### **Airfares**

a) Explore the numerical predictors and response (FARE) by creating a correlation table and examining some scatterplots between FARE and those predictors. What seems to be the best single predictor of FARE?

Distance seems to be the best single predictor of FARE from the Correlation Table. By looking at the scatter plot, with a change in distance we can see a positive change in FARE. The second best predictor is coupon which has second highest magnitude on the correlation table and scatter plot. The other numerical predictors have scatter plots distributed randomly which doesn't give sufficient evidence that it correlates with FARE. We can refer the table below from sheet correlation.

| TTO CUIT IC | The case seron from sheet continues. |          |          |          |             |          |          |          |          |      |
|-------------|--------------------------------------|----------|----------|----------|-------------|----------|----------|----------|----------|------|
|             | COUPON                               | NEW      | HI       | S_INCOME | $E\_INCONE$ | S_POP    | $E_POP$  | DISTANCE | FAX      | FARE |
| COUPON      | 1                                    |          |          |          |             |          |          |          |          |      |
| NEW         | 0.020223                             | 1        |          |          |             |          |          |          |          |      |
| HI          | -0.34725                             | 0.054147 | 1        |          |             |          |          |          |          |      |
| S_INCOME    | -0.0884                              | 0.026597 | -0.02738 | 1        |             |          |          |          |          |      |
| E_INCOME    | 0.046889                             | 0.113377 | 0.082393 | -0.13886 | 1           |          |          |          |          |      |
| S_POP       | -0.10776                             | -0.01667 | -0.1725  | 0.517187 | -0.14406    | 1        |          |          |          |      |
| E_POP       | 0.09497                              | 0.058568 | -0.06246 | -0.27228 | 0.458418    | -0.28014 | 1        |          |          |      |
| DISTANCE    | 0.746805                             | 0.080965 | -0.31237 | 0.028153 | 0.176531    | 0.018437 | 0.11564  | 1        |          |      |
| PAX         | -0.33697                             | 0.010495 | -0.16896 | 0.138197 | 0.259961    | 0.284611 | 0.314698 | -0.10248 | 1        |      |
| FARE        | 0.496537                             | 0.09173  | 0.025195 | 0.209135 | 0.326092    | 0.145097 | 0.285043 | 0.670016 | -0.09071 | 1    |

b) Explore the categorical predictors (excluding the first four) by computing the percentage of flights in each category. Create a pivot table with the average fare in each category. Which categorical predictor seems best for predicting FARE?

|                   | Column Labels - |        |                    | Row Labels  | Average of FARE |
|-------------------|-----------------|--------|--------------------|-------------|-----------------|
|                   | Controlled      | Free   | <b>Grand Total</b> | Controlled  | 186.0593956     |
| Count of SLOT     | 182             | 456    | 638                | Free        | 150.8256798     |
| % of Flights      | 28.53%          | 71.47% | 100.00%            | Grand Total | 160.8766771     |
|                   |                 |        |                    |             |                 |
|                   |                 |        |                    |             |                 |
|                   | Column Labels - |        |                    | Row Labels  | Average of FARE |
|                   | No              | Yes    | <b>Grand Total</b> | No          | 188.1827928     |
| Count of S♥       | 444             | 194    | 638                | Yes         | 98.38226804     |
| % of Flights      | 69.59%          | 30.41% | 100.00%            | Grand Total | 160.8766771     |
|                   |                 |        |                    |             |                 |
|                   |                 |        |                    |             |                 |
|                   | Column Labels   |        |                    | Row Labels  | Average of FARE |
|                   | Constrained     | Free   | Grand Total        | Constrained | 193.1290323     |
| Count of GATE     | 124             | 514    | 638                | Free        | 153.0959533     |
| % of Flights      | 19.44%          | 80.56% | 100.00%            | Grand Total | 160.8766771     |
| _                 |                 |        |                    |             |                 |
|                   |                 |        |                    |             |                 |
|                   | Column Labels   |        |                    | Row Labels  | Average of FARE |
|                   | No              | Yes    | Grand Total        | No          | 173.5525        |
| Count of VACATION | 468             | 170    | 638                | Yes         | 125.9808824     |
| % of Flights      | 73.35%          | 26.65% | 100.00%            | Grand Total | 160.8766771     |

From the above pivot tables we can say that South West operates 30.41% of total flights operated and the average fare for a South West operated flight is around 98\$ which is least average fare when compared to all other categorical predictors. So, SW column best predicts the fare of the flight in the categorical predictors. This table can be referred from the pivot table.

