

ATM-PON ONU CONTROLLING APPARATUS

Field of the Invention

5 The present invention relates to an ATM-PON ONU controlling apparatus; and more particularly, a PON (Passive Optical Network) slave controller for use in an PON ONU (Optical Network Unit) system for processing in unit of 1 byte 8 bits is constructed so that an enable signal for mini-slot 10 payload is outputted to external and a byte input signal is received and arbitrary data can be loaded in the mini-slot to use an arbitrary MAC (Medium Access Control) technique.

Description of the Prior Art

15 There have been a number of inventions related to PON frame structure, transfer scheme of upstream usage request information, transfer scheme of downstream usage grant information and MAC (Medium Access Control) scheme.

20 Referring to recommendation G.983-1 of ITU-T (Telecommunication part of International Telecommunication Union), there are defined flexible fiber subscriber access network capable of accommodating bandwidth requirement for an ISDN (Integrated Service Digital Network) and B-ISDN (Broad 25 bandwidth ISDN) services. This recommendation defines a symmetric system of 155 Mbps upstream/downstream and an asymmetric system of 622.080 Mbps downstream and 155 Mbps

upstream. This recommendation defines physical layer requirement and specifications of medium access layer, transport convergence layer and ranging protocol in the ATM-PON.

5 Fig. 1 shows a diagram for illustrating structure of an access network of a PON technique in a conventional ATM exchange system.

As shown in Fig. 1, the access network comprises an OLT, a plurality of ONUs and optical fibers connected in PON format by using passive splitters. One optical fiber is connected to a number of ONUs by branching passively and, for this reason, TDMA (Time Division Multiple Access) protocol for sharing upstream bandwidth and the ranging protocol for enduring difference among the optical fibers and processing time delays are adopted. And also, special functions for privacy and security are arranged.

On the other hand, OLT and ONU controller chips in the PON take charges of TC (Transaction Capabilities) layer function for which Figs. 2A and 2B show frame formats of the PON system having 622 Mbps downstream and 155 Mbps upstream. The downstream frame has 4×56 53-byte cells and a PLOAM (Physical Layer Operation And Maintenance) cell is inserted at every 28 cells. The format, header error control, cell delineation identification, distributed sample scrambler and operation and format of idle cell and the PLOAM cell are described in the recommendation. The downstream PLOAM cell has several control information, grant information for

upstream slot usage and CRC (Cyclic Redundancy Check) in its payload. And it also has message, protected by the CRC, to be transferred to a particular ONU or all the ONUs and BIP (Bit Interleaved Parity) for performance monitoring. The grant value refers that each upstream slot is used for which type of cell, e.g., data, PLOAM, ranging cell or the like by which ONU.

The upstream frame has 53 56-byte ATM cells and overhead of 3 bytes. Cell delineation is performed by TDM (Time Division Multiplex) and the cells send from each of the ONUs are adjusted not to overlay at the OLT by ranging (distance measurement) procedure. The upstream cells are scrambled and an idle cell and a PLOAM cell are defined. The upstream PLOAM cell has several control fields, message protected by CRC, LCF (Laser Control Field), RXCF (Receiver Control Field) and BIP.

And the OLT and ONU have OAM procedure for failure and performance monitoring and the OLT monitors information such as LOS (loss of signal), LCD (loss of cell delineation), cell phase error, OAM synchronization loss and deactivation for each ONU. Each of the ONU monitors synchronization information for the cell, the PLOAM and the frame.

In order to prevent data from overhearing or eavesdropping by other ONUs due to the inherent downstream broadcasting characteristic, churning is performed by the master by using different churning key for each ONU and the churning key is generated by each slave and sent the master. The churning key is changed periodically and synchronization scheme for changing the churning key between the master and

the slave is used.

A variety of messages are defined for ranging, churning and OAM and their detailed description is in the ITU-T G.983-1.

Because the upstream optical line is shared by several slaves and length of lines could be different from each other by thousands of bits in the PON system, ranging is important and the master of the OLT assigns different delay to each of the ONUs so that all the ONUs seem as located at same distance.

By ranging procedure, time delay components in paths to all of ONUs are absorbed so as to have same total delay. The ranging procedure can be started whenever one ONU is turned on and makes an access to the PON or started by a request of an operator. And, arrival phase of the cell for the ONU already connected is monitored periodically and amended. The delay time to/from each ONU is obtained by measuring time from sending ranging grant value to receiving its responding ranging cell. The ranging procedure includes assigning overhead, PON ID(identification) and grant value to be used by each ONU, of the upstream cell, measuring time delay and assigning a delay value required to make the time delay to each ONU same to the corresponding ONU. Receiving the time delay T_d , each ONU goes to an operation state.

