

MSP430F479, MSP430F478, MSP430F477

SLAS629B-MARCH 2009-REVISED MAY 2020

MSP430F47x Mixed-Signal Microcontrollers

1 Device Overview

1.1 Features

Low supply-voltage range: 1.8 V to 3.6 V

Ultra-low power consumption

Active mode: 262 µA at 1 MHz, 2.2 V

- Standby mode: 1.1 μA

Off mode (RAM retention): 0.1 μA

· Five power-saving modes

Wakeup from standby mode in less than 6 μs

 16-bit RISC architecture, extended memory, 125-ns instruction cycle time

 16-bit sigma-delta analog-to-digital converter (ADC) with internal reference and five differential analog inputs

• One 12-bit digital-to-analog converter (DAC)

16-bit Timer_A with three capture/compare registers

 16-bit Timer_B with seven capture/compare-withshadow registers

 Two universal serial communication interfaces (USCIs)

USCI_A0

Enhanced UART supports automatic baudrate detection

- IrDA encoder and decoder

- Synchronous SPI

1.2 Applications

- Analog and digital sensor systems
- Digital motor control
- Remote controls

- USCI B0
 - $-I^2C$
 - Synchronous SPI

 Integrated LCD driver up to 160 segments with regulated charge pump

Brownout detector

Basic timer with real-time clock (RTC) feature

 Supply voltage supervisor and monitor with programmable level detection

On-Chip Comparator

 Serial onboard programming, programmable code protection by security fuse

Bootloader

On chip emulation module

Device Comparison summarizes the available family members

 MSP430F477: 32KB + 256 bytes of flash, 2KB of RAM

 MSP430F478: 48KB + 256 bytes of flash, 2KB of RAM

 MSP430F479: 60KB + 256 bytes of flash, 2KB of RAM

 Available in 113-ball MicroStar Junior™ BGA (ZQW), 113-ball nFBGA (ZCA), and 80-pin QFP (PN) packages (see Device Comparison)

- Thermostats
- Digital timers
- · Hand-held meters

1.3 Description

The Texas Instruments MSP430TM family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 μ s.

The MSP430F47x is a microcontroller configuration with two 16-bit timers, a basic timer with a real-time clock, a high-performance 16-bit sigma-delta A/D converter, single 12-bit D/A converter, two universal serial communication interface, 48 I/O pins, and a liquid crystal display driver.

For complete module descriptions, see the MSP430x4xx Family User's Guide.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE ⁽²⁾		
MSP430F479IPN	LQFP (80)	12 mm × 12 mm		
MSP430F479IZCA	nFBGA (113)	7 mm × 7 mm		
MSP430F479IZQW ⁽³⁾	MicroStar Junior™ BGA (113)	7 mm × 7 mm		

- (1) For the most current part, package, and ordering information for all available devices, see the *Package Option Addendum* in Section 8, or see the TI website at www.ti.com.
- (2) The sizes shown here are approximations. For the package dimensions with tolerances, see the *Mechanical Data* in Section 8.
- (3) All orderable part numbers in the ZQW (MicroStar Junior BGA) package have been changed to a status of Last Time Buy. Visit the Product life cycle page for details on this status.

1.4 Functional Block Diagram

Figure 1-1 shows the functional block diagram.

Figure 1-1. Functional Block Diagram

Table of Contents

1	Devi	ce Overview	. <u>1</u>		5.28	SD16_A, Temperature Sensor and Built-in V _{CC}	
	1.1	Features	. 1			Sense	32
	1.2	Applications	. 1		5.29	SD16_A, Built-In Voltage Reference	32
	1.3	Description	. 1		5.30	SD16_A, Reference Output Buffer	32
	1.4	Functional Block Diagram	_		5.31	SD16_A, External Reference Input	32
2	Revi	sion History	. 4		5.32	12-Bit DAC, Supply Specifications	33
3		ce Comparison	_		5.33	12-Bit DAC, Linearity Specifications	34
	3.1	Related Products	_		5.34	12-Bit DAC, Output Specifications	36
4	Term	ninal Configuration and Functions	6		5.35	12-Bit DAC, Reference Input Specifications	36
	4.1	Pin Diagrams	_		5.36	12-Bit DAC, Dynamic Specifications	37
	4.2	Signal Descriptions	_		5.37	12-Bit DAC, Dynamic Specifications Continued	38
5	Spec	cifications	_		5.38	Timer_A	38
	5.1	Absolute Maximum Ratings	12		5.39	Timer_B	38
	5.2	ESD Ratings			5.40	USCI (UART Mode)	39
	5.3	Recommended Operating Conditions	_		5.41	USCI (SPI Master Mode)	39
	5.4	Supply Current Into AV _{CC} and DV _{CC} Excluding			5.42	USCI (SPI Slave Mode)	39
		External Current	<u>14</u>		5.43	USCI (I ² C Mode)	42
	5.5	Schmitt-Trigger Inputs – Ports P1 to P6, RST/NMI,			5.44	Flash Memory	43
		JTAG (TCK, TMS, TDI/TCLK,TDO/TDI)			5.45	JTAG Interface	43
	5.6	Inputs Px.y, TAx			5.46	JTAG Fuse	43
	5.7	Leakage Current – Ports P1 to P6		6	Deta	illed Description	44
	5.8	Outputs – Ports P1 to P6			6.1	CPU	44
	5.9	Output Frequency	_		6.2	Instruction Set	45
	5.10	Typical Characteristics – Outputs			6.3	Operating Modes	46
	5.11	Wake-up Timing From LPM3			6.4	Interrupt Vector Addresses	47
	5.12	POR – Brownout Reset (BOR)			6.5	Special Function Registers (SFRs)	48
	5.13	SVS (Supply Voltage Supervisor and Monitor)			6.6	Memory Organization	<u>50</u>
	5.14	DCO	_		6.7	Bootloader (BSL)	<u>50</u>
	5.15	Crystal Oscillator, LFXT1, Low-Frequency Mode			6.8	Flash Memory	<u>50</u>
	5.16	Crystal Oscillator, LFXT1, High-Frequency Mode	<u>25</u>		6.9	Peripherals	51
	5.17	Crystal Oscillator, XT2 Oscillator, High-Frequency	OF.		6.10	Input/Output Schematics	57
	E 10	Mode RAM	_	7	Devi	ce and Documentation Support	81
	5.18	LCD A			7.1	Device Support	81
	5.19	_	_		7.2	Documentation Support	84
	5.20	Comparator_A	_		7.3	Related Links	84
	5.21 5.22	Typical Characteristics – Comparator_A	<u>28</u>		7.4	Support Resources	84
	5.22	Operating Conditions	29		7.5	Trademarks	84
	5.23	SD16_A, Input Range	29		7.6	Electrostatic Discharge Caution	
	5.24	SD16_A, Performance			7.7	Export Control Notice	84
	5.25	SD16_A, Performance			7.8	Glossary	
	5.26	SD16_A, Linearity		8	Mec	hanical, Packaging, and Orderable	
	5.27	Typical Characteristics, SD16_A SINAD	<u></u>			mation	85
		Performance Over OSR	31				

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Chan	ges from April 25, 2009 to May 4, 2020	Page
•	Changes to document format including section numbering and organization	1
•	Added Section 1.2, Applications Added Device Information table	2
•	Changed the status of all orderable part numbers in the ZQW package	2
•	Moved functional block diagram to Section 1.4. Added Section 3, Device Comparison	5
•	Added Section 5 and moved all electrical specifications to it Added Section 5.2, ESD Ratings. In Recommended Operating Conditions, added test conditions for TYP values	<u>12</u>
•	Changed all instances of "bootstrap loader" to "bootloader" throughout document	50
•	Added Section 7 and moved Trademarks and ESD Caution sections to it	<u>81</u> <u>85</u>

3 Device Comparison

The following table summarizes the available family members.

Table 3-1. Device Comparison⁽¹⁾⁽²⁾

DEVICE	FLASH (KB)	RAM (KB)	Timer_A	Timer_B	SD16_A	DAC12	USCI	I/Os	PACKAGE
MSP430F479	60	2	TA3	TB3	1	1	A0, B0	48	PN 80 ZCA 113 ZQW 113
MSP430F478	48	2	TA3	TB3	1	1	A0, B0	48	PN 80 ZCA 113 ZQW 113
MSP430F477	32	2	TA3	TB3	1	1	A0, B0	48	PN 80 ZCA 113 ZQW 113

⁽¹⁾ For the most current device, package, and ordering information for all available devices, see the *Package Option Addendum* in Section 8, or see the TI website at www.ti.com.

3.1 Related Products

For information about other devices in this family of products or related products, see the following links.

Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a broad range of applications.

Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-low-power microcontrollers with advanced peripherals for precise sensing and measurement.

Companion Products for MSP430F479 Review products that are frequently purchased or used in conjunction with this product.

Reference Designs Find reference designs leveraging the best in TI technology to solve your system-level challenges

Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

4 Terminal Configuration and Functions

4.1 Pin Diagrams

Figure 4-1 shows the pinout for the 80-pin PN package.

Figure 4-1. 80-Pin PN Package (Top View)

Figure 4-2 shows the pinout for the 113-pin ZCA and ZQW packages. For pin assignments, see Table 4-1.

NOTE: For the terminal assignments, see Section 4.2.

Figure 4-2. 113-Pin ZCA and ZQW Packages (Top View)

4.2 Signal Descriptions

Table 4-1 describes the device signals.

Table 4-1. Signal Descriptions

	PIN	I NO.				
SIGNAL NAME	PN	ZCA, ZQW	I/O	DESCRIPTION		
AVCC	52	F12		Analog supply voltage, positive terminal.		
AVSS	53	E12		Analog supply voltage, negative terminal.		
DVCC1	1	A1		Digital supply voltage, positive terminal. Supplies all digital parts.		
DVSS1	79	A3		Digital supply voltage, negative terminal. Supplies all digital parts.		
DVCC2	80	A2		Digital supply voltage, positive terminal. Supplies all digital parts.		
DVSS2	78	B2, B3		Digital supply voltage, negative terminal. Supplies all digital parts.		
				General-purpose digital I/O pin		
P1.0/TA0	58	C11	I/O	Timer_A, capture: CCI0A input, compare: Out0 output		
				BSL transmit		
				General-purpose digital I/O pin		
P1.1/TA0/MCLK	57	C12	I/O	Timer_A, capture: CCI0B input, compare: Out0 output		
P1.1/TAU/WICLK	31	C12	1/0	MCLK signal output		
				BSL receive		
				General-purpose digital I/O pin		
P1.2/TA1/A4-	56	D11	I/O	Timer_A, capture: CCI1A input, compare: Out1 output		
				SD16 negative analog input A4		
				General-purpose digital I/O pin		
			I/O	Timer_A, capture: CCl2A input, compare: Out2 output		
P1.3/TBOUTH/SVSOUT/A4 +	55	D12		Set all PWM digital output ports to high impedance - Timer_B TB0 to TB2		
				SVS comparator output		
				SD16 positive analog input A4		
				General-purpose digital I/O pin		
P1.4/TBCLK/SMCLK/A3-	54	E11	I/O	Timer_B, clock signal TBCLK input		
F 1.4/ I BOLIV SIVICLIVAS	34	LII	1/0	SMCLK signal output		
				SD16 negative analog input A3		
				General-purpose digital I/O pin		
P1.5/TACLK/ACLK/A3+	51	F11	I/O	Timer_A, clock signal TACLK input		
F1.5/TACLN/ACLN/AS+	31	ГП	1/0	ACLK signal output		
				SD16 positive analog input A3		
				General-purpose digital I/O pin		
P1.6/CA0/A2-/DAC0	50	G12	I/O	Comparator_A input 0		
P1.0/CAU/AZ-/DACU	30	G12	1/0	SD16 negative analog input A2		
				DAC12.0 output		
				General-purpose digital I/O pin		
P1.7/CA1/A2+	49	G11	I/O	Comparator_A input 1		
				SD16 positive analog input A2		
				General-purpose digital I/O pin		
P2.0/TA2/S1	4	C2, C3	I/O	Timer_A, capture: CCI2A/B input, compare: Out2 output		
				LCD segment output 1		
				General-purpose digital I/O pin		
P2.1/TB0/S0	3	C1	I/O	Timer_B, capture: CCI0A/B input, compare: Out0 output		
				LCD segment output 0		

Table 4-1. Signal Descriptions (continued)

	PIN	NO.					
SIGNAL NAME	PN	ZCA, ZQW	I/O	DESCRIPTION			
P2.2/TB1	2	B1	I/O	General-purpose digital I/O pin			
			., -	Timer_B, capture: CCl1A/B input, compare: Out1 output			
P2.3/TB2	77	B4	I/O	General-purpose digital I/O pin			
1 2.0, 1 32		<u> </u>	., 0	Timer_B, capture: CCI2A/B input, compare: Out2 output			
P2.4/UCA0TXD/				General-purpose digital I/O pin			
UCAOSIMO	76	A4	I/O	USCIA transmit data output in UART mode, slave data in/master out in SPI mode			
P2.5/UCA0RXD/				General-purpose digital I/O pin			
UCA0SOMI	75	D4	I/O	USCI A0 receive data input in UART mode, slave data out/master in in SPI mode			
				General-purpose digital I/O pin			
P2.6/CAOUT/S2	5	D1	I/O	Comparator_A output			
				LCD segment output 2			
P2.7/S3	6	D2	I/O	General-purpose digital I/O pin			
F2.1/33	U	DZ	1/0	LCD segment output 3			
				General-purpose digital I/O pin			
P3.0/UCB0STE/UCA0CLK	41	M12	I/O	USCI B0 slave transmit enable			
USCI A0 clock input/output		USCI A0 clock input/output					
			I/O	General-purpose digital I/O pin			
P3.1/UCB0SIMO/ UCB0SDA/S26	42	L12		USCI B0 slave in/master out in SPI mode, SDA I2C data in I2C mode			
00D03DA/320				LCD segment output 26			
	43	K11	I/O	General-purpose digital I/O pin			
P3.2/UCB0SOMI/ UCB0SCL/S27				USCI B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode			
UCBUSCL/S2/				LCD segment output 27			
				General-purpose digital I/O			
P3.3/UCB0CLK/UCA0STE	44	K12	I/O	USCI B0 clock input/output, USCI A0 slave transmit enable			
				General-purpose digital I/O pin			
P3.4/S28	45	J11	I/O	LCD segment output 28			
				General-purpose digital I/O pin			
P3.5/S29	46	J12	I/O	LCD segment output 29			
				General-purpose digital I/O pin			
P3.6/S30	47	H11	I/O	LCD segment output 30			
				General-purpose digital I/O pin			
P3.7/S31	48	H12	I/O	LCD segment output 31			
				General-purpose digital I/O pin			
P4.0/S11	18	K2	I/O	LCD segment output 11			
				General-purpose digital I/O pin			
P4.1/S10	17	K1	I/O	LCD segment output 10			
				General-purpose digital I/O pin			
P4.2/S9	16	J2	I/O	LCD segment output 9			
			General-purpose digital I/O pin				
P4.3/S8	15 J J1 J/O		LCD segment output 8				
		General-purpose digital I/O pin					
P4.4/S7	14	H2	I/O	LCD segment output 7			
				General-purpose digital I/O pin			
P4.5/S6	13	H1	I/O	LCD segment output 6			
				LOD 30gment output 0			

