Managing and Mining Graph Data

ADVANCES IN DATABASE SYSTEMS

Volume 40

Series Editors

Ahmed K. Elmagarmid Purdue University West Lafayette, IN 47907 Amit P. Sheth Wright State University Dayton, OH 45435

For other titles published in this series, please visit www.springer.com/series/5573

Managing and Mining Graph Data

by

Charu C. Aggarwal

IBM T.J. Watson Research Center

Hawthorne, NY, USA

Haixun Wang Microsoft Research Asia Beijing, China

Charu C. Aggarwal IBM Thomas J. Watson Research Center 19 Skyline Drive Hawthorne, NY10532 USA charu@us.ibm.com Haixun Wang Microsoft Research Asia 49 Zhichun Road 100190 Beijing 5F Sigma Center China, People's Republic haixunw@microsoft.com

ISSN 1386-2944 ISBN 978-1-4419-6044-3 e-ISBN 978-1-4419-6045-0 DOI 10.1007/978-1-4419-6045-0 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010920842

© Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

List of Figures	XV
List of Tables	xxi
Preface	xxiii
1	
An Introduction to Graph Data	1
Charu C. Aggarwal and Haixun Wang	
1. Introduction	1
2. Graph Management and Mining Applications	3
3. Summary	8
References	9
2	
Graph Data Management and Mining: A Survey of Algorithms and Applications	13
Charu C. Aggarwal and Haixun Wang	
1. Introduction	13
2. Graph Data Management Algorithms	16
2.1 Indexing and Query Processing Techniques	16
2.2 Reachability Queries	19
2.3 Graph Matching	21
2.4 Keyword Search	24
2.5 Synopsis Construction of Massive Graphs	27
3. Graph Mining Algorithms	29
3.1 Pattern Mining in Graphs3.2 Clustering Algorithms for Graph Data	29 32
3.2 Clustering Algorithms for Graph Data3.3 Classification Algorithms for Graph Data	37 37
3.4 The Dynamics of Time-Evolving Graphs	40
4. Graph Applications	43
4.1 Chemical and Biological Applications	43
4.2 Web Applications	45
4.3 Software Bug Localization	51
Conclusions and Future Research	55
References	55
3	
Graph Mining: Laws and Generators	69
Deepayan Chakrabarti, Christos Faloutsos and Mary McGlohon	
1. Introduction	70
2. Graph Patterns	71

	2.1 Power Laws and Heavy-Tailed Distributions	72
	2.2 Small Diameters	77
	2.3 Other Static Graph Patterns	79
	2.4 Patterns in Evolving Graphs	82
	2.5 The Structure of Specific Graphs	84
3.	Graph Generators	86
	3.1 Random Graph Models	88
	3.2 Preferential Attachment and Variants	92
	3.3 Optimization-based generators	101
	3.4 Tensor-based	108
	3.5 Generators for specific graphs	113
	3.6 Graph Generators: A summary	115
4.	Conclusions	115
	erences	117
4		
4 Query I	anguage and Access Methods for Graph Databases	125
-	He and Ambuj K. Singh	123
1.	Introduction	126
	1.1 Graphs-at-a-time Queries	126
	1.2 Graph Specific Optimizations	127
	1.3 GraphQL	128
2.	Operations on Graph Structures	129
2.	2.1 Concatenation	130
	2.2 Disjunction	131
	2.3 Repetition	131
3.	Graph Query Language	132
	3.1 Data Model	132
	3.2 Graph Patterns	133
	3.3 Graph Algebra	134
	3.4 FLWR Expressions	137
	3.5 Expressive Power	138
4.	Implementation of the Selection Operator	140
	4.1 Graph Pattern Matching	140
	4.2 Local Pruning and Retrieval of Feasible Mates	142
	4.3 Joint Reduction of Search Space	144
	4.4 Optimization of Search Order	146
5.	Experimental Study	148
	5.1 Biological Network	148
	5.2 Synthetic Graphs	150
6.	Related Work	152
	6.1 Graph Query Languages	152
	6.2 Graph Indexing	155
7.	Future Research Directions	155
8.	Conclusion	156
	pendix: Query Syntax of GraphQL	156
	erences	157
Ken	crences	137
5		171
-	ndexing	161
	Yan and Jiawei Han	171
1.	Introduction	161

