VioLA: Unified Codec Language Models for Speech Recognition, Synthesis, and Translation

- Arxiv (23.05.23)
- Microsoft
- Paper

Overivew

"Is one decoder-only generative model all you need for speech recognition, synthesis, and translation?"

- ⇒ A multi-lingual, multi-modal auto-regressive Transformer model
- all the speech utterances to discrete tokens
 - STT, TTS, Speech-to-Speech, Text-to-Text are converted to token-based sequence conversion problem
 - Task ID, Language ID
 - Embedding Module following Encodec
- ASR 성능: PER 11.36
 - Cf) Encoder-Decoder Model 9.47, Decoder Model 9.61)
- MT 성능: BLEU 55.85
 - cf) ASR->MT: 55.98)
- Zero-shot TTS 성능: Speaker Similarity 0.54, WER 4.97
 - cf) VALL-E X : Speaker Similarity 0.53, WER 5.81

Figure 1: The overall framework of VIOLA, which regards various speech processing tasks as a conditional codec language model task. The model training is conducted on a multi-task learning framework with ASR, MT, and TTS tasks, and the model is capable of performing speech-to-text recognition and translation, text-to-text translation, text-to-speech synthesis, and speech-to-speech translation tasks.

• Embedding Module

(b) Embedding encoding modules

- Semantic tokens
 - **G2P**
 - Random initialized embedding
- Language Embedding
 - Language ID
- Acoustic Embedding
 - 8-layer acoustic tokens from Encodec
 - Layer별로 embedding 구성한 다음 average
 - Unidirectional LSTM에 넣음
 - ⇒ 1024-dimensional embedding

Training

(a) Multi-task auto-regressive codec LM

Training Loss

• 3가지 Task를 한꺼번에 훈련

$$\mathcal{L} = \mathcal{L}_{asr} + \mathcal{L}_{mt} + \mathcal{L}_{tts}$$

$$egin{aligned} \mathcal{L}_{asr} &= p\left(oldsymbol{S}^{ ext{asr}}|oldsymbol{A}^{ ext{asr},1:8}, b_{ ext{asr}}; heta
ight) \ &= \prod_{t=0}^{T_{ ext{S}}} p\left(S_{t}^{ ext{asr}}|oldsymbol{A}^{ ext{asr},1:8}, b_{ ext{asr}}, oldsymbol{S}_{ ext{csr}}^{ ext{asr}}, heta
ight) \end{aligned}$$

• ASR

- **Input:** acoustic token (8-layer)
- **Output: semantic token**
- MT
 - **Input: phoneme -> semantic token (source lang)**
 - **Output:** semantic token (target lang)
- TTS
 - **Input: Phoneme -> semantic token**
 - **Output: acoustic token (1-layer)**

$$\mathcal{L}_{asr} = p\left(\boldsymbol{S}^{\text{asr}}|\boldsymbol{A}^{\text{asr},1:8}, b_{\text{asr}}; \theta\right) \qquad \mathcal{L}_{mt} = p\left(\boldsymbol{S}^{\text{mt,t}}|\boldsymbol{S}^{\text{mt, s}}, b_{\text{mt}}; \theta\right) \qquad \mathcal{L}_{tts} = p\left(\boldsymbol{A}^{\text{tts},1}|\boldsymbol{S}^{\text{tts}}, b_{\text{tts}}; \theta\right) \\ = \prod_{t=0}^{T_{\text{S}}} p\left(S_{t}^{\text{asr}}|\boldsymbol{A}^{\text{asr},1:8}, b_{\text{asr}}, \boldsymbol{S}_{< t}^{\text{asr}}, \theta\right) \qquad = \prod_{t=0}^{T_{\text{S}}} p\left(A_{n}^{\text{tts},1}|\boldsymbol{S}^{\text{tts}}, b_{\text{tts}}, \boldsymbol{A}_{< t}^{\text{tts},1}, \theta\right) \\ = \prod_{t=0}^{T_{\text{A}}} p\left(A_{n}^{\text{tts},1}|\boldsymbol{S}^{\text{tts}}, b_{\text{tts}}, \boldsymbol{A}_{< t}^{\text{tts},1}, \theta\right)$$

- Inference
 - ASR
 - Beam search decoding
 - MT
 - Beam search decoding
 - TTS
 - Sampling decoding
 - Strategy 1: 5번 결과 내서 Speaker Similarity가 가장 좋은 것 채택
 - Strategy 2: 5번 결과 내서 Speaker Similarity + WER 가 가장 좋은 것 채택
 - Speech-to-text translation
 - ASR -> MT로 수행
 - Speech-to-speech translation
 - ASR->MT->TTS로 수행