- c) Find a model for predicting the average fare on a new route:
- i. Convert categorical variables (e.g., SW) into dummy variables. Then partition the data into training and validation sets. The model will be fit to the training data and evaluated on the validation set.

the

This

### Inputs

| Data                        |                |                  |    |          |      |  |
|-----------------------------|----------------|------------------|----|----------|------|--|
| Workbook                    | Airfares.xlsx  |                  |    |          |      |  |
| Worksheet                   | Encoding       | Encoding         |    |          |      |  |
| Range                       | \$C\$24:\$Y\$6 | \$C\$24:\$Y\$662 |    |          |      |  |
| # Records in the input data | 638            | 638              |    |          |      |  |
|                             |                |                  |    |          |      |  |
| Variables                   |                |                  |    |          |      |  |
| # Selected Variables        | 18             |                  |    |          |      |  |
| Selected Variables          | COUPON         | NEW              | HI | S_INCOME | E_IN |  |
|                             |                |                  |    |          |      |  |
| Partitioning Parameters     |                |                  |    |          |      |  |
| Partitioning type           | RANDOM         |                  |    |          |      |  |
| Random seed                 | 12345          | 12345            |    |          |      |  |
| Ratio - Training            | 0.6            |                  |    |          |      |  |
| Ratio - Validation          | 0.4            |                  |    |          |      |  |

### **Partition Summary**

ii. Why should the data be partitioned into training, and validation? What will the training set be used for? What will the validation set be used for?

Partitioning data into training and validation datasets allows the user to develop highly accurate models that helps not only analyzing the data which is there but also helps to collect the future data. Usually the data is partitioned into 60% training data and 40% validation data. Training is subset of the data which is used to learn the relationships between data and outcome value. Validation is also a subset of data which is run on the data to estimate the performance of the model after the training has been done on the data. This can be referred from the STD partition sheet.

iii. Use stepwise regression to reduce the number of predictors. You can ignore the first four predictors (S CODE, S CITY, E CODE, E CITY). Report the estimated model selected.



The above images can be referred from sheets ending 'STEPWISE'

The stepwise regression is done we have the results as shown above. Here we need to choose the best model from the available subsets based on the values of  $R^2$ , Adj.  $R^2$  and Mallow's Cp value(#predictor +1). From the above picture we can say that we have 13 predictors and the best subset is we found is  $11^{th}$  subset. Using

# **Regression Summary**

| Metric -    | Value -     |
|-------------|-------------|
| Residual DF | 371         |
| R2          | 0.783198061 |
| Adjusted R2 | 0.776769971 |
| Std. Error  | 36.0243436  |
| RSS         | 481466.4861 |

the subset we generate the stepwise regression.

### **Predictor Screening**



#### Coefficients

| Predictor         | ■ Estimate   | Confidence Interval: Lower | Confidence Interval: Upper | Standard Error | T-Statistic  | P-Value     |
|-------------------|--------------|----------------------------|----------------------------|----------------|--------------|-------------|
| Intercept         | 17.54126708  | -32.56929476               | 67.65182893                | 25.48367678    | 0.688333447  | 0.491672994 |
| COUPON            | 6.134342987  | -25.440304                 | 37.70898998                | 16.05725557    | 0.382029355  | 0.702658322 |
| HI                | 0.009110268  | 0.006551273                | 0.011669262                | 0.001301374    | 7.000497671  | 1.2018E-11  |
| E INCOME          | 0.001690551  | 0.000746929                | 0.002634174                | 0.000479878    | 3.522874609  | 0.000480158 |
| S POP             | 4.74243E-06  | 3.13197E-06                | 6.35289E-06                | 8.18999E-07    | 5.790521138  | 1.49673E-08 |
| E POP             | 3.80038E-06  | 1.94407E-06                | 5.6567E-06                 | 9.44027E-07    | 4.02571463   | 6.88897E-05 |
| DISTANCE          | 0.075100447  | 0.066161863                | 0.084039031                | 0.004545708    | 16.52117686  | 2.39141E-46 |
| PAX               | -0.000854001 | -0.00124043                | -0.000467571               | 0.000196518    | -4.345654137 | 1.79521E-05 |
| <b>VACATION Y</b> | -35.96542866 | -45.02843996               | -26.90241735               | 4,608985455    | -7.803328738 | 6.19899E-14 |
| SW Yes            | -38.1736666  | -47.31314188               | -29.03419131               | 4.647871137    | -8.213150811 | 3.62111E-15 |
| SLOT Free         | -19.08883186 | -28.78608509               | -9.391578635               | 4.931528561    | -3.870773864 | 0.000128168 |
| GATE_Free         | -17.44426557 | -27.96703789               | -6.921493252               | 5.35134548     | -3.259790577 | 0.00121801  |

The above pictures can be referred from sheets ending 'STEPSS'

The stepwise regression was calculated to predict the fare based on the given input variables. The regression equation was found to be

 $FARE=17.54126708+6.134342987*COUPON+0.009110268*HI+0.001690551*E\_INCOME+4.74243E-06*S\_POP+3.80038E-06*E\_POP+0.075100447*DISTANCE-0.000854001*PAX-35.96542866*VACATION\_Yes-38.1736666*SW\_Yes-19.08883186*SLOT\_Free-17.44426557*GATE\_Free$ 

iv. Repeat (iii) using exhaustive search instead of stepwise regression. Compare the resulting best model to the one you obtained in (iii) in terms of the predictors that are in the model.

### **Regression Summary**



#### Predictor Screening

| Predictor =     | Criteria == | Included == |
|-----------------|-------------|-------------|
| Intercept       | 1.53278E-15 | FALSE       |
| COUPON          | 2.877009329 | TRUE        |
| NEW             | 15.83731177 | TRUE        |
| HI              | 32251.39024 | TRUE        |
| S_INCOME        | 99174.25422 | TRUE        |
| E_INCOME        | 219391.7811 |             |
| S_POP           | 106685127.2 | TRUE        |
| E_POP           | 69411958.24 | TRUE        |
| DISTANCE        | 11519.3443  | TRUE        |
| PAX             | 215642.951  |             |
| VACATION_No     | 5.23769E-15 | FALSE       |
| VACATION_Yes    | 8.149752609 | TRUE        |
| SW_No           | 1.01429635  |             |
| S₩_Yes          | 8.779115831 | TRUE        |
| SLOT_Controlled |             |             |
| SLOT_Free       | 8.020632568 |             |
| GATE_Constrain  |             |             |
| GATE_Free       | 6.943145248 | TRUE        |
|                 |             |             |
|                 |             |             |

