

WO9933932

Publication Title:

**INVERT EMULSION DRILLING FLUID CONTAINING MIXTURES OF
SECONDARY ESTERS OBTAINED BY CONVERSION OF OLEFINS, AND
PREPARATION THEREOF**

Abstract:

< 1220 td class="tab_inner_rt"> Abstract of WO9933932

Preparation of invert drilling muds containing a mixture of secondary esters, the process involving the addition of one or more C1-C5 carboxylic acids and one or more C3-C22 olefins in the presence of an acid catalyst. Data supplied from the esp@cenet database - Worldwide

Courtesy of <http://v3.espacenet.com>

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C09K 7/06, 7/02, 7/00, C07C 67/04	A1	(11) International Publication Number: WO 99/33932 (43) International Publication Date: 8 July 1999 (08.07.99)
---	----	---

(21) International Application Number: PCT/US98/26137 (22) International Filing Date: 9 December 1998 (09.12.98) (30) Priority Data: 09/000,988 30 December 1997 (30.12.97) US (71) Applicant: CHEVRON CHEMICAL COMPANY LLC [US/US]; 555 Market Street, San Francisco, CA 94105 (US). (72) Inventor: GEE, Jeffery, C.; 2062 Fir Springs, Kingwood, TX 77339 (US). (74) Agents: HAYMOND, W., Bradley et al.; Chevron Corporation, Law Dept., P.O. Box 7141, San Francisco, CA 94120-7141 (US).	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
--	--

Published

With international search report.

(54) Title: **INVERT EMULSION DRILLING FLUID CONTAINING MIXTURES OF SECONDARY ESTERS OBTAINED BY CONVERSION OF OLEFINS, AND PREPARATION THEREOF**

(57) Abstract

Preparation of invert drilling muds containing a mixture of secondary esters, the process involving the addition of one or more C₁-C₅ carboxylic acids and one or more C₃-C₂₂ olefins in the presence of an acid catalyst.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Maiawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

-1-

1 Invert emulsion drilling fluid containing mixtures of secondary esters
2 obtained by conversion of olefins, and preparation thereof.

3

4 FIELD OF THE INVENTION

5

6 The invention relates to a process for combining an olefin and a carboxylic
7 acid to produce a mixture containing secondary esters; the mixture of esters
8 produced by the process and the use of the mixture of esters.

9

10 BACKGROUND OF THE INVENTION

11

12 It is known that carboxylic acids can be added to olefins to produce
13 secondary esters (meaning an ester in which the carbon on the alkyl chain to
14 which the carboxylate moiety is attached is a secondary carbon, i.e., one that
15 is covalently bound to two other carbon atoms, rather than a primary or
16 tertiary carbon, which are covalently bound to one or three carbon atoms,
17 respectively). These methods generally involve reaction of a low molecular
18 weight olefin with a high molecular weight carboxylic acid to produce
19 secondary esters.

20

21 Catalysts known to be effective in such esterification reactions can be in the
22 form of metallosilicates, especially aluminum silicates (such as zeolites or
23 zeolite mordenites) having exchangeable cations and hydrogen
24 ion-exchanged, layered clays. For esterification reactions, these catalysts are
25 often used with a strong acid added to them.

26

27 With hydrogen ion-exchanged, layered clays, it is also known that if the
28 exchangeable cation in the layered clay is a metal cation, there is no need for
29 strong acids to be added to the catalyst. The absence of strong acids renders
30 the clays less corrosive and more readily separable from the reaction mixture.

31

-2-

1 Stabilized pillared interlayered clay in which the pillars are formed after
2 exchanging the natural cations of the clay with more suitable cations are
3 known to be effective for catalyzing the esterification reaction of olefins and
4 carboxylic acids.

5

6 It is also known that monocarboxylic acid methyl esters can be used as the
7 continuous phase or part of the continuous phase in invert drilling muds.

8

9 The present invention relates to an esterification reaction of olefins and
10 carboxylic acids which results in a significant decrease in oligomerization and
11 utilizes a catalyst which is relatively easy to prepare and is relatively long-
12 lasting in its effectiveness. The present invention also relates to the product
13 of this esterification reaction which can be used as a component of a drilling
14 fluid.

