引力论习题解答

EsyDragonOne

October 6, 2014

Contents

1	空时	物理学																					2
	1.1	第一章	几何ā	动力:	学概	要																	2
		1.1.1	圆柱值	本的	曲率																		2
		1.1.2	春潮		~ -																		2
		1.1.3	被包	裹在!	里面	的I	Cep	olei	r.													•	4
2	平直空时中的物理学																						
	2.1	第二章	狭义	相对	沦基	础																	Į
	2.2	电磁场																					(
	2.3	电磁学	和微分	}形:	t .																		(
	2.4	压强-能			, ,																		(
	2.5	加速的	观测者	三																			(
	2.6	引力与	狭义村	目对论	と的 こ	不木	目容	を性															(

Chapter 1

空时物理学

1.1 第一章 几何动力学概要

1.1.1 圆柱体的曲率

试证明圆柱体表面上各短程线(不缠绕!!)无短程线偏差,并由此证明圆柱体表面的 Gauss曲率R为零.再利用公式 $R=1/\rho_1\rho_2$ 独立地证明上述结论,式中的 ρ_1 和 ρ_2 是题中相对于圆柱所在的三维Euclid空间的主曲率半径.

Solution:

在圆柱体上考虑不缠绕的短程线即为圆柱的圆截线.而考虑任意两条短程线,将圆柱体沿母线展开得到一矩形,其中圆截线则对应与矩形的边平行的直线.故任意两条不缠绕的短程线均平行,即无短程偏差.

$$\frac{\mathrm{d}^2 \xi}{\mathrm{d}s^2} = 0$$

故Gauss曲率为零.

而圆柱在三维Euclid空间中的主曲率 $k_1 = 1/a, k_2 = 0$,故其高斯曲率为 $R = k_1 k_2 = 0$.既有

$$\frac{\mathrm{d}^2 \xi}{\mathrm{d}s^2} = 0$$

证毕

1.1.2 春潮与小潮

试用约定单位制以及几何单位制计算

- (1)月亮 $(m_{9)}$ = $7.35 \times 10^{25} g$, $r = 3.84 \times 10^{10} cm$)在地球上产生的Newton潮汐加速度 R_{n0}^m (m,n=1,2,3)之大小.
- (2)太阳 $(m_{约定}=1.989\times 10^{33}g,\ r=1.496\times 10^{13}cm)$ 在地球上产生的Newton潮汐加速度 R^m_{n0} (m,n=1,2,3)之大小.
 - (3)估计对春潮所得之结果应超过小潮多少倍.

Solution:

考虑牛顿极限下有等式:

$$\begin{pmatrix} R^1_{\ 010} & R^2_{\ 010} & R^3_{\ 010} \\ R^1_{\ 020} & R^2_{\ 020} & R^3_{\ 020} \\ R^1_{\ 030} & R^2_{\ 030} & R^3_{\ 030} \end{pmatrix} = \begin{pmatrix} \frac{m}{r^3} & 0 & 0 \\ 0 & \frac{m}{r^3} & 0 \\ 0 & 0 & -\frac{2m}{r^3} \end{pmatrix}$$

在约定单位下G取 $6.674 \times 10^{-8} cm^3 g^{-1} s^{-2}$,则有当为约定单位制时:

$$\frac{GM_{sun}}{r_{sun}^3} \simeq 3.96 \times 10^{-14} s^{-2}$$

$$\frac{GM_{moon}}{r_{moon}^3} \simeq 8.66 \times 10^{-14} s^{-2}$$

转换为几何单位制时:

$$\frac{M_{sun}}{r_{sun}^3} \simeq 4.41 \times 10^{-35} cm^{-2}$$

$$\frac{M_{moon}}{r_{moon}^3} \simeq 9.62 \times 10^{-35} cm^{-2}$$

故采用几何单位制中,

而考虑最简单模型,春潮中月亮和太阳同时对潮汐加速度有贡献,而小潮仅仅是由月亮引起的.既有春潮的潮汐加速度是小潮的约1.46倍.

1.1.3 被包裹在里面的Kepler

一个小卫星绕质量为m(cm)的中心物体,在半径为r的轨道上,以圆频率 $\omega(cm^{-1})$ 运动. 试证明,由已知的 ω 值,不可能单独确定r或m的值,而只能得到物体的有效"Kepler密度",即以轨道半径为半径的球体平均密度.给出以Kepler密度表示的 ω^2 的公式.

Solution:

由Newton第二定律可得:

$$\frac{Mm}{r^2}=m\omega^2 r$$

又因为由定义

$$\rho_{\kappa} = \frac{M}{\frac{4}{3}\pi r^3}$$

所以得到

$$\omega^2 = \frac{4}{3}\pi \rho_{\kappa}$$

Chapter 2

平直空时中的物理学

2.1 第二章 狭义相对论基础

练习2.1

试证明式 $p \cdot v = \langle p \cdot v \rangle$ 与de Broglie波的量子力学性质一致

$$\psi = e^{i\phi} = exp[i(\mathbf{k} \cdot \mathbf{x} - \omega t)]$$

Solution:

我们已知

$$\langle \boldsymbol{k}, \boldsymbol{v} \rangle = \phi(P) - \phi(P_0)$$

= $d\phi$

而两边同时乘以ħ

$$\langle oldsymbol{p}, oldsymbol{v}
angle = \langle \hbar oldsymbol{k}, oldsymbol{v}
angle \ = \hbar \mathrm{d} \phi$$

de Broglie波的动量期待值的分量为

$$p^{j} = \langle \psi | p^{j} | \psi \rangle = \int \psi^{*} \frac{\hbar}{i} \frac{\partial \psi}{\partial x_{j}} dx$$
$$= \hbar k^{j} \int \psi^{*} \psi dx$$
$$= \hbar k^{j}$$

将p与任意单位矢量做标积得

$$\mathbf{p} \cdot \mathbf{v} = p^j = \hbar k^j = \hbar \mathrm{d}\phi$$

故可得 $p \cdot v = \langle p \cdot v \rangle$

- 2.2 电磁场
- 2.3 电磁学和微分形式
- 2.4 压强-能量张量和守恒律
- 2.5 加速的观测者
- 2.6 引力与狭义相对论的不相容性