#### Coefficients

Tolerance for en 9.07264E-06,

| Predictor      | Estimate     | Confidence Interval: Lower | Confidence Interval: Upper | Standard Error | T-Statistic - | P-Value -   |
|----------------|--------------|----------------------------|----------------------------|----------------|---------------|-------------|
| Intercept      | 0            | 0                          | 0                          | 0              | N/A           | N/A         |
| COUPON         | 10.24575172  | -21.54811806               | 42.03962149                | 16.1684543     | 0.633687768   | 0.526677195 |
| NE₩            | -1.75953839  | -6.356993349               | 2.837916569                | 2.33798971     | -0.752586028  | 0.452178542 |
| HI             | 0.009122908  | 0.006570801                | 0.011675014                | 0.001297848    | 7.029257093   | 1.01014E-11 |
| S_INCOME       | 0.001254741  | -4.88504E-05               | 0.002558332                | 0.000662928    | 1.892724869   | 0.059176837 |
| E_INCOME       | 0.001846147  | 0.00089259                 | 0.002799704                | 0.000484922    | 3.807101403   | 0.000164596 |
| S_POP          | 4.41605E-06  | 2.77757E-06                | 6.05453E-06                | 8.33233E-07    | 5.299897973   | 1.99832E-07 |
| E_POP          | 4.31136E-06  | 2.37782E-06                | 6.2449E-06                 | 9.83282E-07    | 4.384666615   | 1.51709E-05 |
| DISTANCE       | 0.074125826  | 0.065057053                | 0.083194599                | 0.004611834    | 16.07296164   | 1.93279E-44 |
| PAX            | -0.000893952 | -0.001281595               | -0.00050631                | 0.000197132    | -4.534799904  | 7.80584E-06 |
| VACATION_No    | 0            | 0                          | 0                          | 0              | N/A           | N/A         |
| VACATION_Yes   | -33.74914644 | -43.11228096               | -24.38601192               | 4.761528358    | -7.087881014  | 6.96628E-12 |
| SW_No          | -23.21350588 | -92.85910078               | 46.43208901                | 35.4175703     | -0.655423443  | 0.512603565 |
| SW_Yes         | -58.32119611 | -125.2494242               | 8.607032006                | 34.03568062    | -1.713531066  | 0.087454746 |
| SLOT_Controlle | . 0          | 0                          | 0                          | 0              | N/A           | N/A         |
| SLOT_Free      | -17.45963666 | -27.33574137               | -7.583531945               | 5.022394215    | -3.476357273  | 0.000568827 |
| GATE_Constrain | n 0          | 0                          | 0                          | 0              | N/A           | N/A         |
| GATE_Free      | -17.39758297 | -27.89963716               | -6.895528783               | 5.340714557    | -3.257538441  | 0.001228019 |

The exhaustive search regression is done on the partition data gives the values of subsets with Max. CP,  $R^2$  and Adj  $R^2$  values. The best subset is chosen on the basis of high adj  $R^2$  value and Max. CP value Which is one more than the number of predictor. The above picture can be referred from the sheets ending with 'Exhaustive'.

| Best Subsets D | etails          |           |                |          |               |               |
|----------------|-----------------|-----------|----------------|----------|---------------|---------------|
| Subset ID -    | #Coefficients - | RSS -     | Mallows's Cp ~ | R2 -     | Adjusted R2 🛂 | Probability ~ |
| Subset 12      | 12              | 477731.47 | 11.1831072     | 0.78488  | 0.778501697   | 0.55399075    |
| Subset 13      | 13              | 476759.02 | 12.42957989    | 0.785318 | 0.778355143   | 0.512603565   |
| Subset 14      | 14              | 476204.64 | . 14           | 0.785567 | 0.778012911   | 0             |
| Subset 11      | 11              | 482081.37 | 12.55374061    | 0.782921 | 0.777085732   | 0.209454471   |
| Subset 10      | 10              | 495258.12 | 20.76410101    | 0.776988 | 0.771606767   | 0.005819331   |
| Subset 9       | 9               | 507772.24 | 28.46100804    | 0.771353 | 0.766461861   | 0.000239298   |
| Subset 8       | 8               | 526164.15 | 40.71247683    | 0.763071 | 0.75864825    | 1.75221E-06   |
| Subset 7       | 7               | 543402.97 | 52.07043972    | 0.755308 | 0.75140372    | 2.23341E-08   |
| Subset 6       | 6               | 577407.54 | 76.41979667    | 0.739996 | 0.736547962   | 2.27957E-12   |
| Subset 5       | 5               | 617365.94 | 105.3826434    | 0.722003 | 0.719061453   | 7.35628E-17   |
| Subset 4       | 4               | 700714.43 | 167.9674629    | 0.684472 | 0.68197423    | 6.31806E-26   |
| Subset 3       | 3               | 928232.97 | 342.2663383    | 0.582021 | 0.579821471   | 4.28717E-47   |
| Subset 2       | 2               | 1225068.3 | 570.2771957    | 0.448358 | 0.446910022   | 3.24941E-68   |
| Subset 1       | 1               | 1682579.8 | 922.7923461    | 0.242343 | 0.242342753   | 1.30673E-92   |

