# Решение многокритериальных задач принятия решений с помощью методов тропической оптимизации

Приньков Алексей Сергеевич, гр. 19.М03-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Статистическое моделирование

Научный руководитель: д.ф.-м.н., профессор Кривулин Н. К. Рецензент: к.т.н., доцент Жбанова Н. Ю.



Санкт-Петербург 2021



### Цель работы

Решается задача оценки важности нескольких критериев с помощью результатов и методов тропической оптимизации

#### Цели работы:

- определить рейтинги и ранги критериев с помощью методов тропической оптимизации и других методов
- сравнить результаты применения методов между собой

В дополнение к методам тропической оптимизации используются результаты:

- по методу Саати
- по методу геометрических средних
- прямых оценок респондентов



### Матрицы парных сравнений

• Пусть имеется матрица парных сравнений  ${m A}=(a_{ij})$ , где  $a_{ij}$ показывает, во сколько раз критерий i лучше j и

$$a_{ij} = 1/a_{ji} > 0$$

- Матрица A называется согласованной, если для всех i, j, kвыполняется свойство транзитивности  $a_{ij} = a_{ik}a_{kj}$
- ullet Согласованная матрица имеет вид  $oldsymbol{A} = oldsymbol{x}oldsymbol{x}^-$  , где  $oldsymbol{x} = (x_i)$  положительный вектор-столбец,  ${m x}^- = (x_i^{-1})$  — вектор-строка
- ullet Если матрица парных сравнений A согласована, то вектор xявляется вектором абсолютных рейтингов критериев
- Матрицы парных сравнений обычно не согласованы
- Поэтому в задачах парных сравнений возникает задача приближения несогласованных матриц согласованными



### Эвристические методы и методы аппроксимации

- Эвристические методы решения задачи парных сравнений используют приемы агрегирования столбцов матрицы  $oldsymbol{A}$
- Полученный в результате вектор порождает согласованную матрицу и прямо берется в качестве решения
- Широко распространен на практике метод главного собственного вектора [Саати, 1989]
- Методы аппроксимации решают задачу приближения матрицы парных сравнений A согласованной  $X=xx^-$
- ullet Задача аппроксимации матрицы A формулируется как

$$\min_{\boldsymbol{x}} d(\boldsymbol{A}, \boldsymbol{x}\boldsymbol{x}^{-}),$$

где d — функция ошибки аппроксимации

• Выбор вычислительных процедур решения обусловлен метрикой и шкалой для измерения ошибки



### Log-чебышевская аппроксимация

- Использование log-евклидовой метрики дает решение по методу геометрических средних
- ullet Задача аппроксимации матрицы  $oldsymbol{A}$  в  $\log$ -чебышевской метрике

$$d(\boldsymbol{A}, \boldsymbol{X}) = \max_{1 \le i, j \le n} \left| \log a_{ij} - \log \frac{x_i}{x_j} \right|$$

сводится к задаче минимизации функции без логарифма

$$\min_{\boldsymbol{x}>\boldsymbol{0}} \max_{1\leq i,j\leq n} \frac{a_{ij}x_j}{x_i}$$

- Методы главного собственного вектора и геометрических средних всегда приводят к единственному вектору решения
- Решение по методу log-чебышевской аппроксимации может быть неединственным и составлять множество векторов  ${\mathcal S}$



# "Наилучшее" и "наихудшее" решение

- Если S множество различных решений, то для них можно вычислять отношение между максимальным и минимальным рейтингами, чтобы найти "наилучшее" и "наихудшее" решения
- Наилучшее дифференцирующее (наилучшим образом различающее рейтинги) решение может быть записано как

$$\max_{\boldsymbol{x}\in\mathcal{S}} \max_{1\leq i\leq n} x_i \times \max_{1\leq j\leq n} x_j^{-1}$$

• Наихудшее дифференцирующее (наихудшим образом различающее рейтинги) решение может быть записано как

$$\min_{\boldsymbol{x}\in\mathcal{S}} \max_{1\leq i\leq n} x_i \times \max_{1\leq j\leq n} x_j^{-1}$$



### Решение с помощью методов тропической оптимизации

 В работе применены методы тропической оптимизации для решения задач

$$\min_{\boldsymbol{x}>\boldsymbol{0}} \max_{1 \leq i,j \leq n} a_{ij} x_j / x_i$$

$$\max_{\boldsymbol{x} \in \mathcal{S}} \max_{1 \leq i \leq n} x_i \times \max_{1 \leq j \leq n} x_j^{-1}$$

$$\min_{\boldsymbol{x} \in \mathcal{S}} \max_{1 \leq i \leq n} x_i \times \max_{1 \leq j \leq n} x_j^{-1}$$

которые позволяют получить аналитическое решение в компактной векторной форме [Krivulin, 2015].



### Идемпотентная математика

- Тропическая (идемпотентная) математика изучает теорию и приложения полуколец с идемпотентными операциями
- Задачи тропической оптимизации формулируются и решаются в рамках тропической математики
- Идемпотентное полуполе: алгебраическая система

$$\langle \mathbb{X}, \mathbb{0}, \mathbb{1}, \oplus, \otimes \rangle$$

- ullet  $\mathbb X$  включает нейтральные элементы: ноль  $\mathbb O$  и единицу  $\mathbb 1$
- Бинарные операции ⊕ и ⊗ ассоциативны и коммутативны
- Сложение  $\oplus$  идемпотентно:  $x \oplus x = x$  для всех  $x \in \mathbb{X}$
- Умножение обратимо: для  $x \neq 0$  существует обратный  $x^{-1}$



# Мах-алгебра

• Примером алгебраической системы с идемпотентной операцией является тах-алгебра

$$\mathbb{R}_{\max,\times} = \langle \mathbb{R}_+, 0, 1, \max, \times \rangle$$
 
$$\mathbb{R}_+ = \{ x \in \mathbb{R} | x \le 0 \}$$

- $\mathbb{X} = \mathbb{R}_+$ ; ноль и единица: 0 = 0, 1 = 1
- Бинарные операции:  $\oplus = \max$  и  $\otimes = \times$
- Идемпотентное сложение:  $x \oplus x = \max(x, x) = x, x \in \mathbb{R}_+$
- Мультипликативное обращение: для всех  $x \in \mathbb{R}_+ \setminus \{0\}$ существует  $x^{-1}$



### Векторы и матрицы

- Матричные и векторные операции выполняются с заменой сложения на операцию  $\oplus = \max$  по стандартным правилам
- Мультипликативно сопряженное транспонирование преобразует  ${m A}=(a_{ij})$  в матрицу  ${m A}^-=(a_{ij}^-)$ , где

$$a_{ij}^- = egin{cases} a_{ji}^{-1} & a_{ji} 
eq 0, \\ 0 & \text{иначе.} \end{cases}$$

ullet Единичная матрица I определена стандартным образом



### Элементы тропической математики

ullet Целая степень квадартной матрицы для  $p\geq 1$ :

$$A^0 = I, A^p = A^{p-1}A = AA^{p-1}$$

ullet След матрицы  $oldsymbol{A}=(a_{ij})$  порядка n определен как

$$\operatorname{tr} \mathbf{A} = a_{11} \oplus \cdots \oplus a_{nn} = \bigoplus_{i=1}^{n} a_{ii}$$

ullet Спектральный радиус A — это скалярная величина:

$$\lambda = \operatorname{tr} \boldsymbol{A} \oplus \cdots \oplus \operatorname{tr}^{1/n}(\boldsymbol{A}^n)$$

ullet Если  $\lambda \leq 1$ , то определен оператор Клини

$$A^* = I \oplus A \oplus \cdots \oplus A^{n-1}$$



# Алгебраическое решение для матрицы парных сравнений

 Тропическое представление целевой функции задачи принятия решений на основе матриц парных сравнений

$$\min_{\boldsymbol{x}>\boldsymbol{0}} \max_{1\leq i,j\leq n} \frac{a_{ij}x_j}{x_i}$$

ullet В терминах  $\mathbb{R}_{\max, imes}$  принимает вид

$$\max_{1 \le i,j \le n} \frac{a_{ij}x_j}{x_i} = \bigoplus_{1 \le i,j \le n} x_i^{-1} a_{ij}x_j = \boldsymbol{x}^{-} \boldsymbol{A} \boldsymbol{x}$$

• Тогда задача аппроксимации может быть записана как

$$\min_{x>0} x^- Ax$$

• Все решения можно записать в параметрической форме

$$x = Bu$$
,  $u > 0$ ,  $B = (\lambda^{-1}A)^*$ ,

где  $\lambda$  — спектральный радиус матрицы парных сравнений  $oldsymbol{A}$ 



## "Наилучшее" и "наихудшее" решение

• Наилучшее дифференцирующее решение вычисляется как:

$$x_1 = B(I \oplus B_{lk}^- B)u_1, \qquad B = (\lambda^{-1}A)^*, \qquad u_1 > 0,$$

