What about... the Security of Machine Learning?

Roi Naveiro, Víctor Gallego, David Ríos Insua, et. al.

Question

Is it safe to adopt ML to support **high stakes decisions**?

Question

Is it safe to adopt ML to support **high stakes decisions**?

Not yet, for many reasons.

Central assumption in machine learning: **Train and operation data are id**

Out of the sample generalization \neq Out of the distribution generalization

Broken by the presence of adversaries

Source: https://portswigger.net/daily-swig/ trojannet-a-simple-yet-effective-attack-on-machine-learning-models

Original image

Dermatoscopic image of a benign melanocytic nevus, along with the diagnostic probability computed by a deep neural network.

Adversarial noise

Perturbation computed by a common adversarial attack technique. See (7) for details.

Adversarial example

Combined image of nevus and attack perturbation and the diagnostic probabilities from the same deep neural network.

Source: Finlaysonet.al. (2019)

Not only in vision tasks!

https://nicholas.carlini.com/code/audio_adversarial_examples/

Adversarial ML

Framework to produce ML algorithms **robust to the adversarial data manipulations** that may occur.

We illustrate AML concepts in a statistical classification context.

Stat. Classification - The (usual) setup

- Classifier C (she).
- Instances' class: $y \in \{1, \dots, k\}$.
- Covariates $x \in \mathbb{R}^d$, inform about y through p(y|x).

1. Inference/training

- e.g. parametric models: $[p(y|x, \theta)]$.
- Inferences about θ using training data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$.
- MLE.

$$\begin{array}{l} \theta_{\textit{MLE}} = \arg\max_{\theta} p(\mathcal{D}|\theta) = \arg\min_{\theta} L(\theta,\mathcal{D}) \\ . \\ \text{where } L(\theta,\mathcal{D}) = -\log p(\mathcal{D}|\theta). \end{array}$$

• Bayes. Sample from posterior.

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

Stat. Classification - The (usual) setup

2. Decision/operation

• C aims at classifying x to pertain to the class

$$\arg\max_{y_C} \sum_{y=1}^k u_C(y_C, y) p(y|x),$$

MLE.

$$p(y|x) := p(y|x, \theta_{MLE})$$

• Bayes. Approximate using MC (with posterior samples).s

$$p(y|x) := p(y|x,\mathcal{D}) = \int p(y|x,\theta) p(\theta|\mathcal{D}) \,\mathrm{d}\theta,$$

Adversarial Stat. Classification

- Adversary A (he).
- Transforms x into x' = a(x) to fool C making her misclassify instances to attain some benefit.
- **Issue**: adversary unaware *C* classifies based on x', instead of the actual (not observed) covariates x.

Two running examples

- **Sentiment Analysis**: predict whether a film review was positive or negative.
- Data with 2400 IMDb reviews
- 150 binary features indicating the presence or absence of words
- Adversary aims to manipulate positive reviews in such a way that they are classified as negative
- · Modifies at most 2 words

Two running examples

Table: Accuracy comparison (with precision) of four classifiers on clean and attacked data.

Classifier	Clean data	Attacked data
Logistic Regression	0.728 ± 0.005	$\textbf{0.322} \pm \textbf{0.011}$
Naive Bayes	$\textbf{0.722} \pm \textbf{0.004}$	$\textbf{0.333} \pm \textbf{0.009}$
Neural Network	0.691 ± 0.019	$\textbf{0.338} \pm \textbf{0.021}$
Random Forest	0.720 ± 0.005	$\textbf{0.327} \pm \textbf{0.011}$

Two running examples

- Computer vision
- Simple deep CNN [Krizhevsky et al., 2012] → 99% accuracy in MNIST.
- Under the FGSM [Goodfellow et al., 2014] attack \rightarrow 62% accuracy.

Original image **Prediction: 2**

Perturbed image **Prediction: 7**

AML - Usual workflow

1. Gathering intelligence

2. Forecasting likely attacks

3. Protecting ML algorithms

1. Gathering intelligence

1. Attacker **goals**: violation type and attack specificity.

- Integrity, availability, privacy violations
- Targeted vs indiscriminate.

2. Attacker **knowledge**: Black, white, gray box.

3. Attacker **capabilities**: poisoning vs evasion

2. Forecasting likely attacks

Models for how adversary would attack. e.g. FGSM (classification)

- Availability violation, evasion attack.
- Classifier minimizes $L(\theta, \mathcal{D})$.
- Attacker has full knowledge about (gradient of) $L(\theta, x, y)$.
- Resources to perturb each vector of covariates by adding a small vector ϵ .

$$x' = x + \epsilon \cdot \text{sign} \left[\nabla_x L(\theta, x, y) \right]$$

.

