Question 1. Calc	rulation	
Given the following	ng time series y_t .	
t	y_t	
1	1	
2	3	
3	5	
4	8	
5	12	
a. Calculate the	e exponential smoothing series with $w=.2$	
b. Calculate the double exponential smoothing series with $w=.2$		
b. carcalate the	ω double exponential smoothing series with $\omega = .2$	

a. Calculate the exponential smoothing series with w=.2

b. Calculate the double exponential smoothing series with w=.2

		,	Similarly
4,	5+	ς ₁ (2)	
			$S_{1}^{(i)} \stackrel{?}{=} S_{1}^{(i)} = 1$
	l	1	
3	2.6	2.28	$S_{t}^{(i)} = (1-w)S_{t}^{(i)} + wS_{t-1}^{(i)}$
5	4,52	4072	7 7 7
8		6.6576	$S_{7}^{(2)} = (12).S_{2}^{(1)} + .2.S_{1}^{(2)}$
12		16,16016	
			= 8 +26 + 2 × .
	1	1	= 7.28

Question 2. Forecasting Linear Trend Time Series

We assume the series in question 1 has linear trend. Use double exponential smoothing to estimate the linear trend (slope) of the time series. Use the estimated linear trend to predict the next value (y_8)

Estimate the trend: (stope)

$$b_1 = \frac{1 - w}{w} (s_T^{(1)} - s_T^{(2)}) = \frac{1 - .2}{.2} \left(\underbrace{5^{(1)}}_{5} - \underbrace{5^{(2)}}_{5} \right)$$

$$\hat{q}_8 = \hat{q}_{5+3} = \hat{s}_5^{(2)} + \hat{s}_{1}.3$$