# 2. cvičení z Matematické analýzy 2

26 - 30. září 2022

#### Motivace:

Pojem *otevřené* množiny intuitivně zavádíme jako množinu, která s každým bodem obsahuje ještě dost prostoru kolem něj (je to kvůli pozdějšímu použití pro derivování - potřebujeme se k bodu přiblížit "odkudkoliv").

Pojmem *uzavřené* množiny zase intuitivně myslíme takovou množinu, ze které nemůžeme vypadnout při "limitách posloupností," tj. taková množina obsahuje všechny body, ke kterým se můžeme z této množiny přiblížit libovolně blízko.

Kupodivu, tyto dva pojmy jsou nakonec navzájem doplňkové (viz níže).

## Definice:

*Okolím U\_{\varepsilon}(a\_0)* (tzv. otevřenou koulí) s poloměrem  $\varepsilon > 0$  a středem v bodě  $a_0 \in \mathbb{R}^n$  označujeme množinu

$$U_{\varepsilon}(a_0) \stackrel{\text{def}}{=} \{ a \in \mathbb{R}^n \mid ||a - a_0|| < \varepsilon \}$$

kde  $||a-a_0||$ je  ${\it eukleidovsk\acute{a}}$   ${\it vzd\acute{a}lenost}$ bodůaa  $a_0,$ tj. pro

$$a_0 = (x_1, \dots, x_n)$$
 a  $a = (y_1, \dots, y_n)$ 

jе

$$||a - a_0|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
.

Připomeňme si, že pro množinu  $A \subseteq \mathbb{R}^n$  si

•  $vnitřek\ A^\circ$  množiny A definujeme jako množinu všech bodů  $a\in A$ , které jsou v A i s nějakým okolím:

$$a \in A^{\circ} \stackrel{\text{def}}{\iff} (\exists \ \varepsilon > 0) \ U_{\varepsilon}(a) \subseteq A$$

• hranice  $\partial A$  množiny A je množina všech bodů  $a \in \mathbb{R}^n$ , jejichž libovolná okolí zasahují jak do samotné množiny A, tak do jejího doplňku  $\mathbb{R}^n \setminus A$ :

$$a \in \partial A \stackrel{\mathrm{def}}{\iff} (\forall \ \varepsilon > 0) \quad U_{\varepsilon}(a) \cap A \neq \emptyset \quad \wedge \quad U_{\varepsilon}(a) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$$

•  $uz\acute{a}v\check{e}r$   $\overline{A}$  množiny A si definujeme jako množinu

$$\overline{A} \stackrel{\text{def}}{=} A \cup \partial A$$

neboli (jak se dá snadno ověřit) jako množinu všech bodů  $a \in \mathbb{R}^n$ , jejichž libovolná okolí zasahují do množiny A:

$$a \in \overline{A} \iff (\forall \varepsilon > 0) \ U_{\varepsilon}(a) \cap A \neq \emptyset$$

Kromě toho ještě platí, že

$$\partial A = \overline{A} \setminus A^{\circ}$$

a tedy

$$\overline{A} = A^{\circ} \cup \partial A$$

kde " $\cup$ " znamená disjunktní sjednocení. Pro libovolnou množinu A se dále celý prostor  $\mathbb{R}^n$  vždy disjunktně rozloží na vnitřek  $A^{\circ}$ , hranici  $\partial A$  a  $\underline{mejšek}$  ( $\mathbb{R}^n \setminus A$ ) $^{\circ}$ :

$$\mathbb{R}^n = \underbrace{A^{\circ}}_{\text{vnitřek}} \ \cup \ \underbrace{\partial A}_{\text{hranice}} \ \cup \ \underbrace{(\mathbb{R}^n \setminus A)^{\circ}}_{\text{vnějšek}}$$

A nakonec si ještě (teď už skutečně) definujme, že

- množina A je otevřená  $\stackrel{\text{def}}{\Longleftrightarrow} A = A^{\circ}$  (tj. A je rovna svému vnitřku)
- množina A je *uzavřená*  $\stackrel{\text{def}}{\Longleftrightarrow} A = \overline{A}$  (tj. A je rovna svému uzávěru).

A platí, že

$$A$$
 je otevřená  $\iff \mathbb{R}^n \setminus A$  je uzavřená

(tj. otevřenost a uzavřenost jsou vzájemně doplňkové pojmy).

