In the Claims

What is claimed is:

1. (withdrawn) A process for preparing a compound of the formula

wherein R^1 is selected from the group consisting of hydrogen, $-C \equiv N$, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_{10}) cycloalkyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and $(R^2)_2$ -N-; wherein each of the aforesaid (C_1-C_6) alkyl, (C_3-C_{10}) eycloalkyl, phenyl, (C_1-C_{10}) heteroaryl and (C_1-C_{10}) heterocyclic substituents may optionally be independently substituted by one to four moieties independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_3 - C_{10})cycloalkyl, (C_1 - C_{10})heteroaryl, (C_1 - C_{10})heterocyclic, formyl, -CN, (C₁-C₆)alkyl-(C=O)-, phenyl-(C=O)-, (C₁-C₆)alkyl-O-(C=O)-, [(C₁-C₆)alkyl-O-(C=O)-, [(C₁ C_6)alkyl]₂-N-(C=O)-, phenyl-[((C_1 - C_6)alkyl)-N]-(C=O)-, -NO₂, [(C_1 - C_6)alkyl]₂-amino, $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl- $(C=O)-[((C_1-C_6)alkyl)-N]-$, $[(C_1-C_6)alkyl-]_2N-(C=O)-[((C_1-C_6)alkyl)-N]-, (phenyl-)_2N-(C=O)-[((C_1-C_6)alkyl)-N]-,$ $(C_1-C_6)alkyl-O-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-O-(C=O)-[((C₁-C₆)alkyl)-N]-, (C_1-C_6) alkyl-SO₂-, phenyl-SO₂-, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, $(C_1-C_6)alkyl-(C=O)-O-$, phenyl-(C=O)-O-, $[(C_1-C_6)alkyl-]_2N-(C=O)-O-$, (phenyl- $)_2N-$ (C=O)-O-; wherein when said R² phenyl contains two adjacent substituents, such substituents may optionally be taken together with the carbon atoms to which they are attached to form a five to six membered carbocyclic or heterocyclic ring; wherein each of said moieties containing a phenyl alternative may optionally be substituted by one or two radicals independently selected from the group consisting of (C₁-C₆)alkyl, halo, (C₁- C_6)alkoxy, perhalo(C_1 - C_6)alkyl and perhalo(C_1 - C_6)alkoxy;

each R^2 is independently selected from hydrogen, $(C_1\text{-}C_6)$ alkyl. phenyl, $(C_1\text{-}C_{10})$ heteroaryl, $(C_1\text{-}C_{10})$ heterocyclic and $(C_3\text{-}C_{10})$ cycloalkyl; wherein each of the aforesaid R^2 $(C_1\text{-}C_6)$ alkyl, phenyl, $(C_1\text{-}C_{10})$ heteroaryl, $(C_1\text{-}C_{10})$ heterocyclic and $(C_3\text{-}C_{10})$ cycloalkyl substituents may optionally be substituted by one to four moieties independently selected from the group consisting of halo, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, $(C_2\text{-}C_6)$ alkynyl, perhalo $(C_1\text{-}C_6)$ alkyl, phenyl, $(C_1\text{-}C_{10})$ heteroaryl, $(C_1\text{-}C_{10})$ heterocyclic, $(C_3\text{-}C_{10})$ cycloalkyl, $(C_1\text{-}C_6)$ alkoxy, perhalo $(C_1\text{-}C_6)$ alkoxy, phenoxy, $(C_1\text{-}C_{10})$ heteroaryl- $(C_1\text{-}C_1)$ heterocyclic- $(C_3\text{-}C_1)$ 0)cycloalkyl- $(C_3\text{-}C_1)$ 0)cycloalkyl- $(C_3\text{-}C_1)$ 0, $(C_1\text{-}C_6)$ alkyl- $(C_3\text{-}C_1)$ 0, $(C_1\text{-}C_6)$ 0, and phenyl- $(C_3\text{-}C_1)$ 0, wherein two $(C_3\text{-}C_1)$ 0, and phenyl- $(C_3\text{-}C_1)$ 0, and phenyl- $(C_3\text{-}C_1)$ 0, and phenyl- $(C_3\text{-}C_1)$ 0, and phenyl- $(C_3\text{-}C_1)$ 0, an

each R^3 is independently selected from the group consisting of halo, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, $(C_2\text{-}C_6)$ alkynyl, perhalo $(C_1\text{-}C_6)$ alkyl, phenyl, $(C_1\text{-}C_{10})$ heteroaryl, $(C_1\text{-}C_{10})$ heterocyclic, $(C_3\text{-}C_{10})$ cycloalkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, perhalo $(C_1\text{-}C_6)$ alkoxy, phenoxy, $(C_1\text{-}C_{10})$ heteroaryl-O-, $(C_1\text{-}C_{10})$ heterocyclic-O-, $(C_3\text{-}C_{10})$ cycloalkyl-O-, $(C_1\text{-}C_6)$ alkyl-SO₂-, $(C_1\text{-}C_6)$ alkyl-NH-SO₂-, -NO₂, amino, $(C_1\text{-}C_6)$ alkyl-gramino, $(C_1\text{-}C_6)$ alkyl-SO₂-NH-, $(C_1\text{-}C_6)$ alkyl-(C=0)-NH-, $(C_1\text{-}C_6)$ alkyl-(C=0)-[$((C_1\text{-}C_6)$ alkyl)-N]-, phenyl-(C=0)-NH-, phenyl-(C=0)-[$((C_1\text{-}C_6)$ alkyl)-N]-, -CN, $(C_1\text{-}C_6)$ alkyl-(C=0)-, phenyl-(C=0)-, $(C_1\text{-}C_1)$ heteroaryl-(C=0)-, $(C_1\text{-}C_1)$ heterocyclic-(C=0)-, $(C_3\text{-}C_{10})$ cycloalkyl-(C=0)-, $(C_1\text{-}C_6)$ alkyl-O-(C=0)-, $(C_1\text{-}C_6)$ alkyl-NH-(C=0)-, $(C_1\text{-}C_6)$ alkyl-NH-(C=0)-, phenyl-NH-(C=0)-, phenyl-(C=0)-, $(C_1\text{-}C_6)$ alkyl-NH-(C=0)-, $(C_1\text{-}C_6)$ alkyl-NH-(C=0)-, and $(C_1\text{-}C_6)$ alkyl-(C=0)-0-; wherein two adjacent (C=0)- and $(C_1\text{-}C_6)$ alkyl-(C=0)-0-; wherein two adjacent (C=0)- are attached to form a five to six membered carbocyclic or heterocyclic ring;

s is an integer from zero to five;

 R^4 is selected from the group consisting of hydrogen, fluoro, chloro or R^5 -B- $(CH_2)_n$ -;

n is an integer from zero to six;

each B is independently a bond, $-(CHR^6)$ -, -O-, -S-, $-(SO_2)$ -, -(C=O)-, -O-(C=O)-, -(C=O)-O-, -(C=O)-O-, $-(R^6-N)$ -, $-(R^6-N)$ -, $-(R^6-N)$ -, $-(R^6-N)$ -, -(C=O)-, $-(R^6-N)$ -, $-(R^6$

