Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Оганнисян Давит Багратович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	 3.1 Постановка задачи	7 7 11
4	Выводы	18

Список иллюстраций

3.1	Модель первой стратегии обслуживания	8
3.2	Отчёт по модели первой стратегии обслуживания	9
3.3	Модель второй стратегии обслуживания	10
3.4	Отчет по модели второй стратегии обслуживания	10
3.5	Модель двух стратегий обслуживания с 1 пропускным пунктом	12
3.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	12
3.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	13
3.8	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	13
3.9	Модель первой стратегии обслуживания с 4 пропускными пунктами	14
3.10	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	15
3.11	Модель второй стратегии обслуживания с 3 пропускными пунктами	15
3.12	Отчёт по модели второй стратегии обслуживания с 3 пропускными	
	пунктами	16
3.13	Модель второй стратегии обслуживания с 4 пропускными пунктами	16
3.14	Отчёт по модели второй стратегии обслуживания с 4 пропускными	
	пунктами	17

Список таблиц

3.1	Сравнение стратегий	{#tbl:strategy}:	_	 			_									1	0
J. I	Cpublicitite ci pui ci iii	" to1.bt1 atc X 1	•	 •	•	•	•	•	•	•	•	•	•	•	•	_	$\mathbf{\circ}$

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

3.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

3.2 Построение модели

Целью моделирования является определение:

• характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. 3.1).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl_{1}; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl_1, Obsl_2; длины очередей равны, ; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. 3.2).

■ lab16_1.1.	1 - KEPOR	ı										
	START	TIME	F	אדד מא	E BLO	OCKS F	FACILITIE	75	STODACES			
		0.000		080.00								
							_					
	NAN				VALU							
	OBSL_1				5.0							
	OBSL_2		11.000									
	OTHER1				0000.0							
	OTHER2			_	0001.0							
	PUNKT1			_	0003.0							
	PUNKT2			1	0002.0	000						
LABEL			BLOCK TY				CURRENT					
			GENERATE			353		0		0		
			TEST			353		0		0		
			TEST			162		0		0 0		
0001 1		5	TRANSFER QUEUE			131 928		0 387		0		
OBSL_1			SEIZE			928 541		0		0		
			DEPART			541		0		0		
			ADVANCE			541		1		0		
		_	RELEASE			540		0		0		
		_	TERMINAT			540		0		0		
OBSL 2			OUEUE	E		925		388		0		
0555_2			SEIZE			537	,	0		0		
			DEPART			537		0		0		
			ADVANCE			537		1		0		
			RELEASE			536		0		0		
		16	TERMINAT	E	25	536		0		0		
		17	GENERATE			1		0		0		
		18	TERMINAT	E		1		0		0		
FACILITY		ENTRIES	UTIL.	AVE.	TIME A	AVAIL.	OWNER PR	END :	INTER	RETRY	DELAY	
PUNKT2		2537	0.996		3.957	1	5078	0	0	0	388	
PUNKT1		2541	0.997		3.955	1	5079	0	0	0	387	
						_			-	-		
QUEUE		MAX C	ONT. ENTR	Y ENTR	Y(0) 1	AVE.CON	NT. AVE.1	TIME	AVE	. (-0)	RETRY	
OTHER1			387 292									
OTHER2			388 292									
FEC XN	PRI	BDT	ASS	EM CU	RRENT	NEXT	PARAME?	TER	VAL	UE		
5855	0		102 585		0	1						
5079	0	10000	517 507		8	9						

Рис. 3.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. 3.3, 3.4).

```
Punkt STORAGE 2
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
QUEUE Other; присоединение к очереди 1
ENTER punkt,1; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt,1; освобождение пункта 1
TERMINATE; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.3: Модель второй стратегии обслуживания

	START	TIME		END	TIME	BLC	CKS I	FACILITI	ES S	TORAGES	
	0	.000		1008	0.000		9	0		1	
	NAM	-				VALU	T.				
	OTHER	E.			10		_				
	PUNKT					000.0					
LABEL		LOC	BLO	CK TYPE	: :	ENTRY	COUNT	CURREN	T COU	NT RETRY	
		1	GEN	ERATE		57	19		0	0	
		2	QUE	UE		57	19		668	0	
			ENT	ER		50	51		0	0	
		•		ART		50			0	0	
				ANCE		50			2	0	
			LEA			50			0	0	
				MINATE		50			0	0	
		_		ERATE			1		0	0	
		9	TER	MINATE			1		0	0	
QUEUE		MAX C	ONT.	ENTRY	ENTRY	(O) A	VE.CON	NT. AVE.	TIME	AVE.(-0) REI
OTHER		668	668	5719		4 3	44.466	5 607	.138	607.56	2 0
STORAGE		CAP.	REM.	MIN. M	IAX.	ENTRI	ES AVI	L. AVE.	c. UT	IL. RETRY	DELA
PUNKT		2	0	0	2	505	1 1	2.00	0 1.	000 0	668
FEC XN	PRI	BDT		ASSEM	CUR	RENT	NEXT	PARAME	TER	VALUE	
5721	0	10080.	466	5721		0	1				
5051	0	10081.	269	5051		5	6				
5052	0	10083.	431	5052		5	6				
5722	0	20160.	000	5722		0	8				

Рис. 3.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. ??).

Таблица 3.1: Сравнение стратегий {#tbl:strategy}:

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	

Показатель	стратегия 1			стратегия 2
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

3.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. 3.5).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

SEIZE punkt; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

RELEASE punkt; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 3.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. 3.5).

lab16_2.6.1	- REPOR	Т							
			END						
I.	(0.000	1008	0.000	9	1		0	
1									
	NAM	Œ		v	ALUE				
	OTHER			1000	0.000				
	PUNKT			1000	1.000				
LABEL		100	BLOCK TYPE		TDV COU	NT CUDDEN	T CO!	NT DETDY	
LADEL			GENERATE		5744	NI CURREN	0	NI KEIKI	
		_	OUEUE		5744	9	233	-	
			SEIZE		2511	_	0	0	
		_	DEPART		2511		0	0	
		_	ADVANCE		2511		1	0	
			RELEASE		2510		0	0	
		7	TERMINATE		2510		ō	0	
		8	GENERATE		1		0	0	
		9	TERMINATE		1		0	0	
PACTITEV		PMTDIDE	UTIL. A	יים דו	E 3173 TT	OWNED	END T	אחדם חדדת	DELYA
PUNKT			1.000						
FONKI		2311	1.000	4.0	11 1	2312	U	0 0	3233
			ONT. ENTRY						
OTHER		3234 3	233 5744	1	1617.6	76 2838	.819	2839.313	0
FEC XN	PRI	BDT	ASSEM	CURRE	NT NEX	r parame	TER	VALUE	
2512	0	10080.	255 2512	5	6				
5746	0	10080.	384 5746	0	1				
5747			000 5747						

Рис. 3.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. 3.7, 3.8).

Рис. 3.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

LABEL	TOC BI	OCK TUDE	ENTRY COUNT	CUDDENT	COUNT D	ETDV	
LADEL		NERATE	5547	CURRENT	O O	O O	
		NEKATE ANSFER	5547		0	0	
GO		ANSFER ANSFER	3682		0	0	
OBSL 1	4 QU		1853		1	0	
OBST_1		EUE IZE	1853		0	0	
		PART	1852		0	0	
					1	0	
		VANCE	1852		0	•	
		LEASE	1851		-	0	
		RMINATE	1851		0	0	
OBSL_2	10 QU		1829		0	0	
	11 SE		1829		0	0	
		PART	1829		0	0	
		VANCE	1829		0	0	
		LEASE	1829		0	0	
		RMINATE	1829		0	0	
OBSL_3	16 QU		1865		3	0	
		IZE	1862		0	0	
		PART	1862		0	0	
		VANCE	1862		1	0	
		LEASE	1861		0	0	
		RMINATE	1861		0	0	
		NERATE	1		0	0	
	23 TE	RMINATE	1		0	0	
FACILITY	ENTRIES U	TIL. AVE.	TIME AVAIL. O	WNER PEN	D INTER	RETRY	DELAY
PUNKT2	1829	0.717	3.952 1	0	0 0	0	0
PUNKT3			4.006 1	5534	0 0	0	3
PUNKT1	1852	0.727	3.957 1	5546	0 0	0	1
OUEUE	MAY CONT	FMTDV FMTD	Y(0) AVE.CONT	יי אווא יי	ME NU	TE (=0)	DETDV
OTHER2	11 0			6.1		8.482	0
OTHER3		1865 5				8.458	-
OTHER1			29 0.929				
OTHERI	9 1	1055 5.	29 0.929	5.0	33	7.075	U
FEC XN PRI	BDT	ASSEM CUI	DDFNT NFYT	PARAMETE	r va	LUE	
5549 O	10081.799		0 1		VA		
5534 0			19 20				
5546 0	10085.099		7 8				
5550 0	20160.000		0 22				
	20200.000						

Рис. 3.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. 3.9, 3.10).

Рис. 3.9: Модель первой стратегии обслуживания с 4 пропускными пунктами

	26 ADV		14			1		0	
		EASE	14			0		0	
		MINATE	14			0		0	
	29 GEN	ERATE		1		0		0	
	30 TER	MINATE		1		0		0	
FACILITY	ENTRIES UT	TI. AVE	. TIME A	VATI. (WNER	PEND	INTER	RETRY	DELAY
PUNKT4	1413 0					0	0	0	0
PUNKT3	1378 0				0	0	0	0	0
PUNKT2	1366 0				0	0		0	0
PUNKT1	1465 0			-	•	_	_	0	0
OUTUT	Way cour		mp.r.(0) 3						DD 2011
QUEUE	MAX CONT.								
OTHER4	7 0	1413							
OTHER3		1378							
OTHER2		1366						4.934	_
OTHER1	6 0	1465	590	0.492		3.385		5.667	0
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT	PARAM	ETER	VAI	LUE	
5624 0	10080.041	5624	0	1					
5621 0	10080.398	5621	8	9					
5623 0	10082.255	5623	26	27					
5625 0	20160.000	5625	0	29					

Рис. 3.10: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются *оптимальным* количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

```
| lab16_3.gps
 punkt STORAGE 3;
 GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
 ; моделирование работы пункта 1
 QUEUE Other ; присоединение к очереди 1
 ENTER punkt ; занятие пункта 1
 DEPART Other ; выход из очереди 1
 ADVANCE 4,3 ; обслуживание на пункте 1
 LEAVE punkt ; освобождение пункта 1
 TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
 GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
 TERMINATE 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 3.11: Модель второй стратегии обслуживания с 3 пропускными пунктами

	OTHER PUNKT				10001					
LABEL		1 2 3 4 5 6 7 8	GENT QUE ENT DEP ADV LEA TER	ERATE UE ER ART ANCE		TRY COUNT 5683 5683 5683 5683 5683 5680 1	CURRENT	COUNT 0 0 0 0 0 3 0 0 0	RETRY 0 0 0 0 0 0 0 0	
QUEUE OTHER		MAX (AVE.CON 1.063				•
STORAGE PUNKT						TRIES AVL				
5683 5685 5684		10080. 10080. 10082. 10085.	.434 .631 .068	5680 5683 5685 5684	5 5 0	NEXT 6 6 1 6 8	PARAMETI	ER '	VALUE	

Рис. 3.12: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. 3.11, 3.12).

```
punkt STORAGE 4;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1
QUEUE Other; присоединение к очереди 1
ENTER punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.13: Модель второй стратегии обслуживания с 4 пропускными пунктами

LABEL	LOC	BLOCK TYPE	ENTRY	COUNT	CURRENT	COUNT I	RETRY	
	1	GENERATE	57	119		0	0	
	2	QUEUE	57	119		0	0	
	3	ENTER	57	119		0	0	
	4	DEPART	57	119		0	0	
	5	ADVANCE	57	119		4	0	
	6	LEAVE	57	115		0	0	
	7	TERMINATE	57	15		0	0	
	8	GENERATE		1		0	0	
	9	TERMINATE		1		0	0	
QUEUE	MAX CO	ONT. ENTRY I	ENTRY(0) A	VE.CON	T. AVE.TI	ME A	VE.(-0)	RETRY
OTHER	7	0 5719	4356	0.194	0.3	41	1.431	0
STORAGE	CAP. F	REM. MIN. M	AX. ENTRI	ES AVL	. AVE.C.	UTIL.	RETRY	DELAY
PUNKT	4	0 0	4 571	.9 1	2.253	0.563	0	0
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETE	R V	ALUE	
5718 0	10082.3	346 5718	5	6				
5717 0	10082.4	12 5717	5	6				
5719 0	10083.3	93 5719	5	6				
5721 0	10084.3	93 5721	0	1				
			5	6				
5720 0	10085.1	.62 5720	5	b				

Рис. 3.14: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

4 Выводы

В результате выполнения данной лабораторной работы я реализовал с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.