

Engineering

Preliminary Mapping of the Hydrologic Genome of CABLE for Soil Moisture Estimation

Gift Dumedah, & Jeff Walker

CABLE Workshop 15 November, 2013

Land Surface Model – Key Components

$$Y = M[X, \theta, U]$$

- Y = model output (e.g. soil moisture)
- M = model and its structure
- X = model states (e.g. storages)
- θ = model parameters (e.g. soil K)
- U = forcing data inputs (e.g. rainfall)

Diagnostic Model Evaluation

- The four model components sources of uncertainty.
- Impact of model structure on simulated output is difficult to assess without knowledge about model parameters, states, and forcing data uncertainties.
- Interaction between uncertainty sources makes it difficult to assess the impact of individual errors.
- Proposed approach: quantify uncertainties linked to model parameters, states, and input forcing data.
- The proposed approach employs:
 - multi-objective evolutionary strategy
 - temporal updating from data assimilation

Evolutionary data assimilation (EDA)

Evolutionary Algorithms (EAs)

EAs: population based search tool, use the concept of evolution and natural selection

- genotype: genetic information (e.g. X, θ, U)
- phenotype: expressed behaviour (Y – soil moisture)
- crossover: share genotype among competitive members
- mutation: introduce changes to genotype to preserve diversity

The Evolutionary Data Assimilation (EDA)

 EDA – combines Bayesian filtering with multi-objective evolutionary strategy

- Natural selection stochastic and population-based
- Effective use of memory, and learning tool
- Pareto dominance: 20–80 rule
- An improved compromise between model and observation

The EDA Procedure – Simplified

The Updated Ensemble Members

- Are equally competitive unique compromise (or trade-off) btn. observation and prediction.
- Optimal values for model states, parameters, and forcing data uncertainty – provide both internal and temporal dynamics.
- Opportunity to study the model behaviour, the trade-offs, and the genotype through time.

Hydrologic Genome – Proposed Mtd.

- Proposed approach:
 equivalent to a biological 'genome',
 a string encoding the genetic
 blueprint that coordinates all
 cellular behaviour.
- Hydrologic genome:

 an ensemble string of values
 encoding the internal dynamics of
 the model, conditioned under
 varied landscape properties, model
 states, and weather conditions.
- Mapping the hydrologic genome

Experimental Area – the Yanco Area

Legend

- Forcing data stations
- In-situ OzNet stations
- AMSR-E Grid
- Model Grid 5-km

Soil Testure

Sand

Sandy loam

Loam

Clay loam

Data sets

- Forcing data: weathering monitoring stations (Griffith and Yanco)
- Soil data: Australian soil atlas
- Leaf area index (LAI): MODIS (MYD15A2)
- Observation data: the Microwave-Scanning Radiometer – Earth Observing System (AMSR-E)

Model and assimilation setup

- Modelling period: 2006 2007
- Ensemble size: 200
- Updated ensemble size: 20
- **Evolutionary cycles: 5**
- Model soil moisture depth: 2.2cm

The Updated Genotype Space

Overall reduction in search space:

Updated bound as percentage of original bound: 75%

The Updated Space and Sample Members

The Dominant Pathway in Genotype

Clustering details:

- Overall number of clusters: 8
- Overall coverage: 50%

Overall reduction in search space:

- Dominant pathway as percentage of original bound: 25%
- Dominant pathway as percentage of updated bound: 33%

Pre-Evaluation of Updated Estimates

Open loop soil moisture

Updated soil moisture

Overall accuracy increase ≈ 70%

Pre-Evaluation of Updated Estimates

Updated soil moisture

Estimate from Dominant Parameter Pathway

Overall RMSE decrease ≈ 14% (< 0.01 m³/m³)

Summary of Findings and Future Work

- Evolutionary data assimilation has been applied to update CABLE soil moisture.
- The EDA updated ensemble provide crucial information to monitor model behaviour.
- The assessment of updated members in genotype has both diagnostic and predictive potential.
- Mapping of the hydrologic genome puts the focus on evaluating the genotype, instead of only prediction & observation.