**Poznámka:** Při zdůvodnění toho, že nějaká množina je otevřená, případně uzavřená, se dá využít následující věta:

Jestliže  $f: \mathbb{R}^n \to \mathbb{R}$  je spojitá funkce (tento pojem bude sice definován později, ale např. polynom určitě spojitá funkce bude), pak

- množina  $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid f(x_1,\ldots,x_n)>0\}$  je otevřená,
- množina  $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid f(x_1,\ldots,x_n)\geq 0\}$  je uzavřená.
- 2.1 Určete vnitřek, hranici a uzávěr definičních oborů následujících množin (z příkladu 1.1):
  - (a)  $M: (x > 0 \land x + 1 < y) \lor (x < 0 \land x < y < x + 1),$
  - (b)  $M: (x-\frac{1}{2})^2 + y^2 \ge \frac{1}{4} \land (x-1)^2 + y^2 < 1$ ,
  - (c)  $M: -y^2 \le x \land x \le y^2 \land 0 < y \le 2$ .

# Řešení:

Tento příklad je určený pro "intuitivní" řešení pomocí náčrtů daných množin.

(a) Náčrtek množiny M:



- $(vnit\check{r}ek)$ : Množina M je zadána ostrými nerovnostmi, je tedy otevřená a proto  $M^{\circ}=M$ .
- (*hranice*)  $\partial M: y = x+1 \lor (y = x \land x \le 0) \lor (x = 0 \land y \ge 0)$  (Hranice jsou části přímek.)
- $(uz\acute{a}v\check{e}r)$   $\overline{M}: (x \ge 0 \land y x \ge 1) \lor (x \le 0 \land 0 \le y x \le 1)$

(b) Množina M představuje oblasti vně a uvnitř kružnic.



- $\bullet \ (\textit{vnit\"rek}) \ M^{\circ}: \quad \left(x-\frac{1}{2}\right)^2 + y^2 > \frac{1}{4} \ \land \ (x-1)^2 + y^2 < 1.$
- (*hranice*)  $\partial M = \overline{M} \setminus M^{\circ}$ :  $\left(x \frac{1}{2}\right)^2 + y^2 = \frac{1}{4} \lor (x 1)^2 + y^2 = 1$  (POZOR: je tu jiná logická spojka!)
- $(uz\acute{a}v\check{e}r) \ \overline{M}: \ (x-\frac{1}{2})^2+y^2 \geq \frac{1}{4} \ \land \ (x-1)^2+y^2 \leq 1.$

(c) Náčrtek množiny M:



- $\bullet \ (\textit{vnit\~rek}) \ M^{\circ}: \ -y^2 < x \ \land \ x < y^2 \ \land \ 0 < y < 2 \\$
- (hranice)  $\partial M: (y=2 \land x \in \langle -4,4 \rangle) \lor (x=-y^2 \land y \in \langle 0,2 \rangle) \lor (x=y^2 \land y \in \langle 0,2 \rangle)$  (Hranice jsou části křivek.)
- $\bullet \ ( \textit{uzávěr} ) \ \overline{M} : \quad -y^2 \leq x \ \land \ x \leq y^2 \ \land \ 0 \leq y \leq 2$

2.2 Určete vnitřek, hranici a uzávěr množiny z příkladu 1.2:

$$M = \{(x, y) \in \mathbb{R}^2 \mid x^2 - 2x - y^2 > 0 \land x^2 - 4x + y^2 < 0\}$$
.

#### Řešení:

Tento příklad je určený pro "intuitivní" řešení pomocí náčrtů daných množin.



- $(vnit\check{r}ek)\ M^{\circ}:\ (x-1)^2-y^2>1\ \land\ (x-2)^2+y^2<4.$
- (*hranice*): Hranice je jeden oblouk kružnice a jeden oblouk hyperboly. Musíme si dát pozor na zápis, protože bod (0,0) na hranici naší množiny M není.

$$\partial M: \left( (x-1)^2 - y^2 = 1 \ \land \ (x-2)^2 + y^2 \le 4 \ \land \ (x,y) \ne (0,0) \right) \lor$$
$$\lor \left( (x-1)^2 - y^2 \ge 1 \ \land \ (x-2)^2 + y^2 = 4 \ \land \ (x,y) \ne (0,0) \right)$$

•  $(uz\acute{a}v\check{e}r)$ : Opět si musíme dát pozor na zápis, protože bod (0,0) v uzávěru naší množiny M není, ačkoliv je průnikem hyperboly a kružnice.

$$\overline{M}: (x-1)^2 - y^2 > 1 \land (x-2)^2 + y^2 < 4 \land (x,y) \neq (0,0)$$
.

**Poznámka:** Můžeme si všimnout, že vnitřek (uzávěr, resp.) jsme v předchozích příkladech často získali tak, že jsme z neostrých nerovnosti udělali ostré (z ostrých neostré, resp.). Ale POZOR, takhle to obecně nefunguje, jak ukázal příklad **2.3** a jak je také vidět z následujícího příkladu:

Lze zvolit spojitou funkci  $f: \mathbb{R}^2 \to \mathbb{R}$  tak, aby pro

a

bylo

$$A = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) > 0\}$$

 $B = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) \ge 0\}$ 

 $\overline{A} \subsetneq B \quad \text{a} \quad A \subsetneq B^{\circ}$ 

(neboli: po přidání neostré nerovnosti je uzávěr obecně MENŠÍ a po ubrání neostré nerovnosti je vnitřek obecně VĚTŠÍ.)

Taková funkce je např.

$$f(x,y) = \begin{cases} x^2, & x < 0, \\ 0, & x \in \langle 0, 1 \rangle, \\ -(x-1)^2, & x > 1 \end{cases}.$$

kde je pak $A=\{(x,y)\in\mathbb{R}^2\mid x<0\}$  a  $B=\{(x,y)\in\mathbb{R}^2\mid x\leq 1\}.$ 

Problém vzniká proto, že zatímco vrstevnice

$$\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = c\}$$

pro hladiny  $c \neq 0$  jsou křivky (objekty s dimenzí 1), tak pro c = 0 je vrstevnice plocha (objekt s dimenzí 2).

**2.3** Určete vnitřek, hranici, vnějšek a uzávěr množiny  $\mathbb{Q}^2 \subseteq \mathbb{R}^2$ , kde  $\mathbb{Q}$  je množina všech racionálních čísel.

# Řešení:

Uvědomíme si, že v libovolném okolí (na reálné přímce) libovolného  $r \in \mathbb{R}$  leží jak nějaké racionální číslo, tak také nějaké iracionální číslo. Dále pokud máme  $|r_i - s_i| < \frac{\varepsilon}{2}$  pro i = 1, 2 (kde  $r_i, s_i \in \mathbb{R}$  a  $\varepsilon > 0$ ) pak

$$||(r_1, r_2) - (s_1, s_2)|| = \sqrt{(r_1 - s_2)^2 + (r_2 - s_2)^2} \le \sqrt{\left(\frac{\varepsilon}{2}\right)^2 + \left(\frac{\varepsilon}{2}\right)^2} = \frac{\varepsilon}{\sqrt{2}} < \varepsilon$$
.

Jestliže si nyní vezmeme libovolný bod  $a=(r_1,r_2)\in\mathbb{R}^2$  a zvolíme  $\varepsilon>0$ , pak

- existují racionální čísla  $q_1, q_2 \in \mathbb{Q}$  tak, že  $|r_i q_i| < \frac{\varepsilon}{2}$
- a také iracionální čísla  $\alpha_1, \alpha_2 \in \mathbb{R} \setminus \mathbb{Q}$  tak, že  $|r_i \alpha_i| < \frac{\varepsilon}{2}$ .

Speciálně tedy v libovolném  $\varepsilon$ -okolí  $U_{\varepsilon}(a)$  bodu  $a \in \mathbb{R}^2$  leží jak nějaký prvek z  $(q_1, q_2) \in \mathbb{Q}^2$ , tak nějaký prvek  $(\alpha_1, \alpha_2) \in \mathbb{R}^2 \setminus \mathbb{Q}^2$ . Proto můžeme ihned napsat, že

$$\overline{\mathbb{Q}^2} = \mathbb{R}^2$$
,  $(\mathbb{Q}^2)^\circ = \emptyset$  a  $\partial \mathbb{Q}^2 = \overline{\mathbb{Q}^2} \setminus (\mathbb{Q}^2)^\circ = \mathbb{R}^2 \setminus \emptyset = \mathbb{R}^2$ 

#### Připomenutí:

Jestliže chceme zjišťovat, jak se chová funkce v okolí nějakého bodu ve smyslu limity, pak se k tomuto bodu potřebujeme přiblížit pomocí bodu z definičního oboru dané funkce. Přitom však tyto body chceme mít jiné, než je samotný původní bod, ve kterém limitu zjišťujeme. To vede k následujícím pojmům:

• Prstencovým okolím  $P_{\varepsilon}(a_0)$  s poloměrem  $\varepsilon > 0$  a středem v bodě  $a_0 \in \mathbb{R}^n$  označujeme množinu

$$P_{\varepsilon}(a_0) \stackrel{\text{def}}{=} U_{\varepsilon}(a_0) \setminus \{a_0\} = \{a \in \mathbb{R}^n \mid 0 < ||a - a_0|| < \varepsilon\}$$

• bod  $a_0$  je hromadným bodem množiny M, jestliže v každém svém okolí má nějaký bod této množiny, ale jiný než  $a_0$ , tj.:

$$(\forall \varepsilon > 0) \ P_{\varepsilon}(a) \cap M \neq \emptyset$$

(hromadný bod je tedy určitě bodem uzávěru množiny M, ale není "osamocený").

Limita funkce je nyní definována takto:

Nechť  $f: D \to \mathbb{R}$  je funkce s definičním oborem  $D \subseteq \mathbb{R}^n$  a  $a_0 \in \mathbb{R}^n$  je hromadný bod tohoto definičního oboru D. Následující definice a značení znamená, že hodnota  $c \in \mathbb{R}$  je limitou funkce f v bodě  $a_0$ :

$$\lim_{a \to a_0} f(a) = c \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall a \in D) \quad \underbrace{0 < \|a - a_0\| < \delta}_{a \in P_{\delta}(a_0)} \implies \underbrace{|f(a) - c| < \varepsilon}_{f(a) \in U_{\varepsilon}(c)}$$

(tj. když jsme v dostatečně malém prstencovém okolí  $P_{\delta}(a_0)$  bodu  $a_0$ , pak se body odsud zobrazují funkcí f do zvoleného malého okolí  $U_{\varepsilon}(c)$  hodnoty c.)

**2.4** Zjistěte, zda existuje limita  $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ 

#### Řešení:

Definiční obor funkce  $f(x,y) = \frac{x+y}{x-y}$  je

$$D(f): x \neq y$$
.

Bod (0,0) je zřejmě hromadný bod množiny D(f). Abychom zjistili, jakou hodnotu by případná limita měla mít, vyzkoušíme se přiblížit k počátku po různých přímkách, konkrétně po přímkách y=kx, kde  $k \neq 1$ . Pak máme

$$\lim_{x \to 0} f(x, kx) = \lim_{x \to 0} \frac{x + kx}{x - kx} = \frac{1 + k}{1 - k} .$$

Tato hodnota je ale různá pro různé k. Původní limita funkce f tedy neexistuje.

**2.5** Vyšetřete existenci limity  $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x-y}$ .

## Řešení:

Definiční obor funkce  $f(x,y) = \frac{(x+y)^2}{x-y}$  je

$$D(f): x \neq y$$
.

Bod (0,0) je zřejmě hromadný bod množiny D(f). Abychom zjistili, jakou hodnotu  $c \in \mathbb{R}$  by případná limita měla mít, vyzkoušíme se přiblížit k bodu  $a_0 = (0,0)$  po vhodné křivce. Nejjednodušší jsou obvykle přímky. Vezměme si tedy přímku y = kx, kde  $k \neq 1$ . Pro  $x \to 0$  máme  $(x, kx) \to (0,0)$ . Takže nás bude zajímat

$$\lim_{x \to 0} f(x, kx) = \lim_{x \to 0} \frac{(x + kx)^2}{x - kx} = \lim_{x \to 0} \frac{(1 + k)^2}{1 - k} x = 0.$$

Pokud naše původní limita existuje musí mít tedy hodnotu c=0 (to, že jsme prověřili přímky a dostali stejnou hodnotu, ale ještě NIC o existenci limity NEŘÍKÁ! K tomu bychom museli stejnou hodnotu dostat také pro VŠECHNY možné další křivky, po kterých se můžeme dostat do bodu  $a_0$ ).

Můžeme se pokusit najít jiná přiblížení (viz níže) anebo můžeme využít jednoduché kritérium pro neexistenci (konečné) limity (viz Poznámky k limitám):

- $f(x,y) = \frac{h(x,y)}{g(x,y)}$ , kde  $h(x,y) = (x+y)^2$  a g(x,y) = x-y jsou spojité funkce
- $\bullet \ \text{položme} \ M: \ x=y \ \land \ (x,y) \neq (0,0)$
- $\bullet\,$ pro každé  $a\in M$  je g(a)=0 a  $h(a)\neq 0$
- $a_0 = (0,0)$  je hromadný bod množiny M

Pak NEEXISTUJE (konečná) limita  $\lim_{(x,y)\to(0,0)} f(x,y).$ 

(Vzhledem k už nalezené limitě 0 při nějakém přiblížení z toho vyplývá, že ani případná "nekonečná" limita nemůže existovat.)

