Landmark Mortality with NN

Bryan Cai

MIT

November 16, 2016

- 1 Methods
 - Previous Work
 - Current Work

- 2 Results
 - 8 hours
 - 1 day
 - 2 days

Overview

- Goal was to predict mortality based on data taken from the ICU
 - Mortality was measured 30 days from the ICU entry date
- Grouped related variables together
 - Cardio, Chemistries, Hematology, Ventilation, UrinelO, and Miscellaneous groupings
- Create mini models and calculate a separate mortality score for each patient using the groups of variables
- Consolidate the models into a super model

Overview

Landmarking

- This procedure was performed for each distinct landmark time
 - 8 hours, 1 day, and 2 day from ICU entry time
- The model for landmark time *T* aims to predict mortality for patients who have survived until time *T* based on data up to time *T*
- Data retrieval and manipulation was done using Python
- Analysis was done using R

Landmarking

Data Filtering

- For each landmark time T, we used the data where:
 - The patient was still alive at time T, and
 - The data was recorded before time T
- Deleted variables where less than 5% of patients had measurements taken

Data Processing

- For each variable *v* and each patient, a set of summary variables were created:
 - Calculated maximum, minimum, mean, median, median absolute deviation, number of measurements, and an indicator variable for whether any measurements took place
- Imputed missing data using mean

- 1 Methods
 - Previous Work
 - Current Work

- 2 Results
 - 8 hours
 - 1 day
 - 2 days

9 / 23

Neural Network Structure

- Tried several different network architectures
 - Input \rightarrow 500 \rightarrow 100 \rightarrow output
 - Input \rightarrow 1000 \rightarrow 500 \rightarrow output
 - Input \rightarrow 500 \rightarrow 700 \rightarrow 100 \rightarrow output
 - Input \rightarrow 100 \rightarrow output
- Used ReLU as our activation function for the hidden layers
- Used the sigmoid function for the output layer

Training and Loss Function

- Applied dropout before the output layer to address overfitting
- Used binary cross entropy as our loss function
- The model is implemented in Torch
- Used Lutorpy to embed Torch code into Python for easy data manipulation

- 1 Methods
 - Previous Work
 - Current Work

- 2 Results
 - 8 hours
 - 1 day
 - 2 days

Baseline

40,000	LASSO	SVM
AUC	83.4%	80.7%

Overall

Overall AUC: 84.5%

Two Layered

40,000	NN	LASSO	SVM
NN	82.2%	83.1%	79.3%
LASSO	77.4%	76.7%	72.7%
SVM	78.2%	79.2%	75.2%

Highest Achieved: 85.0% (NN-NN)

- 1 Methods
 - Previous Work
 - Current Work

- 2 Results
 - 8 hours
 - 1 day
 - 2 days

Baseline

40,000	LASSO	SVM
AUC	85.0%	81.3%

Overall

Overall AUC: 85.9%

Two Layered

40,000	NN	LASSO	SVM
NN	83.9%	86.3%	79.7%
LASSO	84.8%	83.8%	78.7%
SVM	83.9%	86.4%	77.2%

Highest Achieved: 88.7% (LASSO-NN)

- 1 Methods
 - Previous Work
 - Current Work

- 2 Results
 - 8 hours
 - 1 day
 - 2 days

Baseline

40,000	LASSO	SVM
AUC	85.1%	83.3%

Overall

Overall AUC: 85.4%

Two Layered

40,000	NN	LASSO	SVM
NN	85.6%	82.5%	81.6%
LASSO	83.2%	83.9%	79.2%
SVM	81.2%	82.1%	76.5%

Highest Achieved: 87.7% (NN-NN)