

Transport Demand Modeling

Anabela Ribeiro - 2020

anabela@dec.uc.pt

PANEL MODELS

Class Structure

	Dia	Description
1	25 November 2020 (4 hours)	A - Panel data models: Main issues One way component error models Two way component error models Exercises and notes on the Home Assignment Panel Data Models B - Spatial regression models: Main issues Exploratory Spatial Data Analysis
2	25 November 2020 (2 hours)	B – Spatial regression models: Spatial Regression Models Exercises and notes on the Home Assignment Spatial Data Models

General Framework

Regression types

Panel Data – Regression analysis that combines spatial data with time data.

- 1 Panel Data Cross section with time series
- 2 Spatial Models Cross section with spatial relation variables
- 3 Panel Data with spatial relation variables(not on theses classes)

Panel Data Models

Main issues

One way component error models

Two way component error models

Panel Data Models: Main Issues

Advantages

Longitudinal or cross-sectional time-series data

Panel data are better able to study the dynamics of adjustment. Cross-sectional distributions that look relatively stable hide a multitude of changes

Spells of unemployment, job turnover, residential and income mobility are better studied with panels. Panel data are also well suited to study the duration of economic states like unemployment and poverty, and if these panels are long enough, they can shed light on the speed of adjustments to economic policy changes.

Micro panel data gathered on variations for individuals, firms and households may measured more accurately those variations, than at the macro level, capturing other variations in presence and avoiding biases.

Biases resulting from aggregation over firms or individuals may be reduced or eliminated, especially in life cycle models.

Panel Data Models: Main Issues

Countr y	Year	Υ	X1	X2	Х3
1	2000	6,0	7,8	5,8	1,3
1	2001	4,6	0,6	7,9	7,8
1	2002	9,4	2,1	5,4	1,1
2	2000	9,1	1,3	6,7	4,1
2	2001	8,3	0,9	6,6	5,0
2	2002	0,6	9,8	0,4	7,2
3	2000	9,1	0,2	2,6	6,4

If we do a simple regression, that regression is not able to capture variations related with differences across countries, related with other factores not presente in the regression.

How to indentify if those variations are significant?

Panel Data Models: Main issues

Advantages - Example

For example, suppose that a cross-section of public transit agencies reveals that, on average, public transit subsidies are associated with 20% increased ridership.

If a homogeneous population of public transit firms is considered, this might lead to think that a firm's ridership will increase by 20% given transit subsidies

However, an alternative explanation in a sample of heterogeneous public transit firms is that the subsidies have no effect (0% increase) on four fifths of the firms, and raise ridership by 100% on one fifth of the firms. Although these competing hypotheses cannot be tested using a cross-sectional sample (in the absence of a cross-sectional variable/parameter that "explains" this difference), it is possible to test between them by identifying the effect of subsidies on a cross section of time series for the different transit systems. Thus, testing for cross-sectional homogeneity is equivalent to testing the null hypothesis that these additional parameters are equal to zero

Panel Data Models: Main Issues

Disadvantages – several new specification issues to be accounted for

Heterogeneity
Correlation in the disturbance terms
Heteroscedasticity

Probably related with the existence of groups with similar behavior among their elements, and with a significantly different behavior from other groups.

Panel Data Models: Main Issues

Disadvantages – new specification issues

Heterogeneity - Compared with cross-sectional or time-series data, panel data raise new specification issues that need to be considered during analysis

The most important of these is *heterogeneity* bias

Heterogeneity refers to the differences across cross-sectional units that may not be appropriately reflected in the available data (explanatory variable/s).

Heterogeneity - if not accounted for explicitly, may lead to model parameters that are inconsistent and/or meaningless. With panel data, it is possible to account for crosssectional *heterogeneity* by introducing additional parameters into the model.

Heterogeneity in panel data can be tested using several test of hypothesis – Z Test (if the distributions follow a normal distribution).

Panel Data Models: Main Issues

INSTITUTO SUPERIOR TÉCNICO

Disadvantages – new specification issues

Correlation in the disturbance terms - A second issue is serial correlation of the disturbance terms, which occurs in time-series studies when the disturbances associated with observations in one time period are dependent on disturbances from prior time periods. It can be with:

Positive correlation – the estimates of the standard errors are smaller than the true standard errors, or

Negative correlation – the estimates of the standard errors are bigger than the true standard errors.

The regression estimates are unbiased but its errors are biased. It does not affect consistency of regression but it affects its efficiency.

Panel Data Models: Main Issues

Disadvantages – new specification issues

Heteroscedasticity, which refers to the variance of the disturbances not being constant across observations.

It also affects the efficiency of the estimated parameters.

Heterogeneity

Correlation in the disturbance terms Heteroscedasticity

One Way and Two Way component models

Panel Data Models: Main Issues

Overcoming specification problems in panel data:

One-Way error component models: variable-intercept models across individuals or time

Two-Way error component models: variable-intercept models across individuals and time

Modeling specifications:

With fixed effects: effects that are in the sample

One way

Two ways

With random effect: effect randomly drawn from a population

One way

Two ways

Panel Data Models: Main Issues

One way-models: variable-intercept models across individuals or time.

Two-way models: variable-intercept models across both individuals and time (two-way models)

Introduction of dummy variables in the model

Panel Data Models: Main Issues

Variable-intercept models across individuals or time (one-way models) and across both individuals and time (two-way models), are the simplest and most straightforward models for accounting for cross-sectional *heterogeneity* in panel data, which arise when the null hypothesis of overall *homogeneity* is rejected

- > The variable-intercept model assumes that the effects of omitted variables may be individually unimportant but are collectively significant, and thus is considered to be a random variable that is independent of included independent variables.
- Because heterogeneity effects are assumed to be constant for given cross-sectional units or for different cross-sectional units during one time period, they are absorbed by the intercept term as a means to account for individual or time heterogeneity

Fixed Effects

FE explore the relationship between predictor and outcome variables within an entity (country, person, company, etc.).

Each entity has its own individual characteristics that may or may not influence the predictor variables (for example, being a male or female)

When using FE we assume that something within the individual may impact or bias the predictor or outcome variables and we need to control for this.

This is the rationale behind the assumption of the correlation between entity's error term and predictor variables.

FE remove the effect of those time-invariant characteristics so we can assess the net effect of the predictors on the outcome variable.

Fixed Effects

Each entity is different therefore the entity's error term and the constant (which captures individual characteristics) should not be correlated with the others.

If the error terms are correlated, then FE is no suitable since inferences may not be correct and you need to model that relationship (**probably using random-effects**), this is the main rationale for the **Hausman test**.

Fixed-effects models are designed to study the causes of changes within a person or entity.

Fixed Effects

More formally, a panel data regression is written as:

$$Y_{it} = \alpha + X_{it}^{'}\beta + u_{it}, i = 1,...,n; t = 1,...,T$$
 (1)

where i refers to the cross-sectional units, t refers to the time periods, α is a scalar, β is a Px1 vector, and X_{it} is the *ith* observation on the Pth explanatory variable

A **one-way error component model** for the disturbances, which is the most commonly utilized in panel data formulation, is specified as

$$\mu_{it} = \mu_i + \nu_{it} \tag{2}$$

where μ_i is the unobserved cross-sectional specific effect and v_i are random disturbances

Fixed Effects

When the μ_i are assumed to be fixed parameters to be estimated, and the v_{it} are random disturbances that follow the usual regression assumptions, then combining both yields the following model, where inference is conditional on the particular n cross-sectional units that are observed, and is thus called a **fixed effects model**

$$Y_{it} = \alpha + X_{it}^{'}\beta + \mu_i + \nu_{it}, i = 1,...,n; t = 1,...,T$$
 (3)

Fixed Effects

Estimation on which ordinary least squares (OLS), which provide best linear unbiased estimators (BLUE), are used to obtain α , β and μ_i

> Large Samples: when *n* is large, many indicator's variables are included in the model, and the matrices to be inverted by OLS are of large dimension (n + P). As such, a **least squares dummy variable (LSDV)** estimator for (3) is obtained for β (this estimator is also called the within-group estimator because only the variation within each group is utilized in forming the estimator)

$$Y_{it} = \alpha_i A_i + X_{it} \beta + \mu_i + \nu_{it}, i = 1,...,n; t = 1,...,T$$
 (4)

Unobserved time-invariate individual effect

Fixed Effects

Testing for the joint significance of the included fixed effects parameters (the dummy variables) is straightforwardly conducted using the Chow F test

$$F_{0} = \frac{(RRSS - URSS)/(n-1)^{H_{0}}}{URSS/(nT - n - P)} \sim F_{n-1,n(T-1)-P}$$
(5)

where RRSS are the restricted residual sums of squares from OLS on the pooled model and URSS are the unrestricted residual sums of squares from the LSDV regression

If the null is true (no fixed affects) then the correct procedure is to estimate a single regression from all the data.