3. Protecting ML algorithms

- Robust inference to likely data manipulations
- · Most research based on game theory
 - · Model confrontation between classifier and adversary as a game
 - Common-knowledge!
 - Nash Equilibria
- Protecting during operations (affects decision stage) vs during training (affect inference stage): two examples

AML-GT Protecting during operations

- Dalvi et al. [2004] model confrontation between adversary and learning system as a game.
- Classifier needs to find optimal classification function. Adversary needs to find optimal feature change.
- Computing Nash equilibria is intractable.

AML-GT Protecting during operations

Instead,

- 1. Classifier acts first, assuming clean data.
- 2. Assuming A has **knowledge about the classifier elements**, he transforms *x* into *x'*, minimising transformation cost, subject to label flipping.
- 3. Classifier observes x', has knowledge about attack strategy. Makes her classification decision maximizing $\sum_{y=1}^k u_C(y_C, y)p(y|x')$, equivalent to

$$\sum_{y=1}^k u_{\mathbb{C}}(y_{\mathbb{C}},y) p(x'|y) p(y)$$

where

$$p(x'|y) = \sum_{x \in \mathcal{X}'} p(x|y)p(x'|x,y)$$

AML-GT Protecting during training

- Adversarial training Madry et al. [2018].
- Parametric model: learn parameters θ in robust way.
- Without Adversary: Classifier minimizes $\sum_{i=1}^{N} L(\theta, x_i, y_i)$ wrt θ
- Zero-sum game, with attacks of the form $x' = x + \gamma$

$$\arg\min_{\theta} \sum_{i=1}^{N} \max_{\|\gamma\| \le \epsilon} L(\theta, x_i + \gamma, y_i)$$

Common-knowledge!

Probablistic AML

Introduced in: [Naveiro, Redondo, Insua, and Ruggeri, 2019], [Rios Insua, Naveiro, Gallego, and Poulos, 2023]

The pipeline (of probabilistic AML):

- 1. Study data manipulations that adversary may undertake
- Probabilistic model of the adversary (likely attacks + uncertainty)
- 3. "Robustify" ML algorithms against such attacking model.

Two main approaches depending on how 3. is done

- At operation time (robust predictive distribution).
- At training time (robust posterior distribution).

- C receives (potentially attacked) covariates x'
- She decides

$$\arg\max_{y_C} \sum_{y=1}^k u(y_C,y) \qquad \cdot \underbrace{p(y|x')}_{\text{Posterior pred. dist.}}$$

- C receives (potentially attacked) covariates x'
- She models her uncertainty about latent originating instance x through p(x|x')

$$\arg\max_{y_{C}} \sum_{y=1}^{k} u(y_{C}, y) \qquad \underbrace{\left[\int_{\mathcal{X}_{x'}} p(y|x) p(x|x') dx \right]}_{\text{Robust posterior predictive distribution}}$$

- C receives (potentially attacked) covariates x'
- She models her uncertainty about latent originating instance x through p(x|x')

$$\arg\max_{y_{C}} \sum_{y=1}^{k} u(y_{C}, y) \qquad \boxed{\int_{\mathcal{X}_{x'}} p(y|x)p(x|x')dx}$$
Robust posterior predictive distribution

• Often, MC approximation, sample $x_1, \dots, x_N \sim p(x|x')$

$$\int_{\mathcal{X}_{x'}} p(y|x)p(x|x')dx \simeq \frac{1}{N} \sum_{n=1}^{N} p(y|x_n)$$

How to sample from $\mathbf{p}(\mathbf{x}|\mathbf{x}')$?

- Inference about the latent originating instance x.
- Define attack model p(x'|x) (Steps 1 and 2!)
 - Under common knowledge: deterministic!
 - As we are uncertain: probabilistic
- Use samples from p(x'|x) to get samples from p(x|x')

Sentiment analysis - revisited

Table: Accuracy comparison (with precision) of four classifiers with and without protection on clean and attacked data.

Classifier	Clean data	Raw	AB-ACRA
Logistic Regression	0.728 ± 0.005	$\textbf{0.322} \pm \textbf{0.011}$	0.589 ± 0.023
Naive Bayes	0.722 ± 0.004	$\textbf{0.333} \pm \textbf{0.009}$	$\boldsymbol{0.968 \pm 0.008}$
Neural Network	0.691 ± 0.019	$\textbf{0.338} \pm \textbf{0.021}$	0.761 ± 0.030
Random Forest	0.720 ± 0.005	$\textbf{0.327} \pm \textbf{0.011}$	0.837 ± 0.014

Protecting during training

- · Train taking into account future present of adversary.
- We restrict to parametric, differentiable classifiers, likelihood $p(y|\theta,x)$.
- Training data $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$ is clean, by assumption.

