Analysis of various coming-into the core data (single Cell and Bulk RNASeq, ATAC, miRNA, etc)

Merkle Lab

Pilot experiment for measuring selective pressures experienced during human pluripotent stem cell (hPSC) culture

Variations in human cells using exome and whole genome data.

Julian Griffin Lab

Finding variation causing
Creatine deficiency
syndrome

Max Planck Institute - Germany

Ribosomal Profiling Drop-off rate

Structure variations in **Burkitt lymphoma cancer**

Ribofilio: A tool to estimate the drop-off rate of ribosomes from Ribo-seq data

Are there any factors that affect the drop-off rate?

Sherine Awad Davide Chiarugi Angel Valleriani

Ribosomal profiling

- → This technique begins with drug-mediated interruption of the cellular translation process followed by hydrolysis of the mRNA regions that are not covered (protected) by the ribosomes.
- → The residual mRNA oligomers known as ribosome protected fragments (RPF) that were protected by the ribosome are deep sequenced.
- → The positions of the ribosomes are determined by mapping the sequence to the reference genome

- → The abundance of the RPFs that map to different parts of the single genes usually evaluated in terms of **Ribosome Density (RD)** and measured in number of RPF per codon is typically used for protein synthesis rate for each gene.
- → The distribution of RPFs along the genes also provide information about the possible presence of **ribosome drop-off**; an average decrease of the RD from the 5' end to the 3' end of each open reading frame (ORF) reflects that a significant number of ribosomes fail to reach the 3' end.

- → The goal is to have a quantitative estimate for ribosome drop -off
- → Are there any factors that affect the ribosome drop-off

Binning Strategy: Computing the average number of RPFs per ORF

We normalize the amount of RPFs with the abundance of the corresponding RNA-seq reads

Average number of RPF

NRPF (i) = RPF (i)
$$Y = Ae^{-RX}$$
RNA (i)

RNA (i)

The relationship between the average number of RPFs per bin Y and the bin number X. This study the dependence of Y on X based on exponential decay:

$$Y = A e^{-RX}$$

X is the bin number and A is the intercept (no interest) and the value R is the drop-off rate per bin

gene1
_____gene1
_____gene2
____gene2
____gene3

```
for gene in coverage:
    if gLength[gene] <= posmax and gLength[gene] > posmin:
        for i in range(0, gLength[gene]+1):
            gCovered[i] +=1
```

gCovered

How many genes cover each position based on length

1	2	3	4	5
3	3	2	2	1

Cutoff is usually 0 unless set otherwise for cutoff experiment

npos

1	2
pos[1]/gcovered[1] +c	

1	2	3	4	5
<u> </u>	/			

BINSIZE =3

Bins

RPF (i)

1	2	3	4	5
(npos[1]+npos[2]+npos[3]/3)+c				

nRPF(i) = RPF(i) / RNA(i)

The relationship between the average number of RPFs per bin Y and the bin number X. This study the dependence of Y on X based on exponential decay:

$$Y = A e^{-RX}$$

X is the bin number and A is the intercept (no interest) and the value R is the drop-off rate per bin

Conda Docker ..etc

ribofilio.py

Drop-off slope of ribosomes

Input

transcripts.fa

Ribo. bed file

RNA bed file

optional

Subset list

Many other options: binsize, plots indices ,,..etc

Results on Yeast SRR5945809/SRR5945808

mRNA/FP	Unique Alignment	
SRR5945808 (mRNA)	26.83%	
SRR5945809 (FP)	28.51%	

The relationship between the average number of RPFs per bin Y and the bin number X. This study the dependence of Y on X based on exponential decay:

$$Y = A e^{-RX}$$

X is the bin number and A is the intercept (no interest) and the value R is the drop-off rate per bin

python ribofilio.py -t yeast.fa -f SRR5945809.bed -r SRR5945808.bed -b 50

Linear Regression

Weighted -Linear Regression

- → Better RMSE and R2
- → Better fit and handle this noise?

Factors that could affect the drop-off rate

Ribofilio parameter

--subset or -s

GO Translation

GO Response to Salt Stress

python ribofilio.py -t yeast.fa -f SRR5945809.bed -r SRR5945808.bed -b 50 -s GO0006412.txt

TPM >=50

TPM < 50

Zero SNPs

One or more SNPs

Orthologous to human

Orthologous to Mouse

Chromosome I

Chromosome XI

→ We have more plots on the project documentation site:

https://ribosomesprofiling.readthedocs.io/en/latest/index.html

→ We can see different patterns by eye, but how we can interpret results

How to Interpret the Results

How far our slopes from random?

Using a bootstrap approach, we simulate footprints and compare ours slopes with the slopes of the simulated shuffled bed files

Create a 1000 simulated slopes from shuffled footprint bed files

Calculated the P-value of the of how far our real slope is from random

Shuffling

Generated a random number between [0 and (Gene Length - read Length)]

Main Slope

How far our real slope from the 1000 shuffled slopes?

Sample	No. shuffled	P-value
SRR5945809/SRR5945808	1000	0.00

→ I ignored in this presentation the details of how we calculated the P-value

Gene Ontology

GO		No.shuffled	P-Value
G00006412	Translation	1000	0.00
G00042254	Ribosome biogenesis	1000	0.00
GO0006950	Response to Stress	1000	1.00
GO0009651	Response Salt Stress	1000	0.139
More on the way			

Gene Length

How long is long?

	No.shuffled	P-Value
Genes with Length [0-2000]	414	1.0
Genes with Length > 2000	977	0.0

TPM

- → Mapped mRNA genes to transcript using Salmon
- → Clustered genes based on TPM, run ribofilio on FP and mRNA with each cluster as a subset

	No.shuffled	P-Value
TPM > 50	500	1.0
TPM <= 50	83	0.0

Chromosomes

Chromosome	Size	No.shuffled	P-Value
chrI	126	350	0.9942857142857143
chrVI	156	1000	0.003

SNPs

SNPs	Size	No.shuffled	P-Value
Zero	2122	176	0.5568181818181818
1 or more SNP	4490	77	0.0

Reproducibility

- → More datasets and factors running
- → After finalizing the code currently on Github, we will push to conda/docker, binder, Jupyter, etc.
- → Documentation is heavily changing as we progress

https://ribosomesprofiling.readthedocs.io/en/latest/index.html

Thank You