ASSIGNMENT 3.1

##CATEGORICAL DATA

```
In [1]:
        import pandas as pd
         import numpy as np
        dataset = pd.read_csv("mall_customer.csv")
In [4]:
In [5]:
        dataset
Out[5]:
              CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
            0
                       1
                            Male
                                   19
                                                                        39
                                                    15
            1
                       2
                            Male
                                   21
                                                    15
                                                                        81
           2
                       3
                          Female
                                   20
                                                    16
                                                                         6
            3
                          Female
                                   23
                                                                        77
                                                    16
                          Female
                                                    17
                                                                        40
          195
                     196
                          Female
                                   35
                                                   120
                                                                        79
          196
                     197
                          Female
                                   45
                                                   126
                                                                        28
                                                                        74
          197
                     198
                            Male
                                   32
                                                   126
          198
                     199
                            Male
                                   32
                                                   137
                                                                         18
          199
                     200
                            Male
                                   30
                                                   137
                                                                        83
         200 rows × 5 columns
In [6]: dataset.shape
Out[6]: (200, 5)
In [8]: dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 5 columns):
              Column
          #
                                        Non-Null Count
                                                         Dtype
              -----
                                        _____
                                                         ----
                                        200 non-null
                                                         int64
          0
              CustomerID
          1
              Gender
                                        200 non-null
                                                         object
          2
              Age
                                        200 non-null
                                                         int64
          3
              Annual Income (k$)
                                        200 non-null
                                                         int64
              Spending Score (1-100)
                                        200 non-null
                                                         int64
         dtypes: int64(4), object(1)
         memory usage: 7.9+ KB
```

```
In [10]: dataset.mean()
         C:\Users\admin\AppData\Local\Temp/ipykernel_9284/1799472221.py:1: FutureWarnin
         g: Dropping of nuisance columns in DataFrame reductions (with 'numeric only=Non
         e') is deprecated; in a future version this will raise TypeError. Select only
         valid columns before calling the reduction.
           dataset.mean()
Out[10]: CustomerID
                                    100.50
         Age
                                     38.85
         Annual Income (k$)
                                     60.56
         Spending Score (1-100)
                                    50.20
         dtype: float64
In [12]: dataset.loc[:,'Age'].mean()
Out[12]: 38.85
In [13]: dataset.loc[:,'Annual Income (k$)'].mean()
Out[13]: 60.56
In [14]: # calculate men of rows
         dataset.mean(axis =1)[0:5]
         C:\Users\admin\AppData\Local\Temp/ipykernel 9284/3829306538.py:2: FutureWarnin
         g: Dropping of nuisance columns in DataFrame reductions (with 'numeric only=Non
         e') is deprecated; in a future version this will raise TypeError. Select only
         valid columns before calling the reduction.
           dataset.mean(axis =1)[0:5]
Out[14]: 0
              18.50
         1
              29.75
              11.25
         2
         3
              30.00
              23.25
         4
         dtype: float64
In [15]: # median represents the 50th percentile or the middle value
         dataset.median()
         C:\Users\admin\AppData\Local\Temp/ipykernel_9284/3868436747.py:3: FutureWarnin
         g: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=Non
         e') is deprecated; in a future version this will raise TypeError. Select only
         valid columns before calling the reduction.
           dataset.median()
Out[15]: CustomerID
                                    100.5
                                    36.0
         Age
         Annual Income (k$)
                                    61.5
         Spending Score (1-100)
                                    50.0
         dtype: float64
```

In [17]: # median of particular variable
dataset.loc[:,'Age'].median()

Out[17]: 36.0

In [19]: # mode represents most recently accessed
dataset.mode(axis=0)

dataset.mode(axis=0)

Out[19]: CustomerID Gender Age Annual Income (k\$) Spec

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Female	32.0	54.0	42.0
1	2	NaN	NaN	78.0	NaN
2	3	NaN	NaN	NaN	NaN
3	4	NaN	NaN	NaN	NaN
4	5	NaN	NaN	NaN	NaN
195	196	NaN	NaN	NaN	NaN
196	197	NaN	NaN	NaN	NaN
197	198	NaN	NaN	NaN	NaN
198	199	NaN	NaN	NaN	NaN
199	200	NaN	NaN	NaN	NaN

200 rows × 5 columns

In [20]: dataset.mode()

Out[20]: CustomerID Gender Age Annual Income (k\$) Spending Score (1-100) 0 Female 32.0 54.0 42.0 1 1 2 NaN NaN 78.0 NaN 3 NaN 2 NaN NaN NaN 3 4 NaN NaN NaN NaN 5 NaN NaN NaN NaN 195 196 NaN NaN NaN NaN 196 197 NaN NaN NaN NaN NaN 197 198 NaN NaN NaN 198 199 NaN NaN NaN NaN 199 200 NaN NaN NaN NaN

200 rows × 5 columns

```
In [21]: # measure of dispersion
         # standard deviation
         dataset.loc[:,'Age'].std()
Out[21]: 13.969007331558883
In [22]: # standard deviation of first 5 rows
         dataset.std(axis =1)[0:5]
         C:\Users\admin\AppData\Local\Temp/ipykernel 9284/4071516552.py:2: FutureWarnin
         g: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=Non
         e') is deprecated; in a future version this will raise TypeError. Select only
         valid columns before calling the reduction.
           dataset.std(axis =1)[0:5]
Out[22]: 0
              15.695010
         1
              35.074920
         2
               8.057088
         3
              32.300671
              15.413738
         dtype: float64
In [23]: # measure varience
         dataset.var()
         C:\Users\admin\AppData\Local\Temp/ipykernel 9284/2383837622.py:2: FutureWarnin
         g: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=Non
         e') is deprecated; in a future version this will raise TypeError. Select only
         valid columns before calling the reduction.
           dataset.var()
Out[23]: CustomerID
                                    3350.000000
                                    195.133166
         Age
         Annual Income (k$)
                                     689.835578
         Spending Score (1-100)
                                    666.854271
         dtype: float64
In [24]: from scipy.stats import iqr
In [25]: |iqr(dataset['Age'])
Out[25]: 20.25
```

In [26]: dataset.skew()

C:\Users\admin\AppData\Local\Temp/ipykernel_9284/4231230252.py:1: FutureWarnin
g: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=Non
e') is deprecated; in a future version this will raise TypeError. Select only
valid columns before calling the reduction.
 dataset.skew()

Out[26]: CustomerID 0.000000

Age 0.485569 Annual Income (k\$) 0.321843 Spending Score (1-100) -0.047220

dtype: float64

In [28]: # describe all the staistics
dataset.describe()

Out[28]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

In [30]: dataset.describe(include='all')

Out[30]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200	200.000000	200.000000	200.000000
unique	NaN	2	NaN	NaN	NaN
top	NaN	Female	NaN	NaN	NaN
freq	NaN	112	NaN	NaN	NaN
mean	100.500000	NaN	38.850000	60.560000	50.200000
std	57.879185	NaN	13.969007	26.264721	25.823522
min	1.000000	NaN	18.000000	15.000000	1.000000
25%	50.750000	NaN	28.750000	41.500000	34.750000
50%	100.500000	NaN	36.000000	61.500000	50.000000
75%	150.250000	NaN	49.000000	78.000000	73.000000
max	200.000000	NaN	70.000000	137.000000	99.000000

```
In [32]: # prepare groupby
grouped = dataset.groupby('Age')
grouped
```

Out[32]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000026429193B80>

```
In [34]: grouped.groups
```

