# Statistics (II)

SLIDES BY:

JIANNAN WANG

https://www.cs.sfu.ca/~jnwang/

## Outline

### **Correlation Analysis**

- Big Picture
- How to do correlation analysis

## **Hypothesis Testing**

- Big Picture
- A/B Testing

# Outline

## **Correlation Analysis**

- Big Picture
- How to do correlation analysis

## **Hypothesis Testing**

- Big Picture
- A/B Testing

# **Correlation Analysis**

#### **Correlation**

It is a measure of relationship between two variables

## Why is correlation analysis useful?

- For understanding data better
- For making predictions better

#### **Correlation ≠ Causation**



# Case Study: How to do correlation analysis

### Height and weight are correlated

| 1 | height  | weight     | age | male |
|---|---------|------------|-----|------|
| 2 | 151.765 | 47.8256065 | 63  | 1    |
| 3 | 139.7   | 36.4858065 | 63  | 0    |
| 4 | 136.525 | 31.864838  | 65  | 0    |
| 5 | 156.845 | 53.0419145 | 41  | 1    |
| 6 | 145.415 | 41.276872  | 51  | 0    |
| 7 | 163.83  | 62.992589  | 35  | 1    |
| 8 | 149.225 | 38.2434755 | 32  | 0    |

Source: Think Stats -- Exploratory Data Analysis in Python

# Idea 1. Visualization

# Scatter Plot

| 1 | height  | weight     | age | male |
|---|---------|------------|-----|------|
| 2 | 151.765 | 47.8256065 | 63  | 1    |
| 3 | 139.7   | 36.4858065 | 63  | 0    |
| 4 | 136.525 | 31.864838  | 65  | 0    |
| 5 | 156.845 | 53.0419145 | 41  | 1    |
| 6 | 145.415 | 41.276872  | 51  | Θ    |
| 7 | 163.83  | 62.992589  | 35  | 1    |
| 8 | 149.225 | 38.2434755 | 32  | Θ    |





# Scatter Plot (with transparency)

| 1 | height  | weight     | age | male |
|---|---------|------------|-----|------|
| 2 | 151.765 | 47.8256065 | 63  | 1    |
| 3 | 139.7   | 36.4858065 | 63  | Θ    |
| 4 | 136.525 | 31.864838  | 65  | 0    |
| 5 | 156.845 | 53.0419145 | 41  | 1    |
| 6 | 145.415 | 41.276872  | 51  | Θ    |
| 7 | 163.83  | 62.992589  | 35  | 1    |
| 8 | 149.225 | 38.2434755 | 32  | 0    |





# **Hexbin Plot**

| 1 | height  | weight     | age | male |
|---|---------|------------|-----|------|
| 2 | 151.765 | 47.8256065 | 63  | 1    |
| 3 | 139.7   | 36.4858065 | 63  | 0    |
| 4 | 136.525 | 31.864838  | 65  | 0    |
| 5 | 156.845 | 53.0419145 | 41  | 1    |
| 6 | 145.415 | 41.276872  | 51  | 0    |
| 7 | 163.83  | 62.992589  | 35  | 1    |
| 8 | 149.225 | 38.2434755 | 32  | 0    |



# Characterizing relationships

| 1 | height  | weight     | age | male |
|---|---------|------------|-----|------|
| 2 | 151.765 | 47.8256065 | 63  | 1    |
| 3 | 139.7   | 36.4858065 | 63  | 0    |
| 4 | 136.525 | 31.864838  | 65  | 0    |
| 5 | 156.845 | 53.0419145 | 41  | 1    |
| 6 | 145.415 | 41.276872  | 51  | 0    |
| 7 | 163.83  | 62.992589  | 35  | 1    |
| 8 | 149.225 | 38.2434755 | 32  | 0    |





# Idea 2. Correlation Coefficient

# Covariance

Covariance is a measure of the **tendency** of two variables to vary together.

$$\mathrm{cov}(X,Y) = \mathrm{E}\left[(X - \mathrm{E}[X])(Y - \mathrm{E}[Y])
ight]$$

$$cov(X, Y) = E[XY] - E[X] E[Y]$$

Hard to interpret
113 kilogram-centimeters

# Pearson's correlation

Pearson's correlation is a measure of the linear relationship between two variables

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

### Easy to Interpret

- $[-1, 0) \rightarrow \text{Negative Correlated}$
- $(0,+1] \rightarrow Positive Correlated$
- o -1 or +1 → Perfectly Correlated

# What about non-linear relationship?















# Spearman's rank correlation

Spearman's rank correlation is a measure of monotonic relationship between two variables

$$r_s = 
ho_{\mathrm{r}_X,\mathrm{r}_Y} = rac{\mathrm{cov}(\mathrm{r}_X,\mathrm{r}_Y)}{\sigma_{\mathrm{r}_X}\sigma_{\mathrm{r}_Y}}$$

## Advantages

- Mitigate the effect of outliers
- Mitigate the effect of skewed distributions



# Outline

## **Correlation Analysis**

- Big Picture
- How to do correlation analysis

## **Hypothesis Testing**

- Big Picture
- A/B Testing

# Why Hypothesis Testing?

We want to make a claim from our data But, data is just a sample How to prove our claim in this situation?

Using Hypothesis Testing

### **Example**

- Claim: A data scientist earns more money than a software engineer
- Data: A sample of 50 data scientists and 50 software engineers
- Result: 100K vs. 70k Can we use this result to prove that our claim is correct?

# Hypothesis Testing

#### **Equivalent Terms**

- Hypothesis == Claim
- Hypothesis Testing == Claim Proving

#### Key Idea

Prove by contradiction

#### Analogy

- How to prove: There is no smallest rational number greater than zero.
- <u>Hint:</u> a rational number is any number that can be expressed as the fraction a/b of two integers

# Alternative and Null Hypotheses

### Alternative Hypothesis (H<sub>a</sub>)

This is the claim that you want to prove it's correct

### Null Hypothesis (H<sub>0</sub>)

The opposite side of H<sub>a</sub>

#### **Possible Outcomes**

- Reject  $H_0$  (a contradiction is found)  $\rightarrow$  Accept  $H_a$
- Fail to reject H<sub>0</sub> (no contradiction is found)

# Example

### Alternative Hypothesis (H<sub>a</sub>)

A data scientist earns more money than a software engineer

### **NULL Hypothesis (H<sub>0</sub>)**

• A data scientist earns less (or equal) money than a software engineer

## If H<sub>0</sub> is true, what's the probability of seeing:

Data Scientist (100 K) vs. Software Engineer (70 K)

This is called P-value

# Make a decision based on p-value

#### We hope that

• p-value is as low as possible so that we can reject  $H_0$  (i.e., accept  $H_a$ )

### Level of Significance (e.g., $\alpha = 0.01$ )

• How low do we want p-value to be?

### Level of Confidence (e.g., $c = 1 - \alpha = 99\%$ )

• How confident are we in our decision?

# P-Hacking (Cheating on a P-Value)

#### **Common Mistakes**

- 1. Collect data until the hypothesis testing is passed
- 2. Keep doing analysis on the same data until you find something significant

#### Solution

- You should know what you're looking for (H<sub>0</sub> and H<sub>a</sub>) before you start
- Decrease the level of significance (e.g.,  $\alpha/2$  for two hypothesis tests on the same data)

# A/B Testing

#### What UI is better?





# Surprising A/B Tests

A. Get \$10 off the first purchase. Book online now!

B. Get an additional \$10 off. Book online now.

#### Control Button



**Experiment Button** 



https://www.wordstream.com/blog/ws/2012/09/25/a-b-testing

## **Permutation Test**

https://youtu.be/lq9DzN6mvYA?t=8m9s



# Conclusion

### **Correlation Analysis**

- Using visualizations (scatter plot, hexbin plot)
- Using correlation coefficients (Pearson, Spearman's rank)

## **Hypothesis Testing**

- Null Hypothesis ( $H_0$ ) and Alternative Hypothesis ( $H_a$ )
- P-value and P-hacking
- A/B Testing