Machine Learning WS2012/13 (Unsupervised Learning)

Lecturer: Prof. Dr. Bethge

Examples of unsupervised learning applications

- density estimation (e.g. texture synthesis), image compression
- level set estimation
- clustering/mode finding e.g. spike sorting; algorithm Mixture of Gaussians
- metric learning e.g. 3D visualization; algorithm multidimensional scaling
- feature extraction -; representation learning, e.g. whitening; algorithm principle component analysis

1. Set algebras, measures, and probabilities

- Overview for the mathematical construction of random variables
 - Sample Space S (often also Ω). $s \in S$ "outcomes"
 - Boolean Algebra (or Sigma Algebra) $\mathcal{B}(S)$ and $A \in \mathcal{B}(S)$ are called "events". An event A is realized if an outcome s is in A.

For example, $\mathcal{B}(S) = \mathcal{P}(S)$

- Measure $m: \mathcal{B}(S) \to [0, \infty)$ and $m(A \dot{\cup} B) = m(A) + m(B)$
- probability measure p(S)=1, if m is a measure with $m(S)<\infty$ then p(A):=m(A)/m(S) is a probability measure.
- random variables: consider $M \in \mathcal{B}(S)$ with $M = \{s \in S : X(s) < \vartheta\} \subseteq S$
- Power Set: $\mathcal{P}(S) := \{A \subseteq S\}, |\mathcal{P}(S)| = 2^{|S|}$
- Boolean Algebra: $\mathcal{B}(S) \subseteq \mathcal{P}(S)$ is called a Boolean Algebra iff
 - (i) $A \in \mathcal{B}(S) \Rightarrow \overline{A} \in \mathcal{B}(S)$
 - (ii) $A, B \in \mathcal{B}(S) \Rightarrow A \cup B \in \mathcal{B}(S)$

Examples:

- (i) $\{\emptyset, S\}$ and $\mathcal{P}(S)$ are Boolean Algebras.
- (ii) If $a \in S$ then $\{\emptyset, \{a\}, S \{a\}, S\}$ is the Boolean Algebra generated by a.
- (iii) I(R) is defined to be the smallest Boolean Algebra which contains all open intervals (a,b) for which $-\infty \le a < b \le \infty$.
- Sigma-Algebra: $\mathcal{B}(S) \subseteq \mathcal{P}(S)$ is called a Sigma-Algebra if
 - (i) $A \in \mathcal{B}(S) \Rightarrow \overline{A} \in \mathcal{B}(S)$
 - (ii) For all sequences $A_1, A_2, \ldots \in \mathcal{B}(S) \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{B}(S)$
- Venn diagram
- Proposition 1 (Boolean laws):

- (B1) Idempotency: $A \cup A = A$; $A \cap A = A$
- (B2) Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$
- (B3) Commutativity: $A \cup B = B \cup A$; $A \cap B = B \cap A$
- (B4) Distributivity: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (B5) de Morgan's law: $\overline{A \cup B} = \overline{A} \cap \overline{B}$; $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- (B6) Complements: $\overline{\overline{A}} = A$; $A \cap \overline{A} = \emptyset$; $A \cup \overline{A} = S$
- (B7) Properties of S and \emptyset : $A \cup S = S$; $A \cup \emptyset = A$; $A \cap S = A$; $A \cap \emptyset = \emptyset$
- (Finite) Measure: A mapping $m: \mathcal{B}(S) \to [0, \infty), A \in \mathcal{B}(S) \to m(A) \in [0, \infty)$ is called a *measure* if for all $A, B \in \mathcal{B}(S)$ with $A \cap B = \emptyset$ holds: $m(A \cup B) = m(A) + m(B)$. (This property can be written compactly as $m(A \dot{\cup} B) = m(A) + m(B)$)

Examples:

- (i) m(A) := |A| is the counting measure.
- (ii) For S = [a, b] and $\mathcal{B}(S) = \mathcal{I}([a, b])$ with $|a|, |b| < \infty$ the Lebesgue Measure is defined as m([c, d]) := d c.
- (iii) If $f(x) \ge 0$ for all $a \le x \le b$ with $\int_a^b f(x) dx < \infty$ then $m([c,d]) := \int_c^d f(x) dx$ is a measure.
- (iv) For S=R and $\mathcal{B}(S)=\mathcal{I}(R)$ the *Dirac Maß* is given by $\delta_a(J)=1$ if $a\in J$ and $\delta_a(J)=0$ otherwise.

• Proposition 2:

- (i) If $B \subseteq A$ then m(A B) = m(A) m(B).
- (ii) If $B \subseteq A$ then $m(B) \le m(A)$.
- (iii) $m(\emptyset) = 0$.
- (iv) $m(A \cup B) = m(A) + m(B) m(A \cap B)$.

