

# **INDEX**



- 1. 연구배경
- 2. 연구계획
- 3. 연구방법
  - set-covering
  - p-RD
  - K-Means Clustering
- 4. 결과분석
  - 입지 재 선정 타당성
  - 관리구역 재 분류 효율성
- 5. 결론
- 6. 사용한 데이터
- 7. 참고문헌

## 01연구배경

#### 1.1 서울특별시 길거리 쓰레기/쓰레기통 문제

[서울특별시 가로 쓰레기통 관련 민원 및 문제 제기 자료][1]

| 출처           | 해당 자치구 | 문제 내용 요약                                     |  |
|--------------|--------|----------------------------------------------|--|
| 서울특별시<br>응답소 | 종로구    | 버스정류장 및 종로구 곳곳의 쓰레기통<br>개수가 부족하여 추가 설치 요구    |  |
|              | 송파구    | 주민의 편의를 위해 버스정류장, 전철역 등<br>주요 거점에 쓰레기통 설치 요구 |  |
|              | 서울시 전체 | 관광지 등 사람이 많은 지역에 쓰레기통이<br>부족하여 추가 설치를 요구     |  |
| 동아일보 기사      | 서울시 전체 | 쓰레기통을 추가적으로 설치 또는 제거해도<br>시민들의 불만이 끊이질 않음    |  |

- 서울특별시 민원 창구에 길거리 쓰레기통
   증설 요구사항이 끊이지 않음
- 서울특별시 측은 설치 개수에 변화를 주어도
   시민들의 불만이 계속됨을 언급

<u>쓰레기통 문제에 대해 시민과 정부 양측 모두</u> 만족되는 해결책 마련이 필요

## 1.2 서울특별시 길거리 쓰레기통 관련 현황

#### 서울특별시 길거리 쓰레기통 설치 현황



- 지난 해(19.9) 기준 길거리 쓰레기통 6,940개가 서울특별시에 설치되어 있음
- 올해(2020년) 637대를 추가 설치하여
   총 7.595대의 길거리 쓰레기통이 설치될 계획임[2]

# 01연구배경

## 1.3 종로구 길거리 쓰레기통 문제점

## 종로구, 너무 비효율적인 쓰레기통 개수

- 서울특별시 자치구 중 하나인 종로구의 유동인구는
   서울 자치구 25개 중 23위로 하위권에 있지만,
   길거리 쓰레기통의 개수는 5위에 위치할 정도로
   비효율적으로 많이 설치되어 있음
- 유동인구에 비해 많이 설치되어 있음에도 불구하고
   종로구 시민들은 여전히 쓰레기통이 부족하다는
   불만이 꾸준히 보임

#### 종로구 길거리 쓰레기통 현황

- 종로구의 304개의 길거리 쓰레기통은 184개의 입지에
   설치되어 있음
- 종로구 길거리 쓰레기통 관리구역은 총 6구역으로 나뉘어 있음

시민들의 불만을 해결해줄 수 있는 효율적인 입지의 재선정이 필요함

#### 서울특별시 자치구별 유동인구 순위(19.9기준)



### 서울특별시 자치구 <u>길거리 쓰레기통 설치 수</u> (19.9기준)



자료: 열린 서울 데이터 광장

# 02 연구계획

### 2.1 연구 목적

- 1. 서울특별시 종로구의 184개의 입지를 재 선정
- 선정된 최적입지 184개를 기준으로
   <u>길거리 쓰레기통 관리구역 재 분류</u>
- 2.2 연구 기대효과
- 1) 불만 감소: 유동인구와 상권매출을 고려한 입지를 재 선정함으로써, 종로구 시민들의 불만을 감소시킴
- 2) 효율적인 쓰레기 수거: 새로운 관리구역을 분류함으로써, 환경미화원의 수를 재배치할 수 있으며, 효율적인 쓰레기 수거가 가능하여 쌓인 쓰레기를 빠르게 처리할 수 있음

