Project 7: Modeling Car Insurance Claims Outcome

Lawal's Project

2024-11-23

Table of contents

1	Project Overview	2
2	Task	3
3	Data Source	3
4	Tools	4
5	Methodology: Steps/Explanations	4
6	Data Analysis	7
7	Result/Findings	14
8	Recommendations	14
9	Limitations	14
10	Conclusion	14

11 References 15

Figure 1: car

1 Project Overview

Insurance companies invest a lot of time and money into optimizing their pricing and accurately estimating the likelihood that customers will make a claim. In many countries insurance it is a legal requirement to have car insurance in order to drive a vehicle on public roads, so the market is very large!

Knowing all of this, On the Road car insurance have requested your services in building a model to predict whether a customer will make a claim on their insurance during the policy period. As they have very little expertise and infrastructure for deploying and monitoring machine learning models, they've asked you to identify the single feature that results in the best performing model, as measured by accuracy, so they can start with a simple model in production.

They have supplied you with their customer data as a csv file called car_insurance.csv, along with a table detailing the column names and descriptions below.

Table 1: Customer data

Column	Description
id	Unique client identifier
age	Client's age:
gender	Client's gender:
driving_experience	Years the client has been driving:
education	Client's level of education:
income	Client's income level:
credit_score	Client's credit score (between zero and one)
vehicle_ownership	Client's vehicle ownership status:
vehcile_year	Year of vehicle registration:
married	Client's marital status:
children	Client's number of children
postal_code	Client's postal code
annual_mileage	Number of miles driven by the client each year
vehicle_type	Type of car:
speeding_violations	Total number of speeding violations received by the client
duis	Number of times the client has been caught driving under
	the influence of alcohol
past_accidents	Total number of previous accidents the client has been
	involved in
outcome	Whether the client made a claim on their car insurance
	(response variable):

2 Task

- Identify the single feature of the data that is the best predictor of whether a customer will put in a claim (the "outcome" column), excluding the "id" column.
- Store as a DataFrame called best_feature_df, containing columns named "best_feature" and "best_accuracy" with the name of the feature with the highest accuracy, and the respective accuracy score.

3 Data Source

Data: The primary data used for this analysis is the car_insurance.csv, which can be downloaded here. See Table 1 for the column names and descriptions.

4 Tools

Jupyter lab

5 Methodology: Steps/Explanations

The necessary libraries was imported, which were Pandas and logit from statsmodels.formula.api

Reading in and exploring the dataset, including imputation of missing values

- The Original dataset was loaded, named car.
- The first function, explore, was designed to help analyze and clean a dataset by providing a detailed overview of its structure and content, and it also optionally imputes missing values. Here's a step-by-step explanation:
- 1. Function creation and its arguments: data, the DataFrame to analyze; head_rows, the number of rows to display from the start of the DataFrame (default: 5); group_by_col, the column used to group data for imputing missing values (default: None); cols_to_impute, the list of columns where missing values will be filled with the group mean (default: None).

def explore(data, head_rows=5, group_by_col=None, cols_to_impute=None):

- 2. Function Task 1: Prints information about the DataFrame, such as:
- Number of rows and columns.
- Data types of each column.
- Non-null counts for each column.

```
print("\n--- DataFrame Info ---\n")
data.info()
```

- 3. Function Task 2: Displays summary statistics for all columns, including:
- For numerical data: Mean, standard deviation, min, max, and percentiles.
- For categorical data: Frequency counts (mode) and unique counts.

```
print("\n--- Summary Statistics ---\n")
print(data.describe(include='all'))
```

3. **Function Task 3**: Displays the first head_rows rows (default: 5) of the DataFrame to give a preview of the data.

```
print(f"\n--- First {head_rows} Rows ---\n")
print(data.head(head_rows))
```

4. **Function Task 4**: Iterates over each column and prints the unique values present in it. Helps understand the distinct data points for each column.

```
print("\n--- Unique Values ---\n")
for col in data.columns:
    print(f"{col}: {data[col].unique()}")
```

