Introduction to Mobile Robotics

Welcome

Today

- This course
- Robotics in the past and today

Organization

- Tue 9:00 12:00
 Lecture
- Thu 12:00 14:00
 Q&A, homework, practical exercises (Python)
- Course web page: https://www.moodle.tum.de/course/view.php?id=84624
- Exam: Oral or written

People

Teaching:

Wolfram Burgard

Teaching assistants:

- Reihaneh Mirjalili
- Michael Krawez

Goal of this Course

 Provide an overview of problems and approaches in mobile robotics

Probabilistic reasoning: Dealing with noisy data

Hands-on experience

Content of this Course

- 1. Linear Algebra
- 2. Wheeled Locomotion
- 3. Sensors
- 4. Probabilities and Bayes
- 5. Probabilistic Motion Models
- 6. Probabilistic Sensor Models
- 7. Mapping with Known Poses
- 8. The Kalman Filter
- 9. The Extended Kalman Filter
- 10. Discrete Filters
- 11. The Particle Filter, MCL

- 12. SLAM: Simultaneous Localization and Mapping
- 13. SLAM: Landmark-based FastSLAM
- 14. SLAM: Grid-based FastSLAM
- 15. SLAM: Graph-based SLAM
- 16. Techniques for 3D Mapping
- 17. Iterative Closest Points Algorithm
- 18. Path Planning and Collision Avoidance
- 19. Multi-Robot Exploration
- 20. Information-Driven Exploration
- 21. Summary

Relevant other Courses

- Computer Vision II: Multi-View Geometry (IN2228) Computer Vision
- Robotics (IN2067)
- Robot Motion Planning (IN2138)
- Motion Planning for Autonomous Vehicles (IN2106, IN0012, IN4221)
- Mobile Robotics (IN2404)
- and many others.

Reference Book

Thrun, Burgard, and Fox: "Probabilistic Robotics"

Opportunities

- Projects
- Practical courses
- Seminars
- Theses

... your future!

Autonomous Robot Systems

- perceive their environment and
- generate actions to achieve their goals.

Tasks that Need to be Solved by Robots

- Navigation
- Perception
- Learning
- Cooperation
- Acting
- Interaction
- Manipulation
- Grasping
- Planning
- Reasoning
- ...

Robotics Yesterday

- Highly repeatable tasks
- Robots bolted to the ground, often caged
- Limited to no perception
- Very little "AI"

Picture: Bachmann, Kuka Roboter GmbH

Current Trends in Robotics

Robots are (partly) moving away from factory floors...

- Entertainment, toys
- Personal services
- Medical, surgery
- Industrial automation
- Hazardous environments (mining, harvesting, space, underwater)
- Self-driving cars
- Robot learning
- ...

Shakey the Robot (1966)

Shakey the Robot (1966)

The Helpmate System

Autonomous Vacuum Cleaners

Autonomous Lawn Mowers

Walking Robots

[Courtesy by Boston Dynamics]

Driving in the Waymo Car

Major Components of the Software-Stack of a Self-Driving Car

Thank you

... and enjoy the course!