Computational statistics EM algorithm

Thierry Denœux

February-March 2017

EM Algorithm

- An iterative optimization strategy motivated by a notion of missingness and by consideration of the conditional distribution of what is missing given what is observed.
- Can be very simple to implement. Can reliably find an optimum through stable, uphill steps.
- Difficult likelihoods often arise when data are missing. EM simplifies such problems. In fact, the 'missing data' may not truly be missing: they may be only a conceptual ploy to exploit the EM simplification!

EM algorithm

Description Analysis

Some variants

Facilitating the E-step Facilitating the M-step

Variance estimation Louis' method

SEM algorithm

Bootstrap

Application to Regression models Mixture of regressions Mixture of experts

EM algorithm Description

Analysis

Some variants

Facilitating the E-step
Facilitating the M-step

Variance estimation

SEM algorithm

Application to Regression models Mixture of regressions Mixture of experts

Notation

- Y: Observed variables.
- **Z** : Missing or latent variables.
- X: Complete data X = (Y, Z).
- θ : Unknown parameter.
- $L(\theta)$: observed-data likelihood, short for $L(\theta; \mathbf{y}) = f(\mathbf{y}; \theta)$
- $L_c(\theta)$: complete-data likelihood, short for $L(\theta; \mathbf{x}) = f(\mathbf{x}; \theta)$
- $\ell(\theta), \ell_c(\theta)$: observed and complete-data log-likelihoods.

Notation

- Suppose we seek to maximize $L(\theta)$ with respect to θ .
- Define $Q(\theta, \theta^{(t)})$ to be the expectation of the complete-data log-likelihood, conditional on the observed data $\mathbf{Y} = \mathbf{y}$. Namely

$$Q(\theta, \theta^{(t)}) = \mathbb{E}_{\theta^{(t)}} \{ \ell_c(\theta) \mid \mathbf{y} \}$$

$$= \mathbb{E}_{\theta^{(t)}} \{ \log f(\mathbf{X}; \theta) \mid \mathbf{y} \}$$

$$= \int [\log f(\mathbf{x}; \theta)] f(\mathbf{z}|\mathbf{y}; \theta^{(t)}) d\mathbf{z}$$

where the last equation emphasizes that ${\bf Z}$ is the only random part of ${\bf X}$ once we are given ${\bf Y}={\bf y}$.

The EM Algorithm

Start with $\theta^{(0)}$. Then

- **1 E step**: Compute $Q(\theta, \theta^{(t)})$.
- **2** M step: Maximize $Q(\theta, \theta^{(t)})$ with respect to θ . Set $\theta^{(t+1)}$ equal to the maximizer of Q.
- Return to the E step unless a stopping criterion has been met; e.g.,

$$\ell(\boldsymbol{\theta}^{(t+1)}) - \ell(\boldsymbol{\theta}^{(t)}) \le \epsilon$$

Convergence of the EM Algorithm

- It can be proved that $L(\theta)$ increases after each EM iteration, i.e., $L(\theta^{(t+1)}) \ge L(\theta^{(t)})$ for t = 0, 1, ...
- Consequently, the algorithm converges to a local maximum of $L(\theta)$ if the likelihood function is bounded above.

Mixture of normal and uniform distributions

• Let $\mathbf{Y} = (Y_1, \dots, Y_n)$ be an i.i.d. sample from a mixture of a normal distribution $\mathcal{N}(\mu, \sigma)$ and a uniform distribution $\mathcal{U}([-a, a])$, with pdf

$$f(y;\theta) = \pi \phi(y;\mu,\sigma) + (1-\pi)c, \tag{1}$$

where $\phi(\cdot; \mu, \sigma)$ is the normal pdf, $c = (2a)^{-1}$, π is the proportion of the normal distribution in the mixture and $\theta = (\mu, \sigma, \pi)^T$ is the vector of parameters.

- Typically, the uniform distribution corresponds to outliers in the data. The proportion of outliers in the population is then $1-\pi$.
- We want to estimate θ .

Observed and complete-data likelihoods

- Let $Z_i = 1$ if observation i is not an outlier, $Z_i = 0$ otherwise. We have $Z_i \sim \mathcal{B}(\pi)$.
- The vector $\mathbf{Z} = (Z_1, \dots, Z_n)$ is the missing data.
- Observed-data likelihood:

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f(y_i; \boldsymbol{\theta}) = \prod_{i=1}^{n} [\pi \phi(y_i; \mu, \sigma) + (1 - \pi)c]$$

Complete-data likelihood:

$$L_{c}(\theta) = \prod_{i=1}^{n} f(y_{i}, z_{i}; \theta) = \prod_{i=1}^{n} f(y_{i}|z_{i}; \mu, \sigma) f(z_{i}|\pi)$$
$$= \prod_{i=1}^{n} \left[\phi(y_{i}; \mu, \sigma)^{z_{i}} c^{1-z_{i}} \pi^{z_{i}} (1-\pi)^{1-z_{i}} \right]$$

Derivation of function Q

Complete-data log-likelihood:

$$\ell_c(\boldsymbol{\theta}) = \sum_{i=1}^n z_i \log \phi(y_i; \mu, \sigma) + \left(n - \sum_{i=1}^n z_i\right) \log c + \sum_{i=1}^n \left(z_i \log \pi + (1 - z_i) \log(1 - \pi)\right)$$

