Sistemi bez rangiranja Sistemi sa rangiranjem Evaluacija

Performanse IR sistema

Dragan Ivanović dragan.ivanovic@uns.ac.rs

Katedra za informatiku, Fakultet tehničkih nauka, Novi Sad

2015.

Koliko brzo indeksira

- Koliko brzo indeksira
 - Broj dokumenata/megabajta na sat

- Koliko brzo indeksira
 - Broj dokumenata/megabajta na sat
- Koliko brzo pretražuje

- Koliko brzo indeksira
 - Broj dokumenata/megabajta na sat
- Koliko brzo pretražuje
 - Kašnjenje kao funkcija veličine indeksa i broja upita u sekundi

 Svi prethodni kriterijumi su merljivi: možemo kvantifikovati brzinu / prostor / novac

- Svi prethodni kriterijumi su merljivi: možemo kvantifikovati brzinu / prostor / novac
- Međutim, ključna mera za pretraživač je zadovoljstvo korisnika

• Ko je korisnik koga želimo da zadovoljimo?

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: tragač. Tragač pronalazi ono što traži.

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: tragač. Tragač pronalazi ono što traži.
- Web pretraživači: zakupac reklama. Da li tragači klikću na moje reklame?

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: tragač. Tragač pronalazi ono što traži.
- Web pretraživači: zakupac reklama. Da li tragači klikću na moje reklame?
- E-poslovanje: kupac. Kupac kupuje ono zbog čega je došao na sajt.

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: tragač. Tragač pronalazi ono što traži.
- Web pretraživači: zakupac reklama. Da li tragači klikću na moje reklame?
- E-poslovanje: kupac. Kupac kupuje ono zbog čega je došao na sajt.
- E-poslovanje: prodavac. Prodavac može da prodaje svoju robu (jer je pretraživač uputio kupce na prave sadržaje).

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: tragač. Tragač pronalazi ono što traži.
- Web pretraživači: zakupac reklama. Da li tragači klikću na moje reklame?
- E-poslovanje: kupac. Kupac kupuje ono zbog čega je došao na sajt.
- E-poslovanje: prodavac. Prodavac može da prodaje svoju robu (jer je pretraživač uputio kupce na prave sadržaje).
- Firma: direktor. Zaposleni su produktivniji jer brzo pronalaze ono što im treba.

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: tragač. Tragač pronalazi ono što traži. Mera: stepen vraćanja na ovaj pretraživač
- Web pretraživači: zakupac reklama. Da li tragači klikću na moje reklame?
- E-poslovanje: kupac. Kupac kupuje ono zbog čega je došao na sajt.
- E-poslovanje: prodavac. Prodavac može da prodaje svoju robu (jer je pretraživač uputio kupce na prave sadržaje).
- Firma: direktor. Zaposleni su produktivniji jer brzo pronalaze ono što im treba.

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: *tragač*. Tragač pronalazi ono što traži. Mera: stepen vraćanja na ovaj pretraživač
- Web pretraživači: zakupac reklama. Da li tragači klikću na moje reklame? Mera: clickthrough rate
- E-poslovanje: kupac. Kupac kupuje ono zbog čega je došao na sajt.
- E-poslovanje: prodavac. Prodavac može da prodaje svoju robu (jer je pretraživač uputio kupce na prave sadržaje).
- Firma: direktor. Zaposleni su produktivniji jer brzo pronalaze ono što im treba.

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: tragač. Tragač pronalazi ono što traži. Mera: stepen vraćanja na ovaj pretraživač
- Web pretraživači: zakupac reklama. Da li tragači klikću na moje reklame? Mera: clickthrough rate
- E-poslovanje: kupac. Kupac kupuje ono zbog čega je došao na sajt.
 Mere: vreme do kupovine, procenat konvertovanih tragača u kupce
- E-poslovanje: prodavac. Prodavac može da prodaje svoju robu (jer je pretraživač uputio kupce na prave sadržaje).
- Firma: direktor. Zaposleni su produktivniji jer brzo pronalaze ono što im treba.

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: tragač. Tragač pronalazi ono što traži. Mera: stepen vraćanja na ovaj pretraživač
- Web pretraživači: zakupac reklama. Da li tragači klikću na moje reklame? Mera: clickthrough rate
- E-poslovanje: kupac. Kupac kupuje ono zbog čega je došao na sajt.
 Mere: vreme do kupovine, procenat konvertovanih tragača u kupce
- E-poslovanje: prodavac. Prodavac može da prodaje svoju robu (jer je pretraživač uputio kupce na prave sadržaje). Mera: profit po prodatom artiklu
- Firma: direktor. Zaposleni su produktivniji jer brzo pronalaze ono što im treba.

- Ko je korisnik koga želimo da zadovoljimo?
- Web pretraživači: tragač. Tragač pronalazi ono što traži. Mera: stepen vraćanja na ovaj pretraživač
- Web pretraživači: zakupac reklama. Da li tragači klikću na moje reklame? Mera: clickthrough rate
- E-poslovanje: kupac. Kupac kupuje ono zbog čega je došao na sajt.
 Mere: vreme do kupovine, procenat konvertovanih tragača u kupce
- E-poslovanje: prodavac. Prodavac može da prodaje svoju robu (jer je pretraživač uputio kupce na prave sadržaje). Mera: profit po prodatom artiklu
- Firma: direktor. Zaposleni su produktivniji jer brzo pronalaze ono što im treba. Mera: profit firme

• Šta je zadovoljstvo korisnika?