Bayesian Adversarial Learning

- Adversary unaware classifier computes $p(\theta|\mathcal{D})$.
- Presence of an adversary at operations changes data generation mechanism ⇒ performance degradation
- Propose robust adversarial posterior distribution

$$\int p(\theta|\tilde{\mathcal{D}})p(\tilde{\mathcal{D}}|\mathcal{D})\,\mathrm{d}\tilde{\mathcal{D}}$$

Digit recognition - revisited

Digit recognition - revisited

Conclusions

- Most ML techniques are not robust to adversarial manipulations.
- AML aims at guaranteeing robustness to them.
- Requires creating attacking models (application specific).
- Two protection strategies:
 - 1. During operations.
 - 2. During training.
- Most work uses game theory (common knowledge).
- Probabilistic framework for AML: account explicitly for the presence of adversary and our uncertainty about his decision-making.

References I

- N. Dalvi, P. Domingos, Mausam, S. Sumit, and D. Verma. Adversarial classification. In *Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '04, pages 99–108, 2004. ISBN 1-58113-888-1.
- I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems*, pages 1097–1105, 2012.
- A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to adversarial attacks. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

References II

- R. Naveiro, A. Redondo, D. R. Insua, and F. Ruggeri. Adversarial classification: An adversarial risk analysis approach. *International Journal of Approximate Reasoning*, 113:133 148, 2019. ISSN 0888-613X. doi: https://doi.org/10.1016/j.ijar.2019.07.003. URL http://www.sciencedirect.com/science/article/pii/S0888613X18304705.
- D. Rios Insua, R. Naveiro, V. Gallego, and J. Poulos. Adversarial machine learning: Bayesian perspectives. *Journal of the American Statistical Association*, pages 1–12, 2023.

Attack Model

· Adversary is an expected-utility maximizer,

$$x' = \underset{z}{\operatorname{arg\,max}} \sum_{y_C=1}^k u_A(y_C, y) p_A(y_C|z)$$

- Model uncertainty with random utilities U_A and random expected probabilities $P_A^{y_c}$ defined over $(\Omega, \mathcal{A}, \mathcal{P})$, with $\omega \in \Omega$.
- Induces $X'_{\omega}(x) = \arg\max_{z} \sum_{y_{\mathcal{C}}=l+1}^{k} U_A^{y_{\mathcal{C}},y,\omega} P_A^{y_{\mathcal{C}},\omega}(z)$
- $p(x'|x) = \mathcal{P}(X'_{\omega} = x')$
 - 1. Sample $u_A \sim U_A$ and $p_A \sim P_A$
 - 2. Compute x' = arg max_z $\sum_{y_C=1}^k u_A(y_C, y) p_A(y_C|z)$

Any attack model is valid!

FGSM attack, assumes C trains minimzing $L(\theta, x, y)$:

$$x' = x + \epsilon \cdot \text{sign} \left[\nabla_x L(\theta, x, y) \right]$$

.

Attacking model p(x'|x,y) degenerated at $x + \epsilon \cdot \text{sign} [\nabla_x L(\theta, x, y)]$.

Original image **Prediction: 2**

Perturbed image Prediction: 7

Making the Gibbs sampler operational

- · With this, iterate
 - 1. Sample perturbed samples $x_1, \dots, x_K \sim p(\tilde{D}|D, \theta)$ for a mini-batch of size K.
 - 2. $\theta_{t+1} = \theta_t + \epsilon_t \sum_{i=1}^K \nabla (\log p(x_i, y_i | \theta) \log p(\theta)) + \mathcal{N}(0, 2\epsilon_t)$
- Finally, upon observing x', sample $\theta_1, \ldots, \theta_N$ from robust posterior, and decide:

$$\underset{y_{C}}{\operatorname{arg\,max}} \sum_{y=1}^{k} u(y_{C}, y) \frac{1}{N} \sum_{i=1}^{N} p(y|x', \theta_{i})$$

AT as MAP

Recall AT computes θ as

$$\arg\min_{\theta} \sum_{i=1}^{N} \max_{\|\gamma\| \leq \epsilon} L(\theta, x_i + \gamma, y_i)$$

Proposition

We can recover AT as a MAP estimate of θ under the robust adversarial posterior distribution.