Alignment

• In a parallel text (or when we translate), we align words in one language with the words in the other

• Word positions are numbered 1-4

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Alignment Function

- Formalizing alignment with an alignment function
- Mapping an English target word at position i to a German source word at position j with a function $a:i\to j$
- Example

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4\}$$

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Reordering

Words may be reordered during translation

 $a: \{1 \to 3, 2 \to 4, 3 \to 2, 4 \to 1\}$

One-to-Many Translation

A source word may translate into multiple target words

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4, 5 \to 4\}$$

Dropping Words

Words may be dropped when translated (German article das is dropped)

$$a: \{1 \to 2, 2 \to 3, 3 \to 4\}$$

Inserting Words

- Words may be added during translation
- The English just does not have an equivalent in German
- We still need to map it to something: special NULL token

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 0, 5 \to 4\}$$

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

IBM Model 1

- Generative model: break up translation process into smaller steps
- IBM Model 1 only uses lexical translation
- Translation probability
- for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_f})$ of length l_f
- to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
- with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a:j\to i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

– parameter ϵ is a normalization constant

Example

e	t(e f)
the	0.7
that	0.15
which	0.075
who	0.05

0.025

das

Haus	;
e	t(e f)
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

is	st
e	t(e f)
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

kle	klein					
e	t(e f)					
small	0.4					
little	0.4					
short	0.1					
minor	0.06					
petty	0.04					

$$\begin{split} p(e,a|f) &= \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \\ &= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\ &= 0.0028\epsilon \end{split}$$

this

EM Algorithm

em algorithm

• Incomplete data

- if we had complete data, would could estimate model
- if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
- 1. initialize model parameters (e.g. uniform)
- 2. assign probabilities to the missing data
- 3. estimate model parameters from completed data
- 4. iterate steps 2–3 until convergence

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

EM Algorithm

... la maison ... la maison blue ... la fleur ...

- After one iteration
- Alignments, e.g., between la and the are more likely

EM Algorithm

EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• After another iteration

Philipp Koehn

• It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

- Convergence
- Inherent hidden structure revealed by EM

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

EM Algorithm

• Parameter estimation from the aligned corpus

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
- parts of the model are hidden (here: alignments)
- using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
- take assign values as fact
- collect counts (weighted by probabilities)
- estimate model from counts
- Iterate these steps until convergence

IBM Model 1 and EM

- We need to be able to compute:
- Expectation-Step: probability of alignments
- Maximization-Step: count collection

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Probabilities

$$p(\mathsf{the}|\mathsf{la}) = 0.7$$
 $p(\mathsf{house}|\mathsf{la}) = 0.05$ $p(\mathsf{the}|\mathsf{maison}) = 0.1$ $p(\mathsf{house}|\mathsf{maison}) = 0.8$

Alignments

la
$$\bullet \bullet$$
 the maisor house maisor house maisor house maisor house maisor house p(e, a|f) = 0.56 p(e, a|f) = 0.035 p(e, a|f) = 0.08 p(e, a|f) = 0.005 p(a|e, f) = 0.824 p(a|e, f) = 0.052 p(a|e, f) = 0.118 p(a|e, f) = 0.007

IBM Model 1 and EM

c(the|la) = 0.824 + 0.052c(house|la) = 0.052 + 0.007Counts c(the|maison) = 0.118 + 0.007 c(house|maison) = 0.824 + 0.118

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

IBM Model 1 and EM: Expectation Step

- We need to compute $p(a|\mathbf{e},\mathbf{f})$
- Applying the chain rule:

$$p(a|\mathbf{e}, \mathbf{f}) = \frac{p(\mathbf{e}, a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$$

• We already have the formula for $p(\mathbf{e}, \mathbf{a}|\mathbf{f})$ (definition of Model 1)

IBM Model 1 and EM: Expectation Step

• We need to compute $p(\mathbf{e}|\mathbf{f})$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

IBM Model 1 and EM: Expectation Step

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

$$= \frac{\epsilon}{(l_f + 1)^{l_e}} \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

$$= \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j | f_i)$$

- Note the trick in the last line
- removes the need for an exponential number of products
- → this makes IBM Model 1 estimation tractable

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

Machine Translation: IBM Model 1 and the EM Algorithm

IBM Model 1 and EM: Expectation Step

• Combine what we have:

$$\begin{split} p(\mathbf{a}|\mathbf{e},\mathbf{f}) &= p(\mathbf{e},\mathbf{a}|\mathbf{f})/p(\mathbf{e}|\mathbf{f}) \\ &= \frac{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})}{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)} \\ &= \prod_{j=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j|f_i)} \end{split}$$