Contents

2.	Feature-Based Graph Index	162
	2.1 Paths 2.2 Frequent Structures	163 164
	2.2 Frequent Structures2.3 Discriminative Structures	166
	2.4 Closed Frequent Structures	167
	2.5 Trees	167
	2.6 Hierarchical Indexing	168
3.	Structure Similarity Search	169
	3.1 Feature-Based Structural Filtering	170
	3.2 Feature Miss Estimation	171
	3.3 Frequency Difference	172
	3.4 Feature Set Selection	173
	3.5 Structures with Gaps	174
4.	Reverse Substructure Search	175
5.	Conclusions	177
Refe	erences	178
6		
	Reachability Queries: A Survey	181
00 2	Ku Yu and Jiefeng Cheng	101
1.	Introduction	181
2.	Traversal Approaches	186
	2.1 Tree+SSPI 2.2 GRIPP	187 187
3.	Dual-Labeling	188
3. 4.	Tree Cover	190
4. 5.	Chain Cover	190
٥.	5.1 Computing the Optimal Chain Cover	191
6.	Path-Tree Cover	194
7.	2-HOP Cover	196
7.	7.1 A Heuristic Ranking	197
	7.2 A Geometrical-Based Approach	198
	7.3 Graph Partitioning Approaches	199
	7.4 2-Hop Cover Maintenance	202
8.	3-Hop Cover	204
9.	Distance-Aware 2-Hop Cover	205
10.	Graph Pattern Matching	207
	10.1 A Special Case: $A \hookrightarrow D$	208
	10.2 The General Cases	211
11.	Conclusions and Summary	212
Refe	erences	212
7		
Exact ar	nd Inexact Graph Matching: Methodology and Applications	217
	Riesen, Xiaoyi Jiang and Horst Bunke	
1.	Introduction	218
2.	Basic Notations	219
3.	Exact Graph Matching	221
4.	Inexact Graph Matching	226
	4.1 Graph Edit Distance	227
	4.2 Other Inexact Graph Matching Techniques	229
5.	Graph Matching for Data Mining and Information Retrieval	231

	6. 7.		235 239
	Refere	ences	240
8			
_	Survey	of Algorithms for Keyword Search on Graph Data	249
	•	ang and Charu C. Aggarwal	
	1.		250
	2.		252
		2.1 Query Semantics	253
			254
	_	•	258
	3.	· ·	260
			260
	4	1	261
	4.	•	263263
			265
			266
		1 1 2	267
		4.5 The ObjectRank Algorithm	269
	5.		271
	Refere	ences	271
9			
	Survey	of Clustering Algorithms for Graph Data	275
		Aggarwal and Haixun Wang	213
Cn	1.		275
	2.		277
	2.		277
			281
		2.3 Conventional Generalizations and Network Structure Indices 282	
			284
			285
			288
	2		289
	3.		291 291
			293
	4.	J 11	295
		4.1 Community Detection in Web Applications and Social Net-	_,,
		works	296
		4.2 Telecommunication Networks	297
	_	3	297
	5.		297
	Refere	ences	299
10			
Α :	Survey	of Algorithms for Dense Subgraph Discovery	303
	-	Lee, Ning Ruan, Ruoming Jin and Charu Aggarwal	
	1.		304

Contents

	2.		f Dense Components	305
			Absolute vs. Relative Density	305
			Graph Terminology Definitions of Dansa Components	306 307
			Definitions of Dense Components Dense Component Selection	308
			Relationship between Clusters and Dense Components	309
	3.		nms for Detecting Dense Components in a Single Graph	311
	5.		Exact Enumeration Approach	311
			Heuristic Approach	314
		3.3	Exact and Approximation Algorithms for Discovering Densest Components	322
	4.		nt Dense Components	327
			Frequent Patterns with Density Constraints	327
		4.2	Dense Components with Frequency Constraint	328
		4.3	Enumerating Cross-Graph Quasi-Cliques	328
	5.	Applica	tions of Dense Component Analysis	329
	6.	Conclus	sions and Future Research	331
	Refere	nces		333
11				
	aph Clas	ssificatio	on	337
Ko	ji Tsuda	and Hir	roto Saigo	
	1.	Introduc	· ·	337
	2.	Graph k	Kernels	340
			Random Walks on Graphs	341
			Label Sequence Kernel	342
		2.3	Efficient Computation of Label Sequence Kernels	343
		2.4	Extensions	349
	3.		Boosting	349
			Formulation of Graph Boosting	351
			Optimal Pattern Search	353
			Computational Experiments	354
			Related Work	355
	4.		tions of Graph Classification	358
	5.		ropagation	358
	6.	Conclud	ding Remarks	359
	Refere	nces		359
12				
	_	aph Patte		365
Но	ng Chei	ng, Xifen	g Yan and Jiawei Han	
	1.	Introduc		366
	2.	Frequen	nt Subgraph Mining	366
			Problem Definition	366
			Apriori-based Approach	367
			Pattern-Growth Approach	368
			Closed and Maximal Subgraphs	369
			Mining Subgraphs in a Single Graph	370
	_		The Computational Bottleneck	371
	3.		Significant Graph Patterns	372
			Problem Definition	372
		3.2	ghoost: A Branch-and-Bound Approach	373

