STAT 120 C

Introduction to Probability and Statistics III

Dustin Pluta 2019/04/01

Odds, Odds Ratio, and Logistic Regression

 To better understand and interpret the statistical analysis of categorical data, we need to introduce the concept of the and the

Definition

The of an event A is

$$\mathbf{Odds} = \frac{P(A)}{P(\text{not } A)} = \frac{P(A)}{1 - P(A)}$$

Example

Suppose we roll a fair, 6-sided die. The odds of rolling a 1 is

$$\mathbf{Odds} = \frac{P(\text{roll a 1})}{P(\text{don't roll a 1})}$$

$$Odds=rac{1/6}{5/6}=rac{1}{5}$$

Odds

- The is a measure of how likely an event is relative to a non-event
- When we say "3 to 1 odds", we're making a statement about the relative probabilty of events
- Since

$$P(A) = rac{odds(A)}{odds(A) + 1},$$

we can convert the odds to a probability.

• For instance, "3 to 1" corresponds to an odds of 3, which implies $P(A)=rac{3}{4}$.

Odds Ratio

- ullet Suppose that X represents the event that an individual is exposed to a harmful factor for a disease, and that D represents the event that the individual develops the disease.
- A key goal of clinical trials and epidemiology is to determine the degree of risk associated with exposure.
- It is often not possible or practical to estimate the odds, especially for rare diseases
- In these cases, it is useful to consider the instead.

Odds Ratio

Definition

The conditional odds of D given exposure X is

$$odds(D|X) = rac{P(D|X)}{1 - P(D|X)}.$$

The conditional odds of D given that there is no exposure ($\$ \bar X $\$) is

$$odds(D|ar{X}) = rac{P(D|ar{X})}{1-P(D|ar{X})}.$$

The **odds ratio** is

$$\Delta = rac{odds(D|X)}{odds(D|ar{X})}$$

Odds Ratio

Contingency table perspective

	\bar{D}	D	
\bar{X}	π_{00}	π_{01}	π_0 .
X	π_{10}	π_{11}	π_1 .
	$\pi_{\cdot 0}$	$\pi_{\cdot 1}$	1

With this notation, the odds ratio can be written

$$\Delta = rac{\pi_{11}/(\pi_{10}+\pi_{11})}{\pi_{00}/(\pi_{01}+\pi_{01})} = rac{\pi_{11}\pi_{00}}{\pi_{01}\pi_{10}}$$

There are three common sampling designs that can be used to estimate the odds ratio.

Method 1: Simple random sample

- If we draw a simple random sample from the population, all of the probabilities in the contingency table can be estimated by $\frac{n_{ij}}{n_{ij}}$.
- However, if the disease D is rare, then we will need a very large sample size to accurately estimate P(D|X) and $P(D|ar{X})$.
- This method is theoretically ideal, but often impractical for rare diseases and/or rare exposures.

Method 2: Prospective Study

- In a prospective study, a fixed number of exposed and nonexposed individuals are sampled, and the incidence of disease recorded in each group.
- This allows us to make sure that we have a sufficient number of exposed and unexposed individuals
- ullet From this sample, we can compute P(D|X) and $P(D|ar{X})$, and so can compute the odds ratio.
- However, we could still run into problems if the disease is rare (which would again require a large sample size).
- Note that in this design, we cannot estimate the individual cell probabilities π_{ij} since the number of exposed and unexposed individuals is fixed by the sampling design.

Method 3: Retrospective Study

- In a retrospective study, the number of diseased and undiseased individuals are fixed by the sample design, and the exposure incidences are counted.
- In this setting, we can estimated P(X|D) and $P(X|\bar{D})$, but cannot estimate P(D|X) or $P(D|\bar{X})$, since the number of diseased and undiseased individuals are fixed.
- This seems problematic at first, but we can actually still recover an estimate of the odds ratio.
- Retrospective studies are generally the easiest means of estimating the odds ratio, and often it is the only practical method for studying rare diseases.

Method 3: Retrospective Study

Observe that:

$$P(X|D) = rac{\pi_{11}}{\pi_{01} + \pi_{11}} \ 1 - P(X|D) = rac{\pi_{01}}{\pi_{01} + \pi_{11}} \ odds(X|D) = rac{\pi_{11}}{\pi_{01}}.$$

Similarly,

$$odds(X|ar{D}) = rac{\pi_{10}}{pi_{00}}.$$

Thus, the same odds ratio defined above can be expressed as

$$\Delta = rac{odds(X|D)}{odds(X|ar{D})}.$$

Method 3: Retrospective Study

The probabilities in a retrospective study can be estimated as

$$\hat{P}(X|D) = rac{n_{11}}{n_{\cdot 1}} \ 1 - \hat{P}(X|D) = rac{n_{01}}{n_{\cdot 1}} \ o\hat{d}ds(X|ar{D}) = rac{n_{11}}{n_{01}} \ o\hat{d}ds(X|ar{D}) = rac{n_{10}}{n_{00}}$$

The resulting estimate of the odds ratio is

$$\hat{\Delta} = rac{n_{00}n_{11}}{n_{01}n_{10}}$$

• To do inference on $\hat{\Delta}$, we can generate a confidence interval using the asymptotic distribution of the \log odds ratio:

$$rac{\log(\hat{\Delta}) - \log(\Delta)}{se(\log(\hat{\Delta}))},$$

where
$$se(\log \hat{\Delta}) = \sqrt{1/n_{00} + 1/n_{10} + 1/n_{01} + 1/n_{11}}$$
 .

The resulting (1-lpha)100% confidence interval is

$$\exp\Bigl\{\log\hat{\Delta}\pm z_{lpha/2}se(\log\hat{\Delta})\Bigr\}$$

Example: Estimating Risk of Alzheimer's Disease by APOE4 Exposure

	AD Yes	AD No	Total
APOE4 Yes	44	11	55
APOE4 No	6	39	45
Total	50	50	100

Table 5: Retrospective sample of Alzheimer's patients and healthy controls.

$$\hat{\Delta} = rac{n_{00}n_{11}}{n_{01}n_{10}} = rac{44\cdot 39}{6\cdot 11} = 26$$
 $se(\log(\hat{\Delta})) = 0.55$

• 95% CI for odds ratio:

$$\exp\Bigl\{\log\hat{\Delta}\pm z_{lpha/2}se(\log\hat{\Delta})\Bigr\}=(8.85,76.4)$$

• **Interpretation:** the odds of developing AD given the presence of the APOE4 gene is estimated to be 26 times the odds of developing AD given the absence of the APOE4

Example: Estimating Risk of Alzheimer's Disease by APOE4 Exposure

Published in final edited form as:

Nat Rev Neurol. 2013 February; 9(2): 106-118. doi:10.1038/nrneurol.2012.263.

Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy

Chia-Chen Liu¹, Takahisa Kanekiyo², Huaxi Xu¹, and Guojun Bu¹

¹Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China

²Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA

APOE genotypes, AD and cognition

APOE ε4 as a strong risk factor for AD

Genome-wide association studies have confirmed that the &4 allele of APOE is the strongest genetic risk factor for AD. 16, 17 The presence of this allele is associated with increased risk for both early-onset AD and LOAD. ^{18, 19} A meta-analysis of clinical and autopsy-based studies demonstrated that, compared with individuals with an ε3/ε3 genotype, risk of AD was increased in individuals with one copy of the ε4 allele (ε2/ε4, OR 2.6; ε3/ε4, OR 3.2) or two copies (ε4/ε4, OR 14.9) among Caucasian subjects. ¹⁰ The ε2 allele of APOE has protective effects against AD: the risk of AD in individuals carrying APOE ε2/ε2 (OR 0.6) or $\varepsilon 2/\varepsilon 3$ (OR 0.6) are lower than those of $\varepsilon 3/\varepsilon 3$. In population-based studies, the APOE4-AD association was weaker among African Americans (e4/e4, OR 5.7) and Hispanics (e4/ ε4, OR 2.2) and was stronger in Japanese people (ε4/ε4, OR 33.1) compared with Caucasian cases (e4/e4, OR 12.5). 10 APOE e4 is associated with increased prevalence of AD and lower age of onset. 7, 10, 20 The frequency of AD and mean age at clinical onset are 91% and 68 years of age in ε4 homozygotes, 47% and 76 years of age in ε4 heterozygotes, and 20% and 84 years in e4 noncarriers, 7, 20 indicating that APOE e4 confers dramatically increased risk of development of AD with an earlier age of onset in a gene dose-dependent manner (Figure 1b).

NIH-PA Author Manuscript