

Mestrado Integrado em Engenharia Informática e Computação Arquitetura e Organização de Computadores Teste 1

1º ano 2014-11-19 Duração 1:30 Sem consulta

Nome:	Número:

Atenção: Este teste tem 10 questões em 8 páginas, num total de 200 pontos. Responda diretamente no enunciado. Fundamente todas as respostas.

- 1. Sejam $A=100101_2$ e $B=110010_2$ as representações de dois números com 6 bits.
- [10] (a) Qual é o valor de A se interpretado em: binário puro; sinal e grandeza; complemento para 2.

Em binário puro: $A = 2^5 + 2^2 + 1 = 32 + 4 + 1 = 37$.

Em sinal e grandeza: $-(2^2 + 1) = -5$.

Em complemento para 2: valor negativo, cujo simétrico é $011011_2 = 2^4 + 2^3 + 2 + 1 = 16 + 8 + 3 = 27$; logo, A representa -27.

[10] (b) Assumindo que os números estão representados em complemento para 2, determinar A+B e comentar o resultado.

 $100101_2 + 110010_2 = 010111_2.$

Os dois operandos são negativos, mas o resultado é positivo. Logo, ocorre overflow.

- 2. Seja $X = 1,25_{10}$. A representação em formato IEEE 754 (precisão simples) de Y é BF0000001₁₆.
- [10] (a) Converter X para o formato IEEE 754 e apresentar o resultado da conversão em hexadecimal.

X é positivo: sinal é 0.

$$1,25_{10} = 1,01_2 = 1,01_2 \times 2^0$$

Mantissa $M_X = 1{,}01_2, E_X = 0$

Expoente codificado é $127 + 0 = 127 = 011111111_2$.

Codificação de $X:0|011111111|01000\dots0=3\mathrm{FA}00000_{16}$

[15] (b) Apresentar todos os passos do cálculo de X + Y (sem fazer cálculos em decimal).

Codificação de Y: 1 | 011111110 | 0000...0 Cálculos em base 2:

- 1. Sinais: diferentes, logo efetuar subtração das magnitudes.
- 2. |X| > |Y|, logo é preciso calcular |X| |Y| e usar expoente de X no cálculo do resultado; o sinal do resultado é sinal de X.
- 3. Diferença de expoentes $E_X-E_Y:01111111_2-01111110_2=1_2$ Logo, deslocar vírgula da mantissa de Y de uma posição para a esquerda: $M_Y=1,0_2\to0,1_2$. O expoente a usar para o resultado é $E_R=E_X$.
- 4. Efetuar o cálculo das mantissas (subtração): $M_R = M_X M_Y = 1,01-0,1=0,11$
- 5. Normalização: $M_R=1,1$ e decrementar expoente do resultado de uma unidade para $E_R=01111110$.

O resultado é: $0|011111110|100000...0 = 3F400000_{16}$.

[15] 3. Simplificar algebricamente a seguinte expressão booleana: $\overline{A \cdot B + A \cdot C} + \overline{A} \cdot \overline{B} \cdot C$.

$$\overline{A \cdot B} + \overline{A \cdot C} + \overline{A} \cdot \overline{B} \cdot C = \overline{A \cdot B} \cdot \overline{A \cdot C} + \overline{A} \cdot \overline{B} \cdot C$$

$$= (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{C}) + \overline{A} \cdot \overline{B} \cdot C$$

$$= \overline{A} + \overline{A} \cdot \overline{C} + \overline{A} \cdot \overline{B} + \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C$$

$$= \overline{A} \cdot (1 + \overline{C} + \overline{B} + \overline{B} \cdot C) + \overline{B} \cdot \overline{C}$$

$$= \overline{A} + \overline{B} \cdot \overline{C}$$

Nome: _______ Número: _____

- 4. A função booleana $F(A_1, A_0, B_1, B_0)$ tem o valor 1 se e só os números de 2 bits A_1A_0 e B_1B_0 diferirem exatamente de uma unidade.
- [15] (a) Preencher a tabela de verdade de F apresentada a seguir.

A_1	A_0	B_1	B_0	$\mid F \mid$		A_1	A_0	B_1	B_0	$\mid F \mid$
0	0	0	0	0	-	1	0	0	0	0
0	0	0	1	1		1	0	0	1	1
0	0	1	0	0		1	0	1	0	0
0	0	1	1	0		1	0	1	1	1
0	1	0	0	1		1	1	0	0	0
0	1	0	1	0		1	1	0	1	0
0	1	1	0	1		1	1	1	0	1
0	1	1	1	0		1	1	1	1	0

[15] (b) Mostrar que $F(A_1, A_0, B_1, B_0) = \overline{A_0} \cdot \overline{B_1} \cdot B_0 + \overline{A_1} \cdot A_0 \cdot \overline{B_0} + A_0 \cdot B_1 \cdot \overline{B_0} + A_1 \cdot \overline{A_0} \cdot B_0$.

Termo	Condição para termo $= 1$	Linhas da tabela de verdade
$\overline{A_0} \cdot \overline{B_1} \cdot B_0$	$A_0 = 0, B_1 = 0, B_0 = 1$	1, 9
$\overline{A_1} \cdot A_0 \cdot \overline{B_0}$	$A_1 = 0, A_0 = 1, B_0 = 0$	4, 6
$A_0 \cdot B_1 \cdot \overline{B_0}$	$A_0 = 1, B_1 = 1, B_0 = 0$	6, 14
$A_1 \cdot \overline{A_0} \cdot B_0$	$A_1 = 1, A_0 = 0, B_0 = 1$	9, 11

As linhas indicadas são exatamente as linhas que estão a 1 na tabela de verdade da alínea anterior, pelo que a expressão corresponde à função definida pela tabela.

Alternativa: construir a expressão soma-de-produtos a partir da tabela da alínea anterior e simplificar.

- 5. Um multiplexador 6:1 tem três entradas de seleção e 6 entradas de dados.
- [15] (a) Mostrar como se constrói um multiplexador 6:1 a partir de multiplexadores 2:1 e 4:1.

[5] (b) Os valores das entradas de seleção do multiplexador 6:1 permitem especificar 8 valores diferentes. Indicar qual a entrada selecionada para cada valor (de acordo com o circuito apresentado na alínea anterior).

S_2	S_1	S_0	Entrada ligada à saída
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_4
1	1	1	I_5

[10] 6. O circuito da figura, baseado num descodificador de 3 para 8, realiza a função $F(X,Y,Z) = \overline{X} \cdot \overline{Y} \cdot Z + \overline{X} \cdot Y \cdot Z + X \cdot \overline{Y} \cdot \overline{Z}$. Mostre uma forma de realizar uma outra função, $G(W,X,Y,Z) = \overline{W} \cdot X \cdot \overline{Y} \cdot \overline{Z} + W \cdot X \cdot \overline{Y} \cdot \overline{Z} + W \cdot X \cdot \overline{Y} \cdot Z$, acrescentando o mínimo de portas lógicas.

$$G(W,X,Y,Z) = (\overline{W} + W) \cdot X \cdot \overline{Y} \cdot \overline{Z} + W \cdot X \cdot \overline{Y} \cdot Z = X \cdot \overline{Y} \cdot \overline{Z} + W \cdot X \cdot \overline{Y} \cdot Z$$

Quando $X\cdot\overline{Y}\cdot\overline{Z}=1$ então Y4=1. Da mesma forma, se $X\cdot\overline{Y}\cdot Z=1$ então Y5=1, pelo que $G=Y4+W\cdot Y5$.

Portanto, o circuito que realiza as funções F e G é:

[15] 7. Considere o circuito sequencial indicado na figura.

Descrever o comportamento do circuito para T=0 e para T=1.

$$D=Q\oplus T$$

Para T=0: valor memorizado no flip-flop mantém-se (D=Q).

Para T=1: valor memorizado no flip-flop alterna a cada ciclo $(D=\overline{Q})$.

[10] 8. (a) O circuito M indicado na figura tem duas entradas de 4 bits $A = A_3 A_2 A_1 A_0$ e $B = B_3 B_2 B_1 B_0$. Indicar, justificando, qual é a função do circuito M?

