Genetic Algorithms

- What are genetic algorithms?
- Genetic algorithm components
- Example problem
- Common questions about genetic algorithms
- Example applications
- Important references for genetic algorithms
- **Ten summary points**
- Demonstrations with Evolver

How large is the decision space?

- If we were to look at every alternative, what would we have to do? Of course, it depends.....
- **Think: enzymes**
 - Catalyze all reactions in the cell
 - Biological enzymes are composed of amino acids
 - There are 20 naturally-occurring amino acids
 - Easily, enzymes are 1000 amino acids long
 - $20^{1000} = (2^{1000})(10^{1000}) \approx 10^{1300}$
- A reference number, a benchmark:
 - **10^80** 0 number of atomic particles in universe

How large is the decision space?

- Problem: Design an icon in black & white How many options?
 - Icon is 32 x 32 = 1024 pixels
 - Each pixel can be on or off, so 2^1024 options
 - $2^1024 \approx (2^20)^50 \approx (10^6)^50 = 10^300$

Police faces

- 10 types of eyes
- 10 types of noses
- 10 types of eyebrows
- 10 types of head
- 10 types of head shape
- 10 types of mouth
- 10 types of ears
- but already we have 10^7 faces

How large is the decision space?

- Arranging n things
- Putting 100 things in the right order
 - 100!
- How many ways?
 - n! = n(n-1)(n-2).....1
 - ? (fact 3)
 - 6
 - ? (fact 5)
 - 120
 - ? (fact 100)
 - 93326215443944152681699238856266700490715968 26438162146859296389521759999322991560894146 397615651828625369792082722375825118521091686 4000000000000000000000000

Heuristic Search

- Decision spaces are typically extremely large
- Some algorithms are available for effectively searching certain "nice" decision spaces (e.g., linear programming)
- But most problems are "not so nice" and we lack programmed solution techniques
- Yet humans routinely solve such problems
- Amazing! What's going on?

Heuristic Search

Build rule-based expert systems

- Performance so far not super impressive (somewhat impressive)
- Doesn't show what's needed. Only shows that there exist such rules, not how they are found or how cognition could work. (rulegoverned vs rule-described)
- Expensive and very time-consuming in general

Build programs that acquire rules automatically

- Genetic algorithms
- Performance so far is very impressive (e.g., suspect ID)
- Still time-consuming, but can hope for a general architecture

What are genetic algorithms?

Genetics and evolution

- survival of the fittest gene pool natural selection
- meiosis involves exchange of genetic material crossover
- maintain genetic diversity mutation

Adaptive systems

finite automata / machine learning / history of GAs

Efficient search algorithm for complex problems

- randomly generate a population of potential solutions
- calculate fitness of each potential solution
- allow best individuals to breed selection and crossover (p<.6)
- allow low probability mutations (p<.007) to maintain diversity
- check for convergence of populations in the gene pool

Genetic algorithms vs hill climbing

Genetic Algorithm Components

Selection

- determines how many and which individuals breed
- premature convergence sacrifices solution quality for speed

Crossover

- select a random crossover point
- successfully exchange substructures
- 00000 x 111111 at point 2 yields 00111 and 11000

Mutation

- random changes in the genetic material (bit pattern)
- for problems with billions of local optima, mutations help find the global optimum solution

Evaluator function

- rank fitness of each individual in the population
- simple function (maximum) or complex function

Annual sales for <u>Avoiding Extinction</u> by JWI Publishers is 20,000 copies. Books are sold for \$30.

JWI Publishers have a variable cost of \$6 per book associated with producing the book.

JWI Publishers have two fixed cost components. Overhead, royalties and other costs total \$350,000. Setup cost per printing is \$6,000. Thus, 4 quarterly printing would cost $4 \times $6,000 = $24,000$.

Annual sales for <u>Avoiding Extinction</u> by JWI Publishers is 20,000 copies. Books are sold for \$30.

JWI Publishers have a variable cost of \$6 per book associated with producing the book.

JWI Publishers have two fixed cost components. Overhead, royalties and other costs total \$350,000. Setup cost per printing is \$6,000. Thus, 4 quarterly printing would cost $4 \times \$6,000 = \$24,000$.

EOQ model <u>yields</u>

$$N_{unit} = \sqrt{\frac{2PU}{C}} = \sqrt{\frac{2*\$6,000*20,000}{\$6}}$$

$$N_{unit} = \sqrt{C} \sqrt{N_{unit}} = 6.325 books / order$$

Quantity	6,326
Annual Book Sales	20,000
Number of Setups	3.16
Setup Cost	\$6,000
Selling Price	\$30
Variable Book Costs	\$6
Total Revenues	\$600,000
Variable Costs	\$18,978
Fixed Costs	\$18,969
Other Costs	\$350,000
Profit	\$212,052.67

★ Choose the problem representation

• 14 digits binary string allows an order size from 1 to 16,384 (2¹⁴)

Initialize the population

randomly generate 100 - 200 individual strings of length 14

Calculate fitness for each individual

- convert string to decimal and determine profit with that order size
- 00100010011010 = 2,202

Total Revenue	\$600,000
Variable costs	6 * 2,202 / 2
Setup costs	20,000 / 2,202 * \$6,000
Fixed costs	\$350,000
Profit	\$188,898

Perform selection

- long run survival of the fittest
- short run merely nudges population towards better performers
- replace the worst strings (bottom 5%) with copies of the best strings (top 5%), thus it would take a minimum of 20 generations before all strings are replaced slow convergence.

