Literature Review (First Research) Template

Guide Name	Mrs.G.Sowmya	
Student Name	S.Poojitha,M.Akshitha Reddy,K.Shruthi,K.Mahesh Raju	
Project Topic Title	Al-Driven Assistant for Rapid Dermatology Triage	

1				
Reference in APA format				
URL of the Reference	Authors Names and Emails	Keywords in this Reference		
https://arxiv.org/abs/1808.03426	H. L. GURURAJ 1 , (Senior Member, IEEE), N. MANJU 2 , A. NAGARJUN2 , V. N. MANJUNATH ARADHYA3 , AND FRANCESCO FLAMMINI 4 , (Senior Member, IEEE)	Skin cancer, segmentation, deep learning, CNN, Densenet169, Resnet50.		
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?		
The current solution is the DeepSkin model, which utilizes deep learning techniques for skin cancer classification.	The DeepSkin model aims to improve the early detection and classification of skin cancer using deep learning techniques, particularly Convolutional Neural Networks (CNNs). The primary problem it addresses is the difficulty dermatologists face in distinguishing between benign and	The components include the dataset, preprocessing, segmentation, feature extraction, and classification.		

malignant skin lesions, which can lead to late diagnoses and poor patient outcomes. By automating the classification process, DeepSkin seeks to enhance diagnostic accuracy, streamline workflows for healthcare professionals, and ultimately increase survival rates for patients with skin cancer.	

The **DeepSkin model** utilizes deep learning techniques, particularly Convolutional Neural Networks (CNNs), to enhance the early detection and classification of skin cancer from dermatoscopic images.

	Process Steps	Advantage	Disadvantage (Limitation)
1	Feature Extraction	This step significantly reduces the need for manual feature engineering and improves the model's ability to learn complex patterns	CNNs require substantial computational resources and large labeled datasets for effective training.
2	Classification	Transfer learning allows for faster training and improved accuracy by leveraging pre-trained models.	If the pre-trained model is not appropriately fine-tuned, it may carry over biases that affect classification performance.

The major impact factors in the DeepSkin model include dataset quality and diversity for effective training, the use of Convolutional Neural Networks (CNNs) for enhanced feature extraction, and the implementation of data pre-processing techniques like noise removal to improve image clarity.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
The classification accuracy of skin	The type of Convolutional Neural	The quality and diversity of the	: The data pre-processing
lesions, which is influenced by	Network (CNN) architecture used	dataset (HAM10000), which can	techniques applied (e.g., noise
various factors in the model.	(e.g., DenseNet169, ResNet50),	enhance or diminish the model's	removal, sampling), which influence
	which directly affects feature	ability to generalize across different	the effectiveness of feature
	extraction and classification	skin lesion types.	extraction and ultimately impact
	performance.		classification accuracy.

Input and Output		Feature of This Solution	Contribution & The Value of This Work
The input for the DeepSkin model consists of dermatoscopic images from the	The output of the DeepSkin model includes the predicted classifications of	The features of the DeepSkin solution include the integration of the HAM10000 dataset for diverse skin lesion representation, the application of Convolutional Neural Networks (CNNs) like DenseNet169 and ResNet50 for robust feature extraction, and advanced preprocessing techniques such as the Dull Razor method for noise reduction, which	The major impact factors in the DeepSkin model include dataset quality and diversity for effective training, the use of Convolutional Neural Networks (CNNs) for enhanced feature extraction, and advanced pre-processing techniques like the Dull Razor method for noise reduction, which collectively enhance the model's accuracy in skin cancer classification.

HAM10000 dataset, which includes 10,015 images of various skin lesions	skin lesions, providing a detailed assessment of the types of skin cancer present in the input images, along with accuracy metrics that reflect the model's performance during testing, such as precision, recall, and F1-score.	collectively enhance skin cancer classifica	the model's accuracy in tion.	
Positive Impac	t of this Solution in This Pi	roject Domain	Negative Impa	ct of this Solution in This Project Domain
The DeepSkin solution enhances precision in skin cancer diagnosis and classification, supporting early detection and improving treatment outcomes while advancing research in dermatological imaging and deep learning methodologies.		complexity, which can conwell as the risk of overfitt potentially leading to poothe model demands high accessibility for smaller reapplication in clinical sett		
Analyse This Work	By Critical Thinking	The Tools That	Assessed this Work	What is the Structure of this Paper

---End of Paper 1-

	2	
Reference in APA format		

URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://doi.org/10.1016/j.imu.2023.101311	Debarpan Das 'Elcin Ergin'Bruno Morel'Michelle Noga'Derek Emery'Kumaradevan Punithakumar	Skin moles, dermatology, neural networks,Nested hierarchical transformer, Model, triage system.
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Al-assisted mole detection using a transformer-based algorithm. The objective of this study is to identify the presence of moles in dermatological images uploaded by patients for online triage in telemedicine settings. This approach addresses the critical need for early detection of moles, which is essential for facilitating timely diagnosis and treatment of potential skin cancers, such as melanoma. By employing advanced Al techniques, the solution aims to provide immediate feedback to patients, enabling them to seek further medical consultation when necessary, thus improving overall patient care and outcomes in dermatology.		NesT Model: A nested hierarchical transformer network for mole detection. Teledermatology Platform: Allows patients to upload images for analysis.

The NesT model processes images to detect moles, providing immediate feedback that can help prioritize cases for dermatologists. This aids in efficient triaging and follow-up treatment procedures.

Process Steps	Advantage	Disadvantage (Limitation)

1	Image Upload by Patients	Patients can easily upload images for analysis from home, increasing accessibility to dermatological care.	
2	Mole Detection with NesT Model	High accuracy in detecting moles enables timely referrals to dermatologists for further evaluation.	· · · · · · · · · · · · · · · · · · ·
3	Triage System Implementation	Flags images with detected moles for prioritization in follow-up consultations with dermatologists.	1 10 11 11 11 11 11 11 11 11 11 11 11 11

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Detection of skin moles	Images uploaded by patients	Image quality affecting detection accuracy	Feedback mechanism guiding patient referrals based on results.

	Input and O	Output	Feature of This Solution	Contribution in This Work
			•	This solution enhances early detection of skin
ſ	Input O	utput	hierarchical transformer) to detect moles in	conditions by enabling patients to self-assess

--End of Paper 2--

Reference in APA format			
Reference in Al A format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
ttps://www.frontiersin.org/journals/articial- telligence/articles/10.3389/frai.2020.5 3405/full	ADAM BAKER , YURA PEROV, KATHERINE MIDDLETON, JANIE BAXTER, SAURABH JOHRI.	Virtual Assistant, Al Diagnosis, Triage, symptom checker, computer-assisted diagnosis.	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
ne current solution proposed in the eference is "The Babylon Triage and iagnostic System "uses a Bayesian etwork to model medical conditions and neir relationships.	The goal of the Babylon Triage and Diagnostic System is to provide accurate and timely medical advice to patients, improving access to healthcare and reducing the burden on healthcare systems. The problem addressed by this system is the challenge of providing reliable medical advice, especially in remote or underserved areas, where access to healthcare professionals may be limited. Additionally, the system aims to reduce unnecessary healthcare utilization by providing accurate self-triage advice	Knowledge Base, Natural Language Processing (NLP) Bayesian Network, Machine Learning Algorithms, User Interface	

Process Steps		Advantage	Disadvantage (Limitation)	
1	Data Collection	Ensures high-quality input data, enabling the model to learn effectively from relevant features, like a valid data.	Time-consuming and , requires expert validation.	
2	Bayesian Network Construction and Triage Decision-Making	Captures complex disease-symptom relationships and Optimizes patient outcomes through expected harm minimization.	Requires careful parameterization to avoid overfitting and May be conservative, leading to higher care referrals.	
3	Evaluation using Clinical Vignettes	Offers realistic testing against human diagnoses.	Restricted to pre-set cases, limiting realworld diversity.	