 R^5 is selected from the group consisting of hydrogen, $-CF_3$, $-C \equiv N$, $R^9 - (R^8CH)_m$. phenyl, (C₁-C₁₀)heterocyclic, (C₁-C₁₀)heteroaryl, and (C₃-C₁₀)cycloalkyl; wherein each of the aforesaid R^5 phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl substituents may optionally be substituted by one to four moieties independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_1 - C_{10})heteroaryl, (C_1 - C_{10})heterocyclic. (C_3 - C_{10})cycloalkyl, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C_1-C_{10}) heteroaryl-O-, (C_1-C_{10}) heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkyl-NH-SO₂-, -NO₂, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino, $(C_1-C_6)alkyl-SO_2-NH-$, $(C_1-C_6)alkyl-(C=O)-NH-$, $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl-C=O)-(C_1-C_6)alkyl-C=O)-[((C_1-C_6)alkyl-C=O)-((C_1-C_6)alkyl-C=O)-((C_1-C_6)alkyl-C=O)-((C_1-C_6)alkyl-C=O)-[((C_1-C_6)alkyl-C=O)-((C_1-C_6)alk$ C_6)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C_1 - C_6)alkyl)-N]-, -CN, (C_1 - C_6)alkyl-(C=O)-, phenyl-(C=O)-, (C_1-C_{10}) heteroaryl-(C=O)-, (C_1-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) C_{10})cycloalkyl-(C=O)-, HO-(C=O)-, $(C_1$ - C_6)alkyl-O-(C=O)-, $H_2N(C=O)$ - $(C_1$ - C_6)alkyl-NH-(C=O)-, $[(C_1-C_6)alkyl]_2-N-(C=O)-$, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-$ (C=O)-, (C_1-C_{10}) heteroaryl-NH-(C=O)-, (C_1-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-O- and phenyl-(C=O)-O-; wherein two adjacent R^5 substituents of said phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl may optionally be taken together with the carbon or heteroatom to which they are attached to form a five or six membered carbocyclic or heterocyclic ring;

m is an integer from one to six;

 R^6 is hydrogen, (C_1-C_6) alkyl-SO₂- or (C_1-C_6) alkyl;

R⁷ is hydrogen or (C₁-C₆)alkyl;

each R^8 is independently selected from the group consisting of hydrogen, amino, (C_1-C_6) alkoxy and (C_1-C_6) alkyl;

 R^9 is selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic, (C_3-C_6) alkynyl, phenyl, (C_1-C_{10}) heterocyclic, (C_3-C_6) alkynyl, phenyl, (C_1-C_{10}) heterocyclic, (C_3-C_6) alkynyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic, (C_3-C_6) alkynyl, phenyl, (C_1-C_1)

 $C_{10} \text{ cycloalkyl, hydroxy, } (C_1\text{-}C_6) \text{ alkoxy, perhalo} (C_1\text{-}C_6) \text{ alkoxy, phenoxy, } (C_1\text{-}C_{10}) \text{ heteroaryl-O-, } (C_1\text{-}C_6) \text{ alkoxy, phenoxy, } (C_1\text{-}C_{10}) \text{ heteroaryl-O-, } (C_1\text{-}C_6) \text{ alkyl-SO}_2\text{-, } (C_1\text{-}C_6) \text{ alkyl-NH-SO}_2\text{-, } -\text{NO}_2\text{, amino, } (C_1\text{-}C_6) \text{ alkyl-amino, } (C_1\text{-}C_6) \text{ alkyl-SO}_2\text{-}[((C_1\text{-}C_6) \text{ alkyl-SO}_2\text{-}N\text{H-, phenyl-SO}_2\text{-}N\text{H-, } (C_1\text{-}C_6) \text{ alkyl-SO}_2\text{-}[((C_1\text{-}C_6) \text{ alkyl-N}]\text{-, } (C_1\text{-}C_6) \text{ alkyl-(C=O)-NH-, } (C_1\text{-}C_6) \text{ alkyl-N}]\text{-, } \text{-CN, } (C_1\text{-}C_6) \text{ alkyl-N}]\text{-, } \text{phenyl-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-N}]\text{-, } \text{-CN, } (C_1\text{-}C_6) \text{ alkyl-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-N}]\text{-, } \text{-CN, } (C_1\text{-}C_6) \text{ alkyl-(C=O)-, } (C_3\text{-}C_{10}) \text{ cycloalkyl-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-O-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-NH-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-NH-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-NH-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-NH-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-NH-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-NH-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-NH-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-NH-(C=O)-, } (C_1\text{-}C_6) \text{ alkyl-N$

or an acceptable salt thereof; comprising reacting a compound of the formula

$$\begin{array}{c}
N = \begin{pmatrix}
R^1 \\
N \end{pmatrix} \\
N \\
N \\
N \\
N \\
N
\end{array}$$

wherein L is a leaving group and R^1 and R^4 are as defined above, with a compound of the formula

wherein R³ and s are as defined above and a transition metal catalyst.

- 2. (withdrawn) A process according to claim 1, where the reaction is performed in the presence of toluene.
- 3. (original) A process for preparing a compound of the formula

$$N = \mathbb{R}^1$$
 $N = \mathbb{R}^1$
 $N =$

wherein L is halo and R¹ and R⁴ are as defined above;

 R^{1} is selected from the group consisting of hydrogen, $-C \equiv N$, $(C_{1}-C_{6})$ alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_{10}) cycloalkyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and $(R^1)_2$ -N-; wherein each of the aforesaid (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, phenyl, (C_1-C_{10}) heteroaryl and (C_1-C_{10}) heterocyclic substituents may optionally be independently substituted by one to four moieties independently selected from the group consisting of halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_3 - C_{10})cycloalkyl, (C_1 - C_{10})heteroaryl, (C_1 - C_{10})heterocyclic, formyl, -CN, (C_1-C_6) alkyl-(C=O)-, phenyl-(C=O)-, HO-(C=O)-, (C_1-C_6) alkyl-O-(C=O)-, $(C_1-C_6)alkyl-NH-(C=O)-$, $[(C_1-C_6)alkyl]_2-N-(C=O)-$, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, -NO₂, amino, $(C_1-C_6)alkylamino$. $[(C_1-C_6)alkyl]_2$ -amino, $(C_1-C_6)alkyl-(C=O)-NH-$, $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-(C=O)-NH-, phenyl-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, H_2N -(C=O)-NH-, $(C_1-C_6)alkyl-HN-(C=O)-NH-$, $[(C_1-C_6)alkyl-]_2N-(C=O)-NH-$, $(C_1-C_6)alkyl-HN-(C=O)-[((C_1-C_6)alkyl)-N]-, [(C_1-C_6)alkyl-]_2N-(C=O)-[((C_1-C_6)alkyl-D)-((C_1-C_6)alkyl-D)] C_6$)alkyl)-N]-, phenyl-HN-(C=O)-NH-, (phenyl-)₂N-(C=O)-NH-, phenyl-HN-(C=O)-[((C_1 - C_6)alkyl)-N]-, (phenyl-)₂N-(C=O)-[((C_1 - C_6)alkyl)-N]-, $(C_1-C_6)alkyl-O-(C=O)-NH-$, $(C_1-C_6)alkyl-O-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-O-(C=O)-NH-, phenyl-O-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, $(C_1-C_6)alkyl-SO_2NH$ -, phenyl-SO₂NH-, (C₁-C₆)alkyl-SO₂-, phenyl-SO₂-, hydroxy, (C₁-C₆)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, (C_1 - C_6)alkyl-(C=O)-O-, phenyl-(C=O)-O-, $H_2N-(C=O)-O-$, $(C_1-C_6)alkyl-HN-(C=O)-O-$, $[(C_1-C_6)alkyl-]_2N-(C=O)-O-$, phenyl-HN-(C=O)-O-, (phenyl-)₂N-(C=O)-O-; wherein when said R¹ phenyl contains two adjacent substituents, such substituents may optionally be taken together with the carbon atoms to which they are attached to form a five to six membered carbocyclic or heterocyclic ring; wherein each of said moieties containing a phenyl alternative may

optionally be substituted by one or two radicals independently selected from the group consisting of (C_1-C_6) alkyl, halo, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkyl and perhalo (C_1-C_6) alkoxy;

