CSC355 PS3

Alex Zhang

March 2024

Problem 1

Let $g(x) = \sum_{k=0}^{n} L_k(x)$. If we plug in all points from x_0, \ldots, x_n into g(x), we will get $g(x_k) = 1, \forall k = 0, \ldots, n$. Because $L_k(x_k)$, as a lagrange basis, will be 1 and be 0 for other k. We also know that because each $L_k(x)$ is a n-degree polynomial, their summation will be a polynomial with at most n degree, which is g(x).

Instead of representing g(x) in lagrange basis, we can try to represent g(x) into monomial basis which is

$$g(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

We also have total n+1 function values at $g(x_k)$ for k = 0, ..., n. And we can create its Vandermonde matrix and a linear system.

$$\begin{bmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

Since this Vandermonde matrix is a square matrix, it has an unique solution. Through observation, we can see the solution is when $a_0 = 1$, and everything else to be 0. This means our g(x) = 1. So $\sum_{k=0}^{n} L_k(x) = 1$.

Problem 2

(a)

Coefficients for Newton basis with the given point are,

$$\begin{bmatrix} 0.0379 & 0.0856 & 0.1632 & 0.34133 & 0.029562 & -1.0447 & 1.9711 & -2.5477 & 2.5997 \end{bmatrix}$$

(b)

The evaluation values at these points are,

$$\begin{bmatrix} 0.043428 & 0.35741 & 0.47629 & 0.5 & 0.46928 & 0.34266 & 0.039373 \end{bmatrix}$$

(c)

The function values using polyfit and polyval is,

$$\begin{bmatrix} 0.043428 & 0.35741 & 0.47629 & 0.5 & 0.46928 & 0.34266 & 0.039373 \end{bmatrix}$$

The relative error between function value from polyval and my newton's evaluation method is around 1e - 14 for $x = \pm 1$. The error becomes smaller to 1e - 16 as we approaching to the middle point.

Problem 3

Based on the problem, we will have three cubic spline polynomials.

$$S_0(x) = a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3$$

$$S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3$$

$$S_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2 + d_2(x - x_2)^3$$

There will be 12 equations for constraints and they are,

$$S_{0}(x_{0}) = f(x_{0})$$

$$S_{0}(x_{1}) = f(x_{1})$$

$$S_{1}(x_{1}) = f(x_{1})$$

$$S_{1}(x_{2}) = f(x_{2})$$

$$S_{2}(x_{2}) = f(x_{2})$$

$$S_{2}(x_{3}) = f(x_{3})$$

$$S'_{0}(x_{1}) = S'_{1}(x_{1})$$

$$S''_{1}(x_{2}) = S''_{2}(x_{2})$$

$$S''_{2}(x_{3}) = 0$$

$$(11)$$

Substitute all with $x_1 = x_0 + h$, $x_2 = x_0 + 2h$, $x_3 = x_0 + 3h$, and cubic polynomials.

$$a_{0} = f(x_{0})$$

$$a_{0} + b_{0}h + c_{0}h^{2} + d_{0}h^{3} = f(x_{1})$$

$$a_{1} = f(x_{1})$$

$$a_{1} + b_{1}h + c_{1}h^{2} + d_{1}h^{3} = f(x_{2})$$

$$a_{2} = f(x_{2})$$

$$a_{2} + b_{2}h + c_{2}h^{2} + d_{2}h^{3} = f(x_{3})$$

$$b_{0} + 2c_{0}h + 3d_{0}h^{2} = b_{1}$$

$$b_{1} + 2c_{1}h + 3d_{1}h^{2} = b_{2}$$

$$2c_{0} + 6d_{0}h = 2c_{1}$$

$$2c_{1} + 6d_{1}h = 2c_{2}$$

$$2c_{0} = 0$$

$$(11)$$

(12)