Zjistili jsme tedy, že  $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x-y}$  neexistuje.

**Poznámka:** Jestliže chceme najít přiblížení, pro které vyjde jiná hodnota než 0, můžeme v tomto případě zkusit "variaci konstanty k" a vzít křivku ve tvaru  $y(x) = k(x) \cdot x$ , kde k(x) je zatím neznámá funkce a kdy chceme, aby pro  $x \to 0$  bylo také  $y(x) \to 0$ . Křivku dosadíme do funkce:

$$f(x,y(x)) = \frac{(x+k(x)\cdot x)^2}{x-k(x)\cdot x} = \frac{(1+k(x))^2}{1-k(x)}\cdot x$$

Nyní bude stačit, když se např.  $\frac{x}{1-k(x)}$  bude blížit k nenulové hodnotě  $d \in \mathbb{R}$  a současně i  $(1+k(x))^2$  se bude blížit ke konečné nenulové hodnotě.

Stačí položit  $\frac{x}{1-k(x)}=d$ , tj.  $k(x)=1-\frac{x}{d}$ . Musíme ještě ověřit, že v tomto případě je křivka

$$y(x) = k(x) \cdot x = \left(1 - \frac{x}{d}\right)x$$

stále v definičním oboru D(f) (což by stačilo i jen pro x blízká k 0). To je ale ihned vidět. Dále také zřejmě je  $y(x) \to 0$  pro  $x \to 0$ .

A nakonec vidíme, že

$$f(x,y(x)) = \dots = \frac{\left(1+k(x)\right)^2}{1-k(x)} \cdot x = d\left(2-\frac{x}{d}\right)^2 \stackrel{x\to 0}{\longrightarrow} 4d$$

což je kýžený výsledek.

Současně si všimněme, že k bodu (0,0) se blížíme v tomto případě po parabole  $y(x) = x - \frac{x^2}{d}$  jejíž tečna v bodě (0,0) je právě přímka y = x, kterou jsme vyloučili z definičního oboru D(f). Toto je v jistém smyslu i návod pro jiné příklady hledejme křivky "napodobující" hranici definičního oboru v daném bodě.

# **2.6** Vyšetřete existenci limity $\lim_{(x,y)\to(0,0)} \frac{xy}{x+y}$ .

#### Řešení:

Budeme postupovat podobně jako v příkladu **2.5**. Definiční obor funkce  $f(x,y) = \frac{xy}{x+y}$  je

$$D(f): x \neq -y$$
.

Bod (0,0) je zřejmě hromadný bod množiny D(f). Při pohledu na funkci můžeme rovnou využít kritérium pro neexistenci (konečné) limity (viz Poznámky k limitám):

- $f(x,y) = \frac{h(x,y)}{g(x,y)}$ , kde h(x,y) = xy a g(x,y) = x+y jsou spojité funkce
- položme  $M: x = -y \wedge (x, y) \neq (0, 0)$
- pro každé  $a \in M$  je g(a) = 0 a  $h(a) \neq 0$
- $a_0 = (0,0)$  je hromadný bod množiny M

Pak NEEXISTUJE (konečná) limita  $\lim_{(x,y)\to(0,0)} f(x,y)$ .

(Kromě toho při přibližení po přímce y=x máme  $f(x,x)=\frac{x^2}{x+x}=\frac{x}{2} \stackrel{x\to 0}{\longrightarrow} 0$ , takže ani případná "nekonečná" limita neexistuje.)

Zjistili jsme tedy, že  $\lim_{(x,y)\to(0,0)} \frac{xy}{x+y}$  neexistuje.

#### Poznámka:

(a) Přiblížení, pro které vyjde jiná hodnota než 0, můžeme opět zkusit hledat ve tvaru  $y(x) = k(x) \cdot x$ , kde k(x) je zatím neznámá funkce a kdy chceme, aby pro  $x \to 0$  bylo také  $y(x) \to 0$ . Křivku dosadíme do funkce:

$$f(x,y(x)) = \frac{k(x) \cdot x^2}{x + k(x) \cdot x} = \frac{k(x)}{1 + k(x)} \cdot x$$

Nyní bude stačit, když se  $\frac{x}{1+k(x)}$  bude blížit k nenulové hodnotě  $d \in \mathbb{R}$  a současně i k(x) se bude blížit ke konečné nenulové hodnotě.

