Hướng dẫn bài tập Vi tích phân 2 Tuần 8

Ngày 29 tháng 7 năm 2024

Định lý cơ bản của tích phân đường

Định lý

Cho C là một đường cong trơn được cho bởi hàm vector ${\pmb r}(t),\, a \le t \le b.$ Cho f là một hàm thực khả vi liên tục trên vết của C. Khi đó

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)). \tag{1}$$

Nếu f là một hàm hai biến và C là một đường cong phẳng với điểm bắt đầu $A(x_1,y_1)$ và điểm cuối $B(x_2,y_2)$ thì

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(x_2, y_2) - f(x_1, y_1).$$

Định lý cơ bản của tích phân đường

Định lý

 $\int\limits_{C} {\bf F} \cdot d{\bf r} \ {\rm không \ phụ \ thuộc \ vào \ dường \ di \ trong \ } D \ {\rm n\'eu} \int\limits_{C} {\bf F} \cdot d{\bf r} = 0 \ {\rm v\'en}$ mọi đường cong kín C trong D.

Định lý

Giả sử ${m F}$ là trường vector liên tục trên miền mở liên thông D. Nếu $\int\limits_C {{m F} \cdot d{m r}}$ không phụ thuộc vào đường đi D, thì ${m F}$ là trường vector bảo toàn trên D; điều này có nghĩa, tồn tại một hàm f sao cho $\nabla f = {m F}$.

3/11

Định lý cơ bản của tích phân đường

Định lý

Nếu ${m F}(x,y)=P(x,y){m i}+Q(x,y){m j}$ là trường vector bảo toàn trong đó P và Q có đạo hàm riêng bậc một liên tục trên miền xác định D, thì trên khắp D ta có

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}. (2)$$

Định lý

Cho ${m F}=P{m i}+Q{m j}$ là trường vector trên miền đơn liên mở D. Giả sử P và Q có đạo hàm cấp một liên tục và

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$
(3)

Khi đó \boldsymbol{F} bảo toàn.

オロトオ部トオミトオミト ミーぞくの

Định lý Green

Định hướng đường cong C:

- + miền D nằm về phía bên trái \longrightarrow Định hướng dương.
- + miền D nằm về phía bên phải \longrightarrow Định hướng âm.

Định hướng dương

Định hướng âm

Định lý Green

Định lý Green sau đây cho mối liên hệ giữa tích phân bội hai trên miền phẳng D với tích phân đường trên biên ∂D , do đó định lý Green cũng được xem như là Định lý cơ bản của tích phân hai lớp.

Định lý Green

Giả sử D là miền phẳng bị chặn bởi một đường cong C đơn kín, trơn từng khúc, có định hướng dương tương ứng với D. Nếu P, Q có các đạo hàm liên lục trên miền mở chứa D, thì

$$\oint_C P dx + Q dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$
 (4)

Định lý Green

LƯU Ý: Ký hiệu

$$\oint_C P dx + Q dy = \oint_C P dx + Q dy$$
 (5)

được sử dụng để chỉ ra rằng tích phân đường được tính bằng cách sử dụng hướng dương của đường cong đóng C.

BÀI TẬP

8/11

Bài tập

Bài 1. Xác định F là trường vector bảo toàn hay không. Nếu nó bảo toàn, tìm hàm số f sao cho $F = \nabla f$.

- **a).** $F(x,y) = (2x 3y)\mathbf{i} + (-3x + 4y 8)\mathbf{j}$.
- **b).** $F(x,y) = e^x \sin y \, i + e^x \cos y \, j$.
- **c).** $F(x,y) = e^y i + xe^y j$.
- **Bài 2.** a). Tìm hàm số f sao cho $F = \nabla f$. b) Sử dụng a) để tính $\int\limits_C F \cdot d{\pmb r}$ dọc theo đường cong C được cho.
- **a).** ${\pmb F}(x,y)=x^2\,{\pmb i}+y^2\,{\pmb j},~C$ là cung parabol $y=2x^2$ từ (-1,2) đến (2,8).
- **b).** $F(x, y, z) = e^y \mathbf{i} + xe^y \mathbf{j} + (z+1)e^z \mathbf{k}$, $C: \mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$, $0 \le t \le 1$.

Bài tập

Bài 3. Chứng minh tích phân đường không phụ thuộc vào đường đi và tính tích phân đó. Với $\int\limits_C 2xe^{-y}\ dx + (2y-x^2e^{-y})\ dy,\ C$ là đường đi bất kỳ từ (1,0) đến (2,1).

Bài 4. Tính tích phân đường bằng 2 phương pháp: i). Trực tiếp ii). Sử dụng định lý Green

- a). $\oint_C y \ dx x \ dy$, C là đường tròn có tâm tại góc tọa độ và bán kính 1.
- **b).** $\oint_C (x-y) \ dx + (x+y) \ dy$, C là đường tròn có tâm tại góc tọa độ và bán kính 2.
- **c).** $\oint_C xy \ dx + x^2 \ dy$, C là các cạnh của các hình chữ nhật có các đỉnh (0,0), (3,0), (3,1) và (0,1).

Bài tập

Bài 5. Dùng định lý Green để tính tích phân đường dọc theo đường cong định hướng dương được cho.

a). $\int\limits_C xy^2\ dx + 2x^2y\ dy$, dọc theo đường cong kín C là các cạnh của tam giác có các đỉnh (0,0),(2,2), và (2,4).

b). $\int\limits_C (y+e^{\sqrt{x}})\ dx + (2x+\cos y^2)\ dy,\ C \text{ là biên của miền được bao}$ quanh bởi các parabol $y=x^2$ và $x=y^2$.

Bài 6. Dùng định lý Green để tính $\int\limits_C m{F} \cdot dm{r}$ với

 ${m F}(x,y)=\langle \sqrt{x}+y^3,x^2+\sqrt{y}\rangle$, C chứa cung của đường cong $y=\sin x$ từ (0,0) đến $(\pi,0)$ và đoạn thẳng từ $(\pi,0)$ đến (0,0).

11/11