

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1430 Alexasdra, Virginia 22313-1450 www.nepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/640,850	08/13/2003	Yasunori Ito	MURTP083D1	9131
22434 BEYER WEA	434 7590 03/06/2008 EYER WEAVER LLP		EXAMINER	
P.O. BOX 70250			WILKINS III, HARRY D	
OAKLAND, CA 94612-0250			ART UNIT	PAPER NUMBER
			1795	
			MAIL DATE	DELIVERY MODE
			03/06/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/640.850 ITO ET AL. Office Action Summary Examiner Art Unit Harry D. Wilkins, III 1795 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 14 December 2007. 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 13.14.19 and 20 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 13.14,19 and 20 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10)⊠ The drawing(s) filed on 27 April 2006 is/are: a)⊠ accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. Certified copies of the priority documents have been received in Application No. 09/392,466. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413) Paper No(s)/Mail Date. Notice of Draftsperson's Patent Drawing Review (PTO-948) Notice of Informal Patent Application 3) Information Disclosure Statement(s) (PTO/SB/08)

Paper No(s)/Mail Date _

6) Other:

Page 2

Application/Control Number: 10/640,850

Art Unit: 1795

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 14 December 2007 has been entered.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- Claims 13, 14, 19 and 20 are rejected under 35 U.S.C. 103(a) as being unpatentable over Mahoney (US 5,257,003) in view of Matsuo et al (US 4,324,702) and Atushi (US 4,988,648).

Mahoney teaches the invention substantially as claimed. Mahoney teaches (see abstract, figures, col. 1, line 22 to col. 2, line 32, col. 3, line 54 to col. 4, line 57 and col. 5, lines 52-57) a method of making a thermistor including stacking a specified number of ceramic green sheets of an insulating ceramic material, cutting the stacked ceramic green sheets to obtain individual thermistor elements, applying a resistive film material having a higher specified resistance than the ceramic green sheets entirely over the

Application/Control Number: 10/640,850

Art Unit: 1795

outer surface except the terminal end parts, baking the coated element, and depositing conductive terminal layers on the opposing end parts by a method including electrolytic plating.

Mahoney fails to teach that the ceramic green sheet compositions were selected to achieve a ceramic thermistor element having a specific resistance lower than 200 Ω -cm and comprising as principal component oxides containing two or more metals selected from the group consisting of Mn, Ni, Co, Fe, Cu and Al.

Matsuo et al teach (see abstract and col. 2, line 49 to col. 3, line 22 and col. 10, lines 32-34) that thermistors having desirable low resistance could be made from various compositions, including mixtures of Mn, Ni, Fe and Cu oxides.

Therefore, it would have been obvious to one of ordinary skill in the art to have made the ceramic green sheets of Mahoney from the ceramic composition disclosed by Matsuo et al because Matsuo et al teach that the disclosed compositions had excellent properties as thermistor elements including low specific resistance and high B-constant. Additionally, Matsuo et al show that the specific resistance of the thermistor was a known result effective variable based upon the composition of the thermistor element. Thus, it would have been within the ability of one of ordinary skill in the art to have selected an appropriate composition for achieving a desired specific resistance of the formed thermistor.

Mahoney teaches (see col. 3, line 54 to col. 4, line 57) that the resistive film (13) had to be a different material from the ceramic material of the ceramic green sheets, and that it was not critical what material was used, as long as it provided sufficient

Application/Control Number: 10/640,850

Art Unit: 1795

resistance to prevent the electrodes from interacting with the thermistor through any surface besides the terminal ends, thereby increasing uniformity of the thermistor element. Thus, the resistive film had a specific higher resistance than the ceramic green sheets.

Atushi teach (see abstract and col.2, lines 24-63) a composite ceramic material with dispersed metal powders that was known to be useful in electronic devices because of its excellent heat resistance, corrosion resistance and mechanical properties while exhibiting excellent electrical characteristics. The composite material included ceramic material containing oxides of aluminum, nickel, cobalt and iron (ferrite), and metal powder containing metals such as iron (see "(4) Sintered Composite").

Therefore, it would have been within the ability of one of ordinary skill in the art to have selected the material of Atushi for the outer resistive film (13) because Atushi teaches that the material had improved corrosion resistance, thermal resistance and wear resistance, thereby increasing the lifetime of anything coated by the material.

Matsuo et al and Atushi teach materials for the ceramic green sheets and the high resistance coating layer that have at least 10% of the same principal components, namely Ni and Fe oxides.

Regarding claim 14, Matsuo et al teach (abstract and col. 2, line 49 to col. 3, line 22 and col. 10, lines 32-34) that the thermistor element be made of a material comprising oxides of Mn, Ni, Fe and Cu. Atushi teaches (see col. 2, lines 24-63) that the composite material be made from oxides of Fe, Al, Ni and Co. Thus, the two materials share the same principal components, namely oxides of Fe.

Page 5

Application/Control Number: 10/640,850

Art Unit: 1795

Regarding claims 19 and 20, Mahoney teaches that, with respect to figures 4-6, the conductive terminals (14) were coated onto the thermistor by electroless plating. Electroless plating occurs by chemical reduction of a material in a liquid by an oxidizing agent also present in the liquid, and exhibits no preferential deposition characteristics. As is noted above, Mahoney contemplates electroplating for applying the conductive terminals. One of ordinary skill in the art was aware that electroplating preferentially deposits material onto charged conductive surfaces, and would, thus, preferentially deposit on the exposed conductive green sheets as opposed to the higher resistance coating layer.

Response to Arguments

4. Applicant's arguments filed 14 December 2007 have been fully considered but they are not persuasive. Applicant has argued that the combination of references has failed to show or suggest formation of the thermistor element and the resistive outer layer from materials having the same principal components such that close and intimate bonding can be obtained along with preventing the problem of electroplating on the resistive outer layer.

In response, the prior art teaches the concept of stacking green sheets of a desired composition for forming a thermistor element, coating the element except for its end portions with a resistive film (i.e.-of resistance higher than that of the thermistor element) and then electrolytically plating electrodes on the end portions. Matsuo et al and Atushi are merely cited for teaching that various ceramic compositions falling within the claim scope were known and fell within the scope of what was taught by Mahoney.

Application/Control Number: 10/640,850

Art Unit: 1795

As noted above, the compositions taught by Matsuo et al and Atushi have the same principal components of Ni and Fe oxides. Applicant has failed to show any unexpected result from using the claimed compositions.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Harry D. Wilkins, III whose telephone number is 571-272-1251. The examiner can normally be reached on M-F 8:30am-5:00pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Susy Tsang-Foster can be reached on 571-272-1293. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

/Harry D Wilkins, III/ Primary Examiner, Art Unit 1795

hdw