语法分析

魏恒峰

hfwei@nju.edu.cn

2020年12月1日

只考虑无二义性的文法

这意味着,每个句子对应唯一的一棵语法分析树

今日份主题: LR 语法分析器

自底向上的、

不断归约的、

基于句柄识别自动机的、

适用于LR 文法的、

LR 语法分析器

自底向上构建语法分析树

根节点是文法的起始符号 S

每个中间非终结符节点表示使用它的某条产生式进行归约

叶节点是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

自顶向下的"推导"与自底向上的"归约"

$$E \underset{\operatorname{rm}}{\Longrightarrow} T \underset{\operatorname{rm}}{\Longrightarrow} T * F \underset{\operatorname{rm}}{\Longrightarrow} T * \operatorname{id} \underset{\operatorname{rm}}{\Longrightarrow} F * \operatorname{id} \underset{\operatorname{rm}}{\Longrightarrow} \operatorname{id} * \operatorname{id}$$

$$(1) E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

"推导"
$$(A \rightarrow \alpha)$$
 与 "归约" $(A \leftarrow \alpha)$

$$S \triangleq \gamma_0 \implies \dots \gamma_{i-1} \implies \gamma_i \implies \gamma_{r+1} \implies \dots \implies r_n = w$$
$$S \triangleq \gamma_0 \iff \dots \gamma_{i-1} \iff \gamma_i \iff \gamma_{r+1} \iff \dots \iff r_n = w$$

自底向上语法分析器为输入构造反向推导

LR 语法分析器

L: 从左向右 (Left-to-right) 扫描输入

R: 构建反向 (Reverse) 最右推导

"反向最右推导"与"从左到右扫描"相一致

LR 语法分析器的状态

在任意时刻, 语法分析树的上边缘与剩余的输入构成当前句型

 $E \Longleftarrow T \twoheadleftarrow T * F \Longleftarrow T * \mathbf{id} \Longleftarrow F * \mathbf{id} \Longleftarrow \mathbf{id} * \mathbf{id}$

LR 语法分析器使用<mark>栈</mark>存储语法分析树的**上边缘** 它包含了语法分析器目前所知的所有信息

板书演示"栈"上操作

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

两大操作: 移人输入符号 与 按产生式归约

直到栈中仅剩开始符号 S, 且输入已结束, 则成功停止

基于栈的 LR 语法分析器

 Q_1 : 何时归约? (何时移入?)

Q2:按哪条产生式进行归约?

基于栈的 LR 语法分析器

(1)
$$E \rightarrow E + T$$

- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow \mathbf{id}$

为什么第二个 F 以 T*F 整体被归约为 T?

这与<mark>栈</mark>的当前状态 "T*F" 相关

11/49

LR 分析表指导 LR 语法分析器

₩ *	状态		ACTION							
1/10			+	*	()	\$	E	T_{\perp}	F
0	1	s5			s4			1	2	3
1			s6				acc			- [
2		ļ	r2	s7		r2	r2	ĺ		
3			r4	r4		r4	r4	1		
4		s5			s4			8	2	3
5		ļ	r 6	r6		r6	r6	}	_	
6		s5	v		s4			l	9	3
7		s5			54					10
8		ļ	s6			s11)		ļ
9			r1	s7		r1	r1			
10		}	r3	r3		r3	r3	1		
11]_		r5	r5		_ r5	r5			

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

ACTION 表指明动作, GOTO 表仅用于归约时的状态转换

117-	状态		ACTION						GOTO		
1/1			id	+	*	()	\$	E	T	F
Ī	0		s 5			s 4			1	2	3
	1			s6				acc			
1	2			r2	s7		r2	r2	ĺ		
	3			r4	r4		r4	r4	1		
ď	4		s5			s4			8	2	3
	5			r 6	r6		r6	r6			
- 6	6		s5	v		s4			l	9	3
1	7		s5			54					10
- 8	8			s6			s11)		ļ
	9			r1	s7		r1	r1			
1	0		}	r3	r3		r3	r3	1		
1	1			r5	r5		r5	r5			

sn	移入输入符号,并进入状态 n
rk	使用k 号产生式进行归约
gn	转换到状态 n
acc	成功接受, 结束
空白	错误

再次板书演示"栈"上操作:移入与归约

(1)
$$E \rightarrow E + T$$

(2)
$$E \to T$$

(3)
$$T \to T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

,	犬态			AC	ACTION						
_ 1	人心	id	+	*	()	\$	E	T	F	
	0	s5			s 4	-		1	2	3	
	1		s6				acc				
Ì	2		r2	s7		r2	r2	ĺ			
	3		r4	r4		r4	r4	1			
ĺ	4	s5			s4			8	2	3	
	5		r6	r6		r6	r6	}			
	6	s5	4.		s4			l	9	3	
	7	s5			s 4					10	
1	8		s6			s11)			
	9		r1	s7		r1	r1)			
	10	}	r3	r3		r3	r3	1			
	11		r5	r5		r5	r5				

 $w = \mathbf{id} * \mathbf{id}$ \$

栈中存储语法分析器的状态 (编号), "编码" 了语法分析树的上边缘

```
1: procedure LR()
                                                                 \triangleright 或 Push(S, \$_{s_0})
        PUSH(S, s_0)
 2:
        token \leftarrow NEXT-TOKEN()
 3:
        while (1) do
4:
 5:
            s \leftarrow \text{Top}(S)
            if ACTION[s, token] = s_i then
                                                                               ▷移入
6:
                                                           \triangleright 或 PUSH(S, token<sub>s:</sub>)
                PUSH(S, i)
 7:
                 token \leftarrow NEXT-TOKEN()
8:
            else if ACTION[s, token] = r_i then
                                                                 \triangleright 归约; i:A\to\alpha
9:
                 |\alpha| 次 Pop(S)
10:
                s \leftarrow \text{Top}(S)
11:
                 PUSH(S, GOTO[s, A]) > 转换状态; 或 PUSH(S, A_{GOTO[s, A]})
12:
            else if ACTION[s, token] = acc then
                                                                               > 接受
13:
14:
                 break
            else
15:
                 ERROR(...)
16:
```

行号	栈 =	二 符号	输入	动作
(1)	0	\$	id * id \$	移入到 5
(2)	0.5	\$ id	* id \$	接照 $F \rightarrow id$ 归约
(3)	0.3	F	* id \$	按照 $T \rightarrow F$ 归约
(4)	0 2	T	* id \$	移入到 7
(5)	027	\$ <i>T</i> ∗ ∠	刊 id \$	移入到 5
(6)	0275	T*id	<u> </u>	接照 $F \rightarrow id$ 归约
(7)	02710	T * F	\$	按照 T → $T*F$ 归约
(8)	02	T	\$	接照 $E \to T$ 归约
(9)	0 1	$E_{\underline{}}$	\$	接受

w = id * id\$ 的分析过程

如何构造 LR 分析表?

,	状态		ACTION						GOTO		
_ 7/			id	+	*	()	\$	E	T	F
	0		s5			s4			1	2	3
	1			s6				acc			
Ì	2			r2	s7		r2	r2	ĺ		
	3			r4	r4		r4	r4		$\overline{}$	
ĺ	4		s5			s4			8	2	3
i I	5			ŗ6	r6		r6	r6			
	6		s5	v		s4			l	9	3
	7	ľ	s5			54			ļ		10
1	8			s6			s11)		
	9			r1	s7		r1	r1]		
	10		}	r3	r3		r3	r3	1		
	11			r5	r5		r5	r5 _			

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

状态是什么?如何跟踪状态?

111	状态		ACTION						GOTO		
_ 1^			id	+	*	()	\$	E	T	F
Γ	0		s5			s 4			1	2	3
	1			s6				acc			- (
Ì	2			r2	s7		$\mathbf{r}2$	r2	ĺ		J
	3			r4	r4		r4	r4			ĺ
	4		s5			s4			8	2	3
1	5			ŗ6	r6		r6	r6	}		
	6		s5	v		s4			l	9	3
	7		s5			s 4			ļ		10
1	8			s6			s11)		ļ
	9			r1	s7		r1	r1			1
	10		}	r3	r3		r3	r3	1		
[11	_		r5	r5		_ r5	r5]

状态是语法分析树的上边缘, 存储在栈中

可以用自动机跟踪状态变化 (自动机中的路径 ⇔ 栈中符号/状态编号)

何时归约? 使用哪条产生式进行归约?

14	**		ACTION						GOTO		
_ 1^	状态		id	+	*	()	\$	E	T	F
	0		s5			s 4			1	2	3
	1			s6				acc			[
Ì	2			r2	s7		r2	r2	ĺ		
1	3			r4	r4		r4	r4	1		l
ĺ	4		s5			s4			8	2	3
1	5			r 6	r6		r6	r6			
	6		s5	· ·		s4			l	9	3
	7		s5			54					10
1	8			s6			s11)		ļ
	9			r1	s7		r1	r1			
	10		}	r3	r3		r3	r3	1		
	11			r5	r5		r5	r5 _]

必要条件: 当前状态中, 已观察到某个产生式的完整右部

对于 LR 文法, 这是当前唯一的选择

何时归约? 使用哪条产生式进行归约?

