\text{sign}(x)$ is defined to be $\text{sign}(x) = 1$ for $x \geq 0$, $\text{sign}(x) = -1$ for $x < 0$. An equivalent definition is $\text{sign}(x) = x/|x|$ for $x \neq 0$, $\text{sign}(x) = 1$ for $x = 0$.

Examples: $\text{sign}(247) = 1$, $\text{sign}(-6.28) = -1$.

Truncation or largest-integer function. The truncation function extracts the integral part of a number. The algebraic sign of the result is the same as that of the original number. $\langle x \rangle$ is defined to be $\langle x \rangle = \text{sign}(x) \cdot N$, where N is the largest nonnegative integer such that $N \leq |x|$.

Examples: $\langle 17.835 \rangle = 17$, $\langle -3.1416 \rangle = -3$.

Modulus or remainder function. The modulus function yields the remainder of the division x/y , when the quotient is constrained to be an integral value. Thus $\text{mod}(x,y)$ is defined to be $\text{mod}(x,y) = x - \langle x/y \rangle \cdot y$.

Examples: $\text{mod}(11,3) = 2$, $\text{mod}(-764.3,360.0) = -44.3$.

Note that $\langle x \rangle = x - \text{mod}(x,1.0)$. Therefore the truncation function can be defined in terms of the modulus function and *vice versa*. If either modulus or truncation is available on a calculator or computer, the other function can be simply obtained.

In this almanac universal time (UT) is to be identified with UT1, which is equivalent to the standard navigational time argument Greenwich Mean Time (GMT). The symbols UT and GMT may therefore be considered interchangeable. For detailed information on time systems the reader should consult the Explanation of a current edition of *The Astronomical Almanac*.

Day of the Year

The day of the year (N) is defined as the integer $N = \langle t \rangle$, where t is the time elapsed in days since 0 January of the current year. Thus N is an integer running from 1 through 365 (or 366 in leap years). The day of the year can be computed from either of the following formulas:

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle \left(1 + \left\langle \frac{K - 4\langle K/4 \rangle + 2}{3} \right\rangle \right) + I - 30$$

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle \left(1 + \left\langle \frac{\text{mod}(K,4) + 2}{3} \right\rangle \right) + I - 30$$

where N is the day of the year, K is the year (e.g., 1981), M is the month ($1 \leq M \leq 12$), and I is the day of the month ($1 \leq I \leq 31$).

These formulas are equivalent and are valid for any year, except those centennial years that are not evenly divisible by 400. Therefore the formulas given above are

B2

valid for the year 2000, but not for 1900 or 2100. In the above formulas the factor within the parentheses has the value 1 for leap years and 2 for non-leap years. Thus for a non-leap year, the following expression can be used:

$$N = \left\langle \frac{275M}{9} \right\rangle - 2 \left\langle \frac{M+9}{12} \right\rangle + I - 30$$

For leap years the corresponding expression is

$$N = \left\langle \frac{275M}{9} \right\rangle - \left\langle \frac{M+9}{12} \right\rangle + I - 30$$

Many expressions in this almanac require the value of t , the time elapsed in days since 0 January, 0^h UT, of the current year. By inverting the definition of N , we obtain $t = N + UT/24$, where UT is the universal time expressed in hours.

Julian Date

The Julian Date (JD) is a continuous count of days and fractions thereof from 1 January 4713 B.C. (=−4712 January 1), Greenwich Mean Noon (=12^h UT). For example A.D. 1978 January 1, 0^h UT, is JD 2443509.5 and A.D. 1978 July 21, 15^h UT, is JD 2443711.125. Conversion of Gregorian Calendar Date to Julian Date for the years A.D. 1801 through A.D. 2099 can be carried out with the following formula:

$$\begin{aligned} JD = 367K - & \left\langle \frac{7(K + \langle(M+9)/12\rangle)}{4} \right\rangle + \left\langle \frac{275M}{9} \right\rangle + I + 1721013.5 \\ & + UT/24 - 0.5 \operatorname{sign}(100K + M - 190002.5) + 0.5 \end{aligned}$$

where K is the year ($1801 \leq K \leq 2099$), M is the month ($1 \leq M \leq 12$), I is the day of the month ($1 \leq I \leq 31$), and UT is the universal time in hours. The last two terms in the formula add up to zero for all dates after 1900 February 28, so these two terms can be omitted for subsequent dates. Note that the formula makes use of the truncation and sign functions defined on page B1.

Example: Compute the JD corresponding to 1877 August 11, 7^h30^m UT.

Substituting $K = 1877$, $M = 8$, $I = 11$, and $UT = 7.5$ in the formula yields

$$\begin{aligned} JD = 688859 - 3286 + 244 + 11 + 1721013.5 + 0.3125 + 0.5 + 0.5 \\ = 2406842.8125 \end{aligned}$$

The Modified Julian Date (MJD) is sometimes used to specify current dates; it is defined as $MJD = JD - 2400000.5$. Use of the Modified Julian Date, rather than the Julian Date, is recommended with computers and calculators of limited precision. Note that for 0^h UT on any date the Julian Date has a fractional part of .5, while the corresponding Modified Julian Date is an integer.

If ephemeris time (ET) is used in the above formula instead of universal time (UT), the resulting quantity is designated Julian Ephemeris Date (JED).

Sidereal Time

The following formulas are relevant to the computation of sidereal time:

- (1) $GMST = 6^{\text{h}}.63832206 + 0^{\text{h}}.0657098232N + 1.0027379093UT$
- (2) $GMST = 6^{\text{h}}.67170278 + 0^{\text{h}}.0657098232(\text{JD}0 - 2433282.5)$
+ $1.0027379093UT$
- (3) $\Omega = 132^{\circ}.5693 - 0^{\circ}.0529539(N + UT/24)$
- (4) $\Omega = 372^{\circ}.1133 - 0^{\circ}.0529539(\text{JD} - 2433282.5)$
- (5) $E = -0^{\text{h}}.00029\sin\Omega$
- (6) $GAST = GMST + E$
- (7) $GAST = \Sigma(t_0) + 1.0027379093UT = \Sigma(t) + UT$
- (8) $LAST = GAST - \lambda/15$

where

$GMST$ is the Greenwich mean sidereal time in hours;

Ω is the mean longitude of the ascending node of the Moon's orbit, measured in degrees;

E is the equation of the equinoxes in hours;

$GAST$ is the Greenwich apparent sidereal time in hours;

$LAST$ is the local apparent sidereal time in hours;

N is the day of the year ($1 \leq N \leq 365$ or, during a leap year, $1 \leq N \leq 366$);

UT is the universal time in hours;

$JD0$ and JD are the Julian Dates at 0^{h} UT and at an arbitrary time of the day, respectively;

$\Sigma(t_0)$ and $\Sigma(t)$ are values obtained by evaluating the Chebyshev series for Apparent Sidereal Time (pp. D2–D5 or D30) at 0^{h} UT and at an arbitrary time of the day, respectively; (see page A12 for notes about evaluating the series for sidereal time)

λ is the local longitude in degrees (west is positive; east is negative).

When using the formulas given above, it may be necessary to reduce the results to the range $0^{\text{h}} - 24^{\text{h}}$ by adding or subtracting multiples of 24^{h} .

Formulas (1) and (3) are specifically for the current year; the other formulas are valid at least over the latter half of this century. Formula (5) is an approximation that is accurate to about $\pm 0^{\circ}.2$. If more accuracy is required, the Chebyshev series for the Equation of the Equinoxes (pp. D2–D5 or D30) can be used in place of Formula (5). If sidereal time is to be computed to an accuracy better than $\pm 0^{\circ}.2$ (rarely justified for practical applications), then *either* the Chebyshev series for the Equation of the Equinoxes should be used in place of Formula (5) *or* Formula (7) should be used in place of Formula (6).

These formulas can be easily adapted to allow the Modified Julian Date to be used in place of the Julian Date.

Hour Angles

The following formulas are useful if astronomical data, such as that given in Sections C and E, are applied to navigational purposes:

$$\text{GHA} = 15(\text{GAST} - \text{RA})$$

$$\text{LHA} = 15(\text{LAST} - \text{RA}) = \text{GHA} - \lambda$$

$$\text{GHA Aries} = 15 \text{ GAST}$$

$$\text{SHA} = 360^\circ - 15 \text{ RA}$$

$$\text{GHA} = \text{GHA Aries} + \text{SHA}$$

where

GHA is the Greenwich hour angle in degrees;

LHA is the local hour angle in degrees;

GHA Aries is the Greenwich hour angle of the First Point of Aries (the origin of right ascension) in degrees;

SHA is the sidereal hour angle in degrees;

RA is the apparent right ascension (referred to the true equator and equinox of date) in hours;

λ is the local longitude in degrees (west is positive; east is negative)

GAST is the Greenwich apparent sidereal time in hours;

LAST is the local apparent sidereal time in hours.

When using the above formulas, it may be necessary to add or subtract 360° to reduce the resulting hour angles to the range $0^\circ - 360^\circ$. Often the local hour angle values are reduced to the range -180° to $+180^\circ$, in which case they are called meridian angles. In all cases positive hour angle values are measured westward from the meridian.

Altitude and Azimuth

The following formulas can be used to compute the altitude (a) and azimuth (A) of a celestial body:

$$(1) \quad \sin a = \cos z = \sin \phi \sin \delta + \cos \phi \cos \delta \cos \text{LHA}$$

$$(2) \quad x = \tan A = \sin \text{LHA} / (\cos \text{LHA} \sin \phi - \tan \delta \cos \phi)$$

Since computers and calculators normally give the arctangent in the range -90° to $+90^\circ$, the correct quadrant for A can be selected according to the following rules:

If $0^\circ \leq \text{LHA} \leq 180^\circ$,

$$A = 180^\circ + \arctan x, \text{ if } x \text{ is positive,}$$

$$A = 360^\circ + \arctan x, \text{ if } x \text{ is negative.}$$

If $180^\circ \leq \text{LHA} < 360^\circ$,

$$A = \arctan x, \text{ if } x \text{ is positive,}$$

$$A = 180^\circ + \arctan x, \text{ if } x \text{ is negative.}$$

Notation:

- a = altitude of body above (if $\sin a > 0$) or below (if $\sin a < 0$) the horizon;
- A = azimuth of body measured eastward from north over the range $0^\circ \leq A \leq 360^\circ$;
- ϕ = latitude of observer (north is positive; south is negative);
- δ = declination of body (north is positive; south is negative);
- LHA = local hour angle of body;
- z = zenith distance of body ($z = 90^\circ - a$).

In standard navigational notation altitude and azimuth are denoted Hc and Zn, respectively. Equations (1) and (2) are the basic formulas used in preparing sight reduction tables; they do not include the effect of refraction.

Example: Compute the altitude and azimuth of the Sun at $14^{\text{h}} 02^{\text{m}} 14^{\text{s}}$ UT on 28 July at Northampton, Massachusetts.

$$\text{Latitude: } \phi = +42^\circ 3 \quad \sin \phi = +0.67301 \quad \cos \phi = +0.73963$$

$$\text{Longitude: } \lambda = +72^\circ 6$$

Using the power series on page C4, the Sun's GHA and δ are found to be

$$\text{GHA} = 28^\circ 956 \quad \text{hence} \quad \text{LHA} = 28^\circ 956 - 72^\circ 6 = 316^\circ 356$$

$$\sin \text{LHA} = -0.69017 \quad \cos \text{LHA} = +0.72364$$

$$\delta = +18^\circ 922 \quad \sin \delta = +0.32428 \quad \cos \delta = +0.94596 \quad \tan \delta = +0.34281$$

$$\begin{aligned} \sin a &= \cos z = (0.67301)(0.32428) + (0.73963)(0.94596)(0.72364) \\ &= +0.72455 \end{aligned}$$

$$a = 46^\circ 4$$

$$\begin{aligned} x &= \tan A = (-0.69017)/((0.72364)(0.67301) - (0.34281)(0.73963)) \\ &= -2.9562 \quad \arctan x = -71^\circ 3 \end{aligned}$$

Since LHA is greater than 180° and less than 360° , and since x is negative, $A = 180^\circ + (-71^\circ 3) = 108^\circ 7$

Sunrise, Sunset and Twilight

For locations between latitudes 65° North and 65° South, the following algorithm provides times of sunrise, sunset and twilight to an accuracy of $\pm 2^{\text{m}}$, for any date in the latter half of the twentieth century. Because the phenomena depend on local meteorological conditions, attempts to attain higher accuracy are seldom justified. Although the algorithm can be used at higher latitudes, its accuracy deteriorates near dates on which the Sun remains above or below the horizon for more than twenty-four hours.

Notation:

- ϕ = latitude of observer (north is positive; south is negative)
- λ = longitude of observer (west is positive; east is negative)
- M = Sun's mean anomaly
- L = Sun's true longitude

RA	= Sun's right ascension
δ	= Sun's declination
H	= Sun's local hour angle
z	= Sun's zenith distance at rise, set or twilight *
t	= approximate time of phenomenon in days since 0 Jan., 0 ^h UT
T	= local mean time of phenomenon
UT	= universal time of phenomenon

*The proper value of z should be chosen from the following:

	z	$\cos z$
Sunrise and Sunset	90°50'	-0.01454
Civil Twilight	96°	-0.10453
Nautical Twilight	102°	-0.20791
Astronomical Twilight	108°	-0.30902

Formulas:

- (1) $M = 0^\circ 985600t - 3^\circ 289$
- (2) $L = M + 1^\circ 916 \sin M + 0^\circ 020 \sin 2M + 282^\circ 634$
- (3) $\tan RA = 0.91746 \tan L$
- (4) $\sin \delta = 0.39782 \sin L$
- (5) $x = \cos H = (\cos z - \sin \delta \sin \phi) / (\cos \delta \cos \phi)$
- (6) $T = H + RA - 0^\text{h} 065710t - 6^\text{h} 622$
- (7) $UT = T + \lambda$

Procedure:

1. With an initial value of t , compute M from Eq. (1) and then L from Eq. (2). If a morning phenomenon (sunrise or the beginning of morning twilight) is being computed, construct an initial value of t from the formula

$$t = N + (6^\text{h} + \lambda)/24$$

where N is the day of the year (see the calendar on pages A2–A3 or the formulas on page B1) and λ is the observer's longitude expressed in hours. If an evening phenomenon is being computed, use

$$t = N + (18^\text{h} + \lambda)/24$$

2. Solve Eq. (3) for RA , noting that RA is in the same quadrant as L . Transform RA to hours for later use in Eq. (6).
3. Solve Eq. (4) for $\sin \delta$ which appears in Eq. (5); $\cos \delta$, which also is required in Eq. (5), should be determined from $\sin \delta$. While $\sin \delta$ may be positive or negative, $\cos \delta$ is always positive.
4. Solve Eq. (5) for H . Since computers and calculators normally give the arccosine in the range $0^\circ - 180^\circ$, the correct quadrant for H can be selected according to the following rules:
 - (a) rising phenomena, $H = 360^\circ - \arccos x$;
 - (b) setting phenomena, $H = \arccos x$.

In other words, for rising phenomena H must be either in quadrant 3 or 4 (depending on the sign of $\cos H$), whereas H must be either in quadrant 1 or 2 for setting phenomena. Convert H from degrees to hours for use in Eq. (6).

5. Compute T from Eq. (6), recalling that H and RA must be expressed hours. If T is negative or greater than 24^{h} , it should be converted to the range $0^{\text{h}} - 24^{\text{h}}$ by adding or subtracting multiples of 24^{h} .
6. Compute UT from Eq. (7), where λ must be expressed in hours. UT is an approximation to the time of sunrise, sunset or twilight, referred to the Greenwich meridian. If UT is greater than 24^{h} , the phenomenon occurs on the following day, Greenwich time. If UT is negative, the phenomenon occurs on the previous day, Greenwich time.

To ensure that precision is not lost during the computations, t should be carried to four decimal places. Angles should be expressed to three decimals of a degree and, upon conversion, to three decimals of an hour. Five significant digits should be carried for the trigonometric functions.

Under certain conditions Eq. (5) will yield a value of $|\cos H| > 1$, indicating the absence of the phenomenon on that day. At far northern latitudes, for example, there is continuous illumination during certain summer days and continuous darkness during winter days.

Example: Compute the time of sunrise on 25 June at Wayne, New Jersey.

Latitude: $40^{\circ}9$ North

Longitude: $74^{\circ}3$ West

$$\phi = +40^{\circ}9 \quad \sin\phi = +0.65474$$

$$\cos\phi = +0.75585$$

$$\lambda = +74^{\circ}3/15 = 4^{\text{h}}95$$

$$\text{For sunrise: } z = 90^{\circ}50' \quad \cos z = -0.01454$$

$$t = 176^{\text{d}} + (6^{\text{h}} + 4^{\text{h}}95) / 24 = 176^{\text{d}}456$$

$$M = 0^{\circ}985600 (176^{\text{d}}456) - 3^{\circ}289 = 170^{\circ}626$$

$$\begin{aligned} L &= 170^{\circ}626 + 1^{\circ}916 (0.16288) + 0^{\circ}020 (-0.32141) + 282^{\circ}634 \\ &= 453^{\circ}566 = 93^{\circ}566 \end{aligned}$$

$$\tan RA = 0.91746 (-16.047) = -14.723$$

$$RA = 93^{\circ}886/15 = 6^{\text{h}}259 \quad \text{Since } L \text{ is in quadrant 2, so is } RA.$$

$$\sin\delta = 0.39782 (0.99806) = 0.39705$$

$$\cos\delta = 0.91780$$

$$\begin{aligned} x &= \cos H = [-0.01454 - (0.39705)(0.65474)] / [(0.91780)(0.75585)] \\ &= -0.39570 \quad \arccos x = 113^{\circ}310 \end{aligned}$$

$$\text{Since sunrise is being computed, } H = 360^{\circ} - 113^{\circ}310 = 246^{\circ}690$$

$$H = 246^{\circ}690/15 = 16^{\text{h}}446$$

$$T = 16^{\text{h}}446 + 6^{\text{h}}259 - 0^{\text{h}}065710 (176^{\text{d}}456) - 6^{\text{h}}622 = 4^{\text{h}}488$$

$$UT = 4^{\text{h}}488 + 4^{\text{h}}95 = 9^{\text{h}}44$$

Sunrise occurs at $9^{\text{h}}26^{\text{m}}$ UT = $5^{\text{h}}26^{\text{m}}$ EDT

Solar Coordinates

The true geocentric longitude of the Sun (L) can be computed to an accuracy of ± 1 minute of arc from the following formulas:

$$M = 358.476 + 35999.050T$$

$$L = 279.691 + 36000.769T$$

$$L = L + (1.919 - 0.0048T) \sin M + 0.020 \sin 2M$$

where $T = (\text{JD} - 2415020.0) / 36525$ and JD is the Julian Date (see page B2).

If we consider the Sun's latitude to be identically zero, the right ascension (RA) and declination (δ) of the Sun can also be computed to ± 1 minute of arc from

$$\tan RA = \cos \epsilon \tan L$$

$$\sin \delta = \sin \epsilon \sin L$$

where ϵ , the obliquity of the ecliptic, can be computed from $\epsilon = 23^\circ 452 - 0.013T$. The right ascension is always in the same quadrant as the true longitude.

Because the obliquity varies slowly, a single value can be used for an extended period of time. During the last quarter of the twentieth century, $\epsilon = 23^\circ 441$ is sufficiently accurate. Similarly the coefficient of $\sin M$ in the equation for L changes slowly; for the last half of the twentieth century a value of 1.916 can be safely used.

Although there is no rigorous limit on the time span for which these formulas are valid, their accuracy gradually deteriorates for values of T greater than a couple of centuries.

Equation of Time and Time of Solar Transit

The equation of time (EqT) is the hour angle of the true Sun minus the hour angle of the mean sun. Thus it is the difference: apparent solar (sundial) time minus mean solar (clock) time.

For the current year EqT can be computed to an accuracy of ± 0.8 minute from the following formula:

$$(1) EqT = -7^m 65 \sin(0.9856 t) + 0^m 46 \cos(0.9856 t) \\ - 9^m 29 \sin(1.9712 t) - 3^m 08 \cos(1.9712 t)$$

where t is the number of days since 0 January, 0^h UT.

If higher accuracy is required the following formulas will give EqT to an accuracy of ± 2 seconds during the current year:

$$(2) \theta = 9.574 + 0.98561 t + 1.916 \sin(0.9856 t) - 3.048 \\ + 0.020 \sin(1.9712 t) - 6.096$$

$$(3) EqT = 38^m 296 + 3^m 94244 t - 4^m 0 \arctan[(\tan \theta) / 0.91746]$$

where t is the number of days, and fractions thereof, since 0 January, 0^h UT. In Eq. (3) the arctangent should yield a result in degrees that is in the same quadrant as θ . Near the end of the year θ becomes greater than 360°. When this occurs the arctangent in Eq. (3) should also be greater than 360°.

Eqs. (2) and (3) can be used to compute the time at which the Sun transits the local meridian. First use Eqs. (2) and (3) to compute EqT for $t = N + (12^h + \lambda)/24$, where N is the day of the year (see the calendar on pages A2–A3 or the formulas on pages B1–B2) and λ is the west longitude expressed in hours. Then the local mean time (LMT) of transit is given to an accuracy of ± 2 seconds by $LMT = 12^h - EqT$. The universal time of local transit is then obtained from $UT = LMT + \lambda$.

Example: Compute the time of solar transit at longitude $81^\circ 38' 0''$ West on

10 September 1981.

$$\lambda = +81^\circ 633/15 = +5^h 4422 = +5^h 26m 532$$

$$\text{For solar transit: } t = 253^d + (12^h + 5^h 4422)/24 = 253^d 72676$$

$$\theta = 9^\circ 574 + 0^\circ 98561 (253^d 72676) + 1^\circ 916 (-0.9207) \\ + 0^\circ 020 (0.7187) = 257^\circ 900$$

$$EqT = 38^\circ 296 + 3^\circ 94244 (253^d 72676) - 4^\circ 0 \arctan[4.66458/0.91746] \\ = 38^\circ 296 + 1000^\circ 303 - 4^\circ 0 (258^\circ 873) = +3^\circ 107$$

$$LMT = 12^h 00m - 3^\circ 107 = 11^h 56m 893$$

$$UT = 11^h 56m 893 + 5^h 26m 532 = 17^h 23m 26s \text{ UT}$$

$$\text{Eastern Daylight Time} = 13^h 23m 26s$$

Moonrise and Moonset

Times of moonrise and moonset can be computed for specified locations using the following algorithm. Between latitudes 60° North and 60° South, the phenomena can be computed to an accuracy of $\pm 5^m$. Although the algorithm can be used at higher latitudes, its accuracy deteriorates near dates on which the Moon remains above or below the horizon for more than twenty-four hours.

Notation: ϕ = latitude of observer (north is positive; south is negative)

λ = longitude of observer (west is positive; east is negative)

t_i = i -th approximation to universal time of phenomenon, expressed
in days from 0 January, 0^h UT

GHA_i = Moon's GHA at time t_i

δ_i = Moon's declination at time t_i (north is positive; south is negative)

τ_i = i -th correction to t_0 , thus $t_i = t_0 + \tau_i$

H_i = i -th approximation to Moon's LHA at time of rise or set

ΔH_i = i -th approximation to Moon's daily rate of change in GHA

Formulas:

$$(1) \Delta H_i = (GHA_i - GHA_0) / \tau_i \text{ for } i = 0, \text{ let } \Delta H_0 = 347^\circ 81$$

$$(2) x_{i+1} = \cos H_{i+1} = (.00233 - \sin \phi \sin \delta_i) / (\cos \phi \cos \delta_i)$$

$$(3) \tau_{i+1} = (H_{i+1} - H_0) / \Delta H_i$$

$$(4) t_{i+1} = t_0 + \tau_{i+1}$$

B10

Procedure:

1. Let $t_0 = N + (12^h + \lambda)/24$, where N is the day of the year (see the calendar on pages A2–A3 or the formulas on page B1) and λ is the observer's longitude expressed in hours. Set $i = 0$ and begin the following iterative process.
2. For time t_i compute the Moon's GHA and declination to navigational precision ($\pm 0.1'$). Label these quantities GHA_i and δ_i , respectively, where i specifies the iteration number. For $i = 0$, compute $H_0 = GHA_0 - \lambda$.
3. If $i = 0$, let $\Delta H_0 = 347.81$. Otherwise compute ΔH_i from Eq. (1). If $\Delta H_i < 0$, add $360^\circ / |\tau_i|$ to ΔH_i .
4. Solve Eq. (2) for H_{i+1} . Since computers and calculators normally give the arc-cosine in the range $0^\circ - 180^\circ$, the correct quadrant for H_{i+1} can be selected according to the following rules:
 - (a) moonrise computations, $H_{i+1} = 360^\circ - \arccos x_{i+1}$;
 - (b) moonset computations, $H_{i+1} = \arccos x_{i+1}$.In other words, near the time of moonrise H_{i+1} must be either in quadrant 3 or 4 (depending on the sign of $\cos H_{i+1}$); near moonset H_{i+1} must be either in quadrant 1 or 2. For latitudes higher than 60° (i.e., $|\phi| > 60^\circ$), the condition $|\cos H_{i+1}| > 1$ can occur, thereby indicating the absence of the phenomenon on that day.
5. Compute τ_{i+1} from Eq. (3). If $|\tau_{i+1}| < 0.5^\text{d}$, proceed to Step 6. If $|\tau_{i+1}| > 0.5^\text{d}$, the phenomenon being computed occurs on the day prior to the day desired (if τ_{i+1} is negative) or on the day following the day desired (if τ_{i+1} is positive). Normally the phenomenon on the desired day can be obtained by adding to τ_{i+1} (if τ_{i+1} is negative), or subtracting from τ_{i+1} (if τ_{i+1} is positive), $360^\circ / \Delta H_i$. If successful this technique will produce a new value of τ_{i+1} in the required range. However, two conditions may prevent the reduction to $|\tau_{i+1}| < 0.5^\text{d}$:
 - (a) for low values of i , τ_{i+1} may be a fairly crude approximation to the ultimate value, τ_n ;
 - (b) each month there is one day (near last quarter) on which there is no moonrise, and another day (near first quarter) on which there is no moonset.If $|\tau_{i+1}| \approx 0.5^\text{d}$, it is probably worth attempting another iteration to see if $|\tau_{i+2}| < 0.5^\text{d}$.
6. Compute t_{i+1} from Eq. (4). If $|t_{i+1} - t_i| < 0.01^\text{d}$, t_{i+1} is accurate to $\pm 5^\text{m}$. Otherwise it is necessary to iterate the solution by setting $i = i + 1$ and executing Steps 2 through 6 again.

Example: Compute moonrise on 12 August 1981 at latitude $60^\circ 10' \text{ North}$ and longitude $24^\circ 57' \text{ East}$.

$$\phi = +60^\circ 16' \quad \sin \phi = +0.86748 \quad \cos \phi = +0.49748$$

$$\lambda = -24^\circ 950/15 = -1^\text{h} 663$$

From the calendar on pages A2–A3 or the formulas on pages B1–B2, 12 Aug-

is found to be day 224; therefore

$$t_0 = 224^d + (12^h - 1^h 663)/24 = 224^d 43069$$

$i = 0$: Evaluating the power series on page C17 for t_0 ,

$$GHA_0 = 194^\circ 285 \quad \delta_0 = -21^\circ 128$$

$$H_0 = 194^\circ 285 + 24^\circ 950 = 219^\circ 235$$

$$\Delta H_0 = 347^\circ 81$$

$$x_1 = \cos H_1 = [0.00233 - (0.86748)(-0.36045)] / [(0.49748)(0.93278)] \\ = 0.67885 \quad \arccos x_1 = 47^\circ 246$$

Since moonrise is sought, H_1 is in quadrant 3 or 4:

$$H_1 = 312^\circ 754$$

$$\tau_1 = (312^\circ 754 - 219^\circ 235)/347^\circ 81 = +0^d 26888$$

$|\tau_1| < 0^d 5$ as required.

$$t_1 = 224^d 43069 + 0^d 26888 = 224^d 69957 = 12 \text{ August } 16^h 47^m \text{ UT}$$

$i = 1$: Evaluating the power series on page C17 for t_1 ,

$$GHA_1 = 287^\circ 749 \quad \delta_1 = -21^\circ 110$$

$$\Delta H_1 = (287^\circ 749 - 194^\circ 285)/0^d 26888 = 347^\circ 605$$

$$x_2 = \cos H_2 = [0.00233 - (0.86748)(-0.36016)] / [(0.49748)(0.93289)] \\ = 0.67823 \quad \arccos x_2 = 47^\circ 295$$

Since moonrise is sought, H_2 is in quadrant 3 or 4:

$$H_2 = 312^\circ 705$$

$$\tau_2 = (312^\circ 705 - 219^\circ 235)/347^\circ 605 = 0^d 26890$$

$$t_2 = 224^d 43069 + 0^d 26890 = 224^d 69959 = 12 \text{ August } 16^h 47^m \text{ UT}$$

$$|t_2 - t_1| = 0^d 00002 < 0^d 01$$

The extremely rapid convergence illustrated in this example occurs frequently but not invariably. Although the first approximation (t_1) will often give adequate precision for most purposes, it is recommended that the solution be iterated and that the convergence criterion ($|t_{i+1} - t_i| < 0^d 01$) be tested.

Polaris (Pole Star)

The following formulas are relevant to observations of Polaris:

$$(1) \quad \phi = a - p \cosh + 0.5p \sin p \sin^2 h \tan \phi$$

$$(2) \quad A \cos \phi = p \sinh + p \sin p \sin h \cosh \tan \phi$$

where p is the polar distance of Polaris: $p = 90^\circ$ – declination of Polaris

h is the LHA of Polaris: $h = \text{GHA Aries} + \text{SHA Polaris} + \text{east} (-\text{west})$
longitude of observer

ϕ is the observer's latitude;

A is the azimuth of Polaris;

a is the corrected altitude of Polaris.

Eq. (1) permits the observer's latitude to be determined from an observation of the altitude of Polaris (corrected for refraction, dip, etc.). Assumed values of the observer's latitude and longitude can be used for the right side of Eq. (1). Eq. (2) yields the azimuth of Polaris if the observer's position is known. These expressions are accurate only for Polaris, since they depend on p being a small quantity. The SHA and declination of Polaris to be used in these formulas should be referred to the true equator and equinox of date; i.e., the apparent place of Polaris should be computed (see Section E 'Stellar Tables'; Polaris is star number 17).

Equation of Position Line

The following formula can be used to obtain a line of position (LOP) directly from an observation of the altitude of a celestial body:

$$\lambda = \text{GHA} \pm \arccos [(\sin a - \sin \phi \sin d) / \cos \phi \cos d]$$

where: λ is the computed longitude;

GHA is the GHA of the body for the time of observation;

a is the corrected altitude of the body;

d is the declination of the body for the time of observation;

ϕ is an estimate of the observer's latitude.

North latitudes and west longitudes are positive; south latitudes and east longitudes are negative. Longitudes with absolute values greater than 180° may be encountered. In the above formula, + is used for bodies east of the meridian (rising) and – for bodies west of the meridian (setting).

The formula gives the longitude λ at which the position line crosses the parallel of latitude ϕ . Repeated application of the formula using different values of latitude yields a locus of points all lying in the LOP. Note that no assumed position is necessary, although an estimate of the observer's latitude is helpful in reducing the number of times the formula is applied.

The formula becomes indeterminate at the transit time of a body and for latitudes that the position line does not cross at any point.

Motion of Body and Motion of Observer

During the time interval Δt (e.g., the interval between a sextant observation and the time of a fix), the rotation of the Earth causes a change in the altitude of a celestial body. To permit the use of a common assumed position and LHA Aries for observations made at different times, the following correction can be applied to the observed altitude:

$$\text{MOB} = 15.04 \Delta t \cos \phi \sin A$$

where MOB is the altitude correction in minutes of arc, Δt is the time difference in minutes, ϕ is the latitude of the observer, and A is the azimuth of the observed body. If the time of the fix is later than the time of observation, MOB should be added to the observed altitude. It should be noted that the formula for MOB is an approximation that becomes unreliable for values of Δt greater than 5 minutes.

The following formula gives the change of altitude of a celestial body due to the motion of the observer in the time interval Δt (e.g., the interval between a sextant observation and the time of a fix). Though this formula is only an approximation to the physical phenomenon, it is the exact mathematical equivalent of advancing or retiring a line of position.

$$\text{MOO} = \frac{v \Delta t}{60} \cos(A - C)$$

where MOO is the altitude correction in minutes of arc, Δt is the time difference in minutes, A is the azimuth of the observed body, C is the track/course angle, and v is the ground speed in knots. If the time of the fix is later than the time of observation, MOO should be added to the observed altitude.

Sextant Altitude Corrections

Several corrections must be applied to a sextant altitude (hs) in order to obtain a corrected altitude (Ho). Ho can then be either (a) compared with the computed altitude (Hc) to obtain the altitude difference (Δa); or (b) used in the 'Equation of Position Line' (see p. B12) to obtain directly the location of the LOP for the sight.

