(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 March 2002 (21.03.2002)

PCT

(10) International Publication Number WO 02/22660 A2

(51) International Patent Classification7:

101

(21) International Application Number: PCT/US01/26015

(22) International Filing Date:

10 September 2001 (10.09.2001)

(25) Filing Language:

English

C07K 14/00

(26) Publication Language:

English

(30) Priority Data:

09/659,671

11 September 2000 (11.09.2000) U

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Filed on 09/659,671 (CIP) 11 September 2000 (11.09.2000)

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvalle, CA 94086 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way, #14, San Jose, CA 95117 (US). ZHOU, Ping [US/US]; 7595 Newcastle Drive, Cupertino, CA 95014 (US). ASUNDI, Vinod [US/US]; 709 Foster City Boulevard, Foster City, CA 94404 (US). ZHANG, Jie [CN/US]; 4930 Poplar Terrace, Campbell, CA 95008 (US). ZHAO, Qing, A. [CN/US]; 1556 Kooser Road, San Jose, CA 95118 (US). REN, Feiyan [US/US]; 7703 Oak Meadow Court, Cupertino, CA 95014 (US). XUE, Aidong, J. [CN/US]; 1621 S. Mary Avenue, Sunnyvale, CA 94087 (US). YANG, Yonghong

[CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). WEHRMAN, Tom [US/US]; CCSR Mol Pharm 3210, 269 W. Campus Drive, Stanford, CA 94305 (US). DRMANAC, Radoje, T. [US/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US).

- (74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

02/22660 A2

(54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, circulating soluble factors, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

WO 02/22660 PCT/US01/26015

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-444. The polypeptides sequences are designated SEQ ID NO: 445-888. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is unknown or any of the four bases.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO: 1-444 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO: 1-444. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO: 1-444 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-444. The sequence information can be a segment of any one of SEQ ID NO: 1-444 that uniquely identifies or represents the sequence information of SEQ ID NO: 1-444.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information are provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization

probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-444 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-444 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO: 1-444; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO: 1-444; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1-444. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO: 1-444; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in SEQ ID NO: 445-888; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO: 1-444; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

WO 02/22660 PCT/US01/26015

The invention also provides compositions comprising a polypeptide of the invention.

Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provide methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can

effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2); for which they have a signature region (as set forth in Table 3); or for which they have homology to a gene family (as set forth in Table 4). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady

and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30

WO 02/22660 PCT/US01/26015

nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NO: 1-444.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-444. The sequence information can be a segment of any one of SEQ ID NO: 1-444 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO: 1-444. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3×25) . The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 500 amino acids, more preferably less than 200 amino acids more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include an initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

WO 02/22660 PCT/US01/26015

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e.g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations

PCT/US01/26015

can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, e.g., polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use

in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2): 134 -143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 85% sequence identity, more preferably at least 90% sequence identity, more preferably at least 95% identity, more preferably at least 98% identity, and most preferably at least 99% identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, more preferably at least about 80% sequence identity, more preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% identity, more preferably at least about 98% sequence identity, and most preferably at least about 99% sequence identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J.

(1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO: 1-444; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO: 445-888; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO: 445-888. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO: 1-444; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing as SEQ ID NO: 445-888; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 445-888. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding,

extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO: 1-444 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO: 1-444 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO: 1-444 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, 81%, 82%, 83%, 84%, more typically at least about 85%, 86%, 87%, 88%, 89%, more typically at least about 90%, 91%, 92%, 93%, 94%, and even more typically at least about 95%, 96%, 97%, 98%, 99%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO: 1-444, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that

are selective for (i.e. specifically hybridize to) any one of the polynucleotides of the invention

PCT/US01/26015

are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided in SEQ ID NO: 1-444, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO: 1-444 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO: 1-444, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic

acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., *DNA* 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, *Nucleic Acids Res.* 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression

of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO: 1-444, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-444 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-444 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are

known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or

more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE NUCLEIC ACIDS

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1-444, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID

PCT/US01/26015

NO: 445-888 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO: 1-444 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (*i.e.*, also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO: 1-444), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of an mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the

antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15: 6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res* 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue *et al.* (1987) *FEBS Lett* 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be

designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO: 1-444). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an mRNA of SEQ ID NO: 1-444 (see, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742). Alternatively, polynucleotides of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N. Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above; Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may

combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-1124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

4.5 HOSTS

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous

recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in coamplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3

cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice

PCT/US01/26015

sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO: 445-888 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO: 1-444 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO: 1-444 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO: 445-888 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO: 445-888 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, 86%, 87%, 88%, 89%, at least about 90%, 91%, 92%, 93%, 94%, typically at least about 95%, 96%, 97%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO: 445-888.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that

retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO: 445-888.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological

methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (*i.e.*, from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST (Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference), the GeneAtlas software (Molecular Simulations Inc. (MSI), San Diego, CA) (Sanchez and Sali (1998) Proc. Natl. Acad. Sci., 95, 13597-13602; Kitson DH et al, (2000) "Remote homology detection using structural modeling - an evaluation" Submitted; Fischer and Eisenberg (1996) Protein Sci. 5, 947-955), Neural Network Signal V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark), and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual,

Altschul, S., et al., NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprise one or more domains fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, *e,g.*, cancer as well as modulating (*e.g.*, promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to

avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

Mutations in the polynucleotides of the invention may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be

PCT/US01/26015

inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both

upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.9 TRANSGENIC ANIMALS

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as

an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutic compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin

9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells *in vivo* or *ex vivo* is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998))

or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds*. Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological-activity in-support-of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

4.10.6 TISSUE GROWTH ACTIVITY

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery-for attachment-or-repair-of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies

resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g.,

HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be

WO 02/22660 PCT/US01/26015

demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis,

systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β_2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry

PCT/US01/26015

13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils,

T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostasis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically

effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These in vitro models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available,

PCT/US01/26015

e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent

molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

4.10.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science 282*:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see

Al-Obeidi et al., Mol. Biotechnol, 9(3):205-23 (1998); Hruby et al., Curr Opin Chem Biol, 1(1):114-19 (1997); Dorner et al., Bioorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

4.10.15 ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia,

PCT/US01/26015

acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
- (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
- (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;
- (v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;

- (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- (vii) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
- (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture;
- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or *in vivo*, *e.g.*, choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome),

poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound

would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about $0.1\mu g/kg$ to $10\ mg/kg$ of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents,

fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered

alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co- administered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue; often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within

the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition,

WO 02/22660 PCT/US01/26015

stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a co-solvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide

WO 02/22660 PCT/US01/26015

antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable

form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on

total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- α and TGF- β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, *e.g.*, amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (*e.g.*, bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

4.12.3 EFFECTIVE DOSAGE

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount

WO 02/22660 PCT/US01/26015

effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD_{50} (the dose lethal to 50% of the population) and the ED_{50} (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about 0.01 μ g/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 μ g/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

4.13 ANTIBODIES

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , F_{ab} , and $F_{(ab')2}$ fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG₁, IgG₂, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence

of the full length protein, such as the amino acid sequences shown in SEQ ID NO: 445-888, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

4.13.1 POLYCLONAL ANTIBODIES

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to

a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

4.13.2 MONOCLONAL ANTIBODIES

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro. The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are

desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal. The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for

example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

4.13.3 HUMANIZED ANTIBODIES

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigenbinding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable

domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

4.13.4 HUMAN ANTIBODIES

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al.(Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host

have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

4.13.5 Fab FRAGMENTS AND SINGLE CHAIN ANTIBODIES

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab')2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab')2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_{v} fragments.

4.13.6 BISPECIFIC ANTIBODIES

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., <u>J. Immunol.</u> 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology

described by Hollinger et al., <u>Proc. Natl. Acad. Sci. USA</u> 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain F_V (F_V) dimers has also been reported. See, Gruber et al., <u>J. Immunol.</u> 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

4.13.7 HETEROCONJUGATE ANTIBODIES

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

4.13.8 EFFECTOR FUNCTION ENGINEERING

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine

residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

PCT/US01/26015

4.13.9 IMMUNOCONJUGATES

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi. ¹³¹In. ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO: 1-444 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO: 1-444 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer

readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

PCT/US01/26015

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments,

PCT/US01/26015

such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

4.15 TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA.

Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers

that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic

PCT/US01/26015

or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

4.18 SCREENING ASSAYS

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO: 1-444, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
 - (b) determining whether the agent binds to said protein or said nucleic acid.

In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting

the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO: 1-444. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from any of the nucleotide sequences SEQ ID NO: 1-444 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides

additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata et al., 1985; Dahlen et al., 1987; Morrissey & Collins, (1989) Mol. Cell

Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller *et al.*, 1988; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen et al., (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/µl) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. The single-stranded DNA solution is then dispensed into CovaLink NH strips (75 μ l/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 µl added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness *et al.* (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples

may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, *CviJI*, described by Fitzgerald *et al.* (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease *CviJI* normally cleaves the recognition sequence PuGCPy between the G and C-to-leave-blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (*CviJI***), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald *et al.* (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a *CviJI*** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that *CviJI*** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 μ g instead of 2-5 μ g); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

PCT/US01/26015

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5. EXAMPLES

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences

5.2 EXAMPLE 2

Assemblage of Novel Nucleic Acids

The nucleic acids of the present invention, designated as SEQ ID NO: 1-444 were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST, gb pri, and UniGene, and exons from public domain genomic sequences predicated by GenScan) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Further, inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

Using PHRAP (Univ. of Washington) or CAP4 (Paracel), full-length gene sequences and their corresponding protein sequences were generated from the assemblage. Any frame shifts and incorrect stop codons were corrected by hand editing. During editing, the sequence was checked using FASTXY algorithm against Genbank (i.e., dbEST, gb pri, UniGene, and Genpept). Other computer programs which may have been used in the editing process were phredPhrap and Consed (University of Washington) and ed-ready, ed-ext and gc-zip-2 (Hyseq, Inc.). The full-length nucleotide sequences are shown in the Sequence Listing as SEQ ID NO: 1-444. The corresponding polypeptide sequences are SEQ ID NO: 445-888.

Table 1 shows the various tissue sources of SEQ ID NO: 1-444.

The nearest neighbor results for polypeptides encoded by SEQ ID NO: 1-444 (i.e. SEQ ID NO: 445-888) were obtained by a BLASTP (version 2.0al 19MP-WashU) search against Genpept release 124 using BLAST algorithm. The nearest neighbor result showed the closest homologue with functional annotation for SEQ ID NO: 1-444 from Genpept. The translated amino acid sequences for which the nucleic acid sequence encodes are shown in the Sequence Listing. The homologues with identifiable functions for SEQ ID NO: 1-444 are shown in Table 2 below.

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6 pp. 219-235 (1999) herein incorporated by reference), polypeptides encoded by SEQ ID NO: 1-444 (i.e. SEQ ID NO: 445-888) were examined to determine whether they had identifiable signature regions. Table 3 shows the signature region found in the indicated polypeptide sequences, the description of the signature, the eMatrix p-value(s) and the position(s) of the signature within the polypeptide sequence.

Using the pFam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) herein incorporated by reference) polypeptides encoded by SEQ ID NO: 1-444 (i.e. SEQ ID NO: 445-888) were examined for domains with homology to certain peptide domains. Table 4 shows the name of the domain found, the description, the p-value and the pFam score for the identified domain within the sequence.

The GeneAtlas™ software package (Molecular Simulations Inc. (MSI), San Diego, CA) was used to predict the three-dimensional structure models for the polypeptides encoded by SEQ ID NO: 1-444 (i.e. SEQ ID NO: 445-888). Models were generated by (1) PSI-BLAST which is a multiple alignment sequence profile-based searching developed by Altschul et al, (Nucl. Acids. Res. 25, 3389-3408 (1997)), (2) High Throughput Modeling (HTM) (Molecular Simulations Inc. (MSI) San Diego, CA,) which is an automated sequence and structure searching procedure (http://www.msi.com/), and (3) SeqFold™ which is a fold recognition method described by Fischer and Eisenberg (J. Mol. Biol. 209, 779-791 (1998)). This analysis was carried out, in part, by comparing the polypeptides of the invention with the known NMR (nuclear magnetic resonance) and x-ray crystal three-dimensional structures as templates. Table 5 shows, "PDB ID", the Protein DataBase (PDB) identifier given to template structure; "Chain ID", identifier of the subcomponent of the PDB template structure; "Compound Information", information of the PDB template structure and/or its subcomponents; "PDB Function Annotation" gives function of the PDB template as annotated by the PDB files (http://www.rcsb.org/PDB/); start and end amino acid position of the protein sequence aligned; PSI-BLAST score, the verify score, the SeqFold score, and the Potential(s) of Mean Force (PMF). The verify score is produced by GeneAtlas™

PCT/US01/26015

software (MSI), is based on Dr. Eisenberg's Profile-3D threading program developed in Dr. David Eisenberg's laboratory (US patent no. 5,436,850 and Luthy, Bowie, and Eisenberg, Nature, 356:83-85 (1992)) and a publication by R. Sanchez and A. Sali, Proc. Natl. Acad. Sci. USA, 95:13597-12502. The verify score produced by GeneAtlas normalizes the verify score for proteins with different lengths so that a unified cutoff can be used to select good models as follows:

Verify score (normalized) = (raw score - 1/2 high score)/(1/2 high score)

The PFM score, produced by GeneAtlas™ software (MSI), is a composite scoring function that depends in part on the compactness of the model, sequence identity in the alignment used to build the model, pairwise and surface mean force potentials (MFP). As given in table 8, a verify score between 0 to 1.0, with 1 being the best, represents a good model. Similarly, a PMF score between 0 to 1.0, with 1 being the best, represents a good model. A SeqFold™ score of more than 50 is considered significant. A good model may also be determined by one of skill in the art based all the information in Table 5 taken in totality.

The nucleotide sequence within the sequences that codes for signal peptide sequences and their cleavage sites can be determined from using Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et al, as reference, were obtained for the polypeptide sequences. Table 6 shows the position of the last amino acid of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide.

Table 7 correlates each of SEQ ID NO: 1-444 to a specific chromosomal location.

Table 8 is a correlation table of the novel polynucleotide sequences SEQ ID NO: 1-444, and their corresponding priority nucleotide sequences in the priority application USSN

09/659,671, herein incorporated by reference in its entirety.

TABLE 1

Tissue Origin	RNA Source	Library Name	SEQ ID NO:
adult brain	GIBCO	AB3001	4 6-8 12 23 33-34 47 50 55 57-60 62 89 102
adult brain	GIBCO	ADSOL	104-106 123 144 162 176-177 179 187 194
			248 260 270 279 292 294 297-298 307 322-
			323 326 333 336 341 351 450
adult brain	GIBCO	ABD003	6 10 12-15 17-18 26 31 34-35 38-40 42-44
auun brain	Gibeo	710000	46 48-50 53 56 59-60 64 66 70-72 80-81
		ļ	85-86 98 101 107 116-117 125 130 138-139
			142 144 147 151 160-161 164 173 175-177
-			179 184-185 187-188 194-195 198 201 215
			217-218 222 226 228 232 239-240 243-244
			247 252 256 258 260 264-265 267 274-275
}	ľ		284 288 290 293 298 306-308 314-315 318-
			320 325-326 333-334 337 341 343 345-346
			351-354 364-365 371 390-391 424-425 429
adult brain	Clontech	ABR001	5 36 43 76 108 128 182-183 212 239 242
addit orani	0.0		260 263 269 296 325 351 364 371-372 423
adult brain	Clontech	ABR006	2 9 11 13 18 23 35 38 42 46 50-51 53-54 60
Laur orani			63 66 85 91 107-108 116-117 120 122 128
		1	170 178 180 184 187-188 193-194 198 202
			215 232 243 245 257-258 260 266-267 271
			285 294 301 333-334 337 370 389 394-396
			400 405 412 423 428 434 436 453 458
adult brain	Clontech	ABR008	1 3 7 10-14 16-17 19-23 26-28 34-35 38-39
			41 43 46-48 51-54 56 60 62 64 66-68 75 82
			86-87 91 96-98 102 104-106 108 110-111
			114 116-118 122 125 127-130 134 138-139
			141-143 145-146 150-151 153 156 158 160
			162 167-170 173-175 177-180 182 185-186
			191-194 196-197 200-201 205-206 208-209
			211 213-215 219-220 226-227 231 238 241
			244 246-248 252 256 260 262-265 269 271
			273 278-280 282 284 290 292 296 298 301-
	}	-	302 306 309 311 315-317 322-323 325-327
			329-331 335-337 339 342-343 345-346 350-355 359-360 362 364 368 370 372 374
			376 381 383 385 387 390-395 400-401 405
			410 412 414 417 420-421 423-425 432 440
		ļ	410 412 414 417 420 421 423 432 440
		ADDALL	174 177 360
adult brain	Clontech	ABR011	334 341
adult brain	BioChain	ABR012	
adult brain	BioChain	ABR013	41-42 60 101 163 355 53 95 104-106 143 149 177 180 258
adult brain	Invitrogen	ABR014	42 70-72 79 95 112 138-140 163 195 275
adult brain	Invitrogen	ABR015	288 322-323 341 343 458
		ADDOLG	13 31 60 79 124 136 154 163 333 341 343
adult brain	Invitrogen	ABR016	364 370
		A 72/700 4	1 11-13 15 18 24-26 34 50 56 68 87 98 104-
adult brain	Invitrogen	ABT004	106 111 123-124 131-133 137 144 146 173
			189 194 206 224 247-248 260 262 264 269
			272 274 282 298 318 327 335 346 351 356-
			357 372 375 381 392 409-410 421
1. 1.	Ctrotocono	ADP001	2 11-14 24-25 40 42 47 50 52 57-58 69 76
cultured	Stratagene	ADPUUI	107 120 144 151 156 163 168 171 194 197
preadipocytes .			199 203-204 215 229 250-251 262 294 333
			338 341 415 450 469-473
	Claritant	ADR002	10-11 16 18 22-23 27-28 33-35 40 43-45 49
adrenal gland	Clontech	ADAVUZ	61 66 85 98 107-108 111 116-117 124 136
			143 145 160 167 173 175 184 187 201 217-
L			1 1.5 1.5 100 101 115 115 101 101 201 211

	ļ		218 229 249-251 258 262 269 271 273 277 280 287 289 298 301 308 322-323 337 352
			354 360 414 425 445-446 463
adult heart	GIBCO	AHR001	11-13 15 20-23 26-27 30 33-34 37-40 49 53
			56-58 62-65 67-68 76-77 81 86 88 93-94
i			101 104-108 112 114 116-117 119 121-125
1			128-130 142 144-145 148 150 154-156
	Ì		164-165 167 174-176 178-179 182 184
			186-187 189 195 198 200 202 210 213-219
			221 228-229 235 238 240 242-243 246-247
		1	252-253 260 262 264 266-267 269 275 278
			280-281 283 286-289 293-294 297 302-304
			308 311 313 315-316 318-320 322-324 328-331 333 336 340-341 343 347 355-356
]	359 380-382 386-388 413-414 436
adult kidney	GIBCO	AKD001	4-5 8-13 15-18 20-27 33-35 37 39 42 45-46
•		12200.	49 52-54 56-59 62 66-67 73 75 77 80-81 83
			85-86 88 91 97-98 100-108 112 117 119
	ļ.		122 124-125 127-129 134 138-142 145-146
	·	ļ	151 153 155 158 160 162 164-165 168 170
			174-176 178-181 186-189 196-199 202 209
			211-212 215-216 222 232 235 237-240 244
			246-248 250-252 257-258 260 262 264
			269-271 275 280 282-284 287-289 291-294
			297 303-312 314-317 322-323 325 327-329
			333 336-337 341 357 359 375 403 407-408
adult kidney	Invitrogen	AKT002	413 428 436 469-471 1 10-11 13 17-18 26-27 35 42 54 64 66 73
, , , , ,		ARTOOZ	77 82 87 91 94 96-97 113-114 118 135 146
	[148 160 173-174 182 187 196 198 200 218-
			219 221 239 243-244 249-251 257-258 260
			264 269-270 274-275 284-285 287-288 290
			302-303 308-309 312 322-324 330 332-333
		İ	335-337 344 346 369 402 404 417 425 428
adult lung	CIRCO	11.000	447 462
adult fung	GIBCO	ALG001	4 6 17-18 24-26 39 43-44 46 49 51 53 55
		ļ	57-58 76 84 90 95 98 107 111 126 150 155
_			157 164 173 176 184 187 195 210 248-249
•			252-253 261 264 275 278 281 287 306 309 312 314 322-323 333 338 340-341 352 358
	1		365 372 403 450
lymph node	Clontech	ALN001	17 19 26 81 85 149 166 218 228 260 264
			275-276 282 321 333 341 395-396 436
young liver	GIBCO	ALV001	10 12 14 16-18 20 22 33 40 46 48 56 73 82
		1	85 88 100 102 117 126 134 142-143 173
			175 182 197 209 220 237-239 243 246-247
			279 290 294 302 306 309 319-320 327 334
adult liver		<u> </u>	359
addit fiver	Invitrogen	ALV002	10 15 22 24-25 33 49 66 75 86 95 109 111
			130 138-139 148 151 156 187 189 222 237-
			238 246 249 274 282 286 290 298 301 333
adult liver	Clontech	ALV003	371 377 387 395 424-425 430
adult ovary	Invitrogen	AOV001	73 92 294 341
		110 1001	1 4 6-18 23 27-28 30-34 39 42-47 49-50 52- 59 61-62 64-68 75-77 79 81-82 85-88 90
			93-96 98 100-107 109-111 113-115 117
			121 123 125-129 134-136 140 142-145 148
			151 154 156 158 160-164 169-171 175-176
			178-179 181-184 187-188 194-196 200
			202-204 206 209-210 212 214-215 217-220
			222-224 227 229 233 235 238-240 242-244
	1	1	246-253 256 259-260 262 264-265 267 269

301-304 306-308 310-311 313-316 318-326 328-330 333-342 344 346 349 352-363 365-383 60-361 363 369 372 375 382-383 395-396 602-603 405-407 409 415 417-419				
Section				275 277-281 283-284 287-294 296-298
adult placenta Invitrogen APL001 17 33 157 228 232 264 placenta Invitrogen APL002 11-12 23 13 15 15 18 8 104-106 138-139				
adult placenta Invitrogen APL001 17:33 157 228 232 264 placenta Invitrogen APL002 11-12:23 31 35 51 53 88 104-106 138-139 adult spleen GIBCO ASP001 15:11 41 8-20 22-23 33-34 39-40 48-49 adult spleen GIBCO ASP001 15:11 14:18-20 22-23 33-34 39-40 48-49 56-59 62 65 87 91 59 98 104-106 108-109 113-115:124 128 142 145 149-150 158 162 163 173 195 198 202 210 224 227 232 250 251 253 264 275 277 281 285-286 299 321 333 399 adult testis GIBCO ATS001 810-111 31 72 84 3-44 49 54 57-59 62 77 109 134 138-139 143-144 148 156 163-164 174 178 182 187-188 200 202 206 216 221 232 243 258 290 292 294 297-298 304 308 309 324 333 336-337 339-341 346 425 472 473 adult bladder Invitrogen BLD001 112-425 44 57-58 65 141 150-151 163 187 195 222 224 244-245 247 260 263 277 282 334 356 369 375 390-391 416 425 472-473 bone marrow Clontech BMD001 91 113-14 17 19 22-22 27-28 30 32-35 38 42 46 48-49 51 56-58 62-65 68 74-76 78 88 8-8 58 87 89 91 39 59 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 212 18-222 224-236 239 249 294 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 bone marrow Clontech BMD002 15 7 7 10-11 14 16 19-20 23-25 28 30 31 35 40 42-43 46 48-49 51 54 56 62 64 68 74 77 87 89 91 99-59 89-99 104-106 108 110 114-119 111 171 171-122 123 183 183 193 141 143 145-146 149-151 156-158 163 165 169-17 174 178-179 181 195 199 200-320 200 200 200 200 200 200 200 200 200				
APL001				
Aptival				
Diacenta Invitrogen APL002 11-12 23 31 35 51 53 88 104-106 138-139				421 425-427 435-436 450 456 467 469-473
Diagonal	adult placenta	Invitrogen	APL001	17 33 157 228 232 264
Single S				11-12 23 31 35 51 53 88 104-106 138-139
adult spleen GIBCO ASP001 1 5 11 14 18-20 22-23 33-34 39-40 48-49 56-59 62 65 87 91 95 98 104-106 108-109 113-115 124 128 142 145 149-150 158 162 163 173 195 198 202 210 224 227 232 250-251 253 264 275 277 281 285-286 299 321 333 399 adult testis GIBCO ATS001 ATS001 ATS001 BI 10-11 13 17 28 43-44 49 54 57-59 62 77 109 134 138-139 143-144 148 156 163-164 174 178 182 187-188 200 202 206 216 221 232 243 258 290 292 294 297-298 304 308 309 324 333 336-337 339-341 346 425 472-473 334 356 369 375 390-391 416 425 472-473 334 356 369 375 390-391 416 425 472-473 343 356 369 375 390-391 416 425 472-473 42 46 48-49 51 56-58 62-63 68 74-76 78 86 84-85 87 88 99 193-95 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 324-325 331 333 341-342 363 420 450 342-343 648-49 51 54-58 66 24 688 74 77 87 89 91 93-96 89-99 104-106 108 110 114-115 117 121-122 128 138-139 141 142 145-146 149-151 156-158 163 165 169-17 174 178 179 181 195 199 203-206 210 212 216 218 220-221 224 234-235 230 32-33 34 334 334 334 35 363 535 235 362 379 384 363 33 341-342 255 258-260 262 269 227 224 234-235 230 32-33 34 334 334 334 35 365 352 355 362 379 384 368 394 410 418 420 425 440-441 449-451 469-471 148 420 425 440-441 449-451 469-471 148 420 425 440-441 449-451 469-471 148 420 425 440-441 449-451 469-471 148 420 425 440-441 449-451 469-471 148 420 425 440-441 449-451 469-471 148 420 425 440-441 449-451 469-471 148 420 425 440-441 449-451 469-471 149 148 420 425 440-441 449-451 469-471 149 148 420 425 440-441 449-451 469-471 149 148 420 425 440-441 449-451 469-471 149 148 420 425 440-441 449-451 469-471 149 148 420 425 440-441 449-451 469-471 149 148 420 425 440-441 449-451 469-471 149 148 420 425 440-441 449-451 469-471 149 149 149 149 149 149 149 149 149 14	piaceilla	mvinogon	111 2002	
Sof-59 62 65 87 91 95 98 104-106 108-109 113-115 124 128 142 145 149-150 158 162 163 173 195 198 202 210 224 227 232 250-251 253 264 275 277 281 285-286 299 321 333 399	- 1-141	GIRCO	ASPOOL	1 5 11 14 18-20 22-23 33-34 39-40 48-49
adult testis GIBCO ATS001 ATS001 BI 10-11 13 17 28 43-44 49 54 57-59 62 77 109 134 138-139 143-144 148 156 163-164 174 178 182 187-188 200 202 206 216 221 232 224 2258 290 292 294 297-298 304 308 309 324 333 336-337 339-341 346 425 472-473 adult bladder Invitrogen BLD001 BLD001 I1 24-25 44 57-58 65 141 150-151 163 187 195 222 224 244-245 247 260 263 277 282 334 356 369 375 390-391 416 425 472-473 bone marrow Clontech BMD001 BMD001 Clontech BMD001 Done marrow Clontech BMD002 Clontech Clontech BMD002 Clontech BMD002 Clontech BMD003 Done marrow Clontech BMD004 Done marrow Clontech BMD005 Clontech Clontech BMD006 Done marrow Clontech BMD07 Clontech BMD08 Clontech BMD092 Done marrow Clontech BMD094 Clontech BMD095 Clontech BMD096 Done marrow Clontech BMD097 The Third Try 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 15 7 10-11 14 16 19-20 22-325 830-31 33 24-325 331 333 341-342 363 420 450 15 7 10-11 14 16 19-20 22-25 28 30-31 35 40 42-43 46 48-49 51 54 56 62 64 68 74 77 87 89 19 39-96 88-99 104-106 108 110 114-115 117 121-122 128 138-139 141 14 14 145 114 16 19-20 22-25 280 30-3 30 30 30 30 30 30 30 30 30 30 30 30 30	aduit spieen	GIBCO	ASI VOI .	56-59 62 65 87 91 95 98 104-106 108-109
163 173 195 198 202 210 224 227 232 250- 251 253 264 275 277 281 285-286 299 321 333 399 28			1	113-115 124 128 142 145 149-150 158 162-
adult testis GIBCO ATS001 ATS001 B 10-11 13 17 28 43-44 49 54 57-59 62 77 109 134 138-139 143-144 148 156 163-164 174 178 182 187-188 200 202 206 216 221 232 243 258 290 292 294 297-298 304 308 309 324 333 336-337 339-341 346 425 472 473 adult bladder Invitrogen BLD001 Il 24-25 44 57-58 65 141 150-151 163 187 195 222 224 244-245 247 260 263 277 282 343 356 369 375 390-391 416 425 472-473 bone marrow Clontech BMD001 BMD001 Done marrow Clontech BMD001 Done marrow Clontech BMD002 Clontech BMD002 Done marrow Clontech Clontech Clontech BMD002 Done marrow Clontech Clontech BMD003 Done marrow Clontech BMD004 Done marrow Clontech Clontech BMD005 Done marrow Clontech BMD006 Done marrow Clontech BMD007 To 11 14 16 19-20 23-25 28 30-31 35 40 42-43 46 48-49 51 56-58 62-63 68 74 76 78 86 84-85 87 89 91 93-96 98-99 104-106 108 110-114-115 117 121-122 128 138-139 141 143-146 149-151 156-158 163 165 169-17 174 178-179 181 195 199 203-206 210 212 216 218 220-221 224 234-235 240 245 248 252 254-255 258-260 262 264 269 276-277 285 292 302-303 308-309 312 322-324 376 252 254-255 258-260 262 264 269 276-277 285 292 302-303 308-309 312 322-324 376 333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474 Done marrow Clontech BMD007 Clontech BMD007 Clontech BMD007 Done marrow Clontech CLN001 Done marrow Clontech CLN001 Done marrow Clontech CLN001 Done marrow Clontech Done marrow				
adult testis GIBCO ATS001 B 10-11 13 17 28 43-44 49 54 57-59 62 77 109 134 138-139 143-144 148 156 163-164 174 178 182 187-188 200 202 206 216 221 232 243 258 290 292 294 297-298 304 308 309 324 333 336-337 339-341 346 425 472 473 adult bladder Jinvitrogen BLD001 J1 24-25 44 57-58 65 141 150-151 163 187 195 222 224 244-245 247 260 263 277 282 334 356 369 375 390-391 416 425 472-473 bone marrow Clontech BMD001 BMD001 J1 13-14 17 19 22-23 27-28 30 32-35 38 42 46 48-49 51 56-58 62-63 68 74-76 78 86 84-85 87 89 91 93 99 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-234 329 294 298 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 bone marrow Clontech BMD002 BMD002 Clontech BMD002 J5 7 10-11 14 16 19-20 23-25 28 30-31 35 40 42-43 46 48-49 51 54 56 62 64 68 74 77 174 178-179 181 195 199 203-205 210 212 216 218 220-221 224 234-235 240 245 248 252 254-255 258-260 262 264 269 276-278 285 292 302-303 308-309 312 322-324 326 333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474 bone marrow Clontech BMD004 P7 149 bone marrow Clontech BMD007 S3 143 149 221 bone marrow Clontech BMD007 CLN001 J0 34 49 52-53 57-59 145 163 175 197 238 246-247 315-316 346 364 442 mixture of 16 tissues/mRNAs mixture of 16 tissues/mRNAs mixture of 16 tissues/mRNAs				
adult testis GIBCO ATS001 8 10-11 13 17 28 43-44 49 54 57-59 62 77 109 134 138-139 143-144 148 156 163-164 174 178 182 187-188 200 202 206 216 221 232 243 258 290 292 294 297-298 304 308 309 324 333 336-337 339-341 346 425 472 473 adult bladder Invitrogen BLD001 11 24-25 44 57-58 65 141 150-151 163 187 195 222 224 244-245 247 260 23 277 282 343 356 369 375 399-391 416 425 472-473 343 356 369 375 399-391 416 425 472-473 42 60 263 277 282 42 44-245 247 260 23 277 282 42 44-245 247 260 23 277 282 42 44-245 247 260 23 277 282 42 44-245 247 260 23 277 282 42 44-245 247 260 23 277 282 42 44-245 247 260 23 277 282 42 44-245 247 260 23 272 28 30 32-35 38 42 46 48-49 51 56-58 62-63 68 74-76 78 88 48-85 87 89 91 93 95 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 450 450 450 450 450 450 450 450 45			,	
109 134 138-139 143-144 148 156 163-164 174 178 182 187-188 200 202 206 216 221 232 243 258 290 292 294 297-298 304 308 309 324 333 336-337 339-341 346 425 472 473 11 24-25 44 57-58 65 141 150-151 163 187 195 222 24 244-245 247 260 263 277 282 334 356 369 375 390-391 416 425 472-473 343 56 369 375 390-391 416 425 472-473 184 17 19 22-23 27-28 30 32-35 38 42 46 48-49 51 56-58 62-63 68 74-76 78 80 84-85 87 89 91 93 95 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 15 7 10-11 14 16 19-20 23-25 28 30-31 35 40 424-34 36 48-49 15 65-26 468 74 77 87 89 91 93-96 98-99 104-106 108 110 114-115 117 121-122 128 138-139 141 143 144 149-151 156-158 163 165 169-17 174 178-179 181 195 199 203-206 210 212 216 218 220-221 224 234-235 240 245 248 252 254-255 258-260 266 264 269 276-278 285 292 302-303 308-309 312 322-324 326 333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474				333 399
174 178 182 187-188 200 202 206 216 221 232 243 258 290 292 294 297-298 304 308 309 324 333 336-337 339-341 346 425 472 473	adult testis	GIBCO	ATS001	
adult bladder				
adult bladder Invitrogen BLD001 BLD001 I1 24-25 44 57-58 65 141 150-151 163 187 195 222 224 244-245 247 260 263 277 282 334 356 369 375 390-391 416 425 472-473 bone marrow Clontech BMD001 BMD001 P1 11 3-14 17 19 22-23 27-28 30 32-35 38 42 46 48-49 51 56-58 62-63 68 74-76 78 88 48-85 87 89 91 93 95 97-98 102 104-106 108 111-112 114-115 117 21-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 BMD002 BMD002 Clontech BMD002 BMD002 BMD003 BMD004 BMD004 BMD004 BMD004 BMD004 BMD004 BMD005 Clontech BMD006 BMD007 Clontech BMD007 Clontech BMD007 Clontech BMD007 Clontech BMD008 Clontech BMD009 Clontech BMD009 Clontech BMD009 Clontech BMD001 Done marrow Clontech Clontech Clontech Clontech Clontech Clontech Clontech Clontech BMD001 Done marrow Clontech			174 178 182 187-188 200 202 206 216 221	
adult bladder Jinvitrogen BLD001 11 24-25 44 57-58 65 141 150-151 163 187 195 222 224 244-245 247 260 263 277 282 334 356 369 375 390-391 416 425 472-473 343 436 369 375 390-391 416 425 472-473 343 436 369 375 390-391 416 425 472-473 343 436 369 375 390-391 416 425 472-473 42 46 48-49 51 56-58 62-63 68 74-76 78 80 84-85 87 89 91 93 95 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 206 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 157 10-11 14 16 19-20 23-25 28 30-31 35 40 42-43 46 48-49 51 54 56 62 64 68 74 77 87 89 91 93-96 98-99 104-106 108 110 114-115 117 121-122 128 138-139 141 143 145-146 149-151 156-158 163 165 169-17 174 178-179 181 195 199 203-206 210 212 216 218 220-221 224 234-235 240 245 248 252 254-255 258-260 262 264 269 276-278 285 292 302-303 308-309 312 322-324 326 333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474 bone marrow Clontech BMD004 97 149 bone marrow Clontech BMD007 53 143 149 221 colon lnvitrogen CLN001 10 34 49 52-53 57-59 145 163 175 197 238 246-247 315-316 346 364 442 mixture of 16 tissues/mRNAs mixture of 16 trissues/mRNAs mixture of 16 trissues/mRNAs mixture of 16 trissues/mRNAs mixture of 16 trissues/mRNAs				232 243 258 290 292 294 297-298 304 308-
adult bladder				309 324 333 336-337 339-341 346 425 472-
bone marrow Clontech BMD001 BMD001 P11 13-14 17 19 22-23 27-28 30 32-35 38 42 46 48-49 51 56-58 62-63 68 74-76 78 87 89 91 93 95 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 bone marrow Clontech BMD002 BMD002 Clontech BMD002 Clontech BMD003 Done marrow Clontech BMD004 Done marrow Clontech Done marrow Cl		}	1	
195 222 224 244-245 247 260 263 277 282 334 356 369 375 390-391 416 425 472-473 344 356 369 375 390-391 416 425 472-473 344 366 369 375 390-391 416 425 472-473 34 365 369 375 390-391 416 425 472-473 34 365 369 375 390-391 416 425 472-473 34 363 369 375 390-391 416 425 472-473 34 363 48-49 51 56-58 62-63 68 74-76 78 80 84-85 87 89 91 93 95 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450	adult bladder	Invitrogen	BLD001	11 24-25 44 57-58 65 141 150-151 163 187
bone marrow Clontech BMD001 BMD001 P1 113-14 17 19 22-23 27-28 30 32-35 38 42 46 48-49 51 56-58 62-63 68 74-76 78 80 84-85 87 88 91 93 95 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450 bone marrow Clontech BMD002 Clontech BMD002 Clontech BMD002 Clontech BMD004 Display 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	addit bladder .	111111108011		195 222 224 244-245 247 260 263 277 282
BMD001		i'		
42 46 48-49 51 56-58 62-63 68 74-76 78 80 84-85 87 89 91 93 95 97-98 102 104-106 108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450	L	Clontech	BMD001	9 11 13-14 17 19 22-23 27-28 30 32-35 38
S4-85 87 89 91 93 95 97-98 102 104-106	bone marrow	Clonteen	Dividuoi	
108 111-112 114-115 117 121-122 125 138-140 143 146 149 151 154-155 157-171 174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450				
138-140 143 146 149 151 154-155 157-171				108 111-112 114-115 117 121-122 125
174 176 179 184 187 190 195 200 202 205 206 210 215 218-222 224-236 239 249 258 262 264 269 285 294 297 304 310 319-321 324-325 331 333 341-342 363 420 450		1		120 140 142 146 140 151 154-155 157-171
Description			•	136-140 143 140 149 131 134-133 137-171
Description	-			1/4 1/6 1/9 184 187 190 193 200 202 203
324-325 331 333 341-342 363 420 450			1	206 210 213 218-222 224-236 239 249 236
BMD002			1	262 264 269 285 294 297 304 310 319-321
## do 42-43 46 48-49 51 54 56 62 64 68 74 77 ## 87 89 91 93-96 98-99 104-106 108 110 ## 114-115 117 121-122 128 138-139 141 143 ## 145-146 149-151 156-158 163 165 169-17 ## 174 178-179 181 195 199 203-206 210 212 ## 216 218 220-221 224 234-235 240 245 248 ## 252 254-255 258-260 262 264 269 276-278 ## 285 292 302-303 308-309 312 322-324 326 ## 333 341 343 346 350 352 355 362 379 384 ## 386 394 410 418 420 425 440-441 449-451 ## 469-474 ## bone marrow ## Clontech ## BMD004 ## BMD007 ## 53 143 149 221 ## colon ## Clontech ## BMD007 ## 53 143 149 221 ## colon ## Clontech ## 10 34 49 52-53 57-59 145 163 175 197 238 ## 246-247 315-316 346 364 442 ## mixture of 16 ## tissues/mRNAs ## warious vendors ## CTL016 ## 10 56 ## 149 ## 140 ## 140 ## 141 ## 143 ## 143 ## 143 ## 143 ## 143 ## 143 ## 145				
87 89 91 93-96 98-99 104-106 108 110	bone marrow	Clontech	BMD002	
114-115 117 121-122 128 138-139 141 143				
145-146 149-151 156-158 163 165 169-17 174 178-179 181 195 199 203-206 210 212 216 218 220-221 224 234-235 240 245 248 252 254-255 258-260 262 264 269 276-278 285 292 302-303 308-309 312 322-324 326 333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474			1	
174 178-179 181 195 199 203-206 210 212 216 218 220-221 224 234-235 240 245 248 252 254-255 258-260 262 264 269 276-278 285 292 302-303 308-309 312 322-324 326 333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474				114-115 117 121-122 128 138-139 141 143
216 218 220-221 224 234-235 240 245 248 252 254-255 258-260 262 264 269 276-278 285 292 302-303 308-309 312 322-324 326 333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474 469-				145-146 149-151 156-158 163 165 169-171
252 254-255 258-260 262 264 269 276-278				
285 292 302-303 308-309 312 322-324 326 333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474				216 218 220-221 224 234-235 240 245 248-
285 292 302-303 308-309 312 322-324 326 333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474			1	252 254-255 258-260 262 264 269 276-278
333 341 343 346 350 352 355 362 379 384 386 394 410 418 420 425 440-441 449-451 469-474		ł	ì	
386 394 410 418 420 425 440-441 449-451 469-474				
Marrow Clontech BMD004 97 149	•			386 394 410 418 420 425 440-441 449-451
bone marrow Clontech BMD004 97 149 bone marrow Clontech BMD007 53 143 149 221 colon Invitrogen CLN001 10 34 49 52-53 57-59 145 163 175 197 238 246-247 315-316 346 364 442 mixture of 16 tissues/mRNAs various vendors CTL016 10 56 mixture of 16 tissues/mRNAs various vendors CTL021 149				
bone marrow Clontech BMD007 53 143 149 221 colon Invitrogen CLN001 10 34 49 52-53 57-59 145 163 175 197 238 246-247 315-316 346 364 442 mixture of 16 tissues/mRNAs various vendors CTL016 10 56 mixture of 16 tissues/mRNAs various vendors CTL021 149			DA (DOGA	
colon Invitrogen CLN001 10 34 49 52-53 57-59 145 163 175 197 238 246-247 315-316 346 364 442 mixture of 16 tissues/mRNAs various vendors CTL016 10 56 mixture of 16 tissues/mRNAs various vendors CTL021 149				
246-247 315-316 346 364 442	bone marrow			
mixture of 16 tissues/mRNAs various vendors CTL016 10 56 mixture of 16 tissues/mRNAs various vendors CTL021 149	colon	Invitrogen	CLN001	
tissues/mRNAs mixture of 16 various vendors CTL021 149 tissues/mRNAs		<u> </u>		
tissues/mRNAs mixture of 16 various vendors CTL021 149 tissues/mRNAs	mixture of 16	various vendors	CTL016	10 56
mixture of 16 various vendors CTL021 149 tissues/mRNAs		1		
tissues/mRNAs		various vendors	CTL021	149
1445.040			•	
I mysture of 16 1 various vengors 1 U.I.U.8 1 143 330	mixture of 16	various vendors	CTL028	145 358
tissues/mRNAs	********	Tailous voildois	012020	
1 4 6 11 00 05 07 00 24 25 20 40 46 50 50		DioChain	CVV001	1 4 6 11 23-25 27 30 34-35 39-40 46 50 59
adult cervix BioChain CVX001 14 6 11 23-25 27 30 34-35 39-40 46 50 59	adult cervix	BioChain	CAYOUI	62-64 76-77 80-81 88 93 100 107 111-112
116 110 110 122 125 126 120 120 120				116 118-119 122-123 125 136 138-139 143
146 151 155 160 163 176 178-182 184 186	i	1		146 151 155 160 163 176 178-182 184 188
		l .	•	1 + 6 c 6 6 6 6 1 C 6 1 6 6 6 1 6 6 6 7 6 7 7 7 7 7 7 7 7 7
240 250-251 261-262 264 266 278 283 283				195 209 215 218 221 228 232-233 235 239-
				195 209 215 218 221 228 232-233 235 239- 240 250-251 261-262 264 266 278 283 287- 288 300 306-308 311 319-320 322-323 325

			329 333 337 341 349 361 369 388 397 403
·			407 422 425 429-430 435-436 453 469-471
endothelial cells	Stratagene	EDT001	1 4 6-8 10-14 16-28 31 34-35 37 39 42-44
	ļ		46 49 51 53-54 56-59 62-63 66 70-72 76-78
			80-81 83-84 88 96 101 104-107 110 114
			116 118-119 122-124 130 134 136 138-140
			143-146 153-155 158 160 162-163 170
			174-175 184 186-187 189 194-195 197 200
			203-204 209-210 212 214-217 219 222-223
			229 232-233 235-238 240 242 244 246-248
			250-251 253 256 258 260-262 264 267 269-
			270 272 276-277 279-282 284-285 288-292
			294 302-304 308 312 317 319-320 324-325 329 333-334 336-337 339 341 361 375 378
			384-385 397 404 411 415-416 450 469-473
fetal brain	Clontech	FBR001	46 104-106 175 193 258 341
fetal brain	Clontech	FBR004	193-194 226-227 229 260 264 334
fetal brain	Clontech	FBR006	2-3 9-12 14 16-17 19-20 23 27-28 39 43 52-
		1 22000	53 59 66-67 76 86 91-92 94-95 97-98 101-
			102 104-108 110-111 116-117 125 127-130
		1	134 138-139 142-143 145-148 150-151 167
			170 174-175 178-179 185 187 194 198 200-
			201 212 215 226-228 231 241 245 261 264
			269 276-277 279 281-282 284 290 292 300
			302 309 325 327 331 333-334 336-337 345
			350-353 357 362 371 376 382-383 388-389
]		392 395-396 399 401 414 420 427 432 453
fetal brain	Clautani		456 458 472-473
fetal brain	Clontech Invitrogen	FBRS03	199 291 402
iciai Ulajii	invitrogen	FBT002	12 15 19-20 23 30-31 47 53 59 76 86 94 99
			104-107 128 131-133 136 144 148 150 163
			168 173 175 185 201 220 233 244 250-251
			254-255 262 273 282 307 309 315-316 322-
		1.	323 327 334-335 337 341 351 364 375 392 409-412 421 423 469-473
fetal heart	Invitrogen	FHR001	34 43 81 87 129 134 138-139 145 200 288-
		11111001	289 304 315-316 392
etal kidney	Clontech	FKD001	6 8 10 17 50 54 77 86 92 112 114 179 217
-			223 241 269 301 319-320 322-323 333 340-
			341 397-398
etal kidney	Clontech	FKD002	141 264 309 341 432
etal kidney	Invitrogen	FKD007	107 123
etal lung	Clontech	FLG001	16 33 92 100 149 257 337 340 396
etal lung	Invitrogen	FLG003	8 13 15 32 39 48 51 56 91-93 130-133 146
			148 197-198 222 244 257 262 280 286 294
. 11			302 315-316 327 337 352 364 392 396 440
etal lung	Clontech	FLG004	122 209
etal liver-spleen	Columbia	FLS001	1-13 15-46 48-51 53 55 57-59 61-95 97-119
	University		121-136 138-139 141 143 146-155 158 160
			162-165 167 169-171 178 184 186-187 189
	1	İ	195 209 211-212 214 219-221 223 227-229
			234-252 254-265 267-269 272-280 283 288
			290-291 295-299 302 304 307 312-317
	1		322-323 333 341 343-344 352-353 361
			365-367 371 390-391 402 418 441 444 466
tal liver enlac-	Cohumbin	TI COOC	469-473
tal liver-spleen	Columbia	FLS002	1-3 5 11-13 15-18 20-22 24-25 27 29-31
	University		33-34 36-40 43-44 46 49 51 53-54 56-59 61
	1		63-65 67-68 73 75 77 80-81 84-86 88-90
			92-95 97-98 100 103 107-109 111 114 119
			121-122 124 126-127 129-134 138-139
 	ř	i	141-146 149 151-153 157-160 162 164-165

		i.	167 169-171 178-180 183 190 193 200 209-
			214 218-219 221-222 225 227 233-235
			238-239 244 246-252 257-261 267 269
	1	-	274-275 277 285 288 291 294 296 299 308
			312 314-316 333-334 336 338 341-342
			352-353 364-366 372 382 395-396 402-403
	1		405 416 420 425 436 441 443 446 449 457
			469-473
		FLS003	1 3 19 40 49 54 57-59 68 73 83 92 100 104-
fetal liver-spleen	Columbia	LESUUS	106 170 176 183 256 260 279 304 314 386
	University		;
			398 427 467
fetal liver	Invitrogen	FLV001	2 10 14 18 20 26 35 66 92 124 143 146 151
			174-175 186 197 200 209 224 238 244 246
			258 278-279 282 309 333 366 377 400 408
fetal liver	Clontech	FLV002	92 126 244
fetal liver	Clontech	FLV004	34-35 48 51 53 92 104-106 110 128 141
iciai nvei	Cionicon		146 149 151 160 249 292 333 338 341 359
			421
L	Tourist and the	FMS001	11-12 44 76 110-111 145 148-149 178 187
fetal muscle	Invitrogen	LIMPOOL	226 258 260 262 264-265 290 341-342 400-
	1		
			40] 404 456
fetal muscle	Invitrogen	FMS002	.8 11 23 46 52 61 102 111 120 130 134 148
			150 170 226 233 292 318 334 355 365 386
	i		414 418 475
fetal skin	Invitrogen	FSK001	5-6 8 10 12 23 26-29 32-33 40 42 48-50 53
			55-56 59 64 67 69-72 76 83 88 98-99 102
			110 113 117 123 127-128 131-133 138-139
ł			143 148 160 163 167 174-175 195 209-210
	Ì		220-221 223-224 227 237-238 240 244-247
			254-255 257-258 262-263 269 277 280-282
		j	288 290-291 294-295 298-299 307 309
1		·	322-323 327 330 333 336-337 340-341 346
			361 364 375 387 404 408 428 432 434-435
			443 448-449 452 454
fetal skin	Invitrogen	FSK002	9 14 22 34-35 39-40 56 73 104-106 109
			142-143 150 160 211 220-221 235 240 249
	Ī	1	259 270 302 330 431 448 450 460
fetal spleen	BioChain	FSP001	276
umbilical cord	BioChain	FUC001	4-6 8 11 13 16 18 21-25 27 32 35 37 39-40
umomear cord	Diochain	1 0 0 0 0 1	42 45 54 61 63 65-66 68 82 88 92-94 97
			100-101 103-106 123 128-129 136 138-139
			143 154 160-161 163 167 176 179-180 188
	1		195 218 220 224 232-233 237 240-241 244
			247 249 262 267 277 280 284 288 291 294
			297-299 306 314 325 329 333-335 339 341
			345 350 352 362 365 369-370 390-391 396-
			397 416 472-473
fetal brain	GIBCO	HFB001	3-4 6 11 13-14 18-20 22-23 26-27 34 37 42
20000			50 54-58 60 62-65 67 70-72 78 80-81 83-84
			87 93 98 101-107 111-112 114 116 118 123
			125 129 131-145 147 151 154 156 162-165
			172-173 175-180 182-191 193-195 197-206
			208-217 223 227 233 239-240 242-244 247
			258-259 261 264 267 269 273 277 282 286
			230-237 201 204 201 207 213 211 202 200
			288 290 301-302 306 310 313 325 333-334
			336-337 341 343 345 351 364 369-372 469-
			473
macrophage	Invitrogen	HMP001	49 123 144 151 275
infant brain	Columbia	IB2002	7-8 11-13 16 20-22 24-26 34 38 44-58 60
Litaire Olaini	University		62-64 66 68 75 80 84 87 91-92 94 97-98
I	University	1	
	l l		101 103-108 123 126 128 130-133 135-137
			101 103-108 123 126 128 130-133 135-137 142-146 148 151 156 158 160 164 170 173

			
	ł	İ	175 177-178 180 182 187-188 194 196-198
			200-201 206 212 215 217 219 226 232-233
		j	239 241 247-248 256 260 263 265 268 273
	İ	ļ	277-278 282-284 286 288-289 294 298
		Į.	301-303 306-307 309 312 324 330 334-335
		•	337-339 342-343 346-347 351 355 364 370
	ì		373-376 389-394 400 413 421 423-424 458
			469-471
infant brain	Columbia	IB2003	4 8 11 13-14 16 23 42 46-47 50 54 56-62
	University		65-66 76 94 98 102 119-120 135 142-143
1			145 150-152 158 163-164 173 175 180 226
		1	233 244 247 260 262 267 277 302 304 309
		1	319-320 334-337 351 364 375 383 389-392
			400 423 427 434 472-473
infant brain	Columbia	IBM002	33 50 54 112 131-133 163 173 215 226 267
	University		331 423
infant brain	Columbia	IBS001	2 5 11 26 34 52 87 91 98 108 170 173 177
	University	\ .	194 200-201 248 277 340 361 412 423
lung, fibroblast	Stratagene	LFB001	13 16-17 22 26 39 46 57-58 78 83 88 93
	·.		101 116 122 131-133 160 170 178 195 198
			210 214 223 262 267 276 304 319-320 322-
			323 333 341 349 375 383 417 447 455
lung tumor	Invitrogen	LGT002	10-12 15 17-18 20 23 26-28 30 32 34 37
		1	39-40 43 49 51 56-58 62 64 66 80 85-87 91
}			94 98 101-102 104-106 108 111 122 124
			126-129 134 136 142-144 147 156-157 168
ľ			173-176 179 184 186-187 189 195 197-198
			203-204 209-210 218 220-222 226 232-233
i	}	}	237-239 244-246 249-251 253 257 259 269
}		}	273 277-279 282-284 287 300-301 308 310
ļ		}	314 319-320 327 333-335 341 346 348 352
			358 362 369 371 377-379 392 394 397 406-
_		ĺ	407 410 412 421-422 436 469-471
lymphocytes	ATCC	LPC001	7 10-11 14-15 18 20 24-25 27 33 35 43-44
!	ĺ		49 57-58 65-66 74-75 80 88 95 103-106
			108 113 116 124 130-133 145-146 151 163-
	Į.		164 167-171 185 200 206 215 218 226 228
			232 241 244 247-248 262 267 273 275-277
			284 297 321 331 345 349 352 375 400 472-
		}	473
leukocyte	GIBCO	LUC001	1 6-8 11 14-15 17-18 20 23-25 27-35 39 43
		1	46 49 52-54 57-58 62-63 74 76-78 80-81
			84-85 88 90 92-95 98 102 104-106 108 112
		ì	114 117 119 123-125 128 130-135 141 143-
	1	}	146 148 151 153 156-158 160-164 166-168
	:		171 174-176 178-179 181 183-184 187-188
			195 199-200 202-204 206 209 211-216
			218-219 221-223 226-228 232-235 239-240
			242 244-245 247 256 258 260-262 264 266-
			267 270 275-277 279-280 282 284-290
	1	1	292-293 297-298 300-302 306 308-310 312
	Į.	1	314 317-328 330 333 335 341 346 349 400
			412 427 436-437 450 462 469-473
leukocyte	Clontech	LUC003	17 19 27 34 42-43 46 49 90 98 104-106 108
• •]	20000	
		}	113 122-123 128 157 206 284-285 321 333 341 362 472-473
Melanoma from	Clontech	MEL004	
cell line ATCC	5701110011	17122004	6 11 30 34 45 54-55 61-62 65-66 78 81 93
#CRL 1424	1		112 114 116 122 128 130 135 143 145 160
])	164 177 180 187 195 219 227 235 239-240
	Í		258 264-265 279-280 287 302 304 306 311
mammary gland	Invitrogen	MMG001	325 333 341 343 377 408 432
J Simila	I WIAIROS CIII	1 1411410001	1 5 8 10-13 15-16 18 20 24-26 30-31 34 39-

			40 43 45 47 49-51 53-54 57-58 62 64 66
			70-72 76 80 83 87-88 95-96 98-99 101-102
			104-106 108-109 112 118 124-125 127-133
			136 138-139 142-146 148 150-151 163 167
			170-171 175 180 186-187 189 197 200 212
			224 226-227 241 244 247-248 250-251
		•	253-255 257-258 260 262-263 265 269 272
			276-280 282-283 288 290 301 306-307 309
			313 315-316 322-323 326-327 333-334 337
			313 313-316 322-323 320-327 333-334 337
		İ	
			404 409 412 415 421 428 430-432 469-473
induced neuron	Stratagene	NTD001	7 20 42 47 49 53 83 121 134 136 151 153
cells			195 202 218-219 223 247 264 267 269 302
		_	312-313 339 382 427 444
retinoic acid-	Stratagene	NTR001	34 70-72 104-106 110 116 197 258 392 396
induced neuronal			422
cells			
neuronal cells	Stratagene	NTU001	16 40 49 53-54 80 100 130 136 194 258
lieuronai cens	Stratugene	1110001	281 396 427 472-473
1 1 1 1 1 1	Clontech	PIT004	54 119 170 200 242 264 270 319-320 333
pituitary gland	Ciontech	111004	336 341 414
		DI 4002	32 304 341 421
placenta	Clontech	PLA003	9 13 21 23 53 59 79 83 88 119 123 127 160
prostate	Clontech	PRT001	9 13 21 23 33 39 79 83 88 119 123 127 100
			162 178 180 182-183 187 209 250-251 273
			278 292-293 306 329 333 336 409 442
rectum	Invitrogen	REC001	5 12 15 22 32 42 80 108 118 127 143-144
			187 194 224 226 277 298 345 396 404 442
			444
salivary gland	Clontech	SAL001	4 7 10 40 66 88 102 104-106 126 128 151
Sanvary grand.	Olomoon	0.1200	162 182 212 222 242 252 277 287 312 319-
			320 348 369
anlinent aland	Clontech	SALS03	
salivary gland	Clontech	SALS03	42
skin fibroblast	ATCC	SFB001	42 54
skin fibroblast skin fibroblast	ATCC ATCC	SFB001 SFB003	42 54 87 144
skin fibroblast	ATCC	SFB001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58
skin fibroblast skin fibroblast	ATCC ATCC	SFB001 SFB003	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124
skin fibroblast skin fibroblast	ATCC ATCC	SFB001 SFB003	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160
skin fibroblast skin fibroblast	ATCC ATCC	SFB001 SFB003	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204
skin fibroblast skin fibroblast	ATCC ATCC	SFB001 SFB003	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257
skin fibroblast skin fibroblast	ATCC ATCC	SFB001 SFB003	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310-
skin fibroblast skin fibroblast	ATCC ATCC	SFB001 SFB003	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373
skin fibroblast skin fibroblast	ATCC ATCC	SFB001 SFB003 SIN001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467
skin fibroblast skin fibroblast small intestine	ATCC ATCC	SFB001 SFB003	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302
skin fibroblast skin fibroblast	ATCC ATCC Clontech	SFB001 SFB003 SIN001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech Clontech	SFB001 SFB003 SIN001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle	ATCC ATCC Clontech Clontech	SFB001 SFB003 SIN001 SKM001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle	ATCC ATCC Clontech Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 49
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle	ATCC ATCC Clontech Clontech Clontech Clontech null	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 49 88
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle	ATCC ATCC Clontech Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104-
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle	ATCC ATCC Clontech Clontech Clontech Clontech null	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162-
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle	ATCC ATCC Clontech Clontech Clontech Clontech null	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle	ATCC ATCC Clontech Clontech Clontech Clontech null	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord	ATCC ATCC Clontech Clontech Clontech null Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord	ATCC ATCC Clontech Clontech Clontech Clontech null	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord	ATCC ATCC Clontech Clontech Clontech null Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394 20 42 54 63 70-72 80-81 97 152 164 179
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord	ATCC ATCC Clontech Clontech Clontech null Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord	ATCC ATCC Clontech Clontech Clontech null Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394 20 42 54 63 70-72 80-81 97 152 164 179 202 214 238 246 256 311 321 341 353 356 365 403-404 433
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord adult spleen stomach	ATCC ATCC Clontech Clontech Clontech null Clontech Clontech Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394 20 42 54 63 70-72 80-81 97 152 164 179 202 214 238 246 256 311 321 341 353 356 365 403-404 433
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord	ATCC ATCC Clontech Clontech Clontech null Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394 20 42 54 63 70-72 80-81 97 152 164 179 202 214 238 246 256 311 321 341 353 356 365 403-404 433 1 14 17 23 47 57-58 62 66 70-72 80 101
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord adult spleen stomach	ATCC ATCC Clontech Clontech Clontech null Clontech Clontech Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394 20 42 54 63 70-72 80-81 97 152 164 179 202 214 238 246 256 311 321 341 353 356 365 403-404 433 1 14 17 23 47 57-58 62 66 70-72 80 101 117 134 151 165 187 194 201 220 241 243
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord adult spleen stomach	ATCC ATCC Clontech Clontech Clontech null Clontech Clontech Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394 20 42 54 63 70-72 80-81 97 152 164 179 202 214 238 246 256 311 321 341 353 356 365 403-404 433 1 14 17 23 47 57-58 62 66 70-72 80 101 117 134 151 165 187 194 201 220 241 243 249 278 282 294 337 346 351 353-354 381
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord adult spleen stomach	ATCC ATCC Clontech Clontech Clontech null Clontech Clontech Clontech Clontech Clontech Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394 20 42 54 63 70-72 80-81 97 152 164 179 202 214 238 246 256 311 321 341 353 356 365 403-404 433 1 14 17 23 47 57-58 62 66 70-72 80 101 117 134 151 165 187 194 201 220 241 243 249 278 282 294 337 346 351 353-354 381 396 424 430 434
skin fibroblast skin fibroblast small intestine skeletal muscle skeletal muscle skeletal muscle skeletal muscle spinal cord adult spleen stomach	ATCC ATCC Clontech Clontech Clontech null Clontech Clontech Clontech Clontech	SFB001 SFB003 SIN001 SKM001 SKM002 SKMS03 SKMS04 SPC001	42 54 87 144 1 9 11 13 15 17-18 22 27 33 38 40 54 57-58 61 63-64 78-80 84 97 102 115-116 124 128-129 131-134 142 144 148 153 159-160 163 165 167 180 186 195 197-198 202-204 214-215 217 230 232 234 242-243 248 257 265 271 278 284 295 297 299 304 306 310- 311 319-321 328 333 337 341 358 372-373 395 408 438 461 467 13 64 76 87 92 104-106 122 176 202 302 322-323 327 341 451 464 246 49 88 6 12 22-23 48 60 70-72 80 93 101-102 104- 106 114 125 135 138-139 143-144 148 162- 163 167 176 196 200 202-204 242-243 264 270 283 288 294 302 321 326 329 333 336 343 345 349 352 354 382 424-425 436 457 2 98 120 141 164 166 244 260 278 394 20 42 54 63 70-72 80-81 97 152 164 179 202 214 238 246 256 311 321 341 353 356 365 403-404 433 1 14 17 23 47 57-58 62 66 70-72 80 101 117 134 151 165 187 194 201 220 241 243 249 278 282 294 337 346 351 353-354 381

		i	249 258-259 263-264 284 289 292 298 302
i e			309 311 314 319-320 322-323 329 333 336
			341 352 360 371 412 417 440 447 467 472-
\ 			473
thymus	Clontech	THMc02	9-10 15 17 24-25 27-28 34 38 40 43 49 57-
ĺ			58 68 74 77 81 87 94-95 98 104-108 110
	Ì	1	115-116 128 136-137 143 146 148-151 158
	į.		160 165 197 200 210-211 215 221-222 232
1	1	1	235 241 243 245 248 252 269 278 281 286
	ł		288-289 292 302 312 321 325 327 329 331
]			333 338 345 350 365 378 383 387 412 428
			439-440 446 451-452 460 465 469-473
thyroid gland	Clontech	THR001	1 4-5 8-9 11-12 14-15 17 19 21-25 27 34 40
		1	46 49 54-55 57-59 61-62 66-68 70-72 80-81
· .		}	85 93 97-98 102-108 116 119 121-122 124
			126-133 141-142 144 146 150-151 155
]		İ	162-166 169 171 175-176 178-181 187-190
	ļ]	202-205 208 214-215 218-219 226 232
			237-239 244 246-247 250-252 257-258 260
	Ì	}	263-264 267 270-271 277 279 282-284
			287-288 292 294 297 300 302-304 307-308
			310-311 313 317 322-323 325 333 336-337
			341 346 356 358 401 405-406 408-409 436
			461
trachea	Clontech	TRC001	17 23 34 90 93 108 142 151 238 240 246
			259 266 333 412 472-473
uterus	Clontech	UTR001	18 20 30-31 50 52 114 125 158 164 168
			182 198 206 210 248 254-255 260 273 283
			304 311 325 365 383 421 423

The 16 tissue/mRNAs and their vendor sources are as follows: 1) Normal adult brain mRNA (Invitrogen), 2) Normal adult kidney mRNA (Invitrogen), 3) Normal fetal brain mRNA (Invitrogen), 4) Normal adult liver mRNA (Invitrogen), 5) Normal fetal kidney mRNA (Invitrogen), 6) Normal fetal liver mRNA (Invitrogen), 7) normal fetal skin mRNA (Invitrogen), 8) human adrenal gland mRNA (Clontech), 9) Human bone marrow mRNA (Clontech), 10) Human leukemia lymphoblastic mRNA (Clontech), 11) Human thymus mRNA (Clontech), 12) human lymph node mRNA (Clontech), 13) human so\spinal cord mRNA (Clontech), 14) human thyroid mRNA (Clontech), 15) human esophagus mRNA (BioChain), 16) human conceptional umbilical cord mRNA (BioChain).

TABLE 2

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
445	gi4151328	Homo sapiens	high-risk human papilloma viruses E6 oncoproteins targeted protein E6TP1 alpha mRNA, complete cds.	2344	48
445	gi4151330	Homo sapiens	high-risk human papilloma viruses E6 oncoproteins targeted protein E6TP1 beta mRNA, complete cds.	1694	59
445	gi2555183	Rattus norvegicus	SPA-1 like protein p1294	2324	48
446	gi13517972	Homo sapiens	PR-domain containing protein 17 mRNA, complete cds.	2496	100
446	gi10434545	Homo sapiens	cDNA FLJ12827 fis, clone NT2RP2002939, weakly similar to ZINC FINGER PROTEIN 136.	2496	100
446	gi13623607	Homo sapiens	, zinc finger protein 136 (clone pHZ-20), clone MGC:12711, mRNA, complete cds.	710	42
447	gi6093239	Homo sapiens	mRNA; cDNA DKFZp434O0515 (from clone DKFZp434O0515).	1054	100
447	gi3522970	Homo sapiens	Trio mRNA, complete cds.	216	23
447	AAW27227	Homo sapiens	Human TRIO phosphoprotein.	216	23
448	gi7022890	Homo sapiens	cDNA FLJ10700 fis, clone NT2RP3000665.	2838	96
448	gi10438668	Homo sapiens	cDNA: FLJ22327 fis, clone HRC05572.	1333	100
448	gi7020045	Homo sapiens	cDNA FLJ20140 fis, clone COL07182.	1074	79
449	gi6102903	Homo sapiens	mRNA; cDNA DKFZp566D244 (from clone DKFZp566D244); partial cds.	2601	99
449	gi10434000	Homo sapiens	cDNA FLJ12485 fis, clone NT2RM2000420.	1907	100
449	gi10437387	Homo sapiens	cDNA: FLJ21308 fis, clone COL02131.	1519	69
450	gi7670836	Homo sapiens	hepatocellular carcinoma-associated antigen 66 (HCA66) mRNA, complete cds.	3101	99
450	gi7959764	Homo sapiens	PRO1289	935	100
450	gi927708	Saccharomyce s cerevisiae	Ydr449cp; CAI: 0.18	288	32
451	gi7020902	Homo sapiens	cDNA FLJ20657 fis, clone KAT01069.	3231	99
451	gi11037252	Rattus norvegicus	NPL4	3156	96
451	gi10434779	Homo sapiens	cDNA FLJ12984 fis, clone NT2RP3000047, weakly similar to NPL4 PROTEIN.	2812	99
452	gi13160469	Homo sapiens	WDR13 protein (WDR13) gene, complete cds.	1063	94
452	gi12044400	Homo sapiens	WDR13 protein (WDR13) mRNA, complete cds.	1063	94
452	gi13751862	Mus musculus	WD-repeat protein	1058	93
453	gi12619286	Homo sapiens	mRNA for spinal cord-derived protein FI58G, complete cds.	1133	100
453	gi7638241	Homo sapiens	mesenchymal stem cell protein DSC92 mRNA, complete cds.	1133	100
453	gi12804543	Homo sapiens	, mesenchymal stem cell protein DSC92, clone MGC:2824, mRNA, complete cds.	1133	100
454	gi13279287	Homo sapiens	, clone IMAGE:3633354, mRNA, partial cds.	2066	100
454	gi5052586	Drosophila melanogaster	BcDNA.GH08385	334	25
454	gi10433073	Homo sapiens	cDNA FLJ11749 fis, clone	190	26

SEQ ID NO:	Accession No.	Species	Description .	Score	% Ident
			HEMBA1005558, weakly similar to NUCLEAR PROTEIN SNF7.		1
455	gi7019840	Homo sapiens	cDNA FLJ20018 fis, clone ADSE00909.	1698	99
455	gi13938166	Homo sapiens	, clone MGC:12617, mRNA, complete cds.	1630	98
455	gi9280376	Homo sapiens	ancient conserved domain protein 3 (ACDP3) mRNA, complete cds.	1271	90
456	gi7020190	Homo sapiens	cDNA FLJ20232 fis, clone COLF5593.	1487	100
456	gi14249896	Homo sapiens	, clone MGC:15774, mRNA, complete cds.	1479	99
456	gi9188416	Homo sapiens	Novel human gene mapping to chomosome 22.	1479	99
457	AAW75093	Homo sapiens	Human secreted protein encoded by gene 37 clone HFVGS85.	369	100
457	gi8895089	Homo sapiens	protein x 013 mRNA, complete cds.	145	41
457	gi14250569	Homo sapiens	, protein x 013, clone MGC:3073, mRNA, complete cds.	145	41
458	gi7020228	Homo sapiens	cDNA FLJ20257 fis, clone COLF7231.	1169	100
458	gi7528184	Drosophila melanogaster	bicoid-interacting protein BIN3	389	45
459	gi11345384	Homo sapiens	vacuolar protein sorting protein 18 (VPS18) mRNA, complete cds.	5102	100
459	AAW48303	Homo sapiens	Amino acid sequence of human deep orange protein.	2555	100
459	gi2832850	Drosophila melanogaster	EG:171E4.1	1316	35
460 	gi6966967	Homo sapiens	mRNA for dipeptidyl-peptidase III (DPP3 gene).	3814	99
460	gi13938201	Homo sapiens	, dipeptidylpeptidase III, clone MGC:15061, mRNA, complete cds.	3811	99
460	AAB67571	Homo sapiens	Amino acid sequence of a human hydrolytic enzyme HYENZ3.	3807	99
461	AAY53020	Homo sapiens	Human secreted protein clone qb56_19 protein sequence SEQ ID NO:46.	657	100
461	AAY59788	Homo sapiens	Human normal ovarian tissue derived protein 65.	618	100
461	AAG04028	Homo sapiens	Human secreted protein, SEQ ID NO: 8109.	442	72
462	gi13021843	Homo sapiens	polyadenylate binding protein-interacting protein 2 mRNA, complete cds.	679	100
462	gi12052806	Homo sapiens	mRNA; cDNA DKFZp564F163 (from clone DKFZp564F163); complete cds.	675	99
162	gi7106826	Homo sapiens	HSPC218	673	99
163	gi7023258	Homo sapiens	cDNA FLJ10914 fis, clone OVARC1000212.	1067	100
164	gi7023258	Homo sapiens	cDNA FLJ10914 fis, clone OVARC1000212.	649	72
165	gi7022147	Homo sapiens	cDNA FLJ10233 fis, clone HEMBB1000266.	3464	100
65	gi12224837	Homo sapiens	mRNA; cDNA DKFZp547K202 (from clone DKFZp547K202).	3464	100
65	AAY99662	Homo sapiens	Human GTPase associated protein-13.	3464	100
66 66	gi7582304	Homo sapiens	BM-016	584	100
66	AAW85610 AAW78199	Homo sapiens	Secreted protein clone eh80_1.		97
67	gi7018410	Homo sapiens	Human secreted protein encoded by gene 74 clone HGBAC11.		97
		Homo sapiens	mRNA; cDNA DKFZp566K023 (from clone DKFZp566K023).		100
67	gi9049987	Rattus		268	81

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
		norvegicus			<u> </u>
468	gi8317213	Homo sapiens	histone acetyltransferase (MOF) mRNA, partial cds.	1625	100
468	gi10433157	Homo sapiens	cDNA FLJ11810 fis, clone HEMBA1006347, moderately similar to MALES-ABSENT ON THE FIRST PROTEIN (EC 2.3.1).	1625	100
468	gi10436400	Homo sapiens	cDNA FLJ14040 fis, clone HEMBA1005513, weakly similar to MALES-ABSENT ON THE FIRST PROTEIN (EC 2.3.1).	1613	99
469	AAY76072	Homo sapiens	Human skin cell protein, SEQ ID NO:327.	668	100
469	AAB56011	Homo sapiens	Skin cell protein, SEQ ID NO: 327.	668	100
470	gi29481	Homo sapiens	Human erythrocyte 2,3- bisphosphoglycerate mutase mRNA EC 2.7.5.4.	1362	100
470	gi 179527	Homo sapiens	Human 2,3-bisphosophoglycerate mutase (BPGM) gene, exon 3.	1362	100
470	AAB11959	Homo sapiens	Glycated human erythrocyte bisphosphoglycerate mutase (BPGM).	.1362	100
471	gi6841472	Homo sapiens	HSPC125	892 .	100
471	gi12001966	Homo sapiens	clone 015g09 My013 protein mRNA, complete cds.	892	100
471	gi9624483	Homo sapiens	HRPAP20 short form mRNA, complete cds.	640	72
472	gi9367763	Homo sapiens	mRNA for zinc finger protein Cezanne (CEZANNE gene).	2580	100
472	gi6102920	Homo sapiens	mRNA; cDNA DKFZp434H0717 (from clone DKFZp434H0717); partial cds.	2197	100
472	gi7332054	Caenorhabditis elegans	contains similarity to tumor necrosis factors	126	25
473	gi8489813	Homo sapiens	DJ963K23.2 mRNA, complete cds.	1255	100
473	AAB43861	Homo sapiens	Human cancer associated protein sequence SEQ ID NO:1306.	1255	100
473	gi9858803	Mus musculus	Zfp228	1090	91
474	gi7020223	Homo sapiens	cDNA FLJ20254 fis, clone COLF6926.	2278	100
474	AAY25743	Homo sapiens	Human secreted protein encoded from gene 33.	917	100
474	AAY76166	Homo sapiens	Human secreted protein encoded by gene 43.	724	94
475	gi14042066	Homo sapiens	cDNA FLJ14503 fis, clone NT2RM1000252, weakly similar to H.sapiens E-MAP-115 mRNA.	159	26
475	gi7270600	Arabidopsis thaliana	trichohyalin like protein	156	25
475	gi180195	Homo sapiens	Human aorta caldesmon mRNA, complete cds.	145	25
476	gi11066250	Homo sapiens	presenilins associated rhomboid-like protein (PARL) mRNA, complete cds.	2030	100
476	gi13177766	Homo sapiens	, Similar to presentiins associated rhomboid-like protein, clone MGC:4756, mRNA, complete cds.	1107	99
476	gi7959883	Homo sapiens	PRO2207	986	100
477	AAY91941	Homo sapiens	Human chaperone protein 2 (HCHP-2).	1977	100
477	gi7019854	Homo sapiens	cDNA FLJ20027 fis, clone ADSE01901.	1965	99
477	gi6567172	Mus musculus	mDj10	1863	93
478	gi13937971	Homo sapiens	; Similar to RIKEN cDNA 1110005A23 gene, clone MGC:14726, mRNA,	1040	100

SEQ ID	Accession	Species	Description	Score	1 %
NO:	No.		Description .	Score	Identity
			complete cds.		Identity
478	gi13940310	Homo sapiens	HCC-1 gene.	1040	100
478	AAB36609	Homo sapiens	Human FLEXHT-31 protein sequence SEQ ID NO:31.	1040	100
479	gi11065999	Homo sapiens	neuronal calcium binding protein NECAB3 mRNA, complete cds.	1889	99
479	gi10798741	Homo sapiens	XB51 mRNA for X11L-binding protein 51, complete cds.	654	99
479	gi10798743	Mus musculus	X11L binding protein 51	1079	86
480	gi6094684	Homo sapiens	PAC clone RP1-278D1 from X, complete sequence.	3056	92
480	gi10435614	Homo sapiens	cDNA FLJ13568 fis, clone PLACE1008368, weakly similar to RING CANAL PROTEIN.	1847	100
480	gi7023516	Homo sapiens	cDNA FLJ11078 fis, clone PLACE1005102, weakly similar to RING CANAL PROTEIN.	1208	42
481	gi7020424	Homo sapiens	cDNA FLJ20369 fis, clone HEP19364.	2727	100
481	gi1110599	Mus sp.	semaphorin homolog=M-Sema F	2653	86
481	AAB88485	Homo sapiens	Human membrane or secretory protein clone PSEC0078.	1774	100
482	gi4679028	Homo sapiens	HSPC021	1930	100
482	gi5106781	Homo sapiens	HSPC025	1930	100
482	gi12654535	Homo sapiens	, HSPC025, clone MGC:735, mRNA, complete cds.	1930	100
483	gil145789	Rattus norvegicus	neuroligin 2	4417	98
483	gi7960135	Homo sapiens	neuroligin 3 isoform gene, complete cds, alternatively spliced.	2736	65
483	gi7960131	Homo sapiens	neuroligin 3 isoform HNL3 mRNA, complete cds, alternatively spliced.	2729	65
484	gi14250554	Homo sapiens	, hexokinase 1, clone MGC:1724, mRNA, complete cds.	4725	99
484	gi2873349	Homo sapiens	hexokinase I (HK1) gene, exon 18, complete cds, alternatively spliced.	4725	99
484	gi184021	Homo sapiens	Human hexokinase 1 (HK1) mRNA, complete cds.	4718	99
485	gi8453103	Homo sapiens	zinc finger protein mRNA, complete cds.	3726	100
485	gi13752754	Homo sapiens	zinc finger 1111 mRNA, complete cds.	1689	56
485	gi10436789	Homo sapiens	cDNA FLJ14345 fis, clone THYRO1001189, weakly similar to ZINC FINGER PROTEIN 91.	1683	56
486	AAB56937	Homo sapiens	Human prostate cancer antigen protein sequence SEQ ID NO:1515.	2341	100
486	gi12804453	Homo sapiens	, Similar to Tu translation elongation factor, mitochondrial, clone MGC:1592, mRNA, complete cds.	2326	100
486	gi899285	Homo sapiens	H.sapiens mRNA for elongations factor Tu-mitochondrial.	2326	100
487	gi9910111	Homo sapiens	myosin X (MYO10) mRNA, complete cds.	10727	99
487	gi6996558	Mus musculus	myosin X	10089	93
487	gi7108753	Homo sapiens	myosin X (MYO10) mRNA, partial cds.	8029	99
488	gi7688687	Homo sapiens	AD-017 protein mRNA, complete cds.	1935	100
488	gi14042251	Homo sapiens	cDNA FLJ14611 fis, clone NT2RP1000988.	1935	100
488	AAY66671	Homo sapiens		1935	100
489	gi202215	Mus musculus		2387	100
489	gi14328047	Homo sapiens		2387	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
1,0,			mRNA, complete cds.		
489	gi1333692	Macaca fascicularis	alpha-tubulin (ATG-initiation codon missing)	2382	100
490	gi5912034	Homo sapiens	mRNA; cDNA DKFZp434N0535 (from clone DKFZp434N0535); partial cds.	6810	99
490	gi5912239	Homo sapiens	mRNA; cDNA DKFZp434O225 (from clone DKFZp434O225); partial cds.	3442	99
490	gi3292939	Drosophila melanogaster	Additional sex combs	295	39
491	gi5912034	Homo sapiens	mRNA; cDNA DKFZp434N0535 (from clone DKFZp434N0535); partial cds.	5941	99
491	gi5912239	Homo sapiens	mRNA; cDNA DKFZp434O225 (from clone DKFZp434O225); partial cds.	2573	99
491	gi3292939	Drosophila melanogaster	Additional sex combs	295	39
492	AAY68778	Homo sapiens	Amino acid sequence of a human phosphorylation effector PHSP-10.	2463	99
492	gi479173	Homo sapiens	H.sapiens nek3 mRNA for protein kinase.	2417	99
492	gi13529320	Mus musculus	Similar to NIMA (never in mitosis gene a)-related expressed kinase 3	1887	73
493	gi13539686	Homo sapiens	protein kinase C and casein kinase substrate 1 (PACSIN1) mRNA, complete cds.	2365	100
493	gi728604	Mus musculus	PACSIN	2250	.95
493	gi4324452	Rattus norvegicus	syndapin I	2250	95
494	gi7023749	Homo sapiens	cDNA FLJ11220 fis, clone PLACE1008129.	3994	100
494	gi10433501	Homo sapiens	cDNA FLJ12104 fis, clone HEMBB1002697.	2829	100
494	gi5788108	Homo sapiens	PAC clone RP5-1087M19 from 7q11.23-q21.1, complete sequence.	757	63
495	AAB54375	Homo sapiens	Human pancreatic cancer antigen protein sequence SEQ ID NO:827.	2897	99
495	AAY57923	Homo sapiens	Human transmembrane protein HTMPN-47.	2724	98
495	AAW88628	Homo sapiens	Secreted protein encoded by gene 95 clone HPWAN23.	2686	98
496	gi7959788	Homo sapiens	PRO1635	317	100
496	AAW74852	Homo sapiens	Human secreted protein encoded by gene 124 clone HPCAD23.	143	100
497	gi7707424	Homo sapiens	mRNA for syntaxin 18, complete cds.	1705	100
498	gi1613858	Homo sapiens	Human zinc finger protein zfp47 (zf47) mRNA, partial cds.	1488	83
498	gi13938633	Mus musculus	RIKEN cDNA 2810435N07 gene	1318 1242	60 58
498	gi9837564	Mus musculus	SCAN-KRAB-zinc finger protein	1539	99
499	AAY27795	Homo sapiens	Human secreted protein encoded by gene No. 79.	1370	100
499	gi10436317	Homo sapiens	cDNA FLJ13986 fis, clone Y79AA1001923, weakly similar to Homo sapiens F-box protein Fbx22 (FBX22) gene.		100
499	gi6164747	Homo sapiens	F-box protein Fbx22 (FBX22) gene, partial cds.	391	93
500	gi3150052	Homo sapiens	TGF beta receptor associated protein-1 mRNA, complete cds.	4455	100
500	gi14280050	Homo sapiens	Vps39/Vam6-like protein gene, complete cds.	382	24
500	gi12718237	Neurospora	related to TGF beta receptor associated	174	31

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
		crassa	protein 1		Tuentity
501	gi7023051	Homo sapiens	cDNA FLJ10796 fis, clone NT2RP4000648, weakly similar to	3360	99
			TRANS-ACTING TRANSCRIPTIONAL PROTEIN ICP0.	·	
501	gi9651170	Homo sapiens	cell cycle checkpoint protein CHFR mRNA, complete cds.	2491	96
501	AAB20219	Homo sapiens	Human Chfr (checkpoint with FHA and ring finger) protein.	2491	96
502	gi7329074	Homo sapiens	collagen type V alpha 3 chain (COL5A3) mRNA, complete cds.	9671	100
502	gi8568094	Rattus norvegicus	alpha 4 type V collagen	8038	82
502	gi7329072	Mus musculus	collagen type V alpha 3 chain	7970	82
503	gi12654687	Homo sapiens	, clone MGC:2616, mRNA, complete cds.	1161	100
503	gi7769617	Mus musculus	TCE2 ·	1050	89
504	gi12654687	Homo sapiens	, clone MGC:2616, mRNA, complete cds.	1140	96
504	gi7769617	Mus musculus	TCE2	1029	86
505	gi12654687	Homo sapiens	, clone MGC:2616, mRNA, complete cds.	654	100
505	gi7769617	Mus musculus	TCE2	629	92
506	gi14249942	Homo sapiens	, Similar to RIKEN cDNA 0610008P16 gene, clone MGC:15937, mRNA, complete cds.	1609	100
506	AAB56487	Homo sapiens	Human prostate cancer antigen protein sequence SEQ ID NO:1065.	1167	98
506	gi2828262	Bos taurus	aralkyl acyl-CoA:amino acid N- acyltransferase	597	40
507	gi7688987	Homo sapiens	uncharacterized bone marrow protein BM046	1295	100
507	AAB64387	Home sapiens	Amino acid sequence of human intracellular signalling molecule INTRA19.	1202	94
507	gi9437511	Homo sapiens	BM024	1045	98
508	AAB18979	Homo sapiens	Amino acid sequence of a human transmembrane protein.	1203	100
508	gi6808196	Homo sapiens	mRNA; cDNA DKFZp434P1018 (from clone DKFZp434P1018); partial cds.	938	100
508	gi13960126	Homo sapiens	, Similar to leucine-rich neuronal protein, clone MGC:4126, mRNA, complete cds.	845	100
509	gi13938527	Homo sapiens	, Similar to RIKEN cDNA 2810002N01 gene, clone MGC:2562, mRNA, complete cds.	1048	100
509	AAY35994	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 379.	1032	98
509	AAG00345	Homo sapiens	Human secreted protein, SEQ ID NO: 4426.	619	98
510	gi773387	Neurospora crassa	Restriction enzyme inactivation of met-10 complementation in this region. Sequence similarity to S. cerevisiae chromosome VIII cosmid 9205, accession no. U10556 CDS residues 22627-24126	536	35
510	gi487945	Saccharomyce s cerevisiae	Yhr070wp	528	49
510	AAG02508	Homo sapiens	Human secreted protein, SEQ ID NO: 6589.	324	100
511	gi11493195	Homo sapiens	mRNA for LB1 protein.	2614	00
	gi10434688	Homo sapiens	cDNA FLJ12920 fis, clone NT2RP2004594.	2614 2604	99
11	gi12053201	Homo sapiens	mRNA; cDNA DKFZp434A1031 (from	2604	99

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			clone DKFZp434A1031); complete cds.		
512	AAW75106	Homo sapiens	Human secreted protein encoded by gene 50 clone HHSDZ57.	471	100
512	AAY59689	Homo sapiens	Secreted protein 26-44-1-B5-CL3_1.	471	100
512	AAY48331	Homo sapiens	Human prostate cancer-associated protein 28.	471	100
514	AAW67888	Homo sapiens	Human secreted protein encoded by gene 82 clone HSKHL65.	921	92
514	gi13436110	Homo sapiens	, Similar to RIKEN cDNA 2310034L04 gene, clone MGC:11061, mRNA, complete cds.	150	28
514	AAY53052	Homo sapiens	Human secreted protein clone df202_3 protein sequence SEQ ID NO:110.	132	33
515	gi7020259	Homo sapiens	cDNA FLJ20276 fis, clone HEP02437.	5378	100
515	gi10432807	Homo sapiens	cDNA FLJ11534 fis, clone HEMBA1002679.	3024	99
515	gi9916	Plasmodium falciparum	liver stage antigen	399	23
516	AAB67448	Homo sapiens	Amino acid sequence of a human chaperone polypeptide.	1190	99
516	gi13477189	Homo sapiens	, Similar to RIKEN cDNA 1300007M11 gene, clone MGC:12943, mRNA, complete cds.	1182	99
516	AAG03527	Homo sapiens	Human secreted protein, SEQ ID NO: 7608.	389	98
517	gi7023782	Homo sapiens	cDNA FLJ11240 fis, clone PLACE1008568.	2796	100
517	AAB08869	Homo sapiens	Amino acid sequence of a human secretory protein.	2792	99
517.	AAB23626	Homo sapiens	Human secreted protein SEQ ID NO: 52.	2792	99
518	gi6460009	Deinococcus radiodurans	citrate lyase, beta subunit	211	30
518	gi14025765	Mesorhizobiu m loti	citrate lyase beta-subunit	324	31
518	gi14024477	Mesorhizobiu m loti	Citrate lyase beta chain (acyl lyase subunit); CitE	316	33
519	gi14041831	Homo sapiens	cDNA FLJ14357 fis, clone HEMBA1000005, highly similar to DNAJ PROTEIN HOMOLOG MTJ1.	2873	100
5.19	AAB67447	Homo sapiens	Amino acid sequence of a human chaperone polypeptide.	2481	99
519	gi473847	Mus musculus	dnaJ-like protein	2413	84
520	. gi7669968	Homo sapiens	mRNA; cDNA DKFZp761G0313 (from clone DKFZp761G0313).	789	100
520	gi4586315	Homo sapiens	ORCTL3 mRNA for organic-cation transporter like 3, complete cds.	348	38
520	gi4835384	Homo sapiens	DNA, DLEC1 to ORCTL4 gene region, section 1/2 (DLEC1, ORCTL3, ORCTL4 genes, complete cds).	348	38
521	gi7959805	Homo sapiens	PRO0823	344	100
522	gi10434341	Homo sapiens	cDNA FLJ12691 fis, clone NT2RM4002571, weakly similar to H.sapiens mRNA for UDP- GalNAc:polypeptide N- acetylgalactosaminyltransferase (T2).	2605	89
522	gi10436305	Homo sapiens	cDNA FLJ13977 fis, clone Y79AA1001603, weakly similar to POLYPEPTIDE N- ACETYLGALACTOSAMINYLTRANS FERASE (EC 2.4.1.41).	1631	99

SEQ ID NO:	Accession No.	Species	Description	Score	% Identit
522	gi971461	Homo sapiens	H.sapiens mRNA for UDP- GalNAc:polypeptide N- acetylgalactosaminyltransferase (T2).	1386	50
523	gi11493500	Homo sapiens	PRO2979	477	100
523	gi38163	Pan troglodytes	A-gamma-globin	477	100
523	gi176779	Pan troglodytes	gamma-2 globin	477	100
524	gi5262582	Homo sapiens	mRNA; cDNA DKFZp434K063 (from clone DKFZp434K063); partial cds.	3782	99
524	gi10438230	Homo sapiens	cDNA: FLJ21993 fis, clone HEP06576.	1416	100
524	AAY21842	Homo sapiens	Human signal peptide-contianing protein (SIGP) (clone ID 1273453).	1416	100
525	gi1928886	Rattus norvegicus	lin-10 protein homolog	2199	97
525	gi10433467	Homo sapiens	cDNA FLJ12076 fis, clone HEMBB1002442, weakly similar to LIN- 10 PROTEIN.	483	98
525	gi5824587	Caenorhabditis elegans	T01G9.2b	668	37
526	gi1679607	Mus musculus	myosin-I	4206	84
526	gi1924940	Homo sapiens	H.sapiens mRNA for myosin-IE.	4115	99
526	gi65324	Gallus gallus	brush border myosin IB	3812	76
527	AAB63419	Homo sapiens	Human breast cancer associated antigen protein sequence SEQ ID NO:781.	641	99
528	gi13649967	Homo sapiens	fovea-associated SH3 domain binding protein (FASH3) mRNA, complete cds.	558	100
528	gi13539561	Homo sapiens	mRNA for SH3BGRL2 protein.	558	100
528	gi5042302	Mus musculus	sh3bgr protein	365	64
529	gi10436540	Homo sapiens	cDNA FLJ14154 fis, clone NT2RM1000341.	1151	99
529	gi13436011	Mus musculus	RIKEN cDNA 1200013P24 gene	1139	97
529	gi1592161	Methanococcu s jannaschii	ribosomal protein S18 alanine acetyltransferase	109	36
530	gi3135314	Homo sapiens	chromosome 7q22 sequence, complete sequence.	911	100
530	gi6752287	Homo sapiens	Novel human gene mapping to chomosome X.	281	51
531	gi14042818	Homo sapiens	cDNA FLJ14937 fis, clone PLACE1010231, weakly similar to CELL SURFACE GLYCOPROTEIN EMR1 PRECURSOR.	2548	97
531	gi2117161	Homo sapiens	H.sapiens mRNA for HE6 Tm7 receptor.	1366	52
531	AAW36903	Homo sapiens	Human epididymis-specific receptor protein.	1366	52
532	gi7417372	Homo sapiens	intracellular hyaluronan-binding protein mRNA, complete cds.	2175	99
532	gi7110497	Mus musculus	intracellular hyaluronan-binding protein p57	1862	85
532	gi3403154	Homo sapiens	Human Ki-1/57 intracellular antigen mRNA, partial cds.	1591	98
533	gi10436645	Homo sapiens	cDNA FLJ14235 fis, clone NT2RP4000167.	1585	82
533	gi7020976	Homo sapiens	cDNA FLJ20707 fis, clone KAIA1223.	2195	84
	gi13276619	Homo sapiens	mRNA; cDNA DKFZp76110112 (from clone DKFZp76110112).	1444	99
534	gi438880	Rattus norvegicus	tropomyosin	1186	99
534	gi2978558	Xenopus	alpha-tropomyosin	1089	89

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
		laevis			ļ <u> </u>
534	gi438882	Rattus norvegicus	tropomyosin	1086	92
535	gi438880	Rattus norvegicus	tropomyosin	1120	93
535	gi9508585	Homo sapiens	tropomyosin isoform mRNA, complete cds.	1105	93
535	gi12653955	Homo sapiens	, Similar to tropomyosin 4, clone MGC:3261, mRNA, complete cds.	1094	91
536	gi6808111	Homo sapiens	mRNA; cDNA DKFZp434O1230 (from clone DKFZp434O1230); partial cds.	439	100
537	gi6807806	Homo sapiens	mRNA; cDNA DKFZp434K031 (from clone DKFZp434K031); partial cds.	3007	100
537	gi13623334	Homo sapiens	, Similar to DKFZP727C091 protein, clone MGC:10677, mRNA, complete cds.	2392	100
537	AAY25821	Homo sapiens	Human secreted protein fragment encoded from gene 41.	1967	99 .
538	AAB88413	Homo sapiens	Human membrane or secretory protein clone PSEC0170.	1818	99
538	gi6457342	Homo sapiens	E2IG4 (E2IG4) mRNA, complete cds.	1813	99
538	AAB24026	Homo sapiens	Human PRO1788 protein sequence SEQ IDNO:18.	1813	99
539	gi6572289	Homo sapiens	mRNA for mitochondrial tryptophanyl-tRNA synthetase (WARS2 gene).	1820	100
539	gi13421159	Caulobacter crescentus	tryptophanyl-tRNA synthetase	727	46
539	gi11992026	Zymomonas mobilis	tryptophanyl-tRNA synthase	721	43
540	gi7106630	Homo sapiens	Novel human mRNA from chromosome 1, clone Z98884, has homology to PERIOD CIRCADIAN PROTEIN 3.	6301	99
540	gi13160925	Homo sapiens	mRNA for period (Drosophila) homolog 3 hPER3, complete cds.	6274	99
540	AAB23266	Homo sapiens	Human circadian rhythm protein Per3 (hPer3).	6274	99
541	gi9621744	Homo sapiens	ferritin heavy chain subunit mRNA, complete cds.	968	100
541	gi12654093	Homo sapiens	, ferritin, heavy polypeptide 1, clone MGC:5580, mRNA, complete cds.	968	100
541	gi12655095	Homo sapiens	, ferritin, heavy polypeptide 1, clone MGC:1749, mRNA, complete cds.	968	100
542	gi4902699	Homo sapiens	Novel human gene mapping to chomosome 13.	2372	57
542	gi2341020	Homo sapiens	PAC clone 248015 from 13q12-q13, complete sequence.	1447	58
542	gi11907986	Drosophila melanogaster	fry	1054	38
543	gi7582278	Homo sapiens	BM-003	1386	100
543	gi7688983	Homo sapiens	uncharacterized bone marrow protein BM044	1386	100
543	gi1752736	Saccharomyce s cerevisiae	gene required for phosphoylation of oligosaccharides/ has high homology with YJR061w	150	35
544	gi1628401	Homo sapiens	H.sapiens mRNA for leucine-rich primary response protein 1.	3936	98
544	gi940821	Rattus norvegicus	LRPRI	2914	73
544	gi2196560	Schizosacchar omyces pombe	Mis6	223	31

SEQ ID NO:	Accession No.	Species	Description	Score	% Ident
545	gi7022824	Homo sapiens	cDNA FLJ10656 fis, clone NT2RP2006038.	1574	99
545	gi6841138	Homo sapiens	HSPC099 mRNA, partial cds.	248	36
545	AAG02788	Homo sapiens	Human secreted protein, SEQ ID NO: 6869.	234	85
546	AAB71914	Homo sapiens	Human ISOM-6.	1142	98
546	gi3876969	Caenorhabditis elegans	Similarity to Brugia peptidylprolyl isomerase (TR:G984562), contains similarity to Pfam domain: PF00076 (RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)), Score=62.0, E-value=4.2e-15, N=1; PF00160 (Cyclophilin type peptidyl-prolyl cis-trans isomerase), Score=78.1, E-value=3.7e-22, N=1	658	52
546	AAG02246	Homo sapiens	Human secreted protein, SEQ ID NO: 6327.	573	100
547	gi603635	Saccharomyce s cerevisiae	Yel044wp	133	25
548	gi5262665	Homo sapiens	mRNA; cDNA DKFZp564B0769 (from clone DKFZp564B0769); partial cds.	1455	99
548	gi6841172	Homo sapiens	HSPC261	716	99
548	gi12803875	Homo sapiens	, Similar to splicing factor, arginine/serine-rich 4, clone MGC:3920, mRNA, complete cds.	352	33
549	gi7582298	Homo sapiens	BM-013	704	100
549	gi9558483	Ciona savignyi	PEM-3	434	55
549	gi1644450	Caenorhabditis elegans	MEX-3	362	65
550	gi4883433	Homo sapiens	mRNA for membrane transport protein (XK gene).	2148	100
550 550	gi6502963	Mus musculus	KX antigen	1797	81
551	gi2580580	Homo sapiens	testis-specific XK Related Y (XKRY) mRNA, complete cds.	157	31
	gi7670746	Homo sapiens	UDP-glucose:glycoprotein glucosyltransferase 1 precursor, mRNA, complete cds.	8075	99
551	gi13275621	synthetic construct	Rat RUGT	7371	91
551	gi7677176	Rattus norvegicus	UDP-glucose glycoprotein:glucosyltransferase precursor	7371	91
552	gi7688985	Homo sapiens	uncharacterized bone marrow protein BM045	390	72
553	gi12655091	Homo sapiens	, AD-003 protein, clone MGC:783, mRNA, complete cds.	1177	100
553	gi6523799	Homo sapiens	adrenal gland protein AD-003 mRNA, complete cds.	1168	99
53	gi7105659	Caenorhabditis elegans	contains similarity to Streptomyces peucetius carminomycin 4-O- methyltransferase (GB:L13453)	425	39
54	gi7582282	Homo sapiens	BM-005	3445	99
54	gi7022933	Homo sapiens	cDNA FLJ10725 fis, clone NT2RP3001214.	3312	100
54	gi10435575	Homo sapiens	cDNA FLJ13534 fis, clone PLACE1006445.	1648	100
55	gi12751374	Homo sapiens	paraoxanase-3 mRNA, partial cds.		99 .
55	gi1333634	Homo sapiens	paraoxonase 3 (PON3) mRNA, 3' end of cds.		98
55	gi12743899	Oryctolagus	paraoxonase 3	1542	82

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
		cuniculus			122
556	gi7022174	Homo sapiens	cDNA FLJ10252 fis, clone HEMBB1000807.	2826	100
556	gi11596985	Homo sapiens	chromosome 14 clone RP11-361H10 map 14q24.3, complete sequence.	559	36
556	gi7020945	Homo sapiens	cDNA FLJ20689 fis, clone KAIA2890.	510	39
557	gi10434683	Homo sapiens	cDNA FLJ12917 fis, clone NT2RP2004568, weakly similar to PUTATIVE ATP-DEPENDENT RNA HELICASE C30D11.03.	2879	99
557	gi13384106	Homo sapiens	RNA helicase-like protein (RHLP)	2817	99
557	gi7020811	Homo sapiens	cDNA FLJ20596 fis, clone KAT08049.	2020	99
558	gi4760710	Brassica rapa	SLL2-S9-protein	284	43
558	gi1669601	Arabidopsis thaliana	AR401	280	44
558	gi557805	Saccharomyce s cerevisiae	orf, len: 257, CAI: 0.13	327	34
559	gi13548677	Homo sapiens	MKP-7 mRNA for MAPK phosphatase-7, complete cds.	3418	100
559	gi13990989	Mus musculus	MAP kinase phosphatase-7	3093	90
559	AAB20325	Homo sapiens	Human protein phosphatase and kinase protein-4.	3021	90
560	gi10433965	Homo sapiens	cDNA FLJ12464 fis, clone NT2RM1000780.	2196	97
560	gi10434795	Homo sapiens	cDNA FLJ12992 fis, clone NT2RP3000149.	2196	97
560	gi10438048	Homo sapiens	cDNA: FLJ21857 fis, clone HEP02294.	2151	94
561	gi10438048	Homo sapiens	cDNA: FLJ21857 fis, clone HEP02294.	2276	97
561	gi10433965	Homo sapiens	cDNA FLJ12464 fis, clone NT2RM1000780.	2159	94
561	gi10434795	Homo sapiens	cDNA FLJ12992 fis, clone NT2RP3000149.	2159	94
562	gi10433965	Homo sapiens	cDNA FLJ12464 fis, clone NT2RM1000780.	2443	99
562	gi10434795	Homo sapiens	cDNA FLJ12992 fis, clone NT2RP3000149.	2443	99
562	gi10438048	Homo sapiens	cDNA: FLJ21857 fis, clone HEP02294.	2398	96
563	gi11137965	Homo sapiens	tRNA isopentenylpyrophosphate transferase precursor RNA, complete cds.	2158	100
563	gi7019915	Homo sapiens	cDNA FLJ20061 fis, clone COL01383.	1719	100
563	gi9803035	Caenorhabditis elegans	contains similarity to Pfam domain PF00096 (zf-C2H2), Score=12.0, E- value=1.1, N=1	407	32
564	gi7023103	Homo sapiens	cDNA FLJ10826 fis, clone NT2RP4001100.	2171	100
564	gi10434339	Homo sapiens	cDNA FLJ12690 fis, clone NT2RM4002567.	2171	100
564	gi10433458	Homo sapiens	cDNA FLJ12068 fis, clone HEMBB1002329.	2166	99
565	gi7019829	Homo sapiens	cDNA FLJ20011 fis, clone ADKA03432.	865	100
565	gi10438448 .	Homo sapiens	cDNA: FLJ22168 fis, clone HRC00618.	865	100
565	AAG02581	Homo sapiens	Human secreted protein, SEQ ID NO: 6662.	445	98
566	gi11558482	Homo sapiens	mRNA for B-cell lymphoma/leukaemia 11A extra long form (BCL11A-XL gene).	1543	99
566	gi12150278	Homo sapiens	C2H2-type zinc-finger protein mRNA, complete cds.	1039	99 .
566	gi6652688	Mus musculus	C2H2-type zinc finger protein	1033	98

SEQ ID NO:	No.	Species	Description	Score	ldon's
567	gi12053249	Homo sapiens	mRNA; cDNA DKFZp434A155 (from clone DKFZp434A155); complete cds.	994	Ident 100
567	AAY73435	Homo sapiens	Human secreted protein clone yd73_1 protein sequence SEQ ID NO:92.	994	100
567	AAB43698	Homo sapiens	Human cancer associated protein sequence SEQ ID NO:1143.	752	95
568	gi12053249	Homo sapiens	mRNA; cDNA DKFZp434A155 (from clone DKFZp434A155); complete cds.	752	95
568	AAY73435	Homo sapiens	Human secreted protein clone yd73_1 protein sequence SEQ ID NO:92.	752	95
568	AAB43698	Homo sapiens	Human cancer associated protein sequence SEQ ID NO:1143.	853	100
569	gi8096260	Homo sapiens	gene for Nop10p, complete cds.	344	100
569	gi8096476	Homo sapiens	mRNA for Nop10p, complete cds.	344	100
569	gi14424489	Homo sapiens	, nucleolar protein family A, member 3 (H/ACA small nucleolar RNPs), clone MGC:19486, mRNA, complete cds.	344	100
570	gi11595476	Homo sapiens	mRNA for RPB11b1beta protein (POLR2J2 gene).	633	100
570	AAB58870	Homo sapiens	Breast and ovarian cancer associated antigen protein sequence SEQ ID 578.	409	100
570	gi11595474	Homo sapiens	mRNA for RPB11b1alpha protein (POLR2J2 gene).	247	97
571	gi7239381	Homo sapiens	guanine nucleotide exchange factor smgGDS (RAP1GDS1) mRNA, alternatively spliced, complete cds.	2995	99
571	gi13111713	Homo sapiens	, RAP1, GTP-GDP dissociation stimulator 1, clone MGC:2897, mRNA, complete cds.	2994	99
571	gi6942013	Homo sapiens	exchange factor smgGDS mRNA, complete cds, alternatively spliced.	2991	99
572	gi12002978	Homo sapiens	mitosin-associated protein MITAPI (MITAPI) mRNA, complete cds.	1736	100
572	gi12043569	Homo sapiens	Nudel mRNA, complete cds.	1736	100
572	gi13775593	Homo sapiens	endooligopeptidase A mRNA, complete cds.	1720	99
573	gi7022325	Homo sapiens	cDNA FLJ10350 fis, clone NT2RM2001131.	1243	100
573	gi12052730	Homo sapiens	mRNA; cDNA DKFZp761F19121 (from clone DKFZp761F19121).	1243	100
573	gi3417386	Mus musculus	microtubule-associated protein, MAP-115	428	48
574	gi7022502	Homo sapiens	cDNA FLJ10458 fis, clone NT2RP1001457, highly similar to Homo sapiens partial mRNA for beta-transducin family protein.	2555	100
74	gi3687833	Xenopus laevis	notchless	2149	82
74	gi12643028	Oryza sativa	Putative Notchless protein homolog	1110	52
75 75	AAY51115	Homo sapiens	Human HSEC6 protein.	3767	99
	gi1163174	Rattus norvegicus	similar to yeast Sec6p, Swiss-Prot Accession Number P32844; similar to mammalian B94, Swiss-Prot Accession Number Q03169; Method: conceptual translation supplied by author	3606	94
75	AAB49655	Homo sapiens	Human SEC7 protein sequence SEQ ID 14.	2737	89
	gi7020303	Homo sapiens	cDNA FLJ20300 fis, clone HEP06465.	1697	99
76	AAB67575	Homo sapiens	Amino acid sequence of a human hydrolytic enzyme HYENZ7.		47

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
576	gi10434892	Homo sapiens	cDNA FLJ13055 fis, clone	755	47
370		-	NT2RP3001538, weakly similar to		
			HYPOTHETICAL 39.0 KD PROTEIN		
			T28D9.3 IN CHROMOSOME II.		100
577	AAR15222	Homo sapiens	Chronic myelogenous leukaemia-derived	513	100
			myeloid-related protein.	400	100
577	gi32402	Homo sapiens	Human mRNA for HP-1, a member of the	493	100
			corticostatin/defensin family.		100
577	gi181527	Homo sapiens	Human neutrophil peptide (defensin) 1	493	100
			mRNA, complete cds.		100
578	AAY41716	Homo sapiens	Human PRO860 protein sequence.	5224	100
578	AAB44272	Homo sapiens	Human PRO860 (UNQ421) protein	5224	100
			sequence SEQ ID NO:211.		
578	gi14042832	Homo sapiens	cDNA FLJ14946 fis, clone	3746	93
• . •			PLACE2000034, weakly similar to LAR		
			PROTEIN PRECURSOR (EC 3.1.3.48).		<u> </u>
579	gi7021880	Homo sapiens	cDNA FLJ10054 fis, clone	2306	100
317	5.		HEMBA1001310.		
579	gi12653981	Homo sapiens	, TRIAD3 protein, clone MGC:998,	2306	100
317	GITZOSSYOT	1	mRNA, complete cds.		
579	gi7109299	Homo sapiens	TRIAD3 mRNA, partial cds.	2013	100
580	gi3288457	Homo sapiens	mRNA for C2 domain containing PI3-	7615	99
300	613200137	1202215 054	kinase.		l
580	gi3059227	Rattus	phosphoinositide 3-kinase	3988	80
300	g15057227	norvegicus			
580	gi3041786	Mus musculus	Phosphoinositide 3-Kinase-C2gamma	3984	78
581	gi10437125	Homo sapiens	cDNA: FLJ21103 fis, clone CAS04883.	1802	99
	gi7020867	Homo sapiens	cDNA FLJ20635 fis, clone KAT03466.	786	52
581	gi13937952	Homo sapiens	, Similar to upregulated during skeletal	297	100
582	g113937932	1101110 Sapiens	muscle growth 5, clone MGC:14697,		
			mRNA, complete cds.		
582	gi6851054	Rattus	DAPIT protein	278	91
362	g10031034	norvegicus	D	İ	
582	gi9843791	Mus musculus	stretch regulated skeletal muscle protein	259	84
583	gi7582286	Homo sapiens	BM-007	599	100
	AAG02907	Homo sapiens	Human secreted protein, SEQ ID NO:	477	98
583	AAG02907	110mo supieus	6988.		
502	gi3878572	Caenorhabditis	M01F1.6	161	28
583	gi30/03/2	elegans	1.1011		
504	ci12477102	Homo sapiens	, clone MGC:1012, mRNA, complete cds.	3001	99
584	gi13477103	Homo sapiens	mRNA; cDNA DKFZp434E1711 (from	2619	98
584	gi12052999	110mo sapiens	clone DKFZp434E1711); complete cds.		1
£0.4	#702000£	Homo sapiens	cDNA FLJ20721 fis, clone HEP15722.	2402	100
584	gi7020996	Homo sapiens	Human guanylate binding protein B	2645	94
585	AAW48892	nomo sapiens	(HGBPB).		
505	-:10002662	Home coniene	, guanylate binding protein 1, interferon-	2000	66
585	gi12803663	Homo sapiens	inducible, 67kD, clone MGC:3949,		1
	}		mRNA, complete cds.		-
		77	Human guanylate binding protein isoform	2000	66
585	gi183002	Homo sapiens	I (GBP-2) mRNA, complete cds.	2000	1 - "
	 	ļ.,.		3218	99
586	gi7023366	Homo sapiens	cDNA FLJ10983 fis, clone	3210	1
			PLACE1001781, weakly similar to	1	1
]			PROBABLE PROSPROMANTIONALITASE (EC		
			PHOSPHOMANNOMUTASE (EC	· .	
		 	5.4.2.8).	3216	99
586	gi12052930	Homo sapiens	mRNA; cDNA DKFZp566B1524 (from	3210	
		 	clone DKFZp566B1524); complete cds.	1211	43
586	gi3395586	Schizosacchar omyces pombe	similarity to phosphomannomutases	1211	173

SEQ ID NO:	Accession No.	Species	Description	Score	% Identii
587	gi13537208	Mus musculus	Mel18 and Bmil like ring finger	347	40
587	gi2440074	Homo sapiens	mRNA for RNF3A (DONG1) ring finger protein.	347	37
587	gi13537206	Homo sapiens	hMBLR mRNA, complete cds.	345	40
588	gi14042249	Homo sapiens	cDNA FLJ14610 fis, clone	2797	99
			NT2RP1000958, weakly similar to AUTOANTIGEN NGP-1.		
588	gi14042246	Homo sapiens	cDNA FLJ14608 fis, clone NT2RP1000915, weakly similar to	2741	99
588	gi6457340	Homo sapiens	AUTOANTIGEN NGP-1.	<u> </u>	<u> </u>
589	gi7020925	Homo sapiens	E2IG3 (E2IG3) mRNA, complete cds.	2650	100
589	gi7682684	Homo sapiens	cDNA FLJ20673 fis, clone KAIA4464.	2232	100
			phosphoprotein associated with GEMs (PAG) mRNA, complete cds.	2222	99
589	gi7707799	Rattus norvegicus	Csk binding protein Cbp	1696	78
590	gi6682873	Homo sapiens	rec mRNA, complete cds.	2002	100
590	gi7230612	Rattus norvegicus	small rec	1916	95
590	gi3881771	Caenorhabditis elegans	contains similarity to Pfam domain: PF01529 (DHHC zinc finger domain),	586	39
591	gi439522	Mus musculus	Score=137.4, E-value=8.4e-38, N=1 ribosomal protein S3	(70	100
591	gi57728	Rattus rattus	ribosomal protein S3 (AA 1-243)	678	100
591	gi13111933	Homo sapiens	, ribosomal protein S3, clone MGC:3657, mRNA, complete cds.	678 678	100
592	gi6599070	Homo sapiens	mRNA for LIM domains containing protein 1.	3675	99 .
592	gi6599307	Mus musculus	LIM domains containing protein 1	2728	76
592	gi13548632	Homo sapiens	partial LIMD1 gene for LIM domains containing 1, exons 1-2, complete sequence.	2690	99
593	gi7020974	Homo sapiens	cDNA FLJ20706 fis, clone KAIA1273.	2824	98
	gi12082725	Mus musculus	B cell phosphoinositide 3-kinase adaptor	411	29
593	AAG02945	Homo sapiens	Human secreted protein, SEQ ID NO: 7026.	526	100
	gi11596144	Homo sapiens	STE20-like kinase mRNA, partial cds.	5159	99
594	gi3452473	Rattus norvegicus	serine/threonine protein kinase TAO1	5117	98
	AAY55937	Homo sapiens	Human SULU3 protein.	4045	100
595	gi695802	Homo sapiens	transcription factor SL1 mRNA, partial cds.	1693	99
	gi1842206	Mus musculus	TAF168	1326	76
596	gi7020363	Homo sapiens	cDNA FLJ20335 fis, clone HEP11429.	2940	99
596	AAB65680	Homo sapiens	Novel protein kinase, SEQ ID NO: 208.	2940	99
	AAB32078	Homo sapiens	Human secreted protein BLAST search protein SEQ ID NO: 136.	826	100
	gi7020747	Homo sapiens	cDNA FLJ20558 fis, clone KAT11870.	2990	100
	gi12053175	Homo sapiens	mRNA; cDNA DKFZp434A172 (from clone DKFZp434A172); complete cds.	2990	100
97	gi10439123	Homo sapiens	cDNA: FLJ22650 fis, clone HSI07344.	2166	100
	gi7023601	Homo sapiens	cDNA FLJ11127 fis, clone	1897	100
98	gi12224968	Homo sapiens	PLACE1006225. mRNA; cDNA DKFZp667E105 (from clone DKFZp667E105).	620	100
98 [gi14043433	Homo sapiens	, clone IMAGE:3952677, mRNA, partial cds.	549	41
99 g	gi6483296	Homo sapiens	CDH9 mRNA for cadherin-9, complete	4132	100

SEQ ID	Accession	Species	Description	Score	%
NO:	No.			2044	Identity
599	gi867999	Gallus gallus	chicken cadherin-6B	3044	72
599	gi974185	Homo sapiens	mRNA for cadherin-6, complete cds.	3032	72
600	gi5734605	Homo sapiens	mRNA for KARP-1-binding protein 3, complete cds.	750	51
600	gi5734601	Homo sapiens	mRNA for KARP-1-binding protein 1 (KAB1), complete cds.	750	51
600	gi5734603	Homo sapiens	mRNA for KARP-1-binding protein 2 (KAB2), complete cds.	750	51
601	gi10434848	Homo sapiens	cDNA FLJ13028 fis, clone NT2RP3001055, weakly similar to Drosophila melanogaster separation anxiety protein (san) mRNA.	889	100
601	gi10435107	Homo sapiens	cDNA FLJ13194 fis, clone NT2RP3004378, weakly similar to Drosophila melanogaster separation anxiety protein (san) mRNA.	889	100 ·
601	AAB56739	Homo sapiens	Human prostate cancer antigen protein sequence SEQ ID NO:1317.	874	98
602	gi13325182	Homo sapiens	, clone IMAGE:3638994, mRNA, partial cds.	897	100
602	gi12654203	Homo sapiens	, clone IMAGE:3449323, mRNA, partial cds.	560	100
602	gi4514314	Bacillus halodurans	YlqF	260	39
603	gi10954046	Homo sapiens	oxidation protection protein (OXR1) mRNA, complete cds.	1034	97
603	gi13540300	Mus musculus	nucleolar protein C7B	1431	94
603	gi7021988	Homo sapiens	cDNA FLJ10125 fis, clone HEMBA1002954.	1441	99
604	gi1150495	Mus musculus	homology to nucleosome assembly proteins; specifically expressed in neurons	211	36
604	gi1161252	Glycine max	nucleosome assembly protein 1	136	40
604	gi5931610	Homo sapiens	mRNA for Nucleosome Assembly Protein 1-like 2, complete cds.	196	37
605	gi7547029	Homo sapiens	GAP-like protein (N61) mRNA, complete cds.	4684	99
605	gi7688683	Homo sapiens	kinesin heavy chain-like protein (KHCHP) mRNA, complete cds.	822	100
605	AAG03378	Homo sapiens	Human secreted protein, SEQ ID NO: 7459.	633	99
606	gi7022593	Homo sapiens	cDNA FLJ10511 fis, clone NT2RP2000656.	1425	100
606	gi12224996	Homo sapiens	mRNA; cDNA DKFZp667G248 (from clone DKFZp667G248).	1031	100
606	gi10436327	Homo sapiens	cDNA FLJ13991 fis, clone Y79AA1002115.	803	100
607	gi8885998	Rattus norvegicus	neuronal C-SRC tyrosine-specific protein kinase	2826	98
607	gi201057	Mus musculus	tyrosine-specific protein kinase	2822	98
607	gi338460	Homo sapiens	Human c-src-1 proto-oncogene, exon 12.	2815	98
608	gi7243633	Homo sapiens	RB-associated KRAB repressor (RBAK) mRNA, complete cds.	3993	100
608	gi7243635	Mus musculus	RB-associated KRAB repressor	3025	78
608	gi10434235	Homo sapiens	cDNA FLJ12629 fis, clone NT2RM4001828, moderately similar to ZINC FINGER PROTEIN 84.	1881	73
609	gi7008402	Homo sapiens	kappa B-ras 1 mRNA, complete cds.	982	100
609	gi14042659	Homo sapiens	cDNA FLJ14843 fis, clone	978	99

SEQ ID NO:	Accession No.	Species	Description	Score	% Identit
			PLACE1000040, weakly similar to TRANSFORMING PROTEIN P21/K-RAS 2B.		
609	gi7239257	Mus musculus	kappaB-Ras1	952	94
610	gi13625164	Homo sapiens	ankyrin mRNA, complete cds.	426	100
610	gi12698638	Homo sapiens	ankyrin-repeat family A protein 2 (ANKRA2) mRNA, complete cds.	426	100
610	gi10434525	Homo sapiens	cDNA FLJ12814 fis, clone NT2RP2002520, weakly similar to Homo sapiens transcription factor RFX-B (RFXB) mRNA.	426	100
611	gi7959841	Homo sapiens	PRO1853	510	100
611	AAG01282	Homo sapiens	Human secreted protein, SEQ ID NO: 5363.	301	100
612	gi5757703	Mus musculus	syntrophin-associated serine-threonine protein kinase	7464	92
612	gi13537204	Homo sapiens	mRNA for MAST205, complete cds.	4616	68
612	gi406058	Mus musculus	protein kinase	4569	65
613	gi7020724	Homo sapiens	cDNA FLJ20545 fis, clone KAT11476.	1780	100
613	AAB63186	Homo sapiens	Human secreted protein sequence encoded by gene 3 SEQ ID NO:112.	1693	100
613	gi7243701	Drosophila melanogaster	WDS	1574	91
614	gi13383476	Homo sapiens	NUB1 (NUB1) mRNA, complete cds.	3109	100
614	gi5360093	Homo sapiens	NY-REN-18 antigen mRNA, complete cds.	2958	95
614	gi863014	Mus musculus	BS4 peptide	2671	84
615	AAB87345	Homo sapiens	Human gene 4 encoded secreted protein HDPFY41, SEQ ID NO:86.	4534	100
615	gi4886489	Homo sapiens	mRNA; cDNA DKFZp564L2123 (from clone DKFZp564L2123); partial cds.	2892	99
616	gi12711793	Homo sapiens	estrogen regulated LIV-1 protein (LIV-1) mRNA, complete cds.	1171	39
616	gi7638247 gi12654929	Homo sapiens	mesenchymal stem cell protein DSCD75 mRNA, complete cds.	1063	100
	g112034929	Homo sapiens	, mesenchymal stem cell protein DSCD75, clone MGC:5515, mRNA, complete cds.	1063	100
616	AAB03956	Homo sapiens	Human mesenchymal stem cell polypeptide.	1063	100
617	gi7582304	Homo sapiens	BM-016	584	100
617	AAW78199	Homo sapiens	Human secreted protein encoded by gene 74 clone HGBAC11.	562	98
617	AAW85610	Homo sapiens	Secreted protein clone eh80_1.	562	98
618	gil3603398	Homo sapiens	mRNA for SEZ6L, complete cds.	4199	98
618 618	gil3185723	Homo sapiens	n 1755 can be A, G, C, or T	2164	49 .
	AAB70537	Homo sapiens	Human PRO7 protein sequence SEQ ID NO:14.	2164	49
619	gi3880445	Caenorhabditis elegans	contains similarity to Pfam domain: PF02214 (K+ channel tetramerisation domain), Score=79.5, E-value=2.3e-20, N=1	327	40
519	AAY34129	Homo sapiens.	Human potassium channel K+Hnov28.	195	40
519	AAZ11907_ aal	Homo sapiens	Human potassium channel K+Hnov28 cDNA (5' splice variant 1).	195	40
520	gi10437116	Homo sapiens	cDNA: FLJ21097 fis, clone CAS03931.	1146	100
520	gi14250732	Homo sapiens	, chromosome 11 open reading frame 14, clone MGC:12847, mRNA, complete cds.	1146	100
520	gi13276621	Homo sapiens		378	43

SEQ ID	Accession	Species	Description	Score	%
NO:	No.		2000 2000		Identity
			clone DKFZp761G1913).	955	58
621	gi10437078	Homo sapiens	cDNA: FLJ21069 fis, clone CAS01594.	867	100
621	gi5911935	Homo sapiens	mRNA; cDNA DKFZp586N1922 (from	807	100
	1 1 000000	77	clone DKFZp586N1922); partial cds. Protein fragment encoded by gene 27.	657	100
621	AAB27870	Homo sapiens	, tumor protein, translationally-controlled	898	100
622	gi13097159	Homo sapiens	1, clone MGC:5308, mRNA, complete cds.	076	100
622	gi14043771	Homo sapiens	, clone MGC:14243, mRNA, complete cds.	898	100
622	gi7573519	Homo sapiens	TPT1 gene for translationally controlled tumor protein (TCTP), exons 1-6.	898	100
623	gi7020339	Homo sapiens	cDNA FLJ20320 fis, clone HEP08923.	1135	100
623	AAB18972	Homo sapiens	Amino acid sequence of a human transmembrane protein.	1135	100
623	gi1314162	Schizosacchar omyces pombe	seven transmembrane protein	217	29
624	gi6467990	Mus musculus	PDZ domain actin binding protein Shroom	4816	66
624	gi6467992	Mus musculus	actin binding protein ShroomS	4816	66
624	gi13938323	Homo sapiens	, Similar to shroom, clone IMAGE:3349317, mRNA, partial cds.	4006	99
625	gi12804029	Homo sapiens	, clone IMAGE:3940519, mRNA, partial cds.	1551	100
625	AAY21850	Homo sapiens	Human signal peptide-contianing protein (SIGP) (clone ID 1880830).	1109	100
625	gi8655657	Homo sapiens	mRNA; cDNA DKFZp762O076 (from clone DKFZp762O076).	593	57
626	gi7328140	Homo sapiens	mRNA; cDNA DKFZp762D096 (from clone DKFZp762D096); partial cds.	601	100
626	gi13436341	Homo sapiens	, Similar to RIKEN cDNA 1600014C10 gene, clone MGC:10922, mRNA, complete cds.	384	100
627	gi1293559	Mus musculus	astrotactin	4312	95
627	gi6502571	Mus musculus	astrotactin2	2580	51
627	gi6502573	Homo sapiens	astrotactin2 (ASTN2) mRNA, complete cds.	2569	51
628	AAY73387	Homo sapiens	HTRM clone 3340290 protein sequence.	1439	95
628	AAY48312	Homo sapiens	Human prostate cancer-associated protein 9.	1073	84
628	gi12654077	Homo sapiens	, clone IMAGE:3458173, mRNA, partial cds.	1045	86
629	gi11095188	Homo sapiens	dipeptidyl peptidase 8 (DPP8) mRNA, complete cds.	3521	99
629	gi14042790	Homo sapiens	cDNA FLJ14920 fis, clone PLACE1007416, weakly similar to DIPEPTIDYL PEPTIDASE IV (EC 3.4.14.5).	2457	99
629	gi7020273	Homo sapiens	cDNA FLJ20283 fis, clone HEP04088.	2483	100
630	gi11095188	Homo sapiens	dipeptidyl peptidase 8 (DPP8) mRNA, complete cds.	2560	99
630	gi14042790	Homo sapiens	cDNA FLJ14920 fis, clone PLACE1007416, weakly similar to DIPEPTIDYL PEPTIDASE IV (EC 3.4.14.5).	2457	99
630	gi11095192	Homo sapiens	dipeptidyl peptidase 8 (DPP8) mRNA, partial cds, alternatively spliced.	2482	100
631	gi7020611	Homo sapiens	cDNA FLJ20481 fis, clone KAT07534.	2211	99
631	AAY57908	Homo sapiens	Human transmembrane protein HTMPN-	975	44

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			32.		1 2 2 3 2 3 2
631	AAB54284	Homo sapiens	Human pancreatic cancer antigen protein sequence SEQ ID NO:736.	516	40
632	gi35700	Homo sapiens	Human mRNA for phosphoriobosyl pyrophosphate synthetase subunit II (EC 2.7.6.1).	1596	99
632	gi206434	Rattus norvegicus	phosphoribosyl pyrophosphate synthetase	1585	98
632	gi56979	Rattus norvegicus	ribose-phosphate pyrophosphokinase subunit II (AA 1-318)	1585	98
633	gi11181620	Homo sapiens	Rag D mRNA, complete cds.	1276	100
633	gi6808148	Homo sapiens	mRNA; cDNA DKFZp761H171 (from clone DKFZp761H171); partial cds.	1276	100
633	AAB56443	Homo sapiens	Human prostate cancer antigen protein sequence SEQ ID NO:1021.	1276	100
634	gi6807893	Homo sapiens	mRNA; cDNA DKFZp434H2226 (from clone DKFZp434H2226); partial cds.	1079	100
635	gi10435042	Homo sapiens	cDNA FLJ13152 fis, clone NT2RP3003385, highly similar to Mus musculus SKD3 mRNA.	3495	100
635	gi4958935	Rattus norvegicus	suppressor of potassium transport defect 3	3085	88
635	gi563129	Mus musculus	SKD3	3066	88
636	AAB20322	Homo sapiens	Human protein phosphatase and kinase protein-1.	1770	100
636	gi1903458	Dictyostelium discoideum	myosin heavy chain kinase B	236	32
636	gi2104701	Mus musculus	elongation factor-2 kinase	199	29
637	gi7670003	Homo sapiens	mRNA; cDNA DKFZp434P0531 (from clone DKFZp434P0531).	1850	100
637	gi7417474	Homo sapiens	chromosome 14 clone RP11-493G17 and CTD-2516D11 map 14q24.3, complete sequence.	1251 .	49
637	gi7018538	Homo sapiens	mRNA; cDNA DKFZp434P0111 (from clone DKFZp434P0111); partial cds.	330	43
638	gi7022367	Homo sapiens	cDNA FLJ10375 fis, clone NT2RM2001950.	3056	100
638	AAY53026	Homo sapiens	Human secreted protein clone cn922_5 protein sequence SEQ ID NO:58.	1752	95
638	gi4336692	Drosophila melanogaster	Abnormal X segregation	816	37
639	gi7020972	Homo sapiens	cDNA FLJ20705 fis, clone KAlA1571.	3641	99
639	gi12007334	Homo sapiens	IRS-1 PH domain binding protein PHIP mRNA, complete cds.	3632	99
639	gi14286226	Homo sapiens	, pleckstrin homology domain interacting protein, clone MGC:15187, mRNA, complete cds.	3632	99
640	gi7689025	Homo sapiens	uncharacterized hypothalamus protein HT013 mRNA, complete cds.	978	96
641	gi9937505	Homo sapiens	PLIC-2 mRNA, complete cds.	3167	100
641	gi6563288	Homo sapiens	ubiquitin-like product Chap1/Dsk2 mRNA, complete cds.	3162	99
641	AAB47122	Homo sapiens	Human Chapl.	3162	99
642	AAY53001	Homo sapiens	Human secreted protein clone dn834_1 protein sequence SEQ ID NO:8.	811	100
642	AAG01114	Homo sapiens	Human secreted protein, SEQ ID NO: 5195.	641	99
542	gi12652989	Homo sapiens	, clone MGC:2495, mRNA, complete cds.	489	57
543	gi7021064	Homo sapiens	cDNA FLJ20761 fis, clone HEP00317.	2240	100

SEQ ID	Accession	Species	Description	Score	%
NO:	No.	Opecies	- ·		Identity
643	gi10438264	Homo sapiens	cDNA: FLJ22019 fis, clone HEP07982.	2187	98
643	gi577428	Rattus	Ca2+-dependent activator protein;	1787	77
		norvegicus	calcium-dependent actin-binding protein		
644	gi7023651	Homo sapiens	cDNA FLJ11159 fis, clone PLACE1006966.	2865	99
644	gi7023118	Homo sapiens	cDNA FLJ10835 fis, clone NT2RP4001210.	1253	100
644	gi600058	Saccharomyce s cerevisiae	N1342	710	39
645	gi7020012	Homo sapiens	cDNA FLJ20121 fis, clone COL05942.	1334	99
646	gi14336697	Homo sapiens	16p13.3 sequence section 2 of 8.	609	100
646	gi13436122	Homo sapiens	, non-metastatic cells 4, protein expressed in, clone MGC:11088, mRNA, complete cds.	609	100
646	gi1945762	Homo sapiens	H.sapiens mRNA for nucleoside- diphosphate kinase.	609	100
647	AAB24225	Homo sapiens	Human vesicle associated protein 4 SEQ ID NO:4.	2946	99
647	gi10439139	Homo sapiens	cDNA: FLJ22662 fis, clone HSI08080.	2703	99
647	AAB58427	Homo sapiens	Lung cancer associated polypeptide sequence SEQ ID 765.	1711	99
648	gi7020604	Homo sapiens	cDNA FLJ20477 fis, clone KAT07271.	2639	99
648	gi6672090	Drosophila melanogaster	Vegetable	578	32
649	gi12802986	Homo sapiens	, ring finger protein 24, clone MGC:1815, mRNA, complete cds.	811	100
649	gi5420200	Homo sapiens	Novel human mRNA from chromosome 20, similar to SW:GOLI_DROME Q06003 GOLIATH PROTEIN.	811	100
649	gi5102892	Homo sapiens	mRNA full length insert cDNA clone EUROIMAGE 566628.	566	100
650	gi6841346	Homo sapiens	HSPC054	497	98
651	gi7209305	Homo sapiens	mRNA for FLJ00002 protein, partial cds.	7637	100
651	gi6599226	Homo sapiens	mRNA; cDNA DKFZp434L0827 (from clone DKFZp434L0827); partial cds.	3519	100
651	gi10440406	Homo sapiens	mRNA for FLJ00036 protein, partial cds.	3457	99
652	gi7018505	Homo sapiens	mRNA; cDNA DKFZp434E2220 (from clone DKFZp434E2220).	2470	100
652	gi14042579	Homo sapiens	cDNA FLJ14796 fis, clone NT2RP4001235.	2466	99
652	gi7018507	Homo sapiens	mRNA; cDNA DKFZp434O0420 (from clone DKFZp434O0420).	2466	99
653	gi552196	Plasmodium lophurae	histidine-rich protein	192	40
653	gi160362	Plasmodium falciparum	knob protein	178	42
653	gi3845095	Plasmodium falciparum	knob-associated His-rich protein	172	40
654	AAY70539	Homo sapiens	Human Factor 8 Homologue.	1353	83
654	gi14043498	Homo sapiens	, Similar to neuropilin 1, clone MGC:12920, mRNA, complete cds.	189	34
654	gi7271465	Homo sapiens	soluble neuropilin-1 mRNA, complete cds.	189	34
655	gi7019959	Homo sapiens	cDNA FLJ20087 fis, clone COL03793.	3964	100
655	gi13569705	Homo sapiens	channel kinase 2 (CHAK2) mRNA, complete cds.	3942	99
655	AAY95433	Homo sapiens	Human calcium channel SOC-2/CRAC-1 C-terminal polypeptide.	1172	71
656	gi6094668	Homo sapiens	BAC clone RP11-343N14 from 2,	208	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identit
			complete sequence:		
656	gi10435833	Homo sapiens	cDNA FLJ13729 fis, clone	208	100
	•		PLACE3000121, weakly similar to	ļ	
	ĺ		VESICULAR TRAFFIC CONTROL	[
			PROTEIN SEC15.	ĺ	-
656	gi2827162	Rattus	rsec15	160	73
		norvegicus			'-
657	gi10434153	Homo sapiens	cDNA FLJ12580 fis, clone	1806	99
			NT2RM4001116, weakly similar to	1333	"
			HYPOTHETICAL 216.3 KD PROTEIN		
			R06F6.8 IN CHROMOSOME II.		
657	gi12053255	Homo sapiens	mRNA; cDNA DKFZp434D105 (from	1806	99
			clone DKFZp434D105); complete cds.	1.000	"
657	gi5901808	Drosophila	BcDNA.GH03694	619	56
		melanogaster		",	30 .
658	gil1181618	Homo sapiens	Rag C mRNA, complete cds.	2072	100
658	gi12007486	Homo sapiens	GTPase-interacting protein 2 mRNA,	2069	99
			complete cds.	2007	77
658	gi13529335	Mus musculus	Similar to Rag C protein	2039	98
659	gi13537208	Mus musculus	Mel18 and Bmil like ring finger	347	40
659	gi2440074	Homo sapiens	mRNA for RNF3A (DONG1) ring finger	+	
	0.2	110.110 Supiciis	protein.	347	37
659	gi13537206	Homo sapiens	hMBLR mRNA, complete cds.	245	10
660	gi7023690	Homo sapiens	cDNA FLJ11184 fis, clone	345	40
	g17023030	110mo sapiens	PLACE1007507.	1043	99
661	gi7020878	Homo sapiens	cDNA FLJ20641 fis, clone KAT02782.	2552	100
561	gi11992034	Rattus	antisense RNA overlapping MCH protein	2552	99
001	g111772034	norvegicus	antisense RNA overlapping MCH protein	1609	65
562	AAB56646	Homo sapiens	Human prostate concentration	015	-
002	AADJOO40	110ino sapiens	Human prostate cancer antigen protein	915	98
662	gi12053357	Homo sapiens	sequence SEQ ID NO:1224. mRNA; cDNA DKFZp586G2122 (from	000	100
002	g112055557	110mo sapiens	clone DKFZp586G2122); complete cds.	900	100
662	AAB36598	Homo sapiens	Human El EVIIT 20 matei		<u> </u>
102	717111111111111111111111111111111111111	Tionio sapiens	Human FLEXHT-20 protein sequence SEQ ID NO:20.	791	59
663	AAW93947	Homo sapiens		1000	100
,,,,	AA W 23241	Tionio sapiens	Human regulatory molecule HRM-3 protein.	1732	100
563	gi3288459	Homo sapiens		1.000	100
,,,,	E17700472	110mo sapiens	mRNA for transcription elongation factor TFIIS.h.	1673	100
63	gi3288547	Mus musculus		1545	-
64	gi14042893	Mus musculus	transcription elongation factor TFIIS.h	1543	90
· · ·	g114042893	Homo sapiens	cDNA FLJ14984 fis, clone	3478	100
		İ	Y79AA1000349, highly similar to		
1			M.musculus Spnr mRNA for RNA		
64	mi12277620	Uome series	binding protein.		
04	gi13377630	Homo sapiens	spermatid perinuclear RNA-binding	3459	99
64	oi12052227	Home	protein mRNA, complete cds.		
10 1	gi12053237	Homo sapiens	mRNA; cDNA DKFZp434N214 (from	3406	100
65	ai10426672	Trans	clone DKFZp434N214); complete cds.		
0.5	gi10436573	Homo sapiens	cDNA FLJ14183 fis, clone	4423	99
			NT2RP2004920, weakly similar to		
			TRANSCRIPTIONAL REGULATOR		
	-:10404045		ATRX.		
65	gi10434345	Homo sapiens	cDNA FLJ12693 fis, clone	4369	99
	A A DOCCO 5		NT2RP1000324.		
65	AAB27235	Homo sapiens	Human EXMAD-13 SEQ ID NO: 13.	3346	100
66	gi9858154	Homo sapiens	tubby super-family protein (TUSP)	3598	100
		İ	mRNA, complete cds, alternatively	j	
			spliced.		
66	gi9502082	Homo sapiens	tubby super-family protein (TUSP)	3556	100
		1	mRNA, complete cds.	i	

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:	gi9502080	Mus musculus	tubby super-family protein	3505	98
667	gi7106796	Homo sapiens	HSPC203	554	100
667	gi9963859	Homo sapiens	PTD019 mRNA, complete cds.	554	100
667	AAY35987	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 236.	554	100
668	gi6996442	Homo sapiens	CTL1 gene.	3398	99
668	gi6996589	Rattus norvegicus	CTL1 protein	3291	96
668	gi6996587	Torpedo marmorata	CTL1 protein	2454	71
669	gi6808165	Homo sapiens	mRNA; cDNA DKFZp761A052 (from clone DKFZp761A052).	2265	100
669	gi10439058	Homo sapiens	cDNA: FLJ22607 fis, clone HSI04846.	1992	100
669	gi7673616	Mus musculus	DXImx46e protein	1958	98
670	gi6808252	Homo sapiens	mRNA; cDNA DKFZp434D1319 (from clone DKFZp434D1319); partial cds.	2336	100
670	gi170035	Glycine max	N-75	221	27
670	gi18576	Glycine max	pre-pro polypeptide (AA -25 to 284)	219	27
671	AAW93947	Homo sapiens	Human regulatory molecule HRM-3 protein.	1116	99
671	gi3288459	Homo sapiens	mRNA for transcription elongation factor TFIIS.h.	1057	99
671	gi3288547	Mus musculus	transcription elongation factor TFIIS.h	950	86
672	gi10434615	Homo sapiens	cDNA FLJ12875 fis, clone NT2RP2003777.	1818	99
672	gi8778741	Arabidopsis thaliana	T30E16.12	254	27
672 .	.gi6520214	Arabidopsis thaliana	ZCF61	228	29
673	AAB88424	Homo sapiens	Human membrane or secretory protein clone PSEC0197.	3032	99
673	gi9294464	Arabidopsis thaliana	long-chain-fatty-acid-CoA ligase-like protein	581	37
673	gi699196	Mycobacteriu m leprae	4-coumarate-coA ligase	326	45
674	gi7022969	Homo sapiens	cDNA FLJ10747 fis, clone NT2RP3001799.	3378	99
674	AAY86211	Homo sapiens	Nuclear transport protein clone hfb066 protein sequence.	1432	87
674	gi10439560	Homo sapiens	cDNA: FLJ23007 fis, clone LNG00451.	703	100
675	gi7021968	Homo sapiens	cDNA FLJ10111 fis, clone HEMBA1002696.	2753	99
675	gi14017768	Mus musculus	FLJ10111	2214	92
675	gi10440211	Homo sapiens	cDNA: FLJ23501 fis, clone LNG02837.	2160	90
676	gi7021968	Homo sapiens	cDNA FLJ10111 fis, clone HEMBA1002696.	2728	98
676	gi14017768	Mus musculus	FLJ10111	2200	90
676	gi10440211	Homo sapiens	cDNA: FLJ23501 fis, clone LNG02837.	2237	92
677	gi7019869	Homo sapiens	cDNA FLJ20036 fis, clone COL00219.	2834	100
677	gi12723779	Lactococcus lactis subsp. lactis	UNKNOWN PROTEIN	306	35
677	gi8885520	Streptococcus gordonii	streptococcal hemagglutinin	297	29
678	gi10437508	Homo sapiens	cDNA: FLJ21415 fis, clone COL04030.	1129	100
678	gi3135314	Homo sapiens	chromosome 7q22 sequence, complete sequence.	1226	100
679	gi6752287	Homo sapiens	Novel human gene mapping to chomosome X.	390	43

SEQ ID NO:	No.	Species	Description	Score	% Identit
679	AAB28327	Homo sapiens	Human secreted protein BLAST search protein SEQ ID NO: 111.	265	100
680	gi3135314	Homo sapiens	chromosome 7q22 sequence, complete sequence.	1199	95
680	gi6752287	Homo sapiens	Novel human gene mapping to chomosome X.	363	41
680	AAB28327	Homo sapiens	Human secreted protein BLAST search protein SEQ ID NO: 111.	265	100
681	gi10439089	Homo sapiens	cDNA: FLJ22626 fis, clone HSI06109.	2120	99
681	gi11044557	Homo sapiens	Human DNA sequence from clone RP11-42415 on chromosome 6 Contains a novel gene, STSs, GSSs and a CpG island, complete sequence.	1185	64
681	gi12654241	Homo sapiens	, Similar to splicing factor, arginine/serine-rich 4 (SRp75), clone MGC:5283, mRNA, complete cds.	949	98
682	gi14042277	Homo sapiens	cDNA FLJ14626 fis, clone NT2RP2000288.	3029	99
682	gi7022410	Homo sapiens	cDNA FLJ10402 fis, clone NT2RM4000457.	2279	100
682	gi6841196	Homo sapiens	HSPC273	1086	100
683	gi2815604	Homo sapiens	Opa-interacting protein OIP2 mRNA, partial cds.	1364	100
683	AAB63276	Homo sapiens	Human breast cancer associated antigen protein sequence SEQ ID NO:638.	839	96
683	AAB63406	Homo sapiens	Human breast cancer associated antigen protein sequence SEQ ID NO:768.	839	96
684	AAB07228	Homo sapiens	Human prostate cancer predisposing protein HPC2.	4325	100
684	AAY99850	Homo sapiens	Human sulphatase G.	4315	99
684	gi10946497	Pan troglodytes	ELAC2	4283	98
685	gi7688979	Homo sapiens	uncharacterized bone marrow protein BM042	895	100
685 .	AAB36580	Homo sapiens	Human FLEXHT-2 protein sequence SEQ ID NO:2.	895	100
685	AAB34771	Homo sapiens	Human secreted protein fragment encoded by DNA clone vq23 1.	888	99
686	gi10438990	Homo sapiens	cDNA: FLJ22559 fis, clone HSI01591.	1897	100
686	gi8954034	Arabidopsis thaliana	F10K1.17	162	31
687	gi7020674	Homo sapiens	cDNA FLJ20515 fis, clone KAT09889.	2027	100
687	AAB20331	Homo sapiens	Human protein phosphatase and kinase protein-10.	1472	92
687	AAB73226	Homo sapiens	Human phosphatase NP_060746 h.	576	83
688	gi6688145	Homo sapiens	mRNA for NICE-3 protein, clone 1023j12.	1019	100
688	gi4689120	Homo sapiens	HSPC012	717	93
688	gi12655055	Homo sapiens	, DKFZP586G1722 protein, clone MGC:1147, mRNA, complete cds.	717	93
689	gi7023701	Homo sapiens	cDNA FLJ11190 fis, clone PLACE1007583.	1317	100
690	gi6469703	Mycobacteriu m tuberculosis	DipZ	203	31
691	gi13676779	Mus musculus	Arkadia	1939	93
691	gi13752369	Gallus gallus	ring finger protein	1888	91
691	gi13752371	Xenopus laevis	ring finger-H2 protein	1537	76
692	gi458255	Homo sapiens	Human X-linked PEST-containing	2849	99

SEQ ID	Accession	Species	Description	Score	% Identity
NO:	No.		transporter (XPCT) gene, exon 6.		Jacontry
692	gi458247	Homo sapiens	Human X-linked PEST-containing	2766	99
092	g1436247	110mo sapiens	transporter (XPCT) mRNA, partial cds.		
692	gi2944356	Mus musculus	X-linked PEST-containing transporter	2249	88
693	gi14042736	Homo sapiens	cDNA FLJ14888 fis, clone	2034	99
	8		PLACE1003762.		
693	gi6841178	Homo sapiens	HSPC264	2019	99
694	gi7023413	Homo sapiens	cDNA FLJ11012 fis, clone	2377	99
		,	PLACE1003190, weakly similar to SOF1	ļ	
	<u> </u>		PROTEIN.	2377	99
694	gi14042745	Homo sapiens	cDNA FLJ14893 fis, clone PLACE1004302, weakly similar to SOF1	23//	"
			PROTEIN.		,
604	gi5912184	Homo sapiens	mRNA; cDNA DKFZp564O0463 (from	1159	99
694	g13912104	1 Tomo sapiens	clone DKFZp564O0463); partial cds.		
695	gi7022931	Homo sapiens	cDNA FLJ10724 fis, clone	2683	99
073	gi, ozzas.		NT2RP3001176.	<u> </u>	
695	gi14198202	Mus musculus	Similar to melanoma antigen recognized	2126	82
			by T cells 2	ļ	
695	gi4826524	Homo sapiens	Novel human gene mapping to	982	92
		<u></u>	chomosome 1.	10110	+
696	gi7022990	Homo sapiens	cDNA FLJ10761 fis, clone	2119	99
			NT2RP3004669, weakly similar to ETHANOLAMINE KINASE (EC		
			1		
	:0000050	Hama sonions	2.7.1.82). ethanolamine kinase (EKII) mRNA,	930	56
696	gi9998952	Homo sapiens	complete cds.	130	1
696	gi532128	Drosophila	ethanolamine kinase	525	45
050	g1332120	melanogaster			
697	gi186774	Homo sapiens	Human Kruppel related zinc finger	986	38
			protein (HTF10) mRNA, complete cds.	ļ	
697	gi5441615	Canis	zinc finger protein	988	37
		familiaris	TO TO TO TO TO TO TO TO TO TO TO TO TO T	947	36
697	gi38032	Homo sapiens	Human ZNF43 mRNA. PC-LKC mRNA for protocadherin LKC,	2877	100
698	gi13537202	Homo sapiens	complete cds.	2011	100
<u> </u>	-:7020017	Homo sapiens	cDNA FLJ20124 fis, clone COL06056.	2862	99
698 <u> </u>	gi7020017 AAY01410	Homo sapiens	Secreted protein encoded by gene 28	963	100
096	AAJUJ410	Tomo supiens	clone HE9ND43.		
699	gi7688977	Homo sapiens	uncharacterized bone marrow protein	888	100
0,7,7	Birossiii		BM041		
699	AAY86515	Homo sapiens	Human gene 71-encoded protein	888	100
		<u> </u>	fragment, SEQ ID NO:430.	1	
699	gi7018421	Homo sapiens	mRNA; cDNA DKFZp564J157 (from	880	99
		<u> </u>	clone DKFZp564J157).	1102	100
700	gi7209307	Homo sapiens	mRNA for FLJ00003 protein, partial cds. PC2-glutamine-rich-associated protein	429	93
700	gi14276857	Homo sapiens	(PCQAP) mRNA, complete cds.	1.27	1
700	gi14043091	Homo sapiens	, clone IMAGE:3350171, mRNA, partial	429	93
700	g114043031	1 Tomo sapiens	cds.		
701	gi7020678	Homo sapiens	cDNA FLJ20517 fis, clone KAT10235.	2821	99
701	gi10177966	Arabidopsis	uridine kinase-like protein	1068	44
701	6.1.0177300	thaliana			
701	gi496728	Saccharomyce	uridine kinase	775	37
	8	s cerevisiae			
702	gi7022789	Homo sapiens	cDNA FLJ10634 fis, clone	1512	100
			NT2RP2005654, weakly similar to		
			CYSTEINE STRING PROTEIN.	+ 1515	100
702	AAB67446	Homo sapiens	Amino acid sequence of a human	1512	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identit
			chaperone polypeptide.		1 2 2 3 3 3
702	AAG01952	Homo sapiens	Human secreted protein, SEQ ID NO: 6033.	422	98
703	gi7021321	Homo sapiens	Gemin4 mRNA, complete cds.	5481	99
703	gi10945430	Homo sapiens	chromosome 17 clone PAC P579 HC90, HC71 AC, HC6 and HC56 genes, complete sequence.	5452	100
703	gi7018412	Homo sapiens	mRNA; cDNA DKFZp434D174 (from clone DKFZp434D174).	4359	99
704	gi9964287	Homo sapiens	hypertension-related calcium-regulated gene mRNA, complete cds.	1129	100
704	gi10434820	Homo sapiens	cDNA FLJ13008 fis, clone NT2RP3000456.	1129	100
704	gi12803673	Homo sapiens	, HT002 protein; hypertension-related calcium-regulated gene, clone MGC:3418, mRNA, complete cds.	1129	100
705	gi10435947	Homo sapiens	cDNA FLJ13814 fis, clone THYRO1000368.	3588	99
705	gi3878402	Caenorhabditis elegans	similar to C2 domain	300	25
705	gi3002479	Leishmania major	L3162.1	198	25
706	gi11907998	Homo sapiens	BCL-6 corepressor (BCOR) mRNA, complete cds; alternatively spliced.	2449	100
706	gi7020277	Homo sapiens	cDNA FLJ20285 fis, clone HEP04260.	1131	99
706	gi10432606	Homo sapiens	cDNA FLJ11362 fis, clone HEMBA1000244.	458	50
707	gi7768662	Homo sapiens	C4ST mRNA for chondroitin 4- sulfotranseferase, complete cds.	1870	100
707	gi8925966	Homo sapiens	chondroitin 4-O-sulfotransferase 1 mRNA, complete cds.	1870	100
707	gi7572958	Homo sapiens	mRNA for chondroitin-4-sulfotransferase (C4ST gene).	1865	99
708	gi2731561	Homo sapiens	ATP receptor subunit (P2X5) mRNA, complete cds.	2167	96
708	gi1552522	Homo sapiens	Human ionotropic ATP receptor P2X5a mRNA, complete cds.	2131	96
708	gi3387944	Homo sapiens	clone 24793 ionotropic ATP receptor P2X5b mRNA, complete cds.	1608	99
709	gi7021105	Homo sapiens	cDNA FLJ20793 fis, clone COL00343.	1587	100
709	gi7206854	Caenorhabditis elegans	contains similarity to Pfam family PF00085 (Thioredoxins), Score 113, E=9.6e-33, N=1	435	29
709	gi13775331	Caenorhabditis elegans	contains similarity to Pfam family PF00085 (Thioredoxin), score=320.7, E=1.8e-95, N=3	297	28
710	AAY04315	Homo sapiens	Human secreted protein encoded by gene 23.	385	100
10	AAB12155	Homo sapiens	Hydrophobic domain protein isolated from HT-1080 cells.	385	100
11	gi13624098	Homo sapiens	cervical cancer 1 protooncogene protein p40 mRNA, complete cds.	520	100
11	gi12653253	Homo sapiens	, DKFZP586A011 protein, clone MGC:8483, mRNA, complete cds.	520	100
11	gi4886473	Homo sapiens	mRNA; cDNA DKFZp586A011 (from clone DKFZp586A011); partial cds.	520	100
12	gi927415	Homo sapiens	H.sapiens mRNA for carnitine acetyltransferase.	3209	98
12	gi13879380	Mus musculus	Similar to carnitine acetyltransferase	3010	90

SEQ ID	Accession	Species	Description	Score	%
NO:	No.				Identity
712	gi758632	Mus musculus	carnitine acetyltransferase	2967	89
713	gi9437507	Homo sapiens	TERA	1198	100
713	gi10439906	Homo sapiens	cDNA: FLJ23279 fis, clone HEP06870.	1198	100
713	gi12652565	Homo sapiens	, TERA protein, clone MGC:1093, mRNA, complete cds.	1198	100
714	gi7023336	Homo sapiens	cDNA FLJ10964 fis, clone PLACE1000748.	1196	100
714	gil4198104	Homo sapiens	, clone MGC:16981, mRNA, complete cds.	1196	100
714	gi7023823	Homo sapiens	cDNA FLJ11269 fis, clone PLACE1009190.	661	100
715	AAB67579	Homo sapiens	Amino acid sequence of a human hydrolytic enzyme HYENZ11.	2740	100
715	gi7020019	Homo sapiens	cDNA FLJ20125 fis, clone COL06152.	1973	99
715	gi13527857	Drosophila melanogaster	pol polyprotein	298	26
716	gi2218077	Homo sapiens	gravin mRNA, complete cds.	8920	99
716	AAW53863	Homo sapiens	Human gravin polypeptide.	8868	99
716	AAB15380	Homo sapiens	Human gravin protein sequence.	8868	99
717	gi7021891	Homo sapiens	cDNA FLJ10060 fis, clone HEMBA1001407.	2306	99
717	gi10433215	Homo sapiens	cDNA FLJ11856 fis, clone HEMBA1006789.	1959	86
717	gi14042890	Homo sapiens	cDNA FLJ14982 fis, clone Y79AA1000258.	1959	86
718	gi6224691	Homo sapiens	Na+/sulfate cotransporter SUT-1 (SUT-1) mRNA, complete cds.	3271	100
718	AAB36158	Homo sapiens	Novel human transporter protein SEQ ID NO: 2.	3268	99
718	AAB23625	Homo sapiens	Human secreted protein SEQ ID NO: 50.	3268	99
719	gi7020123	Homo sapiens	cDNA FLJ20189 fis, clone COLF0657.	1264	99
719	gi14328904	Homo sapiens	fetal globin-inducing factor (FGIF) mRNA, complete cds.	1262	99
719	AAB71861	Homo sapiens	Human FGIF.	1262	99
720	gi6690250	Homo sapiens	clone HQ0659 PRO0659 mRNA, complete cds.	926	100
720	gi12654109	Homo sapiens	, PRO0659 protein, clone MGC:4888, mRNA, complete cds.	926	100
721	gi608025	Homo sapiens	Human ankyrin G (ANK-3) mRNA, complete cds.	580	32
721	gi3885972	Rattus norvegicus	270 kDa ankyrin G isoform	575	32
721	gi178646	Homo sapiens	Human erythroid ankyrin mRNA, complete cds.	609	35
722	gi7020915	Homo sapiens	cDNA FLJ20666 fis, clone KAIA608.	1229	96
722	gi3169096	Schizosacchar omyces pombe	possible pre-mRNA processing by similarity to yeast prp39	420	37
722	gi1458279	Caenorhabditis elegans	contains similarity to TPR domains	252	29
723	gi7020729	Homo sapiens	cDNA FLJ20548 fis, clone KAT11542.	2200	100
723	gi10434720	Homo sapiens	cDNA FLJ12942 fis, clone NT2RP2005139, weakly similar to 2-5A- DEPENDENT RIBONUCLEASE (EC 3.1.26).	2200	100
723	gi11967781	Homo sapiens	ANKRD2 gene for skeletal muscle ankyrin repeat, exons 1-9.	174	30
724	gi10433458	Homo sapiens	cDNA FLJ12068 fis, clone HEMBB1002329.	2903	99
724	gi10434339	Homo sapiens	cDNA FLJ12690 fis, clone	2898	99

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
		1	NT2RM4002567.	 	luentity
724	gi10436665	Homo sapiens	cDNA FLJ14252 fis, clone OVARC1001341.	2167	99
725	gi10434638	Homo sapiens	cDNA FLJ12889 fis, clone NT2RP2004098, weakly similar to ADENYLATE CYCLASE (EC 4.6.1.1).	3026	100
725	gi14250313	Homo sapiens	, clone MGC:16864, mRNA, complete cds.	3026	100
725	gi7020356	Homo sapiens	cDNA FLJ20331 fis, clone HEP10410.	1914	99
726	AAY13947	Homo sapiens	Human transmembrane protein, HP10495.	655	100
726	AAY07878	Homo sapiens	Human secreted protein fragment encoded from gene 27.	655	100
726	gi6841296	Homo sapiens	HSPC323	449	85
727	gi7159733	Homo sapiens	mRNA for ETAA16 protein.	4318	100
727	AAB10622	Homo sapiens	Human Ewing tumor associated antigen protein.	4318	100
728	gi7020138	Homo sapiens	cDNA FLJ20199 fis, clone COLF1162.	2123	99
728	AAY91948	Homo sapiens	Human cytoskeleton associated protein 3 (CYSKP-3).	1650	99
728	gi7020210	Homo sapiens	cDNA FLJ20246 fis, clone COLF6458.	1474	99
729	gi13182775	Homo sapiens	CDA11 mRNA, complete cds.	1495	99
729	gi13937914	Homo sapiens	, clone MGC:12519, mRNA, complete cds.	973	97
729	gi2257524	Schizosacchar omyces pombe	HYPOTHETICAL 47.4KD PROTEIN IN SHP1-SEC17 INTERGENIC REGION	536	42
730	gi7020242	Homo sapiens	cDNA FLJ20265 fis, clone COLF9334.	2813	99
730	gi14042159	Homo sapiens	cDNA FLJ14559 fis, clone NT2RM2001998.	2812	99
730	gi499005	Saccharomyce s cerevisiae	HRC830	128	32
731	gi7022375	Homo sapiens	cDNA FLJ10379 fis, clone NT2RM2002014.	3182	99
731	gi14010930	Homo sapiens	BAC clone RP11-576F1 from 2, complete sequence.	1868	100
731	gi1573555	Haemophilus influenzae Rd	transcription accessory protein (tex)	691	42
732	gi10434409	Homo sapiens	cDNA FLJ12737 fis, clone NT2RP2000337.	1001	99
733	gi7019597	Homo sapiens	clone PAC 270M7 chromosome 21 map 21q11.2, complete sequence.	5944	100
733	gi7407669	Homo sapiens	chromosome 21 PAC 30P13 map 21q11.2, complete sequence, containing gene for nuclear factor RIP140.	5944	100
733	gi7717256	Homo sapiens	chromosome 21 segment HS21C007.	5944	100
734	gi7021956	Homo sapiens	cDNA FLJ10103 fis, clone HEMBA1002495, weakly similar to LIGHT-MEDIATED DEVELOPMENT PROTEIN DET1.	1415	100
734	AAB64828	Homo sapiens	Human secreted protein sequence encoded by gene 12 SEQ ID NO:114.	869	99
734	gi4038594	Lycopersicon esculentum	tDET1 protein	413	37
735	gi6752405	Streptococcus pneumoniae	PspA	137	24
736	gi5080758	Homo sapiens	chromosome 19, BAC 331191 (CIT-B-471f3), complete sequence.	1486	55
736	gi456269	Mus musculus domesticus	zinc finger protein 30	1478	54

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
736	gi4567179	Homo sapiens	chromosome 19, BAC 37295 (CIT-B-21A4), complete sequence.	1281	62
737	gi7023220	Homo sapiens	cDNA FLJ10893 fis, clone NT2RP4002791.	4557	99
737	gi14042072	Homo sapiens	cDNA FLJ14507 fis, clone NT2RM1000399.	4439	97
737	gi7582296	Homo sapiens	BM-012	1807	99
738	gil1596985	Homo sapiens	chromosome 14 clone RP11-361H10 map 14q24.3, complete sequence.	1751	100
738	gi7020945	Homo sapiens	cDNA FLJ20689 fis, clone KAIA2890.	1738	99
738	gi6067151	Homo sapiens	chromosome 14 BAC 98L12, complete sequence.	1159	100
739	gi6941888	Homo sapiens	ubiquitin-specific processing protease (USP25) mRNA, complete cds.	5638	99 .
739	AAB31550	Homo sapiens	A human ubiquitin specific protease (USP).	5638	99
739	gi6693824	Homo sapiens	ubiquitin-specific protease (USP21) mRNA, complete cds.	4022	99
740	gi6693824	Homo sapiens	ubiquitin-specific protease (USP21) mRNA, complete cds.	5465	99
740	AAB31546	Homo sapiens	A human ubiquitin specific protease 25 (USP25).	5465	99
740	AAF24881_ aal	Homo sapiens	DNA encoding a human ubiquitin specific protease 25 (USP25).	5465	99
741	gi7161175	Homo sapiens	mRNA for 19A24 protein (19A24 gene).	1726	100
741	gi13021810	Homo sapiens	NK cell receptor (CS1) mRNA, complete cds.	1349	100
741	AAB32373	Homo sapiens	Human secreted protein sequence encoded by gene 3 SEQ ID NO:59.	1349	100
742	gi7023747	Homo sapiens	cDNA FLJ11219 fis, clone PLACE1008122.	2553	100
742	gi7022222	Homo sapiens	cDNA FLJ10287 fis, clone HEMBB1001387.	880	97
742	AAG01392	Homo sapiens	Human secreted protein, SEQ ID NO: 5473.	569	99
743	gi7023747	Homo sapiens	cDNA FLJ11219 fis, clone PLACE1008122.	2442	97
743	gi7022222	Homo sapiens	cDNA FLJ10287 fis, clone HEMBB1001387.	769	89
743	AAG01392	Homo sapiens	Human secreted protein, SEQ ID NO: 5473.	569	99
744	gi6434857	Homo sapiens	pallid mRNA, complete cds.	872	100
744	gi13435969	Homo sapiens	, pallid (mouse) homolog, pallidin, clone MGC:4983, mRNA, complete cds.	872	100
744	gi6456870	Mus musculus	syntaxin 13-interacting protein pallid	754	87
745	gi6841480	Homo sapiens	HSPC129	2378	99
745	gi6841354	Homo sapiens	HSPC058	1825	99
745	gi7022613	Homo sapiens	cDNA FLJ10523 fis, clone NT2RP2000863.	1489	99
746	gi7023644	Homo sapiens	cDNA FLJ11155 fis, clone PLACE1006935.	1826	99
746	AAB18981	Homo sapiens	Amino acid sequence of a human transmembrane protein.	1000	99
746	gi13384531	Caenorhabditis elegans	similar to C. elegans protein T16H12.10	680	40
747	gi13544089	Homo sapiens	, clone IMAGE:4053618, mRNA, partial cds.	2749	99
747	gi6007859	Chlamydomon as reinhardtii	dynein heavy chain alpha	246	30

SEQ ID NO:	Accession No.	Species	Description	Score	% Ydordia
747	gi2065436	Schizosacchar	tealp	227	Identity 28
740	-:((50770	omyces pombe			
748 749	gi6650778	Homo sapiens	PRO1575	297	100
749	gi8926849	Homo sapiens	mRNA for Pex3p, complete cds.	1892	99
749	gi4092648 gi4218426	Homo sapiens	mRNA for PEX3 protein, partial.	1892	99
		Homo sapiens	pex3 gene (joined CDS, promoter and exon 1).	1892	99
750	gi309209	Mus musculus	early B-cell factor	3064	99
750	gi6630994	Homo sapiens	early B-cell transcription factor (EBF) mRNA, partial cds.	3033	98
750	gi7687988	Gallus gallus	early B-cell factor	3023	97
751	gi10436636	Homo sapiens	cDNA FLJ14228 fis, clone NT2RP3004148.	3102	99
751	gi14278861	Homo sapiens	PHD zinc finger transcription factor mRNA, complete cds.	2127	100
751	gi12804495	Homo sapiens	, clone IMAGE:3356959, mRNA, partial cds.	1472	100 -
752	gi6594639	Homo sapiens	dynein intermediate chain DNAI1 (DNAI1) mRNA, complete cds.	1773	100
752	gi6635422	Homo sapiens	dynein intermediate chain DNAII (DNAII) gene, exon 20 and complete cds.	1768	99
752	gi927637	Anthocidaris crassispina	dynein intermediate chain 2	961	61
753	gi5924385	Rattus norvegicus	ribosomal protein S271	412	100
753	gi12803647	Homo sapiens	, ribosomal protein S27 (metallopanstimulin 1), clone MGC:3659, -mRNA, complete cds.	412	100
753	gi1373421	Homo sapiens	Human ribosomal protein S27 mRNA, complete cds.	412	100
754	gi1655432	Mus musculus	plexin 2	9646	96
754	gi6010215	Homo sapiens	mRNA for partial OCT/plexin-A2 protein.	6985	99
754	gi1665757	Mus musculus	plexin 1	6359	63
755	gi7770189	Homo sapiens	PRO2325	901	100
756	gi7022885	Homo sapiens	cDNA FLJ10697 fis, clone NT2RP3000527, weakly similar to ZINC FINGER PROTEIN 43.	3318	99
756	gi10434872	Homo sapiens	cDNA FLJ13043 fis, clone NT2RP3001338, weakly similar to ZINC FINGER PROTEIN 81.	957	43
756	gi38032	Homo sapiens	Human ZNF43 mRNA.	346	25
757	gi14042238	Homo sapiens	cDNA FLJ14604 fis, clone NT2RP1000363, moderately similar to R.norvegicus LL5 mRNA.	1107	93
757	AAB43723	Homo sapiens	Human cancer associated protein sequence SEQ ID NO:1168.	647	86
757	gi14044043	Homo sapiens	, clone IMAGE:4299555, mRNA, partial cds.	467	66
758	gi7106766	Homo sapiens	HSPC188	532	100
758	gi12804349	Homo sapiens	, clone MGC:4355, mRNA, complete cds.	529	99
758	gi1002516	Saccharomyce s cerevisiae	Hghlp	115	27
759	gi6175593	Homo sapiens	transcription factor IIIC90 mRNA, complete cds.	4326	99
760	gi7023345	Homo sapiens	cDNA FLJ10970 fis, clone PLACE1000948.	647	99
760	AAG03409	Homo sapiens	Human secreted protein, SEQ ID NO:	239	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
1,0,			7490.		
761	gi5441541	Canis familiaris	Ribosomal protein	447	94
761	gi304526	Cricetulus griseus	ribosomal protein S17	447	94
761	gi10439453	Homo sapiens	cDNA: FLJ22917 fis, clone KAT06430.	447	94
762	gi6635353	Homo sapiens	RU1 (RU1) mRNA, complete cds.	4638	99
762	gi8100079	Mus musculus	polycomb-group proteins	4176	88
762	gi8100077	Rattus norvegicus	polycomb-group protein	4152	88
763	gi12804681	Homo sapiens	, S100 calcium-binding protein, beta (neural), clone MGC:1323, mRNA, complete cds.	479	100
763	gi337730	Homo sapiens	Human S100 protein beta-subunit gene, exon 3.	479	100
763	gi404769	Mus musculus	S100 beta protein	473	98
764	gi7106782	Homo sapiens	HSPC196	617	98
764	gi7106786	Homo sapiens	HSPC198	617	98
764	AAW74871	Homo sapiens	Human secreted protein encoded by gene 143 clone HBMDM46.	617	98
765	gi3851206	Homo sapiens	chromosome 19, cosmid F19847, complete sequence.	1282	100
765	gi13276629	Homo sapiens	mRNA; cDNA DKFZp761D221 (from clone DKFZp761D221); complete cds.	815	35
765	gi5701573	Caenorhabditis elegans	similar to S. pombe phosphoprotein (GB:X86179)	430	33
766	gi7020238	Homo sapiens	cDNA FLJ20262 fis, clone COLF7748.	1393	100
766	gi12653607	Homo sapiens	, clone IMAGE:3162218, mRNA, partial cds.	1019	98
766	AAY86358	Homo sapiens	Human gene 11-encoded protein fragment, SEQ ID NO:273.	996	95
767	gi2588619	Homo sapiens	BAC clone CTB-104F4 from 7q21-q22, complete sequence.	2037	100
767	gi1707507	Homo sapiens	H.sapiens mRNA for mitochondrial transcription termination factor.	2037	100
767	gi12654289	Homo sapiens	, transcription termination factor, mitochondrial, clone MGC:5000, mRNA, complete cds.	2033	99
768	gi1314373	Homo sapiens	Human aquaporin-5 (AQP5) gene, exon 4 and complete cds.	1336	100
768	gi664760	Rattus norvegicus	aquaporin-5	1245	91
768	gi4894460	Mus musculus	aquaporin 5	1235	91
769	gi13097624	Homo sapiens	, clone IMAGE:3608084, mRNA, partial cds.	1093	100
769	gi10438279	Homo sapiens	cDNA: FLJ22029 fis, clone HEP08661.	615	60
769	gi13325154	Homo sapiens	, clone IMAGE:3635709, mRNA, partial cds.	609	45
770	AAB48789	Homo sapiens	Human prostate cancer-predisposing protein, CA7 CG04.	2878	100
770	gi11321424	Mus musculus	Ral-A exchange factor RalGPS2	2073	96
770	gi7637906	Homo sapiens	Ral guanine nucleotide exchange factor RalGPS1A mRNA, complete cds.	1224	70
771	gi13623239	Homo sapiens	, Similar to SGC32445 protein, clone MGC:10610, mRNA, complete cds.	1080	99
771	gi7547035	Homo sapiens	SGC32445 protein (SGC32445) mRNA, complete cds.	687	100
771 ·	gi10434977.	Homo sapiens	cDNA FLJ13110 fis, clone NT2RP3002549, moderately similar to	519	64

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			HYPOTHETICAL 26.6 KD PROTEIN T19C3.4 IN CHROMOSOME III.		
772	gi13939858	Homo sapiens	RITA	2614	100
772	gi10048470	Homo sapiens	C2H2-like zinc finger protein (ZNF463) mRNA, complete cds.	2614	100
772	gi8575775	Homo sapiens	KRAB zinc finger protein (RITA) mRNA, complete cds.	2614	100
773	gi12654989	Homo sapiens	, clone MGC:5623, mRNA, complete cds.	2300	100
773	gi3329425	Homo sapiens	huntingtin interacting protein HYPE mRNA, partial cds.	963	100
773	gi429189	Haemophilus somnus	surface protein	152	41
774	gi14028017	Mesorhizobiu m loti	argininosuccinate lyase	199	26
774	gi2182606	Rhizobium sp. NGR234	Ү4гН	179	29
775	gi3098311	Oryctolagus cuniculus	elongation factor 1 A2	2410	100
775	gi8886507	Homo sapiens	elongation factor 1 A-2 (EF1A-2) gene, complete cds.	2410	100
775	gi12653327	Homo sapiens	, eukaryotic translation elongation factor 1 alpha 2, clone MGC:8362, mRNA, complete cds.	2410	100
776	gi6624095	Homo sapiens	BAC clone RP11-294L11 from 2, complete sequence.	2515	97
776	AAY66674	Homo sapiens	Membrane-bound protein PRO1277.	2515	97
776	AAB87542	Homo sapiens	Human PRO1277.	2515	97
777	gi6049162	Homo sapiens	rhabdoid tumor deletion region protein 1 (RTDR1) mRNA, complete cds.	1732	100
777	gi14290442	Homo sapiens	, rhabdoid tumor deletion region protein 1, clone MGC:16968, mRNA, complete cds.	1732	100
778	AAB66071	Homo sapiens	Human INTERCEPT 296.	1787	99
778	AAB18992	Homo sapiens	Amino acid sequence of a human transmembrane protein.	880	58
778	AAB26325	Homo sapiens	Human CASB618 protein.	880	58
779	gi643656	Rattus norvegicus	synaptotagmin VII	1851	95
779	gi12667446	Rattus norvegicus	synaptotagmin VIIs	1851	95
779	gi6136786	Mus musculus	synaptotagmin VII	1842	95
780	gi7020988	Homo sapiens	cDNA FLJ20716 fis, clone HEP19742.	1048	100
780	gi4033606	Adiantum capillus- veneris	Extensin	131	38
780	gi169347	Phaseolus vulgaris	hydroxyproline-rich glycoprotein	130	38
781	gi7020477	Homo sapiens	cDNA FLJ20401 fis, clone KAT00901.	1644	96
781	gi7022002	Homo sapiens	cDNA FLJ10135 fis, clone HEMBA1003117.	590	40
781	gi7022284	Homo sapiens	cDNA FLJ10324 fis, clone NT2RM2000567.	590	40
782	gi6808186	Homo sapiens	mRNA; cDNA DKFZp434D0218 (from clone DKFZp434D0218); partial cds.	1322	99
783	gi505544	Homo sapiens	H.sapiens mRNA for Zinc-finger protein (ZNFpT1).	1211	99
783	AAY58627	Homo sapiens	Protein regulating gene expression PRGE-20.	688	50
783	gi9187356	Homo sapiens	mRNA full length insert cDNA clone	687	50

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			EUROIMAGE 2107395.		·
784	gi8896094	Homo sapiens	SH3-containing protein SH3GLB2 mRNA, complete cds.	1975	97
784	gi4929591	Homo sapiens	CGI-61 protein mRNA, complete cds.	706	69
784	gi8896092	Homo sapiens	SH3-containing protein SH3GLB1 mRNA, complete cds.	706	69
785	gi7770175	Homo sapiens	PRO2249	1827	99
785	gil1527602	Homo sapiens	mRNA for MCM10 homolog, complete cds.	1827	99
785	gi12053187	Homo sapiens	mRNA; cDNA DKFZp434H152 (from clone DKFZp434H152); complete cds.	1682	99
786	gi7023364	Homo sapiens	cDNA FLJ10982 fis, clone PLACE 1001692, moderately similar to S- ACYL FATTY ACID SYNTHASE THIOESTERASE, MEDIUM CHAIN (EC 3.1.2.14).	1413	99
786	gi7023563	Homo sapiens	cDNA FLJ11106 fis, clone PLACE1005763, moderately similar to S- ACYL FATTY ACID SYNTHASE THIOESTERASE, MEDIUM CHAIN (EC 3.1.2.14).	1099	98
786	gi205326	Rattus norvegicus	S-acyl fatty acid sunthetase thio ester hydrolase, medium chain	-807	55
787	gi2599502	Homo sapiens	protocadherin 68 (PCH68) mRNA, complete cds.	327	43
787	AAY24913	Homo sapiens	Human ontherin.	327	43
787	AAY94991	Homo sapiens	Human secreted protein vc35_1, SEQ ID NO:22.	296	28
788	gi7023688	Homo sapiens	cDNA FLJ11183 fis, clone PLACE1007488, weakly similar to PUTATIVE RHO/RAC GUANINE NUCLEOTIDE EXCHANGE FACTOR.	2260	100
788	gi3342246	Rattus norvegicus	actin-filament binding protein Frabin	725	32
788	gi595425	Homo sapiens	Human faciogenital dysplasia (FGD1) mRNA, complete cds.	759	32
789	gi6554165	Homo sapiens	receptor protein tyrosine phosphatase (RPTP-rho) mRNA, alternatively spliced, complete cds.	7734	99
789	gi13378306	Mus musculus	brain RPTPmam4 isoform I	7499	97
789	gi32456	Homo sapiens	H.sapiens hR-PTPu gene for protein tyrosine phosphatase.	4995	64
790	gi7020479	Homo sapiens	cDNA FLJ20402 fis, clone KAT00919.	2024	99
790	gi7770205	Homo sapiens	PRO2521	1957	97
790	gi10241843	Mus musculus	gasdermin	282	29
791	gi5262472	Homo sapiens	mRNA; cDNA DKFZp564J102 (from clone DKFZp564J102); partial cds.	1602	100
792	gi10436457	Homo sapiens	cDNA FLJ14084 fis, clone HEMBB1002383.	830	100
792	AAY94940	Homo sapiens	Human secreted protein clone yi62_1 protein sequence SEQ ID NO:86.	830	100
792	AAY57922	Homo sapiens	Human transmembrane protein HTMPN-46.	830	100
793	gi7328061	Homo sapiens	mRNA; cDNA DKFZp761I2312 (from clone DKFZp761I2312); partial cds.	2723	100
793	gi14039825	Mus musculus	gamma-1 syntrophin	2579	93
793	gi8247279	Homo sapiens	mRNA for syntrophin 4.	2271	97
794	gi6164674	Homo sapiens	heterogeneous nuclear ribonucleoprotein, alternate transcript (RALY) mRNA,	730	66

SEQ ID NO:	Accession No.	Species	Description	Score	%
	T		complete cds.	 	Identi
794	gi14250048	Homo sapiens	, heterogeneous nuclear ribonucleoprotein C (C1/C2), clone MGC:14574, mRNA, complete cds.	705	53
794	gi13937888	Homo sapiens	, Similar to heterogeneous nuclear ribonucleoprotein C, clone MGC:12469, mRNA, complete cds.	704	53
795	gi12653905	Homo sapiens	, Similar to Max dimerization protein 3, clone MGC:2383, mRNA, complete cds.	1045	100
795	AAY93137	Homo sapiens	Human Myx protein.	1023	98
795	AAB35713	Homo sapiens	Human Mad3 protein sequence.	1010	97.
796	gi7020704	Homo sapiens	cDNA FLJ20533 fis, clone KAT10931.	585	98
797	gi7106878	Homo sapiens	HSPC244	398	98
797	AAY07855	Homo sapiens	Human secreted protein fragment encoded from gene 4.	398	98
797	gi13274582	Mus musculus	thymus atrophy-related protein	383	95
798	gi8886483	Gallus gallus	EURL	1178	74
798	gi10435877	Homo sapiens	cDNA FLJ13763 fis, clone PLACE4000089.	873	98
798	AAG01108	Homo sapiens	Human secreted protein, SEQ ID NO: 5189.	561	100
799	AAY33297	Homo sapiens	Human membrane spanning protein MSP-4.	.781	100
799	AAB61149	Homo sapiens	Human NOV18 protein.	781	100
799	AAB61150	Homo sapiens	Human NOV19 protein.	781	100
800	gi8099348	Homo sapiens	zinc finger protein (ZFP) mRNA, complete cds.	4066	99
800	gi2293535	Homo sapiens	zinc finger protein (ZnF20) mRNA, complete cds.	1863	49
800	gil1527849	Mus musculus	zinc finger protein SKAT2	1323	58
801	gi7023523	Homo sapiens	cDNA FLJ11082 fis, clone PLACE1005206.	2693	99
801	gi9558010	Leishmania major	possible cDNA flj11082 fis, clone place1005206	134	26
802	gi6841558	Homo sapiens	HSPC168	1502	100
802	gi6453346	Homo sapiens	Novel human gene on chromosome 20.	1502	100
802	gi13542748	Mus musculus	RIKEN cDNA 3230401D17 gene	1314	86
803	gi7020468	Homo sapiens	cDNA FLJ20396 fis, clone KAT00561.	931	100
803	AAB18980	Homo sapiens	Amino acid sequence of a human transmembrane protein.	931	100
803	AAY91632	Homo sapiens	Human secreted protein sequence encoded by gene 25 SEQ ID NO:305.	914	98
804	gi6650345	Homo sapiens	alpha-catenin-like protein VR22 mRNA, complete cds.	4478	99
804	gi222788	Gallus gallus	alpha N-catenin	2765	60
304	AAR58778	Homo sapiens	Neural alpha-catenin protein.	2765	60
805	gi10434911	Homo sapiens	cDNA FLJ13068 fis, clone NT2RP3001739, weakly similar to HYPOTHETICAL 72.5 KD PROTEIN C2F7.10 IN CHROMOSOME I.	587	38
305	gi5912258	Homo sapiens	mRNA; cDNA DKFZp586K0524 (from clone DKFZp586K0524); partial cds.	190	41
305	gi7022673	Homo sapiens		154	44
306	gi10435877	Homo sapiens		876	99
. 00	gi8886483	Gallus gallus		868	72
06	AAG01108	Homo sapiens			
		Tionio sapiens	Fluman secreted protein, SEQ ID NO: 5189.	561	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
807	gi4521254	Mus musculus	cornichon-like protein	867	100
807	AAB60464	Homo sapiens	Human cell cycle and proliferation protein CCYPR-12, SEQ ID NO:12.	729	81
807	AAY76218	Homo sapiens	Human secreted protein encoded by gene 95.	716	81
808	gi7407144	Homo sapiens	protocadherin Fat 2 (FAT2) mRNA, complete cds.	22667	99
808	gi3449286	Rattus norvegicus	MEGF1	18806	81
808	gi6688786	Mus musculus	mouse fat 1 cadherin	8928	47
809	gi7407144	Homo sapiens	protocadherin Fat 2 (FAT2) mRNA, complete cds.	19770	99
809	gi3449286	Rattus norvegicus	MEGF1 ·	16567	82 ·
809	gi6688786	Mus musculus	mouse fat 1 cadherin	8928	47
810	gi7020201	Homo sapiens	cDNA FLJ20241 fis, clone COLF6335.	2420	100
810	gi10435321	Homo sapiens	cDNA FLJ13337 fis, clone OVARC1001880.	1279	99
810	gi7020600	Homo sapiens	cDNA FLJ20475 fis, clone KAT07206.	634	60
813	gi6483290	Homo sapiens	CDH7 mRNA for cadherin-7, complete cds.	4032	100
811	gi10803408	Homo sapiens	mRNA for cadherin-7 (CDH7 gene).	3965	98
811	gi868001	Gallus gallus	chicken cadherin-7	3830	93
812	gi13276621	Homo sapiens	mRNA; cDNA DKFZp761G1913 (from clone DKFZp761G1913).	1204	97
812	gi8977983	Mus musculus	neuronal interacting factor X 1 (NIX1)	699	78
812	gi10437116	Homo sapiens	cDNA: FLJ21097 fis, clone CAS03931.	297	42
814	gi13279269	Homo sapiens	, clone IMAGE:3631943, mRNA, partial cds.	1480	100
814	gi6808028	Homo sapiens	mRNA; cDNA DKFZp761C029 (from clone DKFZp761C029); partial cds.	857	100
814	AAW88657	Homo sapiens	Secreted protein encoded by gene 124 clone HPMCJ92.	436	94
815	gi7959853	Homo sapiens	PRO1966	281	100
816	gi7259234	Mus musculus	contains transmembrane (TM) region	718	65
816	AAY94954	Homo sapiens	Human secreted protein clone iw66_1 protein sequence SEQ ID NO:114.	679	58
816	AAB62810	Homo sapiens	Human nervous system associated protein NSPRT3 amino acid sequence.	678	61
817	gi5921144	Schizosacchar omyces pombe	mip1	1489	48
817	gi458938	Saccharomyce s cerevisiae	Yhrl86cp	469	30
817	gi9366720	Trypanosoma brucei	possible t16o11.22 protein.	277	45
819	gi7020799	Homo sapiens	cDNA FLJ20590 fis, clone KAT09052.	727	100
820	gi7020555	Homo sapiens	cDNA FLJ20449 fis, clone KAT05575.	1857	99
820	AAY79269	Homo sapiens	Human testis-specific transcription factor PHELIX.	1696	99
821	gi6482350	Homo sapiens	CAC-1 mRNA, partial cds.	1136	100
821	gi13937595	Homo sapiens	, Similar to RIKEN cDNA 1810017F10 gene, clone MGC:2583, mRNA, complete cds.	560	94
821	AAY25770	Homo sapiens	Human secreted protein encoded from gene 60.	560	94
822	gi10434608	Homo sapiens	cDNA FLJ12871 fis, clone NT2RP2003751.	2023	100
822	gi6093227	Homo sapiens	mRNA; cDNA DKFZp43410850 (from clone DKFZp43410850); partial cds.	1607	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
822	gi6453452	Homo sapiens	mRNA; cDNA DKFZp434L0850 (from clone DKFZp434L0850).	1607	100
823	AAY13402	Homo sapiens	Amino acid sequence of protein PRO310.	1079	63
823	AAB18988	Homo sapiens	Amino acid sequence of a human transmembrane protein.	1079	63
823	AAB80270	Homo sapiens	Human PRO310 protein.	1079	63
824	gi13938181	Homo sapiens	, clone IMAGE:2905978, mRNA, partial cds.	2722	99
824	gi6453540	Homo sapiens	mRNA; cDNA DKFZp434D0428 (from clone DKFZp434D0428); partial cds.	2455	99
824	gi10440436	Homo sapiens	mRNA for FLJ00053 protein, partial cds.	807	100
825	gi7022318	Homo sapiens	cDNA FLJ10346 fis, clone NT2RM2001004.	1475	100
826	gi7110152	Mus musculus	selenocysteine lyase SCLY	1219	80
826	gi7022600	Homo sapiens	cDNA FLJ10515 fis, clone NT2RP2000764, weakly similar to NIFS PROTEIN.	592	98
826	gi9887215	Methanosarcin a thermophila	cysteine desulfurase NifS	315	43
827	gi7022560	Homo sapiens	cDNA FLJ10491 fis, clone NT2RP2000239.	1266	100
827	gi7022033	Homo sapiens	cDNA FLJ10156 fis, clone HEMBA1003447.	1161	97
828	gi8247250	Homo sapiens	mRNA for neutral sphingomyelinase II (nSMase2 gene).	3489	100
828	AAB70772	Homo sapiens	Human neutral cerebral sphingomyelinase protein.	3489	100
828	gi8247281	Mus musculus	neutral sphingomyelinase II	3187	91
829	gi7020945	Homo sapiens	cDNA FLJ20689 fis, clone KAIA2890.	2459	100
829	gi11596985	Homo sapiens	chromosome 14 clone RP11-361H10 map 14q24.3, complete sequence.	1819	97
829	gi6067151	Homo sapiens	chromosome 14 BAC 98L12, complete sequence.	1153	99
830	gi10039443	Homo sapiens	NEDL1 mRNA for NEDD4-like ubiquitin ligase 1, complete cds.	4335	56
830	AAW93167	Homo sapiens	Human ZGGBP1 protein.	992	47
830	gi1374782	Mus musculus	possible ubiquitin protein ligase	1062	50
831	gi7021974	Homo sapiens	cDNA FLJ10115 fis, clone HEMBA1002777.	1882	99
831	gi7021027	Homo sapiens	cDNA FLJ20739 fis, clone HEP07341.	1252	98
831	gi5002381	Takifugu rubripes	BAW	776	72
832	gi7022523	Homo sapiens	cDNA FLJ10469 fis, clone NT2RP2000008, weakly similar to ZINC FINGER PROTEIN 84.	3772	99
832	gi1020145	Homo sapiens	Human DNA binding protein (HPF2) mRNA, complete cds.	1714	48
832	gi7243633	Homo sapiens	RB-associated KRAB repressor (RBAK) mRNA, complete cds.	1653	46
833	gi6433864	Homo sapiens	CLDN12 gene for claudin-12.	1295	100
833	gi12053057	Homo sapiens	mRNA; cDNA DKFZp434I1816 (from clone DKFZp434I1816); complete cds.	1295	100
833	gi9799020	Mus musculus	claudin-12	1125	91
834	gi12053151	Homo sapiens	mRNA; cDNA DKFZp434G0326 (from clone DKFZp434G0326); complete cds.	5605	99
	gi7020102	Homo sapiens	cDNA FLJ20176 fis, clone COL09928.	1268	88
	gi7023725	Homo sapiens	cDNA FLJ11205 fis, clone PLACE1007843.	719	100
835	gi7020789	Homo sapiens	cDNA FLJ20583 fis, clone KAT09685.	2153	99

SEQ ID	Accession No.	Species	Description	Score	% Identity
NO:	AAG02503	Homo sapiens	Human secreted protein, SEQ ID NO: 6584.	423	98
835	gi14289183	Homo sapiens	chac mRNA for chorein, complete cds.	193	24
836	gi7022600	Homo sapiens	cDNA FLJ10515 fis, clone NT2RP2000764, weakly similar to NIFS PROTEIN.	1301	100
836	gi7110152	Mus musculus	selenocysteine lyase SCLY	1107	83
836	gi13592392	Caenorhabditis elegans	Contains similarity to Pfam domain: PF00266 (aminotran_5), Score=51.6, E-value=5.7e-12, N=1	468	44
-837	gi7274380	Homo sapiens	group III secreted phospholipase A2 mRNA, complete cds.	2813	99
837	gi4314431	Homo sapiens	PAC clone RP3-412A9 from 22, complete sequence.	596	99
837	gi5627	Apis mellifera	phospholipase A-2	243	41
838	gi8331760	Homo sapiens	X28 region near ALD locus containing dual specificity phosphatase 9 (DUSP9), ribosomal protein L18a (RPL18a), Ca2+/Calmodulin-dependent protein kinase I (CAMKI), creatine transporter (CRTR), CDM protein (CDM), adrenoleukodystrophy protein (ALD), plexin-related protein (PLXB3), musclespecific serine kinase (MSSK), NADisocitrate dehydrogenase (IDH), translocon-associated protein delta (TRAP), and LU1 protein (LU1) genes, complete cds; and CCp pseudogene, complete sequence.	3242	100
838	gi6651019	Mus musculus	semaphorin cytoplasmic domain- associated protein 3A	1583	50
838	gi6651021	Mus musculus	semaphorin cytoplasmic domain- associated protein 3B	1583	50
839	gi7023290	Homo sapiens	cDNA FLJ10932 fis, clone OVARC1000588.	718	100
840	gi6094681	Homo sapiens	PAC clone RP5-1049N15 from 7q31.2-7q32, complete sequence.	4804	100
840	gi7264724	Homo sapiens	alpha-aminoadipate semialdehyde synthase mRNA, complete cds.	4804	100
840	gi4938304	Homo sapiens	mRNA for lysine-ketoglutarate reductase/saccharopine dehydrogenase, partial CDS.	4799	99
841	AAY66700	Homo sapiens	Membrane-bound protein PRO1137.	1164	95
841	AAB65223	Homo sapiens	Human PRO1137 (UNQ575) protein sequence SEQ ID NO:250.	1164	95
841	AAY50917	Homo sapiens	Human fetal brain cDNA clone vc4_1 derived protein.	1023	100
842	AAW56477	Homo sapiens	Amino acid sequence of human bone morphogenetic protein-16 (BMP-16).	1183	100
842	AAY03849	Homo sapiens	Human nodal protein.	1183	100
842	gi296605	Mus musculus	nodal	986	84
843	gi7020399	Homo sapiens	cDNA FLJ20356 fis, clone HEP15821.	5470	100
843	gi10435659	Homo sapiens	cDNA FLJ13605 fis, clone PLACE1010562.	224	44
844	gi4886471	Homo sapiens	mRNA; cDNA DKFZp586N0819 (from clone DKFZp586N0819).	531	100
845	gi3288470	Homo sapiens	surf5c mRNA, clone 10.9.	728	100
845	gi3288452	Homo sapiens	Surf-5 and Surf-6 genes.	334	94
845	gi3288468	Homo sapiens	surf5b mRNA, clone L5.	334	94
846	gi14149050	Drosophila	turtle protein, isoform 4	1037	32

SEQ ID NO:	Accession No.	Species	Description	Score	% Identit
		melanogaster			1
846	gi14149048	Drosophila melanogaster	turtle protein, isoform 3	1037	32
846	gi14149046	Drosophila melanogaster	turtle protein, isoform 2	939	34
847	gi7021049	Homo sapiens	cDNA FLJ20753 fis, clone HEP02714.	2930	99
847	gi9886896	Human herpesvirus 8	Orf73	175	20
847	gi11037008	Human herpesvirus 8	latent nuclear antigen	172	20
848	gi12597293	Homo sapiens	acidic mammalian chitinase precursor, mRNA, complete cds.	2018	100
848	gi6467177	Homo sapiens	TSA1902-L mRNA for novel member of chitinase family, complete cds.	2010	99
848	gi6467179	Homo sapiens	TSA1902-S mRNA for novel member of chitinase family, complete cds.	1725	99
849	gi32391	Homo sapiens	Human HOX4C mRNA for a homeobox protein.	1802	98
849	gi51416	Mus musculus	Hox-4.4	1591	88
849	gi4322104	Danio rerio	homeobox protein	425	82
850	gi1359443	Homo sapiens	Human gene for hepatitis C-associated microtubular aggregate protein p44, exon 9 and complete cds.	2299	99
850	AAY05371	Homo sapiens	Human HCMV inducible gene protein, SEQ ID NO 10.	2299	99
850	gi218576	Pan troglodytes	p44	2242	97
851	gi575494	Homo sapiens	MHC class II lymphocyte antigen beta- chain (HLA-DPB1a) mRNA, complete cds.	437	72
851	gi188479	Homo sapiens	Human MHC class II lymphocyte antigen (HLA-DP) beta chain mRNA, complete cds.	437	72
851	gi 14044082	Homo sapiens	, Similar to major histocompatibility complex, class II, DP beta 1, clone MGC:14112, mRNA, complete cds.	429	70
852	gi181547	Homo sapiens	defensin 6 mRNA, complete cds.	318	90
852	AAR44819	Homo sapiens	Sequence of the gastrointestinal defensin (GID) peptide calledhuman defensin 6.	318	90
852	gi1200182	Homo sapiens	Human defensin 6 (HD-6) gene, complete cds.	314	89
853	gi13396914	Homo sapiens	The gene of C2GnT3	2389	100
853	gi7527464	Homo sapiens	core 2 beta-1,6-N- acetylglucosaminyltransferase 3 (C2GnT3) mRNA, complete cds.	2389	100
853	AAU00037	Homo sapiens	Human C2GnT3.	2389	100
855	gi7959772	Homo sapiens	PRO1483	252	100
856	gi5911169	Homo sapiens	transmembrane mucin 12 (MUC12) mRNA, partial cds.	2914	99
356	AAY59290	Homo sapiens	Human MUC12 polypeptide.	2914	99
356	gi2589172	Rattus norvegicus	mucin Muc3	595	36
357	AAE00508	Homo sapiens	Human lipase protein, MLip-1.	1456	100
357	gi56600	Rattus norvegicus	triacylglycerol lipase	776	58
357	gi3108175	Mus musculus	pancreatic lipase related protein 1	772	57
358	AAY94954	Homo sapiens	Human secreted protein clone iw66_1 protein sequence SEQ ID NO:114.	1112	100
358	gi10434269	Homo sapiens	cDNA FLJ12650 fis, clone	872	100

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
110.			NT2RM4002054.		
858	gi7259234	Mus musculus	contains transmembrane (TM) region	660	60
859	gi7021851	Homo sapiens	cDNA FLJ10035 fis, clone HEMBA1000919.	1589	100
859	gi10440420	Homo sapiens	mRNA for FLJ00045 protein, partial cds.	654	89
859	AAY99671	Homo sapiens	Human GTPase associated protein-22.	654	89
860	gi7022523	Homo sapiens	cDNA FLJ10469 fis, clone NT2RP2000008, weakly similar to ZINC FINGER PROTEIN 84.	3573	99
860	gi1020145	Homo sapiens	Human DNA binding protein (HPF2) mRNA, complete cds.	1604	48
860	gi12584159	Homo sapiens	zinc finger protein 268 (ZNF268) mRNA, complete cds.	1542	48
861	gi6539434	Homo sapiens	SPR1 mRNA, complete cds.	808	100
861	gi6523547	Volvox carteri f. nagariensis	hydroxyproline-rich glycoprotein DZ- HRGP	185	39
861	gi904359	Beta vulgaris	chitinase 1	185	41
862	gi7021924	Homo sapiens	cDNA FLJ10081 fis, clone HEMBA1002018.	2742	100
862	gi10435862	Homo sapiens	cDNA FLJ13751 fis, clone PLACE3000339, weakly similar to GLUCOAMYLASE S1/S2 PRECURSOR (EC 3.2.1.3).	2687	99
862	gi11275988	Homo sapiens	testis development protein PRTD mRNA, complete cds.	2454	99
863	gi7019913	Homo sapiens	cDNA FLJ20060 fis, clone COL01358.	1830	100
863	gi10434817	Homo sapiens	cDNA FLJ13006 fis, clone NT2RP3000449.	1823	.99
863	gi10434659	Homo sapiens	cDNA FLJ12902 fis, clone NT2RP2004347.	1724	99
864	gi7329718	Homo sapiens	Novel human gene mapping to chomosome 1.	11682	99
864	gi7022765	Homo sapiens	cDNA FLJ10619 fis, clone NT2RP2005472.	3153	99
864	gi14388939	Homo sapiens	chorea-acanthocytosis (CHAC) mRNA, complete cds.	462	30
865	gi28971	Homo sapiens	H.sapiens mRNA for autoantigen NOR-90.	3813	100
865	gi509241	Homo sapiens	Human mRNA for upstream binding factor (hUBF).	2661	78
865	AAB44430	Homo sapiens	Human lung tumour-specific antigen encoded by cDNA	2649	78
866	gi13445482	Homo sapiens	HP43.8KD mRNA, complete cds.	282	47
866	gi10434108	Homo sapiens	cDNA FLJ12552 fis, clone NT2RM4000712, moderately similar to Homo sapiens ubiquitin hydrolyzing enzyme I (UBH1) mRNA.	219	36
866	gi10436670	Homo sapiens	cDNA FLJ14256 fis, clone PLACE1000007, weakly similar to PROBABLE UBIQUITIN CARBOXYL- TERMINAL HYDROLASE R10E11.3 (EC 3.1.2.15).	219	36
867	AAB73229	Homo sapiens	Human phosphatase MTMR7_h.	743	57
867	gi5901814	Drosophila melanogaster	BcDNA.GH04637	503	48
867	gi7020021	Homo sapiens	cDNA FLJ20126 fis, clone COL06160.	697	73
868	gi7959801	Homo sapiens	PRO0800	392	100
869	gi12654971	Homo sapiens	, calcium-regulated heat-stable protein (24kD), clone MGC:5586, mRNA,	417	97

SEQ ID	Accession	Species	Description	Score	- %
NO:	No.				Identity
869	gi13097198	Homo sapiens	complete cds. , calcium-regulated heat-stable protein (24kD), clone MGC:5235, mRNA, complete cds.	417	97
869	AAW61023	Homo sapiens	Human RNA binding protein.	417	97
870	gi6650832	Homo sapiens	PRO2086	243	100
871	gi2217942	Rattus norvegicus	glycoprotein specific UDP- glucuronyltransferase	1802	97
871	gi8051678	Homo sapiens	hu-GlcAT-P mRNA for glucuronyltransferase, complete cds.	1757	99
871	gi4519214	Rattus norvegicus	UDP-glucuronyltransferase-S	760	50
872	gi14286288	Homo sapiens	, Similar to RIKEN cDNA 2010004P11 gene, clone MGC:2734, mRNA, complete cds.	715	100
872	gi13529665	Mus musculus	RIKEN cDNA 2010004P11 gene	706	98
872	gi2565364	Musca domestica	Sex-lethal protein	134	33
873	gi190406	Homo sapiens	Human profilaggrin gene exons 1-3, 5' end.	6301	99
873	gi190396	Homo sapiens	Human profilaggrin gene, 3' end.	5133	99
873	gi190404	Homo sapiens	Human profilaggrin mRNA, 3' end.	3696	89
874	gi791002	Homo sapiens	ARSD gene, complete CDS.	1761	99
874	gi6651286	Homo sapiens	arylsulfatase D beta (ARSD) mRNA, complete cds.	1756	99
874	gi791004	Homo sapiens	ARSE gene, complete CDS.	947	58
875	gi13097675	Homo sapiens	, Similar to uncharacterized hypothalamus protein HCDASE, clone MGC:1171, mRNA, complete cds.	612	96
875	AAY87599	Homo sapiens	Human fatty acid beta-oxidation enzyme HUFA-2.	612	96
875	AAG03352	Homo sapiens	Human secreted protein, SEQ ID NO: 7433.	591	100
876	gi6180180	Homo sapiens	transcription factor IGHM enhancer 3, JM11 protein, JM4 protein, JM5 protein, T54 protein, JM10 protein, A4 differentiation-dependent protein, triple LIM domain protein 6, and synaptophysin genes, complete cds; and L-type calcium channel alpha-1 subunit gene, partial cds, complete sequence.	908	100
876	gi3114826	Homo sapiens	mRNA for JM4 protein, complete CDS (clone IMAGE 546750 and LLNLc110F1857Q7 (RZPD Berlin)).	908	100
876	gi7673612	Mus musculus	DXImx39e protein	831	91
877	gi13543663	Homo sapiens	, ubiquitin-conjugating enzyme E2D 1 (homologous to yeast UBC4/5), clone MGC:14673, mRNA, complete cds.	805	100
877	gi460810	Homo sapiens	H.sapiens UBCH5 mRNA for ubiquitin conjugating enzyme.	805	100
877	gi4868140	Homo sapiens	ubiquitin-conjugating enzyme HBUCE1 mRNA, complete cds.	747	91
878	gi7020915	Homo sapiens	cDNA FLJ20666 fis, clone KAIA608.	1288	100
878	gi3169096	Schizosacchar omyces pombe	possible pre-mRNA processing by similarity to yeast prp39	279	33
878 ·	gi10177721	Arabidopsis thaliana	gene_id:MPL12.20~	146	22
879	gi7020681	Homo sapiens	cDNA FLJ20519 fis, clone KAT10365.	891	100
879	AAY87267	Homo sapiens	Human signal peptide containing protein	824	95

SEQ ID NO:	Accession No.	Species	Description	Score	% Identity
			HSPP-44 SEQ ID NO:44.		
879	AAB65245	Homo sapiens	Human PRO1104 (UNQ547) protein sequence SEQ ID NO:297.	824	95
880	gi6560622	Homo sapiens	PRO0611	501	100
881	AAB57079	Homo sapiens	Human prostate cancer antigen protein sequence SEQ ID NO:1657.	668	100
881	AAY99372	Homo sapiens	Human PRO1430 (UNQ736) amino acid sequence SEQ ID NO:116.	668	100
881	AAB88356	Homo sapiens	Human membrane or secretory protein clone PSEC0082.	661	99
882	gi1381181	Oryctolagus cuniculus	ubiquitin-conjugating enzyme E2-32k	663	100
882	gi13436071	Homo sapiens	, clone MGC:10481, mRNA, complete cds.	663	100
882	gi7020506	Homo sapiens	cDNA FLJ20419 fis, clone KAT02435.	658	99
883	gi1381181	Oryctolagus cuniculus	ubiquitin-conjugating enzyme E2-32k	1265	99
883	gi13436071	Homo sapiens	, clone MGC:10481, mRNA, complete cds.	1265	99
883	gi7020506	Homo sapiens	cDNA FLJ20419 fis, clone KAT02435.	1256	98
884	gi1381181	Oryctolagus cuniculus	ubiquitin-conjugating enzyme E2-32k	383	97
884	gi13436071	Homo sapiens	, clone MGC:10481, mRNA, complete cds.	383	97
884	gi7020506	Homo sapiens	cDNA FLJ20419 fis, clone KAT02435.	383	97
885	gi14424536	Homo sapiens	, Similar to septin 6, clone MGC:16619, mRNA, complete cds.	2183	99
885	gi5689158	Mus musculus	Septin6	2114	95
885	gi7023141	Homo sapiens	cDNA FLJ10849 fis, clone NT2RP4001414, highly similar to SEPTIN 2 HOMOLOG.	1840	82
886	gi14424536	Homo sapiens	, Similar to septin 6, clone MGC:16619, mRNA, complete cds.	1213	63
886	gi5689158	Mus musculus	Septin6	1162	62
886	gi7023141	Homo sapiens	cDNA FLJ10849 fis, clone NT2RP4001414, highly similar to SEPTIN 2 HOMOLOG.	995	51
887	gi4309951	Homo sapiens	BAC clone RP11-121A8 from 7p14-p13, complete sequence.	684	100
887	AAG00417	Homo sapiens	Human secreted protein, SEQ ID NO: 4498.	684	100
887	gi339159	Homo sapiens	Human T-cell receptor germline gamma- chain gene V-region (V3; subgroup I).	392	73
888	gi2570015	Homo sapiens	H.sapiens PAX7 gene, exon 1 (and joined CDS).	2756	100
888	gi2570021	Homo sapiens	H.sapiens mRNA for paired box containing transcription factor, PAX7.	2756	100
888	gi2570014	Homo sapiens	H.sapiens PAX7 gene, exon 1 (and joined CDS).	2735	99

TABLE 3

SEQ ID NO:	Accession No.	Description	Results*
445	BL00434	HSF-type DNA-binding domain proteins.	BL00434C 23.85 7.111e-09 1089-1129
446	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 1.000e-13 216-229 PD00066 13.92 2.286e-12 244-257 PD00066 13.92 4.522e-11 299-312 PD00066 13.92 6.538e-10 157-170
453	PR00037	LACR BACTERIAL REGULATORY PROTEIN HTH SIGNATURE	PD00066 13.92 7.923e-10 327-340 PR00037A 12.66 6.786e-09 34-49
465	PR00320	G-PROTEIN BETA WD-40 REPEAT SIGNATURE	PR00320C 13.01 6.100e-09 197-212 PR00320C 13.01 6.400e-09 393-408 PR00320A 16.74 8.683e-09 197-212 PR00320B 12.19 9.775e-09 299-314
466	DM00215	PROLINE-RICH PROTEIN 3.	DM00215 19.43 5.881e-09 14-47
470	BL00175	Phosphoglycerate mutase family phosphohistidine proteins.	BL00175D 27.67 8.500e-40 175-227 BL00175C 23.75 5.000e-25 90-122 BL00175A 15.42 8.333e-20 17-37 BL00175B 12.60 1.000e-12 66-79
472	BL00315	Dehydrins proteins.	BL00315A 9.35 8.119e-09 105-133
473	BL00518	Zinc finger, C3HC4 type (RING finger), proteins.	BL00518 12.23 4.000e-11 44-53
475	PD02448	TRANSCRIPTION PROTEIN DNA-BINDIN.	PD02448A 9.37 4.293e-09 171-210
477	PR00625	DNAJ PROTEIN FAMILY SIGNATURE	PR00625A 12.84 8.500e-19 121-141 PR00625B 13.48 3.204e-15 151-172
478	PD02102	SUBUNIT E V-ATPASE VACUOLAR ATP SYNTHASE HYDROL.	PD02102A 16.74 5.853e-10 26-70
479	BL00018	EF-hand calcium-binding domain proteins.	BL00018 7.41 4.706e-11 49-62
480	PR00501	KELCH REPEAT SIGNATURE	PR00501A 8.25 9.182e-09 544-558
483	PR00878	CHOLINESTERASE SIGNATURE	PR00878F 5.37 5.179e-12 500-513
484	BL00378	Hexokinases proteins.	BL00378C 16.14 1.000e-40 207-251 BL00378E 22.92 1.000e-40 725-771 BL00378C 16.14 3.520e-40 655-699 BL00378E 22.92 3.382e-36 277-323 BL00378B 14.23 5.333e-35 509-546 BL00378B 14.23 8.953e-28 61-98 BL00378A 19.01 1.346e-22 22-50 BL00378F 8.27 2.688e-17 893-908 BL00378D 10.94 6.294e-17 703-715 BL00378D 10.94 5.500e-16 255-267 BL00378F 8.27 9.609e-13 445-460 BL00378A 19.01 3.017e-12 470-498
485	BL00028	Zinc finger, C2H2 type, domain proteins.	BL00028 16.07 2.688e-15 352-369 BL00028 16.07 4.375e-15 324-341 BL00028 16.07 4.176e-14 604-621 BL00028 16.07 8.412e-14 380-397 BL00028 16.07 9.471e-14 576-593 BL00028 16.07 1.450e-13 548-565 BL00028 16.07 2.350e-13 436-453 BL00028 16.07 4.150e-13 492-509 BL00028 16.07 5.050e-13 296-313 BL00028 16.07 1.783e-12 520-537

SEQ ID NO:	Accession No.	Description	Results*
1.0.			BL00028 16.07 3.348e-12 632-649
	•		BL00028 16.07 5.304e-12 408-425
			BL00028 16.07 5.304e-12 660-677
			BL00028 16.07 4.808e-11 464-481
			BL00028 16.07 7.000e-10 268-285
486	BL00301	GTP-binding elongation	BL00301B 20.09 1.429e-26 128-160
		factors proteins.	BL00301A 12.41 6.400e-15 62-74
487	PD00301	PROTEIN REPEAT MUSCLE CALCIUM-BI.	PD00301B 5.49 7.600e-12 826-837
489	BL00227	Tubulin subunits alpha, beta,	BL00227B 19.29 1.000e-40 52-107
107	1 220022.	and gamma proteins.	BL00227C 25.48 1.000e-40 113-165
			BL00227D 18.46 1.000e-40 222-276
			BL00227F 21.16 1.000e-40 382-436
			BL00227E 24.15 6.727e-36 326-361
	ļ		BL00227A 24.55 2.125e-33 1-35
400	BL00479	Phorbol esters /	BL00479B 12.57 6.625e-09 1271-1287
490	BL00479	diacylglycerol binding	BE00477B 12.37 0.0236 07 1271 1207
401	DI 00460	domain proteins.	BL00479B 12.57 6.625e-09 1250-1266
491	BL00479	Phorbol esters /	DL004/9D 12.3/ 0.0236-09 1230-1200
	1	diacylglycerol binding	
	 	domain proteins.	BL00107A 18.39 5.500e-19 138-169
492	BL00107	Protein kinases ATP-binding	
		region proteins.	BL00107B 13.31 1.000e-16 203-219
493	BL50002	Src homology 3 (SH3)	BL50002A 14.19 5.000e-15 392-411
		domain proteins profile.	BL50002B 15.18 2.500e-09 430-444
494	PR00049	WILM'S TUMOUR	PR00049D 0.00 6.949e-09 87-102
	_	PROTEIN SIGNATURE	
497	BL00914	Syntaxin / epimorphin	BL00914 24.91 6.172e-09 249-299
		family proteins.	•
498	PD00066	PROTEIN ZINC-FINGER	PD00066 13.92 8.200e-16 362-375
		METAL-BINDI.	PD00066 13.92 4.462e-15 334-347
			PD00066 13.92 8.615e-15 473-486
			PD00066 13.92 5.200e-14 306-319
			PD00066 13.92 3.000e-13 390-403
500	PF00780	Domain found in NIK1-like	PF007801 14.69 7.863e-09 293-323
		kinases, mouse citron and	
		yeast ROM.	
501	BL00518	Zinc finger, C3HC4 type	BL00518 12.23 7.333e-09 279-288
		(RING finger), proteins:	
502	DM01418	352 FIBRILLAR	DM01418A 20.83 2.050e-23 1537-1585
		COLLAGEN CARBOXYL-	DM01418B 22.51 5.895e-21 1632-1674
		TERMINAL.	DM01418C 20.48 8.571e-18 1702-1744
508	BL01052	Calponin family repeat proteins.	BL01052B 15.31 1.000e-09 131-157
512	BL01310	ATP1G1/PLM/MAT8	BL01310 14.74 7.107e-36 27-63
~.~	-20.510	family proteins.	
515	DM00475	w LOW TRANSPOSASE	DM00475B 12.12 6.019e-09 386-406
717	5,4100473	SAPA 12K.	
516	BL00636	Nt-dnaJ domain proteins.	BL00636A 8.07 5.865e-11 64-81
		DNAJ PROTEIN FAMILY	PR00625A 12.84 2.019e-14 76-96
519	PR00625	SIGNATURE	PR00625B 13.48 5.714e-11 106-127
500	DI 00016		BL00216B 27.64 6.400e-10 92-142
520	BL00216	Sugar transport proteins.	BL01033B 13.81 1.000e-15 38-50
523	BL01033	Globins profile.	
526	BL50002	Src homology 3 (SH3) domain proteins profile.	BL50002B 15.18 4.750e-12 1075-1089
531	PR00249	SECRETIN-LIKE GPCR	PR00249G 15.72 8.892e-10 387-409
		SUPERFAMILY	PR00249C 17.08 6.609e-09 223-247
		SIGNATURE	
532	BL00528	Ribosomal protein S4e	BL00528D 27.17 8.012e-09 341-395
	1	proteins.	

