b. Example:

i. An 8-bit processor adds two 16-bit numbers in two steps, whereas a 16-bit processor does it in one step.

What is Parallel Processing?

Processing of multiple tasks simultaneously on multiple processors is called parallel computing.

Memory Access Architecture

- 1. Shared Memory Architecture (UMA & NUMA):
 - a. Uniform Memory Access (UMA): All processors share a common global memory with equal access time.
 - b. Non-Uniform Memory Access (NUMA): All processors have local memory and access time varies depending upon the location.
- 2. Distributed Memory Architecture:
 - a. Each processor has its own private memory.
 - b. Processors communicate via message passing. (MPI)
- 3. Hybrid Distributed Share Memory:
 - a. Combines shared and distributed memory approaches.
 - b. Some part of memory is shared while other parts are local to the processors.

Parallel Architectures

1. Pipeline Architecture

Concept:

- A single instruction is broken into multiple stages, with each stage executing in parallel.
- Works similarly to an assembly line in a factory.

Key Characteristics:

- Improves instruction throughput.
- Each stage processes part of the instruction in parallel with others.
- Efficient for repetitive tasks like instruction execution.

Example:

- Instruction Pipeline in CPUs:
 - 1. **Fetch**: Retrieve instruction from memory.
 - 2. **Decode**: Identify operation and operands.
 - 3. Execute: Perform calculations.
 - 4. **Memory Access**: Read/write data.
 - 5. Write Back: Store the result in registers.