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Diagnostic and triage accuracy	Patient symptoms	Regional disease prevalence	Bayesian network model

Input and Output		Feature of	This Solution	Contribution & The Value of This Work
Input Output Patient symptoms, demographics, and regional epidemiological data. Cutput Triage advice (e.g., "visit ER" or "self-care") and potential diagnoses. relation offering and triadapted.		The Babylon Triage and Diagnostic System features a Bayesian Network that provides region-specific, personalized triage advice by modeling complex disease-symptom relationships. It emphasizes patient safety, offering human-comparable accuracy in diagnosis and triage, and is designed to be explainable and adaptable across various healthcare environments.		The Babylon system presents a novel Al-based solution for healthcare triage, offering an accessible means for symptom assessment, particularly valuable in areas with limited healthcare access. By providing a model with human-comparable accuracy, this study underscores the potential for Al to augment, rather than replace, clinical expertise.
Positive Impact of	of this Solution in This Pr	roject Domain Negative Impact of this Solution in This Project Domain		ct of this Solution in This Project Domain
Enhanced access to care, increased diagnostic accurate overloaded healthcare systems.		racy, and support for	Potential over-reliance on A reduced in critical cases.	AI, with risks of misdiagnosis if human oversight is
Analyse This Work B	By Critical Thinking	The Tools That	Assessed this Work	What is the Structure of this Paper
potential to provide accurate diagnostic and triage		Babylon Triage and Dia	,	Abstract Introduction
model, the Babylon Triage and Diagnostic System		, .	· ·	3. Materials and Methods4. The Babylon Triage and Diagnostic System
comparable accuracy a	simulates patient interactions, revealing Conditional Probal comparable accuracy and safety to human		/ Tables (CPTs)	5. Experimental Paradigm
practitioners, which is healthcare delivery.	crucial for enhancing			6. Results7. Conclusion

--End of Paper 3--

4			
Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://jesr.ub.ro/1/article/view/287	Benjamin O. ADEGOKE, Kehinde A. SOTONWA, Lawrence O. OMOTOSHO, Oluwashina A. OYENIRAN, Joshua O. OYENIYI	Dermatology, Artificial Intelligence, Diagnosis, Skin Diseases, Medical Technology, Acute Skin Problems Chronic Diseases, Recognition Accuracy	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
The current solution used in the study is: "An Automated Skin Disease Diagnostic System based on a Deep Learning Model" (AlexNet)This system applies Convolutional Neural Networks (CNNs), specifically the AlexNet architecture, to classify and diagnose skin diseases. The model employs transfer learning to improve classification accuracy on dermatological images, thus	Goal (Objective): To develop an Al-based diagnostic system that accurately classifies common skin diseases to assist dermatologists in Nigeria, enabling faster and more effective diagnosis and treatment. Problem to be Solved: Skin disease diagnosis in Nigeria is challenging	Image Dataset,Image Preprocessing Module Pre-trained Deep Learning Model (AlexNet), ,Testing Module,Recognition and Classification,Performance Evaluation Metrics,User Interface	

providing a robust automated diagnostic	due to a
	subjecti diagnosi
tool that aids dermatologists in decision-	diagnosi
making.	improve
	especial

due to a shortage of dermatologists and the subjectivity and time required in manual diagnosis. An automated solution is needed to improve diagnosis speed and accuracy, especially for underserved populations.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage (Limitation)
1	 1.Image Collection & Preprocessing: Collect and preprocess 1,800 training and 270 testing images by resizing, cropping, and normalizing to fit the AlexNet model input size. 2.Data Splitting: Split the dataset into 80% for training and 20% for validation during model training. 3.Model Selection & Fine-Tuning: Use the pretrained AlexNet model and fine-tune it to classify nine specific skin disease categories. 4.Model Training: Train the model with the prepared dataset, using the validation set to monitor performance. 	High Accuracy: Achieves up to 97.8% recognition accuracy, providing reliable skin disease diagnoses. Faster Diagnosis: Automates the diagnosis process, significantly reducing the time required for dermatologists to analyze skin conditions. Assists Dermatologists: Supports dermatologists in decision-making by providing accurate classification results, enhancing clinical efficiency. Scalable & Accessible: Enables access to diagnostic capabilities in underserved areas	Limited to Predefined Diseases: The system is trained to classify only the nine specific skin diseases, limiting its ability to diagnose other rare or newly emerging skin conditions. Dependence on Image Quality: The accuracy of the system heavily relies on the quality of the input images. Poor resolution, lighting, or distortions in the images can reduce the model's performance. Data Requirement: The model requires a large and diverse dataset for accurate training, which may be difficult to obtain for some skin diseases or in regions with

5. Testing & Evaluation: Test the model on the separate testing dataset and evaluate performance using metrics like accuracy and	with limited access to dermatologists, especially in developing countries like Nigeria. Reduces Human Error: Minimizes subjective errors in manual diagnoses, ensuring consistent and objective results across cases.	limited access to image data. Generalization Issues: The model might struggle to generalize well across different populations or skin tones, especially if the dataset is not diverse enough.
--	--	--

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Skin Disease Classification Outcome	Image Data	Image Quality (Resolution, Lighting)	Pretrained Model (AlexNet) Model Architecture Training Process

Relationship Among The Above 4 Variables in This article

The image data (independent variable) is fed into the AlexNet model (mediating variable) for analysis. The quality of the images (moderating variable) influences how effectively the model processes the data and impacts the accuracy of the skin disease classification (dependent variable). In essence, the image data influences the classification outcome through the mediating role of the pretrained model (AlexNet), with the image quality acting as a moderating factor that can either enhance or impair the final classification result

Input and Output		Feature of This Solution	Contribution & The Value of This Work
		This Al-based skin disease diagnostic solution	·
Input Output		,	an Al-driven system for efficient and accurate skin disease diagnosis, specifically targeting the nine
The input to the The output of the		model fine-tuned for skin disease classification. It	most common skin disorders in Nigeria. By utilizing
system consists of images of skin	system is the predicted-	covers nine common skin diseases and automates image preprocessing	a pretrained AlexNet deep learning model, the system enhances the diagnostic capabilities of

diseases, with a total of 1,800 training and images 270 testing images. These images are collected from various sources and cover nine different types of skin conditions. Before being fed into the system, the images undergo preprocessing steps, which include cropping to focus on the area of interest and resizing to a standardized dimension 227x227x3 pixels to match the input requirements of the AlexNet model. The dataset is split into training and testing sets to help the model learn and evaluate its performance accurately.

classification of the skin disease from one of the nine categories, such as acne, eczema, psoriasis. The system also provides the recognition accuracy, which indicates the percentage of correct predictions made by (e.g., the model 97.8%). Additionally, it calculates the rejection rate, representing the percentage of instances where the system is unable to make a confident prediction (e.g., 2.2%). Finally, the model outputs a confidence score. showing how certain it is about the classification decision, helping to assess the reliability of the prediction.

tasks like cropping and resizing for consistent input. The system provides rapid diagnosis with a low rejection rate of 2.2%, ensuring reliability. It is user-friendly, aiding dermatologists in decision-making without replacing their expertise, and is scalable, allowing for expansion to include more diseases and data over time.

dermatologists, aiding them in making quicker, more reliable decisions. This solution addresses the challenge of limited dermatological resources in regions with few specialists, providing an accessible tool for faster skin disease detection. The work also adds value by improving healthcare accessibility, reducing diagnostic errors, and offering a scalable platform that can be expanded to diagnose more skin conditions in the future.

processed	images	
serve as the k	key data	
for the deep	learning	
model to clas	sify the	
diseases.	-	

Positive Impact of this Solution in This Project Domain

The positive impact of this solution in the field of dermatology is significant. By leveraging AI and deep learning, the system enhances diagnostic accuracy and speed, enabling quicker identification of skin diseases. This is particularly beneficial in regions with limited access to dermatologists, as it provides an accessible tool for both healthcare professionals and patients. The system reduces the burden on specialists, minimizing diagnostic errors and ensuring more timely treatment, which can ultimately lead to better patient outcomes. Additionally, the scalability of the system means it can be expanded to address a broader range of skin conditions, further improving healthcare accessibility and efficiency.

