

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-059545

(43)Date of publication of application : 02.03.1999

(51)Int.Cl.

B62K 25/20

(21)Application number : 09-231972

(71)Applicant : YAMAHA MOTOR CO LTD

(22)Date of filing : 28.08.1997

(72)Inventor : TAKIMOTO HIROSHI

NISHIDA TOYOO

FUNAHASHI HIROYA

(54) REAR WHEEL SUSPENSION FOR MOTORCYCLE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide the rear wheel suspension of a motorcycle capable of improving the workability in regulating the spring load of a rear cushion unit.

SOLUTION: A rear arm 13 which is supported by a rear arm bracket 31 in a vertically oscillating manner and a part in the vicinity of a rear end of a tank rail are connected to each other by a rear cushion unit 86 provided with a buffer 87 arranged in an approximately upright condition and a coil spring 88 arranged so as to surround the buffer, a regulating device to regulate the initial spring load by changing the length of the coil spring 88 in the stationary condition by moving an upper spring seat 90 of the coil spring 88 in the axial direction is provided on a rear cushion unit 82, and the upper spring seat 90 of the initial spring load regulating device is located on the rearward of the rear arm bracket 31 and at a part to be regulated from the outside in the motorcycle width direction through a space between the rear arm 13 and a back stay.

(51)Int.Cl.*
B 62 K 25/20

識別記号

F I
B 62 K 25/20(21)出願番号 特願平9-231972
(22)出願日 平成9年(1997)8月28日(71)出願人 000010076
ヤマハ発動機株式会社
静岡県磐田市新貝2500番地
(72)発明者 濑本 宏
静岡県磐田市新貝2500番地 ヤマハ発動機
株式会社内
(72)発明者 西田 豊士
静岡県磐田市新貝2500番地 ヤマハ発動機
株式会社内
(72)発明者 舟橋 喜弥
静岡県磐田市新貝2500番地 ヤマハ発動機
株式会社内
(74)代理人 弁理士 下市 努

(54)【発明の名称】 自動二輪車の後輪懸架装置

(57)【要約】 (修正有)

【課題】 リヤクッションユニットのばね荷重の調整作業を行う場合の作業性を向上できる自動二輪車の後輪懸架装置を提供する。

【解決手段】 リヤアームブラケット31により上下揺動自在に支持されたリヤアーム13とタンクレールの後端付近とを、略起立状態に配置された緩衝器87と緩衝器を囲むように配置されたコイルばね88とを備えたリヤクッションユニット86で連結し、リヤクッションユニットに、上記コイルばねの上側ばね座90を軸方向に移動させることによりコイルばねの静止状態での長さを変化させて初期ばね荷重を調整する調整装置を設け、該初期ばね荷重調整装置の上側ばね座90を、リヤアームブラケット31より後側で、かつリヤアーム13とバックステーとの間の空間を通して車幅方向外側から調整可能な部位に位置させる。

【特許請求の範囲】

【請求項1】 ヘッドパイプから左、右一对のタンクレールを車幅方向に拡開しつつ後に延長し、該各タンクレールの後端からシートレールを後方に延長するとともにリヤアームブラケットを下方に延長し、該リヤアームブラケットと上記シートレールの後部とをバックステーで接続してなる車体フレームを備えた自動二輪車の後輪懸架装置において、上記リヤアームブラケットにより上下振動自在に支持されたリヤアームと上記タンクレールの後端付近とを、略起立状態に配置された緩衝器と該緩衝器を囲むように配置されたコイルばねとを備えたリヤクッションユニットで連結し、該リヤクッションユニットに、上記コイルばねの上側ばね座を、上記リヤアームブラケットより後側で、かつ上記リヤアームと上記バックステーとの間の空間を通して車幅方向外側から調整可能の部位に位置させたことを特徴とする自動二輪車の後輪懸架装置。

【請求項2】 請求項1において、上記リヤクッションユニットは、上記緩衝器の減衰力を調整する減衰力調整バルブを備えており、該減衰力調整バルブを上記バックステーとシートレールとの間の空間を通して車幅方向外側から調整可能の部位に位置させたことを特徴とする自動二輪車の後輪懸架装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、自動二輪車の後輪懸架装置に関する。

【0002】

【従来の技術】従来から自動二輪車の後輪懸架装置では、車体フレームとリヤアームとの間に緩衝器と該緩衝器の外周に配設されたコイルばねとからなるクッションユニットを配設した構造が一般的である。そしてこの種のリヤクッションユニットでは、コイルばねの静止状態での初期荷重を調整するための装置として、上記緩衝器の上側に配設されたばね座を調整工具により軸方向に移動させることによりコイルばねの長さを変化させるようにしたものが採用されている。

【0003】

【発明が解決しようとする課題】ところが、上記従来の後輪懸架装置では、車体フレームの構造上リヤクッションユニットはリヤアームブラケットより車体前側に配置するのが一般的であり、このため上側ばね座がエンジン部品等に囲まれた部位に位置することとなり、調整工具がフレームやエンジン部品と干渉しやすく、ばね荷重の調整作業性が低いという問題がある。

