TCSS 588 Bioinformatics

Ka Yee Yeung kayee@uw.edu

Institute of Technology, UW-Tacoma 3/28/2018

Overview

- Jupyter notebooks
- Why do we care about statistics? What can we do with predictive models?
- · Review on statistics
- Regression
- · Building predictive models

Life cycle of an academic project

- 1. Individual exploratory work
- 2. Collaborative development
- 3. Parallel (scale up using cloud computing)
- 4. Publication and communication (reproducibly!)

 $\underline{https://www.slideshare.net/mbussonn/jupyter-a-platform-for-data-science-at-scale}$

-			
-			
-			
-			
_			
-			
-			
-			
-			
_			
-			
_			

Data science notebooks

- Mid 1980's: Start of computational notebooks: Matlab, Mathematica notebooks, Maple worksheets
 - GUI allowed for the interactive creation and editing of notebook documents that contain pretty-printed program code, formatted text
- 2010-2011: IPython web-notebooks and prototype
- 2014: Project Jupyter is a spinoff project from IPython

https://www.datacamp.com/community/blog/ipython-jupyter#gs.wngbPCE

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text.

The name "Jupyter" is actually short for "Julia, Python and $\mbox{\ensuremath{R}}\xspace"$

".ipynb" files: JSON (JavaScript Object Notation) based files embedding input and output

http://jupyter.org/

Kernels

- A kernel is a program that runs and introspects the user's code: it provides computation and communication with the frontend interfaces, such as notebooks.
- The Jupyter Notebook Application has three main kernels: the IPython, IRkernel and IJulia kernels.
- Community maintained kernels: Ruby, Javascript, Scala, Perl, Octave etc.
- https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

Go to your notebook now

7

Overview

- Jupyter notebooks
- Why do we care about statistics? What can we do with predictive models?
- · Review on statistics
- Regression
- Building predictive models

.

Motivation

Use data to identify relationships among variables and use these relationships to make predictions.

Looking at your data

- · How are the data distributed?
 - Where is the center?
 - What is the range?
 - What is the shape of the distribution (e.g., Gaussian, uniform)?
- Are there "outliers" ?
- Are there data points that don't make sense?

13

Types of Variables: Overview

Categorical
Quantitative

2 categories
more categories +
order matters +
numerical +
uninterrupted

Continuous variables

- Histograms
- · Box plots

Histogram bin count Histogram of x -3.5 -2.5 32 -1.5 109 -0.5 180 100 0.5 132 1.5 34 2.5 4 3.5 9 Toy example from wikipedia: http://en.wikipedia.org/wiki/Histogram

In-class exercise

- Predicting adverse drug reactions
 http://www.maayanlab.net/crowdsourcing/megatask1.php
- We will re-visit this task over this course.
- Basic data types in R:
 http://www.statmethods.net/input/datatypes.html

Boxplots in R

- http://www.r-bloggers.com/box-plot-with-r-tutorial/
- https://stat.ethz.ch/R-manual/R-devel/ library/graphics/html/boxplot.html (advanced, more on this later)

19

Correlation

- Measures the relative strength of the *linear* relationship between two variables
- Ranges between -1 and 1
- The closer to –1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

Linear regression Regression analysis describes the relationship between two (or more) variables. In correlation, the two variables are treated as equals. In regression, one variable is considered independent (=predictor) variable (X) and the other the dependent (=outcome, response) variable Y.

Simple linear regression

· Relation between 2 continuous variables

- Regression coefficient β1
 Measures association between y and x
 Amount by which y changes on average when x changes by one unit
- Least squares method
 Residual = actual data point fitted value

Predicted value for an individual...

$$\hat{y}_i = \begin{array}{c} \alpha + \beta * x_i \\ \text{Fixed} - \\ \text{exactly} \\ \text{on the} \\ \text{line} \end{array} + \begin{array}{c} \text{random error}_i \\ \text{Follows a normal distribution} \\ \text{distribution} \\ \end{array}$$

Assumptions (or the fine print)

- · Linear regression assumes that...
 - The relationship between X and Y is linear
 - $\boldsymbol{\mathsf{-}}\ \mathsf{Y}$ is distributed normally at each value of X
 - The variance of Y at every value of X is the same (homogeneity of variances)
 - The observations are independent

Simple linear regression using a single predictor X.

• We assume a model

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

where β_0 and β_1 are two unknown constants that represent the intercept and slope, also known as coefficients or parameters, and ϵ is the error term.

• Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the model coefficients, we predict future sales using

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x,$$

where \hat{y} indicates a prediction of Y on the basis of X = x. The hat symbol denotes an estimated value.

Estimation of the parameters by least squares

- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for Y based on the ith value of X. Then $e_i = y_i - \hat{y}_i$ represents the ith residual• We define the residual sum of squares (RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2,$$

or equivalently as

$$\text{RSS} = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \ldots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2.$$

• The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS. The minimizing values can be shown to be

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

where $\bar{y}\equiv \frac{1}{n}\sum_{i=1}^n y_i$ and $\bar{x}\equiv \frac{1}{n}\sum_{i=1}^n x_i$ are the sample means.

Credits

- · Textbook Ch. 3
- · Inspired by slides from Trevor Hastie, Robert Tibshirani, Kristin Sainani, Steven Buechler
- Data: http://www.maayanlab.net/ crowdsourcing/megatask1.php