Equilíbrio de Solubilidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Sumário

1 Equilíbrio de Solubilidade

- 1. Produto de solubilidade
- 2. Efeito do íon-comum.
- 3. Formação de íons complexos.

1.1 Habilidades

- a. Calcular a constante do produto de solubilidade para um sal pouco solúvel em função de sua concentração molar.
- b. Calcular a solubilidade de um sal em função de sua constante do produto de solubilidade.
- c. Calcular a solubilidade de um sal em presença de íon comum.
- d. Calcular a solubilidade de um íon em presença de formação de complexos.

2 Precipitação

- 1. Predição de precipitação.
- 2. Precipitação seletiva.

2.1 Habilidades

- a. Determinar o precipitado formado quando soluções são misturadas.
- b. **Determinar** a ordem de precipitação quando um íon comum é adicionado a uma solução com diferentes íons.

Problemas

Nível I

2J01

A solubilidade molar do cromato de prata é 65 μ mol L $^{-1}$ a 25 $^{\circ}$ C.

 $\boldsymbol{Assinale}$ a alternativa que mais se aproxima do K_{ps} do cromato de prata.

- $1,1 \times 10^{-14}$
- $1,1 \times 10^{-13}$
- $1,1 \times 10^{-12}$
- $1,1 \times 10^{-11}$
- $1,1 \times 10^{-10}$

2J02

A solubilidade molar do iodato de chumbo (II) é $40\,\mu\text{mol}\,L^{-1}$ a $25\,^{\circ}\text{C}.$

Assinale a alternativa que mais se aproxima do K_{ps} do cromato de prata.

- $2,6 \times 10^{-14}$
- $2,6 \times 10^{-13}$
- $2,6 \times 10^{-12}$
- $2,6 \times 10^{-11}$
- $2,6 \times 10^{-10}$

2J03

Assinale a alternativa que mais se aproxima da solubilidade do iodato de cromo (III) a $25\,^{\circ}$ C.

- $11\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $21\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $31\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $41\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $51\,\mathrm{mmol}\,\mathrm{L}^{-1}$

Dados

• $K_{ps}(Cr(IO_3)_3) = 5 \times 10^{-6}$

2J04

Assinale a alternativa que mais se aproxima da solubilidade do sulfato de prata a 25 $^{\circ}$ C.

- $15\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $30\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $45\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $60\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $75\,\mathrm{mmol}\,\mathrm{L}^{-1}$

Dados

• $K_{ps}(Ag_2SO_4) = 1,4 \times 10^{-5}$

2J05

2J09

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de prata em uma solução $1\times 10^{-4}\,\text{mol}\,L^{-1}$ em cloreto de sódio a 25 °C.

- $0.4\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $0.8\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $1,2\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $1,6\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $2,0\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

2J06

Assinale a alternativa que mais se aproxima da solubilidade do carbonato de cálcio em uma solução $0,2\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cloreto de cálcio a $25\,^{\circ}\mathrm{C}$.

- $11\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $22\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $33\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $44\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $55\,\mathrm{nmol}\,\mathrm{L}^{-1}$

Dados

• $K_{ps}(CaCO_3) = 8.7 \times 10^{-9}$

2J07

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de zinco em pH = 6 a $25\,^{\circ}$ C.

- $0.1\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $0,2\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $0,3\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $0,4\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $0.5\,\mathrm{nmol}\,\mathrm{L}^{-1}$

Dados

• $K_{ps}(Zn(OH)_2) = 2 \times 10^{-17}$

2J08

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de alumínio em pH = 4,5 a 25 °C.

- $10\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $20\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $30\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $40\,\mu mol\,L^{-1}$
- $50\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$

Dados

• $K_{ps}(Al(OH)_3) = 1 \times 10^{-33}$

Assinale a alternativa que mais se aproxima da solubilidade do carbonato de magnésio em uma solução 3 mmol L⁻¹ em nitrato

 $1,5\,\mathrm{mmol}\,\mathrm{L}^{-1}$

de magnésio.