As described above, most of proceeding techniques for the PON relate to frame configuration required for construction of the PON and grant assigning method, i.e., the MAC method, which are described in detail as follows.

Firstly, relating to the MAC method, there is US patent

5,926478 titled as "Data transmission over a point-to-multipoint optical network" and issued in July 20, 1999.

The patent of Ericsson discloses structures of the downstream and upstream frames and MAC channel. However, in most of cases, bandwidth usage request information transferred in upstream related to the MAC is very closely related to an ATM layer processing ASIC (Application Specific IC) disposed at upper part of the PON controller in system configuration. Therefore, if ATM control circuits for service quality control or buffer control is not integrated as a PON slave control circuit, desired MAC cannot be used. Accordingly, the bandwidth usage request transferred in upstream by the ONU in the PON system is transferred by mini-slots (mini-slots sent from several ONUs are timely multiplexed during one cell period as short cells) and the present invention introduces a technique for constructing a PON ONU controller, i.e., a PON slave controller and interface skill of the PON slave chip for transferring arbitrary information in the mini-slot.

Therefore, there is a demand for a technique using the arbitrary MAC method to load arbitrary data in the mini-slot by outputting an enable signal for the mini-slot payload and receiving a byte input signal by constructing the PON slave controller for use in the PON ONU system capable of processing in unit of 8-bit byte.

Summary of the Invention

Therefore, it is an object of the present invention to provide an ATM (Asynchronous Transfer Mode)-PON (Passive Optical Network) ONU (Optical Network Unit) controlling apparatus for outputting an enable signal to external for a mini-slot payload and receiving a byte input signal and for enabling usage of an arbitrary MAC (Medium Access Control) technique loading arbitrary data in a mini-slot by 5 constructing a PON slave controller for use in a PON ONU 10 system capable of processing in unit of byte.

In accordance with an aspect of the present invention, there is provided an ATM-PON ONU controlling apparatus comprising a cell receiving unit for transferring an ATM cell through a receiving UTOPIA interfacing unit to external and transferring a message in a PLOAM cell to a message processing unit, a cell transmitting unit for loading the ATM cell received through a transmitting UTOPIA interfacing unit in a granted slot and transferring in upstream and downstream by 15 loading the message waiting at the message processing unit in payload of the PLOAM cell when the PLOAM cell is transmitted, and the message processing unit for setting internal signals by processing the received message or instructing operation of a plurality of functional blocks, and transferring the message 20 requested by the plurality of functional blocks through the cell transmitting unit.

The present invention is characterized in that the cell

transmitting unit can use an arbitrary MAC technique by enabling arbitrary data loaded in a mini-slot by outputting an enable signal for mini-slot payload and receiving a byte input signal.

5 Also, The present invention is characterized in that the cell receiving unit, in order to transfer the arbitrary MAC data in upstream, by reflecting difference information between the arbitrarily obtained byte clock by the transceiver and actual aligned byte phase to transmitting timing when an
10 external transceiver generates the byte stream and byte clock by gathering 8 bits for down data, reflects the byte delineation information to upstream frame time delay so that the round-trip delay has a constant value regardless of byte clock phase change at transceiver synchronization without time
15 delay value change resulted from ranging.

Brief Description of the Drawings

20 The above and other objects and features of the instant invention will become apparent from the following description of one embodiment taken in conjunction with the accompanying drawings, in which:

Fig. 1 shows a diagram for illustrating structure of an access network using PON technique with ATM exchange system;

25 Figs. 2A and 2B show frame formats of a PON system having 622.08 Mbps downstream and 155.52 Mbps upstream;

Fig. 3 presents phase relation between upstream and

downstream frames shown at an ONU in accordance with the present invention;

Fig. 4 provides a diagram for explaining a upstream frame counter synchronization circuit taking into account ranging 5 time delay in accordance with the present invention;

Fig. 5 shows one embodiment of an ATM PON ONU controlling apparatus in accordance with the present invention; and

Fig. 6 offers a structure diagram of pin interface of the ATM PON ONU controlling apparatus in accordance with the 10 present invention.

Detailed description of the Preferred Embodiments

Hereinafter, one embodiment of the present invention and 15 measurement results will be described in detail with reference to the accompanying drawings.

Since a PON slave chip of the present invention is basically frame processing circuit, it is convenient to use a counter at center of its controlling part for generating 20 timing information.

