UPC/FME/Grau de Matemàtiques 200 121 Topologia Problemes resolts Connexió X espai topològic, $(C_i)_{i\in I}$ família de subespais connexos tals que **5.1** $C_i \cap C_j \neq \emptyset$ per a qualssevol i, j. Proveu que $C = \bigcup_{i \in I} C_i$ és connex. Recordem que un espai topològic X és no connex quan es pot escriure $X = U \sqcup V$, unió disjunta d'oberts no buits. En primer lloc, podem suposar que I no és buit (altrament $C = \emptyset$, que és connex). Suposem que podem escriure el conjunt C com $C = U \sqcup V$, unió disjunta d'oberts de C. Provarem que un d'ells és buit. Cada C_i és un subespai de C, i amb la descomposició anterior es pot escriure $C_i = (C_i \cap U) \sqcup (C_i \cap V)$, unió disjunta d'oberts de C_i . Com que C_i és connex, un d'aquests conjunts ha de ser buit, l'altre el total. En deduïm que cada C_i es troba contingut bé en U, bé en V. Suposem que, per a un cert índex i_{\circ} , tenim $C_{i_{\circ}} \subset U$. Per hipòtesi, per a qualsevol índex i tenim $C_{i_{\circ}} \cap C_{i} \neq \emptyset$, i a més $C_{i_{\circ}} \cap C_{i} \subset U$. En deduïm que C_i talla U, i, per l'observació prèvia, $C_i \subset U$. Així doncs $C \subset U$, de manera que $V = \emptyset$. Hem provat, doncs, que C és connex. Sigui $(C_n)_{n\geq 1}$ una successió de subconjunts connexos tals que **5.2** $C_n \cap C_{n+1} \neq \emptyset$ per a tot n. Proveu que $\bigcup_{n\geq 1} C_n$ és connex. Segons el problema anterior, $C_1 \cup C_2$ és connex, i procedint per inducció $(C_1 \cup C_2) \cup C_3$ també ho és, etc. Així doncs els conjunts $D_n = C_1 \cup \ldots \cup C_n$ són connexos. Òbviament dos qualssevol d'aquests conjunts D_m, D_n són no disjunts; de fet, un està contingut dins de l'altre. Aplicant de nou el problema anterior (o bé que la unió de conjunts connexos amb intersecció no buida és connex), deduïm que $\bigcup_{n\geq 1} D_n = \bigcup_{n\geq 1} C_n$ és connex. Siguin $A \subset B \subset \overline{A}$ subconjunts d'un espai topològic X. 5.3Si A és connex, B també. Suposarem que B no és connex, i en deduïrem que A tampoc no Si B \boldsymbol{no} és connex, podem trobar oberts $U,V\subset X$ tals que $B \subset U \cup V$, $B \cap U \neq \emptyset$, $B \cap V \neq \emptyset$, $B \cap U \cap V = \emptyset$. Ara bé, tots els punts de B són adherents a A. Recordem que si $x \in \overline{A}$, tot obert que contingui x talla A. Per tant $A \cap U \neq \emptyset$, $A \cap V \neq \emptyset$. Com que $A \subset B$, en deduïm $A \subset U \cup V$, $A \cap U \neq \emptyset$, $A \cap V \neq \emptyset$, $A \cap U \cap V = \emptyset$, i doncs A no és connex. Això implica en particular que: Si $A \subset X$ és connex, també \overline{A} és connex. Si $A \subset X$ és connex, també ho són el seu interior i la seva 5.4És fàcil pensar contraexemples en els dos casos. • $A = \{(x, y \in \mathbf{R}^2 \mid xy \ge 0)\}$ és la unió del primer i el tercer quadrants tancats del pla, i és connex (els dos quadrants són connexos i tenen intersecció no buida). El seu interior és la unió (disjunta) dels mateixos quadrants però oberts. • $A = [0, 1] \subset \mathbf{R}$ és connex per ser un interval de \mathbf{R} ; la seva frontera és $\partial A = \{0, 1\}$, que no és connex. Si \overline{A} és connex, també ho és A? No necessàriament. • $A = \mathbf{R} - \{0\} \subset \mathbf{R}$ no és connex, però $\overline{A} = \mathbf{R}$ sí. Sigui $C \subset X$ un subconjunt d'un espai topològic. Es considera la condició següent: per a tot parell d'oberts $U, V \subset X$ que siguin disjunts i recobrei-5.5xin C, o bé $C \cap U = \emptyset$, o bé $C \cap V = \emptyset$. Aquesta condició implica que C és connex? No. Notem la crucial diferència amb la definició de connexió per a C, on es requereix que per a tot parell d'oberts $U, V \subset X$ tals que $C \cap U$ i $C \cap V$ siguin disjunts... El problema que ens podem trobar és que l'espai X no tingui prou oberts disjunts per separar punts, però tanmateix sí que en tingui quan veiem aquests oberts en un subespai. Aquí en tenim un exemple: • Sigui X un espai topològic *infinit* amb la *topologia cofinita*. Recordem que els seus conjunts tancats són X i els conjunts finits. Notem que: – Un subespai $C \subset X$ també té la topologia cofinita. Si C és finit, la topologia cofinita és la discreta, i per tant és connex si
i ${\cal C}$ és buit o un singletó. Es possible trobar oberts $U, V \subset X$ disjunts no buits? No. $U \cap V$ és obert i doncs buit o cofinit. Però en un conjunt infinit la intersecció de dos subconjunts cofinits és cofinit, no pas buit. Dit altrament: donats dos oberts disjunts $U, V \subset X$, un d'ells ha de ser buit. Així doncs, la presumpta condició de connexió de l'enunciat es compleix trivialment sigui quin sigui C. Però si C és finit amb més d'un element, C no és connex. **Remarca** En la discussió anterior hem provat: Un conjunt amb la topologia cofinita és connex sii té cardinal 0, 1 o infinit. Sigui $A \subset X$ un subconjunt d'un espai topològic. Demostreu que si un subconjunt connex $C \subset X$ talla A i el seu 5.6complementari A^{c} , també talla la frontera ∂A . Recordem que $X = A^{\circ} \sqcup \partial A \sqcup (A^{c})^{\circ}.$ També tenim $A \subset A^{\circ} \sqcup \partial A$, $A^{c} \subset (A^{c})^{\circ} \sqcup \partial A$. Suposem que C no tallés ∂A . Aleshores $C \subset A^{\circ} \sqcup (A^{c})^{\circ}$ i C estaria dins la unió d'oberts disjunts tallant-los tots dos, en contradicció amb la hipòtesi de ser connex. Un espai topològic és connex sii **5.7** no existeix una aplicació contínua suprajectiva $f: X \to \{0, 1\}$ (espai discret de dos punts). Altrament: X no es connex sii existeix una aplicació contínua suprajectiva $f: X \to \{0, 1\}$. Si X no és connex i $X=U\cup V$ amb U,V oberts no buits disjunts, es defineix $f \colon X \to \{0,1\}$ posant $f|_U = 0, \quad f|_V = 1,$ que és trivialment contínua i suprajectiva. Recíprocament, donada f amb aquestes condicions, $X = f^{-1}(0) \sqcup f^{-1}(1)$ és una separació de X.