Aula 4

A Gestão dos Recursos Materiais Estimativa e Previsão

Introdução às Ciências Empresariais UMA 2008/2009 •

Estimativa e Previsão (Forecasting)

É a ciência de prever acontecimentos futuros. Pode envolver a análise de dados passados e a sua projecção para o futuro com base em modelos matemáticos.

É o conjunto de estudos, avaliações e pesquisas no intuito de formar uma previsão, a partir da criação de um caderno de tendências para novos produtos, serviços, empresas e nichos de mercado.

Introdução às Ciências Empresariais_UMA_2008/2009

Horizonte Temporal da Previsão

As previsões estão classificadas pelo horizonte temporal futuro que irão cobrir. As três categorias são:

- Previsões de curto prazo: têm um horizonte temporal até um ano, mas é geralmente inferior a 3 meses. É usada para planificar compras, calendarizar trabalhos e níveis de produção.
- Previsões de médio prazo: têm um horizonte temporal de 3 meses até 3 anos. É utilizada na planificação de vendas e produção, como também na análise de vários planos de operação.
- Previsões de longo prazo: têm um horizonte temporal de mais de 3 anos. É utilizada na planificação de novos produtos, novos investimentos, na localização de fábricas, como também na pesquisa e desenvolvimento.

Introdução às Ciências Empresariais UMA 2008/2009 3

Tipo de previsões

As organizações utilizam três grandes tipos de previsões:

- Previsões Económicas: analisam o ciclo de negócio através da previsão das taxas de inflação, oferta monetária....
- Previsões Tecnológicas: preocupam-se com a taxa do progresso tecnológico, que podem resultar no nascimento de novos produtos.
- Previsões da Procura: projecta a procura pelos produtos e serviços da empresa. Introdução às Ciências

Introdução as Ciencias Empresariais_UMA_2008/2009 ł

Abordagens da Previsão

Previsões Qualitativas – incorporam na realização da previsão factores importantes, tais como, a intuição, as emoções, a experiência pessoal e o sistema de valores do decisor.

Técnicas de previsão Qualitativa:

- 1) Opinião do júri ou executor;
- 2) Composição da força de vendas;
- 3) Método de Delphi;
- 4) Inquérito ao consumidor / Estudo de mercado.

Introdução às Ciências Empresariais UMA 2008/2009 5

Abordagens da Previsão

Previsões Quantitativas – empregam uma variedade de modelos matemáticos que usam os dados existentes e/ou variáveis causais para prever a procura.

Métodos de Previsão Quantitativa:

- 1) Abordagem Naive
- 2) Médias Móveis
- 3) Alisamento Exponencial
- 4) Projecção de tendências
- 5) Regressão Linear Modelo Causal

Modelo de séries temporais

Introdução às Ciências Empresariais_UMA_2008/2009

Previsões Quantitativas

Modelo de séries temporais – Estes modelos fazem previsões com o pressuposto que o futuro é função do passado.

Modelo causal – Incorporam as variáveis ou factores que podem influenciar as quantidades a serem projectados.

Introdução às Ciências Empresariais UMA 2008/2009 7

Modelo de séries temporais

Analisar uma série temporal significa avaliar os dados existente em componentes e depois projectá-los para o futuro.

Uma série temporal geralmente possui 4 componentes:

- Tendência movimento gradual de subida ou descida dos dados ao longo do tempo;
- 2) Sazonalidade é o padrão de dados que se repetem depois de um período (dias, semanas, meses, trimestres);
- Ciclo é o padrão nos dados que ocorrem ao longo dos anos;
- 4) Variação aleatória são os alterações nos dados causados pelas mudanças e pelas situações anormais.

Introdução às Ciências Empresariais_UMA_2008/2009

1) Abordagem Naive:

É a forma mais simples de previsão.

Assume que a procura no período será estimada com base no período anterior, não levando em conta o factor sazonalidade.

Introdução às Ciências Empresariais_UMA_2008/2009

2) Médias Móveis:

Esta previsão utiliza os dados mais recentes para gerar uma previsão. É útil se assumirmos que a procura no mercado irá manter-se estável no tempo.

Matematicamente:

$$M\acute{e}dia\ M\acute{o}vel = \frac{\sum \Pr{ocura\ nos\ n\ per\acute{o}dos\ anteriores}}{n}$$

n = o número de períodos na média móvel

Introdução às Ciências Empresariais_UMA_2008/2009 11

Modelo de séries temporais

Exemplo – Média móvel (Empresa de Catering)

Sen	nana	Refeições	Semana	Refeições
		Servidas		Servidas
1	1 000		2	900
2	900		3	950
4	1 050		5	1 050
6	1 000		7	975
8	1 000		9	950
10	1 025		11	1 000
12	1 050		13	????

