UFRN - Universidade Federal do Rio Grande do Norte

DEE – Departamento de Engenharia Elétrica DCO – Departamento de Comunicações

MSP430 Programação em C

Aula 2 – Módulo de Clock

Ministrantes: Danilo de Santana Pena; José Lenival Gomes de França; Leonardo Duarte de Albuquerque.

- Sistemas de Clock;
- Fontes de Clock e sinais disponíveis;
- Características e configurações do BCM;
- Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controlled Oscilator;
- LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- Exemplo de Configuração para HF.

- Sistemas de Clock;
- ✓ Fontes de Clock e sinais disponíveis;
- ✓ Características e configurações do BCM;
- ✓ Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controlled Oscilator;
- ✓ LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- ✓ Exemplo de Configuração para HF.

- Clock:
 - É um sinal usado para coordenar as ações de dois ou mais circuitos eletrônicos digitais síncronos.

O Basic Clock Module (BCM) é um módulo disponibiliza três sinais de clocks internos para os periféricos e a CPU.

 O BCM permite que o programador faça o balanço entre performance e baixo consumo.

Pode ser configura operar sem qualquer Ressonador ois cristais compone com total externos, Losu auui E DCO Cristal 2 controle r e. Clock Cristal 1 **VLO**

- ✓ Sistemas de Clock;
- Fontes de Clock e sinais disponíveis;
- ✓ Características e configurações do BCM;
- ✓ Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controlled Oscilator;
- ✓ LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- ✓ Exemplo de Configuração para HF.

- O módulo BCM da família x2xx permite 3 ou 4 diferentes fontes de clocks, que são:
 - XT1CLK: Oscilador de baixa/alta frequência onde pode ser usado cristais, fonte externa de 32768 Hz, ressonadores ou fontes de clock externas na faixa de 400Hz a 16MHz;
 - XT2CLK: Oscilador opcional de alta frequência. Nem sempre presente em todas as famílias;
 - VLOCLK: Clock interno de muito baixo consumo (VLO Very Low Power) e baixa frequência, tipicamente 12 KHz;
 - DCOCLK: Oscilador interno digitalmente controlado (DCO).

- Três sinais de clock são disponibilizados pelo BCM
 - MCLK Sinal fornecido à CPU e alguns poucos periféricos;
 - SMCLK Sinal usado nos periféricos em geral;
 - ACLK Sinal Auxiliar aos periféricos.

 Os três sinais são controlados por software e têm registradores individuais que permitem que a frequência seja dividida por 1, 2, 4 e 8;

 O controle dos clocks é feito através dos registradores DCOCTL, BCSCTL1, BCSCTL2 e BCSCTL3;

O seguinte diagrama dá uma idéia superficial do BCM.

OBS.: Para um diagrama de blocos mais detalhado, checar datasheet.

- ✓ Sistemas de Clock;
- ✓ Fontes de Clock e sinais disponíveis;
- ✓ Características e configurações do BCM;
- ✓ Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controlled Oscilator;
- ✓ LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- ✓ Exemplo de Configuração para HF.

Características e configurações do BCM

Por default, após um PUC, MCLK e SMCLK são alimentados por DCO a uma frequência aproximadamente igual a 1.1 MHz, e ACLK por LFXT1CLK em LF mode com uma capacitâcia interna de 6pF, caso não exista cristal, o VLO será usado automaticamente.

Características e configurações do BCM

Em geral:

- O VLO é utilizado para sincronia de módulos que não necessitem de um tempo preciso, apenas devem funcionar sincronizados entre si;
- O LFXT1CLK quando se precisa de acurácia em baixa ou alta frequência;
- O DCO quando não se tem um clock externo e quer se trabalhar a alta frequência, com uma boa acurácia e o desperdício de energia com o clock não será problema, mas não tanta acurácia quanto a de um cristal;
- Mais de um é utilizado, e pode só ser ligado quando necessário.

- ✓ Sistemas de Clock;
- ✓ Fontes de Clock e sinais disponíveis;
- ✓ Características e configurações do BCM;
- ✓ Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controled Oscilator;
- ✓ LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- ✓ Exemplo de Configuração para HF.

Fontes de Clock

VLO – Very Low-Frequency Oscilator;

DCO – Digitally Controled Oscilator;

LFXT1 Oscillator.