each R^2 is independently selected from hydrogen, (C_1-C_6) alkyl. phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl; wherein each of the aforesaid R^1 (C₁-C₆)alkyl, phenyl, (C₁-C₁₀)heteroaryl, (C₁-C₁₀)heterocyclic and (C₃- C_{10})cycloalkyl substituents may optionally be substituted by one to four moieties independently selected from the group consisting of halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic, (C_3-C_{10}) cycloalkyl, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C_1-C_{10}) heteroaryl-O-, (C_1-C_{10}) heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkyl-NH-SO₂-, -NO₂, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)alkyl]_2$ -amino, $(C_1-C_6)alkyl-SO_2-NH-$, $(C_1-C_6)alkyl-(C=O)-NH-$, $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-(C=O)-NH-, phenyl-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, -CN, $(C_1-C_6)alkyl-(C=O)$ -, phenyl-(C=O)-, (C_1-C_{10}) heteroaryl-(C=O)-, (C_1-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)-, HO-(C=O)-, $(C_1-C_6)alkyl-O-(C=O)-$, $H_2N(C=O) (C_1-C_6)alkyl-NH-(C=O)-$, $[(C_1-C_6)alkyl]_2-N-(C=O)-$, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, (C_1-C_{10}) heteroaryl-NH-(C=O)-, (C_1-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-O- and phenyl-(C=O)-O-; wherein two R² (C₁-C₆)alkyl groups may be taken together with the nitrogen atom to which they are attached to form a five to six membered heterocyclic or heteroaryl ring;

 R^4 is selected from the group consisting of hydrogen, fluoro, chloro or R^5 -B- $(CH_2)_n$ -;

n is an integer from zero to six;

each B is independently a bond, $-(CHR^6)$ -, -O-, -S-, $-(SO_2)$ -, -(C=O)-, -O-(C=O)-, -(C=O)-O-, -(C=O)- NR^6 -, $-(R^6-N)$ -, $-(R^6-N)$ -, $-(R^6-N)$ -, $-(R^6-N)$ -, -(C=O)-, $-(NR^7)$ -, -(O)-, -(C=O)-, $-(NR^6)$ - or $-(R^6-N)$ -, -(C=O)-, -(C=O)-,

 R^5 is selected from the group consisting of hydrogen, $-CF_3$, $-C\equiv N$, R^9 - $(R^8CH)_m$ -, phenyl, (C_1-C_{10}) heterocyclic, (C_1-C_{10}) heteroaryl, and (C_3-C_{10}) cycloalkyl; wherein each of the aforesaid R^5 phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl substituents may optionally be substituted by one to four moieties independently selected

from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic. (C_3-C_{10}) cycloalkyl, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C_1-C_{10}) heteroaryl-O-, (C_1-C_{10}) heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkyl-NH-SO₂-, -NO₂, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl-C=O)- $[((C_1-C_6)$ alkyl-SO₂-NH-, (C_1-C_6) alkyl-(C=O)-NH-, (C_1-C_6) alkyl-(C=O)- $[((C_1-C_6)$ alkyl-N)]-, phenyl-(C=O)-NH-, phenyl-(C=O)- $[((C_1-C_6)$ alkyl)-N]-, -CN, (C_1-C_6) alkyl-(C=O)-, phenyl-(C=O)-, (C_1-C_{10}) heteroaryl-(C=O)-, (C_1-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)-, (C_1-C_6) alkyl-O-(C=O)-, (C_1-C_6) alkyl-N]-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_{10}) heteroaryl-NH-(C=O)-, (C_1-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-O- and phenyl-(C=O)-O-; wherein two adjacent R⁵ substituents of said phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl may optionally be taken together with the carbon or heterocyclic and which they are attached to form a five or six membered carbocyclic or heterocyclic ring;

m is an integer from one to six;

 R^6 is hydrogen, (C_1-C_6) alkyl-SO₂- or (C_1-C_6) alkyl;

 R^7 is hydrogen or (C_1-C_6) alkyl;

each R^8 is independently selected from the group consisting of hydrogen, amino, (C_1-C_6) alkoxy and (C_1-C_6) alkyl;

 $R^9 \text{ is selected from the group consisting of hydrogen, } (C_1\text{-}C_6)\text{alkyl, } (C_2\text{-}C_6)\text{alkenyl, } (C_2\text{-}C_6)\text{alkynyl, phenyl, } (C_1\text{-}C_{10})\text{heteroaryl, } (C_1\text{-}C_{10})\text{heterocyclic, } (C_3\text{-}C_{10})\text{cycloalkyl, hydroxy, } (C_1\text{-}C_6)\text{alkoxy, perhalo}(C_1\text{-}C_6)\text{alkoxy, phenoxy, } (C_1\text{-}C_{10})\text{heteroaryl-O-, } (C_1\text{-}C_1)\text{heterocyclic-O-, } (C_3\text{-}C_{10})\text{cycloalkyl-O-, } (C_1\text{-}C_6)\text{alkyl-S-, } (C_1\text{-}C_6)\text{alkyl-SO}_2\text{-, } (C_1\text{-}C_6)\text{alkyl-NH-SO}_2\text{-, } -NO_2, \text{ amino, } (C_1\text{-}C_6)\text{alkylamino, } ([C_1\text{-}C_6)\text{alkyl}]_2\text{-amino, } (C_1\text{-}C_6)\text{alkyl-SO}_2\text{-NH-, phenyl-SO}_2\text{-NH-, } (C_1\text{-}C_6)\text{alkyl-SO}_2\text{-}[((C_1\text{-}C_6)\text{alkyl-N}]_-, \text{phenyl-SO}_2\text{-}[((C_1\text{-}C_6)\text{alkyl-N}]_-, (C_1\text{-}C_6)\text{alkyl-N}]_-, (C_1\text{-}C_6)\text{alkyl-N}]_-, \text{phenyl-}(C=O)\text{--}[((C_1\text{-}C_6)\text{alkyl-N}]_-, -CN, (C_1\text{-}C_6)\text{alkyl-(C=O)-, phenyl-(C=O)-, } (C_1\text{-}C_1)\text{heteroaryl-(C=O)-, } (C_1\text{-}C_6)\text{alkyl-O-} (C_1\text{-}C_6)\text{alkyl-NH-(C=O)-, } (C_1\text{-}C_6)\text{alkyl-NH-(C=O)-, phenyl-NH-(C=O)-, phenyl-NH-(C=O)-, phenyl-}[((C_1\text{-}C_6)\text{alkyl-N})]_-, (C_1\text{-}C_1)\text{heteroaryl-NH-(C=O)-, phenyl-NH-(C=O)-, phenyl-}[((C_1\text{-}C_6)\text{alkyl-N})]_-, (C_1\text{-}C_1)\text{heteroaryl-NH-(C=O)-, phenyl-NH-(C=O)-, phenyl-}[((C_1\text{-}C_6)\text{alkyl-N})]_-, (C_1\text{-}C_1)\text{heteroaryl-NH-(C=O)-, phenyl-NH-(C=O)-, phenyl-}[((C_1\text{-}C_6)\text{alkyl-N})]_-, (C_1\text{-}C_1)\text{heteroaryl-NH-(C=O)-, phenyl-}[((C_1\text{-}C_6)\text{alkyl-N})]_-, (C_1\text{-$

 (C_1-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-O- and phenyl-(C=O)-O-;

by reaction of a compound of the formula

$$N = \begin{bmatrix} R^1 \\ N \\ N \end{bmatrix}$$
 IV

wherein R¹ and R⁴ are as defined above; with a halogenating reagent.

- 4. (original) A process according to claim 2, wherein reaction is performed in the presence of a strong base.
- 5. (original) A process according to claim 3, wherein said strong base is lithium bis(trimethylsilyl)amide or lithium diisopropylamide.
- 6. (original) A process according to claim 4, additionally comprising a polar aprotic solvent.
- 7. (original) A process according to claim 5, wherein said polar aprotic solvent is N,N-dimethylformamide.
- 8. (withdrawn) A process for preparing a compound of the formula

$$N = R^1$$
 $N = R^1$
 $N =$

wherein R⁴ is hydrogen and R¹ is as defined above in claim 1; comprising reacting a compound of the formula

$$N = \begin{pmatrix} R^1 \\ N \end{pmatrix} \qquad V$$

wherein R¹ is as defined above; with tosylmethyl isocyanide and a base.

9. A process for preparing a compound of the formula

$$N = \begin{bmatrix} R^1 \\ N \end{bmatrix} V$$

wherein R^1 is as defined above in claim 2; by reaction of a compound of the formula

$$N = R^1$$
 VI

wherein L' is bromo or iodo and R^1 is as defined above; with an (C_1-C_6) alkyl magnesium halide or (C_1-C_6) alkyl lithium, followed by reaction with a disubstituted formamide reagent;

with the proviso that R¹ is other than isopropyl.

- 10. (withdrawn) A process according to claim 9, additionally comprising citric acid or potassium dihydrogen phosphate.
- 11. (withdrawn) A process for preparing a compound of the formula

wherein L^2 is halo; and R^1 is isopropyl, comprising reacting a compound of the formula

wherein L' is halo; with isobutyryl chloride.

12. (withdrawn) A process for preparing a compound of the formula

wherein L' is halo;

 R^1 is selected from the group consisting of hydrogen, $-C \equiv N$. (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_{10}) cycloalkyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and $(R^1)_2-N-$; wherein each of the aforesaid (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, phenyl, (C_1-C_{10}) heteroaryl and (C_1-C_{10}) heterocyclic substituents may optionally be independently substituted by one to four moieties independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_3 - C_{10})cycloalkyl, (C_1 - C_{10})heteroaryl, (C_1 - C_{10})heteroaryl, formyl, -CN, (C₁-C₆)alkyl-(C=O)-, phenyl-(C=O)-, (C₁-C₆)alkyl-O-(C=O)-, [(C₁-C₆)alkyl-O-(C=O)-, [(C₁ C_6)alkyl]₂-N-(C=O)-, phenyl-[((C_1 - C_6)alkyl)-N]-(C=O)-, -NO₂, [(C_1 - C_6)alkyl]₂-amino, $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl- $(C=O)-[((C_1-C_6)alkyl)-N]-$, $[(C_1-C_6)alkyl-]_2N-(C=O)-[((C_1-C_6)alkyl)-N]-, (phenyl-)_2N-(C=O)-[((C_1-C_6)alkyl)-N]-,$ $(C_1-C_6)alkyl-O-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-O-(C=O)-[((C₁-C₆)alkyl)-N]-, (C_1-C_6) alkyl-SO₂-, phenyl-SO₂-, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, $(C_1-C_6)alkyl-(C=O)-O-$, phenyl-(C=O)-O-, $[(C_1-C_6)alkyl-]_2N-(C=O)-O-$, (phenyl-)₂N-(C=O)-O-; wherein when said R¹ phenyl contains two adjacent substituents, such substituents may optionally be taken together with the carbon atoms to which they are attached to form a five to six membered carbocyclic or heterocyclic ring; wherein each of said moieties containing a phenyl alternative may optionally be substituted by one or two

radicals independently selected from the group consisting of (C_1-C_6) alkyl, halo, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkyl and perhalo (C_1-C_6) alkoxy;

and each R^2 is independently selected from hydrogen, $(C_1\text{-}C_6)$ alkyl, phenyl, $(C_1\text{-}C_{10})$ heteroaryl, $(C_1\text{-}C_{10})$ heterocyclic and $(C_3\text{-}C_{10})$ cycloalkyl; wherein each of the aforesaid R^1 $(C_1\text{-}C_6)$ alkyl, phenyl, $(C_1\text{-}C_{10})$ heteroaryl, $(C_1\text{-}C_{10})$ heterocyclic and $(C_3\text{-}C_{10})$ cycloalkyl substituents may optionally be substituted by one to four moieties independently selected from the group consisting of halo, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, $(C_2\text{-}C_6)$ alkynyl, perhalo $(C_1\text{-}C_6)$ alkyl, phenyl, $(C_1\text{-}C_{10})$ heteroaryl, $(C_1\text{-}C_{10})$ heterocyclic, $(C_3\text{-}C_{10})$ cycloalkyl, $(C_1\text{-}C_6)$ alkoxy, perhalo $(C_1\text{-}C_6)$ alkoxy, phenoxy, $(C_1\text{-}C_{10})$ heteroaryl-O-, $(C_1\text{-}C_1)$ heterocyclic-O-, $(C_3\text{-}C_{10})$ cycloalkyl-O-, $(C_1\text{-}C_6)$ alkyl-S-, $(C_1\text{-}C_6)$ alkyl-SO₂-, -NO₂, $[(C_1\text{-}C_6)$ alkyl]₂-amino, $(C_1\text{-}C_6)$ alkyl-(C=0)-, $((C_1\text{-}C_6)$ alkyl)-N]-, -CN, $(C_1\text{-}C_6)$ alkyl-(C=0)-, $(C_1\text{-}C_6)$ alkyl-N]-, -CN, $(C_1\text{-}C_6)$ alkyl-(C=0)-, $(C_1\text{-}C_1)$ heterocyclic-(C=0)-, $(C_1\text{-}C_6)$ alkyl-(C=0)-, $(C_1\text{-}C_6)$ alkyl-O-(C=0)-, $(C_1\text{-}C_6)$ alkyl]₂-N-(C=0)-, phenyl- $((C_1\text{-}C_6)$ alkyl)-N]-(C=0)-, $(C_1\text{-}C_6)$ alkyl-O-(C=0)-, and phenyl-(C=0)-, wherein two $(C_1\text{-}C_6)$ alkyl groups may be taken together with the nitrogen atom to which they are attached to form a five to six membered heterocyclic or heteroaryl ring;

with the proviso that R¹ is other than isopropyl; comprising reacting a compound of the formula

wherein L' is halo; with a reagent of the formula

$$R^1$$
 X

wherein X is halo, tosyl, mesyl or a group of the formula

wherein R' is R^1 , t-butyl, or (C_1-C_6) alkyl-O-; and R^1 is other than isopropyl.

13. (withdrawn) A process for preparing a compound of the formula

wherein L' is halo;

comprising reacting a compound of the formula

wherein L' is halo and L" is halo; with a hydrazine, PEG-300, water and 2-butanonol.

14. **(withdrawn)** A process according to claim 1, wherein R^1 is optionally substituted (C_1-C_6) alkyl, phenyl, (C_3-C_{10}) cycloalkyl, (C_1-C_{10}) heteroaryl or (C_1-C_{10}) heterocyclic. 15. **(withdrawn)** A process according to claim 1, wherein R^1 is (C_1-C_6) alkyl, optionally substituted with one to four groups independently selected from halo, hydroxy, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkyl, perhalo (C_1-C_6) alkoxy, -CN, $-NO_2$, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl] $[(C_1-C_6)$ alkyl- (C_2-C_6) alkyl-

- 16. (withdrawn) A process according to claim 1, wherein R^1 is (C_1-C_4) alkyl.
- 17. (withdrawn) A process according to claim 1, wherein R¹ is isopropyl.
- 18. (withdrawn) A process according to claim 1, wherein R^1 is optionally substituted (C_3 - C_6)cycloalkyl.
- 19. (withdrawn) A process according to claim 1, wherein R¹ is optionally substituted phenyl.

20. (withdrawn) A process according to claim 1, wherein R¹ is optionally substituted phenyl, wherein said substituents are independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, phenyl, (C_3-C_{10}) cycloalkyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic, formyl, -CN, (C_1-C_6) alkyl-(C=O)-, phenyl-(C=O)-, HO-(C=O)-, $(C_1-C_6)alkyl-O-(C=O)$ -, $(C_1-C_6)alkyl-NH-(C=O)$ -, $[(C_1-C_6)alkyl]_2-N-(C=O)-$, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, -NO₂, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino, (C_1-C_6) alkyl-(C=O)-NH-, $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C_1-C_6)alkyl)-N]- C_6)alkyl)-N]-, H_2 N-(C=O)-NH-, (C_1-C_6) alkyl-HN-(C=O)-NH-, $[(C_1-C_6)$ alkyl-]₂N-(C=O)-NH-, $(C_1-C_6)alkyl-HN-(C=O)-[((C_1-C_6)alkyl)-N]-$, $[(C_1-C_6)alkyl-]_2N-(C=O)-[((C_1-C_6)alkyl-N] C_6$)alkyl)-N]-, phenyl-HN-(C=O)-NH-, (phenyl-)₂N-(C=O)-NH-, phenyl-HN-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, (phenyl-)₂N-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, (C_1-C_6) alkyl-O-(C=O)-NH-, (C_1-C_6) alkyl-O-(C=O)-[$((C_1-C_6)$ alkyl)-N]-, phenyl-O-(C=O)-NH-, phenyl-O-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, $(C_1-C_6)alkyl-SO_2NH$ -, phenyl-SO₂NH-, $(C_1-C_6)alkyl-SO_2NH$ -, $(C_1-C_6)alkyl-SO_2NH$ -, phenyl-SO₂NH-, $(C_1-C_6)alkyl-SO_2NH$ -, $(C_1-C_6)alkyl C_6$)alkyl- SO_2 -, phenyl- SO_2 -, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, (C_1-C_6) alkyl-(C=O)-O-, phenyl-(C=O)-O-, H_2N -(C=O)-O-, (C_1-C_6) alkyl-HN-(C=O)-O-, $[(C_1-C_6)alkyl-]_2N-(C=O)-O-$, phenyl-HN-(C=O)-O-, (phenyl-)₂N-(C=O)-O-; wherein each of said moieties containing a phenyl alternative may optionally be substituted by one or two radicals independently selected from the group consisting of (C₁-C₆)alkyl, halo, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkyl and perhalo (C_1-C_6) alkoxy. 21. (withdrawn) A process according to claim 1, wherein R¹ is optionally substituted phenyl wherein said substituents are independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, perhalo (C_1-C_6) alkyl, -CN, (C_1-C_6) alkyl-(C=O)-, HO-(C=O)-, $(C_1-C_6)alkyl-O-(C=O)$ -, $(C_1-C_6)alkyl-NH-(C=O)$ -, $[(C_1-C_6)alkyl]_2-N-(C=O)$ -, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino, (C_1-C_6) alkyl-(C=O)-NH-, $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-, H_2N-(C=O)-NH-, (C_1-C_6)alkyl-HN-(C=O)-NH-,$ $[(C_1-C_6)alkyl-]_2N-(C=O)-NH-, (C_1-C_6)alkyl-HN-(C=O)-[((C_1-C_6)alkyl)-N]-,$ $[(C_1-C_6)alkyl-]_2N-(C=O)-[((C_1-C_6)alkyl)-N]-$, hydroxy, $(C_1-C_6)alkoxy$, perhalo $(C_1-C_6)alkyl-]_2N-(C=O)-[((C_1-C_6)alkyl)-N] C_6$)alkoxy, (C_1-C_6) alkyl-(C=O)-O-, H_2N -(C=O)-O-, (C_1-C_6) alkyl-HN-(C=O)-O- and $[(C_1-C_6)alkyl-]_2N-(C=O)-O-.$

22. (withdrawn) A process according to claim 1, wherein R¹ is optionally substituted phenyl containing two adjacent substituents which taken together with the carbon atoms to which they are attached form a five to six membered carbocyclic or heterocyclic ring. 23. (withdrawn) A process according to claim 1, wherein R^1 is $(R^2)_2$ -N-, wherein each R^1 is independently selected from hydrogen, (C₁-C₆)alkyl, phenyl, (C₁-C₁₀)heterocyclic and (C_3-C_{10}) eycloalkyl; wherein each of the aforesaid \mathbb{R}^2 , (C_1-C_6) alkyl, phenyl, (C₁-C₁₀)heteroaryl, (C₁-C₁₀)heterocyclic and (C₃-C₁₀)cycloalkyl substituents may optionally be substituted by one to four moieties independently selected from the group consisting of halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, phenyl, (C₁-C₁₀)heteroaryl, (C₁-C₁₀)heterocyclic, (C₃-C₁₀)cycloalkyl, hydroxy, (C₁- C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, (C_1 - C_{10})heteroaryl-O-, (C_1 - C_{10})heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkyl-NH-SO₂-, - NO_2 , amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino, (C_1-C_6) alkyl- SO_2 -NH-, (C_1-C_6) - SO_2 C_6)alkyl-(C=O)-NH-, (C_1 - C_6)alkyl-(C=O)-[((C_1 - C_6)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl- $(C=O)-[((C_1-C_6)alkyl)-N]-$, -CN, $(C_1-C_6)alkyl-(C=O)-$, phenyl-(C=O)-, (C_1-C_{10}) heteroaryl-(C=O)-, (C_1-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)-, HO-(C=O)-, $(C_1-C_6)alkyl-O-(C=O)-$, $H_2N(C=O) (C_1-C_6)alkyl-NH-(C=O)-$, $[(C_1-C_6)alkyl]_2-N-(C=O)-$, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, (C_1-C_{10}) heteroaryl-NH-(C=O)-, (C_1-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)-, (C₁-C₆)alkyl-(C=O)-O- and phenyl-(C=O)-O-; wherein two R^2 (C₁-C₆)alkyl groups may be taken together with the nitrogen atom to form a five to six membered heterocyclic or heteroaryl ring.

- 24. (withdrawn) A process according to claim 1, wherein R^1 is $(R^2)_2$ -N- and wherein each R^2 is independently selected from hydrogen, $(C_1$ - C_4)alkyl, phenyl and $(C_1$ - C_{10})heterocyclic.
- 25. (withdrawn) A process according to claim 1, wherein R⁴ is hydrogen.
- 26. (withdrawn) A process for preparing a compound of the formula

wherein each R^3 is independently selected from the group consisting of halo, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, $(C_2\text{-}C_6)$ alkynyl, perhalo $(C_1\text{-}C_6)$ alkyl, phenyl, $(C_1\text{-}C_{10})$ heteroaryl, $(C_1\text{-}C_{10})$ heterocyclic, $(C_3\text{-}C_{10})$ cycloalkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, perhalo $(C_1\text{-}C_6)$ alkoxy, phenoxy, $(C_1\text{-}C_{10})$ heteroaryl-O-, $(C_1\text{-}C_{10})$ heterocyclic-O-, $(C_3\text{-}C_{10})$ cycloalkyl-O-, $(C_1\text{-}C_6)$ alkyl-S-, $(C_1\text{-}C_6)$ alkyl-SO₂-, $(C_1\text{-}C_6)$ alkyl-NH-SO₂-, -NO₂, amino, $(C_1\text{-}C_6)$ alkylamino, $[(C_1\text{-}C_6)$ alkyl]_2-amino, $(C_1\text{-}C_6)$ alkyl-SO₂-NH-, $(C_1\text{-}C_6)$ alkyl-(C=0)-NH-, $(C_1\text{-}C_6)$ alkyl-(C=0)- $(C_1\text{-}C_6)$ alkyl-(C=0)- $(C_1\text{-}C_6)$ alkyl-NH-(C=0)-, phenyl-(C=0)-NH-, phenyl-(C=0)-, $(C_1\text{-}C_6)$ alkyl-N]-, -CN, $(C_1\text{-}C_6)$ alkyl-(C=0)-, phenyl-(C=0)-, $(C_1\text{-}C_6)$ alkyl-O-(C=0)-, $(C_1\text{-}C_6)$ alkyl-NH-(C=0)-, $(C_1\text{-}C_6)$ alkyl-O-(C=0)-, $(C_1\text{-}C_6)$ alkyl-NH-(C=0)-, $(C_1\text{-}C_6)$ alkyl]_2-N-(C=0)-, phenyl-NH-(C=0)-, phenyl- $((C_1\text{-}C_6)$ alkyl)-N]-((C=0)-, $(C_1\text{-}C_6)$ alkyl-NH-(C=0)-, and $(C_1\text{-}C_6)$ alkyl-(C=0)-, wherein two adjacent $(C_1\text{-}C_6)$ alkyl-NH-(C=0)- and $(C_1\text{-}C_6)$ alkyl-(C=0)-, wherein two adjacent $(C_1\text{-}C_6)$ alkyl-NH-(C=0)- and constant the carbon atoms to which they are attached to form a five to six membered carbocyclic or heterocyclic ring;

s is an integer from zero to five; or an acceptable salt thereof; comprising reacting a compound of the formula

wherein R³ and s are as defined above, in the presence of POCl₃, 2,6-lutidine and a solvent.

- 27. (withdrawn) A process according to claim 26, wherein said solvent is tetrahydrofuran.
- 28. (withdrawn) A process according to claim 27, further comprising working up the reaction in the presence of citric acid.
- 29. (withdrawn) A compound of the formula

$$N = \mathbb{R}^1$$
 $N = \mathbb{R}^1$
 $N =$

wherein L is bromo or chloro;

 R^1 is selected from the group consisting of hydrogen, $-C \equiv N$, $(C_1 - C_6)$ alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_{10}) cycloalkyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and $(R^2)_2-N-$; wherein each of the aforesaid (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, phenyl, (C_1-C_{10}) heteroaryl and (C_1-C_{10}) heterocyclic substituents may optionally be independently substituted by one to four moieties independently selected from the group consisting of halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_3 - C_{10})cycloalkyl, (C_1 - C_{10})heteroaryl, (C_1 - C_{10})heterocyclic, formyl, -CN, (C_1-C_6) alkyl-(C=O)-, phenyl-(C=O)-, HO-(C=O)-, (C_1-C_6) alkyl-O-(C=O)-, $(C_1-C_6)alkyl-NH-(C=O)-$, $[(C_1-C_6)alkyl]_2-N-(C=O)-$, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, -NO₂, amino, $(C_1-C_6)alkylamino$, $[(C_1-C_6)alkyl]_2$ amino, $(C_1-C_6)alkyl-(C=O)-NH-$, $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-(C=O)-NH-, phenyl-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, H_2N -(C=O)-NH-, $(C_1-C_6)alkyl-HN-(C=O)-NH-$, $[(C_1-C_6)alkyl-]_2N-(C=O)-NH-$, $(C_1-C_6)alkyl-HN-(C=O)-[((C_1-C_6)alkyl)-N]-, [(C_1-C_6)alkyl-]_2N-(C=O)-[((C_1-C_6)alkyl-)]-((C_1-C_6)alkyl-)$ -((C_1-C_6)alkyl-)]-((C_1-C_6)alkyl-)]-((C_1-C_6)alkyl-)-((C_1-C_6)alkyl-)]-((C_1-C_6)alkyl-) C_6)alkyl)-N]-, phenyl-HN-(C=O)-NH-, (phenyl-)₂N-(C=O)-NH-, phenyl-HN-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, (phenyl-)₂N-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, $(C_1-C_6)alkyl-O-(C=O)-NH-$, $(C_1-C_6)alkyl-O-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-O-(C=O)-NH-, phenyl-O-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, $(C_1-C_6)alkyl-SO_2NH$ -, phenyl-SO₂NH-, $(C_1-C_6)alkyl$ C_6)alkyl- SO_2 -, phenyl- SO_2 -, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, $(C_1-C_6)alkyl-C=O)-O-$, phenyl-(C=O)-O-, $H_2N-(C=O)-O-$, $(C_1-C_6)alkyl-HN-(C=O)-O-$, $[(C_{1}-6)alkyl-2N-C=O)$ -- phenyl-HN-(C=O)-O-, (phenyl-)2N-(C=O)-O-; wherein when said R phenyl contains two adjacent substituents, such substituents may optionally be taken together with the carbon atoms to which they are attached to form a five to six membered carbocyclic or heterocyclic ring; wherein each of said moieties containing a phenyl alternative may optionally be substituted by one or two radicals independently selected

from the group consisting of (C_1-C_6) alkyl, halo, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkyl and perhalo (C_1-C_6) alkoxy;

each R² is independently selected from hydrogen, (C₁-C₆)alkyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl; wherein each of the aforesaid R^1 (C_1 - C_6)alkyl, phenyl, (C_1 - C_{10})heteroaryl, (C_1 - C_{10})heterocyclic and (C_3 - C_{10})cycloalkyl substituents may optionally be substituted by one to four moieties independently selected from the group consisting of halo, (C₁-C₆)alkyl. (C₂-C₆)alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic, (C_3-C_{10}) cycloalkyl, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C_1-C_6) alkoxy, phenoxy, phenoxy, phenoxy, phenox C_{10})heteroaryl-O-, (C_1-C_{10}) heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkyl-NH-SO₂-, -NO₂, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)alkyl]_2$ -amino, $(C_1-C_6)alkyl-SO_2-NH-$, $(C_1-C_6)alkyl-(C=O)-NH-$, $(C_1-C_6)alkyl (C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-(C=O)-NH-, phenyl- $(C=O)-[((C_1-C_6)alkyl)-N]-$, -CN, (C_1-C_6) alkyl-(C=O)-, phenyl-(C=O)-, (C_1-C_{10}) heteroaryl-(C=O)-, (C_1-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)-, (C_1-C_6) alkyl-(C=O)-. (C=O)-, $H_2N(C=O)$ - $(C_1-C_6)alkyl-NH-(C=O)$ -, $[(C_1-C_6)alkyl]_2-N-(C=O)$ -, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]$ -(C=O)-, (C_1-C_{10}) heteroaryl-NH-(C=O)-, (C_1-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-Oand phenyl-(C=O)-O-; wherein two R^2 (C₁-C₆)alkyl groups may be taken together with the nitrogen atom to which they are attached to form a five to six membered heterocyclic or heteroaryl ring;

 R^4 is selected from the group consisting of hydrogen, halo or R^5 -B- $(CH_2)_n$ -; n is an integer from zero to six;

each B is independently a bond, $-(CHR^6)$ -, -O-, -S-, $-(SO_2)$ -, -(C=O)-, -O-(C=O)-, -(C=O)--O-, -(C=O)--(O)-, -(O)-, -(

 R^5 is selected from the group consisting of hydrogen, $-CF_3$, $-C \equiv N$, R^9 - $(R^8CH)_m$ -, phenyl, (C_1-C_{10}) heterocyclic, (C_1-C_{10}) heteroaryl, and (C_3-C_{10}) cycloalkyl; wherein each of the aforesaid R^5 phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl substituents may optionally be substituted by one to four moieties independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic, (C_3-C_{10}) cycloalkyl,

hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C_1-C_{10}) heteroaryl-O-, (C_1-C_{10}) heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkyl-NH-SO₂-, -NO₂, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino, (C_1-C_6) alkyl-SO₂-NH-, (C_1-C_6) alkyl-(C=O)-NH-, (C_1-C_6) alkyl-(C=O)- $[((C_1-C_6)$ alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)- $[((C_1-C_6)$ alkyl)-N]-, -CN, (C_1-C_6) alkyl-(C=O)-, phenyl-(C=O)-, (C_1-C_{10}) heteroaryl-(C=O)-, (C_1-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)-, (C_1-C_6) alkyl-O-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl]₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-O- and phenyl-(C=O)-O-; wherein two adjacent R⁵ substituents of said phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl may optionally be taken together with the carbon or heteroatom to which they are attached to form a five or six membered carbocyclic or heterocyclic ring;

m is an integer from one to six;

 R^6 is hydrogen, (C_1-C_6) alkyl- SO_2 - or (C_1-C_6) alkyl;

R⁷ is hydrogen or (C₁-C₆)alkyl;

each R^8 is independently selected from the group consisting of hydrogen, amino, (C_1-C_6) alkoxy and (C_1-C_6) alkyl;

 R^9 is selected from the group consisting of hydrogen, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, $(C_2\text{-}C_6)$ alkynyl, phenyl, $(C_1\text{-}C_{10})$ heteroaryl, $(C_1\text{-}C_{10})$ heterocyclic, $(C_3\text{-}C_{10})$ cycloalkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, perhalo $(C_1\text{-}C_6)$ alkoxy, phenoxy, $(C_1\text{-}C_{10})$ heteroaryl-O-, $(C_1\text{-}C_{10})$ heterocyclic-O-, $(C_3\text{-}C_{10})$ cycloalkyl-O-, $(C_1\text{-}C_6)$ alkyl-S-, $(C_1\text{-}C_6)$ alkyl-SO2-, $(C_1\text{-}C_6)$ alkyl-NH-SO2-, -NO2, amino, $(C_1\text{-}C_6)$ alkyl-sO2-[((C_1\text{-}C_6)alkyl-SO2-NH-, phenyl-SO2-NH-, $(C_1\text{-}C_6)$ alkyl-SO2-[((C_1\text{-}C_6)alkyl)-N]-, phenyl-SO2-[((C_1\text{-}C_6)alkyl)-N]-, $(C_1\text{-}C_6)$ alkyl-(C=O)-NH-, $(C_1\text{-}C_6)$ alkyl-(C=O)-[((C_1\text{-}C_6)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[((C_1\text{-}C_6)alkyl)-N]-, -CN, $(C_1\text{-}C_6)$ alkyl-(C=O)-, phenyl-(C=O)-, $(C_1\text{-}C_1)$ heteroaryl-(C=O)-, $(C_1\text{-}C_6)$ alkyl-O-(C=O)-, $(C_1\text{-}C_6)$ alkyl-NH-(C=O)-, [(C_1\text{-}C_6)alkyl-NH-(C=O)-, phenyl-NH-(C=O)-, phenyl-[((C_1\text{-}C_6)alkyl-NH-(C=O)-, (C_1-C_6)) alkyl-NH-(C=O)-, (C_1-C_6)alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6)alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6) alkyl-(C=O)-, (C_1-C_6)

or a salt thereof.

30. (withdrawn) A compound of the formula

$$N = \begin{pmatrix} R^1 \\ N \end{pmatrix} \qquad IV$$

$$H = \begin{pmatrix} 0 \\ N \end{pmatrix} \qquad R^4$$

wherein R¹ and R⁴ are as defined above in claim 21; or a salt thereof.

31. (withdrawn) A compound of the formula

$$N = \mathbb{R}^1$$

wherein R¹ is as defined above; or a salt thereof, wherein said compound is other than 3-isopropyl-[1,2,4]triazolo(4,3-a)-6-pyridinecarboxaldehyde.

- 32. (withdrawn) A compound according to claim 22, wherein R^1 is (C_1-C_6) alkyl.
- 33. (withdrawn) A compound according to claim 22, wherein R¹ is isopropyl.
- 34. (withdrawn) A compound according to claim 22, wherein R⁴ is hydrogen.
- 35. (withdrawn) A compound according to claim 22, wherein R⁴ is R⁵-B-(CH₂)_n- and n is zero.
- 36. (withdrawn) A compound according to claim 22, wherein R⁴ is R⁵-B-(CH₂)_n- and n is an integer from one to five.
- 37. (withdrawn) A compound according to claim 22, wherein R^4 is R^5 -B- $(CH_2)_n$ -; n is zero; B is a bond and R^5 is selected from the group consisting of hydrogen, $-CF_3$, $-C\equiv N$, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic or (C_3-C_{10}) cycloalkyl; wherein each of the aforesaid (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl may optionally be substituted by one to three moieties independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_1-C_6) alkynyl, perhalo (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkyl-NH-

 SO_2 -, - NO_2 , amino, $(C_1$ - C_6)alkylamino, $[(C_1$ - C_6)alkyl]_2-amino, $(C_1$ - C_6)alkyl- SO_2 -NH-, $(C_1$ - C_6)alkyl-(C=O)-NH-, $(C_1$ - C_6)alkyl-(C=O)- $[((C_1$ - $C_6)$ alkyl)-N]-, -CN, $(C_1$ - C_6)alkyl-(C=O)-, $(C_1$ - C_6)alkyl-(C=O)-, $(C_1$ - C_6)alkyl-(C=O)-, $(C_1$ - C_6)alkyl]_2-(C=O)- and $(C_1$ - C_6)alkyl-(C=O)-(C=O)-.

38. (withdrawn) A compound according to claim 22, wherein R^4 is R^5 -R- (CH_2) -; R-(C=O)-R- $(R^6$ -R- $(R^6$ - $(R^6$ -R- $(R^6$ - $(R^6$

R⁵ is selected from the group consisting of hydrogen, (C₃-C₁₀)cycloalkyl or phenyl; wherein the aforesaid phenyl and (C₃-C₁₀)cycloalkyl may optionally be substituted by one to three moieties independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkyl, hydroxy, hyd C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, (C_1 - C_6)alkyl- S_7 , (C_1 - C_6)alkyl- S_7 , (C_1 - C_6)alkyl- S_7 SO_2 -, $-NO_2$, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino, (C_1-C_6) alkyl- SO_2 -NH-, (C_1-C_6) alkyl-(C=O)-NH-, (C_1-C_6) alkyl- $(C=O)-[N(C_1-C_6)$ alkyl]-, -CN, (C_1-C_6) alkyl-(C=O)-, HO-(C=O)-, $(C_1$ - $C_6)$ alkyl-O-(C=O)-, $H_2N(C=O)$ - $(C_1$ - $C_6)$ alkyl-NH-(C=O)-, $[(C_1$ - $C_6)$ alkyl- $[(C_1$ - $C_6)$ a C_6)alkyl]₂-N-(C=O)- and (C_1 - C_6)alkyl-(C=O)-O-. 39. (withdrawn) A compound according to claim 22, wherein R^4 is R^5 -B-(CH₂)_n-; n is zero; B is $-(C=O)-NR^6$ -, $-(R^6-N)$ -, >C=O, -O-(C=O)-, $-(R^6-N)$ -(C=O)- or $-(R^6-N)-(C=O)-(NR^7)-$; R⁹ is R⁹-(R⁸CH)_m-; m is 1-6; R⁶ is hydrogen or methyl; R⁸ is hydrogen or methyl; and R⁹ is selected from the group consisting of hydrogen, (C₁- C_6)alkyl, (C_1-C_6) alkoxy, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic, (C_3-C_{10}) cycloalkyl, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl $]_2$ amino, (C_1-C_6) alkyl $-SO_2$ -NH-, phenyl-SO₂-NH-, (C_1-C_6) alkyl-SO₂-[N- (C_1-C_6) alkyl]-, phenyl- SO_2 - $[N-(C_1-C_6)alkyl]$ -, hydroxy, $(C_1-C_6)alkoxy$, perhalo $(C_1-C_6)alkoxy$, phenoxy, (C_1-C_{10}) heteroaryl-O-, (C_1-C_{10}) heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkyl-NH-SO₂-, -NO₂, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)alkyl]_2$ -amino, $(C_1-C_6)alkyl-SO_2-NH-$, $(C_1-C_6)alkyl-(C=O)-NH-$, $(C_1-C_6)alkyl-(C=O)-NH (C=O)-[N(C_1-C_6)alkyl]-$, phenyl-(C=O)-NH-, phenyl- $(C=O)-[N-(C_1-C_6)alkyl]-$, -CN, (C_1-C_6) alkyl-(C=O)-, phenyl-(C=O)-, (C_1-C_{10}) heteroaryl-(C=O)-, (C_1-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)-, (C_1-C_{10}) heteroaryl-NH-(C=O)-, (C_1-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-NH-(C=O)-, HO-(C=O)-, (C_1-C_6) alkyl-O-(C=O)-,

 $H_2N(C=O)$ -, (C_1-C_6) alkyl-NH-(C=O)-, $[(C_1-C_6)$ alkyl]₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl- $[N-((C_1-C_6)$ alkyl)]-(C=O)-, (C_1-C_6) alkyl-(C=O)-O- and phenyl-(C=O)-O-. 40. (withdrawn) A compound according to claim 22, wherein R^4 is R^5 -B- $(CH_2)_n$ -; n is zero; B is - $(R^6$ -N)-; R^5 is hydrogen or R^9 - $(R^8CH)_m$ -; m is 1-6; R^6 is hydrogen or methyl; R^8 is hydrogen or methyl; and R^9 is selected from the group consisting of hydrogen, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, (C_1-C_{10}) heteroaryl, (C_1-C_{10}) heterocyclic and (C_3-C_{10}) cycloalkyl.

- 41. **(withdrawn)** A compound according to claim 22, wherein R^4 is R^5 -B-(CH_2)_n-; n is one to four; B is -(C=O)-NR⁶-, -(R^6 -N)-, -(R^6 -N)-(C=O)- or -(R^6 -N)-(C=O)-(NR⁷)-; R^5 is R^9 -(R^8CH)_m-; m is 1-6; R^6 is hydrogen or methyl; R^8 is hydrogen or methyl; and R^9 is selected from the group consisting of hydrogen, (C_1 -C₆)alkyl, (C_1 -C₆)alkoxy, phenyl, (C_1 -C₁₀)heteroaryl, (C_1 -C₁₀)heterocyclic, (C_3 -C₁₀)cycloalkyl, amino, (C_1 -C₆)alkylamino, [(C_1 -C₆)alkyl]₂amino, (C_1 -C₆)alkyl-SO₂-NH-, phenyl-SO₂-NH-,
- (C_1-C_6) alkyl-SO₂-[N- (C_1-C_6) alkyl]-, phenyl-SO₂-[N- (C_1-C_6) alkyl]-, hydroxy,
- (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C_1-C_{10}) heteroaryl-O-. (C_1-C_{10})
- C_{10})heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) Alxyl-SO₂-, (C_1-C_6) Alxyl-SO
- C_6)alkyl-NH-SO₂-, -NO₂, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino,
- (C_1-C_6) alkyl-SO₂-NH-, (C_1-C_6) alkyl-(C=O)-NH-,
- $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl-(C=O)-NH-,
- phenyl-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, -CN, $(C_1-C_6)alkyl-(C=O)$ -, phenyl-(C=O)-,
- (C_1-C_{10}) heteroaryl-(C=O)-, (C_1-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)-,
- (C_1-C_{10}) heteroaryl-NH-(C=O)-, (C_1-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) cycloalkyl-
- NH-(C=O)-, HO-(C=O)-, (C₁-C₆)alkyl-O-(C=O)-, $H_2N(C=O)$ (C₁-C₆)alkyl-NH-(C=O)-,
- $[(C_1-C_6)alkyl]_2-N-(C=O)-$, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$,
- (C_1-C_6) alkyl-(C=O)-O- and phenyl-(C=O)-O-.
- 42. (withdrawn) A compound according claim 1, wherein s is an integer from zero to four and each R^3 is independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, phenyl, (C_1-C_6) alkenyl, (C_1-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C_1-C_{10}) heteroaryl-O-, (C_1-C_{10}) heterocyclic-O-, (C_3-C_{10}) cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkyl-NH-SO₂-, -NO₂,

amino, $(C_1\text{-}C_6)$ alkylamino, $[(C_1\text{-}C_6)$ alkyl]_2-, amino, $(C_1\text{-}C_6)$ alkyl-SO₂-NH-, $(C_1\text{-}C_6)$ alkyl-(C=O)-NH-, $(C_1\text{-}C_6)$ alkyl-(C=O)- $[((C_1\text{-}C_6)$ alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)- $[((C_1\text{-}C_6)$ alkyl)-N]-, -CN, $(C_1\text{-}C_6)$ alkyl-(C=O)-, phenyl-(C=O)-, $(C_3\text{-}C_{10})$ 0 heteroaryl-(C=O)-, $(C_1\text{-}C_{10})$ 0 heterocyclic-(C=O)-, $(C_3\text{-}C_{10})$ 0 cycloalkyl-(C=O)-, HO-(C=O)-, $(C_1\text{-}C_6)$ alkyl-O-(C=O)-, $(C_1\text{-}C_6)$ alkyl-NH-(C=O)-, $(C_1\text{-}C_6)$ alkyl]_2-N-(C=O)-, phenyl-NH-(C=O)-, phenyl- $[((C_1\text{-}C_6)$ alkyl)-N]-(C=O)-, $(C_1\text{-}C_{10})$ 0 heterocyclic-NH-(C=O)-, $(C_3\text{-}C_{10})$ 0 cycloalkyl-NH-(C=O)- and $(C_1\text{-}C_6)$ alkyl-(C=O)-O-.

- 43. (withdrawn) A compound according to claim 1, wherein s is an integer from zero to four and each R^3 is independently selected from the group consisting of halo, -CN, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl and perhalo(C₁-C₆)alkyl.
- 44. (withdrawn) A compound according to claim 1, wherein s is an integer from zero to four and zero, one or two of R^3 are independently selected from the group consisting of halo, (C_1-C_6) alkyl, perhalo (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, amino, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino, -CN, and $H_2N(C=O)$ -.
- 45. (withdrawn) A compound according to claim 1, wherein s is an integer from zero to three and each R^3 is independently selected from the group consisting of halo, (C_1 - C_6)alkyl, perhalo(C_1 - C_6)alkyl, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, -NO₂, amino, (C_1 - C_6)alkylamino, [(C_1 - C_6)alkyl]₂-amino, -CN, and H₂N(C=O)-.
- 46. (withdrawn) A compound according to claim 1, wherein s is an integer from zero to two and each R^3 is independently selected from the group consisting of halo, (C_1-C_6) alkyl, perhalo (C_1-C_6) alkyl, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy and -CN.
- 47. (withdrawn) A compound according to claim 1, wherein s is an integer from zero to three and each R³ is independently selected from the group consisting of fluoro, chloro and methyl.
- 48. (withdrawn) A compound selected from the group consisting of:

 3-Isopropyl-6-[4-bromo-oxazol-5-yl]-[1,2,4]triazolo[4,3-a]pyridine; and

 3-Isopropyl-6-[oxazol-5-yl]-[1,2,4]triazolo[4,3-a]pyridine; or
 an acceptable salt thereof.