The Trick

(case
$$l_e = l_f = 2$$
)

$$\begin{split} \sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} & \frac{\epsilon}{3^{2}} \prod_{j=1}^{2} t(e_{j}|f_{a(j)}) = \\ & = t(e_{1}|f_{0}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{2}) + \\ & + t(e_{1}|f_{1}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{2}) + \\ & + t(e_{1}|f_{2}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{2}) = \\ & = t(e_{1}|f_{0}) \ (t(e_{2}|f_{0}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ & + t(e_{1}|f_{2}) \ (t(e_{2}|f_{1}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) = \\ & = (t(e_{1}|f_{0}) + t(e_{1}|f_{1}) + t(e_{1}|f_{2})) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ & + t(e_{1}|f_{0}) + t(e_{1}|f_{1}) + t(e_{1}|f_{2}) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) \end{split}$$

Philipp Koehn

IBM Model 1 and EM: Maximization Step 30

- Now we have to collect counts
- Evidence from a sentence pair **e**,**f** that word *e* is a translation of word *f*:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{i=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

• With the same simplication as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{i=0}^{l_f} t(e|f_i)} \sum_{j=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

IBM Model 1 and EM: Maximization Step 31

After collecting these counts over a corpus, we can estimate the model:

$$t(e|f;\mathbf{e},\mathbf{f}) = \frac{\sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}{\sum_{e} \sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}$$

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

IBM Model 1 and EM: Pseudocode


```
Input: set of sentence pairs (e, f)
                                                             // collect counts
                                                   14:
Output: translation prob. t(e|f)
                                                             for all words e in \mathbf{e} do
                                                   15:
 1: initialize t(e|f) uniformly
                                                                for all words f in f do
                                                   16:
                                                                  \operatorname{count}(e|f) += \frac{t(e|f)}{\operatorname{s-total}(e)}
 2: while not converged do
                                                   17:
        // initialize
 3:
       count(e|f) = 0 for all e, f
                                                                end for
                                                   19:
       total(f) = 0 for all f
                                                             end for
                                                   20:
       for all sentence pairs (e,f) do
                                                          end for
                                                   21:
          // compute normalization
                                                          // estimate probabilities
                                                   22:
          for all words e in \bf e do
 8:
                                                          for all foreign words f do
                                                   23:
 9:
            s-total(e) = 0
                                                             for all English words e do
                                                   24:
             for all words f in f do
10:
                                                               t(e|f) = \frac{\operatorname{count}(e|f)}{\operatorname{total}(f)}
                                                   25:
               s-total(e) += t(e|f)
11:
                                                             end for
             end for
12:
                                                          end for
          end for
13:
                                                   28: end while
```

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Convergence

e	f	initial	1st it.	2nd it.	3rd it.		final
	J					•••	miai
the	das	0.25	0.5	0.6364	0.7479		1
book	das	0.25	0.25	0.1818	0.1208		0
house	das	0.25	0.25	0.1818	0.1313		0
the	buch	0.25	0.25	0.1818	0.1208		0
book	buch	0.25	0.5	0.6364	0.7479		1
a	buch	0.25	0.25	0.1818	0.1313		0
book	ein	0.25	0.5	0.4286	0.3466		0
a	ein	0.25	0.5	0.5714	0.6534		1
the	haus	0.25	0.5	0.4286	0.3466		0
house	haus	0.25	0.5	0.5714	0.6534		1

Perplexity

- How well does the model fit the data?
- Perplexity: derived from probability of the training data according to the model

$$\log_2 PP = -\sum_s \log_2 p(\mathbf{e}_s|\mathbf{f}_s)$$

• Example (ϵ =1)

	initial	1st it.	2nd it.	3rd it.	 final
p(the haus das haus)	0.0625	0.1875	0.1905	0.1913	 0.1875
p(the book das buch)	0.0625	0.1406	0.1790	0.2075	 0.25
p(a book ein buch)	0.0625	0.1875	0.1907	0.1913	 0.1875
perplexity	4095	202.3	153.6	131.6	 113.8

Higher IBM Models

36	(4)	Þ

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has global maximum
- training of a higher IBM model builds on previous model
- Computaionally biggest change in Model 3
- trick to simplify estimation does not work anymore
- ightarrow exhaustive count collection becomes computationally too expensive
- sampling over high probability alignments is used instead

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

word alignment

13 September 2018

Word Alignment

Given a sentence pair, which words correspond to each other?

Word Alignment?

Is the English word does aligned to the German wohnt (verb) or nicht (negation) or neither?