From the above table we have to choose the best subset and further run regression on that subset to get the summary of that model. Here we select subset 14 as it has high Adjusted  $R^2$  value and also the Mallow's Cp value is 1+ predictor value( 14+1=15). By looking at the regression summaries of both the models we can say that, they have very slight differences in their values and both of them are considered to be good. The model with high Adjusted  $R^2$  value and low Std. Error is considered to be the better among the models. By looking at the values we can say that Exhaustive search regression model is slightly better than stepwise as they have higher  $R^2$  values.

### Regression Summary

| Metric -    | Value -     |
|-------------|-------------|
| Residual DF | 369         |
| R2          | 0.785567445 |
| Adjusted R2 | 0.778012911 |
| Std. Error  | 35.92391229 |
| RSS         | 476204.638  |



| Coefficients |              |                              |                            |                |               |             |
|--------------|--------------|------------------------------|----------------------------|----------------|---------------|-------------|
| Predictor *  | Estimate *   | Confidence Interval: Lover 💌 | Confidence Interval: Upper | Standard Error | T-Statistic * | P-Value *   |
| Intercept    | 0            | 0                            | 0                          | 0              | N/A           | N/A         |
| COUPON       | 10.24575172  | -21.54811806                 | 42.03962149                | 16.1684543     | 0.633687768   | 0.526677195 |
| NEW          | -1.75953839  | -6.356993349                 | 2.837916569                | 2.33798971     | -0.752586028  | 0.452178542 |
| HI           | 0.009122908  | 0.006570801                  | 0.011675014                | 0.001297848    | 7.029257093   | 1.01014E-11 |
| S_INCOME     | 0.001254741  | -4.88504E-05                 | 0.002558332                | 0.000662928    | 1.892724869   | 0.059176837 |
| E_INCOME     | 0.001846147  | 0.00089259                   | 0.002799704                | 0.000484922    | 3.807101403   | 0.000164596 |
| S_POP        | 4.41605E-06  | 2.77757E-06                  | 6.05453E-06                | 8.33233E-07    | 5.299897973   | 1.99832E-07 |
| E_POP        | 4.31136E-06  | 2.37782E-06                  | 6.2449E-06                 | 9.83282E-07    | 4.384666615   | 1.51709E-05 |
| DISTANCE     | 0.074125826  | 0.065057053                  | 0.083194599                | 0.004611834    | 16.07296164   | 1.93279E-44 |
| PAX          | -0.000893952 | -0.001281595                 | -0.00050631                | 0.000197132    | -4.534799904  | 7.80584E-06 |
| VACATION_Ye  | -33.74914644 | -43.11228096                 | -24.38601192               | 4.761528358    | -7.087881014  | 6.96628E-12 |
| SV_No        | -23.21350588 | -92.85910078                 | 46.43208901                | 35.4175703     | -0.655423443  | 0.512603565 |
| SV_Yes       | -58.32119611 | -125.2494242                 | 8.607032006                | 34.03568062    | -1.713531066  | 0.087454746 |
| SLOT_Free    | -17.45963666 | -27.33574137                 | -7.583531945               | 5.022394215    | -3.476357273  | 0.000568827 |
| GATE_Free    | -17.39758297 | -27.89963716                 | -6.895528783               | 5.340714557    | -3.257538441  | 0.001228019 |

The above pictures can be referred from sheets ending with 'EXSS'.

The regression equation is

Fare=10.24575172\*COUPON+1.75953839\*NEW+0.009122908\*HI+0.001254741\*S\_INCOME+0.0018 46147\*E\_INCOME+4.41605E-06\*S\_POP+3.31136E-06\*E\_POP+0.074125826\*DISTANCE-0.000893952\*PAX-33.74914644\*VACATION\_Yes-23.21350588\*SW\_No-58.32119611\*SW\_Yes-17.45963666\*SLOT\_Free - 17.39758297\*GATE\_Free

v. Compare the predictive accuracy of both models (iii) and (iv) using measures such as RMSE and average error and lift charts.

Exhaustive Stepwise

### **Training: Prediction Summary**

| Metric - | Value -  |
|----------|----------|
| SSE      | 476204.6 |
| MSE      | 1243.354 |
| RMSE     | 35.26123 |
| MAD      | 27.59104 |
| R2       | 0.785567 |

# **Training: Prediction Summary**

| Metric ' | Value -  |
|----------|----------|
| SSE      | 481466.5 |
| MSE      | 1257.093 |
| RMSE     | 35.4555  |
| MAD      | 27.75791 |
| R2       | 0.783198 |

# **Validation: Prediction Summary**

| Metric - | Value -  |
|----------|----------|
| SSE      | 320573.7 |
| MSE      | 1257.152 |
| RMSE     | 35.45633 |
| MAD      | 27.79736 |
| R2       | 0.780519 |

### Validation: Prediction Summary

| Metric | ▼ Value ▼ |
|--------|-----------|
| SSE    | 323795.2  |
| MSE    | 1269.785  |
| RMSE   | 35.63405  |
| MAD    | 27.78419  |
| R2     | 0.778314  |



After comparing both the models stepwise and exhaustive across RMSE, average error and lift charts we can say that there is no significant difference between the values of the given measures. We can say that Exhaustive models have slightly better values when compared to stepwise when we see at the RMSE value. Also from regression summary, the values are almost same when we see at the standard error values. The lift charts also do not have any significant difference in their values. So it is difficult to find the best among the models.

vi. Using model (iv), predict the average fare on a route with the following characteristics: COUPON = 1.202, NEW = 3, VACATION = No, SW = No, HI = 4442.141, S INCOME = \$ 28,760, E INCOME = \$ 27,664, S POP = 4,557,004, E POP = 3,195,503, SLOT = Free, GATE = Free, PAX = 12,782, DISTANCE = 1976 miles.

Equation after substituting the given values -

 $\begin{aligned} &\text{Fare} = 10.24575172*1.202 - 1.75953839*3 + 0.009122908*4442.141 + 0.001254741*28760 + \\ &0.001846147*27664 + 4.41605*0.000001*4557004 + 3.31136*0.000001*3195503 + \\ &0.000893952*12782 - 33.74914644*0 - 23.21350588*1 - 58.32119611*0 - 17.45963666*1 - 17.39758297*1 = \\ &242.40 \end{aligned}$ 

vii. Using model (iv), predict the reduction in average fare on the route in (vi) if Southwest decides to cover this route.

Equation after substituting the given values -

 $\begin{aligned} &\text{Fare} = 10.24575172*1.202 - 1.75953839*3 + 0.009122908*4442.141 + 0.001254741*28760 + \\ &0.001846147*27664 + 4.41605*0.000001*4557004 + 3.31136*0.000001*3195503 + \\ &0.000893952*12782 - 33.74914644*0 - 23.21350588*0 - 58.32119611*1 - 17.45963666*1 - 17.39758297*1 = \\ &207.29 \end{aligned}$ 

viii. In reality, which of the factors will not be available for predicting the average fare from a new airport (i.e., before flights start operating on those routes)? Which ones can be estimated? How?

Southwest airlines have nominal effect on the average fare of flights as there used to be a regulation fee for the new flights. Also, Southwest airlines are starting service on new routes, so it Southwest Airlines shouldn't be included in the dataset. Moreover we are not aware of SW airlines future price. so, it won't be available.

