Higher-Order DCA against Standard Side-Channel Countermeasures

Andrey Bogdanov ¹ Matthieu Rivain ² Philip S. Vejre ¹ Junwei Wang ^{2,3,4}

¹Technical University of Denmark ²CryptoExperts ³University of Luxembourg ⁴University Paris 8

COSADE 2019, 4 April, 2019

Overview

- 1 White-Box Context
- 2 Differential Computation Analysis
- 3 Side-Channel Countermeasures
- 4 Higher-Order DCA
- 5 Multivariate Higher-Order DCA

White-Box Threat Model

black-box model

knowing the specification observing I/O behavior e.g. linear/differential cryptanalysis

gray-box model

+ side-channel leakages (power/EM/time/···)

e.g. differential power analysis

white-box model [SAC02]

fully controlling the binary and its execution environment

White-Box Adversary

- **Goal:** to extract a cryptographic key, ...
- Where: from a software impl. of the cipher
- Who: malwares, co-hosted applications, user themselves, · · ·
- **How:** (by all kinds of means)
 - ▶ analyze the code
 - spy on the memory
 - ▶ interfere the execution
 - · · · ·

No provably secure white-box scheme for standard block ciphers.

Typical Applications

Digital Content Distribution

videos, music, games, e-books, · · ·

Host Card Emulation

mobile payment without a secure element

Overview

- 1 White-Box Context
- 2 Differential Computation Analysis
- 3 Side-Channel Countermeasures
- 4 Higher-Order DCA
- 5 Multivariate Higher-Order DCA

Differential Computation Analysis [CHES16]

gray-box model

side-channel leakages (noisy)

e.g. power/EM/time/...

white-box model

computational leakage (*perfect*)

e.g. registers/accessed memory/...

Differential Computation Analysis [CHES16]

Differential power analysis techniques on computational leakages

Implying strong *linear correlation* between the sensitive variables and the leaked samples in the computational traces.

Overview

- 1 White-Box Context
- 2 Differential Computation Analysis
- 3 Side-Channel Countermeasures
- 4 Higher-Order DCA
- 5 Multivariate Higher-Order DCA

Masking

 \blacksquare Split a sensitive variable x in d shares s.t.

$$x = x_1 \oplus x_2 \oplus \cdots \oplus x_d$$

■ Any combination of d-1 shares is independent with x.

Shuffling

■ **Time shuffling**: randomize the order of computations

Shuffling

■ **Time shuffling**: randomize the order of computations

- But no enough: traces can be memory aligned
- Memory shuffling: randomize the memory locations of shares

Masking and Shuffling: Security

- No external random source
- Security requirements (informally) for PRNG (seeded by the input plaintext):
 - ▶ Pseudorandomness: unpredictable outputs
 - Obscurity: hiding design
 - ▶ Obfuscation: preventing reverse-engineering
- Masking is good enough to prevent DCA.
- However, still vulnerable to linear decoding analysis (LDA)
 [ia.cr/2018/098; AC18]
- Necessary to introduce noise

What about masking + shuffling?

This Work

- We quantify the security brought by masking and shuffling for a passive adversary by introducing
 - ▶ the higher-order variant of DCA attack
 - and an optimized multivariate version
- We analyze both attacks and verify our results by simulations
- We showcase the masking and shuffling orders that should be taken in practice

Overview

- 1 White-Box Context
- 2 Differential Computation Analysis
 - 3 Side-Channel Countermeasures
- 4 Higher-Order DCA
- 5 Multivariate Higher-Order DCA

DCA: a Formal Description

- $N \times t$ matrix $(v_{i,i})_{i,i}$: N computational traces of t time slots
- $\varphi_k(x)$: key dependent predictions
- C: correlation measurement

$$\gamma_k = \max_{1 \le j \le t} C((v_{i,j})_i, (\varphi_k(x_i))_i)$$

Success probability:

$$p_{\mathsf{succ}} = \mathsf{Pr}\left(\mathsf{argmax}_{k \in \mathcal{K}} \gamma_k = k^*\right)$$
.

Introducing Higher-Order DCA

■ Trace **pre-processing**: a *d-th order traces* contains $q = {t \choose d}$ points:

Perform DCA attacks on the higher-order traces

Higher-Order DCA against Masking

If only using masking:

- \exists fixed $j_1^* < \cdots < j_d^*$ s.t. $\varphi_{k^*}(x) = v_{i_1^*} \oplus \cdots \oplus v_{i_d^*}$ for all traces
- Hence, the natural combination function is

$$\psi(\mathsf{v}_{\mathsf{j}_1},\cdots,\mathsf{v}_{\mathsf{j}_d})=\mathsf{v}_{\mathsf{j}_1}\oplus\cdots\oplus\mathsf{v}_{\mathsf{j}_d}$$

Correlation measurement

$$C_k = \#$$
traces s.t. $\varphi_k(x) = v_{j_1} \oplus \cdots \oplus v_{j_d}$

 \blacksquare Even for small N,

$$\gamma_k = \max_j \mathsf{C}_k \quad \text{satisfys} \quad egin{cases} = N & \text{if } k = k^* \ < N & \text{if } k = k^{ imes} \end{cases}$$

HO-DCA against Masking and Shuffling

If using both masking and shuffling:

- \blacksquare \nexists fixed $j_1^* < \cdots < j_d^*$ s.t. $\varphi_{k^*}(x) = v_{j_1^*} \oplus \cdots \oplus v_{j_d^*}$ for all traces
- More traces are required to be successful:

Limitation: each sample in the higher-order traces is considered independently

Overview

- 1 White-Box Context
- 2 Differential Computation Analysis
 - 3 Side-Channel Countermeasures
- 4 Higher-Order DCA
- 5 Multivariate Higher-Order DCA

Multivariate Higher-Order DCA

- The multivariate attack optimizes the analysis by exploiting joint information of the higher-order samples on the secrets
- Our proposal is based on a maximum likelihood distinguisher

$$\gamma_k = \Pr\left(K = k | (\mathbf{V}_i)_i = (\mathbf{v}_i)_i \wedge (X_i)_i = (x_i)_i\right)$$

We show that

$$\gamma_k \propto \prod_{i=1}^N \mathsf{C}_k(\mathbf{v}_i, \mathbf{x}_i)$$

where the counter

$$C_k(\mathbf{v}, x) := \#d$$
-tuples s.t. $v_{i_1} \oplus \cdots \oplus v_{i_d} = \varphi_k(x)$ in one trace.

Analysis of Multivariate HO-DCA

■ Goal: to compute the success rate

$$\Pr(\forall k^{\times} \neq k^*, \ \gamma_{k^*} > \gamma_{k^{\times}}) = \Pr(\gamma_{k^*} > \gamma_{k^{\times}})^{|\mathcal{K}|-1}$$

- **Assumption**: each shuffled trace consists of *d* shares + uniform variables elsewhere
- We define the *zero-counter* event

$$\mathcal{Z}_k = \{ \exists \text{ a trace } \text{ s.t. } \mathsf{C}_k(\boldsymbol{v},x) = 0 \}$$

By the law of total probability

$$\Pr(\gamma_{k^*} > \gamma_{k^{\times}}) = \Pr(\gamma_{k^*} > \gamma_{k^{\times}} | \mathcal{Z}_{k^{\times}}) + \Pr(\gamma_{k^*} > \gamma_{k^{\times}} | \neg \mathcal{Z}_{k^{\times}})$$

$$ightharpoonup \mathcal{Z}_{k^{\times}}$$
 happens $\implies \gamma_{k^{*}} > \gamma_{k^{\times}} = 0$

$\mathcal{Z}_{k^{\times}}$ does not Happen

It is easy to show that

 $\mu + 1$

■ Thanks to central limit theorem and Taylor expansion

$$p_{\mathsf{succ}} = \Theta\left(\mathit{erf}\left(rac{1}{2}\sqrt{rac{N}{inom{t}{d}}}
ight)
ight)$$

■ Implying the trace complexity $N = \mathcal{O}\left(\binom{t}{d}\right)$

Experimental Verification

- The analysis involves approximations, e.g.:
 - ▶ ideal assumption on the traces
 - Gaussian approximations of the counters
 - ► Taylor expansion truncation, etc
- The accuracy is verified by simulations.

Attacking Complexity

- Trace complexity: $N = \mathcal{O}\left(\begin{pmatrix} t \\ d \end{pmatrix}\right)$.
- $\qquad \textbf{Computation complexity: } \mathcal{O}\left(|\mathcal{K}|\cdot \textit{N}\cdot \binom{t}{d}\right) = \mathcal{O}\left(|\mathcal{K}|\cdot \binom{t}{d}\right)^2\right).$
- A 7-th order masking will bring approximately 85-bit security.

Table: d-th order attacks to achieve 90% success probability, where $|\mathcal{K}| = 256$.

d	log ₂ N	log ₂ time	d	log ₂ N	log ₂ time	d	log ₂ N	log ₂ time
3	10.6	32.7	5	21.0	53.5	7	31.6	74.6
4	15.8	43.1	6	26.3	64.1	8	36.9	85.3

Conclusion

- DCA is an adaption of DPA attack
- It is natural to adapt classical DPA countermeasures
- We propose to higher-order DCA attacks to analyze the effectiveness
- We give close formulae for their success rates and we verify them by simulations
- The security level of this approach is quantified:
 - ▶ trace complexity: $N = \mathcal{O}\left(\binom{t}{d}\right)$
 - ightharpoonup computation complexity: $\mathcal{O}\left(|\mathcal{K}|\cdot\binom{t}{d}^2\right)$
- Attackers are forced to perform active attack / reverse engineering

Thank You!