Out[34]: {18: [33, 65, 91, 114], 19: [0, 61, 68, 111, 113, 115, 138, 162], 20: [2, 17, 3 9, 99, 134], 21: [1, 31, 35, 84, 105], 22: [5, 15, 87], 23: [3, 7, 29, 78, 100, 124], 24: [13, 41, 45, 95], 25: [21, 132, 144], 26: [75, 103], 27: [47, 58, 97, 120, 155, 177], 28: [142, 145, 171, 187], 29: [25, 48, 135, 161, 183], 30: [9, 37, 157, 159, 175, 185, 199], 31: [4, 23, 43, 49, 52, 125, 133, 163], 32: [69, 94, 137, 141, 143, 147, 169, 181, 191, 197, 198], 33: [51, 167, 192], 34: [88, 148, 149, 158, 190], 35: [6, 11, 16, 19, 20, 27, 139, 179, 195], 36: [38, 165, 168, 172, 173, 189], 37: [14, 156, 180], 38: [81, 112, 121, 129, 153, 193], 39: [123, 131, 151], 40: [28, 77, 93, 122, 127, 170], 41: [184, 188], 42: [36, 16 6], 43: [66, 126, 150], 44: [136, 152], 45: [26, 76, 196], 46: [22, 83, 182], 4 7: [55, 71, 96, 130, 154, 194], 48: [42, 85, 92, 98, 146], 49: [34, 44, 50, 79, 101, 104, 117], 50: [46, 54, 89, 119, 164], 51: [56, 118], 52: [18, 174], 53: [32, 59], 54: [24, 63, 107, 186], 55: [86], 56: [160], 57: [80, 140], 58: [12, 176], 59: [53, 74, 128, 178], 60: [30, 72, 73], 63: [64, 116], 64: [8], 65: [4 0, 110], 66: [106, 109], 67: [10, 62, 82, 102], 68: [67, 90, 108], 69: [57], 7 0: [60, 70]}

```
In [35]: grouped.size()
Out[35]: Age
          18
                  4
          19
                  8
          20
                  5
                  5
           21
           22
                  3
                  6
          23
          24
                  4
                  3
          25
                  2
          26
           27
                  6
                  4
          28
           29
                  5
          30
                  7
          31
                  8
          32
                 11
                  3
          33
                  5
           34
           35
                  9
           36
                  6
           37
                  3
                  6
           38
                  3
           39
                  6
          40
          41
                  2
                  2
          42
                  3
          43
                  2
          44
                  3
          45
                  3
          46
          47
                  6
                  5
          48
                  7
          49
                  5
           50
                  2
           51
                  2
           52
                  2
           53
           54
                  4
           55
                  1
                  1
           56
                  2
          57
                  2
           58
           59
                  4
                  3
          60
          63
                  2
                  1
          64
                  2
          65
                  2
          66
                  4
          67
                  3
          68
          69
                  1
```

dtype: int64

```
In [36]: grouped["Age"]
```

Out[36]: <pandas.core.groupby.generic.SeriesGroupBy object at 0x0000002642919EC10>

```
In [37]: grouped["Age"].size()
Out[37]: Age
          18
                  4
          19
                  8
          20
                  5
                  5
          21
          22
                  3
                  6
          23
          24
                  4
          25
                  3
                  2
          26
          27
                  6
                  4
          28
          29
                  5
          30
                  7
          31
                  8
          32
                 11
                  3
          33
                  5
          34
          35
                  9
                  6
          36
          37
                  3
                  6
          38
                  3
          39
                  6
          40
          41
                  2
                  2
          42
                  3
          43
                  2
          44
                  3
          45
                  3
          46
          47
                  6
          48
                  5
                  7
          49
                  5
          50
                  2
          51
                  2
          52
                  2
           53
          54
                  4
          55
                  1
                  1
          56
                  2
          57
                  2
          58
          59
                  4
          60
                  3
          63
                  2
                  1
          64
                  2
          65
          66
                  2
          67
                  4
          68
                  3
          69
                  1
          70
                  2
          Name: Age, dtype: int64
```

```
In [39]: # counting number of each category by count()
         print(dataset.groupby(["Gender"]).count().reset_index())
                    CustomerID Age Annual Income (k$)
                                                        Spending Score (1-100)
            Gender
         0 Female
                                                    112
                                                                            112
                           112
                                112
              Male
                            88
                                 88
                                                     88
                                                                             88
In [40]:
         print(dataset.groupby(['Gender']).mean().reset_index())
            Gender CustomerID
                                      Age Annual Income (k$) Spending Score (1-100)
         0 Female
                     97.562500 38.098214
                                                    59.250000
                                                                            51.526786
              Male 104.238636 39.806818
                                                    62.227273
                                                                            48.511364
```

