## DengAI: Predicting Dengue Disease in Iquitos, Peru & San Juan, Puerto Rico Using Data Science

by Paul Ycay

CKME 136 - Data Analytics Capstone Ryerson University

April 15, 2020

### Background on Dengue Disease

- Dengue is the fastest spreading mosquito controlled disease worldwide, flourishing in poorurban areas subtropical, tropical climates
- The Aedes Aegypti species of mosquitoes are largely responsible for transmitting the virus, which causes symptoms of joint pain and high fever. Up to 50-100 million cases have been estimated in 100 endemic countries, spreading heavily within Latin America and Southeast Asia as of 2019
- In light of the ongoing COVID-19 outbreak, studying the relationships between meteorological factors and reported cases during an epidemic will help warn the general public in taking necessary precautions of future outbreaks.

### Description of our Dataset

- This project will use Dengue data taken from the competition DengAl: Predicting Disease Spread, hosted by Driven Data. The data includes climatic information on San Juan, Peru & Iquitos, Puerto Rico between 1990-2010 (training set).
- Using varying meteorological data provided by the National Centers for Environmental Information (NOAA), the goal of this project was to predict the number of cases in the test set, which spans between 2008-2013 in San Juan and 2010-2013 in Iquitos.

### Description of our Dataset

| VARIABLE NAME (dengue_labels_t        | rain) DESCRIPTION                                                                   |
|---------------------------------------|-------------------------------------------------------------------------------------|
| city                                  | Iquitos, Peru & San Juan, Puerto Rico                                               |
| year                                  | Year                                                                                |
| weekofyear                            | Week of the corresponding year                                                      |
| week_start_date                       | Timeframe in DD-MM-YYYY                                                             |
|                                       | Maximum temperature (°C): taken from National Centers for Environmental             |
| station_max_temp_c                    | Information (NOAA) Global Historical Climatology Network (GHCN)                     |
|                                       | Minimum temperature (°C): taken from National Centers for Environmental             |
| station_min_temp_c                    | Information (NOAA) Global Historical Climatology Network (GHCN)                     |
|                                       | Average temperature (°C): taken from National Centers for Environmental             |
| station_avg_temp_c                    | Information (NOAA) Global Historical Climatology Network (GHCN)                     |
|                                       | Total precipitation (mm): taken from National Centers for Environmental             |
| station_precip_mm                     | Information (NOAA) Global Historical Climatology Network (GHCN)                     |
|                                       |                                                                                     |
|                                       | Diurnal temperature range (°C): taken from National Centers for Environmenta        |
| station_diur_temp_rng_c               | Information (NOAA) Global Historical Climatology Network (GHCN)                     |
| precipitation_amt_mm                  | Total precipitation (mm)                                                            |
|                                       | Total precipitation (mm): NOAA's National Centers for Environmental                 |
| reanalysis_sat_precip_amt_mm          | Prediction                                                                          |
| reanalysis_dew_point_temp_k           | Mean dew point temperature in Kelvin (K)                                            |
| reanalysis_air_temp_k                 | Mean air temperature in Kelvin (K)                                                  |
|                                       | Mean relative humidity (ratio of the amount of water vapor actually present in      |
| reanalysis_relative_humidity_percent  | the air to the greatest amount possible at the same temperature)                    |
|                                       |                                                                                     |
| reanalysis_specific_humidity_g_per_kg | Mean specific humidity (mass g of water vapour in a unit mass kg of moist air)      |
| reanalysis_precip_amt_kg_per_m2       | Total precipitation (in kg /square meter)                                           |
| reanalysis_max_air_temp_k             | Max air temp in Kelvin (K)                                                          |
| reanalysis_min_air_temp_k             | Min air temp in Kelvin (K)                                                          |
| reanalysis avg temp k                 | Average air temp in Kelvin (K)                                                      |
| reanalysis_tdtr_k                     | Diurnal temperature range in Kelvin (K)                                             |
| ndvi_se                               | NOAA's CDR Normalized Difference Vegetation Index. Pixel southeast of city centroid |
| ndvi_sw                               | Pixel southwest of city centroid                                                    |
| ndvi_ne                               | Pixel northeast of city centroid                                                    |
| ndvi_nw                               | Pixel northwest of city centroid                                                    |
| total cases                           | Total # of cases in timeframe                                                       |

### Description of our Dataset

Normalized Difference Vegetation Indices (NDVI): Relationship between plants & Indices