- Šta je zadovoljstvo korisnika?
- Faktori zadovoljstva uključuju:

- Šta je zadovoljstvo korisnika?
- Faktori zadovoljstva uključuju:
 - Brzinu dobijanja odgovora

- Šta je zadovoljstvo korisnika?
- Faktori zadovoljstva uključuju:
 - Brzinu dobijanja odgovora
 - Veličinu indeksa

- Šta je zadovoljstvo korisnika?
- Faktori zadovoljstva uključuju:
 - Brzinu dobijanja odgovora
 - Veličinu indeksa
 - Nezatrpan korisnički interfejs

- Šta je zadovoljstvo korisnika?
- Faktori zadovoljstva uključuju:
 - Brzinu dobijanja odgovora
 - Veličinu indeksa
 - Nezatrpan korisnički interfejs
 - Najvažnije: relevantnost

- Šta je zadovoljstvo korisnika?
- Faktori zadovoljstva uključuju:
 - Brzinu dobijanja odgovora
 - Veličinu indeksa
 - Nezatrpan korisnički interfejs
 - Najvažnije: relevantnost
 - (Možda najvažnije: besplatan pristup)

- Šta je zadovoljstvo korisnika?
- Faktori zadovoljstva uključuju:
 - Brzinu dobijanja odgovora
 - Veličinu indeksa
 - Nezatrpan korisnički interfejs
 - Najvažnije: relevantnost
 - (Možda najvažnije: besplatan pristup)
- Nijedan faktor pojedinačno nije dovoljan: fantastično brzi ali beskorisni odgovori neće korisnika učiniti zadovoljnim

- Šta je zadovoljstvo korisnika?
- Faktori zadovoljstva uključuju:
 - Brzinu dobijanja odgovora
 - Veličinu indeksa
 - Nezatrpan korisnički interfejs
 - Najvažnije: relevantnost
 - (Možda najvažnije: besplatan pristup)
- Nijedan faktor pojedinačno nije dovoljan: fantastično brzi ali beskorisni odgovori neće korisnika učiniti zadovoljnim
- Kako da kvanitifikujemo zadovoljstvo korisnika?

 Zadovoljstvo korisnika se izjednačava sa relevantnošću rezultata pretrage

- Zadovoljstvo korisnika se izjednačava sa relevantnošću rezultata pretrage
- Kako meriti relevantnost?

- Zadovoljstvo korisnika se izjednačava sa relevantnošću rezultata pretrage
- Kako meriti relevantnost?
- Standardna metodologija u IR ima tri elementa

- Zadovoljstvo korisnika se izjednačava sa relevantnošću rezultata pretrage
- Kako meriti relevantnost?
- Standardna metodologija u IR ima tri elementa
 - test-kolekciju dokumenata

- Zadovoljstvo korisnika se izjednačava sa relevantnošću rezultata pretrage
- Kako meriti relevantnost?
- Standardna metodologija u IR ima tri elementa
 - test-kolekciju dokumenata
 - skup test-upita

- Zadovoljstvo korisnika se izjednačava sa relevantnošću rezultata pretrage
- Kako meriti relevantnost?
- Standardna metodologija u IR ima tri elementa
 - test-kolekciju dokumenata
 - skup test-upita
 - binarnu (ili, ređe, ne-binarnu) ocenu relevatnosti svakog para upit-dokument

- Zadovoljstvo korisnika se izjednačava sa relevantnošću rezultata pretrage
- Kako meriti relevantnost?
- Standardna metodologija u IR ima tri elementa
 - test-kolekciju dokumenata
 - skup test-upita
 - binarnu (ili, ređe, ne-binarnu) ocenu relevatnosti svakog para upit-dokument
- Ovakvo vrednovanje (veštački scenariji) se često kritikuje

- Zadovoljstvo korisnika se izjednačava sa relevantnošću rezultata pretrage
- Kako meriti relevantnost?
- Standardna metodologija u IR ima tri elementa
 - test-kolekciju dokumenata
 - skup test-upita
 - binarnu (ili, ređe, ne-binarnu) ocenu relevatnosti svakog para upit-dokument
- Ovakvo vrednovanje (veštački scenariji) se često kritikuje
- Ali je vrlo uspešno u IR

Relevantnost: upit ili potreba za informacijama

• Relevantnost u odnosu na šta?

- Relevantnost u odnosu na šta?
- Proba 1: relevantnost u odnosu na upit

- Relevantnost u odnosu na šta?
- Proba 1: relevantnost u odnosu na upit
- "Relevantnost u odnosu na upit" je vrlo problematična

- Relevantnost u odnosu na šta?
- Proba 1: relevantnost u odnosu na upit
- "Relevantnost u odnosu na upit" je vrlo problematična
- Informaciona potreba i: Tražimo informacije o tome da li je crno vino bolje za smanjenje rizika od infarkta nego belo vino

- Relevantnost u odnosu na šta?
- Proba 1: relevantnost u odnosu na upit
- "Relevantnost u odnosu na upit" je vrlo problematična
- Informaciona potreba i: Tražimo informacije o tome da li je crno vino bolje za smanjenje rizika od infarkta nego belo vino
- Ovo je informaciona potreba, a ne upit

- Relevantnost u odnosu na šta?
- Proba 1: relevantnost u odnosu na upit
- "Relevantnost u odnosu na upit" je vrlo problematična
- Informaciona potreba i: Tražimo informacije o tome da li je crno vino bolje za smanjenje rizika od infarkta nego belo vino
- Ovo je informaciona potreba, a ne upit
- Upit q: wine AND red AND white AND heart AND attack

- Relevantnost u odnosu na šta?
- Proba 1: relevantnost u odnosu na upit
- "Relevantnost u odnosu na upit" je vrlo problematična
- Informaciona potreba i: Tražimo informacije o tome da li je crno vino bolje za smanjenje rizika od infarkta nego belo vino
- Ovo je informaciona potreba, a ne upit
- Upit q: wine AND red AND white AND heart AND attack
- Razmotrimo dokument d': He then launched into the heart of his speech and attacked the wine industry lobby for downplaying the role of red and white wine in drunk driving.

- Relevantnost u odnosu na šta?
- Proba 1: relevantnost u odnosu na upit
- "Relevantnost u odnosu na upit" je vrlo problematična
- Informaciona potreba i: Tražimo informacije o tome da li je crno vino bolje za smanjenje rizika od infarkta nego belo vino
- Ovo je informaciona potreba, a ne upit
- Upit q: wine AND red AND white AND heart AND attack
- Razmotrimo dokument d': He then launched into the heart of his speech and attacked the wine industry lobby for downplaying the role of red and white wine in drunk driving.
- d' je relevantan za upit q ...

