

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY Z MATEMATYKI Poziom podstawowy

DATA: 5 maja 2022 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 45

WYPEŁNIA ZESPÓŁ NADZORUJĄCY
Uprawnienia zdającego do:
nieprzenoszenia zaznaczeń na kartę
dostosowania zasad oceniania
dostosowania w zw. z dyskalkulią.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 25 stron (zadania 1–35). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Odpowiedzi do zadań zamkniętych (1–28) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 6. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (29–35) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 9. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 10. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

W każdym z zadań od 1. do 28. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $(2\sqrt{8} - 3\sqrt{2})^2$ jest równa

A. 2

B. 1

- **C.** 26
- **D.** 14

Zadanie 2. (0-1)

Dodatnie liczby x i y spełniają warunek 2x = 3y. Wynika stąd, że wartość wyrażenia $\frac{x^2+y^2}{x\cdot y}$ jest równa

- **B.** $\frac{13}{6}$
- **c**. $\frac{6}{13}$
- **D.** $\frac{3}{2}$

Zadanie 3. (0-1)

Liczba $4 \log_4 2 + 2 \log_4 8$ jest równa

- **A.** $6 \log_4 10$
- **B.** 16
- **C.** 5

D. $6 \log_4 16$

Zadanie 4. (0-1)

Cena działki po kolejnych dwóch obniżkach, za każdym razem o 10% w odniesieniu do ceny obowiązującej w danym momencie, jest równa 78 732 zł. Cena tej działki przed obiema obniżkami była, w zaokrągleniu do 1 zł, równa

- **A.** 98 732 zł
- **B.** 97 200 zł
- **C.** 95 266 zł
- **D.** 94 478 zł

Zadanie 5. (0-1)

Liczba $3^{2+\frac{1}{4}}$ jest równa

- **A.** $3^2 \cdot \sqrt[4]{3}$ **B.** $\sqrt[4]{3^3}$

- **C.** $3^2 + \sqrt[4]{3}$ **D.** $3^2 + \sqrt{3^4}$

Zadanie 6. (0-1)

 $\begin{cases} 11x-11y=1\\ 22x+22y=-1 \end{cases}$ jest para liczb: $x=x_0$, $y=y_0$. Wtedy Rozwiązaniem układu równań

A.
$$x_0 > 0$$
 i $y_0 > 0$

B.
$$x_0 > 0$$
 i $y_0 < 0$

C.
$$x_0 < 0$$
 i $y_0 > 0$

D.
$$x_0 < 0$$
 i $y_0 < 0$

Zadanie 7. (0-1)

Zbiorem wszystkich rozwiązań nierówności $\frac{2}{5} - \frac{x}{3} > \frac{x}{5}$ jest przedział

A.
$$(-\infty,0)$$

B.
$$(0, +\infty)$$

$$\mathbf{C}.\left(-\infty,\frac{3}{4}\right)$$

C.
$$\left(-\infty, \frac{3}{4}\right)$$
 D. $\left(\frac{3}{4}, +\infty\right)$

Zadanie 8. (0-1)

Iloczyn wszystkich rozwiązań równania $2x(x^2 - 9)(x + 1) = 0$ jest równy

A.
$$(-3)$$

Zadanie 9. (0-1)

Na rysunku przedstawiono wykres funkcji f.

lloczyn $f(-3) \cdot f(0) \cdot f(4)$ jest równy

A.
$$(-12)$$

B.
$$(-8)$$

Zadanie 10. (0-1)

Na rysunku 1. przedstawiono wykres funkcji f określonej na zbiorze $\langle -4, 5 \rangle$.

Rysunek 1.

Funkcję g określono za pomocą funkcji f. Wykres funkcji g przedstawiono na rysunku 2.

4 5 6

Rysunek 2.

Wynika stąd, że

A.
$$g(x) = f(x) - 2$$

B.
$$g(x) = f(x - 2)$$

C.
$$g(x) = f(x) + 2$$

D.
$$g(x) = f(x + 2)$$

B.
$$\frac{9}{2}$$

Zadanie 12. (0-1)

Wykresem funkcji kwadratowej $f(x) = 3x^2 + bx + c$ jest parabola o wierzchołku w punkcie W=(-3,2). Wzór tej funkcji w postaci kanonicznej to

A.
$$f(x) = 3(x-3)^2 + 2$$

B.
$$f(x) = 3(x+3)^2 + 2$$

C.
$$f(x) = (x-3)^2 + 2$$

D.
$$f(x) = (x+3)^2 + 2$$

Zadanie 13. (0-1)

Ciąg (a_n) jest określony wzorem $a_n = \frac{2n^2 - 30n}{n}$ dla każdej liczby naturalnej $n \ge 1$. Wtedy a_7 jest równy

Zadanie 14. (0-1)

W ciągu arytmetycznym (a_n) , określonym dla każdej liczby naturalnej $n \ge 1$, $a_5 = -31$ oraz $a_{10} = -66$. Różnica tego ciągu jest równa

A.
$$(-7)$$

Zadanie 15. (0-1)

Wszystkie wyrazy nieskończonego ciągu geometrycznego (a_n) , określonego dla każdej liczby naturalnej $n \ge 1$, są <u>dodatnie</u> i $9a_5 = 4a_3$. Wtedy iloraz tego ciągu jest równy

A.
$$\frac{2}{3}$$

B.
$$\frac{3}{2}$$

B.
$$\frac{3}{2}$$
 C. $\frac{2}{9}$

D.
$$\frac{9}{2}$$

Zadanie 16. (0-1)

Liczba $\cos 12^{\circ} \cdot \sin 78^{\circ} + \sin 12^{\circ} \cdot \cos 78^{\circ}$ jest równa

A.
$$\frac{1}{2}$$

$$\mathbf{B.}\,\frac{\sqrt{2}}{2}$$

c.
$$\frac{\sqrt{3}}{2}$$

Zadanie 17. (0-1)

Punkty A, B, C leżą na okręgu o środku S. Punkt D jest punktem przecięcia cięciwy ACi średnicy okręgu poprowadzonej z punktu B. Miara kąta BSC jest równa α , a miara kąta ADB jest równa γ (zobacz rysunek).

Wtedy kat ABD ma miarę

A.
$$\frac{\alpha}{2} + \gamma - 180^{\circ}$$
 B. $180^{\circ} - \frac{\alpha}{2} - \gamma$ **C.** $180^{\circ} - \alpha - \gamma$ **D.** $\alpha + \gamma - 180^{\circ}$

B.
$$180^{\circ} - \frac{\alpha}{2} - \gamma$$

C.
$$180^{\circ} - \alpha - \gamma$$

D.
$$\alpha + \gamma - 180^{\circ}$$

Zadanie 18. (0-1)

Punkty A, B, P leżą na okręgu o środku S i promieniu G. Czworokąt G0 jest rombem, w którym kąt ostry PAS ma miarę 60° (zobacz rysunek).

Pole zakreskowanej na rysunku figury jest równe

- **A.** 6π
- **B.** 9π
- **C.** 10π
- **D.** 12π

Zadanie 19. (0-1)

Wysokość trójkąta równobocznego jest równa $6\sqrt{3}$. Pole tego trójkąta jest równe

- **A.** $3\sqrt{3}$
- **B.** $4\sqrt{3}$
- **C.** $27\sqrt{3}$
- **D.** $36\sqrt{3}$

Zadanie 20. (0-1)

Boki równoległoboku mają długości 6 i 10, a kąt rozwarty między tymi bokami ma miarę 120° . Pole tego równoległoboku jest równe

- **A.** $30\sqrt{3}$
- **B.** 30
- **C.** $60\sqrt{3}$
- **D.** 60

Zadanie 21. (0-1)

Punkty A=(-2,6) oraz B=(3,b) leżą na prostej, która przechodzi przez początek układu współrzędnych. Wtedy b jest równe

A. 9

- **B.** (-9)
- **C.** (-4)
- **D**. 4

Zadanie 22. (0-1)

Dane są cztery proste k, l, m, n o równaniach:

$$k: y = -x + 1$$

$$l: \ y = \frac{2}{3}x + 1$$

$$m: y = -\frac{3}{2}x + 4$$

$$n: y = -\frac{2}{3}x - 1$$

Wśród tych prostych prostopadłe są

A. proste k oraz l.

B. proste k oraz n.

C. proste l oraz m.

D. proste m oraz n.

Zadanie 23. (0-1)

Punkty K=(4,-10) i L=(b,2) są końcami odcinka KL. Pierwsza współrzędna środka odcinka KL jest równa (-12). Wynika stąd, że

A.
$$b = -28$$

B.
$$b = -14$$

C.
$$b = -24$$

D.
$$b = -10$$

Punkty A = (-4, 4) i B = (4, 0) są sąsiednimi wierzchołkami kwadratu ABCD. Przekątna tego kwadratu ma długość

- **A.** $4\sqrt{10}$
- **B.** $4\sqrt{2}$
- **C.** $4\sqrt{5}$
- **D.** $4\sqrt{7}$

Zadanie 25. (0-1)

Podstawą graniastosłupa prostego jest romb o przekątnych długości 7 cm i 10 cm. Wysokość tego graniastosłupa jest krótsza od dłuższej przekatnej rombu o 2 cm. Wtedy objętość graniastosłupa jest równa

- **A.** 560 cm^3
- **B.** 280 cm³
- **C.** $\frac{280}{3}$ cm³ **D.** $\frac{560}{3}$ cm³

Zadanie 26. (0-1)

Dany jest sześcian ABCDEFGH o krawędzi długości a. Punkty E, F, G, B są wierzchołkami ostrosłupa EFGB(zobacz rysunek).

Pole powierzchni całkowitej ostrosłupa EFGB jest równe

- **A.** a^{2}
- **B.** $\frac{3\sqrt{3}}{2} \cdot a^2$ **C.** $\frac{3}{2}a^2$
- **D.** $\frac{3+\sqrt{3}}{2} \cdot a^2$

Zadanie 27. (0-1)

Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych podzielnych przez 5 jest

- A. $9 \cdot 8 \cdot 7 \cdot 2$
- **B.** $9 \cdot 10 \cdot 10 \cdot 1$ **C.** $9 \cdot 10 \cdot 10 \cdot 2$ **D.** $9 \cdot 9 \cdot 8 \cdot 1$

Zadanie 28. (0-1)

Średnia arytmetyczna zestawu sześciu liczb: 2x, 4, 6, 8, 11, 13, jest równa 5. Wynika stąd, że

- **A.** x = -1
- **B.** x = 7
- **C.** x = -6
- **D.** x = 6

Zadanie 29. (0-2)

Rozwiąż nierówność:

$$3x^2 - 2x - 9 \ge 7$$

Zadanie 30. (0-2)

W ciągu arytmetycznym (a_n) , określonym dla każdej liczby naturalnej $n \geq 1$, $a_1 = -1$ i $a_4 = 8$. Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.

Wypełnia egzaminator	Nr zadania	29.	30.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 31. (0-2)

Wykaż, że dla każdej liczby rzeczywistej a i każdej liczby rzeczywistej b takich, że $b \neq a$, spełniona jest nierówność

$$\frac{a^2+b^2}{2} > \left(\frac{a+b}{2}\right)^2$$

Zadanie 32. (0-2)

Kąt α jest ostry i tg $\alpha=2$. Oblicz wartość wyrażenia $\sin^2\alpha$.

Wypełnia egzaminator	Nr zadania	31.	32.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 33. (0-2)

Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC|. Dwusieczna kąta BAC przecina bok BC w takim punkcie D, że trójkąty ABC i BDA są podobne (zobacz rysunek). Oblicz miarę kąta BAC.

Zadanie 34. (0-2)

Ze zbioru dziewięcioelementowego $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb ze zbioru M, których iloczyn jest równy 24. Oblicz prawdopodobieństwo zdarzenia A.

Wypełnia egzaminator	Nr zadania	33.	34.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 35. (0-5)

Wykres funkcji kwadratowej f określonej wzorem $f(x) = ax^2 + bx + c$ ma z prostą o równaniu y = 6 dokładnie jeden punkt wspólny. Punkty A = (-5,0) i B = (3,0) należą do wykresu funkcji f. Oblicz wartości współczynników a,b oraz c.

Wypełnia egzaminator	Nr zadania	35.
	Maks. liczba pkt	5
	Uzyskana liczba pkt	