15

16 SUMMARY OF THE INVENTION

17

18 An object of the present invention is to provide an invert emulsion drilling fluid
19 comprising:

20

21 (a) a continuous phase comprising a mixture of secondary esters selected
22 from the group consisting of propylcarboxylates, butylcarboxylates,
23 pentylcarboxylates, hexylcarboxylates, heptylcarboxylates,
24 octylcarboxylates, nonylcarboxylates, decylcarboxylates,
25 undecylcarboxylates, dodecylcarboxylates, tridecylcarboxylates,
26 tetradecylcarboxylates, pentadecylcarboxylates, hexadecylcarboxylates,
27 heptadecylcarboxylates, octadecylcarboxylates, nonadecylcarboxylates,
28 eicosylcarboxylates, uneicocarboxylates, docicosylcarboxylates and
29 isomers and mixtures thereof, wherein the secondary esters each have
30 a carboxylate moiety with from one to five carbon atoms;

31

-3-

1 (b) a weight material; and

2

3 (c) water.

4

5 Still another object of the present invention is to provide a method of making
6 secondary esters comprising combining carboxylic acids having from one to
7 five carbon atoms or isomers or mixtures thereof with olefins selected from
8 the group consisting of propene, butene, pentene, hexene, heptene, octene,
9 nonene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene,
10 hexadecene, heptadecene, octadecene, nonadecene, eicosene, uneicosene,
11 doeicosene and isomers and mixtures thereof in the presence of an acid
12 catalyst.

13

14 Yet another object of the present invention is to provide a method of using a
15 mixture of secondary esters as the continuous phase or part of the
16 continuous phase of an invert drilling fluid, the mixture being produced by a
17 method comprising the step of combining carboxylic acids having from one to
18 five carbon atoms or isomers or mixtures thereof with olefins selected from
19 the group consisting of propene, butene, pentene, hexene, heptene, octene,
20 nonene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene,
21 hexadecene, heptadecene, octadecene, nonadecene, eicosene, uneicosene,
22 doeicosene and isomers and mixtures thereof in the presence of an acid
23 catalyst to make secondary esters.

24 Still another object of the present invention is to provide a method of using a
25 mixture of secondary esters as an additive to water based drilling muds, the
26 mixture being produced by a method comprising the step of combining
27 carboxylic acids having from one to five carbon atoms or isomers or mixtures
28 thereof with olefins selected from the group consisting of propene, butene,
29 pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene,
30 tridecene, tetradecene, pentadecene, hexadecene, heptadecene,
31 octadecene, nonadecene, eicosene, uneicosene, doeicosene and isomers

-4-

1 and mixtures thereof in the presence of an acid catalyst to make secondary
2 esters.

3

4 DESCRIPTION OF THE DRAWINGS

5

6 Figure 1 is a diagram of a continuous unit used to produce mixtures of
7 secondary esters.

8

9 Figure 2 is a GC/FID chromatogram for a product mixture obtained from the
10 unit when the unit was operating at about 0.65 WHSV and 140°C as
11 described in Example 2.

12

13 Figure 3 is a GC/FID chromatogram for a product mixture obtained in a batch
14 reactor when the reactor was operating for about 5 hours at 120°C as
15 described in Example 3.

16

17 DETAILED DESCRIPTION OF THE INVENTION

18

19 This invention relates to the use of an acid catalyst, preferably a dry
20 (extremely low moisture) acid washed natural clay, to catalyze the addition of
21 a C₁-C₅ carboxylic acid to an olefin. The process can utilize one acid or a
22 mixture of acids, and it can utilize one olefin or a mixture of olefins. The
23 process can proceed in batch or continuous mode and operates at 60-300°C.

24 In a continuous mode, the flow rate is generally 0.1-5 WHSV. Some of the
25 most surprising attributes of this invention are (1) that the catalyst must be
26 nearly free of water in order for the esterification reaction to proceed; and
27 (2) that olefin oligomerization is almost eliminated, as long as the
28 concentration of carboxylic acid in the feedstock mixture is kept above about
29 3 wt. %.

30

-5-

1 As a hydrophobic synthetic fluid with a pour point below -10°C, a flash point
2 above about 120°C, and a molecular weight near that of a C₁₄-C₂₀
3 hydrocarbon, these synthetic mixtures would function well as the continuous
4 phase or part of the continuous phase of an invert mud. Because these
5 mixtures are mixtures of esters rather than hydrocarbons, they would
6 biodegrade more rapidly than do synthetic hydrocarbons.

7

8 Another advantage that this invention gives over esters currently used in the
9 drilling industry is that from it can be produced a suitable ester mixture having
10 a lower viscosity than esters currently in use. Currently used esters derive
11 from natural fatty acids, which are typically C₁₂ or heavier acids. When
12 combined with a branched C₈ or heavier alcohol, which is the conventional
13 practice used to get an ester with a sufficiently low pour point, the resulting
14 ester is more viscous than the ones that can be achieved with the present
15 invention.

16

17 The following non-limiting examples show various aspects of various
18 embodiments of the present invention.

19

20 EXAMPLES

21

22 Example 1

23 Synthesis of C₁₄ Propionates with F-25

24

25 F-25 (Engelhard) was dried in a vacuum oven overnight at about 200°C to
26 remove water. The dried clay granules were packed into a fixed bed, and a
27 mixture that was 50 mole % propionic acid and 50 mole % commercial
28 1-tetradecene was passed over the bed at a temperature of 140°C and a flow
29 rate of 0.5 WHSV. By GC/FID analysis, the effluent contained about 20%
30 secondary esters, about 10% propionic acid, about 70% C₁₄ olefins, and less
31 than 1% C₁₄ oligomers. The single most abundant ester in the mixture was

-6-

1 2-tetradecyl propionate, followed by 3-tetradecyl propionate, followed by
2 4-tetradecyl propionate, followed by 5-, 6- and 7-tetradecyl propionate. The
3 C₁₄ olefins in the effluent were about 70% linear internal olefins and about
4 30% alpha olefins. The unreacted acid and olefins were separated from the
5 esters by distillation and were suitable for recycling.

6

7 Example 2

8 Synthesis of C₁₄ Propionates with F-25

9

10 F-25 (Engelhard) was dried and packed into a fixed bed as in Example 1. A
11 mixture that was 50 mole % propionic acid and 50 mole % commercial
12 1-tetradecene was passed over the bed at a temperature of 140°C and a flow
13 rate of 0.65 WHSV. The chromatogram of Figure 2 shows the peaks for
14 residual propionic acid and tetradecenes remaining as well as the peaks for
15 the secondary esters formed from tetradecenes and propionic acid formed.
16 By GC/FID analysis, the effluent contained about 9% propionic acid, about
17 73% tetradecenes, and about 15% secondary esters. Of particular note is the
18 nearly complete absence of peaks for olefin dimers, which, by GC/FID, make
19 up only about 1.8% of the product mixture.

20

21 Example 3

22 Treatment of 1-Dodecene over Filtrol 105

23

24 As a comparison to the results of Example 2, Filtrol 105 (Engelhard) was
25 dried as in Examples 1 and 2, then added to a batch reactor. A sample of
26 1-dodecene was stirred and heated over the catalyst at 120°C for about
27 5 hours. By GC/FID analysis, the effluent contained about 34% C₁₂ olefin
28 monomer, 46% dimer and 20% trimer. In comparing these results with
29 Examples 1 and 2, it can be seen that the presence of propionic acid,
30 especially in an amount greater than about 3% propionic acid in the feed

-7-

1 stream, clearly keeps the level of dimer below 5%. The chromatogram of
2 Figure 3 shows the peaks for the C₁₂ oligomers.

3

4 Example 4

5 Stopping Oligomerization Reaction with Propionic Acid

6

7 About 598 g of a mixture that was 67 mole % 1-tetradecene and 33 mole %
8 propionic acid was heated and stirred at 140°C in a batch reactor with 50 g of
9 dry F-25 (Engelhard). After 6.5 hours, the level of secondary esters peaked
10 at about 20% by GC/FID, and olefin oligomers accounted for 3% of the
11 reaction mixture. Instead of remaining steady, the ester level then began to
12 decline, and there was a rapid increase in the amount of olefin oligomer. For
13 the first several hours of reaction, the propionic acid was >3% (by GC/FID) of
14 the reaction mixture. Once the propionic acid dropped to <3% (by GC/FID) of
15 the reaction mixture, the level of olefin oligomer began to increase rapidly.

16

Example 5

17 C₁₄ Propionates Evaluated as Base Fluid for Invert Drilling Emulsion

18

19 The suitability of the C₁₄ propionates for use in invert drilling fluids was
20 evaluated. The invert emulsion was prepared by combining most of the
21 components with the base fluid and mixing for 30 minutes at 120°F using a
22 Gifford Wood homogenizer. The ingredients were added in the order listed in
23 the table below, but the last three were not added during the 30-minute
24 homogenizer cycle. First, the slurry from the homogenizer was transferred to
25 a dispersator, and then the barite, drilling solids, and CaCl₂ were added, and
26 the mixture was stirred for 30 minutes. Rheological properties of the resulting
27 drilling fluid were determined at 120°F, before and after hot-rolling the
28 emulsion for 16 hours at 150°F.

