Varianta 6

Subjectul I.

- **a)** $AB = \sqrt{26}$.
- **b)** Raza cercului este 4.
- c) x-2y+5=0.
- $\mathbf{d)} \quad \left| \frac{5 2i}{2 5i} \right| = 1$
- **e)** $S_{MNP} = \frac{5}{2}$.
- **f**) a = -1, b = 0.

Subjectul II.

- 1.
- **a**) 92.
- **b)** Probabilitatea căutată este $p = \frac{2}{5}$.
- c) În grupul $(\mathbf{Z}_{11}, +)$, avem $\hat{0} + \hat{1} + ... + \hat{10} = \hat{55} = \hat{0}$.
- **d**) E = 0.
- **e**) x = 1.
- 2.
- a) $f'(x) = 2006x^{2005}$.
- **b**) $\int_{0}^{1} f(x) dx = \frac{2008}{2007}$.
- c) $f''(x) = 2006 \cdot 2005 \cdot x^{2004} \ge 0$, $\forall x \in \mathbf{R}$, deci f este convexă pe \mathbf{R} .
- **d**) $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = 0$.
- e) Ecuația tangentei este d:2006x-y-2004=0.

Subjectul III.

- **a**) $\det(J) = 0$ și $\det(I_2) = 1$.
- **b**) $J^2 = O_2$.
- c) Se arată prin calcul direct.
- **d)** Matricea M = J are rangul egal cu 1, iar $rang(M^2) = rang(O_2) = 0$
- e) Dacă matricea $B \in M_2(\mathbb{C})$ este inversabilă, atunci $\det(B) \neq 0$.

Pentru $n \in \mathbb{N}^*$, obținem $\det(B^n) = (\det(B))^n \neq 0$, deci matricea B^n este inversabilă.

f) Considerăm matricea $C = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in M_2(\mathbb{C})$ neinversabilă, deci cu $\det(C) = 0$.

Notăm $p+s=t\in \mathbb{C}$. Din **c**) obținem $C^2=t\cdot C$ și folosind această egalitate se demonstrează prin inductie că $\forall n\in \mathbb{N}$, $n\geq 2$, $C^n=t^{n-1}\cdot C$.

g) Considerăm $D \in M_2(\mathbf{C})$ astfel încât $rang(D) = rang(D^2)$.

Dacă $D = O_2$, atunci $D^n = O_2$, și $rang(D) = rang(D^n) = 0$, pentru orice $n \in \mathbb{N}^*$. Dacă rang(D) = 1, atunci det(D) = 0.

Notăm cu t suma elementelor de pe diagonala principală a matricei D.

Folosind **c**) rezultă că $t \neq 0$ şi din **f**) deducem că $D^n = t^{n-1} \cdot D$, $\forall n \in \mathbb{N}^*$ şi apoi că $rang(D) = rang(t^{n-1} \cdot D) = rang(D^n)$, $\forall n \in \mathbb{N}^*$.

Dacă rang(D) = 2, atunci $det(D^n) \neq 0$, deci $rang(D^n) = 2$, pentru orice $n \in \mathbb{N}^*$.

Subjectul IV.

- a) Calcul direct.
- **b)** f''(x) < 0, $\forall x \in \mathbf{R}$, deci funcția f' este strict descrescătoare pe \mathbf{R} .
- c) Pentru orice $k \in [0, \infty)$, funcția f este o funcție Rolle pe intervalul [k, k+1], deci conform teoremei lui Lagrange, există $c \in (k, k+1)$, astfel încât

$$\frac{f(k+1)-f(k)}{k+1-k} = f'(c) \iff f(k+1)-f(k) = \frac{1}{e^c+1}.$$

- **d)** $k < c < k+1 \iff f'(k) > f'(c) > f'(k+1) \iff \frac{1}{e^{k+1}+1} < f(k+1) f(k) < \frac{1}{e^k+1},$ pentru orice $k \in [0, \infty)$.
- e) Pentru orice $n \in \mathbb{N}^*$, $a_{n+1} a_n = \frac{1}{e^{n+1} + 1} > 0$, deci şirul $(a_n)_{n \ge 1}$ este strict crescător.
- **f**) Din **d**), avem $f(k+1)-f(k) < \frac{1}{e^k+1}, k \in [0,\infty).$

Pentru $n \in \mathbb{N}^*$, înlocuind succesiv în inegalitatea precedentă k cu fiecare din numerele 1, 2, ..., n și adunând relațiile, obținem $f(n+1) - f(1) < a_n$ (1)

Din **d**), avem $\frac{1}{e^{k+1}+1} < f(k+1)-f(k)$.

Înlocuind succesiv în inegalitatea precedentă k cu fiecare din numerele 0, 1, 2, ..., n-1 și adunând relațiile, obținem $a_n < f(n) - f(0)$ (2

Din (1) și (2) rezultă concluzia.

g) Din a) deducem că funcția f este strict crescătoare pe ${\bf R}$.

Avem: $\lim_{x \to \infty} f(x) = 0$, de unde rezultă că f(x) < 0, $\forall x \in \mathbf{R}$.

Din **f**) deducem că șirul $(a_n)_{n\geq 1}$ este mărginit superior și fiind și strict crescător, este convergent.

Trecând la limită în dubla inegalitate din \mathbf{f}) obținem $-f(1) \le \lim_{n \to \infty} a_n \le -f(0)$, de unde deducem concluzia.