Lab#4 is extended for another week for

- i) Midterm exams
- ii) Synchronizing the labs and lectures

Lab#4 becomes a 3-week lab and its due date is March 13, 2019.

All other remaining labs and due dates are pushed back for one week accordingly.

Make-up Class

 $\bigg)$

For university closure on Feb. 12, 2019 Within {Feb. 26, 27, Mar. 6, 7, 8}, the only availability is:

Date

Thursday, March 7, 2019

Time

9:00-12:00

Location

VIC608

Today


```
Real World Entity

Conceptual Level | Entity-Relationship Model (E/R)

| Logical Level | Relational Model

| Physical Level | SQL

Computable Entity
```

Relational

Edgar Frank "Ted" Codd, IBM, 1969, 1970

Information Retrieval

A Relational Model of Data for Large Shared Data Banks

E. F. Codd IBM Research Laboratory, San Jose, California

Given a set, defining operations on elements of the set!

Given $Z=\{integers\}=\{..., -2, -1, 0, 1, 2, ...\}$

Operators & Operands:

Unary: -(2), 2!

Binary: 2+3, 2*3, 2^3

Closure:

Result is also an element of the set

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Query in Natural Language -> Query in Math Formula

Who made 'Pulp Fiction'?

```
π (σ (Movie × MovieDirector × Director))

Director.FirstName
Director.LastName

Movie.Id=MovieDirector.Movield
Director.Id=MovieDirector.DirectorId
```

Who acted in 'Pulp Fiction'?

```
π (Movie × Starln × Director))

Actor.FirstName
Actor.LastName

Movie.Title='PulpFiction' AND
Movie.Id=Starln.Movield AND
Actor.Id=Starln.ActorId
```

3

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Unary Operation	Binary Operation (Set Theory)
$\pi(R)$: Project	R1∪ R2: Union
$\sigma(R)$: Select	R1 ∩ R2: Intersection
ho(R) : Rename	R1 \ R2 : Set Difference
	R1 × R2: Cartesian Product

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Vertical

Filtering

Algebra \times Project (π)

 π , pi, is used to select a subset of <u>attributes</u> (columns) from a relation

$$A = \pi_{\langle attribute \ list \rangle}(R)$$

R is a relation

<attribute list> subset of attributes of R

A is a <u>relation</u> including all tuples in R with only attributes in list

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

What are directors' name?

$$A = \pi_{FirstName, LastName}(Director)$$

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

What are directors' name?

$$A = \pi_{FirstName, LastName}(Director)$$

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

How many movies each director made?

$$A = \pi_{FirstName, LastName, MovieCount}(Director)$$

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

How many movies each director made?

$$A = \pi_{FirstName, LastName, MovieCount}(Director)$$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

 σ , sigma, is used to select a subset of <u>tuples</u> from a relation based on a <u>condition</u> (θ) over relation's attributes.

$$A = \sigma_{\theta}(R)$$

R is a relation

 θ is a Boolean expression on the attributes of R A is a <u>relation</u> including tuples that make θ true

Horizontal Filtering

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director was born in US?

$$A = \sigma_{PlaceOfBirth='USA'}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director was born in US?

$$A = \sigma_{PlaceOfBirth='USA'}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director make more than 20 movies?

$$A = \sigma_{MovieCount > 20}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director make more than 20 movies?

$$A = \sigma_{MovieCount > 20}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director has same first and last names?

$$A = \sigma_{FirstName = LastName}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which director has same first and last names?

$$A = \sigma_{FirstName = LastName}$$
 (Director)
= \emptyset

egican be made up of number of Boolean clauses

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{PlaceOfBirth='USA'}$$
 AND MovieCount > 20 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which American director made more than 20 movies or is not American?

$$A1 = \sigma_{PlaceOfBirth='USA'} = \sigma_{PlaceOfBirt$$

$$A2 = \sigma_{PlaceOfBirth='USA' AND (MovieCount > 20 OR PlaceOfBirth<>'USA')}$$
 (Director)

A3 =
$$\sigma_{\text{(PlaceOfBirth='USA' AND MovieCount > 20) OR (PlaceOfBirth<>'USA')}}$$
(Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which American director made more than 20 movies or is not American?

A2 =
$$\sigma_{PlaceOfBirth='USA'}$$
 AND (MovieCount > 20 OR PlaceOfBirth<>'USA') (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

Which American director made more than 20 movies or is not American?

A3 =
$$\sigma_{\text{(PlaceOfBirth='USA' AND MovieCount > 20) OR (PlaceOfBirth<>'USA')}}$$
 (Director)

Operation Precedence

$$() > \S > † > ‡$$

Commutative Law

$$A \S B = B \S A$$
 (we say A commutes with B under §)

Associative Law

$$A \S (B \S C) = (A \S B) \S C = A \S B \S C$$

Distributive Law

$$A \S (B + C) = (A \S B) + (A \S C)$$

```
Operation Precedence for Logical Operations
() > NOT > AND = OR
```

Commutative Law

```
A AND B = B AND A (we say A commutes with B under AND)
A OR B = B OR A (we say A commutes with B under OR)
```

Associative Law

```
A AND (B AND C) = (A AND B) AND C = A AND B AND C
A OR (B OR C) = (A OR B) OR C = A OR B OR C
```

Distributive Law

```
A AND (B OR C) = (A AND B) OR (A AND C)

A OR (B AND C) = (A OR B) AND (A OR C)
```

de Morgan's Theorem**

```
NOT (A AND B) = NOT(A) OR NOT(B)
NOT (A OR B) = NOT(A) AND NOT(B)
```

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
1	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{PlaceOfBirth='USA'}$$
 AND MovieCount > 20 (Director)

=
$$\sigma_{\text{MovieCount}} > 20 \text{ AND PlaceOfBirth='USA'}$$
 (Director)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

A1 =
$$\sigma_{PlaceOfBirth='USA'}$$
 (Director)
A = $\sigma_{MovieCount > 20}$ (A1)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{MovieCount > 20} (\sigma_{PlaceOfBirth='USA'} (Director))$$

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{\text{PlaceOfBirth='USA'}}(\sigma_{\text{MovieCount}}, \sigma_{\text{Director}})$$

$$= \sigma_{\text{PlaceOfBirth='USA'}}(\sigma_{\text{MovieCount}}, \sigma_{\text{Director}})$$

$$= \sigma_{\text{MovieCount}}, \sigma_{\text{ND PlaceOfBirth='USA'}}(\sigma_{\text{PlaceOfBirth='USA'}}(\sigma_{\text{PlaceOfBirth='USA'}})$$

$$= \sigma_{\text{MovieCount}}, \sigma_{\text{PlaceOfBirth='USA'}}(\sigma_{\text{PlaceOfBirth='USA'}}(\sigma_{\text{Director}}))$$

$$\sigma_{\theta}(\sigma_{\theta'}(R))$$

$$=$$

$$\sigma_{\theta \text{ AND } \theta'}(R)$$

$$=$$

$$\sigma_{\theta' \text{AND } \theta}(R)$$

$$=$$

$$\sigma_{\theta'}(\sigma_{\theta}(R))$$

Corollary:
$$\sigma_{\theta}(\sigma_{\theta'}(\sigma_{\theta''}(\sigma_{\theta'''}(R)) = \sigma_{\theta \text{ AND } \theta' \text{AND } \theta''}(R))$$

Algebra × Selection (σ) × Project (π)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

37

Algebra × Selection (σ) × Project (π)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A1 = \sigma_{MovieCount > 20}$$
 (Director)

Algebra \times Selection (σ) \times Project (π)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	7	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

A1 =
$$\sigma_{\text{MovieCount} > 20}$$
 (Director)

A = $\pi_{\text{FirstName, LastName}}$ (A1)

= $\pi_{\text{FirstName, LastName}}$ ($\sigma_{\text{MovieCount} > 20}$ (Director))

Algebra × Selection (σ) × Project (π) 40

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \sigma_{\text{MovieCount}} > 20 (\pi_{\text{FirstName, LastName}} (\text{Director}))$$

41

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra \times Rename (ρ)

 ρ , rho, is used to rename a relation or its attributes or both

$$A = \rho_{\langle R'(a'/a, b'/b, ...)\rangle}(R)$$

R is a relation

R' is the new name for R(a, b, ...)

a' is the new name for attribute a of R

b' is the new name for attribute b of R

. . .

43

Algebra \times Rename (ρ)

<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount
7	Stanley	Kubrick	Jul. 26, 1928	USA	1	13
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47
3	Clint	Eastwood	May 31, 1930	USA	803	35

$$A = \pi_{\text{FirstName, Name}} \left(\rho_{\text{ActiveDirector(Name/LastName)}} \left(\sigma_{\text{MovieCount}} > 20 (\text{Director}) \right) \right)$$

