FYMM/MMP IIIb 2020 Problem Set 2

Please submit your solutions for grading by Monday 9.11. in Moodle.

- 1. In this (perhaps a bit more challenging?) problem you need the following theorem (you do not need to prove it). Let $f: X \to Y$ be a homeomorphism, p a point $p \in X$. Then $f: X \setminus \{p\} \to Y \setminus \{f(p)\}$ is also a homeomorphism. Your task is to show that:
 - (a) \mathbb{R} is not homeomorphic to \mathbb{R}^2
 - (b) \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n (when $n \geq 3$).

(Hint: Use convenient topological invariants for help.)

- 2. What is $\pi_2(M)$ when i) $M = \mathbb{R}^3 \setminus \{1 \text{ point}\}$, ii) $M = \mathbb{T}^2$? (Hint: $\mathbb{T}^2 = S^1 \times S^1$)
- 3. Construct the coordinate neighbourhoods and coordinate functions for S^1 following the example in the lecture notes. Explain also in pictures. (You may also wish to check the Wikipedia entry, https://en.wikipedia.org/wiki/Manifold)
- 4. Express the vector field

$$V = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$$

in paraboloidal coordinates (u, v, φ) , the coordinate transformation is

$$x = uv \cos \varphi , y = uv \sin \varphi , z = \frac{1}{2}(u^2 - v^2).$$