Mechanics In Design and Manufacturing

+ Mechanical Behavior of Materials

Strain

• Average linear strain

• Shear strain

Tension

Ductility

 A measure of strain material can endure before fracturing

True Stress/Strain

• True Stress

• True Strain

Comparing engineering/true strains

True Stress-True Strain Curves

Flow Stress

Copyright ©2017 Pearson Education, All Rights Reserved.

Flow Theories

Strain Rate

Strain

Process	True Strain ε	Deformation speed (m/s)	Strain Rate
Cold Working			
Forging, rolling	0.1-0.5	0.1-100	1-10 ³
Wire and tube drawing	0.05-0.5		10-10 ⁴
Explosive forming	0.05-0.2	10-100	10-10 ⁵
Hot/warm working			
Forging, rolling	0.1-0.5	0.1-30	1-10 ³
Extrusion	2-5	0.1-1	10 ⁻¹ -10 ²
Machining	1-10	0.1-100	10 ³ -10 ⁶
Sheet metal forming	0.1-0.5	0.05-2	1-10 ²
Superplastic forming	0.2-3	10-4-10-2	10-4-10-2

Temperature

Effect of Temperature

Effect of Hydrostatic Pressure

Copyright ©2017 Pearson Education, All Rights Reserved.

Compression

Copyright ©2017 Pearson Education, All Rights Reserved.

Hardness

The beginning...Brinell hardness

Probe: 10 mm diameter steel ball

• Load: 3,000 kg

Modifications

• BHN=

• Time: 30s

Meyer Hardness

- More realistic definition of hardness
- H_{Meyer} =

Forms the basis of more modern indentation experiments

Problems with spherical indentation

Rockwell Hardness....adding depth sensing

- First easy test
- Small impression so finished parts can be tested without damage
- 2-stage test
 - 10kg "minor load"

• A scale:

• B scale:

• C scale:

Vickers Indentation

 Problem of similitude solved by using a pyramidal indenter

Rockwell - Rockwell Superficial - Brinell - Vickers - Shore Hardness Conversion

>	₩	Roc	Rockwell	m)	7	5	Ro 15-N	Rockwell 30-N	Rockwell Superfi	ckwell 30-N	ckwell Superficial 30-N 45-N 30-T	ckwell Superficial 30-N 45-N 30-T
60kg Brale	100kq 1/16* Ball	150kg Brale	.00kg Brale	100kg 1/8" Ball	60kq 1/16" Ball	15kg Brale	30kg Brale	45kg Brale	30 kq 1/16" Ball	10mm Ball Steel	9200	10mm Ball Stee
86.5	1	70	78.5		1	94,0	86.0	77.6	- 11	i		1
86.0		69	77.7			93.5	850	76.5	1			1
85.6	1	68	76.9	3	1	93.2	844	75,4	1	1		1
85.0	1	67	76.1		0	92.9	92.6	74.2	8			55
84.5	ı	66	75,4	-1	1	92.5	82.8	73.2	-1			i
83.9	-	65	74.5	-		92.2	618	72,0		739		1
83.4		2	73.8	1	1	91.8	81.1	71.0	l	712		ł
82.8	ı	63	73.0	1	1	91.4	80.1	69.9	1	705	D	1
82.3		62	72.2		2258	91.1	793	68.8		688		
81.8	1	61	71.5	Î	1	90.7	78.4	67.7	- 1	670		ł
81.2	1	60	70.7	- 4		90.2	77.5	9.66	- !!	654		3

Hardness vs. Strength

Modern Instrumented Indentation

• P-h curve

 Possible to determine E, via the Oliver-Pharr Method

Yielding Criteria

 A tensile test cannot inform failure in a 3D state of stress Maximum shear stress theory

Von Mises

Plane Stress/Strain

Maximum shear stress theory
First/third quadrants
Second/fourth quadrants

Von Mises

FIGURE 2.32 Plane-stress diagrams for maximum-shear-stress and distortion-energy criteria. Note that $\sigma_2 = 0$.

Effective Stress/Strain

Maximum shear stress theory

Von Mises