Artificial Intelligence Techniques Applied to Automating Meteor Validation and Trajectory Quality Control to Direct the Search for Long Period Comets

Marcelo De Cicco,
Susana Zoghbi,
Andres P. Stapper,
Antonio J. Ordonez,
Jack Collison,
Peter S. Gural,
Siddha Ganju,
Jose-Luis Galache,
and Peter Jenniskens

SETI Institute NASA

Project Accomplishments

- Machine Learning Applications
 - Confirmation of Meteor Tracks
 - Identification of Streams
- Constrained Aggregation and Trajectory
- Interactive Visualization Tools
 - 3D Radiants
 - Stream Orbits
- Detecting Long Period Comets

Image Based Confirmation of Meteors with CNN

Tracklet Based Confirmation of Meteors with RF / LSTM

Time

-0.5

0.5

Time

1.5

0.4

0.5

0.1

Image versus Tracklet Comparison

Input Based on:	Method	% that were false alarms	Recall = % of known meteors	Figure of Merit
Images	Convolutional Neural Network	11.7	90.3	89.5
Tracklets	Random Forest	10.0	80.6	84.9
	Long-Short Term Memory	10.0	89.1	89.6

Cluster Identification by Hand vs. Automated

Multi-Dimensional Scaling using t-SNE

IAU Showers Identified

Stream ID via Unsupervised Machine Learning

Outbursts to Direct the Search for Long Period Comets

CAMS Interactive Visualization

CAMS Interactive Visualization

CAMS Stream Discovery Tools

CAMS Radiant Display Tool

CAMS Planetarium Visualization Tool

http://cams.seti.org/FDL/

http://www.meteorshowers.org/

Mission Statement

Provide more warning time for long period comet impacts by applying machine learning to meteor shower observations, whose trajectories enable dedicated searches along predicted orbits.

But that needs: long term and global monitoring!