• Proposition 3:

If $A, B \in \mathcal{B}(S)$ then:

- (i) $(A \cap B) \in \mathcal{B}(S)$ since $(A \cap B) = \overline{\overline{A} \cup \overline{B}}$.
- (ii) \emptyset , S belong to every Boolean Algebra, since for $A \in \mathcal{B}(S)$ also $\overline{A} \in \mathcal{B}(S)$ and $A \cap \overline{A} = \emptyset$ and $A \cup \overline{A} = S$.
- (iii) $\mathcal{B}_B(S) := B \cap \mathcal{B}(S) = \{A \cap B : A \in \mathcal{B}(S)\}$ is a Boolean Algebra if $B \neq \emptyset$.
- (iv) $\mathcal{B}_B(S) \subseteq \mathcal{B}(S)$.
- **Probability measure:** For a sample space S and a Sigma Algebra $\mathcal{B}(S)$ a measure P is a *probability measure* if P(S) = 1.
- **Probability space:** A probability space consists of the triple $(S, \mathcal{B}(S), P)$ where S is the sample space, $\mathcal{B}(S)$ the event algebra (which is a Boolean or a sigma algebra) and P is a probability measure on $\mathcal{B}(S)$.

• Proposition 4:

- (i) $0 \le P(A) \le 1$.
- (ii) $P(\overline{A}) = 1 P(A)$.
- (iii) If $\mathcal{E} = \{E_1, E_2, \dots, E_n\}$ is a partition of S (that is $S = \bigcup_{k=1}^n E_k$ and $E_l \cap E_m = \emptyset$), then $\sum_{k=1}^n P(E_k) = 1$ and $P(A) = \sum_{k=1}^n P(A \cap E_k)$.

• Specification of probabilities

- (i) As a limiting value of relative frequencies: $P(A) = \lim_{n \to \infty} \frac{r_n(A)}{n}$
- (ii) Symmetrie assumptions (e.g. if we assume P(s) = P(s') for all $s, s' \in S$ then it follows: P(s) = 1/|S|).
- (iii) Subjective probabilities (based on Cox axioms) can be determined via betting games.
- Conditional probabilities: If $(S, \mathcal{B}(S), P)$ is a probability space and $B \in \mathcal{B}(S)$ then the restriction of P to the reduced Sigma-Algebra $\mathcal{B}_B(S) := \{B \cap A : A \in \mathcal{B}(S)\}$ defines a measure $M_B : \mathcal{B}_B \to [0, \infty)$. If in addition P(B) > 0, then $P_B : \mathcal{B}_B(S) \to [0, 1]$, $A_B \mapsto P_B(A_B) := M_B(A_B)/P(B) = P(A_B)/P(B)$, $\forall A_B \in \mathcal{B}_B(S)$ is a probability measure on $\mathcal{B}_B(S)$. The $A_B \in \mathcal{B}_B(S)$ usually originate from intersection of the elements of the original Sigma-Algebra $\mathcal{B}(S)$ with the event B.

• Independence:

Two events A and B are statistically independent iff $P(A \cap B) = P(A)P(B)$.

• Proposition 5:

- (i) Two events A and B are (statistically) independent if P(A) = 0 or P(B) = 0.
- (ii) If two events A and B are independent and P(A) > 0, then: $P(B|A) = P_A(B) = P(B)$.
- (iii) If two events A and B are independent and P(A) > 0, then A and \overline{B} are independent as well.

Random Variables

• Cumulative distribution function (cdf): Any univariate random variable can be uniquely defined by the cumulative distribution function:

$$F(x) = P(\{s \in S : X(s) \le x\}), \quad \forall x \in S'$$

It holds:

- (i) F is a nondecreasing function.
- (ii) $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$
- (iii) Any function that fulfills (i)+(ii) is a cdf.
- (iv) $P({s \in S : X(s) > x}) = 1 F(x)$
- (v) $P(\{s \in S : x_1 < X(s) \le x_2\}) = F(x_2) F(x_1)$
- (vi) discrete case: probability mass function / point probability $p(x) = F(x) \lim_{\epsilon \to 0} F(x \epsilon)$
- (vii) continuous case: probability density function (pdf) $\rho(x) = \frac{d}{dx} \mathcal{F}(x)$
- Expectation (value):

$$E[X] = \sum_{k=1}^{n} p(x_k)x_k, \quad E[f(X)] = \sum_{k=1}^{n} p(x_k)f(x_k)$$

• Moments:

$$E[X^m] = \sum_{k=1}^n p(x_k) x_k^m$$

• Variance:

$$Var[X] = E[X^2] - E[X]^2$$