IOS: Inter-Operator Scheduler for CNN Acceleration

Yaoyao Ding^{1,2} Ligeng Zhu³ Zhihao Jia⁴ Gennady Pekhimenko^{1,2} Song Han³

 1 University of Toronto 2 Vector Institute 3 Massachusetts Institute of Technology 4 Carnegie Mellon University

Presenter: Shiwei Zhang

Introduction

GPU Under-utilization in CNN

A recent trend in CNN design is to replace a single branch of convolutions with multiple branches of convolutions. As a result, the number of convolutions grows while the computation FLOPs in each convolution becomes smaller.

Existing Approaches

- ▶ Intra-operator parallelism (TVM) executes arithmetic operations within a single operator in parallel. However, the degree of parallelism within an operator is limited, especially when the Conv operations are becoming smaller.
- ▶ **Graph transformation** (MetaFlow, TASO) explores merging and substituting operators to enable more parallelism. However, the possible merging are limited to same type of operators.
- ▶ Inter-operator scheduling (Graphi, Rammer, Nimble) schedules some operators to run concurrently. However, they use simple heuristics and don't lead to global optimal.

IOS: Inter-Operator Scheduler

This paper introduces **IOS**, a novel **dynamic programming** algorithm to find a highly optimized schedule for **inter-operator parallelization**.

Problem Definition

Graph and Stage

A CNN is defined as a DAG G=(V,E), where V is the set of operators, and E is the edge set representing dependencies.

The computation graph is partitioned into multiple **stages**. Stages are executed sequentially and the operators in the same stage are executed according to a certain **parallelization strategy**.

Parallelization Strategy

Operator merge merges multiple operators of the **same type** together. For example, an 3x3 Conv can be merged with a 5x5 Conv, by padding and concatenating the kernels.

Under **concurrent execution**, the operators in the stage that have no dependencies are executed concurrently with multiple CUDA streams.

Schedule

A Schedule $Q = \{(S_1, T_1), (S_2, T_2), \dots\}$ is an assignment of operators S_i to the i-th stage and the parallelization strategy T_i of the i-th stage.

IOS finds a schedule Q^* that minimizes a cost function c for a given graph G, i.e., $Q^* = \operatorname{argmin}_Q c(G,Q)$. In this work, c is defined as the latency of running G following schedule Q.

Methods

Main Idea

For an **ending** S' of S, we have:

$$\mathsf{cost}[S] = \min_{S'}(\mathsf{cost}[S-S'] + \mathsf{stage_latency}[S'])$$

(1) Operators V

(2) S' is an ending of V

(3) S' is **not** an ending of V

(4) Partition graph by endings recursively

Core Function

```
function SCHEDULER(S) if \cos[S] \neq \infty then return \cos[S] for all ending S' of S satisfying pruning strategy P do L_{S'}, T_{S'} = \operatorname{GENERATESTAGE}(S') L_S = \operatorname{SCHEDULER}(S - S') + L_{S'} if L_S < \cos[S] then \cos[S] = L_S \operatorname{choice}[S] = (S', T_{S'}) return \cos[S]
```

Example

(4) Schedule Found by IOS

Time Complexity

Definition: d is the width of G, if we can find at most d operators in G such that there is no path connecting any two of them.

Theorem: The time complexity of IOS is $\mathcal{O}(\binom{n/d+2}{2}^d)$, which can be relaxed to $\mathcal{O}((n/d+1)^{2d})$, where n is the number of operators in G and d is its width.

Model	n	d	$\binom{n/d+2}{2}^d$	#(S,S')	#Schedules
Inception V3					3.8×10^{6}
Randwire	33	8	3.7×10^{9}	1.2×10^{6}	9.2×10^{22}
NasNet	18	8	5.2×10^{6}	3.1×10^{5}	7.2×10^{12}
SqueezeNet	6	3	2.2×10^2	51	1.3×10^{2}

Pruning

IOS without pruning can find the optimal strategy for the benchmarked graphs in 4 hours. To further reduce the search time, IOS introduces two parameters r and s. $P_{r,s}(S,S')=$ True if and only if S' has at most s groups and each group has at most s operators.

Evaluation

Experiments Setup

- ► Hardware: NVIDIA Tesla V100
- ► Execution Engine: A cuDNN-based C++ execution engine.
- ▶ Models: Inception V3, RandWire, NasNet-A, and SqueezeNet
- Baselines: TensorRT and TVM
- ▶ Pruning Parameters: r = 3 and s = 8

Comparison of Different Schedules

Comparison of cuDNN-based Frameworks

More Active Warps Improve Utilization

Schedule Pruning Reduces Search Time

Specialized Scheduling is Beneficial

Specialization for Different Batch Sizes		Optimized for			
		1	32	128	
Execute	1	4.03	4.50	4.63	
	32	29.21	27.44	27.93	
	128	105.98	103.74	103.29	

Speciali for Diff		Optimized for		
Devi		K80	V100	
Execute	K80	13.87	14.65	
on	V100	4.49	4.03	

(1) Specialization for Batch Sizes

(2) Specialization for Devices

Consistent Improvement for Different Batch Sizes

Intra- and Inter-Operator Parallelism

Summary

Conclusion

Strength

- ▶ IOS introduces the concept of **stage**, which enables dynamic programming.
- ▶ The algorithm description is detailed and the open-sourced code is clean.

Limitation

- ► The paper omits the detail about the profiler. IOS needs the cost of running multiple operators concurrently, which is not easy to simulate.
- ▶ The strategy space is very limited (compared with related works).
- ▶ They do not compare with similar works (Rammer etc.) in experiments.

Takeaways

- ▶ Dynamic programming works well with the DAG structure of neural networks. Other works have explored using dynamic programming for saving memory, distributed training, etc.
- We can design a reduced search space and use an efficient algorithm to find the global optimal.

Thank you!