Data Modeling Using the Entity Relationship (ER) Model

CH.3

Data Models

- A collection of tools for describing
 - data
 - data relationships
 - data semantics دلالات البيانات
 - ▶ data constraints
- Entity-Relationship model Ex student and teacher
- Relational model
 R Database

Relational database consists of a collection of tables, each of which is assigned a unique name.

- Other models:
 - ▶ Older models: network model and hierarchical mode

نموذج البيانات هو عبارة عن تمثيل بسيط لوصف تراكيب البيانات المعقدة في واقع الحياة العملية على

شكل رسومي دون النظر الي مكان وكيفية تخزين أو الوصول الى هذه البيانات.

- يستخدم هذا النموذج كوسيلة اتصال ما بين المصمم من جهة وبين المبرمجين والمستخدمين من جهة اخرى.
- حتى لو كان لدينا العديد من المبرمجين المحترفين فلا نستطيع الحصول على نظام جيد دون ان يكون هذا النظام قد صمم بشكل صحيح.

ER Model Concepts

- Entities and attributes
- ▶ Entities : A "thing" in the real world with an independent existence
- are specific person , place , event ,objects in the user environment about which the user needs to keep data .

For example: the Employee, office, Task, Conference.

- → An object with physical existence (ex: house, person) or with conceptual existence(ex:course, job)
- Attributes: are properties used to describe an entity.
- For example: an EMPLOYEE entity may have the attributes Name, SSN, Address, Sex, Birthdate.

ال Attributes هي الخصائص التي يتم تخزينها عن كل Entity

Composite Attributes

- Can be divided into further parts.
- ★ Ex: Name → First Name, Middle Name, Last Name

Simple Attributes

★ Cannot be divided further.

★ Ex: Weight → cannot be further divided.

Single-Valued Attributes

- Have a single value for a particular entity.
- ★ Ex: Age → single-valued attribute of a person.

Multivalued Attributes

- Can have set of values for a particular entity.
- Ex: College degree, languages known → multivalued attributes of a person.

Derived Attributes

Can be derived from other attributes.

★ Ex: Age → can be derived from date of birth.

Stored Attributes

★ From which the value of other attributes are derived.

★ Ex: BirthDate of a person

ER Model Concepts

Relationships:

A relationship relates two or more distinct entities with a specific meaning.

- For Example, Employee Ali works on the Project, or
- EMPLOYEE Hasan manages the Research DEPARTMENT.

Entity-Relationship Model

Example of schema in the entity-relationship model, BINARY relationship

E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Lines link attributes to entity sets and entity sets to relationship sets.
- > Ellipses represent attributes
 - > **Double ellipses** represent multivalued attributes.
 - Dashed ellipses denote derived attributes.
- Underline indicates primary key attributes (will study later)

E-R Diagram With Composite, Multivalued, and Derived Attributes

Entity Relationship Model (Cont.)

- E-R model of real world
 - Entities (objects)
 - ► E.g. customers, accounts, bank branch
 - Relationships between entities
 - ► E.g. Account A-101 is held by customer Johnson
 - ▶ Relationship set *depositor* associates customers with accounts

العلاقة تربط المودع بالحساب

- Widely used for database design
 - Database design in E-R model usually converted to design in the relational model (coming up next) which is used for storage and processing

Relational Model

Attributes

Example of data in the relational model

Customer-	customer- name	customer- street	customer- city	account- number
192-83-7465	Johnson	Alma	Palo Alto	A-101
019-28-3746	Smith	North	Rye	A-215
192-83-7465	Johnson	Alma	Palo Alto	A-201
321-12-3123	Jones	Main	Harrison	A-217
019-28-3746	Smith	North	Rye	A-201

A Sample Relational Database

customer-id	customer-name	customer-street	customer-city
192-83-7465	Johnson	12 Alma St.	Palo Alto
019-28-3746	Smith	4 North St.	Rye
677-89-9011	Hayes	3 Main St.	Harrison
182-73-6091	Turner	123 Putnam Ave.	Stamford
321-12-3123	Jones	100 Main St.	Harrison
336-66-9999	Lindsay	175 Park Ave.	Pittsfield
019-28-3746	Smith	72 North St.	Rye
(a) The <i>customer</i> table			

П	, 1	1 1
	account-number	balance
	A-101	500
	A-215	700
	A-102	400
	A-305	350
	A-201	900
	A-217	750
	A-222	700
(b) The account table		

customer-id	account-number	
192-83-7465	A-101	
192-83-7465	A-201	
019-28-3746	A-215	
677-89-9011	A-102	
182-73-6091	A-305	
321-12-3123	A-217	
336-66-9999	A-222	
019-28-3746	A-201	
(c) The <i>depositor</i> table		

Data Definition Language (DDL)

- Specification notation for defining the database schema تعریف قاعدة البیانات
 - ► E.g.

- DDL compiler generates a set of tables stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - database schema
 - ▶ Data *storage* and definition language
 - language in which the storage structure and access methods used by the database system are specified
 - Usually an extension of the data definition language

Data Manipulation Language (DML)

- Language for accessing and manipulating the data organized by the appropriate data model
 - ▶ DML also known as query language
- Two classes of languages
 - Procedural user specifies what data is required and how to get those data
 - Nonprocedural user specifies what data is required without specifying how to get those data
- SQL is the most widely used query language

SQL

- ► SQL: widely used non-procedural language
 - ► E.g. find the name of the customer with customer-id 192-83-7465 select customer.customer-name from customer where customer.customer-id = '192-83-7465'
 - ▶ E.g. find the balances of all accounts held by the customer with customer-id 192-83-7465

- Application programs generally access databases through one of
 - ► Language extensions to allow embedded SQL
 - Application program interface (e.g. ODBC/JDBC) which allow SQL queries to be sent to a database

Relational Model Concepts

- A relational database consists of a collection of tables, each of witch is assigned a unique name
- Represents data as a collection of relations
- Table of values
 - Row
 - ▶ Represents a collection of related data values
 - ► Fact that typically corresponds to a real-world entity or relationship
 - ► Tuple
 - ► Table name and column names
 - ▶ Interpret the meaning of the values in each row *attribute*.