Table 4-1. Signal Descriptions (continued)

	DINI	NO.		Descriptions (continued)
SIGNAL NAME		ZCA,	1/0	DESCRIPTION
	PN	ZQW		
P4.6/S5	12	G2	I/O	General-purpose digital I/O pin
1 4.0/03	12	02	1/0	LCD segment output 5
P4.7/S4	11	G1	I/O	General-purpose digital I/O pin
F4.7/34	11	Gi	1/0	LCD segment output 4
COM0	33	L8	0	Common output, COM0- 3 are used for LCD backplanes
P5.0/S20	27	L5	I/O	General-purpose digital I/O pin
1 0.0/020		20	,, 0	LCD segment output 20
P5.1/S21	28	M5	I/O	General-purpose digital I/O pin
				LCD segment output 21
P5.2/COM1	34	M8	I/O	General-purpose digital I/O pin
				common output, COM0- 3 are used for LCD backplanes
P5.3/COM2	35	L9	I/O	General-purpose digital I/O pin
				common output, COM0- 3 are used for LCD backplanes
P5.4/COM3	36	M9	I/O	General-purpose digital I/O pin
				common output, COM0- 3 are used for LCD backplanes
LCDCAP/R33	37	J9	I/O	Capacitor connection for LCD charge pump
2020/11/1100	0.	•	.,, 0	input port of most positive analog LCD level (V4)
P5.5/R23	38	M10	I/O	General-purpose digital I/O pin
1 0.0/1120	30	WITO	1/0	input port of the second most positive analog LCD level (V3)
				General-purpose digital I/O pin
P5.6/LCDREF/R13	39	L10	I/O	External LCD reference voltage input
				input port of the third most positive analog LCD level (V3 or V2)
DE 7/D02	40	M11	I/O	General-purpose digital I/O pin
P5.7/R03	40	IVIII	1/0	input port of the fourth most positive analog LCD level (V1)
DC 0/A0.	67	Do	1/0	General-purpose digital I/O pin
P6.0/A0+	67	B8	I/O	SD16 positive analog input A0
DC 4/A0	66	DO.	1/0	General-purpose digital I/O pin
P6.1/A0-	66	B9	I/O	SD16 positive negative input A0
P6.2	65	A9	I/O	General-purpose digital I/O pin
P6.3/A1+	64	D9	I/O	General-purpose digital I/O pin
F0.3/ATT	04	Da	1/0	SD16 positive analog input A1
P6.4/A1-	63	A10	I/O	General-purpose digital I/O pin
P0.4/A1-	03	ATU	1/0	SD16 positive negative input A1
P6.5	62	B10	I/O	General-purpose digital I/O pin
P6.6	61	A11	I/O	General-purpose digital I/O pin
D0 7/0\/0IN	50	D40	1/0	General-purpose digital I/O pin
P6.7/SVSIN	59	B12	I/O	SVS input
S12	19	L1	0	LCD segment output 12
S13	20	M1	0	LCD segment output 13
S14	21	M2	0	LCD segment output 14
S15	22	МЗ	0	LCD segment output 15
S16	23	L3	0	LCD segment output 16
S17	24	L4	0	LCD segment output 17
S18	25	M4	0	LCD segment output 18
S19	26	J4	0	LCD segment output 19
S22	29	L6	0	LCD segment output 22

Table 4-1. Signal Descriptions (continued)

	PIN	NO.		
SIGNAL NAME	PN	ZCA, ZQW	I/O	DESCRIPTION
S23	30	M6	0	LCD segment output 23
S24	31	L7	0	LCD segment output 24
S25	32	M7	0	LCD segment output 25
GND	7	E2		Ground. It is used to shield the oscillator. See Note 1.
XIN	8	E1	I	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT	9	F1	0	Output port for crystal oscillator XT1. Standard or watch crystals can be connected.
GND	10	F2		Ground. It is used to shield the oscillator. (1)
V_{REF}	60	A12	0	Input for an external reference voltage/internal reference voltage output
RST/NMI	74	B5	I	Reset input, nonmaskable interrupt input port, or bootloader start (in flash devices).
тск	73	A5	I	Test clock (JTAG). TCK is the clock input port for device programming test and bootloader start.
TDI/TCLK	71	A6	I	Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TDO/TDI	70	В7	I/O	Test data output port. TDO/TDI data output or programming data input terminal.
TMS	72	B6	1	Test mode select. TMS is used as an input port for device programming and test.
XT2OUT	68	A8	0	Output terminal of crystal oscillator XT2
XT2IN	69	A7	1	Input port for crystal oscillator XT2
Reserved	NA	B11, D6, D7, D8, E4, E5, E6, E7, E8, E9, F4, F5, F8, F9, G4, G5,G8, G9, H4, H5, H6, H7, H8, J7, J8, L2, L11		Unused BGA balls. Connection to DVSS/AVSS recommended.

⁽¹⁾ It is recommended to connect GND externally to DV_{SS}.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage applied at V _{CC} to V _{SS}		-0.3	4.1	V
Voltage applied to any pin ⁽²⁾		-0.3	$V_{CC} + 0.3$	V
Diode current at any device terminal			±2	mA
Ctorono tomo orativo T (3)	Unprogrammed device	- 55	150	00
Storage temperature, T _{stg} (3)	Programmed device	±2 r	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
V Electronic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	V	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

⁽²⁾ All voltages are referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse.

⁽³⁾ Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

5.3 Recommended Operating Conditions

Typical values are specified at V_{CC} = 3.3 V and T_A = 25°C (unless otherwise noted)

				MIN	NOM	MAX	UNIT
V Supply voltage		During program execution (AV _C	1.8		3.6		
V _{CC}	Supply voltage	During flash memory programm V_{CC})	ing $(AV_{CC} = DV_{CC1} = DV_{CC2} =$	2.7			V
V_{SS}	Supply ground (AV _{SS} =	$= DV_{SS1} = DV_{SS2} = V_{SS})$		0		0	V
T _A	Operating free-air temp	perating free-air temperature range				85	°C
	LFXT1 crystal frequency ⁽¹⁾	LF selected, XTS_FLL = 0	Watch crystal		32.768		kHz
f _(LFXT1)		XT1 selected, XTS_FLL = 1	Ceramic resonator	0.45		6	MHz
	почастоу	XT1 selected, XTS_FLL = 1	Crystal	1		3.6 0 85 6 6 8 8 8	IVITZ
	VTO amostal fra accessor		Ceramic resonator	0.45		8	NAL 1-
f _(XT2)	XT2 crystal frequency		Crystal	1		8	MHz
	Dragger fraguency (MOLK CMOLK ACIK)	V _{CC} = 1.8 V	DC		4.15	NAL I-
f _(System)	Processor frequency (MCLK, SMCLK, ACLK)		V _{CC} = 2.5 V	DC		8	MHz

⁽¹⁾ In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.

Figure 5-1. Frequency vs Supply Voltage

Supply Current Into AV_{CC} and DV_{CC} Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CON	IDITION	MIN T	YP MAX	UNIT
	Active mode ⁽¹⁾		V _{CC} = 2.2 V	2	62 295	
I _(AM)	$f_{(MCLK)} = f_{(SMCLK)} = 1 \text{ MHz},$ $f_{(ACLK)} = 32768 \text{ Hz},$ XTS = 0, SELM = 0 or 1	$T_A = -40$ °C to 85°C	V _{CC} = 3 V	4	20 460	μA
	Low power mode (LPM0) ⁽¹⁾	$T_{\Delta} = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	$V_{CC} = 2.2 \text{ V}$		32 62	μA
I _(LPM0)	Low power mode (LF Mo)	1 _A = -40 C to 65 C	$V_{CC} = 3 V$		51 77	μΑ
	Low-power mode (LPM2),		$V_{CC} = 2.2 \text{ V}$		5 9	
I _(LPM2)	$f_{(MCLK)} = f_{(SMCLK)} = 0 \text{ MHz},$ $f_{(ACLK)} = 32768 \text{ Hz}, SCG0 = 0^{(2)}$	$T_A = -40$ °C to 85°C	$V_{CC} = 3 V$		7 13	μA
		$T_A = -40$ °C		,	1.0 1.8	
		T _A = 25°C	V 22V	,	1.0 1.8	
	Low-power mode (LPM3), $f_{(MCLK)} = f_{(SMCLK)} = 0 \text{ MHz},$ $f_{(ACLK)} = 32768 \text{ Hz}, SCG0 = 1,$ $f_{(LPM3)}$ Basic Timer 1 enabled ACLK selected	T _A = 60°C	$V_{CC} = 2.2 \text{ V}$		1.1 2.0	
	$f_{\text{(ACLK)}} = f_{\text{(SMCLK)}} = 0 \text{ MHz},$ $f_{\text{(ACLK)}} = 32768 \text{ Hz}, \text{SCG0} = 1,$	T _A = 85°C		2	262 295 420 460 32 62 51 77 5 9	
I(LPM3)	Basic Timer1 enabled, ACLK selected,	$T_A = -40$ °C			1.2 2.0	μA
LCD_A enabled (static mode, f _L	LCD_A enabled, LCDCPEN = 0, (static mode, $f_{LCD} = f_{(ACLK)}/32)^{(2)}$ (3)	T _A = 25°C	V _{CC} = 3 V		1.2 2.0	
	() Lob (Notivy /	T _A = 60°C			1.4 2.2	
		T _A = 85°C		2	2.7 4.5	
		T _A = -40°C			1.0 3.0	
	Low-power mode (LPM3),	T _A = 25°C	V _{CC} = 2.2 V		1.1 3.2	
	$f_{(MCLK)} = f_{(SMCLK)} = 0 \text{ MHz},$ $f_{(ACLK)} = 32768 \text{ Hz}, \text{ SCG0} = 1,$	T _A = 85°C		420 32 51 5 7 1.0 1.0 1.1 2.3 1.2 1.4 2.7 1.0 1.1 3.5 1.8 2.0 4.2 0.1 0.1 0.7 1.7 0.1 0.1	3.5 6.0	
I _(LPM3)	Basic Timer1 enabled, ACLK selected,	T _A = -40°C		,	1.8 3.3	μA
	LCD_A enabled, LCDCPEN = 0, (4-mux mode; $f_{LCD} = f_{(ACLK)}/32)^{(2)}$ (3)	T _A = 25°C	$V_{CC} = 3 V$	2	2.0 4.0	
	(102.1)	$T_A = 85^{\circ}C$		4	1.2 7.5	
		T _A = -40°C		().1 0.5	
		T _A = 25°C	V 22V	().1 0.5	
		T _A = 60°C	$V_{CC} = 2.2 \text{ V}$	().7 1.1	
	Low-power mode (LPM4),	$T_A = 85^{\circ}C$			1.7 3.0	
I _(LPM4)	$f_{(MCLK)} = 0$ MHz, $f_{(SMCLK)} = 0$ MHz, $f_{(ACLK)} = 0$ Hz, SCG0 = 1 ⁽²⁾	$T_A = -40$ °C		(0.8	μA
	V	T _A = 25°C	1,,	(0.8	
		T _A = 60°C	$V_{CC} = 3 V$	().8 1.2	
		T _A = 85°C			1.5 3.5	

 ⁽¹⁾ Timer_A is clocked by f_(DCOCLK)= 1 MHz. All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
 (2) All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
 (3) The LPM3 currents are characterized with a Micro Crystal CC4V-T1A (9 pF) crystal and OSCCAPx = 1h.

Current consumption of active mode versus system frequency:

$$I_{(AM)} = I_{(AM)} [1 \text{ MHz}] \times f_{(System)} [MHz]$$

Current consumption of active mode versus supply voltage:

$$I_{(AM)} = I_{(AM) [3 V]} + 200 \mu A/V \times (V_{CC} - 2.2 V)$$

Figure 5-2. I_{LPM4} -- LPM4 Current vs Temperature

5.5 Schmitt-Trigger Inputs – Ports P1 to P6, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
\/	Positive-going input threshold voltage	V _{CC} = 2.2 V	1.1	1.55	V
V _{IT+} Po	Fositive-going input threshold voltage	V _{CC} = 3 V	1.5	1.98	V
V Name time and the sale and th	Negative gains input threehold valtege	V _{CC} = 2.2 V	0.4	0.9	\ <i>\</i>
V _{IT} _	Negative-going input threshold voltage	V _{CC} = 3 V	0.9	1.3	V
\/	Input valtage byotogogic (V V V	V _{CC} = 2.2 V	0.3	1.1	\ <i>\</i>
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})	V _{CC} = 3 V	0.5	1	V

5.6 Inputs Px.y, TAx

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
	Estamal interment time in a	Port P1, P2: P1.x to P2.x, external trigger signal	2.2 V	62		
t _(int)	External interrupt timing	for the interrupt flag ⁽¹⁾	3 V	50		ns
	Timor A capture timing TAO TA1 TA2		2.2 V	62		
t _(cap)	Timer_A capture timing	TA0, TA1, TA2	3 V	50		ns
f _(TAext)	Timer_A clock frequency externally	TACLK INCLKA	2.2 V		8	N.41.1-
f _(TBext)	applied to pin	TACLK, INCLK $t_{(H)} = t_{(L)}$	3 V		10	MHz
f _(TAint)	Time and a shade from the same		2.2 V		8	N.41.1-
f _(TBint)	Timer A clock frequency	SMCLK or ACLK signal selected	3 V		10	MHz

⁽¹⁾ The external signal sets the interrupt flag every time the minimum t_(int) parameters are met. It may be set even with trigger signals shorter than t_(int).

5.7 Leakage Current – Ports P1 to P6

PARAMETER	TEST CONDITIONS		MIN MAX	UNIT
I _{Ikg(Px.y)} Leakage current, Port Px	V _(Px.y) (2)	$V_{CC} = 2.2 \text{ V}, 3 \text{ V}$	±50	nA

The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pins, unless otherwise noted.

⁽²⁾ The port pin must be selected as input.

5.8 Outputs – Ports P1 to P6

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
		$I_{OH(max)} = -1.5 \text{ mA}, V_{CC} = 2.2 \text{ V}^{(1)}$	V _{CC} – 0.25	V_{CC}	
V _{OH} High-level output voltage	$I_{OH(max)} = -6 \text{ mA}, V_{CC} = 2.2 \text{ V}^{(2)}$	$V_{CC} - 0.6$	V_{CC}	V	
	nigh-level output voltage	$I_{OH(max)} = -1.5 \text{ mA}, V_{CC} = 3 V^{(1)}$	$V_{CC} - 0.25$	V_{CC}	V
		$I_{OH(max)} = -6 \text{ mA}, V_{CC} = 3 V^{(2)}$	$V_{CC} - 0.6$	V_{CC}	
		$I_{OL(max)} = 1.5 \text{ mA}, V_{CC} = 2.2 \text{ V}^{(1)}$	V_{SS}	$V_{SS} + 0.25$	
\/	Low level output voltage	$I_{OL(max)} = 6 \text{ mA}, V_{CC} = 2.2 \text{ V}^{(2)}$	V_{SS}	$V_{SS} + 0.6$	V
V _{OL}		$I_{OL(max)} = 1.5 \text{ mA}, V_{CC} = 3 V^{(1)}$	V_{SS}	$V_{SS} + 0.25$	V
		$I_{OL(max)} = 6 \text{ mA}, V_{CC} = 3 V^{(2)}$	V _{SS}	V _{SS} + 0.6	

⁽¹⁾ The maximum total current, I_{OH(max)} and I_{OL(max)}, for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop.

5.9 Output Frequency

PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT		
f _(Px.y)	$1 \le x \le 6, \ 0 \le y \le 7$	$C_L = 20 \text{ F}, I_L = \pm 1.5 \text{ mA}$	V _{CC} = 2.2 V, 3 V	DC		f _{System}	MHz
$f_{(MCLK)}$	P1.1/TA0/MCLK	C _L = 20 pF				f _{System}	MHz
	Duty avala of autaut	D4 4/TAO/MCLIV	$f_{(MCLK)} = f_{(XT1)}$	40%		60%	
t _(Xdc)	Duty cycle of output frequency	P1.1/TA0/MCLK, $C_L = 20 \text{ pF}, V_{CC} = 2.2 \text{ V}, 3 \text{ V}$	$f_{(MCLK)} = f_{(DCOCLK)}$	50% – 15 ns	50%	50%+ 15 ns	

⁽²⁾ The maximum total current, I_{OH(max)} and I_{OL(max)}, for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop.

5.10 Typical Characteristics – Outputs

5.11 Wake-up Timing From LPM3

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CON	MIN MAX	UNIT	
t _{d(LPM3)} Delay time		f = 1 MHz		6	
	Delay time	f = 2 MHz	$V_{CC} = 2.2 \text{ V}, 3 \text{ V}$	6	μs
		f = 3 MHz		6	1

5.12 POR - Brownout Reset (BOR)

PARAMETER TEST CONDITI		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{d(BOR)}					2000	μs
V _{CC(start)}		dV _{CC} /dt ≤ 3 V/s (see Figure 5-7)		0.7 × V _(B_IT-)		V
V _(B_IT-)	Brownout (2)	dV _{CC} /dt ≤ 3 V/s (see Figure 5-7 through Figure 5-9)			1.71	V
V _{hys(B_IT-)}		dV _{CC} /dt ≤ 3 V/s (see Figure 5-7)				mV
t _(reset)		Pulse duration needed at RST/NMI pin to accepted reset internally, V _{CC} = 2.2 V, 3 V	2			μs

- (1) The current consumption of the brownout module is already included in the I_{CC} current consumption data. The voltage level V_(B_IT-) + V_{hys(B_IT-)} ≤ 1.89 V.
- (2) During power up, the CPU begins code execution following a period of t_{d(BOR)} after V_{CC} = V_(B_IT-) + V_{hys(B_IT-)}. The default FLL+ settings must not be changed until V_{CC} ≥ V_{CC(min)}, where V_{CC(min)} is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User's Guide (SLAU056) for more information on the brownout and SVS circuit.

Figure 5-7. POR, BOR vs Supply Voltage

Figure 5-8. V_{CC(drop)} Level with a Square Voltage Drop to Generate a POR or BOR Signal

Figure 5-9. V_{CC(drop)} Level With a Triangle Voltage Drop to Generate a POR or BOR Signal

5.13 SVS (Supply Voltage Supervisor and Monitor)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	dV _{CC} /dt > 30 V/ms (see Figure 5-10)		5		150	
t(SVSR)	dV _{CC} /dt ≤ 30 V/ms				2000	μs
t _{d(SVSon)}	SVS on, switch from VLD = 0 to VLD \neq 0, V _{CC} = 3 V		20		150	μs
t _{settle}	VLD ≠ 0 ⁽¹⁾				12	μs
V _(SVSstart)	VLD ≠ 0, V _{CC} /dt ≤ 3 V/s (see Figure 5-10)			1.55	1.7	V
		VLD = 1	70	120	210	mV
V _{hys(SVS_IT-)}	V _{CC} /dt ≤ 3 V/s (see Figure 5-10)	VLD = 2 to 14	V _(SVS_IT−) × 0.001		V _(SVS_IT-) × 0.016	
	V _{CC} /dt ≤ 3 V/s (see Figure 5-10), external voltage applied on A7	VLD = 15	4.4		20	mV
		VLD = 1	1.8	1.9	2.05	
		VLD = 2	1.94	2.1	2.23	
		VLD = 3	2.05	2.2	2.37	
	V (4) 40 W (4) 5 To y 5 40	VLD = 4	2.14	2.3	2.48	
		VLD = 5	2.24	2.4	2.6	
		VLD = 6	2.33	2.5	2.71	
		VLD = 7	2.46	2.65	2.86	
V _(SVS_IT-)	V _{CC} /dt ≤ 3 V/s (see Figure 5-10)	VLD = 8	2.58	2.8	3	V
V (SVS_II-)		VLD = 9	2.69	2.9	3.13	•
		VLD = 10	2.83	3.05	3.29]
		VLD = 11	2.94	3.2	3.42	
		VLD = 12	3.11	3.35	3.61 ⁽²⁾	
		VLD = 13	3.24	3.5	3.76 ⁽²⁾	
		VLD = 14	3.43	3.7 ⁽²⁾	3.99 ⁽²⁾	
	V _{CC} /dt ≤ 3 V/s (see Figure 5-10), external voltage applied on A7	VLD = 15	1.1	1.2	1.3	
CC(SVS) (3)	VLD ≠ 0, V _{CC} = 2.2 V, 3 V			10	15	μΑ

⁽¹⁾ t_{settle} is the settling time that the comparator output needs to have a stable level after VLD is switched from VLD ≠ 0 to a different VLD value from 2 to 15. The overdrive is assumed to be > 50 mV.

⁽²⁾ The recommended operating voltage range is limited to 3.6 V.

⁽³⁾ The current consumption of the SVS module is not included in the I_{CC} current consumption data.

Figure 5-10. SVS Reset (SVSR) vs Supply Voltage

Figure 5-11. V_{CC(drop)} with a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal

5.14 **DCO**

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _(DCOCLK)	N _(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0	2.2 V, 3 V		1		MHz
f	FN 8 = FN 4 = FN 3 = FN 2 = 0, DCOPLUS = 1	2.2 V	0.3	0.65	1.25	MHz
f _(DCO = 2)	111_0 = 1111_4 = 1112_5 = 1112_2 = 0; Decoi 200 = 1	3 V	0.3	0.7	1.3	IVII IZ
f	FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 ⁽¹⁾	2.2 V	2.5	5.6	10.5	MHz
f _(DCO = 27)	FN_0 = FN_4 = FN_5 = FN_2 = 0, DCOFLOS = FV	3 V	2.7	6.1	11.3	IVII IZ
form	FN 8 = FN 4 = FN 3 = FN 2 = 1, DCOPLUS = 1	2.2 V	0.7	1.3	2.3	MHz
f _(DCO = 2)	111_0 = 111_4 = 111_5 = 111_2 = 1, 5001 200 = 1	3 V	0.8	1.5	2.5	IVII IZ
f	FN_8 = FN_4 = FN_3 = FN_2 = 1, DCOPLUS = 1 ⁽¹⁾	2.2 V	5.7	10.8	18	MHz
f _(DCO = 27)	FN_0 = FN_4 = FN_5 = FN_2 = 1, DCOFLOS = 1	3 V	6.5	12.1	20	IVII IZ
f	FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1	2.2 V	1.2	2	3	MHz
f _(DCO = 2)	FN_0 = FN_4 = 0, FN_5 = 1, FN_2 = x, DCOFLOS = 1	3 V	1.3	2.2	3.5	IVII IZ
f _(DCO = 27)	FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 ⁽¹⁾	2.2 V	9	15.5	25	MHz
	FN_0 = FN_4 = 0, FN_5 = 1, FN_2 = x, DCOFLOS = 1\frac{1}{2}	3 V	10.3	17.9	28.5	IVII IZ
	FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1	2.2 V	1.8	2.8	4.2	MHz
f _(DCO = 2)		3 V	2.1	3.4	5.2	IVITIZ
f	FN 8 = 0, FN 4 = 1, FN 3 = FN 2 = x, DCOPLUS = 1 ⁽¹⁾	2.2 V	13.5	21.5	33	MHz
f _(DCO = 27)	TN_0 = 0, FN_4 = 1, FN_5 = FN_2 = x, DCOFLOS = 1	3 V	16	26.6	41	IVII IZ
f	FN 8 = 1, FN 4 = 1 = FN 3 = FN 2 = x, DCOPLUS = 1	2.2 V	2.8	4.2	6.2	MHz
f _(DCO = 2)	FIN_6 = 1, FIN_4 = 1 = FIN_5 = FIN_2 = x, DCOPLOS = 1	3 V	4.2	6.3	9.2	IVITIZ
f	FN 8 = 1, FN 4 = 1 = FN 3 = FN 2 = x, DCOPLUS = 1 ⁽¹⁾	2.2 V	21	32	46	MHz
f _(DCO = 27)	FIN_6 = 1, FIN_4 = 1 = FIN_5 = FIN_2 = x, DCOPLOS = 1\forall^	3 V	30	46	70	IVITIZ
S _n	Step size between adjacent DCO taps:	1 < TAP ≤ 20	1.06		1.11	
o _n	$S_n = f_{DCO(Tap n+1)} / f_{DCO(Tap n)}$ (see Figure 5-13 for taps 21 to 27)	TAP = 27	1.07		1.17	
	Temperature drift, N _(DCO) = 01Eh,	2.2 V	-0.2	-0.3	-0.4	%/°C
O _t F	FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = $0^{(2)}$	3 V	-0.2	-0.3	-0.4	%/°C
D _V	Drift with V_{CC} variation, $N_{(DCO)} = 01Eh$, $FN_8 = FN_4 = FN_3 = FN_2 = 0$, $D = 2$, $DCOPLUS = 0^{(2)}$		0	5	15	%/V

⁽¹⁾ Do not exceed the maximum system frequency.(2) This parameter is not production tested.

Figure 5-12. DCO Frequency vs Supply Voltage V_{CC} and vs Ambient Temperature

Figure 5-13. DCO Tap Step Size

Figure 5-14. Five Overlapping DCO Ranges Controlled by FN_x Bits

5.15 Crystal Oscillator, LFXT1, Low-Frequency Mode

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{LFXT1,LF}	LFXT1 oscillator crystal frequency, LF mode 0, 1	XTS = 0, LFXT1Sx = 0 or 1	1.8 V to 3.6 V		32768		Hz
OALF	Oscillation allowance for LF	$XTS = 0$, $LFXT1Sx = 0$, $f_{LFXT1,LF} = 32768$ kHz, $C_{L,eff} = 6$ pF			500		kΩ
OALF	crystals	$\begin{split} &XTS = 0, LFXT1Sx = 0, \\ &f_{LFXT1,LF} = 32768 \; kHz, C_{L,eff} = 12 \; pF \end{split}$			200		KS2
	Integrated effective load	XTS = 0, $XCAPx = 0$			1		
0		XTS = 0, XCAPx = 1			5.5		
$C_{L,eff}$	capacitance, LF mode (2)	XTS = 0, XCAPx = 2			8.5		pF
		XTS = 0, XCAPx = 3			11		
	Duty cycle, LF mode	$XTS = 0$, Measured at P1.5/ACLK, $f_{LFXT1,LF} = 32768Hz$	2.2 V, 3 V	30	50	70	%
f _{Fault,LF}	Oscillator fault frequency, LF mode (3)	XTS = 0, XCAPx = 0, LFXT1Sx = 3 ⁽⁴⁾					
			2.2 V, 3 V	10		10000	Hz

- (1) To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed.
 - Keep the trace between the MCU and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
 - Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.
- (2) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.
- Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag.
- (4) Measured with logic level input frequency but also applies to operation with crystals.

5.16 Crystal Oscillator, LFXT1, High-Frequency Mode

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{LFXT1}	LFXT1 oscillator crystal frequency	Ceramic resonator	1.8 V to 3.6 V	0.45		8	MUL
		Crystal resonator	1.8 V to 3.6 V	1		8	MHz
$C_{L,eff}$	Integrated effective load capacitance, HF mode (1)(2)				1		pF
	Duty cycle	Measured at P1.5/ACLK	2.2 V, 3 V	40	50	60	%

⁽¹⁾ Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.

5.17 Crystal Oscillator, XT2 Oscillator, High-Frequency Mode

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{XT2}	XT2 oscillator crystal frequency	Ceramic resonator	1.8 V to 3.6 V	0.45		8	MHz
		Crystal resonator	1.8 V to 3.6 V	1		8	IVITZ
$C_{L,eff}$	Integrated effective load capacitance, HF mode (1)(2)				1		pF
	Duty cycle	Measured at P1.4/SMCLK	2.2 V, 3 V	40	50	60	%

¹⁾ Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.

5.18 RAM

			117	 				,			
	PARA	METER			TES	T CONDI	TIONS		MIN	MAX	UNIT
V	RAMh			CPU halted	(¹⁾				1.6		V

⁽¹⁾ This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition.

⁽²⁾ Requires external capacitors at both terminals. Values are specified by crystal manufacturers.

⁽²⁾ Requires external capacitors at both terminals. Values are specified by crystal manufacturers.

5.19 LCD_A

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V _{CC(LCD)}	Supply voltage	Charge pump enabled (LCDCPEN = 1, VLCDx > 0000)		2.2		3.6	V
C _{LCD}	Capacitor on LCDCAP ⁽¹⁾	Charge pump enabled (LCDCPEN = 1, VLCDx > 0000)		4.7			μF
I _{CC(LCD)}	Average supply current ⁽²⁾	$V_{LCD(typ)} = 3$ V, LCDCPEN = 1, VLCDx= 1000, all segments on, $f_{LCD} = f_{ACLK}/32$, no LCD connected ⁽³⁾ , $T_A = 25$ °C	2.2 V		3.8		μΑ
f_{LCD}	LCD frequency					1.1	kHz
		VLCDx = 0000			V_{CC}		
		VLCDx = 0001			2.60		
		VLCDx = 0010			2.66		
		VLCDx = 0011			2.72		
		VLCDx = 0100			2.78		
		VLCDx = 0101			2.84		
		VLCDx = 0110			2.90		
V	I CD voltage	VLCDx = 0111			2.96		V
V_{LCD}	LCD voltage	VLCDx = 1000			3.02		V
		VLCDx = 1001			3.08		
		VLCDx = 1010			3.14		
		VLCDx = 1011			3.20		
		VLCDx = 1100			3.26		
		VLCDx = 1101			3.32		
		VLCDx = 1110			3.38		
		VLCDx = 1111			3.44	3.60	
R _{LCD}	LCD driver output impedance	V_{LCD} = 3 V, CPEN = 1, VLCDx = 1000, I_{LOAD} = ±10 μA	2.2 V			10	kΩ

Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.