【0004】本発明は上記従来の状況に鑑みてなされたもので、リヤクッションユニットのばね荷重の調整作業

を容易に行える自動二輪車の後輪懸架装置を提供することを目的としている。

【0005】

【課題を解決するための手段】請求項1の発明は、ヘッドパイプから左、右一对のタンクレールを車幅方向に拡開しつつ後に延長し、該各タンクレールの後端からシートレールを後方に延長するとともにリヤアームブラケットを下方に延長し、該リヤアームブラケットと上記シートレールの後部とをバックステーで接続してなる車体フレームを備えた自動二輪車の後輪懸架装置において、上記リヤアームブラケットにより上下振動自在に支持されたリヤアームと上記タンクレールの後端付近とを、略起立状態に配置された緩衝器と該緩衝器を囲むように配置されたコイルばねとを備えたリヤクッションユニットで連結し、該リヤクッションユニットに、上記コイルばねの上側ばね座を軸方向に移動させることにより該コイルばねの静止状態での長さを変化させて初期ばね荷重を調整する調整装置を設け、該初期ばね荷重調整装置の上記上側ばね座を、上記リヤアームブラケットより後側で、かつ上記リヤアームと上記バックステーとの間の空間を通して車幅方向外側から調整可能の部位に位置させたことを特徴とする自動二輪車の後輪懸架装置。

【0006】請求項2の発明は、請求項1において、上記リヤクッションユニットは、上記緩衝器の減衰力を調整する減衰力調整バルブを備えており、該減衰力調整バルブを上記バックステーとシートレールとの間の空間を通して車幅方向外側から調整可能の部位に位置させたことを特徴としている。

【0007】

【発明の作用効果】請求項1の発明によれば、リヤクッションユニットの上側ばね座をリヤアームブラケットの後側で、かつリヤアームとバックステーとの間の空間を通して車幅方向外側から調整可能の部位に位置させたので、リヤアームとバックステーとの間の空きスペースを有効利用して上側ばね座に調整工具を掛け回転させることができ、クッションユニットのばね荷重の調整作業を容易に行うことができ、作業性を向上できる効果がある。

【0008】請求項2の発明では、緩衝器の減衰力を調整する減衰力調整バルブをバックステーとシートレールとの間の空間を通して車幅方向外側から調整可能の部位に位置させたので、上記同様に空きスペースを有効利用して調整バルブの調整作業を容易に行うことができる効果がある。

【0009】

【発明の実施の形態】以下、本発明の実施の形態を添付図面に基づいて説明する。図1ないし図4は、本発明の一実施形態による自動二輪車の後輪懸架装置を説明するための図であり、図1、図2は自動二輪車の左側面図、平面図、図3、図4はヘッドパイプのタンクレール

部分の左側面図、平面図、図5～図7はエンジン懸架装置の左側面図、右側面図、平面図、図8、図9は後輪懸架装置の左側面図、断面正面図、図10、図11はタンクレール本体の平面図、断面図、図12～図14は補強ラケットの平面図、左側面図、断面図、図15はエンジン懸架ラケットの平面図、図16、図17は後輪駆動装置の右側面図、断面背面図、図18～図20はフロントブレーキ装置の左側面図、断面正面図、一部断面左側面図、図21、図22はフロントホイールの側面図、断面図、図23、図24はタンデムシートの荷掛けフックを示す断面図、斜視図である。なお、本実施形態でいう前後、左右とはシートに着座した状態で見た場合の前後、左右を意味する。

【0010】図において、1は自動二輪車であり、該自動二輪車1の車体フレーム2は、ヘッドパイプ3に接続された左、右一对のタンクレール4の後端に斜め前方に延びるリヤフレーム5を接続した概略構造のもので、上記タンクレール4の上部には燃料タンク6が、下部にはエンジンユニット7が配設されており、上記リヤフレーム5の前部にはメインシート8が、後部にはタンデムシート9が取り外し可能に配設されている。なお、上記燃料タンク6の前部部分は、後述するエアクリーナ6.1を覆うタンクカバー部を構成している。

【0011】また上記ヘッドパイプ3にはフロントフォーク10が枢支されており、該フロントフォーク10の上端には操向ハンドル11が、下端には前輪12が配設されている。また上記タンクレール4の後端下部にはリヤアーム13が上下揺動可能に枢支されており、該リヤアーム13の後端には後輪14が配設されている。

【0012】上記車体フレーム2にはカウリング15が配設されている。このカウリング15は操向ハンドル11の前方を覆うアップカバー16と、タンクレール4の前方及び左、右側方を覆うカウリング本体17と、エンジンユニット7の左、右下方を覆うアンダカバー18とからなるもので、上記アップカバー16に左、右一对のヘッドライト19、19が配設されており、該各ヘッドライト19はヘッドパイプ3に固定されたラケット20に取付けられている。また上記リヤフレーム5にはサイドカバー21が配設されており、該サイドカバー21は各シート8、9の左右側方、及び後輪14の上方を覆っている。

【0013】上記タンデムシート9は、図23、図24に示すように、底板9a上に配置されたクッション9cを表皮9bで覆った構造のもので、該タンデムシート9には4つの荷掛けフック22が取付けられている。この各荷掛けフック22はナイロン等からなるフレキシブルな幅広帯材をループ状に形成したもので、上記底板9aにボルト22aにより締め付け固定されている。また各荷掛けフック22にはマジックテープ等の接着布23が固着されている。

【0014】そして上記荷掛けフック22を使用する場合には、該荷掛けフック22をタンデムシート9の側方に引き出し、左、右の荷掛けフック22間にゴムロープ24等をかけ渡して荷物を固定する。また非使用時には荷掛けフック22を上記接着布23により底板9aに貼り付けることによりシート9の下方に収納する。

【0015】上記荷掛けフック22によれば、フレキシブルな幅広帯材をループ状に形成したので、ゴムロープ24が外れたり、タンデムシート9の表皮9bを傷付けたりすることなく荷物を固定でき、またシート形状を制約したりすることもない。さらに荷掛けフック22を接着布23で底板9aに貼り付けるようにしたので、空きスペースを利用して収納でき、嵩張ったり、外観を悪化させたりすることはなく、さらには収納時に荷掛けフック22で取付け用ボルト22aを覆うことができ、シート下方に収容した荷物を傷付けたりすることはない。