- Relevantnost u odnosu na šta?
- Proba 1: relevantnost u odnosu na upit
- "Relevantnost u odnosu na upit" je vrlo problematična
- Informaciona potreba i: Tražimo informacije o tome da li je crno vino bolje za smanjenje rizika od infarkta nego belo vino
- Ovo je informaciona potreba, a ne upit
- Upit q: wine AND red AND white AND heart AND attack
- Razmotrimo dokument d': He then launched into the heart of his speech and attacked the wine industry lobby for downplaying the role of red and white wine in drunk driving.
- d' je relevantan za upit q ...
- d' nije relevantan za informacionu potrebu i.

- Zadovoljstvo korisnika se može meriti samo prema relevantnosti u odnosu na informacione potrebe, a ne upite
- Terminologija nam je aljkava: govorimo o relevantnosti upit-dokument kada mislimo na relevantnost informaciona potreba-dokument

• Definisana je relevantnost za izolovani par upit-dokument

- Definisana je relevantnost za izolovani par upit-dokument
- Alternativna definicija: marginalna relevantnost

- Definisana je relevantnost za izolovani par upit-dokument
- Alternativna definicija: marginalna relevantnost
- Marginalna relevantnost dokumenta u rezultatu je dodatna informacija koju dokument donosi

- Definisana je relevantnost za izolovani par upit-dokument
- Alternativna definicija: marginalna relevantnost
- Marginalna relevantnost dokumenta u rezultatu je dodatna informacija koju dokument donosi
- Primer: duplikat može biti vrlo relevantan ali ima marginalnu relevantnost 0

- Definisana je relevantnost za izolovani par upit-dokument
- Alternativna definicija: marginalna relevantnost
- Marginalna relevantnost dokumenta u rezultatu je dodatna informacija koju dokument donosi
- Primer: duplikat može biti vrlo relevantan ali ima marginalnu relevantnost 0
- Marginalna relevantnost je bolja mera zadovoljstva korisnika

- Definisana je relevantnost za izolovani par upit-dokument
- Alternativna definicija: marginalna relevantnost
- Marginalna relevantnost dokumenta u rezultatu je dodatna informacija koju dokument donosi
- Primer: duplikat može biti vrlo relevantan ali ima marginalnu relevantnost 0
- Marginalna relevantnost je bolja mera zadovoljstva korisnika
- Ali je praktično nemoguće sprovoditi eksperimente bazirane na marginalnoj relevantnosti

• Preciznost P je deo pronađenih dokumenata koji su relevantni

$$Preciznost = \frac{\#(pronađeni relevantni)}{\#(svi pronađeni)} = P(relevantan|pronađeni)$$

• Preciznost P je deo pronađenih dokumenata koji su relevantni

$$\mathsf{Preciznost} = \frac{\#(\mathsf{pronadeni\ relevantni})}{\#(\mathsf{svi\ pronadeni})} = P(\mathsf{relevantan}|\mathsf{pronaden})$$

Povrat R je deo relevantnih dokumenata koji su pronađeni

Povrat =
$$\frac{\#(prona ext{den}i relevatni)}{\#(svi relevantni)} = P(prona ext{den}|relevantan)$$

• Preciznost P je deo pronađenih dokumenata koji su relevantni

$$Preciznost = \frac{\#(pronađeni relevantni)}{\#(svi pronađeni)} = P(relevantan|pronađen)$$

• Povrat R je deo relevantnih dokumenata koji su pronađeni

Povrat =
$$\frac{\#(prona\bar{d}eni\ relevatni)}{\#(svi\ relevantni)} = P(prona\bar{d}en|relevantan)$$

	Relevantan	Nerelevantan
Pronađen	true positives (TP)	false positives (FP)
Nije pronađen	false negatives (FN)	true negatives (TN)

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

• Zašto koristimo složene mere kao preciznost i povrat?

- Zašto koristimo složene mere kao preciznost i povrat?
- Zašto ne nešto jednostavno, npr. tačnost?

- Zašto koristimo složene mere kao preciznost i povrat?
- Zašto ne nešto jednostavno, npr. tačnost?
- Tačnost je deo odluka (relevantan/nerelevantan) koje su ispravne

- Zašto koristimo složene mere kao preciznost i povrat?
- Zašto ne nešto jednostavno, npr. tačnost?
- Tačnost je deo odluka (relevantan/nerelevantan) koje su ispravne
- U smislu prethodne tabele, tačnost = $\frac{TP+TN}{TP+FP+FN+TN}$.

- Zašto koristimo složene mere kao preciznost i povrat?
- Zašto ne nešto jednostavno, npr. tačnost?
- Tačnost je deo odluka (relevantan/nerelevantan) koje su ispravne
- U smislu prethodne tabele, tačnost = $\frac{TP+TN}{TP+FP+FN+TN}$.
- Zašto tačnost nije korisna mera za web IR?

 Jednostavan štos za maksimizaciju tačnosti u IR: uvek kaži ne i vrati prazan skup

- Jednostavan štos za maksimizaciju tačnosti u IR: uvek kaži ne i vrati prazan skup
- Imaćeš 99.99% tačnost za većinu upita

- Jednostavan štos za maksimizaciju tačnosti u IR: uvek kaži ne i vrati prazan skup
- Imaćeš 99.99% tačnost za većinu upita
- Tragači na webu (i u IR uopšte) žele da pronađu nešto i imaju određeni stepen tolerancije na đubre

- Jednostavan štos za maksimizaciju tačnosti u IR: uvek kaži ne i vrati prazan skup
- Imaćeš 99.99% tačnost za većinu upita
- Tragači na webu (i u IR uopšte) žele da pronađu nešto i imaju određeni stepen tolerancije na đubre
- Tačnost nije dobra mera zadovoljstva korisnika, pa ćemo koristiti preciznost i povrat

Teškoće u korišćenju precision/recall

 Treba nam ocena relevantnosti za parove informaciona potreba-dokument ali je njih teško/skupo napraviti

Teškoće u korišćenju precision/recall

- Treba nam ocena relevantnosti za parove informaciona potreba-dokument ali je njih teško/skupo napraviti
- Alternative korišćenju precision/recall i pravljenju ocena... na kraju predavanja

• Može se povećati povrat vraćanjem više dokumenata

- Može se povećati povrat vraćanjem više dokumenata
- Povrat je neopadajuća funkcija broja pronađenih dokumenata

- Može se povećati povrat vraćanjem više dokumenata
- Povrat je neopadajuća funkcija broja pronađenih dokumenata
- Sistem koji vraća sve dokumente ima 100% povrat!