Word Alignment?

john kicked the bucket

How do the idioms kicked the bucket and biss ins grass match up? Outside this exceptional context, bucket is never a good translation for grass

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Measuring Word Alignment Quality

- Manually align corpus with sure (S) and possible (P) alignment points ($S \subseteq P$)
- Common metric for evaluation word alignments: Alignment Error Rate (AER)

$$AER(S, P; A) = 1 - \frac{|A \cap S| + |A \cap P|}{|A| + |S|}$$

- AER = 0: alignment A matches all sure, any possible alignment points
- However: different applications require different precision/recall trade-offs

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

41

Word Alignment with IBM Models

- IBM Models create a **many-to-one** mapping
 - words are aligned using an alignment function
 - a function may return the same value for different input (one-to-many mapping)
 - a function can not return multiple values for one input (no many-to-one mapping)
 - Real word alignments have **many-to-many** mappings

symmetrization

Symmetrization

- Run IBM Model training in both directions
- → two sets of word alignment points
- Intersection: high precision alignment points
- Union: high recall alignment points
- Refinement methods explore the sets between intersection and union

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Growing Heuristics

black: intersection

grey: additional points in union

- Add alignment points from union based on heuristics:
- directly/diagonally neighboring points
- finally, add alignments that connect unaligned words in source and/or target
- Popular method: grow-diag-final-and

Example

Philipp Koehn

Machine Translation: IBM Model 1 and the EM Algorithm

13 September 2018

Phrase-Based Models

Philipp Koehn

18 September 2018

Phrase-Based Model

- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

Philipp Koehn

Machine Translation: Phrase-Based Models

18 September 2018

18 September 2018

Scoring Phrase Translations

- Phrase pair extraction: collect all phrase pairs from the data
- Phrase pair scoring: assign probabilities to phrase translations
- Score by relative frequency:

$$\phi(\bar{f}|\bar{e}) = \frac{\operatorname{count}(\bar{e}, \bar{f})}{\sum_{\bar{f}_i} \operatorname{count}(\bar{e}, \bar{f}_i)}$$

Phrase Translation Table

- Main knowledge source: table with phrase translations and their probabilities
- Example: phrase translations for natuerlich

Translation	Probability $\phi(\bar{e} f)$
of course	0.5
naturally	0.3
of course,	0.15
, of course ,	0.05

Philipp Koehn

Machine Translation: Phrase-Based Models

16 September 201

Real Example

• Phrase translations for den Vorschlag learned from the Europarl corpus:

English	$\phi(ar{e} ar{f})$	English	$\phi(ar{e} ar{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

- lexical variation (proposal vs suggestions)
- morphological variation (proposal vs proposals)
- included function words (the, a, ...)
- noise (it)

Extracting Phrase Pairs

extract phrase pair consistent with word alignment:

assumes that / geht davon aus , dass

Philipp Koehn Machine Translation: Phrase-Based Models 18 September 2018

Phrase Pair Extraction

Smallest phrase pairs:

michael — michael
assumes — geht davon aus / geht davon aus ,
that — dass / , dass
he — er
will stay — bleibt
in the — im
house — haus

unaligned words (here: German comma) lead to multiple translations

Consistent

All words of the phrase pair have to align to each other.

Machine Translation: Phrase-Based Models

Larger Phrase Pairs

michael assumes — michael geht davon aus / michael geht davon aus , assumes that — geht davon aus , dass ; assumes that he — geht davon aus , dass er that he — dass er /, dass er ; in the house — im haus michael assumes that — michael geht davon aus , dass michael assumes that he — michael geht davon aus , dass er michael assumes that he will stay in the house — michael geht davon aus , dass er im haus bleibt that he will stay in the house — geht davon aus , dass er im haus bleibt that he will stay in the house — dass er im haus bleibt; dass er im haus bleibt ; will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt

Philipp Koehn

More Feature Functions

- Bidirectional alignment probabilities: $\phi(\bar{e}|\bar{f})$ and $\phi(\bar{f}|\bar{e})$
- Rare phrase pairs have unreliable phrase translation probability estimates
 - \rightarrow lexical weighting with word translation probabilities

$$\operatorname{lex}(\bar{e}|\bar{f},a) = \prod_{i=1}^{\operatorname{length}(\bar{e})} \frac{1}{|\{j|(i,j) \in a\}|} \sum_{\forall (i,j) \in a} w(e_i|f_j)$$

Philipp Koehn

Machine Translation: Phrase-Based Models

18 September 2018

Philipp Koehn

Machine Translation: Phrase-Based Models

18 September 2018

Decoding

Philipp Koehn

20 September 2018

Distance-Based Reordering

phrase	translates	movement	distance
1	1–3	start at beginning	0
2	6	skip over 4–5	+2
3	4–5	move back over 4-6	-3
4	7	skip over 6	+1

Scoring function: $d(x) = \alpha^{|x|}$ — exponential with distance

Translation Options

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Philipp Koehn Machine Translation: Decoding 20 September 2018 Philipp Koehn Machine Translation: Decoding 20 September 2018

Translation Options

- The machine translation decoder does not know the right answer
- picking the right translation options
- arranging them in the right order
- → Search problem solved by heuristic beam search

Philipp Koehn 20 September 2018 Machine Translation: Decoding

Decoding: Start with Initial Hypothesis

initial hypothesis: no input words covered, no output produced

Decoding: Precompute Translation Options 12

consult phrase translation table for all input phrases

20 September 2018 Philipp Koehn Machine Translation: Decoding

Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis

Philipp Koehn 20 September 2018 Philipp Koehn 20 September 2018 Machine Translation: Decoding Machine Translation: Decoding

Decoding: Hypothesis Expansion

create hypotheses for all other translation options

Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis

Philipp Koehn Machine Translation: Decoding

Philipp Koehn

Machine Translation: Decoding

20 September 2018

Decoding: Find Best Path

20 September 2018

backtrack from highest scoring complete hypothesis

dynamic programming

Philipp Koehn Machine Translation: Decoding 20 September 2018 Philipp Koehn Machine Translation: Decoding 20 September 2018

Computational Complexity

- The suggested process creates exponential number of hypothesis
- Machine translation decoding is NP-complete
- Reduction of search space:
- recombination (risk-free)
- pruning (risky)

Philipp Koehn Machine Translation: Decoding 20 September 2018

pruning

Recombination

- Two hypothesis paths lead to two matching hypotheses
- same foreign words translated
- same English words in the output

• Worse hypothesis is dropped

Philipp Koehn Machine Translation: Decoding 20 September 2018

- Hypothesis expansion in a stack decoder
- translation option is applied to hypothesis
- new hypothesis is dropped into a stack further down

Philipp Koehn Machine Translation: Decoding 20 September 2018 Philipp Koehn Machine Translation: Decoding 20 September 2018

Stack Decoding Algorithm


```
1: place empty hypothesis into stack 0
 2: for all stacks 0...n-1 do
     for all hypotheses in stack do
        for all translation options do
          if applicable then
 5:
            create new hypothesis
 6:
 7:
            place in stack
            recombine with existing hypothesis if possible
 8:
            prune stack if too big
          end if
10:
        end for
11:
     end for
12:
13: end for
```

Machine Translation: Decoding

Philipp Koehn

future cost estimation

Pruning

- Pruning strategies
 - histogram pruning: keep at most k hypotheses in each stack
- stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha < 1$)
- Computational time complexity of decoding with histogram pruning

 $O(\max \text{ stack size} \times \text{ translation options} \times \text{ sentence length})$

• Number of translation options is linear with sentence length, hence:

 $O(\max \text{ stack size} \times \text{ sentence length}^2)$

• Quadratic complexity

Philipp Koehn Machine Translation: Decoding 20 September 2018

Translating the Easy Part First?

the tourism initiative addresses this for the first time

both hypotheses translate 3 words worse hypothesis has better score

Philipp Koehn Machine Translation: Decoding 20 September 2018 Philipp Koehn Machine Translation: Decoding 20 September 2018

Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
 - translation model: cost known
- language model: output words known, but not context
 - \rightarrow estimate without context
- reordering model: unknown, ignored for future cost estimation

Philipp Koehn Machine Translation: Decoding

Cost Estimates for all Spans

• Compute cost estimate for all contiguous spans by combining cheapest options

first		future cost estimate for n words (from first)							
word	1	2	3	4	5	6	7	8	9
the	-1.0	-3.0	-4.5	-6.9	-8.3	-9.3	-9.6	-10.6	-10.6
tourism	-2.0	-3.5	-5.9	-7.3	-8.3	-8.6	-9.6	-9.6	
initiative	-1.5	-3.9	-5.3	-6.3	-6.6	-7.6	-7.6		,
addresses	-2.4	-3.8	-4.8	-5.1	-6.1	-6.1		•	
this	-1.4	-2.4	-2.7	-3.7	-3.7		•		
for	-1.0	-1.3	-2.3	-2.3					
the	-1.0	-2.2	-2.3		•				
first	-1.9	-2.4		•					
time	-1.6								

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3) than unusual ones (tourism initiative addresses: -5.9)

Cost Estimates from Translation Options 32 WW

cost of cheapest translation options for each input span (log-probabilities)

Philipp Koehn Machine Translation: Decoding

Combining Score and Future Cost

- Hypothesis score and future cost estimate are combined for pruning
- left hypothesis starts with hard part: the tourism initiative score: -5.88, future cost: -6.1 \rightarrow total cost -11.98
- middle hypothesis starts with easiest part: the first time score: -4.11, future cost: -9.3 \rightarrow total cost -13.41
- right hypothesis picks easy parts: this for ... time score: -4.86, future cost: -9.1 \rightarrow total cost -13.96

Philipp Koehn Machine Translation: Decoding 20 September 2018 Philipp Koehn Machine Translation: Decoding 20 September 2018

A* Search

- Uses admissible future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created

Philipp Koehn	Machine Translation: Decoding	20 September 2018