Relational instance refers to a specific instance of a relation

Relational Model Concepts (cont'd.)

Figure 3.1
The attributes and tuples of a relation STUDENT.

Attribute Types

- ► The set of allowed values for each attribute is called the domain of the attribute.
- Attribute values are required to be atomic قيمة واحدة; that is indivisible(بقيمة وحيدة)
- ▶ The null value means value is unknown or does not exit.
- The special value null is a member of every domain.
- ▶ The null value cause complications in in the definition of many operations.

We require that, for all relations r, the domains of all attributes of r be atomic. A domain is atomic if elements of the domain are considered to be indivisible Units.

Relation schema and Instance

- Relation schema R
 - ightharpoonup Denoted by $R=(A_1, A_2, ..., A_n)$
 - ▶ Made up of a relation name R and a list of attributes, $A_1, A_2, ..., A_n$
- Example : Student = (ID , name , dept_name , Avg)
- ightharpoonup Attribute A_i
 - \triangleright Name of a role played by some domain D in the relation schema R
 - ▶ The current values (relation instance) of a relation are specified by a table
 - An element t of R is a tuple, represented by a row in a table

Database

- A database consists of multiple relations.
- Information about an organization is broken into parts

instructor

Student

Advisor

Bad design univ (instructor-ld, name, dept_name, student_id,....)

Result in

- repetition of information (e.g., two students have the same instructor)
- the need for null values (e.g., represent a student with no advisor)
- Normalization theory deals with how to design "good" relation schemas.

Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: instructor relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Entity Sets

- A database can be modeled as:
 - ▶ a collection of entities,
 - relationship among entities.
- An entity is an object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- Entities have attributes
 - Example: people have *names* and *addresses*
- An *entity set* is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays, set of students have the ages between 18-21,...

Entity Sets instructor and student

instructor_ID instructor_name

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

student-ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

Relationship Sets

A relationship is an association among several entities

Example:

```
44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>) student entity
```

relationship set instructor entity

A *relationship* set is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, ..., e_n) \mid e_1 \in E_1, e_2 \in E_2, ..., e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

Example:

$$(44553, 22222) \in advisor$$

Relationship Set advisor

Relationship Sets (Cont.)

An attribute can also be property of a relationship set.

For instance, the advisor relationship set between entity sets instructor and student may have the attribute date which tracks when the student started being associated with the advisor

Keys

- A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- A candidate key of an entity set is a minimal super key
 - Customer-id is candidate key of customer
 - account-number is candidate key of account
- Although several candidate keys may exist, one of the candidate keys is selected to be the *primary key*.
- ► The primary key should be chosen such that its attribute values are never, or very rarely, changed.

Keys

A relation, say r1, may include the primary key of another key of another relation, say r2, This attribute is called a foreign key from r1, referening r2. the relation r1 is also called the referencing relation of the foreign key dependency, and r2 is called the referenced relation of the foreign key.

Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
 - ▶ (*s-id*, *i-id*) is the super key of *advisor*
 - NOTE: this means a pair of entity sets can have at most one relationship in a particular relationship set.
 - ► E.g. if we wish to track multiple meeting dates between a student and his advisor, we cannot assume a relationship for each meeting. We can use a multivalued attribute though
- Must consider the mapping cardinality of the relationship set when deciding the what are the candidate keys
- ▶ Need to consider semantics of relationship set in selecting the *primary key* in case of more than one candidate key

COMPANY relation database schema

Attributes

An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.

Example:

```
instructor = (ID, name, Street, city, salary)
course = (course_id, title, credits)
```

- Domain the set of permitted values for each attribute
- Attribute types:
 - Simple and composite attributes.
 - Single-valued and multi-valued attributes
 - ► E.g. multivalued attribute: *phone-numbers*
 - Derived attributes
 - ► Can be computed from other attributes
 - ▶ E.g. *age*, given date of birth

Composite Attributes

Mapping Cardinalities

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping Cardinalities

One to one

One to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Mapping Cardinalities

Many to one

Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

E-R Diagram

Rectangles represent entity sets.

Diamonds represent relationship sets.

Attributes listed inside entity rectangle

Underline indicates primary key attributes

Relationship Sets with Attributes

Roles

Entity sets of a relationship need not be distinct

Each occurrence of an entity set plays a "role" in the relationship

The labels "course_id" and "prereq_id" are called roles.

Cardinality Constraints

We express cardinality constraints by drawing either a directed line (\rightarrow) , signifying "one," or an undirected line (-), signifying "many," between the relationship set and the entity set.

One - to - one Relationship

one-to-one relationship between an instructor and a student

- an instructor is associated with at most one student via advisor
- and a student is associated with at most one instructor via advisor

One - to - Many Relationship

one-to-many relationship between an instructor and a student

- an instructor is associated with several (including 0) students via advisor
- a student is associated with at most one instructor via advisor,

Many - to - one Relationship

In a many-to-one relationship between an instructor and a student,

- an instructor is associated with at most one student via advisor,
- and a student is associated with several (including 0) instructors via advisor

Many - to - Many Relationship

An instructor is associated with several (possibly 0) students via advisor

A student is associated with several (possibly 0) instructors via advisor

Thanks for your kind attention

Mohammed khillah