

Vorlesungsskript

Mitschrift von Falk-Jonatan Strube

Vorlesung von Herrn Meinhold 15. März 2016

Inhaltsverzeichnis

I.	Elementare Grundlagen	3		
1.	Aussagen und Grundzüge der Logik	3		
2.	Mengen	3		
3.	Zahlen	3		
4.	Reellwertige Funktionen einer reellen Veränderlichen			
5.	Lineare Algebra	3		
II.	Folgen, Reihen, Grenzwerte	4		
1.	Zahlenfolgen 1.1. Grenzwerte von Zahlenfolgen 1.2. Lineare Rekursionsgleichungen (Differenzengleichungen) 1.3. Unendliche Reihen 1.3.1. Grundbegriffe 1.3.2. Konvergenzkriterien	4 4 7 7 7 9		

Teil I. Elementare Grundlagen

- 1. Aussagen und Grundzüge der Logik
- 2. Mengen
- 3. Zahlen
- 4. Reellwertige Funktionen einer reellen Veränderlichen
- 5. Lineare Algebra

Teil II. Folgen, Reihen, Grenzwerte

1. Zahlenfolgen

1.1. Grenzwerte von Zahlenfolgen

Def. 1:

Es sei $n_0 \in \mathbb{N}$. Eine Funktion f mit $Db(f) = \{u \in \mathbb{N} | n \ge n_0\}$ und $Wb(f) \subset \mathbb{R}$ heißt reelle Zahlenfolge. Schreibweise:

$$\begin{array}{ll} a_n = f(n) & (n \in Db(f)) \\ (a_n)_{n \geq n_0} = (a_{n_0}, a_{n_0+1}, a_{n_0+2}, \ldots) \\ \text{oft } n_0 = 0 \text{ oder } n_0 = 1. \end{array}$$

Bsp. 1:

a.)
$$a_n = (-1)^n \cdot n \quad (n \in \mathbb{N})$$

 $(a_n) = (0, -1, 2, -3, 4, ...)$

b.)
$$a_0=-1,\ a_n=n\cdot a_{n-1}\quad (n\in\mathbb{N}^*)$$
 (rekursive Def.) $(a_n)=(-1,-1,-2,-6,-24,...),\ a_n=-n!$

c.)
$$a_n = \frac{3}{10} + \frac{3}{10^2} + \dots + \frac{3}{10^n} \quad (n \in \mathbb{N}^*)$$

 $(a_n) = (0.3, 0.33, 0.333, \dots)$

d.)
$$a_n = 1 + (-1)^n \frac{1}{n^2} \quad (n \in \mathbb{N}^*)$$

 $(a_n) = \left(\frac{5}{4}, \frac{8}{9}, \frac{17}{16}, \frac{24}{25}, \dots\right)$

Def. 2:

- (a_n) heißt *konvergent*, wenn es eine Zahl $a \in \mathbb{R}$ gibt mit folgender Eigenschaft: Zu jedem $\varepsilon > 0$ existiert eine natürliche Zahl $n_0(\varepsilon)$, sodass für alle $n \ge n_0(\varepsilon)$ gilt: $|a_n - a| < \varepsilon$.
- Die Zahl a heißt *Grenzwert* von (a_n) . Schreibweisen:

$$\boxed{a = \lim_{n \to \infty} (a_n) \left| \mathsf{oder} \left[a_n \underset{n \to \infty}{\longrightarrow} a \right] \right|}$$

• (a_n) heißt *divergent*, falls (a_n) nicht konvergent ist.

Diskussion

1.) Für $\varepsilon > 0$ heißt $U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon)$ (offenes Intervall) ε -Umgebung von a.

d.h. für jedes (noch so kleine) ε , liegen ab einem bestimmten (von ε abhängigen) Index $n_0(\varepsilon)$ alle Glieder $a_n(n \ge n_0(\varepsilon))$ in $U_{\varepsilon}(a)$.

2.) Im Bsp. 1 sind:

konvergente Folgen:

c.) mit
$$a_n = \frac{1}{3}$$

divergente Folgen: a.) und b.)

3.) Ist $a_n = 0$, so heißt (a_n) Nullfolge.

Def. 3:

 (a_n) heißt:

- *streng monoton wachsend*, falls für jedes n gilt: $a_n < a_{n+1}$.
- monoton wachsend, falls für jedes n gilt: $a_n \leq a_{n+1}$.
- streng monoton fallend, falls für jedes n gilt: $a_n > a_{n+1}$.
- monoton fallend, falls für jedes n gilt: $a_n \ge a_{n+1}$.

