AArch64
Instructions

Index by Encoding

External Registers

GICV_AHPPIR, Virtual Machine Aliased Highest Priority Pending Interrupt Register

The GICV AHPPIR characteristics are:

Purpose

Provides the INTID of the highest priority pending Group 1 virtual interrupt in the List registers.

This register corresponds to the physical CPU interface register <u>GICC_AHPPIR</u>.

Configuration

This register is present only when FEAT_GICv3_LEGACY is implemented and EL2 is implemented. Otherwise, direct accesses to GICV_AHPPIR are res0.

This register is available when the GIC implementation supports interrupt virtualization.

Attributes

GICV_AHPPIR is a 32-bit register.

Field descriptions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESO INTID

Bits [31:25]

Reserved, res0.

INTID, bits [24:0]

The INTID of the signaled interrupt.

Note

INTIDs 1020-1023 are reserved and convey additional information such as spurious interrupts.

When affinity routing is not enabled:

- Bits [23:13] are res0.
- For SGIs, bits [12:10] identify the CPU interface corresponding to the source PE. For all other interrupts these bits are res0.

A read of this register returns the spurious INTID 1023 if any of the following are true:

- There are no pending interrupts of sufficiently high priority value to be signaled to the PE.
- The highest priority pending interrupt is in Group 0.

Accessing GICV_AHPPIR

This register is used only when System register access is not enabled. When System register access is enabled:

- For AArch32 implementations, ICC_HPPIR1 provides equivalent functionality.
- For AArch64 implementations, ICC_HPPIR1_EL1 provides equivalent functionality.

This register is used for Group 1 interrupts only. <u>GICV_HPPIR</u> provides equivalent functionality for Group 0 interrupts.

The register does not return the INTID of an interrupt that is active and pending.

When affinity routing is enabled, it is a programming error to use memory-mapped registers to access the GIC.

GICV AHPPIR can be accessed through the memory-mapped interfaces:

Component	Offset	Instance
GIC Virtual CPU interface	0x0028	GICV_AHPPIR

This interface is accessible as follows:

- When GICD CTLR.DS == 0, accesses to this register are **RO**.
- When an access is Secure, accesses to this register are **RO**.
- When an access is Non-secure, accesses to this register are **RO**.

AArch32	AArch64	AArch32	AArch64	Index by	<u>External</u>
<u>Registers</u>	<u>Registers</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding	Registers

Copyright © 2010-2023 Arm Limited or it	s affiliates. All rights reserved. This document is Non-Confidential.