Refer to the supply current specifications I_(LPM3) for additional current specifications with the LCD_A module active. Connecting an actual display increases the current consumption depending on the size of the LCD.

5.20 Comparator_A⁽¹⁾

P.	ARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		CAON 1 CARSEL O CAREE O	2.2 V		25	40	
I(CC)		CAON = 1, CARSEL = 0, CAREF = 0	2.2 V 25 40 3 V 45 60 3 V 30 50 3 V 45 80 2.2 V, 3 V 0.23 0.24 0.25 2.2 V, 3 V 0.47 0.48 0.5 2.2 V 390 480 540 3 V 400 490 550 2.2 V, 3 V 0 V _{CC} - 1 2.2 V, 3 V 0 0.7 1.4 2.2 V 80 165 3 3 V 70 120 240 2.2 V 1.4 1.9 2.8	μA			
		CAON = 1, CARSEL = 0, CAREF = (1, 2, 3),	2.2 V		30	50	
(Refladder/RefDid	ode)	No load at P1.6/CA0 and P1.7/CA1	3 V		45	80	μA
V _(Ref025)	Voltage @ 0.25 V _{cc} node V _{cc}	PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.6/CA0 and P1.7/CA1	2.2 V, 3 V	0.23	0.24	0.25	
V _(Ref050)	$\frac{\text{Voltage @ 0.5 V}_{\text{cc}} \text{ node}}{\text{V}_{\text{cc}}}$	PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.6/CA0 and P1.7/CA1	2.2 V, 3 V	0.47	0.48	0.5	
	See Figure 5-15 and Figure 5-16	PCA0 = 1, CARSEL = 1, CAREF = 3, No load at P1.6/CA0 and P1.7/CA1, T _A = 85°C	2.2 V	390	480	540	
V _(RefVT)			3 V	400	490	550	mV
V _{IC}	Common-mode input voltage range	CAON = 1	2.2 V, 3 V	0		V _{CC} – 1	V
$V_p - V_S$	Offset voltage		2.2 V, 3 V	-30		30	mV
V _{hys}	Input hysteresis	CAON = 1	2.2 V, 3 V	0	0.7	1.4	mV
		T _A = 25°C,	2.2 V	80	165	3	20
t _(response LH)	Sac (2)	Overdrive 10 mV, without filter: CAF = 0	3 V	70	120	240	ns
t _(response HL)	HL)	$T_A = 25^{\circ}C$, Overdrive 10 mV, without filter: CAF = 1	2.2 V	1.4	1.9	2.8	
			3 V	0.9	1.5	2.2	μs

The leakage current for the Comparator_A terminals is identical to $I_{lkg(Px.x)}$ specification. The response time is measured at P1.6/CA0 with an input voltage step and the Comparator_A already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time.

5.21 Typical Characteristics - Comparator_A

Figure 5-15. Reference Voltage vs Free-Air Temperature

Figure 5-16. Reference Voltage vs Free-Air Temperature

Figure 5-17. Block Diagram of Comparator_A Module

Figure 5-18. Overdrive Definition

5.22 SD16_A, Power Supply and Recommended Operating Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TES	T CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT		
AV _{CC}	Analog supply voltage range	$\begin{array}{l} AV_{CC} = DV_{CC} = V_{CC}, \\ AV_{SS} = DV_{SS} = V_{SS} = \end{array}$	0 V		2.5		3.6	V		
			SD16BUFx = 00, GAIN: 1, 2			750	1050			
		SD16LP = 0, f _{SD16} = 1 MHz, SD16OSR = 256	SD16BUFx = 00, GAIN: 4, 8, 16			830	0 1150			
		05 1000K = 200	SD16BUFx = 00, GAIN: 32			1150	1700			
I _{SD16}		SD16LP = 1,	SD16BUFx = 00, GAIN: 1	3 V		730	1030	μA		
12D16	internal reference	f _{SD16} = 0.5 MHz, SD16OSR = 256	SD16BUFx = 00, GAIN: 32			830 1	1150	μ, ,		
					SD16BUFx = 01, GAIN: 1			850		
		SD16LP = 0, SD16OSR = 256	SD16BUFx = 10, GAIN: 1			1000				
		SD16OSR = 256	SD16BUFx = 11, GAIN: 1			1130				
	Analog front-end	SD16LP = 0 (Low pov	power mode disabled)		0.03	1	1.1	MHz		
f _{SD16}	/ maiog mont ona	SD16LP = 1 (Low pow	ver mode enabled)	3 V	0.03	0.5		IVI⊓Z		

5.23 SD16_A, Input Range

	PARAMETER	TEST CO	NDITIONS	V _{CC}	MIN	TYP M	AX	UNIT						
		SD16BUFx = 00			AV _{SS} - 0.1	A	/cc							
V _I	Absolute input voltage range	60	V											
	Common-mode input voltage	SD16BUFx = 00			AV _{SS} - 0.1	A	/cc							
V _{IC}	range	SD16BUFx > 00			AV _{SS} + 0.2	AV _C	c – 2 V	V						
M	Differential full scale input voltage	Bipolar mode, SD1	6UNI = 0					mV						
V _{ID,FSR}	range ⁽¹⁾	Unipolar mode, SE	016UNI = 1		0	+V _{REF} /20		IIIV						
	Differential input voltage range for													
			SD16GAINx = 2		±250									
.,		Differential input voltage range for	CD4CDEEON 4	SD16GAINx = 4			±125							
V_{ID}	specified performance ⁽¹⁾	SDIGREFON = 1	SD16GAINx = 8			±62		mv						
			SD16GAINx = 16		±31									
			SD16GAINx = 32			±15								
		f _{SD16} = 1 MHz,	SD16GAINx = 1			200								
Z _I	Input impedance	SD16BUFx = 00	SD16GAINx = 32	3 \/		75		kΩ						
	(one input pin to AV _{SS})		SD16GAINx = 1	3 V		>10		132						
		f _{SD16} = 1 MHz,	SD16GAINx = 1		300	400								
Z _{ID}	Differential input impedance		SD16GAINx = 32	3 V	100 150			kΩ						
טו–	(IN+ to IN-)		SD16GAINx = 1	- V		>10		1/22						

⁽¹⁾ The analog input range depends on the reference voltage applied to V_{REF} . If V_{REF} is sourced externally, the full-scale range is defined by $V_{FSR+} = +(V_{REF}/2)/GAIN$ and $V_{FSR-} = -(V_{REF}/2)/GAIN$. The analog input range should not exceed 80% of V_{FSR+} or V_{FSR-} .

5.24 SD16_A, Performance

 $f_{SD16} = 30 \text{ kHz}, SD16REFON = 1, SD16BUFx = 01$

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		V _{CC}	MIN	TYP	MAX	UNIT
		SD16GAINx = 1,Signal Amplitude = 500 mV, SD16OSRx = 256				84		
SINAD	Signal-to-noise + distortion ratio	SD16GAINx = 1,Signal Amplitude = 500 mV, SD16OSRx = 512	nal Amplitude = 500 mV, $f_{IN} = 2.8 \text{ Hz}$	3 V		84		dB
		SD16GAINx = 1,Signal Amplitude = 500 mV, SD16OSRx = 1024				84		
G	Nominal gain	SD16GAINx = 1, SD16OSRx = 1024			0.97	1.00	1.02	
dG/dT	Gain temperature drift	SD16GAINx = 1, SD16OSRx = 1024				15		ppm/°C
dG/dV _{CC}	Gain supply voltage drift	SD16GAINx = 1, SD16OSRx = 1024, VCC = 2.5 V to 3.6 V				0.35		%/V

5.25 SD16_A, Performance

 $f_{SD16} = 1 \text{ MHz}, SD16OSRx = 256, SD16REFON = 1, SD16BUFx = 00$

 $V_{CC} = 3 \text{ V}$, over recommended operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
		SD16GAINx = 1, Signal Amplitude = 500 mV		83.5	85		
		SD16GAINx = 2, Signal Amplitude = 250 mV		81.5	84		
SINAD	Signal-to-noise +	SD16GAINx = 4, Signal Amplitude = 125 mV	f _{IN} = 50 Hz or	76	79.5		٩D
SINAD	distortion ratio	SD16GAINx = 8, Signal Amplitude = 62 mV	100 Hz	73	76.5		dB
		SD16GAINx = 16, Signal Amplitude = 31 mV		69	73		
		SD16GAINx = 32, Signal Amplitude = 15 mV		62	69		
		SD16GAINx = 1	•	0.97	1.00	1.02	
	Manada di mata	SD16GAINx = 2			1.96	2.02	
0		SD16GAINx = 4			3.86	3.96	
G	Nominal gain	SD16GAINx = 8			7.62	7.84	
G		SD16GAINx = 16			15.04	15.52	
		SD16GAINx = 32			28.35	29.76	
_	0"	SD16GAINx = 1				±0.2	0/ FOD
Eos	Offset error	SD16GAINx = 32				±1.5	%FSR
JE /JE	Offset error temperature	SD16GAINx = 1			±4	±20	ppm
dE _{OS} /dT	coefficient	SD16GAINx = 32			±20	±100	FSR/°C
CMDD	Common-mode rejection	SD16GAINx = 1, Common-mode input signal V_{ID} = 500 mV, f_{IN} = 50 Hz or 100 Hz	gnal:		>90		٩D
CMRR	ratio	SD16GAINx = 32, Common-mode input signal: V _{ID} = 16 mV, f _{IN} = 50 Hz or 100 Hz			>75		dB
PSRR	Power supply rejection ratio	SD16GAINx = 1			>80		dB

5.26 SD16_A, Linearity

 $f_{SD16} = 1 \text{ MHz}, \text{SD16REFON} = 1, \text{SD16BUFx} = 00$

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	TYP	UNIT
		SD16OSR = 256, SD16GAINx = 000b, Signal Amplitude = 500 mV		1.5	
INII	Integral poplingarity	SD16OSR = 256, SD16GAINx = 101b, Signal Amplitude = 15 mV	3 V	6	LSB
INL	Integral nonlinearity	SD16OSR = 1024, SD16GAINx = 000b, Signal Amplitude = 500 mV	3 V	6 0.8	LOD
		SD16OSR = 1024, SD16GAINx = 101b, Signal Amplitude = 15 mV		3.5	

5.27 Typical Characteristics, SD16_A SINAD Performance Over OSR

5.28 SD16_A, Temperature Sensor and Built-in V_{CC} Sense

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
TC _{Sensor}	Sensor temperature coefficient	See ⁽²⁾		1.18	1.32	1.46	mV/K
V _{Offset,Sensor}	Sensor offset voltage	See (2)		-100		100	mV
		Temperature sensor voltage at T _A = 85°C		435	475	515	
V _{Sensor}	Sensor output voltage (3)	Temperature sensor voltage at T _A = 25°C	3 V	355	395	435	mV
		Temperature sensor voltage at T _A = 0°C ⁽²⁾		320	360	400	
V _{CC,Sense}	V _{CC} divider at input 5	f _{SD16} = 32 kHz, SD16OSRx = 256, SD16REFON = 1		0.08	1/11	0.1	V

- (1) Results based on characterization and/or production test, not TC_{Sensor} or V_{Offset,sensor}.
- (2) Not production tested, limits characterized.
- (3) The following formula can be used to calculate the temperature sensor output voltage: V_{Sensor,typ} = TC_{Sensor} (273 + T [°C]) + V_{Offset,sensor} [mV]

5.29 SD16_A, Built-In Voltage Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V_{REF}	Internal reference voltage	SD16REFON = 1, SD16VMIDON = 0	3 V	1.14	1.20	1.26	V
I _{REF}	Reference supply current	SD16REFON = 1, SD16VMIDON = 0	3 V		175	260	μΑ
TC	Temperature coefficient	SD16REFON = 1, $SD16VMIDON = 0$ ⁽¹⁾	3 V		18	50	ppm/°C
C _{REF}	V _{REF} load capacitance	SD16REFON = 1, $SD16VMIDON = 0$ ⁽²⁾			100		nF
I_{LOAD}	V _{REF(I)} maximum load current	SD16REFON = 1, SD16VMIDON = 0	3 V			±200	nA
t _{ON}	Turn-on time	$SD16REFON = 0 \rightarrow 1$, $SD16VMIDON = 0$, $C_{REF} = 100 \text{ nF}$	3 V		5		ms
PSRR	Line regulation	SD16REFON = 1, SD16VMIDON = 0	3 V		100		μV/V

- (1) Calculated using the box method: $(MAX(-40...85^{\circ}C) MIN(-40...85^{\circ}C))/MIN(-40...85^{\circ}C)/(85C (-40^{\circ}C))$
- (2) There is no capacitance required on V_{REF}. However, TI recommends a capacitance of at least 100 nF to reduce any reference voltage noise.

5.30 SD16_A, Reference Output Buffer

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
$V_{REF,BUF}$	Reference buffer output voltage	SD16REFON = 1, SD16VMIDON = 1	3 V		1.2		V
I _{REF,BUF}	Reference supply + reference output buffer quiescent current	SD16REFON = 1, SD16VMIDON = 1	3 V		385	600	μΑ
C _{REF(O)}	Required load capacitance on V _{REF}	SD16REFON = 1, SD16VMIDON = 1		470			nF
I _{LOAD,Max}	Maximum load current on V _{REF}	SD16REFON = 1, SD16VMIDON = 1	3 V			±1	mA
	Maximum voltage variation vs load current	I _{LOAD} = 0 to 1 mA	3 V	-15		+15	mV
t _{ON}	Turn-on time	$\begin{aligned} &\text{SD16REFON} = 0 \rightarrow 1, \\ &\text{SD16VMIDON} = 1, \\ &\text{C}_{\text{REF}} = 470 \text{ nF} \end{aligned}$	3 V		100		μs

5.31 SD16_A, External Reference Input

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	U 1	1 7 0	1 9	<u>' '</u>			,		
	PARAMETER		TEST CONDITIO	ONS	V _{CC}	MIN	TYP	MAX	UNIT
$V_{REF(I)}$	Input voltage range		SD16REFON = 0		3 V	1.0	1.25	1.5	V
I _{REF(I)}	Input current		SD16REFON = 0		3 V			50	nA

Specifications

5.32 12-Bit DAC, Supply Specifications

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
AV_{CC}	Analog supply voltage	$AV_{CC} = DV_{CC}$, $AV_{SS} = DV_{SS} = 0 V$		2.20		3.60	٧
I _{DD}	Supply current, single DAC channel (1) (2)	DAC12AMPx = 2, DAC12IR = 0, DAC12_xDAT = 0800h	- 2.2 V, 3 V		50	110	_
		DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, V _{REF,DAC12} = AV _{CC}			50	110	
		DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, V _{REF,DAC12} = AV _{CC}			200	440	μΑ
		DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, V _{REF,DAC12} = AV _{CC}			700	1500	
PSRR	Power-supply rejection ratio (3)(4)	DAC12_xDAT = 800h, $V_{REF,DAC12}$ = 1.2 V, ΔAV_{CC} = 100 mV	2.7 V		70		dB

 ⁽¹⁾ No load at the output pin, DAC12_0, assuming that the control bits for the shared pins are set properly.
 (2) Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications.