The corrections, in the order in which they should be applied, are:

- (1) Instrument and/or index correction, IC;
- (2) Dip of Horizon, D (marine sextant); or Coriolis correction, Δz (bubble sextant);
- (3) Atmospheric refraction, R;
- (4) Semidiameter, SD (marine sextant, Sun and Moon observations);
- (5) Parallax in altitude, PA (Moon, Venus and Mars observation).

In mathematical notation:

$$Ho = hs + IC + (D \text{ or } \Delta z) - R + SD + PA$$

If Venus is observed, an additional correction for the phase of the planet may be necessary. This correction can be made either to the sextant altitude or to the GHA or LHA of Venus.

Descriptions and formulas for D, Δz , R, SD, PA and the phase correction for Venus are given on the following pages.

Dip of Horizon

The dip of the apparent horizon from a horizontal plane is given by

$$D = -0.97\sqrt{h}$$

where h is the height of eye level of the observer in feet and D is the dip of the horizon in minutes of arc. For observations of a celestial body made with a marine sextant or similar instrument, D should be added to the observed altitude to obtain the corrected altitude. This formula is an approximation; the apparent dip varies with atmospheric conditions.

Coriolis Correction

Any object moving across or above the surface of the rotating Earth is subject to an apparent force tending to push the object to the right in the northern hemisphere and to the left in the southern hemisphere. This Coriolis acceleration manifests itself as a deflection of the apparent vertical by an amount Z:

$$(1) \quad Z = 2.62 V \sin \phi + 0.146 V^2 \sin C \tan \phi - 5.25 VC'$$

where: Z is the deflection in minutes of arc;

V is the speed in hundreds of knots;

ϕ is the latitude;

C is the true track/course angle;

C' is the rate of change of true track/course angle in degrees per minute of time.

The 'Coriolis (Z) Correction' tabulated in the Air Almanac consists of only the first term in Eq. (1). The second term is known as 'Rhumb Line Correction', and the third term is the 'Wander Correction'. Usually only the first term is significant.

Observations of the altitudes of celestial bodies made with bubble sextants or similar artificial horizon instruments must be corrected for the Coriolis effect. The correction Δz , which can be added to the observed (e.g., bubble sextant) altitude, is given approximately by

$$(2) \quad \Delta z = Z \sin(A - C)$$

where: Δz is the altitude correction in minutes of arc;

Z is the deflection of the vertical determined from Eq. (1);

A is the azimuth of observed body;

C is the true track/course angle.

In the northern hemisphere the correction Δz is positive for stars on the right and negative for stars on the left of the aircraft. In the southern hemisphere the correction is negative for stars on the right and positive for stars on the left.

Atmospheric Refraction

The Earth's atmosphere tends to refract light in such a way that celestial bodies appear slightly higher in the sky than they would if there were no atmosphere. The formulas below can be used to determine R, the angle of refraction. R should be subtracted from an observed (e.g., sextant) altitude to obtain the corrected altitude.

$$(1) \quad R = \frac{P}{273 + T} [3.430289 (z - \arcsin [0.9986047 \sin (0.9967614z)]) - 0.01115929z]$$

$$(2) \quad R = \exp(-h/27000) \tan z = 1/[\exp(h/27000) \tan a]$$

where: R is the refraction correction in minutes of arc;

a is the observed altitude;

z is the observed zenith distance in degrees: $z = 90^\circ - a$;

T is the temperature in degrees Celsius;

P is the atmospheric pressure in millibars;

h is the height of the observer above sea level in feet.

The formulas given above are approximations and are not equivalent to a complete theory of refraction. Eq. (1), which is better suited to surface observations, is accurate to $\pm 0'1$ for altitudes greater than 15° ; between altitudes 3° and 15° , errors can reach $\pm 1'0$; for altitudes less than 3° , errors between $\pm 1'$ and $\pm 3'$ will be encountered. Eq. (2), which is better suited to observations from aircraft, should only be used for altitudes greater than 10° . Above 10° this formula is accurate to $\pm 0'2$.

For surface observations under standard atmospheric conditions, the following Chebyshev series represents refraction for altitudes from 0° to 90° with errors not exceeding $\pm 0'1$.

$$R = a_0/2 + \sum_{i=1}^9 a_i T_i(x)$$

where x is related to the observed altitude by $x = 0.442837 \log_e(a + 1.5) - 1$. The coefficients a_i in the series are

$a_0 = +28.891741$	$a_5 = +0.340097$
$a_1 = -20.516167$	$a_6 = -0.024576$
$a_2 = +7.291562$	$a_7 = -0.050041$
$a_3 = -0.813492$	$a_8 = +0.023252$
$a_4 = -0.690042$	$a_9 = -0.009406$

The sum of these coefficients is $+14.442928$.

For a given value of the altitude a , compute x . Then the series can be evaluated as follows:

let $b_{10} = b_{11} = 0$,
 compute $b_i = 2xb_{i+1} - b_{i+2} + a_i$, for $i = 9, 8, \dots, 0$,
 then $R = (b_0 - b_2)/2$.

Example: A star is observed from the Earth's surface under standard atmospheric conditions to be at altitude $10^\circ 0$. Use the Chebyshev series to compute the refraction correction.

$$a = 10^\circ 0 \quad x = 0.442837 \log_e(10.0 + 1.5) - 1 = +0.081562$$

$$\begin{aligned} b_{10} &= b_{11} = 0 \\ b_9 &= 0.0 - 0.0 - 0.009406 = -0.009406 \\ b_8 &= -0.001534 - 0.0 + 0.023252 = +0.021718 \\ b_7 &= +0.003543 + 0.009406 - 0.050041 = -0.037092 \\ b_6 &= -0.006051 - 0.021718 - 0.024576 = -0.052345 \\ b_5 &= -0.008539 + 0.037092 + 0.340097 = +0.368650 \\ b_4 &= +0.060136 + 0.052345 - 0.690042 = -0.577561 \\ b_3 &= -0.094214 - 0.368650 - 0.813492 = -1.276356 \\ b_2 &= -0.208204 + 0.577561 + 7.291562 = +7.660919 \\ b_1 &= +1.249680 + 1.276356 - 20.516167 = -17.990131 \\ b_0 &= -2.934622 - 7.660919 + 28.891741 = +18.296200 \end{aligned}$$

$$R = (18.296200 - 7.660919)/2 = 5'3$$

Semidiameter of the Sun and Planets

The semidiameters of the Sun and planets can be computed from

$$SD = S/d = S\pi/8.794$$

where: SD is the semidiameter in seconds of arc;

S is the semidiameter at unit distance (1 AU) in seconds of arc;

d is the geocentric distance in AU;

π is the horizontal parallax in seconds of arc.

The following values of S should be used:

Sun	959".63	Jupiter	98".47
Mercury	3.34	Saturn	83.33
Venus	8.41	Uranus	34.28
Mars	4.68	Neptune	36.56

These values apply to the equatorial dimensions of the bodies and do not include any adjustments for irradiation.

Semidiameter of the Moon

The geocentric semidiameter of the Moon can be computed from

$$(1) \quad SD = 56204.92/d = 0.272476 \pi$$

where SD is the geocentric semidiameter in seconds of arc, d is the geocentric distance of the Moon in units of the Earth's equatorial radius, and π is the horizontal parallax of the Moon in seconds of arc.

Since observations are made from the Earth's surface rather than from its center, the observed, topocentric semidiameter is slightly greater than the geocentric semidiameter. For navigation and certain other purposes the *augmented semidiameter* of the Moon should be used:

$$(2) \quad SD_{\text{aug}} = SD[1 + (\sin a)/d]$$

where SD_{aug} is the augmented semidiameter in seconds of arc, a is the altitude of the Moon (for navigational purposes $a = H_o$, but hs or H_c can be used instead with negligible error), d is the geocentric distance of the Moon in units of the Earth's equatorial radius, and SD is the geocentric semidiameter computed from Eq.(1). For navigational purposes a constant value of $d = 60.27$ can be used to sufficient accuracy. The increase in the Moon's semidiameter due to augmentation is zero when the Moon is on the horizon and is about $0'.3$ when the Moon is at the zenith.

Parallax in Altitude

The finite size of the Earth causes a parallactic shift in the apparent positions of nearby celestial objects. The resulting parallax in altitude can be computed from

$$\sin PA = \sin \pi \cos a$$

where PA is the parallax in altitude, π is the horizontal parallax, and a is the observed altitude. When the horizontal parallax of a body is not available, it can be computed from the relation $\pi = 8.^{\circ}794/d$, where d is the geocentric distance of the body in astronomical units. Except for the Moon, parallax in altitude does not exceed $1'$. Since parallax tends to decrease the apparent altitude of a body, the quantity PA should be added to an observed (e.g., sextant) altitude in order to obtain the corrected altitude. To a reasonable approximation, PA can also be computed from

$$\text{PA} = \pi \cos a$$

Correction for the Phase of Venus

When the altitude of Venus is observed with a small instrument, a correction to the observed altitude is required to account for the fact that the center of light, rather than the center of the disk, is observed. This correction has the form $-k \cos \theta$, where k is a correction factor (given below) and θ is the angle on the celestial sphere, at the position of Venus, between the observer's vertical and the direction of the Sun. The correction, which should be added to the observed (e.g., sextant) altitude, is positive when the Sun is lower than Venus, zero when they have the same altitude, and negative when the Sun is higher.

In sight reduction this effect can be approximately taken into account by correcting the GHA (or LHA) of Venus rather than correcting the observed altitude. Simply add k to the GHA (or LHA) of Venus when Venus is east of the Sun (i.e., when Venus is an evening planet), and subtract k from the GHA (or LHA) when Venus is west of the Sun (morning planet). The correction should not be applied in this way near the time of superior or inferior conjunction.

Venus is at superior conjunction on 7 April 1981. Prior to this date Venus is in the morning sky. Following superior conjunction Venus is in the evening sky.

The values of k for 1981 are

	k
Jan. 1	0'0
Sept. 30	0.1
Nov. 21	0.2
Dec. 15	0.3
Dec. 30	0.4
Dec. 31	

Section C: NAVIGATIONAL TABLES

C2

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAYS 1 THRU 32 JD 2444605.5 TO 2444637.5 DATES JAN 1 THRU FEB 1
 A = 16.0 B = -1.06250000 W = 1

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6236.3275	6297.4958	-20.7985	0.2717
1	5775.7686	5758.6729	3.1239	0.0
2	0.0001	0.3807	0.8436	0.0
3	0.0043	0.0353	-0.0573	0.0
4	-0.0001	-0.0162	-0.0055	0.0
5	-0.0027	0.0046	-0.0022	0.0
SUMS	12012.0977	12056.5731	-16.8960	0.2717

DAYS 32 THRU 63 JD 2444636.5 TO 2444668.5 DATES FEB 1 THRU MAR 4
 A = 16.0 B = -3.00000000 W = 32

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5906.8826	5936.4775	-12.0860	0.2699
1	5775.7697	5760.2830	5.5861	0.0007
2	0.0001	0.3787	0.4091	0.0004
3	0.0012	-0.0462	-0.0816	-0.0031
4	-0.0003	-0.0090	0.0020	0.0006
5	-0.0007	0.0045	0.0020	0.0015
SUMS	11682.6526	11697.0885	-6.1684	0.2700

DAYS 60 THRU 91 JD 2444664.5 TO 2444696.5 DATES MAR 1 THRU APR 1
 A = 16.0 B = -4.75000000 W = 60

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5934.4809	5937.8660	-1.4663	0.2681
1	5775.7709	5761.1519	6.3245	0.0
2	-0.0032	0.1134	0.0170	0.0041
3	-0.0034	-0.0568	-0.0739	-0.0022
4	0.0028	-0.0050	0.0032	-0.0039
5	0.0030	-0.0021	0.0032	0.0004
SUMS	11710.2510	11699.0674	4.8077	0.2665

DAYS 91 THRU 122 JD 2444695.5 TO 2444727.5 DATES APR 1 THRU MAY 2
 A = 16.0 B = -6.68750000 W = 91

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5965.0361	5940.0817	10.3663	0.2665
1	5775.7707	5760.9393	5.6404	-0.0019
2	-0.0036	-0.1986	-0.3668	-0.0026
3	-0.0026	-0.0495	-0.0595	0.0016
4	0.0031	0.0039	0.0025	0.0020
5	0.0025	0.0033	-0.0014	-0.0005
SUMS	11740.8062	11700.7801	15.5815	0.2651

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C3

	DAY	1 THRU	32	JD 2444605.5 TO 2444637.5		DATE	JAN	1 THRU FEB	1
				A =	16.0	B =	-1.06250000	W =	1
TERM		VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	6318.5505	-23.0709	6280.0969	-17.8524	6406.3267	-2.8092	6406.3848	-1.6396	
1	5753.9989	0.3844	5763.0703	3.6623	5775.3794	-0.0892	5775.6954	0.0501	
2	0.0561	1.5113	0.2311	0.4078	0.3710	0.1582	0.2127	0.0892	
3	0.1690	-0.0148	0.0064	-0.0334	0.0031	0.0073	0.0008	0.0002	
4	-0.0041	-0.0254	-0.0047	-0.0022	-0.0038	-0.0004	-0.0013	0.0002	
5	-0.0072	0.0071	0.0004	-0.0004	0.0034	-0.0045	-0.0008	-0.0025	
SUMS	12072.7632	-21.2083	12043.4004	-13.8183	12182.0798	-2.7378	12182.2916	-1.5001	
	DAY	32 THRU	63	JD 2444636.5 TO 2444668.5		DATE	FEB	1 THRU MAR	4
				A =	16.0	B =	-3.00000000	W =	32
TERM		VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	5948.1673	-17.0195	5926.9034	-9.5046	6077.5184	-2.3927	6077.5682	-1.2227	
1	5755.6680	5.5390	5763.9308	4.8042	5776.7926	0.5011	5776.4675	0.3606	
2	0.6280	1.0238	0.1933	0.1791	0.3304	0.1329	0.1716	0.0643	
3	-0.0055	-0.1320	-0.0224	-0.0372	-0.0193	-0.0110	-0.0196	0.0006	
4	-0.0263	-0.0054	-0.0058	-0.0005	-0.0072	-0.0021	-0.0035	-0.0007	
5	0.0016	0.0005	0.0028	-0.0027	-0.0045	0.0001	0.0028	-0.0071	
SUMS	11704.4331	-10.5936	11691.0021	-4.5617	11854.6104	-1.7717	11854.1870	-0.8050	
	DAY	60 THRU	91	JD 2444664.5 TO 2444696.5		DATE	MAR	1 THRU APR	1
				A =	16.0	B =	-4.75000000	W =	60
TERM		VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	5942.2815	-4.9350	5934.2457	-0.7591	6107.7303	-1.1913	6106.8021	-0.4388	
1	5757.3915	7.8385	5764.3991	5.0711	5777.6010	0.8111	5776.8764	0.5014	
2	0.2661	0.2834	0.0780	-0.0212	0.1060	0.0298	0.0566	0.0085	
3	-0.1162	-0.1401	-0.0340	-0.0268	-0.0547	-0.0255	-0.0261	-0.0108	
4	-0.0067	0.0052	-0.0038	0.0013	-0.0026	0.0016	-0.0017	0.0020	
5	0.0040	0.0016	0.0065	-0.0066	0.0008	0.0011	0.0006	-0.0002	
SUMS	11699.8202	3.0536	11698.6915	4.2587	11885.3808	-0.3732	11883.7079	0.0621	
	DAY	91 THRU	122	JD 2444695.5 TO 2444727.5		DATE	APR	1 THRU MAY	2
				A =	16.0	B =	-6.68750000	W =	91
TERM		VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
0	5937.3692	10.3307	5942.8726	8.7435	6141.8185	0.3203	6139.5163	0.4927	
1	5757.1104	7.4035	5764.4336	4.6134	5777.3811	0.6612	5776.7966	0.4176	
2	-0.3930	-0.5143	-0.0486	-0.2124	-0.2090	-0.1035	-0.0918	-0.0502	
3	-0.1036	-0.1363	-0.0211	-0.0306	-0.0467	-0.0182	-0.0254	-0.0072	
4	0.0098	-0.0002	0.0021	0.0025	0.0056	0.0033	-0.0003	-0.0014	
5	0.0069	-0.0034	0.0016	0.0002	0.0029	0.0007	0.0028	-0.0004	
SUMS	11693.9997	17.0800	11707.2402	13.1166	11918.9524	0.8638	11916.1982	0.8511	

C4

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAYS 121 THRU 152 JD 2444725.5 TO 2444757.5 DATES MAY 1 THRU JUNE 1
 A = 16.0 B = -8.56250000 W = 121

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5994.6050	5940.9227	19.2560	0.2642
1	5775.7720	5759.9052	3.6306	-0.0033
2	0.0	-0.2927	-0.6941	0.0
3	-0.0028	0.0052	-0.0461	0.0061
4	0.0	0.0043	0.0011	0.0
5	0.0013	0.0021	-0.0031	-0.0037
SUMS	11770.3755	11700.5468	22.1444	0.2633

DAYS 152 THRU 183 JD 2444756.5 TO 2444788.5 DATES JUNE 1 THRU JULY 2
 A = 16.0 B = -10.50000000 W = 152

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6025.1600	5939.8258	23.3709	0.2633
1	5775.7718	5759.1452	0.4940	0.0
2	-0.0007	-0.0383	-0.8792	0.0
3	-0.0033	0.0502	-0.0057	0.0
4	0.0006	0.0003	0.0061	0.0
5	0.0018	0.0073	-0.0001	0.0
SUMS	11800.9302	11698.9905	22.9860	0.2633

DAYS 182 THRU 213 JD 2444786.5 TO 2444818.5 DATES JULY 1 THRU AUG 1
 A = 16.0 B = -12.37500000 W = 182

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6054.7292	5938.4961	21.2518	0.2633
1	5775.7687	5759.6532	-2.6831	0.0
2	0.0	0.2773	-0.7689	0.0
3	0.0041	0.0233	0.0373	0.0
4	0.0	-0.0077	0.0045	0.0
5	-0.0025	0.0028	0.0031	0.0
SUMS	11830.4995	11698.4450	17.8447	0.2633

DAYS 213 THRU 244 JD 2444817.5 TO 2444849.5 DATES AUG 1 THRU SEPT 1
 A = 16.0 B = -14.31250000 W = 213

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6085.2842	5938.9735	13.5217	0.2633
1	5775.7687	5760.8436	-5.0933	-0.0007
2	0.0	0.2692	-0.4552	0.0004
3	0.0041	-0.0351	0.0649	0.0031
4	0.0	-0.0027	-0.0015	0.0006
5	-0.0025	0.0011	-0.0044	-0.0015
SUMS	11861.0545	.11700.0496	8.0322	0.2652

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C5

DAYS 121 THRU 152			JD 2444725.5 TO 2444757.5			DATES MAY 1 THRU JUNE 1		
			A = 16.0 B = -8.56250000			W = 121		
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM 0	DEG 5930.1253	21.4839	DEG 5950.9229	16.4663	DEG 5813.4487	1.1107	DEG 5810.5542	1.0465
1	5755.0735	4.0121	5764.1255	3.5336	5776.2689	0.1468	5776.2559	0.1528
2	-0.5284	-1.2718	-0.0990	-0.3558	-0.3490	-0.1556	-0.1834	-0.0831
3	0.0693	-0.1157	-0.0017	-0.0193	-0.0025	0.0050	-0.0134	-0.0047
4	0.0251	0.0119	0.0022	0.0005	0.0040	0.0015	0.0028	-0.0006
5	-0.0006	0.0058	0.0004	-0.0018	-0.0038	-0.0050	0.0041	0.0012
SUMS	11684.7642	24.1262	11714.9503	19.6235	11589.3663	1.1034	11586.6202	1.1121
DAYS 152 THRU 183			JD 2444756.5 TO 2444788.5			DATES JUNE 1 THRU JULY 2		
			A = 16.0 B = -10.50000000			W = 152		
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM 0	DEG 5919.4456	23.9030	DEG 5958.5776	21.8391	DEG 5843.6566	0.8227	DEG 5841.3255	1.0148
1	5754.4857	-1.6620	5763.8194	1.9534	5774.9300	-0.4333	5775.5003	-0.1852
2	0.3217	-1.4916	-0.0407	-0.4447	-0.3186	-0.1389	-0.1971	-0.0826
3	0.1443	0.0494	0.0125	-0.0086	0.0158	0.0057	0.0068	0.0061
4	-0.0168	0.0192	0.0025	0.0003	-0.0021	0.0023	0.0028	-0.0001
5	0.0029	-0.0018	0.0037	0.0001	-0.0015	0.0002	-0.0028	-0.0027
SUMS	11674.3834	20.8162	11722.3750	23.3396	11618.2802	0.2587	11616.6355	0.7503
DAYS 182 THRU 213			JD 2444786.5 TO 2444818.5			DATES JULY 1 THRU AUG 1		
			A = 16.0 B = -12.37500000			W = 182		
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM 0	DEG 5910.9716	16.0864	DEG 5965.7442	23.9035	DEG 5870.6140	-0.4297	DEG 5869.7348	0.3944
1	5756.7121	-6.2897	5763.9179	0.2503	5773.8752	-0.8756	5774.8251	-0.4670
2	0.6795	-0.8938	0.0984	-0.4482	-0.2369	-0.0972	-0.1579	-0.0661
3	-0.0445	0.1368	0.0267	-0.0017	0.0170	0.0015	0.0083	0.0048
4	-0.0210	0.0021	0.0007	0.0024	-0.0014	0.0004	-0.0017	0.0015
5	0.0073	-0.0022	-0.0015	0.0073	-0.0010	0.0055	0.0001	0.0002
SUMS	11668.3050	9.0396	11729.7864	23.7136	11644.2669	-1.3951	11644.4087	-0.1322
DAYS 213 THRU 244			JD 2444817.5 TO 2444849.5			DATES AUG 1 THRU SEPT 1		
			A = 16.0 B = -14.31250000			W = 213		
	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM 0	DEG 5906.6638	1.5337	DEG 5973.8911	22.7848	DEG 5896.7167	-2.4381	DEG 5897.9224	-0.7193
1	5758.5180	-8.2303	5764.5782	-1.3442	5773.1274	-1.1712	5774.3054	-0.6662
2	0.1847	-0.1164	0.2248	-0.3606	-0.1514	-0.0542	-0.1054	-0.0379
3	-0.1132	0.1302	0.0115	0.0133	0.0057	0.0107	0.0135	0.0037
4	-0.0032	-0.0021	-0.0001	-0.0009	-0.0007	-0.0008	0.0002	0.0
5	0.0013	-0.0010	0.0016	0.0049	0.0054	-0.0025	-0.0025	0.0015
SUMS	11665.2514	-6.6859	11738.7071	21.0973	11669.7031	-3.6561	11672.1336	-1.4182

C6

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAY 244 THRU 275 JD 2444848.5 TO 2444880.5 DATES SEPT 1 THRU OCT 2
 A = 16.0 B = -16.25000000 W = 244

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6115.8392	5941.3392	2.3788	0.2651
1	5775.7687	5761.4270	-6.1795	0.0019
2	0.0	-0.0051	-0.1033	0.0026
3	0.0041	-0.0603	0.0596	-0.0016
4	0.0	0.0036	0.0021	-0.0020
5	-0.0025	-0.0005	0.0024	0.0005
SUMS	11891.6095	11702.7039	-3.8399	0.2665

DAY 274 THRU 305 JD 2444878.5 TO 2444910.5 DATES OCT 1 THRU NOV 1
 A = 16.0 B = -18.12500000 W = 274

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	6145.4085	5943.6340	-9.1377	0.2675
1	5775.7702	5760.8308	-5.8647	0.0033
2	0.0006	-0.3208	0.2773	0.0
3	0.0009	-0.0645	0.0726	-0.0061
4	-0.0008	0.0087	0.0027	0.0
5	-0.0009	0.0107	-0.0007	0.0037
SUMS	11921.1785	11704.0989	-14.6505	0.2684

DAY 305 THRU 336 JD 2444909.5 TO 2444941.5 DATES NOV 1 THRU DEC 2
 A = 16.0 B = -20.06250000 W = 305

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5815.9638	5943.7756	-18.9082	0.2701
1	5775.7697	5759.2310	-3.9340	-0.0007
2	-0.0003	-0.4518	0.7185	-0.0004
3	0.0024	0.0196	0.0712	0.0031
4	-0.0001	0.0155	-0.0037	-0.0006
5	-0.0020	-0.0034	0.0002	-0.0015
SUMS	11591.7335	11702.5865	-22.0560	0.2700

DAY 334 THRU 365 JD 2444938.5 TO 2444970.5 DATES NOV 30 THRU DEC 31
 A = 16.0 B = -21.87500000 W = 334

	ARIES GHA	SUN GHA	SUN DEC	SUN S D
TERM	DEG	DEG	DEG	DEG
0	5844.5474	5941.1443	-23.3020	0.2718
1	5775.7699	5758.0672	-0.7428	-0.0004
2	-0.0014	-0.1297	0.9929	-0.0027
3	0.0023	0.0797	0.0154	0.0046
4	0.0012	0.0069	-0.0105	0.0017
5	-0.0016	0.0060	0.0012	-0.0036
SUMS	11620.3178	11699.1744	-23.0458	0.2714

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C7

DAYS 244 THRU 275 JD 2444848.5 TO 2444880.5 DATES SEPT 1 THRU OCT 2
 A = 16.0 B = -16.25000000 W = 244

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5903.6929	-13.9257	5983.6987	18.9746	5921.6712	-4.8613	5925.3201	-2.1164
1	5758.0563	-7.2462	5765.5756	-2.5009	5772.6838	-1.3076	5774.0136	-0.7562
2	-0.3704	0.6288	0.2673	-0.2276	-0.0765	-0.0168	-0.0426	-0.0102
3	-0.0691	0.1260	0.0029	0.0255	0.0085	0.0136	0.0155	-0.0010
4	0.0143	-0.0005	0.0032	-0.0018	-0.0011	0.0013	-0.0013	0.0003
5	0.0079	0.0024	-0.0009	-0.0016	0.0027	-0.0058	-0.0036	0.0041
SUMS	11661.3319	-20.4152	11749.5468	16.2682	11694.2886	-6.1766	11699.3017	-2.8794

DAYS 274 THRU 305 JD 2444878.5 TO 2444910.5 DATES OCT 1 THRU NOV 1
 A = 16.0 B = -18.12500000 W = 274

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5898.6175	-24.4712	5995.1144	13.6400	5945.2601	-7.3245	5951.5153	-3.5379
1	5756.6627	-3.5838	5766.5968	-3.1073	5772.5209	-1.2988	5773.9665	-0.7395
2	-0.1615	1.2781	0.2623	-0.0909	-0.0096	0.0206	0.0191	0.0210
3	.0.1513	0.0671	-0.0083	0.0327	0.0167	0.0057	0.0089	0.0040
4	0.0334	-0.0193	0.0027	-0.0020	0.0025	-0.0013	-0.0003	-0.0016
5	0.0008	0.0035	0.0056	-0.0055	-0.0024	-0.0004	0.0023	0.0004
SUMS	11655.3042	-26.7256	11761.9735	10.4670	11717.7882	-8.5987	11725.5118	-4.2536

DAYS 305 THRU 336 JD 2444909.5 TO 2444941.5 DATES NOV 1 THRU DEC 2
 A = 16.0 B = -20.06250000 W = 305

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5893.1267	-26.3842	6008.8902	7.4502	5969.5918	-9.7270	5978.7314	-4.8634
1	5758.6913	1.5610	5767.6261	-3.1951	5772.6491	-1.1578	5774.1741	-0.6110
2	1.3722	1.1888	0.2745	0.0448	0.0751	0.0566	0.0919	0.0437
3	0.3212	-0.1209	0.0189	0.0198	0.0145	0.0063	0.0155	0.0076
4	0.0164	-0.0257	0.0037	-0.0005	0.0019	-0.0029	-0.0019	0.0029
5	0.0045	0.0040	-0.0063	0.0021	0.0017	-0.0001	-0.0022	-0.0029
SUMS	11653.5323	-23.7770	11776.8071	4.3213	11742.3341	-10.8249	11753.0088	-5.4231

DAYS 334 THRU 365 JD 2444938.5 TO 2444970.5 DATES NOV 30 THRU DEC 31
 A = 16.0 B = -21.87500000 W = 334

	VENUS GHA	VENUS DEC	MARS GHA	MARS DEC	JUPITER GHA	JUPITER DEC	SATURN GHA	SATURN DEC
TERM	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG
0	5897.4733	-20.5977	6023.7091	1.9456	5992.8710	-11.6150	6004.7935	-5.7894
1	5767.5480	4.1805	5768.7831	-2.7975	5773.0972	-0.9102	5774.6246	-0.3963
2	3.7739	0.1277	0.3765	0.1741	0.1750	0.0814	0.1567	0.0705
3	0.5904	-0.2581	0.0310	0.0217	0.0168	0.0071	0.0087	0.0023
4	0.0289	-0.0157	0.0095	0.0016	-0.0005	0.0011	-0.0003	-0.0003
5	-0.0125	-0.0031	0.0047	0.0022	0.0026	-0.0013	0.0018	0.0014
SUMS	11669.4020	-16.5664	11792.9139	-0.6523	11766.1621	-12.4369	11779.5850	-6.1118

C8

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAYS 1 THRU 6 JD 2444605.5 TO 2444611.5 DATES JAN 1 THRU JAN 6
A = 3.0 B = -1.333333333 W = 1

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1647.6716	-18.5309	0.9225	0.2513
1	1044.0868	-5.5860	0.0265	0.0072
2	-2.4186	3.8024	0.0042	0.0011
3	0.2497	0.7333	-0.0082	-0.0022
4	0.2842	-0.0828	0.0007	0.0002
5	-0.0035	-0.0559	0.0042	0.0011
SUMS	2689.8702	-19.7199	0.9499	0.2587

DAYS 7 THRU 12 JD 2444611.5 TO 2444617.5 DATES JAN 7 THRU JAN 12
A = 3.0 B = -3.333333333 W = 7

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1211.4859	-11.5851	0.9725	0.2650
1	1042.5943	11.9871	0.0177	0.0048
2	1.0886	2.9817	-0.0078	-0.0021
3	-0.2030	-1.0241	0.0004	0.0001
4	-0.2771	-0.1119	0.0026	0.0007
5	0.0376	0.0409	-0.0002	-0.0001
SUMS	2254.7263	2.2886	0.9852	0.2684

DAYS 13 THRU 18 JD 2444617.5 TO 2444623.5 DATES JAN 13 THRU JAN 18
A = 3.0 B = -5.333333333 W = 13

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1136.6016	15.2449	0.9876	0.2691
1	1040.0437	10.0583	-0.0043	-0.0012
2	-1.9522	-4.0967	-0.0048	-0.0013
3	0.2585	-1.0986	-0.0015	-0.0004
4	0.3976	0.1741	-0.0034	-0.0009
5	0.0165	0.0745	0.0007	0.0002
SUMS	2175.3657	20.3565	0.9743	0.2655

DAYS 19 THRU 24 JD 2444623.5 TO 2444629.5 DATES JAN 19 THRU JAN 24
A = 3.0 B = -7.333333333 W = 19

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1056.0892	15.0356	0.9454	0.2576
1	1043.6203	-9.3936	-0.0340	-0.0093
2	3.1813	-3.0421	-0.0042	-0.0011
3	-0.1087	1.0924	0.0073	0.0020
4	-0.3381	-0.0026	0.0040	0.0011
5	0.0561	-0.0639	-0.0029	-0.0008
SUMS	2102.5001	3.6258	0.9156	0.2495

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C9

DAYS 25 THRU 30 JD 2444629.5 TO 2444635.5 DATES JAN 25 THRU JAN 30
 A = 3.0 B = -9.33333333 W = 25

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1351.6937	-8.5554	0.9034	0.2461
1	1048.9543	-11.2743	0.0028	0.0008
2	-1.0501	1.4741	0.0130	0.0035
3	-0.7641	0.5720	-0.0056	-0.0015
4	0.0776	0.0215	0.0004	0.0001
5	0.0305	0.0156	0.0041	0.0011
SUMS	2398.9419	-17.7465	0.9181	0.2501

DAYS 31 THRU 36 JD 2444635.5 TO 2444641.5 DATES JAN 31 THRU FEB 5
 A = 3.0 B = -11.33333333 W = 31

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1281.6456	-20.0729	0.9501	0.2589
1	1040.8921	2.3668	0.0360	0.0098
2	-1.0439	5.0634	0.0003	0.0001
3	0.9292	0.1263	-0.0036	-0.0010
4	0.0570	-0.2789	-0.0009	-0.0002
5	-0.1046	-0.0340	-0.0005	-0.0001
SUMS	2322.3754	-12.8293	0.9814	0.2675

DAYS 37 THRU 42 JD 2444641.5 TO 2444647.5 DATES FEB 6 THRU FEB 11
 A = 3.0 B = -13.33333333 W = 37

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1204.5233	1.0926	0.9919	0.2703
1	1042.6303	14.9401	-0.0030	-0.0008
2	-0.0770	-0.3137	-0.0073	-0.0020
3	-0.6590	-1.3296	0.0093	0.0025
4	-0.0216	0.0293	-0.0017	-0.0005
5	0.0787	0.0265	-0.0055	-0.0015
SUMS	2246.4747	14.4452	0.9837	0.2680

DAYS 43 THRU 48 JD 2444647.5 TO 2444653.5 DATES FEB 12 THRU FEB 17
 A = 3.0 B = -15.33333333 W = 43

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1126.2626	20.3369	0.9661	0.2632
1	1039.4629	0.7095	-0.0212	-0.0058
2	0.6211	-5.3868	-0.0021	-0.0006
3	1.0773	0.1167	0.0008	0.0002
4	0.0059	0.3094	-0.0008	-0.0002
5	-0.1261	-0.0124	0.0	0.0
SUMS	2167.3037	16.0733	0.9428	0.2568

C10

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAYS 49 THRU 54 JD 2444653.5 TO 2444659.5 DATES FEB 18 THRU FEB 23
 A = 3.0 B = -17.33333333 W = 49

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1413.2004	5.0715	0.9184	0.2502
1	1048.0504	-12.4995	-0.0237	-0.0064
2	1.5973	-0.6216	0.0039	0.0011
3	-0.6751	0.8075	0.0100	0.0027
4	-0.0804	-0.0746	0.0009	0.0002
5	0.0381	-0.0056	-0.0064	-0.0017
SUMS	2462.1307	-7.3223	0.9031	0.2461

DAYS 55 THRU 60 JD 2444659.5 TO 2444665.5 DATES FEB 24 THRU MAR 1
 A = 3.0 B = -19.33333333 W = 55

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1349.9921	-17.0081	0.9103	0.2480
1	1046.0938	-7.1427	0.0178	0.0049
2	-2.1933	3.1678	0.0131	0.0036
3	-0.2729	0.6421	0.0027	0.0007
4	0.1892	0.0033	-0.0009	-0.0002
5	0.0365	-0.0153	-0.0014	-0.0004
SUMS	2393.8454	-20.3529	0.9416	0.2566

DAYS 61 THRU 66 JD 2444665.5 TO 2444671.5 DATES MAR 2 THRU MAR 7
 A = 3.0 B = -21.33333333 W = 61

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1274.7508	-14.3653	0.9833	0.2679
1	1040.6779	10.7208	0.0372	0.0101
2	0.3054	4.1872	-0.0080	-0.0022
3	0.3394	-0.8634	-0.0045	-0.0012
4	-0.2184	-0.2894	-0.0012	-0.0003
5	-0.0230	0.0290	-0.0001	0.0
SUMS	2315.8321	-0.5811	1.0067	0.2743

DAYS 67 THRU 72 JD 2444671.5 TO 2444677.5 DATES MAR 8 THRU MAR 13
 A = 3.0 B = -23.33333333 W = 67

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1196.6810	13.6365	0.9967	0.2716
1	1040.0301	11.5015	-0.0243	-0.0066
2	-0.9491	-3.9796	-0.0087	-0.0024
3	0.0988	-1.0585	0.0051	0.0014
4	0.2546	0.2391	-0.0013	-0.0003
5	0.0241	0.0326	-0.0008	-0.0002
SUMS	2236.1395	20.3716	0.9667	0.2635

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C11

DAYS 73 THRU 78 JD 2444677.5 TO 2444683.5 DATES MAR 14 THRU MAR 19

A = 3.0 B = -25.33333333 W = 73

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1117.3860	16.8567	0.9383	0.2557
1	1043.5386	-7.8851	-0.0259	-0.0070
2	2.6027	-3.5840	0.0051	0.0014
3	0.0418	0.8903	0.0012	0.0003
4	-0.2488	0.0600	-0.0015	-0.0004
5	0.0211	-0.0445	-0.0010	-0.0003
SUMS	2163.3414	6.2934	0.9162	0.2497

DAYS 79 THRU 84 JD 2444683.5 TO 2444689.5 DATES MAR 20 THRU MAR 25

A = 3.0 B = -27.33333333 W = 79

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1412.2284	-6.2329	0.9022	0.2458
1	1049.1319	-11.9969	-0.0077	-0.0021
2	-0.3977	1.1973	0.0078	0.0021
3	-0.6155	0.6341	0.0027	0.0007
4	0.0463	-0.0258	-0.0001	0.0
5	0.0182	0.0074	-0.0013	-0.0004
SUMS	2460.4116	-16.4168	0.9036	0.2461

DAYS 85 THRU 90 JD 2444689.5 TO 2444695.5 DATES MAR 26 THRU MAR 31

A = 3.0 B = -29.33333333 W = 85

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1345.2873	-20.5989	0.9267	0.2525
1	1043.0794	-0.0732	0.0342	0.0093
2	-1.5306	4.5671	0.0115	0.0031
3	0.4141	0.3580	0.0026	0.0007
4	0.1016	-0.1353	-0.0011	-0.0003
5	-0.0473	-0.0353	-0.0038	-0.0010
SUMS	2387.3045	-15.9176	0.9701	0.2643

DAYS 91 THRU 96 JD 2444695.5 TO 2444701.5 DATES APR 1 THRU APR 6

A = 3.0 B = -31.33333333 W = 91

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1268.5624	-2.8437	1.0108	0.2754
1	1040.9666	15.6386	0.0276	0.0075
2	-0.5897	1.2032	-0.0168	-0.0046
3	-0.4045	-1.5794	-0.0066	-0.0018
4	-0.0396	-0.1587	-0.0014	-0.0004
5	0.0682	0.0602	0.0019	0.0005
SUMS	2308.5634	12.3202	1.0155	0.2766

C12

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAY 97 THRU 102 JD 2444701.5 TO 2444707.5 DATES APR 7 THRU APR 12

A =	3.0	B = -33.333333333	W = 97
-----	-----	-------------------	--------

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1186.6168	20.4206	0.9824	0.2677
1	1038.2062	2.5329	-0.0405	-0.0110
2	1.2104	-5.8041	-0.0027	-0.0007
3	1.1170	0.1702	0.0042	0.0011
4	-0.0665	0.3556	-0.0003	-0.0001
5	-0.1258	-0.0519	0.0002	0.0001
SUMS	2226.9581	17.6233	0.9433	0.2571

DAY 103 THRU 108 JD 2444707.5 TO 2444713.5 DATES APR 13 THRU APR 18

A =	3.0	B = -35.333333333	W = 103
-----	-----	-------------------	---------

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1112.8062	7.3889	0.9155	0.2495
1	1048.1049	-12.1875	-0.0198	-0.0054
2	1.6489	-1.1352	0.0067	0.0018
3	-0.6907	0.7711	-0.0010	-0.0003
4	-0.0462	-0.0420	0.0001	0.0
5	0.0360	0.0046	0.0	0.0
SUMS	2161.8591	-5.2001	0.9015	0.2456

DAY 109 THRU 114 JD 2444713.5 TO 2444719.5 DATES APR 19 THRU APR 24

A =	3.0	B = -37.333333333	W = 109
-----	-----	-------------------	---------

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1410.2612	-15.8711	0.9009	0.2455
1	1047.0586	-8.4022	0.0051	0.0014
2	-1.6545	2.9029	0.0074	0.0020
3	-0.1826	0.6161	0.0049	0.0013
4	0.1441	-0.0320	0.0007	0.0002
5	0.0162	-0.0138	-0.0028	-0.0008
SUMS	2455.6480	-20.8001	0.9162	0.2496

DAY 115 THRU 120 JD 2444719.5 TO 2444725.5 DATES APR 25 THRU APR 30

A =	3.0	B = -39.333333333	W = 115
-----	-----	-------------------	---------

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1338.7011	-17.1924	0.9518	0.2593
1	1042.6529	8.1721	0.0454	0.0124
2	-0.1247	4.3897	0.0064	0.0017
3	0.1370	-0.3652	-0.0081	-0.0022
4	-0.1678	-0.1979	-0.0004	-0.0001
5	-0.0241	-0.0068	0.0036	0.0010
SUMS	2381.1744	-5.2005	0.9987	0.2721

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C13

DAY 121 THRU 126 JD 2444725.5 TO 2444731.5 DATES MAY 1 THRU MAY 6

A = 3.0 B = -41.33333333 W = 121

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1261.7808	10.3404	1.0237	0.2789
1	1038.7051	14.3775	0.0010	0.0003
2	-2.1619	-2.9527	-0.0266	-0.0072
3	0.0353	-1.7904	0.0059	0.0016
4	0.3770	0.1259	0.0037	0.0010
5	0.0800	0.1266	-0.0044	-0.0012
SUMS	2298.8163	20.2273	1.0033	0.2734

DAY 127 THRU 132 JD 2444731.5 TO 2444737.5 DATES MAY 7 THRU MAY 12

A = 3.0 B = -43.33333333 W = 127

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1177.2292	18.5329	0.9585	0.2611
1	1041.5184	-6.8690	-0.0476	-0.0130
2	3.6622	-4.1899	0.0035	0.0010
3	0.0923	1.1112	0.0111	0.0030
4	-0.4135	0.0442	-0.0002	0.0
5	0.0538	-0.0807	-0.0051	-0.0014
SUMS	2222.1424	8.5487	0.9202	0.2507

DAY 133 THRU 138 JD 2444737.5 TO 2444743.5 DATES MAY 13 THRU MAY 18

A = 3.0 B = -45.33333333 W = 133

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1111.2043	-4.1010	0.9014	0.2456
1	1049.5511	-12.5205	-0.0086	-0.0023
2	-0.2778	0.7711	0.0118	0.0032
3	-0.7102	0.6311	-0.0004	-0.0001
4	0.0779	0.0020	-0.0034	-0.0009
5	0.0193	0.0113	-0.0009	-0.0002
SUMS	2159.8646	-15.2060	0.8999	0.2453

DAY 139 THRU 144 JD 2444743.5 TO 2444749.5 DATES MAY 19 THRU MAY 24

A = 3.0 B = -47.33333333 W = 139

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1405.3960	-20.8760	0.9124	0.2486
1	1043.9933	-1.7558	0.0177	0.0048
2	-1.1416	4.3620	0.0092	0.0025
3	0.5347	0.3217	0.0033	0.0009
4	0.0799	-0.1474	-0.0028	-0.0008
5	-0.0589	-0.0205	-0.0018	-0.0005
SUMS	2448.8034	-18.1160	0.9380	0.2555

C14

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAYS 145 THRU 150 JD 2444749.5 TO 2444755.5 DATES MAY 25 THRU MAY 30

A = 3.0 B = -49.33333333 W = 145

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1332.3872	-7.0969	0.9775	0.2663
1	1043.5564	14.1266	0.0422	0.0115
2	-0.5314	2.2862	0.0007	0.0002
3	-0.6815	-0.9920	-0.0055	-0.0015
4	-0.1210	-0.1793	-0.0026	-0.0007
5	0.0577	-0.0081	0.0005	0.0001
SUMS	2374.6674	8.1365	1.0128	0.2759

DAYS 151 THRU 156 JD 2444755.5 TO 2444761.5 DATES MAY 31 THRU JUNE 5

A = 3.0 B = -51.33333333 W = 151

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1252.3155	19.5468	1.0145	0.2764
1	1035.6422	6.3271	-0.0221	-0.0060
2	-0.7814	-6.2534	-0.0229	-0.0062
3	1.7038	-0.7057	0.0034	0.0009
4	0.2811	0.5330	0.0031	0.0008
5	-0.2002	0.0672	0.0006	0.0002
SUMS	2288.9610	19.5150	0.9766	0.2661

DAYS 157 THRU 162 JD 2444761.5 TO 2444767.5 DATES JUNE 6 THRU JUNE 11

A = 3.0 B = -53.33333333 W = 157

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1172.1085	9.9200	0.9324	0.2540
1	1046.6571	-12.0989	-0.0397	-0.0108
2	2.8368	-1.4573	0.0088	0.0024
3	-0.8707	0.9080	0.0077	0.0021
4	-0.1269	-0.1302	0.0001	0.0
5	0.0720	0.0110	-0.0037	-0.0010
SUMS	2220.6768	-2.8474	0.9056	0.2467

DAYS 163 THRU 168 JD 2444767.5 TO 2444773.5 DATES JUNE 12 THRU JUNE 17

A = 3.0 B = -55.33333333 W = 163

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM 0	1109.5728	-14.3348	0.9013	0.2456
1	1047.5936	-9.6082	0.0061	0.0017
2	-1.8052	2.5334	0.0075	0.0020
3	-0.3354	0.6740	-0.0044	-0.0012
4	0.1958	0.0025	0.0007	0.0002
5	0.0284	-0.0181	0.0025	0.0007
SUMS	2155.2500	-20.7512	0.9137	0.2490

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C15

DAYS 169 THRU 174 JD 2444773.5 TO 2444779.5 DATES JUNE 18 THRU JUNE 23

A = 3.0 B = -57.33333333 W = 169

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1398.4235	-18.7847	0.9351	0.2548
1	1043.1404	6.5436	0.0261	0.0071
2	0.5474	4.3691	0.0040	0.0011
3	0.4111	-0.4037	-0.0027	-0.0007
4	-0.2200	-0.1767	-0.0002	-0.0001
5	-0.0500	0.0190	0.0026	0.0007
SUMS	2442.2524	-8.4334	0.9649	0.2629

DAYS 175 THRU 180 JD 2444779.5 TO 2444785.5 DATES JUNE 24 THRU JUNE 29

A = 3.0 B = -59.33333333 W = 175

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1325.9790	6.3164	0.9951	0.2711
1	1042.2413	14.8832	0.0235	0.0064
2	-2.3270	-1.1711	-0.0106	-0.0029
3	-0.7391	-1.4420	0.0036	0.0010
4	0.2127	-0.1034	0.0018	0.0005
5	0.1095	0.0345	-0.0052	-0.0014
SUMS	2365.4764	18.5176	1.0082	0.2747

DAYS 181 THRU 186 JD 2444785.5 TO 2444791.5 DATES JUNE 30 THRU JULY 5

A = 3.0 B = -61.33333333 W = 181

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1241.7836	20.3144	0.9882	0.2693
1	1037.6356	-4.4200	-0.0344	-0.0094
2	2.9627	-5.6535	-0.0117	-0.0032
3	1.2790	1.0294	0.0013	0.0004
4	-0.4688	0.3354	0.0012	0.0003
5	-0.1123	-0.1322	0.0022	0.0006
SUMS	2283.0798	11.4735	0.9468	0.2580

DAYS 187 THRU 192 JD 2444791.5 TO 2444797.5 DATES JULY 6 THRU JULY 11

A = 3.0 B = -63.33333333 W = 187

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1170.6524	-1.4235	0.9130	0.2488
1	1049.1604	-13.0148	-0.0246	-0.0067
2	0.6511	0.5716	0.0129	0.0035
3	-0.9229	0.5986	0.0052	0.0014
4	0.0412	-0.0549	-0.0008	-0.0002
5	0.0249	0.0361	-0.0022	-0.0006
SUMS	2219.6071	-13.2869	0.9035	0.2462

C16

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAYS 193 THRU 198 JD 2444797.5 TO 2444803.5 DATES JULY 12 THRU JULY 17

A = 3.0 B = -65.33333333 W = 193

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1105.6424	-20.4292	0.9145	0.2492
1	1044.0274	-3.5103	0.0186	0.0051
2	-1.7951	4.2403	0.0067	0.0018
3	0.4682	0.5273	0.0007	0.0002
4	0.2176	-0.1296	-0.0008	-0.0002
5	-0.0381	-0.0484	-0.0021	-0.0006
SUMS	2148.5224	-19.3499	0.9376	0.2555

DAYS 199 THRU 204 JD 2444803.5 TO 2444809.5 DATES JULY 18 THRU JULY 23

A = 3.0 B = -67.33333333 W = 199

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1391.7743	-9.4969	0.9634	0.2625
1	1044.1053	13.1604	0.0211	0.0057
2	0.6507	2.4315	-0.0050	-0.0014
3	-0.4690	-0.9848	0.0067	0.0018
4	-0.2208	-0.0922	0.0024	0.0007
5	0.0465	0.0164	-0.0048	-0.0013
SUMS	2435.8870	5.0344	0.9838	0.2680

DAYS 205 THRU 210 JD 2444809.5 TO 2444815.5 DATES JULY 24 THRU JULY 29

A = 3.0 B = -69.33333333 W = 205

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1317.0346	17.5567	0.9950	0.2711
1	1038.6315	8.9279	0.0024	0.0006
2	-2.3799	-4.8841	-0.0130	-0.0035
3	0.6162	-1.1548	-0.0003	-0.0001
4	0.4734	0.2393	0.0028	0.0008
5	-0.0074	0.1046	-0.0014	-0.0004
SUMS	2354.3684	20.7896	0.9855	0.2685

DAYS 211 THRU 216 JD 2444815.5 TO 2444821.5 DATES JULY 30 THRU AUG 4

A = 3.0 B = -71.33333333 W = 211

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1234.7088	13.0151	0.9552	0.2603
1	1043.7119	-11.5320	-0.0356	-0.0097
2	3.4036	-2.5019	-0.0030	-0.0008
3	-0.3813	1.2457	0.0008	0.0002
4	-0.3304	-0.0667	0.0009	0.0003
5	0.0855	-0.0565	0.0025	0.0007
SUMS	2281.1981	0.1037	0.9208	0.2510

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C17

DAYS 217 THRU 222 JD 2444821.5 TO 2444827.5 DATES AUG 5 THRU AUG 10

A = 3.0 B = -73.33333333 W = 217

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1169.9783	-12.1675	0.9040	0.2463
1	1048.2699	-10.6332	-0.0048	-0.0013
2	-1.2385	2.2145	0.0144	0.0039
3	-0.6304	0.5710	0.0005	0.0001
4	0.1312	0.0075	-0.0015	-0.0004
5	0.0326	0.0124	0.0001	0.0
SUMS	2216.5431	-19.9953	0.9127	0.2486

DAYS 223 THRU 228 JD 2444827.5 TO 2444833.5 DATES AUG 11 THRU AUG 16

A = 3.0 B = -75.33333333 W = 223

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1099.5777	-19.9274	0.9393	0.2559
1	1042.1110	4.8362	0.0328	0.0089
2	-0.1930	4.8323	0.0026	0.0007
3	0.7331	-0.1801	-0.0062	-0.0017
4	-0.0819	-0.2473	-0.0010	-0.0003
5	-0.0847	-0.0032	0.0014	0.0004
SUMS	2142.0622	-10.6895	0.9689	0.2639

DAYS 229 THRU 234 JD 2444833.5 TO 2444839.5 DATES AUG 17 THRU AUG 22

A = 3.0 B = -77.33333333 W = 229

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1385.5464	3.9482	0.9861	0.2687
1	1043.1962	15.0726	0.0077	0.0021
2	-0.9819	-0.8498	-0.0075	-0.0021
3	-0.7215	-1.3083	0.0014	0.0004
4	0.0529	-0.0035	0.0	0.0
5	0.0815	0.0189	0.0006	0.0002
SUMS	2427.1736	16.8781	0.9883	0.2693

DAYS 235 THRU 240 JD 2444839.5 TO 2444845.5 DATES AUG 23 THRU AUG 28

A = 3.0 B = -79.33333333 W = 235

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1305.6144	21.0521	0.9777	0.2664
1	1038.2834	-1.6089	-0.0181	-0.0049
2	1.1222	-5.8056	-0.0104	-0.0028
3	1.3059	0.3700	0.0042	0.0012
4	-0.1214	0.3622	0.0043	0.0012
5	-0.1468	-0.0309	-0.0033	-0.0009
SUMS	2346.0577	14.3389	0.9544	0.2602

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAYS 241 THRU 246 JD 2444845.5 TO 2444851.5 DATES AUG 29 THRU SEPT 3

A = 3.0 B = -81.33333333 W = 241

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1231.9565	1.6232	0.9255	0.2522
1	1047.9478	-13.5364	-0.0283	-0.0077
2	1.3501	0.1108	0.0047	0.0013
3	-0.7673	0.8246	0.0066	0.0018
4	-0.0334	-0.0982	0.0002	0.0001
5	0.0340	0.0102	-0.0028	-0.0008
SUMS	2280.4877	-11.0658	0.9059	0.2469

DAYS 247 THRU 252 JD 2444851.5 TO 2444857.5 DATES SEPT 4 THRU SEPT 9

A = 3.0 B = -83.33333333 W = 247

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1167.5354	-19.5638	0.9080	0.2474
1	1045.3665	-5.2528	0.0169	0.0046
2	-1.8534	3.8059	0.0123	0.0034
3	0.0192	0.5393	-0.0075	-0.0020
4	0.1949	-0.0459	-0.0003	-0.0001
5	0.0030	-0.0247	0.0055	0.0015
SUMS	2211.2656	-20.5420	0.9349	0.2548

DAYS 253 THRU 258 JD 2444857.5 TO 2444863.5 DATES SEPT 10 THRU SEPT 15

A = 3.0 B = -85.33333333 W = 253

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1093.5960	-12.2460	0.9719	0.2648
1	1042.5313	12.4639	0.0347	0.0095
2	0.3586	3.4445	-0.0064	-0.0018
3	-0.0583	-0.9626	0.0002	0.0
4	-0.2085	-0.2178	0.0001	0.0
5	0.0083	0.0220	-0.0037	-0.0010
SUMS	2136.2274	2.5040	0.9968	0.2715

DAYS 259 THRU 264 JD 2444863.5 TO 2444869.5 DATES SEPT 16 THRU SEPT 21

A = 3.0 B = -87.33333333 W = 259

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1377.1918	16.2723	0.9951	0.2711
1	1039.3573	10.4123	-0.0121	-0.0033
2	-1.5776	-4.6237	-0.0106	-0.0029
3	0.3600	-1.0748	-0.0050	-0.0014
4	0.3353	0.2543	0.0015	0.0004
5	0.0035	0.0609	0.0059	0.0016
SUMS	2415.6703	21.3013	0.9748	0.2655

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C19

DAYS 265 THRU 270 JD 2444869.5 TO 2444875.5 DATES SEPT 22 THRU SEPT 27

A = 3.0 B = -89.33333333 W = 265

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1296.4058	15.4003	0.9499	0.2588
1	1043.4270	-10.1765	-0.0262	-0.0071
2	2.8694	-3.2690	-0.0036	-0.0010
3	-0.1438	1.0833	0.0050	0.0014
4	-0.2775	0.0292	0.0038	0.0010
5	0.0466	-0.0475	-0.0036	-0.0010
SUMS	2342.3275	3.0198	0.9253	0.2521

DAYS 271 THRU 276 JD 2444875.5 TO 2444881.5 DATES SEPT 28 THRU OCT 3

A = 3.0 B = -91.33333333 W = 271

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1230.8184	-10.0030	0.9065	0.2470
1	1048.4470	-11.7376	-0.0137	-0.0037
2	-0.6522	1.9651	0.0062	0.0017
3	-0.5398	0.6304	0.0039	0.0011
4	0.0868	-0.0411	0.0010	0.0003
5	0.0176	0.0078	-0.0013	-0.0004
SUMS	2278.1778	-19.1784	0.9026	0.2460

DAYS 277 THRU 282 JD 2444881.5 TO 2444887.5 DATES OCT 4 THRU OCT 9

A = 3.0 B = -93.33333333 W = 277

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1162.7226	-21.1312	0.9226	0.2514
1	1043.4146	2.4896	0.0313	0.0085
2	-0.7438	4.6815	0.0126	0.0034
3	0.4294	0.1075	0.0037	0.0010
4	-0.0082	-0.1548	-0.0020	-0.0005
5	-0.0510	-0.0226	-0.0051	-0.0014
SUMS	2205.7636	-14.0300	0.9631	0.2624

DAYS 283 THRU 288 JD 2444887.5 TO 2444893.5 DATES OCT 10 THRU OCT 15

A = 3.0 B = -95.33333333 W = 283

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1088.3945	0.3729	1.0037	0.2735
1	1041.9079	16.1827	0.0256	0.0070
2	-1.2586	0.3817	-0.0168	-0.0046
3	-0.5740	-1.5907	0.0018	0.0005
4	0.0403	-0.1398	0.0003	0.0001
5	0.0795	0.0528	-0.0034	-0.0009
SUMS	2128.5896	15.2596	1.0112	0.2756

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAY 289 THRU 294 JD 2444893.5 TO 2444899.5 DATES OCT 16 THRU OCT 21
 A = 3.0 B = -97.33333333 W = 289

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1365.8589	21.5743	0.9851	0.2684
1	1037.5159	0.1980	-0.0362	-0.0099
2	1.6037	-6.1511	-0.0030	-0.0008
3	1.3245	0.4173	0.0053	0.0014
4	-0.1844	0.3819	-0.0010	-0.0003
5	-0.1514	-0.0715	0.0	0.0
SUMS	2405.9672	16.3489	0.9502	0.2588

DAY 295 THRU 300 JD 2444899.5 TO 2444905.5 DATES OCT 22 THRU OCT 27
 A = 3.0 B = -99.33333333 W = 295

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1291.9696	4.2711	0.9235	0.2516
1	1048.1069	-13.4866	-0.0220	-0.0060
2	1.3746	-0.5126	0.0031	0.0009
3	-0.7696	0.8335	-0.0032	-0.0009
4	-0.0064	-0.0569	0.0005	0.0001
5	0.0324	0.0064	0.0027	0.0007
SUMS	2340.7075	-8.9451	0.9046	0.2464

DAY 301 THRU 306 JD 2444905.5 TO 2444911.5 DATES OCT 28 THRU NOV 2
 A = 3.0 B = -101.33333333 W = 301

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1228.3055	-18.7730	0.8997	0.2451
1	1046.2553	-6.8291	0.0013	0.0004
2	-1.4420	3.5726	0.0082	0.0022
3	0.0634	0.5102	0.0037	0.0010
4	0.1549	-0.0738	0.0004	0.0001
5	-0.0069	-0.0105	-0.0021	-0.0006
SUMS	2273.3302	-21.6036	0.9112	0.2482

DAY 307 THRU 312 JD 2444911.5 TO 2444917.5 DATES NOV 3 THRU NOV 8
 A = 3.0 B = -103.33333333 W = 307

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1157.3207	-15.6417	0.9455	0.2576
1	1044.0512	10.2304	0.0437	0.0119
2	0.0746	3.9284	0.0066	0.0018
3	-0.1784	-0.4968	0.0002	0.0001
4	-0.1924	-0.1662	0.0003	0.0001
5	0.0010	-0.0096	-0.0029	-0.0008
SUMS	2201.0767	-2.1555	0.9934	0.2707

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C21

DAY 313 THRU 318 JD 2444917.5 TO 2444923.5 DATES NOV 9 THRU NOV 14
 A = 3.0 B = -105.33333333 W = 313

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1081.7849	13.4682	1.0230	0.2787
1	1037.9962	13.6104	0.0076	0.0021
2	-2.8657	-3.8804	-0.0272	-0.0074
3	0.2881	-1.8406	-0.0021	-0.0006
4	0.5070	0.1795	0.0043	0.0012
5	0.0647	0.1532	0.0015	0.0004
SUMS	2117.7752	21.6903	1.0071	0.2744

DAY 319 THRU 324 JD 2444923.5 TO 2444929.5 DATES NOV 15 THRU NOV 20
 A = 3.0 B = -107.33333333 W = 319

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1355.9158	17.4029	0.9633	0.2625
1	1041.8269	-9.3155	-0.0429	-0.0117
2	4.0156	-3.7907	0.0053	0.0014
3	-0.2084	1.2999	-0.0023	-0.0006
4	-0.4370	-0.0209	-0.0027	-0.0007
5	0.1037	-0.0831	0.0047	0.0013
SUMS	2401.2166	5.4926	0.9254	0.2522

DAY 325 THRU 330 JD 2444929.5 TO 2444935.5 DATES NOV 21 THRU NOV 26
 A = 3.0 B = -109.33333333 W = 325

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1290.1564	-7.8497	0.9047	0.2465
1	1049.0464	-12.5334	-0.0129	-0.0035
2	-0.6349	1.4891	0.0087	0.0024
3	-0.6348	0.6726	-0.0015	-0.0004
4	0.1245	-0.0084	-0.0014	-0.0004
5	0.0176	-0.0018	0.0007	0.0002
SUMS	2338.0752	-18.2316	0.8983	0.2448

DAY 331 THRU 336 JD 2444935.5 TO 2444941.5 DATES NOV 27 THRU DEC 2
 A = 3.0 B = -111.33333333 W = 331

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1223.2166	-21.8803	0.9063	0.2469
1	1044.2555	0.6456	0.0128	0.0035
2	-0.3386	4.5131	0.0083	0.0023
3	0.5877	0.0596	0.0078	0.0021
4	-0.0313	-0.1559	-0.0006	-0.0002
5	-0.0716	0.0029	-0.0049	-0.0013
SUMS	2267.6183	-16.8150	0.9297	0.2533

C22

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

DAY 337 THRU 342 **JD 2444941.5 TO 2444947.5** **DATES DEC** **3 THRU DEC** **8**

A = 3.0 **B = -113.33333333** **W = 337**

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1152.6898	-4.3369	0.9713	0.2646
1	1044.6942	15.0141	0.0468	0.0128
2	-1.1404	1.7095	0.0010	0.0003
3	-0.8988	-0.9890	-0.0069	-0.0019
4	-0.0778	-0.1894	-0.0004	-0.0001
5	0.0588	-0.0266	0.0017	0.0005
SUMS	2195.3258	11.1817	1.0135	0.2762

DAY 343 THRU 348 **JD 2444947.5 TO 2444953.5** **DATES DEC** **9 THRU DEC** **14**

A = 3.0 **B = -115.33333333** **W = 343**

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1071.7383	21.3274	1.0210	0.2782
1	1034.1470	4.1489	-0.0166	-0.0045
2	-0.4966	-7.0563	-0.0217	-0.0059
3	2.2704	-0.4507	0.0030	0.0008
4	0.2007	0.6499	0.0	0.0
5	-0.3038	0.0397	-0.0009	-0.0003
SUMS	2107.5560	18.6589	0.9848	0.2683

DAY 349 THRU 354 **JD 2444953.5 TO 2444959.5** **DATES DEC** **15 THRU DEC** **20**

A = 3.0 **B = -117.33333333** **W = 349**

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1350.9916	6.9035	0.9388	0.2558
1	1046.9761	-13.6103	-0.0405	-0.0110
2	2.6341	-0.7545	0.0088	0.0024
3	-1.0492	0.9263	0.0018	0.0005
4	-0.0671	-0.1536	-0.0010	-0.0003
5	0.0767	0.0232	0.0	0.0
SUMS	2399.5622	-6.6654	0.9079	0.2474

DAY 355 THRU 360 **JD 2444959.5 TO 2444965.5** **DATES DEC** **21 THRU DEC** **26**

A = 3.0 **B = -119.33333333** **W = 355**

	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1287.8087	-17.5107	0.8994	0.2451
1	1046.8041	-8.2346	-0.0003	-0.0001
2	-1.7422	3.2437	0.0085	0.0023
3	-0.0808	0.6201	0.0024	0.0006
4	0.2336	-0.0387	-0.0010	-0.0003
5	0.0140	-0.0267	-0.0031	-0.0008
SUMS	2333.0374	-21.9469	0.9059	0.2468

POWER SERIES APPROXIMATION OF NAUTICAL ALMANAC DATA FOR YEAR 1981

C23

DAYS 360 THRU 365	JD 2444964.5 TO 2444970.5	DATES DEC 26 THRU DEC 31		
A = 3.0	B = -121.00000000	W = 360		
	MOON GHA	MOON DEC	MOON H P	MOON S D
TERM	DEG	DEG	DEG	DEG
0	1229.0287	-20.0349	0.9173	0.2499
1	1044.2110	5.8646	0.0199	0.0054
2	0.6931	4.3250	0.0068	0.0019
3	0.4244	-0.3758	0.0005	0.0001
4	-0.2056	-0.1587	-0.0010	-0.0003
5	-0.0467	0.0294	-0.0005	-0.0001
SUMS	2274.1049	-10.3504	0.9430	0.2569

Section D: ASTRONOMICAL TABLES

With two exceptions the series in this section provide data referred to the true equinox and equator of date. The exceptions are

1. the Moon's geocentric, rectangular coordinates (X , Y , Z), which are referred to the mean equinox and equator of 1950.0;
2. the right ascension and declination of Pluto, which are astrometric (*i.e.*, free of stellar aberration, except for the elliptic part) and are referred to the mean equinox and equator of 1950.0.

The unit of distance for the Sun and planets is the Astronomical Unit; the unit of distance for the Moon is the Earth's radius.

D2

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1981

DAY	1 THRU 95	JD 2444605.5 TO 2444700.5	DATES JAN	1 THRU APR 5
	A = 47.5	B = -1.02105263	W = 1	
TERM	APP S T	EQ OF EQ	NUT LON	NUT OBL
0	19.65005927	-1.5759	-25.7648	-11.5911
1	3.12119825	-0.0661	-1.0808	0.9130
2	-0.00001169	-0.0421	-0.6879	-0.1344
3	0.00000203	0.0073	0.1196	-0.0637
4	-0.00000016	-0.0006	-0.0093	0.0226
5	0.00000013	0.0005	0.0078	0.0123
6	-0.00000056	-0.0020	-0.0327	0.0165
7	-0.00000006	-0.0002	-0.0033	-0.0027
8	-0.00000043	-0.0016	-0.0254	0.0148
9	-0.00000065	-0.0024	-0.0385	-0.0180
10	-0.00000076	-0.0027	-0.0445	-0.0028
11	-0.00000048	-0.0017	-0.0285	-0.0246
12	0.00000100	0.0036	0.0589	-0.0112
13	-0.00000009	-0.0003	-0.0052	-0.0029
14	0.00000080	0.0029	0.0472	-0.0147
15	0.00000060	0.0022	0.0352	0.0251
16	-0.00000056	-0.0020	-0.0331	0.0065
17	0.00000025	0.0009	0.0146	0.0052
18	-0.00000087	-0.0031	-0.0509	0.0142
19	-0.00000064	-0.0023	-0.0376	-0.0322
20	0.00000136	0.0049	0.0802	-0.0150
21	0.00000046	0.0017	0.0273	0.0296
22	-0.00000068	-0.0032	-0.0516	0.0102
23	-0.00000032	-0.0012	-0.0191	-0.0138
24	0.00000030	0.0011	0.0179	-0.0070
25	0.00000020	0.0007	0.0116	0.0037
26	-0.00000007	-0.0003	-0.0043	0.0028
27	-0.00000002	-0.0001	-0.0014	-0.0011
28	0.00000004	0.0002	0.0026	0.0014
29	-0.00000011	-0.0004	-0.0063	0.0011
30	-0.00000005	-0.0002	-0.0027	-0.0034
31	0.00000014	0.0005	0.0083	-0.0011
32	0.00000004	0.0001	0.0023	0.0031
33	-0.00000010	-0.0004	-0.0058	0.0009
34	-0.00000003	-0.0001	-0.0017	-0.0017
35	0.00000004	0.0001	0.0024	-0.0006
SUMS	22.77124638	-1.6822	-27.4995	-10.8590

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1981

D3

DAY	JD 2444695.5 TD 2444790.5		DATES APR 1 THRU JULY 4	
	A = 47.5		W = 91	
TERM	H	S	NUT LON	NUT OBL
0	31.47776579	-1.7981	-29.3968	-10.7664
1	3.12121886	0.0081	0.1319	-0.2487
2	0.00001076	0.0387	0.6330	0.1265
3	-0.00000091	-0.0033	-0.0534	0.0582
4	0.00000044	0.0016	0.0259	-0.0065
5	0.00000070	0.0025	0.0412	-0.0047
6	0.00000103	0.0037	0.0607	0.0019
7	0.00000024	0.0009	0.0139	0.0092
8	0.00000089	0.0032	0.0523	0.0016
9	-0.00000084	-0.0030	-0.0496	0.0195
10	0.00000034	0.0012	0.0200	0.0006
11	0.00000026	0.0009	0.0153	0.0347
12	-0.00000110	-0.0040	-0.0646	-0.0021
13	-0.00000018	-0.0006	-0.0106	0.0020
14	-0.00000116	-0.0042	-0.0682	-0.0024
15	0.00000018	0.0007	0.0107	-0.0323
16	0.00000056	0.0020	0.0331	0.0007
17	0.00000011	0.0004	0.0063	-0.0109
18	0.00000118	0.0042	0.0694	0.0026
19	-0.00000020	-0.0007	-0.0119	0.0359
20	-0.00000138	-0.0050	-0.0812	-0.0020
21	0.00000013	0.0005	0.0076	-0.0292
22	0.00000095	0.0034	0.0560	0.0013
23	-0.00000009	-0.0003	-0.0052	0.0187
24	-0.00000055	-0.0020	-0.0322	-0.0012
25	0.00000005	0.0002	0.0029	-0.0085
26	0.00000016	0.0006	0.0092	0.0005
27	0.0	0.0	0.0001	0.0002
28	0.00000009	0.0003	0.0055	0.0003
29	-0.00000003	-0.0001	-0.0016	0.0038
30	-0.00000018	-0.0006	-0.0103	-0.0006
31	0.00000003	0.0001	0.0017	-0.0044
32	0.00000016	0.0006	0.0095	0.0005
33	-0.00000002	-0.0001	-0.0013	0.0033
34	-0.00000010	-0.0004	-0.0059	-0.0004
35	0.00000001	0.0	0.0007	-0.0016
SUMS	34.59899618	-1.7486	-28.5859	-10.7999

D4

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1981

DAYS 182 THRU 276		JD 2444786.5 TO 2444881.5		DATES JULY 1 THRU OCT 3	
		A = 47.5	B = -4.83157895	W = 182	
		APP S T	EQ OF EQ	NUT LON	NUT OBL
TERM	H	S		"	"
0	43.43695758	-1.7840		-29.1664	-9.0722
1	3.12119950	-0.0616		-1.0078	0.9518
2	-0.00001010	-0.0364		-0.5946	-0.1064
3	0.00000006	0.0002		0.0037	-0.0668
4	0.00000025	0.0009		0.0147	-0.0164
5	-0.00000064	-0.0023		-0.0376	0.0071
6	-0.00000080	-0.0029		-0.0471	-0.0282
7	0.00000021	0.0008		0.0126	-0.0002
8	-0.00000072	-0.0026		-0.0424	-0.0252
9	0.00000119	0.0043		0.0700	-0.0055
10	0.00000022	0.0008		0.0132	-0.0009
11	0.00000082	0.0029		0.0480	-0.0129
12	0.00000011	0.0004		0.0062	0.0190
13	0.00000014	0.0005		0.0085	-0.0010
14	0.00000042	0.0015		0.0246	0.0237
15	-0.00000112	-0.0040		-0.0660	0.0121
16	-0.00000029	-0.0011		-0.0172	-0.0142
17	-0.00000023	-0.0008		-0.0134	0.0006
18	-0.00000041	-0.0015		-0.0239	-0.0240
19	0.00000134	0.0048		0.0789	-0.0178
20	0.00000079	0.0028		0.0463	0.0343
21	-0.00000119	-0.0043		-0.0700	0.0184
22	-0.00000050	-0.0018		-0.0292	-0.0217
23	0.00000059	0.0021		0.0348	-0.0069
24	0.00000008	0.0003		0.0047	0.0087
25	-0.00000020	-0.0007		-0.0118	-0.0002
26	0.00000003	0.0001		0.0015	-0.0028
27	0.00000006	0.0002		0.0035	-0.0005
28	0.00000007	0.0003		0.0044	0.0009
29	-0.00000001	0.0		-0.0008	0.0032
30	-0.00000015	-0.0005		-0.0088	0.0
31	-0.00000001	0.0		-0.0005	-0.0037
32	0.00000013	0.0005		0.0075	-0.0003
33	0.00000001	0.0		0.0005	0.0024
34	-0.00000007	-0.0002		-0.0039	0.0002
35	0.0	0.0		0.0002	-0.0010
SUMS	46.55814716	-1.8813		-30.7576	-8.3464

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1981

DS

DAYS 274 THRU 368		JD 2444878.5 TO 2444973.5		DATES OCT	1 THRU JAN	3
		A = 47.5	B = -6.76842105	W = 274		
	APP S T	EQ OF EQ	NUT LON	NUT OBL		
TERM	H	S	"	"		
0	7.52750603	-1.9966	-32.6436	-8.0037		
1	3.12122216	0.0199	0.3260	-0.2115		
2	0.00001073	0.0386	0.6315	0.1189		
3	-0.00000097	-0.0035	-0.0570	0.1021		
4	-0.00000169	-0.0061	-0.0992	0.0077		
5	0.0	0.0	-0.0002	0.0054		
6	-0.00000061	-0.0022	-0.0360	0.0205		
7	-0.00000027	-0.0010	-0.0159	-0.0019		
8	-0.00000024	-0.0008	-0.0138	0.0195		
9	-0.00000031	-0.0011	-0.0183	-0.0145		
10	-0.00000083	-0.0030	-0.0490	-0.0032		
11	-0.00000075	-0.0027	-0.0443	-0.0229		
12	0.00000092	0.0033	0.0539	-0.0111		
13	-0.00000002	-0.0001	-0.0012	-0.0015		
14	0.00000079	0.0028	0.0464	-0.0165		
15	0.00000068	0.0024	0.0397	0.0242		
16	-0.00000058	-0.0021	-0.0340	0.0090		
17	0.00000017	0.0006	0.0099	0.0034		
18	-0.00000093	-0.0034	-0.0550	0.0161		
19	-0.00000076	-0.0027	-0.0449	-0.0331		
20	0.00000150	0.0054	0.0882	-0.0207		
21	0.00000063	0.0023	0.0370	0.0306		
22	-0.00000089	-0.0032	-0.0524	0.0133		
23	-0.00000038	-0.0014	-0.0224	-0.0119		
24	0.00000022	0.0008	0.0128	-0.0074		
25	0.00000020	0.0007	0.0118	0.0016		
26	-0.00000005	-0.0002	-0.0029	0.0028		
27	-0.00000001	0.0	-0.0005	-0.0022		
28	0.00000014	0.0005	0.0084	0.0014		
29	-0.00000012	-0.0004	-0.0068	0.0046		
30	-0.00000019	-0.0007	-0.0109	-0.0028		
31	0.00000010	0.0004	0.0061	-0.0043		
32	0.00000014	0.0005	0.0083	0.0015		
33	-0.00000003	-0.0001	-0.0020	0.0027		
34	-0.00000008	-0.0003	-0.0045	-0.0002		
35	0.00000001	0.0	0.0004	-0.0013		
SUMS	10.64873471	-1.9534	-31.9344	-7.9854		

D - ASTRONOMY: SIDEREAL TIME, NUTATION (HIGH PRECISION)

D6

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1981

TERMS	DAYS	1 THRU 95	JD 2444605.5 TO 2444700.5	DATES JAN	1 THRU APR 5
	A =	47.5	B =	W =	
	R A	DEC	DISTANCE	S D	EPHEM TR
0		H	DEG	AU	H
1	43.9254484	-20.255387	1.98040298	32.35777	24.2756817
2	3.1026951	15.163946	0.00900594	-0.14688	-0.0220451
3	-0.0922231	1.784187	0.00188360	-0.03015	-0.0914872
4	0.0123036	-0.489172	-0.00027578	0.00478	0.0126724
5	0.0042358	-0.000770	-0.00001459	0.00023	0.0041572
6		-0.0007127	0.005156	0.00000879	-0.00015
7		-0.0000033	-0.001120	-0.00000168	0.00003
8		0.0000648	0.000304	0.00000483	-0.00008
9		0.0000245	0.000121	-0.00001786	0.00029
10		-0.0000673	-0.000217	-0.00000696	0.00011
11		-0.0000172	-0.000143	0.00001229	-0.00020
12		0.0000296	0.000087	0.00000276	-0.00004
13		0.0000058	0.000063	-0.00000393	0.00006
14		-0.0000073	-0.000021	-0.0000096	0.00002
15		-0.0000010	-0.000009	0.00000065	-0.00001
16		0.0000013	-0.000001	0.00000032	-0.00001
17		-0.0000003	0.000003	-0.00000004	0.0
18		0.0000001	0.000001	0.00000019	0.0
19		0.0000005	-0.000004	0.00000008	0.0
20		-0.0000006	0.000004	-0.00000033	0.00001
21		0.0000002	0.000007	-0.00000008	0.0
22		0.0000002	-0.000002	0.00000024	0.0
23		-0.0000001	-0.000002	0.00000004	0.0
	SUMS	46.9517768	-3.792970	1.99100038	32.18578
					24.1782963

TERMS	DAYS	91 THRU 185	JD 2444695.5 TO 2444790.5	DATES APR	1 THRU JULY 4
	A =	47.5	B =	W =	
	R A	DEC	DISTANCE	S D	EPHEM TR
0		H	DEG	AU	H
1	7.4970751	33.136536	2.01965921	31.72876	24.0191114
2	3.1309387	9.483419	0.00893740	-0.14065	0.0120752
3	0.0653804	-2.986042	-0.00180610	0.02896	0.0649422
4	-0.0068517	-0.292081	-0.00024357	0.00358	-0.0072411
5	-0.0049429	0.036491	0.00003832	-0.00061	-0.0049272
6		0.0001545	0.006155	0.00000281	-0.00003
7		0.0001657	0.000038	-0.00000289	0.00005
8		0.0000653	-0.000056	0.00000106	-0.00002
9		0.0000011	0.000116	-0.00001950	0.00031
10		-0.0000738	-0.000250	-0.00000159	0.00002
11		-0.0000048	-0.000016	0.00001306	-0.00020
12		0.0000305	0.000139	0.00000076	-0.00001
13		0.0000016	-0.000006	-0.00000431	0.00007
14		-0.0000089	-0.000038	-0.00000020	0.0
15		-0.0000022	-0.000003	0.00000122	-0.00002
16		0.0000019	0.000005	0.00000001	0.0
17		0.0000006	-0.000006	0.00000001	0.0
18		0.0000018	0.0	0.00000001	0.0
19		0.0000016	0.000008	-0.00000046	0.00001
20		-0.0000023	0.0	0.0	-0.0000024
21		-0.0000015	-0.000003	0.00000041	-0.00001
22		0.0000016	0.000001	-0.00000001	0.0
23		0.0000009	0.000003	-0.00000023	0.0
	SUMS	10.6819326	39.384411	2.02657543	31.62021
					24.0843052

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1981

D7

DAYS 182 THRU 276		JD 2444786.5 TO 2444881.5		DATES JULY 1 THRU OCT 3		
		A = 47.5	B = -4.83157895	W = 182		
TERM	H	DEC	DISTANCE	S D	EPHEM	TR
0	19.4339056	22.793011	2.02072608	31.71188	23.9947995	H
1	2.9873973	-14.053824	-0.00845059	0.13286	-0.1361793	
2	-0.0644904	-1.956342	-0.00190059	0.03035	-0.0637942	
3	0.0111041	0.378262	0.00022719	-0.00332	0.0114144	
4	0.00337730	0.010618	0.00003796	-0.00059	0.0037263	
5	-0.0004082	-0.002738	-0.00000844	0.00012	-0.0004149	
6	-0.0000333	0.000620	-0.00000234	0.00004	-0.0000300	
7	0.0000562	-0.000131	-0.00000556	0.00009	0.0000536	
8	-0.0000376	0.000105	-0.00001691	0.00026	-0.0000436	
9	-0.0000611	0.000244	0.00000844	-0.00013	-0.0000580	
10	0.0000254	-0.000007	0.00001213	-0.00019	0.0000303	
11	0.0000291	-0.000135	-0.00000356	0.00005	0.0000262	
12	-0.0000089	-0.000017	-0.00000389	0.00006	-0.0000104	
13	-0.0000058	0.000028	0.00000105	-0.00002	-0.0000059	
14	0.0000032	0.000004	0.00000050	-0.00001	0.0000025	
15	-0.0000007	0.0	-0.00000028	0.0	-0.0000003	
16	-0.0000006	0.0	-0.00000006	0.0	0.0	
17	-0.0000008	0.000010	-0.00000009	0.0	-0.0000006	
18	-0.0000011	0.0	0.00000027	0.0	-0.0000002	
19	0.0000022	-0.000012	0.00000020	0.0	0.0000014	
20	0.0000014	-0.000003	-0.00000024	0.0	0.0000002	
21	-0.0000018	0.000008	-0.00000017	0.0	-0.0000011	
22	-0.0000008	0.000002	0.00000011	0.0	-0.0000001	
23	0.0000011	-0.000004	0.00000008	0.0	0.0000004	
SUMS	22.3712475	7.169699	2.01062129	31.87145	23.8095162	

DAYS 274 THRU 368		JD 2444878.5 TO 2444973.5		DATES OCT 1 THRU JAN 3		
		A = 47.5	B = -6.76842105	W = 274		
TERM	H	DEC	DISTANCE	S D	EPHEM	TR
0	31.2449503	-31.878444	1.98081177	32.35114	23.7197183	H
1	3.2537953	-10.255969	-0.00918077	0.14968	0.1363008	
2	0.1019712	3.055565	0.00183349	-0.02930	0.1014261	
3	-0.0085950	0.411121	0.00027871	-0.00482	-0.0091112	
4	-0.0066010	-0.036423	-0.00002116	0.00033	-0.0066146	
5	-0.0001275	-0.011031	-0.00001667	0.00028	-0.0001082	
6	0.0002219	-0.000562	-0.00000667	0.00002	0.0002270	
7	0.0000515	0.000083	-0.00001139	0.00019	0.0000465	
8	-0.0000766	0.000271	-0.00000721	0.00012	-0.0000794	
9	-0.0000289	0.000134	0.00001705	-0.00028	-0.0000215	
10	0.0000479	-0.000212	0.00000462	-0.00008	0.0000509	
11	0.0000117	-0.000029	-0.00000768	0.00013	0.0000100	
12	-0.0000137	0.000083	-0.00000150	0.00003	-0.0000155	
13	-0.0000045	0.000017	0.00000155	-0.00003	-0.0000036	
14	0.0000026	-0.000015	0.00000051	-0.00001	0.0000021	
15	0.0000018	-0.000008	-0.00000014	0.0	0.0000009	
16	-0.0000016	0.000006	0.00000002	0.0	-0.0000007	
17	0.0000010	-0.000005	0.00000030	0.0	0.0000008	
18	0.0000002	-0.000007	-0.00000031	0.00001	0.0000008	
19	-0.0000019	0.000014	-0.00000038	0.00001	-0.0000009	
20	0.0000004	0.000003	0.00000026	0.0	-0.0000006	
21	0.0000013	-0.000011	0.00000023	0.0	0.0000007	
22	-0.0000001	-0.000002	-0.00000010	0.0	0.0000003	
23	-0.0000007	0.000005	-0.00000010	0.0	-0.0000003	
SUMS	34.5856056	-38.715416	1.97370043	32.46742	23.9418287	

CHERYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

TERMS	1	THRU	32	JD 2444605.5 TO 2444637.5	DATES	JAN	1	THRU	FEB	1
	A =	16.0		B = -1.06250000		W =	1			
	R A		DEC	H P	X		Y		Z	
0	57.38566899	-14.2478538	112.3958970	-22.6385061	-46.7416830	-15.3531776				
1	14.08007252	1.2148185	-0.1364334	-7.6155835	2.0075158	1.3353390				
2	-0.24942305	-14.7496520	-1.7548835	-17.5434308	-45.9576448	-15.4551870				
3	-0.20168398	-8.0909156	1.3159858	45.7676153	-13.6553409	-8.3742135				
4	0.07470438	8.2522253	0.9811825	9.1289289	25.1207846	8.4632767				
5	0.09004206	1.7651862	-0.0845798	-11.8356492	2.9929504	1.9682436				
6	0.07709936	-1.7867596	-0.1555154	-1.0043767	-4.3544785	-1.5081054				
7	-0.04165309	-0.1336745	-0.0971859	1.7303831	-0.1041234	-0.1665684				
8	-0.04037537	0.3559750	0.0311838	-0.0135818	0.6241068	0.2278674				
9	0.01848055	0.0845366	0.0376896	-0.2590366	-0.0226787	0.0110443				
10	0.01095869	-0.0613136	-0.0123943	0.0016166	-0.0940671	-0.0343230				
11	-0.00595712	-0.0632987	-0.0105120	0.0377245	-0.0041786	-0.0043378				
12	-0.00328226	0.0144194	0.0038590	0.0060583	0.0135771	0.0044863				
13	0.00107585	0.0280632	0.0025540	-0.0056620	0.0041545	0.0019356				
14	0.000147002	-0.0057344	-0.0008381	-0.0029077	-0.0023796	-0.0006491				
15	-0.00003588	-0.0097256	-0.0005938	0.0011521	-0.0015659	-0.0006560				
16	-0.00071273	0.0015909	0.0001202	0.0009213	0.0005549	0.0001332				
17	-0.00003487	0.0031376	0.00011552	-0.0002789	0.0004433	0.0001821				
18	0.00029973	-0.0000568	-0.0000022	-0.0002383	-0.0001321	-0.0000304				
19	0.00002275	-0.0010998	-0.0000456	0.0000621	-0.0001078	-0.0000438				
20	-0.00010815	-0.0001839	-0.0000055	0.0000058	0.0000269	0.0000057				
21	-0.00001932	0.0004236	0.0000134	-0.0000109	0.0000250	0.0000098				
22	0.000003685	0.0001201	0.0000025	-0.0000130	-0.0000041	-0.0000005				
23	0.00001409	-0.00011589	-0.0000035	0.0000010	-0.0000061	-0.0000023				
24	-0.000001317	-0.00000579	-0.0000009	0.0000033	0.0000002	-0.0000001				
25	-0.00000797	0.00000540	0.0000009	0.0000001	0.0000017	0.0000006				
26	0.00000484	0.0000273	0.0000002	-0.0000009	0.0000002	0.0000001				
27	0.00000377	-0.0000168	-0.0000001	-0.0000002	-0.0000004	-0.0000002				
28	-0.00000168	-0.0000127	-0.0000003	0.0000002	-0.0000001	0.0				
29	-0.00000168	0.0000050	0.0000001	0.0	0.0000001	0.0				
30	0.00000046	0.0000060	0.0000001	0.0	0.0	0.0				
31	0.00000076	-0.0000013	-0.0000001	0.0	0.0	0.0				
32	-0.00000009	-0.0000026	0.0	0.0	0.0	-0.0000001				
33	-0.00000033	0.0000004	0.0	0.0	-0.0000001	-0.0000001				
SUMS	71.19664493	-27.4299294	112.5156499	-4.2447540	-80.1742497	-28.8847709				

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

D9

	DAY	32	THRU	63	JD 2444636.5 TO 2444668.5	DATES	FEB	1	THRU	MAR	4
				A =	16.0	B =	-3.00000000				
	R	A		DEC		H	P	X	Y	Z	
TERM	H	DEG				E	RAD	E	RAD	E	RAD
0	63.80877091	-16.0086122		114.1359534		14.8741934		-42.9287133		-16.7777776	
1	14.03694692	-1.1048669		-0.3216889		-6.8623994		-4.2847870		-1.0751695	
2	-0.30558358	-16.7273224		0.2045785		24.4620604		-42.3639362		-17.2510403	
3	0.06217289	5.0379405		2.3316721		42.9127433		23.5040480		5.3733856	
4	0.17071507	8.7539755		0.0889291		-13.6948423		22.3128055		9.1653688	
5	0.07131932	-1.8486764		-0.2634960		-9.6512290		-6.4207025		-1.6148848	
6	-0.05226220	-0.9620258		-0.0575813		2.7898161		-2.6256320		-1.1673846	
7	-0.05532429	0.5993070		-0.0934847		0.5727589		1.1382473		0.3710868	
8	0.02288358	0.0314928		0.0307624		-0.4890760		0.0098510		0.0402982	
9	0.01194497	-0.1520993		0.0212396		0.0409462		-0.1703770		-0.0651394	
10	-0.00946955	-0.0296569		-0.0160982		0.0555598		0.0218033		0.0037608	
11	-0.00055967	0.0385621		0.0002711		-0.0054407		0.0109760		0.0044155	
12	0.00336965	0.0119603		0.0043315		-0.0005991		0.0007717		0.0003315	
13	-0.00006405	-0.0145419		-0.0009106		-0.0021003		0.0005545		0.0003586	
14	-0.00117304	-0.0008303		-0.0006818		-0.0000797		-0.0015949		-0.0005758	
15	0.000005800	0.0054891		0.0001949		0.0010163		0.0002830		0.0000270	
16	0.00042550	-0.0007851		-0.0000082		-0.0003059		0.0004681		0.0001936	
17	-0.000009584	-0.0017227		0.0000076		-0.0002089		-0.0002058		-0.00000595	
18	-0.00014711	0.0004678		-0.0000029		0.0001176		-0.0000626		-0.0000316	
19	0.000006476	0.0005028		-0.0000142		0.00000157		0.0000522		0.00000177	
20	0.000004553	-0.0002248		0.0000074		-0.0000219		-0.0000004		0.00000016	
21	-0.000002997	-0.0001470		0.0000030		0.0000019		-0.0000069		-0.0000026	
22	-0.000001281	0.0001048		-0.0000030		0.0000019		0.0000010		0.0000001	
23	0.000001275	0.00000392		0.0000002		-0.0000002		0.0000002		0.0	
24	0.000000314	-0.00000441		0.0000005		-0.0000001		0.0000003		0.0000001	
25	-0.000000543	-0.0000080		-0.0000001		-0.0000002		0.0		-0.0000001	
26	-0.000000044	0.00000171		0.0		0.0000001		-0.0000001		0.0	
27	0.000000220	0.0000006		0.0		0.0000001		0.0		0.0	
28	-0.000000015	-0.00000066		0.0000002		-0.0000001		0.0000001		0.0	
29	-0.000000084	0.0000007		0.0		0.0		0.0		0.0	
30	0.000000017	0.0000024		0.0000001		0.0		-0.0000001		-0.0000001	
31	0.000000031	-0.0000007		0.0		-0.0000001		0.0		0.0000001	
32	-0.000000011	-0.0000007		0.0		0.0		0.0000001		0.0	
33	-0.000000009	0.0000002		0.0		-0.0000001		0.0		0.0	
SUMS	77.76400650	-22.3717089		116.0641817		55.0029277		-51.7961565		-22.9928199	

D10

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

	DAY	60 THRU 91	JD 2444664.5 TO 2444696.5	DATES MAR	1 THRU APR	1
	A =	16.0	B = -4.75000000	W = 60		
TERM	R A	DEC	H P	X	Y	Z
0	64.96855456	-15.4553539	114.2755963	19.8768231	-40.1791333	-16.2612594
1	14.02220424	-1.5986059	-0.5615144	-5.7909100	-5.3850286	-1.6426615
2	-0.35653236	-15.9271979	0.3987164	31.3287006	-38.5073585	-16.4274264
3	0.09362295	7.4567084	2.6446277	38.5907279	29.2350685	7.8783669
4	0.19191115	8.1761253	-0.2289008	-17.3569382	19.9240380	8.6194815
5	0.02344677	-2.4501965	-0.2516459	-8.2621768	-7.7838485	-2.2313146
6	-0.06873737	-0.6648972	0.1700418	3.2535269	-1.9591960	-0.9648119
7	-0.02721512	0.6336137	-0.1468689	0.1949678	1.1959062	0.4224399
8	0.02699302	-0.1300640	-0.0285123	-0.4505878	-0.1750388	-0.0302465
9	0.00263528	-0.1249712	0.0487591	0.1394423	-0.1174330	-0.0534489
10	-0.00808196	0.0390532	-0.0127825	0.0136227	0.0625350	0.0218394
11	0.00257433	0.0185076	-0.0063382	-0.0225636	-0.0145440	-0.0036334
12	0.00205709	-0.0079103	0.0059906	0.0142152	-0.0034492	-0.0023159
13	-0.00130769	-0.0039728	-0.0010029	-0.0016278	0.0074121	0.0028520
14	-0.00049812	0.0033119	-0.0007374	-0.0032139	-0.0025028	-0.0006770
15	0.00046946	0.0010559	0.0006723	0.0018269	-0.0007559	-0.0004133
16	0.00008472	-0.0015883	-0.0001919	-0.0000219	0.0009178	0.0003376
17	-0.00018400	-0.0001062	-0.0000929	-0.0004103	-0.0002091	-0.0000464
18	0.000001367	0.0006023	0.0001045	0.0001730	-0.0001114	-0.0000537
19	0.000006829	-0.0000954	-0.0000275	0.0000094	0.0000911	0.0000329
20	-0.00002070	-0.0001900	-0.0000161	-0.0000413	-0.0000200	-0.0000044
21	-0.00002040	0.0000814	0.0000152	0.0000191	-0.0000109	-0.0000054
22	0.000001177	0.00000494	-0.0000029	0.0000003	0.0000106	0.0000038
23	0.000000461	-0.00000411	-0.0000025	-0.0000051	-0.0000026	-0.0000006
24	-0.000000527	-0.0000081	0.0000019	0.0000022	-0.0000015	-0.0000007
25	-0.00000055	0.00000163	-0.0000004	0.0000002	0.0000012	0.0000005
26	0.00000209	-0.0000009	-0.0000003	-0.0000005	-0.0000002	-0.0000002
27	-0.00000025	-0.00000054	0.0000003	0.0000003	-0.0000001	-0.0000002
28	-0.000000074	0.00000015	-0.0000001	0.0	0.0000001	0.0
29	0.000000023	0.00000014	0.0	0.0	-0.0000001	0.0
30	0.00000022	-0.0000007	0.0	0.0000001	0.0	0.0000001
31	-0.00000017	-0.0000005	-0.0000001	-0.0000001	0.0000001	0.0000001
32	-0.00000005	0.0000003	0.0	0.0	0.0	0.0
33	0.00000008	0.0000001	0.0000001	0.0	-0.0000001	0.0
SUMS	78.87204978	-20.0360776	116.3058882	61.5253607	-43.7026639	-20.6729657

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

D11

	DAY	91 THRU 122	JD 2444695.5 TO 2444727.5	DATES	APR	1 THRU MAY	2
		A = 16.0	B = -6.68750000		W = 91		
		R A	DEC	H P	X	Y	Z
TERM	H	DEG	'	E RAD	E RAD	E RAD	
0	71.50606729	-5.7095523	116.2918305	39.2836467	-8.9562757	-6.3220461	
1	13.94119456	-2.6885041	-0.4190407	0.2747127	-7.5017386	-2.8938990	
2	-0.27484124	-4.7260987	2.5842581	52.3555355	-2.4253964	-4.7687867	
3	0.25641981	16.6369761	2.0624045	3.0240229	46.6721482	17.1387996	
4	0.12741543	2.0310960	-1.0737154	-27.4220807	0.5878837	2.3125595	
5	-0.12470524	-3.4085561	0.0036384	0.3471532	-10.0962370	-3.7689509	
6	-0.02885976	0.4457166	0.0040332	2.8967642	0.7998386	0.0701232	
7	0.05631093	-0.0419771	-0.2009889	-0.6126522	0.3388943	0.1705403	
8	0.00209745	-0.2331439	0.0566671	0.1343572	-0.2788337	-0.1130662	
9	-0.01150148	0.1380146	0.0217912	0.0879228	0.1146445	0.0357842	
10	0.00424366	0.0109364	-0.0163847	-0.0496786	-0.0035151	0.0024484	
11	-0.00081805	-0.0387503	0.0083804	0.0215199	-0.0098511	-0.0052297	
12	-0.00210000	0.0124022	0.0004643	-0.0020923	0.0143269	0.0054701	
13	0.00136305	0.0035582	-0.0018082	-0.0065821	-0.0039695	-0.0009742	
14	0.00034976	-0.0049897	0.0010696	0.0027845	-0.0013908	-0.0007253	
15	-0.00050303	0.0017963	-0.0003140	-0.0002490	0.0012418	0.0004771	
16	0.00010355	0.0010730	-0.0001878	-0.0004300	-0.0004821	-0.0001460	
17	0.000007779	-0.0009895	0.0001669	0.0003103	-0.0000272	-0.0000327	
18	-0.000009231	0.00000017	-0.00000532	-0.00000702	0.0001101	0.0000458	
19	0.00002212	0.0002593	-0.0000091	-0.0000197	-0.0000598	-0.0000209	
20	0.00002917	-0.00001217	0.00000206	0.00000325	0.00000123	0.00000020	
21	-0.000001976	-0.00000189	-0.00000094	-0.00000142	0.0000092	0.00000045	
22	-0.000000131	0.00000583	0.00000008	0.00000002	-0.00000080	-0.00000027	
23	0.000000670	-0.00000202	0.00000022	0.00000035	0.00000027	0.00000006	
24	-0.000000322	-0.00000127	-0.00000016	-0.00000021	0.0000008	0.00000004	
25	-0.000000069	0.00000122	0.00000003	0.00000001	-0.00000011	-0.00000003	
26	0.000000167	-0.00000013	0.00000002	0.00000004	0.00000001	0.00000001	
27	-0.000000053	-0.00000034	-0.00000001	-0.00000002	0.0	0.0	
28	-0.000000035	0.00000024	0.00000001	0.0	0.0	-0.00000001	
29	0.000000036	0.00000001	0.00000001	0.0	0.0	0.0	
30	-0.000000004	-0.00000012	0.0	0.0	-0.00000001	-0.00000001	
31	-0.000000010	0.00000004	-0.00000001	-0.00000001	0.0	0.0	
32	0.000000007	0.00000001	0.0	0.0	0.0	-0.00000001	
33	0.000000001	-0.00000003	0.0	0.00000001	0.0	-0.00000001	
SUMS	85.45225627	2.4291625	119.3222153	70.3348953	19.2513270	1.8623747	

