Chapter 17: Software Quality Assurance

February 15, 2021 9:11 AM

- Elements of <u>SQA Software Quality Assurance</u>
 - Standards
 - Reviews and Audits
 - Testing
 - o Error/defect collection and analysis
 - Change management
 - Education
 - Vendor management
 - Security management
 - Safety
 - o Risk management
- Tasks of the SQA Group
 - Prepares an SQA plan for a project that identifies
 - Evaluations to be performed
 - Audits and reviews to be performed
 - Standards that are applicable to the project
 - Procedures for error reporting and tracking
 - Documents to be produced by the SQA group
 - Amount of feedback provided to the software project team
 - Develops the project's software process description
 - The SQA group reviews the process description for <u>compliance with organizational</u> <u>policy</u>, <u>internal software standards</u>, <u>externally imposed standards</u>, and other parts of the software project plans
 - Verifies compliance with the defined software process
 - Identifies, documents, and tracks deviations from the process and verifies that corrections have been made
 - Periodically reports the results of its work to the project manager
 - Ensures that deviations is documented and handled according to procedure
 - Records and noncompliance and reports to senior management
- SQA Goals
 - ★○ Requirements Quality
 - The <u>correctness, completeness, and consistency of the requirements model</u> will have a strong influence on the quality of all work products that follow
 - Traceability the number of requirements not traceable to code
 - Model Clarity
 - ★○ Design Quality
 - Every element of the design model should be assessed by the software team to ensure that it exhibits high quality and conforms to requirements
 - Architectural integrity
 - Interface complexity
 - ★○ Code Quality
 - Source code and related work products must <u>conform to standards and exhibit</u> maintainability
 - Complexity
 - ★○ Quality control effectiveness QC effectiveness
 - Apply limited resources in the most effective way possible
 - Resource allocation staff hour percentage per activity

- Formal SQA
 - Assumes that a rigorous <u>syntax and semantics can be defined for every programming language</u>
 - o Allows the use of a rigorous approach to the specification of the requirements
 - o Applies mathematical proofs to demonstrate that the program conforms to specifications
- Statistical SQA
 - Errors and defects are collected and categorized
 - o Try to trace each error and defect's origin
 - ★○ Pareto principle 80% of defects can be traced to 20% of all possible causes
 - Move to correct the vital few 20% of problems
- \star Six Sigma 6σ (standard of deviation) for Software Engineering
 - Six standard deviations <u>3.4 defects per million occurrences</u> implying an extremely high quality standard
 - Defines three core steps and two follow-up steps:
 - ★■ Define customer requirements and deliverables
 - ★ Measure the existing process and its output to determine quality performance
 - ★ Analyze defect metrics and determine the vital few causes
 - For the same process:
 - ★ Improve the process by eliminating root causes
 - ★ Control the process to ensure future work does not reintroduce the causes
 - For a new process being developed:
 - ★ Design the process to avoid root causes and meet customer requirements
 - ★ Verify that the process will avoid defects and meet customer requirements.
 - Software Reliability probability of failure-free operation over a period of time
 - o MTBF Mean-time-between-failure
 - o MTTF Mean-time-to-failure
 - o MTTR Mean-time-to-repair
 - ★○ MTBF = MTTF + MTTR
 - Software Availability probability of requirements being met over a period of time
 - ★○ Availability = [MTTF/(MTTF + MTTR)] x 100%
 - Al and Reliability Models Al always requires statistics
 - ★○ <u>Bayesian inference</u> uses Bayes' theorem to <u>update the probability for a hypothesis</u> as more evidence becomes available
 - Bayesian inference can be used to <u>estimate probabilistic quantities</u> using incomplete historic data
 - * Regression model used to estimate where and what type of defects might occur in future prototypes
 - o Genetic algorithms used to grow reliability models based on historic data
 - Software Safety finds potential hazards that would cause an entire system failure
 - ISO 9001:2008 Standard contains 20 requirements
 - SQA Plan Contents
 - o Purpose of the plan
 - Description of all products inside the purview of SQA
 - Applicable standards
 - Where SQA tasks are placed throughout the software process
 - Tools for SQA tasks
 - Configuration procedures
 - Safety of SQA records
 - Organize responsibilities