Algorithm Design Brief: Quantum-Enhanced Burgers' Equation Solver via HSE Framework

Quantum CFD Challenge Team

August 10, 2025

1. Introduction

Framework Selection: Hydrodynamic Schrödinger Equation (HSE) Rationale:

- Direct mapping of fluid dynamics to quantum wavefunction evolution
- Lower classical overhead vs. QTN (no tensor contractions)
- Native compatibility with universal quantum hardware
- Exponential state-space compression for velocity fields

Target PDE: 1D Viscous Burgers' Equation:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}$$

Key Innovation: Cole-Hopf transform converts nonlinear Burgers' equation into linear heat equation solvable with quantum Fourier methods.

2. Mathematical Mapping

Step 1: Cole-Hopf Transform

Define:

$$\phi(x,t) = \exp\left(-\frac{1}{2\nu} \int_0^x u(\xi,t)d\xi\right)$$

Transformed equation:

$$\frac{\partial \phi}{\partial t} = \nu \frac{\partial^2 \phi}{\partial x^2} \quad \text{(heat equation)}$$

Step 2: Quantum State Encoding

- Discretize $\phi(x,0)$ at $N=2^n$ grid points (n qubits)
- Normalize to quantum state:

$$|\psi(0)\rangle = \sum_{j=0}^{N-1} \sqrt{\frac{\phi_j(0)}{\sum_k \phi_k(0)}} |j\rangle$$

Step 3: Quantum Evolution

Solution in Fourier space:

$$\phi_k(t) = \phi_k(0) \cdot \exp(-\nu k^2 t)$$

Quantum circuit:

$$|\psi(t)\rangle = IQFT \cdot PhaseGate \cdot QFT \cdot |\psi(0)\rangle$$

Step 4: Velocity Reconstruction

Inverse Cole-Hopf:

$$u_j = -2\nu \frac{\phi_{j+1} - \phi_{j-1}}{2\Delta x \cdot \phi_j}$$

Requires measurement and classical gradient calculation.

3. Gate Decomposition

Circuit Architecture (for n qubits):

- 1. State Preparation:
 - Variational RY + CX gates $(O(2^n) \text{ depth})$
 - ullet Optimized with exact initialization for small n
- 2. Quantum Fourier Transform (QFT):
 - Basis: $H + \text{controlled-}R_Z$ gates
 - Depth: $O(n^2)$
- 3. Phase Evolution:
 - $R_Z(\theta_k)$ rotations, $\theta_k = -\nu t \cdot k^2$
 - Parallelized via phase kickback: O(n) depth
- 4. Inverse QFT:
 - Mirror of QFT with conjugate phases

Gate Counts (*n* qubits, $N = 2^n$ points):

Component	1-Qubit Gates	2-Qubit Gates	Depth
State Preparation	$O(2^n)$	$O(2^n)$	$O(2^n)$
QFT	O(n)	$O(n^2)$	$O(n^2)$
Phase Evolution	O(N)	0	$O(1)^{\dagger}$
Total	$O(2^n)$	$O(n^2)$	$O(2^n)$

 $^{^\}dagger \text{Parallelized}$ via bit-wise phase correction

4. Resource Estimates

Baseline Scenario ($\nu = 0.05, T = 0.1, N = 4 \text{ points}, n = 2 \text{ qubits}$):

Resource	Count	
Qubits	2	
Circuit Depth	15	
CNOT Gates	6	
T-Gates	0	

Scaling to N = 16 (n = 4 qubits):

Resource	Count
Qubits	4
Circuit Depth	42
CNOT Gates	40
T-Gates	0

Noise Mitigation Strategy

- 1. Zero-Noise Extrapolation (ZNE):
 - Pulse stretching factors [1.0, 1.5, 2.0]
 - Richardson extrapolation to zero-noise limit
- 2. Measurement Error Mitigation:
 - Calibrate 4×4 confusion matrix
- 3. Dynamic Decoupling:
 - $\bullet\,$ Insert $X\pi$ pulses during idle periods

5. Benchmark Metrics

Validation Protocol:

- 1. **L**₂-Error: $\sqrt{\frac{1}{N}\sum_{j}(u_{j}^{\text{quantum}}-u_{j}^{\text{classical}})^{2}}$
- 2. Wall-Clock Time: QPU execution time (including mitigation)
- 3. Noise Robustness: Simulated with IBM Mumbai noise model

Expected Results (N = 4, T = 0.1):

Metric	Noiseless Sim	Noisy Sim (0.01% readout)	Hardware (IBM Quito)
L ₂ -Error	0.02	0.08	0.12 (0.07 mit.)
Time/Step	0.5s	2.1s	84s
Success Probability	98%	76%	64% (89% mit.)

6. Scalability Pathway

Near-Term (1-3 years):

- $N=256~(n=8~{
 m qubits})$ with error mitigation
- $\bullet~$ Depth ${\approx}200$ (achievable with 99.9% CNOT fidelity)
- $\bullet~$ Time-to-solution: <5 minutes per time step

Long-Term (3-5 years):

- $\bullet~$ 3D extension via quantum lattice Boltzmann methods
- $\bullet\,$ Hybrid QTN-HSE for adaptive state compression
- Fault-tolerant implementation with surface codes

Navier-Stokes Extension:

- Pressure solver via quantum linear systems algorithm (HHL)
- Vorticity-Streamfunction formulation for incompressibility

7. Conclusion

Advantages of HSE:

- Polynomial speedup in state evolution
- Minimal classical co-processing
- ullet Hardware-efficient for spectral methods
- Clear path to 3D extensions

Limitations:

- Cole-Hopf restricted to 1D Burgers (no pressure term)
- $\bullet\,$ Measurement bottleneck for velocity reconstruction
- Requires high-fidelity QFT implementation

Outlook: Hybrid QTN-HSE frameworks will bridge gap to full Navier-Stokes simulations by combining state compression with spectral evolution efficiency.

Appendix: Critical Parameters

Symbol	Meaning	Value
ν	Viscosity	0.05
u_L	Left shock velocity	1.0
u_R	Right shock velocity	0.0
L	Domain length	1.0
T	Simulation time	0.1
Δx	Grid spacing	$L/2^n$

Implementation: Full prototype code available at https://github.com/SuptoO2/quantum-burgers-hse-solver

Algorithm Comparison: QTN vs HSE

QTN Approach	HSE Approach
	Representation
Matrix Product States (MPS)	Quantum Wavefunction
	Hardware Compatibility
Near-term devices (low entanglement)	Universal quantum processors
	Circuit Depth
Shallow (local operations)	Moderate (QFT-based)
	Classical Overhead
High (tensor contractions)	Low (only pre/post-processing)
	Noise Resilience
High (local operations)	Moderate (global operations)
	3D Extension
Natural (tensor networks)	Requires higher-dimensional QFT
	Best For
High-Re solutions, complex geometries	Homogeneous flows, spectral methods