Rachel Hussmann

CSCI 3327 Formula Sheet

Sample Mean

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Population Mean

$$\mu = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Sample Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

Population Variance

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - \mu)^{2}$$

Sample Standard Deviation (From the book)

$$s = \sqrt{s^2}$$

Sample Standard Deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Population Standard Deviation (From the book)

$$\sigma = \sqrt{\sigma^2}$$

Population Standard Deviation

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Distributive Laws (Set Theory)

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

DeMorgan's Laws

$$\overline{(A\cap B)}=\bar{A}\cup\bar{B}$$

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

mn Rule

$$mn = m \times n$$

Permutation Formula

$$P_r^n = \frac{n!}{(n-r)!}$$

Combination Formula

$$C_r^n = \frac{n!}{r! (n-r)!}$$

Multinomial Coefficient Formula

$$N = \frac{n!}{n_1! \, n_2! \cdots n_k!}$$

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Independence Equations

$$P(A|B) = P(A)$$
$$P(B|A) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

Multiplicative Law of Probability (Dependent)

$$P(A \cap B) = P(A)P(B|A)$$
$$= P(B)P(A|B)$$

Multiplicative Law of Probability (Independent)

$$P(A \cap B) = P(A)P(B)$$

Additive Law of Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mutually Exclusive Events, where $P(A \cap B) = 0$

$$P(A \cup B) = P(A) + P(B)$$

Finding Probability of A when traditional methods are too difficult

$$P(A) = 1 - P(\bar{A})$$

The Law of Total Probability

$$P(A) = \sum_{i=1}^{k} P(A|B_i)P(B_i)$$

Bayes' Rule

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^k P(A|B_i)P(B_i)}$$