Physical mechanics

David Caro 09-01-2024

1 Cinematics

Having:

- \mathcal{R} as rotation matrix of S' seen from S
- \mathbf{R} the relative position of S' seen from

the space coordinates of a point are:

$$r = \mathcal{R}^T r' + \mathbf{R}$$

 $r' = \mathcal{R}(r - \mathbf{R})$

We can then define the antisymmetric angular momentum matrices as:

$$\hat{w} = \dot{\mathcal{R}}^T \mathcal{R} = \begin{pmatrix} 0 & -w_z & w_y \\ w_z & 0 & -w_x \\ -w_y & w_x & 0 \end{pmatrix} \qquad \qquad \begin{aligned} \hat{w}' q &= w' \times q \\ \hat{w} &= \mathcal{R}^T \hat{w}' \mathcal{R} \\ \hat{w}' &= \mathcal{R} \dot{\mathcal{R}}^T = \begin{pmatrix} 0 & -w_z' & w_y' \\ w_z' & 0 & -w_x' \\ -w_y' & w_x' & 0 \end{pmatrix} \qquad \begin{aligned} &\hat{w}' q &= w' \times q \\ \hat{w}' &= \mathcal{R}' \hat{w}' \mathcal{R} \\ \hat{w}' &= \mathcal{R} \hat{w} \end{aligned}$$

And the a can then define the dual vectors too:

$$w = (w_x, w_y, w_z)$$
$$w' = (w'_x, w'_y, w'_z)$$

We get the relationships:

$$\hat{w}q = w \times q$$

$$\hat{w}'q = w' \times q$$

$$\hat{w} = \mathcal{R}^T \hat{w}' \mathcal{R}$$

$$\hat{w}' = \mathcal{R} \hat{w}$$

Defining V as the speed of S' as seen from S, we have the velocities (deriving the position one):

$$v = \mathcal{R}^{T}(v' + w' \times r') + \mathbf{V}$$
$$v' = \mathcal{R}[v - \mathbf{V} - w \times (r - \mathbf{R})]$$

Then with α as the angular acceleration, A as the acceleration of S' as seen by S, and

deriving this once more we get the acceleration:

$$\begin{split} a' &= -\alpha' \times r'; \text{acimutal} \\ &-2w' \times v'; \text{coriolis} \\ &-w' \times (w' \times r'); \text{centrifugal} \\ &+ \mathcal{R}a \\ &- \mathcal{R}\mathbf{A}; \text{drag} \end{split}$$

$$a = \mathbf{A} + \mathcal{R}^{T}[a'$$

$$+\alpha' \times r'$$

$$+1w' \times v'$$

$$+w' \times (w' \times r')]$$