Problem Set 1

D. Zack Garza

November 10, 2019

Contents

1	Problem 1	1
2		2
	2.1 Part 1	2
	2.2 Part 1	2
	2.3 Part 2	2
3		3
	3.1 Part 1	3
	3.2 Part 2	3
4	Problem 5	3
	4.1 Part 1	3
	4.2 Part 2	4
5		5
	5.1 Part 1	5
	5.2 Part 2	6

1 Problem 1

We'll use the following definition of a smooth map between manifolds:

Definition: Let M, N be smooth manifolds of dimensions m, n respectively and $f: M \to N$ a continuous map. Then f is *smooth* iff for every $p \in M$, there exists a chart (U, ϕ) with $p \in U$ and a chart (V, ψ) with $f(p) \in V$ such that

- $f(U) \subseteq V$, and
- The induced map

$$\overline{f}: \phi(U) \to \psi(V)$$
$$\overline{f} = \psi \circ f \circ \phi^{-1}$$

is smooth as a map from $\mathbb{R}^m \to \mathbb{R}^n$.

We will thus show that both $f: \mathbb{CP}^1 \to \mathbb{CP}^1$ and $f^{-1}: \mathbb{CP}^1 \to \mathbb{CP}^1$ are both smooth bijections, from which we can conclude that f is a diffeomorphism.

So choose the following charts on \mathbb{CP}^1 :

$$(U_1, \phi) := \{ [x, 1] \ni x \in \mathbb{C} \}, \quad U_1 \subseteq \mathbb{CP}^1 \setminus \{ \infty \}$$
$$(U_2, \psi) := \{ [1, x] \ni x \in \mathbb{C} \}, \quad U_2 \subseteq \mathbb{CP}^1 \setminus \{ 0 \}$$

where we identify $0 = [1, 0], \infty = [0, 1]$ in \mathbb{CP}^1 in homogeneous coordinates.

2 Problem 3

2.1 Part 1

Note: Throughout this question, we will identify $\{f: C^{\infty}(M) \to \mathbb{R}\} \cong C^{\infty}(M)^{\vee}$ as vector spaces.

Let M, N be smooth manifolds and $f: M \to N$ be a fixed smooth map, and define a map

$$\phi: C^{\infty}(N) \times TM \to \mathbb{R}$$
$$(h, v) \mapsto v(h \circ f)$$

2.2 Part 1

Using the derivation definition, we can identify this assignment as a map

$$\phi: C^{\infty}(N) \times C^{\infty}(M)^{\vee} \to \mathbb{R}$$
$$(h, v) \mapsto v(h \circ f)$$

We'd like to show that this yields a well-defined element of $T_pM = C^{\infty}(M)$. So for some fixed $v \in T_pM$, define a map

$$\phi_v: C^{\infty}(N) \to \mathbb{R}$$

 $h \mapsto v(h \circ f),$

which will be an element of TM if it is a derivation. For $x \in N$, we have

$$\begin{aligned} \phi_v(h_1 \cdot h_2)(x) &\coloneqq v((h_1 h_2) \circ f)(x) \\ &= v((h_1 \circ f)(h_2 \circ f))(x) \\ &= v(h_1 \circ f)(x) \cdot h_2(x) + h_1(x) \cdot v(h_2 \circ f)(x) \quad \text{since } v \text{ is a derivation} \\ &= \phi_v(h_1)(x) \cdot h_2(x) + h_1(x) \cdot \phi_v(h_2)(x). \end{aligned}$$

2.3 Part 2

Using the integral curve definition,

3 Problem 4

3.1 Part 1

Let $V = \mathbb{R}^n$ as a vector space, let g be a nonsingular matrix, and define a map

$$\phi: V \to V^{\vee}$$
$$v \mapsto (\phi_v: w \mapsto \langle v, gw \rangle)$$

The claim is that ϕ is a natural isomorphism. It is clearly linear (following from the linearity of the inner product and matrix multiplication), so it remains to check that it is a bijection.