	 3.3 gPLS: A Partial Least Squares Regression Approach 3.4 LEAP: A Structural Leap Search Approach 3.5 GraphSig: A Feature Representation Approach 	375 378 382
4.	Mining Representative Orthogonal Graphs	385
4.	4.1 Problem Definition	386
	4.2 Randomized Maximal Subgraph Mining	387
	4.3 Orthogonal Representative Set Generation	388
5.	Conclusions	389
	erences	389
IXCI	crences	309
13		202
	ey on Streaming Algorithms for Massive Graphs	393
Jian Zh 1.	Introduction	393
2.	Streaming Model for Massive Graphs	395
3.	Statistics and Counting Triangles	393
3. 4.		400
4.	Graph Matching 4.1 Unweighted Matching	400
	4.1 Unweighted Matching 4.2 Weighted Matching	403
5.	Graph Distance	405
٥.	5.1 Distance Approximation using Multiple Passes	406
	5.1 Distance Approximation using Multiple Lasses 5.2 Distance Approximation in One Pass	411
6.	Random Walks on Graphs	412
7.	Conclusions	416
7.	Conclusions	410
Referer	nces	417
14		
	ey of Privacy-Preservation of Graphs and Social Networks	421
Xintao	Wu, Xiaowei Ying, Kun Liu and Lei Chen	
1.	Introduction	422
	1.1 Privacy in Publishing Social Networks	422
	1.2 Background Knowledge	423
	1.3 Utility Preservation	424
	1.4 Anonymization Approaches	424
	1.5 Notations	425
2.	Privacy Attacks on Naive Anonymized Networks	426
	2.1 Active Attacks and Passive Attacks	426
	2.2 Structural Queries	427
2	2.3 Other Attacks	428
3.	K-Anonymity Privacy Preservation via Edge Modification	428
	3.1 K -Degree Generalization	429
	3.2 <i>K</i> -Neighborhood Anonymity	430
	3.3 <i>K</i> -Automorphism Anonymity	431
4.	Privacy Preservation via Randomization	433
	4.1 Resilience to Structural Attacks	434
	4.2 Link Disclosure Analysis	435
	4.3 Reconstruction	437
	4.4 Feature Preserving Randomization	438
5.	Privacy Preservation via Generalization	440
6.	Anonymizing Rich Graphs	441

Contents xi

	6.1 Link Protection in Rich Graphs	442
	6.2 Anonymizing Bipartite Graphs	443
	6.3 Anonymizing Rich Interaction Graphs 6.4 Anonymizing Edge-Weighted Graphs	444 445
7	, 8 . 8	446
7.	Other Privacy Issues in Online Social Networks 7.1 Deriving Link Structure of the Entire Network	
		446
	7.2 Deriving Personal Identifying Information from Social Networking Sites	448
8.	Conclusion and Future Work	448
	vledgments	449
	erences	449
Reit	Actices	117
15	CO INC. C WILL I'V	455
	by of Graph Mining for Web Applications	455
	Donato and Aristides Gionis	
1.	Introduction	456
2.	Preliminaries	457
_	2.1 Link Analysis Ranking Algorithms	459
3.	Mining High-Quality Items	461
	3.1 Prediction of Successful Items in a Co-citation Network3.2 Finding High-Quality Content in Question-Answering Por-	463
	tals	465
4.	Mining Query Logs	469
	4.1 Description of Query Logs	470
	4.2 Query Log Graphs	470
_	4.3 Query Recommendations	477
5.	Conclusions	480
Refe	erences	481
16		
Graph N	Ining Applications to Social Network Analysis	487
Lei Tans	g and Huan Liu	
1.	Introduction	487
2.	Graph Patterns in Large-Scale Networks	489
	2.1 Scale-Free Networks	489
	2.2 Small-World Effect	491
	2.3 Community Structures	492
	2.4 Graph Generators	494
3.	Community Detection	494
	3.1 Node-Centric Community Detection	495
	3.2 Group-Centric Community Detection	498
	3.3 Network-Centric Community Detection	499
	3.4 Hierarchy-Centric Community Detection	504
4.	Community Structure Evaluation	505
5.	Research Issues	507
Refe	erences	508
17		
Softwar	e-Bug Localization with Graph Mining	515
Frank E	ichinger and Klemens Bohm	
1.	Introduction	516
2	Basics of Call Graph Based Bug Localization	517

