Avaliação A2 - Inferência Estatística

Professor: Philip Thompson Monitores: Eduardo Adame & Ezequiel Braga

Instruções

- A prova vale **10 pontos**. Verifique a pontuação de cada questão e trace sua estratégia para resolvê-las.
- Respostas sem justificativas serão desconsideradas;
- Demarque com clareza sua **resposta final** para cada questão. Sugerimos que circule ou desenhe um retângulo em volta desses resultados;
- Apenas **uma folha de "cola"** de tamanho A4 frente e verso poderá ser trazida e utilizada como consulta durante a avaliação. A mesma deverá ser **entregue** junto de suas soluções.

Questões

Questão 1 (2 pontos). Suponha que $\mathbf{X} = (X_1, \dots, X_n)$ seja uma amostra de uma distribuição uniforme no intervalo $[0, \theta]$. Queremos testar as hipóteses:

$$H_0: \quad \theta \ge 2$$

 $H_1: \quad \theta < 2.$

Seja $Y_n = \max\{X_1, \dots, X_n\}$ e considere o teste δ em que

$$\delta(\boldsymbol{X})$$
 rejeita H_0 sse $Y_n \leq 1.5$.

- a) Determine a função poder do teste δ .
- b) Compute o tamanho do teste δ .

Questão 2 (2.5 pontos). Suponha que tenhamos uma amostra $\boldsymbol{X}=(X_1,\ldots,X_n)$ de uma distribuição normal $\mathcal{N}(\mu,1)$. Queremos testar as hipóteses:

$$H_0: \quad \mu \le \mu_0$$

 $H_1: \quad \mu > \mu_0.$

Seja
$$Z=\sqrt{n}(\bar{X}-\mu_0)$$
 e considere os testes

$$\delta(\boldsymbol{X})$$
 rejeita H_0 sse $Z \geq c$.

Mostre que

- a) Mostre que a função poder $\pi_{\delta}(\mu) = \mathbb{P}_{\mu}(Z \geq c)$ é crescente.
- b) Ache o valor crítico c tal que o teste tenha tamanho α_0 .
- c) Justificando, ache uma fórmula para o valor-p do teste numa realização onde Z=z.

Questão 3 (2.5 pontos). Suponha que tenhamos duas amostras independentes, $\mathbf{X}=(X_1,\ldots,X_{16})$ de uma distribuição normal $\mathcal{N}(\mu_1,\sigma_1^2)$ e $\mathbf{Y}=(Y_1,\ldots,Y_{10})$ de uma distribuição normal $\mathcal{N}(\mu_2,\sigma_2^2)$. Queremos testar as hipóteses:

$$H_0: \quad \sigma_1^2 \le \sigma_2^2$$

 $H_1: \quad \sigma_1^2 > \sigma_2^2$.

Dado $\alpha_0 \in (0,1)$, recorde o teste do livro texto tal que

$$\delta(\boldsymbol{X})$$
 rejeita H_0 sse $V \geq c$,

onde
$$c = G_{15,9}^{-1}(1 - \alpha_0)$$
 e

$$V = \frac{S_X^2/15}{S_Y^2/9}.$$

Suponha que observamos $\sum_{i=1}^{16} X_i = 84$, $\sum_{i=1}^{16} X_i^2 = 563$, $\sum_{i=1}^{10} Y_i = 18$, $\sum_{i=1}^{10} Y_i^2 = 72$. Tomando $\alpha_0 = 0.05$, qual a conclusão do teste?

OBS:
$$G_{15,9}^{-1}(0.95) = 3$$
.

Questão 4 (1 ponto). Considere o problema de regressão linear visto em aula. Queremos testar as hipóteses com nível de significância 0.10:

$$H_0: \quad \beta_1 = 5\beta_0$$

 $H_1: \quad \beta_1 \neq 5\beta_0$

Para uma amostra de tamanho 10 sabe-se que:

$$\bar{x} = 0.42,$$

$$\bar{y} = 0.33,$$

$$\sum (y_i - \bar{y})(x_i - \bar{x}) = 1.7959,$$

$$\sum (x_i - \bar{x})^2 = 2.8975,$$

$$\sum (y_i - \bar{y})^2 = 1.4286.$$

Usando que $T_8^{-1}(0.95) = 1.859548$, qual a conclusão do teste?

OBS: Você pode usar que

$$S^{2} = \sum (y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}))^{2}$$

= $\sum (y_{i} - \bar{y})^{2} - 2\hat{\beta}_{1} \sum (y_{i} - \bar{y})(x_{i} - \bar{x}) + \hat{\beta}_{1}^{2} \sum (x_{i} - \bar{x})^{2}.$

Questão 5 (2 pontos). Suponha que tenhamos uma amostra $\boldsymbol{X}=(X_1,\ldots,X_n)$ de uma distribuição normal $\mathcal{N}(\mu,\sigma^2)$ com (μ,σ^2) desconhecidos. Construa um intervalo de confiança para σ^2 com nível de confiança $1-\alpha$ com $\alpha\in(0,1)$.

OBS: Você pode usar que

$$\frac{\sum (X_i - \bar{X})^2}{\sigma^2} \sim \chi_{n-1}^2.$$