• It is linear in the z_i . Consequently, the Q function is simply

$$Q(\theta, \theta^{(t)}) = \sum_{i=1}^{n} z_i^{(t)} \log \phi(y_i; \mu, \sigma) + \left(n - \sum_{i=1}^{n} z_i^{(t)}\right) \log c + \sum_{i=1}^{n} \left(z_i^{(t)} \log \pi + (1 - z_i^{(t)}) \log(1 - \pi)\right)$$

with $z_i^{(t)} = \mathbb{E}_{\boldsymbol{\theta}^{(t)}}[Z_i|y_i].$

EM algorithm

E-step: compute

$$z_i^{(t)} = \mathbb{E}_{\theta^{(t)}}[Z_i|y_i] = \mathbb{P}_{\theta^{(t)}}[Z_i = 1|y_i]$$

$$= \frac{\phi(y_i; \mu^{(t)}, \sigma^{(t)})\pi^{(t)}}{\phi(y_i; \mu^{(t)}, \sigma^{(t)})\pi^{(t)} + c(1 - \pi^{(t)})}$$

M-step: Maximize $Q(\theta, \theta^{(t)})$ We get

$$\pi^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} z_i^{(t)}, \quad \mu^{(t+1)} = \frac{\sum_{i=1}^{n} z_i^{(t)} y_i}{\sum_{i=1}^{n} z_i^{(t)}}$$

$$\sigma^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} z_i^{(t)} (y_i - \mu^{(t+1)})^2}{\sum_{i=1}^{n} z_i^{(t)}}}$$

Remark

- As mentioned before, the EM algorithm finds only a local maximum of $\ell(\theta)$.
- It is easy to find a global maximum: if μ is equal to some v_i and $\sigma = 0$, then $\phi(y_i; \mu, \sigma) = \infty$ and, consequently, $\ell(\theta) = +\infty$.
- We are not interested in these global maxima, because they correspond to degenerate solutions!

Bayesian posterior mode

- Consider a Bayesian estimation problem with likelihood $L(\theta)$ and priori $f(\theta)$.
- The posterior density if proportional to $L(\theta)f(\theta)$. It can also be maximized by the EM algorithm.
- The E-step requires

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) = \mathbb{E}_{\boldsymbol{\theta}^{(t)}} \left\{ \ell_c(\boldsymbol{\theta}) \mid \mathbf{y} \right\} + \log f(\boldsymbol{\theta})$$

- The addition of the log-prior often makes it more difficult to maximize Q during the M-step.
- Some methods can be used to facilitate the M-step in difficult situations (see below).

EM algorithm

Description

Analysis

Some variants

Facilitating the E-step

Facilitating the M-step

Variance estimation

Louis method

SEM algorithm

Bootstrap

Application to Regression models

Mixture of regressions

Mixture of experts

Why does it work?

- Ascent: Each M-step increases the log likelihood.
- Optimization transfer:

$$\ell(\theta) \geq Q(\theta, \theta^{(t)}) + \ell(\theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)}) = G(\theta, \theta^{(t)}).$$

- The last two terms in $G(\theta, \theta^{(t)})$ are constant with respect to θ , so Q and G are maximized at the same θ .
- Further, G is tangent to ℓ at $\theta^{(t)}$, and lies everywhere below ℓ . We say that G is a minorizing function for ℓ .
- EM transfers optimization from ℓ to the surrogate function G, which is more convenient to maximize.

The nature of EM

One-dimensional illustration of EM algorithm as a minorization or optimization transfer strategy. Each E step forms a minorizing function G, and each M step maximizes it to provide an uphill step.

17 / 72

Proof

We have

$$f(z|y;\theta) = \frac{f(x;\theta)}{f(y;\theta)} \Rightarrow f(y;\theta) = \frac{f(x;\theta)}{f(z|y;\theta)}$$

Consequently,

$$\ell(\theta) = \log f(y; \theta) = \underbrace{\log f(x; \theta)}_{\ell_c(\theta)} - \log f(z|y; \theta)$$

• Taking expectations on both sides wrt the conditional distribution of X given Y = y and using $\theta^{(t)}$ for θ :

$$\ell(\theta) = Q(\theta, \theta^{(t)}) - \underbrace{\mathbb{E}_{\theta^{(t)}}[\log f(Z|y; \theta)|y]}_{H(\theta, \theta^{(t)})}$$
(2)

Proof - the minorizing function

• Now, for all $\theta \in \Theta$,

$$H(\theta, \theta^{(t)}) - H(\theta^{(t)}, \theta^{(t)}) = \mathbb{E}_{\theta^{(t)}} \left[\log \frac{f(Z|y; \theta)}{f(Z|y; \theta^{(t)})} | y \right]$$
(3a)

$$\leq \log \mathbb{E}_{\theta^{(t)}} \left[\frac{f(Z|y;\theta)}{f(Z|y;\theta^{(t)})} | y \right] (*) \tag{3b}$$

$$= \log \int f(z|y;\theta)dz = 0$$
 (3c)

(*): from the concavity of the log and Jensen's inequality.