- Može se povećati povrat vraćanjem više dokumenata
- Povrat je neopadajuća funkcija broja pronađenih dokumenata
- Sistem koji vraća sve dokumente ima 100% povrat!
- Suprotno je takođe tačno (često): lako je imati veliku preciznost za mali povrat

- Može se povećati povrat vraćanjem više dokumenata
- Povrat je neopadajuća funkcija broja pronađenih dokumenata
- Sistem koji vraća sve dokumente ima 100% povrat!
- Suprotno je takođe tačno (često): lako je imati veliku preciznost za mali povrat
- Neka je najbolje rangirani dokument relevantan. Kako možemo maksimizovati preciznost?

Kombinovana mera: F

 F omogućava da merimo kompromis između preciznosti i povrata

 F omogućava da merimo kompromis između preciznosti i povrata

•

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \quad \text{gde} \quad \beta^2 = \frac{1 - \alpha}{\alpha}$$

 F omogućava da merimo kompromis između preciznosti i povrata

•

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \quad \text{gde} \quad \beta^2 = \frac{1 - \alpha}{\alpha}$$

• $\alpha \in [0,1]$ pa prema tome $\beta^2 \in [0,\infty]$

- F omogućava da merimo kompromis između preciznosti i povrata
- •

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \quad \text{gde} \quad \beta^2 = \frac{1 - \alpha}{\alpha}$$

- $\alpha \in [0,1]$ pa prema tome $\beta^2 \in [0,\infty]$
- Najčešće korišćen: balansirani F sa $\beta=1$ ili $\alpha=0.5$

- F omogućava da merimo kompromis između preciznosti i povrata
- •

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \quad \text{gde} \quad \beta^2 = \frac{1 - \alpha}{\alpha}$$

- $\alpha \in [0,1]$ pa prema tome $\beta^2 \in [0,\infty]$
- Najčešće korišćen: balansirani F sa $\beta=1$ ili $\alpha=0.5$
 - Ovo je harmonijska sredina P i R: $\frac{1}{F} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$

- F omogućava da merimo kompromis između preciznosti i povrata
- •

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \quad \text{gde} \quad \beta^2 = \frac{1 - \alpha}{\alpha}$$

- $\alpha \in [0,1]$ pa prema tome $\beta^2 \in [0,\infty]$
- Najčešće korišćen: balansirani F sa $\beta=1$ ili $\alpha=0.5$
 - Ovo je harmonijska sredina P i R: $\frac{1}{F} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$
- Koji opseg vrednosti za β da izaberemo da povrat vrednujemo više nego preciznost?

- F omogućava da merimo kompromis između preciznosti i povrata
- •

$$F = rac{1}{lpha rac{1}{P} + (1-lpha)rac{1}{R}} = rac{(eta^2+1)PR}{eta^2P+R} \quad ext{gde} \qquad eta^2 = rac{1-lpha}{lpha}$$

- $\alpha \in [0,1]$ pa prema tome $\beta^2 \in [0,\infty]$
- Najčešće korišćen: balansirani F sa $\beta=1$ ili $\alpha=0.5$
 - Ovo je harmonijska sredina P i R: $\frac{1}{F} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$
- Koji opseg vrednosti za β da izaberemo da povrat vrednujemo više nego preciznost?
- Kada je $\beta>1$ povrat vrednujemo više nego preciznost, a kada je $\beta<1$ onda preciznost vrednujemo više nego povrat

	relevantni	nerelevantni
pronađeni	18	2
nepronađeni	82	1,000,000,000

	relevantni	nerelevantni
pronađeni	18	2
nepronađeni	82	1,000,000,000

• preciznost?

	relevantni	nerelevantni
pronađeni	18	2
nepronađeni	82	1,000,000,000

• povrat?

	relevantni	nerelevantni
pronađeni	18	2
nepronađeni	82	1,000,000,000

 \bullet F_1 ?

F₁ i druge mere

F₁ i druge mere

• Možemo posmatrati harmonijsku sredinu kao meki minimum

 Aritmetička sredina je 50% za pretraživač koji "vraća sve" što je previše

- Aritmetička sredina je 50% za pretraživač koji "vraća sve" što je previše
- Želja: kaznimo loše performanse na račun bilo preciznosti ili povrata

- Aritmetička sredina je 50% za pretraživač koji "vraća sve" što je previše
- Želja: kaznimo loše performanse na račun bilo preciznosti ili povrata
- Ovo se postiže uzimanjem minimuma

- Aritmetička sredina je 50% za pretraživač koji "vraća sve" što je previše
- Želja: kaznimo loše performanse na račun bilo preciznosti ili povrata
- Ovo se postiže uzimanjem minimuma
- F (harmonijska sredina) je kao meki minimum

• Preciznost/povrat/F su mere nerangiranih skupova.

- Preciznost/povrat/F su mere nerangiranih skupova.
- Lako ih možemo pretvoriti u mere rangiranih lista.

- Preciznost/povrat/F su mere nerangiranih skupova.
- Lako ih možemo pretvoriti u mere rangiranih lista.
- Izračunaćemo mere za svaki "prefiks": najbolji 1, najboljih 2, najboljih 3, najboljih 4 itd. pogodaka

- Preciznost/povrat/F su mere nerangiranih skupova.
- Lako ih možemo pretvoriti u mere rangiranih lista.
- Izračunaćemo mere za svaki "prefiks": najbolji 1, najboljih 2, najboljih 3, najboljih 4 itd. pogodaka
- Izračunavanje na ovaj način za preciznost i povrat daje precision/recall krivu.

• Svaka tačka odgovara rezultatu za najboljih k rangiranih pogodaka $(k = 1, 2, 3, 4, \ldots)$.