If the null is not true (a significant value for F) than we have to account for fixed effects.

Random Effects

There are too many parameters in the fixed effects model and the loss of degrees of freedom can be avoided if the μ_i can be assumed random. Unlike the fixed effects model where inferences are conditional on the particular cross-sectional units sampled, an alternative formulation, called the *random effects model* can help solving the problem.

$$\mu_i \sim IDD(0, \sigma_u^2), \ \upsilon_{it} \sim IDD(0, \sigma_v^2)$$
 (6)

 \succ The μ_i and ν_{it} are independent, and X_{it} are independent of the μ_i and ν_{it} for all i, t

Random Effects

The random effects model is an appropriate specification if we are drawing *n* individuals randomly from a large population

This is usually the case for household panel studies. Care is taken in the design of the panel to make it "representative" of the population we are trying to make inferences about

The individual effect is characterised as random and inference pertains to the population from which this sample was randomly drawn.

Furthermore, it can be shown that a random effects specification implies a **homoscedastic** disturbances variance, $VAR(u_{it}) = \sigma_u^2 + \sigma_v^2$ for all *i*, *t*, and serial correlation only for disturbances of the same cross-sectional unit.

Random Effects

In general, the following holds for a random effects model homoscedastic disturbances variance

$$COV(u_{it}, u_{js}) = \sigma_{\mu}^{2} + \sigma_{v}^{2} \quad for \, i = j, t = s$$

$$= \sigma_{\mu}^{2} \qquad for \, i = j, t \neq s$$

$$= 0 \qquad otherwise$$
(7)

serial correlation only for disturbances of the same cross-sectional unit

$$COR(u_{it}, u_{js}) = 1 for i = j, t = s$$

$$= \frac{\sigma_{\mu}^{2}}{(\sigma_{\mu}^{2} + \sigma_{\upsilon}^{2})} for i = j, t \neq s$$

$$= 0 otherwise$$
(8)

Fixed vs. Random Effects

This is not as easy a choice as it might seem. In fact, the fixed versus random effects issue has generated a hot debate in the biometrics and statistics literature which has spilled over into the panel data econometrics literature....

Most commonly accepted:

The most important issue when considering these alternative specifications is the context of the analysis. In the fixed-effects model, inferences are conditional on the effects that are in the sample, while in the random-effects model inferences are made unconditionally with respect to the population of effects (Hsiao, 1986). In other words, the essential difference between these two modeling specifications is whether the inferences from the estimated model are confined to the effects in the sample or whether the inferences are made about a population of effects (from which the effects in the model are a random sample). In the former case the fixed effects model is appropriate, whereas the latter is suited for the random effects model.

Fixed vs. Random Effects (Lagrange and Hausman Tests)

The fixed effects model has a considerable virtue in that it does not assume that the individual effects are uncorrelated with the regressors, $E(u_{it}|X_{it}) = 0$, as is assumed by the random-effects model.

In fact, the random-effects model may be biased and inconsistent due to omitted variables (Hausman and Taylor, 1981; Chamberlain, 1978).

With the intent of identifying potential correlation between the individual effects and the regressors, Hausman (1978) devised a test to examine the null hypothesis of no correlation between the individual effects and the regressors X_{it}

A rejection of the null hypothesis of no correlation suggests the possible inconsistency of the random effects model and the possible preference for a fixed-effects specification (test value significant).

Fixed vs. Random Effects (Lagrange and Hausman Tests)

So, in the process, and starting with classical OLS, we estimate:

1) First, if the fixed effects holds better than the no effects model (OLS)

And for that we use a Lagrange Multiplier Test

2) Second, if the random effects model can be used i.e. individual effects are uncorrelated with the regressors.

