第二十六章 命题逻辑

第4节 联结词的完全集

内容提要

- 真值函数
- 联结词与真值函数
- 联结词完全集
- 非联结词完全集的例子

联结词的完全集

- 为什么只考虑五个联结词?即
- 这五个联结词能否表示所有联结词?
- 这五个联结词是否有多余的?
- 要回答这两个问题,必须回答:
- 什么是联结词?
- 什么是一些联结词表示了一个联结词?
- 什么是联结词的"多余"?

什么是联结词?

- 联结词确定了复合命题构造方式。
- 复合命题建立了真假值对应方式。
- 例如:
- ¬p建立了如下对应:

•
$$0 \longrightarrow 1$$
, $1 \longrightarrow 0$

• $p \lor q$ 建立了如下对应:

•
$$(0, 0) \longrightarrow 0, (1, 0) \longrightarrow 1$$
,

•
$$(0, 1) \longrightarrow 1, (1, 1) \longrightarrow 1$$
.

•

真值函数

- {0, 1}上的n元函数
 - $f: \{ 0, 1\}^n \longrightarrow \{ 0, 1\}$
- 就称为一个n元真值函数(布尔函数)。

- 因此,每个联结词c确定了一个真值函数f_c。
- 每个真值函数也确定了一个联结词(如下)。

真值函数确定联结词

- 设f为如下二元真值函数:
- f(0,0) = 0, f(1,0) = 0, f(0,1) = 0, f(1,1) = 1.
- 则f确定了联结词C_f, pC_fq的真假值为:

	р	q	pC_fq
	0	0	0
•	0	1	0
	1	0	0
	1	1	1

即Cf为A

• 即: pC_fq 在指派 $< t_1, t_2 >$ 下的值为 $f(t_1, t_2)$ 。

命题形式确定的真值函数

■ 设命题形式 α 所含的命题变元都在 $p_1, p_2,...$ p_n 中。如下定义的n元真值函数称为 α 确定真值函数,记为 f_α :

$$f_{\alpha}(t_1, t_2, \dots t_n) =$$
 α 关于 $p_1, p_2, \dots p_n$ 在指派 $t_1, t_2, \dots t_n$ 下的值。

■ 例如,若 α 为p \vee (¬q),则 f_{α} 为:f(0,0) = 1, f(0,1) = 0, f(1,0) = 1, f(1,1) = 1

联结词的表示(I)

- 什么叫"用∧和→表示↔"?
- 直观上: $p\leftrightarrow q$ "可写为"只含 \wedge 和 \rightarrow 的命题 形式 $(p\rightarrow q)\wedge (q\rightarrow p)$
- "可写为"含义是两者真值表相同:

р	q	p↔q	(p→q)∧(q→p)
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

• 即: $(p\rightarrow q)\land (q\rightarrow p)$ 在指派< t_1, t_2 >下的值为

$$f \leftrightarrow (t_1, t_2)$$

联结词的表示(II)

用c₁, c₂, ...c_k表示c (或f)

仅用 $c_1, c_2, \dots c_k$ 可以构造一个命题 α 与由c(f)构造的命题等价。

存在α使α在任意指派< $(t_1, t_2, ..., t_n >$ 下的值恰为 $f_c(t_1, t_2, ...t_n)$ ($f(t_1, t_2, ...t_n)$)

联结词的完全集

- 直观地,说联结词集合A是完全的,指的是A中联结词能表示任意联结词。
- 设A一个联结词集合,称A为联结词的一个完全集,如果任一个真值函数f都可用A联结词来表示,即:对任真值函数f,都存在仅含A中联结词的命题 α 使得 α 在任意指派 $\langle t_1, t_2, ..., t_k \rangle$ 下的值即为 $f(t_1, t_2, ..., t_k)$ 。

$\{\neg, \lor, \land, \rightarrow\}$

- {¬,∨,∧,→}是联结词的一个完全集。
- 证: 只要证:

对任k元真值函数f,存在仅含{¬, ∨, ∧, →}中联结词的k元命题形式α使得α在任意指派〈 t_1 , t_2 , ... t_k 〉下的值即为f(t_1 , t_2 , ... t_k)。

对k归纳证明。

$\{\neg, \vee, \wedge, \rightarrow\}$ (续1)

k=1时,一元真值函数有四个 f_1 、 f_2 、 f_3 、 f_4 :

$$f_1: 0 \longrightarrow 0, 1 \longrightarrow 0$$

$$f_2: 0 \longrightarrow 1, 1 \longrightarrow 1$$

$$f_3: 0 \longrightarrow 0, 1 \longrightarrow 1$$

$$f_4: 0 \longrightarrow 1, 1 \longrightarrow 0$$

分别可以用p_\(¬p)、p_\(¬p)、p和¬p表示。 此时命题成立

$\{\neg, \vee, \wedge, \rightarrow\}$ (续2)

- •设k<n时命题成立,下证k=n时命题也成立.
- •设 $f(x_1, x_2, ..., x_n)$ 是一个n元真值函数,
- •定义如下两个n-1元真值函数f'、f":
 - •f'($x_2, x_3, ..., x_n$) = f(0, $x_2, x_3, ..., x_n$)
 - •f" $(x_2, x_3, ..., x_n) = f(1, x_2, x_3, ..., x_n)$
- •由归纳假设,f'和f"都可由仅含 $\{\neg, \lor, \land, \rightarrow\}$ 中联结词的n-1元命题形式 α_1 、 α_2 表示。设 α_1 、 α_2 中所含的命题变元设为 p_2 , p_3 ,..., p_n .
- •则f可由 $(\neg p_1 \rightarrow \alpha_1) \land (p_1 \rightarrow \alpha_2)$ 表示。

对任意指派〈t1, t2, …, tn 〉

$$(\neg p_1 \rightarrow \alpha_1) \land (p_1 \rightarrow \alpha_2)$$
在< 0, t_2 , ..., t_n >下的值

$$= \alpha_1 在 < 0, t_2, ..., t_n > 下的值$$

$$=\alpha_1$$
在< t_2 , ..., t_n >下的值

$$= f'(t_2, t_3, ..., t_n)$$

$$= f(0, t_2, t_3, ..., t_n)$$

=
$$f(t_1, t_2, t_3, ..., t_n)$$

命题成立。

同理可证,当t₁=1时命题也成立。

推论

1. 任一个n元真函数都可由一个仅含{¬, ∨, ∧, →} 中联结词的n元命题形式表示.

 {¬, ∨, ∧, →, ↔}是联结词的完全 集。

3. ↔可由¬, ∨, ∧, →表示。

$$\{\neg, \rightarrow\}$$

证明:

$$\alpha \vee \beta$$
可由 $(\neg \alpha) \rightarrow \beta$ 表示。

$$\alpha \wedge \beta$$
可由¬($\alpha \rightarrow (\neg \beta)$)表示。

即这两对命题形式在任意指派下的值相同。

$$\{\neg, \lor\}$$

证明:

 $\alpha \rightarrow \beta$ 可由 $(\neg \alpha) \lor \beta$ 表示。

α Λ β可由¬ ((¬ α) ∨ (¬ β))表示。

证明:

$$\alpha \rightarrow \beta$$
可由¬($\alpha \land (\neg \beta)$)表示。

$$\alpha \vee \beta$$
可由¬((¬ α)∧(¬ β))表示。

{∨**,** ∧**,** →**,** ↔**}**不是联结词的完全集证明:

总取**0**值的真值函数不能由只含此集合中的 联结词的命题形式来表示。

因为这样的命题形式在其中的命题变元都 取1时也取值1, 而不为0.

{¬,∨,∧,→,↔}的子集

- {¬, ∨, ∧, →, ↔}是联结词的完全集。
- ■5个4元素子集中只有{∨, ∧, →, ↔}不是联结词的完全集。
- ■3元素子集中,只要含¬就完全。 10个3元素子集,4个不完全,6个完全。
- 2元素子集中,{¬,→}、{¬, ∨}、{¬, ∧}是完 全的。
- {¬, ↔}是否完全?
- {¬}是否完全?

作业与思考题

• 作业

p508. 5、6、7

思考题

- -{¬, ↔}是否完全?
- {¬}是否完全?
- -二元真值函数中,哪个是完全集?

谢谢

