ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 🕆 ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

-ΙΔΡΥΘΕΝ ΤΟ 1837-

M902

Βασικές Μαθηματικές Έννοιες στη Γλωσσική Τεχνολογία

Project 2

Κυλάφη Χριστίνα-Θεανώ LT1200012

TABLE OF CONTENTS

Question 1	3
Question 2	3
Question 3	4
Question 4	5
Question 5	5
Question 6	5
Question 7	5
Question 8	5
Question 9	5
Ouestion 10	6

The composite function S(f(x)) where $S(x) = \frac{1}{1 + e^{-x}}$ and f(x) = ax + b, is calculated as follows:

$$S(f(x)) = \frac{1}{1 + e^{-f(x)}} = \frac{1}{1 + e^{-(ax+b)}} = \frac{1}{1 + \frac{1}{e^{(ax+b)}}} = \frac{1}{\frac{e^{(ax+b)} + 1}{e^{(ax+b)}}} = \frac{e^{(ax+b)}}{e^{(ax+b)} + 1} = \frac{e^{ax}e^b}{e^{ax}e^b + 1}$$

(a)
$$A_1 = 1$$
, $f = 1$, $\theta = 0$, $s_1 = cos(2\pi t)$

(b)
$$A_2 = 2$$
, $f = 3$, $\theta = 0$, $s_2 = 2 \cos(6\pi t)$

(b)
$$A_2 = 2$$
, $f = 3$, $\theta = 0$, $s_2 = 2 \cos(6\pi t)$
(c) $A_1 = 1.5$, $f = 2$, $\theta = \pi$, $s_3 = 1.5 \cos(4\pi t + \pi)$
(d) $A_1 = 2$, $f = 0.5$, $\theta = 0$, $s_4 = 2 \cos(\pi t)$

(d)
$$A_1 = 2$$
, $f = 0.5$, $\theta = 0$, $s_4 = 2 \cos(\pi t)$

A cos($2\pi t + \theta$)

Question 5

- (a) The derivative of function $f(x) = ax^2$ is f'(x) = 2ax ($\mathbf{a} \to \mathbf{4}$)
- (b) The derivative of function $f(x) = cos(2\pi ft)$ is $f'(x) = -sin(2\pi ft)$ ($\mathbf{b} \to \mathbf{1}$)
- (c) The derivative of function $f(x) = bx^3$ is $f'(x) = 3bx^2$ ($\mathbf{c} \to \mathbf{2}$)
- (d) The derivative of function $f(x)=e^{cx}$ is $f'(x)=ce^{cx}$ ($\mathbf{d}\to\mathbf{3}$)

Question 6

Question 7

Question 8

Question 9