

Module 8 Part 2 – Unsupervised Learning

Dimensionality Reduction

José Manuel García Nieto – University of Málaga

Table of contents

- Principal Component Analysis (PCA)
- Non-Negative Matrix Factorization (NMF)
- Linear Discriminant Analysis (LDA)
- Practical Notes

- Purposes of the principal component analysis (PCA)
 - Transform a set of correlated variables into another set of uncorrelated variables.
 - Get a new set of orthogonal vectors (principal components or PCs).
 - Order the new variables from the largest to the smallest variance.

Terminology

- a) Loading
 - Normalized principal component (PC)
 - There are as many loading vectors as the number of variables.
- b) Variance σ^2 (or standard deviation σ)
 - The principal components have associated variances.
- c) Transformed scores
 - Raw scores (original observations) represented using the PCs as new coordinate axes.

Principal Components

- Let's suppose that there are k variables or features X1, X2, ..., Xk.
- Then, the PC1, PC2, ..., PCk are linear combinations of the original features: $PCi=\alpha 1$, $iX1+\alpha 2$, $iX2+...+\alpha k$, iXk
- Conversely, the original features can be expressed in terms of the PCs: $Xi = \beta 1$, $iPC1 + \beta 2$, $iPC2 + ... + \beta k$, iPCk

- Principal Component and variance
 - Suppose a dataset with two variables that can be conveniently visualized on a plane:

- Principal Component and variance
 - We can find the PC1 and PC2 that are orthogonal to each other

- Principal Component and variance
 - PC1 is the direction of the largest variance, while PC2 is the direction of the next largest variance

• So, we have $\sigma 1 > \sigma 2$

- Transformed scores
 - The observations can be represented using the PC1 and PC2 as new coordinate axes

- Cumulative variance
 - As the principal components can be regarded as independent variables, the total variance is:

$$\sigma_{total}^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \cdots$$

• So, we can calculate the cumulative variance ratios (CVRs):

$$CVR_1 = \frac{\sigma_1^2}{\sigma_{total}^2}$$

$$CVR_2 = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_{total}^2}$$

$$CVR_3 = \frac{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}{\sigma_{total}^2}$$

$$\vdots$$

- Calculating the principal components
 - The PCs can also be obtained by eigenvalue decomposition (ED) of the covariance matrix.
 - The PCs can be calculated by singular value decomposition (SVD) of the data matrix.
 - If we standardize the variables, we would have the correlation instead of the covariance.
 - A covariance matrix and a correlation matrix

$$\begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 & \sigma_{34} \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_4^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \rho_{14} \\ \rho_{21} & 1 & \rho_{23} & \rho_{24} \\ \rho_{31} & \rho_{32} & 1 & \rho_{34} \\ \rho_{41} & \rho_{42} & \rho_{43} & 1 \end{bmatrix}$$

- Matrix Decompositions
 - Eigenvalue decomposition (ED)
 - A square matrix M is decomposed as $M=Q \Lambda Q^t$.
 - All the matrices have the same size: $Size(M) = Size(Q) = Size(\Lambda) = m \times m$.

- Eigenvalue decomposition (ED)
 - A square matrix M is decomposed as $M=Q \Lambda Q^t$.
 - Here, Λ is a diagonal matrix that contains the "eigenvalues."

$$\boldsymbol{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_m \end{bmatrix}$$

- A square matrix M is decomposed as $M=Q \Lambda Q^t$.
- The columns of ${m Q}$ are the so-called "eigenvectors."

$$Q = \begin{bmatrix} \uparrow & \cdots & \uparrow \\ q_1 & \cdots & q_m \\ \downarrow & \cdots & \downarrow \end{bmatrix}$$

• Between an eigenvector and its eigenvalue, we have the following relation:

$$Mq_i = \lambda_i q_i$$

• Between any two eigenvectors, we have the following orthogonality condition:

$$q_i \cdot q_j = \delta_{ij} \Leftrightarrow QQ^t = Q^tQ = I$$

- Dimensional Reduction
 - The number of principal components (PCs) is equal to the number of variables, say k.
 - The original variables X_i can be expressed in terms of the PCs:

$$X_i = \beta_{1,i} P C_1 + \beta_{2,i} P C_2 + \dots + \beta_{k,i} P C_k$$

- The PCs are ordered by variance: $\sigma_1^2 > \sigma_2^2 > \sigma_3^2 > \dots > \sigma_k^2$
- Thus, we can reduce dimension starting from the last PC, (q < k):

$$X_i \approx \beta_{1,i} PC_1 + \beta_{2,i} PC_2 + \dots + \beta_{q,i} PC_q$$
 "Reduced dimension input"

- ✓ Pros
 - ✓ We can simplify the data and reduce overfitting error.
 - ✓ We get only the most salient features.
- ✓ Cons
 - ✓ Loss of details
 - ✓ It is difficult to interpret intuitively.

- Dimensional Reduction
 - Suppose a dataset with two variables that can be conveniently visualized on a plane:

- Dimensional Reduction
 - The observations can be represented using the PC1 and PC2 as new coordinate axes:

- Dimensional Reduction
 - The observations can be represented using the PC1 and PC2 as new coordinate axes:

- Dimensional Reduction
 - We can eliminate the direction represented by PC_2 that corresponds to the smaller variance:

- Dimensional Reduction
 - Now, we can go back to the original coordinate system and show the "reduced dimensional input":

- Dimensional Reduction
 - Now, we can go back to the original coordinate system and show the "reduced dimensional input":

We can notice that details have been lost leaving only the most salient feature.

