The Feed Forward Neural Network library

Francesco Calcavecchia

June 19, 2018

FFNN (Feed Forward Neural Network) is a C++ library which allows the implementation of a feed forward neural network with few simple calls. By itself it does not allow for training, but it can be easily combined with the NoisyFunMin library (https://github.com/francesco086/NoisyFunMin) to do so. The library currently support the evaluation of the NN value, its first and second derivatives in respect to the input, and the first derivative in respect to the variational parameters within the FFNN.

The code has been developed using the standard C++11.

In the following we will present the classes made available by the library. At the beginning we will report the necessary #include call and the prototype of the class. The comment TO DO indicates that the method needs to be implemented (as in the case of a pure virtual class).

1 FeedForwardNeuralNetwork

```
int getNBeta();
double getBeta(const int &ib);
void setBeta(const int &ib, const double &beta);
// Set the structure of the FFNN
void pushHiddenLayer(const int &size);
void popHiddenLayer();
void setLayerSize(const int &li, const int &size);
void setGlobalActivationFunctions(
      ActivationFunctionInterface * actf);
void setLayerActivationFunction(const int &li,
      ActivationFunctionInterface * actf);
// Set the computations required
void addFirstDerivativeSubstrate();
void addSecondDerivativeSubstrate();
void addVariationalFirstDerivativeSubstrate();
void addCrossFirstDerivativeSubstrate();
void addCrossSecondDerivativeSubstrate();
// Connect the FFNN,
void connectFFNN();
void disconnectFFNN();
// Set the input
void setInput(const int &n, const double * in);
// Feed Forward propagate the input signal
void FFPropagate();
// Get the ouput after the FFNN Propagation
double getOutput(const int &i);
double getFirstDerivative(const int &i,
                          const int &i1d);
double getSecondDerivative(const int &i,
                           const int &i2d);
double getVariationalFirstDerivative(const int &i,
                                      const int &iv1d);
double getCrossFirstDerivative(const int &i,
                               const int &i1d,
                               const int &iv1d);
double getCrossFirstDerivative(const int &i,
                               const int &i2d,
                               const int &iv1d);
```

```
// Store the FFNN structure on a file
void storeOnFile(const char * filename);
};
```

A NoisyFunction implements a function $f: \mathbb{R}^n \to \mathbb{R} \times \mathbb{R}$ which takes a multidimensional vector as input, and returns a scalar value with an associated error bar.

Fig. 1 illustrates the structure of a Feed Forward Neural Network (FFNN). A FFNN has always at least one hidden layer, an input layer, and an output layer. Each layer is made of at least one unit (in the figure, the empty circles containing a label) plus an offset unit (in the figure, the filled circles). The number of units in a layer (including the offset unit) is called layer size. Each unit contains a value, labeled with the symbol u_i^l , where l is the layer index and i the unit index. The units with index i=0 are not reported in the figure, but represent the offset units. The units are connected through a net of connections, parametrised by a value $\beta_n^{l,p}$, where l is the index of the layer where the connections are ending, p refers to the index of the origin-unit, and the index n to the index of the destination-unit.

Figure 1: Graphical representation of a Feed Forward Neural Network (FFNN). For a sake of clearness, only some connections are displayed.

Despite the complex tasks that a FFNN can be used for, the math of a FFNN is extremely simple. A FFNN can be interpreted as a function $f_H: \mathbb{R}^N \to \mathbb{R}^M$, where N is the size of the input layer (i.e. its number of

units, without counting the offset unit), and M the size of the output layer. The label H represents the number of hidden layers of the FFNN. Then, once that all the parameters β are set, the FFNN output can be computed with the recursive formula:

$$u_i^l = \mathbf{a}_f(u_k^{l-1}\beta_i^{l,k}) \tag{1}$$

where $a_f: \mathbb{R} \to \mathbb{R}$ is a so-called *activation function* and we have made use of the Einstein notation, for which repeated symbols on different levels imply a summation, e.g. $x_i^j y^i = \sum_i x_i^j y^i$. The activation function is required to account for non-linear effects. The FFNN library provides several well-known activation functions by default, but the user has the possibility to define and use its own, even though its storage on a file it is not supported (explained later). These available activation functions are:

- 1. the logistic function: $\sigma_{lgs}(x) \equiv \frac{1}{1+e^{-x}}$ The current default for hidden and output units.
- 2. the tansig function: $\sigma_{\text{tans}}(x) \equiv \frac{2}{1+e^{-2x}} 1$ Faster approximation to the regular tanh. Similar to logistic function, but with output in [-1,1].
- 3. the gaussian: $\sigma_{\rm gss}(x) \equiv e^{-x^2}$ Unlike normal activation functions it is symmetric around origin and not monotonic. Still there are use cases for it.
- 4. the sine function: $\sigma_{\sin}(x) \equiv \sin(x)$ Periodic activation function for special use cases.
- 5. the *identity*: $\sigma_{id}(x) \equiv x$ This function is linear and therefore should not be used for (all) hidden units.
- 6. the $PReLU^1$ function: $\sigma_{ReLU}(x) \equiv \begin{cases} x & \text{if } x > 0 \\ \alpha x & \text{if } x <= 0 \end{cases}$

The fixed hyper-parameter α defaults to 0. Due to their efficiency and because their gradient doesn't vanish, (Parametric) Rectified Linear Units are widely used in deep neural networks. However, the function is not differentiable at x=0 and has flat derivatives elsewhere.

7. the
$$SELU^2$$
 function: $\sigma_{SELU}(x) \equiv \lambda \begin{cases} x & \text{if } x > 0 \\ \alpha e^x - \alpha & \text{if } x < = 0 \end{cases}$

The Scaled Exponential Units (with two fixed hyper-parameters α and λ) solve some problems of ReLUs and can provide a self-normalizing network. But still they are not differentiable at x=0.

¹arXiv:1502.01852

 $^{^{2}}$ arXiv:1706.02515

The use of the FFNN library should be organised in four major steps:

- 1. generate the geometry of the FFNN;
- 2. connect the FFNN. This step will generate all the variational parameters β ;
- 3. add substrates, required for computing the derivatives, if necessary;
- 4. set the input and propagate it through the FFNN in order to get the output.

Now that the notation of the FFNN has been introduced, and we have briefly seen its structure and math, let us see the methods of this class:

- FeedForwardNeuralNetwork: There are two possible constructors. The first one takes 3 int, which represents the size of the input, hidden (only one), and output layers. The user can change its shape later on. The values of β will be set to some random values. The second constructor takes the path to a file where a FFNN has been stored;
- getNHiddenLayers: Return the number of hidden layers H;
- getNLayers: Return the total number of layers, i.e. H + 2;
- getLayerSize: Return the size of the layer li. Remember that li = 0 is reserved for the input layer and li = H + 1 for the output layer;
- getLayerActivationFunction: Return a pointer to the activation function used to obtain the layer li. In the next section we will present the class ActivationFunctionInterface;
- getNBeta: Return the total number of β ;
- getBeta: Return the value of the $\beta_n^{l,p}$ corresponding to the ib:

$$\mathtt{ib} = \mathtt{p} + (\mathtt{n} - 1)\,\mathtt{getLayerSize}(\mathtt{l} - 1) + \sum_{i=1}^{\mathtt{l} - 1}\,\mathtt{getLayerSize}(i)\,\mathtt{getLayerSize}(i + 1)$$

- setBeta: Set the value of a beta;
- pushHiddenLayer: Add an hidden layer of size size between the last hidden layer and the output layer. Notice that all the beta related to this layer will be set randomly;
- popHiddenLayer: Remove the last hidden layer (the one connected to the output layer);
- setLayerSize: Set the size of a Layer;

- setGlobalActivationFunctions: Set a global activation function for all the connections in the FFNN;
- setLayerActivationFunction: Set the activation function used to generate the layer li;
- addFirstDerivativeSubstrate: Add a substrate that allows for the computation of the first derivatives of the FFNN in respect to the input, i.e. $\frac{\partial u_i^{H+1}}{\partial u_i^0}$;
- addSecondDerivativeSubstrate: Add a substrate that allows for the computation of the first derivatives of the FFNN in respect to the input, i.e. $\frac{\partial^2 u_i^{H+1}}{\partial u_i^{0\,2}}$;
- addVariationalFirstDerivativeSubstrate: Add a substrate that allows for the computation of the first derivative of the FFNN in respect to the variational parameters β , i.e. $\frac{\partial u_i^{H+1}}{\partial \beta_i}$;
- addCrossFirstDerivativeSubstrate: Add a substrate that allows for the computation of the cross derivatives of the FFNN in respect to the input and the variational parameters β , i.e. $\frac{\partial^2 u_i^{H+1}}{\partial \beta_j \partial u_i^0}$;
- addCrossSecondDerivativeSubstrate: Add a substrate that allows for the computation of the cross second derivatives of the FFNN in respect to the input and the variational parameters β , i.e. $\frac{\partial^3 u_i^{H+1}}{\partial \beta_i \partial u_i^{0^2}}$;
- connectFFNN: Connect all the units in the FFNN. After this call it is possible to use the FFNN for computing quantities;
- disconnectFFNN: Disconnect all the units;
- setInput: Set the values of the units in the input layer. n is the size of the array in, and if it does not suite the size of the input layer an error message will be thrown;
- FFPropagate: Compute the output values, including the derivatives if the substrates have been set accordingly;
- getOutput: Get the value of the unit i in the output layer;
- getFirstDerivative: Get the first derivative of the unit value $u_{\mathbf{i}}^{H+1}$ in respect to $u_{\mathbf{i}1d}^{0}$;
- getSecondDerivative: Get the second derivative of the unit value u_{i}^{H+1} in respect to u_{i2d}^{0} ;