For this purpose, Fig. 3 presents phase relation between upstream and downstream frames seen at an ONU in accordance with the present invention, in which the downstream frame consists of 56 53-byte cells and can use 56×53 counters. 25 However, 56 counters are not sufficient to delineate a upstream frame away from a downstream grant more than one frame. Therefore, 2-bit counter should be disposed so as to

delineate adjacent frames (1-bit counter can also be sufficient). Accordingly, the downstream counters should have $2 \times 56 \times 53$ structure. And, because the upstream frame consists of 53 56-byte slots, it has $2 \times 53 \times 56$ counters.

5 On the other hand, when ranging time message is received, the slave chip establishes phase delay by adjusting transmit timing by adding received time delay to typical phase difference and making the upstream counters start with additional delay of assigned value. During measurement of
10 time delay, the ranging cell is transferred as similarly as a general cell so that processing delay time is included in the ranging.

Because a unit of a delay value T_d finally received during the ranging given by the OLT (Optical Line Termination) is in upstream bit clock, it is not capable of inducing delay with a bit unit at an ASIC (Application Specific Integrated Circuit) executing byte processing. Therefore, delay of the byte unit, i.e., delay corresponding to other than lower 0~7 bits should be induced within the chip and delay of the remaining 0~7 bit, i.e., delay corresponding to lower 3 bit should be induced at a PCB (Printed Circuit Board) out of the chip. Selectively, delay corresponding to transmit data can be induced within a byte stream. However, at least a laser drive enable signal of an external burst mode laser diode should be controlled in unit of bit externally. And it is possible to match a Tresponse value required in the recommend by inducing a programmable initial delay.

Fig. 4 provides a diagram for explaining a upstream frame counter synchronization circuit taking into account ranging time delay in accordance with the present invention.

As shown in Fig. 4, a RX (receiving unit) frame counter and a TX (transmitting unit) frame counter in the PON slave chip have a frame count vale for counting frame itself from 0 to 3 cyclically in addition to a slot counter and a byte counter. A RX frame synch pulse is generated at every other frame and a TX frame synch pulse for starting TX frame counting is generated by delaying the RX frame synch pulse by programmable amount.

At this time, since the frame count value 0~3 corresponding to the RX frame synch pulse is duplicated to the TX frame counter, delay between a RX frame and a TX frame has an arbitrary value beyond one frame. Therefore, a grant value received at a downstream slot can be used for corresponding upstream slot.

For this purpose, a downstream processing unit compares the received grant value with its assigned value and records comparison result at a grant table (by recording only the result for a decoded grant, the number of gates can be reduced). Since a 2-bit frame count value is used together with the slot count as an address in reading or writing table, a upstream processing circuit uses this 2-bit frame counter and the slot counter simultaneously so that it can read corresponding slot always after the ranging.

The decoded grant can be summarized as following 5 values.

- data grant of oneself
- PLOAM (Physical Layer Operation And Maintenance) of oneself
- Mini-slot grant of oneself (or divided slot grant)
- 5 - Ranging grant
- Disabling grant (Reserved, Unassigned)

On the other hand, when CRC error occurs, corresponding 6 or 7 grant values are invalidated. When a slot decoding circuit of the transmitting unit meets a slot that should be used by it, a start pulse is generated corresponding to a data cell, PLOAM cell or mini-slot, on which all processing depend.

And also, a state machine is includes and operated as defined in the recommendation G.983.1, which transits at every event and manages operation of the whole PON slave chip. For example, data cell transmitting is executed only at operation state 08 and serial number ONU message loading in the PLOAM cell and transmitting the PLOAM cell is executed when the PLOAM grant is received at a state 07. Most of events relate to synch state change and message receiving.

20 Fig. 5 shows one embodiment of an ATM-PON ONU controlling apparatus in accordance with the present invention.

As shown in Fig. 5, the ATM-PON ONU controlling apparatus of the present invention comprises a receiving unit 51 for receiving data from external, transferring the ATM cell to the 25 external through UTOPIA interface and transferring the message in the PLOAM cell to a message processing unit 54, a transmitting unit 52 for receiving the ATM cell from external

through the UTOPIA interface and transmitting it, loading the message on a granted slot and, when the PLOAM cell is to be transmitted, transmitting waiting message to the message processing unit 54, and a message processing unit 54 for setting internal signals, instructing operation of a number of functional blocks and, when the message is requested to be transmitted via the transmitting unit 52, processing the message received through the receiving unit 51 in response to the request.

10 The receiving unit 51 includes a cell and byte delineating unit 501 for receiving byte stream from an external serial/parallel transformer and delineating the cell and the byte, a descrambler 502 for receiving scrambled cell stream from the cell and byte delineating unit 501 and descrambling data by synchronizing internal pseudo random binary sequence to the received data, BIP (Bit Interleaved Parity) comparing unit 503 for computing a BIP value for the data received from the descrambler 502 for a period instructed by a frame synchronizing unit and comparing it with the received BIP value, the frame synchronizing unit 504 for synchronizing the frame by finding a location of the PLOAM cell and a frame starting point for the data received from the descrambler 502, a receiving demultiplexing unit 505 for demultiplexing the ATM cell and the message of the PLOAM cell and the received grant value from the data transferred from the frame synchronizing unit 504, a header error inspecting unit 506 for inspecting header error for the ATM cell

transferred from the receiving demultiplexing unit 505 to correct the error or abandon the cell, a look-up processing unit 507 for reading the table depending on a VPI (Virtual Path Identifier) to check whether it is to be received or 5 dechurned, a dechurning unit 508 for receiving ATM related information from the look-up processing unit 507 and, if necessary, dechurning the payload of the received ATM cell and changing a churning key, a receiving UTOPIA interfacing unit 509 for storing the ATM cell transferred from the dechurning 10 unit 508 and transferring the stored ATM cell in response to an external request, a grant decoding unit 510 for decoding the grant value received from the receiving demultiplexing unit 505, a grant table 511 for receiving and storing the decoded grant values according to the writing signal from the 15 grant decoding unit 510, a memory arbitrating and interfacing unit 512 for arbitrating connection table reading and writing requests from the message receiving processing unit 541 for processing the received message and a CPU (Central Processing Unit) interface 550 to process reading and writing, and a 20 dual-port memory 513 being a memory having internal 4 K entries for storing information for VPI receiving and dechurning by using 12-bit VPI address.

The transmitting unit 52 includes a transmitting UTOPIA interfacing unit 521 for storing the ATM cell depending on an 25 external request and transferring the ATM cell depending on a request of a transmitting multiplexing unit 523, a mini-cell generating unit 522 for generating payload of the mini-cell by

using buffer information of the transmitting UTOPIA interfacing unit 521 or data from the external interface, the transmitting multiplexing unit 523 for determining category of the cell transferred via a grant table of the receiving unit 50 by the frame count and the slot counter of internal, transmitting an enable signal to a transmitting message processing unit 541, the mini-cell generating unit 522 or the transmitting UTOPIA interfacing unit 521, and generating slot data including transmitting overhead by multiplexing resultant data, a BIP inserting unit 524 for computing a BIP value for all data except for the overhead and the mini-cell for data transferred from the transmitting multiplexing unit 523 as instructed by the transmitting multiplexing unit 523 and inserting the BIP value into last byte of the PLOAM cell, a scrambler 525 for scrambling all data except for the overhead as instructed by the transmitting multiplexing unit 523 or the BIP inserting unit 524, a bit delayer 526 for selectively delaying the transmitted data transferred through the scrambler 525, and a ranging counter 527 for counting pulses from the frame synchronizing unit 504 by the delay T_d from the received message by delaying the pulses.

The message processing unit 54 includes a CRC checking unit 541 for checking the CRC for the message transferred from the receiving demultiplexing unit 505 to transfer the message to a receiving message processing unit 542, the receiving message processing unit 542 for decoding the message transferred from the receiving demultiplexing unit 505,

setting each register depending on the message, and
instructing operation of a software receiving message queue
544, a ranging state machine 545 and a churning key generating
unit 547 with parameter transfer, a transmitting message
5 processing unit 543 for receiving a message insertion
instruction from the transmitting multiplexing unit 523 and
generating a predetermined message depending on a message
transmitting request from the ranging state machine unit 545,
the churning key generating unit 547 and a BIP error
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
445100
445101
445102
445103
445104
445105
445106
445107
445108
445109
445110
445111
445112
445113
445114
445115
445116
445117
445118
445119
445120
445121
445122
445123
445124
445125
445126
445127
445128
445129
445130
445131
445132
445133
445134
445135
445136
445137
445138
445139
445140
445141
445142
445143
445144
445145
445146
445147
445148
445149
445150
445151
445152
445153
445154
445155
445156
445157
445158
445159
445160
445161
445162
445163
445164
445165
445166
445167
445168
445169
445170
445171
445172
445173
445174
445175
445176
445177
445178
445179
445180
445181
445182
445183
445184
445185
445186
445187
445188
445189
445190
445191
445192
445193
445194
445195
445196
445197
445198
445199
445200
445201
445202
445203
445204
445205
445206
445207
445208
445209
445210
445211
445212
445213
445214
445215
445216
445217
445218
445219
445220
445221
445222
445223
445224
445225
445226
445227
445228
445229
445230
445231
445232
445233
445234
445235
445236
445237
445238
445239
445240
445241
445242
445243
445244
445245
445246
445247
445248
445249
445250
445251
445252
445253
445254
445255
445256
445257
445258
445259
445260
445261
445262
445263
445264
445265
445266
445267
445268
445269
445270
445271
445272
445273
445274
445275
445276
445277
445278
445279
445280
445281
445282
445283
445284
445285
445286
445287
445288
445289
445290
445291
445292
445293
445294
445295
445296
445297
445298
445299
445300
445301
445302
445303
445304
445305
445306
445307
445308
445309
445310
445311
445312
445313
445314
445315
445316
445317
445318
445319
445320
445321
445322
445323
445324
445325
445326
445327
445328
445329
445330
445331
445332
445333
445334
445335
445336
445337
445338
445339
445340
445341
445342
445343
445344
445345
445346
445347
445348
445349
445350
445351
445352
445353
445354
445355
445356
445357
445358
445359
445360
445361
445362
445363
445364
445365
445366
445367
445368
445369
445370
445371
445372
445373
445374
445375
445376
445377
445378
445379
445380
445381
445382
445383
445384
445385
445386
445387
445388
445389
445390
445391
445392
445393
445394
445395
445396
445397
445398
445399
445400
445401
445402
445403
445404
445405
445406
445407
445408
445409
445410
445411
445412
445413
445414
445415
445416
445417
445418
445419
445420
445421
445422
445423
445424
445425
445426
445427
445428
445429
445430
445431
445432
445433
445434
445435
445436
445437
445438
445439
445440
445441
445442
445443
445444
445445
445446
445447
445448
445449
445450
445451
445452
445453
445454
445455
445456
445457
445458
445459
445460
445461
445462
445463
445464
445465
445466
445467
445468
445469
445470
445471
445472
445473
445474
445475
445476
445477
445478
445479
445480
445481
445482
445483
445484
445485
445486
445487
445488
445489
445490
445491
445492
445493
445494
445495
445496
445497
445498
445499
445500
445501
445502
445503
445504
445505
445506
445507
445508
445509
445510
445511
445512
445513
445514
445515
445516
445517
445518
445519
445520
445521
445522
445523
445524
445525
445526
445527
445528
445529
445530
445531
445532
445533
445534
445535
445536
445537
445538
445539
445540
445541
445542
445543
445544
445545
445546
445547
445548
445549
445550
445551
445552
445553
445554
445555
445556
445557
445558
445559
445560
445561
445562
445563
445564
445565
445566
445567
445568
445569
445570
445571
445572
445573
445574
445575
445576
445577
445578
445579
445580
445581
445582
445583
445584
445585
445586
445587
445588
445589
445590
445591
445592
445593
445594
445595
445596
445597
445598
445599
445600
445601
445602
445603
445604
445605
445606
445607
445608
445609
445610
445611
445612
445613
445614
445615
445616
445617
445618
445619
445620
445621
445622
445623
445624
445625
445626
445627
445628
445629
445630
445631
445632
445633
445634
445635
445636
445637
445638
445639
445640
445641
445642
445643
445644
445645
445646
445647
445648
445649
445650
445651
445652
445653
445654
445655
445656
445657
445658
445659
445660
445661
445662
445663
445664
445665
445666
445667
445668
445669
445670
445671
445672
445673
445674
445675
445676
445677
445678
445679
445680
445681
445682
445683
445684
445685
445686
445687
445688
445689
445690
445691
445692
445693
445694
445695
445696
445697
445698
445699
445700
445701
445702
445703
445704
445705
445706
445707
445708
445709
445710
445711
445712
445713
445714
445715
445716
445717
445718
445719
445720
445721
445722
445723
445724
445725
445726
445727
445728
445729
445730
445731
445732
445733
445734
445735
445736
445737
445738
445739
445740
445741
445742
445743
445744
445745
445746
445747
445748
445749
445750
445751
445752
445753
445754
445755
445756
445757
445758
445759
445760
445761
445762
445763
445764
445765
445766
445767
445768
445769
445770
445771
445772
445773
445774
445775
445776
445777
445778
445779
445780
445781
445782
445783
445784
445785
445786
445787
445788
445789
445790
445791
445792
445793
445794
445795
445796
445797
445798
445799
445800
445801
445802
445803
445804
445805
445806
445807
445808
445809
445810
445811
445812
445813
445814
445815
445816
445817
445818
445819
445820
445821
445822
445823
445824
445825
445826
445827
445828
445829
445830
445831
445832
445833
445834
445835
445836
445837
445838
445839
445840
445841
445842
445843
445844
445845
445846
445847
445848
445849
445850
445851
445852
445853
445854
445855
445856
445857
445858
445859
445860
445861
445862
445863
445864
445865
445866
445867
445868
445869
445870
445871
445872
445873
445874
445875
445876
445877
445878
445879
445880
445881
445882
445883
445884
445885
445886
445887
445888
445889
445890
445891
445892
445893
445894
445895
445896
445897
445898
445899
445900
445901
445902
445903
445904
445905
445906
445907
445908
445909
445910
445911
445912
445913
445914
445915
445916
445917
445918
445919
445920
445921
445922
445923
445924
445925
445926
445927
445928
445929
445930
445931
445932
445933
445934
445935
445936
445937
445938
445939
445940
445941
445942
445943
445944
445945
445946
445947
445948
445949
445950
445951
445952
445953
445954
445955
445956
445957
445958
445959
445960
445961
445962
445963
445964
445965
445966
445967
445968
445969
445970
445971
445972
445973
445974
445975
445976
445977
445978
445979
445980
445981
445982
445983
445984
445985
445986
445987
445988
445989
445990
445991
445992
445993
445994
445995
445996
445997
445998
445999
4459000
4459001
4459002
4459003
4459004
4459005
4459006
4459007
4459008
4459009
4459010
4459011
4459012
4459013
4459014
4459015
4459016
4459017
4459018
4459019
4459020
4459021
4459022
4459023
4459024
4459025
4459026
4459027
4459028
4459029
4459030
4459031
4459032
4459033
4459034
4459035
4459036
4459037
4459038
4459039
4459040
4459041
4459042
4459043
4459044
4459045
4459046
4459047
4459048
4459049
4459050
4459051
4459052
4459053
4459054
4459055
4459056
4459057
4459058
4459059
4459060
4459061
4459062
4459063
4459064
4459065
4459066
4459067
4459068
4459069
4459070
4459071
4459072
4459073
4459074
4459075
4459076
4459077
4459078
4459079
4459080
4459081
4459082
4459083
4459084
4459085
4459086
4459087
4459088
4459089
4459090
4459091
4459092
4459093
4459094
4459095
4459096
4459097
4459098
4459099
4459100
4459101
4459102
4459103
4459104
4459105
4459106
4459107
4459108
4459109
4459110
4459111
4459112
4459113
4459114
4459115
4459116
4459117
4459118
4459119
4459120
4459121
4459122
4459123
4459124
4459125
4459126
4459127
4459128
4459129
4459

software transmitting message queue 549 for receiving a software message from the CPU interfacing unit 551 to transfer it to the transmitting message processing unit 543, a acknowledge (response) message processing unit 550 for 5 receiving an acknowledge message from the receiving message processing unit 542 to transfer it to the transmitting message processing unit 543, the CPU interfacing unit 551 for reading a message transferred via the memory arbitrating and interfacing unit 512, the software receiving message queue 544 10 and the BIP error accumulating unit 548 in a format that can be read by the CPU to transfer the read message to the churning key generating unit 547 and the software transmitting message queue 549, and a serial number receiver 552 for receiving a serial number of a corresponding ONU at the CPU interfacing unit 551 and an external or internal register. 15

It will be described in detail for operation of the ATM-PON ONU controlling apparatus of the present invention.

Firstly, it will be described for operation of the receiving unit 50. After the cell and byte delineating unit 20 501 divides data inputted from external into possible byte streams, it performs cell delineation for each stream and declares found cell delineation among them as a correct byte delineation. Also, the cell and byte delineating unit 501 has one of "HUNT", "PRESYNC" and "SYNC" states for each byte 25 stream and the most significant 2 bits of a HEC (Header Error Correction) are excepted till the receiving descrambler 502 is synchronized.

Therefore, the cell and byte delineating unit 501 sends a cell synchronization signal and recovered cell data to the receiving descrambler 502. By transferring phase difference from the byte clock to the ranging counter 527 with searching 5 the byte delineation, by reflecting this difference to transmitting timing even when an external transceiver generates the byte clock and the byte stream by gathering 8 bits regardless of the byte delineation, difference of the transceivers is overcome at every power-on and constant delay

10 Td is given so as to enable the OLT to execute a particular protection switching method which relies on the preservation of Td for the same ONU. The Td is not necessarily constant at every power-on for a selected ONU, but it may have to be constant for the particular protection switching mechanism.

15 The receiving descrambler 502 that executes DSS (Distributed Sample Scrambling) synchronizes its PRBS value to the PRBS value of the downstream data by applying sample values extracted from the most significant 2 bits of the HEC to an internal PRBS generator. The receiving desrambler 502 20 has states of synchronization acquisition, verification and operation.

After receiving ATM cell flow and finding out the location of the periodic PLOAM cell, the frame synchronizing unit 504 inspects "IDENT" pattern of the PLOAM cell internal 25 and finds out the starting point of the frame. This block outputs the byte stream along with the synchronization signal required during post processing.

The BIP comparing unit 503 compares the computed BIP with the BIP in the last byte of the PLOAM cell for every PLOAM and transfers the number of the errors to the BIP error accumulator 548. This accumulated value is transferred to the 5 transmitting message processing unit 543 periodically, that is, with a period determined by a downstream BIP period message and loaded in the upstream message to be transferred to the OLT.

The receiving demultiplexing unit 505 extracts the data 10 cell and the PLAOM cell from the received frame to transfer them to the header error inspecting unit 506 and the grant decoding unit 510 or message receiving unit 542.

The grant decoding unit 510 decodes the received grant 15 value and writes it at the receiving grant table 511 to let the transmitting unit 50 use it.

The header error inspecting unit 506 inspects the header of the ATM cell to abandon errored cell and correct the single bit error.

The look-up processing unit 507 extracts the VPI value of 20 the received ATM cell and read the table by using the VPI value as the address so as to determine whether the corresponding cell of the VPI is to be received or payload is to be dechurned.

The dual-port memory 513 is a memory that has 4 K 25 internal entries and stores, by using the 12-bit VPI value as an address, information for whether or not each of the VPIs is received and whether or not the payload is dechurned. Not

only the look-up processing unit 407 reads/writes the memory but also the receiving message processing unit 542 writes the memory (when receiving the churned VP message). Furthermore, since the CPU interfacing unit 551 accesses this memory, the 5 memory arbitrating and interfacing unit 512 arbitrates memory read and write requests.

CPU read/ write is indirectly executed by using especially arranged data and a particular trigger bit of an address register and a control register.

10 For the external CPU, flag should be checked to confirm whether the memory read/write is completed after read/write request.

15 The dechurning unit 508 dechurns the corresponding payload when churning is enabled for the received cell. When the receiving message processing unit 542 receives a churning key update message at every time, the dechurning unit 508 changes the key value when the internal frame counter becomes 0 while it is decreased at every frame, set to 48, 32 or 16 depending on the message counter of the message.

20 The receiving UTOPIA interfacing unit 509 stores the received cells at the internal buffer and transfers them to external based on an external request.

Next, it will be described for operation of the transmitting unit 52. The transmitting UTOPIA interfacing 25 unit 521 stores the ATM cell received through an UTOPIA interface at an internal buffer and, when the enable signal is inputted from the transmitting multiplexing unit 523, reads

data at the buffer and transfers it to the transmitting multiplexing unit 523. When there is no cell at the buffer, an idle cell is transferred.

The mini-cell generating unit 522 receives the payload 5 through the mini-cell payload receiving interface from the external or transfers the payload information of the mini-cell to the transmitting multiplexing unit 523 by selecting buffer state of the transmitting UTOPIA interfacing unit 521.

0 10 The transmitting multiplexing unit 523 controls the whole
0 transmitting unit and generates 53 pulses having 56 byte
0 duration. The transmitting multiplexing unit 523 sends the
0 enable signal to the transmitting UTOPIA interfacing unit 521
0 or the transmitting message processing unit 543 when data cell
0 or message information is required based on read result for
0 15 the grant table and generates the cell by multiplexing by
0 selecting the data inputted in response to the enable signal.

0 The ranging cell should be transmitted when the ranging
0 grant is received at state 05 or the PLOAM grant is received
0 at state 07 and, because such a cell should be transmitted to
20 the transmitting message processing unit 543, it is
0 transferred together to generate a proper message. The
0 transmitting multiplexing unit 523 generates a final cell by
0 adding the overhead to the transferred data.

