Aula 11 - Parte 2 Funções Reais de Várias Variáveis Reais: Noções Topológicas em \mathbb{R}^n .

Mónica Celis.

Cálculo II - Agrup. IV-5.

2020.

Sumário da Aula 11 - Parte 2.

- 1. Resolução exercícios Aula 11 Parte 1.
- Distancia Euclidiana, Bola aberta, Bola fechada.
- 2. Ponto interior. Ponto fronteiro. Conjunto aberto /fechado /limitado.
- 3. Ponto de acumulação/ Isolado.

 Determine o domínio das seguintes funções e descreva-o geometricamente.

(a)
$$f(x,y) = \sqrt{\frac{1+x}{1+y}}$$
.

1. Determine o domínio das seguintes funções e descreva-o geometricamente.

(a)
$$f(x,y) = \sqrt{\frac{1+x}{1+y}}$$
.

O domínio de f é o conjunto

$$D_f = \left\{ (x,y) \in \mathbb{R}^2 : f(x,y) \text{ tenha significado em } \mathbb{R}
ight\}.$$

1. Determine o domínio das seguintes funções e descreva-o geometricamente.

(a)
$$f(x,y) = \sqrt{\frac{1+x}{1+y}}$$
.

O domínio de f é o conjunto

$$D_f = \left\{ (x,y) \in \mathbb{R}^2 : f(x,y) \ ext{tenha significado em } \mathbb{R}
ight\}.$$

Como a expressão $\sqrt{\frac{1+x}{1+y}}$ só tem significado em $\mathbb R$ se o radicando for um número real não negativo então devemos ter

1. Determine o domínio das seguintes funções e descreva-o geometricamente.

(a)
$$f(x,y) = \sqrt{\frac{1+x}{1+y}}$$
.

O domínio de f é o conjunto

$$D_f = \left\{ (x,y) \in \mathbb{R}^2 : f(x,y) \ \text{tenha significado em } \mathbb{R}
ight\}.$$

Como a expressão $\sqrt{\frac{1+x}{1+y}}$ só tem significado em $\mathbb R$ se o radicando for um número real não negativo então devemos ter

$$\frac{1+x}{1+y} \ge 0 \quad \wedge \quad 1+y \ne 0.$$

$$\Leftrightarrow [(1+x \ge 0 \ \land 1+y \ge 0) \lor (1+x \le 0 \ \land 1+y \le 0)] \ \land \ 1+y \ne 0.$$

$$\Leftrightarrow [(1+x \ge 0 \ \land 1+y \ge 0) \lor (1+x \le 0 \ \land 1+y \le 0)] \ \land \ 1+y \ne 0.$$

$$\Leftrightarrow \left[\left(x \geq -1 \ \land y > -1 \right) \lor \left(x \leq -1 \ \land y < -1 \right) \right].$$

$$\Leftrightarrow [(1 + x \ge 0 \ \land 1 + y \ge 0) \lor (1 + x \le 0 \ \land 1 + y \le 0)] \ \land \ 1 + y \ne 0.$$

$$\Leftrightarrow \left[\left(x \geq -1 \ \land y > -1 \right) \lor \left(x \leq -1 \ \land y < -1 \right) \right].$$

Logo, o domínio de f é o conjunto

$$D_f = \{(x,y) \in \mathbb{R}^2 : (x \ge -1 \ \land y > -1) \lor (x \le -1 \ \land y < -1)\}.$$

Representação gráfica.

(b)
$$g(x,y) = ln\left(\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x}\right)$$
.

(b)
$$g(x,y) = ln\left(\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x}\right)$$
.

Como a expressão $\ln\left(\frac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}+x}\right)$ só tem significado em $\mathbb R$

(b)
$$g(x,y) = ln\left(\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x}\right)$$
.

Como a expressão $\ln\left(\frac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}+x}\right)$ só tem significado em $\mathbb R$

$$\begin{split} \frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x} &> 0 \ \land \sqrt{x^2 + y^2} + x \neq 0. \\ \Leftrightarrow \ \sqrt{x^2 + y^2} - x &> 0 \land \sqrt{x^2 + y^2} \neq -x \end{split}$$

(b)
$$g(x,y) = ln\left(\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x}\right)$$
.

Como a expressão $ln\left(\frac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}+x}\right)$ só tem significado em $\mathbb R$

$$\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x} > 0 \land \sqrt{x^2 + y^2} + x \neq 0.$$

$$\Leftrightarrow \sqrt{x^2 + y^2} - x > 0 \land \sqrt{x^2 + y^2} \neq -x$$

$$\Leftrightarrow \sqrt{x^2 + y^2} > x \land y \neq 0.$$

(b)
$$g(x,y) = ln\left(\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x}\right)$$
.

Como a expressão $ln\left(\frac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}+x}\right)$ só tem significado em $\mathbb R$

$$\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x} > 0 \land \sqrt{x^2 + y^2} + x \neq 0.$$

$$\Leftrightarrow \sqrt{x^2 + y^2} - x > 0 \land \sqrt{x^2 + y^2} \neq -x$$

$$\Leftrightarrow \sqrt{x^2 + y^2} > x \land y \neq 0.$$

$$\Leftrightarrow y^2 > 0 \land y \neq 0$$

(b)
$$g(x,y) = ln\left(\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x}\right)$$
.

Como a expressão $ln\left(\frac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}+x}\right)$ só tem significado em $\mathbb R$

$$\frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x} > 0 \land \sqrt{x^2 + y^2} + x \neq 0.$$

$$\Leftrightarrow \sqrt{x^2 + y^2} - x > 0 \land \sqrt{x^2 + y^2} \neq -x$$

$$\Leftrightarrow \sqrt{x^2 + y^2} > x \land y \neq 0.$$

$$\Leftrightarrow y^2 > 0 \land y \neq 0$$

$$\Leftrightarrow y \neq 0$$

Logo, o domínio de g é o conjunto

$$D_g = \left\{ (x,y) \in \mathbb{R}^2 : y \neq 0
ight\}.$$

Logo, o domínio de g é o conjunto

$$D_g = \left\{ (x, y) \in \mathbb{R}^2 : y \neq 0 \right\}.$$

Representação gráfica.

(c)
$$h(x,y) = \frac{2 - \sqrt{4 - x^2 - y^2}}{x^2 + y^2}$$
.

(c)
$$h(x,y) = \frac{2 - \sqrt{4 - x^2 - y^2}}{x^2 + y^2}$$
.

Como a expressão $\frac{2-\sqrt{4-x^2-y^2}}{x^2+y^2}$ só tem significado em $\mathbb R$ se o radicando for um número real não negativo e o denominador diferente de 0 então devemos ter

(c)
$$h(x,y) = \frac{2 - \sqrt{4 - x^2 - y^2}}{x^2 + y^2}$$
.

Como a expressão $\frac{2-\sqrt{4-x^2-y^2}}{x^2+y^2}$ só tem significado em $\mathbb R$ se o radicando for um número real não negativo e o denominador diferente de 0 então devemos ter

$$4 - x^2 - y^2 \ge 0 \wedge x^2 + y^2 \ne 0.$$

$$\Leftrightarrow x^2 + y^2 \leq 4 \land (x, y) \neq (0, 0).$$

Logo, o domínio de g é o conjunto

$$D_g = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4 \land (x, y) \ne (0, 0) \right\}.$$

$$= \left\{ (x, y) \in \mathbb{R}^2 : 0 < x^2 + y^2 \le 4 \right\}.$$

Logo, o domínio de g é o conjunto

$$D_g = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4 \land (x, y) \ne (0, 0) \right\}.$$
$$= \left\{ (x, y) \in \mathbb{R}^2 : 0 < x^2 + y^2 \le 4 \right\}.$$

Representação gráfica.