SEQ ID NO:	Accession No.	Description	Results*
534	PR00194	TROPOMYOSIN SIGNATURE	PR00194C 6.38 1.900e-35 109-138 PR00194E 8.74 1.000e-30 195-221 PR00194D 9.57 8.714e-27 139-163 PR00194B 10.24 2.800e-25 84-105 PR00194A 7.86 5.500e-22 48-66
535	PR00194	TROPOMYOSIN SIGNATURE	PR00194C 6.38 1.900e-35 109-138 PR00194E 8.74 1.000e-30 195-221 PR00194B 10.24 2.800e-25 84-105 PR00194D 9.57 1.900e-23 139-163 PR00194A 7.86 5.500e-22 48-66
538	PR00019	LEUCINE-RICH REPEAT SIGNATURE	PR00019A 11.19 5.050e-11 110-124
541	BL00540	Ferritin iron-binding regions proteins.	BL00540A 15.06 1.000e-40 32-73 BL00540B 18.82 1.000e-40 123-178 BL00540C 13.00 7.750e-14 188-200
546	PR00153	CYCLOPHILIN PEPTIDYL-PROLYL CIS- TRANS ISOMERASE SIGNATURE	PR00153E 9.10 2.385e-15 121-137
548	BL00115	Eukaryotic RNA polymerase II heptapeptide repeat proteins.	BL00115Z 3.12 8.213e-09 63-112
549	BL01282	BIR repeat proteins.	BL01282B 30.49 2.373e-12 317-356
551	BL00570	Bacterial ring hydroxylating dioxygenases alpha-subunit signa.	BL00570B 19.03 9.357e-09 277-309
553	PD01427	TRANSFERASE METHYLTRANSFERASE BI.	PD01427B 22.45 7.000e-11 127-168
554	PR00048	C2H2-TYPE ZINC FINGER SIGNATURE	PR00048A 10.52 7.632e-11 447-461
555	PD02637	SERUM PARAOXONASE/ARYLES TERASE P.	PD02637A 14.26 1.000e-40 32-87 PD02637G 13.82 1.000e-40 307-355 PD02637D 13.69 6.053e-36 170-218 PD02637B 10.33 8.875e-34 106-141 PD02637E 11.92 8.200e-28 218-249 PD02637C 7.53 3.520e-27 141-170 PD02637F 15.62 9.438e-26 281-307
556	DM00892	3 RETROVIRAL PROTEINASE.	DM00892C 23.55 2.768e-16 474-508
557	BL00039	DEAD-box subfamily ATP-dependent helicases proteins.	BL00039D 21.67 5.179e-36 294-340 BL00039A 18.44 7.955e-29 15-54 BL00039C 15.63 1.300e-16 143-167 BL00039B 19.19 2.465e-12 58-84
558	PR00507	N12 CLASS N6 ADENINE- SPECIFIC DNA METHYLTRANSFERASE SIGNATURE	PR00507B 14.16 8.932e-09 83-98
559	BL00383	Tyrosine specific protein phosphatases proteins.	BL00383E 10.35 8.683e-12 242-253
566	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 5.500e-13 214-227
572	BL01160	Kinesin light chain repeat proteins.	BL01160B 19.54 4.432e-09 76-130
573	BL00422	Granins proteins.	BL00422C 16.18 4.638e-10 49-77
574	PR00319	BETA G-PROTEIN (TRANSDUCIN) SIGNATURE	PR00319A 15.27 7.911e-10 452-469 PR00319A 15.27 2.180e-09 410-427
577	BL00269	Mammalian defensins proteins.	BL00269C 16.52 6.786e-26 73-102 BL00269A 8.53 2.607e-20 8-28 BL00269B

SEQ ID	Accession	Description	Results*
NO:	No.		19.17 5.500e-17 35-64
578 ⁻	PD02327	GLYCOPROTEIN	PD02327B 19.84 2.241e-11 157-179
378	1002321	ANTIGEN PRECURSOR	12023272 17.04 2.2416 17 137 177
570	DIAGOG	IMMUNOGLO.	BL00596B 13.07 9.743e-09 273-285
579	BL00596	High potential iron-sulfur proteins.	BL00390B 13.07 9.7436-09 273-263
580	BL00915	Phosphatidylinositol 3- and	BL00915C 22.43 8.147e-32 1015-1054
		4-kinases proteins.	BL00915D 27.02 9.217e-27 1092-1128
			BL00915B 22.78 3.382e-25 918-956
			BL00915A 10.09 5.500e-10 756-768
584	BL00038	Myc-type, 'helix-loop-helix' dimerization domain proteins.	BL00038B 16.97 7.488e-09 499-520
585	BL00795	Involucrin proteins.	BL00795C 17.06 9.200e-09 498-543
586	BL00710	Phosphoglucomutase and phosphomannomutase phosphoserine signa.	BL00710 12.98 9.100e-17 159-174
587	BL00518	Zinc finger, C3HC4 type	BL00518 12.23 5.714e-10 34-43
	<u> </u>	(RING finger), proteins.	
588	PR00326	GTP1/OBG GTP-BINDING PROTEIN FAMILY SIGNATURE	PR00326A 8.75 5.979e-14 257-278
591	BL00548	Ribosomal protein S3 proteins.	BL00548 20.58 7.000e-19 66-96
592	BL00478	LIM domain proteins.	BL00478B 14.79 1.250e-12 557-572
			BL00478B 14.79 6.000e-12 494-509 BL00478B 14.79 2.400e-11 624-639
594	PR00109	TYROSINE KINASE	PR00109B 12.27 3.681e-13 141-160
		CATALYTIC DOMAIN SIGNATURE	
596	PR00049	WILM'S TUMOUR	PR00049D 0.00 9.063e-12 510-525
		PROTEIN SIGNATURE	PR00049D 0.00 8.286e-10 513-528
			PR00049D 0.00 9.000e-10 509-524
			PR00049D 0.00 9.429e-10 511-526
599	BL00232	Cadherins extracellular	BL00232B 32.79 4.750e-40 142-190
		repeat proteins domain proteins.	BL00232A 27.72 3.793e-22 48-81 BL00232B 32.79 1.257e-16 251-299
		proteins.	BL00232C 10.65 5.935e-14 249-267
		·	BL00232D 16.25 3.368e-13 763-778
			BL00232B 32.79 3.512e-11 366-414
600	DM00215	PROLINE-RICH PROTEIN 3.	DM00215 19.43 9.695e-09 513-546
601	PF00583	Acetyltransferase (GNAT) family.	PF00583B 10.18 9.100e-10 120-130
602	PR00326	GTP1/OBG GTP-BINDING PROTEIN FAMILY SIGNATURE	PR00326A 8.75 5.950e-11 146-167
604	BL00319	Amyloidogenic glycoprotein extracellular domain proteins.	BL00319C 17.12 6.000e-10 136-170
607	BL00239	Receptor tyrosine kinase	BL00239F 28.15 4.717e-25 477-522
· ·		class II proteins.	BL00239E 17.14 5.897e-23 423-473
		1	BL00239C 18.75 7.600e-17 372-395
608	PD01066	PROTEIN ZINC FINGER ZINC-FINGER METAL- BINDING NU.	PD01066 19.43 3.357e-32 10-49
609	PR00449	TRANSFORMING	PR00449A 13.20 4.808e-10 5-27
	7.100747	PROTEIN P21 RAS SIGNATURE	PR00449D 10.79 5.636e-09 111-125
610	PF00791	Domain present in ZO-1 and	PF00791C 20.98 2.412e-09 1-40

SEQ ID NO:	Accession	Description	Results*
110;	No.	Unc5-like netrin receptors.	
612	PR00109	TYROSINE KINASE CATALYTIC DOMAIN SIGNATURE	PR00109B 12.27 9.234e-13 487-506
613	BL00678	Trp-Asp (WD) repeat proteins proteins.	BL00678 9.67 1.600e-10 104-115 BL00678 9.67 5.737e-09 62-73 BL00678 9.67 8.105e-09 146-157 BL00678 9.67 8.105e-09 276-287
615	PR00334	HMW KININOGEN SIGNATURE	PR00334B 8.69 5.230e-10 460-484 PR00334B 8.69 1.771e-09 464-488 PR00334B 8.69 2.886e-09 466-490 PR00334B 8.69 8.200e-09 458-482
617	DM00215	PROLINE-RICH PROTEIN 3.	DM00215 19.43 5.881e-09 66-99
618	PF00084	Sushi domain proteins (SCR repeat proteins.	PF00084B 9.45 7.188e-10 539-551 PF00084B 9.45 7.300e-09 600-612
619	PR00169	POTASSIUM CHANNEL SIGNATURE	PR00169A 16.77 4.316e-09 72-92
621	BL00845	CAP-Gly domain proteins.	BL00845 16.43 1.900e-25 321-346 BL00845 16.43 9.325e-22 443-468
622	BL01002	Translationally controlled tumor protein.	BL01002D 18.24 4.706e-26 143-171 BL01002C 21.97 6.143e-26 79-110 BL01002A 13.19 1.360e-24 1-24 BL01002B 7.39 3.118e-14 48-62
624	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 8.857e-10 1030-1045
627	PR00011	TYPE III EGF-LIKE SIGNATURE	PR00011A 14.06 4.822e-09 475-494
629	PF00930	Dipeptidyl peptidase IV (DPP IV) N-terminal region.	PF00930J 15.96 5.000e-15 656-684 PF00930J 8.78 6.045e-12 708-729
630	PF00930	Dipeptidyl peptidase IV (DPP IV) N-terminal region.	PF00930I 15.96 5.000e-15 598-626 PF00930J 8.78 6.045e-12 650-671
631	BL00303	S-100/ICaBP type calcium binding protein.	BL00303B 26.15 1.844e-10 365-402
632	BL00114	Phosphoribosyl pyrophosphate synthetase proteins.	BL00114A 17.22 1.000e-40 54-101 BL00114B 15.90 1.000e-40 107-153 BL00114D 21.45 1.000e-40 208-259 BL00114C 18.22 2.895e-34 167-202 BL00114E 14.48 3.647e-25 293-317
635	BL00870	Chaperonins clpA/B proteins.	BL00870F 8.73 4.833e-36 376-425 BL00870G 8.07 6.553e-27 436-470 BL00870E 17.62 3.333e-16 304-359
639	BL00633	Bromodomain proteins.	BL00633B 13.82 9.775e-13 237-262 BL00633B 13.82 4.750e-11 80-105
641	BL00299	Ubiquitin domain proteins.	BL00299 28.84 7.962e-17 47-99
642	PD02102	SUBUNIT E V-ATPASE VACUOLAR ATP SYNTHASE HYDROL.	PD02102A 16.74 4.176e-10 97-141
643	PD02080	T-CELL GLYCOPROTEIN CD8 CHAIN SURFACE ALPHA PRE.	PD02080D 15.22 6.557e-09 269-306
644	BL01245	RIO1/ZK632.3/MJ0444 family proteins.	BL01245F 18.75 7.805e-14 239-276
646	BL00469	Nucleoside diphosphate kinases proteins.	BL00469 22.22 1.000e-40 41-96
649	PR00217	43 KD POSTSYNAPTIC PROTEIN SIGNATURE	PR00217C 10.91 5.945e-09 91-107
651	PR00326	GTP1/OBG GTP-BINDING PROTEIN FAMILY SIGNATURE	PR00326A 8.75 7.600e-11 629-650

SEQ ID	Accession	Description	Results*
NO:	No.		
652	DM00215	PROLINE-RICH PROTEIN 3.	DM00215 19.43 8.322e-09 227-260
653	PF01298	Transferrin binding protein.	PF01298C 15.13 1.000e-08 413-440
658	PR00443	G-PROTEIN ALPHA SUBUNIT GROUP S SIGNATURE	PR00443A 15.16 9.451e-09 89-105
659	BL00518	Zinc finger, C3HC4 type (RING finger), proteins.	BL00518 12.23 5.714e-10 34-43
663	BL00466	TFIIS zinc ribbon domain proteins.	BL00466 25.88 1.000e-32 294-331
664	PD00567	PROTEIN RNA-BINDING RNA REPEAT HYD.	PD00567B 18.23 3.172e-10 411-425
665	BL00030	Eukaryotic RNA-binding region RNP-1 proteins.	BL00030A 14.39 7.882e-11 10-29
669	PR00124	ATP SYNTHASE C SUBUNIT SIGNATURE	PR00124A 8.81 8.347e-11 117-137
670	PD01234	PROTEIN NUCLEAR BROMODOMAIN TRANS.	PD01234B 15.53 2.500e-10 38-56
671	BL00466	TFIIS zinc ribbon domain proteins.	BL00466 25.88 1.000e-32 219-256
672	BL01282	BIR repeat proteins.	BL01282B 30.49 2.068e-12 298-337
673	BL00455	Putative AMP-binding domain proteins.	BL00455 13.31 4.176e-14 201-217
674	BL01160	Kinesin light chain repeat	BL01160B 19.54 8.703e-10 407-461
		proteins.	BL01160B 19.54 2.373e-09 414-468
675	BL00518	Zinc finger, C3HC4 type (RING finger), proteins.	BL00518 12.23 5.286e-10 326-335
676	BL00518	Zinc finger, C3HC4 type (RING finger), proteins.	BL00518 12.23 5.286e-10 335-344
682	PR00761	BINDIN PRECURSOR SIGNATURE	PR00761E 14.32 4.789e-09 499-518
691	BL00415	Synapsins proteins.	BL00415Q 2.23 2.885e-09 83-119
692	PR00211	GLUTELIN SIGNATURE	PR00211B 0.86 6.167e-09 115-136
694	PR00320	G-PROTEIN BETA WD-40 REPEAT SIGNATURE	PR00320C 13.01 7:300e-09 297-312
696	PD02952	KINASE TRANSFERASE CHOLINE PROTEIN MULTIGENE FAMI.	PD02952C 15.76 5.701e-16 263-293 PD02952B 15.57 7.242e-11 243-257 PD02952A 11.84 9.625e-09 131-159
697	PD00066	PROTEIN ZINC-FINGER	PD00066 13.92 7.231e-15 504-517
0,7		METAL-BINDI.	PD00066 13.92 5.800e-14 220-233 PD00066 13.92 1.000e-11 248-261 PD00066 13.92 5.696e-11 333-346 PD00066 13.92 2.500e-09 361-374
698 ·	PR00205	CADHERIN SIGNATURE	PR00205B 11.39 6.571e-13 167-185
699	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 4.966e-09 50-65 PR00049D 0.00 9.237e-09 74-89
701	PR00988	URIDINE KINASE SIGNATURE	PR00988A 6.39 6.600e-15 98-116 PR00988C 13.64 5.605e-13 175-191 PR00988E 8.27 8.393e-13 245-257 PR00988D 5.95 8.250e-11 231-242 PR00988F 12.23 9.820e-11 267-281 PR00988B 11.60 2.317e-10 128-140
702	PR00625	DNAJ PROTEIN FAMILY SIGNATURE	PR00625A 12.84 1.804e-13 22-42 PR00625B 13.48 5.821e-13 53-74
706	PF00023	Ank repeat proteins.	PF00023A 16.03 2.286e-09 209-225
708	BL01212	ATP P2X receptors proteins.	BL01212A 34.89 1.000e-40 43-96 BL01212E 24.87 1.000e-40 227-282 BL01212D 11.42 6.700e-25 185-209 BL01212G 11.86 2.800e-24 310-338 BL01212B 19.25 3.571e-21 129-154

SEQ ID NO:	Accession No.	Description	Results*
			BL01212C 8.40 1.214e-14 162-173
709	BL00194	Thioredoxin family proteins.	BL01212F 10.12 4.774e-14 291-302
712	BL00439		BL00194 12.16 3.455e-17 45-58
712	BL00439	Acyltransferases ChoActase	BL00439F 26.22 1.000e-40 418-471
		/ COT / CPT family	BL00439E 19.05 2.440e-24 320-349
		proteins.	BL00439B 16.82 1.000e-20 167-189
			BL00439H 18.24 4.600e-20 566-592
			BL00439A 9.40 1.237e-15 35-52
	1		BL00439D 13.11 4.545e-15 272-290
			BL00439C 13.53 1.730e-11 248-261
			BL00439G 13.40 9.719e-11 513-524
716	BL00412	Neuromodulin (GAP-43) proteins.	BL00412D 16.54 8.990e-09 305-356
718	BL01271	Sodium:sulfate symporter	BL01271D 25.26 5.979e-32 537-592
		family proteins.	BL01271A 8.06 6.250e-18 131-151
			BL01271C 13.62 7.750e-17 464-486
·			BL01271B 12.02 1.563e-16 269-294
719	PF00023	Ank repeat proteins.	PF00023B 14.20 2.500e-10 141-151
			PF00023A 16.03 4.000e-10 112-128
721	PF00023	Ank repeat proteins.	PF00023A 16.03 1.750e-10 66-82
		· ·	PF00023B 14.20 5.500e-09 161-171
			PF00023A 16.03 8.714e-09 363-379
725	PR00019	LEUCINE-RICH REPEAT	PR00019B 11.36 1.500e-11 173-187
	ļ	SIGNATURE	PR00019A 11.19 2.800e-11 314-328
	1		PR00019A 11.19 5.050e-11 176-190
		İ	PR00019B 11.36 3.520e-09 311-325
			PR00019B 11.36 4.600e-09 541-555
			PR00019B 11.36 5.320e-09 471-485
			PR00019A 11.19 6.000e-09 544-558
	1		PR00019B 11.36 8.200e-09 242-256
			PR00019B 11.36 9.640e-09 127-141
731	PR00681	RIBOSOMAL PROTEIN S1 SIGNATURE	PR006811 8.81 9.897e-09 600-619
736	PD01066	PROTEIN ZINC FINGER	PD01066 19.43 9.581e-31 8-47
		ZINC-FINGER METAL-	
		BINDING NU.	
739	BL00972	Ubiquitin carboxyl-terminal	BL00972A 11.93 1.587e-13 170-188
		hydrolases family 2 proteins.	BL00972D 22.55 8.826e-11 590-615
740	BL00972	Ubiquitin carboxyl-terminal	BL00972A 11.93 1.587e-13 170-188
		hydrolases family 2 proteins.	BL00972D 22.55 8.826e-11 590-615
741	DM01688	2 POLY-IG RECEPTOR.	DM01688G 16.45 6.936e-10 85-117
747	PF00646	F-box domain proteins.	PF00646A 14.37 6.625e-09 50-64
753	BL01168	Ribosomal protein S27e	BL01168 15.74 1.000e-40 20-75
		proteins.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
756	PD00066	PROTEIN ZINC-FINGER	PD00066 13.92 6.885e-10 127-140
	120000	METAL-BINDI.	15.92 0.883e-10 127-140
757	PD00301	PROTEIN REPEAT	DD00201D 5 40 7 221 - 00 1010 1020
131	1 200301	MUSCLE CALCIUM-BI.	PD00301B 5.49 7.231e-09 1019-1030
761	BL00712		DI 00710D 10 661 000 10 00 66
, 01	DE00/12	Ribosomal protein S17e proteins.	BL00712B 12.56 1.000e-40 28-66
762	PF00878		BL00712A 6.23 8.855e-19 2-22
102	11000/8	Cation-independent	PF00878T 17.51 3.818e-09 799-826
		mannose-6-phosphate	
762	DI 00202	receptor repeat proteins.	77.0000
763	BL00303	S-100/ICaBP type calcium	BL00303A 21.77 9.526e-31 3-40
766	1	binding protein.	BL00303B 26.15 5.737e-30 50-87
766	BL00018	EF-hand calcium-binding	BL00018 7.41 6.087e-09 237-250
		domain proteins.	
768	BL00221	MIP family proteins.	BL00221D 12.33 6.143e-19 180-195
	,	1	
			BL00221C 13.36 1.000e-14 135-152

SEQ ID NO:	Accession No.	Description	Results*
			BL00221B 10.22 1.750e-12 63-74 BL00221A 6.39 5.200e-12 16-27
760	DE00003	Troponin.	PF00992A 16.67 8.859e-10 214-249
769 770	PF00992 BL00720	Guanine-nucleotide	BL00720B 16.57 8.297e-15 136-160
		dissociation stimulators CDC25 family sign.	
771	PR00883	HIGH MOBILITY GROUP- LIKE NUCLEAR PROTEIN SIGNATURE	PR00883A 6.49 8.920e-09 191-205
772	PD01066	PROTEIN ZINC FINGER ZINC-FINGER METAL- BINDING NU.	PD01066 19.43 6.786e-32 8-47
775	BL00301	GTP-binding elongation factors proteins.	BL00301B 20.09 5.500e-31 90-122 BL00301C 11.73 8.200e-15 423-437 BL00301A 12.41 3.842e-13 9-21
776	PR00453	VON WILLEBRAND FACTOR TYPE A DOMAIN SIGNATURE	PR00453A 12.79 4.892e-12 325-343 PR00453B 14.65 1.614e-10 162-177 PR00453A 12.79 3.152e-10 123-141
779	PR00399	SYNAPTOTAGMIN SIGNATURE	PR00399A 9.52 1.730e-13 145-161 PR00399B 14.27 2.059e-13 160-174 PR00399C 12.82 7.324e-12 216-232 PR00399D 14.48 3.930e-10 236-247 PR00399B 14.27 1.915e-09 291-305
780	BL00115	Eukaryotic RNA polymerase II heptapeptide repeat proteins.	BL00115Z 3.12 8.395e-10 123-172 BL00115Z 3.12 4.375e-09 137-186
783	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 8.800e-14 165-178 PD00066 13.92 8.800e-14 193-206 PD00066 13.92 5.286e-12 249-262 PD00066 13.92 8.269e-10 221-234
786	PF00975	Thioesterase domain proteins.	PF00975B 10.82 2.688e-12 90-104
788	DM01970	0 kw ZK632.12 YDR313C ENDOSOMAL III.	DM01970B 8.60 9.833e-16 632-645
789	BL00740	MAM domain proteins.	BL00740B 19.76 5.378e-12 174-195 BL00740C 15.93 4.000e-11 684-695
793	PD00289	PROTEIN SH3 DOMAIN REPEAT PRESYNA.	PD00289 9.97 9.500e-12 102-116
795	BL00038	Myc-type, 'helix-loop-helix' dimerization domain proteins.	BL00038A 13.61 3.400e-09 66-82
800	PD01066	PROTEIN ZINC FINGER ZINC-FINGER METAL- BINDING NU.	PD01066 19.43 5.050e-15 233-272
804	BL00663	Vinculin family talin- binding region proteins.	BL00663G 24.17 1.000e-40 364-414 BL00663K 21.52 9.816e-40 735-790 BL00663I 27.27 4.447e-35 514-568 BL00663J 18.16 3.000e-33 690-727 BL00663L 20.67 9.118e-27 802-838 BL00663F 20.78 2.000e-25 292-333 BL00663H 27.09 1.703e-24 436-489 BL00663C 22.59 2.853e-23 104-159 BL00663B 27.86 4.629e-23 42-96 BL00663D 24.77 3.789e-18 179-226 BL00663A 11.51 2.350e-15 18-39 BL00663E 21.19 9.566e-10 227-265
808	PR00010	TYPE II EGF-LIKE SIGNATURE	PR00010C 11.16 7.545e-10 3968-3979
809	PR00010	TYPE II EGF-LIKE SIGNATURE	PR00010C 11.16 7.545e-10 3882-3893

SEQ ID NO:	Accession No.	Description	Results*
810	DM00215	PROLINE-RICH PROTEIN 3.	DM00215 19.43 2.929e-10 163-196
811	PR00205 ·	CADHERIN SIGNATURE	PR00205B 11.39 9.182e-15 243-261 PR00205A 14.73 1.000e-12 168-184 PR00205C 13.65 1.783e-12 503-518 PR00205B 11.39 9.294e-11 463-481
813	PR00456	RIBOSOMAL PROTEIN P2 SIGNATURE	PR00456E 3.06 5.146e-11 313-328 PR00456E 3.06 5.146e-11 314-329 PR00456E 3.06 5.146e-11 315-330 PR00456E 3.06 7.938e-10 312-327 PR00456E 3.06 7.938e-10 316-331
818	BL01071	grpE protein.	BL01071A 24.88 8.277e-21 78-124 BL01071B 18.21 5.286e-15 195-219
826	DM00813	AMINOTRANSFERASES CLASS-V PYRIDOXAL- PHOSPHATE ATTACHMENT SI.	DM00813A 20.30 8.898e-17 231-260
828	BL00415	Synapsins proteins.	BL00415P 2.37 9.814e-09 242-278
830	PF00632	HECT-domain (ubiquitin- transferase).	PF00632C 20.66 5.186e-23 1534-1566 PF00632B 18.45 8.393e-22 1480-1508
831	DM00215	PROLINE-RICH PROTEIN 3.	DM00215 19.43 9.695e-09 117-150
832	PD01066	PROTEIN ZINC FINGER ZINC-FINGER METAL- BINDING NU.	PD01066 19.43 4.231e-33 12-51
834	BL00120	Lipases, serine proteins.	BL00120B 11.37 5.846e-09 1319-1334
836	DM00813	AMINOTRANSFERASES CLASS-V PYRIDOXAL- PHOSPHATE ATTACHMENT SI.	DM00813A 20.30 8.898e-17 38-67
838	PD00289	PROTEIN SH3 DOMAIN REPEAT PRESYNA.	PD00289 9.97 8.000e-12 69-83
840	BL00053	Ribosomal protein S8 proteins.	BL00053B 14.56 1.000e-08 900-918
841	PR00970 .	ARGININE ADP- RIBOSYLTRANSFERASE SIGNATURE	PR00970D 9.96 3.357e-17 129-146 PR00970A 17.73 8.600e-17 30-52 PR00970E 11.23 6.464e-15 177-193 PR00970B 16.37 2.756e-11 58-77 PR00970C 11.05 9.357e-11 89-104
842	BL00250	TGF-beta family proteins.	BL00250A 21.24 7.120e-25 114-150 BL00250B 27.37 4.774e-18 178-214
846	BL00240	Receptor tyrosine kinase class III proteins.	BL00240B 24.70 7.488e-10 156-180
848	BL01095	Chitinases family 18 proteins.	BL01095B 10.82 5.500e-14 24-36 BL01095C 10.76 7.207e-10 246-258
849	BL00027	'Homeobox' domain proteins.	BL00027 26.43 2.500e-34 300-343
850	PR00318	ALPHA G-PROTEIN (TRANSDUCIN) SIGNATURE	PR00318A 7.84 7.088e-09 188-204
851	PF00969	Class II histocompatibility antigen, beta domain proteins.	PF00969A 22.07 5.846e-29 12-55 PF00969B 9.97 6.211e-25 56-92 PF00969C 27.72 7.324e-16 95-145
852	BL00269	Mammalian defensins proteins.	BL00269B 19.17 6.824e-21 34-63 BL00269A 8.53 6.108e-18 1-21
853	PF00777	Sialyltransferase family.	PF00777B 29.69 8.767e-10 407-450
856	DM00191	w SPAC8A4.04C RESISTANCE SPAC8A4.05C DAUNORUBICIN.	DM00191D 13.94 9.083e-10 100-139

SEQ ID NO:	Accession No.	Description	Results*
857	PR00823	PANCREATIC LIPASE	PR00823A 18.01 3.143e-14 19-37
		SIGNATURE	PR00823C 6.88 6.164e-12 56-69
859	BL00678	Trp-Asp (WD) repeat proteins proteins.	BL00678 9.67 6.684e-09 243-254
860	BL00028	Zinc finger, C2H2 type,	BL00028 16.07 8.650e-13 425-442
000	BECCCE	domain proteins.	BL00028 16.07 5.696e-12 508-525
		province	BL00028 16.07 8.826e-12 564-581
		1	BL00028 16.07 7.577e-11 201-218
			BL00028 16.07 7.577e-11 536-553
•			BL00028 16.07 7.923e-11 341-358
			BL00028 16.07 8.615e-11 285-302
	1		BL00028 16.07 1.600e-10 592-609
			BL00028 16.07 2.200e-10 229-246
	Ì		BL00028 16.07 3.400e-10 257-274
			BL00028 16.07 6.100e-10 313-330
			BL00028 16.07 7.000e-10 369-386
			BL00028 16.07 8.200e-10 397-414
			BL00028 16.07 5.114e-09 620-637
864	BL01126	Elongation factor Ts	BL01126A 18.48 5.011e-10 2637-2680
004	DE01120	proteins.	
865	BL00353	HMG1/2 proteins.	BL00353B 11.47 1.330e-13 95-145
803	BE00333	mid //2 protons.	BL00353B 11.47 5.692e-11 353-403
866	BL00972	Ubiquitin carboxyl-terminal	BL00972A 11.93 4.600e-18 173-191
000	BE003.2	hydrolases family 2 proteins.	BL00972D 22.55 1.947e-13 576-601
			BL00972E 20.72 2.038e-11 618-640
867	BL00383	Tyrosine specific protein	BL00383E 10.35 2.756e-12 255-266
		phosphatases proteins.	
872	BL00030	Eukaryotic RNA-binding	BL00030B 7.03 5.737e-09 69-79
		region RNP-1 proteins.	
873	BL00303	S-100/ICaBP type calcium	BL00303B 26.15 4.405e-19 50-87
		binding protein.	BL00303A 21.77 8.765e-15 3-40
874	BL00523	Sulfatases proteins.	BL00523A 13.36 6.500e-17 41-58
			BL00523B 8.64 5.909e-15 89-101
			BL00523C 12.64 5.500e-13 140-151
	"		BL00523D 9.89 9.438e-11 293-305
877	BL00183	Ubiquitin-conjugating enzymes proteins.	BL00183 28.97 1.000e-40 42-90
881	PR00081	GLUCOSE/RIBITOL	PR00081B 10.38 6.727e-11 116-128
001		DEHYDROGENASE	PR00081A 10.53 3.106e-10 40-58
	i	FAMILY SIGNATURE	
882	BL00183	Ubiquitin-conjugating	BL00183 28.97 1.391e-39 50-98
		enzymes proteins.	
883	BL00183	Ubiquitin-conjugating	BL00183 28.97 1.391e-39 50-98
303	2200103	enzymes proteins.	
888	BL00027	'Homeobox' domain	BL00027 26.43 2.929e-30 232-275
500	22002,	proteins.	

Results include Accession number, sub type, eMatrix p-value and the position of the signature.

TABLE 4

SEQ ID NO:	Pfam Model	Description	E-value	Pfam
445	Rap_GAP	Rap/ran-GAP	6.2e-121	Score
446	zf-C2H2	Zinc finger, C2H2 type	7.4e-65	415.2
452	WD40	WD domain, G-beta repeat	0.00017	228.9
465	WD40	WD domain, G-beta repeat	1.3e-19	78.6
483	COesterase	Carboxylesterases	2.1e-128	440.0
484	hexokinase	Hexokinase	0	2009.4
485	zf-C2H2	Zinc finger, C2H2 type	1e-135	464.2
486	GTP EFTU	Elongation factor Tu family	3.2e-125	424.7
487	myosin head	Myosin head (motor domain)	1.5e-283	955.3
488	Glyco transf 8	Glycosyl transferase family 8	4e-12	53.7
489	tubulin	Tubulin/FtsZ family	3.2e-293	987.5
492	pkinase	Eukaryotic protein kinase domain	7.9e-85	295.2
493	SH3	SH3 domain	1.2e-18	75.4
497	Syntaxin	Syntaxin	0.074	-75.1
498	SCAN	SCAN domain	5.4e-67	236.0
499	F-box	F-box domain	0.0002	28.1
501	FHA	FHA domain	1.7e-13	58.3
502	Collagen	Collagen triple helix repeat (20 copies)	6.5e-197	667.6
507	PH	PH domain	3e-15	59.5
508	СН	Calponin homology (CH) domain	0.0069	16.3
512	ATPIG1_PLM_M AT8	ATPIGI/PLM/MAT8 family	5.7e-31	116.3
516	DnaJ	DnaJ domain	1.4e-24	95.1
519	DnaJ	DnaJ domain	6.8e-26	99.5
522	Glycos transf 2	Glycosyl transferases	1.2e-13	58.8
523	globin	Globin	4.1e-38	137.3
526	myosin head	Myosin head (motor domain)	0	1057.8
529	Acetyltransf	Acetyltransferase (GNAT) family	5e-11	50.1
530	MSP domain	MSP (Major sperm protein) domain	1.7e-16	68.2
531	7tm_2	7 transmembrane receptor (Secretin family)	1.3e-59	211.5
534	Tropomyosin	Tropomyosin	7e-177	553.3
535	Tropomyosin	Tropomyosin	3.1e-173	541.9
538	LRR	Leucine Rich Repeat	2.9e-23	90.7
539	tRNA-synt 1b	tRNA synthetases class I (W and Y)	7.9e-79	275.3
540	PAS	PAS domain	2.8e-05	24.9
541	ferritin	Ferritin	9.9e-116	391.6
546	pro_isomerase	Cyclophilin type peptidyl-prolyl cis-tr	3.5e-33	117.6
549	KH-domain	KH domain	0.0004	27.1
551	Glyco transf 8	Glycosyl transferase family 8	0.01	-47.7
554	zf-C2H2	Zinc finger, C2H2 type	2.6e-22	87.5
555	Arylesterase	Arylesterase	2.3e-211	715.6
556	G-patch	G-patch domain	2.4e-17	71.1
557	DEAD	DEAD/DEAH box helicase	8.7e-67	214.2
558	Methyltransf_4	Putative methyltransferase	0.0095	-48.4
559	DSPc	Dual specificity phosphatase, catalytic dom	4.8e-70	246.1
563	IPPT	IPP transferase	6.7e-66	222.4
566	zf-C2H2	Zinc finger, C2H2 type	2.6e-19	232.4
570	RNA_pol_L	RNA polymerases L / 13 to 16 kDa	0.043	77.6 -12.1
571	Armadillo_seg	subunit Armadillo/beta-catenin-like repeat	8.6e-33	122.4
574	WD40	WD domain, G-beta repeat	1.1e-65	231.6
576	PAP2	PAP2 superfamily	1.2e-19	78.7
577	Defensin_propep	Defensin propeptide	3e-25	97.3
578	ig	Immunoglobulin domain	3.5e-16	57.2
580	PI3 PI4 kinase	Phosphatidylinositol 3- and 4-kinase	6.5e-93	322.1

SEQ ID NO:	Pfam Model	Description	E-value	Pfam Score
585	GBP	Guanylate-binding protein, N-terminal domain	4.3e-165	548.2
586	PGM_PMM_I	Phosphoglucomutase/phosphomannom utase, alp	7.6e-06	4.4
587	zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	1.3e-11	41.9
588	MMR_HSR1	GTPase of unknown function	5.9e-48	172.7
590	zf-DHHC	DHHC zinc finger domain	1.8e-36	134.6
591	Ribosomal_S3_C	Ribosomal protein S3, C-terminal domai	1.3e-07	28.0
592	LIM	LIM domain	4.4e-27	103.4
594	pkinase	Protein kinase domain	3.7e-77	269.7
596	PX	PX domain	2.2e-17	71.2
599	Cadherin C term	Cadherin cytoplasmic region	3.3e-88	306.5
600	FHA	FHA domain	3.4e-20	80.5
601	Acetyltransf	Acetyltransferase (GNAT) family	3.2e-17	70.6
604	NAP family	Nucleosome assembly protein (NAP)	5.5e-12	46.4
605	RhoGAP	RhoGAP domain	1e-28	108.9
606	Armadillo_seg	Armadillo/beta-catenin-like repeat	0.00022	28.0
607	pkinase	Protein kinase domain	5.9e-77	269.1
608	zf-C2H2	Zinc finger, C2H2 type	5.4e-110	378.8
609	ras	Ras family	1.2e-16	52.8
610	ank	Ank repeat	1.6e-08	41.8
612	pkinase	Protein kinase domain	1.6e-69	244.3
613	WD40	WD domain, G-beta repeat	4.7e-55	196.3
614	UBA	UBA/TS-N domain	3.6e-12	53.9
615	Zip	ZIP Zinc transporter	8.1e-59	208.8
618	sushi	Sushi domain (SCR repeat)	1.3e-58	208.2
619	K tetra	K+ channel tetramerisation domain	1.3e-19	78.6
621	CAP GLY	CAP-Gly domain	1.9e-48	174.3
622	TCTP	Translationally controlled tumor protein	5.2e-109	375.5
628	UQ_con	Ubiquitin-conjugating enzyme	0.0046	-43.3
629	DPPIV_N_term	Dipeptidyl peptidase IV (DPP IV) N-termi	5.1e-07	-82.1
630	DPPIV_N_term	Dipeptidyl peptidase IV (DPP IV) N-termi	5.5e-07	-83.2
631	efhand	EF hand	2.3e-14	61.1
632	Pribosyltran	Phosphoribosyl transferase domain	4.3e-37	136.7
635	ank	Ank repeat	1.8e-25	98.0
636	MHCK_EF2_kinas e	MHCK/EF2 kinase domain family	1.2e-12	5.6
637	DUF221	Domain of unknown function DUF221	1.2e-89	311.2
639	bromodomain	Bromodomain	2.2e-29	106.0
641	ubiquitin	Ubiquitin family	2.2e-21	81.9
644	RIO1	RIO1/ZK632.3/MJ0444 family	1.1e-07	-14.9
646	NDK	Nucleoside diphosphate kinase	1.1e-52	188.4
649	zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	9.4e-12	42.4
651	ABC tran	ABC transporter	7.9e-84	291.9
654	CUB	CUB domain	3e-30	113.9
655	MHCK_EF2_kinas	MHCK/EF2 kinase domain family	2.6e-09	-35.3
659	zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	1.3e-11	41.9
661	UvrD-helicase	UvrD/REP helicase	0.078	9.7
663	TFIIS	Transcription factor S-II (TFIIS)	2e-22	87.9
664	dsrm	Double-stranded RNA binding motif	4.3e-42	153.3
665	rrm	RNA recognition motif.	0.002	24.8
669	OTU	OTU-like cysteine protease	1e-19	78.9
671	TFIIS	Transcription factor S-II (TFIIS)	2e-22	87.9
672	zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	1.5e-05	22.3
673	AMP-binding	AMP-binding enzyme	1.6e-86	300.9
013	L VIATI -OHIGHIR	1 1-1/2 Uniding Chizyine	1.00 00	

SEQ ID NO:	Pfam Model	Description	E-value	Pfam Score
679	MSP_domain	MSP (Major sperm protein) domain	5.4e-18	73.2
680	MSP_domain	MSP (Major sperm protein) domain	5.5e-11	49.9
683	RNase PH	3' exoribonuclease family	3e-42	153.8
684	lactamase_B	Metallo-beta-lactamase superfamily	0.088	-15.6
686	tRNA anti	OB-fold nucleic acid binding domain	0.031	20.9
690	NHL	NHL repeat	8.2e-18	72.6
691	zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	6.1e-09	33.2
693	WD40	WD domain, G-beta repeat	0.025	21.2
694	WD40	WD domain, G-beta repeat	1.1e-23	92.1
696	Choline_kinase	Choline/ethanolamine kinase	1.6e-51	184.6
697	zf-C2H2	Zinc finger, C2H2 type	3.4e-74	259.9
698	cadherin	Cadherin domain	2.2e-05	31.3
701	PRK	Phosphoribulokinase / Uridine kinase family	1.1e-79	278.1
702	DnaJ	DnaJ domain	5e-26	99.9
888	PAX	'Paired box' domain	1.1e-87	304.7

ABLE 5

	, 							1			
PDB annotation	OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	CYTOKINE LCF; CYTOKINE, LYMPHOCYTE CHEMOATTRACTANT FACTOR, PDZ DOMAIN	KINASE HCASK, GLGF REPEAT, DHR, PDZ DOMAIN, NEUREXIN, SYNDECAN, RECEPTOR CLUSTERING, KINASE	OXIDOREDUCTASE BETA-FINGER	MEMBRANE PROTEIN/OXIDOREDUCTASE BETA- FINGER, HETERODIMER	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTP1E, PTP-BAS, SPECIFICITY 2 OF BINDING	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGENDNA) COMPLEX (ZINC FINGENDNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA), ZINC
Coumpound	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CHAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	INTERLEUKIN 16; CHAIN: NULL;	HČASK/LIN-2 PROTEIN; CHAIN: A, B;	NEURONAL NITRIC.OXIDE SYNTHASE (RESIDUES 1- 130); CHAIN: A;	ALPHA-1 SYNTROPHIN (RESIDUES 77-171), CHAIN: A; NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130), CHAIN: B;	TYROSINE PHOSPHATASE (PTP-BAS, TYPE 1); CHAIN: A;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BNDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE: CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX
SeqFold score										80.51	
PMF score	66.0	0.65	0.48	8.0		0.81	0.74	-	0.11		
Verify score	0.39	-0.32	0.58	0.26	0.7	0.2	0.64	0.24	-0.03		0.16
PSI- BLAST	1.30E-07	0.00014	1.30E-05	1.10E-11	7.00E-11	5.60E-10	2.80E-05	1.70E-30	1.70E-23	4.20E-29	4.20E-29
End	401	401	414	404	410	396	414	189	248	278	277
Start AA	324	355	329	329	325	324	324	109	137	194	195
Chain ID	¥	A		<	∢	⋖	<	4	e e	¥	Ą
PDB ID	1689	16e9	1116	Ikwa	lqau	lqav	3pdz	lalh	lalh	lalh	lalh
SEQ	445	445	445	445	445	445	445	446	446	446	446

· -	\neg				 -		·	· 1 · · · · · · · · · ·		
PDB annotation	FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX
Coumpound	OLIGONUCLEOTIDE RINDING SITE: CLARI: B. C.	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE	OGSR ZINC FINGER PEPTIDE; CHAIN: B, C; PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE RINDING STEE, CHAIN: B, C;	QGS ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE RINDING STEE: CTAINE: B	GGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE	PENDANCISTE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE: CHAIN: A; DUPLEX OLIGONUCLEOTIDE		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold score										
PMF score		_	1	0.99	_	0.05	0.21	_	0.95	0.98
Verify score		-0.05	-0.09	-0.18	-0.24	0.1	-0.35	0.35	0.38	0.11
PSI- BLAST		6.80E-28	8.50E-28	1.50E-28	1.20E-30	5.10E-20	4.20E-25	1.20E-49	1.70E-38	1.00E-44
End		276	303	331	359	133	189	189	220	276
Start AA		205	224	252	280	53	81	108	136	164
Chain 10		٧	A	«	⋖	A	A	၁	U	ပ
PDB ID		lalh	lalh	laih	lalh	lalh	lalh	1me y	Ime y	Jme (
SEQ ID		446	446	446	446	446	446		· · · · ·	446

SEQ NO:	PDB CII	Chain ID	Start AA	End	PSI- BLAST	Verify	PMF score	SeqFold score	Coumpound	PDB annotation
446	Ime y	U	223	303	1.70E-47	0.15	-		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
446	Ime y	O	27	105	5.10E-21	0.08	-0.13		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
446	Ime y	U	278	360	1.00E-48			97.55	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
446	1me y	ပ	279	360	1.00E-48	0.11	-		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
446	Ime y	O		133	5.10E-37	0.19	0.75		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
446	lme y	ပ	08	161	1.00E-48	0.53			DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
446	lme y	ပ	83	190	4.20E-27	-0.13	0.36		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGEN/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGEN/DNA)
446	lme y	O		105	5.10E-12	0.39	0.19		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
446	1453	A	108	192	1.20E-20			62.34	TRANSCRIPTION FACTOR	COMPLEX (TRANSCRIPTION

Chain ID	 Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	. Coumpound	PDB annotation
								REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
A 81	22	229	8.50E-32	-0.04	0.87		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC, FINGER, PROTEIN
C 106	5	248	2.80E-32	-0.12	0.92		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
C 116 220	77	0.	1.70E-28	0.01	96:0		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
144	276		1.50E-30	0.01	0.72		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
C 169 2	7	276	2.80E-35	0.09	-		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
C 198 33	,,	331	9.80E-36	-0.01	0.98		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2

	т	Υ										_																			_		
PDB annotation	FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1:	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	TRANSCRIPTION INITIATION	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(I KANSCKIP I JON REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DINA) TING-TANG I;	INTIATOR FIFMENT VVI 2000	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYT, ZINC 2	PECOGNITION 3 COMPLEY	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION PEGIT ATTIONAL A	TRANSCRIPTION INITIATION.
Coumpound		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			YYI; CHAIN: C; ADENO-	INITIATOR ELEMENT DNA:	CHAIN: A, B;			OTHER CHANGE	ASSOCIATED WILLS BE	NITIATOR EL EMENT DNA:	CHAIN: A. B.				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	CHAM: A B.	CITAIN: A, B;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			VAN. CHARLO APPRIO	ASSOCIATED VIDIO DE	INITIATOR ELEMENT DNA;
SeqFold score												105.01	10.501						•														
PMF score		0.93					_												_						0.11						-	-	
Verify score		0.08			·-		90.0 ₋												0.01					·	0.24						0.37) (::)	
PSI- BLAST		5.10E-32					2.80E-31					9 80E.36	7.802-30			1	•		3.40E-34						5.10E-23						\$ 10E.30	0.101.0	
End AA		303					359					360	8					2,50	359	_		_			133						141		
Start AA		205					177					253						250	907				_		27						53	3	
Chain ID		ပ					ن)						ن						ပ						C)	
PDB ID		1 ubd				-	Dani		-			1mbd	3					╁	pani					-	Inbd						1ubd		1
Se Si		446					440					446	?					146	440						446						446		

3	∃						02000		
		E	¥ .	BLAS1	score	score	score	•	
								CHÁIN: A, B;	INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILLATION/DNA)
lubd	ပ	85	189	1.40E-32	0.11	0.99		YY1; CHAIN: C; ADENO ASSOCIATED VIRUS P5	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;
				,				INITIATOR ELEMENT DNA;	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYL, ZINC 2
			-						FINGER PROTEIN, DNA-PROTEIN
									RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
2adr		53	107	1.70E-09	0.04	-0.19		ADR1; CHAIN: NULL;	TRANSCRIPTION REGULATION
		_							TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NMR
2gli	Ä	109	331	2.80E-42	0.05	0.21		ZINC FINGER PROTEIN GLI1;	COMPLEX (DNA-BINDING
								CHAIN: A; DNA; CHAIN: C, D:	PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-
								î	BINDING PROTEIN/DNA)
2gli	4	116	275	5.10E-29	0.04	0.11		ZINC FINGER PROTEIN GL11; CHAIN: A; DNA; CHAIN: C,	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI,
								D;	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
2gli	A	165	359	1.10E-41	0.11			ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
)								CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
								Ď;	ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
2gli	¥	195	333	2.80E-42			99.39	ZINC FINGER PROTEIN GLI1;	COMPLEX (DNA-BINDING
								CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
								ĵ	BINDING PROTEIN/DNA)
2gli	A	207	330	3.40E-30	0.46	_		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
								CHAIN: A; DNA; CHAIN: C, D:	PROTEIN/DINA) FIVE-FINGER GEL; GEL; GEL; GEL;
								â	BINDING PROTEIN/DNA)
2gli	٧	231	358	3.40E-32	0.27	_		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
								CHAIN: A: DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
								ä	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
2gli	A	32	199	3.40E-27	0.48	0.4		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
								CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER COMPLEX (DNA-

	Τ	T		l,	Τ	T				-	Τ				_]					Т					Т				丁		\top
PDB annotation	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)		CYTOSKELETON ELASTICITY, MEMBRANE SKELETON, SPECTRIN.	COILED-COIL, 2 CYTOSKELETON,	CALMODULIN-BINDING, ACTIN-	BINDING, 3 CAPPING PROTEIN,	REPEAT, 4 SH3 DOMAIN	STRUCTURAL PROTEIN TWO	REPEATS OF SPECTRIN, ALPHA	HELICAL LINKER REGION, 22	TANDEM 3-HELIX COILED-COILS,	STRUCTURAL PROTEIN	STRUCTURAL PROTEIN TWO	REPEATS OF SPECTRIN, ALPHA	HELICAL LINKER REGION, 22	TANDEM 3-HELIX COILED-COILS, STRIICTIID AT PROJECTIVE	STRIICTIIR AT PROTEIN TWO	REPEATS OF SPECTRIN ALPHA	HELICAL LINKER REGION, 2.2	TANDEM 3-HELIX COILED-COILS	STRUCTURAL PROTEIN	STRUCTURAL PROTEIN TWO	REPEATS OF SPECTRIN, ALPHA	HELICAL LINKER REGION, 22	TANDEM 3-HELIX COILED-COILS,	STRUCTURAL PROTEIN	MEMBKANE PROTEIN FOUR HELIX BINDLE ALPHA HELIX	CONTRACTILE PROTEIN TRIPLE-
Coumpound		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;		ALPHA SPECTRIN; CHAIN: NULL;					ALPHA SPECTRIN; CHAIN:	A, B, C;				ALPHA SPECTRIN; CHAIN:	A, B, C;			ALPHA SPECTRIN: CHAIN:	A, B, C;				ALPHA SPECTRIN; CHAIN:	A, B, C;			CCO1 photography	SSOI FROI EIN; CHAIN: A;	HUMAN SKELETAL MUSCLE
SeqFold score																				57.3			_								64.46
PMF score		0.93		-		0.09					0.23				5	0.03									0.33				02.0	(7:0	
Verify score		-0.1		0.31		0.28					-0.21	-			1.0	-0.1/								7	-0.07		-		-0.33		
PSJ- BLAST		2.80E-45	. 0	8.50E-31		6.80E-16					1.00E-17				5 COT 05	J.60E-03				1.70E-23					1.70E-23				0.00028		1.70E-19
End AA		278	,	24 /		139					142				201	107				797				1	259				121		267
Start AA		83	90	88		39					7				7	า			ļ	37				30	38				10		23
Chain ID		∢		4							<				4	Ξ				~								-	V		 V
PDB ID		2gli	:120	1187		laj3				1	- Ican				1Cin					lcun				十	uno	_			1fio		nobr
SEQ ID NO:		446	777	9		447				,	/ ##				447	:				447				143					447		44./

PDB annotation	PROTEIN	CONTRACTILE PROTEIN TRIPLE- HELIX COILED COIL, CONTRACTILE PROTEIN	CONTRACTILE PROTEIN TRIPLE- HELIX COILED COIL, CONTRACTILE PROTEIN	THE PERSON NAMED IN COLUMN TO PERSON NAMED I	CHAPEKONE HOP, IPK-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN,	PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN,	PEPTIDE-COMPLEX, HELICAL	REPEAT, HSC70, 2 HSP70, PROTEIN BINDING	SIGNALING PROTEIN PEROXISMORE	KECEPIOK I, PISI-BP, PEKOXIN-3,	PTS1 PROTEIN-PEPTIDE COMPLEX,	HELICAL REPEAT	SIGNATING PROTEIN PEROXISMORE	RECEPTOR I. PTSI-BP. PEROXIN-5.	PTSI PROTEIN-PEPTIDE COMPLEX,	TETRATRICOPEPTIDE REPEAT, TPR, 2	HELICAL KEPEAT	TRANSCRIPTION INHIBITOR BETA- PROPELLER	METHYLTRANSFERASE METHYLTRANSFERASE, CHEMOTAXIS RECEPTOR METHYLATION	METHYLTRANSFERASE GNMT, S- ADENOSYL-L-METHIONINEN:	סבוכווים אובוון ובוואסויטן האסב
Coumpound	A;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;		TPKZA-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	TPR2A-DOMAIN OF HOP;	CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	TPR1-DOMAIN OF HOP;	CHAIN: A, B; HSC70-	PEPTIDE; CHAIN: C, D;	PEROXISOMAL TARGETING	SIGNAL I RECEPTOR;	CHAIN: A, B; PTS1-	CONTAINING PEPTIDE;	PEROXISOMAI TARGETING	SIGNAL I RECEPTOR:	CHAIN: A. B. PTS1-	CONTAINING PEPTIDE;	CHAIN: C, D;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	CHEMOTAXIS RECEPTOR METHYLTRANSFERASE CHER; CHAIN: NULL;	GLYCINE N- METHYLTRANSFERASE;	Chally, A, B;
SeqFold score																							
PMF score		0.16	0.11		0.27	0		0.3			0.16				0 40	 				0.19	0.29	0.21	
Verify score		-0.31	-0.19		-0.26	-0.49		0.41			-0.37				0 13	71.0				0.01	-0.22	-0.32	
PSI- BLAST		0.0012	1.70E-19		5.10E-05	0.0014		1.20E-08			0.0084				4 20E-07	4.401-07				5.10E-38	0.0098	2.80E-06	
End		322	265		<u>8</u>	220		186			278				480	200				213	146	148	
Start AA		256	27		0 110	128		71			128				280	604				4	2	83	
Chain ID		V	A		¥	V		A			A					ζ.				A		Ą.	
PDB ID		Iquu	lquu		letr	leir		lelw			1fch				15.					lerj	laf7	lxva	
SEQ SO SO SO SO SO SO SO SO SO SO SO SO SO		447	447		450	450		450			420	_			450	}				452	458	458	

		т	1 1								
PDB annotation	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEIN ZINC 2 PINGER	CLATHRIN CLATHRIN, TRISKELION, COATED VESICLES, ENDOCYTOSIS, SELF- 2 ASSEMBLY, ALPHA-ALPHA SUPERHELIX	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEIN	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	COMPLEX (GTP-BINDING/TRANSDUCER) BETA!, TRANSDUCIN BETA SUBUNIT; GAMMA!, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL
Coumpound	QCRP2 (LIM1); CHAIN: NULL;	CLATHRIN HEAVY CHAIN; CHAIN: A;	CYSTEINE AND GLYCINE. RICH PROTEIN CRP2; CHAIN: A;	TOLB PROTEIN; CHAIN: A;	TOLB PROTEIN; CHAIN: A;	TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B C:	TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B, C.	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN: G;
SeqFold score											101.01
PMF score	0.09	0.16	0.04	0.77	0.15	0.28	0.76	0.15	0.41	0.01	
Verify score	-0.46	0.11	-0.39	0.31	0.51	0.31	9.0	0.31	0.36	-0.03	
PSI- BLAST	0.0042	5.10E-33	8600.0	0.0012	0.007	1.70E-48	5.10E-72	6.80E-63	8.50E-64	1.70E-61	1.40E-84
End	879	718	879	481	499	405	500	551	599	639	499
Start AA	851	351	851	225	341	. 167	181	220	282	330	129
Chain ED		V	∢	A	Y	A	∢	4	∢	Ą	æ
PDB ID	1a7i	1689	lcxx	lcrz	lcrz	lerj	lerj	lerj.	.j. j.	lerj	lgot
SEQ	459	459	459	465	465	465	465	465	465	465	465

PDB annotation	COMPLEX (GTP- BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	COMPLEX (GTP-BINDING/TRANSDUCER) BETA!, TRANSDUCIN BETA SUBUNIT; GAMMA!, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	OXIDOREDUCTASE ENZYME, NITRITE REDUCTASE, OXIDOREDUCTASE, DENITRIFICATION, 2 ELECTRON TRANSPORT, PERPLASMIC	TRANSFERASE ESAI HAT, ESAI PROTEIN, ESAIP, HISTONE ACETYLTRANSFERASE, COENZYME A	TRANSFERASE TRANSFERASE (PHOSPHORYL)	TRANSFERASE TRANSFERASE (PHOSPHORYL)		·
Coumpound	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN: G;	CYTOCHROME CD1 NITRITE REDUCTASE; CHAIN: A, B;	ESAI HISTONE ACETYLTRANSFERASE; CHAIN: A;	PHOSPHOGLYCERATE MUTASE; CHAIN: A, B;	PHOSPHOGLYCERATE MUTASE; CHAIN: A, B;	TRANSFERASE (PHOSPHORYL) PHOSPHOGLYCERATE MUTASE (E.C.2.7.5.3) DE- PHOSPHO ENZYME 3PGM 4	TRÂNSFERASE (PHOSPHORYL) PHOSPHOGLYCERATE MUTASE (E.C.2.7.5.3) DE- PHOSPHO ENZYME 3PGM 4
SeqFold score					238.98			226.92
PMF	0.93	0.13	0.37			-	-	
Verify score	0.57	0.28	0.5	9.0		0.89	0.51	
PSI- BLAST	1.40E-84	8.50E-64	4.20E-36	0	6.80E-75	6.80E-75	7.00E-75	7.00E-75
End	499	639	498	290	257	259	249	250
Start		326	167	17	16	91	16	91
Chain	æ	м .	<	4	A	∢		
PDB ID	1 got	1got	lqks	1fy7	1qhf	1qhf	3рg т	3pg m
SEQ ID NO:	465	465	465	468	470	470	470	470

									
PDB annotation		TRANSCRIPTION REGULATION PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2	TRANSCRIPTION REGULATION		LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	METAL BINDING PROTEIN RING FINGER PROTEIN MATI, RING	METAL BINDING PROTEIN RING FINGER PROTEIN MATI; RING	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN I; RAGI, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINICI FAR
Coumpound	TRANSFERASE (PHOSPHORYL) PHOSPHOGLYCERATE MUTASE (E.C.2.7.5.3) DE- PHOSPHO ENZYME 3PGM 4	TRANSCRIPTION FACTOR PML; CHAIN: NULL;	VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRIICTIME) 1 CHC 4	VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) ICHC3 (NMR, 1	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA	CDK-ACTIVATING KINASE ASSEMBLY FACTOR MATI;	CDK-ACTIVATING KINASE ASSEMBLY FACTOR MATI; CHAIN: A:	RAGI; CHAIN: NULL;
SeqFold score			-						
PMF		0.04	96.0	99.0	0.51	0.6	0.71	0.43	0.93
Verify score	0.72	-0.13	0.11	-0.45	-0.26	-0.36	-0.15	0.21	-0.05
PSI- BLAST	1.50E-67	3.40E-07	5.60E-12	1.70E-11	8.40E-14	1.70E-11	5.60E-13	3.40E-06	2.80E-25
End AA	251	70	73	92	71	71	73	08	112
Start AA	16	27	28	29	27	29	28	29	20
Chain ID				-	«	A	4	4	
PDB ID	3pg m	Ibor	Ichc	1chc	1fbv			+	L mg
SEQ NO:	470	473	473	473	473			,	4/3

PDB annotation	CLUSTER, ZINC FINGER, DNA- BINDING PROTEIN	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA- BINDING PROTEIN	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN I; RAGI, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA- BINDING PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)		LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COILED-COILS, STRUCTURAL PROTEIN	
Coumpound		RAGI; CHAIN: NULL;	RAGI; CHAIN: NULL;	YYI; CHAIN: C: ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER DNA BINDING DOMAIN ZINC-FINGER (ZFY- 6T) (NMR, 13 STRUCTURES) 5ZNF 3	APOLIPOPROTEIN A-I; CHAIN: A, B, C, D;	ALPHA SPECTRIN; CHAIN: A, B, C;	DNA-BINDING HIGH MOBILITY GROUP PROTEIN FRAGMENT-B (HMGB)
SeqFold score			54.37			61.09	51.86	
PMF		0.86		0.06	0.12			0.01
Verify		-0.26		-0.51	-0.67			-0.45
PSI- BLAST		5.10E-21	2.80E-25	3.40E-11	0.0042	0.00056	0.00098	0.0014
End		114	114	194	167	506	219	204
Start AA		23	٢	68	140	-	13	164
Chain ID				ပ		A	¥	
80° 80°		1rmd	1rmd	lubd	Sznf	lavl	lcun	lhm e
SEQ NO:		473	473	473	473	475	475	475

SEQ ID NO:	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									(DNA-BINDING 1HME 3 HMG-BOX DOMAIN B OF RAT HMG1) (NMR, 1 STRUCTURE) 1HME 4	
475	lhsm		164	210	0.00084	-0.39	0.12		DNA-BINDING HIGH MOBILITY GROUP PROTEIN 1 (HMG1) BOX 2, COMPLEXED WITH 1HSM 3 MERCAPTOETHANOL (NMR, MINIMIZED AVERAGE STRUCTURE) 1HSM 4	
475	Iquu	4	_	222	4.20E-08			55.34	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	CONTRACTILE PROTEIN TRIPLE- HELIX COILED COIL, CONTRACTILE PROTEIN
477	1bq0		108	182	1.20E-19			72.19	DNAJ; CHAIN: NULL;	CHAPERONE HSP40; CHAPERONE, HEAT SHOCK, PROTEIN FOLDING, DNAK
477	15q0		110	181	1.20E-19	1.11			DNAJ; CHAIN: NULL;	CHAPERONE HSP40; CHAPERONE, HEAT SHOCK, PROTEIN FOLDING, DNAK
477	lelr	¥	. 9	129	1.20E-19	0.38	-0.09		TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MFEVD: CHAIN: B:	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL PEPEAT USDOG 2 PECTERN DELIGING
477	leíw	Ą	9	123	8.50E-24	0.42	0.05		TPR.I.DOMAIN OF HOP; CHAIN: A, B; HSC70- PEPTIDE; CHAIN: C, D;	CHAPERONE HOP, TPR-DEMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN BINDING
477	l fch	¥	7	108	1.00E-18	0	-0.02		PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI- CONTAINING PEPTIDE; CHAIN: C D.	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-BP, PEROXIN-5, PTS1 PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT, TPR, 2
477	1hdj		107	180	1.20E-19	1.05			HUMAN HSP40; CHAIN:	MOLECULAR CHAPERONE HDJ-1; MOI FCIII AP CHAPEDONE
477	Ihdj		107	187	1.40E-30			80.39	HUMAN HSP40; CHAIN: NULL:	MOLECULAR CHAPERONE HDJ-1; MOLECIII AR CHAPERONE
477	1hdj		601	176	1.40E-30	0.98	-		HUMAN HSP40; CHAIN: NULL;	MOLECULAR CHAPERONE MOLECULAR CHAPERONE
479	1bjf	A	43	92	0.00013	-0.35	0.39		NEUROCALCIN DELTA;	CALCIUM-BINDING CALCIUM.

PDB annotation	BINDING, MYRISTOYLATION, NEURONAL SPECIFIC GUANYLATE 2 CYCLASE ACTIVATOR	SIGNALING PROTEIN CALCIUM BINDING, SIGNALING DOMAIN, NPF BINDING, FW BINDING, 2 EF-HAND, EH DOMAIN, SIGNALING PROTEIN	METAL BINDING PROTEIN CAVP; EF- HAND FAMILY, CALCIUM BINDING PROTEIN, NMR			STRUCTURAL PROTEIN HELIX-TURN-HELIX	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER	METAL BINDING PROTEIN YEAST FREQUENIN EF-HAND, CALCIUM	CALCIUM-BINDING PROTEIN CALCIUM-MYRISTOYL SWITCH, CALCUIM-BINDING PROTEIN	GENE REGULATION POZ DOMAIN; PROTEIN-PROTEIN INTERACTION DOMAIN, TRANSCRIPTIONAL 2 REPRESSOR, ZINC-FINGER PROTEIN, X-RAY CRYSTALLOGRAPHY, 3 PROTEIN STRUCTURE, PROMYELOCYTIC LEUKEMIA, GENE REGULATION	LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19;
Coumpound	CHAIN: A, B;	EPIDERMAL GROWTH FACTOR RECEPTOR PATHWAY CHAIN: A;	CALCIUM VECTOR PROTEIN; CHAIN: A;	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CARDIAC TROPONIN C; CHAIN: A;	CALMODULIN; CHAIN: A;	CALCIUM-BINDING PROTEIN NCS-1; CHAIN: A;	RECOVERIN; CHAIN: NULL;	PROMYELOCYTIC LEUKEMIA ZINC FINGER PROTEIN PLZF; CHAIN: A;	SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H, J, L, N, P;
SeqFold score											
PMF score		0.92	0.42	0.51	0.13	0.12	0.27	0.21	0.05	0.63	69:0
Verify score		-0.18	-0.3	0.54	0.07	0.28	60.0	0.14	-0.43	0.11	-0.06
PSI- BLAST		0.00014	0.00028	8.40E-05	4.20E-05	0.00017	0.00014	5.60E-05	0.00028	1.70E-24	1.10E-05
End AA		83	83	107	103	86	103	84	96	143	168
Start AA		41	14	41	41	43	41	43	42	22	52
Chain ID		¥	⋖	A		Ą	A	٧		∢	В
PDB TD		1c07	lc7w	pol m	Icll	1dtl	lexr	lfpw	1 iku	1buo	lfqv
SEQ No.		479	479	479	479	479	479	479	479	480	480

f	,	Τ	T -				_				-
PDB annotation	SKPI, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIOUITIN PROTEIN I IGASE	LIGASE SKP2 F-BOX; SKP1; SKP1, SKP2, F-BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2- ASSOCIATED P45; CYCLIN A/CDK2- ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE					INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR	VIRUS/VIRAL PROTEIN, RECEPTOR CD155, PVR, HUMAN POLIOVIRUS, ELECTRON MICROSCOPY, 2 POLIOVIRUS-RECEPTOR COMPLEX,	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULN (IG)LIKE
Coumpound		CYCLIN A/CDK2- ASSOCIATED P19; CHAIN: A, C; CYCLIN A/CDK2- ASSOCIATED P45; CHAIN: B, D.	SKP2; CHAIN: A, C; SKP1; CHAIN: B, D;	OXIDOREDUCTASE(OXYGE N(A)) GALACTOSE OXIDASE (E.C.1.1.3.9) (PH 4.5) 1GOF 3	OXIDOREDUCTASE(OXYGE N(A)) GALACTOSE OXIDASE (F.C. 1, 1, 3, 9) (PH 4, 5), 1GOF 3	OXIDOREDUCTASE(OXYGE N(A)) GALACTOSE OXIDASE (E.C.I.1.3.9) (PH 4.5) 1GOF 3		HEMOLIN; CHAIN: A, B;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	POLIOVIRUS RECEPTOR; CHAIN: R; VPI; CHAIN: 1; VP2; CHAIN: 2; VP3; CHAIN: 3; VP4; CHAIN: 4;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, C, D; FIBROBLAST GROWTH
SeqFold score		·									
PMF		96.0	0.86	-0.08	0.22	-0.18		-0.17	0.21	-0.14	0.17
Verify score		0.48	0.26	0.22	0.31	0.07		0	-0.04	0.03	0.05
PSJ- BLAST		4.20E-05	0.00042	1.40E-31	8.50E-13	2.80E-14		1.70E-29	1.405-12	1.70E-14	5.10E-13
End AA		141	164	577	588	592		396	396	381	392
Start AA		52	52	318	346	362	6	66	303	96	303
Chain ID		æ	В					\ ا	a	~	3
PDB ID		ıßı	1fs2	lgof	1gof	1gof	十		Icvs	1dgi	lev2
S B S		480	480	480	480	480	10,	184	4 8 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	481	481

PDB annotation	DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN (IG)LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE	DOMAINS, B-TREFOIL FOLD GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF1; FGFR1; IMMUNOGLOBULIN (IG) LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD	IMMUNE SYSTEM FC-EPSILON RI- ALPHA; IMMUNOGLOBULIN FOLD, GLYCOPROTEIN, RECEPTOR, IGE- BINDING 2 PROTEIN	CONTRACTILE PROTEIN IMMUNOGLOBULIN FOLD, BETA BARREL	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	IMMUNE SYSTEM CD32, RECEPTOR. FC, CD32, IMMUNE SYSTEM	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	HALOPEROXIDASE HALOPEROXIDASE F; HALOPEROXIDASE, OXIDOREDUCTASE, PROPIONATE COMPLEX	HYDROLASE BPHD; HYDROLASE, PCB DEGRADATION	HYDROLASE PNB ESTERASE; ALPHA- BETA HYDROLASE, DIRECTED
Coumpound	FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	FIBROBLAST GROWTH FACTOR 2, CHAIN: A, B, C, D; FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	FIBROBLAST GROWTH FACTOR 1; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	HIGH AFFINITY IMMUNOGLOBULIN EPSILON RECEPTOR CHAIN: A;	TELOKIN; CHAIN: A	TWITCHIN; CHAIN: NULL;	FC GAMMA RIIB: CHAIN: A;	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	CHLOROPEROXIDASE F; CHAIN: NULL;	2-HYDROXY-6-OXO-6- PHENYLHEXA-2,4- DIENOATE CHAIN: A;	PARA-NITROBENZYL ESTERASE; CHAIN: A;
SeqFold score											
PMF score		0.15	0.1	0.04	-0.07	0.03	0.01	0.09	0.04	0.47	-
Verify score		-0.2	0.02	-0.2	0.13	90:0	-0.06	-0.06	0.45	0.29	0.39
PSI- BLAST		5.10E-13	1.40E-12	1.70E-16	3.40E-17	8.50E-16	1.70E-14	0.00014	0.0017	0.00012	3.40E-93
End		392	396	386	381	382	384	363	296	331	909
Start AA	.*	303	303	192	289	292	161	281	152	178	43
Chain ID		ပ	U	A	⋖		4	∢		A .	4
PDB ID		1ev2	levt	1 <i>f</i> 2q	1fhg	lkoa	2fcb	lelr	la8s	1c4x	1c7j
SEQ NO:		481	481	481	481	481	481	482	483	483	483

[T	1	7	105			7	-T				
PDB annotation	EVOLUTION, ORGANIC ACTIVITY, 2 PNB ESTERASE	LIPASE ESTERASE, SUBSTRATE/PRODUCT-BOUND ICLE	LIPASE ESTERASE, SUBSTRATE/PRODUCT-BOUND 1CLE	HYDROLASE LINB, 1,3,4,6- TETRACHLORO-1,4- CYCLOHEXADIENE DEHALOGENASE, LINDANE, BIODEGRADATION,	HYDROLASE (SERINE ESTERASE) HYDROLASE (SERINE ESTERASE), HYDROLASE, SERINE ESTERASE, 2 SYNAPSE, MEMBRANE, NERVE, MUSCLE, SIGNAL, NEUROTRANSMITTER 3 DEGRADATION, GLYCOPROTEIN,	GPI-ANCHOR, ALTERNATIVE	CHOLINESTERASE SERINE HYDROLASE, NEUROTRANSMITTER CLEAVAGE, CATALYTIC 2 TRIAD,	HYDROLASE ALPHA/BETA HYDROL ASE FOI D	HYDROLASE ALPHA/BETA	HYDROLASE BILE SALT ACTIVATED LIPASE, ESTERASE, CATALYTIC	SERINE HYDROLASE SERINE HYDROLASE, DEGRADATION OF BREFELDIN A, ALPHA/BETA 2	T TROUGH LANGE
Coumpound		CHOLESTEROL ESTERASE; ICLE 4 CHAIN: A, B; ICLE 5	CHOLESTEROL ESTERASE; 1CLE 4 CHAIN: A, B; 1CLE 5	HALOALKANE DEHALOGENASE; CHAIN: A;	ACETYLCHOLNESTERASE; CHAIN: A;		ACETYLCHOLINESTERASE; CHAIN: A;	SERINE HYDROLASE; CHAIN: A:	SERINE HYDROLASE; CHAIN: A;	BILE SALT ACTIVATED LIPASE; CHAIN: A;	BREFELDIN A ESTERASE; CHAIN: A, B;	HYDROLASE LIPASE (E.C.3.1.1.3) (TRIACYLGLYCEROL
SeqFold score		181.19										179.92
PMF score			-	0.57			_	0.58	0.42	1	0.1	
Verify score			0.21	0.6	0.61		0.59	0.17	-0.05	0.5	-0.05	·
PSI- BLAST		1.20E-73	1.20E-73	0.0084	0		0	3.40E-28	5.60E-39	0	5.10E-20	1.20E-71
End AA		581	593	379	611		612	346	283	612	334	581
Start AA		45	89	163	40	,	40	142	73	44	83	42
Chair B		¥	Ą	A	₹.		∢	V	4	¥	¥	
708 10		Icle	1cle	1cv2	1dx4		lea5	levq	levq	1f6w	1 jkm	11pp
NO:	5	483	483	483	483		483	483	483	483	, ,	483

PDB annotation			HYDROLASE MACHE; HYDROLASE, SERINE ESTERASE, ACETYLCHOLINESTERASE, TETRAMER, 2 HYDROLASE FOLD, GLYCOSYLATED PROTEIN	HYDROLASE MACHE; HYDROLASE, SERINE ESTERASE, ACETYLCHOLINESTERASE, TETRAMER, 2 HYDROLASE FOLD, GLYCOSYLATED PROTEIN	HYDROLASE PNB ESTERASE; ALPHA- BETA HYDROLASE DIRECTED EVOLUTION	HYDROLASE PNB ESTERASE; ALPHA- BETA HYDROLASE DIRECTED EVOLUTION	HYDROLASE PROLYL ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-2 PROPELLER	HYDROLASE PROLYL ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA- 2 PROPELLER	
Coumpound	ILPP 3 HEXADECANESULFONATE ILPP 4 ILPP 71	HYDROLASE LIPASE (E.C.3.1.1.3) (TRIACYLGLYCEROL LIPASE) COMPLEXED WITH 1LPP 3 HEXADECANESULFONATE 1LPP 4 1LPP 71	ACETYLCHOLINESTERASE; CHAIN: A, B, C, D;	ACETYLCHOLINESTERASE; CHAIN: A, B, C, D;	PARA-NITROBENZYL ESTERASE; CHAIN: A;	PARA-NITROBENZYL ESTERASE; CHAIN: A;	PROLYL OLIGOPEPTIDASE; CHAIN: A;	PROLYL OLIGOPEPTIDASE; CHAIN: A:	HYDROLASE(CARBOXYLIC ESTERASE) LIPASE (E.C.3.1.1.3)
SeqFold score			368.25		242.59				210.1
PMF score						-	0.11	0.03	
Verify score		0.22		0.72		0.33	0.15	o	
PSI- BLAST		1.20E-71	0	0	1.70E-89	1.70E-89	5.60E-57	1.20E-35	5.10E-80
End		593	612	612	602	599	397	350	580
Start AA		89	38	38	40	43	26	87	46
Chain ID			¥	∢	Ą	V	∢	¥	
PDB ID		Прр	Imaa	Imaa	1qe3	Iqe3	Iqfm	lqfm	lthg
SEQ No:		483	483	483	483	483	483	483	483

Chain Start End ID AA AA	Start AA		<u> </u>	₽ ✔ │	PSI- BLAST	Verify	PMF score	SeqFold score	Coumpound	PDB annotation
						·			TRIACYLGLYCEROL HYDROLASE 1THG 3	
47 583 5.10E-80	583	583		5.10E-80		0.49			HYDROLASE(CARBOXYLIC ESTERASE) LIPASE (E.C.3.1.1.3) TRIACYLGLYCEROL HYDROLIASE 1741C 2	
39 618 0	618	618		0				318.91	CHOLESTEROL ESTERASE; CHAIN: NULL;	HYDROLASE BILE SALT ACTIVATED LIPASE, BILE SALT STIMULATED HYDROLASE, SERINE ESTERASE,
44 612 0	612 0	612 0	0		L i	0.54	-		CHAIN: NULL;	HYDROLASE BILE SALT ACTIVATED LIPASE, BILE SALT STIMULATED HYDROLASE, SERINE ESTERASE, LIPASE
A 1 910 0	1 910 0	0	0		- 1	19	-		HEYOKINASE: CHAIN, A. B.	A DOWNIA OF ATTLE OF STRINGS
))		-	:	.		TEAUNINASE, CHAIIN: A, B;	HEXOKINASE ATP':D-HEXOSE-6- PHOSPHOTRANSFERASE; HEXOKINASE, PHOSPHOTRANSFERASE
A 1 911 0	1 911			0				179.92	HEXOKINASE; CHAIN: A, B;	HEXOKINASE ATP/:D-HEXOSE-6- PHOSPHOTRANSFERASE; HEXOKINASE, PHOSPHOTRANSFERASE
N 16 913 0 1.	16 913 0	913 0	0			1.21	_		HEXOKINASE TYPE I; CHAIN: N;	TRANSFERASE STRUCTURALLY HOMOLOGOUS DOMAINS
A 127 204 1.70E-18 -0	127 204 1.70E-18	204 1.70E-18	1.70E-18	∞	우	-0.49	0.11		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
A 152 232 1.70E-23	152 232 1.70E-23	232 1.70E-23	1.70E-23		۲	-0.36	0.3		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE RINDING SITE: CHAIN: B. C:	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
A 180 260 6.80E-24 0	180 260 6.80E-24	260 6.80E-24	6.80E-24		10	0.16	0.94		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BRIDING STEE: CHAIN: B; C;	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
C 126 204 1.70E-30	126 204 1.70E-30	204 1.70E-30	1.70E-30	 	1	-0.34	0.11		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA

PDB annotation	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER DINA) COMPLEX (ZINC FINGER DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2
Coumpound	PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C. F. C:
SeqFold score									
PMF		69.0	0.99		-	-	-	_	
Verify score		-0.18	-0.01	0.05	0.27	0.25	0.25	0.67	0.67
PSI- BLAST		5.10E-38	8.50E-41	1.205-42	1.40E-43	2.80E-47	5.10E-47	1.50E-48	2.80E-51
End	ı	232	260	288	316	372	372	400	400
Start		151	6/1	207	235	291	291	319	319
Chain ID		υ _.	U	O	O	ပ	U	U	U
PDB ID		1me y	Jme y	lme y	Ime · y	1me y	lme y	Ime y	lme y
SEQ ID NO:		485	485	485	485	485	485	485	485

<u></u>															_														
PDB annotation	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CKYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTFIN DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER MAA)	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CKISIAL SIRUCIURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CRYSTAL STRUCTURE COMPLEY	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CRYSTAL STRUIGH DESIGN, 2	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX
Coumpound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D. E:	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A. B, D, E:	CONSENSUS ZINC FINGER	rnotzin, caain; c, r, c;		DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: OF G.	6,1,6		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;	
SeqFold score											113.26																		
PMF score		_			-		İ			•					1		·		_										
Verify score		0.48			0.69			69:0							0.41				0.05				0.02				0.1		1
PSI- BLAST		5.10E-49		1.00	3.40E-49		100	4.20E-50			4.20E-50				1.00E-49				1.70E-50				1.505-50				8.50E-51		
End		428			420			426			457				484				212		-	1	040 0			9	268		
Start AA	,	347		2,275	c/c		320	5/5		·	375				403				431			750	424			107	/0/	-	
Chain		د		c	ر		c	۔ د			၁				ာ			,					 ງ				 J		1
EDB CI		y me		- 1	- A		- 1	y y			lme	<u> </u>		\dashv	- me			\dashv	2 >		-	十				+	- A		1
NO B	105	483		287			787	Ç F			485			\dashv	482			707				485				485			

PDB Chain Start End PSI- Verify PMF UD ID AA AA BLAST score score	Start End PSI- Verify AA AA BLAST score	End PSI- Verify AA BLAST score	PSI- Verify BLAST score	SI- Verify		PN	PMF score	SeqFold	Coumpound	PDB annotation (ZINC FINGER/DNA)
Ime C 515 596 1.50E-50 0.02 1	596 1.50E-50	596 1.50E-50	1.50E-50		0.02	-			DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
Ime C 543 624 3.40E-50 0.03 1	624 3.40E-50	624 3.40E-50	3.40E-50		0.03 1				DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
571 652	652 1.70E-50	652 1.70E-50	1.70E-50		0.28 1	1			DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZNC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
680 3.40E-50	680 3.40E-50	680 3.40E-50	3.40E-50		0.15				DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
	683 1.00E-32	683 1.00E-32	1.00E-32		0.36 1				DNA; CHAIN: A. B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G:	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
1me G 149 176 5.10E-07 -0.38 0.48 y	176 5.10E-07 -0.38	176 5.10E-07 -0.38	5.10E-07 -0.38	-0.38		0.48	i		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
1tf6 A 130 274 3.40E-27 -0.28 0.76	274 3.40E-27 -0.28	274 3.40E-27 -0.28	3.40E-27 -0.28	-0.28		0.76			TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
1tf6 A 152 297 3.40E-31 -0.2 0.81	297 3.40E-31 -0.2	297 3.40E-31 -0.2	3.40E-31 -0.2	-0.2		0.81			TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA

End PSI- Verify PMF AA BLAST score score
7.000
523 6.80E-34 0.07
484 5.10E-37
521 5.10E-37 0.11
633 3.40E-37 0.01
1 400 20
082 1.40E-36 0.1
10.10
23.2 3.10E-25 -0.22
260 8.50E-27 -0.27

PDB annotation	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX TRANSCRIPTION REGII ATIONDNA)	COMPLEX (TRANSCRIPTION
Соитроипа	INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO-
SeqFold score				·			
PMF score		0.86	0.93	1	96.0	-	1
Verify		-0.04	0.32	0.18	0.02	0.14	0.63
PSI- BLAST		3.40E-29	1.20E-29	8.50E-32	4.20E-46	7.00E-52	9.80E-59
End AA		288	316	344	345	372	400
Start AA		182	215	238	240	268	296
Chain ID		U	S	ن ن	, v	ပ	C
PDB ID		1ubd	Iubd	lubd	lubd	lubd	Jubd
SEQ ID NO:		485	485	485	485	485	485

	T		,			
PDB annotation	REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILI ATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILI ATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION PEGITI ATTOM/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX TRANSCRIPTION, 10 COMPLEX	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX TRANSCRIPTION BEGILI ATTOMINAL	COMPLEX (TRANSCRIPTION) REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
Coumpound	ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B:
SeqFold score			100.22			
PMF score		-		 -		
Verify score		0.04		0.26	0.1	0.09
PSI- BLAST		2.80E-59	2.80E-59	2.80E-55	8.40E-56	4.20E-59
End AA		456	457	512	596	652
Start AA		346	349	401	485	541
Chain ID		ပ	၁	U	U	O
PDB ID		lubd	1ubd	Iubd	lubd	1ubd
SEQ ID NO:		485	485	485	485	485

	T	Γ		т		1 · 		T		т
PDB annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIL! ATION/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTFIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLJ; GLJ, ZINC FINGER, COMPLEX (DNA- RINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI,
Coumpound	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C,
SeqFold score						110.36				
PMF score	0.98	0.09	0.47	_	_		<u>1</u>	0.88	-	0.98
Verify score	90.00	-0.05	0.01	0.4	0.53		0.54	0.01	-0.12	0.09
PSI- BLAST	3.40E-34	1.00E-26	5.60E-44	3.40E-31	1.40E-68	2.80E-77	2.80E-77	1.40E-73	1.10E-73	1.40E-72
End AA	089	262	346	343	402	458	458	542	654	681
Start AA	579	131		207	263	319	319	375	487	516
Chain ID	၁	Ą	A	¥	A	A	¥	∢	¥	A
PDB ID	Iubd	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli
SEQ ID NO:	485	485	485	485	485		485	485	485	485

PDB ID	Chain	n Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
	1 '							D;	ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
2gli A	1	523	651	1.40E-34	0.23	0.94		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
2gli A	i '	551	679	3.40E-33	0.03	0.95		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI. ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
	i '								
1d2e A		58	454	0			627.43	ELONGATION FACTOR TU (EF-TU); CHAIN: A, B, C, D	RNA BINDING PROTEIN G-PROTEIN, BETA-BARREL
1d2e A	'	58	454	0	1.12	-		ELONGATION FACTOR TU (EF-TU); CHAIN: A, B, C, D	RNA BINDING PROTEIN G-PROTEIN, BETA-BARREL
l dar		49	192	3.40E-17	-0.05	0.19		ELONGATION FACTOR G; CHAIN: NULL;	TRANSLATIONAL GTPASE EF-G RIBOSOMAL TRANSLOCASE, TRANSLATIONAL GTPASE
	1								
laca		1926	1954	0.0014	-0.46	0.11		ACYL-COENZYME A BINDING PROTEIN ACYL-	
								PROTEIN (ACBP) COMPLEX	
								WITH 1ACA 3 PALMITOYL- COENZYME A (NMR, 20 STRIIGTUBES) 1ACA A	
1b7t A		-	794	0			510.37	MYOSIN HEAVY CHAIN;	MYOSIN MYOSIN MOTOR
		_						CHAIN: A; MYOSIN	
								REGULATORY LIGHT	
								ESSENTIAL LIGHT CHAIN:	
	1							CHAIN: Z;	
167t A		٠,	807	0	0.41	1		MYOSIN HEAVY CHAIN;	MYOSIN MYOSIN MOTOR
								REGILLATORY LIGHT	
								CHAIN; CHAIN: Y; MYOSIN	
								ESSENTIAL LIGHT CHAIN;	
+	١							CHAIN: 2;	
lbrl A		1	765	0			524.14	MYOSIN; CHAIN: A, B, C, D, E, F, G, H;	MUSCLE PROTEIN MDE; MUSCLE PROTEIN
Ibr1 A		5	692	0	0.58	-		MYOSIN; CHAIN: A, B, C, D,	MUSCLE PROTEIN MDE; MUSCLE

SEQ ID NO:	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									E, F, G, H;	PROTEIN
487	1br2	٧	11	725	0	0.58	1		MYOSIN; CHAIN: A, B, C, D, E, F;	MUSCLE PROTEIN MUSCLE PROTEIN
487	1br2	А	11	739	0			470.06	MYOSIN; CHAIN: A, B, C, D, E, F;	MUSCLE PROTEIN MUSCLE PROTEIN
487	1btk	¥	1394	1495	9.80E-08	-0.2	0.11		BRUTON'S TYROSINE KINASE; CHAIN: A, B;	TRANSFERASE BRUTON'S AGAMMAGLOBULINEMIA TYROSINE
										KINASE, BTK; TRANSFERASE, PH DOMAIN, BTK MOTIF, ZINC BINDING,
							•			X-LINKED 2 AGAMMAGLOBULINEMIA, TYROSINE-PROTEIN KINASE
487	1btn		1216	1306	8.40E-13	0.42	0.28		BETA-SPECTRIN; 1BTN 4 CHAIN: NULL; 1BTN 5	SIGNAL TRANSDUCTION PROTEIN
487	1 btn		1318	1382	0.00042	-0.39	0.07		BETA-SPECTRIN; 1BTN 4 CHAIN: NULL; 1BTN 5	SIGNAL TRANSDUCTION PROTEIN
487	Icii		962	933	2.80E-19	0.21	-0.19		COLICIN IA; CHAIN: NULL;	TRANSMEMBRANE PROTEIN
										CULICIN, BACTERIUCIN, ION CHANNEL FORMATION, TD ANEMEMBRANE 3 PROTEIN
187	15		610	07.0	2 OOE 10	60.0	010		COLICIIA: CITARI MILI	TO ANISMENDO ANIE DOCTEIN
ç -	5		010	6/6	7.00E-10	0.03	- - - - -		COLICIN IA; CHAIN: NOLL;	COLICIN BACTERIOCIN ION
								•		CHANNEL FORMATION,
,	J.			3		į				I KANSMEMBKANE 2 PROTEIN
487	Icun	⋖	726	940	1.40E-13	0.07	-0.14		ALPHA SPECTRIN; CHAIN:	STRUCTURAL PROTEIN TWO
										HELICAL LINKER REGION, 22
										TANDEM 3-HELIX COILED-COILS, STRIICTHRAL PROTEIN
487	lcun	A	608	946	1.10E-14	0.27	-0.17		ALPHA SPECTRIN; CHAIN:	STRUCTURAL PROTEIN TWO
									A, B, C;	REPEATS OF SPECTRIN, ALPHA
										TANDEM 3-HELIX COILED-COILS.
										STRUCTURAL PROTEIN
487	1dfk	¥	2	807	0	0.23			MYOSIN HEAD; CHAIN: A;	CONTRACTILE PROTEIN MYOSIN
									MYOSIN HEAD; CHAIN: Y;	MOTOR, CONFORMATIONAL CHANGES
487	lefi	A	1710	2002	4.20E-27	0.13	0.99		MOESIN; CHAIN: A, B;	MEMBRANE PROTEIN CRYSTAL
									MOESIN; CHAIN: C, D;	STRUCTURE, MEMBRANE, FERM
487	lez3	¥	809	885	1.40E-11	0.37	-0.2		SYNTAXIN-1A; CHAIN: A. B,	ENDOCYTOSIS/EXOCYTOSIS

