AMENDMENTS TO THE CLAIMS

6

Please replace all prior versions, and listings, of claims in the application with the following list of claims:

1. (Withdrawn) An isolated polypeptide having the ability to bind to KDR or VEGF/KDR complex comprising an amino acid sequence of one of the following:

Loop Consensus Sequence 15: Cys-X₂-X₃-X₄-X₅-X₆-X₇-Cys (TN8), wherein

X₂ is Ala, Arg, Asn, Asp, Gln, Glu, His, Ile, Lys, Phe, Pro, Ser, Trp or Tyr;

X₃ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₄ is Ala, Asn, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Tyr or Val (preferably Asp);

X₅ is Ala, Asp, Glu, Gly, Leu, Phe, Pro, Ser, Thr, Trp or Tyr;

X₆ is Arg, Gln, Glu, Gly, Ile, Leu, Met, Pro, Thr, Trp, Tyr or Val; and

X₇ is Ala, Arg, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Trp or Tyr; or

Loop Consensus Sequence 16:Cys-X₂-X₃-X₄-X₅-X₆-X₇-X₈-X₉-X₁₀-X₁₁-Cys (TN12), wherein

X₂ is Arg, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Thr, Trp, Tyr or Val;

X₃ is Ala, Arg, Asn, Cys, Glu, Ile, Leu, Met, Phe, Ser, Trp or Tyr;

X4 is Arg, Asn, Asp, Gln, Glu, His, Ile, Leu, Pro, Ser, Thr, Trp, Tyr or Val;

X₅ is Ala, Asn, Asp, Gln, Glu, Gly, His, Met, Phe, Pro, Ser, Trp, Tyr or Val;

X₆ is Asp, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp or Tyr;

X₇ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Lys, Trp, Tyr or Val;

X₉ is Ala, Arg, Gln, Gly, His, Ile, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₀ is Arg, Gln, Glu, His, Leu, Lys, Met, Phe, Pro, Thr, Trp or Val; and

X11 is Arg, Asn, Asp, Glu, His, Ile, Leu, Met, Phe, Pro, Thr, Trp, Tyr or Val; or

Loop Consensus Sequence 17: Cys-X₂-X₃-X₄-Gly-X₆-Cys (TN7), wherein

X₂ is Asn, Asp or Glu;

X₃ is Glu, His, Lys or Phe;

X₄ is Asp, Gln, Leu, Lys, Met or Tyr; and

X₆ is Arg, Gln, Leu, Lys or Val; or

Loop Consensus Sequence 18: Cys-X₂-X₃-X₄-X₅-X₆-X₇-X₈-Cys (TN9), wherein

X₂ is Ala, Asp, Lys, Ser, Trp or Val;

X₃ is Asn, Glu, Gly, His or Leu;

X₄ is Gln, Glu, Gly, Met, Lys, Phe, Tyr or Val;

X₅ is Ala, Asn, Asp, Gly, Leu, Met, Pro, Ser or Thr;

X₆ is His, Pro or Trp;

X₇ is Ala, Gly, His, Leu, Trp or Tyr; and

X₈ is Ala, Asp, Gln, Leu, Met, Thr or Trp; or

Loop Consensus Sequence 19: Cys-X₂-X₃-X₄-X₅-Ser-Gly-Pro-X₉-X₁₀-X₁₁-X₁₂-Cys (MTN13; SEQ ID NO:1), wherein

X₂ is Asp, Glu, His or Thr;

X₃ is Arg, His, Lys or Phe;

X₄ is Gln, Ile, Lys, Tyr or Val;

X₅ is Gln, Ile, Leu, Met or Phe;

X₉ is Asn, Asp, Gly, His or Tyr;

X₁₀ is Gln, Gly, Ser or Thr;

X₁₁ is Glu, Lys, Phe or Ser; and

 X_{12} is Glu, Ile, Ser or Val.

2. (Withdrawn) The polypeptide of Claim 1, wherein the polypeptide comprises an amino acid sequence of one of the following:

Loop Consensus Sequence 20: Cys-X₂-X₃-X₄-X₅-X₆-Tyr-Cys (TN8), wherein

X₂ is Ala, Arg, Glu, Lys or Ser;

X₃ is Ala, Asp, Gln, Glu, Thr or Val;

X₄ is Asp or Glu;

X₅ is Trp or Tyr; and

8

5, 2007 November 0, 2006

Docket No.: D0617.70012US00

X₆ is Thr or Tyr; or

Loop Consensus Sequence 21: Cys-X₂-X₃-X₄-Gly-X₆-X₇-Cys (TN8), wherein

X₂ is Asp, Gln or His;

X₃ is His or Tyr;

X₄ is His, Ile or Tyr;

X₆ is Ile, Met or Val; and

X₇ is Gly or Tyr; or

Loop Consensus Sequence 22: Cys-X₂-X₃-X₄-X₅-Gly-X₇-Cys (TN8), wherein

X₂ is Ala, Arg, Asn, Asp, His, Phe, Trp or Tyr;

X₃ is Ala, Asp, Gln, His, Lys, Met, Ser, Thr, Trp, Tyr or Val;

X4 is Ala, Asn, Asp, Gln, Glu, Gly, His, Ile, Leu, Lys, Pro, Ser, Thr or Val;

X₅ is Asp, Phe, Ser, Thr, Trp or Tyr; and

X₇ is Ala, Arg, Gln, His, Ile, Leu, Lys, Met, Phe, Trp or Tyr.

3. (Withdrawn) The polypeptide of Claim 1, wherein the polypeptide comprises an amino acid sequence of one of the following:

Loop Consensus Sequence 23: Cys-X₂-X₃-X₄-X₅-Trp-Gly-Gly-X₉-X₁₀-Cys (SEQ ID NO:3; TN11), wherein

X₂ is Ala, Phe or Trp;

X₃ is Glu or Lys;

X₄ is Asp, Ser, Trp or Tyr;

X₅ is Phe, Pro or Ser;

X₉ is Gln or Glu; and

X₁₀ is Ile, Phe or Val; or

Loop Consensus Sequence 24: Cys-X₂-Glu-X₄-Ser-X₆-Ser-X₈-X₉-X₁₀-Phe-Cys (SEQ ID NO:15; TN12), wherein

X₂ is His or Tyr;

X₄ is Leu, His or Thr;

X₆ is Asp or Leu;

9

Amendment dated May 3, 2007 Reply to Office Action of November 9, 2006

X₈ is Gly or Val;

X₉ is Thr or Val; and

 X_{10} is Arg or Trp; or

Loop Consensus Sequence 25: Cys-X₂-X₃-X₄-X₅-X₆-X₇-Gly-X₉-Trp-X₁₁-Cys (TN12; SEQ ID NO:16), wherein

 X_2 is Glu, Met or Thr;

X₃ is Ile, Leu, Met or Phe;

X₄ is Arg, Asp, Glu, Met, Trp or Val;

X₅ is Asn, Gln, Gly, Ser or Val;

X₆ is Glu or Asp;

X₇ is Lys, Ser, Thr or Val;

X₉ is Arg, Gln, Lys or Trp; and

X₁₁ is Asn, Leu, Phe or Tyr; or

Loop Consensus Sequence 26: Cys- X_2 - X_3 - X_4 - X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} - X_{11} -Cys (TN12), wherein

X₂ is Glu or Gly;

X₃ is Trp or Tyr;

X₄ is Ser or Thr;

X₅ is Asn or Gln;

X₆ is Gly or Met;

X₇ is Phe or Tyr;

X₈ is Asp or Gln;

X₉ is Lys or Tyr;

 X_{10} is Glu or Thr; and

 X_{11} is Glu or Phe.