Definition (句柄 (Handle))

在输入串的 (唯一) 反向最右推导中, **如果**下一步是逆用产生式 $A \to \alpha$ 将 α 归约为 A, 则称 α 是当前句型的**句柄**。

最右句型	句柄	归约用的产生式
$id_1 * id_2$	id_1	$F o \mathrm{id}$
$F*id_2$	F	$T \to F$
$T * id_2$ $T * F$	$d_2 = T * F$	$egin{array}{c} F ightarrow {f id} \ T ightarrow T \ * \ F \end{array}$
T		$E \to T$

LR 语法分析器的关键就是高效寻找每个归约步骤所使用的句柄。

句柄可能在哪里?

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

图 4-29 一个最右推导中两个连续步骤的两种情况

$$S \xrightarrow[\text{rm}]{*} \alpha Az \xrightarrow[\text{rm}]{*} \alpha \beta Byz \xrightarrow[\text{rm}]{*} \alpha \beta \gamma yz \quad S \xrightarrow[\text{rm}]{*} \alpha BxAz \xrightarrow[\text{rm}]{*} \alpha Bxyz \xrightarrow[\text{rm}]{*} \alpha \gamma xyz$$

可以用自动机跟踪状态变化

(自动机中的路径 ⇔ 栈中符号/状态编号)

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

在自动机的当前状态识别可能的句柄 (观察到的完整右部) (自动机的当前状态 ⇔ 栈顶)

LR(0) 句柄识别有穷状态自动机 (Handle-Finding Automaton)

LR(0) 句柄识别自动机

为给定的文法 G构造相应的句柄识别自动机

该自动机用于识别该文法 G 所允许的所有可能的句柄

LR(0) 句柄识别自动机

状态是什么? 状态之间如何转移?

状态刻画了"当前观察到的针对所有产生式的右部的前缀"

Definition (LR(0) 项 (Item))

文法 G 的一个 LR(0) 项是 G 的某个产生式加上一个位于体部的点。

$$A o XYZ$$
 $A o \cdot XYZ$ $A o XYZ$ $A o XYZ$ $A o XYZ o$ (产生式 $A \epsilon$ 只有一个项 $A o \cdot$)

项指明了语法分析器已经观察到了某个产生式的哪些部分

点指示了栈顶, 左边 (与路径) 是栈中内容, 右边是期望看到的文法符号

状态刻画了"当前观察到的针对所有产生式的右部的前缀"

Definition (项集)

项集就是若干**项**构成的集合。

因此, 句柄识别自动机的一个状态可以表示为一个项集

Definition (项集族)

项集族就是若干项集构成的集合。

因此, 句柄识别自动机的状态集可以表示为一个项集族

LR(0) 句柄识别自动机

项、项集、项集族

Definition (增广文法 (Augmented Grammar)) 文法 G 的<mark>增广文法</mark>是在 G 中加入产生式 $S' \to S$ 得到的文法。

目的:告诉语法分析器何时停止分析并接受输入符号串

当语法分析器**面对** \$且**要使用** $S' \to S$ **进行归约**时,输入符号串被接受注:此"接受"(输入串) 非彼"接受"(句柄识别自动机)

LR(0) 句柄识别自动机

注: 此"接受"(输入串) 非彼"接受"(句柄识别自动机)

LR(0) 句柄识别自动机

初始状态是什么? 状态之间如何转移?

点指示了栈顶, 左边 (与路径) 是栈中内容, 右边是期望看到的文法符号

$$(0) E' \rightarrow E$$

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

CLOSURE($\{[E' \rightarrow \cdot E]\}$)

板书演示 LR(0) 句柄识别自动机的构造过程


```
SetOfItems CLOSURE(I) { J = I; repeat for (J \text{ phobassive} A \rightarrow \alpha \cdot B\beta) for (G \text{ observed} B \rightarrow \gamma) if (\overline{y} B \rightarrow \gamma \text{ ret} J \text{ phohassive} \beta) until 在某一轮中没有新的项被加入到J \text{ phohassive} \beta return J; }
```

$$\begin{aligned} \text{GOTO}(I, \textcolor{red}{X}) &= \text{CLOSURE}\Big(\Big\{[A \to \alpha X \cdot \beta] \Big| [A \to \alpha \cdot \textcolor{blue}{X\beta}] \in I\Big\}\Big) \\ & (X \in N \cup T \cup \{\$\}) \end{aligned}$$

```
void items(G') {
C = \{CLOSURE(\{[S' \rightarrow \cdot S]\})\}; 初始状态
repeat
for (C + \phi) \oplus f for (G + \phi) \oplus f fo
```

图 4-33 规范 LR(0) 项集族 的计算

35/49

LR(0) 分析表

			ACT	ION				GOT	O
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r_6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

goto 函数被拆分成 ACTION 表 (针对终结符) 与 GOTO 表 (针对非终结符)