Negative Impact of this Solution in This Project Domain

The negative impact of this solution could include over-reliance on the AI system, potentially diminishing the role of dermatologists in clinical decision- making. While the system is highly accurate, it may not account for all variables, such as rare or complex cases that require expert judgment. Additionally, there could be concerns about data privacy and security, as sensitive patient information is processed and stored digitally. The system's effectiveness is also dependent on the quality and diversity of the training dataset, meaning any biases or gaps in the dataset could lead to inaccurate diagnoses for certain populations or conditions. Finally, the initial cost of implementation and the need for continuous updates to keep the model relevant may present challenges for resource-constrained healthcare settings.

Analyse This Work By Critical Thinking	The Tools That Assessed this Work	W	hat is the Structure of this Paper
	The tools used to assess this work include the	I.	Abstract
This Al-driven skin disease diagnostic system offers a promising solution to improve healthcare,		II.	Introduction
especially in regions with a shortage of	preprocessing techniques like cropping and	III.	Statement of the Problem
dermatologists. Its high accuracy and scalability can enhance diagnostic speed and consistency.	, , , , , , , , , , , , , , , , , , , ,	IV.	Empirical Review of Literature
However, its effectiveness depends	the model's accuracy and generalization.	V.	Proposed method
on the quality of the training data, and its "black-			

	box" nature may reduce trust among healthcare
	professionals. There's also a risk of over-relying on
	the system for complex cases, and privacy
	concerns regarding patient data must be
	addressed. While it can be a valuable tool, it
	should complement, not replace, human expertise
	in dermatology, with ongoing improvements to
	ensure broad accessibility and effectiveness.
ı	

Performance metrics such as recognition accuracy, rejection rate, and validation accuracy were applied to assess the model's effectiveness, while descriptive statistics were used for further evaluation. The system was tested in a stable environment with specific machine configurations, ensuring reliable performance during the process.

VI. Results

VII. Conclusion

VIII. References

Diagram/Flowchart

--End of Paper 4—

	5		
Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://doi.org/10.21203/rs.3.rs-2889033/v1	Minhong Wang,Ewa Kloczko,Alla Altayeb,Michael Farrugia,Girish Gupta,Honghan Wu,Nik Hirani	Automated Triage, Deep Learning, Artificial Intelligence, Dermatology, Natural Language Processing, Knowledge-Driven Approaches, Clinical Guidelines, Referral Letters, Machine Learning Models, Data Imbalance	
The Name of the Current Solution (Technique/Method/Scheme/Algorithm/ Model/Tool/Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
The current solution in the paper "Towards Automated Dermatology Triage: Deep Learning and Knowledge-Driven Approaches" includes several key components: a Knowledge-Driven Model that incorporates clinical guidelines, a BERT Model for text classification of referral letters, an LSTM (Long Short-Term Memory) model for processing medical concepts, a Transfer Learning Approach utilizing pre-trained models, and Data Augmentation Techniques to handle class	The goal of the solution in "Towards Automated Dermatology Triage: Deep Learning and Knowledge-Driven Approaches" is to create AI models that can automatically classify General Practitioner (GP) referrals into routine and non-routine categories. The problem being addressed is the time-consuming and costly manual triage process currently used in the NHS, where clinicians must read each referral letter individually. By automating this process, the solution aims to enhance efficiency, reduce clinician workload, and	The solution in "Towards Automated Dermatology Triage" comprises a Knowledge-Driven Model with clinical guidelines and custom dictionaries, Deep Learning Models like BERT for text classification and LSTM for medical concept processing, and Transfer Learning to leverage pre-trained models. It uses Data Preprocessing, including random oversampling and augmentation, to address class imbalance, and UMLS for extracting key medical concepts from referral letters.	

imbalance in the dataset.

maintain accuracy in patient categorization.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The model in "Towards Automated Dermatology Triage" integrates clinical guidelines with AI, using BERT and LSTM with Data Preprocessing to classify GP referrals as routine or non-routine. This approach improves triage accuracy and efficiency while ensuring interpretability.

	Process Steps	Advantage	Disadvantage (Limitation)
1	Data Preprocessing and Concept Extraction	Data Preprocessing and Concept Extraction in "Towards Automated Dermatology Triage" enhance model performance by addressing class imbalance with methods like random oversampling and data augmentation, improving the training dataset's quality. Concept extraction with UMLS identifies key medical terms in referral letters, leading to a more accurate, interpretable triage process that closely aligns with human clinical decision-making.	The approach in "Towards Automated Dermatology Triage" faces challenges with high computational complexity from deep learning models and attention mechanisms, demanding substantial resources. Limited data, with only 268 referrals, may reduce model generalizability across diverse clinical scenarios. Additionally, the knowledge-driven model, while interpretable, could introduce biases based on the chosen concepts and guidelines, impacting applicability across healthcare settings.
2	Model Development and Evaluation	Model Development and Evaluation in "Towards Automated Dermatology Triage" improve triage accuracy by integrating multiple AI models and systematically comparing them to manual outcomes. This approach helps identify the best-performing model, aligning AI-assisted triage with clinician-level accuracy. Metrics like PR-AUC and ROC-AUC offer quantifiable performance insights, supporting ongoing refinement of the triage system.	Disadvantages of the approach in "Towards Automated Dermatology Triage" include potential overfitting due to a limited dataset of 268 referrals, possibly limiting model generalizability. The use of complex models like BERT and LSTM increases computational costs and processing time, impacting feasibility for real-time use. Bias risks from selected concepts and training data could affect applicability across healthcare settings, and limited model interpretability may reduce clinician trust.

The study "Towards Automated Dermatology Triage" leverages AI to automate GP referral triage, reducing time and costs, while knowledge-driven models improve interpretability and accuracy by incorporating clinical guidelines. Addressing data imbalance further enhances model performance for reliable triage outcomes.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
The primary dependent variable is the	These include the different AI models	Factors such as the complexity of referral	The performance metrics used to
classification outcome of GP referrals	used for triaging referrals (e.g.,	letters, clinician experience, and the	evaluate model effectiveness (e.g., PR-
into routine or non-routine categories,	knowledge-driven model, BERT model,	quality of extracted medical concepts	AUC, ROC-AUC) can act as mediators
which reflects the effectiveness of the	LSTM model) and preprocessing	may influence the relationship between	by demonstrating how well the AI
triage process.	techniques (e.g., random oversampling,	the independent variables (AI models)	models translate into accurate triage
	data augmentation).	and the dependent variable	classifications based on their design and
		(triage outcomes).	training.

Inpu	at and Output	Feature of This Solution	Contribution & The Value of This Work
Input The primary input consists of GP referral letters, are processed cate extract relevant rout	Output The output of the model is a binary classification of each referral letter into two which gories: routine and non- to ne. This classification medical assist in triaging using the	The work "Towards Automated Dermatology Triage" integrates AI to streamline GP referral triage, significantly reducing time and costs. Knowledge-driven models enhance interpretability and accuracy by incorporating clinical guidelines and medical concepts. Addressing data imbalance with techniques like random oversampling further improves model performance. Overall, this approach aims to enhance efficiency while upholding high patient care standards.	The contribution of "Towards Automated Dermatology Triage" lies in developing AI models that classify GP referrals into routine and non-routine categories, addressing time and cost challenges in manual triage. The knowledge-driven model incorporates clinical guidelines, achieving clinician-level performance and improving dermatology resource allocation. It also demonstrates AI's potential to streamline workflows, reduce patient waiting times, and enhance healthcare quality.