⁽³⁾ PSRR = $20 \times \log\{\Delta AV_{CC}/\Delta V_{DAC12_XOUT}\}$. (4) V_{REF} is applied externally. The internal reference is not used.

5.33 12-Bit DAC, Linearity Specifications

over recommended operating free-air temperature (unless otherwise noted) (see Figure 5-20)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
INL	Integral nonlinearity ⁽¹⁾	V _{REF,DAC12} = 1.2 V or V _{REF,ext} = 2.5 V DAC12AMPx = 7, DAC12IR = 1	2.7 V		±2.0	±8.0	LSB	
DNL	Differential nonlinearity ⁽¹⁾	V _{REF,ext} = 1.2 V, DAC12AMPx = 7, DAC12IR = 1		-1	±0.4	±1.3	LSB	
		V _{REF,ext} = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	2.7 V		±0.4	±1.0		
		V _{REF,DAC12} = 1.2 V, DAC12AMPx = 7, DAC12IR = 1			±0.4	±1.0		
E _O	Offset voltage without calibration (1) (2)	V _{REF,DAC12} = 1.2 V, DAC12AMPx = 7, DAC12IR = 1	0.7.1/			±20	mV	
	Offset voltage with calibration (1) (2)	V _{REF,DAC12} = 1.2 V, DAC12AMPx = 7, DAC12IR = 1	2.7 V			±2.5		
d _{E(O)} /d _T	Offset error temperature coefficient ⁽¹⁾		2.7 V		±30		μV/°C	
E _G	Gain error ⁽¹⁾	V _{REF,DAC12} = 1.2 V	2.7 V			±3.50	%FSR	
d _{E(G)} /d _T	Gain temperature coefficient ⁽¹⁾		2.7 V		10		ppm of FSR/°C	
t _{Offset_Cal}		DAC12AMPx = 2	2.7 V			100	ms	
	Time for offset calibration (3)	DAC12AMPx = 3, 5				32		
		DAC12AMPx = 4, 6, 7				6		

⁽¹⁾ Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first order equation: y = a + b x x. V_{DAC12 xOUT} = E_O + (1 + E_G) x (Ve_{REF+}/4095) x DAC12_xDAT, DAC12IR = 1.

(2) The offset calibration works on the output operational amplifier. Offset calibration is triggered by setting bit DAC12CALON.

³⁾ The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. TI recommends that the DAC12 module be configured before initiating calibration. Port activity during calibration may effect accuracy and is not recommended.

Figure 5-20. Linearity Test Load Conditions and Gain and Offset Definition

STRUMENTS

Figure 5-21. Typical INL Error vs Digital Input Data

DAC12_xDAT - Digital Code

Figure 5-22. Typical DNL Error vs Digital Input Data

5.34 12-Bit DAC, Output Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
Vo	Output voltage range ⁽¹⁾ (see Figure 5-23)	No load, $Ve_{REF+} = AV_{CC}$, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7	- 2.2 V, 3 V	0		0.005	V
		No load, $Ve_{REF+} = AV_{CC}$, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7		AV _{CC} - 0.05		AV_{CC}	
		$\begin{aligned} R_{Load} &= 3 \text{ k}\Omega, \text{ Ve}_{REF+} = \text{AV}_{CC}, \\ DAC12_xDAT &= 0h, \text{ DAC12IR} = 1, \\ DAC12AMPx &= 7 \end{aligned}$		0		0.1	
		$\begin{aligned} R_{Load} &= 3 \text{ k}\Omega, \text{ Ve}_{REF+} = \text{AV}_{CC},\\ \text{DAC12_xDAT} &= \text{0FFFh, DAC12IR} = 1,\\ \text{DAC12AMPx} &= 7 \end{aligned}$		AV _{CC} - 0.13		AV_{CC}	
C _{L(DAC12)}	Maximum DAC12 load capacitance		2.2 V, 3 V			100	pF
	Maximum DAC12 load current		2.2 V	-0.5		+0.5	mA
I _{L(DAC12)}			3 V	-1.0		+1.0	ША
	Output resistance (see Figure 5-23)	$\begin{aligned} R_{Load} &= 3 \text{ k}\Omega, \text{ V}_{O/P(DAC12)} < 0.3 \text{ V}, \\ DAC12AMPx &= 2, \text{ DAC12}_x\text{DAT} &= 0 \text{h} \end{aligned}$	2.2 V, 3 V		150	250	
R _{O/P(DAC} 12)		$\begin{array}{l} R_{Load} = 3~k\Omega, \\ V_{O/P(DAC12)} > AV_{CC} - 0.3~V, \\ DAC12_xDAT = 0FFFh \end{array}$			150	250	Ω
		$R_{Load} = 3 \text{ k}\Omega, \\ 0.3 \text{ V} \le V_{O/P(DAC12)} \le AV_{CC} - 0.3 \text{ V}$			1	4	

(1) Data is valid after the offset calibration of the output amplifier.

Figure 5-23. DAC12_x Output Resistance Tests

5.35 12-Bit DAC, Reference Input Specifications

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
Ve _{REF+}	rtorororioo input voltago	DAC12IR = $0^{(1)}$ (2)	2.2 V, 3 V		AV _{CC} /3	$AV_{CC} + 0.2$	V
		DAC12IR = $1^{(3)}$ (4)			AV_CC	$AV_{CC} + 0.2$	
Ri _(VREF+)	Reference input resistance	DAC12IR = 0, SD16VMIDON = 1 (5)	2.2 V, 3 V	20			МΩ
		DAC12IR = 1, SD16VMIDON = 1		40	48	56	kΩ

- (1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AV_{CC}).
- The maximum voltage applied at reference input voltage terminal $Ve_{REF+} = [AV_{CC} V_{E(O)}] / [3 \times (1 + E_G)]$.
- (3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV_{CC}).
- 4) The maximum voltage applied at reference input voltage terminal $Ve_{REF+} = [AV_{CC} V_{E(O)}] / (1 + E_G)$.
- (5) Characterized, not production tested

5.36 12-Bit DAC, Dynamic Specifications

 $V_{ref} = V_{CC}$, DAC12IR = 1, over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-24 and Figure 5-25)

	PARAMETER	TEST (CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		DAC12 xDAT = 800h,	DAC12AMPx = $0 \rightarrow \{2, 3, 4\}$			60	120	
t _{ON}		$Error_{V(O)} < \pm 0.5 LSB^{(1)}$	$DAC12AMPx = 0 \rightarrow \{5, 6\}$	2.2 V, 3 V		15	30	μs
	(see Figure 5-24)	DAC12AMPx = $0 \rightarrow 7$			6	12		
			DAC12AMPx = 2			100	200	
t _{S(FS)}	Settling time, full scale	DAC12_xDAT = 80h→F7Fh→80h	DAC12AMP $x = 3, 5$	2.2 V, 3 V		40	80	μs
, ,			DAC12AMPx = 4, 6, 7			15	30	
		DAC12 xDAT =	DAC12AMPx = 2	2.2 V, 3 V		5		μs
t _{S(C-C)}	$t_{S(C-C)}$ Settling time, code to code	3F8h→408h→3F8h BF8h→C08h→BF8h	DAC12AMP $x = 3, 5$			2		
			DAC12AMPx = 4, 6, 7			1		
			DAC12AMPx = 2		0.05	0.12		
SR	Slew rate	DAC12_xDAT = 80h→F7Fh→80h ⁽²⁾	DAC12AMPx = 3,5	2.2 V, 3 V	0.35	0.7		V/µs
		0011-71 71 11-70011	DAC12AMPx = 4, 6, 7	-	1.5	2.7		
			DAC12AMPx = 2	2.2 V, 3 V		600		nV-s
	Glitch energy, full-scale	DAC12_xDAT = 80h→F7Fh→80h	DAC12AMPx = 3,5			150		
			DAC12AMPx = 4, 6, 7			30		

- (1) R_{Load} and C_{Load} connected to AV_{SS} (not AV_{CC}/2) in Figure 5-24.
- (2) Slew rate applies to output voltage steps ≥200 mV.

Figure 5-24. Settling Time and Glitch Energy Testing

Figure 5-25. Slew Rate Testing

5.37 12-Bit DAC, Dynamic Specifications Continued

 $T_A = 25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN MA	X UNIT
3 -dB bandwidth, $V_{DC} = 1.5 \text{ V}, V_{AC} = 0.1 \text{ V}_{PP}$ (see Figure 5-26)		DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h		40	
	DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h	2.2 V, 3 V	180	kHz	
	(555 : 19415 5 25)	DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h		550	

Figure 5-26. Test Conditions for 3-dB Bandwidth Specification

5.38 Timer_A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN MAX	UNIT
		Internal: SMCLK, ACLK	2.2 V	8	
f _{TA}	Timer_A clock frequency	External: TACLK, INCLK Duty cycle = 50% ±10%	3 V	10	MHz
t _{TA,cap}	Timer_A capture timing	TA0, TA1, TA2	2.2 V, 3 V	20	ns

5.39 Timer_B

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN M	AX	UNIT
		Internal: SMCLK, ACLK	2.2 V		8	
f _{TA} Timer_B clock frequency	External: TACLK, INCLK Duty cycle = 50% ±10%	3 V		10	MHz	
t _{TA,cap}	Timer_B capture timing	TB0, TB1, TB2	2.2 V, 3 V	20		ns

5.40 USCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10%				f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud) ⁽¹⁾		2.2 V, 3 V	2			MHz
	UART receive deglitch time UART ⁽²⁾		2.2 V	50	150	600	
ι _τ	OART receive degilich line OART		3 V	50	100	600	ns

⁽¹⁾ The DCO wake-up time must be considered in LPM3 or LPM4 for baud rates above 1 MHz.

5.41 USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 5-27 and Figure 5-28)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, ACLK Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
t _{SU,MI} SOMI inp	COM input data actus time		2.2 V	110		2
	SOMI input data setup time		3 V	75		ns
	COMI input data hald time		2.2 V	0		2
t _{HD,MI}	HD,MI iSOMI input data hold time		3 V	0		ns
	SIMO output data valid time	LIOLK adapted OMO scalid O	2.2 V		30	
t _{VALID,MO}		UCLK edge to SIMO valid, C _L = 20 pF	3 V		20	ns

⁽¹⁾ $f_{UCxCLK} = 1/2t_{LO/HI}$ with $t_{LO/HI} \ge max(t_{VALID,MO(USCI)} + t_{SU,SI(Slave)}, t_{SU,MI(USCI)} + t_{VALID,SO(Slave)})$ For the slave parameters $t_{SU,SI(Slave)}$ and $t_{VALID,SO(Slave)}$, see the SPI parameters of the attached slave.

5.42 USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 5-29 and Figure 5-30)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _{STE,LEAD}	STE lead time STE low to clock		2.2 V, 3 V		50		ns
t _{STE,LAG}	STE lag time Last clock to STE high		2.2 V, 3 V	10			ns
t _{STE,ACC}	STE access time STE low to SOMI data out		2.2 V, 3 V		50		ns
t _{STE,DIS}	STE disable time STE high to SOMI high impedance		2.2 V, 3 V		50		ns
	SIMO input data actus tima		2.2 V	20			9
t _{SU,SI}	SIMO input data setup time		3 V	15			ns
	CIMO insura data hald time		2.2 V	10			
t _{HD,SI}	SIMO input data hold time		3 V	10			ns
	COMI sustant data valid times	HOLK advanta COM walki O	2.2 V		75	110	
t _{VALID,SO}	SOMI output data valid time	UCLK edge to SOMI valid, C _L = 20 pF	3 V		50	75	ns

⁽¹⁾ $f_{UCxCLK} = 1/2t_{LO/HI}$ with $t_{LO/HI} \ge max(t_{VALID,MO(Master)} + t_{SU,SI(USCI)}, t_{SU,MI(Master)} + t_{VALID,SO(USCI)})$ For the master parameters $t_{SU,MI(Master)}$ and $t_{VALID,MO(Master)}$, see the SPI parameters of the attached master.

⁽²⁾ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed.

Figure 5-27. SPI Master Mode, CKPH = 0

Figure 5-28. SPI Master Mode, CKPH = 1

Figure 5-29. SPI Slave Mode, CKPH = 0

Figure 5-30. SPI Slave Mode, CKPH = 1

5.43 USCI (I²C Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-31)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ±10%				f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		2.2 V, 3 V	0		400	kHz
	Hold time (repeated) CTART	f _{SCL} ≤ 100 kHz	2.2 V, 3 V	4.0			
t _{HD,STA}	HD,STA Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6			μs
	Out on the control of OTART	f _{SCL} ≤ 100 kHz	2.2 V, 3 V	4.7			
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6			μs
t _{HD,DAT}	Data hold time		2.2 V, 3 V	0			ns
t _{SU,DAT}	Data setup time		2.2 V, 3 V	250			ns
t _{SU,STO}	Setup time for STOP		2.2 V, 3 V	4			μs
	Pulse duration of spikes suppressed by		2.2 V	50	150	600	
t _{SP}	input filter		3 V	50	100	600	ns

Figure 5-31. I²C Mode Timing

5.44 Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{CC(PGM/ERASE)}	Program and erase supply voltage			2.2		3.6	V
f_{FTG}	Flash timing generator frequency			257		476	kHz
I _{PGM}	Supply current from DVCC during program		2.5 V, 3.6 V		3	5	mA
I _{ERASE}	Supply current from DVCC during erase		2.5 V, 3.6 V		3	7	mA
t _{CPT}	Cumulative program time	(1)	2.5 V, 3.6 V			10	ms
t _{CMErase}	Cumulative mass erase time		2.5 V, 3.6 V	200			ms
	Program and erase endurance			10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	T _J = 25°C		100			years
t _{Word}	Word or byte program time				35		
t _{Block, 0}	Block program time for 1st byte or word				30		•
t _{Block, 1-63}	Block program time for each additional byte or word	(2)			21		
t _{Block, End}	Block program end-sequence wait time	(2)			6		t _{FTG}
t _{Mass Erase}	Mass erase time				5297		•
t _{Seg Erase}	Segment erase time				4819		•

⁽¹⁾ The cumulative program time must not be exceeded when writing to a 64--byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.

