

MA211 - LISTA 12

TEOREMA DE GREEN

24 de novembro de 2016

EXERCÍCIOS RESOLVIDOS

1. ♦ ([1], seção 16.4) Use o Teorema de Green para calcular a integral de linha ao longo da curva dada com orientação positiva.

$$\int_C y^3 dx - x^3 dy, C \text{ \'e o c\'irculo } x^2 + y^2 = 4.$$

Solução: Observe que a curva C com orientação positiva está nas hipóteses do Teorema de Green, assim como o campo $\mathbf{F}(x,y)=(y^3,-x^3)$. Logo,

$$\int_C y^3 dx - x^3 dy = \iint_D \left(\frac{\partial}{\partial x} (-x^3) - \frac{\partial}{\partial y} (y^3) \right) dA = -3 \iint_D (x^2 + y^2) dA,$$

em que $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$. Usando coordenadas polares

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta, \end{cases}$$

temos que a região de integração D pode ser escrita como

$$\{(r,\theta) \in \mathbb{R}^2 : 0 \le r \le 2, 0 \le \theta \le 2\pi\}$$

e o jacobiano dessa mudança de coordenadas é igual a r. Logo,

$$\iint_{D} (x^{2} + y^{2}) dA = \int_{0}^{2\pi} \int_{0}^{2} r^{2} \cdot r \, dr d\theta = 8\pi.$$

Portanto,
$$\int_C y^3 dx - x^3 dy = -24\pi.$$

2. ♦ ([2], seção 8.2) Calcule

$$\oint_C \frac{-y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy,$$

em que C é a curva

Solução: Podemos escrever C como $C_1 \cup C_2$, em que C_1 e C_2 são as curvas dadas abaixo.

Seja A um aberto simplesmente conexo que contém C_1 e não contém a origem. O campo $\mathbf F$ restrito a A é conservativo, pois A é aberto e simplesmente conexo, $P(x,y) = \frac{-y}{x^2+y^2}$ e $Q(x,y) = \frac{x}{x^2+y^2}$ possuem derivadas de primeira ordem contínuas em A e P e Q satisfazem a relação $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. Então,

$$\oint_{C_1} \mathbf{F} \cdot d\mathbf{r} = 0.$$

Não podemos proceder de maneira análoga em C_2 , já que todo aberto B que contém a curva C_2 e não contém a origem não será simplesmente conexo. Com isso, não conseguimos garantir que o campo \mathbf{F} restrito a B é conservativo (observe que, a princípio, não podemos afirmar que o campo é não conservativo).

A ideia para contornar esse problema é "isolar" a origem com uma curva fechada C_3 , a princípio arbitrária. Vamos escolher essa curva C_3 de maneira conveniente para que consigamos resolver o problema. Seja $\varepsilon > 0$ pequeno o suficiente para que a curva C_3 parametrizada por $r(t) = (\varepsilon \cos t, \varepsilon \sin t)$, com t variando de 2π a 0, não intercepte a curva C_2 e esteja entre a curva C_2 e a origem.

Considere $D_1=\{(x,y)\in\mathbb{R}^2:(x,y)\text{ está entre }C_2\text{ e }C_3\text{ e }y\geq 0\}$ e $D_2=\{(x,y)\in\mathbb{R}^2:(x,y)\text{ está entre }C_2\text{ e }C_3\text{ e }y\leq 0\}$. As curvas que delimitam $D_1\text{ e }D_2\text{ são }C_{D_1}=C_2^+\cup C_a\cup C_3^+\cup C_b\text{ e }C_{D_2}=C_2^-\cup -C_b\cup C_3^-\cup -C_a$, respectivamente, e estão ilustradas a seguir.

Note que

$$\oint_{C_{D_1}} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2^+} \mathbf{F} \cdot d\mathbf{r} + \int_{C_a} \mathbf{F} \cdot d\mathbf{r} + \int_{C_3^+} \mathbf{F} \cdot d\mathbf{r} + \int_{C_b} \mathbf{F} \cdot d\mathbf{r} \tag{1}$$

 ϵ

$$\oint_{C_{D_2}} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2^-} \mathbf{F} \cdot d\mathbf{r} + \int_{-C_a} \mathbf{F} \cdot d\mathbf{r} + \int_{C_3^-} \mathbf{F} \cdot d\mathbf{r} + \int_{-C_b} \mathbf{F} \cdot d\mathbf{r}. \tag{2}$$

Como $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, temos, pelo Teorema de Green,

$$\oint_{C_{D_1}} \mathbf{F} \cdot d\mathbf{r} = \iint_{D_1} 0 \, dA = 0$$

е

$$\oint_{C_{D_2}} \mathbf{F} \cdot d\mathbf{r} = \iint_{D_2} 0 \, dA = 0.$$

Somando as equações 1 e 2, obtemos

$$\int_{C_2^+} \mathbf{F} \cdot d\mathbf{r} + \int_{C_3^+} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2^-} \mathbf{F} \cdot d\mathbf{r} + \int_{C_3^-} \mathbf{F} \cdot d\mathbf{r} = 0,$$

isto é,

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = -\int_{C_3} \mathbf{F} \cdot d\mathbf{r} = \int_{-C_3} \mathbf{F} \cdot d\mathbf{r}.$$

Assim, basta determinar $\int_{-C_3} \mathbf{F} \cdot d\mathbf{r}$. A parametrização de $-C_3$ é $r(t) = (\varepsilon \cos t, \varepsilon \sin t)$, com t variando de 0 a 2π . Daí,

$$\int_{-C_3} \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \left(\frac{-\varepsilon \sin t}{\varepsilon^2}, \frac{\varepsilon \cos t}{\varepsilon^2} \right) \cdot (-\varepsilon \sin t, \varepsilon \cos t) dt$$
$$= \int_0^{2\pi} 1 dt = 2\pi.$$

Portanto,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_{C_1} \mathbf{F} \cdot d\mathbf{r} + \oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = 0 + 2\pi = 2\pi.$$

3. (Teste, 2013) Demonstre que se R é uma região no plano limitada por uma curva C simples, fechada e suave por partes, então a área de R, denotada por A(R), pode ser dada por

$$\oint_C x \, dy,$$

em que a curva está orientada no sentido positivo.

Solução: Temos que

$$A(R) = \iint\limits_R 1 \, dA.$$

A fim de utilizar o Teorema de Green, devemos encontrar funções P e Q que tenham derivadas de primeira ordem contínuas em um aberto que contenha a curva C e o interior de C e que satisfaçam a relação $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1$. Observe que a curva C já satisfaz as hipóteses desse teorema e C é a fronteira de R. Um exemplo de funções P e Q é P(x,y) = 0 e Q(x,y) = x. Portanto, pelo Teorema de Green,

$$\iint\limits_{R} 1 \, dA = \oint_{C} 0 \, dx + x \, dy = \oint_{C} x \, dy.$$

4. \bigstar ([1], seção 16.4) Calcule a área sob um arco da cicloide $x=t-\sin t,$ $y=1-\cos t.$

Solução: Queremos determinar a área da região R mostrada na figura abaixo.

Sabemos que, se y = f(x), então a integral $\int_a^b f(x) dx$ calcula a área que está abaixo do gráfico de f e acima do eixo x, com x variando entre a e b. A princípio, poderíamos tentar encontrar uma expressão que relacionasse x(t) e y(t) na parametrização da cicloide, mas esse parece ser um trabalho difícil. Usaremos então o que foi provado no exercício anterior. Temos que

$$A(R) = \oint_C x \, dy,$$

em que $C = C_1 \cup C_2$ é a curva descrita na figura a seguir.