где  $m{B}_{lk}$  получается из матрицы  $m{B}=(m{b}_j)$  со столбцами  $m{b}_j=(b_{ij})$  путем обнуления всех элементов кроме  $b_{lk}$ ,

$$k = \arg\max_{j} \mathbf{1}^{T} \boldsymbol{b}_{j} \boldsymbol{b}_{j}^{-} \mathbf{1}, \qquad l = \arg\max_{i} b_{ik}^{-1}$$

• Наихудшее дифференцирующее решение вычисляется как:

$$egin{aligned} oldsymbol{x}_2 &= (\Delta^{-1} \mathbf{1} \mathbf{1}^T \oplus \lambda^{-1} oldsymbol{A})^* oldsymbol{u}_2, & oldsymbol{u}_2 > \mathbf{0}, \ & \Delta &= \mathbf{1}^T oldsymbol{B} \mathbf{1} = \mathbf{1}^T (\lambda^{-1} oldsymbol{A})^* \mathbf{1} \end{aligned}$$



# Оценка рейтингов критериев при выборе гостиницы

- Решается задача оценки важности (приоритетов, весов, рейтингов) критериев при выборе гостиницы клиентами
- Исходные данные получены путем опроса 202 респондентов
- Каждый респондент прямо оценивает рейтинг критериев, определяет ранги критериев, сравнивает критерии попарно
- Использовано аналитическое решение методами тропической оптимизации для определения рейтингов и рангов критериев
- Решения также вычислялись по методу геометрических средних и методу Саати на основе матриц парных сравнений
- Результаты сравнивались между собой и с прямыми оценками с помощью методов многомерного анализа данных



### Анализ результатов численного решения

#### Число полных совпадений рангов по респондентам

|               |        |       |           | Log-Chebyshev | Log-Chebyshev |
|---------------|--------|-------|-----------|---------------|---------------|
|               | Direct | Saaty | Geometric | Best          | Worst         |
| Direct        | 202    |       |           |               |               |
| Saaty         | 56     | 202   |           |               |               |
| Geometric     | 56     | 184   | 202       |               |               |
| Log-Chebyshev |        |       |           |               |               |
| Best          | 59     | 124   | 124       | 202           |               |
| Log-Chebyshev |        |       |           |               |               |
| Worst         | 56     | 123   | 125       | 130           | 202           |

- Можно сделать предварительные выводы о сходстве для 91% результатов геометрического метода и метода Саати
- Результаты log-чебышевской совпадают с результатами предыдущих методов для 61% респондентов.
- Наиболее близкие результаты к прямым оценкам респондентов дает метод наилучшей log-чебышевской аппроксимации



### Наиболее представительные векторы

#### Наиболее представительные векторы рейтингов

|        |        |           | Log-Chebyshev | Log-Chebyshev |
|--------|--------|-----------|---------------|---------------|
| Direct | Saaty  | Geometric | Best          | Worst         |
| 0.7480 | 0.6268 | 0.6272    | 0.5693        | 0.6313        |
| 0.9428 | 0.8877 | 0.8915    | 0.8504        | 0.9025        |
| 0.5784 | 0.3238 | 0.3231    | 0.2861        | 0.3511        |
| 0.5588 | 0.3044 | 0.3053    | 0.2735        | 0.3291        |
| 0.7331 | 0.5279 | 0.5303    | 0.4910        | 0.5581        |
| 0.6149 | 0.2543 | 0.2558    | 0.2252        | 0.2879        |

- Векторы чебышевской аппроксимации являются границами для рейтингов по методам Саати и геометрических средних
- Это справедливо для 20 респондентов по методу Саати и для 22 респондентов по методу геометрических средних



### Наиболее представительные векторы

#### Расстояние между наиболее представительными векторами

|               |        |        |           | Log-Chebyshev | Log-Chebyshev |
|---------------|--------|--------|-----------|---------------|---------------|
|               | Direct | Saaty  | Geometric | Best          | Worst         |
| Direct        | 0      |        |           |               |               |
| Saaty         | 0.5651 | 0      |           |               |               |
| Geometric     | 0.5628 | 0.0048 | 0         |               |               |
| Log-Chebyshev |        |        |           |               |               |
| Best          | 0.6463 | 0.0963 | 0.0995    | 0             |               |
| Log-Chebyshev |        |        |           |               |               |
| Worst         | 0.5071 | 0.0602 | 0.0573    | 0.1493        | 0             |

- Вектор наихудшей log-чебышевской аппроксимация наиболее близок по евклидовой метрике к вектору прямых рейтингов
- Векторы решений по методу Саати и методу геометрических средних практически совпадают

### Диаграммы размаха

#### Диаграммы размаха рангов по методам и критериям



- У геометрического метода и метода Саати визуально результаты по медианам и квартилям совпадают
- У геометрического и наихудшего log-чебышевского методов положение медиан схоже
- У прямых оценок ранги по пятому и шестому критерию имеют меньший размах, чем по всем остальным методам



### Значение корреляции по рейтингам

#### Значение корреляции Пирсона по рейтингам

|               |        |        |           | Log-Chebyshev | Log-Chebyshev |
|---------------|--------|--------|-----------|---------------|---------------|
|               | Direct | Saaty  | Geometric | Best          | Worst         |
| Direct        | 1.0000 |        |           |               |               |
| Saaty         | 0.6942 | 1.0000 |           |               |               |
| Geometric     | 0.6917 | 0.9973 | 1.0000    |               |               |
| Log-Chebyshev |        |        |           |               |               |
| Best          | 0.6619 | 0.9613 | 0.9630    | 1.0000        |               |
| Log-Chebyshev |        |        |           |               |               |
| Worst         | 0.6889 | 0.9621 | 0.9576    | 0.9164        | 1.0000        |

- Рейтинги геометрического метода и рейтинги метода Саати сильно коррелируют
- Наибольшее значение корреляции с прямыми оценками у метода Саати

### Значение корреляции по рангам

Выборка, в которой полностью согласуются ранги, указанные напрямую и найденные с помощью ранжирования, 28 респондентов

|               |        |        |           | Log-Chebyshev | Log-Chebyshev |
|---------------|--------|--------|-----------|---------------|---------------|
|               | Direct | Saaty  | Geometric | Best          | Worst         |
| Direct        | 1.0000 |        |           |               |               |
| Saaty         | 0.8482 | 1.0000 |           |               |               |
| Geometric     | 0.8482 | 1.0000 | 1.0000    |               |               |
| Log-Chebyshev |        |        |           |               |               |
| Best          | 0.8560 | 0.9558 | 0.9558    | 1.0000        |               |
| Log-Chebyshev |        |        |           |               |               |
| Worst         | 0.8645 | 0.9557 | 0.9557    | 0.9717        | 1.0000        |

#### Вся выборка, 202 респондента

|               |        |        |           | Log-Chebyshev | Log-Chebyshev |  |
|---------------|--------|--------|-----------|---------------|---------------|--|
|               | Direct | Saaty  | Geometric | Best          | Worst         |  |
| Direct        | 1.0000 |        |           |               |               |  |
| Saaty         | 0.7939 | 1.0000 |           |               |               |  |
| Geometric     | 0.7940 | 0.9862 | 1.0000    |               |               |  |
| Log-Chebyshev |        |        |           |               |               |  |
| Best          | 0.7876 | 0.9312 | 0.9290    | 1.0000        |               |  |
| Log-Chebyshev |        |        |           |               |               |  |
| Worst         | 0.7839 | 0.9186 | 0.9204    | 0.9144        | 1.0000        |  |
|               |        |        |           |               |               |  |

### Расстояние Кендалла

#### Расстояние Кендалла для рангов

|               |        |        |           | Log-Chebyshev | Log-Chebyshev |
|---------------|--------|--------|-----------|---------------|---------------|
|               | Direct | Saaty  | Geometric | Best          | Worst         |
| Direct        | 0      |        |           |               |               |
| Saaty         | 0.1524 | 0      |           |               |               |
| Geometric     | 0.1527 | 0.0179 | 0         |               |               |
| Log-Chebyshev |        |        |           |               |               |
| Best          | 0.1517 | 0.0677 | 0.0689    | 0             |               |
| Log-Chebyshev |        |        |           |               |               |
| Worst         | 0.1515 | 0.0781 | 0.0771    | 0.0797        | 0             |

В результате кластерного анализа по рангам получено:

- Наиболее близки к прямым оценкам результаты по методу наихудшей log-чебышевской аппроксимации
- Наименьшее расстояние между результатами по методу Саати и методу геометрических средних



#### Заключение

- Решена задача принятия решений по оценке приоритетов нескольких критериев при выборе гостиницы клиентами
- По значению корреляции с рангами, указанными напрямую, результаты методов близки в равной степени
- Анализ решений подтвердил, что все методы дают близкие результаты и могут быть использованы для решения задачи
- Метод геометрических средних и метод главного собственного вектора Саати дают практически идентичные решения
- Построение диаграмм размаха для рангов показало, что по отдельным критериям схожесть методов меняется
- Рейтинги по методу log-чебышевской аппроксимации являются границами для рейтингов по остальным методам
- Методы log-чебышевской аппроксимации дают результаты, которые ближе всего к прямому ранжированию респондентами



Спасибо за внимание!