

Virtual Reality

CPS592 – Visual Computing and Mixed Reality

What is Virtual Reality?

Virtual Reality (VR) is the illusion of a three-dimensional, interactive, computer-generated reality where sight, sound, and sometimes even touch are simulated to create pictures, sounds, and objects that actually seem real.

- Morton Heilig (1957-62)
 - Sensorama

- Ivan Sutherland (1960)
 - First head mounted display and head tracking system

- MIT (1983)
 - "Put That There"
 - "The Aspen Movie Map"

- UNC (1986)
 - Using "virtual world" term
 - Walkthrough, Pixel Flow
 & Nanomanipulator systems

- NASA Ames Research Center
 - HMD, VPL Datagloves and BOOM
 - Spatial (3D) Sound
 - Super Cockpit

VPL

- First Commercial VR Hardware & systems
- "Reality Build for Two" (RB2)
- "Body Electric"

- Myron Krueger
 - GlowFlow, Meta play, Psychic space & Videoplace
- Naval Postgraduate School
 - SIMNET
 - NPSNET

• New generations (2010s)

• Oculus

• HTC Vive

• Entertainment

- More vivid
- Move exciting
- More attractive

Medicine

- Practice performing surgery.
- Perform surgery on a remote patient.
- Teach new skills in a safe, controlled environment.

- Manufacturing
 - Easy to modify
 - Low cost
 - High efficient

- Education & Training
 - Driving simulators.
 - Flight simulators.
 - Ship simulators.
 - Tank simulators.

Architecture of VR System

Input Processor, Simulation Processor, Rendering Processor and World Database.

Components of VR System

Input Processor

- Control the devices used to input information to the computer.
 The object is to get the coordinate data to the rest of the system with minimal lag time.
- Keyboard, mouse, 3D position trackers, a voice recognition system, etc.

Simulation Processor

- Core of a VR system.
- Takes the user inputs along with any tasks programmed into the world and determine the actions that will take place in the virtual world.

Components of VR System

Rendering Processor

- Create the sensations that are output to the user.
- Separate rendering processes are used for visual, auditory, haptic and other sensory systems. Each renderer take a description of the world stat from the simulation process or derive it directly from the World Database for each time step.

World Database

 Store the objects that inhabit the world, scripts that describe actions of those objects.

Head mounted display - early

Head-Mounted Display (HMD)

- A Helmet or a face mask providing the visual and auditory displays.
- Use LCD or CRT to display stereo images.
- May include built-in head-tracker and stereo headphones

Head mounted display - early

Binocular Omni-Orientation Monitor (BOOM)

- Head-coupled stereoscopic display device.
- Uses CRT to provide high-resolution display.
- Convenient to use.
- Fast and accurate built-in tracking.

Head mounted display - early

Cave Automatic Virtual Environment (CAVE)

- Provides the illusion of immersion by projecting stereo images on the walls and floor of a room-sized cube.
- A head tracking system continuously adjust the stereo projection to the current position of the leading viewer.

Head mounted display

• Oculus Rift

Head mounted display

HTC Vive

Google Cardboard

Google cardboard kit

Google cardboard kit

Control in VR system - early

Control Devices

• Control virtual objects in 3 dimensions.

Control in VR system - early

Data Glove

- Outfitted with sensors on the fingers as well as an overall position/orientation tracking equipment.
- Enables natural interaction with virtual objects by hand gesture recognition.

• Oculus vs. Vive controllers

Haptic feedback

VR in reality

VR in reality

Current problems

- ⊗ Cybersickness / simulator sickness
- ⊗ Feedback is limited
- ⊗ Low-fidelity
- **⊗** Expensive
- ⊗ Lack of integration between application packages

Problems

Conclusion and Summary

- Virtual Reality is defined as:
 - Simulated environment
 - Interaction with human senses
 - Reactive to input from person

- What can be VR
 - Just about any simulated environment

Conclusion and Summary

- Visualization of complicated, large data is helpful for understanding and analysis.
- VR offers us a new way to interact with computer.
- VR enables us to experience the virtual world that is impossible in real world.
- VR is changing our life, eventually VR will increasingly become a part of our life.

Q&A