3.15 1) Supposons que l'équation diophantienne ax + by = c admette une solution, c'est-à-dire qu'il existe des entiers x_0 et y_0 tels que $ax_0 + by_0 = c$.

Le théorème de Bachet de Mériziac garantit l'existence d'un entier k tel que $a\,x_0+b\,y_0=k\,d$.

Par suite, k d = c, ce qui signifie que d divise c.

- 2) Supposons que d divise c. Il existe donc $q \in \mathbb{Z}$ tel que c = dq.
 - (a) Le théorème de Bézout assure l'existence d'entiers u et v tels que $a\,u + b\,v = d\,.$

En multipliant cette dernière égalité par q, on obtient :

$$a\underbrace{qu}_{x_0} + b\underbrace{qv}_{y_0} = \underbrace{dq}_{c}$$
 c'est-à-dire $ax_0 + by_0 = c$.

(b) Soit $k \in \mathbb{Z}$.

$$a(x_0 + \frac{b}{d}k) + b(y_0 - \frac{a}{d}k) = ax_0 + \frac{ab}{d}k + by_0 - \frac{ab}{d}k = ax_0 + by_0 = c$$

- (c) Soient $x, y \in \mathbb{Z}$ avec ax + by = c.
 - i. La soustraction des équations $\begin{cases} ax + by = c \\ ax_0 + by_0 = c \end{cases}$ donne $a(x x_0) + b(y y_0) = 0, \text{ d'où suit } a(x x_0) = b(y_0 y).$ En divisant cette dernière équation par d, on trouve : $\frac{a}{d}(x x_0) = \frac{b}{d}(-y + y_0).$
 - ii. D'après l'exercice 3.12, les entiers $\frac{a}{d}$ et $\frac{b}{d}$ sont premiers entre eux. De plus, $\frac{a}{d}$ divise $\frac{a}{d}(x-x_0) = \frac{b}{d}(-y+y_0)$. Le lemme de Gauss implique que $\frac{a}{d}$ divise $-y+y_0$.
 - iii. Puisque $\frac{a}{d}$ divise $-y+y_0,$ il existe $k\in\mathbb{Z}$ tel que $\frac{a}{d}\,k=-y+y_0$ ou encore $y=y_0-\frac{a}{d}\,k$.
 - iv. Déterminons x à partir de l'équation $\frac{a}{d}(x-x_0)=\frac{b}{d}(-y+y_0)$: $x-x_0=\frac{d}{a}\cdot\frac{b}{d}(-y+y_0)=\frac{b}{a}(-y+y_0)=\frac{b}{a}\cdot\frac{a}{d}\,k=\frac{b}{d}\,k$ $x=x_0+\frac{b}{d}\,k$