Prova di Comunicazioni Numeriche

28 Giugno 2019

Es. 1 - Un segnale può essere inviato su due canali differenti, C_1 e C_2 , con probabilità $p_1 = 0.4$ e $p_2 = 0.6$. Il ritardo con cui il segnale viene ricevuto è una variabile aleatoria uniformemente distribuita in (0,T) con T=0.2 sec sul canale C_1 e T=0.5 sec sul canale C_2 . 1) Valutare il ritardo medio del segnale ricevuto; 2) Calcolare la probabilità che il ritardo sia inferiore a 0.1 sec; 3) Avendo ricevuto il segnale con un ritardo inferiore a 0.1 sec, calcolare la probabilità che il segnale provenga dal canale C_2 .

Es. 2 - In un sistema di comunicazione numerico QAM (Vedi Fig. 1 per la parte ricevente) il segnale trasmesso è $s(t) = \sum_k x_c[k] \, p \, (t - kT) \cdot \cos \left(2\pi f_0 t\right) - \sum_k x_s[k] \, p \, (t - kT) \cdot \sin \left(2\pi f_0 t\right)$, dove i simboli $x_c[k] \in A_s^c = \{-1, 2\}$ e $x_s[k] \in A_s^s = \{-2, 1\}$ sono indipendenti ed equiprobabili. L'impulso sagomatore e' $p(t) = \left[\operatorname{sinc}\left[B\left(t - \frac{1}{2B}\right)\right] + \operatorname{sinc}\left[B\left(t + \frac{1}{2B}\right)\right]\right]$, con $B = \frac{2}{T}$. Il canale di propagazione è ideale e la DSP del rumore in ingresso al ricevitore è bianco nella banda del segnale trasmesso con DSP pari a $\frac{N_0}{2}$. Il filtro in ricezione $h_r(t) = p(t)$. Sia per il ramo in fase che per il ramo in quadratura la soglia di decisione è $\lambda = 0$. Calcolare: 1) L'energia media per simbolo trasmesso, 2) la potenza di rumore in uscita ai filtri in ricezione su entrambi i rami (in fase e quadratura, $P_{n_{uc}}$ e $P_{n_{us}}$) e 3) la probabilità di errore sul simbolo dopo aver verificato l'assenza di ISI.

Fig.1