- getVariationalFirstDerivative: Get the first derivative of the unit value $u_{\mathbf{i}}^{H+1}$ in respect to β with $\mathbf{ib} = \mathbf{iv1d}$. See getBeta for a definition of \mathbf{ib} ;
- getCrossFirstDerivative: Get the cross derivative of the unit value $u_{\bf i}^{H+1}$ in respect to $u_{\bf i1d}^0$ and β with ${\bf ib}={\bf iv1d};$
- getCrossSecondDerivative: Get the second cross derivative of the unit value $u_{\mathbf{i}}^{H+1}$ in respect to $u_{\mathbf{i}1d}^{0}$ and β with $\mathbf{ib} = \mathbf{iv1d}$;
- storeOnFile: Store the FFNNon a file, making possible to retrieve it later on. If the activation functions have been customised, this procedure will not succeed.

2 ActivationFunctionInterface

```
// #include "ActivationFunctionInterface.hpp"
class ActivationFunctionInterface
  public:
      // allocate a new copy of this to returned ptr
      virtual ActivationFunctionInterface * getCopy() = 0;
      // return an unique identifier code
      virtual std::string getIdCode() = 0;
      // compute the activation function value
      virtual double f(const double &) = 0;
      // first derivative of the activation function
      virtual double f1d(const double &) = 0;
      // second derivative of the activation function
      virtual double f2d(const double &) = 0;
      // third derivative of the activation function
      virtual double f3d(const double &) = 0;
      // calculate all derivatives together to save redundant calculations
      virtual void fad(const double &, const double &, const double &, const double &, co
};
```

The ActivationFunctionInterface is a pure virtual class, which can be used to generate customised activation functions to feed a FFNN. It is necessary to provide the methods getCopy, getIdCode, f, f1d, f2d, f3d and highly recommended to provide fad (otherwise fad will use the other methods via virtual function calls -> slow). As example we report the class for the logistic function:

```
{\tt class\ Logistic Activation Function:\ public\ Activation Function Interface}
          public:
                      ActivationFunctionInterface * getCopy(){return new LogisticActivationFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionFunctionF
                      std::string getIdCode(){return "LGS";}
                      double f(const double &in)
                                  return (1./(1.+exp(-in)));
                      double f1d(const double &in)
                                  double f=this->f(in);
                                  return (f*(1.-f));
                      }
                      double f2d(const double &in)
                                  double f=this->f(in);
                                  return (f*(1.-f)*(1.-2.*f));
                      }
                      double f3d(const double &in)
                                  const double f = this->f(in);
                                  return f * (1. - f) * (1. - 6.*f + 6*f*f);
                      void fad(const double &in, double &v, double &v1d, double &v2d, double &v3d
                                  v = 1./(1.+exp(-in));
                                  if (flag_d1) {
                                             v1d = v * (1. - v);
                                             v2d = flag_d2 ? v1d * (1. - 2.*v) : 0.;
                                             v3d = flag_d3 ? v1d * (1. - 6.*v + 6.*v*v) : 0.;
```

```
}
else {
    v1d = 0.;
    v2d = flag_d2 ? v * (1. - v) * (1. - 2.*v) : 0.;
    v3d = flag_d3 ? v * (1. - v) * (1. - 6.*v + 6.*v*v) : 0.;
}
};
```

3 Serializable Components

All classes deriving from SerializableComponent (i.e. all components of our network) support serialization of their restorable configuration (i.e. no pointers) into simple strings, by a code system. It is explained in detail in the StringCodeUtilities.hpp header file and the examples, but will quickly be illustrated here.

Consider an output unit (type id OUT) of our neural network. It has two simple parameters shift and scale and itself two SerializableComponent members, the feeder RAY and the activation function LGS (default). If we assume the ray has no beta parameters set yet, the full serialized object string (treeCode) looks like:

```
string treeCode = "OUT ( shift 0.0 , scale 1.0 ) { RAY , LGS }"
```

If RAY and LGS had own parameters or members, they would be appended after their identifier, enclosed in () or {} brackets, respectively.

NOTE: Because the system relies on the spacing between every token, the spaces must not be neglected. Also a parameter value of string type may not contain any spaces, commas or brackets of kind () or {}.