# Math 107 Lecture 13

**Roots of Complex Numbers and Fractals** 

by Dr. Kurianski on October 9, 2024

### » Announcements and Objectives

#### **Announcements**

- \* Skill Check 4 is in two weeks (10/23, 110 mins)
- \* Pre-Notes due before start of next lecture
- \* Assignments Due Friday (10/11):
  - \* HW6 Handwritten Questions
  - \* HW6 Coding Problems
  - \* HW6 MATLAB File Upload

#### **Objectives**

- \* Compute roots of complex numbers
- Explore fractals

#### » De Moivre's Theorem

For any complex nuber  $z=re^{i\theta}$  and any positive integer k, we have

$$z^k = r^k(\cos(k\theta) + i\sin(k\theta)).$$

**Example:** Let 
$$z = 2(\cos(\pi/4) + i\sin(\pi/4))$$
. Compute  $z^4$ .

Roots of complex numbers

#### » Roots of complex numbers

Notice that  $z=re^{i\theta}$  can be written equivalently as

$$z = re^{i(\theta + 2\pi k)}$$

for any integer k. This is because the unit circle repeats itself every time we go  $2\pi$  radians around.

If we want to find the *n*th roots of the complex number  $z=re^{i\theta}$ , we might start by writing

$$z^{1/n}=\left(re^{i heta}
ight)^{1/n}=r^{1/n}e^{i heta/n}.$$

But because we can add  $2\pi k$  to the angle  $\theta$  for any integer k, this would be the same if we wrote

$$z^{1/n} = r^{1/n} e^{i(\theta + 2\pi k)/n} = r^{1/n} \left[ \cos \left( rac{ heta + 2\pi k}{n} 
ight) + i \sin \left( rac{ heta + 2\pi k}{n} 
ight) 
ight].$$

#### » Roots of complex numbers

Consider the equation

$$x^4 - 1 = 0.$$

The values

$$x = 1, x = -1, x = i, x = -i$$

are solutions to the equation because when they are each raised to the 4th power, they each equal 1.

In other words, these values solve

$$x = 1^{1/4}$$
.

These are called the 4th roots of unity.

We started our discussion of complex numbers with thinking about the roots of the equation

$$x^2 + 1 = 0.$$

Let's now consider the equation

$$x^4 - 1 = 0$$

and think about the real and complex numbers that satisfy it.

**Note:** The values x = 1, x = -1, x = i, and x = -i all satisfy  $x^4 - 1 = 0$ . In other words, they are all **roots** of the equation  $f(x) = x^4 - 1$ .

One way to find roots of a function numerically is called Newton's method.

#### Idea of the method:

- 1. Make a guess  $x_0$  that you think is close to where f(x) = 0.
- 2. Find the tangent line to the function at your initial guess.
- 3. Use where the tangent line crosses the x-axis as your next guess for where f(x) = 0.
- 4. Repeat the steps.



What if there are multiple roots (places where f(x) = 0)?



Can we use this method to find complex roots of an equation like  $f(x) = x^4 - 1$ ?

$$x^4 - 1 = 0$$
, when  $x = 1, i, -i, -1$ 

Color-code the complex plane using the following rules:

- \* If the initial guess a + bi converges to the root x = 1, color a + bi blue.
- \* If the initial guess a + bi converges to the root x = i, color a + bi orange.
- \* If the initial guess a + bi converges to the root x = -i, color a + bi yellow.
- \* If the initial guess a + bi converges to the root x = -1, color a + bi purple.

#### **Newton fractal**



The Sierpinski Triangle

## » Creating the Sierpinski Triangle

#### One way...

- 1. Start with an equilateral triangle.
- Subdivide it into four smaller congruent equilateral triangles and remove the central triangle.
- Repeat step 2 with each of the remaining smaller triangles infinitely many times.

#### Another way...

- Start with an equilateral triangle.
- 2. Draw a point anywhere on the plane.
- 3. Choose a corner of the original triangle at random. Draw another point halfway between the previous point you drew and the chosen corner of the original triangle.
- 4. Repeat step 3 infinitely many times.

» The Sierpinski Triangle

Visualization



# » The Sierpinski Triangle

#### Visualization

