

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Метод определения функции импульсного отклика искажающих помех на основе априорной информации о границах объекта

Автор: Гасанзаде М.А.

Группа: ИУ7-76

Научный руководитель:

Филлипов М.В.

МГТУ им. Баумана, 2020

Цель и задачи:

Целью работы является создание метода определения функции импульсного отклика искажающих помех на основе априорной информации о границах объекта

Цель (2)

Объект исследования – импульсный отклик искажённого изображения.

<u>Предмет исследования</u> — методы восстановления испорченных изображений.

Область применения:

- Аэро-космическая фотосъёмка со спутников
- Изображения полученные при помощи БПЛА
- Изображения полученные в сложных условиях (рад. фон, высоких темп. и т.д.)

Линейная модель

$$g = h\{n_1\} \odot f + n_2$$

$$n_1$$
 n_2

Восстановление изображения

- 1. Определение искажающей функции h(x,s).
 - частные случаи смаз, дефокусировка, вибрации;
 - общий случай известны границы объекта, на этой основе определяется функция импульсного отклика.
- 2. Восстановление изображения методом СП

Слепая деконволюция

$$g(x) = \sum_{s \in S} h(x, s) f(s) + n(x)$$

h(x,s)—функция размытия точки n(x)—шум g(x)—наблюдаемый сигнал

Слепая деконволюция (2)

Рисунок 1. Эффективность СД при "идеальных"

Восстановление

Рисунок 2. Работа алгоритмов обработки сигнала

Метод Фурье

$$G(f_x, f_y) = F(f_x, f_y)H(f_x, f_y) + N(f_x, f_y)$$