【0016】上記各タンクレール4は、ヘッドパイプ3の接続ボス部3cから車輌方向に拡開しつつ車体後方に斜め下方に延びる左、右一对のタンクレール本体30、30と、該各タンクレール本体30とヘッドパイプ3との間に配設された左、右の補強ラケット40とから構成されており、各タンクレール本体30の後端には垂直下方に延びるリヤアームラケット31が接続されている。また該タンクレール本体30の下端部同士はそれぞれ上側、下側クロスパイプ32、33で接続固定されている。

【0017】また上記リヤフレーム5は、上側クロスパイプ32の左、右両端部に車体後方に斜め上向きに延びる左、右のシートレール34を接続するとともに、上記タンクレール本体30の後端部に後方に斜め上向きに延びる左、右のバックステー35を接続し、該バックステー35の後端部と上記シートレール34の後端部とを結合した構造となっている。このシートレール34、バックステー35で囲まれた空間内に不図示のバッテリ等のエンジン補機類、電装部品等が収納されている。

【0018】上記タンクレール本体30は、主として図10、図11に示すように、板金製のアウターレール36とインナーレール37とをもなか状に接合した継縫の削断面形状の筒体からなり、平面視で天面30aに対して底面30bは車輌向外側に偏位しており、該タンクレール本体30の外側面30cの外方に拡開した部分は傾斜面30dとなっている。また上記タンクレール本体30の前端開口はヘッドパイプ3の接続ボス部30cに対向する縦開口部38aと、該縦開口部38aの下端に続いて斜め下方に傾斜して延びる傾斜開口部38bとから構成されている。

【0019】上記補強ラケット40は、主として図12～図14に示すように、平板を横断面矩形筒状の箱体に屈曲形成してなるものであり、これの上壁40aは側面視で略水平をなす底壁40bに対してヘッドパイプ3

側ほど高くなるように斜め上方に傾斜している。この補強ブレケット40の前端開口41はヘッドパイプ3の下端軸受部3aから上端軸受部3b近傍に渡る高さ寸法を有する縦長方形状をなしており、該前端開口41の周縁はヘッドパイプ3の接続ボス部3cの側面に溶接固定されている(図3～図5参照)。また上記上壁40aには軽量化を図るための複数の肉抜き孔40eが形成されている。

【0020】上記補強ブレケット40の内壁40cの上縁には上壁40aの上面より上方に突出する突出部40dが延長形成されており、また上壁40aの外側縁部には棒状のストッパー板42が接合されている。上記補強ブレケット40の上壁40aには上記タンクレール本体30の傾斜開口部38bが対向しており、該傾斜開口部38bの内側縁を上記突出部40dの外面に、また外側縁をストッパー板42の外面にそれぞれ当接させることにより該タンクレール本体30の位置決めがなされている。

【0021】このようにして上記タンクレール本体30の傾斜開口部38bの周縁は補強ブレケット40の上壁40a付近に溶接固定されており、また該タンクレール本体30の傾斜開口部38aの周縁は上記ヘッドパイプ3の接続ボス部3cの上端軸受部3b付近に溶接固定されている。また上記左、右の補強ブレケット40の内壁40c、40c間には横断面三角形状のフロントクロスパイプ46が架け渡して溶接固定されている(図3～5参照)。

【0022】即ち、上記タンクレール本体30と補強ブレケット40との接合部は、図4のC-C断面図に示すようにタンクレール本体30と補強ブレケット40とで日字形断面を形成しており、その中の補強部をなす上壁40aはヘッドパイプ側ほど高くなる傾斜面をなしている。このように傾斜面をなす上壁40aの存在により、タンクレールのヘッドパイプ接合部の急制動時の力に対する剛性が向上している。

【0023】上記補強ブレケット40の後端開口43は、タンクレール本体30の底面の下側にて後方に開口しており、該後端開口43には上記タンクレール本体30の下面に配設されたエンジン懸架ブレケット45の前端部が接続されている。

【0024】上記懸架ブレケット45は、主として図1、図15に示すように、外壁45aと内壁45bとを底壁45cで一体に接続形成してなる横断面大略U字形状のもので、上記外壁45a、内壁45bの上端開口部はタンクレール本体30の底壁に溶接固定されている。また上記懸架ブレケット45の前部はタンクレール本体30の湾曲形状に沿って内側に湾曲しており、これの前端部には嵌合口47が段付き形成されている。この嵌合口47は補強ブレケット40の上記後端開口43内に嵌合されており、両者の合面周縁は溶接固定されている。

【0025】上記エンジンユニット7は、水冷式4サイ

クル並列4気筒型のものであり、図5、図6に示すように、気筒軸を車体前方に少し傾斜させるとともに、クラシク軸50を車軸方向に向けて上記車体フレーム23に懸架支承されている。

【0026】上記エンジンユニット7は、シリングブロック55の後部に、上記クラシク軸50と平行に配設された変速装置のメイン軸52、ドライブ軸53を収容する変速機ケース54を一体形成し、該シリングブロック55、変速機ケース54の下面にクラシクケース51を結合し、上記シリングブロック55の上面にシリングヘッド56、ヘッドカバー57を積層結合した構成となっている。