- Svaka tačka odgovara rezultatu za najboljih k rangiranih pogodaka $(k = 1, 2, 3, 4, \ldots)$.
- Interpolacija (crveno): Uzmi maksimum svih budućih tačaka

- Svaka tačka odgovara rezultatu za najboljih k rangiranih pogodaka $(k=1,2,3,4,\ldots)$.
- Interpolacija (crveno): Uzmi maksimum svih budućih tačaka
- Razlog za interpolaciju: Korisnik će hteti da pregleda još pogodaka ako se preciznost i povrat popravljaju

Interpolirana prosečna preciznost u 11 tačaka

Povrat	Interpolirana
	Preciznost
0.0	1.00
0.1	0.67
0.2	0.63
0.3	0.55
0.4	0.45
0.5	0.41
0.6	0.36
0.7	0.29
8.0	0.13
0.9	0.10
1.0	0.08

Interpolirana prosečna preciznost u 11 tačaka

Povrat	Interpolirana	
	Preciznost	
0.0	1.00	
0.1	0.67	
0.2	0.63	prosek za 11 tačaka: $pprox$
0.3	0.55	0.425
0.4	0.45	
0.5	0.41	
0.6	0.36	
0.7	0.29	
8.0	0.13	
0.9	0.10	
1.0	0.08	

Interpolirana prosečna preciznost u 11 tačaka

	Interpolirana	Povrat
	Preciznost	
	1.00	0.0
	0.67	0.1
prosek za 11 tačaka: $pprox$	0.63	0.2
0.425	0.55	0.3
	0.45	0.4
	0.41	0.5
Preciznost u $0.0 \text{ je} > 0$?	0.36	0.6
· ·	0.29	0.7
	0.13	8.0
	0.10	0.9
	0.08	1.0

• Izračunaj interpoliranu preciznost za nivoe povrata 0.0, 0.1, 0.2, ...

- Izračunaj interpoliranu preciznost za nivoe povrata 0.0, 0.1, 0.2, ...
- Uradi ovo za svaki od test-upita

- Izračunaj interpoliranu preciznost za nivoe povrata 0.0, 0.1, 0.2, ...
- Uradi ovo za svaki od test-upita
- Uproseči dobijene vrednosti

- Izračunaj interpoliranu preciznost za nivoe povrata 0.0, 0.1, 0.2, ...
- Uradi ovo za svaki od test-upita
- Uproseči dobijene vrednosti
- Ovo je mera performansi za sve nivoe povrata

Varijansa mere precision/recall

• Za test kolekciju uobičajeno je da sistem radi loše za neke informacione potrebe (npr. P=0.2 za R=0.1) a odlično za neke druge (npr. P=0.95 za R=0.1)

Varijansa mere precision/recall

- Za test kolekciju uobičajeno je da sistem radi loše za neke informacione potrebe (npr. P=0.2 za R=0.1) a odlično za neke druge (npr. P=0.95 za R=0.1)
- Obično je varijansa sistema za više upita mnogo veća nego varijansa različitih sistema za isti upit

Varijansa mere precision/recall

- Za test kolekciju uobičajeno je da sistem radi loše za neke informacione potrebe (npr. P=0.2 za R=0.1) a odlično za neke druge (npr. P=0.95 za R=0.1)
- Obično je varijansa sistema za više upita mnogo veća nego varijansa različitih sistema za isti upit
- Dakle, postoje jednostavne i složene informacione potrebe

Merenje kod velikih pretraživača

Povrat se teško meri na webu

- Povrat se teško meri na webu
- Pretraživači obično koriste preciznost za najboljih k, npr. $k = 10 \dots$

- Povrat se teško meri na webu
- Pretraživači obično koriste preciznost za najboljih k, npr. $k = 10 \dots$
- ...ili mere koje više vrednuju da je prvi podogak bolji nego deseti

- Povrat se teško meri na webu
- Pretraživači obično koriste preciznost za najboljih k, npr. $k = 10 \dots$
- ...ili mere koje više vrednuju da je prvi podogak bolji nego deseti
- Takođe se koriste mere koje nisu zasnovane na relevantnosti

- Povrat se teško meri na webu
- Pretraživači obično koriste preciznost za najboljih k, npr. $k = 10 \dots$
- ...ili mere koje više vrednuju da je prvi podogak bolji nego deseti
- Takođe se koriste mere koje nisu zasnovane na relevantnosti
 - Primer 1: clickthrough za prvi pogodak

- Povrat se teško meri na webu
- Pretraživači obično koriste preciznost za najboljih k, npr. $k = 10 \dots$
- ...ili mere koje više vrednuju da je prvi podogak bolji nego deseti
- Takođe se koriste mere koje nisu zasnovane na relevantnosti
 - Primer 1: clickthrough za prvi pogodak
 - Nije vrlo pouzdana ako se posmatra jedan clickthrough (korisnik može da odluči da je dokument nerelevantan nakon uvida u rezime) . . .

- Povrat se teško meri na webu
- Pretraživači obično koriste preciznost za najboljih k, npr. $k = 10 \dots$
- ...ili mere koje više vrednuju da je prvi podogak bolji nego deseti
- Takođe se koriste mere koje nisu zasnovane na relevantnosti
 - Primer 1: clickthrough za prvi pogodak
 - Nije vrlo pouzdana ako se posmatra jedan clickthrough (korisnik može da odluči da je dokument nerelevantan nakon uvida u rezime) . . .
 - ...ali je prilično pouzdana u proseku za veliki broj korisnika.

