

Dipartimento di Scienze Fisiche, Informatiche e Matematiche

Basi di Dati

Corso di Laurea in Informatica

E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma. E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia.

Basi di Dati

Dichiarazione degli schemi e interrogazioni in SQL (I Parte)

Basi di Dati – Dove ci troviamo?

Storia di SQL

- Definito nell'ambito del progetto
 - SYSTEM R (IBM S. JOSE) nel 1976
- Nome originario: SEQUEL
- Adottato progressivamente da tutti i sistemi commerciali
- Standardizzato da ANSI e ISO

Composizione di SQL

- Data Definition Language (DDL)
 - definizione di domini, tabelle, indici, viste, vincoli, procedure, trigger
- Data Manipulation Language (DML)
 - linguaggio di query, modifica, comandi transazionali
- Data Control Language (DCL)
 - linguaggio per la gestione degli utenti e dei privilegi di accesso

Standardizzazione di SQL

- Progressione dello standard per estensioni quasicompatibili
 - prima versione nel 1986 (SQL-1)
 - modifica alla prima versione nel 1989 (SQL-89)
 - seconda versione nel 1992 (SQL-2, SQL-92)
 - terza versione nel 1999 (SQL-3, SQL-99)
- In SQL-2:
 - entry SQL (più o meno equivalente a SQL-89)
 - intermediate SQL
 - full SQL

Potere espressivo di standard e sistemi commerciali

Tipi di dati in SQL-2

stringhe

- CHAR (N)
- VARCHAR (N)

stringhe di bit (0/1)

- BIT (N)
- VARBIT (N)

numerici esatti

- NUMERIC (Prec, Scale) (o anche DECIMAL)
- ! INTEGER
- SMALLINT

Precision e Scale

Esempio

23.5141

- Precision: 6(numero di cifre significative in tutto il numero)
- Scale: 4 (numero di cifre decimali)

Tipi di dati in SQL-2 (cont.)

Numerici approssimati

REAL

DOUBLE PRECISION

Domini speciali

- DATE
 - YYYY-MM-DD
- TIME(N)
 - HH:MM:SS.NNNN
- TIMESTAMP
 - YYYY-MM-DD HH:MM:SS
- INTERVAL
 - INTERVAL YEAR(2) TO MONTH
 - (tra 0 anni 0 mesi e 99 anni 11 mesi)

Il valore "null"

- null è un valore polimorfo (che appartiene a tutti i domini) col significato di valore non noto
- il valore esiste in realtà ma è ignoto al database
 - Es: data di nascita
- il valore è inapplicabile
 - Es: numero patente per minorenni

Definizione delle tabelle

- Una tabella è costituita da:
 - una lista di uno o più attributi (colonne)
 - 🛚 un insieme di zero o più vincoli

```
CREATE TABLE <nome-tabella>
(<nome-col> <dominio> [<vincoli-col>],
    ...
<nome-col> <dominio> [<vincoli-col>],
    [<vincoli-tab>]
)
```

Vincoli di colonna

- NOT NULL
 - l'attributo non può assumere il valore null
- UNIQUE
 - unicità dell'attributo
- PRIMARY KEY
 - l'attributo è la chiave primaria
- CHECK
 - esprime un generico vincolo sulla colonna tramite una espressione logico-relazionale
- REFERENCES
 - esprime il vincolo della Foreign Key

Vincoli di tabella

- UNIQUE (ta-colonne>)
 - la combinazione dei valori delle colonne deve essere unica per tutte le tuple della tabella
- PRIMARY KEY (ta-colonne>)
 - chiave primaria della tabella (implica NOT NULL)
- FOREIGN KEY (<lista-colonne>) REFERENCES <tab> [(<lista-colonne>)]
 - foreign key della tabella
- CHECK (<condizione>)
 - predicato che deve essere soddisfatto per tutte le tuple della tabella

Esempi

CREATE TABLE STUDENTE

(MATR CHAR(6) PRIMARY KEY,
NOME VARCHAR (30) NOT NULL,
CITTÀ VARCHAR (20),
C-DIP CHAR (3)

