Bivariate Analysis

	1000
	C
David L. Katz,	C
Dorothea Wilc Joann G. Elmo	C
Sean C Lucan	C
Fuidousiala	0
Epidemiology,	O
Biostatistics,	
Preventive	O

Medicine, and

Health, 2013

	Variables to Be Tested				
	First Variable	Second Variable	Examples	Appropriate Test or Tests of Significance	
Ī	Continuous (C)	Continuous (C)	Age (C) and systolic blood pressure (C)	Pearson correlation coefficient (r); linear regression	
	Continuous (C)	Ordinal (O)	Age (C) and satisfaction (O)*	Group the continuous variable and calculate Spearman correlation coefficient (rho)†	
	Continuous (C)	Dichotomous unpaired (DU)	Systolic blood pressure (C) and gender (DU)	Student's t-test	
	Continuous (C)	Dichotomous paired (DP)	Difference in systolic blood pressure (C) before vs. after treatment (DP)	Paired t-test	
	Continuous (C)	Nominal (N)	Hemoglobin level (C) and blood type (N)	ANOVA (F-test)	
	Ordinal (O)	Ordinal (O)	Correlation of care (O)* and severity of satisfaction with illness (O)	Spearman correlation coefficient (rho); Kendall correlation coefficient (tau)	
	Ordinal (O)	Dichotomous unpaired (DU)	Satisfaction (O) and gender (DU)	Mann-Whitney U test	
	Ordinal (O)	Dichotomous paired (DP)	Difference in satisfaction (O) before vs. after a program (DP)	Wilcoxon matched-pairs signed-ranks test	
	Ordinal (O)	Nominal (N)	Satisfaction (O) and ethnicity (N)	Kruskal-Wallis test	
	Dichotomous (D)	Dichotomous unpaired (DU)	Success/failure (D) in treated/untreated groups (DU)	Chi-square test; Fisher exact probability test	
	Dichotomous (D)	Dichotomous paired (DP)	Change in success/failure (D) before vs. after treatment (DP)	McNemar chi-square test	
	Dichotomous (D)	Nominal (N)	Success/failure (D) and blood type (N)	Chi-square test	
	Nominal (N)	Nominal (N)	Ethnicity (N) and blood type (N)	Chi-square test	

[&]quot;The following is an ex of One Independent Variable and One Dependent Variable)

ed, somewhat dissatisfied, and very dissatisfied. When such scales ask respondents to indicate how strongly they agree or disagree with a given statement, they are referred to as "Likert scales."

†Possibly use one-way analysis of variance (ANOVA, or F-test).

Multivariate Analysis

David L. Katz, Dorothea Wild, Joann G. Elmore, Sean C Lucan

Epidemiology, Biostatistics, Preventive Medicine, and Public Health, 2013

Characterization of	Variables to Be Analyzed		
Dependent Variable	Independent Variables*	Appropriate Procedure or Procedures	
Continuous	All are categorical.	Analysis of variance (ANOVA)	
Continuous	Some are categorical and some are continuous.	Analysis of covariance (ANCOVA)	
Continuous	All are continuous.	Multiple linear regression	
Ordinal	-	There is no formal multivariable procedure for ordinal dependent variables; treat the variables as if continuous (see above procedures), or perform log-linear analysis.	
Dichotomous	All are categorical.	Logistic regression; log-linear analysis	
Dichotomous	Some are categorical and some are continuous.	Logistic regression†	
Dichotomous	All are continuous.	Logistic regression or discriminant function analysis	
Nominal	All are categorical.	Log-linear analysis	
Nominal	Some are categorical and some are continuous.	Group the continuous variables and perform log-linear analysis.	
Nominal	All are continuous.	Discriminant function analysis; or group the continuous variables and perform log-linear analysis.	

^{*}Categorical variables include ordinal, dichotomous, and nominal variables.
†If the outcome is a time-related dichotomous variable (e.g., live/die), proportional hazards (Cox) models are best.

Table 13-1 Choice of Appropriate Procedure to Be Used in Multivariable Analysis (Analysis of One Dependent Variable and More than One Independent Variable)