#### 2.3 연구 흐름

## 후보지 선정 및 제거

## **Set-covering**

새로운 입지 후보지 471개를 선정하여, 후보지간 거리 100m 이내 후보지 제거



#### 최적 입지 선정

#### p-RD Algorithm

길거리 쓰레기통의 입지에 영향을 주는 요인들을 고려한 최적입지 184개 재 선정



## 종로구 길거리 쓰레기통 관리구역 분류

### K-Means Clustering

선정된 최적 입지에 배치된 길거리 쓰레기통을 관리하는 구역을 새롭게 분류

# 03 연구방법 - 1. Set-Covering

# 초기 후보지

471개



**Set-covering** 

후보지간 거리 측정

Set-covering 적용

후보지 도출

## 3.1.1 새로운 후보지 선정

• 후보지 유형: 종로구 내 모든 <u>버스정류장, 지하철역 입구, 공원</u>

• 후보지 개수 : <u>총 471개의 후보지</u>

## 3.1.2 Set Covering Model 적용 목적

## 새로운 후보지 471개의 데이터 중 100m 이내에 있는 후보지 삭제

- 471개의 데이터 중 거리가 매우 가까운 후보지들이 많음을 확인함
- 따라서, 100m 이내에 있는 후보지를 cover할 수 있다는
   조건을 적용하여 후보지를 새롭게 선정하고자 함
   ※ 100m로 선정한 이유: 길거리 쓰레기통이 가장 많은 강남구의
   경우, 100m 간격으로 배치함으로써 시민들의 불만이 적음
- <u>각 후보지의 좌표 데이터를 활용</u>하여 거리를 측정함

## 3.1.3 Set Covering Location Model[3]

Minimize 
$$\sum_{i=1}^{471} X_i$$
  $i = 1, 2, \dots, 471$   
Subject to  $\sum_{i=1}^{470} \sum_{j=1}^{470} X_i d_{i(j+1)}$ 

 $X_i = 1$ : 후보지(i)에 쓰레기통이 설치되는 경우

0: 후보지(i)에 쓰레기통이 설치 안되는 경우

 $d_{i(j+1)} = 1$  : 후보지(i)와 후보지(j+1) 사이의 거리가 100m 이하인 경우 0 : 후보지(i)와 후보지(j+1) 사이의 거리가 100m 이상인 경우

## 3.1.4 Set Covering Model 결과

471개 후보지 중 <u>346개의 후보지가 선정됨</u>

• <u>오로지 거리를 기준으로 선정된 후보지 346개</u>를 p-RD Algorithm을 통해 다른 중요 요인을 고려하여 최적입지를 선정하고자 함

# 03 연구방법 – 2. p-RD(p-Reverse Delete) Algorithm



## 3.2.1 p-RD 적용 목적

#### 길거리 쓰레기통의 입지에 영향을 주는 요인들을 고려한 184개의 입지 재선정

- p-RD Algorithm을 적용해 <u>최솟값을 가지는 후보지를</u>
   삭제하는 방법
- 제거되는 후보지들을 역순으로 배치하여 <u>우선 도입 지역을</u> 선정하고자 함

## 3.2.2 p-RD 에 사용된 변수 정의

- **1) 후보지 간의 거리**: Set-covering에서 선정된 346개의 후보지들 간의 거리 데이터
- 2) 유동인구: 후보지로부터 100m 내에 추정 유동인구
- 3) 상권 매출: 후보지로부터 100m 내에 길거리 쓰레기 양에 직접적으로 영향을 끼치는 두 업종 (편의점,카페)의 상권 추정 매출
- 4) 환경미화원 수 : 종로구 길거리 쓰레기 관리구역별 환경미화원 인원 수

 $d_{ij}$ : 후보지 (i)과 후보지 (j) 사이의 거리(m)

 $h_i$ : 후보지(j)의 추정 유동인구 수(명)

 $w_i$ : 후보지(j)의 상권 추정 매출 데이터(1) 카페, 편의점(1)

 $a_i$ : 후보지(j) 종로구 길거리 쓰레기 관리구역별 환경미화원 수(명)

- 모든 변수들의 범위를 일정하게 맞추기 위해 표준화  $(\frac{x-min}{max-min})$ 함
- 표준화 결과 모든 값이 0~1 사이 값으로 변환되는데,  $c_{ij}$  값 도출 시 '0'에 해당되는 값이 데이터를 무효화 시키므로 모든 데이터에 1을 더해 범위를 1~2 사이 값으로 변환
- $c_{ij}$ : 후보지(i)과 후보지(j) 사이의 가치 값 =  $d_{ij} \times h_i \times w_i \times a_i + 1$
- 최종 가치 변수(c<sub>ij</sub>)를 바탕으로 346x346 행렬 값을 할당 후 분석
   진행

