Human Immunodeficiency Virus

And targets for its treatment

By: Matt Doherty

HIV Background

Lentivirus, member of retroviruses

 Genome is single stranded RNA that converts to double stranded DNA by reverse transcription

 Responsible for Acquired Immunodeficiency Syndrome (AIDS)

Progression of Illness

Structure

Replication Cycle

- Attaches to the target cell by binding to the CD4 receptor
- leads to membrane fusion and virus entry
- reverse transcription turns viral RNA into proviral DNA
- Provirus integrates into host cells and begins making new virus RNA/proteins/ genome

 Viral genomic mRNA is transported to the membrane where it is packaged with other viral proteins and is released

 Protease/Maturase converts virus into infectious form.

Treating HIV

- Prevention/vaccination still the best option, but no vaccine yet...
- Drugs used to treat HIV target key steps in the replication cycle
- Primary treatment is Highly Active Antiretroviral Therapy (HAART)
 - Uses 3+ drugs from 2+ antiretroviral drug classes

Antriretrovirals Classes

- Nucleos(t)ide Reverse Transcriptase Inhibitors (N(t)RTIs)
- Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs)
- Protease/Maturation
 Inhibitors
- Integrase Inhibitors
- Entry Inhibitors

 Competitive inhibitors that act as chain terminators

- Target the functions of the RT enzyme:
 - Recognition and binding
 - Formation of a phosphodiester bond
 - Cause chain termination by altering the 3' hydroxyl group.
 - No 3' hydroxyl = no elongation

Azidothymidine (AZT)

NNRTIs

- Allosteric noncompetitive inhibitors that bind noncovalently away from the active site
- Stop RT activity by somehow altering the active site
- Example: Efavirenz

Protease and Integrase Inhibitors

Protease Inhibitors

- Integrase Inhibitors
 - Prevent integration of provirus into host genome
- Example: Raltegravir

Ex: Ritonavir

Entry Inhibitors

- Block any of the stages in entry
 - Attachment

- Co-receptor binding
 - Ex: Maraviroc

- Membrane fusion
 - Ex: Enfuvirtide

Figure 1: Mechanism of HIV entry

On CD4 binding (binding site for CD4 is shown in yellow), gp120 undergoes conformational changes. CD4-induced epitopes can then bind to chemokine receptors. Thereafter, gp41 is released into a fusogenic conformation and its N-terminal (green) and C-terminal (red) helices form a halipin structure, leading to the approximation of viral and cellular membranes, which results in membrane fusion.

My Research on HIV

- New potential integrase inhibitor developed on campus assayed for anti-HIV activity by time of addition assay
 - Cells infected and treated with drug at different times
- One drug* shown to act early, ie. under 2 hours post infection

Figure 1. L-Chicoric acid and potent disulfone inhibitors of HIV-IN in pilot stu

Direct Inactivation

Wide Range of Activity

Virus type	Strain	Clade	Co- receptor Usage	Mean EC ₅₀ (nM) ± SEM
Lab-adapted	Ba-L	В	R5	850 ± 90
HIV-1	HXBc2	В	X4	530 ± 60
	NL4-3	В	X4	330 ± 20
	89.6	В	X4R5	410 ± 40
Primary Strain	92RW016	Α	R5	700 ± 100
HIV-1	SF162	В	R5	400 ± 100
	92HT593	В	X4R5	340 ± 20
	92TH014	В	R5	190 ± 20
	97ZA009	С	R5	2300 + 400
	98TZ013	С	R5	190 ± 30
	93TH078	E	R5	500 ± 20
SIV	mac239	_	R5	1200 ± 200

Proof of Concept?

Prior resistance studies indicated that DCM205 might bind at the base of the V3 loop

TOA studies consistent with entry inhibition

What Happened Next?

- Funding ran out
- Hoped to develop as a microbicide
 - Some already in development

Questions?