MTH1102D Calcul II

Chapitre 9, section 4: Le théorème de Green

Énoncé du théorème de Green

Introduction

- Théorème de Green sous forme générale.
- Théorème de Green pour les champs vectroriels.

Définition

Une courbe C dans le plan est *simple* si elle ne se recoupe pas elle-même (sauf aux extrémités dans le cas d'une courbe fermée).

Définition

Une courbe C dans le plan est *simple* si elle ne se recoupe pas elle-même (sauf aux extrémités dans le cas d'une courbe fermée).

Définition

Une courbe fermée C dans le plan est *orientée positivement* si elle est parcourue dans le sens antihoraire.

Définition

Une courbe C dans le plan est *simple* si elle ne se recoupe pas elle-même (sauf aux extrémités dans le cas d'une courbe fermée).

Définition

Une courbe fermée C dans le plan est *orientée positivement* si elle est parcourue dans le sens antihoraire.

Autrement dit, lorqu'on parcourt C dans le sens positif, la région D qu'elle délimite est toujours à gauche.

Notation : Si C est une courbe fermée alors on note habituellement une intégrale curviligne sur C par \oint_C au lieu de \int_C .

Notation : Si C est une courbe fermée alors on note habituellement une intégrale curviligne sur C par \oint_C au lieu de \int_C .

Théorème

Soit C une courbe fermée simple lisse par morceaux, orientée positivement, délimitant une région D du plan. Si P et Q sont des fonctions de deux variables possédant des dérivées partielles continue dans un voisinage de C alors

$$\oint_C P dx + Q dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

Notation : Si C est une courbe fermée alors on note habituellement une intégrale curviligne sur C par \oint_C au lieu de \int_C .

Théorème

Soit C une courbe fermée simple lisse par morceaux, orientée positivement, délimitant une région D du plan. Si P et Q sont des fonctions de deux variables possédant des dérivées partielles continue dans un voisinage de C alors

$$\oint_C P dx + Q dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

On se rappelle que si $C: \vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$, $a \le t \le b$ alors

$$\int_{C} P dx + Q dy = \int_{a}^{b} \left[P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) \right] dt.$$

Rappel: Si $\vec{F} = P\vec{i} + Q\vec{j}$ et C est une courbe dans le plan alors

$$\int_C \vec{F} \cdot \vec{dr} = \int_C P \, dx + Q \, dy.$$

Rappel : Si $\vec{F} = P\vec{i} + Q\vec{j}$ et C est une courbe dans le plan alors

$$\int_C \vec{F} \cdot \vec{dr} = \int_C P \, dx + Q \, dy.$$

Reformulation du théorème de Green :

Théorème

Soit C une courbe fermée simple lisse par morceaux, orientée positivement, délimitant une région D du plan. Si $\vec{F} = P\vec{i} + Q\vec{j}$ est un champ vectoriel possédant des dérivées partielles continues dans un voisinage de C alors

$$\oint_C \vec{F} \cdot \vec{dr} = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA.$$

• Rappels des notations.

- Rappels des notations.
- Notation pour les intégrales curviligne sur une courbe fermée.

- Rappels des notations.
- Notation pour les intégrales curviligne sur une courbe fermée.
- Deux formulations du théorème de Green :

- Rappels des notations.
- Notation pour les intégrales curviligne sur une courbe fermée.
- Deux formulations du théorème de Green :
 - Générale

- Rappels des notations.
- Notation pour les intégrales curviligne sur une courbe fermée.
- Deux formulations du théorème de Green :
 - Générale
 - Pour les champs vectoriels.

- Rappels des notations.
- Notation pour les intégrales curviligne sur une courbe fermée.
- Deux formulations du théorème de Green :
 - Générale
 - Pour les champs vectoriels.