BitPhylogeny: A probabilistic framework for reconstructing intra-tumor phylogenies

Contents

1	Installation	1
2	An example	1
	2.1 BitPhylogeny	1
	2.2 Baseline methods	4
3	Reproduce figure 3B	9
4	Reproduce figure 3C	10
1	Installation	
fol	ne BitPhylogeny packages depends on several python and R packages. The first step is to make sure the lowing the packages are installed. * python: numpy, scipy, scikit-learn: http://scikit-learn.org/stably2: http://rpy.sourceforge.net/. * R: rPython, mcclust, e1071, igraph, gplots, riverplot.	
Se	condly, clone the BitPhylogeny repository	
gi	t clone git@bitbucket.org:ke_yuan/bitphylogeny.git	

git clone git@bitbucket.org:ke_yuan/bitphylogeny.git
cd bitphylogeny

The third step is install the BitPhylogeny python package. To do this, navigate into the python directory and run the following

```
cd python
sudo python setup.py install
```

Finally, install the R package

```
cd ../R
R CMD INSTALL bitphylogenyR_0.1.tar.gz
```

2 An example

2.1 BitPhylogeny

We use an example dataset

```
library('bitphylogenyR')
```

```
## Loading required package: rPython
## Loading required package: RJSONIO
## Loading required package: igraph
example_file <- system.file('sample_data.csv', package='bitphylogenyR')
tmp <- read.csv( example_file )</pre>
head(tmp)
##
     V1 V2 V3 V4 V5 V6 V7 V8 V9
## 1
            0
               0
                  0
     Ω
        0
           0
               0
                  0
                     0
                        0
                           0
     0
        0
           0
               0
                  0
                     0
     Ω
        0
           0
               0
                  0
     0 0
           0
               0
                  0
                     0
```

Note that the last column is set to be the true cluster label of each data point. We separate the data and its label.

```
x <- tmp[,-dim(tmp)[2]]
true_label <- tmp[,dim(tmp)[2]]</pre>
```

Run the BitPhylogeny analysis as the following

0 1

```
bitphyloR(example_file, './output', T, 200, 50, 5)
```

NULL

0

0 0 0 0 0

6

By default, bitphyloR runs with methylation model setting. To analyse mutation data, one can use the mode parameter

```
bitphyloR(example_file, './output', T, 200, 50, 5, mode = "mutation")
```

The program saves the results in the directory 'output'.

```
dir('./output', recursive=T)
```

```
[1] "sample_data.csv/mcmc-traces/branch_traces.csv"
   [2] "sample data.csv/mcmc-traces/label traces.csv"
##
    [3] "sample data.csv/mcmc-traces/node depth traces.csv"
##
##
   [4] "sample_data.csv/mcmc-traces/other_traces.csv"
   [5] "sample_data.csv/mcmc-traces/params_traces/array_0.npz"
   [6] "sample_data.csv/mcmc-traces/params_traces/array_1.npz"
##
##
   [7] "sample_data.csv/mcmc-traces/params_traces/array_2.npz"
   [8] "sample_data.csv/mcmc-traces/params_traces/array_3.npz"
##
##
   [9] "sample_data.csv/mcmc-traces/params_traces/array_4.npz"
## [10] "sample_data.csv/mcmc-traces/params_traces/array_5.npz"
  [11] "sample_data.csv/mcmc-traces/params_traces/array_6.npz"
##
## [12] "sample_data.csv/mcmc-traces/params_traces/array_7.npz"
## [13] "sample_data.csv/mcmc-traces/params_traces/array_8.npz"
```

```
## [14] "sample_data.csv/mcmc-traces/params_traces/array_9.npz"
## [15] "sample_data.csv/mcmc-traces/params_traces.h5"
## [16] "sample_data.csv/mcmc-traces/root_param_traces.csv"
## [17] "sample_data.csv/treescripts/nodes-3.gdl"
## [18] "sample_data.csv/treescripts/nodes-4.gdl"
## [19] "sample_data.csv/treescripts/nodes-5.gdl"
## [20] "sample_data.csv/treescripts/nodes-6.gdl"
## [21] "sample_data.csv/treescripts/tree-freq.csv"
```

The clustering performance is assessed by the V-measure. In addition, the label trace is summarised by the maximum posterior expected adjusted Rand method.

