Sistemas de Recomendación Filtros Colaborativos

Integrantes:

Juliana Ochoa Ramírez - Código: 201910048228

Juan Esteban Torres Marulanda - Código: 201910052228

Andrés Franco Zapata - Código: 201910043228

Objetivo

El objetivo del presente trabajo es desarrollar un sistema de recomendaciones para un conjunto de datos masivos a partir de técnicas de filtros colaborativos y el respectivo despliegue en la nube a través de AWS Educate.

Base de datos utilizadas

Amazon Customer Reviews: https://s3.amazonaws.com/amazon-reviews-pds/readme.html

DATA COLUMNS:

marketplace - 2 letter country code of the marketplace where the review was written.

customer id - Random identifier that can be used to aggregate reviews written by a single author.

review id - The unique ID of the review.

product_id - The unique Product ID the review pertains to. In the multilingual dataset the reviews

for the same product in different countries can be grouped by the same product_id.

product_parent - Random identifier that can be used to aggregate reviews for the same product.

product_title - Title of the product.

product_category - Broad product category that can be used to group reviews

(also used to group the dataset into coherent parts).

star rating - The 1-5 star rating of the review.

helpful_votes - Number of helpful votes.

total_votes - Number of total votes the review received.

vine - Review was written as part of the Vine program.

verified purchase - The review is on a verified purchase.

review headline - The title of the review.

review_body - The review text.

review_date - The date the review was written.

DATA FORMAT

Tab ('\t') separated text file, without quote or escape characters. First line in each file is header; 1 line corresponds to 1 record.

Categorías Utilizadas:

- 1. Prototipo baja escala:
- amazon_reviews_us_Digital_Video_Ga mes_v1_00.tsv.gz
- Peso: 160 MB
- 2. Altos Volúmenes:
- amazon_reviews_us_Sports_v1_00. tsv.gz.

educate

• Peso: 5.1 GB

Digital_Video_Games

113.405 usuarios y 7.948 productos

Distribución Items Calificados por Usuarios

Calificación por usuarios

Sports 2.818.178 usuarios y 1.046.129 productos

Digital_Video_Games

ranks = [2,4,6,8,10] reg_params = [0.1,0.2,0.3,0.4,0.5]

	RMSE				
	ALS default	ALS tuning	ALS - Biases tuning		
train	0.17	0.6	0.47		
test	1.82	1.54	0.99		
rank	10	2	6		
regParam	0.1	0.4	0.4		
maxiter	10	20	20		
variación		-15.38%	-35.71%		

Recomendación Digital_Video_ Games

+	+	+
customer_id product_r	ew_id product_title sco	re
51023203 51023203	6705 Funky Lab Rat [On 5.46665710515604 7477 Brain Challenge 5.46665710515604	
51023203 51023203	3723 Guilty Gear Xrd SIGN 5.4419011504136 1564 Pixel Junk Monster 5.4305067092858	
51023203 51023203	7068 Aqua Slider [Down 5.4116967350922 6679 Ninja Gaiden Sigma 5.3908727199517	
+	+	+

Sports

	RM	SE	
	ALS Tuning	ALS-Biases Tuning	
Test	1.5957	0.8414	
Rank	2	8	
regParam	0.4	0.5	
maxlter	20	20	
Variacion	3	-47.3%	

Recomendación Sports

score	product_title	product_new_id	customer_id
6.051005361784318	tasc Performance	787393	48480929
6.049028096903184	New York Yankees	575707	48480929
6.044649658907273	VIEW Swimming Gea	676013	48480929
6.0333239121326	XXIO 8i Hybrid Ri	585590	48480929
6.02743920515857	Storm Tropical Br	950635	48480929
6.021140484321931	DeFeet Woolie Boo	794567	48480929

Conclusiones

- La construcción del modelo desde un inicio debe contemplar la escalabilidad, este elemento es determinante para el éxito del modelo en producción (despliegue en altos volumenes).
- Para nuestro proyecto mientras más queríamos mejorar el modelo requeríamos de mayor cómputo, lo cual era complejo sin la ayuda de Spark.
- La optimización de los hiperparámetros y la regularización jugaron un papel muy importante en el sistema de recomendación final, lo que nos muestra que la paralelización y métodos para hacer eficiente el computo son no negociables en proyectos de altos volúmenes de datos si se quiere obtener una buena generalización.
- El método de factores latentes aplicando el algoritmo de ALS-WR nos mostró la importancia de tener en cuenta métodos iterativos que contemplen la paralelización ante problemas de alta dimensionalidad, en nuestro caso se logra dar manejo a los problemas de dimensionalidad y de falta de información de la matriz de ratings (sparse).
- Tuvimos mejores avances en la construcción de la metodología cuando trabajamos en un prototipo de menos datos, dado que intentar modificar la estructura tardaba mucho en AWS, por lo cual nos pareció mas óptimo una vez definimos la arquitectura de aprendizaje escalarlo en AWS con una base de datos ya más significativa.

Bibliografía

- Aggarwal, C. C. (2016). Recommender systems: The textbook. Springer.
- John S. Breese, D. H. . C. K. (1998).
- Empirical analysis of predictive algorithms forcollaborative filtering. In Proceedings of the Fourteenth conference on Uncertaintyin artificial intelligence (UAI'98). Koren Y, V. C., Bell R. (2009).
- Matrix factorization techniques for recommendersystems.IEEE Computer,42(8), 30-37.Töscher A, J. M. (2008).
- The bigchaos solution to the netflix prize 2008.ATT Labs -Research.Xiaoyuan Su, T. M. K. (2009).
- A survey of collaborative filtering techniques. Advances in Artificial Intelligence archive