Examen – Durée 1h UV Des données aux modèles Partie - Problèmes inverses

I/ Exercices de chauffe

- 1. Rappelez au moins deux caractérisations des matrices symétriques définies positives (SDP).
- 2. Soit $J(x) = \langle Ax, x \rangle$ où $A \in \mathbb{R}^{n \times n}$ est une matrice arbitraire. Déterminez $\nabla J(x)$.
- 3. Soit $A = U\Sigma V^T$ une matrice arbitraire dans $\mathbb{R}^{m\times n}$. Calculez les valeurs singulières de la matrice B suivante en fonction de celles de A. Indication : vous pourrez évaluer B^*B .

$$B = \begin{pmatrix} 0_{m,m} & A \\ A^* & 0_{n,n} \end{pmatrix}$$

II/ Problème inverse

On pose

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 0 & 0 \end{pmatrix}$$

- 1. Déterminez l'image de A.
- 2. Déterminez le rang de A.
- 3. On pose $E = \mathbb{R}^3$ et $F = \text{vect} \begin{pmatrix} 3 \\ 1 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$. On considère le problème inverse suivant :

"Etant donné $b \in F$, trouver $x \in E$ tel que Ax = b".

Est-ce que le problème suivant est bien posé pour des perturbations du second membre dans F?

4. Est-ce que le problème suivant est bien posé pour des perturbations du second membre dans \mathbb{R}^4 ?

III/ Courant-Fischer

Le théorème de Courant-Fischer est un résultat fondamental qui caractérise les valeurs propres d'une matrice symétrique. Soit $A \in \mathbb{R}^{n \times n}$ une matrice symétrique et soit S_k l'ensemble de tous les sous-espaces vectoriels de \mathbb{R}^n de dimension k. Comme A est symétrique, elle est diagonalisable et on note $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ ses valeurs propres. Le théorème de Courant-Fischer est le suivant :

$$\forall k \in \{1, \dots, n\}, \ \lambda_k = \sup_{V \in S_k} \inf_{x \in V, ||x||_2 = 1} \langle Ax, x \rangle.$$

- 1. Vérifiez la formule pour k = 1.
- 2. Soit $M \in \mathbb{R}^{m \times n}$ une matrice arbitraire dont la k-ième valeur singulière est notée σ_k . Montrez que :

$$\sigma_k = \sup_{V \in S_k} \inf_{x \in V, ||x||_2 = 1} ||Mx||_2.$$