• Hence, for all $\theta \in \Theta$,

$$H(\theta, \theta^{(t)}) \le H(\theta^{(t)}, \theta^{(t)}) = Q(\theta^{(t)}, \theta^{(t)}) - \ell(\theta^{(t)}), \text{ or }$$

$$\ell(\theta) \ge Q(\theta, \theta^{(t)}) + \ell(\theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)}) = G(\theta, \theta^{(t)})$$
(4)

Proof - G is tangent to ℓ at $\theta^{(t)}$

- From (4), $\ell(\theta^{(t)}) = G(\theta^{(t)}, \theta^{(t)})$.
- Now, we can rewrite (4) as

$$Q(\theta^{(t)}, \theta^{(t)}) - \ell(\theta^{(t)}) \ge Q(\theta, \theta^{(t)}) - \ell(\theta), \quad \forall \theta$$

Consequently, $\theta^{(t)}$ maximizes $Q(\theta, \theta^{(t)}) - \ell(\theta)$, hence

$$Q'(\theta, \theta^{(t)})|_{\theta = \theta^{(t)}} - \ell'(\theta)|_{\theta = \theta^{(t)}} = 0$$

and

$$G'(\theta, \theta^{(t)})|_{\theta = \theta^{(t)}} = Q'(\theta, \theta^{(t)})|_{\theta = \theta^{(t)}} = \ell'(\theta)|_{\theta = \theta^{(t)}}.$$

Proof - monotonicity

• From (2),

$$\ell(\theta^{(t+1)}) - \ell(\theta^{(t)}) = \underbrace{Q(\theta^{(t+1)}, \theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)})}_{A} - \underbrace{\left[\underbrace{H(\theta^{(t+1)}, \theta^{(t)}) - H(\theta^{(t)}, \theta^{(t)})}_{B}\right]}$$

- $A \ge 0$ because $\theta^{(t+1)}$ is a maximizer of $Q(\theta, \theta^{(t)})$, and $B \le 0$ because, from (3), $\theta^{(t)}$ is a maximizer of $H(\theta, \theta^{(t)})$.
- Hence,

$$\ell(\theta^{(t+1)}) \ge \ell(\theta^{(t)})$$

EM algorithm

Description

Analysis

Some variants

Facilitating the E-step Facilitating the M-step

Variance estimation Louis' method SEM algorithm Bootstrap

Application to Regression models Mixture of regressions Mixture of experts

EM algorithm

Description

Analysis

Some variants

Facilitating the E-step

Facilitating the M-step

Variance estimation Louis' method SEM algorithm Bootstrap

Application to Regression models Mixture of regressions Mixture of experts

Monte Carlo EM (MCEM)

- Replace the tth E step with
 - ① Draw missing datasets $\mathbf{Z}_1^{(t)}, \dots, \mathbf{Z}_{m^{(t)}}^{(t)}$ i.i.d. from $f(\mathbf{z}|\mathbf{y}; \boldsymbol{\theta}^{(t)})$. Each $\mathbf{Z}_j^{(t)}$ is a vector of all the missing values needed to complete the observed dataset, so $\mathbf{X}_j^{(t)} = (\mathbf{y}, \mathbf{Z}_j^{(t)})$ denotes a completed dataset where the missing values have been replaced by $\mathbf{Z}_j^{(t)}$.
 - **2** Calculate $\hat{Q}^{(t+1)}(\theta, \theta^{(t)}) = \frac{1}{m^{(t)}} \sum_{j=1}^{m^{(t)}} \log f(\mathbf{X}_{j}^{(t)}; \theta)$.
- ullet Then $\hat{Q}^{(t+1)}(heta, heta^{(t)})$ is a Monte Carlo estimate of $Q(heta, heta^{(t)})$.
- ullet The M step is modified to maximize $\hat{Q}^{(t+1)}(oldsymbol{ heta},oldsymbol{ heta}^{(t)}).$
- Increase $m^{(t)}$ as iterations progress to reduce the Monte Carlo variability of \hat{Q} . MCEM will not converge in the same sense as ordinary EM, rather values of $\theta^{(t)}$ will bounce around the true maximum, with a precision that depends on $m^{(t)}$.

EM algorithm

Description

Analysis

Some variants

Facilitating the E-step

Facilitating the M-step

Variance estimation Louis' method SEM algorithm Bootstrap

Application to Regression models Mixture of regressions Mixture of experts

Generalized EM (GEM) algorithm

ullet In the original EM algorithm, $m{ heta}^{(t+1)}$ is a maximizer of $Q(m{ heta},m{ heta}^{(t)})$, i.e.,

$$Q(\boldsymbol{ heta}^{(t+1)}, oldsymbol{ heta}^{(t)}) \geq Q(oldsymbol{ heta}, oldsymbol{ heta}^{(t)})$$

for all θ .

However, to ensure convergence, we only need that

$$Q(\boldsymbol{ heta}^{(t+1)}, \boldsymbol{ heta}^{(t)}) \geq Q(\boldsymbol{ heta}^{(t)}, \boldsymbol{ heta}^{(t)})$$

• Any algorithm that chooses $\theta^{(t+1)}$ at each iteration to guarantee the above condition (without maximizing $Q(\theta, \theta^{(t)})$) is called a Generalized EM (GEM) algorithm.

EM gradient algorithm

- Replace the M step with a single step of Newton's method, thereby approximating the maximum without actually solving for it exactly.
- Instead of maximizing, choose:

$$\begin{aligned} \boldsymbol{\theta}^{(t+1)} &= \boldsymbol{\theta}^{(t)} - \left. \mathbf{Q}''(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})^{-1} \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}} \left. \mathbf{Q}'(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}} \\ &= \boldsymbol{\theta}^{(t)} - \left. \mathbf{Q}''(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})^{-1} \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}} \ell'(\boldsymbol{\theta}^{(t)}) \end{aligned}$$

Ascent is ensured for canonical parameters in exponential families.
 Backtracking can ensure ascent in other cases; inflating steps can speed convergence.