	2.1 Dynamic Call Graphs	517
	2.2 Bugs in Software	518
	2.3 Bug Localization with Call Graphs	519
2	2.4 Graph and Tree Mining	520
3.	Related Work	521
4.	Call-Graph Reduction	525
	4.1 Total Reduction	525
	4.2 Iterations	526
	4.3 Temporal Order	528
	4.4 Recursion	529
_	4.5 Comparison	531
5.	Call Graph Based Bug Localization	532
	5.1 Structural Approaches	532
	5.2 Frequency-based Approach	535
	5.3 Combined Approaches	538
_	5.4 Comparison	539
6.	Conclusions and Future Directions	542
Acknow	rledgments	543
Refe	erences	543
18		
	ey of Graph Mining Techniques for Biological Datasets	547
	asarathy, S. Tatikonda and D. Ucar	
1.	Introduction	548
2.	Mining Trees	549
۷.	2.1 Frequent Subtree Mining	550
	2.2 Tree Alignment and Comparison	552
	2.3 Statistical Models	554
3.	Mining Graphs for the Discovery of Frequent Substructures	555
٥.	3.1 Frequent Subgraph Mining	555
	3.2 Motif Discovery in Biological Networks	560
4.	Mining Graphs for the Discovery of Modules	562
٦.	4.1 Extracting Communities	564
	4.2 Clustering	566
5.	Discussion	569
	erences	571
19		£01
	n Chemical Graph Data Mining	581
	ale, Xia Ning and George Karypis	500
1.	Introduction	582
2.	Topological Descriptors for Chemical Compounds	583
	2.1 Hashed Fingerprints (FP)	584
	2.2 Maccs Keys (MK)	584
	2.3 Extended Connectivity Fingerprints (ECFP)	584
	2.4 Frequent Subgraphs (FS)	585
	2.5 Bounded-Size Graph Fragments (GF)	585
_	2.6 Comparison of Descriptors	585
3.	Classification Algorithms for Chemical Compounds	588
	3.1 Approaches based on Descriptors	588
	3.2 Approaches based on Graph Kernels	589
4.	Searching Compound Libraries	590

Contents		xiii
	4.1 Methods Based on Direct Similarity4.2 Methods Based on Indirect Similarity	591 592
	4.3 Performance of Indirect Similarity Methods	594
5.	Identifying Potential Targets for Compounds	595
	5.1 Model-based Methods For Target Fishing	596
	5.2 Performance of Target Fishing Strategies	600
6.	Future Research Directions	600
Refere	ences	602
Index		607

List of Figures

3.1

Power laws and deviations

3.2	Hop-plot and effective diameter	78
3.3	Weight properties of the campaign donations graph: (a) shows all weight properties, including the densification power law and WPL. (b) and (c) show the Snapshot Power Law for in- and out-degrees. Both have slopes > 1 ("fortification effect"), that is, that the more campaigns an organization supports, the superlinearly-more money it donates, and similarly, the more donations a candidate gets, the more average amount-per-donation is received. Inset plots on (c) and (d) show iw and ow versus time. Note they are very stable over time.	82
3.4	The Densification Power Law The number of edges $E(t)$ is plotted against the number of nodes $N(t)$ on log-log scales for (a) the arXiv citation graph, (b) the patents citation graph, and (c) the Internet Autonomous Systems graph. All of these grow over time, and the growth follows a power law in all three cases 58.	83
3.5	Connected component properties of Postnet network, a network of blog posts. Notice that we experience an early gelling point at (a), where the diameter peaks. Note in (b), a log-linear plot of component size vs. time, that at this same point in time the giant connected component takes off, while the sizes of the second and third-largest connected components (CC2 and CC3) stabilize. We fo-	
	cus on these next-largest connected components in (c).	84

