Linear Algebra Theorem on invertible matrices

We sketch here a proof of the theorem on invertible matrices. Recall first the definition:

Definition 1. A square $n \times n$ matrix A is called *invertible* if there is a matrix B such that $AB = BA = I_n$; B is then called the *inverse* of A and denoted A^{-1} .

- Remark 2. (a) It is possible to relax the above definition by assuming existence of two $n \times n$ matrices B and C satisfying $BA = AC = I_n$. Indeed, then B = B(AC) = (BA)C = C, and we are back to Definition 1. In other words, matrices that are both left invertible and right invertible are invertible; moreover, the left inverse B and the right inverse C are equal and coincide with the inverse matrix A^{-1} .
- (b) Theorem 4 also states that a *left invertible* (or *right invertible*) square matrix is necessarily invertible.

Problem 3. Find a right invertible matrix B that is not invertible. How to derive from that B an example of a left invertible matrix C that is not invertible?

Theorem 4 (On invertible matrices). For an $n \times n$ matrix A, the following statements are equivalent:

- (a) A is invertible;
- (b) A has n pivot positions in its row echelon form;
- (c) the reduced row echelon form of A is I_n
- (d) A is expressible as a product of elementary matrices;
- (e) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution:
- (f) $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$;
- (g) there is an $n \times n$ matrix C s.t. AC = I;
- (h) there is an $n \times n$ matrix B s.t. BA = I;
- (i) A^{\top} is invertible;
- (j) the columns of A span \mathbb{R}^n ;
- (k) the columns of A are linearly independent;
- (1) the rows of A span \mathbb{R}^n ;
- (m) the rows of A are linearly independent.

Proof. In Lecture 1, we understood the following equivalences:

$$(f) \iff (b) \iff (e).$$

Indeed, consistency of $A\mathbf{x} = \mathbf{b}$ for every $\mathbf{b} \in \mathbb{R}^n$ holds iff there is no zero row in the row echelon form of A, while uniqueness of solutions to $A\mathbf{x} = \mathbf{0}$ holds iff there is no free variables; both statements say there are n pivot entries, one in each row and each column.

- (b) \Longrightarrow (c): (b) means all pivot entries of the row echelon form A_0 of A are on the main diagonal; the Jordan–Gauss backward substitution then makes the upper-triangular part of A_0 zero and diagonal of ones
- (c) \Longrightarrow (d): We transform A to its reduced row echelon form by left-multiplying by elementary matrices E_j . Since each of E_j is invertible, their product $E = E_k \cdots E_1$ is invertible as well. By (c), $EA = I_n$, so that $A = E_1^{-1} \cdots E_k^{-1}$, where each factor E_j^{-1} is an elementary matrix.

- $(d) \implies (a)$: Product of invertible matrices is invertible, whence the claim
- $(a) \implies (h)$: See Definition 1
- (h) \Longrightarrow (e): Assume B satisfies BA = I; if $A\mathbf{x} = \mathbf{0}$, then $\mathbf{x} = (BA)\mathbf{x} = B(A\mathbf{x}) = \mathbf{0}$
- (e) \iff (b): was already explained

 Therefore, we have proved that

$$(a) \iff (b) \iff (c) \iff (d) \iff (e) \iff (f) \iff (h) \tag{0.1}$$

- (g) \Longrightarrow (f): Given a C satisfying $AC = I_n$ and any $\mathbf{b} \in \mathbb{R}^n$, we find that $\mathbf{x} := C\mathbf{b}$ satisfies $A\mathbf{x} = A(C\mathbf{b}) = (AC)\mathbf{b} = \mathbf{b}$
- $(a) \implies (g)$: See Definition 1 Therefore,

$$(g) \Longrightarrow (f) \Longleftrightarrow (a) \Longrightarrow (g)$$

so that (g) is equivalent to every statement in (0.1)

- $(i) \iff (g)$: Transposed (h) for A is (g) for A^{\top}
- $(j) \iff (f)$: Because $A\mathbf{x}$ is a linear combination of columns of A
- $(k) \iff (e)$: Because $A\mathbf{x}$ is a linear combination of columns of A
- $(l) \iff (i)$: (l) for A is (j) for A^{\top}
- $(m) \iff (i)$: (m) for A is (k) for A^{\top}