# 03 연구방법 – 2. p-RD(p-Reverse Delete) Algorithm

## 3.2.3 p-RD Algorithm 적용[4]

- 초기 행렬(346x346)을 준비하고, 각 (행,열) 쌍에 가치
   변수 c\_(ij)를 대입
- Python으로 프로그래밍하여 p-RD 알고리즘을 구현



- 346개의 후보지이므로 p-RD가 한번 반복할 때마다 <u>최솟값을 갖는</u> 하나의 후보지가 차례대로 삭제됨
- 삭제되는 후보지에 의해서 단계가 진행될수록 행의 개수는 하나씩 감소
- 행이 삭제되면서 삭제 행과 연관된 후보지 들에 의해 가치 값의 합이 갱신되기 위해 2개의 후보지들이 하나로 그룹을 형성하며, <u>더 이상</u> 그룹을 형성할 수 없는 경우 Step을 멈추게 됨

### 3.2.4 p-RD Algorithm 분석 결과

- 1차 작업 시, 138step까지 진행 후 완료됨
- 이후 2차 작업에 24번을 진행하여 설치 <u>후보지</u> 수를 현재 종로구 가로 쓰레기통 설치 수인 184개까지 표현

[1차 p-RD Algorithm 결과]

[2차 p-RD Algorithm 결과]

| Step | 제거<br>후보지 | 설치<br>후보지수 |  |
|------|-----------|------------|--|
| 0    | ı         | 346        |  |
| 1    | 101       | 345        |  |
| 2    | 362       | 344        |  |
| 3    | 127       | 343        |  |
| :    |           |            |  |
| 135  | 204       | 211        |  |
| 136  | 201       | 210        |  |
| 137  | 203       | 209        |  |

| Step | 제거<br>후보지 | 설치<br>후보지 수 |  |
|------|-----------|-------------|--|
| 0    | ı         | 208         |  |
| 1    | 357       | 207         |  |
| 2    | 412       | 206         |  |
| 3    | 141       | 205         |  |
|      | :         |             |  |
| 22   | 249       | 186         |  |
| 23   | 76        | 185         |  |
| 24   | 207       | 184         |  |



# 03 연구방법 – 3. K-Means Clustering



## 3.3.1 k-Means Clustering 적용 목적

# p-RD를 통해 새로 선정된 최적 입지 184개에 대한 길거리 쓰레기통 관리 구역 재 분류

- 기존 쓰레기통의 입지가 재 선정 되었기 때문에 길거리 쓰레기통 관리 구역도 다시 수정이 필요
- 또한 기존 구역들도 분류한 명확한 기준을 찾을 수 없어 거리 상 가까운 후보지들을 같은 구역으로 분류하기 위해 k-Means Clustering을 사용

## 3.3.2 K-Means Clustering[5]

- n개의 데이터를 주어질 때,  $k (\leq n)$  개의 군집으로 분할하는 방법
- 군집의 중심점과 군집내 데이터 간의 거리의 제곱합이 최소화되도록 반복하여 군집 갱신
- 군집의 중심점이 변하지 않는다면 반복을 중지
- $x_i$ : i 번째 데이터  $i = 1, 2, \dots, n$
- $S_i$  : j 번째 군집  $j=1,2,\cdots,k$
- $μ_i$ : j 번째 군집의 중심점

$$Minimize \sum_{i=1}^{k} \sum_{x_i \in S_i} |x_j - \mu_i|^2$$

## 3.3.3 K- Means Clustering 분석 결과

- hyperparameter 인 최적 군집 k 개수를 탐색하기 위한 방법으로  $Elbow\ Method$  를 사용
- 결과적으로  $cost\ function\ J$  가 거의 변하지 않는 구간인  $3 \le k \le 100$  도출됨
- 기존 종로구 길거리 쓰레기통 관리 구역은 6개였으므로 k = 6으로 선정
- python으로 프로그래밍하여 분석하였고, sklearn에서 제공하는 KMeans 라이브러리를 사용



