Cálculo Avanzado

Segundo cuatrimestre 2017 Primer parcial - 09/10/2017

1. Recordemos que una familia $(A_i)_{i\in I}$ de subconjuntos no vacíos **disjuntos** de \mathbb{N} es una partición de \mathbb{N} si $\bigcup_{i\in I} A_i = \mathbb{N}$. Calcular el cardinal del conjunto de las particiones de \mathbb{N} .

Solución:

• Sea $(A_i)_{i\in I}$ una partición de \mathbb{N} . Veamos que $\#I \leq \aleph_0$. En efecto, sea $f: I \longrightarrow \bigcup_{i \in I} A_i = \mathbb{N}$ una función seleccionadora del axioma de elección (es decir, $f(i) \in A_i$).

Como los A_i son disjuntos, f es inyectiva. Luego $\#I \leq \#\mathbb{N} = \aleph_0$.

- Sea $P = \{(A_i)_{i \in I} : (A_i)_{i \in I} \text{ partición de } \mathbb{N} \}$, veamos que #P = c. Por Cantor-Bernstein-Schröder basta ver la doble desigualdad.
- \geq) Sea $X = \{(a_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}} \mid (a_n)_{n \in \mathbb{N}} \text{ es creciente}\}$. Veamos que existe una función inyectiva de X en P. Sea $g: X \to P$ la función que a una sucesión $(a_n)_{n \in \mathbb{N}}$ le asigna la partición $\{[[1, a_1]], [[a_1 + 1, a_2]], \dots, [[a_n + 1, a_{n+1}]], \dots\}$ donde [[a, b]] con $a, b \in \mathbb{N}$ denota al conjunto de números enteros $n \in \mathbb{N}$ tales que $a \leq n \leq b$. Es fácil ver que g es inyectiva g, por el ejercicio g0 ii) de la práctica g1, sabemos que g2.

Otras formas:

- Definir $f: \{0,1\}^{\mathbb{N}} \to P$ de la siguiente forma: sea $a = (a_n)$ sucesión en $\{0,1\}^{\mathbb{N}}$, sea $b = (b_k)_{k \in \mathbb{N}}$ la sucesión en $\mathbb{N}^{\mathbb{N}}$ cuyo término $b_k \in \mathbb{N}$ nos dice en qué posición aparece el k-ésimo uno de la sucesión (a_n) . Por ejemplo, si $a = (0,0,1,1,0,1,0,\ldots)$ entonces $b = (3,4,6,\ldots)$. Luego, definimos $f(a) = \{[[1,b_1]],[[b_1+1,b_2]]\ldots\}$.
- Sea $f: [\mathcal{P}(\mathbb{N}) \{\emptyset; \mathbb{N}\}] \longrightarrow \mathbb{N} \times P$ que manda un conjunto A en la partición $\{A, A^c\}$. f no es inyectiva pues $f(A) = f(A^c)$. Sin embargo se puede arreglar de 2 formas:
 - a) Restringiéndonos a un subconjunto de $\mathcal{P}(\mathbb{N})$ de cardinal c donde f siga siendo inyectiva.
 - b) Definir $f: [\mathcal{P}(\mathbb{N}) \{\emptyset; \mathbb{N}\}] \longrightarrow \mathbb{N} \times P$ como $f(A) = (n_A, \{A; A^c\})$ donde $n_A = \min(A)$. Probar que f es inyectiva y que $\#(\mathbb{N} \times P) = \#P$
- \leq) Sea $A = (A_i)_{i \in I_A} \in P$ una partición de \mathbb{N} . Por lo dicho anteriormente, $\#I_A \leq \aleph_0$.

Vamos a definir $f: P \to \mathcal{P}(\mathbb{N})^{\mathbb{N}}$ de la siguiente forma:

Si $I_A = \{1, ..., n\}$ es finito, $f(A) = (A_1, A_2, ..., A_n, \emptyset, \emptyset, \emptyset, ...)$. Si $I_A = \mathbb{N}$ es numerable definimos $f(A) = (A_1, A_2, ..., A_n, ...)$. f es inyectiva, ya que si f(A) = f(B) entonces $\#I_A = \#I_B$ pues los elementos de la partición son no vacíos. Luego, por ser iguales coordenada a coordenada, los elementos de la partición también deben ser los mismos.

Por aritmética de cardinales tenemos:

$$\#\mathcal{P}(\mathbb{N})^{\mathbb{N}} = c^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0.\aleph_0} = 2^{\aleph_0} = c.$$

Por consiguiente #P = c.