O Perform crossover

- randomly select two parents from the new population
- randomly determine whether to crossover (p = .6)
- if crossover, randomly select a crossover point (1-13)
- example:

 00100010011010 (2,202) x 11011001000111 (13,895)
 at 3 yields

11000010011010 (3,655) x 00111001000111 (12,442)

OPERATION Perform mutation

- bit by bit, string by string, randomly determine whether to mutate each bit using a very low probability (p=.007). If mutation rate is too high, it will prevent convergence.
- if mutation should occur, change 0 to 1 or vice versa.

Check convergence

- bias is one measure of agreement among the population
- bias assumes values between 50 and 100 percent
- bit bias
 - if 100 strings have 0 in position 1 and 100 have a 1, then the bit bias is 50%
 - a 75:25 split or a 25:75 split has a 75% bias
 - a 90:10 split or a 10:90 split has a 90% bias
- string bias is the average bias for each bit over all strings
- a population with a average bias of 95% has converged

Common Questions about Genetic Algorithms

Can a GA converge to a poor solution?

YES! Poor problem representation, premature convergence, a poor fitness evaluation algorithm, or luck of the random numbers could generate a poor solution

How do you know whether the GA solution is optimal or near optimal?

If you knew how to find the optimal solution, you would not need to use a GA. There is no guarantee that a GA will find an optimal solution. GAs find a good solution that is "better" than others.

Are neural networks better than GAs?

Neural networks require less structural knowledge. However, the type and number of node connections and hidden layers make it difficult to interpret relationships in a neural network.

GAs require a starting framework to setup the problem representation and calculate fitness

Genetic Algorithms: Example Applications

Criminal suspect recognition using Faceprints

- Developed by psychology department of New Mexico State University
- ◆Uses GAs to aid witnesses in the identification of criminal suspects
- ◆ Difficult to generate even from computer library of visual features.
- **↓**GA approach:
 - randomly generate 20 faces on a computer screen
 - witness rates each face on a 10 point scale
 - GA generates additional faces from 5 building blocks:
 eyes, mouth, nose, hair and chin. Each is a 7 bit string.
 - The five features are coded as a 35-bit binary string consisting of five 7-bit parameters (34 billion faces are possible)
 - Witness evaluates successive generations with 10 point scale
 - Convergence often occurs after 20 generations

Genetic Algorithms: Example Applications

Currency trading

- ◆ Prediction Company, Santa Fe New Mexico, developed GAs for currency trading
- ◆ left-hand sides of the rule predict when time-series data enter specific regions
- ▼ right-hand sides of the rule predict whether the time-series will go up or down
- ◆ objective function measures mean-squared error

Complex data base queries

- ◆ Boolean operators, multiple algebraic and logical relationships create large complex search spaces
- ◆Bennett K., Ferris M.C., & Ioannidis Y.E., (1989) developed a novel encoding of chromosomes to represent a binary tree query graph.
- ◆ System was able to find solutions when traditional search methods yielded too many non-relevant articles

Genetic Algorithms: Example Applications

Inter-office fiber-optic networks

- ◆US West designs expansion plans for large networks
 - old method began with designer intuition and experience
 - multiple rings of interconnected fiber-optic cable with a maximum of 48 nodes per ring
 - tested design with a network simulation tool
- ◆GA approach used a mutation operator to determine whether to expand the existing ring or add a new ring
 - first, fitness uses computer simulation to test performance
 - second, fitness uses cost to rank best performers
- ◆Saves \$1-\$10 million per design
 - design time cut from 2 person-months to 2 person-days
 - total 6 years savings could exceed \$100 million

Genetic Algorithms: Summary

- Field is not new. Holland's work began in 1970s.
- Most of the work has been done in computer science & engineering - not business applications
- Translate problem into a string representation often binary numbers (11000)
- Difficult to perform translation for some problems
- Little knowledge at startup randomly generated population of individuals

Genetic Algorithms: Summary

- Must be able to calculate fitness of each individual in the population
- Crossover is similar to mating and mutation transforms a stable population to maintain diversity of the search process
- GAs are not an optimization technique but often find good solutions for large complex problems

Important References for Genetic Algorithms

- Holland, J.H. 1975. <u>Adaptation in natural and artificial systems</u>. Ann Arbor, MI: The University of Michigan Press.
 - classic technical book with lots of theorems and proofs
- Goldberg, D.E. 1989. <u>Genetic algorithms in search, optimization, and machine learning</u>. Reading, MA: Addison-Wesley.
 - graduate textbook for a machine learning course code in Pascal
- Davis, L. (ed) 1991. <u>Handbook of genetic</u> <u>algorithms</u>. New York: Van Nostrand Reinhold.
 - tutorial and case applications with code in C or Lisp

Important References for Genetic Algorithms

- Koza, J. 1992. <u>Genetic programming: On the programming of computers by means of natural selection</u>. Cambridge, MA: MIT Press.
 - application of programs as bits rather than 1s and 0s
- Bauer, R.J. Jr. 1994. <u>Genetic algorithms and investment strategies</u>. New York: Wiley.
 - examples of GAs used for trading bonds and stocks
- Karjalainen, R. and Allen F. 1994. <u>Using genetic algorithms to find technical trading rules</u>. Wharton working paper