4. (Withdrawn) The polypeptide of Claim 1, wherein the polypeptide comprises an amino acid sequence of the following:

Loop Consensus Sequence 27: Cys-X₂-X₃-X₄-Gly-X₆-Cys (TN7), wherein

X₂ is Asn, Asp or Glu;

X₃ is Glu, His, Lys or Phe;

X₄ is Asp, Gln, Leu, Lys, Met or Tyr; and

X₆ is Arg, Gln, Leu, Lys or Val.

5. (Withdrawn) The polypeptide of Claim 1, wherein the polypeptide comprises an amino acid sequence of the following:

Loop Consensus Sequence 28: Cys-X₂-X₃-X₄-X₅-X₆-X₇-X₈-Cys (TN9), wherein

X₂ is Ala, Lys, Ser, Trp or Val;

X₃ is Asn, Glu, Gly, His or Leu;

X₄ is Glu, Gly, Lys, Met or Tyr;

X₅ is Ala, Asn, Asp, Leu, Met, Pro or Ser;

X₆ is His, Pro or Trp;

X₇ is His, Leu, Trp or Tyr; and

X₈ is Ala, Asp, Gln, Leu, Met, Thr or Trp.

6. (Withdrawn) The polypeptide of Claim 1, wherein the polypeptide comprises an amino acid sequence of the following:

Loop Consensus Sequence 29: Cys-X₂-X₃-X₄-X₅-Ser-Gly-Pro-X₉-X₁₀-X₁₁-X₁₂-Cys (SEQ ID NO:1; MTN13), wherein

X2 is Asp, Glu, His or Thr;

X₃ is Arg, His, Lys or Phe;

X4 is Gln, Ile, Lys, Tyr or Val;

X₅ is Gln, Ile, Leu, Met or Phe;

X9 is Asn, Asp, Gly, His or Tyr;

X₁₀ is Gln, Gly, Ser or Thr;

X₁₁ is Glu, Lys, Phe or Ser; and

 X_{12} is Glu, Ile, Ser or Val.

7. (Withdrawn) An isolated polypeptide having the ability to bind to KDR or VEGF/KDR complex comprising an amino acid sequence of one of the following:

11

Consensus Sequence 1: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-X_9-X_{10}-Cys-X_{12}-X_{13}-X_{14}$ (TN8), wherein

X₁ is Ala, Arg, Asp, Gly, His, Leu, Lys, Pro, Ser, Thr, Trp, Tyr or Val;

X₂ is Asn, Asp, Glu, Gly, Ile, Leu, Lys, Phe, Ser, Thr, Trp, Tyr or Val;

X₃ is Asn, Asp, Gln, Glu, Ile, Leu, Met, Thr, Trp or Val;

X₅ is Ala, Arg, Asn, Asp, Gln, Glu, His, Ile, Lys, Phe, Pro, Ser, Trp or Tyr;

X₆ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₇ is Ala, Asn, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Asp, Glu, Gly, Leu, Phe, Pro, Ser, Thr, Trp or Tyr;

X₉ is Arg, Gln, Glu, Gly, Ile, Leu, Met, Pro, Thr, Trp, Tyr or Val;

X₁₀ is Ala, Arg, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Trp or Tyr;

X₁₂ is Arg, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₁₃ is Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp or Tyr; and

 X_{14} is Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp or Tyr; or Consensus Sequence 2: X_1 - X_2 - X_3 - X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} - X_{11} - X_{12} - X_{13} - X_{14} - X_{15} - X_{16} - X_{17} - X_{18} (TN12), wherein

X₁ is Ala, Asn, Asp, Gly, Leu, Pro, Ser, Trp or Tyr;

X2 is Ala, Arg, Asn, Asp, Gly, His, Phe, Pro, Ser, Trp or Tyr;

X₃ is Ala, Asn, Asp, Gln, Glu, Gly, His, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₅ is Arg, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Thr, Trp, Tyr or Val;

X₆ is Ala, Arg, Asn, Cys, Glu, Ile, Leu, Met, Phe, Ser, Trp or Tyr;

X₇ is Arg, Asn, Asp, Gln, Glu, His, Ile, Leu, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Asn, Asp, Gln, Glu, Gly, His, Met, Phe, Pro, Ser, Trp, Tyr or Val;

X₉ is Asp, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp or Tyr;

X₁₀ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₁₁ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Lys, Trp, Tyr or Val;

12

X₁₂ is Ala, Arg, Gln, Gly, His, Ile, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₃ is Arg, Gln, Glu, His, Leu, Lys, Met, Phe, Pro, Thr, Trp or Val;

X₁₄ is Arg, Asn, Asp, Glu, His, Ile, Leu, Met, Phe, Pro, Thr, Trp, Tyr or Val;

X₁₆ is Ala, Asn, Asp, Gln, Glu, Gly, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₇ is Arg, Asn, Asp, Cys, Gly, His, Phe, Pro, Ser, Trp or Tyr; and

X₁₈ is Ala, Asn, Asp, Gly, His, Leu, Phe, Pro, Ser, Trp or Tyr; or

Consensus Sequence 3: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-Gly-X_9-Cys-X_{11}-X_{12}-X_{13}$ (TN7), wherein

 X_1 is Gly or Trp;

X₂ is Ile, Tyr or Val;

X₃ is Gln, Glu, Thr or Trp;

 X_5 is Asn, Asp or Glu;

X₆ is Glu, His, Lys or Phe;

X₇ is Asp, Gln, Leu, Lys, Met or Tyr;

X₉ is Arg, Gln, Leu, Lys or Val;

X₁₁ is Arg, Phe, Ser, Trp or Val;

 X_{12} is Glu, His or Ser; and

X₁₃ is Glu, Gly, Trp or Tyr; or

Consensus Sequence 4: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-X_9-X_{10}-X_{11}-Cys-X_{13}-X_{14}-X_{15}$ (TN9), wherein

X₁ is Arg, Asp, Gly, Ile, Met, Pro or Tyr;

X₂ is Asp, Gly, His, Pro or Trp;

X₃ is Gly, Pro, Phe, Thr or Trp;

X₅ is Ala, Asp, Lys, Ser, Trp or Val;

X₆ is Asn, Glu, Gly, His or Leu;

X₇ is Gln, Glu, Gly, Met, Lys, Phe, Tyr or Val;

X₈ is Ala, Asn, Asp, Gly, Leu, Met, Pro, Ser or Thr;

13

X₉ is His, Pro or Trp;

X₁₀ is Ala, Gly, His, Leu, Trp or Tyr;

X₁₁ is Ala, Asp, Gln, Leu, Met, Thr or Trp;

X₁₃ is Ala, Lys, Ser, Trp or Tyr;

X₁₄ is Asp, Gly, Leu, His, Met, Thr, Trp or Tyr; and

X₁₅ is Asn, Gln, Glu, Leu, Met, Pro or Trp; or

Consensus Sequence 5: X₁-X₂-X₃-Cys-X₅-X₆-X₇-X₈-Ser-Gly-Pro-X₁₂-X₁₃-X₁₄-X₁₅-Cys-X₁₇-

X₁₈-X₁₉ (SEQ ID NO:1; MTN13), wherein

X₁ is Arg, Glu, His, Ser or Trp;

X₂ is Asn, Asp, Leu, Phe, Thr or Val;

X₃ is Arg, Asp, Glu, His, Lys or Thr;

X₅ is Asp, Glu, His or Thr;

X₆ is Arg, His, Lys or Phe;

X₇ is Gln, Ile, Lys, Tyr or Val;

X₈ is Gln, Ile, Leu, Met or Phe;

X₁₂ is Asn, Asp, Gly, His or Tyr;

X₁₃ is Gln, Gly, Ser or Thr;

X₁₄ is Glu, Lys, Phe or Ser;

X₁₅ is Glu, Ile, Ser or Val;

X₁₇ is Glu, Gly, Lys, Phe, Ser or Val;

X₁₈ is Arg, Asn, Ser or Tyr; and

X₁₉ is Asp, Gln, Glu, Gly, Met or Tyr.

(Withdrawn) The polypeptide of Claim 7, wherein the polypeptide comprises an amino acid 8. sequence of one of the following:

Consensus Sequence 6: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-X_9-Tyr-Cys-X_{12}-X_{13}-X_{14}$, wherein

X, is Ala, Arg, Asp, Leu, Lys, Pro, Ser or Val;

X, is Asn, Asp, Glu, Lys, Thr or Ser;

X, is Ile, Leu, Trp;

X₅ is Ala, Arg, Glu, Lys or Ser;

X₆ is Ala, Asp, Gln, Glu, Thr or Val;

X, is Asp or Glu;

 X_g is Trp or Tyr;

X_o is Thr or Tyr;

X₁₂ is Glu, Met, Phe, Trp or Tyr;

X₁₃ is Ile, Leu or Met; and

X₁₄ is Ile, Leu, Met, Phe or Thr; or

Consensus Sequence 7: Trp-Tyr-Trp-Cys- X_5 - X_6 - X_7 -Gly- X_9 - X_{10} -Cys- X_{12} - X_{13} - X_{14} (SEQ ID NO:2), wherein

X, is Asp, Gln or His;

X₆ is His or Tyr;

X₇ is Ile, His or Tyr;

X_o is Ile, Met or Val;

X₁₀ is Gly or Tyr;

X₁₂ is Asp, Lys or Pro;

 X_{13} is Gln, Gly or Trp; and

X₁₄ is Phe, Ser or Thr; or

Consensus Sequence 8: $X_1 - X_2 - X_3 - Cys - X_5 - X_6 - X_7 - X_8 - Gly - X_{10} - Cys - X_{12} - X_{13} - X_{14}$, wherein

X, is Gly, Leu, His, Thr, Trp, Tyr;

X, is Ile, Leu, Thr, Trp or Val;

 X_3 is Asp, Glu, Gln, Trp or Thr;

X₅ is Ala, Arg, Asn, Asp, His, Phe, Trp or Tyr;

X₆ is Ala, Asp, Gln, His, Lys, Met, Ser, Thr, Trp, Tyr or Val;

Reply to Office Action of November 9, 2006

X₇ is Ala, Asn, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr or Val;

Docket No.: D0617.70012US00

 X_{g} is Asp, Phe, Ser, Thr, Trp or Tyr;

X₁₀ is Ala, Arg, Gln, His, Ile, Leu, Lys, Met, Phe, Trp or Tyr;

X₁, is Arg, Gln, His, Ile, Lys, Met, Phe, Thr, Trp, Tyr or Val;

X₁₃ is Arg, Asn, Asp, Glu, His, Met, Pro, Ser or Thr; and

X₁₄ is Arg, Gln, Glu, Gly, Phe, Ser, Trp or Tyr.

9. (Withdrawn) The polypeptide of Claim 7, wherein the polypeptide comprises an amino acid sequence of one of the following:

Consensus Sequence 9: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-Trp-Gly-Gly-X_{12}-X_{13}-Cys-X_{15}-X_{16}-X_{17}$ (SEQ ID NO:3), wherein

X₁ is Ser, Phe, Trp, Tyr or Gly;

X, is Arg, Gly, Ser or Trp;

X₃ is Ala, Glu, Ile or Val;

X₅ is Ala, Phe or Trp;

X₆ is Glu or Lys;

X₇ is Asp, Ser or Trp;

X₈ is Phe, Pro or Ser;

X₁₂ is Gln or Glu;

X₁₃ is Ile, Phe or Val;

X₁₅ is Gln, Ile, Leu or Phe;

X₁₆ is Arg, Gly or Pro; and

X₁₇ is Gln, His, Phe, Ser, Tyr or Val; or

Consensus Sequence 10: Tyr-Pro- X_3 -Cys- X_5 -Glu- X_7 -Ser- X_9 -Ser- X_{11} - X_{12} - X_{13} -Phe-Cys- X_{16} - X_{17} - X_{18} (SEQ ID NO:4; TN12), wherein

X₃ is Gly or Trp;

X₅ is His or Tyr;

X₇ is His, Leu or Thr;

X_o is Asp or Leu;

X₁₁ is Gly or Val;

X₁₂ is Thr or Val;

X₁₃ is Arg or Trp;

X₁₆ is Ala or Val;

X₁₇ is Asp or Pro; and

 X_{1R} is Gly or Trp; or

Consensus Sequence 11: $X_1 - X_2 - X_3 - Cys - X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} - Gly - X_{12} - Trp - X_{14} - Cys - X_{16} - X_{17} - X_{18} - X_{19} - X_{19$

X₁₈ (SEQ ID NO:5; TN12), wherein

X₁ is Asp, Gly, Pro or Ser;

X, is Arg, Asn, Asp, Gly or Ser;

X₃ is Gly, Thr, Trp or Tyr;

X₅ is Glu, Met or Thr;

X₆ is Ile, Leu, Met or Phe;

X₇ is Arg, Asp, Glu, Met, Trp or Val;

 X_8 is Asn, Gln, Gly, Ser or Val;

X₉ is Asp or Glu;

X₁₀ is Lys, Ser, Thr or Val;

X₁₂ is Arg, Gln, Lys or Trp;

X₁₄ is Asn, Leu, Phe or Tyr;

X₁₆ is Gly, Phe, Ser or Tyr;

 \boldsymbol{X}_{17} is Gly, Leu, Pro or Ser; and

X₁₈ is Ala, Asp, Pro, Ser, Trp or Tyr; or

Consensus Sequence 12: Asn-Trp- X_3 -Cys- X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} - X_{11} - X_{12} - X_{13} - X_{14} -Cys- X_{16} - X_{17} - X_{18} (SEQ ID NO:6; TN12), wherein

17

X₃ is Glu or Lys;

X, is Glu or Gly;

X₆ is Trp or Tyr;

X, is Ser or Thr;

X_g is Asn or Gln;

X_o is Gly or Met;

 X_{10} is Phe or Tyr;

X₁₁ is Asp or Gln;

X₁₂ is Lys or Tyr;

X₁₃ is Glu or Thr;

X₁₄ is Glu or Phe;

X₁₆ is Ala or Val;

X₁₇ is Arg or Tyr; and

X₁₈ is Leu or Pro,

wherein the polypeptide binds KDR or a VEGF/KDR complex.