29

-8-

Component	Amount
C ₁₄ Propionates	200.55 ml
Water	37.1 ml
Organoclay Viscosifier	3.0 g
Emulsion stabilizer	8.0 g
Emulsifier	4.0 g
Lime	3.0 g
Fluid loss additive	10.0 g
Rheological Modifier	0.5 g
Barite	334.0 g
Simulated drill solids	20.0 g
CaCl ₂	13.1 g

1

2 The drilling fluid showed the following rheological results at 120°F:

3

Parameter	Before hot rolling	After hot rolling
Fann Dial Reading @ 600 rpm	81	89
Fann Dial Reading @ 300 rpm	49	54
Fann Dial Reading @ 200 rpm	37	41
Fann Dial Reading @ 100 rpm	25	28
Fann Dial Reading @ 6 rpm	11	11
Fann Dial Reading @ 3 rpm	10	10
Plastic Viscosity @ 120°F, cps	32	35
Yield Point, lb/100 sq ft	17	19
10 s gel strength, lb/100 sq ft	16	16
10 m gel strength, lb/100 sq ft	22	27
Electrical stability @ 120°F	1328	1416
Oil mud alkalinity (Pom)	1.485	--
Excess lime, lb/bbl	1.93	--
HTHP filtrate @ 300°F, 500 psi	--	3.6

-9-

Parameter	Before hot rolling	After hot rolling
Water, ml	--	0.0
Cake thickness, HTHP, 32 nd	--	2

1

2 Values of some physical properties of the C₁₄ propionates were:

3

kinematic viscosity @ 40°C	4.25 cSt
kinematic viscosity @ 100°C	1.56 cSt
flash point (°C)	156
pour point (°C)	-29
specific gravity @ 60°F	0.86

4

5 Example 6

6 Mysid Shrimp Toxicity Test

7

8 Additionally, the toxicity to mysid shrimp of the drilling fluid of Example 4 was
 9 evaluated according to the US EPA protocol in Appendix 3 of "Effluent
 10 Limitation Guidelines and New Source Performance Standards: Drilling
 11 Fluids Toxicity Test," Federal Register Vol. 50, No. 165, 34631-34636. For
 12 cuttings discharge, the drilling fluid must show an LC₅₀ toward mysid shrimp
 13 of at least 30,000 ppm. The drilling fluid prepared using the C₁₄ propionates
 14 had an LC₅₀ of ≥1,000,000 ppm, indicating the C₁₄ propionates make an
 15 extremely low toxicity drilling fluid.

16

17 Example 7

18 Synthesis of C₁₂ propionates with Dried F-25

19

20 A mixture that was 50 mole % propionic acid and 50 mole % commercial
 21 1-dodecene was passed over the same dried F-25 (Engelhard) catalyst as
 22 described in Examples 1 and 2. The flow rate was 0.35 WHSV, and the

-10-

1 temperature was 140°C. By GC/FID analysis, the effluent contained about
2 20% secondary esters, about 10% propionic acid, about 70% C₁₂ olefins, and
3 less than 1% C₁₂ oligomers. The single most abundant ester in the mixture
4 was 2-dodecyl propionate, followed by 3-dodecyl propionate, followed by
5 4-dodecyl propionate, followed by 5 & 6-dodecyl propionate. The unreacted
6 acid and olefins were separated from the esters by distillation and were
7 suitable for recycle.

8

9 Values of some physical properties of the C₁₂ propionates were:

10

kinematic viscosity @ 40°C	3.05 cSt
kinematic viscosity @ 100°C	1.22 cSt
flash point (°C)	138
pour point (°C)	-62
specific gravity @ 60°F	0.86

11

12

Example 8

13

Synthesis of C₁₂ Propionates with Amberlyst 15

14

15 A mixture containing 15 g propionic acid, 40 g 1-tetradecene, and 15 g of
16 Amberlyst 15 (Rohm and Haas) was stirred and heated to 140°C. Within
17 30 minutes, the mixture contained 20% tetradecyl propionates and <1% olefin
18 oligomers by GC/FID. With additional reaction time, the oligomer content
19 increased, and the ester level decreased.

20

21

Example 9

22

Synthesis of C₁₂ Propionates with Amberlyst 15

23

24 A mixture containing 15 g propionic acid, 40 g 1-tetradecene, and 15 g of
25 Amberlyst 15 (Rohm and Haas) was stirred and heated to 120°C. Within one
26 hour, the mixture contained 31% tetradecyl propionates and <1% olefin

-11-

1 oligomers by GC/FID. With additional reaction time, the oligomer content
2 increased, and the ester level decreased.

3

4 Example 10

5 Synthesis of C₁₂ Propionates with Amberlyst 15

6

7 A mixture containing 15 g propionic acid, 40 g 1-tetradecene, and 15 g of
8 Amberlyst 15 (Rhom and Haas) was stirred and heated to 100°C. Within
9 1.5 hours, the mixture contained 39% tetradecyl propionates and <1% olefin
10 oligomers by GC/FID. With additional reaction time, the oligomer content
11 increased, and the ester level decreased.