- 2. Determinar as curvas/superfícies de nível das seguintes funções e descreva do ponto de vista geométrico. Desenhar as curvas de nível para os valores de *k* dados.
- (a) $f(x,y) = 2 (x^2 + y^2)$, k = -3, -2, -1, 0, 1, 2.

- 2. Determinar as curvas/superfícies de nível das seguintes funções e descreva do ponto de vista geométrico. Desenhar as curvas de nível para os valores de *k* dados.
- (a) $f(x,y) = 2 (x^2 + y^2)$, k = -3, -2, -1, 0, 1, 2.

Para $k \le 2$, s curva de nível k de f é

- 2. Determinar as curvas/superfícies de nível das seguintes funções e descreva do ponto de vista geométrico. Desenhar as curvas de nível para os valores de *k* dados.
- (a) $f(x,y) = 2 (x^2 + y^2)$, k = -3, -2, -1, 0, 1, 2.

Para $k \le 2$, s curva de nível k de f é

$$C_k = \{(x, y) \in \mathbb{R}^2 : 2 - (x^2 + y^2) = k\}.$$

- 2. Determinar as curvas/superfícies de nível das seguintes funções e descreva do ponto de vista geométrico. Desenhar as curvas de nível para os valores de *k* dados.
- (a) $f(x,y) = 2 (x^2 + y^2)$, k = -3, -2, -1, 0, 1, 2.

Para $k \le 2$, s curva de nível k de f é

$$\mathcal{C}_k = \left\{ (x,y) \in \mathbb{R}^2 : \ 2 - \left(x^2 + y^2\right) = k \right\}.$$

A curva de nível k é, para k < 2, um circunferência de raio $\sqrt{2-k}$ e centro em (0,0), para k=2 temos uma curva degenerada (x=y=0)

2. Determinar as curvas/superfícies de nível das seguintes funções e descreva do ponto de vista geométrico. Desenhar as curvas de nível para os valores de *k* dados.

(a)
$$f(x,y) = 2 - (x^2 + y^2)$$
, $k = -3, -2, -1, 0, 1, 2$.

Para k < 2, s curva de nível k de f é

$$\mathcal{C}_k = \left\{ (x,y) \in \mathbb{R}^2: \ 2 - \left(x^2 + y^2\right) = k \right\}.$$

A curva de nível k é, para k < 2, um circunferência de raio $\sqrt{2-k}$ e centro em (0,0), para k=2 temos uma curva degenerada (x=y=0)

$$\begin{split} \mathcal{C}_{-3} &= \left\{ (x,y) \in \mathbb{R}^2: \ 2 - \left(x^2 + y^2 - 3 \right) \right\}. \\ &= \left\{ (x,y) \in \mathbb{R}^2: \ x^2 + y^2 = 5 \right\}. \end{split}$$

$$C_{-3} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 5\}$$

$$C_{-2} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$$

$$C_{-1} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 3\}.$$

$$\mathcal{C}_0 = \left\{ (x,y) \in \mathbb{R}^2: \ x^2 + y^2 = 2 \right\}.$$

$$C_1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

$$C_2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 0\}.$$

$$C_2 = \{(x, y) \in \mathbb{R} : x + y = 0\}$$

 $C_2 = \{(0, 0)\}.$

(b)
$$h(x, y) = 2x^2 + 4y^2$$
, $k = 2, 3, 4, 8$.

(b) $h(x, y) = 2x^2 + 4y^2$, k = 2, 3, 4, 8.

Para $k \ge 0$, s curva de nível k de g é

(b)
$$h(x, y) = 2x^2 + 4y^2$$
, $k = 2, 3, 4, 8$.

Para $k \ge 0$, s curva de nível k de g é

$$C_k = \left\{ (x, y) \in \mathbb{R}^2 : \ 2x^2 + 4y^2 = k \right\}.$$

(b)
$$h(x, y) = 2x^2 + 4y^2$$
, $k = 2, 3, 4, 8$.