- ✓ Sistemas de Clock;
- ✓ Fontes de Clock e sinais disponíveis;
- ✓ Características e configurações do BCM;
- ✓ Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controlled Oscilator;
- ✓ LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- ✓ Exemplo de Configuração para HF.

VLO – Very Low-Frequency Oscilator

- Fonte interna de simples configuração, não permite calibração e muito sensível a variações de temperatura ou alimentação;
- O VLO é selecionado fazendo as flags LFXT1Sx = 10 e XTS = 0. É necessário resetar a flag de falha no oscilador OFIFG = 0 no SR;
- A flag OSCOFF desliga o VLO para LPM4;
- O oscilador LFXT1 é desabilitado quando VLO está ativo, diminuindo assim o consumo de corrente.

internal very low power, low frequency oscillator (VLO)

PARAMETER		TEST CONDITIONS	TA	VCC	MIN	TYP	MAX	UNIT
f _{VLO}	VLO frequency		-40-85°C	2.2 V/3 V	4	12	20	kHz
			105°C	2.2 V/3 V			22	
df _{VLO} /dT	VLO frequency temperature drift	(see Note 1)	I: -40-85°C T: -40-105°C	2.2 V/3 V		0.5		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift	(see Note 2)	25°C	1.8V - 3.6V		4		%/V

Exemplo 01 para o G2231

#include <msp430g2231.h>

```
void main(void)
// Stop watchdog timer
WDTCTL = WDTPW + WDTHOLD;
// Clock setup:
// -----
// Low frequency mode ON
BCSCTL1 \&=(\sim XTS);
// VLO --> MCLK
BCSCTL2 |= SELM_3;
// LFXT1 = VLO
BCSCTL3 |= LFXT1S_2;
// Clear OSCFault flag
IFG1 &= ~OFIFG;
// -----
```

- ✓ Sistemas de Clock;
- ✓ Fontes de Clock e sinais disponíveis;
- ✓ Características e configurações do BCM;
- ✓ Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controlled Oscilator;
- ✓ LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- ✓ Exemplo de Configuração para HF.

DCO – Digitally-Controled Oscilator

- Oscilador interno de frequência ajustável;
- Geralmente na faixa de 120 KHz a 20 MHz;
- A frequência é ajustada por software:
 - RSELx permite selecionar entre 16 valores nominais;
 - DCOx permite 8 variações de aproximadamente 10% na frequência nominal;
 - MODx permite um ajuste fino, geralmente feito com base num cristal ou outra fonte externa confiável;
 - Consultar o datasheet para informações a respeito dos bits MODx.
- Alguns micros já tem definidas em constantes a configuração para frequências de 1MHz, 2MHz, 8 MHz e 16MHz.

Exemplo 02 para o G2231

#include <msp430g2231.h>

```
void main(void)
// Stop watchdog timer
WDTCTL = WDTPW + WDTHOLD;
// Clock setup:
// ------
// Set range
BCSCTL1 = CALBC1_1MHZ;
// Set DCO step + modulation
DCOCTL = CALDCO_1MHZ;
// Direção do PORT1
P1DIR = BIT0;
```

Exemplo 03 para o G2231

#include <msp430g2231.h>

- ✓ Sistemas de Clock;
- ✓ Fontes de Clock e sinais disponíveis;
- ✓ Características e configurações do BCM;
- ✓ Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controlled Oscilator;
- ✓ LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- ✓ Exemplo de Configuração para HF.

LFXT1 Oscillator

- É comumente usado em aplicações de baixas frequências ou para calibração do DCO;
- Alguns dispositivos também permitem fontes externas de alta frequência;
- É sempre necessário checar algumas configurações do oscilador externo e algumas internas ao MCU como:
 - Valores de capacitâncias, impedâncias, modo de operação do LFXTT1(Alta ou Baixa frequência), tensão de alimentação e função dos pinos P2.6&7.

- ✓ Sistemas de Clock;
- ✓ Fontes de Clock e sinais disponíveis;
- ✓ Características e configurações do BCM;
- ✓ Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controlled Oscilator;
- ✓ LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- ✓ Exemplo de Configuração para HF.

