Tutorato lezione 7

Stefano Mingoni: stefano.mingoni@studenti.unipd.it

Esercizio 1

6.23 Una spira quadrata di lato a = 20 cm è posta nel piano xy ed è percorsa dalla corrente i = 5 A nel verso indicato in figura. Essa risente di un campo magnetico $\mathbf{B} = \alpha x\mathbf{u}_{c}$ con $\alpha = 0.2$ T/m. Calcolare la forza \mathbf{F} che agisce sulla spira.

 $[(0,04 \text{ N}) \hat{x}]$

Esercizio 2

6.25 Una bobina composta da N = 100 spire di raggio R = 10 cm, giace nel piano xy ed è percorsa dalla corrente i = 8 A, in senso antiorario. Essa è sottoposta all'azione di un campo magnetico $\mathbf{B} = 0.6\mathbf{u}_x - 0.4\mathbf{u}_y + 0.2\mathbf{u}_z$ T. Calcolare: a) il momento magnetico \mathbf{m} della bobina, b) il momento meccanico \mathbf{M} che agisce sulla spira e c) l'energia potenziale magnetica U_m .

[(10,053 Nm) \hat{y} + (15,08 Nm) \hat{x} ; -5,027 J]

Esercizio 3

7.1 Due fili conduttori, molto lunghi, distanti 2a = 4 cm, paralleli all'asse x, sono percorsi dalla stessa corrente i = 50 A, con i versi indicati in figura. Calcolare il campo magnetico $\mathbf{B}(z)$ sull'asse dei fili.

$$[\vec{B}(z) = \mu_0 \frac{ia}{\pi(a^2 + z^2)}]$$