NULL

We can visualise the results in the following way

The resulting trees are stored in the treescripts directory. The file tree-freq contains the appearance frequency of each tree in the folder.

```
treefreq <- read.csv('./output/sample_data.csv/treescripts//tree-freq.csv')
treefreq</pre>
```

```
## unique_node_num freq
## 1 3 0.325
## 2 4 0.550
## 3 5 0.100
## 4 6 0.025
```

```
plot_sankey_mft('./output/sample_data.csv/treescripts//tree-freq.csv')
```


Alternatively, the .gdl files can be visualised with the aisee3 software.

2.2 Baseline methods

The baseline methods are consisted of clustering followed by minimum spanning tree construction.

2.2.1 Hierarchical clustering

We first compute the Jacard distance matrix for the sequences.

```
dis <- dist(x, 'binary')</pre>
```

Then, we use the R function hclust to perform hierarchical clustering based on the previously computed distance matrix.

```
hc <- hclust(dis)
hc

##

## Call:
## hclust(d = dis)
##

## Cluster method : complete
## Distance : binary
## Number of objects: 200</pre>
```

The resulting labels of each data point is obtained with the function cutree. The function takes the output of hclust and the number of desired clusters k. In this case, we set k to be 7.

When there is a range of cluster number hypothesis, we compute a list of possible labels.

```
K <- seq(2,14,1)
hc_cand <- lapply(K, function(ii) cutree(hc, ii) )</pre>
```

Each of these hypothesis is evaluated by the Silhouette score. The one with the highest score is chosen as the clustering result.

```
library(cluster)
hc_silhouette_res <- sapply(1:length(K),
                               function(ii)
                                 summary( silhouette(hc_cand[[ii]] ,dis) )$avg.width )
idx <- which.max( hc_silhouette_res )</pre>
hc_label <- hc_cand[[idx]]
hc_label
##
     [1]
                1
                   1 1
                         1
                            1
                               1
                                   1
                                      1
                                         1
                                            1
                                               1
                                                  1
                                                      1
                                                         1
                                                            1
                                                               1
                                                                  1
                                                                     1
##
    Γ241
          1
             1
                1
                   1
                      2
                         1
                             1
                               1
                                   1
                                      1
                                         1
                                            1
                                               1
                                                  1
                                                      1
                                                         3
                                                            1
                                                               1
                                                                  1
                                                                     1
   [47]
##
          1
             3
                1
                   1
                      1
                         1
                             1
                                1
                                   1
                                      1
                                         1
                                            1
                                               1
                                                   1
                                                      1
                                                         1
                                                            1
                                                               1
                                                                  1
   [70]
         4
             4
                4
                   4
                      4
                         4
                            4
                                4
                                   4
                                      4
                                         4
                                            4
                                               4
                                                  4
                                                      4
                                                         6
                                                            6
                                                               6
                                                                  6
                                                                     6
   [93]
                6
                   6
                      6
                          6
                             6
                                8
                                   6
                                      6
                                         6
                                            6
                                               6
                                                  8
                                                      6
                                                         6
                                                            6
                                                               6
                                                                  6
                                                                     6
                                                                        6
                                                                              6
##
         6
             6
## [116]
         6
             6
                6
                   6 10
                         6
                             6
                                6
                                   6
                                      6
                                         6
                                            6
                                               4
                                                  4
                                                     4
                                                         4
                                                            4
                                                                        5
## [139]
          5
             5
                5
                   5
                     5
                         5
                            5
                               5
                                   5
                                      5
                                         5
                                            5
                                               5
                                                  5 11
                                                         5
                                                            5
                                                               5
                                                                  5
                                                                       7
## [162]
         7 7 7 7 12 7 7 7 7
                                         7 11 11 11 11 11 11
                                                               9
                                                                  9 9 9 9 13
## [185] 13 13 13 13 14 14 14 14 14 14 4 5 11 11 11 14
```