ECM algorithm

- Replaces the M step with a series of computationally simpler conditional maximization (CM) steps.
- Call the collection of simpler CM steps after the tth E step a CM cycle. Thus, the tth iteration of ECM is comprised of the tth E step and the tth CM cycle.
- Let S denote the total number of CM steps in each CM cycle.

ECM algorithm (continued)

• For $s=1,\ldots,S$, the sth CM step in the tth cycle requires the maximization of $Q(\theta,\theta^{(t)})$ subject to (or conditional on) a constraint, say

$$\mathsf{g}_s(\theta) = \mathsf{g}_s(\theta^{(t+(s-1)/S)})$$

where $\theta^{(t+(s-1)/S)}$ is the maximizer found in the (s-1)th CM step of the current cycle.

- When the entire cycle of S steps of CM has been completed, we set $\theta^{(t+1)} = \theta^{(t+S/S)}$ and proceed to the E step for the (t+1)th iteration.
- ECM is a GEM algorithm, since each CM step increases Q.
- The art of constructing an effective ECM algorithm lies in choosing the constraints cleverly.

Choice 1: Iterated Conditional Modes / Gauss-Seidel

- Partition θ into S subvectors, $\theta = (\theta_1, \dots, \theta_S)$.
- In the sth CM step, maximize Q with respect to θ_s while holding all other components of θ fixed.
- This amounts to the constraint induced by the function

$$g_s(\theta) = (\theta_1, \ldots, \theta_{s-1}, \theta_{s+1}, \ldots, \theta_S).$$

Choice 2

- At the sth CM step, maximize Q with respect to all other components of θ while holding θ_s fixed.
- Then $g_s(\theta) = \theta_s$.
- Additional systems of constraints can be imagined, depending on the particular problem context.
- A variant of ECM inserts an E step between each pair of CM steps, thereby updating Q at every stage of the CM cycle.

EM algorithm

Description

Analysis

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method SEM algorithm Bootstrap

Application to Regression models Mixture of regressions Mixture of experts

Variance of the MLE

- Let $\widehat{\boldsymbol{\theta}}$ be the MLE of $\boldsymbol{\theta}$.
- As $n \to \infty$, the limiting distribution of $\widehat{\theta}$ is $\mathcal{N}(\theta^*, I(\theta^*)^{-1})$, where θ^* is the true value of θ , and

$$I(\boldsymbol{\theta}) = \mathbb{E}[\ell'(\boldsymbol{\theta})\ell'(\boldsymbol{\theta})^T] = -\mathbb{E}[\ell''(\boldsymbol{\theta})]$$

is the expected Fisher information matrix (the second equality holds under some regularity conditions).

- $I(\theta^*)$ can be estimated by $I(\widehat{\theta})$, or by $-\ell''(\widehat{\theta}) = I_{obs}(\widehat{\theta})$ (observed information matrix).
- Standard error estimates can be obtained by computing the square roots of the diagonal elements of $I_{obs}(\widehat{\theta})^{-1}$.

Obtaining variance estimates

- The EM algorithm allows us to estimate $\widehat{\theta}$, but it does not directly provide an estimate of $I(\theta^*)$.
- Direct computation of $I(\widehat{\theta})$ or $I_{obs}(\widehat{\theta})$ is often difficult.
- Main methods:
 - Louis' method
 - Supplemented EM (SEM) algorithm
 - Bootstrap

EM algorithm

Description

Analysis

Some variants

Facilitating the E-step

Facilitating the M-ster

Variance estimation Louis' method SEM algorithm

Application to Regression models
Mixture of regressions
Mixture of experts

Missing information principle

We have seen that

$$f(\mathbf{z}|\mathbf{y};\boldsymbol{\theta}) = \frac{f(\mathbf{x};\boldsymbol{\theta})}{f(\mathbf{y};\boldsymbol{\theta})},$$

from which we get

$$\ell(\boldsymbol{\theta}) = \ell_c(\boldsymbol{\theta}) - \log f(\boldsymbol{z}|\boldsymbol{y}; \boldsymbol{\theta}).$$

 Differentiating twice and negating both sides, then taking expectations over the conditional distribution of X given y,

$$\underbrace{-\ell''(\boldsymbol{\theta})}_{\hat{\imath}_{\mathsf{Y}}(\boldsymbol{\theta})} = \underbrace{\mathbb{E}\left[-\ell''_{c}(\boldsymbol{\theta})|\mathbf{y}\right]}_{\hat{\imath}_{\mathsf{X}}(\boldsymbol{\theta})} - \underbrace{\mathbb{E}\left[-\frac{\partial^{2}\log f(\mathbf{z}|\mathbf{y};\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}}|\mathbf{y}\right]}_{\hat{\imath}_{\mathbf{z}|\mathsf{Y}}(\boldsymbol{\theta})}$$

where

- $\hat{\imath}_{Y}(\theta)$ is the observed information,
- $oldsymbol{\hat{\imath}_{\mathsf{X}}}(heta)$ is the complete information, and
- $\hat{\imath}_{\mathsf{Z}|\mathsf{Y}}(\theta)$ is the missing information.