- Povrat se teško meri na webu
- Pretraživači obično koriste preciznost za najboljih k, npr. $k = 10 \dots$
- ...ili mere koje više vrednuju da je prvi podogak bolji nego deseti
- Takođe se koriste mere koje nisu zasnovane na relevantnosti
 - Primer 1: clickthrough za prvi pogodak
 - Nije vrlo pouzdana ako se posmatra jedan clickthrough (korisnik može da odluči da je dokument nerelevantan nakon uvida u rezime) . . .
 - ...ali je prilično pouzdana u proseku za veliki broj korisnika.
 - Primer 2: Laboratorijske studije ponašanja korisnika

- Povrat se teško meri na webu
- Pretraživači obično koriste preciznost za najboljih k, npr. $k = 10 \dots$
- ...ili mere koje više vrednuju da je prvi podogak bolji nego deseti
- Takođe se koriste mere koje nisu zasnovane na relevantnosti
 - Primer 1: clickthrough za prvi pogodak
 - Nije vrlo pouzdana ako se posmatra jedan clickthrough (korisnik može da odluči da je dokument nerelevantan nakon uvida u rezime) . . .
 - ...ali je prilično pouzdana u proseku za veliki broj korisnika.
 - Primer 2: Laboratorijske studije ponašanja korisnika
 - Primer 3: A/B testiranje

• Cilj: Testiranje jednog unapređenja

- Cilj: Testiranje jednog unapređenja
- Uslov: Imamo veliki pretraživač u pogonu

- Cilj: Testiranje jednog unapređenja
- Uslov: Imamo veliki pretraživač u pogonu
- Neka većina korisnika pristupa staroj verziji sistema

- Cilj: Testiranje jednog unapređenja
- Uslov: Imamo veliki pretraživač u pogonu
- Neka većina korisnika pristupa staroj verziji sistema
- Skrenućemo mali deo saobraćaja (recimo 1%) na novu verziju sistema koja ima unapređenje

- Cilj: Testiranje jednog unapređenja
- Uslov: Imamo veliki pretraživač u pogonu
- Neka većina korisnika pristupa staroj verziji sistema
- Skrenućemo mali deo saobraćaja (recimo 1%) na novu verziju sistema koja ima unapređenje
- Vrednovanje pomoću "automatske" mere, npr. clickthrough za prvi pogodak

- Cilj: Testiranje jednog unapređenja
- Uslov: Imamo veliki pretraživač u pogonu
- Neka većina korisnika pristupa staroj verziji sistema
- Skrenućemo mali deo saobraćaja (recimo 1%) na novu verziju sistema koja ima unapređenje
- Vrednovanje pomoću "automatske" mere, npr. clickthrough za prvi pogodak
- Sada možemo direktno videti da li unapređenje povećava zadovoljstvo korisnika

- Cilj: Testiranje jednog unapređenja
- Uslov: Imamo veliki pretraživač u pogonu
- Neka većina korisnika pristupa staroj verziji sistema
- Skrenućemo mali deo saobraćaja (recimo 1%) na novu verziju sistema koja ima unapređenje
- Vrednovanje pomoću "automatske" mere, npr. clickthrough za prvi pogodak
- Sada možemo direktno videti da li unapređenje povećava zadovoljstvo korisnika
- Verovatno metodologija kojoj veliki pretraživači najviše veruju

- Cilj: Testiranje jednog unapređenja
- Uslov: Imamo veliki pretraživač u pogonu
- Neka većina korisnika pristupa staroj verziji sistema
- Skrenućemo mali deo saobraćaja (recimo 1%) na novu verziju sistema koja ima unapređenje
- Vrednovanje pomoću "automatske" mere, npr. clickthrough za prvi pogodak
- Sada možemo direktno videti da li unapređenje povećava zadovoljstvo korisnika
- Verovatno metodologija kojoj veliki pretraživači najviše veruju
- Varijanta: dati korisnicima mogućnost da sami izaberu staru ili novu verziju sistema

Kolekcija dokumenata

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - ... koje ćemo često neispravno nazivati upitima

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - ... koje ćemo često neispravno nazivati upitima
 - informacione potrebe moraju reprezentovati one koje očekujemo i u stvarnom slučaju

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - koje ćemo često neispravno nazivati upitima
 - informacione potrebe moraju reprezentovati one koje očekujemo i u stvarnom slučaju
- Čovekove ocene relevantnosti

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - ... koje ćemo često neispravno nazivati upitima
 - informacione potrebe moraju reprezentovati one koje očekujemo i u stvarnom slučaju
- Čovekove ocene relevantnosti
 - moramo angažovati ocenjivače za ovaj posao

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - koje ćemo često neispravno nazivati upitima
 - informacione potrebe moraju reprezentovati one koje očekujemo i u stvarnom slučaju
- Čovekove ocene relevantnosti
 - moramo angažovati ocenjivače za ovaj posao
 - skupo, troši puno vremena

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - koje ćemo često neispravno nazivati upitima
 - informacione potrebe moraju reprezentovati one koje očekujemo i u stvarnom slučaju
- Čovekove ocene relevantnosti
 - moramo angažovati ocenjivače za ovaj posao
 - skupo, troši puno vremena
 - ocenjivači moraju reprezentovati one koje očekujemo i u stvarnom slučaju

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - koje ćemo često neispravno nazivati upitima
 - informacione potrebe moraju reprezentovati one koje očekujemo i u stvarnom slučaju
- Čovekove ocene relevantnosti
 - moramo angažovati ocenjivače za ovaj posao
 - skupo, troši puno vremena
 - ocenjivači moraju reprezentovati one koje očekujemo i u stvarnom slučaju
 - Ocene relevantnosti su korisne samo ako su konzistentne.

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - koje ćemo često neispravno nazivati upitima
 - informacione potrebe moraju reprezentovati one koje očekujemo i u stvarnom slučaju
- Čovekove ocene relevantnosti
 - moramo angažovati ocenjivače za ovaj posao
 - skupo, troši puno vremena
 - ocenjivači moraju reprezentovati one koje očekujemo i u stvarnom slučaju
 - Ocene relevantnosti su korisne samo ako su konzistentne.
 - Kako možemo meriti konzistentnost među ocenjivačima?

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - koje ćemo često neispravno nazivati upitima
 - informacione potrebe moraju reprezentovati one koje očekujemo i u stvarnom slučaju
- Čovekove ocene relevantnosti
 - moramo angažovati ocenjivače za ovaj posao
 - skupo, troši puno vremena
 - ocenjivači moraju reprezentovati one koje očekujemo i u stvarnom slučaju
 - Ocene relevantnosti su korisne samo ako su konzistentne.
 - Kako možemo meriti konzistentnost među ocenjivačima?

