Mis rayadas con los generadores

Tenemos unos hermosos potenciales generadores de $SL(2,\mathbb{Z})$, que son :

$$x = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, y = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Si asumimos que x,y generan todas las $M \in SL(2,\mathbb{Z})$ con $||M||_{\infty} \leq 1$, ¿podemos demostrar que $\langle x,y \rangle = SL(2,\mathbb{Z})$?

Veamos que sí, y chachi pistachi. Sea

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in SL(2, \mathbb{Z}),$$

 $con ||A||_{\infty} = a_{11} > 1$

Lo primero para ahorrarnos quebraderos de cabeza es darnos cuenta de que, con las hipótesis anteriores,

$$|a_{11}| > |a_{ij}| \text{ para } ij \neq 11 \tag{1}$$

$$|a_{22}| \le |a_{12}| \circ |a_{22}| \le |a_{21}| \tag{2}$$

$$a_{11}a_{22} \ge 0 \iff a_{12}a_{21} \ge 0, \text{ para } a_{22} \ne 0$$
 (3)

Con esto, la vida es más fácil. Y con lo que dijo Yago de las traspuestas, pues todavía más.

Estudiamos A en función de a_{22} , del orden relativo de los $|a_{ij}|$ y de sus signos.

Sean
$$|a_{11}| = a$$
, $|a_{12}| = b$, $|a_{21}| = c$, $|a_{22}| = d$.

1. $a_{22} \neq 0$

1.1.
$$|a_{11}| > |a_{12}| \ge |a_{21}| \ge |a_{22}| \le a > b \ge c, d$$

Obs.

Como
$$a > b, |a-b| < a$$

Si $c \ge d, |c-d| = |d-c| \le |c| < a$
Si $d \ge c, |c-d| = |d-c| \le |d| < a$

i. $a_{11} > 2, a_{12} \ge 0, a_{21} \ge 0, a_{22} > 0$

$$AR = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ c-d & d \end{pmatrix} \qquad |a-b| < a$$

$$|c-d| < a$$

ii. $a_{11} > 2, a_{12} \ge 0, a_{21} \le 0, a_{22} < 0$

$$AR = \begin{pmatrix} a & b \\ -c & -d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ d-c & -d \end{pmatrix} \qquad |a-b| < a$$

$$|d-c| < a$$

iii. $a_{11} > 2, a_{12} \le 0, a_{21} \ge 0, a_{22} < 0$

$$AR = \begin{pmatrix} a & -b \\ c & -d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ c-d & -d \end{pmatrix} \qquad |a-b| < a$$

$$|c-d| < a$$

iv. $a_{11} > 2, a_{12} \le 0, a_{21} \le 0, a_{22} > 0$

$$AR = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a-b & b \\ d-c & d \end{pmatrix} \qquad |a-b| < a$$

$$|d-c| < a$$

En los cuatro casos, $||AR||_{\infty} < ||A||_{\infty}$

1.2.
$$|a_{11}| > |a_{21}| \ge |a_{12}|, |a_{22}| \equiv a > c \ge b, d$$

Obs.

Si $|a_{21}| \ge |a_{12}|$, $A^T = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}$ está en las hipótesis de **1a**.

Por tanto, $||A^T R||_{\infty} < ||A||_{\infty}$, y entonces, $||R^T A||_{\infty} = ||(A^T R)^T||_{\infty} = ||A^T R||_{\infty} < ||A||_{\infty}$.

- **2.** $a_{22} = 0$
 - **2.1.** $a_{12} \ge 0$

$$AR = \begin{pmatrix} a & b \\ \pm c & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} a - b & b \\ \pm c & 0 \end{pmatrix} \qquad |a - b| < a$$

2.2. $a_{12} \leq 0$

$$AR = \begin{pmatrix} a & b \\ \pm c & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a - b & b \\ \pm c & 0 \end{pmatrix} \qquad |a - b| < a$$

Además, $||R||_{\infty} = ||R^T||_{\infty} = ||R^{-1}||_{\infty} = 1$, así que podemos expresar A como el producto de 2 matrices de norma $< a_{11}$.