Louis' method

- Computing $\hat{\imath}_{\mathbf{X}}(\theta)$ and $\hat{\imath}_{\mathbf{Z}|\mathbf{Y}}(\theta)$ is sometimes easier than computing $-\ell''(\theta)$ directly
- We can show that

$$\hat{\imath}_{\mathsf{Z}|\mathsf{Y}}(\theta) = \mathsf{Var}[S_{\mathsf{Z}|\mathsf{Y}}(\theta)],$$

where the variance is taken w.r.t. $\boldsymbol{Z}|\boldsymbol{y}$, and

$$S_{\mathbf{Z}|\mathbf{Y}}(\boldsymbol{\theta}) = \frac{\partial \log f(\mathbf{z}|\mathbf{y}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

is the conditional score.

• As the expected score is zero at $\widehat{\theta}$, we have

$$\widehat{\imath}_{\mathbf{Z}|\mathbf{Y}}(\widehat{\boldsymbol{\theta}}) = \int S_{\mathbf{Z}|\mathbf{Y}}(\widehat{\boldsymbol{\theta}}) S_{\mathbf{Z}|\mathbf{Y}}(\widehat{\boldsymbol{\theta}})^{T} \log f(\mathbf{z}|\mathbf{y};\widehat{\boldsymbol{\theta}}) d\mathbf{z}$$

Monte Carlo approximation

- When they cannot be computed analytically, $\hat{\imath}_{\mathbf{X}}(\theta)$ and $\hat{\imath}_{\mathbf{Z}|\mathbf{Y}}(\theta)$ can sometimes be approximated by Monte Carlo simulation.
- Method: generate simulated datasets $\mathbf{x}_j = (\mathbf{y}, \mathbf{z}_j), j = 1, \dots, N$, where \mathbf{y} is the observed dataset, and the \mathbf{z}_j are imputed missing datasets drawn from $f(\mathbf{z}|\mathbf{y};\theta)$
- Then,

$$\hat{\imath}_{\mathbf{X}}(\theta) pprox rac{1}{N} \sum_{j=1}^{N} -rac{\partial^2 \log f(\mathbf{x}_j; \mathbf{\theta})}{\partial \mathbf{ heta} \partial \mathbf{ heta} \partial \mathbf{ heta}^T}$$

and $\hat{\imath}_{\mathsf{Z}|\mathsf{Y}}(\theta)$ is approximated by the sample variance of the values

$$\frac{\partial \log f(\boldsymbol{z}_j|\boldsymbol{y};\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

Overview

EM algorithm

Description

Analysis

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation

Louis' method

SEM algorithm

Bootstrap

Application to Regression models Mixture of regressions Mixture of experts

EM mapping

ullet Let $oldsymbol{\Psi}$ denotes the EM mapping, defined by

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{\Psi}(oldsymbol{ heta}^{(t)})$$

ullet From the convergence of EM, $\widehat{m{ heta}}$ is a fixed point:

$$\widehat{\boldsymbol{\theta}} = \boldsymbol{\Psi}(\widehat{\boldsymbol{\theta}}).$$

• The Jacobian matrix of Ψ is the $p \times p$ matrix

$$\Psi'(\theta) = \left(\frac{\partial \Psi_i(\theta)}{\partial \theta_j}\right).$$

It can be shown that

$$\boldsymbol{\Psi}'(\widehat{\boldsymbol{\theta}})^{T} = \boldsymbol{\hat{\imath}}_{\boldsymbol{\mathsf{Z}}|\boldsymbol{\mathsf{Y}}}(\widehat{\boldsymbol{\theta}})\boldsymbol{\hat{\imath}}_{\boldsymbol{\mathsf{X}}}(\widehat{\boldsymbol{\theta}})^{-1}$$

Using $\Psi'(heta)$ for variance estimation

From the missing information principle,

$$\begin{split} \boldsymbol{\hat{\imath}_{Y}}(\widehat{\boldsymbol{\theta}}) &= \boldsymbol{\hat{\imath}_{X}}(\widehat{\boldsymbol{\theta}}) - \boldsymbol{\hat{\imath}_{Z|Y}}(\widehat{\boldsymbol{\theta}}) \\ &= \left[\mathbf{I} - \boldsymbol{\hat{\imath}_{Z|Y}}(\widehat{\boldsymbol{\theta}}) \boldsymbol{\hat{\imath}_{X}}(\widehat{\boldsymbol{\theta}})^{-1} \right] \boldsymbol{\hat{\imath}_{X}}(\widehat{\boldsymbol{\theta}}) \\ &= \left[\mathbf{I} - \boldsymbol{\Psi}'(\widehat{\boldsymbol{\theta}})^{T} \right] \boldsymbol{\hat{\imath}_{X}}(\widehat{\boldsymbol{\theta}}). \end{split}$$

Hence,

$$\widehat{m{\imath}}_{m{Y}}(\widehat{m{ heta}})^{-1} = \widehat{m{\imath}}_{m{X}}(\widehat{m{ heta}})^{-1} \left[m{I} - m{\Psi}'(\widehat{m{ heta}})^T
ight]^{-1}$$

From the equality

$$(I-P)^{-1} = (I-P+P)(I-P)^{-1} = I+P(I-P)^{-1},$$

we get

$$\widehat{\imath}_{\mathbf{Y}}(\widehat{\boldsymbol{\theta}})^{-1} = \widehat{\imath}_{\mathbf{X}}(\widehat{\boldsymbol{\theta}})^{-1} \left\{ \mathbf{I} + \mathbf{\Psi}'(\widehat{\boldsymbol{\theta}})^{T} \left[\mathbf{I} - \mathbf{\Psi}'(\widehat{\boldsymbol{\theta}})^{T} \right]^{-1} \right\}.$$
 (5)

