

概率论与数理统计 B 浙江理工大学期末试题汇编 (试卷册)

学校:	
专业:	
班级:	
姓名:	
学号:	

(此试卷为 2022 年第二版 第 1 次发行)

写在前面

亲爱的伙伴们:

你们好!我来自大一,有幸应创琦哥邀请,在卷子开头来写上几笔。

说来惭愧,最近一直在摆烂,真真"一时颓废一时爽,一直颓废一直爽"。不知道立下来多少 flag: "我要保研"、"我要冲击奖学金"、"我要健身"……到头来,却发现连钉钉群里老师的作业都忘记做,连 120 公里也只跑了个零头。

不知道在看的各位同学目前是什么状态,是你期望的想成为的样子吗?

人是活在现实里面的,但是对于未至之事,我们常常会有过高的期待。没有那么好,才是人生的常态。我们绝大部分的人都是普通人,不是永动机,努力一段时间之后都会累,生活里也都会有喜怒哀乐,都会有不喜欢别人心里默念笨的时候,都会有不喜欢自己去羡慕别人的时候,但这就是活着。

"我们今生活着的唯一目的就是为了超越今生。"

大佬们的最大共同点都是自律,令人感到可怕的自律。想要做到自律,背后会有两个字一认真。或许有人会说"认真你就输了",但我们大家已经有多久没有认真过了?手机每天刷了十几小时,知识没带进脑子,TM 吴签啥时候入狱却是了如执掌(同志们,不是我嘴臭这也是在骂我自己)

我们现在是大佬是天才吗?如果不是的话,我想我们应该要去做出改变了,因为我们一定能做到!宇宙这样无限大,你现在想做的事一定都被宇宙中另一个副本"你"做到过。也就是说我们对自己的期待,是完全可以自我实现的。

诚实地面对自己的欲望,勇敢地面对自己的恐惧。

对于数学,哈哈,我也比较菜,能给出的只有教训。犹记当年高三,每天埋头于导数圆锥,整天沉迷于压轴题秘籍,想要冲个130+,结果是最终高考不到120分。嗯,我想你们都明白我想说的了,不要"眼高手低"。那么抛开过去,就拿考研数学来说,满分150,每年的平均分大概只有六七十分,所以基础真的很重要。基础从哪来?就从每次大家提起笔或者 pencil 和每道数学题拉扯中来,所以要珍惜后面的每份卷子,珍惜每次学校里的考试,这最起码能够给你制造一个几小时专注的考试环境。

最后,"革命尚未成功",多说无益,撸起袖子加油干就对了!不说了,去读书去了。 没错,卷的就是在看的你,害怕了吧?还不抓紧找根笔刷刷后面的套卷?(doge)

哦,最后的最后再送大家一段话,鸡汤来喽~

每个优秀的人,都有一段沉默的时光。那段时光,是付出了很多努力,却得不到结果的 日子,我们把它叫做扎根。

佚名

2022年5月8日

送给大家一段文摘:

当欢笑淡成沉默,当信心变成失落,我走近梦想的脚步,是否依旧坚定执着;当笑颜流 失在心的沙漠,当霜雪冰封了亲情承诺,我无奈的心中,是否依然碧绿鲜活。

有谁不渴望收获,有谁没有过苦涩,有谁不希望生命的枝头挂满丰硕,有谁愿意让希望 变成梦中的花朵。现实和理想之间,不变的是跋涉,暗淡与辉煌之间,不变的是开拓。

甩掉世俗的羁绊,没谁愿意,让一生在碌碌无为中度过。整理你的行装,不同的起点,可以达到同样辉煌的终点。人生没有对错,成功永远属于奋斗者。

——汪曾祺《生活》

目录

1	2018-2019 学年第 2 学期	《概率论与数理统计 B》	期末 A 卷	. 1
			期末 A 卷	
3	2014—2015 学年第 2 学期	《概率论与数理统计B》	期末 A 卷	. 8
4	2014—2015 学年第 2 学期	《概率论与数理统计B》	期末 B 卷1	12
5	2010-2011 学年第 2 学期	《概率论与数理统计 B》	期末 B 卷1	15
6	2007-2008 学年第 1 学期	《概率论与数理统计B》	期末 B 卷 1	19

2022年所有试卷版本见尾页。如需资料获取请添加下方的 QQ 群获取。

更多信息

试卷整理人: 张创琦 微信公众号: 创琦杂谈 试卷版次: 2022 年 4 月 30 日 第二版 第 1 次发行 本人联系 QQ 号: 1020238657 (勘误请联系本人) 创琦杂谈学习交流群 (QQ 群) 群号: 749060380 cq 数学物理学习群 (QQ 群) 群号: 967276102 cq 计算机编程学习群 (QQ 群) 群号: 653231806

创琦杂谈公众号优秀文章:

曾发布了《四级备考前要注意什么?创琦请回答!(一)》、《走!一起去春季校园招聘会看看,感受人间真实》、《送给即将期末考试的你》、《那些你不曾在选课中注意到的事情》、《身为大学生,你的劳动价值是多少?》(荐读)、《如何找到自己的培养计划》以及信息学院本科阶段五个专业的分流经验分享(来自 20 多位学长学姐的亲身经历与分享,文章过多,就不贴链接啦),公众号也可以帮忙大家发布相关社会实践的问卷。

我最近在写关于 github 使用技巧的文章,并且在开发网站,争取给大家提供更优质的学习讨论平台。

00群:

"创琦杂谈学习交流群"主要为大家更新各种科目的资料,群里可以讨论问题、也可以发布社会实践的调查问卷互相帮助,目前群成员不到千人,相信您的问题会有人解答的。

"cq 数学物理学习群"更适合讨论数学物理相关的题目等,数学科目包括但不限于: 高等数学、线性代数、概率论与数理统计等,物理包括但不限于:普通物理、普通物理实验。

"cq 计算机编程学习群"适用于讨论编程语言相关内容,包括但不限于: C语言、C++语言、Java语言、matlab语言、python语言等,也可以讨论计算机相关课程,包括但不限于:数据结构、算法、计算机网络、操作系统、计算机组成原理等。

版权声明: 试卷整理人: 张创琦, 试卷首发于 QQ 群"创琦杂谈学习交流群"和"cq数学物理学习群", 并同时转发到各个辅导员的手里。转发前需经过本人同意, 侵权后果自负。本资料只用于学习交流使用, 禁止进行售卖、二次转售等违法行为, 一旦发现, 本人将追究法律责任。解释权归本人所有。

考试承诺:本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

最终感谢我的老师、我的朋友,还要感谢各位朋友们对我的大力支持。

本人尽全力为大家寻找、整理高等数学、线性代数、概率论等考试资料,但因时间仓促以及本人水平有限,本练习册中必有许多不足之处,还望各位不吝赐教。

(宣传合作伙伴: 浙理羊同学)

浙理羊同学 YOUNG

大家好,这里是浙理羊同学 YOUNG,一个致力于打造成为浙理校内最全最大的信息发布平台。如果你有爆料吐槽、闲置交易、失物招领、表白脱单、树洞聊天、互推捞人等需求,就来找羊羊聊天吧~ (下面是浙理羊同学 YOUNG 的微信号,有需求可以加哈)

1 2018-2019 学年第 2 学期《概率论与数理统计 B》期末 A 卷

一、选择题(每小题4分,共20分)	
1. 已知事件 A,B 满足 $P(AB) = P(\overline{AB})$,且	P(A) = 0.4, $MJ(B) = $ ()
(A) 0.4, (B) 0.5, (C) 0.6,	(D) 0.7
2. 设随机变量 X 的标准正态分布, $F(x)$ 是 X 的	的分布函数,则对任意实数 a,有 (
A. $F(-a) = 1 - \int_0^a f(x) dx$	B. $F(-a) = \frac{1}{2} - \int_0^a f(x) dx$
C. F(-a) = F(a)	D. $F(-a) = 2F(a) - 1$
3. 设随机变量 X 和 Y 的方差都不等于 0 ,则 $D($	(X+Y) = D(X) + D(Y)是 X 与 Y (
A. 不相关的充分非必要条件 C. 不相关的充要条件 4. 以下函数不可以作为随机变量 X 概率密度函	B. 独立的必要非充分条件D. 独立的充要条件b. 数的是 ()
A. $f(x) = \begin{cases} \frac{1}{3}, & 0 \le x \le \frac{1}{2} \\ \frac{5}{18}, & 3 \le x \le 6 \\ 0, & \sharp \dot{\Xi} \end{cases}$	B. $f(x) = \begin{cases} 3e^{-3(x-1)}, & x > 1 \\ 0, & x \le 1 \end{cases}$
C. $f(x) = \begin{cases} \frac{2}{9}(x+1), & -1 < x < 2; \\ 0, & \sharp \text{ th.} \end{cases}$	D. $f(x) = \begin{cases} 3, & -1 < x < 2; \\ 0, & 其他. \end{cases}$
5. 设随机变量 X 的数学期望为 2, 方差为 1, !	则 $P(-1 < X < 5) =$ ()
(提示:利用切比雪夫不等式)	
A. $\leq \frac{1}{9}$ B. $\geq \frac{1}{9}$	C. $\leq \frac{8}{9}$ D. $\geq \frac{8}{9}$
二.填空题(每题4分,共16分)	
1. 假设 $P(A) = 0.5, P(A \mid B) = 0.8, 那么,$	
(1) 若 A 与 B 互不相容,则 P(B) =;	(2) 若 A 与 B 互相独立,则 P(B) =
2. 设随机变量 X 服从参数为 λ 的泊松分布,	且 E[(X-1)(X-2)]=1,那么 λ=
3. 设随机变量 $X \sim B(n,p)$, $E(X) = 2.4, D(X) = 1.44$, \mathbb{Z}
<i>n</i> =;	

4. 设随机变量 Y 服从正态分布 $N(\mu, \sigma^2)$, 且关于 t 的二次方程 $2t^2+6t+Y=0$ 无实根的概

率为 $\frac{1}{2}$,则 $\mu = _____$ 。

三、计算题(10+6+10+16+12+10=64)

- 1. (10 分) 一企业有甲、乙、丙 3 个分厂生产同种零件,每个分厂的产量占总产量的 45%, 35%, 20%,如果 3 个分厂的次品率分别为 3%, 4%, 5%,
- (1) 从全企业的产品中任意抽取一个产品,求它是次品的概率;
- (2) 从全企业产品抽出的一个恰好是次品,那么这个产品是由哪个分厂生产的概率最大?

2 (6 分)设 X 与 Y 为 随 机 变 量 , $D(X)=25, D(Y)=36, \rho_{XY}=0.4$, 求 D(X+Y), D(X-Y).

3(16分)设二维随机变量(*X,Y*)的联合概率密度为: $f(x,y) = \begin{cases} ke^{-(3x+2y)}, x > 0, y > 0 \\ 0, 其它 \end{cases}$

求: (1) 常数 k; (2) 边缘密度 $f_X(x), f_Y(y)$; (3) $P(X \le Y)$; (4) X = Y 是否独立?

(5) 二维随机变量(X,Y)的联合分布函数

4(12 分)设 X,Y 是相互独立且服从同一分布的两个随机变量,已知 X 的分布律为 $P(X=i) = \frac{1}{4}, i = 1,2,3,4 \,,\,\, \ \ \, \text{又设} \, Z = \min\{X,Y\} \,,\,\, \, \, \, \, \, \, \text{求} \, \, Z \, \, \text{的分布} \,.$

5 (10分)

- (1) 试叙述棣莫佛-拉普拉斯中心极限定理 (3分)。
- (2) 某学校有 20000 名住校生,每人以 80%的概率去本校某食堂就餐,每个学生是否去就餐相互独立。问:食堂应至少设多少个座位,才能以 99%的概率保证去就餐的同学都有座位?(已知 $\Phi(2.33)=0.99$) (7分)。

2 2016—2017 学年第 1 学期《概率论与数理统计 B》期末 A 卷

一 选择题(每小题 3 分, 共 15 分; 在每小题给出的四个选项中, 只有一项符合题目要求, 把所选项前面的字母填在题后的括号内。)

- 1、设 A, B 为随机事件, 且 P(B)>0, P(A|B)=1, 则必有()成立。 (A) $P(A \cup B) > P(A)$ (B) $P(A \cup B) > P(B)$
 - (C) $P(A \cup B) = P(A)$

(D) $P(A \cup B) = P(B)$

- 2、已知随机变量 X 服从二项分布 B(3, 0.6) ,则 P(X > 0) = ()。
 - (A) 0.936
- (B) 0.784 (C) 0.818 (D) 0.352
- 3、设事件 A 和 B 相互独立, P(B) > 0, P(A) > 0 , 则有 ()。
- (A) P(A|B) = 0 (B) $P(\overline{A}|\overline{B}) = 1 P(A)$
- (C) P(B) = 1 P(A) (D) P(B) = P(A | B)
- 4、设随机变量 X 密度函数为: $f(x) = \begin{cases} \frac{k}{x^3}, & x \ge 1, \\ 0, & x < 1, \end{cases}$ 则 k = (
- (A) 3:
- (B) 1;
- (C) 0.5:
- 5、设 $F_1(x)$ 与 $F_2(x)$ 为两个分布函数,其相应的概率密度 $f_1(x)$ 与 $f_2(x)$ 是连续函数,则必 为某一随机变量概率密度的是(

- (A) $f_1(x)f_2(x)$ (B) $2f_2(x)F_1(x)$ (C) $f_1(x)F_2(x)$ (D) $f_1(x)F_2(x)+f_2(x)F_1(x)$

二 填空题 (每小题 3 分, 共 21 分, 把答案写在题中横线上。)

1 设连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} A, & x < 0 \\ Bx^2 & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

- 2 已知 P(A) = 0.7, P(B) = 0.8,且 A 与 B 独立,则 P(A-B) =______
- 3 设随机变量(X,Y) 的联合分布律为

V	0	1
v		1
Λ	0.06	1
U	0.06	В
1	a	0.56

$$E(X+Y) = \underline{\hspace{1cm}}_{\circ}$$

5、设随机变量 X 的分布律为 $P(X = k) = \frac{C}{k!}, k = 0, 1, \dots, n, \dots$,则

 $D(X) = \underline{\hspace{1cm}}_{\circ}$

6. 若随机变量 X 服从 [-1,b] 上的均匀分布,且由切比雪夫不等式得 $P(|X-1|<\varepsilon)\geq \frac{2}{3}$,

7. 设长度为1米的木棒被随机地截成两段,则两段长度的相关系数为

三 计算题 (每题 8 分, 共 64 分)

1 设随机变量 X 的分布律为 $P(X=k)=\frac{1}{2^k}, k=1, 2, \dots, n, \dots, Y=\sin\left(\frac{\pi}{2}X\right)$ 求Y的分布律。

2 有两批相同的产品,第一批产品共 14 件,其中有两件次品,装在第一个箱子里,第二批 有10件,其中有一件次品,装在第二个箱子里。在第一个箱子中任意取两件产品放入第 二只箱子里, 然后再从第二只箱子里随机地取一件, 求从第二只箱子里取得次品的概率;

3 设随机变量 X 的密度函数为: $f(x) = \begin{cases} k |x|, & -1 < x < 1, \\ 0, & 其他, \end{cases}$

求: (1) 常数 k; (2) X 的分布函数 F(x)。

4、设 X, Y 的联合分布列分别为

X	0	1	2
0	0.15	0.25	0.35
2	0.05	0.18	0.02

- (1) 求X和Y的边缘分布列, (2) X和Y是否独立? (3) 求Cov(X,Y).