Uma parametrização de C_1 é $r_1(t)=(x_1(t),y_1(t))=(t,0),$ em que $0\leq t\leq 2\pi.$ Nesse caso, $y_1'(t)=0.$ Logo,

$$\oint_{C_1} x \, dy = \int_0^{2\pi} (t)(0) \, dt = 0.$$

Uma parametrização de C_2 é $r_2(t)=(x_2(t),y_2(t))=(t-\sin t,1-\cos t),$ em que t varia de 2π a 0. Nesse caso, $y_2'(t)=\sin t$. Logo,

$$\oint_{C_2} x \, dy = \int_{2\pi}^{0} (t - \sin t)(\sin t) \, dt$$

$$= \int_{0}^{2\pi} (\sin^2 t - t \sin t) \, dt$$

$$= \int_{0}^{2\pi} \frac{1 - \cos(2t)}{2} \, dt - \int_{0}^{2\pi} t \sin t \, dt$$

$$= \pi + 2\pi = 3\pi.$$

Portanto, a área da região é 3π .

(Observe que, para resolver a integral $\int_0^{2\pi} t \sin t \, dt$, usamos integração por partes com u=t e $dv=\sin t \, dt$.)

EXERCÍCIOS PROPOSTOS

- 5. ♦ ([1], seção 16.4) Calcule a integral de linha por dois métodos: (I) diretamente e (II) utilizando o Teorema de Green.
 - a) $\oint_C (x-y)dx + (x+y)dy$, C é o círculo com centro na origem e raio 2.
 - **b)** $\oint_C xy \, dx + x^2 \, dy$, C é o retângulo com vértices (0,0), (3,0), (3,1) e (0,1).
 - c) $\star \oint_C xy \, dx + x^2 y^3 \, dy$, C é o triângulo com vértices (0,0), (1,0) e (1,2).
- 6. ♦ ([1], seção 16.4) ([2], seção 8.2) Use o Teorema de Green para calcular a integral de linha ao longo da curva dada com orientação positiva.
 - a) $\int_C e^y dx + 2xe^y dy$, C é o quadrado de lados x = 0, x = 1, y = 0 e y = 1.
 - b) $\int_C (y+e^{\sqrt{x}})\,dx + (2x+\cos y^2)\,dy,\ C \ \acute{\rm e}\ a\ {\rm fronteira}\ {\rm da}\ {\rm região}\ {\rm englobada}$ pelas parábolas $y=x^2$ e $x=y^2$.
 - d) $\bigstar \int_C \sin y \, dx + x \cos y \, dy$, $C \in a elipse <math>x^2 + xy + y^2 = 1$.
 - e) $\int_C \frac{-y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$, C curva fechada, C^1 por partes, simples e fronteira de um conjunto B cujo interior contém o círculo $x^2+y^2 \leq 1$. (Sugestão: Aplique o Teorema de Green à região K compreendida entre a curva C e a circunferência.)
- 7. \blacklozenge ([1], seção 16.4) ([2], seção 8.2) Use o Teorema de Green para calcular $\int_C \mathbf{F} \cdot d\mathbf{r}$. (Verifique a orientação da curva antes de aplicar o Teorema.)
 - a) $\mathbf{F}(x,y) = (\sqrt{x} + y^3, x^2 + \sqrt{y})$, C consiste no arco da curva $y = \operatorname{sen} x$ de (0,0) a $(\pi,0)$ e no segmento de reta $(\pi,0)$ a (0,0).
 - **b)** $\mathbf{F}(x,y)=(e^x+x^2y,e^y-xy^2), C$ é a circunferência $x^2+y^2=25$, orientada no sentido horário.
 - c) $\mathbf{F}(x,y) = (2x+y)\mathbf{i} + (3x-y)\mathbf{j}$, C é uma curva fechada, simples, C^1 por partes, orientada no sentido positivo, cuja imagem é a fronteira de um compacto B com área α .
 - d) $\mathbf{F}(x,y) = 4x^3y^3\mathbf{i} + (3x^4y^2 + 5x)\mathbf{j}$, C é a fronteira do quadrado de vértices (-1,0), (0,-1), (1,0) e (0,1).
- 8. ([1], seção 16.4) Use o Teorema de Green para achar o trabalho realizado pela força
 - $\mathbf{F}(x,y) = x(x+y)\mathbf{i} + xy^2\mathbf{j}$ ao mover uma partícula da origem ao longo do eixo x até (1,0), em seguida ao longo de um segmento de reta até (0,1) e então de volta à origem ao longo do eixo y.