either routine or non-routine referrals based on the information contained within them.			
Positive Impact of this Solution in This Pro	oject Domain	Negative Impa	ct of this Solution in This Project Domain
The solution in "Towards Automated Dermatology Triage" significantly impacts healthcare by automating GP referral triage, reducing time and costs while improving accuracy. AI models ensure urgent cases are prioritized, and the approach streamlines workflows, addressing indirect employment and opportunity costs in the NHS. This contributes to efficient healthcare delivery and enhanced patient care.		challenges like over-reliant engagement and judgmen lead to overfitting and red learning models increases affecting real-time feasibit	Automated Dermatology Triage" faces ace on AI, potentially diminishing clinician t in complex cases. Limited training data may uced generalizability. The complexity of deep computational costs and processing time, lity. Additionally, the lack of interpretability at and slow adoption in clinical settings.
Analyse This Work By Critical Thinking	The Tools That	t Assessed this Work	What is the Structure of this Paper
"Towards Automated Dermatology Triage" presents a significant advancement by integrating AI with clinical guidelines, improving triage efficiency. The study's robust evaluation using multiple AI models and data preprocessing techniques addresses class imbalance effectively. However, the limited dataset and model complexity raise concerns about generalizability and interpretability. Potential biases in the □ AI Models (Knowledg LSTM) □ Data Preprocessing Te □ Performance Metrics (□ □ Unified Medical Lang □ SemEHR Tool		echniques (PR-AUC, ROC-AUC)	□ Abstract □ Introduction □ Materials and Methods □ Results □ Discussion □ Conclusion □ References

---End of Paper 5

Reference in APA format		
URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://www.researchgate.net/publication/38235 5999 Revolutionizing Skin Cancer Triage T he Role of Patient- Initiated Teledermoscopy in Remote Diagnos is	Emilie A. Foltz, Joanna Ludzik, Sancy Leachman, Elizabeth Stoos, Teri Greiling, Noelle Teske, Lara Clayton, Alyssa L. Becker, Alexander Witkowski	teledermatology; dermoscopy; teledermoscopy; melanoma triage; skin cancer triage; dermatology access; telehealth; telemedicine; early detection
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Patient-Initiated Teledermoscopy enhances skin cancer triage by allowing patients to capture high-quality images of skin lesions with smartphone dermatoscope attachments for remote dermatologist evaluation. This method reduces in-person visits, with a 53% decrease in follow-up visits, and improves access to care, addressing dermatology shortages and long wait times. It empowers patients to monitor skin health and aids in earlier detection of malignant lesions.	Patient-Initiated Teledermoscopy addresses critical barriers in dermatological care by enabling patients to capture and submit images of skin lesions remotely, improving access to care amid a dermatologist shortage. It reduces in-person visits for benign lesions, prioritizing consultations for potentially malignant ones. The solution also tackles patient education challenges, empowering individuals to conduct self-skin examinations and aiding early detection of skin cancer, particularly amid increased demand during the COVID-19 pandemic.	Smartphone Dermatoscope Attachment, Mobile Application or Secure Portal, Training and Educational Resources, Remote Evaluation by Dermatologists, Feedback Mechanism, Data Collection and Analysis, Loaner Program for Devices.

The study demonstrates that patient-initiated teledermoscopy, incorporating dermoscopic images, significantly reduces in-person consultations, enhancing access to dermatological care. This approach shows promise in improving early detection and management of skin cancer while addressing physician shortages.

Process Steps	Advantage	Disadvantage (Limitation)

1	Image Capture and Submission	Patients actively engage in their healthcare by capturing images of their skin lesions, fostering greater awareness of their skin health. The ability to take images at home provides convenience, especially for those in remote areas or with mobility issues. Smartphone dermatoscopes deliver high-quality images that enhance diagnostic accuracy by revealing features not visible to the naked eye.	Patients may encounter technical challenges in using the smartphone dermatoscope effectively, potentially resulting in poor-quality images that hinder accurate evaluations. The variability in image quality can significantly impact diagnostic outcomes, as it depends on the patient's skill and understanding of device usage. Additionally, limited training for some patients on recognizing concerning lesions or using the technology may contribute to missed or delayed diagnoses.
2	Remote Evaluation	Dermatologists can remotely assess images, overcoming geographical and scheduling limitations, ensuring expert evaluation. The remote triage process allows for prioritizing urgent cases while efficiently managing those that can be monitored remotely, optimizing resource allocation. Additionally, reducing unnecessary in-person visits for benign lesions alleviates the burden on healthcare facilities, allowing them to focus on patients with more serious conditions.	Remote evaluations may lack the comprehensive context of an in-person examination, increasing the risk of misdiagnosis or missed malignancies. The accuracy of these assessments depends heavily on the quality of the submitted images, with poor-quality images compromising diagnostic reliability. Additionally, the limited interaction in remote evaluations reduces opportunities for direct communication, potentially affecting the understanding and trust between patients and healthcare providers.
3	Feedback and Follow-Up	Timely communication provides patients with prompt feedback on their lesion evaluations, reducing anxiety and enabling timely follow-up actions. Personalized care recommendations enhance patient understanding of their skin	Limited personal interaction in electronic feedback may not provide the same reassurance or clarity as face-to-face consultations, which some patients prefer. There is also the potential for patients to misinterpret feedback or

conditions and encourage adherence to follow-up				
care. Additionally, continuous data collection				
through feedback helps improve teledermoscopy				
practices by informing future decisions and				
enhancing patient outcomes.				

recommendations due to a lack of medical knowledge, causing confusion about their skin health. Additionally, coordinating follow-up care can be challenging when patients are not physically present, leading to delays in necessary treatments or interventions.

Major Impact Factors in this Work

The Patient-Initiated Teledermoscopy study improves access to dermatological care, reduces unnecessary in-person visits, and enhances patient engagement. It also offers cost savings and supports the integration of telemedicine into dermatology, laying the groundwork for future research.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Number of In-Person Consultations, Patient Satisfaction, Diagnostic Accuracy	Image Type Submitted, Patient	Quality of Submitted Images, Patient	Access to Technology, Healthcare
	Education Level, Demographic Factors	Engagement	System Factors

Relationship Among The Above 4 Variables in This article				
Input and Output		Feature of This Solution	Contribution in This Work	
Device Loan, Image Capture, Image Submission	Remote Evaluation Results, Reduction in In-Person Visits, Patient Feedback, Data Collection for Analysis images	The Patient-Initiated Teledermoscopy solution enhances skin cancer triage through features like smartphone dermatoscope attachments for high-quality images, remote image submission via a secure portal, and expert dermatologist evaluations. It reduces unnecessary inperson consultations by 53%, improving access to care. Comprehensive patient training and a feedback mechanism foster engagement and satisfaction. The system collects data for ongoing analysis and is costeffective by reducing travel and office visit costs. These features make teledermoscopy	insights from the research can inform future teledermoscopy improvements. This work lays the	

	a promising strategy for and dermatological acces	r better skin cancer detection ss.	
Positive Impact of this Solution in This Pro	oject Domain	Negative Impa	nct of this Solution in This Project Domain
The Patient-Initiated Teledermoscopy solution improves dermatological care by enhancing access to services, especially in remote areas. It reduces unnecessary inperson visits, improving healthcare efficiency. The system empowers patients to monitor their skin health, fostering early detection. It offers cost savings by minimizing travel and office visit expenses. Additionally, it streamlines triage processes, allowing dermatologists to prioritize urgent cases.		Patient-Initiated Teledermoscopy may suffer from inadequate patient education, leading to missed or delayed diagnoses. Poor image quality can hinder accurate remote evaluations, risking misdiagnoses. Over-reliance on technology may reduce traditional clinical skills among dermatologists. The lack of in-person interactions can increase patient anxiety and confusion. Additionally, accessibility issues and regulatory concerns regarding privacy and security may limit the system's effectiveness.	
Analyse This Work By Critical Thinking	The Tools That	t Assessed this Work	What is the Structure of this Paper
The Patient-Initiated Teledermoscopy offers innovative technology for skin cancer detection, reducing the need for in-person visits and empowering patients to monitor their skin health. However, challenges such as variable image quality, potential misdiagnosis, and patient education gaps remain. The approach has the potential to transform healthcare delivery and improve access to dermatological care. Future research should focus on enhancing technology usability and patient education. Overall, the solution shows promise in advancing dermatology by improving early diagnosis and reducing healthcare burdens.	Smartphone Dermatoscope Attachment, Secure Electronic Medical Record System, Clinical Algorithms for Evaluation, Statistical Analysis Tools, Opportunity Cost Estimation Methodology, Qualitative Metrics Collection, Summary of Assessment Approach		Title, Authors and Affiliations, Abstract, Keywords, Introduction, Materials and Methods, Study Design, Participants, Image Submission Process, Outcome Measures, Results, Discussion, Conclusion, Acknowledgments, References, Figures and Tables
Diagram/Flowchart			