• Dimensional Reduction

- The total variance is: $\sigma_{total}^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \dots + \sigma_k^2$
- Then, we can calculate the cumulative variance ratios:

$$CVR_1 = \frac{\sigma_1^2}{\sigma_{total}^2}$$

$$CVR_2 = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_{total}^2}$$

$$CVR_3 = \frac{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}{\sigma_{total}^2}$$

$$\vdots$$

We can set a target CVR and determine the required number of PCs.

- High Dimension Visualization
 - PC1 and PC2 are the directions of the largest and the second largest variance.
 - PC1 and PC2 define the most spread-out plane on which to project the high dimensional coordinates

It is easy to implement as it uses only the first two components of the transformed scores.

• High dimension visualization

Projected onto the original variable set

Projected onto the plane defined by PC_1 and PC_2

Table of contents

- Principal Component Analysis (PCA)
- Non-Negative Matrix Factorization (NMF)
- Linear Discriminant Analysis (LDA)
- Practical Notes

Non-Negative Matrix Factorization (NMF)

- Dimensional Reduction
 - Down a large dataset into smaller meaningful parts while ensuring that all values remain non-negative
 - For a matrix A of dimensions $m \times n$ where each element is ≥ 0 NMF factorizes it into two matrices W and H with dimensions $m \times k$ and $k \times n$ respectively where both matrices contain only non-negative elements:

$$A_{m \times n} \approx W_{m \times k} H_{k \times n}$$

- A → Original input matrix (a linear combination of W and H)
- W → Feature matrix (basis components)
- H → Coefficient matrix (weights associated with W)
- $k \rightarrow Rank$ (dimensionality of the reduced representation where $k \le min(m, n)$)

• NMF helps identify hidden patterns in data by assuming that each data point can be represented as a combination of fundamental features found in W

Non-Negative Matrix Factorization (NMF)

• Dimensional Reduction

- NMF decomposes a data matrix A into two smaller matrices W and H using an iterative optimization process that minimizes reconstruction error:
 - 1. Initialization: Start with random non-negative values for W and H.
 - 2. Iterative Update: Modify W and H to minimize the difference between A and W × H.
 - 3. Stopping Criteria: The process stops when:
 - The reconstruction error stabilizes.
 - A set number of iterations is reached.

Common optimization techniques for NMF include:

- Multiplicative Update Rules: Ensures non-negativity by iteratively adjusting W and H.
- Alternating Least Squares (ALS): Solves for W while keeping H fixed, and vice versa, in an alternating manner.

Table of contents

- Principal Component Analysis (PCA)
- Non-Negative Matrix Factorization (NMF)
- Linear Discriminant Analysis (LDA)
- Practical Notes
 - A. Dimensional reduction with PCA.
 - i. Read in data and explore.
 - ii. Visualize the data.
 - iii. Visualize the reduced dimensional input by PCA.
 - iv. Analysis of the cumulative variance ratio (CVR).
 - B. Dimensional reduction with NMF.
 - i. Visualize the reduced dimensional input by NMF.
 - C. Optimized high dimensional visualization with PCA.
 - i. Simulate data.
 - ii. Visualize on the plane defined by PC1 and PC2.

Table of contents

- Principal Component Analysis (PCA)
- Non-Negative Matrix Factorization (NMF)
- Linear Discriminant Analysis (LDA)
- Practical Notes

Linear Discriminant Analysis (LDA)

- Dimensional Reduction
 - Reducing the dimensionality of data while retaining the most significant features for classification tasks
 - It works by finding the linear combinations of features that best separate the classes in the dataset
 - Separate two or more classes by converting higher-dimensional data space into a lower-dimensional space
 - Core Assumptions of LDA
 - Gaussian Distribution: Data within each class should follow a Gaussian distribution.
 - Equal Covariance Matrices: Covariance matrices of the different classes should be equal.
 - Linear Separability: A linear decision boundary should be sufficient to separate the classes.

Linear Discriminant Analysis (LDA)

- Dimensional Reduction
 - How does LDA work?
 - LDA works by finding directions in the feature space that best separate the classes.
 - It does this by maximizing the difference between the class means while minimizing the spread within each class.

- It uses both axes (X and Y) to generate a new axis in such a way that it maximizes the distance between the means of the two classes while minimizing the variation within each class.
- This transforms the dataset into a space where the classes are better separated.
- It shows how LDA creates a new axis to project the data and separate the two classes effectively along a linear path. But it fails when the mean of the distributions are shared as it becomes impossible for LDA to find a new axis that makes both classes linearly separable. -> In such cases, we use **non-linear discriminant analysis**.

Linear Discriminant Analysis (LDA)

- Dimensional Reduction
 - LDA versus PCA projections

- Extensions to LDA
 - Quadratic Discriminant Analysis (QDA): Each class uses its own estimate of variance (or covariance) allowing it to handle more complex relationships.
 - Flexible Discriminant Analysis (FDA): Uses non-linear combinations of inputs such as splines to handle non-linear separability.
 - Regularized Discriminant Analysis (RDA): Introduces regularization into the covariance estimate to prevent overfitting.

Table of contents

- Principal Component Analysis (PCA)
- Non-Negative Matrix Factorization (NMF)
- Linear Discriminant Analysis (LDA)
- Practical Notes