		T					·	
PDB annotation	SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	SIGNALING PROTEIN DAPP1, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN DAPP1, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN DAPP1, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN DAPP1, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN DAPP1, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL
Coumpound	ပ်	SYNTAXIN-1A; CHAIN: A, B, C;	DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;				
SeqFold score								
PMF score		-0.18	0.92	96.0	0.36	0.99	0.86	0.25
Verify score	!	0.3	0.43	0.13	0.19	0.54	-0.06	-0.03
PSI- BLAST		1.10E-16	2.80E-22	7.00E-10	4.20E-10	5.60E-22	8.40E-10	1.40E-10
End AA		933	1308	1382	1497	1308	1382	1497
Start AA		814	1215	1331	1397	1215	1331	1397
Chain ID		¥	⋖.	∢	¥	¥.	₹	A
PDB ID		1ez3	1fao	1fao	l fao	1fb8	1fb8	1fb8
SEQ NO:		487	487	487	487	487	487	487

	e E	E E	נו	۵		ž	, ic		
PDB annotation	TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE FACTOR AND PH DOMAIN	CELL ADHESION 3 SUBDOMAINS,CYTOSKELETON, CELL ADHESION	CONTRACTILE PROTEIN MYOSIN, DICTYOSTELIUM, MOTOR, MANT, ATPASE, ACTIN-BINDING, 2 COILED COIL	CONTRACTILE PROTEIN MYOSIN, DICTYOSTELIUM, MOTOR, MANT, ATPASE, ACTIN-BINDING, 2 COILED COIL	CONTRACTILE PROTEIN ATPASE, MYOSIN, COILED COIL, ACTIN- BINDING, ATP-BINDING, 2 HEPTAD REPEAT PATTERN, METHYLATION, ALKYLATION, 3 PHOSPHORYLATION, CONTRACTILE PROTEIN	CONTRACTILE PROTEIN ATPASE, MYOSIN, COILED COIL, ACTIN- BINDING, ATP-BINDING, 2 HEPTAD REPEAT PATTERN, METHYLATION, ALKYLATION, 3 PHOSPHORYLATION, CONTRACTILE PROTEIN	-	
Coumpound		GRP1; CHAIN: A;	RADIXIN; CHAIN: A;	MYOSIN: CHAIN: NULL;	MYOSIN; CHAIN: NULL;	MYOSIN; CHAIN: NULL;	MYOSIN; CHAIN: NULL;	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT 1PLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS 1PLS 4 (INS(G105-LEHHHHHH)) (NMR, 25 STRUCTURES) 1PLS 5	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MITANT IPLS 3
SeqFold score				540.6		479.56			
PMF score		0.31	1		_			0.46	0.04
Verify score		0.21	0.08		9.0		0.63	0.11	-0.55
PSI- BLAST		2.80E-16	2.80E-26	0	0	0	0	2.80E-17	5.60E-05
End AA		1308	2044	739	725	671	671	1315	1381
Start AA		1215	1710	2	\$		8	1214	1342
Chain ID		A	V				·	-	
PDB ID		1fgy	1gc7	1lvk	llvk	1mn đ	Imin d	lpls	lpls
SEQ NO:		487	487	487	487	487	487	,	487

SEQ NO:	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS 1PLS 4 (INS(G105- LEHHHHHH)) (NMR, 25 STRUCTURES) 1PLS 5	
487	1pls		1394	1495	9.80E-12	0.02	-0.01		PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(G105-LEHHHHHH)) (NMR, 25 STRUCTURES) IPLS 5	
487	Ipms		1211	1308	8.40E-15	0.01	-0.01		SOS 1; CHAIN: NULL;	SIGNAL TRANSDUCTION SON OF SEVENLESS; PLECKSTRIN, SON OF SEVENLESS. SIGNAL TRANSDUCTION
487	1pms		1331	1381	0.00014	-0.14	0.05		SOS 1; CHAIN: NULL;	SIGNAL TRANSDUCTION SON OF SEVENLESS; PLECKSTRIN, SON OF SEVENI ESS, SIGNAL, TRANSDICTION
487	lqqg	Ą	1331	1464	7.00E-07	-0.27	0.25		INSULIN RECEPTOR SUBSTRATE I: CHAIN: A, B;	SIGNAL TRANSDUCTION IRS-1; BETA-SANDWHICH, SIGNAL TRANSDUCTION
487	lquu	А	197	973	1.30E-20	0.05	-0.13		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A:	CONTRACTILE PROTEIN TRIPLE- HELIX COILED COIL, CONTRACTILE PROTEIN
487	2mys	Y	2	801	0			419.33	MYOSIN; CHAIN: A, B, C;	MUSCLE PROTEIN MUSCLE PROTEIN, MYOSIN SUBFRAGMENT-1, MYOSIN HEAD. 2 MOTOR PROTEIN
487	2mys	∢	4	775	0	0.53			MYOSIN; CHAIN: A, B, C;	MUSCLE PROTEIN MUSCLE PROTEIN, MYOSIN SUBFRAGMENT-1, MYOSIN HEAD, 2 MOTOR PROTEIN
489	Itub	A	1	440	0			727.18	TUBULIN; CHAIN: A, B;	MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX
489	1tub	4	1	440	0	0.8	-		TUBULIN; CHAIN: A, B;	MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX
492	1a06		16	312	1.50E-87	0.35			CALCIUM/CALMODULIN-	KINASE KINASE, SIGNAL

	1					
PDB annotation	TRANSDUCTION, CALCIUM/CALMODULIN	KINASE KINASE, SIGNAL TRANSDUCTION, CALCIUM/CALMODULIN	TRANSFERASE TRANSFERASE, SERINE/THREONINE-PROTEIN KINASE, CASEIN KINASE, 2 SER/THR KINASE			PROTEIN KINASE CDK2; PROTEIN KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION,
Coumpound	DEPENDENT PROTEIN KINASE; CHAIN: NULL;	CALCIUM/CALMODULIN- DEPENDENT PROTEIN KINASE; CHAIN: NULL;	PROTEIN KINASE CK2/ALPHA-SUBUNIT; CHAIN: NULL;	TRANSFERASE(PHOSPHOTR ANSFERASE) \$C-/AMP\$- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA (\$139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	TRANSFERASE(PHOSPHOTR ANSFERASE) \$C-/AMP\$- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA (\$1399A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;
SeqFold score		121.63	90.87		158.35	120.73
PMF score				·		
Verify score				0.41		
PSI- BLAST		1.50E-87	1.70E-43	0	,	1.00E-57
End		318	316	315	333	314
Start AA		17	2	· ·	ĸ	22
Chain ID				щ	ы	
PDB		1a06	1a6o	n m	lap m	laq i
SEQ No:		492	492	492	492	492

PDB annotation	MITOSIS, INHIBITION	COMPLEX (KINASE/INHIBITOR) CDK6, P19INK4D; CYCLIN DEPENDENT KINASE, CYCLIN DEPENDENT KINASE INHIBITORY 2 PROTEIN, CDK, INK4, CELL CYCLE, COMPI FY, KINASE INHIBITOR)	HEADER HELIX COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN CYCI IN DEBENDENT	KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	TRANSFERASE CSK; PROTEIN KINASE, C-TERMINAL SRC KINASE,	PHOSPHORYLATION, 2 STAUROSPORINE, TRANSFERASE	PHOSPHOTRANSFERASE PROTEIN KINASE ICKI 18												
Coumpound		CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE INHIBITOR: CHAIN: B. D;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A;	(CIDIN 5)	C-TERMINAL SRC KINASE; CHAIN: A;	`	CASEIN KINASE I DELTA; ICKI 6 CHAIN: A. B: ICKI 7	PHOSPHOTRANSFERASE	CAMP-DEPENDENT PROTEIN KINASE	CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	PHOSPHOTRANSFERASE CAMP-DEPENDENT	PROTEIN KINASE CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	TRANSFERASE(PHOSPHOTR	ANSFERASE) CAMP. DEPENDENT PROTEIN	KINASE (E.C.2.7.1.37) (CAPK)	SUBUNIT) ICTP 4	TRANSFERASE(PHOSPHOTR ANSFERASE) CAMP-	DEPENDENT PROTEIN	KINASE (E.C.Z. / 1.37) (CAPK) 1CTP 3 (CATAL YTIC
SeqFold score		117.12	139.32		120.46		. 82.9				156.27						152.26		
PMF score								1					_					٠	
Verify score						•		0.42					0.32						
PSI- BLAST		2.80E-54	1.40E-59		1.40E-39		9.80E-51	0			0	1	0				0		
End AA		303	308		286		303	315			333		315				330		
Start AA		23	18		81		17	_			3		_		. -		3		
Chain ID		⋖	V		Ą		A	田			ជា		ш				ម		
PDB ID		1bi8	16lx		1byg		1cki	1cm	<u>ب</u>		lcm k		lctp				1ctp		
SEQ ID NO:		492	492		492		492	492			492		492				492		

pound PDB annotation	† †	NINE- TRANSFERASE KINASE DOMAIN, SE PAK- AUTOINHIBITORY FRAGMENT, HOMODIMER NINE- SE PAK- S.S. PAK-	NINE- TRANSFERASE KINASE DOMAIN, SE PAK- AUTOINHIBITORY FRAGMENT, I: A, B; HOMODIMER NINE- SE PAK- SE PAK- I: C, D;	R 1; CHAIN: A, FIBROBLAST GROWTH FACTOR FECEPTOR 1; TRANSFERASE, TYROSINE-PROTEIN KINASE, ATP-BINDING, 2 PHOSPHORYLATION, RECEPTOR, PHOSPHOTRANSFERASE		ASE 2;		AIN:							
Coumpound	SUBUNIT) 1CTP 4	SERINE/THREONINE- PROTEIN KINASE PAK- ALPHA; CHAIN: A, B; SERINE/THREONINE- PROTEIN KINASE PAK- ALPHA; CHAIN: C, D;	SERINE/THREONINE- PROTEIN KINASE PAK- ALPHA; CHAIN: A, B; SERINE/THREONINE- PROTEIN KINASE PAK- ALPHA; CHAIN: C, D;	FGF RECEPTOR 1; CHAIN: A, B;	FGF RECEPTOR 1; CHAIN: A, B;	HUMAN CYCLIN- DEPENDENT KINASE 2; CHAIN: NULL;	P38 MAP KINASE; CHAIN: NULL;	INSULIN RECEP	A; PEPTIDE SUBSTRATE;	A; PEPTIDE SUB	A; PEPTIDE SUB CHAIN: B;	A; PEPTIDE SUB CHAIN: B;	A; PEPTIDE SUB CHAIN: B;	A; PEPTIDE SUB CHAIN: B;	A; PEPTIDE SUB CHAIN: B;
SeqFold score				123.75	127.9	141.29	104.86	105.26							
PMF score															
Verify score		0.38	0.21												
PSI- BLAST		2.80E-69	5.10E-69	2.80E-38	1.20E-40	1.40E-60	2.80E-45	9.80E-40							
End AA		303	293	286	285	314	346	297							
Start AA		23	4	=	12	22	'n	6							
Chain ID		ပ	ပ	¥	M			¥							
PDB ID		1f3m	1f3m	1fgk	l fgk	1hcl	lian	1ir3							
SEQ NO:		492	492	492	492	492	492	492							

	т											_					_		_			,				
PDB annotation	ANALOG), ENZYME, 3 COMPLEX (TRANSFERASE/SUBSTRATE)	TRANSFERASE INK3; TRANSFERASE, INK3 MAP KINASE, SERINE/THREONINE PROTEIN 2	KINASE KINASE KINASE, TWITCHIN, INTRASTERIC PEGIII ATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGILI ATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGIII ATION	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE;	TRANSFERASE, MAP KINASE, SERINE/THREONINE-PROTEIN KINASE, 2 P18	KINASE RABBIT MUSCLE	PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM.	TRANSFERASE, SERINE/THREONINE-	PRUTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	KINASE RABBIT MUSCLE	PHOSPHORYLASE KINASE,	GLYCOGEN METABOLISM, THANSEEP ASE SEPRIFICATION	PROTEIN 2 KINASE ATP BINDING	CALMODULIN-BINDING	TRANSFERASE MAP KINASE,	SERINE/THREONINE PROTEIN	KINASE, IKANSFEKASE SERINE KINASE SERINE KINASE	TITIN, MUSCLE, AUTOINHIBITION	SERINE KINASE SERINE KINASE,	TITIN, MUSCLE, AUTOINHIBITION	TRANSFERASE MITOGEN	ACIIVALED FROIEIN NINASE, MAP 2, ERK2: TRANSFERASE	SERINE/THREONINE-PROTEIN	KINASE, MAP KINASE, 2 ERK2
Coumpound		C-JUN N-TERMINAL KINASE; CHAIN: NULL;	TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: A, B;	TWITCHIN; CHAIN: A, B;	MAP KINASE P38; CHAIN: NULL;		PHOSPHORYLASE KINASE;	CHAIN: NULL;			PHOSPHORYLASE KINASE;	CHAIN: NULL;				ERK2; CHAIN: NULL;		TITIN: CHAIN: A B:	, (Cl. 11)	TITIN; CHAIN: A, B;		EXTRACELLULAR	CHAIN: NULL:		
SeqFold score		127.36	·	139.94		121.52		109.51									118.65	-	126.69				130.2			
PMF score			_		-							_														
Verify score			0.27		0.4							9.0									0.49					
PSI- BLAST		7.00E-54	1.70E-70	3.40E-71	3.40E-71	1.40E-56		1.20E-81				1.20E-81					5.60E-50		4.20E-65		4.20E-65	75 1007	4.20E-56			
End AA		357	334	351	284	350		282				279					341		334		274	1,3	340			
Start AA		∞	22	_	17	4	_	22				23					<u>~</u>		61		77		=			
Chain ID				A	A	•													A		∢					
PDB ID		J _{in} k	lkoa	lkob	1kob	1p38		1 phk				l phk					l pm	ـــــــ ن	器		I K	17.5	7 IDC			1
SEQ ID NO:		492	492	492	492	492		492				492					492		492		492	49	764			

PDB annotation	LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION	TRANSFERASE IL-2-INDUCIBLE T- CELL KINASE; TRANSFERASE, REGULATORY INTRAMOLECULAR COMPLEX, KINASE	COMPLEX (ADAPTOR PROTEIN/PEPTIDE) ASH, GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; COMPLEX (ADAPTOR PROTEIN/PEPTIDE), SH3 DOMAIN, 2 GUANINE-NUCLEOTIDE RELEASING FACTOR	COMPLEX (TRANSFERASE/PEPTIDE) COMPLEX (TRANSFERASE/PEPTIDE), SIGNAL TRANSDUCTION, 2 SH3 DOMAIN			ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	MEMBRANE PROTEIN FOUR HELIX BUNDLE, ALPHA HELIX	TRANSFERASE PROTO-ONCOGENE TYROSINE KINASE; PROTO-ONCOGENE, TRANSFERASE,
Coumpound	APOLIPOPROTEIN A-1; CHAIN: A, B, C. D;	ITK; CHAIN: NULL;	GRB2; CHAIN: A; SOS; CHAIN: B;	ABL TYROSINE KINASE; CHAIN: A, C, E, G; PEPTIDE ·P41; CHAIN: B, D, F, H;	COMPLEX (ONCOGENE PROTEIN/PEPTIDE) C-CRK (N-TERMINAL SH3 DOMAIN) (C-CRKSH3-N) COMPLEXED WITH ICKA 3 C3G PEPTIDE (PRO-PRO-PRO-ALA-LEU- PRO-PRO-LYS-LYS-ARG)	PHOSPHOTRANSFERASE C- SRC KINASE (SH3 DOMAIN) (E.C.2.7.1.112) 1CSK 3	SYNTAXIN-1A; CHAIN: A, B, C;	SSOI PROTEIN; CHAIN: A;	PHOSPHOTRANSFERASE FYN, CHAIN: A; 3BP-2; CHAIN: B;
SeqFold score	66.14								
PMF score		0.75		0.95	66:0	0.99	0.05	0.05	0.88
Verify score		0.64	0.47	0.67	0.58	0.72	0.22	0.24	0.02
PSI- BLAST	0.0042	1.70E-08	4.20E-19	7.00E-18	8.40E-18	9.80E-19	2.80E-06	0.0056	2.80E-17
End AA	278	440	442	444	442	442	214	256	444
Start AA	58	370	388	390	386	387	93	166	385
Chain ID	<		¥	¥	¥	A	¥	A	A
PDB DD	laví	lawj	laze	1bbz	Icka	lcsk	1ez3	1fio	1fyn
SEQ SO BO SO SO SO SO SO SO SO SO SO SO SO SO SO	493	493	493	493	493	493	493	493	493

D	Score	score	
388 442 2.80E-18 380 444 5.60E-19 372 444 1.10E-16 383 444 2.80E-18 1 262 4.20E-07	_		
388 442 2.80E-18 380 444 5.60E-19 272 444 1.10E-16 383 444 2.80E-18 1 262 4.20E-07	_		TYROSINE-PROTEIN KINASE, 2 PHOSPHORYLATION, ATP-BINDING, MYRISTYLATION, SH3 DOMAIN, 3 COMPLEX
380 444 5.60E-19 272 444 1.10E-16 383 444 2.80E-18 1 262 4.20E-07 1 262 4.20E-07		GRB2; CHAIN: A; SOS-1; CHAIN: B;	COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE) COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), SH3 DOMAIN
383 444 1.10E-16 383 444 2.80E-18 389 444 4.20E-18 1 262 4.20E-07 385 444 7.00E-19	-	SIGNAL TRANSDUCTION PROTEIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2 (GRB2, N-TERMINAL 1GBR 3 SH3 DOMAIN) COMPLEXED WITH SOS-A PEPTIDE 1GBR 4 (NMR, 29 STRUCTURES) 1GRR 5	
383 444 2.80E-18 389 444 4.20E-18 1 262 4.20E-07 385 444 7.00E-19	0.43	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B: IGRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14
389 444 4.20E-18 1 262 4.20E-07 385 444 7.00E-19	66:0	PHOSPHORIC DIESTER HYDROLASE PHOSPHOLIPASE C-GAMMA (SH3 DOMAIN) (E.C.3.1.4.11) 1HSQ 3 (NMR, MINIMIZED MEAN STRUCTURE) 1HSO 4	
1 262 4.20E-07 385 444 7.00E-19	86:0	TYROSINE-PROTEIN KINASE BTK; CHAIN: A;	TYROSINE-PROTEIN KINASE BRUTONS TYROSINE KINASE, B CELL PROGENITOR KINASE, TRANSFERASE, TYROSINE-PROTEIN KINASE, PHOSPHORYLATION, 2 SH3
444 7.00E-19	69.94	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	PROTEIN TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT
	0.99	HEMATOPOIETIC CELL KINASE; CHAIN: NULL;	TRANSFERASE HCK; SH3, PROTEIN TYROSINE KINASE, SIGNAL TRANSDUCTION, 2 TRANSFERASE
A 342 422 5.60E-35	82.45	S QGSR ZINC FINGER PEPTIDE: CHAIN: A: DUPLEX	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC

									 -	,
PDB annotation	FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION. PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC
Coumpound	OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;
SeqFold score								110.98		
PMF score		-	0.77			_	→			0.87
Verify score		0.03	0.12	0.38	0.4	0.24	0.34		0.05	-0.05
PSI- BLAST		5.60E-35	1.40E-33	6.80E-49	1.70E-50	3.40E-51	5.10E-51	3.40E-51	3.40E-47	4.20E-36
End		478	505	338	366	394	422	423	477	505
Start AA		370	398	257	285	313	341	341	397	397
Chain ID		V	V	ပ	ပ	ပ	ပ	ပ	ပ	၁
PDB ID		lalh	laih	1me y	Jme y	Ime y	Ime y	Ime y	lme y	1me
SEQ D NO:		498	498	498	498	498	498	498		498

	PDB ID	Chain 110	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
	y								CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
	Ime y	U	424	505	1.00E-49	0.23	-		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX
·	lme y	ပ	452	511	1.70E-35	0.19	_		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
	lme y	უ	255	282	3.40E-12	0.1	-0.15		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
	11166	V	221	375	1.00E-33	0.06	-0.01		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
	1476	Ą	285	447	1.40E-68			102.44	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INTIATION ZINC FINGER PROTEIN
	1116	A	286	437	1.70E-36	0.11	0.94		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION 2NC ENGER PROTEIN
·	1tf6	Ą	342	487	8.50E-39	-0.02	0.92		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA

3 Chain Start End ID AA AA	Chain Start End ID AA AA BI	art End I	<u> </u>	PSI- BLAST		Verify	PMF	SeqFold score	Coumpound	PDB annotation POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
0.14	370 507 8.50E=35 0.14	507 8.50E-35 0.14	8.50E-35 0.14	0.14		o o	0.95		TFIIIA; CHAIN: A, D; SS RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (IKANSCRIP IION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
E-30 -0.02	228 338 1.00E-30 -0.02	338 1.00E-30 -0.02	1.00E-30 -0.02	-0.02		0			YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
1ubd C 265 366 1.70E-34 0.25 1	265 366 1.70E-34	366 1.70E-34	1.70E-34		0.25	-			YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
lubd C 285 395 2.80E-56	285 395	395		2.80E-56	·			88.23	YY J; CHAJN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY 1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
	290 394 2.80E-56	394 2.80E-56	2.80E-56	E-56	0.23				YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
1ubd C 293 394 8.50E-35 0.36 1	293 394 8.50E-35	394 8.50E-35	8.50E-35		0.36				YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATIONIDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN

SEQ ID NO:	PDB TD	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	· PDB annotation
										RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILI ATION/DNA)
498	lubd	ပ	311	422	2.80E-56	0	_		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;
									INITIATOR ELEMENT DNA; CHAIN: A, B;	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2
							· · · · · · · · · · · · · · · · · · ·			FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX
498	lubd	O	405	505	6.80E-36	-0.07	0 60		VVI: CHAIN: C: ADENO.	(TRANSCRIPTION REGULATION/DNA)
								•	ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA:	REGULATION/DNA) YING-YANG I; TRANSCRIPTION DITTATION
									CHAIN: A, B;	INITIATOR ELEMENT, YY1, ZINC 2
•										FINGER FROIEIN, DNA-FROIEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILI ATION/DNA)
498	2gli	⋖	200	337	8.50E-33	-0.26	0.28		ZINC FINGER PROTEIN GLI1;	COMPLEX (DNA-BINDING
					_				CHAIN: A; DNA; CHAIN: C, D;	PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-
907	:120		205	5	1000			-		BINDING PROTEIN/DNA)
674	7.B11	۷_	C87	423	2.80E-70			97.78	ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
									CHAIN: A; DNA; CHAIN: C, D:	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
					-				,	BINDING PROTEIN/DNA)
498	2gli	Ψ	290	422	2.80E-70	0.24			ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
									CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
5										BINDING PROTEIN/DNA)
498	2gli	۷.	293	423	3.40E-33	0.36			ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
									CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
									ń	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
498	2gli	∢	313	479	1.30E-63	0.14	98.0		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
-									CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI, GLI,
									Ž.	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
498	2gli	∢	341	207	4.20E-61	0.17	0.41		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
									CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
3									, in	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
498	2gli	A	377	202	6.80E-32	0.04	0.48		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING

PDB annotation	PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE SKP2 F-BOX; SKP1; SKP1, SKP2, F-BOX, LRR, LEUCINE-RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE CBL, ÜBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	TRANSCRIPTION REGULATION PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION			LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,
Coumpound	CHAIN: A: DNA; CHAIN: C, D;	SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H, J, L, N, P;	CYCLIN A/CDK2. ASSOCIATED P19; CHAIN: A, C; CYCLIN A/CDK2. ASSOCIATED P45; CHAIN: B, D;	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA UBCH7; CHAIN: C;	TRANSCRIPTION FACTOR PML; CHAIN: NULL;	VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) 1CHC 3 (NMR, 1 STRUCTURE) 1CHC 4	VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRUCTURE) ICHC 4	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONTUGATING ENZYME E12-18 KDA UBCH7; CHAIN: C;
SeqFold score			·					
PMF score		0.52	0.53	0.16	0.01	0.53	69:0	0.81
Verify score		-0.78	-0.81	0.08	-0.37	-0.07	0.02	-0.55
PSI- BLAST		0.0007	2.80E-06	1.705-06	1.40E-13	8.40E-17	3.40E-16	5.60E-11
End AA		57	57	907	305	323	316	307
Start AA		28	28	998	255	259	261	262
Chain		K	A	V				¥
PDB ID		1fqv	1631	Ifbv	1bor	1chc	1chc	1fbv
SEQ No.		499	499	200	201	501	501	501

PDB annotation	LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	METAL BINDING PROTEIN RING FINGER PROTEIN MATI; RING FINGER (C3HC4)	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA- BINDING PROTEIN	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA- BINDING PROTEIN		MEMBRANE PROTEIN LECTIN-LIKE, NEUROBIOLOGY, CELL-CELL ADHESION, CELL-CELL 2 RECOGNITION, ALTERNATIVE SPLICING, MEMBRANE PROTEIN	TRANSFERASE DINUCLEOTIDE- BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE	TRANSFERASE DINUCLEOTIDE- BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE	TRANSFERASE DINUCLEOTIDE- BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE	ZINC METALLOPROTEASE P. AERUGINOSA ALKALINE PROTEASE; IKAP 6 CALCIUM BINDING PROTEIN
	LIGAS UBIQU 2 TYR(UBIQU DEGR	METAI FINGE	DNA-B RECON PROTE RECON RECON RING F CLUST	DNA-B RECON PROTE RECON RING F CLUST		MEMB NEURC ADHES RECOC	TRANS BINDIN TRANS	BINDIN	TRANS BINDIN	ZINC N AERUC IKAP 6
Coumpound	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA UBCH7; CHAIN: C;	CDK-ACTIVATING KINASE ASSEMBLY FACTOR MATI; CHAIN: A:	RAGI; CHAIN: NÜLL;	RAG1; CHAIN: NULL;	,	NEUREXIN-I BETA; CHAIN: A, B, C, D, E, F, G, H;	NICOTINATE MONONUCLEOTIDE:5,6- CHAIN: A;	NICOTINÁTE MONONUCLEOTIDE:5,6- CHAIN: A:	NICOTINATE MONONUCLEOTIDE:5,6- CHAIN: A:	ALKALINE PROTEASE; IKAP 4 CHAIN: P; IKAP 5 TETRAPEPTIDE (GLY SER
SeqFold score										
PMF		0.22	0.94	0.45		-0.11	-0.2	-0.18	-0.2	-0.2
Verify score	-0.24	-0.17	-0.11	-0.27		0.21	0.3	0.51	0.56	96.0
PSI- BLAST	1.70E-09	7.00E-13	8.40E-18	1.70E-09		1.40E-17	1.10E-23	1.30E-20	1.10E-23	7.00E-14
End	310	319	333	342		224	1380	1072	1241	1439
Start AA	263	259	239	263		50	1042	753	116	1076
Chain ID	∢	∀				¥	∢	₹	¥	Ф
PDB ID	1fbv	1g25	Тщ	pm.		1c4r	1d0s	1d0s	1d0s	Ikap
SEQ ID NO:	501	501	501	501		502	502	502	502	202

PDB annotation	IKAP 19	ZINC METALLOPROTEASE P. AERUGINOSA ALKALINE PROTEASE; IKAP 6 CALCIUM BINDING PROTEIN IKAP 19	ZINC METALLOPROTEASE P. AERUGINOSA ALKALINE PROTEASE; IKAP 6 CALCIUM BINDING PROTEIN IKAP 19	ZINC METALLOPROTEASE P. AERUGINOSA ALKALINE PROTEASE; IKAP 6 CALCIUM BINDING PROTEIN IKAP 19	OUTER MEMBRANE PROTEIN OSMOPORIN; OUTER MEMBRANE PROTEIN, NON-SPECIFIC PORIN, OSMOPORIN, 2 BETA-BARREL, TRANSMEMBRANE	OUTER MEMBRANE PROTEIN OSMOPORIN; OUTER MEMBRANE PROTEIN, NON-SPECIFIC PORIN, OSMOPORIN, 2 BETA-BARREL, TRANSMEMBRANE	OUTER MEMBRANE PROTEIN OSMOPORIN; OUTER MEMBRANE PROTEIN, NON-SPECIFIC PORIN, OSMOPORIN, 2 BETA-BARREL, TRANSMEMBRANE			METAL BINDING PROTEIN BETA SANDWICH, CALCIUM-BINDING PROTEIN, METAL BINDING 2
Coumpound	ASN SER); IKAP 9 CHAIN: I; IKAP 10	ALKALINE PROTEASE; IKAP 4 CHAIN: P; IKAP 5 TETRAPEPTIDE (GLY SER ASN SÉR); IKAP 9 CHAIN: I; IKAP 10	ALKALINE PROTEASE; IKAP 4 CHAIN: P; IKAP 5 TETRAPEPTIDE (GLY SER ASN SER); IKAP 9 CHAIN: I; IKAP 10	ALKALINE PROTEASE; IKAP 4 CHAIN: P; IKAP 5 TETRAPEPTIDE (GLY SER ASN SER); IKAP 9 CHAIN: I; IKAP 10	OMPK36; CHAIN: A, B, C;	OMPK36; CHAIN: A, B, C;	OMPK36; CHAIN: A, B, C;	OUTER MEMBRANE PROȚEIN PHOSPHOPORIN (PHOE) IPHO 3	OUTER MEMBRANE PROTEIN PHOSPHOPORIN (PHOE) 1PHO 3	LAMININ ALPHA2 CHAIN; CHAIN: A, B, C, D;
SeqFold score						·				
PMF score		-0.19	-0.2	-0.19	-0.2	-0.19	-0.2	-0.2	-0.19	0.1
Verify score		Ξ	1.03	0.87	1.07	1.04	0.87	0.83	1.15	0.51
PSI- BLAST		5.60E-10	8.40E-14	1.10E-13	1.10E-31	1.40E-32	4.20E-27	1.40E-23	7.00E-27	2.80E-13
End AA		743	858	1244	1348	1043	1241	1045	1214	225
Start AA		482	530	890	1004	707	875	692	872	78
Chain ID		d .	Ь	Ь	«	¥	A			∢
PDB ID		Ikap	lkap	lkap	losm	losm	losm	1pho	Ipho	1qu0
SEQ NO:		502	502	502	502	502	502	505	502	502

	Τ	 	T	T	Τ	Τ	T	T		T	T		Т =	Γ	Τ
PDB annotation	PROTEIN	INTEGRAL MEMBRANE PROTEIN PORIN MATRIX PORIN, OMPF PORIN; 20MF 7 PORIN, MEMBRANE PROTEIN 20MF 12		TRANSFERASE PROTEIN-ACETYL COENZYME A COMPLEX, ACETY! TRANSFERASE		SIGNAL TRANSDUCTION PROTEIN	SIGNAL TRANSDUCTION PROTEIN	CYTOSKELETON	CYTOSKELETON	CYTOSKELETON	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR	Trough.	SIGNAL TRANSDUCTION SON OF SEVENLESS, PLECKSTRIN, SON OF SEVENLESS, SIGNAL TRANSDUCTION		ACTIN-BINDING PROTEIN ACTIN-
Coumpound		MATRIX PORIN OUTER MEMBRANE PROTEIN F; 20MF 5 CHAIN: NULL; 20MF 6		HPA2 HISTONE ACETYLTRANSFERASE; CHAIN: A, B. C. D:		BETA-SPECTRIN; 1BTN 4 CHAIN: NULL: 1BTN 5	BETA-SPECTRIN; 1BTN 4 CHAIN: NULL: 1BTN 5	BETA-SPECTRIN; IDRO 6 CHAIN: NI II 1 - IDRO 7	BETA-SPECTRIN; IDRO 6 CHAIN: NI II 1: 10RO 7	BETA-SPECTRIN; IDRO 6 CHAIN: NULL: 1DRO 7	DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(GI05-LEHHHHHH)) (NMR, 25 STRUCTURES) IPLS 5	SOS 1; CHAIN: NULL;		T-FIMBRIN; CHAIN: NULL;
SeqFold score								50.76							
PMF score		-0.18		0.06		98.0	0.78		0.39	0.75	-0.07	0.16	0.01		0.72
Verify score		_		-0.12		0.36	0.38		0.08	0.35	0.15	0.05	-0.02		-0.05
PSI- BLAST		7.00E-21		0.0028		1.70E-22	2.80E-24	7.00E-28	5.10E-17	7.00E-28	3.40E-17	1.70E-18	2.80E-14		1.20E-32
End		1202		282		187	187	192	190	189	185	88	190		250
Start AA		842		227		82	83	73	83	92	88	88	80		107
Chain ID				∢							A				
PDB ID		2omf		lqsm		1btn	I btn	1dro	Idro	1 dro	Ifao	lgl.	Ipms	1.	laoa
SEQ NO:		502		506		207	507	507	507	507	507	507	507	3	80%

PDB annotation	BINDING, PHOSPHORYLATION STRUCTURAL PROTEIN DYSTROPHIN, MUSCULAR	DYSTROPHY, CALPONIN HOMOLOGY DOMAIN, 2 ACTIN-BINDING, UTROPHIN	STRUCTURAL PROTEIN CALPONIN HOMOLOGY DOMAIN, DOMAIN SWADDING ACTIN BINDING 2	SWATTING, ACTIN BINDING, 2 UTROPHIN, DYSTROPHIN, STRUCTURAL PROTEIN		STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA	HELICAL LINKER REGION, 2.2 TANDEM 3-HEI IY COII ED-COII S	STRUCTURAL PROTEIN	ENDOCYTOSIS/EXOCYTOSIS NSEC1;	PROTEIN-PROTEIN COMPLEX, MULTI-SUBUNIT	ENDOCYTOSIS/EXOCYTOSIS NSEC1;	PROTEIN-PROTEIN COMPLEX,	MULII-SUBUNII	ENDOCYTOSIS/EXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX,	MULTI-SUBUNIT	ENDOCYTOSIS/EXOCYTOSIS	START TO LAGMIN ASSOCIATED 33 KDA PROTEIN, P35A, THREE HELIX	BUNDLE	MEMBRANE PROTEIN FOUR HELIX BUNDLE, ALPHA HELIX	CONTRACTILE PROTEIN TRIPLE-	HELIX COILED COIL, CONTRACTILE PROTEIN	CHAPERONE HSP40; CHAPERONE,	HEA I SHUCK, PROTEIN FULDING, DNAK	CHAPERONE HSP40; CHAPERONE, HEAT SHOCK, PROTEIN FOLDING,
Coumpound	DYSTROPHIN; CHAIN: A, B, C, D;		UTROPHIN ACTIN BINDING REGION; CHAIN: A, B;			ALPHA SPECTRIN; CHAIN: A, B, C;			SYNTAXIN BINDING	PROTEIN 1; CHAIN: A; SYNTAXIN 1A; CHAIN: B;	SYNTAXIN BINDING	PROTEIN 1; CHAIN: A;	STNIAKIN IA; CHAIN: B;	SYNTAXIN BINDING PROTEIN I; CHAIN: A;	SYNTAXIN 1A; CHAIN: B;	SYNTAXIN-1A; CHAIN: A, B,	ت		SSOI PROTEIN; CHAIN: A;	HUMAN SKELETAL MUSCLE	ALPHA-ACTININ 2; CHAIN: A;	DNAJ; CHAIN: NULL;		DNAJ; CHAIN: NULL;
SeqFold score			,																			11.17		
PMF score	0.03		0.27			0.09			0.05		0.3			0.03		0.03			0.18	90.0				
Verify score	-0.01		0.01			90:0-			-0.13		-0.31		,	 6.		0.25		2, 6	-0.45	-0.12				0.45
PSI- BLAST	8.50E-30		1.70E-29		100	7.80E-09			1.40E-18		1.10E-10			1.10E-08		1.10E-09		2000	2.80E-05	4.20E-21		6.80E-33		6.80E-33
End AA	248		248			295		-	460		561		,	940		933		9	686	467		124		122
Start AA	106		011			365			208		364			713		804		100	. 194	205		46		47
Chain ID	A		¥			⋖			В		В		6	20,		∢			∢ _	A				
PDB ID	1dxx		lqag		-	uno I			IdnI		ldnl			IdnI		lez3		2	0111	Iquu		1bq0		1bq0
SEQ ID NO:	208		208			CIC		-	515		515		;	515		515		1	010	515		516		516

	Т			_	г	1			_		_		-									
PDB annotation	DNAK	MOLECULAR CHAPERONE HDJ-1; MOLECULAR CHAPERONE	MOLECULAR CHAPERONE HDI-1; MOLECULAR CHAPERONE						SUGAR BINDING PROTEIN BETA	TREFOIL, MULTILECTIN RECEPTOR, PITUITARY HORMONES, 2 SULFATED CARBOHYDRATE	TRANSFERASE	GLYCOSYLTRANSFERASE	TRANSFERASE	GLYCOSYLTRANSFERASE	HYDROLASE XYLAN DEGRADATION							
Coumpound		HUMAN HSP40; CHAIN: NULL;	HUMAN HSP40; CHAIN: NULL;		COMPLEX (GLYCOSIDASE/CARBOHYD RATE) ABRIN-A COMPLEXED WITH TWO SUGAR CHAINS LABR 3	COMPLEX	(GLYCOSIDASE/CARBOHYD RATE) ABRIN-A COMPLEXED WITH TWO	SUGAR CHAINS 1ABR 3	MANNOSE RECEPTOR;	CHAIN: A;	SPORE COAT	POLYSACCHARIDE BIOSYNTHESIS PROTEIN CHAIN: A;	SPORE COAT	POLYSACCHARIDE BIOSYNTHESIS PROTEIN CHAIN: A:	ENDO-1,4-BETA-XYLANASE; CHAIN: A. B:	GLYCOSIDASE RICIN (E.C.3.2.22) 2AAI 3		OXYGEN TRANSPORT	HUMAN FETAL F=/11\$=)	IFDHG I IFDHH 2	OXYGEN TRANSPORT HEMOGLOBIN (DEOXY)	HUMAN FETAL F=/II\$=)
SeqFold score		52.89																112.26			,	•
PMF score			,		0.01	0.04			0.13		0.11		0		96.0	0.03					-	
Verify score			0.21		-0.08	0.04			-0.22		0.17		-0.1		80.0	0.07					0.29	
PSI- BLAST		1.00E-30	1.00E-30		1.40E-10	6.80E-30			0.0017		5.10E-23		7.00E-45		1.70E-31	1.70E-28		1.00E-39			1.00E-39	
End AA		125	122		547	547			513		333		371		548	547		25			92	
Start AA		46	48		378	412			444		Ξ		111		422	413					_	
Chain ID .					2 0	щ			∢		∢		4		A	В		_O			יב	
PDB ID		l hđj	Ihđj		labr	labr			lddg		lqgq		1qgq		1xyf	2aai	+	——— I B		\dashv	u B I	
SEQ ID NO:		516	516		275	522			275		522		522		522	522		523		5	575	

PDB annotation	OXYGEN STORAGE/TRANSPORT HEMOGLOBIN,DEOXY FORM	TRANSFERASE IL-2-INDUCIBLE T- CELL KINASE; TRANSFERASE, REGULATORY INTRAMOLECULAR COMPLEX, KINASE	COMPLEX (ADAPTOR PROTEIN/PEPTIDE) ASH, GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; COMPLEX (ADAPTOR PROTEIN/PEPTIDE), SH3 DOMAIN, 2 GUANINE-NUCLEOTIDE RELEASING FACTOR	MYOSIN MYOSIN MOTOR	MYOSIN MYOSIN MOTOR	MUSCLE PROTEIN MDE; MUSCLE PROTEIN	MUSCLE PROTEIN MDE; MUSCLE PROTEIN	MUSCLE PROTEIN MUSCLE PROTEIN	MUSCLE PROTEIN MUSCLE PROTEIN	CONTRACTILE PROTEIN MYOSIN MOTOR, CONFORMATIONAL CHANGES	
Coumpound	HEMOGLOBIN; CHAIN: A, C; HEMOGLOBIN; CHAIN: B, D;	ITK; CHAIN: NULL;	GRB2; CHAIN: A; SOS; CHAIN: B:	MYOSIN HEAVY CHAIN; CHAIN: A, MYOSIN REGULATORY LIGHT CHAIN; CHAIN: Y; MYOSIN ESSENTIAL LIGHT CHAIN; CHAIN: Z;	MYOSIN HEAVY CHAIN; CHAIN: A; MYOSIN REGULATORY LIGHT CHAIN; CHAIN: Y; MYOSIN ESSENTIAL LIGHT CHAIN; CHAIN: Z;	MYOSIN; CHAIN: A, B, C, D, E, F, G, H;	MYOSIN; CHAIN: A, B, C, D, E, F, G, H;	MYOSIN; CHAIN: A, B, C, D, E, F;	MYOSIN; CHAIN: A, B, C, D, E, F;	MYÓSIN HEAD; CHAIN: A; MYÓSIN HEAD; CHAIN: Y; MYÓSIN HEAD; CHAIN: Z;	SIGNAL TRANSDUCTION PROTEIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2 (GRB2, N-TERMINAL 1GBR
SeqFold score				335.35			352.11	339.22			
PMF score		0.15	0.89			_				-	0.72
Verify score	90:00	0.45	0.5		0.34	0.59			0.44	0.01	0.45
PSI- BLAST	7.00E-40	1.40E-18	2.80E-18	0	0	0	0	0	0	0	1.10E-19
End AA	92	1088	1087	739	739	708	112	619	619	739	1089
Start AA	_	1018	1037		_	-	-			-	1028
Chain ID	В		. ∢	<	<	¥	A	¥	¥	¥	⋖
PDB ID	1gcv	lawj	laze	167t	1b7t	1br1	lbri	1 br2	1br2	1dfk	1gbr
SEQ No:	523	526	526	526	526	526	526	226	526	526	526

	Γ	Γ	-	Τ			Т	
PDB annotation			SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14		CONTRACTILE PROTEIN MYOSIN, DICTYOSTELIUM, MOTOR, MANT, ATPASE, ACTIN-BINDING, 2 COILED COII.	CONTRACTILE PROTEIN MYOSIN, DICTYOSTELIUM, MOTOR, MANT, ATPASE, ACTIN-BINDING, 2 COILED COIL	CONTRACTILE PROTEIN ATPASE, MYOSIN, COILED COIL, ACTIN- BINDING, ATP-BINDING, 2 HEPTAD REPEAT PATTERN, METHYLATION, ALKYLATION, 3 PHOSPHORYLATION, CONTD ACTILE DEOTERN	CONTRACTILE PROTEIN ATPASE, MYOSIN, COILED COIL, ACTINBINDING, ATP-BINDING, 2 HEPTAD REPEAT PATTERN, METHYLATION, ALKYLATION, 3 PHOSPHORYLATION, CONTRACTILE PROTEIN
Coumpound	3 SH3 DOMAIN) COMPLEXED WITH SOS-A PEPTIDE IGBR 4 (NMR, 29 STRUCTURES) IGBR 5	ADAPTOR PROTEIN CONTAINING SH2 AND SH3 GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2 (GRB2) 1GFC 3 (C- TERMINAL SH3 DOMAIN) (NMR, MINIMIZED MEAN STRUCTURE) 1GFC 4	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	PHOSPHORIC DIESTER HYDROLASE PHOSPHOLIPASE C-GAMMA (SH3 DOMAIN) (E.C.3.1.4.11) HSQ 3 (NMR, MINIMIZED MEAN STREET	MYOSIN; CHAIN: NULL;	MYOSIN; CHAIN: NULL;	MYOSIN: CHAIN: NULL;	MYOSIN; CHAIN: NULL;
SeqFold score						348.12	269.23	
PMF score		0.59	0.12	1202.08	_			-
Verify score		0.29	-0.23	0.24	0.18			0.37
PSI- BLAST		1.30E-19	8.40E-17	1.40E-18	0	0	0	0
End AA		1089	1089	1089	829	629	809	809
Start AA		1035	896	1032	-	-	_	
Chain ID			∢				- 	
PDB U		lgfc	lgri	lhsq	llvk	11vk	Jmn d	1mn d
SEQ NO:		526	526	526	526	526	526	526

PDB annotation	CIRCULAR PERMUTANT PWT; CIRCULAR PERMUTANT, SH3 DOMAIN, CYTOSKELETON	TYROSINE-PROTEIN KINASE BRUTONS TYROSINE KINASE, B CELL PROGENITOR KINASE, TRANSFERASE, TYROSINE-PROTEIN KINASE, PHOSPHORYLATION, 2 SH3 DOMAIN	SIGNAL TRANSDUCTION PROTEIN SRC-HOMOLOGY 3 (SH3) DOMAIN, PEPTIDE-BINDING PROTEIN, ISEM 18 2 GUANINE NUCLEOTIDE EXCHANGE FACTOR ISEM 19	MUSCLE PROTEIN MUSCLE PROTEIN, MYOSIN SUBFRAGMENT-1, MYOSIN HEAD, 2 MOTOR PROTEIN	MUSCLE PROTEIN MUSCLE PROTEIN, MYOSIN SUBFRAGMENT-1, MYOSIN HEAD, 2 MOTOR PROTEIN	TRANSFERASE HCK; SH3, PROTEIN TYROSINE KINASE, SIGNAL TRANSDUCTION, 2 TRANSFERASE	ELECTRON TRANSPORT ELECTRON TRANSPORT, THIOL-DISULFIDE OXIDOREDUCTASE, 2 THIOLTRANSFERASE, THIOREDOXIN SUPERFAMILY	ELECTRON TRANSPORT ELECTRON TRANSPORT, THIOL-DISULFIDE OXIDOREDUCTASE, 2 THIOLTRANSFERASE, THIOREDOXIN SUPERFAMILY	TRANSFERASE ACETYLTRANSFERASE	TRANSFERASE AAC; AMINOGLYCOSIDE 6'-N- ACETYLTRANSFERASE, ANTIBIOTIC
Coumpound	ALPHA SPECTRIN; CHAIN: NULL;	TYROSINE-PROTEIN KINASE BTK; CHAIN: A;	SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE PROLINE-RICH PEPTIDE FROM MSOS ISEM 8 CHAIN: C, D ISEM 10	MYOSIN; CHAIN: A, B, C;	MYOSIN; CHAIN: A, B, C;	HEMATOPOIETIC CELL KINASE; CHAIN: NULL;	GLUTAREDOXIN 3; CHAIN: NULL;	GLUTAREDOXIN 3; CHAIN: NULL;	ARYLALKYLAMINE N- ACETYLTRANSFERASE; CHAIN: A, B;	AMINOGLYCOSIDE N6'- ACETYLTRANSFERASE TYPE I; CHAIN: A;
SeqFold score					267.23					
PMF	-1.41	-1.41	0.94	-		0.18	89.0	96.0	96.0	0.95
Verify score	29.0	0.25	0.63	-0.02		0.32	-0.21	0.17	0.25	0.29
PSI- BLAST	7.00E-20	4.20E-18	4.20E-19	0	0	1.10E-18	0.0015	9.80E-06	3.40E-19	6.80E-08
End	1089	1089	1089	731	737	1089	96	68	159	184
Start AA	1032	1036	1035	-	-	1032	14	23	14	24
Chain ID		¥	A	A	A				В	4
PDB ID	1pwt	1qly	lsem	2mys	2mys	4hck	Здгх	Звгх	1966	1687
SEQ B NO:	526	526	526	526	526	526	528	528	529	529

	ZYME		YME A,	YME A,	7	YL.	AASE,	ON,	LPHA-	LPHA-	LPHA-	
PDB annotation	2 RESISTANCE, ACETYL COENZYME A	TRANSFERASE N-ACETYL TRANSFERASE	SIGNALING PROTEIN P300/CBP ASSOCIATED FACTOR, COENZYME A, ACETYLTRANSFERASE, 2	SIGNALING PROTEIN P300/CBP ASSOCIATED FACTOR, COENZYME A, ACETYLTRANSPERASE, 2 COACTIVATOR SIGNALING PROTEIN	TRANSFERASE PROTEIN-ACETYL COENZYME A COMPLEX,	TRANSFERASE PROTEIN-ACETYL COENZYME A COMPLEX,	TRANSFERASE HISTONE ACETYLTRANSFERASE, GCN5- RELATED N-ACETYLTRANSFERASE,	GENE REGULATION ADA4; TRANSCRIPTIONAL REGULATION, HISTONE ACETYLATION, N- 2 ACETYLTRANSFERASE, GCN5 RELATED N-ACETYLTRANSFERASE FAMILY, 3 GENE REGULATION	CONTRACTILE PROTEIN TROPOMYOSIN COILED-COIL ALPHA-	CONTRACTILE PROTEIN TROPOMYOSIN COILED-COIL ALPHA-	CONTRACTILE PROTEIN TROPOMYOSIN COILED-COIL ALPHA-HELICAL	tier of the contract of the co
Coumpound		SEROTONIN N- ACETYLTRANSFERASE; CHAIN: A:	P300/CBP ASSOCIATING FACTOR; CHAIN: B, A;	P300/CBP ASSOCIATING FACTOR; CHAIN: B, A;	HPA2 HISTONE ACETYLTRANSFERASE; CHAIN: A B C D:	HPA2 HISTONE ACETYLTRANSFERASE; CHAIN: A B C D:	TGCN5 HISTONE ACETYL TRANSFERASE; CHAIN: A;	TRANSCRIPTIONAL ACTIVATOR GCN5; CHAIN: A, B;	TROPOMYOSIN; CHAIN: A, B, C, D	TROPOMYOSIN; CHAIN: A, B, C, D	TROPOMYOSIN; CHAIN: A, B, C, D	
SeqFold score												
PMF score		0.88	0.81	0.19	0.33	0.23	0.19	0.04	-	0.64	0.94	
Verify score		0.5	0.39	0.15	0.13	0.15	-0.06	60.0	-0.48	-0.17	-0.17	
PSI- BLAST		1.20E-19	2.80E-13	1.70E-05	1.50E-13	4.20E-19	3.40E-07	1.00E-05	1.50E-54	3.40E-49	5.10E-53	
End AA		159	174	184	156	165	183	621	296	245	248	
Start AA		14	36	77	=	12	79	80	3	3	3	
Chain ID		∀	В	В	¥	A	Ą	. ·	₹	4	V	
PDB ID		1cjw	1cm 0	lcm 0	Iqsm	lqsm	lqst	1ygh	lclg	1c1g	lclg	
SEQ D NO:		529	529	529	529	529	529	529	534	534	534	

B, C, D	PMF SeqFold Coumpound score score B, C, D	score score score B, C, D
TROPOMYOSIN; CHAIN: A, B, C, D	0.64 TROPO B, C, D	-0.17 0.64
TROPOMYOSIN; CHAIN: A, B, C, D	0.94 TROP	
RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	0.47 RIBON CHAIN CHAIN	
U2 RNA HAIRPIN IV; CHAIN: Q, R, U2 A'; CHAIN: A, C; U2 B''; CHAIN: B, D;	1 U2 RA	2.80E-22 0.75 1 U2 RN Q, R; B"; CI
U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B''; CHAIN: B, D;	0.45 U2 R3 Q, R; B"; C1	0.42 0.45
U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	0.29 U2 R1 Q, R; C3 B"; C1	
U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D;	0.12 U2 R; Q, R; C B"; C	
U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A; CHAIN: A, C; U2 B"; CHAIN: B, D;	0.9 U2 R. Q. R; C. B.'; C.	
U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B'; CHAIN: B. D:	0.29 U2 R. Q, R. Q, R. B", C	
Q, R; U2 A; CHAIN: A, C; U2 B"; CHAIN: B, D;	0.03 U2 R3 Q, R; Q, R; C3 B"; C3	0.1 0.03
INTERNALIN B; CHAIN: A;	0.8 INTE	
NTERNALIN B; CHAIN: A;	0.21 INTE	

		Į,	ı	1.	SE		ტ ላ		(1); R	T 2	1.8.5.	(1)	OR T2	7		 	
PDB annotation	ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE,	2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	CONTRACTILE PROTEIN LEUCINE-	CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	RNA BINDING PROTEIN TAP (NFX1); RIBONUCLEOPROTEIN (RNP,RBD OR	KKM) AND LEUCINE-RICH-REPEAT 2 (LRR)	RNA BINDING PROTEIN TAP (NFX1); RIBONUCLEOPROTEIN (RNP,RBD OR RRM) AND LEUCINE-RICH-REPEAT 2	(LRR) RNA BINDING PROTEIN TAP (NFX1);	RIBONUCLEOPROTEIN (RNP, RBD OR RRM) AND LEUCINE-RICH-REPEAT 2	(LKK) LIGASE CYCLIN A/CDK2- A SSOCIATED DEOTEDI DAS: CYCI DI	A/CDK2-ASSOCIATED PROTEIN P19;	SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIQUITIN, 2 E3,	UBIQUITIN PROTEIN LIGASE
Coumpound		INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	RAB GERANYLGERANYLTRANSF ERASE ALPHA SUBUNIT;	CHAIN: A, C; RAB GERANYLGERANYLTRANSF ERASE BETA SUBUNIT; CHAIN: B. D.	DYNEIN;		NUCLEAR RNA EXPORT FACTOR 1; CHAIN: A, B;		NUCLEAR RNA EXPORT FACTOR 1; CHAIN: A, B;		FACTOR 1; CHAIN: A, B;	SKP2; CHAIN: A, C, E, G, I, K, I M O: SKP1: CHAIN: B, D, E		0714	SIVDS: CHAIN: A C E C 1 V
SeqFold score																	
PMF score		0.11	0.15	0.22	-0.14		0.16		0.13		0.03	0.1		0.49			000
Verify score		0.3	0.05	0.17	0.02		-0.03		-0.32		-0.1	-0.41		0.63			0.08
PSI- BLAST		5.10E-24	1.00E-25	8.50E-25	1.20E-09		6.80E-13		1.00E-06		1.70E-07	1.00E-06		5.10E-13	•		2 ROF-17
End AA		162	191	212	130		143		120		290	120		284			339
Start AA		8	32	57	7		16		52		227	52		111			6
Chain ID		¥	∢	V	٧		A		∢		eq.	В		A			A
PDB ID		1d0b	1406	1406	Idce		l ds9		1f01	;	1601	161		1fqv			1fgv
SEQ DO:		238	538	538	538		538		538		850 8	538		538			538

SEQ NO.	PDB CI	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
									H, J, L, N, P,	A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT. SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE
538	162	Y	111	284	5.10E-13	0.13	0.24		SKP2; CHAIN: A, C; SKP1; CHAIN: B, D;	LIGASE CYCLIN A/CDK2- ASSOCIATED P45; CYCLIN A/CDK2- ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE
538	1fs2	Y	84	306	1.30E-23	0.29	0		SKP2; CHAIN: A, C; SKP1; CHAIN: B, D;	LIGASE CYCLIN A/CDK2- ASSOCIATED P45; CYCLIN A/CDK2- ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE
538	lyrg	¥	98	291	2.80E-22	0.26	-0.11		GTPASE-ACTIVATING PROTEIN RNA1_SCHPO; CHAIN: A, B;	TRANSCRIPTION RNAIP; RANGAP; GTPASE-ACTIVATING PROTEIN FOR SPI1, GTPASE-ACTIVATING PROTEIN, GAP, RNAIP, RANGAP, LRR, LEUCINE- 2 RICH REPEAT PROTEIN, TWINNING, HEMIHEDRAL TWINNING, 3 MEROHEDRAL TWINNING, MEROHEDRY
538	2bnh		63	311	1.40E-32	0.43	0.22		RIBONUCLEASE INHIBITOR; CHAIN: NULL;	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR ACETYLATION, LEUCINE- RICH REPEATS
539	1d2r	A	35	359	0	0.54	_		TRYPTOPHANYL TRNA SYNTHETASE: CHAIN: A, B, C, D, E, F;	LIGASE TRPRS; CLASS I TRNA SYNTHETASE, AARS, INDUCED FIT, TRPRS
540	1406	Α .	274	371	4.20E-17	0.23	0.23		NITROGEN FIXATION REGULATORY PROTEIN FIXL; CHAIN: A;	SIGNALING PROTEIN OXYGEN SENSOR, HISTIDINE KINASE, PAS, HIGH-RESOLUTION, TWO- 2 COMPONENT SYSTEM
541	laew		30	199	7.00E-84			194.39	FERRITIN; CHAIN: NULL;	IRON STORAGE IRON STORAGE, MULTIGENE FAMILY, ACETYLATION
541	1aew		30	199	7.00E-84	0.36	-		FERRITIN; CHAIN: NULL;	IRON STORAGE IRON STORAGE,

			_																								
PDB annotation	MULTIGENE FAMILY, ACETYLATION	IRON STORAGE IRON STORAGE, DIIRON	IRON STORAGE IRON STORAGE.	DIIRON	IRON STORAGE IRON STORAGE	IRON STORAGE IRON STORAGE	IRON STORAGE IRON STORAGE		ISOMERASE ISOMERASE, PPIASE	COMPLEX (ISOMERASE/PEPTIDE) COMPLEX (ISOMERASE/PEPTIDE),	CYCLOPHILIN A, HIV-I CAPSID, 2 PSEUDO-SYMMETRY	COMPLEX (ISOMERASE/PEPTIDE)	COMPLEX (ISOMERASE/PEPTIDE), CYCLOPHILIN A, HIV-1 CAPSID, 2 PSEUDO-SYMMETRY							COMPLEX	(ISOMIEKASEJIMIMUNOSUPPKESSANT) CYCLOSPORIN, ISOMERASE	ROTAMASE, SIGNAL ICYN 19	COMPLEX	(ISOMERASE/IMMUNOSUPPRESSANT)	CYCLOSPORIN, ISOMERASE,	KOLAMASE, SIGNAL ICIN 19	ISOMERASE(PEPTIDYL-PROLYL CISTRANS) PEPTIDYL-PROLYL CISTRANS)
Coumpound		M FERRITIN; CHAIN: A.B.C.D.E.F.G.H.I.J.K.L.M.N.O .P.Q.R.S.T.U.V.W.X;	M FERRITIN; CHAIN:	A,B,C,D,E,F,G,H,I,I,K,L,M,N,O	FERRITIN; CHAIN: NULL;	FERRITIN: CHAIN: NIJI.I.	FERRITIN; CHAIN: NULL;		CYCLOPHILIN; CHAIN: NULL;	CYCLOPHILIN A; CHAIN: A; PEPTIDE FROM THE HIV-1	CAFSID FROIEIN; CHAIN: B;	CYCLOPHILIN A; CHAIN: A;	PEPTIDE FROM THE HIV-I CAPSID PROTEIN; CHAIN: B;	ISOMERASE(PEPTIDYI	PROLYL CIS-TRANS)	CYCLOPHILIN (NMR, 12	STRUCTURES) ICLH 3	ISOMERASE(PEPTIDYL- PROLYL CIS-TRANS)	CYCLOPHILIN (NMR, 12 STRUCTURES) ICLH 3	CYCLOPHILIN B; ICYN 6	CHOLINYL)ALAI8-	CYCLOSPORIN; ICYN 10 CHAIN; C: ICYN 11	CYCLOPHILIN B; ICYN 6	CHAIN: A; 1CYN 7 [D.	CVCI OSBOBINI: 1CXXI 10	CHAIN: C; 1CYN 11	CYCLOPHILIN 3; CHAIN: A;
SeqFold score		221.42			284.09				94.49	89.5				9.69				_		103.11					*****		
PMF score			-			_	1					1	_					0.46					1				1
Verify score			0.53			0.5	0.5					0.7				•		0.28					0.52				0.62
PSI- BLAST		5.60E-88	5.60E-88		1.40E-75	1.40E-75	1.00E-74		5.10E-29	5.10E-38		5.10E-38		8.40E-39				8.40E-39		5.10E-34			5.10E-34				1.70E-34
End AA		199	661		200	200	200		162	163		160		166			3,	<u> </u>		171			160				160
Start AA		29	30		29	29	29		_	-		2					,	n		_			2				2
Chain ID		∢	¥							⋖		¥								∢			A		_		4
PDB D		1mfr	1mfr		2fha	2fha	2fha	1	1a58	lawq		lawd		-1clh						lcyn	<u> </u>		1cyn				1dy w
SEQ NO:		541	541		541	541	541		546	546		546		546				040		546			546				546

	ERASE,	TIDE) OMPLEX	TIDE) OMPLEX	VS A, CIS-	CYP-20,	CYP-20,					ION SE SIGMA
PDB annotation	TRANS ISOMERASE 3, ISOMERASE, ROTAMASE	COMPLEX (ISOMERASE/PEPTIDE) ISOMERASE, ROTAMASE, COMPLEX (ISOMERASE/PEPTIDE)	COMPLEX (ISOMERASE/PEPTIDE) ISOMERASE, ROTAMASE, COMPLEX (ISOMERASE/PEPTIDE)	PEPTIDYLPROLYL CIS-TRANS ISOMERASE; CYCLOPHILIN A, CYCLOSPORIN A, PEPTIDYL CIS- TRANS ISOMERASE	ISOMERASE USA-CYP; SNUCYP-20, CYCLOPHILIN, SNRNP, SPLICEOSOMAL	ISOMERASE USA-CYP; SNUCYP-20, CYCLOPHILIN, SNRNP, SPLICEOSOMAL					TRANSCRIPTION REGULATION SIGMA FACTOR, TRANSCRIPTION REGULATION REGULATION
	TA				2 O 20	≅ O ⊗		JPP 1.0	75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	JPP 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C	
Coumpound		CYCLOPHILIN A; CHAIN: A; SUCCINYL-ALA-PRO-ALA-P- NITROANILIDE: CHAIN: B:	CYCLOPHILIN A; CHAIN: A; SUCCINYL-ALA-PRO-ALA-P- NITROANILIDE: CHAIN: B:	CYCLOPHILIN; CHAIN: A; CYCLOSPORIN A; CHAIN: D;	SNUCYP-20, CHAIN: A;	SNUCYP-20; CHAIN: A;	COMPTEV	COMFLEA (ISOMERASE/IMMUNOSUPP RESSANT) CYCLOPHILIN C COMPLEXED WITH CYCLOSPORIN A 2RMC3	COMPLEAS (ISOMERASE/IMMUNOSUPP RESSANT) CYCLOPHILIN C COMPLEX CYCLOSPORIN A 2RMC 3 COMPLEX (ISOMERASE/IMMUNOSUPP RESSANT) CYCLOPHILIN C COMPLEXED WITH CYCLOSPORIN A 2RMC 3	COMPLEX COMPLEXE WITH CYCLOSPORIN A 2RMC 3 COMPLEXE COMPLEXE (ISOMERASE/IMMUNOSUPP RESSANT) CYCLOPHILIN C COMPLEXE (ISOMERASE/IMMUNOSUPP RESSANT) CYCLOPHILIN C COMPLEXE CYCLOSPORIN A 2RMC 3 COMPLEXE (ISOMERASE/IMMUNOSUPP RESSANT) CYCLOPHILIN C COMPLEXE (ISOMERASE/IMMUNOSUPP RESSANT) CYCLOPHILIN C COMPLEXE (ISOMERASE/IMMUNOSUPP RESSANT) CYCLOPHILIN C COMPLEXED WITH CYCLOSPORIN A 2RMC 3	(ISOMERASE/IMMUNOSUPI RESSANT) CYCLOPHILIN C COMPLEXED WITH CYCLOSPORIN A 2RMC 3 COMPLEXED WITH RESSANT) CYCLOPHILIN C COMPLEXED WITH CYCLOSPORIN A 2RMC 3 COMPLEX (ISOMERASE/IMMUNOSUPI RESSANT) CYCLOPHILIN C COMPLEXED WITH CYCLOSPORIN A 2RMC 3 COMPLEXED WITH CYCLOSPORIN A 2RMC 3 RESSANT) CYCLOPHILIN C COMPLEXED WITH CYCLOSPORIN A 2RMC 3 COMPLEXED WITH CYCLOSPORIN A 2RMC 3 CYCLOSPORIN A 2RMC 3
SeqFold score		19.69							94,18	94.18	94.18
PMF score			0.98	_		0.98			_		1 0.01
Verify score			0.47	0.56	0.57	0.31		9.0	9:0	0.39	0.39
PSI- BLAST		7.00E-41	7.00E-41	6.80E-33	1.70E-31	2.80E-36		3.40E-31	3.40E-31 8.40E-41	3.40E-31 8.40E-41 8.40E-41	3.40E-31 8.40E-41 8.40E-41
End AA		163	162	160	160	156		160	160	160	160
Start AA		7	3	7	2			2	2 2	2 2 2	2 2 6 2 219
Chain ID		∢	V	V	¥	A		¥	4 Y	4 4	4
PDB ID		llop	Ilop	Iqng	1qoi	Iqoi		2rmc	2ттс 2ттс	2ттс 2ттс 2ттс	2rmc 2rmc 2rmc
SEQ D NO:		546	546	546	546	546		546	546	546 546 546	546 546 548

		T	1.			·					
PDB annotation	BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION	TRANSCRIPTION REGULATION PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION		IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD, RNA-BINDING MOTIF	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF	RNA BINDING PROTEIN/RNA ASTROCYTIC NOVA-LIKE RNA- BINDING PROTEIN; KH DOMAIN, ALPHA-BETA FOLD, RNA-BINDING MOTIF PROTEIN/BNA 2 STRILLY INE	LIGASE CBL, UBCHT, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	METAL BINDING PROTEIN RING
Coumpound		TRANSCRIPTION FACTOR PML; CHAIN: NULL;	VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRUCTURE) ICHC 4	NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1; CHAIN: A;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A. B. C. D:	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A. B. C. D:	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A. B. C. D:	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A, B, C, D;	RNA-BINDING PROTEIN NOVA-2; CHAIN: A, B; 20- MER RNA HAIRPIN; CHAIN: C, D;	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA	CDK-ACTIVATING KINASE
SeqFold score											
PMF score		0.16	8.0	86.0	0.95	0.88	0.99	0.99	_	0.71	0.27
Verify score		-0.5	-0.21	0.49	0.42	0.44	0.3	0.51	99.0	0.28	-0.37
PSI- BLAST		9.80E-09	3.40E-12	2.80E-14	2.80E-14	2.80E-05	4.20E-16	2.80E-15	8.40E-15	3.40E-13	0.00068
End AA		366	370	104	104	106	104	104	109	370	363
Start AA		321	321	39 .	39	39	39 .	39	39	320	317
Chain ID				A	¥	M	၁	Ω	⋖	V	A
PDB ID	;	l bor	1chc	1dt4	1dtj	1dtj	1đtj	1dtj	1ec6	1fbv	1g25
SEQ ID NO:		549	549	549	549	549	549	549	549	549	549

																															
PDB annotation	FINGER PROTEIN MATT: RING	FINGER (C3HC4)	METAL BINDING PROTEIN RING FINGER PROTEIN MATI; RING	PINGER (C3HC4)	RECOMBINATION ACTIVATING	PROTEIN I; RAGI, V(D)J	RECOMBINATION, ANTIBODY, MAD,	CLUSTER, ZINC BINUCLEAR	BINDING PROTEIN	RIBONUCLEOPROTEIN RNA-BINDING		TRANSFERASE	METHYLTRANSFERASE	CTD110TT	SIKUCIUKAL GENOMICS HYPOTHETICAI PROTENI	METHANOCOCCIIS IANNA SCENI	TRANSFERACE CAM DIMPING	DOMAIN, BETA-BARREL MIXED	ALPHA-BETA, HEXAMER, 2 DIMER	TRANSFERASE	(METHYL TRANSFERASE) COMT;	METHYLTRANSFERASE	NEUROTRANSMITTER	DEGRADATION	METHYLIRANSFERASE GNMT, S-	GLYCINE METHY TP ANISTRACE	COLUMNIA IN TOTAL AND LEKASE	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	THE PROPERTY OF THE PROPERTY O	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC
Coumpound	ASSEMBLY FACTOR MATI;	CHAIN: A;	ASSEMBLY FACTOR MATI;	RAGI; CHAIN: NULL:					1000 to 1000	VIGILIN; IVIG 5 CHAIN; NULL; IVIG 6		GLYCINE N. METHYI TO ANISEED AGE	CHAIN: A R C D.	MJ0882; CHAIN: A:	4		HINRNP ARGININE N.	METHYL TRANSFERASE;	CHAIN: 1, 2, 3, 4, 5, 6;	CATECHOL OF MFTHYT TRANSFER	CHAIN: NULL;			GLYCINE N.	METHYLTRANSFER ACE.	CHAIN: A, B;		QGSR ZINC FINGER	ref IIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE	BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE
SeqFold score								,																	_			<u>—</u>		M	Ø ≅ 0
PMF score		0.25		0.19								0.29		_		62.0			0.11			-		90.0				10:0		100	5.
Verify score		-0.18		0.16					69.0		2	40.0		0.38		0 13	71.7	-	-0.07				\neg	-0.04		+	000			-0.43	
PSI- BLAST		1.40E-09		5.10E-12					4.20E-16		3 40F-15			8.50E-09		5.60E-07			4.20E-09					5.10E-16	-		1 70F-23			8.50E-25	
End		365		363					104		165		,,,,	8		164			188				\dashv	<u>-</u>			490			547	
Start AA		321	2.5	212					36		50		15			34			48	-			36	07			410			446	
Chain ID		¥									A		4										1							4	
PDB ID		1825	P					 ;	lvig –		1d2h /		1dus 4			1g6q 1			 DIAT			 -	Ixva				lath A			lath A	-
SEQ No.	953	249	549	·				+	549	\parallel	253		553		1	553	-						553				554 16			554 1a	_

PDB annotation		COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DINA) COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (TRANSCRIPTION	REGULATION/DNA) TFIIIA; 5S GENE;	NMR, TFIIIA, PROTEIN, DNA,	TRANSCRIPTION FACTOR, 5S RNA 2	GENE, DNA BINDING PROTEIN, ZINC	TINGER, COMPLEA 3	ANICODIDATION PECTIT ATION	IKANSCKIPTION KEGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NMR	TRANSCRIPTION REGULATION	TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NMR					TRANSCRIPTION INHIBITOR BETA- PROPELLER		COMPLEX (GTP- BINDING/TRANSDICER) BETAI
Coumpound	BINDING SITE; CHAIN: B, C;			(Z)		<u>~</u>	PROIEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;	~	PROTEIN; CHAIN: C, F, G; IN		TRANSCRIPTION FACTOR CC	IIIA; CHAIN: A; 5S RNA RE	GENE; CHAIN: E, F;	TR	95		ADD 1. CHARI MIN 1.		ADRI; CHAIN: NULL;	- TR	COMPLEX (TRANSCRIPTION	TRAMTRACK PROTEIN	(TWO ZINC-FINGER	FEFTIDE) COMPLEXED WITH 2DRP 3 DNA 2DRP 4	ISCRIPTIONAL ESSOR TUP1; CHAIN: A,		GT-ALPHA/GI-ALPHA CHIMERA: CHAIN: A: GT.
SeqFold score																												
PMF score		-0.19		_	0.52			0.04				0.04						0.24	1.24	0		0.89				0		-0.13
Verify score		0.14			0.27			-0.21				-0.03						0.04	5.0	-0.35		0.01				-0.15	;	11.0
PSI- BLAST		1.00E-10			1.70E-12			5.10E-09				3.40E-13						5 10E-13		1.70E-15		2.80E-11				3.40E-15	1 701 11	1.70E-11
End AA		1032			470			985				420				_		472	3	553		472				295	250	705
Start AA		1006			443			096				366						409	}	494		401				30	136	150
Chain D		Ŋ			ت ن			ß				A										∢				۷.	٥	q
PDB ID		1me y			ime ;	<u>~</u>		Ime	>			1 1						2adr		2adr		2drp					1001	1.801
SEQ ID NO:		554			554			554				554						554		554		554	-			555	333	250

SEQ ID NO:	PDB ID	Chain ID	Start	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
					·				BETA; CHAIN: B; GT- GAMMA; CHAIN: G;	TRANSDUCIN BETA SUBUNIT; GAMMAI, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION
557	1c40	V V	175	317	3.40E-14	0.1	0.59		DNA NUCLEOTIDE EXCISION REPAIR ENZYME UVRB; CHAIN: A;	REPLICATION DNA NUCLEOTIDE EXCISION REPAIR, UVRABC, HELICASE, 2 HYPERTHERMOSTABLE PROTEN
557	1d2	A	175	317	3.40E-14	0.01	0.95		EXCINUCLEASE ABC SUBUNIT B: CHAIN: A:	HYDROLASE UVRB; MULTIDOMAIN PROTEIN
557	149x	A	123	379	8.40E-47	90.0	0.64		EXCINUCLEASE UVRABC COMPONENT UVRB; CHAIN: A;	GENE REGULATION APO PROTEIN
557	1d9x	A	175	317	1.50E-16	-0.03	0.87		EXCINUCLEASE UVRABC COMPONENT UVRB; CHAIN: A:	GENE REGULATION APO PROTEIN
557	1fuk	Y	213	374	8.50E-45	0.8	_		EUKARYOTIC INITIATION FACTOR 4A; CHAIN: A;	TRANSLATION YEAST INITIATION FACTOR 4A, EIF4A; HELICASE, INITIATION FACTOR 4A, DEAD-BOX PROTEIN
557	1 fuu	A	_	204	1.70E-55	0.74	-		YEAST INITIATION FACTOR 4A; CHAIN: A, B;	TRANSLATION EUKARYOTIC INITIATION FACTOR 4A; IF4A, HELICASE, DEAD-BOX PROTEIN
557	1fuu	М		374	0	0.64			YEAST INITIATION FACTOR 4A; CHAIN: A, B;	TRANSLATION EUKARYOTIC INITIATION FACTOR 4A; IF4A, HELICASE, DEAD-BOX PROTEIN
557	1hei	۷.	236	310	1.70E-06	0.39	0.19		HCV HELICASE; CHAIN: A, B:	HELICASE HELICASE, RNA, HEPATITIS. HCV. ATPASE. NTPASE
557	lhei	A	40	316	5.60E-09	-0.35	0		HCV HELICASE; CHAIN: A, B;	HELICASE HELICASE, RNA, HEPATITIS. HCV. ATPASE. NTPASE
557	Ihei	В	236	310	1.70E-06	-0.11	0.05		HCV HELICASE; CHAIN: A, B:	HELICASE HELICASE, RNA, HEPATITIS. HCV. ATPASE. NTPASE
557	1qde	A	1	203	1.70E-52	0.84	-		TRANSLATION INITIATION FACTOR 4A; CHAIN: A;	GENE REGULATION EIF4A; TRANSLATION INITIATION, SACCHAROMYCES CEREVISIAE, DEAD BOX 2 PROTEIN FAMILY
558	1421	4	89	707	1 405 18	760	20.0		IN STANCES I	חסייני עד
	10011	4	3	281	1.40E-18	0.27	6.9	T	GLYCINE N-	TRANSFERASE

						S E	R, 2			R ASE, OP,				_
PDB annotation	METHYLTRANSFERASE	TRANSFERASE METHYLTRANSFERASE	STRUCTURAL GENOMICS HYPOTHETICAL PROTEIN, METHANOCOCCIS JANNASCHII	STRUCTURAL GENOMICS HYPOTHETICAL PROTEIN, METHANOCOCCIS JANNASCHII	TRANSFERASE SAM-BINDING DOMAIN, BETA-BARREL, MIXED AI PHA-RETA HEXAMER 2 DIMER	METHYLTRANSFERASE GNMT, S- ADENOSYL-L-METHIONINE\: GLYCINE METHYLTRANSFERASE	METHYLTRANSFERASE ERMAM; METHYLTRANSFERASE, ERM, ERMAM, MLS ANTIBIOTICS, NMR,	METHYLTRANSFERASE TRANSFERASE, METHYLTRANSFERASE, RESTRICTION SYSTEM		HYDROLASE PROTEIN-TYROSINE PHOSPHATASE; HYDROLASE, PROTEIN TYROSINE PHOSPHATASE, CATALYTIC DOMAIN, 2 WPD LOOP, SH2 DOMAIN	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE	HYDROLASE, HYDROLASE VHR; HYDROLASE, PROCEDIATA CT.	1/C
	METHYL	TRANSFERASE METHYLTRANS	STRUCTI HYPOTH MFTHAN	STRUCTI HYPOTH METHAN	TRANSFI DOMAIN ALPHA-F	METHYL ADENOS GI YCINE	METHYL METHYL ERMAM,	METHYLTRANG TRANSFERASE, METHYLTRANG RESTRICTION S	30	HYDROLASE PHOSPHATAS PROTEIN TYR CATALYTIC I	HYDROLASE PHOSPHATAS HYDROLASE	HYDROLASE PHOSPHATAS HYDROLASE	HYDROLASE VI PROTEIN DUAL	12.7
Coumpound	METHYLTRANSFERASE; CHAIN: A, B, C, D;	GLYCINE N. METHYLTRANSFERASE; CHAIN: A. B. C. D:	MJ0882; CHAIN: A;	MJ0882; CHAIN: A;	HNRNP ARGININE N- METHYLTRANSFERASE; CHAIN: 1, 2, 3, 4, 5, 6;	GLYCINE N. METHYLTRANSFERASE; CHAIN: A. B:	RRNA METHYLTRANSFERASE; CHAIN: NULL;	ADENINE-N6-DNA- METHYLTRANSFERASE TAQI; CHAIN: A, B;	orm (Orrana surer	SHP-1; CHAIN: NULL;	PYSTI; CHAIN: NULL;	PYSTI; CHAIN: NULL;	HUMAN VHI-RELATED DUAL-SPECIFICITY PHOSPHATASE CHAIN: A B.	
SeqFold score								·			137.8		96.19	
PMF		0.19	68.0	0.93	0.31	0.72	0.06	0.48	30.0	67.0				
Verify score		-0.17	0.35	0.25	0.11	-0.08	0.44	0.09	710	-0.17		0.88		
PSI- BLAST		2.80E-13	1.40E-12	2.80E-14	1.70E-26	5.10E-21	1.20E-06	1.20E-08	1 20E 05	4.20E-03	3.40E-39	3.40E-39	1.10E-34	
End AA		223	187	213	195	195	157	681	301	100	298	287	307	
Start AA		67	89	83	43	43	7.1	62	225	677	158	159	135	
Chain ID		∢	A	Ą	-	Ą	,	Ą					∀	
PDB ID		1d2h	Idus	1dus	1869	lxva	1yub	2ad m	low2	2	1mk P	1mk p	1vhr	
SEQ ID NO:		558	558	558	558	558	558	558	559			559.	529	

PDB annotation	SCIFICITY	10 1 10 a av.	AYDROLASE, SCIFICITY	AYDROLASE, CIPICITY	HYDROLASE, CIFICITY NGER/DNA), ZINC NG PROTEIN	HYDROLASE, SCIFICITY NGER/DNA) NGER/DNA), ZINC ING PROTEIN	HYDROLASE, CIFICITY GER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC	HYDROLASE, CIFICITY NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC	HYDROLASE, CIFICITY VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN	HYDROLASE, ECIFICITY NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC	HYDROLASE, CIFICITY VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN	AYDROLASE, CIFICITY VGER/DNA), ZINC NG PROTEIN VGER/DNA), ZINC NG PROTEIN NG PROTEIN NG PROTEIN NG PROTEIN NG PROTEIN NG PROTEIN NG PROTEIN NG PROTEIN	ATERCITY SCIFICITY AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN	HYDROLASE, CIFICITY VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC NGER/DNA), ZINC	HYDROLASE, CIFICITY VGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN NGER/DNA), ZINC ING PROTEIN	HYDROLASE, CIFICITY VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN	ATEROLASE, CIFICITY VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA, ZINC	AYDROLASE, CIFICITY VGER/DNA), ZINC ING PROTEIN	AYDROLASE, CIFICITY VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC VGER/DNA), ZINC	AYDROLASE, CIFICITY VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC ING PROTEIN VGER/DNA), ZINC VGER/DNA)	ATTECLASE, CIFICITY AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ANA ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2	AYDROLASE, CIFICITY AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ANA ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2 ATEIN DESIGN, 2	AYDROLASE, CIFICITY AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING ROMPLEX ATEIN DESIGN, 2 ATEIN DESIGN, 3 ATEIN DESIGN,	AYDROLASE, CIFICITY AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING ROMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 3	AYDROLASE, CIFICITY AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ANA ATEIN DESIGN, 2 AGER/DNA), ZINC ANA ATEIN DESIGN, 2 AGER/DNA), ZINC AGER/DNA	AYDROLASE, CIFICITY AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA, ZINC ING PROTEIN AGER/DNA, ZINC ING PROMPLEX ATEIN DESIGN, 2 INE, COMPLEX ATEIN DESIGN, 2 INE, COMPLEX ATEIN DESIGN, 2 INE, COMPLEX ATEIN DESIGN, 2 INE, COMPLEX ATEIN DESIGN, 2 INE, COMPLEX ATEIN DESIGN, 2 INE, COMPLEX ATEIN DESIGN, 2 INE, COMPLEX ATEIN DESIGN, 2 INE, COMPLEX ATEIN DESIGN, 2 INE, COMPLEX ATEIN DESIGN, 2 INE, COMPLEX	ATTECLASE, CIFICITY AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ANA ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 AGER/DNA), ZINC ANA ATEIN DESIGN, 2 AGER/DNA, ZINC ANA ATEIN DESIGN, 2 AGER/DNA, ZINC ANA ATEIN DESIGN, 2 AGER/DNA ATEIN DESIGN, 2 AGER/DNA ATEIN DESIGN, 2 AGER/DNA ATEIN DESIGN, 2 AGER/DNA ATEIN DESIGN, 2 AGER/DNA ATEIN DESIGN, 2 AGER/DNA	ACTEROLASE, CIFICITY AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ING PROTEIN AGER/DNA), ZINC ANA ATEIN DESIGN, 2 IRE, COMPLEX ATEIN DESIGN, 2	AGER/DNA) ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ARE, COMPLEX ATEIN DESIGN, 2 ATEIN DESIGN, 3 ATEIN
	PROTEIN DUAL-SPECIFICITY PHOSPHATASE	HYDROLASE VHR; HYDROLASE, PROTEIN DUAL-SPECIFICITY	PHOSPHATASE	PHOSPHATASE	PHOSPHATASE COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	PHOSPHATASE COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN	PHOSPHATASE COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA)	PHOSPHATASE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING	PHOSPHATASE COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) FINGER, DNA-BINDING PROTE COMPLEX (ZINC FINGER/DNA) FINGER, DNA-BINDING PROTE COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA)	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN FINGER, DNA-BINDING PROTEIN	PHOSPHATASE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING	PHOSPHATASE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE	PHOSPHATASE COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	PHOSPHATASE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 INTERACTION, PROTEIN DESI	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZIR FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIR FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIR FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIR FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIR FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIR FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIR FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIR FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC	PHOSPHATASE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, PNA-BINDING COMPLEX (ZINC FINGE FINGER, PNA-BINDING COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA) ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 INTERACTION, PROTEIN DESIGN, 2	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA, ZIN	PHOSPHATASE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN COMPLEX (ZINC FINGE	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	PHOSPHATASE COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, DNA-BINDING COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEIN COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEIN COMPLEX (ZINC FINGE FINGER/DNA) COMPLEX (ZINC FINGE FINGER/DNA) COMPLEX (ZINC FINGE FINGER/DNA) COMPLEX (ZINC FINGE FINGER/DNA) COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEIN COMPLEX (ZINC FINGE	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN-DNA INTERA	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZINGREL, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, COMPLEX (ZINC FINGER/DNA), ZINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINCENGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, COMPLEX (ZINC FINGER/DNA), ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA) INTERACTION, PROTEIN DESIGN, CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA), ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC COMPLEX (ZINC FINGER/DNA), ZINC	PHOSPHATASE COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA), ZIN FINGER, DNA-BINDING PROTEIN COMPLEX (ZINC FINGER/DNA) ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) INTERACTION, PROTEIN DESIGN, 2 COMPLEX (ZINC FINGER/DNA) ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA) INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA) ZIN FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION,
	A, B;	A, B;	t	+		DUPLEX	DUPLEX N: B, C; DUPLEX	DUPLEX N: B, C; DUPLEX N: B, C;	DUPLEX N: B, C; DUPLEX N: B, C;	DUPLEX N: B, C; DUPLEX N: B, C; N: B, C;	DUPLEX N: B, C; DUPLEX N: B, C; DUPLEX N: B, C;	DUPLEX N: B, C; N: B, C; N: B, C; N: B, C; N: B, C;	DUPLEX N: B, C; N: B, C; DUPLEX N: B, C; N: B, C; N: B, C;	DUPLEX N: B, C; N: B, C; N: B, C; N: B, C; DUPLEX N: B, C;	DUPLEX N: B, C; N: B, C; DUPLEX N: B, C; N: B, C; N: B, C; N: B, C; N: B, C; N: B, C;	DUPLEX N: B, C; N: B, C; DUPLEX N: B, C; N: B, C; N: B, C; N: B, C; N: B, C; N: B, C; N: B, C; N: B, C;	DUPLEX N: B, C; N: B, C; N: B, C; DUPLEX N: B, C; DUPLEX N: B, C; N: B, C; N: B, C; N: B, C; N: B, C;	DUPLEX N: B, C; N: B, C; N: B, C; N: B, C; DUPLEX N: B, C; N: B, C; T, E; NGER F, G;											
	DUAL-SPECIFICITY PHOSPHATASE CHAIN: A, B;	HUMAN VHI-RELATED DUAL-SPECIFICITY PHOSPHATASE CHAIN: A, B;		SON ZINC ENICE	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE	QGSR ZINC FINGER PEPTIDE, CHAIN: A; DUPLE; OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE; OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE; OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; OLIGONUCLEOTIDE BINDING SITE; CHA QGSR ZINC FINGER PEPTIDE; CHAIN: A; OLIGONUCLEOTIDE BINDING SITE; CHA QGSR ZINC FINGER QGSR ZINC FINGER	QGSR ZINC FINGER PEPTIDE, CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: B, C; OLIGONUCLEOTIDE PEPTIDE; CHAIN: B, C; OLIGONUCLEOTIDE	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE) OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE) OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE) OLIGONUCLEOTIDE OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; OLIGONUCLEOTIDE BINDING SITE; CHA QGSR ZINC FINGER PEPTIDE; CHAIN: A; OLIGONUCLEOTIDE BINDING SITE; CHA QGSR ZINC FINGER OLIGONUCLEOTIDE BINDING SITE; CHA QGSR ZINC FINGER QGSR ZINC FINGER OLIGONUCLEOTIDE BINDING SITE; CHA	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX	QGSR ZINC FINGER PEPTIDE; CHAIN: A; OLIGONUCLEOTIDE BINDING SITE; CHAI QGSR ZINC FINGER PEPTIDE; CHAIN: A; OLIGONUCLEOTIDE GSR ZINC FINGER PEPTIDE; CHAIN: A; OLIGONUCLEOTIDE BINDING SITE; CHAI QGSR ZINC FINGER PEPTIDE; CHAIN: A; OLIGONUCLEOTIDE QGSR ZINC FINGER PEPTIDE; CHAIN: A; OLIGONUCLEOTIDE OLIGONUCLEOTIDE OLIGONUCLEOTIDE BINDING SITE; CHAI	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE) OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE) OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE) OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE) OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; QGSR ZINC FINGER PEPTIDE; CHAIN: B, C; OCIGONUCLEOTIDE BINDING SITE; CHAIN: B, C; DNA; CHAIN: A, B, D, E;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: B, COSSR ZINC FINGER DILGONUCLEOTIDE BINDING SITE; CHAIN: B, COSR ZINC FINGER BINDING SITE; CHAIN: B, COSN STRE; CHAIN: B, CONSENSUS ZINC FINGER	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, CONSENSUS ZINC FINGER DINA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	GGSR ZINC FINGI PEPTIDE, CHAIN: DILIGONUCLEOTI GINDING SITE; CI GGSR ZINC FINGI SEPTIDE; CHAIN: DILIGONUCLEOTI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI OSSR ZINC FINGI PEPTIDE; CHAIN: DILIGONUCLEOTI DILIGONUCLEOTI SINDING SITE; CI SINDING SITE; CI	QGSR ZINC FINGER PEPTIDE, CHAIN: A; DU OLIGONUCLEOTIDE BINDING SITE; CHAIN: I QGSR ZINC FINGER PEPTIDE, CHAIN: A; DU OLIGONUCLEOTIDE BINDING SITE; CHAIN: I QGSR ZINC FINGER PEPTIDE; CHAIN: A; DU OLIGONUCLEOTIDE BINDING SITE; CHAIN: I QGSR ZINC FINGER PEPTIDE; CHAIN: A; DU OLIGONUCLEOTIDE BINDING SITE; CHAIN: I COLIGONUCLEOTIDE BINDING SITE; CHAIN: I OLIGONUCLEOTIDE CONSENSUS ZINC FINGER PROTEIN; CHAIN: A; B, D, E; DNA; CHAIN: A, B, D, E;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C ONSENSUS ZINC FINGER PEPTIDE; CHAIN: A; DUPLI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGEI PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGEI PROTEIN; CHAIN: C, F, G;	GGSR ZINC FINGI EPTIDE, CHAIN: DLIGONUCLEOTI GGSR ZINC FINGI GGSR ZINC FINGI SINDING SITE; CI SINDING SITE; CI GGSR ZINC FINGI SINDING SITE; CI SINDING SITE; C	QGSR ZINC FINGI PEPTIDE, CHAIN: JLIGONUCLEOTI GOSR ZINC FINGI GOSR ZINC FINGI SEPTIDE, CHAIN: JLIGONUCLEOTI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINDING SITE; CI SINGING SI SINGING SI SINGING SI SINGING SI SINGING SI SINGING SI SINGING SI SINGING SI SINGING SI SINGING SI SINGING SI SINGING SI SING	QGSR ZINC FINGER PEPTIDE, CHAIN: A; DU OLIGONUCLEOTIDE BINDING SITE; CHAIN: J QGSR ZINC FINGER PEPTIDE; CHAIN: J OLIGONUCLEOTIDE BINDING SITE; CHAIN: J QGSR ZINC FINGER PEPTIDE; CHAIN: J QGSR ZINC FINGER PEPTIDE; CHAIN: J OCIGONUCLEOTIDE BINDING SITE; CHAIN: J OCIGONUCLEOTIDE BINDING SITE; CHAIN: J OCIGONUCLEOTIDE DINA; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, Q QGSR ZINC FINGER PEPTIDE; CHAIN: B, Q QGSR ZINC FINGER BINDING SITE; CHAIN: B, Q QGSR ZINC FINGER PEPTIDE; CHAIN: B, Q QGSR ZINC FINGER PEPTIDE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: B, C COSS ZINC FINGER PEPTIDE; CHAIN: B, C CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPI OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: B, QGSR ZINC FINGER BINDING SITE; CHAIN: B, QGSR ZINC FINGER PEPTIDE; CHAIN: B, QGSR ZINC FINGER BINDING SITE; CHAIN: B, DOLIGONUCLEOTIDE BINDING SITE; CHAIN: B, CONSENSUS ZINC FINGER BINDING SITE; CHAIN: B, DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGEI PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGEI PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGEI PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGEI PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGEI PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGEI	QGSR ZINC FINGI EPTIDE, CHAIN: DLIGONUCLEOTI SINDING SITE; CE GGSR ZINC FINGI SINDING SITE; CE OGSR ZINC FINGI SINDING SITE; CE DLIGONUCLEOTI SINDING SITE; CE OGSR ZINC FINGI SEPTIDE; CHAIN: DLIGONUCLEOTI SINDING SITE; CE ONSENSUS ZINC PROTEIN; CHAIN: A, E CONSENSUS ZINC PROTEIN; CHAIN: A, E CONSENSUS ZINC ROTEIN; CHAIN: A, E CONSENSUS ZINC ROTEIN; CHAIN: A, E CONSENSUS ZINC ROTEIN; CHAIN: A, E CONSENSUS ZINC ROTEIN; CHAIN: A, E	QGSR ZINC FINGER PEPTIDE, CHAIN: A; DU OLIGONUCLEOTIDE BINDING SITE; CHAIN: I QGSR ZINC FINGER PEPTIDE; CHAIN: A; DU OLIGONUCLEOTIDE BINDING SITE; CHAIN: I QGSR ZINC FINGER PEPTIDE; CHAIN: A; DU OLIGONUCLEOTIDE BINDING SITE; CHAIN: I QGSR ZINC FINGER PEPTIDE; CHAIN: A; DU OLIGONUCLEOTIDE BINDING SITE; CHAIN: I DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: C, F, (DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FING PROTEIN; CHAIN: C, F, (DNA; CHAIN: A, B, D, E;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLE OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: B, C QGSR ZINC FINGER BINDING SITE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: B, C QGSR ZINC FINGER PEPTIDE; CHAIN: B, C DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER
score		H (1)				0208			56.74 P P																				
Score				77	0.77	7.7.	0.77																						
verity score		0.29			0.4 0																								
FSI- BLAST		1.00E-32		\Box	6.80E-22																								
AA B		282 1.0		十十	248 6.8	 																							
AA		146			188													·		·						·			
E B																													
B		1vhr		++	lalh A	++	 	 	 	 	 	 	 	 		 													
S B S				++	999	 	 	 								 	 												

	Chain	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
O		219	246	1.70E-13	-0.03	0.92		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	CLINC FINGERODNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
4			280	6.80E-18			50.62	TRANSCRIPTION FACTOR IIIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) TFILIA; 5S GENE; NMR, TFILIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION REGULATION/DNA)
4		194	276	6.80E-18	-0.15	0.01		TRANSCRIPTION FACTOR IIIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) TFIIIA: 5S GENE: NMR. TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION REGULATION/DNA)
∢		861	277	1.405-20	-0.28	0.16		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZINC FINGER PROTEIN
ပ		167	772	6.80E-29			56.56	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
ပ		186	276	6.80E-29	-0.32	0.89		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIII ATION/DNA)
ပ		201	284	5.10E-27	-0.05	0.88		YY1; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION

Coumpound PDB annotation	ASSOCIATED VIRUS P5 REGULATION/DNA) YING-YANG 1; RNTIATOR ELEMENT DNA; RTANSCRIPTION INITIATION, RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	ZINC FINGER PROTEIN GLII; COMPLEX (DNA-BINDING CHAIN: A; DNA; CHAIN: C, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	ZINC FINGER PROTEIN GLII; COMPLEX (DNA-BINDING CHAIN: A; DNA; CHAIN: C, ZINC FINGER, COMPLEX (DNA-BINDING) BINDING PROTEIN/DNA)	PROTEIN PHOSPHATASE SCAFFOLD PROTEIN SCAFFOLD PP2A; CHAIN: A, B; PROTEIN, PP2A, PHOSPHORYLATION, HEAT REPEAT	PROTEIN PHOSPHATASE SCAFFOLD PROTEIN SCAFFOLD PP2A; CHAIN: A, B; HEAT REPEAT HEAT REPEAT	KARYOPHERIN ALPHA; TRANSPORT PROTEIN SERINE-RICH CHAIN: A, B; MYC PROTO- ONCOGENE PROTEIN; PROTEIN; ARM REPEAT CHAIN: C, D, E, F;	KARYOPHERIN ALPHA; TRANSPORT PROTEIN SERINE-RICH CHAIN: A. B; MYC PROTO- ONCOGENE PROTEIN; PROTEIN; ARM REPEAT CHAIN: C. D. E. F:	KARYOPHERIN ALPHA: TRANSPORT PROTEIN SERINE-RICH	ġ						
_	ASSOCIATEC INITIATOR E CHAIN: A, B;	ZINC FINC CHAIN: A D;	ZINC FINC CHAIN: A D;	PROTEIN PP2A; CH	PROTEIN PP2A; CH.	KARYOPI CHAIN: A ONCOGEI CHAIN: C	KARYOPI CHAIN: A ONCOGEI CHAIN: C	KARYOP CHAIN: A	CHAIN: C	CHAIN: C KARYOPI CHAIN: A ONCOGE	CHAIN: C KARYOPI CHAIN: A ONCOGE CHAIN: C	CHAIN: C CHAIN: C KARYOPI CHAIN: A ONCOGE CHAIN: C	CHAIN: C KARYOPI CHAIN: A ONCOGE CHAIN: C IMPORTII A;	CHAIN: C CHAIN: C CHAIN: A ONCOGE CHAIN: C IMPORTI	CHAIN: C CHAIN: C KARYOPI CHAIN: A ONCOGE CHAIN: C IMPORTII
SeqFold score		57.42		161.25											
PMF score		•	0.72		0.71	_	0.83			1	1 0.96	1 0.96	1 0.96	1 0.96	0.96
Verify score			0.23		-0.03	0.42	-0.06	0.44		0.34	0.34	0.34	0.34	0.34	0.34
PSI- BLAST		1.50E-26	1.50E-26	1.70E-40	1.70E-40	1.30E-43	1.40E-31	1.70E-37		3.40E-28	3.40E-28 5.10E-21	3.40E-28 5.10E-21	3.40E-28 5.10E-21	3.40E-28 5.10E-21	3.40E-28 5.10E-21
End		278	278	909	605	602	459	601		390	390	390	390	390	390
Start AA		133	188	-	6	144	81	184			7 304	7 304	304	304	304
Chain ID		٧	A	Ą	A	V	V	٧		V .	4 • 4	∢	K	< . ✓	4 . 4
PDB ID		2gli	2gli	1b3u	1b3u	lee4	lee4	1ee4		Jee4	lee4	lee4	lee4	lee4	lee4
SEQ ID NO:		999	566	571	571	178	571	115	_	571	571	571	571	571	571