ASSIGNMENT 3.2

```
In [1]: import pandas as pd
data = pd.read_csv("iris.csv")
```

```
In [3]:
          print('iris-setosa')
          setosa = data["Species"]=='iris-setosa'
          print(data[setosa].describe())
          print('\niris-versicolor')
          setosa = data['Species'] == 'iris-versicolor'
          print(data[setosa].describe())
          print('\niris-virginics')
          setosa = data['Species']=='iris-virginica'
          print(data[setosa].describe())
          iris-setosa
                  Ιd
                      SepalLengthCm
                                      SepalWidthCm
                                                      PetalLengthCm PetalWidthCm
          count
                 0.0
                                 0.0
                                                 0.0
                                                                 0.0
                                                                                0.0
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          mean
          std
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          min
          25%
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          50%
                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
                                 NaN
          75%
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          max
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          iris-versicolor
                       SepalLengthCm
                                      SepalWidthCm
                                                      PetalLengthCm PetalWidthCm
                 0.0
                                                 0.0
                                                                 0.0
          count
                                 0.0
                                                                                0.0
          mean
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          std
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          min
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          25%
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          50%
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          75%
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          max
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          iris-virginics
                  Ιd
                       SepalLengthCm
                                       SepalWidthCm
                                                      PetalLengthCm
                                                                      PetalWidthCm
          count
                 0.0
                                 0.0
                                                 0.0
                                                                 0.0
                                                                                0.0
          mean
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          std
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          min
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          25%
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          50%
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
          75%
                                                 NaN
                                                                 NaN
                                                                                NaN
                 NaN
                                 NaN
          max
                 NaN
                                 NaN
                                                 NaN
                                                                 NaN
                                                                                NaN
In [15]:
          import pandas as pd
          import numpy as np
          csv url='https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
          iris = pd.read_csv(csv_url,header=None)
In [16]:
In [18]: col_names=['Sepal_length', "Sepal_Width", "Petal_Length", "Petal_Width", "Species"]
```

```
In [19]: iris = pd.read_csv(csv_url,names=col_names)
print(iris)
```

	Sepal_length	Sepal_Width	Petal_Length	Petal_Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
• •		• • •			• • •
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

[150 rows x 5 columns]

```
In [20]: irisSet = (iris['Species']=='Iris-setosa')
    print('Iris-setosa')
    print(iris[irisSet].describe())

    irisVer =(iris['Species']=='Iris-versicolor')
    print('Iris-versicolor')
    print(iris[irisVer].describe())

    irisVir = (iris['Species']=='Iris-virginica')
    print('Iris-virginica')
    print(iris[irisVir].describe())
```

Iris-setosa

11.12-26.029								
	Sepal_length	Sepal_Width	Petal_Length	Petal_Width				
count	50.00000	50.000000	50.000000	50.00000				
mean	5.00600	3.418000	1.464000	0.24400				
std	0.35249	0.381024	0.173511	0.10721				
min	4.30000	2.300000	1.000000	0.10000				
25%	4.80000	3.125000	1.400000	0.20000				
50%	5.00000	3.400000	1.500000	0.20000				
75%	5.20000	3.675000	1.575000	0.30000				
max	5.80000	4.400000	1.900000	0.60000				
Iris-v	versicolor							
	Sepal_length	Sepal_Width	Petal_Length	Petal_Width				
count	50.000000	50.000000	50.000000	50.000000				
mean	5.936000	2.770000	4.260000	1.326000				
std	0.516171	0.313798	0.469911	0.197753				
min	4.900000	2.000000	3.000000	1.000000				
25%	5.600000	2.525000	4.000000	1.200000				
50%	5.900000	2.800000	4.350000	1.300000				
75%	6.300000	3.000000	4.600000	1.500000				
max	7.000000	3.400000	5.100000	1.800000				
Iris-virginica								
	Sepal_length	Sepal_Width	Petal_Length	Petal_Width				
count	50.00000	50.000000	50.000000	50.00000				
mean	6.58800	2.974000	5.552000	2.02600				
std	0.63588	0.322497	0.551895	0.27465				
min	4.90000	2.200000	4.500000	1.40000				
25%	6.22500	2.800000	5.100000	1.80000				
50%	6.50000	3.000000	5.550000	2.00000				
75%	6.90000	3.175000	5.875000	2.30000				
max	7.90000	3.800000	6.900000	2.50000				

In []: