K-means Clustering with Dataset PCA

Stephanie Cheng

2025-04-09

K-mean with PCA

"TOTAL.UNITS"

##

Reduce dimensions and prepare data for clustering

```
nyc_pca <- pca(new_york_city_data, "New York City")</pre>
## ===== PCA Summary for New York City =====
## Importance of components:
                                            PC3
                                                     PC4
                                                             PC5
##
                              PC1
                                     PC2
## Standard deviation
                           1.6621 1.1450 0.7821 0.55057 0.10703
## Proportion of Variance 0.5525 0.2622 0.1223 0.06063 0.00229
## Cumulative Proportion 0.5525 0.8147 0.9371 0.99771 1.00000
  Contributing variable for each PC:
##
                   PC1
                                        PC2
                                                             PC3
                                                                                  PC4
         "TOTAL.UNITS"
                               "YEAR.BUILT"
                                                       "BOROUGH" "GROSS.SQUARE.FEET"
##
##
                   PC5
```

Calculate clustering evaluation with Davies Bouldin index & Within-cluster sum of squares. See the affect when K is increasing, then we can apply elbow method to avoid picking the best k within overfitting case.

```
nyc_k_stats_20 <- calculate_k_stats_PCA(nyc_pca, max_k = 20)
nyc_k_stats_40 <- calculate_k_stats_PCA(nyc_pca, max_k = 40)

# DBI & WSS plot
elbows_20 <- plot_kmeans(nyc_k_stats_20\$errs, nyc_k_stats_20\$DBI)</pre>
```

Within-Cluster Sum of Squares

Davies-Bouldin Index

elbows_40 <- plot_kmeans(nyc_k_stats_40\$errs, nyc_k_stats_40\$DBI)</pre>

Within-Cluster Sum of Squares

Davies-Bouldin Index

 $best_k \leftarrow 4$

Plot all clusters from 2 to 7 as the best k clusters is within that range.

plot_clusters(nyc_k_stats_20\$X.syn, min_k = 2, max_k = 7)

K-means on PCA as PCA gives a lower-dimensional variable that improves clustering quality

```
km <- kmeans(nyc_pca$x, centers = best_k, nstart = 25)
summarize_kmeans(km, "New York City")</pre>
```

```
## ===== K-means Model Performance Summary for New York City =====
## Total within-cluster sum of squares (WSS): 35251.74
##
## Cluster sizes:
##
  [1] 4534 8979 9712 148
##
  Cluster centers (in PCA space):
     TOTAL.UNITS YEAR.BUILT
                              BOROUGH GROSS.SQUARE.FEET
                                                        TOTAL.UNITS
##
## 1
      0.04775774 1.6588805
                           0.6265526
                                          0.0004797091 -0.0022669754
      -0.0317504231 -0.0011815392
## 3 -0.03575967 -1.0168523
                           0.2619555
                                          0.0259434145
                                                      0.0008871676
## 4 -18.71388200 0.6962166 -0.9133678
                                          0.2091189580 0.0829144223
```

Interpret what the clusters mean with the original data

```
new_york_city_data$cluster <- km$cluster
aggregate(. ~ cluster, data = new_york_city_data, mean)</pre>
```

cluster BOROUGH RESIDENTIAL.UNITS TOTAL.UNITS GROSS.SQUARE.FEET YEAR.BUILT

## 1	1 4.244817	2.838774	3.018306	4280.963	1993.093
## 2	2 4.162602	1.540149	1.642165	1975.099	1934.099
## 3	3 2.568678	3.458299	4.071664	6344.001	1924.844
## 4	4 1.547297	313.898649	319.216216	416353.034	2002.135

Export the clusters for Supervised learning

```
dir.create("after_cluster_dataset")
```

Warning in dir.create("after_cluster_dataset"): 'after_cluster_dataset' already
exists