Recent Progress in Jet Physics

Jesse Thaler

From the LHC to Dark Matter and Beyond, Aspen Center for Physics — March 24, 2017

Jets from the Standard Model

++ = plus gluonic radiation

++ = plus gluonic radiation

The Boosted Regime

See new results from Eva (CMS) and Francesco (ATLAS)!

Key Substructure Techniques

Grooming: e.g. ISR/UE/pileup

[Mass Drop/Filtering, Trimming, Pruning, Soft Drop, Jet Reclustering...; for pileup: Area Subtraction, Jet Cleansing, SoftKiller, PUPPI, Constituent Subtraction...]

Discrimination:

e.g. I-prong vs. N-prong

[p_T Balance, Y-splitter, Angularities, Planar Flow, N-subjettiness, Angular Structure Functions, Jet Charge, Jet Pull, Energy Correlation Functions, Dipolarity, p_TD, Zernike Coefficients, LHA, Fox-Wolfram Moments, JHU/CMSTopTagger, HEPTopTagger, Template Method, Shower Deconstruction, Subjet Counting, Wavelets, Q-Jets, Telescoping Jets, Deep Learning...]

W/Z-Tagging @ CMS

[JME-14-002, CMS-PAS-EXO-15-002]

[using Larkoski, Marzani, Soyez, JDT, 1402.2657]

[using JDT, Van Tilburg, 1011.2268, 1108.2701]

Insights from Jet Grooming

Performance meets Robustness

(Comments about the Future)

Insights from Jet Grooming

Performance meets Robustness

(Comments about the Future)

Soft Drop Declustering

Soft Drop Declustering

Soft Drop Declustering

Soft Drop Jet Mass

First NNLL + $O(\alpha_s^2)$ result for substructure in pp (!)

Grooming simplifies structure of calculation

From Aspen 2016: Grooming to Explore QCD

A "standard candle" from soft drop

$$dP_{i\to ig} \simeq \frac{2\alpha_s}{\pi} C_i \frac{d\theta}{\theta} \frac{dz}{z}$$

 \approx independent of α_s (!) \approx independent of jet energy/radius \approx same for quarks/gluons

[Larkoski, Marzani, JDT, 1502.01719; using Larkoski, JDT, 1307.1699] [Tripathee, Xue, Larkoski, Marzani, JDT, in progress; see also CMS-PAS-HIN-16-006, STAR Hard Probes 2016]

Grooming for Heavy Flavor

[Ilten, Rodd, JDT, Williams, 1702.02947]

Grooming for Onium Physics

Standard Fragmentation

Tagged-Subjet Fragmentation

[Bain, Dai, Leibovich, Makris, Mehen, 1702.05525; Ilten, Rodd, JDT, Williams, 1702.02947]

Insights from Jet Grooming

Performance meets Robustness

(Comments about the Future)

From Aspen 2016: D₂

$$D_2 = \frac{\sum_{i < j < k} p_{Ti} p_{Tj} p_{Tk} \left(R_{ij} R_{jk} R_{ki} \right)^{\beta}}{\left(\sum_{i < j} p_{Ti} p_{Tj} R_{ij}^{\beta} \right)^{3} / \left(\sum_{i} p_{Ti} \right)^{3}}$$

Derived for 2-prong W/Z tagging using EFT power counting

Used in ATLAS "R2D2" Tagger

[Larkoski, Moult, Neill, 1409.6298, 1507.03018; see also Banfi, Salam, Zanderighi, hep-ph/0407286; Jankowiak, Larkoski, 1104.1646; Larkoski, Salam, JDT, 1305.0007]

Robustness of D₂?

Background highly sensitive to mass cut

$$D_2^{\rm max} \sim \frac{p_{TJ}^2}{m_J^2}$$

Difficult to use sideband control regions

Robustness of D₂?

Background highly sensitive to mass cut

$$D_2^{\rm max} \sim \frac{p_{TJ}^2}{m_J^2}$$

Difficult to use sideband control regions

After grooming

Remarkably stable distributions

$$D_2^{\rm max} \sim {\rm const}$$

Explains ATLAS strategy of R2 (trimming) + D2 (discrimination)

[Moult, Necib, JDT, 1609.07483]

N₂: A New Angle on Energy Correlators

$$N_{2} = \frac{\sum_{i < j < k} p_{Ti} p_{Tj} p_{Tk} \min\{R_{ij}R_{jk}, R_{jk}R_{ki}, R_{ki}R_{ij}\}^{\beta}}{\left(\sum_{i < j} p_{Ti} p_{Tj} R_{ij}^{\beta}\right)^{2} / \left(\sum_{i} p_{Ti}\right)} = \frac{\sum_{i < j < k} p_{Ti} p_{Tj} R_{ij}^{\beta}}{\left(\sum_{i < j} p_{Ti} p_{Tj} R_{ij}^{\beta}\right)^{2} / \left(\sum_{i} p_{Ti}\right)}$$

Not the most obvious substructure discriminant Kind of a hybrid of D_2 and N-subjettiness (hence the name)

N2: A New Angle on Energy Correlators

Grooming/Discrimination Interplay

Analytic calculations to identify optimal use of substructure information

Insights from Jet Grooming

Performance meets Robustness

(Comments about the Future)

Opportunity: Application-Specific Jet Strategies

Opportunity: Machine Learning

From Shallow Networks...

[Lönnblad, Peterson, Rögnvaldsson, 1991]

...to "Deep" Networks

[Komiske, Metodiev, Schwartz, 1612.01551]

Continued Importance of First-Principles QCD

"Deep Learning" inspires "Deep Thinking"

Continued Importance of First-Principles QCD

Derived using EFT power counting to probe perturbative multi-point soft-gluon phase space

"Deep Learning" inspires "Deep Thinking"

Summary

Insights from Jet Grooming

Active jet manipulation to probe new structures in QCD

Performance meets Robustness

Power counting to achieve improved, robust techniques

(Comments about the Future)

Complementarity between automated and customized strategies