Device-Independent Quantification of Quantum Resources

Alastair A. Abbott^{1,2}, Nicolas Brunner², Ivan Šupić^{2,3}, and Roope Uola²

¹Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
²Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
³CNRS, LIP6, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

Motivation and Goals

- Quantum resources (states, measurements, channels, ...) provide advantages that can be operationally quantified
- Quantifying a given resource typically requires well characterised states and/or measurements to probe the resource
- What resources can be characterised in a device independent way?
- **Goal:** use techniques from self-testing to certify and quantify any resourceful object in a black-box setting

Quantum Resources

We consider resources with convex free sets:

- **States:** entanglement, steerability, non-Gaussianity, magic, ...
- **Measurements:** incompatibility, non-projective-simulability, . . .
- **Channels:** non-entanglement-breaking and non-incompability-breaking channels, thermal operations, . . .

We focus on channel resources

■ The resourcefulness of Λ w.r.t. a free set F can be quantified with the generalised robustness:

$$R_F(\Lambda) = \min_{\tilde{\Lambda}} \left\{ t \ge 0 \mid \frac{\Lambda + t\tilde{\Lambda}}{1 + t} \in F \right\}$$

Resource Quantification with Input-Output Games [2]

Arr $R_F(\Lambda)$ related to operational advantage in an input-output game $\mathcal{G} = (\mathcal{E}, \mathcal{M}, \Omega)$:

$$\mathcal{E} = \{p(x)\rho_x\}_x$$
 (input state ensemble) $\mathcal{M} = \{M_d\}_d$ (a POVM) $\Omega = \{w_{x,d}\}_{x,d}$ (score)

$$\{\rho_x\}_x$$
 ------ $\{M_d\}_d$

$$P(\Lambda, \mathcal{G}) = \sum_{x,d} p(x) \, \omega_{x,d} \operatorname{tr}[\Lambda(\rho_x) M_d]$$
 (payout)

■ For well-normalised input-output games, payout a resource can give is directly related to its robustness:

$$1 + \mathcal{R}_F(\Lambda) = \max_{\mathcal{G}} P(\Lambda, \mathcal{G})$$

■ Device dependent: Must trust \mathcal{E} and \mathcal{M} !

Self-testing [3]

Certify exact form of a state and measurements from correlations p(a, b|x, y)

- E.g.: maximal violation of a Bell inequality can certify: $\rho \simeq |\phi^+\rangle\!\langle\phi^+|, \text{ Alice and Bob measure Pauli } X,Y,Z$
- Certification up to local isometries and complex conjugate

Reference Scenario & Protocol

Use self-testing to characterise, device-independently:

- remote preparation of pure states states $\{\rho_x\}_x$
- lacksquare arbitrary measurement $\{M_d\}_d$

- On input x, Alice remotely prepares ρ_x for Bob by performing a suitable measurement on her share of $|\phi^+\rangle^{AB}$.
- Bob applies Λ to ρ_x and sends $\Lambda(\rho_x)$ to Charlie via the identity channel Id.
- Charlie performs a Bell-state measurement (BSM) on $\Lambda(\rho_x)$ and his share of $|\phi^+\rangle^{CD}$, teleporting to Daisy the state $\sigma_c\Lambda(\rho_x)\sigma_c^{\dagger}$.
- Daisy measures $\{M_{d|w}\}_d = \{\sigma_w M_d \sigma_w^{\dagger}\}_d$ on the teleported state; for w=c this is equivalent to measuring $\{M_d\}_d$ on $\Lambda(\rho_x)$.

$$P(\Lambda, \mathcal{G}) = \sum_{x, d} p(x) \, \omega_{x, d} \sum_{c, w} \frac{1}{p(0|x)} p(0, c, d|x, w) \, \delta_{c, w}$$

Device-independent Quantification Protocol

Add extra inputs to self-test (up to local isometries):

- lacktriangleright Maximally entangled states ho^{AB} and ho^{CD}
- lacktriangle Pauli X,Y,Z measurements for Alice and Daisy
- Identity channel Ξ^{BC}
- Bell-state measurement for Charlie

Quantification Statement

The statistics on "quantification rounds" give the payoff $P(\Lambda^{\text{ext}}, \mathcal{G})$ of an effective (extractable) channel

$$\Lambda^{\mathsf{ext}} = h_{00}\Lambda^{\mathsf{ext}}_{00} + h_{11}\tilde{\Lambda}^{\mathsf{ext}}_{11}$$

- $\tilde{\Lambda}_{11}^{\text{ext}}(\rho) = \Lambda_{11}^{\text{ext}}(\rho^*)^*$ (conjugate channel)
- $\Lambda_{ii}^{\rm ext}$ can be extracted with local isometries from the physical effective channel $\mathcal{T}^{C \to D} \circ \Xi^{BC} \circ \Lambda$ from Bob to Daisy and takes into account "junk states" ξ_{ii} arising during extraction
- Λ_{00} and Λ_{11} differ in junk states arising from self-testing (indistinguishability of correlated Alice-Daisy conjugation)
- DI certification that we can extract a channel with payout $P(\Lambda^{\rm ext}, \mathcal{G})$ on \mathcal{G}

Relation to Physical Channel

For "well-behaved" resources:

- **Resource certification:** If Λ is resourceless, so is Λ^{ext}
- **Quantification bound:** $P(\Lambda^{\mathsf{ext}}, \mathcal{G}) \leq \max_{\mathcal{G}'} P(\Lambda, \mathcal{G}')$
 - i.e., $R_F(\Lambda^{\mathsf{ext}}) \leq R_F(\Lambda)$

Resource must satisfy certain preconditions:

- Can't be increased by local unitaries
- Insensitive to channel conjugation
- Unaffected by attaching extra DOFs that measurements are trivial on

Examples

- Non-entanglement-breaking and non-incompatibility-breaking channels are faithfully quantified in this way
- Can be significantly simplified for state or measurement resources
 - lacktriangle E.g., input-output games o state-discrimination games
 - Complements known DI certification of all entangled states [4]
- We likewise obtain a fully black-box certification of any sets of incompatible measurements

Conclusions and Open Questions

- DI certification of any* resourceful channel
- Correlations quantify the resourcefulness of implemented channel
- Causal network structure of protocol important to its success
- Full characterisation of which resources can be quantified in this way?

References

- [1] A. A. Abbott, N. Brunner, I. Šupić, and R. Uola, in preparation (2021).
- [2] R. Uola, T. Kraft, and A. A. Abbott, Phys. Rev. A **101**, 052306 (2019).
- [3] I. Šupić and J. Bowles, Quantum **4**, 337 (2020).
- [4] J. Bowles, I. Šupić, D. Cavalcanti, and A. Acín, Phys. Rev. Lett. 121, 180503 (2018).

alastair.abbott@inria.fr