• 결과적으로 위와 같이 6개의 길거리 쓰레기통 관리구역이 선정됨

# 04 결과분석- 입지 재 선정 타당성

## 4.1 서울특별시 종로구 길거리 쓰레기통의 새로운 입지선정 타당성 분석

- 기존 쓰레기통 입지와 본 연구로 도출된 새로운 입지의 100m내에 추정 유동인구와 상권 추정 매출 비교
- 유동인구와 상권 매출은 쓰레기양과 밀접한 관계를 가진 요인임
- 본 연구로 도출된 새로운 입지가 <u>기존보다 추정 유동인구 수 및 상권 추정 매출이 더 고려되었음 확인</u>할 수 있음



[예: 기존 길거리 쓰레기통 4구역 입지]

[예: 새로운 길거리 쓰레기통 4구역 입지]

전체 추정 유동인구 수(명) : 8,854,682

전체 상권 추정 매출(원): 10,629,650,498

전체 추정 유동인구 수(명): 640,000,075

전체 상권 추정 매출(원): 114,285,264,668

전체 추정 유동인구 수 **72.2배**증가, 전체 상권 매출 추정액 **8.75배**증가



본 연구로 재 선정한 입지는 기존보다 많은 쓰레기를 커버할 수 있음

# 04 결과 분석 - 구역 재 분류 효율성

## 4.2 길거리 쓰레기통 관리구역 재 분류 효율성 분석

- 기존 길거리 쓰레기통 관리구역과 <u>새로운 관리구역 내 쓰레기통 입지들 간 최소경로의 거리를 구하여 합을 비교</u>
- 최소경로의 거리를 비교하기 위해 조합최적화 문제의 대표적 예시인 **외판원 문제를 활용함**
- 본 연구에서 분류한 길거리 쓰레기통 관리구역이 기존보다 최소경로의 거리가 축소됨을 확인
- <u>외판원 문제[3]</u>: 시작 노드로부터 모든 노드를 지나간 후 다시 시작 노드로 돌아올 때의 최소경로를 구하는 방법
- 적용한 수리모형은 다음과 같음

$$Minimize \quad \sum_{i=0}^{N} \sum_{j=0}^{N} c_{ij} x_{ij}$$

Subject to  $x_{i0}+x_{i1}+\cdots+x_{iN}=1$ ,  $i=0,\cdots,N$   $x_{0j}+x_{1j}+\cdots+x_{Nj}=1$ ,  $j=0,\cdots,N$   $u_i-u_j+Nx_{ij}\leq N-1 \ (부투어 제거)$   $x_{ij}\in 0,1 \ , i,j=1,\cdots,N \qquad i\neq j, i=0,\cdots,N, j=0,\cdots,N$   $u_j\geq 0, \ j=0,\cdots,N$ 

 $c_{ij}$  = 입지(i)와 입지(j) 사이의 거리

 $x_{ij} = 1$ : 입지(*i*)에서 입지(*j*)로 경로가 존재할 경우

= 0 : 입지(i) 에서 입지(i)로 경로가 존재하지 않는 경우

 $u_i = i$  번째 지나간 후보지

N = 184(입지의 수)



[기존 길거리 쓰레기통 관리구역]

각 구역별

최소 경로의 거리의 합(m)

: 285,664.1



[새로운 길거리 쓰레기통 관리구역]

각 구역별

최소 경로의 거리의 합(m):

78,521.39

기존 관리구역에 비해

총 약 200km

경로의 거리가 축소됨



본 연구로 분류한 관리구역이 <u>더 빠른</u> <u>쓰레기 처리가 가능함</u>

# 05 결론

### 5.1 연구내용정리

- 1) Set-Covering로 문제풀이를 접근하였으나 거리만 고려한다는 한계점인식
- 2) 종로구의 환경정책과 인구통계학적 변수를 추가하고 p-RD 알고리즘을 Python으로 구현하여 최적입지 재 선정
- 3) K-means 군집분석 기법을 사용하여 기존 관리구역을 새롭게 재배치
- 4) 쓰레기통 배치의 효용성을 설치지역 100m내의 추정 유동인구와 상권 추정 매출을 통해 <u>입지의 적합성 확인</u>
- 5) 외판원 문제를 이용하여 기존 관리구역과 군집분석으로 얻은 구역의 쓰레기통 최소경로 거리를 비교하여 관리구역 효율성 확인

