

PACE: marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization

Yao Ni[†] Shan Zhang^{‡,†} Piotr Koniusz^{§,†}

[†]The Australian National University [§]Data61♥CSIRO [‡]Australian Institute for Machine Learning, The University of Adelaide

NeurIPS 2024 Spotlight

PACE: marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization

Yao Ni[†] Shan Zhang^{‡,†} Piotr Koniusz^{§,†}

[†]The Australian National University [§]Data61♥CSIRO [‡]Australian Institute for Machine Learning, The University of Adelaide

NeurIPS 2024 Spotlight

Yao Ni Seeking PostDoc Position. Scan his CV.

- Models (GPTs, Vision Transformers) are becoming increasingly large.
- Full parameter fine-tuning is resource-intensive.

- Models (GPTs, Vision Transformers) are becoming increasingly large.
- Full parameter fine-tuning is resource-intensive.

Parameter-Efficient Fine-Tuning (PEFT): Adjusting a small subset of parameters.

- Higher Performance.
- Less parameter storage.

- Models (GPTs, Vision Transformers) are becoming increasingly large.
- Full parameter fine-tuning is resource-intensive.

Parameter-Efficient Fine-Tuning (PEFT): Adjusting a small subset of parameters.

- Higher Performance.
- Less parameter storage.

Issues: lack of generalizability & forgetting pre-trained knowledge.

- Models (GPTs, Vision Transformers) are becoming increasingly large.
- Full parameter fine-tuning is resource-intensive.

Parameter-Efficient Fine-Tuning (PEFT): Adjusting a small subset of parameters.

- Higher Performance.
- Less parameter storage.

Issues: lack of generalizability & forgetting pre-trained knowledge.

Goal: improve generalization & retain pre-trained knowledge.

Motivation: Theorem 1

Theorem 1: Smaller gradient norm and larger dataset lead to better generalization on unseen data.

Motivation: Theorem 1

Theorem 1: Smaller gradient norm and larger dataset lead to better generalization on unseen data.

Motivation: Theorem 1

Theorem 1: Smaller gradient norm and larger dataset lead to better generalization on unseen data.

Smaller Gradients Norms Larger dataset

Smaller Gradients Norms ← Regularize gradients Larger dataset

Smaller Gradients Norms ← Regularize gradients
Larger dataset
small dataset in downstream tasks

Smaller Gradients Norms \leftarrow Regularize gradients Larger dataset

small dataset in downstream tasks

Smaller Gradients Norms ← Regularize gradients

Larger dataset

small dataset in downstream tasks

Retain knowledge by fine-tuned pre-trained alignment (FPA)

 \boldsymbol{x}

Fine-tuned
$$\theta_0 + \Delta \theta$$

Smaller Gradients Norms ← Regularize gradients

Larger dataset

small dataset in downstream tasks

Smaller Gradients Norms ← Regularize gradients

Larger dataset

small dataset in downstream tasks

Smaller Gradients Norms ← Regularize gradients Larger dataset

small dataset in downstream tasks

Smaller Gradients Norms ← Regularize gradients

Larger dataset

small dataset in downstream tasks

Prop 1. Naive alignment does not guarantee smaller gradient norms

Smaller Gradients Norms ← Regularize gradients Larger dataset

small dataset in downstream tasks

Retain knowledge by fine-tuned pre-trained alignment (FPA)

Gradient norms & reg. strength λ (CIFAR-100, ViT-B/16)

Prop 1. Naive alignment does not guarantee smaller gradient norms

 $W_0 \& b_0, \Delta W \& \Delta b$: pre-trained/adapter linear weights;

 $W_0 \& b_0, \Delta W \& \Delta b$: pre-trained/adapter linear weights;

 $W_0 \& b_0$, $\Delta W \& \Delta b$: pre-trained/adapter linear weights;

To regularize gradients and align fine-tuned pre-trained models, PACE perturbs adapter features and enforces consistency across perturbations.

