

MATRICES

MATRIX

> Matrix and matrix operations

> The Invertible matrices

> Determinant

> Applications

Outline

Matrices

Matrix-vector multiplication

Examples

Matrices

► a *matrix* is a rectangular array of numbers, *e.g.*,

$$\begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix}$$

- Its size is given by (row dimension) × (column dimension) e.g., matrix above is 3 × 4
- elements also called entries or coefficients
- $ightharpoonup B_{ij}$ is i,j element of matrix B
- -i is the *row index*, *j* is the *column index*; indexes start at 1
- two matrices are equal (denoted with =) if they are the same size and corresponding entries are equal

Matrix shapes

an $m \times n$ matrix A is

- ► tall if m > n
- ightharpoonup wide if m < n
- ► square if m = n

Column and row vectors

- ► We consider an $n \times 1$ matrix to be an n-vector
- ightharpoonup We consider a 1×1 matrix to be a number
- $ightharpoonup A 1 \times n$ matrix is called a *row vector*, *e.g.*,

$$\begin{bmatrix} 1.2 & -0.3 & 1.4 & 2.6 \end{bmatrix}$$

which is *not* the same as the (column) vecto

$$\begin{bmatrix}
 1.2 \\
 -0.3 \\
 1.4 \\
 2.6
 \end{bmatrix}$$

Columns and rows of a matrix

- ► suppose A is an $m \times n$ matrix with entries A_{ij} for $i = 1, \ldots, m, j = 1, \ldots, n$
- its ith row is (the n-row-vector)

$$\begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}$$

► slice of matrix: $A_{p:q,r:s}$ is the $(q-p+1)\times(s-r+1)$ matrix

$$A_{p:q,r:s} = \begin{bmatrix} A_{pr} & A_{p,r+1} & \cdots & A_{ps} \\ A_{p+1,r} & A_{p+1,r+1} & \cdots & A_{p+1,s} \\ \vdots & \vdots & & \vdots \\ A_{qr} & A_{q,r+1} & \cdots & A_{qs} \end{bmatrix}$$

Block matrices

we can form block matrices, whose entries are matrices, such as

$$A = \left[\begin{array}{cc} B & C \\ D & E \end{array} \right]$$

where B, C, D, and E are matrices (called *submatrices* or *blocks* of A)

- matrices in each block row must have same height (row dimension)
- matrices in each block column must have same width (column dimension)
- example: if

$$B = \begin{bmatrix} 0 & 2 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} -1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 5 \end{bmatrix}, \quad E = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

then

$$\left[\begin{array}{ccc} B & C \\ D & E \end{array}\right] = \left[\begin{array}{cccc} 0 & 2 & 3 & -1 \\ 2 & 2 & 1 & 4 \\ 1 & 3 & 5 & 4 \end{array}\right]$$

Column and row representation of matrix

- ightharpoonup A is an $m \times n$ matrix
- ightharpoonup can express as block matrix with its (*m*-vector) columns a_1, \ldots, a_n

$$A = \left[\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array} \right]$$

ightharpoonup or as block matrix with its (*n*-row-vector) rows b_1, \ldots, b_m

$$A = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Examples

- ► *image:* X_{ij} is i,j pixel value in a monochrome image
- rainfall data: A_{ij} is rainfall at location i on day j
- multiple asset returns: R_{ij} is return of asset j in period i
- lacktriangleright contingency table: A_{ij} is number of objects with first attribute i and second attribute j
- feature matrix: X_{ij} is value of feature i for entity j

in each of these, what do the rows and columns mean?

Graph or relation

► a *relation* is a set of pairs of *objects*, labeled 1,...,n, such as

$$R = \{(1,2), (1,3), (2,1), (2,4), (3,4), (4,1)\}$$

same as directed graph

► can be represented as $n \times n$ matrix with $A_{ij} = 1$ if $(i,j) \in \mathbb{R}$

$$A = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

Special matrices

- $-m \times n$ zero matrix has all entries zero, written as $0_{m \times n}$ or just 0
- ► identity matrix is square matrix with $I_{ii} = 1$ and $I_{ij} = 0$ for $i \neq j$, e.g.,

$$\left[\begin{array}{cccc} 1 & 0 \\ 0 & 1 \end{array}\right], \qquad \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

- sparse matrix: most entries are zero
 - examples: 0 and I
 - can be stored and manipulated efficiently
 - nnz(A) is number of nonzero entries

