Cognome:	•	Nome:	•	matricola:	•
Cognome.	,	T VOITIC.	,	manicoia.	,

ESERCIZI (Max 24 punti)

Tempo a disposizione: 40 minuti

CONSEGNARE SOLO QUESTO FOGLIO

Dovunque appaiano, utilizzare i seguenti valori delle variabili indicate negli esercizii.

X = (numero di lettere che compongono il Cognome) - 2. (max 9)

Y = (numero di lettere che compongono il 1° Nome) - 2. (max 9)

W = 1 se Y è pari; W = 0 se Y è dispari;

Z = 1 se X è pari; Z = 0 se X è dispari;

S = (penultima cifra del numero di Matricola).

T = (ultima cifra del numero di Matricola).

- 1. Si scriva la sinossi del comando **chgrp** spiegandone significato e modalità di funzionamento.
- 2. Scrivere il comando UNIX per visualizzare ricorsivamente il contenuto completo di un indirizzario a partire dalla directory /etc.
- 3. Spiegare quale è l'effetto del seguente comando:

\$id -Gn

- 4. Si enuncino almeno due metodi per risalire ai rapporti di dipendenza padre/figlio tra i processi di una stessa macchina.
- Si supponga che la cwd sia /home/michele/. Scrivere il comando per listare solo le directory nascoste che si trovano nella cartella /var.
- 6. Dato il file **michele.prova** caratterizzato dalla seguente ACL:

-r-xr--rwx 2 utente ...

Indicare come cambiano tali permessi quando ne viene modificato il proprietario di riferimento.

- $X = \dots$;
- $Y = \dots$;
- $W = \dots$;
- $Z = \dots$;
- $S = \dots$;
- $T = \dots$;
- 7. Si consideri un sistema che si trovi nello stato sicuro descritto nel seguito:

Ava	aila	able	9
R1	R2	R3	R4
2	1	0	2

	Allocation					Need			
Process	R1	R2	R3	R4		R1	R2	R3	R4
P1	0	8	0	5		0	0	5	3
P2	1	1	0	1		1	0	0	1
P3	2	0	2	0		1	3	2	0
P4	4	2	2	1		3	3	4	2
P5	0	2	2	1		1	1	0	1

Se il processo P4 richiede (W,1,0,Z+1) risorse, rimarrà il sistema in uno stato sicuro? Perché?

- 8. Scrivere l'espressione e determinare il tempo di *swap-out* di un programma di 1S MB se il *transfer rate* del disco è di 2 MB/sec e il tempo di latenza è di 1T msec. Si assuma che sia nullo il tempo di *seek*.
- 9. Dati i seguenti processi, tutti presenti all'inizio nella coda di ready con le priorità indicate, e supponendo che i rispettivi burst time siano quelli riportati, quale sarà il tempo medio di attesa usando uno scheduler a priorità statica?

Process	Burst Time	Priority
P1	X	3
P2	Y	1
P3	S+1	4
P4	2	5
P5	T+1	2

10. Qual è il numero massimo di pagine da cui sarà costituita una memoria virtuale di 5X Gbyte e una pagina è di 2S Kbyte?

POLITECNICO DI BARI

Nel seguito vengono riportate affermazioni vere e affermazioni false:

- barra la casella "Sicuramente Vera" (SV), se sei sicuro che l'affermazione è vera;
- barra la casella "Sicuramente Falsa" (SF), se sei sicuro che l'affermazione è falsa;

Per ogni corretta risposta ottieni 1 punto.

Per ogni erronea risposta ottieni -1 punto.

Le affermazioni senza risposta comportano 0 punti.

Affermazione	SV	SF
A socket is defined as an endpoint for communication.		
A web server should not run as a single-threaded process.		
A thread is composed of a thread ID, program counter, register set, and heap.		
It is possible to determine the exact state of a thread in Java.		
Most operating systems pretend that deadlocks never happen.		
The Dispatcher/Worker, Team and Pipeline multi-threads organizations are all supported by Java.		
FCFS is a preemptive scheduling algorithm.		
The following is not a requirement necessary to solve the critical-section problem: An upper limit must exist for the number of times that other threads are allowed to enter their critical section after a thread has made its request to enter its critical section.		
A transaction performs multiple logical functions.		
In a dynamically linked library, loading is postponed until execution time.		

POLITECNICO DI BARI		Corso	ai Laurea in Ing. Injori	папса п.о.
Cognome:	; Nome:	; matricola:	; Ing	
	Prob	alema		

CONSEGNARE SOLO QUESTO FOGLIO

Max 6 punti

Si progetti, mediante flow-chart o linguaggio strutturato, una <u>funzione</u> che determini se un sistema si trova in uno stato sicuro. In caso positivo la funzione ritornerà il valore 0, altrimenti il valore 1.

Si supponga che siano in esecuzione N processi e che il sistema disponga di M risorse. Si assuma che la funzione possa disporre del vettore AVAIL costituito da M elementi e delle matrici ALLOC e NEED, entrambe costituite da N righe ed M colonne.

Utilizzare rigorosamente ed unicamente i nomi indicati e ricorrere al minor numero di istruzioni.

Tempo a disposizione: 45 minuti

I risultati della prova saranno pubblicati sul sito, con l'indicazione delle informazioni relative alla prova orale.