Math 69: Logic Abelian Groups

Amittai Siavava 02/27/2023

Abstract

This paper describes a set of axioms and a language for abelian groups and explores what the theory of abelian groups can tell us about completeness.

Contents

1.	Preliminary Questions	3
1.1.	Definitions	3
1.2.	Axiomatizing Abelian Groups	3
1.3.	Existence of \mathbb{Q} -vector space structures	4
1.4.	Any divisible torsion-free abelian group has a Q-vector space structure	5
1.5.	Axiomatizing Abelian Groups Wherein Each Element Other Than the Identity Has Order 2	6

1. Preliminary Questions

For this problem, we will start with the following definitions. An element g of a group G has order n if n is the smallest positive natural number such that

$$ng = \underbrace{g + \ldots + g}_{n \text{ times}} = 0.$$

For example, g has order 2 if $g \neq 0$ and g + g = 0.

An element is said to be *torsion free* if it does not have order n for any $n \in \mathbb{N}$ with n > 0. A group is said to be *torsion free* if each of its elements, other than the identity, is torsion free.

Lastly, we say that a group G is divisible if for each $g \in G$ and $n \in \mathbb{N}$ with n > 0, there exists $h \in G$ such that

$$nh = \underbrace{h + \ldots + h}_{n \text{ times}} = g.$$

1.1. Definitions.

For convenience, we define the following shorthands used in the rest of the writing:

- (i) $\mathbb{N}_{>0} = \mathbb{N} \setminus \{0\}$.
- (ii) $(x \neq y)$ is shorthand for $\neg(x = y)$.

1.2. Axiomatizing Abelian Groups.

Define a language \mathcal{L} and a set of axioms Σ such that any model that satisfies Σ is an abelian group. Next, define a set of axioms T such that any model which satisfies $\Sigma \cup T$ is a divisible torsion free abelian group.

Using additive notation for groups, we define \mathcal{L} to specify group operation (+) and the group identity, 0. We also define element equality in the group as a two-place predicate. Precisely, two elements g and h in the group are considered equal if and only if g + x = h + x for every other element x in the group.

Thus, if $\mathfrak A$ is a model for $\mathcal L$, then

$$(=^{\mathfrak{A}}) = \{(g,h) \mid \forall x(g+x=h+x)\}.$$

We specify \mathcal{L} as follows:

$$\mathcal{L} = \langle 0, +, = \rangle \tag{1.1}$$

For any structure to be abelian, it needs to satisfy the group axioms (closure, associativity, identity, and inversion) and commutativity Σ to contain the following axioms:

$$\forall g \ \forall h \ \exists i \ ((g+h)=i) \tag{1.2}$$

$$\forall g \,\forall h \,\forall i \,((g+(h+i))=((g+h)+i)) \tag{associativity}$$

$$\exists h \ \forall g((g+h)=h)$$
 (group identity element h, equivalent to 0) (1.4)

$$\forall g \,\exists h \,((g+h)=0) \tag{existence of inverses}$$

$$\forall g \,\forall h \,(((g+h)=i) \,\leftrightarrow\, ((h+g)=i)) \tag{1.6}$$

We define an extra set of conditions, T, to contain the following axioms, which must be satisfied (in addition to those in Σ) for a structure to be a divisible torsion-free abelian group. T contains the following axioms:

$$\forall g \,\forall n \,(((g \neq 0) \land (0 < n)) \rightarrow (ng \neq 0)) \tag{torsion-free}$$

$$\forall g \ \forall n \ \exists h, ((n \neq 0) \rightarrow (g = nh))$$
 (divisibility) (1.8)

1.3. Existence of Q-vector space structures.

Show that any divisible torsion free abelian group has a Q-vector space structure.

Hint: Show that if G is such a group, $n \in \mathbb{N}$ with n > 0 and $g \in G$ then there is a unique $h \in G$ such that nh = g. Note that to show there is a \mathbb{Q} -vector space structure, you must define scalar multiplication (and prove it is well-defined).

1.3.1. Scalar Multiplication (Definition).

For any group element $h \in G$ and a scalar $n \in \mathbb{N}_{>0}$, we define the scalar multiplication of h by n to be the unique element $g \in G$ such that

$$g = \underbrace{h + \ldots + h}_{n \text{ times}}.$$

Let f be the function that maps every such element $h \in G$ and scalar $n \in \mathbb{N}$ to the scalar product g. That is;

$$f: G \times \mathbb{N}_{>0} \to G$$

$$(h, n) \mapsto g \quad \text{where} \quad g = \underbrace{h + \ldots + h}_{n \text{ times}}$$

Claim 1.9. f is well-defined.

Proof.

(i) Suppose $h \in G$ and $m, n \in \mathbb{N}$ such that f(h, m) = g and f(h, n) = g. Then

$$\underbrace{h + \ldots + h}_{m \text{ times}} = \underbrace{h + \ldots + h}_{n \text{ times}} = g.$$

Let $k = \max(m, n)$ and $l = \min(m, n)$, then $k - l \ge 0$, and:

$$kh - lh = g - g = 0$$

$$\therefore (k - l) h = 0$$

$$\therefore k - l = 0$$
 (since G is torsion-free)

$$\therefore n = m$$

(ii) Suppose $h_1, h_2 \in G$ and $n \in \mathbb{N}_{>0}$ such that $f(h_1, n) = g$ and $f(h_2, n) = g$. Then

$$\underbrace{h_1 + \ldots + h_1}_{n \text{ times}} = \underbrace{h_2 + \ldots + h_2}_{n \text{ times}} = g$$

$$\therefore \underbrace{\left(\underbrace{h_1 + \ldots + h_1}_{n \text{ times}}\right) - \left(\underbrace{h_2 + \ldots + h_2}_{n \text{ times}}\right)}_{n \text{ times}} = g - g = 0$$

$$\therefore \underbrace{\left(h_1 - h_2\right) + \ldots + \left(h_1 - h_2\right)}_{n \text{ times}} = 0$$

Since G is torsion-free, $ng \neq 0$ for any $g \in G$ given $g \neq 0$. Therefore, if $n(h_1 - h_2) = 0$, it follows that $h_1 - h_2 = 0$, so $h_1 = h_2$.

Therefore, scalar multiplication is well-defined.

1.4. Any divisible torsion-free abelian group has a Q-vector space structure.

As seen in the proof to 1.9, if a group G is divisible and torsion-free, then scalar multiplication is well-defined. Since G is divisible, then for every $g \in G$ and $n \in \mathbb{N}_{>0}$ there is a unique $h \in G$ such that nh = g. As seen in the proof to 1.9, for fixed n, any such n must be unique (likewise, for fixed n, any such n must be unique). Therefore, n0 has a n0-vector space structure.

1.5. Axiomatizing Abelian Groups Wherein Each Element Other Than the Identity Has Order 2.

Define a set of axioms S such that any model that satisfies $\Sigma \cup S$ is an abelian group in which each element other than the identity has order two. Can we give a model for $\Sigma \cup S$ a vector space structure? Hint: Be creative in your choice of the scalar field.

We define *S* to contain the following axioms:

$$\forall g ((g \neq 0) \rightarrow ((g + g) = 0))$$
 (every element has order 2) (1.10)

For examples of models of $\Sigma \cup S$; first, let's consider finite abelian groups in which every non-identity element has order 2. The smallest such group is the cyclic group of order 2:

$$C_2 = (\{0,1\},+)$$

To generate larger groups where every non-identity element has order 2, we can take the direct product of C_2 with itself. For instance, the Klein-Four group V_4 is isomorphic to $C_2 \times C_2$. For an infinite such group, take an infinite sequence of direct products of C_2 :

$$C_2^{\infty} = C_2 \times C_2 \times C_2 \times \dots$$

Take $g \in C_2^\infty$ such that g is not the identity. For C_2^∞ to have a $\mathbb Q$ -vector space structure,

Since g has order 2, we have that 3g = 2g + g = 0 + g = g, and, more generally, for all $n \in \mathbb{N}_{>0}$, ng = kg where $n \equiv k \mod 2$. Therefore, G cannot have a \mathbb{Q} -vector space structure under scalar multiplication with elements of $\mathbb{N}_{>0}$.

To specify a model for $\Sigma \cup S$, such that the group is a scalar field, we have to limit our choice of scalars to the Galois field of 2 elements

$$\mathbb{F}_2 = (\{0,1\},\times)$$
.

Therefore, by defining $G = C_2^{\infty}$ and limiting the scalar multiplication function $f : G \times \mathbb{F}_2 \to G$, we can construct a model for $\Sigma \cup S$ that has a \mathbb{Q} -vector space structure.