Лабораторная работа №4

Тема: «Определение механических свойств материалов при кручении»

<u> Цель работы</u>: определить модуль сдвига для стали при кручении.

<u>Приборы и материалы:</u> машина КМ-50-1, индикатор часового типа с ценой деления 0,01 мм, штангенциркуль, испытуемый образец.

Теоретическая часть:

При кручении образца круглого поперечного сечения форма его почти не изменяется, что позволяет достаточно точно определить деформации и соответствующие им напряжения до момента разрушения образца включительно, тогда как при испытании на растяжение это становится невозможным после образования шейки.

Машина КМ-50-1 может осуществлять нагружение в трех диапазонах: 0...100 Н·м (10 кГсм); 0...200 Н·м (20 кГсм); 0...500 Н·м (50 кГсм) - со скоростью 0,3 об/мин или 1 об/мин. Кроме того, для медленного нагружения предусмотрен ручной привод. Испытуемый образец длиной от 130 до 300 мм помещается в захватах машины. Во время испытаний верхний захват остается неподвижным, а нижний поворачивается. Угол поворота нижнего захвата фиксируется малым и большим лимбами. Малый лимб фиксирует полные обороты, а большой - угол в градусах в пределах оборота. Величина скручивающего момента фиксируется силоизмерительным устройством. Одновременно записывается диаграмма кручения в осях $m-\varphi$.

По площадкам, перпендикулярным и параллельным оси стержня, возникают только касательные напряжения, а по площадкам, наклонным к оси стержня на угол 45° - только нормальные напряжения (рисунок 1).

					Лабораторная работа №4				
Изм.	Лист	№ докум.	Подпись	Дата	, , ,				
Разр	αδ.	Миренков В.В.				/lum.	Лист	Листов	
Пров	ep.	Чаус В.П.			Определение механических		1	4	
Реце	НЗ.				свойств материалов	ГГТУ им. П.О. Сухого, гр. С-27			
H. Ko	нтр.				при кручении			ого, гр. С-21	
Утве	рд.								

Рисунок 1. Картина действия напряжений.

Характер разрушения образца зависит от материала (рисунок 2).

Рисунок 2. Виды разрушений различных материалов:

а) металл; б) бетон, чугун и другие хрупкие материалы; в) древесина при направлении волокон вдоль оси z.

При кручении стержней угол закручивания одного поперечного сечения относительно другого, в пределах упругих деформаций, связан с крутящим моментом линейной зависимостью

$$\varphi = \frac{M_{\scriptscriptstyle K} l}{G I_{\scriptscriptstyle P}},$$

где $M_{\scriptscriptstyle K}$ - крутящий момент в сечении на участке длиной l ; G - модуль сдвига;

						Лист
					Лабораторная работа №4	2
Изм.	Лист	№ докум.	Подпись	Дата		

 $I_{\scriptscriptstyle P}$ - полярный момент инерции круглого поперечного сечения, диаметром d ;

 GI_{P} - жесткость при кручении.

Формула справедлива, когда в пределах длины участка крутящий момент $M_{\scriptscriptstyle K}$ постоянен.

Зная размеры образца (l,d) и крутящий момент $M_{\kappa}=m$ и определив опытным путем угол ϕ , можно определить модуль сдвига материала

$$G = \frac{M_{K}l}{\varphi I_{P}}.$$

Величину G можно определить через модуль упругости E и коэффициент Пуассона μ по формуле: $G = \frac{E}{2(1+\mu)}$.

Рисунок 3. Схема замера взаимного угла поворота сечений.

При определении модуля сдвига образец испытывается в пределах упругих деформаций, которые в силу своей малости не могут быть зафиксированы с помощью лимбов. Поэтому для определения взаимного угла поворота двух сечений, отстоящих друг от друга на расстоянии $l_{\rm o} = 20$ мм, используется специальное приспособление. Оно сострит из двух разъемных шайб, которые закрепляются на образце. На одной шайбе устанавливается индикатор часового типа с ценой деления 0,01 мм, а на другой - рычаг с пяткой, в которую упирается ножка индикатора (рисунок 3). При скручивании образца не-

·	·			
Изм.	Лист	№ докум.	Подпись	Дата

Лабораторная работа №4

которым моментом m, шайбы повернутся на углы φ_1 и φ_2 , относительно своего первоначального положения. Разница между этими углами представляет собой взаимный угол поворота двух сечений, отстоящих на расстоянии $l_{\mathfrak{s}}$. Определяется этот угол в радианах, как отношение показания индикатора n (мм) к расстоянию r (мм) от оси образца до оси индикатора $\varphi = \frac{n}{r}$.

Практическая часть

Таблица 1. Результаты опыта по определению модуля сдвига стали.

Крутящий момент $M_{_K}=m$, Н·м	5	10	15	20
Отчет по индикатору n , мм	0,04	0,08	0,13	0,17
Угол закручивания $\varphi = \frac{n}{r}$, рад	0,0011	0,0023	0,0037	0,0049
Приращение угла закручивания $\Delta \phi$, рад	0,0012	0,0014	0,0014	0,0012

$$r = 35$$
 мм; $d = 10$ мм; $l_{\delta} = 20$ мм;

$$\varphi_1 = \frac{n_1}{r} = \frac{0.04}{35} = 0,0011$$
 рад; $\varphi_2 = \frac{n_2}{r} = \frac{0.08}{35} = 0,0023$ рад;

$$\varphi_3 = \frac{n_3}{r} = \frac{0.13}{35} = 0,0037$$
 рад; $\varphi_4 = \frac{n_4}{r} = \frac{0.17}{35} = 0,0049$ рад.

 $\Delta \varphi_{\rm CP} = 0{,}0013$ рад; $\Delta M_{\scriptscriptstyle K} = 5000$ Н·мм.

$$G = \frac{M_{\scriptscriptstyle K} \cdot l}{\varphi \cdot I_{\scriptscriptstyle P}} = \frac{5000 \cdot 20}{0,0013 \cdot 981,25} = 7,8 \cdot 10^4 \, \mathrm{MHa}; \ I_{\scriptscriptstyle P} = \frac{\pi d^4}{32} = 981,25 \, \mathrm{mm}^4.$$

Для установления зависимости между $M_{\scriptscriptstyle K}$ и φ строим график.

Вывод: определили модуль сдвига для стали, полученное значение соответствует справочному $G = 7.8 \cdot 10^4 \, \mathrm{MHa}$.

						Лист
					Лабораторная работа №4	,
Изм.	Лист	№ докум.	Подпись	Дата	· · ·	4