【0027】ここで上記クラシク軸50とメイン軸52とを結ぶ直線Aと気筒軸Bとのなす角度、及びメイン軸52とドライブ軸53とを結ぶ直線Cと上記直線Aとのなす角度はそれぞれ鋭角をなしている。これによりエンジンユニット全体の車体前後長さが短縮されており、この短縮した分だけリヤアーム13の軸支点が前方に設定され、その結果リヤアーム13の前後長さが延長されている。

【0028】また上記シリングヘッド56とヘッドカバー57との合面部分には上記クラシク軸50と平行に動弁機構を構成する2本のカム軸58が配置されている。この各カム軸58の軸方向右端部には該カム軸58とクラシク軸50とを連結するタイミングチェーン59が巻き取られており、該タイミングチェーン59はシリングブロック55、シリングヘッド56の車輌方向右側面に形成されたチェーン室59a内に配設されている。

【0029】上記シリングヘッド56の後壁上部には各気筒ごとのキャブレタ60が接続されており、該キャブレタ60の上部には各気筒共通のエアクリーナ61が接続されている。このエアクリーナ61は左、右タンクレール本体30、30間の燃料タンク前側に配置されている。またエンジンユニット7の前方にはラジエータ62が気筒軸と略平行に配設されている。

【0030】そして図3、図4に示すように、ステアリングカバー63、第1、第2ガイド板64、65によって走行風が上記エアクリーナ61に導入されるようになっている。上記ステアリングカバー63は上記フロントフォーク10のヘッドパイプ3下方部分にボルト締め固定されており、上記第1ガイド板64は左、右の補強ブレケット40の底壁40bの下面にボルト締め固定されている。さらにまた上記第2ガイド板65は上記フロントクロスパイプ46の前側面にボルト締め固定されている。走行風は上記ステアリングカバー63の下方から第1ガイド板64の上面を通ってエアクリーナ61の吸い込み口に導入される(図3の一印参照)。

【0031】上記第2ガイド板65の下面には複数のボス部65aが下向きに一体形成されており、該各ボス部

65aにイグニッションコイル6が取付けられている。また上記ガイド板65の下面にはハーネス等を係止するクリップ部65bが形成されている。このようにボス部65a、クリップ部65bを第2ガイド板65の下面に形成したので、上面を走る走行風が遮られることはない。

【0032】上記エンジンユニット7はエンジン懸架装置を構成する左、右のタンクレール本体30、リヤアームブラケット31、及び懸架ブラケット45により懸架支持されている(図5~図7参照)。

【0033】上記変速機ケース54の後壁上部にはボス部70が該ケース54の左側壁から右側壁まで延びるように一体形成されている。このボス部70は、上記タンクレール本体30、30間に架設された上側クロスパイプ32の両端部に突出形成された支持部32a、32a間に配置され、この左、右的支持部32aに押通された貫通ボルト71により固定支持されている。なお、72は上記ボス部70と右側の支持部32aとの間に介設された隙間寸法調整用のカラーであり、上記ボス部70の左端面が左側の支持部32aの内端面に当接することによりエンジンユニットの位置決めがなされる。

【0034】また上記変速機ケース54の後壁下部には上記同様のボス部73が一体形成されており、該ボス部73は上記リヤアームブラケット31、31間に架設された下側クロスパイプ33の両端部に形成された支持部33aに貫通ボルト74により締結固定されている。

【0035】上記車体左側の懸架ブラケット45はシリンドヘッド56の左側壁56aを略全体的に覆う大きさを有し、該ブラケット45の下端部には前、後2ヶ所のボス部75、76が一体形成されている。この前側ボス部75には上記シリンドヘッド56の左側壁56aの前部がボルト締め固定されており、後側ボス部76にはシリンドブロック55の左側壁55aの後端部がボルト締め固定されている。

【0036】上記右側の懸架ブラケット45はシリンドヘッド56の右側壁56bの後部かつ上部のみを覆う大きさを有し、該ブラケット45の後端下部にはボス部77が一体形成されている。このボス部77にはシリンドブロック55の右側壁55bの後端部がボルト締め固定されている。これにより上記エンジンユニット7はこれの左側壁55a、56aについては4箇所にて、またチューン室59aを有する右側壁55b、56bについては上記左側壁より少ない3箇所にて懸架支持されており、左、右非対称支持構造となっている。また、上記左、右7個所の懸架部にはエンジンを弾性部材を介すことなく直接フレームに取り付けるリジッド支持構造が採用されている。

【0037】次に本実施形態の後輪懸架装置について説明する。上記リヤアーム13は、図8、図9に示すように、上記リヤアームブラケット31、31間に押通され

たビポット軸80により上下振動自在に支持されたビポット部13の左、右両端部から左、右のアーム部13bを車体後方に延長し、該左、右のアーム部13b、13bの前部同士を側面視三角形状の補強板81で接続し、さらに該補強板81の後端と上記左、右アーム部13bの後端とを平面視U字状の補強アーム82で接続した構造となっている。また上記アーム部13b、13b間に横断面三角形状のクロスパイプ83が架設されている。なお、84はチーンカバーであり、85は泥水等の飛散を防止するマッドガードである。

【0038】上記リヤアーム13とタンクレール4との間にリヤクッションユニット86が配設されている。このクッションユニット86は緩衝器87と、該緩衝器87の外周を囲むように配設されたコイルばね88とから構成されている。この緩衝器87はシリンド87a内に減衰機構を有するピストンロッド87bを進退可能に挿入した構造のものである。

