《概率论与数理统计》 模拟考卷

开课学院: 理学院,专业:大面积,考试形式:半开卷,所需时间:120分钟

备用数据:

$$\Phi(1.67) = 0.9525, \Phi(1.645) = 0.95$$

$$t_{0.95}(35) = 1.69, t_{0.95}(36) = 1.688, t_{0.975}(35) = 2.03, t_{0.975}(36) = 2.028$$

$$\chi_{0.975}^2(35) = 53.203, \chi_{0.025}^2(35) = 20.569, \chi_{0.975}^2(36) = 59.342, \chi_{0.025}^2(36) = 24.433$$

- 一. (6 分)某人外出可以乘坐飞机、火车、轮船、汽车四种交通工具,其概率分别为5%、15%、30%、50%,乘坐这几种交通工具能如期到达的概率依次为100%、70%、60%、90%。已知该人误期到达,求他是乘坐火车的概率。
- 二. (14 分) 设 (ξ, η) 的联合分布率为

ξη	0	1	2
0	a	b	$\frac{1}{9}$
1	$\frac{2}{9}$	С	0
2	$\frac{1}{9}$	0	0

其中 a, b, c 为常数,已知 $E\xi = E\eta = \frac{2}{3}$ 。求:

- (1) 求常数 a, b, c; (本小题 3 分)
- (2) 求出 ξ 和 η 的边际分布律,并判断 ξ 和 η 是否独立(需说明理由);(本小题 3分)
- (3) 求 $\varsigma = \min(\xi, \eta)$ 的分布函数 $F_{\varsigma}(z)$; (本小题 4 分)
- (4) 求 $E\xi\eta$ 。(本小题 4分)

- 三. (6分) (本题要求用中心极限定理近似计算) 设系统由 n 个部件组成,运行期间每个部件损坏的概率为 0.1,至少有 80%的部件完好时系统才能正常工作,问n 至少多大才能使系统正常工作的概率不小于 0.95.
- 四. (10 分) 设二维随机变量(X,Y)在区域 D 上服从均匀分布, 其中 D= $\{(x,y)|0 < x < 1, |y| < x\}$,
 - (1)分别求 X 和 Y 的边际密度函数; (本小题 8 分)

$$(2) 求 P\left\{Y > \frac{X}{2}\right\}. (本小题 2 分)$$

- 五. (8 分) 设 X_1 , X_2 ,..., X_n 为取自总体X的简单随机样本,
- (1) 若总体 X 服从二项分布 B(m,p),其中参数 m 是已知的,参数 p 未知,求 参数 p 的矩法估计 \hat{p}_1 ,并判断 \hat{p}_1 是否为 p 的无偏估计(要求给出理由)。
- (2) 总体 X 服从几何分布,即其分布律为 $P(X = k) = p(1-p)^{k-1}$, $k = 1, 2, \cdots$,求 参数 p 的极大似然估计。
- 六. (8 分) 某中学入学考试中,设考生的数学考试成绩 $X \sim N(\mu, \sigma^2)$,从中任取 36 位考生的成绩,其平均成绩为 64.5 分,标准差为 15 分。
 - (1)问在 0.05 的显著性水平下,是否认为全体考生的数学平均成绩 μ 为 70 分? (本小题 4 分)
 - (2) 在 μ 未知的条件下,给出 σ^2 的置信水平为 0.95 的置信区间。(本小题 4 分)
- 七. 填空题 (每小题 4分, 共 24分)

1	2	3	4	5	6	

1. 从 0, 1, 2, ..., 9 中任取三个数字(不放回),则这三个数字中最大数字为

5	的概率	
U	11 J / IVIL	0

2. 设X与Y相互独立,均服从[1,3]上的均匀分布,记 $A=\{X \le a\}$, $B=\{Y > a\}$,

且
$$P(A \cup B) = \frac{7}{9}$$
, $P(A) < \frac{1}{2}$, 则 $a = \underline{\hspace{1cm}}$

4. 设
$$X$$
与 Y 相互独立, $X\sim U(0,3)$, Y 的概率密度为 $f(y) = \begin{cases} \frac{1}{4}e^{-\frac{1}{4}y} & y>0 \\ 0 & 其它 \end{cases}$

$$D(2X-3Y+4) = \underline{\hspace{1cm}}_{\circ}$$

5. 设总体X服从 $N(0,\sigma^2)$ 分布,而 X_1 , X_2 ,..., X_9 是来自X的简单随机样本,

则统计量
$$Y = \frac{2(X_1^2 + X_2^2 + X_3^2)}{X_4^2 + X_5^2 + \dots + X_9^2}$$
服从_____分布(须写出自由度).

6. 对某设备厂家 17 个月的盈利Y (单位:万元)与产量X (单位:台)的统计数据,用 EXCEL 的统计分析工具作回归分析,结果如下:

回归统计								
Multiple R	0.9600581							
R Square	0.9217115							
Adjusted R Squ	0.9164923							
标准误差	0.5857137							
观测值	17							
方差分析								
	df	SS	MS	F	Significance F	7		
回归分析	1	60.584186	60.584186	176.599	1.05913E-09			
残差	15	5.1459076	0.3430605					
总计	16	65.730094						
C	oefficient	标准误差	t Stat	P-value	Lower 95%	Upper 95%	下限 95.0%	上限 95.0%
Intercept	-4.46883	0.6661896	-6.708045	7E-06	-5.888779918	-3.048881	-5.88878	-3.048881
X Variable 1	0.8696996	0.0654448	13.28906	1.1E-09	0.730207381	1.0091919	0.7302074	1.0091919

则(1) Y 与X 的相关系数为_____;