Para $k \ge 0$, s curva de nível k de g é

$$C_k = \{(x,y) \in \mathbb{R}^2 : 2x^2 + 4y^2 = k\}.$$

A curva de nível k é, para k > 0, uma elipse centrada na origem e vértices com eixo maior paralelo ao eixo dos x, para k = 0 temos uma curva degenerada (x = y = 0)

(b)
$$h(x, y) = 2x^2 + 4y^2$$
, $k = 2, 3, 4, 8$.

Para $k \ge 0$, s curva de nível k de g é

$$\mathcal{C}_k = \left\{ (x,y) \in \mathbb{R}^2: \ 2x^2 + 4y^2 = k \right\}.$$

A curva de nível k é, para k > 0, uma elipse centrada na origem e vértices com eixo maior paralelo ao eixo dos x, para k = 0 temos uma curva degenerada (x = y = 0)

$$\begin{aligned} \mathcal{C}_2 &= \left\{ (x,y) \in \mathbb{R}^2 : \ 2 = 2x^2 + 4y^2 \right\}. \\ &= \left\{ (x,y) \in \mathbb{R}^2 : \ \frac{x^2}{1} + \frac{y^2}{1/2} = 1 \right\}. \end{aligned}$$

$$C_2 = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{1} + \frac{y^2}{1/2} = 1 \right\}$$

$$C_3 = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{3/2} + \frac{y^2}{3/4} = 1 \right\}$$

$$C_4 = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{2} + \frac{y^2}{1} = 1 \right\}$$

$$C_8 = \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{2} = 1 \right\}$$

(c)
$$h(x, y, z) = x^2 + y^2 + z^2$$
.

(c)
$$h(x, y, z) = x^2 + y^2 + z^2$$
.

Para $k \ge 0$, s curva de nível k de h é

(c)
$$h(x, y, z) = x^2 + y^2 + z^2$$
.

Para $k \ge 0$, s curva de nível k de h é

$$\mathcal{S}_k = \left\{ (x,y,z) \in \mathbb{R}^3: \; x^2 + y^2 + z^2 = k \right\}.$$

(c)
$$h(x, y, z) = x^2 + y^2 + z^2$$
.

Para $k \ge 0$, s curva de nível k de h é

$$\mathcal{S}_k = \left\{ (x, y, z) \in \mathbb{R}^3: \ x^2 + y^2 + z^2 = k
ight\}.$$

A curva de nível k é, para k > 0, a superfície esférica de centro (0,0,0) e raio \sqrt{k} , para k=0 temos uma uma quádrica degenerada (x=y=z=0).

A distancia euclidiana entre dois pontos (x_1, x_2) e (y_1, y_2) de \mathbb{R}^2 define-se por

$$d((x_1,x_2),(y_1,y_2))=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}.$$

A distancia euclidiana entre dois pontos (x_1, x_2) e (y_1, y_2) de \mathbb{R}^2 define-se por

$$d((x_1,x_2),(y_1,y_2))=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}.$$

Definimos em \mathbb{R}^n , de modo análogo, a **distancia euclidiana** entre dois pontos por

$$d(X,Y) = ||\overrightarrow{XY}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

para
$$X = (x_1, x_2, \dots, x_n)$$
 e $Y = (y_1, y_2, \dots, y_n)$.

Determine o conjunto de pontos $X \in \mathbb{R}^2$ tais que estejam a uma distancia igual ou menor do que 2 do ponto P(1,2).

Determine o conjunto de pontos $X \in \mathbb{R}^2$ tais que estejam a uma distancia igual ou menor do que 2 do ponto P(1,2). Seja $X(x_1,x_2)$ queremos que $d(X,P) \le 2$, isto é,

$$\sqrt{(x_1-1)^2+(x_2-2)^2} \leq 2 \Leftrightarrow (x_1-1)^2+(x_2-2)^2 \leq 4$$

Determine o conjunto de pontos $X \in \mathbb{R}^2$ tais que estejam a uma distancia igual ou menor do que 2 do ponto P(1,2). Seja $X(x_1,x_2)$ queremos que $d(X,P) \le 2$, isto é,

$$\sqrt{(x_1-1)^2+(x_2-2)^2} \le 2 \Leftrightarrow (x_1-1)^2+(x_2-2)^2 \le 4$$

Logo, o conjunto de pontos de \mathbb{R}^2 pedido é

$$\left\{X\in\mathbb{R}^2: (x_1-1)^2+(x_2-2)^2\leq 4\right\}.$$

A representação gráfica do conjunto é:

A representação gráfica do conjunto é:

Sejam $P \in \mathbb{R}^n$ e $r \in \mathbb{R}^+$, definimos

• A bola aberta de centro em P e raio r como o conjunto

$$B_r(P) = \{X \in \mathbb{R}^n : d(X, P) < r\}.$$

• A bola fechada de centro em P e raio r como o conjunto

$$\overline{B}_r(P) = \{X \in \mathbb{R}^n : d(X, P) \leq r\}.$$

Em \mathbb{R} : $B_r(p) =]p - r, p + r[$, intervalo aberto.

Em \mathbb{R} : $B_r(p) =]p - r, p + r[$, intervalo aberto.

Em \mathbb{R}^2 : $B_r(P)$ corresponde ao interior de um circulo centrado em P e raio r.

Em \mathbb{R} : $B_r(p) =]p - r, p + r[$, intervalo aberto.

Em \mathbb{R}^2 : $B_r(P)$ corresponde ao interior de um circulo centrado em P e raio r.

Em \mathbb{R}^3 : $B_r(P)$ corresponde ao interior da esfera centrada em P e raio r.

Em \mathbb{R} : $B_r(p) =]p - r, p + r[$, intervalo aberto.

Em \mathbb{R}^2 : $B_r(P)$ corresponde ao interior de um circulo centrado em P e raio r.

Em \mathbb{R}^3 : $B_r(P)$ corresponde ao interior da esfera centrada em P e raio r.

Definição 7

Um ponto $P \in \mathcal{D}$ diz-se um **ponto interior** de um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ se <u>existe</u> um r > 0 tal que $B_r(P) \subset \mathcal{D}$.

O **interior de** \mathcal{D} é o conjunto formado por todos os pontos interiores de \mathcal{D} e denota-se por int (\mathcal{D}) .

O interior do conjunto $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ é o conjunto

$$int(\mathcal{D}) = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \right\}.$$

Representação gráfica,

O interior do conjunto $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ é o conjunto

$$\textit{int}(\mathcal{D}) = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \right\}.$$

Representação gráfica,

Figura: Conjunto \mathcal{D} .

Figura: $int(\mathcal{D})$.

Note que, o interior de \mathcal{D} não inclui os pontos da circunferência que limita o circulo de centro (0,0) e raio 1, pois se F é um ponto desta circunferência não podemos encontrar um r>0 tal que $B_r(F)$ esteja completamente contida no conjunto \mathcal{D} . Observemos:

Note que, o interior de \mathcal{D} não inclui os pontos da circunferência que limita o circulo de centro (0,0) e raio 1, pois se F é um ponto desta circunferência não podemos encontrar um r>0 tal que $B_r(F)$ esteja completamente contida no conjunto \mathcal{D} . Observemos:

Um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ diz-se **aberto** se todos os seus pontos são pontos interiores de \mathcal{D} , isto é, se

$$int(\mathcal{D}) = \mathcal{D}$$
.

Um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ diz-se **aberto** se todos os seus pontos são pontos interiores de \mathcal{D} , isto é, se

$$int(\mathcal{D}) = \mathcal{D}$$
.

Exemplo 12

 $Em \mathbb{R}$, o conjunto I =]a, b[com $a, b \in \mathbb{R}$ e a < b é um conjunto aberto.