- NDVI is a measure of plant health based on how the plant reflects light at certain frequencies; i.e. a calculation of vegetation health
- This value ranges from -1 to 1.
- Negative values correspond to dead plants or inanimate objects; healthy plants have positive indices

### Data Approach: Data Preperation

- Import the 4 datasets. Merge the following datasets together: dengue\_features\_train & dengue\_labels\_train
- Common libraries used to explore the data was dplyr , tidyr , readr , as well as pre-loaded R functions.
- Check the format of variables and convert it appropriately (such as the date format)
- Identify dimensions of the data & determine NAs. We subset the data by city.
- Impute missing climate data (either median or most recent non-NA prior to it)

### Data Approach: Exploratory Analysis

- We treat the training data as two seperate datasets based on city & make statistical assumptions on each dataset
- Using the pastecs library, we can easily generate our univariate & bivariate analysis in the form of a data-frame based on each city.
- The function stat\_desc() will provide us basic statistics, such as the mean, median, mode, and any outliers of the data. It will also provide us advanced stats in a single data-frame
- We provide plots of our response variable total\_cases, and how it functions overtime, as well as Time Series plots of relevant climate features.
- Correlation matrices can be used in determining which features have low influence on the target variable, total\_cases
- Finally, we plot the response variable against the features in our data, which can tell us the appropriate machine learning algorithms to proceed with

### Data Approach: Modeling

- From the hypotheses made about the data in the initial steps (correlation, p-values, plots), deploy techniques and algorithms to test the data.
- Test our data with multiple linear regression first, predicting total\_cases.
- Apply Random Forest algorithm: used in both classification and regression.
- Random forest uses an ensemble of decision trees (randomized),
   where each tree determines a vote for prediction among the target variable; the algorithm picks the prediction with the most votes.
- Apply Support Vector Machine last; if regression is not suitable for this data due to non-linear relationships, SVM will be able to treat this

### Data Approach: Validation

- Each algorithm will be approved on the testing set
- We pick the algorithm with the most accuracy and the least Mean Square Error
- This step will come towards the end of the project, after all tests have been made.
- We use the algorithm and its respective model to predict the total cases in the Test Set; we submit our predictions on the website. The website's scoring metric is based on Mean Absolute Error; used to calculate the amount of error in the predictions, and averages all of the absolute errors