D12

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

DAYS 121 THRU 152		JD 2444725.5 TO 2444757.5		DATES MAY 1 THRU JUNE 1			
	A = 16.0	B = -8.56250000		W = 121	X	Y	Z
TERM	H	DEC	H P		E RAD	E RAD	E RAD
0	76.29022483	4.3829973	117.0640761	33.8370088	16.7166266	3.6039568	
1	13.93433796	-2.3511275	-0.2926254	4.6772961	-5.8083500	-2.6089251	
2	-0.18716569	6.6173023	3.3801965	44.8696432	26.9496513	6.6877333	
3	0.34507842	16.3810355	0.9048364	-26.6086617	38.9790573	16.7484419	
4	0.02137747	-3.5122897	-1.3673007	-23.1442769	-14.3629798	-3.5529960	
5	-0.12167657	-2.8355699	0.1597663	5.9661151	-7.9032013	-3.4321594	
6	0.08473301	0.4499945	-0.1151397	1.9275971	1.6542578	0.4605532	
7	0.03802453	-0.3064601	-0.1491161	-0.2911185	-0.0263222	0.0121054	
8	-0.03152081	0.1136284	0.0846792	0.2475363	0.0510337	0.0003328	
9	-0.00196621	0.0937872	0.0057856	-0.0705051	0.1065733	0.0454364	
10	0.00114473	-0.0965984	-0.0038497	-0.0167276	-0.0375168	-0.0126884	
11	-0.00200477	0.0133845	0.0074592	0.0152902	0.0137693	0.0039969	
12	0.00265455	0.0201896	-0.0032655	-0.0134523	0.0029144	0.0021394	
13	-0.00007918	-0.0076707	-0.0001573	0.0005431	-0.0059929	-0.0022868	
14	-0.00106710	0.0030659	0.0005050	0.0017207	0.0011053	0.0002773	
15	0.00034627	-0.0001205	-0.0005510	-0.0006969	-0.0000849	0.0000219	
16	0.00008486	-0.0022552	0.0001223	0.0003718	-0.0002210	-0.0001111	
17	-0.00006660	0.0010516	0.0000515	0.0000122	0.0002159	0.0000796	
18	0.00007657	0.0002594	-0.0000432	-0.0000772	-0.0000512	-0.0000135	
19	-0.00003724	-0.0003266	0.0000275	0.0000434	-0.0000033	-0.0000045	
20	-0.00002514	0.0001179	-0.0000036	-0.0000134	0.0000186	0.0000082	
21	0.00002463	-0.0000248	-0.0000038	-0.0000047	-0.0000098	-0.0000033	
22	-0.00000222	-0.0000420	0.0000034	0.0000042	0.0000014	0.0000001	
23	-0.00000370	0.0000464	-0.0000018	-0.0000023	0.0000003	0.0000003	
24	0.00000287	-0.0000056	-0.0000001	0.0000007	-0.0000014	-0.0000005	
25	-0.00000193	-0.0000116	0.0000006	0.0000008	0.0000008	0.0000003	
26	-0.00000011	0.0000064	-0.0000004	-0.0000005	0.0000002	0.0000001	
27	0.000000109	-0.0000015	0.0000001	-0.0000001	-0.0000003	-0.0000001	
28	-0.000000044	-0.0000007	-0.0000001	0.0000001	0.0	0.0	
29	-0.00000011	0.0000015	-0.0000001	0.0	0.0	0.0	
30	0.00000016	-0.0000010	0.0	-0.0000001	0.0	0.0	
31	-0.00000010	-0.0000003	0.0	0.0000001	0.0	0.0000001	
32	0.00000001	0.0000005	0.0	0.0	-0.0000001	0.0000001	
33	0.00000006	-0.0000002	-0.0000001	0.0	0.0	0.0	
SUMS	90.37249410	18.9643626	119.6754511	41.3976466	56.3304912	17.9558954	

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

D13

DAYS 152 THRU 183 JD 2444756.5 TO 2444788.5 DATES JUNE 1 THRU JULY 2

	A =	16.0	B =	-10.50000000	W = 152	
	R A	DEC	H P	X	Y	Z
TERM	H	DEG	'	E RAD	E RAD	E RAD
0	35.04124870	14.5373377	116.7609712	1.8585811	36.6959138	13.6964206
1	13.99496382	-0.9236592	0.0028349	7.8160214	-0.8954839	-0.9867670
2	0.11272746	17.6251269	3.0274181	8.1340446	48.7130019	17.7872901
3	0.39028861	5.8962736	-1.1629929	-49.3702674	5.7679371	6.2417087
4	-0.10395759	-8.8326822	-1.1194213	-4.4625664	-25.4851935	-9.2392148
5	0.03321608	-1.3790255	0.2236894	10.4153138	-1.6807758	-1.4943737
6	0.07087294	0.3399343	-0.1728730	0.9279782	2.4679385	0.8489406
7	-0.06604649	0.2085330	0.0187862	-0.2123397	0.3831056	0.1626716
8	-0.02303853	0.1612603	0.0788420	-0.1811315	0.1689867	0.0791365
9	0.00811432	-0.1042513	0.0008278	-0.1106996	-0.0687031	-0.0167838
10	0.00400803	0.0383924	0.0008556	0.0212970	-0.0243287	-0.0108845
11	0.00233803	0.0412112	-0.0044775	-0.0048601	0.0036572	0.0017604
12	-0.00187537	-0.0152750	-0.0025678	-0.0000140	-0.0075245	-0.0028434
13	-0.00022087	-0.0081075	0.0006934	0.0041556	0.0001904	-0.0002705
14	0.00099868	-0.0031185	-0.0000786	0.0002773	0.0011010	0.0003909
15	-0.00008437	0.0017822	0.0001114	0.00000139	0.0003239	0.0001217
16	-0.00023150	0.0016688	0.0001148	-0.0002292	0.0001967	0.0000933
17	-0.00008354	-0.0009109	-0.0000127	-0.0001318	-0.0001002	-0.0000268
18	0.00003109	-0.0001818	0.0000021	0.0000285	-0.0000404	-0.0000174
19	0.00005731	0.0002620	-0.0000113	0.0000040	0.0000007	-0.0000001
20	-0.00001712	0.0000805	-0.0000054	0.0000042	-0.0000046	-0.0000023
21	-0.00001542	-0.0000177	0.0000016	0.0000036	0.0000021	0.0000004
22	0.00000670	-0.0000673	0.0000004	0.0	0.0000013	0.0000005
23	0.00000454	-0.0000004	0.0000005	-0.0000001	0.0000006	0.0000004
24	0.00000007	0.00000231	0.0	-0.0000007	0.0	0.0
25	-0.00000230	-0.0000018	-0.0000002	0.0	-0.0000004	-0.0000002
26	-0.00000059	-0.0000049	0.0000002	0.0000003	0.0	0.0
27	0.00000089	-0.0000007	0.0	-0.0000001	0.0000001	0.0000001
28	0.00000014	0.0000014	-0.0000002	-0.0000001	0.0	0.0
29	-0.00000024	0.0000008	0.0	0.0000001	0.0	-0.0000001
30	-0.00000009	-0.0000006	-0.0000001	0.0000001	0.0	0.0000001
31	0.00000007	-0.0000004	0.0000001	0.0	0.0000001	0.0
32	0.00000005	0.0000002	0.0000002	-0.0000001	0.0	0.0
33	-0.00000001	0.0000005	0.0000001	0.0000001	0.0	0.0
SUMS	49.46330350	27.5845832	117.6527090	-25.1645170	66.0402026	27.0673513

DAYS 182 THRU 213			JD 2444786.5 TO 2444818.5		DATES JULY 1 THRU AUG 1			
	A =	16.0	B =	-12.37500000	W =	182		
TERM	R	A	DEC	H P	X	Y	Z	
0	39.96179624	14.7255090	115.5292160	-26.1798184	32.0946497	14.3267278		
1	14.02792643	0.4779099	0.1288550	7.0948898	3.4019800	0.6854093		
2	0.31288170	17.6487462	1.6463406	-23.4689566	42.7533641	18.1391719		
3	0.22322829	-4.9543610	-2.0290220	-44.2511220	-22.2783782	-4.6926274		
4	-0.14128592	-9.2553782	-0.5214530	12.0435321	-22.8936641	-9.6590766		
5	0.05974784	0.3651736	0.3564649	10.3441271	4.2774381	0.7416346		
6	-0.04115406	1.0511219	-0.1228015	-0.6610338	3.1204549	1.2332087		
7	-0.07035546	0.4206187	0.0268988	-0.9019057	0.2515747	0.1717654		
8	0.01466197	-0.0718391	0.0523545	-0.3135710	-0.2026214	-0.0500124		
9	0.01962675	-0.0421765	0.0024221	0.0458705	-0.1481528	-0.0598568		
10	0.00343210	0.0575502	-0.0056236	0.0554430	0.0135450	0.0004326		
11	-0.00342363	-0.0246868	-0.0065529	-0.0052860	0.0115452	0.0047989		
12	-0.00093539	-0.0286446	-0.0001505	-0.0007802	-0.0026401	-0.0009284		
13	0.00094024	0.0008849	0.0013810	0.0015743	0.0005320	0.0006689		
14	-0.00047832	0.0085078	0.0001624	0.0000441	0.0008319	0.0003106		
15	-0.00052055	0.0024642	-0.0000481	-0.0004631	0.0003069	0.0001549		
16	0.00015034	-0.0017511	-0.0000306	-0.0003085	-0.0002050	-0.0000518		
17	0.00024426	-0.0002607	0.0000006	0.00000739	-0.0001695	-0.0000703		
18	0.00001699	0.0004367	-0.0000010	0.0000045	0.0000161	-0.0000009		
19	-0.00007160	-0.0001479	-0.0000095	0.0000037	0.0000302	0.0000111		
20	-0.00000552	-0.0002379	0.0000003	-0.0000102	0.0000050	0.0000028		
21	0.00001638	0.0000201	0.0000031	-0.0000034	-0.0000027	-0.0000007		
22	-0.00000485	0.0001036	0.0000008	0.0000007	-0.0000014	-0.0000006		
23	-0.00000729	0.0000119	-0.0000005	0.0000005	0.0000002	0.0000001		
24	0.00000227	-0.0000027	-0.0000004	-0.0000001	0.0000001	0.0		
25	0.00000388	-0.0000025	0.0000001	-0.0000002	0.0	0.0		
26	-0.00000027	0.0000066	0.0	-0.0000001	-0.0000001	-0.0000001		
27	-0.00000132	-0.0000012	-0.0000001	0.0	0.0	0.0000002		
28	0.00000001	-0.0000031	0.0	0.0	0.0	0.0000002		
29	0.00000034	0.0000005	0.0	-0.0000001	0.0000001	0.0		
30	-0.00000003	0.0000014	-0.0000001	0.0	-0.0000001	0.0		
31	-0.00000015	0.0	0.0000001	0.0	0.0	-0.0000001		
32	0.00000003	-0.0000005	0.0000002	0.0	0.0	0.0		
33	0.00000007	-0.0000002	0.0	0.0	0.0	0.0		
SUMS	54.36643177	20.3795487	115.0584067	-66.1976152	40.4004388	20.8410719		

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

D15

DAYS 213 THRU 244		JD 2444817.5 TO 2444849.5		DATES AUG 1 THRU SEPT 1			
	A = 16.0	B = -14.31250000		W = 213			
	R A	DEC	H P	X	Y	Z	
TERM	H	DEG	*	E RAD	E RAD	E RAD	
0	46.45562297	5.5281225	113.4886023	-50.5493193	3.2428024	5.4668226	
1	14.04114900	2.3774115	0.2016947	2.2742949	7.1560217	2.4853751	
2	0.33100510	7.4550126	-0.6141607	-49.7397804	10.3898800	8.0740189	
3	-0.14407233	-15.3652500	-2.0418924	-12.4918270	-44.7169904	-15.8820293	
4	-0.13050892	-4.4198319	0.5278053	26.7894701	-6.1192913	-4.5766911	
5	-0.01125562	3.6031538	0.3405900	3.9160382	10.7681873	3.7489029	
6	-0.05913679	1.3246179	-0.1806471	-3.8555714	1.7273729	0.9816379	
7	0.03208485	-0.3181444	0.0196196	-1.0118078	-1.1019381	-0.3320615	
8	0.04061594	-0.2916436	0.0549520	0.3182509	-0.4545009	-0.1992305	
9	-0.00602050	0.0143524	-0.0027185	0.2218115	0.0954828	0.0174190	
10	-0.01322639	-0.0025650	-0.0177225	-0.0336220	0.0833555	0.0344171	
11	-0.00095212	-0.0078636	-0.0028643	-0.0336736	-0.0143966	-0.0025996	
12	0.00232307	0.0235032	0.0047604	0.0069019	-0.0114419	-0.0049141	
13	0.00035088	0.0094249	0.0012043	0.0049368	0.0034911	0.0009046	
14	0.00025603	-0.0081123	-0.0009775	-0.0019029	0.0020738	0.0009450	
15	0.00024192	-0.0048323	-0.0003151	-0.0011698	-0.0009701	-0.0002688	
16	-0.00029268	0.0012606	0.0001951	0.0005021	-0.0005755	-0.0002600	
17	-0.00024476	0.0011917	0.0000695	0.0003342	0.0002314	0.0000593	
18	0.00007833	0.0000877	-0.0000500	-0.0001042	0.0001588	0.0000689	
19	0.00010426	0.0000266	-0.0000156	-0.0000862	-0.0000430	-0.0000088	
20	-0.00000250	-0.0000602	0.0000145	0.00000173	-0.0000389	-0.0000162	
21	-0.00002118	-0.0001513	0.0000045	0.0000201	0.0000071	0.0000009	
22	-0.00000330	-0.0000218	-0.0000039	-0.0000029	0.0000088	0.0000036	
23	-0.00000239	0.0000658	-0.0000015	-0.0000045	-0.0000014	-0.0000001	
24	-0.00000111	0.00000235	0.0000011	0.0000007	-0.0000021	-0.0000007	
25	0.00000336	-0.0000135	0.0000004	0.0000012	0.0000003	0.0000001	
26	0.00000195	-0.0000078	-0.0000001	-0.0000003	0.0000004	0.0000002	
27	-0.00000113	-0.0000003	-0.0000001	-0.0000003	-0.0000001	0.0	
28	-0.00000099	-0.0000003	0.0	0.0000001	-0.0000001	0.0	
29	0.00000010	0.0000007	0.0000001	0.0000001	0.0	0.0000001	
30	0.00000024	0.0000015	0.0000001	0.0	0.0	0.0	
31	0.00000007	0.0000001	0.0000001	0.0000001	0.0	0.0	
32	0.00000003	-0.0000007	0.0000001	0.0	0.0	-0.0000001	
33	0.0	0.0	0.0	-0.0000001	0.0	0.0000001	
SUMS	60.53809539	-0.0802420	111.7781448	-84.1862925	-18.9511161	-0.1875045	

D16

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

DAYS 244 THRU 275		JD 2444848.5 TO 2444880.5		DATES SEPT 1 THRU OCT 2			
	A = 16.0	B = -16.25C00000		W = 244			
	R A	DEC	H P	X	Y	Z	
TERM	H	DEG	'	E RAD	E RAD	E RAD	
0	52.64609433	-7.6112970	112.0314226	-44.8427238	-32.0514006	-8.5203301	
1	14.08898488	2.5660623	-0.0351901	-4.2094494	5.9982401	2.5478288	
2	0.03687554	-6.9700421	-2.2543405	-42.2884564	-27.9592392	-7.2149109	
3	-0.33654982	-15.4606039	-0.7239024	26.4037252	-37.1342225	-16.3770526	
4	-0.04625579	3.7720010	1.2927155	23.3302284	15.1933798	3.8417023	
5	0.02963819	4.4573311	-0.0448155	-6.6707105	9.7817201	4.2992892	
6	0.05136560	-0.6478202	-0.2983651	-4.2425655	-2.4530935	-0.5772378	
7	0.03634371	-0.9214500	0.1155133	0.8662016	-1.5495125	-0.6650034	
8	-0.02683455	0.0779891	0.0769847	0.6843685	0.3292262	0.0678985	
9	-0.01853038	0.1822273	-0.0428912	-0.1471847	0.2653753	0.1136594	
10	0.00853996	0.0081083	-0.0224719	-0.1207114	-0.0738154	-0.0180058	
11	0.00635562	-0.0233468	0.0131255	0.0405976	-0.0460003	-0.0209535	
12	-0.00159579	-0.0129343	0.0059560	0.0210001	0.0213735	0.0063902	
13	-0.00180919	-0.0014956	-0.0039603	-0.0120317	0.0080157	0.0040656	
14	-0.00020399	0.0060878	-0.0013565	-0.0038687	-0.0061563	-0.0020245	
15	0.00041007	0.0025696	0.0012016	0.0034272	-0.0014977	-0.0008582	
16	0.00035103	-0.0018189	0.0002664	0.0007470	0.0017078	0.0005892	
17	-0.00005092	-0.0012832	-0.0003698	-0.0009380	0.0002742	0.0001830	
18	-0.00019082	0.0002571	-0.0000418	-0.0001323	-0.0004580	-0.0001639	
19	-0.00001840	0.0004889	0.0001131	0.0002497	-0.0000402	-0.0000362	
20	0.000007138	0.00000979	0.0000025	0.0000165	0.0001203	0.0000446	
21	0.000002011	-0.0001539	-0.0000337	-0.0000655	0.0000013	0.0000060	
22	-0.000001880	-0.00000992	0.0000021	0.0000012	-0.0000314	-0.0000120	
23	-0.000001159	0.00000368	0.0000098	0.0000171	0.0000024	-0.0000006	
24	0.00000207	0.00000503	-0.0000014	-0.0000019	0.0000081	0.0000032	
25	0.00000517	-0.0000032	-0.0000028	-0.0000045	-0.0000013	-0.0000002	
26	0.00000127	-0.0000187	0.0000007	0.0000009	-0.0000022	-0.0000008	
27	-0.00000183	-0.0000033	0.0000007	0.0000012	0.0000006	0.0000001	
28	-0.00000115	0.0000055	-0.0000003	-0.0000003	0.0000006	0.0000003	
29	0.00000044	0.0000029	-0.0000002	-0.0000003	-0.0000002	-0.0000001	
30	0.00000055	-0.0000009	0.0000001	0.0000001	-0.0000002	-0.0000001	
31	-0.00000004	-0.0000014	0.0000002	0.0000002	0.0000001	0.0	
32	-0.00000024	-0.0000001	-0.0000001	-0.0000001	-0.0000001	0.0000001	
33	-0.00000003	0.0000005	0.0000001	-0.0000001	0.0	0.0000001	
SUMS	66.47298659	-20.5790563	110.1095713	-51.1882626	-69.6760255	-22.5149301	

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

D17

DAYS 274 THRU 305		JD 2444878.5 TO 2444910.5		DATES OCT 1 THRU NOV 1			
	A = 16.0	B = -18.12500000		W = 274			
TERM	H	DEC	H P	X	Y	Z	
0	57.16577842	-15.3694182	111.6761099	-23.6382845	-49.1627191	-17.0425609	
1	14.13284006	1.3277535	-0.3230424	-7.0777230	2.2465743	1.3463388	
2	-0.17513606	-15.0782729	-2.6971498	-18.3656873	-44.9726994	-15.9103292	
3	-0.31431020	-9.2308985	0.5884083	44.5762751	-15.5796473	-9.7790999	
4	0.06192062	8.5584684	1.4520294	9.9815853	24.8668154	8.7553737	
5	0.11894225	2.4099511	-0.4822293	-11.9322033	3.7536235	2.4700244	
6	0.04487676	-1.9969574	-0.3026955	-1.5103638	-4.6057762	-1.6469277	
7	-0.04596086	-0.3661083	0.2498729	1.9729505	-0.3686485	-0.3108661	
8	-0.03036687	0.5131009	0.0582417	0.0937356	0.7977587	0.2996923	
9	0.01812772	0.0789383	-0.0877127	-0.3864214	-0.0224723	0.0241271	
10	0.01069681	-0.1450974	-0.0074171	0.0353065	-0.1684123	-0.0679678	
11	-0.00647057	-0.0292650	0.0271741	0.0854105	0.1324752	0.0053042	
12	-0.00372336	0.0422890	-0.0016066	-0.0229670	0.0369177	0.0161918	
13	0.001195658	0.0121650	-0.0079715	-0.0186890	-0.0143260	-0.0039486	
14	0.00152551	-0.0128956	0.0017675	0.0088900	-0.0077205	-0.0037320	
15	-0.00051144	-0.0048757	0.0021847	0.0037719	0.0049443	0.0015890	
16	-0.00067268	0.0038832	-0.0009121	-0.0029313	0.0013997	0.0007875	
17	0.00012659	0.0019405	-0.0005437	-0.0006153	-0.0015443	-0.0005438	
18	0.000029194	-0.0010738	0.0003756	0.0008945	-0.0001630	-0.0001379	
19	-0.00002814	-0.0000794	0.0001138	0.0000401	0.0004528	0.0001714	
20	-0.000012120	0.00002566	-0.00001370	-0.00002567	-0.00000213	0.00000132	
21	0.00000200	0.0000334	-0.0000146	0.0000269	-0.00001249	-0.00000504	
22	0.000004862	-0.00000454	0.00000456	0.00000690	0.00000247	0.00000037	
23	0.000000362	-0.00001402	-0.00000025	-0.00000181	0.00000321	0.00000138	
24	-0.000001924	-0.00000006	-0.00000142	-0.00000172	-0.00000120	-0.00000032	
25	-0.000000342	0.00000577	0.00000031	0.00000079	-0.00000075	-0.00000035	
26	0.000000759	0.00000066	0.00000040	0.00000037	0.00000047	0.00000014	
27	0.000000218	-0.00000232	-0.00000016	-0.00000030	0.00000015	0.00000008	
28	-0.000000295	-0.00000048	-0.00000010	-0.00000007	-0.00000017	-0.00000005	
29	-0.000000117	0.00000089	0.00000007	0.00000009	-0.00000002	-0.00000002	
30	0.000000112	0.00000028	0.00000003	0.00000001	0.00000006	0.00000002	
31	0.000000059	-0.00000036	-0.00000002	-0.00000003	0.0	0.00000001	
32	-0.000000040	-0.00000015	0.0	0.0	-0.00000001	0.0	
33	-0.000000032	0.00000011	0.00000002	0.00000001	0.0	0.0	
SUMS	70.97982010	-29.2867185	110.1448800	-6.1972133	-83.1632714	-31.8465383	

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

DAYS 305 THRU 336		JD 2444909.5 TO 2444941.5		DATES NOV 1 THRU DEC 2			
		A = 16.0	B = -20.06250000	W = 305			
		R A	DEC	H P	X	Y	Z
TERM	H	DEG		E RAD	E RAD	E RAD	
0	63.51859639	-18.4696645	112.2814876	15.2671902	-48.7461893	-20.4161420	
1	14.13190028	-1.0074714	-0.6669878	-6.2436464	-3.6654249	-1.0100324	
2	-0.31490542	-17.7446293	-2.0210230	22.9878132	-42.3017608	-18.5916880	
3	-0.16271880	4.1965675	2.2008116	43.2577584	20.9153436	4.3938052	
4	0.20689073	9.7277789	0.8121292	-13.1272724	22.8397636	10.0674281	
5	0.10008437	-1.8539921	-0.9143546	-10.6110634	-6.3674265	-1.5447033	
6	-0.10394882	-1.6548861	0.0777396	3.1489784	-3.3735346	-1.5905449	
7	-0.05407159	0.8241445	0.3061668	1.0896904	1.4771176	0.4793218	
8	0.04465432	0.1938670	-0.1073565	-0.7790C21	0.2035415	0.1473663	
9	0.01332205	-0.3465603	-0.0701683	0.0010214	-0.3599304	-0.1404100	
10	-0.01713692	-0.0023131	0.0494699	0.1831984	0.0563077	0.0059693	
11	-0.00045979	0.1277153	0.0069969	-0.0518408	0.0754677	0.0339660	
12	0.00684817	-0.0196006	-0.0172503	-0.0342516	-0.0355221	-0.0108679	
13	-0.00110347	-0.0410559	0.0029543	0.0229818	-0.0109258	-0.0062702	
14	-0.00271176	0.0148779	0.0046318	0.0032854	0.0124086	0.0045532	
15	0.00083876	0.0118368	-0.0023210	-0.0070669	-0.0002884	0.0005053	
16	0.00097930	-0.0078585	-0.0008183	0.0009938	-0.0033080	-0.0013761	
17	-0.00051175	-0.0030353	0.0009881	0.0016872	0.0009842	0.0002360	
18	-0.00031259	0.0035052	-0.0000233	-0.0007479	0.0006601	0.0003222	
19	0.00027610	0.0005772	-0.0003130	-0.0002750	-0.0004657	-0.0001572	
20	0.00008310	-0.0014411	0.0000995	0.0002932	-0.0000619	-0.0000497	
21	-0.00013373	0.0000157	0.0000729	-0.0000006	0.0001532	0.0000596	
22	-0.00001229	0.00005659	-0.0000539	-0.0000860	-0.0000240	-0.0000017	
23	0.000005968	-0.0001006	-0.0000081	0.0000236	-0.0000385	-0.0000171	
24	-0.000000532	-0.0002124	0.0000199	0.0000189	0.0000176	0.0000052	
25	-0.00002490	0.0000756	-0.0000033	-0.0000122	0.0000065	0.0000037	
26	0.00000685	0.0000748	-0.0000056	-0.0000022	-0.0000069	-0.0000026	
27	0.00000966	-0.0000434	0.0000028	0.0000043	0.0	-0.0000004	
28	-0.00000475	-0.0000240	0.0000009	-0.0000006	0.0000021	0.0000009	
29	-0.00000337	0.0000222	-0.0000011	-0.0000011	-0.0000008	-0.0000001	
30	0.00000273	0.0000064	0.0	0.0000005	-0.0000004	-0.0000001	
31	0.000000101	-0.00000107	0.0000005	0.0000003	0.0000003	0.0000001	
32	-0.000000137	-0.00000011	-0.0000003	-0.0000002	0.0000001	0.0	
33	-0.000000022	0.0000048	-0.0000001	-0.0000001	-0.0000001	0.0	
SUMS	77.36648664	-26.0512647	111.9428838	55.1096699	-59.2831345	-28.1787208	

CHEBYSHEV APPROXIMATION OF LUNAR COORDINATES FOR YEAR 1981

D19

DAYS 335 THRU 366		JD 2444939.5 TO 2444971.5		DATES DEC 1 THRU JAN 1			
	A = 16.0	B = -21.93750000		M = 335			
TERM	H	DEC	H P	X	Y	Z	
0	68.19844357	-13.8584666	113.2846672	38.4121630	-30.6576675	-15.5335289	
1	14.08971039	-2.2139518	-0.7024347	-2.7475088	-6.1082932	-2.2146621	
2	-0.33364366	-12.2705149	-0.9497439	45.5293067	-21.6818396	-12.6707774	
3	-0.07981292	13.1084466	2.7028595	23.5282470	40.2066095	13.6533951	
4	0.23976660	6.3019855	0.1107173	-25.0000738	11.1104056	6.6320697	
5	-0.02960251	-3.9055395	-0.9353646	-4.5922021	-10.5443165	-3.7129408	
6	-0.14947608	-0.3772585	0.3035302	4.3836851	-0.6142018	-0.6388786	
7	0.03702924	0.8518078	0.2206107	-0.3184771	1.4926478	0.6132336	
8	0.05448984	-0.3677712	-0.1615504	-0.5713690	-0.4249927	-0.1149057	
9	-0.02166676	-0.1829583	-0.0170426	0.3068487	-0.1579402	-0.0897112	
10	-0.00894639	0.2249533	0.0507423	0.0356492	0.1665126	0.0620874	
11	0.01088503	0.0130081	-0.0139354	-0.0911970	-0.0124499	0.0033810	
12	-0.00162256	-0.0847593	-0.0106289	0.0189447	-0.0392775	-0.0171244	
13	-0.00453760	0.0200769	0.0083727	0.0177209	0.0153016	0.0043960	
14	0.00221211	0.0221249	0.0004271	-0.0104645	0.0053402	0.0030430	
15	0.00132070	-0.0158912	-0.0028089	-0.0012198	-0.0057518	-0.0021451	
16	-0.00127584	-0.0026605	0.0008509	0.0032255	0.0005081	-0.0000932	
17	-0.00009843	0.0075118	0.0005855	-0.0007686	0.0014156	0.0006244	
18	0.00055474	-0.0014090	-0.0004787	-0.0006457	-0.0006269	-0.0001870	
19	-0.00017354	-0.0025447	-0.0000136	0.0004383	-0.0001898	-0.0001141	
20	-0.00018273	0.0013872	0.0001584	0.0000364	0.0002439	0.0000920	
21	0.00014355	0.0005311	-0.0000532	-0.0001391	-0.0000281	0.0000016	
22	0.00003191	-0.0007480	-0.0000320	0.0000367	-0.0000614	-0.0000273	
23	-0.00007338	0.0000476	0.0000289	0.0000284	0.0000293	0.0000087	
24	0.00001182	0.0002971	0.0000001	-0.0000204	0.0000083	0.0000050	
25	0.00002772	-0.0001231	-0.0000093	-0.0000016	-0.0000113	-0.0000043	
26	-0.00001540	-0.0000829	0.0000033	0.0000065	0.0000014	0.0	
27	-0.00000680	0.0000801	0.0000019	-0.0000017	0.0000028	0.0000013	
28	0.00000940	0.0000072	-0.0000017	-0.0000013	-0.0000013	-0.0000003	
29	-0.00000031	-0.0000365	-0.0000001	0.0000009	-0.0000004	-0.0000002	
30	-0.000000409	0.0000098	0.0000006	0.0000001	0.0000005	0.0000001	
31	0.00000161	0.0000122	-0.0000003	-0.0000003	-0.0000001	0.0	
32	0.00000126	-0.0000085	-0.0000002	0.0000001	-0.0000002	0.0	
33	-0.00000117	-0.0000023	0.0000001	0.0000001	0.0000001	0.0	
SUMS	82.00349932	-12.7324396	113.8894582	78.9022475	-17.2486229	-14.0227617	

D20

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
MERCURY AND VENUS

	DAY	1 THRU 95	JD 2444605.5 TO 2444700.5	DATES JAN	1 THRU APR	5	
		A = 47.5	B = -1.02105263		w = 1		
TERM	H	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
0	43.1421782	-27.912721	2.1837176	42.2995661	-25.160229	3.2825970	
1	1.9341028	8.501274	-0.1688131	3.9662817	14.238389	0.1072237	
2	-0.3275393	-2.222706	0.3010313	-0.1258162	4.195919	-0.0222243	
3	0.7785418	2.949017	0.0534361	-0.0032519	-0.758783	-0.0005239	
4	0.0749615	2.401123	-0.0982058	0.0133164	-0.072819	-0.0001019	
5	-0.2789330	-1.403062	-0.0017282	-0.0006967	0.023175	-0.0000008	
6	-0.0091897	-0.659856	0.0321455	-0.0005457	-0.002486	0.0000035	
7	0.1122163	0.631713	-0.0039137	0.0001650	-0.000632	0.0000028	
8	-0.0027043	0.181419	-0.0111034	0.0000147	0.000243	-0.0000195	
9	-0.0465416	-0.281847	0.0028940	-0.0000525	-0.000099	-0.0000031	
10	0.0040684	-0.045858	0.0036987	-0.0000018	-0.000079	0.0000120	
11	0.0195772	0.124574	-0.0015460	0.0000172	0.000043	0.0000010	
12	-0.0029172	0.008680	-0.0011781	0.0000012	0.000032	-0.0000036	
13	-0.0082799	-0.054758	0.0007066	-0.0000042	-0.000010	-0.0000005	
14	0.0017037	0.000034	0.0003547	0.0000003	-0.000002	0.0000006	
15	0.0035246	0.024091	-0.0002911	0.0000012	-0.000001	0.0000002	
16	-0.0009017	-0.001252	-0.0001025	-0.0000010	0.000004	0.0	
17	-0.0015158	-0.010712	0.0001104	0.0000003	-0.000001	0.0000002	
18	0.0004509	0.000924	0.0000307	0.0	-0.000007	0.0	
19	0.0006625	0.004857	-0.0000392	-0.0000006	0.000004	-0.0000004	
20	-0.0002193	-0.000520	-0.0000112	0.0000008	0.000007	0.0	
21	-0.0002957	-0.002261	0.0000133	0.0000006	-0.000003	0.0000002	
22	0.0001057	0.000269	0.0000055	-0.0000005	-0.000004	0.0	
23	0.0001348	0.001077	-0.0000045	-0.0000006	-0.000001	-0.0000001	
24	-0.0000513	-0.000141	-0.0000032	0.0000001	0.000002	0.0	
25	-0.0000627	-0.000526	0.0000017	0.0000002	0.000002	0.0	
26	0.0000254	0.000075	0.0000019	-0.0000001	0.0	0.0	
27	0.0000297	0.000260	-0.0000008	-0.0000001	0.000001	0.0	
28	-0.0000124	-0.000040	-0.0000011	0.0000003	0.0	0.0	
29	-0.0000144	-0.000129	0.0000004	-0.0000001	-0.000001	0.0	
30	0.0000063	0.000026	0.0000006	-0.0000002	-0.000002	0.0	
31	0.0000068	0.000068	-0.0000003	0.0000004	0.0	0.0	
32	-0.0000034	-0.000015	-0.0000003	0.0	0.0	0.0	
33	-0.0000032	-0.000033	0.0000001	-0.0000002	-0.000001	0.0	
SUMS	45.3931117	-17.766956	2.2912066	46.1489941	-7.537339	3.3669631	

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
 MERCURY AND VENUS

D21

DAYS 91 THRU 185 JD 2444695.5 TO 2444790.5 DATES APR 1 THRU JULY 4

	A =	47.5	B =	-2.91578947	W =	91
	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
TERM 0	55.2412937	26.814488	1.8841559	9.0657677	32.992552	3.3137558
1	3.4908925	12.392160	-0.3798480	4.0207442	9.383469	-0.0980598
2	-1.2762490	-9.289585	-0.0560321	0.0910881	-5.223730	-0.0315201
3	-0.3974478	0.693882	0.1660375	-0.0295593	-0.559704	-0.0001889
4	0.2011977	2.230059	0.0181188	-0.0126879	0.127166	0.0002455
5	0.1199139	-0.228712	-0.0248832	0.0013954	0.024159	0.0000185
6	-0.0018815	-0.289637	0.0041998	0.0008474	-0.001451	-0.0000030
7	-0.0030886	0.138243	0.0043569	0.0000575	-0.001410	0.0000038
8	0.0009204	0.017598	-0.0038797	-0.0000382	0.000011	-0.00000193
9	-0.0067528	-0.065770	-0.0005144	-0.0000496	-0.000034	-0.0000048
10	-0.0024092	0.005768	0.0015423	-0.0000067	0.000016	0.00000115
11	0.0022301	0.017684	-0.0002125	0.0000169	0.000066	0.0000020
12	0.0006932	-0.006631	-0.0004226	0.0000025	-0.000008	-0.0000036
13	-0.0004056	-0.002423	0.0002213	-0.0000048	-0.000014	-0.0000005
14	0.0001178	0.003996	0.0000677	-0.0000026	-0.000001	0.0000010
15	0.0000816	-0.000395	-0.0001140	0.0000009	0.000001	0.0000001
16	-0.0001527	-0.001542	0.0000127	0.0000007	-0.000006	0.0000001
17	-0.0000180	0.000530	0.0000405	0.0000013	-0.000008	0.0000001
18	0.0000626	0.000358	-0.0000186	0.0000014	0.000008	-0.0000005
19	-0.0000081	-0.000315	-0.0000092	-0.0000014	0.000003	-0.0000001
20	-0.00000176	-0.000007	0.0000108	-0.0000018	-0.000003	0.0000004
21	0.00000111	0.000138	-0.0000001	0.0000007	-0.000003	0.0000001
22	0.00000040	-0.000046	-0.0000044	0.0000011	0.000003	-0.0000002
23	-0.00000059	-0.000039	0.0000015	-0.0000005	0.000002	0.0
24	-0.00000003	0.000031	0.0000012	-0.0000006	-0.000001	0.0000001
25	0.00000020	0.000004	-0.0000010	0.0000001	-0.000001	0.0
26	-0.00000008	-0.000015	-0.0000001	0.0000002	-0.000002	0.0
27	-0.00000001	0.000003	0.0000005	-0.0000002	0.000001	0.0
28	0.00000008	0.000006	-0.0000002	0.0000003	0.000001	0.0
29	-0.00000002	-0.000005	-0.0000002	0.0000001	0.000003	0.0
30	-0.00000005	-0.000001	0.0000001	-0.0000003	0.0	0.0
31	0.00000001	-0.000002	0.0	0.0000002	-0.000002	0.0
32	0.00000003	-0.000001	-0.0000001	0.0000004	0.0	0.0
33	-0.00000002	-0.000001	0.0	-0.0000001	0.000002	0.0
SUMS	57.3689829	32.429821	1.6128271	13.1375731	36.741085	3.1842382

D22

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
MERCURY AND VENUS

DAYS 182 THRU 276		JD 2444786.5 TO 2444881.5		DATES JULY 1 THRU OCT 3		
		A = 47.5	B = -4.83157895	M = 182		
	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE
TERM	H	DEG	AU	H	DEG	AU
0	19.8203054	11.900218	1.9867018	23.7905264	1.581959	2.5333676
1	4.6090813	-20.116892	0.1023616	3.5423610	-21.908571	-0.2978310
2	-0.1594052	-5.729510	-0.3233519	-0.0479443	-0.491905	-0.0169347
3	-0.4693825	3.336575	0.0093545	0.0404934	0.852072	0.0018837
4	0.1749799	0.994218	0.0430782	0.0007102	-0.005204	-0.0000506
5	-0.0280941	-0.746202	-0.0227345	-0.0016407	0.001473	-0.0000120
6	-0.0487011	0.213761	-0.0004748	0.0000360	0.000509	0.0000036
7	0.0153338	0.152107	0.0072811	0.0000049	-0.000785	0.0000018
8	0.0051964	-0.097287	-0.0020600	-0.0000016	-0.000062	-0.0000196
9	-0.0072074	-0.000726	-0.0013392	-0.0000480	0.000246	-0.0000023
10	0.0006820	0.032339	0.0012858	-0.0000070	0.000092	0.0000125
11	0.0022752	-0.011510	-0.0000237	0.0000213	-0.000102	0.0000013
12	-0.0011391	-0.006507	-0.0004336	0.0000028	-0.000035	-0.0000038
13	-0.0003148	0.006646	0.0001871	-0.0000039	0.000014	0.0
14	0.0005554	-0.000434	0.0000801	0.0000009	0.000001	0.0000006
15	-0.0001117	-0.002272	-0.0001022	-0.0000009	-0.000001	-0.0000002
16	-0.0001581	0.001096	0.0000125	-0.0000004	-0.000002	-0.0000001
17	0.0001073	0.000398	0.0000332	-0.0000007	0.000008	-0.0000002
18	0.0000141	-0.0000578	-0.00000187	-0.0000008	0.000008	0.0000001
19	-0.0000462	0.000086	-0.0000047	0.0000018	-0.000011	0.0000003
20	0.0000159	0.000181	0.0000093	0.0000016	-0.000011	-0.0000001
21	0.0000110	-0.000110	-0.0000023	-0.0000013	0.000005	-0.0000002
22	-0.0000118	-0.000023	-0.0000028	-0.0000009	0.000004	0.0
23	0.0000005	0.000053	0.0000021	0.0000007	-0.000002	0.0000001
24	0.0000046	-0.000015	0.0000002	0.0000001	0.0	0.0
25	-0.0000020	-0.000016	-0.0000009	-0.0000003	-0.000002	0.0
26	-0.0000007	0.000014	0.0000003	-0.0000002	-0.000001	0.0
27	0.0000012	0.000002	0.0000002	0.0000002	0.000001	0.0
28	-0.0000002	-0.000006	-0.0000002	0.0000001	0.000002	0.0
29	-0.0000004	0.000001	0.0	-0.0000001	0.000001	0.0
30	0.0	0.000004	0.0000001	-0.0000001	0.000001	0.0
31	0.0	-0.000002	-0.0000001	0.0000001	0.000002	0.0
32	0.0	-0.000001	0.0	0.0000001	0.0	0.0
33	0.0000001	-0.000001	0.0	-0.0000002	-0.000001	0.0
SUMS	23.9139888	-10.074393	1.7998385	27.3245102	-19.970297	2.2204168

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
MERCURY AND VENUS

D23

DAYS 274 THRU 368		JD 2444878.5 TO 2444973.5		DATES OCT 1 THRU JAN 3			
	A = 47.5	B = -6.76842105		W = 274			
	MERCURY R A	MERCURY DEC	MERCURY DISTANCE	VENUS R A	VENUS DEC	VENUS DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	31.7871280	-35.063941	2.2178460	36.8726334	-43.694670	1.2559247	
1	3.1846559	-6.428661	0.3548062	2.9071303	2.612982	-0.3416899	
2	1.2369103	-3.258149	-0.0984405	-0.4706817	4.258903	0.0110517	
3	-0.3103621	4.371720	-0.1632168	-0.1550292	-0.730647	0.0062239	
4	-0.1149674	1.301636	0.0676616	-0.0164034	-0.224791	0.0016350	
5	0.1800227	-1.876915	-0.0013315	-0.0010115	0.007139	0.0003974	
6	-0.0961398	0.766784	-0.0232847	-0.0004261	0.003281	0.0000760	
7	-0.0074993	0.198439	0.0134588	0.0004430	-0.000972	0.0000051	
8	0.0421017	-0.447171	-0.0001788	0.0002158	-0.000057	-0.0000189	
9	-0.0267136	0.225220	-0.0045738	-0.0000493	0.000181	0.0000060	
10	0.0016900	0.025375	0.0028673	0.0000336	-0.000017	0.0000122	
11	0.0095355	-0.111674	-0.0001064	0.0000628	0.000021	-0.0000033	
12	-0.0074090	0.068797	-0.0009669	0.0000041	0.000059	-0.0000042	
13	0.0013511	-0.002470	0.0006371	-0.0000148	-0.000001	0.0000002	
14	0.0020489	-0.027300	-0.0000453	-0.0000040	-0.000015	0.0000008	
15	-0.0020024	0.020956	-0.0002010	0.0000016	-0.000013	0.0000002	
16	0.0005931	-0.003765	0.0001427	-0.0000011	-0.000001	-0.0000001	
17	0.0003911	-0.006195	-0.00000178	0.0000010	0.000002	0.0000003	
18	-0.0005227	0.006236	-0.0000395	0.0000024	-0.000004	0.0000001	
19	0.0002163	-0.001994	0.0000310	-0.0000005	0.000005	-0.0000005	
20	0.00000557	-0.001187	-0.0000063	-0.0000014	0.000005	-0.0000001	
21	-0.0001280	0.001772	-0.0000063	-0.0000002	-0.000008	0.0000003	
22	0.00000719	-0.0000845	0.0000064	0.0000003	-0.000004	0.0000001	
23	-0.00000013	-0.0000129	-0.0000023	0.0000001	0.000001	-0.0000001	
24	-0.00000292	0.0000482	-0.0000006	0.0	0.000005	0.0	
25	0.00000227	-0.0000315	0.0000012	0.0000003	0.000001	0.0	
26	-0.0000048	0.000031	-0.0000007	0.0	0.000001	0.0	
27	-0.00000059	0.0000117	0.0000002	-0.0000003	0.000003	0.0	
28	0.00000069	-0.0000111	0.0000002	0.0	-0.000001	0.0	
29	-0.00000028	0.000031	-0.0000002	0.0000001	0.000001	0.0	
30	-0.00000012	0.0000028	0.0000001	0.0000001	0.0	0.0	
31	0.00000022	-0.0000035	0.0	0.0	0.0	0.0	
32	-0.00000009	0.0000015	0.0	0.0000002	-0.000003	0.0	
33	0.0	0.000004	0.0000001	-0.0000001	-0.000001	0.0	
SUMS	35.8810136	-40.243214	2.3650395	39.1369055	-37.768615	0.9336169	

D24

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
MARS AND JUPITER

	DAY	1 THRU 95	JD 2444605.5 TO 2444700.5	DATES JAN	1 THRU APR	5
	A =	47.5	B = -1.02105263	W = 1		
	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
TERM	H	DEG	AU	H	DEG	AU
0	45.2772097	-17.154066	4.6857348	25.0714658	-3.710968	9.5666725
1	2.3626671	13.529862	0.0706447	-0.1726492	1.273887	-0.4508579
2	-0.0500575	0.779278	-0.0044779	-0.0833761	0.502106	0.1208498
3	0.0066885	-0.252999	-0.0001772	0.0113044	-0.079996	0.0167062
4	0.0012071	0.001627	-0.0001238	0.0029259	-0.018397	-0.0017914
5	-0.0002266	0.001616	0.0000091	-0.0000522	0.000393	-0.0003806
6	0.0000098	-0.000220	-0.0000030	-0.0000928	0.000609	0.0000103
7	0.0000153	0.000107	0.0000056	-0.0000084	0.000060	0.0000067
8	0.0000159	0.000070	-0.0000158	-0.0000078	0.000044	0.0000071
9	-0.0000266	-0.000102	-0.0000101	0.0000068	-0.000027	0.0000170
10	-0.0000116	-0.000075	0.0000121	0.0000109	-0.000066	-0.0000080
11	0.0000125	0.000041	0.0000044	-0.0000048	0.000021	-0.0000109
12	0.0000042	0.000033	-0.0000041	-0.0000042	0.000025	0.0000035
13	-0.0000032	-0.000013	-0.0000014	0.0000011	-0.000004	0.0000036
14	-0.0000001	-0.000003	0.0000007	0.0000024	-0.000013	-0.0000006
15	0.0000010	0.0	0.0000004	0.0000005	-0.000005	-0.0000009
16	-0.0000005	0.000004	0.0	-0.0000008	0.000005	-0.0000001
17	0.0	0.000002	0.0000001	0.0000003	-0.000002	0.0
18	-0.0000004	-0.000003	0.0000001	-0.0000010	0.000005	-0.0000002
19	-0.0000004	0.000001	-0.0000003	-0.0000008	0.000006	0.0000002
SUMS	47.5975042	-3.094840	4.7515984	24.8295200	-2.032317	9.2512263
	DAY	91 THRU 185	JD 2444695.5 TO 2444790.5	DATES APR	1 THRU JULY	4
	A =	47.5	B = -2.91578947	W = 91		
	MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
TERM	H	DEG	AU	H	DEG	AU
0	6.0182564	30.474098	4.8403507	24.3397096	0.965537	9.8340415
1	2.3071677	9.888686	0.0026104	-0.0757683	0.314905	0.5619882
2	0.0225596	-1.543935	-0.0156473	0.092639	-0.625062	0.0832541
3	-0.0005451	-0.132971	-0.0015066	0.0037995	-0.016360	-0.0186411
4	-0.0016014	0.013492	-0.0000109	-0.0024146	0.015336	-0.00003023
5	-0.0000041	0.001093	0.0000059	0.0002154	-0.001598	0.0002866
6	0.0000244	0.000022	-0.0000055	0.0000381	-0.000184	-0.0000217
7	0.0000188	0.000059	-0.0000010	-0.0000117	0.000079	0.0000001
8	-0.0000031	0.000032	-0.0000188	0.0000094	-0.000051	0.0000103
9	-0.0000312	-0.000134	0.0000018	0.0000084	-0.000057	-0.0000153
10	0.0000023	0.000002	0.0000141	-0.0000098	0.000049	-0.0000107
11	0.0000140	0.000073	-0.0000008	-0.0000048	0.000032	0.0000093
12	-0.0000016	-0.000005	-0.0000049	0.0000034	-0.000015	0.0000044
13	-0.0000045	-0.000017	0.0000002	0.0000014	-0.000010	-0.0000032
14	-0.0000011	-0.000006	0.0000014	-0.0000026	0.000015	-0.0000013
15	0.0000012	0.000002	-0.0000001	-0.0000002	0.000002	0.0000009
16	0.0000009	-0.000001	-0.0000001	0.0000009	-0.000005	0.0000002
17	0.0000006	-0.000001	0.0	0.0	0.0	0.0000001
18	0.00000011	0.000007	-0.0000004	0.0000014	-0.000009	0.0000002
19	-0.0000013	0.000004	0.0000001	0.0	0.0	-0.0000004
SUMS	8.3458536	38.700500	4.8257882	24.3588394	0.652604	10.4605999

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
 MARS AND JUPITER

D25

DAYS 182 THRU 276		JD 2444786.5 TO 2444881.5		DATES JULY 1 THRU OCT 3			
		A = 47.5	B = -4.83157895				
		MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
TERM	H	DEG	AU	H	DEG	AU	
0	14.7713316	42.367868	4.5238081	25.2428808	-5.431927	12.0897864	
1	2.1932353	-3.680530	-0.1792571	0.5075531	-3.346285	0.4881967	
2	-0.0626875	-1.548674	-0.0305551	0.0449153	-0.242016	-0.0840421	
3	-0.0064309	0.124930	-0.0007609	-0.0059846	0.045577	-0.0084825	
4	0.0011552	0.010014	0.0001258	0.0001561	-0.000682	0.0007999	
5	0.0000425	-0.001562	-0.0000059	0.0000003	-0.000048	-0.0000056	
6	-0.0000407	-0.000011	-0.0000024	-0.0000046	0.000008	-0.0000076	
7	0.0000083	0.000078	-0.0000081	0.0000031	-0.000016	0.0000016	
8	-0.0000300	0.000037	-0.0000081	0.0000021	-0.000019	-0.0000151	
9	-0.0000154	0.000005	0.0000169	-0.0000098	0.000053	-0.0000058	
10	0.0000236	-0.000013	0.0000071	-0.0000023	0.000024	0.0000158	
11	0.0000100	-0.000030	-0.0000083	0.0000073	-0.000040	0.0000037	
12	-0.0000077	-0.000003	-0.0000026	0.0000011	-0.000011	-0.0000064	
13	-0.0000018	0.000005	0.0000022	-0.0000018	0.000009	-0.0000010	
14	0.0000027	0.000009	0.0000002	0.0000004	-0.000003	0.0000015	
15	-0.0000013	0.000005	-0.0000004	-0.0000008	0.000005	-0.0000001	
16	-0.0000006	0.000001	0.0	-0.0000003	0.000002	-0.0000002	
17	-0.0000006	0.000003	0.0	-0.0000003	0.000002	-0.0000001	
18	-0.0000005	-0.000007	0.0000003	-0.0000005	0.000005	0.0000001	
19	0.0000018	-0.000007	0.0	0.0000014	-0.000008	0.0000003	
SUMS	16.8965940	37.272118	4.3133517	25.7895160	-8.975370	12.4862395	
DAYS 274 THRU 368		JD 2444878.5 TO 2444973.5		DATES OCT 1 THRU JAN 3			
		A = 47.5	B = -6.76842105				
		MARS R A	MARS DEC	MARS DISTANCE	JUPITER R A	JUPITER DEC	JUPITER DISTANCE
TERM	H	DEG	AU	H	DEG	AU	
0	22.1377302	15.118947	3.3764069	27.4816034	-19.051896	12.4077154	
1	1.5942892	-9.014294	-0.4073671	0.5955054	-3.315631	-0.3429193	
2	-0.0879056	0.209099	-0.0227823	-0.0240826	0.235708	-0.1078688	
3	-0.0048353	0.156583	0.0025687	-0.0071078	0.036767	0.0051353	
4	-0.0015934	0.000833	0.0003196	-0.0003007	-0.000723	0.0010819	
5	-0.0002668	0.000568	0.0000058	-0.0000111	-0.000059	0.0000083	
6	-0.0000293	0.000152	0.0000069	-0.0000026	0.000031	-0.0000005	
7	-0.0000181	0.000110	-0.0000050	-0.0000005	0.0	-0.0000045	
8	-0.0000237	0.000133	0.0000134	-0.0000095	0.000053	0.0000016	
9	0.0000312	-0.000143	0.0000128	0.0000010	0.000008	0.0000192	
10	0.0000221	-0.000133	-0.0000118	0.0000087	-0.000050	-0.0000019	
11	-0.0000161	0.000061	-0.0000065	-0.0000014	0.000005	-0.0000114	
12	-0.0000079	0.000053	0.0000042	-0.0000028	0.000018	0.0000008	
13	0.0000029	-0.000007	0.0000019	0.0	0.000003	0.0000033	
14	0.0000030	-0.000022	-0.0000005	0.0000016	-0.000007	0.0000002	
15	0.0000008	-0.000004	-0.0000004	0.0000008	-0.000008	-0.0000005	
16	-0.0000008	0.000001	0.0000001	-0.0000007	0.000002	-0.0000001	
17	0.0000005	-0.000005	-0.0000001	0.0000003	-0.000003	0.0000002	
18	-0.0000013	0.000010	-0.0000004	-0.0000009	0.000003	-0.0000004	
19	-0.0000019	0.000010	0.0000002	-0.0000010	0.000010	-0.0000002	
SUMS	23.6373797	6.472762	2.9491664	28.0455996	-22.095769	11.9631586	

D26

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
SATURN AND URANUS

DAYS 1 THRU 95			JD 2444605.5 TO 2444700.5			DATES JAN 1 THRU APR 5		
	A =	47.5	B =	-1.02105263		W =	1	
TERM	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE		
0	25.1477004	-1.906233	17.7926706	31.6489046	-39.652259	37.5805458		
1	-0.1197234	0.939929	-0.4599458	0.0443918	-0.137242	-0.7413314		
2	-0.0444152	0.251288	0.1241964	-0.0331238	0.103392	-0.0026796		
3	0.0066109	-0.048717	0.0159658	-0.0006572	0.000776	0.0218348		
4	0.0011617	-0.006962	-0.0019603	0.0004658	-0.001159	0.0002139		
5	-0.0000680	0.000546	-0.0002700	0.0000251	-0.000053	-0.0002127		
6	-0.0000295	0.000189	0.0000208	-0.0000057	0.000003	-0.0000098		
7	-0.0000010	0.000004	0.0000026	-0.0000004	0.0	-0.0000014		
8	-0.0000050	0.000028	0.0000064	-0.0000034	0.000007	-0.0000060		
9	0.0000030	-0.000012	0.0000172	-0.0000023	0.000017	0.0000179		
10	0.0000054	-0.000032	-0.0000080	0.0000024	-0.000006	0.0000069		
11	-0.0000028	0.000015	-0.0000108	0.0000005	0.000001	-0.0000110		
12	-0.0000017	0.000010	0.0000036	-0.0000002	0.000003	-0.0000028		
13	0.0000006	-0.000003	0.0000036	-0.0000004	0.000003	0.0000036		
SUMS	24.9912354	-0.769950	17.4706921	31.6600168	-39.686517	36.8583682		
DAYS 91 THRU 185			JD 2444695.5 TO 2444790.5			DATES APR 1 THRU JULY 4		
	A =	47.5	B =	-2.91578947		W =	91	
TERM	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE		
0	24.6358005	1.414286	18.0763364	31.4567893	-39.045064	35.9248600		
1	-0.0782542	0.354460	0.5841279	-0.1211989	0.384015	-0.0110953		
2	0.0496240	-0.345691	0.0917338	-0.0005066	0.004226	0.1581639		
3	0.0036767	-0.016985	-0.0182975	0.0051228	-0.016498	-0.0001042		
4	-0.0011123	0.007296	-0.0007914	-0.0000303	-0.000284	-0.0024003		
5	0.0000290	-0.000321	0.0002481	-0.0000666	0.000218	0.0000223		
6	0.0000200	-0.000112	-0.0000025	0.0000022	0.000010	0.0000311		
7	-0.0000027	0.000020	-0.0000005	0.0000005	-0.000004	-0.000006		
8	0.0000050	-0.000028	0.0000101	0.0000006	0.000001	0.0000143		
9	0.0000044	-0.000028	-0.0000147	0.0000032	-0.000017	0.0000019		
10	-0.0000048	0.000025	-0.0000113	0.0000007	-0.000007	-0.0000170		
11	-0.0000028	0.000017	0.0000090	-0.0000024	0.0	-0.0000013		
12	0.0000012	-0.000005	0.0000047	-0.0000014	0.000007	0.0000072		
13	0.0000008	-0.000005	-0.0000031	0.0000007	-0.000003	0.0000004		
SUMS	24.6097848	1.412929	18.7333490	31.3401138	-38.673400	36.0694824		

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
 SATURN AND URANUS

D27

DAYS 182 THRU 276		JD 2444786.5 TO 2444881.5		DATES JULY 1 THRU OCT 3			
	A = 47.5	B = -4.83157895		W = 182			
	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	25.0486046	-1.808670	20.4376141	31.2449154	-38.402335	37.5567449	
1	0.2778174	-1.890330	0.5021522	0.0353369	-0.134566	0.7440289	
2	0.0303677	-0.163534	-0.0991963	0.0316945	-0.106364	0.0050829	
3	-0.0043613	0.031259	-0.0107537	-0.0003504	0.002182	-0.0201470	
4	-0.0000922	0.000419	0.0010821	-0.0003968	0.001667	0.0001090	
5	0.0000173	-0.000110	0.0000270	0.0000190	-0.000081	0.0001546	
6	-0.0000033	0.000014	-0.0000108	0.0000022	-0.000011	-0.0000095	
7	0.0000016	-0.000009	0.0000014	0.0	0.000001	0.0000022	
8	0.0000007	-0.000006	-0.0000148	0.0000020	-0.000004	-0.0000065	
9	-0.0000053	0.000029	-0.0000052	-0.0000003	-0.000001	-0.0000174	
10	-0.0000012	0.000012	0.0000163	-0.0000030	0.000014	0.0000075	
11	0.0000047	-0.000027	0.0000035	0.0000020	-0.000002	0.0000111	
12	0.0000007	-0.000007	-0.0000067	0.0000014	-0.000011	-0.0000029	
13	-0.0000011	0.000005	-0.0000009	-0.0000002	0.0	-0.0000034	
SUMS	25.3523503	-3.830955	20.8309082	31.3112227	-38.639511	38.2859544	
DAYS 274 THRU 368		JD 2444878.5 TO 2444973.5		DATES OCT 1 THRU JAN 3			
	A = 47.5	B = -6.76842105		W = 274			
	SATURN R A	SATURN DEC	SATURN DISTANCE	URANUS R A	URANUS DEC	URANUS DISTANCE	
TERM	H	DEG	AU	H	DEG	AU	
0	26.2506770	-9.350617	20.5617555	31.7287012	-39.979313	39.3575193	
1	0.2984943	-1.715196	-0.4481948	0.1916853	-0.590715	0.0632518	
2	-0.0267554	0.206829	-0.1114406	0.0028739	0.004880	-0.1498988	
3	-0.0053345	0.029749	0.0098391	-0.0038182	0.011966	-0.0021196	
4	0.0000151	-0.000920	0.0015252	-0.0000640	-0.000324	0.0019215	
5	0.0000269	-0.000170	-0.0000202	0.0000193	-0.000081	0.0000227	
6	0.0000003	0.000006	-0.0000043	-0.0000020	0.000009	-0.0000128	
7	-0.0000004	0.000002	-0.0000038	0.0	-0.000001	-0.0000029	
8	-0.0000053	0.000031	0.0000042	-0.0000030	0.000005	-0.0000067	
9	0.0000015	-0.000003	0.0000186	-0.0000021	0.000014	0.0000170	
10	0.0000048	-0.000029	-0.0000049	0.0000021	-0.000006	0.0000075	
11	-0.0000019	0.000010	-0.0000113	0.0000003	0.000002	-0.0000110	
12	-0.0000014	0.000010	0.0000021	-0.0000002	0.000004	-0.0000031	
13	0.0000002	0.0	0.0000034	-0.0000004	0.000003	0.0000033	
SUMS	26.5171212	-10.830298	20.0134682	31.9193922	-40.553557	39.2706882	

D28

 CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
 NEPTUNE AND PLUTO

	DAY	1 THRU 95	JD 2444605.5 TO 2444700.5		DATE	JAN	1 THRU APR	5
TERM		A = 47.5	B = -1.02105263		W =	1		
	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A †	PLUTO DEC †	PLUTO DISTANCE		
0	35.1662994	-43.989290	61.2459377	27.7513423	14.128559	59.2265328		
1	0.0653475	-0.017048	-0.6767562	-0.0224263	0.514640	-0.6073853		
2	-0.0187856	0.016029	-0.0680819	-0.0175434	0.049944	0.0877865		
3	-0.0014080	-0.000793	0.0195655	0.0011899	-0.019706	0.0180554		
4	0.0002480	-0.000150	0.0010053	0.0002988	-0.001010	-0.0013623		
5	0.0000170	0.000019	-0.0001807	-0.0000093	0.000223	-0.0002023		
6	-0.0000027	-0.000004	-0.0000151	-0.0000044	0.000021	0.0000128		
7	0.0	0.0	-0.0000011	-0.0000001	0.0	-0.0000007		
8	-0.0000018	-0.000003	-0.0000110	-0.0000017	0.000008	0.0000027		
9	-0.0000027	0.000009	0.0000129	0.0000003	-0.000010	0.0000185		
10	0.0000006	0.0	0.0000125	0.0000020	-0.000010	-0.0000035		
11	0.0000007	0.000005	-0.0000083	-0.0000003	0.000007	-0.0000116		
SUMS	35.2117124	-43.991226	60.5214796	27.7128478	14.672666	58.7234430		

	DAY	91 THRU 185	JD 2444695.5 TO 2444790.5		DATE	APR	1 THRU JULY	4
TERM		A = 47.5	B = -2.91578947		W =	91		
	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A †	PLUTO DEC †	PLUTO DISTANCE		
0	35.1433968	-43.898422	59.0216279	27.5551363	15.547556	58.7576879		
1	-0.0710080	0.054348	-0.3406806	-0.0607940	0.094711	0.3855722		
2	-0.0101626	0.001560	0.1399657	0.0093109	-0.134610	0.1223857		
3	0.0027353	-0.001703	0.0096183	0.0023101	-0.004697	-0.0123979		
4	0.0001637	-0.000098	-0.0020263	-0.0001821	0.002176	-0.0015899		
5	-0.0000281	-0.000002	-0.0000857	-0.0000208	-0.000011	0.0001456		
6	-0.0000012	0.000004	0.0000232	0.0000030	-0.000026	0.0000161		
7	0.0000002	-0.000002	-0.0000006	-0.0000002	0.000002	0.0		
8	-0.0000001	0.000001	0.0000125	0.0000007	-0.000010	0.0000126		
9	0.0000012	-0.000008	0.0000104	0.0000022	-0.000008	-0.0000097		
10	0.0000018	-0.000004	-0.0000146	-0.0000009	0.000012	-0.0000145		
11	-0.0000011	-0.000008	-0.0000064	-0.0000014	0.000005	0.0000057		
SUMS	35.0650979	-43.844334	58.8284438	27.5057638	15.505100	59.2518138		

†ASTROMETRIC POSITION, EQUINOX AND EQUATOR 1950.0

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
 NEPTUNE AND PLUTO

D29

DAYS 182 THRU 276		JD 2444786.5 TO 2444881.5		DATES JULY 1 THRU OCT 3			
A =	B =	A = 47.5	B = -4.83157895	W = 182			
		NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A †	PLUTO DEC †	PLUTO DISTANCE
TERM	H	DEG	AU	H	DEG	AU	
0	34.9126813	-43.793463	59.7286867	27.5406239	14.214689	60.9074546	
1	-0.0267903	-0.014674	0.6570595	0.0581518	-0.719191	0.5833071	
2	0.0190458	-0.017599	0.0720551	0.0158860	-0.043440	-0.0763957	
3	0.0012260	-0.000401	-0.0186898	-0.0011124	0.015883	-0.0159983	
4	-0.0002841	0.000361	-0.0009440	-0.0001778	0.000354	0.0009656	
5	-0.0000064	0.000017	0.0001664	0.0000108	-0.000103	0.0001084	
6	0.0000026	0.000001	0.0000032	0.0000008	0.000002	-0.0000128	
7	0.0000001	-0.000001	0.0000017	0.0000002	-0.000002	0.0000014	
8	0.0000012	0.000004	-0.0000003	0.0000010	-0.000001	-0.0000126	
9	0.0000015	-0.000001	-0.0000192	-0.0000018	0.0000015	-0.0000096	
10	-0.0000020	0.000004	-0.0000002	-0.0000012	0.0	0.0000144	
11	0.0000009	0.000004	0.0000122	0.0000012	-0.000009	0.0000063	
SUMS	34.9058766	-43.825748	60.4383313	27.6133825	13.468197	61.3994288	
DAYS 274 THRU 368		JD 2444878.5 TO 2444973.5		DATES OCT 1 THRU JAN 3			
A =	B =	A = 47.5	B = -6.76842105	W = 274			
		NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A †	PLUTO DEC †	PLUTO DISTANCE
TERM	H	DEG	AU	H	DEG	AU	
0	35.0860089	-44.031903	62.0011981	27.8826377	11.855296	61.3834044	
1	0.1088021	-0.091469	0.3508254	0.1004113	-0.369313	-0.3791977	
2	0.0096861	0.003347	-0.1365670	-0.0069948	0.120950	-0.1284110	
3	-0.0024257	0.002672	-0.0102667	-0.0022839	0.008169	0.0094694	
4	-0.0001235	-0.000145	0.0018638	0.0000531	-0.001424	0.0019001	
5	0.0000182	-0.000044	0.0000841	0.0000176	-0.000095	-0.0000586	
6	-0.0000012	-0.000001	-0.0000181	-0.0000007	0.000009	-0.0000113	
7	0.0	0.0	-0.0000020	-0.0000001	0.000001	-0.0000028	
8	-0.0000015	-0.000004	-0.0000114	-0.0000018	0.000009	0.0000020	
9	-0.0000024	0.000008	0.0000121	0.0000001	-0.000008	0.0000188	
10	0.0000005	-0.000001	0.0000129	0.0000020	-0.000010	-0.0000027	
11	0.0000004	0.000005	-0.0000082	-0.0000001	0.000006	-0.0000117	
SUMS	35.2019619	-44.117535	62.2071230	27.9738404	11.613590	60.8870989	