(1) $[A \to \alpha \cdot a\beta] \land a \in T \land \text{GOTO}(I_i, a) = I_i \implies \text{ACTION}[i, a] \leftarrow sj$

			ACT	ION				GOT	0
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r5	r5	r5	r5	r5	r5			

(2) GOTO $(I_i, A) = I_j \implies \text{ACTION}[i, A] \leftarrow gj$

 $\begin{array}{c|c}
I_{\mathcal{Y}} \\
E \to T \cdot \\
T \to T \cdot * F
\end{array}$

 I_{10} $T \to T * F \cdot$

			ACT	ION				GOT) O
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r_6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r_1	r1	s7, r1	r1	r1	r1			
10	r_3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

(3) $[k:A \to \alpha \cdot] \in I_i \land k > 0 \implies \forall t \in T \cup \{\$\}. \text{ ACTION}[i,t] = rk$

			ACT	ION				GOT	O
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r_6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r_3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

(4)
$$[S' \to S \cdot] \in I_i \implies \text{ACTION}[i, \$] \leftarrow acc$$

LR(0) 分析表

$$(1) \ [A \to \alpha \cdot a\beta] \land a \in T \land \text{GOTO}(I_i, a) = I_j \implies \text{ACTION}[i, a] \leftarrow sj$$

- (2) $GOTO(I_i, A) = I_j \implies ACTION[i, A] \leftarrow gj$
- (3) $[k:A \to \alpha \cdot] \in I_i \land k > 0 \implies \forall t \in T \cup \{\$\}. \text{ ACTION}[i,t] = rk$
- (4) $[S' \to S \cdot] \in I_i \implies \text{ACTION}[i, \$] \leftarrow acc$

Definition (LR(0) 文法)

如果文法 G 的LR(0) 分析表是无冲突的,则 G 是 LR(0) 文法。

无冲突: ACTION 表中每个单元格最多只有一种动作

				GOT	O				
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			<i>g</i> 8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r_5	r5	r5	r5	r5	r5			

两类可能的冲突: "移入/归约"冲突、"归约/归约"冲突

LR(0) 分析表每一行(状态) **所选用的归约产生式是相同的**

			ACT	ION				GOT	<u> </u>
	• 1			(Ф	T-1		
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r5	r5	r5	r5	r5	r5			

归约时不需要向前看, 这就是"0"的含义

LR(0) 语法分析器

L: 从左向右 (Left-to-right) 扫描输入

R: 构建反向 (Reverse) 最右推导

0: 归约时无需向前看

LR(0) 自动机与栈之间的互动关系

向前走 ⇔ 移入

回溯 ⇔ 归约

自动机才是本质, 栈是实现方式

(用栈记住"来时的路",以便回溯)

SLR(1) 分析表

	 状态		ACTION							GOTO		
_ 1	人心		id	+	*	()	\$	E	T	F	
	0		s5			s 4			1	2	3	
	1			s6				acc			- (
Ì	2			r2	s7		$\mathbf{r}2$	r2	ĺ		J	
	3			r4	r4		r4	r4			Ì	
ĺ	4		s5			s4			8	2	3	
1	5		ļ	ŗ6	r6		r6	r6	}			
1	6		s5	,		s4			l	9	3	
	7		s5			s 4			ļ		10	
1	8		ļ	s6			s11)			
	9			r1	s7		r1	r1)		1	
	10		}	r3	r3		r3	r3	1			
	11			r5	r5		r5	_r5				

归约:

(3) $[k:A \to \alpha \cdot] \in I_i \land k > 0 \implies \forall t \in \overline{\text{Follow}(A)}$. Action[i,t] = rk

Definition (SLR(1) 文法)

如果文法 G 的SLR(1) 分析表是无冲突的,则 G 是 SLR(1) 文法。

无冲突: ACTION 表中每个单元格最多只有一种动作

41-4	状态		ACTION)
1人元		id	+	*	()	\$	E	T	F
0	7	s5			s4			1	2	3
1	ı	1	s6				acc			
2	ı	ļ	r2	s7		r2	r2	ĺ		
3	ı		r4	r4		r4	r4			
4	ı	s5			s4			8	2	3
5	ı	l	r6	r6		r6	r6	}		
6	ı	s5	*		s4			l	9	3
7	1	s5			54			ļ		10
8	ı	ļ	s6			s11		Ì		
9	1		r1	s7		r1	r1)		
10		}	r3	r3		r_3	r3	1		
11			r5	r_5		r5	r5	ļ		

两类可能的冲突: "移入/归约"冲突、"归约/归约"冲突

Thank You!

Office 926 hfwei@nju.edu.cn