- Kolekcija dokumenata
 - dokumenti moraju reprezentovati dokumente koje očekujemo da imamo i u stvarnom slučaju
- Kolekcija informacionih potreba
 - koje ćemo često neispravno nazivati upitima
 - informacione potrebe moraju reprezentovati one koje očekujemo i u stvarnom slučaju
- Čovekove ocene relevantnosti
 - moramo angažovati ocenjivače za ovaj posao
 - skupo, troši puno vremena
 - ocenjivači moraju reprezentovati one koje očekujemo i u stvarnom slučaju
 - Ocene relevantnosti su korisne samo ako su konzistentne.
 - Kako možemo meriti konzistentnost među ocenjivačima? Kapa mera

• Kapa je mera koliko se međusobno ocenjivači slažu

- Kapa je mera koliko se međusobno ocenjivači slažu
- Dizajnirana za kategorične ocene

- Kapa je mera koliko se međusobno ocenjivači slažu
- Dizajnirana za kategorične ocene
- ullet P(A)= koji deo od ukupnog broja slučajeva se ocenjivači slažu

- Kapa je mera koliko se međusobno ocenjivači slažu
- Dizajnirana za kategorične ocene
- ullet P(A)= koji deo od ukupnog broja slučajeva se ocenjivači slažu
- P(E) = koji deo slaganja bismo dobili slučajno

- Kapa je mera koliko se međusobno ocenjivači slažu
- Dizajnirana za kategorične ocene
- ullet P(A)= koji deo od ukupnog broja slučajeva se ocenjivači slažu
- P(E) = koji deo slaganja bismo dobili slučajno

•

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)}$$

- Kapa je mera koliko se međusobno ocenjivači slažu
- Dizajnirana za kategorične ocene
- ullet P(A)= koji deo od ukupnog broja slučajeva se ocenjivači slažu
- P(E) = koji deo slaganja bismo dobili slučajno

•

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)}$$

• $\kappa = ?$ za (i) slučajno slaganje (ii) totalno slaganje

ullet Vrednosti $\kappa \in [2/3, 1.0]$ se smatraju prihvatljivim

κ : kapa mera

- ullet Vrednosti $\kappa \in [2/3, 1.0]$ se smatraju prihvatljivim
- Sa manjim vrednostima: potreban je redizajn metodologije ocenjivanja itd.

Izračunavanje κ statistike

		Ocenj. 2 relevantnost		
		Da	Ne	Total
Ocenj. 1	Da	300	20	320
relevantnost	Ne	10	70	80
	Total	310	90	400

Odnos puta kada su se ocenjivači složili

$$P(A) = (300 + 70)/400 = 370/400 = 0.925$$

Pooled marginals

$$P(nerelevantan) = (80 + 90)/(400 + 400) = 170/800 = 0.2125$$

$$P(relevantan) = (320 + 310)/(400 + 400) = 630/800 = 0.7878$$

Verovatnoća da su se slučajno složili P(E) =

$$P(nerelevantan)^2 + P(relevantan)^2 = 0.2125^2 + 0.7878^2 = 0.665$$

Kapa mera

$$\kappa = (P(A) - P(E))/(1 - P(E)) = (0.925 - 0.665)/(1 - 0.665) = 0.776$$

Izračunavanje κ statistike

		Ocenj. 2 relevantnost		
		Da	Ne	Total
Ocenj. 1 relevantnost	Da	300	20	320
	Ne	10	70	80
	Total	310	90	400

Odnos puta kada su se ocenjivači složili

$$P(A) = (300 + 70)/400 = 370/400 = 0.925$$

Pooled marginals

$$P(nerelevantan) = (80 + 90)/(400 + 400) = 170/800 = 0.2125$$

$$P(relevantan) = (320 + 310)/(400 + 400) = 630/800 = 0.7878$$

Verovatnoća da su se slučajno složili P(E) =

$$P(nerelevantan)^2 + P(relevantan)^2 = 0.2125^2 + 0.7878^2 = 0.665$$

Kapa mera

$$\kappa = (P(A) - P(E))/(1 - P(E)) = (0.925 - 0.665)/(1 - 0.665) = 0.776$$

(i dalje prihvatljivo)

• Prvi skup testova za precizno merenje efektivnosti IR sistema

- Prvi skup testova za precizno merenje efektivnosti IR sistema
- Kasne 1950te, UK

- Prvi skup testova za precizno merenje efektivnosti IR sistema
- Kasne 1950te, UK
- 1398 apstrakata iz članaka o aerodinamici, skup od 225 upita, iscrpne ocene relevantnosti za sve parove upit-dokument

- Prvi skup testova za precizno merenje efektivnosti IR sistema
- Kasne 1950te, UK
- 1398 apstrakata iz članaka o aerodinamici, skup od 225 upita, iscrpne ocene relevantnosti za sve parove upit-dokument
- Za današnje uslove suviše mali i atipičan uzorak

• TREC = Text Retrieval Conference (TREC)

- TREC = Text Retrieval Conference (TREC)
- Organizuje U.S. National Institute of Standards and Technology (NIST)

- TREC = Text Retrieval Conference (TREC)
- Organizuje U.S. National Institute of Standards and Technology (NIST)
- TREC je skup različitih bechmarka za relevantnost

- TREC = Text Retrieval Conference (TREC)
- Organizuje U.S. National Institute of Standards and Technology (NIST)
- TREC je skup različitih bechmarka za relevantnost
- Najpoznatiji: TREC Ad Hoc, korišćen za prvih 8 TREC sastanaka između 1992 i 1999

- TREC = Text Retrieval Conference (TREC)
- Organizuje U.S. National Institute of Standards and Technology (NIST)
- TREC je skup različitih bechmarka za relevantnost
- Najpoznatiji: TREC Ad Hoc, korišćen za prvih 8 TREC sastanaka između 1992 i 1999
- 1.89 milion dokumenata, uglavnom novinskih članaka, 450 informacionih potreba

- TREC = Text Retrieval Conference (TREC)
- Organizuje U.S. National Institute of Standards and Technology (NIST)
- TREC je skup različitih bechmarka za relevantnost
- Najpoznatiji: TREC Ad Hoc, korišćen za prvih 8 TREC sastanaka između 1992 i 1999
- 1.89 milion dokumenata, uglavnom novinskih članaka, 450 informacionih potreba
- Nema iscrpnih ocena relevantnosti previše skupo

