Développement 11. La décomposition de Dunford effective par la méthode de Newton

Théorème 1. Soient **K** un corps de caractéristique nulle et $n \in \mathbb{N}^*$. Soit $A \in \mathcal{M}_n(\mathbf{K})$ une matrice de polynôme caractéristique scindé $\chi \in \mathbf{K}[X]$. On pose

$$P := \frac{\chi}{\chi \wedge \chi'}.$$

On considère la suite $(A_r)_{r\in\mathbf{N}}$ de $\mathcal{M}_n(\mathbf{K})$ définie par les égalités

$$A_0 = A$$
 et $A_{r+1} = A_r - P(A_r)P'(A_r)^{-1}$.

Alors cette suite est bien définie, elle est stationnaire et elle tend vers une matrice diagonalisable $D \in \mathcal{M}_n(\mathbf{K})$. De plus, la matrice D est un polynôme de la matrice A et la matrice N := A - D est nilpotente. Enfin, la décomposition A = N + D est unique.

Preuve Remarquons d'abord que, comme le corps K est de caractéristique nulle, le polynôme χ' n'est pas nul ce qui implique que ce polynôme P est à racines simples et ce sont les valeurs propres de la matrice.

Pour tout entier $r \in \mathbb{N}$, on va montrer, par récurrence, la propriété (P_r) constituée des trois points suivants :

- (P_r^1) la matrice $P(A_r)$ est nilpotente d'indice de nilpotence $\nu_r \leq 1 + (n-1)2^{-r}$;
- (P_r^2) la matrice $P'(A_r)$ est inversible;
- (P_r^3) la matrice A_{r+1} est bien définie et appartient à l'anneau $\mathbf{K}[A]$.
- Initialisation. Le point (P_0^3) est clair. Montrons le point (P_0^2) . Comme le polynôme P est sans facteur carré, on a $P \wedge P' = 1$ et le théorème de Bézout assure qu'on peut trouver deux polynômes $U, V \in \mathbf{K}[X]$ tels que UP + VP' = 1. En particulier, on a $V(A)P'(A) = I_n U(A)P(A)$. Comme $\chi \mid P^n$, le théorème de Cayley-Hamilton assure que $P(A)^n = P^n(A) = 0$, donc la matrice P(A) est nilpotente et il en va de même pour la matrice U(A)P(A). Ainsi la matrice $I_n U(A)P(A)$ est inversible en utilisant la formule bien connue

$$(a-1)\sum_{k=0}^{N} a^k = 1 - a^{N+1}, \quad a \in A,$$

donc la matrice $P'(A) = P'(A_0)$ est inversible. D'où le point (P_0^2) . Par la même occasion, on a montré le point (P_0^1) puisque $P(A)^n = 0$ et donc $\nu_0 \leq n = 1 + (n-1)2^{-0}$.

• Hérédité. Soit $r \in \mathbb{N}$. On suppose la propriété (P_r) . Montrons le point (P_{r+1}^1) . D'après la formule de Taylor polynomiale, il existe un polynôme $Q \in \mathbf{K}[X, H]$ tel que

$$P(X + H) = P(X) + HP'(X) + H^{2}Q(X, H).$$

Alors

$$P(A_{r+1}) = P(A_r - P(A_r)P'(A_r)^{-1})$$

$$= P(A_r) - P(A_r)P'(A_r)^{-1}P'(A_r)$$

$$+ [P(A_r)P'(A_r)^{-1}]^2Q(A_r, -P(A_r)P'(A_r)^{-1})$$

$$= [P(A_r)P'(A_r)^{-1}]^2Q(A_r, -P(A_r)P'(A_r)^{-1}).$$

Avec le point (P_r^1) , la matrice $P(A_r)$ est nilpotente, donc la matrice $P(A_{r+1})$ est

nilpotente d'indice de nilpotence

$$\nu_{r+1} \leqslant \frac{\nu_r + 1}{2} \leqslant \frac{2 + (n-1)2^{-r}}{2} = 1 + \frac{n-1}{2^{r+1}}.$$

D'où le point (P_{r+1}^1) .

Montrons le point (P_{r+1}^2) . Comme dans l'initialisation, on a trouvé deux polynômes $U, V \in \mathbf{K}[X]$ vérifiant $V(A_{r+1})P'(A_{r+1}) = I_n - U(A_{r+1})P(A_{r+1})$. D'après le point (P_{r+1}^1) , la matrice $U(A_{r+1})P(A_{r+1})$ est nilpotente, donc la matrice $P'(A_{r+1})$ est inversible.

Enfin, montrons le point (P_{r+1}^3) . Avec le point (P_{r+1}^2) , la matrice A_{r+2} est bien définie et, avec le point (P_r^3) , il s'agit bien d'un polynôme de la matrice A — notons que $B^{-1} \in \mathbf{K}[B]$ si $B \in GL_n(\mathbf{K})$.

Montrons alors que les propriétés (P_r) prouvent bien le théorème. D'après les points (P_r^3) , les matrices A_r commutent entre elles. De plus, grâce au point (P_r^1) , dès que $m \ge \log_2 n$, la matrice $P(A_m)$ est d'indice de nilpotence $\nu_m = 1$, donc $P(A_m) = 0$ ce qui montre que la suite $(A_r)_{r \in \mathbb{N}}$ est stationnaire égale à une matrice $D \in \mathscr{M}_n(\mathbb{K})$. Comme le polynôme P est scindé simple et comme P(D) = 0, la matrice D est diagonalisable. Montrons que la matrice N := A - D est nilpotente. En effet, pour tout entier $m \ge \log_2 n$, on a

$$N = A - A_m = \sum_{i=0}^{m-1} (A_i - A_{i+1}) = \sum_{i=0}^{m-1} P(A_i)P'(A_i)^{-1}.$$

Avec les points (P_i^1) et (P_i^3) avec $i \in [0, m-1]$, comme les matrice $P(A_i)$ sont nilpotente et les matrices $P(A_i)$ et $P'(A_i)^{-1}$ commutent, les matrices $P(A_i)P'(A_i)^{-1}$ sont nilpotentes. Comme ces dernières commutent, la matrice N est nilpotente. Enfin, la matrice D est clairement un polynôme de la matrice A d'après la propriété (P_m^3)

Montrons l'unicité. Soit A = N' + D' une autre décomposition de Dunford. On écrit N - N' = D' - D. Montrons que DD' = D'D et NN' = N'N. D'abord, on a

$$D'A = D'(D' + N') = D'^2 + D'N' = D'^2 + N'D' = (D' + N')D' = AD'.$$

Comme le matrice N sont des polynômes en la matrice A, elles commutent avec cette dernière, donc on peut écrire

$$DD' = (A - N)D' = AD' - ND' = D'A - D'N = D'(A - N) = D'D.$$

De même, on montre que NN' = N'N. Par conséquent, la matrice N - N' est nilpotente et les matrices D et D' sont codiagonalisables ce qui implique que leur différence D - D' est diagonalisable. Comme une matrice diagonalisable et nilpotente est nulle, on en déduit que N - N' = D - D' = 0 ce qui conclut l'unicité.

Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome premier. Calvage & Mounet, 2017.