16. Integrasjonsmetoder

I dette kapittelet møter du noen metoder for å løse integraler, vi ser også nærmere på noen flere anvendelser av integrasjon.

16.1. Integrasjon og volum

Vi kan også bruke bestemte integraler for å beregne volumer. Her skal vi utlede formelen for volum av ei kule. v/ **skivemetoden**

Tenk det en kule med radius lik r, plassert i et koordinatsystem med sentrum av kula i origo.

Snittet vi kula med tynne snitt parallelt med y-aksen, får vi sirkelskiver. Men hva blir arealet av snittflaten for en gitt x-verdi? Radius vil variere med x, vi kaller derfor radius r(x).

Pytagoras gir:

$$(r(x))^2 + x^2 = r^2$$

 $(r(x))^2 = r^2 - x^2$

Sirkelflaten har areal $A(x) = \pi (r(x))^2 = \pi (r^2 - x^2)$ Summerer vi volumet av alle snittene får vi:

$$V = \int_{-r}^{r} \pi \left(r^2 - x^2 \right) dx$$

$$= \pi \left[r^2 x - \frac{1}{3} x^3 \right]_{-r}^{r}$$

$$= \pi \left(r^3 - \frac{1}{3} r^3 - \left(-r^3 + \frac{1}{3} r^3 \right) \right)$$

$$= \pi \left(2r^3 - \frac{2}{3} r^3 \right) = \pi \frac{4}{3} r^3 = \frac{4\pi r^3}{3} \qquad QED$$

Vi kan bruke denne ideen til volum der vi kan finne en formel for arealet til snittflaten. Men ofte kan dette være litt vrient ...

Omdreiningsgjenstander (omdreiningslegemer)

Nå skal vi se nærmere på flaten avgrenset grafen til en kontinuerlig funksjon f(x) og xaksen fra x = a til x = b. Når vi roterer flaten 360° om x- aksen, fremkommer et omdreiningslegeme. Se under:

For å bestemme volumet som er generert, kan vi studere ett segment litt nærmere. Tegn inn et smalt rektangel, og prøv å se for deg ", sirkelskiven", den genererer når den dreies om x-aksen.

Volumet av en slik «sirkelskive» må bli: $\pi r^2 h = \pi (f(x))^2 dx$

For å beregne volumet, tenker vi oss hele legemet delt inn i mange – tynne- sirkelskiver

Eksempel 1

Nå skal vi finne volumet til legemet som genereres ved å dreie flaten; avgrenset grafen til f(x) = x og x-aksen fra x = 0 til x = 3, 360° om x-aksen. Her blir radius til en sirkelskive lik x.

$$V = \pi \int_{0}^{3} x^{2} dx = \pi \left[\frac{1}{3} x^{3} \right]_{0}^{3} = \pi (9 - 0) = \underline{9\pi}$$

Merk: dette er en kjegle med r = 3 og h = 3 formel for volum gir oss samme svar

$$V = \frac{G \cdot h}{3} = \frac{\pi r^2 h}{3} = 9\pi$$

Vi kan bruke integrasjon til å bevise volumreglene vi kjenner fra geometrien.

<u>Eksempel 2</u> La oss prøve å bevise formelen for volumet til en kjegle med radius r og høyde lik h.

Den kan genereres som et *omdreiningslegem*e av flaten under, men hva er likningen for linjen?

Den har et stigningstall $a = \frac{\Delta y}{\Delta x} = \frac{r}{h}$ og går gjennom origo. Derfor linjen gitt ved $y = \frac{r}{h}x$

Volumet kan derfor uttrykkes ved integralet:

$$V = \int_{0}^{h} A(x)dx = \pi \int_{0}^{h} \left(\frac{r}{h}x\right)^{2} dx = \frac{\pi r^{2}}{h^{2}} \int_{0}^{h} x^{2} dx = \frac{\pi r^{2}}{h^{2}} \left[\frac{1}{3}x^{3}\right]_{0}^{h}$$
$$= \frac{\pi r^{2}}{h^{2}} \left(\frac{1}{3}h^{3} - 0\right) = \frac{\pi r^{2}}{h^{2}} \frac{1}{3}h^{3} = \frac{\pi r^{2}h}{\frac{3}{2}}$$

Eksempel 3

Nå skal vi finne volumet til legemet som genereres ved å dreie flaten; avgrenset grafen til $f(x) = x - 2\sqrt{x}$ og x-aksen 360° om x- aksen.

Radius til sirkelflaten er $r(x) = -f(x) = 2\sqrt{x} - x$

$$V = \pi \int_{0}^{4} \left(2\sqrt{x} - x\right)^{2} dx$$

$$= \pi \int_{0}^{4} \left(4x - 4x\sqrt{x} + x^{2}\right) dx$$

$$= \pi \int_{0}^{4} \left(4x - 4x^{\frac{3}{2}} + x^{2}\right) dx$$

$$= \pi \left[2x^{2} - 4 \cdot \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{3}x^{3}\right]_{0}^{4}$$

$$= \pi \left(32 - \frac{8}{5}4^{\frac{5}{2}} + \frac{1}{3}4^{3} - 0\right)$$

$$= \pi \left(32 - \frac{256}{5} + \frac{64}{3}\right) = \frac{32\pi}{\frac{15}{15}}$$

Eksempel 4

Nå skal vi finne volumet til legemet som genereres ved å dreie flaten; avgrenset grafene til $f(x) = x^2$ og g(x) = x, 360° om x- aksen.

Legemet som genereres vil ha et hull i midten. Volumet kan uttrykkes som V = «kjegle» – hull

$$V = \pi \int_{0}^{1} x^{2} dx - \pi \int_{0}^{1} x^{4} dx = \pi \int_{0}^{1} (x^{2} - x^{4}) dx =$$

$$= \pi \left[\frac{1}{3} x^{3} - \frac{1}{5} x^{5} \right]_{0}^{1} = \pi \left(\frac{1}{3} - \frac{1}{5} - 0 \right) = \pi \frac{5 - 3}{15} = \frac{2\pi}{\underline{15}}$$

16.2. Ubestemt integral og variabelskifte/ substitusjon

«baklengs» variant av kjerneregel for derivasjon.

skriver slik at det er lett å substituere

$$\int f(u)u' dx = \int f(u) du \qquad u = g(x) \qquad du = u' dx$$

Eksempel 1

$$\int (x^2 + 1)^3 \cdot 2x \, dx =$$
 La $u = x^2 + 1$ u velges med tanke på å forenkle
$$u' = \frac{du}{dx} = 2x$$

$$= \int u^3 du = \frac{1}{4}u^4 + C$$
$$= \frac{1}{4}(x^2 + 1)^4 + C$$

Eksempel 2

$$\int \frac{1}{x+2} dx = La u = x+2$$

$$u' = \frac{du}{dx} = 1$$

$$du = dx$$

$$= \int \frac{1}{u} du = \ln|u| + C$$

$$= \frac{\ln|x+2| + C}{u}$$

Eksempel 3

$$\int \frac{x}{3x^2 + 1} dx =$$
 La $u = 3x^2 + 1$
$$u' = \frac{du}{dx} = 6x$$

du = 6xdx ønsker å "fjerne" 6-tallet for å få xdx, slik det er i oppg

$$= \int \frac{1}{6} \cdot \frac{1}{u} du = \frac{1}{6} \ln |u| + C$$

$$= \frac{1}{6} \ln |3x^2 + 1| + C = \frac{1}{6} \ln (3x^2 + 1) + C$$

Eksempel 4

$$\int e^{x^2} \cdot 2x \, dx = \qquad \text{La } u = x^2$$

$$du = 2x dx \qquad \text{passer bra i forhold til oppg}$$

$$= \int e^u \, du = e^u + C = \underline{e^{x^2} + C}$$

Eksempel 5

$$\int \frac{1}{\cos^3 x} \cdot \sin x \, dx =$$

$$du = -\sin x \, dx \text{ her har vi "feil" fortegn, i forhold til oppg}$$

$$-du = \sin x \, dx$$

$$= \int \frac{-1}{u^3} du = \int -u^{-3} \, du = -\frac{1}{-2} u^{-2} + C$$

$$= \frac{1}{2\cos^2 x} + C$$

Eksempel 6

$$\int \sin(2\pi x + 3) dx = La u = 2\pi x + 3$$

$$du = 2\pi dx \quad \text{i oppg er det ingen konstanter, bare } \sin(\text{"noe"})$$

$$\frac{1}{2\pi} du = dx$$

$$= \int \frac{1}{2\pi} \sin(u) du = -\frac{1}{2\pi} \cos(u) + C$$

$$= -\frac{1}{2\pi} \cos(2\pi x + 3) + C$$

16.3. Bestemt integral og variabelskifte

Bruker vi metoden ved substitusjon / variabelskifte, <u>bør vi også bytte grenser</u>! Alternativet er å regne ut det ubestemte integralet først, finne den anti - deriverte – og så regne ut det bestemte integralet.

$$\int_{0}^{1} \frac{8x}{2x^{2} + 3} dx = \text{La } u = 2x^{2} + 3$$

$$du = 4x dx | \cdot 2$$

$$2du = 8x dx$$
Grenser:
$$x = 0 \implies u = 2 \cdot 0 + 3 = 3$$

$$x = 1 \implies u = 2 \cdot 1 + 3 = 5$$

$$= \int_{3}^{5} 2\frac{1}{u} du = \left[2\ln|u|\right]_{3}^{5} = \underline{2\ln 5 - 2\ln 3} = (\ln \frac{25}{9})$$

$$\int_{0}^{\frac{\pi}{2}} \cos^{3} x \, dx = \int_{0}^{\frac{\pi}{2}} \cos x \cdot \cos^{2} x \, dx =$$

$$u = \sin x$$

 $du = \cos x dx$

$$= \int_{0}^{1} 1 - u^{2} du = \left[u - \frac{1}{3} u^{3} \right]_{0}^{1}$$
$$= 1 - \frac{1}{3} - 0 = \frac{2}{3}$$

Eksempel 3

$$\int_{0}^{1} \frac{1}{1+\sqrt{x}} dx = u = 1+\sqrt{x}$$

$$du = \frac{1}{2\sqrt{x}} dx \qquad \sqrt{x} = u-1$$

$$2(u-1)du = dx$$

$$= \int_{1}^{2} \frac{2(u-1)}{u} du = \int_{1}^{2} \left(\frac{2u}{u} - \frac{2}{u}\right) du = \int_{1}^{2} \left(2 - \frac{2}{u}\right) du$$

$$= \left[2u - 2\ln|u|\right]_{1}^{2} = 4 - 2\ln 2 - (2 - 2\ln 1) = 2 - 2\ln 2$$

Eksempel 4

$$\int_{0}^{3} \frac{x}{\sqrt{x+1}} dx \qquad u = \sqrt{x+1}$$

$$du = \frac{1}{2\sqrt{x+1}} dx \qquad \text{men hva med } x \text{ i telleren?}$$

$$2du = \frac{1}{\sqrt{x+1}} dx \qquad \text{men hva med } x \text{ i telleren?}$$

$$Merk: u = \sqrt{x+1} \Rightarrow u^{2} = x+1 \qquad \Leftrightarrow x = u^{2} - 1$$

$$= 2\int_{1}^{2} u^{2} - 1 du = 2\left[\frac{1}{3}u^{3} - u\right]_{1}^{2} = 2\left(\frac{1}{3}2^{3} - 2 - \left(\frac{1}{3} - 1\right)\right)$$

$$= 2\left(\frac{8}{3} - 2 - \frac{1}{3} + 1\right) = 2\left(\frac{7}{3} - \frac{3}{3}\right) = \frac{8}{3}$$

16.4. Delvis integrasjon Svarer til produktregelen når vi deriverer.

Husker du:
$$(u \cdot v)' = u'v + uv'$$
?

Siden integrasjon opphever derivasjon, får vi:

$$\int (u'v + uv') dx = uv \qquad \text{vi kan dele opp i to intgraler}$$

$$\int u'v \, dx + \int uv' \, dx = uv \qquad \text{så flytter vi på leddene}$$

$$\int u'v \, dx = uv - \int uv' \, dx \qquad \text{Denne kaller vi "Formel for delvis integrasjon"}.$$

Når vi skal velge hva som er u og v, må vi tenke på at integralet på høyre side gjerne skal være enklere enn det vi startet med. Det er derfor gjerne lurt å velge v = polynom dersom det er mulig.

$$\int (2x+1)\sin x \, dx =$$

$$\text{Velger:} \quad \begin{aligned} v &= 2x+1 & v' &= 2 \\ u' &= \sin x & u &= -\cos x \\ &= -\cos x (2x+1) - \int (-\cos x) 2 \, dx \\ &= -(2x+1)\cos x + 2 \int \cos x \, dx \\ &= -(2x+1)\cos x + 2\sin x + C \end{aligned}$$

<u>Eksempel 2</u> litt spesielt, for her er det jo ikke noe produkt i utgangspunktet

$$\int \ln x \, dx = \int 1 \cdot \ln x \, dx =$$

Velger:
$$v = \ln x$$
 $v' = \frac{1}{x}$ $u' = 1$ $u = x$ $v = x \ln x - \int 1 dx$

$$= x \ln x - \int x \cdot \frac{1}{x} dx = x \ln x - \int 1 dx$$
$$= x \ln x - x + C$$

<u>Eksempel 3</u> Litt spesielt også her, for her klarer vi ikke å forenkle, men kommer i mål likevel.

$$\int \cos^2 x \, dx = \int \cos x \cdot \cos x \, dx =$$

Velger:
$$v = \cos x$$
 $v' = -\sin x$

$$u' = \cos x$$
 $u = \sin x$

$$= \sin x \cdot \cos x - \int \sin x (-\sin x) dx$$
 husk: $\sin^2 x + \cos^2 x = 1$

$$= \sin x \cdot \cos x + \int (1 - \cos^2 x) dx$$
 samme integral igjen! Vi flytter over
$$\Rightarrow 2 \int \cos^2 x dx = \sin x \cdot \cos x + x + C_1$$
 Vi deler "bort" 2-tallet
$$\Rightarrow \int \cos^2 x dx = \frac{1}{2} \sin x \cdot \cos x + \frac{1}{2} x + C$$
 Merk at $\frac{1}{2} C_1 = C$

$$= \frac{1}{4} \sin 2x + \frac{1}{2} x + C$$

Eksempel 4 Litt spesielt igjen, fordi vi må bruke delvis integrasjon to ganger.

$$\int e^x x^2 dx =$$

Velger:
$$v = x^2$$
 $v' = 2x$ $u' = e^x$ $u = e^x$ $v' = 2x$ enklere, men vi må gjenta en gang til

$$= e^{x} \cdot x^{2} - 2 \int e^{x} \cdot x \, dx$$

Velger en gang til:
$$v = x$$
 $v' = 1$ $u' = e^x$ $u = e^x$

$$= e^{x} \cdot x^{2} - 2 \left[e^{x} x - \int e^{x} \cdot 1 dx \right]$$

$$= e^{x} \cdot x^{2} - 2e^{x} x + 2e^{x} + C$$

$$= e^{x} \left(x^{2} - 2x + 2 \right) + C$$

16.5. Integrasjon ved delbrøkoppspalting

Utfordring:

$$\int \frac{2}{x^2 - 1} dx$$
 merk, teller har grad lavere en nevner.

Vi skal se på en metode der vi deler uttykket opp i to (enklere) brøker. MERK! metoden jeg bruker er litt annerledes, dette for å slippe å skifte metode når dere tar fatt på Ma-154. der oppgavene kan være mer sammensatte.

Eksempel 1

$$\frac{2}{x^2 - 1} = \frac{A}{x + 1} + \frac{B}{x - 1} \Big| \cdot fn = (x + 1)(x - 1)$$

$$2 = A(x-1) + B(x+1) \forall x$$

$$x - \operatorname{er} : 0 = A + B$$
 $\Leftrightarrow A = -B$

$$x - \operatorname{er} : 0 = A + B$$
 $\Leftrightarrow A = -B$
konstanter: $2 = -A + B$ $\Rightarrow 2 = B + B = 2B$

$$\underline{B} = 1$$

$$\underline{A=-1}$$

Dette kan vi sette inn i uttrykket:

$$\frac{2}{x^2 - 1} = \frac{-1}{x + 1} + \frac{1}{x - 1}$$
, og bruke til å dele oppgaven i to integraler.

$$\int \frac{2}{x^2 - 1} dx = \int \left(\frac{1}{x - 1} - \frac{1}{x + 1}\right) dx$$

$$= \int \frac{1}{x - 1} dx - \int \frac{1}{x + 1} dx + \text{substitusjon } u = x - 1 \text{ og til det andre } u = x + 1$$

$$= \ln|x - 1| - \ln|x + 1| + C$$

$$= \ln\left|\frac{x - 1}{x + 1}\right| + C$$

Eksempel 2

$$\int \frac{x^2 + x - 3}{x^2 - 4} dx =$$
 Vi må først få ned graden i teller (v/polynomdivisjon)
$$\left(x^2 + x - 3\right) : \left(x^2 - 4\right) = 1 + \frac{x + 1}{x^2 - 4}$$

$$-\left(x^2 - 4\right)$$

Slik at vi kan forenkle integralet til
$$\int \frac{x^2 + x - 3}{x^2 - 4} dx = \int 1 dx + \int \frac{x + 1}{x^2 - 4} dx$$

For å løse det siste integralet bruker vi så metoden med delbrøk ...

$$\frac{x+1}{x^2-4} = \frac{A}{x+2} + \frac{B}{x-2} \Big| \cdot fn = (x+2)(x-2)$$

$$x+1 = A(x-2) + B(x+2)$$
 $\forall x \text{ (betyr for alle } x)$
 $x+1 = Ax - 2A + Bx + 2B$

$$\Rightarrow$$
 A=1-B

konstanter:
$$1 = -2A + 2B$$

Insetting gir:
$$1 = -2(1-B) + 2B$$

$$4B = 3 \Rightarrow B = \frac{3}{4}$$
$$A=1-B=1-\frac{3}{4}=\frac{1}{4}$$

Resultatet så langt kan vi bruke til å skrive om integranden:

$$\int \frac{x^2 + x - 3}{x^2 - 4} dx = \int 1 dx + \frac{1}{4} \int \frac{1}{x + 2} dx + \frac{3}{4} \int \frac{1}{x - 2} dx$$
$$= \underbrace{x + \frac{1}{4} \ln|x + 2| + \frac{3}{4} \ln|x - 2| + C}_{\text{max}}$$

16.6. **Differensiallikninger**

Likninger der y = f(x) er ukjent.

Eksempler på slike likninger:

$$y'-4xy = 0$$
$$xy'' + 2y' - x^2y = e^x$$

likning av første orden

$$v = e^x$$
 likning av 2. orden

Her i dette kurset skal vi se på 1. ordens lineære likninger som kan løses ved integrasjon. (separable differensial likninger)

Eksempel 1

$$y' = \frac{2x}{3y^2}$$
 skriver den deriverte med differensialer
$$\frac{dy}{dx} = \frac{2x}{3y^2}$$
 separerer variablene, y på en side , x på den andre
$$\int 3y^2 dy = \int 2x dx$$
 Integrerer så begge sider av likningen
$$3\frac{1}{3}y^3 + C_1 = x^2 + C_2$$
 gir nytt navn til $C_2 - C_1 = C$
$$y^3 = x^2 + C - C_1$$
 gir nytt navn til $C_2 - C_1 = C$
$$y^3 = x^2 + C - L \phi sning : y = \sqrt[3]{x^2 + C}$$

Løsningen kan vi si er en «familie» med funksjoner, med en bestem form. Hver ny verdi av C gir en ny løsning. Dette kaller vi **den generelle løsningen** av likningen

Eksempel 2

$$y' + 3y = 0$$

$$\frac{dy}{dx} = -3y$$

$$dy = -3ydx$$

$$\int \frac{dy}{y} = \int -3dx$$

$$\ln|y| = -3x + C_1$$

$$|y| = e^{-3x + C_1} = e^{-3x} \cdot e^{C_1}$$

$$La \pm e^{C_1} = C$$

$$y = Ce^{-3x}$$

Eksempel 3

$$xy' - 2y = 0$$

$$x\frac{dy}{dx} = 2y$$

$$x dy = 2y dx$$

$$\int \frac{1}{y} dy = \int \frac{2}{x} dx$$

$$\ln|y| = 2\ln|x| + C_1 = \ln x^2 + C_1$$

$$|y| = e^{\ln x^2 + C_1} = e^{\ln x^2} \cdot e^{C_1}$$

$$\underline{\underline{y = Cx^2}}$$

Differensiallikninger med randkrav (tilleggsopplysninger / krav)

Oppgave:

a) Bestem den generelle løsningen til y'-4y=8

b) Finn den løsningen som er slik at y = 5 når x = 0. (dvs går gjennom punktet (0,5)

Løsning:

a)
$$y'-4y=8$$

$$\frac{dy}{dx}-4y=8 \qquad \text{prøver å separere likningen}$$

$$\frac{dy}{dx}=8+4y=4(2+y)$$

$$\int \frac{dy}{y+2} = \int 4dx \qquad \text{integrerer}$$

$$\ln|y+2|=4x+C_1 \qquad \text{løser så likningen mhp y}$$

$$|y+2|=e^{4x+C_1}=e^{4x}\cdot e^{C_1}$$

$$y+2=Ce^{4x}$$

$$\frac{y=Ce^{4x}-2}{2}$$
b) Bruker randkravene: $y=5$ når $x=0$

$$5=Ce^0-2$$

$$5+2=C$$

$$C=7$$
Den spesielle løsningen er:
$$\underline{y=7e^{4x}-2}$$

16.7. - kan leses.

Praktiske anvendelser av differensiallikninger kan være interessant lesestoff, men gis ikke til eksamen.