Advanced Machine Learning

Fall 2020

Lecture 3: Density Estimation

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes are adapted from ETH's Advanced Machine Learning Course and the book All Of Statistics, Larry Wasserman, Springer.

3.1 Parametric Inference

We now turn our attention to parametric models, that is, models of the form:

$$\mathfrak{F} = \{ f(x; \theta) : \theta \in \Theta \}$$

where the $\theta \subset \mathbb{R}^k$ is the parameter space and $\theta = (\theta_1, ..., \theta_k)$ is the parameter. The problem of inference then reduces to the problem of estimating the parameter θ .

Often, we are only interested in some function $T(\theta)$. For example, if $X \sim \mathcal{N}(\mu, \sigma^2)$ then the parameter is $\theta = (\mu, \sigma)$. If our goal is to estimate μ then $\mu = T(\theta)$ is called the parameter of interest and σ is called a nuisance parameter.

3.1.1 Maximum Likelihood

The most common method for estimating parameters in a parametric model is the maximum likelihood method. Let $X_1, ..., X_n$ be IID with pdf $f(x; \theta)$.

Definition 3.1 The likelihood function is defined by:

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n f(x_i; \theta)$$

The log-likelihood function is defined by $\ell_n(\theta) = \log \mathcal{L}_n(\theta)$.

The likelihood function is just the joint density of the data, except that we treat it is a function of the parameter θ . Thus, $\mathcal{L}_n(\theta): \Theta \to [0,\infty)$. The likelihood function is not a density function: in general, it is not true that $\mathcal{L}_n(\theta)$ integrates to 1 (with respect to θ).

Definition 3.2 The maximum likelihood estimator MLE, denoted by $\hat{\theta}_n$, is the value of θ that maximizes $\mathcal{L}_n(\theta)$.

The maximum of $\ell_n(\theta)$ occurs at the same place as the maximum of $\mathcal{L}_n(\theta)$, so maximizing the log-likelihood leads to the same result as maximizing the likelihood. Often, it is easier to work with the log-likelihood.

Claim 3.3 If we multiply $\mathcal{L}_n(\theta)$ by any positive constant c (not depending on θ) then this will not change the MLE. Hence, we shall often drop constants in the likelihood function.

Example 3.1 Let $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$. The parameter is $\theta = (\mu, \sigma)$ and the likelihood function (ignoring some constants) is:

$$\mathcal{L}_{n}(\mu, \sigma) = \prod_{i} \frac{1}{\sigma} \exp\left\{-\frac{1}{2\sigma^{2}} (X_{i} - \mu)^{2}\right\}$$

$$= \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i} (X_{i} - \mu)^{2}\right\}$$

$$= \sigma^{-n} \exp\left\{-\frac{nS^{2}}{2\sigma^{2}}\right\} \exp\left\{-\frac{n(\bar{X} - \mu)^{2}}{2\sigma^{2}}\right\}$$

where $\bar{X}=n^{-1}\sum_i X_i$ is the sample mean and $S^2=n^{-1}\sum_i (X_i-\bar{X})^2$. The last equality above follows from the fact that $\sum_i (X_i-\mu)^2=nS^2+n(\bar{X}-\mu)^2$ which can be verified by writing $\sum_i (X_i-\mu)^2=\sum_i (X_i-\bar{X}+\bar{X}-\mu)^2$ and then expanding the square. The log-likelihood is:

$$l(\mu, \sigma) = -n\log\sigma - \frac{nS^2}{2\sigma^2} - \frac{n(\bar{X} - \mu)^2}{2\sigma^2}$$

Solving the equations:

$$\frac{\partial l(\mu, \sigma)}{\partial \mu} = 0 \quad and \quad \frac{\partial l(\mu, \sigma)}{\partial \sigma} = 0,$$

we conclude that $\hat{\mu} = \bar{X}$ and $\hat{\sigma} = S$. It can be verified that these are indeed global maxima of the likelihood.

3.1.2 Properties of Maximum Likelihood Estimators

Under certain conditions on the model, the maximum likelihood estimator $\hat{\theta}_n$ possesses many properties that make it an appealing choice of estimator. The main properties of the MLE are:

- 1. The MLE is **consistent**: $\hat{\theta}_n \stackrel{P}{\to} \theta^*$ where θ^* denotes the true value of the parameter θ ;
- 2. The MLE is **equivariant**: if $\hat{\theta}_n$ is the MLE of θ then $g(\hat{\theta}_n)$ is the MLE of $g(\theta)$;
- 3. The MLE is **asymptotically Normal**: $(\hat{\theta} \theta^*/\hat{se}) \sim \mathcal{N}(0,1)$; also, the estimated standard error \hat{se} can often be computed analytically;
- 4. The MLE is **asymptotically optimal** or **efficient**: roughly, this means that among all well-behaved estimators, the MLE has the smallest variance, at least for large samples. That is, $\hat{\theta}_n$ minimizes $\mathbb{E}[(\hat{\theta}_n \theta^*)^2]$ as $n \to \infty$;
- 5. The MLE is approximately the Bayes estimator.

The properties we discuss only hold if the model satisfies certain regularity conditions. These are essentially smoothness conditions on $f(x; \theta)$, unless otherwise stated we shall tacitly assume that these conditions hold.

3.1.3 Understanding Asymptotic efficiency

The expected square error is a measure for quantifying how good an estimator θ is:

$$\mathbb{E}\big[(\hat{\theta}-\theta_0)^2\big]$$

The Rao-Cramer bound shows that there does not exists an estimator that reaches $\mathbb{E}[(\hat{\theta} - \theta_0)^2] = 0$

Theorem 3.4 For any estimator $\hat{\theta}$ of θ it holds that:

$$\mathbb{E}_{x|\theta} \big[(\hat{\theta} - \theta)^2 \big] \geq \frac{ \big(\frac{\partial}{\partial \theta} b_{\hat{\theta}} + 1 \big)^2}{\mathbb{E}_{x|\theta} \big[\Lambda^2 \big]} + b_{\hat{\theta}}^2$$

Where:

$$\Lambda = \frac{\partial}{\partial \theta} \log p(x|\theta) = \frac{1}{p(x|\theta)} \frac{\partial}{\partial \theta} p(x|\theta) \quad and \quad b_{\hat{\theta}} = \mathbb{E}_{x|\theta}[\hat{\theta}] - \theta$$

Proof:

$$\mathbb{E}_{x|\theta}[\Lambda] = \int_{x} p(x|\theta) \Lambda \ dx = \int_{x} \frac{\partial}{\partial \theta} p(x|\theta) dx = \frac{\partial}{\partial \theta} \int_{x} \frac{1}{p(x|\theta) dx} = 0$$

$$\mathbb{E}_{x|\theta}[\Lambda\hat{\theta}] = \int_x p(x|\theta)\Lambda\hat{\theta} \ dx = \int_x \frac{\partial}{\partial \theta} p(x|\theta)\hat{\theta} \ dx = \frac{\partial}{\partial \theta} \int_x p(x|\theta)\hat{\theta} \ dx = \frac{\partial}{\partial \theta} \mathbb{E}_{x|\theta}[\hat{\theta}] = \frac{\partial}{\partial \theta} (\mathbb{E}_{x|\theta}[\hat{\theta}] - \theta) + 1 = \frac{\partial}{\partial \theta} b_{\hat{\theta}} + 1$$

