Lösungen zum Thema Laufzeit

- (1) (a) Der Heap lässt sich in $\Theta(n)$ aufbauen. Wenn das Extrahieren des Minimums jedes Mal $\Theta(1)$ braucht, dauern alle Extrahierungsaktionen zusammen $\Theta(n)$, da man diesen Schritt n Mal macht. Es ergibt sich eine Gesamtlaufzeit von $\Theta(n)$, was der unteren Schranke des Sortierproblems widerspricht.
 - (b) Eine aufsteigend sortierte verkettete Liste erfüllt genau das gewünschte (Extrahieren des Minimums ist dann einfach "remove head").
 - (c) Beim Aufbau dieser Datenstruktur muss die Liste sortiert werden. Dies braucht wegen der unteren Schranke mindestens $\Theta(n \log n)$. Für ein Sortierverfahren ist der Aufbau der Datenstruktur aber nötig. Also widerspricht dies nicht den Überlegungen aus (a).
- (2) (a) Es ist a=1, b=2, f(n)=n und $\log_b a=\log_2 1=0$. Daher ist $f(n)=n\in\Omega(n^{0+0,5})$ mit $\varepsilon=0,5$ und $a\cdot f(\frac{n}{b})=\frac{n}{2}\leq \frac{1}{2}\cdot n=c\cdot f(n)$ mit $c=\frac{1}{2}$. Also ist Fall 3 des Mastertheorems anwendbar, es folgt $T(n)\in\Theta(n)$.
 - (b) Es ist $a=2,\ b=2,\ f(n)=1$ und $\log_b a=\log_2 2=1$. Daher ist $f(n)=1\in O(n^{1-0.5})$ mit $\varepsilon=0,5$. Also ist Fall 1 des Mastertheorems anwendbar, es folgt $T(n)\in\Theta(n)$.
 - (c) Es ist a = 1, b = 2, f(n) = 1 und $\log_b a = \log_2 1 = 0$. Daher ist $f(n) = 1 \in \Theta(n^0) = \Theta(1)$. Also ist Fall 2 des Mastertheorems anwendbar, es folgt $T(n) \in \Theta(\log n)$.
- (3) (a) Es ist $a=1,\ b=2,\ f(n)=\log(n)$ und $\log_b a=\log_2 1=0$. Nun ist einerseits $\log(n)\notin O(1)$, also sind die Fälle 1 und 2 nicht anwendbar. Es gilt zwar $\log(n)\in\omega(1)$, aber es existiert kein $\varepsilon>0$ mit $\log(n)\in\Omega(n^{0+\varepsilon})$, also ist es auch nicht Fall 3.
 - (b) Diese Gleichung hat nicht die Form des Mastertheorems, dort ist a eine Konstante.
 - (c) Es gilt $a=1, b=2, f(n)=n\cdot(2-\cos(n))$ und $\log_b a=\log_2 1=0$. Da $n\leq n\cdot(2-\cos(n))\leq 3n$, ist $n\cdot(2-\cos(n))\in\Omega(n^{0+0,5})$, was Fall 1 und Fall 2 ausschließt, aber die erste Bedingung von Fall 3 erfüllt. Die Regularitätsbedingung $a\cdot f(\frac{n}{b})\leq c\cdot f(n)$ für ein $c\in[0,1)$ ist aber verletzt. Dies soll hier nur veranschaulicht werden (und nicht exakt bewiesen). Wähle $n=2(2k+1)\pi$ mit $k\in\mathbb{N}$ (allerdings keine ganze Zahl).

$$f(n) = 2(2k+1)\pi \cdot (2 - \cos(2(2k+1)\pi)) = 2(2k+1)\pi \cdot (2-1) = 2(2k+1)\pi$$

$$f(\frac{n}{2}) = (2k+1)\pi \cdot (2-\cos((2k+1)\pi)) = (2k+1)\pi \cdot (2+1) = 3(2k+1)\pi = \frac{3}{2}f(n)$$

Wenn n nahe genug bei einer natürlichen Zahl liegt, wird die Regularitätsbedingung auch durch diese verletzt.

(d) Diese Gleichung ist überhaupt nicht lösbar, denn $T(n) = T(n) + 1 \Rightarrow 0 = 1$: Widerspruch!

- (4) (a) Falsch! Wähle $f(n) = n, g(n) = 2n, h(n) = j(n) = 2^n$.
 - (b) Wahr! Wegen $f \in \Theta(g)$ und $h \in \Theta(j)$ folgt: $\exists a, b \in \mathbb{R}^+, N \in \mathbb{N}$ mit $f(n) \leq a \cdot g(n)$ und $h(n) \leq b \cdot j(n)$ für $n \geq N$. Nun gilt:

$$\underbrace{f(n)}_{>0} \cdot \underbrace{h(n)}_{>0} \le \underbrace{a \cdot b}_{:=c} \cdot g(n) \cdot j(n) \qquad (n \ge N)$$

Der Beweis für die andere Ungleichung läuft analog.

- (c) Falsch! Wähle $f(n) = g(n) = h(n) = n, j(n) \equiv 1$.
- (d) Falsch! Wähle $f(n) = 2^n, g(n) = 4^n, h(n) = \lfloor \log_2 n \rfloor$. Alternative Lösung: $h(n) \equiv 1$.
- (e) Falsch! Wähle $f(n) = 2n, g(n) = n, h(n) = 2^n$.
- (f) Wahr! Wegen $f \in o(g)$ folgt: $\forall a \in \mathbb{R}^+ \exists N \in \mathbb{N} : f(n) < a \cdot g(n)$. Wähle $a = 1 \Rightarrow \exists N \in \mathbb{N} : f(n) < g(n)$. Nun gilt aber, da h monoton wachsend:

$$h(f(n)) \le h(g(n)) = 1 \cdot h(g(n)) \qquad (n \ge N)$$

- (g) Wahr! $\forall n \in \mathbb{N}_0 : n^2 \ge n$. Da $f(n) \in \mathbb{N}_0$, folgt automatisch $f(n) \le (f(n))^2 = 1 \cdot (f(n))^2$.
- (h) Falsch! Wähle $f(n) \equiv 1$.
- (i) Falsch! Wähle f(n) = n.