# Olin College of Engineering ENGR2410 – Signals and Systems

# Assignment 9

Problem 1 (2 points) Show Parseval's Theorem

$$\int_{t=-\infty}^{t=\infty} [x(t)]^2 dt = \int_{\omega=-\infty}^{\omega=\infty} |X(j\omega)|^2 \frac{d\omega}{2\pi}$$

where

$$|X(j\omega)|^2 = X(j\omega)X^*(j\omega)$$

x(t) is real, and  $X^*(j\omega)$  is the complex conjugate of  $X(j\omega)$ . Hint:

$$X^*(j\omega) = \int_{t=-\infty}^{t=\infty} x(t)e^{j\omega t}dt$$

# **Solution:**

$$\int_{\omega=-\infty}^{\omega=\infty} |X(j\omega)|^2 \frac{d\omega}{2\pi} = \int_{\omega=-\infty}^{\omega=\infty} X(j\omega) X^*(j\omega) \frac{d\omega}{2\pi} 
= \int_{\omega=-\infty}^{\omega=\infty} X(j\omega) \int_{t=-\infty}^{t=\infty} x(t) e^{j\omega t} dt \frac{d\omega}{2\pi} 
= \int_{\omega=-\infty}^{\omega=\infty} \int_{t=-\infty}^{t=\infty} X(j\omega) x(t) e^{j\omega t} dt \frac{d\omega}{2\pi} 
= \int_{t=-\infty}^{t=\infty} \int_{\omega=-\infty}^{\omega=\infty} X(j\omega) x(t) e^{j\omega t} \frac{d\omega}{2\pi} dt 
= \int_{t=-\infty}^{t=\infty} x(t) \underbrace{\int_{\omega=-\infty}^{\omega=\infty} X(j\omega) e^{j\omega t} \frac{d\omega}{2\pi}}_{x(t)} dt 
= \int_{t=-\infty}^{t=\infty} x(t) x(t) dt 
\int_{\omega=-\infty}^{\omega=\infty} |X(j\omega)|^2 \frac{d\omega}{2\pi} = \int_{t=-\infty}^{t=\infty} [x(t)]^2 dt$$

**Problem 2** (4 points) A non-ideal filter or communication channel  $H(j\omega)$  with finite transition band  $\Delta f$  between the passband (where  $H(j\omega) \neq 0$ ) and stopband (where  $H(j\omega) = 0$ ) can be modeled as  $H(j\omega) = H_0(j\omega) * H_{\Delta}(j\omega)$  where

$$H_0(j\omega) = \begin{cases} 1 & -2\pi f_0 < \omega < 2\pi f_0 \\ 0 & \text{otherwise} \end{cases} \qquad H_{\Delta}(j\omega) = \begin{cases} \frac{1}{2\pi\Delta f} & -2\pi\Delta f/2 < \omega < 2\pi\Delta f/2 \\ 0 & \text{otherwise} \end{cases}$$

A. Find an expression for  $h_0(t)$ , the impulse response of the ideal channel.

### Solution:

$$h_0(t) = 2f_0 \operatorname{sinc}(2\pi f_0 t)$$

B. Find an expression for  $H(j\omega)$  and sketch it.

### Solution:

$$H(j\omega) = H_0(j\omega) * H_{\Delta}(j\omega) = \int_{-\infty}^{\infty} H_0(\omega') H_{\Delta}(\omega - \omega') d\omega'$$

$$H(j\omega) = \int_{-\infty}^{-2\pi(f_0 + \Delta f/2)} H_0(\omega') H_{\Delta}(\omega - \omega') d\omega'$$

$$+ \int_{-2\pi(f_0 + \Delta f/2)}^{-2\pi(f_0 + \Delta f/2)} H_0(\omega') H_{\Delta}(\omega - \omega') d\omega'$$

$$+ \int_{-2\pi(f_0 - \Delta f/2)}^{2\pi(f_0 - \Delta f/2)} H_0(\omega') H_{\Delta}(\omega - \omega') d\omega'$$

$$+ \int_{2\pi(f_0 + \Delta f/2)}^{2\pi(f_0 + \Delta f/2)} H_0(\omega') H_{\Delta}(\omega - \omega') d\omega'$$

$$+ \int_{2\pi(f_0 + \Delta f/2)}^{\infty} H_0(\omega') H_{\Delta}(\omega - \omega') d\omega'$$

$$H(j\omega) = \begin{cases} 0, & -\infty < \omega < -2\pi(f_0 + \Delta f/2) \\ \int_{-2\pi f_0}^{\omega + 2\pi \Delta f/2} \frac{1}{2\pi \Delta f} d\omega', & -2\pi(f_0 + \Delta f/2) < \omega < -2\pi(f_0 - \Delta f/2) \\ \int_{\omega - 2\pi \Delta f/2}^{\omega + 2\pi \Delta f/2} \frac{1}{2\pi \Delta f} d\omega', & -2\pi(f_0 - \Delta f/2) < \omega < & 2\pi(f_0 - \Delta f/2) \\ \int_{\omega - 2\pi \Delta f/2}^{2\pi f_0} \frac{1}{2\pi \Delta f} d\omega', & 2\pi(f_0 - \Delta f/2) < \omega < & 2\pi(f_0 + \Delta f/2) \\ 0, & 2\pi(f_0 + \Delta f/2) < \omega < & \infty \end{cases}$$

$$H(j\omega) = \begin{cases} 0, & -\infty < \omega < -2\pi(f_0 + \Delta f/2) \\ \frac{\omega + 2\pi\Delta f/2 + 2\pi f_0}{2\pi\Delta f}, & -2\pi(f_0 + \Delta f/2) < \omega < -2\pi(f_0 - \Delta f/2) \\ 1, & -2\pi(f_0 - \Delta f/2) < \omega < 2\pi(f_0 - \Delta f/2) \\ \frac{2\pi f_0 + 2\pi\Delta f/2 - \omega}{2\pi\Delta f}, & 2\pi(f_0 - \Delta f/2) < \omega < 2\pi(f_0 + \Delta f/2) \\ 0, & 2\pi(f_0 + \Delta f/2) < \omega < \infty \end{cases}$$



C. Find an expression for the impulse response h(t) of the non-ideal channel.

# **Solution:**

$$h(t) = 2\pi \mathscr{F}^{-1} \{ H_0(j\omega) \} \mathscr{F}^{-1} \{ H_\Delta(j\omega) \}$$

$$h(t) = 2\pi h_0(t) h_\Delta(t)$$

$$h(t) = 2\pi \cdot 2f_0 \operatorname{sinc}(2\pi f_0 t) \cdot \frac{1}{2\pi \Delta f} \Delta f \operatorname{sinc}(\pi \Delta f t)$$

$$h(t) = 2f_0 \operatorname{sinc}(2\pi f_0 t) \cdot \operatorname{sinc}(\pi \Delta f t)$$

D. Plot h(t) and  $h_0(t)$  on the same axes when  $f_0 = 10$  kHz and  $\Delta f = 2$  kHz and sketch the associated  $H(j\omega)$ . Repeat the plot for the same values when  $\Delta f = 5$  kHz. Compare the plots. For what values of  $\Delta f$  is the effect of the non-ideal transition band noticeable? Is the effect what you would expect? Explain.

# Solution:

When  $\Delta f = 2 \ kHz$ , the effect is noticeable around  $2/f_0$ .







As expected, a more gradual transition in the frequency domain reduces the amount of oscillations, or "ringing" in the time domain.

**Problem 3** (4 points) The system shown below represents a basic communication system where two messages  $x_1(t)$  and  $x_2(t)$  share a common communication channel. Signals  $x_1(t)$  and  $x_2(t)$  are bandlimited to  $f_B$  and have a frequency content as shown below. The receiver has an ideal low-pass filter  $H(j\omega)$  with a cutoff frequency of  $f_B$  as shown below.





A. What would happen if  $\omega_1 = \omega_2 = 0$ ? Find y(t) in terms of  $x_1(t)$  and/or  $x_2(t)$ , and show its frequency content.

### Solution:

If  $\omega_1 = \omega_2 = 0$ , the output of Transmitter 1 is

$$x_1(t)\cos(\omega_1 t) = x_1(t)\cos(0t) = x_1(t)$$

and the output of Transmitter 2 is

$$x_2(t)\cos(\omega_2 t) = x_2(t)\cos(0t) = x_2(t)$$

Therefore,

$$m(t) = x_1(t) + x_2(t)$$

Multiplying by  $\cos(\omega_1(t))$ ,

$$d(t) = m(t)\cos(\omega_1(t)) = m(t)\cos(0t) = m(t) = x_1(t) + x_2(t)$$

Note that the filter produced by  $H(j\omega)$  removes all frequencies above  $2\pi f_b$  and below  $-2\pi f_b$ ; however, neither  $x_1(t)$  nor  $x_2(t)$  have any frequency content above  $2\pi f_b$  or below  $-2\pi f_b$ . Therefore, the low-pass filter does not have any effect on d(t), and

$$y(t) = d(t) = x_1(t) + x_2(t)$$

Therefore, the frequency content is merely the sum of the frequency content  $x_1(t)$  and the frequency content of  $x_2(t)$ ;  $Y(j\omega)$  is shown below.

$$Y(j\omega) = X_1(j\omega) + X_2(j\omega)$$



B. Find constraints on  $\omega_1$  and  $\omega_2$  such that there is no frequency interference (aliasing). Show the frequency content of m(t) and d(t) under these constraints. Note: There may be multiple solutions; just find one that works.

## Solution:

A number of frequency constraints on  $\omega_1$  and  $\omega_2$  are possible - in particular, the output  $M(j\omega)$  will consist of bandlimited peaks of width  $4\pi f_b$  at frequencies  $-\omega_1$ ,  $\omega_1$ ,  $-\omega_2$ , and  $\omega_2$ . Algebraically,

$$m(t) = x_1(t)\cos(\omega_1 t) + x_2(t)\cos(\omega_2 t)$$

$$M(j\omega) = \frac{1}{2\pi} \left( \mathscr{F}\{x_1(t)\} * \mathscr{F}\{\cos(\omega_1 t)\}\right) + \frac{1}{2\pi} \left( \mathscr{F}\{x_2(t)\} * \mathscr{F}\{\cos(\omega_2 t)\}\right)$$

$$M(j\omega) = \frac{1}{2\pi} \left( X_1(j\omega) * \left[ \pi \delta(\omega - \omega_1) + \pi \delta(\omega + \omega_1) \right] \right)$$

$$+ \frac{1}{2\pi} \left( X_2(j\omega) * \left[ \pi \delta(\omega - \omega_2) + \pi \delta(\omega + \omega_2) \right] \right)$$

We could choose  $\omega_1 = 4\pi f_b$  and  $\omega_2 = 8\pi f_b$ , which would avoid aliasing in  $M(j\omega)$ , as shown below.



This choice of  $\omega_1$  and  $\omega_2$  also avoids aliasing in  $\mathscr{F}\{d(t)\}=D(j\omega)$ , as shown below: the frequency content of d(t) consists of the frequency content of m(t) shifted by  $\omega_1$  and  $-\omega_1$ .  $D(j\omega)$  for  $\omega_1=4\pi f_b$  and  $\omega_2=8\pi f_b$  is shown below:



Indeed, any  $\omega_1$  and  $\omega_2$  will generate peaks of  $X_1(j\omega)$  at  $\omega = 0, 2\omega_1, 0$ , and  $-2\omega_1$ , as well as peaks of  $X_2(j\omega)$  at  $\omega = \omega_1 - \omega_2, \omega_1 + \omega_2, -\omega_1 + \omega_2$ , and  $-\omega_1 - \omega_2$ . Peaks must be separated by at least  $4\pi f_b$  (the width of a single bandlimited signal peak). Therefore, any  $\omega_1$  and  $\omega_2$  that generate  $X_1(j\omega)$  and  $X_2(j\omega)$  as given previously that either overlap completely constructively or do not overlap will suffice. For example, in the  $D(j\omega)$  shown above, two  $X_1(j\omega)$  peaks combine at the origin, but no overlap is present between  $X_1(j\omega)$  and  $X_2(j\omega)$  peaks and no partial overlap is present. Either of these situations would constitute aliasing. To find the constraints on aliasing, we can enforce these constraints computationally and search a space of  $\omega_1$  and  $\omega_2$ ; the resulting regions of aliasing and no aliasing are shown below.



A full set of constraints for  $\omega_1$  and  $\omega_2$  is provided by:

$$|\omega_1 - \omega_2| \ge 4\pi f_b$$

$$|4\omega_1 - \omega_2| \ge 6\pi f_b$$

$$(\omega_1 = 0 \text{ or } \omega_1 \ge 4\pi f_b)$$

$$(\omega_2 = 0 \text{ or } \omega_2 \ge 4\pi f_b)$$

One possible simple frequency constraint on  $\omega_1$  and  $\omega_2$  is  $\omega_1 = 0$  and  $\omega_2 \ge 4\pi f_b$ ; in this case, the output of Transmitter 1 will be  $x_1(t)$  (since  $x_1(t) \cdot \cos(0t) = x_1(t)$ ), and the frequency content of Transmitter 2 will be located at two peaks that do not intersect those of the output of Transmitter 1. Then, to find the frequency content of m(t), we observe that

$$m(t) = x_1(t) + x_2(t)\cos(\omega_2 t)$$

$$M(j\omega) = \mathcal{F}\{x_1(t)\} + \mathcal{F}\{x_2(t)\cos(\omega_2 t)\}$$

$$M(j\omega) = X_1(j\omega) + \frac{1}{2\pi} \left(X_2(j\omega) * (\pi\delta(\omega + \omega_2) + \pi\delta(\omega - \omega_2))\right)$$

A graphical representation of  $M(j\omega)$  is shown below. Note that when  $\omega_1 = 0$ , the height of the "peak" at  $\omega_1 = 0$  is 1; otherwise, its height is 1/2.



Since  $\cos(\omega_1 t) = 1$ ,  $d(t) = m(t)\cos(\omega_1 t) = m(t)\cos(0t) = m(t)$ , so the frequency content of d(t) is identical to the frequency content of m(t).

C. Show the frequency content and find an algebraic expression for y(t) in terms of  $x_1(t)$  and/or  $x_2(t)$  assuming the constraints of part B.

### **Solution:**

If  $H(j\omega)$  is the ideal low-pass filter given, it will remove all frequencies above  $2\pi f_b$  and all frequencies below  $-2\pi f_b$ . Therefore, the two peaks of  $X_2(j\omega)$  in d(t) will be eliminated. If  $\omega_1 = 0$ ,  $x_1(t)$  will simply pass through and the resulting  $Y(j\omega)$  will simply be  $X_1(j\omega)$ , and therefore,  $y(t) = x_1(t)$ . However, if  $x_1(t)$  has been modulated with any nonzero frequency  $\omega_1$ , the filter will cut the high frequency components of the demodulated  $x_1(t)$  such that  $Y(j\omega) = \frac{1}{2}X_1(j\omega)$  and  $y(t) = \frac{1}{2}x_1(t)$ .

