Data Structures Chapter 7: Graph

- 1. Introduction
 - Terminology, Representation, ADT
- 2. Basic Operations
 - DFS, CC, BFS, Processing
- 3. Digraph and Applications
- 4. Minimum Spanning Tree(MST)

Directed graph

Digraph: Set of vertices connected pairwise by directed edges.

Directed graph - ADT

• **Digraph:** Set of vertices connected pairwise by directed edges.

	Directed Graph	
	<pre>digraph(int V)</pre>	create an empty digraph with V vertices
void	<pre>addEdge(int v, int w)</pre>	add a directed edge v → w
vector <int></int>	adj(int v)	vertices pointing from v
int	V()	member of vertices
int	E()	member of edges
digraph	reverse()	reverse of the digraph
string	toString()	string representation

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

Adjacency-lists graph representation in Java

```
public class Graph {
  private final int V;
                                                      adjacency lists
  private Bag<Integer>[] adj;
                                                      (using Bag data type)
  public Graph(int V) {
    this.V = V;
    adj = (Bag<Integer>[]) new Bag[V];
                                                      create empty graph
    for (int v = 0; v < V; v++)
                                                      with V vertices
      adj[v] = new Bag<Integer>();
  public void addEdge(int v, int w) {
                                                      add edge v-w
    adj[v].add(w);
                                                      (parallel edges and
    adj[w].add(v);
                                                      self-loops allowed)
  public Iterable<Integer> adj(int v) {
                                                      iterator for vertices
    return adj[v];
                                                      adjacent to v
```

Adjacency-lists digraph representation in Java

```
public class Digraph {
  private final int V;
                                                     adjacency lists
  private Bag<Integer>[] adj;
                                                      (using Bag data type)
  public Digraph(int V) {
    this.V = V;
    adj = (Bag<Integer>[]) new Bag[V];
                                                     create empty graph
    for (int v = 0; v < V; v++)
                                                     with V vertices
      adj[v] = new Bag<Integer>();
  public void addEdge(int v, int w) {
                                                     add edge v -> w
    adj[v].add(w);
  public Iterable<Integer> adj(int v) {
                                                     iterator for vertices
    return adj[v];
                                                     pointing from v
```

Digraph representations

In practice: Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

representation	space	add edge	edge between v and w?	iterate over vertices adjacent to v?
list of edges	Е	1	Е	E
adjacency matrix	V^2	1	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

Same methods as for undirected graphs:

- Every undirected graph is digraph (with edges in both directions)
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

- Mark v as visited.
- Recursively visit all unmarked vertices w adjacent to v.

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

a directed graph

Digraph Quiz

To visit a vertex v:

Suppose that a digraph G is represented using the adjacency-lists representation.
 What is the order of growth of the running time to find all vertices that point to a given vertex v or indegree of v?

___ indgree(v)
___ outdegree(v)
__ V
__ E
__ V * E
__ V + E

Digraph Quiz

To visit a vertex v:

Suppose that a digraph G is represented using the adjacency-lists representation.
 What is the order of growth of the running time to find all vertices that point to a given vertex v or indegree of v?

___ indgree(v)
___ outdegree(v)
___ V
__ E
__ V * E
_ V + F

Solution: You must scan through each of the V adjacency lists and each of the E edges. If this were a common operation in digraph-processing problems, you could associate two adjacency lists with each vertex—one containing all of the vertices pointing from v (as usual) and one containing all of the vertices pointing to v. (V + E)

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

a directed graph

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

	V	marked[]	parent[v]	
	0	Т	-	
	1	F	-	
ı	2	F	-	
	3	F	_	
	1 2 3 4 5	F	-	
ì	5	F	_	
	6	F	_	
	7	F	-	
	7 8 9	F	-	
	9	F	-	
	10) F	_	
	11	L F	_	
	12		_	
				ı

visit 0: check 5 and check 1

V	marked[]	parent[v]
0	Т	-
1	F	-
2	F	-
3	F	-
4 5	F	-
5	Т	0
6	F	-
7	F	-
8	F	-
9	F	-
10) F	-
11	L F	-
12	2 F	-

visit 5: check 4

9 4 8 0 $6 \rightarrow 9$ 11 10 11

 v marked[]
 parent[v]