#### 5.2 기대효과

유동인구와 상권매출을 고려한 입지를 재 선정함으로써, <u>종로구 시민들의 불만을 감소시킴</u> 효율적인 쓰레기통 위치로 인한 무단 투기 쓰레기양 감소

효율적인 길거리 쓰레기통 관리구역 재 분류로 인한 인력의 효율성 증대

향후 쓰레기통 설치 가이드라인 수립에 참고

# 05 결론

#### 5.3 향후 연구 계획

### 요인들의 상관관계 고려

추정 유동인구와 상권 추정 매출액이 가로쓰레기통의 실질적인 쓰레기양과 직접적인 상관관계가 있음을 밝혀낼 필요가 있음

## 환경미화원 인력 배치 고려

효율적인 쓰레기통 관리를 위해 길거리 쓰레기통 관리 구역 내에 환경미화원을 몇 명이나 배치해야 할지 추가 연구를 할 필요가 있음

### 신규 데이터 반영

연구에 사용한 데이터(19.9기준) 이후 추정 유동인구와 상권 추정 매출이 바뀌었으므로 두 요인의 변화를 고려 할 필요가 있음

### 쓰레기 수거차량 경로 고려

쓰레기 수거 차량의 쓰레기 수거 경로를 고려한 배치를 제안함으로써 효율성을 증대 시킬 수 있음

# 06 사용한 데이터

## 사용 프로그램

- Jupyter (Python 3.7)
- Google map
- Excel solver

| 데이터 이름                             | 사용 데이터 내용             | 데이터 제공 사이트         | 사용 데이터<br>세부정보 |
|------------------------------------|-----------------------|--------------------|----------------|
| 서울특별시 가로쓰레기통 설치정보<br>(2019.9).xlsx | 종로구 가로쓰레기통 설치정보       | 서울 열린 데이터 광장       | 6536개의 데이터     |
| 20190710기준_서울시정류장정보<br>(수정).xlsx   | 종로구 버스정류장 좌표 데이터      | 서울 열린 데이터 광장       | 372개의 데이터      |
| -                                  | 종로구 지하철 좌표 데이터        | (구글 맵을 이용하여 직접 만듦) | 79개의 데이터       |
| 서울시 주요 공원현황                        | 종로구 공원 주소             | 서울 열린 데이터 광장       | 12개의 데이터       |
| FLT_SEOUL_09MONTH.csv              | 서울 특별시 25개 자치구별 유동인구  | SKT 빅데이터 허브        | 25개의 데이터       |
| SKT월별 유동인구 수.csv                   | 종로구 월별 50m 간격 SKT유동인구 | 서울특별시 빅데이터 캠퍼스     | 약 2천만개의 데이터    |
| 추정매출액.csv                          | 종로구 블록당 추정매출액(4분기)    | 서울특별시 빅데이터 캠퍼스     | 약 6만개의 데이터     |

## 07 참고문헌

- [1] 온라인민원 . (n.d.). https://eungdapso.seoul.go.kr/.
- [2] 있으면 "없애달라" 없으면 "늘려달라" 거리 쓰레기통 골머리 . (n.d.).https://news.joins.com/article/23624318.
- [3] 박구현, 송한식, 원중연. (2009). 경영과학 엑셀활용. n.p.: 교보문고.
- [4] 최명복, 이상운, 김봉경, 정승삼, & 한태용. (2011). p-시설물 위치선정 모델. 한국인터넷방송통신학회 논문지, 11(6), 193-205.
- [5] Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal, 1(6), 90-95.
- [6] 길거리 쓰레기, '환경지킴가게'에 버리세요 . (n.d.).
- https://m.blog.naver.com/PostView.nhn?blogId=120seoulcall&logNo=220839914350&proxyReferer=https: %2F%2Fwww.google.com%2F.
- [7] 깨끗하고 깔끔한 도시 거리 . (n.d.). lovepik. https://kr.lovepik.com/image-500785323/clean-and-tidy-city-streets.