Def. 4:

 (a_n) heißt beschränkt, wenn es eine Konstante C>0 gibt mit $|a_n|\leq C$ für alle n.

Diskussion:

1.) (a_n) beschränkt

$$\Leftrightarrow \exists c > 0 \ \forall n \quad |a_n| \le C$$

$$\Leftrightarrow \exists c_1 \in \mathbb{R} \ \exists c_2 \in \mathbb{R} \ \forall n \quad c_1 \le a_n \le c_2$$

2.) Folgen aus Bsp. 1:

	Folge	Monotonie	Beschränktheit
a.)	$a_n = (-1)^n \cdot n$	_	_
b.)	$a_n = -n!$	streng monoton fallend (ab $n=1$)	_
c.)	$a_n = \frac{3}{10} + \frac{3}{10^2} + \dots + \frac{3}{10^n}$	streng monoton wachsend	$0, 3 \le a_n < \frac{1}{3}$
d.)	$a_n = 1 + (-1)^n \frac{1}{n^2}$	_	$0 \le a_n < \frac{5}{4}$

Satz 1:

Jede konvergente folge ist beschränkt.

Satz 2:

Jede monotone und beschränkte Folge ist konvergent.

Def. 5:

 $(a_n) \text{ heißt } \textit{bestimmt konvergent } \text{gegen} \begin{cases} +\infty \\ -\infty \end{cases} \text{, falls gilt: } \forall c \in \mathbb{R} \ \exists n_0(c) \ \forall n \geq n_0(c) \begin{cases} a_n > c \\ a_n < c \end{cases} .$

Schreibweise: $\lim_{n \to \infty} a_n = \begin{cases} +\infty \\ -\infty \end{cases}$

Bsp. 2:

- a.) aus Bsp. 1c.): $a_n=\frac{3}{10}+\ldots+\frac{3}{10^n},\;(a_n)$ monoton wachsend und beschränkt $\Rightarrow (a_n)$ ist konvergent, $\lim_{n\to\infty}a_n=\frac{1}{3}.$
- b.) aus Bsp. 1b.): $a_n=-n!,\ (a_n)$ monoton fallend und unbeschränkt $\Rightarrow (a_n)$ ist bestimmt divergent, $\lim_{n\to\infty}a_n=-\infty$

Diskussion:

Eine divergente Folge, die nicht bestimmt divergent ist, heißt *unbestimmt divergent*. Bpsw. Folge aus Bsp. 1a.) $a_n = (-1)^n \cdot n$.

Einige wichtige Grenzwerte:

a.)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e = 2.71...$$
 (EULERsche Zahl)

$$b.) \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\text{c.) } \lim_{n\to\infty}\frac{\ln n}{n}=0$$

d.)
$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$
 $(a > 0)$

Satz 4: Rechenregeln (Grenzwertsätze)

 (a_n) und (b_n) seien zwei konvergente Folgen mit $\lim_{n \to \infty} = a, \ \lim_{n \to \infty} = b.$ Dann gilt:

$$\bullet \lim_{n \to \infty} (a_n + b_n) = a + b$$

$$\bullet \lim_{n \to \infty} (c \cdot a_n) = c \cdot a$$

•
$$\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$$

•
$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b}$$
 $(b_n \neq 0, b \neq 0)$

Bsp. 3:

a.)
$$a_n = \frac{2n^2 - 1}{3n^2 + n}$$
 $(n = 1, 2, 3, ...)$
$$a_n = \frac{n^2 \left(2 - \frac{1}{n^2}\right)}{n^2 \left(3 + \frac{n}{n^2}\right)} = \frac{2 - \frac{1}{n^2}}{3 + \frac{1}{n}} = \frac{\lim_{n \to \infty} \left(2 - \frac{1}{n^2}\right)}{\lim_{n \to \infty} \left(3 + \frac{1}{n}\right)} = \frac{2}{\underline{3}}$$

Ausklammern der höchsten Potenzen in Zähler und Nenner

b.)
$$a_n = n \cdot \left(\sqrt{n^2+1} - n\right)$$
 (in Klammern: $\infty - \infty$ ∞ Erweitern mit 3. binomischer Formel)
$$a_n = \frac{n \cdot \left(\sqrt{n^2+1} - n\right) \cdot \left(\sqrt{n^2+1} + n\right)}{\left(\sqrt{n^2+1} + n\right)} = \frac{n \cdot (n^2+1-n^2)}{n \cdot \sqrt{1+\frac{1}{n^2}} + n} = \frac{n \cdot 1}{n \left(\sqrt{1+\frac{1}{n^2}} + 1\right)} \xrightarrow[n \to \infty]{} \frac{1}{2}$$
 oder: $\lim_{n \to \infty} = \frac{1}{2}$

c.)
$$a_n = \frac{\sin n}{n}$$
 $\left(0 \le |a_n| = \frac{|\sin n|}{n} \le \frac{1}{n}\right) \Rightarrow \lim_{n \to \infty} a_n = 0$

Allgemein: (a_n) beschränkt und (b_n) bestimmt divergent $\Rightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = 0$.

