## **Assignment 3: Regression & Optimisation**

# Szymon Pawlica

### R00187226

| Task 1:                                                                                                         |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Lines [15-30]                                                                                                   |  |  |  |  |  |
| Split data into target and features. Output the minimum and maximum heating and cooling loads from the dataset. |  |  |  |  |  |
| Task 2:                                                                                                         |  |  |  |  |  |
| Lines [33-46]                                                                                                   |  |  |  |  |  |
| Determine the correct size for the parameter vector using 8 for loops as there are 8 feature vectors.           |  |  |  |  |  |
| Lines [49-72]                                                                                                   |  |  |  |  |  |
| Calculate the estimated target vector using 8 for loops as there are 8 feature vectors.                         |  |  |  |  |  |
|                                                                                                                 |  |  |  |  |  |
| Task 3:                                                                                                         |  |  |  |  |  |
| Lines [75-91]                                                                                                   |  |  |  |  |  |
| Comments included in the code.                                                                                  |  |  |  |  |  |
|                                                                                                                 |  |  |  |  |  |
| Task 4:                                                                                                         |  |  |  |  |  |
| Lines [94-104]                                                                                                  |  |  |  |  |  |
| Comments included in the code.                                                                                  |  |  |  |  |  |
|                                                                                                                 |  |  |  |  |  |
|                                                                                                                 |  |  |  |  |  |
| Task 5:                                                                                                         |  |  |  |  |  |
| Lines [107-119]                                                                                                 |  |  |  |  |  |
| Comments included in the code.                                                                                  |  |  |  |  |  |
|                                                                                                                 |  |  |  |  |  |

#### Task 6:

#### Lines [122-180]

- [125] Split the targets into heating and cooling targets.
- [133] Run KFold for degrees 0, 1, 2.
- [140, 145] Get the training and testing features and targets.
- [149] Find the p0 for the heating load and cooling load.
- [153] Calculate the predictions for the test data.
- [157] Find the absolute difference between predictions and actual heating and cooling loads.
- [167] Find the mean of the absolute difference for each degree.
- [171] Find the best degree.

#### **Task 7:**

#### Lines [182-201]

[183] Calculate the best prediction using the full dataset and the best performing degree.

[189-201] Plot the predicted heating and cooling loads against their true loads.

#### Sample output:

Minimum heating 6.01.

Maximum heating 43.1.

Minimum cooling 10.9.

Maximum cooling 48.03.

Mean absolute difference between estimated Heating Loads [9.1571166955076, 2.107095917822175, 0.8023662249294148]

Mean absolute difference between estimated Cooling Loads [8.588373873879465, 2.266495969478166, 1.5243382275612076]

Best Degree for Heating Loads: 2

Best Degree for Cooling Loads: 2