- 5. Function Task 5: Fills missing values (NaN) in the specified columns (cols_to_impute) by grouping data based on group_by_col and calculating the mean for each group.
- Steps:
 - Groups the data by the column specified in group_by_col.
 - Calculates the mean for the columns listed in cols_to_impute for each group.
 - Fills missing values in each column by mapping the group means to the corresponding rows.
- Error Handling:
 - Ensures the function doesn't crash if the specified column is not found or if an error occurs during imputation.

```
if group_by_col and cols_to_impute:
    print("\n--- Imputing Missing Values ---\n")
    try:
        group_means = data.groupby(group_by_col)[cols_to_impute].mean().to_dict()
        for col in cols_to_impute:
            if col in data.columns:
                print(f"Imputing missing values in '{col}' based on group means of '{group_by_col}
                 data[col] = data[col].fillna(data[group_by_col].map(group_means[col]))
        else:
                 print(f"Column '{col}' not found in the dataset.")
    except Exception as e:
```

6. **Function Task 6**: After the imputation, checks and prints the count of missing values in each column to verify if gaps were successfully filled.

print(f"Error while imputing missing values: {e}")

```
print("\n--- Any missing values again ? ---\n")
print(data.isna().sum())
```

Finding the best performing model, with the highest accuracy.

- The second function, best_logmodel, was designed to identify the single best feature in a dataset for predicting a binary outcome using logistic regression with the statsmodels library. Here's a detailed explanation:
- 1. Function creation and its arguments: data, the input dataset for modeling as a pandas DataFrame; outcome_column, the target column (dependent variable) representing the outcome being predicted (default: 'outcome'); id_column, a unique identifier column to exclude from the analysis (default: 'id').

```
def best logmodel(data, outcome column='outcome', id column='id'):
```

2. Function Task: Creates a new DataFrame (data1) by removing the id_column (not predictive) and the outcome_column (target variable) from the list of features. The remaining columns are treated as potential predictors.

```
data1 = data.drop(columns=[id_column, outcome_column])
```

3. **Initialize Tracking Variables**: best_feature, placeholder for the name of the feature with the highest accuracy and best_accuracy, tracks the best accuracy score encountered during the iteration.

```
best_feature = None
best_accuracy = 0
```

4. Loop Through Each Feature: Iterates through all the columns (features) in data1 to evaluate their predictive power for the outcome_column.

```
for col in data1.columns:
```

5. Create the Logistic Regression Formula: Constructs a formula for logistic regression in the form "outcome_column ~ feature_column".

```
formula = f"{outcome_column} ~ {col}"
```

6. **Fit Logistic Regression Model**: Fits a logistic regression model for the current feature using the logit function from statsmodels. The 'disp=False argument suppresses output during model fitting.

```
model = logit(formula=formula, data=data).fit(disp=False)
```

7. **Generate Confusion Matrix**: Produces a confusion matrix for the logistic regression model's predictions.

```
confusion_matrix = model.pred_table()
```

• Confusion Matrix Layout:

```
[[TN, FP], # TN = True Negatives, FP = False Positives
[FN, TP]] # FN = False Negatives, TP = True Positives
```

- 8. Calculates the model's accuracy from the confusion matrix:
- TP: True Positives (correctly predicted positives).
- TN: True Negatives (correctly predicted negatives).
- T: Total number of predictions.
- Accuracy Formula:

$$\label{eq:accuracy} Accuracy = \frac{TP + TN}{Total\ Predictions}$$

9. **Update the Best Feature**: Compares the current feature's accuracy with the best accuracy seen so far. If the current feature has a higher accuracy, update best_feature and best_accuracy.

```
if accuracy > best_accuracy:
   best_feature = col
   best_accuracy = accuracy
```

- 10. Store Results in a DataFrame: Summarizes the results into a pandas DataFrame with:
 - best_feature: The name of the feature with the highest accuracy.
 - best_accuracy: The corresponding accuracy score.

```
best_feature_df = pd.DataFrame({
    "best_feature": [best_feature],
    "best_accuracy": [best_accuracy]
})
```

11. Return the Results: Returns the DataFrame so that the results can be used or displayed.

```
return best_feature_df
```