10. (Currently Amended) An isolated polypeptide having the ability to bind to kinase domain region (KDR) or vascular endothelial growth factor/kinase domain region (VEGF/KDR) complex comprising an amino acid sequence of one of the following:

Consensus Sequence 13: Z₁-X₁-X₂-X₃-X₄-X₅-Z₂ (Lin20); wherein,

 Z_1 is a polypeptide of at least one amino acid or is absent;

X1 is Ala, Asp, Gln or Glu;

X2 is Ala, Asp, Gln, Glu, Pro;

X₃ is Ala, Leu, Lys, Phe, Pro, Trp or Tyr;

X₄ is Asp, Leu, Ser, Trp, Tyr or Val;

Amendment dated May 3, 2007
Reply to Office Action of November 9, 2006

X₅ is Ala, Arg, Asp, Glu, Gly, Leu, Trp or Tyr; and

 Z_2 is a polypeptide of at least one amino acid or is absent; or

18

Consensus Sequence 14: $X_1-X_2-X_3-Tyr-Trp-Glu-X_7-X_8-X_9-Leu$ (Lin20; SEQ ID NO:7), wherein, the sequence can optionally have a N-terminal polypeptide, C-terminal polypeptide, or a polypeptide at both termini of at least one amino acid; wherein,

 X_1 is Asp, Gly or Ser;

X₂ is Ile, Phe or Tyr;

X₃ is Ala, Ser or Val;

X₇ is Gln, Glu, Ile or Val;

X₈ is Ala, Ile or Val;

X₉ is Ala, Glu, Val or Thr; and wherein the polypeptide does not contain Cys residues and wherein the polypeptide is conjugated to one or more detectable labels or therapeutic agents.

- 11. (Withdrawn) The polypeptide of Claim 7, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: SEQ ID NOS: 20-86, 87-136, 187-192, 193-203, and 207-259.
- 12. (Withdrawn) The polypeptide of Claim 10, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: SEQ ID NOS: 137-186.
- 13. (Currently Amended) The polypeptide of one of Claims 1, 7-or claim 10, wherein the polypeptide further comprises N-terminal and/or C-terminal flanking peptides of one or more amino acids.
- 14. (Currently Amended) The polypeptide of one of Claims 1, 7 or claim 10, wherein the polypeptide comprises a modification selected from the group consisting of: an amino acid substitution, and an amide bond substitution, a D-amino acid substitution, a glycosylated amino acid, a disulfide bond, a disulfide mimetic substitution, an amino acid translocation, a

Reply to Office Action of November 9, 2006

retroinverso peptide, a peptoid, a retro-inverso peptoid, and a synthetic peptide.

19

- (Currently Amended) The polypeptide of one of Claims 1, 7 or claim 10, wherein the 15. polypeptide is conjugated to one or more detectable labels or therapeutic agents, optionally further eomprising comprises a linker or spacer between the polypeptide and the detectable label or the therapeutic agent.
- (Original) The polypeptide of Claim 15, wherein the detectable label or the therapeutic 16. agent is selected from the group consisting of: an enzyme, a fluorescent compound, a liposome, an optical dye, one or more paramagnetic metal ions or a superparamagnetic particle, an ultrasound contrast agent and one or more radionuclides.
- 17. (Original) The polypeptide of Claim 16, wherein the therapeutic agent or detectable label comprises one or more radionuclides.
- (Original) The polypeptide of Claim 17, wherein the radionuclide is selected from the group 18. consisting of: ¹⁸F, ¹²⁴I, ¹²⁵I, ¹³¹I, ¹²³I, ⁷⁷Br, ⁷⁶Br, ^{99m}Tc, ⁵¹Cr, ⁶⁷Ga, ⁶⁸Ga, ⁴⁷Sc, ⁵¹Cr, ¹⁶⁷Tm, ¹⁴¹Ce. ¹¹¹In. ¹⁶⁸Yb. ¹⁷⁵Yb. ¹⁴⁰La, ⁹⁰Y. ⁸⁸Y. ¹⁵³Sm, ¹⁶⁶Ho, ¹⁶⁵Dy, ¹⁶⁶Dy, ⁶²Cu, ⁶⁴Cu, ⁶⁷Cu, ⁹⁷Ru, ¹⁰³Ru, ¹⁸⁶Re, ¹⁸⁸Re, ²⁰³Pb, ²¹¹Bi, ²¹²Bi, ²¹³Bi, ²¹⁴Bi, ¹⁰⁵Rh, ¹⁰⁹Pd, ^{117m}Sn, ¹⁴⁹Pm, ¹⁶¹Tb, ¹⁷⁷Lu, ¹⁹⁸Au and ¹⁹⁹Au.
- (Original) The polypeptide of Claim 18, wherein the therapeutic agent or detectable label 19. further comprises a chelator.
- (Original) The polypeptide of Claim 19, wherein the chelator comprises a compound 20. selected from the group consisting of: formula 20, 21, 22, 23a, 23b, 24a, 24b, and 25.
- (Original) The polypeptide of Claim 19, wherein the radionuclide is ^{99m}Tc or ¹¹¹In. 21.

Reply to Office Action of November 9, 2006

22. (Original) The polypeptide of Claim 19, wherein the radionuclide is selected from the group

Docket No.: D0617.70012US00

- consisting of: ¹⁷⁷Lu, ⁹⁰Y, ¹⁵³Sm and ¹⁶⁶Ho.
- 23. (Original) The polypeptide of Claim 16, wherein the detectable label comprises an ultrasound contrast agent.
- 24. (Original) The polypeptide of Claim 23, wherein the ultrasound contrast agent is a phospholipid stabilized microbubble or an ultrasound contrast agent comprising a gas.
- 25. (Original) The polypeptide of Claim 24, wherein the ultrasound contrast agent comprises a fluorinated gas.
- 26. (Original) The polypeptide of Claim 16, wherein the detectable label comprises one or more paramagnetic metal ions and one or more chelators.
- 27. (Withdrawn) The polypeptide of Claim 15, wherein the therapeutic agent is selected from the group consisting of: a bioactive agent, a cytotoxic agent, a drug, a chemotherapeutic agent and a radiotherapeutic agent.

28-31 (Canceled)

- 32. (Withdrawn) A method for isolating phage that bind KDR or a VEGF/KDR complex, comprising the steps of:
 - (a) immobilizing a KDR or VEGF/KDR complex target on a solid support;
 - (b) contacting a library of potential KDR or VEGF/KDR complex binding phage with the solid support to bind KDR or a VEGF/KDR complex binding phage in the library; and
 - (c) removing the unbound portion of the phage library from the solid support, thereby isolating phage that bind KDR or a VEGF/KDR complex.

21

33-52. (Canceled)

53. (Withdrawn) A recombinant bacteriophage displaying a KDR binding or VEGF/KDR complex binding polypeptide, which polypeptide comprises an amino acid sequence of one of the following:

Consensus Sequence 1: X_1 - X_2 - X_3 -Cys- X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} -Cys- X_{12} - X_{13} - X_{14} (TN8), wherein

X₁ is Ala, Arg, Asp, Gly, His, Leu, Lys, Pro, Ser, Thr, Trp, Tyr or Val;

X₂ is Asn, Asp, Glu, Gly, Ile, Leu, Lys, Phe, Ser, Thr, Trp, Tyr or Val;

X₃ is Asn, Asp, Gln, Glu, Ile, Leu, Met, Thr, Trp or Val;

X₅ is Ala, Arg, Asn, Asp, Gln, Glu, His, Ile, Lys, Phe, Pro, Ser, Trp or Tyr;

X₆ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₇ is Ala, Asn, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Asp, Glu, Gly, Leu, Phe, Pro, Ser, Thr, Trp or Tyr;

X₉ is Arg, Gln, Glu, Gly, Ile, Leu, Met, Pro, Thr, Trp, Tyr or Val;

 X_{10} is Ala, Arg, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Trp or Tyr;

X₁₂ is Arg, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₁₃ is Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp or Tyr; and

 X_{14} is Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp or Tyr; or Consensus Sequence 2: X_1 - X_2 - X_3 -Cys- X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} - X_{11} - X_{12} - X_{13} - X_{14} -Cys- X_{16} - X_{17} - X_{18} (TN12), wherein

