CROSS COMPILATION FOR CHANNEL CODING TECHNIQUES

6th DECEMBER 2019

BY:

SHIVANI TAMBATKAR AMIRAJ NIGAM

CONTENT

- INTRODUCTION
- OBJECTIVE
- CONTRIBUTION
- RESULTS
- CONCLUSION

INTRODUCTION

TYPES OF CHANNEL CODING TECHNIQUES

TURBO ENCODER: RSC Encoder + Interleaver

Interleaver is used to make the outputs of the two encoders uncorrelated from each other to increase the error correction performance

Polar Encoder: Information block conditioning + Polar encoder kernel + Encoded block conditioning

OBJECTIVE

TO COMPARE CHANNEL CODING TECHNIQUES ON DIFFERENT PROCESSOR PLATFORMS

CONTRIBUTION

OS: Windows 10

PROGRAMMING LANGUAGE: C++

TOOLS: Git, Microsoft Visual Studio, Cmake Anaconda, PyBER GUI

AFF3CT SIMULATOR

Turbo Code Polar Code OUTPUT: (For different code rates)

BER v/s Eb/No (dB)

FER v/s Eb/No (dB)

Environment used for performing Cross Compilation for Turbo Code and Polar codes:

Host Computer: CPU

OS: Ubuntu 18.04 LTS

Programming

Language: C (Turbo),

C++(Polar)

INPUT: Information bits ranging from 8 bits to 4096

Target Computer: x86

OS: Ubuntu 15.04

Emulator: QEMU/KVM

Programming

Language: C (Turbo),

C++(Polar)

INPUT: Information bits ranging from 8 bits to 4096

Parameters chosen to compare performance:

Code Execution Time

CPU Cycle count

Instructions per cycle

RESULTS

Turbo code operate at low SNR and have poor performance at low BER

Code Rate: 0.33 N= 5368	
k= 1784	
Code Rate: 0.49 N= 4108	
k= 2048	
Code Rate: 0.34 N= 3084 k= 1024	
Code Rate: 0.33	
N= 18444	
k= 6144	

Polar Code works better for higher information bits.

Code Rate: 0.25
N= 160
k= 40

Code Rate: 0.84
N= 2048
k= 1723

Code Rate: 0.516
N= 2048
k= 1024

Code Rate: 0.833
N= 32768
k= 27307

Comparison show that Performance of Turbo codes is better on x86 processor.

x86 Processor

k	EXECUTION TIME (in secs)	CPU CYCLES (in million)	IPC
8	2.116	5	1.7
64	2.129	5	1.72
128	2.360	7	1.73
512	1.991	4	1.75
1024	1.237	4	1.8
4096	2.464	0.6	1.79

HOST COMPUTER

k	EXECUTION TIME (in secs)	CPU CYCLES (in million)	IPC
8	2.821	7	1.23
64	12.623	7	1.24
128	10.152	10	0.93
512	16.8117	9	0.77
1024	11.497	8	1.17
4096	10.875	1	0.82

Comparison show that Performance of Polar codes is better on Host computer processor.

x86 Processor

K	EXECUTION TIME	CPU CYCLES (in billion)	IPC
8	4min 13.892secs	610	1.45
64	4min 15.401secs	612	1.43
128	4min 15.765secs	615	1.42
256	4min 17.604secs	617	1.42
512	4min 17.612secs	618	1.41
1024	4min 16.270secs	620	1.40
4096	4min 17.193secs	622	1.39

HOST COMPUTER

k	EXECUTION TIME	CPU CYCLES (in billion)	IPC
8	3min 40.271secs	588	1.85
64	3min 41.217secs	590	1.85
128	3min 39.903secs	588	1.85
256	3min 42.092secs	591	1.84
512	3min 42.271secs	592	1.84
1024	3min 45.993secs	599	1.82
4096	3min 43.938secs	594	1.83

CONCLUSION

 Performance of Polar codes is better on Host computer processor.

Performance of Turbo codes is better on x86 processor

THANK YOU