МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса.

Студент гр. 9383	 Гладких А.А.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Исправить ошибки в программе на языке программирования Ассемблер и применить на практике знания о режимах адресации и формировании исполнительного адреса в языке программирования Ассемблер.

Текст задания.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Исходные данные.

Вариант 1

Таблица 1 — Исходные данные.

Название массива	Набор значений
vec1	1,2,3,4,8,7,6,5
vec2	-10,-20,10,20,-30,-40,30,40
matr	1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5

Исходный код.

Исходный код представлен в приложении А.

Обнаруженные ошибки.

- 1. «mov mem3,[bx]» error A2052: Improper operand type нельзя передавать данные из памяти в память напрямую.
- 2. «mov cx,vec2[di]» warning A4031: Operand types must match предупреждение при попытке записать байт в слово.
- 3. «mov cx,matr[bx][di]» warning A4031: Operand types must match предупреждение при попытке записать байт в слово.
- 4. «mov ax,matr[bx*4][di]» error A2055: Illegal register value нельзя умножать 16-битовые регистры.
- 5. «mov ax,matr[bp+bx]» error A2046: Multiple base registers нельзя использовать несколько базовых регистров.
- 6. «mov ax,matr[bp+di+si]» error A2047: Multiple index registers нельзя использовать несколько индексных регистров.

Листинг успешной трансляции программы.

Листинг представлен в приложении Б.

Исправленный код представлен в приложении Б.

Протокол работы.

Таблица 2 – Результаты выполнения программы в пошаговом режиме.

Адрес	Символически	16-ричный код	Содержимое регистров и ячеек памяти		
команды	й код комманды	команды	До выполнения	После выполнения	
0000	PUSH DS	1E	(CS) = 1A0A	(SP) = 0016	
			(DS) = 19F5	(DS) = 19F5	
			(ES) = 19F5	Stack: +0 19F5	
			(SS) = 1A05		

			(CX) = 00B0	
			(DX) = 01F4	
			(SP) = 0018	
			Stack: +0 0000	
0001	SUB AX, AX	2BC0	(AX) = 0000	(AX) = 0000
0003	PUSH AX	50	(AX) = 0000	(AX) = 0000
			(SP) = 0016	(SP) = 0014
			Stack: +0 19F5	Stack: +0 0000
			Stack: +2 0000	Stack: +2 19F5
0004	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
0007	MOV DS, AX	8ED8	(DS) = 19F5	(DS) = 1A07
			(AX) = 1A07	(AX) = 1A07
0009	MOV AX, 01F4	B8F401	(AX) = 1A07	(AX) = 01F4
000C	MOV CX, AX	8BC8	(CX) = 00B0	(CX) = 01F4
			(AX) = 01F4	(AX) = 01F4
000E	MOV BL, 24	B324	(BX) = 0000	(BX) = 0024
0010	MOV BH, CE	B7CE	(BX) = 0024	(BX) = CE24
0012	MOV [0002],	C7060200CEFF	DS: 0002 = 00	DS: 0002 = CE
	FFCE		DS: $0003 = 00$	DS: 0003 = FF
0018	MOV BX, 0006	BB0600	(BX) = CE24	(BX) = 0006
001B	MOV [0000],	A30000	(AX) = 01F4	(AX) = 01F4
	AX		DS: 0000 = 00	DS: $0000 = F4$
			DS: 0001 = 00	DS: $0001 = 01$
001E	MOV AL, [BX]	8A07	(AX) = 01F4	(AX) = 0101
			(BX) = 0006	(BX) = 0006
			DS: 0006 = 01	DS: $0006 = 01$

0020	MOV AL,	8A4703	(AX) = 0101	(AX) = 0104
	[BX+03]		(BX) = 0006	(BX) = 0006
			DS: 0009 = 04	DS: $0009 = 04$
0023	MOV CX,	8B4F03	(CX) = 01F4	(CX) = 0804
	[BX+03]		(BX) = 0006	(BX) = 0006
			DS: $0009 = 04$	DS: $0009 = 04$
			DS: $000A = 08$	DS: $000A = 08$
0026	MOV DI, 0002	BF0200	(DI) = 0000	(DI) = 0002
0029	MOV AL,	8A850E00	(AX) = 0101	(AX) = 010A
	[000E+DI]		(DI) = 0002	(DI) = 0002
			DS: $0010 = 0A$	DS: $0010 = 0A$
002D	MOV BX, 0003	BB0300	(BX) = 0006	(BX) = 0003
0030	MOV AL,	8A811600	(AX) = 010A	(AX) = 01FD
	[0016+BX+DI]		(BX) = 0003	(BX) = 0003
			(DI) = 0002	(DI) = 0002
			DS: 001B = FD	DS: 001B = FD
0034	MOV AX,	B8071A	(AX) = 01FD	(AX) = 1A07
	1A07			
0037	MOV ES, AX	8EC0	(ES) = 19F5	(ES) = 1A07
			(AX) = 1A07	(AX) = 1A07
0039	MOV AX, ES:	268B07	(AX) = 010A	(AX) = 00FF
	[BX]		(ES) = 1A07	(ES) = 1A07
			(BX) = 0003	(BX) = 0003
			DS: $0003 = FF$	DS: $0003 = FF$
			DS: $0004 = 00$	DS: $0004 = 00$
003C	MOV AX, 0000	B80000	(AX) = 00FF	(AX) = 0000
003F	MOV ES, AX	8EC0	(ES) = 1A07	(ES) = 0000
			(AX) = 0000	(AX) = 0000

0041	PUSH DS	1E	(DS) = 1A07	(DS) = 1A07
			(SP) = 0014	(SP) = 0012
			Stack: +0 0000	Stack: +0 1A07
			Stack: +2 19F5	Stack: +2 0000
			Stack: +4 0000	Stack: +4 19F5
0042	POP ES	07	(ES) = 0000	(ES) = 1A07
			(SP) = 0012	(SP) = 0014
			Stack: +0 1A07	Stack: +0 0000
			Stack: +2 0000	Stack: +2 19F5
			Stack: +4 19F5	Stack: +4 0000
0043	MOV CX, ES:	268B4FFF	(CX) = 0804	(CX) = FFCE
	[BX-01]		(ES) = 1A07	(ES) = 1A07
			(BX) = 0003	(BX) = 0003
			DS: $0002 = CE$	DS: $0002 = CE$
			DS: $0003 = FF$	DS: $0003 = FF$
0047	XCHG AX, CX	91	(AX) = 0000	(AX) = FFCE
			(CX) = FFCE	(CX) = 0000
0048	MOV DI, 0002	BF0200	(DI) = 0002	(DI) = 0002
004B	MOV ES:	268901	(ES) = 1A07	(ES) = 1A07
	[BX+DI], AX		(BX) = 0003	(BX) = 0003
			(DI) = 0002	(DI) = 0002
			(AX) = FFCE	(AX) = FFCE
			DS: $0005 = 00$	DS: $0005 = CE$
			DS: $0006 = 01$	DS: $0006 = FF$
004E	MOV BP, SP	8BEC	(BP) = 0000	(BP) = 0014
			(SP) = 0014	(SP) = 0014
0050	PUSH [0000]	FF360000	DS: $0000 = F4$	DS: 0000 = F4
			DS: $0001 = 01$	DS: $0001 = 01$
			(SP) = 0014	(SP) = 0012
			Stack: +0 0000	Stack: +0 01F4
			Stack: +2 19F5	Stack: +2 0000
			Stack: +4 0000	Stack: +4 19F5

0054	PUSH [0002]	FF360200	DS: 0002 = CE	DS: 0002 = CE
			DS: $0003 = FF$	DS: 0003 = FF
			(SP) = 0012	(SP) = 0010
			Stack: +0 01F4	Stack: +0 FFCE
			Stack: +2 0000	Stack: +2 01F4
			Stack: +4 19F5	Stack: +4 0000
			Stack: +6 0000	Stack: +6 19F5
0058	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0010
			(SP) = 0010	(SP) = 0010
005A	MOV DX,	8B5602	(DX) = 01F4	(DX) = 01F4
	[BP+02]		(BP) = 0010	(BP) = 0010
			(SP) = 0010	(SP) = 0010
			Stack: +0 FFCE	Stack: +0 FFCE
			Stack: +2 01F4	Stack: +2 01F4
005D	RET FAR 0002	CA0200	(SP) = 0010	(SP) = 0016
			(CS) = 1A0A	(CS) = 01F4
			Stack: +0 FFCE	Stack: +0 19F5
			Stack: +2 01F4	Stack: +2 0000
			Stack: +4 0000	Stack: +4 0000
			Stack: +6 19F5	Stack: +6 0000

Выводы.

Были исправлены ошибки в программе на языке программирования Ассемблер и были применены на практике знания о режимах адресации и формировании исполнительного адреса в языке программирования Ассемблер.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lab2.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EOU -50
; Стек программы
AStack SEGMENT STACK
   DW 12 DUP(?)
AStack ENDS
;Данные программы
DATA
         SEGMENT
;Директивы описания данных
mem1
        DW
        DW 0
mem2
       DW 0
mem3
       DB 1,2,3,4,8,7,6,5
vec1
       DB -10,-20,10,20,-30,-40,30,40
vec2
matr
        DB
              1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5
DATA
         ENDS
; Код программы
CODE
         SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
     push DS
     sub AX, AX
     push AX
     mov AX, DATA
          DS,AX
     mov
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
```

```
mov ax, n1
       mov cx,ax
       mov bl, EOL
       mov bh, n2
; Прямая адресация
       mov mem2,n2
       mov bx, OFFSET vec1
       mov mem1,ax
 Косвенная адресация
       mov al, [bx]
       mov mem3, [bx]
  Базированная адресация
       mov al, [bx]+3
       mov cx, 3[bx]
  Индексная адресация
       mov di, ind
       mov al, vec2[di]
       mov cx,vec2[di]
 Адресация с базированием и индексированием
       mov bx,3
       mov al,matr[bx][di]
       mov cx,matr[bx][di]
       mov ax,matr[bx*4][di]
 ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
 Переопределение сегмента
  ---- вариант 1
       mov ax, SEG vec2
       mov es, ax
       mov ax, es:[bx]
       mov ax, 0
 ----- вариант 2
       mov es, ax
       push ds
       pop es
       mov cx, es:[bx-1]
       xchg cx,ax
; ----- вариант 3
       mov di, ind
       mov es:[bx+di],ax
; ----- вариант 4
       mov bp,sp
```

```
mov ax,matr[bp+bx]
mov ax,matr[bp+di+si]

; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2

Main ENDP
CODE ENDS
```

END Main

ПРИЛОЖЕНИЕ Б ЛИСТИНГ И ИСПРАВЛЕННЫЙ КОД ПРОГРАММЫ

Название файла: lab2.LST

	#MICROS	OFT	(R)	M.	ACRO	As	SEMBLER	VERS	sion 5	.10		10/7	/20
21:42	:22												
												PAGE	1-
1													
							; Проз	ГРАММ	А ИЗУЧЕ	ния реж	in 🍫		
							ф ов а	ДРЕСА	ЦИИ ПРО)ЦЕССОР <i>А</i>			
	= 002	4						EOL	EQU	'\$'			
	= 000	2						IND	EQU	2			
	= 01F	4						и1	EQU	500			
	=-003	2						м2	EQU	-50			
							; Сте	К ПР	ОГРАММЬ	I			
	0000						ASTACK	SEG	MENT	STACK			
	0000	00	0C[DW 12	DUP(3	?)		
		3	????										
]							
	0018						ASTACK	K EN	IDS				
							; Даннь	IE ΠΡ(ЭГРАММЫ				
	0000						DATA		SEGMI	ENT			
							; Дирек	СТИВЫ	ОПИСАН	ия данн	Ы		
							X						
	0000	00	00				мем1		DW	0			
	0002	00	00				мем2		DW	0			
	0004	00	0 0				мемЗ		DW	0			
	0006	01	02	03	04	08	07	vec1		DB	1,2,3,4,8,7,6,5		
		06	05										
	000E	F6	EC	0 A	14	E2	D8	vec2		DB	-10,-20,10,20,-30	,-40,30,	40
		1E	28										

0016 01 02 03 04 FC FD MATR DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8, -7,-6,-5 FE FF 05 06 07 08 F8 F9 FA FB 0026 DATA ENDS ; Код программы CODE SEGMENT 0000 ASSUME CS:CODE, DS:DATA, SS:ASTACK ; Головная процедура 0000 Main PROC FAR 0000 1E PUSH DS 0001 2B CO SUB AX, AX 0003 50 PUSH AX 0004 B8 ---- R MOV AX, DATA 0007 8E D8 MOV DS, AX ; ПРОВЕРКА РЕЖИМОВ АДРЕСА ЦИИ НА УРОВНЕ СМЕЩЕНИЙ ; Регистровая адресация 0009 B8 01F4 MOV AX, N1 000C 8B C8 MOV CX, AX 000E B3 24 MOV BL, EOL 0010 B7 CE MOV BH, N2 ; Прямая адресация #MICROSOFT (R) MACRO ASSEMBLER VERSION 5.10 10/7/20 21:42:22 PAGE 1-2 0012 C7 06 0002 R FFCE mov mem2, n2 0018 BB 0006 R MOV BX, OFFSET VEC1 001B A3 0000 R MOV MEM1, AX

13

MOV AL, [BX]

; Косвенная адресация

001E 8A 07

; MOV MEM3, [BX]

		; Базированная адресация
0020	8A 47 03	MOV AL, [BX]+3
0023	8B 4F 03	MOV CX,3[BX]
		; Индексная адресация
0026	BF 0002	MOV DI, IND
0029	8A 85 000E R	MOV AL, VEC2[DI]
		; MOV CX, VEC2[DI]; BAЙТ ПИХАЕМ
		в ворд
		; Адресация с базирование
		м и индексированием
002D	вв 0003	MOV BX,3
0030	8A 81 0016 R	MOV AL, MATR[BX][DI]
		; MOV CX, MATR[BX][DI]
		; MOV AX, MATR[BX*4][DI]; НЕЛЬЗЯ У
		множать 16-витовые регистр
		Н
		; ПРОВЕРКА РЕЖИМОВ АДРЕСА
		ции с учетом сегментов
		; Переопределение сегмен�
		♦ A
		; вариант 1
0034	B8 R	MOV AX, SEG VEC2
0037	8E C0	MOV ES, AX
0039	26: 8B 07	MOV AX, ES:[BX]
003C	В8 0000	MOV AX, 0
		; вариант 2
003F	8E C0	MOV ES, AX
0041	1E	PUSH DS
0042	07	POP ES
0043	26: 8B 4F FF	MOV CX, ES:[BX-1]
0047	91	XCHG CX, AX
		; вариант 3
0048	BF 0002	MOV DI, IND
004B	26: 89 01	MOV ES: [BX+DI], AX

; ----- вариант 4 004E 8B EC MOV BP, SP ; MOV AX, MATR[BP+BX] ; MOV AX, MATR[BP+DI+SI] ; Использование сегмента #Microsoft (R) Macro Assembler Version 5.10 10/7/20 21:42:22 Page 1-3 CTEKA 0050 FF 36 0000 R PUSH MEM1 0054 FF 36 0002 R PUSH MEM2 0058 8B EC MOV BP,SP 005A 8B 56 02 DX, [BP] + 2MOV 005D CA 0002 2 RET 0060 MAIN ENDP 0060 CODE ENDS END Main #MICROSOFT (R) MACRO ASSEMBLER VERSION 5.10 10/7/20 21:42:22 Symbols-1 SEGMENTS AND GROUPS: N A M E LENGTH ALIGN COMBINE CLASS

SYMBOLS:

	N A M E	Type Value Attr	
EOL		NUMBER 0024	
IND		NUMBER 0002	
MAIN		F PROC 0000 C	CODE LENGTH = 0060
MATR		L BYTE 0016 D	DATA
MEM1		L WORD 0000 D	DATA
MEM2		L WORD 0002 D	DATA
MEM3		L WORD 0004 D	DATA
N1		NUMBER 01F4	
N2		NUMBER -0032	
VEC1		T BYTE 0006 F)ATA
			DATA
VECZ		L BILE OUGE L	JAIA
@CPU		ТЕХТ 0101н	
@FILENAME		TEXT LAB2	
@VERSION		TEXT 510	

- 100 Source Lines
- 100 TOTAL LINES
 - 19 SYMBOLS

47828 + 459432 Bytes symbol space free

- O WARNING ERRORS
- O SEVERE ERRORS

Название файла: lab2_fixed.asm

; Программа изучения режимов адресации процессора

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

```
; Стек программы
```

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

;Данные программы

DATA SEGMENT

;Директивы описания данных

mem1 DW 0 mem2 DW 0 mem3 DW 0

vec1 DB 1,2,3,4,8,7,6,5

vec2 DB -10,-20,10,20,-30,-40,30,40

matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX, AX

push AX

mov AX, DATA

mov DS, AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

mov ax, n1

mov cx,ax

mov bl,EOL

mov bh, n2

; Прямая адресация

mov mem2,n2

mov bx,OFFSET vec1

mov mem1,ax

```
; Косвенная адресация
       mov al,[bx]
       ;mov mem3,[bx]
; Базированная адресация
       mov al, [bx]+3
       mov cx, 3[bx]
; Индексная адресация
       mov di, ind
       mov al, vec2[di]
       ;mov cx,vec2[di]
; Адресация с базированием и индексированием
       mov bx,3
       mov al, matr[bx][di]
       ;mov cx,matr[bx][di]
       ;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
       mov ax, SEG vec2
       mov es, ax
       mov ax, es:[bx]
       mov ax, 0
; ----- вариант 2
       mov es, ax
       push ds
       pop es
       mov cx, es:[bx-1]
       xchg cx,ax
; ----- вариант 3
       mov di,ind
       mov es:[bx+di],ax
; ----- вариант 4
       mov bp,sp
       ;mov ax,matr[bp+bx]
       ;mov ax,matr[bp+di+si]
```

; Использование сегмента стека

push mem1
push mem2
mov bp,sp
mov dx,[bp]+2

ret 2

Main ENDP CODE ENDS

END Main