Homework 20221012

Due Date: 20221019, 5 P.M.

1. Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \le 2$. Make your bounds as tight as possible, and justify your answers.

a.
$$T(n) = 2T(n/2) + n^4$$
.

b.
$$T(n) = T(7n/10) + n$$
.

c.
$$T(n) = 16T(n/4) + n^2$$
.

d.
$$T(n) = 7T(n/3) + n^2$$
.

e.
$$T(n) = 7T(n/2) + n^2$$
.

f.
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

g.
$$T(n) = T(n-2) + n^2$$
.

2. Suppose that we are given a weighted, directed graph G = (V, E) in which edges that leave the source vertex s may have negative weights, all other edge weights are nonnegative, and there are no negative-weight cycles. Argue that Dijkstra's algorithm correctly finds shortest paths from s in this graph.

- 3. Suppose you are given a directed graph G = (V, E) in which each edge has a cost of either 0 or 1. Also suppose that G has a node r such that there is a path from r to every other node in G. You are also given an integer k. Give a polynomial-time algorithm that either constructs an arborescence rooted at r of cost *exactly* k, or reports (correctly) that no such arborescence exists.
- 4. Let us say that a graph G = (V, E) is a *near-tree* if it is connected and has at most n + 8 edges, where n = |V|. Give an algorithm with running time O(n) that takes a near-tree G with costs on its edges, and returns a minimum spanning tree of G. You may assume that all the edge costs are distinct.
- 5. Consider the Minimum Spanning Tree Problem on an undirected graph G = (V, E), with a cost $c_e \ge 0$ on each edge, where the costs may not all be different. If the costs are not all distinct, there can in general be many distinct minimum-cost solutions. Suppose we are given a spanning tree $T \subseteq E$ with the guarantee that for every $e \in T$, e belongs to some minimum-cost spanning tree in e. Can we conclude that e itself must be a minimum-cost spanning tree in e? Give a proof or a counterexample with explanation.