12

13 Example 11

14 Synthesis of C₁₂ Propionates with Amberlyst 15

15

16 A mixture containing 15 g propionic acid, 40 g 1-tetradecene, and 15 g of
17 Amberlyst 15 (Rohm and Haas) was stirred and heated to 80°C. Within
18 8 hours, the mixture contained 45% tetradecyl propionates and <1% olefin
19 oligomers by GC/FID. With additional reaction time, the oligomer content
20 increased, and the ester level decreased.

21

22 Example 12

23 Synthesis of C₁₂ Propionates with Undried F-25

24

25 A mixture containing 8.1 g 1-decene (1 eq), 17.5 g propionic acid (4 eq), and
26 4.72 g commercial F-25 clay (Engelhard) was stirred and heated to 120°C.
27 (The clay had not been oven dried after purchase.) The mixture refluxed and
28 would not heat above 120°C. After 5 days, the mixture contained 6.5% esters
29 by GC/FID. Then the condenser was removed, and vapor was allowed to
30 leave the reaction vessel. Within 2 hours, the temperature had reached

-12-

1 140°C, and the mixture had reached 11% esters. About 12 hours later, the
2 ester level was 23%.

Example 13

Synthesis of C₁₄ Propionates with Dried F-25

5
6 A mixture containing 30.0 g 1-tetradecene (1 eq), 34.0 g propionic acid (3 eq),
7 and 10.1 g of F-25 clay (Engelhard) (dried 24 hours in vacuum oven at
8 200°C) was stirred and heated to 140°C. The mixture showed no signs of
9 refluxing and easily reached 140°C. Within 20 hours, the mixture contained
10 35% esters by GC/FID. The ester level remained at this level, even after
11 stirring another 24 hours at the reaction temperature.

Example 14

Synthesis of C₁₄ Propionates with Undried F-62

16 A mixture containing 20.0 g 1-tetradecene (1 eq), 7.58 g propionic acid (1 eq),
17 and 5.0 g F-62 extrudate (Engelhard) was stirred and heated to 120°C. The
18 mixture refluxed and showed only traces of ester by GC/FID, even after
19 20 hours of heating.

Example 15

Synthesis of C₁₄ Propionates with Dried F-62

24 A mixture containing 40.0 g 1-tetradecene (1 eq), 15.1 g propionic acid (1 eq),
25 and 16.3 g F-62 extrudate (Engelhard) (which had been heated in a vacuum oven
26 at 200°C for 20 hours) was stirred and heated to 140°C. After 19 hours, the
27 mixture contained 31% esters by GC/FID. Additional reaction time did not
28 increase the amount of ester in the mixture.

-13-

1 Example 16

2 Synthesis of C₁₄ Propionates from Isomerized C₁₄ and Dried Filtrol 105

3

4 A mixture containing 30 g (1 eq) tetradecenes (obtained by thorough double
5 bond isomerization of 1-tetradecene), 34 g (3 eq) propionic acid, and 10 g dry
6 Filtrol 105 clay (Engelhard) (which had heated in a vacuum oven at 200°C for
7 20 hours) was stirred and heated to 140°C. After 31 hours, the mixture
8 contained 23% esters by GC/FID. The product esters from this process were
9 the same ones obtained when 1-tetradecene was the starting olefin, but the
10 distribution of propionate isomers was different for this mixture than for those
11 obtained when 1-tetradecene was the starting olefin. There was about as
12 much 7-tetradecyl propionate as 2-tetradecyl propionate in this mixture,
13 showing a much more evenly distributed attachment position for the
14 propionate group in this mixture than for the mixture obtained using
15 1-tetradecene as the starting olefin.

16

17 Example 17

18 Synthesis of C₁₈ Propionates Using Dried F-25

19

20 A mixture containing 664 g (1 eq) 1-octadecene, 195 g (1 eq) propionic acid,
21 and 51 g dry F-25 (Engelhard) (which had heated in a vacuum oven at 200°C
22 for 20 hours) was stirred and heated to 140°C. After 6 hours, the mixture
23 contained 19% secondary esters by GC/FID.

