

WEBENCH® Design Report

VinMin = 8.0V VinMax = 15.0VVout = 5.0Vlout = 0.5A

Device = LM2594MX-5.0 Topology = Buck Created = 12/11/11 2:30:50 PM BOM Cost = \$2.11 Total Pd = 0.67 W Footprint = 331.0 mm2 BOM Count = 5

Design: 101856/4 LM2594MX-5.0 Design 4 - LM2594MX-5.0

Electrical BOM

#	Name	Manufacturer	Part Number	Quai	nti R yrice	Properties	Footprint
1.	Cin	TDK	C3225X7R1E106M Series= X7R	1	\$0.18	Cap= 10.0 µF ESR= 2.7 mOhm VDC= 25.0 V IRMS= 3.0 A	1210 23mm2
2.	Cout	Panasonic	EEE-FK1C680P Series= FK	1	\$0.12	Cap= 68.0 µF ESR= 360.0 mOhm VDC= 16.0 V IRMS= 240.0 mA	SM_RADIAL_D 84mm2
3.	D1	ON Semiconductor	MBR0520LT1G	1	\$0.06	VF@Io= 385.0 mV VRRM= 20.0 V	SOD-123 22mm2
4.	L1	Coilcraft	MSS1048-224KLB	1	\$0.47	L= 220.0 μH DCR= 500.0 mOhm	MSS1048 146mm2
5.	U1	Texas Instruments	LM2594MX-5.0	1	\$1.28	Switcher	M08A 55mm2

Operating Values

operation granted					
	#	Name	Value	Category	Description
	1.	Cin IRMS	241.452 m A	Current	Input capacitor RMS ripple current
	2.	Cout IRMS	29.66 m A	Current	Output capacitor RMS ripple current
	3.	IC lpk	551.372 m A	Current	Peak switch current in IC
	4.	lin Avg	211.29 m A	Current	Average input current
	5.	L lpp	102.744 m A	Current	Peak-to-peak inductor ripple current
	6.	Q lavg	185.187 m A	Current	Q lavg
	7.	BOM Count	5.0	General	Total Design BOM count

#	Name	Value	Category	Description
8.	FootPrint	331.0 mm2	General	Total Foot Print Area of BOM components
9.	Frequency	150.0 k Hz	General	Switching frequency
10.	IC Tolerance	0.0 V	General	IC Feedback Tolerance
11.	Mode	CCM	General	Conduction Mode
12.	Pout	2.5 W	General	Total output power
13.	Q Vsat Act	845.638 m V	General	Q Vsat
14.	Total BOM	\$2.11	General	Total BOM Cost
15.	Cross Freq	10.0 k Hz	Op_point	Bode plot crossover frequency
16.	Duty Cycle	37.037 deg	Op_point	Duty cycle
17.	Efficiency	78.882 %	Op_point	Steady state efficiency
18.	IC Tj	90.018 degC	Op_point	IC junction temperature
19.	ICThetaJA	150.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
20.	IOUT_OP	500.0 m Å	Op_point	lout operating point
21.	Phase Marg	57.133 deg	Op_point	Bode Plot Phase Margin
22.	VIN_OP	15.0 V	Op_point	Vin operating point
23.	Vout p-p	36.988 m V	Op_point	Peak-to-peak output ripple voltage
24.	Cin Pd	157.408 μ W	Power	Input capacitor power dissipation
25.	Cout Pd	316.687 µ W	Power	Output capacitor power dissipation
26.	Diode Pd	121.203 m W	Power	Diode power dissipation
27.	IC Pd	400.119 m W	Power	IC power dissipation
28.	L Pd	137.5 m W	Power	Inductor power dissipation
29.	Total Pd	669.303 m W	Power	Total Power Dissipation

Design Inputs

#	Name	Value	Description
1.	lout	500.0 mA	Maximum Output Current
2.	lout1	500.0 mAmps	Output Current #1
3.	VinMax	15.0 V	Maximum input voltage
4.	VinMin	8.0 V	Minimum input voltage
5.	Vout	5.0 V	Output Voltage
6.	Vout1	5.0 Volt	Output Voltage #1
7.	base_pn	LM2594	National Based Product Number
8.	Та	30.0 degC	Ambient temperature

Design Assistance

1. LM2594 Product Folder: http://www.national.com/pf/LM/LM2594.html: contains the data sheet and other resources.

National's WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using National's published specifications as well as the published specifications of other device manufacturers. While National does update this information periodically, this information may not be current at the time the simulation is built. National does not warrant the accuracy or completeness of the specifications or any information contained therein. National does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. National does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of National's WEBENCH simulation tools is subject to National's Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.