(2) 盈利与产量的回归方程是

八. 选择题(24分, 每小题3分)

1	2	3	4	5	6	7	8

- 1. 设 A_1, A_2 两个随机事件相互独立,当 A_1, A_2 同时发生时,必有A发生,则()
- (A) $P(A_1A_2) \le P(A)$ (B) $P(A_1A_2) \ge P(A)$
- (C) $P(A_1A_2) = P(A)$ (D) $P(A_1)P(A_2) = P(A)$
- 2. n 张奖券有m 张有奖的,k 个人购买,每人一张,其中至少有一人中奖的概率是()。

(A)
$$\frac{C_m^1 C_{n-m}^{k-1}}{C_n^k}$$
 (B) $\frac{m}{C_n^k}$

(C)
$$1 - \frac{C_{n-m}^k}{C_n^k}$$
 (D) $\sum_{r=1}^n \frac{C_m^r}{C_n^k}$

- 3. 二维随机变量 (X,Y) 的概率密度函数为 $f(x,y) = \begin{cases} 15x^2y &, & 0 \le x \le y \le 1 \\ 0 &, & \text{其他} \end{cases}$
- 则X,Y的关系为()。
 - (A) X,Y 独立

- (B) X,Y 不独立
- (C) 在 $0 \le x \le y \le 1$ 上独立
- (D) 无法判定
- 4. 已知随机变量 ξ 服从标准正态分布N(0,1),则 $\eta = e^{\xi}$ 的概率密度为().

$$\text{(A)} \ \ p_{\eta}(y) = \begin{cases} \frac{1}{\sqrt{2\pi y^2}} & y > 0 \\ 0, & 其他 \end{cases} , \qquad \text{(B)} \ \ p_{\eta}(y) = \begin{cases} \frac{1}{\sqrt{2\pi y^3}} & y > 0 \\ 0, & 其他 \end{cases} ,$$

(C)
$$p_{\eta}(y) = \begin{cases} \frac{1}{\sqrt{2\pi y^{\ln y}}} & y > 0 \\ 0, & 其他 \end{cases}$$
 (D) $p_{\eta}(y) = \begin{cases} \frac{1}{\sqrt{2\pi y^2 y^{\ln y}}} & y > 0 \\ 0, & 其他 \end{cases}$;

5. 设 $f_1(x)$ 为(-1,3)内均匀分布的密度函数, $f_2(x)$ 为标准正态分布的密度函

(A)
$$a+b=1$$
 (B) $a+b=2$ (C) $a+2b=4$ (D) $2a+b=4$

6. 若
$$(X,Y) \sim N(0,0,1,1,0)$$
,则 $P\left(\frac{X}{Y} < 0\right) = ($

$$(A) \frac{1}{2}$$

(B) 1 (C) 0 (D) Φ (1)

7. 设随机变量 $X \sim t(n)(n > 1), Y = \frac{1}{X^2}$,则有(

(A)
$$Y \sim \chi^2(n)$$

(B)
$$Y \sim \chi^2(n-1)$$

(C)
$$Y \sim F(1, n)$$

(D)
$$Y \sim F(n,1)$$

8. 设随机变量 ξ , η 独立同分布,均服从参数为 0.5 的泊松分布 P(0.5),则概率

$$P(\xi + \eta = 3) = ()$$

(A)
$$\frac{1}{6}e^{-1}$$
;

(B)
$$\frac{1}{3}e^{-1}$$

(C)
$$\frac{4}{3}e^{-2}$$

(A)
$$\frac{1}{6}e^{-1}$$
; (B) $\frac{1}{3}e^{-1}$; (C) $\frac{4}{3}e^{-2}$; (D) $\frac{2}{3}e^{-2}$;

补充题:

1、(10 分)设随机变量 $X \sim U[-2, 2]$, 记 $Y_k = \begin{cases} 1, & X > k - 1, \\ 0, & X \leq k - 1, \end{cases}$ k = 1, 2,

(1). 求 (Y_1, Y_2) 的联合分布律; (2). Cov (Y_1, Y_2)

2、(12 分) 设二维随机变量(X,Y)在由y=1/x, y=0, x=1和 $x=e^2$ 所形成的区域D上服从均匀分布, 求 (X,Y) 的联合密度函数, 概率 $P(X+Y\geq 1)$, 关于 X 的边缘密度函 数和关于 X 的边缘密度在 x = 2 处的值.

3. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

现对 X 进行三次独立重复观察,用 Y 表示事件 $(X \le 1/2)$ 出现的次数,则 P(Y = 2) =

4. 设 X,Y 是两个随机变量,且 $DX=1,DY=1/4,\rho_{XY}=1/3,则 <math>D(X-3Y)=$

5. 设A,B,C是三个相互独立的事件,且0 < P(C) < 1,则在下列给定的四对事件中不相 互独立的是().

- (A) $\overline{A \cup B} = C$; (B) $\overline{AC} = \overline{C}$; (C) $\overline{A-B} = \overline{C}$; (D) $\overline{AB} = \overline{C}$.

6、设A,B为随机事件,若0 < P(A) < 1,0 < P(B) < 1,则 $P(A|B) > P(A|\bar{B})$ 的充分必要 条件是().

- (A) $P(B|A) > P(B|\overline{A})$ (B) $P(B|A) < P(B|\overline{A})$
- (C) $P(\overline{B}|A) > P(B|\overline{A})$ (D) $P(\overline{B}|A) < P(B|\overline{A})$

7、设随机变量 *X* 的分布函数为 $F(x) = 0.6\Phi(x) + 0.4\Phi\left(\frac{x-10}{2}\right)$, 其中 $\Phi(x)$ 为 标准正态分布函数,则EX =_____.

(End)