Laboratorium 1

Piotr Witek

10 marca 2021

Aby dodać dwie liczby w reprezentacji zmiennoprzecinkowej, należy najpierw sprowadzić je do wspólnego wykładnika, cecha obu liczb musi być równa. Zatem mantysa liczby a musi być jak najmniejsza. Zatem w systemie o precyzji p i podstawie systemu β

$$\varepsilon = \beta^{1-p}$$

- 2 Rozważamy problem ewaluacji funkcji sin(x), m.in. propagację błędu danych wejściowych, tj. błąd wartości funkcji ze względu na zakłócenie h w argumencie x
- 2.1 Ocenić błąd bezwzględny przy ewaluacji sin(x)

$$\Delta \sin x = \left| \sin x - \sin \left(x \left(1 + \varepsilon_0 \right) \right) \right|$$

2.2 Ocenić błąd względny przy ewaluacji $\sin(x)$

$$\frac{\Delta \sin x}{\sin x} = \frac{\left|\sin x - \sin \left(x \left(1 + \varepsilon_0\right)\right)\right|}{\sin x}$$

2.3 Ocenić uwarunkowanie dla tego problemu

W ogólności:

$$cond\left(f\left(x\right)\right) = \lim_{x^* \to x} \frac{\left|\frac{f(x) - f(x^*)}{f(x)}\right|}{\left|\frac{x - x^*}{x}\right|} = \left|\frac{x \cdot f'\left(x\right)}{f\left(x\right)}\right|$$

Zatem dla $f(x) = \sin x$:

$$cond(f(x)) = \left| \frac{x \cdot \cos x}{\sin x} \right| = |x \cot x|$$

2.4 Dla jakich wartości argumentu x problem jest bardzo czuły?

Rysunek 1: Wykres funkcji $\left| \frac{x \cdot \cos x}{\sin x} \right| = |x \cot x|$

Funkcja $|x \cot x|$ zmierza do $+\infty$ dla wielokrotności π z wyjątkiem zera. Wynika z tego, że dla takich wartości argumentu x, problem jest bardzo czuły.

Funkcja sinx jest najgorzej uwarunkowana w otoczeniu miejsc zerowych. Sama funkcja sinx przyjmuje tam bardzo niewielkie wartości oraz ma największą pochodną. Najlepiej uwarunkowana jest zaś w miejscach, gdzie osiąga ekstremum (wartości funkcji -1 oraz 1). Pochodna funkcji sinx w tych punktach zeruje się.

3 Funkcja sinus zadana jest nieskończonym ciągiem:

$$\sin(x) = x - x^3/3! + x^5/5! - x^7/7! + \dots$$

Błąd progresywny to wartość bezwględna różnicy wartości przybliżonej i rzeczywistej wartości funkcji.

Błędem wstecznym nazywamy moduł z różnicy wartości argumentu podstawionego do funkcji i argumentu dla którego rzeczywista wartość funkcji jest równa wartości przybliżonej.

3.1 Jakie są błędy progresywny i wsteczny jeśli przybliżamy funkcję sinus biorąc tylko pierwszy człon rozwinięcią, tj.sin(x) x, dla x = 0.1, 0.5 i 1.0?

\overline{x}	y = sin(x)	$\sin(x) \approx x$	błąd progresywny	arcsin	błąd wsteczny
0,1	0,099833417	0,1	0,000166583	0,100167421	0,000167421
0,5	0,479425539	0,5	0,020574461	0,523598776	0,023598776
1	0,841470985	1	0,158529015	1,570796327	0,570796327

Tabela 1: Tablica błędów dla $sin(x) \approx x$

3.2 Jakie są błędy progresywny i wsteczny jeśli przybliżamy funkcję sinus biorąc pierwsze dwa człony rozwinięcią, tj. $\sin(\mathbf{x})$ x - $\mathbf{x}^3/6$, dlax = 0.1, 0.5i1.0?

x	y = sin(x)	$\sin(x) \approx x + \frac{x^3}{3!}$	błąd progresywny	arcsin	błąd wsteczny
0,1	0,099833417	0,099833333	0,0000000083313	0,099999916	0,000000083732
0,5	0,479425539	0,479166667	0,000258871938	0,499705041	0,000294959241
1	0,841470985	0,833333333	0,008137651475	0,985110783	0,014889216662

Tabela 2: Tablica błędów dla $\sin(x) \approx x + \frac{x^3}{3!}$

Im wieksza ilość wyrazów szeregu przybliża funkcję, tym bardziej przybliżona wartość staje się bliższa rzeczywistej, a wartości błędów stosunkowo szybko zmiejszają się. Należy nadmienić, że zgodnie z oczekiwaniami z poprzedniego zadania, w miarę zbliżania się wartości argumentów do miejsc zerowych, wartości błędów rosną. Jest to potwierdzeniem tezy, że w pobliżu miejsc zerowych funkcja $\sin x$ jest najgorzej uwarunkowana.

Zakładamy że mamy znormalizowany system zmiennoprzecinkowy z $\beta = 10$, p = 3, L = -98. Jaka jest wartość poziomu UFL (underflow) dla takiego systemu? Jeśli $x = 6.87 \cdot 10^{-97}$ i $y = 6.81 \cdot 10^{-97}$, jaki jest wynik operacji x - y?

Underflow to termin określający najmiejszą dodatnią wartość możliwą do przedstawienia w danym systemie znormalizowanym. UFL jest miarą dokładności systemu zmiennoprzecinkowego. W systemie znormalizowanym najmniejszą wartością mantysy jest 1, a najmniejsza wartość wykładnika wynosi L. Zatem:

$$UFL = \beta^L = 10^{-98}$$

W ramach operacji x-y otrzymamy $0.06\cdot 10^{-97}=6\cdot 10^{-99}$ co jest wartością mniejszą od UFL zatem wynik wyniesie 0.

5 Bibliografia

- 1. https://pl.wikipedia.org/wiki/IEEE_754
- 2. http://wazniak.mimuw.edu.pl/index.php?title=MNO3