 0
 T

 1
 F

 2
 F

 3
 F

 4
 T
 5

 5
 T
 0

 6
 F

 7
 F

 8
 F

 9
 F

 10
 F

 11
 F

 12
 F

visit 4: check 3 and check 2

V	marked[]	parent[v]
0	Т	_
1	F	_
2	Т	3
3	Т	4
4 5	Т	5
	Т	0
6	F	-
7	F	-
8	F	-
9	F	-
10) F	-
11	L F	-
12	? F	-

V	marked[]	parent[v]
0	Т	-
1	F	-
1 2	Т	3
3	Т	4
4	Т	5
5	Т	0
6	F	-
7	F	-
8	F	-
9	F	-
10		-
11	. F	-
12	? F	-

Depth-first search (in undirected graph) in Java

```
public class DepthFirstSearch {
                                                  true if path to s
  private boolean[] marked;
  public DepthFirstSearch(Graph G, int s)
                                                   constructor marks
    marked = new Boolean[G.V()];
                                                   vertices connected to s
    dfs(G, s);
  private void dfs(Graph G, int v)
                                                  recursive DFS does the work
    marked[v] = true;
    for (int w : G.adj(v))
      if (!marked[w]) dfs(G, w);
  public Boolean visited(int v)
                                                   client can ask whether any
  { return marked[v];
                                                   vertex connected to s
```

Depth-first search (in directed graph) in Java

Code for directed graphs identical to undirected one. [Substitute Digraph for Graph.]

```
public class DirectedDFS {
  private boolean[] marked;
                                                   true if path to s
  public DirectedDFS(Digraph G, int s)
                                                   constructor marks
    marked = new Boolean[G.V()];
                                                   vertices connected to s
    dfs(G, s);
  private void dfs(DiGraph G, int v)
                                                   recursive DFS does the work
    marked[v] = true;
    for (int w : G.adj(v))
      if (!marked[w]) dfs(G, w);
  public Boolean visited(int v)
     return marked[v];
                                                   client can ask whether any
                                                   vertex is reachable from s
```

Reachability application: mark-sweep garbage collector

Every data structure (in java) is a digraph.

- Vertex = object.
- Edge = reference.
- Roots: Objects known to be directly accessible by program (e.g., stack).
- **Reachable objects**: Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Reachability application: mark-sweep garbage collector

- Mark-sweep algorithm (McCathy, 1960)
- 1. Mark data objects in a program that cannot be accessed in the future.
- 2. Sweep: if object is unmarked, it is garbage (so add to free list).
- Memory cost: Uses 1 extra mark bit per object (plus DFS stack).

Repeat until queue is empty.

- Remove vertex v from queue.
- Add to queue all unmarked vertices pointing from v and mark them.

Challenge: build adjacency lists – Job done

Graph g:

Repeat until queue is empty.

- Remove vertex v from queue.
- Add to queue all unmarked vertices pointing from v and mark them.

Graph g:

Challenge: build adjacency lists – Job done

dequeue 0: check 2 and check 1

dequeue 0: check 2 and check 1

0 done

dequeue 2

dequeue 2 : check 4

dequeue 2 : check 4

dequeue 1

dequeue 1 : check 2

dequeue 4

dequeue 4

dequeue 4: check 3

dequeue 3

dequeue 3: check 5 and check 2

dequeue 3: check 5 and check 2

dequeue 3: check 5 and check 2

dequeue 5:

dequeue 5 : check 0

queue v parent[] distTo[]

0	-	0
1	0	1
2	0	1
3	4	3
4	2	2
5	3	4
		I

Multiple-source shortest paths

 Multiple-source shortest paths: Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex: $S = \{7, 10\}, D = \{4, 5, 12\}$

- Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
- Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
- Shortest path to 12 is $10 \rightarrow 12$.

- Q: How to implement multi-source shortest paths algorithm?
- A: Use BFS, but initialize by enqueuing all source vertices.

Data Structures Chapter 7: Graph

- 1. Introduction
 - Terminology, Representation, ADT
- 2. Basic Operations
 - DFS, CC, BFS, Processing
- 3. Digraph and Applications
- 4. Minimum Spanning Tree(MST)