6 Data Analysis

```
# Import required modules
import pandas as pd
from statsmodels.formula.api import logit

# Import the car_insurance csv file and store as object 'car'
car = pd.read_csv("car_insurance.csv")

# Exploring the DataFrame by creating the function 'explore'
```

```
def explore(data, head_rows=5, group_by_col=None, cols_to_impute=None):
   Explores the given DataFrame by displaying basic information, summary statistics,
    the first few rows, unique values, and imputes missing values with group means if specified.
   Parameters:
        data (pd.DataFrame): The DataFrame to explore.
        head_rows (int): Number of rows to display for the head of the DataFrame. Default is 5.
        group_by_col (str): Column name to group by for imputing missing values. Default is None.
        cols_to_impute (list): List of column names to impute missing values. Default is None.
   print("\n--- DataFrame Info ---\n")
   data.info()
   print("\n--- Summary Statistics ---\n")
   print(data.describe(include='all')) # Include all data types in describe()
   print(f"\n--- First {head_rows} Rows ---\n")
   print(data.head(head_rows))
   print("\n--- Unique Values ---\n")
   for col in data.columns:
       print(f"{col}: {data[col].unique()}")
    # Impute missing values if group_by_col and cols_to_impute are specified
    if group_by_col and cols_to_impute:
       print("\n--- Imputing Missing Values ---\n")
       try:
            group_means = data.groupby(group_by_col)[cols_to_impute].mean().to_dict() # Group me
            for col in cols to impute:
                if col in data.columns:
                    print(f"Imputing missing values in '{col}' based on group means of '{group_by
                    data[col] = data[col].fillna(data[group_by_col].map(group_means[col]))
                else:
                    print(f"Column '{col}' not found in the dataset.")
        except Exception as e:
            print(f"Error while imputing missing values: {e}")
   print("\n--- Any missing values again ? ---\n")
   print(data.isna().sum())
# Example usage
# explore(your_data, group_by_col="outcome", cols_to_impute=["credit_score", "annual_mileage"])
```

```
# Use 'explore' function to analyze and clean the car dataset by providing a detailed overview of
explore(car, group_by_col="outcome", cols_to_impute=["credit_score", "annual_mileage"])
# Create a function, 'best_logmodel', to identify the single best feature in the dataset for pred
def best_logmodel(data, outcome_column='outcome', id_column='id'):
    Identifies the single best feature for predicting the outcome column using logistic regression
    with statsmodels. Calculates accuracy directly from the confusion matrix.
   Parameters:
        data (pd.DataFrame): The dataset containing features and the outcome column.
        outcome_column (str): The name of the target column.
        id_column (str): The name of the column to exclude from analysis.
   Returns:
       pd.DataFrame: A DataFrame with the best feature and its accuracy score.
    # Exclude ID and outcome columns from columns set
   data1 = data.drop(columns=[id_column, outcome_column])
   best_feature = None
   best_accuracy = 0
    # Iterate through each columns
   for col in data1.columns:
        # Create formula for logistic regression
        formula = f"{outcome_column} ~ {col}"
        # Fit logistic regression model on the entire dataset
        model = logit(formula=formula, data=data).fit(disp=False)
        # Generate confusion matrix using pred_table()
        confusion_matrix = model.pred_table()
        # Calculate accuracy from confusion matrix
        TP = confusion_matrix[1, 1]
        TN = confusion_matrix[0, 0]
        T = confusion_matrix.sum()
        accuracy = (TP + TN) / T
        # Update the best feature if this one is better
        if accuracy > best_accuracy:
            best feature = col
```

```
best_accuracy = accuracy
    # Store results in a DataFrame
    best_feature_df = pd.DataFrame({
        "best_feature": [best_feature],
        "best_accuracy": [best_accuracy]
    })
    return best_feature_df
# Example usage
# best_feature_df = best_logmodel(your_data)
# print(best_feature_df)
# Use the function, 'best_logmodel', to identify the single best feature in the dataset for predi
best_feature_df = best_logmodel(car)
print(best_feature_df)
--- DataFrame Info ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 18 columns):
    Column
                         Non-Null Count Dtype
                         _____
 0
    id
                         10000 non-null int64
 1
    age
                         10000 non-null int64
    gender
                         10000 non-null int64
    driving_experience
                         10000 non-null object
    education
                         10000 non-null object
 5
    income
                         10000 non-null object
 6
    credit_score
                         9018 non-null
                                         float64
 7
    vehicle_ownership
                         10000 non-null float64
    vehicle_year
                         10000 non-null object
    married
                         10000 non-null float64
                         10000 non-null float64
 10 children
 11 postal_code
                         10000 non-null int64
 12 annual_mileage
                         9043 non-null
                                         float64
 13 vehicle_type
                         10000 non-null object
```

10000 non-null int64

10000 non-null int64

14 speeding_violations 10000 non-null int64

15 duis

16 past_accidents

17 outcome 10000 non-null float64

dtypes: float64(6), int64(7), object(5)

memory usage: 1.4+ MB

--- Summary Statistics ---

	io	d	a	ge	geno	der	driving_expe	rien	ıce \	
count	10000.00000	0 1000	0.0000	00	10000.0000	000		100	00	
unique	Nal	N	NaN		NaN		4		4	
top	Nal	N	NaN		NaN		0-9y		·9y	
freq	Nal	N	NaN		NaN		3530		30	
mean	500521.90680	0	1.489500		0.499000			laN		
std	290030.76875	8	1.025278		0.500024			IaN		
min	101.00000	0	0.000000		0.000000			IaN		
25%	249638.50000	0	1.000000		0.000000			IaN		
50%			1.000000		0.000000			IaN		
75%	753974.50000	0	2.000000		1.000000			IaN		
max	999976.00000	0	3.000000		1.000000			IaN		
	education	i	ncome	cr	edit_score	ve	ehicle_owners	hip	\	
count	10000		10000	9	018.000000		10000.000	000		
unique	3		4		NaN			NaN		
top	high school	upper	class		NaN			NaN		
freq	4157		4336		NaN			NaN		
mean	NaN		${\tt NaN}$		0.515813		0.697	000		
std	NaN		${\tt NaN}$		0.137688		0.459	578		
min	NaN		NaN		0.053358		0.000			
25%	NaN		${\tt NaN}$		0.417191		0.000	000		
50%	NaN		NaN		0.525033		1.000000			
75%	NaN		NaN		0.618312		1.000			
max	NaN		NaN		0.960819		1.000			
	vehicle_year	m	arried		children	ı	postal_code	ann	${\tt ual_mileag}$	e \
count	10000	10000.	000000	1	0000.000000) 1	10000.000000		9043.00000	0
unique	2		NaN		NaN	V	NaN		Na	.N
top	before 2015		NaN		NaN	V	NaN		Na	.N
freq	6967		NaN		NaN	V	NaN		Na	.N
mean	NaN	0.	498200		0.688800) 1	19864.548400	1	1697.00320	7
std	NaN	0.	500022		0.463008	3 1	18915.613855		2818.43452	8
min	NaN	0.	000000		0.00000) 1	10238.000000		2000.00000	0
25%	NaN	0.	000000		0.00000) 1	10238.000000	1	.0000.00000	0
50%	NaN	0.	000000		1.000000) 1	10238.000000	1	2000.00000	0
75%	NaN	1.	000000		1.000000) 3	32765.000000	1	4000.00000	0
max	NaN	1.	000000		1.000000) 9	92101.000000	2	2000.00000	0

```
vehicle_type
                      speeding_violations
                                                    duis
                                                          past_accidents
               10000
                              10000.000000
                                             10000.00000
                                                             10000.000000
count
unique
                                       NaN
                                                     NaN
                                                                       NaN
               sedan
                                       NaN
                                                     NaN
                                                                      NaN
top
                9523
freq
                                       NaN
                                                     NaN
                                                                      NaN
                 NaN
                                  1.482900
                                                 0.23920
                                                                 1.056300
mean
                 NaN
std
                                  2.241966
                                                 0.55499
                                                                 1.652454
min
                 NaN
                                  0.000000
                                                 0.00000
                                                                 0.000000
25%
                 NaN
                                  0.000000
                                                 0.00000
                                                                 0.000000
50%
                 NaN
                                  0.000000
                                                 0.00000
                                                                 0.000000
                 NaN
                                  2,000000
                                                 0.00000
                                                                 2,000000
75%
                 NaN
                                 22.000000
                                                 6.00000
                                                                15.000000
max
              outcome
        10000.000000
count
unique
                  NaN
top
                  NaN
freq
                  NaN
mean
             0.313300
std
             0.463858
min
             0.000000
25%
             0.000000
50%
             0.000000
75%
             1.000000
             1.000000
max
--- First 5 Rows ---
       id
                 gender driving_experience
                                                education
                                                                   income
   569520
                      0
                                       0-9v
                                             high school
                                                              upper class
   750365
              0
                      1
                                       0-9y
                                                     none
                                                                  poverty
                      0
   199901
              0
                                       0-9y
                                             high school
                                                            working class
                                               university
  478866
              0
                      1
                                       0-9y
                                                            working class
  731664
                      1
              1
                                     10-19y
                                                     none
                                                            working class
                  vehicle_ownership vehicle_year
                                                    married
                                                              children \
   credit_score
0
                                 1.0
                                       after 2015
                                                         0.0
                                                                   1.0
       0.629027
                                 0.0
                                      before 2015
                                                         0.0
                                                                   0.0
1
       0.357757
2
       0.493146
                                 1.0
                                      before 2015
                                                         0.0
                                                                   0.0
3
       0.206013
                                 1.0
                                      before 2015
                                                         0.0
                                                                   1.0
4
       0.388366
                                      before 2015
                                                         0.0
                                                                   0.0
                                 1.0
                 annual_mileage vehicle_type speeding_violations
                                                                      duis
   postal code
0
         10238
                        12000.0
                                        sedan
                                                                   0
                                                                          0
                                                                   0
                                                                          0
                        16000.0
1
         10238
                                        sedan
```

```
2
         10238
                       11000.0
                                      sedan
                                                               0
                                                                     0
3
         32765
                       11000.0
                                      sedan
                                                               0
                                                                     0
4
         32765
                       12000.0
                                      sedan
                                                               2
                                                                     0
   past_accidents outcome
0
                0
                       0.0
1
                       1.0
                0
2
                0
                       0.0
3
                       0.0
                0
4
                1
                       1.0
--- Unique Values ---
id: [569520 750365 199901 ... 468409 903459 442696]
age: [3 0 1 2]
gender: [0 1]
driving_experience: ['0-9y' '10-19y' '20-29y' '30y+']
education: ['high school' 'none' 'university']
income: ['upper class' 'poverty' 'working class' 'middle class']
credit_score: [0.62902731 0.35775712 0.49314579 ... 0.47094023 0.36418478 0.43522478]
vehicle_ownership: [1. 0.]
vehicle_year: ['after 2015' 'before 2015']
married: [0. 1.]
children: [1. 0.]
postal_code: [10238 32765 92101 21217]
annual_mileage: [12000. 16000. 11000. 13000. 14000. 10000. 8000.
                                                                     nan 18000. 17000.
  7000. 15000. 9000. 5000. 6000. 19000. 4000. 3000. 2000. 20000.
 21000. 22000.1
vehicle_type: ['sedan' 'sports car']
speeding_violations: [ 0 2 3 7 6 4 10 13 1 5 9 8 12 11 15 17 19 18 16 14 22]
duis: [0 2 1 3 4 5 6]
past_accidents: [ 0 1 3 7 2 5 4 6 8 10 11 9 12 14 15]
outcome: [0. 1.]
--- Imputing Missing Values ---
Imputing missing values in 'credit_score' based on group means of 'outcome'
Imputing missing values in 'annual_mileage' based on group means of 'outcome'
--- Any missing values again ? ---
id
                       0
                       0
age
                       0
gender
driving experience
```

```
education
                         0
                         0
income
credit_score
                         0
vehicle_ownership
                         0
vehicle_year
                         0
                         0
married
                         0
children
postal_code
                         0
annual_mileage
                         0
                         0
vehicle_type
speeding_violations
                         0
                         0
duis
                         0
past_accidents
outcome
dtype: int64
         best_feature
                        best_accuracy
```