- TREC = Text Retrieval Conference (TREC)
- Organizuje U.S. National Institute of Standards and Technology (NIST)
- TREC je skup različitih bechmarka za relevantnost
- Najpoznatiji: TREC Ad Hoc, korišćen za prvih 8 TREC sastanaka između 1992 i 1999
- 1.89 milion dokumenata, uglavnom novinskih članaka, 450 informacionih potreba
- Nema iscrpnih ocena relevantnosti previše skupo
- Umesto toga, ocene NIST-ovih ocenjivača postoje samo za dokumente koji su bili među prvih k koje je vratio jedan od sistema u TREC testu

• GOV2

- GOV2
 - još jedna TREC/NIST kolekcija

- GOV2
 - još jedna TREC/NIST kolekcija
 - 25 miliona web strana

- GOV2
 - još jedna TREC/NIST kolekcija
 - 25 miliona web strana
 - najveća kolekcija koja je lako dostupna

- GOV2
 - još jedna TREC/NIST kolekcija
 - 25 miliona web strana
 - najveća kolekcija koja je lako dostupna
 - ali i dalje 3 reda veličine manja od Google/Yahoo indeksa

- GOV2
 - još jedna TREC/NIST kolekcija
 - 25 miliona web strana
 - najveća kolekcija koja je lako dostupna
 - ali i dalje 3 reda veličine manja od Google/Yahoo indeksa
- NTCIR

- GOV2
 - još jedna TREC/NIST kolekcija
 - 25 miliona web strana
 - najveća kolekcija koja je lako dostupna
 - ali i dalje 3 reda veličine manja od Google/Yahoo indeksa
- NTCIR
 - IR za dalekoistočne jezike

- GOV2
 - još jedna TREC/NIST kolekcija
 - 25 miliona web strana
 - najveća kolekcija koja je lako dostupna
 - ali i dalje 3 reda veličine manja od Google/Yahoo indeksa
- NTCIR
 - IR za dalekoistočne jezike
- Cross Language Evaluation Forum (CLEF)

- GOV2
 - još jedna TREC/NIST kolekcija
 - 25 miliona web strana
 - najveća kolekcija koja je lako dostupna
 - ali i dalje 3 reda veličine manja od Google/Yahoo indeksa
- NTCIR
 - IR za dalekoistočne jezike
- Cross Language Evaluation Forum (CLEF)
 - fokusiran na evropske jezike i cross-language pretraživanje

- GOV2
 - još jedna TREC/NIST kolekcija
 - 25 miliona web strana
 - najveća kolekcija koja je lako dostupna
 - ali i dalje 3 reda veličine manja od Google/Yahoo indeksa
- NTCIR
 - IR za dalekoistočne jezike
- Cross Language Evaluation Forum (CLEF)
 - fokusiran na evropske jezike i cross-language pretraživanje
- Mnogi drugi

INEX

- Benchmark za ocenu performansi pretraživanja XML-a
 - analogno TREC-u
- Sastoji se iz
 - skupa XML dokumenata
 - kolekcije pretraživačkih zadataka

INEX

- Svaki sistem indeksira dokumente
- Autori sistema zapisuju pretraživačke zadatke kao upite
 - koristeći upitni jezik koji sistem razume
- U odgovoru, sistem vraća elemente unutar dokumenata (ne cele dokumente)
- Rangira pronađene elemente

INEX ocena

- Za svaki upit, svaki pronađeni element se ocenjuje po dva kriterijuma
 - relevantnost: koliko je relevantan element
 - pokrivanje: da li je element suviše uzak ili suviše širok
 - npr. za upit koji traži definiciju Furijeove transformacije: da li ćemo dobiti samo jednačinu (suviše uzak), celo poglavlje (suviše širok), ili tekst definicije
- Ove ocene se koriste za izračunavanje precision/recall mera

INEX kolekcija

- 12.107 publikacija iz IEEE Computer Society
- 494 megabajta
- Prosečan članak: 1532 XML čvora
 - prosečna dubina: 6.9

INEX teme

- Svaka tema (topic) predstavlja informacionu potrebu
- Dve vrste tema
 - content only (CO): free-text upiti
 - content and structure (CAS): eksplicitna ograničenja na strukturu dokumenta, tj. sadržavanje elemenata

INEX ocene

- Svaki pretraživač formuliše temu kao upit
 - npr. korišćenjem ključnih reči u temi
- Pretraživač pronalazi odgovarajuće elemente i rangira ih
- Eksperti-ocenjivači dodeljuju svakom pronađenom elementu ocene za relevantnost i pokrivanje

INEX ocene

- Relevantnost se ocenjuje na skali od 0 (irelevantno) do 3 (vrlo relevantno)
- Pokrivanje se ocenjuje na skali od četiri ocene:
 - No coverage: tema ne odgovara ničemu u elementu
 - Too large: tema je manji deo pronađenog elementa
 - Too small: element je premali da pokrije temu
 - Exact
- Svaki pronađeni element ima ocenu iz skupa $\{0,1,2,3\} imes \{ extit{N}, extit{S}, extit{L}, extit{E}\}$

Kombinovanje ocena

$$f_{strict}(rel, cov) = \begin{cases} 1 & (rel, cov) = 3E \\ 0 & ina \check{c} \end{cases}$$

$$f_{g} eneralized(rel, cov) = \begin{cases} 1.00 & (rel, cov) = 3E \\ 0.75 & (rel, cov) \in \{2E, 3L, 3S\} \\ 0.50 & (rel, cov) \in \{1E, 2L, 2S\} \\ 0.25 & (rel, cov) \in \{1S, 1L\} \\ 0.00 & (rel, cov) = 0N \end{cases}$$

f-vrednosti

- Skalarna mera kvaliteta pronađenog elementa
- Mogu se izračunati f-vrednosti za različite brojeve pronađenih elemenata: 10, 20, itd.
 - sredstvo za poređenje pretraživača