Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Оцветяване върховете и ребрата на граф

Пламен Иванов, 31601

Факултет по математика и информатика Софийски университет "Св. Климент Охридски"

29 април 2021

Съдържание

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

- 1 Класическа задача.
- 2 Числа на Рамзи.
- 3 Числа на Фолкман.
- **4** Пресмятане на $F_e(3,3,6)$.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

- 1 Класическа задача.
- 2 Числа на Рамзи.
- 3 Числа на Фолкман.
- 4 Пресмятане на $F_e(3,3,6)$.

Класическа задача

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Основна задача

Да се докаже, че измежду всеки шест души има трима, които се познават (двама по двама), или трима, които не се познават.

На езика на графите

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Основна задача

Да се докаже, че ако ребрата на K_6 са оцветени или в синьо, или в червено, то има едноцветен триъгълник.

Определение

Пълния граф с n върха бележим с K_n .

Доказателство

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Основна задача

Да се докаже, че ако ребрата на K_6 са оцветени или в синьо, или в червено, то има едноцветен триъгълник.

Доказателство:

Разглеждаме произволен връх, нека го наречем A. От A излизат пет ребра и от принципа на Дирихле следва, че поне три от тях са едноцветни. Нека от A излизат например сини ребра към върховете B, C и D. Тогава, ако някое от ребрата BC, CD и DB е синьо, то в графа ще има син триъгълник. Инак и трите ребра са червени и получаваме едноцветния триъгълник BCD.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Твърдение

Най-малкият граф с това свойство е K_6 .

Бонус

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Твърдение

В двуцветен K_6 винаги има поне два едноцветни триъгълника.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

1 Класическа задача.

2 Числа на Рамзи.

3 Числа на Фолкман.

4 Пресмятане на $F_e(3,3,6)$.

Определение

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Определение

Число на Рамзи $R(x_1,x_2,\ldots,x_k)$ е най-малкото естествено число n, за което, както и да оцветим ребрата на K_n в k различни цвята, със сигурност ще има поне едно от следните: K_{x_1} -клика в цвят 1, K_{x_2} -клика в цвят 2, ..., K_{x_k} -клика в цвят k.

Пример

Вече знаем, че R(3,3) = 6.

Свойства и стойности

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Свойства

- R(m, n) = R(n, m).
- R(2, m) = m.
- $R(m, n) \leq R(m-1, n) + R(m, n-1).$

A212954 в OEIS

R	3	4	5	6
3	6	9	14	18
4	9	18	25	[35, 41]
5	14	25	[43, 49]	[58, 87]
6	18	[35, 41]	[58, 87]	[102, 165]

Таблица: Известни стойности

Редици

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

■ *R*(3, *n*), *A*000791 в OEIS:

$$3, 6, 9, 14, 18, 23, 28, 36, \dots$$

■ *R*(3,3,...,3), *A*003323 в OEIS:

$$3, 6, 17, \ldots$$

 \blacksquare R(n, n), A120414 в OEIS:

$$2, 6, 18, \ldots$$

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

- 1 Класическа задача.
- 2 Числа на Рамзи.
- 3 Числа на Фолкман.
- 4 Пресмятане на $F_e(3,3,6)$.

Определение

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Определение

Число на Фолкман $F_e(m,n,p)$ е най-малкото естествено число k, за което съществува граф с k върха, в който няма K_p -клика и както и да оцветим ребрата му в два цвята, ще има K_m -клика в единия цвят или K_n -клика в другия цвят.

Число на Фолкман $F_v(m, n, p)$ се дефинира аналогично, но се оцветяват върховете на графа.

Свойства и стойности

Оцветяване на граф

> Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Свойства

- $\mathbf{F}_{e}(m, n, p)$ и $F_{v}(m, n, p)$ съществуват само ако $p > \max\{m, n\}.$
- $ightharpoonup F_e(m,n,p) = R(m,n)$, ако p > R(m,n).
- $F_e(m, n, R(m, n)) \leq R(m, n) + 2.$
- $\mathbf{F}_{e}(m, n, R(m, n)) = R(m, n) + 2$, ако R(m, n) = R(m 1, n) + R(m, n 1).

Стойности

- $R(3,3) = R(3,2) + R(2,3) = 6 \text{ in } F_e(3,3,6) = 8.$
- $R(3,5) = R(2,5) + R(3,4) = 14 \text{ in } F_e(3,5,14) = 16.$
- R(4,4) = R(4,3) + R(3,4) = 18 и $F_e(4,4,18) = 20$.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

1 Класическа задача.

2 Числа на Рамзи.

3 Числа на Фолкман.

4 Пресмятане на $F_e(3,3,6)$.

Долна граница

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

 $F_e(3,3,6) > 6$

Долна граница

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Дали $F_e(3,3,6) > 7$?

Всеки граф със 7 върха е подграф на K_7 . Тъй като в K_7 се съдържа K_6 -клика, то поне едно ребро трябва да липсва. Нека върховете на K_7 са A,B,C,D,E,F,G. Ако липсва реброто AB, то в графа все още има K_6 -клика: BCDEFG. Следователно трябва да липсват поне две ребра.

Ако липсващите ребра имат общ връх, то все още има K_6 -клика. Следователно, за да няма K_6 -клика, трябва да липсват поне две ребра без общ връх.

Долна граница

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

 $F_e(3,3,6) > 7$

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Графът $K_3 + C_5$ е с 8 върха и без K_6 -клика.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Оцветяваме триъгълника *ABC* в червено и синьо.

Оцветяване на граф

> Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Ако реброто AD е червено, то както и да оцветим ребрата DB и DC, ще получим едноцветен триъгълник. Следователно всички ребра, излизащи от върха A, са сини.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Следователно C_5 е червен.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Поне едно от ребрата CH и CG е синьо. Нека CH е синьо.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Тогава BH е червено.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Реброто BG е синьо.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Тогава CG е червено.

Оцветяване на граф

Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Реброто CF е синьо.

Оцветяване на граф

> Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Оттук реброто BE трябва да е синьо и следователно реброто CE е червено.

Оцветяване на граф

> Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Както и да оцветим оставащите ребра CD и BD, ще получим едноцветен триъгълник.

$$F_e(3,3,6)=8$$

Оцветяване на граф

> Пламен Иванов

Класическа задача

Числа на Рамзи

Числа на Фолкман

Пресмятане на $F_e(3, 3, 6)$

Това доказва, че $F_e(3,3,6) = 8$.

Обобщение: $K_{R(m,n)-3}+C_5$ е пример, чрез който се доказва, че $F_e(m,n,R(m,n))\leq R(m,n)+2.$