【0039】上記ピストンロッド87bはリンク機構78を介してリヤアーム13に連結されている。このリンク機構78は、側面視で三角形をなすリンクプレート78aと前後方向に略水平に延びるリンクアーム78bとからなり、このリンクプレート78aの両角部は上記クロスパイプ83に連結され、前角部には上記ピストンロッド87bが連結され、さらに、後角部には上記リンクアーム78bが連結され、該リンクアーム78bの前端部は下側クロスパイプ33に連結されている。

【0040】上記コイルばね88は、ピストンロッド87bの下端部に固着された下側ばね座89と、上記シリンド87aの上端部に装着された上側ばね座90との間に配設されている。この上側ばね座90は周方向に回動可能なかつ軸方向に移動可能に配設されており、該上側ばね座90はばね荷重調整装置として機能している。この調整装置は、上側ばね座90の上面にカム部93を形成し、該カム部93にシリンド87aに支持された係合ビン94を係合させて構成されている。そして上記上側ばね座90の外周面を工具で把持して回動させると、コイルばね88の静止状態での長さが変化し、これにより初期ばね荷重を調整するようになっている。

【0041】また上記緩衝器87にはシリンド87a内に連通するガス筒91が接続されており、該ガス筒91は緩衝器87の後側にこれと平行に配置されている。また上記ガス筒91とシリンド87aとの間には減衰力調整バルブ92aが介設されており、この調整バルブ92aを調整工具により回動させることにより緩衝器87の減圧時ににおける衰力を調整するようになっている。なお、緩衝器87の伸び時の減衰力を調整するためのバルブ92bはピストンロッド87bの下端部に配設されており、該バルブ92bは無荷重状態でリヤアーム13の下方に位置し、外方から調整可能となっている。

【0042】上記緩衝器87はリヤアームブラケット3

1の後側に略垂直に起立させて配置されており、該緩衝器87の上端に形成されたボス部87cは上側クロスパイプ32に突出形成された一対の支持部32b間にボルト95により板支されている。

【0043】そして上記上側ばね座90はリヤアームブラケット31の後側で、かつ該リヤアームブラケット31、バックステー35、及び補強板81で閉まれた空間から車幅方向左、右外方に臨む位置に配置されており、つまり上記空間を通して車幅向外側から調整可能な部位に位置している。また上記減衰力調整バルブ92aはシートレール34とバックステー35との間の空間から車幅方向左外方に臨む位置に配置されており、同様に車幅向外側から調整可能となっている。

【0044】上記リヤアーム13の後端には、図16、図17に示すように、後輪14を軸支する車軸100が挿着されており、この車軸100は該車軸100を調整ボルト101により前後移動させることにより後述するチャーン112の張りを調整する目盛り付きの張力調整部材102を介在させて上記リヤアーム13、13に固定されている。

【0045】上記後輪14は、ハブ部103とリム部104と両者の間に回転方向に間隔をあけて架設された3本の中空状スポーツ部105とを鍛造により一体形成したもので、該リム部104の外周にタイヤ106が装着されている。

【0046】上記ハブ部103はハブ本体107と動力伝達部材108とからなる2分割構造のもので、該ハブ本体107は上記車軸100により支持されるインナハブ107aと上記スポーツ部105が接続されたアウターハブ107bと、該アウターハブ107bとインナハブ107aとを一体に結合する左、右側壁部107c、107dとから構成されている。

【0047】上記動力伝達部材108は、上記車軸100により玉軸受109を介して支持されるボス部108aと、該ボス部108aの外周に一体形成され、上記左側壁部107cと間を開けて対向する外周壁108bとから構成されている。

【0048】上記外周壁108bと左側壁部107cとの対向面にはそれぞれ周方向に間隔をあけてかつ交互に位置するよう複数のリブ108c、107eが一体形成されており、該各リブ108c、107eの間にはエンジンの回転変動に伴なう駆動力による衝撃荷重が後輪14に伝達されるのを抑制するゴムダンパー110が介設されている。

【0049】また上記外周壁108bの外面には周方向に間隔をあけてボス108dが形成されており、該ボス108dにドリブンスプロケット111がボルト締め固定されている。このプロケット111にはチャーン112が巻回されており、該チャーン112は上述のエンジンユニット7のドライブ軸53に固着された駆動スプロ

ケット53aに巻回されている(図5参照)。これによりエンジン動力をチャーン112からゴムダンパー110を介して後輪14に伝達する後輪駆動装置が構成されている。

【0050】上記後輪14の右側部にはリヤブレーキ装置が配設されている。このリヤブレーキ装置は、上記ハブ本体107の左側壁部107dの前面にボルト締め固定されたブレーキディスク113と、該ブレーキディスク113を油圧により不図示のピストンを介して挿持するパッドを内蔵したキャリパ114とを備えている。

【0051】上記キャリパ114はブレケット115にボルト締め固定されている。該ブレケット115のボス部115aは、上記車軸100の右側壁部107dとアーム部13bとの間に装着され、ナット100aによりアーム部13bとともに車軸100に共締め固定されている。このボス部115aの外周縁にはテープ面116が形成されており、該テープ面116はアーム部13bのテープ穴に嵌合している。これによりブレーキ反力によるキャリパの回転が阻止されている。なお、上記ボス部の外周面に平坦部を形成し、該平坦部をアーム部に係止させ、もってキャリパの回転を阻止してもよい。

【0052】上記インナハブ107aの軸方向右端部には該インナハブ107aの内径より大径のボス部120が段付き状に一体形成されており、該ボス部120と車軸100との間に玉軸受121が圧入されている。また該ボス部120の玉軸受121の外端面にはサークリップ122が装着されており、軸受121の圧入及びサークリップ122により後輪14に作用するスラスト荷重による該後輪14の左右方向移動が阻止されている。

