Motion Blending (Interpolation and Timewarping) Jehee Lee

Blending for Smooth Transition Case study: walk-to-sneak Transit smoothly over one cycle of locomotion "Walk" is faster than "sneak" One cycle of "sneak" is longer than one cycle of "walk"

Dynamic Time Warping

Find a chain from top-left to bottom-right

- Allowed to move horizontally, vertically, or diagonally

$$M_{i,j} = \min(M_{i-1,j-1}, M_{i-1,j}, M_{i,j-1}) + d_{i,j}$$

Distance between Poses

· Weighted differences between joint angles

$$d_{i,j} = \mathbf{w} \cdot \left(\mathbf{m}^A(t_i) \ominus \mathbf{m}^B(t_j) \right)$$

· The sum of distances between points

Should we consider velocities?

Spatial Alignment

- · The root segment needs special care
 - The position and orientation of motions must be aligned properly before blending

Spatial Alignment

- · The root segment needs special care
 - The position and orientation of motions must be aligned properly before blending

Spatial Alignment

- · The root segment needs special care
 - The position and orientation of motions sometimes should be represented and blended with respective to body local coordinate system

Spatial Alignment

- · The root segment needs special care
 - The position and orientation of motions sometimes should be represented and blended with respective to body local coordinate system

positions and orientations

Blending relative translations and rotations

Summary

- Motions may be blended
 - Over time, or
 - Over spatial domain
- Motions to be blended must have good correspondences
 - Time alignment
 - Spatial alignment