

WHAT IS CLAIMED IS:

1 1. A method of recovering data from a data signal comprising:
2 receiving a clock signal having a first clock frequency, and alternating between a
3 first level and a second level;

4 receiving the data signal having a first data rate, the first data rate being
5 substantially equal to the first clock frequency;
6 providing a first signal by storing the data signal when the clock signal alternates
7 from the first level to the second level;

8 providing a second signal by passing the first signal when the clock signal is at
9 the first level, and storing the first signal when the clock signal is at the second level;

10 providing a third signal by delaying the data signal an amount of time;

11 providing an error signal by combining the first signal and the third signal; and
12 providing a reference signal by combining the first signal and the second signal.

1 2. The method of claim 1 further comprising:

2 applying the error signal and the reference signal to a loop filter to generate a loop
3 filter output.

1 3. The method of claim 1 wherein first signal is provided by a flip-flop, and

2 the second signal is provided by a latch.

1 4. The method of claim 3 wherein the providing an error signal and

2 providing a reference signal are done by exclusive-OR gates.

1 5. The method of claim 3 wherein the delay is approximately equal to a

2 clock-to-Q delay of the flip-flop.

1 6. The method of claim 5 wherein the flip-flop and the latch have inductors

2 as loads.

1 7. A phase detector for recovering data from a data signal comprising:

2 a first storage device configured to receive and store the data signal and to

3 generate a first signal;

4 a second storage device configured to receive and store the first signal and to
5 generate a second signal;

6 a delay block configured to receive and delay the data signal and to generate a
7 third signal;

8 a first logic circuit configured to combine the first and second signals; and
9 a second logic circuit configured to combine the first and third signals.

1 8. The phase detector of claim 7 wherein the first storage device is a flip-flop
2 and the second storage device is a latch.

1 9. The phase detector of claim 8 wherein the flip-flop and the latch receive a
2 clock signal, the clock signal having first edges from a first level to a second level and second
3 edges from the second level to the first level.

1 10. The phase detector of claim 9 wherein the flip-flop stores the received data
2 signal on the first edges of the clock and the latch latches the first signal when the clock is at the
3 second level.

1 11. The phase detector of claim 10 wherein the first edges are falling edges
2 and the second edges are rising edges.

1 12. The phase detector of claim 8 wherein a delay through the delay block is
2 approximately equal to a clock-to-Q delay of the flip-flop.

1 13. A phase detector for recovering data from a received data signal
2 comprising:

3 a flip-flop having a data input coupled to a data input port, and a clock input
4 coupled to a clock port;

5 a latch having a data input coupled an output of the first flip-flop, and a clock
6 input coupled to the clock port;

7 a delay element having an input coupled to the data input port;

8 a first logic circuit having a first input coupled to the output of the flip-flop and a
9 second input coupled to an output of the latch; and

10 a second logic circuit having a first input coupled to the output of the first flip-
11 flop and a second input coupled to an output of the delay element.

1 14. The phase detector of claim 13 wherein the first data input port is
2 configured to receive a differential signal.

1 15. The phase detector of claim 14 wherein the first clock port is configured to
2 receive a differential signal.

1 16. The phase detector of claim 15 wherein the first logic circuit and the
2 second logic circuit are exclusive-OR gates.

1 17. The phase detector of claim 15 wherein the first logic circuit and the
2 second logic circuit perform an exclusive-OR function.

1 18. The phase detector of claim 13 wherein the first logic circuit provides a
2 reference signal, and the second logic circuit provides an error signal.

1 19. An optical receiver comprising the phase detector of claim 13.

1 20. An optical transceiver comprising:
2 an optical transmitter; and
3 the optical receiver of claim 19 coupled to the optical transmitter.

1 21. A system for receiving and transmitting optical signals comprising:
2 a light emitting diode, configured to transmit optical signals;
3 a transmitter coupled to the light emitting diode;
4 a photo-diode, configured to receive optical signals;
5 a receive amplifier coupled to the photo-diode; and
6 the phase detector of claim 13 coupled to the receive amplifier.

1 22. The phase detector of claim 13 wherein the latch comprises:
2 first and second MOSFETs having their source terminals connected together, their
3 gate terminals coupled to receive a pair of logic signals, respectively, and their drain terminals
4 connected to a true output and a complementary output, respectively;

5 a first clocked MOSFET having a drain terminal coupled to the source terminals
6 of the first and second MOSFETs, a gate terminal coupled to receive a first clock signal, and a
7 source terminal;

8 third and fourth MOSFETs having their source terminals coupled together, their
9 gate terminals and drain terminals respectively cross-coupled to the true output and the
10 complementary output;

11 a second clocked MOSFET having a drain terminal coupled to the source
12 terminals of the third and fourth MOSFETs, a gate terminal coupled to receive a second clock
13 signal, and a source terminal;

14 a first load including a resistive element and an inductive element connected in
15 series and coupling the true output to a first power supply terminal;

16 a second load including a resistive element and an inductive element connected in
17 series and coupling the true output to the first power supply terminal; and

18 a current-source MOSFET coupled between the source terminals of the first and
19 second clocked MOSFETs and a second power supply terminal.

1 23. The phase detector of claim 22 wherein the flip-flop comprises:
2 a first clocked latch as set forth in claim 22; and
3 a second clocked latch as set forth in claim 22,
4 wherein, the gate terminals of the first and second MOSFETs in the second
5 clocked latch respectively couple to the true output and the complementary output of the first
6 clocked latch.