StuDocu.com

Sample/practice exam Fall 2016, questions

Intermediate Statistics (Carnegie Mellon University)

Practice Test for Test II

- 1. Let $X_1, \ldots, X_n \sim \text{Uniform}(-\theta, \theta)$ where $\theta > 0$.
 - (a) Find the maximum likelihood estimator $\widehat{\theta}_n$.
 - (b) Find a minimal sufficient statistic.
 - (c) Show that $\widehat{\theta}_n \stackrel{P}{\to} \theta$.
 - (d) Find the limiting distribution of $n(\theta \widehat{\theta}_n)$.
- 2. Let $X \sim \text{Bernoulli}(\theta)$ be a single coin flip. Suppose that $\theta \in \Theta = \{1/3, 2/3\}$. Hence θ can only take 2 possible values.
 - (a) Find the maximum likelihood estimator.
 - (b) Let the loss function be

$$L(\theta, \widehat{\theta}) = \begin{cases} 1 & \text{if } \theta \neq \widehat{\theta} \\ 0 & \text{if } \theta = \widehat{\theta}. \end{cases}$$

Find the risk function of the maximum likelihood estimator. Since θ only takes the values 1/3 and 2/3, you only need to find $R(1/3, \widehat{\theta})$ and $R(2/3, \widehat{\theta})$.

- (c) Show the the maximum likelihood estimator is minimax.
- 3. Let X_1, \ldots, X_n be iid from a Binomial (k, θ) .
 - (a) Find a minimal sufficient statistic S for θ .
 - (b) For each of the following say, whether it is sufficient, minimal sufficient, or not sufficient.

$$T = X_1, T = \sum_{i} X_i, T = \left(X_1, \sum_{i} X_i\right), T = \left(X_1, \sum_{i=2}^{n} X_i\right).$$

- (c) Let $\tau(\theta) = P(X = 1) = k\theta(1 \theta)^{k-1}$. Define U = 1 if $X_1 = 1$ and 0 otherwise. Show that U an unbiased estimator of τ .
- (d) Find the mle $\hat{\tau}$ of τ .
- (e) Show that $\widehat{\tau} \stackrel{P}{\to} \tau$.
- (f) Find the limiting distribution of $\hat{\tau}$.
- 4. Construct an example where $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow Y$, but $X_n + Y_n$ does not converge in distribution to X + Y.

- 5. Let $X_i \sim N(\theta_i, 1)$ for i = 1, ..., n. Let $\gamma = \sum_{i=1}^n \theta_i^2$. Find the mle $\widehat{\gamma}$. Let $L(\gamma, \widehat{\gamma}) = (\gamma \widehat{\gamma})^2$. Find the risk of the mle.
- 6. Let $X_1, \ldots, X_n \sim \text{Uniform}(0, 2)$. Let

$$W_n = \frac{1}{n} \sum_{i=1}^{n} X_i^2.$$

- (a) Show that there is a number μ such that W_n converges in quadratic mean to μ .
- (b) Show that W_n converges in probability μ .
- (c) What is the limiting distribution of $\sqrt{n}(W_n^2 \mu^2)$?
- 7. Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$.
 - (a) Let $T = X_3$. Show that T is not sufficient.
 - (b) Show that $U = \sum_{i=1}^{n} X_i^2$ is minimal sufficient.
- 8. Let

$$X_1, \dots, X_n \sim \frac{1}{2}N(0,1) + \frac{1}{2}N(\theta,1).$$

In other words, with probability 1/2, X_i is drawn from N(0,1) and with probability 1/2, X_i is drawn from $N(\theta,1)$.

- (a) Find the method of moments estimator $\widehat{\theta}$ of θ .
- (b) Find the mean squared error of $\widehat{\theta}$.
- 9. Let $X_1, ..., X_n \sim N(\theta, 1)$. Let $\tau = e^{\theta} + 1$.
 - (b) Consider some loss function $L(\tau, \hat{\tau})$. Define what it means for an estimator to be a minimax estimator for τ .
 - (c) Let π be a prior for θ . Find the Bayes estimator for τ under the loss $L(\tau, \hat{\tau}) = (\hat{\tau} \tau)^2/\tau$.
- 10. Let $X_1, \ldots, X_n \sim \text{Normal}(\theta, 1)$. Suppose that $\theta \in \{-1, 1\}$. In other words, θ can only take two possible values.
 - (a) Find a minimal sufficient statistic.
 - (b) Find the maximum likelihood estimator. Is the maximum likelihood estimator a sufficient statistic?
 - (c) Find the risk function using the loss function

$$L(\theta, \widehat{\theta}) = \begin{cases} 1 & \text{if } \theta \neq \widehat{\theta} \\ 0 & \text{if } \theta = \widehat{\theta}. \end{cases}$$

- 11. Let $X_i \sim \text{Bernoulli}(p_i)$ for i = 1, ..., n. The observations are independent but each observation has a different mean. The unknown parameter is $p = (p_1, ..., p_n)$.
 - (a) Let $\psi = \sum_{i=1}^{n} p_i$. Find the maximum likelihood estimator of ψ .
 - (b) Find the mean squared error (MSE) of the maximum likelihood estimator of ψ .
 - (c) Suppose we use the following prior distribution

$$\pi(p_1,\ldots,p_n)=1.$$

Find the Bayes estimator of ψ .

Hint: Recall that the Beta (α, β) density is

$$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}p^{\alpha-1}(1-p)^{\beta-1}.$$

If
$$W \sim \text{Beta}(\alpha, \beta)$$
 then $\mathbb{E}[W] = \alpha/(\alpha + \beta)$ and $\text{Var}(W) = \alpha\beta/((\alpha + \beta)^2(\alpha + \beta + 1))$.

- 12. Let $X_1, ..., X_n \sim N(\mu, 1)$.
 - (a) Let $T = \max\{X_1, \dots, X_n\}$. Show that T is not sufficient.
 - (b) Let us use the improper prior $\pi(\mu) \propto 1$. Find the Bayes estimator of $\psi = \mu^2$.