X1 is Ala, Asn, Asp, Gly, Leu, Pro, Ser, Trp or Tyr;

X₂ is Ala, Arg, Asn, Asp, Gly, His, Phe, Pro, Ser, Trp or Tyr;

X₃ is Ala, Asn, Asp, Gln, Glu, Gly, His, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

Reply to Office Action of November 9, 2006

X₅ is Arg, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Thr, Trp, Tyr or Val;

X₆ is Ala, Arg, Asn, Cys, Glu, Ile, Leu, Met, Phe, Ser, Trp or Tyr;

22

X₇ is Arg, Asn, Asp, Gln, Glu, His, Ile, Leu, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Asn, Asp, Gln, Glu, Gly, His, Met, Phe, Pro, Ser, Trp, Tyr or Val;

X₉ is Asp, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp or Tyr;

X₁₀ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

Docket No.: D0617.70012US00

X₁₁ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Lys, Trp, Tyr or Val;

X₁₂ is Ala, Arg, Gln, Gly, His, Ile, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₃ is Arg, Gln, Glu, His, Leu, Lys, Met, Phe, Pro, Thr, Trp or Val;

X₁₄ is Arg, Asn, Asp, Glu, His, Ile, Leu, Met, Phe, Pro, Thr, Trp, Tyr or Val;

X₁₆ is Ala, Asn, Asp, Gln, Glu, Gly, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₇ is Arg, Asn, Asp, Cys, Gly, His, Phe, Pro, Ser, Trp or Tyr; and

X₁₈ is Ala, Asn, Asp, Gly, His, Leu, Phe, Pro, Ser, Trp or Tyr; or

Consensus Sequence 3: X₁-X₂-X₃-Cys-X₅-X₆-X₇-Gly-X₉-Cys-X₁₁-X₁₂-X₁₃ (TN7), wherein

 X_1 is Gly or Trp;

X₂ is Ile, Tyr or Val;

X₃ is Gln, Glu, Thr or Trp;

X₅ is Asn, Asp or Glu;

X₆ is Glu, His, Lys or Phe;

X₇ is Asp, Gln, Leu, Lys, Met or Tyr;

X₉ is Arg, Gln, Leu, Lys or Val;

X₁₁ is Arg, Phe, Ser, Trp or Val;

 X_{12} is Glu, His or Ser; and

X₁₃ is Glu, Gly, Trp or Tyr; or

Consensus Sequence 4: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-X_9-X_{10}-X_{11}-Cys-X_{13}-X_{14}-X_{15}$ (TN9), wherein

X₁ is Arg, Asp, Gly, Ile, Met, Pro or Tyr;

X₂ is Asp, Gly, His, Pro or Trp;

X₃ is Gly, Pro, Phe, Thr or Trp;

X₅ is Ala, Asp, Lys, Ser, Trp or Val;

X₆ is Asn, Glu, Gly, His or Leu;

X₇ is Gln, Glu, Gly, Met, Lys, Phe, Tyr or Val;

X₈ is Ala, Asn, Asp, Gly, Leu, Met, Pro, Ser or Thr;

23

X₉ is His, Pro or Trp;

X₁₀ is Ala, Gly, His, Leu, Trp or Tyr;

X₁₁ is Ala, Asp, Gln, Leu, Met, Thr or Trp;

X₁₃ is Ala, Lys, Ser, Trp or Tyr;

X₁₄ is Asp, Gly, Leu, His, Met, Thr, Trp or Tyr; and

X₁₅ is Asn, Gln, Glu, Leu, Met, Pro or Trp; or

Consensus Sequence 5: X₁-X₂-X₃-Cys-X₅-X₆-X₇-X₈-Ser-Gly-Pro-X₁₂-X₁₃-X₁₄-X₁₅-Cys-X₁₇-

X₁₈-X₁₉ (SEQ ID NO:1; MTN13), wherein

X₁ is Arg, Glu, His, Ser or Trp;

X₂ is Asn, Asp, Leu, Phe, Thr or Val;

X₃ is Arg, Asp, Glu, His, Lys or Thr;

X₅ is Asp, Glu, His or Thr;

X₆ is Arg, His, Lys or Phe;

X₇ is Gln, Ile, Lys, Tyr or Val;

X₈ is Gln, Ile, Leu, Met or Phe;

 X_{12} is Asn, Asp, Gly, His or Tyr;

X₁₃ is Gln, Gly, Ser or Thr;

 X_{14} is Glu, Lys, Phe or Ser;

X₁₅ is Glu, Ile, Ser or Val;

X₁₇ is Glu, Gly, Lys, Phe, Ser or Val;

X₁₈ is Arg, Asn, Ser or Tyr; and

X₁₉ is Asp, Gln, Glu, Gly, Met or Tyr,

and wherein the polypeptide is displayed on the surface of the recombinant bacteriophage.

Reply to Office Action of November 9, 2006

54. (Withdrawn) A magnetic resonance imaging contrast agent comprising a KDR or VEGF/KDR complex binding polypeptide comprising an amino acid sequence of one of the following:

24

Consensus Sequence 1: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-X_9-X_{10}-Cys-X_{12}-X_{13}-X_{14}$ (TN8), wherein

X₁ is Ala, Arg, Asp, Gly, His, Leu, Lys, Pro, Ser, Thr, Trp, Tyr or Val;

X₂ is Asn, Asp, Glu, Gly, Ile, Leu, Lys, Phe, Ser, Thr, Trp, Tyr or Val;

X₃ is Asn, Asp, Gln, Glu, Ile, Leu, Met, Thr, Trp or Val;

X5 is Ala, Arg, Asn, Asp, Gln, Glu, His, Ile, Lys, Phe, Pro, Ser, Trp or Tyr;

X₆ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₇ is Ala, Asn, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Asp, Glu, Gly, Leu, Phe, Pro, Ser, Thr, Trp or Tyr;

X₉ is Arg, Gln, Glu, Gly, Ile, Leu, Met, Pro, Thr, Trp, Tyr or Val;

X₁₀ is Ala, Arg, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Trp or Tyr;

X₁₂ is Arg, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₁₃ is Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp or Tyr; and

 X_{14} is Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp or Tyr; or Consensus Sequence 2: X_1 - X_2 - X_3 -Cys- X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} - X_{11} - X_{12} - X_{13} - X_{14} -Cys- X_{16} - X_{17} - X_{18} (TN12), wherein

X₁ is Ala, Asn, Asp, Gly, Leu, Pro, Ser, Trp or Tyr;

X2 is Ala, Arg, Asn, Asp, Gly, His, Phe, Pro, Ser, Trp or Tyr;

X₃ is Ala, Asn, Asp, Gln, Glu, Gly, His, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X5 is Arg, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Thr, Trp, Tyr or Val;

X₆ is Ala, Arg, Asn, Cys, Glu, Ile, Leu, Met, Phe, Ser, Trp or Tyr;

X₇ is Arg, Asn, Asp, Gln, Glu, His, Ile, Leu, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Asn, Asp, Gln, Glu, Gly, His, Met, Phe, Pro, Ser, Trp, Tyr or Val;

X₉ is Asp, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp or Tyr;

X₁₀ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₁₁ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Lys, Trp, Tyr or Val;

25

X₁₂ is Ala, Arg, Gln, Gly, His, Ile, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₃ is Arg, Gln, Glu, His, Leu, Lys, Met, Phe, Pro, Thr, Trp or Val;

X₁₄ is Arg, Asn, Asp, Glu, His, Ile, Leu, Met, Phe, Pro, Thr, Trp, Tyr or Val;

X₁₆ is Ala, Asn, Asp, Gln, Glu, Gly, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₇ is Arg, Asn, Asp, Cys, Gly, His, Phe, Pro, Ser, Trp or Tyr; and

X₁₈ is Ala, Asn, Asp, Gly, His, Leu, Phe, Pro, Ser, Trp or Tyr; or

Consensus Sequence 3: X₁-X₂-X₃-Cys-X₅-X₆-X₇-Gly-X₉-Cys-X₁₁-X₁₂-X₁₃ (TN7), wherein

X₁ is Gly or Trp;

X₂ is Ile, Tyr or Val;

X₃ is Gln, Glu, Thr or Trp;

X₅ is Asn, Asp or Glu;

X₆ is Glu, His, Lys or Phe;

X7 is Asp, Gln, Leu, Lys, Met or Tyr;

X₉ is Arg, Gln, Leu, Lys or Val;

X₁₁ is Arg, Phe, Ser, Trp or Val;

X₁₂ is Glu, His or Ser; and

 X_{13} is Glu, Gly, Trp or Tyr; or

Consensus Sequence 4: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-X_9-X_{10}-X_{11}-Cys-X_{13}-X_{14}-X_{15}$ (TN9), wherein

X₁ is Arg, Asp, Gly, Ile, Met, Pro or Tyr;

X₂ is Asp, Gly, His, Pro or Trp;

X₃ is Gly, Pro, Phe, Thr or Trp;

X₅ is Ala, Asp, Lys, Ser, Trp or Val;

X₆ is Asn, Glu, Gly, His or Leu;

X₇ is Gln, Glu, Gly, Met, Lys, Phe, Tyr or Val;

X₈ is Ala, Asn, Asp, Gly, Leu, Met, Pro, Ser or Thr;

X₉ is His, Pro or Trp;

X₁₀ is Ala, Gly, His, Leu, Trp or Tyr;

X₁₁ is Ala, Asp, Gln, Leu, Met, Thr or Trp;

X₁₃ is Ala, Lys, Ser, Trp or Tyr;

X₁₄ is Asp, Gly, Leu, His, Met, Thr, Trp or Tyr; and

X₁₅ is Asn, Gln, Glu, Leu, Met, Pro or Trp; or

Consensus Sequence 5: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-Ser-Gly-Pro-X_{12}-X_{13}-X_{14}-X_{15}-Cys-X_{17}-X_{18}-$

X₁₈-X₁₉ (SEQ ID NO:1; MTN13), wherein

X₁ is Arg, Glu, His, Ser or Trp;

X₂ is Asn, Asp, Leu, Phe, Thr or Val;

X₃is Arg, Asp, Glu, His, Lys or Thr;

X₅ is Asp, Glu, His or Thr;

X₆ is Arg, His, Lys or Phe;

X₇ is Gln, Ile, Lys, Tyr or Val;

X₈ is Gln, Ile, Leu, Met or Phe;

 X_{12} is Asn, Asp, Gly, His or Tyr;

X₁₃ is Gln, Gly, Ser or Thr;

X₁₄ is Glu, Lys, Phe or Ser;

X₁₅ is Glu, Ile, Ser or Val;

X₁₇ is Glu, Gly, Lys, Phe, Ser or Val;

X₁₈ is Arg, Asn, Ser or Tyr; and

X₁₉ is Asp, Gln, Glu, Gly, Met or Tyr,

wherein the polypeptide is coupled to at least one chelator capable of complexing a paramagnetic metal or at least one superparamagnetic particle, and wherein the polypeptide optionally comprises an N-terminal and/or C-terminal flanking peptide.

55-75. (Canceled)

27

76. (Withdrawn) A multimeric polypeptide construct having the ability to bind to KDR or VEGF/KDR complex comprising at least one amino acid selected from the group consisting of:

Loop Consensus Sequence 15: Cys-X₂-X₃-X₄-X₅-X₆-X₇-Cys (TN8), wherein

X2 is Ala, Arg, Asn, Asp, Gln, Glu, His, Ile, Lys, Phe, Pro, Ser, Trp or Tyr;

X3 is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X4 is Ala, Asn, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X5 is Ala, Asp, Glu, Gly, Leu, Phe, Pro, Ser, Thr, Trp or Tyr;

X6 is Arg, Gln, Glu, Gly, Ile, Leu, Met, Pro, Thr, Trp, Tyr or Val; and

X7 is Ala, Arg, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Trp or Tyr; or

Loop Consensus Sequence 16: Cys-X₂-X₃-X₄-X₅-X₆-X₇-X₈-X₉-X₁₀-X₁₁-Cys (TN12), wherein

X2 is Arg, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Thr, Trp, Tyr or Val;

X3 is Ala, Arg, Asn, Cys, Glu, Ile, Leu, Met, Phe, Ser, Trp or Tyr;

X4 is Arg, Asn, Asp, Gln, Glu, His, Ile, Leu, Pro, Ser, Thr, Trp, Tyr or Val;

X5 is Ala, Asn, Asp, Gln, Glu, Gly, His, Met, Phe, Pro, Ser, Trp, Tyr or Val;

X6 is Asp, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp or Tyr;

X7 is Ala, Arg, Asn, Asp, Gln, Glu, Gly, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X8 is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Lys, Trp, Tyr or Val;

X9 is Ala, Arg, Gln, Gly, His, Ile, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X10 is Arg, Gln, Glu, His, Leu, Lys, Met, Phe, Pro, Thr, Trp or Val; and

X11 is Arg, Asn, Asp, Glu, His, Ile, Leu, Met, Phe, Pro, Thr, Trp, Tyr or Val; or

Loop Consensus Sequence 17: Cys-X₂-X₃-X₄-Gly-X₆-Cys (TN7), wherein

X2 is Asn, Asp or Glu;

X3 is Glu, His, Lys or Phe;

X4 is Asp, Gln, Leu, Lys, Met or Tyr; and

X6 is Arg, Gln, Leu, Lys or Val; or

Consensus Sequence IV: Cys-X₂-X₃-X₄-X₅-X₆-X₇-X₈-Cys (TN9), wherein

X2 is Ala, Asp, Lys, Ser, Trp or Val;

X3 is Asn, Glu, Gly, His or Leu;

X4 is Gln, Glu, Gly, Met, Lys, Phe, Tyr or Val;

X5 is Ala, Asn, Asp, Gly, Leu, Met, Pro, Ser or Thr;

X6 is His, Pro or Trp;

X7 is Ala, Gly, His, Leu, Trp or Tyr; and

X8 is Ala, Asp, Gln, Leu, Met, Thr or Trp; or

Loop Consensus Sequence 18: Cys-X₂-X₃-X₄-X₅-X₆-X₇-X₈-Cys (TN9), wherein

X₂ is Ala, Asp, Lys, Ser, Trp or Val;

X₃ is Asn, Glu, Gly, His or Leu;

X₄ is Gln, Glu, Gly, Met, Lys, Phe, Tyr or Val;

X₅ is Ala, Asn, Asp, Gly, Leu, Met, Pro, Ser or Thr;

X₆ is His, Pro or Trp;

X₇ is Ala, Gly, His, Leu, Trp or Tyr; and

X₈ is Ala, Asp, Gln, Leu, Met, Thr or Trp; or

 $Loop\ Consensus\ Sequence\ 19:\ Cys-X_2-X_3-X_4-X_5-Ser-Gly-Pro-X_9-X_{10}-X_{11}-X_{12}-Cys$

(MTN13; SEQ ID NO:1), wherein

X₂ is Asp, Glu, His or Thr;

X₃ is Arg, His, Lys or Phe;

X₄ is Gln, Ile, Lys, Tyr or Val;

X₅ is Gln, Ile, Leu, Met or Phe;

X₉ is Asn, Asp, Gly, His or Tyr;

 X_{10} is Gln, Gly, Ser or Thr;

X₁₁ is Glu, Lys, Phe or Ser; and

 X_{12} is Glu, Ile, Ser or Val.