7				
Reference in APA format				
URL of the Reference	Authors Names and Emails	Keywords in this Reference		
https://www.nature.com/articles/nature2 1056	Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, Sebastian Thrun	Skin cancer, deep learning, convolutional neural network, dermatologist-level classification, melanoma, non-melanoma skin cancer.		
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?		
Convolutional Neural Network (CNN) model for skin cancer classification.	Objective: To develop an AI model that can classify skin cancer with accuracy comparable to dermatologists.	Large-scale image dataset of skin lesions, Convolutional Neural Network (CNN) architecture for image classification, Model training and validation processes		

Problem: Early and accurate diagnosis of skin cancer is critical but limited by access to skilled dermatologists. This solution aims to bridge that gap with an automated, high-precision classification tool.	

The model was trained on a large dataset of labeled skin lesion images, using CNN to classify images as benign or malignant.

	Process Steps	Advantage	Disadvantage (Limitation)
1	Image Dataset Collection	Enables robust model training and high accuracy	Requires significant time and resources for dataset curation
2	CNN Model Training	Provides high classification accuracy	High computational cost and need for high-quality data
3	Validation with Dermatologists	Ensures real-world relevance and accuracy verification	Limited to dataset constraints and might miss rare cases

Major Impact Factors in this Work

The model leverages a large, diverse dataset of skin lesions to achieve high accuracy comparable to dermatologists, with potential for deployment in remote or underserved areas.

Skin cancer classification outcome	Image features extracted from skin lesions.	Image quality and variability in lesion presentation.	CNN layers and architecture that process image features for classification.

Relationship Among The Above 4 Variables in This article

Image quality affects feature extraction, which the CNN architecture then processes, leading to a skin cancer classification outcome. The CNN layers act as a mediator between the input image features and the final classification accuracy.

Input and Output		Feature of This Solution	Contribution & The Value of This Work
			This work is significant for healthcare by offering a scalable and high-accuracy tool for
Input	Output	skin lesions, making it accessible and	skin cancer screening, especially beneficial in
skin lesion images	Classification of lesion type	potentially deployable as an early diagnostic tool	areas lacking dermatologists.

Positive Impact of this Solution in This Project Domain		Negative Impact of this Solution in This Project Domain		
Increases accessibility to early skin cancer detection, reducing the risk of late-stage diagnosis and associated mortality.		Potential for misdiagnosi without appropriate caus	s if image quality is poor or the model is applied tion or oversight.	
Analyse This Work By Critical Thinking	The Tools That	Assessed this Work	What is the Structure of this Paper	
The article presents a CNN model that	CNN Model: For image	ge classification	i)Abstract	
demonstrates high accuracy in skin cancer classification, but it highlights challenges like model dependency on high-quality datasets	Cross-validation: For evaluation	model performance	ii). Introduction	
and potential limitations when deployed in			iii). Methods	
real-world, varied environments.			iv). Results	
			v)Discussion	
			vi)I. Conclusion	
	Diagra	m/Flowchart		
Start Data Collection Model Design Model Training Comparison with Dermatologists Model Training End End End Online Training Tend Online T				

End of paper 7

8						
Reference in APA format						
URL of the Reference	Authors Names and Emails	Keywords in this Reference				
https://www.sciencedirect.com/science/article/pii/S0010482523008788?via%3Dihub	Nan Luo, Xiaojing Zhong, Luxin Su, Zilin Cheng, Wenyi Ma, and Pingsheng Hao.	Dermatology, Al-assisted diagnosis, Machine learning, Multimodal, Pre-training, Federated learning				
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?				
The current solution proposed in the reference is Large-scale pre-training multimodal models	To improve diagnostic accuracy in dermatology by combining multiple data types (e.g., images and text) to overcome limitations of unimodal AI models.	Multimodal neural networks Pre-training with large datasets Federated learning for data privacy				

	Process Steps	Advantage	Disadvantage (Limitation)
1	Data Pre-Processing	Allows AI to learn from a vast, unlabeled dataset for general knowledge	High Computational demand for processing and fine-tuning

2	Federated Learning	Ensures patient privacy in data sharing and model training	Increased complexity in maintaining model accuracy across different sources		
3	Multimodal Fusion	Enhances diagnostic capability by integrating image, text, and other data	Complexity in parameter tuning and increased risk of overfitting		

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Diagnostic accuracy and specificity in dermatology.	Type and quality of input data, including text, images, and patient history.	Privacy regulations affecting data sharing methods.	Model architecture, including multimodal integration and pre-training mechanisms.

Relationship Among The Above 4 Variables in This article

The diagnostic accuracy (dependent variable) depends on the data quality (independent variable) while being moderated by privacy regulations. The multimodal model's architecture mediates the integration of data, directly impacting accuracy.

Input an	d Output	Feature of	This Solution	Contribution & The Value of This Work
Input MultimodalPatient data	Output Accurate dermatology diagnosis	The solution combines diverse data types applies federated learning to ensure pre enhancing diagnostic accuracy and robustness		This work enables high-precision diagnosis by merging multimodal data while preserving privacy, advancing dermatology diagnostics.
Positive Impa	ct of this Solution in This Pro	oject Domain	Negative Impa	ct of this Solution in This Project Domain
	cision and support for remot through federated learning			ource demands for multimodal model training, with data.
Analyse This Work	By Critical Thinking	The Tools That	Assessed this Work	What is the Structure of this Paper
This approach effectively addresses limitations of			secure data handling odels for handling diverse	 Abstract Introduction Computer-aided diagnosis Text-based AI diagnostics Image-based AI diagnostics Multimodal models and pre-training Future directions Conclusion
		Diagra	m/Flowchart	

--End of Paper 8--

9							
Reference in APA format							
URL of the Reference	Authors Names and Emails	Keywords in this Reference					
https://doi.org/10.21203/rs.3.rs-2106798/v1	Junwei Lv, Daojun Zhang	Skin disease diagnosis, AI, dual-channel model, U-Net, ResNet, text-image integration, dermatology.					
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?					
Dual-channel Image and Extracted Text (DIET) Model	Goal: Improve the accuracy and accessibility of skin disease diagnosis by integrating image data with text data from medical records. Problem: The shortage of dermatologists and unequal access to diagnostic resources in certain regions limits effective skin disease diagnosis, often requiring both imaging and comprehensive patient information for accuracy.						
The Process (Mechanism) of this	Work; Means How the Problem has Solved & Adv	antage & Disadvantage of Each Step in This Process					
Process Steps	Advantage	Disadvantage (Limitation)					

1	Image Preprocessing (U-Net) and Feature Integration	Accurate localization of lesions and Improved diagnostic performance	May misidentify small or unclear lesions and Increases overall model complexity and training time
2	Dual-channel ResNet Processing and Text Extraction (One-hot)	Uses both local and global image information and Adds clinical context unavailable in images alone	High computational cost and Limited by text data accuracy

Integration of multi-modal data (image and text) and Enhanced diagnostic accuracy through dual-channel processing, with Accessibility for primary-level dermatologists in underserved areas.