driving_experience 0.7771

7 Result/Findings

• The analysis identified driving experience (indicating the years the client has been driving) as the best predictor of whether a customer will file a claim, with an accuracy score of 77.7%. This indicates that the model correctly predicted claims and non-claims in approximately 78 out of 100 cases, making this feature a significant factor in claim prediction.

8 Recommendations

None

9 Limitations

None

10 Conclusion

My analysis identified driving_experience (years of driving) as the strongest predictor of claim submissions, achieving an accuracy score of 77.7%. This result highlights the importance of driving experience in assessing customer risk. The model correctly classified claims and non-claims in 78 out of 100 cases.

Logistic regression was used to evaluate the predictive power of individual features, and accuracy was calculated using a confusion matrix. The prominence of driving experience suggests that more experienced drivers may exhibit different risk profiles, which could guide targeted policy offerings.

I recommend incorporating this insight into your risk assessment models.

11 References

- 1. For loop in Intermediate Python Course for Associate Data Scientist in Python Carrer Track in DataCamp Inc by Hugo Bowne-Henderson.
- 2. Introduction to functions in Python in Intermediate Python Course for Associate Data Scientist in Python Carrer Track in DataCamp Inc by Hugo Bowne-Henderson.
- 3. Introduction to Regression with statsmodels in Python in Intermediate Python Course for Associate Data Scientist in Python Carrer Track in DataCamp Inc by Maarten Van den Broeck.
- 4. Exploratory Data Analysis in Python in Intermediate Python Course for Associate Data Scientist in Python Carrer Track in DataCamp Inc by Hugo Bowne-Henderson.
- 5. Python For Data Analysis 3E (Online) by Wes Mckinney Click here to preview.