Diagonal and triangular matrices

- ▶ diagonal matrix: square matrix with $A_{ij} = 0$ when $i \neq j$
- ▶ **diag** (a_1, \ldots, a_n) denotes the diagonal matrix with $A_{ii} = a_i$ for $i = 1, \ldots, n$
- example:

$$\mathbf{diag}(0.2, -3, 1.2) = \begin{bmatrix} 0.2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1.2 \end{bmatrix}$$

- lower triangular matrix: $A_{ij} = 0$ for i < j
- upper triangular matrix: $A_{ij} = 0$ for i > j
- examples:

$$\begin{bmatrix} 1 & -1 & 0.7 \\ 0 & 1.2 & -1.1 \\ 0 & 0 & 3.2 \end{bmatrix}$$
 (upper triangular),
$$\begin{bmatrix} -0.6 & 0 \\ -0.3 & 3.5 \end{bmatrix}$$
 (lower triangular)

Transpose

• the *transpose* of an $m \times n$ matrix A is denoted A^T , and defined by

$$(A^T)_{ij} = A_{ji}, i = 1, \ldots, n, \qquad j = 1, \ldots, m$$

For example,
$$\begin{bmatrix} 0 & 4 \\ 7 & 0 \\ 3 & 1 \end{bmatrix}^T = \begin{bmatrix} 0 & 7 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$

- transpose converts column to row vectors (and vice versa)
- $(A^T)^T = A$

Addition, subtraction, and scalar multiplication

► (just like vectors) we can add or subtract matrices of the same size:

$$(A + B)_{ij} = A_{ij} + B_{ij},$$
 $i = 1, ..., m,$ $j = 1, ..., n$

(subtraction is similar)

scalar multiplication:

$$(\alpha A)_{ij} = \alpha A_{ij},$$
 $i = 1, \ldots, m, j = 1, \ldots, n$

► many obvious properties, *e.g.*,

$$A + B = B + A$$
, $\alpha(A + B) = \alpha A + \alpha B$, $(A + B)^{T} = A^{T} + B^{T}$

Matrix norm

• for $m \times n$ matrix A, we define

$$||A|| = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}\right)^{1/2}$$

- ► agrees with vector norm when n = 1
- satisfies norm properties:

$$\|\alpha A\| = |\alpha| \|A\|$$

$$\|A + B\| \le \|A\| + \|B\|$$

$$\|A\| \ge 0$$

$$\|A\| = 0 \text{ only if } A = 0$$

- ► distance between two matrices: ||A B||
- (there are other matrix norms, which we won't use)

Matrix-vector product

► matrix-vector product of $m \times n$ matrix A, n-vector x, denoted y = Ax, with

$$y_i = A_{i1}x_1 + \cdots + A_{in}x_n, \quad i = 1, \ldots, m$$

► for example,

$$\begin{bmatrix} 0 & 2 & -1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

Row interpretation

y = Ax can be expressed as

$$y_i = b^T x$$
, $i = 1, \ldots, m$

where b^T, \dots, b^T are rows of A

- ► so y = Ax is a 'batch' inner product of all rows of A with x
- ► example: *A*1 is vector of row sums of matrix *A*

Column interpretation

y = Ax can be expressed as

$$y = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$$

where a_1, \ldots, a_n are columns of A

- ► so y = Ax is linear combination of columns of A, with coefficients x_1, \ldots, x_n
- ► important example: $Ae_j = a_j$
- ightharpoonup columns of A are linearly independent if Ax = 0 implies x = 0

General examples

- 0x = 0, *i.e.*, multiplying by zero matrix gives zero
- Ix = x, *i.e.*, multiplying by identity matrix does nothing
- inner product a^Tb is matrix-vector product of $1 \times n$ matrix a^T and n-vector b
- $\tilde{x} = Ax$ is de-meaned version of x, with

$$A = \begin{bmatrix} 1 - 1/n & -1/n & \cdots & -1/n \\ -1/n & 1 - 1/n & \cdots & -1/n \\ \vdots & & \ddots & \vdots \\ -1/n & -1/n & \cdots & 1 - 1/n \end{bmatrix}$$