- 5. 设随机变量(X,Y)的密度函数为 $f(x,y) = \begin{cases} 4.8y(2-x), & 0 \le x \le 1, 0 \le y \le x, \\ 0, &$ 其它,
- (1) 求X和Y的边缘密度函数, (2) X和Y是否独立? (3) 求P(X+Y<1)。

6、设二维随机变量(X,Y)为服从单位圆盘上的均匀分布,密度函数为

$$f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1, \\ 0, & \cancel{\sharp} : \overrightarrow{E}, \end{cases}$$

 $igl(0, \quad$ 其它, $(1) \ \mbox{$\vec{x}$} \ Z = X^2 + Y^2 \ \mbox{ommassegue} \ \ \mbox{(2)} \ \mbox{\vec{x}} \ \mbox{ρ_{XY}} \ \ .$

7. 设随机变量(X,Y)的分布律为

Y	- 1	0	1
X			
0	0.1	0.2	0.3
1	0.2	0.1	0.1

求 $E[\max\{X,Y\}]$ 。

8. 设从发芽率为 0.95 的一批种子里随机地取出 400 粒,试用大数定律求其中不发芽的种子不多于 25 粒的概率。

0.775			-					-		
				标	生正态分布	表				
	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0,8	0.7881	0.7910	0. 7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0. 8980	0.8997	0.9015
1, 3	0,9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441

3 2014-2015 学年第 2 学期《概率论与数理统计 B》期末 A 卷

一、单项选择题(本大题共7小题,每小题3分,共21分)

- 1. 设 A、B 为随机事件, 且 P(B) >0, P(A|B) =1, 则有()
- $A. P (A \cup B) > P (A)$
- B. $P(A \cup B) > P(B)$

C. $P(A \cap B) = P(B)$

- D. $P(A \cup B) = P(B)$
- 2. 设随机变量 *X~B* (3, 0.6), 则 *P*{*X*≥1}=()
- A. 0.352 B. 0.936 C. 0.784 D. 0.432

- 3. 设离散型随机变量 X 的分布律为

F(x)为其分布函数,则F(2)=(

- A. 1
- B. 0.4 C. 0.8

4. 设二维随机变量
$$(X, Y)$$
 的联合概率密度为 $f(x, y) = \begin{cases} 2e^{-(x+2y)}, x > 0, y > 0, \\ 0, 其它; \end{cases}$

则 $P{X>Y}=($

- A. $\frac{1}{4}$ B. $\frac{1}{3}$ C. $\frac{3}{4}$ D. $\frac{2}{3}$
- 5. 设随机变量 X 与 Y 相互独立, 其联合分布律为

X	1	2	3	
1	0.18	0.30	0.12	-
2	α	β	0.08	

则有()

A. $\alpha = 0.10, \beta = 0.22$

B. $\alpha = 0.12$, $\beta = 0.20$

C. $\alpha = 0.20, \beta = 0.12$

- D. $\alpha = 0.22, \beta = 0.10$
- 6. 设随机变量 X~N(1,2²), Y~N(1,2), 已知 X 与 Y 相互独立, 则 4X-3Y 的方差为(

- A. 82 B. 10 C. 22 D. 46
- 7. 设 X_1 , X_2 , ..., X_n , ... 为独立同分布的随机变量序列,且均服从参数为 λ ($\lambda > 1$)的泊松 $分布, 记\Phi(x) 为标准正态分布函数,则有($

A.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_{i} - n}{\sqrt{n}} \le x\} = \Phi(x)$$
B.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_{i} - n\lambda}{\lambda \sqrt{n}} \le x\} = \Phi(x)$$

B.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_i - n\lambda}{\lambda \sqrt{n}} \le x\} = \Phi(x)$$

C.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_{i} - n\lambda}{\sqrt{n\lambda}} \le x\} = \Phi(x)$$
D.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_{i} - \lambda}{\sqrt{n\lambda}} \le x\} = \Phi(x)$$

D.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1} X_i - \lambda}{\sqrt{n\lambda}} \le x\} = \Phi(x)$$

二、填空题(本大题共7小题,每小题3分,共21分)

- 1. 设随机事件 A = B 相互独立, P(A)=0.7, $P(A \cup B)=0.9$, 则 P(B)=
- 2. 设随机变量 X 表示 10 次独立的重复设计中命中目标的次数,且每次命中目标的概率为 0.6,则 E (X²)=

- 3. 设随机变量 X 服从正态分布 N (2, 9),则 $Z=\frac{X-2}{3} \sim$ ______分布.
- 4. 设二维随机变量(*X*,*Y*)的概率密度为 $f(x,y) = \begin{cases} \frac{1}{4}, & 0 \le x \le 2, & 0 \le y \le 2, \\ 0, & 其他, \end{cases}$

则 *P*{*X*+*Y*>1}=_____.

- 5. 设二维随机变量(*X*,*Y*)的联合分布函数为 $F(x,y) = \begin{cases} (1-e^{-x})(1-e^{-y}), & x>0,y>0, \\ 0, &$ 其他,则当 x>0 时, X 的边缘分布函数 $F_X(x)=$ ______.
- 6. 设 X 为随机变量, E(X+4)=7, D(-3X)=18, 则 $P(|X-3| \ge 1.5) \le _____$.
- 7. 设 X 服从参数为 16 的泊松分布, Y 服从参数为 2 的指数分布, $\rho_{XY} = -0.5$, 则 Cov(X,Y+1) =_____

三、计算题

1. $(8 \, \mathcal{G})$ 盒中有 4 个新球、2 个旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件 A 表示"第二次取到的全是新球",求 P(A).

2. (10 分) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} Ax + B, & 0 < x < 2, \\ 0, & \text{其他,} \end{cases}$ 且 $P\{X < 1\} = \frac{3}{4}$. 求: (1)常数 A, B; (2) X 的分布函数 F(x); (3) E(X).

3. (10 分) 设二维随机变量 (*X*, *Y*)的分布律为

Y	-3	0	3
-3	0	0.2	0
0	0.2	0.2	0.2
3	0	0.2	0

求: (1)(X, Y)分别关于 X, Y 的边缘分布律; (2)E(X), E(Y), D(X), D(Y), Cov(X, Y).

4、(10分)设随机变量 X,Y 的分布列分别为

X	0	1	2	
р	0.5	0.3	0.2	

Y	0	2
p	0.6	0.4

且 X, Y 独立, 求: (1) Z_1 =X+Y 的分布列; (2) Z_2 =XY 的分布。

5. $(10\, eta)$ 某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命 X(单位:小时)服从参数 $\frac{1}{500}$ 的指数分布,另一个电子元件的使用寿命 Y(单位:小时)服从参数为 λ 的指数分布,且 E(Y)=1000. 试求: (1) (X, Y)的联合概率密度; (2)两个电子元件的使用寿命均大于 800 小时的概率.

6.(10 分)设随机变量 $X_1, X_2 \cdots X_{100}$ 相互独立,且都服从相同的分布,概率密度为:

$$f(x) = \begin{cases} \frac{1}{4}e^{-\frac{1}{4}x}, & x > 0\\ 0, & x \leq 0 \end{cases}, \ \text{利用中心极限定理求概率} \ P(320 < \sum_{i=1}^{100} X_i < 480) \ \text{的值 (结} \end{cases}$$
果用 $\Phi(\cdot)$ 表示)。

4 2014—2015 学年第 2 学期《概率论与数理统计 B》期末 B 卷

一 填空题 (每空3分,共24分)

		_				
1	$\exists k \in D(D)$	0.2 D(A + D)	\ \ \ 7 \ \ \ \ \	느 하 뉴트까구	団 カ(4)	
Ι.	口知 $P(B) =$	$: 0.3. P(A \cup B)$) = 0.7. H.A	与 B 相互独立,	$\mathbb{W}(P(A) =$	
		0.0,- (,,	4 - In-14-1	/14 - (1-)	

2. 已知随机变量 X 的概率密度为 $f(x) = Ae^{-|x|}$, $-\infty < x < +\infty$, 则 A = , X 的分 布函数为F(x) =

3. 设随机变量 X 的概率分布律为

则 P{1<X≤3}=

4. 设 $X \sim N(2, \sigma^{-2})$,且 $P\{2 < X < 4\} = 0.2$,则 $P\{X < 0\} =$ ______。

5. 设随机变量 X 在区间[0, 5]上服从均匀分布,则 D(X) =

6. 已知 DX=2, DY=1, 且 X 和 Y 相互独立,则 D(X-2Y)=____。

7. 若随机变量 X 服从参数为 1 的泊松分布,则由切比雪夫不等式求 $P(|X-EX| \ge \frac{3}{2})$ 的上 界为。

二 单选题 (每题 4 分, 共 20 分)

1.已知事件 A,B 满足 $P(AB) = P(\overline{A} \ \overline{B})$,且 P(A) = 0.4,则 P(B) =

- (A) 0.4, (B) 0.5, (C) 0.6, (D) 0.7

2. 设 A、B 是两个随机事件,且 0 < P(A) < 1, 0 < P(B) < 1, $P(A|B) + P(\overline{A}|\overline{B}) = 1$ 。

则下列选项成立的是。

- (A) 事件A和B互不相容 (B) 事件A和B相互独立
- (C) 事件A和B互不独立
 (D) 事件A和B相容
- 3.4. 设随机变量 $X \sim N (\mu, \sigma^2)$,则随 σ 增大, $P\{|X \mu| < \sigma\}$ ()
- (A)单调增大 (B)单调减少 (C)保持不变 (D)增减不定

4. 设随机变量X = Y独立同分布,记U = X + Y, V = X - Y,则随机变量U和V必然

- (A)独立 (B)不独立 (C)相关系数不为零 (D)相关系数为零

5. 设 $F_1(x)$ 与 $F_2(x)$ 分别为随机变量 X_1, X_2 的分布函数,为使 $F(x) = aF_1(x) - bF_2(x)$ 是

某一随机变量的分布函数,在下列给定的各组数值中应取

(A)
$$a = \frac{2}{3}, b = \frac{2}{3}$$

(B)
$$a = -\frac{1}{2}, b = \frac{3}{2}$$

(C)
$$a = \frac{3}{5}, b = -\frac{2}{5}$$

(D)
$$a = \frac{1}{2}, b = -\frac{3}{2}$$

三、计算题

1(12分)某工厂由甲、乙、丙三个车间生产同一种产品.它们的产量之比为 3:2:1,各车间产品的不合格率依次为 8%、9%、12%.现从该厂产品中任意抽出一件,求:

- (1) 取到产品为不合格品的概率;
- (2) 若取到的是不合格品,求它是甲车间生产的概率.

- 2 (10 分) 已知随机变量 X 的概率密度函数为 $f(x) = \begin{cases} kx^2 & 0 < x < 2 \\ 0 & 其他 \end{cases}$, 求:
- 1.常数 k; 2. P(1 < X < 3); 3. E(X)

3、(16分)设二维随机变量(X,Y)的联合密度函数为:

$$f(x,y) = \begin{cases} A(x+y), & 0 \le x \le 2, 0 \le y \le 2 \\ 0 & \text{ 其他} \end{cases}, \text{ 试求 (1) A; (2) X, Y 的边缘密度函数; (3)}$$

E(X)、E(Y)、D(X)、D(Y); (4) 协方差 Cov(X, Y) 和相关系数 R_{XY}。

4、(10分)设随机变量 X, Y 的分布列分别为

X	0	1	2
p	0.5	0.3	0.2

Y	0	2
p	0.6	0.4

且 X, Y 独立, 求: (1) $Z_1=X+Y$ 的分布列; (2) $Z_2=XY$ 的分布。

5、 $(10 \, eta)$ 设随机变量 $X_1, X_2 \cdots X_{100}$ 相互独立,且都服从相同的分布,概率密度为:

$$f(x) = \begin{cases} \frac{1}{2}e^{-\frac{1}{2}x}, & x > 0\\ 0, & x \le 0 \end{cases}$$
,利用中心极限定理求概率 $P(\sum_{i=1}^{100}X_i < 240)$)的值(结果用 $\Phi(\cdot)$ 表示)。

5 2010-2011 学年第 2 学期《概率论与数理统计 B》期末 B 卷

一 选择题(每小题3分,共18分)

1 以 A 表示事件"甲种产品畅销,乙种产品滞销",则其对立事件 \overline{A} 为

A. "甲种产品滞销, 乙种产品畅销"; B. "甲、乙两种产品均畅销"

C. "甲种产品滞销":

D. "甲种产品滞销或乙种产品畅销"

2 若 P(B|A) = 1,那么下列命题中正确的是_____

A. $A \subset B$

B. $B \subset A$ C. $A - B = \emptyset$ D. P(A - B) = 0

3袋中有6只红球,4只黑球,今从袋中随机取出4只球。设取到一只红球得2分,取到一 只黑球得1分,则得分不大于6分的概率是

A. $\frac{23}{42}$ B. $\frac{4}{7}$ C. $\frac{25}{42}$ D. $\frac{13}{21}$

A.
$$f(x) = \begin{cases} \frac{1}{2}, & -1 < x < 1, \\ 0, & \text{ if } \vec{E}. \end{cases}$$

A.
$$f(x) = \begin{cases} \frac{1}{2}, & -1 < x < 1; \\ 0, & \mbox{\sharp} \mbox{$\rlap{\sc ic}$}. \end{cases}$$
B. $f(x) = \begin{cases} x^2, & -1 < x < 1; \\ 0, & \mbox{$\rlap{\sc ic}$} \mbox{$\rlap{\sc ic}$}. \end{cases}$

C.
$$f(x) = \begin{cases} x, & -1 < x < 1; \\ 0, & \exists : \\ \end{bmatrix}$$
 D. $f(x) = \begin{cases} 2, & -1 < x < 1; \\ 0, & \exists : \\ \end{bmatrix}$

D.
$$f(x) = \begin{cases} 2, & -1 < x < 1; \\ 0, & \cancel{x} : \end{aligned}$$

5 设随机变量 X 和 Y 独立同分布,记U = X - Y, V = X + Y,则随机变量 U = V 必然

- A. 不独立 B. 独立 C. 相关系数不为零 D. 相关系数为零

6 设随机变量 X B(10,1/2),Y N(2,10),E(XY) =14 ,则相关系数 $ho_{_{XY}}$ =______

A. -0.8 B. -0.16 C. 0.16 D. 0.8

二 填空题 (每题 4 分, 共 20 分)

1 设 A, B 为随机事件, P(A) = 0.5, P(B) = 0.6, P(B|A) = 0.8 ,则 P(AUB) =______

2 设随机变量 X 和 Y 相互独立,它们的分布律分别为

3 已知随机变量 X 的概率密度为 $f(x) = Ae^{-|x|}$, $-\infty < x < +\infty$, 则 A =______;

X的分布函数为F(x) =

4 设随机变量 $X \sim B(n, p)$,且 E(X) = 3.5, D(X) = 1.05,则 P(X = 2) =

5 设随机变量 X_1,X_2,Y 满足 $Cov(X_1,Y)=1,Cov(X_2,Y)=3$,则 $Cov(X_1+2X_2+3,Y)=$ ____

三 计算题 (8+10+7+13+5+9+10=62)

1 甲、乙两人独立地对同一目标射击一次,其命中率分别为 0.6 和 0.5。现已知目标被击中,求它是被甲射中的概率。(8 分)

2 从一批有 10 个合格品与 3 个次品的产品中一件一件地抽取产品,各种产品被抽到的可能性相同,求在下面两种情况下,直到取出合格品为止,所求抽取次数 X 的分布律。(10 分)(1)放回(2)不放回

3 随机变量 X 和 Y 数学期望都是 2,方差分别为 1 和 4,而相关系数为 0.5,根据契比雪夫不等式估计概率 $P(|X-Y| \ge 6)$. (7 分)

4 设二维连续型随机变量(X ,Y)的联合概率密度为: $f(x,y) = \begin{cases} k,0 < x < 1,0 < y < x \\ 0, \qquad 其他 \end{cases}$

求: (1) 常数 k; (2) (X, Y) 分别关于 X, Y 的边缘密度 $f_X(x)$, $f_Y(y)$; (3) P(X+Y<1); (4) 问 X与 Y是否独立? (13 分)

5 随机变量 X 和 Y 服从相同分布,其概率密度为 $f(x) = \begin{cases} \frac{3}{8}x^2, & 0 < x < 2 \\ 0, & 其它. \end{cases}$,设事件 A = (X > a) 与事件 B = (Y > a) 相互独立,且 $P(A \cup B) = \frac{3}{4}$,求常数 a。 (5 分)

6 假设随机变量 U 在区间 [-2,2]上服从均匀分布。设随机变量

$$X = \begin{cases} -1, & U \le -1 \\ 1, & U > -1 \end{cases}$$
, $Y = \begin{cases} -1, & U \le 1 \\ 1, & U > 1 \end{cases}$, 试求: (1) X 和 Y 的联合概率分布;

(2) 相关系数 ρ_{xy} ; (3) 设 $Z = \max(X,Y)$, 求 Z 的概率分布律 (9 分)

7 假设随机变量 X 的概率密度函数为: $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$, 现在对 X进行 n 次独立的重复观测,以 Y 表示观测值不大于 $\sqrt{5}/5$ 的次数,求: (1)随机变量 Y 的概率分布; (2)设 n=100,利用中心极限定理,求观测值不大于 $\sqrt{5}/5$ 的次数不少于 14 且不多于 30 的概率的近似值。(已知 $\Phi(1) = 0.841$, $\Phi(1.5) = 0.932$, $\Phi(2) = 0.977$, $\Phi(2.5) = 0.994$, $\Phi(3) = 0.999$) (10分)

6 2007-2008 学年第1学期《概率论与数理统计B》期末B卷

附表:标准正态分布数值表

$$\chi^2$$
 分布数值表 t 分布数值表

$$\Phi(0.55) = 0.7088$$

$$\Phi(1.960) = 0.975$$

$$\Phi(1.09) = 0.8622$$

$$\chi^2_{0.05}(3) = 7.815$$

$$\chi^2_{0.025}(3) = 9.348$$

$$\chi^2_{0.05}(4) = 9.448$$

$$\chi^2_{0.025}(4) = 11.143$$

$$\Phi(1) = 0.8413$$

$$\chi^{2}_{0.05}(3) = 7.815$$

$$\chi^{2}_{0.025}(24) = 2.0639$$

$$\chi^{2}_{0.025}(3) = 9.348$$

$$t_{0.025}(25) = 2.0595$$

$$\Phi(1.960) = 0.975$$

$$\chi^{2}_{0.05}(4) = 9.448$$

$$t_{0.05}(8) = 1.8595$$

$$\chi^{2}_{0.025}(4) = 11.143$$

$$t_{0.025}(8) = 2.306$$

$$t_{0.025}(25) = 2.0595$$

$$t_{0.05}(8) = 1.8595$$

$$t_{0.025}(8) = 2.306$$

一、选择题(每题3分,共21分)

- 1.若事件 A 和 B 有 B ⊂ A,则 下述结论正确的是 ().
 - (A) A 与 B 同时发生;
- (B) A 发生, **B** 必发生;
- (A) A 与 B 同时发生;
 (B) A 发生, B 必发生;

 (C) A 不发生, B 必不发生;
 (D) B 不发生, A 必不发生;
- 2. 设事件 A 与 B 满足 P(A) > 0, P(B) > 0, 下面条件 () 成立时,事件 A 与 B 一定独立.
 - (A) $P(\overline{AB}) = P(\overline{A})P(\overline{B})$; (B) $P(\overline{A \cup B}) = P(\overline{A})P(\overline{B})$;

 - (C) P(A|B) = P(B); (D) $P(A|B) = P(\overline{A})$.
- 3.当常数 b = ()时, $p_k = \frac{2b}{k(k+1)} (k=1,2,\cdots)$ 为某一离散型随机变量的概率分布.
- (A) 2; (B) 1; (C) 1/2; (D) 3.
- 4. 设随机变量 $X \sim N(a,a^2)$, 且 $Y = aX + b \sim N(0,1)$, 则 a,b 应取 ()
 - (A) a = 2, b = -2;
 - (B) a = -2, b = -1;

 - (C) a=1,b=1; (D) $a^2=1,b=-1$.
- 5. 设 $X \sim B(n, p)$, 且 E(X) = 2.4, D(X) = 1.44, 则 (
 - (A) n = 4, p = 0.6;
- (B) n = 6, p = 0.4:
- (C) n = 8, p = 0.3; (D) n = 24, p = 0.1.
- 6. 设 (X_1,X_2,\cdots,X_n) 是取自总体 $N(0,\sigma^2)$ 的样本,则可作为 σ^2 无偏估计量的是

- $\text{(A)} \ \frac{1}{n} \sum_{i=1}^n X_i \ ; \qquad \text{(B)} \ \frac{1}{n-1} \sum_{i=1}^n X_i \ ; \qquad \text{(C)} \ \frac{1}{n} \sum_{i=1}^n X_i^2 \ ; \qquad \text{(D)} \ \frac{1}{n-1} \sum_{i=1}^n X_i^2 \ .$

7. 设随机变量X与Y相互独立,它们的分布函数分别为 $F_X(x)$, $F_Y(y)$,则 $Z = \min(X,Y)$ 的分布函数为() (A) $F_z(z) = F_x(z)$ (B) $F_z(z) = F_v(z)$; (C) $F_Z(z) = \min\{F_X(z), F_Y(z)\};$ (D) $F_Z(z) = 1 - [1 - F_X(z)][1 - F_Y(z)].$ 二、填空题(每题3分,共21分) 1. 若 $A \supset B$, $A \supset C$, P(A)=0.9, $P(\overline{B} \cup \overline{C})=0.8$, 则P(A-BC)=2. 一批产品, 其中10件正品, 2件次品, 任意抽取3次, 每次抽1件, 抽出后不再放回, 则第3次抽出的是次品的概率为______ 3. 设在 4 次独立的试验中,事件 A 每次出现的概率相等,若已知事件 A 至少出现 1 次的概 率是65/81,则A在1次试验中出现的概率为 . 4. (X, Y) 的分布律为 1/6 1/9 1/18 1/3 5. 设 (X_1, X_2) 为 X 的一样本,则 $d_1 = \frac{1}{4}X_1 + \frac{3}{4}X_2$, $d_2 = \frac{1}{3}X_1 + \frac{2}{3}X_2$ 都是 E(X) 的 _____估计, ____比___更有效. 6.已知一批零件的长度 X (单位: cm) 服从正态分布 $N(\mu, 1)$, 从中抽取 16 个零件, 测 量得到其平均长度 40 (cm),则 μ 的置信度为 0.95 的置信区间为____

三、计算及应用题(本题 54 分)

7. 在假设检验过程中,

1. (6分) 已知 P(A) = P(B) = P(C) = 1/4, P(AB)=0,

P(AC) = P(BC) = 1/16, 求 A, B, C 恰好发生一个的概率。

称第二类错误。

- **2.** (6分)某厂有三条生产线生产同一种产品,三条生产线的产量之比为 3:2:4,而三条生产线的次品率分别为 0.02, 0.03, 0.04,生产的产品混合在一起,现在总产品中任取一件,求:
 - (1) 所取的产品为次品的概率;
 - (2) 若取到的是次品,问该次品来自第二条生产线的概率有多大?

3. (12分)设随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} ke^{-(3x+4y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}, (1) 确定常数 k; (2) 求 P\{0 < X \le 1, 0 < Y \le 2\};$$

(3) 求 $f_x(x)$, $f_y(y)$; (4) X与Y是否相互独立?

4. (6分) 设(X,Y)的联合分布列为,

YX	1	2	3
1	0.1	0.2	0.2
2	0.3	0.1	0.1

 $Rightharpoons E(X), E(Y), D(X), D(Y), \rho_{XY}$.

5. (8分)

在次品率为 0.3 的一大批产品中,任取 400 件,试利用中心极限定理计算取得的 400 件产品中次品数在 110 与 125 之间的概率。

6.(8分) 设总体 X 的概率密度

$$f(x,\theta) = \begin{cases} \theta \cdot x^{\theta-1}, \ 0 < x < 1, \\ 0, \ \textbf{其它}. \end{cases} (x_1,x_2,\cdots,x_n)$$
 为一样本,试求 θ 的矩估计及最大似然估计。

7. (8分)

一批电子元件寿命 X 服从正态分布 $N(\mu,\sigma^2)$,原先均值 $\mu=\mu_0=1650$,现进行了技术改造后,从新产品中随机抽取 25 个产品,测得寿命的样本均值为 $\overline{x}=1691$,样本标准差 s=169 ,以 $\alpha=0.05$ 的显著性水平检验整批元件平均寿命是否有显著的差异。(即检验 $H_0:\mu=1650$, $H_1:\mu\neq1650$).

四、证明题(本题4分)

设
$$X \sim f(x) =$$

$$\begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \text{其他} \end{cases}$$
,证明 $Y = 4X$ 的密度函数 $f_Y(y) = \begin{cases} y/8, & 0 \le y \le 4 \\ 0, & \text{其他} \end{cases}$

数学通识必修课系列试卷汇总

(试题册和答案册配套,为两个小册子,这里为了节省空间,就将两本册子写在了一块儿) (版本号与年份有关,发行次数会根据当年发行情况进行修改)

高等数学 A2 期末系列: (具体内容请见高等数学 A2 试题册尾页) 高等数学 A2 期末试题册、答案册上 2022 第二版第 1 次发行.pdf 高等数学 A2 期末试题册、答案册下 2022 第二版第 1 次发行.pdf 高等数学 A2 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

高等数学 B2 期末系列: (具体内容请见高等数学 B2 试题册尾页) 高等数学 B2 期末试题册、答案册 2022 第二版第 1 次发行.pdf 高等数学 B2 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

线性代数 A 期末系列:

线性代数 A 期末试题册、答案册 2022 第二版第 1 次发行.pdf 线性代数 A 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

线性代数 B 期末系列:

线性代数 B 期末试题册、答案册上 2022 第二版第 1 次发行.pdf 线性代数 B 期末试题册、答案册下 2022 第二版第 1 次发行.pdf 线性代数 B 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

概率论与数理统计 A 期末系列:

概率论与数理统计 A 期末试题册、答案册上 2022 第二版第 1 次发行.pdf 概率论与数理统计 A 期末试题册、答案册下 2022 第二版第 1 次发行.pdf 概率论与数理统计 A 期末试题册、答案册五套 2022 第二版第 1 次发行.pdf

概率论与数理统计 B 期末系列:

概率论与数理统计 B 期末试题册、答案册 2022 第二版第 1 次发行.pdf

概率论与数理统计期末练习系列:

概率论与数理统计练习试题册、答案册 2022 第二版第 1 次发行.pdf