24

25 Example 18

26 C₁₂ Propionates Evaluated as Base Fluid for Invert Drilling Emulsion

27

28 A mud formulated using a mixture of dodecyl propionates as the base fluid
29 had this composition:

30

-14-

Component	Amount
C ₁₂ Propionates	200.55 ml
Water	37.1 ml
Organoclay Viscosifier	3.0 g
Emulsion stabilizer	8.0 g
Emulsifier	4.0 g
Lime	3.0 g
Fluid loss additive	10.0 g
Rheological Modifier	0.5 g
Barite	334.0 g
Simulated drill solids	20.0 g
CaCl ₂	13.1 g

1

2 The drilling fluid showed the following rheological measurements at 120°F:

3

Parameter	Before hot rolling	After hot rolling
Mud density, lb/gal	14.5	--
Fann Dial Reading @ 600 rpm	74	70
Fann Dial Reading @ 300 rpm	45	40
Fann Dial Reading @ 200 rpm	34	30
Fann Dial Reading @ 100 rpm	21	20
Fann Dial Reading @ 6 rpm	8	8
Fann Dial Reading @ 3 rpm	7	7
Plastic Viscosity @ 120°F, cps	29	30
Yield Point, lb/100 sq ft	16	10
10 s gel strength, lb/100 sq ft	11	10
10 m gel strength, lb/100 sq ft	13	13
Electrical stability @ 120°F	800	912
Oil mud alkalinity (Pom)	1.33	---
Excess lime, lb/bbl	1.73	---
HTHP filtrate @ 300°F, 500 psi	---	4.8
Water, ml	---	0.0
Cake thickness, HTHP, 32 nd	--	1

-15-

1

2 Before hot rolling, the mud also showed these properties at 35°F:

3

Parameter	Before hot rolling
Mud density, lb/gal	14.5
Fann Dial Reading @ 600 rpm	238
Fann Dial Reading @ 300 rpm	130
Fann Dial Reading @ 200 rpm	92
Fann Dial Reading @ 100 rpm	50
Fann Dial Reading @ 6 rpm	10
Fann Dial Reading @ 3 rpm	8
Plastic Viscosity @ 120°F, cps	108
Yield Point, lb/100 sq ft	22
10 s gel strength, lb/100 sq ft	14
10 m gel strength, lb/100 sq ft	26

4

5 In the mysid shrimp test, this mud showed an LC₅₀ of ≥1,000,000 ppm SPP.

6

7 Values of some physical properties of the C₁₂ propionates were:

kinematic viscosity @ 40°C	3.05 cSt
kinematic viscosity @ 100°C	1.22 cSt
flash point (°C)	138
pour point (°C)	-62
specific gravity @ 60°F	0.86

8

9 Example 19

10 C₁₂/C₁₄ Propionates Evaluated as Base Fluid for Invert Drilling Emulsion

11

12 A mud formulated using a mixture of dodecyl propionates (50 wt. %) and

13 tetradecyl propionates (50 wt. %) as the base fluid had this composition:

-16-

1

Component	Amount
C ₁₂ /C ₁₄ Propionates (1:1)	200.55 ml
Water	37.1 ml
Organoclay Viscosifier	3.0 g
Emulsion stabilizer	8.0 g
Emulsifier	4.0 g
Lime	3.0 g
Fluid loss additive	10.0 g
Rheological Modifier	0.5 g
Barite	334.0 g
Simulated drill solids	20.0 g
CaCl ₂	13.1 g

2

3 The drilling fluid showed the following rheological measurements at 120°F:

4

Parameter	Before hot rolling	After hot rolling
Mud density, lb/gal	14.5	--
Fann Dial Reading @ 600 rpm	74	79
Fann Dial Reading @ 300 rpm	45	46
Fann Dial Reading @ 200 rpm	34	34
Fann Dial Reading @ 100 rpm	21	22
Fann Dial Reading @ 6 rpm	8	8
Fann Dial Reading @ 3 rpm	7	7
Plastic Viscosity @ 120°F, cps	32	33
Yield Point, lb/100 sq ft	13	13
10 s gel strength, lb/100 sq ft	12	11
10 m gel strength, lb/100 sq ft	19	15
Electrical stability @ 120°F	1086	1097
Oil mud alkalinity (Pom)	1.59	---
Excess lime, lb/bbl	2.07	---
HTHP filtrate @ 300°F, 500 psi	--	4.2
Water, ml	--	0.0

-17-

Parameter	Before hot rolling	After hot rolling
Cake thickness, HTHP, 32 nd	--	1

1

2 Before hot rolling, the mud also showed these properties at 35°F:

3

Parameter	Before hot rolling
Mud density, lb/gal	14.5
Fann Dial Reading @ 600 rpm	262
Fann Dial Reading @ 300 rpm	142
Fann Dial Reading @ 200 rpm	100
Fann Dial Reading @ 100 rpm	56
Fann Dial Reading @ 6 rpm	10
Fann Dial Reading @ 3 rpm	8
Plastic Viscosity @ 120°F, cps	120
Yield Point, lb/100 sq ft	22
10 s gel strength, lb/100 sq ft	14
10 m gel strength, lb/100 sq ft	26

4

5 In the mysid shrimp test, this mud showed an LC₅₀ of ≥1,000,000 ppm SPP.

6

7 Example 20

8 Synthesis of C₁₄ Propionates Using H₂SO₄

9

10 A mixture containing 20 g (1 eq) 1-tetradecene, 7.6 g (1 eq) propionic acid,
 11 and 0.62 g concentrated sulfuric acid was stirred and heated to 115°C. After
 12 15 hours, the mixture contained 44 % secondary esters by GC/FID.