Y con esto y un bizcocho, hasta mañana a las 8 gracias a la magnífica inducción. Vale, no. ¿Y si $a_{11} < 0$? ¿Y si $\|A\|_{\infty} \neq |a_{11}|$? ¿Eh? ¿EH? ¿Qué patrañas me está contando? Mantenga usted la calma, señor. Ahora vamos.

Si $||A_2||_{\infty} = a_{22}$, entonces en A_2 es la inversa de alguna de las matrices A de arriba, y listo.

Si $||A_3||_{\infty} = a_{12}$, entonces A_3 es el producto de alguna de las matrices A por $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, y también está listo.

Y si $||A_4||_{\infty} = a_{21}$, entonces A_4 es el producto de $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ por alguna de las matrices A.

Por último, si $||A_{caca}||_{\infty} = |a_{ij}|$, con $a_{ij} < 0$... Pues mira, chico. Tanta exhaustividad acaba con mi paciencia. A_{caca} es el producto de alguna de las A_i por $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. Que aunque a mí me costó mucho, el ordenador me dijo en un plis plas que sí estaba generada por x e y.

Lo que hay que aguantar, ¿eh?

Como me siento generosa, vamos ver que las matrices de norma 1 realmente están generadas por x e y. Como somos así de originales, repetimos método: asumimos que $||A||_{\infty} = a_{11}$, y los casos $||A||_{\infty} = \pm a_{ij}$ nos vienen de regalo.

1.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

2.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = x$$

3.
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = y$$

4.
$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = x^{-1}$$

5.
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} = yx^{-1}$$

6.
$$A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = y^{-1}$$

7.
$$A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} = y^{-1}x$$

Por último, para poder usar el argumento de "Si $||A||_{\infty} = a_{ij}$, entonces A es el producto de bla, bla, bla...", hace falta ver que $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = yx^{-1}y \in \langle x,y \rangle$

Ahora tengo sueño. Pero me hace ilu terminar esto, así que vamos a demostrar las observaciones anti quebraderos de cabeza del principio. Hating LATEX learning curve.

(1) Si
$$a_{12} = a_{11}$$
 (el caso $a_{21} = a_{11}$ es idéntico)
$$1 = |A| = |a_{11}(a_{22} - a_{21})| \ge 2|a_{22} - a_{21}|, \text{ pero entonces } \frac{1}{2} \ge |a_{22} - a_{21}| \text{ y caca porque } a_{ij} \in \mathbb{Z}.$$
 Si $a_{22} = a_{11}$
$$1 = |A| = |a_{11}^2 - a_{12}a_{21}| \ge |a_{11}^2 - (a_{11} - 1)^2| = |2a_{11} - 1| > 1, \text{ caca.}$$

(2) Si
$$|a_{22}| > |a_{12}|, |a_{21}|$$
 y utilizando que por (1), $|a_{11}| > |a_{22}|,$ $1 = |A| = |a_{11}a_{22} - a_{12}a_{21}| > |a_{22}(a_{11} - a_{22})| \ge |1(2 - 1)| > 1$, caca.

(3) Si
$$a_{11}a_{22} > 0$$
, $(\Longrightarrow a_{11}a_{22} > 1$, porque $a_{11} > 1, a_{22} \neq 0$) $1 = |A| = a_{11}a_{22} - a_{12}a_{21} > 1 - a_{12}a_{21} \implies a_{12}a_{21} > 0$ Si $a_{11}a_{22} < 0$, $(\Longrightarrow a_{11}a_{22} < -1$, porque $a_{11} > 1, a_{22} \neq 0$) $1 = |A| = a_{11}a_{22} - a_{12}a_{21} < -1 - a_{12}a_{21} \implies a_{12}a_{21} < -2 < 0$

Jo. Seguro que hay algo mal, pero es que estoy muerta :c En fin... A dormir.