Implentation of the identification and estimation result on Slide 18.

## 1 Model Specification and Data Assumptions

The production function is of the form

$$\Phi(x, y, \epsilon, \eta) = \beta_{xy}xy + \beta_{x\eta}x\eta + \beta_{y\epsilon}y\epsilon + \epsilon\eta.$$

It is assumed that the production function is monotone in scalar unobservables  $\epsilon$  and  $\eta$ ,

$$\beta_{u\epsilon}y + \eta > 0$$
,  $\beta_{x\eta}x + \epsilon > 0$ .

Further, it is assumed that  $\epsilon$  and  $\eta$  are independent from x and y, and

$$\epsilon \sim \text{LogNormal}(\mu_{\epsilon}, \sigma_{\epsilon}), \quad \eta \sim \text{LogNormal}(\mu_{\eta}, \sigma_{\eta}).$$

The medians of  $\epsilon$  and  $\eta$  are normalized to one, i.e.  $\mu_{\epsilon} = \mu_{\eta} = 0$ .

The equilibrium matching, upstream and downstream profits are observed in the data. Observation i is the tuple  $(x_i, y_i, \pi_i^u, \pi_i^d)$ .

### 2 Estimation

For each observation i, under the monotonicity assumption, we recover the normalized  $\hat{\epsilon}_i$  as the conditional CDF of upstream profits,

$$\hat{\epsilon_i} = \hat{F}^u \left( \pi_i^u | x = x_i \right).$$

Similarly, for the downstream observation i,

$$\hat{\eta}_i = \hat{F}^d \left( \pi_i^d | y = y_i \right).$$

For a given vector of parameters

$$\boldsymbol{\theta} = (\beta_{xy}, \beta_{x\eta}, \beta_{y\epsilon}, \sigma_{\epsilon}, \sigma_{\eta}),$$

we can invert the normalized unonbservables into the quantiles of their parameterized distributions given  $\sigma_{\epsilon}$  and  $\sigma_{\eta}$ ,

$$\tilde{\epsilon}_i = q\left(\hat{\epsilon}_i | \sigma_{\epsilon}\right), \quad \tilde{\eta}_i = q\left(\hat{\eta}_i | \sigma_{\eta}\right),$$

where q is the quantile function for the Log Normal distribution with  $\mu=0$ . The estimator for  $\theta$  minimizes

$$\sum_{i=1}^{n} \left[ \left( \pi_i^u + \pi_i^d \right) - \left( \beta_{xy} x_i y_i + \beta_{x\eta} x_i \tilde{\eta}_i + \beta_{y\epsilon} y_i \tilde{\epsilon}_i + \tilde{\epsilon}_i \tilde{\eta}_i \right) \right]^2.$$

#### 2.1 Estimating Conditional CDFs

To estimate the conditional CDF We use the Nadaraya-Watson (NW) estimator. For a fixed profit  $\pi^u$  and x, the estimator is given by

$$\hat{F}^{u}\left(\pi^{u}|x\right) = \frac{\sum_{i=1}^{n} \phi\left(\frac{x-x_{i}}{h_{x}}\right) 1\left(\pi_{i}^{u} \leq \pi^{u}\right)}{\sum_{i=1}^{n} \phi\left(\frac{x-x_{i}}{h_{x}}\right)}.$$

The above estimator is smooth in x but not in y. The only smoothing parameter is the one for x. We use the leave-one-out cross validation method to choose the bandwidth. For each observation, the leave-one-out residual is given by

$$\hat{e}_i(\pi^u) = 1 (\pi_i^u \le \pi^u) - \hat{F}_{-i}^u (\pi^u | x_i),$$

where  $\hat{F}_{-i}^{u}(\pi^{u}|x_{i})$  is the leave-one-out estimator given by

$$\hat{F_{-i}}^{u}(\pi^{u}|x) = \frac{\sum_{j\neq i} \phi\left(\frac{x-x_{j}}{h_{x}}\right) 1\left(\pi_{j}^{u} \leq \pi^{u}\right)}{\sum_{j\neq i} \phi\left(\frac{x-x_{j}}{h_{x}}\right)},$$

that is the observation i is excluded from the sample used to estimate the conditional cdf at observation i.

The CV criterion for a fixed profit level  $\pi^u$  is

$$CV(\pi, h_x) = \frac{1}{n} \sum_{i=1}^{n} \hat{e_i} (\pi^u)^2 f_x(x_i)$$
$$= \frac{1}{n} \left( 1 (\pi_i^u \le \pi^u) - \hat{F}_{-i}^u (\pi^u | x_i) \right)^2.$$

The optimal bandwidth minimizes

$$CV(h_x) = \int CV(\pi^u, h_x) d\pi^u.$$

We approximate this by a grid over the values of profits, by randomly selecting N profit observations

$$CV(h) \approx \sum_{i=1}^{N} CV(\pi_i^u, h_x).$$

Thus,

$$h_x^* = \arg\min_{h_x} \left\{ \sum_{i=1}^{N} CV\left(\pi_i^u, h_x\right) \right\}.$$

# 3 Simulation

## 3.1 Parameterization

$$\Phi(x, y, \epsilon, \eta) = -3xy + 0.7x\eta + 3.0y\epsilon + \epsilon\eta.$$

$$\sigma_{\epsilon} = 0.2, \sigma_{\eta} = 0.5.$$

Further, I choose a Log Normal distribution for x and y so the support is positive and the monotonicity assumtion is not violated.



Figure 1: Matching pattern and upstream profits



Figure 2: Unobservable realizations (left) versus the estimated unobservables (right)

# 3.2 Simulation Results

Here are the simulation results from 80 replications.

|                     |                        | Firms 500 |      | $\mathbf{Firms} = 1000$ |      | $\mathbf{Firms} = 1500$ |      |
|---------------------|------------------------|-----------|------|-------------------------|------|-------------------------|------|
|                     | $\operatorname{truth}$ | Bias      | RMSE | Bias                    | RMSE | Bias                    | RMSE |
| $\beta_{xy}$        | -3.0                   | 0.04      | 0.48 | -0.06                   | 0.29 | -0.04                   | 0.26 |
| $\beta_{x\eta}$     | 0.7                    | 0.02      | 0.11 | 0.02                    | 0.09 | 0.02                    | 0.07 |
| $\beta_{y\epsilon}$ | 3.0                    | -0.06     | 0.41 | 0.02                    | 0.25 | 0.00                    | 0.22 |
| $\sigma_\epsilon$   | 0.2                    | 0.02      | 0.06 | 0.01                    | 0.05 | 0.01                    | 0.05 |
| $\sigma_{\eta}$     | 0.7                    | -0.04     | 0.30 | -0.09                   | 0.36 | -0.09                   | 0.36 |