

Project Initialization and Planning Phase

Date	19 June 2025	
Team ID	SWTID1749821186	
Project Title	Enhancing Product Reliability: Leveraging Transfer Learning for Fault Detection	
Maximum Marks	3 Marks	

Project Proposal

Project Overview		
Objective	To automate the detection of casting defects in manufacturing products using a deep learning model integrated into a web-based interface.	
Scope	The project focuses on binary classification of casting products (defective vs. Good) using image data. It includes model training, evaluation and deployment through Flask-based web application.	
Problem Statement		
Description	Manual inspection of casting products is time-consuming, inconsistent and prone to human error. This can lead to undetected defects, rejected orders and financial losses in manufacturing.	
Impact	Automating the inspection process improves accuracy, reduces inspection time, minimizes human error and helps maintain product quality ultimately reducing waste and increasing customer satisfaction.	
Proposed Solution		
Approach	Use transfer learning to classify casting product images. The trained model is deployed via a Flask web app, allowing users to upload images for prediction.	
Key Features	Deep learning model trained on real industrial casting data	

- Binary classification: detects defective vs. good products
- Transfer learning for efficient training
- Flask-based web application for real-time image prediction
- Tailwind CSS for responsive and modern UI
- Upload form with error handling and result display
- Modular structure for easy maintenance and scalability

Resource Requirements

Resource Type	Description	Specification/Allocation	
Hardware			
Computing Resources	CPU/GPU for model training	2 x NVIDIA V100 GPUs or equaivalent	
Memory	RAM for training and inference	8 GB RAM	
Storage	Disk space for data and models	1 TB SSD	
Software			
Frameworks	Python web framework	Flask	
Libraries	Deep learning and utilities	Tensorflow, Keras, Numpy, PIL	
Development Environment	IDE and version control	Google colab, VS code, Git	
Data			
Data	Source, size and format	Kaggle dataset, 7348 images	