25 For example, for the data cell, the overhead and the ATM
cell transferred from the transmitting UTOPIA interfacing unit
521 are selected subsequently to generate the slot data. For
the PLOAM cell, the overhead, the PLOAM cell header, IDENT (it

is named by ITU-T in that the value is identical for all cells) pattern, a message from the transmitting message processing unit 30, a LCF (Laser Control Field), and a RXCF (Receiver Control Field) are selected subsequently to generate 5 the slot data.

The BIP inserting unit 524 computes the BIP value and inserts it in the last byte of every PLOAM cell, excepting the overhead and the mini-cell data in computation. The scrambler 525 scrambles all transmitting byte including the mini-cell 10 except for overhead.

The ranging counter 527 delays the pulse from the frame synchronizing unit 504 by the delay T_d from the receiving message processing unit 542. Since the circuit operates by the byte clock, the delay is given in unit of byte and the 15 lower 3 bit of the T_d value is transferred to the external. The transmitting data itself is delayed within the bit delayer 526.

Finally, it will be described for operation of the message processing unit 54. In the PON system, the message is 20 transferred by the payload of the upstream/downstream PLOAM cell, which is identified a "PON_ID" value representing a message receiver in downstream or a message transmitter in upstream, a message ID and 10-byte message field.

The receiving message processing unit 542 receives the 25 message from the receiving demultiplexing unit 505, sets the internal register based on the category of the message, transfers the parameter and instructs operation of other

blocks, if necessary, and write the message at the software receiving message queue 544 if the message is to be processed by the software. The messages of about 20 categories are processed related to ranging, OAM, churning and ATM layer in downstream.

For example, when the churning key update message is transferred, the number of the frames left until change of the key is transferred to the dechurning unit 508 that has already the key to be changed.

Similarly, the churning key request message is received, the receiving message processing unit 542 notifies that to the churning key generating unit 547. The churning key generating unit 547 generates the new key value and transfers it to the dechurning unit 508 and, simultaneously, requests the transmitting message processing unit 543 to send the new churning key message three times. Subsequently, receiving the grant assignment message, the receiving message processing unit 542 sends the received grant value to the grant decoding unit 510.

Receiving the enable signal from the transmitting multiplexing unit 523, the transmitting message processing unit 543 determines the message to be transferred based on a message generating request signal asserted at that time. The CRC value is generated within the transmitting multiplexing unit 523. About 10 messages are transferred in upstream for ranging, OMA, churning and message acknowledge.

The message transmitting request signal waiting at the

transmitting message processing unit 543 is serviced in priority and there is a counter, for the message to be transferred a number of times, decreased till final transfer. For equal priority, cyclic service is established.

5 Therefore, the message acknowledge message is serviced by storing the received message at its corresponding FIFO and asserting the corresponding message transmitting request. Also, because there are several priorities for the acknowledge message, FIFO is used for each acknowledge message.

10 Fig. 6 offers a structure diagram of pin interface of the ATM PON ONU controlling apparatus in accordance with the present invention.

15 Firstly, because the transmitting unit and the receiving unit of the PON ONU controlling apparatus of the present invention are operated by the byte clock, it is impossible to give delay in unit of bit. Therefore, the delay of the upstream frame to the downstream frame is given within the chip and remaining bit delay for data is selectively given within the chip. In order to externally give the bit delay of 20 0~7 of a signal for turning on an external LD (laser diode), the bit delay value being lacking is encoded and outputted to external.

25 Next, the PON ONU controlling apparatus of the present invention has an interface for receiving the payload of the mini-slot to use desired MAC with a same PON slave chip. Before the ONU transfers the mini-slot, a mini-slot payload enable signal is outputted to external to input the payload

data from a chip external circuit to the PON slave chip and to transfer to the mini-slot. The external circuit transfers request data in any form by using the enable signal.

As described above, in the present invention, a PON slave controller for use in an PON ONU system for processing in unit of 1 byte 8 bits is constructed so that an enable signal for mini-slot payload is outputted to external and a byte input signal is received and arbitrary data can be loaded in the mini-slot to use an arbitrary MAC (Medium Access Control) technique.

Also, in the present invention, because there is provided an interface for transmitting various mini-slot data and, even if a PON dedicated transceiver is not used in downstream, constant delay between the OLT and its corresponding ONU every time the power is newly turned on or when the transceiver is newly synchronized with new byte clock acquisition.

While the present invention has been shown and described with respect to the particular embodiments, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the spirit and scope of the invention as defined in the appended claims.