Teoria da Informação

O problema fundamental

• The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.

(Claude Shannon, 1948)

Como atingir comunicação perfeita através de um canal imperfeito?

O problema fundamental

- Exemplos de canais imperfeitos:
 - Comunicação digital através de um cabo de rede
 - Comunicação digital através de sinais de rádio entre a sonda Voyager e a Terra
 - Reprodução de células as células filhas recebem o código genético da célula pai
 - Um disco rígido (não necessariamente a informação precisa ir de um lugar a outro)

Um canal binário simétrico (ruidoso)

$$x \xrightarrow{0} \xrightarrow{0} y \quad P(y=0 \mid x=0) = 1-f; \quad P(y=0 \mid x=1) = f; \\ P(y=1 \mid x=0) = f; \quad P(y=1 \mid x=1) = 1-f.$$

Possíveis soluções

- Solução física
 - Melhorar as características físicas do canal
 - Aumentam o custo da comunicação.
 - Em geral não há garantias que a comunicação será perfeita
- Solução de sistema
 - Modificar a forma de codificar e transmitir a informação de forma a corrigir possíveis erros

Códigos de repetição

Código R3 - cada bit é repetido 3 vezes na transmissão

Decodificação pelo voto majoritário

Received sequence $\bf r$	Likelihood ratio $\frac{P(\mathbf{r} \mid s = 1)}{P(\mathbf{r} \mid s = 0)}$	Decoded sequence $\hat{\mathbf{s}}$
000	γ^{-3}	0
001	γ^{-1}	0
010	γ^{-1}	0
100	$oldsymbol{\gamma^{-1}}$	0
101	γ^1	1
110	γ^1	1
011	γ^1	1
111	γ^3	1

* Dependendo das caracterísiticas do canal e das probabilidades de enviar 0 ou 1, o método de voto majoritário pode não ser o decodificador ótimo!

Códigos de repetição

Códigos de repetição

Figure 1.12. Error probability $p_{\rm b}$ versus rate for repetition codes over a binary symmetric channel with f=0.1. The right-hand figure shows $p_{\rm b}$ on a logarithmic scale. We would like the rate to be large and $p_{\rm b}$ to be small.

Incluir, além dos bits da fonte, bits obtidos através de operações realizadas com os bits da fonte a fim de obter um parâmetro capaz de aferir se os bits da fonte foram enviados de forma correta

(7,4) Hamming code (Inclui 3 bits de paridade para 4 bits da fonte)

Os bits de paridade são escolhidos de forma a manter **paridade par em cada círculo**. (0 se a soma dos 3 bits da fonte for par e 1 se a soma for ímpar).

s	t	s	t	s	t	s	t
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

Table 1.14. The sixteen codewords $\{t\}$ of the (7,4) Hamming code. Any pair of codewords differ from each other in at least three bits.

$$\mathbf{t} = \mathbf{G}^{\mathsf{T}}\mathbf{s},\tag{1.25}$$

where G is the generator matrix of the code,

$$\mathbf{G}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, \tag{1.26}$$

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1=0, 0+1=1, etc.).

Para decodificar, vamos identificar o menor conjunto de bits flipados que podem explicar as violações de paridade encontradas - **Decodificação por síndrome**

Sinal enviado

Círculo tracejado - viola a paridade par Círculo contínuo - satisfaz

Síndrome 110

Síndrome 100

Síndrome 111

Para decodificar, vamos identificar o menor conjunto de bits flipados que podem explicar as violações de paridade encontradas - **Decodificação por síndrome**

${\rm Syndrome}\; {\bf z}$	000	001	010	011	100	101	110	111
Unflip this bit	none	r_7	r_6	r_4	r_5	r_1	r_2	r_3

Também pode ser decodificado de forma matricial

Figure 1.18. Error probability p_b versus rate R for repetition codes, the (7,4) Hamming code and BCH codes with blocklengths up to 1023 over a binary symmetric channel with f=0.1. The righthand figure shows p_b on a logarithmic scale.

Quais performances podem ser obtidas?

R1

Figure 1.18. Error probability $p_{\rm b}$ versus rate R for repetition codes, the (7,4) Hamming code and BCH codes with blocklengths up to 1023 over a binary symmetric channel with f=0.1. The righthand figure shows $p_{\rm b}$ on a logarithmic scale.

Resposta ingênua: Uma curva que passe pela origem!

Quais performances podem ser atingidas?

Claude Shannon - A Mathematical Theory of Communication (1948)

Para todo canal existe uma taxa não nula na qual é possível transmitir informação com probabilidade de erro arbitrariamente pequena

Figure 1.19. Shannon's noisy-channel coding theorem. The solid curve shows the Shannon limit on achievable values of (R, p_b) for the binary symmetric channel with f = 0.1. Rates up to R = C are achievable with arbitrarily small p_b . The points show the performance of some textbook codes, as in figure 1.18.

The equation defining the Shannon limit (the solid curve) is $R = C/(1 - H_2(p_b))$, where C and H_2 are defined in equation (1.35).