SUBSTITUTE SEQUENCE LISTING

<110>	Yasukazu, NAKAI Youichi, TSUCHI	KITA IYA									
<120>	METHOD OF DETEC		ENTIFYING G	RAM-NEGATIV	E OBLIGATIVE						
<130>	294863US0PCT										
	10/589,493 2006-08-15										
	PCT/JP05/02335 2005-02-16										
<150> <151>	JP 2004-040376 2004-02-17										
<160>	8										
<170>	PatentIn version	on 3.3									
<212>	1 1395 DNA Malephilus cere	evisiae									
<220> <221> <222> <223>	Source (1)(1395) SBC8034 Strain										
	misc_feature (98)(98) n represents an	ny base									
<400> tgagtg	1 gcga actggtgagt	aacgcgtatc	caacctggcc	gtaagcagag	aataggcttc	60					
cgaaag	aaag attaatgctc	tatgtagtca	cccgaagnca	tcggaaggtg	accaaagatc	120					
cgtcgc	ttac ggatggggat	gcgtctgatt	aggcagttgg	cggggcaaag	gcccaccaaa	180					
ccgacg	atca gtagggttct	gagaggaagg	tcccccacat	tggaactgag	acacggtcca	240					
aactcc	tacg ggaggcagca	gtgaggaata	ttggtcaatg	ggcgagagcc	tgaaccagcc	300					
aagtag	cgtg caggacgacg	gccctatggg	ttgtaaactg	cttttgaagg	ggaataaagt	360					
gagcga	cgtg tcgttcattg	caagtaccct	tggaataagg	accggctaat	tccgtgccag	420					
cagccg	cggt aatacggaag	gtccgggcgt	tatccggatt	tattgggttt	aaagggagcg	480					
taggcc	gctc tttaagcgtg	ttgtgaaatg	caggtgccca	acatctgcac	tgcagcgcga	540					

actggag	gagc	ttgagggcgc	acgacgcagg	cggaatttgt	ggtgtagcgg	tgaaatgcat	600						
agatato	cacg	aagaaccccg	attgcgaagg	cagcttgcgg	gagcgcacct	gacgctgaag	660						
ctcgaaa	agtg	caggtatcaa	acaggattag	ataccctggt	agtctgcacg	gtaaacgatg	720						
gatgcc	cgtt	ctgcggcctt	cgggccgcgg	gaccaagtga	aagcattaag	catcccacct	780						
ggggagt	acg	ccggcaacgg	tgaaactcaa	aggaattgac	gggggcccgc	acaagcggag	840						
gaacat	gtgg	tttaattcga	tgatacgcga	ggaaccttac	ccgggcttga	attgcagact	900						
gaggtgo	ccgg	agacggcacc	gtccttcggg	aagtctgtga	aggtgctgca	tggttgtcgt	960						
cagctcg	gtgc	cgtgaggtgt	cggctcaagt	gccataacga	gcgcaacccc	tgtctcccgt	1020						
tgccato	cagg	ttcaagctgg	gcacaccgga	gagactgccg	ccgtaaggtg	tgaggaaggt	1080						
ggggatg	gacg	tcaaatcagc	acggccttac	gtccggggct	acacacgtgt	tacaatggcc	1140						
ggtacag	gagc	gaaggcgtcc	cgcaaggtcc	gccgaagcgc	caaagccggc	cccagtacgg	1200						
actgggg	gtct	gcaacccgac	cccacgaagc	tggattcgct	agtaatcgcg	catcagccat	1260						
gacgcgg	gtga	atacgttccc	gggccttgta	cacaccgccc	gtcaagccat	gaaagccggg	1320						
agtgcct	gaa	gtccgtgacc	gcaaggatcg	gcctagggca	aaatcggtaa	ttggggtgaa	1380						
gtcgtaaaaa gggta							1395						
<210> <211>	2 20												
<212> <213>	DNA	ificial Sequ	ience										
<213>	ALUI	criciar bege	201100										
<220> <223> Synthetic Oligonucleotide Primer													
<400> 2													
ggaaggtgac caaagatccg 20													
<210>	3												
<211>													
<212>	DNA												
<213>	Arti	ificial Sequ	ience										
<220> <223> Synthetic Oligonucleotide Primer													
<223>	Synt	netic Oligo	nucleotide	primer									
<pre><400> 3 ttgcaatgaa cgacacgtcg ct 22</pre>													
LLycaal	-544	-3	man.	ttgcaatgaa cgacacgtcg ct 22									

<210> 4

```
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<220>
<221> modified_base
<222> (1)..(1)
<223> LC Red 640 Dye Labelled
<220>
<221> modified_base
<222> (21)..(21)
<223> Phosphorylated
<400> 4
                                                                       21
gccccgccaa ctgcctaatc a
<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<220>
<221> modified_base
<222> (22)..(22)
<223> FITC Dye Labelled
<400> 5
                                                                        22
ctgatcgtcg gcttggtggg cc
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Primer
<400> 6
                                                                        20
ggctttctaa cagggtaccg
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<220>
<221> modified_base
<222> (1)..(1)
<223> LC Red 705 Dye Labelled

<220>
<221> modified_base
<222> (22)..(22)
<223> Phosphorylated

<400> 7
acceptcacca accapetaat ca

<220
<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Universal Synthetic Oligonucleotide Primer for 16S rRNA gene
<400> 8
tggagagttt gatcetgget c
221
```