Factors that can be estimated –

 ${
m HI}$  – Herfindal index can be estimated from the historical data. It is the measure of market concentration. Which fluctuates

Other factors -

We can get the POP and Income from the census bureau after the routes are selected. Vacation and distance will be know after we know the route Slot and gate will the airport's designing.

PAX – we can estimate this from the population of the city

ix. Select a model that includes only factors that are available before flights begin to operate on the new route. Use an exhaustive search to find such a model.



We remove the column SW from the Data and perform exhaustive search and get the results as shown above. Now we have to choose the best subset and do the regression again to get the best fit model. We can see that subset 13 has better adj  $R^2$  and Mallow's Cp value(13) which are better than any other subset. We choose and subset and do the regression again to get the following results. The above pictures can be referred from sheets 'BNEX'.

#### **Regression Summary**



#### **Predictor Screening**



### Coefficients

Tolerance for en



The regression model formed after removing the factors before flights begin to operate on new airports is:

FARE=22.44003269\*COUPON-

2.116371823\*New+0.010648161\*HI+0.002800674\*S\_INCOME+0.002488071\*E\_INCOME+4.56963E-06\*S\_POP+5.41197E-06\*E\_POP+0.076491667\*DISTANCE-0.001007935\*PAX-110.8629158\*VACATION\_No-138.7123701\*VACATION\_Yes-22.98601604\*SLOT\_Free -25.55872353\*GATE\_Free

Using the exhaustive search similar to (iv) we get the above equation.

The above pictures can be referred from the sheets 'BNEXSS'.

x. Use the model in (ix) to predict the average fare on a route with characteristics COUPON = 1.202, NEW = 3, VACATION = No, SW = No, HI = 4442.141, S INCOME = \$28,760, E INCOME = \$27,664, S POP = 4,557,004, E POP = 3,195,503, SLOT = Free, GATE = Free, PAX = 12,782, DISTANCE = 1976 miles.

Equation after substituting the values

Fare=22.44003269\*1.202-

2.116371823\*3+0.010648161\*4442.141+0.002800674\*28760+0.002488071\*27664+4.56963\*0.000001\*4557004+5.41197\*0.000001\*3195503+0.076491667\*1976-0.001007935\*12782-110.8629158\*1-138.7123701\*0-22.98601604\*1-25.55872353\*1 = 234.27

xi. Compare the predictive accuracy of this model with the model (iv). Is this model good enough, or is it worthwhile re-evaluating the model once flights begin on the new route?

### Important

Exhaustive (before new flight)

Exhaustive (new flights)

## **Training: Prediction Summary**

| Metric - | Value -  |
|----------|----------|
| SSE      | 542384.2 |
| MSE      | 1416.147 |
| RMSE     | 37.63173 |
| MAD      | 29.92301 |
| R2       | 0.755767 |

## **Training: Prediction Summary**

| Metric | Value -  |
|--------|----------|
| SSE    | 476204.6 |
| MSE    | 1243.354 |
| RMSE   | 35.26123 |
| MAD    | 27.59104 |
| R2     | 0.785567 |

# **Validation: Prediction Summary**

| Metric ' | Value -  |
|----------|----------|
| SSE      | 402329.5 |
| MSE      | 1577.763 |
| RMSE     | 39.72106 |
| MAD      | 31.60865 |
| R2       | 0.724545 |

## Validation: Prediction Summary

| Metric - | Value -  |
|----------|----------|
| SSE      | 320573.7 |
| MSE      | 1257.152 |
| RMSE     | 35.45633 |
| MAD      | 27.79736 |
| R2       | 0.780519 |





If we check the predictive accuracy of the models (iv) and (ix) we can say that model (iv) is more accurate as it has less RMSE value when compared to (ix) and also has higher  $R^2$  values when compared to the other model. We need to re-evaluate the model once flights begin on the new route.