

TITANIC REPORT


```
Data Wrangling for the Titanic Dataset:

Data wrangling, also known as data munging,

Is the process of cleaning, structuring, and enriching raw data into a desirable format,
for better decision making in data analysis and machine learning.

In Data Visualization for the Titanic Dataset:

In the context of the Titanic dataset, data visualization can be used to:
Create various charts

1- Generate graphs
2- Design plots

These visualizations help in understanding aspects such as:
1- Survival rates
2- Passenger demographics
3- Relationships between different variables 

Data visualization is crucial for gaining deeper insights and making informed decisions in data analysis.
```



```
# import data
kashti = sns.load_dataset('titanic')
kashti
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	C	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True	NaN	Southampton	no	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False	В	Southampton	yes	True
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False	NaN	Southampton	no	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True	С	Cherbourg	yes	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True	NaN	Queenstown	no	True
891 ro	891 rows × 15 columns														

```
1 kashti.survived.value_counts().plot(kind ='bar')
```



```
#Use seaborn library to plot Scatter Graph
2 sns.scatterplot(data = kashti,x = 'age', y ='fare', hue = 'pclass')
```



```
# Box plot Graph
sns.boxplot(data = kashti , x = "sex", y = "fare", hue = 'pclass')
```



```
1 sns.countplot(x ='survived' , hue = 'sex', data = kashti)
```



```
1 # Histogram Graph
2 kashti.hist(bins =10, figsize = (10,9))
```



```
g = sns.FacetGrid(kashti, hue='survived', col='pclass', margin_titles=True, palette={1: 'seagreen', 0: 'gray'})
g = g.map(plt.scatter, 'fare', 'age', edgecolor='w').add_legend()

3
```



```
# Use Seaborn Library To plot Barplot Graph
sns.barplot(data = kashti,x = 'sex', y = 'fare', hue = 'pclass')
```