9. \blacklozenge (Prova, 2014) Determine o trabalho $W = \int_C \mathbf{F} \cdot d\mathbf{r}$ realizado pelo campo de força

$$\mathbf{F}(x,y) = x\,\mathbf{i} + (x^3 + 3xy^2)\,\mathbf{j}$$

em uma partícula que inicialmente está no ponto (-2,0), se move ao longo do eixo x para (2,0) e então se move ao longo da semicircunferência $y=\sqrt{4-x^2}$ até o ponto inicial.

10. (Prova, 2014) Calcule $\int_C \mathbf{F} \cdot d\mathbf{r}$, em que

$$\mathbf{F}(x,y) = (x^2 + y)\mathbf{i} + (3x - y^2)\mathbf{j}$$

e C é a fronteira orientada positivamente de uma região D que tem área 6.

- 11. (Exame, 2014) Calcule o trabalho realizado pela força $\mathbf{F}(x,y) = xy\mathbf{i} + y^2\mathbf{j}$ ao mover uma partícula da origem ao longo da reta y = x até (1,1) e então de volta à origem ao longo da curva $y = x^2$.
- 12. (Teste, 2013) Calcule a área da região R delimitada pela cardioide $\mathbf{r}(t) = (x(t), y(t))$, em que $x(t) = 2\cos t \cos 2t$ e $y(t) = 2\sin t \sin 2t$, $t \in [0, 2\pi]$.
- 13. \blacklozenge ([2], seção 8.2) Calcule a área da região limitada pela elipse $x = a \cos t$, $y = b \sin t$, $0 < t < \pi/2$, em que a > 0 e b > 0.
- 15. ([1], seção 16.4) Se uma circunferência C de raio 1 rola ao longo do interior da circunferência $x^2+y^2=16$, um ponto fixo P de C descreve uma curva chamada epicicloide, com equações paramétricas $x=5\cos t-\cos 5t$, $y=5\sin t-\sin 5t$. Faça o gráfico da epicicloide e calcule a área da região que ela envolve.
- 16. ([1], seção 16.4)
 - a) Se C é o segmento de reta ligando o ponto (x_1, y_1) ao ponto (x_2, y_2) , mostre que

$$\int_C x \, dy - y \, dx = x_1 y_2 - x_2 y_1.$$

b) Se os vértices de um polígono, na ordem anti-horária, são

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n),$$

mostre que a área do polígono é

$$A = \frac{1}{2}[(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + \dots + (x_{n-1}y_n - x_ny_{n-1}) + (x_ny_1 - x_1y_n)].$$

c) Determine a área do pentágono com vértices (0,0), (2,1), (1,3), (0,2) e (-1,1).

17. ([1], seção 16.4) Seja D a região limitada por um caminho fechado e simples C no plano xy. Utilize o Teorema de Green para demonstrar que as coordenadas do centroide (\bar{x}, \bar{y}) de D são

$$\bar{x} = \frac{1}{2A} \oint_C x^2 dy \qquad \bar{y} = -\frac{1}{2A} \oint_C y^2 dx,$$

em que A é a área de D.

