Intro

Improve training efficiency of Semantic Segmentation

Model structure – Encoder & Decoder – Prune

Analyze the sensitivity of Encoder and Decoder

Grid search on Encoder and Decoder

🥊 Dataset-Semantic Drone Dataset

- 400 images
- 6000*4000
 - **→** 768*512
- 24 classes (1 unlabeled)

Grid Research

Trial Goal	Sparsity Grid Step	Encoder/ Decoder	Note
Unstructured Random/L1	10%×10%	Both, Grid Search	Global pruning
Structured L1/L2	10%×10%	Both, Grid Search	layer-wise pruning
Pruning Position	20%	Encoder Only	Encoder: Structured L1 Decoder: Unstructured Random

Observation (p = pruning ratio)

- 1. For small-scale pruning (p<50%):
 - Encoder: immediate response,
 - Decoder: delayed response;
- 2. For large-scale pruning (p>50%):
 - Encoder: less sensitive;
 - Decoder: exp-decay behavior.

3. Position:

- Lower layers more sensitive
- (UNet structure)

4. Scoring function:

- Tolerance to unstructured L1 method.
- Deeper layers: more parameters in filters, but less useful connection