Difference matrix

 \triangleright $(n-1) \times n$ difference matrix is

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ & & \ddots & \ddots & & & \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

y = Dx is (n - 1)-vector of differences of consecutive entries of x:

$$Dx = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

▶ Dirichlet energy: $||Dx||^2$ is measure of wiggliness for x a time series

Return matrix – portfolio vector

- ightharpoonup R is $T \times n$ matrix of asset returns
- $ightharpoonup R_{ij}$ is return of asset j in period i (say, in percentage)
- ► *n*-vector *w* gives portfolio (investments in the assets)
- ► *T*-vector *Rw* is time series of the portfolio return
- ► avg(Rw) is the portfolio (mean) return, std(Rw) is its risk

Feature matrix – weight vector

- $X = [x_1 \cdots x_N]$ is $n \times N$ feature matrix
- ► column x_j is feature n-vector for object or example j
- $-X_{ij}$ is value of feature *i* for example *j*
- ► *n*-vector *w* is weight vector
- ► $s = X^T w$ is vector of scores for each example; $s_j = x_j^T w$

Input – output matrix

- -A is $m \times n$ matrix
- y = Ax
- ► *n*-vector *x* is *input* or *action*
- ► *m*-vector *y* is *output* or *result*
- $-A_{ij}$ is the factor by which y_i depends on x_j
- $-A_{ij}$ is the *gain* from input j to output i
- ► e.g., if A is lower triangular, then y_i only depends on x_1, \ldots, x_i

Complexity

- $-m \times n$ matrix stored A as $m \times n$ array of numbers (for sparse A, store only $\mathbf{nnz}(A)$ nonzero values)
- matrix addition, scalar-matrix multiplication cost mn flops
- ► matrix-vector multiplication costs $m(2n-1) \approx 2mn$ flops (for sparse A, around $2\mathbf{nnz}(A)$ flops)

Geometric transformations

- ▶ many geometric transformations and mappings of 2-D and 3-D vectors can be represented via matrix multiplication y = Ax
- for example, rotation by θ :

$$y = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} x$$

(to get the entries, look at Ae_1 and Ae_2)

Selectors

ightharpoonup an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$A = \underbrace{e_{k_1}^T}_{k} e_{m}^T$$

multiplying by A selects entries of x:

$$Ax = (x_{k_1}, x_{k_2}, \ldots, x_{k_m})$$

• example: the $m \times 2m$ matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

'down-samples' by 2: if x is a 2m-vector then $y = Ax = (x_1, x_3, \dots, x_{2m-1})$

other examples: image cropping, permutation, ...

Incidence matrix

- graph with n vertices or nodes, m (directed) edges or links
- ightharpoonup incidence matrix is $n \times m$ matrix

$$A_{ij} = \begin{bmatrix} 1 & \text{edge } j \text{ points to node } i \\ -1 & \text{edge } j \text{ points from node } i \end{bmatrix}$$

$$0 & \text{otherwise}$$

ightharpoonup example with n=4, m=5:

$$A = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Flow conservation

- ► *m*-vector *x* gives flows (of something) along the edges
- examples: heat, money, power, mass, people, . . .
- $x_i > 0$ means flow follows edge direction
- \rightarrow Ax is n-vector that gives the total or net flows
- $(Ax)_i$ is the net flow into node i
- Ax = 0 is *flow conservation*; x is called a *circulation*

Potentials and Dirichlet energy

- suppose v is an n-vector, called a potential
- $ightharpoonup v_i$ is potential value at node i
- $u = A^T v$ is an *m*-vector of *potential differences* across the *m* edges
- $u_i = v_l v_k$, where edge j goes from k to node l
- ► Dirichlet energy is $D(v) = ||A^T v||^2$,

$$D(v) = X (v_l - v_k)^2$$
edges (k,l)

(sum of squares of potential differences across the edges)

 \triangleright D(v) is small when potential values of neighboring nodes are similar

• An $n \times n$ matrix A is said to be **invertible** if there is an $n \times n$ matrix C such that

$$AC = I$$
 and $CA = I$

where $I = I_n$, the $n \times n$ identity matrix.

- In this case, C is an **inverse** of A.
- In fact, C is uniquely determined by A, because if B were another inverse of A, then

$$B = BI = B(AC) = (BA)C = IC = C$$

This unique inverse is denoted by A^{-1} , so that

$$A^{-1}A = I \text{ and } AA^{-1} = I$$

- **Theorem**: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad bc \neq 0$, then A is invertible and $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.
- If ad bc = 0, then A is not invertible.
- The quantity ad bc is called the **determinant** of A, and we write $\det A = ad bc$.
- This theorem says that a 2×2 matrix A is invertible if and only if $\det A \neq 0$.

