## Plan for today Prof. Manevitz

manevitz@cs.Haifa.ac.il

Office Hour (after classes)

- Requirements
  - Probably two projects and exam
  - YOU MUST PASS EXAM FOR PROJECTS TO COUNT
  - You must pass exam for project to count.

Morning Class 10 -1 in Hebrew Afternoon Class 3 – 6 PM in English

# Introduction to NeuroComputation

Prof. L. Manevitz

Dept of Computer Science

Lecture 1

2

#### TODAY

#### Background •

- Brains and Computers •
- Computational Models •
- Learnability vs Programming •
- Representability vs Training Rules
  - Abstractions of Neurons •
  - Abstractions of Networks •
  - Completeness of 3-Level McCullough-Pitts Neurons
    - Learnability in Perceptrons •

#### What is /isn't in this course

#### In the Course

- Foundation and Examples Underlying the NN revolution.
- We will see basic techniques, where they come from, basic intuitions and some of the mathematics underlying the methodology
- There will be implementation projects (probably 2) which will count for a substantial part of the grade; probably 50%. You will do these with a partner of your choice,

# Not in the Course(mostly - we may touch on some items including today)

- It is **not** a course guiding you how to use the latest "Deep NNs" programs and packages (There is another course given by Prof. Amos Azaria which does this.)
- It is **not** a course showing you how to simulate and understand the human brain and cognition. (This is another wing of NNs emphasized in a course often given in the fall by myself.)

#### Brains and Computers

- What is computation?
- Basic Computational Model •

(Like C, Pascal, C++, etc)

(See course on Models of Computation.)

Analysis of problem and reduction to algorithm.

Implementation of algorithm by Programmer.



# Computation

Brain also computes. But Its programming seems different.

Flexible, Fault Tolerant (neurons die every day),

Automatic Programming,

Learns from examples,

Generalizability



# Computation and Psychology Computation and Brain

- This is the main subject of our course
- What is the software/hardware as we see it via computational eyes?
  - Two Directions
  - Neuroscience understanding •
- Understanding how it is possible at all for the brain to compute as it does
  - Engineering Methodologies
  - Extracting from methods of brain to create new computational methodologies

#### Successes

Computer Vision: Pattern Recognition and Big Data

Small Data and Brain Modeling

**Production of Artificial Data** 

Clear Learning Rules

#### MIND READING

fMRI Machine A sequence of stimuli Registered brain activity (over time)







- Blood Oxygen Level-Dependent (BOLD) signal (oxygen hemodynamic response is a measurement of the brain activity.
- BOLD signal is recorded for each voxel inside the brain image
- (So MANY Features 100,000 200,000)

BOLD

V<sub>1</sub>(t) Voxel 1

V<sub>2</sub>(t) Voxel 2

V<sub>3</sub>(t) Voxel N

# Challenge: Computer Vision – Recognize What is Seen in Camera

# Challenge: Given an fMRI

Can we learn to recognize from the MRI data, the cognitive task being performed?

Automatically?

WHAT ARE THEY?



Putin
Thinking Thoughts

# Applications

Diagnosing Parkinson's •

Diagnosing Alzheimer's •

And so on ...

## What does Brain look like?







Challenge: How is Map Produced?



# Neurons: Underlying Structure





18

# Split Brain





# House – Split Brain Clip



# Psychological – Brain Theories and Models











# Left Hemisphere









# Right Hemisphere



# Brain vs. Computer

- Brain works on slow components (10\*\*-3 sec) •
- Computers use fast components (10\*\*-10 sec) •
- Brain more efficient (few joules per operation) (factor of 10\*\*10.)
  - Uses massively parallel mechanism.
    - \*\*\*\*Can we copy its secrets? •

#### Brain vs Computer

Areas that Brain is better:

Sense recognition and integration

Working with incomplete information

Pattern Recognition

Generalizing

Learning from examples

Fault tolerant (regular programming is notoriously fragile.)

# Psychology

Personality •

Memory •

Self Reflection

Love •

Emotions •

Logic •

Altruism •

Reading •

# Psychology and Psychophysics

- Reaction Time •
- Clever experiments •
- We'll see some related to memory as time allows •

# Psychology and Brain

What is the hardware •

# Computation and Psychology Computation and Brain

- This is the main subject of our course
- What is the software/hardware as we see it via computational eyes?
  - Two Directions
  - Neuroscience understanding •
- Understanding how it is possible at all for the brain to compute as it does
  - Engineering Methodologies •
  - Extracting from methods of brain to create new computational methodologies

•

#### AI vs. NNs

- AI relates to cognitive psychology •
- Chess, Theorem Proving, Expert Systems, Intelligent agents (e.g. on Internet)
  - NNs relates to neurophysiology •
  - Recognition tasks, Associative Memory, Learning •

#### How can NNs work?

- Look at Brain: •
- 10\*\*10 neurons (10 Gigabytes).
- 10 \*\* 20 possible connections with different numbers of dendrites (reals)
- Actually about 6x 10\*\*13 connections (I.e. 60,000 hard discs for one photo of contents of one brain!)

#### Brain

- Complex •
- Non-linear (more later!)
  - Parallel Processing
    - Fault Tolerant
      - Adaptive
        - Learns •
      - Generalizes •
    - Self Programs •
- GREAT AT PATTERN RECOGNIITON •

# AlexNet: (60 million parameters 650,000 neurons)



Complex, Large Networks Can Learn Representations of Complex Distributions of Data -but large data sets needed for training

# Abstracting

- Note: Number of Neurons may not be crucial (apylsia or crab does many things)
  - Look at simple structures first •

#### Real and Artificial Neurons





# One Neuron McCullough-Pitts

This is very complicated. But abstracting the details, we have



Lecture 1

38

(No time in M-P model)

# Representability

What Boolean functions can be represented by a Mccullough-Pitts neuron?

# Representability

- What functions can be represented by a network of Mccullough-Pitts neurons?
- Theorem: Every logic function of an arbitrary number of variables can be represented by a three level network of neurons.

#### Proof

- Show simple functions: and, or, not, implies
- Recall representability of logic functions by DNF form.







#### DNF and All Functions

- Theorem
  - Any logic (boolean) function of any number of variables can be represented in a network of McCullough-Pitts neurons.
  - In fact the depth of the network is three.
  - Proof: Use DNF and And, Or, Not representation

#### Other Questions?

• What if we allow REAL numbers as inputs/outputs?

What real functions can be represented?

What if we modify threshold to some other function; so output is not {0,1}. What functions can be represented?

We will return to this question

# Representability and Generalizability

# Learnability and Generalizability

- The previous theorem tells us that neural networks are potentially powerful, but doesn't tell us how to use them.
- We desire simple networks with uniform training rules.

# One Neuron (Perceptron)

- What can be represented by one neuron?
- Is there an automatic way to learn a function by examples?

## Perceptron Training Rule

#### • Loop:

Take an example. Apply to perceptron.

If correct answer, return to loop.

If incorrect, go to FIX.

FIX: Adjust network weights by input example.

Go to Loop:.

# Example of Perceptron Learning

• 
$$X1 = 1$$
 (+)  $x2 = -.5$  (-)

• 
$$X3 = 3 (+) x4 = -2 (-)$$

Expanded Vector

• 
$$Y1 = (1,1) (+) y2 = (-.5,1)(-)$$

• 
$$Y3 = (3,1) (+) y4 = (-2,1) (-)$$

Random initial weight

(-2.5, 1.75)

# Graph of Learning

## Trace of Perceptron

W1 y1 = 
$$(-2.5,1.75)$$
  $(1,1) < 0$  wrong •

$$W2 = w1 + y1 = (-1.5, 2.75)$$
 •

W2 y2 = 
$$(-1.5, 2.75)(-.5, 1) > 0$$
 wrong

$$W3 = w2 - y2 = (-1, 1.75)$$
 •

W3 y3 = 
$$(-1,1.75)(3,1) < 0$$
 wrong

$$W4 = w4 + y3 = (2, 2.75)$$
 •

#### Perceptron Convergence Theorem

• If the concept is representable in a perceptron then the perceptron learning rule will converge in a finite amount of time.

• (MAKE PRECISE and Prove)

#### What is a Neural Network?

- What is an abstract Neuron?
  - What is a Neural Network?
    - How are they computed? •
    - What are the advantages? •
    - Where can they be used?
      - Agenda
      - What to expect

# Perceptron Algorithm

- Start: Choose arbitrary value for weights, W
- Test: Choose arbitrary example X
- If X pos and WX > 0 or X neg and WX <= 0 go to Test
- Fix:
  - If X pos W := W + X;
  - If X negative W:=W-X;
  - Go to Test;

# Perceptron Conv. Thm.

• Let F be a set of unit length vectors. If there is a vector V\* and a value e>0 such that V\*X > e for all X in F then the perceptron program goes to FIX only a finite number of times.

#### Proof of Conv Theorem

- Note:
- 1. By hypothesis, there is a d > 0 such that V\*X > d for *all*  $x \in F$ 
  - 1. Can eliminate threshold

(add additional dimension to input) W(x,y,z)

> threshold if and only if

$$W*(x,y,z,1) > 0$$

2. Can assume all examples are positive ones

(Replace negative examples

by their negated vectors)

W(x,y,z) < 0 if and only if

$$W(-x,-y,-z) > 0.$$

# Proof (cont).

• Consider quotient V\*W/|W|. (note: this is multidimensional cosine between V\* and W.)

Recall V\* is unit vector.

Quotient  $\leq 1$ .

# Proof(cont)

 Now each time FIX is visited W changes via ADD.

$$V^* W(n+1) = V^*(W(n) + X)$$
$$= V^* W(n) + V^*X$$
$$>= V^* W(n) + \delta$$

Hence

$$V^* W(n) \ge n \delta \qquad (*)$$

### Proof (cont)

- Now consider denominator:
- |W(n+1)| = W(n+1)W(n+1) = (W(n) + X)(W(n) + X) =|W(n)| \*\*2 + 2W(n)X + 1

(recall |X| = 1 and W(n)X < 0 since X is positive example and we are in FIX)

$$< |W(n)| **2 + 1$$

So after n times

$$|W(n+1)| **2 < n (**)$$

#### Proof (cont)

Putting (\*) and (\*\*) together:

Quotient = 
$$V*W/|W|$$
  
>  $n\delta/$ sqrt(n)

Since Quotient  $\leq 1$  this means  $n \leq (1/\delta)**2$ .

This means we enter FIX a bounded number of times.

Q.E.D.

### Geometric Proof

See hand slides. •

# Perceptron Diagram 1



No examples



No examples



#### Additional Facts

- Note: If X's presented in systematic way, then solution W always found.
- Note: Not necessarily same as V\*
- Note: If F not finite, may not obtain solution in finite time
- Can modify algorithm in minor ways and stays valid (e.g. not unit but bounded examples); changes in W(n).

# Perceptron Convergence Theorem

• If the concept is representable in a perceptron then the perceptron learning rule will converge in a finite amount of time.

# Important Points

- Theorem only guarantees result IF representable!
- Usually we are not interested in just representing something but in its generalizability how will it work on examples we havent seen!

# Percentage of Boolean Functions Representable by a Perceptron

| Input | Functions | Perceptron4        |
|-------|-----------|--------------------|
| 1     | 4         | 4                  |
| 2     | 16        | 14                 |
| 3     | 256       | 104                |
| 4     | 65,536    | 1,882              |
| 5     | 10**9     | 94,572             |
| 6     | 10**19    | 15,028,134         |
| 7     | 10**38    | 8,378,070,864      |
| 8     | 10**77    | 17,561,539,552,946 |
|       |           |                    |
|       |           |                    |
|       |           |                    |
|       |           |                    |

# Generalizability

- Typically train a network on a sample set of examples
- Use it on general class
- Training can be slow; but execution is fast.

#### Perceptron

#### weights



 $\sum w_i x_i > \theta \Leftrightarrow$  The letter A is in the recept

- PatternIdentification
- (Note: Neuron is trained)

# Applying Algorithm to "And"

- W0 = (0,0,1) or random
  - X1 = (0,0,1) result 0 •
  - X2 = (0,1,1) result 0
  - $X3 = (1,0, 1) \text{ result } 0 \bullet$
  - X4 = (1,1,1) result 1 •

#### "And" continued

Wo X1 > 0 wrong; W1 = W0 - X1 = (0,0,0)W1 X2 = 0 OK (Bdry) W1 X3 = 0 OKW1 X4 = 0 wrong; W2 = W1 + X4 = (1,1,1)W3 X1 = 1 wrongW4 = W3 - X1 = (1,1,0)W4X2 = 1 wrongW5 = W4 - X2 = (1,0,-1)W5 X3 = 0 OKW5 X4 = 0 wrongW6 = W5 + X4 = (2, 1, 0)W6 X1 = 0 OKW6 X2 = 1 wrong W7 = W7 - X2 = (2,0,-1)

## "And" page 3

W8 
$$X3 = 1$$
 wrong •

$$W9 = W8 - X3 = (1,0,0)$$

$$W9X4 = 1 OK \bullet$$

$$W9 X1 = 0 OK \bullet$$

W9 
$$X2 = 0 OK •$$

W9 
$$X3 = 1$$
 wrong •

$$W10 = W9 - X3 = (0,0,-1)$$
 •

$$W10X4 = -1 \text{ wrong} \bullet$$

$$W11 = W10 + X4 = (1,1,0)$$
 •

$$W11X1 = 0 OK \bullet$$

$$W11X2 = 1 \text{ wrong} \bullet$$

$$W12 = W12 - X2 = (1,0,-1)$$
 •

### What wont work?

• Try XOR.

#### What wont work?

• Example: Connectedness with bounded diameter perceptron.

• Compare with Convex with (use sensors of order three).

# Limitations of Perceptron

- Representability
  - Only concepts that are linearly separable.
  - Compare: Convex versus connected
  - Examples: XOR vs OR