INF221 – Algoritmos y Complejidad

Clase #8 Problemas de Optimización

Aldo Berrios Valenzuela

27 de agosto de 2016

1. Problema de Optimización

1.1. Problema de Tareas

Teorema 1.1. Para el problema de programación de tareas, la estrategia de elegir en cada paso la tarea sin conflicto con fin más temprano entrega una solución óptima.

Demostración. Por inducción sobre |P|, el número de tareas.

- Base: Si hay una única tarea, la estrategia la programa. Esto es óptimo.
- *Inducción:* Supongamos que obtiene una solución óptima para a lo más k tareas. Sea P una instancia con |P| = k + 1. Elegimos \hat{p} según criterio por /* símbolo raro */ hay solución óptima que lo incluye, queda $P', |P'| \le k$.

Por inducción, obtengo una solución óptima Π' de P'. Combinando $\Pi' \cup \{\hat{p}\}$ tengo una solución óptima para P, por SO (sub-estructura óptima).

1.2. Knapsack (mochila)

Hay una mochila de capacidad M, y un conjunto de n tipos de item, del item tipo i hay disponible p_i en total, el valor v_i . Se pueden incluir fracciones de item (es café, azúcar, arroz, ...)

Estrategia:

Ordenar los ítem por

 $\frac{v_i}{p_i}$

decreciente.

■ Echar en la mochila sucesivamente todo lo que se pueda del ítem i, en el orden anterior.

EVQA: Cumple con EV, EI, SO ⇒ dar solución óptima.

Mochila de Discreta: El item i se agrega completo o no (no fracciones). \leadsto estrategia voraz no da óptimo.

EQVA: Contraejemplo.

1

1.3. Minimal Spanning Tree

Dado un grafo G = (V, E), con arcos rotulados $c : E \to \mathbb{R}^+$, se busca el árbol recubridor (o sea, el que une todos los vértices) de costos mínimo (suma de los c sobre sus arcos).