Devoir Maison - Théorème de Pythagore

Thomas Filasto

20 mars 2023

Présentation du sujet

Étant donné un triangle, on souhaite vérifier s'il est rectangle. Un triangle est caractérisé par la donnée de ses trois sommets. Soit T un triangle ayant pour sommets les points P_1 , P_2 et P_3 dont le côté le plus grand est $[P_1, P_2]$, d'après le théorème de Pythagore, T est rectangle si et seulement si

$$d(P_1, P_2)^2 = d(P_1, P_3)^2 + d(P_2, P_3)^2$$

On en déduit que T est rectangle si et seulement si il existe P_i et P_j deux de ses sommets distincts, tels que $d(P_i,P_j)^2 = d(P_i,P_k)^2 + d(P_j,P_k)^2$ où P_k est le troisième sommet. Par conséquent :

T est rectangle
$$\Leftrightarrow$$

$$d(P_1,P_2)^2 = d(P_1,P_3)^2 + d(P_2,P_3)^2 \bigvee d(P_1,P_2)^2 = d(P_1,P_3)^2 + d(P_2,P_3)^2 \bigvee d(P_1,P_2)^2 = d(P_1,P_3)^2 + d(P_2,P_3)^2$$

Grammaire du langage

Opérations arithmétiques

 $\forall n_1, n_2 \in \mathbb{N}, \forall X \in AExp,$

$$\begin{array}{cccc} \overline{n} \rightarrow n_1 & \{X\} \rightarrow X & \overline{n}_1 \overline{+} \overline{n}_2 \rightarrow n_1 + n_2 & \overline{n}_1 \overline{-} \overline{n}_2 \rightarrow n_1 - n_2 \\ \overline{n}_1 * \overline{n}_2 \rightarrow n_1 \times n_2 & Carre & n_1 \rightarrow n_1^2 \end{array}$$

Opérations sur les flottants

 $\forall x, y \in \mathbb{R}, \forall X \in FExp,$

$$\begin{array}{ll} \overline{x} \to x & \{\{X\}\} \to X & \overline{x} + .\overline{y} \to x + y \\ \overline{x} * .\overline{y} \to x \times y & Carre. \ x \to x^2 \end{array} \qquad \overline{x} - .\overline{y} \to x - y$$

Opérations booléennes

```
\forall u \in Bool,
```

$$\begin{array}{lll} True\&\&u\to u & False\&\&u\to False & True||u\to True \\ False||u\to u & \sim True\to False & \sim False\to True \\ \forall n_1,n_2\in\mathbb{N}, & \\ \overline{n_1}\overline{==}\overline{n_2}\to n_1=n_2 & \overline{n_1}\overline{=/=}\overline{n_2}\to n_1\neq n_2 \end{array}$$

Opérations testant si un triangle et rectangle

- . Distance. P1 P3 + .Distance. P2 P3 || Distance. P1 P3 ==
- . Distance. P1 P2 + .Distance. P2 P3 || Distance. P2 P3 ==
- . Distance. P1 P2 + .Distance. P2 P3

Remarques

- J'ai fait quatre tests sur les opérateurs Pythagore et Pythagore. mais ils ne fonctionnent pas, j'ai des freezers qui ne se simplifient pas mais je n'ai pas trouvé pourquoi.
- J'ai fait des tests sur les autres opérateurs qui fonctionnent.
- Les principaux problèmes que j'ai rencontré ont été des erreurs à la compilation que j'ai eu du mal à résoudre. En particulier, j'ai eu besoin de parenthèses mais mon code ne marchait pas avec des parenthèses.
 J'ai dû utiliser des accolades à la place et ça a marché. J'ai également eu plusieurs problèmes de priorité et avec [strict].