

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (Special) Degree in Chemistry
Third Year - Semester I Examination – June / July 2018

CHE 3205 - ADVANCED INORGANIC CHEMISTRY I

Answer only four (04) questions.

Time: Two (02) hours

Use of a non-programmable calculator is permitted.

a) Transition metal complexes show different colours as well as different absorption intensities. Explain the molar absorptivity (ε) of the complexes given below.

Complex	ε (L mol-1 cm-1)
$[TiCl_6]^{2-}$	10000
$[CoBr_{4]}^{2}$	500
[Mn(H ₂ O) ₆	0.02

(25 marks)

- b) Consider the 'd' atomic orbitals.
 - i. Name five types of 'd' orbitals.

(5 marks)

ii. Explain the separation of 'd' orbitals into two energy levels named e_g and t_{2g} in an octahedral complex. (15 marks)

Cont.

- iii. If there are only two energy levels, only one band should be observed in the UV-Vis spectrum. However, the octaheadral complex [CuF₆]⁴⁻ shows two absorptions. Describe the observation. (25 marks
- iv. Jhan Tellar effect describes the spectra of distorted symmetry molecules. In such a molecule, if two ligands opposite to each other are compressed in an octahedral complex. Draw the orbital energy diagram. (30 marks)
- 2. Consider [V(H₂O)₆]³⁺ complex
 - a) Find the 'd' electron count of the complex. (7 marks)
 - b) Obtain the spin multiplicity of vanadium in the complex. (7 marks)
 - c) Deduce the possible microstates. (25 marks)
 - d) Identify the ground state out of possible microstates and explain the reason for your identification. (23 marks)
 - e) Use a simplified Orgel diagram to predict the number of peaks in the electronic spectrum. (23 marks)
 - f) Figure given below shows the actual UV spectrum obtained. Compare and contrast the observed spectrum with your prediction. (15 marks)

3. a) State the requirement for a metal complex to be an organometallic complex.

(10 marks)

- b) Give the electron count of each of following compounds.
 - i. [Fe(CO)₄]²⁻
 - ii. $[(\eta^5-C_5H_5)_2Co]^+$
 - iii. $(\eta^3 C_5 H_5) (\eta^5 C_5 H_5) Fe(CO)$

(30 marks)

- c) All the transition metals (M) given are first row elements. Identify the metal in each case.
 - i. $[M(CO)_7]^+$ 18_electron species
 - ii. [M(CO)₅]₂ 18_electron species (assume M-M single bond)
 - iii. $[M(C_2H_4)_3]^+$ 16_electron species

(30 marks)

- d) Determine the specified quantity in each of the following.
 - i. The metal-metal bond order in $[(\eta^5-C_5H_5)Rh(CO)]_2$
 - ii. The expected charge, z on [HRh(CO)(PPh₃)₃]²

(30 marks)

- a) Compare and contrast the bonding of transition metal-carbonyls (M-CO) and the bonding of transition metal-phosphenes (M-PR₃). Use orbital diagrams in your explanations. (40 marks)
 - b) Transition metal complexes [Mn(CO)₆]⁺, Cr(CO)₆, V(CO)₆ show absorption frequencies V₁, V₂, V₃ respectively. Arrange three frequencies in increasing order and justify your answer.
 (30 marks)
 - c) With the use of orbital diagrams, explain the metal-ligand bonding through π electrons. Give two ligands as examples. (30 marks)
- 5. Propose a mechanism for the catalytic reaction given below which is catalyzed by the transition metal complex HCo(CO)₃.

$$CH_3CH=CH_2 + CO + H_2 \rightarrow CH_3CH_2CH_2CH_2$$

In the mechanism pathway,

- a) Identify the followings of the metal type in each step.
 - i) Oxidation state
 - ii) Coordination number
- iii) Number of valance electrons
- b) Indicate the reaction type in each step.

(100 marks)

- END -