LPC82X 培训资料

存储器及读写保护

MAY, 2016

内容

- 存储器映射 (Memory Map)
- 片上 FLASH 控制器
- ISP和 IAP
- ROM驱动 (ROM Driver)

存储器映射 (MEMORY MAP)

存储器映射

FLASH

- LPC824 (32K 字节)
- LPC822 (16K 字节)
- 64 Bytes 擦写

SRAM

- LPC824 (8K 字节)
- LPC822 (4K 字节)
- •调试记录缓存(MTB)
- ■只读存储器(ROM)
 - Rom driver
 - ISP/IAP
- ■异步外设总线(APB)
 - 定时器 (Timer)
 - 模拟外设(模数转换,比较器)
 - 异步传输 (SPI, I2C, UART)
- ■通用IO口和IO中断

片上 FLASH 控制器

闪存(FLASH)控制器-1

- 控制闪存 (FLASH) 访问时间
- · 当ARM时钟速度调整前,需要调整闪存访问时间
 - -ARM 速度20MHz以上,闪存访问需要2个系统时钟
 - -ARM 速度在20MHz及以下,闪存访问需要1个系统时钟
- 实例代码

```
typedef enum {
    /*!< 1 CPU clocks Flash accesses for up to 20 MHz CPU */
    FLASHTIM_20MHZ_CPU = 0,
    /*!< 2 CPU clocks Flash accesses for up to 30 MHz CPU */
    FLASHTIM_30MHZ_CPU = 1,
} FMC_FLASHTIM_T;
void Chip_FMC_SetFLASHAccess(FMC_FLASHTIM_T clks);</pre>
```

• 注意,不要在低功耗模式下调整闪存访问时间

闪存(FLASH)控制器-2

- 获得闪存(FLASH)内容签名
 - -提供16字节对齐起始闪存(FLASH)地址
 - -提供16字节对齐结束闪存(FLASH)地址,并开始计算签名
 - -等待判断签名计算完成
 - -获得32bits闪存内容签名
- •实例代码(计算从0x4000地址到0x8000地址的签名)

```
const static uint32_t FLASH SIGNATURE START ADDR = 0x1000;
const static uint32_t FLASH SIGNATURE END ADDR = 0x4000;

Chip FMC ComputeSignature(FLASH_SIGNATURE_START_ADDR,
FLASH_SIGNATURE_END_ADDR);

while(Chip FMC IsSignatureBusy());

uint32_t flash_signature = Chip FMC GetSignature(0);
```


ISP和IAP

ISP模式和ISP的通常用法-1

- 通过串口(USART)ISP命令和ISP程序完成片上闪存(FLASH) 的烧写编程
 - -ISP程序运行在ROM中
 - -进入ISP模式的方法
 - ■芯片启动时拉低管脚P0_12
 - IAP命令 "Reinvoke ISP"

- 通常用法
 - -固件烧录 (小批量),固件升级
 - -LPC82X 应用程序进入低功耗状态时,调试端口失效,无法从调试端口下载程序,而进入ISP模式可以通过调试端口下载用户程序

ISP模式和ISP的通常用法-2

- 在用户应用代码中或者用户第二级引导程序使用IAP系统函数完成片上闪存(FLASH)的烧写编程
 - -用户程序在FLASH或RAM中调用执行IAP系统函数
 - -通常用法
 - ■应用程序保存外设配置数据,校准数据到FLASH上
 - ■应用程序保存用户数据到FLASH上
 - 第二级引导程序对应用程序升级

第二级引导程序

- 为什么需要第二级引导程序?
 - -ISP 只可以完成MCU的固件升级 , 一般不能完成 外围器件的固件升级
 - -ISP 只可以通过串口0(USART0)完成片上闪存(FLASH)的烧写编程
 - -ISP的命令是有限的,有时候不能完全满足用户的功能需求
 - •加密、校验启动
 - ■故障现场分析(RAM内存导出)
 - 工厂测试

第二级引导程序(示例)

- 第二级引导程序实例完成基于I2C 总线的主机从机通信
- 第二级引导程序等待主机指令, 解析指令并处理主机指令
- 第二级引导程序响应主机启动命 令可以启动用户程序

芯片唯一ID(UID)

- UID 是芯片的唯一ID, 128bits, 每个LPC82X芯片都有不同的唯一ID, 相当于芯片的身份证
- 获得UID的方法
 - -在ISP模式下,通过ISP命令'N'
 - -通过FLASHMAGIC
 - -通过IAP系统函数

uint32_t Chip_IAP_ReadUID (uint32_t* uid);

产品型号ID (PART ID)

• LPC82X系列有以下产品型号,每个型号的PID不同

设备	16进制产品ID
LPC824M201JHI33	0x00008241
LPC822M101JHI33	0x00008221
LPC824M201JDH20	0x00008242
LPC822M101JDH20	0x00008222

- 获得产品型号ID
 - -在ISP模式下,通过ISP命令'J'
 - -通过FLASHMAGIC
 - -通过IAP系统函数

代码读取保护(CRP)-1

- 允许客户设置不同安全级别的闪存访问
- CRP模式

NO ISP	CRP1
• 禁止进入"在系统编程"(ISP)模式	 禁止调试端口(SWD) 受限的"在系统编程"(ISP)模式 ✓ RAM地址0x10000000°0x10000300禁止写入 ✓ RAM地址0x10000000°0x10000200禁止访问 ✓ 受限擦除FLASH闪存的0块 ✓ 禁止写入FLASH闪存的0块 ✓ 禁止ISP命令 "Compare" ✓ 禁止ISP命令 "Read Memory"
CRP2	CRP3
 禁止调试端口(SWD) 受限的"在系统编程"(ISP)模式 ✓ 禁止以下ISP命令 "Read Memory", "Write to RAM", "Go", "Copy RAM to flash", "Compare" ✓ 只允许ISP命令擦出所有用户闪存分区 	禁止调试端口(SWD)当用户代码存在时,禁止ISP管脚入口无法进行工厂测试

代码读取保护(CRP)-2

- CRP模式配置
 - -模式配置地址 0x000002FC

CRP 模式	配置地址(0x000002FC)的数值
Disable	0xFFFFFFF
NO ISP	0x4E697370
CRP1	0x12345678
CRP2	0x87654321
CRP3	0x43218765

- CRP 模式的改变在MCU重新上电后生效
- CRP 不影响IAP命令
- 实例代码

```
;// keil_startup_lpc82x.s
;// Code Read Protection level (CRP), 0x0000002FC
;// <0xFFFFFFFF=> Disabled
;// <0x4E697370=> NO_ISP
;// <0x12345678=> CRP1
;// <0x87654321=> CRP2
;// <0x43218765=> CRP3 (Are you sure?)
CRP Level EQU 0xFFFFFFF
```


ISP 命令-1

ISP 命令	用法	实例
解锁(FLASH擦写命令,GO命令)	U <解锁码>	解锁FLASH擦写,GO 命令 U 23130 <cr><lf></lf></cr>
设置通信串口波特率	B <波特率> <停止位>	设置波特率57600,1停止位 B 576001 <cr><lf></lf></cr>
设置回显 (ISP 回发给主机命令)	A <是否回显>	关闭回显功能 A 0 <cr><lf></lf></cr>
写RAM	W <起始地址> <字节数>	写4字节到0x10000300 RAM W 268436224 4 <cr><lf></lf></cr>
读存储器	R <地址> <字节数>	从0x10000000 RAM 读取4字节 R 268435456 4 <cr><lf></lf></cr>
闪存块写操作准备	P <块起始地址> <块结束地址>	擦出FLASH块0 P 0 0 <cr><lf></lf></cr>
拷贝RAM到FLASH	C <flash 地址=""> <ram 地址=""> <字节数></ram></flash>	从RAM地址0x10000800拷贝512字节到FLASH地址0x0 C 0 268437504 512 <cr><lf></lf></cr>
跳转	G <地址> <模式>	用于跳转到FLASH或RAM地址运行程序,地址需要4 字节对齐 G 512 T <cr><lf></lf></cr>

ISP 命令-2

ISP 命令	用法	实例
擦除FLASH块	E <块起始地址> <块结束地址>	擦除FLASH块2~3 E 2 3 <cr><lf></lf></cr>
FLASH空白检测(不适用FLASH块0)	I <块起始地址> <块结束地址>	检测FLASH块2~3是否为空白 I 2 3 <cr><lf></lf></cr>
读取芯片型号	J	
读取引导程序版本	К	获得引导程序版本号 2字节(主版本.从版本)
存储比较	M <地址1> <地址2> <字节数>	比较FLASH地址0x2000与RAM地址0x10008000 (比较4字节) M 8192 268468224 4 <cr><lf></lf></cr>
读取芯片唯一ID	N	返回128bits芯片唯一ID
读取CRC校验值	S <地址> <字节数>	读取从0x10000500地址开始4字节的CRC值 S 268436736 4 <cr><lf></lf></cr>

IAP 命令

IAP 命令	命令号	
解锁(FLASH擦写命令,GO命令)	50	参数0:起始FLASH块 ,参数1:结束FLASH块 返回值:无
拷贝RAM到FLASH	51	参数0:FLASH目标写入地址(64字节对齐) 参数1:RAM源读取地址 参数2:拷贝字节数(64 或 128 或 256 或 512 或 1024) 返回值:无
擦除FLASH块	52	参数0:起始FLASH块,参数1:结束FLASH块 返回值:无
FLASH空白检测	53	参数0:起始FLASH块,参数1:结束FLASH块 返回值0:状态码(FLASH空?非空?) 返回值1:非空白FLASH字地址
读取芯片型号	54	参数:无 返回值:芯片型 号
读取引导程序版本	55	参数:无 返回值:引导程序版本号,2字节,主版本.从版本
存储比较	56	字比较存储地址1和存储地址2 参数0:FLASH或者RAM地址1 参数1:FLASH或者RAM地址2 参数2:比较字节数,必须是4字节的整数倍
重入ISP模式	57	参数:无,返回值:无
读取芯片唯一ID	58	返回128bits芯片唯一ID 参数:无 ,返回值0~3:芯片唯一ID
擦除FLASH页	59	参数0:起始页地址 , 参数1:结束页地址

ROM驱动 (ROM DRIVER)

ROM 驱动

- 提供I2C/SPI/UART/ADC ROM 版本的驱动程序
- 提供控制功耗模式的Power 函数
- 提供有符号和无符号的整数乘法函数

Power ROM 驱动

输入参数

输入参数

void (*set_pll) (unsigned int command[], unsigned int response[])

参数0:系统PLL输入频率(单位kHz)

参数1:期望设置的系统时钟(单位kHz)

参数2:模式

参数3:系统PLL锁频超时

返回值0:错误标识

返回值1:设置的系统时钟(单位kHz)

void (*set_power) (unsigned int command[], unsigned int response[])

参数0:主时钟频率(单位mHz)

参数1:模式

参数2:系统时钟频率(单位kHz)

返回值 返回值0:错误标识

SECURE CONNECTIONS FOR A SMARTER WORLD