

Rețele de Calculatoare

Adresarea în rețelele de calculatoare

Sumar al laboratorului

Încapsularea datelor Antetul Network Access Antetul Internet Adresare fizică Adrese MAC

Adresare logică
Adrese IPv4
Adrese IPv6
EUI-64

Protocolul ARP
Ce face
Cum funcționează

Procesul de încapsulare Recapitulare

Access

Aplicații	4
Transport	3
Internet	2
Network Access	1

Identitatea în Rețelele de Calculatoare Cum ne identificăm

Încapsularea datelor Antetul Network Access

	Preambul	Adresă MAC destinație	Adresă MAC sursă	EtherType	Date/Payload	FCS
--	----------	--------------------------	---------------------	-----------	--------------	-----

Câmp	Dimensiune	Explicaţii	
Preambul	8 octeți	Sincronizează dispozitivele de emisie și recepție	
MAC dest.	6 octeți	Adresa fizică a destinatarului. Unicast, multicast sau broadcast	
MAC sursă	6 octeți	Adresa fizică a interfeței de emisie. Tot timpul unicast	
EtherType	2 octeți	Reprezintă protocolul încapsulat în cadrul Ethernet	
Date	46 – 1500 octeți	Reprezintă pachetul IPv4	
FCS	4 octeți	Utilizat pentru detecția erorilor într-un cadru	

Adresare Fizică Adrese MAC

Adresă Unică

La nivel global

Alcatuită din

48 Biti

Reprezentată pe

12 cifre hexazecimale

Exemple:

Windows: 54-E1-AD-BF-E2-AB

Linux: 00:50:56:ac:0a:e9

Adresare Logică Adrese IP

Deși adresarea MAC este unică la nivel glogal, ar prezenta o adevarată problemă transferul de date de la un host la altul dacă ne-am baza doar pe aceasta.

Se introduce conceptul de adresare logică – adresa IP

În rețelele de calculatoare, informația este transportată dintr-o rețea în alta utilizand rutere, iar acestea functionează pe baza adreselor de rețea

Adresare Logică Adresa IPv4

- Adresele IPv4:
 - Formate dintr-un şir de 32 de biţi şi un separator "."
 - O parte dintre biți identifică rețeaua, iar cealaltă parte definește zona de gazde (host-uri)

	Network Portion			Host Portion
IPv4 Address	192	168	10	21
Binary	11000000	10101000	00001010	00010101

- Masca de rețea (sau prefixul)
 - Formată din 32 biti cu 2 modalităti de prezentare:
 - Binar/zecimal similar cu adresele de IP
 - "/xx" unde XX reprezintă numărul de biți de "1" din mască
 - Identifică rețeaua din care un dispozitiv face parte, prin comparare bit cu bit cu adresa IP
 - Biții de 1 din masca de rețea identifică rețeaua, în timp ce biții de 0 identifică host-urile

Adresare Logică Adrese IPv6 – de ce?

Adresele de 128 biţi care sunt folosite în IPv6 permit un număr mai mare de adrese

IPv6 are următoarele avantaje în comparație IPv4:

- Managementul și delegarea adreselor devine mai ușoară;
- IPsec încorporat Securitate ridicată;
- Rutare optimizată;
- Depistarea adreselor duble.

Adresare Logică Adrese IPv6 – reguli de abreviere

În acest exemplu pornim de la adresa:

2031:0000:130F:0000:0000:09C0:876A:130B

Identificăm grupuri compacte de "0":

2031:0000:130F:0000:0000:09C0:876A:130B

Etapa 1 – înlocuim grupurile de "0" cu un singur simbol:

2031:0:130F:0:0:9C0:876A:130B

Etapa 2 – domeniile succesive de "0" sunt înlocuite de separatoare consecutive:

2031:0:130F::9C0:876A:130B

8 grupuri de cifre hexa **Formată** din 128 biţi Separator

Adresare Logică Tipuri de adrese - 1

Tip adresă	Adresare MAC	Adresare IP
Unicast	00-07-E9-42-AC-28	192.168.1.200/24
Multicast	01-00-5E-00-00-C8	224.0.0.200
Broadcast	FF-FF-FF-FF- FF	192.168.1.255/24

Adrese IP private: 10.0.0.0 – 10.255.255.255 172.16.0.0 – 172.31.255.255 192.168.0.0 – 192.168.255.255

Adresă MAC Broadcast: FF-FF-FF-FF-FF
Adrese IP Broadcast: biții din partea de host sunt setați pe 1

Adrese MAC Multicast: 01-00-5E-xx-xx-xx

Adrese IP Multicast: 224.0.0.0 – 239.255.255.255

Adresare Logică Tipuri de adrese - 3

Adresare Logică Tipuri de adrese unicast IPv6

Adrese unicast Globale – 2000::/3 (cele care incep 2...)

2003:4581:A7C1:EFDB::1327:1

2017:ACAD:1234:9999:FFFF:0010:51CD:AAAF

2001:db8:a0b:12f0::1 (sau poate fi scris cu litere mici)

Adrese unicast Link Local (Locale) – FE80::/10

FE80::C001:37FF:FE6C:0

FE80::203:FFFF:FEE1:2a74

Adrese unicast site-local:

Primii 10 biţi pot lua valori astfel încît primul câmp este între FEC0 şi FEFF.

Adresare logică

Adrese IPv6 – cum le obținem: EUI-64 sau generare aleatoare

1

Se ia adresa MAC și se împarte în 2 componente

Se introduc octeții FF și FE în mijlocul adresei

Al 7-lea bit din primul octet își modifică valoarea

Încapsularea datelor Antetele protocoalelor IP

Version	Lungime antet	Tipul serviciului	Lungime totală		
Identificare			Flags	Offset	
Time	to live	protocol	Header checksum		
Ip Sursă (32 biti)					
Ip Destinatie (32 biti)					
Optiuni					

În cadrul laboratorului ne interesează doar campurile ROŞII

De câmpul TTL/nr de hop-uri ne vom lega în cadrul altui lab.

Version	Trafic Class	Flow label			
Lungimea	pachetului	Următorul antet	Numar de hop-uri		
Adresa Ip Sursă (128 biti)					
Adresa IP Destinatie (128 biti)					
Date					

Protocolul ARP Funcție

ARP- Address Resolution Protocol

Funcție: mapează o adresă fizică pe o adresă logică

Din fereastra cmd.exe din windows putem vedea întreaga tabelă ARP a unui host

Protocolul ARP Funcționare

Ip sourse: 192.168.1.10 Ip dest: 192.168.1.50

MAC source: ab:cd:ef:12:34:56

MAC dest: ff:ff:ff:ff:ff

Ip sourse: 192.168.1.50 Ip dest: 192.168.1.10

MAC source: 98:76:54:32:1f:eb MAC dest: ab:cd:ef:12:34:56

Mac: : 98:76:54:32:1f:eb

IP: 192.168.1.50

Ip sourse: 192.168.1.10 Ip dest: 192.168.1.50

MAC source: ab:cd:ef:12:34:56 MAC dest: 98:76:54:32:1f:eb

- Înainte de a trimite pachete în mod unicast este necesară cunoașterea MAC-ului destinație
- Emiţătorul (E.) trimite o cerere ARP de tip broadcast, utilizand adresa de IP a Receptorului (R.)
- 3. Switch-ul trimite broadcast pe toate porturile sale, R. își recunoaste adresa IP și trimite un răspuns de tip unicast cu MAC-ul și IP-ul său
- 4. E. primește un raspuns ARP, își face update a tabelei ARP și va transmise mai departe unicast.

That's all for today, see you next time!

Nu uitați de tema de casă termen de predare până în data de 04.11.2023