■ Theorem: If A is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof: Take any **b** in \mathbb{R}^n .

- A solution exists because if $A^{-1}\mathbf{b}$ is substituted for \mathbf{x} , then $A\mathbf{x} = A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = I\mathbf{b} = \mathbf{b}$.
- So $A^{-1}\mathbf{b}$ is a solution.
- To prove that the solution is unique, show that if \mathbf{u} is any solution, then \mathbf{u} must be $A^{-1}\mathbf{b}$.
- If $A\mathbf{u} = \mathbf{b}$, we can multiply both sides by A^{-1} and obtain $A^{-1}A\mathbf{u} = A^{-1}\mathbf{b}$, $I\mathbf{u} = A^{-1}\mathbf{b}$, and $\mathbf{u} = A^{-1}\mathbf{b}$.

• Theorem:

- a. If A is an invertible matrix, then A^{-1} is invertible and $(A^{-1})^{-1} = A$
- b. If A and B are $n \times n$ invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is, $(AB)^{-1} = B^{-1}A^{-1}$
- c. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is, $(A^T)^{-1} = (A^{-1})^T$

• **Proof:** To verify statement (a), find a matrix C such that

$$A^{-1}C = I \text{ and } CA^{-1} = I$$

- These equations are satisfied with A in place of C. Hence A^{-1} is invertible, and A is its inverse.
- Next, to prove statement (b), compute: $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$.
- A similar calculation shows that $(B^{-1}A^{-1})(AB) = I$.
- For statement (c), use Theorem 3(d), read from right to left, $(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$.
- Similarly, $A^T(A^{-1})^T = I^T = I$.

ELEMENTARY MATRICES

- Hence A^T is invertible, and its inverse is $(A^{-1})^T$.
- The generalization of Theorem 6(b) is as follows: The product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order.
- An invertible matrix A is row equivalent to an identity matrix, and we can find A^{-1} by watching the row reduction of A to I.
- An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix.

Invertible matrix

Example 5: Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
, $E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$,

$$E_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

Compute E_1A , E_2A , and E_3A , and describe how these products can be obtained by elementary row operations on A.

Invertible matrix

• **Solution:** Verify that

Invertible matrix

- Addition of 4 times row 1 of A to row 3 produces E_1A .
- An interchange of rows 1 and 2 of A produces E_2A , and multiplication of row 3 of A by 5 produces E_3A .
- Left-multiplication (that is, multiplication on the left) by E_1 in Example 1 has the same effect on any $3 \times n$ matrix.
- Since $E_1 \cdot I = E_1$, we see that E_1 itself is produced by this same row operation on the identity.

ELEMENTARY MATRICES

• Example 5 illustrates the following general fact about elementary matrices.

- If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times n$ matrix E is created by performing the same row operation on I_m .
- Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.

ELEMENTARY MATRICES

- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .
- **Proof:** Suppose that *A* is invertible.
- Then, since the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} (Theorem 5), A has a pivot position in every row (Theorem 4 in Sec.1.4).
- Because A is square, the n pivot positions must be on the diagonal, which implies that the reduced echelon form of A is I_n . That is, $A \sim I_n$.

ELEMENTARY MATRICES

- Now suppose, conversely, that $A \sim I_n$.
- Then, since each step of the row reduction of A corresponds to left-multiplication by an elementary matrix, there exist elementary matrices E_1, \ldots, E_p such that $A \sim E_1 A \sim E_2(E_1 A) \sim \ldots \sim E_p(E_{p-1} \ldots E_1 A) = I_n$
- That is,

$$(1) E_p \dots E_1 A = I_n$$

• Since the product $E_p...E_1$ of invertible matrices is invertible, (1) leads to

$$(E_p ... E_1)^{-1} (E_p ... E_1) A = (E_p ... E_1)^{-1} I_n$$

 $A = (E_p ... E_1)^{-1}.$

• Thus A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,

$$A^{-1} = [(E_p ... E_1)^{-1}]^{-1} = E_p ... E_1$$

- Then $A^{-1} = E_p \dots E_1 \cdot I_n$, which says that A^{-1} results from applying E_1, \dots, E_p successively to I_n .
- This is the same sequence in (1) that reduced A to I_n .
- Row reduce the augmented matrix $[A \ I]$. If A is row equivalent to I, then $[A \ I]$ is row equivalent to $[I \ A^{-1}]$. Otherwise, A does not have an inverse.