 $2c_2 + 6d_2h = 0$

With simplification,

$$a_{0} = f(x_{0})$$

$$a_{1} = f(x_{1})$$

$$a_{2} = f(x_{2})$$

$$b_{1} = b_{0} + 3d_{0}h^{3}$$

$$(1)$$

$$b_{2} = b_{1} + 6d_{0}h^{3} + 3d_{1}h^{3}$$

$$(2)$$

$$c_{0} = 0$$

$$c_{1} = 3d_{0}h$$

$$c_{2} = 3d_{0}h + 3d_{1}h$$

$$d_{0}h + d_{1}h + d_{2}h = 0$$

$$b_{0}h + d_{0}h^{3} = f(x_{1}) - f(x_{0})$$

$$(4)$$

$$b_{1}h + 3d_{0}h^{3} + d_{1}h^{3} = f(x_{2}) - f(x_{1})$$

$$(5)$$

$$b_{2}h + 3d_{0}h^{3} + 3d_{1}h^{3} + d_{2}h^{3} = f(x_{3}) - f(x_{2})$$

$$(6)$$

The 12 equations above will become the linear system for this cubic spline

Problem 4

MATLAB's Spline Approximation

The result plot from -1 to 1 is,

The coefficients of the polynomial for n=7 is, (left most is the coefficient for $(x-x_i)^3$)

$$\begin{bmatrix} 1.5973 & -1.1383 & 0.32581 & 0.037925\\ 1.5973 & 0.45903 & 0.099386 & 0.079211\\ -7.1174 & 2.0564 & 0.93785 & 0.2225\\ 7.4753 & -5.061 & -0.063694 & 0.5\\ -2.0279 & 2.4143 & -0.94594 & 0.1933\\ -2.0279 & 0.38636 & -0.01239 & 0.07113 \end{bmatrix}$$

Single Polynomial

the coefficients of polynomial of all cases are, (left most is the highest degree). For 7 points,

$$\begin{bmatrix} -4.6497 & -0.1183 & 7.6023 & 0.1790 & -3.4162 & -0.0622 & 0.5000 \end{bmatrix}$$

For 9 points,

$$\begin{bmatrix} 15.4153 & 0.6104 & -30.1368 & -1.1445 & 18.8478 & 0.6474 & -4.5900 & -0.1148 & 0.5000 \end{bmatrix}$$

For 11 points,

$$\begin{bmatrix} -50.8766 & -2.7658 & 116.0274 & 6.1430 & -92.6163 & -4.6473 & 32.3396 & 1.4295 & -5.3378 & -0.1610 \\ 0.5000 & & & & & & & & & & & & \end{bmatrix}$$

For 13 points,

For 15 points,

$$\begin{bmatrix} -546.6420 & -46.6521 & 1606.5310 & 135.2212 & -1830.1796 & -150.5143 & 1039.7656 & 82.0073 & -319.4911 & -23.1852 \\ 55.5576 & 3.3391 & -6.0050 & -0.2176 & 0.5000 \end{bmatrix}$$

Cubic Spline

The coefficients for different polynomials are represented in matrix form, which each row means coefficients for a certain interval. They all follows $f(x) = a(x - x_i)^3 + b(x - x_i)^2 + c(x - x_i) + d$ expression. For 7 points,

$$\begin{bmatrix} 1.5973 & -1.1383 & 0.32581 & 0.037925 \\ 1.5973 & 0.45903 & 0.099386 & 0.079211 \\ -7.1174 & 2.0564 & 0.93785 & 0.2225 \\ 7.4753 & -5.061 & -0.063694 & 0.5 \\ -2.0279 & 2.4143 & -0.94594 & 0.1933 \\ -2.0279 & 0.38636 & -0.01239 & 0.07113 \end{bmatrix}$$

For 9 points,

$$\begin{bmatrix} 0.68011 & -0.21836 & 0.11787 & 0.037925 \\ 0.68011 & 0.29172 & 0.13621 & 0.064371 \\ 1.2475 & 0.8018 & 0.40959 & 0.12728 \\ -10.814 & 1.7374 & 1.0444 & 0.29928 \\ 11.964 & -6.3732 & -0.11456 & 0.5 \\ -2.9205 & 2.6 & -1.0579 & 0.25997 \\ -0.21786 & 0.40963 & -0.30546 & 0.11238 \\ -0.21786 & 0.24623 & -0.14149 & 0.058209 \\ \end{bmatrix}$$