77. (Canceled)

Application No. 10/661,156 Amendment dated May 3, 2007 Reply to Office Action of November 9, 2006

78. (Currently Amended) A multimeric polypeptide construct having the ability to bind to KDR or VEGF/KDR complex comprising at least one amino acid sequence of one of the following:

Consensus Sequence 13: Z_1 - X_1 - X_2 - X_3 - X_4 - X_5 - Z_2 (Lin20); wherein,

 Z_1 is a polypeptide of at least one amino acid or is absent;

 X_1 is Ala, Asp, Gln or Glu;

X₂ is Ala, Asp, Gln, Glu, Pro;

X₃ is Ala, Leu, Lys, Phe, Pro, Trp or Tyr;

X₄ is Asp, Leu, Ser, Trp, Tyr or Val;

X₅ is Ala, Arg, Asp, Glu, Gly, Leu, Trp or Tyr; and

Z₂ is a polypeptide of at least one amino acid or is absent; or

Consensus Sequence 14: X1 X2 X3 Tyr Trp Glu X7 X8 X9 Leu X₁-X₂-X₃-Tyr-Trp-Glu-X₇-X₈-X₉-Leu (Lin20; SEQ ID NO:7), wherein, the sequence can optionally have a N-terminal polypeptide, C-terminal polypeptide, or a polypeptide at both termini of at least one amino acid; wherein,

 X_1 is Asp, Gly or Ser;

X₂ is Ile, Phe or Tyr;

X₃ is Ala, Ser or Val;

X₇ is Gln, Glu, Ile or Val;

X₈ is Ala, Ile or Val;

X₉ is Ala, Glu, Val or Thr.

79-157. (Canceled)

158. (Withdrawn) A method of detecting KDR or VEGF/KDR complex in an animal or human subject and optionally imaging at least a portion of the animal or human subject comprising

the steps of:

detectably labeling a multimeric polypeptide construct of one of Claims 76, (a) or 78;

Docket No.: D0617.70012US00

30

- (b) administering to the subject the labeled multimeric polypeptide construct; and,
- detecting the labeled multimeric polypeptide construct in the subject, (c) and, optionally, constructing an image..

159-174. (Canceled)

175. (Withdrawn) A multimeric polypeptide having the ability to bind to KDR or VEGF/KDR complex selected from the group consisting of: D30 and D31.

176-194. (Canceled)

(Withdrawn and Currently Amended) A method of inhibiting VEGF activation of KDR 195. comprising administering to an animal or human subject in need of treatment for such condition a polypeptide having the ability to bind to KDR or VEGF/KDR complex, or a multimeric polypeptide construct comprising at least one ploypeptide having the ability to bind to KDR or VEGF/KDR complex, sadi said polypeptide comprising an amino acid sequence of one of the following:

Consensus Sequence 1: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-X_9-X_{10}-Cys-X_{12}-X_{13}-X_{14}$ (TN8), wherein

X₁ is Ala, Arg, Asp, Gly, His, Leu, Lys, Pro, Ser, Thr, Trp, Tyr or Val;

X₂ is Asn, Asp, Glu, Gly, Ile, Leu, Lys, Phe, Ser, Thr, Trp, Tyr or Val;

X₃ is Asn, Asp, Gln, Glu, Ile, Leu, Met, Thr, Trp or Val;

X₅ is Ala, Arg, Asn, Asp, Gln, Glu, His, Ile, Lys, Phe, Pro, Ser, Trp or Tyr;

X₆ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₇ is Ala, Asn, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Asp, Glu, Gly, Leu, Phe, Pro, Ser, Thr, Trp or Tyr;

31

X₉ is Arg, Gln, Glu, Gly, Ile, Leu, Met, Pro, Thr, Trp, Tyr or Val;

X₁₀ is Ala, Arg, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Trp or Tyr;

X₁₂ is Arg, Asp, Cys, Gln, Glu, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₁₃ is Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp or Tyr; and

 X_{14} is Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp or Tyr; or Consensus Sequence 2: X_1 - X_2 - X_3 - X_5 - X_6 - X_7 - X_8 - X_9 - X_{10} - X_{11} - X_{12} - X_{13} - X_{14} - X_{16} - X_{17} - X_{18} (TN12), wherein

X₁ is Ala, Asn, Asp, Gly, Leu, Pro, Ser, Trp or Tyr;

X₂ is Ala, Arg, Asn, Asp, Gly, His, Phe, Pro, Ser, Trp or Tyr;

X₃ is Ala, Asn, Asp, Gln, Glu, Gly, His, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₅ is Arg, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Thr, Trp, Tyr or Val;

X₆ is Ala, Arg, Asn, Cys, Glu, Ile, Leu, Met, Phe, Ser, Trp or Tyr;

X₇ is Arg, Asn, Asp, Gln, Glu, His, Ile, Leu, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Asn, Asp, Gln, Glu, Gly, His, Met, Phe, Pro, Ser, Trp, Tyr or Val;

X₉ is Asp, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp or Tyr;

X₁₀ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₁₁ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Lys, Trp, Tyr or Val;

X₁₂ is Ala, Arg, Gln, Gly, His, Ile, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₃ is Arg, Gln, Glu, His, Leu, Lys, Met, Phe, Pro, Thr, Trp or Val;

X₁₄ is Arg, Asn, Asp, Glu, His, Ile, Leu, Met, Phe, Pro, Thr, Trp, Tyr or Val;

X₁₆ is Ala, Asn, Asp, Gln, Glu, Gly, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₇ is Arg, Asn, Asp, Cys, Gly, His, Phe, Pro, Ser, Trp or Tyr; and

X₁₈ is Ala, Asn, Asp, Gly, His, Leu, Phe, Pro, Ser, Trp or Tyr; or

Consensus Sequence 3: X₁-X₂-X₃-Cys-X₅-X₆-X₇-Gly-X₉-Cys-X₁₁-X₁₂-X₁₃ (TN7), wherein

Application No. 10/661,156 Amendment dated May 3, 2007 Reply to Office Action of November 9, 2006

 X_1 is Gly or Trp;

X₂ is Ile, Tyr or Val;

X₃ is Gln, Glu, Thr or Trp;

 X_5 is Asn, Asp or Glu;

X₆ is Glu, His, Lys or Phe;

X₇ is Asp, Gln, Leu, Lys, Met or Tyr;

X₉ is Arg, Gln, Leu, Lys or Val;

X₁₁ is Arg, Phe, Ser, Trp or Val;

X₁₂ is Glu, His or Ser; and

X₁₃ is Glu, Gly, Trp or Tyr; or

Consensus Sequence 4: $X_1-X_2-X_3-Cys-X_5-X_6-X_7-X_8-X_9-X_{10}-X_{11}-Cys-X_{13}-X_{14}-X_{15}$ (TN9), wherein

X₁ is Arg, Asp, Gly, Ile, Met, Pro or Tyr;

X₂ is Asp, Gly, His, Pro or Trp;

X₃ is Gly, Pro, Phe, Thr or Trp;

X₅ is Ala, Asp, Lys, Ser, Trp or Val;