【0053】一方、上記インナハブ107aの左端部には該インナハブ107aの内径より僅かに大きいボス部123が一体形成されており、該ボス部123は上記ゴムダンパー110と半径方向に重なっている。そしてこのボス部123と上記車軸100との間にニードル軸受124が配設されている。このようにニードル軸受124を配設したことにより上記ボス部123の外径はボス部120の外径に比べて小径となっている。本実施形態では、ハブ、スポーツ、リムの各部が一体形成されたものを説明したが、上記ニードル軸受を設ける発明に関しては各部が別体、組み合わせのものであっても良い。

【0054】本実施形態の前輪懸架装置は、図18～図20に示す構造となっている。上記フロントフォーク10は左、右のアウタチューブ10a内に減衰機構10cを有するインナチューブ10bを挿入してなり、該アウタチューブ10aの下端間に上記前輪12を軸支する車軸129が挿着されている。この各アウタチューブ10aの下端部にはそれぞれブレケット130が固定されている。このブレケット130はアウタチューブ10aの後側にて上方に延びる後側ステー部130aと、前側にて上方に延びる前側ステー部130bとを備えており、

この両ステー部 130a, 130b の上端部に前輪 12 の上方を覆うフロントフェンダ 12a が取付けられている(図1参照)。

【0055】また上記前輪 12 にはフロントブレーキ装置が配設されている。このブレーキ装置は上記前輪 12 の左、右側部に配設されたブレーキディスク 126 と、上記後側ステー部 130a にボルト締め固定された左、右のキャリパ 127 とから構成されている。

【0056】上記左、右の後側ステー部 130a の下部後端面には上記減衰機構 10c に連通する孔 132 が形成されており、該孔 132 内には減衰調整バルブ 133 が回転可能に蝶挿されている。該減衰調整バルブ 133 を車体後方から調整工具により回動させることにより減衰機構 10c の減衰力を調整するようになっている。このように減衰調整バルブ 133 を後側ステー部 130a を兼用し、該ステー部 130a 内に埋設したので、別部材を介して調整バルブを取付ける場合に比べて部品コストを低減とともに重量を軽減でき、さらには外観を向上できる。

【0057】上記前輪 12 は、図21、図22に示すように、上記車軸 129 により駆支されるハブ部 135 と、タイヤ 138 が装着されるリム部 136 と、两者間に回転方向に間隔をあけて架設された 3 本の中空状スポーツ部 137 とを鉄造により一体形成したものである。上記スポーツ部 137 の横断面形状は回転方向寸法が軸方向寸法より長い略翼状(長円状)をなしており、これにより剛性の向上を図りながら回転時の空気抵抗を低減している(図21のA-A線断面図参照)。

【0058】上記スポーツ部 137 の外端部には鉄造時の中子を押さえると共に該スポーツ部内に溜まつた水を排出するための水抜き孔 140 が形成されており、また内端部には鉄造時の中子を押さえるための孔 141 が形成されている。また上記アウターハブ 144 の各スポーツ部 137 の間には鉄造時の中子を押さえるための開口 148 が形成されている。

【0059】上記ハブ部 135 は、上記車軸 129 が押通されるインナーハブ 143 と、上記各スポーツ部 137 の基部が接続されたアウターハブ 144 と、該アウターハブ 144 及びインナーハブ 143 の両端部同士を一体に結合する左、右側壁部 145、145 とから構成されている。上記インナーハブ 143 の両端部にはこれの内径より大径のボス部 143a、143a が段付き状に形成されており、この両ボス部 143a と車軸 129 との間に玉軸受 146 が圧入されている。

【0060】上記左、右側壁部 145 の外面には周方向に間隔をあけて複数の外側補強リブ 147 が一部に露出形成されている。この各外側補強リブ 147 はインナーハブ 143 の中心から各スポーツ部 137 の回転方向前縁部 137a、後縁部 137b に向かって直線状に延びる放射状に配置されている。

【0061】また上記左、右側壁部 145 の内面には上記外側補強リブ 147 と対向する内側補強リブ 151 が露出形成されており、該内側補強リブ 151 はインナーハブ 143 から各側壁部 145 の半径方向中央付近まで延びている。

【0062】上記左、右側壁部 145 の外周縁には周方向に間隔をあけてボルトボス部 149 が形成されており、該各ボス部 149 は上記各外側補強リブ 147 とスポーツ部 137 の前、後縁部 137a、137b との境界部に配置されている。この各ボルトボス部 149 に上記ブレーキディスク 126 がボルト締め固定されている。また上記アウターハブ 144 の左、右端縁には各ボス部 149 が結ぶ円形のリブ 150 が車幅方向に突出形成されており、該リブ 150 の外端面はボス部 149 の外端面より内側に位置している。

【0063】次に本実施形態の作用効果について説明する。本実施形態の車体フレームによれば、タンクレール 4 をタンクレール本体 30 と、箱状の補強ブラケット 40 とから構成し、該補強ブラケット 40 の上壁 40a をヘッドバイアブ 3 側ほど高くなるように斜め上向きに傾斜させ、該上壁 40a に上記タンクレール本体 30 の傾斜開口部 38b を溶接するとともに、補強ブラケット 40 の前端開口部 41 の周縁をヘッドバイアブ 3 の接続ボス部 3c に溶接したので、該ヘッドバイアブ 3 周りのタンクレール 4 との溶接面積を増大でき、それだけ車体フレームのタンク接続部の剛性を高めることができる。また、タンクレール本体 30 と補強ブラケット 40 との接合部は横断面日字形をなし、かつその中間の補強部である上壁 40a が前上りの傾斜をなしたことから急制動時にヘッドバイアブ 3 に作用する力に対する接合強度、剛性を向上でき、操縦安定性を向上できる。

