网络技术与应用实验报告(一)

专业: 计算机科学与技术

学号: 2011188 姓名: 邵琦

- 网络技术与应用实验报告 (一)
- 一、实验要求
 - 。 1.1 仿真环境下的共享式以太网组网
 - 。 1.2 仿真环境下的交换式以太网组网和VLAN配置
- 二、实验过程
 - 。 2.1 仿真环境下的共享式以太网组网
 - 2.1.1 单集线器共享式以太网组网
 - 2.1.2 多集线器共享式以太网组网
 - 2.1.3 数据包在共享式以太网中的传递过程
 - 。 2.2 仿真环境下的交换式以太网组网和VLAN配置
 - 2.2.1 仿真环境下进行单交换机以太网组网
 - 配置以太网交换机以及VLAN
 - 测试同一VLAN中主机的连通性和不同VLAN中主机的连通性
 - 2.2.2 在仿真环境下组建多集线器、多交换机混合式网络。划分跨越交换机的VLAN
 - 组建多集线器、多交换机混合式网络以及划分跨越交换机的VLAN
 - 测试同一VLAN中主机的连诵性和不同VLAN中主机的连诵性
 - 模拟数据包在混合式以太网、虚拟局域网中的传递过程
- 三、实验分析
- 四、实验总结

一、实验要求

1.1 仿真环境下的共享式以太网组网

- (1) 学习虚拟仿真软件的基本使用方法。
- (2) 在仿真环境下进行单集线器共享式以太网组网,测试网络的连通性。

- (3) 在仿真环境下进行多集线器共享式以太网组网,测试网络的连通性。
- (4) 在仿真环境的"模拟"方式中观察数据包在共享式以太网中的传递过程,并进行分析。

1.2 仿真环境下的交换式以太网组网和VLAN配置

- (1) 在仿真环境下进行单交换机以太网组网,测试网络的连通性。
- (2) 在仿真环境下利用终端方式对交换机进行配置。
- (3) 在单台交换机中划分VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。
- (4) 在仿真环境下组建多集线器、多交换机混合式网络。划分跨越交换机的VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。
 - (5) 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析。
 - (6) 学习仿真环境提供的简化配置方式。

二、实验过程

2.1 仿真环境下的共享式以太网组网

2.1.1 单集线器共享式以太网组网

配置设备如图所示:

连接好设备后,配置IP地址,为主机填入IP Address,并且每一个主机需要选择不同的网络地址,同时在Subnet Mask中填入255.255.255.0,配置完成后返回即可,配置结果如下所示:

PC机	IPv4 Address	Subnet Mask
PC1	192.168.0.2	255.255.255.0
PC2	192.168.0.3	255.255.255.0

配置完两台主机的地址后,测试网络的连通性,需要在一个主机上开启Command Prompt,使用ping命令来连接另外一台主机,对两台主机分别使用ping进行了测试,如图所示:

```
Packet Tracer PC Command Line 1.0
C:\> ping 192.168.0.3

Pinging 192.168.0.3 with 32 bytes of data:

Reply from 192.168.0.3: bytes=32 time=lms TTL=128

Ping statistics for 192.168.0.3:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = lms, Maximum = lms, Average = lms

C:\>
```

```
Packet Tracer PC Command Line 1.0
C:\>ping 192.168.0.2
Pinging 192.168.0.2 with 32 bytes of data:

Reply from 192.168.0.2: bytes=32 time<lms TTL=128
Reply from 192.168.0.2: bytes=32 time<lms TTL=128
Reply from 192.168.0.2: bytes=32 time=lms TTL=128
Reply from 192.168.0.2: bytes=32 time=lms TTL=128
Reply from 192.168.0.2: bytes=32 time<lms TTL=128
Ping statistics for 192.168.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms
C:\>
```

2.1.2 多集线器共享式以太网组网

配置设备如图所示:

连接好设备后,配置IP地址,为主机填入IP Address,并且每一个主机需要选择不同的网络地址,同时在Subnet Mask中填入255.255.255.0,配置完成后返回即可,配置结果如下所示:

PC机	IPv4 Address	Subnet Mask
PC1	192.168.0.2	255.255.255.0
PC2	192.168.0.3	255.255.255.0

PC机	IPv4 Address	Subnet Mask
PC3	192.168.0.4	255.255.255.0
PC4	192.168.0.5	255.255.255.0
PC5	192.168.0.6	255.255.255.0
PC6	192.168.0.7	255.255.255.0

配置完两台主机的地址后,测试网络的连通性,需要在一个主机上开启Command Prompt,使用ping命令来连接另外一台主机,对PC1向PC6使用ping进行了测试,如图所示:

```
C:\>ping 192.168.0.7

Pinging 192.168.0.7 with 32 bytes of data:

Reply from 192.168.0.7: bytes=32 time<lms TTL=128
Reply from 192.168.0.7: bytes=32 time=lms TTL=128
Reply from 192.168.0.7: bytes=32 time<lms TTL=128
Reply from 192.168.0.7: bytes=32 time=lms TTL=128
Ping statistics for 192.168.0.7:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms</pre>
```

2.1.3 数据包在共享式以太网中的传递过程

在Simulation模式下用PC1去ping主机PC3可以观察到如下过程:

首先数据报从PC1发出:

然后由Hub1进行转发,转发到Hub4和PC2,由于目的主机并不是PC2,所以并不会回信息:

接下来由Hub4进行转发到Hub2和Hub3:

此时数据报会分别由两个集线器Hub2和Hub3转发到自己所连接的主机上,这个时刻是同时进行的:

PC3收到信息,往回发信息:

最后按照原路,返还信息给PC1 (同意,当不是目的主机的主机收到信息,不会回信息):

至此,传递过程结束。模拟结果如图所示:

Simulation Panel				
Event Lis	t			
Vis.	Time(sec)	Last Device	At Device	Туре
	2.044	Hub3	PC6	ICMP
	3.048		PC1	ICMP
	3.050	PC1	Hub1	ICMP
	3.051	Hub1	PC2	ICMP
	3.051	Hub1	Hub4	ICMP
	3.052	Hub4	Hub2	ICMP
	3.052	Hub4	Hub3	ICMP
	3.053	Hub2	PC3	ICMP
	3.053	Hub2	PC4	ICMP
	3.053	Hub3	PC5	ICMP
	3.053	Hub3	PC6	ICMP
	3.056	PC3	Hub2	ICMP
	3.057	Hub2	PC4	ICMP
	3.057	Hub2	Hub4	ICMP
	3.058	Hub4	Hub1	ICMP
	3.058	Hub4	Hub3	ICMP
(9)	3.059	Hub1	PC1	ICMP
(9)	3.059	Hub1	PC2	ICMP
(9)	3.059	Hub3	PC5	ICMP
(9)	3.059	Hub3	PC6	ICMP

2.2 仿真环境下的交换式以太网组网和VLAN配置

2.2.1 仿真环境下进行单交换机以太网组网

配置以太网交换机以及VLAN

配置设备如图所示:

连接好设备后,配置IP地址,为主机填入IP Address以及VLAN,配置完成后返回即可,配置结果如下所示:

PC机	IPv4 Address	Subnet Mask	VLAN ID
PC1	192.168.0.2	255.255.255.0	1
PC2	192.168.0.3	255.255.255.0	1
PC3	192.168.0.4	255.255.255.0	2
PC4	192.168.0.5	255.255.255.0	2
PC5	192.168.0.6	255.255.255.0	3
PC6	192.168.0.7	255.255.255.0	3

测试同一VLAN中主机的连通性和不同VLAN中主机的连通性

接下来进行连通性测试,让主机PC1去ping主机PC3,可以发现,由于是不同的VLAN,无法连通成功;再让主机PC1去ping主机PC2,可以发现,在同一VLAN下,连通成功。

2.2.2 在仿真环境下组建多集线器、多交换机混合式网络。划分跨越 交换机的VLAN

组建多集线器、多交换机混合式网络以及划分跨越交换机的VLAN

配置设备如图所示:

连接好设备后,配置IP地址,为主机填入IP Address以及VLAN,配置完成后返回即可,配置结果如下所示:

PC机	IPv4 Address	Subnet Mask	VLAN ID
PC0	192.168.0.1	255.255.255.0	1
PC1	192.168.0.2	255.255.255.0	1
PC2	192.168.0.3	255.255.255.0	1
PC3	192.168.0.4	255.255.255.0	2
PC4	192.168.0.5	255.255.255.0	2
PC5	192.168.0.6	255.255.255.0	2
PC6	192.168.0.7	255.255.255.0	2
PC8	192.168.0.2	255.255.255.0	2
PC9	192.168.0.2	255.255.255.0	2

左部的交换机配置方法与单交换机中一样,在右边的交换机的config模式下新增一个VLAN,然后按照对各个主机进行局域网的配置,如图所示,处在同一行同的主机处于一个虚拟局域网中。

在配置好后,将一个端口设置为trunk模式,这样就实现了交换机的VLAN的统一以及实现了虚拟局域网的统一。

测试同一VLAN中主机的连通性和不同VLAN中主机的连通性

接下来进行连通性测试,让主机PC3去ping主机PC10,可以看到连通成功:

```
C:\>ping 192.168.0.10
Pinging 192.168.0.10 with 32 bytes of data:

Reply from 192.168.0.10: bytes=32 time=1ms TTL=128
Reply from 192.168.0.10: bytes=32 time<1ms TTL=128
Reply from 192.168.0.10: bytes=32 time=5ms TTL=128
Reply from 192.168.0.10: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.0.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 5ms, Average = 1ms</pre>
```

再测试不同交换机之间的不同VLAN中的主机是否能ping通,用主机PC1去ping主机PC9,可以看到不能连诵:

```
C:\>ping 192.168.0.10
Pinging 192.168.0.10 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.0.10:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

则可以看出组建多集线器、多交换机混合式网络。划分跨越交换机的VLAN配置成功。

模拟数据包在混合式以太网、虚拟局域网中的传递过程

用PC1去ping主机PC0可以观察到如下过程:

- (1) 首先数据报通过PC1发送给交换机Switch1;
- (2)接下来由Switch1判断虚拟局域网,在判断后可以发送给了交换机Switch2(由于此时ping的是主机PC0,所以只有PC0可以进行收发消息,即使信息发送给了PC2,PC2也不会接收);
 - (3) 接下来Switch2判断跟PC1在同一个虚拟局域网中的机器,在判断完成后发送给了PC0;
 - (4) 在PC0收到信息后,将信息返回;

(5) 信息原路返回, 最后发给PC1。

三、实验分析

问题:在数据包在共享式以太网中的传递过程中,先是出现了ARP报文传递,之后才是ICMP报文。

解决:可能是由于在传输开始时,先使用ARP报文获取IP的mac地址,在之后便可使用ICMP报文。

四、实验总结

通过这次实验,我了解了Cisco Packet Tracer的使用方法,更加深入地理解了以太网以及VLAN的相关知识点,对于集线器、交换机、环境配置等方面也更加的熟悉,通过仿真,对于计算机网络下信息的收发流程也有了更深刻的认识。