ILLINOIS INSTITUTE OF TECHNOLOGY

Transforming Lives.Inventing the Future.www.iit.edu

CS430-02/03/04

Spring 2023

Introduction to Algorithms

Lec₁

Instructor: Dr. Lan Yao

Agenda

Course Overview

- Review on Syllabus, BB System
- Design Techniques/Approaches
- Analysis runtime, memory

People

Instructor: Lan Yao

TAs:

Kayenat Patil kpatil7@hawk.iit.edu

Sharandeep Singh ssingh136@hawk.iit.edu

SI:

Shashank Parameswaran sparameswaran@hawk.iit.edu

Sections

- Live Lecture: CS430-02/03/04
- Recitation Sections:

5:00-5:50/6:25-7:15 pm F

Design Techniques/Approaches

•An algorithm is any well-defined computational procedure that takes some value or set of values as input and produces some value or set of values as output. It is a sequence of computational steps that transform the **input** into the **output**.

Try This!

Design an algorithm to return the maximum element of an unsorted array.

Design an algorithm to return the maximum and minimum elements of an unsorted array.

Sorting*

General Problem Definition:

input: sequence of items <a1, a2, a3, ..., an> output: permutation <a1', a2', a3', ..., an'> such that a1' <= a2' <= a3' <= ... <= an'

Permutations

For example 5! = 120

5 slots for numbers, 5 choices for 1st slot,

4 choices left for 2nd slot, etc.

Insertion Sort

iteratively insert keys in sorted arrays

An Instance of Insertion

Insertion Sort Pseudo-code

```
INSERTION-SORT(A)
```

- 1 for $j \leftarrow 2$ to length[A]
- 2 $key \leftarrow A[j]$
- 3 //Insert A[j] into sorted sequence A[1..j-1]
- $4 \quad i \leftarrow j 1$

6

- 5 **while** i > 0 and A[i] > key
 - $A[i + 1] \leftarrow A[i]$
 - $i \leftarrow i 1$
 - / I

8 $A[i + 1] \leftarrow kev$

Analysis of Algorithms – summarize behavior*

Run-Time Analysis for Sorting – Depends on input size & input itself

Kinds of Analysis

- worst case (usually used)
- average case (sometimes used)
- best case (hardly ever used)

Analysis - runtime, memory

time or memory*

Individual points on the graph are irrelevant, only the growth of the function matters

Run-time Analysis*

Functional Analysis

- •ignore machine dependent constants
- ●look at the growth of T(n) as n-> infinity
- •as you double n, what does T(n) do?? double?? square??

Runtime Analysis Approaches*

For iterative algorithms

- count the number of times each statement is executed
- define constants for the execution time of various types of statements
- develop a function describing the runtime as a function of the problem size.

For recursive algorithms, develop and solve a recurrence relation--later

Insertion Sort Runtime Analysis

INSERTION-SORT (A)		cost
1	for $j = 2$ to A. length	c_1
2	key = A[j]	c_2
3	// Insert $A[j]$ into the sorted	
	sequence $A[1 j - 1]$.	0
4	i = j - 1	c_4
5	while $i > 0$ and $A[i] > key$	c_5
6	A[i+1] = A[i]	c_6
7	i = i - 1	c_7
8	A[i+1] = key	c_8

-	,,		
	sequence $A[1j-1]$.	0	n-1
4	i = j - 1	C_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
Q	A[i+1] = km	0	n 1

times

cost

 c_1

INSERTION-SORT(A)

key = A[j]

executed for that value of j

for j = 2 to A. length

// Insert A[i] into the sorted

 $A[i+1] = \kappa e y$ C8

let t_i be the number of times the **while** loop test in line 5 is

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1)$$

Best Case: the array has been sorted, then $t_j = 1$ for all j

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

$$= an + b - Linear Growth Function$$