

HC32L13x 系列

32 位 ARM® Cortex®-M0+ 微控制器

数据手册

Rev2.11 2024年07月

产品特性

- 48MHz Cortex-M0+ 32 位 CPU 平台
- HC32L130/HC32L136 系列具有灵活的功耗管 理系统,超低功耗性能
 - 0.5μA @ 3V 深度休眠模式: 所有时钟关闭,
 上电复位有效, IO 状态保持, IO 中断有效, 所有寄存器、RAM 和 CPU 数据保存状态时的功耗
 - 0.9μA @3V 深度休眠模式+ RTC 工作
 - 7μA @32.768kHz 低速工作模式: CPU 和外设运行,从 Flash 运行程序
 - 35μA/MHz@3V@24MHz 休眠模式: CPU 停止,外设运行,主时钟运行
 - 130μA/MHz@3V@24MHz 工作模式: CPU 和外 设运行,从 Flash 运行程序
 - 4μs 超低功耗唤醒时间,使模式切换更加灵活高效,系统反应更为敏捷
- 64K 字节 Flash 存储器,具有擦写保护功能
- 8K 字节 RAM 存储器,附带奇偶校验,增强系统的 稳定性
- 通用I/O引脚(56IO/64pin, 40IO/48pin, 26IO/32pin, 23IO/28pin)
- 时钟、晶振
 - 外部高速晶振 4 ~ 32MHz
 - 外部低速晶振 32.768kHz
 - 内部高速时钟 4/8/16/22.12/24MHz
 - 内部低速时钟 32.8/38.4kHz
 - PLL 时钟 8 ~ 48MHz
 - 硬件支持内外时钟校准和监控
- 定时器/计数器
 - 3 个 1 通道互补通用 16 位定时器
 - 1个3通道互补输出16位定时器
 - 1 个低功耗 16 位定时器
 - 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能
 - 1 个可编程 16 位定时器 PCA,支持捕获比较,
 PWM 输出
 - 1 个超低功耗脉冲计数器 PCNT,具备低功耗模

式下自动定时唤醒功能,最大定时达 1024 秒

- 1 个 20 位可编程看门狗电路, 内建专用 10kHz 振荡器提供 WDT 计数

■ 通讯接口

- 2路 UART 标准通讯接口
- 2 路 LPUART 低功耗通讯接口,深度休眠模式下可工作
- 2路 SPI 标准通讯接口
- 2 路 I2C 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件万年历 RTC 模块
- 硬件 CRC-16/32 模块
- 硬件 32 位除法器
- AES-128 硬件协处理器
- TRNG 真随机数发生器
- 2 通道 DMAC
- 4*40 / 6*38 / 8*36 LCD驱动
- 全球唯一 10 字节 ID 号
- 12 位 1Msps 采样的高速高精度 SARADC,内置 运放,可测量外部微弱信号
- 集成3个多功能运算放大器
- 集成 6 位 DAC 和可编程基准输入的 2 路 VC
- 集成低电压侦测器,可配置 16 阶比较电压,可监控端口电压以及电源电压
- SWD 调试解决方案,提供全功能调试器
- 工作条件: -40 ~ 85°C, 1.8 ~ 5.5V
- 封装形式: QFN32/48, LQFP64/48, TSSOP28

支持型号:

HC32L136K8TA	HC32L130F8UA
HC32L136J8TA	HC32L130E8PA
HC32L130J8TA	HC32L130J8UA

声明

- ★ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ★ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相 应标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ★ XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ★ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ★ 任何带有 "®"或 "™" 标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ★ 本通知中的信息取代并替换先前版本中的信息。

©2024 小华半导体有限公司 保留所有权利

目 录

产品	特性	
声	明	3
目	录	4
表了	刻	6
图索	刻	
1	简介	8
2	产品阵容	
	2.1 产品名程	你...................21
	2.2 功能	
3	引脚配置及功能	能
	3.1 引脚配置	置图23
	3.2 引脚功能	能说明
	3.3 模块信号	号说明....................................
4	框图	41
5	存储区映射图	42
6	典型应用电路	图44
7	电气特性	45
	7.1 测试条	牛45
	7.1.1	最小和最大数值45
	7.1.2	典型数值45
	7.2 绝对最	大额定值
	7.3 工作条件	件47
	7.3.1	通用工作条件47
	7.3.2	上电和掉电时的工作条件47
	7.3.3	内嵌复位和 LVD 模块特性48
	7.3.4	内置的参考电压50
	7.3.5	供电电流特性51
	7.3.6	从低功耗模式唤醒的时间56
	7.3.7	外部时钟源特性57
	7.3.8	内部时钟源特性62
	7.3.9	PLL 特性
	7.3.10	存储器特性
	7.3.11	EFT 特性

阳水	·修计记	. 		96
9	订购信	息		95
	8.4	封装热阻	1系数	94
	8.3	丝印说明	1	92
	8.2	焊盘示意	图图	86
	8.1	封装尺寸	t	80
8	封装信	息		80
	7.	.3.20	通信接口	76
	7.	.3.19	TIM 定时器特性	74
	7.	.3.18	LCD 控制器	73
	7.	.3.17	OPA 特性	73
	7.	.3.16	VC 特性	72
	7.	.3.15	ADC 特性	69
	7.	.3.14	RESETB 引脚特性	68
	7.	.3.13	I/O 端口特性	65
	7.	.3.12	ESD 特性	64

表索引

表	7-1	电压特性
表	7-2	电流特性46
表	7-3	温度特性46
表	7-4	通用工作条件47
表	7-5	上电和掉电的工作条件47
表	7-6	POR/Brown Out
表	7-7	LVD 模块特性49
表	7-8	工作电流特性51
表	7-9	端口输出特性
表	7-10	高级定时器(ADVTIM)特性 74
表	7-11	通用定时器特性
表	7-12	PCA 特性
表	7-13	低功耗定时器特性
表	7-14	WDT 特性
	7-15	
表	7-16	SPI 接口特性
表	8-1	各封装热阻系数表

图索引

图 4-1	功能模块41
图 7-1	POR/Brown Out 示意图48
图 7-2	输出端口 VOH/VOL 实测曲线66
图 7-3	I2C 接口时序 76
图 7-4	SPI 时序图(主机模式)78
图 7-5	SPI 时序图(从机模式 cpha=0) 78
图 7-6	SPI 时序图(从机模式 cpha=1)

1 简介

HC32L130/HC32L136 系列是一款旨在延长便携式测量系统的电池使用寿命的超低功耗、宽电压工作范围的 MCU。集成 12 位 1Msps 高精度 SARADC 以及集成了比较器、运放、内置高性能 PWM定时器、LCD显示、多路 UART、SPI、I2C 等丰富的通讯外设,内建 AES、TRNG等信息安全模块,具有高整合度、高抗干扰、高可靠性和超低功耗的特点。本产品内核采用 Cortex-M0+ 内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

超低功耗 MCU 典型应用

- 传感器应用,物联网应用;
- 智能交通,智慧城市,智能家居;
- 火警探头,智能门锁,无线监控等智能传感器应用;
- 各种对于电池供电和对于功耗苛求的便携式设备等。

32 位 CORTEX MO+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2
流水线	2 级流水线
性能效率	2.46 CoreMark / MHz
性能效率	0.95 DMIPS / MHz in Dhrystone
中断	32 个快速中断
中断优先级	可配置 4 级中断优先级
增强指令	单周期 32 位乘法器
调试	Serial-wire 调试端口,支持 4 个硬中断(break point)以及 2 个观察点(watch
	point)

64K Byte Flash

内建全集成 Flash 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

8K Byte RAM

根据客户选择不同的超低功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

时钟系统

- 一个频率为 4~24MHz 可配置的高精度内部时钟 RCH。在配置 24MHz 下,从低功耗模式到工作模式的唤醒时间为 4us,全电压全温度范围内的频率偏差小,可以不外接昂贵的高频晶体。
- 一个频率为 4~32MHz 的外部晶振 XTH。
- 一个频率为 32.768kHz 的外部晶振 XTL, 主要提供 RTC 实时时钟。
- 一个频率为 32.768/38.4kHz 的内部时钟 RCL。
- 一个频率为 8~48MHz 输出的 PLL。

工作模式

- 1) 运行模式 Active: CPU 运行,周边功能模块运行。
- 2) 休眠模式 Sleep: CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式 Deep sleep: CPU 停止运行,高速时钟停止,低功耗功能模块运行。

实时时钟 RTC

RTC(Real Time Counter)是一个支持 BCD 数据的寄存器,采用 32.768kHz 晶振作为其时钟,能实现万年历功能,中断周期可配置为年/月/日/小时/分钟/秒。24/12 小时时间模式,硬件自动修正闰年。具有精确度补偿功能,最高精度为 0.96ppm。可使用内部温度传感器或外部温度传感器进行精确度补偿,可用软件+1/-1 调整年/月/日/小时/分钟/秒,最小可调精度为 1 秒。

用于指示时间和日期的 RTC 日历记录器在 MCU 受外部因素影响而复位时不会清除保留值,是需要永久高精度实时时钟的测量设备仪表的最佳选择。

端口控制器 GPIO

最多可提供 56 个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制,支持 FAST IO。支持边沿触发中断和电平触发中断,可从各种超低功耗模式下把 MCU 唤醒到工作模式。支持位置位,位清零,位置位清零操作。支持 Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 20mA 的电流驱动能力。56 个通用 IO 可支持外部异步中断。

中断控制器 NVIC

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_PA
[1]	GPIO_PB
[2]	GPIO_PC
[3]	GPIO_PD
[4]	DMAC
[5]	TIM3
[6]	UARTO
[7]	UART1
[8]	LPUART0
[9]	LPUART1
[10]	SPI0
[11]	SPI1
[12]	12C0
[13]	I2C1
[14]	TIM0
[15]	TIM1
[16]	TIM2
[17]	LPTIM
[18]	TIM4
[19]	TIM5
[20]	TIM6
[21]	PCA
[22]	WDT
[23]	RTC
[24]	ADC
[25]	PCNT
[26]	VC0
[27]	VC1
[28]	LVD
[29]	LCD
[30]	RAM FLASH
[31]	CLKTRIM

复位控制器 RESET

本产品具有 7 个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会复位指向 00000000。

	复位来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软件复位
[6]	LVD 复位

DMA 控制器 DMAC

DMAC(直接内存访问控制器)功能块可以不通过 CPU 高速传输数据。使用 DMAC 能提高系统性能。

定时器 TIM

类型	名称	位宽	预除频	计数方向	PWM	捕获	互补输出
通用定时器	TIM0	16/32	1/2/4/8/16	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM1	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM2	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM3	16/32	1/2/4/8/16/	上计数/	6	6	3
			32/64/256	下计数/			
				上下计数			
低功耗定时器	LPTIM	16	无	上计数	无	无	无
可编程计数阵	PCA	16	2/4/8/16/32	上计数	5	5	无
列							
高级定时器	TIM4	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	TIM5	16	1/2/4/8/16/	上计数/	2	2	1

类型	名称	位宽	预除频	计数方向	PWM	捕获	互补输出
			64/256/1024	下计数/			
				上下计数			
	TIM6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

通用定时器包含四个定时器 TIM0/1/2/3。

通用定时器特件:

- PWM 独立输出,互补输出
- 捕获输入
- 死区控制
- 刹车控制
- 边沿对齐、对称中心对齐与非对称中心对齐 PWM 输出
- 正交编码计数功能
- 单脉冲模式
- 外部计数功能

TIMO/1/2 功能完全相同。TIMO/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。TIMO/1/2 每个定时器都具有 2 路捕获比较功能,可以产生 2 路 PWM 独立输出或 1 组 PWM 互补输出。具有死区控制功能。

TIM3 是多通道的通用定时器,具有 TIM0/1/2 的所有功能,可以产生 3 组 PWM 互补输出或 6 路 PWM 独立输出,最多 6 路输入捕获。具有死区控制功能。

低功耗定时器 LPTIM 是异步 16 位定时/计数器,在系统时钟关闭后仍然可以通过内部低速 RC 或者外部低速晶体振荡计时/计数。通过中断在低功耗模式下唤醒系统。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块 4 有额外的看门狗定时器模式。

高级定时器 Advanced Timer 包含三个定时器 TIM4/5/6。TIM4/5/6 是功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1 个定时器可以产生互补的一对 PWM 或者独立的 2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

Advanced Timer 基本的功能及特性如表所示:

波形模式	锯齿波、三角波
	• 递加、递减计数方向
	• 软件同步
	• 硬件同步
基本功能	• 缓存功能
- 基本功能 	• 正交编码计数
	• 通用 PWM 输出
	• 保护机制
	• AOS 关联动作
	计数比较匹配中断
中断类型	计数周期匹配中断
	死区时间错误中断

脉冲计数器 PCNT

PCNT (Pulse Counter) 模块用以对外部脉冲进行计数,支持单路以及双路(正交编码与非交叉编码)脉冲。它可以在低功耗休眠模式下无需软件参与进行计数。

脉冲计数器特性:

- 支持重载功能的 16 bit 计数器
- 单通道脉冲计数
- 双通道非交脉冲计数
- 双通道正交脉冲计数,不失码
- 加/减计数溢出中断
- 脉冲超时中断
- 4种解码错误中断,非交脉冲模式
- 1 种方向改变中断,正交脉冲模式
- 多级脉冲宽度滤波
- 输入脉冲极性可配置
- 支持低功耗模式计数
- 支持唤醒低功耗模式下 MCU
- 支持任意脉冲沿间距不小于 1 个计数时钟周期
- 具备低功耗模式下自动定时唤醒功能,最大定时达 1024 秒

看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内建 10kHz 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能 重启 WDT。

通用同步异步收发器 UART0~UART1

2 路通用同步异步收发器 (Universal Asynchronous Receiver/Transmitter), UARTO/UART1。

通用 UART 基本功能:

- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 1/1.5/2-Bit 停止位
- 四种不同传输模式
- 16-Bit 波特率计数器
- 多机通讯
- 硬件地址识别
- DMAC 硬件传输握手
- 硬件流控

低功耗同步异步收发器 LPUART0~LPUART1

2 路低功耗模式下可以工作的同步异步收发器(Low Power Universal Asynchronous Receiver/Transmitter),LPUART0/LPUART1。

LPUART 基本功能:

- 传输时钟 SCLK(SCLK 可选择 XTL、RCL 以及 PCLK)
- 系统低功耗模式下收发数据
- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 1/1.5/2-Bit 停止位
- 四种不同传输模式
- 16-Bit 波特率计数器

- 多机通讯
- 硬件地址识别
- DMAC 硬件传输握手
- 硬件流控

串行外设接口 SPI

2路同步串行接口(Serial Peripheral Interface)。

SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式 7 种波特率可配置
- 主机模式最大分频系数为 PCLK/2,最高通信速率为 16M bps
- 从机模式最大分频系数为 PCLK/8,最高通信速率为 6M bps
- 可配置的串行时钟极性和相位
- 支持中断
- 8 位数据传输,先传输高位后低位
- 支持 DMA 软件/硬件访问

I2C 总线

2 路 I2C,采用串行同步时钟,可实现设备之间以不同的速率传输数据。

I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps) / 快速(400Kbps) / 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

蜂鸣器 Buzzer

4 个通用定时器与 1 个低功耗定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 20mA 的 sink 电流,互补输出,不需要额外的三极管。

时钟校准电路模块 CLKTRIM

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 5 种待校准时钟源
- 支持中断方式

器件电子签名

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。 UID 地址为: 0X00100E74 - 0X00100E7D。

循环冗余校验 CRC

CRC16 符合 ISO/IEC13239 中给出的多项式 =X¹⁶ + X¹² + X⁵ + 1

CRC32 符合 ISO/IEC13239 中给出的多项式 = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x+ 1

硬件除法器模块 HDIV

HDIV(Hardware Divider)是一个32位有/无符号整数硬件除法器。

HDIV 硬件除法器基本特性:

- 可配置有符号/无符号整数除法计算
- 32 位被除数,16 位除数
- 输出 32 位商和 32 位余数
- 除数为零警告标志位,除法运算结束标志位
- 10 个时钟周期完成一次除法运算
- 写除数寄存器触发除法运算开始
- 读商寄存器/余数寄存器时自动等待计算结束

高级加密标准模块 AES

AES (The Advanced Encryption Standard) 是美国国家标准技术研究所 (NIST) 在 2000年 10月 2日正式宣布的新的数据加密标准。AES 的分组长度固定为 128 Bit,而密钥长度支持 128 Bit。

真随机数发生器 TRNG

TRNG 是一个真随机数发生器,用来产生真随机数。

模数转换器 ADC

单调不失码的 12 位逐次逼近型模数转换器,在 24MHz ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择片内精准电压(1.5V 或 2.5V)或从外部输入或电源电压。29 个输入通道,包括 24 路外部引脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、3 路 OPA 输出。内建可配置的输入信号放大器以检测弱信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1Msps 转换速度;
- 29 个输入通道,包括 24 路外部引脚输入、1 路内部温度传感器电压、1 路 1/3 AVCC 电压、 3 路 OPA 输出;
- 4 种参考源:AVCC 电压、ExRef 引脚、内置 1.5V 参考电压、内置 2.5V 参考电压;
- ADC 的电压输入范围: 0~Vref;
- 4 种转换模式:单次转换、顺序扫描连续转换、插队扫描连续转换、连续转换累加;
- 输入通道电压阈值监测;
- 软件可配置 ADC 的转换速率;
- 内置信号放大器,可转换高阻信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

模拟电压比较器 VC

芯片引脚电压监测/比较电路。16个可配置的正外部输入通道,11个可配置的负外部输入通道;4个内部负输入通道,包括1路内部温度传感器电压、1路内建 BGR 2.5V 参考电压、1路64阶电阻分压。VC 输出可供通用定时器 TIM0/1/2/3,低功耗定时器 LPTIM 与可编程计数阵列 PCA 捕

获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

低电压检测器 LVD

对芯片电源电压或芯片引脚电压进行检测。16 档电压监测值(1.8 ~ 3.3V)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4路监测源, AVCC、PC13、PB08、PB07;
- 16 阶阈值电压, 1.8~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断;
- 8 阶滤波配置, 防止误触发;
- 具备迟滞功能,强力抗干扰。

运算放大器 OPA

OPA 模块可以灵活配置,适用于简易滤波器和 Buffer 应用。内部的三个运放可以配置为反向、同向具有不同增益的组合运放,也可以使用外部电阻进行级联。

液晶控制器 LCD

LCD 控制器是一款适用于单色无源液晶显示器(LCD)的数字控制器/驱动器,最多具有 8 个公用端子(COM)和 40 个区段端子(SEG),用以驱动 160 (4×40)或 288 (8×36)个 LCD 图像元素。可以选择电容分压或电阻分压,支持内部电阻分压。内部电阻分压可以调节对比度。支持 DMA 硬件数据传输。

LCD 基本特性:

- 高度灵活的帧速率控制。
- 支持静态、1/2、1/3、1/4、1/6 和 1/8 占空比。
- 支持 1/2、1/3 偏置。
- 多达 16 个寄存器的 LCD 数据 RAM。
- 可通过软件配置 LCD 的对比度。
- 3 种驱动波形生成方式
 - 内部电阻分压、外部电阻分压,外部电容分压方式

- 可通过软件配置内部电阻分压方式的功耗,从而匹配 LCD 面板所需的电容电荷
- 支持低功耗模式: LCD 控制器可在 Active、Sleep、DeepSleep 模式下进行显示。
- 可配置帧中断。
- 支持 LCD 闪烁功能且可配置多种闪烁频率
- 未使用的 LCD 区段和公共引脚可配置为数字或模拟功能。

嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4 个硬断点以及多个软断点。

编程模式

支持两种编程模式: 在线编程、离线编程。

支持两种编程协议: ISP 协议、SWD 协议。

ISP 协议编程接口: PA9、PA10或 PA13、PA14。

SWD 协议编程接口: PA13、PA14。

当复位时 BOOTO(PD03)管脚为高电平,芯片工作于 ISP 编程模式,可通过 ISP 协议对 Flash 进行编程。

当复位时 BOOT0(PD03)管脚为低电平,芯片工作于用户模式,芯片执行 Flash 内的程序代码,可通过 SWD 协议对 Flash 进行编程。

注意:

建议预留 PA9、PA10 作为 ISP 编程接口,如需使用 PA13、PA14 作为 ISP 编程接口请
 参见 PCN: PCN20191230-1_HC32L130HC32F030HC32L136 提高烧录速度。

高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2 产品阵容

2.1产品名称

A: -40-85°C ,工业级

2.2 功能

产品名称		136K8TA	136J8TA	130J8TA 130J8UA	130F8UA	130E8PA	
引脚数		64	48	48	32	28	
GPIO 引	脚数	56	40	40	26	23	
CPU	内核	Cortex M0+					
	频率			48MHz			
电源电压	范围			1.8 ~5.5V			
单/双电	源			单电源			
温度范围	1			−40 ~ 85°C			
调试功能	<u> </u>			SWD 调试接口			
唯一识别	码			支持			
				UART0/1			
通信接口	ı				LPUART0	LPUART1	
远 旧 汝 日	l		LPUARTO/1	•	SPI0	SPI0	
			SPI0/1 I ² C0/	1	I ² C0/1	I ² C0/1	
			通月	用定时器 TIM0/1/	/2/3		
定时器		低功耗定时器 LPTIM					
		高级定时器 TIM4/5/6					
液晶控制	l器(LCDC)	有	Ī		无		
12位A/	/D 转换器	24ch	17ch	17ch	8ch	11ch	
模拟电压	比较器	VC0/1					
实时时钟	1	1					
端口中断	į	56	40	40	26	23	
低电压检	测复位/中断	1					
	内部高速振荡 器		RCH 4/8/16/22.12/24MHz				
	内部低速振荡器		RCL 32.8/38.4kHz				
时钟	外部高速晶振	4~32MHz					
	振荡器						
	外部低速晶振 振荡器	32.768kHz					
PLL 震荡器		8~48MHz					
蜂鸣器	: L L lbs //// 位计	8~46МП2 Max 5ch					
	安全保护	支持					
RAM 奇偶							

3 引脚配置及功能

3.1 引脚配置图

HC32L136K8TA

HC32L136J8TA

- BOOTO 引脚用于控制 FLASH 编程,详见【模块信号说明】。

HC32L130J8TA

HC32L130J8UA

- BOOTO 引脚用于控制 FLASH 编程,详见【模块信号说明】。

HC32L130F8UA

注:

- Exposed Thermal Pad 需要连接到 DVSS。
- 在应用中,需要将该封装未引出的 IO 引脚设为输入并使能上拉。
- 该封装未引出的 IO 详见【引脚功能说明】。
- BOOTO 引脚用于控制 FLASH 编程,详见【模块信号说明】。

HC32L130E8PA

注:

- 在应用中,需要将该封装未引出的 IO 引脚设为输入并使能上拉。
- 该封装未引出的 IO 详见【引脚功能说明】。
- BOOTO 引脚用于控制 FLASH 编程,详见【模块信号说明】。

3.2 引脚功能说明

64	48	32	28	NAME	DIGITAL	ANALOG
1	1	1	1	VCAP		
2	1			PC13	RTC_1HZ	LVD TNO
2	2			PC13	TIM3_CH1B	LVD_IN0
3	3	2	2	PC14		XTLI
4	4	3	3	PC15		XTLO
5	5	4	4	PD00	I2C0_SDA	XTHI
	J	<u> </u>		1 500	UART1_TXD	XIIII
					I2C0_SCL	
6	6	5	5	PD01	TIM4_CHB	XTH0
					UART1_RXD	
7	7	6	6	RESETB		
					LPTIM_GATE	AIN10
8				PC00	PCNT_S0	VC0_INP0
					UART1_CTS	VC1_INNO
					_	SEG27
					LPTIM_TOG	AIN11
9				PC01	TIM5_CHB	VC0_INP1
					UART1_RTS	VC1_INN1
					_	SEG26
					SPI1_MISO	AIN12
10				PC02	LPTIM_TOGN	VC0_INP2
					PCNT_S1	VC1_INN2
						SEG25
					SPI1_MOSI	AIN13
11				PC03	LPTIM_ETR	VCO_INP3
					LPTIM_TOGN	VC1_INN3
12	0			AVCC		SEG24
12	9	7	7	AVSS		
13	3	1	<i>'</i>	AVCC	HADT1 CTS	
					UART1_CTS	AIN0
					LPUART1_TXD TIM0_ETR	VC0_INP4
14	10		8	PA00	VC0_OUT	VC0_INN0
17				1 700	TIM1_CHA	VC1_INP0
					TIM3_ETR	VC1_INN4
					TIMO_CHA	SEG23
					TIMO_CHA	

64	48	32	28	NAME	DIGITAL	ANALOG
					UART1_RTS	ATN1
					LPUART1_RXD	AIN1
					TIM0_CHB	VCO_INP5
15	11		9	PA01	TIM1_ETR	VC0_INN1
					TIM1_CHB	VC1_INP1
					HCLK_OUT	VC1_INN5
					SPI1_MOSI	SEG22
					UART1_TXD	
					TIMO_CHA	AIN2
					VC1_OUT	VC0_INP6
16	12	8	10	PA02	TIM1_CHA	VC0_INN2
					TIM2_CHA	VC1_INP2
					PCLK_OUT	SEG21
					SPI1_MISO	
					UART1_RXD	
					TIMO_GATE	AIN3
					TIM1_CHB	VC0_INP7
17	13		11	PA03	TIM2_CHB	VC0_INN3
					SPI1_CS	VC1_INP3
					TIM3_CH1A	SEG20
					TIM5_CHA	
18				PD04		
19				PD05		
					SPI0_CS	
					UART1_TXD	AIN4
					PCA_CH4	VC0_INP8
20	14	9	12	PA04	TIM2_ETR	VC0_INN4
					TIM5_CHA	VC1_INP4
					LVD_OUT	SEG19
					TIM3_CH2B	
					SPI0_CLK	
					TIM0_ETR	AIN5
					PCA_ECI	VC0_INP9
21	15	10	13	PA05	TIMO_CHA	VC0_INN5
					TIM5_CHB	VC1_INP5
					XTL_OUT	SEG18
					XTH_OUT	
22	16	11	14	PA06	SPI0_MISO	AIN6
	10	11	1	1700	PCA_CH0	VC0_INP10

64	48	32	28	NAME	DIGITAL	ANALOG
					TIM3_BK	VC0_INN6
					TIM1_CHA	SEG17
					VC0_OUT	
					TIM3_GATE	
					LPUART0_CTS	
					SPI0_MOSI	
					PCA_CH1	AIN7
					HCLK_OUT	VC0_INP11
23	17	12	15	PA07	TIM3_CH0B	VC0_INN7
					TIM2_CHA	SEG16
					VC1_OUT	31010
					TIM4_CHB	
					LPUART0_TXD	AIN14
24				PC04	TIM2_ETR	VC0_INN8
					IR_OUT	SEG15
					LPUART0_RXD	AIN15
25				PC05	TIM6_CHB	VC0_INN9
					PCA_CH4	SEG14
		8 13			PCA_CH2	
					TIM3_CH1B	AIN8
					LPUART0_TXD	VC0_INN10
26	18		16	PB00	TIM5_CHB	
					RCH_OUT	VC1_INN6 SEG13
					RCL_OUT	SEG13
					PLL_OUT	
					PCA_CH3	AIN9/EXVREF
					PCLK_OUT	VC1_INP6
27	19	14	17	PB01	TIM3_CH2B	VC1_INN7
					TIM6_CHB	SEG12
					LPUART0_RTS	35012
					LPTIM_TOG	
					PCA_ECI	AIN16
					LPUART1_TXD	VC1_INP7
28	20		18	PB02	TIM4_CHA	VC1_INN8
					TIM1_BK	OP2_INN
					TIM0_BK	SEG11
					TIM2_BK	
20	21			DP10	I2C1_SCL	AIN17
29	21			PB10	SPI1_CLK	VC1_INP8

64	48	32	28	NAME	DIGITAL	ANALOG
					TIM1_CHA	OP2_INP
					LPUART0_TXD	SEG10
					TIM3_CH1A	
					LPUART1_RTS	
					UART1_RTS	
					I2C1_SDA	
					TIM1_CHB	
					LPUARTO_RXD	AIN18
30	22	15		PB11	TIM2_GATE	OP2_OUT
					TIM6_CHA	SEG9
					LPUART1_CTS	
					UART1_CTS	
31	23	16	19	DVSS		
32	24	17	20	DVCC		
					SPI1_CS	
					TIM3_BK	AIN19
33	25			PB12	LPUART0_TXD	VC1_INP9
	25			1 1 1 2	TIMO_BK	OP1_INN
			LPUART0_RTS	SEG8		
					TIM6_CHA	
					SPI1_CLK	
					I2C1_SCL	AIN20
					TIM3_CH0B	VC1_INP10
34	26			PB13	LPUARTO_CTS	OP1_INP
					TIM1_CHA	SEG7
					TIM1_GATE	0201
					TIM6_CHB	
					SPI1_MISO	
					I2C1_SDA	AIN21
					TIM3_CH1B	VC1_INP11
35	27			PB14	TIM0_CHA	OP1_OUT
					RTC_1HZ	SEG6
					LPUARTO_RTS	0100
					TIM1_BK	
					SPI1_MOSI	
					TIM3_CH2B	AIN22
36	28			PB15	TIM0_CHB	OP0_INN
					TIM0_GATE	SEG5
					LPUART1_RXD	

64	48	32	28	NAME	DIGITAL	ANALOG
					PCA_CH0	AIN23
37				PC06	TIM4_CHA	OP0_INP
					TIM2_CHA	SEG4
					PCA_CH1	222 2117
38				PC07	TIM5_CHA	OPO_OUT
	30				TIM2_CHB	SEG3
					PCA_CH2	
39				PC08	TIM6_CHA	SEG2
					TIM2_ETR	
					PCA_CH3	
40				PC09	TIM4_CHB	SEG1
					TIM1_ETR	
					UART0_TXD	
					TIM3_CH0A	
41	29	18	21	PA08	TIM1_GATE	SEG0
					TIM4_CHA	
					TIM3_BK	
			.9 22		UARTO_TXD	COMO
					TIM3_CH1A	
40	20	19			TIM0_BK	
42	30			PA09	I2C0_SCL	
					HCLK_OUT	
					TIM5_CHA	
				PA10	UARTO_RXD	
					TIM3_CH2A	
		L 20			TIM2_BK	
43	31		23		I2C0_SDA	COM1
					TIM2_GATE	
					PCLK_OUT	
					TIM6_CHA	
					UART0_CTS	
					TIM3_GATE	
44	32	21	24	PA11	I2C1_SCL	COM2
44	32	32 21	24	LATT	VC0_OUT	COMZ
					SPI0_MISO	
					TIM4_CHB	
					UART0_RTS	
45	33	22	25	PA12	TIM3_ETR	COM3
					I2C1_SDA	

64	48	32	28	NAME	DIGITAL	ANALOG
					VC1_OUT	
					SPI0_MOSI	
					PCNT_S0	
					IR_OUT	
					UART0_RXD	
					LVD_OUT	
46	34	23	26	PA13	TIM3_ETR	
					RTC_1HZ	
					PCNT_S1	
					SWDIO	
					I2C1_SCL	
47	35			PD06	LPUART1_CTS	
					UART0_CTS	
					I2C1_SDA	
48	36			PD07	LPUART1_RTS	
					UART0_RTS	
				PA14	UART1_TXD	
		24	27		UART0_TXD	
					TIM3_CH2A	
49	37				LVD_OUT	
49	31				RCH_OUT	
					RCL_OUT	
					PLL_OUT	
					SWCLK	
					SPI0_CS	
		38 25			UART1_RXD	
50	20			PA15	LPUART1_RTS	
30	36		25		PAIS	TIMO_ETR
					TIMO_CHA	
					TIM3_CH1A	
					LPUART1_TXD	
51				PC10	LPUART0_TXD	COM4/SEG39
					PCA_CH2	
					LPUART1_RXD	
52				PC11	LPUART0_RXD	COM5/SEG38
					PCA_CH3	
					LPUART0_TXD	
53				PC12	LPUART1_TXD	COM6/SEG37
					PCA_CH4	

64	48	32	28	NAME	DIGITAL	ANALOG
					PCA_ECI	
54				PD02	LPUARTO_RTS	COM7/SEG36
					TIM1_ETR	
					SPI0_CLK	
					TIMO_CHB	
					TIM1_GATE	VC1 TNNO
55	39	26		PB03	TIM3_CH0A	VC1_INN9
					LPTIM_GATE	SEG35/VLCDH
					XTL_OUT	
					XTH_OUT	
					SPI0_MISO	
					PCA_CH0	VC0_INP12
					TIM2_BK	VC1_INP12
56	40	27		PB04	UARTO_CTS	VC1_INN10
					TIM2_GATE	SEG34/VLCD3
					TIM3_CH0B	32034/ 12003
					LPTIM_ETR	
		1 28		PB05	SPI0_MOSI	VC0_INP13 VC1_INP13 SEG33/VLCD2
			28		TIM1_BK	
57	41				PCA_CH1	
	'-				LPTIM_GATE	
					PCNT_S0	
					UARTO_RTS	
					I2C0_SCL	
					UART0_TXD	
					TIM1_CHB	VC0_INP14
58	42	29		PB06	TIMO_CHA	VC1_INP14
					LPTIM_ETR	SEG32/VLCD1
					TIM3_CH0A	
					LPTIM_TOG	
					I2C0_SDA	
					UART0_RXD	VC0_INP15
					TIM2_CHB	VC1_INP15
59	43	30		PB07	LPUART1_CTS	LVD_IN2
					TIMO_CHB	SEG31
					LPTIM_TOGN	
					PCNT_S1	
60	44	31	28	PD03	воото	SEG30

64	48	32	28	NAME	DIGITAL	ANALOG	
					I2C0_SCL		
					TIM1_CHA		
61	45			PB08	TIM2_CHA	LVD_IN1	
91	45			PDUO	TIMO_GATE	SEG29	
					TIM3_CH2A		
					UART0_TXD		
		46		DROO	I2C0_SDA		
					IR_OUT		
62	16				SPI1_CS	SEG28	
02	40				PB09	TIM2_CHA	31020
					TIM2_CHB		
					UART0_RXD		
63	47	32		DVSS			
64	48			DVCC			

每个引脚的数字功能由 PSEL 位域进行控制,详见下表。

PSEL	1	2	3	4	5	6	7
PA00	UART1_CTS	LPUART1_TXD	TIMO_ETR	VC0_OUT	TIM1_CHA	TIM3_ETR	TIMO_CHA
PA00	UART1_RTS	LPUART1_RXD	TIMO_CHB		TIM1_CHA	HCLK_OUT	SPI1_MOSI
PA01	_	TIMO_CHA		TIM1_ETR	TIM1_CHB	PCLK_OUT	
PA02	UART1_TXD	_	VC1_OUT	TIM1_CHA	_	_	SPI1_MISO
-	UART1_RXD	TIMO_GATE	TIM1_CHB	TIM2_CHB	SPI1_CS	TIM3_CH1A	TIM5_CHA
PA04	SPIO_CS	UART1_TXD	PCA_CH4	TIM2_ETR	TIM5_CHA	LVD_OUT	TIM3_CH2B
PA05	SPIO_SCK	TIMO_ETR	PCA_ECI	TIMO_CHA	TIM5_CHB	XTL_OUT	XTH_OUT
PA06	SPIO_MISO	PCA_CH0	TIM3_BK	TIM1_CHA	VC0_OUT	TIM3_GATE	LPUARTO_CTS
PA07	SPIO_MOSI	PCA_CH1	HCLK_OUT	TIM3_CH0B	TIM2_CHA	VC1_OUT	TIM4_CHB
PA08	UARTO_TXD	TIM3_CH0A	TIMO DI	T260 661	TIM1_GATE	TIM4_CHA	TIM3_BK
PA09	UARTO_TXD	TIM3_CH1A	TIMO_BK	I2CO_SCL	TIMO CATE	HCLK_OUT	TIM5_CHA
PA10	UARTO_RXD	TIM3_CH2A	TIM2_BK	I2C0_SDA	TIM2_GATE	PCLK_OUT	TIM6_CHA
PA11	UARTO_CTS	TIM3_GATE	I2C1_SCL		VC0_OUT	SPIO_MISO	TIM4_CHB
PA12	UARTO_RTS	TIM3_ETR	I2C1_SDA	TTM2 FTD	VC1_OUT	SPIO_MOSI	PCNT_S0
PA13	IR_OUT	UARTO_RXD	LVD_OUT	TIM3_ETR	RTC_1HZ	PCNT_S1	
PA14	UART1_TXD	UARTO_TXD	TIM3_CH2A	LVD_OUT	RCH_OUT	RCL_OUT	PLL_OUT
PA15	SPIO_CS	UART1_RXD	LPUART1_RTS	TIMO_ETR	TIMO_CHA	TIM3_CH1A	
PB00	PCA_CH2	TIM3_CH1B	LPUARTO_TXD	TIM5_CHB	RCH_OUT	RCL_OUT	PLL_OUT
PB01	PCA_CH3	PCLK_OUT	TIM3_CH2B	TIM6_CHB	LPUARTO_RTS		
PB02	LPTIM_TOG	PCA_ECI	LPUART1_TXD	TIM4_CHA	TIM1_BK	TIMO_BK	TIM2_BK
PB03	SPI0_SCK	TIMO_CHB	TIM1_GATE	TIM3_CH0A	LPTIM_GATE	XTL_OUT	XTH_OUT
PB04	SPI0_MISO	PCA_CH0	TIM2_BK	UART0_CTS	TIM2_GATE	TIM3_CH0B	LPTIM_ETR
PB05	SPI0_MOSI		TIM1_BK	PCA_CH1	LPTIM_GATE	PCNT_S0	UARTO_RTS
PB06	I2C0_SCL	UART0_TXD	TIM1_CHB	TIMO_CHA	LPTIM_ETR	TIM3_CH0A	LPTIM_TOG
PB07	I2C0_SDA	UART0_RXD	TIM2_CHB	LPUART1_CTS	TIMO_CHB	LPTIM_TOGN	PCNT_S1
PB08	I2C0_SCL	TIM1_CHA		TIM2_CHA	TIMO_GATE	TIM3_CH2A	UART0_TXD
PB09	I2C0_SDA	IR_OUT	SPI1_CS	TIM2_CHA		TIM2_CHB	UARTO_RXD
PB10	I2C1_SCL	SPI1_SCK	TIM1_CHA	LPUARTO_TXD	TIM3_CH1A	LPUART1_RTS	UART1_RTS
PB11	I2C1_SDA	TIM1_CHB	LPUARTO_RXD	TIM2_GATE	TIM6_CHA	LPUART1_CTS	UART1_CTS
PB12	SPI1_CS	TIM3_BK	LPUART0_TXD	TIMO_BK		LPUARTO_RTS	TIM6_CHA
PB13	SPI1_SCK	I2C1_SCL	TIM3_CH0B	LPUARTO_CTS	TIM1_CHA	TIM1_GATE	TIM6_CHB
PB14	SPI1_MISO	I2C1_SDA	TIM3_CH1B	TIMO_CHA	RTC_1HZ	LPUART0_RTS	TIM1_BK
PB15	SPI1_MOSI	TIM3_CH2B	TIMO_CHB	TIMO_GATE			LPUART1_RXD
PC00	LPTIM_GATE	PCNT_S0	UART1_CTS				
PC01	LPTIM_TOG	TIM5_CHB	UART1_RTS				
PC02	SPI1_MISO	LPTIM_TOGN	PCNT_S1				
PC03	SPI1_MOSI	LPTIM_ETR	LPTIM_TOGN				
PC04	LPUART0_TXD	TIM2_ETR	IR_OUT				
PC05	LPUART0_RXD	TIM6_CHB	PCA_CH4				
PC06	PCA_CH0	TIM4_CHA	TIM2_CHA				
PC07	PCA_CH1	TIM5_CHA	TIM2_CHB				
PC08	PCA_CH2	TIM6_CHA	TIM2_ETR				
PC09	PCA_CH3	TIM4_CHB	TIM1_ETR				
PC10	LPUART1_TXD	LPUART0_TXD	PCA_CH2				
PC11	LPUART1_RXD	LPUART0_RXD	PCA_CH3				

PSEL	1	2	3	4	5	6	7
PC12	LPUART0_TXD	LPUART1_TXD	PCA_CH4				
PC13		RTC_1HZ	TIM3_CH1B				
PC14							
PC15							
PD00	I2C0_SDA		UART1_TXD				
PD01	I2C0_SCL	TIM4_CHB	UART1_RXD				
PD02	PCA_ECI	LPUART0_RTS	TIM1_ETR				
PD03							
PD04							
PD05							
PD06	I2C1_SCL	LPUART1_CTS	UARTO_CTS				
PD07	I2C1_SDA	LPUART1_RTS	UARTO_RTS				

3.3 模块信号说明

模块	引脚名称	描述
电源	DVCC	数字电源
	AVCC	模拟电源
	DVSS	数字地
	AVSS	模拟地
	VCAP	LDO 内核供电输出(仅限内部电路使用,需外接不小于 1uF 的去耦电容)
ISP	ВООТО	当复位时 BOOT0(PD03)管脚为高电平,芯片工作于 ISP 编程模式,可
		通过 ISP 协议对 Flash 进行编程。
		当复位时 BOOT0(PD03)管脚为低电平,芯片工作于用户模式,芯片执
		行 Flash 内的程序代码,可通过 SWD 协议对 Flash 进行编程。
ADC	AIN0~AIN23	ADC 输入通道 0~23
	ADC_VREF	ADC 外部参考电压
VC	VCIN0~VCIN15	VC 输入 0~15
	VC0_OUT	VC0 比较输出
	VC1_OUT	VC1 比较输出
LVD	LVDIN0	电压侦测输入 0
	LVDIN1	电压侦测输入 1
	LVDIN2	电压侦测输入 2
	LVD_OUT	电压侦测输出
OPA	OPx_INN	OPA 负端输入
x=0,1,2	OPx_INP	OPA 正端输入
	OPx_OUT	OPA 输出
LCD	COMx	LCD 公共端输出
x=0~7	SEGy	LCD 区段端输出
y=0-39	VLCDz	外部电阻模式,外部电容模式使用引脚
z=1,2,3,H		
UART	UARTx_TXD	UARTx 数据发送端
x=0,1	UARTx_RXD	UARTx 数据接收端
	UARTx_CTS	UARTx CTS
	UARTx_RTS	UARTX RTS
LPUART	LPUARTx_TXD	LPUART 数据发送端
x=0,1	LPUARTx_RXD	LPUART 数据接收端
	LPUARTx_CTS	LPUART CTS
	LPUARTx_RTS	LPUART RTS
SPI	SPIx_MISO	SPI 模块主机输入从机输出数据信号
x=0,1	SPIx_MOSI	SPI 模块主机输出从机输入数据信号
	SPIx_SCK	SPI 模块时钟信号

模块	引脚名称	描述
	SPIx_CS	SPI 片选
I2C	I2Cx_SDA	I2C 模块数据信号
x=0,1	I2Cx_SCL	I2C 模块时钟信号
通用定时器	TIMx_CHA	Timer 的捕获输入比较输出 A
TIMx	TIMx_CHB	Timer 的捕获输入比较输出 B
x=0,1,2	TIMx_ETR	Timer 的外部计数输入信号
	TIMx_GATE	Timer 的门控信号
通用定时器	TIM3_CHyA	Timer 的捕获输入比较输出 A
TIM3	TIM3_CHyB	Timer 的捕获输入比较输出 B
y=0,1,2	TIM3_ETR	Timer 的外部计数输入信号
	TIM3_GATE	Timer 的门控信号
低功耗定时器	LPTIM_TOG	LPTimer 的翻转输出信号
LPTIM	LPTIM_TOGN	LPT imer 的翻转输出反向信号
	LPTIM_EXT	LPT imer 的外部计数输入信号
	LPTIM_GATE	LPTimer 的门控信号
可编程计数阵列	PCA_ECI	外部时钟输入信号
PCA	PCA_CH0	捕获输入/比较输出/PWM 输出 Θ
	PCA_CH1	捕获输入/比较输出/PWM 输出 1
	PCA_CH2	捕获输入/比较输出/PWM 输出 2
	PCA_CH3	捕获输入/比较输出/PWM 输出 3
	PCA_CH4	捕获输入/比较输出/PWM 输出 4
PCNT	PCNT_S0	PCNT 脉冲计数输入 0
	PCNT_S1	PCNT 脉冲计数输入 1
高级定时器	TIM4_CHA	Advanced Timer4 比较输出/捕获输入端 A
Advanced	TIM4_CHB	Advanced Timer4 比较输出/捕获输入端 B
Timer	TIM5_CHA	Advanced Timer5 比较输出/捕获输入端 A
	TIM5_CHB	Advanced Timer5 比较输出/捕获输入端 B
	TIM6_CHA	Advanced Timer6 比较输出/捕获输入端 A
	TIM6_CHB	Advanced Timer6 比较输出/捕获输入端 B
	TIMTRIA	硬件计数时钟输入端口或捕获输入端口
	TIMTRIB	硬件启动、停止、清零条件输入端口,端口选择参考用户手册高级定时器章
	TIMTRIC	节寄存器控制
	TIMTRID	
	TIMBK	刹车输入,端口选择参考用户手册高级定时器章节寄存器控制

注意:

- IO 端口复位为输入高阻状态,休眠模式和深度休眠模式保持之前的端口状态。

4 框图

功能模块

图 4-1 功能模块

5 存储区映射图

HC32L136K8TA HC32L136J8TA HC32L130J8UA HC32L130J8TA HC32L130F8UA HC32L130E8PA 保留 0x2000_2000 SRAM (8KByte) 0x2000_0000 保留 0x0001_0000 主闪存区 (64KByte) 0x0000_0000

6 典型应用电路图

注意:

- AVCC 与 DVCC 电压必须相同。
- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源引脚。

7 电气特性

7.1 测试条件

除非特别说明,所有的电压都以 VSS 为基准。

7.1.1最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 $T_A=25$ °C和 $T_A=T_Amax$ 下执行的测试 $(T_Amax$ 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均 $\pm 3\Sigma$)得到。

7.1.2 典型数值

除非特别说明,典型数据是基于 $T_A=25$ °C和 VCC=3.3V(1.8V \leq VCC \leq 5.5V 电压范围)。这 些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差小于等于给出的数值(平均 $\pm 2\Sigma)$ 。

7.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含 AVCC 和 DVCC)(1)	-0.3	5.5	V
V _{IN}	在其它引脚上的输入电压(2)	VSS-0.3	VCC + 0.3	V
ΔVCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD 静电放电电压(人体模型)	参考绝对最大值电气参数		٧

表 7-1 电压特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} V_{CC} 时,有一个正向注入电流;当 V_{IN} V_{SS} 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
I _{vcc}	经过 DVCC/AVCC 电源线的总电流(供应电流) (1)	300	mA
I _{vss}	经过 VSS 地线的总电流 (流出电流) (1)	300	mA
I _{IO}	任意 I/O 和控制引脚上的输出灌电流	25	mA
	任意 I/O 和控制引脚上的输出电流	-25	mA
I _{INJ(PIN)} (2) (3)	RESETB 引脚的注入电流	+/-5	mA
1.10 (1.11.)	XTH 的 XTHI 引脚和 XTL 的 XTLI 引脚的注入电流	+/-5	mA
	其他引脚的注入电流(4)	+/-5	mA
ΣI _{INJ(PIN)} (2)	所有 I/O 和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 7-2 电流特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注入电流;当 V_{IN} < V_{SS} 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, ΣI INJ(PIN)的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 4 个 I/O 端口上 $\Sigma IINJ(PIN)$ 最大值的特性。

符号	描述	数值	单位
T_{STG}	储存温度范围	-65 ~ + 150	°C
T ₂	最大结温度	105	°C

表 7-3 温度特性

7.3 工作条件

7.3.1通用工作条件

表 7-4 通用工作条件

符号	参数	条件	最小值	最大值	单位
f _{HCLK}	内部 AHB 时钟频率		0	48	MHz
f _{PCLK0}	内部 APB0 时钟频率		0	48	MHz
f _{PCLK1}	内部 APB1 时钟频率		0	48	MHz
DVCC	数字部分工作电压		1.8	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	必须与 DVCC ⁽²⁾ 相同	1.8	5.5	V
P _D	功率耗散 T₄=85℃	LQFP64		455	mW
	功率耗散 T₄=85℃	LQFP48		364	mW
	功率耗散 T₄=85℃	LQFP32		357	mW
	功率耗散 T₄=85℃	TSSOP28		283	mW
T _A	环境温度	最大功率消耗	-40	85	°C
		低功率消耗(3)	-40	105	°C
Тэ	结温度范围		-40	105	°C

- 1. 当使用 ADC 时,参见 ADC 电气参数。
- 2. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间,DVCC 和 AVCC 之间最多允许有 300mV 的 差别。
- 3. 在较低的功率耗散的状态下,只要 T_{3} 不超过 T_{3max} , T_{A} 可以扩展到这个范围。

7.3.2 上电和掉电时的工作条件

表 7-5 上电和掉电的工作条件

符号	参数	条件	最小值	最大值	单位
t _{Vcc}	VCC 上升速率		0	8	μs/V
t _{Vcc}	VCC 下降速率		10	8	μs/V

7.3.3内嵌复位和 LVD 模块特性

图 7-1 POR/Brown Out 示意图

表 7-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
V _{por}	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 7-7 LVD 模块特性

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000	1.7	1.8	1.9	V
		LVD_CR.VTDS=0001	1.8	1.9	2.0	
		LVD_CR.VTDS=0010	1.9	2.0	2.1	
		LVD_CR.VTDS=0011	2.0	2.1	2.2	
		LVD_CR.VTDS=0100	2.1	2.2	2.3	
		LVD_CR.VTDS=0101	2.2	2.3	2.4	
		LVD_CR.VTDS=0110	2.3	2.4	2.5	
		LVD_CR.VTDS=0111	2.4	2.5	2.6	
		LVD_CR.VTDS=1000	2.5	2.6	2.7	
		LVD_CR.VTDS=1001	2.6	2.7	2.8	
		LVD_CR.VTDS=1010	2.7	2.8	2.9	
		LVD_CR.VTDS=1011	2.8	2.9	3.0	
		LVD_CR.VTDS=1100	2.9	3.0	3.1	
		LVD_CR.VTDS=1101	3.0	3.1	3.2	
		LVD_CR.VTDS=1110	3.1	3.2	3.3	
		LVD_CR.VTDS=1111	3.2	3.3	3.4	
Icomp	功耗			0.12		μΑ
Tresponse	响应时间			80		μs
Tsetup	建立时间			400		μs
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		μs
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		

7.3.4内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V_{REF25}	Internal 2.5V Reference	常温 25°C 3.3V	2.475	2.5	2.525	V
V REF25	Voltage	市価 23 C 3.3V	2.475	2.5	2.525	V
V_{REF25}	Internal 2.5V Reference	-40~85°C 2.8~5.5V	2.463	2.5	2.525	V [1]
V REF25	Voltage	-40%65 C 2.8%5.5V	2.403	2.5	2.323	A r-3
V	Internal 1.5V Reference	常温 25°C 3.3V	1.485	1.5	1.515	V
V _{REF15}	Voltage	市価 23 C 3.3V	1.465	1.5	1.515	V
V _{REF15}	Internal 1.5V Reference	-40~85°C 1.8~5.5V	1.477	1.5	1.519	V [1]
V REF15	Voltage	-40%65 C 1.8%5.5V				V :-3
_	Internal 2.5V 1.5V	-40 ~ 85°C			120	nnm / ° C
T _{Coeff}	temperature coefficient	-40 ~ 65 C			120	ppm/°C

^{1.} 数据基于考核结果,不在生产中测试。

7.3.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、 产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS (无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 f_{HCLK} 的频率 (0~24MHz 时为 0 个等待周期,24~48MHz 时为 1 个等待周期)。
- 当开启外设时: f_{PCLK0} = f_{HCLK}, f_{PCLK1} = f_{HCLK}。

表 7-8 工作电流特性

Symbol	Parameter		Conditions		Typ ⁽¹⁾	Max ⁽²⁾	Unit
				4M	655		
			RCH	8M	1290		
	All		clock	16M	2470		
	peripherals	V _{CAP} =1.5V	source	22.12M	3500		
	clock ON,	Vcc=3.3V		24M	3790		μΑ
	Run while(1)	T _A =2xC	PLL RCH4M	32M	5090		
	in RAM		to xxM				
_			clock	48M	7580		
I _{DD} (Run in			source				
RAM)				4M	270		
KAM)			RCH	8M	510		
	All		clock	16M	950		
	peripherals	V _{CAP} =1.5V	source	22.12M	1320		
	clock OFF,	Vcc=3.3V		24M	1420		μΑ
	Run while(1)	T _A =2xC	PLL RCH4M	32M	1980		
	in RAM		to xxM				
			clock	48M	2920		
			source				
				4M	735		
	A 7 7		RCH	8M	1415		
I _{DD}	All	\ _1 F\	clock	16M	2643		
(Run	peripherals	V _{CAP} =1.5V	source	22.12M	3573		^
CoreMark	clock OFF, Run CoreMark	$V_{CC}=3.3V$ $T_A=2\times C$		24M	3808		μΑ
)	in Flash	IA-ZXC	DI DOUAN	48M			
	iii i casii		PLL RCH4M to xxM	FlashWa	5815		
			LO XXM	it=1			

Symbol	Parameter		Conditions		Typ ⁽¹⁾	Max ⁽²⁾	Unit
		V _{CAP} =1.5V		4M	1000	1300	
		Vcc=1.8-	RCH	8M	1910	2420	
		5.5V	clock	16M	3650	4590	μΑ
		T _A =N40C-	source	22.12M	5080	6330	
		85C		24M	5440	6820	
				16M	3960	4850	
				24M	5700	7000	
				32M			
	V ₀ 5	V _{CAP} =1.5V	DLI DCUAM	FlashWa	6600	7480	
		Vcc=1.8-	PLL RCH4M	it=1			
		5.5V	to xxM clock	40M			μΑ
		T _A =N40C-	source	FlashWa	8140	9190	
	peripherals	85C	Source	it=1			
	clock ON,			48M			
Run while(1)			FlashWa	9550	10860		
	in Flash			it=1			
				16M	4030	4940	
I _{DD}	and			24M	5780	7060	
(Run				32M			
mode)		V _{CAP} =1.5V	PLL RCH8M	FlashWa	6670	7560	
		Vcc=1.8- 5.5V	to xxM	it=1			
				40M			μΑ
		T _A =N40C-	source	FlashWa	8240	9340	
		85C	30di Ce	it=1			
				48M			
				FlashWa	9630	10970	
				it=1			
		V _{CAP} =1.5V		4M	610	875	
		Vcc=1.8-	RCH	8M	1330	1570	
	All	5.5V	clock	16M	2110	2900	μΑ
peripher		T _A =N40C-	source	22.12M	2860	3860	
		85C		24M	3060	4120	
	clock OFF, Run while(1)	V _{CAP} =1.5V	PLL RCH4M	16M	2360	3110	
in Flash	V _{CC} =1.8-	to xxM	24M	3360	4330		
		5.5V	clock	32M			μΑ
		T _A =N40C-	source	FlashWa	3490	4010	
		85C	3001 00	it=1			

Symbol	Parameter		Conditions		Тур ⁽¹⁾	Max ⁽²⁾	Unit
				40M FlashWa it=1	4240	4890	
				48M FlashWa it=1	4910	5720	
				16M	2430	3190	
				24M	3420	4405	
		V _{CAP} =1.5V V _{CC} =1.8- 5.5V T _A =N40C- 85C	P=1.5V =1.8- 5V =N40C- C PLL RCH8M i 4 clock F source i 4	32M FlashWa it=1	3560	4090	
				40M FlashWa it=1	4320	4960	μΑ
				48M FlashWa it=1	4980	5760	
		V _{CAP} =1.5V		4M	545	625	
		Vcc=1.8-	RCH	8M	1060	1200	
		5.5V	clock	16M	2030	2290	μΑ
		T _A =N40C-	source	22.12M	2870	3230	
		85C		24M	3100	3470	
				16M	2280	2560	
				24M	3350	3745	
I _{DD}	All	V _{CAP} =1.5V V _{CC} =1.8-	PLL RCH4M	32M FlashWa it=1	4190	4690	
(Sleep mode)	peripherals clock ON	5.5V T _A =N40C- 85C	to xxM clock source	40M FlashWa it=1	5210	5830	μΑ
				48M FlashWa it=1	6210	6935	
		V _{CAP} =1.5V	DII DOUGH	16M	2340	2625	
		Vcc=1.8-	PLL RCH8M	24M	3410	3810	
		5.5V T _A =N40C-	to xxM clock	32M FlashWa it=1	4260	4760	μΑ

Symbol	Parameter		Conditions		Typ ⁽¹⁾	Max ⁽²⁾	Unit
				40M FlashWa it=1	5290	5900	
				48M FlashWa it=1	6290	7020	
		V _{CAP} =1.5V		4M	155	190	
		V _{CC} =1.8-	RCH	8M	280	338	
		5.5V	clock	16M	500	586	μΑ
		T _A =N40C-	source	22.12M	680	800	•
		85C		24M	735	855	
				16M	715	820	
				24M	1005	1150	
				32M			
	V _{cc} =1.8- 5.5V	V _{CAP} =1.5V V _{CC} =1.8-	The second of th	FlashWa it=1	1060	1210	
		T _A =N40C-		40M FlashWa it=1	1290	1470	μΑ
	peripherals clock OFF			48M FlashWa it=1	1520	1730	
				16M	775	888	
				24M	1060	1210	
		V _{CAP} =1.5V V _{CC} =1.8-	PLL RCH8M	32M FlashWa it=1	1120	1280	
		5.5V T _A =N40C- 85C	to xxM clock source	40M FlashWa it=1	1345	1530	μΑ
				48M FlashWa it=1	1580	1800	
т	All peripherals	V _{CAP} =1.5V	XTL32K	T _A =N40- 25C	10.3	15.5	
I _{DD} (LP Run)	clock ON,	V _{CC} =1.8-	clock	T _A =50C	11	15.5	μΑ
(LF KUII)	Run while(1)	5.5V	source	T _A =85C	14.3	20	
	in Flash		D. 1.VC1 -0X0	T _A =105C	20.3	28	

Symbol	Parameter		Conditions		Typ ⁽¹⁾	Max ⁽²⁾	Unit
	All peripherals	V _{CAP} =1.5V	XTL32K clock	T _A =N40- 25C	7.1	12	
	clock OFF,	Vcc=1.8-	source	T _A =50C	7.7	12	μΑ
	Run while(1) in Flash	5.5V	Driver=0x0	T _A =85C	11	16	
	All peripherals clock ON	V _{CAP} =1.5V V _{CC} =1.8-	XTL32K clock	T _A =N40- 25C	5.6	6.2	μΑ
		5.5V	source	T _A =50C	6	6.8	μΑ
		3.34	Driver=0x0	T _A =85C	9.2	11	
I _{DD} (LP	All	V _{CAP} =1.5V V _{CC} =1.8-	XTL32K clock	T _A =N40- 25C	2.4	2.7	
Sleep)	peripherals clock OFF	5.5V	source	T _A =50C	2.8	3.3	μΑ
3 teep)	CLOCK OFF	3.30	Driver=0x0	T _A =85C	6	7.7	
LpTimer+RTC+ 32K clk ON,	V _{CAP} =1.5V V _{CC} =1.8-	XTL32K clock	T _A =N40- 25C	2.5	2.8	μΑ	
	Other clk	5.5V	source	T _A =50C	3	3.5	μΛ
	OFF	3.30	Driver=0x0	T _A =85C	6.1	7.8	
		V _{CAP} =1.5V	XTL32K	T _A =N40- 25C	930	1110	
		V _{cc} =1.8-	Driver=0x0	T _A =50C	1290	1610	nA
		5.50		T _A =85C	3600	4700	
	LPT+XTL32K +DeepSleep	V _{CAP} =1.5V	XTL32K	T _A =N40- 25C	825	1000	^
		V _{cc} =1.8- 5.5V	Driver=0x0	T _A =50C	1195	1500	nA
		3.30		T _A =85C	3490	4540	
I _{DD}	RTC+XTL32K	V _{CAP} =1.5V	XTL32K	T _A =N40- 25C	800	970	
(DeepSle	+DeepSleep	V _{cc} =1.8-	Driver=0x0	T _A =50C	1165	1470	nA
ep mode)		5.5V		T _A =85C	3460	4480	
	XTL32K	V _{CAP=} 1.5V	XTL32K	T _A =N40- 25C	790	970	
	+DeepSleep	V _{cc} =1.8-	Driver=0x0	T _A =50C	1155	1450	nA
		5.5V		T _A =85C	3450	4530	
	IRC32K	V _{CAP} =1.5V V _{CC} =1.8- 5.5V		T _A =N40- 25C	745	888	A
	+DeepSleep			T _A =50C	1110	1370	nA
	, see po coop			T _A =85C	3400	4420	

Symbol	Parameter		Conditions		Typ ⁽¹⁾	Max ⁽²⁾	Unit
	WDT	V _{CAP} =1.5V V _{CC} =1.8-	V _{CAP} =1.5V 25C	T _A =N40- 25C	515	650	nA
	+DeepSleep	5.5V		T _A =50C	865	1130	117.
		3.30	34	T _A =85C	3130	4110	
	DoorCloop	V _{CAP} =1.5V V _{CC} =1.8-		T _A =N40- 25C	420	550	A
	DeepSleep	5.5V		T _A =50C	770	1020	nA
		3.3V		T _A =85C	3050	4040	

- 1. 若没有其他指定条件,该 Typ 的值是在 25° C & V_{cc} = 3.3V 测得。
- 2. 若没有其他指定条件,该 Max 的值是 V_{CC} = 1.8−5.5 & Temperature = N40 − 85°C范围内的最大 值。
- 3. 数据基于考核结果,不在生产中测试。

7.3.6从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

■ 休眠模式: 时钟源是 RCH 振荡器

■ 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
T_{wu}	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	F _{MCLK} = 4MHz		9.0		μs
		F _{MCLK} = 8MHz		6.0		μs
		F _{MCLK} = 16MHz		5.0		μs
		F _{MCLK} = 24MHz		4.0		μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

7.3.7外部时钟源特性

7.3.7.1 外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
$f_{\text{XTH_ext}}$	用户外部时钟频率(1)		0	8	32	MHz
V_{XTHH}	输入引脚高电平电压		0.7VCC		VCC	V
V_{XTHL}	输入引脚低电平电压		VSS		0.3VCC	V
T _{r(XTH)}	上升的时间 ⁽¹⁾				20	ns
$T_{f(XTH)}$	下降的时间(1)				20	ns
$T_{w(XTH)}$	输入高或低的时间 ⁽¹⁾		16			ns
$C_{in(XTH)}$	输入容抗 ⁽¹⁾			5		pF
Duty	占空比		40		60	%
IL	输入漏电流				±1	μΑ

^{1.} 由设计保证,不在生产中测试。

7.3.7.2 外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
f_{XTL_ext}	用户外部时钟频率(1)		0	32.768	1000	kHz
V_{XTLH}	输入引脚高电平电压		0.7VCC		vcc	٧
V_{XTLL}	输入引脚低电平电压		VSS		0.3VCC	٧
T _{r(XTL)}	上升的时间(1)				50	ns
$T_{f(XTL)}$	下降的时间(1)				50	ns
$T_{w(XTL)}$	输入高或低的时间(1)		450			ns
$C_{in(XTL)}$	输入容抗(1)			5		pF
Duty	占空比		30	_	70	%
IL	输入漏电流				±1	μΑ

^{1.} 由设计保证,不在生产中测试。

7.3.7.3 高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
F _{CLK}	振荡频率		4		32	MHz
ESR _{CLK}	支持的晶振 ESR 范围	32M		30	60	Ohm
		4M		400	1500	Ohm
C _{LX} (3)	负载电容	按晶体制造商要求进行配置。				
Duty	占空比		40	50	60	%
Idd ⁽⁴⁾		32M Xtal, CL=12pF,		600		μΑ
100(1)	电流	ESR=30ohm				
gm	跨导	起振	700			μA/V
T _{start} (5)	启动时间	32MHz		300		μs
		@ XTH_CR.Driver=1111				
		4MHz		2		ms
		@ XTH_CR.Driver=0011				

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. C_{LX} 指 XTAL 的两个管脚的负载电容,用户**必须**按晶体制造商的要求选择该电容的容值。

如果晶体制造商给出了负载电容的容值,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了匹配电容的容值,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为 8pF 时,匹配电容的容值应为 16pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 15pF 或 12pF 的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 4. 电流跟随频率变化而变化,测试条件: XTH_CR.Driver=1110
- 5. T_{start}是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。这个数值是在 XTH_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变 化较大。

注意:

- 晶体的匹配电容**必须**按照晶体制造商的技术手册的要求进行配置。 如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。 如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。
- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

7.3.7.4 低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个32.768kHz的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
Fclk	振荡频率			32.768		kHz
ESR _{CLK}	支持的晶振 ESR 范围			65	85	kΩ
C _{LX} (2)	负载电容	按晶体制造商要求进行配置。				
DC _{ACLK}	占空比		30	50	70	%
Idd ⁽³⁾	电流	ESR= 65 kΩ		350	1000	nA
		C _L =12 pF				
gm	跨导	起振	2.5			μA/V
T _{start}	启动时间	ESR=65 kΩ		500		ms
		C _L =12 pF				
		40% - 60% duty cycle				
		has				
		been reached				

- 1. 由综合评估得出,不在生产中测试。
- 2. CLx 指 XTAL 的两个管脚的负载电容,用户必须按晶体制造商的要求选择该电容的容值。

如果晶体制造商给出了负载电容的容值,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为 8pF 时,匹配电容的容值应为 16pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 15pF 或 12pF 的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 3. 典型值为 XTL_CR.Driver=1001 时的功耗。选择具有较小 ESR 值的高质量振荡器(如 MSIV-TIN32.768kHz),可以通过减小 XTL_CR.Driver设置值以优化电流消耗。
- 4. Tstart 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在 XTL_CR.Driver=1001 和 XTL_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能 因晶体制造商和型号的不同而变化较大。

注意:

- 晶体的匹配电容**必须**按照晶体制造商的技术手册的要求进行配置。 如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。 如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。
- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

7.3.8内部时钟源特性

7.3.8.1 内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH 振荡器精度	User trimming step		0.25		%
		for given VCC and T_A				
		conditions				
		VCC = 1.8 ~ 5.5V	-3.5		+3.5	%
		T _{AMB} = -40 ~ 85°C				
		VCC = 1.8 ~ 5.5V	-2.0		+2.0	%
		T _{AMB} = -20 ~ 50°C				
Fclk	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
Ick	功耗	F _{MCLK} = 4MHz		80		μΑ
		F _{MCLK} = 8MHz		100		μΑ
		FMCLK = 16MHz		120		μΑ
		F _{MCLK} = 24MHz		140		μΑ
DC _{CLK}	占空比(1)		45	50	55	%

^{1.} 由综合评估得出,不在生产中测试。

7.3.8.2 内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCL 振荡器精度	User trimming step		0.5		%
		for given VCC and $T_{\scriptscriptstyle A}$				
		conditions				
		VCC = 1.8 ~ 5.5V	-5		+5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		VCC = 1.8 ~ 5.5V	-3		+3	%
		T _{AMB} = -20 ~ 50°C				
Fclk	振荡频率			38.4		kHz
				32.768		
Тськ	启动时间			150		μs
DC _{CLK}	占空比(1)		25	50	75	%
I _{CLK}	功耗			0.35		μΑ

1. 由综合评估得出,不在生产中测试。

7.3.8.3 内部低速时钟 10k 振荡器

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Operation voltage	1	1.8		5.5	٧
Davi		VCC = 1.8 ~ 5.5V	F0		50	0/
Dev	旅冰奋科及 (**)	$T_{AMB} = -20 \sim 50^{\circ}C$	-50	_		%
F	作体本	VCC=3.3v		10		VII-
F _{CLK}	振荡频率	T _{AMB} = 25°C		10		KHz

1. 由综合评估得出,不在生产中测试。

7.3.9 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
Fin ⁽¹⁾	输入时钟		4	4	24	MHz
	输入时钟占空比		40		60	%
Fout	输出频率		8	_	48	MHz
Duty ⁽¹⁾	输出占空比		48%	_	52%	
Tlock ⁽¹⁾	锁定时间	输入频率 4MHz	_	100	200	μs

1. 由综合评估得出,不在生产中测试。

7.3.10 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
EC _{Flash}	擦写次数	Regulator	20			kcycles
		voltage=1.5V,				
		T _{AMB} = 25°C				
RET_{Flash}	数据保存期限	T _{AMB} = 85°C,	20			Years
		after 20 kcycles				
T _{b_prog}	编程时间(字节)		22		30	μs
T _{w_prog}	编程时间(字)		40		52	μs
T _{p_erase}	页擦除时间		4		5	ms
T _{m_erase}	整片擦除时间		30		40	ms

7.3.11 EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO (IEC61000-4-4)	Class:4A
EFT to Power (IEC61000-4-4)	Class:2A (4B)

软件建议

软件的流程中必须包含应对程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等)

在进行 EFT 测试时,可以把超出应用要求的干扰直接施加在芯片电源或 IO 上,当检测到意外动作的地方,软件部分进行加强以防止发生不可恢复的错误。

7.3.12 ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESDHBM	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device			1		KV
	Mode					
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			100		mA

7.3.13 I/0 端口特性

7.3.13.1 输出特性——端口

表 7-9 端口输出特性

符号	参数	条件	最小值	最大值	单位
V _{он}	High level output	Sourcing 5 mA, VCC = 3.3 V	VCC-0.25		V
	voltage	(see Note 1)			
	Source Current	Sourcing10 mA, VCC = 3.3 V	VCC-0.6		V
		(see Note 2)			
V_{OL}	Low level output	Sinking 6 mA, VCC = 3.3 V		VSS+0.25	V
	voltage	(see Note 1)			
	Sink Current	Sinking 15 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			
V _{OHD}	High level output	Sourcing10 mA, VCC = 3.3 V	VCC-0.25		V
	voltage	(see Note 1)			
	Double source	Sourcing 20 mA, VCC = 3.3V	VCC-0.6		V
	Current	(see Note 2)			
V_{OLD}	Low level output	Sinking 10 mA, VCC = 3.3 V		VSS+0.25	V
	voltage	(see Note 1)			
	Double Sink	Sinking 20 mA, VCC = 3.3 V		VSS+0.6	V
	Current	(see Note 2)			

- NOTES:1. The maximum total current, $I_{OH}(max)$ and $I_{OL}(max)$, for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.
 - 2. The maximum total current, $I_{OH}(max)$ and $I_{OL}(max)$, for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.

图 7-2 输出端口 VOH/VOL 实测曲线

7.3.13.2 输入特性——端口 PA,PB,PC,PD

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	Positive-going	VCC=1.8V	0.7VCC			V
	input	VCC=3.3V	0.7VCC			٧
	threshold voltage	VCC=5.5V	0.7VCC			٧
V _{IL}	Negative-going	VCC=1.8V			0.3VCC	V
	input	VCC=3.3V			0.3VCC	V
	threshold voltage	VCC=5.5V			0.3VCC	V
V _{hys(1)}	Input voltage	VCC=1.8V		0.3		V
	hysteresis	VCC=3.3V		0.4		V
	(V _{IH} - V _{IL})	VCC=5.5V		0.6		V
R _{pullhigh}	Pullup resistor	Pullup		80		kΩ
		enabled				
		VCC=3.3V				
R _{pulllow}	Pulldown resistor	Pulldown		40		kΩ
		enabled				
		VCC=3.3V				
Cinput	Input capacitance			5		pf

^{1.} 由综合评估得出,不在生产中测试。

7.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock

符号	参数	条件	最小值	典型值	最大值	单位
t(int)	External	External trigger	1.8V	30		ns
	interrupt	signal for the	3.3V	30		ns
	timing	interrupt flag (see	5.5V	30		ns
		Note 1)				
t(cap)	Timer capture	Timer4/5/6 capture	1.8V	0.5		μs
	timing	pulse width	3.3V	0.5		μs
		Fsystem = 4MHz	5.5V	0.5		μs
t(clk)	Timer clock	Timer0/1/2/4/5/6	1.8V		PCLK/2	MHz
	frequency	external clock input	3.3V		PCLK/2	MHz
	applied to pin	Fsystem = 4MHz	5 . 5V		PCLK/2	MHz
t(pca) ⁽²⁾	PCA clock	PCA external clock	1.8V		PCLK/8	MHz
	frequency	input	3.3V		PCLK/8	MHz
	applied to pin	Fsystem = 4MHz	5.5V		PCLK/8	MHz

NOTES: 1.The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

2.由综合评估得出,不在生产中测试。

7.3.13.4 端口漏电特性——PA,PB,PC,PD

符号	参数	条件	最小值	典型值	最大值	单位
I _{lkg(Px.y)}	Leakage current	$V_{(Px.y)}$ (see Note 1,2)		±50		nA

NOTES:1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

2. The port pin must be selected as input.

7.3.14 RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL(RESETB)} (1)	输入低电平电压		-0.3		0.3VCC	V
V _{IH(RESETB)}	输入高电平电压		0.7VCC		VCC+0.3	٧
$V_{\text{hys}(\text{RESETB})}$	施密特触发器电压迟滞			200		mV
R _{PU}	弱上拉等效电阻	$V_{IN} = V_{SS}$		80		ΚΩ
V _{F(RESETB)} (1)	输入滤波脉冲				100	ns
V _{NF(RESETB)} (1)	输入非滤波脉冲		300			ns

1. 由设计保证,不在生产中测试。

7.3.15 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		Vadcrefin	V
	Input range of					
V_{ADCREFIN}	external	Single ended	0		AVCC	V
	reference voltage					
DEV _{AVCC/3}	AVCC/3 精度			3		%
	Active current					
I _{ADC1}	including reference	200Ksps		2		mA
I ADCI	generator and	2001(3)23				
	buffer					
	Active current					
I_{ADC2}	without reference	1Msps		0.5		mA
-ADC2	generator and	\$:
	buffer					
C _{ADCIN}	ADC input			16	19.2	pF
	capacitance					<u> </u>
R _{ADC} ⁽¹⁾	ADC sampling switch			1.5		ΚΩ
	impedance					
R _{AIN} (1)	ADC external input				100	ΚΩ
_	resistor ⁽²⁾					
FADCCLK	ADC clock Frequency				24M	Hz
	Startup time of					
TADCSTART	reference			30		μs
	generator and ADC					
	core		20	2.4	20	-
T _{ADCCONV}	Conversion time	111 01/00 2 71/	20	24	28	cycles
		1Msps@VCC>=2.7V				
		500Ksps@VCC>=2.4V		10.3		Bit
		200Ksps@VCC>=1.8V REF=EXREF				
		1Msps@VCC>=2.7V				
		500Ksps@VCC>=2.4V				
ENOB	Effective Bits	200Ksps@VCC>=1.8V		10.3		Bit
		REF=VCC				
		200Ksps@VCC>=1.8V				
		REF=internal 1.5V		9.4		Bit
		200Ksps@VCC>=2.8V				
		REF=internal 2.5V		9.4		Bit

符号	参数	条件	最小值	典型值	最大值	单位
SNR		1Msps@VCC>=2.7V		68.2		dB
		500Ksps@VCC>=2.4V				
		200Ksps@VCC>=1.8V				
		REF=EXREF				
		1Msps@VCC>=2.7V				
	Signal to Noise	500Ksps@VCC>=2.4V				dB
	Ratio	200Ksps@VCC>=1.8V		68.2		
		REF=VCC		60		
		200Ksps@VCC>=1.8V				dB
		REF=internal 1.5V				ав
		200Ksps@VCC>=2.8V		60		dB
		REF=internal 2.5V				
DNL ⁽¹⁾	Differential non-	200KSps;	-1		1	LSB
	linearity	VREF=EXREF/AVCC				
INL ⁽¹⁾	Integral non-	200KSps;	-3		3	LSB
	linearity	VREF=EXREF/AVCC				
Eo	Offset error			0		LSB
Eg	Gain error			0		LSB

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表:

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC_CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	М
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R_{AIN} (k Ω)	F _{ADC} (kHz)
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

7.3.16 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode		0		VCC-	V
	range				0.2	
Voffset	Input offset	常温 25°C 3.3V	-10		+10	mV
Icomp	Comparator's	VCx_BIAS_SEL=00		0.3		μΑ
	current	VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's	VCx_BIAS_SEL=00		20		μs
	response time when	VCx_BIAS_SEL=01		5		
	one input cross	VCx_BIAS_SEL=10		1		
	another	VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup	VCx_BIAS_SEL=00		20		μs
	time when ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals	VCx_BIAS_SEL=10		1		
	unchanged.	VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap			20		μs
	enable to Temp					
	sensor voltage、ADC					
	internal 1.5V、2.5V					
	reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		μs
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

7.3.17 OPA 特性

OPA: $(AVCC=2.2V \sim 5.5 V, AVSS=0 V, Ta=- 40^{\circ}C \sim +85^{\circ}C)$

符号	参数	条件	最小值	典型值	最大值	单位
Vi	输入电压		0	_	AVCC	V
Vo	输出电压(1)		0.1	_	AVCC-0.1	V
Io	输出电流(1)				0.5	mA
RL	负载电阻(1)		10K			Ω
Tstart	初始化时间(2)				20	μs
Vio	输入失调电压	Vic=AVCC/2, Vo=AVCC/2, RL=10kΩ, Rs=50Ω		±6		mV
PM	相位范围(1)	RL=10kΩ, CL=20pF		65	_	deg
GM	增益范围(2)	RL=10kΩ, CL=20pF		15	_	dB
UGBW	单位增益带宽(1)	CL=20pF		2.5		MHz
SR	压摆率(1)	CL=15pF		2.6		V/µs
CMRR	共模抑制比(1)			70		dB

- 1. 由设计保证,不在生产中测试。
- 2. 需要同时设置 BGR_CR<0>=1

7.3.18 LCD 控制器

符号	参数	工作条件	最小	典型	最大	单位
		VCC=3.3V,外部电容模式		0.2		μΑ
I _{LCD}	工作电流	VCC=3.3V,外部电阻模式		0.2		μΑ
		VCC=3.3V,内部电阻模式		3.3		μΑ
RH	低驱动电阻			1M		Ω
RL	高驱动电阻			360K		Ω
VLCDH	LCD 可调最高电压				VCC	٧
VLCD3	LCD 最高电压				VLCDH	٧
VLCD2	LCD 2/3 电压				2/3 VLCDH	V
VLCD1	LCD 1/3 电压				1/3 VLCDH	٧
VLCD0	LCD 最低电压		0			V
$\triangle V_{XX}$	LCD 电压偏差	TA=-40~85°C			±50	mV

7.3.19 TIM 定时器特性

有关输入输出复用功能引脚(输出比较、输入捕获、外部时钟、PWM 输出)的特性详情,参见下表。

表 7-10 高级定时器(ADVTIM)特性

符号	参数	条件	最小值	最大值	单位
_	中央八地 时间		1		t _{TIMCLK}
t _{res}	定时器分辨时间	f _{TIMCLK} =48MHz	20.8		ns
ے	ᄼᆝᇫᅕᄭᇚᆉᅌᅭᆄᇗᅕᆇ		0	f _{TIMCLK/2}	MHz
f _{ext}	外部时钟频率	f _{TIMCLK} =48MHz	0	24	MHz
Res _{Tim}	定时器分辨率			16	位
_	选择内部时钟时,16 位计数器		1	65536	t _{TIMCLK}
$T_{counter}$	时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	μs
T _{MAX_} COUNT	里 十可能让***			67108864	t _{TIMCLK}
	最大可能计数	f _{TIMCLK} =48MHz		1.4	s

1. 由设计保证,不在生产中测试。

表 7-11 通用定时器特性

符号	参数	条件	最小值	最大值	单位
_	中叶四八种叶河		1		t _{TIMCLK}
tres	定时器分辨时间	f _{TIMCLK} =48MHz	20.8		ns
ے	ΔL 文ΠΠ→5-Lu-X-S to		0	f _{TIMCLK/2}	MHz
f _{ext}	外部时钟频率	f _{TIMCLK} =48MHz	0	24	MHz
Dag	定时器分辨率			16	位
Res _{Tim}		模式 0 自由计数		32	位
_	选择内部时钟时,16 位计数器		1	65536	t _{TIMCLK}
T _{counter}	时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	μs
+	B.七寸牝斗粉 / 香井掛子)			16777216	t _{TIMCLK}
T _{MAX_COUNT}	最大可能计数 (重载模式)	f _{TIMCLK} =48MHz		349.5	ms

1. 由设计保证,不在生产中测试。

表 7-12 PCA 特性

符号	参数	条件	最小值	最大值	单位
_	定时器分辨时间		1		t _{TIMCLK}
t _{res}	处则备刀辨则间 	f _{TIMCLK} =48MHz	20.8		ns
f _{ext}	外部时钟频率		0	f _{TIMCLK/2}	MHz
lext	外部的钾测 率 	f _{TIMCLK} =48MHz	0	24	MHz
Res _{Tim}	定时器分辨率			16	位
_	选择内部时钟时,16 位计数器		1	65536	t _{TIMCLK}
T _{counter}	时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	μs
TMAX_COUNT	里 上可能让***			2097152	t _{TIMCLK}
	最大可能计数	f _{TIMCLK} =48MHz		43.69	ms

1. 由设计保证,不在生产中测试。

表 7-13 低功耗定时器特性

符号	参数	条件	最小值	最大值	单位
_	中央八地 时间		1		t _{TIMCLK}
t _{res}	定时器分辨时间	f _{TIMCLK} =48MHz	20.8		ns
ے	ᄼᆝᇫᅕᄭᄗᆉᅌᅭᆄᇗᅕᆇ		0	f _{TIMCLK/2}	MHz
f _{ext}	外部时钟频率	f _{TIMCLK} =48MHz	0	24	MHz
Res _{Tim}	定时器分辨率			16	位
_	选择内部时钟时,16 位计数器		1	65536	t _{TIMCLK}
T _{counter}	时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	μs
T _{MAX_} COUNT	里 十可张江***			65536	t _{TIMCLK}
	最大可能计数	f _{TIMCLK} =48MHz		1.37	ms

1. 由设计保证,不在生产中测试。

表 7-14 WDT 特性

符号	参数	条件	最小值	最大值	单位
tres	WDT 溢出时间	f _{wdtclk} =10kHz	1.6	52000	ms

1. 由设计保证,不在生产中测试。

7.3.20 通信接口

7.3.20.1 I2C 特性

I2C 接口特性如下表:

表 7-15 I2C 接口特性

符号	参数	标准模式(100K)		快速模式(400K)		高速模式(1M)		单位
াড় ড	多数	最小值	最大值	最小值	最大值	最小值	最大值	半世
t _{SCLL}	SCL 时钟低时间	4.7		1.25		0.5		μs
t _{SCLH}	SCL 时钟高时间	4.0		0.6		0.26		μs
t _{SU.SDA}	SDA 建立时间	250		100		50		ns
t _{HD.SDA}	SDA 保持时间	0		0		Θ		μs
t _{HD.STA}	开始条件保持时间	2.5		0.625		0.25		μs
t _{SU.STA}	重复的开始条件建立时间	2.5		0.6		0.25		μs
t _{SU.STO}	停止条件建立时间	0.25		0.25		0.25		μs
t _{BUF}	总线空闲(停止条件至开始条件)	4.7		1.3		0.5		μs

1. 由设计保证,不在生产中测试。

图 7-3 I2C 接口时序

7.3.20.2 SPI 特性

表 7-16 SPI 接口特性

符号	参数	条件	最小值	最大值	单位
		主机模式	62.5	_	ns
t _{c(SCK)}	串行时钟的周期	从机模式 f _{PCLK} = 16MHz	250	-	ns
	中公叶钟的专中亚叶河	主机模式	0.5 × t _{c(SCK)}	-	ns
t _{w(SCKH)}	串行时钟的高电平时间 	从机模式	0.5 × t _{c(SCK)}	-	ns
		主机模式	0.5 × t _{c(SCK)}	-	ns
t _{w(SCKL)}	串行时钟的低电平时间 	从机模式	0.5 × t _{c(SCK)}	-	ns
t _{su(SSN)}	从机选择的建立时间	从机模式	0.5 × t _{c(SCK)}	-	ns
t _{h(SSN)}	从机选择的保持时间	从机模式	0.5 × t _{c(SCK)}	-	ns
t _{v(MO)}	主机数据输出的生效时间	f _{PCLK} = 32MHz	_	3	ns
t _{h(MO)}	主机数据输出的保持时间	f _{PCLK} = 32MHz	2	-	ns
t _{v(S0)}	从机数据输出的生效时间	f _{PCLK} = 16MHz	_	50	ns
t _{h(so)}	从机数据输出的保持时间	f _{PCLK} = 16MHz	30	-	ns
t _{su(MI)}	主机数据输入的建立时间		10	-	ns
t _{h(MI)}	主机数据输入的保持时间		2	_	ns
t _{su(SI)}	从机数据输入的建立时间		10	-	ns
t _{h(SI)}	从机数据输入的保持时间		2	-	ns

^{1.} 由设计保证,不在生产中测试。

SPI 接口信号的波形和时序参数如下:

图 7-4 SPI 时序图(主机模式)

图 7-5 SPI 时序图 (从机模式 cpha=0)

图 7-6 SPI 时序图 (从机模式 cpha=1)

8 封装信息

8.1 封装尺寸

LQFP64 封装

Complex 1	L	QFP64 (10x10)	ı	_QFP64 (7x7))
Symbol	Min	Nom	Max	Min	Nom	Max
А			1.60			1.60
A1	0.05		0.15	0.05		0.15
A2	1.35	1.40	1.45	1.35	1.40	1.45
А3	0.59	0.64	0.69	0.59	0.64	0.69
b	0.18		0.26	0.16		0.24
b1	0.17	0.20	0.23	0.15	0.18	0.21
С	0.13		0.17	0.13		0.17
c1	0.12	0.13	0.14	0.12	0.13	0.14
D	11.80	12.00	12.20	8.80	9.00	9.20
D1	9.90	10.00	10.10	6.90	7.00	7.10
Е	11.80	12.00	12.20	8.80	9.00	9.20
E1	9.90	10.00	10.10	6.90	7.00	7.10
еВ	11.25		11.45	8.10		8.25
е		0.50BSC			0.40BSC	
L	0.45		0.75	0.40		0.65
L1		1.00REF		1.00REF		
θ	0°		7°	0°		7°

NOTE:

- Dimensions "D1" and "E1" do not include mold flash.

LQFP48 封装

Comb a I	7x7	Millime	ter	
Symbol	Min	Nom	Max	
А			1.60	
A1	0.05		0.15	
A2	1.35	1.40	1.45	
А3	0.59	0.64	0.69	
b	0.18		0.26	
b1	0.17	0.20	0.23	
С	0.13		0.17	
c1	0.12	0.13	0.14	
D	8.80	9.00	9.20	
D1	6.90	7.00	7.10	
E	8.80	9.00	9.20	
E1	6.90	7.00	7.10	
еВ	8.10		8.25	
е		0.50BSC		
L	0.40		0.65	
L1	1.00REF			
θ	0		7°	

NOTE:

Dimensions "D1" and "E1"do not include mold flash.

QFN48 封装

TOP VIEW

Symbol .	7x	7 Millimet	er			
Symbol	Min	Nom	Max			
А	0.70	0.75	0.80			
A1	0.00	0.02	0.05			
А3		0.20REF				
b	0.20	0.25	0.30			
D	6.90	7.00	7.10			
D2	5.20	5.30	5.40			
E	6.90	7.00	7.10			
E2	5.20	5.30	5.40			
е	0.40	0.50	0.60			
K	0.35	0.45	0.55			
L	0.30	0.40	0.50			
R	0.09					

QFN32 封装

	4x4 Millimeter					
Symbol	Min	Nom	Max			
Α	0.70	0.75	0.80			
A1	0	0.02	0.05			
b	0.15	0.20	0.25			
b1	0.14REF					
С	0.18	0.20	0.25			
D	3.90	4.00	4.10			
D2	2.70	0 2.80 2.				
е	0.40BSC					
Nd	2.80BSC					
E	3.90	4.00	4.10			
E2	2.70	2.80	2.90			
Ne	2.80BSC					
L	0.25	0.30 0.35				
h	0.30	0.35	0.40			
L/F 载体						
尺寸		122*122				
(Mil)						

TSSOP28 封装

SECTION B-B

Symbol	Millimeter					
Symbot	Min	Nom	Max			
А			1.20			
A1	0.05		0.15			
A2	0.80		1.00			
А3	0.39	0.44	0.49			
b	0.20		0.28			
b1	0.19	0.22	0.25			
С	0.13		0.17			
c1	0.12 0.13		0.14			
D	9.60 9.70		9.80			
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
е	0.65BSC					
L	0.45 0.60 0.75		0.75			
L1	1.00BSC					
θ	0		8°			

NOTE:

Dimensions "D" and "E1"do not include mold flash.

8.2 焊盘示意图

LQFP64 封装 (10mm x 10mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP64 封装 (7mm x 7mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP48 封装 (7mm x 7mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

QFN48 封装 (7mm x 7mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

QFN32 封装 (4mm x 4mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

TSSOP28

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

8.3 丝印说明

以下给出各封装正面丝印的 Pin 1位置和信息说明。

LQFP64 封装(10mm x 10mm) / LQFP64 封装(7mm x 7mm)

LQFP48 封装 (7mm x 7mm)

QFN48 封装 (7mm x 7mm)

QFN32 封装 (4mm x 4mm)

TSSOP28

注意:

- 上图空白框表示与生产相关的可选标记,本节不作说明。

8.4 封装热阻系数

封装芯片在指定工作环境温度下工作时,芯片表面的结温 T_i ($^{\circ}$ C) 可以按照下面的公式计算:

$$T_i = T_{amb} + (P_D \times \theta_{JA})$$

- T_{amb}是指封装芯片工作时的工作环境温度,单位是°C;
- θ_{JA} 是指封装对工作环境的热阻系数,单位是 $^{\circ}$ C/W;
- P_D 等于芯片的内部功耗和 I/O 功耗之和,单位是 W。芯片的内部功耗是产品的 I_{DD} \times V_{DD} ,I/O 功耗指的是指芯片工作时 I/O 引脚产生的功耗,通常该部分值很小,可以忽略。

芯片在指定工作环境温度下工作时芯片表面的结温 T_j,不可以超出芯片可容许的最大结温度 T_J。

表 8-1 各封装热阻系数表

Package Type and Size	Thermal Resistance Junction-ambient Value (θ _{JA})	Unit
LQFP64 10mm x 10mm / 0.5mm pitch	65 +/- 10%	°C/W
LQFP64 7mm x 7mm / 0.4mm pitch	75 +/- 10%	°C/W
LQFP48 7mm x 7mm / 0.5mm pitch	75 +/- 10%	°C/W
QFN48 7mm x 7mm / 0.5mm pitch	30 +/- 10%	°C/W
QFN32 4mm x 4mm / 0.4mm pitch	53 +/- 10%	°C/W
TSSOP28	64 +/- 10%	°C/W

9 订购信息

Part	HC32L136K8TA	HC32L136K8TA	HC32L136J8TA	HC32L130J8TA	HC32L130J8UA	HC32L130J8UA	HC32L130F8UA	HC32L130F8UA	HC32L130E8PA
Number	-LQFP64	-LQ64	-LQ48	-LQ48	-QFN48TR	-QFN48	-QFN32TR	-QFN32	-TSSOP28
Flash	64K	64K	64K	64K	64K	64K	64K	64K	64K
RAM	8K	8K	8K	8K	8K	8K	8K	8K	8K
UART	2	2	2	2	2	2	2	2	2
LPUART	2	2	2	2	2	2	1	1	1
SPI	2	2	2	2	2	2	1	1	1
I2C	2	2	2	2	2	2	2	2	2
ADC	24*12	24*12	17*12	17*12	17*12	17*12	8*12	8*12	11*12
PWM	23	23	18	18	18	18	10	10	12
VComp	2	2	2	2	2	2	2	2	2
0P	3	3	2	2	2	2	0	0	0
1/0	56	56	40	40	40	40	26	26	23
RTC	√	√	√	√	√	√	√	√	√
LVD	√	√	√	√	√	√	√	√	√
LVR	√	√	√	√	√	√	√	√	√
AES	√	√	√	√	√	√	√	√	√
LCD	4*40	4*40	4*26	-	-	-	-	-	-
Vdd	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v
Package	LQFP64(10*10)	LQFP64(7*7)	LQFP48(7*7)	LQFP48(7*7)	QFN48(7*7)	QFN48(7*7)	QFN32(4*4)	QFN32(4*4)	TSSOP28
出货形式	盘装	盘装	盘装	盘装	卷带	盘装	卷带	盘装	管状
脚间距	0.5mm	0.4mm	0.5mm	0.5mm	0.5mm	0.5mm	0.4mm	0.4mm	0.65mm

订购前,请联系销售窗口咨询最新量产信息。

版本修订记录

版本号	修订日期	修订内容	
Rev1.00	2018/08/20	初版发布。	
Rev1.10 2018/10/16		①唯一 ID 号修正为 10 字节; ②更新"产品阵容"中功能表; ③修正	
		RESETB 引脚特性参数。	
		①ADC 特性;②QFN32 封装尺寸;③增加丝印说明;④删除产品选型表,	
Rev1.20	2019/02/27	增加订购信息;⑤更新产品名称;⑥封装尺寸中增加 NOTE;⑦ESD 特性;	
		⑧存储器特性中 ECFlash 最小值。	
Rev1.30	2019/07/16	①编程模式;②ESD 特性;③订购信息;④存储器特性。	
Rev1.40 2019/12/12		①引脚配置图中 BOOT 0 脚;②模块信号说明中增加新描述;③典型应用	
NCV1.40	2013/12/12	电路图;④高速外部时钟 XTH 和低速外部时钟 XTL 中配图与注意事项。	
Rev1.50	2020/01/17	①丝印说明;②增加 QFN48 封装。	
Rev1.60	2020/03/05	简介中"编程模式"增加注意项。	
Dov1 70	2020/04/20	①ADC 特性中增加 AVCC/3 精度; ②7.3.7 中修正笔误; ③LCD 控制	
Rev1.70	2020/04/30	器中 I _{LCD} ; ④内部 RCL 振荡器中 RCL 振荡器精度。	
		①输入特性—端口 PA,PB,PC,PD中VIH最小值和VIL最大值;②	
Rev1.80	2020/07/31	增加 7.3.19 和 7.3.20; ③增加焊盘示意图和封装热阻系数; ④	
		7.3.11 等级。	
		①简介中时钟系统描述; ②7.3.8 中 RCH 振荡器精度; ③7.3.14 的	
Rev1.90	2020/09/30	V _{IL} 和 V _{IH} ;④订购信息中增加 HC32L130J8UA-QFN48TR;⑤增加 SPI	
		特性。	
		①修改声明;②I2C 特性中 t _{HD.STA} 和 t _{SU.STO} 参数;③简介中串行外设接	
Rev2.00	2021/05/31	口 SPI;④存储器特性中数据保存期限;⑤增加外部时钟源特性中 gm 参	
		数。	
Rev2.10	2022/03/09	公司 Logo 更新。	
		①1 简介中 ADC 和 VC 通道数修改、删除 1.2V 相关描述;②修改表 7-	
Rev2.11	2024/07/05	3 温度特性中储存温度范围; ③添加"7.3.8.3 内部低速时钟 10k 振	
		荡器"章节; ④删除 7.3.16 VC 特性中 1.2V 相关描述。	