5.45 JTAG Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f TCV input fraguency		(1)	2.2 V	0		5	MHz
f _{TCK} TCK input frequency	()	3 V	0		10		
R _{Internal}	Internal pullup resistance on TMS, TCK, TDI/TCLK	(2)	2.2 V, 3 V	25	60	90	kΩ

⁽¹⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

5.46 JTAG Fuse⁽¹⁾

over recommended operating free-air temperature range (unless otherwise noted)

,							
	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT		
V _{CC(FB)}	Supply voltage during fuse-blow condition	T _A = 25°C	2.5		V		
V_{FB}	Voltage level on TDI/TCLK for fuse-blow		6	7	V		
I _{FB}	Supply current into TDI/TCLK during fuse blow			100	mA		
t _{FB}	Time to blow fuse			1	ms		

After the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode.

⁽²⁾ The mass erase duration generated by the flash timing generator is at least 11.1ms (= 5297x1/f_{FTG},max = 5297x1/476kHz). To achieve the required cumulative mass erase time the flash controller mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required).

²⁾ TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions.

6 Detailed Description

6.1 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

6.2 Instruction Set

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 6-1 shows examples of the three types of instruction formats; the address modes are listed in Table 6-2.

Table 6-1. Instruction Word Formats

FORMAT	EXAMPLE	OPERATION
Dual operands, source-destination	ADD R4,R5	R4 + R5 → R5
Single operands, destination only	CALL R8	$PC \rightarrow (TOS), R8 \rightarrow PC$
Relative jump, un/conditional	JNE	Jump-on-equal bit = 0

Table 6-2. Address Mode Descriptions

ADDRESS MODE	S ⁽¹⁾	D ⁽¹⁾	SYNTAX	EXAMPLE	OPERATION
Register	•	•	MOV Rs,Rd	MOV R10,R11	R10 → R11
Indexed	•	•	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)→ M(6+R6)
Symbolic (PC relative)	•	•	MOV EDE,TONI		$M(EDE) \rightarrow M(TONI)$
Absolute	•	•	MOV & MEM, & TCDAT		$M(MEM) \rightarrow M(TCDAT)$
Indirect	•		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	$M(R10) \rightarrow M(Tab+R6)$
Indirect autoincrement	•		MOV @Rn+,Rm	MOV @Rn+,Rm MOV @R10+,R11 M(R1 R10 -	
Immediate	•		MOV #X,TONI	MOV #45,TONI	#45 → M(TONI)

⁽¹⁾ NOTE: S = source D = destination

6.3 Operating Modes

These devices have one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active. MCLK is disabled
 - FLL+ loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL+ loop control is disabled
 - ACLK and SMCLK remain active. MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK, FLL+ loop control and DCOCLK are disabled
 - DCO DC generator remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL+ loop control, and DCOCLK are disabled
 - DCO DC generator is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL+ loop control, and DCOCLK are disabled
 - DCO DC generator is disabled
 - Crystal oscillator is stopped

6.4 Interrupt Vector Addresses

The interrupt vectors and the power-up start address are in the address range 0FFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

If the reset vector (located at address 0xFFFE) contains 0xFFFF (for example, flash is not programmed) the CPU goes into LPM4 immediately after power-up.

Table 6-3. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Flash Memory PC Out-of-Range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	15, highest
NMI Oscillator Fault Flash Memory Access Violation	NMIIFG ⁽²⁾ ⁽³⁾ OFIFG ⁽²⁾ ⁽³⁾ ACCVIFG ⁽²⁾ ⁽⁴⁾	(Non)maskable (Non)maskable (Non)maskable	0FFFCh	14
Timer_B3	TBCCR0 CCIFG0 ⁽⁴⁾	Maskable	0FFFAh	13
Timer_B3	TBCCR1 CCIFG1 and TBCCR2 CCIFG2, TBIFG ⁽²⁾⁽⁴⁾	Maskable	0FFF8h	12
Comparator_A	CAIFG	Maskable	0FFF6h	11
Watchdog Timer+	WDTIFG	Maskable	0FFF4h	10
USCI_A0, USCI_B0 Receive, USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG (2) (5)	Maskable	0FFF2h	9
USCI_A0, USCI_B0 Transmit, USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG (2)(6)	Maskable	0FFF0h	8
SD16_A	SD16CCTLx SD16OVIFG, SD16CCTLx SD16IFG	Maskable	0FFEEh	7
Timer_A3	TACCR0 CCIFG0 ⁽⁴⁾	Maskable	0FFECh	6
Timer_A3	TACCR1 CCIFG1 and TACCR2 CCIFG2, TAIFG ⁽²⁾ (4)	Maskable	0FFEAh	5
I/O Port P1 (8 Flags)	P1IFG.0 to P1IFG.7 ⁽²⁾ (4)	Maskable	0FFE8h	4
DAC12	DAC12_0IFG	Maskable	0FFE6h	3
		Maskable	0FFE4h	2
I/O Port P2 (8 Flags)	P2IFG.0 to P2IFG.7 (2) (4)	Maskable	0FFE2h	1
Basic Timer 1, RTC	BTIFG	Maskable	0FFE0h	0, lowest

⁽¹⁾ Access and key violations, KEYV and ACCVIFG.

⁽²⁾ Multiple source flags

⁽³⁾ A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh). (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

⁽⁴⁾ Interrupt flags are located in the module.

⁽⁵⁾ In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.

⁽⁶⁾ In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.

6.5 Special Function Registers (SFRs)

The SFRs are in the lowest address space and are organized as byte mode registers. SFRs should be accessed with byte instructions.

Legend

rw Bit can be read and written.

rw-0, rw-1 Bit can be read and written. It is Reset or Set by PUC. rw-(0), rw-(1) Bit can be read and written. It is Reset or Set by POR.

SFR bit is not present in device

6.5.1 Interrupt Enable 1 and 2

WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected.

Active if watchdog timer is configured as a general-purpose timer.

OFIE Oscillator fault-interrupt enable
NMIIE Nonmaskable interrupt enable

ACCVIE Flash access violation interrupt enable

UCA0RXIE USCI_A0 receive-interrupt enable
UCA0TXIE USCI_A0 transmit-interrupt enable
UCB0RXIE USCI_B0 receive-interrupt enable
UCB0TXIE USCI_B0 transmit-interrupt enable

BTIE Basic timer interrupt enable

6.5.2 Interrupt Flag Register 1 and 2

Address	7	6	5	4	3	2	1	0
02h				NMIIFG	RSTIFG	PORIFG	OFIFG	WDTIFG
				rw-0	rw-(0)	rw-(1)	rw-1	rw-(0)

WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation

Reset on V_{CC} power-on or a reset condition at the RST/NMI pin in reset mode

OFIFG Flag set on oscillator fault

RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset

on V_{CC} power-up.

PORIFG Power-on interrupt flag. Set on Vcs power-up.

NMIIFG Set by the RST/NMI pin

UCA0RXIFG USCI_A0 receive-interrupt flag
UCA0TXIFG USCI_A0 transmit-interrupt flag
UCB0RXIFG USCI_B0 receive-interrupt flag
UCB0TXIFG USCI_B0 transmit-interrupt flag

BTIFG Basic timer flag

6.6 Memory Organization

Table 6-4 summarizes the memory organization for the MSP430F47x MCUs.

Table 6-4. Memory Organization

		MSP430F477	MSP430F478	MSP430F479
Memory	Size	32KB	48KB	60KB
Main: interrupt vector	Flash	0FFFFh to 0FFE0h	0FFFFh to 0FFE0h	0FFFFh to 0FFE0h
Main: code memory	Flash	0FFFFh to 08000h	0FFFFh to 04000h	0FFFFh to 01100h
Information memory	Size	256 Byte	256 Byte	256 Byte
	Flash	010FFh to 01000h	010FFh to 01000h	010FFh to 01000h
Boot memory	Size	1KB	1KB	1KB
	ROM	0FFFh to 0C00h	0FFFh to 0C00h	0FFFh to 0C00h
RAM	Size	2KB 09FFh to 0200h	2KB 09FFh to 0200h	2KB 09FFh to 0200h
Peripherals	16 bit	01FFh to 0100h	01FFh to 0100h	01FFh to 0100h
	8 bit	0FFh to 010h	0FFh to 010h	0FFh to 010h
	8-bit SFR	0Fh to 00h	0Fh to 00h	0Fh to 00h

6.7 Bootloader (BSL)

The BSL lets users program the flash memory or RAM using a UART serial interface. Access to the MCU memory through the BSL is protected by user-defined password. A bootloader security key is provided at address 0FFBEh to disable the BSL completely or to disable the erasure of the flash if an invalid password is supplied. The BSL is optional for ROM-based devices. For complete description of the features of the BSL and its implementation, see the MSP430[™] Flash Devices Bootloader (BSL) User's Guide.

BSL FUNCTION	PN PACKAGE	ZCA OR ZQW PACKAGE
Data Transmit	58 - P1.0	C11 - P1.0
Data Receiver	57 - P1.1	C12 - P1.1

6.8 Flash Memory

The flash memory can be programmed by the JTAG port, the bootloader, or in system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory.
- Segment A might contain calibration data. After reset, segment A is protected against programming or erasing. It can be unlocked, but care should be taken not to erase this segment if the calibration data is required.
- Flash content integrity check with marginal read modes.

www.ti.com

6.9 Peripherals

Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be handled using all instructions. For complete module descriptions, refer to the MSP430x4xx Family User's Guide.

6.9.1 Oscillator and System Clock

The clock system is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a 8-MHz high-frequency crystal oscillator (XT1), plus a 8-MHz high-frequency crystal oscillator (XT2). The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 s. The FLL+ module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal
- Main clock (MCLK), the system clock used by the CPU
- Submain clock (SMCLK), the subsystem clock used by the peripheral modules
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8

6.9.2 Brownout, Supply Voltage Supervisor (SVS)

The brownout circuit provides the proper internal reset signal to the device during power-on and power-off. The SVS circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset).

The CPU begins code execution after the brownout circuit releases the device reset. However, V_{CC} may not have ramped to $V_{CC(min)}$ at that time. The user must make sure the default FLL+ settings are not changed until V_{CC} reaches $V_{CC(min)}$. If desired, the SVS circuit can be used to determine when V_{CC} reaches $V_{CC(min)}$.

6.9.3 Digital I/O

There are six 8-bit I/O ports implemented—ports P1 through P6:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
- · Read and write access to port-control registers is supported by all instructions

6.9.4 Watchdog Timer (WDT+)

The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

6.9.5 Basic Timer1 and Real-Time Clock

The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Basic Timer1 is extended to provide an integrated real-time clock (RTC). An internal calendar compensates for months with less than 31 days and includes leap-year correction.

6.9.6 LCD_A Drive With Regulated Charge Pump

The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump. Furthermore, it is possible to control the level of the LCD voltage and, thus, contrast in software.

6.9.7 Timer A3

Timer_A3 is a 16-bit timer or counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-5. Timer_A3 Signal Connections

INPUT PI	INPUT PIN NUMBER		MODULE	MODULE	MODULE	OUTPUT F	PIN NUMBER
PN	ZCA OR ZQW	DEVICE INPUT SIGNAL	INPUT NAME	BLOCK	OUTPUT SIGNAL	PN	ZCA OR ZQW
P1.5 - 51	F11	TACLK	TACLK				
		ACLK	ACLK	Timer	NA -		
		SMCLK	SMCLK	rimer			
P1.5 - 51	F11	TAINCLK	INCLK				
P1.0 - 58	C11	TA0	CCI0A	CCDO		P1.0 - 58	C11
P1.1 - 57	C12	TA0	CCI0B		TA0	P1.1 - 57	C12
		DVSS	GND	CCR0	TA0		
		DVCC	VCC				
P1.2 - 56	D11	TA1	CCI1A			P1.2 - 56	D11
		CAOUT (internal)	CCI1B	CCR1	TA1		
		DVSS	GND				
		DVCC	VCC				
P2.0 - 4	C2	TA2	CCI2A			P2.0 - 4	C2
		ACLK (internal)	CCI2B	CCDO	TA0		
		DVSS	GND	CCR2	TA2		
_		DVCC	VCC			-	

6.9.8 Timer B3

Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-6. Timer_B3 Signal Connections

INPUT PIN	INPUT PIN NUMBER		MODULE	MODULE	MODULE	OUTPUT F	PIN NUMBER
PN	ZCA OR ZQW	DEVICE INPUT SIGNAL	INPUT NAME	BLOCK	OUTPUT SIGNAL	PN	ZCA OR ZQW
P1.4 - 54	E11	TBCLK	TBCLK				
		ACLK	ACLK	Timer	NA		
		SMCLK	SMCLK	rimer	INA		
P1.4 - 54	E11	TBCLK ⁽¹⁾	INCLK				
P2.1 - 3	C1	TB0	CCI0A	CCDO		P2.1 - 3	C1
P2.1 - 3	C1	TB0	CCI0B		TDO		
		VSS	GND	CCR0	TB0		
		VCC	VCC				
P2.2 - 2	B1	TB1	CCI1A			P2.2 - 2	B1
P2.2 - 2	B1	TB1	CCI1B	0004	TD4		
		VSS	GND	CCR1	TB1		
		VCC	VCC				
P2.3 - 77	B4	TB2	CCI2A			P2.3 - 77	B4
		ACLK (internal)	CCI2B	CCDO	TDO		
		VSS	GND	CCR2	TB2		
		VCC	VCC				

⁽¹⁾ The inversion of TBCLK is done inside the module.

6.9.9 Universal Serial Communication Interface (USCI)

The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3-pin or 4-pin), I²C, and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection, and IrDA.

The USCI_A0 module provides support for SPI (3-pin or 4-pin), UART, enhanced UART and IrDA.

The USCI B0 module provides support for SPI (3-pin or 4-pin) and I²C.

6.9.10 Comparator_A

The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.

6.9.11 SD16_A

The SD16_A module supports 16-bit analog-to-digital conversions. The module implements a 16-bit sigma-delta core and a reference generator. In addition to external analog inputs, an internal VCC sense and temperature sensor are also available.

6.9.12 DAC12

The DAC12 module is a 12-bit R-ladder voltage-output DAC. The DAC12 can be used in 8-bit or 12-bit mode and can be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation.

6.9.13 Peripheral File Map

Table 6-7 lists the registers and addresses for peripherals with word access. Table 6-8 lists the registers and addresses for peripherals with byte access.

