Best case time complexity, Average case time complexity, Worst case time complexity and Lower bound

We talk about the **Best case time complexity**, the **Average case time complexity** and the **Worst case time complexity** in the context of an algorithm **A** to solve a problem **P**. For example, you know those values for the quick sort.

We talk about lower bound in the context of a problem **P**. What we say applies to all algorithms **A** (present and future) to solve **P**.

For example, we proved that "The problem **P** of sorting n items using comparison" has a lower bound of $\Omega(n \log n)$. What we are saying is "any sorting algorithm **A** to sort n item through comparison (present or future) will have worst case time complexity $O(n \log n)$.

We have the following relationship.

Let **P** be a problem and **A** be an algorithm to solve **P**. Then

The Worst case time complexity $A \ge$ The Lower Bound of (P).

If Worst case time complexity A is equal to the Lower Bound of (P), then A is an optimal algorithm to solve P

Example:

P is the problem of sorting n items using comparison.

Merge sort (A) an algorithm that solves P.

Worst case time complexity of A (merge sort) is $O(n \log n)$.

Lower bound of **P** (the problem of sorting n items using comparison) is $\Omega(n \log n)$.

Since both time complexity expressions are same (in this case $n \log n$), we say Merge Sort is an optimal algorithm. Note that Quick Sort is not an optimal algorithm!

f is O(g) means $f(n) \le cg(n)$ for large values of n.

f is $\Omega(g)$ means f(n) >= cg(n) for large values of n.

f is $\Theta(g)$ means f(n) = cg(n) for large values of n.