

数字图像处理实验二补充材料

姚鸿勋 刘绍辉 shliu@hit.edu.cn

哈尔滨工业大学计算机科学与技术学院 2018秋

内容

- 大部分数学变换都可以用矩阵的形式来表示
 - 例如DFT、DCT、DWT等
 - 都属于采用张量积的形式从一维扩展到多维
 - 但有专门设计的二维和多维数学变换 ,这时无法将其二维变换通过一维变 换表示出来,称为不可分离变化

DFT

For a vector $\mathbf{x} = (x_0, x_1, x_2, \dots, x_{N-1})$ with N components, if $\omega = e^{2\pi i/N}$,

Then its DFT is:

$$X = \begin{pmatrix} (\omega^{0})^{0} & (\omega^{0})^{1} & (\omega^{0})^{N-2} & (\omega^{1})^{N-1} \\ (\omega^{1})^{0} & (\omega^{1})^{1} & (\omega^{1})^{N-2} & (\omega^{1})^{N-1} \\ (\omega^{2})^{0} & \cdot & & & & \\ & \cdot & & \cdot & & \\ (\omega^{N-1})^{0} & (\omega^{N-1})^{1} & (\omega^{N-1})^{N-2} & (\omega^{N-1})^{N-1} \end{pmatrix} \begin{pmatrix} x_{0} \\ x_{1} \\ \cdot \\ \cdot \\ x_{N-1} \end{pmatrix}$$

$$F_N$$

DFT-basis vector

- Let $\mathbf{v}_k = (1, \omega^k, \omega^{2k}, \dots, \omega^{(N-1)k}), k = 0, 1, \dots, N-1$ then *X* is a combination of these special basis vectors
- In fact, the vectors \mathbf{v}_k are the columns of the Fourier matrix $F = F_N$. It should be noted that these columns are orthogonal.

Hence,
$$F^{-1} = F^* / ||\mathbf{v}_k||^2 = F^* / N$$

orthogonal

For orthogonal, it is straightforward:

$$(\mathbf{v}_k, \mathbf{v}_l) = \sum_{j=0}^{N-1} (\omega^k)^j (\overline{\omega}^l)^j = \frac{(\omega^k \overline{\omega}^l)^N - 1}{\omega^k \overline{\omega}^l - 1}$$

according to the fact $\omega^N = 1$

Speed of calculation, generally speaking, $\mathbf{y} = F\mathbf{x}, \mathbf{x} = F^{-1}\mathbf{y}$ means N^2 multiplications. However, due to the special form of ω , and $F_{jk} = \omega^{jk}$, this matrix can be factorized into very sparse and simple matrices.

FFT

FFT

when N is a power 2^L , FFT is easiest. The operation count drops from N^2 to NL/2. It is noted that the matrix entries are complex.

DCT

A special form of DFT which only consider real transforms that involve cosines.

In fact, there are four types DCT, namely DCT-1 through DCT-4, which differ in the boundary conditions at the ends of the interval. The DCT-2 and DCT-4 are commonly used in image processing, and have FFT implementations.

First, we give a circulant matrix

$$A_0 = \begin{pmatrix} 2 & -1 & & -1 \\ -1 & 2 & -1 & & \\ & & \ddots & & \\ & & -1 & 2 & -1 \\ -1 & & & -1 & 2 \end{pmatrix}$$

In fact this matrix is a second difference matrix: the j^{th} entry of A_0u is $-u_{j-1}+2u_j-u_{j+1}$, which corresponds to -u". No eigenvalues are negative. At the first and last rows, this second difference involves u_{-1} and u_N . It reaches beyond the boundary.

Then the periodicity $u_N=u_0$ and $u_{N-1}=u_{-1}$ leads to the -1 entries that appear in the corners of A_0

Second

Now, let us consider the relationship between A_0 and

vector \mathbf{v}_k . In fact, \mathbf{v}_k is an eigenvector of A_0 . It is

periodic due to $\omega^N = 1$. The j^{th} entry of

 $A_0 \mathbf{v}_k = \lambda_k \mathbf{v}_k$ is the second difference

$$-\omega^{(j-1)k} + 2\omega^{jk} - \omega^{(j+1)k} = (-\omega^{-k} + 2 - \omega^{k})\omega^{jk} = (-e^{-2\pi ki/N} + 2 - e^{2\pi ki/N})\omega^{jk} = (2 - 2\cos\frac{2\pi k}{N})\omega^{jk}$$

Eigenvalues and eigenvectors

The smallest is $\lambda_0 = 0$, corresponding to the eigenvector

 $\mathbf{v}_0 = (1, 1, \dots, 1)$. In applications it is very useful to have this

flat DC vector as one of the basis vectors

Since A_0 is a real symmetric matrix, its orthogonal eigenvectors can also be chosen real. In fact, the real and imaginary parts of the \mathbf{V}_k must be eigenvectors:

$$\mathbf{c}_k = \operatorname{Re} \mathbf{v}_k = (1, \cos \frac{2k\pi}{N}, \dots, \cos \frac{2(N-1)k\pi}{N})$$

$$\mathbf{s}_k = \operatorname{Im} \mathbf{v}_k = (0, \sin \frac{2k\pi}{N}, \dots, \sin \frac{2(N-1)k\pi}{N})$$

Length of eigenvector

The equal pair of eigenvalues $\lambda_k = \lambda_{N-k}$ gives the two eigenvectors \mathbf{c}_k and \mathbf{s}_k . The exceptions are $\lambda_0 = 0$ with one eigenvector $\mathbf{c}_0 = (1, 1, \dots, 1)$, and for even N also $\lambda_{N/2} = 4$ with $\mathbf{c}_{N/2} = (1, -1, \dots, 1, -1)$. These two eigenvectors have length \sqrt{N} , while the other \mathbf{c}_k and \mathbf{s}_k have length $\sqrt{N/2}$. It is these exceptions that make the real DFT(sines together with cosines) less attractive than the complex form. That factor $\sqrt{2}$ is familiar from ordinary Fourier series. It will appear in the

k = 0 term for the DCT-1 and DCT-2, always with the flat basis vector (1,1,...,1)

From DFT to DCT

DCT only involves cosines

- How to do?

We expect the cosines alone, without sines, to be complete over a half-period. In Fourier series this changes the interval from $[-\pi,\pi]$ to $[0,\pi]$. Periodicity is gone because $\cos 0 \neq \cos \pi$. The differential equation is still $-u'' = \lambda u$. The boundary condition that produces cosines is u'(0) = 0. Then there are two possibilities, Neumann and Dirichlet, at the other boundary:

Zero slope: $u'(\pi) = 0$ gives eigenfunctions $u_k(x) = \cos kx$

Zero value: $u(\pi) = 0$ gives eigenfunctions $u_k(x) = \cos(k + \frac{1}{2})x$

Eigenvalues

For two cases mentioned above:

The two sets of cosines are orthogonal bases for $L^2[0,\pi]$,

the eigenvalues from $-u_k^{"} = \lambda u_k$ are $\lambda = k^2$ and $\lambda = (k + \frac{1}{2})^2$

Each continuous problem (differential equation) has many discrete approximations (difference equations). The discrete case has a new level of variety and complexity, often appearing in the boundary conditions.

Boundary conditions

A matrix

$$A = \begin{pmatrix} \otimes & \otimes & & & & & \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & \cdot & \cdot & \cdot & & \\ & & & -1 & 2 & -1 \\ & & & & \oplus & \oplus \end{pmatrix}$$

- For matrix A, u'(0) = 0 have two natural choices:
 - Symmetry around the meshpoint j = 0 : $u_{-1} = u_1$ (whole-sample symmetry)

Extended vector: $(\cdots, u_2, u_1, u_0, u_1, u_2 \cdots)$

Boundary conditions

Second,

Symmetry around the midpoint $j = -\frac{1}{2}$: $u_{-1} = u_0$ (half-sample symmetry)

Extended vector: $(\cdots, u_1, u_0, u_0, u_1, \cdots)$

So, the first row of matrix $A(-u_{-1} + 2u_0 - u_1)$ in difference equation) has two possible choices:

$$\blacksquare$$
 \otimes $\otimes \rightarrow 2$ -2

$$\blacksquare$$
 \otimes $\otimes \rightarrow 1$ -1

Another end

- In the similar idea, for $u'(\pi) = 0$ the last row of matrix $A(-u_{N-2} + 2u_{N-1} u_N)$ in difference equation) has two possible choices:
 - $\blacksquare \quad \oplus \quad \oplus \rightarrow -2 \quad 2$
 - \blacksquare \oplus \ominus \rightarrow -1 1

Dirichlet condition at another end

Of course, for $u(\pi) = 0$, the last row of matrix A ($-u_{N-2} + 2u_{N-1} - u_N$ in difference equation)has

 \blacksquare \oplus \oplus \rightarrow -1 2

another two possible choices:

 \blacksquare \oplus \oplus \rightarrow -1 3

Eight combinations of BC

Hence, there are 8 combinations. Four of them give the standard basis functions of cosines mentioned above, DCT-1-DCT-4.

In fact, DCT-1 through DCT-4 corresponds to one of four

differences matrices, A_1, A_2, A_3, A_4

$$A_{1} = \begin{pmatrix} 2 & -2 \\ -1 & 2 & -1 \\ & -1 & 2 & -1 \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2 & -1 \\ & & & & -2 & 2 \end{pmatrix} \quad A_{2} = \begin{pmatrix} 1 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & & & -1 & 2 & -1 \\ & & & & & -1 & 1 \end{pmatrix} \quad A_{3} = \begin{pmatrix} 2 & -2 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & & & & -1 & 2 & -1 \\ & & & & & & -1 & 2 \end{pmatrix} \quad A_{4} = \begin{pmatrix} 1 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & & & & -1 & 2 & -1 \\ & & & & & & -1 & 3 \end{pmatrix}$$

Centers j = 0 and j = N - 1,

Centers $j = -\frac{1}{2}$ and j = N - 1/2 Centers j = 0 and j = N,

Centers $j = -\frac{1}{2}$ and j = N - 1/2

components cos $jk\frac{\pi}{N-1}$,

components $\cos(j+\frac{1}{2})k\frac{\pi}{N}$,

components $\cos j(k+\frac{1}{2})\frac{\pi}{N}$,

components $\cos(j+\frac{1}{2})(k+\frac{1}{2})\frac{\pi}{N}$

$$D_1 = diag(\sqrt{2}, 1, \dots, 1, \sqrt{2})$$

$$D_{2} = I$$
 $D_{3} = diag(\sqrt{2}, 1, \dots, 1, 1)$ $D_{4} = I$

$$D_4 = I$$

Similar Boundary conditions at two ends!

Four standard types of DCT

The four standard types of DCT are now studied directly from their basis vectors(recall that j and k go from 0 to N-1. The j^{th} component of the k^{th} basis vector is:

DCT-1:
$$\cos jk \frac{\pi}{N-1}$$
 (divide by $\sqrt{2}$ when j or k is 0 or $N-1$)

DCT-2:
$$\cos(j+\frac{1}{2})k\frac{\pi}{N}$$
 (divide by $\sqrt{2}$ when k is 0)

DCT-3:
$$\cos j(k+\frac{1}{2})\frac{\pi}{N}$$
 (divide by $\sqrt{2}$ when j is 0)

DCT-4:
$$\cos(j + \frac{1}{2})(k + \frac{1}{2})\frac{\pi}{N}$$

Entries of DCT matrix

Those are the orthogonal columns of the 4matrices C_1, C_2, C_3, C_4 . The matrix C_3 with top row $\frac{1}{\sqrt{2}}(1,1,\cdots,1)$ is the transpose of C_2 . All columns of C_2, C_3, C_4 have length $\sqrt{N/2}$

Orthogonality

 $\lambda=2-2\cos\theta$, $\theta=k\frac{\pi}{N-1}$ for type1(DCT-1), $\theta=k\frac{\pi}{N}$ for type2(DCT-2), $\theta=(k+\frac{1}{2})\frac{\pi}{N}$ for type3 and type 4(DCT-3 and DCT-4)

Orthogonality

Difference equation:

For interior rows:

$$A_i \mathbf{c}_k = \lambda_k \mathbf{c}_k \longrightarrow -c_{(j-1)k} + 2c_{jk} - c_{(j+1)k} = \lambda_k c_{jk}$$

Only two cases

$$-\cos(j-1)\theta + 2\cos j\theta - \cos(j+1)\theta = (2-2\cos\theta)\cos j\theta$$

$$-\cos(j-\frac{1}{2})\theta + 2\cos(j+\frac{1}{2})\theta - \cos(j+\frac{3}{2})\theta = (2-2\cos\theta)\cos(j+\frac{1}{2})\theta$$

For boundary rows:

- All are ok!
- Giving the proof for DCT-4

DCT5-DCT8(ODD DCT)

Even DCT

- DCT1-DCT4

DCT-5

Centers j = 0 and $N - \frac{1}{2}$ Components $\cos jk \frac{\pi}{N - \frac{1}{2}}$ $D_5 = \operatorname{diag}(\sqrt{2}, 1, \dots, 1)$

DCT-6

Centers $j = -\frac{1}{2}$ and N - 1Components $\cos \left(j + \frac{1}{2}\right) k \frac{\pi}{N - \frac{1}{2}}$ $D_6 = \operatorname{diag}(1, \dots, 1, \sqrt{2})$

DCT-7

Centers j = 0 and $N - \frac{1}{2}$ Components $\cos j \left(k + \frac{1}{2}\right) \frac{\pi}{N - \frac{1}{2}}$ $D_7 = \operatorname{diag}(\sqrt{2}, 1, \dots, 1)$

DCT-8

Centers $j = -\frac{1}{2}$ and NComponents $\cos\left(j + \frac{1}{2}\right)\left(k + \frac{1}{2}\right)\frac{\pi}{N + \frac{1}{2}}$ $D_8 = I$

$$A_5 = \begin{bmatrix} 2 & -2 \\ -1 & 2 & -1 \\ & \cdot & \cdot & \cdot \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix}$$

$$A_6 = \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & \cdot & \cdot & \cdot & \\ & & -1 & 2 & -1 \\ & & & -2 & 2 \end{bmatrix}$$

$$A_7 = \begin{bmatrix} 2 & -2 \\ -1 & 2 & -1 \\ & \cdot & \cdot & \cdot \\ & & -1 & 2 & -1 \\ & & & -1 & 3 \end{bmatrix}$$

$$A_8 = \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \cdot & \cdot & \cdot & \cdot & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

End

Reference:

The discrete cosine transform, SIAM Review 41 (1999) 135-147