PSZT - Uczenie Maszynowe

Stawczyk Przemysław 293153, Piotr Zmyślony 268833

Contents

1	Opis zagadnienia								
	1.1	Treść zadania							
	1.2	Narzędzia							
2	Opis preprocesingu i modelowania								
	2.1	Opis danych wejściowych							
	2.2	Analiza zbioru danych							
		2.2.1 Brakujące dane							
		2.2.2 Zbalansowanie danych							
	2.3	Przepływ Danych							
		2.3.1 Wizualizacja Przepływu Danych							
3	Mod	dele							
	3.1	Parametry Modeli							
4	Wyı	niki Eksperymentu							
	4.1	Wykresy							
		Interpretacja							

1 Opis zagadnienia

1.1 Treść zadania

Przedstawić wyniki analizy zbioru Bankruptcy, opisać procedurę eksperymentalną uczenia maszynowego z wykorzystaniem algorytmów random forest i k-najbliższych sąsiadów oraz opisać wyniki strojenia parametrów powyższych algorytmów.

1.2 Narzędzia

Skrypty oraz algorytm zostały zaimplementowane w Pythonie 3. Wykorzystano biblioteki: imblearn.over sampling.SMOTE, sklearn, numpy, matplotlib, scipy.io, impyute.

2 Opis preprocesingu i modelowania

2.1 Opis danych wejściowych

Jako dane wejściowe posiadamy 5 plików .arff, z których każdy zawiera ekonomiczne wskaźniki z systemu EMIS na temat polskich firm i ich klasyfikację względem tego, czy firmy zbankrutowały po n latach od roku, w którym zostały zebrane dane. Liczba n lat jest różna dla każdego z plików, od 1 do 5, a każda firma opisana jest przez 64 atrybuty, od X1 do X64.

2.2 Analiza zbioru danych

2.2.1 Brakujące dane

Zaczęliśmy od analizy brakujących danych w wierszach. Jak widać w poniższych wynikach w większości zbiorów około połowa wierszy ma brakujące pola.

	1 rok	2 lata	3 lata	4 lata	5 lat
$dlugo\acute{s}\acute{c}$	7027	10173	10503	9792	5910
pełne wiersze	3194	4088	4885	4769	3031
wiersze wybrakowane	3833	6085	5618	5023	2879

Następnie przeprowadziliśmy analizę rozkładu brakujących danych w kolumnach i wierszach korzystając z biblioteki pythona missingno

Figure 1: 1 rok

Figure 2: 2 lata

Figure 3: 3 lata

Jak widać większość brakujących danych jest w kolumnie X37. Kolumna X21 ma brakujące w niektórych ale nie wszystkich latach.

Trudno nam było ocenić jaki charakter mają braki w tych danych, czy są skorelowane w wartościami w innych kolumnach czy zupełnie losowe. Aby uniknąć utraty danych dla tych krotek które posiadają wartości w danych kolumnach zdecydowaliśmy się interpolować brakujące dane. W tym celu wybraliśmy 4 metody:

- 1. Wstawianie średniej w danej kolumnie (Jako punkt odniesienia)
- 2. K najbliższych krotek
- 3. Spodziewanej Maksymalizacji (Expected Maximalisation)
- 4. Algorytm MICE

2.2.2 Zbalansowanie danych

Dokonaliśmy analizy ile z poszczególnych rekordów należy do klas klasyfikacyjnych

Czy	zbankrutowano:	rok 1	rok 2	rok 3	rok 4	rok 5
	Tak	6756	9773	10008	9277	5500
	Nie	271	400	495	515	410
proc	cent większości	3.857 %	3.932 %	4.713 %	5.259 %	6.937 %

Dane w zbiorach są mocno niezbalansowane dlatego zdecydowaliśmy się na interpolację korzystając z metody SMOTE (Synthetic Minority Over Sampling Technique)

Figure 4: 4 lata

Figure 5: 5 lat

2.3 Przepływ Danych

Po powyższej analizie zdecydowaliśmy o następującym przepływie oryginalnych danych do konstrukcji modeli.

Walidacji modeli planujemy dokonać korzystając K-krotnej walidacji krzyżowej.

2.3.1 Wizualizacja Przepływu Danych

- 3 Modele
- 3.1 Parametry Modeli
- 4 Wyniki Eksperymentu
- 4.1 Wykresy
- 4.2 Interpretacja

Figure 6: Przepływ Danych