To see that $\ker \phi = 0$, so that only the zero gets sent to the zero map, we can suppose that $x \in \ker \phi$. Then $\phi_x : w \to \langle x, gw \rangle$ is the zero map. But the inner product is nondegenerate by definition, i.e. $\langle x, y \rangle = 0 \ \forall y \implies x = 0$. So x could only have been the zero vector to begin with.

But dim $V = \dim V^{\vee}$, so any injective linear map will necessarily be surjective as well.

3.2 Part 2

Let $g:TM\otimes TM\to\mathbb{R}$ be a metric, and consider the tangent space TM. By definition, the cotangent space $T_p^*M=(T_pM)^\vee$

4 Problem 5

4.1 Part 1

Let $A \in Mat(n, n)$ be a positive definite $n \times n$ matrix, so

$$\langle v, Av \rangle > 0 \quad \forall v \in \mathbb{R}^n,$$

and $B \in Math(n, n)$ be positive semi-definite, so

$$\langle v, Bv \rangle > 0 \quad \forall v \in \mathbb{R}^n.$$

We'd like to show

$$\langle v, (A+B)v \rangle \ge 0 \quad \forall v \in \mathbb{R}^n,$$

which follows directly from

$$\langle v, (A+B)v \rangle = \langle v, Av \rangle + \langle v, Bv \rangle$$

> $\langle v, Av \rangle + 0$
 $\geq 0 + 0$
= 0.

4.2 Part 2

Let M be a smooth manifold with tangent bundle TM and a maximal smooth atlas \mathcal{A} . Choose a covering of M by charts $\mathcal{C} = \{(U_i, \phi_i) \mid i \in I\} \subseteq \mathcal{A} \text{ such that } M \subseteq \bigcup_{i \in I} U_i.$ Then choose a partition of unity $\{f_i\}_{i \in I}$ subordinate to \mathcal{C} , so for each i we have

$$f_i: M \to I$$

$$\forall p \in M, \quad \sum_{i \in I} f_i(p) = 1$$

In each copy of $\phi_i(U_i) \cong \mathbb{R}^n$, let g^i be the Euclidean metric given by the identity matrix, i.e. $g^i_{jk} := \delta_{jk}$. We then have

$$g^{i}: T\phi_{i}(U_{i}) \otimes T\phi_{i}(U_{i}) \to \mathbb{R}$$

 $(\partial x_{i}, \partial x_{j}) \mapsto \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$

which is defined for pairs of vectors in $T\phi_i(U_i) \cong T\mathbb{R}^n = \operatorname{span}_{\mathbb{R}} \{\partial x_i\}_{i=1}^n$ on basis vectors as the Kronecker delta and extended linearly.

Note that each coordinate function $\phi_i: U_i \to \mathbb{R}^n$ induces a map $\tilde{\phi}_i: TU_i \to T\mathbb{R}^n$.

Let G^i be the pullback of g^i along these induced maps $\tilde{\phi}_i$, so

$$G^{i}: TU_{i} \otimes TU_{i} \to \mathbb{R}$$
$$G^{i}(x,y) := \left(\left(\tilde{\phi}_{i}\right)^{*} g^{i}\right)(x,y) := g^{i}(\tilde{\phi}_{i}(x), \tilde{\phi}_{i}(y))$$

Then, for a point $p \in M$, define the following map:

$$g_p: T_pM \otimes T_pM \to \mathbb{R}$$

 $(x,y) \mapsto \sum_{i \in I} f_i(p)G^i(x,y).$

The claim is that g_p defines a metric on M, and thus the family $\{g_p \mid p \in M\}$ yields a tensor field and thus a Riemannian metric on M. If we define the map

$$g: M \to (TM \otimes TM)^{\vee}$$
$$p \mapsto g_p$$

then g can be expressed as

$$g = \sum_{i \in I} f_i G^i.$$

We can check that this is positive definite by considering $x \in T_pM$ and computing

$$g(x,x) := g_p(x,x)$$

$$= \sum_{i \in I} f_i(p) \ G^i(v,v)$$

$$= \sum_{i \in I} f_i(p) \ g^i(\tilde{\phi}_i(x), \tilde{\phi}_i(y)),$$

where each term is positive semi-definite, and at least one term is positive definite because $\sum_i f_i(p)$ must equal 1. By part 1, this means that the entire expression is positive definite, so g is a metric.

