

Machine Learning

Dr. Muhammad Adeel Nisar

Assistant Professor – Department of IT, Faculty of Computing and Information Technology, University of the Punjab, Lahore

Recap of the Last Lecture

- Why Do you Need to Learn Machine Learning?
- What is Machine Learning?
- Applications of Machine Learning, Based on
 - Images and Videos Data
 - Sensor Data
 - Audio Data
 - Tabular Data
 - Text Data
- Machine Learning Life-Cycle

Today's Contents

- Machine Learning Life-Cycle
- Types of Machine Learning
- Supervised Machine Learning
- Regression
 - Hypothesis Function
 - Cost Computation
 - Optimization Mechanism

Machine Learning Life-Cycle

- Data Acquisition
- Data Preparation
- Feature Extraction
- Train Model
- Test Model
- Evaluate and Improve

Data Acquisition

- Types of data
 - Electronic Records/ Tabular data

studies			
Data source	Sample size	Reference	
Single psychiatric inpatient unit	728-2,010	82, 97	
Specialized center/clinic	544-10,017	15, 40	
Prison network	370,511	8	
Single hospital	467-55,492	23, 47	
Multiple hospitals	1,074-25,241	53, 105	
Multiple primary care practices	7,925-345,143	44, 74	
Health care system	2,537-919,873	25, 48	
Consortium	8,709-233,844	28, 83	
Centralized anonymized repository	923-5,244,402	39, 101	

	Administrative	Electronic Medical Records			
Variables	Cleims	Primary Core	Specialist Core	Integrated Health Egisters	
Diagnosis	•	•	•	•	
Demographics	0	•	0	•	
Treatment Prescribed	•	•	0	•	
Treatment Dispersed	•	0	0	0	
Treatment Administered in Hospital	0	0	0	•	
Cornorbidities	•	•	0	•	
Other Concomitant Medication Use	•	•	•	•	
Specialist Visits (All Specialities)	•	0	•	•	
Surgical Procedures	•	•	0	•	
Radiology Pathology Findings	0	0	•	•	
Laboratory Tests Performed	•	0	•	•	
Laboratory Test Results	0	•	•	•	
	- 0	0		•	

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
5	25.29	4.71	Male	No	Sun	Dinner	4
6	8.77	2.00	Male	No	Sun	Dinner	2
7	26.88	3.12	Male	No	Sun	Dinner	4
8	15.04	1.96	Male	No	Sun	Dinner	2
9	14.78	3.23	Male	No	Sun	Dinner	2
10	10.27	1.71	Male	No	Sun	Dinner	2
11	35.26	5.00	Female	No	Sun	Dinner	4

• Images

Data Acquisition

- Types of data
 - Audio

Sensors Data

https://images.app.goo.gl/m5uUHz9keixcwV3u8

https://instock.pk/emotiv-epoc-14-channel-mobile-eeg.html

Data Preparation

Noise Removal

https://images.app.goo.gl/WGpHsUFYAqr2DcmE8

https://images.app.goo.gl/MtPN7BpxiHyYBj9T9

- Python Libraries for noise removal
 - https://pypi.org/project/noisereduce/
 - https://scikitimage.org/docs/stable/auto_examples/filters/plot_denoise.html

Data Preparation

Segmentation

Sensor-Based Human Activity Recognition for Assistive Health Technologies by Dr. Muhammad Adeel Nisar, Logos Verlag Berlin GmbH, 2023

Types of Machine Learning

- Supervised Machine Learning assumes that a set of labelled training data $\{(x^{(i)},y^{(i)})\}$ where i is 1 to m is available and the classifier is designed by exploiting this a-priori known information.
- Two further types
 - Regression
 - Linear Regression
 - Nonlinear Regression
 - Classification
 - Logistic Regression
 - Naïve Bayes
 - Support Vector Machines etc

Types of Machine Learning

- Unsupervised Machine Learning clusters unlabeled training data, $\{x^{(i)}\}$ where i is 1 to m, described by feature vectors, $x^{(i)}$, into similar groups
 - Clustering
 - K-Means Clustering
 - Dimensionality Reduction
 - Principal Component Analysis
 - Autoencoders

Types of Machine Learning

- In **Semi-supervised Machine Learning** the dataset contains both labeled and unlabeled examples. Usually, the quantity of unlabeled examples is much higher than the number of labeled examples. The goal of a semi-supervised learning algorithm is the same as the goal of the supervised learning algorithm.
- Reinforcement Learning solves a particular kind of problems where decision making is sequential, and the goal is long-term, such as game playing, robotics, resource management, or logistics.

Regression

- A Supervised learning algorithm
- Taking input variables and trying to fit the output onto a continuous values.
- Linear regression with one variable is also known as "Univariate linear regression".
- Univariate linear regression is used when you want to predict a single output value y from a single input value x.
- The Hypothesis Function $y' = h\theta(x) = \theta_0 + \theta_1 x$
- Given the training data with right answers, predict the real-valued output for the test data.

Dataset and Notations

- Notations
- m = Number of Training Examples
- x = Input Variable/ Features
- y = Output Variable / Target Value
- (x,y) is one training example
- (x⁽ⁱ⁾,y⁽ⁱ⁾) is ith training example
- $(x^{(1)},y^{(1)}) = (8.3, 20.99)$

Input Data (x)	Correct Answer (y)
8.3	20.99
14.4	32.89
6.05	17.1
• •	• •

Dataset and Plotted Graph

Input Data (x)	Correct Answer (y)
8.3	20.99
14.4	32.89
6.05	17.08
••	••

Linear Regression with One Variable

- This is like the equation of a straight line.
- We give $h\theta(x)$ values for θ_0 and θ_1 to get our estimated output y'.
- We are trying to create a function that will map out input data to our output data.

Equation of Line

Linear Functions With Varying Values of O

Linear Regression with One Variable

•
$$y' = h\theta(x) = \theta_0 + \theta_1 x$$

• Intercept: $\theta_0 = 5$

• Slope: $\theta_1 = 2$

Input Data (x)	Correct Answer (y)	
5	15	
10	25	
15	35	
• •	••	

Size

Cost Function

Hypothesis Function

$$y' = h\vartheta(x) = \vartheta_0 + \vartheta_1 x$$

• Cost function (to measure the performance of hypothesis function)

$$J(\vartheta_{0},\vartheta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (y'^{(i)} - y^{(i)})^{2} = \frac{1}{2m} \sum_{i=1}^{m} (h\vartheta(x^{(i)}) - y^{(i)})^{2}$$

Cost Function

Input Data (x)	Correct Answer (y)	Estimated Answer	Error
8.3	20.99	21.6	-0.61
14.4	32.89	33.8	-0.81
6.05	17.1	17.08	0.02
••	••	••	••

Mean Square Error (MSE) =
$$J(\vartheta_{0}, \vartheta_{1}) = \frac{1}{2m} \sum_{i=1}^{n} (y^{(i)} - y'^{(i)})^{2}$$

Cost Function

Hypothesis Function

$$y' = h\vartheta(x) = \vartheta_0 + \vartheta_1 x$$

• Cost function (to measure the performance of hypothesis function)

$$J(\vartheta_{0},\vartheta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (y'^{(i)} - y^{(i)})^{2} = \frac{1}{2m} \sum_{i=1}^{m} (h\vartheta(x^{(i)}) - y^{(i)})^{2}$$

Objective:

$$\min_{\boldsymbol{\vartheta}_{0,}\boldsymbol{\vartheta}_{1}} J(\boldsymbol{\vartheta}_{0,}\boldsymbol{\vartheta}_{1})$$

•
$$\mathbf{x} = [1, 2, 3, 4, 5, 6, 7]^{6}$$
• $\mathbf{y} = [1, 2, 3, 4, 5, 6, 7]^{5}$
• $\mathbf{y}' = h\theta(x) = \theta_0 + \theta_1 x$
• Assume $\theta_0 = 0$
• So, $\mathbf{y}' = h\theta(x) = \theta_1 x$

$$\theta_1 = [-0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]$$

•
$$\vartheta_1 = 1.5$$
, $J(\vartheta_1) = 5.0$

•
$$\vartheta_1 = 2.0$$
, $J(\vartheta_1) = 20.0$

Graph of $J(\vartheta_1)$

• θ_1 = [-0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]

• $J(\theta_1) = [45.0, 31.25, 20.0, 11.25, 5.0, 1.25, 0.0, 1.25, 5.0, 11.25,$

20.0, 31.25]

Graph of $J(\vartheta_{0}, \vartheta_{1})$

Some Concepts

Global Minimum

Local Minimum

Convex Functions

Gradient Descent Algorithm

• We have $J(\vartheta_{0_1}\vartheta_1)$ and we want min $J(\vartheta_{0_1}\vartheta_1)$

Solving Minimization Problem

Recap of the Latest Contents

Univariate Linear Regression

$$y' = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost/Loss function, Mean Squared Error

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (y'^{(i)} - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Derivatives

$$f(x) = 4x$$

$$f(x) = x^3$$

$$f(x) = (x+2)^4$$

$$f(x,y) = (3x + 2y + 2)^2$$

Gradient Descent Algorithm

- $\vartheta_j := \vartheta_j \alpha \frac{\partial}{\partial \vartheta_j} J(\vartheta_{0,} \vartheta_1)$ (for j = 0 and j = 1)
- $\frac{\partial}{\partial \vartheta_i} J(\vartheta_{0_i} \vartheta_1)$ is a partial derivative term
- α : (Alpha) is learning rate
- Simultaneous Update
- temp0 = $\vartheta_0 \alpha \frac{\partial}{\partial \vartheta_0} J(\vartheta_{0,} \vartheta_1)$ temp1 = $\vartheta_1 \alpha \frac{\partial}{\partial \vartheta_1} J(\vartheta_{0,} \vartheta_1)$
- $\vartheta_0 \coloneqq \mathsf{temp0}$
- $\vartheta_1 \coloneqq \text{temp1}$

Linear Regression with Gradient Descent

$$\vartheta_j \coloneqq \vartheta_j - \alpha \frac{\partial}{\partial \vartheta_j} J(\vartheta_{0,} \vartheta_1)$$

$$\frac{\partial}{\partial \vartheta_{i}} J(\vartheta_{0,} \vartheta_{1}) = \frac{\partial}{\partial \vartheta_{i}} \left(\frac{1}{2m} \sum_{i=1}^{m} (h\vartheta(x^{(i)}) - y^{(i)})^{2} \right)$$

$$\frac{\partial}{\partial \vartheta_{i}} J(\vartheta_{0,}\vartheta_{1}) = \frac{\partial}{\partial \vartheta_{i}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2} \right)$$

Linear Regression with Gradient Descent

$$\frac{\partial}{\partial \vartheta_{j}} J(\vartheta_{0},\vartheta_{1}) = \frac{\partial}{\partial \vartheta_{j}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2} \right)$$

$$\frac{\partial}{\partial \vartheta_{0}} J(\vartheta_{0},\vartheta_{1}) = \frac{\partial}{\partial \vartheta_{0}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2} \right)$$

$$\frac{\partial}{\partial \vartheta_{0}} J(\vartheta_{0},\vartheta_{1}) = \frac{1}{m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})$$

$$\frac{\partial}{\partial \vartheta_{1}} J(\vartheta_{0},\vartheta_{1}) = \frac{\partial}{\partial \vartheta_{1}} \left(\frac{1}{2m} \sum_{i=1}^{m} (\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2} \right)$$

$$\frac{\partial}{\partial \vartheta_{1}} J(\vartheta_{0},\vartheta_{1}) = \frac{1}{m} \sum_{i=1}^{m} ((\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)})^{2})$$

$$\frac{\partial}{\partial \vartheta_{1}} J(\vartheta_{0},\vartheta_{1}) = \frac{1}{m} \sum_{i=1}^{m} (((\vartheta_{0} + \vartheta_{1} x^{(i)} - y^{(i)}))^{2})$$

Linear Regression with Gradient Descent

Repeat until converge

$$\vartheta_0 \coloneqq \vartheta_0 - \alpha \left(\frac{1}{m} \sum_{i=1}^m (\vartheta_0 + \vartheta_1 x^{(i)} - y^{(i)}) \right)$$

$$\vartheta_1 \coloneqq \vartheta_1 - \alpha \left(\frac{1}{m} \sum_{i=1}^m (\vartheta_0 + \vartheta_1 x^{(i)} - y^{(i)}) \right) x^{(i)}$$

Simultaneous update

Programming - Homework

- Write a Python program that implements a function computeCost to compute the Mean Squared Error (MSE) for univariate linear regression. The function should take the following parameters:
 - X: A list of m data points (a list of m real numbers).
 - Y: A list of m target values (a list of m real numbers corresponding to X).
 - bias: The intercept parameter (a real number).
 - weight: The slope parameter (a real number).
- The function should return the cost, computed using the MSE formula.

Programming - Homework

- Write a Python program that calculates the cost for different combinations of parameters and prints the minimum cost along with the optimal parameters. The program should include a function findMinCost that takes the following parameters:
 - X: A list of m data points (a list of m real numbers).
 - Y: A list of m target values (a list of m real numbers corresponding to X).
 - bias_lst: A list of k possible values for the intercept parameter (a list of k real numbers).
 - weight_lst: A list of j possible values for the slope parameter (a list of j real numbers).
- The function should compute the cost for each combination of intercept (from bias_lst) and slope (from weight_lst), and return the minimum cost and the corresponding parameters.

Reading - Homework

- Machine Learning
 - Resource R1
 - Book B1: 1.3, 2.1, 2.6, 3.1
 - Book B3: 2.6