	LECTURE - 5 09/12/2017	
*	Consider the Pattern:	1
	" ποχαίδ Δ" (") = (3) + (3)
		7
	(%) (%) (%) (%)	
	Recurrance Relation: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$	
	: This is true then, Kego, n	-13
•	n! ? (n-1)! ('(n-k)! ((n-1)-(k-1))! (k-1)! + (k-1)! (n-1-k)=(n-k-1)! k!	
	(n-1-K)=(n-K-D] k]	-
		-

Multiplying RHS with n : = n! ((n-k)! (k-1)! · k + 1 (n-k-1)! k! n; (n-k)!k! + (n-k)!k!) = (n) - Pascal's / Identity | Rule |
Formula Theorem. Let 5 = 9 +, A, D, O & caued "suft" let R = 2 8, 3, ___, 10, J, Q, K, AZ called "rank" Let D = S * R called " deck" of cards. 151 = 4 , IRI = 13 , IDI = 52 Consider the "game" when you are given ("delt") 5 cards (all equally likely) with / without replacement such that order doesnot matter. These 5 cards are called "hand"

		1
	P(Royal Flush) - IAI	<
	INI INI	1
6x	10,5,Q,K,A _ H	-
1316	all of same suit (52) > possible hands	
	Y Y	
	2598960	
6	M-M-M J In	
	P(4 of a Kind) = 1A1 other card	
13	(8) (8)	
€x:	4777KU = (13) (12) (4)	
	(52)	
Huge !	no. of 4 of a Kind	1
	P(straight flush) IAI	100
Cui	in in	1
<u>CX</u> :	A 2 3 45 (1) (4) - suit	1
	23 45 6 (52)	1
		1
- 2	boginning number	+
11/10/2	91030	-
101	OC CONTRACTOR TO	_
TO THE	P(full house) IA	_
6	77700 151 2 75015	
	1 the 20 the (1) (3) (1) (4)	
	same same	
	- Corank of	2
	the 3 of a kind kind	

(4)(3)-(9)(4)-+, · P(flush) = all same suit but not straight P(straight) P(38) a Kind) P(2 pair) = (13) (12) 3 (13) 6 for "P" order matters.

13 P2 = (13) for "C" order does not matter Why in P (full house) we wrote (13) and why in P (flush) we wrote (13)? 777 pp + 90 FFF

-46	Revisit the "working Det. of 1700.
_	
	.: P(A) = IA "the classic def." in ISI through the 1800's.
*	Consider the random experiment of
_	Consider the random experiment of spinning:
	A - ER3 .: P(A) # 12831 - 1 121 - 3
	141 3
100	** There is a hidden assumption to
	YWEA. P (203) = 1
	YWEA. P (203) = 1
-	This is "equally likely" outcome. Ex: flipping coins, notling die, seating people, drawing card
70	Ex: flipping coins, notting die,
61	seating people, drawing card
×	
8	New Def. of Prob.:- (1) Limiting Frequency Def.:
1	Market and Colombia and Colombia
4	indicator func. : First define
+	indicator func.: First define 1 WEA: = 5 1 St WEA
	2000 000

: P(A) := Um \(\frac{2}{2} \) 1 when \(\frac{1}{2} \) \(\frac{1

Von Miles, 1928: as n gets larger P(A) becomes more stable.

In 1654, Chevaller de Hare who wrote a letter to Pascal and Fermat, and said "I think P(= > 1 double - 6 in 24 noils of two die =) < 1/2 ... True Prob. = 0.4914

· Problems :-

(1) Requires experimentation, infinite experiments which is impossible.

which is always wrong and could be very wrong.

(11) not general
P(OJ Simpson guilty) #
P(Frma hits Miami) K - The state of t is got the wilder of the stage at SIRBOR SIN SIN S