Tema 6 Introducción a las redes de ordenadores

Fundamentos de Computadores Curso 2018/19

Índice

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso
- 6.1.3. El núcleo de la red

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2. Asignación automática de direcciones (DHCP)
- 6.3.3. Traducción de direcciones (NAT)
- 6.3.4. Identificación de procesos: puertos

6.4. Modelos de comunicación

- 6.4.1. Tipos de servicio ofrecidos
- 6.4.2. Modelos de las aplicaciones

6.5. Servicios de aplicación en Internet

- 6.5.1. El Web
- 6.5.2. Correo electrónico

Índice

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso
- 6.1.3. El núcleo de la red

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2. Asignación automática de direcciones (DHCP)
- 6.3.3. Traducción de direcciones (NAT)
- 6.3.4. Identificación de procesos: puertos

6.4. Modelos de comunicación

- 6.4.1. Tipos de servicio ofrecidos
- 6.4.2. Modelos de las aplicaciones

6.5. Servicios de aplicación en Internet

- 6.5.1. El Web
- 6.5.2. Correo electrónico

Componentes de Internet

- Millones de dispositivos
 - Conocidos como hosts o sistemas finales
 - Ejecutan aplicaciones de red
- Enlaces de comunicación
 - Fibra, cobre, radio
 - Cada uno con un ancho de banda determinado
- Equipos de interconexión
 - Routers, conmutadores
 - Reenvío y procesado de paquetes

Sistemas finales

• Hosts:

- Ejecutan programas de aplicación
 - Web, email
- Están en el extremo de la red
- Distintos tipos:
 - Ordenadores
 - Portátiles
 - PDAs
 - Teléfonos móviles
 - Sensores

Modelos de comunicación cliente/servidor

- Cliente-Servidor
 - Navegadores/servidores Web, clientes/servidores de correo
- Peer to Peer (P2P)
 - Skype, BitTorrent

Tipos de redes de acceso

- Redes de acceso a Internet
 - Redes de acceso residencial
 - Redes institucionales
 - Redes de acceso móvil
- Consideraciones
 - Distinto ancho de banda
 - Distinta calidad de servicio
 - Redes dedicadas o compartidas

Acceso residencial

Acceso vía módem

- Hasta 56Kbps de ancho de banda (normalmente menos)
- No se puede navegar y hablar por teléfono a la vez
- DSL (Digital Subscriber Line)
 - Normalmente desplegadas por las compañías telefónicas
 - Basado en una línea dedicada hasta la central telefónica.
 - Posibilidad de combinar datos y voz en la misma línea
 - ADSL (A=Asymmetric): Modalidad de DSL donde la velocidad de bajada y la de subida no son simétricas, es decir, distinta de bajada que de subida:
 - Hasta 3,5 Mbps en el canal ascendente (dirección a Internet)
 - Hasta 24 Mbps en canal descendente (dirección al host)
- **DOCSIS** (*Data Over Cable Service Interface Specification*) sobre infraestructura **HFC** (Hybrid Fibre Coaxial) Híbrido de fibra y Coaxial.
 - La red de cable y fibra une el hogar al router del ISP
 - Asimétrico: más ancho de banda en el enlace descendente
 - En enlace hacia el router es compartido entre los hogares
 - El despliegue lo realizan las compañías de cable y TV

Acceso organizacional

- Red de área local de una empresa u organismo
 - Conocida como intranet
- Existe un router que da salida a la red Internet
- Uso de tecnología Ethernet (IEEE 802.3):
 - 10 Mbps, 100Mbps, 1Gbps, 10Gbps Ethernet
- Configuración habitual:
 - sistemas finales conectados entre sí mediante conmutadores
 - Se utilizan puntos de acceso para dar cobertura inalámbrica IEEE 802.11 (WiFi). 802.11g (54 Mbps) 802.11n (600 Mbps) 802.11ac (1Gbps).

Ejemplo

- Componentes típicos de una red doméstica:
 - Módem ADSL o de cable
 - Router (con cortafuegos y funciones de NAT habitualmente)
 - Red Ethernet
 - Puntos de acceso inalámbricos 802.11 (wifi).

 Varios de estos elementos lógicos pueden estar en un solo elemento físico

Medios de transmisión

Medios físicos que permiten la propagación de bits entre emisor y receptor:

Par trenzado

- Dos hilos de cobre dispuestos de forma helicoidal cubiertos por un aislante de plástico
- Frecuencias de hasta 250 MHz
- Ampliamente utilizado en LANs Ethernet
- Conector RJ-45

Cable coaxial

- Núcleo de cobre recubierto por un aislante envuelto a su vez en un conductor externo
- Frecuencias de hasta 900 MHz
- Mayor distancia de transmisión e inmunidad al ruido que el par trenzado.

•Fibra óptica

- La presencia/ausencia de luz codifica un bit
- Núcleo de fibra de vidrio (mayor densidad) y revestimiento de cristal o plástico (menor densidad)
- Frecuencias de varios miles de MHz
- Mayor velocidad de transmisión (varios Gbps), distancia (menor atenuación), inmunidad al ruido, y coste que el par trenzado y coaxial.

Interconexión de routers

- Existen varias subredes interconectadas
- Los distintos routers se reenvían paquetes
- Dos formas de trabajar:
 - Conmutación de circuitos
 - Se establece un circuito por conexión
 - Entrega en orden y con calidad de servicio
 - Conmutación de paquetes
 - Cada paquete se encamina por separado
 - La entrega puede ser fuera de orden y es difícil garantizar la calidad
- Cualquier modalidad requiere algoritmos de encaminamiento
- Un paquete deberá atravesar varias redes distintas hasta llegar al destino

Ejemplo de red

 Red Académica Española (RedIris): Universidades y centros de I+D Españoles.

Mapa Actual (10 Gbps):

Índice

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso
- 6.1.3. El núcleo de la red

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2. Asignación automática de direcciones (DHCP)
- 6.3.3. Traducción de direcciones (NAT)
- 6.3.4. Identificación de procesos: puertos

6.4. Modelos de comunicación

- 6.4.1. Tipos de servicio ofrecidos
- 6.4.2. Modelos de las aplicaciones

6.5. Servicios de aplicación en Internet

- 6.5.1. El Web
- 6.5.2. Correo electrónico

Protocolos

- Los protocolos definen:
 - El formato
 - El orden de los mensajes enviados y recibidos entre entidades
 - Las acciones realizadas al enviar o recibir los mensajes
- Analogía entre protocolos humanos y de red

Necesidad de arquitecturas de red

- Las redes son complejas, muchos componentes:
 - Hosts, routers, enlaces de distinto tipo, aplicaciones, protocolos, hardware, software...
- Es aconsejable estructurar las redes en capas
 - Una estructura explícita permite identificar los componentes y sus relaciones en sistemas complejos
 - La modularización facilita el mantenimiento y la actualización
 - En cambio en la implementación de un servicio en una capa es transparente para el resto del sistema
- Principios de la división en capas:
 - Cada capa realiza un conjunto de tareas relacionadas
 - Cada capa proporciona servicios a la capa superior (ocultando todos los detalles de implementación) usando únicamente servicios de la capa inferior
 - Las entidades en la misma capa pero en distintos hosts reciben el nombre de procesos pares
 - Los procesos pares dialogan mediante un protocolo
 - Al conjunto de capas (conjuntos de servicios) y protocolos usados en cada capa se le denomina arquitectura de red (pila de protocolos)

Arquitectura de capas de Internet

Aplicación:

- Transferencia de archivos, email, Web
- Protocolos: FTP, (File Transfer Protocol) HTTP, (HyperText Transfer Protocol), SMTP, (Simple Mail Transfer Protocol), POP3 (Post Office Protocol), **BitTorrent**, ...

Transporte:

- Transferencia de información entre procesos
- Protocolos: **TCP**, (*Transmission Control Protocol*), **UDP** (*User* Datagram Protocol). Proporcionan un mecanismo para distinguir distintas aplicaciones dentro de una misma máquina a través del concepto de puerto

TCP: Orientado a conexión y fiable, garantiza datos entregados sin errores y en el mismo orden al transmitido.

UDP: No orientado a conexión y no fiable, muy utilizado para envío de audio y video en tiempo real.

Red:

- Encaminamiento de paquetes desde el origen hacia el destino
- Protocolo **IP** (*Internet Protocol*), algoritmos de encaminamiento

Enlace:

- Transferencia de datos entre elementos conectados directamente.
- Protocolos: **PPP**,(Point to Point Protocol) **Ethernet** (IEEE 802.3), **WiFi** (IEEE802.11), **HDLC**(*High-Level Data Link Control*)

Física:

Transmisión de bits sobre el medio

Aplicación

Transporte

Red

Enlace

Física

Flujo de Información entre capas

Índice

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso
- 6.1.3. El núcleo de la red

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2. Asignación automática de direcciones (DHCP)
- 6.3.3. Traducción de direcciones (NAT)
- 6.3.4. Identificación de procesos: puertos

6.4. Modelos de comunicación

- 6.4.1. Tipos de servicio ofrecidos
- 6.4.2. Modelos de las aplicaciones

6.5. Servicios de aplicación en Internet

- 6.5.1. El Web
- 6.5.2. Correo electrónico

Fundamentos del Direccionamiento IP

- Direccionamiento IP (versión 4)
 - Cada interfaz de red tiene asignada una dirección IP de 32 bits
 - La dirección IP suele expresarse de forma más cómoda como 4 números entre 0 y 255 separados por puntos:

- Las direcciones IP son únicas (a no ser que se use NAT: Network Address Translator)
 - Los routers suelen tener varias interfaces de red, por tanto varias direcciones IP
 - Los hosts sólo suelen tener una
- La dirección IP se compone de dos partes:
 - Dirección de red (netid)
 - Dirección de host (hostid)

 El organismo responsable es el ICANN: Internet Corporation for Assigned Names and Numbers

Fundamentos del Direccionamiento IP

- Encaminamiento en IP
 - Si dos hosts se encuentran en la misma red, pueden comunicarse directamente
 - Se puede determinar si dos hosts se encuentran en la misma red comparando el *netid* de sus direcciones IP
 - Si dos hosts no se encuentran en la misma red, el host origen envía el paquete al router por defecto
 - El router por defecto actúa como nexo de unión con otras redes
 - Todos los equipos deben tener configurada la dirección IP del *router* por defecto al que enviar los paquetes destinados a una red diferente
 - La dirección IP del paquete es la del host destino
- Direcciones especiales
 - Dirección de broadcast (difusión): Cuando la dirección de host (hostid) está formada por 1's
 - Dirección de red: Cuando la dirección de host (hostid) está formada por 0's

CIDR (Classless InterDomain Routing)

Características:

- Esquema de direccionamiento IP que permite un mayor aprovechamiento del espacio de direcciones IP
- Cada dirección IP se expresa como a.b.c.d/x donde x es el número de bits de la máscara de red
 - Todas las interfaces que pertenezcan a la misma red tendrán los mismos x bits iniciales
- Máscara de red (netid a 1 y hostid a 0)
 - Ejemplo: 155.54.12.219/20, es decir, la máscara de red es 255.255.240.0 (11111111111111111111110000.00000000)
- Ejemplo para la red 141.14.0.0/16

DHCP (Dynamic Host Configuration Protocol)

- La configuración de un host consta de tres valores principales:
 - Dirección IP del host
 - Máscara de subred
 - Dirección IP de un router/gateway (router por defecto)
- La especificación de estos valores puede realizarse mediante dos alternativas:
 - Mediante configuración manual realizada por un administrador de red
 - Mediante **DHCP** (Dynamic Host Configuration Protocol)
 - Protocolo de configuración dinámica de hosts que automatiza la asignación de los valores antes mencionados y otros parámetros de TCP/IP desde un servidor DHCP
 - No es necesario configurar TCP/IP manualmente en clientes
 - El administrador puede especificar los parámetros de forma centralizada
 - La mayoría de los routers pueden reenviar las solicitudes de configuración de DHCP, por lo que no es necesario disponer de servidores DHCP en cada subred de la red

DHCP (Dynamic Host Configuration Protocol)

- Ventajas de DHCP:
 - Se asignan direcciones con fecha de caducidad
 - Un host puede renovar la dirección y extender el plazo
 - Las direcciones liberadas pueden reasignarse a otros hosts
 - Ideal para dar soporte a usuarios móviles (inalámbricos)
- Esquema general de DHCP
 - 1. Descubrimiento
 - 2. Oferta
 - 3. Solicitud
 - 4. Confirmación

NAT (Network Address Translation)

Motivación:

- El rango de direcciones IP no es suficiente (2³²)
- En ocasiones, como en entornos domésticos, sólo se nos asigna una única dirección IP pública
- Si queremos conectar más de una interfaz, necesitaremos más direcciones
- Ciertos rangos de direcciones son privados:
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
 - 169.254.0.0/16

Funcionamiento de NAT:

- Los distintos hosts usan varias direcciones privadas
- Para el mundo exterior, todas se traducen en una única IP
- Se necesita un dispositivo que realice las conversiones
- Los equipos en la red privada no son directamente accesibles

NAT (Network Address Translation)

Todos los paquetes que dejan la red de área local tienen la misma dirección de origen 138.76.29.7

Los paquetes con origen o destino en esta red tienen direcciones de la red 10.0.0/24

Implementación de NAT

Introducción

- La versión de IP actual tiene sus días contados
- No existen ya más bloques de direcciones IPv4 disponibles
- El nuevo IPv6 introduce las siguientes características:
 - Es capaz de manejar miles de millones de hosts, aun con asignación de direcciones ineficiente (2¹²⁸ direcciones)
 - Reduce el tamaño de las tablas de enrutamiento
 - Simplifica el protocolo para permitir el procesamiento más rápido de paquetes
 - Proporcionar mayor seguridad (incorpora cabeceras de autenticación y confidencialidad)
 - Presta más atención al tipo de servicio, especialmente al tiempo real
 - Posibilitar que un host sea móvil sin cambiar su dirección
 - Elimina la sobrecarga del NAT al haber direcciones suficientes

Coexistencia:

 IPv4 e IPv6 deberán coexistir durante años con el fin de poder dar soporte a redes que tarden más en migrar

Puertos

Motivación:

- En un mismo host puede haber distintas aplicaciones de red ejecutándose
- Un mismo servidor puede atender a varios clientes simultáneamente
- Las direcciones IP de los equipos finales no son suficiente para la comunicación entre procesos
- En el **nivel de transporte**, cada proceso de un equipo queda identificado mediante un número de puerto
- Consecuentemente, cada conexión de transporte está identificada por los siguientes 4 valores:
 - Dirección IP de origen
 - Dirección IP de destino
 - Puerto de origen
 - Puerto de destino

Puertos

Ejemplo

- Servidor web que procesa múltiples conexiones a un mismo puerto desde distintos hosts origen:

PO: Puerto Origen; PD: Puerto Destino; IP-O: IP Origen; IP-D: IP Destino

Índice

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso
- 6.1.3. El núcleo de la red

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2. Asignación automática de direcciones (DHCP)
- 6.3.3. Traducción de direcciones (NAT)
- 6.3.4. Identificación de procesos: puertos

6.4. Modelos de comunicación

- 6.4.1. Tipos de servicio ofrecidos
- 6.4.2. Modelos de las aplicaciones

6.5. Servicios de aplicación en Internet

- 6.5.1. El Web
- 6.5.2. Correo electrónico

Tipos de servicio ofrecido

- Tanto las aplicaciones como las distintas capas de una arquitectura pueden ofrecer los siguientes tipos de servicio:
 - Servicio Orientado a Conexión (ejemplo más típico: TCP)
 - Hay un establecimiento de la conexión, una fase de transmisión de datos y una liberación de la conexión
 - Los datos se entregarán en orden.
 - Servicio No Orientado a Conexión (ejemplo más típico: UDP)
 - Cada mensaje se procesa de forma independiente, incluyendo toda la información de direccionamiento necesaria.
 - No garantiza la entrega en orden
 - Servicio Confirmado
 - El emisor tiene constancia de la recepción correcta de los datos
 - Servicio No Confirmado
 - No hay confirmación
- Cualquier combinación de orientado/no orientado respecto a confirmado/no confirmado es posible
- QoS (Quality of service, calidad de servicio): Tecnologías que garantizan transmisión de cierta cantidad de datos en un tiempo dado . Muy importante para video/voz.

Modelo cliente-servidor

Servidor:

- Siempre conectado
- Dirección IP permanente
- Posiblemente replicado

Clientes:

- Se comunican con el servidor
- Intermitentemente conectados
- Posiblemente IP dinámicas
- No se comunican directamente entre sí.

Arquitectura P2P (Peer to peer)

- No hay un servidor siempre activo
- Los peers se comunican entre sí directamente
- Los peers están conectados intermitentemente y pueden ir cambiando de dirección IP

Es un esquema muy escalable pero difícil de gestionar

Ejemplo: Bit Torrent

Sistema de distribución de ficheros P2P

Índice

6.1. La red Internet

- 6.1.1. Sistemas finales
- 6.1.2. Redes de acceso
- 6.1.3. El núcleo de la red

6.2. Protocolos y arquitecturas de red

- 6.2.1. Protocolos de comunicación
- 6.2.2. Arquitecturas de red

6.3. Direccionamiento en Internet

- 6.3.1. Direccionamiento CIDR
- 6.3.2. Asignación automática de direcciones (DHCP)
- 6.3.3. Traducción de direcciones (NAT)
- 6.3.4. Identificación de procesos: puertos

6.4. Modelos de comunicación

- 6.4.1. Tipos de servicio ofrecidos
- 6.4.2. Modelos de las aplicaciones

6.5. Servicios de aplicación en Internet

- 6.5.1. El Web
- 6.5.2. Correo electrónico

World Wide Web

Terminología

- Una página Web está formada por objetos
- Un objeto puede ser una página HTML (HyperText Markup Language), una imagen JPG, un applet Java, un archivo de audio...
- Una página Web consiste en un fichero base HTML que incluye referencias a otros objetos
- Cada objeto está identificado por una URL (Uniform Resource Locator)
- Ejemplo de URL:

```
http://www.someschool.edu/someDept/pic.gif
protocolo nombre del host trayectoria
```


Protocolo HTTP (Hypertext transfer protocol)

- Protocolo utilizado para el Web
- Sigue el modelo cliente-servidor:
 - Cliente: navegador que solicita, recibe y muestra objetos Web
 - Servidor: envía objetos en respuesta a solicitudes
- Usa el protocolo TCP
 - Habitualmente el servidor escucha en el puerto 80
- Es un protocolo sin estado, no se recuerdan conexiones

Mensajes HTTP

- 2 tipos de mensajes HTTP: request, response
 - Principalmente basados en ASCII
- HTTP request:

→ data data data data ...

• HTTP response:

```
Cabecera

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 2008 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 2008 .....

Content-Length: 6821

Content-Type: text/html
```

Datos solicitados

Correo electrónico

- Tres componentes principales:
 - Agentes de usuario
 - Servidores de correo
 - Protocolos de transferencia de correo: SMTP, POP3, IMAP
- Agentes de usuario
 - También conocidos como lectores de correo
 - Composición, edición, recuperación y envío de mensajes
 - Ejemplos: Eudora, Outlook, elm, Mozilla Thunderbird
 - Los mensajes salientes o entrantes se almacenan en servidores
- Servidores de correo
 - Los buzones de correo contienen los mensajes pendientes de los usuarios
 - Hay una cola de mensajes para los que tienen que ser enviados
- Protocolo **SMTP** (Simple Mail Transfer Protocol)
 - Se utiliza para el envío de mensajes, tanto desde los agentes como entre servidores

Ejemplo: Alicia manda un mensaje a Berto

- 1) Alicia usa su agente para redactar un mensaje para berto@um.es
- 2) El agente de Alicia envía el mensaje a su servidor de correo con SMTP
- El mensaje queda encolado para ser enviado

- 4) El servidor de Alicia envía el mensaje mediante SMTP al servidor de Berto
- 5) El servidor de Berto coloca el mensaje en su buzón
- 6) Berto usa su agente para leer el correo

Recuperación de los mensajes

- STMP se utiliza para el envío de mensajes al servidor propio y entre servidores.
- La recuperación de los mensajes pendientes desde el servidor se realiza mediante protocolos de recuperación de mensajes:
 - POP (Post Office Protocol)
 - El usuario conecta a través del agente con el servidor
 - Se lleva a cabo una autenticación del usuario entre el agente y el servidor
 - Si la autenticación es correcta, se descargan los mensajes
 - **IMAP** (Internet Message Access Protocol)
 - Más complejo que POP (más características)
 - Permite la manipulación de los mensajes sobre el servidor
 - HTTP (HyperTex Transfer Protocol)
 - La mayoría de los servidores de correo tienen una interfaz Web
 - Con el navegador es posible llevar a cabo la gestión del correo
 - Ejemplos: gmail, Hotmail, Yahoo! Mail, Webmail de la UMU