† ASTROMETRIC POSITION, EQUINOX AND EQUATOR 1950.0

D30

CHEBYSHEV APPROXIMATION OF SIDEREAL TIME FOR YEAR 1981

DAY	1 THRU 366	JD 2444605.5 TO 2444971.5	DATES JAN	1 THRU JAN	1
	A = 183.0	B = -1.00546448	W = 1		
TERM	H	S	NUT LON	NUT OBL	
0	37.45736644	-1.7739	-29.0017	-10.0696	"
1	12.02486204	-0.1284	-2.0988	1.2408	
2	0.00000651	0.0234	0.3830	-0.2546	
3	-0.00000090	-0.0032	-0.0530	-0.0316	
4	0.00000563	0.0203	0.3314	-0.3432	
5	0.00001712	0.0616	1.0076	0.1965	
6	-0.00000514	-0.0185	-0.3026	0.2969	
7	-0.00000487	-0.0175	-0.2864	-0.0457	
8	0.00000126	0.0045	0.0740	-0.0912	
9	0.00000149	0.0054	0.0878	0.0179	
SUMS	49.48224958	-1.8263	-29.8587	-9.0838	

CHEBYSHEV APPROXIMATION OF SOLAR COORDINATES FOR YEAR 1981

DAY	1 THRU 366	JD 2444605.5 TO 2444971.5	DATES JAN	1 THRU JAN	1
	A = 183.0	B = -1.00546448	W = 1		
TERM	R A	DEC	DISTANCE	S D	EPHEM TR
0	61.4822161	-13.448917	1.99000552	32.20494	24.0267581
1	11.8888050	-2.545772	0.00026253	-0.00426	-0.1355983
2	0.0316312	-22.455831	-0.01628221	0.26216	0.0342762
3	0.0729746	2.932212	-0.00030523	0.00488	0.0730723
4	0.0421818	6.640391	0.00501259	-0.07888	0.0436374
5	0.1036318	-0.392400	0.000004084	-0.00056	0.1027980
6	-0.0328361	-0.497517	-0.00041278	0.00538	-0.0341946
7	-0.0437276	0.067514	-0.00000159	-0.00001	-0.0434334
8	0.0076304	0.071033	0.00000700	0.00018	0.0079191
9	0.0074014	-0.040916	-0.00000212	0.00004	0.0073250
10	-0.0021233	-0.035263	0.00000037	-0.00003	-0.0021957
11	-0.0016556	0.012769	-0.00000104	0.00002	-0.0016131
12	0.0010535	0.008518	-0.00000557	0.00009	0.0010900
13	0.0006757	-0.003202	-0.00000665	0.00001	0.0006566
14	-0.0003838	-0.001691	-0.00000783	0.00013	-0.0004006
15	-0.0001940	0.001150	0.00000027	0.0	-0.0001876
16	0.0001112	0.000480	-0.00000635	0.00010	0.0001123
17	0.0000121	-0.000406	0.00000164	-0.00003	0.0000099
18	-0.0000421	-0.000067	-0.00000009	0.0	-0.0000434
19	-0.0000424	0.000135	0.00000139	-0.00002	-0.0000400
20	0.0000206	0.000090	0.00000711	-0.00012	0.0000244
21	0.0000036	-0.000043	-0.00000027	0.0	0.0000036
SUMS	73.5573441	-29.687733	1.97831353	32.39402	24.0799762

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
 MERCURY AND VENUS

D31

TERMS	DAYS		1 THRU 366		JD 2444605.5 TO 2444971.5		DATES JAN		1 THRU JAN		'1	
	A =	183.0	B =	-1.00546448	C =		DATES	JAN	E =	1	F =	'1
	MERCURY	MERCURY	MERCURY	VENUS	VENUS	VENUS						
	R A	DEC	DISTANCE	R A	DEC	DISTANCE						
0	61.7405269	-16.052609	2.2594612	63.6023510	-20.080416	2.4013266						
1	11.9814591	-2.402592	0.0608041	14.2219675	-3.064836	-0.6544405						
2	0.2399187	-21.0244467	0.2201918	-0.5942563	-17.983185	-0.3118483						
3	-0.0880844	2.676907	-0.0431572	-0.2712537	8.903777	0.0535971						
4	0.4475511	6.467888	0.0944790	-0.1929959	10.767675	0.0233602						
5	0.4919525	-1.291367	-0.0910615	-0.0622092	-3.218778	-0.0006679						
6	-0.0726449	-4.372148	0.0157330	-0.1567685	-1.994440	0.0001935						
7	0.5088579	2.883488	-0.0992964	-0.0802449	0.251723	0.0025447						
8	-0.5771584	2.275962	-0.1827225	0.0536095	0.103813	0.0009557						
9	-0.5950335	0.062782	0.1563805	0.0182819	-0.130145	0.0000312						
10	0.4630848	2.487212	0.1114170	-0.0158135	-0.009405	0.0000810						
11	0.2364815	-2.577179	-0.0503476	-0.0031804	0.096337	0.0000857						
12	-0.0365836	-2.788896	-0.0323301	0.0040701	0.003169	0.0000219						
13	-0.1029603	1.257756	-0.0112569	-0.0004646	-0.037930	0.0000003						
14	0.0004866	1.122391	0.0076667	-0.0020451	-0.000064	-0.0000070						
15	0.0686176	0.403806	-0.0147592	0.0009924	0.009953	-0.0000006						
16	-0.1695919	-0.276970	0.0012615	0.0012497	-0.001581	-0.0000095						
17	-0.0163536	0.035285	0.0270573	-0.0003449	-0.002623	-0.0000010						
18	0.1502036	0.031453	0.0003291	-0.0003892	0.001682	-0.0000050						
19	0.0228860	-0.766205	-0.0029340	0.0001116	0.000982	-0.0000005						
20	-0.0162477	-0.052529	-0.0088473	0.0000671	-0.000962	0.0000038						
21	-0.0526641	0.389418	-0.0131757	-0.0001171	-0.000403	-0.0000003						
22	-0.0307271	0.265352	0.0072637	-0.0000195	0.000406	0.0000089						
23	0.0226548	0.230348	0.0090015	0.0000803	0.000153	0.0000004						
24	0.0028767	-0.260338	0.0008752	0.0000265	-0.000139	0.0000023						
25	0.0208090	-0.286807	-0.0017328	0.0000177	0.000022	0.0000007						
26	0.0138514	-0.010540	-0.0017879	0.0000137	0.000023	-0.0000086						
27	-0.0123424	0.056945	-0.0005548	-0.0000041	-0.000060	-0.0000006						
28	-0.0092950	0.117766	-0.0023348	-0.0000175	0.000035	-0.0000042						
29	-0.0151706	0.053128	0.0002076	-0.0000401	0.000016	-0.0000014						
30	0.0025440	0.036598	0.0025580	-0.0000078	0.000057	0.0000096						
31	0.0128989	-0.024929	0.0005612	0.0000200	0.000039	0.0000011						
32	0.0028023	-0.134653	0.0006685	0.0000098	-0.000152	-0.0000001						
33	0.0059168	-0.030038	-0.0006227	0.0000210	-0.000080	0.0000011						
34	-0.0036078	0.045564	-0.0022565	0.0000016	0.000108	-0.0000101						
35	-0.0111051	0.046228	-0.0002101	-0.0000352	0.000067	-0.0000023						
36	-0.0019998	0.055695	0.0013994	-0.0000091	0.000002	0.0000122						
37	0.0038978	-0.009202	0.0007109	0.0000275	-0.000026	0.0000022						
38	0.0056016	-0.048674	-0.0003205	0.0000087	-0.000071	-0.0000085						
39	0.0008001	-0.033683	-0.0002181	-0.0000145	0.000004	-0.0000015						
40	-0.0018732	-0.002939	0.0000834	-0.0000032	0.000075	0.0000043						
41	0.0001814	0.027876	-0.0003647	0.0000068	0.000008	0.0000006						
42	-0.0025760	0.018248	-0.0002363	0.0000011	-0.000044	-0.0000019						
43	-0.0020592	0.008799	0.0002477	-0.0000037	-0.000006	-0.0000003						
44	0.0016817	-0.000233	0.0002380	-0.0000008	0.000025	0.0000005						
45	0.0022311	-0.020703	0.0001936	0.0000013	-0.000002	0.0000002						
46	0.0013988	-0.013985	-0.0000356	-0.0000004	-0.000013	-0.0000001						
47	-0.0010056	0.000259	-0.0003345	-0.0000003	-0.000001	0.0000001						
48	-0.0018494	0.009731	-0.0001426	0.0000006	-0.000001	0.0000001						
49	-0.0003705	0.015638	0.0001673	0.0000007	0.000001	0.0						
SUMS	74.6308686	-31.399143	2.4179169	76.5226986	-26.385211	1.5152258						

D32

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
MARS AND JUPITER

TERMS	1	THRU	366	JD 2444605.5 TO 2444971.5	DATES JAN	1	THRU JAN	1
	A =	183.0		B = -1.00546448		W =	1	
	MARS	MARS	MARS	JUPITER	JUPITER	JUPITER		
	R A	DEC	DISTANCE	R A	DEC	DISTANCE		
0	57.7373362	6.890649	4.1598170	25.9316476	-9.241476	11.0139071		
1	8.2884354	10.881060	-0.4502900	0.8063042	-5.028796	0.7391452		
2	-0.4367743	-16.964085	-0.3173807	0.6314552	-3.852734	0.0451735		
3	-0.1708340	-0.606305	-0.0498500	0.0011636	0.282994	-0.5826934		
4	-0.0645301	2.729453	0.0115076	-0.1558343	1.016784	0.0271483		
5	0.0427893	-0.148109	0.0065896	0.0393457	-0.285047	0.0707082		
6	0.0029222	-0.168204	0.0002032	0.0074093	-0.047535	-0.0200408		
7	-0.0126767	0.008161	0.0000304	-0.0134567	0.081135	0.0002447		
8	-0.0006886	0.025557	0.0000222	0.0039340	-0.028085	0.0039379		
9	0.0017251	0.003263	-0.0000139	0.0013654	-0.006590	-0.0017067		
10	0.0002232	-0.006057	-0.0000016	-0.0014785	0.009906	-0.0000971		
11	-0.0003930	-0.000325	0.0000016	0.0003464	-0.002958	0.0003745		
12	-0.0000877	0.001169	-0.0000054	0.0002002	-0.001126	-0.0001441		
13	0.0000848	0.000168	0.0000025	-0.0001753	0.001295	-0.0000267		
14	0.0000055	-0.000159	-0.0000040	0.0000248	-0.000293	0.0000414		
15	-0.0000310	0.000025	0.0000050	0.0000308	-0.000201	-0.0000152		
16	-0.0000055	0.000103	-0.0000003	-0.0000262	0.000202	-0.0000037		
17	-0.0000057	0.000014	0.0000054	0.0000029	-0.000034	0.0000095		
18	0.0000096	0.000010	0.0000045	0.0000020	-0.000019	-0.0000013		
19	-0.0000027	-0.000045	0.0000014	-0.0000033	0.000034	0.0000075		
20	0.0000105	-0.000030	0.0000060	0.0000016	-0.000012	0.0000003		
21	0.0000097	-0.000049	-0.0000045	-0.0000001	0.000002	0.0000048		
SUMS	65.3875222	2.646264	3.3606460	27.2522593	-17.102554	11.2959739		

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
SATURN AND URANUS

TERMS	1	THRU	366	JD 2444605.5 TO 2444971.5	DATES JAN	1	THRU JAN	1
	A =	183.0		B = -1.00546448		W =	1	
	SATURN	SATURN	SATURN	URANUS	URANUS	URANUS		
	R A	DEC	DISTANCE	R A	DEC	DISTANCE		
0	25.4971384	-4.354863	19.2212706	31.6031690	-39.535914	38.0714827		
1	0.3656300	-2.398019	0.7003175	0.0616430	-0.213710	0.4285962		
2	0.3580949	-2.273456	-0.0102046	0.1350334	-0.430366	0.7214546		
3	-0.0046792	0.226716	-0.6304830	0.1024152	-0.312216	-0.4423736		
4	-0.0990595	0.628579	0.0247389	-0.0441820	0.151269	-0.2139398		
5	0.0143811	-0.120517	-0.0840546	-0.0147565	0.052903	0.0729470		
6	0.0064375	-0.035956	-0.0136840	0.0062744	-0.021034	0.0174991		
7	-0.0051290	0.032252	-0.0019107	0.0005456	-0.005761	-0.0066935		
8	0.0009026	-0.007654	0.0028571	-0.0008313	0.002861	-0.0001114		
9	0.0006796	-0.003503	-0.0008617	0.0000989	0.000557	0.0006173		
10	-0.0003723	0.002665	-0.0002046	0.0001050	-0.000484	-0.0001262		
11	0.0000180	-0.000356	0.0001828	-0.0000293	-0.000025	-0.0000707		
12	0.0000606	-0.000375	-0.0000343	-0.0000115	0.000085	0.0000204		
13	-0.0000268	0.0000218	-0.0000242	0.0000064	-0.000011	0.0000023		
14	-0.0000052	0.000009	0.0000139	-0.0000012	-0.000014	-0.0000084		
15	0.0000063	-0.000046	-0.0000027	-0.0000002	-0.000003	-0.0000011		
SUMS	26.1340770	-8.304306	19.3760256	31.8494789	-40.311863	38.6492949		

CHEBYSHEV APPROXIMATION OF PLANETARY COORDINATES FOR YEAR 1981
NEPTUNE AND PLUTO

D33

DAYS	1 THRU 366		JD 2444605.5 TO 2444971.5		DATES JAN		1 THRU JAN 1	
	A =	183.0	B =	-1.00546448	W =	1		
TERM	NEPTUNE R A	NEPTUNE DEC	NEPTUNE DISTANCE	PLUTO R A†	PLUTO DEC †	PLUTO DISTANCE		
0	35.0997610	-43.969787	61.0936677	27.7516666	13.434885	60.2112174		
1	0.0031592	-0.029723	0.1697362	0.0520727	-0.667417	0.4990437		
2	0.0383795	-0.066253	0.9276180	0.1099167	-0.784107	0.2075010		
3	0.0862003	-0.047564	-0.1977892	0.0260499	0.238948	-0.6167311		
4	-0.0125712	0.021856	-0.2848170	-0.0339496	0.232608	-0.0563304		
5	-0.0138488	0.009572	0.0323717	-0.0025879	-0.046152	0.0918694		
6	0.0016794	-0.000353	0.0264799	0.0032984	-0.016697	0.0010523		
7	0.0010864	-0.001598	-0.0027693	-0.0003526	0.005958	-0.0047211		
8	-0.0002085	-0.000465	-0.0011306	-0.0001531	-0.000656	0.0009424		
9	-0.0000738	0.000259	0.0002339	0.0001039	-0.000631	-0.0000736		
10	0.0000275	0.000079	0.0000254	-0.0000039	0.000258	-0.0001431		
11	0.0000089	-0.000045	-0.0000323	-0.0000114	0.000035	0.0000193		
12	-0.0000035	-0.000009	0.0000002	0.0000028	-0.0000035	0.0000086		
13	-0.0000021	0.000011	0.0000056	0.0000006	0.000002	0.0000016		
SUMS	35.2035943	-44.084020	61.7636002	27.9060531	12.396999	60.3336564		

†ASTROMETRIC POSITION, EQUINOX AND EQUATOR 1950.0

Section E: STELLAR TABLES

INDEX OF STANDARD NAVIGATION STARS

	Nav. No.	A/C ID		Nav. No.	A/C ID
Acamar	7	18	Gacrux	31	88
Achernar	5	11	Gienah	29	85
Crux	30	86	Hadar	35	104
Adhara	19	50	Hamal	6	15
Aldebaran	10	26	Kaus Australis	48	150
Alioth	32	94	Kochab	40	114
Alkaid	34	101	Markab	57	175
Al Na'ir	55	170	Menkar	8	19
Alnilam	15	37	Menkent	36	105
Alphard	25	71	Miaplacidus	24	68
Alphecca	41	120	Mirfak	9	21
Alpheratz	1	1	Nunki	50	153
Altair	51	160	Peacock	52	162
Ankaa	2	5	Pollux	21	60
Antares	42	128	Procyon	20	59
Arcturus	37	106	Rasalhague	46	143
Atria	43	133	Regulus	26	74
Avior	22	64	Rigel	11	29
Bellatrix	13	31	Rigel Kentaurus	38	109
Betelgeuse	16	42	Sabik	44	136
Canopus	17	46	Schedar	3	6
Capella	12	30	Shaula	45	142
Deneb	53	164	Sirius	18	48
Denebola	28	82	Spica	33	99
Diphda	4	7	Suhail	23	67
Dubhe	27	79	Vega	49	152
Elnath	14	32	Zubenelgenubi	39	113
Eltanin	47	147	Polaris		17
Enif	54	168			
Fomalhaut	56	173			

STAR POSITIONS FOR YEAR 1981

E3

DAYS 1 THRU 365				JD 2444605.5 TO 2444970.5				DATES JAN 1 THRU DEC 31			
				A = 365.0 B = -0.00273973				W = 1			
ID	NAV	NAME	MAG/SP	MEAN PLACE		H	R	S	C	APPT	PLACE
1	1	ALPHA AND ALPHERATZ	2.1 A0	SHA DEC	358.1496 28.9856	0 0.0023 -0.0015	0 -0.0115 0.0051	0 0.0059 -0.0024	0 0.0009 0.0024	0 358.1452 28.9843	0
2		BETA CAS CAPH	2.4 F5	SHA DEC	357.9613 59.0450	0.0004 -0.0015	-0.0110 0.0052	0.0100 -0.0019	0.0015 0.0046	357.9547 59.0415	
3		GAMMA PEG ALGENIB	2.9 B2	SHA DEC	356.9363 15.0781	0.0028 -0.0015	-0.0117 0.0052	0.0054 -0.0023	0.0007 0.0011	356.9325 15.0781	
4		BETA HYI	2.9 G0	SHA DEC	353.8075 -77.3614	0.0102 -0.0016	-0.0122 0.0052	0.0238 -0.0000	0.0016 -0.0056	353.8101 -77.3548	
5	2	ALPHA PHE ANKAA	2.4 K0	SHA DEC	353.6633 -42.4092	0.0047 -0.0016	-0.0119 0.0052	0.0071 -0.0013	0.0005 -0.0041	353.6616 -42.4040	
6	3	ALPHA CAS SCHEDAR	2.3 K0	SHA DEC	350.1450 56.4333	0.0010 -0.0017	-0.0122 0.0052	0.0095 -0.0014	-0.0000 0.0045	350.1400 56.4297	
7	4	BETA CET DIPHDA	2.2 K0	SHA DEC	349.3413 -18.0906	0.0037 -0.0017	-0.0117 0.0052	0.0055 -0.0021	-0.0001 -0.0022	349.3392 -18.0875	
8		GAMMA CAS	2-3 B0	SHA DEC	346.1125 60.6142	0.0009 -0.0018	-0.0129 0.0051	0.0107 -0.0009	-0.0008 0.0047	346.1078 60.6102	
9		BETA AND MIRACH	2.4 M0	SHA DEC	342.8342 35.5200	0.0024 -0.0019	-0.0125 0.0051	0.0064 -0.0015	-0.0009 0.0029	342.8312 35.5178	
10		DELTA CAS RUCHBAH	2.8 A5	SHA DEC	338.8600 60.1369	0.0013 -0.0019	-0.0140 0.0050	0.0104 -0.0003	-0.0023 0.0046	338.8566 60.1329	
11	5	ALPHA ERI ACHERNAR	0.6 B5	SHA DEC	335.7483 -57.3331	0.0048 -0.0020	-0.0094 0.0049	0.0095 -0.0022	-0.0026 -0.0049	335.7511 -57.3277	
12		BETA ARI SHERATAN	2.7 A5	SHA DEC	331.6033 20.7156	0.0029 -0.0021	-0.0125 0.0048	0.0054 -0.0015	-0.0019 0.0015	331.6019 20.7144	
13		ALPHA HYI	3.0 F0	SHA DEC	330.4575 -61.6619	0.0047 -0.0021	-0.0081 0.0048	0.0105 -0.0025	-0.0041 -0.0049	330.4622 -61.6567	
14		GAMMA-1 AND ALMAK	2.3 K0	SHA DEC	329.3183 42.2392	0.0025 -0.0021	-0.0137 0.0047	0.0067 -0.0005	-0.0027 0.0033	329.3168 42.2362	
15	6	ALPHA ARI HAMAL	2.2 K2	SHA DEC	328.4754 23.3731	0.0029 -0.0021	-0.0127 0.0047	0.0054 -0.0013	-0.0023 0.0017	328.4743 23.3716	
16		BETA TRI	3.1 A5	SHA DEC	327.8979 34.8981	0.0027 -0.0021	-0.0133 0.0047	0.0060 -0.0008	-0.0026 0.0027	327.8966 34.8956	
17		ALPHA UMI POLARIS	2.1 F8	SHA DEC	326.8271 89.1781	-0.0441 -0.0021	-0.1704 0.0046	0.3394 0.0019	-0.1576 0.0052	326.8554 89.1731	
18	7	THETA ERI ACAMAR	3.4 A2	SHA DEC	315.6150 -40.3803	0.0035 -0.0022	-0.0091 0.0041	0.0058 -0.0035	-0.0042 -0.0033	315.6181 -40.3771	
19	8	ALPHA CET MENKAR	2.8 M0	SHA DEC	314.6792 4.0158	0.0032 -0.0022	-0.0120 0.0041	0.0044 -0.0020	-0.0033 -0.0001	314.6797 4.0157	
20		BETA PER ALGOL	2-3 B8	SHA DEC	313.2683 40.8833	0.0031 -0.0022	-0.0147 0.0040	0.0057 0.0003	-0.0045 0.0027	313.2686 40.8804	

E4

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
21	9	ALPHA PER MIRFAK	1.9 F5	SHA DEC	0 309.2604 49.7947	0 0.0032 -0.0022	0 -0.0160 0.0037	0 0.0063 0.0011	0 -0.0058 0.0030	0 309.2614 49.7914
22		ETA TAU ALCYONE	3.0 B5	SHA DEC	303.4121 24.0472	0.0033 -0.0022	-0.0136 0.0034	0.0041 -0.0005	-0.0045 0.0012	303.4132 24.0455
23		ZETA PER	2.9 B1	SHA DEC	301.7663 31.8281	0.0034 -0.0022	-0.0143 0.0032	0.0042 0.0001	-0.0050 0.0016	301.7675 31.8258
24		EPSILON PER	3.0 B1	SHA DEC	300.8563 39.9564	0.0035 -0.0022	-0.0152 0.0032	0.0046 0.0008	-0.0056 0.0021	300.8578 39.9537
25		GAMMA ERI	3.2 K5	SHA DEC	300.7146 -13.5619	0.0032 -0.0022	-0.0108 0.0032	0.0036 -0.0031	-0.0044 0.0013	300.7168 -13.5613
26	10	ALPHA TAU ALDEBARAN	1.1 K5	SHA DEC	291.2929 16.4719	0.0034 -0.0021	-0.0132 0.0025	0.0030 -0.0009	-0.0051 0.0004	291.2949 16.4706
27		IOTA AUR	2.9 K2	SHA DEC	286.0617 33.1372	0.0038 -0.0021	-0.0149 0.0020	0.0029 0.0007	-0.0061 0.0010	286.0641 33.1352
28		BETA ERI	2.9 A3	SHA DEC	283.2713 -5.1100	0.0032 -0.0020	-0.0114 0.0018	0.0022 -0.0026	-0.0052 -0.0006	283.2740 -5.1105
29	11	BETA ORI RIGEL	0.3 B8	SHA DEC	281.5942 -8.2228	0.0031 -0.0020	-0.0111 0.0017	0.0021 -0.0029	-0.0053 -0.0007	281.5971 -8.2232
30	12	ALPHA AUR CAPELLA	0.2 G0	SHA DEC	281.1792 45.9800	0.0043 -0.0020	-0.0169 0.0016	0.0029 0.0019	-0.0076 0.0012	281.1827 45.9777
31	13	GAMMA ORI BELLATRIX	1.7 B2	SHA DEC	278.9721 6.3333	0.0034 -0.0019	-0.0124 0.0014	0.0018 -0.0017	-0.0054 -0.0002	278.9747 6.3323
32	14	BETA TAU ELNATH	1.8 B8	SHA DEC	278.7275 28.5925	0.0039 -0.0019	-0.0145 0.0014	0.0021 0.0004	-0.0061 0.0005	278.7302 28.5908
33		BETA LEP	3.0 G0	SHA DEC	278.1421 -20.7739	0.0028 -0.0019	-0.0099 0.0014	0.0019 -0.0038	-0.0058 -0.0010	278.1457 -20.7741
34		DELTA ORI	2.5 B0	SHA DEC	277.2413 -0.3122	0.0032 -0.0019	-0.0118 0.0013	0.0017 -0.0023	-0.0054 -0.0004	277.2440 -0.3131
35		ALPHA LEP	2.7 F0	SHA DEC	277.0271 -17.8350	0.0029 -0.0019	-0.0102 0.0013	0.0017 -0.0036	-0.0057 -0.0009	277.0306 -17.8354
36		IOTA ORI	2.9 05	SHA DEC	276.3742 -5.9214	0.0031 -0.0019	-0.0113 0.0012	0.0016 -0.0027	-0.0055 -0.0006	276.3771 -5.9221
37	15	EPSILON ORI ALNILAM	1.7 B0	SHA DEC	276.1879 -1.2131	0.0032 -0.0019	-0.0117 0.0012	0.0016 -0.0023	-0.0055 -0.0004	276.1907 -1.2139
38		ZETA TAU	3.0 B3	SHA DEC	275.8729 21.1319	0.0037 -0.0019	-0.0138 0.0012	0.0017 -0.0003	-0.0059 0.0002	275.8756 21.1305
39		ALPHA COL PHACT	2.7 B5	SHA DEC	275.2600 -34.0836	0.0024 -0.0019	-0.0084 0.0011	0.0018 -0.0047	-0.0066 -0.0012	275.2648 -34.0837
40		ZETA ORI ALNITAK	2.0 B0	SHA DEC	275.0500 -1.9517	0.0032 -0.0018	-0.0116 0.0011	0.0015 -0.0024	-0.0055 -0.0005	275.0529 -1.9525
41		KAPPA ORI	2.2 B0	SHA DEC	273.2863 -9.6756	0.0030 -0.0018	-0.0109 0.0009	0.0014 -0.0030	-0.0056 -0.0006	273.2894 -9.6763
42	16	ALPHA ORI BETELGEUSE	0-1 M0	SHA DEC	271.4642 7.4044	0.0034 -0.0018	-0.0125 0.0008	0.0012 -0.0015	-0.0056 -0.0003	271.4670 7.4033
43		BETA AUR MENKALINAN	2.1 A0	SHA DEC	270.4663 44.9469	0.0046 -0.0017	-0.0169 0.0007	0.0015 0.0020	-0.0079 0.0004	270.4703 44.9451

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
44		THETA AUR	2.7 A0	SHA DEC	0 270.3938 37.2125	0 0.0043 -0.0017	0 -0.0157 0.0007	0 0.0014 0.0013	0 -0.0070 0.0003	0 270.3972 37.2108
45		BETA CMA MIRZAM	2.0 B1	SHA DEC	264.5346 -17.9458	0.0027 -0.0016	-0.0101 0.0001	0.0006 -0.0037	-0.0060 -0.0005	264.5382 -17.9468
46	17	ALPHA CAR CANOPUS	-0.9 F0	SHA DEC	264.1175 -52.6850	0.0012 -0.0016	-0.0050 0.0001	0.0008 -0.0055	-0.0093 -0.0006	264.1255 -52.6860
47		GAMMA GEM ALHENA	1.9 A0	SHA DEC	260.8463 16.4164	0.0037 -0.0015	-0.0133 -0.0002	0.0002 -0.0007	-0.0059 -0.0004	260.8492 16.4152
48	18	ALPHA CMA A SIRIUS	-1.6 A0	SHA DEC	258.9229 -16.6897	0.0027 -0.0014	-0.0103 -0.0004	0.0000 -0.0036	-0.0059 -0.0004	258.9264 -16.6910
49		TAU PUP	2.8 K0	SHA DEC	257.6342 -50.5917	0.0011 -0.0014	-0.0055 -0.0005	-0.0001 -0.0055	-0.0089 -0.0001	257.6415 -50.5932
50	19	EPSILON CMA ADHARA	1.6 B1	SHA DEC	255.5304 -28.9456	0.0022 -0.0013	-0.0090 -0.0007	-0.0003 -0.0045	-0.0065 -0.0001	255.5346 -28.9471
51		OMICRON-2 CMA	3.1 B5	SHA DEC	254.4421 -23.8047	0.0024 -0.0013	-0.0095 -0.0008	-0.0004 -0.0041	-0.0062 -0.0001	254.4459 -23.8062
52		DELTA CMA WEZEN	2.0 F8	SHA DEC	253.0954 -26.3622	0.0023 -0.0012	-0.0093 -0.0009	-0.0006 -0.0043	-0.0063 -0.0001	253.0994 -26.3639
53		PI PUP	2.7 K5	SHA DEC	250.8821 -37.0628	0.0018 -0.0012	-0.0080 -0.0011	-0.0009 -0.0049	-0.0070 0.0002	250.8869 -37.0647
54		ETA CMA	2.4 B5	SHA DEC	249.1642 -29.2653	0.0022 -0.0011	-0.0090 -0.0012	-0.0010 -0.0045	-0.0064 0.0002	249.1682 -29.2672
55		BETA CMI	3.1 B8	SHA DEC	248.4700 8.3286	0.0035 -0.0011	-0.0125 -0.0013	-0.0009 -0.0015	-0.0056 -0.0006	248.4729 8.3275
56		SIGMA PUP	3.3 K5	SHA DEC	247.8433 -43.2625	0.0014 -0.0011	-0.0071 -0.0013	-0.0013 -0.0052	-0.0076 0.0005	247.8488 -43.2648
57		ALPHA GEM A CASTOR	2.0 A0	SHA DEC	246.6533 31.9311	0.0045 -0.0010	-0.0149 -0.0014	-0.0013 0.0008	-0.0065 -0.0011	246.6569 31.9304
58		ALPHA GEM B	2.8 A0	SHA DEC	246.6525 31.9311	0.0045 -0.0010	-0.0149 -0.0014	-0.0013 0.0008	-0.0065 -0.0011	246.6560 31.9304
59	20	ALPHA CMI A PROCYON	0.5 F5	SHA DEC	245.4229 5.2742	0.0034 -0.0010	-0.0123 -0.0016	-0.0012 -0.0017	-0.0055 -0.0005	245.4257 5.2729
60	21	BETA GEM POLLUX	1.2 K0	SHA DEC	243.9613 28.0731	0.0043 -0.0009	-0.0144 -0.0017	-0.0015 0.0004	-0.0062 -0.0011	243.9645 28.0724
61		ZETA PUP	2.3 O	SHA DEC	239.2708 -39.9492	0.0015 -0.0008	-0.0078 -0.0021	-0.0023 -0.0049	-0.0069 0.0010	239.2753 -39.9520
62		RHO PUP	2.9 F5	SHA DEC	238.3163 -24.2489	0.0023 -0.0007	-0.0097 -0.0022	-0.0020 -0.0040	-0.0058 0.0005	238.3195 -24.2512
63		GAMMA-2 VEL	1.9 O	SHA DEC	237.7633 -47.2803	0.0010 -0.0007	-0.0067 -0.0022	-0.0027 -0.0051	-0.0077 0.0013	237.7687 -47.2834
64	22	EPSILON CAR AVIOR	1.7 *	SHA DEC	234.4688 -59.4481	-0.0004 -0.0006	-0.0041 -0.0025	-0.0042 -0.0053	-0.0101 0.0019	234.4764 -59.4518
65		DELTA VEL	2.0 A0	SHA DEC	228.9554 -54.6383	0.0001 -0.0004	-0.0058 -0.0029	-0.0045 -0.0050	-0.0084 0.0022	228.9611 -54.6423
66		IOTA UMA	3.1 A5	SHA DEC	225.5221 48.1169	0.0057 -0.0002	-0.0164 -0.0031	-0.0043 0.0018	-0.0070 -0.0027	225.5266 48.1178

