(MATNA1902) Alkalmazott lineáris algebra gyakorló feladatok (ENKEMNA0302) Applied Linear Algebra exercises

I. DIADIKUS ÉS KRONECKER SZORZAT / DYADIC AND KRONECKER PRODUCTS

- 1. Adottak a következő vektorok / We have the following vectors: $\mathbf{a}(1,0,2)$, $\mathbf{b}(0,2,2)$, és/and $\mathbf{c}(1,1,2)$. Számolja ki a következő diadikus szorzatokat / Calculate the following dyadic products: $\mathbf{a} \otimes \mathbf{b}$, $\mathbf{a} \otimes \mathbf{c}$, és/and $\mathbf{b} \otimes \mathbf{c}$.
- 2. Adottak a következő mátrixok / We have the following matrixes:

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \end{pmatrix} \mathbf{C} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

Számolja ki a következő Kronecker szorzatokat / Calculate the following Kronecker products: $\mathbf{A} \otimes \mathbf{B}, \ \mathbf{A} \otimes \mathbf{C}, \ \text{\'es/and} \ \mathbf{B} \otimes \mathbf{C}.$

II. TRANSZFORMÁCIÓK / TRANSFORMATIONS

- 3. Adott az $\mathbf{a}(2,2,2)$ vektor.
 - a.) Írja fel a forgatási mátrixokat, amivel az (1,0,0) irányba lehet forgatni az **a** vektort! / Give the rotational matrixes to rotate this vector to the direction of the (1,0,0) vector.
 - b.) Adja meg azt a **T** tükrözési mátrixot, amivel az **a** vektort tükrözi lehet az (x, y) síkra! / Determine the **M** mirror matrix that mirrors this **a** vector to the (x, y) plan.
 - c.) Adja meg azt a **P** projekciós mátrixot, amivel az **a** vektort le lehet vetíteni az (y, z) síkra! / Determine the **P** projection matrix that projects this **a** vector to the (y, z) plan.
 - d.) Adja meg azt a **S** eltolási mátrixot, amivel az **a** vektort el lehet tolni a (-1, -1, -2) irányba! / Determine the **S** transformation matrix that shifts this **a** vector to the (-1, -1, -2) direction.

III. KÜLÖNLEGES MÁTRIXOK / SPECIAL MATRIXES

4. Adottak a következő mátrixok / We have the following matrixes:

$$\mathbf{D}_{1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} \mathbf{D}_{2} = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 13 \end{pmatrix} \mathbf{T} = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{S} = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Végezze el a következő műveleteket! / Calculate the following expressions:

- a.) $D_1 + D_2, D_1 \cdot D_2$.
- b.) $|\mathbf{D}_1|$, $|\mathbf{T}|$, $|\mathbf{S}|$, $|\mathbf{P}|$.
- c.) \mathbf{D}_1^{-1} , \mathbf{T}^{-1} , \mathbf{S}^{-1} , \mathbf{P}^{-1} .
- d.) \mathbf{D}_{1}^{2} , \mathbf{T}^{2} , \mathbf{S}^{2} , \mathbf{P}^{2} .
- e.) \mathbf{D}_1^3 , \mathbf{T}^3 , \mathbf{S}^3 , \mathbf{P}^3 .

Csak ellenőrzésre használják a Sarrus-szabályt és az adjungálást. Használják az adott mátrixokról tanultakat. / Use the Sarrus rule and adjudication for check only. Use the learned features of these matrixes.

IV. (FERDÉN) SZIMMETRIKUS MÁTRIXOK / (SKEW-)SYMMETRIC MATRIXES

5. Adottak a következő mátrixok / We have the following matrixes:

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 2 & 2 \end{pmatrix} \mathbf{C} = \begin{pmatrix} 2 & 3 & 3 \\ 0 & 3 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$

Bontsa fel ezeket a mátrixokat egy szimmetrikus és egy ferdén szimmetrikus mátrix összegére! / Divide these matrixes into a sum of symmetric and skew-symmetric matrixes.

V. BLOKK MÁTRIXOK / BLOCK MATRIXES

6. Adottak a következő blokk mátrixok / We have the following block matrixes:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 2 & 0 \\ 1 & 0 & 1 & 1 & 2 \\ \hline 2 & 1 & 2 & 2 & 3 \\ 0 & 3 & 0 & 3 & 2 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 & 2 \\ \hline 2 & 1 & 2 & 2 & 0 \\ 0 & 3 & 0 & 0 & 2 \end{pmatrix} \mathbf{C} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 2 \\ \hline 2 & 1 & 2 & 1 \\ \hline 0 & 1 & 3 & 1 \\ 1 & 0 & 1 & 3 \end{pmatrix}$$

Végezze el a következő műveleteket, ha lehetséges! / Calculate the following expressions, if it is possible:

- a.) A + B, A + C, B + C.
- b.) $2 \cdot \mathbf{A}$, $3 \cdot \mathbf{B}$, $5 \cdot \mathbf{C}$.
- c.) $\mathbf{A} \cdot \mathbf{B}$, $\mathbf{A} \cdot \mathbf{C}$, $\mathbf{B} \cdot \mathbf{C}$.

A műveleteket a blokokkal végezze, a rendes mátrix szorzást csak ellenőrzésre használja! / Calculate with the block. Use the normal matrix operations only for checking.

Facskó Gábor / Gabor FACSKO facskog@gamma.ttk.pte.hu

Pécs, 2025. március 8. / March 8. 2025