		T	T	<u> </u>	Τ .		Т	T	\top
PDB annotation	ARMADILLO REPEATS, AUTOINHIBITION, INTRASTERIC REGULATION	NUCLEAR IMPORT RECEPTOR KARYOPHERIN ALPHA; NUCLEAR IMPORT RECEPTOR, NUCLEAR LOCALIZATION SIGNAL, 2 ARMADILLO REPEATS, AUTOINHIBITION, INTRASTERIC REGULATION	NUCLEAR IMPORT RECEPTOR KARYOPHERIN ALPHA; NUCLEAR IMPORT RECEPTOR, NUCLEAR LOCALIZATION SIGNAL, 2 ARMADILLO REPEATS, AUTOINHIBITION, INTRASTERIC REGULATION	NUCLEAR IMPORT RECEPTOR KARYOPHERIN ALPHA; NUCLEAR IMPORT RECEPTOR, NUCLEAR LOCALIZATION SIGNAL, 2 ARMADILLO REPEATS, AUTONHIBITION, INTRASTERIC REGULATION	SMALL GTPASE KARYOPHERIN BETA, P95 SMALL GTPASE, NUCLEAR TRANSPORT RECEPTOR	SMALL GTPASE KARYOPHERIN BETA, P95 SMALL GTPASE, NUCLEAR TRANSPORT RECEPTOR	NUCLEAR TRANSPORT PROTEIN COMPLEX HEAT REPEATS, NUCLEAR TRANSPORT PROTEIN COMPI EX	TRANSPORT RECEPTOR KARYOPHERIN BETA-1, NUCLEAR FACTOR P97, IMPORTIN IMPORTIN ALPHA-2 SUBUNIT, KARYOPHERIN ALPHA-2 TRANSPORT RECEPTOR, NUCLEAR IMPORT, HEAT MOTIF, NUCLEAR IMPORT,	STRICTIRAL PROTEIN ARMADITIO
Coumpound		IMPORTIN ALPHA; CHAIN: A;	IMPORTIN ALPHA; CHAIN: A;	IMPORTIN ALPHA; CHAIN: A;	RAN; CHAIN: A, C; IMPORTIN BETA SUBUNIT; CHAIN: B, D;	RAN; CHAIN: A, C; IMPORTIN BETA SUBUNIT; CHAIN: B, D;	KARYOPHERIN BETA2; CHAIN: B; RAN; CHAIN: C;	IMPORTIN BETA SUBUNIT; CHAIN: A, IMPORTIN ALPHA-2 SUBUNIT; CHAIN: B;	BETA-CATENIN: CHAIN:
SeqFold score		152.5							
PMF score			0.19	0.88	0.4	-0.09	0.74	0.16	0.64
Verify score			0.26	0.18	-0.01	0.11	0.01	-0.16	0.29
PSI- BLAST		1.40E-32	1.70E-09	1.40E-32	6.80E-13	5.10E-12	3.40E-49	6.80E-23	1.40E-22
End AA		475	607	390	909	97	909	474	500
Start AA		33	530	7	225	3	9	m	8
Chain ID		⋖	∢	∢	В	В	В	⋖	
PDB ID		lial	lial	lial	libr	libr	Iqbk	lqgr	2bct
SEQ NO:		571	571	571	571	571	571	571	571

<u> </u>		l .	<u> </u>			l	Γ		<u> </u>	1		T
PDB annotation	REPEAT, BETA-CATENIN, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN ARMADILLO REPEAT, BETA-CATENIN, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN ARMADILLO REPEAT, BETA-CATENIN, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN ARMADILLO REPEAT, BETA-CATENIN, STRUCTURAL PROTEIN	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON	LIPID TRANSPORT APO A-I; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT- ACTIVATION	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COILED-COILS, STRUCTURAL PROTEIN	CONTRACTILE PROTEIN TRIPLE. HELIX COILED COIL, CONTRACTILE PROTEIN	TRANSCRIPTION REGULATION SIGMATO, RNA POLYMERASE SIGMA FACTOR, TRANSCRIPTION
Coumpound	NŪLE;	BETA-CATENIN; CHAIN: NULL;	BETA-CATENIN; CHAIN: . NULL;	BETA-CATENIN; CHAIN: NULL;	BETA-CATENIN; CHAIN: NULL;	BETA-CATENIN; CHAIN: NULL;	BETA-CATENIN; CHAIN: NULL;	BETA-CATENIN; CHAIN: NULL;	APOLIPOPROTEIN A-1; CHAIN: A, B, C, D,	A. B, C;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	RNA POLYMERASE PRIMARY SIGMA FACTOR; CHAIN: NULL;
SeqFold score		160.13	-			141.33			67.34	62.14	67.92	
PMF			_	0.94	-1.41		1202.08	1				0.07
Verify score			0.39	0.31	0.57		0.45	0.35		•		-0.28
PSI- BLAST		6.80E-44	8.40E-25	6.80E-44	6.80E-18	1.40E-31	5.10E-36	1.40E-31	5.60E-11	2.80E-12	1.40E-13	2.80E-09
End		607	431	209	386	476	604	430	219	219	245	161
Start AA		68	6	91	_		138	51	23	9	3	31
Chain ID									Ą	¥	A	
PDB ID		2bct	2bct	2bct	3bct	3bct	3bct	3bct	lavi	Icun	1quu	1sig
SEQ ID NO:		571	571	571	571	571	571	571	572	572	572	572

				T												T			. 2	<u> </u>		.;		<u></u>	-								
PDB annotation	TIPLY TRANSPORT ABO A 1.	LIPOPROTEIN, LIPID TRANSPORT, CHOI ESTEDO! METAPOLIEM 2	ATHEROSCLEROSIS, HDL, LCAT-	ACTIVATION TP ANSWEMB ANE BROTTERS	COLICIN, BACTERIOCIN, ION	CHANNEL FORMATION,	TRANSMEMBRANE 2 PROTEIN	STRUCTURAL PROTEIN TWO	KEFEAIS OF SPECIKIN, ALPHA HELICAL LINKER REGION 22	TANDEM 3-HELIX COILED-COILS.	STRUCTURAL PROTEIN	STRUCTURAL PROTEIN TWO	REPEATS OF SPECTRIN, ALPHA	HELICAL LINKER REGION, 22	TANDEM 3-HELIX COILED-COILS,	SIGNAT INC BROTTEN CHANIBIE	SIGNALING PROTEIN GUANINE NITOT EOTIDE: BINDING PROTEIN 1:	GBP. GTP HYDROLYSIS. GDP. GMP	INTERFERON INDUCED, DYNAMIN 2	RELATED, LARGE GTPASE FAMILY.	SIGNALING PROTEIN	ENDOCYTOSIS/EXOCYTOSIS NSECI;	PROTEIN-PROTEIN COMPLEX. MHT-STIRI MT	ENDOCYTOSIS/EXOCYTOSIS NSECI:	PROTEIN-PROTEIN COMPLEX,	MULTI-SUBUNIT	ENDOCYTOSIS/EXOCYTOSIS	SYNAPTOTAGMIN ASSOCIATED 35	KDA PROTEIN, P35A, THREE HELIX	BUNDLE SIGNAT ING BROTTEIN CBB CTB	HYDROLYSIS GDP. GMP	INTERFERON INDUCED, DYNAMIN 2	RELATED LARGE GTPASE FAMILY
				\dagger				_	- T	<u> </u>			~		<u></u>					<u> </u>	S		<u></u>						¥ ĉ				
Coumpound	APOI IPOPROTEIN A. I.	CHAIN: A, B, C, D;		COLICIN 14 · CHAIN: NI II 1 ·				ALPHA SPECTRIN; CHAIN:	A, D, C,			ALPHA SPECTRIN; CHAIN:	A, B, C;			NTEREFRON MINITER	GITANYI.ATE-BINDING	PROTEIN 1; CHAIN: A;	•			SYNTAXIN BINDING	PROTEIN I, CHAIN: A; SYNTAXIN IA: CHAIN: B:	SYNTAXIN BINDING	PROTEIN 1; CHAIN: A;	SYNTAXIN 1A; CHAIN: B;	SYNTAXIN-1A; CHAIN: A, B,	ပံ		INTERFERON-INDITIOED	GUANYLATE-BINDING	PROTEIN I; CHAIN: A;	
SeqFold score																																•	
PMF score	-0.18			-0.2	<u>.</u>			-0.01				-0.12				513	3		-			-0.17		-0.19			-0.18	-		-0.19			
Verify score	0.50	1		90.0			,	0.5				0.57				0.43	2					0.39		0.31			0.43			0.29			
PSI- BLAST	7 00E-13			4.20E-16) 	•		5.60E-12				7.00E-15				1.40E-10	2					8.40E-14		1.40E-11			1.10E-16			4.20E-11			
End AA	137	:		175				5				125				140	·					145		175			129			145			
Start AA	20	} 		7				_				9				16						4		8			. 4			=			
Chain ID	A	:						⋖				∀				A		_				מ		В	-		∢			A			
PDB 10	lav1			Icii		-	 	L Can				Icun			-	1dg3)				,	- I EBI		ldn1		, ,	lez3			If5n			
NO:	573			573				5/5				573				573	-				1	- 6/6		573		\dagger	573	-		573			

						_				,			
PDB annotation	PROTEIN TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT	CONTRACTILE PROTEIN TRIPLE. HELIX COILED COIL, CONTRACTILE PROTEIN	CONTRACTILE PROTEIN TRIPLE- HELIX COILED COIL, CONTRACTILE PROTEIN	CONTRACTILE PROTEIN TRIPLE- HELIX COILED COIL, CONTRACTILE PROTEIN	COMPLEX (TRANSDUCER/TRANSDUCTION) GT BETA-GAMMA; MEKA, PP33; PHOSDUCIN, TRANSDUCIN, BETA- GAMMA, SIGNAL TRANSDUCTION, 2 REGULATION, PHOSPHORYLATION, G PROTEINS, THIOREDOXIN, 3 VISION, MEKA, COMPLEX (TRANSDUCER/TRANSDUCTION)		TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND ALPHA/BETA FOLD	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND ALPHA/BETA FOLD	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND ALPHA/BETA FOLD	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND ALPHA/BETA FOLD	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND ALPHA/BETA FOLD	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA-
Coumpound	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	TRANSDUCIN; CHAIN: B. G; PHOSDUCIN; CHAIN: P;		TOLB PROTEIN; CHAIN: A;	TOLB PROTEIN, CHAIN: A;	TOLB PROTEIN; CHAIN: A;	TOLB PROTEIN; CHAIN: A;	TOLB PROTEIN; CHAIN: A;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B.C.	TRANSCRIPTIONAL
SeqFold score			53.17										
PMF score	-0.2	-0.2		-0.18	-0.19		0.22	0.1	0	0.22	-0.12	-0.14	
Verify score	0.2	0.4		0.36	0.08		0.47	0.37	0.41	-0.14	0.22	0.14	0.8
PSI- BLAST	1.40E-12	5.60E-12	1.40E-19	1.40E-19	8.40E-11		9.80E-18	5.60E-16	4.20E-15	5.10E-05	1.40E-09	5.60E-91	1.70E-76
End AA	146	101	250	174	144		358	466	484	476	209	484	484
Start AA	9		9 .	7		·	110	172	262	353		109	193
Chain ID	Ą	Ą	Y	Ą	۵.		∢	٧	∢	∢	Ą	¥	4
PDB ID	lqqe	Iquu	lquu	1quu	2trc		lcrz	lcrz	lcrz	lcrz	lcrz	lerj	lerj
SEQ ID NO:	573	573	573	573	573		574	574	574	574	574	574	574

PDB annotation	PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	COMPLEX (GTP-BINDING/TRANSDUCER) BETA!, TRANSDUCIN BETA SUBUNIT; GAMMA!, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	COMPLEX (GTP-BINDING/TRANSDUCER) BETA!, TRANSDUCIN BETA SUBUNIT; GAMMA! TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	COMPLEX (GTP-BINDING/TRANSDUCER) BETAI, TRANSDUCIN BETA SUBUNIT; GAMMAI, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	COMPLEX (GTP-BINDING/TRANSDUCER) BETAI, TRANSDUCIN BETA SUBUNIT; GAMMAI, TRANSDUCIN GAMMA
Coumpound	HAIN: A,	TRANSCRIPTIONAL TE REPRESSOR TUP1; CHAIN: A, PI B, C;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BI BETA; CHAIN: B; GT-TI GAMMA; CHAIN: G; St BI HII	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BI BETA; CHAIN: B; GT-TF GAMMA; CHAIN: G; St BI HI	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BI BETA; CHAIN: B; GT-TF GAMMA; CHAIN: G; G, S, S, S, S, S, S, S, S, S, S, S, S, S,	GT-ALPHA/GI-ALPHA CCIMERA; CHAIN: A; GT-BI BETA; CHAIN: B; GT-TF GAMMA; CHAIN: G; St BI HI	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BI BETA; CHAIN: B; GT-TR GAMMA; CHAIN: G;
SeqFold score						·	150.13
PMF score		1	-	-		66:0	
Verify score		0.46	0.95	0.7	0.79	0.43	
PSI- BLAST		1.70E-67	3.40E-71	1.00E-50	6.80E-79	3.40E-55	3.40E-71
End AA		356	400	273	483	315	400
Start AA		48	101	15	190	45	92
Chain ID		∀	B	В	В	В	В
PDB ID		lerj	lgot	1got	1got	Igot	Igot
SEQ NO:		574	574	574	574	574	574

	ROTEIN,	JNE	NO	z						AL VINAL	OTEIN
PDB annotation	SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	HYDROLASE PROLYL ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA- 2 PROPELLER	OXIDOREDUCTASE ENZYME, NITRITE REDUCTASE, OXIDOREDUCTASE, DENITRIFICATION, 2 ELECTRON TRANSPORT, PERIPLASMIC	TRANSMEMBRANE PROTEIN COLICIN, BACTERIOCIN, ION CHANNEL FORMATION, TRANSMEMBRANE 2 PROTEIN				INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	RECEPTOR RECEPTOR, SIGNAL TRANSDUCER OF IL-6 TYPE CYTOKINES, THIRD 2 N-TERMINAL DOMAIN, TRANSMEMBRANE, GLYCOPROTEIN	T-CELL SURFACE GLYCOPROTEIN
Coumpound		PROLYL OLIGOPEPTIDASE; CHAIN: A;	CYTOCHROME CDI NITRITE REDUCTASE; CHAIN: A, B;	COLICIN IA; CHAIN: NULL;	DEFENSIN DEFENSIN /HNP\$-3 1DFN 3	DEFENSIN DEFENSIN /HNP\$-3 1DFN 3	DEFENSIN DEFENSIN /HNP\$-3 IDFN 3	HEMOLIN; CHAIN: A, B;	HEMOLIN; CHAIN: A, B;	GPI30; CHAIN: NULL;	T-CELL SURFACE
SeqFold score				98.21	59.92			111.17			
PMF score		0.05	61.0-			1			0.05	-0.08	-0.01
Verify score		-0.33	0.43			-0.35	-0.35		0	0.22	0.43
PSI- BLAST		0.00056	5.60E-79	1.70E-10	1.10E-12	1.10E-12	5.10E-11	1.70E-47	1.70E-47	5.60E-11	1.40E-19
End		172	478	648	101	101	101	435	416	434	220
Start AA		<u></u>	104	49	72	73	73	30	32	344	49
Chain ID		₹	A		A	¥	¥	∢	∢		
PDB ID		1qfm	19ks	1cii	1dfn	1dfn	1dfn	1bih	1bih	1bj8	lcdy
SEQ No:		574	574	575	577	577	577	578	578	578	578

	-	· · · · · · · · · · · · · · · · · · ·	1						
PDB annotation	TRANSMEMBRANE, GLYCOPROTEIN, T-CELL, 2 MHC, LIPOPROTEIN, T-CELL SURFACE GLYCOPROTEIN		CELL ADHESION NEURAL CELL ADHESION	CELL ADHESION NEURAL CELL ADHESION	IMMUNE SYSTEM ABZYME TRANSITION STATE ANALOG, IMMUNE SYSTEM	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	CELL ADHESION NCAM; NCAM, IMMUNOGLOBULIN FOLD, GLYCOPROTEIN
Coumpound	CHAIN: NULL;	NEURAL ADHESION MOLECULE DROSOPHILA NEUROGLIAN (CHYMOTRYPTIC FRAGMENT CONTAINING THE 1CFB 3 TWO AMINO PROXIMAL FIBRONECTIN TYPE III REPEATS 1CFB 4 (RESIDUES 610 - 814)) 1CFB 5	AXONIN-1; CHAIN: A;	AXONIN-1; CHAIN: A;	7C8 FAB FRAGMENT; SHORT CHAIN; CHAIN: A, C; 7C8 FAB FRAGMENT; LONG	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	NEURAL CELL ADHESION MOLECULE: CHAIN: A, B, C, D;
SeqFold score		·							
PMF		0.39	-0.11	0	-0.15	-1.41	0.43	0.34	0.99
Verify score		0.25	0.09	90.0	0.11	0.1	0.18	0.1	0.16
PSI- BLAST		7.00E-20	1.40E-48	1.40E-50	6.80E-13	1.40E-44	3.40E-28	1.40E-30	5.60E-30
End AA		435	522	436	328	340	225	220	214
Start AA		252	137	32	140	134	31	36	33
Chain ID			∢	A	¥	O O	Q	D	A
PDB ID		1cfb	1cs6	1cs6	1ct8	lcvs	lcvs	lcvs	lepf
SEQ ID NO:		578	578	578	578	578	578	578	578

ound PDB annotation	ROWTH GROWTH FACTOR/GROWTH FACTOR IN: A, B, C, D; RECEPTOR FGF2; FGFR2; ROWTH IMMUNOGLOBULIN (IG)LIKE TOR 2; DOMAINS BELONGING TO THE 1-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD	C, D;				1FNF 6 CELL ADHESION PROTEIN RGD, 1FNF 7 EXTRACELLULAR MATRIX 1FNF 18				E ADHESION N CD2 (RAT)	E ADHESION N CD2 (RAT) E ADHESION N CD2 (RAT)	E ADHESION N CD2 (RAT) E ADHESION N CD2 (RAT)
Coumpound	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, FIBROBLAST GROWTH FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	FIBROBLAST GROWTH FACTOR 1; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	PLACENTAL LACTOGEN; CHAIN: A; PROLACTIN RECEPTOR: CHAIN: B, C;	TELOKIN; CHAIN: A	FIBRONECTIN; 1FNF 6 CHAIN: NULL; 1FNF 7	FIBRONECTIN; CHAIN: A;	TLYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (HUMAN) 1HNF 3		T LYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (RAT) 1HNG 3	T LYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (RAT) 1HNG 3 T LYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (RAT)	TLYMPHOCYTE GLYCOPROTEIN IHNG 3 TLYMPHOCYTE GLYCOPROTEIN
SeqFold score												
PMF score	0.25	0.48	0.01	0.17	-0.05	0.46	0.04	0.29		-0.12	-0.12 0.15	-0.12
Verify score	0.09	-0.06	0.03	0.29	0.06	0.24	0.24	0.3		0.05	0.05	0.05
PSI- BLAST	4.20E-30	2.80E-31	5.60E-28	1.40E-11	6.80E-18	5.60E-15	1.40E-12	1.40E-18	7. 000	4.20E-14	4.20E-14 2.80E-24	4.20E-14 2.80E-24
End	220	228	220	436	131	432	432	211	200	767	227	227
Start AA	38	36	29	267	27	264	264	47	143	}	49	49
Chain ID	យ	ပ	ပ	B	4		A			∢	4 4	4 4
PDB ID	lev2	lev2	levt	1f6f	1fhg	1fnf	1fnh	lhnf		Inng	I hng	I hng
SEQ ID NO:	578	578	578	578	578	578	578	578	000	2/8	578	578

		· · · · · · · · · · · · · · · · · · ·						
PDB annotation	IMMUNOGLOBULIN, V REGION, C REGION, HINGE REGION	COMPLEX (IMMUNOGLOBULIN/RECEPTOR) IMMUNOGLOBULIN FOLD, TRANSMEMBRANE, GLYCOPROTEIN, RECEPTOR, 2 SIGNAL, COMPLEX	(IMINONOGEOBOLIN/KECEF10K)	CELL ADHESION PROTEIN CELL ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2	MUSCLE PROTEIN CONNECTIN, NEXTMS; CELL ADHESION, GLYCOPROTEIN, TRANSMEMBRANE, REPEAT, BRAIN, 2 IMMUNOGLOBULIN FOLD, ALTERNATIVE SPLICING, SIGNAL, 3	MUSCLE FROIEIN MUSCLE PROTEIN CONNECTIN, NEXTM5; CELL ADHESION, GLYCOPROTEIN, TRANSMEMBRANE, REPEAT, BRAIN, 2 IMMUNOGLOBULIN FOLD, ALTERNATIVE SPLICING, SIGNAL, 3	MUSCLE PROTEIN MUSCLE PROTEIN CONNECTIN, NEXTM5, CELL ADHESION, GLYCOPROTEIN, TRANSMEMBRANE, REPEAT, BRAIN, 2 IMMUNOGLOBULIN FOLD, ALTERNATIVE SPLICING, SIGNAL, 3	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN
Coumpound	MAB61.1.3; CHAIN: A, B, C, D	INTERLEUKIN-1 BETA; CHAIN: A; TYPE 1 INTERLEUKIN-1 RECEPTOR; CHAIN: B;	IMMUNOGLOBULIN IMMUNOGLOBULIN G1 (IGG1) (MCG) WITH A HINGE DELETION 1MCO 3	FIBRONECTIN; CHAIN: NULL;	TITIN; CHAIN: NULL;	TITIN; CHAIN: NULL;	TITIN; CHAIN: NULL;	INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;
SeqFold score			96.36					
PMF score		-0.12		0.33	0.88	-0.06	-0.13	0.52
Verify score		0.03		0.39	0.29	90.0	0.13	0.3
PSI- BLAST		6.80E-34	3.40E-10	1.30E-17	1.40E-18	4.20E-15	6.80E-15	1.40E-20
End AA		338	423	432	227	132	132	450
Start AA		22	32	264	139	31 .	31	251
Chain ID		m	н		_			¥
PDB ID		<u>e</u>	1mc o	lmfu Tmfu	Inct	Inct	Inct	1qg3
SEQ NO:		278	578	578	578	578	578	578

PDB annotation	STRUCTURAL PROTEIN TENASCIN, FIBRONECTIN TYPE-III, HEPARIN, EXTRACELLULAR 2 MATRIX, ADHESION, FUSION PROTEIN, CATALLY IN PROTEIN,	PROJEIN			GLYCOPROTEIN CD4; IMMUNOGLOBULIN FOLD, TRANSMEMBRANE, GLYCOPROTEIN, T-CELL, 2 MHC LIPOPROTEIN, POLYMORPHISM	MUSCLE PROTEIN IMMUNOGLOBULIN SUPERFAMILY, I SET, MUSCLE PROTEIN	MUSCLE PROTEIN IMMUNOGLOBULIN SUPERFAMILY, I SET, MUSCLE PROTEIN	NERVE GROWTH FACTORTRKA COMPLEX BETA-NGF; COMPLEX, TRKA RECEPTOR, NERVE GROWTH FACTOR, CYSTEINE KNOT, 2 IMMUNOGLOBULIN LIKE DOMAIN, NERVE GROWTH FACTORTRKA	
PD	STRUCTURAL FIBRONECTIN EXTRACELLUI ADHESION, FU	STRUCTURAL PROTEIN			GLYCOPROTEIN CD4; IMMUNOGLOBULIN FOLD TRANSMEMBRANE, GLYC T-CELL, 2 MHC LIPOPROTI POLYMORPHISM	MUSCLE PROTEIN IMMUNOGLOBULIN SU SET, MUSCLE PROTEIN	MUSCLE PROTEIN IMMUNOGLOBULIN SU SET, MUSCLE PROTEIN	NERVE GROW COMPLEX BET TRKA RECEPT FACTOR, CYSI IMMUNOGLOE NERVE GROW	
Coumpound	TENASCIN; CHAIN: A, B;	MUSCLE PROTEIN TITIN MODULE MS (CONNECTIN) ITNM 3 (NMR, MINIMIZED AVERAGE STRUCTURE)	MUSCLE PROTEIN TITIN MODULE M5 (CONNECTIN) ITNM 3 (NMR, MINIMIZED AVERAGE STRUCTURE) ITNM 4 ITNM 58	GLYCOPROTEIN FIBRONECTIN (TENTH TYPE III MODULE) (NMR, 36 STRUCTURES) ITTF 3	T-CELL SURFACE GLYCOPROTEIN CD4; CHAIN: A, B;	TWITCHIN 18TH IGSF MODULE; CHAIN: NULL;	TWITCHIN 18TH IGSF MODULE; CHAIN: NULL;	NERVE GROWTH FACTOR; CHAIN: V, W; TRKA RECEPTOR; CHAIN: X, Y;	
SeqFold					-				
PMF	0.82	0.89	0.03	0.05	-0.12	0.78	0.1	-0.01	
Verify	0.52	0.39	-0.04	0.2	0.04	0.52	0.23	0.02	
PSI- BLAST	2.80E-17	7.00E-18	8.40E-15	1.40E-10	2.80E-20	2.80E-17	2.80E-15	5.60E-18	
End	435	227	132	434	281	226	132	228	
Start	264	139	33	346		139	31	142	
Chain	4				¥			×	
PDB ID	lqr4	1tnm	1thm	1tt	1wio	1wit	1wit	lww w	
SEQ ID	S78	578	578	578	578	578	578	578	

		T	T	Π	1	T		T	П	
PDB annotation	IMMUNE SYSTEM PS8 NATURAL KILLER CELL RECEPTOR; KIR, NATURAL KILLER RECEPTOR, INHIBITORY RECEPTOR, 2	IMMUNE SYSTEM CD32; RECEPTOR, FC. CD32. IMMINE SYSTEM	PROTEIN BINDING ED-B, FIBRONECTIN, TYPEIII DOMAIN, ANGIOGENESIS, PROTEIN 2 RINDING	COAGULATION FACTOR	CELL ADHESION NCAM DOMAIN 1; CELL ADHESION, GLYCOPROTEIN, HEPARIN-BINDING, GPI-ANCHOR, 2 NEURAL ADHESION MOLECULE, MMI INCI ORI II IN FOLD SIGNAL		CELL ADHESION PROTEIN NCAM MODULE 2; CELL ADHESION, GLYCOPROTEIN, HEPARIN-BINDING, GPI-ANCHOR, 2 NEURAL ADHESION MOLECULE, IMMUNOGLOBULIN FOLD, HOMOPHILIC 3 BINDING, CELL ADHESION PROTEIN	CELL ADHESION PROTEIN NCAM MODULE 2; CELL ADHESION, GLYCOPROTEIN, HEPARIN-BINDING, GPI-ANCHOR, 2 NEURAL ADHESION MOLECULE, IMMUNOGLOBULIN FOLD, HOMOPHILIC 3 BINDING, CELL ADHESION PROTEIN		
Coumpound	MHC CLASS I NK CELL RECEPTOR PRECURSOR; CHAIN: A;	FC GAMMA RIIB; CHAIN: A;	FIBRONECTIN; CHAIN: A;	HUMAN TISSUE FACTOR; 2HFT 4 CHAIN: NULL: 2HFT 5	NEURAL CELL ADHESION MOLECULE; CHAIN: NULL;	HORMONE/RECEPTOR HUMAN GROWTH HORMONE COMPLEXED WITH ITS RECEPTOR 3HHR 3 (EXTRACELLULAR DOMAIN) 3HHR 4	NEURAL CELL ADHESION MOLECULE, LARGE ISOFORM; CHAIN: A;	NEURAL CELL ADHESION MOLECULE, LARGE ISOFORM; CHAIN: A;	VIRUS EQUINE HERPES	VIRUS-1 (C3HC4, OR RING DOMAIN) ICHC 3 (NMR, 1
SeqFold score								·		
PMF	-0.02	99.0	-0.12	-0.08	0.98	-0.09	0.31	0.06	0.01	
Verify score	0.25	0.1	0.45	0.13	0.64	0.06	0.06	0.04	-0.56	
PSI- BLAST	2.80E-25	2.80E-33	1.40E-12	2.80E-12	5.60E-18	5.60E-17	4.20E-18	7.00E-17	1.00E-09	
End AA	220	228	435	436	227	436	220	134	103	
Start AA	30	31	343	264	139	264	139	32	61	
Chain ID	¥	Ą	¥			Ф	4	4		
PDB 1D	2dli	2fcb	2fnb	2hft	2nc m	3hhr	m m	anc m	1chc	
SEQ ID NO:	578	578	578	578	578	578	578	578	579	

PDB annotation	TRANSCRIPTION FACTOR BTF2 P44	SUBUNIT; BASIC TRANSCRIPTION FACTOR, ZINC BINDING PROTEIN	DNA-BINDING PROTEIN V(D)!	RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J	RECOMBINATION, ANTIBODY, MAD,	RING FINGER, 2 ZINC BINUCLEAR	CLOSIEK, ZINC FINGER, DINA- BINDING PROTEIN	DNA-BINDING PROTEIN V(D)J	PROTEIN 1: RAGI V(D)I	RECOMBINATION, ANTIBODY, MAD.	RING FINGER, 2 ZINC BINUCLEAR	CLUSTER, ZINC FINGER, DNA-	BINDING PROTEIN	DNA-BINDING PROTEIN V(D)) RECOMBINATION ACTIVATING	PROTEIN I: RAGI. V(D)J	RECOMBINATION, ANTIBODY, MAD,	RING FINGER, 2 ZINC BINUCLEAR	CLUSTER, ZINC FINGER, DNA-	BINDING FROI EIN	CALCIUM-BINDING PROTEIN CALB;	PROTEIN 2 CALCIUM++/PHOSPHOLIFID BINDING	PROTEIN 2 CAECIONITEIN DING	ENDOCYTOSIS/EXOCYTOSIS	SYNAPTOTAGMIN, C2-DOMAIN,	EXUCYTOSIS, NEUROTIKANSMITTEK	z KELEASE, ENDOCYTOSIS/EXOCYTOSIS	HYDROLASE CPLA2;	PHOSPHOLIPASE, LIPID-BINDING,	TRANSFERASE CALCIUM++	PHOSPHOLIPID BINDING PROTEIN, CALCIUM-BINDING 2 PROTEIN,
Coumpound	STRUCTURE) ICHC 4 TFIIH P44 SUBUNIT; CHAIN:	A;	RAGI; CHAIN: NULL;					RAGI; CHAIN: NULL;						KAGI; CHAIN: NULL;						PROTEIN KINASE C (BETA);	CHAIN: A, B;		SYNAPTOTAGMIN I; CHAIN:	A;			CYTOSOLIC	PHOSPHOLIPASE A2; CHAIN: A B:	PROTEIN KINASE C. ALPHA	TYPE; CHAIN: A;
SeqFold score																														
PMF score	0.19		0.33					0.29					0,	0.13						0.94			0.52				0.13		0.98	
Verify score	0		-0.01					-0.78					3	0.0						0.83			90.0				0.05		0.61	
PSI- BLAST	0.00051		0.0037					0.0007					20 000	3.40E-07						1.70E-30			1.70E-23				1.70E-15		3.40E-31	
End AA	102		268					65						871						1443			1442				1444		1443	
Start AA	51		223					59					.	8						1329			1325			-	1342		1329	
Chain ID	<																			V			A				A		A	
PDB ID	1.00	E+53	1rmd					lrmd					-	DE I						1a25			1 byn				1cjy		1dsy	•
SEQ NO:	579		579					879			•		02.5	6/6						280			280				08'S		580	

	т—	-		1	- 	· r		_	T		_		
PDB annotation	PHOSPHATIDYLSERINE, PROTEIN KINASE C	PHOSPHOINOSITIDE 3-KINASE GAMMA PTDINS-3-KINASE PI 10, PI3K,	PI 3K; PHOSPHOINOSITIDE 3-KINASE GAMMA, SECONDARY MESSENGER 2 GENERATION, PI3K, PI 3K,	PHOSPHOINOSITIDE 3-KINASE GAMMA PTDINS-3-KINASE P110, P13K; PHOSPHOINOSITIDE 3-KINASE	GENERATION, PIJK, PI JK HYDROLASE CALB DOMAIN; HYDROLASE, C2 DOMAIN, CALB	DOMAIN	ENDOCYTOSIS/EXOCYTOSIS C2- DOMAINS, C2B-DOMAIN, RABPHILIN, ENDOCYTOSIS/FXOCYTOSIS		SIGNALING PROTEIN GUANINE NUCLEOTIDE- BINDING PROTEIN 1; GBP, GTP HYDROLYSIS, GDP, GMP, INTERFERON INDUCED, DYNAMIN 2 RELATED, LARGE GTPASE FAMILY, SIGNALING PROTEIN	SIGNALING PROTEIN GBP, GTP HYDROLYSIS, GDP, GMP, INTERFERON INDUCED, DYNAMIN 2 RELATED, LARGE GTPASE FAMILY. GMPPNP, GPPNHP.		PHOSPHOTRANSFERASE PHOSPHOGLUCOMUTASE; 3PMG 6	PHOSPHOTRANSFERASE PHOSPHOTRANSFERASE PHOSPHOGLUCOMUTASE: 3PMG 6
Coumpound		PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC	SUBUNIT; CHAIN: A;	PHOSPHATIDYLNOSITOL 3- KINASE CATALYTIC SUBUNIT; CHAIN: A;	PHOSPHOLIPASE A2; CHAIN: NULL;	CALCIUM/PHOSPHOLIPID BINDING PROTEIN SYNAPTOTAGMIN I (FIRST	C2 DOMAIN) (CALB) IRSY 3 RABPHILIN 3-A; CHAIN: A;		INTERFERON-INDUCED GUANYLATE-BINDING PROTEIN 1; CHAIN: A;	INTERFERON-INDUCED GUANYLATE-BINDING PROTEIN I; CHAIN: A;		ALPHA-D-GLUCOSE-1,6- BISPHOSPHATE; 3PMG 4	ALPHA-D-GLUCOSE-1,6- BISPHOSPHATE; 3PMG 4
SeqFold score			-										129.26
PMF score		1202.08		-1.41	0.64	0.59	0.39		-0.2	-0.2		-0.2	
Verify score		0.15		0.15	-0.02	90.0	0.1		0.27	0.47		0.29	
PSI- BLAST		0		0	1.70E-15	8.50E-24	5.10E-29		0	0		0	0
End AA		1175		1175	1444	1442	1441		577	577		604	611
Start AA		214		297	1342	1321	1328		9	7		46	53
Chain ID		⋖		V			A		∢ .	∢		∢	A
PDB ID		le7u		le8y	Iriw	Irsy	3rpb	2		act		Jpm 8	3pm g
SEQ NO:		280		280	580	280	580	303	282	280	\dagger	980	286

PDB annotation	PHOSPHOGLUCOMUTASE 3PMG 13	TRANSCRIPTION REGULATION PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION	TRANSCRIPTION REGULATION PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION		LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	METAL BINDING PROTEIN RING FINGER PROTEIN MATI; RING FINGER (C3HC4)	METAL BINDING PROTEIN RING FINGER PROTEIN MAT1; RING FINGER (C3HC4)	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-BINDING PROTEIN, ZINC 2 FINGER	CONTRACTILE LIM DOMAIN, CRP, NMR, MUSCLE DIFFERENTIATION, CONTRACTILE	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15
Coumpound	CHAIN: A, B; 3PMG 5	TRANSCRIPTION FACTOR PML; CHAIN: NULL;	TRANSCRIPTION FACTOR PML; CHAIN: NULL;	VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRUCTURE) 1CHC 4	SIGNAL TRANSDUCTION PROTEIN CBL: CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA UBCH7; CHAIN: C;	CDK-ACTIVATING KINASE ASSEMBLY FACTOR MATI; CHAIN: A;	CDK-ACTIVATING KINASE ASSEMBLY FACTOR MATI; CHAIN: A;	QCRP2 (LIM1); CHAIN: NULL;	QCRP2 (LIMI); CHAIN: NULL;	CRP1; CHAIN: A;	AVIAN CYSTEINE RICH PROTEIN; ICTL 3
SeqFold score											
PMF score		0.25	0.11	0.98	6.0	0.48	0.09	0.62	0	0.18	0.16
Verify score		-0.73	-0.62	0.24	0.25	0.19	-0.44	-0.16	-0.1	-0.11	-0.11
PSI- BLAST		8.50E-06	8.40E-08	8.50E-15	1.70E-10	8.40E-08	1.20E-05	9.80E-17	1.40E-11	4.20E-11	1.10E-12
End AA		59	95	09	99	64	72	592	662	629	629
Start AA		16		16	81	17		536	597	597	969
Chain ID				_	4	¥	A			٧	
PDB ID		lbor .	1bor	1chc	Ifbv	1g25	1825	la7i	1a7i	168t	lcti
SEQ NO:		587	587	587	587	587	587	592	592	592	592

_		т—	т			т		_	т—									т-						
PDB annotation		SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL-	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL-	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM POMAIN PROTEIN	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)		ANTI-ONCOGENE CELL CYCLE, ANTI-ONCOGENE REPEAT ANK REPEAT	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA; GABPBETA1: COMPLEX	(TRANSCRIPTION	REGULATION/DNA), DNA-BINDING, 2	NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION	3 FACTOR	TUMOR SUPPRESSOR TUMOR	SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF	COMPLEX (KINASE/ANTI-	ONCOGENE) CDK6; P16INK4A, MTS1;	CYCLIN DEPENDENT KINASE,	NHIBITORY 2 PROTEIN COK NKA	CELL CYCLE, MULTIPLE TUMOR	SUPPRESSOR, 3 MTSI, COMPLEX	COMPLEX (INHIBITOR PROTEINKINASE) INHIBITOR
Coumpound		CYSTEINE AND GLYCINE- RICH PROTEIN CRP2; CHAIN:	CYSTEINE AND GLYCINE- RICH PROTEIN CRP2; CHAIN:	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NIII 1	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NIII.:	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C. F. G:			TUMOR SUPPRESSOR P16INK4A; CHAIN: NULL:	GA BINDING PROTEIN	ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1;	CHAIN: B; DNA; CHAIN: D, E;				P19INK4D CDK4/6	INHIBITOR; CHAIN: NULL;	CYCLIN-DEPENDENT	KINASE 6; CHAIN: A;	MULTIPLE TOMOR	correctly charter by			CYCLIN-DEPENDENT KINASE 6: CHAIN: A:
SeqFold	score																				-			
PMF	score	8.0	0.23	0.29	0.07	-0.19			0.72	0.1						0.76		0.82						0.84
Verify	score	0.43	-0.27	-0.42	0.15	0.16			0.1	0.35					9	0.28		0.02						0.23
-ISd	BLAS I	1.40E-16	1.10E-13	1.30E-19	4.20E-13	1.20E-10			0.00014	0.00014						0.00011		9.80E-05						0.00011
End	AA	592	661	609	663	395			370	369					c c	- ا در		367						367
Start	¥¥	535	595	537	296	367			315	315					215	515		315						315
Chain	a	∢ .	A			Ð	3			B								В						В
PDB	3	1cxx	1cxx	Imil	liml	lme y			1a5e	lawc					1240	0001		1bi7				· •		1blx
SEQ	N Ö	592	592	592	592	592			593	293					\$03	555		593			_			593

	,	_										Т	_				_		- 1			П											\neg
PDB annotation	PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	COMPLEX (INHIBITOR	PROTEIN/KINASE) INHIBITOR	PROTEIN, CYCLIN-DEPENDENT	KINASE, CELL CYCLE 2 CONTROL,	ALPHA/BETA, COMPLEX (INHIBITOR	PROTEIN/KINASE)	SIGNALING PROTEIN HELIX-TURN-	ווברול, האא ואוו אבו באו	METAL BINDING PROTEIN ZINC-	BINDING MODULE, ANKYRIN REPEATS. METAL BINDING PROTEIN	TRANSCRIPTION FACTOR P65; P50D;	TRANSCRIPTION FACTOR, IKB/NFKB	COMPLEX		COMPLEX (TRANSCRIPTION	REG/ANK REPEAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK	REPEAT), ANKYRIN 2 REPEAT HELIX	KINASE KINASE, SIGNAL	TRANSDUCTION, CALCIUM/CALMODULIN		-										
Coumpound	PI9INK4D; CHAIN: B;	CYCLIN-DEPENDENT	KINASE 6; CHAIN: A;	P19INK4D; CHAIN: B;				CYCLIN-DEPENDENT	CHAIN: A;	PYK2-ASSOCIATED	PROTEIN BETA; CHAIN: A;	NF-KAPPA-B P65 SUBUNIT;	CHAIN: A; NF-KAPPA-B P50D	SUBUNIT; CHAIN: C; I-	KAPPA-B-ALPHA; CHAIN: D;	NF-KAPPA-B P65; CHAIN: A,	C; NF-KAPPA-B P50; CHAIN:	B, D; I-KAPPA-B-ALPHA;	CHAIN: E, F;	CALCIUM/CALMODULIN-	DEPENDENT PROTEIN	TRANSFERASE(PHOSPHOTR	ANSFERASE) \$C-/AMP\$-	DEPENDENT PROTEIN	KINASE (E.C.2.7.1.37)	(\$C/APK\$) 1APM 3	(CATALYTIC SUBUNIT)	ALPHA ISOENZYME	MOIANI WIIH SEK 139	IATM 4 NET LACED BI ALA	THE PEPTIDE 1APM 5	INHIBITOR PKI(5-24) AND	THE DETERGENT MEGA-8
SeqFold score																																	
PMF score		0.76						0.21		0.76		0.98				0.59				1		_											
Verify score		0.42						-0.02		0.4		0.31				0.25				0.15		0.23	_										
PSI- BLAST		0.00011						1.40E-05		8.40E-05		0.00014				2.80E-06				5.10E-90		0											
End		370						370		370		370				381				302		318											
Start AA		315	_					315		315		315				315				19		25		_									
Chain ID		B						4		A		Ω				臼						E											
PDB CI		18lx						149s		Idcq		Likn				lnfi				1a06		lap	E										
SEQ ID NO:		593						593		593		593				593				594		594									<u>.</u>		

PDB annotation											PROTEIN KINASE CDK2; PROTEIN	KINASE, CELL CYCLE,	PHOSPHOKYLATION,	MITOSIS, INHIBITION	COMPLEX (INHIBITOR	PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT	KINASE, CELL CYCLE 2 CONTROL,	ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)												
Coumpound		1APM 6	TRANSFERASE(PHOSPHOTR ANSFERASE) \$C-\AMP\$- DEPENDENT PROTEIN	KINASE (E.C.2.7.1.37)	(CATALYTIC SUBUNIT)	ALPHA ISOENZYME	IAPM 4 REPLACED BY ALA	(/SI39A\$) COMPLEX WITH	INHIBITOR PKI(5-24) AND	THE DETERGENT MEGA-8 1APM 6	CYCLIN-DEPENDENT	PROTEIN KINASE 2; CHAIN:	NOEL;		CYCLIN-DEPENDENT	KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;			PHOSPHOTRANSFERASE	CAMP-DEPENDENT	PROTEIN KINASE	3 (E.C.2.7.1.37) 1CMK 4	PHOSPHOTRANSFERASE	CAMP-DEPENDENT	CATALYTIC SUBUNIT ICMK	3 (E.C.2.7.1.37) ICMK 4	TRANSFERASE(PHOSPHOTR	DEPENDENT PROTEIN	KINASE (E.C.2.7.1.37) (CAPK)	ICTP 3 (CATALYTIC
SeqFold	score		125.65								120.88				127.11				127.4								127.61			
PMF	score																•						I							
Verify	score						•		· · · · · ·														0.33		·					-
PSI.	DLA31		0								1.40E-60				7.00E-56				0		•		0				0			
End	₹		325								309				325				328				318				328			1
Start	4		<u>~</u>				·				27				22								25				7			
Chain	3		ज												∢			ı	ı			,	n)				ı)			
PDB			lap m								l ad i	-			X I Q I			,	LCH 7	 4	•	\dashv	음 	۷			d d			
SEQ	ö	3	594								594			3	394			3	394			3	994			3	44C			

.

PDB annotation					ENDOCYTOSIS/EXOCYTOSIS NSECI;	PROTEIN-PROTEIN COMPLEX, MULTI-SUBUNIT	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTA GMIN ASSOCIATED 35	KDA PROTEIN, P35A, THREE HELIX BUNDLE	ENDOCYTOSIS/EXOCYTOSIS	SYNAPTOTAGMIN ASSOCIATED 35	KDA PROTEIN, P35A, THREE HELIX BUNDLE	TRANSFERASE KINASE DOMAIN,	AUTOINHIBITORY FRAGMENT,	HOMODIMER			TRANSFERASE KINASE DOMAIN,	AUTOINHIBITORY FRAGMENT,	Nama		PHOSPHOTRANSFERASE FGFRIK,	FIBROBLAST GROWTH FACTOR	KECEPIOK I, IKANSFEKASE,	TYROSINE-PROTEIN KINASE, ATP- BINDING 2 PHOSPHORYI ATION	RECEPTOR. PHOSPHOTRANSFERASE	PHOSPHOTRANSFERASE FGFR1K,	FIBROBLAST GROWTH FACTOR	RECEPTOR 1; TRANSFERASE,	I TROSINE-PROTEIN KINASE, ATP- BINDING, 2 PHOSPHOR YLATION,
Coumpound	SUBUNIT) 1CTP 4	TRANSFERASE(PHOSPHOTR ANSFERASE) CAMP- DEPENDENT PROTEIN	KINASE (E.C.2.7.1.37) (CAPK)	SUBUNIT) ICTP 4	SYNTAXIN BINDING	PROTEIN I; CHAIN: A; SYNTAXIN IA; CHAIN: B;	SYNTAXIN-1A; CHAIN: A, B,	ŝ	SYNTAXIN-1A; CHAIN: A, B,	ű		SERINE/THREONINE-	PROTEIN KINASE PAK-	ALPHA; CHAIN: A, B;	PROTFIN KINASE PAK-	ALPHA; CHAIN: C, D;	SERINE/THREONINE-	PROTEIN KINASE PAK- AT PHA: CHAIN: A B:	SERINE/THREONINE-	PROTEIN KINASE PAK- ALPHA; CHAIN: C. D:	FGF RECEPTOR 1; CHAIN: A,	B;				FGF RECEPTOR 1; CHAIN: A,	B;		
SeqFold score			-																		125.79	-				130.09			
PMF		. 1	-		-0.11		-0.19		-0.18			1						1202.08							•				
Verify score		0.25			90.0		0.1		0.16			0.5			_		0.43		·						_				
PSI- BLAST		0			4.20E-12		1.40E-08		2.80E-09		-	5.60E-86	- -				1.20E-67	-			5.10E-34					1.20E-40			
End AA		318			009		592		617			302					300				287			_		586			
Start AA		25			442		452		486			14					4				20					11			
Chain ID		ற			В		∢		A			၁					ບ				A					В			
PDB ID		lctp			1dn1		lez3	,	lez3			1f3m					1f3m				1 fgk					1fgk			
SEQ NO:		594			594		594		594			594					594				594					594			

	RASE	NINE G, 2	NINE 3, 2						NINE- NG,	NINE- NG,	NINE- NG, NG, MAP 2,	NINE- NG, NINE- NG,
PDB annotation	RECEPTOR, PHOSPHOTRANSFERASE	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORY ATION,	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORY, ATIOM	KINASE KINASE, TWITCHIN, INTRASTERIC REGILLATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE; TRANSFERASE, MAP KINASE	INEATED CONDIE DOOTEN	SERINE/THREONINE-PROTEIN KINASE, 2 P38	SERINETHREONINE-PROTEIN KINASE, 2 P38 KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINE/THREONINE- PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	SERINE THREONINE-PROTEIN KINASE, 2 P38 KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINE/THREONINE- PROTEIN, 2 KINASE, ATP-BINDING, KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINE/THREONINE- PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	SERINETHREONINE-PROTEIN KINASE, 2 P38 KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINETHREONINE- PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINE/THREONINE- PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE, MAP 2, ERKZ; TRANSFERASE, SERINE/THREONINE-PROTEIN KINASE, MAP KINASE, 2 ERKZ	INETTHREONINE-PROTEIN ASE, 2 P38 ASE RABBIT MUSCLE ISPHORYLASE KINASE; COGEN METABOLISM; NSFERASE, SERINE/THREO TEIN, 2 KINASE, ATP-BINDI MODULIN-BINDING ASE RABBIT MUSCLE ISPHORYLASE KINASE; COGEN METABOLISM, NSFERASE, SERINE/THREO TEIN, 2 KINASE, ATP-BINDI MODULIN-BINDING NSFERASE MITOGEN IVATED PROTEIN KINASE, 2; TRANSFERASE, INE/THREONINE-PROTEIN INE/THREONINE-PROTEIN ASE, MAP KINASE, 2 ERK2
	REC	PRO TRA PRO CEL	PRO PRO CELI	N N	N K	TRA ACT TRA		SEK	KIN/ KIN/ PHO GLY TRA TRA CAL	KINA KINA KINA PHO CAL KINA PHO GLY PRO CAL CAL	KINA KINA PHO GLY TRA PHO GLY TRA TRA TRA TRA TRA TRA KINA	KINA KINA KINA PHO GLY TRA FHO GLY TRA TRA ACT ERK SERI
Coumpound		HUMAN CYCLIN- DEPENDENT KINASE 2; CHAIN: NULL;	HUMAN CYCLIN- DEPENDENT KINASE 2; CHAIN: NULL;	TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: A, B;	MAP KINASE P38; CHAIN: NULL;			PHOSPHORYLASE KINASE; CHAIN: NULL;	PHOSPHORYLASE KINASE; CHAIN: NULL; PHOSPHORYLASE KINASE; CHAIN: NULL;	PHOSPHORYLASE KINASE; CHAIN: NULL; PHOSPHORYLASE KINASE; CHAIN: NULL; EXTRACELLULAR REGULATED KINASE 2; CHAIN: NULL;	PHOSPHORYLASE KINASE; CHAIN: NULL; PHOSPHORYLASE KINASE; CHAIN: NULL; EXTRACELLULAR REGULATED KINASE 2; CHAIN: NULL;
SeqFold score			137.2			130.84			127.79	127.79	127.79	122.57
PMF score		~			1					-	_	_
Verify score		0.48		0.5	0.48					0.53	0.53	0.53
PSI- BLAST		6.80E-62	6.80E-62	3.40E-71	1.70E-71	1.20E-51			6.80E-88	6.80E-88 6.80E-88	6.80E-88 6.80E-88 8.50E-50	6.80E-88 6.80E-88 8.50E-50
End AA		284	312	285	284	356			285	285	285	285
Start AA		25	27	20	20	9			61	24	19 24 10	19 24 10
Chain ID					A							
PDB ID		Ihcl	1hcl	Ikoa	j	1p38			1phk	lphk 1phk	lphk 1phk 3erk	1phk 3erk
SEQ ID NO:		594	594	594	594	594			594	594	594 594	594 594

Coumpound PDB annotation	ASE TRANSFERASE TRANSFERASE, SUBUNIT; SERINE/THREONINE-PROTEIN KINASE, CASEIN KINASE, 2 SER/THR KINASE	SE(PHOSPHOTR SC-/AMP\$- PROTEIN 2.7.1.37) PM 3 SUBUNIT) VZYME TH SER 139 ACED BY ALA WPLEX WITH 1APM 5 CI(5-24) AND ENT MEGA-8	ENDENT ASE 2; CHAIN: KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITOSIS, INHIBITION		COMPLEX (NINASE/INHIBITOR) HEADER HELIX		NASE;
score	PROTEIN KINASE CK2/ALPHA-SUBUNIT; CHAIN: NULL;	TRANSFERASE (PHOSPHOTR ANSFERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA (/S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN-DEPENDENT KINASE INHIBITOR; CHAIN: B, D;		CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B; C-TERMINAL SRC KINASE; CHAIN: A;
PMF score	0.22	0.49	0.76	0.05		0.3	0.3
Verify score	-0.44	-0.03	0.03	90.0-	_	0.5	0.2
PSI- BLAST	4.20E-07	3.40E-100	8.50E-49	8.50E-32		1.70E-35	1.70E-35 3.40E-30
End	351	434	399	397		398	398
Start AA	234	122	146	149		149	149
Chain ID		ш		¥		∀	<
PDB CI	la6o	m m	laqi	15:8	-	16lx	16lx 1byg
SEQ ID	596	965	965	969		965	596 596

	-	$\overline{}$								_									_									_		
PDB annotation	KINASE ICKI 18	TRANSFERASE STRESS-ACTIVATED PROTEIN KINASE-3, ERK6, ERK5; P38-	GAMMA, GAMMA, PHOSPHORYLATION, MAP KINASE							TRANSFERASE KINASE DOMAIN,	AUTOINHIBITORY FRAGMENT, HOMODIMER			PHOSPHOTRANSFERASE EGER 1K	FIBROBLAST GROWTH FACTOR	RECEPTOR 1; TRANSFERASE,	TYROSINE-PROTEIN KINASE, ATP-	BINDING, 2 PHOSPHORYLATION,	RECEPTOR, PHOSPHOTRANSFERASE	PHOSPHOTRANSFERASE FGFRIK,	FIBROBLASI GROWIH FACIOR PECEPTOD 1: TP ANICEED ACE	TVPOSINE DECIPIENT VELVER ATE	BINDING 2 BEOCRETORY ATION	RECEPTOR PHOSPHOTER ANSFERAGE	TRANSFERASE P150, C-ABL; KINASE,	KINASE INHIBITOR, STI-571,	ACTIVATION LOOP	PROTEIN KINASE CDK2;	TRANSFERASE, SERINE/THREONINE	PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION,
Coumpound	ICKI 6 CHAIN: A, B; ICKI 7	PHOSPHORYLATED MAP KINASE P38-GAMMA;	CHAIN: A, B;	PHOSPHOTRANSFERASE CAMP-DEPENDENT	CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	TRANSFERASE(PHOSPHOTR ANSFERASE) CAMP.	DEPENDENT PROTEIN	KINASE (E.C.2.7.1.37) (CAPK)	SUBUNIT) ICTP 4	SERINE/THREONINE-	PROTEIN KINASE PAK- ALPHA: CHAIN: A B:	SERINE/THREONINE.	PROTEIN KINASE PAK-	FGF RECEPTOR 1: CHAIN: A	B;					FGF RECEPTOR I; CHAIN: A, B.	ĵ				PROTO-ONCOGENE	TYROSINE-PROTEIN KINASE	ABL; CHAIN: A, B;	HUMAN CYCLIN-	DEPENDENT KINASE 2;	CHAIN: NOLL;
SeqFold score																														
PMF score		60:0		0.37		0.48				0.89				0.22					7,0	0.33					0.51			0.7		
Verify score		0.32		-0.11		0.18				0.35				0.14					100	?					0.12			0.26		
PSI- BLAST		1.50E-31		0		6.80E-97				6.80E-46				5.10E-31					7 005 00	, 2001-00					4.20E-06			1.70E-47		
End AA		396		434		434				397	_			344	_				277	4					372		000	399	•	
Start AA		163		122		122	_			148				147					206	3					192			0 4 6		
Chain ID		⋖		ப		ш				ပ				В					a.)					⋖					
PDB ID		 & &		E A		Ictp				If3m	_			l fgk					1 fok						1fbn		1041			
SEQ ID NO:		296) ci	965		969				965				969					965)					965		202	066		

PDB annotation	MITOSIS, PHOSPHORYLATION	SERINE/THREONINE-PROTEIN KINASE CSBP, RK, P38; PROTEIN SER/THR-KINASE,	SERINE/THREONINE-PROTEIN KINASE	TRANSFERASE JNK3; TRANSFERASE,	JNK3 MAP KINASE, SERINE/THREONINE PROTEIN 2 KINASE	TRANSFERASE INK3; TRANSFERASE, INK3 MAP KINASF	SERINE/THREONINE PROTEIN 2 KINASE	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	TRANSFERASE MITOGEN	ACTIVATED PROTEIN KINASE; TRANSFERASE MAP KINASE;	SERINE/THREONINE-PROTEIN	MINAGE, 4 F30	KINASE KABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM.	TRANSFERASE, SERINE/THREONINE-	PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	SERINE KINASE SERINE KINASE, TITIN, MUSCLE, AUTOINHIBITION	TRANSFERASE AAC; AMINOGLYCOSIDE 6'-N- ACETYLTRANSFERASE, ANTIBIOTIC 2 DESISTANCE ACETYL COENTYME	A A A SISTANCE, ACET TE COENCIME A	HYDROLASE ERA, GTPASE, RNA-	BINDING, NAS-LINE, HIDROLASE
Coumpound		P38 MAP KINASE; CHAIN: NULL;		C-JUN N-TERMINAL	KINASE; CHAIN: NULL;	C-IUN N-TERMINAL KINASE: CHAIN: NI II I		TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: A, B;	MAP KINASE P38; CHAIN:	NULL;		TO TAKE TO THE GOLDON CLASS	PHOSPHORYLASE KINASE; CHAIN: NULL;			TITIN; CHAIN: A, B;	AMINOGLYCOSIDE NG- ACETYLTRANSFERASE TYPE I; CHAIN: A;		GTP-BINDING PROTEIN ERA;	כוואווא. א, ש,
SeqFold score																					
PMF score		0.65		0.74		0.51		99.0	9.76	0.55			000	0.88			0.92	0.86		0.07	
Verify score		0.1		0		-0.12		0.15	0.31	0.09			600	77:0			0.16	0.38		-0.81	
PSI- BLAST		1.40E-32		3.40E-34		7.00E-07		1.70E-53	6.80E-54	3.40E-36			1 300	1.705-60			3.40E-41	0.0065		0.00039	
End		349		346		351		400	398	349			202	760			397	145		171	
Start AA		147		146		258	ļ	146	141	147			177	/ +			143	12		146	
Chain									A								A	⋖		A	
PDB ID		lian		ljnk		Ji,		1koa	1kob	1p38			14/2	Alliq.			1tki	1587		lega	
SEQ NO:		296		965		966		296	596	965			202	060			596	601		602	

ChainStartEndPSI-VerifyPMFIDAAAABLASTscorescore	End PSI- Verify AA BLAST score	Verify score	<u> </u>	PMF score		SeqFold score	Coumpound	PDB annotation
560 699 0.0039 -0.14 0.07	699 0.0039 -0.14	-0.14		0.07			SYNTAXIN-1A; CHAIN: A, B, C;	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX RINDI E
25 192 1.30E-20 0.43 1	1.30E-20	E-20	0.43	_	1		PHOSPHATIDYLINOSITOL 3-KINASE; CHAIN: A, B;	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3- KINASE. SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TRANSPLICTION
25 192 1.30E-20 0.78 1	1.30E-20	3-20	0.78 1	-			PHOSPHATIDYLINOSITOL 3- KINASE; CHAIN: A, B;	PHOSPHOTRANSFERASE RHOGAP DOMAIN; PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3- KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TP ANSDICTION
25 217 2.60E-40 0.77 1	2.60E-40	3-40	0.77 1	-			PHOSPHATIDYLNOSITOL 3-KINASE; CHAIN: A, B;	PHOSPHOTRANSFERASE RHOGAP DOMAIN, PHOSPHOTRANSFERASE, TPASE ACTIVATING PROTEIN, GAP, CDC42, 2 PHOSPHOINOSITIDE 3- KINASE, SH3 DOMAIN, SH2 DOMAIN, 3 SIGNAL TP ANSPIRED.
212 1.80E-30	1.80E-30	7-30		17	=	112.2	RHOGAP; CHAIN: NULL;	G-PROTEIN CDC42 GTPASE-ACTIVATING PROTEIN; G-PROTEIN, G-PROTEIN, G-PROTEIN, GAP, SIGNAL-TRANSDICTION
189	1.80E-30		0.58 1	1			RHOGAP; CHAIN: NULL;	G-PROTEIN CDC42 GTPASE. ACTIVATING PROTEIN; G-PROTEIN, GAP. SIGNAL-TRANSDUCTION
15 212 9.10E-48	9.10E-48				7	118.67	P50-RHOGAP; CHAIN: A; TRANSFORMING PROTEIN RHOA; CHAIN: B;	COMPLEX(GTPASE ACTIVATN/PROTO-ONCOGENE) GTPASE-ACTIVATING PROTEIN RHOGAP; COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE 2 TRANSITION STATE GAD
16 201 1.10E-30 0.54 1	1.10E-30		0.54		İ		P50-RHOGAP; CHAIN: A; TRANSFORMING PROTEIN RHOA; CHAIN: B;	COMPLEX(GTPASE ACTIVATING PROTEIN RHOGAP; COMPLEX (GTPASE ACTIVATION PROTEIN ACTIVATION/PROTO-ONCOGENE),
16 212 9.10E-48 0.9 1	9.10E-48	48	0.9				P50-RHOGAP; CHAIN: A;	COMPLEX(GTPASE

	ENE) TEIN SE OGENE), ATE, GAP	ON COTEIN; ON, TAL	COPPER-	FOR JCLEAR EAR TERIC	IADILLO	PEPTIDE)	/PEPTIDE) /PEPTIDE)	./PEPTIDE) SYK, .M
PDB annotation	ACTIVATN/PROTO-ONCOGENE) GTPASE-ACTIVATING PROTEIN RHOGAP; COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP	MERCURY DETOXIFICATION MERCURIC TRANSPORT PROTEIN; MERCURY DETOXIFICATION, PERJPLASMIC, HEAVY METAL TRANSPORT, 2 ALPHA-BETA SANDWICH	HYDROLASE COPPER- TRANSPORTING ATPASE, COPPER- BINDING DOMAIN, HYDROLASE	NUCLEAR IMPORT RECEPTOR KARYOPHERIN ALPHA; NUCLEAR IMPORT RECEPTOR, NUCLEAR LOCALIZATION SIGNAL, 2 ARMADILLO REPEATS, AUTOINHIBITION, INTRASTERIC REGULATION	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON	COMPLEX (TRANSFERASE/PEPTIDE) COMPLEX (TRANSFERASE/PEPTIDE)	COMPLEX (TRANSFERASE/PEPTIDE) COMPLEX (TRANSFERASE/PEPTIDE)	COMPLEX (TRANSFERASE/PEPTIDE) ITAM PEPTIDE; COMPLEX (TRANSFERASE/PEPTIDE), SYK, KINASE, SH2 DOMAIN, ITAM
Coumpound	TRANSFORMING PROTEIN RHOA; CHAIN: B;	MERP; CHAIN: NULL;	MENKES COPPER- TRANSPORTING ATPASE; CHAIN: NULL;	ча; снапу:	BETA-CATENIN; CHAIN: NULL;	C-SRC TYROSINE KINASE; CHAIN: A, B; ACE-FORMYL PHOSPHOTYR-GLU-(N,N- DIPENTYL AMINE); CHAIN: C, D:	C-SRC TYROSINE KINASE; CHAIN: A, B; ACE-FORMYL PHOSPHOTYR-GLU-(N,N- DIPENTYL AMINE): CHAIN: C. D:	SYK KINASE; CHAIN: A, C, E, G, I, K; T-CELL SURFACE GLYCOPROTEIN CD3 EPSILON CHAIN; CHAIN: B, D, F, H, I, L;
SeqFold score						172.37		
PMF score		_	_	0.46	96.0		-	<u>-</u>
Verify score		0.86	0.81	-0.02	0.42		1.07	0.57
PSI- BLAST		0.00026	0.0012	1,20E-06	0.00026	6.50E-41	6.50E-41	7.80E-33
End		203	203	91	148	255	255	255
Start AA		143	143	21	16	150	150	126
Chain ID				¥		<	K	⋖
PDB DD		lafi	law0	lial	3bct	1a09	1a09	1881
SEQ NO:		909	909	909	909	607	607	607

					
PDB annotation	COMPLEX (TRANSFERASE/PEPTIDE) ITAM PEPTIDE; COMPLEX (TRANSFERASE/PEPTIDE), SYK, KINASE, SH2 DOMAIN, ITAM			PROTEIN KINASE CDK2; PROTEIN KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITORIS INHIBITION	COMPLEX (ISOMERASE/PROTEIN KINASE) FKBP12; SERINE/THREONINE-PROTEIN
Coumpound	SYK KINASE; CHAIN: A, C, E, G, I, K; T-CELL SURFACE GLYCOPROTEIN CD3 EPSILON CHAIN; CHAIN: B, D, F, H, 1, I.	TRANSFERASE (PHOSPHOTR ANSFERASE) \$C-/AMP\$- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA (/S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	TRANSFERASE(PHOSPHOTR ANSFERASE) \$C-/AMP\$- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA (/S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PK!(5-24) AND THE DETERGENT MEGA-8	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;	FK506-BINDING PROTEIN; CHAIN: A, C, E, G; TGF-B SUPERFAMILY RECEPTOR
SeqFold score		97.15			102.06
PMF score	6.0				
Verify score	0.26		0.81	0.34	
PSI- BLAST	1.30E-46	1.30E-35	1.30E-35	1.30E-33	2.60E-74
End	372	542	515	529	533
Start AA	151	255	282	281	241
Chain ID	∢	ш	ω		В
PDB ID	1a81			 -	1b6c I
SEQ ID NO:	607	607	607		607

PDB annotation	KINASE RECEPTOR R4; COMPLEX (ISOMERASE/PROTEIN KINASE), RECEPTOR 2 SERINE/THREONINE KINASE	COMPLEX (ISOMERASE/PROTEIN KINASE) FKBP12; SERINE/THREONINE-PROTEIN KINASE RECEPTOR R4; COMPLEX (ISOMERASE/PROTEIN KINASE), RECEPTOR 2 SERINE/THREONINE KINASE	V-SRC SH2 DOMAIN SRC SH2; V-SRC SH2 DOMAIN, PHOSPHOTYROSINE RECOGNITION DOMAIN, PP60 2 SRC SH2 DOMAIN	V-SRC SH2 DOMAIN SRC SH2; V-SRC SH2 DOMAIN, PHOSPHOTYROSINE RECOGNITION DOMAIN, PP60 2 SRC SH2 DOMAIN	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)		
Coumpound	TYPE I; CHAIN: B, D, F, H;	FK506-BINDING PROTEIN; CHAIN: A, C, E, G; TGF-B SUPERFAMILY RECEPTOR TYPE I; CHAIN: B, D, F, H;	PP60 V-SRC TYROSINE KINASE TRANSFORMING PROTEIN; CHAIN: NULL;	PP60 V-SRC TYROSINE KINASE TRANSFORMING PROTEIN; CHAIN: NULL;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	PHOSPHOTRANSFERASE CAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT 1CMK 3 (E.C.2.7.1.37) 1CMK 4	TRANSFERASE(PHOSPHOTR ANSFERASE) CAMP- DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (CAPK) ICTP 3 (CATALYTIC
SeqFold score				165.48		99.54		99.49
PMF		1	_					
Verify score		0.51	1.13		99.0		0.7	
PSI- BLAST		2.60E-74	2.60E-40	2.60E-40	1.20E-34	1.20E-34	9.10E-35	6.50E-35
End AA		531	259	263	529	538	515	542
Start	-	256	155	155	269	270	282	227
Chain ID	:	В			A	A	ជ	ជា
PDB TD		1b6c	16kl	16kl	1blx	1bix	lcm k	lctp
SEQ NO:		209	607	607	607	209	607	209

		Т	T				Т					Т					1		_		\neg	_			_				_								_
PDB annotation							TRANSFERASE KINASE DOMAIN	AUTOINHIBITORY FRAGMENT,	HOMODIMER			PROTEIN KINASE CDK2;	TRANSFERASE, SERINE/THREONINE	PROTEIN KINASE, ATP-BINDING, 2	CELL CYCLE, CELL DIVISION,	MITOSIS, PHOSPHORYLATION	PROTEIN KINASE CDK2;	TRANSFERASE, SERINE/THREONINE	PROTEIN KINASE, ATP-BINDING, 2	CELL CYCLE, CELL DIVISION,	MITOSIS, PHOSPHORY LATION	TRANSFERASE JNK3; TRANSFERASE,	JNK3 MAP KINASE,	SERINE/THREONINE PROTEIN 2 KINASE	COMPLEX (TRANSFER A SE/DEPTIDE)	SRC. SH3 DOMAIN LIGANDS NON-	PEPTIDE ELEMENTS, 2 COMPLEX	(TRANSFERASE/PEPTIDE)	TRANSFERASE MITOGEN	ACTIVATED PROTEIN KINASE;	TRANSFERASE, MAP KINASE,	SERINE/THREONINE-PROTEIN	KINASE, 2 P38				
Coumpound		SUBUNIT) 1CTP 4	TRANSFERASE(PHOSPHOTR	DEPENDENT PROTEIN	KINASE (E.C.2.7.1.37) (CAPK)	ICTP 3 (CATALYTIC SUBUNIT) ICTP 4	SERINE/THREONINE-	PROTEIN KINASE PAK-	ALPHA; CHAIN: A, B;	SERINE/THREONINE-	PROTEIN KINASE PAK- ALPHA; CHAIN: C, D;	HUMAN CYCLIN-	DEPENDENT KINASE 2;	CHAIN: NULL;			HUMAN CYCLIN-	DEPENDENT KINASE 2;	CHAIN: NOLL;		O HOLD THOUSAND	C-JUN N-JEKMINAL	NINASE; CHAIN: NOLL;		C-SRC; CHAIN: C: NL1 (MN7-	MN2-MN1-PLPPLP); CHAIN:	ż		MAP KINASE P38; CHAIN:	NULL;			DITOCOLI CAMPACTION CONTRACTIO	PHOSPHOTRANSFERASE V- SRC TYROSINE KINASE	TRANSFORMING PROTEIN	(PHOSPHOTYROSINE 1SHA 3	RECOGNITION DOMAIN
SeqFold	score											111.67							_							_	_		-				02 371	103.79			
PMF	3000		-				1										_								_				_								
Verify	3000		0.55				0.71										0.43	 .			90	 0:			0.13				0.44								
PSI- BY A ST	CUTA		6.50E-35				1.30E-42					1.30E-37				1000	1.30E-37				1 30F-33				2.60E-19				2.60E-32	,			9 10F-40	21.70			
End	{		515				519					538				3	670				538	200			149				/10				256	3			
Start			282				272					273				196	107				269	ì			88			9,0	607				154				
Chain			ננ				၁												•														A				
PDB ID			<u>ਰ</u>				1f3m					The				15.01	3				link			-	lnlo			1230	ocd				1sha /				1
SEQ	NO.	į)				607		_			607				407	3				209				607			407	<u> </u>				209				

					,	,			
PDB annotation			CYTOSKELETON CAPPING PROTEIN, CALCIUM-BINDING, DUPLICATION, REPEAT, 2 SH3 DOMAIN, CYTOSKELETON	CYTOSKELETON CAPPING PROTEIN, CALCIUM-BINDING, DUPLICATION, REPEAT, 2 SH3 DOMAIN, CYTOSKELETON	TRANSFERASE TRANSFERASE, TYROSINE KINASE, SH3, SH2, ONCOPROTEIN	TRANSFERASE TRANSFERASE, TYROSINE KINASE, SH3, SH2, ONCOPROTEIN	TYROSINE PHOSPHATASE SYP, SHPTP-2; TYROSINE PHOSPHATASE, INSULIN SIGNALING, SH2 PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC
Coumpound	SH2) (E.C.2.7.1.112) COMPLEX WITH 1SHA 4 PHOSPHOPEPTIDE A (TYR-VAL-PRO-MET-LEU, PHOSPHORYLATED TYR) 1SHA 5	PHOSPHOTRANSFERASE V-SRC TYROSINE KINASE TRANSFORMING PROTEIN (PHOSPHOTYROSINE 1SHA 3 RECOGNITION DOMAIN SH2) (E.C.2.7.1.112) COMPLEX WITH 1SHA 4 PHOSPHOPEPTIDE A (TYR-VAL-PRO-MET-LEU, PHOSPHORYLATED TYR) 1SHA 5	ALPHA-SPECTRIN; CHAIN: NULL;	ALPHA-SPECTRIN; CHAIN: NULL;	ABL TYROSINE KINASE; CHAIN: NULL;	ABL TÝROSINE KINASE; CHAIN: NULL;	SHP-2; CHAIN: A, B;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX
SeqFold score					121.36				
PMF score		_	0.89	0.01			0.54	0.31	0.74
Verify score		0.97	-0.02	-0.25		0.64	-0.13	-0.13	0
PSI- BLAST		9.10E-40	1.30E-14	3.90E-09	9.10E-34	9.10E-34	6.50E-59	9.10E-21	1.30E-32
End AA		256	166	130	255	255	425	284	290
Start AA		154	100	75	79	80	75	203	509
Chain ID		¥					V	V V	A
PDB ID		Isha	Ituc	Itud	2abi	2abl	2shp	laih	laih
SEQ NO:		607	607	607	607	607	607	809	809

rub annotation	VDING PROTEIN															COMPLEX (ZINC FINGER/DNA) ZINC	FINGER/DNA) ZINC	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC	FINGER/DNA) ZINC 1-DNA ROTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC	FINGER/DNA) ZINC 1-DNA AOTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC 1-DNA ROTEIN DESIGN, 2	FINGER/DNA) ZINC 1-DNA AOTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC FINGER/DNA AOTEIN DESIGN, 2 FINGER/DNA	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA TURE, COMPLEX (A) FINGER/DNA) ZINC FINGER/DNA	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC FINGER/DNA)	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC FINGER/DNA ZINC	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC FINGER/DNA ZINC FIN	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC FINGER/DNA ZINC FIN	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX (A) FINGER/DNA) ZINC FINGER/DNA	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA) ZINC FINGER/DNA	FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA ROTEIN DESIGN, 2	FINGER/DNA) ZINC I-DNA OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX COTEIN DESIGN, 2	FINGER/DNA) ZINC I-DNA OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 FIURE, COMPLEX A) FINGER/DNA	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC	FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA FINGER/DNA) ZINC I-DNA	FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA (OTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA COTEIN DESIGN, 2 TURE, COMPLEX A) FINGER/DNA) ZINC I-DNA COTEIN DESIGN, 2 FINGER/DNA) ZINC I-DNA
E GD	FINGER, DNA-BINDING PROTEIN																																					
	OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	TRANSCRIPTION REGULATION YEAST	TRANSCRIPTION FACTOR	**> * * * * * * * * * * * * * * * * * *	ADR I (RESIDUES 102 - 130)	ADRI (RESIDUES 102 - 130) 1ARD 3 (AMINO TERMINAL	ADRI (RESIDUES 102 - 130) 1ARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN)	ADRI (RESIDUES 102 - 130) 1ARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES)	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) 1ARD 5	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HIMAN ENHANCEP	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER-	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 IBBO	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 IBBO 3 REPLACED BY ABU	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 IBBO 3 REPLACED BY ABU (C11ABU) (NMR, 60	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 IBBO 3 REPLACED BY ABU (C11ABU) (NMR, 60	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 18BO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) 1ARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) 1ARD 4 (ADRIB) 1ARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) 1ARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) 1ARD 4 (ADRIB) 1ARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) 1ARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) 1ARD 4 (ADR1B) 1ARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 IBBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 IBBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) IBBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 IBBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) IBBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 IBBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) IBBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) 1ARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	ADRI (RESIDUES 102 - 130) IARD 3 (AMINO TERMINAL ZINC FINGER DOMAIN) (NMR, 10 STRUCTURES) IARD 4 (ADRIB) IARD 5 DNA-BINDING PROTEIN HUMAN ENHANCER- BINDING PROTEIN MBP-1 MUTANT WITH CYS 11 1BBO 3 REPLACED BY ABU (C11ABU) (NMR, 60 STRUCTURES) 1BBO 4 DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G; CONSENSUS ZINC FINGER PROTEIN; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER
score				_	_																																	
score		0.05								0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.87
score		-0.34					_			-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16 0.32 0.89	0.16 0.32 0.32 0.89	0.16 0.32 0.32 0.67	0.16 0.32 0.39 0.67	0.16 0.32 0.39 0.67	0.16 0.32 0.89 0.67	-0.3 0.16 0.89 0.67	0.16 0.32 0.32 0.67	0.16 0.16 0.89 0.67
BLAST		6.50E-05								2.60E-16	2.60E-16	2.60E-16	2.60E-16	2.60E-16	2.60E-16	2.60E-16	2.60E-16	2.60E-16 1.30E-22	2.60E-16 1.30E-22	2.60E-16 1.30E-22	2.60E-16 1.30E-22 6.50E-33	2.60E-16 1.30E-22 6.50E-33	2.60E-16 1.30E-22 6.50E-33	2.60E-16 1.30E-22 6.50E-33	2.60E-16 1.30E-22 6.50E-33	2.60E-16 1.30E-22 6.50E-33	2.60E-16 1.30E-22 6.50E-33	2.60E-16 1.30E-22 6.50E-33	2.60E-16 1.30E-22 6.50E-33	2.60E-16 1.30E-22 6.50E-33 5.20E-42	2.60E-16 1.30E-22 6.50E-33 5.20E-42	2.60E-16 1.30E-22 6.50E-33 5.20E-44	2.60E-16 1.30E-22 6.50E-33 5.20E-44	2.60E-16 1.30E-22 6.50E-33 5.20E-44	2.60E-16 1.30E-22 6.50E-33 5.20E-44	2.60E-16 1.30E-22 6.50E-33 5.20E-44 5.20E-47	2.60E-16 1.30E-22 6.50E-33 5.20E-44 5.20E-44	2.60E-16 1.30E-22 6.50E-33 5.20E-44 5.20E-44
AA		537							1	537	537	537	537	537	537	537	537	537	537	283	283	283	283	283	283	283 283 311 311	283 283 311 311	283 283 311 311	283 283 311 311	311 311 319 339	311 311 367	311 311 367	311 311 367	311 311 367	311 311 367	311 311 312 339 395	311 311 367 367 395	283 283 339 347 367
AA		209								485	485	485	485	485	485	202	202	202	202	202	202 230	202 230	202 230	202 230	202 230 .	202 202 230 .	230 230	202 202 230 .	202 202 230 .	230 230	230 230	230 230	230 230	230 230	230 230	230 230	230 230	202 202 230
B															C	U	U	U	U	O C	U U	U U	U U	U U	U U	υ υ υ	υυυ	U U U	υυυ	U U U	U U U U	U U U	U U U	U U U	U U U U	U U U U	U U U U	U U U U
a		lard					_]	1bbo	1bbo	1bbo	1660	1bbo	1660	lbbo Ime	lbbo Ime	lbbo Ime	lbbo Jme	lbbo y	lbbo J J Ime	lbbo Ime y Ime	lbbo J y Ime	lbbo lme y y lme y	l l l l l l l l l l l l l l l l l l l	1bbo Ime y Ime y	1bbo Ime y Ime y	lbbo lme y y y y y y y y y y y y y y y y y y y	1bbo Ime y y y y	1 lme y y y y y y y y y y y y y y y y y y y	1bbo Ime y Ime y Ime	1bbo Ime y y Ime y Ime	1bbo Ime y y y Ime y y	lbbo lme y y lme y y lme y y lme y y lme y y lme	lbbo lme y y lme y y lme y y lme y y lme y y lme	1bbo Ime y Ime y Ime y Ime ine	1 lme	1 lme y y y y y y y y y y y y y y y y y y y
βÖ		809 	·						3	809	809	809	809	809	809	809	809	809	809	809	809 809	809	809 809	809	809 809 809	809 809	809 809	809 809	809 809	809 809 809	809 809 809	809 809 809	809 809 809	809 809 809	809 809 809	809 809 809	809 809 809	809 809 809

	_						_								_					1				_	_		_					
PDB annotation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA PITED ACTION PROTEIN DESIGN 2	CRYSTAL STRICTURE COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION PROTEIN DESIGN 2	CRYSTAL STRICTURE COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	NTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
Coumpound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA: CHAIN: A. B. D. E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	rectelly, Challet C, F, G,		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: D F G.	inclination of the control of the co		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;	
SeqFold score		102.94											•	_																		
PMF			-	-			I				1					-				0.22				-					1		-	
Verify score			0.74				0.53				0.33				200	c0.0				-0.08				0.2					0.29			
PSI- BLAST		9.10E-47	7.80E-46				1.30E-45				1.30E-40				76 207 6	2.60E-34				3.90E-32				3.90E-42					3.90E-46			
End		396	423				451				479				203	coc				589			_	617					645			
Start AA		314	342				370				398				707	470				454				536					564			
Chain ID		ပ	C				ပ				၁				C					ပ				S					ပ			
PDB ID		Jme y	Ime	<u>~</u>			1me	>			lme	<u>~</u>				======================================		•		l me	<u>~</u>	_		lme	>				1me	<u>~</u>		
SEQ NO:		809	809				809				809				900	°				809			-	809					809			

PDB annotation	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	ZINC FINGER TRANSCRIPTION FACTOR SP1; ZINC FINGER, TRANSCRIPTION ACTIVATION SP1	ZINC FINGER TRANSCRIPTION FACTOR SP1; ZINC FINGER, TRANSCRIPTION ACTIVATION, SP1	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION ZINC FINGER PROTEIN		COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIL ATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN
Coumpound	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	SP1F3; CHAIN: NULL;	SP1F2; CHAIN: NULL;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TRANSCRIPTION REGULATION TRANSCRIPTIONAL ELONGATION FACTOR SII (TFIIS, NUCLEIC-ACID 1TFI 3 BINDING DOMAIN) (NMR, 12 STRUCTURES) 1TFI 4	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold score					109.61			
PMF	-	-	0.01	0.13	<u> </u>	0.24	0.03	_
Verify score	0.33	9.0	-0.29	-0.23		-0.22	-0.34	0.26
PSI- BLAST	2.60E-46	2.60E-45	7.80E-05	9.10E-05	2.60E-71	0.0091	7.80E-29	6.50E-43
End	673	702	537	537	505	520	311	340
Start AA	292	620	509	509	342	480	165	229
Chain ID	၁	ပ			V		S	ပ
PDB ID	Ime y	lme y	lsp1	1sp2	1tf6	J t l	lubd	1ubd
SEQ ID NO:	809	809	809	809	809	809	809	809

	}	¥ *	ΑΑ	BLAST	score	score	score		
									RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
1ubd (၁	263	368	7.80E-52	0.55	-		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION,
								CHAIN: A, B;	INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN
									RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
lubd (၁	284	395	1.30E-53	0.58	· -		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS PS	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;
								CHAIN: A, B;	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2
									FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX
									(TRANSCRIPTION REGULATION/DNA)
1ubd O	U	341	451	5.20E-53	0.26	1		YYI; CHAIN: C; ADENO- ASSOCIATED VIRIS P5	COMPLEX (TRANSCRIPTION REGILI ATTOMONA) YING, YANG 1
								INITIATOR ELEMENT DNA;	TRANSCRIPTION INITIATION,
								CHAIN: A, B;	INITIATOR ELEMENT, YYI, ZINC 2
	-								RECOGNITION, 3 COMPLEX
\dashv									(TRANSCRIPTION REGULATION/DNA)
Japqa [ပ ပ	374	479	9.10E-51	0.34			YY1; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION
								ASSOCIATED VIRUS P5	REGULATION/DNA) YING-YANG 1;
								CHAIN: A, B;	INITIATOR ELEMENT, YYI, ZINC 2
									FINGER PROTEIN, DNA-PROTEIN
									RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILI ATTIONIONA)
1ubd C	C	424	589	2.60E-39	-0.28	0.34		YY1; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION
								ASSOCIATED VIRUS P5	REGULATION/DNA) YING-YANG I;
								INITIATOR ELEMENT DNA;	TRANSCRIPTION INITIATION,
								CHAIN: A, B;	INITIATOR ELEMENT, YYT, ZINC 2 FINGER PROTEIN DNA-PROTEIN
									RECOGNITION, 3 COMPLEX
\dashv									(TRANSCRIPTION REGULATION/DNA)
JapqnI	ာ	208	618	5.20E-45	-0.04	0.99		YY1; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION
								ASSOCIATED VIRUS PS	REGULATION/DNA) YING-YANG I,
								CHAIN: A R.	IKANSCKIPIION INIIIAIION, INITIATOR EI EMENT VVI 21NC2

	Ĩ.		<u> </u>	3			l ij	ī	7
PDB annotation	FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX	COMPLEX (TRANSCRIPTION RECOLLATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX TRANSCRIPTION, 3 COMPLEX	TRANSCRIPTION REGULATION, TRANSCRIPTION REGULATION, ADRI 21NC FINGER NAME			COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- RINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DIAN) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINGER)	BINDING PROTEIN/DNA)
Coumpound		YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ADR1; CHAIN: NULL;	COMPLEX(TRANSCRIPTION REGULATION/DNA) TRAMTRACK PROTEIN (TWO ZINC-FINGER PEPTIDE) COMPLEXED	COMPLEX(TRANSCRIPTION REGULATION/DNA) TRAMTRACK PROTEIN (TWO ZING-FINGER PEPTIDE) COMPLEXED WITH 2DRP 3 DNA 2DRP 4	ZINC PINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	
SeqFold score									
PMF score			-	0.41	90.0	0.23	-	_	-
Verify score		-0.07	0.06	-0.15	0.11	0.28	0.1	0.45	0.33
PSI- BLAST		5.20E-56	1.30E-54	2.60E-18	1.30E-15	6.50E-18	9.10E-58	1.00E-65	1 30E-67
End AA		674	701	509	530	563	369	397	480
Start AA		564	590	455	479	505	230	259	314
Chain ID		υ	U		∀	A	¥	Ą	A
PDB ID		Iubd	1 ubd	2adr	2drp	2drp	2gli	2gli	2pli
SEQ ID NO:		809	809	809	809	809	809	809	809

					1	1	Γ	г	,		
PDB annotation	PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (GTPASE-ACTIVATING/GTP-BINDING) COMPLEX (GTPASE-ACTIVATING/GTP-BINDING), GTPASE ACTIVATION	TRANSPORT PROTEIN TC4; GTPASE, NUCLEAR TRANSPORT, TRANSPORT PROTEIN	TRANSPORT PROTEIN TC4; GTPASE, NUCLEAR TRANSPORT, TRANSPORT PROTEIN	SIGNALING PROTEIN PROTEIN- PROTEIN COMPLEX, ANTIPARALLEL COILED-COIL	SIGNALING PROTEIN PROTEIN- PROTEIN COMPLEX, ANTIPARALLEL COILED-COIL	SIGNALING PROTEIN P21-RAC2; RHO GDI 2, RHO-GDI BETA, LY-GDI: BETA
Coumpound	CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	P50-RHOGAP; CHAIN: A, B, C; CDC42HS; CHAIN: D, E, F;	GTP-BINDING PROTEIN RAN; CHAIN: A, B;	GTP-BINDING PROTEIN RAN; CHAIN: A, B;	HIS-TAGGED TRANSFORMING PROTEIN RHOA(0-181); CHAIN: A; PKN; CHAIN: B;	HIS-TAGGED TRANSFORMING PROTEIN RHOA(0-181); CHAIN: A; PKN: CHAIN: B;	RAS-RELATED C3 BOTULINUM TOXIN
SeqFold score					92.71		55.55		61.64		
PMF		0.37	_	0.99		-		99.0		-	_
Verify score		0	0.3	0.16		0.46		0.15		0.19	0.14
PSI- BLAST		1.30E-56	1.30E-64	2.60E-70	2.60E-70	2.60E-20	3.90E-24	3.90E-24	1.30E-20	1.30E-20	2.60E-20
End AA		619	675	701	703	165	192	181	187	170	172
Start AA		398	536	564	564	9	1	9	_	9.	9
Chain ID		¥	A	A	A	D	В	В	∢	A	V
PDB ID		2gli	2gli	2gli	2gli	lam 4	1byu	1byu	Icxz	lcxz	9sp (
SEQ NO:		809	809	809	809	609	609	609	609	609	609

	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Coumpound	PDB annotation
ΑÖ	e l	e e	AA	AA	BLAST	score	score	score		
									SUBSTRATE 2; CHAIN: A;	SANDWHICH, PROTEIN-PROTEIN
									INHIBITOR 2: CHAIN: B:	COMPLEX, G-DOMAIN, 2 IMMINOGIORIU IN FOLD WATKER
	1									FOLD, GTP-BINDING PROTEIN
	le0s	¥	9	168	1.20E-22	0.12	0.57		ADP-RIBOSYLATION	G PROTEIN G PROTEIN, RAS, ARF,
╀				ļ					FACTOR 6; CHAIN: A;	ARF6, MEMBRANE TRAFFIC
		۷.	_	172	7.80E-23			55.9	HUMAN ADP-	PROTEIN TRANSPORT GDP-BINDING,
									IHUR 5 CHAIN: A. B. IHUR 7	MEMBIKANE IKAFICKIN, NON- MYRISTOYL ATED 1HIJR 16
_	1hur	Ą	9	168	7.80E-23	-0.12	0.55		HUMAN ADP-	PROTEIN TRANSPORT GDP-BINDING.
									RIBOSYLATION FACTOR 1; 1HUR 5 CHAIN: A. B; 1HUR 7	MEMBRANE TRAFFICKIN, NON- MYRISTOYLATED IHUR 16
_	libr	A	3	174	3.90E-23			71.05	RAN; CHAIN: A, C;	SMALL GTPASE KARYOPHERIN
									IMPORTIN BETA SUBUNIT: CHAIN: B. D.	BETA, P95 SMALL GTPASE, NUCLEAR TRANSPORT RECEPTOR
_	libr	¥	9	173	3.90E-23	0.04	0.99		RAN; CHAIN; A. C.	SMALL GTPASE KARYOPHERIN
				_					IMPORTIN BETA SUBUNIT;	BETA, P95 SMALL GTPASE, NUCLEAR
+	1								CHAIN: B, D;	TRANSPORT RECEPTOR
	恒.	-	7	189	3.90E-21			52.65	RACI; CHAIN: NULL;	GTP-BINDING GTP-BINDING, GTPASE,
										SMALL G-PROTEIN, RHO FAMILY,
+	1				2 000 01	,;;	\int		5	KAS SUPER 2 FAMILY
			٥	=	3.50E-21	0.36	-		KACI; CHAIN: NULL;	GTP-BINDING GTP-BINDING, GTPASE, SMALL G-PROTEIN, RHO FAMILY, BAS STIPEP 2 FAMILY
	1rrp	ပ	3	187	9.10E-24			77.78	RAN: CHAIN: A. C. NUCLEAR	COMPLEX (SMALL). GTPASF/NIICI FAR
)	PORE COMPLEX PROTEIN	PROTEIN) COMPLEX (SMALL
									NUP358; CHAIN: B, D;	GTPASE/NUCLEAR PROTEIN), SMALL
+	+									GTPASE, 2 NUCLEAR TRANSPORT
	Ē.	د	9	180	9.10E-24	-0.02	9.0		RAN; CHAIN: A, C; NUCLEAR	COMPLEX (SMALL GTPASE/NUCLEAR
									PORE COMPLEX PROTEIN	PROTEIN) COMPLEX (SMALL
									NOP338; CHAIN: B, D;	GIPASE/NUCLEAR PROTEIN), SMALL
600	14.7	٥	,	105	2000					GTPASE, 2 NUCLEAR TRANSPORT
		מ	`1	<u>د</u>	2.60E-20			54.35	P50-RHOGAP; CHAIN: A;	COMPLEX(GTPASE
									TRANSFORMING PROTEIN	ACTIVATN/PROTO-ONCOGENE)
	-								KHOA; CHAIN: B;	GIPASE-ACTIVATING PROTEIN
_						_				KHOGAP; COMPLEX (GTPASE
										ACTIVATION/PROTO-ONCOGENE),
_	1tx4	В	5	165	2.60E-20	0.37	-		P50-RHOGAP; CHAIN: A:	COMPLEX/GTPASE
									TRANSFORMING PROTEIN	ACTIVATN/PROTO-ONCOGENE)
\dashv	-								RHOA; CHAIN: B;	GTPASE-ACTIVATING PROTEIN

2 1 1 5

PDB annotation	RHOGAP; COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORYLATION	G UBIQUITIN CONJUGATION UBC2; v, B, UBIQUITIN CONJUGATION, UBIOUITIN-CONJUGATING ENZYME			LL; MUSCLE PROTEIN CTNC; CARDIAC, MUSCLE PROTEIN, REGULATORY, CALCIUM BINDING		LI; CALCIUM-BINDING PROTEIN CALCIUM-MYRISTOYL SWITCH, CALCUIM-BINDING PROTEIN		אוסטוקוניסס קקסססוגו
Coumpound		CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	HUMAN CYCLIN- DEPENDENT KINASE 2; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C:	UBIQUITIN CONJUGATING ENZYME; CHAIN: A;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	TROPONIN C; CHAIN: NULL;	SERINE/THREONINE PHOSPHATASE 2B; CHAIN: A, B;	RECOVERIN; CHAIN: NULL;	TROPONIN C; CHAIN: NULL;	
SeqFold score		129.83	118.75	54.69	54.87	59.33	70.38	78.45	67.12	68.38	7007
PMF score											
Verify score											
PSI- BLAST		2.60E-52	7.80E-50	1.00E-15	2.60E-17	2.60E-14	5.20E-06	7.80E-21	5.20E-20	9.10E-17	1 200 16
End AA		691	687	337	335	333	468	476	491	465	463
Start AA		370	371	167	168	167	317	320	311	320	320
Chain ID		<		4	¥			В			
PDB ID		1blx	1hcl	layz	lqcq	2aak	laj4	Iaui	liku	1tof	Itny
SEQ ID NO:		612	612	628	628	628	631	631	631	631	631

Γ	1 1		1		r		_																
PDB annotation	HAND ITNX 14	PHOSPHOTRANSFERASE PHOSPHOTRANSFERASE		PHOSPHOTRANSFERASE NUCLEOSIDE TRIPHOSPHATE, NUCLEOSIDE DIPHOSPHATE INUE 10		COMPLEX (GTPASE-ACTIVATING/GTP-BINDING)	COMPLEX (GTPASE-ACTIVATING/GTP-BINDING), GTPASE ACTIVATION	SIGNALING PROTEIN GTP-BINDING	PROTEINS, PROTEIN-PROTEIN COMPLEX, EFFECTORS		SIGNALING PROTEIN GTP-BINDING	PROTEIN RHOA, GTPASE RHOA; RHO	GDI I; KHO GIPASE, G-PROTEIN, SIGNALING PROTEIN	See Character Character Clark Little Co.	SIGNALING PROTEIN G PROTEIN, GTP HYDROLYSIS, KINETIC	CRYSTALLOGRAPHY, 2 SIGNALING	SIGNALING PROTEIN PROTEIN-	PROTEIN COMPLEX, ANTIPARALLEL	Collega-Coll	SIGNALING PROTEIN P21-RAC2; RHO	GDI 2, RHO-GDI BETA, LY-GDI; BETA	COMPLEX, G-DOMAIN, 2	IMMUNOGLOBULIN FOLD, WALKER FOLD, GTP-BINDING PROTEIN
Coumpound	CHAIN: NULL; ITNX 5	NUCLEOSIDE DIPHOSPHATE TRANSFERASE; CHAIN: A, B, C:	PHOSPHOTRANSFERASE NUCLEOSIDE DIPHOSPHATE KINASE (E.C.2.7.4.6) INSO 3	NUCLEOSIDE DIPHOSPHATE KINASE; INUE 4 CHAIN: A, B, C, D, E, F; INUE 5		P50-RHOGAP; CHAIN: A, B, C; CDC42HS; CHAIN: D, E, F;		RAS-RELATED PROTEIN	ONKOGENE	SERINE/THREONINE PROTEIN KINASE CHAIN: B:	TRANSFORMING PROTEIN	RHOA; CHAIN: A, C; RHO	NHIBITOR ALPHA; CHAIN:	E, F;	P21/H-RAS-1; CHAIN: A:		HIS-TAGGED	TRANSFORMING PROTEIN	PKN; CHAIN: B;	RAS-RELATED C3	BOTULINUM TOXIN STIRSTRATE 2: CHAIN: A:	RHO GDP-DISSOCIATION	INHIBITOR 2; CHAIN: B;
SeqFold score		105.78	104.27	105.45					-														
PMF						0.55		0			0.65			0.36	00.0		0.93			0.54			
Verify score						0.31		0.17			0.24			0.03	77.0	_	0.39			0.05			
PSI- BLAST		3.60E-53	3.60E-50	9.00E-53		3.60E-56		5.40E-56			9.00E-62			1 ROF_59	70-700:1		9.00E-62			1.40E-62			
End		115	115	116		703		264			271			265	}		264			267			
Start AA.		_		-		88 		98			68			98	3	-	68			88			
Chain ID		A	Ą	A		<u> </u>		¥			٧			A		-	A			~			
PDB ID		1be4	lnsq	Inue		4 4		lcly			1000			lcta			1cx2	_		9sp I			
SEQ ID NO:		646	646	646	9	80		658			658			658			658		,	859			

, · · · · · · · · · · · · · · · · · · ·	PDB TD	Chain D	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold	Coumpound	PDB annotation
I	Ihur	Ą	75	266	7.20E-11			54.59	HUMAN ADP- RIBOSYLATION FACTOR 1; 1HUR 5 CHAIN: A, B; 1HUR 7	PROTEIN TRANSPORT GDP-BINDING, MEMBRANE TRAFFICKIN, NON- MYRISTOYL,ATED 1HUR 16
	Imh I		88	267	1.30E-63	0.19	0.45		RAC1; CHAIN: NULL;	GTP-BINDING GTP-BINDING, GTPASE, SMALL G-PROTEIN, RHO FAMILY, RAS SUPER 2 FAMILY
·	1tx4	В	68	263	1.80E-58	0.31	0.82		P50-RHOGAP; CHAIN: A; TRANSFORMING PROTEIN RHOA; CHAIN: B;	COMPLEX(GTPASE ACTIVATN/PROTO-ONCOGENE) GTPASE-ACTIVATING PROTEIN RHOGAP; COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP
` · .	2ngr	Ą	88	270	7.20E-60	-0.01	0.4		GTP BINDING PROTEIN (G25K); CHAIN: A; GTPASE ACTIVATING PROTEIN (RHG); CHAIN: B;	HYDROLASE CDC42/CDC42GAP: CDC42/CDC42GAP; TRANSITION STATE, G-PROTEIN, GAP, CDC42, ALF3., HYDROLASE
· ·	3rab	A	98	265	1.10E-54	0.11	0.47		RAB3A; CHAIN: A;	HYDROLASE G PROTEIN, VESICULAR TRAFFICKING, GTP HYDROLYSIS, RAB 2 PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE
1	1bor		91	59	9.00E-06	-0.73	0.25		TRANSCRIPTION FACTOR PML; CHAIN: NULL;	TRANSCRIPTION REGULATION PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION
1	1chc		16	09	9.00E-15	0.24	86.0		VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) 1CHC 3 (NMR, 1 STRUCTURE) 1CHC 4	
	lfbv	A	8	99	1.805-10	0.25	6:0		SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA UBCH7; CHAIN: C;	LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,
	1825	A	81	72	1.30E-05	-0.44	0.09		CDK-ACTIVATING KINASE ASSEMBLY FACTOR MATI; CHAIN: A;	METAL BINDING PROTEIN RING FINGER PROTEIN MATI; RING FINGER (C3HC4)
	lgi.		172	218	0.002	-0.75	0.21		PCRA; CHAIN: NULL;	HELICASE DNA REPAIR, DNA

Chain Start D AA	<u> </u>	± _	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									REPLICATION, SOS RESPONSE, HELICASE, 2 ATP-BINDING, DNA- BINDING
B 172 202		202		0.0045	-0.84	0.28		PCRA (SUBUNIT); CHAIN: A; PCRA (SUBUNIT); CHAIN: B; PCRA (SUBUNIT); CHAIN: C; PCRA (SUBINIT); CHAIN: D;	HELICASE DNA REPAIR, DNA REPLICATION, SOS RESPONSE, HELICASE, ATP- 2 BINDING, DNA-
A 172 238		238		0.00011	-0.67	69:0		ATP-DEPENDENT DNA HELICASE REP; CHAIN: A, B; DNA CHAIN: C:	COMPLEX (HELICASE/DNA) COMPLEX (HELICASE/DNA), HELICASE DNA INWINDING
A 172 236		236		9.00E-06	-0.31	0.88		HELICASE PCRA; CHAIN: A, F; HELICASE PCRA; CHAIN: B, G; DNA (5'-D(*TP*TP*TP*T)-3'); CHAIN: C, D; DNA (5'-D(*GP*C)-3'); CHAIN: H; DNA (5'-D(*AP*CP*TP*GP*C)-3'); CHAIN: I;	HYDROLASE/DNA ATP-DEPENDENT HELICASE PCRA; ATP-DEPENDENT HELICASE PCRA; HELICASE PCRA, HYDROLASE, DNA, PRODUCT COMPLEX
A 1 64	1 64	64		1.00E-18	-0.43	0.24		TRANSCRIPTION ELONGATION FACTOR S-II; CHAIN: A:	TRANSCRIPTION HELIX-BUNDLE
64	64			3.60E-12	0.45	0.18		TRANSCRIPTION ELONGATION FACTOR S-II; CHAIN: A;	TRANSCRIPTION HELIX-BUNDLE
283 332		. 332		1.30B-22	0.45			TRANSCRIPTION REGULATION TRANSCRIPTIONAL ELONGATION FACTOR SII (TFIIS, NUCLEIC-ACID 1TFI 3 BINDING DOMAIN) (NMR, 12 STRUCTURES) 1TFI 4	
283 332		332		3.90E-24			84.88	TRANSCRIPTION REGULATION TRANSCRIPTIONAL ELONGATION FACTOR SII (TFIIS, NUCLEIC-ACID 1TFI 3 BINDING DOMAIN) (NMR, 12 STRILCTIRES) 1TFI 4	
283 332 3	332		1	3.90E-24	0.45	_		TRANSCRIPTION REGULATION	

. . . .

