Quiz Submissions - Q3-1
Parsa Yadollahi (username: parsa.yadollahi@mail.mcgill.ca)
Attempt 1
Written: Jan 27, 2022 12:55 PM - Jan 27, 2022 12:57 PM
Submission View
Released: Jan 27, 2022 4:00 PM
Question 1 1 / 1 point
The reason behind curse of dimensionality is:
✓ The distances between any two data points become similar as the dimensions grows.
Computing power in recent years is still not capable enough to handle large-scale computation on high-dimensional data.
The data points get exponentially closer to the center of the input space as the dimensions grow.
Variations in data will increase dramatically as data dimension goes up, so that a machine learning model will have harder time training on the data.
▶ View Feedback
Question 2 1 / 1 point
You are performing 5-fold cross-validation to select the best hyperparameter values. You have two hyperparameters and you decide to perform a search over 10 possible values of each of the two hyperparameters and try all possible combinations (a.k.a grid search). How many times should you train your model to get a good estimate of the best hyperparameter values?
(For example, when you run a 5 fold cross validation, you are training the model 5 times.)
<u> </u>

✓ 500
▶ View Feedback
Question 3 1 / 1 point
In a perfect machine learning algorithm, the AUC (area under the curve) of an ROC (Receiver operating characteristic) curve will be
O 0
0.5
√ ○ 1
Question 4 1 / 1 point
For a cancer screening model for predicting whether a patient needs to undergo further tests and be seen by a doctor, if you have to choose between a model with high precision and a model with high recall, which one would you pick?
✓ ✓ Model with high Recall
Model with high Precision
▶ View Feedback
Question 5 1 / 1 point
What's the definition of precision? (T: True, F: False, P: Positive, N: Negative, e.g., TP means True Positive)
TP / (TP + FN)
None of above
TP / (TP + TN)

Question 6 1 / 1 point
You are given four models with their corresponding number of parameters, training and validation accuracies (with standard deviation, denoted as stdev). Which model would you use?
Model: 800 params, train accuracy: 95% (stdev: 2%), validation accuracy: 73% (stdev: 5%)
Model: 80 params, train accuracy: 72% (stdev: 4%), validation accuracy: 66% (stdev: 5%)
Model: 500 params, train accuracy: 88% (stdev: 12%), validation accuracy: 83% (stdev: 16%)
✓ Model: 300 params, train accuracy: 84% (stdev: 6%), validation accuracy: 81% (stdev: 5%)
▶ View Feedback
Question 7 1 / 1 point
Why is there a difference between KNN model performance on image data such as MNIST and on random high-dimensional data?
Images in MNIST dataset are not large enough.
KNN is designed specifically for image classification, so it has strong power on classifying hand-written digits.
MNSIT consists of single-channel image data.
The pattern in pairwise distances for pixels from a hand-written digit in the MNIST dataset does not follow that of randomly generated data.
View Feedback

Attempt Score: 7/7 - 100 %

Overall Grade (highest attempt): 7 / 7 - 100 %