Il Coefficiente di Restituzione di una Pallina

Obiettivo dell'Esperimento: Realizzare una misura per il Coefficiente di Restituzione di una palla e poter descrivere l'Elasticità di un urto, misurando l'altezza di un rimbalzo, relazionandosi con l'altezza dalla quale la palla è stata lasciata cadere.

Definizione del Coefficiente di Restituzione:

Il coefficiente di restituzione è una quantità bidimensionale definita dalla relazione:

$$e = \frac{hi}{hr}$$

DOVE:

- hi: altezza iniziale da cui viene lasciata cadere la pallina.
- hr: altezza massima raggiunta dalla pallina dopo il rimbalzo.

MATERIALI:

- Una pallina da tennis.
- Una riga per misurare le altezze.
- Una superficie rigida e uniforme (Il pavimento della classe).
- Videocamera (per maggiore precisione).

PROCEDURA:

Come prima cosa abbiamo misurato l'altezza iniziale dalla quale la pallina verrà lasciata cadere.

Vogliamo partire dalla caduta della palla, con caduta libera e partiamo dalla posizione in cui la palla è stata ultimamente fermata, lasciando la palla cadere senza alcuna forza esterna.

Per l'osservazione cercheremo di valutare quanto appaia un'altezza grande e per l'analisi dopo il primo rimbalzo.

Indicativamente 4 ripetizioni avranno luogo ad ogni altezza fissata.

SVOLGIMENTO DELL'ESPERIMENTO:

- 1. Abbiamo scelto la prima altezza da cui far cadere la pallina, 100 cm. Abbiamo appoggiato la riga al muro e misurato varie volte 100 cm, in modo da essere sicuri che l'altezza fosse corretta.
- 2. Dopodiché abbiamo posizionato la pallina all'altezza precedentemente misurata e l'abbiamo lasciata cadere, osservando il punto in cui la pallina raggiungeva la sua massima altezza. Abbiamo ripetuto il tutto 4 volte, in modo da avere dei dati più precisi a nostra disposizione; queste sono le altezze ottenute:

h ₁ (1)	57 cm
h ₁ (2)	62 cm
h ₁ (3)	56 cm
h ₁ (4)	62 cm

3. Abbiamo ripetuto lo stesso procedimento, cambiando però l'altezza da cui far cadere la pallina, che questa volta è di 60 cm.

Dopo le misurazioni opportune abbiamo ottenuto i seguenti dati che indicano la massima altezza raggiunta dalla pallina dopo il rimbalzo:

h ₁ (1)	32 cm
h ₁ (2)	35 cm
h ₁ (3)	33 cm
h ₁ (4)	31 cm

4. A questo punto svolgiamo nuovamente il procedimento per la terza volta, dove abbiamo come altezza iniziale 200 cm.

Dopo aver fatto rimbalzare la pallina, abbiamo ottenuto i seguenti risultati:

h ₁ (1)	100 cm
h ₁ (2)	96 cm
h ₁ (3)	99 cm
h ₁ (4)	102 cm

DATI REGISTRATI:

Dopo aver rilevato i dati dall'esperimento li abbiamo inseriti nella seguente tabella ed abbiamo calcolato la media dei valori.

h ₀ (cm)	h ₁ 1 (cm)	h ₁ 2 cm)	h ₁ 3 (cm)	h ₁ 4 (cm)	media
100	57	62	56	62	59,25
60	32	35	33	31	32,75

ſ							
	200	100	103	99	102	101	

A questo punto calcoliamo l'errore di misura.

Per calcolare l'errore σ dobbiamo applicare la seguente formula:

$$EM = \sqrt{\frac{(prima\ misura\ dell'altezza\ finale-altezza\ media) + (seconda\ misura\ dell'altezza\ finale-altezza\ media) + ...}{numero\ di\ misurazioni-1}}$$

Nella seguente tabella sono riportate tutte le misure con i corrispondenti errori:

hi	(cm)	hr 1	(cm)	hr 2	cm)		hr	3	(cm)	hr	4	(cm)	media	(cm)	errore (cm)	
	100		57			62			56			62		59 , 25	± 3,20	1
	60		32			35			33			31		32,75	±1,707	
	200		100			96			99			102		99,25	± 2,64	:5

Se l'errore calcolato è >2, allora si mantiene una sola cifra significativa, mentre se l'errore è <2 se ne tengono 2; Quindi:

$$\pm$$
 3,201 \rightarrow \pm 3 (arrotondo per difetto)
 \pm 1,707 \rightarrow \pm 1,7 (arrotondo per difetto)
 \pm 2,645 \rightarrow \pm 3 (arrotondo per eccesso)

A questo punto possiamo approssimare anche la media, che si basa sull'approssimazione precedentemente fatta all'errore:

$$59,25 \rightarrow 59 \pm 3 \text{ cm}$$
 $32,75 \rightarrow 32,8 \pm 1,7$
 cm
 $99,25 \rightarrow 99 \pm 3 \text{ cm}$

Ora abbiamo tutti i dati necessari per calcolare il coefficiente di restituzione della pallina per tutti e tre i casi:

1.
$$e = \frac{h \, media}{hi} = \frac{59}{100} = 0,59$$

2.
$$e = \frac{h \, media}{hi} = \frac{32,8}{60} = 0,55$$

3.
$$e = \frac{h \, media}{hi} = \frac{99}{200} = 0,49$$

A questo punto, sapendo che e corrisponde anche al coefficiente angolare della retta derivante da $\frac{hi}{hr}$, possiamo raffigurare questa relazione in un grafico.

h media rispetto a hi

Va bene, manca però il fit

CONCLUSIONI:

Il coefficiente di restituzione misura quanto un urto sia elastico. Per la pallina testata, il valore di \boldsymbol{e} ottenuto è tipicamente inferiore a 1.

L'esperimento ha permesso di verificare che il coefficiente di restituzione dipende dal materiale della pallina e della superficie, nonché dall'altezza iniziale, sebbene quest'ultima influenza sia minima entro certi limiti.

FINE