- 2. Sea M un espacio métrico.
 - (a) Si M es infinito, entonces existe una familia numerable de abiertos no vacíos y disjuntos.
 - (b) Si M tiene a lo sumo numerables abiertos, entonces M es finito.

Solución:

- (a) Recordemos que en clase hicimos el siguiente ejercicio: si $N \subseteq M$ es un subespacio discreto entonces para todo $x \in N$ existe un abierto $B_x \subseteq M$ de manera que $B_x \cap B_y = \emptyset$ si $x \neq y$ son dos puntos de N. La idea es encontrar un subespacio numerable (infinito) discreto en M y usar este ejercicio.
 - Si M tiene infinitos puntos aislados, entonces podemos tomar como abiertos a una colección numerable de estos puntos (recordar que un punto es aislado si y solo si el conjunto formado solo por ese punto es abierto; resultado que hemos visto en clase).
 - Supongamos entonces que M tiene finitos puntos aislados. Como M es infinito, entonces tiene un punto, digamos $x \in M$, que no es aislado. Entonces existe una sucesión de puntos $(x_n)_{n \in \mathbb{N}} \subseteq M$ de manera que $x_n \to x$, $x_n \neq x$ y $x_n \neq x_m$ para todo $n \neq m$.

Afirmo que $N = \{x_n : n \in \mathbb{N}\} \subseteq M$ es un subespacio discreto (i.e. todos sus puntos son aislados). Tomemos $n_0 \in \mathbb{N}$ y veamos que $x_{n_0} \in N$ es aislado. Fijemos $\varepsilon < \frac{d(x_{n_0}, x)}{2}$. Como $x_n \to x$, existe $m \in \mathbb{N}$ tal que $d(x_n, x) < \varepsilon$ para todo $n \ge m$. Luego, $x_n \notin B_\varepsilon(x_{n_0})$ para todo $n \ge m$, ya que si esto no fuera así tendríamos que $d(x, x_n) > d(x, x_{n_0}) - d(x_{n_0}, x_n) > \frac{d(x_{n_0}, x)}{2}$ lo que es absurdo. De esta forma, tomando $r = \min\{\frac{d(x_{n_0}, x)}{2}, \frac{d(x_{n_0}, x_1)}{2}, \frac{d(x_{n_0}, x_2)}{2}, \dots, \frac{d(x_{n_0}, x_{m-1})}{2}\}$ tenemos que $B_r(x_{n_0}) \cap N = \{x_{n_0}\}$ como queríamos.

Obs:

También es posible construir explícitamente los numerables abiertos no vacíos y disjuntos.

(b) Supongamos que M es infinito. Por el inciso (a), existe $\{G_n\}_{n\in\mathbb{N}}$ una familia numerable de abiertos no vacíos y disjuntos. Luego, dado $J\subseteq\mathbb{N}$, definimos $G_J:=\bigcup_{j\in J}G_j$ que es abierto por ser unión de abiertos.

Definimos $f: \mathcal{P}(\mathbb{N}) \longrightarrow \{G_J: J \subseteq \mathbb{N}\}$ de manera que $f(J) = G_J$. Veamos que f es inyectiva: Si $I, J \in \mathcal{P}(\mathbb{N})$ con $I \neq J$, tenemos que $I - J \neq \emptyset$ o $J - I \neq \emptyset$. Supongamos sin perder generalidad que $I - J \neq \emptyset$. Luego existe $i \in I$ tal que $i \notin J$. Como $G_i \neq \emptyset$, existe $x_i \in G_i$. A su vez, como $\{G_n\}_{n \in \mathbb{N}}$ son disjuntos, $x_i \notin G_m$ para todo $m \in \mathbb{N} - \{i\}$. Entonces $x_i \in \bigcup_{j \in I} G_j = f(I)$ pero $x_i \notin \bigcup_{j \in J} G_j = f(J)$.

En consecuencia, $f(I) \neq f(J)$.

De esta manera vemos que $c = \#\mathcal{P}(\mathbb{N}) \leq \#\{G_J : J \subseteq \mathbb{N}\}$. Así, hemos construido una familia de abiertos de cardinal mayor o igual que c, lo cual contradice que M tiene a lo sumo numerables abiertos. Por lo tanto M debe ser finito.

3. Sea $X \subseteq \mathbb{R}$. Probar que si $C_b(X) = \{f : X \longrightarrow \mathbb{R} \text{ es continua y acotada } \}$ con la métrica d_{∞} es separable, entonces X es acotado.

