DNFA-P. 1,4-dinitrofurazano[3,4-b]piperazyna, 1,4-dinitrofurazano[3,4-b]piperazine.

Zastosowania: Paliwo do rakiet, do dział, fajerwerki, kompozycje materiałów wybuchowych. Może być stosowany jako środek tłumiący dym w wysokowydajnych paliwach rakietowych.

Masa cząsteczkowa: 216.113	Palność: Nie jest łatwopalny ale może deflagrować
Prędkość detonacji: Podobna do TNTC	Toksyczność: Łagodna
Wrażliwość: Bardzo niska (detonuje pobudzony spłonką)	Typ: Materiał wybuchowy kruszący
Stabilność: Bardzo dobra	Wartość ogólna (jako MWK): Wysoka

Przygotowanie DNFA-P:

Materiały:	1. 278 gramów chlorowodorku hydroksyloaminy
	 2. 290 ml glioksalu 40% 3. 212 gramów węglanu sodu 4. 400 ml etanolu 95% 5. 70 gramów gazowego chloru 6. 200 ml chloroformu 7. 800 ml metanolu 8. 24 ml etylenodiaminy 9. 40 ml glikolu etylenowego 10. 6.4 gramów wodorotlenku sodu 11. 28 ml bezwodnika trifluorooctowego 12. 12 ml kwasu azotowego 99% 13. 140 ml acetonu

Streszczenie: DNFA-P, 1,4-dinitrofurazano[3,4-b]piperazyna jest przygotowywana przez reakcję glioksalu z chlorkiem hydroksyloaminy w celu otrzymując glioksym. Glioksym jest następnie poddawany działaniu chloru w celu wytworzenia dichloroglioksymu. Otrzymana substancja jest następnie poddawana działaniu etylenodiaminy w celu wytworzenia 2,3-dioksymopiperazyny. 2,3-dioksyminopiperazyna jest przekształcana w furazano[3,4-b]piperazynę w wyniku reakcji z wodorotlenkiem sodu. Furazano[3,4-b]piperazyna jest poddawana działaniu bezwodnika trifluorooctowego i 99% kwasu azotowego w temperaturze -30 stopni Celsjusza, otrzymując DNFA-P.

Zagrożenia: Podczas pracy z kwasem azotowym 99% należy nosić rękawice i stosować odpowiednią wentylację. 99% kwas azotowy jest wysoce żrącą i trującą cieczą, z której wydzielają się silnie trujące opary tlenków azotu. Należy zachować szczególną ostrożność. Stosować odpowiednią wentylację podczas pracy z gazem chlorowym. Chlor gazowy jest toksyczny i jest silnym środkiem drażniącym. Nosić rękawice podczas pracy z bezwodnikiem trifluorooctowym, który może powodować oparzenia skóry

Procedura:

Etap 1: Przygotowanie glioksymu

Do 2-litrowej kolby Erlenmeyera dodaj 278 gramów chlorowodorku hydroksyloaminy i 200 mililitrów wody, a następnie mieszaj roztwór w celu rozpuszczenia chlorowodorku hydroksyloaminy. Gdy chlorowodorek hydroksyloaminy się rozpuścił. dodaj 290 mililitrów 40% wodnego roztworu glioksalu, jednocześnie mieszając roztwór hydroksyloaminy. Po dodaniu roztworu glioksalu, mieszaj mieszaninę dodając powoli, małymi porcjami, 212 gramów węglanu sodu w ciągu 4 godzin. Po dodaniu węglanu sodu, mieszaj mieszaninę reakcyjną w temperaturze pokojowej przez 2 godziny. Po 2 godzinach ogrzewaj mieszaninę w łaźni wodnej lub płaszczu grzewczym w temperaturze 100 stopni C w celu rozpuszczenia surowego produktu. Po rozpuszczeniu surowego produktu usuń źródło ciepła i pozwól, aby mieszanina ostygła do temperatury pokojowej. Gdy temperatura pokojowa zostanie osiągnięta, schłodź mieszaninę do 0 stopni Celsjusza za pomocą łaźni lodowej, a następnie utrzymuj mieszaninę w temperaturze 0 stopni Celsjusza przez 1 godzinę. Po tym czasie odfiltruj produkt glioksymu, przemyj 400 mililitrami wody, a następnie wysusz próżniowo lub powietrzem. Wydajność będzie wynosić około 140 gramów o temperaturze topnienia 172 stopni Celsjusza.

Etap 2: Przygotowanie dichloroglioksymu

Umieść 35 gramów glioksymu (przygotowanego w kroku 1) i 400 mililitrów 95% etanolu w 2-litrowej kolbie z trzema szyjkami, wyposażonej w mieszadło i rurkę wlotu gazu. Następnie schłodź mieszaninę do temperatury -20 Celsjusza za pomocą kąpieli w suchym lodzie/acetonie. Gdy temperatura mieszaniny osiągnie -20 C, mieszaj mieszaninę, wdmuchując do niej 70 g chloru w ciągu 1 godziny i utrzymując mieszaninę reakcyjną w temperaturze -20 stopni Celsjusza podczas dodawania chloru. Po dodaniu chloru mieszaj mieszaninę przez 40 minut w temperaturze -20°C. Po 40 minutach usuń suchy lód/łaźnię acetonową, a następnie umieść mieszaninę reakcyjną w płytkim naczyniu o dużej powierzchni. Następnie pozostaw rozpuszczalnik do odparowania (ogrzewanie mieszaniny może spowodować uszkodzenie produktu). Po odparowaniu rozpuszczalnika zbierz produkt, a następnie zalej go chloroformem, dodając 200 mililitrów chloroformu. Następnie mieszaj tę

papkę przez około dziesięć minut, a potem odfiltruj produkt. Następnie należy wysuszyć produkt próżniowo lub powietrzem. Produkt będzie ważył 60,4 grama.

Etap 3: Przygotowanie 2,3-dioksyminopiperazyny

Umieść 31,4 grama dichloroglioksymu (przygotowanego w kroku 2) i 800 mililitrów metanolu w dwulitrowej kolbie, a następnie schłodź mieszaninę do temperatury 5 stopni Celsjusza za pomocą łaźni lodowej. Gdy temperatura mieszaniny osiągnie 5 stopni Celsjusza, przygotuj roztwór poprzez rozpuszczenie 24 gramów etylenodiaminy w 60 mililitrach metanolu. Następnie dodaj ten roztwór (wszystko naraz) do roztworu dichloroglioksymu, jednocześnie mieszając roztwór dichloroglioksymu i utrzymując jego temperaturę na poziomie 5 stopni Celsjusza. Po szybkim dodaniu, mieszaj mieszaninę reakcyjną przez 20 minut w temperaturze 5 stopni Celsjusza. Po 20 minutach usuń łaźnię lodową, a następnie umieść mieszaninę reakcyjną w aparacie destylacyjnym. Następnie destyluj mieszaninę w temperaturze 64 stopni Celsjusza, aż pozostanie suche ciało stałe. Gdy pozostanie suche ciało stałe, usuń źródło ciepła i pozwól, aby suche ciało stałe schłodziło się do temperatury pokojowej. Następnie zbierz suche ciało stałe, a potem dodaj 40 mililitrów wody. Po czym odfiltruj produkt, a następnie przemyj go 40 mililitrami metanolu, 3 razy przy użyciu tej samej 40-mililitrowej porcji, a następnie wysusz produkt próżniowo lub powietrzem. Wypłukany, suchy produkt będzie ważył 22 gramy.

Etap 4: Przygotowanie furazano[3,4-b]piperazyny

W kolbie umieść 40 mililitrów glikolu etylenowego, oraz 6,4 grama wodorotlenku sodu. Następnie podgrzej tę mieszaninę do temperatury 150 stopni Celsjusza ciągle mieszając. Po rozpuszczeniu wodorotlenku sodu, dodaj 22 gramy 2,3-dioksymopiperazyny (przygotowanej w kroku 3) w małych porcjach przez 6 minut, utrzymując temperaturę mieszaniny reakcyjnej na poziomie 150 stopni Celsjusza. Po dodaniu ogrzewaj mieszaninę reakcyjną przez 40 minut w temperaturze 150 stopni Celsjusza, ciągle mieszając. Po 40 minutach usun źródło ciepła i pozwól mieszaninie reakcyjnej ostygnąć do temperatury pokojowej. Po czym dodaj 40 mililitrów wody, a następnie schłodź mieszaninę reakcyjną do temperatury 0 stopni Celsjusza za pomocą łaźni lodowej. Następnie mieszaj mieszaninę reakcyjną w temperaturze 0 stopni Celsjusza przez 2 godziny. Po 2 godzinach odfiltruj produkt, a następnie wysusz próżniowo lub powietrzem. Produkt będzie miał postać jasnożółtych igieł o temperaturze topnienia 153 stopni Celsjusza i będzie ważył 10,44 gramów.

Etap 5: Przygotowanie 1,4-dinitrofurazano[3,4-b]piperazyny

Umieść 28 mililitrów bezwodnika trifluorooctowego w kolbie. Następnie schłodź bezwodnik trifluorooctowy do temperatury -30 stopni Celsjusza, używając suchego

lodu/łaźni acetonowej. Gdy temperatura cieczy osiągnie -30 stopni C, dodaj 12 mililitrów 99% kwasu azotowego, kroplami, przez okres 4 minut, mieszając bezwodnik trifluorooctowy i utrzymując temperaturę -30 stopni Celsjusza. Po dodaniu 99% kwasu azotowego, usuń suchy lód/łaźnie acetonowa i pozwól mieszaninie ogrzać się do temperatury 0 stopni Celsjusza. Po uzyskaniu 0 stopni Celsjusza, umieść mieszaninę z powrotem w łaźni z suchym lodem/acetonem i schłodź do temperatury -30 stopni Celsjusza. Gdy mieszanina reakcyjna osiągnie -30 stopni Celsjusza, dodaj 5,04 g furazano[3,4-b]piperazyny (przygotowanej w etapie 4) w małych porcjach w ciągu 10 minut. Po dodaniu, usuń suchy lód/łaźnię acetonową i pozwól mieszaninie reakcyjnej ogrzać się do temperatury pokojowej. Następnie umieść mieszaninę reakcyjną w płytkim naczyniu o dużej powierzchni i pozwól, aby rozpuszczalnik odparował (nadmuchiwanie powietrza nad powierzchnią cieczy za pomocą małego wentylatora chłodzącego jest środkiem pozwalającym na odparowanie rozpuszczalnika). Po odparowaniu wszystkich cieczy zbierz suchy produkt a następnie rekrystalizuj go z mieszaniny rozpuszczalników przygotowanej przez dodanie 140 mililitrów acetonu do 140 mililitrów wody. Po rekrystalizacji produkt należy wysuszyć próżniowo lub powietrzem. Produkt, 1,4-dinitrofurazano[3,4-b]piperazyna, będzie miała postać płytek o temperaturze

topnienia 122 stopni Celsjusza (z rozkładem).

Przetłumaczone przez: Fudes

Źródło: The preparatory manual of explosives