Lecture-13

Sushrut Tadwalkar; 55554711

October 7, 2023

0.1 Laws for the limes superior and limes inferior

Let x_n be a real-valued sequence:

(a)

$$\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n.$$

(b) For $L \in \mathbb{R}$, have $\lim_{n \to \infty} x_n = L$ iff $\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = L$.

We will prove these facts in a later class.

Proposition 1. Let (x_n) be a real-valued sequence; we define

$$\mu = \liminf_{n \to \infty} x_n$$

$$\nu = \limsup_{n \to \infty} x_n.$$

- (a) If $\lim_{n\to\infty} x_{n_k} = l$ for some sub-sequence (x_{n_k}) , then $\mu \leq l \leq \nu$.
- (b) There exists sub-sequences (x_{n_j}) and (x_{n_k}) of (x_n) along which $\mu = \lim_{j \to \infty} x_{n_j} = \text{and } \nu = \lim_{k \to \infty} x_{n_k} = \nu$.

Proof. Let
$$T_n = \{x_n, x_{n+1}, x_{n+2}, \dots\}$$
; define $i_n := \inf(T_n) = \inf_{k \ge n} x_k$ and $s_n := \sup(T_n) = \sup_{k \ge n} x_k$.

(a) For each $k \in \mathbb{N}$, $x_{n_k} \ge \inf\{x_j : j \ge n_k\} = i_{n_k}$. As $k \to \infty$, we have $x_{n_k} \to l$ and $i_{n_k} \to \mu \implies l \ge \mu$. Similarly, $x_{n_k} \le s_{n_k}$ for all k, so $l \le M$.