Social Equity of Clean Energy Policies in Electric-Vehicle Charging Infrastructure Systems

Yohan Min Hyun Woo Lee Mar. 10, 2020

Background: Energy Divide

- The rapid transition to the new energy system due to the clean energy policies digital divide of the late 20th century.
- Uneven distribution of the service such as EV charging infrastructure.

Residential EV Charger in Seattle

Rapidly increased with advancement of clean energy policies.

- Are there certain communities left out from incentive opportunities?
- Do those current policies affect the social equity?

Clustering on Distribution

EV charger density normalized by the number of residential house units.

G Estimate for Spatial Dependency

$$\widehat{G}(d) = \frac{\#\{d_i \le d\}}{n}.$$

G estimate showing the spatial dependency

Socio-economic Characteristics

8 Variables

- Owner-occupied
- Single family
- Owner-occupied w/o mortgages
- Median value of owner-occupied
- Population above high school degree
- Household median income
- Household GINI Index of income inequality
- High income households

• SIR_e: Installation Ratio

Number of Residential EV Charger

Expected Number regarding Housing Units

Latent Variables

- ML1: Housing structure and tenure
- ML2: Economic status
- ML3 : Inequality

Intrinsic Conditional Auto-Regressive

		mean	0.025quant	0.5quant	0.975quant
	(Interce	pt) -0.2474	-0.3409	-0.2468	-0.1576
•	Large variance from I(ML)	0.3383	0.1917	0.3391	0.48
	spatial dependency I(ML2	0.5301	0.3847	0.5288	0.6831
•	Φ (Phi) is 0.85 I(ML3	0.1387	0.02818	0.1388	0.249
	Total resid	ual sd 0.3532	0.5082	0.3662	0.2554
	Phi for	ID 0.7896	0.316	0.8459	0.9893

Spatial Autocorrelation Model (BYM2) by INLA

$$Y_i | \beta_0, \beta_1, \beta_2, \beta_3, S_i, \epsilon_i \sim \text{Poisson}(E_i e^{\beta_0 + \beta_1 I_{1i} + \beta_2 I_{2i} + \beta_3 I_{3i}} e^{S_i + \epsilon_i}),$$

 $\epsilon_i | \sigma_{\epsilon}^2 \sim \text{N}(0, \sigma_{\epsilon}^2),$
 $S_1, \dots, S_n | \sigma_s^2 \sim \text{ICAR}(\sigma_s^2).$

ICAR Model Mapping

Covariate RRs (BYM2)

Housing Stability & Economic Status

Lognormal-Spatial RRs (BYM2)

EV Charger Installation

K-Means Clustering

Blue cluster following the higher EV charger installation pattern

Geographically Weighted Regression

Spatial dependence at a local level

$$Y(s) = E(s)e^{(\beta_0 + \beta_1(s)X_1(s) + \beta_2(s)X_2(s) + \epsilon(s))}$$

ML1: Housing Stability Sensitivity

ML2: Economic Status Sensitivity

Conclusions

- Social equity:
 - > Uneven distribution of EV charger
- Significant factors:
 - > Economic Status
 - Housing Stability
- Spatial autocorrelation
- Sensitive regions identified to increase EV for even distribution
 - Southwest Economic status
 - Southeast Housing stability

Appendix – EV Charger 3D Density

Appendix – Pairwise Covariates Correlation

Appendix – Random Effects

Residuals of poission with covariates model

Spatial random effects (BYM2)

Non-spatial random effects (BYM2)

Total random effects (BYM2)

Appendix - Prediction (Gradient Boosted Random Forest)

- Max depth=2
- Learning rate=0.1
- Estimators=50
- Train to test=0.8
- 26 tree estimators
- Most important feature of ML2