<□> (집> (집) (집) (집) 및 이익()

Estimation of $\Psi'(\widehat{\boldsymbol{\theta}})$

• Ler r_{ij} be the element (i,j) of $\Psi'(\widehat{\theta})$. By definition,

$$r_{ij} = \frac{\partial \Psi_{i}(\widehat{\boldsymbol{\theta}})}{\partial \theta_{j}}$$

$$= \lim_{\theta_{j} \to \widehat{\theta}_{j}} \frac{\Psi_{i}(\widehat{\theta}_{1}, \dots, \widehat{\theta}_{j-1}, \theta_{j}, \widehat{\theta}_{j+1}, \dots, \widehat{\theta}_{p}) - \Psi_{i}(\widehat{\boldsymbol{\theta}})}{\theta_{j} - \widehat{\theta}_{j}}$$

$$= \lim_{t \to \infty} \frac{\Psi_{i}(\boldsymbol{\theta}^{(t)}(j)) - \Psi_{i}(\widehat{\boldsymbol{\theta}})}{\theta_{j}^{(t)} - \widehat{\theta}_{j}} = \lim_{t \to \infty} r_{ij}^{(t)}$$

where $\theta^{(t)}(j) = (\widehat{\theta}_1, \dots, \widehat{\theta}_{i-1}, \theta_i^{(t)}, \widehat{\theta}_{i+1}, \dots, \widehat{\theta}_p)$, and $(\theta_i^{(t)})$, $t=1,2,\ldots$ is a sequence of values converging to $\widehat{\theta}_i$.

• Method: compute the $r_{ii}^{(t)}$, t = 1, 2, ... until they stabilize to some values. Then compute $\hat{\imath}_{\mathbf{Y}}(\hat{\theta})^{-1}$ using (5).

SEM algorithm

- **1** Run the EM algorithm to convergence, finding $\widehat{\theta}$.
- ② Restart the algorithm from some $\theta^{(0)}$ near $\widehat{\theta}$. For $t=0,1,2,\ldots$
 - $oldsymbol{0}$ Take a standard E step and M step to produce $oldsymbol{ heta}^{(t+1)}$ from $oldsymbol{ heta}^{(t)}$.
 - **2** For j = 1, ..., p:
 - Define $\theta^{(t)}(j) = (\hat{\theta}_1, \dots, \hat{\theta}_{j-1}, \theta_j^{(t)}, \hat{\theta}_{j+1}, \dots, \hat{\theta}_p)$, and treating it as the current estimate of θ , run one iteration of EM to obtain $\Psi(\theta^{(t)}(j))$.
 - Obtain the ratio

$$r_{ij}^{(t)} = \frac{\Psi_i(\boldsymbol{\theta}^{(t)}(j)) - \hat{\theta}_i}{\theta_j^{(t)} - \hat{\theta}_j}$$

for
$$i=1,\ldots,p$$
. (Recall that $\Psi(\widehat{m{ heta}})=\widehat{m{ heta}}.)$

- **3** Stop when all $r_{ij}^{(t)}$ have converged
- **3** The (i,j)th element of $\Psi'(\widehat{\theta})$ equals $\lim_{t\to\infty} r_{ij}^{(t)}$. Use the final estimate of $\Psi'(\widehat{\theta})$ to get the variance.

Overview

EM algorithm

Description

Analysis

Some variants

Facilitating the E-step

Facilitating the M-step

Variance estimation

Louis' method SEM algorithm

Bootstrap

Application to Regression models Mixture of regressions Mixture of experts

Principle

- Consider the case of iid data $\mathbf{y} = (\mathbf{w}_1, \dots, \mathbf{w}_n)$
- If we knew the distribution of the W_i , we could
 - generate many samples y_1, \ldots, y_N ,
 - $m{egin{array}{l} m{eta} \end{array}}$ compute the ML estimate $m{ heta}_j$ of $m{ heta}$ from each sample $m{y}_j$, and
 - estimate the variance of $\widehat{\theta}$ by the sample variance of the estimates $\widehat{\theta}_1,\ldots,\widehat{\theta}_N.$
- Bootstrap principle: use the empirical distribution in place of the true distribution of the \mathbf{W}_i

Algorithm

- Calculate $\widehat{\boldsymbol{\theta}}_{EM}$ using a suitable EM approach applied to $\boldsymbol{y} = (\boldsymbol{w}_1, \dots, \boldsymbol{w}_n)$. Let j = 1 and set $\widehat{\boldsymbol{\theta}}_j^* = \widehat{\boldsymbol{\theta}}_{EM}$.
- ② Increment j. Sample pseudo-data $\mathbf{y}_{j}^{*} = (\mathbf{w}_{j1}^{*}, \dots, \mathbf{w}_{jn}^{*})$ at random from $(\mathbf{w}_{1}, \dots, \mathbf{w}_{n})$ with replacement.
- **3** Calculate $\hat{\theta}_j^*$ by applying the same EM approach to the pseudo-data \mathbf{y}_i^*
- Stop if j = B (typically, $B \ge 1000$); otherwise return to step 2.