For 11 points,				
Tof II points,	「 0.26668	0.066301	0.072992	0.037925
	0.26668	0.22631	0.13151	0.057309
	1.9124	0.38632	0.25404	0.094797
	-1.3183	1.5337	0.63805	0.17636
	-12.894	0.74274	1.0933	0.35477
	15.189	-6.9934	-0.15678	0.5
	-1.8644	2.1203	-1.1314	0.31042
	-1.0143	1.0016	-0.50702	0.15404
	-0.33462	0.39302	-0.22809	0.084587
	-0.33462	0.19225	-0.11103	0.052014
For 13 points,	L			_
Tor 15 points,	0.36753	0.009349	0.079905	0.037925
	0.36753	0.19311	0.11365	0.053204
	0.61092	0.37688	0.20865	0.079211
	2.6071	0.68234	0.38518	0.12728
	-4.8436	1.9859	0.82989	0.2225
	-13.568	-0.43592	1.0882	0.39356
	17.191	-7.2202	-0.1878	0.5
	0.21864	1.3755	-1.1619	0.34773
	-1.7209	1.4848	-0.68519	0.1933
	-0.64355	0.62437	-0.33366	0.11238
	-0.27561	0.3026	-0.17917	0.07113
	-0.27561	0.16479	-0.10127	0.048398
For 15 points,	_			_
ror 15 points,	0.26209	0.060999	0.074146	0.037925
	0.26209	0.17332	0.10762	0.050526
	0.69417	0.28565	0.17319	0.070202
	1.0302	0.58315	0.2973	0.1028
	2.5123	1.0247	0.52699	0.16017
	-8.5664	2.1014	0.97357	0.26369
	-13.23	-1.57	1.0495	0.42068
	18.187	-7.2398	-0.20905	0.5
	2.8546	0.55463	-1.1641	0.37541
	-2.0699	1.778	-0.83084	0.22875
	-0.96593	0.89094	-0.44956	0.14031
	-0.54388	0.47697	-0.25414	0.091457
	1 0.01000	0.2.007	0.20111	0.002101

-0.22287

-0.22287

0.24388

0.14837

-0.15116

 $-0.095128 \quad 0.046033$

0.0633

The 10 approximations to the integral are,

>> integral_approx
Single interpolating polynomial:

Points	Integral value
7	0.434959
9	0.294270
11	0.449111
13	0.256646
15	0.508593

Piecewise cubic polynomial:

Points	Integral value	
7	0.374510	
9	0.365390	
11	0.364625	
13	0.364522	
15	0.364483	

I wil trust the last value from cubic spline. Because I used MATLAB integral function to also compute function's integral. It seems that 0.36448 is really close to the value I got from MATLAB integral.

I believe about 4 decimal digits are correct. First is I try to test my integral value with more points. It seems that the value will converge to 0.364471, so the first 4 digits are correct.

Second idea is I tried to represent each cubic spline polynomials into lagrange basis. Then I can get an error for each cubic polynomial which is $\frac{f^{(4)}(c(x))}{24}(x-x_i)^4$. Because we are taking the integral, the error should be bounded by

$$\frac{\max f^{(4)}(c(x))}{24 \cdot 5} (x - x_i)^5 \Big|_{x_i}^{x_{i+1}}$$

Because the lower bound is x_i , the evaluation will be 0, which means our integral value will be

$$\frac{\max f^{(4)}(c(x))}{120}h^5$$

where h is the space between each point (we have equispaced points so h will be the same). Evaluating fourth derivative through MATLAB syms, we get the final error to be 0.00098172. I guess this suggest we should be confident with 3 decimal points but consider this is an approximation, 4 decimal digits may work