CPSC 340: Machine Learning and Data Mining

Regularization

BONUS SLIDES

"Shrinking" intuition

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.

"Shrinking" intuition

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.
- Shrinkage of the darts :
 - 1. Choose some arbitrary location 'v'.
 - 2. Measure distances from darts to 'v'.

"Shrinking" intuition

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.
- Shrinkage of the darts towards 'v':
 - 1. Choose some arbitrary location 'v'.
 - 2. Measure distances from darts to 'v'.
 - Move misses towards 'v', by small amount proportional to distances.
- If small enough, darts will be closer to center on average.
- In standard L2-regularization, our location 'v' is not arbitrary (it's w=0).
 - The shrinking works even better if 'v' is closer to the centre.
 - But we don't know where the centre is (this is the "true" w).
 - We pick 'v' as the origin because of the Occam's razor ideas (simpler models).

Bonus Slide: Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

Bonus Slide: Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

We need to be cautions about doing this.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-m

Bonus Slide: Predicting 100m times 400 years in the future?

Male 100 m Sprint Prediction

Bonus Slide: Predicting 100m times 400 years in the future?

Male 100 m Sprint Prediction

Bonus Slide: Ockham's Razor vs. No Free Lunch

- Ockham's razor is a problem-solving principle:
 - "Among competing hypotheses, the one with the fewest assumptions should be selected."
 - Suggests we should select linear model.
- Fundamental theorem of ML:
 - If training same error, pick model less likely to overfit.
 - Formal version of Occam's problem-solving principle.
 - Also suggests we should select linear model.
- No free lunch theorem:
 - There exists possible datasets where you should select the green model.

Consistency zone! Converge to best model as n->0, if we use a "universally consistent" method.

Bonus Slide: Application: Climate Models

- Has Earth warmed up over last 100 years? (Consistency zone)
 - Data clearly says 'yes'.

- Will Earth continue to warm over next 100 years? (Really NFL zone)
 - We should be more skeptical about models that predict future events.

Bonus Slide: Application: Climate Models

- So should we all become global warming skeptics?
- If we average over models that overfit in *indepednent* ways, we expect the test error to be lower, so this gives more confidence:

- We should be skeptical of individual models, but agreeing predictions made by models with different data/assumptions are more likely be true.
- If all near-future predictions agree, they are likely to be accurate.
- As we go further in the future, variance of average will be higher.

Bonus Slide: Splines in 1D

- For 1D interpolation, alternative to polynomials/RBFs are splines:
 - Use a polynomial in the region between each data point.
 - Constrain some derivatives of the polynomials to yield a unique solution.
- Most common example is cubic spline:
 - Use a degree-3 polynomial between each pair of points.
 - Enforce that f'(x) and f''(x) of polynomials agree at all point.
 - "Natural" spline also enforces f''(x) = 0 for smallest and largest x.
- Non-trivial fact: natural cubic splines are sum of:
 - Y-intercept.
 - Linear basis.
 - RBFs with $g(\alpha) = \alpha^3$.
 - Different than Gaussian RBF because it increases with distance.

Bonus Slide: Spline in Higher Dimensions

- Splines generalize to higher dimensions if data lies on a grid.
 - For more general ("scattered") data, there isn't a natural generalization.
- Common 2D "scattered" data interpolation is thin-plate splines:
 - Based on curve made when bending sheets of metal.
 - Corresponds to RBFs with $g(\alpha) = \alpha^2 \log(\alpha)$.
- Natural splines and thin-plate splines: special cases of "polyharmonic" splines:
 - Less sensitive to parameters than Gaussian RBF.