The collection of parameter estimates $\widehat{\boldsymbol{\theta}}_1^*, \dots, \widehat{\boldsymbol{\theta}}_B^*$ can be used to estimate the variance of $\widehat{\boldsymbol{\theta}}$,

$$\widehat{\mathsf{Var}}(\widehat{\boldsymbol{\theta}}) = \frac{1}{B} \sum_{i=1}^{B} (\widehat{\boldsymbol{\theta}}_{j}^{*} - \overline{\widehat{\boldsymbol{\theta}}^{*}}) (\widehat{\boldsymbol{\theta}}_{j}^{*} - \overline{\widehat{\boldsymbol{\theta}}^{*}})^{\mathsf{T}},$$

where $\overline{\widehat{m{ heta}}^*}$ is the sample mean of $\widehat{m{ heta}}_1^*,\dots,\widehat{m{ heta}}_{B}^*$.

Pros and cons of the bootstrap

- Advantages:
 - The method is very general, complex analytical derivations are avoided.
 - Allows the estimation of other aspects of the sampling distribution of $\widehat{\theta}$, such as expectation (bias), quantiles, etc.
- ② Drawback: bootstrap embeds the EM loop in a second loop of B iterations. May be computationally burdensome when the EM algorithm is slow (because, e.g., of a high proportion of missing data, or high dimensionality).

Overview

EM algorithm

Description

Analysis

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation Louis' method SEM algorithm

Application to Regression models

Mixture of regression Mixture of experts

Overview

EM algorithm

Description

Analysis

Some variants

Facilitating the E-step

Facilitating the M-step

Variance estimation Louis' method SEM algorithm

Application to Regression models
Mixture of regressions
Mixture of experts

Introductory example

1996 GNP and Emissions Data

Introductory example (continued)

- The data in the previous slide do not show any clear linear trend.
- However, there seem to be several groups for which a linear model would be a reasonable approximation.
- How to identify those groups and the corresponding linear models?

Model

- Model: the response variable Y depends on the input variable X in different ways, depending on a latent variable Z. (Beware: we have switched back to the classical notation for regression models!)
- This model is called mixture of regressions or switching regressions. It has been widely studied in the econometrics literature.
- Model:

$$Y = \begin{cases} \beta_1^T X + \epsilon_1, \ \epsilon_1 \sim \mathcal{N}(0, \sigma_1) & \text{if } Z = 1, \\ \vdots \\ \beta_K^T X + \epsilon_K, \ \epsilon_K \sim \mathcal{N}(0, \sigma_K) & \text{if } Z = K. \end{cases}$$

with
$$X = (1, X_1, ..., X_p)$$
, so

$$f(y|X=x) = \sum_{k=1}^{K} \pi_k \phi(y; \beta^T x, \sigma_k)$$

Observed and complete-data likelihoods

Observed-data likelihood:

$$L(\theta) = \prod_{i=1}^{N} f(y_i|x_i;\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k \phi(y_i; \beta_k^T x_i, \sigma_k)$$

Complete-data likelihood:

$$L_{c}(\theta) = \prod_{i=1}^{N} f(y_{i}, z_{i} | x_{i}; \theta) = \prod_{i=1}^{N} f(y_{i} | x_{i}, z_{i}; \theta) p(z_{i} | \pi)$$

$$= \prod_{i=1}^{N} \prod_{k=1}^{K} \phi(y_{i}; \beta_{k}^{T} x_{i}, \sigma_{k})^{z_{ik}} \pi_{k}^{z_{ik}},$$

with $z_{ik} = 1$ if $z_i = k$ and $z_{ik} = 0$ otherwise.

Derivation of function Q

Complete-data log-likelihood:

$$\ell_c(\theta) = \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik} \log \phi(y_i; \beta_k^T x_i, \sigma_k) + \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik} \log \pi_k$$

• It is linear in the z_{ik} . Consequently, the Q function is simply

$$Q(\theta, \theta^{(t)}) = \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik}^{(t)} \log \phi(y_i; \beta_k^T x_i, \sigma_k) + \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik}^{(t)} \log \pi_k$$

with
$$z_{ik}^{(t)} = \mathbb{E}_{\theta^{(t)}}[Z_{ik}|y_i] = \mathbb{P}_{\theta^{(t)}}[Z_i = k|y_i].$$

EM algorithm

E-step: compute

$$z_{ik}^{(t)} = \mathbb{P}_{\theta^{(t)}}[Z_i = k|y_i]$$

$$= \frac{\phi(y_i; \beta_k^{(t)T} x_i, \sigma_k^{(t)}) \pi_k^{(t)}}{\sum_{\ell=1}^{K} \phi(y_i; \beta_\ell^{(t)T} x_i, \sigma_\ell^{(t)}) \pi_\ell^{(t)}}$$

• M-step: Maximize $Q(\theta, \theta^{(t)})$. As before, we get

$$\pi_k^{(t+1)} = \frac{N_k^{(t)}}{N},$$

with
$$N_k^{(t)} = \sum_{i=1}^{N} z_{ik}^{(t)}$$
.

