1. Transitorio de primer orden

1.1. FM 4.2

Calcular la corriente i(t) para t > 0.

Datos:

$$\epsilon = 24 \text{ V}$$
 $R_1 = 8 \Omega$
 $R_2 = 4 \Omega$
 $R_3 = 4 \Omega$
 $L = 15 \text{ H}$

Solución

Calculamos las condiciones iniciales ($t = 0^-$) Dibujamos el circuito para t < 0 y obtenemos:

$$i(t) = \frac{\epsilon}{R_2 + R_3}$$

Por tanto, $i(0^-) = 3$ A. Al tratarse de una bobina, $i(0^+) = i(0^-) = 3$ A.

A continuación dibujamos el circuito para t>0 para obtener la respuesta natural y la respuesta forzada.

Para obtener la respuesta natural apagamos las fuentes. En este circuito obtenemos:

Queda por determinar la constante de integración.

Para obtener la respuesta forzada volvemos a activar las fuentes. En este circuito obtenemos:

Con estos dos resultados podemos obtener la respuesta completa:

$$i(t) = i_n(t) + i_\infty(t)$$

 $i(t) = A \cdot e^{-4t/9} + 2A$

Para determinar la constante de integración recurrimos a las condiciones iniciales:

$$i(0^+) = A + 2.4$$

 $i(0^+) = 3$
 $A = 0.6$

Por tanto,

$$i(t) = 0.6 \cdot e^{-4t/9} + 2.4$$

1.2. FM 4.3

Calcular la tensión en bornes del condensador para t > 0.

Datos:

$$\epsilon = 20 \,\mathrm{V}$$
 $I_g = 4 \,\mathrm{A}$
 $R_1 = 6 \,\Omega$
 $R_2 = 4 \,\Omega$
 $R_3 = 12 \,\Omega$
 $C = 1/16 \,\mathrm{F}$

Solución

Calculamos las condiciones iniciales ($t = 0^-$) Dibujamos el circuito para t < 0 y obtenemos:

$$u_C(t) = I_g \cdot R_1$$

Por tanto, $u_c(0^-) = 24 \,\text{V}$. Al tratarse de un condensador, $u_C(0^+) = u_C(0^-) = 24 \,\text{V}$. A continuación dibujamos el circuito para t > 0 para obtener la respuesta natural y la respuesta forzada.

Para obtener la respuesta natural apagamos las fuentes. En este circuito obtenemos:

$$\begin{array}{c|c}
 & C & C \\
\hline
R_2 & C \\
\hline
R_3 & C
\end{array}$$

$$R_{th} = R_2 + R_3 = 16 \Omega$$

 $\tau = C/G_{th} = 1 \text{ s}$
 $u_{Cn}(t) = A \cdot e^{-\frac{t}{\tau}} = A \cdot e^{-t}$

Queda por determinar la constante de integración.

Para obtener la respuesta forzada volvemos a activar las fuentes. En este circuito

obtenemos:

Con estos dos resultados podemos obtener la respuesta completa:

$$u_C(t) = u_{Cn}(t) + u_{c\infty}(t)$$

$$u_C(t) = A \cdot e^{-t} + 20$$

Para determinar la constante de integración recurrimos a las condiciones iniciales:

$$u_C(0^+) = A + 20$$

 $u_C(0^+) = 24$
 $A = 4 \text{ V}$

Por tanto,

$$u_C(t) = 4 \cdot e^{-t} + 20$$

1.3. HKD 8.4

Determina las corrientes $i_L(t)$ e $i_1(t)$ para t > 0.

2. Transitorio de segundo orden

2.1. FM 4.8

El circuito de la figura ha alcanzado el régimen permanente con el interruptor cerrado. El interruptor se abre en t=0. Calcula las expresiones de la tensión en bornes del condensador y de la corriente por la bobina para t>0.

Datos:

$$\epsilon_g = 10 \,\mathrm{V}$$
 $R_1 = 10 \,\Omega$
 $R_2 = 5 \,\Omega$
 $L = 2.5 \,\mathrm{H}$
 $C = 0.2 \,\mathrm{F}$

2.2. FM 4.9

En el circuito de la figura, calcula la tensión $u_c(t)$ para t>0.

Datos:

$$\epsilon_g = 4 \, \mathrm{V}$$
 $R_1 = 2 \, \Omega$
 $R_2 = 2 \, \Omega$
 $L = 2 \, \mathrm{H}$
 $C = 0.25 \, \mathrm{F}$