Transformer block with adapter perturbed by noise

 $W_0 \& b_0$, $\Delta W \& \Delta b$: pre-trained/adapter linear weights;

 $W_0 \& b_0, \Delta W \& \Delta b$: pre-trained/adapter linear weights; x: sample; L: number of blocks

 $W_0 \& b_0, \Delta W \& \Delta b$: pre-trained/adapter linear weights; x: sample; L: number of blocks

 $W_0 \& b_0, \Delta W \& \Delta b$: pre-trained/adapter linear weights; x: sample; L: number of blocks

 $W_0 \& b_0, \Delta W \& \Delta b$: pre-trained/adapter linear weights; x: sample; L: number of blocks

To regularize gradients and align fine-tuned pre-trained models, PACE perturbs adapter features and enforces consistency across perturbations.

Transformer block with adapter perturbed by noise Consistency regularization between two outputs of x $\Delta h(\cdot)$ Transformer MLP → loss Block $h_0(\cdot)$ $f_1(\mathbf{x})$ Norm $h(\cdot) = h_0(\cdot) + \mathbf{z} \odot \Delta h(\cdot)$ where $\mathbf{z} \sim \mathcal{N}(\mathbf{1}, \sigma^2 \mathbf{I})$ \boldsymbol{W}_0 ΔW share weights $||f_1(\mathbf{x}) - f_2(\mathbf{x})||_2^2$ Multi-Head non-shared noises Attention

 $W_0 \& b_0, \Delta W \& \Delta b$: pre-trained/adapter linear weights; x: sample; L: number of blocks

Norm

Transformer

Block

Adapter Δh and

pre-trained h_0

in linear layer h

 $f_2(\mathbf{x})$

Transformer

Block

To regularize gradients and align fine-tuned pre-trained models, PACE perturbs adapter features and enforces consistency across perturbations.

Consistency regularization between two outputs of x Transformer block with adapter perturbed by noise $\Delta h(\cdot)$ Transformer MLP → loss Block $h_0(\cdot)$ $f_1(\mathbf{x})$ Norm $h(\cdot) = h_0(\cdot) + \mathbf{z} \odot \Delta h(\cdot)$ where $\mathbf{z} \sim \mathcal{N}(\mathbf{1}, \sigma^2 \mathbf{I})$ \boldsymbol{W}_0 ΔW share weights $||f_1(x) - f_2(x)||_2^2$ Multi-Head non-shared noises Attention $f_2(\mathbf{x})$ Transformer Norm Adapter Δh and Block pre-trained h_0 Transformer in linear layer h **Block**

 $W_0 \& b_0, \Delta W \& \Delta b$: pre-trained/adapter linear weights; x: sample; L: number of blocks

PACE improves generalization and retains pre-trained knowledge

Theorem 2: PACE regularizes first- and second-order gradients

Theorem 2: PACE regularizes first- and second-order gradients

 θ : model weights;

Theorem 2: PACE regularizes first- and second-order gradients

Theorem 2: PACE regularizes first- and second-order gradients

Theorem 2: PACE regularizes first- and second-order gradients

Theorem 2: PACE regularizes first- and second-order gradients

Gradient norms on CIFAR-100 w/ ViT-B/16

Theorem 3: PACE minimize fine-tuned pre-trained distance to retain knowledge.

 $f(\theta_0)$

Theorem 3: PACE minimize fine-tuned pre-trained distance to retain knowledge.

Distance between fine-tuned and pre-trained models (D^{fp}) on CIFAR-100 w/ ViT-B/16.

Experiments: Image Classification

Results on VTAB-1K with ViT-B/16.

Method	Natural					Specialized			Structured											
Mediod	Cifar100	Caltech101	DTD	Flowers102	Pets	SVHN	Sun397	Camelyon	EuroSAT	Resisc45	Retinopathy	Clevr-Count	Clevr-Dist	DMLab	KITTI-Dist	dSpr-Loc	dSpr-Ori	sNORB-Azim	NsORB-Ele	Mean Acc.
Full	68.9	87.7	64.3	97.3	86.9	87.4	38.8	79.7	95.7	84.2	73.9	56.3	58.6	41.7	65.5	57.5	46.7	25.7	29.1	68.9
Linear	64.4	85.0	63.2	97.0	86.3	36.6	51.0	78.5	87.5	68.5	74.0	34.3	30.6	33.2	55.4	12.5	20.0	9.6	19.2	57.6
VPT-Deep	78.8	90.8	65.8	98.0	88.3	78.1	49.6	81.8	96.1	83.4	68.4	68.5	60.0	46.5	72.8	73.6	47.9	32.9	37.8	72.0
Adapter	69.2	90.1	68.0	98.8	89.9	82.8	54.3	84.0	94.9	81.9	75.5	80.9	65.3	48.6	78.3	74.8	48.5	29.9	41.6	73.9
AdaptFormer	70.8	91.2	70.5	99.1	90.9	86.6	54.8	83.0	95.8	84.4	76.3	81.9	64.3	49.3	80.3	76.3	45.7	31.7	41.1	74.7
LoRA	67.1	91.4	69.4	98.8	90.4	85.3	54.0	84.9	95.3	84.4	73.6	82.9	69.2	49.8	78.5	75.7	47.1	31.0	44.0	74.5
NOAH	69.6	92.7	70.2	99.1	90.4	86.1	53.7	84.4	95.4	83.9	75.8	82.8	68.9	49.9	81.7	81.8	48.3	32.8	44.2	74.2
RepAdapter	69.0	92.6	75.1	99.4	91.8	90.2	52.9	87.4	95.9	87.4	75.5	75.9	62.3	53.3	80.6	77.3	54.9	29.5	37.9	76.1
RLRR	75.6	92.4	72.9	99.3	91.5	89.8	57.0	86.8	95.2	85.3	75.9	79.7	64.2	53.9	82.1	83.9	53.7	33.4	43.6	76.7
GLoRA	76.4	92.9	74.6	99.6	92.5	91.5	57.8	87.3	96.8	88.0	76.0	83.1	67.3	54.5	86.2	83.8	52.9	37.0	41.4	78.0
Baseline	74.9	93.3	72.0	99.4	91.0	91.5	54.8	83.2	95.7	86.9	74.2	83.0	70.5	51.9	81.4	77.9	51.7	33.6	44.4	76.4
+PACE	79.0	94.2	73.6	99.4	92.4	93.7	58.0	87.4	96.4	89.3	77.1	84.9	70.9	54.9	84.3	84.7	57.3	39.3	44.8	79.0

Experiments: Text classification & generation

Results for GLUE w/ RoBERTa_{base}. Matthew's/Pearson correlation for COLA/STSB, and accuracy for others.

Method	COLA	STSB	MRPC	RTE	QNLI	SST2	Avg.
Full	63.6	91.2	90.2	78.7	92.8	94.8	85.2
BitFit	62.0	90.8	92.7	81.5	91.8	93.7	85.4
Adapt	62.6	90.3	88.4	75.9	93.0	94.7	84.2
VeRA	65.6	90.7	89.5	78.7	91.8	94.6	85.2
LoRA	63.4	91.5	89.7	86.6	93.3	95.1	86.6
+PACE	66.2	92.0	91.4	86.9	93.6	95.6	87.6

Results for GSM-8K w/ Phi-3-mini-4k-instruct.

Method	Accuracy
Pre-trained	62.01
Full	73.16
LoRA	75.66
+PACE	78.77

Conclusions

Conclusions:

- PACE perturbs adapter features and enforces consistency regularization across perturbations.
- PACE regularizes gradients for improved generalization and reduces fine-tuned pre-trained distance to retain knowledge.