And for that we use the Haussman test.

Fixed vs. Random Effects (Lagrange and Hausman Tests)

Lagrange Multiplier (LM):

Breusch and Pagan's Lagrange multiplier statistic, is used to test the null hypothesis that there are no group effects in the random effects model. Arguably, a rejection of the null hypothesis is as likely to be due to the presence of fixed effects. The statistic is computed from the ordinary least squares residuals from a pooled regression. Large values of LM favor the effects model over the classical model with no common effects.

Haussman chi-square (H):

A second statistic is Hausman's chi squared statistic for testing whether the GLS estimator is an appropriate alternative to the LSDV estimator. Computation of the Hausman statistic requires estimates of both the random and fixed effects models. Large values of H weigh in favor of the fixed effects model.

Fixed Effects

The disturbances presented in (2) are further generalized to include time-specific effects. This generalization is called a two-way error components model, whose disturbances are written as

$$u_{it} = \mu_i + \lambda_t + v_{ij}, i = 1,...,n; t = 1,...,T$$
 (10)

where μ_i is the unobserved cross-sectional specific effect, λ_t denotes the unobservable time effects, and v_{it} are random disturbances. Here λ_t is individual invariant and accounts for any time-specific effect that is not included in the regression

When the μ_i and λ_t are assumed to be fixed parameters to be estimated and are random disturbances that follow the usual regression assumptions, combining (1) and (10) yields a model where inferences are conditional on the particular *n* cross-sectional units and are to be made over the specific time period of observation

$$u_{it} = \mu_i + v_{ii}$$

where μ_i is the unobserved cross-sectional specific effect and υ_{it} are random disturbances

Fixed Effects

This model is called a **two-way fixed effects error component model** and is given as

$$Y_{it} = \alpha + X_{it}^{'}\beta + \mu_i + \lambda_t + \nu_{it}, i = 1,...,n; t = 1,...,T$$
 (11)

where X_{it} are assumed independent of the v_{it} for all i, t. Inference for this **two-way fixed-effects model** is conditional on the particular n individuals and over the T time periods of observation. Similar to the one-way fixed-effects model, the computational difficulties involved with obtaining the OLS estimates for β .

Fixed Effects

Normally the coefficients are estimated using a within transformation of Wallace and Hussain (1969) to use *generalised least squares* (GLS)

GLS is equivalent to applying ordinary least squares to a linearly transformed version of the data. The GLS is applied when the variances of the observations are unequal (heteroscedasticity), or when there is a certain degree of correlation between the observations (collinearity). In these cases ordinary least squares can be statistically inefficient, or even give misleading inferences.

Fixed Effects

Testing for the joint significance of the included cross-sectional and time period fixed effects parameters (the dummy variables) is straightforwardly computed using an *F* test

$$F_{0} = \frac{(RRSS - URSS)/(n+T-2)^{H_{0}}}{URSS/(n-1)(T-1)-P} \sim F_{(n+T-2),(n-1)(T-1)-P}$$
 (12)

where RRSS are the restricted residual sums of squares from OLS on the pooled model and URSS are the unrestricted residual sums of squares from the regression using the within transformation of Wallace and Hussain (1969)

Random Effects

Similar to the one-way error component model case, if both the μ_i and λ_t are random with

$$\mu_i \sim IDD(0, \sigma_\mu^2), \ \lambda_t \sim (0, \sigma_\lambda^2), \ \upsilon_{it} \sim IDD(0, \sigma_\upsilon^2)$$
 (13)

The μ_i , λ_i and ν_{it} are independent, and X_{it} are independent of the μ_i , λ_i and ν_{it} for all i, t. This formulation is called the *random-effects model*

Random Effects

Furthermore, it can be shown that a random effects specification implies a homoscedastic disturbances variance, $VAR(u_{it}) = \sigma_u^2 + \sigma_\lambda^2 + \sigma_\nu^2$ for all *i*, *t*, and serial correlation only for disturbances of the same cross-sectional unit.

