

Petrel 2017 Property Modeling Module 6: Facies modeling data analysis

Petrel 2017 Property modeling

Intro Property

Petrel Property Modeling objective and workflow

Property modeling data preparation

Scale up well logs

Univariate and bivariate geostatistics

Facies modeling

Stochastic facies modeling

Continuous data analysis

Petrophysical modeling

Stochastic and

deterministic

Use of secondary information for property modeling

Volume calculation and Uncertainty analysis

Depositional environment

Statistical discrete data analysis

Vertical proportion curves

Thickness of facies

3D probability curve

Variogram analysis

Indicator variogram calculation process

- 1. Transform discrete data as binary variables. Convert the facies of interest to 1 and the remaining facies to 0.
- 2. Calculate the classical semivariogram using the binary codes to create the semivariance for each lag for that discrete value:

$$\gamma_{(h)} = \frac{1}{N_h} \sum_{i=1}^{N_h} \left(\left(facies_{(i+h)} \right) - \left(facies_i \right) \right)^2$$

3. Calculate a prior distribution function (pdf=F(z)): $F(z_i) = \sum_{j=1}^{i-1} P(z_j)$

Where:
$$P(z_i) = facies$$
 proportion

- 4. Calculate the variance for a discrete property according to the distribution (Var= F(z)*(1-F(z))).
- 5. Standardize the classical variogram by $Var = F(z)^*(1-F(z))$: $(\gamma_{(h)})/[F(z)*(1-F(z))]$

Example:

Code	Facies	Proportion	pdf=F(z)	F(z)*(1-F(z))
0	Shale	0,50	0,50	0,250
1	Sand	0,05	0,55	0,248
2	Silt	0,15	0,70	0,210
3	Fine Silt	0,20	0,90	0,090

Indicator variogram for Shale:

- Shale is recognized as 1 and other facies as 0 to calculate the variogram (semivariance).
- The variogram is standardized by the pdf factor.

	Shale	
Lag	Semivariance	Standardized
Lag 1	0.055	0.22
Lag 2	0.12	0.48
Lag 3	0.27	1.08
Lag 4	0.32	1.28
Lag 5	0.36	1.44
Lag 6	0.35	1.4

Obtain the best search cone parameters

Fit the variogram model (1)

- 1. Begin with Vertical direction. Use raw logs in non-simbox mode.
- 2. Click Fit variogram to regression curve to fit the model quickly.
- 3. Add or remove structures as necessary to fit the variogram model

more closely to the experimental variogram. Click *Fit variogram to regression curve* after each

addition or deletion of a structure.

Fit the variogram model (2)

4. Modify variogram parameters as necessary by editing them in the Variogram model fitting table or directly in the variogram graph.

5. Click Lock nugget and sills to prevent the nugget and sills from being

modified.

6. Repeat the process for the major horizontal direction. Use upscaled data in Simbox mode.

7. Repeat the process for the minor horizontal direction. Use upscaled data in Simbox mode.

Declustering (1)

Variogram modeling process summary

- Model vertical variograms:
 - Sufficient amount of data
 - Easy to estimate
- Fit the model variogram to the sample variogram:
 - Spherical, Gaussian, and Exponential
- Model horizontal variograms:
 - Limited data to compute the variogram
 - Can imply data from geology knowledge
 - Can derive data from correlated data source

Exercises

- Run a vertical facies proportion analysis
- Run a facies thickness analysis
- Run a facies probability analysis
- Run a variogram analysis
- Run facies proportion declustering