13

14 Although a few embodiments of the invention have been described in detail
 15 above, it will be appreciated by those skilled in the art that various
 16 modifications and alterations can be made to the particular embodiments

-18-

1 shown without materially departing from the novel teachings and advantages
2 of the invention. Accordingly, it is to be understood that all such modifications
3 and alterations are included within the spirit and scope of the invention as
4 defined by the following claims.

1 WHAT IS CLAIMED IS:

2

3 1. An invert emulsion drilling fluid comprising:

4 (a) a continuous phase comprising a mixture of secondary esters
5 selected from the group consisting of propylcarboxylates,
6 butylcarboxylates, pentylcarboxylates, hexylcarboxylates,
7 heptylcarboxylates, octylcarboxylates, nonylcarboxylates,
8 decylcarboxylates, undecylcarboxylates, dodecylcarboxylates,
9 tridecylcarboxylates, tetradecylcarboxylates,
10 pentadecylcarboxylates, hexadecylcarboxylates,
11 heptadecylcarboxylates, octadecylcarboxylates,
12 nonadecylcarboxylates, eicosylcarboxylates, uneicocarboxylates,
13 docosylcarboxylates and isomers and mixtures thereof, wherein
14 the secondary esters each have a carboxylate moiety with from
15 one to five carbon atoms;

16 (b) a weight material; and

17 (c) water.

18 2. The invert emulsion drilling fluid according to claim 1 wherein the
19 kinematic viscosity of the secondary ester mixture is between 1 and
20 2 cSt when measured at 100°C, and wherein the pour point of the
21 secondary ester mixture is below -10°C.

22 3. The invert emulsion drilling fluid of claim 1 further comprising one or
23 more additives selected from the group consisting of emulsifiers, wetting
24 agents, viscosifiers, densifiers, and fluid-loss preventatives.

-20-

- 1 4. A method of making an invert emulsion drilling fluid comprising:
 - 2 (a) combining carboxylic acids having from one to five carbon atoms
3 or isomers or mixtures thereof with olefins selected from the group
4 consisting of propene, butene, pentene, hexene, heptene, octene,
5 nonene, decene, undecene, dodecene, tridecene, tetradecene,
6 pentadecene, hexadecene, heptadecene, octadecene,
7 nonadecene, eicosene, uneicosene, docosene and isomers and
8 mixtures thereof in the presence of an acid catalyst to make
9 secondary esters; and
 - 10 (b) combining the secondary esters of step (a) with water, a weight
11 material and additives selected from the group consisting of
12 emulsifiers, wetting agents, viscosifiers, densifiers, and fluid-loss
13 preventatives.
- 14 5. The method according to claim 4 wherein step (a) is conducted at a
15 temperature of from 60 to 300°C.
- 16 6. The method according to claim 4 wherein step (a) is conducted in a
17 batch mode.
- 18 7. The method according to claim 4 wherein step (a) is conducted in a
19 continuous mode.
- 20 8. The method according to claim 7 wherein the flow rate is from 0.1 to
21 5 WHSV.
- 22 9. The method according to claim 4 wherein the acid catalyst is an acid
23 washed natural clay.

-21-

1 10. The method according to claim 9 wherein the acid catalyst is
2 substantially free of water.

3 11. The method according to claim 4 wherein the carboxylic acids are
4 greater than 5 weight % of the combined olefins and carboxylic acids in
5 step (a).

6 12. An invert emulsion drilling fluid produced by the method of claim 4.

7 13. A method of using a mixture of secondary esters as a continuous phase
8 or part of a continuous phase of an invert drilling fluid comprising the
9 steps of:

10 (a) combining carboxylic acids having from one to five carbon atoms
11 or isomers or mixtures thereof with olefins selected from the group
12 consisting of propene, butene, pentene, hexene, heptene, octene,
13 nonene, decene, undecene, dodecene, tridecene, tetradecene,
14 pentadecene, hexadecene, heptadecene, octadecene,
15 nonadecene, eicosene, uneicosene, doeicosene and isomers and
16 mixtures thereof in the presence of an acid catalyst to make the
17 mixture of secondary esters; and

18 (b) adding the mixture to an invert drilling mud as the continuous
19 phase or part of the continuous phase of the invert drilling fluid.