In general, the following holds for a random effects model

$$COV(u_{it}, u_{js}) = \sigma_{\mu}^{2}$$
 $for i = j, t = s$
 $= \sigma_{\lambda}^{2}$ $for i = j, t \neq s$
 $= 0$ $otherwise$ (14)

and

$$COR(u_{it}, u_{js}) = 1 for i = j, t = s$$

$$= \frac{\sigma_{\mu}^{2}}{(\sigma_{\mu}^{2} + \sigma_{\lambda}^{2} + \sigma_{\upsilon}^{2})} for i = j, t \neq s (15)$$

$$= 0 otherwise$$

Random Effects

Estimation of the two-way random-effects model is typically accomplished using the GLS estimators of Wallace and Hussain (1969) or by using maximum likelihood estimation (Baltagi and Li, 1992)

For this model specification, Breusch and Pagan (1980) derived a Lagrange-multiplier test for the null hypothesis; $H_0 = \sigma_\mu^2 = \sigma_\lambda^2 = 0$ this test is based on the normality of the disturbances

If the two-way component model specification is significant, the quality of its estimates should be always better than a one-way Error Component model in Fixed Effects or Random Effects model.

As before, using the Haussman test, we can improve the estimation by using the Fixed or the random effects model.

Panel Data Models: Example 1

Nlogit with Grunfeld Investment Equation

$$I_{it} = \alpha + \beta_1 F_{it} + \beta_2 C_{it} + v_{it}$$
 (16)

where I_{it} t denotes real gross investment for firm i in year t, F_{it} is the real value of the firm (shares outstanding) and C_{it} is the real value of the capital stock. These panel data consist of **10** large US manufacturing firms over **20** years, 1935–54

Table 1

Variable Abbreviation	Variable Description
invest	Gross investment, defined as additions to plant and equipment plus maintenance and repairs in millions of dollars deflated by the implicit price deflator of producers' durable equipment (base 1947)
value	Market value of the firm, defined as the price of common shares at December 31 (base 1947)
capital	Stock of plant and equipment, defined as the accumulated sum of net additions to plant and equipment deflated by the implicit price deflator for producers' durable equipment (base 1947)
firm	General Motors (GM), US Steel (US), General Electric (GE), Chrysler (CH), Atlantic Rening (AR), IBM, Union Oil (UO), Westinghouse (WH), Goodyear (GY), Diamond Match (DM), American Steel (AS)
year	Year of data
firmcod	Numeric code that identifies each firm

Panel Data Models: Example 1

Nogit with Grunfeld Investment Equation

1º - Ordinary least squares

2° - Fixed effects?

one way

two way

3° - Random?

one way

two way

Panel Data Models: Example 1

Ordinary Least Squares Model Estimates Gross Investment

R-squared

Info criter. LogAmemiya Prd. Crt. =

Log likelihood

Restricted(b=0)

Adjusted R-squared

Akaike Info. Criter. =

217] (prob) =

Chi-sq [2] (prob) = 374.69 (.0000)

Fit

Model test

Diagnostic

+-	Autocorr	rel Durbin-Wat Rho = cor[3566636 3216682	<u> </u>	
†-	+ Variable	Coefficient	Standard Erro	r	t-ratio	P[T >t]	Mean of X
V	Constant VALUE CAPITAL	-38.4100540 .11453436 .22751413	8.4133709 .0055188 .0242282	3	-4.565 20.753 9.390	.0000 .0000 .0000	988.577805 257.108541

.8178870

.8162086

-1301.299

-1488.643

9.019390

487.28 (.0000)

Panel Data Models: Example 1

Fixed Effects Panel Data Model Estimates (One-way Error) Gross Investment

.9460750

.9429489

-1167.426

-1488.643

642.44 (.0000)

7.893402

7.893264

	·	Standard Error		
VALUE CAPITAL	.11012912	.01129984		

Fit

Diagnostic

R-squared

Info criter. LogAmemiya Prd. Crt.

Estd. Autocorrelation of e(i,t)

Log likelihood

Restricted(b=0)

Adjusted R-squared

Chi-sq [12] (prob)

Akaike Info. Criter.

