Verification of an Optimized NTT Algorithm

Jorge A. Navas, Bruno Dutertre, Ian A. Mason SRI International

VSTTE July 21, 2020

Lattice-Based Cryptography

Current Public-Key Cryptography

- Based on hardness of factorization or computing discrete logarithms
- These can be broken by quantum computers

Lattice-Based Cryptography

- Based on hardness of problems related to finding small vectors in lattices
- Quantum Resistant: No known quantum algorithm solves these problems
- Supports new constructs such as fully homomorphic encryption
- Increasingly practical

A Common Procedure in Lattice-Based Crypto

Polynomial Ring

- \circ We work in $\mathbb{Z}_q[X]/(X^n+1)$ where q is a prime number
- \circ Polynomials are of the form $a_0 + a_1X + \ldots + a_{n-1}X^{n-1}$ (degree at most n-1) where the $a_i \in \mathbb{Z}_q$ are integers modulo q.

Product of Polynomials

• Given
$$f = a_0 + a_1 X + \ldots + a_{n-1} X^{n-1}$$

$$g = b_0 + b_1 X + \ldots + b_{n-1} X^{n-1}$$

their product is $f.g = c_0 + c_1X + \ldots + c_{n-1}X^{n-1}$

where
$$c_i = (\sum_{j+k=i} a_j b_k - \sum_{j+k=n+i} a_j b_k) \bmod q.$$

The Number-Theoretic Transform

Primitive Roots of Unity

- $\circ \omega \in \mathbb{Z}_q$ is a primitive n-th root of unity if $\omega^n = 1$ and $\omega^i \neq 1$ for any i such that 0 < i < n.
- \circ Primitive n-th roots of unity exist iff n divides q-1.

Number-Theoretic Transform

- \circ Assume a fixed ω that's a primitive root of unity
- \circ Given a tuple $a=(a_0,\ldots,a_{n-1})$ in \mathbb{Z}_q^n and $f=a_0+a_1X+\ldots a_{n-1}X^{n-1}$
- \circ Forward transform: NTT(a) is the tuple $\tilde{a} = (\tilde{a}_0, \dots, \tilde{a}_{n-1})$ defined by

$$\tilde{a}_i = \sum_{j=0}^{n-1} a_j \omega^{ij} \mod q = f(\omega^i)$$

Inverse Transform

Inverse

- \circ Since ω is an n-th root of unity, ω^{-1} is one too.
- \circ Inverse transform: $INTT(a_0,\ldots,a_{n-1})=(a'_0,\ldots,a'_{n-1})$ where

$$a'_i = n^{-1} \sum_{j=0}^{n-1} a_j \omega^{-ij} \mod q = n^{-1} f(\omega^{-i}).$$

• Then NTT and INTT are inverses of each other:

INTT(NTT(
$$a_0, ..., a_{n-1}$$
)) = $(a_0, ..., a_{n-1})$
NTT(INTT($a_0, ..., a_{n-1}$)) = $(a_0, ..., a_{n-1})$.

Products in $\mathbb{Z}_q[X]/(X^n+1)$ using the NTT

Input:
$$f = a_0 + a_1 X + \ldots + a_{n-1} X^{n-1}$$

 $g = b_0 + b_1 X + \ldots + b_{n-1} X^{n-1}$
Output: $h = c_0 + c_1 X + \ldots + c_{n-1} X^{n-1}$ such that $h = f.g.$
Procedure:
 $\hat{a} := (a_0, a_1 \psi, \ldots, a_{n-1} \psi^{n-1})$
 $\hat{b} := (b_0, b_1 \psi, \ldots, b_{n-1} \psi^{n-1})$
 $\tilde{a} := \operatorname{NTT}(\hat{a})$
 $\tilde{b} := \operatorname{NTT}(\hat{b})$
 $\tilde{c} := (\tilde{a}_0 \tilde{b}_0, \ldots, \tilde{a}_{n-1} \tilde{b}_{n-1})$
 $\hat{c} := \operatorname{INTT}(\tilde{c})$
 $c := (\hat{c}_0, \hat{c}_1 \psi^{-1}, \ldots, \hat{c}_{n-1} \psi^{-(n-1)})$

where ψ is a new parameter such that $\psi^2 = \omega$.

Fast NTT Computation

```
// Cooley-Tukey variant
void ntt_ct_std2rev(int32_t *a, uint32_t n,
    const uint16_t *p) {
 uint32_t j, s, t, u, d;
 int32_t x, w;
 d = n;
 for (t = 1; t < n; t <<= 1) {
   d >>= 1;
   u = 0;
   for (j = 0; j < t; j++) {
     w = p[t + j]; // w_t^bitrev(j)
     u += 2 * d;
     for (s = u; s < u + d; s++) {
       x = a[s + d] * w;
       a[s + d] = (a[s] - x) % Q;
       a[s] = (a[s] + x) % Q;
```

- \circ Specialized for the case where n is a power of two
- \circ Need $O(n \log n)$ multiplications in \mathbb{Z}_q
- \circ Powers of ω are precomputed and stored in array p

Accelerating Reductions Modulo q

Issue

 \circ General reduction modulo q requires integer division, which is slow. On Intel Haswell, a 32bit DIV has a latency of 22-29 clock ticks, about 10 times slower than a 32bit MUL.

Possible Optimizations

- Reduce the number of mod q operations (Harvey, 2013)
- \circ Replace mod q operations by faster code since q is a known constant (Warren, 2013)
- o Montgomery's reduction, 1983
- Longa and Naehrig's reduction, 2016

Longa and Naehrig's Reduction

Properties of the Modulus q

- \circ We know that 2n divides q-1 and $n=2^t$ is a power of two
- \circ We can write $q=k.2^m$ where $m\geqslant t+1$ and k is an odd number.
- o For well-chosen q, the constant k is small. A common choice is $q=12289=3.2^{12}+1.$

Reduction

- \circ For an integer $x \in \mathbb{Z}$: red $(x) = k \times (x \mod 2^m) \lfloor x/2^m \rfloor$
- Properties
 - Main property: $red(x) = kx \pmod{q}$
 - Slow growth: $0 \leqslant c \leqslant q-1 \Rightarrow |\operatorname{red}(cx)| \leqslant k|x| + (q-k)$
 - Cheap to compute

Example Fast NTT with Longa/Naehrig

```
// \text{ red}(x * y) \text{ when } Q=12289
static int32_t mul_red(int32_t x, int32_t y) {
 z = (int64_t) x * y; x = z & 4095; y = z >> 12;
  return 3 * x - y;
// Cooley-Tukey variant
void ntt_red_ct_std2rev(int32_t *a, uint32_t n, const int16_t *p) {
  uint32_t j, s, t, u, d;
  int32_t x, y, w;
  d = n;
  for (t = 1; t < n; t <<= 1) {
   d >>= 1;
   u = 0;
    for (j = 0; j < t; j++) {
      w = p[t + j]; // k^{(-1)} w_t^{bitrev}(j)
      u += 2 * d;
      for (s = u; s < u + d; s++) {
       y = a[s];
        x = mul\_red(a[s + d], w);
        a[s] = y + x;
        a[s + d] = y - x;
```

Main issue: Show that there are no integer overflows

Verification

Goals

- \circ Check absence of overflows for n=1024 (also n=512 and n=2048)
- \circ Assumptions on input: $0 \leqslant a[i] \leqslant 12288$ for $i = 0, \dots, n-1$.
- ∘ All constants in p satisfy $-6144 \le p[i] \le 6144$.

Static Analysis Tools we Tried

- Bounded model checking: CBMC does not scale
- Symbolic execution: SAW/Crucible does not scale
- Software model checkers: CPACheckers and SeaHorn/PDR timeout
- Abstract interpretation: SeaHorn/CRAB failed to prove property

Main Issues

- The red function involves bit-shift and masks
- Complex loops and array indexing

Specialized Approach

Abstract Domain: Intervals

Extended with a transfer function for the Longa-Naehrig reduction:

$$red_{\mathcal{I}}([a, b]) = [red(max(b \& \sim 4095, a)), red(min(a | 4095, b))]$$

Array and Indices

- Array domains we tried are too imprecise
- \circ Solution: for a fixed n, all the loops in the NTT procedures are bounded. We just unroll these loops.

SeaHorn Implementation

- Extended CRAB with the new transfer function
- Modified SeaHorn to handle red as an LLVM intrisic
- Use LLVM opt for loop unrolling

SeaHorn Results

		Time (sec)	
Program	Description	Basic	LLVM opt
intt_red1024	inv CT/std2rev, $\psi=1014$	900	9
intt_red1024b	inv CT/rev2std, $\psi=1014$	972	9
ntt_red1024	CT/std2rev, $\psi=1014$	923	9
ntt_red1024b	CT/rev2std, $\psi=1014$	836	9
ntt_red1024c	CT/std2rev	1151	9
ntt_red1024d	CT/rev2std	1258	11
ntt_red1024e	GS/std2rev, $\psi=1014$	8265	10
ntt_red1024f	GS/rev2std, $\psi = 1014$	8115	10

Two versions

- o Basic: extended interval domain + loop unrolling
- LLVM Optimized: aggressive preprocessing with LLVM: inlining and scalar replacement of aggregates (SROA)

Alternative Implementation: Source-Code Rewriting

```
// red_scale(w, a) returns an interval [l, h]
// such that 1 \le red(w * x) \le h for any x in a
extern interval t *red_scale(int64 t w, const interval t *a);
// ntt_red_ct_std2rev modified to operate in the abstract domain (i.e., on intervals)
void abstract_ntt_red_ct_std2rev(interval_t **a, uint32_t n, const int16_t *p) {
 uint32_t j, s, t, u, d;
 interval_t *x, *y, *z;
 int64_t w;
 d = n;
 for (t = 1; t < n; t <<= 1) {
    show_intervals("ct_std2rev", t, a, n); // print intervals and check for overflow
   u = 0;
    for (j = 0; j < t; j++) {
     w = p[t + j]; // w_t^bitrev(j) extended to 64 bits
     u += 2 * d;
      for (s = u; s < u + d; s++) {
       x = a[s + d];
       v = a[s];
        z = red_scale(w, x);
        a[s + d] = sub(y, z);
        a[s] = add(y, z);
  show_intervals("ct_std2rev", t, a, n);
```

Code-Rewriting Results

Program	Description	Time (sec)
intt_red1024	inv CT/std2rev, $\psi=1014$	0.02
intt_red1024b	inv CT/rev2std, $\psi=1014$	0.02
ntt_red1024	CT/std2rev, $\psi=1014$	0.02
ntt_red1024b	CT/rev2std, $\psi=1014$	0.02
ntt_red1024c	CT/std2rev	0.56
ntt_red1024d	CT/rev2std	0.56
ntt_red1024e	GS/std2rev, $\psi=1014$	0.21
ntt_red1024f	GS/rev2std, $\psi=1014$	0.19

More Results and Notes

Generalizations

- \circ For n=1024, the NTT procedures we verified are safe under weaker assumptions (we can use larger bounds on the input).
- \circ For n=1024 we have a generic proof that just assume bounds on p [i] (ntt_red1024c and ntt_red1024d in the tables)
- \circ For n = 2048, the generic proof fails
- \circ But the procedures are safe for n=2048 (we prove this by exhaustively checking every possible value of ψ)

Beyond Static Analysis

- Very hard to get precise enough bounds on a [i] by hand
- This limits applicability of deductive methods

Conclusion

Number-Theoretic Transforms

- Used in practical quantum-resilient cryptographic schemes
- Many optimization proposed to make it faster
- About 10-20 lines of code but challenging for static analysis tools
- o Our solution: loop unrolling, interval analysis, specialized transfer function

Future Work

Full correctness of NTT procedures and polynomial products

Links

- Examples and results: https://github.com/SRI-CSL/NTT
- SeaHorn: https://github.com/seahorn/seahorn
- o CRAB/Clam: https://github.com/seahorn/crab, https://github.com/seahorn/crab-llvm