Table 6-7. Peripherals With Word Access

MODULE	REGISTER NAME	ACRONYM	ADDRESS
Watchdog	Watchdog timer control	WDTCTL	0120h
	Capture/compare register 2	TBCCR2	0 96h
	Capture/compare register 1	TBCCR1	0 94h
	Capture/compare register 0	TBCCR0	0192h
	Timer_B register	TBR	0190h
Timer_B3	Capture/compare control 2	TBCCTL2	0186h
Tilliel_b3	Capture/compare control 1	TBCCTL1	0184h
	Capture/compare control 0	TBCCTL0	0182h
	Timer_B control	TBCTL	0180h
	Timer_B interrupt vector	TBIV	011Eh
	Capture/compare register 2	TACCR1	0176h
	Capture/compare register 1	TACCR1	0174h
Timer_A3	Capture/compare register 0	TACCR0	0172h
	Timer_A register	TAR	0170h
	Capture/compare control 2	TACCTL2	0166h
	Capture/compare control 1	TACCTL1	0164h
	Capture/compare control 0	TACCTL0	0162h
	Timer_A control	TACTL	0160h
	Timer_A interrupt vector	TAIV	012Eh
	Flash control 4	FCTL4	01BEh
Flack	Flash control 3	FCTL3	012Ch
Flash	Flash control 2	FCTL2	012Ah
	Flash control 1	FCTL1	0128h
DACAO	DAC12_0 data	DAC12_0DAT	01C8h
DAC12	DAC12_0 control	DAC12_0CTL	01C0h
	General control	SD16CTL	0100h
SD16_A (also see	Channel 0 control	SD16CCTL0	0102h
Table 6-8)	Channel 0 conversion memory	SD16MEM0	0112h
	Interrupt vector word register	SD16IV	0110h

Table 6-8. Peripherals With Byte Access

MODULE	REGISTER NAME	ACRONYM	ADDRESS
SD16_A (also see Table 6-7)	Channel 0 input control Analog enable	SD16INCTL0 SD16AE	0B0h 0B7h
LCD_A	LCD Voltage Control 1 LCD Voltage Control 0 LCD Voltage Port Control 1 LCD Voltage Port Control 0 LCD memory 20	LCDAVCTL1 LCDAVCTL0 LCDAPCTL1 LCDAPCTL0 LCDM20 :	0AFh 0AEh 0ADh 0ACh 0A4h :
	LCD memory 16 LCD memory 15 : LCD memory 1 LCD control and mode	LCDM16 LCDM15 : LCDM1 LCDCTL	0A0h 09Fh : 091h 090h
USCI_A0, USCI_B0	USCI A0 auto baud rate control USCI A0 transmit buffer USCI A0 receive buffer USCI A0 status USCI A0 modulation control USCI A0 baud rate control 1 USCI A0 baud rate control 0 USCI A0 control 1 USCI A0 control 0 USCI A0 control 0 USCI A0 IrDA receive control USCI A0 IrDA transmit control	UCA0ABCTL UCA0TXBUF UCA0RXBUF UCA0STAT UCA0MCTL UCA0BR1 UCA0BR0 UCA0CTL1 UCA0CTL0 UCA0IRRCTL	0x005D 0x0067 0x0066 0x0065 0x0064 0x0063 0x0062 0x0061 0x0060 0x005F 0x005E
USCI_AU, USCI_BU	USCI B0 transmit buffer USCI B0 receive buffer USCI B0 status USCI B0 12C Interrupt enable USCI B0 baud rate control 1 USCI B0 baud rate control 0 USCI B0 control 1 USCI B0 control 0 USCI B0 I2C slave address USCI B0 I2C own address	UCBOTXBUF UCBORXBUF UCBOSTAT UCBOCIE UCBOBR1 UCBOBR0 UCBOCTL1 UCBOCTL0 UCBOSA UCBOOA	0x006F 0x006E 0x006D 0x006C 0x006B 0x006A 0x0069 0x0068 0x011A 0x0118
Comparator_A	Comparator_A port disable Comparator_A control 2 Comparator_A control 1	CAPD CACTL2 CACTL1	05Bh 05Ah 059h
Brownout, SVS	SVS control register (reset by brownout signal)	SVSCTL	056h
FLL+ Clock	FLL+ Control 1 FLL+ Control 0 System clock frequency control System clock frequency integrator System clock frequency integrator	FLL_CTL1 FLL_CTL0 SCFQCTL SCFI1 SCFI0	054h 053h 052h 051h 050h
RTC (Basic Timer 1)	Real Time Clock Year High Byte Real Time Clock Year Low Byte Real Time Clock Month Real Time Clock Day of Month Basic Timer1 Counter 2 Basic Timer1 Counter 1 Real Time Counter 4 (Real Time Clock Day of Week) Real Time Counter 3 (Real Time Clock Hour) Real Time Counter 2 (Real Time Clock Minute) Real Time Counter 1 (Real Time Clock Second) Real Time Clock Control Basic Timer1 Control	RTCYEARH RTCYEARL RTCMON RTCDAY BTCNT2 BTCNT1 RTCNT4 (RTCDOW) RTCNT3 (RTCHOUR) RTCNT2 (RTCMIN) RTCNT1 (RTCSEC) RTCCTL BTCTL	04Fh 04Eh 04Dh 04Ch 047h 046h 045h 044h 043h 042h 041h
Port P6	Port P6 selection Port P6 direction Port P6 output Port P6 input	P6SEL P6DIR P6OUT P6IN	037h 036h 035h 034h
Port P5	Port P5 selection Port P5 direction Port P5 output Port P5 input	P5SEL P5DIR P5OUT P5IN	033h 032h 031h 030h

Table 6-8. Peripherals With Byte Access (continued)

MODULE	REGISTER NAME	ACRONYM	ADDRESS
Port P4	Port P4 selection Port P4 direction Port P4 output Port P4 input	P4SEL P4DIR P4OUT P4IN	01Fh 01Eh 01Dh 01Ch
Port P3	Port P3 selection Port P3 direction Port P3 output Port P3 input	P3SEL P3DIR P3OUT P3IN	01Bh 01Ah 019h 018h
Port P2	Port P2 selection Port P2 interrupt enable Port P2 interrupt-edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input	P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN	02Eh 02Dh 02Ch 02Bh 02Ah 029h 028h
Port P1	Port P1 selection Port P1 interrupt enable Port P1 interrupt-edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input	P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN	026h 025h 024h 023h 022h 021h 020h
Special functions	SFR module enable 2 SFR module enable 1 SFR interrupt flag 2 SFR interrupt flag 1 SFR interrupt enable 2 SFR interrupt enable 1	ME2 ME1 IFG2 IFG1 IE2 IE1	005h 004h 003h 002h 001h 000h

6.10 Input/Output Schematics

6.10.1 Port P1, P1.0, Input/Output With Schmitt Trigger

Table 6-9. Port P1 (P1.0) Pin Functions

PIN NAME (P1.X)	x	X FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾				
			CAPD.x	P1DIR.x	P1SEL.x	P1SEL2.x	
P1.0/TA0	0	P1.x (I/O)	0	I: 0, O: 1	0	0	
		Timer_A3.CCI0A	0	0	1	0	
		Timer_A3.TA0	0	1	1	0	

6.10.2 Port P1, P1.1, Input/Output With Schmitt Trigger

Table 6-10. Port P1 (P1.1) Pin Functions

PIN NAME (P1.X)	х	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾				
		FUNCTION	CAPD.x	P1DIR.x	P1SEL.x	P1SEL2.x	
	1	P1.x (I/O)	0	I: 0, O: 1	0	0	
DA A/TAO/MOLIZ		Timer_A3.CCI0A	0	0	1	0	
P1.1/TA0/MCLK		Timer_A3.TA0	0	1	1	0	
		MCLK	0	1	1	1	

6.10.3 Port P1, P1.2, Input/Output With Schmitt Trigger

Table 6-11. Port P1 (P1.2) Pin Functions

			CONTROL BITS / SIGNALS ⁽¹⁾				
PIN NAME (P1.X)	X	FUNCTION	CAPD.x	P1DIR.x	P1SEL.x	P1SEL2.x = 0 SD16AE.x	
	2	P1.x (I/O)	0	I: 0, O: 1	0	0	
D4 2/TA4/A4		Timer_A3.CCI1A	0	0	1	0	
P1.2/TA1/A4-		Timer_A3.TA1	0	1	1	0	
		A4-	X	х	х	1	

6.10.4 Port P1, P1.3, Input/Output With Schmitt Trigger

Table 6-12. Port P1 (P1.3) Pin Functions

			CONTROL BITS / SIGNALS ⁽¹⁾				
PIN NAME (P1.X)	X	FUNCTION	CAPD.x	P1DIR.x	P1SEL.x	P1SEL2.x = 0 SD16AE.x	
		P1.x (I/O)	0	I: 0, O: 1	0	0	
P1.3/TBOUTH/	2	TBOUTH	0	0	1	0	
SVSOUT/A4+	3	SVSOUT	0	1	1	0	
		A4+	х	х	х	1	

6.10.5 Port P1, P1.4, Input/Output With Schmitt Trigger

Table 6-13. Port P1 (P1.4) Pin Functions

				CONTROL BITS / SIGNALS ⁽¹⁾				
PIN NAME (P1.X)	Х	FUNCTION	CAPD.x	P1DIR.x	P1SEL.x	P1SEL2.x = 0 SD16AE.x		
		P1.x (I/O)		I: 0, O: 1	0	0		
D4 4/TDCLL//CMCLL//A2	4	TBCLK		0	1	0		
P1.4/TBCLK/SMCLK/A3-	4	SMCLK		1	1	0		
		A3-		х	х	1		

6.10.6 Port P1, P1.5, Input/Output With Schmitt Trigger

Table 6-14. Port P1 (P1.5) Pin Functions

			CONTROL BITS / SIGNALS ⁽¹⁾						
PIN NAME (P1.X)	Х	FUNCTION	CAPD.x	P1DIR.x	P1SEL.x	P1SEL2.x = 0 SD16AE.x			
	5	P1.x (I/O)	0	I: 0, O: 1	0	0			
D4 F/ACLIZ/ACLIZ/AC.		5	5	TACLK	0	0	1	0	
P1.5/ACLK/ACLK/A3+				5	5	5	ACLK	0	1
		A3+	х	х	х	1			

6.10.7 Port P1, P1.6, Input/Output With Schmitt Trigger

Table 6-15. Port P1 (P1.6) Pin Functions

			CONTROL BITS / SIGNALS ⁽¹⁾					
PIN NAME (P1.X)	Х	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x = 0 CAPD.x	P1SEL2.x = 0 SD16AE.x	P1SEL2.x = 0 DAC12OPS (DAC12_0)	
		P1.x (I/O)	I: 0, O: 1	0	0	0	0	
D4 6/CA0/A2 /DAC0		6	6	CA0	х	х	1 or selected	х
P1.6/CA0/A2-/DAC0	6	A2-	х	х	х	1	х	
		DAC0	x	x	x	x	1	

6.10.8 Port P1, P1.7, Input/Output With Schmitt Trigger

Table 6-16. Port P1 (P1.7) Pin Functions

				CONTROL BITS / SIGNALS ⁽¹⁾				
PIN NAME (P1.X)	Х	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x = 0 CAPD.x	P1SEL2.x = 0 SD16AE.x		
	7	P1.x (I/O)	I: 0, O: 1	0	0	0		
P1.7/CA1/A2+		CA1	х	х	1 or selected	х		
		A2+	X	x	x	1		

6.10.9 Port P2, P2.0 and P2.1, Input/Output With Schmitt Trigger

Table 6-17. Port P2 (P2.0 and P2.1) Pin Functions

DIN NAME (D2 V)	v	FUNCTION	CC	NTROL BITS / SIGNAL	S ⁽¹⁾
PIN NAME (P2.X)	X	FUNCTION	P2DIR.x	P2SEL.x	LCDS0
		P2.x (I/O)	I: 0, O: 1	0	0
D2 0/T 4 2/C4	0	Timer_A3.CCI2A	0	1	0
P2.0/TA2/S1	U	Timer_A3.TA2	1	1	0
		S1	Х	х	1
		P2.x (I/O)	I: 0, O: 1	0	0
P2.1/TB0/S0	4	Timer_B3.CCI0A	0	1	0
F2.1/180/S0		Timer_B3.TB0	1	1	0
		S0	х	х	1

⁽¹⁾ x = don't care

6.10.10 Port P2, P2.2 and P2.3, Input/Output With Schmitt Trigger

Table 6-18. Port P2 (P2.2 and P2.3) Pin Functions

DIN NAME (DO V)	v	FUNCTION	CONTROL BITS / SIGNALS		
PIN NAME (P2.X)	X	FUNCTION	P2DIR.x	P2SEL.x	
		P2.x (I/O)	I: 0, O: 1	0	
P2.2/TB1	2	Timer_B3.CCI1A	0	1	
		Timer_B3.TB1	1	1	
	3	P2.x (I/O)	I: 0, O: 1	0	
P2.3/TB2		Timer_B3.CCI2A	0	1	
		TimerB3.TB2	1	1	

6.10.11 Port P2, P2.4 and P2.5, Input/Output With Schmitt Trigger

Table 6-19. Port P2 (P2.4 and P2.5) Pin Functions

DIN NAME (D2 V)	v	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾		
PIN NAME (P2.X)	^	FUNCTION	P2DIR.x	P2SEL.x	
DO A/LICAOTYD/LICAOSIMO	4	P2.x (I/O)	I: 0, O: 1	0	
P2.4/UCA0TXD/UCA0SIMO		UCA0TXD/UCA0SIMO (2)	Х	1	
P2.5/UCA0RXD/UCA0SOMI	5	P2.x (I/O)	I: 0, O: 1	0	
		UCA0RXD/UCA0SOMI(2)	Х	1	

x = don't care
The pin direction is controlled by the USCI module.

6.10.12 Port P2, P2.6 and P2.7, Input/Output With Schmitt Trigger

Table 6-20. Port P2 (P2.6 and P2.7) Pin Functions

DIN NAME (DO V)	V		CONTROL BITS / SIGNALS ⁽¹⁾				
PIN NAME (P2.X)	X	FUNCTION	P2DIR.x	P2SEL.x	LCDS0		
		P2.x (I/O)	I: 0, O: 1	0	0		
P2.6/CAOUT/S2	6	CAOUT	1	1	0		
		S2	х	х	1		
		P2.x (I/O)	I: 0, O: 1	0	0		
P2.7/\$3	7	Vss	1	1	0		
		S3	Х	х	1		

6.10.13 Port P3, P3.0 and P3.3, Input/Output With Schmitt Trigger

Table 6-21. Port P3 (P3.0 and P3.3) Pin Functions

DIN NAME (D2 V)	v	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾		
PIN NAME (P3.X)	X FUNCTION		P3DIR.x	P3SEL.x	
P3.0/UCB0STE/UCA0CLK	0	P3.x (I/O)	I: 0, O: 1	0	
P3.0/0CB0STE/UCAUCLK		UCB0STE/UCA0CLK(2)	Х	1	
DO O // LODGOL L/// LOAGOTE		P3.x (I/O)	I: 0, O: 1	0	
P3.3/UCB0CLK/UCA0STE	3	UCB0CLK/UCA0STE (2)	Х	1	

⁽¹⁾ x = don't care

⁽²⁾ The pin direction is controlled by the USCI module.