Model test F[12, 207] (prob) $\frac{1}{2}$ 302.64 (.0000)

Fixed Effects Panel Data Model Estimates (One-way Error) Gross Investment

Consideration of group effects improve regression

Panel Data Models: Example 1

Fixed Effects Panel Data Model Estimates (Two-way Error)

Gross Investment

						Estimated Group	Fixed Effects - Full Coefficient	Standard Error	t-ratio
+-					-+	1 2	-53.14755 149.17125	42.84415 16.34968	-1.24049 9.12380
	-	s with Group and Peri Least squares regress		Iffects		3 <u>4</u>	-192.46291 35.02275	15.79790 11.28051	-12.18282 3.10471
•	4	timated Nov 07, 2012		1:14:13AM		5 6	-63.87868 42.16480	16.09003 12.69795	-3.97008 3.32060
	LHS=INVEST	Mean	=	133.3119		7 8	-8.17149 6.90560	15.43398 11.49035	52945 .60099
	WTS=none	Standard deviation Number of observs.	=	210.5872	l I	9 10	-29.34076 65.11490	13.70930 15.55637	-2.14021 4.18574
	Model size	Parameters	=	32	i	11	48.62208	15.58761	3.11928

- 1	THOUGHT WAS CS	cimacca nov or, zoiz (uc	01.11.137111	' =	42.10400	12.00770	0.02000
	LHS=INVEST	Mean	=	133.3119	l 7	-8.17149	15.43398	52945
i		Standard deviation	=	210.5872	8 9	6.90560 -29.34076	11.49035 13.70930	.60099 -2.14021
i	WTS=none	Number of observs.		220	i 1Ó	65.11490	15.55637	4.18574
	Model size	Parameters	=		11	48.62208	15.58761	3.11928
!	Model Size				l Estimated	Fixed Effects - Full	sets of effects	normalized t
		Degrees of freedom	=	188	Period	Coefficient	Standard Error	t-ratio
	Residuals	Sum of squares	=	459399.9	1 1	41.85916	15.38287	2.72115
i		Standard error of e	=	49.43295	į 2	24.89993	15.03606	1.65601
					; 3	5.48352	15.46655	. 35454
	Fit	R-squared	=	.9526976	4	6.23543	14.87055	. 41931
		Adjusted R-squared	=	.9448978	5	-21.24024	14.71160	-1.44377
ı	Model test	F[31, 188] (prob)	=	122.14 (.0000)	1 6	2.03439	14.74346	.13799
		_			¦ 7	25.37139	14.65503	1.73124
	Diagnostic	Log likelihood		-1153.012	l 8	23.85983	14.71735	1.62120
		Restricted(b=0)	=	-1488.643	. 9	4.08671	14.58562	.28019
i		Chi-sq [31] (prob)	_	671 26 (0000)	10	3.53909	14.57617	. 24280
				, , ,	. 11	-7.68033	14.59933	52607
	Info criter.	LogAmemiya Prd. Crt.	=	7.937036	12	14.10477	14.64576	. 96306
1		Akaike Info. Criter.	=	7.934958	13	6.98162	14.67759	. 47567
i	T-+-1 7+				14	3.52843	14.82120	. 23807
	ESTA. AUTOCO.	rrelation of e(i,t)		.56991/	15	-23.34160	14.88759	-1.56786
+					+ 16	-25.52857	14.85283	-1.71877
					17	-12.97548	14.79992	87673
					18	-14.62988	15.04933	97213
					19	-16.65342	15.74591	-1.05763
					20	-39.93475	16.15229	-2.47239

Variable	Coefficient	Standard Error	t-ratio	P[T >t]	Mean of X
VALUE CAPITAL Constant	.11668113 .35143569 –72.3935959	.01293303 .02104860 12.7315764	9.022 16.696 -5.686	.0000 .0000 .0000	988.577805 257.108541

Panel Data Models: Example 1

INSTITUTO SUPERIOR TÉCNICO

Fixed Effects Panel Data Model Estimates (Two-way Error) Gross Investment

Test Statistics for the Classical Model										
(2) Group e (3) X - var (4) X and 9	t term on effects on riables on group effec time effec	ly - ly - ots -	Likeliho 1488.643 1327.509 1301.299 1167.425	28 .9711 01 .2244 20 .1768 54 .5237	f Squa 984910 546885 678402 186622 999310)D+07 5D+07 ?D+07 ?D+06	R-squared .0000000 .7688890 .8178870 .9460750 .9526976			
	kelihood Ra i-squared 322.269			ests F Te F 69.533	sts num. 10	denom. 209	P value .00000			
(3) vs (1) (4) vs (1) (4) vs (2) (4) vs (3)	374.688 642.435 320.167 267.747	12 12 2 10	.00000	487.284 302.639 340.079 49.207	12 12 2 10	217 207 207 207	.00000 .00000 .00000			
(5) vs (4) (5) vs (3)	28.827 296.575	19 30		1.385 17.860	19 30	188 188	.13801			