M-step: update of the β_k and σ_k

• In $Q(\theta, \theta^{(t)})$, the term depending on β_k is

$$SS_k = \sum_{i=1}^N z_{ik}^{(t)} (y_i - \beta_k^T x_i)^2.$$

• Minimizing SS_k w.r.t. β_k is a weighted least-squares (WLS) problem. In matrix form,

$$SS_k = (\boldsymbol{y} - \boldsymbol{X}\beta_k)^T \boldsymbol{W}_k (\boldsymbol{y} - \boldsymbol{X}\beta_k)$$

with $W_k = diag(z_{i1}^{(t)}, ..., z_{iK}^{(t)}).$

M-step: update of the β_k and σ_k (continued)

• The solution is the WLS estimate of β_k :

$$\beta_k^{(t+1)} = (\boldsymbol{X}^T \boldsymbol{W}_k \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W}_k \boldsymbol{y}$$

• The value of σ^k minimizing $Q(\theta, \theta^{(t)})$ is the weighted average of the residuals.

$$\sigma_k^{2(t+1)} = \frac{1}{N_k^{(t)}} \sum_{i=1}^N z_{ik}^{(t)} (y_i - \beta_k^{(t+1)T} x_i)^2$$

$$= \frac{1}{N_k^{(t)}} (\mathbf{y} - \mathbf{X} \beta_k^{(t+1)})^T \mathbf{W}_k (\mathbf{y} - \mathbf{X} \beta_k^{(t+1)})$$

Mixture of regressions using mixtools

```
library(mixtools)
data(CO2data)
attach(CO2data)
CO2reg <- regmixEM(CO2, GNP)
summary(CO2reg)
ii1<-CO2reg$posterior>0.5
ii2<-CO2reg$posterior<=0.5
text(GNP[ii1],CO2[ii1],country[ii1],col='red')
text(GNP[Cii2],CO2[ii2],country[ii2],col='blue')
abline(CO2reg$beta[,1],col='red')
abline(CO2reg$beta[,2],col='blue')
```

Best solution in 10 runs

Increase of log-likelihood

Another solution (with lower log-likelihood)

Increase of log-likelihood

Overview

EM algorithm

Description

Analysis

Some variants
Facilitating the E-step
Facilitating the M-step

Variance estimation Louis' method SEM algorithm Bootstrap

Application to Regression models

Mixture of regressions

Mixture of experts

Making the mixing proportions predictor-dependent

- An interesting extension of the previous model is to assume the proportions π_k to be partially explained by a vector of concomitant variables W.
- If W = X, we can approximate the regression function by different linear functions in different regions of the predictor space.
- In ML, this method is referred to as the mixture of experts methods.
- A useful parametric form for π_k that ensures $\pi_k \geq 0$ and $\sum_{k=1}^K \pi_k = 1$ is the multinomial logit model

$$\pi_k(w, \alpha) = \frac{\exp(\alpha_k^T w)}{\sum_{\ell=1}^K \exp(\alpha_\ell^T w)}$$

with $\alpha = (\alpha_1, \dots, \alpha_K)$ and $\alpha_1 = 0$.

EM algorithm

• The Q function is the same as before, except that the π_k now depend on the w_i and parameter α :

$$Q(\theta, \theta^{(t)}) = \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik}^{(t)} \log \phi(y_i; \beta_k^T x_i, \sigma_k) + \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik}^{(t)} \log \pi_k(w_i, \alpha)$$

- In the M-step, the update formula for β_k and σ_k are unchanged.
- The last term of $Q(\theta, \theta^{(t)})$ can be maximized w.r.t. α using an iterative algorithm, such as the Newton-Raphson procedure. (See remark on next slide)

Generalized EM algorithm

- To ensure convergence of EM, we only need to increase (but not necessarily maximize) $Q(\theta, \theta^{(t)})$ at each step.
- Any algorithm that chooses $\theta^{(t+1)}$ at each iteration to guarantee the above condition (without maximizing $Q(\theta, \theta^{(t)})$) is called a Generalized EM (GEM) algorithm.
- Here, we can perform a single step of the Newton-Raphson algorithm to maximize

$$\sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik}^{(t)} \log \pi_k(w_i, \alpha)$$

with respect to α .

• Backtracking can be used to ensure ascent.

4□ > 4□ > 4□ > 4□ > 4□ > □
90

Example: motorcycle data

library('MASS')
x<-mcycle\$times
y<-mcycle\$accel
plot(x,y)</pre>

Mixture of experts using flexmix

```
library(flexmix)

K<-5
res<-flexmix(y ~ x,k=K,model=FLXMRglm(family="gaussian"),
concomitant=FLXPmultinom(formula=~x))

beta<- parameters(res)[1:2,]
alpha<-res@concomitant@coef</pre>
```

Plotting the posterior probabilities

```
xt<-seq(0,60,0.1)
Nt<-length(xt)
plot(x,y)
pit=matrix(0,Nt,K)
for(k in 1:K) pit[,k]<-exp(alpha[1,k]+alpha[2,k]*xt)
pit<-pit/rowSums(pit)

plot(xt,pit[,1],type="l",col=1)
for(k in 2:K) lines(xt,pit[,k],col=k)</pre>
```

Posterior probabilities

Motorcycle data – posterior probabilities

Plotting the predictions

```
yhat<-rep(0,Nt)
for(k in 1:K) yhat<-yhat+pit[,k]*(beta[1,k]+beta[2,k]*xt)

plot(x,y,main="Motorcycle data",xlab="time",ylab="acceleration")
for(k in 1:K) abline(beta[1:2,k],lty=2)
lines(xt,yhat,col='red',lwd=2)</pre>
```

Regression lines and predictions

Motorcycle data

