

TN2115S2 Specification

8 MHz ARM Cortex-M0, 32KB FLASH ROM, 8KB RAM, 13 GPIOs, SWD, Passive Execution 300mW NFC Energy Harvesting, 2KB EEPROM, I2C, SPI, Adaptive Harvester

1. Features

MCU for Passive Operation

- 32bit ARM Cortex-M0
- Up to 12MHz clock
- On-chip RC clock
- On-chip SWD debug interface
- 13 GPIOs
- NFC OTA update capability
- Run/ Sleep Modes
- SW NFC protocol stack
- Execute using harvested energy
- Passive computing/sensing/actuating

SW-configurable NFC Interface

- 106kbps data rate
- 2KB on-chip EEPROM
- Support TYPE2 tag interface
- Support TYPE4 tag interface
- Support user-defined protocol
- 4/7/10 Bytes UID, reconfigurable

• Efficient Energy Harvesting

- Optimized NFC AFE
- Up to 300mW harvested power

- Power the entire IC passively
- Power the host devices passively
- Single-chip computing/powering

• High-speed Serial Data Bus

- I2C slave, up to 400kbps
- SW I2C&SPI master
- Interrupt upon RX/TX

Versatile Storage Options

- 32KB system FLASH
- 8KB system RAM
- 2KB data EEPROM

• Effective Power Management

- Harvesting output: Raw/3.3V/1.8V
- Adaptive harvesting: power + stability
- Interfacing with super capacitors
- NFC data communication protection
- Wide input: 2.3V 15V

• Low Power Consumption

- 500uA in MCU sleep state
- <3mA in run state
- 600uA average in typical scenarios

2. General Description

2.1.Summary

TN2115S2 is a NFC passive MCU, which integrates an ISO14443A-compliant NFC tag interface. The MCU is designed with Chivotech's exclusive TurboNFC technology that offers high-efficient energy harvesting. TN2115S2 is able to harvest up to 300mW power when working with typical NFC-equipped smartphones. Such amount of power not only allows TN2115S2 to run at full speed passively, but also is able to drive externally connected devices like sensors, displays, and actuators.

The core of TN2115S2 is an ARM CORTEX-M0 running up to 12MHz. On-chip high-speed serial bus interfaces, peripherals, GPIOs, and abundant storage options including RAM, FLASH, and EEPROM are connected to the core through AHB. The internal FLASH stores system library and user's code and data. An on-chip EEPROM is also provided to store user data or system configurations. The typical current draw of TN2115S2 is below 1mA.

Chivotech's advanced NFC architecture grants the user the ability to easily interface user code and 3rd libraries to the NFC functionalities. It also enables non-standard, user-defined NFC protocols to be easily implemented on TN2115S2. TN2115S2 also includes an adaptive harvesting controller. Loads with super low ESR, such as large supercapacitors and motors can be directly connected to the harvesting output without collapsing the NFC RF field.

TN2115S2's excellent harvesting capability and versatility is well suited for mobile devices, smart home devices, and IoT devices. For example, smartlocks with TN2115S2 integrated can work without batteries, as the energy for the lock/unlock actions can be provided wirelessly by smartphones.

2.2. Characteristics

NAME	VALUE
MCU CLOCK RATE	6MHz – 12MHz
MCU FLASH	32KBytes
MCU RAM	8KBytes
EEPROM	2KByte
GPIOS	13Configurable GPIO
NFC DATA RATE	106Kbps
HARVESTING POWER	Up to 300mW,typically 60mW – 150mW
HARVESTING OUTPUT	RAW/3.3V/1.8V
INPUT VOLTAGE	2.3V – 15V
CURRENT DRAW	600uA typically

2.3. Typical Applications

TN2115S2's typical applications include smartcards, wearable devices, and IoT devices. The MCU offers NFC data transfer and wireless powering functions in both battery and battery-less modes. Exemplary applications include Eink price tags, Bluetooth-enabled/display-enabled/biometric-enabled smartcards, smartlocks, sensors, and smartphone accessories.

Fig. 1 Application Diagram

2.4. Footprint and Marking

MARKING	FOOTPRINT	DESCRIPTION	VERSION
TN2115SX	QFN40	5mm x 5mm, 0.55mm Height, leadless, 40pins	V1.0

Tab. 1 Footprint

Fig. 2 Marking

2.5. Security

- On-chip FLASH password lock to prevent accidental write operations
- On-chip FLASH readout protection unit
- NFC Security level is fully controlled by the MCU
 - Reconfigurable 4/7/10 Byte ID, controller by the MCU
 - SW security measures inside MCU for low-cost, non-security-sensitive applications
 - External HW security element for maximum security insurance (passively powered)
- NFC tag memory access model is controlled by the MCU
 - NFC shutdown
 - Memory non-visible
 - Memory read-only
 - Memory write-only
 - Memory full access
 - Volatile or non-volatile

3. Pin Definitions

4.