Consideration of group effects and time effects improve regression

Panel Data Models: Example 1

Random Effects Panel Data Model Estimates (One-way Error) Gross Investment

					·
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X
VALUE CAPITAL Constant	.10924931 .30782652 -53.8343750	.00978586 .01634860 24.5716850	11.164 18.829 -2.191	.0000 .0000 .0285	988.577805 257.108541

Panel Data Models: Example 1

Random Effects Panel Data Model Estimates (Two-way Error) Gross Investment

Random Effects Model: v(i,t) = Estimates: Var[e]	= e(i,t) + u(i) + w(t) = .244362D+04
	= .447819D+04
Corr[v(i,t),v(i,s)]	
	= .122879D+04
$\underline{\qquad \qquad Corr[v(i,t),v(i,t)]}$	1 = .334600
Lagrange Multiplier Test vs. N	Model (3) = 881.07
(2 df, prob value = .000000)	
(High values of LM favor FEM/F	REM over CR model.)
Fixed vs. Random Effects (Haus	sman) = 5.72
(2 df, prob value = .057275)	
(High (low) values of H favor	FEM (REM).)
Sum of Squares	.186431D+07
R-squared	.808040D+00

Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X
VALUE CAPITAL Constant	.11107050 .33700305 -63.1362933	.01021747 .01975302 23.9608695	10.871 17.061 -2.635	.0000 .0000 .0084	988.577805 257.108541

Panel Data Models: Example 1


```
INSTITUTO
SUPERIOR
TÉCNICO
```



```
Random Effects Model: v(i,t) = e(i,t) + u(i) + w(t)
Estimates:
            Var[e]
            Var[u]
            Corr[v(i,t),v(i,s)] =
            Var[w]
            Corr[v(i,t),v(j,t)] =
Lagrange Multiplier Test vs. Model (3) =
( 2 df, prob value = .000000)
(High values of LM favor FEM/REM over CR model.)
Fixed vs. Random Effects (Hausman)
                                            5.72
( 2 df, prob value = .057275)
(High (low) values of H favor FEM (REM).)
            Sum of Squares
                                    .186431D+07
            R-squared
                                     .808040D+00
```

Large values of LM favor the effects model over the classical model with no common effects.

Large values of H weigh in favor of the fixed effects model.

A large value of the LM statistic in the presence of a small H statistic (as in our application) argues in favor of the random effects model.

"LIMDEP, Version 9, Student, Reference Guide"

Panel Data Models: Example 1

Nlogit with Grunfeld Investment Equation

- 1º Ordinary least squares (OLS)
- 2° Fixed effects?

one way > yes, better than OLS

two way > yes, better than OLS and than one way

3° - Random?

one way > Big L, small H – yes, maybe random

two way > Big L, significant yet still small H – yes, maybe random

Final answer: May be we should stay with Random effects two-way model. In alternative, Fixed effects with two effects might be not so bad.

Panel Data Models: Bibliography

Washington, S., Karlaftis, M., Mannering, F. (2003), Statistical and Econometric Methods for Transportation Data Analysis, Chapman & Hall/CRC.

Wooldridge, J. (2001), Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge, Massachusetts.

Baltagi, B, (2005), Econometric Analysis of Panel Data, Third Edition, John Willey & Sons, Ltd., Chichester.

____(1996), A Handbook of the Theory with Applications, Advanced Studies in Theoretical and Applied Econometrics, Vol. 33, Mátyás, László; Sevestre, Patrick (Eds.), Springer.

Hsiao, C. (2003), Analysis of Panel Data, Second Edition, Cambridge University Press, Cambridge.

Frees, E. (2004), Longitudinal and Panel Data, Analysis and Applications in the Social Sciences, Cambridge University Press, Cambridge.

Transport Demand Modeling

Anabela Ribeiro - 2020

anabela@dec.uc.pt

PANEL MODELS