Consider the covariance between Λ and $\hat{\theta}$:

$$\left(\mathbb{E}_{x|\theta}\left[(\Lambda - \underbrace{\mathbb{E}_{x|\theta}[\Lambda]}_{x|\theta}[\hat{\Lambda}])(\hat{\theta} - \mathbb{E}_{x|\theta}[\hat{\theta}])\right]\right)^2 = \left(\mathbb{E}_{x|\theta}[\Lambda\hat{\theta}] - \mathbb{E}_{x|\theta}\left[\Lambda \mathbb{E}_{x|\theta}[\hat{\theta}]\right]\right)^2 = \left(\mathbb{E}_{x|\theta}[\Lambda\hat{\theta}] - \underbrace{\mathbb{E}_{x|\theta}[\Lambda]}_{x|\theta}[\hat{\theta}]\right)^2 = \left(\mathbb{E}_{x|\theta}[\Lambda]}_{x|\theta}[\hat{\theta}]\right)^2 = \left(\mathbb{E}_{x|\theta}[\Lambda]_{x|\theta}[\hat{\theta}]\right)^2 = \left(\mathbb{E}_{x|\theta}[\Lambda]_{x|\theta}[\Lambda]_{x|\theta}[\hat{\theta}]\right)^2 = \left(\mathbb{E}_{x|\theta}[\Lambda]$$

Now, let's consider Cauchy-Schwarz inequality i.e. $(\mathbb{E}[xy])^2 \leq \mathbb{E}[x^2]\mathbb{E}[y^2]$ applied to the cross-correlation:

$$\left(\mathbb{E}_{x|\theta}\left[\left(\Lambda - \mathbb{E}_{x|\theta}\left[\tilde{\Lambda}\right]\right)(\hat{\theta} - \mathbb{E}_{x|\theta}\left[\hat{\theta}\right]\right)^{2} \leq \mathbb{E}_{x|\theta}\left[\tilde{\Lambda}^{2}\right] \mathbb{E}_{x|\theta}\left[\left(\hat{\theta} - \mathbb{E}_{x|\theta}\left[\hat{\theta}\right]\right)^{2}\right] = \mathbb{E}_{x|\theta}\left[\tilde{\Lambda}^{2}\right] \mathbb{E}_{x|\theta}\left[\left(\left(\hat{\theta} - \theta\right) - \left(\mathbb{E}_{x|\theta}\left[\hat{\theta}\right] - \theta\right)\right)^{2}\right] \\
= \mathbb{E}_{x|\theta}\left[\tilde{\Lambda}^{2}\right] \mathbb{E}_{x|\theta}\left[\left(\hat{\theta} - \theta\right)^{2} + \left(\mathbb{E}_{x|\theta}\left[\hat{\theta}\right] - \theta\right)^{2} - 2\left(\hat{\theta} - \theta\right)\left(\mathbb{E}_{x|\theta}\left[\hat{\theta}\right] - \theta\right)\right]$$

$$=\mathbb{E}_{x|\theta}[\Lambda^2]\left\{\mathbb{E}_{x|\theta}\left[(\hat{\theta}-\theta)^2\right] + \overbrace{\mathbb{E}_{x|\theta}\left[(\mathbb{E}_{x|\theta}[\hat{\theta}]-\theta)^2 - 2(\hat{\theta}-\theta)(\mathbb{E}_{x|\theta}[\hat{\theta}]-\theta)\right]}^{-b_{\hat{\theta}}^2}\right\} = \mathbb{E}_{x|\theta}[\Lambda^2]\left\{\mathbb{E}_{x|\theta}\left[(\hat{\theta}-\theta)^2\right] - b_{\hat{\theta}}^2\right\}$$

It's easy to verify that $\mathbb{E}_{x|\theta}\left[(\mathbb{E}_{x|\theta}[\hat{\theta}] - \theta)^2 - 2(\hat{\theta} - \theta)(\mathbb{E}_{x|\theta}[\hat{\theta}] - \theta)\right] = -b_{\hat{\theta}}^2$:

$$\begin{split} \mathbb{E}_{x|\theta} \Big[\mathbb{E}^2_{x|\theta}[\hat{\theta}] + \theta^2 - 2\theta \mathbb{E}_{x|\theta}[\hat{\theta}] - 2\hat{\theta}\mathbb{E}_{x|\theta}[\hat{\theta}] + 2\hat{\theta}\theta + 2\theta \mathbb{E}_{x|\theta}[\hat{\theta}] - 2\theta^2 \Big] \\ &= \mathbb{E}^2_{x|\theta}[\hat{\theta}] + \mathbb{E}_{x|\theta}[\theta^2] - 2\mathbb{E}^2_{x|\theta}[\hat{\theta}] + 2\theta \mathbb{E}_{x|\theta}[\hat{\theta}] - 2\mathbb{E}_{x|\theta}[\theta^2] \\ &= -\mathbb{E}^2_{x|\theta}[\hat{\theta}] - \mathbb{E}_{x|\theta}[\theta^2] + 2\theta \mathbb{E}_{x|\theta}[\hat{\theta}] = -\mathbb{E}^2_{x|\theta}[\hat{\theta}] - \theta^2 + 2\theta \mathbb{E}_{x|\theta}[\hat{\theta}] = -\left(\mathbb{E}_{x|\theta}[\hat{\theta}] - \theta\right)^2 = -b_{\hat{\theta}}^2 \end{split}$$

Finally, from the inequality proved earlier we know that:

$$\left(\mathbb{E}_{x|\theta}[\Lambda\hat{\theta}]\right)^2 = \left(\frac{\partial}{\partial \theta}b_{\hat{\theta}} + 1\right)^2 \leq \mathbb{E}_{x|\theta}[\Lambda^2] \,\mathbb{E}_{x|\theta}[(\hat{\theta} - \theta)^2 - b_{\hat{\theta}}^2]$$

It follows that:

$$\mathbb{E}_{x|\theta} \left[(\hat{\theta} - \theta)^2 \right] \ge \frac{\left(\frac{\partial}{\partial \theta} b_{\hat{\theta}} + 1 \right)^2}{\mathbb{E}_{x|\theta} \left[\Lambda^2 \right]} + b_{\hat{\theta}}^2$$

3.1.4 Stein Estimator

For finite samples, the maximum-likelihood estimator is not necessarily efficient.

Consider a multivariate random variable with distribution $\mathcal{N}(\theta_0, \sigma^2 I)$ with range \mathbb{R}^d and

Consider a multivariate random variable with distribution $\mathcal{N}(\theta_0, \sigma^2 I)$ with range \mathbb{R}^d and $d \geq 3$. If we sample a single point y from this distribution then the Stein Estimator is:

$$\hat{\theta}_{JS} := \left(1 - \frac{(d-2)\sigma^2}{||y||^2}\right) y$$

It is possible to prove that the Stein Estimator is better than the maximum-likelihood estimator for any θ_0 . That is:

$$\mathbb{E}\Big[(\hat{\theta}_{JS} - \theta_0)^2\Big] \leq \mathbb{E}\Big[(\hat{\theta}_{ML} - \theta_0)^2\Big] \ \, \text{for any } \theta_0$$

Moreover, the inequality is strict for some values of θ_0 .

3.2 Bayesian Learning

Bayesian inference is usually carried out in the following way:

- θ is considered to be a **random variable** with distribution $p(\theta|\mathcal{X})$.
- $X \sim p(x)$ and p(x) is unknown.
- $p(x|\theta)$ is a statistical model that reflects our beliefs about x given θ .

We are looking for $p(X = x | \mathcal{X})$, i.e., the probability of x given the sample set \mathcal{X} (class conditional density):

$$p(X = x | \mathcal{X}) = \int \underbrace{p(x, \theta | \mathcal{X})}_{p(x|\theta, \mathcal{X})p(\theta | \mathcal{X})} d\theta = \int p(x|\theta, \mathcal{X})p(\theta | \mathcal{X})d\theta = \int p(x|\theta)p(\theta | \mathcal{X})d\theta$$

Where $p(x|\theta, \mathcal{X}) = p(x|\theta)$ since $x_i \in \mathcal{X}$ and x are i.i.d.

