北京航空航天大学 2017-2018 学年 第一学期期末考试

《 工科数学分析 ([)》 (A 卷)

班号	学号	姓名		
主讲教师	考场	成绩		

题 号	_	 三	四	五.	六	七	八	总分
成绩								
阅卷人								
校对人								

2018年01月23日

选择题(每题4分,满20分)

- 1. 下列命题中正确的是 (B)
- A. 若函数 f(x)在[a,b]上有界,则 f(x)在[a,b]上必可积;
- B. 若 f(x)在[a,b]上可积,则|f(x)|在区间[a,b]上也可积;
- C. 若 $\int_{-\infty}^{+\infty} f(x)dx$ 收敛,则 $\int_{-\infty}^{+\infty} |f(x)|dx$ 也收敛;
- D. 若 $\int_a^{+\infty} f(x)dx$ 发散, $\int_a^{+\infty} g(x)dx$ 发散,则 $\int_a^{+\infty} [f(x) + g(x)]dx$ 发散.
- 2. 设 f(x)满足等式 $f(x)+\sin x = \int_0^{\frac{\pi}{2}} f(x) dx$,则 $\int_0^{\frac{\pi}{2}} f(x) dx = ($ **B**)

- A. $\frac{2}{2\pi}$; B. $\frac{2}{\pi}$; C. $\frac{\pi-2}{2}$; D. $\frac{\pi-1}{2}$.
- 3. 设函数 f(x) 可导,则下列说法中正确的是(B)
- (1) $\int f(x) dx = f(x);$ (2) $\int f'(x) dx = f(x) + C;$
- (3) $\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_a^{x^2} f(t) dt \right) = f(x^2); \qquad (4) \quad \frac{\mathrm{d}}{\mathrm{d}x} \left(\int_a^b f(x) dx \right) = 0.$

- A. (1)(3);
- B.(2)(4);
- C.(1)(4);

D.(2)(3).

- 4. 下列广义积分中,发散的是(C)
- A. $\int_{1}^{+\infty} \frac{\sqrt{x+2}}{x^2} dx$;
- B. $\int_{1}^{+\infty} \frac{1 + \cos x}{x_2 \sqrt{x}} dx;$
- C. $\int_0^{+\infty} \frac{1}{x^2} dx;$

- D. $\int_{-\infty}^{+\infty} x e^{-x^2} dx$.
- 5. 曲线 $y = \int_0^x \sqrt{\sin t} dt$, $0 \le x \le \pi$ 的弧长为 (D)

- A. $\sqrt{2}$; B. 2; C. $1+\sqrt{2}$; D. 4.

二、 计算题(每题6分,满分30分)

1.
$$\int \frac{x+5}{x^2 - 6x + 13} \, dx$$

$$\mathbb{H}: \int \frac{x+5}{x^2 - 6x + 13} dx = \int \frac{(x-3)+8}{(x-3)^2 + 4} dx = \int \frac{x-3}{(x-3)^2 + 4} dx + 8 \int \frac{1}{(x-3)^2 + 4} dx$$

$$= \frac{1}{2} \int \frac{1}{(x-3)^2 + 4} d[(x-3)^2 + 4] + 8 \int \frac{1}{(x-3)^2 + 4} dx$$

$$= \frac{1}{2} \ln(x^2 - 6x + 13) + 4 \arctan\left(\frac{x-3}{2}\right) + C.$$

建议: 拆成两项3分, 积分计算各3分。

2.
$$\int_{0}^{1} \frac{\ln(1+x)}{(x+3)^{2}} dx$$

$$-\int_{0}^{1} \ln(1+x) dx \frac{1}{x+3} = -\frac{\ln(1+x)}{x+3} \Big|_{0}^{1} - \int_{0}^{1} \frac{1}{x+3} dx \ln$$

$$\not\text{# } \ \mathbb{R} \ \mathbb{R} = -\frac{\ln 2}{4} + \int_{0}^{1} \frac{1}{(x+3)(1+x)} dx = -\frac{\ln 2}{4} + \frac{1}{2} \int_{0}^{1} \frac{1}{1+x} dx + \frac{1}{2} \int_{0}^{1} \frac{1}{x+3} dx$$

$$= -\frac{\ln 2}{4} + \frac{1}{2} \ln 2 - \ln 2 + \frac{1}{2} \ln 3 = -\frac{3}{4} \ln 2 + \frac{1}{2} \ln 3$$

建议:分部2分,积分计算各4分。

3.
$$\int_{-3}^{3} (x^{2017} \arctan^2 x + 2018) \sqrt{9 - x^2} \, dx$$

解 由对称性: $\int_{-3}^{3} x^{2017} \arctan^2 x \, dx = 0$

原式 =
$$2018 \int_{-3}^{3} \sqrt{9 - x^2} \, dx = 2018 \times \frac{9}{2} \pi = 9081 \pi$$
.

(其中
$$\int_{-3}^{3} \sqrt{9-x^2} \, dx = \frac{9}{2} \pi$$
可以看做圆心在原点,半径为3的上半圆的面积)

建议:对称性3分,剩下计算3分。

4.
$$\lim_{x \to 0} \frac{\int_{\sin x}^{x} \sin t^{2} dt}{x \sin x}$$

$$\lim_{x \to 0} \frac{(\int_{\sin x}^{x} \sin t^{2} dt)'}{x^{2}} = \lim_{x \to 0} \frac{\sin x^{2} - \sin(\sin x)^{2} \cos x}{2x}$$

解 原式==
$$\lim_{x\to 0} \frac{\sin x^2}{2x} - \lim_{x\to 0} \frac{\sin(\sin x)^2 \cos x}{2x}$$

= $0 - \lim_{x\to 0} \frac{(\sin x)^2}{2x} = 0$

建议: 等价代换2分,变上,下限求导3分,结果1分。

5. 计算瑕积分
$$\int_0^2 \frac{1}{\sqrt{|1-x|}} dx$$
.

解 x = 1 是瑕点

$$\mathbb{E} \vec{\Xi} = \int_{0}^{1} \frac{1}{\sqrt{1-x}} dx + \int_{1}^{2} \frac{1}{\sqrt{x-1}} dx = \lim_{\varepsilon_{1} \to 0+} \int_{0}^{1-\varepsilon_{1}} \frac{1}{\sqrt{1-x}} dx + \lim_{\varepsilon_{2} \to 0+} \int_{1+\varepsilon_{2}}^{2} \frac{1}{\sqrt{x-1}} dx$$

$$= \lim_{\varepsilon_{1} \to 0+} (-2\sqrt{1-x}) \Big|_{0}^{1-\varepsilon_{1}} + \lim_{\varepsilon_{2} \to 0+} (2\sqrt{x-1}) \Big|_{0}^{2} + \lim_{\varepsilon_{2} \to 0+} (2\sqrt{x-1}) \Big|_{0}^{2} = 4.$$

$$= \lim_{\varepsilon_{1} \to 0+} (-2\sqrt{1-x}) \Big|_{0}^{1-\varepsilon_{1}} + \lim_{\varepsilon_{2} \to 0+} (2\sqrt{x-1}) \Big|_{0}^{2} = 4.$$

三、 证明题(本题10分)

设 f(x)在[0,1]上可微,且满足 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$,证明:至少存在一点 $\xi \in (0,1)$,使得 $\xi f'(\xi) = -f(\xi)$.

证明: 构造辅助函数 F(x) = xf(x),则 F(x) 在[0,1] 上可微。且

$$F(1) = f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx = \eta f(\eta) = F(\eta), \ \eta \in [0, \frac{1}{2}]$$

因此存在 $\xi \in (\eta, 1) \in (0, 1)$, 使得 $F(\xi) = 0$. 即: $\xi f'(\xi) = -f(\xi)$. 成立。

建议:辅助函数 2 分,中值定理 $F(1) = F(\eta)$ 5 分,最后 3 分。

四、 (本题 10 分)

- (1) 求二阶线性非齐次常微分方程 $y'' y' 2y = xe^{-x}$ 的通解;
- (2) 求上述方程满足y(0) = 0, y'(0) = 1的特解.

解: (1) 特征方程: $\lambda^2 - \lambda - 2 = 0$. -----2 分

容易求得两个特征根为: $\lambda_1 = 2, \lambda_2 = -1$. _______1 分

因为-1不是特征根,我们设非齐次方程的特解 $y^* = x(Ax + B)e^{-x}$. ______1 分

求得

$$(y^*)' = (2Ax + B)e^{-x} - (Ax^2 + Bx)e^{-x} = [(2A - B)x + B - Ax^2]e^{-x}.$$

$$(y^*)'' = (Ax + B - 4A)xe^{-x} + (2A - 2B)e^{-x}$$
.

带入方程, 我们有 $(-6Ax + 2A - 3B)e^{-x} = xe^{-x}$.

所以,
$$A = -\frac{1}{6}$$
, $B = -\frac{1}{9}$. -----2 分

于是非齐次方程的特解为 $y^* = y^* = -x(\frac{1}{6}x + \frac{1}{9})e^{-x}$.

非齐次方程的通解为 $y = C_1 e^{-x} + C_2 e^{2x} - x(\frac{1}{6}x + \frac{1}{9})e^{-x}$. ———1 分

(2)
$$y(0) = 0, y'(0) = 1$$
 带入非齐次方程的通解,得 $C_1 = -\frac{10}{27}, C_2 = \frac{10}{27}$,

所以所求特解为:
$$y = -\frac{10}{27}e^{-x} + \frac{10}{27}e^{2x} - x(\frac{1}{6}x + \frac{1}{9})e^{-x}$$
. -----2 分

五、 (本题 10 分)

将曲线 $y = \sqrt{x}$ 和 $y = 1 - \sqrt{1 - x^2}$ 所围成的公共部分绕 x 轴旋转一周,求所得旋转体的体积和表面积.

解:两曲线交点为
$$(0,0)$$
, $(1,1)$ ------2分

以
$$x$$
作为积分变量,旋转体体积为 $\int_0^1 \pi \left(\sqrt{x}\right)^2 dx + \int_0^1 \pi \left(1 - \sqrt{1 - x^2}\right)^2 dx$ -----2分

$$= \int_0^1 \pi x dx + \int_0^1 \pi \left(2 - x^2 - 2\sqrt{1 - x^2}\right) dx = \frac{\pi}{2} + 2\pi - \frac{\pi}{3} - \frac{\pi^2}{2}$$

$$=\frac{\pi^2}{2}-\frac{7}{6}\pi$$

表面积为
$$\int_0^1 2\pi \sqrt{x} \sqrt{1 + \frac{1}{4x}} dx + \int_0^1 2\pi \left(1 - \sqrt{1 - x^2}\right) \sqrt{1 + \left(\frac{x}{\sqrt{1 - x^2}}\right)^2} dx$$
------2分

$$= \int_0^1 \pi \sqrt{4x+1} dx + \int_0^1 2\pi \left(\frac{1}{\sqrt{1-x^2}} - 1 \right) dx = \frac{\pi}{6} \left(\sqrt{4x+1} \right)^3 \Big|_0^1 + 2\pi (\arcsin x - x) \Big|_0^1$$

$$=\frac{5\sqrt{5}-13}{6}\pi^{+}\pi^{2}-2\%$$

六、 (本题 10 分)

讨论无穷广义积分 $\int_1^{+\infty} \frac{\cos 3x}{x^p} \left(1 + \frac{1}{x}\right)^x \mathrm{d}x (p > 0)$ 的敛散性,若收敛,说明是绝对还是条件收敛 .

解

当
$$0 时, $\int_1^A \cos 3x dx$ 在 $[1,+\infty)$ 上有界, $\frac{1}{x^p}$ 单调且 $\lim_{x \to +\infty} \frac{1}{x^p} = 0$$$

∴由
$$Dirichlet$$
判别法可知 $\int_{1}^{+\infty} \frac{\cos 3x}{x^{p}} dx$ 收敛

又:
$$\left(1+\frac{1}{x}\right)^x$$
单调有界:由Abel判别法可知原积分收敛 ------3 分

$$\int_{1}^{+\infty} \left| \frac{\cos 3x}{x^{p}} \left(1 + \frac{1}{x} \right) \right|^{x} dx \ge \int_{1}^{+\infty} \frac{\cos^{2} 3x}{x^{p}} \left(1 + \frac{1}{x} \right) dx$$

$$= \int_{1}^{+\infty} \frac{1}{x^{p}} \left(1 + \frac{1}{x} \right) dx + \int_{1}^{+\infty} \frac{\cos 6x}{x^{p}} \left(1 + \frac{1}{x} \right) dx$$
-----2 \(\frac{1}{x} \)

当
$$x \to +\infty$$
时, $\frac{1}{x^p} \left(1 + \frac{1}{x}\right) \sim \frac{e}{x^p}$,... $\int_1^{+\infty} \frac{1}{x^p} \left(1 + \frac{1}{x}\right) dx$ 发散

