

Machine Learning CS60050

Computational Learning Theory (Error and Noise)

Learning From Data

Yaser S. Abu-Mostafa *California Institute of Technology*

Lecture 4: Error and Noise

Outline

- Nonlinear transformation (continued)
- Error measures
- Noisy targets
- Preamble to the theory

What transforms to what

$$\mathbf{x} = (x_0, x_1, \cdots, x_d) \qquad \stackrel{\Phi}{\longrightarrow} \qquad \mathbf{z} = (z_0, z_1, \cdots, z_{\tilde{d}})$$
 $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N \qquad \stackrel{\Phi}{\longrightarrow} \qquad \mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_N$
 $y_1, y_2, \cdots, y_N \qquad \stackrel{\Phi}{\longrightarrow} \qquad y_1, y_2, \cdots, y_N$

No weights in $\mathcal{X} \qquad \qquad \tilde{\mathbf{w}} = (w_0, w_1, \cdots, w_{\tilde{d}})$
 $g(\mathbf{x}) \qquad = \qquad \operatorname{sign}(\tilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x}))$

Outline

- Nonlinear transformation (continued)
- Error measures
- Noisy targets
- Preamble to the theory

The learning diagram - where we left it

© M2 Creator: Yaser Abu-Mostafa - LFD Lecture 4 6/22

Error measures

What does " $h \approx f$ " mean?

Error measure: E(h, f)

Almost always pointwise definition: $e(h(\mathbf{x}), f(\mathbf{x}))$

Examples:

Squared error: $e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) - f(\mathbf{x}))^2$

Binary error: $e\left(h(\mathbf{x}), f(\mathbf{x})\right) = \llbracket h(\mathbf{x}) \neq f(\mathbf{x}) \rrbracket$

From pointwise to overall

Overall error E(h, f) = average of pointwise errors $e(h(\mathbf{x}), f(\mathbf{x}))$.

In-sample error:

$$E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} e\left(h(\mathbf{x}_n), f(\mathbf{x}_n)\right)$$

Out-of-sample error:

$$E_{\text{out}}(h) = \mathbb{E}_{\mathbf{x}} [e(h(\mathbf{x}), f(\mathbf{x}))]$$

The learning diagram - with pointwise error

© M2 Creator: Yaser Abu-Mostafa - LFD Lecture 4

How to choose the error measure

Fingerprint verification:

Two types of error:

false accept and false reject

How do we penalize each type?

The error measure - for supermarkets

Supermarket verifies fingerprint for discounts

False reject is costly; customer gets annoyed!

False accept is minor; gave away a discount and intruder left their fingerprint \odot

The error measure - for the CIA

CIA verifies fingerprint for security

False accept is a disaster!

Take-home lesson

The error measure should be specified by the user.

Not always possible. Alternatives:

Plausible measures: squared error \equiv Gaussian noise

Friendly measures: closed-form solution, convex optimization

13/22

The learning diagram - with error measure

© M2 Creator: Yaser Abu-Mostafa - LFD Lecture 4

Noisy targets

The 'target function' is not always a function

Consider the credit-card approval:

age	23 years
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000
• • •	• • •

two 'identical' customers \longrightarrow two different behaviors

Target 'distribution'

Instead of $y = f(\mathbf{x})$, we use target distribution:

$$P(y \mid \mathbf{x})$$

 (\mathbf{x},y) is now generated by the joint distribution:

$$P(\mathbf{x})P(y \mid \mathbf{x})$$

Noisy target = deterministic target $f(\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$ plus noise $y - f(\mathbf{x})$

Deterministic target is a special case of noisy target:

$$P(y \mid \mathbf{x})$$
 is zero except for $y = f(\mathbf{x})$

The learning diagram - including noisy target

© M2 Creator: Yaser Abu-Mostafa - LFD Lecture 4

Distinction between $P(y|\mathbf{x})$ and $P(\mathbf{x})$

Both convey probabilistic aspects of ${f x}$ and y

The target distribution $P(y \mid \mathbf{x})$ is what we are trying to learn

The input distribution $P(\mathbf{x})$ quantifies relative importance of \mathbf{x}

Merging $P(\mathbf{x})P(y|\mathbf{x})$ as $P(\mathbf{x},y)$ mixes the two concepts

© M Creator: Yaser Abu-Mostafa - LFD Lecture 4

Outline

- Nonlinear transformation (continued)
- Error measures
- Noisy targets
- Preamble to the theory

What we know so far

Learning is feasible. It is likely that

$$E_{\rm out}(g) \approx E_{\rm in}(g)$$

Is this learning?

We need $g \approx f$, which means

$$E_{\mathrm{out}}(g) pprox 0$$

The 2 questions of learning

 $E_{
m out}(g)pprox 0$ is achieved through:

$$E_{
m out}(g)pprox E_{
m in}(g)$$
 and $E_{
m in}(g)pprox 0$

Learning is thus split into 2 questions:

- 1. Can we make sure that $E_{\mathrm{out}}(g)$ is close enough to $E_{\mathrm{in}}(g)$?
- 2. Can we make $E_{\rm in}(g)$ small enough?

What the theory will achieve

Characterizing the feasibility of learning for infinite M

Characterizing the tradeoff:

Model complexity
$$\uparrow$$
 $E_{
m in}$ \downarrow Model complexity \uparrow $E_{
m out}-E_{
m in}$ \uparrow

22/22 © M Creator: Yaser Abu-Mostafa - LFD Lecture 4

Thank You!

