Prompt Contracts: A Comprehensive Probabilistic Formalization for Testing and Validating Large Language Model Outputs

Philippos Melikidis Independent Researcher Bietigheim-Bissingen, Germany philipp.melikidis@gmail.com

Abstract

Large Language Models (LLMs) function as stochastic, untyped interfaces lacking formal specifications. We introduce PCSL v0.3.2, a comprehensive probabilistic formalization for LLM prompt testing with rigorous statistical foundations. Key innovations: (1) Exact **confidence intervals** using Wilson scores ($n \ge 10$) and Jeffreys method (n < 10), replacing CLT approximations [2]; (2) **Block boot**strap for dependent data from repair policies [7]; (3) McNemar tests for paired comparisons [10]; (4) Cross-family judge valida**tion** (κ =0.84, substantial agreement [8]). Framework validation on 520 labeled fixtures across 5 tasks (EN/DE, classification/extraction/summarization/QA) demonstrates feasibility: validation success 91.5% (Wilson CI: [0.888, 0.936]), repair rate 29.2% with semantic change 1.2%. Comparative analysis: PCSL 94% vs. CheckList 82% (McNemar p=0.041), setup time 9.9 min vs. 47.8 min. Reproducibility: seed=42, Python 3.11.7, scipy 1.10.0, Docker PYTHONHASHSEED=42, audit bundles with SHA-256. All code, fixtures (CC BY 4.0), and compliance artifacts publicly available.

Keywords

Large Language Models, Prompt Engineering, Probabilistic Contracts, Statistical Validation, Compliance

1 Introduction

Large Language Models function as *untyped*, *stochastic interfaces*: prompts map inputs to probabilistic outputs without formal behavioral guarantees [1]. Consider an LLM as $f_{\theta}: \mathcal{X} \to P(\mathcal{Y})$ where $P(\mathcal{Y})$ denotes a probability distribution over outputs. Unlike deterministic APIs with explicit contracts, LLM outputs vary across runs, making traditional contract testing insufficient.

This gap becomes critical as LLMs deploy in regulated domains [5]. The EU AI Act mandates transparency, auditability, and robustness testing. Yet prompt engineering lacks specification infrastructure: no type checking, no contract enforcement, no systematic validation with statistical confidence.

Research Problem. How can we define, validate, and enforce behavioral contracts for probabilistic LLM interfaces while ensuring reproducibility and regulatory compliance?

Contributions.

- (1) **Probabilistic specification**: PCSL v0.3 with N-sampling, aggregation policies, bootstrap CIs (B=1000), convergence proofs, and compositional semantics (Section 3).
- (2) **Rigorous evaluation**: Five tasks (1,247 fixtures), ablation studies (N, aggregation, repair, τ), seed robustness (5 seeds),

 Framework
 Contracts
 Probabilistic
 CI/CD
 Semantic
 Compliance

 HELM [9]
 X
 X
 X
 X
 X

 CheckList [16]
 Manual
 X
 Partial
 X
 X

 Guidance [12]
 X
 X
 X
 X

Table 1: Framework Comparison

comparative benchmarks (CheckList, Guidance, OpenAI), LLM-judge vs. human ($\kappa = 0.82$) (Section 5).

(3) Compliance framework: ISO 29119 mapping with audit case study including real artifacts (Section 4.5), operationalizing compliance-as-code.

2 Related Work

OpenAI Struct. [13]

PCSL v0.3

Partial

Contract-based testing. Design-by-contract [11] formalizes deterministic specifications. PCSL extends to probabilistic functions via N-sampling and statistical confidence bounds. OpenAPI [14] provides REST API contracts; PCSL adapts this for natural language interfaces.

LLM frameworks. CheckList [16] enables behavioral testing but requires manual test writing (120 min setup vs. PCSL's 2 min). HELM [9] focuses on model benchmarking, not prompt contracts. LangChain [3] abstracts development but lacks systematic testing. Guidance [12] constrains generation; PCSL validates post-hoc. OpenAI Structured Outputs [13] enforces schemas but is vendor-locked. PCSL uniquely combines formal specification, probabilistic semantics, multi-provider execution, and compliance mapping (Table 1).

Regulation. EU AI Act [5] mandates transparency (Art. 13), records (Art. 12), accuracy (Art. 15). ISO 29119 [6] codifies testing principles. PCSL bridges requirements through formal artifact mapping (Section 4.5).

3 PCSL: Formal Specification

3.1 Core Definitions

A prompt contract $C = \langle \mathcal{P}, \mathcal{E}, \mathcal{X} \rangle$ consists of: Prompt Definition \mathcal{P} (template, I/O expectations), Expectation Suite $\mathcal{E} = \{e_1, \dots, e_m\}$ (validation checks), Evaluation Profile \mathcal{X} (fixtures, targets, config). Each check $e_i : \Omega \to \{\text{pass, fail}\}$. Single-output satisfaction:

$$\operatorname{sat}(C, o) \iff \bigwedge_{i=1}^{m} e_i(o) = \operatorname{pass}$$

3.2 Probabilistic Semantics

Given stochastic LLM f_{θ} , probabilistic satisfaction:

$$\Pr[\operatorname{sat}(C, o)] = \Pr_{o \sim f_{\theta}(x)}[\operatorname{sat}(C, o)]$$

PCSL estimates via N-sampling: $\{o_1, \ldots, o_N\}$, empirical pass rate $\hat{p} = \frac{1}{N} \sum_{j=1}^{N} \mathbb{1}[\operatorname{sat}(C, o_j)].$

Statistical properties. The estimator \hat{p} is unbiased: $\mathbb{E}[\hat{p}] = p$. Variance:

$$\operatorname{Var}(\hat{p}) = \frac{p(1-p)}{N}$$

decreases as O(1/N), enabling precision-confidence tradeoffs. Standard error: $SE(\hat{p}) = \sqrt{p(1-p)/N}$.

Exact confidence intervals. CLT approximations perform poorly for small n or extreme proportions. We adopt Wilson score inter*vals* [2] as default ($n \ge 10$):

$${\rm CI_{Wilson}} = \frac{\hat{p} + \frac{z^2}{2n} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{z^2}{4n^2}}}{1 + \frac{z^2}{n}}$$

where $z = \Phi^{-1}(1 - \alpha/2)$ for confidence $1 - \alpha$. Advantages: respects [0,1] bounds, more accurate for boundary cases. For n < 10 or $\hat{p} \in \{0, 1\}$, we use Jeffreys interval [2] with Beta $(\frac{1}{2}, \frac{1}{2})$ prior:

$$CI_{Jeffreys} = [Beta_{\alpha/2}(\hat{k} + \frac{1}{2}, n - \hat{k} + \frac{1}{2}), Beta_{1-\alpha/2}(\hat{k} + \frac{1}{2}, n - \hat{k} + \frac{1}{2})]$$

where $\hat{k} = n\hat{p}$.

Bootstrap validation. Percentile method [4] provides nonparametric bounds. For dependent data (repairs introduce dependencies), block bootstrap [7] resamples contiguous blocks of size ℓ . Algorithm: (1) Resample with replacement B = 1000 times, (2) compute $\hat{p}^{(b)}$ for each, (3) report 2.5th and 97.5th percentiles. We report Wilson (default), Jeffreys (boundary cases), and bootstrap (validation) CIs side-by-side.

Aggregation policies $A : \{o_1, ..., o_N\} \rightarrow \{PASS, FAIL\}:$

$$A_{\text{first}}(\{o_j\}) = \text{sat}(C, o_1)$$

 $A_{\text{majority}}(\{o_j\}) = \text{PASS} \iff \hat{p} > 0.5$
 $A_{\text{all}}(\{o_j\}) = \text{PASS} \iff \hat{p} = 1.0$
 $A_{\text{anv}}(\{o_j\}) = \text{PASS} \iff \hat{p} > 0$

Fixture-level validation with tolerance τ :

$$C \models_{\tau} \mathcal{F} \iff \frac{|\{f \in \mathcal{F} \mid A(\{o_j^f\}) = \text{PASS}\}|}{|\mathcal{F}|} \geq \tau$$

3.3 Compositional Semantics

For multi-step pipelines (e.g., RAG = retrieval \circ generation): C_{comp} = $C_1 \circ C_2$. Satisfaction:

$$\operatorname{sat}(C_1 \circ C_2, (i, o)) \iff \operatorname{sat}(C_1, (i, o_{\operatorname{inter}})) \wedge \operatorname{sat}(C_2, (o_{\operatorname{inter}}, o))$$

where o_{inter} is intermediate output.

Complexity. Pipeline: $O(|\mathcal{F}| \cdot N \cdot (|\mathcal{E}_1| + |\mathcal{E}_2|) \cdot \max(n_1, n_2))$ where n_i = output size. Parallel sampling (N workers): $O(|\mathcal{F}| \cdot (|\mathcal{E}_1| +$ $|\mathcal{E}_2|$) · max (n_1, n_2)).

3.4 Check Catalog

Structural (O(n)): json_valid, json_required, enum, regex_absent, token_budget, latency_budget. Semantic: contains_all, contains_anyArtifacts: input_final.txt, output_raw.txt, output_norm.txt, regex_present, similarity (sentence-transformers MiniLM-L6v2 [15], cosine threshold \geq 0.8). **Judge** [17]: LLM-as-judge with natural language criteria.

Algorithm 1 PCSL Execution with Probabilistic Sampling

```
1: Input: C = \langle \mathcal{P}, \mathcal{E}, \mathcal{X} \rangle, (N, \text{seed}, A); Output: \mathcal{R}

    2:  R ← ∅; if seed then set_seed(seed)
    3: for each f ∈ X.fixtures do

             p \leftarrow \text{render}(\mathcal{P}, f); \mu \leftarrow \text{negotiate(adapter.cap(), $\mathcal{X}$.mode)} if \mu = \text{enforce then}
                    \sigma \leftarrow \mathsf{derive\_schema}(\mathcal{E})
              if \mu = assist then
              for j = 1 to N do
11:
                    o_r^j \leftarrow \text{adapter.gen}(p, \sigma); o_n^j \leftarrow \text{repair}(o_r^j, \Pi)
                    \mathrm{res}^j \leftarrow \{e_i(o_n^j) \mid e_i \in \mathcal{E}\}; \text{Append to samples}
13:
              s, \text{CI} \leftarrow A(\text{samples}), \text{bootstrap\_ci}(\text{samples}, B = 1000)
              \mathcal{R} \leftarrow \mathcal{R} \cup \{(f, s, \text{CI}, \text{samples})\}
16:
17: end for
 18: return R
```

Table 2: Compliance Mapping

PCSL	ISO 29119	EU AI Act
PD	Test Item (§7.1)	-
ES	Test Conditions (§7.2)	Art. 15 (accuracy)
EP	Test Case (§7.3)	Art. 9 (risk mgmt)
save_io	Test Log (§8.3)	Art. 12 (records)
Negotiation	Test Env (§8.1)	Art. 13 (transparency)
N-sampling+CI	Statistical (29119-4)	Art. 15 (robustness)
Repair ledger	Incident (§8.4)	Art. 14 (oversight)

4 Framework Architecture

Execution Pipeline

Algorithm 1 formalizes sampling-enabled execution.

Execution Modes

observe: Validation only. assist: Prompt augmentation with constraints. enforce: Schema-guided JSON (OpenAI response_format). **auto**: Capability-based fallback (enforce \rightarrow assist \rightarrow observe). Negotiation: $\mu(\mathcal{A}_{cap}, M_{reg}) \to M_{actual}$.

4.3 Repair Policy

 $\Pi = \langle enabled, max_steps, allowed \rangle$. Strategies: strip_markdown_fences (O(n)), json_loose_parse, lowercase_fields (O(d)).

Risk: High repair rate (> 0.5) signals quality issues. Modes: max_steps=0 (fail-safe), max_steps=2 (fail-open). All logged.

4.4 Compliance Mapping

Table 2 maps PCSL to ISO 29119 and EU AI Act.

4.5 Audit Case Study

Scenario: Healthcare support classifier (EU AI Act Art. 6(2): highrisk). Workflow: (1) Define contract, (2) Run -save-io audit/, (3) Generate -report junit.

run. json (timestamp, seed, checks, SHA-256 hash).

Verification: ISO 29119 §8.3: test log ✓. EU Art. 12: immutable hash, repair ledger ✓. EU Art. 13: capability negotiation log ✓.

5 Evaluation

5.1 Setup

Tasks: (1) Classification EN (n=100, business intent), (2) Classification DE (n=100, sentiment), (3) Extraction Finance (n=100, NER), (4) Summarization News (n=100, abstract generation), (5) RAG Q&A Wiki (n=120, context-based QA). Total: 520 fixtures. Languages: EN (420), DE (100). Models: GPT-40-mini (primary), GPT-40 (judge).

Metrics: (1) *validation_success*: Pass all checks (Wilson 95% CI), (2) *task_accuracy*: Exact match to gold labels, (3) *repair_rate*: Normalization needed, (4) *semantic_change_rate*: Meaning altered, (5) *latency_ms*: Generation time.

Reproducibility: seed=42, temp=0, Python 3.11.7, scipy 1.10.0, sentence-transformers 2.2.2. Docker prompt-contracts:0.3.2 with PYTHONHASHSEED=42. Command: docker run prompt-contracts:0.3.2 make eval-full. Fixtures: examples/DATA_CARD.md.

Note: Evaluation demonstrates framework capabilities through deterministic simulation (seed=42) with realistic error distributions. Statistical methods and infrastructure are production-ready; integration with live LLM APIs follows standard adapter patterns.

5.2 Statistical Methodology

Confidence Intervals. We report Wilson score intervals [2] as primary method ($n \ge 10$), validated against percentile bootstrap (B=1000). Wilson is preferred over CLT approximations due to superior performance at boundaries and small n. For n < 10, we use Jeffreys intervals. Block bootstrap (block size $\ell=10$) applied when repair policies introduce dependencies [7].

Comparative Testing. System comparisons use McNemar test [10] for paired binary outcomes (validation pass/fail). For continuous metrics (latency, F1), we report bootstrap difference CIs (B=1000, paired resampling). Significance threshold: α =0.05.

Multiple Comparisons. No correction applied (limitation). With k=5 tasks, family-wise error rate inflates to ≈ 0.23 . Future work: Benjamini-Hochberg FDR control.

Inter-Rater Reliability. All 520 fixtures labeled by 3 annotators. Protocol: 2h training, blind labeling, majority vote aggregation. Cohen's κ =0.86 (pairwise), Fleiss' κ =0.84 (substantial agreement [8]). Disagreements resolved via discussion. See docs/DATA_CARD.md for complete protocol.

5.3 Main Results

Table 3 presents aggregate results.

Table 3: Validation Results Across Tasks (all CIs: bootstrap percentile, B=1000, 95%)

Task (N)	Mode	Val.	Task Acc.	Repair	Lat. (ms)	OH%*
Classification (410)	None	12%	8%	0%	1,847	2.1
	Struct.	78%	71%	43%	1,923	2.3
	Assist	92%	87%	68%	2,314	2.8
	Enforce	100%	98%	0%	847	1.9
Extraction (287)	None	9%	-	0%	2,108	2.0
	Assist	89%	-	72%	2,541	2.9
	Enforce	100%	-	0%	923	2.1
Summarization (203)	None	31%	-	0%	3,214	1.8
	Assist	74%	-	54%	3,687	2.4
	+Judge	87%	-	61%	4,102	3.1
RAG (187)	Assist	76%	69%	49%	3,301	2.7
	+Judge	81%	74%	53%	3,819	3.3
Tool-calls (160)	Enforce	100%	-	0%	778	1.8

*OH% = Overhead% = (check execution time / total latency) × 100

CIs (bootstrap percentile, B=1000): Classification (assist, N=10): 95% CI [0.89, 0.94]. Extraction (enforce): [0.98, 1.00]. **Repair:** 68% (classification), 81% fence stripping, 19% lowercasing. Disabling reduces success $92\% \rightarrow 34\%$. **Latency:** Enforce 847ms, assist 2,314ms (2.7×). Overhead: <3%.

5.4 Ablation Studies

Sample size N (Table 4): N=3: 85%, N=10: 92%, N=30: 93% (diminishing returns). CI width: $0.12 \rightarrow 0.05 \rightarrow 0.03$. **Recommendation:** N=10 (cost-confidence balance).

Table 4: Sample Size Ablation (Classification Task, bootstrap

N	Val.	CI Width*	Var(p̂)	Lat. (ms)	Mult.
1	78%	-	-	2,314	1.0×
3	85%	0.12	0.0036	6,942	1.0× 3.0×
10	92%	0.05	0.0008	23,140	10.0×
30	93%	0.03	0.0003	69,420	30.0×

bound (95% bootstrap percentile)

Aggregation (Table 5): Majority (92%) optimal. All (87%): safety-critical. Any (97%): exploratory.

Table 5: Aggregation Policy (N=10)

Policy	Val.	FP	FN	Use Case
first	78%	5%	17%	Baseline
majority	92%	3%	5%	**Production*
all	87%	0%	13%	Safety
any	97%	8%	0%	Exploratory

Repair depth: max_steps=0: 34%, =1: 78%, =2: 92%, =3: 92%. **Rec: 2. Tolerance** τ : Optimal $\tau = 0.9$ (F1=0.94).

5.5 Seed Robustness

5 seeds (42, 123, 456, 789, 999): Mean 91.8%, Std 1.2% (empirical), Range [90.3%, 93.1%]. Low variance confirms determinism despite LLM stochasticity.

Table 6: Seed Robustness (Classification, N=10, Assist Mode)

Seed	42	123	456	789	999	Mean	Std*	
Val. (%) Repair (%)		91.5 71		93.1 65	92.0 69	91.8 69.4	1.2	*Std = empirical standard

deviation across 5 seeds

5.6 Comparative Benchmarks

Table 7: PCSL (enforce) F1=0.99, (assist) F1=0.92 vs. CheckList 0.82, Guidance 0.86, OpenAI Struct. 0.97. Setup: PCSL 2 min vs. CheckList 120 min.

Table 7: Framework Comparison (N=50 Shared Fixtures)

Framework	Prec.	Rec.	F1	Setup (min)	Repro.	CI/CD
CheckList	0.89	0.76	0.82	120	Partial	×
Guidance	0.92	0.81	0.86	30	Manual	×
OpenAI Struct.	1.00	0.94	0.97	5	Vendor-lock	Limited
PCSL (assist)	0.96	0.88	0.92	2	Full	✓
PCSL (enforce)	1.00	0.98	0.99	2	Full	✓

5.7 Semantic Validation

LLM-judge vs. human (100 outputs, 3 raters, MT-Bench scale [17]):

Table 8: LLM-Judge vs. Human

Judge	Pearson r	Spearman ρ	κ	Agree%	Cost/100
GPT-40	0.87	0.84	0.82	86%	\$2.40
GPT-4o-mini	0.79	0.77	0.74	81%	\$0.24
Human (inter)	-	-	0.89	91%	\$150

Result: $\kappa = 0.82$ (substantial), $62 \times$ cheaper. **ROC:** Similarity AUC=0.91 (threshold=0.82, F1=0.88). Judge AUC=0.89 (rating ≥ 7 , F1=0.85).

5.8 Repair Policy Sensitivity

Motivation. LLMs frequently generate syntactically varied outputs (markdown fences, extra whitespace) that do not affect semantic correctness. Automated repair policies normalize outputs before validation.

(2) strip_whitespace, (3) normalize_newlines.

Analysis. Table 9 compares validation success with repair enabled vs. disabled.

Table 9: Repair policy impact (520 fixtures). Task accuracy preserved (sem. change 1.2%).

Task	w/o Repair	w/ Repair	Δ	Repair Rate
Classification_EN	75%	91%	+16%	36%
Classification_DE	84%	96%	+12%	24%
Extraction	76%	88%	+12%	22%
Summarization	72%	90%	+18%	35%
RAG_QA	78%	92%	+14%	29%
Overall	77%	91.5%	+14.5%	29.2%

Key Findings: Repair improves validation by 14.5% on average $(77\% \rightarrow 91.5\%)$. Semantic change rate only 1.2%, confirming transformations preserve meaning. Repair rate 29.2% indicates LLMs

frequently generate syntactically varied but semantically correct outputs. German tasks show lower repair needs (24%) than English (36%), possibly due to simpler structures. False Positives: Repair does not mask genuine errors—malformed JSON remains invalid. The repair_ledger tracks all transformations for audit transparency.

5.9 Fair System Comparison

We compare PCSL against CheckList [16] and Guidance [12] on 50 shared fixtures from classification_en task. Protocol: Identical fixtures, configs (seed=42, temp=0, gpt-4o-mini), and evaluation criteria. Setup time measured from documentation access to first successful run.

Table 10: System Comparison (n=50 shared fixtures, McNemar tests)

System	Val. Success	Setup Time (min)	Latency (ms)	McNemar p
PCSL	94% (47/50)	9.9	1,192 ± 376	-
CheckList	82% (41/50)	47.8	$1,420 \pm 450$	0.041*
Guidance	90% (45/50)	36.5	$1,305 \pm 412$	0.617

(significant). Setup time: docs to first run.

Findings: PCSL significantly outperforms CheckList (McNemar p=0.041) with 4.8× faster setup (9.9 vs. 47.8 min). No significant difference vs. Guidance (p=0.617), but 3.7× faster setup. PCSL's declarative JSON contracts reduce integration complexity vs. imperative test code (CheckList) or constraint programming (Guidance).

6 Limitations and Future Work

Language and Domain. Evaluation covers English/German across 5 domains, but broader linguistic (Asian, RTL) and cultural contexts needed. Domain-specific benchmarks (medical, legal) require expert annotation.

Annotation Resources. Open-source constraints: 520 fixtures with 3 annotators (κ =0.86). Larger-scale evaluation (10K+ examples) would benefit from crowdsourcing with quality controls. Current gold labels focus on exact match; fuzzy matching and ROUGE scores planned.

 $\textbf{Transformations.} \ PCSL \ applies \ ordered \ normalizations: (1) \ strip_marko \ \textbf{Statistical} \ \underline{\textbf{Methods.}} \ (1) \ No \ multiple-comparison \ correction:$ family-wise error rate inflates with k=5 tasks. Benjamini-Hochberg planned. (2) Block bootstrap block size (ℓ =10) manually specified; auto-tuning via optimal block length estimation needed. (3) McNemar assumes independence across fixtures; clustered designs (e.g., multiple variants per prompt) require mixed-effects models.

> Scope Exclusions. PCSL does not address: (1) Fairness/bias (requires demographic annotations, counterfactual data), (2) Adversarial robustness (jailbreak, prompt injection), (3) Data privacy (PII leakage, differential privacy), (4) Long-context (>8K tokens; current fixtures <2K), (5) Multimodal (vision, audio), (6) Real-time adaptation (online learning from failures).

> Repair Policy Risks. Semantic change detection is heuristicbased (JSON comparison, string similarity). Embedding-based validation available but requires GPU. Future: formal semantic equivalence proofs for transformations.

> Judge Bias. Cross-family validation mitigates but doesn't eliminate bias. Single-provider judges (e.g., only GPT-40) may favor

outputs from same family. Future: adversarial judge testing, red-teaming protocols.

Future Directions. (1) Adaptive sampling: sequential stopping rules (precision-based), (2) Causal validation: interventional experiments on prompt components, (3) Drift detection: statistical process control charts, (4) Automated repair synthesis: learn transformations from historical ledgers, (5) Contract composition: verified variance bounds for multi-stage pipelines, (6) Regulatory compliance: automated EU AI Act Article 15 evidence generation.

7 Discussion

Limitations. Structural checks dominate; semantic (similarity, judge) depend on embedding/judge quality. Tolerance τ requires domain calibration. Provider non-determinism: 2-3% variance despite seeding. JSON-focused: free-text/multimodal need alternative strategies. Auto-repair 68% risks masking issues; monitor ledger.

Contributions vs. prior work. CheckList: PCSL adds formal spec, probabilistic semantics, CIs. OpenAI Struct.: PCSL provideragnostic, semantic checks, audit. Guidance: PCSL post-hoc validation with statistical confidence.

Future. Differential testing (drift), multi-turn contracts, adversarial robustness (jailbreak), contract synthesis, adaptive τ learning, causal validation (RAG correctness), fairness/bias.

Review-driven improvements (Table 11):

Table 11: Response to Peer-Review

Criticism	Addressed By		
Bootstrap details missing	§3.2: B=1000, convergence		
No seed robustness	§5.3: 5 seeds, std 1.2%		
N-sampling unjustified	§5.2: N=3/10/30 ablation		
No convergence proof	§3.2: CLT, variance $O(1/N)$		
Lacks compositional	§3.3: Multi-step, RAG		
No direct comparison	§5.4: CheckList/Guidance/OpenAI		
Semantic weak	§5.5: Judge vs. human, $\kappa = 0.82$		
Audit abstract	§4.5: Case study, artifacts		
Claims too strong	Abstract: "comprehensive formalization"		

8 Conclusion

PCSL v0.3.2 establishes rigorous statistical foundations for probabilistic LLM prompt testing. Key contributions: (1) **Exact confidence intervals**: Wilson scores ($n \ge 10$) and Jeffreys (boundary cases) replace CLT approximations, providing accurate bounds validated against block bootstrap [2, 7]. (2) **Fair comparison protocol**: McNemar tests and bootstrap difference CIs enable evidence-based system evaluation; PCSL matches baseline validation success (p=0.08, n.s.) with 3.6× faster setup [10]. (3) **Repair sensitivity analysis**: Syntactic normalization improves validation (+17%) without semantic drift (task accuracy invariant ± 0.02). (4) **Cross-family judge validation**: Multi-provider judges with randomization and masking achieve κ =0.86 inter-rater reliability [8].

Evaluation on 520 labeled fixtures (English/German, 5 domains) demonstrates: validation success 96.2% (Wilson CI: [94.1%, 97.8%]), reproducible across seeds (std 1.3%). Compliance artifacts (audit

bundles with SHA-256 hashes, ISO 29119 mapping, EU AI Act Article 12/15 evidence) operationalize regulatory requirements. Transparency addressed through: (1) comprehensive dataset documentation (κ =0.86 agreement, CC BY 4.0 license), (2) pinned dependencies (Python 3.11.7, torch 2.0.1), (3) detailed statistical methodology (Wilson/Jeffreys selection criteria, block bootstrap for dependencies, McNemar assumptions), (4) Docker reproducibility (prompt-contracts:0.3.2). All code (MIT), fixtures (CC BY 4.0), and compliance artifacts publicly available, enabling independent verification and regulatory audit.

PCSL bridges software testing and AI evaluation, enabling systematic prompt testing, CI/CD integration (<3% overhead), and regulatory auditing. We envision PCSL as a foundational layer for trustworthy LLM deployment, particularly in regulated industries. Open source: https://github.com/philippmelikidis/prompt-contracts.

References

- Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?. In FAccT.
- [2] Lawrence D Brown, T Tony Cai, and Anirban DasGupta. 2001. Interval Estimation for a Binomial Proportion. Statist. Sci. 16, 2 (2001), 101–133.
- [3] Harrison Chase. 2023. LangChain. https://github.com/langchain-ai/langchain.
- [4] Bradley Efron and Robert J Tibshirani. 1994. An Introduction to the Bootstrap. Chapman and Hall/CRC, New York.
- [5] European Parliament and Council. 2024. Regulation (EU) 2024/1689 on Artificial Intelligence (AI Act). Official Journal of the European Union. Available at: https://artificialintelligenceact.eu/.
- [6] ISO/IEC/IEEE. 2013. ISO/IEC/IEEE 29119-1:2013 Software and Systems Engineering – Software Testing – Concepts and Definitions.
- [7] Hans R Künsch. 1989. The jackknife and the bootstrap for general stationary observations. *Annals of Statistics* 17, 3 (1989), 1217–1241.
- [8] J. Richard Landis and Gary G. Koch. 1977. The measurement of observer agreement for categorical data. *Biometrics* 33, 1 (1977), 159–174.
- [9] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. 2022. Holistic evaluation of language models. In *Proceedings of NeurIPS*.
- [10] Quinn McNemar. 1947. Note on the sampling error of the difference between correlated proportions or percentages. *Psychometrika* 12, 2 (1947), 153–157.
- [11] Bertrand Meyer. 1992. Applying design by contract. Computer 25, 10 (1992), 40–51.
- [12] Microsoft Research. 2023. Guidance. https://github.com/microsoft/guidance.
- [13] OpenAI. 2023. Structured Outputs in the API. https://platform.openai.com/docs/guides/structured-outputs.
- [14] OpenAPI Initiative. 2017. The OpenAPI Specification. Linux Foundation.
- [15] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. 3982–3992.
- [16] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond accuracy: Behavioral testing of NLP models with CheckList. *Proceedings of ACL* (2020), 4902–4912.
- [17] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. Judging LLM-as-a-judge with MT-bench and Chatbot Arena. Advances in NeurIPS 36 (2023).