- 18. ([1], seção 16.4) Utilize o exerício 17 para encontrar o centroide de um quarto de uma região circular de raio a.
- 19. \bigstar ([1], seção 16.4) Se $\mathbf{F}(x,y) = (-y\,\mathbf{i} + x\,\mathbf{j})/(x^2 + y^2)$, mostre que $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ para todo caminho fechado simples que não passe pela origem e nem a circunde.
- 20. ([1], seção 16.4) Utilize o Teorema de Green para demonstrar a fórmula de mudança de variáveis para as integrais duplas para o caso em que f(x, y) = 1:

$$\iint\limits_R dxdy = \iint\limits_R \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, dudv.$$

Aqui, R é a região do plano xy que corresponde à região S do plano uv sob a transformação dada por x = g(u, v), y = h(u, v). (Sugestão: observe que o lado esquerdo é A(R). Converta a integral de linha sobre ∂R para uma integral de linha sobre ∂S e aplique o Teorema de Green no plano uv.)

RESPOSTAS DOS EXERCÍCIOS PROPOSTOS

- 5. **a)** 8π .
 - **b**) $\frac{9}{2}$.
 - **c**) $\frac{2}{3}$.
- 6. **a)** e 1.
 - **b**) $\frac{1}{3}$.
 - **d**) 0.
 - e) 2π .
- 7. **a)** $\frac{4}{3} 2\pi$.
 - b) $\frac{625\pi}{2}$.
 - c) $2 \times (\text{Área de } B)$.
 - **d**) 10.
- 8. $-\frac{1}{12}$.
- 9. 12π .
- 10. 12.
- 11. $\frac{1}{12}$.
- 12. 6π .
- 13. πab .
- 14. $\frac{3\pi}{8}$.
- 15. 30π .

- 16. a) Use as equações paramétricas do segmento de reta: $x=(1-t)x_1+tx_2$ e $y=(1-t)y_1+ty_2,\ 0\leq t\leq 1.$
 - **b)** Aplique o Teorema de Green ao caminho $C = C_1 \cup C_2 \cup \cdots \cup C_n$, onde C_i é o segmento ligando o ponto (x_i, y_i) ao ponto (x_{i+1}, y_{i+1}) , para cada $i = 1, \dots, n-1$.

c)
$$\frac{9}{2}$$
.

17.
$$\frac{1}{2A} \oint_C x^2 dy = \frac{1}{2A} \iint_D 2x dA = \bar{x} e^{-\frac{1}{2A}} \oint_C y^2 dx = -\frac{1}{2A} \iint_D (-2y) dA = \bar{y}$$

- 18. $\left(\frac{4a}{3\pi}, \frac{4a}{3\pi}\right)$, se a região for a parte do disco $x^2 + y^2 = a^2$ no primeiro quadrante.
- 19. Dica: como C é um caminho fechado simples que não passa pela origem e não circunda a origem, então existe uma região aberta A que ainda não contém a origem, mas contém D, a região limitada por C. Em A, tanto $-y/(x^2+y^2)$ quanto $x/(x^2+y^2)$ possuem derivadas parciais contínuas e podemos aplicar o Teorema de Green. Conclua usando o exercício 23 da Lista 11.
- 20. Dica: pelo Teorema de Green, $A(R)=\iint_R dxdy=\int_{\partial R} x\ dy$. Escolhendo a orientação positiva em ∂S correspondente a orientação positiva em ∂R , segue que

$$\int_{\partial R} x \ dy = \int_{\partial S} g(u,v) \frac{\partial h}{\partial u} \ du + g(u,v) \frac{\partial h}{\partial v} \ dv.$$

Conclua utilizando o Teorema de Green no plano uv e a Regra da Cadeia.

Referências

- [1] J. Stewart. $C\'{a}lculo$, Volume 2, 6^a Edição, São Paulo, Pioneira/ Thomson Learning.
- [2] H. L. Guidorizzi. Um~Curso~de~C'alculo, Volume 3, 5^a Edição, 2002, Rio de Janeiro.
- [3] C. H., Edwards Jr; D. E. Penney, Cálculo com Geometria Analítica, Volumes 2 e 3, Prentice Hall do Brasil, 1997.