Análisis Aplicado Proyecto Cosecha de Trigo

1. Introducción

La cosecha de trigo por tonelada y hectárea en los últimos 24 años tiene los siguientes datos:

año	cosecha	año	cosecha	año	cosecha
1	11.72	9	16.91	17	21.21
2	13.38	10	18.16	18	22.81
3	14.10	11	18.43	19	23.97
4	13.87	12	18.70	20	23.27
5	14.80	13	20.46	21	23.80
6	15.58	14	19.16	22	25.59
7	14.36	15	20.01	23	24.93
8	16.30	16	22.41	24	26.59

El modelo de cosecha sigue la ecuación logística

$$c(t) = \frac{x_3}{1 + x_2 e^{-x(1)t}},\tag{1}$$

donde t es el año.

Se desean calcular los parámetros, (x_1, x_2, x_3) , para determinar la curva que mejor se aproxime a los datos, es decir se tiene el problema:

Minimizar
$$f(x) = \frac{1}{2} \sum_{k=1}^{24} [c(t_k) - y_k]^2$$
 (2)

2. Proyecto

Determinar los parámetros ótimos, x_1^* , x_2^* , x_3^*) para el problema de la cosecha por medio de las siguientes estrategias de optimización:

1. Búsqueda de Línea con dirección de máximo descenso.

- 2. Búsqueda de Línea con dirección de Newton.
- 3. Región de confianza.
- 4. Método BFGS con búsqueda de línea.
- 5. Método BFGS malo con búsqueda de línea.
- 6. Método DFP a la inversa con búsqueda de línea.
- 7. Método de Gauss-Newton.

En todos los casos el punto inicial es: (0, 1, 30), $tol = 10^{-5}$, kmax = 100.

Solución: $x^* = (0.0619, 2.4069, 40.3927) \text{ con } k^* = 7.$

En el script, **trigo.m**, determinar el valor óptimo, x^* , una gráfica con los datos y la función solución, una gráfica en tres dimensiones que muestre los valores, $(x_1(k), x_2(k), x_3(k))$ en la iteración k ésima.

3. Entrega

Enviar equipos por el chat, para asignarles la opción del proyecto.

Miércoles 2 de diciembre a las 17:30 horas

No más de tres integrantes por equipo.

Entrega por TEAMS, archivos de Matlab. Por TEAMS