E6

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
67	23	LAMBDA VEL SUHAIL	2.2 K5	SHA DEC	0 223.1758 -43.3556	0 0.0011 -0.0002	0 -0.0081 -0.0033	0 -0.0042 -0.0046	0 -0.0062 0.0021	0 223.1792 -43.3594
68	24	BETA CAR MIAPLACIDUS	1.8 A0	SHA DEC	0 221.7504 -69.6389	0 -0.0028 -0.0001	0 -0.0013 -0.0034	0 -0.0090 -0.0047	0 -0.0128 0.0032	0 221.7598 -69.6439
69		IOTA CAR	2.2 F0	SHA DEC	0 220.8546 -59.1953	0 -0.0005 -0.0001	0 -0.0054 -0.0035	0 -0.0063 -0.0047	0 -0.0086 0.0029	0 220.8600 -59.2000
70		KAPPA VEL	2.6 B3	SHA DEC	0 219.6188 -54.9292	0 0.0001 -0.0000	0 -0.0064 -0.0035	0 -0.0057 -0.0046	0 -0.0075 0.0028	0 219.6231 -54.9338
71	25	ALPHA HYA ALPHARD	2.2 K2	SHA DEC	0 218.3367 -8.5758	0 0.0029 0.0000	0 -0.0112 -0.0036	0 -0.0034 -0.0028	0 -0.0043 0.0002	0 218.3382 -8.5778
72		N VEL	3.0 K5	SHA DEC	0 217.3392 -56.9503	0 -0.0002 0.0001	0 -0.0062 -0.0037	0 -0.0063 -0.0045	0 -0.0076 0.0030	0 217.3435 -56.9551
73		EPSILON LEO	3.1 G0	SHA DEC	0 213.8063 23.8622	0 0.0042 0.0002	0 -0.0133 -0.0039	0 -0.0040 -0.0005	0 -0.0043 -0.0020	0 213.8081 23.8625
74	26	ALPHA LEO REGULUS	1.3 B8	SHA DEC	0 208.1596 12.0606	0 0.0037 0.0004	0 -0.0124 -0.0042	0 -0.0041 -0.0015	0 -0.0036 -0.0013	0 208.1606 12.0602
75		GAMMA-1 LEO ALGEIBA	2.6 K0	SHA DEC	0 205.2683 19.9381	0 0.0040 0.0005	0 -0.0128 -0.0044	0 -0.0045 -0.0010	0 -0.0035 -0.0020	0 205.2694 19.9384
76		THETA CAR	3.0 B0	SHA DEC	0 199.4308 -64.2947	0 -0.0011 0.0007	0 -0.0070 -0.0046	0 -0.0104 -0.0034	0 -0.0064 0.0043	0 199.4326 -64.3006
77		MU VEL	2.8 G5	SHA DEC	0 198.5129 -49.3194	0 0.0008 0.0008	0 -0.0092 -0.0047	0 -0.0070 -0.0034	0 -0.0041 0.0035	0 198.5132 -49.3245
78		BETA UMA MERAK	2.4 A0	SHA DEC	0 194.8242 56.4844	0 0.0063 0.0009	0 -0.0147 -0.0048	0 -0.0085 0.0007	0 -0.0043 -0.0045	0 194.8274 56.4875
79	27	ALPHA UMA DUBHE	1.9 K0	SHA DEC	0 194.3588 61.8536	0 0.0070 0.0009	0 -0.0153 -0.0048	0 -0.0100 0.0010	0 -0.0049 -0.0048	0 194.3630 61.8569
80		PSI UMA	3.1 K0	SHA DEC	0 192.8500 44.6017	0 0.0052 0.0010	0 -0.0135 -0.0049	0 -0.0067 -0.0001	0 -0.0031 -0.0040	0 192.8515 44.6042
81		DELTA LEO	2.6 A3	SHA DEC	0 191.7250 20.6278	0 0.0040 0.0010	0 -0.0124 -0.0049	0 -0.0051 -0.0014	0 -0.0022 -0.0023	0 191.7250 20.6286
82	28	BETA LEO DENEBOLA	2.2 A2	SHA DEC	0 182.9771 14.6781	0 0.0037 0.0013	0 -0.0120 -0.0051	0 -0.0052 -0.0018	0 -0.0013 -0.0018	0 182.9761 14.6786
83		GAMMA UMA PHECDA	2.5 A0	SHA DEC	0 181.7908 53.8003	0 0.0057 0.0014	0 -0.0129 -0.0051	0 -0.0086 -0.0003	0 -0.0019 -0.0047	0 181.7920 53.8038
84		DELTA CEN	2.9 B3	SHA DEC	0 178.1583 -50.6167	0 0.0012 0.0015	0 -0.0112 -0.0051	0 -0.0081 -0.0021	0 -0.0012 0.0041	0 178.1551 -50.6219
85	29	GAMMA CRV GIENAH	2.8 B8	SHA DEC	0 176.2933 -17.4367	0 0.0027 0.0015	0 -0.0117 -0.0052	0 -0.0054 -0.0023	0 -0.0006 0.0013	0 176.2908 -17.4390
86	30	ALPHA CRU A ACRUX	1.6 B1	SHA DEC	0 173.6171 -62.9939	0 0.0002 0.0016	0 -0.0117 -0.0052	0 -0.0115 -0.0014	0 -0.0007 0.0049	0 173.6121 -62.9997
87		ALPHA CRU B	2.1 B3	SHA DEC	0 173.6146 -62.9942	0 0.0002 0.0016	0 -0.0117 -0.0052	0 -0.0115 -0.0014	0 -0.0007 0.0049	0 173.6096 -63.0000
88	31	GAMMA CRU GACRUX	1.6 M3	SHA DEC	0 172.4742 -57.0069	0 0.0009 0.0016	0 -0.0119 -0.0052	0 -0.0096 -0.0015	0 -0.0004 0.0045	0 172.4695 -57.0124
89		BETA CRV	2.8 G5	SHA DEC	0 171.6533 -23.2919	0 0.0026 0.0016	0 -0.0119 -0.0052	0 -0.0057 -0.0022	0 -0.0001 0.0019	0 171.6501 -23.2948

ID	NAV	NAME	MAG/SP	MEAN PLACE	H	R	S	C	APPT PLACE
90		ALPHA MUS	2.9 B3	SHA DEC 0 170.9904 -69.0311	0 -0.0006 0.0017 0.0123 -0.0052 -0.0146 -0.0010 -0.0002 0.0052	0 0.0017 -0.0052 -0.0005 -0.0080 -0.0016 0.0001 0.0002 0.0052	0 0.0001 -0.0016 -0.0005 -0.0008 0.0001 0.0001 0.0001 0.0001	0 0.0002 -0.0010 -0.0005 -0.0002 -0.0002 0.0001 0.0001 0.0001	0 170.9838 -69.0372
91		GAMMA CEN MUHLIFAIN	2.4 A0	SHA DEC 169.8846 -48.8556	0.0016 0.0017 -0.0121 -0.0052 -0.0080 -0.0016 0.0001 0.0040	0.0016 0.0017 -0.0052 -0.0022 -0.0080 -0.0016 0.0001 0.0040	0.0016 0.0017 -0.0052 -0.0022 -0.0080 -0.0016 0.0001 0.0040	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	169.8800 -48.8605
92		GAMMA VIR	2.9 F0	SHA DEC 169.8263 -1.3456	0.0032 0.0017 -0.0118 -0.0052 -0.0052 -0.0005 0.0000 -0.0003	0.0032 0.0017 -0.0052 -0.0022 -0.0018 -0.0005 0.0000 -0.0003	0.0032 0.0017 -0.0052 -0.0022 -0.0018 -0.0005 0.0000 -0.0003	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	169.8235 -1.3462
93		BETA CRU MIMOSA	1.5 B1	SHA DEC 168.3496 -59.5853	0.0008 0.0017 -0.0125 -0.0052 -0.0104 -0.0011 0.0004 0.0047	0.0008 0.0017 -0.0125 -0.0052 -0.0104 -0.0011 0.0004 0.0047	0.0008 0.0017 -0.0125 -0.0052 -0.0104 -0.0011 0.0004 0.0047	0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004	168.3438 -59.5908
94	32	EPSILON UMA ALIOTH	1.7 A0	SHA DEC 166.7008 56.0628	0.0053 0.0018 -0.0110 -0.0051 -0.0094 -0.0014 0.0006 -0.0049	0.0053 0.0018 -0.0110 -0.0051 -0.0094 -0.0014 0.0006 -0.0049	0.0053 0.0018 -0.0110 -0.0051 -0.0094 -0.0014 0.0006 -0.0049	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	166.7000 56.0669
95		ALPHA-2 CVN COR CAROLI	2.9 A0	SHA DEC 166.2150 38.4206	0.0043 0.0018 -0.0113 -0.0051 -0.0067 -0.0019 0.0005 -0.0038	0.0043 0.0018 -0.0113 -0.0051 -0.0067 -0.0019 0.0005 -0.0038	0.0043 0.0018 -0.0113 -0.0051 -0.0067 -0.0019 0.0005 -0.0038	0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	166.2131 38.4236
96		EPSILON VIR	2.9 K0	SHA DEC 164.6925 11.0608	0.0035 0.0018 -0.0117 -0.0051 -0.0053 -0.0023 0.0006 -0.0015	0.0035 0.0018 -0.0117 -0.0051 -0.0053 -0.0023 0.0006 -0.0015	0.0035 0.0018 -0.0117 -0.0051 -0.0053 -0.0023 0.0006 -0.0015	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	164.6896 11.0616
97		IOTA CEN	2.9 A2	SHA DEC 160.1192 -36.6125	0.0024 0.0019 -0.0127 -0.0050 -0.0065 -0.0013 0.0012 0.0030	0.0024 0.0019 -0.0127 -0.0050 -0.0065 -0.0013 0.0012 0.0030	0.0024 0.0019 -0.0127 -0.0050 -0.0065 -0.0013 0.0012 0.0030	0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012	160.1140 -36.6161
98		ZETA UMA MIZAR	2.4 A2	SHA DEC 159.2092 55.0242	0.0048 0.0019 -0.0101 -0.0050 -0.0090 -0.0020 0.0019 -0.0048	0.0048 0.0019 -0.0101 -0.0050 -0.0090 -0.0020 0.0019 -0.0048	0.0048 0.0019 -0.0101 -0.0050 -0.0090 -0.0020 0.0019 -0.0048	0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019	159.2071 55.0284
99	33	ALPHA VIR SPICA	1.2 B2	SHA DEC 158.9525 -11.0625	0.0030 0.0019 -0.0120 -0.0050 -0.0053 -0.0020 0.0011 -0.0007	0.0030 0.0019 -0.0120 -0.0050 -0.0053 -0.0020 0.0011 -0.0007	0.0030 0.0019 -0.0120 -0.0050 -0.0053 -0.0020 0.0011 -0.0007	0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011	158.9484 -11.0637
100		EPSILON CEN	2.6 B1	SHA DEC 155.3313 -53.3703	0.0019 0.0020 -0.0139 -0.0049 -0.0086 -0.0004 0.0025 0.0042	0.0019 0.0020 -0.0139 -0.0049 -0.0086 -0.0004 0.0025 0.0042	0.0019 0.0020 -0.0139 -0.0049 -0.0086 -0.0004 0.0025 0.0042	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	155.3238 -53.3749
101	34	ETA UMA ALKAI	1.9 B3	SHA DEC 153.3017 49.4078	0.0043 0.0020 -0.0098 -0.0049 -0.0078 -0.0025 0.0025 -0.0044	0.0043 0.0020 -0.0098 -0.0049 -0.0078 -0.0025 0.0025 -0.0044	0.0043 0.0020 -0.0098 -0.0049 -0.0078 -0.0025 0.0025 -0.0044	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	153.2985 49.4118
102		ETA BOO	2.8 G0	SHA DEC 151.5554 18.4925	0.0035 0.0021 -0.0112 -0.0048 -0.0053 -0.0026 0.0019 -0.0021	0.0035 0.0021 -0.0112 -0.0048 -0.0053 -0.0026 0.0019 -0.0021	0.0035 0.0021 -0.0112 -0.0048 -0.0053 -0.0026 0.0019 -0.0021	0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019	151.5514 18.4943
103		ZETA CEN	3.1 B2	SHA DEC 151.4133 -47.1953	0.0023 0.0021 -0.0139 -0.0048 -0.0074 -0.0004 0.0027 0.0037	0.0023 0.0021 -0.0139 -0.0048 -0.0074 -0.0004 0.0027 0.0037	0.0023 0.0021 -0.0139 -0.0048 -0.0074 -0.0004 0.0027 0.0037	0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027	151.4060 -47.1993
104	35	BETA CEN HADAR	0.9 B1	SHA DEC 149.3821 -60.2819	0.0019 0.0021 -0.0154 -0.0047 -0.0100 -0.0004 0.0041 0.0044	0.0019 0.0021 -0.0154 -0.0047 -0.0100 -0.0004 0.0041 0.0044	0.0019 0.0021 -0.0154 -0.0047 -0.0100 -0.0004 0.0041 0.0044	0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041	149.3722 -60.2866
105	36	THETA CEN MENKENT	2.3 K0	SHA DEC 148.6104 -36.2769	0.0027 0.0021 -0.0134 -0.0047 -0.0061 -0.0007 0.0026 0.0028	0.0027 0.0021 -0.0134 -0.0047 -0.0061 -0.0007 0.0026 0.0028	0.0027 0.0021 -0.0134 -0.0047 -0.0061 -0.0007 0.0026 0.0028	0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	148.6038 -36.2800
106	37	ALPHA BOO ARCTURUS	0.2 K0	SHA DEC 146.3017 19.2808	0.0035 0.0021 -0.0110 -0.0046 -0.0051 -0.0028 0.0024 -0.0021	0.0035 0.0021 -0.0110 -0.0046 -0.0051 -0.0028 0.0024 -0.0021	0.0035 0.0021 -0.0110 -0.0046 -0.0051 -0.0028 0.0024 -0.0021	0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024	146.2972 19.2828
107		GAMMA BOO	3.0 F0	SHA DEC 142.1721 38.3908	0.0036 0.0022 -0.0097 -0.0044 -0.0060 -0.0032 0.0034 -0.0034	0.0036 0.0022 -0.0097 -0.0044 -0.0060 -0.0032 0.0034 -0.0034	0.0036 0.0022 -0.0097 -0.0044 -0.0060 -0.0032 0.0034 -0.0034	0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034	142.1675 38.3942
108		ETA CEN	2.6 *	SHA DEC 141.4267 -42.0750	0.0028 0.0022 -0.0142 -0.0044 -0.0063 -0.0001 0.0037 0.0030	0.0028 0.0022 -0.0142 -0.0044 -0.0063 -0.0001 0.0037 0.0030	0.0028 0.0022 -0.0142 -0.0044 -0.0063 -0.0001 0.0037 0.0030	0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037	141.4187 -42.0781
109	38	ALPHA CEN A RIGIL KENT.	0.3 G0	SHA DEC 140.4221 -60.7553	0.0025 0.0022 -0.0168 -0.0044 -0.0095 -0.0011 0.0058 0.0041	0.0025 0.0022 -0.0168 -0.0044 -0.0095 -0.0011 0.0058 0.0041	0.0025 0.0022 -0.0168 -0.0044 -0.0095 -0.0011 0.0058 0.0041	0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058	140.4104 -60.7594
110		ALPHA CEN B	1.7 K5	SHA DEC 140.4283 -60.7606	0.0025 0.0022 -0.0168 -0.0044 -0.0095 -0.0011 0.0058 0.0041	0.0025 0.0022 -0.0168 -0.0044 -0.0095 -0.0011 0.0058 0.0041	0.0025 0.0022 -0.0168 -0.0044 -0.0095 -0.0011 0.0058 0.0041	0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058	140.4166 -60.7646
111		ALPHA LUP	2.9 B2	SHA DEC 139.8354 -47.3075	0.0028 0.0022 -0.0149 -0.0043 -0.0068 -0.0003 0.0042 0.0033	0.0028 0.0022 -0.0149 -0.0043 -0.0068 -0.0003 0.0042 0.0033	0.0028 0.0022 -0.0149 -0.0043 -0.0068 -0.0003 0.0042 0.0033	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	139.8265 -47.3108
112		EPSILON BOO	2.7 K0	SHA DEC 138.9608 27.1536	0.0034 0.0022 -0.0103 -0.0043 -0.0051 -0.0032 0.0033 -0.0026	0.0034 0.0022 -0.0103 -0.0043 -0.0051 -0.0032 0.0033 -0.0026	0.0034 0.0022 -0.0103 -0.0043 -0.0051 -0.0032 0.0033 -0.0026	0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033	138.9558 27.1562

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
113	39	ALPHA-2 LIB ZUBENELGENUBI	2.9 A3	SHA DEC	0 137.5442 -15.9636	0 0.0031 -0.0127 -0.0047 0.0022 -0.0042 -0.0014	0 0.0032 0.0009	0 0.0032 0.0009	0 0.0032 0.0009	0 137.5378 -15.9644
114	40	BETA UMI KOCHAB	2.2 K5	SHA DEC	137.3129 74.2331	0.0044 -0.0011 -0.0165 0.0022 -0.0042 -0.0032	0.0114 -0.0047	0.0114 -0.0047	0.0114 -0.0047	137.3053 74.2379
115		BETA LUP	2.8 B2	SHA DEC	135.6800 -43.0583	0.0030 -0.0147 -0.0060 0.0022 -0.0041 0.0003	0.0044 0.0029	0.0044 0.0029	0.0044 0.0029	135.6712 -43.0611
116		BETA LIB	2.7 B8	SHA DEC	131.0046 -9.3136	0.0032 -0.0124 -0.0042 0.0022 -0.0038 -0.0017	0.0036 0.0003	0.0036 0.0003	0.0036 0.0003	130.9980 -9.3136
117		GAMMA TRA	3.1 A0	SHA DEC	130.7208 -68.6106	0.0031 -0.0207 -0.0114 0.0022 -0.0038 0.0022	0.0099 0.0039	0.0099 0.0039	0.0099 0.0039	130.7037 -68.6142
118		GAMMA UMI	3.1 A2	SHA DEC	129.8129 71.9017	0.0033 -0.0010 -0.0132 0.0022 -0.0038 -0.0038	0.0119 -0.0042	0.0119 -0.0042	0.0119 -0.0042	129.8039 71.9062
119		GAMMA LUP	2.9 B3	SHA DEC	126.5329 -41.1039	0.0033 -0.0151 -0.0052 0.0022 -0.0036 0.0006	0.0052 0.0024	0.0052 0.0024	0.0052 0.0024	126.5235 -41.1058
120	41	ALPHA CRB ALPHECCA	2.3 A0	SHA DEC	126.5296 26.7778	0.0032 -0.0099 -0.0044 0.0022 -0.0036 -0.0036	0.0044 -0.0022	0.0044 -0.0022	0.0044 -0.0022	126.5234 26.7804
121		ALPHA SER	2.7 K0	SHA DEC	124.1675 6.4844	0.0032 -0.0114 -0.0038 0.0022 -0.0034 -0.0026	0.0041 -0.0009	0.0041 -0.0009	0.0041 -0.0009	124.1609 6.4858
122		BETA TRA	3.0 F0	SHA DEC	121.6363 -63.3733	0.0038 -0.0199 -0.0080 0.0022 -0.0032 0.0024	0.0095 0.0032	0.0095 0.0032	0.0095 0.0032	121.6206 -63.3759
123		PI SCO	3.0 B2	SHA DEC	120.5754 -26.0606	0.0034 -0.0138 -0.0039 0.0022 -0.0032 -0.0003	0.0048 0.0012	0.0048 0.0012	0.0048 0.0012	120.5671 -26.0612
124		DELTA SCO DSCHUBBA	2.5 B0	SHA DEC	120.1983 -22.5686	0.0034 -0.0135 -0.0038 0.0022 -0.0031 -0.0006	0.0047 0.0010	0.0047 0.0010	0.0047 0.0010	120.1902 -22.5690
125		BETA-1 SCO	2.9 B1	SHA DEC	118.9179 -19.7544	0.0034 -0.0133 -0.0036 0.0022 -0.0030 -0.0007	0.0047 0.0008	0.0047 0.0008	0.0047 0.0008	118.9099 -19.7546
126		DELTA OPH	3.0 M0	SHA DEC	116.6629 -3.6464	0.0033 -0.0121 -0.0032 0.0022 -0.0029 -0.0020	0.0046 -0.0002	0.0046 -0.0002	0.0046 -0.0002	116.6556 -3.6454
127		ETA DRA	2.9 G5	SHA DEC	114.0675 61.5569	0.0022 -0.0036 -0.0064 0.0022 -0.0027 -0.0048	0.0099 -0.0030	0.0099 -0.0030	0.0099 -0.0030	114.0579 61.5607
128	42	ALPHA SCO A ANTARES	1.2 M0	SHA DEC	112.9400 -26.3908	0.0035 -0.0140 -0.0033 0.0021 -0.0026 -0.0001	0.0053 0.0010	0.0053 0.0010	0.0053 0.0010	112.9312 -26.3910
129		BETA HER	2.8 K0	SHA DEC	112.6496 21.5300	0.0030 -0.0100 -0.0032 0.0021 -0.0026 -0.0037	0.0052 -0.0015	0.0052 -0.0015	0.0052 -0.0015	112.6424 21.5324
130		TAU SCO	2.9 B0	SHA DEC	111.3258 -28.1778	0.0036 -0.0142 -0.0032 0.0021 -0.0025 0.0001	0.0055 0.0010	0.0055 0.0010	0.0055 0.0010	111.3168 -28.1779
131		ZETA OPH	2.7 B0	SHA DEC	110.9725 -10.5297	0.0034 -0.0127 -0.0029 0.0021 -0.0024 -0.0014	0.0050 0.0001	0.0050 0.0001	0.0050 0.0001	110.9646 -10.5289
132		ZETA HER	3.0 G0	SHA DEC	109.8579 31.6364	0.0028 -0.0090 -0.0032 0.0021 -0.0023 -0.0042	0.0058 -0.0018	0.0058 -0.0018	0.0058 -0.0018	109.8504 31.6391
133	43	ALPHA TRA ATRIA	1.9 K2	SHA DEC	108.3396 -68.9947	0.0053 -0.0240 -0.0073 0.0021 -0.0022 0.0034	0.0140 0.0023	0.0140 0.0023	0.0140 0.0023	108.3189 -68.9961
134		EPSILON SCO	2.4 K0	SHA DEC	107.7675 -34.2600	0.0038 -0.0150 -0.0031 0.0021 -0.0022 0.0007	0.0061 0.0011	0.0061 0.0011	0.0061 0.0011	107.7577 -34.2601
135		ZETA ARA	3.1 K5	SHA DEC	105.7396 -55.9617	0.0045 -0.0189 -0.0043 0.0020 -0.0020 0.0026	0.0092 0.0018	0.0092 0.0018	0.0092 0.0018	105.7255 -55.9624

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
136	44	ETA OPH SABIK	2.6 A2	SHA DEC	0 102.6783 -15.7025	0.0035 0.0020	-0.0132 -0.0017	-0.0022 -0.0008	0.0055 0.0002	0 102.6698 -15.7016
137		ALPHA HER	3-4 M3	SHA DEC	101.5550 14.4111	0.0030 0.0020	-0.0105 -0.0017	-0.0021 -0.0034	0.0055 -0.0009	101.5472 14.4132
138		BETA ARA	2.8 K2	SHA DEC	99.0713 -55.5136	0.0049 0.0019	-0.0190 -0.0014	-0.0033 0.0028	0.0095 0.0013	99.0571 -55.5137
139		UPSILON SCO	2.8 B3	SHA DEC	97.6325 -37.2822	0.0041 0.0019	-0.0156 -0.0013	-0.0022 0.0012	0.0068 0.0007	97.6220 -37.2817
140		BETA DRA	3.0 G0	SHA DEC	97.4996 52.3147	0.0017 0.0019	-0.0053 -0.0013	-0.0028 -0.0053	0.0089 -0.0016	97.4898 52.3176
141		ALPHA ARA	3.0 B3	SHA DEC	97.4075 -49.8628	0.0046 0.0019	-0.0177 -0.0013	-0.0026 0.0024	0.0084 0.0010	97.3948 -49.8625
142	45	LAMBDA SCO SHAULA	1.7 B2	SHA DEC	96.9208 -37.0911	0.0041 0.0019	-0.0156 -0.0013	-0.0021 0.0012	0.0068 0.0006	96.9104 -37.0905
143	46	ALPHA OPH RASALHAGUE	2.1 A5	SHA DEC	96.4871 12.5728	0.0030 0.0019	-0.0107 -0.0012	-0.0017 -0.0033	0.0056 -0.0008	96.4791 12.5748
144		THETA SCO	2.0 F0	SHA DEC	96.0125 -42.9872	0.0044 0.0019	-0.0165 -0.0012	-0.0022 0.0018	0.0075 0.0007	96.0012 -42.9867
145		KAPPA SCO	2.5 B2	SHA DEC	94.7075 -39.0217	0.0043 0.0018	-0.0159 -0.0011	-0.0019 0.0014	0.0071 0.0006	94.6967 -39.0209
146		BETA OPH	2.9 K0	SHA DEC	94.3671 4.5742	0.0031 0.0018	-0.0114 -0.0010	-0.0014 -0.0026	0.0055 -0.0005	94.3590 4.5760
147	47	GAMMA DRA ELTANIN	2.4 K5	SHA DEC	90.9592 51.4906	0.0015 0.0018	-0.0054 -0.0007	-0.0018 -0.0054	0.0090 -0.0011	90.9490 51.4930
148		GAMMA SGR	3.1 K0	SHA DEC	88.8533 -30.4258	0.0041 0.0017	-0.0148 -0.0005	-0.0011 0.0007	0.0065 0.0001	88.8435 -30.4245
149		DELTA SGR	2.8 K0	SHA DEC	85.0558 -29.8375	0.0041 0.0016	-0.0148 -0.0002	-0.0007 0.0007	0.0065 -0.0001	85.0461 -29.8359
150	48	EPSILON SGR KAUS AUST.	1.9 A0	SHA DEC	84.2725 -34.3950	0.0043 0.0016	-0.0153 -0.0001	-0.0006 0.0011	0.0069 -0.0001	84.2623 -34.3934
151		LAMBDA SGR	2.9 K0	SHA DEC	83.3008 -25.4333	0.0040 0.0016	-0.0143 -0.0000	-0.0005 0.0002	0.0063 -0.0002	83.2914 -25.4315
152	49	ALPHA LYR VEGA	0.1 A0	SHA DEC	80.9267 38.7653	0.0019 0.0015	-0.0077 0.0002	-0.0003 -0.0050	0.0073 -0.0004	80.9175 38.7672
153	50	SIGMA SGR NUNKI	2.1 B3	SHA DEC	76.4783 -26.3217	0.0041 0.0014	-0.0143 0.0006	0.0002 0.0003	0.0063 -0.0005	76.4690 -26.3195
154		ZETA SGR	2.7 A2	SHA DEC	74.6496 -29.9086	0.0043 0.0013	-0.0147 0.0007	0.0004 0.0007	0.0065 -0.0006	74.6400 -29.9063
155		ZETA AQL	3.0 A0	SHA DEC	73.8663 13.8342	0.0028 0.0013	-0.0105 0.0008	0.0004 -0.0034	0.0058 -0.0003	73.8580 13.8361
156		PI SGR	3.0 F2	SHA DEC	72.8417 -21.0550	0.0040 0.0012	-0.0138 0.0009	0.0006 -0.0002	0.0060 -0.0007	72.8327 -21.0527
157		BETA-1 CYG ALBIREO	3.2 *	SHA DEC	67.5117 27.9189	0.0022 0.0011	-0.0092 0.0014	0.0011 -0.0044	0.0063 0.0002	67.5030 27.9204
158		DELTA CYG	3.0 A0	SHA DEC	63.9054 45.0836	0.0012 0.0009	-0.0069 0.0017	0.0019 -0.0052	0.0077 0.0008	63.8955 45.0845

E10

ID	NAV	NAME	MAG/SP		MEAN PLACE	H	R	S	C	APPT PLACE
159		GAMMA AQL	2.8 K2	SHA DEC	0 63.6613 10.5661	0 0.0029 0.0009	0 -0.0109 0.0017	0 0.0014 -0.0031	0 0.0055 -0.0001	0 63.6531 10.5680
160	51	ALPHA AQL ALTAIR	0.9 A5	SHA DEC	62.5363 8.8172	0.0029 0.0009	-0.0111 0.0018	0.0015 -0.0030	0.0055 -0.0001	62.5282 8.8192
161		GAMMA CYG	2.3 F8	SHA DEC	54.6138 40.1953	0.0014 0.0006	-0.0080 0.0025	0.0028 -0.0048	0.0067 0.0013	54.6045 40.1958
162	52	ALPHA PAV PEACOCK	2.1 B3	SHA DEC	53.9625 -56.7972	0.0065 0.0006	-0.0187 0.0025	0.0040 0.0028	0.0093 -0.0023	53.9504 -56.7931
163		ALPHA IND	3.2 K0	SHA DEC	50.9417 -47.3589	0.0056 0.0005	-0.0166 0.0027	0.0036 0.0019	0.0073 -0.0023	50.9317 -47.3547
164	53	ALPHA CYG DENEBO	1.3 A2	SHA DEC	49.8046 45.2119	0.0010 0.0004	-0.0074 0.0028	0.0036 -0.0048	0.0069 0.0018	49.7950 45.2120
165		EPSILON CYG	2.6 K0	SHA DEC	48.6396 33.8983	0.0018 0.0004	-0.0089 0.0029	0.0031 -0.0044	0.0058 0.0013	48.6311 33.8988
166		ALPHA CEP ALDERAMIN	2.6 A5	SHA DEC	40.4688 62.5047	-0.0010 0.0001	-0.0045 0.0035	0.0070 -0.0047	0.0094 0.0030	40.4560 62.5035
167		BETA AQR	3.1 G0	SHA DEC	37.3604 -5.6556	0.0035 -0.0001	-0.0122 0.0037	0.0035 -0.0018	0.0042 -0.0008	37.3536 -5.6530
168	54	EPSILON PEG ENIF	2.5 K0	SHA DEC	34.1871 9.7872	0.0029 -0.0002	-0.0112 0.0039	0.0037 -0.0028	0.0040 0.0003	34.1803 9.7887
169		DELTA CAP	3.0 A5	SHA DEC	33.5021 -16.2142	0.0039 -0.0002	-0.0128 0.0039	0.0039 -0.0011	0.0040 -0.0016	33.4955 -16.2109
170	55	ALPHA GRU AL NA'IR	2.2 B5	SHA DEC	28.2400 -47.0536	0.0056 -0.0004	-0.0150 0.0042	0.0059 0.0009	0.0051 -0.0036	28.2330 -47.0484
171		ALPHA TUC	2.9 K2	SHA DEC	25.6975 -60.3550	0.0070 -0.0005	-0.0167 0.0043	0.0084 0.0017	0.0067 -0.0042	25.6895 -60.3491
172		BETA GRU	2.2 M3	SHA DEC	19.6158 -46.9844	0.0055 -0.0007	-0.0143 0.0046	0.0066 0.0005	0.0041 -0.0039	19.6101 -46.9790
173	56	ALPHA PSA FOMALHAUT	1.3 A3	SHA DEC	15.8496 -29.7233	0.0044 -0.0009	-0.0130 0.0048	0.0054 -0.0007	0.0028 -0.0029	15.8447 -29.7189
174		BETA PEG SCHEAT	2.6 M0	SHA DEC	14.2875 27.9794	0.0022 -0.0009	-0.0108 0.0048	0.0053 -0.0030	0.0026 0.0021	14.2816 27.9789
175	57	ALPHA PEG MARKAB	2.6 A0	SHA DEC	14.0471 15.1028	0.0027 -0.0009	-0.0113 0.0048	0.0049 -0.0027	0.0024 0.0010	14.0418 15.1033
176		GAMMA CEP	3.4 K0	SHA DEC	5.3613 77.5264	-0.0051 -0.0012	-0.0068 0.0050	0.0232 -0.0020	0.0068 0.0053	5.3459 77.5224

★ U.S. GOVERNMENT PRINTING OFFICE: 1980 O- 629-520/2942 REGION 3-1

MICHIGAN

03794 1575

24

UNIVERSITY OF MICHIGAN

3 9015 04928 0913

Digitized by Google

