Paper Review - Auto-FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labelled Examples

Peng Li, Xiang Cheng, Xu Chu, Yeye He, Surajit Chaudhuri

Carmel Gafa

April 2, 2025

Fuzzy-join (or similarity join)

	Left Table		Right Table		
id	Isem		id	Isem	
l1	Peppi Azzopardi	K	r1	Karmnu Vassallo	
ι2	Annetto Depasquale	_	r2	Ġużeppi Azzopardi	
l3	Karmenu Vassallo		r3	Annetto De Pasquale	

Left Table Left Table				Right Table				
L-id	L-name	L-director	L-description				R-director	R-description
l1	Carrie	Brian De Palma	Carrie White is shy and outcast	←──	r1	Carrie	Brian DePalma	This classic horror movie based
l2	Vibes	Ken Kwapis	Psychics hired to find lost temple		r2	Vibes	Ken Kwapis	Two hapless psychics unwittingly

- Fuzzy join takes two tables as inputs and identify record pairs that refer to the same entity
- As an example, I1 and r2 refer to the same person
- The concept can be extended to rows consisting of multiple columns

Fuzzy-join configuration

- Fuzzy-join has been integrated many commercial applications
- These systems are normally not easy to use as they have a big number of configuration parameters
- The extension in Microsoft Excel has 19 options that span across 3 dialog boxes
 - 11 are binary, thus resulting in 2048 possible configuration scenarios
 - 8 continuous, such as thresholds and biases
- In order to execute quality Fuzzy-joins, these configurations must be set up properly by the user

Theoretical foundation: fuzzy join

Given a **reference table** L and a table R containing records that may be **imprecise** or noisy, a **fuzzy join** J establishes approximate matches between them.

- J connects elements of R to similar elements in L based on a chosen similarity measure (e.g., Levenshtein distance, cosine similarity, Jaccard similarity).
- Each record $r \in R$ is mapped to at most one record $l \in L$, or **no match at all** (denoted by \perp).
- The join is many-to-one because multiple records in R can be associated with the same record in L, but each r∈ R has only one possible match.

Formally:

$$J: R \rightarrow L \cup \bot$$

Theoretical foundation: fuzzy join configuration space

A fuzzy join f compares two strings, r and l, by computing a distance score that reflects their similarity. The computation of this score is governed by a variety of parameters, forming a parameter space.

Definition: Each unique combination of these parameters defines a specific **join function** $f \in \mathcal{F}$, where \mathcal{F} is the space of all possible join functions.

Example: Fuzzy Join Distance Score Computation

Join Function: f = (L, SP, EW, JD)

- L: Lower-casing (Preprocessing)
- SP: Space Tokenization
- EW: Equal Weights
- JD: Jaccard Distance

Inputs:

- / = "2012 tigers lsu baseball team"
- r = "2012 lsu baseball team"

Tokenization (SP):

- $I \rightarrow \{2012, tigers, lsu, baseball, team\}$
- $r \rightarrow \{2012, lsu, baseball, team\}$

Jaccard Distance:

- $A \cap B = \{2012, lsu, baseball, team\} \rightarrow |A \cap B| = 4$
- $A \cup B = \{2012, tigers, lsu, baseball, team\} \rightarrow |A \cup B| = 5$
- Jaccard Similarity = $\frac{4}{5}$ = 0.8
- Jaccard Distance = 1 0.8 = 0.2

Theoretical foundation: threshold and join configuration

- Once the distance f(I, r) is computed:
 - It is compared to a threshold**compared to a threshold** θ to decide whether to join the string pair I and r.
 - If $f(I, r) \le \theta$, the pair is considered a match.
- Together, the function f and the threshold θ define what the authors call a join configuration:

$$C = (f, \theta)$$

- This configuration encapsulates both:
 - How distance is computed.
 - When two strings are considered similar enough to be joined.

Definition: A join configuration C is a 2-tuple $C = \langle f, \theta \rangle$, where $f \in \mathcal{F}$ is a join function, and θ is a threshold.

We use $S = \{ \langle f, \theta \rangle \mid f \in \mathcal{F}, \theta \in \mathbb{R} \}$ to denote the space of join configurations.

Theoretical foundation: fuzzy join mapping

Given two tables L and R , a join configuration $C \in \mathcal{S}$ induces a fuzzy join mapping J_C , defined as:

$$J_C(r) = \operatorname*{arg\,min}_{l \in L, \ f(l,r) \le \theta} f(l,r), \ \forall r \in R$$

That is

- For each record $r \in R$, find $l \in L$ that minimizes the distance f(l,r), only if that distance is less than or equal to the threshold θ .
- If no such $l \in L$ exists such that $f(l,r) \le \theta$, then $J_C(r)$ is **empty** i.e., no match for that record.

Theoretical foundation: the problem with single join configurations

Real-world data can exhibit multiple types of variations simultaneously, such as:

- Typos
- Missing tokens
- Extraneous information

As a result, relying on a **single join configuration** often fails to capture all valid matches, particularly when high **recall** is required.

To handle this diversity, the algorithm uses a **set** of join configurations:

$$U = \{C_1, C_2, \dots, C_K\}$$

Instead of relying on a single configuration, the system computes join results from each one. This approach allows the system to:

- Accommodate diverse types of variations.
- Improve overall recall by combining multiple perspectives on similarity.

- A Jaccard distance with threshold 0.2 works well for pairs like (I₁, r₁), which differ by only one or two tokens.
- However, for pairs like (I₃, r₃) with spelling variations, Jaccard similarity is not enough:
 - Jaccard distance $\approx 0.5 \rightarrow$ too high to match under the 0.2 threshold
 - A more suitable metric is Edit
 Distance, which can better align such
 pairs.

Theoretical foundation: fuzzy join via multiple configurations

To handle this diversity, the algorithm uses a set of join configurations:

$$U = \{C_1, C_2, \ldots, C_K\}$$

- Instead of relying on a single configuration, the system computes join results from each.
- This approach allows the system to:
 - Accommodate diverse types of variations.
 - Improve overall recall by combining multiple perspectives on similarity.

Given L and R, a set of join configurations $U = \{C_1, C_2, \dots, C_K\}$ induces a **fuzzy join mapping** J_U , defined as:

$$J_U(r) = \bigcup_{C_i \in U} J_{C_i}(r), \ \forall r \in R$$
 (2)

This means that the overall result of the fuzzy join using configuration set U is the **union** of results from all individual configurations $C_i \in U$.

Each configuration $C_i \in U$ is designed to capture a **specific type of string variation** (e.g., typos, missing tokens, extra tokens).

Two records are considered joined by the set U if and only if they are joined by at least one configuration $C_i \in U$.

- Each configuration contributes high-quality joins targeted at particular data challenges.
- The overall join is more **robust and comprehensive**.