PDB annotation		RNA BINDING PROTEIN/RNA XLRBPA; PROTEIN-RNA COMPLEX, DOUBLE STRANDED RNA, PROTEIN- RNA 2 INTERACTIONS, RNA-BINING PROTEIN, RNA BINDING PROTEIN/RNA	RNA BINDING PROTEIN/RNA XLRBPA; PROTEIN-RNA COMPLEX, DOUBLE STRANDED RNA, PROTEIN- RNA 2 INTERACTIONS, RNA-BINING PROTEIN, RNA BINDING	RNA BINDING PROTEIN/RNA XLRBPA; PROTEIN-RNA COMPLEX, DOUBLE STRANDED RNA, PROTEIN- RNA 2 INTERACTIONS, RNA-BINING PROTEIN, RNA BINDING	RNA BINDING PROTEIN/RNA XLRBPA; PROTEIN-RNA COMPLEX, DOUBLE STRANDED RNA, PROTEIN- RNA 2 INTERACTIONS, RNA-BINING PROTEIN, RNA BINDING	RNA BINDING PROTEIN/RNA XLRBPA; PROTEIN-RNA COMPLEX, DOUBLE STRANDED RNA, PROTEIN- RNA 2 INTERACTIONS, RNA-BINING PROTEIN, RNA BINDING	CELL CYCLE/RNA DSRBDIII; NMR STRUCTURE, PROTEIN/RNA, PROTEIN DSRBD. DROSOPHILA. RNA 2 HAIRPIN
Coumpound	TRANSCRIPTIONAL ELONGATION FACTOR SII (TFIIS, NUCLEIC-ACID 1TFI 3 BINDING DOMAIN) (NMR, 12 STRUCTURES) 1TFI 4	DOUBLE STRANDED RNA BINDING PROTEIN A; CHAIN: A, B; RNA (5'- R(*GP*GP*CP*CP*GP*CP*CP*GP*CP*GP*CP*CP*CP*GP*CP*CP*CP*CP*CP*CP*CP*CP*CP*CP*CP*CP*CP	DOUBLE STRANDED RNA BINDING PROTEIN A; CHAIN: A, B; RNA (5'- R(*GP*GP*CP*GP*CP*GP*CP *GP*CP*C)-3'); CHAIN: C, D, E, G;	DOUBLE STRANDED RNA BINDING PROTEIN A; CHAIN: A, B; RNA (5'- R(*GP*GP*CP*GP*CP*GP*CP *GP*CP*C)-3'); CHAIN: C, D, E, G;	DOUBLE STRANDED RNA BINDING PROTEIN A; CHAIN: A, B; RNA (5'- R(*GP*GP*CP*GP*CP*GP*CP *GP*CP*C)-3'); CHAIN: C, D, E, G;	DOUBLE STRANDED RNA BINDING PROTEIN A; CHAIN: A, B; RNA (5'- R(*GP*GP*CP*GP*CP*GP*CP *GP*CP*C)-3'); CHAIN: C, D, E, G;	MATERNAL EFFECT PROTEIN (STAUFEN); CHAIN: A; STAUFEN DOUBLE-STRANDED RNA BINDING DOMAIN; CHAIN:
SeqFold score							
PMF score		66.0	0.42	0.99	0.39	0.7	0.31
Verify score		90.0	0.45	0.11	-0.16	90.0	-0.12
PSI- BLAST		1.60E-13	1.30E-14	2.60E-16	1.80E-09	1.60E-07	1.80E-14
End AA		452	451	574	558	452	454
Start AA		388	390	512	514	388	380
Chain ID		<	∢	⋖	∢	B	V V
PDB ID		1di2	14i2	1di2	14i2	14i2	lekz
SEQ ID NO:		664	664	664	664	664	664

PDB annotation		CELL CYCLE/RNA DSRBDIII; NMR STRUCTURE, PROTEIN/RNA, PROTEIN DSRBD, DROSOPHILA, RNA 2 HAIRPIN	CELL CYCLE/RNA DSRBDIII; NMR STRUCTURE, PROTEIN/RNA, PROTEIN DSRBD, DROSOPHILA, RNA 2 HAIRPIN	CELL CYCLE/RNA DSRBDIII; NMR STRUCTURE, PROTEIN/RNA, PROTEIN DSRBD, DROSOPHILA, RNA 2 HAIRPIN	TRANSFERASE DSRNA-BINDING DOMAIN, NMR, PKR, SOLUTION STRUCTURE, PROTEIN 2 KINASE,	TRANSFERASE DSRNA-BINDING DOMAIN, NMR, PKR, SOLUTION STRUCTURE, PROTEIN 2 KINASE,	DOUBLE STRANDED RNA BINDING DOMAIN STAITEN 1STILLS	DOUBLE STRANDED RNA BINDING DOMAIN STALIFEN 1STU 13	DOUBLE STRANDED RNA BINDING DOMAIN STAUFEN 1STU 13	RNA-BINDING PROTEIN/RNA TRA PRE-MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM,
Coumpound	B;	MATERNAL EFFECT PROTEIN (STAUFEN); CHAIN: A; STAUFEN DOUBLE-STRANDED RNA BINDING DOMAIN; CHAIN: B:	MATERNAL EFFECT PROTEIN (STAUFEN); CHAIN: A; STAUFEN DOUBLE-STRANDED RNA BINDING DOMAIN; CHAIN:	MATERNAL EFFECT PROTEIN (STAUFEN); CHAIN: A; STAUFEN DOUBLE-STRANDED RNA BINDING DOMAIN; CHAIN:	PROTEIN KINASE PKR; CHAIN: A;	PROTEIN KINASE PKR; CHAIN: A:	MATERNAL EFFECT PROTEIN STAUFEN: 1STU 4	MATERNAL EFFECT PROTEIN STAUFEN: 1STU 4	MATERNAL EFFECT PROTEIN STAUFEN; 1STU 4	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5'- R(P*GP*UP*UP*GP*UP*UP*U P*UP*UP*UP*UP*UP*U)- CHAIN:	YDENYLATE BINDING FEIN 1; CHAIN: A, B, C,
SeqFold score											
PMF score		0.69	0.39	_	0.06	0.09	0.07	-	0.11	0.92	-
Verify score		-0.06	0.04	0.75	-0.17	-0.05	0.23	0.19	-0.24	0.48	1.05
PSI- BLAST		5.20E-15	5.40E-05	1.30E-19	1.10E-15	7.20E-08	3.60E-13	3.90E-18	0.0000	1.30E-10	9.10E-11
End		451	557	574	469	558	454	575	557	84	88
Start AA		384	509	511	375	518	388	512	514	-	10
Chain JD		∢ .	∀	A	A	٧				∢	В
PDB ID		lekz	lekz	lekz	1qu6	1qu6	1stu	l sta	lstu	1b7f	1cvj
SEQ NO:		664	664	664	664	664	664	664	664	999	999

PDB annotation	PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATIONRNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	RNA BINDING PROTEIN RNA- BINDING DOMAIN	STRUCTURAL PROTEIN PROTEIN C23; RNP, RBD, RRM, RNA BINDING DOMAIN, NUCLEOLUS		RNA-BINDING DOMAIN RNA- BINDING DOMAIN, ALTERNATIVE SPLICING	RNA-BINDING PROTEIN SPLICING, U2 SNRNP, RBD, RNA-BINDING PROTEIN	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND ALPHA/BETA FOLD	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND
Coumpound	D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	HU ANTIGEN C; CHAIN: A;	NUCLEOLIN RBDI; CHAIN: A;	RNA-BINDING PROTEIN SEX-LETHAL PROTEIN (C- TERMINUS, OR SECOND RNA-BINDING DOMAIN 1SXL 3 (RBD-2), RESIDUES 199 - 294 PLUS N-TERMINAL MET) 1SXL 4 (NMR, 17 STRUCTURES) 1SXL 5	SEX-LETHAL PROTEIN; CHAIN: NULL;	SPLICING FACTOR U2AF 65 KD SUBUNIT; CHAIN: A;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN AI; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	TOLB PROTEIN; CHAIN: A;	TOLB PROTEIN; CHAIN: A;
SeqFold score										
PMF		_	0.99	0.64	0.8		-		0.04	0.39
Verify score		1.03	0.84	0.56	0.72	1.18	68:0	0.87	0.18	0.21
PSI- BLAST		7.80E-11	1.30E-11	2.60E-11	1.30E-11	2.60E-11	7.80E-11	6.50E-11	0.0013	3.90E-06
End		88	88	68	88	88	88	88	269	217
Start AA		10	6	8	9	6	6	2	126	77
Chain ID		н	Ą	¥			А	¥	A	A
PDB DD		1cvj	1d9a	1fj7	1sxl	2sxl	2u2f	2up1	lcrz	lcrz
SEQ NO:		999	999	999	665	599	999	999	999	999

	_	 	т						
PDB annotation	ALPHA/BETA FOLD	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	COMPLEX (GTP-BINDING/TRANSDUCER) BETA I, TRANSDUCIN BETA SUBUNIT; GAMMAI, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	COMPLEX (GTP- BINDING/TRANSDUCER) BETA I, TRANSDUCIN BETA SUBUNIT; GAMMAI, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	MOILOGO	TRANSFERASE DINUCLEOTIDE-
Coumpound		TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAIMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN: G;		NICOTINATE
SeqFold score						91.76			
PMF score		0.84	69:0	-	-0.02		8.0		-0.18
Verify score		0.2	0.24	0.59	0.27		0.56		0.52
PSI- BLAST		1.80E-59	3.60E-69	7.20E-73	1.10E-57	1.10E-57	5.40E-56		7.80E-14
End AA		315	373	271	420	372	370		194
Start AA			30	-	118	29	71		6
Chain ID		V	4	В	æ	മ	В		A
PDB DD	1	lerj	lerj	lgot	lgot	1got	lgot		140s
SEQ B NO:		999	999	999	999	999	999		699

PDB annotation	BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE	TRANSCRIPTION HELIX-BUNDLE	TRANSCRIPTION HELIX-BUNDLE				TRANSCRIPTION REGULATION PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION	·	LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION,
Coumpound	MONONUCLEOTIDE:5,6- CHAIN: A;	TRANSCRIPTION ELONGATION FACTOR S-II; CHAIN: A;	TRANSCRIPTION ELONGATION FACTOR S-II; CHAIN: A;	TRANSCRIPTION REGULATION TRANSCRIPTIONAL ELONGATION FACTOR SII (TFIIS, NUCLEIC-ACID 1TFI 3 BINDING DOMAIN) (NMR, 12 STRUCTURES) 1TFI 4	TRANSCRIPTION REGULATION TRANSCRIPTIONAL ELONGATION FACTOR SII (TFIIS, NUCLEIC-ACID 1TFI 3 BINDING DOMAIN) (NMR, 12 STRUCTURES) 1TFI 4	TRANSCRIPTION REGULATION TRANSCRIPTIONAL ELONGATION FACTOR SII (TFIIS, NUCLEIC-ACID 1TF1 3 BINDING DOMAIN) (NMR, 12 STRUCTURES) 1TF1 4	TRANSCRIPTION FACTOR PML; CHAIN: NULL;	VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRUCTURE) ICHC 4	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A;
SeqFold score					75.24				
PMF		0.24	0.21	-		_	0.01	9.0	0.45
Verify		-0.43	-0.03	0.24		0.26	-0.65	-0.48	-0.62
PSI- BLAST		1.00E-18	1.10E-06	1.80E-21	1.30E-21	1.30E-21	1.40E-06	1.80E-13	9.10E-11
End		64	09	257	257	257	342	352	351
Start AA		-	4	211	212	212	300	302	277
Chain ID		A	Ą						V
PDB ID		1co0	1eo0	H	14	JH.	lbor	1chc	1fbv
SEQ NO:		671	671	671	671	1.29	672	672	672

		T		γ	· r			
PDB annotation	2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,	APOPTOSIS INHIBITOR OF APOPTOSIS (IAP), NMR STRUCTURE, BACULOVIRAL 2 IAP REPEAT (BIR), ZINC BINDING DOMAIN	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN I; RAGI, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA-	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA- BINDING PROTEIN	PEPTIDE SYNTHETASE GRSA; PEPTIDE SYNTHETASE, GRSA, ADENYLATE FORMING	PEPTIDE SYNTHETASE GRSA; PEPTIDE SYNTHETASE, GRSA, ADENYLATE FORMING	OXIDOREDUCTASE OXIDOREDUCTASE, MONOOXYGENASE, PHOTOPROTEIN, LUMINESCENCE
Coumpound	ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA UBCH7; CHAIN: C;	SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA UBCH7: CHAIN: C;	NHIBITOR OF APOPTOSIS PROTEIN (2MIHB/C-IAP-1); CHAIN: A;	RAGI; CHAIN: NULL;	RAGI; CHAIN: NULL;	GRAMICIDIN SYNTHETASE 1; CHAIN: A, B; PHENYLALANINE; CHAIN: C D:	GRAMICIDIN SYNTHETASE 1; CHAIN: A, B; PHENYLALANINE; CHAIN:	LUCIFERASE; CHAIN: NULL;
SeqFold score						158.05		173.59
PMF score		0.55	0.37	0.8	0.84		-	
Verify score		-0.4	-0.73	0.34	-0.11		9.0	
PSI- BLAST		3.60E-13	0.0027	2.60E-09	7.20E-09	0	0	3.60E-93
End		349	270	344	342	576	571	574
Start AA		301	227		302	24	39	22
Chain ID		∢	A			¥	¥	
PDB ID		Ifbv	1qbh	Irmd	1rmd	lam u	lam u	11ci
SEQ NO:		672	672	672	672	673	673	673

6. .

PDB annotation	LI; OXIDOREDUCTASE OXIDOREDUCTASE, MONOOXYGENASE, PHOTOPROTEIN, LUMINESCENCE		TRANSCRIPTION REGULATION PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION	TRANSCRIPTION REGULATION PROTO-ONCOGENE, NUCLEAR BODIES (PODS), LEUKEMIA, 2 TRANSCRIPTION REGULATION		CELL MOTILITY PROTEIN MSP; CYTOSKELETAL PROTEIN, SPERM, CELL MOTILITY PROTEIN	CELL MOTILITY PROTEIN MSP. CYTOSKELETAL PROTEIN, SPERM, CELL MOTILITY PROTEIN	, B, ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	SCAFFOLD PROTEIN SCAFFOLD PROTEIN, PP2A, PHOSPHORYLATION, HEAT REPEAT	SMALL GTPASE KARYOPHERIN
Coumpound	LUCIFERASE; CHAIN: NULL;	TRANSCRIPTION FACTOR PML; CHAIN: NULL;	TRANSCRIPTION FACTOR PML; CHAIN: NULL;	TRANSCRIPTION FACTOR PML; CHAIN: NULL;	TRANSCRIPTION FACTOR PML; CHAIN: NULL;	MAJOR SPERM PROTEIN; CHAIN: A, B;	MAJOR SPERM PROTEIN; CHAIN: A, B;	SYNTAXIN-1A; CHAIN: A, B, C;	PROTEIN PHOSPHATASE PP2A; CHAIN: A, B;	RAN; CHAIN: A, C;
SeqFold score										
PMF score	_	0.01	0.01	0.01	0.01	0.07	0.07	-0.19	-0.02	90.0
Verify score	0.77	0.21	0.21	0.21	0.21	-0.05	-0.05	0.12	0.16	0.02
PSI- BLAST	3.60E-93	0.0031	0.00054	0.0031	0.00054	7.80E-06	7.80E-06	7.80E-09	1.10E-51	5.40E-07
End	571	192	192	192	192	125	125	286	377	119
Start AA	36	144	144	144	144	34	34	165	-	22
Chain ID						A	V	∢	∢	В
PDB ID	1]ci	lbor	lbor	lbor	1bor	lmsp	1msp	1ez3	1b3u	1 ibr
SEQ ID	673	675	675	919	929	629	089	681	682	682

Chain		Start	End	PSI-	Verify	PMF	SeqFold	Coumpound	PDB annotation
	۱ ۲	¥.	AA	BLASI	score	score	score		
-	- 1							CHAIN: B, D;	TRANSPORT RECEPTOR
- 5			400	3.60E-37	0.11	0.07		KARYOPHERIN BETA2; CHAIN: B; RAN; CHAIN: C;	NUCLEAR TRANSPORT PROTEIN COMPLEX HEAT REPEATS, NUCLEAR
32			363	1.30E-07	-0.18	0.09		BETA-CATENIN; CHAIN: NULL;	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON
-			273	7.20E-58	0.55	-		GUANOSINE PENTAPHOSPHATE SYNTHETASE; CHAIN: A;	POLYRIBONUCLEOTIDE TRANSFERASE POLYNUCLEOTIDE PHOSPHORYLASE, GUANOSINE POLYRIBONUCLEOTIDE TRANSFERASE, ATP:GTP 2
	- 1								DIPHOSPHOTRANSFERASE, RNA
—			273	7.20E-58	0.62			GUANOSINE PENTAPHOSPHATE	POLYRIBONUCLEOTIDE TRANSFERASE POLYNUCLEOTIDE
								SYNTHETASE; CHAIN: A;	PHOSPHORYLASE, GUANOSINE POLYRIBONUCLEOTIDE TRANSFERASE ATPLCTP
	- 1								DIPHOSPHOTRANSFERASE, 2 RNA PROCESSING, RNA DEGRADATION
87	1	\dagger	101	2,000	5	,			
8	_		161	3.00.5-13	0.03	-0.06		RUBREDOXIN:OXYGEN OXIDOREDUCTASE; CHAIN: A, B	OXIDOREDUCTASE OXIDOREDUCTASE, OXYGENREDUCTASE, DIIRON- CENTRE, 2 FLAVOPROTEINS,
34			861	1.30E-18	0.29	0.04		PENICILLINASE; CHAIN: A;	HYDROLASE METALLO-BETA-
9	l e								LACTAMASE, ANTIBIOTIC RESISTANCE, BINUCLEAR 2 ZINC, HYDROLASE
 8	20		258	0.00052	-0.22	60.0		PENICILLINASE; CHAIN: A;	HYDROLASE METALLO-BETA- LACTAMASE, ANTIBIOTIC RESISTANCE, BINICLEAR 2 ZINC
45			187	3 60E-10	\$0.0	50.0		MERITA	HYDROLASE,
					8.6	0.0		METALLO BETA- LACTAMASE II; CHAIN: A, B;	HYDROLASE HYDROLASE, BETA- LACTAMASE, ANTIBIOTIC, METALLOENZYME
18		+	†		7				
97	- 1	7	- - - - - -	3.60E-38	0.01	0.23		REPLICATION PROTEIN A 32	DNA-BINDING PROTEIN RPA, OB-

PDB annotation	FOLD, SSDNA-BINDING, DNA- BINDING PROTEIN	The state of the s	OXIDOREDUCTASE THIOREDOXIN M, THIOREDOXIN CH2, CHLOROPLASTIC THIOREDOXIN	OXIDOREDUCTASE DIMER, THIOREDOXIN, X-RAY CRYSTALLOGRAPHY, OXIDOREDUCTASE	ELECTRON TRANSPORT ELECTRON TRANSPORT	TRYPAREDOXIN TRYX-I; TRYPAREDOXIN, CRITHIDIA FASCICULATA, THIOREDOXIN, 2 TRYPANOSOME, ANOMALOUS	DISPERSION, OXIDATIVE STRESS, 3 OXIDOREDUCTASE	TRYPAREDOXIN TRYX-1;	TRYPAREDOXIN, CRITHIDIA FASCICIII.ATA, THIOREDOXIN, 2	TRYPANOSOME, ANOMALOUS	DISPERSION, OXIDATIVE STRESS, 3	PEROXIDASE 2-CYS	PEROXIREDOXIN, CALPROMOTIN	PEROXIDASE, PEROXIREDOXIN, SULPHINIC ACID, THIOREDOXIN	OXIDOREDUCTASE HEME-BINDING	PROTEIN 23 KD, HBP23;	OXIDOREDUCTASE	ELECTRON TRANSPORT ALPHA/BETA	OPEN-TWISTED PROTEIN, THIOL- DISULFIDE	T7 DNA POLYMERASE, DNA	TRANSFERASE, SEQUENCING.	THIOREDOXIN, PROCESSIVITY FACTOR, 3 COMPLEX
Coumpound	KD SUBUNIT; CHAIN: A, C; REPLICATION PROTEIN A 14 KD SUBUNIT; CHAIN: B, D;	BOT 100 00 1110	CHLOROPLAST THIOREDOXIN M CH2; CHAIN: A:	THIOREDOXIN; CHAIN: NULL;	THIOREDOXIN M; CHAIN: A, B;	TRYPAREDOXIN-I; CHAIN: A;		TRYPAREDOXIN-I; CHAIN:	A;			HUMAN THIOREDOXIN	PEROXIDASE-B; CHAIN: A,	B, C, D, E, F, G, H, I, J,	THIOREDOXIN PEROXIDASE	2; CHAIN: A, B;		THIOREDOXIN; CHAIN: A;		DNA POLYMERASE, CHAIN:	DNA; CHAIN: P. T.	
SeqFold score																						
PMF score			0.11	60.0	0.01	0.18		0.34				-0.14			60'0			0.11		0.03		
Verify score		3	-0.28	0.08	-0.31	-0.87		0.32				90.0			0.1			-0.66		-0.36		
PSI- BLAST		4, 10, 0	3.60E-13	3.60E-07	3.60E-11	5.40E-07		1.30E-12				5.40E-40			1.60E-40			1.30E-06		1.60E-12		
End AA			147	142	143	127		181				233			210			187		150		
Start AA		ļ	79	09	09	70	·	75				48			48			8/		62		
Chain ID			⋖		¥	¥		Ą				A			∢			A		В		
PDB ID			1 dby	lerv	1fb6	1qk8		1qk8				Iam	. >		1992			ldn	>	1t7p		
SEQ No.		- 6	060	069	069	069		069				069			069			069		069		

SEQ NO:	PDB CI	Chain 10	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
										(HYDROLASE/ELECTRON TRANSPORT/DNA)
069	2trx	4	62	150	1.60E-12	-0.1	0.04		ELECTRON TRANSPORT THIOREDOXIN 2TRXA 2 2TRXA 3	
]									
1691	Ichc		318	363	7.20E-13	-0.33	0.48		VIRUS EQUINE HERPES VIRUS-1 (C3HC4, OR RING DOMAIN) ICHC 3 (NMR, 1 STRUCTURE) ICHC 4	
691	1fbv	V	298	363	1.20E-10	-0.58	0.21		SIGNAL TRANSDUCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA	LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,
100	10.	<u></u>	. 65.6						UBCH /; CHAIN: C;	
169	Ifbv	4	319.	368	1.80E-06	-0.74	0.21		SIGNAL TRANSDÚCTION PROTEIN CBL; CHAIN: A; ZAP-70 PEPTIDE; CHAIN: B; UBIQUITIN-CONJUGATING ENZYME E12-18 KDA UBCH7; CHAIN: C;	LIGASE CBL, UBCH7, ZAP-70, E2, UBIQUITIN, E3, PHOSPHORYLATION, 2 TYROSINE KINASE, UBIQUITINATION, PROTEIN DEGRADATION,
169	Lind		297	363	1.00E-13	-0.07	0.94		RAGI; CHAIN: NULL;	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA-
169	1 md		319	368	5.40E-06	-0.24	0.49		RAGI; CHAIN: NULL;	DNA-BINDING PROTEIN V(D)J RECOMBINATION ACTIVATING PROTEIN 1; RAG1, V(D)J RECOMBINATION, ANTIBODY, MAD, RING FINGER, 2 ZINC BINUCLEAR CLUSTER, ZINC FINGER, DNA- BINDING PROTEIN
-										
693	lerj	∢	4	307	5,40E-42	99.0	0.11		TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B. C:	TRANSCRIPTION INHIBITOR BETA- PROPELLER
693	lerj	A	71	369	9.00E-51	0.52	0.29		TRANSCRIPTIONAL	TRANSCRIPTION INHIBITOR BETA-

				,					
PDB annotation	PROPELLER	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP- BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND ALPHABETA FOLD	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER
Coumpound	REPRESSOR TUP1; CHAIN: A, B, C;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN: G;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN: G;	GT-ÁLPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN! G;	TOLB PROTEIN; CHAIN: A;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUPI; CHAIN: A, B. C:	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A,
SeqFold score		70.14							
PMF score			0.16	-0.17	0.29	0.94	_	0.99	0.16
Verify score			0.39	0.26	0.2	0.12	0.46	0.01	0.27
PSI- BLAST		3.60E-57	3.60E-57	1.40E-36	9.00E-08	5.40E-78	1.80E-65	9.00E-57	1.40E-52
End AA		376	370	304	377	416	313	442	224
Start AA		28	39	·	133	108	18	195	5
Chain ID		В	Ф	В	A	A	Ą	Y	A
PDB ID		lgot	1got	1got	lcrz	lerj	1erj	lerj	lerj
SEQ ID NO:		693	693	693	694	694	694	694	694

	Т	т		т											-					
PDB annotation		COMPLEX (GTP-BINDING/TRANSDUCER) BETAI, TRANSDUCIN BETA SUBUNIT; GAMMAI, TRANSDUCIN GAMMA	SUBONIT; COMPLEX (GIP-BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP- BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1 TRANSDICIN GAMMA	SUBLINITY, COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTISMER 2 SIGNAL	COMPLEX (GTP-	BINDING/IRANSDOCEK) BELAI, TRANSDOCIN BETA SUBUNIT;	GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP-	BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	TRANSDUCTION	COMPLEX (GTP- BINDING/TRANSDUCER) BETA1, TRANSPAIGHT BETA (CIRCLE)	IKANSDUCIN BETA SUBUNIT; GAMMAI, TRANSDUCIN GAMMA	SUBUNIT; COMPLEX (GTP.	HETEROTRIMER 2 SIGNAL	COMPLEX (GTP-	BINDING/TRANSDUCER) BETAI,	GAMMAI, TRANSDUCIN GAMMA	SUBUNIT; COMPLEX (GTP-	BINDING/TRANSDUCER), G PROTEIN, HETEROTEIN, EXCESS OF THE STATES OF THE	HELENOLKIMER Z SIGNAL TRANSDUCTION
Coumpound	B, C;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA; CHAIN: G;		GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA; CHAIN: B; GT- GAMMA: CHAIN: G:		GT-ALPHA/GI-ALPHA	BETA; CHAIN: B; GT-	GAMMA; CHAIN: G;		OT 11 0111 101	GI-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT- BETA: CUAN: B: CT	GAMMA; CHAIN: G;	-		GT-ALPHA/GI-ALPHA	CHIMERA; CHAIN: A; GT.	GAMMA; CHAIN: G;			
SeqFold score				105.8														•		
PMF score		-				0.21				22.0	77.0				1			•		
Verify score		0.54				0.26				92.0	0.30				69.0					
PSI- BLAST		5.40E-64		7.20E-81		3.60E-50				1 80E-53	1,00t-30				7.20E-81					
End AA		393		353		443				267	107				353					
Start AA		103		13		061				4	+				56					
Chain ID		α		m		В				2	_ 				В					
PDB ID		lgot		lgot		1 got				lgot					1got					
SEQ ID NO:		694		694		694				694	-				694					

	 T	$\overline{}$							Г			_			$\overline{}$			-	Г	_		Τ-	_		Т						τ
PDB annotation	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEY (7TNC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, DNA-BINDING PROTEIN		COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	Through Diversity Diversity of the Control of the C	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	FINGER, DNA-BINDING PROTEIN	COMPLEY (21NC EINGED/DNA)	COMPLEX (ZINC FINGER/DNA) 7INC	FINGER DNA-BINDING PROTEIN		COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	FINGER, DNA-BINDING PROTEIN						-	COMPLEX (ZINC FINGER/DNA) ZINC
Coumpound	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	OGSR ZINC BINGER	PEPTINE: CHAIN: A: DIIDI EX	OLIGONUCLEOTIDE	BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER	PEPTIDE; CHAIN: A; DUPLEX	BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER	PEPTIDE; CHAIN: A; DUPLEX	OLIGONOCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER	PEPTIDE; CHAIN: A; DUPLEX	OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C.	OGSP ZING FINGER	PEPTINE: CHAIN: A: DI IPI EX	OLIGONUCLEOTIDE	BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER	PEPTIDE; CHAIN: A; DUPLEX	OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER	PEPTIDE; CHAIN: A; DUPLEX	OLIGONUCLEOTIDE	DNA-BINDING PROTEIN	HUMAN ENHANCER-	BINDING PROTEIN MBP-1	MUTANT WITH CYS 11 1BBO	3 REPLACED BY ABU	(C11ABU) (NMR, 60 STRUCTURES) 1BBO 4	DNA; CHAIN: A, B, D, E;
SeqFold score	84.99																											•			
PMF score		-				0.03			0.81			0.69			-0.17				69.0			0.39			0.09						0.45
Verify score		0.18	2			-0.13			0.03			0			0.13	3			0.14			9.1			-0.35						-0.09
PSI- BLAST	1.30E-31	3 60F-27	1 2000			1.30E-31			7.20E-30			1.80E-28			5 40F-10	27 720			5.40E-28			3.60E-26			6.50E-11	!					1.80E-36
End	282	300	3			337			421			480			86	?			554			154			564						168
Start AA	200	228	3			228			341			397			40	?			484			74			514						101
Chain ID	A	A	;			A			A			A			A	:			4			٧									ပ
PDB ID	lalh	1alh				lalh			lalh			lalh			181 H				lalh			laih			1bbo						Ime
SEQ NO:	169	269	}			269			269			269			269	:			269			269			697						697

Γ	1	 	 _	1	1			· · · · · · · · · · · · · · · · · · ·	
PDB annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX ZINC FINGER DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA
Coumpound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN; A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA: CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER
SeqFold score					97.32				
PMF score		0.16	0.8			96.0	0.22	0.95	0.99
Verify score		-0.26	-0.15	0.31		0.27	-0.23	0.21	0.41
PSI- BLAST		1.30E-16	9.00E-35	5.40E-47	5.40E-47	3.60E-46	1.30E-33	3.60E-47	1.40E-49
End		224	252	. 280	281	309	337	365	393
Start AA		102	156	199		227	227	283	312
Chain ID		၁	ပ	ပ	ပ	ပ	၁	ပ	ပ
PDB ID	٨	Ime y	lme y	Ime y	1me y	Ime y	1me y	lme y	lme y
SEQ ID NO:		697	<i>1</i> 69	<i>L</i> 69	269	697	697	<i>1</i> 69	269

6 ,

PDB annotation	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2
Coumpound	PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold score									
PMF			0.88	0.04	0.62	0	0.86	•	0.98
Verify score		60.0	0	-0.68	0.03	-0.13	0.22	0.31	0.18
PSI- BLAST		1.30E-48	1.80E-48	1.30E-21	3.60E-47	1.60E-35	3.60E-48	3.60E-50	1.10E-44
End		422	451	508	480	126	208	536	557
Start AA		340	368	368	396	42	425	455	483
Chain ID		ပ	ပ	ပ	ပ	ပ	o	ပ	ပ
PDB ID		Jme y	Jme y	Jme y	Ime y	Ime y	Ime y	lme y	1me y
SEQ No:		169	169	169	269	697	697	697	269

	т	т																								_			
PDB annotation	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC FINGER DNA ZINC	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	COMPLEY (ZING FRICER (SYL)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (TRANSCRIPTION	REGULATION/DNA) TFIIIA; 5S GENE;	NMR, TFIIIA, PROTEIN, DNA,	TRANSCRIPTION FACTOR, 5S RNA 2	GENE, DNA BINDING PROTEIN, ZINC FINGER COMPI EV 3	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	REGITTATION/DNA) RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	REGILLATION DNA	POLYMERASE III 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	REGULATION/DNA), RNA	POLYMERASE III 2 TRANSCRIPTION
Coumpound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;	DNA: CHAIN: A B D E.	CONSENSUS ZINC FINGER	PROTEIN: CHAIN: C, F, G;		TRANSCRIPTION FACTOR	IIIA; CHAIN: A; 5S RNA	GENE; CHAIN: E, F;				TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE;	, , , , , , , , , , , , , , , , , , , ,		STATE STATE	TrillA; CHAIN: A, D; 5S	KIBUSUMAL KNA GENE; CHAIN: B. C. B. F.	Ciliativ. 2, C, L, I,			TFIIIA; CHAIN: A, D; 5S	KIBOSOMAL RNA GENE; CHAIN: B C F F:		
SeqFold score																107.54													
PMF score		0.58		0.94		-0 13	2			0.4										6	76.0					0.75		,	
Verify score		-0.2		0.53		0.3)			-0.1								_		80	90:0-					-0.02		-	
PSI- BLAST		1.80E-43		5.40E-13		1.10E-09) 			1.10E-19						2.60E-50				3 60E 37	3.00E-37					3.60E-34			
End AA		154		536		86				417						366				346	2					461			
Start AA		73	į	509		71				341						199				200	200					313			
Chain ID		ပ		9		O				✓										A	:		•			<			
PDB U		y y		1me y		Ime	>-			<u>£</u>					+	1110				1116					+	033		-	1
S e S	10,	/69		. 697.		269				697					100	/69			_	269					203				

ó

PDB annotation	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX	(TRANSCRIPTION DEGIT ATTOMONA) PNA	POLYMERASE III, 2 TRANSCRIPTION	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	NITIATION ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	KECUGINITION, 3 COMPLEX	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	KECOGNITION, 3 COMPLEX	COMPLEX (TRANSCRIPTION
Coumpound		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE;	CHAIN: B, C, E, F;		TEILIA: CHARL A D. 50	RIBOSOMAL RNA GENE:	CHAIN: B, C, E, F;			TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE;	CHAIN: B, C, E, F;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			YYI: CHAIN: C: ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			YY1; CHAIN: C; ADENO-
SeqFold score																																		
PMF score		0.23			0.70	7/.0				0.01					69.0							0.51						0.95	<u>;</u>					0.28
Verify score		-0.13			50	-0.02				-0.39					-0.35							-0.29						-0.18	<u> </u>					-0.36
PSI- BLAST		5.40E-36			1 805 30	1.005-30				1.80E-27					1.80E-20							1.30E-39						1.30E-31						1.30E-32
End AA		489			855	920				233					224							338						337	<u>.</u>					393
Start AA		341			707	470				74			_		104							204						235	<u> </u>					260
Chain ID		A				<				A					O							ပ						U)					ပ
PDB ID		9,111,0			1+6%	omi				11f6					lubd							1ubd						lubd	1					1ubd
SEQ B B S		169	_		703	/60 —				269					269							269						269	;					269

	T	J				
PDB annotation	REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIT ATTOMANA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX TRANSCRIPTION, 3 COMPLEX TRANSCRIPTION, 3 COMPLEX	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX TRANSCRIPTION, 3 COMPLEX TRANSCRIPTION, 3 COMPLEX	COMPLEX (TRANSCRIPTION DIA) COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX THE ANSCRIPTION IN T
Coumpound	ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold score						83.84
PMF score		0.7	0.99	_	0.51	
Verify score		-0.3	-0.03	-0.11	0	
PSI- BLAST		1.80E-33	9.00E-35	2.60E-28	3.60E-32	1.80E-34
End AA		365	422	450	508	537
Start AA		263	320	345	404	427
Chain ID		O	ပ	၁	c	ပ
PDB ID		lubd	lubd	lubd	lubd	1ubd
SEQ ID NO:		269	697	697	697	697

PDB annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NMR		COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
Coumpound	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ADR1; CHAIN: NULL;	COMPLEX(TRANSCRIPTION REGULATION/DNA) TRAMTRACK PROTEIN (TWO ZINC-FINGER PEPTIDE) COMPLEXED WITH 2DRP 3 DNA 2DRP 4	ZINC FINGER PROTEIN GL11; CHAIN: A; DNA; CHAIN: C, D;
SeqFold score							
PMF score	0.88	0.46	0.35	0.07	0.31	-0.12	0.45
Verify score	0.06	-0.05	-0.25	-0.45	-0.15	0.26	-0.08
PSI- BLAST	1,80E-34	3.60E-32	1,30E-26	1.30E-18	2.60E-14	1.30E-15	7.20E-26
End AA	536	558	154	253	560	564	279
Start AA	433	463	69	78	512	208	101
Chain ID	ပ	U	ပ	ပ		∢	¥
PDB ID	lubd	lubd	lubd	lubd	2adr	2drp	2gli
SEQ ID NO:	697	697	697	697	269	697	269

SEO	PDB	Chain	Start	End	PST.	Varify	PME	Socrete		aua
g ö	ED	Œ	AA	ΑA	BLAST	score	score	score		LDB allictation
697	2gli	4	102	282	6.50E-40	-0.17	0.99		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-
697	. 2gli	¥	198	308	7.20E-28	0.14	-		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-
269	2gli	A	200	394	5.20E-48	-0.24	0.25		ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
L69	2gli	Y	235	367	1.80E-32	90.0	0.99		ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
269	2gli	A	255	397	5.20E-48			89.2	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING BROTEIN/DNA)
269	2gli	A	292	422	5.40E-35	-0.02	0.78		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
169	2gli	Ą	320	449	3.60E-34	0.04	0.86		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER. COMPLEX (DNA-BINDING PROTEIN/DNA)
697	2gli	A	404	535	5.40E-33	0.5	0.92	-	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
697	2gli	A	.433	558	1.60E-31	0.02	0,22		ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
697	2gli	¥	99	153	1.10E-24	-0.05	0.03		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, COMPLEX (DNA-
269	2gli	A	77	253	3.90E-30	-0.45	0.13		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING

SEQ ID NO:	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify	PMF score	SeqFold score	Coumpound	PDB annotation
									CHAIN: A; DNA; CHAIN: C, D;	PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
869	1edh	⋖	101	302	7.20E-32	-0.1	0.63		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL
								:		ADHESION PROTEIN, CALCIUM BINDING PROTEIN
869	ledh	٧	74	300	7.20E-32			62.4	E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN
	-									AND 2, ECAD12; CADHERIN, CELL
										ADHESION PROTEIN, CALCIUM BINDING PROTEIN
869	1ncj	Y	9	178	1.40E-34	0.04	-0.12		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
869	Incj	Ą	70	302	1.80E-32			64.18	N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
869	1ncj	¥	74	302	1.80E-32	-0.03	0.16		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
869	Isuh		23	62	1.30E-06	-0.22	0.04		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
869	Isuh		74	182	1.30E-08	-0.08	0.01		EPITHELIAL CADHERIN;	CELL ADHESION UVOMORULIN;
									CHAIN: MULL;	ADHESION
701	1a7j		128	281	1.30E-13	0.17	9.0		PHOSPHORIBULOKINASE; CHAIN: NIII.:	TRANSFERASE TRANSFERASE, KINASE CALVIN CYCLE
701	1a7j		95	366	1.30E-13			6.99	PHOSPHORIBULOKINASE; CHAIN: NULL;	TRANSFERASE TRANSFERASE, KINASE, CALVIN CYCLE
701	15d3	۵	306	532	2.60E-73			191.89	URACIL PHOSPHORIBOSYLTRANSFE RASE: CHAIN: D. C. B. A:	TRANSFERASE UPRTASE; TRANSFERASE, GLYCOSYLTRANSFERASE, UPRTASE
701	1bd3	Q	322	532	3.60E-44	0.84	-		URACIL PHOSPHORIBOSYLTRANSFE RASE: CHAIN: D. C. B. A:	TRANSFERASE UPRTASE; TRANSFERASE, GLYCOSYLTRANSFERASE, UPRTASE
701	16d3	Q	324	532	2.60E-73	0.76			URACIL PHOSPHORIBOSYLTRANSFE RASE: CHAIN: D. C. R. A:	TRANSFERASE UPRTASE; TRANSFERASE, GI YCOSYI TRANSFERASE
701	1esm	¥	75	294	1.80E-35	0.43	96.0		PANTOTHENATE KINASE;	TRANSFERASE PANK; PROTEIN-

	Т	T	1	1	1 1			T	T			Т
PDB annotation	INHIBITOR COMPLEX	TRANSFERASE PANK; PROTEIN- INHIBITOR COMPLEX		PHOSPHOTRANSFERASE ADK; PHOSPHOTRANSFERASE, ZINC FINGER	KINASE KINASE, PHOSPHOTRANSFERASE	CHAPERONE HSP40; CHAPERONE, HEAT SHOCK, PROTEIN FOLDING, DNAK	CHAPERONE HSP40; CHAPERONE, HEAT SHOCK, PROTEIN FOLDING, DNAK	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	RNA BINDING PROTEIN RNA- BINDING DOMAIN	ENDOCYTOSIS/EXOCYTOSIS
Coumpound	CHAIN: A, B, C, D;	PANTOTHENATE KINASE; CHAIN: A. B. C. D;	TRANSFERASE URIDYLATE KINASE (E.C.2.7.4) COMPLEXED WITH ADP AND AMP 11182.3	ADENYLATE KINASE; CHAIN: NULL;	THYMIDYLATE KINASE; CHAIN: A, B, C, D, E, F, G, H;	DNAJ; CHAIN: NULL;	DNAJ; CHAIN: NULL;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP *AP*AP*AP*AP *AP*AP*AP*AP	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*AP*AP*AP M, N, O, P, O, R, S, T.	POLYDENYLATE BINDING PROTEIN I; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*AP*AP	HU ANTIGEN C; CHAIN: A;	SYNTAXIN-1A; CHAIN: A, B,
SeqFold score						54.61						
PMF score		0.99	0.54	0.21	0.03		0.52	0.69	0.46	0.46	0.93	-0.13
Verify score		0.55	0.19	-0.33	-0.38		0.52	0.07	0.13	0.03	0.15	0.14
PSI- BLAST		6.50E-67	1.20E-15	0.0078	1.30E-23	1.30E-31	1.30E-31	3.60E-14	1.80E-12	1.80E-12	1.80E-12	1.30E-09
End AA		303	302	302	303	84	84	255	259	259	251	186
Start AA		16	94	105	96	∞	6	182	182	182	185	77
Chain ID		А			O O			¥	Œ.	н	A	∀
PDB ID		lesm	lukz	1zin	3tmk	1bq0	1bq0	lcvj	lcvj	lcvj		lez3
SEQ B		701	701	701	701	702	702	702	702	702	702	702

PDB annotation	KDA PROTEIN, P35A, THREE HELIX BUNDLE			MOLECULAR CHAPERONE HDJ-1; MOLECULAR CHAPERONE			RNA BINDING PROTEIN RNA- BINDING DOMAIN		COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP 1 A1, UP1; COMPLEX TIDE (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	A, B, ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	
Coumpound		HNRNP AI; CHAIN: NULL;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN D0;	HUMAN HSP40; CHAIN: NULL:	HUMAN HSP40; CHAIN: NULL:	HUMAN HSP40; CHAIN: NULL;	MUSASHII; CHAIN: A;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	SYNTAXIN-1A; CHAIN: A, B, C;	
SeqFold score					56.45						
PMF		0.19	0.51			0.47	0.18	0	0.05	0.11	
Verify score		0.33	0.12	0.57		0.01	0.42	0.16	-0.11	0.15	
PSI- BLAST		1.30E-22	5.40E-16	2.60E-19	1.80E-28	1.80E-28	7.20E-17	5.40E-26	1.30E-18	6.50E-06	
End AA		249	249	78	84	84 ·	249	255	259	575	
Start AA		182	182	=	8	∞	182	165	182	468	
Chain D			V				¥	₹	<	A	
PDB ID		lha1	1hd1	1hdj	1hdj	1hdj	2mss	2up1	2up1	lez3	
SEQ ID NO:		702	702	702	702	702	702	702	702	705	

SEQ ID NO:	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	REGULATION/DNA) GABPALPHA; GABPBETAI; COMPLEX (TRANSCRIPTION)
										KEGULA HON/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR
902	lawc	В	691	273	1.30E-30	0.84	-		GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION
										REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR
706	lawc	മ		323	1.80E-36	0.49	-		GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETAI; COMPLEX (TRANSCRIPTION
										REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANK YRIN REPEATS, TRANSCRIPTION 3 FACTOR
706	lawc	B.	209	351	7.20E-33	0.51	0.86		GA BINDNG PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA I; CHAIN: B; DNA; CHAIN: D, E;	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN,
706	1bd8		144	298	3.60E-31			62.42	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	J FACTOR TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRN MOTIF
706	16d8		145	293	3.60E-31	0.85	1		P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR,
706	1bd8		178	320	9.00E-31	0.72			P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR,
706	1bd8		57	224	3.60E-27	0.03	-0.14		P19INK4D CDK4/6	TUMOR SUPPRESSOR TUMOR

├ ──	PDB ID	Chain . ID	Start	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
NO:									INHIBITOR; CHAIN: NULL;	SUPPRESSOR, CDK4/6 INHIBITOR,
丰_	16fx	В	144	297	1.10E-30			63.41	CYCLIN-DEPENDENT KINASE 6; CHAIN: A;	COMPLEX (NHIBITOR PROTEIN/KINASE) INHIBITOR
									PI9INK4D; CHAIN: B;	FROTEIN, CYCLIN-DEFENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)
706	1blx	В	145	293	1.80E-30	0.71			CYCLIN-DEPENDENT	COMPLEX (INHIBITOR
									KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT
										KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)
706 11	1bjx	В	178	315	1.10E-30	0.65	96.0		CYCLIN-DEPENDENT	COMPLEX (NHIBITOR
									KINASE 6; CHAIN: A;	PROTEIN/KINASE) INHIBITOR
									PIYINK4D; CHAIN: B;	KINASE, CELL CYCLE 2 CONTROL,
										ALPHA/BETA, COMPLEX (INFIBITOR PROTEIN/KINASE)
706 11	1blx	В	57	224	3.60E-26	0.24	-0.13		CYCLIN-DEPENDENT	COMPLEX (INHIBITOR
									KINASE 6; CHAIN: A;	PROTEIN/KINASE) INHIBITOR
				-					P19INK4D; CHAIN: B;	PROTEIN, CYCLIN-DEPENDENT
										KINASE, CELL CYCLE 2 CONTROL,
· · · · · · · · · · · · · · · · · · ·										ALPHA/BELA, COMPLEX (INHIBITOR PROTEIN/KINASE)
706	1bu9	A	134	302	9.00E-34			74.38	CYCLIN-DEPENDENT	HORMONE/GROWTH FACTOR P18-
									KINASE 6 INHIBITOR;	INK4C; CELL CYCLE INHIBITOR,
									CHAIN: A;	PISINK4C, TUMOR, SUPPRESSOR,
										CYCLIN- 2 DEPENDENT KINASE, HORMONE/GROWTH FACTOR
706	1bu9	V	175	329	9.00E-34	0.61	0.95		CYCLIN-DEPENDENT	HORMONE/GROWTH FACTOR P18-
									KINASE 6 INHIBITOR;	INK4C; CELL CYCLE INHIBITOR,
									CHAIN: A;	P18INK4C, TUMOR, SUPPRESSOR,
			_				-			HORMONE/GROWTH FACTOR
706	149s	₹	171	273	1.30E-28	0.55	_		CYCLIN-DEPENDENT	SIGNALING PROTEIN HELIX-TURN-
									KINASE 4 INHIBITOR B;	HELIX, ANKYRIN REPEAT
1 90	1 ihb	A	138	296	5.40E-33			68.42	CYCLIN-DEPENDENT	CELL CYCLE INHIBITOR P18-
\dashv									KINASE 6 INHIBITOR;	INK4C(INK6); CELL CYCLE

SEQ	PDB	Chain	Start	End	PSI.	Verify	PMF	SeqFold	Coumpound	PDB annotation
Ö			ve	§	DLA31	score	score	score		
									CHAIN: A, B;	INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6 MAIDITOD
706	1ihb	∢	175	328	5.40E-33	0.88	0.99		CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6
902	likn	Q	82	290	7.20E-41	0.26	96.0		NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-AI PHA: CHAIN: D.	INHIBITIOR TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX
706	likn	Q	95	307	7.20E-41			74.07	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-AI PHA: CHAIN: D.	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX
902	1my o		169	288	2.60E-32			60.99	MYOTROPHIN; CHAIN:	ANK-REPEAT MYOTROPHIN,
902	1my o		172	287	2.60E-32	0.32	-		MYOTROPHIN; CHAIN:	ANK-REPEAT MYOTROPHIN,
902	Infi	ъj	12	208	1.10E-36	0	-0.06		NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: F. F.	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION (TRANSCRIPTION REGULATION/ANK REPEAT)
902	Infi	កា	136	310	5.40E-36	69.0	-		CHAIN: E, F; NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA;	REPEAT J, ANKYRIN 2 REPEAT HELIX COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK
902	Infí	កា	691	341	1.80E-34	0.55	0.46		CITAIN: E, F; NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: F. F.	COMPLEX (TRANSCRIPTION REG/ANK REPEAT HELIX COMPLEX (TRANSCRIPTION (TRANSCRIPTION REGULATION/ANK PERFATT
706	Jufi	ங	204	414	3.60E-27	0.18	0.18		NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: F F.	COMPLEX (TRANSCRIPTION REGIANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK PERFATT, ANIXORNIA STATES THE STA
902	1nfi	ប	18	290	3.60E-41	0.26	0.98		P65; CHAIN: A, -B P50; CHAIN: A-B-ALPHA;	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK
902	Infi	3	95	303	3.60E-41			71.81	P65; CHAIN: A,	COMPLEX (TRANSCRIPTION

150 1.80E-23 1.80E-25 1.8	PDB ID	Chain ID	Start	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
170 362 1.80E-25 75.09 P53; CHAIN: A; 53BP2; CHAIN: B; CHAIN: B; CHAIN: B; CHAIN: B; CHAIN: B; CHAIN: B; CHAIN: B; CHAIN: CHAIN: B; CHAIN:	ļ								C; NF-KAPPA-B P50; CHAIN: B, D; J-KAPPA-B-ALPHA; CHAIN: E, F;	REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK REPEAT), ANK YRIN 2 REPEAT HELIX
19 336 5.40E-42 87.98 CALSEQUESTRIN; CHAIN: NULL 20 332 5.40E-42 0.15 0.96 CALSEQUESTRIN; CHAIN: NULL 133 239 1.60E-13 -0.03 0.07 PROTEIN DISULFIDE 133 239 1.60E-24 0.3 0.54 0.98 THIOREDOXIN M CH2; CHAIN: A; CHAIN: CHAIN: CHAIN: NULL; CH	m		170	362	1.80E-25			75.09	P53; CHAIN: A; 53BP2; CHAIN: B;	COMPLEX (ANTI- ONCOGENE/ANKYRIN REPEATS) P53BP2; ANKYRIN REPEATS, SH3, P53, TUMOR SUPPRESSOR, MULTIGENE 2 FAMILY, NUCLEAR PROTEIN, PHOSPHORYLATION, DISEASE MUTATION, 3 POLYMORPHISM, COMPLEX (ANTI- ONCOGENE/ANKYRIN REPEATS)
19 336 5.40E-42 87.98 CALSEQUESTRIN; CHAIN: NULL 20 332 5.40E-42 0.15 0.96 CALSEQUESTRIN; CHAIN: NULL 133 239 1.60E-13 -0.03 0.07 PROTEIN DISULFIDE 130 5.40E-24 0.3 0.95 CHLOROPLAST THIOREDOXIN M CH2; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; THIOREDOXIN M; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: NULL; CHAIN:	L									
20 332 5.40E-42 0.15 0.96 CALSEQUESTRIN; CHAIN: 133 239 1.60E-13 -0.03 0.07 PROTEIN DISULFIDE 130 131 5.40E-24 52.47 CHLOROPLAST CHAIN: A; 41 128 1.10E-23 0.54 0.98 THIOREDOXIN M; CHAIN: A; 27 130 9.00E-25 0.81 1 B; B; B; B; CHAIN: NULL; 28 20 134 1.10E-31 82.03 PROTEIN DISULFIDE 150 S.40E-24 6.98 CHAIN: A; THIOREDOXIN M; CHAIN: A, B; B; B; B; B; B; B; B; B; B; B; B; B; B			19	336	5.40E-42		-	87.98	CALSEQUESTRIN; CHAIN: NULL	CALCIUM-BINDING PROTEIN CALSEQUESTRIN, CALCIUM-BINDING PROTEIN, SARCOPLASMIC 2 RETICULUM, RABBIT SKELETAL MUSCLE
133 239 1.60E-13 -0.03 0.07 PROTEIN DISULFIDE			20	332	5.40E-42	0.15	96.0		CALSEQUESTRIN; CHAIN: NULL	CALCIUM-BINDING PROTEIN CALSEQUESTRIN, CALCIUM-BINDING PROTEIN, SARCOPLASMIC 2 RETICULUM, RABBIT SKELETAL MUSCLE
23 131 5.40E-24 52.47 CHLOROPLAST THIOREDOXIN M CH2; CHAIN: A; THIOREDOXIN M CH2; CHLOROPLAST THIOREDOXIN M CH2; CHAIN: A; THIOREDOXIN M CH2; CHAIN: A; THIOREDOXIN M; CHAIN: NULL; Z7 130 9.00E-25 0.81 1 B; Z0 134 1.10E-31 182.03 PROTEIN DISULFIDE ISOMERASE; CHAIN: NULL;			133	239	1.60E-13	-0.03	0.07		PROTEIN DISULFIDE	ELECTRON TRANSPORT ELECTRON
23 131 5.40E-24 52.47 CHLOROPLAST THIOREDOXIN M CH2; CHAIN: A; CHAIN: A; CHAIN: A; CHAIN: B; CHAIN: A; CHA								·	ISOMEKASE; CHAIN: NULL;	IKANSFORT, REDOX-ACTIVE CENTER, ISOMERASE, 2 ENDOPLASMIC RETICULUM
30 131 5.40E-24 0.3 0.95 CHLOROPLAST THIOREDOXIN M CH2; CHAIN: A; CHAIN:	' —	₫	23	131	5.40E-24			52.47	CHLOROPLAST THIOREDOXIN M CH2; CHAIN: A;	OXIDOREDUCTASE THIOREDOXIN M, THIOREDOXIN CH2, CHLOROPLASTIC THIOREDOXIN
41 128 1.10E-23 0.54 0.98 THIOREDOXIN; CHAIN: NULL; NULL; NULL; 27 130 9.00E-25 0.81 1 THIOREDOXIN M; CHAIN: A, B; 20 134 1.10E-31 82.03 PROTEIN DISULFIDE 1SOMERASE; CHAIN: NULL; ISOMERASE; CHAIN: NULL;	<u> </u>	∢	30	131	5.40E-24	0.3	0.95		CHLOROPLAST THIOREDOXIN M CH2; CHAIN: A;	OXIDOREDUCTASE THIOREDOXIN M, THIOREDOXIN CH2, CHLOROPLASTIC THIOREDOXIN
27 130 9.00E-25 0.81 1 1 THIOREDOXIN M; CHAIN: A, B; 20 134 1.10E-31 82.03 PROTEIN DISULFIDE ISOMERASE; CHAIN: NULL;			41	128	1.10E-23	0.54	0.98		THIOREDOXIN; CHAIN: NULL;	OXIDOREDUCTASE DIMER, THIOREDOXIN, X-RAY CRYSTALLOGRAPHY, OXIDOREDUCTASE
134 1.10E-31 82.03 PROTEIN DISULFIDE ISOMERASE; CHAIN: NULL;	<u> </u>	∀	27	130	9.00E-25	0.81	1		THIOREDOXIN M; CHAIN: A, B;	ELECTRON TRANSPORT ELECTRON TRANSPORT
			20	134	1.10E-31			82.03	PROTEIN DISULFIDE ISOMERASE; CHAIN: NULL;	ELECTRON TRANSPORT ELECTRON TRANSPORT, REDOX-ACTIVE

PDB annotation	CENTER, ISOMERASE, 2 ENDOPLASMIC RETICLILIM	ELECTRON TRANSPORT ELECTRON TRANSPORT ELECTRON TRANSPORT, REDOX-ACTIVE CENTER, ISOMERASE, 2. FNINOPI ASAIC PRESCRIPTION	ELECTRON TRANSPORT ALPHA/BETA OPEN-TWISTED PROTEIN, THIOL-	TO DNA POLYMERASE, DNA TO DNA POLYMERASE, DNA REPLICATION, NUCLEOTIDYL 2 TRANSFERASE, SEQUENCING, THIOREDOXIN, PROCESSIVITY FACTOR, 3 COMPLEX	TRANSPORTANA)	T7 DNA POLYMERASE, DNA REPLICATION, NUCLEOTIDYL 2 TRANSFERASE, SEQUENCING, THIOREDOXIN, PROCESSIVITY FACTOR, 3 COMPLEX (HYDROLASE/ELECTRON	ELECTRON TRANSPORT THIOREDOXIN 2; 1THX 7 OXIDO-	ELECTRON TRANSPORT THIOREDOXIN 2; ITHX 7 OXIDO-	ELECTRON TRANSPORT HTRX, HCHI, CHI; OXIDOREDUCTASE, ELECTRON TP ANSPORT	Trensi Ort			DNA INTEGRATION
Coumpound		PROTEIN DISULPIDE ISOMERASE; CHAIN: NULL;	THIOREDOXIN; CHAIN: A;	DNA POLYMERASE; CHAIN: A; THIOREDOXIN; CHAIN: B; DNA; CHAIN: P, T;		DNA POLYMERASE; CHAIN: A; THIOREDOXIN; CHAIN: B; DNA; CHAIN: P, T;	THIOREDOXIN; 1THX 5 CHAIN: NULL; 1THX 6	THIOREDOXIN; ITHX 5 CHAIN: NULL; ITHX 6	THIOREDOXIN H; CHAIN: NULL;	ELECTRON TRANSPORT THIOREDOXIN 2TRXA 2	ELECTRON TRANSPORT THIOREDOXIN 2TRXA 2 2TRXA 3		AVIAN SARCOMA VIRUS INTEGRASE; 1ASU 7 CHAIN:
SeqFold score				60.72			55.88			62.2			
PMF score		86:0	_			_		_	99.0				0.39
Verify score		0.43	0.62			0.39		0.75	0.33		0.39		-0.13
PSI- BLAST		1.10E-31	3.60E-24	1.60E-24		1.60E-24	9.10E-22	9.10E-22	9.00E-23	5.40E-25	5.40E-25		1.80E-25
End AA		133	130	128		130	131	125	129	131	130		283
Start AA		21	30	26		27	24	32	25	24	25		130
Chain ID			¥	Ф		m				∢	V		
PDB CI		k ae	Iqu w	1t7p		177p	1thx	1thx		2trx	2trx		rasu
SE Ö	9	60	709	709		60/	709	709	709	709	709	,	CE .

												,					_			_		_								_
PDB annotation		TRANSFERASE DNA INTEGRATION, TRASFERASE DNA INTEGRATION, TRASFERASE	DNA INTEGRATION DNA	INTEGRATION, AIDS, POLYPROTEIN,	HIDROLASE, Z ENDONOCLEASE, POLYNUCLEOTIDYL TRANSFERASE.	DNA BINDING 3 (VIRAL)	TRANSFERASE INTEGRASE, ROUS	SAKCOMA VIRUS, HIV, X-KAY CRYSTALLOGRAPHY, 2 PROTEIN	STRUCTURE, TRANSFERASE	VIRUS/VIRAL PROTEIN INTEGRASE,	CRYSTALLOGRAPHY, 2 VIRUS/VIRAL	TROUGHIN TO ANSEED ASE MIYED BETA SUBET	SURROUNDED BY ALPHA-HELICES	VIRUS/VIRAL PROTEIN HIV-1	INTEGRASE, POLYNUCLEOTIDYL	TRANSFERASE, DNA-BINDING 2 PROTEIN DD35E	HYDROLASE DNA INTEGRATION	INTEGRASE, HIV, HYDROLASE,	ASPARTYL 2 PROTEASE,		ANTI-ONCOGENE CELL CYCLE, ANTI-	ANTI-ONCOGENE CELL CYCLE ANTI-	ONCOGENE, REPEAT, ANK REPEAT	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	GABPBETA1; COMPLEX	(I KAINSCKIF LION PEGI II ATTON/DNA) DNA-BINDING 2	NUCLEAR PROTEIN, ETS DOMAIN,	ANKYRIN REPEATS, TRANSCRIPTION	COMPLEX (TRANSCRIPTION
Coumpound	NULL; IASU 8	INTEGRASE; CHAIN: A; INTEGRASE; CHAIN: A;	INTEGRASE; CHAIN: A, B, C;				INTEGRASE; CHAIN: A, B, C,	;'n		RSV INTEGRASE; CHAIN: A,	ů;	AVIAN SABCOMA VIBIIS	INTEGRASE; CHAIN: A;	POL POLYPROTEIN; CHAIN:	A, B;		HIV-1 INTEGRASE: CHAIN:	A, B, C;			TUMOR SUPPRESSOR	TIMOR SIIPPRESSOR	P16NK4A; CHAIN: NULL;	GA BINDING PROTEIN	ALPHA; CHAIN: A; GA	GIAMING PROTEIN BETA 1;	CHAIN: B; DINA; CHAIN: D, E;			GA BINDING PROTEIN
SeqFold score																														72.74
PMF score		0.29	0.19			!	0.1			0.13		890	0.00	0.17			0.39				0.99	-		-						
Verify score		0.21	0				90'0-			-0.25		80.0	900	0.17			0.41				0.41	0.68	3	0.12						
PSI- BLAST		5.40E-26 5.40E-31	5.40E-33				1.30E-29			3.60E-26		3 KOE-21	770000	9.00E-26			9.00E-28				1.30E-24	6 50F-24		1.10E-34						5.40E-39
End		297	297				337			337		27.6	+	297			297				228	197	`	239				_		230
Start AA		142	142				131			139		135	<u></u>	142			142				112	76		112						73
Chain ID		V V	U				¥			В			:	A			A							В						В
PDB ID		1691 169f	1613				S .	======================================		1cla		1cva		lexq			lgs4				la5e	lase		lawc						lawc
SEQ ID NO:		715	715				715			715		715	}	715			715				719	719		719						719

		T	T -	1			T	
PDB annotation	REGULATION/DNA) GABPALPHA; GABPBETAI; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANK YRIN REPEATS, TRANSCRIPTION	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETAI; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR,	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR,	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR,	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR,	COMPLEX (KINASE/ANTI- ONCOGENE) CDK6; P16INK4A, MTS1; CYCLIN DEPENDENT KINASE, CYCLIN DEPENDENT KINASE, INHIBITORY 2 PROTEIN, CDK, INK4, CELL CYCLE, MULTIPLE TUMOR SUPPRESSOR, 3 MTS1, COMPLEX	COMPLEX (INHIBITOR COGENE) HEADER COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)
Coumpound	ALPHA; CHAIN: A: GA BINDING PROTEIN BETA 1; CHAIN: B: DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	PI9INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; MULTIPLE TUMOR SUPPRESSOR; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;
SeqFold score				68.17				
PMF score		-	0.51		_	_	 	0.36
Verify score		0.32	-0.08		0.77	0.13	0.33	0.21
PSI- BLAST		5.40E-39	1.10E-25	7.80E-35	7.80E-35	1.10E-34	1.40E-25	9.00E-24
End AA		228	091	233	218	231	228	160
Start AA		78	21	73	78	78	112	21
Chain ID		æ					m	В
PDB ID		lawc	1bd8	1bd8	1pq8	16d8	16i7	16lx
SEQ NO:		719	719	719	719	719	719	719

PDB annotation	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHABETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	HORMONE/GROWTH FACTOR P18- INK4C; CELL CYCLE INHIBITOR, P18INK4C, TUMOR, SUPPRESSOR. CYCLIN- 2 DEPENDENT KINASE, HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR P18- INK4C; CELL CYCLE INHIBITOR, P18INK4C, TUMOR, SUPPRESSOR, CYCLIN- 2 DEPENDENT KINASE, HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR P18- INK4C; CELL CYCLE INHIBITOR, P18INK4C, TUMOR, SUPPRESSOR, CYCLIN- 2 DEPENDENT KINASE, HORMONE/GROWTH FACTOR	SIGNALING PROTEIN HELIX-TURN- HELIX, ANKYRIN REPEAT	SIGNALING PROTEIN HELIX-TURN- HELIX, ANKYRIN REPEAT	SIGNALING PROTEIN HELIX-TURN- HELIX, ANKYRIN REPEAT
Coumpound	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A;	CYCLIN-DEPENDENT KINASE 4 INHIBITOR B; CHAIN: A;	CYCLIN-DEPENDENT KINASE 4 INHIBITOR B; CHAIN: A;	CYCLIN-DEPENDENT KINASE 4 INHIBITOR B;
SeqFold score	70.26				67.41				
PMF score		_	_	0.12			-	0.99	1
Verify		0.62	0.39	-0.07		0.17	0.33	0.48	0.73
PSI- BLAST	1.30E-35	1.30E-35	3.60E-34	1.10E-25	1.10E-36	1.10E-36	2.60E-29	1.10E-25	1.20E-28
End	201	218	231	165	239	233	218	234	197
Start AA	44	78	78	18	70	78	101	112	78
Chain ID	æ	В	В	∢	¥	A	Ą	¥	∢
PDB ID	16lx	1blx	1blx	1bu9	1bu9	1bu9	1 <u>49</u> s	1d9s	149s
SEQ ID NO:	719	917	719	719	719	719	719	719	719

	T	I		T	T	T	T		$\overline{1}$	T
PDB annotation		CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6 INHIBITOR	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANK YMIN REPEAT, 2 CDK 4/6 INHIBITOR	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKBNFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX
Coumpound	CHAIN: A;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-AI PHA: CHAIN: D:	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA: CHAIN: D:	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-R-AI PHA: CHAIN: D:	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT: CHAIN: C; I- KAPPA-B-A! PHA-CHAIN: D:	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; 1- KAPPA-B-A1 PHA · CHAIN: D.
SeqFold score				63.76				69.17		
PMF score		0.06	0.93		-	0.33	6.0		0.69	0.76
Verify score		-0.2	0.31		0.24	-0.33	-0.04		-0.05	-0.21
PSI- BLAST		1.40E-21	5.40E-25	5.40E-36	5.40E-36	3.60E-26	3.60E-33	7.20E-39	7.20E-39	1.30E-27
End AA		131	164	232	232	238	771	216	228	144
Start AA			18	75	78	107	13	21	39	5
Chain ID		∢	∢	٧	A	Q	D	Ω	Q	D
PDB ID		Qii I	Tihb	lihb	1ihb	ig P		l ikn	likn	1 ikn
SEQ NO EQ		719	719	719	719	719	719	719	719	719

,	 -				,			_			_			\neg		_													Т	
PDB annotation	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	ANK-REPEAT MYOTROPHIN, ACETYLATION, NMR, ANK-REPEAT	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK REPEAT) ANKYRIN 2 REPEAT HELIX	COMPLEX (TRANSCRIPTION	REG/ANK REPEAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK REPEAT), ANKYRIN 2 REPEAT HELIX	COMPLEX (TRANSCRIPTION	REG/ANK REPEAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK REPEAT) ANKYRIN 2 REPEAT HELIX	COMPLEX (TRANSCRIPTION	REG/ANK REPEAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK	REPEAT), ANKYRIN 2 REPEAT HELIX	COMPLEX (ANTI-	ONCOGENE/ANKYRIN REPEATS)	P53BP2; ANKYRIN REPEATS, SH3, P53,	TUMOR SUPPRESSOR, MULTIGENE 2	FAMILY, NUCLEAR PROTEIN,	PHOSPHOKYLATION, DISEASE	MOTATION, 3 POLYMORPHISM,	ONCOGENE/ANKYRIN REPEATS)	COMPLEX (TRANSCRIPTION PEGIT ATTONIONA) GARPAT PHA:	GABPBETA1; COMPLEX	(TRANSCRIPTION	REGULATION/DNA), DNA-BINDING, 2	NUCLEAR PROTEIN, ETS DOMAIN,	ANKYKIN KEPEAIS, IKANSCKIPIION 3 FACTOR	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA; GABPBETAI: COMPLEX
Coumpound	MYOTROPHIN; CHAIN: NULL	MYOTROPHIN; CHAIN: NULL	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN:	B, D, I-KAPPA-B-ALPHA; CHAIN: F. F.	NF-KAPPA-B P65; CHAIN: A,	C; NF-KAPPA-B P50; CHAIN:	B, D; I-KAPPA-B-ALPHA; CHAIN: E. F:	NF-KAPPA-B P65; CHAIN: A,	C; NF-KAPPA-B P50; CHAIN:	B, D; I-KAPPA-B-ALPHA;	NF-KAPPA-B P65; CHAIN: A,	C; NF-KAPPA-B P50; CHAIN:	B, D; I-KAPPA-B-ALPHA;	CHAIN: E, F;	P53; CHAIN: A; 53BP2;	CHAIN: B;							GA BINDING PROTEIN	BINDING PROTEIN BETA 1;	CHAIN: B; DNA; CHAIN: D, E;				GA BINDING PROTEIN	ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1:
SeqFold score		64.15									65.66				64.29															
PMF score	1		0.94		0.92			0.78															1						_	
Verify score	0.14		0.19		-0.07			0.07															0.79						0.83	
PSI- BLAST	2.60E-28	6.50E-33	9.00E-26		9.00E-33			1.10E-38			1.10E-38				1.60E-20								7.80E-42						2.60E-42	
End AA	225	192	238		177			228			202				239								312						147	
Start AA	110	75	106		12			39			7				74								191						2.	
Chain ID			ப		E			E			田				8								В						В	
PDB ID	lmy o	1my o	Infi	- ,,	Infi			Infi			Infi				lycs								lawc						lawc	
SEQ ID NO:	719	719	416		719			719			719				719								721						721	

PDB annotation	(TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANK YRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATIONDNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION
Coumpound	CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA: CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA I; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA I; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;
SeqFold score						
PMF score			_	_	_	_
Verify score		0.71	1.14	0.72	6.0	1.23
PSI- BLAST		3.60E-34	5.20E-43	1.30E-44	3.60E-39	5.20E-45
End AA		147	378	180	378	412
Start AA		7	226	23	231	259
Chain ID		മ	മ	В	æ	æ
PDB ID		lawc	lawc	lawc	lawc	lawc
SEQ No:		721	721	721	721	721

PDB annotation	REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATIONDNA) GABPALPHA; GABPBETAI; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING. 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETAI; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION) REGULATION/DNA, DNA-BINDING, 2
Coumpound		GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A: GA BINDING PROTEIN BETA 1; CHAIN: B: DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA, CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;
SeqFold score						
PMF				-		0.62
Verify score		0.93	0.93	0.69	0.67	0.22
PSI- BLAST		5.40E-41	1.80E-36	1.30E-38	1.80E-36	7.20E-32
End		411	442	180	475	487
Start AA		264	297	33	330	363
Chain ID		മ	m	æ	B	В
PDB ID		lawc	lawc	lawc	lawc	lawc
SEQ Signal		721	721	721	721	721

PDB annotation	NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION	REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANK YRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX	(TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NICLEAR PROTEIN FTS DOMAIN	ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	(TRANSCRIPTION	REGULATION/DNA), DNA-BINDING, 2	NUCLEAR PROTEIN, ETS DOMAIN,	3 FACTOR	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR,	ANKYRIN MOTIF	I UMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR,	TUMOR SUPPRESSOR TUMOR	SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR,
Coumpound		GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;		GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1;	CHAIN: B; DNA; CHAIN: D, E;		GA BINDING PROTEIN	ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1.	CHAIN: B; DNA; CHAIN: D, E;				P19NK4D CDK4/6 INHIBITOR; CHAIN: NULL;	PIONIKAD CHYAIC	FISINIALD CURANO INHIBITOR; CHAIN: NULL;	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	P19INK4D CDK4/6	INHIBITOR; CHAIN: NULL;	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;
SeqFold score																			
PMF score		-		-										0.43	24.0				
Verify score		0.59		0.79			0.87						0.79	0 12	21.0	0.43	0.73		0.53
PSI- BLAST		6.50E-47		1.40E-39			5.40E-38						2.60E-38	2 60F-38		1.20E-40	9.10E-41		1.30E-41
End AA		213		213			246						187	348	2	149	381		182
Start AA		61		9			SS					00.	871	191		. 2	227		24
Chain ID		Ф		Σ 1			æ,												
PDB ID		lawc		lawc			lawc					01-10	900 T	1bd8		1 pd8	1bd8		1bd8
SEQ NO:		721	101	77/			17/					121	17/	721		721	721		17.1

SEQ EQ	PDB CD	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
										ANKYRIN MOTIF
721	1bd8		263	414	1.20E-38	0.89			PI9INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF
721	15d8		297	442	1.40E-30	0.74	_		PI9INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF
721	1bd8		79	215	7.80E-44	29.0			P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF
721	1blx	В	132	285	1.30E-39	0.83	-		CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)
721	1blx	മ	163	350	5.20E-38	0.13	_		CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)
721	1blx	B	2	153	1.00E-41	0.81	p-od		CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)
721	1blx	A .	22	185	6.50E-43	0.61	-		CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)
721	1blx	α	230	385	1.30E-43	0.78	-		CYCLIN-DEPENDENT KINASE 6; CHAIN: A; PI9INK4D; CHAIN: B;	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)
721	1blx	В	263	416	5.20E-41	1.13			CYCLIN-DEPENDENT	COMPLEX (INHIBITOR

PDB annotation		PROTEIN/KINASE) INHIBITOR	KINANE CELL CYCLE PONTED	AI PHA/BETA COMBI EV (NITIBITOD	PROTEIN/KINASE)	COMPLEX (INHIBITOR	PROTEIN/KINASE) INHIBITOR	PROTEIN, CYCLIN-DEPENDENT	KINASE, CELL CYCLE 2 CONTROL,	ALPHA/BETA, COMPLEX (INHIBITOR	PROTEIN/KINASE)	HORMONE/GROWTH FACTOR P18-	INK4C; CELL CYCLE INHIBITOR,	P18INK4C, TUMOR, SUPPRESSOR,	CYCLIN- 2 DEPENDENT KINASE,	HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR P18-	NK4C; CELL CYCLE INHIBITOR,	P18INK4C, TUMOR, SUPPRESSOR,	CYCLIN- 2 DEPENDENT KINASE,	HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR P18-	INK4C; CELL CYCLE INHIBITOR,	P18INK4C, TUMOR, SUPPRESSOR,	CYCLIN- 2 DEPENDENT KINASE,	HORMONE/GROWTH FACTOR	SIGNALING PROTEIN HELIX-TURN-	HELIX, ANKYRIN REPEAT	OF CALL AT THE COMPANY OF THE PARTY OF THE P	SIGNALING PROTEIN HELIX-TURN-	nbela, Alva i Kilv Kerba i	SIGNALING PROTEIN HELIX-TURN-	HELIX, ANKYRIN REPEAT		SIGNALING PROTEIN HELIX-TURN-	HELIX, ANKYRIN REPEAT		SIGNALING PROTEIN HELIX-TURN- HELIX, ANKYRIN REPEAT
Coumpound		KINASE 6; CHAIN: A;	1 DIMINAD, CITAIN. B,			CYCLIN-DEPENDENT	KINASE 6; CHAIN: A;	P19INK4D; CHAIN: B;				CYCLIN-DEPENDENT	KINASE 6 INHIBITOR;	CHAIN: A;			CYCLIN-DEPENDENT	KINASE 6 INHIBITOR;	CHAIN: A;			CYCLIN-DEPENDENT	KINASE 6 INHIBITOR;	CHAIN: A;			CYCLIN-DEPENDENT	KINASE 4 INHIBITOR B; CHAIN: A:	OVO! IN DEPENDENT	CICLIN-DEFENDENT KINASE AINHIBITOD D.	CHAIN: A:	CYCLIN-DEPENDENT	KINASE 4 INHIBITOR B;	CHAIN: A;	CYCLIN-DEPENDENT	KINASE 4 INHIBITOR B;	CHAIN: A,	CYCLIN-DEPENDENT KINASE 4 INHIBITOR B; CHAIN: A:
SeqFold	a loos																					90.26																
PMF	score					_					,	_					0.35									,			_	-		_			_			_ .
Verify	31036					0.39						0.61				١	0.37									ì	9.0		990	3		0.58			0.65			0.0
PSI-	Towns					6.50E-43					0000	/.Z0E-38					1.80E-32					7.20E-38				2000	6.50E-36		1 30F-37	2000		1.30E-40			2.60E-38		2 505 20	2.00E-38
End						252					30.	<u>8</u>				30,	480					807				1	55		384			416			185		21,6	017
Start						64				_	1,5	55				1350	330				į	5				1.	-		250			283			52		1/8	5
Chain						മ						<					∢					⋖					<		V		,	٧			٧		4	
PDB ID						Iblx					1.4	sna i				1	ion ion				3	no i				207-	2501		1d9s			1d9s		9	SAPI		1,400	s in
SEQ ID	Ö					721					731	17/				12.	17/				į	17/				72.1	17/		721			721		į	17/		721	

		,				,	T			
PDB annotation	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6 INHIBITOR	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6 INHIBITOR	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6 INHIBITOR	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANK YRIN REPEAT, 2 CDK 4/6 INHIBITOR	TRANSCRIPTION FACTOR, 1KB/NFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D;
Coumpound	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA; CHAIN: D;	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA; CHAIN: D;	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA; CHAIN: D;	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA: CHAIN: D:	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-AI.PHA: CHAIN: D:	NF-KAPPA-B P65 SUBUNIT;
SeqFold score				88.22	82.11					
PMF score	1	-	0.92			0.93	0.99	_	_	0.39
Verify score	7.0	0.55	0.5			-0.02	0.48	0.56	0.55	0.4
PSI- BLAST	1.80E-32	3.60E-37	1.30E-31	3.60E-37	2.60E-57	2.60E-55	5.20E-52	5.40E-43	7.80E-52	7.20E-39
End AA	446	184	479	250	333	386	188	411	416	475
Start AA	297	33	330	96	127	161	2	226	226	292
Chain ID	Ą	Ą	A	A	D	D	D	Ω	Ω	Ω
PDB ID	lihb	11hb	lihb	lihb	likn	likn	likn	likn	likn	1 ikn
SEQ ID NO:	721	721	721	721	721	721	721	721	721	721

			T	<u> </u>	1	1					
PDB annotation	TRANSCRIPTION FACTOR, IKBNFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKBANFKB COMPLEX	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKBANFKB COMPLEX	TRANSCRIPTION FACTOR P63; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK REPEAT) ANIXYDIN 2 DEDAT THE IX	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK REPEAT) ANK YRIN 2 DEPEAT LIET IY	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK PEPEAT) ANY VENEY OF THE 1X	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK PEDEAT), ANK VD N. 2, DEDEAT, N.	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK REPEAT) ANK VOIN 2 PEDE AT LIET IN	COMPLEX (TRANSCRIPTION
Coumpound	CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-AI PHA: CHAIN: D:	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-AI PHA: CHAIN: D:	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA: CHAIN: D:	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA: CHAIN: D:	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: F. F.	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: F. F.	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: F. F.	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA;	CIPALY, 17, NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: F. F.	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: F. F.	NF-KAPPA-B P65; CHAIN: A,
SeqFold score					85.42						
PMF		0.05	-			_		I	_	-	_
Verify score		60.0	0.2	0.22		80.0	69.0	0.49	0.82	8.0	0.65
PSI- BLAST		7.20E-34	5.40E-38	2.60E-57	2.60E-52	2.60E-52	7.80E-42	7.80E-53	7.20E-43	6.50E-52	1.60E-38
End		486	233	256	322	350	153	216	411	420	475
Start AA		325	61	61	124	124	2	21	224	226	292
Chain ID		Q	Q	Ω	យ	3	स्र	ជា	មា	ជ	ப
PDB ID		1 ikn	likn	likn	Infi	lnfi	1nfi	Infi	Infi	Infi	1nfi
SEQ ID		721	721	721	721	721	721	721	721	721	721

	l	J			1	<u></u>					Г							Г			_				Т							
PDB annotation	(TRANSCRIPTION REGULATION/ANK REPEAT), ANKYRIN 2 REPEAT HELIX	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK	REPEAT, ANKYRIN 2 REPEAT HELIX		COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA:	GABPBETAI; COMPLEX	(TRANSCRIPTION REGULATION/DNA) DNA-BINDING 2	NUCLEAR PROTEIN, ETS DOMAIN,	ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	GABPBETAI; COMPLEX	(IRANSCRIPTION	KEGULATION/DNA), DNA-BINDING, 2	ANKYRIN REPEATS, TRANSCRIPTION	3 FACTOR	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	GABPBETA1; COMPLEX	(IKANSCKIFIION	KEGULATION/DNA), DNA-BINDING, 2	ANEXPENDEDEATS TO ANSCRIPTION	3 FACTOR	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	GABPBETA1; COMPLEX	(TRANSCRIPTION	REGULATION/DNA), DNA-BINDING, 2	NUCLEAR PROTEIN, ETS DOMAIN,	3 FACTOR	COMPLEX (TRANSCRIPTION REGILI ATION/DNA) GARPAI PHA:
Coumpound	B, D; I-KAPPA-B-ALPHA; CHAIN: E, F;	NF-KAPPA-B P65; CHAIN: A,	B, D; I-KAPPA-B-ALPHA;	CHAIN: E, F;		GA BINDING PROTEIN ALPHA: CHAIN: A: GA	BINDING PROTEIN BETA 1;	CHAIN: B; DNA; CHAIN: D, E;			GA BINDING PROTEIN	ALPHA: CHAIN: A; GA	BINDING PROTEIN BETA 1;	CHAIN: B; DNA; CHAIN: D, E;				GA BINDING PROTEIN	ALPHA; CHAIN: A; GA	GHAMI B. DNA. CHAMI D. E.	Chain: B; Diva; Chain: D, E;				GA BINDING PROTEIN	ALPHA; CHAIN: A; GA	BINDING PROTEIN BETA 1;	CHAIN: B; DNA; CHAIN: D, E;				GA BINDING PROTEIN ALPHA: CHAIN: A: GA
SeqFold score																							_	-	64.41							
PMF score		96.0				1		-			0.64							-0.17														1
Verify score		0.52				0.32					0.4							0.02														0.35
PSI- BLAST		1.80E-33				1.60E-31					1.60E-23							3.60E-30							5.40E-36							5.40E-36
End AA		486				280					343							408							198							157
Start AA		323				107					175							265							31							6
Chain ID		ப				B					В							æ							В							В
PDB ID		lnfi				lawc					lawc							lawc							lawc							lawc
SEQ ID NO:		721				723					723						-	723							723							723

	NG, 2 N, TION	A; NG, 2 N, TION	٠,٠	٠,	٠,	IL, TOR	lL, TOR	% ,
PDB annotation	GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANK YRIN REPEATS, TRANSCRIPTION 3 FACTOR	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR	HORMONE/GROWTH FACTOR P18- INK4C; CELL CYCLE INHIBITOR, P18INK4C, TUMOR, SUPPRESSOR, CYCLIN - 2 DEPENDENT KINASE,
	GABPBETA (TRANSCR REGULATI NUCLEAR ANKYRIN 3 FACTOR	COMPLEX REGULATI GABPBET/ (TRANSCR REGULATI NUCLEAR ANKYRIN 3 FACTOR	TUMC SUPPI	TUMC SUPPI	SUPPI ANKY	COMP PROT PROT KINAS ALPH	COMP PROTI PROTI KINAS	HORN INK4C P18IN CYCL
Coumpound	BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	PI9INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	CYCL,N-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A;
SeqFold score			56.93					
PMF score		_				ļ -	_	0.3
Verify score		0.71		0.43	0.21	0.44	0.44	0.24
PSI- BLAST		2.60E-27	3.60E-29	7.20E-27	3.60E-29	2.60E-26	5.40E-29	3.60E-29
End		212	201	182	160	202	148	291
Start AA		72	38	43	6	43	6	107
Chain ID		В				В	В	¥
PDB ID		lawc	1bd8	1548	1bd8	1blx	16ix	1bu9
SEQ NO:		723	723	723	723	723	723	723

SEQ ID	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
									KINASE 6 INHIBITOR; CHAIN: A;	INK4C; CELL CYCLE INHIBITOR, P18INK4C, TUMOR, SUPPRESSOR, CYCLIN- 2 DEPENDENT KINASE, HORMONF/GROWTH FACTOR
723	1bu9	∀	73	234	1.80E-26	0.32	0.88		CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A;	HORMONE/GROWTH FACTOR P18- HORMONE/GROWTH FACTOR P18- INK4C, CELL CYCLE INHIBITOR, P18INK4C, TUMOR, SUPPRESSOR, CYCLIN- 2 DEPENDENT KINASE,
723	lihb	¥	107	284	1.80E-28	0.07	0.35		CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6
723	1 ihb	¥	9	161	1.80E-33	0.15	0.99		CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	CELL CYCLE INHIBITOR P18- INK4C(INK6); CELL CYCLE INHIBITOR, P18-INK4C(INK6), ANKYRIN REPEAT, 2 CDK 4/6
723	Lika Pinana Pina Pi	Ω	2	174	1.80E-43	0.13	_		NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA: CHAIN: D:	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX
723	1 ika	Q	2	208	1.80E-43			61.01	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA; CHAIN: D;	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX
227	I IK	a	35	229	3.60E-36	0.37	0.95		NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-ALPHA; CHAIN: D;	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX
77	5	<u></u>	89	280	1.10E-28	-0.02	0.43		NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I- KAPPA-B-AI PHA · CHAIN: D:	TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKBNFKB COMPLEX
723	Infi	ш	136	288	5.40E-30	90.0	0.65		NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: F.	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK
723	lnfi	ப	2.	174	9.00E-44	0.31	-		OFFERNOR OF STATES OF STAT	COMPLEX (TRANSCRIPTION REG'ANK REPEAT) COMPLEX

PDB annotation	(TRANSCRIPTION REGULATION/ANK REPEAT), ANKYRIN 2 REPEAT HELIX	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK REPEAT), ANKYRIN 2 REPEAT HELIX	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK REPEAT), ANKYRIN 2 REPEAT HELIX	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS
Coumpound	B, D; I-KAPPA-B-ALPHA; CHAIN: E, F;	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: E. F:	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: E, F;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONUCLEASE INHIBITOR; CHAIN: A. D: ANGIOGENIN; CHAIN: B, E;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;
SeqFold score			59.74				93.46	•
PMF score				0.07	0.16	0.55		
Verify score		0.49		-0.4	-0.3	-0.33		0.15
PSI- BLAST		5.40E-36	9.00E-44	1.30E-13	9.00E-17	2.60E-22	3.90E-36	9.10E-39
End		229	246	369	577	597	558	376
Start AA		34	36	-	219	267	83	83
Chain ID		ம	ப	4	⋖	¥	¥	¥
PDB ID		Infi	1nfi	1a4y	1a4y	1a4y	la4y	1a4y
SEQ ID NO:		723	723	725	725	725	725	725

PDB annotation	HAIN: COMPLEX (NUCLEAR PROTEIN/RNA); U2 COMPLEX (NUCLEAR PROTEIN/RNA), RNA SNRNP RIBONIICI EOPROTEIN	1					1	1	+					
Coumpound	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A; CHAIN: A, C; U2 B": CHAIN: B. D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A; CHAIN: A, C; U2 B"; CHAIN: B. D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B. D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A; CHAIN: A, C; U2 B"; CHAIN: B. D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A; CHAIN: A, C; U2 B": CHAIN: B. D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B. D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B": CHAIN: B. D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B": CHAIN: B. D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B. D:	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A; CHAIN: A, C; U2 R". CHAIN: B, D.	INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;
SeqFold score						-								
PMF score	0.57	0.75	0.77	0.45	0.99	0.84	0.88	69:0	0.45	0.55	96.0	. 89.0	ı	
Verify score	-0.02	90.0	0.12	-0.33	0.22	-0.06	0.24	-0.04	0	0.05	0.27	-0.09	0.02	0.12
PSI- BLAST	5.20E-27	1.30E-25	3.90E-19	6.50E-20	3.90E-29	1.20E-27	2.60E-25	3.90E-19	6.50E-20	9.10E-26	6.50E-29	1.60E-26	1.30E-24	5.40E-29
End	306	351	576	576	228	319	351	576	576	213	236	158	319	364
Start AA	134	203	430	454	68	134	203	430	454	82	68		104	216
Chain ID	∢	¥	A	A	Ą	ပ	O ·	၁	2	C	၁	A	А	A
PDB UD	1a9n	la9n	la9n	1a9n	1a9n	la9n	la9n	1a9n	la9n	la9n	1a9n	1406	140b	140b
SEQ NO:	725	725	725	725	725	725	725	725	725	725	725	725	725	725

PDB annotation	ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING, CELL ADHESION	TRANSFERASE CRYSTAL STRUCTURE, RAB	GERANYLGERANYLTRANSFERASE,	FORMYLMETHIONINE, ALPHA	SUBUNIT, BETA SUBUNIT	TRANSFERASE CRYSTAL	STRUCTURE, RAB	GERANYLGERANYLTRANSFERASE,	2.0 A 2 RESOLUTION, N-	SUBUNIT, BETA SUBUNIT		TRANSFERASE CRYSTAL	STRUCTURE, RAB	GEKANYLGEKANYLIKANSFEKASE,	FORMYLMETHIONINE. ALPHA	SUBUNIT, BETA SUBUNIT		TRANSFERASE CRYSTAL	STRUCTURE, RAB	OBEAN I LOBRANT LIKANSFERASE,	FORMYI METHIONINE AI PHA	SUBUNIT, BETA SUBUNIT		TRANSFERASE CRYSTAL	STRUCTURE, RAB GERANYLGERANYLTRANSFERASE,
Coumpound		INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	INTERNALIN B; CHAIN: A;	RAB GERANYLGERANYLTRANSF	ERASE ALPHA SUBUNIT;	GERANYLGERANYLTRANSF	EKASE BETA SUBUNIT; CHAIN: B, D;	RAB	GERANYLGERANYLTRANSF	ERASE ALPHA SUBUNIT;	CHAIN: A. C.; RAB	ERASE BETA SUBUNIT;	CHAIN: B, D;	RAB	GERANYLGERANYLTRANSF	EKASE ALPHA SUBUNII;	GERANYLGERANYLTRANSF	ERASE BETA SUBUNIT;	CHAIN: B, D;	RAB	GEKANYLGEKANYLIKANSF EPASE ALBUA SIIDIBIIE	CHAIN A C. RAR	GERANYI GERANYI TRANSF	ERASE BETA SUBUNIT;	CHAIN: B, D;	RAB	GERANYLGERANYLTRANSF ERASE ALPHA SUBUNIT;
SeqFold score											-					_		_										
PMF score		0.4	0.92	0.34	1				0.95						96.0						0.22						0.07	
Verify score		0.04	0.18	60.0	0.12				-0.23						0.18						0.08						0.07	
PSJ- BLAST		9.00E-28	5.40E-24	1.10E-21	3.60E-13				5.40E-13						6.00E-13						1.80E-13						7.20E-09	
End		406	166	965	301				346						369						533						601	
Start AA		242	32	415	216				246						268						428						475	
Chain ID		¥	Ą	А	¥				A						¥						¥						٧	
PDB DD		1406	1d0b	1406	1dce				1 dce	-					1dce					;	Idce						1dce	
SEQ NO:		725	725	725	725				725						725						725						725	

PDB annotation	2.0 A 2 RESOLUTION, N-FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYLMETHIONINE, ALPHA SUBUNIT, BETA SUBUNIT	CONTRACTILE PROTEIN LEUCINE- RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	CONTRACTILE PROTEIN LEUCINE- RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	CONTRACTILE PROTEIN LEUCINE- RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	CONTRACTILE PROTEIN LEUCINE- RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHLAMYDOMONAS, FLAGELLA	CONTRACTILE PROTEIN LEUCINE- RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2 CHIAMYDOMONAS, FLAGELLA	LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIQUITIN, 2 E3, IIRIOI IITIN PROTEIN 1 GASE	LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE-
Coumpound	CHAIN: A, C; RAB GERANYLGERANYLTRANSF ERASE BETA SUBUNIT; CHAIN: B, D;	RAB GERANYLGERANYLTRANSF ERASE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSF ERASE BETA SUBUNIT; CHAIN: B, D;	OUTER ARM DYNEIN; CHAIN: A;	SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H, J, L, N, P;	SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H, J, L, N, P;				
SeqFold score									
PMF score		0.95	0.21	0.94	0.12	0.52	0.75	0.04	0.09
Verify score		0.3	-0.34	-0.36	-0.73	-0.47	-0.79	0.02	-0.35
PSI- BLAST		1.30E-13	3.60E-13	1.10E-14	7.20E-13	1.30E-13	3.90E-26	3.60E-07	1.30E-09
End		170	140	324	346	164	213	172	575
Start AA		09	17	210	232	70	82	_	264
Chain ID		٠ .	A	A	A	A	•	¥	¥
PDB ID		Idce	6sp1	1ds9	1ds9	1ds9	6sp1	Ifqv	Ifqv
SEQ ID NO:		725	725	725	725	725	725	725	725

	F	<u> </u>				_		Г				1		_		7											Τ-		_
PDB annotation	RICH RÈPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19-	SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, HBIOLITHN 2 F3	UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2- ASSOCIATED P45; CYCLIN A/CDK2-	ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF	2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2.	ASSOCIATED P19; SKP1. SKP2. F-BOX.	LRRS, LEUCINE-RICH REPEATS, SCF,	2 UBIQUITIN, E3, UBIQUITIN PROTEIN	LIGASE CYCLIN A/CDK2-	ASSOCIATED P45; CYCLIN A/CDK2. ASSOCIATED P19: SKP1 SKP2 F-BOX	LRRS, LEUCINE-RICH REPEATS, SCF	2 UBIQUITIN, E3, UBIQUITIN PROTEIN	LIGASE	GTPASE ACTIVATING BROTEN FOR	SPI1, GTPASE-ACTIVATING PROTEIN.	GAP, RNA1P, RANGAP, LRR.	LEUCINE- 2 RICH REPEAT PROTEIN,	TWINNING, HEMIHEDRAL	TWINNING, 3 MEROHEDRAL	TWINNING, MEROHEDRY	ACETYLATION RNASE INHIBITOR,	RIBONUCLEASE/ANGIOGENIN	INHIBITOR ACETYLATION, LEUCINE- RICH REPEATS	ACETYL ATION RNASE INHIBITOR	RIBONUCLEASE/ANGIOGENIN	THE PROPERTY OF THE PROPERTY O
Coumpound		SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H. J. L. N. P.			SKP2; CHAIN: A, C; SKP1; CHAIN: B, D;			SKP2; CHAIN: A, C; SKP1;	, a ; a ; a ; a ; a ; a ; a ; a ; a ; a			SKP2; CHAIN: A, C; SKP1;	CHAIN: B, D;			CTBASE ACTIVATING	PROTEIN RNA1 SCHEO:	CHAIN: A, B;	•					RIBONUCLEASE INHIBITOR;	CHAIN: NULL;		RIBONUCLEASE INHIBITOR	CHAIN: NULL;	
SeqFold score																					-			_					
PMF		0.06			0.11			0.27				0.31				20	5.0							0.22			0.87		
Verify score		-0.06			-0.09			-0.12				-0.14				0.22	77.0-							-0.07			-0.26		_
PSI- BLAST	i	1.00E-16			3.60E-11	_		7.80E-19				6.50E-40				1 30E-00	1.30L-02						9,	1.10E-19			5.40E-21		
End		253			453			577	-			338				431	Ē						30,	498			592		_
Start AA		2			244			401			•	68				211	117						9.	011			239		
Chain ID		⋖			⋖			¥				A	_			A	;	_											
PDB ID		lfqv			1152			1fs2				1fs2				lvro	0		_				1-16	uuq7			2bnh		-
SEQ ID NO:		725			725			725				725				725	}						705	C7/			725		

Γ			.3.	Τ	T		7		T			- 2		T					 z.	Τ					
PDB annotation	RICH REPEATS ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN	INHIBITOR ACETYLATION, LEUCINE- RICH REPEATS	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR ACETYLATION, LEUCINE- RICH REPEATS		COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; GABPBETA1; COMPLEX	(TRANSCRIPTION	REGULATION/DNA), DNA-BINDING, 2 NICLEAR PROTEN ETS DOMAIN	ANKYRIN REPEATS, TRANSCRIPTION	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	GABLEELAL; COMPLEA (TRANSCRIPTION	REGULATION/DNA), DNA-BINDING, 2	NOCLEAR PROTEIN, ETS DOMAIN, ANKYRIN REPEATS, TRANSCRIPTION 13 FACTOR	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	GABPBETAT; COMPLEX (TRANSCRIPTION	REGULATION/DNA), DNA-BINDING, 2	NUCLEAR PROTEIN, ETS DOMAIN,	ANK YKIN KEPEATS, TKANSCRIPTION 3 FACTOR	COMPLEX (TRANSCRIPTION	REGULATION/DNA) GABPALPHA;	GABPBETA1; COMPLEX (TRANSCRIPTION	REGULATION/DNA), DNA-BINDING 2	NUCLEAR PROTEIN, ETS DOMAIN,	ANKYRIN REPEATS TRANSCRIPTION
Coumpound	RIBONUCLEASE INHIBITOR; CHAIN: NULL;		RIBONUCLEASE INHIBITOR; CHAIN: NULL;		GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1;	CHAIN: B; DNA; CHAIN: D, E;			GA BINDING PROTEIN	ALPHA; CHAIN: A; GA	CHAIN: B; DNA; CHAIN: D, E;			GA BINDING PROTEIN	ALPHA; CHAIN: A; GA	CHAIN: B: DNA: CHAIN: D. E:				GA BINDING PROTEIN	ALPHA; CHAIN: A; GA	CHAIN' B' DNA' CHAIN' D' F'			
SeqFold score			90.38											53.5											
PMF score	0.01				-0.03				0.29											0.72					
Verify score	-0.33				0.12		_		0.19											0.32					
PSI- BLAST	1.80E-19		1.10E-19		3.60E-32				1.30E-35					1.30E-35						1.60E-31					
End	448		558		145				.167					179						203					
Start AA	35		\$		7				23					27						55					
Chain ID					m				В			_		В						В					
PDB ID	2bnh		2bnh		lawc				lawc					lawc						lawc	•				
SEQ NO:	725		/25		728				728					728						728					