Dependent Variable	Independent Variable		Mode	rating varia	able		Mediating (Intervening) variable
Diagnostic accuracy for 31 skin	Skin images and patient medical records	Skin		severity,	J 1 /	and	Dual-channel feature integration
diseases		enviro	onmental l	ighting in ir	nages		(ResNet + One-hot)

Relationship Among The Above 4 Variables in This article

Input and Output	Feature of This Solution	Contribution & The Value of This Work
Skin images and Predicted skin disease electronic health records with associated	records and Disease classification with diagnostic	This work proposes a novel AI diagnostic model (DIET-AI) that outperforms junior doctors and matches the diagnostic accuracy of senior dermatologists. This model provides a significant step toward equitable access to dermatological diagnosis in resource-constrained settings.

(text data) diagnos	stic probabilities				
Positive Impact of this	Solution in This Pro	oject Domain	Negative Impa	ct of this S	olution in This Project Domain
Increases diagnostic accessibil especially for common skin co	•	in dermatology,	High computational demands application in low-resource e		nce on quality data, which may limit nts.
Analyse This Work By Critic	cal Thinking	The Tools That	Assessed this Work		What is the Structure of this Paper
This model integrates multi-modal diagnostic accuracy, addressing ledisease diagnosis by utilizing both if faces challenges with high data process.	imitations in skin image and text, yet	U-Net: For lesion detecti ResNet: Dual-channel for Logistic Regression: For based on integrated feature	eature extraction r final diagnostic prediction	Abstract I. II. III. IV. V.	Abstarct Introduction Methods(algorithm ,data collection) Results Discussion Conclusion
		Diagra	am/Flowchart		

---End of Paper 9--

Reference in APA format		
URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://doi.org/10.7759/cureus.59906	Samantha Tyler, Robin J. Jacobs , Tyler, S., Olis, M., Aust, N., Patel, L., Simon	Emergency department triage, artificial intelligence, machine learning, predictive analytics, healthcare workflow, clinical decision support.
The Name of the Current Solution (Technique/Method/Scheme/Algorithm/ Model/Tool/Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
AI-based triage models using ML algorithms like XGBoost, Random Forest, and LASSO regression.	Goal: To enhance accuracy and efficiency in triaging within Emergency Departments (EDs) by using AI to predict patient outcomes and prioritize care. Problem: Increasing patient volumes, ED overcrowding, and variation in traditional triage methods have limited EDs' ability to effectively manage critical cases.	Data Collection: Use of medical databases like EMBASE, MEDLINE, and Web of Science. AI Model Testing: Algorithms such as XGBoost, LASSO regression, and Neural Networks. Outcome Comparison: Compared AI-based predictions to traditional triage.

The "Deep Multi-view Breast Cancer Detection" system uses deep transfer learning with VGG16 to classify breast thermal images as normal or abnormal, achieving a testing accuracy of 99% by integrating multi-view thermal data.

	Process Steps	Advantage	Disadvantage (Limitation)
1	Data Collection	Broad search across databases ensures diversity	Limited by criteria specific to U.S. journal scope
2	AI Model Training and Testing	Enhances the model's ability to identify abnormalities by utilizing richer data inputs.	Increased complexity in data handling and potential for overfitting if not managed properly.
3	Comparative Analysis	Shows AI outperforms traditional triage	Potential over-reliance on data accuracy
	·	Major Impact Factors in this Work	

Improved triage accuracy through ML algorithms

Enhanced resource allocation in ED settings

Reduced under-triaging and mistriage rates							
Dependent Vari	iable	In	dependent Variable		Moderating var	iable	Mediating (Intervening) variable
Patient outcomes (admissions, interventions) Patient dem metrics		ographics, triage data, health Severity of the presenting control patient load		condition, ED	Algorithm type and model accuracy		
Input and	d Output		Relationship Among Vari	iable	es in This Article:		Contribution in This Work
		AI triage models enhance the accuracy of emergency care, with the condition's severity affecting predictions and resource allocation outcomes.					
Input Patient demographics, historical health records, clinical symptoms Output Predicted triage level, hospitalization likelihood, urgency assessment		Negative Impact of this Domain	s So	olution in This Project	triage, empha patient prior	stematic overview of AI's potential in EI sizing AI's ability to reduce error rates in itization, optimize resource use, and eviate ED overcrowding.	
Positive Impac	t of this Solutio	n in This Pr	oject Domain				
Significant improvement in triage decision accuracy and reduction in patient wait times in EDs.			The	 Tools That Assessed this XGBoost and Rando LASSO Regression: 	om Forest: Enh	anced discrimination in triage predictions critical care needs	
Analyse This Work By Critical Thinking Feature of		of this	s solution	Wh	at is the Structure of this Paper		
his scoping review consolidates AI-driven solutions for ED triage, showing AI's potential to outperform conventional triage methods. The work highlights Input: Multivariate data, symptoms.		, incl	uding patient history and	1. Abst 2. Intro	ract oduction		

--End of Paper 10—

	11				
Reference in APA format					
URL of the Reference	Authors Names and Emails	Keywords in this Reference			
https://doi.org/10.1002/ski2.83	Yun Liu; Huang, S. J., Liu, Y., Kanada, K., Corrado, G. S., Webster, D. R., Peng, L., & Bui, P. (2022).	Machine learning, triaging, teledermatology, clinical operations, healthcare prioritization, AI for dermatology.			
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?			
The ML-based Deep Learning System (DLS) for teledermatology prioritizes patient cases by urgency, predicting which cases need immediate review versus those requiring no intervention, thus optimizing dermatologist workflows.	The system aims to address long wait times in dermatology by sorting patient cases by urgency. This reduces the workload on dermatologists by triaging cases needing rapid attention and deferring non-urgent ones.	Deep Learning Model: Provides differential diagnoses. Urgency Mapping: Assigns cases into five triage categories (e.g., immediate intervention, no need for a doctor). Automated Triage Ordering: Reorders cases in review batches to prioritize urgent cases.			

The Process (Mechanism) of this \	The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process		

	Process Steps	Advantage	Disadvantage (Limitation)
1	Data Mapping to Urgency Levels and Review Batch Ordering	Accurate prioritization of cases and Efficient prioritization of urgent cases	Requires clinical expertise for accurate mapping and May need adaptation for different clinic needs.
2	Case Triaging and Follow-up Recommendations	Reduces unnecessary wait times for urgent care	Limited by model's diagnostic accuracy

- improvement in Wait Times: Reduces waiting for urgent cases.
- Operational Efficiency: Streamlines workflow for dermatologists.

 Adaptability: Can be integrated into various telehealth platforms for scalable triaging.

Variables:

Independent Variable	Moderating variable	Mediating (Intervening) variable
Urgency of patient cases	Patient demographics	Machine learning triage model.
	•	-

Relationship Among The Above 4 Variables in This article

Input and Output		Feature of This Solution	Contribution & The Value of This Work
The input for the DeepSkin model consists of dermatoscopic images from the	The output of the DeepSkin model includes the predicted classifications of	The features of the DeepSkin solution include the integration of the HAM10000 dataset for diverse skin lesion representation, the application of Convolutional Neural Networks (CNNs) like DenseNet169 and ResNet50 for robust feature extraction, and advanced preprocessing techniques such as the Dull Razor method for noise reduction, which	This ML-based triaging system offers a novel approach to optimizing clinical workflows by efficiently prioritizing urgent cases. It enhances patient care through quicker access to needed treatment and supports teledermatology by reducing dermatologist workloads.

	collectively enhance skin cancer classifica	the model's accuracy in ation.	
Positive Impact of this Solution in This P	roject Domain	Negative Impa	ct of this Solution in This Project Domain
Improves access to dermatologic care, especial limited healthcare resources, and significantly for urgent cases.			dictions could lead to errors, especially if t across diverse populations or if model
Analyse This Work By Critical Thinking	The Tools That	Assessed this Work	What is the Structure of this Paper

This ML model introduces an innovative	Convolutional Neural Networks (CNNs): Used	i)Abstract			
prioritization method for teledermatology, significantly improving clinical operations by automating urgent case identification. Future improvements could include direct	for effective feature extraction and classification of skin lesions. Transfer Learning: Implemented with models	v). Introduction vi). Literature Review			
training to predict case urgency and customization for different healthcare practices. Further testing in diverse clinical settings is suggested to enhance its robustness and adaptability.	like DenseNet169 and ResNet50 for improved performance. Data Pre-processing Techniques: Such as the Dull Razor method for noise removal to	vii). Methodology vii) Results and Discussion			
Tobustiness and adaptability.	enhance image quality.	viii) I. Conclusion			
	Diagram/Flowchart				

---End of Paper 11-

	12				
Reference in APA format					
URL of the Reference	Authors Names and Emails	Keywords in this Reference			
https://doi.org/10.1186/s12913-024- 10663-3	Bipin Adhikari (bipin.adhikari@ox.ac.uk), Debashish Das (Debashish.Das@finddx.org), Bajracharya, M., Aryal, N., Rajbhandari.	Emergency department, Triage, Low-resource healthcare, Patient journey, Nepal, Febrile patients, Healthcare delivery.			
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?			
WHO Triage Guidelines Adaptation for Low-Resource Setting	Goal: Improve triage and emergency care practices in low-resource settings to better serve febrile patients and optimize healthcare worker efficiency. Problem: Tertiary hospital EDs in Nepal face constraints in space, resources, and staff training, impacting the effective triage of critical cases.	Guideline Adherence: Adopts WHO triage guidelines tailored to resource limitations. Data Collection: Observations and in-depth interviews with ED staff and patients. Process Evaluation: Identifies challenges in hygiene, recordkeeping, and patient wait times.			

The Process (Mechanism) of this V	Vork; Means How the Problem has Solved & Adv	antage & Disadvantage of Each Step in This Process

	Process Steps	Advantage	Disadvantage (Limitation)
1	WHO-based Triage Categories and Observational Studies	Structured response to critical patients and Real-life insights into ED challenges	Inconsistent training among healthcare workers and Limited to single hospital setting
2	Patient Interviews	Highlights patient perceptions and areas for improvement	Possible recall bias

- 1. Improved understanding of triage needs in low-resource hospitals.
- Recommendations for training, digitalization, and resource allocation in EDs.
 Emphasis on patient satisfaction and healthcare worker motivation.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Efficiency and satisfaction of ED triage outcomes	Patient flow, healthcare worker training, equipment availability	Time of day, patient volume, and ED resource constraints	Adherence to WHO triage guidelines, healthcare worker perception

Relationship Among The Above 4 Variables in This article	

Input and Output	Feature of This Solution	Contribution & The Value of This Work
Input Output	 Input: Patient and staff observations, interviews. Output: Practical recommendations for enhanced ED triage practices. 	This study offers an evidence-based evaluation of ED triage in Nepal, providing valuable insights into challenges and actionable recommendations for better resource allocation, workflow efficiency, and patient outcomes.

: Observational and interview data from ED staff and patients.	Recommendations for improving triage efficiency, training, and resource management.			
Positive Impac	t of this Solution in This Pr	oject Domain	Negative Impa	ct of this Solution in This Project Domain
	esource challenges in ED ts that can enhance pation ource settings.			e data may limit the generalizability. And ns may be challenging to implement in highly
Analyse This Work	By Critical Thinking	The Tools Tha	t Assessed this Work	What is the Structure of this Paper

a challenging environment, highlighting systemic issues in resource management and staff training. However, reliance on	Interpretative Phenomenological Analysis (IPA): Thematic analysis of interview data. WHO Triage Framework: Structured approach for triage in resource-constrained EDs.	i)Abstract viii). Introduction ix). Literature Review x). Methodology ix) Results and Discussion x) I. Conclusion			
Diagram/Flowchart					

---End of Paper 12--

13			
Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://doi.org/10.3390/ijerph19127384	Raj Gururajan, Xujuan Zhou, Yuefeng Li, Chee Keong Wee, Xiaohui Tao, Nathan Wee	NLP,Triaging,Healthcare AI,Machine Learning	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
Machine Learning Techniques for Medical Referral Triaging	The goal is to enhance the triaging process of medical referrals by utilizing machine learning techniques that adapt to the Clinical Prioritisation Criteria (CPC) in Queensland, Australia, without relying on historical datasets. The problem addressed is the inefficiency and manual nature of current triaging processes.	 Machine Learning Techniques: Used for classification and triaging. Natural Language Processing (NLP): Applied to process unstructured referral texts. Cloud Services: Leveraged for data processing and model deployment. 	
The Process (Mechanism) of this Work; Means How the Problem has Solved & Ad	dvantage & Disadvantage of Each S	tep in This Process	

The study presents a machine learning-based approach for triaging medical referrals in Queensland, Australia, utilizing Clinical Prioritisation Criteria (CPC). By applying Natural Language Processing (NLP) to convert unstructured referral texts into structured data, the method achieves a high Micro F1 score of 0.98, significantly improving classification accuracy. This system processes around two million referrals annually, enhancing efficiency and ensuring timely patient care without relying on historical datasets. Overall, it addresses the challenges of traditional triaging methods and supports healthcare professionals in making informed decisions.

Process Steps		Advantage	Disadvantage (Limitation)	
1	Feature extraction using NLP	Converts unstructured referral texts into structured data for analysis.	Requires sophisticated NLP models which can be complex to implement.	
2	Machine learning classification	Achieves high accuracy in triaging referrals (Micro F1 score = 0.98).	Dependent on the quality of input data; poor data can lead to inaccurate predictions.	
3	Real-time processing of referrals	Enables timely triaging decisions, improving patient care efficiency.	Implementation may require significant computational resources and infrastructure.	

Major Impact Factors in this Work

The integration of machine learning with clinical prioritisation criteria enhances decision-making in healthcare, leading to improved patient outcomes and more efficient use of medical resources. Variable Relationships:

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable	
Accuracy of medical referral triaging.	Features extracted from medical referral texts.	Clinical prioritisation criteria affecting triage decisions.	NLP processing that transforms unstructured text into usable data for classification.	
Relationship Among The Above 4 Variables in This article				

Input and Output Feature of This Solution Contribution & The Value of This Work The study presents a machine learning approach for triaging medical referrals triaging process by integrating

Input Unstructured medical referral texts.	Output Categorised referrals based on urgency levels as per CPC.			Prioritisation This system al Language) to convert eferral texts red data, h Micro F1 y processing two million hually, it ciency and y decision-	improving	arning and NLP, thereby efficiency and accuracy re service delivery.
	Positive Impact of this Solution in Th	nis Project Domain		Negative In	-	Solution in This Project nain
Enhances the speed and accuresource allocation within he	racy of medical referral triaging althcare systems	g, leading to better patient man	agement and	complexity i	n managing going update	ude increased data inputs and the es to machine learning a evolve.
•	Analyse This Work By Critical Thinkin	g	The Tools That this Wo		Wha Paper	it is the Structure of this
	addresses the limitations of tradition h it requires careful consideration re		Machine Learnin Algorithms (e.g., Random Forest) Natural Languag Techniques Evaluation Metri Micro F1 Score)	SVM, e Processing	I. II. IV. V. VI. VII.	Abstract Introduction Proposed Approach Related Works Results Discussion Conclusion
		Diagram/Flowchart				

---End of Paper 13--

14			
Reference in APA format			
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://doi.org/10.1038/s41591-023-02728-3	Matthew Groh , Omar Badri ,Roxana Daneshjou , Arash Koochek ,Caleb Harris , Luis R. Soenksen , P. Murali Doraiswamy , Rosalind Picard	Deep learning, decision support, skin disease diagnosis, teledermatology, diagnostic accuracy, skin tones.	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?	
Deep Learning-Aided Decision Support for Skin Disease Diagnosis	The goal of this solution is to enhance diagnostic accuracy for skin diseases among physicians by utilizing deep learning systems (DLS) as decision support tools. This addresses the problem of systematic errors in diagnoses, particularly for underrepresented populations with darker skin tones.	Deep Learning System (DLS): Utilizes neural network architectures designed to classify various skin diseases. Clinical Decision Support Interface: Provides physicians with options to update their differential diagnoses based on DLS suggestions. Image Dataset: A collection of 364 images representing 46 different skin diseases across diverse skin tones. Evaluation Metrics: Measures diagnostic accuracy through top-1, top-3, and top-4 accuracy assessments.	