- $2.0\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $2,5 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $3.0 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $3,5 \,\mathrm{mmol}\,\mathrm{L}^{-1}$

Dados

• $K_{ps}(MgCO_3) = 1 \times 10^{-5}$

2J10

2J11

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de cobre (I) em uma solução $1,5~\rm mmol~L^{-1}$ em cloreto de potássio.

- $0,25\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $0.33 \, \mathrm{mmol} \, \mathrm{L}^{-1}$
- $0.50 \, \mathrm{mmol} \, \mathrm{L}^{-1}$
- $0,67 \, \mathrm{mmol} \, \mathrm{L}^{-1}$
- $0.80 \, \mathrm{mmol} \, \mathrm{L}^{-1}$

Dados

• $K_{ps}(CuCl) = 1 \times 10^{-6}$

Quando um amônia é adicionada à uma solução que contém íons prata, ocorre a formação do omplexo de coordenação:

 $Ag^{+}(aq) + 2NH_3(aq) \Longrightarrow Ag(NH_3)_2^{+}(aq)$ $K_f = 1.6 \times 10^7$

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de prata em uma solução $0,1\,\mathrm{mol}\,\mathrm{L}^{-1}$ em amônia.

- $2,6\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $4,6\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $6,6\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $8,6 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- $9.6\,\mathrm{mmol}\,\mathrm{L}^{-1}$

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

2J12

Quando um amônia é adicionada à uma solução que contém íons cobre, ocorre a formação do complexo de coordenação:

$$Cu^{2+}(aq) + 4NH_3(aq) \rightleftharpoons Cu(NH_3)_4^{2+}(aq)$$
 $K_f = 1,2 \times 10^{13}$

Assinale a alternativa que mais se aproxima da solubilidade do sulfeto de cobre (II) em uma solução $1,2 \text{ mol } L^{-1}$ em amônia.

- $1.8 \times 10^{-12} \, \mathrm{mol} \, \mathrm{L}^{-1}$
- $3.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$
- $5.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$
- $7.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$
- $9.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$

Dados

• $K_{ps}(CuS) = 1.3 \times 10^{-36}$

2J13

Assinale a alternativa que mais se aproxima da massa de nitrato de prata que precisa ser adicionada a $100\,\mathrm{mL}$ de uma solução $1\times10^{-5}\,\mathrm{mol}\,\mathrm{L}^{-1}$ de cloreto de sódio para o início da precipitação.

- 180 µg
- 270 μg
- 360 μg
- 540 µg
- 630 μg

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

2J14

Assinale a alternativa que mais se aproxima da massa de iodeto de potássio que precisa ser adicionada a 25 mL de uma solução 1×10^{-5} mol L $^{-1}$ de cloreto de sódio para o início da precipitação.

- 221 g
- 332 g
- 443 g
- 554 g
- 665 g

Dados

• $K_{ps}(PbI_2) = 1.4 \times 10^{-8}$

2J15

Assinale a alternativa correta a respeito da precipitação de hidróxido de níquel em uma solução $0,06 \, \text{mol} \, \text{L}^{-1}$ em cátions níquel (II).

- Independe do pH.
- Ocorre somente na faixa de pH alcalino.
- Ocorre somente na faixa de pH ácido.
- Não ocorre para pH < 6.
- Ocorre somente para pH > 12.

Dados

• $K_{ps}(Ni(OH)_2) = 6.5 \times 10^{-18}$

2J16

Assinale a alternativa correta a respeito da precipitação de hidróxido de níquel em uma solução 1 mmol $\rm L^{-1}$ em cátions ferro (III).

- Independe do pH.
- Ocorre somente na faixa de pH alcalino.
- Ocorre somente na faixa de pH ácido.
- Não ocorre para pH < 3.
- Ocorre somente para pH > 12.

Dados

• $K_{ps}(Fe(OH)_3) = 2 \times 10^{-39}$

2J17

Hidróxido de sódio é adicionado progressivamente a uma amostra contendo $0,05~\rm mol~L^{-1}$ em cátions magnésio e $0,01~\rm mol~L^{-1}$ em cátions cálcio.

Assinale a alternativa que mais se aproxima da concentração do primeiro íon a precipitar que permanece em solução quando o segundo precipita.

- $14\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $21\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $28\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $35\,\mathrm{nmol}\,\mathrm{L}^{-1}$
- $42\,\mathrm{nmol}\,\mathrm{L}^{-1}$

Dados

- $K_{ps}(Ca(OH)_2) = 5.5 \times 10^{-6}$
- $K_{ps}(Mg(OH)_2) = 1,1 \times 10^{-11}$

2J18

Sulfato de sódio é adicionado progressivamente a uma amostra contendo $0,01~{\rm mol}~{\rm L}^{-1}$ em cátions bário e $0,01~{\rm mol}~{\rm L}^{-1}$ em cátions chumbo (II).

Assinale a alternativa que mais se aproxima da concentração do primeiro íon a precipitar que permanece em solução quando o segundo precipita.

- $13\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $23\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $39\,\mu\text{mol}\,\text{L}^{-1}$
- $52\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- $69\,\mu mol\,L^{-1}$

Dados

- $K_{ps}(BaSO_4) = 1,1 \times 10^{-10}$
- $K_{ps}(PbSO_4) = 1.6 \times 10^{-8}$

Nível II

2J19

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de ferro (III) a $25\,^{\circ}$ C.

- $1,2 \times 10^{-18}$
- 2.0×10^{-18}
- 3.5×10^{-14}
- $1,2 \times 10^{-10}$
- 2.0×10^{-10}

Dados

• $K_{ps}(Fe(OH)_3) = 2 \times 10^{-39}$

2J20

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de alumínio a 25 °C.

- $1,0 \times 10^{-12}$
- $3,3 \times 10^{-12}$
- 6.8×10^{-10}
- $1,0 \times 10^{-9}$
- $3,3 \times 10^{-9}$

Dados

• $K_{ps}(Al(OH)_3) = 1 \times 10^{-33}$

2J21

Assinale a alternativa que mais se aproxima da solubilidade do fluoreto de cálcio em pH = 3.

- $4 imes10^{-6}\,mol\,L^{-1}$
- $4 imes10^{-5}\,\mathrm{mol}\,\mathrm{L}^{-1}$
- $4 imes10^{-4}\,mol\,L^{-1}$
- $4 imes10^{-3}\, ext{mol}\, ext{L}^{-1}$
- $4 imes10^{-2}\, ext{mol}\, ext{L}^{-1}$

Dados

- $K_a(HF) = 3.5 \times 10^{-4}$
- $K_{ps}(CaF_2) = 4 \times 10^{-11}$

2J22

Uma amostra de $500\,\mathrm{mL}$ de uma solução $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ em nitrato de prata é misturada com $500\,\mathrm{mL}$ de outra solução contendo $0,005\,\mathrm{mol}$ de cloreto de sódio e $0,005\,\mathrm{mol}$ de brometo de sódio.

Determine a concentração de todas as espécies em solução no equilíbrio.

Dados

- $K_{DS}(AgBr) = 7.7 \times 10^{-13}$
- $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

2J23

Uma amostra contendo 0,1 mol de nitrato de cálcio, 0,1 mol de nitrato de bário e 0,15 mol de sulfato de sódio foram adicionados em $600\,\mathrm{mL}$ de água destilada.

Determine a concentração de todas as espécies em solução no equilíbrio.

Dados

- $K_{ps}(BaSO_4) = 1.1 \times 10^{-10}$
- $K_{ps}(\text{CaSO}_4) = 2.4 \times 10^{-5}$

Gabarito

Nível I

- 1.
 2.
 3.
 4.
 5.

 6.
 7.
 8.
 9.
 10.

 11.
 12.
 13.
 14.
 15.
- 16. 17. 18.

Nível II

- 1.
- 2.
- 3.
- 4. -
- 5. -