Solución:

Supongamos que X no es acotado. Sin perder generalidad, supongamos que X no es acotado superiormente (si fuese no acotado inferiormente, el razonamiento es análogo). La idea, al igual que en el ejercicio 27 de la práctica 3, es contruir un conjunto $B \subseteq C_b(X)$ que sea discreto, infinito y no numerable (así, $C_b(X)$ no sería separable).

Como X no es acotado superiormente, existe $x_1 \in X$ tal que $x_1 > 1$. A su vez, existe $x_2 \in X$ tal que $x_2 > x_1 + 1$. Nuevamente, existe $x_3 \in X$ tal que $x_3 > x_2 + 1$.

Inductivamente, construimos una sucesión $(x_n)_{n\in\mathbb{N}}$ estrictamente creciente tal que $x_{n+1} > x_n + 1$ para todo $n \in \mathbb{N}$ y $x_1 > 1$.

Dada $a = (a_n)_{n \in \mathbb{N}} \in \{0; 1\}^{\mathbb{N}}$, definimos $f_a : \mathbb{R} \longrightarrow \mathbb{R}$ tal que $f_a(x_n) = a_n$ para todo $n \in \mathbb{N}$, que une mediante poligonales estos puntos, $f_a(t) = 0$ si $t \le 0$ y que une linealmente (0,0) con (x_1,a_1) . Concretamente:

$$f_a(t) = \begin{cases} 0 & \text{si } t \le 0\\ \frac{a_1}{x_1} t & \text{si } t \in [0; x_1]\\ \frac{a_{n+1} - a_n}{x_{n+1} - x_n} (t - x_n) + a_n & \text{si } t \in [x_n; x_{n+1}], n \in \mathbb{N} \end{cases}$$

Notar que $[0; +\infty) = [0; x_1] \cup \left(\bigcup_{n \in \mathbb{N}} [x_n; x_{n+1}]\right)$ pues $x_{n+1} > x_n + 1 > x_{n-1} + 2 > \dots x_1 + n > n + 1$ para cada $n \in \mathbb{N}$. Entonces $f_a : \mathbb{R} \longrightarrow \mathbb{R}$ es continua y $|f(t)| \le 1$ para todo $t \in \mathbb{R}$. Restringiéndonos a X, tenemos que $f_a|_X : X \longrightarrow \mathbb{R}$ es continua y acotada. Luego, $f_a|_X \in C_b(X)$ para cada $a \in \{0; 1\}^{\mathbb{N}}$. Si llamamos $B = \{f_a|_X : a \in \{0; 1\}^{\mathbb{N}}\}$, podemos definir la función $\varphi : \{0; 1\}^{\mathbb{N}} \longrightarrow B$ de manera que $\varphi(a) = f_a|_X$. Esta función φ es inyectiva, y así, $c = \#\{0; 1\}^{\mathbb{N}} \le \#B$.

Ahora veamos que B es discreto con d_{∞} . Dados $a, b \in \{0; 1\}^{\mathbb{N}}, a \neq b$, existe $n_0 \in \mathbb{N}$ tal que $a_{n_0} \neq b_{n_0}$. Luego:

$$1 = |a_{n_0} - b_{n_0}| = |f_a|_X(x_{n_0}) - f_b|_X(x_{n_0})| \le \sup_{t \in X} |f_a|_X(t) - f_b|_X(t)| \le d_\infty(f_a|_X, f_b|_X).$$

Con esto hemos construido un subespacio $B \subseteq C_b(X)$ discreto y con $c \le \#B$ como queríamos. Veamos que esto contradice el hecho de que $C_b(X)$ es separable. Sea $D \subseteq C_b(X)$ un subespacio denso cualquiera. Entonces, dada $f_a|_X \in B \subseteq C_b(X)$, existe $d_a \in D$ tal que $d_\infty(f_a|_X, d_a) < \frac{1}{2}$. Más aún, si $f_a|_X, f_b|_X \in B$ y $f_a|_X \neq f_b|_X$, entonces $d_a \neq d_b$. En efecto, si fuese $d_a = d_b$, entonces resultaría $1 \leq d_\infty(f_a|_X, f_b|_X) \leq d_\infty(f_a|_X, d_a) + d_\infty(d_a, f_b|_X) < \frac{1}{2} + \frac{1}{2} = 1$, lo cual es una contradicción. En consecuencia, la función $h: B \longrightarrow D$ definida como $h(f_a|_X) = d_a$ es inyectiva y, entonces, $c \leq \#B \leq \#D$. Esto implica que D es denso pero no numerable en $(C_b(X), d_\infty)$. Por lo tanto, $(C_b(X), d_\infty)$ no es separable.

- 4. Sea X un espacio métrico completo y sea $A \subseteq X$ un subconjunto abierto no vacío.
 - (a) Probar que la función $f: A \to X \times \mathbb{R}$ definida por $f(a) = \left(a, \frac{1}{d(a, A^c)}\right)$ está bien definida.
 - (b) Probar que A es homeomorfo a un espacio métrico completo.

Solución:

- a) Para ver que f está bien definida sólo debemos chequear que $d(a, A^c) \neq 0$. Sea $a \in A$, como A es abierto existe r > 0 tal que $B_r(a) \subseteq A$. Luego $d(a, x) \ge r$ para todo $x \in A^c$, ya que si no, $x \in A \cap A^c = \emptyset$, lo que es absurdo. En particular, $d(a, A^c) \ge r$.
- b) Veamos que la función del ítem anterior nos define un homeomorfismo entre A y la imagen de f. Primero fijemos una métrica coherente en $X \times \mathbb{R}$, digamos $d_{\infty} = \max\{d, |.|\}$.

Sea $i:A\to X$ la inclusión. Entonces i es continua por ser $A\subseteq X$ un subespacio. Por otro lado, la función distancia es continua ya que $|d(x,A^c)-d(y,A^c)|\le d(x,y)$ (ejercicio 24) i) de la práctica 2)). En consecuencia, la función

$$j: a \in A \mapsto d(a, A^c) \in \mathbb{R}_{>0} \mapsto \frac{1}{d(a, A^c)} \in \mathbb{R}$$

es una función continua por ser composición de funciones continuas.

Entonces f(a)=(i(a),j(a)) es continua pues cada coordenada es continua. Esto lo dijimos en clase, pero no es difícil de probar con la métrica que elegimos: si $a_n \stackrel{d}{\to} a$ entonces $d(a,a_n) \stackrel{|\cdot|}{\to} 0$ y $|j(a_n)-j(a)| \to 0$. Luego, dado $\varepsilon>0$ existe $n_0\in\mathbb{N}$ tal que si $n\geq n_0$ entonces $d(a,a_n)<\varepsilon$ y $|j(a_n)-j(a)|<\varepsilon$. Por lo tanto

$$d_{\infty}(f(a_n), f(a)) = \max\{d(a, a_n), |j(a_n) - j(a)|\} < \varepsilon$$

si $n \geq n_0$. Esto demuestra que f es continua.

Por otro lado, si f(a) = f(b), entonces a = i(a) = i(b) = b, por lo que f es inyectiva. De esta manera, si restringimos f a su imagen obtenemos una función biyectiva y continua. Su inversa es $\pi|_{\mathrm{Im}(f)}: \mathrm{Im}(f) \to A$ la proyección en la primera coordenada restringida a $\mathrm{Im}(f): \pi(x,y) = x$. La proyección $\pi: X \times \mathbb{R} \to X$ es uniformemente continua pues $d(\pi(x,y),\pi(z,w)) = d(x,z) \le d_{\infty}((x,y),(z,w))$. Entonces su restricción $\pi|_{\mathrm{Im}(f)}$ también lo es.

Con esto hemos demostrado que f es un homeomorfismo.

Notemos que $X \times \mathbb{R}$ es completo por ser producto de completos. Afirmo que $\operatorname{Im}(f) \subseteq X \times \mathbb{R}$ es cerrado. Si vemos esto, al ser cerrado en un completo, $\operatorname{Im}(f)$ será completo y con esto concluiremos el ejercicio.

Sea $(x_n,y_n)_{n\in\mathbb{N}}\subseteq \mathrm{Im}(f)$ una sucesión convergente a $(x,y)\in X\times\mathbb{R}$. Veamos que $(x,y)\in \mathrm{Im}(f)$. Como π es continua, $x_n=\pi(x_n,y_n)\in A$ es una sucesión que converge a $x\in X$. Proyectando en la segunda coordenada vemos que $y_n\to y\in\mathbb{R}$. Además, $y_n=d(x_n,A^c)^{-1}>0$ para todo $n\in\mathbb{N}$ pues $(x_n,y_n)_{n\in\mathbb{N}}\subseteq \mathrm{Im}(f)$. Para concluir, veamos que $x\in A$ y que $y=d(x,A^c)^{-1}$. Si $x\notin A$, entonces $0=d(x,A^c)=\lim_{n\to\infty}d(x_n,A^c)=\lim_{n\to\infty}\frac{1}{y_n}$, lo cual es absurdo pues esto sólo puede suceder si $y_n\to\infty$, pero teníamos que $y_n\to y\in\mathbb{R}$ y $\infty\notin\mathbb{R}$. Hemos probado entonces que $x\in A$. Luego $d(x,A^c)>0$ y así, $\frac{1}{d(x,A^c)}=\lim_{n\to\infty}\frac{1}{d(x_n,A^c)}=\lim_{n\to\infty}y_n=y$. Entonces

$$\lim_{n\to\infty} d_\infty((x_n,y_n),(x,y)) = \lim_{n\to\infty} \max\{d(x_n,x),|y_n-y|\} = 0$$

$$y(x,y) = f(x) \in Im(f).$$

- 5. Sea $f: X \to Y$ una función continua entre espacios métricos tal que para todo $y \in Y$ el conjunto $f^{-1}(\{y\})$ es conexo.
 - a) Probar que para todo $\mathcal{U} \subseteq X$ abierto y cerrado vale que $f^{-1}(f(\mathcal{U})) = \mathcal{U}$.

b) Decimos que $g: X \to Y$ es una función *cociente* si g es sobreyectiva y cumple que $\mathcal{V} \subseteq Y$ es abierto si y solo si $g^{-1}(\mathcal{V})$ es abierto en X.

Probar que si además f es cociente e Y es conexo entonces X es conexo.

Solución:

a) El resultado es trivial si $\mathcal{U}=\emptyset$ pues ambos conjuntos son vacíos, asique podemos suponer que $\mathcal{U}\neq\emptyset$.

Siempre vale que $\mathcal{U} \subseteq f^{-1}(f(\mathcal{U}))$ (ejercicio 4) i) de la práctica 1). Veamos la otra inclusión. Sea $x \in f^{-1}(f(\mathcal{U}))$, o sea que $f(x) \in f(\mathcal{U})$. Queremos ver que $x \in \mathcal{U}$. Sea y = f(x). Existe $z \in \mathcal{U}$ tal que y = f(z) pues $y = f(x) \in f(\mathcal{U})$. Entonces $z \in f^{-1}(\{y\})$. Además,

$$f^{-1}(\{y\}) \subseteq \mathcal{U} \cup \mathcal{U}^c$$

Como \mathcal{U} y \mathcal{U}^c son abiertos y disjuntos y $f^{-1}(\{y\})$ es conexo, $f^{-1}(\{y\})$ está contenido en alguno de los dos. Pero $z \in f^{-1}(\{y\}) \cap \mathcal{U}$, por lo que $f^{-1}(\{y\}) \subseteq \mathcal{U}$. En consecuencia, $x \in f^{-1}(\{y\}) \subseteq \mathcal{U}$ como queríamos ver.

b) Veamos que si X es disconexo entonces Y también lo es.

Si X es disconexo, por un resultado visto en clase, sabemos que existe $\varnothing \subsetneq \mathcal{U} \subsetneq X$ tal que \mathcal{U} es abierto y cerrado en X. Así, \mathcal{U} y \mathcal{U}^c son abiertos no vacíos que desconectan X. Veamos que entonces $f(\mathcal{U})$ y $f(\mathcal{U}^c)$ son abiertos que desconectan Y. Ambos conjuntos son no vacíos. Por el ítem a), tenemos que $f^{-1}(f(\mathcal{U})) = \mathcal{U}$, pues \mathcal{U} es abierto y cerrado. Luego, como f es cociente, $f(\mathcal{U}) \subseteq Y$ es abierto en Y. De manera análoga, $f(\mathcal{U}^c)$ es abierto en Y. Si fuese que $f(\mathcal{U}) \cap f(\mathcal{U}^c) \neq \emptyset$ entonces existiría $y \in f(\mathcal{U}) \cap f(\mathcal{U}^c)$ y así,

$$f^{-1}(\{y\})\subseteq f^{-1}(f(\mathcal{U})\cap f(\mathcal{U}^c))=f^{-1}(f(\mathcal{U}))\cap f^{-1}(f(\mathcal{U}^c))=\mathcal{U}\cap \mathcal{U}^c=\emptyset$$

contradiciendo la sobreyectividad de f. Por lo tanto $f(\mathcal{U}) \cap f(\mathcal{U}^c) = \emptyset$. De nuevo, por sobreyectividad,

$$Y = f(X) = f(\mathcal{U} \cup \mathcal{U}^c) = f(\mathcal{U}) \cup f(\mathcal{U}^c).$$

y en consecuencia, Y es disconexo.