Um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ diz-se **aberto** se todos os seus pontos são pontos interiores de \mathcal{D} , isto é, se

$$int(\mathcal{D}) = \mathcal{D}.$$

Exemplo 12

 $Em \mathbb{R}$, o conjunto I =]a, b[com $a, b \in \mathbb{R}$ e a < b é um conjunto aberto. Sabemos que I é aberto se todos seus pontos são pontos interiores, isto é, se para todo $x \in I$ existe um r > 0 tal que $B_r(x) \subset I$.

Um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ diz-se **aberto** se todos os seus pontos são pontos interiores de \mathcal{D} , isto é, se

$$int(\mathcal{D}) = \mathcal{D}.$$

Exemplo 12

 $Em \mathbb{R}$, o conjunto I =]a, b[com $a, b \in \mathbb{R}$ e a < b é um conjunto aberto. Sabemos que I é aberto se todos seus pontos são pontos interiores, isto é, se para todo $x \in I$ existe um r > 0 tal que $B_r(x) \subset I$.

Se consideramos, por exemplo, $r=\frac{1}{2}\min\{d(x,a),d(x,b)\}$, garantimos que para qualquer $x\in]a,b[$ temos que $B_r(x)\subset I$. Logo, I é aberto.

Se consideramos, por exemplo, $r=\frac{1}{2}\min\{d(x,a),d(x,b)\}$, garantimos que para qualquer $x\in]a,b[$ temos que $B_r(x)\subset I$. Logo, I é aberto. Em geral, toda bola aberta $B_r(X)$ de \mathbb{R}^n é um conjunto aberto.

Se consideramos, por exemplo, $r=\frac{1}{2}\min\{d(x,a),d(x,b)\}$, garantimos que para qualquer $x\in]a,b[$ temos que $B_r(x)\subset I$. Logo, I é aberto. Em geral, toda bola aberta $B_r(X)$ de \mathbb{R}^n é um conjunto aberto.

Definição 9

Um ponto $P \in \mathbb{R}^n$ diz-se um **ponto fronteiro** de um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ se para todo r > 0, $B_r(P) \cap \mathcal{D} \neq \emptyset$ e $B_r(P) \cap (\mathbb{R}^n \setminus \mathcal{D}) \neq \emptyset$. Em outras palavras, se qualquer bola aberta de centro P tem pontos que pertencem a \mathcal{D} e pontos que não pertencem a \mathcal{D} .

A **fronteira de** \mathcal{D} é o conjunto formado por todos os pontos fronteiros de \mathcal{D} e denota-se por $fr(\mathcal{D})$.

A fronteira da esfera (sólida),

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}$$

é a superfície esférica

$$\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=1\}.$$

A fronteira da esfera (sólida),

$$\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}$$

é a superfície esférica

$$\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=1\}.$$

Observação 2

Um ponto fronteiro de $\mathcal D$ pode ou não pertencer ao conjunto $\mathcal D$.

A fronteira da esfera (sólida),

$$\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}$$

é a superfície esférica

$$\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=1\}.$$

Observação 2

Um ponto fronteiro de \mathcal{D} pode ou não pertencer ao conjunto \mathcal{D} .

Definição 10

Um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ *diz-se* **fechado** se todos os pontos fronteiros de \mathcal{D} *lhe pertencem, isto* é, se

$$fr(\mathcal{D})\subseteq \mathcal{D}$$
.

Represente geometricamente e caracterize desde o ponto de vista topológico o seguinte conjunto

$$T = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}.$$

Represente geometricamente e caracterize desde o ponto de vista topológico o seguinte conjunto

$$T = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}.$$

Representação geométrica.

$$|x| + |y| \le 1 \Leftrightarrow |y| \le 1 - |x| \Leftrightarrow |x| - 1 \le y \le 1 - |x|$$
• $x \ge 0$

$$|x| - 1 < y < 1 - |x| \Leftrightarrow x - 1 < y < 1 - x$$

Represente geometricamente e caracterize desde o ponto de vista topológico o seguinte conjunto

$$T = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}.$$

Representação geométrica.

