Praca domowa VIII - Analiza Matematyczna I.1

Zadanie 1. Określić czy szereg jest zbieżny bezwględnie, zbieżny względnie czy rozbieżny:

a)
$$\sum_{n=1}^{\infty} \left(\frac{an}{n+1}\right)^n$$
, $a \in \mathbb{R}$,

b)
$$\sum_{n=1}^{\infty} (-1)^n (\sqrt[n]{a} - 1),$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{n+1} \left(\frac{a^2 - 4a - 8}{a^2 + 6a - 16} \right)^n$$
, $a \in \mathbb{R} \setminus \{-8, 2\}$

Zadanie 2. Zbadać zbieżność szeregu

$$1 + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{7}} - \frac{1}{\sqrt{4}} + \dots$$

Powstałego z poprzez branie na przemian dwóch dodatnich i jednego ujemnego wyrazów szeregu $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$

Zadanie 3. Zbadać zbieżność szeregu $\sum_{n=1}^{\infty}c_{n},$ jeżeli $c_{n}=1$ oraz

$$\frac{c_{n+1}}{c_n} = \frac{3}{4} + \frac{(-1)^n}{2}.$$

Zadanie 1*. Czy jeśli $\lim_{n\to\infty}\frac{a_n}{b_n}=1$, to ze zbiezności szeregu $\sum_{n=1}^{\infty}a_n$ wynika zbieżność szeregu $\sum_{n=1}^{\infty}b_n$?

Zadanie 2*. Zbadać zbieżność szeregu

$$\sum_{n=2}^{\infty} (-1)^n \frac{\sqrt{n}}{(-1)^n + \sqrt{n}} \sin \frac{1}{\sqrt{n}}.$$

Zadanie 3*. Zbadać zbieżność szeregu

$$\sum_{n=1}^{\infty} \left(\sqrt[n]{a} - \frac{\sqrt[n]{b} + \sqrt[n]{c}}{2} \right).$$