

Übung 06: Kombinatorische Schaltungen

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

22 November 2024

Keine Garantie für die Richtigkeit der Tutorfolien. Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien recht!

Boolesche Funktionen

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

A	$\neg A$
0	1
1	0

Boolesche Funktionen

A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

XNOR-Gatter

A	B	$A \leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Definitionen

Funktionale Vollständigkeit

Eine Menge \mathcal{F} boolescher Funktionen heißt funktional vollständig, falls alle booleschen Funktionen als Kombination von $f_i \in \mathcal{F}$ darstellbar sind. Beispiel: $\{\land, \neg\}$

Dualität

Gegeben eine boolesche Formel f, erhält man den dazugehörigen dualen Ausdruck f^D durch Ersetzung: $\{0 \mapsto 1; 1 \mapsto 0; \land \mapsto \lor; \lor \mapsto \land\}$. Es gilt $f \Leftrightarrow f^D$.

¹ Aussage lediglich über Wahrheitsgehalt der Formeln, nicht über Erfüllbarkeitsäquivalenz

Gesetze der booleschen Algebra

- Identität: x + 0 = x, $x \cdot 1 = x^{-1}$
- Idempotenz: x + x = x, $x \cdot x = x$
- Komplementärgesetz: $x + \overline{x} = 1$, $x \cdot \overline{x} = 0$
- Involution: $\overline{\overline{x}} = x$
- De Morgan: $\overline{x+y} = \overline{x} \cdot \overline{y}$ und $\overline{x \cdot y} = \overline{x} + \overline{y}$
- Absorption: $x + (x \cdot y) = x$, $x \cdot (x + y) = x$
- Distributivität: $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ und $x + (y \cdot z) = (x+y) \cdot (x+z)$

¹In ERA werden sowohl die Schreibweisen \land / \lor als auch $\cdot / +$ akzeptiert, solange sie einheitlich verwendet werden.

Normalformen

Konjunktive Normalform (OR in den Klammern, AND dazwischen):

$$(x+y)\cdot(x+\overline{y})$$

Disjunktive Normalform (AND in den Klammern, OR dazwischen):

$$(x \cdot y) + (x \cdot \overline{y})$$

Fragen?

Artemis-Hausaufgaben

- "H06 16-Segment-Display" bis 01.12.2024 23:59 Uhr
- Wahrheitstabellen, Logiksynthese, Implementierung in Digital
- Vorgehen:
 - 1. Wahrheitstabelle nach Aufgabenstellung aufstellen
 - 2. Formeln mittels NAND darstellen
 - Schaltung zeichnen

Links

- Zulip: "ERA Tutorium Do-1600-1" bzw. "ERA Tutorium Fr-1500-2"
- RISC-V-Spezifikation
- ERA-Moodle-Kurs
- ERA-Artemis-Kurs
- Wikipedia zu Caches
- Elektronik-Kompendium zu Caches

Übung 06: Kombinatorische Schaltungen

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

22 November 2024