ALGORITHM FOR FINDING A^{-1}

Example 2: Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$, if it exists.

Solution:

ALGORITHM FOR FINDING A^{-1}

• Theorem 7 shows, since $A \sim I$, that A is invertible, and

$$A^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$$

Now, check the final answer.

$$AA^{-1} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix} \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

ANOTHER VIEW OF MATRIX INVERSION

- It is not necessary to check that $A^{-1}A = I$ since A is invertible.
- Denote the columns of I_n by $\mathbf{e}_1, \dots, \mathbf{e}_n$.
- Then row reduction of $\begin{bmatrix} A & I \end{bmatrix}$ to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$ can be viewed as the simultaneous solution of the n systems

$$A\mathbf{x} = \mathbf{e}_1, A\mathbf{x} = \mathbf{e}_2, A\mathbf{x} = \mathbf{e}_n$$
 (2)

where the "augmented columns" of these systems have all been placed next to A to form

$$[A \quad \mathbf{e}_1 \quad \mathbf{e}_2 \quad \cdots \quad \mathbf{e}_n] = [A \quad I].$$

• The equation $AA^{-1} = I$ and the definition of matrix multiplication show that the columns of A^{-1} are precisely the solutions of the systems in (2).

■ **Definition**: For $n \ge 2$, the **determinant** of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of n terms of the form $\pm a_{1j} \det A_{1j}$, with plus and minus signs alternating, where the entries $a_{11}, a_{12}, ..., a_{1n}$ are from the first row of A. In symbols,

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$

Example 1 Compute the determinant of

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}$$

Solution Compute $\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13}$:

$$\det A = 1 \cdot \det \begin{bmatrix} 4 & -1 \\ -2 & 0 \end{bmatrix} - 5 \cdot \det \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix} + 0 \cdot \det \begin{bmatrix} 2 & 4 \\ 0 & -2 \end{bmatrix}$$

$$= 1(0-2) - 5(0-0) + 0(-4-0) = -2$$

- Another common notation for the determinant of a matrix uses a pair of vertical lines in place of brackets.
 - Thus the calculation in Example 1 can be written as

$$\det A = 1 \cdot \begin{vmatrix} 4 & -1 \\ -2 & 0 \end{vmatrix} - 5 \begin{vmatrix} 2 & -1 \\ 0 & 0 \end{vmatrix} + 0 \begin{vmatrix} 2 & 4 \\ 0 & -2 \end{vmatrix} = \dots = -2$$

To state the next theorem, it is convenient to write the definition of det A in a slightly different form. Given $A = [a_{ij}]$, the (i, j)-cofactor of A is the number C_{ij} given by

$$C_{ij} = (-1)^{i+j} \det A_{ij} \tag{4}$$

Then

$$\det A = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$

• This formula is called a **cofactor expansion across the first row** of *A*.

■ Theorem: The determinant of an $n \times n$ matrix A can be computed by a cofactor across any row or down any column. The expansion across the ith row using the cofactors in (4) is

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

The cofactor expansion down the *j*th column is $\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \cdots + a_{nj}C_{nj}$

Example 2 Use a cofactor expansion across the third row to compute det *A*, where

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}$$

Solution Compute

$$\det A = a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33}$$

$$= (-1)^{3+1}a_{31}\det A_{31} + (-1)^{3+2}a_{32}\det A_{32} + (-1)^{3+3}a_{33}\det A_{33}$$

$$= \begin{vmatrix} 5 & 0 \\ 4 & -1 \end{vmatrix} - (-2) \begin{vmatrix} 1 & 0 \\ 2 & -1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix}$$
$$= 0 + 2(-1) + 0 = -2$$

- **Theorem:** If A is a triangular matrix, then det A is the product of the entries on the main diagonal of A.
- **Example.** Use Theorem 2 for computing det A, where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 0 & -2 & 5 \end{bmatrix}.$$

Giải. Since A is a triangular matrix, by Theorem 2, we have $\det A = a_{11}$. a_{22} . $a_{33} = 1 \cdot 4 \cdot 5 = 20$.

EXAMPLE 3 Compute det A, where

$$A = \begin{bmatrix} 3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0 \end{bmatrix}$$