Chipathon 2025 Team Nirvana

Team Project:

- 1. Faiz Setya Kurniawan
- 2. Nithin Purushothama
- 3. Kelton Eckert
- 4. Kandias Wardhana
- 5. Amit Kumar Sharma

Chipathon 2025

Contents

01	Team	Slide 03
02	Ring Amplifier	Slide 04
03	Design Testbench	Slide 08
04	Timeline	Slide 14

Chipathon 2025

Team Nirvana

Team Nirvana

Faiz Setya K.

Team lead and Layout

Nithin Purushothama

Design and Architecture

Kelton Eckert

Design of Building Block

Kandias Wardhana

Layout

Amit Kumar Sharma

Design of Building Block

Reconfigurable Fully Differential Ring Amplifier with Deadzone Regulation Circuit for Educational and RF-Mixed-Signal Applications

Dynamic Amplifier, especially Ring Amplifier, have emerged as compelling alternatives to traditional small-signal operational amplifiers due to their high-speed and energy-efficient characteristics. Originally proposed by Benjamin Hershberg at Oregon State University (OSU), ring amplifiers offer innovative solution for an high-performance analog blocks. especially in pipelined or SAR ADCs and filter circuits.

Ring Amplifier using resistor for deadzone biasing, source from ieeexplore.ieee.org/abstract/document/8351242/

Chipathon 2025

Team Nirvana

Design Purposes

01

Optimized for educational uses and mixed-signal integration

02

Enabling user-driven exploration and understanding of Ring Amplifier operation

03

Understanding the operation of large-signal dynamics, deadzone behaviour, and transition into small-signal behaviour

Reconfigurable Parts: Dedicated Deadzone Regulation

For needing a robust deadzone biasing to maintain an output stage across process variation, there is an proposed Deadzone Regulation Circuit

Deadzone Regulation Circuit contains of a Stage2_Replica and a error amplifier for a negative feedback loop, and also a Stage3_Bias

This Dedicated Deadzone Regulation Circuit allows fine control over the amplifier's transition between nonlinear and linear operating region. This tunability makes our implementation suitable for multiple cases while also serving as a pedagogical platform for analog circuit learns

source from ieeexplore.ieee.org/abstract/document/8351242/

Architecture

CHIPATHON-MOSBIUS TEAM NIRVANA

Team Members:

1. Nithin P (Design and Architecture)
2. Kelton Eckert (Design)
3. Kandias Wardhana(Layout)
4. Faizz / Layout)

Stage 1: Ring Amp

Stage 2: Ring Amp

Stage-2 Ring Amplifier design Testbench

Load Cap: 250pF BW: 50MHz Gm3: 400uS A1A2: 200

VDD: 3.3V

Stage-3 Ring Amplifier design Testbench

chipathon/Ring-amp/STG3/stg3 test dzd.sch

Nithin Purushothama

2025-06-26 01:45:29

Specification				

Min.

Tipical

3.3 V

250 pF

Chipathon 2025

Parameter

Bandwidth

Load Capacitor

Settling Time

VDD

Team Nirvana

Max

50 MHz

=<50 nS

11

Pin-Out Diagram

Pin-Out Diagram

Pin Name	Direction	Type	Description
VIN_PLUS	Input	Analog	Positive input to Ring Amplifier
VIN_MINUS	Input	Analog	Negative input to Ring Amplifier
VSTG1_P	Output	Analog	Output of first stage of Ring Amplifier (positive branch)
VSTG1_N	Output	Analog	Output of first stage of Ring Amplifier (negative branch)
VCTRL_P	Input	Analog	Deadzone voltage for current-starved inverters (PMOS path)
VCTRL_N	Input	Analog	Deadzone voltage for current-starved inverters (NMOS path)
VCTRLP_RG	Output	Analog	Process-invariant PMOS bias from deadzone regulation circuit
VCTRLN_RG	Output	Analog	Process-invariant NMOS bias from deadzone regulation circuit
VGP	Input	Analog	Gate voltage for third stage PMOS
VGN	Input	Analog	Gate voltage for third stage NMOS
VDD	Power	Supply	Positive power supply (typically 3.3V)
GND	Power	Ground	Ground / reference voltage
VOUT_PLUS	Output	Analog	Positive output of Ring Amplifier
VOUT MINUS	Output	Analog	Negative output of Ring Amplifier

Project workflow Reference from Github Chipathon 2025

Project workflow (Overall) Reference from Github Chipathon 2025

Chipathon 2025

Q&A

Any questions? Ask away!

Thank you!