# Introduction to Applied Computer Vision

By: Achraf Hsain and Lahoucine Chikry

### Human vision vs Computer vision



What we see

What a computer sees

# What computers 'see': Images as Numbers

What you see



Input Image

What you both see

| 157 | 153 | 174 | 168 | 150 | 152 | 129 | 151 | 172 | 161 | 155 | 156 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 155 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 | 180 | 154 |
| 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 48  | 106 | 159 | 181 |
| 206 | 109 | 5   | 124 | 191 | 111 | 120 | 204 | 166 | 15  | 56  | 180 |
| 194 | 68  | 197 | 251 | 237 | 259 | 239 | 228 | 227 | 87  | 71  | 201 |
| 172 | 105 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 28  | 74  | 206 |
| 188 | 88  | 179 | 209 | 185 | 215 | 211 | 158 | 139 | 75  | 20  | 169 |
| 189 | 97  | 165 | 84  | 10  | 168 | 134 | 111 | 91  | 62  | 22  | 148 |
| 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 106 | 36  | 190 |
| 206 | 174 | 155 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 95  | 234 |
| 190 | 216 | 116 | 149 | 236 | 167 | 85  | 150 | 79  | 38  | 218 | 241 |
| 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | 36  | tot | 255 | 224 |
| 190 | 214 | 173 | 66  | 103 | 143 | 96  | 100 | 2   | 109 | 249 | 215 |
| 187 | 196 | 235 | 75  | 1   | 81  | 47  | 0   | - 6 | 217 | 255 | 211 |
| 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 138 | 243 | 236 |
| 195 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 96  | 218 |

Input Image + values

What the computer "sees"

| 157 | 153 | 174 | 168 | 150 | 152 | 129 | 151 | 172 | 161 | 155 | 1! |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 155 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 | 180 | 15 |
| 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 48  | 106 | 159 | 18 |
| 206 | 109 | 5   | 124 | 131 | 111 | 120 | 204 | 166 | 15  | 56  | 11 |
| 194 | 68  | 137 | 251 | 237 | 239 | 239 | 228 | 227 | 87  | 71  | 20 |
| 172 | 106 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 98  | 74  | 20 |
| 188 | 88  | 179 | 209 | 186 | 215 | 211 | 158 | 139 | 75  | 20  | 14 |
| 189 | 97  | 165 | 84  | 10  | 168 | 134 | 11  | 31  | 62  | 22  | 14 |
| 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 106 | 36  | 15 |
| 206 | 174 | 156 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 96  | 2  |
| 190 | 216 | 116 | 149 | 236 | 187 | 86  | 150 | 79  | 38  | 218 | 24 |
| 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | 36  | 101 | 255 | 22 |
| 190 | 214 | 173 | 66  | 103 | 143 | 96  | 50  | 2   | 109 | 249 | 2  |
| 187 | 196 | 235 | 75  | 1   | 81  | 47  | 0   | 6   | 217 | 255 | 2  |
| 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 138 | 243 | 2  |
| 196 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 96  | 2  |

Pixel intensity values ("pix-el"=picture-element)

# What about Colored Images?



Original Image



**Red Channel** 



Green Channel



Blue Channel

### Colored Images Representation



### **Computer Vision**

- The field of AI that enables machines to interpret and understand the content of digital images or videos.
- Extract meaningful information (e.g., object detection, recognition, and scene understanding) for decisionmaking.



### Image Processing





- A subset of signal processing focused on performing operations on images to enhance or manipulate them.
- Improve image quality, extract features, or transform the image for specific purposes.

### Image Processing vs. Computer Vision

- Image Processing
  - Research area within electrical engineering/signal processing
  - Focus on syntax,
     low level features



- Computer Vision
  - Research area within computer science/artificial intelligence
  - Focus on semantics, symbolic or geometric descriptions







### **Computer Graphics**

- The creation and manipulation of visual content (images, animations, 3D models) through computational methods.
- Generate realistic or stylized visuals, often for entertainment or design purposes.

### **Machine Vision**

- The industrial application of computer vision technologies to automate visual inspection and quality control tasks.
- Enable machines to inspect, measure, and analyze objects during production or operation.





# Optical Character Recognition (OCR)



Digit recognition, AT&T labs <a href="http://www.research.att.com/~yann/">http://www.research.att.com/~yann/</a>



License plate readers

http://en.wikipedia.org/wiki/Automatic\_number\_plate\_recognition

### Face Detection with Expressions

### The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.



### **Hand Detection**



### **Blob Detection**



# Medical imaging



3D imaging MRI, CT



Image guided surgery
Grimson et al., MIT

# What normal people see when they walk on street



What Computer Vision folks see



# OpenCV

- Open source Computer Vision library: http://opencv.org/
- Originally developed by Intel and released in June 2000
- Has more than 2500 optimized algorithms
- C/C++/Python API
- it is written natively in C++
- Cross-platform also available for Android and iOS
- Released under a BSD license (it's free)



### MediaPipe

- An open-source framework developed by Google for building multimodal, crossplatform machine learning pipelines.
- Cross-platform support (works on Android, iOS, web, and desktop).
- Pre-built machine learning models optimized for speed and accuracy.
- Modular and customizable architecture for creating advanced applications.



### Workshop Plan

- Open CV basics
- Hand Detection
- Face Detection
- Object Detection
- Contour Segmentation
- QR Code Scanning
- Blob Detection

### If time allows:

- Edge Detection
- Image classification
- Image compression
- Image processing
- Machine Learning?
- Image Generation?

Time to get your hand dirty!!!