Using D flip-flop

	Input		Output				
	Current state		Next	Output			
In	$Q_{X}(t)$	Q _Y (t)	$Q_X(t+1)$	$Q_{Y}(t+1)$	Out		
0	0	0	0	0	0		
0	0	1	0	0	1		
0	1	0	1	0	1		
0	1	1	1	1	0		
1	0	0	1	0	0		
1	0	1	1	0	1		
1	1	0	1	1	1		
1	1	1	0	1	0		

	Input		Output				
	Currei	Current state		Next state			
In	Q _X (t)	Q _Y (t)	$Q_X(t+1)$	$Q_{Y}(t+1)$	Out		
0	0	0	0	0	0		
0	0	1	0	0	1		
0	1	0	1	0	1		
0	1	1	1	1	0		
1	0	0	1	0	0		
1	0	1	1	0	1		
1	1	0	1	1	1		
1	1	1	0	1	0		

$$D_{Y} = Q_{X}(t)Q_{Y}(t) + InQ_{X}(t)$$

$$Out = Q_{X}(t)Q_{Y}'(t) + Q_{X}'(t)Q_{Y}(t)$$

 $D_X = InQ_X'(t) + In'Q_X(t) + Q_X(t)Q_Y'(t)$

$$\begin{aligned} &D_X = InQ_X'(t) + In'Q_X(t) + Q_X(t)Q_Y'(t) \\ &D_Y = Q_X(t)Q_Y(t) + InQ_X(t) \end{aligned}$$

$$Out = Q_X(t)Q_Y'(t) + Q_X'(t)Q_Y(t)$$

Using JK flip-flop

						- J		O 0. 0	00.00
	Input		Output						
	curren	t state	next	state	2	X		Y	Out
In	Q _X (t)	Q _Y (t)	$Q_X(t+1)$	$Q_{Y}(t+1)$	J_X	K _X	J_{Y}	$\mathbf{K}_{\mathbf{Y}}$	Out
0	0	0	0	0	0	X	0	X	0
0	0	1	0	0	0	X	X	1	1
0	1	0	1	0	X	0	0	X	1
0	1	1	1	1	X	0	X	0	0
1	0	0	1	0	1	X	0	X	0
1	0	1	1	0	1	X	X	1	1
1	1	0	1	1	X	0	1	X	1
1	1	1	0	1	X	1	X	0	0

Synthesis using JK flip-flops

- A state diagram ⇒ flip-flop input functions
 - straightforward for D flip-flops
 - we need excitation tables for JK and T flip-flops

J	K	D	Q(t+1) Function
0	0	Q(t)	Q(t)	no change
0	1	0	0	reset FF to 0
1	0	1	1	set FF to 1
1	1	Q'(t)	Q'(t)	complement output

<u>T</u>	D	Q(t+1)	
0	Q	Q(t)	no change
1	Q'	Q'(t)	complement

Table 5.12 *Flip-Flop Excitation Tables*

Q(t)	Q(t=1)	J K	Q(t)	Q(t=1)	T
0	0	(0 X)	0	0	0
0	1	1 X	0	1	1
1	0	(X 1)	1	0	1
1	1	X 0	1	1	0
	(a) <i>JK</i>	1		(b) <i>T</i>	I

$$J_X = In \qquad K_X = InQ_Y(t)$$

$$J_Y = InQ_X(t) \qquad K_Y = Q_X'(t)$$

$$Out = Q_X(t)Q_Y'(t) + Q_X'(t)Q_Y(t)$$

Output logic

Next state logic

Synchronous Counter

00 \ 01 \ 10 \ 11

Using JK flip-flop

00 \ 01 \ 10 \ 11

 $Q_{Y}(t)$

Input		Output						
current state		Next state		X		\mathbf{Y}		
$Q_{X}(t)$	Q _Y (t)	$Q_X(t+1)$	$Q_{Y}(t+1)$	J_{X}	K _x	J_{v}	K _v	
0	0	0	1	0	X	1	X	
0	1	1	0	1	X	X	1	
1	0	1	1	X	0	1	X	
1	1	0	0	X	1	X	1	

 $Q_{Y}(t)$

 $Q_{X}(t)$

$$J_X = Q_Y(t) \quad K_X = Q_Y(t)$$
$$J_Y = 1 \quad K_Y = 1$$

$$J_X = Q_Y(t) \quad K_X = Q_Y(t)$$
$$J_Y = 1 \quad K_Y = 1$$

Next state logic

Using D flip-flop

$$\begin{split} Q_X(t+1) &= D_X = Q_X(t)Q_Z(t) + Q_X(t)Q_Y(t) + Q_X'(t)Q_Y'(t)Q_Z'(t) \circ \\ Q_Y(t+1) &= D_Y = Q_Y'(t)Q_Z'(t) + Q_Y(t)Q_Z(t) \circ \\ Q_Z(t+1) &= D_Z = Q_Z'(t) \circ \end{split}$$

$$\begin{split} Q_X(t+1) &= D_X = Q_X(t)Q_Z(t) + Q_X(t)Q_Y(t) + Q_X'(t)Q_Y'(t)Q_Z'(t) \circ \\ Q_Y(t+1) &= D_Y = Q_Y'(t)Q_Z'(t) + Q_Y(t)Q_Z(t) \circ \\ Q_Z(t+1) &= D_Z = Q_Z'(t) \circ \end{split}$$

Next state logic