Stačí proto položit  $\frac{x}{1+k(x)}=d,$ tj.  $k(x)=\frac{x}{d}-1.$ Křivka

$$y(x) = k(x) \cdot x = \left(\frac{x}{d} - 1\right)x$$

pro  $x \neq 0$  je pak stále v definičním oboru D(f). Dále také zřejmě je  $y(x) \rightarrow 0$  pro  $x \rightarrow 0$ .

A po dosazení dostaneme

$$f(x,y(x)) = \cdots = \frac{k(x)}{1+k(x)} \cdot x = x - d \xrightarrow{x \to 0} -d$$

což jsme potřebovali.

Současně si všimněme, že k bodu (0,0) se opět blížíme po parabole  $y(x) = \frac{x^2}{d} - x$  jejíž tečna v bodě (0,0) je právě přímka y = -x, kterou jsme vyloučili z definičního oboru D(f).

(b) Vhodné přiblížení můžeme hledat i pomocí polárních souřadnic (a to obvykle tak, že parametrem bude úhel  $\varphi$ , pro který budeme hledat vhodnou funkci vzdálenosti  $\varrho(\varphi)$ ):

$$x(\varphi) = \varrho(\varphi)\cos\varphi$$
$$y(\varphi) = \varrho(\varphi)\sin\varphi$$

tak, aby  $\varrho(\varphi) \to 0$  pro  $\varphi \to \varphi_0$  pro nějaké vhodné  $\varphi_0 \in \mathbb{R} \cup \{\pm \infty\}$  neboť chceme mít  $\left(x(\varphi), y(\varphi)\right) \stackrel{\varphi \to \varphi_0}{\longrightarrow} (0, 0)$  (což je bod, kde limitu hledáme).

Opět dosadíme

$$f(x(\varphi), y(\varphi)) = \frac{\varrho^2(\varphi)\cos\varphi\sin\varphi}{\varrho(\varphi) \cdot (\cos\varphi + \sin\varphi)} = \frac{\cos\varphi\sin\varphi}{\cos\varphi + \sin\varphi}\varrho(\varphi)$$

Potřebujeme nějak vyvážit, to že  $\varrho(\varphi) \to 0$ , a jako jediná protiváha se nabízí výraz  $\cos \varphi + \sin \varphi$  ve jmenovateli zlomku. Proto zvolíme  $\varphi_0$  tak, aby  $\cos \varphi_0 + \sin \varphi_0 = 0$ , tedy např.  $\varphi_0 = -\frac{\pi}{4}$ .

Dále pro  $0 \neq d \in \mathbb{R}$  položíme zase  $\frac{\varrho(\varphi)}{\cos \varphi + \sin \varphi} = d$ , čímž dostaneme  $\varrho(\varphi) := d(\cos \varphi + \sin \varphi)$  a skutečně je pak  $\varrho(\varphi) \to 0$  pro  $\varphi \to -\frac{\pi}{4}$ .

Současně opět (díky tomu, že  $\varphi \neq -\frac{\pi}{4}$  a hodnoty  $\varphi$  jsou blízké k $-\frac{\pi}{4}$ ) budeme mít, že křivka

$$x(\varphi) = d(\cos \varphi + \sin \varphi) \cos \varphi$$
$$y(\varphi) = d(\cos \varphi + \sin \varphi) \sin \varphi$$

je v definičním oboru D(f) (protože pouze body na přímce y=-x mají úhel buď  $-\frac{\pi}{4}$  nebo  $\frac{3\pi}{4}$ ). Zbývá už jen zjistit, k čemu se budou blížit hodnoty funkce f pro tuto křivku:

$$f(x(\varphi), y(\varphi)) = \dots = \frac{\cos \varphi \sin \varphi}{\cos \varphi + \sin \varphi} \varrho(\varphi) = d \cos \varphi \sin \varphi \xrightarrow{\varphi \to -\frac{\pi}{4}} -d \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} = -\frac{d}{2}$$

což jsme opět potřebovali.

Opět si všimněme, že úhel  $\varphi$  průvodiče křivky se zase přibližuje k úhlu přímky y=-x, která je vyřazena z definičního oboru D(f).