PDB annotation	3 FACTOR	HORMONE/GROWTH FACTOR P18- INK4C; CELL CYCLE INHIBITOR,	P18INK4C, TUMOR, SUPPRESSOR,	CYCLIN- 2 DEPENDENT KINASE,	HORMONE/GROWTH FACTOR PIR.	INK4C; CELL CYCLE INHIBITOR,	P18INK4C, TUMOR, SUPPRESSOR,	CYCLIN- 2 DEPENDENT KINASE,	HORMONE/GROWTH FACTOR	HORMONE/GROWTH FACTOR P18-	INK4C; CELL CYCLE INHIBITOR,	PISINK4C, IUMOK, SUPPKESSOK,	CYCLIN-2 DEPENDENT KINASE,	HOLDING WILLIAM ON	CELL CYCLE INHIBITOR P18-	INK4C(INK6); CELL CYCLE	INHIBITOR, P18-INK4C(INK6),	ANKYRIN REPEAT, 2 CDK 4/6	INHIBITOR	TRANSCRIPTION FACTOR P65; P50D;	IKANSCKIPIION FACIOK, IKB/NFKB	COMPLEX		TRANSCRIPTION FACTOR P65; P50D;	I KANSCKIP I I ON FACTOR, IKB/NFKB	COMPLEX	COMPLEX (TRANSCRIPTION	REG/ANK REPEAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK	REPEAT), ANKYRIN 2 REPEAT HELIX	COMPLEX (TRANSCRIPTION	REG/ANK REPEAT) COMPLEX	TRANSCRIPTION REGULATION/ANK	REPEAT), ANKYRIN 2 REPEAT HELIX	COMPLEX (TRANSCRIPTION	REG/ANK REPEAT) COMPLEX	(TRANSCRIPTION REGULATION/ANK	REPEAT), ANKYRIN 2 REPEAT HELIX
Coumpound		CYCLIN-DEPENDENT KINASE 6 INHIBITOR;	CHAIN: A;		CVC! IN-DEPENDENT	KINASE 6 INHIBITOR;	ĆHAIN: A;			CYCLIN-DEPENDENT	KINASE 6 INHIBITOR;	CHAIN: A;		21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CYCLIN-DEPENDENT	KINASE 6 INHIBITOK;	CHAIN: A, B;			NF-KAPPA-B P65 SUBUNIT;	CHAIN: A; NF-KAFFA-B FOUD	SUBUNIT; CHAIN: C; I-	KAFFA-B-ALFHA; CHAIN: D;	NF-KAPPA-B P65 SUBUNIT;	CHAIN: A; NF-KAPPA-B PSUD	KAPPA-B-AI PHA: C; J-	NF-KAPPA-B P65: CHAIN: A	C; NF-KAPPA-B P50; CHAIN:	B, D; I-KAPPA-B-ALPHA;	CHAIN: E, F;	NF-KAPPA-B P65; CHAIN: A,	C; NF-KAPPA-B P50; CHAIN:	B, D; I-KAPPA-B-ALPHA;	CHAIN: E, F;	NF-KAPPA-B P65; CHAIN: A,	C; NF-KAPPA-B P50; CHAIN:	B, D; I-KAPPA-B-ALPHA;	CHAIN: E, F;
SeqFold score																																	• • •					
PMF score		0.01			60 0				,	-0.15				.,	0.41		•			0.24		-		0.23			0.22				0.36				0.09			
Verify score		0.33			0.28	}				0.04				,	0.25					0.15				0.27			0.24	-			0.16				0.03			
PSI- BLAST		1.80E-29			1 80E-29) }			10 1107	1.40E-27				2000	3.60E-29					9.00E-37				1.80E-32			9.00E-37				5.40E-32				1.30E-26			
End		183			150					250					90					162				861			162				198				245			
Start AA		23			5	·			Į	76					57					12				<u>∞</u>			12				11				20			
Chain ID		¥			4					⋖					₹					a			,	Ω			E				ជា				<u>ш</u>			
PDB ID		1bu9			1hu9					l bug l				117.	oui					ē.				ıkı E			Infi				1nfi				lnfi			
SEQ NO:		728			728				6	87/				220	97/					87/			3	728			728				728				728			

			(i)		T	T		T	T
PDB annotation	COMPLEX (TRANSCRIPTION REG/ANK REPEAT) COMPLEX (TRANSCRIPTION REGULATION/ANK REPEAT), ANKYRIN 2 REPEAT HELIX	PHOSPHOTRIESTERASE PHOSPHOTRIESTERASE, HYPOTHETICAL PROTEIN	SI RNA-BINDING DOMAIN POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE, SI RNA-BINDING DOMAIN, POLYNUCLEOTIDE PHOSPHORYLASE 2 (PNPASE)	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZING EINGER COM A)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2
Coumpound	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I-KAPPA-B-ALPHA; CHAIN: E, F;	PHOSPHOTRIESTERASE HOMOLOGY PROTEIN; CHAIN: A, B;	PNPASE; CHAIN: NULL;	OGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE RINDING STTF: CHAIN: B. C.	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C.	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: R. C.		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G;
SeqFold score					81.11				
PMF score	0.03	69.0	_	0.82		-	6.0	0.96	-
Verify score	0.06	0.37	0.13	0.08		-0.04	-0.33	90.0	0.27
PSI- BLAST	5.40E-29	3.90E-07	5.40E-23	1.10E-26	7.80E-45	7.80E-45	6.50E-41	1.80E-43	3.60E-46
End AA	253	208	618	217	443	469	498	217	245
Start AA	88	74	540	137	361	389	417	136	164
Chain ID	ជ	A		A	Ą	¥	¥	O .	U
PDB ID	Infi	1bf6	lsro	lalh	laih	lalh	laih	Ime y	1me y
SEQ NO:	728	729	731	736	736	736	736	736	736

PDB annotation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROLEIN-DNA	CRYSTAL STRICTIBE COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	MINGER, FROI EIN-DINA	INTERACTION, FROIEIN DESIGN, 2	CRISIAL SIRUCIORE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-UNA	INTERACTION, PROTEIN DESIGN, 2	CRISIAL SIRUCIONE, COMPLEX (ZINC FINGER/DNA)
Coumpound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	DEOTER: CHARL CE	FROIBIN, CHAIN: C. F. G.		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROJEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	DDOTEIN: CHARL OF G.	rnotelly, Chally, C, F, G,		DNA; CHAIN: A. B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSOS ZINC FINGEK	PROTEIN; CHAIN: C, F, G;	
SeqFold score																								104.61												
PMF		1				_				_				-														_								
Verify		0.41				0.19				0.38				0.26					0.46									0.44					0.05			
PSI- BLAST		9.00E-48				7.20E-49				9.00E-51				7.20E-51					3.60E-50					7.20E-51				9.00E-50					3.60E-50			
End AA		273				301				357				385					413				:	414				441					469			
Start AA		192			300	220				276				304					332					332				360					388			
Chain ID		O				ر.				C				ပ					ပ					ပ				S					ပ			
PDB ID		1me y			+	<u> </u>	<u>~</u>			1me	>			lme	^			十	Ime	 >			1	— ЭШ ;	`			lme	^			,	Jme	<u>~</u>		
SEQ NO:		736		<u> </u>	ì	136				736				736					736				ì	/36				736					736			

Ghain Start End D AA AA	Chain Start End D AA AA	Start End AA AA		BI	PSI- BLAST	Verify	PMF score	SeqFold score	Coumpound	PDB annotation
Ime C 416 497 1.80E-50 -0.1 1	C 416 497 1.80E-50	497 1.80E-50	1.80E-50	<u> </u>	-0.1	-			DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
1tf6 A 137 282 1.40E-34 0.09 0.33	A 137 282 1.40E-34 0.09	282 1.40E-34 0.09	1.40E-34 0.09	0.09	<u> </u>	0.3	m		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION MITIATION ZINC ENGER PROTERN
Y	A 193 338 1.10E-36	338 1.10E-36	1.10E-36		0.04	_			TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION 2'NC FINGER PROTEIN
۷	A 276 444 2.60	444 2.60	2.60	2.60E-79		Į.		112.4	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION RNA REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZINC FINGER PROTEIN
1tf6 A 333 479 3.60E-38 -0.11 0.95	A 333 479 3.60E-38 -0.11	479 3.60E-38 -0.11	3.60E-38 -0.11	-0.11		6.0	8		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZINC FINGER PROTEIN
A 361 499 1.60E-35 -0.04	A 361 499 1.60E-35 -0.04	499 1.60E-35 -0.04	1.60E-35 -0.04	-0.04	 	0	0.92		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION 2NC FINGER PROTEIN
1ubd C 111 217 5.40E-29 0.01 0.19	C 111 217 5.40E-29 0.01	217 5.40E-29 0.01	5.40E-29 0.01	0.01		0	61		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA: CHAIN: A, B;	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1. ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX

PDB annotation	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	FINGER PROTEIN DNA PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	KEGULATION/DNA) YING-YANG I;	INTIATOR ELEMENT VVI 2INC.	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	I KANSCKIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	PECOCNITION 2 CONTROL EIN	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	רוואסנה ראסו בווא, בואל-ראסו מווא
Coumpound		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	Chain: A, B;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIKUS PS	CHAIN A B.				YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	CHAM: A D.	CHAIN: A, B;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;	
SeqFold score																							-			89.47											
PMF score		1									_		1							-													_			-	
Verify score		0.03					0.18						0.11							0.1													0.01	-			
PSI- BLAST		1.00E-56					1.30E-55						1.20E-57							3.90E-57						3.90E-57							2.60E-56				
End AA		273					329						358	į						385						414							469				
Start AA		162					218						246							274		-				304							359				
Chain ID		S					ပ	•					ပ							ပ						ပ							ပ				
PDB ID		pqnI					Iubd						1 ubd							lubd						Iubd						:	Jubd		-		
SEQ D NO:		736					736						736							736						736							736				

		·													_			_							_				
PDB annotation	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION	INITIATOR ELEMENT, YYI, ZINC 2	RECOGNITION, 3 COMPLEX (TP ANSCRIPTION BEGIN ATTONION)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1:	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	KECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIT ATTONOMA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/UNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI: GLI.	ZINC FINGER, COMPLEX (DNA-	COMPLEY (TAIL BRIDGE)	PROTEIN (DIA-BINDING PRICES OF 1: C11
Coumpound		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA:	CHAIN: A, B;		YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA;	CHAIN: A, B;			YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	Ď;	ZINC FINGER PROTEIN GLI1:	CHAIN: A; DNA; CHAIN: C,	΄Ω		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	ä	ZINC FINGER PROTEIN GLII:	CHAIN: A; DNA; CHAIN: C.	, id	ZINC FINGER PROTEIN GI 11.	CHAIN: A: DNA: CHAIN: C
SeqFold score																													
PMF score		_			96.0					0.99					-			-				_			-			-	•
Verify score		0			-0.18					-0.04					0.2			0.38			5	0.27			0.03			0.58	}
PSI- BLAST		1.80E-34			3.90E-51				7 6 407 6	3.60E-34					2.60E-58			1.80E-34			2000	7.60E-70			5.20E-74			1.30E-73	
End		469			497				107	49/					275			300			202	505			359			387	
Start AA		368			386				26.	296 0					150			164			151	104			192			249	! !
Chain ID		v			U				[,	ر					A			٧			_	<			V			V	
PDB ID		lubd			1ubd				1.1.1	pon!					2gli			2gli	_		Sal:	1187			2gli			2gli)
SEQ NO:		736			736				362	96/					736			736			736	 PC/ 			736			736	

PDB annotation	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, ESTERASE	COMPLEX (ANTIBODY/PEPTIDE) POLYSPECIFICITY, CROSS REACTIVITY, FAB-FRAGMENT, PEPTIDE, 2 HIV-1, COMPLEX (ANTIBODY/PEPTIDE)	CONTRACTILE PROTEIN IMMUNOGLOBULIN FOLD, BETA BARREL	ANTIBODY FAB FRAGMENT ANTIBODY FAB FRAGMENT	
Coumpound	D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A: DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	29G11 FAB; CHAIN: L, H;	ANTIBODY (CB 4-1); CHAIN: A, B; PEPTIDE; CHAIN: C;	TELOKIN; CHAIN: A	ANTI-ANTI-IDIOTYPE GH1002 FAB FRAGMENT; CHAIN: L. H	T LYMPHOCYTE ADHESION
SeqFold score		92.84						55.38	55.09		57.41	69.87
PMF score			-	_	_	1	0.05			-0.12		
Verify score			-0.06	0.06	0.03	0.19	-0.23			0.19		
PSI- BLAST		5.20E-74	2.60E-72	3.60E-33	2.60E-68	3.60E-34	5.40E-29	7.20E-05	3.60E-05	1.60E-17	0.0054	9.10E-18
End		387	471	468	499	496	216	230	230	212	230	213
Start AA		250	305	340	360	368	89	20	61	126	19	24
Chain ID		⋖	¥	A	A	¥	A	L	⋖	¥	T	
PDB ID		2gli	2gli	2gli	2gli	2gli	2gli	1a0q	lbog	1fhg	lghf	Ihnf
SEQ NO:		736	736	736	736	736	736	741	741	741	741	741

PDB annotation					COMPLEX (IMMUNOGLOBULIN/LIPOPROTEIN) OSPA; COMPLEX (IMMUNOGLOBULIN/LIPOPROTEIN), OUTER SURFACE 2 PROTEIN A COMPLEXED WITH FAB184.1, BORRELIA BURGDORFERI 3 STRAIN B31			CELL ADHESION PROTEIN NCAM MODULE 2; CELL ADHESION, GLYCOPROTEIN, HEPARIN-BINDING, GPI-ANCHOR, 2 NEURAL ADHESION MOLECULE, IMMUNOGLOBULIN FOLD, HOMOPHILIC 3 BINDING, CELL ADHESION PROTEIN	LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE
Coumpound	GLYCOPROTEIN CD2 (HUMAN) 1HNF 3	T LYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (HUMAN) IHNF 3	TLYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (RAT) IHNG 3	TLYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (RAT) IHNG 3	FAB 184.1; CHAIN: L, H; OUTER SURFACE PROTEIN A; CHAIN: O;	MUSCLE PROTEIN TITIN MODULE M5 (CONNECTIN) ITNM 3 (NMR, MINIMIZED AVERAGE STRUCTURE) ITNM 4 ITNM 58	IMMUNOGLOBULIN IGG2A FAB FRAGMENT (CNI206) 2GFB 3	NEURAL CELL ADHESION MOLECULE, LARGE ISOFORM; CHAIN: A;	SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H, J, L, N, P;
SeqFold score			60.69		55.92		53.4		
PMF score		0.76		0.35				-0.18	0.92
Verify score		60:0		0.35		60.0		0	-0.07
PSI- BLAST		9.10E-18	2.60E-18	2.60E-18	0.0011	3.60E-14	3.60E-05	1.80E-09	2.60E-05
End AA		199	217	210	230	213	230	84	81
Start AA		28	25	29	61	131	19	22	46
Chain ID			¥	A	д į		∢	¥	¥
PDB ID		lhnf	Ihng	lhng	losp	- Ithm	2gfb	3nc m	1fqv
SEQ ID NO:		741	741	741	741	741	741	741	747

	TT	т т			<u> </u>	Υ	7	 -		
PDB annotation	COMPLEX (DNA-BINDING PROTEIN/DNA) UPSTREAM STIMULATORY FACTOR 1; USF, DNA BINDING, BASIC-HELIX-LOOP-HELIX,	LEUCINE ZIPPER, 2 TRANSCRIPTION FACTOR, COMPLEX (DNA-BINDING PROTEIN/DNA) TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	COMPLEX (TRANSCRIPTION FACTOR/DNA) NF-KB P50, COMPLEX (TRANSCRIPTION FACTOR/DNA)			HYDROLASE MALTOGENIC ALPHA AMYLASE; AMYLASE, GLYCOSIDE HYDROLASE, STARCH DEGRADATION		COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRICTLIRE COMPLEY
Coumpound	USF; CHAIN: A, B; DNA; CHAIN: C, D;	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; 1-	KAPPA-B-ALPHA; CHAIN: D; NUCLEAR FACTOR KAPPA- B; CHAIN: A, B; KB SITE, DNA (5-D(TGAGAATTCCC)-	GLYCOSYLTRANSFERASE	GLUCANOTRANSFERASE (E.C.2.4.1.19) (CGTASE) 1CYG 3	ALPHA-AMYLASE; CHAIN: A;	CHROMOSOMAL PROTEIN UBIQUITIN 1UBI 3	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CLANS: B. C.	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold score										
PMF	0.09	0.41	0.04	0.05		0.37	0.03	0.03	0.03	0.04
Verify	-0.61	0.39	-0.37	-0.02		0.11	-0.58	-0.45	-0.33	-0.52
PSI- BLAST	0.0078	0.0013	0.0013	0.0016		0.0061	0.0065	3.60E-25	3.60E-24	1.40E-44
End	390	346	319	1059		967	1617	314	162	220
Start AA	353	243	234	932		854	1529	229	78	134
Chain ID	V V	V	¥			∢		A	A	υ
PDB ID	lan4	1 ikn	Infk	lcyg		1qho	lubi	lalh	laih	1me y
SEQ ID NO:	750	750	750	754		/54	754	756	756	756

PDB annotation	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, FRO LEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRICTIRE COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRISIAL SIROCIORE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION. PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTER ACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)
Coumpound	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C. F. G.	() (1) () (IIII) () () ()	DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: C F G:		
SeqFold score																				-									
PMF	90.0		0.28			0.12			-0.07				0.17				0.05				0.07					-0.19			
Verify score	-0.6		-0.15			-0.19			90.0				-0.44				90.0				-0.3					0.06			
PSI- BLAST	9.00E-44		3.60E-42			1.10E-42			3.60E-30				1.80E-42				5.40E-12				9.00E-11					9.00E-11			
End	284		465			612			627				162				190				284					465			
Start AA	193		379			226			555				77				163	=			254				١	437			
Chain ID	U		C			၁			ပ				ပ		_		9				g				,	פ.			
PDB ID	1me y		lme			lme	<u> </u>		Ime	>			Ime	`			lme	<u>~</u>			Ime	<u>~</u>				ıne ,	`		
SEQ ID NO:	756		756			726			756				756				756				756	_				96/			

nd PDB annotation	FACTOR COMPLEX (TRANSCRIPTION RNA REGULATION/DNA) TFIIIA; 5S GENE; NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3		D; 5S COMPLEX (TRANSCRIPTION GENE; REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITTATION ZNG ENGER BROTERY		NA;	
Coumpound	TRANSCRIPTION FACTOR IIIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold score		69.84				
PMF score	0.34		0.11	0.11	0.23	0
Verify score	-0.43		-0.18	-0.77	-0.21	-0.72
PSI- BLAST	1.80E-15	1.40E-34	1.40E-34	1.30E-30	1.80E-27	1.80E-31
End AA	432	285	302	253	436	578
Start AA	349	106	135	139	325	470
Chain ID	V	¥	Y	ပ	U	ပ
PDB ID	1113	1tf6	1476	pqn1	lubd	1ubd
SEQ NO:	756	756	756	756	756	756

SEQ ID NO:	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
756	2adr		349	406	3.60E-15	-0.63	0.11		ADRI; CHAIN: NULL;	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NMR
756	2adr		498	554	1.40E-15	-0.13	0.04		ADR1; CHAIN: NULL;	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION, ADRI, ZINC FINGER, NMR
756	2gli	4	142	286	1.10E-28	-0.53	0.07		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
757	Icun	V	537	726	7.80E-14	0.12	-0.02		ALPHA SPECTRIN; CHAIN: A, B, C;	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2.2
757	lcun	∢	566	749	9.10E-15	0.13	0		ALPHA SPECTRIN; CHAIN: A, B, C;	STRUCTURAL PROTEIN STRUCTURAL PROTEIN STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2.2
757	1dro		1096	1203	5.20E-06	0.08	0.43		BETA-SPECTRIN; 1DRO 6 CHAIN: NULL: 1DRO 7	STRUCTURAL PROTEIN CYTOSKELETON
757	1168	V	1093	1203	5.20E-18	0.44	0.89		DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	SIGNALING PROTEIN DAPP1, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN
757	Ifgy	A	1097	1203	1.20E-18	0.56	0.68		GRP1; CHAIN: A;	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE FACTOR AND PH DOMAIN
762	1b0x	4	801	857	3.60E-12	0.04	-0.09		EPHA4 RECEPTOR TYROSINE KINASE; CHAIN:	TRANSFERASE RECEPTOR TYROSINE KINASE, PROTEIN INTERACTION

Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
	1 1						A;	MODULE, 2 DIMERIZATION DOMAIN, TRANSFERASE
793		863	1.10E-14	0.1	-0.02		EPHB2; CHAIN: A, B, C, D, E, F, G, H;	SIGNAL TRANSDUCTION SAM DOMAIN, EPH RECEPTOR, SIGNAL TRANSDICTION, OLIGOMER
797	ĺ	861	7.20E-14	0.53	-0.02		EPHRIN TYPE-B RECEPTOR 2; CHAIN: NULL;	TYROSINE-PROTEIN KINASE NMR, RECEPTOR OLIGOMERIZATION, EPH RECEPTORS, TYROSINE 2 PHOSPHORYLATION, SIGNAL TRANSDUCTION, TYROSINE-PROTEIN 3 KINASE
		92	1.30E-20			69.57	S100A10; CHAIN: A, B;	CALCTUM/PHOSPHOLIPID BINDING PROTEIN P.I., CALPACTIN LIGHT CHAIN; S100 FAMILY, EF-HAND PROTEIN, LIGAND OF ANNEXIN II, 2 CALCTUM/PHOSPHOLIPID BINDING
7		68	1.30E-20	0.67	-		S100A10; CHAIN: A, B;	PROTEIN CALCIUM/PHOSPHOLIPID BINDING PROTEIN P11, CALPACTIN LIGHT CHAIN; S100 FAMILY, EF-HAND PROTEIN, LIGAND OF ANNEXIN II, 2 CALCIUM/PHOSPHOLIPID BINDING
4	1	8	3.60E-21	0.11	-0.11		CALMODULIN; CHAIN: NULL;	CALCIUM-BINDING PROTEIN CALMODULIN CERIUM TRIC- DOMAIN, RESIDUES 1 - 75; CERIUM- LOADED, CALCIUM-BINDING PROTEIN
<u>.</u>			7.20E-19			145.44	S-100 PROTEIN, BETA CHAIN; CHAIN: A, B;	METAL BINDING PROTEIN S100B, S100BETA, S100BETA, S100B, NMR, DIPOLAR COUPLINGS, EF-HAND, S100 2 PROTEIN, CALCIUM- BINDING PROTEIN, FOUR-HELIX BUNDLE, THREE- 3 DIMENSIONAL STRICTURE SOLITION STRICTURE
m		83	7.80E-27			57.95	CALCIUM-BINDING PROTEIN CALBINDIN D9K (INTACT FORM) (IMR. 13 STRICTI IRES) 1CR1 3	
4		82	7.80E-27	0.43	0.99		CALCIUM-BINDING	

					,			_							
PDB annotation			CALCIUM-BINDING PROTEIN CALMODULIN APO TR2C-DOMAIN; ICMF 9	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER	TRANSPORT PROTEIN CALCIUM BINDING, EF HAND, FOUR-HELIX BUNDLE	CALCIUM-BINDING CALCIUM- BINDING, ZINC, METAL-BINDING, ACETYLATION			CALCIUM-BINDING PROTEIN CALCIUM-BINDING PROTEIN, CALCIUM-DEPENDENT PROTEASE, APO 2 FORM, SMALL, SUBUNIT	STRUCTURAL PROTEIN HELIX-TURN- HELIX	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION. DISORDER	METAL BINDING PROTEIN YEAST FREQUENIN EF-HAND CALCUM	CALCIUM-REGULATED MUSCLE CONTRACTION MUSCLE	CONTRACTION, CALCIUM-BINDING, TROPONIN, E-F HAND, 2 OPEN	CONFORMATION REGULATORY DOMAIN CALCUIM-REGITATED 3
Coumpound	PROTEIN CALBINDIN D9K (INTACT FORM) (NMR, 13 STRUCTURES) ICBI 3	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	CALMODULIN (VERTEBRATE); ICMF 6 CHAIN: NULL: ICMF 7	CALMODULIN; CHAIN: A;	CALMODULIN; CHAIN: A;	S-100 PROTEIN; CHAIN: NULL;	CONTRACTILE SYSTEM PROTEIN TROPONIN C 1TOP 3		CALPAIN; CHAIN: A, B;	CARDIAC TROPONIN C; CHAIN: A;	CALMODULIN; CHAIN: A;	CALCIUM-BINDING PROTEIN NCS-1: CHAIN: A:	TROPONIN C; CHAIN: NULL;		
SeqFold score						137.02								-	
PMF score		0.06	0.15	-0.17	0.18		-0.07		0.09	0.28	0.39	-0.03	0.47		
Verify score		0.21	0.17	90.0	-0.17		0.07		-0.18	-0.29	-0.18	50.0	-0.12		
PSI- BLAST		9.00E-21	7.20E-21	3.60E-23	7.20E-20	1.40E-16	7.20E-20		2.60E-09	2.60E-09	1.30E-09	2.60E-08	3.90E-10		
End			18	. 68	81	68	92		252	252	252	252	252		
Start AA		4	_	4	∞	2	2		135	131	129	129	135		
Chain ID		¥		A	Ą				¥.	∢	¥	A			
PDB ID		Lcd m	lcmf	lexr	1771	1mh o	Itop		laj5	Idt.	lexr	lfpw	1tcf		
SEQ TO NO:		763	763	763	763	763	763		766	766	992	766	992		

PDB annotation	MUSCLE CONTRACTION	CALCIUM-BINDING PROTEIN EF- HAND 1TNX 14			MEMBE ANE PROTERT ACRE WATER	MEMBRANE TRO I EIN AUT WA I EK CHANNEL, TWO-DIMENSIONAL CRYSTAL, ELECTRON 2 DIFFRACTION, ELECTRON	MEMBRANE PROTEIN AQP! WATER CHANNEL, TWO-DIMENSIONAL CRYSTAL, ELECTRON 2 DIFFRACTION, ELECTRON MICROSCOPY		ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN, C2-DOMAIN, EXOCYTOSIS, NEUROTRANSMITTER 2 RELEASE, ENDOCYTOSIS/EXOCYTOSIS	ENDOCYTOSIS/EXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX, MULTI-SUBUNIT	ENDOCYTOSIS/EXOCYTOSIS BETA SANDWICH, CALCIUM ION, C2 DOMAIN	TRANSFERASE CALCIUM++, PHOSPHOLIPID BINDING PROTEIN, CALCIUM-BINDING 2 PROTEIN, PHOSPHATIDYLSERINE, PROTEIN	
Coumpound		TROPONIN C; 1TNX 4 CHAIN: NULL; 1TNX 5	CALCIUM BINDING PROTEIN CALMODULIN (/TR=2=C\$ FRAGMENT COMPRISING RESIDUES 78 - 148 1TRC 3 OF THE INTACT MOLECULE) 1TRC 4	CALCIUM-BINDING PROTEIN PARVALBUMIN (ALPHA LINEAGE) 5PAL 3	AOITABOBIN 1: CHAIN: 4:	אלטאר סאוואין, כתאוואי א,	AQUAPORIN-1; CHAIN: A;		SYNAPTOTAGMIN I; CHAIN: A;	SYNTAXIN BINDING PROTEIN I; CHAIN: A; SYNTAXIN IA; CHAIN: B;	SYNAPTOTAGMIN III; CHAIN: A;	PROTEIN KINASE C, ALPHA TYPE; CHAIN: A;	CALCIUM/PHOSPHOLIPID
SeqFold score													
PMF score		0.31	0.95	0.53	0.51	1000	0.88		0.94	0.01	0.82	0.71	
Verify score	6,50	-0.53	-0.37	0.27	-0.22	77:0	-0.13		0.21	-0.13	0.38	0.48	0.3
PSI- BLAST	1,000	1.00E-10	1.30E-08	1.30E-08	1 10E-73		3.90E-76		1.30E-11	5.20E-05	6.50E-07	0.0026	6.50E-12
End AA	0,50	757	252	252	227		227		664	252	647	664	664
Start AA	140	140	194	177	10		6		541	26	541	541	541
Chain ID			A		 		A		¥	В	A	A	
PDB ID		XIII	Itro	5pal	1 fuv	r.	1fqy	1		1dn1	1dqv	ldsy	Irsy
SEQ ID NO:	776	99/	766	766	768		768		769	769	769	769	169

Coumpound PDB annotation	BINDING PROTEIN SYNAPTOTAGMIN I (FIRST C2 DOMAIN) (CALB) IRSY 3	H-RAS, CHAIN: R; SON OF P21; SOS; COMPLEX (ONCOGENE SEVENLESS-1; CHAIN: S; SMALL GTPASE, 2 EXCHANGE FACTOR)		H-RAS; CHAIN: R; SON OF P21; SOS; COMPLEX (ONCOGENE SEVENLESS-1; CHAIN: S; PROTEIN/EXCHANGE FACTOR), SMALL GTPASE, 2 EXCHANGE FACTOR	4	RIN; IDRO 6 CYTOSKELETON	SIGNAL TRANSDUCTION PROTEIN DYNAMIN (PLECKSTRIN HOMOLOGY DOMAIN) (DYNPH) IDYN 3	DUAL ADAPTOR OF SIGNALING PROTEIN DAPP1, PHISH, PHOSPHOTYROSINE AND 3-PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	AND 3-	
Con	BINDING PROTEIN SYNAPTOTAGMIN C2 DOMAIN) (CALI	H-RAS; CHAIN: R; SON OI SEVENLESS-1; CHAIN: S;	H-RAS; CHAIN: R; SON OI SEVENLESS-1; CHAIN: S;	H-RAS; CHAII SEVENLESS-	BETA-SPECTRIN; 1BTN CHAIN: NULL: 1BTN 5	BETA-SPECTRIN; 1DRO CHAIN; NULL; 1DRO 7	SIGNAL TRANSDUCTION PROTEIN DYNAMIN (PLECKSTRIN HOMOLOG DOMAIN) (DYNPH) 1DYN	DUAL ADAPTOR OF PHOSPHOTYROSINE CHAIN: A;	DUAL ADAPTOR OF PHOSPHOTYROSINE CHAIN: A;	GRP1; CHAIN: A;
SeqFold		79.72								
PMF			_	_	89.0	0.4	0.25	6.0	0.05	0.36
Verify score			0.2	0.26	-0.09	-0.22	-0.04	0.3	0.04	0.35
PSI- BLAST		9.10E-77	9.10E-77	7.20E-61	1.40E-18	7.20E-12	5.40E-06	1.00E-07	1.30E-12	1.10E-16
End		311	291	312	541	546	541	546	539	546
Start AA		_	12	41	438	439	456	429	441	447
Chain ID		Ø	S	Ø			¥	¥	V	Ą
PDB ID		1bkd	1 bkd	1bkd	1btn	1 dro	1dyn	1fb8	168	1fgy
SEQ ID		770	077	077	770	770	077	770	770	770

PDB Chain ID ID	Chair ID	ا ہ	Start AA	End AA	PSI- BLAST	Verify	PMF	SeqFold score	Coumpound	PDB annotation
									PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C	
									TERMINUS IPLS 4 (INS(G105- LEHHHHHH)) (NMR, 25 STRUCTURES) IPLS 5	
Ialh A 1	1		131	210	6.50E-41	0.19	0.99		QGSR ZINC FINGER	COMPLEX (ZINC FINGER/DNA)
									PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
lath A 2			269	351	5.20E-45			78.23	QGSR ZINC FINGER	COMPLEX (ZINC FINGER/DNA)
									OLIGONUCLEOTIDE PRIDING SITE: CHARLE C.	FINGER, DNA-BINDING PROTEIN
O		↓	128	209	5.40E-46	0.37	-		DNA-CHAIN A B D F.	COMPLEX (7 INC EINGER (DNA) 7 INC
_	_			}	2	?	•		CONSENSUS ZINC FINGER	COMPLEX (ZINC FINGENDINA) ZINC FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2
-										CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
Ime C	~ – ပ		156	237	3.60E-47	0.29	-		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
									PROTEIN CHAIN: D F G:	FINGER, PROTEIN-DNA NTFRACTION PROTEIN DESIGN 2
		1							(1, 0, 1, 0)	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
Ime C	ပ ပ		184	265	1.80E-48	0.46	_		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
									CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
									FKOJEIN; CHAIN: C, F, G;	CBYSTAL STRICTINE COVERTY
										(ZINC FINGER/DNA)
Ime C	 ပ		212	293	1.10E-49	0.29	-		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
									CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
	_		-						PROTEIN; CHAIN: C. r, G;	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRICTIBE COMPLEX
\dashv										(ZINC FINGER/DNA)
Ime C	 ഗ		296	377	3.60E-51	0.25	_		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
									PROTEIN: CHAIN: D F G.	FINGER, PROTEIN-DNA
	-								6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CRYSTAL STRUCTURE, COMPLEX
		→								(ZINC FINGER/DNA)

	.INC 1, 2 X	:.NC X X	INC 1, 2 X	INC 7, 2	INC XX	TON	E NO.	
tion	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION, ZINC FINGER PROTEIN	PTION OMPLEX NA
PDB annotation	NC FINGI TEIN-DNA 1, PROTEI (UCTURE	NC FINGI TEIN-DNA 7, PROTEI (UCTURE	NC FINGI TEIN-DN/ 4, PROTE (UCTURE	NC FINGI TEIN-DN/ I, PROTE (UCTURE	NC FING FEIN-DN/ V, PROTE (UCTURE	CANSCRII (DNA) CC 1ON (DNA), R 5 III, 2 TR	ANSCRI IDNA) CO TON IDNA), R E III, 2 TR	KANSCRI IDNA) CO TON IDNA), R
PI	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEI CRYSTAL STRUCTURE, (ZINC FINGER/DNA)	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEI CRYSTAL STRUCTURE, (ZINC FINGER/DNA)	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEII CRYSTAL STRUCTURE, (ZINC FINGER/DNA)	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEII CRYSTAL STRUCTURE, (ZINC FINGER/DNA)	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEI CRYSTAL STRUCTURE, (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRII	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION RNA REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRI INITIATION, ZINC FINGER PRO	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA
	COM FING INTE CRY	EING INTE CRY (ZIN	CON EINC	CRY STA	CONTRACTOR STATE OF S	REG (TRA POL	REG POL	CON REG (TRA
	o, E; Inger , F, G;	o, E; Inger , F, G;	J, E; INGER , F, G;	J, E; INGER ; F, G;	J, E; INGER ; F, G;	; 5S BENE;	; 58 JENE;	; 58 BENE;
Coumpound	N. A, B, I S ZINC F HAIN: C	N: A, B, I S ZINC F HAIN: C	N: A, B, I S ZINC F HAIN: C	N: A, B, I S ZINC F HAIN: C	N: A, B, I S ZINC I HAIN: C	AIN: A, D L RNA C C, E, F;	AIN: A. D. L. RNA C. C, E, F;	AIN: A, D L RNA C C, E, F;
ပိ	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D, 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;
SeqFold score	102.88					115.72		
PMF	!	-		-	0.42		0.76	0.94
Verify score		0.16	0.33	0.44	0.04		0.22	0.09
PSI- BLAST	3.60E-51	3.60E-51	7.20E-51	7.20E-51	5.40E-43	5.20E-73	1.10E-36	1.30E-37
End	378	405	433	461	181	298	274	443
Start AA	296	324	352	380	. 66	126	129	297
Chain ID	ပ	ပ	၁	၁	၁	∢	∢	A
PDB TD	lme y	Ime y	lme y	Ime y	Ime y	11166	1116	1466
SEQ NO:		277	277	277	277	772	772	277

	Γ	Γ			Ť										_						т-					_	_				
PDB annotation	POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX	(TRANSCRIPTION	POLYMERASE III, 2 TRANSCRIPTION	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION INITIATION ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	ENICED PROTEST PRIVED	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC2	PINGER FROIGIN, DINA-FROIGIN	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	COMBI EX (TRANSCRIPTION)	REGULATION/DNA) YING-YANG 1:	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN
Coumpound		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE;	CHAIN: B, C, E, F;		TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE; CHAIN: B. C. E. F:			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CILTIN. A, D,			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	Chally: A, B;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	INITIATOR ELEMENT DNA;	CHAIN: A, B;			VVI: CHAIN: C. ADENO	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;	
SeqFold score													<u>-</u>												-				-		
PMF		96.0			0.15				0.87						-				•									-			
Verify score		0.15			-0.27				0.12						0.32						0.2						0.3				
PSI- BLAST		1.80E-36	_		3.60E-33				3.90E-42						1.80E-32						6.50E-52						1.30E-53				-
End AA		461			218				503					200	757						237					_	566				
Start AA		325			72				120						<u>.</u>					30,	133						154				
Chain ID		⋖			V				ပ					ļ	ر						ر						U				
PDB ID	3	91			146	· · · · · · · · · · · · · · · · · · ·			pqn I					7.1	nanı	_					Don.		_				Iubd				
SE E S	į	7//			772				7//					27.2	7//					56.5	7//						772				

																		_																					
PDB annotation	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG I:	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	FINGER PROTEIN, DNA-PROTEIN
Coumpound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;	CHAIN: A, B;	-			YYI; CHAIN: C; ADENO-	ASSOCIATED VIKUS PS	INITIATION ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA:	CHAIN: A, B;	
SeqFold score		89.18																																					
PMF score						8	0.92							96.0							0.98							1							0.95				
Verify score							-0.04							0.26							0.22							0.16							0.4				
PSI- BLAST		7.80E-55				7 000	7.80E-55							6.50E-56							1.60E-35							1.30E-56	-	- · · -		-			5.20E-51				
End AA		322				,	349							405							405							434							461				
Start AA		212				920	738							294							304							322							350				
Chain ID		ပ				,	ی							ပ							ပ							ပ		_					ပ				
PDB ID		lubd				1.1.1	n n n		. •					Jubd							lubd							1 ubd							1 ubd				
SEQ ID NO:		772				27.0	7//							772							772							277							772				

		1								,				Γ	_				_		т			- 1				_					_		
PDB annotation	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I:	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	BINDING PROTEIN/DNA)
Coumpound		YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			CHAPL A PNA CHAPL C	CHAIN: A; DNA; CHAIN: C, D:	â	ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	Ď;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DINA; CHAIN: C.	.;.	ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	D;	The state of the s	ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	Ď.		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	a a
SeqFold score																		98.73																	
PMF score		0.92				,	0.88							0.76							0.93				0.84			,	96.0						
Verify		0.32					0.21			0.35				0.16							0.4			700	0.24			,	0.35				0.47		
PSI- BLAST		1.80E-34			-	72 407 6	Z.60E-54			3.60E-33				3.90E-66		<u>.</u>		1.00E-71			1.00E-71			7700	7.20E-33			1000	6.50E-67				5.40E-34		
End AA		461				6	657			264				295				351			407		•	427	704			;;,	461				460		
Start AA		360					171			128				128				717			268			204	*			, , ,	324				332		
Chain ID		O					∢			¥				∢				V			∀			<	ς .				∢				¥		
PDB ID		1ubd				::	1187			2gli			:	2gli			:				2gli			ilac	1197			::-	1187			:	1187		
SEQ NO:		277				000	7//			772				772			222	7//			772			777	7//			777	7//			į	7//		

T . r . p . . p

-	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
2gli		4	50	081	9.00E-28	0.07	-0.05		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
2gli		4	71	211	5.40E-31	-0.01	0.15		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
1a17	12		105	180	1.30E-08	0.09	0.77		SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE
lefr	<u>-</u>	Ą	105	180	9.10E-08	0.14	89:0		TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT. HSP90. 2 PROTEIN BINDING
<u>=</u>	1elw	¥	105	180	6.50E-10	0.12	0.74		TPR1-DOMAIN OF HOP; CHAIN: A, B; HSC70- PEPTIDE; CHAIN: C, D;	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELJCAL REPEAT, HSC70, 2 HSP70, PROTEIN RINDING
1 fch	5	∀	105	179	6.50E-09	0.47	0.99		PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI- CONTAINING PEPTIDE; CHAIN: C, D;	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-BP, PEROXIN-5, PTS1 PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT, TPR, 2 HELICAL REPEAT
2	1a9x	A	454	860	1.80E-64	0.14	6.0		CARBAMOYL PHOSPHATE SYNTHETASE; CHAIN: A, B, C. D. E. F. G. H:	AMIDOTRANSFERASE AMIDOTRANSFERASE, THIOESTER
12	1a9x	A	529	892	1.10E-39	0.49	96:0		CARBAMOYL PHOSPHATE SYNTHETASE; CHAIN: A, B, C. D. E. F. G. H:	AMIDOTRANSFERASE AMIDOTRANSFERASE, THIOESTER
<u>e</u>	1b6r	¥	532	858	1.80E-16	0.07	-0.11		NS- CARBOXYAMINOIMIDAZOL E RIBONUCLEOTIDE CHAIN:	LYASE AIRC, PURK; ATP-GRASP, CARBOXYPHOSPHATE, PURINE BIOSYNTHESIS, LYASE
9	1dv1	∢	534	965	1.30E-86	0.32	0.54		BIOTIN CARBOXYLASE; CHAIN: A, B;	LIGASE ATP-GRASP, CARBOXYLASE, BIOTIN-DEPENDENT
lehi 	Ē	∢	531	858	9.00E-37	0.07	0.45		D-ALANINE:D-LACTATE LIGASE; CHAIN: A, B;	LIGASE LMDDL2; ATP-BINDING. GRASP MOTIF FOR ATP.

PDB CI	O	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
1ehi B			531	858	1.80E-36	0.22	0.63		D-ALANINE:D-LACTATE LIGASE: CHAIN: A. B:	LIGASE LMDDL2; ATP-BINDING. GRASP MOTIF FOR ATP
leuc B			656	854	7.20E-22	-0.04	0.07		SUCCINYL-COA SYNTHETASE, ALPHA CHAIN: CHAIN: A; SUCCINYL-COA SYNTHETASE, BETA CHAIN; CHAIN: B;	LIGASE SCS-ALPHA; SCS-BETA; LIGASE, GTP-SPECIFIC
leyz A	1 .		533	953	6.50E-30	0.51	0.99		PHOSPHORIBOSYLGLYCINA MIDE FORMYLTRANSFERASE 2; CHAIN: A, B;	TRANSFERASE TRANSFORMYLASE, PURINE BIOSYNTHESIS, ATP-GRASP
leyz A	ا سا		534	098	1.40E-39	0.21	0.11		PHOSPHORIBOSYLGLYCINA MIDE FORMYLTRANSFERASE 2; CHAIN: A, B;	TRANSFERASE TRANSFORMYLASE, PURINE BIOSYNTHESIS, ATP-GRASP
1gso /	⋖		531	868	3.60E-54	0.2	0.37		GLYCINAMIDE RIBONUCLEOTIDE SYNTHETASE; CHAIN: A;	LIGASE PURD GEN PRODUCT; GAR- SYN, GLYCINAMIDE RIBONUCLEOTIDE SYNTHETASE, ATP-GRASP, 2 PURINE DE NOVO BIOSYNTHETIC PATHWAY, SUBSTRATE CHANNELING
liow	}		530	859	1.80E-43	-0.07	0.18		D-ALA\:D-ALA LIGASE; CHAIN: NULL;	LIGASE DD-LIGASE, DDLB; GLYCOGEN PHOSPHORYLASE, LIGASE, CELL WALL, PEPTIDOGLYCAN 2 SYNTHESIS, VANCOMYCIN, ADP BINDING
2scu I	<u>м</u>		656	844	1.80E-27	0.04	0.07		SUCCINYL-COA LIGASE; CHAIN: A, D; SUCCINYL- COA LIGASE; CHAIN: B, E;	LIGASE SCS; SCS; CITRIC ACID CYCLE, HETEROTETRAMER, LIGASE
160	V		2	443	0	1.05			ELONGATION FACTOR EEF1A; CHAIN: A; ELONGATION FACTOR EEF1BA; CHAIN: B;	TRANSLATION PROTEIN-PROTEIN COMPLEX
laox A	1 - !		119	313	9.00E-28	99:0	_		NTEGRIN ALPHA 2 BETA; CHAIN: A, B;	INTEGRIN INTEGRIN, CELL ADHESION, GLYCOPROTEIN
laox A	ا را		120	316	9.00E-28			84.82	INTEGRIN ALPHA 2 BETA; CHAIN: A, B;	INTEGRIN INTEGRIN, CELL ADHESION, GLYCOPROTEIN
laox A	اب		321	504	7.20E-28	0.74	1		INTEGRIN ALPHA 2 BETA;	NTEGRIN INTEGRIN, CELL

PDB Chain ID ID	<u> </u>	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold	Coumpound	PDB annotation
		1 1						CHAIN: A, B;	ADHESION, GLYCOPROTEIN
A 122	122		293	9.00E-24	92.0	-		VON WILLEBRAND FACTOR; CHAIN: A, B;	COLLAGEN-BINDING COLLAGEN- BINDING, HEMOSTASIS, DINUCLEOTIDE BINDING FOLD
A 122	122	I	305	9.00E-24			94.53	VON WILLEBRAND FACTOR; CHAIN: A, B;	COLLAGEN-BINDING COLLAGEN- BINDING, HEMOSTASIS,
									DINUCLEOTIDE BINDING FOLD
A 324	324		492	1.80E-21	89.0	_		VON WILLEBRAND FACTOR; CHAIN: A, B;	COLLAGEN-BINDING COLLAGEN- BINDING, HEMOSTASIS, DINUCLEOTIDE BINDING FOLD
110	110		317	3.60E-32	0.42	69.0		AI DOMAIN OF VON WILLEBRAND FACTOR; CHAIN: NUIL:	WILLEBRAND WILLEBRAND, BLOOD COAGULATION, PLATELET, CILYCOPROTEIN
311	311		509	7.20E-29			86.49	AI DOMAIN OF VON WILLEBRAND FACTOR;	WILLEBRAND WILLEBRAND, BLOOD COAGULATION, PLATELET,
		- 1						CHAIN: NULL;	GLYCOPROTEIN
313	313		208	7.20E-29	0.78	1		AI DOMAIN OF VON WILLEBRAND FACTOR; CHAIN: MIII.	WILLEBRAND WILLEBRAND, BLOOD COAGULATION, PLATELET, CI YCOPROTEIN
A 122	122		309	1.80E-28	0.39	-1		INTEGRIN ALPHA-1; CHAIN:	STRUCTURAL PROTEIN I-DOMAIN,
								A, B;	METAL BINDING, COLLAGEN, ADHESION
A 324	324		200	3.60E-30	0.85	1		INTEGRIN ALPHA-1; CHAIN: A, B;	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN, ADHESION
A 119	119		314	7.20E-31	0.27	0.75		IMMUNOGLOBULIN NMC-4 IGG1: CHAIN: 1.:	IMMUNE SYSTEM VON WILLEBRAND FACTOR, GLYCOPROTEIN IBA
								IMMUNOGLOBULIN NMC-4	(A:ALPHA) BINDING, 2 COMPLEX
								IGGI; CHAIN: H; VON	(WILLEBRAND/IMMUNOGLOBULIN),
					_			WILLEBRAIND FACTOR; CHAIN: A;	BLOOD COAGULATION 117E 3 2B VON WILLEBRAND DISEASE
A 319	319		207	3.60E-28	0.84	-		IMMUNOGLOBULIN NMC-4	IMMUNE SYSTEM VON WILLEBRAND
								IGGI; CHAIN: L;	FACTOR, GLYCOPROTEIN IBA
								IMMUNOCLOBOLIN NMC-4	(A:ALPHA) BINDING, 2 COMPLEX
								WILLEBRAND FACTOR:	BLOOD COAGULATION TYPE 3 2B
		- 1						CHAIN: A;	VON WILLEBRAND DISEASE
124	124		267	2.60E-30	0.7	-		INTEGRIN; CHAIN: NULL;	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION
									PROTEIN, GLYCOPROTEIN,
-							1		ENTRACELLULAR ZIMATRIA,

PDB annotation	CYTOSKELETON	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKEI ETON	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKEL ETON	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKEL ETON	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKEI FTON	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; LLFA 8	CELL ADHESION LFA-1, ALPHA- LBETA-2 INTEGRIN, A-DOMAIN; 1LFA 8	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; ILFA 8	CELL ADHESION INTEGRIN, CELL ADHESION	CELL ADHESION INTEGRIN, CELL ADHESION	SCAFFOLD PROTEIN SCAFFOLD	PROTEIN, PP2A, PHOSPHORYLATION, HEAT REPEAT	TRANSPORT PROTEIN SERINE-RICH
Coumpound		INTEGRIN; CHAIN: NULL;	INTEGRIN; CHAIN: NULL;	INTEGRIN; CHAIN: NULL;	INTEGRIN; CHAIN: NULL;	CDIIA: ILFA 5 CHAIN: A. B; ILFA 6	CD11A; ILFA 5 CHAIN: A, B; ILFA 6	CDIIA; ILFA 5 CHAIN: A, B; ILFA 6	ALPHAI BETAI INTEGRIN; CHAIN: A; ALPHAI BETAI INTEGRIN: CHAIN: B:	ALPHAI BÉTAI INTEGRIN; CHAIN: A; ALPHAI BETAI INTEGRIN; CHAIN: B;	PROTEIN PHOSPHATASE	PP2A; CHAIN: A, B;	KARYOPHERIN ALPHA;
SeqFold score			96.71				90.24						
PMF score		<u>-</u>			_			1	1	_	0.17		_
Verify score		0.62		0.57	0.54	0.42		0.85	0.7	1.09	0.02	5	0.52
PSI- BLAST		5.40E-27	9.10E-44	9.10E-44	9.00E-26	3.60E-23	3.60E-24	3.60E-24	7.20E-28	1.60E-29	3.60E-33	2 40E 40	3.60E-49
End AA		307	498	497	498	268	501	503	309	499	343	227	777
Start AA		124	324	325	326	123	323	326	122	324	_	-	1
Chain ID						A	∢	∢	V	A	A	4	٤
PDB ID		lido	lido	lido	lido				19c5	19c5	163u	200	┨
SEQ NO:		776	9/1	776	9//	9//	776	776	776	776	777	777	

£ + , ,

PDB annotation	RNA POLYMERASE I SUPPRESSOR PROTEIN; ARM REPEAT	TRANSPORT PROTEIN SERINE-RICH RNA POLYMERASE I SUPPRESSOR PROTEIN; ARM REPEAT	NUCLEAR IMPORT RECEPTOR KARYOPHERIN ALPHA; NUCLEAR IMPORT RECEPTOR, NUCLEAR LOCALIZATION SIGNAL, 2 ARMADILLO REPEATS, AUTOINHIBITION, INTRASTERIC REGULATION	NUCLEAR IMPORT RECEPTOR KARYOPHERIN ALPHA; NUCLEAR IMPORT RECEPTOR, NUCLEAR LOCALIZATION SIGNAL, 2 ARMADILLO REPEATS, AUTONHIBITION, INTRASTERIC REGULATION	STRUCTURAL PROTEIN ARMADILLO REPEAT, BETA-CATENIN, STRUCTURAL PROTEIN	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON	ARMADILLO REPEAT ARMADILLO REPEAT, BETA-CATENIN, CYTOSKELETON	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN, C2-DOMAIN, EXOCYTOSIS, NEUROTRANSMITTER 2 RELEASE, ENDOCYTOSIS/EXOCYTOSIS	ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN, C2-DOMAIN, EXOCYTOSIS, NEUROTRANSMITTER 2 RELEASE, ENDOCYTOSIS/EXOCYTOSIS
Coumpound	CHAIN: A, B; MYC PROTO- ONCOGENE PROTEIN; CHAIN: C, D, E, F;	KARYOPHERIN ALPHA; CHAIN: A, B; MYC PROTO- ONCOGENE PROTEIN; CHAIN: C, D, E, F;	IMPORTIN ALPHA; CHAIN: A;	IMPORTIN ALPHA; CHAIN: A;	BETA-CATENIN; CHAIN: NULL;	BETA-CATENIN; CHAIN: NULL;	BETA-CATENIN; CHAIN: NULL;	SYNAPTOTAGMIN I; CHAIN: A;	SYNAPTOTAGMIN I; CHAIN: A;
SeqFold score			52.47						
PMF score		0.17		-	0.98	0.94	0.75	-	_
Verify score		0.03		0.55	0.26	0.3	0.21	0.41	0.59
PSI- BLAST		5.40E-10	1.40E-51	1.40E-51	3.60E-39	1.30E-29	5.40E-31	2.60E-39	3.60E-24
End		347	344	343	347	336	347	265	264
Start AA		233	-	٧.	26	-	89	140	143
Chain ID		¥	∢	∢				⋖	∢
PDB ID		lee4	lial	lial	2bct	3bct	3bct	1byn	1byn
SEQ D NO:		777	777	777	777	777	777	977	611

					Υ	Т	Γ	Т				
PDB annotation	ENDOCYTOSIS/EXOCYTOSIS BETA SANDWICH, CALCIUM ION, C2 DOMAIN	ENDOCYTOSIS/EXOCYTOSIS BETA SANDWICH, CALCIUM ION, C2 DOMAIN					COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	CONTRACTILE LIM DOMAIN, CRP, NMR, MUSCLE DIFFERENTIATION.	SIGNALLING PROTEIN BINDING PROTEIN, CYTOKINE, SIGNALLING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRICTURE COMPLEY
Coumpound	SYNAPTOTAGMIN III; CHAIN: A;	SYNAPTOTAGMIN III; CHAIN: A;	CALCIUM/PHOSPHOLIPID BINDING PROTEIN SYNAPTOTAGMIN I (FIRST C2 DOMAIN) (CALB) IRSY 3	CALCIUM/PHOSPHOLIPID BINDING PROTEIN SYNAPTOTAGMIN I (FIRST C2 DOMAIN) (CALB) IRSY 3	CALCIUM/PHOSPHOLIPID BINDING PROTEIN SYNAPTOTAGMIN I (FIRST C2 DOMAIN) (CALB) IRSY 3		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C.	CRP1; CHAIN: A;	TUMOR NECROSIS FACTOR RECEPTOR; CHAIN: A, B:	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold score			130.23				70.71			58.15	57.16	
PMF score	-	-		_	_			0.03	0.06			_
Verify score	0.51	0.43		0.35	0.56			-0.31	-0.2			0.32
PSI- BLAST	2.60E-73	9.00E-55	2.60E-41	2.60E-41	3.60E-24		7.20E-31	7.20E-22	3.60E-26	7.80E-13	0.00026	3.60E-50
End AA	376	387	566	264	264		227	91	691	277	186	197
Start AA	140	143	136	140	143		145	19	95	88	10	116
Chain ID	V	A					V	A	∢	Ą	¥	U
PDB ID	ldqv	ldqv	Irsy	lrsy	Irsy		laih	lalh	lalh	158t	lext	1me y
SEQ ID	779	622	779	779	779		783	783	783	783	783	783

PDB annotation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2 CRASTAL STRITCTURE COMPLEY	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (7RIO EDICE)	COMPLEX (ZINC FINGER DINA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTFIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(CINC FINGENDINA)	COMPLEX (ZINC FINGERODNA) ZINC FINGER PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(IKANSCKIPIION REGIII ATION/DNA) RNA	POLYMERASE III, 2 TRANSCRIPTION
Coumpound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	FRO IEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	FROIEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA: CHAMI, A D D.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: C. F. G.		DAIA CHAINE A D. C.	DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: C. F. G.			TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE;	CHAIN: B, C, E, F;	
SeqFold score							92.4																					87.93			
PMF				_					-		0.03				-	-				0.03			77.0	4.0							
Verify score		0.54		0.47							-0.15				0.42					-0.51			00	0.08							
PSI- BLAST		3.60E-50		1.30E-50			1.30E-50				3.60E-39				1 80E 46	1.000-40				5.40E-42			1 105 45	1.10E-43				1.30E-58			
End		225		253			254				91				276	2				141			1,60	6				275			
Start AA		144		172			172				18				200	3				89			9	<u></u>				911			
Chain ID		ပ		Ü			၁				ပ				L)				ပ			L	ر				∢			
PDB ID		1me y		Ime	>		lme	>			li i	<u>~</u>			1 8	· ^			1	ıme v			in a	2 >							
SEQ NO:		783		783			783				783				783	3			1	783			783	8				783			

PDB annotation	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGILI ATIONONA) VING VANG I.	TRANSCRIPTION INITIATION,	NITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	The ANICONTINUAN STATE CONTINUE IN ANICONTINUE IN A	INAINSCRIPTION INITIALION,	ENICED PROTEIN DAY PROTEIN	FINGER FROIEIN, DINA-PROIEIN	KECOGNITION, 3 COMPLEX	CON COLUMN (AND AND CONTRACTOR)	COMPLEX (IRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(I KANSCKIP I ION KEGULA I ION/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DINA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI,	ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)
Coumpound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRIS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YYI; CHAIN: C; ADENO-	NITIATOR ELEMENT DNA.	CHAN: A B.	Citativ. A, B,			VVI. CHARL C. ADENO	ASSOCIATION CHARMAGE	ASSOCIATED VIKUS PS	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			ייייי יייייי איייייייייייייייייייייייי	CHAIN'S PROTEIN GLIT;	CITALIN. A, DINA; CHAIN: C,	ä		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C,	D;	
SeqFold score		85.55							-																			62.70	90.72											
PMF score							500	78.0						-	•							0.46										-					6:0			
Verify score							-							-0 0-							,	-0.12						1				12.0	0.14 —		_	7	0.23	-		1
PSI- BLAST		3.90E-51		_			0 100 47	7.10E-4/						3.90E-51							2 (00) 2	3.60E-32						3 90F-59	70-707-5			2 000 50	3.90E-39			,	1.30E-56		•	
End		226			,		225	(77						254							100	761						255	}			255	673			2,0	/97		•	
Start AA		116					121	7						149		_					0,0	2						116	2			117	ì				145			
Chain ID		ပ					C)		_				C							,	 ر	•				-	4				4				1	<			1
PDB ID		Iubd					-4".							lubd	_						131.1							2gli				20li				†	, 187			
SEQ NO:		783					783	}						783							783	<u> </u>						783				783	3			70,				

 $\{e_i, e_{i+1}, \dots, e_{i+1}\}$

	GLI,	TK,	EIN 2	စ်စ်	X (c)	~			18 1GE	;;
PDB annotation	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	TRANSFERASE ATK, AMGX1, BPK; TYROSINE KINASE, X-LINKED AGAMMAGLOBULINEMIA, XLA, BTK, SH3 2 DOMAIN, TRANSFERASE	COMPLEX (ADAPTOR PROTEIN/PEPTIDE) ASH, GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2; COMPLEX (ADAPTOR PROTEIN/PEPTIDE), SH3 DOMAIN, 2 GUANINE-NUCLEOTIDE RELEASING FACTOR	COMPLEX (TRANSFERASE/PEPTIDE) COMPLEX (TRANSFERASE/PEPTIDE), SIGNAL TRANSDUCTION, 2 SH3 DOMAIN	COMPLEX (SIGNAL TRANSDUCTIONPEPTIDE) COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE), SH3 DOMAIN	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14	CIRCULAR PERMUTANT PWT; CIRCULAR PERMUTANT, SH3 DOMAIN, CYTOSKELETON	CYTOSKELETON CYTOSKELETON, MEMBRANE, SH3 DOMAIN	SIGNAL TRANSDUCTION PROTEIN SRC-HOMOLOGY 3 (SH3) DOMAIN, PEPTIDE-BINDING PROTEIN, ISEM 18 2 GUANINE NUCLEOTIDE EXCHANGE FACTOR ISEM 19	ENDOCYTOSIS/EXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX, MULTI-SUBUNIT
Coumpound	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	BRUTON'S TYROSINE KINASE; CHAIN: NULL;	GRB2; CHAIN: A; SOS; CHAIN: B;	ABL TYROSINE KINASE; CHAIN: A, C, E, G; PEPTIDE P41; CHAIN: B, D, F, H;	GRB2; CHAIN: A; SOS-1; CHAIN: B;	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	ALPHA SPECTRIN; CHAIN: NULL;	ALPHA II SPECTRIN; CHAIN: A;	SEM-5: ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE PROLINE-RICH PEPTIDE FROM MSOS ISEM 8 CHAIN: C, D ISEM 10	SYNTAXIN BINDING PROTEIN I; CHAIN: A; SYNTAXIN IA; CHAIN: B;
SeqFold score						·				
PMF score	0.1	0.8	0.83	0.25	0.87	0.12	0.59	0.71	0.59	0.01
Verify score	-0.43	0.42	0.35	0.08	0.4	0.12	0.2	-0.25	0.21	-0.67
PSI- BLAST	3.60E-26	1.00E-09	2.60E-11	3.90E-10	9.10E-12	1.80E-09	2.60E-11	1.30E-10	5.40E-11	1.00E-05
End AA	140	403	402	403	403	400	403	403	400	281
Start AA	26	340	348	350	348	343	344	349	349	160
Chain	∀		∢	Ą	Ą	A		٨	4	æ
ros E	2gli	law w	laze	16bz	1gbq	lgri	lpwt	19k *	lsem	1dn1
NO B S	783	784	784	784	784	784	784	784	784	785

	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
	1a88	∢	7	258	5.40E-45	-0.21	0.07		CHLOROPEROXIDASE L;	HALOPEROXIDASE REOMOPEROXIDASE I
									(17, 17, 17, 17, 17, 17, 17, 17, 17, 17,	HALOPEROXIDASE L;
										HALOPEKOXIDASE, OXIDOREDUCTASE
	1a8q		6	257	1.10E-38	-0.13	0.05		BRÖMOPEROXIDASE AI;	HALOPEROXIDASE
									CHAIN: NULL;	CHLOROPEROXIDASE A1,
										HALOPEROXIDASE,
_1	,	_								OXIDOREDUCTASE
	la8s		7	258	7.20E-39	-0.12	0.22		CHLOROPEROXIDASE F;	HALOPEROXIDASE
									CHAIN: NULL;	HALOPEROXIDASE F;
										OXIDOREDICTARE PROPIONATE
										COMPLEX
	<u>F</u>		7	258	1.30E-39	0.14	0.28		BROMOPEROXIDASE A2;	HALOPEROXIDASE
		_							CHAIN: NULL;	HALOPEROXIDASE A2,
										CHLOROPEROXIDASE A2;
	_	_		_						HALUPEKUXIDASE,
										OXIDOREDUCIASE, PEROXIDASE,
										MUTANT M99T
	1c4x	∢	17	247	5.40E-41	-0.02	0.87		2-HYDROXY-6-OXO-6- PHENYLHEXA-2,4-	HYDROLASE BPHD; HYDROLASE, PCB DEGRADATION
	1								DIENOATE CHAIN: A;	
	lcqw	⋖	13	257	1.80E-40	0.35	0.99		HALOALKANE DEHALOGENASE; 1- CHI OROHFXANF CHAIN: A	HYDROLASE A/B HYDROLASE FOLD, DEHALOGENASE I-S BOND
L	lcvl		25	203	3.60E-11	60.0	0.03		TRIACYLGLYCEROL	HYDROLASE TRIACYLGLYCEROL-
									HYDROLASE; CHAIN: NULL;	HYDROLASE, X-RAY
				_						CRYSTALLOGRAPHY, 2
						_				PSEUDOMONADACEAE, OXYANION,
		-			00 007					CIS-PEPTIDE, HYDROLASE
	leny	∢	=	726	5.40E-38	0.23	0.52		SOLUBLE EPOXIDE	HYDROLASE HYDROLASE,
	-					-			HYDKOLASE; CHAIN: A, B,	ALPHA/BETA HYDROLASE FOLD,
									ů,	EPONIDE DEURADA HOIN, 2 EPICHLOROHYDRIN
	lekl	≺	14	258	1.10E-37	0	0.15		EPOXIDE HYDROLASE;	HYDROLASE HOMODIMER,
	-								CHAIN: A, B;	ALPHA/BETA HYDROLASE FOLD,
l										NOTICE STATE OF TH

		1	1		T			Ι				
PDB annotation	HYDROLASE HOMODIMER, ALPHA/BETA HYDROLASE FOLD, DISUBSTITUTED UREA 2 INHIBITOR	HYDROLASE LIPASE		HYDROLASE PSEUDOMONADACEAE, CIS-PEPTIDE, CLOSED CONFORMATION, 2 HYDROLASE, LID	HYDROLASE ALPHA BETA HYDROLASE FOLD, PROLINE, PROLYL AMINOPEPTIDASE, 2 SERRATIA. IMINOPEPTIDASE	LIPASE LIPASE; LIPASE, HYDROLASE, PSEUDOMONADACEAE, COVALENT INTERMEDIATE, 2 TRIGLYCERIDE ANALOGUE. ENANTIOSELECTIVITY		SIGNAL TRANSDUCTION SIGNAL TRANSDUCTION, SOS, PLECKSTRIN HOMOLOGY (PH) DOMAIN	SIGNAL TRANSDUCTION PROTEIN	TRANSPORT PROTEIN RHO-GTPASE EXCHANGE FACTOR, TRANSPORT PROTEIN	TRANSPORT PROTEIN RHO-GTPASE EXCHANGE FACTOR, TRANSPORT PROTEIN	GENE REGULATION SON OF SEVENLESS PROTEIN; GUANINE NUCLEOTIDE EXCHANGE FACTOR, GENE REGULATION
Coumpound	EPOXIDE HYDROLASE; CHAIN: A, B;	LIPASE, GASTRIC, CHAIN: A, B;	HYDROLASE(CARBOXYLIC ESTERASE) LIPASE (E.C.3.1.1.3) COMPLEXED WITH COLIPASE AND INHIBITED 1LPB 3 BY UNDECANE PHOSPHONATE METHYL ESTER (TWO CONFORMATIONS) 1LPB 4	TRIACYLGLYCERÓL HYDROLASE; CHAIN: D; TRIACYLGLYCEROL HYDROLASE; CHAIN: E;	PROLYL AMINOPEPTIDASE; CHAIN: A;	TRIACYL-GLYCEROL- HYDROLASE, CHAIN: D, E,		SOSI; CHAIN: NULL;	BETA-SPECTRIN; 1BTN 4 CHAIN: NULL; 1BTN 5	PIX; CHAIN: A;	PIX; CHAIN: A;	HUMAN SOS 1; CHAIN: A;
SeqFold score												
PMF score	0.13	0	0	-0.03	0	0.01		0.49	-	0.89	0.6	96.0
Verify score	-0.11	-0.32	-0.29	0.1	-0.16	-0.09		0.32	0.39	-0.25	-0.46	-0.1
PSI- BLAST	1.10E-37	1.60E-07	1.40E-06	3.60E-11	1.60E-28	1.60E-11		1.20E-23	9.00E-09	2.60E-41	7.20E-23	1.80E-16
End AA	258	121	149	203	242	161		576	819	463	462	570
Start AA	14	5	30	25	∞	25		462	728	261	267	261
Chain ID	В	A	а	D	¥	D				¥	∢	∢
PDB ID	lek1	lhlg	11pb	1qge	lqtr	4lip	1	lawe	l btn	lby1	lby1	1dbh
SEQ ID NO:	786	786	786	786	786	786	-	788	788	788	788	788

	1	,		т	,						-									,		т-	
PDB annotation	GENE REGULATION SON OF SEVENLESS PROTEIN; GUANINE NUCLEOTIDE EXCHANGE FACTOR, GENE REGULATION	CYTOSKELETON	TRANSFERASE HRS; HRS, VHS, FYVE, ZINC FINGER, SUPERHELIX	SIGNALING PROTEIN 11 ALPHA- HELICES	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3-	TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR	PROTEIN	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3-	PHOSPHOINOSITIDES, INOSITOL	TETRANSPUCTION PROTEIN, ADAPTOR	FROI EIN	SIGNALING FROTEIN DAPPT, PHISH, BAM32; PLECKSTRIN, 3-	PHOSPHOINOSITIDES, INOSITOL	TRANSDUCTION PROTEIN, ADAPTOR	SIGNALING PROTEIN DAPPI PHISH	BAM32; PLECKSTRIN, 3-	PHOSPHOINOSITIDES, INOSITOL	TETRAKISPHOSPHATE 2 SIGNAL	TRANSDUCTION PROTEIN, ADAPTOR PROTEIN	SIGNALING PROTEIN ARFI GUANINE	NUCLEOTIDE EXCHANGE FACTOR AND PH DOMAIN	SIGNALING PROTEIN ARF! GUANINE	NUCLEOTIDE EXCHANGE FACTOR AND PH DOMAIN
Coumpound	HUMAN SOS 1; CHAIN: A;	BETA-SPECTRIN; IDRO 6 CHAIN: NULL; IDRO 7	HEPATOCYTE GROWTH FACTOR-REGULATED TYROSINE CHAIN: A:	RHO-GEF VAV; CHAIN: A;	DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A.			DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-	CHAIN: A;		DIIAI ADABAON OF	PHOSPHOTYROSINE AND 3-	CHAIN: A;		DUAL ADAPTOR OF	PHOSPHOTYROSINE AND 3-	CHAIN: A;			GRP1; CHAIN: A;		GRP1; CHAIN: A;	
SeqFold score													-										
PMF score	-	0.21	1		0.94		60	67:0			000	0.23			0.98					0.21		86.0	
Verify score	0.12	0.22	0.07	0.14	0.52		,	- 0.4			0.63	6.0			0.67					-0.18		0.27	
PSI- BLAST	7.80E-58	9.10E-09	9.00E-11	5.40E-24	3.60E-11		1001	1.005-09			2 KOE-18				1.80E-11				ļ	9.10E-08		1.10E-15	
End	576	820	674	454	816		763	5/6			817	3			816					574		821	
Start AA	263	736	819	260	726		707	+ 0+			710	<u>}</u>			722					484		725	
Chain 10	∢		Ą	A	¥			τ .			A	:			A					∢		∢	
PDB ID	146h	1dro	ldvp	1f5x	l fao		94.	9011			1.5%				1fb8					1fgy		lfgy	
SEQ NO:	788	788	788	788	788		780	90/			788	3			788					788		788	

PDB annotation	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE FACTOR AND PH DOMAIN		SIGNAL TRANSDUCTION IRS-1; BETA-SANDWHICH, SIGNAL TRANSDUCTION	TRANSPORT PROTEIN FYVE DOMAIN, ENDOSOME MATURATION, INTRACELLULAR TRAFFICKING, 2 TRANSPORT PROTEIN	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB34; COMPLEX (GTP-BINDING/EFFECTOR), G PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN	RECEPTOR RECEPTOR, SIGNAL TRANSDUCER OF IL-6 TYPE CYTOKINES, THIRD 2 N-TERMINAL DOMAIN, TRANSMEMBRANE, GLYCOPROTEIN	RECEPTOR RECEPTOR, SIGNAL TRANSDUCER OF IL-6 TYPE CYTOKINES, THIRD 2 N-TERMINAL DOMAIN, TRANSMEMBRANE, GLYCOPROTEIN	RECEPTOR RECEPTOR, SIGNAL TRANSDUCER OF IL-6 TYPE CYTOKINES, THIRD 2 N-TERMINAL DOMAIN, TRANSMEMBRANE, GLYCOPROTEIN
Coumpound	GRP1; CHAIN: A;	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(G105-LEHHTHHH)) (NMR, 25 STRUCTURES) IPLS 5	INSULIN RECEPTOR SUBSTRATE 1; CHAIN: A, B;	PHOSPHATIDYLINOSITOL-3- PHOSPHATE BINDING FYVE CHAIN: A;	RAB-3A; CHAIN: A; RABPHILIN-3A; CHAIN: B;	GP130; CHAIN: NULL;	GP130; CHAIN: NULL;	GP130; CHAIN: NULL;
SeqFold score								
PMF score	90.0	0.93	0.76	0.94	0.1	0.09	0.13	-0.01
Verify score	-0.15	- - 0	0.64	0.04	0.11	-0.08	-0.09	0.14
PSI- BLAST	7.80E-16	1.80E-11	3.60E-05	7.20E-08	3.90E-21	1.10E-08	3.60E-11	7.20E-11
End AA	814	819	816	129	674	360	477	280
Start AA	729	728	725	620	590	. 588	387	484
Chain ID	A		A	A	В			
PDB ID	l fgy	1pls	Iqqg	lvfy	12bd	15j8	15j8	15j8
SEQ ID NO:	788	788	788	788	788	789	789	789

PDB annotation	CONNECTIN A71, CONNECTIN; TITIN, CONNECTIN, FIBRONECTIN TYPE III	CONNECTIN A71, CONNECTIN, TITIN, CONNECTIN, FIBRONECTIN TYPE III	SIGNALING PROTEIN CYTOKINE RECEPTOR, GLYCOPROTEIN 130, GP130, INTERLEUKINE 6 2 RECEPTOR BETA SUBUNIT, SIGNALING PROTEIN	SIGNALING PROTEIN CYTOKINE RECEPTOR, GLYCOPROTEIN 130, GP130, INTERLEUKINE 6 2 RECEPTOR BETA SUBINIT, SIGNALING PROTEIN	SIGNALING PROTEIN CYTOKINE RECEPTOR, GLYCOPROTEIN 130, GP130, INTERLEUKINE 6 2 RECEPTOR BETA SUBLINIT, SIGNALING PROTEIN		HORMONE/GROWTH FACTOR/HORMONE RECEPTOR 4- HELICAL BUNDLE, ALPHA HELICAL BUNDLE, TERNARY COMPLEX, FN 2 III DOMAINS, BETA SHEET DOMAINS, CYTOKINE-RECEPTOR COMPLEX			
Coumpound	TITIN; CHAIN: NULL;	TITIN; CHAIN: NULL;	GP130; CHAIN: A, B;	GP130; CHAIN: A, B;	GP130; CHAIN: A, B;	NEURAL ADHESION MOLECULE DROSOPHILA NEUROGLIAN (CHYMOTRYPTIC FRAGMENT CONTAINING THE ICFB 3 TWO AMINO PROXIMAL FIBRONECTIN TYPE III REPEATS ICFB 4 (RESIDUES 610 - 814)) ICFB 5	PLACENTAL LACTOGEN; CHAIN: A; PROLACTIN RECEPTOR; CHAIN: B, C;	CELL ADHESION PROTEIN FIBRONECTIN CELL- ADHESION MODULE TYPE III-10 IFNA 3	CELL ADHESION PROTEIN FIBRONECTIN CELL- ADHESION MODULE TYPE III-10 1FNA 3	CELL ADHESION PROTEIN FIBRONECTIN CELL-
SeqFold score										
PMF score	0.11	0.25	90.0	-0.14	-0.03	0.24	0.19	0.19	0.22	0.41
Verify score	-0.31	-0.02	-0.19	0.09	0.11	0.03	-0.26	-0.14	0.04	0.07
PSI- BLAST	3.60E-07	3.60E-10	7.20E-21	9.00E-15	1.80E-18	1.80E-26	1.60E-14	3.60E-07	1.10E-11	1.30E-12
End	360	578	360	490	595	583	359	360	582	586
Start AA	288	485	195	288	386	385	961	295	492	504
Chain ID			Ą	4	Ą		æ.			
PDB ID	lbpv	1bpv	16qu	1bqu	1bqu	1cfb	1461	lfna	1fna	1fna
SEQ NO:	789	789	789	789	789	789	68/	789	789	789

PDB Chain	=	Start	End	PSI- BLAST	Verify score	PMF	SeqFold	Coumpound	PDB annotation
_									
								ADHESION MODULE TYPE III-10 IFNA 3	
		192	582	5.40E-39	-0.02	0.51		FIBRONECTIN; 1FNF 6 CHAIN: NULL; 1FNF 7	CELL ADHESION PROTEIN RGD, EXTRACELLULAR MATRIX IFNF 18
		194	588	5.40E-39			120.84	FIBRONECTIN; 1FNF 6 CHAIN: NIII. 1FNF 7	CELL ADHESION PROTEIN RGD, EXTRACELLII.AR MATRIX IFNF 18
		288	674	9.00E-38	-0.03	0.31		FIBRONECTIN; IFNF 6	CELL ADHESION PROTEIN RGD,
╄		386	752	9.00E-39	0.02	-0.07		FIBRONECTIN; IFNF 6	CELL ADHESION PROTEIN RGD,
₹		196	473	1.10E-19	0.11	0.07		CHAIN: NOLL; IFNF / FIBRONECTIN; CHAIN: A;	HEPARIN AND INTEGRIN BINDING HEPARIN AND INTEGRIN BINDING
-	A	389	673	7.20E-32	0.05	0.55		FIBRONECTIN; CHAIN: A;	HEPARIN AND INTEGRIN BINDING HEPARIN AND INTEGRIN BINDING
-	A	893	1462	0	99.0	_		LAR; CHAIN: A, B;	HYDROLASE TYROSINE PHOSPHATEASE, LAR PROTEIN
	В	782	1164	3.60E-81	0.34	_		LAR; CHAIN: A, B;	HYDROLASE TYROSINE PHOSPHATEASE, LAR PROTEIN
	В	924	1462	0	0.72	1		LAR; CHAIN: A, B;	HYDROLASE TYROSINE PHOSPHATEASE, LAR PROTEIN
1mfn		292	474	5.40E-23	0.12	0.16		FIBRONECTIN; CHAIN: NULL;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2 HEDARIN BENENIC CLYCORDOTEIN
1mfn		388	582	1.80E-25	-0.13	0.09		FIBRONECTIN; CHAIN: NULL;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2 HEPARIN-BINDING, GLYCOPROTEIN
1983	A	290	478	1.10E-17	0.18	0.1		INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN
1983	A	388	588	1.40E-25	0.28	-1.41		INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN
1qg3	¥	390	584	2.60E-29	0.3	0.92		INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN
Iqr4	A	292	480	9.00E-17	0.12	0.18		TENASCIN; CHAIN: A, B;	STRUCTURAL PROTEIN TENASCIN,

PDB annotation	FIBRONECTIN TYPE-III, HEPARIN, EXTRACELLULAR 2 MATRIX, ADHESION, FUSION PROTEIN, STRUCTURAL PROTEIN	STRUCTURAL PROTEIN TENASCIN, FIBRONECTIN TYPE-III, HEPARIN, EXTRACELLULAR 2 MATRIX, ADHESION, FUSION PROTEIN, STRIICTIRAI PROTEIN	RECEPTOR DI; RECEPTOR, PHOSPHATASE, SIGNAL TRANSDUCTION, ADHESION, 2 HYDROI ASE	RECEPTOR DI; RECEPTOR, PHOSPHATASE, SIGNAL TRANSDUCTION, ADHESION, 2 HYDROI ASE				IMMUNE SYSTEM CD32; RECEPTOR, FC. CD32. IMMINE SYSTEM	PROTEIN BINDING ED-B, FIBRONECTIN, TYPEIII DOMAIN, ANGIOGENESIS PROTEIN 2 BINDING	PROTEIN BINDING ED-B, FIBRONECTIN, TYPEIII DOMAIN, ANGIOGENESIS PROTEIN 3 PRICEIN STATES OF THE PROPERTY OF TH	TYROSINE PHOSPHATASE SYP, SHPTP-2; TYROSINE PHOSPHATASE, INSULIN SIGNALING, SH2 PROTEIN
Coumpound		TENASCIN; CHAIN: A, B;	RECEPTOR PROTEIN TYROSINE PHOSPHATASE MU; CHAIN: A, B;	RECEPTOR PROTEIN TYROSINE PHOSPHATASE MU; CHAIN: A, B;	CELL ADHESION PROTEIN TENASCIN (THIRD FIBRONECTIN TYPE III REPEAT) 1 TEN 3	CELL ADHESION PROTEIN TENASCIN (THIRD FIBRONECTIN TYPE III	GLYCOPROTEIN FIBRONECTIN (TENTH TYPE III MODULE) (NMR, 36 STRUCTURES) 1TTF 3	FC GAMMA RIIB: CHAIN: A;	FIBRONECTIN; CHAIN: A;	FIBRONECTIN; CHAIN: A;	SHP-2; CHAIN: A, B;
SeqFold score			405.81								
PMF		0.41			0.03	0.03	0.31	-0.2	86.0	0.16	
Verify score		0.32		0.85	0.08	0.08	0.16	0.03	0.35	0.31	0.44
PSJ- BLAST		1.305-20	1.40E-89	1.40E-89	1.60E-07	1.30E-08	5.40E-13	1.40E-10	1.60E-05	1.80E-08	1.40E-72
End		584	1166	1165	584	584	582	163	480	584	1164
Start AA		390	889	891	487	502	485	27	391	490	835
Chain ID		∢	A	¥				A	∢	۷	A
PDB ID		1qr4	Irpm	lrpm	Iten	. Iten	1tt	Ztcb	2fnb	2fnb	2shp
SEQ NO:	G.	789	789	789	789	789	789	68/	789	789	789

PDB annotation	OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	SIGNAL TRANSDUCTION PROTEIN	SIGNALING PROTEIN DAPPI, PHISH, RAM32: PI ECKSTRIN 3.	PHOSPHOINOSITIDES, INOSITOL	TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR	PROTEIN	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE FACTOR AND PH DOMAIN	CYTOKINE LCF; CYTOKINE,	LYMPHOCYTE CHEMOATTKACTANT FACTOR, PDZ DOMAIN	OXIDOREDUCTASE BETA-FINGER	OXIDOREDUCTASE BETA-FINGER	MEMBRANE	PROTEIN/OXIDOREDUCTASE BETA-	rinden, ne tendolinen		MEMBRANE PROTEIN/OXIDOREDI/CTASE BETA-	FINGER, HETERODIMER
Coumpound	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CHAIN: B;	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CHAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	BETA-SPECTRIN; 1BTN 4 CHAIN: NULL; 1BTN 5	DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3.	CHAIN: A;			GRP1; CHAIN: A;	INTERLEUKIN 16; CHAIN:	NULL;	NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1- 130); CHAIN: A;	NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1- 130); CHAIN: A;	ALPHA-1 SYNTROPHIN	(RESIDUES 77-171); CHAIN:	OXIDE SYNTHASE	(RESIDUES 1-130); CHAIN: B;	ALPHA-I SYNTROPHIN (RESIDUES 77-171): CHAIN:	A; NEURONAL NITRIC OXIDE SYNTHASE
SeqFold score	58.72		57.29												77.08				_	
PMF score		0.23			0.04	-0.13				0.05	0.43		0.99	0.94					-	
Verify score		0.46		1.06	-0.05	0.24				-0.65	0.09		0.5	0.47					0.87	
PSI- BLAST	1.40E-11	1.40E-11	9.00E-16	9.00E-16	3.60E-10	5.40E-09				0.0052	3.60E-11		3.60E-10	2.60E-23	3.90E-23				3.90E-23	
End AA	176	171	163	143	388	385				267	138		166	168	140				136	
Start AA	48	52	45	49	299	295				661	27		54	56	54				26	
Chain ID	A	A	A	A		∢				∢			A	Ą	A				⋖	
PDB ID	1589	1589	1be9	1be9	1 btn	lfao				Ifgy	1116		Iqau	lqau	lqav				lqav	
SEQ ID NO:	793	793	793	793	793	793				793	793		793	793	793				793	

PDB annotation			MEMBRANE	PROTEIN/OXIDOREDUCTASE BETA- FINGER HETERODIMER				RNA-BINDING PROTEIN/RNA TRA	PRE-MRNA; SPLICING REGULATION,	RNP DOMAIN, RNA COMPLEX			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1; RRM.	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA			RNA BINDING PROTEIN RNA-	BINDING DOMAIN	NUCLEAR PROTEIN	HETEROGENEOUS NUCLEAR	RIBONUCLEOPROTEIN A1, NUCLEAR	PROTEIN, HNRNP, RBD, RRM, RNP,	RNA BINDING, 2	RIBONUCLEOPROTEIN	NUCLEAR PROTEIN	HETEROGENEOUS NUCLEAR	RIBONUCLEOPROTEIN A1, NUCLEAR	PROTEIN, HNRNP, RBD, RRM, RNP,	RNA BINDING, 2	KIBONUCLEOPROTEIN	COMPLEX					RNA BINDING PROTEIN RNA-	BINDING DOMAIN
Coumpound		(RESIDUES 1-130); CHAIN: B;	ALPHA-1 SYNTROPHIN	(KESIDUES 77-171); CHAIN: A: NEURONAL NITRIC	OXIDE SYNTHASE	(RESIDUES 1-130); CHAIN: B;		SXL-LETHAL PROTEIN;	CHAIN: A, B; RNA (5'-	R(P*GP*UP*UP*GP*UP*UP*U	P*UP*UP*UP*U)- CHAIN:	P, Q;	POLYDENYLATE BINDING	PROTEIN I; CHAIN: A, B, C,	D, E, F, G, H; RNA (5'-	R(*AP*AP*AP*AP*AP*AP	*AP*AP*AP*A)-31): CHAIN:	M, N, O, P, Q, R, S, T;	HU ANTIGEN C; CHAIN: A;		HNRNP A1; CHAIN: NULL;		-				HNRNP AI; CHAIN: NULL;					THA CRITCE OCCURATE	PROTEIN: JURN 5 CHAIN: A	B, C; IURN 6 RNA 21MER	HAIRPIN (5'-	(AP*AP*UP*CP*CP*AP*UP*U	P* IURN 11 CHAIN: P, Q, R	MUSASHII; CHAIN: A;	
SeqFold	score										_											-			,														
PMF	30016							0.81					0.99						0.71		0.63		•				0.99					70 0	10.0					0.88	
Verify	31036		0.93					0.84					0.41						0.39	,	0.48					3, 0	0.68					0.55	6					0.82	-
PSI- RLAST	TOWN.		3.60E-16					1.80E-16					5.40E-18						1.30E-15	5000	9.00E-25					, too	1.80E-15					2 60E-15	21-200:2					1.60E-15	
End			139					108				,	601						105		103						/01					112	:					103	
Start			- 26					33				ļ	×						34]-						2.4	5					33						35	
Chain			4					¥					A						V													A						∀	
PDB		1	Idav					167f				-							1 Z & D I	1-1-1-1	ınaı					1501	11141					1um						2mss	
SEQ ID	NO:	3	/93				į	794				200	1,74						194	107	¥,					707	<u> </u>	_				794						794	1

PDB annotation	RNA-BINDING DOMAIN RNA- BINDING DOMAIN, ALTERNATIVE SPLICING	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	COMPLEX (TRANSCRIPTION REGULATION/DNA) SREBP-14; STEROL REGULATORY ELEMENT BINDING PROTEIN, 2 BASIC-HELIX- LOOP-HELIX-LEUCINE ZIPPER,	SAEBY, IRANSCRIPTION 3 FACTOR, COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) SREBP-1A; STEROL REGULATORY ELEMENT BINDING PROTEIN, 2 BASIC-HELIX- LOOP-HELIX-LEUCINE ZIPPER, SPEED TO ANSCRIPTION 3 EACTOR	SALEDEY, TRANSCRIPTION S FACTOR, COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) MYN PROTEIN; MAX, DNA BINDING, BASIC-HELIX-LOOP- HELIX-LEUCINE ZIPPER, 2 TRANSCRIPTION FACTOR, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) UPSTREAM
Coumpound	SEX-LETHAL PROTEIN; CHAIN: NULL;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	SEX-LETHAL; CHAIN: A, B, C;	STEROL REGULATORY ELEMENT BINDING PROTEIN 1A; CHAIN: A, B, C, D: DNA; CHAIN: E, F, G, H;	STEROL REGULATORY ELEMENT BINDING PROTEIN 1A; CHAIN: A, B, C, D; DNA; CHAIN: E, F, G, H;	MAX PROTEIN; CHAIN: A, C; DNA; CHAIN: B, D;	USF; CHAIN: A, B; DNA; CHAIN: C, D;
SeqFold score							
PMF score	99.0	0.23	0.96	0.04	0.27	-0.03	0.07
Verify score	0.31	89.0	0.61	0.23	0.14	0.35	-0.08
PSI- BLAST	1.80E-16	5.40E-30	5.40E-16	2.60E-13	1.30E-15	9.00E-15	1.80E-13
End AA	108	Ξ	105	131	119	119	115
Start AA	33	-	33		55	57	55
Chain ID	_	A	¥	¥	В	A	А
PDB ID	2sxl	2up1	3sxl	lam 9	lam 9	lan2	lan4
SEQ NO:	794	794	794	795	262	795	795

	· · · · · · · · · · · · · · · · · · ·			<u></u>				
PDB annotation	STIMULATORY FACTOR 1; USF, DNA BINDING, BASIC-HELIX-LOOP-HELIX, LEUCINE ZIPPER, 2 TRANSCRIPTION FACTOR, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (TRANSCRIPTION FACTOR MAX/DNA) TRANSCRIPTIONAL REGULATION, DNA BINDING, COMPLEX 2 (TRANSCRIPTION FACTOR MAX/DNA)	COMPLEX (TRANSCRIPTION FACTOR MAX/DNA) TRANSCRIPTIONAL REGULATION, DNA BINDING, COMPLEX 2 (TRANSCRIPTION FACTOR MAX/DNA)		COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC
Coumpound		TRANSCRIPTION FACTOR MAX; CHAIN: A, B; DNA (5'- D(*CP*AP*CP*CP*AP*CP*GP *TP*GP*GP*T)-3', CHAIN: C, D;	TRANSCRIPTION FACTOR MAX; CHAIN: A, B; DNA (5'- D(*CP*AP*CP*CP*AP*CP*GP *TP*GP*GP*T)-3', CHAIN: C, D:	TRANSCRIPTION ACTIVATIONDNA MYOD BASIC-HELIX-LOOP-HELIX (BHLH) DOMAIN IMDY 3 (RESIDUES 102 - 166) MUTANT WITH CYS 135 REPLACED BY SER IMDY 4 (C135S) COMPLEXED WITH DNA IMDY 5 (5'- D(*TP*CP*AP*AP*CP*AP*GP *CP*TP*GP*TP*GP*A)-3') IMDY 6	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C:	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: R C	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING STEE: CHAIN: B. C.	DNA; CHAIN: A, B, D, E;
SeqFold score								
PMF score		0.17	0.05	0.11	-0.19	0.55	0.42	89.0
Verify score		90.0	-0.17	0.15	0.07	0.24	0.31	0.14
PSI- BLAST		3.60E-15	7.20E-15	1.40E-14	1.40E-22	3.60E-26	5.20E-32	5.40E-44
End AA		119	119	114	405	433	434	433
Start AA		53	55	53	327	353	357	352
Chain ID		¥	æ	Ф	A	¥	¥	С
PDB ID		1hlo	1hlo	pe ,	lalh	lalh	lalh	Ime
SEQ NO:		795	795	795	800	800	008	800

PDB annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, FRO LEIN-DNA INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, FROI EIN-DNA INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEA (ZINC FINGENDINA) ZINC FINGER PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGERUNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, FROI EIN-DINA BITED A CTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE COMPLEY	CALISTAE STROCTORE, COM CEA	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA
Coumpound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;		CAIA CIIAN: 4 D D E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		5 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: C. F. G:			DNA; CHAIN: A, B, D, E;	DDOTENI CHANI O E O	TNO LEJIN, CHAIIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER
SeqFold score																	•											
PMF score		_			-		-	_			-				1					-		_	-	-				_
Verify score		0.49			0.45			0.52			0.50	70.0			9	0.48				0.45				0.15				0.19
PSI- BLAST		1.80E-46			3.90E-48			2.60E-48			5.40E 47	7:401.7			. 40	9.00E-48				1.80E-48				9.00E-50				1.80E-50
End		461		!	461			489			480	è			213	710				545				573				601
Start AA		380			381			408			907	00+			707	436				464		•		492				520
Chain ID		၁			C			၁			C)				ر				U				O				C
PDB ID	'n	lme	<u> </u>		1me	<u> </u>		lme ,	•		100					e v	`		1	- me ^	`			Ime	>			lme y
SEQ ID NO:		800			800			800			COS	3			8	2008				008				800				800

		1		_				_				_					ı				_					_				—		
PDB annotation	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTEIN-DNA	INTERACTION, PROTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEY (27NO ERICER/DAIA) 27NO	COMPLEA (CINC FINGER DINA) CINC	INTERACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTEIN, DNA	INTERACTION, PROTEIN DESIGN 2
Coumpound	PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	FKOLEIN; CHAIN: C, F, G;		DNA: CHAIN: A B D E.	CONSENSIS ZINC FINGER	PROTEIN: CHAIN: C. F. G.			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A. B. D. E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA: CHAPI A P P P	DNA; CHAIN: A, B, D, E; CONSENSIIS ZINC FINGER	PROTEIN; CHAIN: C, F, G;
SeqFold score						•		107.23		•										•				-								
PMF		_		-				•				_	•				,				1					_				-		
Verify score		0.3		0.21								0.38)				0.54				0.54				;	0.41				0.10	61.0	
PSI- BLAST		5.40E-51		3.60E-51				3.60E-51				5.40E-51					1.20E-51				1.40E-50				02 007 .	1.40E-50			-	9 DOF-46	2.000.5	
End AA		629		657				658				685					713				713				,,,,	14/				765	3	
Start AA		548		576				216				604					632				632				033	000			_	889	8	
Chain ID		ပ		C				ပ				S		-		ļ	 ن				S				C					C)	
PDB ID		lme y		1me	>			Ime	<u> </u>			┢	>			+	. me	<u>~</u>	-	-	1me	<u>~</u>		•	╁	2 2	<u> </u>			1me		
SEQ NO:		008		800				008				800				\top	008				800				908					008		

10 g is

PDB annotation	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) TFIIIA; 5S GENE; NMR. TFIIIA. PROTEIN. DNA.	TRANSCRIPTION FACTOR, 58 RNA 2	GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA POI VMED ASE III 3 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	REGULATION/DNA). RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	KEGULATION/UNA) COMPLEX	REGILLATION BNA	POI YMERASE III 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DINAJ, KINA	POLYMERASE III, 2 TRANSCRIPTION INITIATION ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	RECOGNITION 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION
Coumpound		TRANSCRIPTION FACTOR IIIA; CHAIN: A; 58 RNA GENE: CHAIN: E. F.				TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE;	CHAIN: B, C, E, F;			TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE;	CITAIN: B, C, E, I,			TFIIIA; CHAIN: A, D; 5S	KIBOSOMAL KNA GENE;	Chain. B, C, E, F;			TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE;	CHAIN: B, C, E, F;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			YY1; CHAIN: C; ADENO-
SeqFold score			_												111.83																
PMF score	-	-0.2				0.54				1										-					0.43					!	96.0
Verify score		0				0.5				0.31										-0.13					-0.16						0.15
PSI- BLAST		3.60E-11				1.80E-35		•		9.00E-38					7.20E-38					7.20E-38					1.30E-28						5.40E-31
End AA		377				498				999					741					754					433						461
Start AA		292				353		_		521					929					909					332						355
Chain ID		¥				∀				A					¥					A					ပ						၁
PDB ID		E#1				146				1tf6					146					1116					lubd						1ubd
SEQ NO:		800				008				800					800					800					800						800

	T		T			·· ·
PDB annotation	REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIL! ATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILI ATTOM/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX TRANSCRIPTION PEGTIL ATTORION	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX THE ANSCRIPTION BEGIN A TOWNWAY	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX TO ANSCRIPTION, 10 FINGER	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILI ATTOMONA)
Coumpound	ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold score						
PMF score		_	_	-	96.0	0.93
Verify score		0.05	0.51	0.1	0.12	0.33
PSI- BLAST		1.30E-45	1.30E-57	7.80E-55	1.30E-53	9.00E-35
End AA		461	489	545	601	629
Start AA		357	385	434	490	528
Chain ID		ပ	O	၁	ပ	S
PDB ID		lubd	Iubd	1ubd	lubd	lubd
SEQ NO:		008	800	800	800	800

PDB annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YNG-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX
	COMPLEX REGULATI TRANSCRI INITIATOR FINGER PF RECOGNIT	COMPLEX REGULAT TRANSCRI INITIATOR FINGER PF RECOGNIT (TRANSCR	COMPLEX REGULAT TRANSCRI INITIATOR FINGER PI RECOGNIT	COMPLEX REGULAT TRANSCRI INITIATOR FINGER PE RECOGNIT	COMPLEX REGULAT TRANSCR: INITIATOR FINGER PI RECOGNIT	COMPLEX REGULAT TRANSCRI INITIATOR FINGER PI
Coumpound	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; ÇHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold score	_	91.29				
PMF score	 		-	0.99	_	_
Verify score	0.11		0.22	0.25	0.13	0.15
PSI- BLAST	1.30E-58	5.20E-60	3.60E-35	5.20E-60	1.60E-34	3.90E-61
End AA	657	658	657	713	713	741
Start AA	546	548		602	612	630
Chain D	ပ	ပ	O	ပ	ပ	U
PDB ID	1ubd	lubd	lubd	lubd	lubd	lubd
SEQ ID NO:	800	800	800	800	800	800

PDB annotation	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING DEOTERMENTAL	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTFIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION 22
Coumpound		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLJ1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ALPHA SPECTRIN; CHAIN: A, B, C;
SeqFold score			105.23								
PMF score		0.93		0.88	0.81	_	6.0	-	_	0.98	0.37
Verify score		0.44		0.18	0.06	0.15	0.16	0.11	0.32	0.41	-0.2
PSI- BLAST		1.30E-43	3.90E-71	2.60E-70	3.90E-71	5.20E-73	1.30E-34	5.20E-79	5.40E-34	1.10E-33	0.0052
End		463	519	547	603	631	656	743	712	743	302
Start AA		367	380	381	408	464	528	576	584	612	16
Chain D		⋖	A	¥	A	A	∢	¥	∢	¥	A
PDB ID		2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	1cun
SEQ ID NO:		008	800	800	800	800	800	008	008	800	804

PDB annotation	TANDEM 3-HELIX COILED-COILS, STRUCTURAL PROTEIN	CELL ADHESION FOUR-HELIX BUNDLE	CELL ADHESION FOUR-HELIX BUNDLE	RIBOSOME TRANSLATION, RIBOSOME, HINGE VARIABILITY	CHAPERONE ARCHAEAL PROTEIN	GROWTH FACTOR [ABU6, 20] MEGF4-48; GROWTH FACTOR, MURINE EPIDERMAL GROWTH FACTOR, DISULFIDE 2 CONNECTIVITIES, EGF-LIKE DOMAIN, REPEAT	COMPLEX (BLOOD	COAGOLATION/INHIBITOR) AUTOPROTHROMBIN IIA:	HYDROLASE, SERINE PROTEINASE),	PLASMA CALCIUM BINDING, 2	GLYCOPKO LEIN, COMPLEX (BLOOD COAGULATION/INHIBITOR)	BLOOD COAGULATION BLOOD COAGULATION, EGF, HYDROLASE, SERINE PROTEASE	MEMBRANE PROTEIN LECTIN-LIKE,	NEUROBIOLOGY, CELL-CELL	ADHESION, CELL-CELL 2	SPLICING, MEMBRANE PROTEIN	TRANSPORT PROTEIN SHBG;	STEROID TRANSPORT, LAMININ G-	ANDROGEN BINDING PROTEIN (ABP)	SEX STEROID BINDING PROTEIN 3	(SBP)	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX
Coumpound		ALPHA-CATENIN; CHAIN: A;	ALPHA-CATENIN; CHAIN: A; BETA-CATENIN; CHAIN: B;	RIBOSOME RECYCLING FACTOR; CHAIN: A;	PREFOLDIN; CHAIN: A; PREFOLDIN; CHAIN: B; PREFOLDIN; CHAIN: C;	EPIDERMAL GROWTH FACTOR; CHAIN: NULL;	ACTIVATED PROTEIN C;	CHAIN: C, L; D-FHE-FRO- MAI: CHAIN: P:				FACTOR VII; CHAIN: NULL;	NEUREXIN-I BETA; CHAIN:	A, B, C, D, E, F, G, H;			SEX HORMONE-BINDING	GLOBULIN; CHAIN: A;				DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA
SeqFold score																						
PMF score		_	-	90.0	0.01	0.58	-0.12					0.99_	0.4				0.72					0.05
Verify score		0.41	0.37	-0.65	-0.34	0.39	0.55					96.0	0.26				0.46				9,	0.48
PSI- BLAST		3.90E-59	6.50E-70	0.0072	1.30E-06	6.50E-12	6.50E-19					1.30E-11	1.30E-26				2.60E-27				.0000	3.90E-21
End		257	257	441	103	3984	4033					3987	3928				3934				550,	4033
Start AA		79	54	367		3949	3943					3949	3771				3773				1,00	3944
Chain ID		∢	A	Ą	V		ᆸ				Í		A				4					ا د
PDB ID		ldov	ldo w	1eh1	Ifxk	la3p	laut					16f9	lc4r				1d2s					lava
SEQ NO:		804	804	804	804	808	808					808	808				808				900	808

		TOR	Z ≅	_		-	_	T
PDB annotation		HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BRIDING PROTEIN	CELLA PITERONI PROTEIN
Coumpound	(LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y:	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L-GLU-L-GLY-L-ARM: CHAIN: E, F, G, H.	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	C CADITED IN CITABLE A D.
SeqFold score								
PMF score		-0.18	-0.19	-	1202.08	6.0	0.82	1 7 1
Verify		0.25	. 90:0	0.26	0.22	0.45	0.27	0
PSI- BLAST		1.30E-13	1.30E-11	3.60E-33	1.30E-32	3.60E-21	1.60E-49	1.30E-32
End AA		4344	4336	1234	1338	1440	1547	1652
Start AA		4263	4232	9901	1171	1279	1352	1460
Chain ID		L	-	¥	A	4	¥	¥
PDB ID		ldva	14x5	1edh	1edh	ledh	ledh	1edh
SEQ D NO:		808	808	808	808	808	808	808

	Ι	<u> </u>						_	Γ				T				1						_			Т					Γ	
PDB annotation	AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I	AND 2, ECAD12; CADHERIN, CELL	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I	AND 2, ECADI2; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM RINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADJESTON PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM PRIDING PROTEIN	CELL A DETECTION TO CHEMICAL	CELL ADRESION PROTEIN EPITHELIAL CADHERIN DOMAINS I	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I AND 2. ECAD12. CADHERIN CELL
Coumpound		E-CADHERIN; CHAIN: A, B;			E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;				E-CADUEDNI CUANI: A B.	E-CADREMIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;	
SeqFold score																																
PMF score		96:0			66.0								0				,	96.0				0.51				0 78	2					
Verify score		0.21			0.19				0.32				0					0.26				0.3				0 24	17:0				0.18	
PSI- BLAST		3.60E-33			1.60E-28				3.60E-26				1.60E-20				00 400	3.60E-29				1.10E-50				1 30F-28	07-100:1				3.60E-48	
End AA		1750			1860				1960				354				5,55	2002				2163				2264					2371	
Start AA		1589			1690				1800				182				900	1898				1975				2104	; ;				2178	
Chain ID		∢			⋖				∀				V	-			-	₹				∢				A					Α	
PDB ID		ledh			ledh				ledh		•		1edh	_			1	ledh				ledh				ledh				+	ledh	
SEQ ID NO:		808			808				808				808				000	808				808				808					×0×	

PDB annotation	ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECADIZ, CADHEKIN, CELL	ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS	AND 2, ECADIZ, CAUHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECADIZ, CADHEKIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECADI2; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM
Coumpound		E-CADHERIN; CHAIN: A, B;				E-CADHERIN: CHAIN: A. B.					E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;			
SeqFold score																					120.62																		
PMF score						0.86				8	0.93					96.0										_				-	-					0.94			
Verify score		0.32			-	0.07				ļ	0														,	0.47				100	0.7/					0.31			
PSI- BLAST		1.60E-35				1.80E-29				1 000	1.80E-38				107	5.40E-32					1.80E-57				1 000 52	1.80E-5/				7 300 76	7.20E-35					5.40E-29			
End AA		2473				2577				50,0	7683				0000	68/7					2895				0000	7070				2002	5005				1	3105			
Start AA		2306				2414				0070	2488				0.70	6197				33,3	2692				2020	6607				2021	1607					2941			
Chain ID		¥				A					⋖					V					∀			-	V	₹				\ \	₹					Α			
PDB ID		ledh				ledh	-			150	legn		-		15	ledn					ledh				1691	1001			_	1 polls					-	ledh			
SEQ NO:		808				808				000	808				000	808				300	808				000	900				808	000				١	808			

																										_			
PDB annotation	BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADRESION FRO LEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1 AND 2 ECAD12: CADHERIN CELL	ADHESION PROTEIN, CALCIUM	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I	AND 2, ECADI2; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM RINDING PROTEIN	CELL A DHESTON PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2. ECAD12. CADHERIN CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM BINDING PROTEIN
Coumpound		E-CADHERIN; CHAIN: A, B;	E CADIMEDEL CITABLE A P.	L'OADHEAUN, CHAIIN. A, D,	E-CADHERIN; CHAIN: A, B;			E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;				E-CADHERIN: CHAIN: A B:	E-Creations, Circuit. A, E,				E-CADHERIN; CHAIN: A, B;			
SeqFold score															_				-										
PMF score	6	0.53	0.54		-1.41			86.0				_					0.3				0.83	3				0.82		_	
Verify score	0.0	0.38	0.16		0.57			0.45				99.0					0.12				0.29	```				0.17			
PSI- BLAST	2000	7.20E-25	5 ANE 28		1.80E-32			1.80E-48				3.60E-30				100,	1.80E-51				1.10E-29					3.60E-29			
End AA	3,	450	2107		3313			3418				3523				9	248				556	2				799			
Start AA	,,,,	9,67	3046		3120			3225				3355				١	ξς -				406	}				464			
Chain ID		<	Ą		A			A				A				-	∢				A					A			
PDB ID	14.5	u 000 1	1edh		1edh		-	ledh				ledh				-	ledin				ledh					ledh			
SEQ ID NO:	000	808	ě		808			808				808				8	808				808					808			

SEO	PDB	Chain	Start	End	PSI-	Verify	PMF	SeaFold	Commound	PDR annotation
ΕŞ	Э	А	ЧΑ	AA	BLAST	score	score	score		ייים מווויסים ו
808	1edh	∢	591	812	5.40E-22	-0.05	0.27		E-CADHERIN, CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN
808	ledh	⋖	718	216	1.10E-55	0.33	_		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN
808	Jedh	¥	854	1022	1.10E-32	0.31	_		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
808	ledh	4	959	1129	9.00E-32	0.11	69:0		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
808	lem n		3946	4022	1.80E-16	0.71	0.99	·	FIBRILLIN; CHAIN: NULL;	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT, MATRIX PROTEIN
808	Ifsb		3949	3988	1.30E-11	1.03	0.88		P-SELECTIN; CHAIN: NULL;	CELL ADHESION PROTEIN EGF-LIKE DOMAIN, CELL ADHESION PROTEIN, TRANSMEMBRANE, 2 GLYCOPROTEIN
808	146		3924	4050	1.10E-13	-0.1	0.27		LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN
808	1klo		4201	4342	3.60E-17	0.07	-0.03		LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN GLYCOPROTEIN GLYCOPBOTEIN
808	Incg		1062	1127	9.00E-06	0.12	0.29		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		1167	1232	0.00014	0.13	69.0		N-CADHERIN; 1NCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		1350	1439	1.40E-14		0.29		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		1480	1546	0.00018	0.46	0.1		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN

PDB annotation	INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN INCI 13
Coumpound		N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; 1NCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; 1NCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; 1NCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN, INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3
SeqFold score																					
PMF		60.0	0.09	0.31	0.1	0.11	0.1	0.74	0.43	0.57	0.7	0.39	0.51	0.34	0.36	8.0	0.53	0.64	0.78	96.0	0.22
Verify score		0.15	-0.13	0.35	0.22	0.28	-0.08	0.41	-0.27	0.34	0.44	0.35	0.45	90.0	0.33	0.16	-0.19	0.38	90.0	90:0	0.43
PSI- BLAST		3.60E-05	9.00E-06	3.60E-06	3.60E-17	0.00036	3.60E-12	1.80E-06	0.00036	1.60E-05	1.80E-19	0.00054	3.60E-06	1.80E-05	1.60E-11	7.20E-20	0.00018	5.40E-05	1.80E-06	5.40E-05	1.30E-13
End AA		229	1650	1748	2061	2161	2263	2370	2458	2681	2788	2988	3106	3191	3311	811	006	1003	1129	1234	1440
Start AA		155	1599	1667	1970	2079	2178	2304	2411	2593	2692	2913	3039	3120	3225	716	852	932	1065	1172	1350
Chain ID																			В	æ	æ
PDB ID		Incg	Incg	lncg	Incg	lncg	Incg	Incg	Incg	gou1	Incg	Incg	lncg	Incg	Incg	Incg	Incg	lncg	Inci	Inci	Inci
SEQ ID NO:		808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808

SEQ	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Coumpound	PDB annotation
ÿ		2	AA	AA	BLASI	score	score	score		
808	1 nci	В	1491	1547	0.00018	-0.08	0.65		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	1667	1750	9.00E-07	0.35	9.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	181	248	1.60E-05	-0.17	0.4		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	1970	2062	1.80E-16	0.08	0.23		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	2116	2163	0.0013	-0.25	0.05		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	2178	2264	1.30E-11	-0.11	0.1		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	2307	2371	5.40E-07	0.17	0.75		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
808	Inci	В	2414	2458	60000	-0.14	0.58		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	2620	2683	1.60E-05	0	90.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	2692	2789	3.60E-19	0.56			N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	lnci	æ	2942	3003	0.0036	0.42	0.92		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	3044	3105	5.40E-06	0.56	0.42		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	lnci	В	3146	3191	0.00036	-0.2	0.17		N-CADHERIN; 1NCI 3	CELL ADHESION PROTEIN CADHERIN
808	lnci	В	3225	3313	1.80E-10	29.0	0.49		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	3354	3418	1.80E-08	0.87	0.99		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	715	812	1.80E-19	0.15	96.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	Inci	В	862	716	5.40E-05	-0.4	0.71		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
808	lnci	В	932	1022	1.80E-05	0.36	0.63		N-CADHERIN, INCI 3	CELL ADHESION PROTEIN CADHERIN
808	lncj	А	6801	1234	3.60E-36	0.45	L		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL
808	Incj	∢	1147	1338	5.40E-33	0.34	_		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL
808	Incj	A	1270	1440	1.80E-22	0.3	0.54		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL

PDB annotation

Coumpound

SeqFold score

PMF score

Verify score

PSI-BLAST

End AA

Start AA

Chain TD

PDB ID

SEQ ID NO:

1.80E-34

1652

1458

A

lncj

808

5.40E-24

354

155

⋖

Incj

808

3.60E-33

1750

1562

K

Jnc.