Moreover, asymptotically it holds that $p(\theta|\mathcal{X}) \sim \delta(\theta - \hat{\theta})$; intuitively, this follows from the fact that $\hat{\theta} \xrightarrow{p} \theta_{true}$. Thus, in the asymptotic case, we can approximate the integral with:

$$p(X = x | \mathcal{X}) = \int p(x|\theta)p(\theta|\mathcal{X})d\theta \approx \int p(x|\theta)\delta(\theta - \hat{\theta})d\theta = p(x|\hat{\theta})$$

This approximation was used in the early days of Bayesian inference when it was not possible to evaluate the integral.

3.2.1 Bayesian Learning of a Normal Distribution

Let us begin with a simple example in which we consider a single Gaussian random variable x. We shall suppose that the variance σ^2 is known, and we consider the task of inferring the mean μ given a set of N observations:

- The likelihood is $p(x|\mu) = \mathcal{N}(\mu, \sigma^2)$
- The prior is $p(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$
- The data is $\mathcal{X} = \{x_1, \dots, x_n\}$

We want to compute the posterior distribution $p(\mu|\mathcal{X})$:

$$p(\mu|\mathcal{X}) \propto p(\mathcal{X}|\mu)p(\mu) \implies p(\mu|\mathcal{X}) = \alpha \; p(\mathcal{X}|\mu)p(\mu) = \alpha \cdot \prod_{i \leq n} \Big\{ \frac{1}{\sqrt{2\pi\sigma}} \exp\Big(-\frac{1}{2}\big(\frac{x_i - \mu}{\sigma}\big)^2\Big) \Big\} \cdot \frac{1}{\sqrt{2\pi\sigma_0}} \exp\Big(-\frac{1}{2}\big(\frac{\mu - \mu_0}{\sigma_0}\big)^2\Big) \Big\} \cdot \frac{1}{\sqrt{2\pi\sigma_0}} \exp\Big(-\frac{1}{2}\big(\frac{\mu - \mu_0}{\sigma_0}\big)^2\Big) \exp\Big(-\frac{1}{2}\big(\frac{\mu - \mu_0}{\sigma_0}\big)^2\Big)$$

$$= \alpha' \cdot \prod_{i \le n} \left\{ \exp\left(-\frac{1}{2} \left(\frac{x_i - \mu}{\sigma}\right)^2\right) \right\} \cdot \exp\left(-\frac{1}{2} \left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right) = \alpha' \cdot \exp\left\{-\frac{1}{2} \left(\sum_{i \le n} \left(\frac{x_i - \mu}{\sigma}\right)^2 + \left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right) \right\}$$

Expanding the squares we get:

$$p(\mu|\mathcal{X}) = \alpha' \cdot \exp\left(\mu^2 \underbrace{\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)}_{a} - 2\mu \underbrace{\left(\frac{\mu_0}{\sigma_0^2} + \frac{1}{\sigma^2} \sum_{i \le n} x_i^2\right)}_{b} + c\right)$$

Which we know is a Gaussian Distribution, i.e. $p(\mu|\mathcal{X}) \sim \mathcal{N}(\mu_n, \sigma_n^2)$, because the exponent is a quadratic form. Furthermore, by completing the square we know that:

$$\mu_n = \frac{b}{a} = \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \hat{\mu}_n + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0$$
$$\sigma_n^2 = \frac{1}{a} = \frac{\sigma^2 \sigma_0^2}{n\sigma_0^2 + \sigma^2}$$

It is worth spending a moment studying the form of the posterior mean and variance. First of all, note that the mean of the posterior is a compromise between μ_0 and the maximum likelihood solution $\hat{\mu}$. If the number of observed data points n=0 then μ_n reduces to the prior mean as expected. For $n \to \infty$, μ_n is given by the maximum likelihood solution.

Similarly, consider the result for the variance of the posterior distribution σ_n^2 . With no observed data points, we have the prior variance, whereas if the number of data points $n \to \infty$, the variance goes to zero and the posterior distribution becomes infinitely peaked around the maximum likelihood solution.

We therefore see that the maximum likelihood result of a point estimate for μ is recovered precisely from the Bayesian formalism in the limit of an infinite number of observations.