Once the label is computed, we compute the genotype of each cluster as the following

```
clone <- sapply(unique(hc_label), function(i) which(hc_label==i) )
n <- length(clone)
hc_genotype <- matrix(0, n, dim(x)[2])
for (i in 1:n){
    idx <- clone[[i]]
    if ( length(idx)==1 ){
        hc_genotype[i,] <- as.matrix(x[idx,])
    }else{
        hc_genotype[i,] <- as.numeric( colMeans(as.matrix(x[idx,])) > 0.5 )
    }
}
hc_genotype
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
##
##
     [1,]
              0
                    0
                          0
                                0
                                      0
                                            0
                                                         0
##
    [2,]
              0
                    0
                          0
                                0
                                      1
                                            0
                                                   0
    [3,]
              0
                          0
                                            0
                                                   0
                                                         0
##
                    1
                                0
                                      0
##
    [4,]
              0
                    0
                          0
                                1
                                      0
                                            0
                                                         1
##
   [5,]
              0
                          0
                                      0
                                            1
                    1
                                1
                                                   1
                                                         1
##
   [6.]
              0
                    0
                          0
                                      0
                                            0
                                1
## [7,]
                          0
              0
                    0
                                1
                                      0
                                            1
                                                   0
                                                         1
##
    [8,]
              0
                    0
                          0
                                1
                                      0
                                            0
                                                   0
##
   [9,]
                    0
                          0
                                      0
                                            0
                                                   0
              1
                                1
                                                         1
## [10,]
              0
                    0
                          0
                                0
                                      0
                                            0
                                                         1
## [11,]
              0
                          0
                                            1
                    1
                                1
                                      1
                                                   1
                                                         1
## [12,]
              0
                    0
                          0
                                0
                                      0
                                            1
                                                   0
                                                         1
## [13,]
                          0
              0
                    0
                                1
                                      1
                                            1
                                                   0
                                                         1
## [14,]
              1
                                            1
                                                   0
                                                         1
                                1
                                      1
```

Finally, we put the above steps into a function which gives the label and genotype estimates.

```
get_label_hc
```

```
## function (x, K)
## {
##
       dis <- dist(x, "binary")</pre>
       hc_cand <- lapply(K, function(ii) cutree(hclust(dis), ii))</pre>
##
       hc_silhouette_res <- sapply(1:length(K), function(ii) summary(silhouette(hc_cand[[ii]],</pre>
##
            dis))$avg.width)
##
##
       idx <- which.max(hc_silhouette_res)</pre>
       hc label <- hc cand[[idx]]
##
##
       clone <- sapply(unique(hc_label), function(i) which(hc_label ==</pre>
##
##
       n <- length(clone)</pre>
       genotype <- matrix(0, n, dim(x)[2])</pre>
##
##
       for (i in 1:n) {
##
            idx <- clone[[i]]</pre>
##
            if (length(idx) == 1) {
##
                genotype[i, ] = as.matrix(x[idx, ])
            }
##
            else {
##
                genotype[i, ] = as.numeric(colMeans(as.matrix(x[idx,
##
##
                     ])) > 0.5)
            }
##
##
##
       return(list(hc_label = hc_label, hc_genotype = genotype))
## }
## <environment: namespace:bitphylogenyR>
```