Experiment

- Training data
 - ASR, TTS
 - 중국어 data WenetSpeech (10,000 시간)
 - 영어 data Librilight (60,000 시간)
 - Librispeech를 학습한 ASR 모델로 transcript 생성해서 학습에 사용
 - MT
 - 중국어-영어 63M sentence pair (AI Chanllenger + WMT2020)
- 평가데이터
 - ASR: WenetSpeech ≥ dev set
 - MT: WMT2020² test set
 - Chinese-to-English S2TT, zero-shot English TTS prompted by Chinese speech, zero-short Chinese-to-English S2ST
 - EMIME: native Chinese speaker의 영어, 중국어 발화 음성
 - zero-shot En- glish TTS prompted by English speech
 - Librispeech dev-clean and test- clean sets

Result

Baseline

- Input: Fbank
- AED (Attention-based Encoder Decoder): 6 encoder 6 decoder cross attention
- LM (decoder-only model)

• ASR

Method	Input	Param.(M)	PER↓
AED (enc-dec) LM (decoder)	Fbank	246.3 150.8	9.47 9.61
LM (decoder) VIOLA (12L) VIOLA (18L)	Codec	177.5 178.5 250.6	11.71 12.97 11.36

Table 1: Comparison of different models on speech recognition task.

• MT

Method	Param.(M)	BLEU ↑		
AED (enc-dec)	242.5	56.83		
LM (decoder)	145.4	56.81		
Viola (12L)	178.5	54.44		
VioLA (18L)	250.6	56.97		

Method	Input	Total Param.(M)	BLEU↑
$AED_{ASR} \rightarrow AED_{MT}$	Fbank	488.8	55.98
LM _{ASR} → LM _{MT} VIOLA (12L) VIOLA (18L)	Codec	322.9 178.5 250.6	55.70 53.16 55.85

Table 2: Comparison of different models on machine translation task.

Table 3: Comparison of different models on speech-to-text translation task.

Result

• Zero-Shot Text-to-Speech Synthesis

Method	Strategy I			Strategy II			AVG		
112000	SS	WER	SN	SS	WER	SN	SS↑	WER↓	SN↑
Ground Truth Audio	-	-	-	-	-	-	0.67	1.98	3.81
VALL-E X VIOLA (12L) VIOLA (18L)	0.53 0.52 0.54	5.81 6.13 4.97	3.20 3.20 3.22	0.49 0.47 0.50	3.38 3.75 2.89	3.20 3.19 3.21	0.51 0.50 0.52	4.60 4.94 3.93	3.20 3.20 3.22

Table 4: Comparison of different models on zero-shot text-to-speech task. SS means speaker similarity, SN means speech naturalness, AVG means the average scores of Strategy I and Strategy II.

• Zero-Shot Cross-Lingual TTS / zero-shot speech-to-speech

Method	Input	Strategy I			Strategy II			AVG		
	p	SS	BLEU	SN	SS	BLEU	SN	SS↑	BLEU↑	SN↑
Ground Truth Audio	-	-	-	-	-	-	-	0.58	93.31	3.82
Zero-shot cross-lingual text-to-speech										
Target text → VALL-E X		0.49	69.37	3.32	0.44	83.99	3.35	0.47	76.68	3.34
Target text → VIOLA (12L)	Text	0.49	65.22	3.32	0.43	82.42	3.31	0.46	73.82	3.32
Target text → VIOLA (18L)		0.50	72.55	3.33	0.45	85.21	3.36	0.48	78.88	3.35
Zero-shot speech-to-speech										
$AED_{ASR} \rightarrow AED_{MT} \rightarrow VALL-E X$	Fbank	0.50	42.00	3.52	0.48	49.30	3.53	0.49	45.65	3.53
$\bar{L}\bar{M}_{ASR} \rightarrow \bar{L}\bar{M}_{MT} \rightarrow \bar{V}\bar{A}\bar{L}\bar{L}\bar{-}\bar{E}\bar{X}$		0.50	41.05	3.51	0.48^{-}	$\bar{48.74}$	3.52	0.49	44.90	3.52
VioLA (12L)	Codec	0.49	39.26	3.49	0.47	45.86	3.52	0.48	42.56	3.51
Viola (18L)		0.51	43.96	3.54	0.49	51.57	3.56	0.50	47.77	3.55

Conclusion & Limitation

Conclusion

- Speech -> Codec-based token
- Token conversion problem
- Multi-lingual, multi-task

• Limitation

- TTS에서만 In-context learning
- Cascaded inference for speech-to-text, speech-to-speech translation tasks