X₆ is Asn, Glu, Gly, His or Leu;

X₇ is Gln, Glu, Gly, Met, Lys, Phe, Tyr or Val;

X₈ is Ala, Asn, Asp, Gly, Leu, Met, Pro, Ser or Thr;

X₉ is His, Pro or Trp;

X₁₀ is Ala, Gly, His, Leu, Trp or Tyr;

X₁₁ is Ala, Asp, Gln, Leu, Met, Thr or Trp;

X₁₃ is Ala, Lys, Ser, Trp or Tyr;

X₁₄ is Asp, Gly, Leu, His, Met, Thr, Trp or Tyr; and

X₁₅ is Asn, Gln, Glu, Leu, Met, Pro or Trp;

Consensus Sequence 5: $X_1 - X_2 - X_3 - Cys - X_5 - X_6 - X_7 - X_8 - Ser - Gly - Pro - X_{12} - X_{13} - X_{14} - X_{15} - Cys - X_{17} - X_{18} - Cys - X_{18} -$

X₁₈-X₁₉ (SEQ ID NO:1; MTN13), wherein

X₁ is Arg, Glu, His, Ser or Trp;

X₂ is Asn, Asp, Leu, Phe, Thr or Val;

X₃ is Arg, Asp, Glu, His, Lys or Thr;

33

Docket No.: D0617.70012US00

X₅ is Asp, Glu, His or Thr;

X₆ is Arg, His, Lys or Phe;

X₇ is Gln, Ile, Lys, Tyr or Val;

X₈ is Gln, Ile, Leu, Met or Phe;

 X_{12} is Asn, Asp, Gly, His or Tyr;

X₁₃ is Gln, Gly, Ser or Thr;

X₁₄ is Glu, Lys, Phe or Ser;

X₁₅ is Glu, Ile, Ser or Val;

X₁₇ is Glu, Gly, Lys, Phe, Ser or Val;

X₁₈ is Arg, Asn, Ser or Tyr; and

X₁₉ is Asp, Gln, Glu, Gly, Met or Tyr;

Consensus Sequence 13: Z₁-X₁-X₂-X₃-X₄-X₅-Z₂ (Lin20); wherein,

 Z_1 is a polypeptide of at least one amino acid or is absent;

X₁ is Ala, Asp, Gln or Glu;

X₂ is Ala, Asp, Gln, Glu, Pro;

X₃ is Ala, Leu, Lys, Phe, Pro, Trp or Tyr;

X₄ is Asp, Leu, Ser, Trp, Tyr or Val;

X₅ is Ala, Arg, Asp, Glu, Gly, Leu, Trp or Tyr; and

 Z_2 is a polypeptide of at least one amino acid or is absent;

Consensus Sequence 14: X₁–X₂–X₃–Tyr–Trp–Glu–X₇–X₈–X₉–Leu (Lin20; SEQ ID NO:7), wherein, the sequence can optionally have a N-terminal polypeptide, C-terminal polypeptide, or a polypeptide at both termini of at least one amino acid; wherein,

 X_1 is Asp, Gly or Ser;

 X_2 is Ile, Phe or Tyr;

X₃ is Ala, Ser or Val;

X₇ is Gln, Glu, Ile or Val;

X₈ is Ala, Ile or Val;

X₉ is Ala, Glu, Val or Thr;

Loop Consensus Sequence 15: Cys-X₂-X₃-X₄-X₅-X₆-X₇-Cys (TN8), wherein

34

X₂ is Ala, Arg, Asn, Asp, Gln, Glu, His, Ile, Lys, Phe, Pro, Ser, Trp or Tyr;

X₃ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₄ is Ala, Asn, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Tyr or Val (preferably Asp);

X₅ is Ala, Asp, Glu, Gly, Leu, Phe, Pro, Ser, Thr, Trp or Tyr;

X₆ is Arg, Gln, Glu, Gly, Ile, Leu, Met, Pro, Thr, Trp, Tyr or Val; and

X₇ is Ala, Arg, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Trp or Tyr; or

Loop Consensus Sequence 16:Cys-X₂-X₃-X₄-X₅-X₆-X₇-X₈-X₉-X₁₀-X₁₁-Cys (TN12), wherein

X₂ is Arg, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Thr, Trp, Tyr or Val;

X₃ is Ala, Arg, Asn, Cys, Glu, Ile, Leu, Met, Phe, Ser, Trp or Tyr;

X₄ is Arg, Asn, Asp, Gln, Glu, His, Ile, Leu, Pro, Ser, Thr, Trp, Tyr or Val;

X₅ is Ala, Asn, Asp, Gln, Glu, Gly, His, Met, Phe, Pro, Ser, Trp, Tyr or Val;

X₆ is Asp, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp or Tyr;

X₇ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val;

X₈ is Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Lys, Trp, Tyr or Val;

X₉ is Ala, Arg, Gln, Gly, His, Ile, Lys, Met, Phe, Ser, Thr, Trp, Tyr or Val;

X₁₀ is Arg, Gln, Glu, His, Leu, Lys, Met, Phe, Pro, Thr, Trp or Val; and

X₁₁ is Arg, Asn, Asp, Glu, His, Ile, Leu, Met, Phe, Pro, Thr, Trp, Tyr or Val; or

Loop Consensus Sequence 17: Cys-X₂-X₃-X₄-Gly-X₆-Cys (TN7), wherein

X₂ is Asn, Asp or Glu;

X₃ is Glu, His, Lys or Phe;

X₄ is Asp, Gln, Leu, Lys, Met or Tyr; and

X₆ is Arg, Gln, Leu, Lys or Val; or

Loop Consensus Sequence 18: Cys-X₂-X₃-X₄-X₅-X₆-X₇-X₈-Cys (TN9), wherein

X₂ is Ala, Asp, Lys, Ser, Trp or Val;

X₃ is Asn, Glu, Gly, His or Leu;

35

Docket No.: D0617.70012US00

X₄ is Gln, Glu, Gly, Met, Lys, Phe, Tyr or Val;

X₅ is Ala, Asn, Asp, Gly, Leu, Met, Pro, Ser or Thr;

 X_6 is His, Pro or Trp;

X₇ is Ala, Gly, His, Leu, Trp or Tyr; and

X₈ is Ala, Asp, Gln, Leu, Met, Thr or Trp; or

Loop Consensus Sequence 19: Cys- X_2 - X_3 - X_4 - X_5 -Ser-Gly-Pro- X_9 - X_{10} - X_{11} - X_{12} -Cys

(MTN13; SEQ ID NO:1), wherein

X₂ is Asp, Glu, His or Thr;

X₃ is Arg, His, Lys or Phe;

X₄ is Gln, Ile, Lys, Tyr or Val;

X₅ is Gln, Ile, Leu, Met or Phe;

X₉ is Asn, Asp, Gly, His or Tyr;

X₁₀ is Gln, Gly, Ser or Thr;

X₁₁ is Glu, Lys, Phe or Ser; and

X₁₂ is Glu, Ile, Ser or Val.

196-197. (Canceled)

- 198. (New) An isolated polypeptide having the ability to bind to kinase domain region (KDR) or vascular endothelial growth factor/kinase domain region (VEGF/KDR) complex comprising an amino acid sequence of SEQ ID NO.:304, SEQ ID NO.:305, SEQ ID NO.:306, SEQ ID NO.:307, SEQ ID NO.:308, SEQ ID NO.:309, or SEQ ID NO.:310.
- 199. (New) The isolated polypeptide of claim 198, wherein the polypeptide consists of the amino acid sequence SEQ ID NO.:310.