Resoluções Aula prática 3

Imagem de referência:

Signal name	Effect when deasserted	Effect when asserted
RegDst	The register destination number for the Write register comes from the rt field (bits 20:16).	The register destination number for the Write register comes from the rd field (bits 15:11).
RegWrite	None.	The register on the Write register input is written with the value on the Write data input.
ALUSrc	The second ALU operand comes from the second register file output (Read data 2).	The second ALU operand is the sign- extended, lower 16 bits of the instruction.
PCSrc	The PC is replaced by the output of the adder that computes the value of PC + 4.	The PC is replaced by the output of the adder that computes the branch target.
MemRead	None.	Data memory contents designated by the address input are put on the Read data output.
MemWrite	None.	Data memory contents designated by the address input are replaced by the value on the Write data input.
MemtoReg	The value fed to the register Write data input comes from the ALU.	The value fed to the register Write data input comes from the data memory.

Solução 4.1

Para todas as instruções os primeiros dois passos são idênticos:

- Enviar o PC à memória que contém o código e fazer fetch da instrução contida nessa memória.
- Ler um ou dois registos, utilizando os campos da instrução para selecionar os registos a ler. Para a instrução lw só precisamos de 1 registo, mas para a generalidade das instruções é preciso ler 2.

Após estes dois passos os passos dependem da instrução. As acções para cada tipo de instrução R, I e J são muito semelhantes. É de salientar a homogeneidade do Instruction Set como filosofia de desenvolvimento para facilitar a execução de muitas instruções semelhantes.

4.1.1. Considerações

Os sinais de controlo que temos que considerar são:

Instruction	RegDst	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite
R-format	1	О	О	1	О	o
lw	0	1	1	1	1	О
SW	X	1	Х	0	0	1
beq	X	0	Х	0	0	О

4.1.2. Considerações

Podemos considerar como unidades funcionais a memória (dados e instruções), o banco de registos, o PC a ALU e eventualmente ALU específica de adição **conforme a figura 4.1**.

A instrução and é uma instrução tipo R logo aplicam-se os mesmos princípios que a instrução add estudada na aula teórica. Assim as unidades funcionais são o *Banco de registos* (register file) e a *ALU* conforme o slide apresentado na teórica e a figura 4.7. Como é lógico, o PC e a memória (instruções) estão envolvidos em qualquer instrução.