【0064】また上記補強ブラケット 40 の上壁 40a を傾斜させ、該傾斜面にタンクレール本体 30 の傾斜開口部 38b を対向させたので、タンクレール本体 30 を複雑な形状に形成する必要がなくなり、該タンクレール本体 70 のアレス成形を容易に行なうことができ、製造コストを抑制できる。

【0065】上記補強ブラケット 40 の前端開口部 41 をヘッドバイアブ 3 の下端軸受部 3a から上端軸受部 3b に渡る高さ寸法に設定したので、ヘッドバイアブ 3 への接合面積を増大でき、この点からも剛性を向上できる。

【0066】上記タンクレール本体 30 の傾斜開口部 38b を補強ブラケット 40 に溶接するとともに、細開口部 38a をヘッドバイアブ 3 に溶接したので、ヘッドバイアブ 3 に対する補強ブラケット 40、タンクレール本体 30 の接合強度、剛性を向上でき、ひいては車体フレーム全体の剛性を向上できる。

【0067】さらに上記補強ブラケット 40 の後端開口 43 をエンジン懸架ブラケット 45 の嵌合部 47 により閉塞するとともに溶接固定したので、剛性の高い補強ブ

ラケット40により懸架プラケット45を支持でき、それだけエンジンユニット7の剛性を向上できる。

【0068】本実施形態の如きエンジン支持構造を採用した場合には、エンジン自体の剛性が車両全体の剛性を大きく左右する。エンジン支持に当たって従来は、左、右対称に支持するのが一般的であり、そのため車両全体の剛性が不足又は過大になる場合があった。このように左右対称支持を前提とした場合は、最適の車両剛性を得るには非常に長時間に渡る試行錯誤による検討が必要であった。また、エンジンユニットを弾性部材を介在させて車体フレームに取り付けた場合はエンジン自体の剛性が車両全体の剛性に与える影響が不安定となり、この点からも最適剛性確保が困難となる。

【0069】これに対して本実施形態のエンジン懸架装置によれば、エンジンユニット7の左側壁55aを車体

フレーム2に4箇所にて懸架支持し、右側壁55bをこれより少ない3箇所にて懸架支持するという左右非対称支持構造を採用し、しかも全ての懸架を、弾性部材を介することなくエンジンをフレームに直接取り付けるリジッド支持構造としたので、エンジン自体の剛性が車両全体の剛性に与える影響を把握し易く、車両全体の剛性が不足したり、逆に過大になったりすることなく、最適な車両剛性を得ることができる。

【0070】この場合に、上記エンジンの支持にあたり、チェーン室59aが設けられた右側壁55b、56b側の懸架支持数を左側壁55a、56aより少くしたので、左、右非対称支持構造による車両剛性の最適化をより良好に行なうことができる。

【0071】

【表1】

	左右対称 3×3 支 持	左右対称 4×4 支 持	左右非対称 4×3 支持(a1)	左右非対称 4×3 支持(a2)	左右非対称 4×3 支持(a3)
車両全体 の剛性比 (体感値)	100	140	116	122	108

【0072】表1は本実施形態におけるエンジン左、右非対称支持の効果を確認するために行った実験結果を示す。本実験は、図5、図6に示すように、エンジンユニット7の左側壁55a、56aを4点(符号70、73、75、76)で懸架支持し、右側壁55b、56bを3点(符号70、73、77)で支持した場合の車両全体の剛性と左、右対称に3点(符号70、73、77)支持した場合、及び左、右対称に4点(符号70、73、75、76)支持した場合の車両全体の剛性とを試験ライダが体感的に比較して行った。また上記図5、図6の左、右非対称支持において、左側壁の前端部支持点a1に代えてシリンドブロック55の前部a2又はシリンドヘッド56の後部a3を支持した場合の剛性についても比較した。

【0073】上記左、右対称3×3点支持の場合は、コーナリング時におけるライダの車両倒し込み動作(バンクさせる動作)に対する車体の実際のバンク開始に時間的ずれがあり、これは車両全体の剛性が低いことから生じる応答遅れに起因するものと考えられ、本実験ではこの場合の剛性を100と表示した。

【0074】一方、上記左、右4×4点支持の場合は、上記コーナリング時のライダーの車両倒し込み動作における力が小さい場合にはバンクせず、ある一定以上の力をかけると時間遅れなく直ちにバンク開始し、これは車両全体の剛性が過大であることに起因するものと考えら

れ、本実験ではこの場合の剛性を140と表示した。

【0075】これに対して本実施形態のように左4点、右3点の非対称支持構造とした場合は、ライダの倒し込み動作に対して時間的遅れがなく、かつ倒し込み動作における力の大きさに比例してバンクし、本実験ではこの場合の剛性を116と表示し、良好な剛性が得られている。また支持点をa2とした場合は、剛性は122となり、本実施形態と暗同意の効果が得られている。さらに支持点をa3にした場合は、剛性は108と少し低いものの良好な値が得られている。

【0076】なお、上記実施形態では、エンジンの左側壁を4点支持し、右側壁をこれより少ない3点支持とした場合を説明したが、左、右支持点数についてはこれに限られるものではなく、要は左、右何れかエンジン自体の剛性の低い側の支持数を高い側より少く設定することにより、左、右非対称支持構造とすれば良く、これにより車両全体の剛性が不足したり、逆に過大になったりするのを確実に回避できる。