20 14. A method of using a mixture of secondary esters as an additive to water
21 based drilling muds comprising the steps of:

22 (a) combining carboxylic acids having from one to five carbon atoms
23 or isomers or mixtures thereof with olefins selected from the group
24 consisting of propene, butene, pentene, hexene, heptene, octene,
25 nonene, decene, undecene, dodecene, tridecene, tetradecene,

-22-

- 1 pentadecene, hexadecene, heptadecene, octadecene,
- 2 nonadecene, eicosene, uneicosene, doeicosene and isomers and
- 3 mixtures thereof in the presence of an acid catalyst to make the
- 4 mixture of secondary esters; and
- 5 (b) adding the mixture to a water based drilling mud.

FIG. 1

3/3

INTERNATIONAL SEARCH REPORT

Int'l. Patent Application No.

PCT/US 98/26137

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C09K7/06 C09K7/02 C09K7/00 C07C67/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C09K C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 561 608 A (THE LUBRIZOL CORP.) 22 September 1993 see page 3, line 17 - line 56 see page 4, line 11 - line 16 see page 10, line 46 - page 12, line 21 see page 17, line 19 - line 40 ---	1,3,4, 12,14
Y	EP 0 386 638 A (HENKEL) 12 September 1990 see page 3, line 15 - line 6 see page 4, line 9 - line 16 ---	1,3,4, 12,14
Y	EP 0 031 687 A (BRITISH PETROLEUM CO LTD) 8 July 1981 see page 4, line 16 - page 5, line 31 ---	4-10 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

23 March 1999

Date of mailing of the international search report

06/04/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Boulon, A

INTERNATIONAL SEARCH REPORT

Int'l Application No

PCT/US 98/26137

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 031 252 A (THE BRITISH PETROLEUM COMPANY) 1 July 1981 see page 4, line 22 - page 6, line 1 -----	4-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int. Application No

PCT/US 98/26137

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 561608	A	22-09-1993	US 5283235 A		01-02-1994
			CA 2091419 A		18-09-1993
			CN 1077212 A		13-10-1993
			FI 931161 A		18-09-1993
			ZA 9301870 A		06-10-1993
			AU 3522293 A		06-01-1994
			BR 9300848 A		25-01-1994
			MX 9301445 A		31-01-1994
			NO 930952 A		03-01-1994
EP 386638	A	12-09-1990	DE 3907391 A		13-09-1990
			AT 87020 T		15-04-1993
			AU 624926 B		25-06-1992
			AU 5182390 A		09-10-1990
			CA 2047697 A		09-09-1990
			DK 386638 T		26-07-1993
			WO 9010682 A		20-09-1990
			EP 0462160 A		27-12-1991
			IE 63931 B		28-06-1995
			JP 2834319 B		09-12-1998
			JP 4503965 T		16-07-1992
			MX 174249 B		02-05-1994
			US 5318954 A		07-06-1994
EP 31687	A	08-07-1981	AU 548350 B		05-12-1985
			AU 6579481 A		22-07-1981
			AU 543680 B		26-04-1985
			AU 6579781 A		22-07-1981
			CA 1154440 A		27-09-1983
			CA 1154014 A		20-09-1983
			EP 0031252 A		01-07-1981
			WO 8101845 A		09-07-1981
			WO 8101844 A		09-07-1981
			JP 1004815 B		26-01-1989
			JP 56501514 T		22-10-1981
			JP 56501515 T		22-10-1981
			JP 63051060 B		12-10-1988
			US 4499319 A		12-02-1985
			US 5008465 A		16-04-1991
			US 4605806 A		12-08-1986
			US 4590294 A		20-05-1986
			US 4749808 A		07-06-1988
			ZA 8008016 A		28-07-1982
			ZA 8008018 A		28-07-1982
EP 31252	A	01-07-1981	AU 548350 B		05-12-1985
			AU 6579481 A		22-07-1981
			AU 543680 B		26-04-1985
			AU 6579781 A		22-07-1981
			CA 1154440 A		27-09-1983
			CA 1154014 A		20-09-1983
			EP 0031687 A		08-07-1981
			WO 8101845 A		09-07-1981
			WO 8101844 A		09-07-1981
			JP 1004815 B		26-01-1989
			JP 56501514 T		22-10-1981
			JP 56501515 T		22-10-1981
			JP 63051060 B		12-10-1988

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 98/26137

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 31252	A	US	4499319 A	12-02-1985
		US	5008465 A	16-04-1991
		US	4605806 A	12-08-1986
		US	4590294 A	20-05-1986
		US	4749808 A	07-06-1988
		ZA	8008016 A	28-07-1982
		ZA	8008018 A	28-07-1982