73

3.6	Timing patterns for a network of blog posts. (a) shows the entropy plot of edge additions, showing burstiness.	
	The inset shows the addition of edges over time. (b)	
	describes the decay of post popularity. The horizontal	
	axis indicates time since a post's appearance (aggregated	
	over all posts), while the vertical axis shows the number	
	of links acquired on that day.	84
3.7	The Internet as a "Jellyfish"	85
3.8	The "Bowtie" structure of the Web	87
3.9	The Erdos-Renyi model	88
3.10	The Barabasi-Albert model	93
3.11	The edge copying model	96
3.12	The Heuristically Optimized Tradeoffs model	103
3.13	The small-world model	105
3.14	The Waxman model	106
3.15	The R-MAT model	109
3.16	Example of Kronecker multiplication Top: a "3-chain"	
	and its Kronecker product with itself; each of the X_i	
	nodes gets expanded into 3 nodes, which are then linked	
	together. Bottom row: the corresponding adjacency ma-	
	trices, along with matrix for the fourth Kronecker power	
	G_4 .	112
4.1	A sample graph query and a graph in the database	128
4.2	SQL-based implementation	128
4.3	A simple graph motif	130
4.4	(a) Concatenation by edges, (b) Concatenation by unification	131
4.5	Disjunction	131
4.6	(a) Path and cycle, (b) Repetition of motif G_1	132
4.7	A sample graph with attributes	132
4.8	A sample graph pattern	133
4.9	A mapping between the graph pattern in Figure 4.8 and	
	the graph in Figure 4.7	134
4.10	An example of valued join	135
4.11	(a) A graph template with a single parameter \mathcal{P} , (b) A	
	graph instantiated from the graph template. \mathcal{P} and G are	100
4.10	shown in Figure 4.8 and Figure 4.7.	136
4.12	A graph query that generates a co-authorship graph from	127
1 12	the DBLP dataset	137
4.13	A possible execution of the Figure 4.12 query	138
4.14	The translation of a graph into facts of Datalog	139

List of Figures	xvii

4.15	The translation of a graph pattern into a rule of Datalog	139
4.16	A sample graph pattern and graph	143
4.17	Feasible mates using neighborhood subgraphs and pro-	
	files. The resulting search spaces are also shown for dif-	
	ferent pruning techniques.	143
4.18	Refinement of the search space	146
4.19	Two examples of search orders	147
4.20	Search space for clique queries	149
4.21	Running time for clique queries (low hits)	149
4.22	Search space and running time for individual steps (syn-	
	thetic graphs, low hits)	151
4.23	Running time (synthetic graphs, low hits)	151
5.1	Size-increasing Support Functions	165
5.2	Query and Features	170
5.3	Edge-Feature Matrix	171
5.4	Frequency Difference	172
5.5	cIndex	177
6.1	A Simple Graph G (left) and Its Index (right) (Figure 1	
	in 32)	187
6.2	Tree Codes Used in Dual-Labeling (Figure 2 in 34)	189
6.3	Tree Cover (based on Figure 3.1 in 1)	190
6.4	Resolving a virtual node	194
6.5	A Directed Graph, and its Two DAGs, G_{\downarrow} and G_{\uparrow} (Fig-	
	ure 2 in 13)	197
6.6	Reachability Map	198
6.7	Balanced/Unbalanced $S(A_w, w, D_w)$	200
6.8	Bisect G into G_A and G_D (Figure 6 in 14)	201
6.9	Two Maintenance Approaches	203
6.10	Transitive Closure Matrix	204
6.11	The 2-hop Distance Aware Cover (Figure 2 in 10)	206
6.12	The Algorithm Steps (Figure 3 in 10)	207
6.13	Data Graph (Figure 1(a) in 12)	209
6.14	A Graph Database for G_D (Figure 2 in 12)	210
7.1	Different kinds of graphs: (a) undirected and unlabeled,	
	(b) directed and unlabeled, (c) undirected with labeled	
	nodes (different shades of gray refer to different labels),	
	(d) directed with labeled nodes and edges.	220
7.2	Graph (b) is an induced subgraph of (a), and graph (c) is	
	a non-induced subgraph of (a).	221

7.3	Graph (b) is isomorphic to (a), and graph (c) is isomorphic to a subgraph of (a). Node attributes are indicated by different shades of gray.	222
7.4	Graph (c) is a maximum common subgraph of graph (a) and (b).	224
7.5	Graph (a) is a minimum common supergraph of graph (b) and (c).	225
7.6	A possible edit path between graph g_1 and graph g_2 (node labels are represented by different shades of gray).	227
7.7	Query and database graphs.	232
8.1	Query Semantics for Keyword Search $Q=\{x,y\}$ on XML Data	253
8.2	Schema Graph	261
8.3	The size of the join tree is only bounded by the data Size	261
8.4	Keyword matching and join trees enumeration	262
8.5	Distance-balanced expansion across clusters may per-	
	form poorly.	266
9.1	The Sub-structural Clustering Algorithm (High Level De-	
	scription)	294
10.1	Example Graph to Illustrate Component Types	309
10.2	Simple example of web graph	316
10.3	Illustrative example of shingles	316
10.4	Recursive Shingling Step	317
10.5	Example of CSV Plot	320
10.6	The Set Enumeration Tree for $\{x,y,z\}$	329
11.1	Graph classification and label propagation.	338
11.2	Prediction rules of kernel methods.	339
11.3	(a) An example of labeled graphs. Vertices and edges are labeled by uppercase and lowercase letters, respectively. By traversing along the bold edges, the label sequence (2.1) is produced. (b) By repeating random walks, one	
	can construct a list of probabilities.	341
11.4	A topologically sorted directed acyclic graph. The label sequence kernel can be efficiently computed by dynamic	
	programming running from right to left.	346
11.5	Recursion for computing $r(x_1, x_1')$ using recursive equation (2.11). $r(x_1, x_1')$ can be computed based on the pre-	
11.6	computed values of $r(x_2, x_2')$, $x_2 > x_1$, $x_2' > x_1'$. Feature space based on subgraph patterns. The feature	346
11.0	vector consists of binary pattern indicators.	350

List of Figures xix

11.7	Schematic figure of the tree-shaped search space of graph patterns (i.e., the DFS code tree). To find the optimal	
	pattern efficiently, the tree is systematically expanded by	
	rightmost extensions.	353
11.8	Top 20 discriminative subgraphs from the CPDB dataset.	
	Each subgraph is shown with the corresponding weight,	
	and ordered by the absolute value from the top left to	
	the bottom right. H atom is omitted, and C atom is	
	represented as a dot for simplicity. Aromatic bonds ap-	
	peared in an open form are displayed by the combination of dashed and solid lines.	256
11.0		356
11.9	Patterns obtained by gPLS. Each column corresponds to	257
12.1	the patterns of a PLS component.	357
	AGM: Two candidate patterns formed by two chains	368
12.2	Graph Pattern Application Pipeline	371
12.3	Branch-and-Bound Search	375
12.4	Structural Proximity	379
12.5	Frequency vs. G-test score	381
13.1	Layered Auxiliary Graph. Left, a graph with a match-	
	ing (solid edges); Right, a layered auxiliary graph. (An	
	illustration, not constructed from the graph on the left. The solid edges show potential augmenting paths.)	402
13.2		410
	Example of clusters in covers.	
14.1	Resilient to subgraph attacks The interaction graph avanuals and its consultation results.	434
14.2	The interaction graph example and its generalization results	444
15.1	Relation Models for Single Item, Double Item and Mul-	160
15.0	tiple Items Transport Francisco Associable for Informing the Oscillar of	462
15.2	Types of Features Available for Inferring the Quality of Questions and Answers	466
16.1	Different Distributions. A dashed curve shows the true	400
10.1	distribution and a solid curve is the estimation based on	
	100 samples generated from the true distribution. (a)	
	Normal distribution with $\mu = 1$, $\sigma = 1$; (b) Power law	
	distribution with $x_{min} = 1$, $\alpha = 1$; (c) Fower law distribution with $x_{min} = 1$, $\alpha = 2.3$; (c) Loglog plot,	
	generated via the toolkit in 17.	490
16.2	A toy example to compute clustering coefficient: $C_1 =$	
	$3/10$, $C_2 = C_3 = C_4 = 1$, $C_5 = 2/3$, $C_6 = 3/6$,	
	$C_7 = 1$. The global clustering coefficient following Eqs.	
	(2.5) and (2.6) are 0.7810 and 0.5217, respectively.	492
16.3	A toy example (reproduced from 61)	496
16.4	Equivalence for Social Position	500