1.2. Lineare Rekursionsgleichungen (Differenzengleichungen)

- Allgemeine Form einer Rekursionsgleichung k-ter Ordnung: $x_n = f(n, x_{n-1}, x_{n-2}, ..., x_{n-k}) \qquad (k \ge 1, \ n \ge n_0 + k)$

- Da die größen $x_n, x_{n-1}, x_{n-2}, \ldots$ auch durch x_n und die Differenzen $\Delta x_n := x_n x_{n-1}, \Delta^2 x_n := \Delta x_n \Delta x_{n-1} = x_n 2x_{n-1} + x_{n-2}, \ldots$ ausgedrückt werden können, ist der Name *Differenzengleichung* sehr verbreitet.
- ullet Die Differenzengleichung (aus erstem Punkt) heißt homogen, falls $h_n=0$ (für alle n), sonst inhomogen.

Zur Lösung von der Differenzengleichung (aus erstem Punkt oberhalb):

1.) Allgemeine Lösung: $x_n = x_n^{(h)} + x_n^{(p)}$, dabei ist $x_n^{(h)}$ die allgemeine Lösung der zugehörigen homogenen Gleichung $x_n = a_1x_{n-1} + \ldots + a_kx_{n-k}$ und $x_n^{(p)}$ eine partikuläre (spezielle) Lösung der inhomogenen Gleichung.

FEHLENDE VL

1.3. Unendliche Reihen

1.3.1. Grundbegriffe

Def. 6: Gegeben sei die Zahlenfolge $(a_n)_n \ge n_0, \ n \in \mathbb{N}$. Die Zahlenfolge $(s_n)_n \ge n_0$ mit $s_{n_0} := a_{n_0}, \ s_{n_0+1} := a_{n_0} + a_{n_0+1}, \ s_{n_0+2} := a_{n_0} + a_{n_0+1} + a_{n_0+2}, \ ..., \ s_n = a_{n_0} + a_{n_0+1} + ... + a_n$ (*Partialsumeenfolge*) heißt *unendliche Reihe*.

Bezeichnung: $\sum_{n=n_0}^{\infty} a_n$

- ullet Die Zahlen a_n heißen Glieder der Reihe, die Zahlen s_n heißen Partialsummen der Reihe
- Ist die Reihe konvergent, d.h. die Folge (s_n) ist konvergent, so heißt $s:=\lim_{n\to\infty}s_n=:\sum_{n=n_0}^\infty a_n$ die Summe der Reihe
- Die Reihe heißt (bestimmt oder unbestimmt) divergent, wenn die Partialsummen die entsprechende Eigenschaft haben.

Bemerkung: Oft $n_0 = 0$ oder = 1

Bsp. 6:
$$a_n = aq^n \text{ mit } a \neq 0, q \neq 0, n = 0, 1, 2, ...$$
 $(a_n) = (a, aq, aq^2, aq^3, ...)$ (geometrische Zahlenfolge)

$$(s_n) = \sum_{n=0}^{\infty} aq^n$$
 (geometrische Reihe)

$$=(\underbrace{a}_{s_0},\underbrace{a+aq}_{s_1},\underbrace{a+aq+aq^2}_{s_2},...)$$

$$s_n = a + aq + aq^2 + aq^3 + \dots + aq^n \mid q$$

 $s_n = aq + aq^2 + aq^3 + aq^4 + \dots + aq^{n+1}$

Beide Zeilen voneinander abgezogen:

$$s_n - s_n q = a - aq^{n+1}$$

$$s_n(1-q) = a - aq^{n+1} \mid : (1-q) \text{ falls } q \neq 1$$

 $s_n = a \cdot \frac{1 - q^{n+1}}{a - q}$ (Summenformale für die endliche geometrische Reihe mit Anfangsglied a und n+1

 $\Rightarrow \lim_{n \to \infty} s_n = \frac{a}{a-q}$ falls $|q| < 1 \Rightarrow$ Summe der unendlichen geometrischen Reihe:

$$\left[\sum_{n=0}^{\infty} aq^n = \frac{a}{1-q}\right]^{\text{für }|q| < 1.$$

$$\overline{\text{z.B. }}0, \overline{72} = 0, 727272... = \frac{72}{100} + \frac{72}{10,000} + \frac{72}{1,000,000} + ... = \frac{72}{99} = \frac{8}{11}$$

Bsp. 7: $\sum_{i=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$ heißt *harmonische Reihe*. Offensichtlich ist (s_n) streng monoton wachsend. Man kann zeigen, dass (s_n) nicht beschränkt ist. Aus Satz 3 folgt: die harmonische Reihe ist bestimmt divergent.

Schreibweise: $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$

Def. 7: Die Reihe
$$\sum_{n=n_0}^{\infty} a_n$$
 heißt

- (a) absolut konvergent, falls $\sum_{n=0}^{\infty} |a_n|$ konvergent ist.
- (b) bedingt konvergent, falls $\sum_{n=0}^{\infty} a_n$ konvergent, aber $\sum_{n=0}^{\infty} |a|$ nicht konvergent ist.

Satz 5:
$$\sum_{n=n_0}^{\infty} a_n$$
 absolut konvergent $\Rightarrow \sum_{n=n_0}^{\infty} a_n$ konvergent.

Diskussion:

1.) Die Umkehrung gilt im Allgemeinen nicht. Es gibt konvergente Reihen, die nicht absolut konvergieren. Z.B. $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$

2.) Für Reihen mit nicht-negativen Gliedern ($a_n \geq 0$ für alle n) ist absolute Konvergenz identisch mit (gewöhnlicher) Konvergenz. Für solche Reihen gilt entweder $\sum_{n=n_0}^{\infty} a_n < \infty$ [(absolut) konvergent] oder $\sum_{n=n_0}^{\infty} a_n = \infty$ [bestimmt divergent].

1.3.2. Konvergenzkriterien

1. Notwendiges Konvergenzkriterium

Satz 6:
$$\sum_{n=n_0}^{\infty} a_n \text{ konv.} \Rightarrow \lim_{n\to\infty} a_n = 0$$

Beweis:
$$a_n = s_n - s_{n-1}$$
 $\Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0$

Bemerkung:

- a) Bedingung $\lim_{n\to\infty}a_n=0$ ist notwendig, aber nicht hinreichend. Z.B. $a_n=\frac{1}{n}$, dann $\lim_{n\to\infty}a_n=0$ aber $\sum_{n=1}^{\infty}a_n=\infty$
- b) Anwendung des Satzes meist in logisch äquivalenter Form: $\lim_{n\to\infty}a_n\neq 0\Rightarrow \sum_{n=n_0}^\infty a_n$ divergiert

$$\begin{aligned} & \textbf{Bsp. 8:} \quad \sum_{n=1}^{\infty} \left(\frac{n}{10n-1}\right)^{50} \\ a_1 &= 1,94 \cdot 10^{-48}, a_2 = 1,3 \cdot 10^{-49}, \dots \\ & \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{n}{10-\frac{1}{n}}\right)^{50} \neq 0 \\ & \Rightarrow \text{Reihe divergent (sogar besimmt divergent, da alle } a_n \geq 0) \end{aligned}$$

- 2. Hinreichendes Kriterien
 - (A) Leibnitzkriterium für alternierende Reihen

Satz 7: Sei
$$(b_n)$$
 Folge mit

- $b_n \ge b_{n+1} > 0$ für alle $n \in \mathbb{N}$
- $\bullet \lim_{n \to \infty} b_n = 0$

Dann ist $\sum_{n=0}^{\infty} (-1)^n b_n = b_0 - b_1 + b_2 - b_3 + \dots$ konvergent. D.h. wenn die Beträge b_n der

Glieder einer alternierenden Reihe mit $a_n = (-1)^n b_n$ eine Nullfolge bilden, dann ist die Reihe konvergent.

Weiter gilt: $|s - s_n| \le |a_{n+1}|$

Also ist der Fehler bei der Approximation von s durch s_n beschränkt durch den Beträg von a_{n+1} .

Bsp. 9:
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \text{ (alternierende harmonische Reihe)}$$
 $s_1=1,\ s_2=0,5,\ s_3\approx 0,83,\ s_4\approx 0,583,\ s_5\approx 0,78,\ s_6\approx 0,62$ ABB 6

Man kann zeigen: $s = \ln 2 = 0,6931$