Exemplo de configuração para LF

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
f _{LFXT1,LF}	LFXT1 oscillator crystal frequency, LF mode 0, 1	XTS = 0, LFXT1Sx = 0 or 1	1.8 V to 3.6 V		32768		Hz	
fLFXT1,LF,logic	LFXT1 oscillator logic level square wave input frequency, LF mode	XTS = 0, XCAPx = 0, LFXT1Sx = 3	1.8 V to 3.6 V	10000	32768	50000	Hz	
OA _{LF}	Oscillation allowance for LF crystals	XTS = 0, LFXT1Sx = 0, f _{LFXT1,LF} = 32768 Hz, C _{L,eff} = 6 pF			500		kΩ	
		XTS = 0, LFXT1Sx = 0, f _{LFXT1,LF} = 32768 Hz, C _{L,eff} = 12 pF			200			
$C_{L,eff}$	Integrated effective load capacitance, LF mode ⁽²⁾	XTS = 0, XCAPx = 0			1			
		XTS = 0, XCAPx = 1			5.5		pF	
		XTS = 0, XCAPx = 2			8.5			
		XTS = 0, XCAPx = 3			11			
Duty cycle	LF mode	XTS = 0, Measured at P2.0/ACLK, f _{LFXT1,LF} = 32768 Hz	2.2 V	30	50	70	%	
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽³⁾	XTS = 0, XCAPx = 0, LFXT1Sx = 3 ⁽⁴⁾	2.2 V	10		10000	Hz	

- ✓ Sistemas de Clock;
- ✓ Fontes de Clock e sinais disponíveis;
- ✓ Características e configurações do BCM;
- ✓ Fontes de Clock;
- ✓ VLO Very Low-Frequency Oscilator;
- ✓ DCO Digitally Controlled Oscilator;
- ✓ LFXT1 Oscillator;
- ✓ Exemplo de Configuração para LF;
- Exemplo de Configuração para HF.

Exemplo de configuração para HF

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{LFXT1,HF0}	LFXT1 oscillator crystal frequency, HF mode 0	XTS = 1, LFXT1Sx = 0	1.8 V to 3.6 V	0.4		1	MHz
f _{LFXT1,HF1}	LFXT1 oscillator crystal frequency, HF mode 1	XTS = 1, LFXT1Sx = 1	1.8 V to 3.6 V	1		4	MHz
f _{LFXT1,HF2}	LFXT1 oscillator crystal frequency, HF mode 2	XTS = 1, LFXT1Sx = 2	1.8 V to 3.6 V	2		10	MHz
			2.2 V to 3.6 V	2		12	
			3.0 V to 3.6 V	2		16	
fLFXT1,HF,logic	LFXT1 oscillator logic level square-wave input frequency, HF mode	XTS = 1, LFXT1Sx = 3	1.8 V to 3.6 V	0.4		10	
			2.2 V to 3.6 V	0.4		12	MHz
			3.0 V to 3.6 V	0.4		16	
OA _{HF}	Oscillation allowance for HF crystals (see Figure 18 and Figure 19)	$\begin{split} XTS &= 0, \ LFXT1Sx = 0, \\ f_{LFXT1,HF} &= 1 \ MHz, \ C_{L,eff} = 15 \ pF \end{split}$			2700		
		$\begin{split} \text{XTS} &= 0, \text{LFXT1Sx} = 1 \\ \text{f}_{\text{LFXT1,HF}} &= 4 \text{MHz}, \text{C}_{\text{L,eff}} = 15 \text{pF} \end{split}$			800		Ω
		XTS = 0, LFXT1Sx = 2 f _{LFXT1,HF} = 16 MHz, C _{L,eff} = 15 pF			300		
$C_{L,eff}$	Integrated effective load capacitance, HF mode (see Note 1)	XTS = 1 (see Note 2)			1		pF
Duty Cycle	HF mode	XTS = 1, Measured at P1.4/ACLK, f _{LFXT1,HF} = 10 MHz	2.2 V/3 V	40	50	60	%
		XTS = 1, Measured at P1.4/ACLK, f _{LFXT1,HF} = 16 MHz	2.2 V/3 V	40	50	60	70
f _{Fault,HF}	Oscillator fault frequency, HF mode (see Note 4)	XTS = 1, LFXT1Sx = 3 (see Notes 3)	2.2 V/3 V	30		300	kHz

Aplicações

- Spread-Spectrum

"- Computador: Um dispositivo projetado para acelerar e automatizar erros."

Obrigado!!!

Autor desconhecido.