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |f_i - y_i|$$

### Initial Analysis

#### Univariate & Bivariate Analysis of Iquitos, Peru



### **Initial Analysis**

#### Univariate & Bivariate Analysis of San Juan, Puerto Rico

| _                                     |     |  |               |              | range ‡     |               | median ‡     |               | SE.mean ‡   | Clmean ‡    |              | std.dev ‡   | coef.var ‡  |
|---------------------------------------|-----|--|---------------|--------------|-------------|---------------|--------------|---------------|-------------|-------------|--------------|-------------|-------------|
| ndvi_ne                               |     |  | -0.40625000   | 0.4934000    | 0.8996500   | 54.40049      | 0.0587750    | 0.05849515    | 0.003465400 | 0.006800921 | 1.116837e-02 | 0.10568051  | 1.80665429  |
| ndvi_nw                               | 930 |  | -0.45610000   | 0.4371000    | 0.8932000   | 60.86540      | 0.0673875    | 0.06544667    | 0.003071183 | 0.006027260 | 8.771912e-03 | 0.09365849  | 1.43106568  |
| ndvi_se                               |     |  | -0.01553333   | 0.3931286    | 0.4086619   | 165.14261     | 0.1767012    | 0.17757269    | 0.001869493 | 0.003668918 | 3.250353e-03 | 0.05701186  | 0.32106210  |
| ndvi_sw                               | 930 |  | -0.06345714   | 0.3814200    | 0.4448771   | 155.00670     | 0.1677584    | 0.16667387    | 0.001831719 | 0.003594786 | 3.120329e-03 | 0.05585991  | 0.33514496  |
| precipitation_amt_mm                  |     |  | 0.00000000    | 390.6000000  | 390.6000000 | 32881.44000   | 20.6050000   | 35.35638700   | 1.461819000 | 2.868851000 | 1.987332e+03 | 44.57950200 | 1.26086100  |
| reanalysis_air_temp_c                 |     |  | 22.78857143   | 29.0500000   | 6.2614286   | 24192.69714   | 26.1042857   | 26.01365284   | 0.040544110 | 0.079568660 | 1.528757e+00 | 1.23642919  | 0.04753001  |
| reanalysis_avg_temp_c                 |     |  | 22.96428571   | 29.0142857   | 6.0500000   | 24298.03571   | 26.2285714   | 26.12692012   | 0.039960700 | 0.078423700 | 1.485077e+00 | 1.21863747  | 0.04664298  |
| reanalysis_dew_point_temp_c           | 930 |  | 16.49285714   | 24.6457143   | 8.1528571   | 20422.35286   | 22.3142857   | 21.95951920   | 0.051480470 | 0.101031490 | 2.464722e+00 | 1.56994332  | 0.07149261  |
| reanalysis_max_air_temp_c             |     |  | 24.65000000   | 31.1500000   | 6.5000000   | 26271.40000   | 28.3500000   | 28.24881720   | 0.041281830 | 0.081016450 | 1.584896e+00 | 1.25892666  | 0.04456564  |
| reanalysis_min_air_temp_c             | 930 |  | 19.45000000   | 26.7500000   | 7.3000000   | 22461.20000   | 24.3500000   | 24.15182796   | 0.042455050 | 0.083318930 | 1.676261e+00 | 1.29470516  | 0.05360692  |
| reanalysis_precip_amt_kg_per_m2       |     |  | 0.00000000    | 570.5000000  | 570.5000000 | 28332.84000   | 21.3000000   | 30.46541900   | 1.168290000 | 2.292793000 | 1.269358e+03 | 35.62805500 | 1.16945900  |
| reanalysis_relative_humidity_percent  | 930 |  | 66.73571429   | 87.5757143   | 20.8400000  | 73068.40857   | 78.6678571   | 78.56818126   | 0.111145680 | 0.218125710 | 1.148863e+01 | 3.38948769  | 0.04314072  |
| reanalysis_sat_precip_amt_mm          | 930 |  | 0.00000000    | 390.6000000  | 390.6000000 | 32881.44000   | 20.6050000   | 35.35638700   | 1.461819000 | 2.868851000 | 1.987332e+03 | 44.57950200 | 1.26086100  |
| reanalysis_specific_humidity_g_per_kg |     |  | 11.71571429   | 19.4400000   | 7.7242857   | 15393.74000   | 16.8457143   | 16.55240860   | 0.051184680 | 0.100451010 | 2.436481e+00 | 1.56092305  | 0.09430187  |
| reanalysis_tdtr_c                     |     |  | -271.79285714 | -268.7214286 | 3.0714286   | -251689.37143 | -270.6928571 | -270.63373272 | 0.016359300 | 0.032105470 | 2.488928e-01 | 0.49889161  | -0.00184342 |
| station_avg_temp_c                    | 930 |  | 22.84285714   | 30.0714286   | 7.2285714   | 25116.07143   | 27.2285714   | 27.00652842   | 0.046415200 | 0.091090800 | 2.003565e+00 | 1.41547346  | 0.05241227  |
| station_diur_temp_rng_c               |     |  | 4.52857143    | 9.9142857    | 5.3857143   | 6284.35714    | 6.7571429    | 6.75737327    | 0.027413280 | 0.053799130 | 6.988838e-01 | 0.83599268  | 0.12371563  |
| station_max_temp_c                    | 930 |  | 26.70000000   | 35.6000000   | 8.9000000   | 29395.40000   | 31.7000000   | 31.60795699   | 0.056312380 | 0.110514210 | 2.949108e+00 | 1.71729665  | 0.05433115  |
| station_min_temp_c                    |     |  | 17.80000000   | 25.6000000   | 7.8000000   | 21018.60000   | 22.8000000   | 22.60064516   | 0.049392760 | 0.096934310 | 2.268869e+00 | 1.50627665  | 0.06664751  |
| station_precip_mm                     | 930 |  | 0.00000000    | 305.9000000  | 305.9000000 | 24910.50000   | 17.7500000   | 26.78548390   | 0.961631200 | 1.887221300 | 8.600032e+02 | 29.32581080 | 1.09483970  |
| total_cases                           | 930 |  | 0.00000000    | 461.0000000  | 461.0000000 | 31734.00000   | 19.0000000   | 34.12258100   | 1.688694000 | 3.314097000 | 2.652069e+03 | 51.49824200 | 1.50921300  |

# Correlation, plots, & relationships of features against response variable



### Multiple Linear Regression

- We split train\_df into training & testing splits (80% & 20%, respectively)
- Fit linear model using all possible climate features as independent variables; most significant predictors in the model were the vegetation indices
- Multiple  $R^2$  yielded a value of 0.1657 and an adjusted  $R^2$  of 0.1519 poor performance
- Tried to backward elimination & refitted
- The following variables were chosen as the final model: ndvi\_ne , ndvi\_nw , ndvi\_se , ndvi\_sw , reanalysis\_avg\_temp\_c , reanalysis\_relative\_humidity\_percent , reanalysis\_specific\_humidity\_g\_per\_kg , station\_diur\_temp\_rng\_c , & station\_max\_temp\_c .
- Similar performance as previous; MLR is not the best model for predicting on this dataset

### Multiple Linear Regression Summary Using Backward Elimination

```
##
## Call:
## lm(formula = total cases ~ ndvi ne + ndvi nw + ndvi se + ndvi sw +
      reanalysis avg temp c + reanalysis relative humidity percent +
      reanalysis_specific_humidity_g_per_kg + station_max_temp_c,
      data = subset(df training, select = -c(1:4, 26:28)))
##
## Residuals:
     Min
             10 Median
                          30
                                Max
## -72.14 -20.90 -6.11 7.41 384.05
##
## Coefficients:
                                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                        437.9971 67.9928 6.442 1.73e-10 ***
## ndvi ne
                                         68.1498 17.8590 3.816 0.000143 ***
## ndvi nw
                                       -114.5563 19.7607 -5.797 8.69e-09 ***
## ndvi se
                                        -87.8794 30.9550 -2.839 0.004605 **
## ndvi sw
                                        109.9257 29.4167 3.737 0.000195 ***
## reanalysis avg temp c
                                        -20.0380 3.1770 -6.307 4.03e-10 ***
## reanalysis relative humidity percent -4.9165 0.5811 -8.461 < 2e-16 ***
## reanalysis_specific_humidity_g_per_kg
                                        25.5800 2.8646 8.930 < 2e-16 ***
## station_max_temp_c
                                          2.7055
                                                    1.0814 2.502 0.012493 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 43.61 on 1157 degrees of freedom
## Multiple R-squared: 0.1598, Adjusted R-squared: 0.154
## F-statistic: 27.5 on 8 and 1157 DF, p-value: < 2.2e-16
```

### Random Forest

- Random forest creates multiple decision trees at a a time by taking select variables at random. It simultaneously develops multiple trees in combination and finally averages the error to bring out the best possible results. We use the package randomForest for our analysis
- Created 9 models in total using this algorithm: 3 models on the entire train set, 3 models for each set subsetted by city
- 1<sup>st</sup> random forest model created 500 trees & selected 6 independent variables at random
- 2<sup>nd</sup> extends on the first by using optimal number of trees giving least *MSE*. Use optimal tree number to prune the model
- 3<sup>rd</sup> uses feature selection based on Node Purity. Higher Node Purity
  of that variable, the more useful it is in the model. Return 6 variables
  with the highest Node Purity, & call it into 3<sup>rd</sup> model

### Random Forest Summary on Entire Train Set



#### Variable Importance Plot Train DF- PSA Scor



### Support Vector Machine

- As SVM is non-parametric, it wont actually train the network.
- The SVM algorithm tries to plot all of the data in an *n*-dimensional hyper plane and applies the same logic on the test set, based on the reference created by the training set.
- The algorithm then tries to draw the boundary between the classes based on Support Vector machines.
- We use the package e1071 to perform our analysis.
- We try the grid approach to build multiple models at a time, so that we can pick the best model from all the developed models.'
- 3 models were created: 1 for the entire train set, and 1 for each city subsets
- Out of the 3 models, Iquitos yielded the lowest MSE



### Support Vector Machine - Parameter Tuning For Iquitos



### Overview of Random Forest & SVM Models

| Model Name       | Algorithm     | Description                                                  | MSE on train | % Variance covered on Train dataset | MSE on test |
|------------------|---------------|--------------------------------------------------------------|--------------|-------------------------------------|-------------|
|                  |               | Built on df_training dataset. We have used a basic           |              |                                     |             |
|                  |               | Random forest model which has created 500 trees from         |              |                                     |             |
| rf_df_regressor  | Random Forest | the selection of 6 random independent variables.             | 1304.461     | 41.91                               | 666.8971    |
|                  |               | After building the Random Forest algorithm, the              |              |                                     |             |
|                  |               | algortithm tries to fit the model to the data, which may     |              |                                     |             |
|                  |               | cause overfitting. As the model has generated 500 trees,     |              |                                     |             |
|                  |               | it may generate a higher MSE.                                |              |                                     |             |
|                  |               | We developed the model based on the number of trees          |              |                                     |             |
| rf_df_regressor: | Random Forest | generating the least MSE                                     | 1260.36      | 43.87                               | 620.1547    |
|                  |               | We have built this model with top 6 variables based on       |              |                                     |             |
|                  |               | their Node Purity rating. We find it using the function      |              |                                     |             |
|                  |               | VarImportance() . Node Purity indicates the ease of          |              |                                     |             |
|                  |               | identifying the variable to a class or value. It's better to |              |                                     |             |
|                  |               | have high Node Purity.                                       | 1092.494     | 51.35                               | 538.5882    |
| rf_sj_regressor  | Random Forest | Built on sj_training dataset. Similar to rf_df_regressor     | 1867.153     | 40.14                               | 753.0785    |
| rf_sj_regressor2 | Random Forest | Built with trees pruned for minimum MSE                      | 1938.588     | 37.85                               | 737.931     |
| rf_sj_regressor3 | Random Forest | Built with the top 6 variables based on Node Purity          | 1464.458     | 53.05                               | 790.4614    |
| rf_iq_regressor  | Random Forest | Built on iq_training dataset. Similar to rf_df_regressor     | 135.0008     | -3.23                               | 52.23506    |
| rf_iq_regressor2 | Random Forest | Built with trees pruned for minimum MSE                      | 137.1541     | -4.87                               | 52.31801    |
| rf_iq_regressor  | Random Forest | Built with top 5 Variables based on Node Purity              | 127.5276     | 2.49                                | 60.39508    |
|                  |               |                                                              |              |                                     |             |
|                  |               | Built on df_training dataset with different Epsilon and      |              |                                     |             |
|                  |               | Cost values; this has chosen the best possible model.        |              |                                     |             |
|                  |               | Once the training completes, we can bring out the best       |              |                                     |             |
|                  |               | tuned model and the parameters for it, such as Epsilon &     |              |                                     |             |
|                  |               | Cost                                                         |              |                                     |             |
| tunemodel_df     | SVM           | Once we pickup best model, we can use that for training      | na           | na                                  | 800.2505    |
| tunemodel_sj     | SVM           | Similar to one above, but built on sj_training               | na           | na                                  | 856.6288    |
| tunemodel_iq     | SVM           | Similar to one above, but built on iq_training               | na           | na                                  | 61.12607    |

### Overview of Random Forest & SVM Models

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

- N is the number of data points,  $f_i$  is the value returned by the model, and  $y_i$  is the actual value for data point i. We calculate the scores of each model above using the test set sample split. The lower the MSE, the better the score
- rf\_iq\_regressor (Random Forest Regressor 1 for Iquitos) is the best model for predicting in the Iquitos test set
- rf\_sj\_regressor2 (Random Forest Regressor 2 for San Juan) is the best model for predicting in the San Juan test set
- rf\_df\_regressor3 (Random Forest Regressor 3 for Entire set) is the best model for predicting the entire test set

### Plotting Predicted Cases



Time Series of Total Cases Prediction in Test Set (Random Forest)



### Plotting Predicted Cases







### Final Statements & Further Results



- Placed in the top 27% among 8709 competitors
- Several ways to improve our models and achieve a higher score in the future
- Better treatment of variables; explore normalization & Principal Component Analysis (PCA)
- Artificial Neural Networks (ANN) may benefit this project as neural networks can identify the hidden patterns within the data
- As the data is time series, we can also explore ARIMA (Auto Regressive Integrated Moving Average) models as well

### Final Statements & Further Results

- We were able to explore patterns in our data that derive from the literatures studied
- Analyzing climate patterns in areas with high infection rates will help us determine how these vector borne diseases and carriers behave in the future. By determining these patterns, humans are more equipped to prevent such outbreaks
- Likewise, the idea of analyzing social and physical patterns among humans during the COVID-19 pandemic (whether they are traveling, isolating, social distancing, etc...) will influence how the outbreak behaves in the future

### The End