CREATE TABLE CORSO

(COD-CORSO CHAR(6) PRIMARY KEY, TITOLO VARCHAR(30) NOT NULL, DOCENTE VARCHAR(20))

Esempi (cont.)

```
CREATE TABLE ESAME
```

MATR CHAR(6),
COD-CORSO CHAR(6),
DATA DATE NOT NULL,
VOTO SMALLINT NOT NULL,
PRIMARY KEY(MATR,COD-CORSO),

FOREIGN KEY (MATR) REFERENCES STUDENTI,
FOREIGN KEY (COD-CORSO) REFERENCES CORSO

Approfondiremo il concetto di Foreign Key e la sua espressione nella prossima lezione

Chiavi alternative

- Come si esprime una chiave alternativa?
 - Specificando le clausole NOT NULL e UNIQUE

CREATE TABLE STUDENTE

(MATR CHAR(6) PRIMARY KEY, CF CHAR(16) NOT NULL UNIQUE, NOME VARCHAR (30) NOT NULL, CITTÀ VARCHAR (20), C-DIP CHAR (3)

Interrogazioni in SQL

Dichiaratività di SQL

In SQL l'utente specifica QUALE informazione è di suo interesse ma non COME estrarla dai dati

- Il sistema costruisce una strategia di accesso (QUERY OPTIMIZATION)
- P È l'aspetto più qualificante delle basi di dati relazionali

Struttura di SQL

- Basata sulla composizione di blocchi
 - SELECT
 - PROM
 - WHERE
- Ogni blocco ha il potere espressivo di una qualunque combinazione di selezioni, proiezioni e join

Esempio: gestione degli esami universitari

studente

MAT	NOME	CITTA'	C-DIP
R	Carlo	Bologna	Inf
123	Paola	Torino	Inf
415	Antonio	Roma	Log

esame corso

MAT R	COD- CORSO	DATA	VOTO
	1	2014-09-07	30
123	2	2015-01-08	28
123	2	2014-09-07	20
702			

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Natali

Interrogazioni semplici

SELECT *
FROM STUDENTE

MAT	NOME	CITTA'	C-DIP
R	Carlo	Bologna	Inf
123	Paola	Torino	Inf
415	Antonio	Roma	Log

702

SELECT *
FROM STUDENTE
WHERE C-DIP = 'Log'

MAT	NOME	CITTA	C-DIP
R	Antonio	7	Log

702 Roma

Selezione

SELECT *
FROM STUDENTE
WHERE NOME='Paola'

- Il risultato è una tabella (priva di nome) con schema:
 - lo stesso schema di STUDENTE
- istanze:
 - le tuple di STUDENTE che soddisfano il predicato di selezione

MAT	NOME	CITTA	C-DIP
R	Paola	,	Inf

Esempio di selezione

SELECT *
FROM STUDENTE
WHERE (CITTÀ='Torino') OR
((CITTÀ='Roma') AND NOT (C-DIP='log'))

MAT	NOME	CITTÀ	C-DIP
P	Carlo	Bologna	Inf
123	Paola	Torino	Inf
445	Antonio	Roma	Log

702

24

Proiezione

SELECT MATR, CITTA' FROM STUDENTE

- Il risultato è una tabella (priva di nome) con schema:
 - gli attributi di proiezione
- istanze:
 - le tuple di STUDENTE ristrette a quegli attributi

MAT	CITTÀ
R	Bologna
123	Torino
415	Roma

Blocchi SQL per la modifica

Tre operazioni elementari:

Cancellazione: DELETE

inserimento: INSERT

modifica: UPDATE

Cancellazione

DELETE FROM STUDENTE WHERE MATR = '678678'

Inserimento

INSERT INTO STUDENTE

```
VALUES
```

```
('456878', 'Giorgio Rossi', 'Bologna', 'Logistica e Produzione')
[,(...)]
```

INSERT INTO BOLOGNESI

```
( SELECT *
FROM STUDENTE
WHERE CITTÀ = 'Bologna'
)
```

Modifica

UPDATE ESAME

SET VOTO = 30

WHERE DATA = 2014-04-01

UPDATE ESAME

SET VOTO = VOTO + 1

WHERE MATR = '787989'

28