Branch: CSE/IT

Discrete Mathematics Set Theory

DPP-06

[NAT]

- 1. Consider the following statement about relations on a set A, where |A| = n. How many of the following statements are TRUE?
 - I. If R is a relation on A and $|R| \ge n$, then R is reflexive.
 - II. If R_1 , R_2 are relations on A and $R_2 \supseteq R_1$, then R_1 is reflexive $\Rightarrow R_2$ is reflexive
 - III. If R_1 , R_2 are relations on A and $R_2 \supseteq R_1$, then R_1 is symmetric $\Rightarrow R_2$ is symmetric
 - **IV.** If R_1 , R_2 are relations on A and $R_2 \supseteq R_1$, then R_1 is anti-symmetric $\Rightarrow R_2$ is anti-symmetric
 - **V.** If R_1 , R_2 are relations on A and $R_2 \supseteq R_1$, then R_1 is transitive $\Rightarrow R_2$ is transitive
 - **VI.** If R_1 , R_2 are relations on A and $R_2 \supseteq R_1$, then R_2 is reflexive $\Rightarrow R_1$ is reflexive
 - **VII.** If R_1 , R_2 are relations on A and $R_2 \supseteq R_1$, then R_2 is symmetric $\Rightarrow R_1$ is symmetric
 - **VIII.** If R_1 , R_2 are relations on A and $R_2 \supseteq R_1$, then R_2 is anti-symmetric $\Rightarrow R_1$ is anti-symmetric
 - **IX.** If R_1 , R_2 are relations on A and $R_2 \supseteq R_1$, then R_2 is transitive $\Rightarrow R_1$ is transitive
 - **X.** If R is an equivalence relation A, then $n \le |R| \le n^2$

[MSQ]

- 2. Consider A = {w, x, y, z}, then which of the following options is/are correct for the given set?
 - (a) The number of symmetric relations is 2^{10}
 - (b) The number of symmetric relations which contain (x, y) is 2^9

(c) The number of relations which is anti-symmetric and contain (x, y) is $2^4 \cdot 3^5$

Batch: Hinglish

(d) The number of relations which is reflexive, symmetric and anti-symmetric is 1

[MCQ]

- 3. Let A be a set with |A| = n, and let R be a relation on A that is antisymmetric, then which of the following option is correct?
 - (a) The maximum value for |R| is $(n^2 + n)/2$.
 - (b) The number of anti-symmetric relations have size $\mid R \mid \text{is } 2^{(n^2+n)/2} \, .$
 - (c) Both a and b
 - (d) None of these.

[MCQ]

- **4.** Let A be a set with |A| = n, and let R be an equivalence relation on A with |R| = r. Which of the following is TURE for the given relation R?
 - (a) r n will be always even.
 - (b) r n will be always odd.
 - (c) Both a and b
 - (d) None of these.

[NAT]

5. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. How many symmetric relations on A contain exactly four ordered pairs?

Answer Key

1. (3)

2. (a, b, c, d)

3. (c)

4. (a)

5. (1232)

Hints and Solutions

1. (3)

- (a) False: Let $A = \{1, 2\}$ and $R = \{(1, 2), (2, 1)\}$.
- (b) (i) Reflexive: True
 - (ii) Symmetric: False. Let $A = \{1, 2\}$, $R_1 = \{(1, 1)\}, R_2 = \{(1, 1), (1, 2)\}.$
 - (iii) Antisymmetric and Transitive: False. Let $A = \{1, 2\}, R_1 = \{(1, 2)\}, R_2 = \{(1, 2), (2, 1)\}.$
- (c) (i) Reflexive: False. Let $A = \{1, 2\}$, $R_1 = \{(1, 1)\}, R_2 = \{(1, 1), (2, 2)\}.$
 - (ii) Symmetric: False. Let $A = \{1, 2\}$, $R_1 = \{(1, 2)\}, R_2 = \{(1, 2), (2, 1)\}.$
 - (iii) Antisymmetric: True
 - (iv) Transitive: False. Let $A = \{1, 2\}$, $R_1 = \{(1, 2), (2, 1)\}$, $R_2 = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$.

2. (a, b, c, d)

Option a: True.

The number of symmetric relations is 2^{10}

Option b: True.

The number of symmetric relations which contain (x, y) is 2^9

Option c: True.

The number of relations which is anti-symmetric and contain (x, y) is $2^4 \cdot 3^5$

Option d: True.

The number of relations which is reflexive, symmetric and anti-symmetric is 1

3. (c)

Option a:

There are n ordered pairs of the form (x, x), $x \in A$. For each of the $(n^2 - n)/2$ sets $\{(x, y), (y, x)\}$ of ordered pairs where $x, y \in A$, $x \neq y$, one element is chosen. This results in a maximum value of $n + (n^2 - n)/2 = (n^2 + n)/2$.

Option b:

The number of anti-symmetric relations have size | $R \mid is \ 2^{(n^2+n)/2} \, .$

Hence, both option a and b is correct.

4. (a)

r-n counts the elements in R of the form (a, b), $a \neq b$. Since R is symmetric, r-n will be always even.

5. (1232)

An element of your relation can come from one of the following two ways:

- 1. Choice of an unordered pair $\{i, j\}$, which gives you two elements of your relation, namely the ordered pairs (i, j) and (j, i) (to maintain symmetry). The number of unordered pairs to choose from is $\binom{8}{2} = 28$
- 2. A singleton {i}, which gives you only one element of your relation, namely (i, i). The number of singletons to choose from is obviously 8.

One can get 4 elements in the relation in one of the following three ways:

- 1. Choice of 2 unordered pairs, 0 singletons in $\binom{28}{2}\binom{8}{0}$ ways
- 2. Choice of 1 unordered pair, 2 singletons in $\binom{28}{1}\binom{8}{2}$ ways
- 3. Choice of 0 unordered pairs, 4 singletons in $\binom{28}{0}\binom{8}{4}$ ways

So, the total is
$$\binom{28}{2}\binom{8}{0} + \binom{28}{1}\binom{8}{2} + \binom{28}{0}\binom{8}{4}$$

= 1232

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

