

9BA Storage Ring (SR)

new

prediction; cross-check

*The impedance model will keep updating as rest of the vacuum components are included.

The Broad-Band Impedance Budget of the Accumulator Ring in the ALS-U Project*

<u>Dan Wang^{1†}</u>, Stefano De Santis¹, Derun Li¹, Tianhuan Luo¹, Marco Venturini¹, Karl Bane² ¹Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA ²SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA

Motivation & Method Update of the Advanced Light Source (ALS-U) to 9BA structure, Provide a soft x-ray source 100–1,000 times brighter. • Short range Wakefield / broad-band impedance is caused by resistive wall + geometric elements, and it's one of the main reason of collective beam instability BB impedance study @ accumulator ring: an essential part of accelerator design. Optimize for low impedance Impedance budget Impedance modeling Beam dynamics Vacuum design Short range wakefield Elegant **Matlab** 3D CST particle studio* **Excel** Broad-band Impedance Macro-particle simul. 3BA Accumulator Ring (AR) CAD model \rightarrow W(s) & Z(w) Data post-processing List; track Transfer line **VPF** solver —X (Re) Numerical solver **Analytical** Analytical

Impedance modeling

BB impedance budget

Longitudinal budget table for nominal 5mm bunch length

		Sum up			
Component	Quantity	Loss factor V/pC	Re(Z/n) m Ω	lm(Z/n) mΩ	
Bellow	84	8.148	82.622	21.000	
Cavity	2	1.960	19.859	-14.193	
Resistive wall	1	1.600	16.232	24.012	
Transition SA	12	0.492	4.959	25.311	
LFB kicker	1	0.490	4.969	-3.383	
Transition_AD	36	0.144	0.660	31.369	
BPM	72	0.101	1.022	2.872	
Cavity transition	2	0.176	1.796	3.946	
Flange	240	0.082	3.129	28.414	
LFB transition	1	0.075	0.765	1.620	
Arc pump screen	24	0.014	0.142	3.104	
Pump screen	24	0.014	0.139	2.340	
Stripline kicker	1	0.010	0.087	~ 0.000	
Inline pump	48	0.006	0.059	1.545	
Ring Total		13.3	136.4	128.0	

Component	Quantity	Sum up				
		(β*Z _{eff})x kΩ	(β*Z _{eff})y kΩ	Tune shift x *10 ⁻⁴	Tune shift y *10 ⁻⁴	
Transitions AD	36	8.74	348.70	-0.068	-2.699	
RW_Arc section	1	15.34	28.42	-0.119	-0.220	
RW_Dipole chamber	1	1.49	27.74	-0.012	-0.215	
Transitions SA	12	58.53	22.83	-0.453	-0.177	
Flange	240	20.66	22.40	-0.160	-0.173	
Pump screen	48	1.33	17.17	-0.010	-0.133	
BPM	72	6.88	10.80	-0.053	-0.084	
Inline pump	48	13.31	5.62	-0.103	-0.043	
Bellow*	84	10.37	4.49	-0.080	-0.035	
Cavity	2	13.83	4.61	-0.107	-0.036	
Cavity transition	2	4.61	1.54	-0.036	-0.012	
LFB kicker	1	4.52	1.51	-0.035	-0.012	
RW_Straight section	1	3.99		-0.031	-0.010	
LFB transition	1	2.04	0.68	-0.016	-0.005	
Stripline kicker	1	0.51	0.17	-0.004	-0.001	
Ring total		166.18	498.00	-1.29	-3.85	

• Transverse budget table for nominal 5mm bunch length & impedance spectrum

Instability threshold**

Instability study

 Longitudinal instability study: ELEGANT simulation shows the onset of microwave instability at bunch charge of ~11 nC>>1.15nC (designed

In summary, based on current impedance model, simulation shows that there is a ~10-fold margin between required single bunch charge and the longitudinal / transverse threshold.