5 Problem 6

5.1 Part 1

Let $M = S^2$ as a smooth manifold, and consider a vector field on M,

$$X: M \to TM$$

We want to show that there is a point $p \in M$ such that X(p) = 0.

Every vector field on a compact manifold without boundary is complete, and since S^2 is compact with $\partial S^2 = \emptyset$, X is necessarily a complete vector field.

Thus every integral curve of X exists for all time, yielding a well-defined flow

$$\phi: M \times \mathbb{R} \to M$$

given by solving the initial value problems

$$\frac{\partial}{\partial s}\phi_s(p)\Big|_{s=t} = X(\phi_t(p)),$$

$$\phi_0(p) = p$$

at every point $p \in M$.

This yields a one-parameter family

$$\phi_t: M \to M \in \mathrm{Diff}(M,M).$$

In particular, $\phi_0 = \mathrm{id}_M$, and $\phi_1 \in \mathrm{Diff}(M, M)$. Moreover ϕ_0 is homotopic to ϕ_1 via the homotopy

$$H: M \times I \to M$$

 $(p,t) \mapsto \phi_t(p).$

We can now apply the Lefschetz fixed-point theorem to ϕ_0 and ϕ_1 . For an arbitrary map $f: M \to M$, we have

$$\Lambda(f) = \sum_{k} \operatorname{Tr} \left(f_* \Big|_{H_k(X;\mathbb{Q})} \right).$$

where $f_*: H_*(X; \mathbb{Q}) \to H_*(X; \mathbb{Q})$ is the induced map on homology, and

 $\Lambda(f) \neq 0 \iff f$ has at least one fixed point.

In particular, we have

$$\begin{split} \Lambda(\mathrm{id}_M) &= \sum_k \mathrm{Tr}(\mathrm{id}_{H_k(X;\mathbb{Q})}) \\ &= \sum_k \dim H_k(X;\mathbb{Q}) \\ &= \chi(M), \end{split}$$

the Euler characteristic of M.

Since homotopic maps induce equal maps on homology, we also have $\Lambda(\phi_1) = \chi(M)$. Since

$$H_k(S^2) = \begin{cases} \mathbb{Z} & k = 0, 2\\ 0 & \text{otherwise} \end{cases}$$

we have $\chi(S^2) = 2 \neq 0$, and thus ϕ_1 has a fixed point p_0 , thus $\frac{\partial}{\partial t}\phi_t(p_0)\Big|_{t=1}$ so

$$\phi_t(p) = p$$

$$\Rightarrow \frac{\partial}{\partial t} \phi_t(p) = \frac{\partial}{\partial t} p = 0 \qquad \text{by differentiating wrt } t$$

$$\Rightarrow \frac{\partial}{\partial t} \phi_t(p) \Big|_{t=1} = 0 \Big|_{t=0} = 0 \qquad \text{by evaluating at } t = 0$$

$$\Rightarrow X(\phi_1(p_0)) := \frac{\partial}{\partial t} \phi_t(p) \Big|_{t=1} = 0 \qquad \text{by definition of } \phi_1$$

so $X(\phi_1(p_0)) = 0$, which shows that p_0 is a zero of X. So X has at least one zero, as desired. \square

5.2 Part 2

The trivial bundle

$$\mathbb{R}^2 \longrightarrow S^2 \times \mathbb{R}^2$$

$$\downarrow^{r}$$

$$S^2$$

$$S^2$$

has a nowhere vanishing section, namely

$$s: S^2 \to S^2 \times \mathbb{R}^2$$

 $\mathbf{x} \to (\mathbf{x}, [1, 1])$

which is the identity on the S^2 component and assigns the constant vector [1,1] to every point. However, as part 1 shows, the bundle

can not have a nowhere vanishing section. \qed