Reinforcement Learning & Intelligent Agents

Lecture 3: Markov Decision Processes

S. M. Ahsan Kazmi

Recap

Last lecture: multiple actions, but only one state – no model

This lecture:

- Formalise the problem with the full sequential structure
 - Markov Reward Processes
 - Markov Decision Processes

Markov Processes

Introduction to MDPs

- Markov decision processes formally describe an environment for reinforcement learning
- Where the environment is fully observable
 - i.e. The current state completely characterizes the process
- Almost all RL problems can be formalised as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state

Markov Property

Definition

A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

- The future is independent of the past given the present
- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future

Markov Process

Definition

A Markov Process (or Markov Chain) is a tuple $\langle \mathcal{S}, \mathcal{P} \rangle$

- lacksquare \mathcal{S} is a (finite) set of states
- lacksquare \mathcal{P} is a state transition probability matrix,

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

A Markov process is a memoryless random process, i.e. a sequence of random states S1, S2,..... with the Markov property.

 For a Markov state s and successor state s', the state transition probability is Pss'

Example: Student Markov Chain

Example: Student Markov Chain Episodes

Sample episodes for Student Markov Chain starting from $S_1 = C1$

$$S_1, S_2, ..., S_T$$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Example: Student Markov Chain Transition Matrix

Pub

Markov Reward Processes

Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition

A Markov Reward Process is a tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- \blacksquare \mathcal{S} is a finite set of states
- \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$
- lacksquare R is a reward function, $\mathcal{R}_s = \mathbb{E}\left[R_{t+1} \mid S_t = s\right]$
- lacksquare γ is a discount factor, $\gamma \in [0,1]$

Example: Student MRP

Returns

Acting in a MDP results in immediate rewards R_t , which leads to returns G_t

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

The discount is the present value of future rewards

Discounts?

Most Markov decision processes are discounted. Why?

Problem specification:

- Immediate rewards may be more valuable (e.g., consider earning interest)
- Animal/human behavior shows preference for immediate reward

Solution side:

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes

The way to think about it: reward and discount together determine the goal

Value Function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}\left[G_t \mid S_t = s\right]$$

Example: Student MRP Returns

Sample returns for Student MRP: Starting from $S_1 = \text{C1}$ with $\gamma = \frac{1}{2}$

$$G_1 = R_2 + \gamma R_3 + \dots + \gamma^{T-2} R_T$$

Example: State-Value Function for Student MRP

Example: State-Value Function for Student MRP

Example: State-Value Function for Student MRP

Bellman Equation for MRPs

- The value function can be decomposed into two parts:
 - immediate reward Rt+1
 - discounted value of successor state v(St+1)

$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$

$$v(s) \leftrightarrow s$$

$$r$$

$$v(s') \leftrightarrow s'$$

 $v(s) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$

$$\begin{array}{ll} \text{Matrix Form} \\ v = \mathcal{R} + \gamma \mathcal{P} v & \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{11} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'} v(s')$$

Example: Bellman Equation for Student MRP

Solving the Bellman Equation

The Bellman equation is a linear equation

• It can be solved directly:

$$v = \mathcal{R} + \gamma \mathcal{P} v$$
$$(I - \gamma \mathcal{P}) v = \mathcal{R}$$
$$v = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- Computational complexity is *O*(*n*3) for *n* states
- Direct solution only possible for small MRPs
- There are many iterative methods for large MRPs, e.g.
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning

Markov Decision Processes

Markov decision process (MDP)

- A Markov decision process (MDP) is a Markov reward process with decisions.
- It is an environment in which all states are Markov.

Definition

A Markov Decision Process is a tuple $\langle S, A, P, R, \gamma \rangle$

- \blacksquare \mathcal{S} is a finite set of states
- \blacksquare \mathcal{A} is a finite set of actions
- lacksquare $\mathcal P$ is a state transition probability matrix,

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$$

- lacksquare R is a reward function, $\mathcal{R}_s^{a} = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
- $ightharpoonup \gamma$ is a discount factor $\gamma \in [0, 1]$.

Example: Student MDP

Policies

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

- A policy fully defines the behavior of an agent
- MDP policies depend on the current state (not the history)

Policies

Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and a policy π The state sequence $S_1, S_2, ...$ is a Markov process $\langle \mathcal{S}, \mathcal{P}^\pi \rangle$ The state and reward sequence $S_1, R_2, S_2, ...$ is a Markov reward process $\langle \mathcal{S}, \mathcal{P}^\pi, \mathcal{R}^\pi, \gamma \rangle$ where

$$\mathcal{P}_{s,s'}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}_{ss'}^{a}$$

$$\mathcal{R}_{s}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}_{s}^{a}$$

Value Function

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

Definition

The action-value function $q_{\pi}(s,a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s, A_t = a\right]$$

Example: State-Value Function for Student MDP

Bellman Expectation Equation

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s \right]$$

The action-value function can similarly be decomposed,

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

Bellman Expectation Equation

$$v_{\pi}(s) \longleftrightarrow s$$

$$q_{\pi}(s, a) \longleftrightarrow a$$

$$q_{\pi}(s,a) \longleftrightarrow s,a$$

$$r$$

$$v_{\pi}(s') \longleftrightarrow s'$$

$$v_{\pi}(s) = \sum_{n} \pi(a|s) q_{\pi}(s,a)$$

$$q_{\pi}(s,a) = \mathcal{R}_{s}^{s} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{s} v_{\pi}(s')$$

Bellman Expectation Equation

$$q_{\pi}(s,a) \longleftrightarrow s,a$$

$$r$$

$$s'$$

$$q_{\pi}(s',a') \longleftrightarrow a'$$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{\pi}(s') \right) \qquad q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s',a')$$

Example: Bellman Expectation Equation in Student MDP

Optimal Value Function

The optimal value function specifies the best possible performance in the MDP.

Definition

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Example: Optimal Value Function for Student MDP

Example: Optimal Value Function for Student MDP

Optimal Policy

Define a partial ordering over policies

$$\pi \geq \pi'$$
 if $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$

Theorem

For any Markov Decision Process

- There exists an optimal policy π_* that is better than or equal to all other policies, $\pi_* \geq \pi, \forall \pi$
- All optimal policies achieve the optimal value function, $v_{\pi_*}(s) = v_*(s)$
- All optimal policies achieve the optimal action-value function, $q_{\pi_*}(s, a) = q_*(s, a)$

Finding an Optimal Policy

An optimal policy can be found by maximising over $q_*(s, a)$,

$$\pi_*(a|s) = \left\{ egin{array}{ll} 1 & ext{if } a = ext{argmax } q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we immediately have the optimal policy

Example: Optimal Policy for Student MDP

Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
 - · Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa