Barème et correction IE n°3 de thermodynamique – 2016 – 2017

Lexique:

EL = « expression littérale »

AN = « application numérique »

TOR = « tout ou rien »

A. ETUDE DU CIRCUIT TURBINE A COMBUSTION (TAC)

I. Étude de la combustion du gaz naturel (Chambre de Combustion) ~ 13,5 PTS

	0.25 EL 0.25 AN
$\Delta_r H_{(298K)}^0 = -393.5 + 2*(-241.8) - (-74.4) = -802.7 \text{ kJ.mol}^{-1}$	0.25 AN
2) <u>Eléments/corps simples</u> pris dans son état de référence à P ⁰	2*0.25
3) $\frac{\Delta_r S_{(298K)}^0 = S_{(298K)}^0 (CO_2(g)) + 2*S_{(298K)}^0 (H_2O(g)) - 2*S_{(298K)}^0 (O_2(g))}{\Delta_r S_{(298K)}^0 = 213.8 + 2*188.8 - 186.3 - 2*205.2 = -5.3 \text{ J.K}^{-1}.\text{mol}^{-1}}$	0.25 EL 0.25 AN
4) 2 possibilités :	Total :2
a/ Le signe de ΔG° On calcule ΔG° fonction potentiel thermodynamique car la réaction est réalisée de façon monotherme (à T^0) et isobare (cf. texte, à P^0), et aucun autre travail échangé que celui lié à Pext	0.25 pour ΔG° 0.25 (Pot. T) Puis 0.75 pour conditions restrictives
$\Delta_r G_{(298K)}^0 = \Delta_r H_{(298K)}^0 - T^0.\Delta_r S_{(298K)}^0$ $\Delta_r G_{(298K)}^0 = -804.7 - 298*(-5.3*10^{-3}) = -801.1 \text{ kJ.mol}^{-1}$ Réaction possible dans sens de la combustion	0.25 EL 0.25 AN 0.25 pour ccl
b/Le signe de $\Delta S_{univers}$ On calcule $\Delta S_{univers} = \Delta_r S_{(298K)}^0 + \Delta S_{ext}$ Hypothèse : extériour est un thormostat	0.25 pour ΔS _{univers} 0.25 système isolé / 2 nd principe 0.25 pour EL 0.25 pour
Hypothèse : extérieur est un thermostat	hypothèse
$\Delta S_{ext} = \frac{\Delta H_{ext}}{T_{ext}} = -\frac{\Delta_r H_{(298K)}^0}{T_{ext}} = \frac{802.7 * 10^3}{298} = 2693.6 \text{ J.K}^{-1}.\text{mol}^{-1}$	0.25 EL +0.25 AN

$\Delta S_{univers} = 2693.6 - 5.3 = 2688 \text{ J.K}^{-1}.\text{mol}^{-1} > 0$ Réaction possible dans sens de la combustion						0.25 pour AN 0.25 pour conclusion Total : 1	
5) L'avancement nécessaire pour que la combustion dégage 4.2. 10^{10} J est $\xi = \frac{\Delta H_{(298K)}^0}{\Delta_r H_{(298K)}^0} = \frac{-4.2 \ 10^7}{-802.7} = 52323 \text{ moles}$						iotai. I	
· ·	$I_{\rm CH_4} = 8371$						
4	*			lle du pétro	le		
6)	•••						
1 -	=20 mole						0.25 0.25
$n_{\rm air} = 5.n_{\rm O_2}$	=100 mole	S					0.23
$\frac{m_{\rm air}}{m_{\rm CH_4}} = \frac{n_{\rm a}}{n_{\rm CH}}$	$\frac{M_{\text{air}}.M_{\text{air}}}{M_{\text{CH}_4}} = \frac{M_{\text{ch}_4}}{M_{\text{CH}_4}}$	$\frac{n_{\rm air}.\left(n_{ m N_2}.M_{ m N_2}}{n_{ m CH_4}}$	$M_{\rm O_2} + n_{\rm O_2} M_{\rm O_2}$ $M_{\rm CH_4}$	$\frac{1}{a} = \frac{10.(0)}{air}$.8*28+0.2 16	*32) = 18	0.25 EL + 0.25 AN
7) puisque							
$n_{\rm air} = \frac{45.n_0}{}$	$\frac{_{\text{CH}_4}.M_{\text{CH}_4}}{M_{\text{air}}} =$	250 moles					0.25
	noles et n_{N_2}					, , , , , , , , , , , , , , , , , , , ,	0.25
			\rightarrow CO _{2(g)} +	+ 2H ₂ O _(g)	N ₂ (g)	n _{total} (g)	1pt
État initial	10	50	/	/	200	260	
IIIIIII	-10	-20	+10	+20			(0.5 si 2 ^{ème}
Etat final	0	30	10	20	200	260	ligne juste mais 1 ^{ère} ligne fausse)
$\xi = \frac{\left \Delta n_{\text{CH}_4}\right }{v_{\text{CH}_4}} = \frac{\left \Delta n_{\text{O}_2}\right }{v_{\text{O}_2}} = \frac{\left \Delta n_{\text{CO}_2}\right }{v_{\text{CO}_2}} = \frac{\left \Delta n_{\text{H}_2\text{O}}\right }{v_{\text{H}_2\text{O}}} = 10 \text{ moles}$						0.25 +0.25 (1 définition suffit)	
$8) x_i = \frac{n_i}{n_i}$	_						
n_{tota}		C		60		N. / \	1 pt (0 pour définition
	omposé i	CH _{4(g)}	O _{2(g)} 0,115	CO _{2(g)} 0,038	H ₂ O _(g) 0,077	N ₂ (g) 0,769	car donnée
	i)		0,113	0,030	0,077	0,703	dans
							formulaire)

9)	Total:1,5 pt
$\Delta_{\rm r} H_{(673\text{K})}^0 = \Delta_{\rm r} H_{(298\text{K})}^0 + \int_{298}^{673} \Delta C_{\rm p}.dT$	0.25
$\Delta C_{p} = 1 * C_{p}(CO_{2}) + 2 * C_{p}(H_{2}O) - 1 * C_{p}(CH_{4}) - 2 * C_{p}(O_{2})$	0.25 EL +
$\Delta C_{\rm p} = 9.8 \ \rm J.K^{-1}.mol^{-1}$	0.25 AN
$\Delta_{\rm r} H_{(673\text{K})}^0 = -802.7 + (9.8*10^{-3}).(673-298) = -799.0 \text{ kJ.mol}^{-1}$	0.25
$\Delta H_{(673K)}^{0} = \Delta_r H_{(673K)}^{0} . \xi = -7990 \text{ kJ}$	0.25+0.25
10) Tout schéma ou texte rappelant la nature du système chimique avant/après réaction, rappel des conditions isobare et adiabatique (hypothèse du transfert parfait de chaleur)	1
Mise en équation :	1
$0 = \Delta H_{(298K)}^{0} + (10*C_{P}(CO_{2}) + 20*C_{P}(H_{2}O) + 30*C_{P}(O_{2}) + 200*C_{P}(N_{2})).(T_{f} - 673)$	
$C_p(total) = 10*37.1 + 20*33.6 + 30*294.4 + 200*29.1 = 7745 \ J.K^{-1}$	
$Tf = -\frac{\Delta H_{(298K)}^0}{C_P(total)} + 673 = 1705K$	0.5
11) $C_p(total) = C_p(réactant) + C_p(chambre) = 9905 J.K^{-1}$	0,5
$Tf = -\frac{\Delta H_{(298K)}^0}{C_P(total)} + 673 = 1480K$	0.5
	0.5

II. Étude du cycle mis en jeu dans le Circuit Turbine à Combustion (TAC) $\sim 13.5~PTS$

12) $V_A = R T_A / P$	0,25				
Etape AB adiab	0,25				
L					
$T_B = P_B V_B / R = 6$	0,25				
Etape BC mond	0,5				
$x (T_C - T_B)$					
Donc $T_C = T_B + Q_{BC} (\gamma - 1)/(R\gamma) = 1480,0 = 1480 K$					0,25
$V_C/T_C = V_B/T_B$	0.25				
Etape DA mond	0,25				
Etape CD adiab	0,25				
54,478 ≈ 54,5 L					
$T_D = P_D V_D / R = 6$					
Bilan	Α	В	С	D	
P (bar)	1	17	17	1	
V (L)	24,3	3,2	7,2	54,5	
T (K)	293	656			

P P	
B C Cycle de Brayton	0,5
D V	
14)	Mettre 0 aux
	expressions si pas de
O Odene W All Col/T T \ con Con Doufeit	justification
$Q_{AB} = 0$ donc $W_{AB} = \Delta U_{AB} = Cv (T_B - T_A)$ car Gaz Parfait	
Donc $W_{AB} = R/(\gamma - 1) \times (T_B - T_A) = 7521 J$	0,5 + 0,25 AN
Isobare $W_{BC} = -P_B(V_C - V_B) = -R(T_C - T_B) = -6856 J$	0,5 + 0,25 AN
$Q_{CD} = 0 \text{ donc } W_{CD} = \Delta U_{CD} = R/(\gamma-1) \times (T_D - T_C) = -17119 \text{ J}$	0,5 + 0,25 AN
Pour DA, idem BC (donc ne pas pénaliser si justifié pour BC et pas ici)	
$W_{DA} = -P_A(V_A - V_D) = -R(T_A - T_D) = 3017 J$	0.5 + 0.25 AN
$\Delta S_{DA} = R\gamma/(\gamma-1) \ln(T_A/T_D) = -23.4 \text{ J/K}$	0,5 + 0,25 AN 0,5 + 0,25 AN
	0,5 ± 0,25 AN
15) Q _{AB} = 0	
$\Delta S_{AB} = 0$ car adiabatique réversible	0,5 (0 si
$Q_{BC} = 24000 \text{ J}$	pas adiab rév »)
	0,25
L'étano BC n'est nas apponcée réversible, il faut justifier le calcul de AS:	
L'étape BC n'est pas annoncée réversible, il faut justifier le calcul de ΔS :	Justif 0.5
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec	Justif 0,5
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT	Justif 0,5
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi	
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 J/K$	0,5 + 0,25 AN
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 J/K$ $\Delta S_{CD} = 0$ car adiab. réversible (ne pas pénaliser si justifié pour AB et pas	
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 J/K$	0,5 + 0,25 AN 0,5
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 J/K$ $\Delta S_{CD} = 0$ car adiab. réversible (ne pas pénaliser si justifié pour AB et pas ici)	0,5 + 0,25 AN
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 \text{ J/K}$ $\Delta S_{CD} = 0 \text{ car adiab. } \textbf{réversible} \text{ (ne pas pénaliser si justifié pour AB et pas ici)}$ Pour DA, idem BC (ne pas pénaliser si justifié pour BC et pas ici)	0,5 + 0,25 AN 0,5 0,5 + 0,25 AN
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 \text{ J/K}$ $\Delta S_{CD} = 0 \text{ car adiab. } \textbf{réversible} \text{ (ne pas pénaliser si justifié pour AB et pas ici)}$ Pour DA, idem BC (ne pas pénaliser si justifié pour BC et pas ici) $Q_{DA} = R\gamma/(\gamma-1) \times (T_A - T_D) = -10558 \text{ J}$	0,5 + 0,25 AN 0,5 0,5 + 0,25 AN
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 \text{ J/K}$ $\Delta S_{CD} = 0 \text{ car adiab. } \textbf{réversible} \text{ (ne pas pénaliser si justifié pour AB et pas ici)}$ Pour DA, idem BC (ne pas pénaliser si justifié pour BC et pas ici) $Q_{DA} = R\gamma/(\gamma-1) \times (T_A - T_D) = -10558 \text{ J}$ $\Delta S_{DA} = R\gamma/(\gamma-1) \ln(T_A/T_D) = -23,4 \text{ J/K}$	0,5 + 0,25 AN 0,5 0,5 + 0,25 AN
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 \text{ J/K}$ $\Delta S_{CD} = 0$ car adiab. réversible (ne pas pénaliser si justifié pour AB et pas ici) Pour DA, idem BC (ne pas pénaliser si justifié pour BC et pas ici) $Q_{DA} = R\gamma/(\gamma-1) \times (T_A - T_D) = -10558 \text{ J}$ $\Delta S_{DA} = R\gamma/(\gamma-1) \ln(T_A/T_D) = -23,4 \text{ J/K}$ 16) Méthode 1 : contact une source et le système dont la température	0,5 + 0,25 AN 0,5 0,5 + 0,25 AN 0,5 + 0,25 AN
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 \text{ J/K}$ $\Delta S_{CD} = 0$ car adiab. réversible (ne pas pénaliser si justifié pour AB et pas ici) Pour DA, idem BC (ne pas pénaliser si justifié pour BC et pas ici) $Q_{DA} = R\gamma/(\gamma-1) \times (T_A - T_D) = -10558 \text{ J}$ $\Delta S_{DA} = R\gamma/(\gamma-1) \ln(T_A/T_D) = -23,4 \text{ J/K}$ 16) Méthode 1 : contact une source et le système dont la température initiale est très différente de celle de la source, donc irréversible Méthode 2 : $\Delta S_{source\ chaude} = \Delta S_{sc} = -Q_{BC}/T_C = -16,2 \text{ J/K}$ $\Delta S'_{BC} = \Delta S_{BC} + \Delta S_{sc} = 23,7 - 16,2 > 0$ donc irréversible	0,5 + 0,25 AN 0,5 0,5 + 0,25 AN 0,5 + 0,25 AN
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 \text{ J/K}$ $\Delta S_{CD} = 0$ car adiab. réversible (ne pas pénaliser si justifié pour AB et pas ici) Pour DA, idem BC (ne pas pénaliser si justifié pour BC et pas ici) $Q_{DA} = R\gamma/(\gamma-1) \times (T_A - T_D) = -10558 \text{ J}$ $\Delta S_{DA} = R\gamma/(\gamma-1) \ln(T_A/T_D) = -23,4 \text{ J/K}$ 16) Méthode 1 : contact une source et le système dont la température initiale est très différente de celle de la source, donc irréversible Méthode 2 : $\Delta S_{source chaude} = \Delta S_{sc} = -Q_{BC}/T_C = -16,2 \text{ J/K}$ $\Delta S'_{BC} = \Delta S_{BC} + \Delta S_{sc} = 23,7 - 16,2 > 0$ donc irréversible $\Delta S_{source froide} = \Delta S_{sf} = -Q_{DA}/T_A = 36,0 \text{ J/K}$	0,5 + 0,25 AN 0,5 0,5 + 0,25 AN 0,5 + 0,25 AN
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 \text{ J/K}$ $\Delta S_{CD} = 0$ car adiab. réversible (ne pas pénaliser si justifié pour AB et pas ici) Pour DA, idem BC (ne pas pénaliser si justifié pour BC et pas ici) $Q_{DA} = R\gamma/(\gamma-1) \times (T_A - T_D) = -10558 \text{ J}$ $\Delta S_{DA} = R\gamma/(\gamma-1) \ln(T_A/T_D) = -23,4 \text{ J/K}$ 16) Méthode 1 : contact une source et le système dont la température initiale est très différente de celle de la source, donc irréversible Méthode 2 : $\Delta S_{source\ chaude} = \Delta S_{sc} = -Q_{BC}/T_C = -16,2 \text{ J/K}$ $\Delta S'_{BC} = \Delta S_{BC} + \Delta S_{sc} = 23,7 - 16,2 > 0$ donc irréversible $\Delta S_{source\ froide} = \Delta S_{sf} = -Q_{DA}/T_A = 36,0 \text{ J/K}$ $\Delta S'_{DA} = \Delta S_{DA} + \Delta S_{sf} = -23,4 + 36,0 > 0$ donc irréversible	0,5 + 0,25 AN 0,5 0,5 + 0,25 AN 0,5 + 0,25 AN
Soit calcul de ΔS le long d'une isobare réversible allant de B à C avec δQ_{rev} =CpdT Ou préciser qu'à P conservée la chaleur ne dépend pas du chemin suivi $\Delta S_{BC} = \int CpdT/T = R\gamma/(\gamma-1) \ln(T_C/T_B) = 23,7 \text{ J/K}$ $\Delta S_{CD} = 0$ car adiab. réversible (ne pas pénaliser si justifié pour AB et pas ici) Pour DA, idem BC (ne pas pénaliser si justifié pour BC et pas ici) $Q_{DA} = R\gamma/(\gamma-1) \times (T_A - T_D) = -10558 \text{ J}$ $\Delta S_{DA} = R\gamma/(\gamma-1) \ln(T_A/T_D) = -23,4 \text{ J/K}$ 16) Méthode 1 : contact une source et le système dont la température initiale est très différente de celle de la source, donc irréversible Méthode 2 : $\Delta S_{source chaude} = \Delta S_{sc} = -Q_{BC}/T_C = -16,2 \text{ J/K}$ $\Delta S'_{BC} = \Delta S_{BC} + \Delta S_{sc} = 23,7 - 16,2 > 0 donc irréversible$ $\Delta S_{source froide} = \Delta S_{sf} = -Q_{DA}/T_A = 36,0 \text{J/K}$	0,5 + 0,25 AN 0,5 0,5 + 0,25 AN 0,5 + 0,25 AN

AN : CoP = 13437/23995 = 0,56 = 56%	0,25
18) $CoP = -W/Q_c$	0,25
pour le système : $\Delta U = W + Q_c + Q_f = 0$ car fait des cycles	0,25 si justif « cycles »
Le CoP sera maximum si le cycle est parcouru réversiblement, donc	0,25
$\Delta S' = 0 + 0 + (-Q_c/T_c) + (-Q_f/T_f) = 0$	0,25
Soit $CoP_{max} = 1 - T_f/T_c$	0,25
1- $T_f/T_c = 0.56$ conduit à $T_c = 297/(1-0.56) = 675$ K (= 402°C)	0,25

B. ETUDE DU CIRCUIT TURBINE A VAPEUR (TAV) - \sim 13 PTS

I. L'eau corps pur

19. Diagramme 1	0,25
car pente de la courbe de fusion négative	0,25
d'après Clapeyron : $\frac{dP}{dT} = \frac{\Delta_{fusion} \overline{H}}{T \times (\overline{V_{liquide}} - \overline{V_{solide}})} < 0 \text{ car dans le cas de}$ l'eau : $\overline{V}_{liquide} < \overline{V}_{solide}$	0,5
20. 1 = Solide 2 = Gaz 3 = Liquide 4 = fluide super critique	0,25 ×4
21. T = point triple C = Point critique	0,25 ×2
22. On s'intéresse à la vaporisation : $\frac{dP^*}{dT} = \frac{\Delta_{vap} \overline{H}}{T \times (\overline{V_{gaz}} - \overline{V_{liquide}})}$	0,25
Hyp 1: $\overline{V}_{gaz} > \overline{V}_{liquide} \rightarrow \frac{dP^*}{dT} = \frac{\Delta_{vap}\overline{H}}{T \times \overline{V}_{gaz}}$	0,25 + 0,25
Hyp 2 : Gaz parfait $\overline{V}_{gaz} = \frac{RT}{P^*} \rightarrow \frac{dP^*}{P^*} = \frac{\Delta_{vap}\overline{H}}{RT^2} dT$	0,25 + 0,25
Hyp 3 : $\Delta_{vap} \overline{H}$ indépendant de T $\rightarrow \ln P^* = \frac{-\Delta_{vap} \overline{H}}{RT} + cons \tan te$	0,25 + 0,25
23. Lecture graphique : $\frac{\Delta_{vap}\overline{H}}{R}$ = 5707 \Rightarrow $\Delta_{vap}\overline{H}$ = 47,48 kJ.mol ⁻¹	0,25 (justification) 0,5 (valeur numérique avec unité)
24. Il faut donc rompre de nombreuses liaisons intermoléculaires pour	
passer de l'état liquide à gazeux très désordonné donc $\Delta_{vap} \overline{H}$ élevé. L'écart d'ordre entre l'état solide et liquide étant moindre, il faut rompre moins de liaisons intermoléculaires pour passer de l'état solide à liquide donc $\Delta_{fusion} \overline{H} < \Delta_{vap} \overline{H}$.	0,5 si notion d'ordre/désordre, liaisons intermoléculaires
25. $\Delta_{sub \ lim \ ation} \overline{H} = \Delta_{fusion} \overline{H} + \Delta_{vap} \overline{H}$ (dans l'application numérique,	0,5

	T
l'élève peut prendre la valeur expérimentale calculée précédemment ou la valeur théorique).	
	0,5
$\Delta_{sub lim ation} H =$ 53 ou 50 kJ.mol ⁻¹	
Signe : positif OK car il faut fournir de l'énergie pour passer de l'état	
solide à gaz.	Commentaires:
$\Delta_{sub \ lim \ ation} H > \Delta_{vap} H > \Delta_{fusion} H$ OK car passage de l'état solide très	$0,25 \times 2$
ordonné à l'état gazeux le plus désordonné demande de rompre le	
plus de liaisons intermoléculaires.	
26. Cf annexe	0,5 TOR
27. Cf annexe	0,25×4
28. Ces transformations correspondent aux changements d'état du	
corps pur $H_2O \rightarrow$ s'effectuent à T et P constantes \rightarrow horizontales en	1
coordonnées (P,v).	
29. Cf annexe	0.5×4 points
	Allure gale
	respectée : 0,5
F Vapeur G Vapeur Vapeur Lau issement	0,25×4 points