Spring 2015 Statistics 151a (Linear Models): Lecture Twenty

Aditya Guntuboyina

09 April 2015

1 Generalized Linear Models

We have so far studied linear models. We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.

The linear model that we have seen models

$$\mu_i := \mathbb{E} y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}.$$

What this model implies is that when there is a unit increase in the explanatory variable x_j , the mean of the response variable changes by the amount β_j . This may not always be a reasonable assumption. For example, if the response y_i is a binary variable, then its mean μ_i is a probability which is always constrained to stay between 0 and 1. Therefore, the amount by which μ_i changes per unit change in x_j would now depend on the value of μ_i (for example, the change when $\mu_i = 0.9$ may not be the same as when $\mu_i = 0.5$). Therefore, modeling μ_i as a linear combination of x_1, \ldots, x_p may not be the best idea always.

A more general model might be

$$g(\mu_i) := \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} \tag{1}$$

for a function g that is not necessarily the identity function.

Another feature of the linear model that people do not always like is that some aspects of the theory are tied to the normal distribution. Indeed, most of the results on hypothesis testing rely on the assumption of normality. The assumption that y_1, \ldots, y_n are normal may not always be appropriate. Examples arise when y_1, \ldots, y_n are binary or when they represent counts. It might therefore be nice to generalize the theory of linear models to include these other distributional assumptions for the response values.

Generalized Linear Models (GLM) generalize linear models by including both of the above features. They allow more general distributional assumptions for y_1, \ldots, y_n and they also allow (1).

2 Distributional Assumptions in GLMs

In GLMs, the response variables y_1, \ldots, y_n can be either discrete (have pmfs) or continuous (have pdfs). It is assumed that y_1, \ldots, y_n are independent. We also assume that the pmf or pdf of y_i can be modelled by two parameters θ_i and ϕ_i and can be written as

$$f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right).$$
(2)

 θ_i is the main parameter (also called the canonical parameter). ϕ_i is called the dispersion parameter and one often assumes that ϕ_i is the same for all *i*. The function $b(\theta_i)$ is called the cumulant function.

This distributional form includes the normal density assumption used in the classical linear models. In classical linear models, we assume that $y_i \sim N(\mu_i, \sigma^2)$. The density of y_i can then be written as

$$f(x) := \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-\mu_i)^2}{2\sigma^2}\right)$$

and this can be rewritten as

$$f(x) := \frac{\exp(-y^2/(2\sigma^2))}{\sqrt{2\pi}\sigma} \exp\left(\frac{y\mu - \mu^2/2}{\sigma^2}\right).$$

This is clearly in the form (2) with $\theta_i = \mu_i$, $\phi_i = \sigma^2$, $a(\phi_i) = \phi_i$ and $b(\theta_i) = \theta_i^2/2$. Note that ϕ_i here does not depend on i.

Other distributions that are of the form (2) are

1. **Bernoulli**: Here y_i takes the value 0 with probability $1 - p_i$ and 1 with probability p_i . The pmf of y_i is

$$f(x) = p_i^x (1 - p_i)^{1-x} = \exp\left(x \log \frac{p_i}{1 - p_i} + \log(1 - p_i)\right).$$

If we take $\theta_i := \log(p_i/(1-p_i))$ and $b(\theta_i) = \log(1+e^{\theta_i})$ and $\phi_i = 1$, then this is in the form (2).

2. **Binomial**: Suppose $n_i y_i \sim Bin(n_i, p_i)$ i.e., y_i denotes the proportion of successes in n_i tosses of a coin with probability of success p_i . Check then that the pmf of y_i is

$$f(x) = \binom{n_i}{n_i x} \exp\left(\frac{x \log(p_i/(1-p_i)) + \log(1-p_i)}{1/n_i}\right).$$

This is of the form (2) with $\theta_i = \log(p_i/(1-p_i))$ and $\phi_i = 1/n_i$ and $b(\theta_i) = \log(1+e^{\theta_i})$.

3. **Poisson**: Suppose $y_i \sim Poi(\lambda_i)$. Then its pmf is

$$f(x) := e^{-\lambda_i} \frac{\lambda_i^x}{x!} = \frac{1}{x!} \exp(x \log \lambda_i - \lambda_i)$$

which is again of the form (2) with $\theta_i = \log \lambda_i$ and $b(\theta_i) = e^{\theta_i}$ and $\phi_i = 1$.

There are other examples too such as the Gamma distribution but we will mainly deal with the ones above.

The mean and variance of y_i when y_i has the pmf or pdf (2) can be easily computed by a simple trick. We will illustrate this below in the case when y_i has a pmf; the case of pdf is exactly identical (just replace sums by integrals). Because $f(x; \theta_i, \phi_i)$ is a density, we have

$$\sum_{x} h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right) = 1$$

Differentiating both sides with respect to θ_i , we get

$$\sum_{x} h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right) \frac{x - b'(\theta_i)}{a(\phi_i)} = 0$$
(3)

This means that

$$\sum_{x} xh(x,\phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right) = b'(\theta_i) \sum_{x} h(x,\phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right)$$

The left hand side above is simply $\mathbb{E}y_i$ and the right hand side is just $b'(\theta_i)$. We therefore have

$$\mu_i := \mathbb{E}y_i = b'(\theta_i).$$

This can be rewritten as $\theta_i = (b')^{-1}(\mu_i)$ where by $(b')^{-1}$ we mean the inverse function of b'.

Differentiating (3) again with respect to θ_i , it is easy to show that

$$var(y_i) = b''(\theta_i)a(\phi_i).$$

3 Generalized Linear Models

In GLM, we assume that y_1, \ldots, y_n are independent with pmf or pdf of the form (2). We then write

$$g(\mu_i) := \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

for an increasing function g.

This g is called the *link function*. In classical linear models, $g(\mu_i) = \mu_i$ which means that we have the identity link.

The link function $g = (b')^{-1}$ is called the *canonical link function*. Recall that $(b')^{-1}(\mu_i) = \theta_i$. Thus GLM with the canonical link function models the canonical parameter θ_i as a linear function of the explanatory variables.

3.1 Example One - Normal Linear Model

Here y_i has the normal distribution $N(\mu_i, \sigma^2)$. The pdf of y_i can be written in the form (2) with $\theta_i = \mu_i$ and $\phi_i = \sigma^2$ and $a(\phi_i) = \phi_i$.

The link function used is the identity link function $g(\mu_i) = \mu_i$. This is the canonical link here.

3.2 Example Two - Binary Regression including Logistic and Probit Models

Here y_i has the Bernoulli distribution with parameter p_i . The pmf of y_i can be written in the form (2) with $\theta_i = \log(p_i/(1-p_i))$ and $\phi_i = 1$ and $b(\theta_i) = \log(1+e^{\theta_i})$.

The canonical GLM is therefore

$$\theta_i = \log \frac{p_i}{1 - p_i} = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}.$$

This is the Logistic Regression Model. $p_i/(1-p_i)$ denotes the odds of the event that $y_i=1$. The interpretation of β_j is that it represents the increase in log-odds of the event that y=1 for a unit increase in x_j when all other explanatory variables are held constant. In other words, e^{β_j} denotes the factor by which the odds of success (response equal to one) change for a unit increase in x_j (all other explanatory variables remaining unchanged).

The function $p \mapsto \log(p/(1-p))$ is the link function in the Logistic Model and is called the logit function. This is the most popular link function for Bernoulli data. Another link function is the probit link: $g(x) = \Phi^{-1}(x)$ where Φ is the cdf of the standard normal density. This leads to the probit model:

$$\Phi^{-1}(p_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}.$$