Introduction to R

Jan-Philipp Kolb

16 Mai, 2019

Introduction round

- ▶ Where are you from? What are you studying/working?
- ▶ What are your expectations of this course?
- ▶ Where do you think you can use Machine Learning in the future?

Preliminaries

- ▶ This topic is huge we concentrate on presenting the application in R
- Usually we have big differences in knowledge and abilities of the participants - please tell, if it is too fast or slow.
- ▶ We have many exercises because at the end you can only learn on your own
- ▶ We have many **examples** try them out
- ▶ If there are questions always ask
- R is more fun together ask your neighbor

CONTENT OF THE COURSE

- ▶ The first section is about laying the foundations in R.
- ▶ The second section is an introduction to the field of machine learning.

Why R is a good choice ...

- because it is an open source language
- outstanding graphs graphics, graphics, graphics
- ▶ ... relates to other languages R can be used in combination with other programs e.g. data linking
- ...R can be used for automation
- Vast Community you can use the intelligence of other people ;-)
- **•** . . .
- Because of the large comunity
- New statistical methodologies are implemented quite fast
- Because R can be combined with other programs like Postgresql or Python

Constraints

NEWER MODULES IN PYTHON

- Machine learning is a field that changes rapidly.
- ▶ Some new tools are first developed in Python.
- ► The package reticulate offers the possibility to use these modules from an R environment.
- Good news Python is also Open Source

BIG DATA

- Especially if you work with web data, you quickly have to deal with large amounts of data.
- ► Therefore one must fall back on databases, which can be used in combination with R.

CONTENT OF THIS PART

▶ Introduction to programming in R

WHAT IS RELEVANT FOR THIS COURSE.

- ► How to import data?
- ▶ What to do with missing values?
- Parallelization

IMPORT DATA

USING A PATH TO IMPORT DATA

BUILT IN DATASETS

- A sample dataset is often provided to demonstrate the functionality of a package.
- ▶ These records can be loaded using the data command.
- ▶ There is also a **RStudio Add-In** that helps to find a built-in dataset.

EXKURS RSTUDIO ADDINS

Oben rechts befindet sich ein Button Addins

THE TITANIC DATASET

Χ	pclass	survived	name	sex
1	1	1	Allen, Miss. Elisabeth Walton	fema
2	1	1	Allison, Master. Hudson Trevor	male
3	1	0	Allison, Miss. Helen Loraine	fema
4	1	0	Allison, Mr. Hudson Joshua Creighton	male
5	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	fema
6	1	1	Anderson, Mr. Harry	male

EXERCISE

Load the the built-in dataset swiss and answer the following questions:

- ▶ How many observations and variables are available?
- ▶ What is the scale level of the variables?

Create an interactive data table

THE FUNCTION SCAN TO IMPORT DATA

THE R-PACKAGE DATA. TABLE GET AN OVERVIEW

```
##
   Ozone Solar. R Wind Temp Month Day
## 1
     41
           190 7.4
                   67
                        5
## 2 36
          118 8.0 72
## 3 12 149 12.6 74 5 3
## 4 18
           313 11.5 62 5
                           4
## 5 NA
          NA 14.3 56 5 5
           NA 14.9 66
                           6
## 6
     28
```

OVERVIEW WITH DATA. TABLE

##		Ozone	Solar.R	Wind	Temp	Month	Day
##	1:	41	190	7.4	67	5	1
##	2:	36	118	8.0	72	5	2
##	3:	12	149	12.6	74	5	3
##	4:	18	313	11.5	62	5	4
##	5:	NA	NA	14.3	56	5	5

EXERCISE

- Compute the logarithm of x, return suitably lagged and iterated differences,
- compute the exponential function and round the result

```
## [1] 3.3 1.8 1.6 0.5 0.3 0.1 48.8 1.1
```

THE PIPE OPERATOR

[1] 3.3 1.8 1.6 0.5 0.3 0.1 48.8 1.1

HOW TO DEAL WITH MISSING VALUES

##		Ozone	${\tt Solar.R}$	Wind	Temp	${\tt Month}$	Day
##	1:	41	190	7.4	67	5	1
##	2:	36	118	8.0	72	5	2
##	3:	12	149	12.6	74	5	3
##	4:	18	313	11.5	62	5	4
##	5:	NA	NA	14.3	56	5	5
##							
##	149:	30	193	6.9	70	9	26
##	150:	NA	145	13.2	77	9	27
##	151:	14	191	14.3	75	9	28
##	152:	18	131	8.0	76	9	29
##	153:	20	223	11.5	68	9	30
##		Ozone	Solar.R	Wind	Temp	Month	Day
##	1:	41	190	7.4	67	5	1
##	2:	36	118	8.0	72	5	2
##	3:	12	149	12.6	74	5	3
шш	1.	10	242	44 -	<u> </u>		

CLEAN THE TITANIC DATA SET

- pclass = factor(pclass, levels = c(1,2,3), labels= c('Upper', 'Middle', 'Lower')): Add label to the variable pclass. 1 becomes Upper, 2 becomes MIddle and 3 becomes lower
- ► factor(survived, levels = c(0,1), labels = c('No',
 'Yes')): Add label to the variable survived. 1 Becomes No and 2
 becomes Yes
- ▶ na.omit(): Remove the NA observations

GET AN OVERVIEW OF THE DATA

```
## Observations: 1,045
## Variables: 13
## $ X
                                         <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
## $ pclass <fct> Upper, Upper
## $ survived <fct> Yes, Yes, No, No, Yes, Yes, No, Yes, No
## $ name
                                                 <fct> "Allen, Miss. Elisabeth Walton", "Allison,
## $ sex
                                                 <fct> female, male, female, male, female, male, f
## $ age
                                                 <dbl> 29.0000, 0.9167, 2.0000, 30.0000, 25.0000,
## $ sibsp
                                                 <int> 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0
## $ parch
                                                 <int> 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
## $ ticket
                                                 <fct> 24160, 113781, 113781, 113781, 113781, 1995
                                                  <dbl> 211.3375, 151.5500, 151.5500, 151.5500, 151
## $ fare
## $ cabin
                                                 <fct> B5, C22 C26, C22 C26, C22 C26, C22 C26, E12
## $ embarked <fct> S, S, S, S, S, S, S, S, C, C, C, C, S, S
## $ home.dest <fct> "St Louis, MO", "Montreal, PQ / Chestervill
```

EXAMPLE DATA - HOUSING VALUES IN SUBURBS OF BOSTON

crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptr
0.00632	18	2.31	0	0.538	6.575	65.2	4.0900	1	296	1
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	1
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	1
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	1
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	1
0.02985	0	2.18	0	0.458	6.430	58.7	6.0622	3	222	1

NORMALIZE YOUR DATA

SET A SEED

TIME MEASUREMENT

Time difference of 0.3790381 secs

HOW MANY CORES ARE AVAILABLE

[1] 4

Make cluster

Time difference of 0.3110309 secs

THE SWIRL PACKAGE

RESOURCES

▶ Course materials for the Data Science Specialization