5. Fig. 3 TN2115S2 pin definitions

PIN	NAME	TYPE	DESCRIPTION
1	GND	Ground	GND
2	DVDD18	Power	1.8v input, must connect with avdd18
3	DVDD33	Power	3.3V digital power in
4	AVDD33	Power	3.3v LDO output, must connect with a 0.47uf capacitor
5	RF_BP	Analog/in	NFC antenna B
6	RF_BM		
7	RF_AP		
8	RF_AM	Analog/in	NFC antenna A
9	AVDD33	Power	3.3v LDO output, must connect with a 0.47uf capacitor
10	AVDD18	Power	1.8v LDO output, must connect with a 0.1uf capacitor
11	NC	-	Must left unconnected
12	NC	-	MUST LEFT UNCONNECTED
13	GND	Ground	GND
14	RSV	Reserved	MUST LEFT UNCONNECTED
15			
16	HARV	Harvester out	Harvesting output, not regulated, not load protected
17	VCAP	Harvester out	Adaptive harvesting output, not regulated

18	DVDD18	Power	1.8v input, must connect with avdd18
19	DVDD18	Power	1.8v input, must connect with avdd18
20	GND	Ground	GND
21	GND	Ground	GND
22	GND	Ground	GND
23	GPIO03	Digital/in/out	GPIO. Default: SWDIO, see registers for configuration
24	DVDD18	Power	1.8v input, must connect with avdd18
25	GPIO10	Digital/in/out	GPIO. See registers for configuration
26	GPIO09	Digital/in/out	GPIO. See registers for configuration
27	GPIO07	Digital/in/out	GPIO. See registers for configuration
28	GPIO08	Digital/in/out	GPIO. See registers for configuration
29	GPIO04	Digital/in/out	GPIO. Default: SWCLK, see registers for configuration
3	DVDD33	Power	3.3V digital power in
31	GND	Ground	GND
32	RESETN	Digital/in	Chip reset pin, active low
33	GPIO05	Digital/in/out	GPIO. See registers for configuration
34	GPIO06	Digital/in/out	GPIO. See registers for configuration
35	GPIO00	Digital/in/out	GPIO.
36	GPIO01	Digital/in/out	GPIO.
37	GPIO02	Digital/in/out	GPIO.
38	GPIO11	Digital/in/out	GPIO/I2C_SCL, see registers for configuration
39	GPIO12	Digital/in/out	GPIO/I2C SDA, see registers for configuration
40	GND	Ground	GND
4			

7. Tab. 2 Pin definitions

8. Electrical Characteristics

8.1. Absolute Maximum Ratings

Ratings	Min	Max	Unit	Note
Working Temperature	-40	+125	°C	
Hi-volt Analog IO Voltage	-0.7	18	V	Include RF_CM, RF_CP, VHARV, VCAP
Lo-volt Analog IO Voltage	Vss-0.7	5	V	All other analog IOs
Digital IO Voltage	-0.7	4.2	٧	All digital IO
ESD		3	KV	
Hi-volt Analog IO Current		100	mA	Include VHRAV, VCAP
Lo-volt Analog IO Current		50	mA	Include AVDD3V3, AVDD1V8, VREF1P2
Digital IO Current	-20	20	mA	

Tab. 3 Absolute Maximum Ratings

8.2. Recommended Working Conditions

Symbol	Parameter	Conditions	Min	Typical	Max	Unit
TA	Working		-40		+85	°C
	Temperature					
H _A	RF Field Strength		TBA	TBA	TBA	A/M

Tab. 4 Recommended Working Conditions

8.3. Electrical Parameters

Parameter	Conditions	Min	Typical	Max	Unit
	F	RF Section			•
Antenna input frequency			13.56		MHz
Input parasitic Capacitance	RFC pin			10	pF
	On-ch	ip RC Oscillato	r .		
Output Frequency	OSCTRIM = 1		5.9		Mhz
VBG = 500mV	OSCTRIM = 2		6.4		Mhz
	OSCTRIM = 3		6.9		Mhz
	OSCTRIM =4		7.2		Mhz
	OSCTRIM = 5		7.7		Mhz
	OSCTRIM = 6		8.1		Mhz
	OSCTRIM = 7		8.5		Mhz
	OSCTRIM = 8		8.8		Mhz
	OSCTRIM = 9		9.2		Mhz
	OSCTRIM = 10		9.6		Mhz
	OSCTRIM = 11		9.9		Mhz
	OSCTRIM = 12		10.3		Mhz
	OSCTRIM = 13		10.7		Mhz
	OSCTRIM = 14		11		Mhz
	OSCTRIM = 15		11.3		Mhz
	Currer	nt Consumption	1		
Run State Current	IO output = 0 OSCTRIM = 7 T = 25C		2500		UΑ
Sleep State Current	IO output = 0 OSCTRIM = 7 T = 25C		500		uA

MCU Timings								
Cold boot time	R = 10K C = 0.1uF T = 25C	1	2	3	mS			
Sleep to Run Wakeup Time	T = 25C			5	υS			
		Storage						
FLASH program cycles	T = 25C		1000		cycles			
FLASH data retention	T = 25C		10		years			
EEPROM program cycles	T = 25C		1000		cycles			
EEPROM data retention	T = 25C		10		years			
	Digital Input IOs							
Input high voltage	T = 25C	0.7*AVDD33			V			
Input low voltage	T = 25C			0.3*AVDD33	V			
Pin leakage current				TBA	υA			
Digital Ouput IOs								
Output high voltage	I = 2mA	0.95*AVDD33			V			
Output low voltage	I = 2mA			0.1*AVDD33				
Output Current	Vio > 0.95*AVDD33	TBA			mA			

Tab. 5 Electrical Parameters

9. Footprint and Drawings

QFN40 Footprint

Fig. 4 Drawings

10. Revision Information

V1.01 revision: Revised pin definition and removed unnecessary pins

V1.02 revision: Removed redundant and unnecessary descriptions, revised IC parameters, updated footprint

V1.03 revision: Company name change reflection. Fixed pin definitions in chapter 3.

V1.04 revision: Fixed IC broken models

V1.05 revision: Removed incorrect UART descriptions