Лабораторная работа №6. Основы анимации и костей в Blender

Лабораторная работа создана на основе видеоуроков <u>Анимация для новичков в Blender</u> и <u>Создание и анимация персонажа в Blender</u>

В Blender существует несколько способов анимации. Самый очевидный — анимация при помощи ключевых кадров или кейфреймов (<u>Keyframe</u>). В нижнем окне программы по умолчанию открыт таймлайн — временная линия, на которой можно фиксировать различные параметры объектов в виде ключевых кадров.

Нажав на пробел или кнопку **play**:

Мы запустим воспроизведение сцены. Но сейчас у нас статичная сцена, поэтому ничего не происходит. Для добавления анимаций нужно добавить ключевые кадры.

Выбираем куб и нажимаем **K** – **Location**:

На таймлайне появилась оранжевая точка, это наш первый ключевой кадр:

Передвинем шкалу на 20 кадров:

Затем сдвинем куб в сторону (G):

И нажмём снова K – Location:

Возвращаем ползунок в 0 кадр:

И запускаем анимацию на клавишу пробел.

Теперь ваша задача попробовать самостоятельно запустить движения куба по круга, добавив 4 ключевых кадров, с возвращением в начальную позицию:

Теперь создадим анимацию мяча, который забиваем в кольцо. Для начала подготовим сцену. Берём наш куб, и уменьшаем в размере (S-X, S-Y):

Shift+A - Mesh - Torus:

Уменьшите у него внутренний радиус до 0.05:

Подгоните размер:

Shift+A – Mesh – Plane:

Увеличьте в размерах (S) и расположите внизу столба:

Shift+A-Mesh-UV Sphere:

И уменьшаем размер:

Сгладим её, ПКМ – Shade Smooth:

Отдалите мяч на расстояние, откуда у вас начнётся анимация:

Если вы нажмёте на эту кнопку, то у вас при перемещении объекта будут автоматически создавать ключевые кадры:

Нажмите на неё, затем **G-Z** и опустите мяч на пол:

Дальше перейдите на 20 кадр, и G-Z поднимите мяч:

Ключевые кадры можно копировать. Выберите нулевой кадр, нажмите на нём **Ctrl+C**, затем перейдите на **40 кадр** и нажмите **Ctrl+V** чтобы вставить:

Иногда при копировании кадра, может сдвинуться в совершенно другие координаты, тогда меняйте их вручную, или корректируйте параметры во вкладке **Transform**:

Ваша задача добавить до 100 кадров 6 ключевых кадров, на которых мяч падает на землю и поднимается вверх:

Сделаем отсутствие изменений между двумя ключевыми кадрами. Для этого перейдите на **120 кадр**, нажмите **I – All Channels:**

У вас появится полоска:

Перейдите на 130 кадр и передвиньте мяч немного вправо и вниз:

Передвинь кадр со **130** до **160**, таким образом у нас будет эффект замедления для замаха:

На 165 кадре передвинь мяч на вверх, чтобы он двигался как по дуге:

На 170 кадре передвинь мяч в кольцо:

Затем на 171 кадре добавьте удар об столб нашего мяча:

На 172 кадре создаём удар об кольцо:

На 173 кадре ударяемся об столб:

И на 200 кадре переместим мяч на землю:

Добавьте несколько ключевых кадров, и создайте движения мяча вправо, остановившись на **220 кадре**:

Ограничьте конечный шаг анимации 220 кадром:

Работа с костями

Создаём новый проект. Затем нажимаем **Shift** + **A** и выбираем **Armature**:

Выбрав кость, откройте панель **Data**, во вкладке **Viewport Display** установите галочку **In Front**, чтобы кость отображалась поверх всех объектов сцены.

Нажмите Numpad 1 и опустите кость к нижней части куба с помощью $\mathbf{G} \to \mathbf{Z}$.

Увеличьте размер кости, нажав **S**:

Теперь выделите сначала куб, затем, удерживая **Shift**, выделите кость:

Щёлкните правой кнопкой мыши \rightarrow Parent \rightarrow With Automatic Weights:

Затем, выбрав кость, переключитесь в режим **Pose Mode**:

Теперь при перемещении кости объекты, к ней привязанные, будут следовать за ней. Вернитесь в **Object Mode**.

Удалите всё со сцены ($A \rightarrow Delete$).