由Dirichlet判别法可知 $\int_{1}^{+\infty} \frac{\cos 6x}{x^{p}} \left(1 + \frac{1}{x}\right) x dx$ 收敛

$$\therefore \int_{1}^{+\infty} \frac{\cos^2 3x}{x^p} \left(1 + \frac{1}{x}\right) {}^x dx$$
发散,原级数条件收敛-------3分

注意: 此题
$$2 < \left(1 + \frac{1}{x}\right)^x < 3$$
 或 $2 < \left(1 + \frac{1}{x}\right)^x < e$ 均可以。

七、 (本题 10 分, 每题 5 分)

- (1) 利用定积分定义,求极限 $\lim_{n\to\infty} \left(\frac{1^3+2^3+...+n^3}{n^4}\right)$.
- (2) 求极限 $\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \cos^n x dx$.

$$\lim_{n \to \infty} \left(\frac{1^3 + 2^3 + \dots + n^3}{n^4} \right) = \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{n} \cdot \left(\frac{i}{n} \right)^3 = \int_0^1 x^3 dx \dots 2$$

$$=\frac{1}{4}$$

(2)
$$\forall \varepsilon > 0, \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \cos^n x dx = \lim_{n \to \infty} \int_0^{\varepsilon} \cos^n x dx + \lim_{n \to \infty} \int_{\varepsilon}^{\frac{\pi}{2}} \cos^n x dx - \dots$$

由第一积分中值定理,存在 $\xi \in [\varepsilon, \frac{\pi}{2}]$,

使得
$$0 \le \int_{\varepsilon}^{\frac{\pi}{2}} \cos^n x dx = \cos^n \xi \left(\frac{\pi}{2} - \varepsilon\right) \le \frac{\pi}{2} \cos^n \varepsilon$$

由夹逼定理可知 $\lim_{n\to\infty}\int_{\varepsilon}^{\frac{\pi}{2}}\cos^n x dx = 0$

$$\left|\int_0^\varepsilon \cos^n x \mathrm{d}x\right| \le \varepsilon,$$

八、 附加题(本题10分)

设函数 f(x), g(x) 在 [a,b] 上连续,且满足 $\int_a^b f^2(x) dx = 1$, 证明:

(1)
$$(\int_a^b f(x)g(x)dx)^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx$$
;

(2)
$$(\int_{a}^{b} f(x)\cos kx dx)^{2} + (\int_{a}^{b} f(x)\sin kx dx)^{2} \le b - a(k$$
为实数).

证(1) 解法 1:

∵对任意实数 $t, F(t) \ge 0$

$$\therefore (2\int_{a}^{b} f(x)g(x))^{2} dx - 4\int_{a}^{b} f^{2}(x) dx \int_{a}^{b} g^{2}(x) dx \le 0,$$

$$\mathbb{P}(\int_{a}^{b} f(x)g(x) dx)^{2} \le \int_{a}^{b} f^{2}(x) dx \int_{a}^{b} g^{2}(x) dx;$$

解法 2: 令
$$F(x) = (\int_a^x f(t)g(t)dt)^2 - \int_a^x f^2(t)dt \int_a^x g^2(t)dt$$
;———2 分

$$F'(x) = 2f(x)g(x)\int_{a}^{x} f(t)g(t)dt - f^{2}(x)\int_{a}^{x} g^{2}(t)dt - g^{2}(x)\int_{a}^{x} f^{2}(t)dt$$

$$= -\int_{a}^{x} (f(x)g(t) - f(t)g(x))^{2}dt \le 0$$

故此函数单调递减, $F(x) \le F(0) = 0$ ------1 分

$$(2) \left(\int_{a}^{b} f(x) \cos kx \, dx \right)^{2} \le \int_{a}^{b} f^{2}(x) \, dx \int_{a}^{b} \cos^{2} kx \, dx - 2 \frac{h}{a}$$

$$\left(\int_{a}^{b} f(x)\sin kx dx\right)^{2} \le \int_{a}^{b} f^{2}(x) dx \int_{a}^{b} \sin^{2} kx dx - \frac{2}{2}$$

$$\therefore (\int_{a}^{b} f(x) \cos kx \, dx)^{2} + (\int_{a}^{b} f(x) \sin kx \, dx)^{2} \le \int_{a}^{b} f^{2}(x) \, dx \int_{a}^{b} dx = (b - a) - 1 \, \frac{1}{2} \, dx$$