【0077】本実施形態の後輪懸架装置によれば、クッションユニット86をリヤアームプラケット31の後側に略垂直に起立させて配置し、該クッションユニット86の初期ねじ荷重調整装置を構成する上眼ばね座90をリヤアームプラケット31、パックステー35、及び補強板81で囲まれた空間を通して車幅方向外側から調整可能な位置に配置したので、上眼ばね座90を調整工具

を用いて容易に回動させることができ、初期ねね荷重調整作業におけるメンテナンス性を向上できる。

【0078】本実施形態ではクランク軸50、メイン軸52、ドライブ軸53の配置位置の工夫によってエンジンユニット7の前後方向長さを短くしたので、それだけビボット軸80を車体前方に配置でき、これによりリヤアームブラケット31を車体前面に位置させることができとなり、即ち、後輪の前端とビボット軸との間の距離が大きくなり、クッションユニットの配置上の自由度が大きくなことにより上側ねね座90を上述の位置に配置することができ、上述のメンテナンス性向上効果を得られる。

【0079】また緩衝器87の減衰力を調整する減衰力調整バルブ92をシートレール34とバックステー35との空間を通して車幅向外方から調整可能に配置したので、上記同様に減衰力の調整作業を容易に行なうことができる。

【0080】本実施形態による後輪の支持構造によれば、インナハブ107aのゴムダンパー110と半径方向に重なるボス部123をニードル軸受124により支持したので、インナハブ107aのボス部123を小径化でき、アウタハブ107bの径を確保しながらゴムダンパー110の容量を大きくできる。

【0081】また換言すれば、上記ボス部123を小径化したので、必要なダンパー容量を確保しながらアウタハブ107bを小径化でき、それだけ軽量化に貢献できる。さらにアウタハブ107bを小径化した分だけスポーツ部105の軸方向長さが長くなり、これにより路面からの衝撃の吸収能力を向上できる。

【0082】上記インナハブ107aのニードル軸受124と対反側部分については玉軸受121で軸支するとともに該玉軸受121の外側面にサークリップ122を装着したので、スラスト荷重に対する後輪14の軸方向移動を阻止できる。

【0083】本実施形態の前輪12によれば、インナハブ143とアウタハブ144とを結合する左、右側壁部145の外面に、該インナハブ143の中心からスポーツ部137の前、後縁部137a、137bに延びる外側補強リブ147を形成したので、制動時にスポーツ部137の前、後縁部137a、137bに加わる引張力、圧縮力に対する剛性を高めることができ、ブレーキ鳴きを抑制できる。

【0084】また上記各外側補強リブ147をインナハブ143からスポーツ部137の前、後縁部137a、137bに向けて形成したので、インナハブ143の中心部からアウタハブ144、スポーツ部137に流れる湯の通路面積を大きくでき、それだけ湯の流れがスマーズとなり、ひいては肉厚不良や塗の発生を防止でき、品質に対する信頼性を向上できる。

【0085】本実施形態では、上記各側壁部145の内

面に上記外側補強リブ147と対向するように内側補強リブ151を形成したので、スポーツ部137の剛性をさらに向上でき、ブレーキ鳴きをさらに抑制できる。

【0086】また上記各外側補強リブ147とスポーツ部137との境界部にブレーキディスク126をボルト締め固定するボス部149を形成したので、ブレーキディスク126の取付け強度を向上でき、また該ボス部149がリブとしても機能することからスポーツ部137の剛性を向上できる。

【図面の簡単な説明】

【図1】本発明の一実施形態を説明するための自動二輪車の左側面図である。

【図2】上記自動二輪車の平面図である。

【図3】上記自動二輪車のタンクレール部分の左側面図である。

【図4】上記タンクレール部分の平面図である。

【図5】上記自動二輪車のエンジン懸架装置を示す左側面図である。

【図6】上記エンジン懸架装置の右側面図である。

【図7】上記エンジン懸架装置の平面図である。

【図8】上記自動二輪車の後輪懸架装置の左側面図である。

【図9】上記後輪懸架装置の断面図である（図9のX-X線断面図）。

【図10】上記タンクレール本体の平面図である。

【図11】上記タンクレール本体の断面図である（図3のX1-X1線断面図）。

【図12】上記タンクレールの補強ブラケットの平面図である。

【図13】上記補強ブラケットの側面図である。

【図14】上記補強ブラケットの断面図である（図13のX1V-X1V線断面図）。

【図15】上記エンジン懸架装置の懸架ブラケットの平面図である。

【図16】上記自動二輪車の後輪の右側面図である。

【図17】上記後輪の断面背面図である。

【図18】上記自動二輪車の前輪の左側面図である。

【図19】上記前輪の断面図である。

【図20】上記前輪のフロントフォークの一部断面図である。

【図21】上記前輪（フロントホイール）の側面図である。

【図22】上記前輪の断面図である（図21のXX1-X1-X1線断面図）。

【図23】上記自動二輪車のタンデムシートの断面図である。

【図24】上記タンデムシートの斜視図である。

【符号の説明】

1 自動二輪車

2 車体フレーム

3	ヘッドパイプ	86	リヤクッションユニット
4	タンクレール	87	緩衝器
13	リヤアーム	88	コイルばね
31	リヤアームブラケット	90	上側ばね座
34	シートレール	92	減衰力調整バルブ
35	バックステー		

【四】

【図2】

[图6]

【図3】

[図15]

[図7]

【四】

〔図5〕

[图13]

〔图10〕

[图14]

【図8】

【图16】

[图12]

[図17]

〔図20〕

【図23】

【図24】

【図18】

【図19】

【図22】

【図21】