Создайте новый куб (Shift + $A \rightarrow Mesh \rightarrow Cube$) и добавьте кость (Shift + $A \rightarrow$ Armature). Включите отображение кости In Front в настройках:

Опустите кость вниз куба ($\mathbf{G} \to \mathbf{Z}$):

Нажмите **Таb**, чтобы перейти в режим редактирования. Выделите верхнюю вершину кости и вытяните её вверх ($\mathbf{E} \to \mathbf{Z}$):

Нажмите **Tab**, чтобы вернуться в **Object Mode**.

Выделите сначала куб, затем, удерживая Shift, кость, и снова примените родительскую привязку (Parent — With Automatic Weights).

Перейдите в **Pose Mode**.

Попробуйте подвигать кость — куб начнёт деформироваться.

Если наблюдается искажение формы, это связано с тем, что у куба всего 8 вершин. Удалите объекты со сцены, добавьте новый куб и в режиме редактирования примените **Subdivide**, чтобы добавить больше вершин. Повторите процесс: создайте кость с дополнительной вершиной, привяжите её к объекту и протестируйте в **Pose Mode**. Можно также включить **Shade Auto Smooth** для сглаживания.

Удалите всё на сцене ($A \rightarrow Delete$).

Создание персонажа

Shift + A → Mesh → Cube. Добавьте модификатор Subdivision Surface.

Во вкладке Levels Viewport установите значение 2.

Перейдите в режим редактирования (Тав), выделите верхнюю грань.

Нажмите Е для экструзии — вытяните вверх.

Повторите экструзию ещё раз.

C помощью Ctrl + R создайте продольный разрез по оси Y.

Numpad 1, нажмите **1** на клавиатуре для перехода к работе с вершинами, включите каркасный режим ($\mathbf{Z} \to \mathbf{Wireframe}$) и выделите правые вершины.

Удалите их ($X \rightarrow Vertices$).

Для симметричного моделирования добавьте модификатор Mirror.

Перейдите к работе с гранями (3), выделите верхнюю грань, где будет располагаться рука.

Нажмите \mathbf{E} , чтобы вытянуть плечо.

Сначала уменьшите его в ширину ($S \to Y$), затем — S.

Сдвиньте плечо немного назад ($G \rightarrow Y$).

Снова Е — вытяните локоть.

И ещё раз Е — для предплечья.

Последний раз Е — вытяните кисть.

Теперь аналогично сформируем ноги. Выделите нижнюю грань.

Протяните Е:

Сужаем по оси $Y (S \rightarrow Y)$.

G-Y сдвигаем к передней части:

Снова ${\bf E}$ — вытягиваем ногу.

Повторяем ещё дважды для колена и ступни.

При необходимости с помощью $\mathbf{Ctrl} + \mathbf{R}$ добавьте дополнительные петли для более точной формы.

Я немного заужаю тело ($\mathbf{A} \to \mathbf{S} \to \mathbf{Y}$), а также слегка раздвигаю ноги, чтобы они не сливались. Для этого выделите соответствующие грани и используйте \mathbf{G} .

Выходите из режима редактирования (**Tab**) и примените модификатор **Mirror**.

Если результат не устраивает, вернитесь назади скорректируйте форму модели. Снова включите режим редактирования (**Tab**), выберите режим работы с гранями

(3). Выделите две верхние грани.

Нажмите Е — вытяните шею.

Немного уменьшите размер (S).

Снова Е — вытяните голову.

Измените её размер (S), при необходимости поднимите ($\mathbf{G} \to \mathbf{Z}$).

Добавьте дополнительную петлю (Ctrl + R) и подкорректируйте форму головы.

Далее можете добавить дополнительную петлю, и настроить голову так, как вас устроит:

Выйдите из режима редактирования и примените модификатор **Subdivision Surface**.

Щёлкните правой кнопкой мыши → Shade Smooth, чтобы сгладить модель.

Создание костей и привязка к модели в Blender

Теперь перейдём к созданию костей. Shift+A – Armature:

Во вкладке Viewport Display активируйте опцию In Front, чтобы кости всегда отображались поверх модели.

Нажмите **Numpad 1**, и разместите кость по центру туловища — это будет основа скелета.

Перейдите в режим редактирования (${f Tab}$) и выполните экструзию (${f E}$) дважды — создайте позвоночник до уровня шеи.