A saída vem a 1 sempre que que todas as entradas da porta lógica NOR sejam 0. Isso acontece quando os bits correspondentes de A e B são iguais.

O circuito é um comparador de igualdade: a saída fica a 1 apenas quando $A_3A_2A_1A_0 = B_3B_2B_1B_0$.

[15] (b) O circuito M é usado no circuito síncrono (sinal de relógio CLK) indicado na figura, que inclui ainda um registo de 4 bits e um contador de 5 bits. O circuito tem uma entrada X de 4 bits e usa saída Y de 5 bits. Assumir que a entrada X está sincronizada com o sinal de relógio CLK.

Assumindo que inicialmente Y=0 e que o conteúdo do registo é o valor 7, determinar o valor da saída (valor inicial e nos 8 ciclos seguintes) para a seguinte sequência de valores de X (um valor por ciclo): 11, 5, 5, 9, 3, 3, 3, 2, 2.

Notar que $EN = \overline{M}$ e que Q = (valor de X no ciclo anterior). O contador incrementa a sua saída sempre que EN = 1 (na passagem do ciclo anterior para o atual).

ciclo	Х	Q	M	EN	Y
inicial	11	7	0	1	0
1	5	11	0	1	1
2	5	5	1	0	2
3	9	5	0	1	2
4	3	9	0	1	3
5	3	3	1	0	4
6	3	3	1	0	4
7	2	3	0	1	4
8	2	2	1	0	5

Os valores de Y em ciclos sucessivos são (em decimal): 0 (valor inicial), 1, 2, 2, 3, 4, 4, 4, 5.

[5] (c) Explicar a funcionalidade do circuito da alínea anterior.

O sinal de habilitação do contador (EN) está ativo (a 1) sempre que os valores de X e Q são diferentes. Em cada ciclo, Q é igual ao valor da entrada no ciclo anterior. Portanto, o circuito conta o número de alterações de valor da entrada X.

- 9. Num dado processador, um programa executa 3×10^{11} instruções em $600\,\mathrm{s}$. O relógio do processador funciona a $2\,\mathrm{GHz}$.
- [10] (a) Determinar o valor de CPI.

Aplicando a definição de CPI:

$$CPI = \frac{600 \times 2 \times 10^9}{3 \times 10^{11}} = \frac{200}{100} = 4$$

[5] (b) Usou-se um novo compilador para criar uma nova versão do programa, cujo tempo de execução é de 500 s. Assumindo que o valor de CPI se mantém, determinar o número de instruções executadas pela nova versão.

Aplicação da equação fundamental do desempenho:

$$Ninstr = \frac{Texec \times Freq}{CPI} = \frac{500 \times 2 \times 10^9}{4} = \frac{1000}{4} \times 10^9 = 250 \times 10^9 \text{ instruções}$$

- 10. Um programa de gestão de base de dados gasta 80 % do seu tempo em acessos ao disco magnético. Está em estudo a hipótese de substituir o disco magnético por um sistema de armazenamento baseado em memória não-volátil, que é 4 vezes mais rápido que o disco magnético.
- [10] (a) Quanto mais rápido ficaria o sistema com o novo sistema de armazenamento?

Aplicando a fórmula para a melhoria de desempenho (speedup) de acordo com a lei de Amdahl:

$$S = \frac{1}{0.2 + 0.8/4} = \frac{1}{0.4} = \frac{10}{4} = 2.5$$
 vezes mais rápido

[10] (b) Qual seria a percentagem de tempo gasta em acessos ao novo sistema de armazenamento?

O novo tempo de execução T' (com o melhoramento) é:

$$T' = 0.2 \times T + \frac{0.8}{4} \times T$$

em que T representa o tempo original.

Calcular a percentagem desejada:

$$\frac{\frac{0.8}{4} \times T}{T'} = \frac{\frac{0.8}{4} \times T}{0.2 \times T + \frac{0.8}{4} \times T} = \frac{0.8}{0.8 + 0.8} = \frac{1}{2} \quad \Rightarrow \quad \text{Gasta 50 \% do tempo}$$

Fim

Questão	1	2	3	4	5	6	7	8	9	10	Total
Pontos	20	25	15	30	20	10	15	30	15	20	200
Nota											