6.10.14 Port P3, P3.1 and P3.2, Input/Output With Schmitt Trigger

Table 6-22. Port P3 (P3.1 and P3.2) Pin Functions

DIN NAME (D2 V)	Х	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾			
PIN NAME (P3.X)	^	FUNCTION	P3DIR.x	P3SEL.x	LCDS24	
		P3.x (I/O)	I: 0, O: 1	0	0	
P3.1/UCB0SIMO/UCB0SDA/S2 6	1	UCB0SIMO/UCB0SD A ⁽²⁾⁽³⁾	х	1	0	
		S26	Х	Х	1	
		P3.x (I/O)	I: 0, O: 1	0	0	
P3.2/UCB00SOMI/UCB0SCL/S 27	2 0	UCB0SOMI/UCB0SC L ⁽²⁾⁽³⁾	х	1	0	
		S27	Х	Х	1	

⁽¹⁾ x = don't care

⁽²⁾ The pin direction is controlled by the USCI module.

⁽³⁾ In case the I2C functionality is selected the output drives only the logical 0 to V_{SS}level.

6.10.15 Port P3, P3.4 to P3.7, Input/Output With Schmitt Trigger

Table 6-23. Port P3 (P3.4 to P3.7) Pin Functions

PIN NAME (P3.X)	х	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾		
			P3DIR.x	P3SEL.x	LCDS28
P3.4/S28	4	P3.x (I/O)	I: 0, O: 1	0	0
		S28	Х	х	1
P3.5/S29	5	P3.x (I/O)	I: 0, O: 1	0	0
		S29	Х	х	1
P3.6/S30	6	P3.x (I/O)	I: 0, O: 1	0	0
		S30	Х	х	1
P3.7/S31	7	P3.x (I/O)	I: 0, O: 1	0	0
		S31	Х	х	1

(1) x: Don't care

6.10.16 Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger

Table 6-24. Port P4 (P4.0 to P4.7) Pin Functions

PIN NAME (P4.X)	x	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾		
			P4DIR.x	P4SEL.x	LCDS4/8
P4.0/S11	0	P4.x (I/O)	I: 0, O: 1	0	0 (LCDS8)
		S11	х	х	1 (LCDS8)
P4.1/S10	1	P4.x (I/O)	I: 0, O: 1	0	0 (LCDS8)
		S10	х	х	1 (LCDS8)
P4.2/S9	2	P4.x (I/O)	I: 0, O: 1	0	0 (LCDS8)
		S9	х	х	1 (LCDS8)
P4.3/S8	3	P4.x (I/O)	I: 0, O: 1	0	0 (LCDS8)
		S8	х	х	1 (LCDS8)
P4.4/S7	4	P4.x (I/O)	I: 0, O: 1	0	0 (LCDS4)
		S7	Х	х	1 (LCDS4)
P4.5/S6	5	P4.x (I/O)	I: 0, O: 1	0	0 (LCDS4)
		S6	х	х	1 (LCDS4)
P4.6/S5	6	P4.x (I/O)	I: 0, O: 1	0	0 (LCDS4)
		S5	х	х	1 (LCDS4)
P4.7/S4	7	P4.x (I/O)	I: 0, O: 1	0	0 (LCDS4)
		S4	Х	х	1 (LCDS4)

⁽¹⁾ x = don't care

72

6.10.17 Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger

Table 6-25. Port P5 (P5.0 and P5.1) Pin Functions

PIN NAME (P5.X) X	FUNCTION	CONTROL BITS / SIGNALS (1)			
	^	FUNCTION	P5DIR.x	P5SEL.x	LCDS20
DE 0/900	0	P5.x (I/O)	I: 0, O: 1	0	0
P5.0/S20	U	S20	x	x	1
P5.1/S21	1	P5.x (I/O)	I: 0, O: 1	0	0
		S21	х	х	1

⁽¹⁾ x = don't care

6.10.18 Port P5, P5.2 to P5.7, Input/Output With Schmitt Trigger

Table 6-26. Port P5 (P5.2 to P5.7) Pin Functions

DINI NAME (DE V)	v	FUNCTION	CONTOL BITS	/ SIGNALS ⁽¹⁾
PIN NAME (P5.X)	X	FUNCTION	P5DIR.x	P5SEL.x
DE 0/00M4	0	P5.x (I/O)	I: 0, O: 1	0
P5.2/COM1	2	COM1	х	1
P5.3/COM2	2	P5.x (I/O)	I: 0, O: 1	0
P5.3/COIVI2	3	COM2	Х	1
DE 4/00M2	4	P5.x (I/O)	I: 0, O: 1	0
P5.4/COM3	4	COM3	Х	1
DE E/D00	5	P5.x (I/O)	I: 0, O: 1	0
P5.5/R23	5	R23	Х	1
DE 0/1 ODDEE/D40		P5.x (I/O)	I: 0, O: 1	0
P5.6/LCDREF/R13	6	R13 or LCDREF	Х	1
DE 7/D00	7	P5.x (I/O)	I: 0, O: 1	0
P5.7/R03	7	R03	X	1

⁽¹⁾ x = don't care

6.10.19 Port P6, P6.0 and P6.3, Input/Output With Schmitt Trigger

Table 6-27. Port P6 (P6.0 and P6.3) Pin Functions

DINI NIAME (DC V)	AME (P6.X) X	FUNCTION	CONTROL BITS / SIGNALS ⁽¹⁾	
PIN NAME (Po.X)		FUNCTION	P6DIR.x	P6SEL.x
D6 0/A0 :	0	P6.x (I/O)	I: 0, O: 1	0
P6.0/A0+	U	A0+	Х	1
DC 2/A4 ·	2	P6.x (I/O)	I: 0, O: 1	0
P6.3/A1+	3	A1+	Х	1

⁽¹⁾ x = don't care

6.10.20 Port P6, P6.1 and P6.4, Input/Output With Schmitt Trigger

Table 6-28. Port P6 (P6.1 and P6.4) Pin Functions

DIN NAME (DC V)	v	FUNCTION	CONTROL BIT	S / SIGNALS ⁽¹⁾
PIN NAME (P6.X)	^		P6DIR.x	P6SEL.x
DC 1/A0	1	P6.x (I/O)	I: 0, O: 1	0
P6.1/A0-		A0-	х	1
P6.4/A1-	4	P6.x (I/O)	I: 0, O: 1	0
	4	A1-	Х	1

(1) x = don't care

6.10.21 Port P6, P6.2, P6.5, and P6.6, Input/Output With Schmitt Trigger

Table 6-29. Port P6 (P6.2, P6.5, and P6.6) Pin Functions

DIN NAME (DC V)	V	FUNCTION	CONTROL BIT	S / SIGNALS ⁽¹⁾
PIN NAME (P6.X)	^		P6DIR.x	P6SEL.x
P6.2	2	P6.x (I/O)	I: 0, O: 1	0
P6.5	5	P6.x (I/O)	I: 0, O: 1	0
P6.6	6	P6.x (I/O)	I: 0, O: 1	0

⁽¹⁾ x = don't care

6.10.22 Port P6, P6.7, Input/Output With Schmitt Trigger

Table 6-30. Port P6 (P6.7) Pin Functions

PIN NAME (P6.X)	x	FUNCTION	CONTROL BITS / SIGNALS		
			P6DIR.x	P6SEL.x	VLDx
P6.7/SVSIN	7 P6.x (I/O) SVSIN	P6.x (I/O)	I: 0, O: 1	0	х
		Х	1	1111	

6.10.23 Segment Pin Schematic: Sx, Dedicated Segment Pins

Table 6-31. Sx Pin Functions

DIN NAME (DO V)	V	FUNCTION	CONTROL BITS / SIGNALS
PIN NAME (P6.X)	Х	FUNCTION	LCDSy
Sx	12	Sx	1 (LCDS12)
Sx	12	3-state	0 (LCDS12)
Sx	40	Sx	1 (LCDS12)
Sx	13	3-state	0 (LCDS12)
Sx	14	Sx	1 (LCDS12)
Sx	14	3-state	0 (LCDS12)
C.	45	Sx	1 (LCDS12)
Sx	15	3-state	0 (LCDS12)
C.	40	Sx	1 (LCD16)
Sx	16	3-state	0 (LCD16)
C.	17	Sx	1 (LCD16)
Sx		3-state	0 (LCD16)
C.	18	Sx	1 (LCD16)
Sx		3-state	0 (LCD16)
Sx	19	Sx	1 (LCDS16)
SX	19	3-state	0 (LCDS16)
Cu	20	Sx	1 (LCDS20)
Sx	22	3-state	0 (LCDS20)
Sx	22	Sx	1 (LCDS20)
Sx	23	3-state	0 (LCDS20)
S.v.	24	Sx	1 (LCDS24)
Sx	24	3-state	0 (LCDS24)
S.v.	25	Sx	1 (LCDS24)
Sx	25	3-state	0 (LCDS24)

6.10.24 Segment Pin Schematic: COM0, Dedicated COM0 Pin

Table 6-32. COM0 Pin Functions

PIN NAME	X	FUNCTION
COM0		COM0

6.10.25 JTAG Pins TMS, TCK, TDI/TCLK, TDO/TDI, Input/Output With Schmitt Trigger or Output

During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry

6.10.26 JTAG Fuse Check Mode

For details on the JTAG fuse check mode, see the MSP430x4xx Family User's Guide.

www.ti.com

7 Device and Documentation Support

7.1 Device Support

7.1.1 Getting Started and Next Steps

For more information on the MSP430F4x family of devices and the tools and libraries that are available to help with your development, visit the MSP430™ ultra-low-power sensing & measurement MCUs overview page.

7.1.2 Development Tools Support

All MSP430[™] microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.

7.1.2.1 Recommended Hardware Options

7.1.2.1.1 Target Socket Boards

The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages.

Package	Target Board and Programmer Bundle	Target Board Only
80-pin LQFP (PN)	MSP-FET430U80	MSP-TS430PN80

7.1.2.1.2 Experimenter Boards

Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details.

7.1.2.1.3 Debugging and Programming Tools

Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools.

7.1.2.1.4 Production Programmers

The production programmers expedite loading firmware to devices by programming several devices simultaneously.

Part Number	PC Port	Features	Provider
MSP-GANG	Serial and USB	Program up to eight devices at a time. Works with PC or standalone.	Texas Instruments

7.1.2.2 Recommended Software Options

7.1.2.2.1 Integrated Development Environments

Software development tools are available from TI or from third parties. Open source solutions are also available.

This device is supported by Code Composer Studio™ IDE (CCS).

www.ti.com

7.1.2.2.2 MSP430Ware

MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware also includes a high-level API called MSP430 Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware is available as a component of CCS or as a standalone package.

7.1.2.2.3 Command-Line Programmer

MSP430 Flasher is an open-source shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 microcontroller without the need for an IDE.

7.1.3 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP).

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP - Fully qualified production device

XMS devices are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. Figure 7-1 provides a legend for reading the complete device name.

Processor Family MCU Platform	CC = Embedded RF Radio MSP = Mixed-Signal Processor XMS = Experimental Silicon PMS = Prototype Device 430 = MSP430 low-power microcon	troller platform	
Device Type	Memory Type C = ROM F = Flash FR = FRAM G = Flash L = No nonvolatile memory	Specialized Application AFE = Analog front end BQ = Contactless power CG = ROM medical FE = Flash energy meter FG = Flash medical FW = Flash electronic flow meter	
Series	1 = Up to 8 MHz 2 = Up to 16 MHz 3 = Legacy 4 = Up to 16 MHz with LCD driver	5 = Up to 25 MHz 6 = Up to 25 MHz with LCD driver 0 = Low-voltage series	
Feature Set	Various levels of integration within a series		
Optional: Revision	Updated version of the base part number		
Optional: Temperature Range	S = 0°C to 50°C C = 0°C to 70°C I = -40°C to 85°C T = -40°C to 105°C		
Packaging	http://www.ti.com/packaging		
Optional: Tape and Reel	T = Small reel R = Large reel No markings = Tube or tray		
Optional: Additional Features	-EP = Enhanced product (-40°C to -HT = Extreme temperature parts (- -Q1 = Automotive Q100 qualified		

Figure 7-1. Device Nomenclature

7.2 Documentation Support

The following documents describe the MSP430F47x devices. Copies of these documents are available on the Internet at www.ti.com.

SLAU056	MSP430F4xx Family User's Guide. Detailed information on the modules and peripherals available in this device family.
SLAZ243	MSP430F479 Device Erratasheet. Describes the known exceptions to the functional specifications for all silicon revisions of the device.
SLAZ240	MSP430F478 Device Erratasheet. Describes the known exceptions to the functional specifications for all silicon revisions of the device.
SLAZ239	MSP430F477 Device Erratasheet. Describes the known exceptions to the functional

7.3 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

Table 7-1. Related Links

specifications for all silicon revisions of the device.

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
MSP430F479	Click here	Click here	Click here	Click here	Click here	
MSP430F478	Click here	Click here	Click here	Click here	Click here	
MSP430F477	Click here	Click here	Click here	Click here	Click here	

7.4 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

7.5 Trademarks

MicroStar Junior, MSP430, Code Composer Studio, TI E2E are trademarks of Texas Instruments.

7.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.7 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

7.8 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

www.ti.com

SLAS629B - MARCH 2009 - REVISED MAY 2020

Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 16-Jun-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430F477IPN	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F477	Samples
MSP430F477IPNR	ACTIVE	LQFP	PN	80	1000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F477	Samples
MSP430F477IZCA	ACTIVE	NFBGA	ZCA	113	260	RoHS & Green	Call TI	Call TI	-40 to 85	F477	Samples
MSP430F477IZCAR	ACTIVE	NFBGA	ZCA	113	2500	RoHS & Green	Call TI	Call TI	-40 to 85	F477	Samples
MSP430F478IPN	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F478	Samples
MSP430F478IPNR	ACTIVE	LQFP	PN	80	1000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F478	Samples
MSP430F478IZCA	ACTIVE	NFBGA	ZCA	113	2500	RoHS & Green	Call TI	Call TI	-40 to 85	F478	Samples
MSP430F478IZCAR	ACTIVE	NFBGA	ZCA	113	2500	RoHS & Green	Call TI	Call TI	-40 to 85	F478	Samples
MSP430F479IPN	ACTIVE	LQFP	PN	80	119	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F479	Samples
MSP430F479IPNR	ACTIVE	LQFP	PN	80	1000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F479	Samples
MSP430F479IZCAR	ACTIVE	NFBGA	ZCA	113	2500	RoHS & Green	Call TI	Call TI	-40 to 85	F479	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

www.ti.com 16-Jun-2021

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 31-Mar-2021

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are normal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F477IZCAR	NFBGA	ZCA	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F478IZCAR	NFBGA	ZCA	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F479IZCAR	NFBGA	ZCA	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

www.ti.com 31-Mar-2021

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
MSP430F477IZCAR	NFBGA	ZCA	113	2500	350.0	350.0	43.0	
MSP430F478IZCAR	NFBGA	ZCA	113	2500	350.0	350.0	43.0	
MSP430F479IZCAR	NFBGA	ZCA	113	2500	350.0	350.0	43.0	

PLASTIC BALL GRID ARRAY

NOTES:

NanoFree is a trademark of Texas Instruments.

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.

PLASTIC BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments Literature number SNVA009 (www.ti.com/lit/snva009).

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

PN (S-PQFP-G80)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated