Department of Computer Science and Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

THRASHING

Thrashing 1/4

• If a process does not have "enough" pages, the page-fault rate is very high.

- This leads to:
 - > Low CPU utilization
 - > Operating system thinks that it needs to increase the *degree of multiprogramming*.
 - ➤ Again number of frames per process decrease so *page fault* rather increase more.

Thrashing_{2/4}

This high paging activity is called thrashing.

 A process is thrashing if it is spending more time paging than executing.

Thrashing results in severe performance problems.

Thrashing_{3/4}

Explanation:

- As the degree of multiprogramming increases, CPU utilization also increases until a *maximum* is reached.
- ➤ If the degree of multiprogramming is increased even further, thrashing sets in, and CPU utilization drops sharply.
- At this point, to increase CPU utilization and stop thrashing, we must decrease the *degree of multiprogramming*.

Thrashing 4/4

Solution:

- The *locality model* states that, as a process executes, it moves from locality to locality.
- > A locality is a *set of pages* that are actively used together.
- A *program* is generally composed of several different localities, which may overlap.

Other Considerations

Prepaging:

> Prepaging is an attempt to prevent this high level of initial paging.

The strategy is to bring into memory at one time all the pages that will be needed.

Other Considerations

Page Size:

- The problem has no best answer.
- Some factors (*internal fragmentation, locality*) argue for a small page size, whereas others (*table size, I/O time*) argue for a large page size.
- ➤ However, the historical trend is toward larger page sizes, even for mobile systems.

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 3. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