Tendo em conta uma média móvel a três semanas temos:

Previsão para 13^a semana = (1 025+ 1 000 + 1 050) / 3 = 1 025 refeições

Tendo em conta uma média móvel doze semanas temos:

Previsão para 13ª semana = 11 925 / 12 = 1 025 refeições

Introdução às Ciências Empresariais_UMA_2008/2009

Factores a ter em conta no método das médias móveis

- Quanto maior o período menor o efeito da variação aleatória e maior será o efeito de alisamento.
- Pondera o peso das observações na mesma proporção.
- Não leva em conta um padrão ou tendência.
- Obriga a um registo sistemático de informação passada.

Introdução às Ciências Empresariais_UMA_2008/2009 13

Modelo de séries temporais

Quando é possível detectar uma tendência ou padrão, os pesos (weigths) podem ser utilizados para colocar uma maior ênfase aos valores recentes.

Matematicamente:

Pesos na Média Móvel =
$$\frac{\sum (pesos \ para \ o \ período \ n)*(procura \ no \ período \ n)}{\sum \ pesos}$$

Introdução às Ciências Empresariais_UMA_2008/2009

3) Alisamento Exponencial:

É um sofisticado método de previsão de pesos de médias móveis.

Fórmula:

Nova Previsão

previsão do último período + α^* (procura real do último período - previsão do último período)

 α = peso ou constante de alisamento (apresenta um valor entre 0 e 1)

Matematicamente: $F_t = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$

F_t= nova previsão

F_{t-1}= previsão anterior

 α = Constante de alisamento (0 $\leq \alpha \leq$ 1)

A_{t-1}= procura real do período anterior

Introdução às Ciências Empresariais_UMA_2008/2009

Alisamento Exponencial

- -Dá ênfase à informação mais recente obtida pela empresa.
- -Elimina a necessidade de tratar muita informação.
- -Introduz uma constante de alisamento que vai atenuar os efeitos da aleatoriamente.
- -È um modelo utilizado em previsões de curto prazo.

Introdução às Ciências Empresariais_UMA_2008/2009 17

Modelo de séries temporais

Alisamento Exponencial

Para calcular a constante de alisamento de um período **n** a empresa de obter dois tipos de dados:

-Os valores da previsão para os dois períodos anteriores ao da nova previsão (n-1 e n-2) e o valor real do período n-2

Previsão (n-1) - Previsão (n-2)

Sendo que α =

Real (n-2) - Previsão (n-2)

Introdução às Ciências Empresariais_UMA_2008/2009

Alisamento Exponencial

Aplicando ao caso da Empresa de *Catering* e assumindo que a previsão para a semana 12 era de 1 020. Qual seria a previsão para a semana 13 tendo em conta um Ω de 0,1.

Previsão para 13^a semana = $1020 + 0.1 \times (1 \ 050-1020)$ = $1 \ 023$

> Introdução às Ciências Empresariais_UMA_2008/2009

19

EXAMPLES

In January, a car dealer predicted a February demand for 142 Ford Mustangs. Actual February demand was 153 autos. Using a smoothing constant chosen by management, of $\alpha=.20$, we can forecast the March demand using the exponential smoothing model. Substituting into the formula, we obtain

New forecast (for March demand) = 142 + .2(153 - 142)= 144.2

Thus, the demand forecast for Ford Mustangs in March is rounded to 144.

Introdução às Ciências Empresariais_UMA_2008/2009

Modelos Causais – Regressão Linear

A análise por regressão envolve uma estimativa de uma actividade com base em outras actividades ou factores que assumidamente possam estar na causa dessa actividade.

A actividade a ser prevista é a variável dependente e desconhecida, enquanto as outras actividades ou factores são as variáveis independentes e são à partida conhecidas.

Para determinar a relação entre as duas variáveis é necessário aferir o coeficiente de correlação (r), sendo o r² o coeficiente que reflecte a em que medida a variação da variável independente explica a variação da variável dependente.

Introdução às Ciências Empresariais_UMA_2008/2009 21

Modelos Causais – Regressão Linear

$$r - \frac{\sum \left(\mathbf{x}_{1} - \bar{\mathbf{x}}\right)\left(\mathbf{y}_{1} - \bar{\mathbf{y}}\right)}{\sqrt{\left[\sum \left(\mathbf{x}_{1} - \bar{\mathbf{x}}\right)^{2} \sum \left(\mathbf{y}_{1} - \bar{\mathbf{y}}\right)^{2}\right]}}$$

$$\rho - \frac{\sigma_{xr}}{\sigma_{x}\sigma_{r}}$$
Correlação de Pearson

Estimador

-1≤ r ≤ +1

Quanto mais perto do 1 mais forte é a relação entre a variável dependente e independente.

Introdução às Ciências Empresariais_UMA_2008/2009

Modelos Causais – Regressão Linear **Simples**

Equação:

$$y = a + bx$$

y = variável a ser prevista

a = intercepção no eixo do y (È o de y quanto x é igual a 0)

b = inclinação da regressão linear (Quantas unidades de y mudam para a mudança de uma unidade de x)

x = variável independente

Introdução às Ciências Empresariais UMA 2008/2009 23

Modelos Causais – Regressão Linear Simples (Representação Gráfica)

Introdução às Ciências Empresariais_UMA_2008/2009

Regressão Linear Simples

$$a = \overline{y} - b\overline{x}$$

$$b = \frac{\sum xy - n\overline{xy}}{\sum x^2 - n\overline{x}^2}$$

Em que:

b = inclinação da regressão linear

 \sum = somatório

x = valores da variável independente

y = valores da variável dependente

 \overline{X} = média dos valores do x

 \overline{y} = média dos valores do Y

n = número de dados ou observações

Introdução às Ciências Empresariais UMA 2008/2009 25

Regressão Linear Simples

Aplicação Aula Companhia Construção Y

A empresa Y dedica-se à reconstrução de casas na zona de Toronto. Com o tempo os responsáveis descobriram que havia uma forte relação entre o rendimento dos cidadãos e o volume de obras. Tendo em conta os dados relativos aos anos 1990-1995 e sabendo que as autoridades prevêem um rendimento para 1996 de \$ 6 000 000 000, qual será a previsão volume de obras para 1996.

Rendimento	Volume de Obras		
\$000 000 000	\$000 000		
1	2		
3	3		
4	2,5		
2	2		
1	2		
7	3,5		
	\$000 000 000 1 3 4 2		

Introdução às Ciências Empresariais_UMA_2008/2009

Regressão Linear – Modelo Causal

Exemplo prático:

A gerência de uma unidade hoteleira Alfa pretende estimar para o mês de Janeiro de 2008 o número de refeições a serem servidas para ter uma ideia de quantos recursos é que deveria contar para fazer face a essas pensões. Tendo em conta que as variáveis escolhidas faça uma estimativa usando o modelo de regressão linear, sabendo que para Janeiro de 2008 há uma previsão de procura em 4 500 hóspedes. Represente a função graficamente.

2007 JANEIRO FEVEREIRO MARÇO ABRIL MAIO JUNHO	HÓSPEDES 4 060 4 100 4 200 4 250 4 200 4 150	REFEIÇÓ 5 200 5 360 5 720 5 430 5 680 5 520	R = .8568 R² =.7341 Significa que 73, 41% da variação
JULHO AGOSTO SETEMBRO OUTUBRO NOVEMBRO DEZEMBRO	4 300 4 350 4 400 4 200 4 080 3 600	5 800 5 910 6 020 5 840 5 510 5 020	das refeições servidas são devido às variações no nº de hóspedes
DLZLIVIDRO	3 000	3 020	

Introdução às Ciências Empresariais_UMA_2008/2009 27

Resolução _ Caso Hotel Alfa

	Σx	x2	Σγ	y2	ху
JANEIRO	4060	16483600	5200	27040000	21112000
FEVEREIRO	4100	16810000	5360	28729600	21976000
MARÇO	4200	17640000	5720	32718400	24024000
ABRIL	4250	18062500	5430	29484900	23077500
MAIO	4200	17640000	5680	32262400	23856000
JUNHO	4150	17222500	5520	30470400	22908000
JULHO	4300	18490000	5800	33640000	24940000
AGOSTO	4350	18922500	5910	34928100	25708500
SETEMBRO	4400	19360000	6020	36240400	26488000
OUTUBRO	4200	17640000	5840	34105600	24528000
NOVEMBRO	4080	16646400	5510	30360100	22480800
DECEMBRO	3600	12960000	5020	25200400	18072000
	49890	207877500	67010	375180300	279170800
n	12				
AVGX 4158			576725		
AVGY 5584			459825		
		b	1,254		

Introdução às Ciências Empresariais_UMA_2008/2009

Resolução _ Caso Hotel Alfa

Sendo a formula da regressão y = 370 + 1,254 (x), em que 370 são as refeições que não dependem dos hóspedes do hotel, e sabendo que são 4 500 os hospedes esperados. A previsão para Janeiro de 2008 é de 6 013 refeições. (y = 370 + 1,254 * 4 500)