Сделайте ещё одну экструзию (Е) — для головы.

Теперь создадим кость для руки. Нажмите $\mathbf{Shift} + \mathbf{A}$, чтобы добавить новую кость. Включите режим прозрачности ($\mathbf{Alt} + \mathbf{Z}$), выделите кость.

С помощью G переместите новую кость на уровень плеча.

Для удобства установки используйте вращение: $\mathbf{R} \to \mathbf{Y} \to \mathbf{-90}$. Затем подкорректируйте её положение, поворот и масштаб. Убедитесь, что кость остаётся внутри тела, проверяя с разных сторон.

Чтобы связать руку с позвоночником, выберите крайнюю кость руки, затем, удерживая Shift, выберите кость позвоночника. Щёлкните правой кнопкой мыши \rightarrow **Parent** \rightarrow **Make** \rightarrow **Keep Offset**.

Между костями появится пунктирная линия — это означает, что они соединены.

Аналогичным образом создайте кости для ноги. Также выполните привязку: сначала выделите конечную кость ноги, затем — ту, к которой она должна быть привязана, и снова выполните $Parent \rightarrow Make \rightarrow Keep \ Offset$.

Итог:

Для зеркального отражения костей переименуйте их. Выберите, например, кость плеча, нажмите F2 и добавьте суффикс $_r$.

Проделайте это для всех костей руки и ноги, которые находятся с одной стороны. Затем выделите через **Shift** все эти кости и выберите **Armature** → **Symmetrize**.

Теперь у вас появятся симметричные кости, с другой стороны.:

Если после симметрии кости располагаются неправильно, возможно, вы изначально повернули модель не по оси Y. В таком случае разверните её корректно и примените трансформацию (через $Ctrl + A \rightarrow Rotation$).

Выйдите в **Object Mode** (Tab). Теперь выделите сначала объект, затем скелет, и нажмите правой кнопкой мыши — **Parent** — **With Automatic Weights**.

Выделите скелет, переключитесь в **Pose Mode** и проверьте корректность работы костей — они должны адекватно вращаться и деформировать модель.

Анимация костей персонажа

Убедитесь, что ползунок временной шкалы установлен в самое начало (кадр 1).

Перейдите в **Pose Mode**, выбрав ваш скелет.

Выделите кость кисти.

Во вкладке **Pose Options** активируйте параметр **Auto IK**, чтобы работать с инверсной кинематикой.

С помощью G переместите руку вперёд, примерно на уровень груди.

Другую руку переместите назад — создавая контрастную позу.

Выберите центральную кость позвоночника и наклоните корпус вперёд с помощью R.

Поднимите голову вверх, чтобы она смотрела вперёд.

Теперь перейдите к ногам. **Отключите Auto IK**, чтобы управлять каждой костью отдельно.

Согните верхнюю часть ноги, выбрав соответствующую кость и повернув её.

Затем согните нижнюю часть, формируя естественное положение согнутой ноги.

Противоположную ногу можно выпрямить в обратную сторону, создавая эффект шага.

Слегка поверните корпус вдоль оси Z (G ightarrow Z) для придания позе динамики.

Когда поза вас устроит, выделите все кости (A) и нажмите I, чтобы вставить ключевой кадр.

Сдвиньтесь на 20-й кадр.

Теперь задача — зеркально поменять положение рук и ног:

- Правая рука должна занять позицию левой.
- Левая перейти в положение правой.

Чтобы сбросить трансформации, можно использовать сочетание клавиш Alt + R.

Повторите аналогичные действия и для ног.

Когда завершите, снова выделите все кости (A) и нажмите I, чтобы зафиксировать ключевой кадр на 20-м кадре.

Ограничьте длину анимации до **40 кадров**, установив конец временной шкалы в 40.

Теперь скопируйте первый кадр:

- Перейдите на кадр 1, выделите все кости (A), нажмите Ctrl + C.
- Перейдите на кадр 40 и нажмите Ctrl + V.

Таким образом, анимация замкнётся в цикл.

Нажмите Пробел, чтобы воспроизвести анимацию.

Для дополнительной динамики поднимите тело немного вверх на кадрах 10 и 30 — выделите нужную кость и переместите её вдоль оси Z ($G \rightarrow Z$).

