[==== Семинар №1: Алгебра логики. =====]

Алгебра логики - оперирует с логическими элементами, каждый из которых может принимать 1 из 2 значений: 0 (ложь - false) и 1 (истина - true).

Константы: 0, 1 (простейшие неделимые элементы)

Переменные: $x_1, x_2, x_3, a, b, ...$ (простейшие неделимые элементы)

Функции: $Fn = f(x_1, x_2, x_3, ..., x_n)$

Функции состоят из атомов, связанных между собой логическими операциями:

- 1. $y = \overline{x}$ отрицание, инверсия, логическое HE
- 2. $y = x_1 v x_2$ дизъюнкция, логическое ИЛИ
- 3. $y = x_1 \& x_2$ конъюнкция, логическое И

Эти три операции являются базовыми. Через них можно выразить любую логическую функцию.

Далее идут составные операции:

- 4. $y = x_1 \rightarrow x_2 = x_1 \vee x_2$ импликация, логическое следование
- 5. у = $(x_1 \equiv x_2) = x_1 \& x_2 \ v \ \overline{x_1} \& \overline{x_2}$ эквивалентность, тождество, логическое равенство
- 6. $y = (x_1 \oplus x_2) = \overline{x_1} \& x_2 v x_1 \& \overline{x_2}$ не эквивалентность, исключительное ИЛИ, сложение по модулю два

$$(x_1 \equiv x_2) = (\overline{x_1} \oplus x_2) = (x_1 \oplus \overline{x_2}) = \overline{(x_1 \oplus x_2)}$$
 - эти формулы часто экономят огромное количество усилий $(x_1 \oplus x_2) = (\overline{x_1} \equiv x_2) = (x_1 \equiv \overline{x_2}) = \overline{(x_1 \equiv x_2)}$ - по преобразованию через простейшие операции НЕ, ИЛИ, И

Таблицы истинности:

X1	X 2	${\mathbf{x}_{1}}$	$\overline{\mathbf{x}_2}$	X1 V X2	x ₁ & x ₂	$\begin{aligned} \mathbf{x}_1 &\to \mathbf{x}_2 \\ (\mathbf{x}_1 &\le \mathbf{x}_2) \end{aligned}$	$\mathbf{x}_1 \equiv \mathbf{x}_2$	$x_1 \oplus x_2$
0	0	1	1	0	0	1	1	0
0	1	1	0	1	0	1	0	1
1	0	0	1	1	0	0	0	1
1	1	0	0	1	1	1	1	0

Формулы для преобразований:

$$\begin{array}{lll} 0 \ \& \ x = 0 & x \ \& \ x = x \\ 0 \ v \ x = x & x \ v \ x = x \\ 1 \ \& \ x = x & x \ \& \ \overline{x} = 0 \\ 1 \ v \ x = 1 & x \ v \ \overline{x} = 1 \end{array}$$

x = x - закон отрицания отрицания

$$\overline{(x_1 \& x_2 \& x_3 \& ...)} = \overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor ... - закон$$

$$\overline{(x_1 \lor x_2 \lor x_3 \lor ...)} = \overline{x_1} \& \overline{x_2} \& \overline{x_3} \& ... - де Моргана$$

A & x & x & ... = A & x - тавтология (переменная входит в дизъюнкт несколько раз)

А & x & \bar{x} & ... = 0 - противоречие (переменная входит в дизъюнкт и с отрицанием, и без)

А & В v A = A - поглощение (общее поглощает частное)

 $A \& \overline{B} \lor B = A \lor B$ - исключение $A \& x \lor A \& \overline{x} = A$ - склейка

Виды представления логических функций.

1) Аналитический

Пример: $y = x_1 & x_2 v \overline{x_3}$

2) Табличный

\mathbf{x}_1	X2	X 3	y
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Примечание:

Для **n** переменных будет:

 $N_1 = 2^n$ строк в таблице истинности (2 в степени n)

 $N_2 = 2^{2^n}$ различных логических функций (2 в степени 2 в степени n).

3) Схемотехнический (в виде логической схемы)

Примечания:

- Входы во все блоки расположены строго слева, выходы справа.
- У блоков $\{\&; v; \oplus\}$ по стандарту 2 входа (но иногда допускается большее количество).
- Соединения разных проводов вне блоков запрещены.
- Скрещивание проводов (отсутствие пересечения) изображается полуокружностью.
- Разветвление одного провода изображается жирной точкой.

Нормальные формы логических функций

- а) КНФ конъюнктивная нормальная форма: $y = (\overline{x_1} \ v \ \overline{x_2} \ v \ \overline{x_3} \ v ...) \& (x1 \ v \ \overline{x_2} \ v \ \overline{x_3} \ v ...) \& ...$
- **б)** Д**НФ** дизъюнктивная нормальная форма: $y = x_1 \& x_2 \& x_3 \& ... v \overline{x_1} \& x_2 \& x_3 \& ... v ...$

Каждая группа, входящая в ДНФ, называется ДИЗЪЮНКТ (ЛЕКСЕМА, ТЕРМ).

Если в каждой группе присутствуют все имеющиеся переменные (с отрицаниями или без), то такая форма называется СОВЕРШЕННОЙ (ДНФ – все ТЕРМЫ имеют максимальный порядок).

ДНФ - более наглядна и удобна. У нее допускается более компактная запись: $y = x_1x_2x_3 \ v \ x_1 \ x_2x_3 \ v \dots$

в) АНФ - алгебраическая нормальная форма: $y=1 \oplus x_1 \oplus x_1 \& x_3 \oplus x_2 \& x_3 \oplus ...$

Полином был предложен в 1927 году Иваном Жегалкиным.

Преобразование: ДНФ <=> Таблица истинности

Если функция преобразована к виду ДН Φ , то для нее можно легко и быстро записать таблицу истинности:

$$y = x_1 \& x_2 \& x_3 v \overline{x_1} \& \overline{x_2}$$

Разбиваем ее на термы и последовательно заполняем результирующий столбец таблицы. Сначала ставим единицы в тех строках, где первый терм ($x_1 & x_2 & x_3$) возвращает единицу:

X1	X2	X 3	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	1

Затем, то же самое проделываем и для второго ($\overline{x_1}$ & $\overline{x_2}$):

X ₁	X2	X 3	y
0	0	0	1
0	0	1	1
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	1

Когда все термы исчерпаны, оставшиеся пустые ячейки заполняем нулями:

\mathbf{x}_1	\mathbf{x}_2	X 3	У
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Обратная задача: логическая функция задана таблицей истинности, записать ее формулу.

Пример в виде ДНФ:

Помечаем все строки, где функция у = 1, и выписываем соответствующие им термы:

X 1	X2	Y	
0	0	1	$\overline{x_1}$ & $\overline{x_2}$ - x_1 =0 – значит с отрицанием, x_2 =0 – с отрицанием.
0	1	1	$-\overline{x_1}$ & x_2 - x_1 =0 – значит с отрицанием, x_2 =1 – без отрицания.
1	0	0	
1	1	0	

Ответ: $y = \overline{x_1} \ \overline{x_2} \ v \ \overline{x_1} x_2 = \{ДН\Phi \ обычно упрощается по формулам склейки \} = \overline{x_1}$

Пример в виде КНФ:

Помечаем все строки, где функция y = 0, аналогично выписываем соответствующие им термы, делаем общее отрицание функции (чтобы перейти от 0 к 1) и далее – по де Моргану:

X1	X2	Y	
0	0	1	
0	1	1	
1	0	0	$-x_1 \& x_2$ - $x_1 \& x_2$
1	1	0	$- x_1 & x_2$

Otbet:
$$y = \overline{(x_1 \ \overline{x_2} \ v \ x_1 x_2)} = (\overline{x_1} \ \overline{x_2} \ \& \ \overline{x_1 x_2}) = (\overline{x_1} \ \overline{x_2} \ \& \ \overline{x_1 x_2}) = (\overline{x_1} \ v \ x_2) \& (\ \overline{x_1} \ v \ \overline{x_2}) = \{KH\Phi\}$$

Преобразование ДНФ КНФ – достаточно раскрыть скобки по правилу перемножения.

Преобразование ДНФ → КНФ – через построение таблицы истинности.

Преобразование Д**Н**Ф → **АН**Ф – через замену и раскрытие скобок по правилу перемножения (A v B = A \oplus B \oplus A&B ; \overline{A} = A \oplus 1 ; A \oplus A = 0 ; (A \oplus B)&C = A&C \oplus B&C)

Преобразование Д**НФ** \rightarrow **АНФ** – через замену и раскрытие скобок по правилу перемножения (v \rightarrow \oplus ; $\overline{A} = A \oplus 1$; ...)

[==== Семинар №2: Методы минимизации ДНФ. =====]

1) Графический метод (рекомендуется для функций 2-3 переменных):

В традиционной алгебре можно построить график практически для любой функции. Алгебра логики не является исключением. Необходимо лишь учесть, что все величины носят дискретный характер (0 / 1). Если функция $F_n(x_1...x_n)=0$ в какой-либо точке, то данная точка на графике остается "пустой". Если $F_n(x_1...x_n)=1$ – данная точка заштриховывается.

На графике две смежные вершины объединились в ребро!

Если мы посмотрим на формулу, то заметим, что она тоже поддается упрощению посредством операции склейка. Причем ребро является более высокоуровневой конструкцией, и для его описания требуется меньшее количество переменных!

В этом и заключается суть метода: нанести все точки на график и выделить наиболее крупные элементы (ребра, грани, объемы).

Правило составления формулы для сложного элемента:

Из координат любой точки данного объекта требуется исключить те переменные, осям координат которых он (элемент) параллелен!

В примере 2 ребро параллельно оси \mathbf{x}_1 ($\mathbf{x}_1\mathbf{x}_2\vee\mathbf{x}_1\mathbf{x}_2=\mathbf{x}_2$). Осталась только 1 координата! В случае грани из координат точки будут исключены сразу 2 координаты.

Пример 3: $y = x_1 x_2 x_3 \vee x_1 \overline{x_2} \overline{x_3} \vee \overline{x_1} \overline{x_2} \overline{x_3}$ Объединив 2 смежные вершины в ребро получим: $y = x_1 x_2 x_3 \vee \overline{x_2} \overline{x_3} - \mathsf{MИН} \ \mathsf{ДН\Phi}$ (нельзя соединять точки по диагонали!!!)

Пример 4: Записать уравнение функции по ее графику. Как и раньше, запишем выражения для ребер:

$$y = \overline{x_2} x_3 \lor x_1 x_3 \lor x_1 x_2$$

Но на самом деле достаточно лишь "охватить" все 4 точки (среднее ребро в формуле избыточно – исключаем его):

$$y = x_2 x_3 \lor x_1 x_2$$
 – МИН ДНФ

В графическом методе 3 переменных у нас будут элементы: точки, ребра, грани.

В графическом методе 4 переменных вместо куба будет гиперкуб, и появится новый элемент – объем. Но работать с ним станет значительно сложнее!

2) Карты Карно (для функций 3-4 переменных).

Существует еще один прием, который позволяет довольно быстро сократить запись логической функции. Он представляет нечто среднее между графическим методом и таблицей истинности.

Пример:
$$y = x_1 \overline{x_2} x_3 x_4 \lor x_1 \overline{x_2} \overline{x_3} x_4 \lor x_1 x_2 \overline{x_3} x_4 \lor x_1 x_2 x_3 x_4 \lor x_1 x_2 \overline{x_3} \overline{x_4} \lor \overline{x_1} x_2 x_3 \overline{x_4}$$

Имеем функцию 4-х переменных. Делим все переменные на 2 группы, допустим: x_1, x_2 и x_3, x_4 . Нанесем разметку на оси так, чтобы соседние значения отличались на один знак (код Грея):

Расставив метки для всех термов (по таблице истинности), начинаем объединять их в прямоугольные контуры так, чтобы их количество в каждом контуре равнялось 2ⁿ (1,2,4,8,16,...)

В нашем случае, получим три контура: I из 4, II из 2 и III из 1 значков соответственно. Записываем ответ. Для этого, из координат любого знака надо исключить те переменные, которые в пределах контура меняют свои значения.

Для контура из I: 1101 v 1111 v 1001 v 1011 \rightarrow 1xx1 \rightarrow x_1x_4 (x – это отсутствие переменой в позиции)

Для контура из II: 1100 v 1101 ightarrow 110 $\mathbf{x}
ightarrow \mathbf{x}_1 \mathbf{x}_2 \overline{\mathbf{x}_3}$

Для контура из III: 0110 $ightarrow \overline{x_1} x_2 x_3 \overline{x_4}$

OTBET: $y = x_1 x_4 \lor x_1 x_2 x_3 \lor x_1 x_2 x_3 x_4$

Обратите внимание, что <u>объединять можно через края</u> (их координаты тоже отличаются на 1 знак)

Примечание: при объединении мы стараемся выделять как можно более крупные контуры; одна звездочка может быть в нескольких контурах (как в граф. методе – вершина для неск. ребер), но нам не обязательно перебирать все возможные варианты, достаточно лишь охватить все доступные вершины, и можно записывать ответ:

$$y = \begin{bmatrix} \overline{x_1} x_3 \overline{x_4} \lor x_2 x_3 x_4 \lor x_1 \overline{x_3} x_4 \lor x_1 \overline{x_2} \overline{x_3} \\ \overline{x_1} x_3 \overline{x_4} \lor \overline{x_1} x_2 x_3 \lor x_1 x_2 x_4 \lor x_1 \overline{x_2} \overline{x_3} \end{bmatrix}$$

[==== Семинар №3: Методы минимизации ДНФ. =====]

3) Метод неопределенных коэффициентов.

Как и в алгебре, суть метода заключается в том, что мы заранее можем предугадать общий вид ответа, решение же сводится к нахождению коэффициентов при каждой компоненте.

Ввиду большой громоздкости, рассмотрим на примере небольшой функции 3 переменных:

\mathbf{x}_1	\mathbf{x}_2	X 3	У
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Запишем общий вид ответа (просто переберем все термы 1,2,3 порядков):

$$y = K_{1}^{0}\overline{x_{1}} \vee K_{1}^{1}x_{1} \vee K_{2}^{0}\overline{x_{2}} \vee K_{2}^{1}x_{2} \vee K_{3}^{0}\overline{x_{3}} \vee K_{3}^{1}x_{3} \vee K_{3}^{0}x_{3} \vee K_{3}^{0$$

К – коэффициент при каждом терме (=0, если этого терма не будет в ответе; =1, если этот терм войдет в ответ). Нижний индекс показывает номера переменных в терме, верхний – задает отрицания над ними.

Подставим все 8 вариантов значений x₁,x₂,x₃ из таблицы, получим 2 системы уравнений:

$$y = \begin{cases} K_{1}^{0} \vee K_{2}^{1} \vee K_{3}^{0} \vee K_{12}^{01} \vee K_{13}^{00} \vee K_{23}^{10} \vee K_{123}^{010} = 0 \\ K_{1}^{0} \vee K_{2}^{1} \vee K_{3}^{1} \vee K_{12}^{01} \vee K_{13}^{01} \vee K_{23}^{01} \vee K_{123}^{011} = 0 \\ K_{1}^{1} \vee K_{2}^{0} \vee K_{3}^{0} \vee K_{12}^{10} \vee K_{13}^{10} \vee K_{23}^{00} \vee K_{123}^{100} = 0 \\ K_{1}^{1} \vee K_{2}^{0} \vee K_{3}^{1} \vee K_{12}^{10} \vee K_{13}^{11} \vee K_{23}^{01} \vee K_{123}^{101} = 0 \end{cases}$$

Начинаем решение с первой системы:

Итого 8 уравнений и 26 неизвестных!

поскольку все уравнения =0, то и все К=0, т.к. иначе мы бы не смогли получить нули в правой части!

Мы нашли сразу 20 неизвестных коэффициентов:

$$y = \begin{cases} K_{1}^{0} \vee K_{2}^{0} \vee K_{3}^{0} \vee K_{12}^{00} \vee K_{13}^{00} \vee K_{23}^{00} \vee K_{123}^{000} = 1 \\ K_{1}^{0} \vee K_{2}^{0} \vee K_{3}^{0} \vee K_{12}^{00} \vee K_{13}^{00} \vee K_{23}^{00} \vee K_{123}^{000} = 1 \end{cases} \qquad K_{12}^{01} = K_{12}^{10} = 0$$

$$K_{1}^{0} \vee K_{2}^{0} \vee K_{3}^{1} \vee K_{12}^{00} \vee K_{13}^{01} \vee K_{23}^{01} \vee K_{123}^{001} = 1 \qquad K_{13}^{00} = K_{13}^{01} = K_{13}^{10} = K_{13}^{11} = 0$$

$$K_{1}^{0} \vee K_{2}^{0} \vee K_{13}^{0} \vee K_{13}^{01} \vee K_{13}^{00} \vee K_{123}^{010} = 1 \qquad K_{13}^{00} = K_{13}^{01} = K_{13}^{01} = K_{13}^{11} = 0$$

$$K_{1}^{00} \vee K_{12}^{00} = K_{123}^{01} = K_{123}^{01} = K_{123}^{01} = K_{123}^{01} = 0$$

$$K_{1}^{00} \vee K_{12}^{00} = K_{123}^{01} = K_{123}^{01} = K_{123}^{010} = K_{123}^{010} = K_{123}^{010} = 0$$

Подставим их во вторую систему, которая существенно упростится:

$$y = \begin{cases} 0 \lor 0 \lor 0 \lor K_{12}^{00} \lor 0 \lor 0 \lor K_{123}^{000} = 1 \\ 0 \lor 0 \lor 0 \lor K_{12}^{00} \lor 0 \lor 0 \lor K_{123}^{001} = 1 \\ 0 \lor 0 \lor 0 \lor K_{12}^{11} \lor 0 \lor 0 \lor K_{123}^{110} = 1 \\ 0 \lor 0 \lor 0 \lor K_{12}^{11} \lor 0 \lor 0 \lor K_{123}^{110} = 1 \end{cases} = \begin{cases} K_{12}^{00} \lor K_{123}^{0001} = 1 \\ K_{12}^{00} \lor K_{123}^{001} = 1 \\ K_{12}^{11} \lor K_{123}^{110} = 1 \end{cases}$$

Далее нам предстоит сделать нелегкий выбор. Начнем с самого короткого уравнения, например 4-го: Нам достаточно только получить один коэффициент =1 в строке. Поэтому рассудив, что выгоднее терм из 2 переменных (чем из 3), назначаем K_{123}^{111} =0, а соответственно будет K_{12}^{11} =1. Подставим в систему:

$$y = \begin{cases} K_{12}^{00} \lor K_{123}^{000} = 1 \\ K_{12}^{00} \lor K_{123}^{001} = 1 = \end{cases} \begin{cases} K_{12}^{00} \lor K_{123}^{000} = 1 \\ K_{12}^{00} \lor K_{123}^{001} = 1 \end{cases} = \begin{cases} K_{12}^{00} \lor K_{123}^{000} = 1 \\ K_{123}^{00} \lor K_{123}^{001} = 1 \end{cases} = \begin{cases} K_{12}^{00} \lor K_{123}^{000} = 1 \\ K_{123}^{00} = 0 \Rightarrow K_{12}^{00} = 1 \end{cases} = \begin{cases} 1 \lor K_{123}^{000} = 1 \\ \text{значения 0 самым неудобным K, постепенно добираясь до последней 1.} \end{cases}$$

Здесь применяется метод исключения: Но никак не наоборот!!!

Ответ:
$$K_{12}^{00} = K_{12}^{11} = 1$$
, все остальные =0, а $y = \overline{x_1} \ \overline{x_2} \lor x_1 x_2$.

Поскольку целью минимизации является экономная аппаратная реализация, попробуем построить для получившейся функции логическую схему, и по возможности минимизируем ее дальше:

При построении логических схем необходимо соблюдать ряд стандартов:

- у блока Отрицание 1 вход и 1 выход (инверсный обозначается выколотой точкой)
- у остальных блоков 2 входа и 1 выход
- входы в блок строго слева, выход из блока строго справа
- ответвления от проводов обозначаются жирной точкой
- перекрещивания проводов без пересечения обозначаются полуокружностью
- пересечения проводов не допускаются! Сигналы могут соединяться и преобразовываться только внутри блоков!

ДНФ в данном примере минимальна, содержит 5 блоков. Они изображены на схеме. Но схему можно еще дополнительно сократить:

Итого получилось 4 блока, и это действительно минимальный вариант.

Если изобразить данную операцию в виде формул, то получится следующее преобразование:

$$y = \overline{x_1} \ \overline{x_2} \lor x_1 x_2 = \overline{x_1} \lor x_2 \lor x_1 x_2$$

Оптимизация схем обычно производится 2 способами:

- 1) вынесением общей части за скобку
- 2) уменьшением количества отрицаний по закону де Моргана

[==== Семинар №4: Методы минимизации ДНФ. =====]

4а) Метод Квайна (оптимален для функций с большим количеством переменных).

Целиком и полностью основан на операции «Склейка». Заключается в последовательном полном переборе всех термов и их потомков на предмет возможности данной операции.

Пример:

$$y = \overline{x_1} \overline{x_2} x_3 x_4 \overline{x_5} \vee \overline{x_1} \overline{x_2} x_3 x_4 x_5 \vee \overline{x_1} \overline{x_2} x_3 x_4 \overline{x_5} \vee \overline{x_1} \overline{x_2} x_3 x_4 \overline{x_5} \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_$$

Составим таблицу. В первую колонку перепишем все термы. Перебираем их все попарно, проверяем возможность операции «Склейка». Во вторую колонку выписываем результаты операции «Склейка», помечаем символами * те термы, которые образовали "потомков":

TIOTOWINOB .			
$1) \overline{x_1} \overline{x_2} x_3 x_4 \overline{x_5} *$	$9 = 1 + 2) \overline{x_1} \overline{x_2} x_3 x_4 *$	$15 = 9 + 14 = 1 + 2 + 3 + 6) \overline{x_2} x_3 x_4$	Больше нет
2) $\overline{x_1} \overline{x_2} x_3 x_4 x_5 *$	$10 = 1 + 3) \overline{x_2} x_3 x_4 \overline{x_5} *$	$15 = 10 + 11 = 1 + 3 + 2 + 6) \overline{x_2} x_3 x_4$	
3) $x_1 \overline{x_2} x_3 x_4 \overline{x_5} *$	$11 = 2 + 6) \overline{x_2} x_3 x_4 x_5 *$		
4) $x_1 x_2 x_3 x_4 \overline{x_5} *$	$12 = 2 + 8) \overline{x_1} \overline{x_2} x_4 x_5$		
$5) \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5}$	$13 = 3 + 4) x_1 x_3 x_4 \overline{x_5}$		
6) $x_1 \overline{x_2} x_3 x_4 x_5 *$	$14 = 3 + 6) x_1 \overline{x_2} x_3 x_4 *$		
$7) x_1 x_2 \overline{x_3} \overline{x_4} x_5$			
8) $\overline{x_1} \overline{x_2} \overline{x_3} x_4 x_5 *$			

Повторяем эту операцию для последующих столбцов, пока не получим набор, не подлежащий дальнейшей «Склейке». Термы, не помеченные символом * (не имеющие "потомков") - претенденты для конечного решения. Из них надо выбрать такой набор, чтобы он покрывал все "родительские" термы (те, что были заданы в условии). Для этого построим таблицу наследования:

	1	2	3	4	5	6	7	8
5					*			
7							*	
12		*						*
13			*	*				
15	*	*	*			*		

Далее, выбираем незаменимые термы (столбцы с единственной меткой). Эти элементы обязательно должны присутствовать в ответе: 5,7,12,13,15. Т.е. в первой части ответа уже обязательно будет фрагмент конечного решения $y = mep M5 \lor mep M12 \lor mep M13 \lor mep M15 \lor ...$

	1	2	3	4	5	6	7	8
5					(*)			
7							(*)	
12		*						(*)
13			*	(*)				
15	(*)	*	*			(*)		

Вычеркиваем для каждого столбец и строку, на пересечении которых находится эта единственная метка. Не забываем и про те столбцы, которые "уходят" вместе с "незаменимыми" (т.е. в исключаемых строках учитываем все метки, не только единственные в столбце – они-то и уносят дополнительные столбцы). Размерность таблицы уменьшается.

В нашем случае таблица уничтожилась полностью! Но если этого не произошло, необходимо выполнить следующие действия:

Если после преобразований могут появиться пустые строки - также удаляем их. Если есть одинаковые столбцы - удаляем лишние копии, оставляя только один экземпляр. Т.е. всеми способами сокращаем таблицу. Пример несократившейся таблицы:

	VII	VIII	IX	X
ı				
II	*		*	
III	*	*		*
IV		*	*	*

	VII	VIII	IX	X
ı				
- II	*		*	
III	*	*		*
IV		*	*	*

Опять ищем незаменимые термы (если находим - повторяем те же действия). Если незаменимых термов нет, а таблица еще не вся сократилась - получена неоднозначная ситуация.

	VII	VIII	IX
II	*		*
III	*	*	
IV		*	*

Выписываем ВСЕ возможные варианты из оставшихся элементов (так, чтобы были закрыты все столбцы). Среди этих вариантов и следует выбрать наиболее приемлемое. Эта вариабельность и является второй частью ответа:

Ответ для нашего примера:
$$y = ... \lor \begin{bmatrix} II \lor III \\ II \lor IV \end{bmatrix}$$
 $III \lor IV$

Примечание: для успешной минимизации ДНФ должна быть совершенного вида. В противном случае необходимо провести операцию, обратную СКЛЕЙКе – "расклеить" все термы до высшего порядка.

4б) Метод Квайна-Мак-Класки (небольшая модификация).

Некоторое несовершенство метода Квайна - необходим полный попарный перебор всех претендентов для операции «Склейка». Мак Класки предложил упростить первую фазу. Вопервых, заменить громоздкие буквенные обозначения термов на их двоичное представление. Во-вторых, разделить все термы на группы по количеству единиц - тогда для операции «Склейка» имеет смысл перебирать только термы из соседних групп!

Пример: $y = 00000 \vee 00100 \vee 00001 \vee 00101 \vee 01101 \vee 00111 \vee 00110 \vee 01111 \vee 11111 \vee 10001 \vee 10010$ Действуем аналогично, только вместо сокращающихся переменных будем ставить крестики:

0	1) 00000 *	12= 1+ 2) 00x00 *	24=12+16= 1+ 2+ 3+ 4) 00x0x	
		13= 1+ 3) 0000x *	24=13+14= 1+ 3+ 2+ 4) 00x0x	
	2) 00100 *	14= 2+ 4) 0010x *	25=14+20= 2+ 4+ 5+ 9) 001xx	
4	3) 00001 *	15= 2+ 5) 001x0 *	25=15+19= 2+ 5+ 4+ 9) 001xx	
•		16= 3+ 4) 00x01 *		
		17= 3+ 6) x0001		
	4) 00101 *	18= 4+ 8) 0x101 *	26=18+22= 4+ 8+ 9+10) 0x1x1	
2	5) 00110 *	19= 4+ 9) 001x1 *	26=19+21= 4+ 9+ 8+10) 0x1x1	
	6) 10001 *	20= 5+ 9) 0011x *		
	7) 10010			
3	8) 01101 *	21= 8+10) 011x1 *		

	9) 00111 *	22= 9+10) 0x111 *	
4	10) 01111 *	23=10+11) x1111	
5	11) 11111 *		

Строим таблицу наследования:

·	1	2	3	4	5	6	7	8	9	10	11
7							(*)				
17			*			(*)					
23										*	(*)
24	(*)	*	*	*							
25		*		*	(*)				*		
26				*				(*)	*	*	

В этом случае все столбцы сократились с первого раза! Ответ получается однозначным: y = 10010 v x0001 v x1111 v 00x0x v 001xx v 0x1x1

[==== Семинар №5: Универсальные Логические Модули. =====]

Минимизация ДНФ – одно из направлений оптимизации процесса синтеза логических схем.

Оно минимизирует аппаратную часть – количество элементов, необходимых для их реализации.

Но не менее популярно и другое направление – использование уже готовых типовых блоков с последующей незначительной настройкой (программированием) логики.

В этом случае оптимизируется время и усилия проектировщика схем (принцип модульности).

1. Мультиплексор:

(N + 1)-полюсная схема (N входов, 1 выход).

Работает по принципу переключателя:

Все входы разделены на адреса (m штук) и данные (2^m штук).

В зависимости от комбинации сигналов на адресных входах, на выход проходит без изменения один из сигналов по входу данных (классический пример для случая m = 2):

Таблица истинности Мультиплексора:

91	v
0	d_0
1	d_1
0	d_1
1	$\frac{d_2}{d_3}$
	a ₁ 0 1 0

С помощью данного блока удается успешно реализовывать весьма широкий класс логических функций.

Задача: Реализовать на Мультиплексоре функцию $y = \overline{x_1} \ \overline{x_2} \ x_3 \ v \ \overline{x_1} x_2 \overline{x_3} \ v \ x_1 x_3$

Решение:

Выбираем наиболее часто встречающиеся переменные: x_1 и x_3 (они будут поданы на адресные входы) Составляем таблицу истинности для остаточной функции:

X1 (a0)	x3 (a1)	Уост
0	0	$y = \overline{x_1} \ \overline{x_2} \ x_3 \ v \ \overline{x_1} x_2 \overline{x_3} \ v \ x_1 x_3 = 1 \& \overline{x_2} \& 0 \ v \ 1 \& x_2 \& 1 \ v \ 0 \& 0 = x_2$
0	1	$y = \overline{x_1} \ \overline{x_2} \ x_3 \ v \ \overline{x_1} x_2 \overline{x_3} \ v \ x_1 x_3 = 1 \& \overline{x_2} \& 1 \ v \ 1 \& x_2 \& 0 \ v \ 0 \& 1 = \overline{x_2}$
1	0	$y = \overline{x_1} \ \overline{x_2} \ x_3 \ v \ \overline{x_1} x_2 \overline{x_3} \ v \ x_1 x_3 = 0 \& \overline{x_2} \& 0 \ v \ 0 \& x_2 \& 1 \ v \ 1 \& 0 = 0$
1	1	$y = \overline{x_1} \ \overline{x_2} \ x_3 \ v \ \overline{x_1} x_2 \overline{x_3} \ v \ x_1 x_3 = 0 \& \overline{x_2} \& 1 \ v \ 0 \& x_2 \& 0 \ v \ 1 \& 1 = 1$

И подаем полученные сигналы на соответствующие входы:

В данной задаче были успешно выбраны 2 переменные, в общем случае можно выбирать и меньшее количество.

Несмотря на кажущуюся простоту и универсальность, на исходную функцию накладывается ряд ограничений.

2. Программируемые Логические Матрицы (ПЛМ):

При синтезе более громоздких и сложных схем от типовых блоков требуется все большая гибкость и универсальность, достигаемые за счет все большей избыточности аппаратной части.

Для получения ДНФ в цифровых устройствах используется стандартная 4-каскадная схема:

Входной буфер — усиливает входные сигналы, преобразует к цифровому виду. ПЛМ «И» — склеивает между собой атомарные сигналы в термы требуемого вида (через логическое И). ПЛМ «ИЛИ» — склеивает между собой термы в ДНФ требуемого вида (через логическое ИЛИ). Выходной буфер — преобразует полученные сигналы к требуемому на выходе схемы виду.

Особый интерес представляет ПЛМ «И»:

В данном примере на вход поступают 2 атомарных сигнала. Далее делаются отрицания, и все 4 состояния подаются на соответствующие им вертикальные линии.

Ниже находится программируемая часть матрицы. В ней задан набор термов, который требуется получить в данной задаче на выходе, а решение заключается в настройке (программировании) нужных соединений.

В промышленном варианте на схеме изначально присутствуют все возможные соединения, а настройка под конкретную задачу осуществляется пережиганием ненужных соединений посредством специального устройства-программатора.

ПЛМ «ИЛИ» реализуется аналогичным методом.