Elementary Statistics: Math 080

Jordan Hanson

July 10, 2020

Whittier College Department of Physics and Astronomy

Unit 0 Outline

- 1. Topics from Chapter 1: 1.1, 1.2, 1.3
 - What is a statistic?
 - Probability examples
 - Data and sampling
- 2. Topics from Chapter 2: 2.1 2.4, 2.5 2.8
 - Data visualization
 - Location of the data in numerical space
- 3. Topics from Chapter 3: 3.1, 3.2, 3.3
 - Two rules of probability

Topics from Chapter 2

Stemplots

Useful for numbers like grades. Most significant digit is the category.

Stem	Leaves
0	
1	
2	
3	
4	[3.0]
5	[6.0]
6	[7.0, 9.0]
7	[8.0, 0.0, 8.0, 1.0, 2.0, 5.0, 7.0]
8	[8.0, 3.0, 4.0, 6.0, 2.0, 1.0, 2.0, 1.0]
9	[8.0, 7.0, 1.0, 4.0]

Table 1: A *stemplot* of a grade distribution.

Stemplots

Procedure:

- 1. Identify the approximate order of magnitude of the sample.
- 2. Within that order of magnitude, create \approx 10 stems, corresponding to the base-10 digits.
- 3. For each data point, call the non-most significant digits the *leaves* and drop the leaves in the category with the matching leaf.

Professor example: What is the stemplot of

Stemplots

Procedure:

- 1. Identify the approximate order of magnitude of the sample.
- 2. Within that order of magnitude, create \approx 10 stems, corresponding to the base-10 digits.
- 3. For each data point, call the non-most significant digits the *leaves* and drop the leaves in the category with the matching leaf.

Let's create a stemplot of:

- 1. Our ages in MATH080
- 2. My age and the rest of my department

(Stemplots lead in to the topic of histograms)

Histograms are a tool for measuring *probability distributions*. The inputs are the data points and the corresponding relative frequencies, or plain frequencies.

How many textbooks or books did you purchase for school last year? (Type in the chat).

- 1. Determine the bins, or binning
- 2. For each data point, drop it into the appropriate bin
- 3. Each time a measurement is dropped into a bin, the *count* increases by 1.
- 4. If a histogram displays plain frequencies, it is called *un-normalized*.
- 5. If a histogram displays relative frequencies, it is called *normalized*.

- 1. Histogram of books, by hand
- 2. Repeat with Excel/Calc

Practice with the FREQUENCY function in Calc/Excel:

```
=FREQUENCY(A1:A99; B1:B11)
```

Then press **control**+**shift**+**enter** to execute on arrays of data and bins. To *normalize*, input the relative frequencies, or divide frequecies by *N*. Assume the data is in C column:

```
=C1/N ...
```

For data that is appropriately "stationary," we can use histograms to estimate the mean *faster*, since we only have to loop over bins rather than every data sample. Let H_i represent the counts in a given bin, and i represent the bin sample. We have:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{M} i H_i \tag{1}$$

To obtain the mean in signal *amplitude*, you'll have to convert bin number to amplitude. **Professor example.**

When is a histogram appropriate? **Note**: There is a distinction between the *process or signal process* and the *the data*. Just because the data has a given \bar{x} and s does not imply that the signal process has or will continue to have the exact same values of μ and σ . The underlying process could be *non-stationary*.

Figure 1: Signal processes in (a) and (b) are considered non-stationary because one or both of μ and σ depend on time.

Which of the following pairs of number have the same stem?

- A: 17 and 27
- B: 33 and 43
- C: 16 and 11
- D: -1 and 1

How many *leaves* are there for the stems, given the data set?

Data set: 67, 77, 72, 74, 90, 91, 94, 88, 82.

Stems: 6, 7, 8, and 9

- A: 1, 3, 3, 2
- B: 1, 3, 2, 3
- C: 1, 3, 3, 3
- D: 1, 2, 2, 3

Consider the following relative frequencies below. Is the corresponding histogram *normalized?*

Relative frequencies: 0.1, 0.1, 0.25, 0.1, 0.1, 0.05

- A: Yes
- B: No

What is the *mean* of the histogram data below?

Bins: 0, 2, 4, 6, 8, 10 Data: 10, 60, 20, 5, 1, 1

■ A: 0.98

■ B: 2.56

• A: 4.11

■ B: 10

Conclusion

Unit 0 Outline

- 1. Topics from Chapter 1: 1.1, 1.2, 1.3
 - What is a statistic?
 - Probability examples
 - Data and sampling
- 2. Topics from Chapter 2: 2.1 2.4, 2.5 2.8
 - Data visualization
 - Location of the data in numerical space
- 3. Topics from Chapter 3: 3.1, 3.2, 3.3
 - Two rules of probability