2.2.2 K-centroids clustering

The k-centroids methods uses the same distance matrix compute above.

```
kc = pam(dis, 7)
kc
```

```
## Medoids:
##
       TD
## [1,]
      65
## [2,] 194 194
## [3,] 158 158
## [4,] 195 195
## [5,] 127 127
## [6,] 172 172
## [7,] 135 135
## Clustering vector:
    ## [176] 3 3 3 7 7 7 7 7 6 6 6 6 6 2 2 2 2 2 2 4 3 2 2 2 2
## Objective function:
   build
           swap
## 0.05225 0.05225
## Available components:
## [1] "medoids"
                "id.med"
                          "clustering" "objective"
                                               "isolation"
## [6] "clusinfo"
                "silinfo"
                          "diss"
                                     "call"
In this case, the genotypes can be obtained as the metroids. The Silhouette score is used to choose the
number of clusters.
kc_cand <- lapply(K, function(ii) pam( dis, ii) )</pre>
kc_silhouette_res <- sapply(1:length(K), function(ii)</pre>
                      summary( silhouette(kc_cand[[ii]]$clustering,dis) )$avg.width )
idx <- which.max( kc_silhouette_res )</pre>
kc_label <- kc_cand[[idx]]$clustering</pre>
kc_label
    [1]
                      1
                               1
                                  1
            1
               1
                 1
                   1
                        1
                           1
                             1
                                    1
                                       1
                                         1
                                            1
                                                1
                                                   1
                 2
                      1
##
   [24]
       1
          1
            1
               1
                   1
                        1
                           1
                             1
                                1
                                  1
                                    1
                                       1
                                         1
                                            3
                                              1
                                                1
                                                   1
                                                     1
##
  [47]
       1
          3
            1
               1
                 1
                   1
                      1
                        1
                           1
                             1
                               1
                                  1
                                    1
                                       1
                                         1
                                            1
                                              1
                                                1
                                                   1
                                                     4
                                                   6
  [70]
          4
            4
               4
                 4
                   4
                      4
                        4
                           4
                             4
                               4
                                  4
                                    4
                                       4
                                         4
                                            6
                                              6
                                                6
## [93] 6
          6
            6
               6
                 6
                    6
                      6
                        8
                           6
                             6
                               6
                                  6
                                    6
                                       8
                                         6
                                           6
                                              6
                                                6
                                                   6
## [116] 6
          6
            6
               6 10
                    6
                      6
                        6
                           6
                             6
                               6
                                  6 11 11 11 11 11 11 11 11
## [139]
       5
          5
            5
               5
                 5
                   5
                      5
                        5
                           5
                             5
                               5 5 5 5 12
                                           5
                                             5
                                                5
                                                   5
                                                     5
                                                        5
                                                          7
       7 7 7 7 7 7 7 7 7 7 7 12 12 12 12 12 12 9
## [162]
## [185] 13 13 13 13 14 14 14 14 14 14 4 5 12 12 12 14
kc_genotype <- x[kc_cand[[idx]]$medoids,]</pre>
kc_genotype
```

##

65

28

48

V1 V2 V3 V4 V5 V6 V7

0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0

```
## 195 0
          0 0
                   0
## 158
       0
          1
            0 1
                   0
                      1
          0
             0
          0 0
## 172
       0
               1
                   0
                      1
## 106
       0
          0
             0
                   0
## 183
       1
          0
               1
                   0
## 120
       0
          0
                     0
## 135
       1
          0
             0
               1
                   0
                        1
## 178
       0
          1
             0
               1
                  1
             0 1 1
## 188
       0
          0
                     1
                           1
## 194
       1
          1
             1
                   1
```

We also wrapped up a function for k-centroids clustering.

```
get_label_kc
```

```
## function (x, K)
## {
##
       dis <- dist(x, "binary")</pre>
##
       kc_cand <- lapply(K, function(ii) pam(dis, ii))</pre>
##
       kc_silhouette_res <- sapply(1:length(K), function(ii) summary(silhouette(kc_cand[[ii]]$clusterin
##
           dis))$avg.width)
##
       idx <- which.max(kc_silhouette_res)</pre>
       kc_label <- kc_cand[[idx]]$clustering</pre>
##
##
       kc_genotype <- x[kc_cand[[idx]]$medoids, ]</pre>
##
       return(list(kc_label = kc_label, kc_genotype = kc_genotype))
## }
## <environment: namespace:bitphylogenyR>
```

2.2.3 Tree building

We construct the minimum spanning tree based the clustering results from the previous stage.

```
mst <- get_mst(hc_genotype)
plot_mst(hc_genotype, hc_label, flag=F)</pre>
```


3 Reproduce figure 3B

```
data(saved_vmeasures)
mcmc_vmeasures <- saved_vmeasures$mcmc_vmeasures</pre>
hc_vmeasures <- saved_vmeasures$hc_vmeasures</pre>
kc_vmeasures <- saved_vmeasures$kc_vmeasures</pre>
mpear_vmeasures <- saved_vmeasures$mpear_vmeasures</pre>
par(mfrow=c(1,2), oma = c(3,3,0,0) + 0.1,
    mar = c(0,0,1,0.5) + 0.1, cex.lab=1.5, cex.axis=1.5)
boxplot(mcmc_vmeasures$big_clone, outline=F,
        ylim=c(0.5,1),
        cex.main=1.3,
        border=c('gray60'), col='gray90')
points( mpear_vmeasures$big_clone, pch=22,cex = 1.5, bg= 'black')
points( hc vmeasures$big clone, pch=24,cex = 1.5, bg= 'black')
points( kc_vmeasures$big_clone, pch=25,cex = 1.5, bg= 'black')
boxplot(mcmc_vmeasures$small_clone, outline=F,
        ylim=c(0.5,1),
        yaxt='n',cex.main=1.3,
        border=c('gray60'), col='gray90')
points( mpear_vmeasures$small_clone, pch=22, cex = 1.5, bg= 'black')
points( hc_vmeasures$small_clone, pch=24, cex=1.5, bg= 'black')
points( kc_vmeasures$small_clone, pch=25, cex = 1.5, bg= 'black')
colors1 <- c("gray90", 'black', 'black', "black")</pre>
colors2 <- c("gray", 'black', 'black', "black")</pre>
add_legend("bottomleft", legend=c("traces", 'BitPhylogeny',
                                   'k-centroids',
```

```
'hierarchical clustering'),
    pch=c(22,22,25,24), inset = c(0.1,0.13), col=colors1,
    pt.bg=colors2,
    horiz=F, bty='n', cex=1.5)

title(xlab = "error",
    ylab = "v-measure",
    outer = TRUE, line = 2.2)
```


4 Reproduce figure 3C

```
small_clone_kc <- c(5, 12)</pre>
small_clone_bit <- rbind(small_clone_bit,</pre>
                         c(3, 14), c(2, 16), c(2, 13)
small_clone_hc <- rbind(small_clone_hc,</pre>
                        c(7, 19), c(5,20), c(9,20))
small_clone_kc <- rbind(small_clone_kc,</pre>
                        c(9, 20), c(7, 20), c(6, 20))
par(mfrow=c(1,2), oma = c(3,3,0,0) + 0.1,
    mar = c(0,0,1,0.5) + 0.1, cex.lab=1.5, cex.axis=1.5)
color <- c('blue', 'red', 'red', 'red')</pre>
plot(big clone t[2], big clone t[1], pch=3, vlim=c(0,10), vlim=c(5,22)
     ,cex=1.5)
points(big_clone_bit[,2], big_clone_bit[,1],pch=0,cex=1.5, col=color)
points(big_clone_hc[,2], big_clone_hc[,1],pch=2,cex=1.5, col=color)
points(big_clone_kc[,2], big_clone_kc[,1],pch=6,cex=1.5, col=color)
plot(small_clone_t[2], small_clone_t[1],pch=3, ylim=c(0,10) ,xlim= c(5,22),cex=1.5,yaxt='n')
points(small_clone_bit[,2], small_clone_bit[,1],pch=0,cex=1.5, col=color)
points(small_clone_hc[,2], small_clone_hc[,1],pch=2,cex=1.5, col=color)
points(small_clone_kc[,2], small_clone_kc[,1],pch=6,cex=1.5, col=color)
colors1 <- c("black", 'black', 'black', "black")</pre>
colors2 <- c("black", 'black', 'black', "black")</pre>
add_legend("topleft", legend=c("truth", 'BitPhylogeny',
                                   'k-centroids',
                                   'hierarchical clustering'),
           pch=c(3,0,6,2), inset = c(0.08,0.02), col=colors1,
           pt.bg=colors2,
           horiz=F, bty='n', cex=1.5)
add_legend("topleft", legend=c("noiseless", 'noise levels: \n0.01,0.02,0.05'),
           inset = c(0.50,0.02), text.col=c('blue','red'),
           horiz=F, bty='n', cex=1.5)
title(xlab = "number of clones",
      ylab = "maximum tree depth",
      outer = TRUE, line = 2.2)
```