$$|x| + |y| \le 1 \Leftrightarrow |y| \le 1 - |x| \Leftrightarrow |x| - 1 \le y \le 1 - |x|$$
• $x > 0$

$$|x|-1 \le y \le 1-|x| \Leftrightarrow x-1 \le y \le 1-x$$

• x < 0

$$|x|-1 \le y \le 1-|x| \Leftrightarrow -x-1 \le y \le 1+x$$

• x < 0

$$|x|-1 \le y \le 1-|x| \Leftrightarrow -x-1 \le y \le 1+x$$

Logo, a representação geométrica do conjunto T é

O interior de T é:

$$int(T) = \left\{ (x, y) \in \mathbb{R}^2 : |x| + |y| < 1 \right\}.$$

O interior de T é:

$$int(T) = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\}.$$

A fronteira de T é:

$$fr(T) = \{(x,y) \in \mathbb{R}^2 : |x| + |y| = 1\}.$$

O interior de T é:

$$int(T) = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\}.$$

A fronteira de T é:

$$fr(T) = \{(x,y) \in \mathbb{R}^2 : |x| + |y| = 1\}.$$

Como $fr(T) \subset T$, então T é um conjunto fechado.

Um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ diz-se **limitado** se existe um $r \in \mathbb{R}^+$ e $C \in \mathbb{R}^n$ tal que $\mathcal{D} \subseteq \overline{B}_r(C)$.

Um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ diz-se **limitado** se existe um $r \in \mathbb{R}^+$ e $C \in \mathbb{R}^n$ tal que $\mathcal{D} \subseteq \overline{B}_r(C)$.

Exemplo 15

O conjunto $\mathcal{D}=\{(x,y)\in\mathbb{R}: -1\leq x\leq 1, -2\leq y\leq 2\}$ é limitado, pois está contido, por exemplo, na bola $\overline{B}_3(0)$.

Um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ diz-se **limitado** se existe um $r \in \mathbb{R}^+$ e $C \in \mathbb{R}^n$ tal que $\mathcal{D} \subseteq \overline{B}_r(C)$.

Exemplo 15

O conjunto $\mathcal{D}=\{(x,y)\in\mathbb{R}: -1\leq x\leq 1, -2\leq y\leq 2\}$ é limitado, pois está contido, por exemplo, na bola $\overline{B}_3(0)$.

Dizemos que $P \in \mathbb{R}^n$ é um **ponto de acumulação** de um conjunto $\mathcal{D} \subseteq \mathbb{R}^n$ se, para todo r > 0, a bola $B_r(P)$ tem pontos de \mathcal{D} distintos de P, ou seja,

$$B_r(P) \cap (\mathcal{D} \setminus \{P\}) \neq \emptyset.$$

Um ponto $P \in \mathcal{D}$ diz-se um **ponto isolado** de \mathcal{D} se não é um ponto de acumulação de \mathcal{D} .

O conjunto dos pontos de acumulação de $\mathcal D$ se chama **conjunto derivado** de $\mathcal D$ e denota-se por $\mathcal D'$.

Exemplo 16

Consideremos o conjunto

$$\mathcal{L} = \left\{ (x, y) \in \mathbb{R}^2 \setminus \{ (0, 0) \} : x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1) \right\} \cup$$
$$\{ (2, 0) \}.$$

Exemplo 16

Consideremos o conjunto

$$\mathcal{L} = \left\{ (x, y) \in \mathbb{R}^2 \setminus \{ (0, 0) \} : x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1) \right\} \cup \left\{ (2, 0) \right\}.$$

A representação gráfica do conjunto é

$$\mathcal{L}' = \left\{ (x, y \in \mathbb{R} : x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1)) \right\}$$

$$\mathcal{L}' = \left\{ (x, y \in \mathbb{R} : x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1)) \right\}$$

Note que a este conjunto pertence o ponto (0,0), que não é ponto do conjunto \mathcal{L} , mas que satisfaz a definição de ponto de acumulação,isto é, toda bola centrada em (0,0) contém pontos do conjunto \mathcal{L} .

$$\mathcal{L}' = \left\{ (x, y \in \mathbb{R} : x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1)) \right\}$$

Note que a este conjunto pertence o ponto (0,0), que não é ponto do conjunto \mathcal{L} , mas que satisfaz a definição de ponto de acumulação,isto é, toda bola centrada em (0,0) contém pontos do conjunto \mathcal{L} .

