Домашна работа 4, № 45342, Група 3

Иво Стратев

9 май 2017 г.

T_B.

G(V, E) е свързан граф с поне два върха, но при отстраняване на произволно ребро се получава несвързан граф. Тогава съществува единствен прост път между всеки два върха.

Док-во.

Нека G(V, E) е свързан граф с поне два върха, но при отстраняване на произволно ребро се получава несвързан граф.

Нека |V|=2 от тук директно следва, че $G=K_2$ понеже той е единствения свързан граф с два върха и от тук следва, че двата върха са свързани с единствен прост път.

Нека $|V| \geq 3$ и нека $v_i, v_j \in V$: $v_i \neq v_j$ са произволни тогава тъйкато G е свързан съществува някакъв път между v_i и v_j . Нека допуснем, че съществува път, който не е прост и нека го означим с p и нека означим с V(p) върховете принадлежащи на p. След като p не е прост път съществува $v_k \in V(p)$, който се повтаря поне два пъти в p тогава частта от p между първите две повторения на v_k образува цикъл, нека означим този цикъл с C. След премахне на

някое ребро от C, G продължава да бъде свързан, това противоречи със "структурата"на G следователно съществуват само прости пътища между v_i и v_j (не съществуват цикли межди двата върха) (1). Остава да докажем, че съществува единствен прост път между v_i и v_i . Нека допуснем, че съществуват два различни прости пътя между v_i и v_i . Тогава тръгваме от v_i и вървим докато върховете на двата пътя съвпадат. Нека означим края на съвпаденето с v_l ако v_l съвпада с v_i то двата пътя съвпадат и следва противоречие със допуснатото тяхно различие, тоест съществува единствен прост път между v_i и v_j . Ако v_l е различен от v_j то продължавайки по единия от двата пътя към v_j непременно ще стигнем до връх принадлежащ и на другия път, нека означим първия такъв връх с v_m . Такъв връх със сигурност е v_i тогава v_l и v_m образуват цикъл, което противоречи с вече доказания факт (1), че между v_i и v_j не съществуват цикли, което означава, че не същестуват различни прости пътища между v_i и v_j .

 v_i и v_j са произволни следователно между всеки два върха принадлежащи на G съществува единствен прост път. \square