The system employs a digital experiment to evaluate the impact of DLS on diagnostic accuracy among physicians.

	Process Steps	Advantage	Disadvantage (Limitation)
1	Digital Experiment Setup	Engages a large number of physicians from diverse backgrounds to assess diagnostic accuracy.	

2	Image Presentation	Utilizes a wide range of images to ensure comprehensive evaluation across different skin tones.	Limited clinical context may affect diagnosis accuracy compared to in-person evaluations.
3	DLS Integration	Enhances diagnostic accuracy by providing real- time decision support based on algorithmic predictions.	Potential over-reliance on DLS could lead to misdiagnosis if algorithms are biased or inaccurate.
4	Evaluation Metrics	Provides clear metrics for assessing the effectiveness of physician-DLS partnerships in diagnostics.	, , ,

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Diagnostic accuracy of skin disease identification.	Use of deep learning decision support systems.	Physician expertise level, experience with diverse skin tones.	Quality of training data and representation of different skin tones in datasets.

Relationship Among The Above 4 Variables in This article

The study investigates how the integration of DLS influences diagnostic outcomes while considering physician expertise and experience with diverse patient populations as moderating factors.

ı			
	Input and Output	Feature of This Solution	Contribution in This Work
ı			

Imput Images of inflammatory skin diseases.	Output Differential diagnoses provided by physicians.		This solution feature approach to integrating dermatological diagrimprove accuracy whis related to skin tone re	nostics, aiming to le addressing biases	The study contributes by demonstrating that DLS can significantly enhance diagnostic performance among physicians but also highlights persistent biases that need addressing within Al systems used in healthcare.
Posit	ive Impact of this Solution	in This Project Doma	ain	Negative Impa	ct of this Solution in This Project Domain
The positive impact includes improved diagnostic accuracy through machine collaboration, particularly benefiting generalists and specialists				biases if DLS are no	mpacts include the risk of exacerbating existing of trained on sufficiently diverse datasets or if overly reliant on algorithmic suggestions.
Analyse	This Work By Critical Thinl	king	The Tools That As	sessed this Work	What is the Structure of this Paper
The analysis emphasizes the importance of understanding both the capabilities and limitations of AI in clinical settings, particularly regarding bias in medical diagnostics across different populations.		Deep Learning Systems (DLS) Teledermatology Simulation Techniques Diagnostic Accuracy Metrics		 Abstract Introduction Methods Results Discussion Conclusion 	
		[Diagram/Flowchart		

---End of Paper 14--

	15						
Reference in APA format							
URL of the Reference	Authors Names and Emails	Keywords in this Reference					
https://doi.org/10.3389/fmed.2021.670300	Mara Giavina-Bianchi ,Eduardo Cordioli , André P. dos Santos	Deep neural networks, triage, skin diseases, primary care, teledermatology, artificial intelligence.					
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?					
Deep Neural Network for Triaging Common Skin Diseases	The goal of this solution is to enhance the accuracy of skin disease diagnosis and referral by utilizing deep neural networks (DNNs) as a triage tool in primary care settings. This addresses the challenge of limited access to dermatological care and the difficulty primary care physicians face in diagnosing various dermatoses accurately.	Deep Neural Networks (DNNs): Various architectures tested for accuracy in diagnosing skin diseases. Image Dataset: Utilizes 140,446 images from a teledermatology project with labeled clinical diagnoses. Referral System: Classifies cases for biopsy, inperson dermatologist visits, or monitoring via teledermatology. Evaluation Metrics: Measures diagnostic accuracy for diagnosis, referral correctness, and priority level.					

The study evaluates different DNN architectures to determine their effectiveness in triaging skin diseases based on image analysis.

	Process Steps	Advantage	Disadvantage (Limitation)
1	Dataset Acquisition	Large dataset (140,446 images) enhances model training and validation capabilities.	Limited to chronic skin conditions; may not generalize to acute cases.

2	Neural Network Development	Various architectures tested (GoogLeNet, VGG, ResNet) to find the most accurate model.	Complexity in model selection and potential overfitting issues.
3	Training and Validation	High accuracy achieved (89.72% for diagnosis) improves confidence in automated triage systems.	Requires substantial computational resources and time for training.
4	Evaluation of Referrals	Accurate classification aids in appropriate referrals, optimizing patient access to specialists.	Dependence on quality and representativeness of training data for generalization.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Accuracy of skin disease diagnosis and referral.	Utilization of deep neural networks.	Physician experience and familiarity with DNNs.	Quality of images and diversity in skin conditions represented.

Relationship Among The Above 4 Variables in This article

The study examines how DNN performance influences diagnostic outcomes while considering physician expertise and image quality as moderating factors.

Input and Output	Feature of This Solution	Contribution in This Work

Input Images of skin lesions. Positi	Output Diagnosis and referral recommendations based on DNN analysis.	in This Project Doma	The solution feature DNN-based triage sys primary care physic accurate diagnoses referrals for skin disea	tem that can assist cians by providing and appropriate ses.	This research contributes to the field by demonstrating that DNNs can effectively triage common chronic skin diseases, potentially improving patient access to dermatological care through enhanced diagnostic processes.	
The positive impact includes improved efficiency in healthcare deliver referral process from primary care to dermatology.			ry by streamlining the	_	mpacts include reliance on automated systems nt for all clinical nuances or acute conditions.	
Analyse 1	This Work By Critical Think	king	The Tools That Ass	sessed this Work	What is the Structure of this Paper	
The analysis emphasizes the importance of integrating Al tools like DNNs into primary care while addressing challenges related to data quality and algorithmic bias.		Deep Neural Network Teledermatology Tech Diagnostic Accuracy M	nniques	 Abstract Introduction Materials and Methods Results Discussion Conclusion 		
	Diagram/Flowchart Diagram/Flowchart					

---End of Paper 15--

Work Evaluation Table

<Use the same factors you have used in "Work Evaluation Table" to build your own "Proposed and Previous comparison table ">

Work Goal	System's Component s	System's Mechanism	Features /Characteristi cs	Cost	Speed	Security	Performa nce	Advantages	Limitation s /Disadvan tages	Platform	Results
"Rap idDi agno sis"	Preprocessi ng Module, ResNet Feature Extraction and Classificatio n, Output Module	The system preprocesses skin images and uses ResNet to classify conditions, outputting a label with confidence scores to support quick decisions. An optional feedback loop refines the model over time.	The SkinAI system provides accurate skin condition classification using ResNet, delivering quick results with clear confidence scores for efficient triage. It ensures data privacy compliance and includes an optional feedback loop for continuous model improvemen t	Modera	The cost of the SkinAI system includes infrastructure, cloud services, data storage, and ongoing maintenance for model updates and privacy compliance.	The SkinAI system ensures security through encrypted data storage, secure communica tion protocols, and compliance with data privacy regulations to protect patient information .	The SkinAI system delivers high performa nce with fast image processin g and accurate skin condition classificat ion using ResNet, ensuring reliable results with minimal latency for realtime triage.	The SkinAI system offers high accuracy, real-time processing, and secure data handling for efficient dermatologic al triage.	The SkinAl system may be limited by the quality of training data, requires significant computati onal resources, and may struggle with poorquality input images.	The SkinAl system can be deployed on cloud platforms such as AWS, Azure, or Google Cloud for scalable computation and storage, or on local servers for more controlled environments.	The SkinAI system provides the disease name (e.g., melanoma, basal cell carcinoma) along with a recommenda tion indicating whether urgent treatment is needed based on the classification confidence and severity of the condition.

		ı