Ejercicio 1. Modelado de la estructura de la mina, puntos de control, sensores y actuadores.

Mina El Diamante

La mina subterránea de carbón *El Diamante* tiene una estructura como se observa en la figura 1. Dentro de la mina se va a desplegar un sistema IoT para realizar el monitoreo continuo de la atmosfera y control de la ventilación. La mina tiene dos puntos de control con un grupo de sensores para monitorear gases y una alarma en el caso que se requiera alertar a los trabajadores. También se ubica un ventilador principal en la Bocamina A y una puerta de control de ventilación en la Galería 01.

a) Estructura de la mina

b) Diseño 3d

Fig. 1. Estructura y diseño de la mina subterránea El Diamante

Actividad

1. Utilice el DSL para modelar la estructura de la mina. En la siguiente imagen puede encontrar la distribución de las regiones.

2. Utilice el DSL para modelar los puntos de control incluyendo sus sensores y actuadores. Tenga en cuenta que cada punto de control tiene los siguientes sensores y actuadores.

Device	Туре	Unit	Threshold	Brand	Communication
Sensor	Gas metano (CH4)	%	1	Winsen	Zigbee
Sensor	Dióxido de carbono (CO2)	ppm	5000	ST	Zigbee
Sensor	Monóxido de carbono (CO)	ppm	25	Winsen	Z-Wave
Actuador	Alarma			Digi	WiFi

3. Utilice el DSL para modelar los dos actuadores que no pertenecen a ningún punto de control.

Device	Туре	Unit	Threshold	Brand	Communication
Actuador	Ventilador			MetalWorks	Ethernet
Actuador	Puerta de ventilación			Allen	Serial

Conceptos para el modelado de estructura de la mina.

Imagen	Concepto	Atributos
◆ Mine	Mina subterránea de carbón	Nombre
Seam	Beta de carbón	Nombre
		Espesor (Thickness)
▲ Working Face	Frente de trabajo	Nombre
		Tipo:
		 Desarrollo
		 Explotación
Room	Cámara	Nombre
		Área
Internal tunnel	Túnel interno	Nombre
		Longitud
Drift Access	Túnel de acceso horizontal	Nombre
		Longitud
Slope Access	Túnel de acceso inclinado	Nombre
		Longitud
		Inclinación
Shaft Access	Túnel de acceso vertical	Nombre
		Longitud
Entry	Bocamina	Nombre
• Other	Otra región	Nombre

Ejercicio 2. Modelado de reglas de adaptación

El DSL permite modelar varios tipos de reglas de adaptación. Recuerde que una regla de adaptación se compone de una condición y una o varias adaptaciones.

Las condiciones pueden ser modeladas usando varias combinaciones:

Parte izquierda	Op. matemático	Parte derecha
Sensor_id {Región} {Tipo de Sensor} {Punto de control} {Tipo de Sensor}	> < = >= <=	{Valor numérico} {unidad} {Valor límite}

Para modelar una adaptación adaptaciones de tipo *operate actuator*, deberá especificar el ID del actuador y el mensaje o acción que desea enviarle.

Ejemplos de reglas de adaptación:

```
Regla Ejemplo 1
 Condition: ( pc02-co2 ) = ( Threshold value )
 Period: 10 m
 Actions
  ✓ Perform all actions
   * Operate Actuator -> Actuator: Puerta
                         message: abrir
Regla Ejemplo 2
 Condition: ( Cámara-A \rightarrow CO ) < ( 4000 ppm )
 Period: 1 s
 Actions
  ✓ Perform all actions
   * Operate Actuator -> Actuator: Puerta
                         message: cerrar
   * Operate Actuator -> Actuator: pc01-alarma
                         message: activar
```

Actividad

1. Utilice el DSL para modelar las siguientes reglas de adaptación.

