Conceptos sobre redes e Internet

Programación y administración de redes

Grado en Ingeniería Informática

Departamento de Informática. Universidad de Jaén

Objetivos

General

Aprender a identificar los elementos principales de una arquitectura de red, sus protocolos, servicios, tipos de comunicación y los modelos existentes

Específicos

- Aspectos a considerar al diseñar una arquitectura de red
- Identificar las características básicas de protocolos, interfaces y servicios
- Diferenciar entre comunicación lógica y física
- Reconocer similitudes y diferencias entre las arquitecturas de red de Internet y OSI

Arquitecturas de redes de computadores

Arquitectura de redes - Contexto

Definición

Como en Arquitectura de computadores, una arquitectura en capas facilita la definición de los componentes de red en un sistema informático

Capas de abstracción en la *Arquitectura de computadores*

Capas de abstracción en una Arquitectura de redes

Arquitectura de redes - Diseño

Problema

Al diseñar una red de computadores es preciso tener presentes multitud de aspectos, de ahí que se recurra a definir una **Arquitectura** adecuada

- Medios y modos de transmisión
- Establecimiento y liberación de la conexión
- Formatos de paquetes
- Control de errores: detectarlos y recuperar
- Control de flujo
- Direccionamiento
- Fragmentación y ensamblaje de datos
- Control de paquetes, para evitar pérdidas o desorden
- Control de la congestión
- Encaminamiento (enrutado) de mensajes: escoger el mejor camino a la hora de enviar un mensaje
- Calidad del servicio
- Multiplexación de información en una misma línea
- Seguridad

Arquitectura de redes - Conceptos

- Las redes se desarrollan de forma estructurada en capas o niveles para facilitar su diseño y mantenimiento ya que este enfoque:
 - Permite identificar y relacionar las complejas piezas del sistema
 - Facilita el mantenimiento y actualización del sistema (sustituir la implementación de una capa sin que afecte al resto del sistema)
- Cada capa realiza una serie de funciones más o menos relacionadas, y necesarias para la transmisión de información (cohesión)
- Cada una de ellas se construye sobre una predecesora
- Una capa ofrece un conjunto de servicios a su capa superior, liberando a esta del conocimiento de los detalles internos de su realización
- Normas habituales en el diseño de una red por capas son:
 - Diseño secuencial de capas
 - Minimizar la información que se transfiere entre ellas (desacoplamiento)

Arquitectura de redes – Ejemplo

Descripción

A y B son dos host (equipos finales) que se comunican entre sí usando una arquitectura de redes compuesta de tres capas

Relación entre protocolos, servicios e interfaces

- La capa n de un ordenador, siempre conversará con la capa n de otro ordenador (comunicación horizontal/virtual)
- Se denomina protocolo al conjunto de reglas que rigen esta conversación
- Definiremos interfase o interfaz como la implementación del conjunto de servicios que hay entre dos capas, y que define una serie de primitivas y reglas de comunicación

- Una capa hará uso de un servicio llamando a las **primitivas** implementadas en este
- La conversación mantenida mediante un protocolo es **virtual** y la conversación **real** atravesará todas las capas desde la capa *n* al medio físico y de este a la capa *n* del otro ordenador
- Un buen diseño de esta interfaz minimiza la información que se transfiere entre capas y **simplifica la sustitución** de una capa en un momento dado (p.e. reemplazar las líneas telefónicas por canales satélite)

Arquitectura de red imaginaria

Se emplean tres protocolos distintos, uno por capa existente

Arquitectura de redes – Resumen

- Se denomina arquitectura de red al conjunto de capas y protocolos, no formando parte de ella los detalles de implementación
- Al conjunto de protocolos definidos también se le conocen como pila de protocolos
- Normalmente, para cada arquitectura existen varios protocolos y para cada protocolo varias implementaciones
 - Las implementaciones cambian a lo largo del tiempo
 - Los protocolos se modifican de forma puntual o aparecen nuevos que conviven con los antiguos
 - Sin embargo, la arquitectura raramente se modifica una vez definida

Protocolos en una arquitectura de red

Protocolo – Definición y ejemplo

Definición

Se denomina protocolo al conjunto de reglas que rigen la comunicación a nivel de una capa concreta entre dos host conectados

Protocolo - Conceptos

Definición ampliada

El protocolo establece las reglas de conversación: sintáxis, semántica, temporización, etc., entre los pares de capas, determinando qué mensajes se envían, quién los envía, en qué momento, etc.

Conceptos

- PDU (Protocol Data Unit). Unidad de datos del protocolo: denominación dada a los mensajes que envía un protocolo
- SDU (Service Data Unit). Unidad de datos del servicio: además del mensaje (PDU)
 a enviar también incluyen una cabecera con datos de control
- La denominación PDU/SDU puede ser más específica dependiendo de la capa a la que se haga referencia:
 - **NPDU** (*Network PDU*): PDU de la capa de red
 - **TPDU** (*Transport PDU*): PDU de la capa de transporte

PDU - Estructura

Descripción

La PDU de un protocolo se divide en dos partes: cabecera y datos

PDU Cabecera Datos

Los campos de la cabecera suelen implementar **funciones del protocolo**

El **payload** es la parte útil de la PDU desde la perspectiva del usuario

Protocolo – Eficiencia

Definición

La eficiencia de un protocolo se mide como la relación entre la longitud del campo de datos en su PDU y la cantidad de información transmitida

Razonamiento

- Utilidad. La finalidad esencial de un protocolo es facilitar el transporte de datos
- Implementación. Para realizar su trabajo, los protocolos precisan campos de control que deben incluirse en la PDU (cabecera)
- **Objetivo**. Minimizar la información de la cabecera en la medida de lo posible, reduciendo así el *overhead*
- Ejemplo

Servicio - Conceptos

Definición

Un servicio es ofrecido por una capa de la arquitectura de red a la capa inmediatamente superior a ella

Conceptos

- Primitivas. Mecanismo por el que un servicio ofrece sus funciones a otra capa:
 - establece conexión(destino, puerto, ...)
 - envía_datos(destino, puerto, datos, ...)
 - libera conexión(destino, ...)
- SAP (Service Access Point). Punto de acceso al servicio: dirección a través de la cual la capa superior accede a los servicios, por ejemplo puertos TCP o UDP
- Cada capa de la arquitectura cuenta con sus propios SAP:
 - **TSAP** (*Transport SAP*): direcciones de la capa de transporte
 - NSAP (Network SAP): direcciones de la capa de red

Protocolos, servicios y puntos de acceso - Relación

Servicio - Categorización

Definición

Los servicios ofrecidos pueden agruparse en dos categorías

Tipos de servicios

- Servicio orientado a conexión (CONS, Connection Oriented Network Service):
 - Para enviar información hay que establecer una conexión, enviar información y liberar la conexión
 - La información sigue toda el mismo camino y llega en el mismo orden en el que sale del emisor
 - Analogía del sistema telefónico
 - Normalmente a una conexión establecida se le denomina circuito (virtual o no)
- Servicio no orientado a conexión (CLNS, ConnectionLess Network Service)
 - La información se suele dividir en mensajes poniéndole a cada uno una dirección de destino.
 - Estos mensajes pueden seguir cualquier camino
 - Los mensajes pueden desordenarse
 - Analogía del servicio de correos

Servicio - Primitivas

Definición

Las primitivas indican al servicio que debe **efectuar una acción** o bien **notifican la acción** tomada por una entidad par

Tipos de primitivas

- Existen **cuatro tipos** de primitivas principales:
 - **1. Petición o solicitud** (request): una entidad pide que se realice un trabajo
 - **2. Indicación** *(indication)*: una entidad es informada acerca de un evento
 - **3.** Respuesta (response): una entidad responde a un evento
 - **4. Confirmación** *(confirm)*: una entidad va a ser informada de su solicitud
- Dentro de un servicio las diferentes fases pueden ser:
 - Confirmadas: existen primitivas de petición, indicación, respuesta y confirmación
 - No confirmadas: existen primitivas solo de petición e indicación
- **Ejemplos**: 1) el establecimiento de la conexión suele ser confirmado, 2) la transmisión de datos puede serlo o no

Servicio - Ejemplo de servicio CONS (FTP)

<u>Cliente</u>

1. CONNECT. request → Juan pulsa botón de conectar

- **4**. CONNECT.confirm → La aceptación de conexión llega al cliente
- **5**. DATA. request → Enviamos datos (archivo solicitado)

- 8. DATA.indication → Nos llegan lo datos
- **9**. DISCONNECT. request → Nos desconectamos

<u>Servidor</u>

- **2**. CONNECT.indication → Al servidor le llega la petición de conexión
- **3**. CONNECT. response → El servidor responde con la aceptación de conexión al cliente

- **6**. DATA.indication → La petición llega al servidor
- 7. DATA. request → El servidor nos envía el archivo

10. DISCONNECT.indication → El servidor recibe indicación de desconexión

Tiempo

Modelos de referencia

Definición

Se denomina modelo de referencia a las arquitecturas de red aceptadas como estándares, ya sean oficiales o de hecho. Los modelos de referencia guían el diseño de múltiples tecnologías de transmisión de información

Modelos existentes

- Modelo de referencia OSI
 - El modelo de referencia OSI (*Open Systems Interconnections*) pretende normalizar la conexión de sistemas heterogéneos
 - Define las diferentes fases por las que deben pasar los datos para viajar de un dispositivo a otro sobre una red de comunicaciones
 - Desarrollado por la ISO entre 1977-83, se basó en la especificación más famosa en redes que era SNA (Systems Network Architecture) de IBM
- Pila de protocolos TCP/IP
 - Es el modelo que sigue Internet

OSI - Capas y su finalidad

• Capa física:

- Objetivo: definición de lo que es un bit en una transmisión y transmitirlo
- Define los medios de transmisión (conectores, cables, etc.)
- Define los modos de transmisión (modulación, codificación, voltajes, temporización, etc.)
- Define cómo establecer y liberar la conexión
- Detalla el sincronismo

Capa de enlace:

- Objetivo: transmisión entre dispositivos directamente conectados
- Definición y reconocimiento de los límites de tramas (entramado)
- Control de errores
- Control del flujo en la comunicación

Capa de red:

- Objetivo: transmisión entre dispositivos no directamente conectados
- Enrutamiento de paquetes en la subred: definición del camino para llegar al destino
- Control de la congestión
- Interconexión de redes heterogéneas

OSI - Capas y su finalidad

Capa de transporte:

- Objetivo: definición de la comunicación extremo a extremo (ocultando la subred)
- Control de errores
- Control de flujo
- Multiplexación de varias conexiones

Capa de sesión:

- Objetivo: establecimiento de "sesiones" entre usuarios de diferentes máquinas
- Gestiona el control del diálogo (utilizando tokens)
- Establece puntos de sincronización, pudiendo recuperar partes de transmisiones sin retransmitirlo todo en caso de error

• Capa de presentación:

- Objetivo: definir aspectos sintácticos y semánticos de la información
- Define estructuras de representación abstractas para comunicar ordenadores que utilizan representación interna diferente
- Compresión de datos y aplicar técnicas de criptografía

Capa de aplicación:

Diseño de las aplicaciones que al final utiliza un usuario

Modelo de referencia TCP/IP (Internet)

Arquitectura

Más simple que el modelo OSI, fusionando las capas de sesión, presentación y aplicación en una única capa de aplicación

Variaciones

Existen dos variaciones, usándose una u otra según autor:

- Cinco capas
 - Conserva las capas inferiores del modelo OSI
 - Se distingue entre capa de Enlace y Física
 - Será la versión que usemos principalmente en la asignatura
- Cuatro capas
 - Fusiona las capas de **Enlace** y **Física** en una sola
 - La capa, llamada **Host-Red**, asume todas las funciones de las capas de **Enlace** y **Física** del modelo OSI

Comparativa OSI - TCP/IP

Diferente objetivos:

 OSI es una arquitectura más académica y teórica, en la que primero se define el modelo y después los protocolos, mientras que con TCP/IP el proceso fue a la inversa

Diferentes características:

- OSI, como modelo académico, es más formal y abstracto que TCP/IP, permite explicar otras redes, y hace una clara distinción entre servicios, interfaces y protocolos
- En contraposición, TCP/IP es un modelo más práctico y no distingue tan claramente las funciones de algunas capas

Diferente desarrollo:

- TCP/IP se desarrolla libremente (sus especificaciones son libres RFCs), de forma distribuida y a gran velocidad. Está orientado a la interconexión de redes. Además no define nada en sus capas hardware por lo que es independiente de la tecnología
- OSI presenta mayor complejidad en su modelo con elementos a veces repetitivos y confusos. Además las organizaciones involucradas demandan mucha burocracia

TCP/IP

Aplicación

Transporte

Red

Enlace

Física

OSI Aplicación

Presentación

Sesión

Transporte

Red

Enlace

Física

Implementación de capas en un ordenador

Descripción

La funcionalidad de cada una de las capas TCP/IP es implementada ya sea en hardware (controlador de red) o software (controladores, SO)

Esquema de un *host* PC

- Adaptador de red (hardware)
 - Se ocupa de las funciones más cercanas al medio físico
 - Suele implementar las capas física y de enlace
 - En la actualidad suele formar parte de la placa base, no es un adaptador separado
- Controladores/SO (software)
 - Se ocupan de las funciones de capas intermedias como la de red y transporte
- Aplicaciones (software)
 - Implementan los protocolos de más alto nivel, asociados a la capa de aplicación por regla general

Implementación de capas en equipamiento de red

Descripción

No solo los ordenadores han de implementar las capas TCP/IP, también el equipamiento intermedio de red ha de contar con las capas necesarias para realizar su trabajo

Esquema general

- Capa física
 - Todo equipamiento de red ha de contar con ella
 - En un PC está en la interfaz de red, también cuentan con ella los *hub*, *switches* y *routers*
- Capa de enlace
 - Implementada por los PC en su interfaz de red, los *switches* y *routers*
- Capa de red
 - Cuentan con ella los *host* finales (PC, móvil, etc.) y los *routers*
- Capas superiores
 - Únicamente son precisas en los *host* finales, como los PC, y ciertos equipos de interconexión como los *gateways*

Implementación de capas en equipamiento de red

Descripción

Correspondencia entre capas OSI $\leftarrow \rightarrow$ TCP/IP y su implementación en distintos dispositivos hardware de red

Capa	OSI	TCP/IP	Hardware			
7	Aplicación					
6	Presentación	Aplicación				
5	Sesión					
4	Transporte	Transporte				Gateways Hosts
3	Red	Internet				
2	Enlace	Enlace		Bridges Switches	Routers	
1	Física	Física	Hubs			

Comunicación lógica vs física

Definición

La comunicación entre dos host en una red de ordenadores puede verse desde una perspectiva lógica o física

Ejemplo

- Un programa en el host A quiere comunicarse con otro del host B
- El primero puede ser un navegador web y el segundo un servidor web
- El mensaje enviado desde la capa de aplicación de A debe transferirse hasta alcanzar la capa de aplicación de B

Comunicación lógica

Propósito

Analizar relación entre protocolos y servicios en una comunicación por red

Ejemplo

- Comunicación entre capas de aplicación y transporte
 - La capa de aplicación usa las primitivas de la capa de transporte para acceder a sus servicios
 - La llamada a una primitiva suele implicar la generación y envío de un mensaje de un protocolo de la capa que ofrece el servicio
- Comunicación lógica/virtual
 - Para la capa de aplicación del primer host el intercambio de mensajes se produce con la misma capa del segundo host (abajo a la dcha.)

Comunicación física

Propósito

Analizar relación entre protocolos y servicios en una comunicación por red

Ejemplo

- Comunicación física/real
 - La capa de aplicación usa las primitivas de la capa de transporte
 - La capa de transporte recurre a las primitivas de la capa de red
 - Al alcanzar la capa física la información se transmite por un medio hasta a otro elemento
 - En el host de destino se sigue el proceso inverso, de forma que la información recibida por la capa física pasa a la de enlace, de esta a la red y así sucesivamente hasta la de aplicación

Conmutación de circuitos vs conmutación de paquetes

Conmutación de circuitos

Origen

Surgió en el sistema telefónico como medio para conectar a dos interlocutores

Funcionamiento

- Pasos habituales de uso
 - Los conmutadores entre el origen y el destino crean un circuito de **duración temporal**
 - El circuito puede ser virtual o físico, según los dispositivos de conmutación empleados
 - Fijado el circuito, los paquetes de datos siguen todos la misma ruta y se reciben en el orden en que se envían
 - Mientras el circuito está en uso, no es posible usar esos tramos de comunicación para otra conexión
 - Finalizada la transmisión de datos, la conexión se cierra y el circuito queda liberado
 - La infraestructura de red puede ser pública, como la propia red telefónica, o bien dedicada, con líneas privadas

Conmutación de paquetes

Origen

Surge en la década de 1960 como método de transmisión de datos en ARPANET

Funcionamiento

- Pasos habituales de uso
 - El establecimiento de conexión no conlleva la configuración de circuito alguno entre los nodos
 - Los paquetes de datos enviados desde el nodo origen seguirán distintos caminos para llegar al destino, según su ocupación
 - Por lo anterior, con caminos de diferentes distancias y latencias, los paquetes no siempre llegan en orden al destino
 - Los tramos de la red entre nodos se ocupan solo de manera puntual, durante la transmisión de un paquete, y quedan disponibles de forma casi inmediata
 - La infraestructura de red empleada es una combinación de infraestructura pública y partes bajo control privado

OSI vs TCP/IP

Recursos

- The TCP/IP Guide (hipervinculo a la dcha.)
 ofrece un resumen detallado de las
 diferencias entre estos dos modelos de
 arquitectura de red
- Redes de computadoras e Internet (ver bibliografía básica de la asignatura, accesible a través de la biblioteca digital de la UJA), en el apartado 1.5 del primer capítulo facilita una descripción de las capas y diferencias entre OSI y TCP/IP

ureandtheTCPIPModel-2.htm Application Presentation Application 5 Session **Transport** (Host-to-Host) Transport Network Internet 3 **Data Link Network Interface** 2 (Hardware) **Physical**

OSI Model

http://tcpipguide.com/free/t TCPIPArchitect

TCP/IP Model

Actividad

La documentación oficial de Internet

Los RFC son documentos accesibles de forma pública y representan la documentación oficial sobre el funcionamiento de Internet y sus tecnologías

Cómo consultar un RFC

- Abre la página https://datatracker.ietf.org e introduce el número de RFC o bien el protocolo o tecnología que quieres consultar
- Prueba a buscar el número 1180 y haz clic en el único resultado que aparece
- El RFC 1180 es un tutorial del funcionamiento de TCP/IP y lo puedes descargar en múltiples formatos
- Examina el apartado 2.1. Basic Structure, en el que se expone la arquitectura de capas de TCP/IP

Actividad

La eficiencia en el envío de datos

Sabemos que los datos de cada paquete o PDU han de ir precedidos de una cabecera con parámetros específicos del protocolo.

Qué sería más eficiente

- Tenemos que enviar desde un cliente a un servidor las calificaciones de 50 estudiantes. Cada ficha se compone de un identificador de estudiante (8 bytes) y un número (4 bytes). Tenemos tres alternativas:
 - 1. Enviar un paquete por ficha de estudiante
 - 2. Enviar un paquete con todas las fichas juntas
 - 3. Enviar paquetes con grupos de 10 estudiantes
- Razona cuál sería la mejor opción de las tres propuestas. Asume que el tamaño de la cabecera sería siempre de 20 bytes.

Cuestiones clave

Qué deberías saber

Al inicio de este tema se planteaban unos objetivos específicos que deberían permitirte **responder a las siguientes cuestiones** clave

Cuestiones

- ¿Qué es una arquitectura de red y cuáles son los modelos existentes?
- ¿Cuál es la distribución de funcionalidad en las capas de TCP/IP?
- ¿Qué son los protocolos, interfaces y servicios y la relación entre ellos?
- ¿Cómo se lleva a cabo la comunicación entre los host de una red?
- ¿Cuál es el funcionamiento de la comunicación horizontal/virtual y vertical/real?