Lecture 10

- Three-Phase Circuits

Single phase vs. Polyphase

- Single-phase power supply
 - For example, two 120V sources with the same phase are connected in series.
 - This allows for appliances to use either 120 or 240V
- Circuits that operate with multiple sources, at the same frequency but *at different phases* are called <u>polyphase</u>.

Outline--Three-Phase Circuits

- Balanced Three-Phase System
 - Balanced sources
 - Balanced loads
- Circuit analysis
 - Phase voltage/current
 - Line voltage/current

Balanced Three-Phase Sources Connecting the Sources

- Three phase voltage sources can be connected by either four or three wire configurations.
 - Four-wire system accomplished using a Y(Wye) connected source.
 - Three-wire configuration accomplished by Delta connected source.

Balanced Three-Phase Sources

- Balanced phase voltage are equal in magnitude and are out of phase with each other by 120deg
- It's easy to know $V_{an} + V_{bn} + V_{cn} = 0$
- Two sequences for the phases:

Three-Phase Sources

 Three phase voltages are typically produced by a three-phase AC generator.

The output voltages look like below.

Three-phase four-wire system in China

Balanced Loads

- A <u>balanced</u> load means the same impedance for each load.
- -- Impedance are equal in magnitude and in phase
- They may also be connected in either Delta or wye
 - For a balanced wye connected load: $Z_1 = Z_2 = Z_3 = Z_Y$
 - For a balanced delta connected load: $Z_a = Z_b = Z_c = Z_\Delta$

The load impedance per phase for the above configurations can be interchanged.

Source-Load configurations

Source	Load
Y	Y
Y	Δ
Δ	Y
Δ	Δ

Source-Load Configurations

Source-Load Configurations

Load Phase Currents

 \mathbf{I}_a , \mathbf{I}_b , \mathbf{I}_c (same as line currents \mathbf{I}_{L_1} , \mathbf{I}_{L_2} , and \mathbf{I}_{L_3})

Load Phase Voltages V_{aN} , V_{bN} , V_{cN}

Delta-Delta

Load Phase Currents

 $\mathbf{I}_{ab}, \mathbf{I}_{bc}, \mathbf{I}_{ca}$

Load Phase Voltages

 V_{ab} , V_{bc} , V_{ca} (same as source voltages if Z_{TL} is negligible)

Balanced Y-Y connection

- The load impedance Z_Y will be assumed to be balanced.
 - This can be the source Z_s , line Z_l and load Z_L together.

$$\mathbf{Z}_Y = \mathbf{Z}_s + \mathbf{Z}_\ell + \mathbf{Z}_L$$

Phase Voltage & Line-to-Line Voltage

Use the positive sequence:

• The line to line voltages (or just line voltages in short):

Line Currents

Example

Calculate the line currents.

Load Phase Currents I_{ab} , I_{bc} , I_{ca}

Load Phase Voltages V_{ab} , V_{bc} , V_{ca}

Wye- $\Delta \rightarrow$ Wye-Wye

Lecture 11 21

Wye-∆

Find load phase current and line current

Wye-∆

Find load phase current and line current

Assume positive sequence:

ve
$$\mathbf{V}_{an} = V_p \underline{/0^{\circ}}$$

 $\mathbf{V}_{bn} = V_p \underline{/-120^{\circ}}, \quad \mathbf{V}_{cn} = V_p \underline{/+120^{\circ}}$

$$\mathbf{V}_{ab} = \sqrt{3}V_{p} / 30^{\circ} = \mathbf{V}_{AB}, \qquad \mathbf{V}_{bc} = \sqrt{3}V_{p} / -90^{\circ} = \mathbf{V}_{BC}$$

$$\mathbf{V}_{ca} = \sqrt{3}V_{p} / -150^{\circ} = \mathbf{V}_{CA}$$

$$\mathbf{I}_{AB} = \frac{\mathbf{V}_{AB}}{\mathbf{Z}_{A}}, \qquad \mathbf{I}_{BC} = \frac{\mathbf{V}_{BC}}{\mathbf{Z}_{A}}, \qquad \mathbf{I}_{CA} = \frac{\mathbf{V}_{CA}}{\mathbf{Z}_{A}}$$

Wye-∆

$$\mathbf{I}_a = \mathbf{I}_{AB} - \mathbf{I}_{CA}, \qquad \mathbf{I}_b = \mathbf{I}_{BC} - \mathbf{I}_{AB}, \qquad \mathbf{I}_c = \mathbf{I}_{CA} - \mathbf{I}_{BC}$$

Since
$$\mathbf{I}_{CA} = \mathbf{I}_{AB} / -240^{\circ}$$
,

$$\mathbf{I}_{a} = \mathbf{I}_{AB} - \mathbf{I}_{CA} = \mathbf{I}_{AB}(1 - 1/240^{\circ})$$

= $\mathbf{I}_{AB}(1 + 0.5 - j0.866) = \mathbf{I}_{AB}\sqrt{3}/-30^{\circ}$

Source-Load Configurations

Load Phase Currents

 \mathbf{I}_a , \mathbf{I}_b , \mathbf{I}_c (same as line currents \mathbf{I}_{L_1} , \mathbf{I}_{L_2} , and \mathbf{I}_{L_3})

Load Phase Voltages V_{aN} , V_{bN} , V_{cN}

Delta-Delta

Load Phase Currents

 $\mathbf{I}_{ab}, \mathbf{I}_{bc}, \mathbf{I}_{ca}$

Load Phase Voltages

 V_{ab}, V_{bc}, V_{ca} (same as source voltages if Z_{TL} is negligible)

Load Phase Currents I_a , I_b , I_c

(same as line currents I_{L_1} , I_{L_2} , and I_{L_3})

Lecture 11

26

Delta-Y

Lecture 11 27

Load Phase Currents

 $\mathbf{I}_{ab}, \mathbf{I}_{bc}, \mathbf{I}_{ca}$

Load Phase Voltages

 V_{ab}, V_{bc}, V_{ca} (same as source voltages if Z_{TL} is negligible)

Lecture 10 28

Lecture 11 29

2. (16 points). Given the circuit in Fig.2 is in steady state, use phasor domain method to find $i_0(t)$; and $i_1(t)$.

3. (16 points). As shown in Fig.3, the balanced three-phase circuit holds positive $a \rightarrow b \rightarrow c$ sequence. Calculate I_a , I_b , I_c and the total complex power delivered to the whole load.

Fig.3