Actividades

1 Escribe la ecuación de las siguientes rectas y represéntalas gráficamente.

Pendiente 2. Ordenada en el origen –3

Pendiente –3. Ordenada en el origen 4 Pendiente 4

Ordenada en el origen 3

- 2 Escribe la ecuación de las siguientes rectas.
 - a) Pasa por los puntos (3, -2) y (0, 1).
 - **b)** Pasa por los puntos (-1, 3) y (4, -2).
 - c) Pasa por los puntos: (0, -3) y (1, 2)
- 3 Representa los siguientes pares de funciones y averigua su punto de corte.

$$y = 3x - 2$$

$$y = 3x - 2$$
$$y = -2x + 8$$

$$y = 3x + 1$$

Actividades

4 Elabora una tabla de valores para las siguientes funciones y represéntalas gráficamente.

a)
$$y = \frac{7}{x}$$

b)
$$2y = \frac{10}{x} \Rightarrow y = \frac{5}{x}$$

Traza las gráficas de estas dos funciones completando las tablas de valores y observa si se cortan o no; en caso afirmativo, halla los puntos de corte.

a)
$$y = \frac{12}{x - 1}$$

Х	-5	-3	-2	3	4	5
у						

b)
$$y = 2x$$

х	-3	-2	-1	0	2	3
y						

6 Resuelve el sistema formado por las dos ecuaciones que definen las funciones de la actividad anterior y saca conclusiones.

Solución de las actividades

1 Escribe la ecuación de las siguientes rectas y represéntalas gráficamente.

Pendiente 2. Ordenada en el origen -3

y = 2x - 3

Pendiente –3. Ordenada en el origen 4

$$y = -3x + 4$$

Pendiente 4 Ordenada en el origen 3

$$y = 4x + 3$$

- **2** Escribe la ecuación de las siguientes rectas.
 - a) Pasa por los puntos (3, -2) y (0, 1).

La ecuación de la recta es: y = mx + n. Hallamos los valores de my n.

$$-2 = 3m + n
1 = 0m + n$$

$$m = \frac{-3}{3} = -1
n = 1$$
La ecuación es: $y = -x + 1$

b) Pasa por los puntos (-1, 3) y (4, -2).

$$3 = -m + n$$
 $3 = -m + n$ $5 = -5m$ $m = -1$ $-2 = 4m + n$ $2 = -4m - n$ $n = -4m - 2 = 2$. La ecuación es: $y = -x + 2$

$$5 = -5m$$
 $m = -1$

$$n = -4m - 2 = 2$$
. La ecuación es: $y = -x + 2$

c) Pasa por los puntos: (0, -3) y (1, 2)

$$-3 = Om + n$$
 $n = -3$
 $2 = m + n$ $m = 5$ La ecuación es: $y = 5x - 3$

3 Representa los siguientes pares de funciones y averigua su punto de corte.

$$y = 3x - 2$$
$$y = -x + 2$$

$$y = 3x - 2$$
$$y = -2x + 8$$

-4 -3 -2

$$y = 3x + 1$$
$$y = -2x - 4$$

- Se cortan en (1, 1)
- Se cortan en (2, 4)

2

0

Se cortan en (-1, -2)

19

Solución de las actividades

4 Elabora una tabla de valores para las siguientes funciones y represéntalas gráficamente.

a)
$$y = \frac{7}{x}$$

b)
$$2y = \frac{10}{x} \Longrightarrow y = \frac{5}{x}$$

X	-5	-1	1	5
V	1	5	5	1

Traza las gráficas de estas dos funciones completando las tablas de valores y observa si se cortan o no; en caso afirmativo, halla los puntos de corte.

a)
$$y = \frac{12}{x - 1}$$

Х	-5	-3	-2	3	4	5
y	-2	-3	-4	6	4	3

b)
$$y = 2x$$

Х	-3	-2	-1	0	2	3
у	-6	-4	-2	0	4	6

Las gráficas son una hipérbola y una recta, y se cortan en los puntos: (-2, -4) y (3, 6).

6 Resuelve el sistema formado por las dos ecuaciones que definen las funciones de la actividad anterior y saca conclusiones.

$$y = \frac{12}{x - 1}$$
 $2x = \frac{12}{x - 1} \Rightarrow 2x \cdot (x - 1) = 12 \Rightarrow 2x^2 - 2x - 12 = 0$

$$y = 2x$$
 $y = 3; y = -4$

$$x^{2} - x - 6 = 0 \Rightarrow x = \frac{1 \pm \sqrt{1 + 24}}{2} \Rightarrow x = 3; x = -2$$

Las soluciones son: x = 3, y = 6; x = -2, y = -4, que coinciden con las coordenadas de los puntos de corte de las dos gráficas.

20