Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2023. nov. 9.					1			

NEV:	
Neptun kód:	

Előadó: Márkus / Sarkadi

- Két egyforma autó követi egymást vízszintes, egyenes autópályán egyenletes v_θ sebességgel. A követési távolság l_θ. Tételezzük fel, hogy a t=0 időpillanatban a hátul közlekedő autó éppen a koordináta-rendszer origójában van. A t=0 időpillanatban az elől haladó autó fékezni kezd a gyorsulással. A hátul haladó autó sofőrjének reakcióideje Δt, azaz Δt idővel később kezdi a fékezést, mint az előtte haladó. Fékezéskor az ő gyorsulása is a.
 - a) Vázlatosan ábrázolja közös hely-idő diagrammon a két autó mozgását! Feltételezzük, hogy az autók nem ütköznek össze, mindkét autó "idejében" meg tudott állni, mert elegendő volt a követési távolság. (1)

 $f_{g} = \frac{U_{o}}{\alpha} \qquad l_{g} = \frac{\alpha}{2} \cdot t_{1}^{2} + U_{o}t_{1}$ $l_{g} = \frac{U_{o}^{2}}{\alpha} - \frac{U_{o}^{2}}{2\alpha} = \frac{U_{o}^{2}}{2\alpha}$

b) Legalább mekkora legyen lo, hogy ne történjen baleset? (1)

c) Mekkora legyen a követési távolság, hogy a hátsó autó legalább megkezdje a fékezést, mielőtt az ütközés

No At < l. + U. At - 2 - At-

lo > Vost - 20

A MU A MU A MU A L PLANT A	1	2	2	1	E1	E2	Mondat	Összes
Villamosmérnök alapszak Fizika1	1.	۷.	3.	.4.	E.L.	EZ.	Williat	033263
Nagy zárthelyi dolgozat, 2023. nov. 9.								

Egy α hajlásszögű lejtőn elhelyezűnk egy m tömegű testet, mely k rugóállandójú rugóhoz van kötve az ábra szerint. A test és a lejtő között a tapadási súrlódási egyűttható értéke μ A testet lefelé nyomjuk a lejtővel párhuzamosan, hogy a rugó egy adott x mértékben összenyomódjon. Ezt követően a testet elengedjük.

b) A fenti összenyomásnál lényegesen nagyobb x értéket állítunk be. Mekkora gyorsulással kezd mozogni a test? (1,5)

$$\mathcal{E} f_{x} = ma$$

$$kx - mg n = \lambda - \mu mg \cos \lambda = ma$$

$$\alpha = \frac{kx}{m} - g(n + \mu \cos \lambda)$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2023. nov. 9.								

 Egy R sugarů hengeres felületen mozgatunk egy m tömegű testet. A testre F nagyságů erőt fejtünk ki mindig a pálya érintőjének irányában. Amikor a test az ábrán látható módon a hengerfelület legfelső pontjára ér, a test sebessége ν. A test és a felület közötti csúszási súrlódási egyűttható értéke μ.

a) Mekkora erővel nyomja a test az alátámasztást? (1)

$$\begin{aligned}
& = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \sum_{m=1}^{$$

b) Mekkora a test gyorsulásának érintő irányú komponense? (1)

$$a_t = \frac{F}{m} - \mu \left(g - \frac{v^2}{R} \right)$$

c) Mekkora nagyságú és milyen irányú a test gyorsulása (1)

$$|a_e| = \sqrt{a_t^2 + a_{cp}^2} = ...$$

$$tgd = \frac{a_{cp}}{a_t} = ...$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2023. nov. 9.								

- Egy / hosszúságú, elhanyagolható tömegű fonálból és egy m tömegű pontszerű testből ingát készítűnk. Az ingát 60 fokos szögben térítjük ki a függőleges helyzetéhez képest, majd kezdősebesség nélkül elindítjuk az ingatestet.
 - a) Mekkora lesz a test sebessége abban a pillanatban, amikor a fonál 30 fokos szöget zár be a függőlegessel? (1,5)

Med. e. m. ter.

- mgl cos60 +0 = -mgl cos30 +
$$\frac{1}{2}$$
 mv²
 $v^2 = 2gl(\cos 30 - \cos 60)$
 $v = \sqrt{2gl(\frac{13}{2} - \frac{1}{2})} = \sqrt{gl(\frac{13}{2} - 1)}$

b) Mekkora erő feszíti ekkor a fonalat? (1,5)

$$\begin{aligned}
& = \sum_{k=1}^{\infty} m_{k} \cos 30 = m_{k}^{2} \\
& = \sum_{k=1}^{\infty} m_{k} \cos 30 = m_{k}^{2} \\
& = \sum_{k=1}^{\infty} m_{k} \cos 30 + m_{k}^{2} = \sum_{k=1}^{\infty} m_{k}^{2} \left(\frac{15}{2} - 1 \right) \\
& = \sum_{k=1}^{\infty} m_{k}^{2} \left(\frac{13}{2} + 15 - 1 \right) = m_{k}^{2} \left(\frac{3\sqrt{15}}{2} - 1 \right)
\end{aligned}$$

Villamosmérnök alapszak Fizika1	1.	2.	3,	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2023. nov. 9.								

Kifejtendő kérdések

Tekintsünk egy koordináta-rendszert, melynek x tengelye vízszintes, y tengelye függőleges. Az origóból elhajítunk egy testet va nagyságú kezdősebességgel a vízszintessel α szöget bezáró irányban. Írja fel a test kezdősebességének és gyorsulásának vektorait koordinátás alakban! (1) Írja fel a test sebesség-vektorának időfüggését koordinátás alakban! (1) Írja fel a test helyvektorát az idő függvényében koordinátás alakban! (1)

Nevezzen meg két tehetetlenségi erőt, mely egyenletes körmozgást végző vonatkoztatási rendszerben lép fel! (1) Adjon meg összefüggést a két említett erő meghatározására, és nevezze meg a benne szereplő fizikai mennyiségeket! (1) Az északi féltekén a 45° szélességi kör környezetében vonat közlekedik déli irányban. Ábrán szemléltesse, vagy a földrajzi irányok segítségével irja le, milyen irányban hatnak az említett tehetetlenségi erők! (1)

· Centrifugalis eri : $F_{g} = -m(\bar{\omega} \times (\bar{\omega} \times \bar{v}))$ · Cerriolus eris: $F_{cov} = -2m\bar{\omega} \times \bar{v}'$ · $\bar{\omega}$: forgo von rendrev higssberroge
· \bar{v} : test hely veltora
· \bar{v} : test seberroge a forgo rendrevher la part.

For myngoto irringel

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Nagy zárthelyi dolgozat, 2023. nov. 9.								

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifej

jez	ésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizika1 tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg!
1,	Az inercia-rendszer olyan vonatkoztatási rendszer, melyben
	A mértékegységeket kiegészítő mega-, kilo-, milli-, mikro- stb előtagokat
3.	Egy test 2 m utat tesz meg 1 m/s sebességgel, további 2 m utat pedig 2 m/s sebességgel. A test átlagsebessége
4.	Origóból 45°-os szög alatt elhajított test pályájának tetőpontján a helyvektor y koordinátája, mint az x koordinátája.
5.	Egy ismeretlen bolygó felszínén a nehézségi gyorsulás értéke fele a földi értéknek. A
	bolygón adott magasságból elejtett test földetérési idejeszerese a Földör
	mért földetérési időnek.
6.	Egyenletesen lassuló körmozgást végző tömegpont eredő gyorsulásvektora és sebességvektora által bezárt szög
7.	Egy tömegpont
8.	Az Északi-sarkon nyugvó testre nem hat Centrifugilla (Corolit.) erő.
9.	Egy körmozgás sugara 1 m, periódusideje 4 s. Az 1 másodperc alatt bekövetkező elmozdulás nagysága
10	. Egy homogén tömegeloszlású, gömb alakú bolygó felszínén a nehézségi gyorsulás értéke
	g. Egy kétszer akkora, ugyanilyen anyagú bolygó felszínén a nehézségi gyorsulás értéke Zg
11	. Függőlegesen felfelé elhajított test gyorsulása a pálya tetőpontján
12	Egy M tömegű pontszerű test gravitációs terében mozgatott m tömegpont potenciális energiáját a vonzócentrumtól r távolságra a o Harron összefüggés adja meg. A nulla potenciálú pont a van.