Project Report Format

1. INTRODUCTION

1.1 Project Overview

The project titled "Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau" aims to provide a clear, interactive dashboard that helps stakeholders such as homebuyers, investors, and analysts understand how various housing features (like area, location, basement size, etc.) impact sale prices. By leveraging data visualization through Tableau, the project turns raw housing datasets into actionable insights.

1.2 Purpose

The purpose of this project is to simplify the complex housing data into a visual format that aids users in making data-informed decisions when exploring real estate trends. It seeks to empower users who may not have technical skills to perform deep analysis but still require valuable insights from housing market data.

2. IDEATION PHASE

Ideation Phase

2.1 Define the Problem Statements

Date	18 June 2025
Team ID	LTVIP2025TMID48912
Project Name	Visualizing Housing Market Trends:An Analysis of Sale Prices and Features using Tableau
Maximum Marks	2 Marks

Customer Problem Statement Template:

Create a problem statement to understand your customer's point of view. The Customer Problem Statement template helps you focus on what matters to create experiences people will love.

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	A busy working professional	Quickly find a suitable area to buy a house	I don't have time to analyze lengthy reports or datasets	The dashboard lacks a simple summary or recommendation feature	Overwhelmed and indecisive
PS-2	A data user exploring market trends	Visualize how different features impact house prices	Some data points are missing or outdated	The dashboard isn't pulling from live or recent data sources	Skeptical and frustrated

A well-articulated customer problem statement allows you and your team to find the ideal solution for the challenges your customers face. Throughout the process, you'll also be able to empathize with your customers, which helps you better understand how they perceive your product or service.

lam	Describe customer with 3-4 key characteristics - who are they?	Describe the customer and their attributes here
I'm trying to	List their outcome or "job" the care about - what are they trying to achieve?	List the thing they are trying to achieve here
but	Describe what problems or barriers stand in the way — what bothers them most?	Describe the problems or barriers that get in the way here
because	Enter the "root cause" of why the problem or barrier exists – what needs to be solved?	Describe the reason the problems or barriers exist
which makes me feel	Describe the emotions from the customer's point of view – how does it impact them emotionally?	Describe the emotions the result from experiencing the problems or barriers

Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau

I am	A data-driven homebuyer or real estate investor who values informed decision-making, is time-constrained, and lacks technical skills to process raw data.
I'm trying to	Understand how property features and locations impact sale prices to make confident buying or investment decisions.
But	I find it hard to interpret raw data and correlate different housing features due to lack of visual clarity or missing insights.
Because	The available dashboards are not intuitive, lack interactivity, and often do not reflect up-to-date or easily comparable information.
Which makes me feel	Frustrated, uncertain, and less confident in making a financial decision that could impact my future

2.2 Empathy Map Canvas:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes.

It is a useful tool to helps teams better understand their users.

Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using

Tableau.

Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau

Think & Feel

- · Is this area affordable for me?
- Am I making the right investment?
- What features affect the house price? Confused by inconsistent trends

Hear

I want accurate and recent data

ousing prices are going up again!" heck how many bathrooms and cation impact price."

se Tableau to analyze real estate trends." his dashboard is too complicated

Interactive charts and filters

See

- Property trends by location
- Correlation between features
- Outdated or incomplete datal
- Complex visualizations that ar hard to interpret

Say & Do

- Uses filters to explore sale price by feature
- Compares neighborhoods visually
- Spends time analyzing but gives up if the UI is compex
- Asks questions like "What's the best time to
- Exports graphs for presentations or decisions

Pain

- Difficult to interpret raw data
- Hard to compare multiple locations/features
- Visual overload or poor dashboard
- design

Gain

- housing data
- · Accurate and updated information
- Easy comparison of Interactive exploration with filters
 - Accurate and updated information

2.3 Brainstorm & Idea Prioritization Template:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

3.REQUIREMENT ANALYSIS

3.1 customer journey map.-

Project: Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau

Scenario: A user visits the dashboard, uploads housing data or uses sample data, filters it, views insights, and possibly shares/export results.

Steps	Typical Experie nce	Interactions	Things (Digital Touchpoi nts)	Places	Peop le	Goals & Motivati ons		Negative Moment s	Opportuni ties
Open Dashbo ard	accesse s the Tableau dashboa	dashboard or opens from Tableau Desktop	Tableau Public link / Desktop	Home / Office	User (solo)	Help me explore housing data easily	interfac e	confusin g	Improve initial load speed and add tooltips
Upload or Use Sample Data	User uploads housing CSV or chooses demo data	Drag-drop or dropdown click	File Upload / Dataset Selector	Dashbo ard Screen	User	Help me use my own data or test it	Sample data is readily availabl e	Upload errors or format mismatc hes	Add file format instructio ns and error prompts
Apply Filters	User selects year, bedroo ms, price range etc.	Dropdowns, sliders, radio buttons	Filter Panel	Dashbo ard Screen	User	Help me narrow down to relevant info	Realtime filtering is respons ive	Too many filters overwhe Im	Group filters or use collapsible sections

View Visuals	User sees price trends, KPIs, pie charts	Scroll and hover to explore graphs	KPI Tiles, Pie Charts, Bar Graphs	Dashbo ard	User	Help me gain insights fast	Engagin g visuals help tell the story	Some visuals may lack labels or clarity	Add legends, hover hints, and captions
Export or Share	User saves graph or shares link	Clicks export/down load	Downloa d buttons / Share URL	Browser	User	Help me save or share findings	Quick downlo ad access is handy	No waterma rk-free or branded export option	Allow watermar k toggle or branded template
Exit	User closes dashboa rd or logs out	Browser close or logout	Web Browser or Tableau app	Anywhe re	User	Help me come back to this state later	Clean exit, no bugs	Filters or session not saved	Add session memory or export view settings

3.2 Solution Requirement.

Functional Requirements:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Data Upload	Upload CSV/Excel of housing market data
FR-2	Data Cleaning	Remove missing or inconsistent values

FR-3	Feature Engineering	Add derived metrics (e.g., price/sqft)
FR-4	Interactive Visualization	Filter data by region, price range, features
FR-5	Trend Analysis	Time-based trends in housing prices
FR-6	Data Export	Export selected visual insights to image/PDF

Non-Functional Requirement:

FR No.	Non-Functional Requirement	Description	
NFR-1	Usability	The dashboard must be intuitive and simple to use for non-technical users.	
NFR-2	Security	Local-only access; data not shared externally; no login needed.	
NFR-3	Reliability	Should handle file errors and missing data gracefully.	
NFR-4	Performance	Should render visualizations for medium	
		datasets (~10,000 records) quickly.	
NFR-5	Availability	Works offline on local Tableau Desktop software.	
NFR-6	Scalability	Suitable for scaling up to slightly larger datasets if needed in future.	

3.3 Data Flow Diagram

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Data Flow Diagram:

DFD Level 0 - Project Overview

- User uploads the housing dataset (CSV/Excel)
- Preprocessing Module (Python) cleans and transforms the data
- Feature Engineering Module adds derived attributes (e.g., price/sqft)

- Visualization Layer (Tableau Dashboard) displays trends and insights
- User views or exports filtered insights

DFD Level 1 - Detailed Process

- Data Upload → File Validation → Missing Value Handling
- Data Transformation → Unit Normalization → Column Derivations
- Dashboard \rightarrow Filters by Region, Price, Bedrooms, etc. \rightarrow Displays Graphs and Charts

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority / Release
Data Analyst / Student	Data Upload	USN-1	As a user, I can upload a housing dataset in CSV/Excel format	Dataset successfully uploaded and ready for processing	High / Sprint-1
Data Analyst / Student	Data Preprocessing	USN-2	As a user, I can clean data and remove missing entries	Data cleaned with no missing/null values	High / Sprint-1
Data Analyst / Student	Feature Engineering	USN-3	As a user, I can create new metrics like price per sqft, age of house	Derived fields are generated correctly	High / Sprint-1
End User / Viewer	Visualization Filtering	USN-4	As a user, I can filter housing data by location, price, or bedroom count	Filters apply correctly on dashboard	High / Sprint-2

End User / Viewer	Trend Analysis	As a user, I can view charts showing sale	Charts show monthly/yearly price trends	High / Sprint-2
End User / Viewer	Export Data	As a user, I can export filtered	•	Medium / Sprint-3

3.4 Technology Stack:

Technical Architecture:

This project leverages data visualization to analyze housing market trends such as sale prices and housing features using Tableau. It focuses on visual exploration rather than complex machine learning or

cloud-native deployments. The architecture is primarily local with support from lightweight scripting and desktop-based tools.

Architecture Diagram Summary:

- User Interface (Tableau Dashboard) Users interact with visualizations.
- Data Source (Local File Storage) CSV or Excel files used as input.
- Preprocessing (Python) Data is cleaned and structured using pandas.
- • Feature Engineering (Python or Tableau Prep) Additional insights generated.
- Visualization Layer (Tableau Desktop / Public) Interactive dashboards built and published.
- • Infrastructure Local machine for development and deployment.

Table-1: Components & Technologies:

			1
S.No	Component	Description	Technology Used
1	User Interface	Dashboard interface for user interaction	Tableau Public / Tableau Desktop
2	Application Logic-1	Preprocessing logic for housing data	Python (Pandas, NumPy)
3	Application Logic-2	Feature engineering and transformations	Tableau Prep / Python
4	Application Logic-3	Not used	Not Used
5	Database	Raw data storage (optional, using files)	Not Used / CSV
6	Cloud Database	Not used in this project	Not Used
7	File Storage	For storing CSV/Excel input files	Local Filesystem

8	External API-1	Not used	Not Used
9	External API-2	Not used	Not Used
10	Machine Learning Model	Not used	Not Used
11	Infrastructure	System where the application runs	Local Desktop (Windows/Mac)

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1	Open-Source Frameworks	Data preprocessing and manipulation	Python (Pandas, NumPy)
2	Security Implementations	No user authentication or cloud data access in current version	Not Applicable
3	Scalable Architecture	Not designed for cloud scale or multiple users	Not Applicable
4	Availability	Local system availability only	Tableau Desktop on personal system
5	Performance	Handles small to medium datasets, processed locally using efficient libraries	Python (Pandas), Tableau Optimizations

4. PROJECT DESIGN

4.1 Problem Solution Fit:

Problem – Solution Fit Template:

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why

Pur	pos	e:
-----	-----	----

	Solve complex problems in a way that fits the state of your customers.
	Succeed faster and increase your solution adoption by tapping into existing mediums and channels of behavior.
	Sharpen your communication and marketing strategy with the right triggers and messaging.
u 1	ncrease touch-points with your company by finding the right problem-behavior fit and building trust by solving frequent annoyances, or urgent or costly problems.
	Understand the existing situation in order to improve it for your target group.

Problem – Solution Fit (Updated for Project)

Problem:

Analyzing the housing market to understand pricing trends and the impact of various property features can be difficult due to inconsistent data sources, large dataset volumes, and lack of interactive tools. This makes it challenging for users such as homebuyers, investors, or analysts to make informed decisions.

Solution:

Our solution leverages Tableau to provide an interactive dashboard for visualizing housing data. The data is cleaned and processed using Python and visualized with filters for region, price, and features. Users can explore patterns and gain insights without needing technical skills or coding knowledge.

Why it works:

This solution fits well because many users struggle to interpret raw real estate data. Tableau's interactivity and Python's automation simplify analysis, allowing users to focus on insights rather than processing. The system also provides scalability for use across regions and datasets.

Template:

4.2 Proposed Solution:

Proposed Solution Template:

Project team shall fill the following information in the proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Understanding and identifying trends in housing market data can be challenging due to the volume and variety of factors such as location, property features, and time. Users lack an intuitive way to interpret how these factors influence housing prices.

2.	Idea / Solution description	This project proposes a data-driven approach using Tableau to visualize housing market trends. The system will enable users to upload datasets, process and clean data using Python, and explore trends through interactive dashboards. This helps users gain insights into pricing patterns, feature impact, and locationbased analytics.
3.	Novelty / Uniqueness	The solution uniquely combines data preprocessing in Python with the powerful visual exploration capabilities of Tableau. It offers a nocode experience to users who want to explore complex datasets through simple filters and charts.
4.	Social Impact / Customer Satisfaction	The solution can benefit homebuyers, real estate analysts, and developers by providing transparent and accessible housing market information. It promotes informed decisionmaking and enhances customer confidence.
5.	Business Model (Revenue Model)	This solution can be offered as a freemium Tableau dashboard tool with optional customization services for real estate firms. Revenue can be generated through consulting, dashboard tailoring, or training packages.
6.	Scalability of the Solution	The system is designed to handle moderately large datasets and can be scaled to integrate APIs for live data or support larger data infrastructure with cloud-based Tableau solutions in the future.

4.3 Solution Architecture:

Solution Architecture:

The solution architecture for this project outlines how data is collected, processed, and visualized to provide insights into housing market trends using Tableau. It identifies the best technologies to support the transformation of raw housing data (CSV/Excel) into meaningful visual dashboards. The architecture also defines preprocessing steps, feature engineering logic, and dashboard publication mechanisms.

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Example - Solution Architecture Diagram:

Solution Architecture

Figure 1: Architecture and data flow of the voice patient diary sample application.

5. PROJECT PLANNING & SCHEDULING:

5.1 Project Planning:

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number		Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	As a user, I can upload a housing dataset in CSV/Excel format	3	High	Donthu Harshavardhan
Sprint-1	Data Loading	USN-2	As a user, I can load the dataset into Tableau	2	High	Donthu Harshavardhan
Sprint-2	Data Cleaning	USN-3	As a user, I can clean data and remove missing entries	3	High	Donthu Harshavardhan,
Sprint-2	Categorical Handling	USN-4	As a user, I can preprocess categorical fields appropriately	3	High	Donthu Harshavardhan, Chakali Ramana
Sprint-3	Dashboard Design	USN-5	As a user, I can view visual summaries of pricing trends	2	High	Donthu Harshavardhan,
Sprint-3	Featurebased Filtering	USN-6	As a user, I can filter dashboards by price, bedrooms, location, etc.	2	High	Donthu Harshavardhan
Sprint-4	Dashboard Exporting	USN-7	As a user, I can export visuals to images or PDFs	2	High	Donthu Harshavardhan, Gudisi Gnaneshwar Yadav
Sprint-5	Tableau Public Publishing	USN-8	As a user, I can publish dashboards to Tableau Public	1	High	Donthu Harshavardhan,

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date	Story Points Commpleted (as on planned date)	Sprint Release Date (Actual)
Sprint-1	5	2 Days	18 June 2025	20 June 2025	5	20 June 2025
Sprint-2	5	2 Days	20 June 2025	22 June 2025	5	22 June 2025
Sprint-3	5	2 Days	22 June 2025	24 June 2025	5	24 June 2025
Sprint-4	5	1 Day	24 June 2025	24 June 2025	5	24 June 2025
Sprint-5	5	1 Day	25 June 2025	25 June 2025	5	25 June 2025

velocity

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day) **Average velocity=5+5+5+5+5+2+2+1+1=25/8=3.12 Story points/day (rounded)**

Final average team velocity=3.1 points / day

Burndown Chart

A burndown chart visually represents the remaining work versus time.

You can manually plot this based on the dates and story point progression above using tools like Excel or Google Sheets.

6. FUNCTIONAL AND PERFORMANCE TESTING:

6.1 Performance Testing:

Model Performance Testing

Project team shall fill the following information in model performance testing template:

S.No.	Parameter	Screenshot / Values
1	Data Rendered	Housing dataset with columns: SalePrice, Bedrooms, Bathrooms, YearBuilt, YearRenovated, etc.
2	Data Preprocessing	Cleaned missing values, derived fields: HouseAge, IsRenovated, YearsSinceRenovation

3	Utilization of Filters	Filters used: Year Built, Renovation Status, Bedrooms, Bathrooms, Sale Price Range
4	Calculation fields Used	HouseAge = 2025 - YearBuilt; IsRenovated = IF YearRenovated > 0 THEN "Yes" ELSE "No"
5	Dashboard design	No of Visualizations / Graphs - 4 (KPI Overview, Sales by Renovation, Pie Chart by Age & Renovation, Grouped Bar by Features)
6	Story Design	No of Visualizations / Graphs - 4 (Organized into interactive dashboard layout)

7. RESULTS:

7.1 Output Screenshots:

Scenario 1 – Overall Housing Data Overview

Scenario-2 Total Sales by Years Since Renovation

Scenario 3 – Distribution of House Age by Renovation Status

Scenario 4 - House Age Distribution by Number of Bathrooms, Bedrooms, and Floors

Dashboard of Visualizing Housing Market Trends

(Story)

Visualizing Housing Market Trends

By Donthu Harshavardhan

Team ID: LTVIP2025TMID48912.

8. ADVANTAGES & DISADVANTAGES:

Advantages

- · Easy to use and visually appealing
- Helps users quickly understand housing trends

- No coding required just interactive dashboards
- Saves time with filters and ready-made visuals
- Can be customized with your own data

Disadvantages

- Doesn't predict future prices (no ML)
- Requires Tableau software access
- Needs manual data updates
- Large files may slow down performance
- · Limited mobile responsiveness.

9.conclusion.

• This project successfully demonstrates how Tableau can be used to visualize and analyze housing market trends. By transforming raw data into interactive dashboards, users can easily explore factors that influence house prices—such as renovations, age, and number of rooms. While the project is simple and intuitive, it provides valuable insights that support better real estate decisions. With further enhancements like predictive models or live data, this dashboard could evolve into a powerful tool for buyers, sellers, and analysts alike.

10. FUTURE SCOPE.

- Integrate predictive models to forecast future house prices.
- Connect to live housing market APIs for real-time updates.
- Enable mobile-friendly dashboard views.
- Add map-based visualizations for geo-level insights
- Include user login to save preferences and sessions.. Allow comparisons across multiple cities or time periods.

11.APPENDIX:

• **Source code:** N/A (Tableau is low-code)

• Data set link:

https://www.kaggle.com/datasets/rituparnaghosh18/transformed-housing-data-2

Github & Project demo link

• Git hub link:

 $\frac{https://github.com/Harshavardhandonthu/Visualizing-HousingMarket-Trends-An-Analysis-of-Sale-Prices-and-Features-using-Tableau}{Features-using-Tableau}$

• Demo link:

https://drive.google.com/file/d/1jWU9bB2cKyY9fbzkhcaM4iiKVDI3asuw/view?usp=drive link