Package 'SplitReg'

October 12, 2022

Type Package
Title Split Regularized Regression
Version 1.0.2
Date 2020-02-05
Author Anthony Christidis <anthony.christidis@stat.ubc.ca>, Ezequiel Smucler <ezequiels.90@gmail.com>, Ruben Zamar <ruben@stat.ubc.ca></ruben@stat.ubc.ca></ezequiels.90@gmail.com></anthony.christidis@stat.ubc.ca>
Maintainer Anthony Christidis <anthony.christidis@stat.ubc.ca></anthony.christidis@stat.ubc.ca>
Description Functions for computing split regularized estimators defined in Christidis, Lakshmanan, Smucler and Zamar (2019) <arxiv:1712.03561>. The approach fits linear regression models that split the set of covariates into groups. The optimal split of the variables into groups and the regularized estimation of the regression coefficients are performed by minimizing an objective function that encourages sparsity within each group and diversity among them. The estimated coefficients are then pooled together to form the final fit.</arxiv:1712.03561>
License GPL (>= 2)
Biarch true
Imports Rcpp (>= 0.12.12)
LinkingTo Rcpp, RcppArmadillo
Suggests testthat, glmnet, MASS
NeedsCompilation yes
RoxygenNote 7.0.2
Repository CRAN
Date/Publication 2020-02-05 18:50:02 UTC
R topics documented:
coef.cv.SplitReg
Index

2 coef.cv.SplitReg

coef.cv.SplitReg

Extract coefficients from a cv.SplitReg object.

Description

Extract coefficients from a cv.SplitReg object.

Usage

```
## S3 method for class 'cv.SplitReg'
coef(object, index = object$index_opt, ...)
```

Arguments

object Fitted cv.SplitReg object.

index Indices indicating values of lambda_S at which to extract coefficients. Defaults

to the optimal value.

. . . Additional arguments for compatibility.

Value

A vector of coefficients

See Also

```
cv.SplitReg
```

Examples

```
library(MASS)
set.seed(1)
beta <- c(rep(5, 5), rep(0, 45))
Sigma <- matrix(0.5, 50, 50)
diag(Sigma) <- 1
x <- mvrnorm(50, mu = rep(0, 50), Sigma = Sigma)
y <- x %*% beta + rnorm(50)
fit <- cv.SplitReg(x, y, num_models=2)
split.coefs <- coef(fit)</pre>
```

cv.SplitReg 3

cv.SplitReg Split Regularized Regression algorithm with a sparsity and diversity penalty.	
---	--

Description

Computes a split regularized regression estimator. The sparsity and diversity penalty parameters are chosen automatically.

Usage

```
cv.SplitReg(
   x,
   y,
   num_lambdas_sparsity = 100,
   num_lambdas_diversity = 100,
   alpha = 1,
   num_models = 10,
   tolerance = 1e-08,
   max_iter = 1e+05,
   num_folds = 10,
   num_threads = 1
)
```

Arguments

	X	Design matrix.
	У	Response vector.
num_lambdas_sparsity		
		Length of the grid of sparsity penalties.
num_lambdas_diversity		
		Length of the grid of diversity penalties.
	alpha	Elastic Net tuning constant: the value must be between 0 and 1 . Default is 1 (Lasso).
	num_models	Number of models to build.
	tolerance	Tolerance parameter to stop the iterations while cycling over the models.
	max_iter	Maximum number of iterations before stopping the iterations while cycling over the models.
	num_folds	Number of folds for cross-validating.
	num_threads	Number of threads used for parallel computation over the folds.

4 cv.SplitReg

Details

Computes a split regularized regression estimator with num_models (G) models, defined as the linear models β^1, \ldots, β^G that minimize

$$\sum_{g=1}^{G} \left(\frac{1}{2n} \|\mathbf{y} - \mathbf{X} \boldsymbol{\beta}^{g}\|^{2} + \lambda_{S} \left(\frac{(1-\alpha)}{2} \|\boldsymbol{\beta}^{g}\|_{2}^{2} + \alpha \|\boldsymbol{\beta}\|_{1} \right) + \frac{\lambda_{D}}{2} \sum_{h \neq g} \sum_{j=1}^{p} |\beta_{j}^{h} \beta_{j}^{g}| \right),$$

over grids for the penalty parameters λ_S and λ_D that are built automatically. Larger values of λ_S encourage more sparsity within the models and larger values of λ_D encourage more diversity among them. If $\lambda_D=0$, then all of the models are equal to the Elastic Net regularized least squares estimator with penalty parameter λ_S . Optimal penalty parameters are found by num_folds cross-validation, where the prediction of the ensemble is formed by simple averaging. The predictors and the response are standardized to zero mean and unit variance before any computations are performed. The final output is in the original scales.

Value

An object of class cv.SplitReg, a list with entries

betas Coefficients computed over the path of penalties for sparsity; the penalty for

diversity is fixed at the optimal value.

intercepts Intercepts for each of the models along the path of penalties for sparsity.

index_opt Index of the optimal penalty parameter for sparsity.

lambda_sparsity_opt

Optimal penalty parameter for sparsity.

lambda_diversity_opt

Optimal penalty parameter for diversity.

lambdas_sparsity

Grid of sparsity parameters.

lambdas_diversity

Grid of diversity parameters.

cv_mse_opt Optimal CV MSE.

call The matched call.

See Also

```
predict.cv.SplitReg, coef.cv.SplitReg
```

Examples

```
library(MASS)
set.seed(1)
beta <- c(rep(5, 5), rep(0, 45))
Sigma <- matrix(0.5, 50, 50)
diag(Sigma) <- 1
x <- mvrnorm(50, mu = rep(0, 50), Sigma = Sigma)
y <- x %*% beta + rnorm(50)</pre>
```

predict.cv.SplitReg 5

```
fit <- cv.SplitReg(x, y, num_models=2)
coefs <- predict(fit, type="coefficients")</pre>
```

Make predictions from a cv.SplitReg object.

Description

Make predictions from a cv.SplitReg object, similar to other predict methods.

Usage

```
## $3 method for class 'cv.SplitReg'
predict(
   object,
   newx,
   index = object$index_opt,
   type = c("response", "coefficients"),
   ...
)
```

Arguments

object	Fitted cv.SplitReg object.
newx	Matrix of new values of x at which prediction are to be made. Ignored if type is "coefficients".
index	Indices indicating values of lambda_S at which to predict. Defaults to the optimal value.
type	Either "response" for predicted values or "coefficients" for the estimated coefficients.
	Additional arguments for compatibility.

Value

Either a matrix with predictions or a vector of coefficients

See Also

```
predict.cv.SplitReg
```

6 predict.cv.SplitReg

Examples

```
library(MASS)
set.seed(1)
beta <- c(rep(5, 5), rep(0, 45))
Sigma <- matrix(0.5, 50, 50)
diag(Sigma) <- 1
x <- mvrnorm(50, mu = rep(0, 50), Sigma = Sigma)
y <- x %*% beta + rnorm(50)
fit <- cv.SplitReg(x, y, num_models=2)
x.new <- mvrnorm(50, mu = rep(0, 50), Sigma = Sigma)
split.predictions <- predict(fit, newx = x.new, type="response")</pre>
```

Index

```
coef.cv.SplitReg, 2, 4
cv.SplitReg, 2, 3
predict.cv.SplitReg, 4, 5, 5
```