17.1	An unreduced call graph, a call graph with a structure	
	affecting bug, and a call graph with a frequency affecting bug.	518
17.2	An example PDG, a subgraph and a topological graph minor.	524
17.3	Total reduction techniques.	526
17.4	Reduction techniques based on iterations.	527
17.5	A raw call tree, its first and second transformation step.	527
17.6	Temporal information in call graph reductions.	529
17.7	Examples for reduction based on recursion.	530
17.8	Follow-up bugs.	537
18.1	Structural alignment of two FHA domains. FHA1 of	
	Rad53 (left) and FHA of Chk2 (right)	559
18.2	Frequent Topological Structures Discovered by TSMiner	560
18.3	Benefits of Ensemble Strategy for Community Discov-	
	ery in PPI networks in comparison to community detec-	
	tion algorithm MCODE and clustering algorithm MCL.	
	The Y-axis represents -log(p-value).	568
18.4	Soft Ensemble Clustering improves the quality of ex-	
	tracted clusters. The Y-axis represents -log(p-value).	569
19.1	Performance of indirect similarity measures (MG) as com-	
	pared to similarity searching using the Tanimoto coeffi-	
	cient (TM).	595
19.2	Cascaded SVM Classifiers.	598
193	Precision and Recall results	599

List of Tables

3.1	Table of symbols	71
4.1	Comparison of different query languages	154
6.1	The Time/Space Complexity of Different Approaches 25	183
6.2	A Reachability Table for G_{\downarrow} and G_{\uparrow}	198
10.1	Graph Terminology	306
10.2	Types of Dense Components	308
10.3	Overview of Dense Component Algorithms	311
17.1	Examples for the effect of call graph reduction techniques.	531
17.2	Example table used as input for feature-selection algorithms.	536
17.3	Experimental results.	540
19.1	Design choices made by the descriptor spaces.	586
19.2	SAR performance of different descriptors.	587

Preface

The field of graph mining has seen a rapid explosion in recent years because of new applications in computational biology, software bug localization, and social and communication networking. This book is designed for studying various applications in the context of managing and mining graphs. Graph mining has been studied by the theoretical community extensively in the context of numerous problems such as graph partitioning, node clustering, matching, and connectivity analysis. However the traditional work in the theoretical community cannot be directly used in practical applications because of the following reasons:

- The definitions of problems such as graph partitioning, matching and dimensionality reduction are too "clean" to be used with real applications. In real applications, the problem may have different variations such as a disk-resident case, a multi-graph case, or other constraints associated with the graphs. In many cases, problems such as frequent sub-graph mining and dense graph mining may have a variety of different flavors for different scenarios.
- The size of the applications in real scenarios are often very large. In such cases, the graphs may not be stored in main memory, but may be available only on disk. A classic example of this is the case of web and social network graphs, which may contain millions of nodes. As a result, it is often necessary to design specialized algorithms which are sensitive to disk access efficiency constraints. In some cases, the entire graph may not be available at one time, but may be available in the form of a continuous stream. This is the case in many applications such as social and telecommunication networks in which edges are received continuously.

The book will study the problem of managing and mining graphs from an applied point of view. It is assumed that the underlying graphs are massive and cannot be held in main memory. This change in assumption has a critical impact on the algorithms which are required to process such graphs. The problems studied in the book include algorithms for frequent pattern mining, graph

matching, indexing, classification, clustering, and dense graph mining. In many cases, the problem of graph management and mining has been studied from the perspective of structured and XML data. Where possible, we have clarified the connections with the methods and algorithms designed by the XML data management community. We also provide a detailed discussion of the application of graph mining algorithms in a number of recent applications such as graph privacy, web and social networks.

Many of the graph algorithms are sensitive to the application scenario in which they are encountered. Therefore, we will study the usage of many of these techniques in real scenarios such as the web, social networks, and biological data. This provides a better understanding of how the algorithms in the book apply to different scenarios. Thus, the book provides a comprehensive summary both from an algorithmic and applied perspective.