O único ponto isolado de \mathcal{L} é o ponto (2,0).

$$\mathcal{L}' = \left\{ (x, y \in \mathbb{R} : x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1)) \right\}$$

Note que a este conjunto pertence o ponto (0,0), que não é ponto do conjunto \mathcal{L} , mas que satisfaz a definição de ponto de acumulação,isto é, toda bola centrada em (0,0) contém pontos do conjunto \mathcal{L} .

- O único ponto isolado de \mathcal{L} é o ponto (2,0).
- O interior de \mathcal{L} é o conjunto:

$$\mathcal{L}' = \left\{ (x, y \in \mathbb{R} : x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1)) \right\}$$

Note que a este conjunto pertence o ponto (0,0), que não é ponto do conjunto \mathcal{L} , mas que satisfaz a definição de ponto de acumulação,isto é, toda bola centrada em (0,0) contém pontos do conjunto \mathcal{L} .

O único ponto isolado de \mathcal{L} é o ponto (2,0).

O interior de \mathcal{L} é o conjunto:

$$int(\mathcal{L}) = \left\{ (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\} : x^2 + y^2 < 1 \lor (y = 0 \land -2 < x < -1). \right\}$$

$$\mathcal{L}' = \left\{ (x, y \in \mathbb{R} : x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1)) \right\}$$

Note que a este conjunto pertence o ponto (0,0), que não é ponto do conjunto \mathcal{L} , mas que satisfaz a definição de ponto de acumulação,isto é, toda bola centrada em (0,0) contém pontos do conjunto \mathcal{L} .

O único ponto isolado de \mathcal{L} é o ponto (2,0).

O interior de \mathcal{L} é o conjunto:

$$int(\mathcal{L}) = \left\{ (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\} : x^2 + y^2 < 1 \lor (y = 0 \land -2 < x < -1). \right\}$$

A fronteira de \mathcal{L} é o conjunto:

$$\mathcal{L}' = \left\{ (x, y \in \mathbb{R} : x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1)) \right\}$$

Note que a este conjunto pertence o ponto (0,0), que não é ponto do conjunto \mathcal{L} , mas que satisfaz a definição de ponto de acumulação,isto é, toda bola centrada em (0,0) contém pontos do conjunto \mathcal{L} .

O único ponto isolado de \mathcal{L} é o ponto (2,0).

O interior de \mathcal{L} é o conjunto:

$$int(\mathcal{L}) = \left\{ (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\} : x^2 + y^2 < 1 \lor (y = 0 \land -2 < x < -1). \right\}$$

A fronteira de \mathcal{L} é o conjunto:

$$\mathit{fr}(\mathcal{L}) = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \right\} \cup \left\{ (2,0), (0,0), (-2,0) \right\}.$$

Exercício 2

Considere o seguinte conjunto

$$A = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 - 1 \ge 1 \land x - y + 1 > 0 \land x^2 - y \le 0 \right\}.$$

- (a) Represente geometricamente o conjunto A.
- (b) Determine o interior, a fronteira e o conjunto dos pontos de acumulação de A.
- (c) A é um conjunto limitado? Justifique.
- (d) A é um conjunto fechado? Justifique.
- (e) A é um conjunto aberto? Justifique.

Exercício 3

Considere o seguinte conjunto

$$B = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + 9y^2 > 1 \right\} \cup \left\{ (0,0) \right\}.$$

- (a) Represente geometricamente o conjunto B.
- (b) Determine o interior, a fronteira e o conjunto dos pontos de acumulação de B.
- (c) B é um conjunto limitado? Justifique.
- (d) B é um conjunto fechado? Justifique.
- (e) B é um conjunto aberto? Justifique.