808

3.60E-32

1861

1667

⋖

Incj

808

7.20E-27

1960

1782

⋖

lnç.

808

3.60E-53

1547

1351

K

lncj

808

ADHESION PROTEIN

1.80E-29

3105

2913

×

808

1.40E-31

3196

3039

⋖

incj

808

3.60E-38

3003

2825

¥

lncj

808

5.40E-63

2898

2693

⋖

lncj

808

000			The range of the contract of the
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
l		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
l		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
1		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	120.25	N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
ł		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
1		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN

7.20E-32

2577

2407

K

1ncj

808

1.60E-41

2683

2488

⋖

Incj

808

5.40E-52

2371

2178

A

lncj.

808

3.60E-28

2062

1898

⋖

lncj.

808

7.20E-55

2163

1970

⋖

Incj

808

3.60E-30

2264

2079

4

lncj.

808

5.40E-36

2473

2300

⋖

lncj

808

3.60E-27

450

256

⋖

Incj

808

1.30E-32

2789

2593

×

lncj

808

2897

2691

≺

Incj

808

	1	1	т	1	T	Т	T	Τ	1	Т	т	_						T					Γ		
PDB annotation	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL	CELL ADHESION PROTEIN CELL	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL	COMPLEX (BLOOD	COAGULATION/INHIBITOR)	CHRISTMAS FACTOR; COMPLEX,	INHIBITOR, HEMOPHILIA/EGF,	SERINE PROTEASE CALCILIA.	BINDING, HYDROLASE, 3	SERINE PROTEASE FVIIA: FVIIA:	BLOOD COAGULATION, SERINE	PROTEASE			SERINE PROTEASE FVIIA; FVIIA;	PROTEASE	
Coumpound	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	FACTOR IXA: CHAIN: C 1	D-PHE-PRO-ARG; CHAIN: I;	•				COAGULATION FACTOR	VIIA (LIGHT CHAIN); CHAIN:	L; COAGULATION FACTOR	CHAIN: H: TRIPEPTIDYL	INHIBITOR; CHAIN: C;	COAGULATION FACTOR	L; COAGULATION FACTOR	VIIA (HEAVY CHAIN); CHAIN: H: TRIPEPTIDVI
SeqFold score														•											
PMF score	0.63	66.0	_	0.39	0.21	0.35	0.99	0.18	-	0.88	-	-0.19						-0.19					0.57	-	
Verify score	0.36	0.48	0.63	0.52	-0.28	0.3	0.37	0.02	0.23	0.34	0.39	0.01						0.2					89.0		
PSI- BLAST	1.80E-34	7.20E-51	3.60E-32	3.60E-13	1.80E-57	1.80E-34	9.00E-30	1.80E-25	7.20E-62	1.80E-34	1.10E-34	1.40E-10						1.30E-11					1.20E-21		
End	3313	3418	3523	3621	248	556	662	812	917	1022	1129	4312						4001					4033		
Start AA	3120	3225	3346	3433	39	390	467	571	717	827	932	4224						3943					1665		
Chain ID	A	¥	¥	٧	A	٧	V	⋖	V	A	Ą	L						L,		-			د		
PDB ID	lncj	lncj	1ncj	Incj	Incj	Incj	1ncj	1ncj	Incj	lncj	lncj	Ipfx						1q .				+	I que		
SEQ NO:	808	808	808	808	808	808	808	808	808	808	808	808						808				9	000		

PDB annotation		SERINE PROTEASE FVIIA; BLOOD COAGULATION, SERINE PROTEASE	SERINE PROTEASE FVIIA; BLOOD COAGULATION, SERINE PROTEASE	COAGULATION FACTOR SERINE PROTEINASE, BLOOD COAGULATION, COAGULATION FACTOR	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
Coumpound	INHIBITOR; CHAIN: C;	COAGULATION FACTOR VIIA (LIGHT CHAIN); CHAIN: L; COAGULATION FACTOR VIIA (HEAVY CHAIN); CHAIN: H; TRIPEPTIDYL NHIBITOR; CHAIN; C;	COAGULATION FACTOR VIIA (LIGHT CHAIN); CHAIN: L; COAGULATION FACTOR VIIA (HEAVY CHAIN); CHAIN: H; TRIPEPTIDYL INHIBITOR; CHAIN: C;	COAGULATION FACTOR IX; CHAIN: A; COAGULATION FACTOR IX; CHAIN: B;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELJAL CADHERIN; CHAIN: NULL;
SeqFold score												
PMF score		-0.17	-0.17	-0.19	0.27	0.93	0.45	0.62	0.13	0.04	0.63	0.07
Verify score		0	0.37	0.03	0.24	-0.06	0.04	0.54	0.28	0.37	0.45	0.35
PSI- BLAST		5.40E-14	7.20E-13	7.80E-14	7.80E-20	1.60E-07	1.30E-17	1.30E-10	0.0013	1.80E-19	1.30E-08	2.60E-07
End AA		4202	4344	4001	1133	1133	1238	1334	1342	1444	1549	226
Start AA		4121	4267	3951	1041	9901	1145	1249	1279	1350	1455	155
Chain ID		ب	卢	æ .								
PDB ID		1qfk	1qfk	1rfn	lsuh	Isuh	lsuh	Isuh	1suh	1suh	1suh	1suh
SEQ DD NO:		808	808	808	808	808	808	808	808	808	808	808

SEO	PDB	Chain	Start	Knd	PSI.	Verify	PME	SogFold	7	., , and
ΒÖ	Ð	a	AA	AA	BLAST	score	score	score		r DB annotation
808	1suh		1570	1650	1.00E-12	0.41	0.31		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1 suh		1589	1656	9.00E-09	-0.2	0.13		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		1991	1754	1.30E-12	0.07	89.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
808	1suh		1690	1754	3.60E-06	0.17	0.75		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	lsuh		1777	1867	1.30E-14	-0.06	0.48		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	Isuh		0081	1868	3.60E-05	-0.18	0.45		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
808	Isuh		182	252	1.80E-06	-0.41	0.13		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
808	1suh		2084	2163	2.60E-15	0.42	60.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
808	1suh		2178	2268	1.30E-15	-0.37	0.4		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	Isuh		2280	2375	3.90E-20	0.44	0.77		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	Isuh		2306	2375	3.60E-09	0.35	0.94		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULN; CADHERIN, CALCIUM BINDING, CELL
808	1 suh		2395	2475	3.90E-05	0.03	0.58		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
808	1suh		2414	2477	3.60E-05	-0.04	0.25		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
808	Isuh		2488	2581	1.80E-12	-0.37	0.15		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL

SEQ ID NO:	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
										ADHESION
808	Isuh		2489	2581	1.30E-13	0.16	0.98		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		2591	2681	2.60E-10	0.02	0.12		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		2692	2793	3.60E-23	0.42	66.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	lsuh		2806	2902	2.60E-21	0.43	0.87		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		2831	2902	3.60E-09	0.01	0.25		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		2914	3007	1.20E-14	0.37	0.93		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	lsuh		2941	3007	1.80E-06	-0.07	0.86		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		3026	3109	2.60E-21	0.36	68.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	lsuh		3046	3109	3.60E-06	0.4	0.72		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	Isuh		3120	3185	0.0013	0.1	0.28		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	l suh		3120	3213	3.90E-12	0.43	0.25		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	lsuh		3225	3317	1.10E-14	9.0	0.82		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		3330	3422	3.90E-21	0.58	96.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN. CALCIUM BINDING, CELL ADHESION
808	Isuh		3355	3422	1.30E-09	99.0	0.93	R	EPITHELIAL CADHERIN;	CELL ADHESION UVOMORULIN;

<u> </u>	PDB TD	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
1 1	 								CHAIN: NULL;	CADHERIN, CALCIUM BINDING, CELL ADHESION
S	lsuh		3435	3524	6.50E-11	0.56	0.65		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
ו כטן	1suh		363	454	0.0001	0.08	0.24		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
	1suh		406	454	1.60E-05	-0.6	0.19	-	EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
	1suh		467	260	1.30E-15	-0.03	0.19		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
	Isuh		590	658	3.90E-05	0.39	0.57		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
	1suh		716	816	1.40E-23	-0.21	0.95		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
	1suh		826	921	1.00E-17	0.4	0.72		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
	lsuh		854	921	5.40E-07	0.17	0.45		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
	1suh		930	1026	5.20E-13	0.37	0.57		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
	ltpg		3949	4026	1.30E-18	0.21	0.59	·	T-PLASMINOGEN ACTIVATOR F1-G; 1TPG 7 CHAIN: NULL: 1TPG 8	PLASMINOGEN ACTIVATION
	1xka 1	L	4267	4348	5.40E-12	0.15	-0.19		BLOOD COAGULATION FACTOR XA; CHAIN: L, C;	BLOOD COAGULATION FACTOR STUART FACTOR; BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH
	9wga /	A	4166	4337	3.60E-10	0.05	-0.2		LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	
	laut [3857	3947	6.50E-19	0.55	-0.12		ACTIVATED PROTEIN C;	COMPLEX (BLOOD

PDB annotation	COAGULATION/INHIBITOR) AUTOPROTHROMBIN IIA; HYDROLASE, SERINE PROTEINASE), PLASMA CALCIUM BINDING, 2 GL YCOPROTEIN, COMPLEX (BLOOD COAGULATION/INHIBITOR)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX
Coumpound	CHAIN: C, L; D-PHE-PRO- MAI; CHAIN: P;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D-PHE-PHE- ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C.		 	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN:	GLA FACTOR VIIA VY CHAIN); CHAIN: H, S-GLA FACTOR VIIA IT CHAIN); CHAIN: L, PN)-PHE-ARG; CHAIN:
SeqFold score						
PMF score		0.07	0.07	0.15	0.05	-0.07
Verify score		60.00	0.1	-0.08	0.48	0.12
PSI- BLAST		1.40E-12	3.60E-14	1.40E-12	3.90E-21	3.60E-14
End		3897	3976	3897	3947	3976
Start AA		3831	3900	3831	3858	3900
Chain ID		r	L	ı	٦	ب
PDB ID		Idan	1dan	Idva	ldva	Idva
SEQ NO:		808	808	808	808	808

PDB annotation	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1
Coumpound	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;
SeqFold score								
PMF	-0.15	-0.19	-	96:0	0.93	0.89	0.65	-1.41
Verify score	0.05	0.25	0.35	0.16	0.23	0.3	0.03	0.19
PSI- BLAST	3.60E-12	1.30E-13	1.10E-33	9.00E-30	1.60E-20	3.60E-54	7.20E-32	3.60E-33
End AA	4168	4259	1234	1338	1440	1547	1652	1750
Start AA	4078	4170	1026	1171	1279	1352	1455	1589
Chain ID	٦	ر. ا	¥	4	Ą	A	¥	A
PDB ID	Idva	Idva	ledh	1edh	ledh	ledh	ledh	ledh
SEQ ID NO:	808	808	808	808	808	808	808	808

	·				T		т	1	
PDB annotation	AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BRINING PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND ? ECADI? CADHERIN CELL
Coumpound		E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN, CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;
SeqFold score									
PMF score		0.25	66:0	0.07	0.94	0.34	0.92	-	-1.41
Verify score	-	-0.18	0.21	0.17	0.3	0.13	0.19	0.08	0.37
PSI- BLAST		3.60E-28	1.80E-27	5.40E-20	1.80E-30	1.80E-50	9.00E-29	1.80E-38	1.80E-32
End AA		0981	1960	354	2062	2163	2264	2371	2473
Start AA		1690	1780	182	1898	1975	2104	2178	2306
Chain ID		∢	4	¥	A	∢	¥	₹	¥
PDB ID		ledh	ledih	ledh	ledh	1edh	ledh	1edh	1edh
SEQ ID NO:		808	808	808	808	808	808	808	808

PDB annotation	EIN, CALCIUM N	PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECADIZ, CADREKIN, CELL	EIN, CALCIUM	DOCTEDA	PROTEIN	EFITHELIAL CADHERIN DOMAINS I AND 2 FCAD12: CADHERNI CELL	EIN, CALCIUM	Z	PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECADI2: CADHERIN, CELL	EIN, CALCIUM	2	PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	EIN, CALCIUM	z	PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	EIN, CALCIUM N	PPOTEIN	EPITHELIAL CADHERIN DOMAINS 1	ADHERIN, CELL	EIN, CALCIUM	2	PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	CADHERIN, CELL	EIN, CALCIUM	Z	PROTEIN	EPITHELIAL CADHERIN DOMAINS I	
PDB	ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CAD	AND 2, ECADIZ; (ADHESION PROTEIN, CALCIUM	CELL A DETECTOR I PROTERY	CELL ADRESION	EFITHELIAL CAD	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CAD	AND 2, ECAD12: (ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CAD	AND 2, ECAD12; (ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CAD	AND 2, ECAD12; (ADHESION PROTEIN, CALCIUM	CELL A DHESTON PROTEIN	EPITHELIAL CAD	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CAD	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CAD	
Coumpound		E-CADHERIN; CHAIN: A, B;				E-CADHERIN: CHAR: A B.	E-CADRENIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;				E-CADHERIN: CHAIN: A B.					E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;		
SeqFold score	,		_													120.62																					
PMF score		98.0				0.75	2				0.99									-	_					1202.08				0.94					0.41		
Verify score		0.07				0.14	<u>+</u>				0.33									5	75.0				0.46	!				0.31					0.15	•	
PSI- BLAST	_	3.60E-29				1 60E-39	1.001				7.20E-31				E C	5.40E-58				2 AOT 20	3.40E-38				1.80E-33					1.80E-28					5.40E-24		
End		2577				2683	6007				2789				, 000	2895				0000	9697				3003					3105					420		
Start AA		2414		_		2488	2				5619				20,0	7697				2603	6607			_	2831					2941				,,,,,	967		
Chain ID		¥				A	:				¥					¥					ŧ.				A					∀					V		
PDB ID		ledh				Tedh					ledh				=	edu			-	1841		_			ledh					ledh					upar		
SEQ ID NO:		808				808	3				808				000	808				808	900				808					808				900	909		

PDB annotation	BINDING PROTEIN	CELL ADHESION FROIEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EFITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I	AND 2, ECADI2; CADHERIN, CELL	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	AND 2 ECADIS: CADHERIN CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I	AND 2, ECADI2; CADHEIMN, CELL ADHESION PROTEIN CALCUIM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	BINDING PROTEIN
Coumpound	r Overment City in P.	E-CADHEKIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;			E-CADHERIN; CHAIN: A, B;			E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;			
SeqFold score																													
PMF score		9.0	0.59			96.0			-				0.3					68.0				0.77				_			
Verify score	000	0.28	0.15			0.53			0.47				0.12					0.31				0.5				0.33			
PSI- BLAST	100	1.80E-27	1.80E-28			1.40E-35			1.80E-16				3.60E-53					5.40E-30				3.60E-27				1.10E-57			
End	1016	3191	3313			3418			3523				248					226				662				917			
Start AA	100	3045	3147		·	3225			3355				39					401				465				718			
Chain ID		∢	Ą			A			A				A					∢				A				A			
PDB ID	-	ledh d	ledh			ledh	_		ledh				ledh					ledh				ledh				ledh			
SEQ NO:	6	808 808	808			808			808				808					808				808				808			

PDB Chain Start End ID AA AA	Start AA		E &	9 1	PSI- BLAST	Verify score	PMF	SeqFold	Coumpound	PDB annotation
1200				7						
ledh A 854 1022 1.80E-33 0.14	1022 1.80E-33	1022 1.80E-33	1.80E-33		0.14		_		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN
			·	_			-			EPITHELIAL CADHERIN DOMAINS I AND 2 FCADI2: CADHEDIN CELL
										ADHESION PROTEIN, CALCIUM RINDING PROTEIN
ledh A 959 1129 1.80E-30 0.24	1129 1.80E-30	1129 1.80E-30	1.80E-30		0.24		0.52		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN
										AND 2, ECAD12; CADHERIN, CELL
										ADHESION PROTEIN, CALCIUM BINDING PROTEIN
n 3860 3931 3.60E-16 0.06	3931 3.60E-16	3931 3.60E-16	3.60E-16		90.0		0.48		FIBRILLIN; CHAIN: NULL;	MATRIX PROTEIN EXTRACELLULAR
										GLYCOPROTEIN, 2 REPEAT, SIGNAL,
										MULTIGENE FAMILY, DISEASE
										MOIATION, 3 EGF-LIKE DOMAIN, HIIMAN EIBPITTIN 1 EBACKENIT
1107				+		\dashv				MATRIX PROTEIN
15111 4120 4217 9.00E-14 0.02	4217 9.00E-14	4217 9.00E-14	9.00E-14		0.02		-0.18		FIBRILLIN; CHAIN: NULL;	MATRIX PROTEIN EXTRACELLULAR
										MATRIX, CALCIUM-BINDING,
							_			MULTIGENE FAMILY, DISEASE
										MUTATION, 3 EGF-LIKE DOMAIN,
			-							HUMAN FIBRILLIN-I FRAGMENT, MATRIX PROTEIN
11ak L 3900 3976 3.60E-14 0.12	3976 3.60E-14	3976 3.60E-14	3.60E-14		0.12		-0.01		BLOOD COAGULATION	BLOOD CLOTTING COMPLEX(SERINE
							_		FACTOR VIIA; CHAIN: L;	PROTEASE/COFACTOR/LIGAND),
									FACTOR VIIA: CHAIN: H:	PROTEASE COMBIEN OF EACHOR
									SOLUBLE TISSUE FACTOR;	RECEPTOR ENZYME, 3 INHIBITOR
									CHAIN: T; SL15; CHAIN: I;	GLA, EGF, COMPLEX (SERINE 4
										PROTEASE/COFACTOR/LIGAND),
1fak L 4170 4259 1.30E-13 0.2	4259 1.30E-13	4259 1.30E-13	1.30E-13	T	0.2	+	-0.19		BI OOD COAGIII ATION	BLOOD CLOTTING
					1		;		FACTOR VIA: CHAIN: 1:	BLOOD CLOTTING COMPLEX(SERINE
				_				-	BLOOD COAGULATION	BLOOD COAGIII. ATION 2 SERINE
									FACTOR VIIA: CHAIN: H.	PROTEASE COMPIEY COLEACTOR
									SOLUBLE TISSUE FACTOR;	RECEPTOR ENZYME, 3 INHIBITOR
									CHAIN: T; 5L15; CHAIN: I;	GLA, EGF, COMPLEX (SERINE 4
							j			PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING
1klo 4074 4228 1.80E-17 0.07	4228 1.80E-17	4228 1.80E-17	1.80E-17	17	0.07		-0.2		LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN

	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Coumpound	PDB annotation
	a	a	AA	AA	bl.A31	score	score	score		
Н	1klo		4134	4262	1.80E-18	0.07	-0.2		LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN
808	lncg		1064	1127	1.60E-05	0.12	0.63		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		1169	1232	5.40E-05	0.15	0.87		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		1350	1439	3.60E-17	0.34	0.3		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		1455	1546	5.40E-05	0	0.72		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		155	229	3.60E-05	0.15	60.0		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		1599	1651	9.00E-06	-0.45	0.04		N-CADHERIN; 1NCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		1667	1748	3.60E-06	0.35	0.31		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		1975	2061	1.80E-15	-0.06	0.1		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		2079	2161	0.00036	0.31	0.29		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		2180	2262	6.00E-07	0.11	0.01		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		2304	2369	1.80E-06	0.43	0.64		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		2411	2458	0.0045	-0.23	0.22		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
. 808	lncg		2592	2681	0.00014	0.41	0.25		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		2692	2788	3.60E-20	0.44	0.7		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		3039	3106	9.00E-07	0.45	0.51		N-CADHERIN; 1NCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		3120	3191	0.00018	90:0	0.34		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		3225	3312	1.10E-12	0.28	0.45		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	lncg		716	811	1.10E-21	0.16	8.0		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		852	006	0.00036	-0.19	0.53		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
808	Incg		932	1021	1.60E-05	0.55	0.46		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13

PDB ID	Chain	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold	Coumpound	PDB annotation
	В	1065	1129	3.60E-06	90.0	0.78		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	В	1178	1234	1.80E-05	-0.16	6.0		N-CADHERIN; INCI 3	INCI 13 CELL ADHESION PROTEIN CADHERIN
	В	1350	1440	3.60E-16	0.53	90.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	В	1481	1547	5.40E-05	0.21	0.16		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	В	1667	1750	1.40E-06	0.26	0.64		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	В	181	248	5.40E-05	-0.17	0.4		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	В	1912	0961	0.0045	-0.5	0.27		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
- 1	m e	1975	2062	1.80E-14	0.24	0.07		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	മ	2180	2264	3.60E-06	-0.4	0.3		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
1	В	2307	2371	5.40E-07	0.39	9.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	В	2412	2458	0.0079	-0.03	0.49		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	В	2692	2789	1.80E-19	0.56	1		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
1	B I	2832	2898	1.80E-06	-0.01	0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
1	B	2951	3003	0.0045	-0.24	0.78		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	m	3041	3105	1.10E-06	0.52	99.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	В	3146	3191	0.0013	-0.2	0.17		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
1	В	3225	3313	1.40E-10	0.31	0.17		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
T	В	716	812	5.40E-20	0.01	0.88		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	м	853	917	7.20E-05	0.26	0.84		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	m	932	1022	7.20E-06	0.4	0.59		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
	A	1039	1234	1.10E-35	0.39			N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL

	1				τ	T	Τ						т		т	Т		T -		$\overline{}$	
PDB annotation	ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
Coumpound		N-CADHERIN: CHAIN: A;	N-CADHERIN: CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN: CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;
SeqFold score			•																120.25		
PMF score			0.16	66.0	0.88	_	0.84	0.23		6.0	0.45	0.89		_	8.0	9.0	0.51	_		_	0.99
Verify score	0.00	0.53	0.1	0.28	0.02	0.46	0.2	0.08	0.31	0.25	0.02	0.23	0.25	0.32	-0.03	90.0	0.28	0.23		0.28	0.28
PSI- BLAST		1.40E-31	1.80E-23	1.60E-58	3.60E-35	1.10E-33	7.20E-33	3.60E-22	9.00E-27	3.60E-31	1.60E-56	9.00E-31	3.60E-40	3.60E-35	9.00E-31	3.60E-40	1.30E-26	1.40E-31	3.60E-63	3.60E-63	9.00E-36
End AA	0.00	1338	1440	1547	1652	1750	1861	354	1960	2062	2163	2264	2371	2473	2577	2683	450	2789	2897	2898	3003
Start AA		1144	1251	1351	1455	1562	1991	173	1793	1898	1975	2079	2180	2300	2407	2488	256	2592	2691	2693	2825
Chain ID	_	۷ ا	۷	A	А	A	Ą	A	¥	A	٧	A	¥	А	A	A	∢	¥	¥	٧	A
PDB ID	1:	lucj	Incj	lncj	Incj	Incj	Incj	1ncj	Incj	Incj	Incj	lncj	Incj	Incj	Incj	lncj	Incj	lncj	lncj	Incj	Incj
SEQ NO:	8	808 808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808	808

	1	Т	Т	T	Т	1	т—	1	т—	7	—			_					т-					<u></u>	
PDB annotation	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL	CELL ADHESION PROTEIN CELL	CELL ADHESION PROTEIN CELL	CELL ADHESION PROTEIN CELL	CELL ADHESION PROTEIN A DHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	SERINE PROTEASE FVIIA: FVIIA:	BLOOD COAGULATION, SERINE	PROTEASE			SERINE PROTEASE FVIIA; FVIIA;	BLOOD COAGULATION, SERINE	PROTEASE			SERINE PROTEASE FVIIA; FVIIA;	PROTEASE
Coumpound	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN; A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	COAGULATION FACTOR	VIIA (LIGHT CHAIN); CHAIN:	L; COAGULATION FACTOR	CHAIN: H; TRIPEPTIDYL	INHIBITOR; CHAIN: C;	COAGULATION FACTOR	VIIA (LIGHT CHAIN); CHAIN:	L; COAGOLATION FACTOR	CHAIN: H: TRIPEPTIDY!	INHIBITOR; CHAIN: C;	COAGULATION FACTOR VIIA (LIGHT CHAIN): CHAIN:	L: COAGULATION FACTOR
SeqFold score																									
PMF score	_	9.0	0.82	_	_	-0.03	0.21	0.36	96.0	0.01		0.88	1	0.57					-0.08					-0.15	
Verify score	0.35	0.16	0.35	99.0	9.0	0.35	-0.28	80.0	0.36	-0.13	0.39	0.35	0.48	89.0					0.01	-				80.0	
PSI- BLAST	9.00E-30	1.30E-30	1.30E-30	1.80E-39	1.80E-17	5.40E-10	1.10E-59	1.80E-35	7.20E-28	1.80E-25	1.10E-63	1.80E-34	3.60E-34	1.20E-21					3.60E-13			 -		7.20E-11	
End AA	3105	3196	3313	3418	3523	3621	248	556	662	812	917	1022	1129	3947					3976					4168	
Start AA	2915	3039	3141	3225	3349	3473	39	390	467	573	717	827	932	3865					3904					4082	
Chain ID	А	A	A	А	A	A	A	A	٧	A	¥	4	4											٦	
PDB ID	lncj	1ncj	1ncj	Incj	Incj	Incj	Incj	1ncj	Incj	Incj	1ncj	Incj	1ncj	1qfk				十	¥ ¥				\dashv	Iqtk	
SEQ DO:	808	808	808	808	808	808	808	808	808	808	808	808	808	808				十	 808		-		\dashv	808	1

Chain	.s	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
					·			VIIA (HEAVY CHAIN); CHAIN: H; TRIPEPTIDYL INHIBITOR; CHAIN: C;	
		1026	1133	7.20E-08	0.33	0.13		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
	_	1041	1133	7.80E-20	0.24	0.27		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
	_	1145	1238	1.30E-17	0.04	0.45		EPITHELIAL CADHERIN; CHAIN: NULL:	CELL ADHESION UVOMORULN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		1171	1238	7.20E-08	-0.03	0.4		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		1249	1334	1.30E-10	0.54	0.62		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		1350	1444	1.80E-21	0.3	0.25		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
	-	1455	1549	1.30E-08	0.45	0.63		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		1455	1551	5.40E-07	0.14	0.11		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		155	226	2.60E-07	0.35	0.07		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		1570	1650	1.00E-12	0.41	0.31		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		1589	1656	1.40E-08	0.2	0.09		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		1667	1754	1.30E-12	0.07	0.68		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
_		1690	1754	3.60E-06	90.0	99.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL

SEQ ID	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
2										ADHESION
808	1suh		1777	1867	1.30E-14	-0.06	0.48		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		1780	1868	3.60E-05	-0.24	0.39		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
808	Isuh		182	252	5.40E-07	-0.41	0.13		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		8681	1964	1.60E-05	-0.1	0.18		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	Isuh		1975	2066	7.20E-18	0.17	1202.08		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		2084	2163	2.60E-15	0.42	0.09		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		2104	2167	3.60E-07	0.05	0.12		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERN, CALCIUM BINDING, CELL ADHESION
808	1suh		2178	2268	1.30E-14	-0.23	0.57		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		2178	2268	3.60E-10	-0.36	0.46		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1 suh		2280	2375	3.90E-20	0.44	0.77		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		2306	2375	1.10E-08	0.4	0.94		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	Isuh		2395	2475	3.90E-05	0.03	0.58		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
808	lsuh		2414	2477	0.00011	-0.37	90.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULN; CALLERON CALCIUM BINDING, CELL
808	1suh		2488	2581	3.60E-12	-0.2	0.03		EPITHELIAL CADHERIN;	CELL ADHESION UVOMORULIN;

PDB ID	Chain 19	Start	End AA	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
								CHAIN: NULL;	CADHERIN, CALCIUM BINDING, CELL ADHESION
		2489	2581	1.30E-13	0.16	86:0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		2591	2681	2.60E-10	0.02	0.12		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		2692	2793	1.40E-23	0.51	66'0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		2806	2902	2.60E-21	0.43	0.87		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		2831	2902	1.40E-08	-0.01	0.53		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		2914	3007	1.20E-14	0.37	0.93		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		2941	3007	1.80E-05	-0.07	0.86		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		3026	3109	2.60E-21	0.36	0.89		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		3045	3109	3.60E-06	0.33	0.55		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		3120	3213	3.90E-12	0.43	0.25		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		3225	3317	1.30E-13	0.6	0.82		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		3330	3422	3.90E-21	0.58	86:0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
		3355	3422	5.40E-05	9.0	0.94		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION

FDB annotation		CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CADHERIN, CALCTUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCTUM BINDING, CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION	ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION UVOMORULIN; IERIN, CALCTUM BINDING, CELL SSION ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION VOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION VOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH FACTOR, I KF P.DOMA IN
	CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI		CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION	CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION	CELL ADHESION UVOMOR CELL ADHESION UVOMOR ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION	CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI	CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CADHERIN, CALCIUM BINI ADHESION	CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION	CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI	CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION	CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION	CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDII ADHESION CELL ADHESION UVOMORUI CELL ADHESION UVOMORUI CELL ADHESION UVOMORUI CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDII ADHESION CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDII ADHESION CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDII ADHESION CELL ADHESION UVOMORUI CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDII ADHESION CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDII ADHESION CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDII ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION PLASMINOGEN ACTIVATION	CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION UVOMOR CELL ADHESION CELL ADHESION UVOMOR CELL ADHESION CELL ADHESION UVOMOR CELL ADHESION CELL ADHESION UVOMOR CELL ADHESION CELL ADHESION UVOMOR CELL ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION UVOMOR CADHERIN, CALCIUM BINI ADHESION CELL ADHESION FLASMINOGEN ACTIVATIC RACTOR; BLOOD COAGULATION FACTOR; S PROTEINASE, EPIDERMAL
CELL ADHESION UT	ADHESTON	CELL ADHESION UT	としこらいこと	CELL ADHESION UN CADHERIN, CALCIT ADHESION	CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION	CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CADHERIN, CALCIC	CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CADHERIN, CALCIT ADHESION CELL ADHESION UN CADHERIN, CALCIT ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CADHERIN, CALCIT ADHESION CADHERIN, CALCIT ADHESION	CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CADHESION CADHESION CADHESION CADHESION CADHESION	CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CADHERIN, CALCIL ADHESION CELL ADHESION UN CADHERIN, CALCIL ADHESION CELL ADHESION UN CADHERIN, CALCIL ADHESION CELL ADHESION UN CADHERIN, CALCIL ADHESION CADHERIN, CALCIL ADHESION CADHERIN, CALCIL ADHESION CADHERIN, CALCIL ADHESION	CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHESION	CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC	CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHESION CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHESION CELL ADHESION UN CADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERIN, CALCIC ADHERION CELL ADHESION CELL ADHESION PLASMINOGEN ACT	CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CADHERIN, CALCIU ADHESION CELL ADHESION UN CADHERIN, CALCIU ADHESION CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CELL ADHESION UN CADHERIN, CALCIU ADHESION CELL ADHESION UN CADHERIN, CALCIU ADHESION UN CADHERIN, CALCIU ADHESION UN CELL ADHESION UN CADHERIN, CALCIU ADHESION CELL ADHESION UN CADHERIN, CALCIU ADHESION PLASMINOGEN ACT BLOOD COAGULAT STUART FACTOR; B COAGULATION FAC
EPITHELIAL CADHERIN;	Y. INOLL,	EPITHELIAL CADHERIN; CHAIN: NULL;	The state of the s	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL;	EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; CHAIN; NULL;	EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL;	EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL;	EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; EPITHELIAL CADHERIN; CHAIN: NULL; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL;	EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; CHAIN; NULL; CHAIN; NULL; T-PLASMINOGEN ACTIVATOR F1-G; 1TPG 7 CHAIN; NULL; T-PLASMINOGEN ACTIVATOR F1-G; 1TPG 7 CHAIN; NULL; EPITHELIAL CADHERIN; CHAIN; NULL; CHAIN; LIPG 8 BLOOD COAGULATION FACTOR XA; CHAIN; L, C;
EPITHE	CHAIN: NULL;	EPITHEI CHAIN:		EPITHEI CHAIN:	CHAIN: CHAIN: EPITHEI CHAIN:	EPITHEL CHAIN: CHAIN: CHAIN: EPITHEL CHAIN:	EPITHEL CHAIN: CHAIN: CHAIN: CHAIN: CHAIN:	EPITHEL CHAIN: C	EPITHELIAL C CHAIN: NULL; EPITHELIAL C CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL;	EPITHEL CHAIN: CHAIN: CHAIN: CHAIN: CHAIN: CHAIN: CHAIN: CHAIN: CHAIN: CHAIN: CHAIN:	EPITHELIAL C CHAIN: NULL; EPITHELIAL C CHAIN: NULL; EPITHELIAL C CHAIN: NULL; CHAIN: NULL; EPITHELIAL C CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL; CHAIN: NULL;	EPITHEL CHAIN: C	EPITHEL CHAINE FACTOR
	0.65	0.24		0.3	0.19	0.19	0.19	0.19	0.19 0.57 0.95 0.72 0.47	0.3 0.19 0.57 0.72 0.47	0.3 0.57 0.95 0.47 0.57 0.18	0.19 0.72 0.72 0.57 0.57 0.59	0.3 0.19 0.72 0.47 0.18 0.59
1	0.56	0.08	-0.21 0										
1	=		9.00E-06						-15 -05 -25 -17		-15 -05 -25 -25 -17 -17	-15 -05 -05 -17 -17 -17 -18	.15 .05 .05 .07 .07 .07
3524 6.5			454 9.0		 								
3435 3			401										
_	<u></u>	36		_	46	. 55	. 59	. 59 71 71 71	. 59 . 71 . 71 . 82	. 59 46	. 59 82 85 85 93	. 59 82 85 85 93 38	. 59 88 88 38 38 39
	l suh	Isuh	lsuh		lsuh	lsuh Isuh	Isuh	Isuh Isuh Isuh	Isuh Isuh Isuh Isuh	Isuh Isuh Isuh Isuh Isuh	Isuh Isuh Isuh Isuh Isuh Isuh Isuh	Isuh Isuh Isuh Isuh Isuh Isuh Isuh Isuh	Isuh Isuh Isuh Isuh Isuh Isuh Isuh Isuh
╁	-		808 ————		+	 	 		 		 	 	

PDB annotation	GROWTH FACTOR [ABU6, 20] MEGF4- 48, GROWTH FACTOR, MURINE EPIDERMAL GROWTH FACTOR, DISULFIDE 2 CONNECTIVITIES, EGF-	COMPLEX (BLOOD COAGULATION/INHIBITOR) AUTOPROTHROMBIN IIA; HYDROLASE, SERINE PROTEINASE), PLASMA CALCIUM BINDING, 2 GLYCOPROTEIN, COMPLEX (BLOOD COAGULATION/INHIBITOR)	BLOOD COAGULATION BLOOD COAGULATION, EGF, HYDROLASE, SERINE PROTEASE	MEMBRANE PROTEIN LECTIN-LIKE, NEUROBIOLOGY, CELL-CELL ADHESION, CELL-CELL 2 RECOGNITION, ALTERNATIVE SPLICING. MEMBRANE PROTEIN	TRANSPORT PROTEIN SHBG; STEROID TRANSPORT, LAMININ G- LIKE DOMAIN. JELLYROLL, 2 ANDROGEN BINDING PROTEIN (ABP), SEX STEROID BINDING PROTEIN 3 (SBP)	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX
Coumpound	EPIDERMAL GROWTH FACTOR; CHAIN: NULL;	ACTIVATED PROTEIN C; CHAIN: C, L; D-PHE-PRO- MAI; CHAIN: P;	FACTOR VII; CHAIN: NULL;	NEUREXIN-1 BETA; CHAIN: A, B, C, D, E, F, G, H;	SEX HORMONE-BINDING GLOBULIN; CHAIN: A;	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN:	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;
SeqFold score							
PMF score	0.58	-0.12	66.0	0.4	0.72	0.05	-0.18
Verify score	0.39	0.55	96:0	0.26	0.46	0.48	0.25
PSI- BLAST	6.50E-12	6.50E-19	1.30E-11	1.30E-26	2.60E-27	3.90E-21	1,30E-13
End AA	3984	4033	3987	3928	3934	4033	4344
Start AA	3949	3943	3949	3771	3773	3944	4263
Chain ID		Ţ		Y	Ą	٦	ı
PDB ID	1a3p	laut	1619	lc4r	1d2s	Idva	ldva
SEQ NO:	608	808	808	808	808	808	808

	-,							
PDB annotation	SERINE PROTEINASE COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BRIDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN; CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECADI 2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN,	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL
Coumpound	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, I, K, L; THROMBIN INHIBITOR L-GLU-L-GLY-L-ARM: CHAIN: E, F, G, H.	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;
SeqFold score								
PMF score	-0.19	-	1202.08	6.0	0.82	-1.41	96.0	66.0
Verify score	0.06	0.26	0.22	0.45	0.27	0.1	0.21	0.19
PSI- BLAST	1.30E-11	3.60E-33	1.30E-32	3.60E-21	1.60E-49	1.30E-32	3.60E-33	1.60E-28
End	4336	1234	1338	1440	1547	1652	1750	1860
Start AA	4232	1066	1171	1279	1352	1460	1589	1690
Chain ID	I	Ą	∢	A	A	٧	¥	∢
PDB ID	1dx5	1edh	ledh	1edh	1edh	ledh	ledh	ledh
SEQ NO:	608	608	608	808	808	808	809	808

								·	
PDB annotation	ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM	CELL ADHESION PROTEIN CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCTUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM
Coumpound		E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;
SeqFold score									
PMF score		-	0	0.96	0.51	0.78	_	-	0.86
Verify score		0.32	0	0.26	0.3	0.24	0.18	0.32	0.07
PSI- BLAST		3.60E-26	1.60E-20	3.60E-29	1.10E-50	1.30E-28	3.60E-48	1.60E-35	1.80E-29
End AA		1960	354	2062	2163	2264	2371	2473	2577
Start AA		1800	182	8681	1975	2104	2178	2306	2414
Chain ID		¥	¥	A	⋖	٧	∢	⋖	«
PDB ID		1edh	ledh	ledh	1edh	ledh	1edh	ledh	ledh
SEQ ID NO:		808	608	608	608	608	608	608	808

			- S	1			- I S	J,			1 S	<u>.</u> د				- ISI	Ļ				S. I	יָר				IS1	_ 			 <u>-</u>	- 2		•		181	۲,	-
PDB annotation	BINDING PROTEIN	CELL ADHESION PROTEIN	EFITHELIAL CADHEKIN DOMAINS I AND 2 FCAD12: CADHERIN CELT	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM RINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	AND 2 ECADIS: CADHERIN DOMAINS	AND E. ECADIES CADITERIN, CEL	RINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM
Coumpound	\vdash	E-CADHERIN; CHAIN: A, B,				E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;				7	E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;				\dagger	E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;			
SeqFold score									·	120.62	_																					•					
PMF score		0.93				96.0						-			_						-				0.94				63.0	0.33				0.64			•
Verify score		0				0.1									0.47					0.27					0.31				90,0	0.38				0.16			•
PSI- BLAST		1.80E-38				5.40E-32				1.80E-57					1.80E-57				2000	/.ZUE-35					5.40E-29				7 JOE 75	7.20E-23				5.40E-28			
End AA		2683				2789				2895					2898				500	3003					3105				450	5				3197			
Start AA		2488				2619				2692					2693				1,000	7631					2941				20%	7				3046			
Chain ID		⋖				⋖				Ą					⋖					<										 (∀			
PDB ID		ledh			;	ledh				ledh					ledh				1501	IIDS I				+	ledh				1 Poli	3				ledh			
SEQ NO:		608			3	808				608				3	608				900	600				3	809	-			808		_			608			

SEQ NO:	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
808	Iedh	4	3120	3313	1.80E-32	0.57	-1.41		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
608	1edh	∢	3225	3418	1.80E-48	0.45	0.98		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
808	ledh	A	3355	3523	3.60E-30	99.0	-		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
808	1edh	¥	39	248	1.80E-51	0.12	0.3		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
808	1edh	∀	406	955	1.10E-29	0.29	0.83		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
808	1edh	∀	464	799	3.60E-29	0.17	0.82		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
808	ledh	Ą	291	812	5.40E-22	-0.05	0.27		E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI 2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
608	ledh	∢	718	917	1.10E-55	0.33			E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN
808	ledh	А	854	1022	1.10E-32	0.31			E-CADHERIN; CHAIN: A, B;	CELL ADHESION PROTEIN

				1		_	_				т	·				·
PDB annotation	EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT, MATRIX PROTEIN	CELL ADHESION PROTEIN EGF-LIKE DOMAIN, CELL ADHESION PROTEIN, TRANSMEMBRANE, 2	GLYCOPROTEIN GLYCOPROTEIN	GLYCOPROTEIN GLYCOPROTEIN	GLYCOPROTEIN GLYCOPROTEIN	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13
Coumpound		E-CADHERIN; CHAIN: A, B;	FIBRILLIN; CHAIN: NULL;	P-SELECTIN; CHAIN: NULL;	LAMININ; CHAIN: NULL:	LAMININ; CHAIN: NULL;	LAMININ; CHAIN: NULL;	N-CADHERIN; INCG 3	N-CADHERIN; 1NCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; 1NCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3
SeqFold score																
PMF		69.0	0.99	0.88	0.27	-0.03	-0.2	0.29	69.0	0.29	0.1	0.09	60.0	0.31	0.1	0.11
Verify score		0.11	0.71	1.03	ې 1.	0.07	0.23	0.12	0.13	0.01	0.46	0.15	-0.13	0.35	0.22	0.28
PSI- BLAST		9.00E-32	1.80E-16	1.30E-11	1.10E-13	5.40E-21	3.60E-17	9.00E-06	0.00014	1.40E-14	0.00018	3.60E-05	9.00E-06	3.60E-06	3.60E-17	0.00036
End		1129	4022	3988	4050	4075	4342	1127	1232	1439	1546	229	1650	1748	2061	2161
Start AA			3946	3949	3924	3954	4201	1062	1167	1350	1480	155	1599	1667	1970	2079
Chain ID		⋖														
PDB ID		ledh	lem n	1fsb	Iklo	1klo	1klo	Incg	Incg	lncg	Incg	lncg	lncg	lncg	lncg	1ncg
SEQ NO:		808	608	608	809	808	808	808	808	608	808	608	608	808	808	808

	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN INCG 13	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN	N-CADHERIN; INCG 3 CELL ADHESION PROTEIN CADHERIN	N-CADHERIN; INCI 3 CELL ADHESION PROTEIN CADHERIN	N-CADHERIN; INCI 3 CELL ADHESION PROTEIN CADHERIN INCI 13	N-CADHERIN; INCI 3 CELL ADHESION PROTEIN CADHERIN INCI 13	N-CADHERIN; INCI 3 CELL ADHESION PROTEIN CADHERIN INCI 13	N-CADHERIN; INCI 3 CELL ADHESION PROTEIN CADHERIN		N-CADHERIN; INCI 3 CELL ADHESION PROTEIN CADHERIN		3 3 3
N-CADHERI N-CADHERI	N-CADHERI	_	N-CADHERI ERI	N-CADHERI	N-CADHERI	N-CADHERI	N-CADHERI	N-CADHERI	NCAPHERI	אקווסט-גו	N-CADHERI	N-CADHERI N-CADHERI									
score																					
PIMF	0.1	0.74	0.43	0.57	0.7	0.39	0.51	0.34	0.36	0.8	0.53	0.64	0.78	96.0	0.22	0.65	9.0	0.4		0.23	0.23
verity	-0.08	0.41	-0.27	0.34	0.44	0.35	0.45	90.0	0.33	0.16	-0.19	0.38	90.0	90.0	0.43	-0.08	0.35	-0.17		0.08	0.08
PSI- BLAST	3.60E-12	1.80E-06	0.00036	1.60E-05	1.80E-19	0.00054	3.60E-06	1.80E-05	11-309:1	7.20E-20	0.00018	5.40E-05	1.80E-06	5.40E-05	1.30E-13	0.00018	9.00E-07	1.60E-05		1.80E-16	1.80E-16 0.0013
End AA	2263	2370	2458	2681	2788	2988	3106	3191	3311	811	006	1003	1129	1234	1440	1547	1750	248		2062	2062
Start AA	2178	2304	2411	2593	2692	2913	3039	3120	3225	716	852	932	1065	1172	1350	1491	1667	181		1970	1970
													В	В	В	В	æ	В		В	В
10 E	lncg	lncg	1ncg	lncg	lncg	Incg	lncg	lncg	Incg	lncg	Incg	Incg	Inci	1nci	Inci	Inci	Inci	1nci		Inci	Inci
NO E	809	809	608	809	608	808	809	809	809	608	608	608	608	809	808	809	809	608		809	809

	Τ	z	z	z	z	z	z	z	z	z	z	z	z	Τ	T	Т		Т	T	T^{-}	\top
PDB annotation	INCI 13	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL	CELL ADHESION PROTEIN A DHESION PROTEIN	CELL ADHESION PROTEIN CELL	CELL ADHESION PROTEIN CELL	CELL ADHESION PROTEIN CELL
Coumpound		N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; INCI 3	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;
SeqFold score																					
PMF score		0.75	0.58	90.0	_	0.92	0.42	0.17	0.49	0.99	96.0	0.71	0.63	1	1	0.54	0.99	_	0.21	_	0.74
Verify score		0.17	-0.14	0	0.56	0.42	0.56	-0.2	0.67	0.87	0.15	-0.4	0.36	0.45	0.34	0.3	0.29	0.03	0.05	0.45	-0.05
PSI- BLAST		5.40E-07	0.0009	1.60E-05	3.60E-19	0.0036	5.40E-06	0.00036	1.80E-10	1.80E-08	1.80E-19	5.40E-05	1.80E-05	3.60E-36	5.40E-33	1.80E-22	3.60E-53	1.80E-34	5.40E-24	3.60E-33	3.60E-32
End AA		2371	2458	2683	2789	3003	3105	3191	3313	3418	812	917	1022	1234	1338	1440	1547	1652	354	1750	1861
Start AA		2307	2414	2620	7697	2942	3044	3146	3225	3354	715	862	932	1039	1147	1270	1351	1458	155	1562	1667
Chain D		В	В	В	В	В	В	В	В	В	В	В	В	A	۷.	∢	A	4	A	A	4
PDB ID		Inci	lnci	1nci	Inci	lnci	1nci	Inci	Inci	Inci	Inci	Inci	Inci	1ncj	1ncj	lncj —	1ncj	1ncj	Incj	Incj	Incj
SEQ ID NO:		608	608	809	608	809	809	608	808	608	808	808	809	608	608	608	608	608	809	608	608

	PDB ID	Chain	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
	Incj	¥	1782	1960	7.20E-27	0.31	96.0		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	lncj	А	1898	2062	3.60E-28	0.42	9.76		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	Incj	4	1970	2163	7.20E-55	0.11	0.33		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	Incj	٨	2079	2264	3.60E-30	0.48	98.0		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	1ncj	∀	2178	2371	5.40E-52	0.17	-		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	lncj	∢	2300	2473	5.40E-36	0.27	1		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	lncj	٧	2407	2577	7.20E-32	-0.1	0.75		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	lncj	¥	2488	2683	1.60E-41	0.14	0.83		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
-	1ncj	۷.	256	450	3.60E-27	0.25	6.0		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	Incj	∢	2593	2789	1.30E-32	0.29	-		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
-	lncj	А	2691	2897	5.40E-63			120.25	N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	1ncj	∢	2693	2898	5.40E-63	0.28	-		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	Incj	٧	2825	3003	3.60E-38	0.31	66.0		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	Incj	⋖	2913	3105	1.80E-29	0.62	1		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
608	Incj	∢	3039	3196	1.40E-31	-0.03	0.58		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	Incj	∢	3120	3313	1.80E-34	0.36	0.63		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	Incj	∢	3225	3418	7.20E-51	0.48	66.0		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	Incj	4	3346	3523	3.60E-32	0.63	1		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
	Incj	¥	3433	3621	3.60E-13	0.52	0.39		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
-	Incj	∢	39	248	1.80E-57	-0.28	0.21		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
8	100	A	390	556	1.80E-34	0.3	0.35		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL

PDB annotation	ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR)	CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/FOF	BLOOD COAGULATION, 2 PLASMA,	SERINE PROTEASE, CALCIUM-	BINDING, HYDROLASE, 3 GLYCOPROTEIN	SERINE PROTEASE FVIIA; FVIIA;	BLOOD COAGULATION, SERINE	PROTEASE			SERINE PROTEASE FVIIA; BLOOD COAGULATION, SERINE	PROTEASE			SERINE PROTEASE FVIIA; FVIIA;	BLOOD COAGULATION, SERINE				SERINE PROTEASE FVIIA; FVIIA;	BLOOD COAGULATION, SERINE PROTEASE	
Coumpound		N-CADHERIN; CHAIN: A;	FACTOR IXA; CHAIN: C, L,, D-PHE-PRO-ARG; CHAIN: I,					COAGULATION FACTOR	VIIA (LIGHT CHAIN); CHAIN:	UIA (HEAVY CHAIN):	CHAIN: H; TRIPEPTIDYL	INHIBITOR; CHAIN: C;	COAGULATION FACTOR VIIA (LIGHT CHAIN); CHAIN:	L; COAGULATION FACTOR	VIIA (HEAV Y CHAIN); CHAN: H: TRIBERTINY	NHIBITOR; CHAIN: C;	COAGULATION FACTOR	VIIA (LIGHT CHAIN); CHAIN:	VIIA (HEAVY CHAIN):	CHAIN: H; TRIPEPTIDYL	INHIBITOR; CHAIN: C;	COAGULATION FACTOR	VIIA (LIGHT CHAIN); CHAIN: L: COAGULATION FACTOR	VIIA (HEAVY CHAIN);				
SeqFold score																												
PMF score		0.99	0.18	1	88.0	-	-0.19					-0.19					0.57				-0.17					-0.17		
Verify score		0.37	0.02	0.23	0.34	0.39	0.01					0.2				,	0.68				0					0.37		
PSI- BLAST		9.00E-30	1.80E-25	7.20E-62	1.80E-34	1.10E-34	1.40E-10					1.30E-11				1 000	1.20E-21				5.40E-14					7.20E-13		
End	,	299	812	917	1022	1129	4312					4001				4027	4033				4202					4344		
Start AA	,	467	571	717	827	932	4224					3943				2051	1686				4121					4267		
Chain ID		۷	٧	A	A	۷	٦		•				_			<u>,</u>	٦				1					-		
PDB ID	-	Incj	Incj	1ncj	Incj	1ncj	 XJd I			_		1qfk 				100					 왕				+	는 참.		
SEQ NO:	000	808	608	608	808	808	608					808				000	600				608				3	608		

SEQ NO:	PDB ID	Chain D	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									CHAIN: H; TRIPEPTIDYL INHIBITOR; CHAIN: C;	
808	₽	м	3951	4001	7.80E-14	0.03	-0.19		COAGULATION FACTOR IX; CHAIN: A; COAGULATION FACTOR IX; CHAIN: B;	COAGULATION FACTOR SERINE PROTEINASE, BLOOD COAGULATION, COAGULATION FACTOR
808	1suh		1041	1133	7.80E-20	0.24	0.27		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		1066	1133	1.60E-07	-0.06	0.93		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	lsuh		1145	1238	1.30E-17	0.04	0.45		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	Isuh		1249	1334	1.30E-10	0.54	0.62		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	lsuh		1279	1342	0.0013	0.28	0.13		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		1350	1444	1.80E-19	0.37	0.04		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		1455	1549	1.30E-08	0.45	0.63		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
608	lsuh		155	226	2.60E-07	0.35	0.07		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	Isuh		1570	1650	1.00E-12	0.41	0.31		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	Isuh		1589	1656	9.00E-09	-0.2	0.13		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	lsuh		1667	1754	1.30E-12	0.07	99.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
808	1suh		0691	1754	3.60E-06	0.17	0.75		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL

PDB annotation	ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN;	ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN: CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULN; CADHERN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL	CELL ADHESION UVOMORULIN:				
Coumpound		EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NIII I:	CITAIN: INOUE,	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN;
SeqFold score									٠							
PMF score		0.48	0.45		0.13	0.09	0.4	0.77	0.94	0.58	0.25	0.15	86.0	0.12	66.0	0.87
Verify score		-0.06	-0.18		-0.41	0.42	-0.37	0.44	0.35	0.03	-0.04	-0.37	0.16	0.02	0.42	0.43
PSI- BLAST		1.30E-14	3.60E-05		1.80E-06	2.60E-15	1.30E-15	3.90E-20	3.60E-09	3.90E-05	3.60E-05	1.80E-12	1.30E-13	2.60E-10	3.60E-23	2.60E-21
End AA		1867	1868		252	2163	2268	2375	2375	2475	2477	2581	2581	2681	2793	2902
Start AA		1777	1800		182	2084	2178	2280	2306	2395	2414	2488	2489	2591	2692	2806
Chain D								l								
PDB ID		lsuh	1suh		lsuh	1suh	1suh	Isuh	1suh	lsuh	1suh	1suh	1suh	Isuh	1suh	Isuh
SEQ D NO:		608	809		808	808	608	608	608	608	608	808	608	608	808	809

PDB annotation	CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UYOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL
	CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHE CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHE CADHERIN ADHESION					
Coumpound	CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;
SeqFold score					_									
PMF score		0.25	0.93	98.0	0.89	0.72	0.28	0.25	0.82	86.0	0.93	0.65	0.24	0.19
Verify score		0.01	0.37	-0.07	0.36	0.4	0.1	0.43	9.0	0.58	99:0	0.56	0.08	-0.6
PSI- BLAST		3.60E-09	1.20E-14	1.80E-06	2.60E-21	3.60E-06	0.0013	3.90E-12	1.10E-14	3.90E-21	1.30E-09	6.50E-11	0.0001	1.60E-05
End AA		2902	3007	3007	3109	3109	3185	3213	3317	3422	3422	3524	454	454
Start AA		2831	2914	2941	3026	3046	3120	3120	3225	3330	3355	3435	363	406
Chain ID														
PDB ID		1suh	Isuh	1suh	lsuh	lsuh	1suh	1suh	lsuh	1suh	1suh	1suh	1suh	Isuh
SEQ No es		808	809	608	808	608	608	608	608	808	608	808	608	608

PDB annotation	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	PLASMINOGEN ACTIVATION	BLOOD COAGULATION FACTOR STUART FACTOR: BLOOD	COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH FACTOR 11KF DOMAIN		COMPLEX (BLOOD COAGULATION/INHIBITOR) AUTOPROTHROMBIN IIA; HYDROLASE, SERINE PROTEINASE), PLASMA CALCIUM BINDING, 2 GLYCOPROTEIN, COMPLEX (BLOOD	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)
Coumpound	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	T-PLASMINOGEN ACTIVATOR FI-G; ITPG 7 CHAIN: NIJ.J.: ITPG 8	BLOOD COAGULATION FACTOR XA; CHAIN: L, C;		LECTIN (AGGLUTININ) WHEAT GERM AGGLUTININ (ISOLECTIN 2) 9WGA 3	ACTIVATED PROTEIN C; CHAIN: C, L; D-PHE-PRO- MAI; CHAIN: P;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D-PHE-PHE- ARG-
SeqFold score												
PMF score	0.19	0.57	0.95	0.72	0.45	0.57	0.59	-0.19		-0.2	-0.12	0.07
Verify score	-0.03	0.39	-0.21	0.4	0.17	0.37	0.21	0.15		0.05	0.55	0.09
PSI- BLAST	1.30E-15	3.90E-05	1.40E-23	1.00E-17	5.40E-07	5.20E-13	1.30E-18	5.40E-12		3.60E-10	6.50E-19	1.40E-12
End	560	658	816	921	921	1026	4026	4348		4337	3947	3897
Start AA	467	965	716	826	854	930	3949	4267		4166	3857	3831
Chain ID								⊢ 1		A	i	1
PDB	1suh	1suh	1suh	1suh	1suh	Isuh	ltpg	lxka		_	laut	Idan
SEQ ID	808	808	608	808	608	608	608	608		608	608	808

PDB annotation		BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2	GLA, EGF, 3 COMPLEX (SERINE	PROTEASE/COFACTOR/LIGAND)		HYDROLASE/HYDROLASE INHIBITOR	PROTEIN-PEPTIDE COMPLEX					HYDROLASE/HYDROLASE INHIBITOR	PROTEIN-PEPTIDE COMPLEX					HYDROLASE/HYDROLASE INHIBITOR	PROTEIN-PEPTIDE COMPLEX					HYDROLASE/HYDROLASE INHIBITOR	PROTEIN-PEPTIDE COMPLEX					aomainia as ioauxios y ioauxi	PROTEIN-PEPTIDE COMPLEX		
Coumpound	CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLITELE TISSILE EACTOD:	CHAIN: T, U; D-PHE-PHE-	ARG-	(DFFRCMK) WITH CHAIN: C;	DES-GLA FACTOR VIIA	(HEAVY CHAIN); CHAIN: H,	I, DES-GEA FACTOR VIIA	M: (DPN)-PHE-ARG: CHAIN:	C, D; PEPTIDE E-76; CHAIN:	Х, Ү;	DES-GLA FACTOR VIIA	(HEAVY CHAIN); CHAIN: H,	I; DES-GLA FACTOR VIIA	(LIGHT CHAIN); CHAIN: L,	M; (DPN)-PHE-ARG; CHAIN:	C, D; FEF11DE E-76; CHAIN: X, Y;	DES-GLA FACTOR VIIA	(HEAVY CHAIN); CHAIN: H,	I; DES-GLA FACTOR VIIA	(LIGHI CHAIN); CHAIN: L,	M; (DPN)-PHE-ARG; CHAIN:	C, D, rer libe 5-76; Chalin:	DES-GLA FACTOR VIIA	(HEAVY CHAIN); CHAIN: H,	I; DES-GLA FACTOR VIIA	(LIGHT CHAIN); CHAIN: L,	M; (DPN)-PHE-ARG; CHAIN:	C, D; PEPTIDE E-76; CHAIN:	DES GLA EACTOR VIIA	(HEAVY CHAIN); CHAIN: H,	I; DES-GLA FACTOR VIIA	(LIGHT CHAIN); CHAIN: L,
SeqFold score			-																														
PMF score		0.07				0.15						0.05						-0.07						-0.15						01.0	3		
Verify score		0.1				-0.08						0.48						0.12						0.05						0.05	64.0		
PSI- BLAST		3.60E-14				1.40E-12						3.90E-21			-			3.60E-14				,		3.60E-12						1 30F-13	77.77		
End		3976				3897					-	3947						3976						4168						4250	3		
Start AA		3900				3831						3858						3900						4078						4170) :		
Chain ID		,ı				Т												T						L						Ī	1		
PDB ID		Idan				1dva		_				ldva						ldva						Idva						ldva			
SEQ NO:		608		-		608					3	608						608						808						808			

PDB annotation		CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM RINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL
Coumpound	M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;
SeqFold score									
PMF score			96.0	0.93	0.89	9.65	-1.41	0.25	66.0
Verify score		0.35	0.16	0.23	0.3	0.03	0.19	-0.18	0.21
PSI- BLAST		1.10E-33	9.00E-30	1.60E-20	3.60E-54	7.20E-32	3.60E-33	3.60E-28	1.80E-27
End		1234	1338	1440	1547	1652	1750	1860	1960
Start AA		1026	1171	1279	1352	1455	1589	0691	1780
Chain ID		A	¥	¥	⋖	¥	٧	∀	A
PDB ID		ledh	ledh	1edh	ledh	1edh	ledh	1edh	1edh
SEQ NO:		809	809	809	809	809	608	809	809

PDB annotation	ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS I	AND 2, ECADIZ, CADILLIAN, CELE	ADRESION FROIEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	EELL ADHESION PROTEIN	AND SECANDS CADIBED IN CELLS	AND 2, ECADIZ, CADRENIN, CELE	ADRESION FROIEIN, CALCIUM	CELL ADITECTON BROTTEN	EPITHELIAL CADHERIN DOMAING 1	AND 2 FCADI2: CADHERIN CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12, CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	AND 2 ECANDS CAURENIN DOMAINS I	APPECION DE CAPITE ON CELE	PATHEOLOGY CALCION	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM
Coumpound		E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;				1	E-CADHERIN; CHAIN: A, B;				E CADIEBIN: CHAIN: A B.	E-CAUTEINIS, CHAIN. A, B,				E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;				E-CADHERIN: CHAIN: A. B.					E-CADHERIN; CHAIN: A, B;			
SeqFold score																														•							
PMF score		0.07				0.94					0.34				600	7.0				-					-1.41				0.86					0.75		•	
Verify score		0.17			-	0.3					0.13				010	6.5				0.08					0.37				0.07					0.14			
PSI- BLAST		5.40E-20				1.80E-30					1.80E-50				0 000 0	7.000-27				1.80E-38					1.80E-32				3.60E-29					1.60E-39			
End AA		354				2062				18:30	7163		-		2261	1077				2371					2473				2577					2683			
Start AA		182				1898					c/61				2104	1017				2178]	2306				2414					2488			
Chain ID		Ą				A					¥					ς.				Ą					∢				V					4			
PDB ID		1edh				ledh				-	ledn				10.4					ledh					ledh				ledh					ledh			
SEQ ID NO:		809				608				9	608				000	3				809		-			608				808					808			

		_	-				_					<u> </u>					_														_,					-				
PDB annotation	THE PART OF THE PA	BINDING PROTEIN	CELL ADHESION PROTEIN EPITHEL 141 CADHEBRI DOMAINS 1	AND 2. ECADI2: CADHERIN CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECADI2; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROLEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM	BINDING PROTEIN	CELL ADHESION PROTEIN	EPITHELIAL CADHERIN DOMAINS 1	AND 2, ECAD12; CADHERIN, CELL	ADHESION PROTEIN, CALCIUM BINDING PROTEIN
Coumpound			E-CADHERIN; CHAIN: A, B;				E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;				יייייייייייייייייייייייייייייייייייייי	E-CAUHEKIN; CHAIN: A, B;				r CADITED I CHANGE	E-CADHEKIN; CHAIN: A, B;					E-CADHERIN; CHAIN: A, B;			
SeqFold score							120.62																																	
PMF score			0.99						•			_	-					1202.08				0.94			-	170	4.5				700	0.0					0.59			
Verify score		3,0	0.33								1	0.52				,	0.46					0.31				0 15	2.5				90.0	0.70				;	0.10			
PSI- BLAST		7 000 01	7.20E-31				5.40E-58				2000	5.40E-58					1.80E-33					1.80E-28				5 40E 24	J. 40E-64				1 80E 27	1.00E-27				1 000	1.80E-28			
End AA		0000	68/7				2895				000	8687				0000	3003				30.0	3105				450	2				3101	1212				23.13	cicc			
Start AA		26.10	6107				2692				2000	5697				1000	7831					1467				296	2				3045	6				21.47	/+10			
Chain			∢				¥				•	₹					₹					₹				A	:				A	•					 {			
PDB ID		466	lina I				ledh		_		160-	una I				╁					╅					1edh					ledh	-				10,41				
SEQ ID	ë Z	000	600			6	608				9	600				900	606				000	600				608	}				608	}				008				

PDB annotation	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12, CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2. ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADI2; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	MATRIX BROTEIN EVTBACETTILLAB
Coumpound	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	E-CADHERIN; CHAIN: A, B;	FIBRII I IN: CHAIN: NI II 1 :
SeqFold score									
PMF score	86.0	_	0.3	0.89	0.77	_	-	0.52	0.48
Verify score	0.53	0.47	0.12	0.31	0.5	0.33	0.14	0.24	90.0
PSI- BLAST	1.40E-35	1.80E-16	3.60E-53	5.40E-30	3.60E-27	1.10E-57	1.80E-33	1.80E-30	3.60E-16
End AA	3418	3523	248	556	662	917	1022	1129	3931
Start AA	3225	3355	39	401	465	718	854	959	3860
Chain ID	¥	⋖	∀	⋖	¥	«	∢	¥	
PDB ID	ledh	ledh	1edh	ledh .	ledh	1edh	1edh	1edh	1em
SEQ ID NO:	608	608	608	808	608	809	608	608	608

	T	T								 _
PDB annotation	MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT, MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT, MATRIX PROTEIN	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	GLYCOPROTEIN GLYCOPROTEIN	GLYCOPROTEIN GLYCOPROTEIN	CELL ADHESION PROTEIN CADHERIN INCG 13 CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN	CELL ADHESION PROTEIN CADHERIN INCG 13
Coumpound		FIBRILLIN; CHAIN: NULL;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: 1;	LAMININ; CHAIN: NULL;	LAMININ; CHAIN: NULL;	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3	N-CADHERIN; INCG 3
SeqFold score										
PMF score		-0.18	-0.01	-0.19	-0.2	-0.2	0.87	0.3	0.72	0.09
Verify score		0.02	0.12	0.5	0.07	0.07	0.15	0.34	0	0.15
PSI- BLAST		9.00E-14	3.60E-14	1.30E-13	1.80E-17	1.80E-18	5.40E-05	3.60E-17	5.40E-05	3.60E-05
End AA		4217	3976	4259	4228	4262	1232	1439	1546	229
Start AA		4126	3900	4170	4074	4134	1169	1350	1455	155
Chain ID			\mathbf{r}	L						
PDB ID	E .	lem n	· I fak	1fak	1klo	1Klo	lncg	lncg	lncg	lncg
SEQ ID NO:		608	808	608	608	60 60	809	608	608	809

SEQ ID	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify	PMF score	SeqFold	Coumpound	PDB annotation
NO:	Incg		1599	1651	9.00E-06	-0.45	0.04		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN
608	Incg		1667	1748	3.60E-06	0.35	0.31		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN
608	Incg		1975	2061	1.80E-15	-0.06	0.1		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN
608	lncg		2079	2161	0.00036	0.31	0.29		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN
608	Incg		2180	2262	9.00E-07	0.11	0.01		N-CADHERIN; 1NCG 3	CELL ADHESION PROTEIN CADHERIN
608	Incg		2304	2369	1.80E-06	0.43	0.64		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN
608	lncg		2411	2458	0.0045	-0.23	0.22		N-CADHERIN; 1NCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
608	Incg		2592	2681	0.00014	0.41	0.25		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
608	lncg		2692	2788	3.60E-20	0.44	0.7		N-CADHERIN; 1NCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
809	Incg		3039	3106	9.00E-07	0.45	0.51		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
809	lncg		3120	3191	0.00018	90.0	0.34		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN
608	lncg		3225	3312	1.10E-12	0.28	0.45		N-CADHERIN; 1NCG 3	CELL ADHESION PROTEIN CADHERIN
809	Incg		716	811	1.10E-21	0.16	8.0		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN
608	1ncg		852	006	0.00036	-0.19	0.53		N-CADHERIN; 1NCG 3	CELL ADHESION PROTEIN CADHERIN
608	Incg		932	1021	1.60E-05	0.55	0.46		N-CADHERIN; INCG 3	CELL ADHESION PROTEIN CADHERIN INCG 13
608	Inci	В	1065	1129	3.60E-06	90.0	0.78		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
608	Inci	В	1178	1234	1.80E-05	-0.16	6.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
608	1nci	В	1350	1440	91-309:8	0.53	90.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
809	Inci	В	1481	1547	5.40E-05	0.21	0.16		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
608	1nci	В	1667	1750	1.40E-06	0.26	0.64		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN
809	1nci	В	181	248	5.40E-05	-0.17	0.4		N-CADHERIN; 1NCI 3	CELL ADHESION PROTEIN CADHERIN

SEQ ID NO:	PDB ID	Chain ID	Start AA	End	PSI. BLAST	Verify	PMF score	SeqFold	Coumpound	PDB annotation
										INCI 13
608	Inci	В	1912	1960	0.0045	-0.5	0.27		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
608	Inci	В	1975	2062	1.80E-14	0.24	0.07		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
608	1nci	В	2180	2264	3.60E-06	-0.4	0.3		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
608	1nci	В	2307	2371	5.40E-07	0.39	9.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
608	Inci	В	2412	2458	0.0079	-0.03	0.49		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
809	Inci	В	2692	2789	1.80E-19	0.56	_		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
608	lnci	В	2832	2898	1.80E-06	-0.01	0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
809	Inci	В	2951	3003	0.0045	-0.24	0.78		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
809	1nci	В	3041	3105	1.10E-06	0.52	99.0		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
608	Inci	В	3146	3191	0.0013	-0.2	0.17		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
809	Inci	В	3225	3313	1.40E-10	0.31	0.17		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
808	1nci	В	716	812	5.40E-20	10'0	0.88		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
808	1nci	В	853	917	7.20E-05	0.26	0.84		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
608	Inci	В	932	1022	7.20E-06	0.4	0.59		N-CADHERIN; INCI 3	CELL ADHESION PROTEIN CADHERIN INCI 13
809	Incj	∢	1039	1234	1.10E-35	0.39	1		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
808	Incj	A	1144	1338	1.40E-31	0.53	-		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
809	Incj	A	1251	1440	1.80E-23	0.1	0.16		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
808	Incj	¥	1351	1547	1.60E-58	0.28	66'0		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
608	1ncj	A	1455	1652	3.60E-35	0.02	88.0		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN
808	1ncj	4	1562	1750	1.10E-33	0.46	1		N-CADHERIN; CHAIN: A;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN

	1	נו	1	<u> </u>	را]]	ب	ر.	بر	ړ	1.1	ت	J.	ان ا	Ţ	1.1	با	1	نا	
otation	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	OTEIN CEL	TEIN CEI
PDB annotation	SION PROPRIED	SSION PR	SION PR	SION PR	SION PR	SSION PR	SSION PR	SION PR	SSION PR	SSION PR	SSION PROPERTY	SSION PROPERTY	SION PR	SSION PR	SSION PR	SSION PR	SSION PR	SSION PR	SSION PR	SSION PR	Ad NOIS
	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELI ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL
	A;	A;	A;	A;	A;	À;		Ą;	À;	A;	A;	A;	A;	A;	À;	A;	A;	A;	A;	, Š	A:
Coumpound	; CHAIN:	i; CHAIN:	; CHAIN:	; CHAIN:	i, CHAIN:	J; CHAIN:	; CHAIN:	CHAIN:	; CHAIN:	t; CHAIN:	t; CHAIN:	; CHAIN:	; CHAIN:	t; CHAIN:	t; CHAIN:	t; CHAIN:	J; CHAIN:	V; CHAIN:	CHAIN:	Y; CHAIN:	CHAIN
Cou	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN: CHAIN: A:
SeqFold score			_										120.25		-						
s s													120							-	_
PMF score	0.84	0.23	1	6.0	0.45	68.0	_	-	8.0	9.0	0.51	-		-	0.99	H	0.8	0.82	-		-0.03
Verify score	0.2	90.0	0.31	0.25	0.02	0.23	0.25	0.32	-0.03	90:00	0.28	0.23		0.28	0.28	0.35	0.16	0.35	99:0	9.0	0.35
PSI- BLAST	7.20E-33	3.60E-22	9.00E-27	3.60E-31	1.60E-56	9.00E-31	3.60E-40	3.60E-35	9.00E-31	3.60E-40	1.30E-26	1.40E-31	3.60E-63	3.60E-63	9.00E-36	9.00E-30	1.30E-30	1.30E-30	1.80E-39	1.80E-17	5.40E-10
End AA	1861	354	0961	2062	2163	2264	2371	2473	2577	2683	450	2789	2897	2898	3003	3105	3196	3313	3418	3523	3621
Start AA	1667	173	1793	1898	1975	2079	2180	2300	2407	2488	256	2592	2691	2693	2825	2915	3039	3141	3225	3349	3473
Chain ID ·	A	А	A	A	A	А	A	А	Ą	٨	A	Ą	A	A	A	A	Ą	A	Ą	A	A
PDB ID	Incj	1ncj	Incj	Incj	Incj	1ncj	1ncj	Incj	Incj	Incj	Incj	Incj	Incj	Incj	Incj	Incj	Incj	lncj	Incj	1ncj	Incj
SEQ NO:	608	808	808	808	608	808	808	608	608	608	608	608	608	608	608	808	608	608	608	608	608

	П			<u> </u>	T		T											Τ					T	L	Τ	 ::	T
PDB annotation	ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	SERINE PROTEASE FVIIA; FVIIA;	BLOOD COAGULATION, SERINE	PROTEASE			SERINE PROTEASE FVIIA; FVIIA;	PROTEASE			SERINE PROTEASE FVIIA; FVIIA;	BLOOD COAGULATION, SERINE	PROTEASE			CELL ADHESION UVOMORULIN;	CADHERIN, CALCIUM BINDING, CELL	CELL ADHESION UVOMORULIN;	CADHERIN, CALCIUM BINDING, CELL ADHESION	יים ייים איינים
									┼	_				Ż			ـــ		 >				<u> </u>		-	∪ ∢	
Coumpound	N CADUEBRI: CHARI	N-CADREKIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	N-CADHERIN; CHAIN: A;	COAGULATION FACTOR	VIIA (LIGHT CHAIN); CHAIN:	L; COAGULATION FACTOR	CHAIN H. TRIPEPTING	INHIBITOR; CHAIN: C;	COAGULATION FACTOR	L; COAGULATION FACTOR	VIIA (HEAVY CHAIN);	CHAIN: H; TRIPEPTIDYL INHIBITOR: CHAIN: C	COAGULATION FACTOR	VIIA (LIGHT CHAIN); CHAIN:	L; COAGOLATION FACTOR	VIIA (HEAVY CHAIN);	NHIBITOR; CHAIN: C;	EPITHELIAL CADHERIN;	CHAIN: NULL;	EPITHELIAL CADHERIN;	CHAIN: NULL;	FDITTEL IAI CADUEDAI.
SeqFold score																											
PMF score	0.21	0.21	0.36	96.0	0.01	_	0.88	-	0.57					-0.08				-0.15				-	0.13		0.27		0.45
Verify	800	-0.20	0.08	0.36	-0.13	0.39	0.35	0.48	89.0					0.01				80.0					0.33		0.24		0.04
PSI- BLAST	1 10E-50	1.10E-22	1.80E-35	7.20E-28	1.80E-25	1.10E-63	1.80E-34	3.60E-34	1.20E-21					3.60E-13				7.20E-11					7.20E-08		7.80E-20		1.30E-17
End	248	01-3	556	662	812	917	1022	1129	3947					3976				4168					1133		1133		1238
Start AA	39	3	390	467	573	717	827	932	3865					3904				4082					1026		1041		1145
Chain D	∀		¥	A	А	A	4	∢	□					-			-				•						
PDB DD	Inci		Incj	Incj	Incj	lncj	1ncj	lncj	lqfk					Iqtk				1qfk			,	1	lsuh		Isuh		1suh
SEQ ID NO:	809		809	808	608	808	808	608	608					608		-		608					608		608		608

SEQ NO:	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
										ADHESION
809	1suh		1171	1238	7.20E-08	-0.03	0.4		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
608	1suh		1249	1334	1.30E-10	0.54	0.62		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	1suh		1350	1444	1.80E-21	0.3	0.25		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	1suh		1455	1549	1.30E-08	0.45	0.63		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	1suh		1455	1551	5.40E-07	0.14	0.11		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	1suh		155	226	2.60E-07	0.35	0.07		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	1suh		1570	1650	1.00E-12	0.41	0.31		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	lsuh		1589	1656	1.40E-08	0.2	0.09		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	Isuh		1667	1754	1.30E-12	0.07	89.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	1suh		1690	1754	3.60E-06	0.06	99.0		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	1suh		7771	1867	1.30E-14	-0.06	0.48		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	Isuh		1780	1868	3.60E-05	-0.24	0.39		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	Isuh		182	252	5.40E-07	-0.41	0.13		EPITHELIAL CADHERIN; CHAIN: NULL;	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION
809	1suh		1898	1964	1.60E-05	-0.1	0.18		EPITHELIAL CADHERIN;	CELL ADHESION UVOMORULIN;

PDB annotation	CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CELL ADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN;
	CADHERIN	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHE CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADHI CADHERIN ADHESION	CELL ADF
Coumpound	CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN;
SeqFold score														
PMF score		1202.08	60.0	0.12	0.57	0.46	0.77	0.94	0.58	0.06	0.03	86.0	0.12	0.99
Verify score		0.17	0.42	0.05	-0.23	-0.36	0.44	0.4	0.03	-0.37	-0.2	0.16	0.02	0.51
PSI- BLAST		7.20E-18	2.60E-15	3.60E-07	1.30E-14	3.60E-10	3.90E-20	1.10E-08	3.90E-05	0.00011	3.60E-12	1.30E-13	2.60E-10	1.40E-23
End AA		5066	2163	2167	2268	2268	2375	2375	2475	2477	2581	2581	2681	2793
Start AA		1975	2084	2104	2178	2178	2280	2306	2395	2414	2488	2489	2591	2692
Chain ID														
PDB ID		Isuh	1suh	1suh	1suh	1suh	1 suh	1suh	lsuh	1suh	1 suh	1suh	1suh	l suh
SEQ ID NO:		608	608	608	608	608	809	608	808	808	608	608	808	608

PDB annotation	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN: CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION		CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING; CELL ADHESION			CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CADHERIN. CALCIUM BINDING, CELL ADHESION			
Coumpound	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL:	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN; CHAIN: NULL;	EPITHELIAL CADHERIN;
SeqFold score														
PMF score	0.87	0.53	0.93	0.86	68.0	0.55	0.25	0.82	0.98	0.94	0.65	0.24	0.3	0.19
Verify score	0.43	-0.01	0.37	-0.07	0.36	0.33	0.43	9.0	0.58	9.0	0.56	0.08	-0.21	-0.03
PSI- BLAST	2.60E-21	1.40E-08	1.20E-14	1.80E-05	2.60E-21	3.60E-06	3.90E-12	1.30E-13	3.90E-21	5.40E-05	6.50E-11	0.0001	9.00E-06	1.30E-15
End AA	2902	2902	3007	3007	3109	3109	3213	3317	3422	3422	3524	454	454	260
Start AA	2806	2831	2914	2941	3026	3045	3120	3225	3330	3355	3435	363	401	467
Chain ID											_			
PDB ID	lsuh	lsuh	1suh	lsuh	1suĥ	1suh	1suh	lsuh .	Isuh	1suh	Isuh	1suh	1suh	lsuh
SEQ ID NO:	608	608	608	808	809	809	608	808	608	808	808	608	608	608

ation	MORULIN;	BINDING, CELL	CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL	BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL	BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL	BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL	BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL	BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL	BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL ATION ATION N FACTOR ODD DR, SERINE WAL 2 GROWTH	BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL ATION N FACTOR OD ON, SERINE MAL 2 GROWTH	BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL MORULIN; BINDING, CELL ATION ATION N FACTOR OD OR, SERINE MAL 2 GROWTH V IEIN N DOMAINS 1 ERIN, CELL CALCIUM
PDB annotation	CELL ADHESION UVOMORULIN;	CAUSICIAIN, CALCIUM	CADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL	ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	CADHESION CELL ADHESION UVOMORULIN; CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CADHERIN, CALCIUM BINDING, CELL ADHESION	CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CADHERIN, CALCIUM BINDING, CELL ADHESION	CELL ADHESION UVOMORULIN; CELL ADHESION UVOMORULIN; CELL ADHESION UVOMORULIN; CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CELL ADHESION	ADHESION CELL ADHESION UVOMORUI CELL ADHESION UVOMORUI CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDIN ADHESION CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDIN ADHESION CELL ADHESION UVOMORUI CADHERIN, CALCIUM BINDIN ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION CELL ADHESION PLASMINOGEN ACTIVATION	CELL ADHESION PLASMINOGEN ACTIVATION FACTOR STUART FACTOR; BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH FACTOR I.KF. DOMAIN	ADHESION CELL ADHESION UVOM CELL ADHESION UVOM CELL ADHESION CELL ADHESION UVOM CELL ADHESION UVOM CELL ADHESION CELL ADHESION UVOM CADHERIN, CALCIUM B ADHESION CELL ADHESION UVOM CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION CADHERIN, CALCIUM B ADHESION FLOOD COAGULATION STUART FACTOR; BLOC COAGULATION FACTOR FACTOR LIKE DOMAIN FACTOR LIKE DOMAIN	CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CE ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CE ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CE ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CE ADHESION CELL ADHESION UVOMORULIN; CADHERIN, CALCIUM BINDING, CE ADHESION CELL ADHESION TOOMORULIN; CADHERIN, CALCIUM BINDING, CE ADHESION PLOSON OCOGULATION FACTOR STUART FACTOR; BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWFACTOR LIKE DOMAIN EPITHELIAL CADHERIN DOMAINS I AND 2, ECADIZ; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN
Coumpound	EPITHELIAL CADHERIN; CHAIN: NULL;		EPITHELIAL CADHERIN; CHAIN: NULL;							7	
score	面の	_	画 U								
Score	0.57		0.95	0.95	0.95	0.95 0.72 0.47	0.95 0.72 0.47 0.57	0.95 0.72 0.47 0.57 0.18	0.95 0.72 0.47 0.18 0.18	0.95 0.72 0.47 0.18 0.59 0.59	0.95 0.72 0.47 0.18 0.59 0.59 -0.2
Score	0.39		-0.21	-0.21	0.4	0.4	0.27	0.4 0.27 0.37 0.2 0.2	0.4 0.27 0.27 0.21 0.21	0.4 0.27 0.27 0.21 0.21 -0.26	0.4 0.27 0.27 0.21 0.02 -0.26
BLAST	3.90E-05		7.20E-25	7.20E-25 1.00E-17	7.20E-25 1.00E-17 1.30E-07	7.20E-25 1.00E-17 1.30E-07 5.20E-13	7.20E-25 1.00E-17 1.30E-07 5.20E-13	7.20E-25 1.00E-17 1.30E-07 9.00E-07	7.20E-25 1.00E-17 1.30E-07 9.00E-07 7.20E-11	7.20E-25 1.30E-07 1.30E-07 9.00E-07 7.20E-11	7.20E-25 1.00E-17 1.30E-07 9.00E-07 7.20E-11 3.60E-24
End AA	859		816	921	921	921	921 921 1026 1026	921 921 1026 1026 3940	921 921 1026 1026 3940	921 921 1026 1026 3940 3994 4234	921 921 1026 1026 3940 3944 4234
AA	590		716	716	826 854	826 854 854 930	826 854 854 930 959	826 854 930 959 3863	930 930 959 3904	716 826 854 930 930 4069	826 854 854 930 959 959 4069
а									ы	1 A	1 4 4 A
a	Isuh		1suh	Isuh Isuh	Isuh Isuh Isuh	Isuh Isuh Isuh	Isuh Isuh Isuh Isuh	Isuh Isuh Isuh Isuh	Isuh Isuh Isuh Isuh Isuh Irak	Isuh Isuh Isuh Isuh Isuh Iya	Isuh Isuh Isuh Isuh Isuh Isuh Itog
a ö	808		808	809	809	809	809 809 809	809 809 809	809 809 809 809 809	809 809 809 809 809	809 809 809 809 809 811

416

PDB annotation	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN EPITHELIAL CADHERIN DOMAINS 1 AND 2, ECAD12; CADHERIN, CELL ADHESION PROTEIN, CALCIUM BINDING PROTEIN	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCG 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CADHERIN INCI 13	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL ADHESION PROTEIN	CELL ADHESION PROTEIN CELL
Coumpound	E-CADHERIN; CHAIN: A, B; C E A A B B A B B B B B B B B B B B B B B	E-CADHERIN; CHAIN: A, B; C E E A A A A B B B B B B B B B B B B B B	E-CADHERIN; CHAIN: A, B; C E A A A B B B B B B B B B B B B B B B B	E-CADHERIN; CHAIN: A, B; E E A A A B B B B B B B B B B B B B B	N-CADHERIN; INCG 3 C	N-CADHERIN; INCG 3 C	N-CADHERIN; INCG 3 C	N-CADHERIN; INCI 3 C	N-CADHERIN; INCI 3 C		N-CADHERIN; CHAIN: A; C	N-CADHERIN; CHAIN: A; C	N-CADHERIN; CHAIN: A; C	N-CADHERIN: CHAIN: A; C	N-CADHERIN; CHAIN: A;
SeqFold score				124.11										,	
PMF score	0.82	-	-		0.03	0.63	_	0.12	0.62	1	86.0	0.59	0.58	66.0	
Verify score	0.21	0.21	0.61		0.07	0.34	0.16	-0.15	0.44	0.35	0.21	0.31	0.31	0.24	0.29
PSI- BLAST	1.80E-30	7.20E-26	1.80E-51	1.80E-51	0.00018	1.80E-06	1.60E-19	0.00036	3.60E-07	5.40E-19	1.10E-26	3.60E-20	1.80E-31	7.20E-28	1.80E-55
End	474	584	237	254	238	473	143	238	474	145	370	145	474	266	238
Start AA	296	410	50	50	188	408	48	189	409	48	160	24	271	402	49
Chain ID	A	A	A	A				В	В	മ	A	A	А	A	٧
PDB ID	1edh	ledh	ledh	1edh	Incg	Incg	Incg	1nci	1 nci	1nci	1ncj	1ncj	1ncj	lncj	Incj
SEQ ID NO:	811	811	811	811	811	811	811	811	811	811	811	811	811	811	811

	SeqFold	FMF S	Score	PIMF	Verity FIME
		\dashv			
	125.8 N-CADHERIN; CHAIN: A;			55 125.8	1.80E-55
<u> </u>	EPITHELIAL CADHERIN; CHAIN: NULL;	0.18 E		16 0.22 0.18	16 0.22 0.18
EPITHELIAL CADHERIN; CHAIN: NULL;	ШО	0.23 E		-0.08 0.23	0.0041 -0.08 0.23
	EPITHELIAL CADHERIN; CHAIN: NULL;		5 0.01	12 0.36 0.01	5.20E-12 0.36 0.01
EPITHELIAL CADHERIN; CHAIN: NULL;		0.46 E		0.3 0.46	1.30E-17 0.3 0.46
EPITHELIAL CADHERIN; CHAIN: NULL;		0.89 E		0.89	0.15 0.89
EPITHELIAL CADHERIN; CHAIN: NULL;	Ш О	T 0	0.65 1 E	23 0.65 1	9.00E-23 0.65 1
EPITHELIAL CADHERIN; CHAIN: NULL;	ш О	1		29 0.58 1	2.60E-29 0.58 1
EPITHELIAL CADHERIN; CHAIN: NULL;		1.0	·	0.1	0.23 0.1
QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE	-	-	0.61 1		55 0.61 1
QGSR ZINC FINGER		0.92		0.92	0.68 0.92
PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE					
BINDING SITE; CHAIN: B,					, , , , , , , , , , , , , , , , , , ,
DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER			0.34 1 0.34 1 0.34 1 0.34		0.34
PROTEIN; CHAIN: C, F, G;					

		(1)	,	()	()	()	6	
PDB annotation	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA).	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	·
Coumpound	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TRANSCRIPTION REGULATION YEAST TRANSCRIPTION FACTOR ADR I (RESIDUES 130 - 159) IPAA 3 (PAPA - CARBOXY TERMINAL ZINC FINGER
SeqFold score				111.37				
PMF score	-	.	-			1		0.34
Verify score	0.51	0.32	0.34		0.27	0.63	0.39	0.13
PSI- BLAST	5.40E-50	1.80E-49	1.30E-49	1.30E-49	1.30E-49	9.00E-43	1.10E-48	9.00E-05
End AA	226	254	282	283	310	142	170	312
Start AA	145	173	201	201	229	89	68	286
Chain ID	၁	ပ	၁	ပ	ပ	ပ	၁	
PDB ID	1me y	1me y	1me y	Ime y	Ime y	lme y	Ime y	l paa
SEQ ID NO:	813	813	813	813	813	813	813	813

PDB annotation		ZINC FINGER TRANSCRIPTION FACTOR SP1; ZINC FINGER, TRANSCRIPTION ACTIVATION SP1	COMPLEX (TRANSCRIPTION), COMPLEX REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZNIC FENGEP BE OTTEN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITTATION 2001 ENGER PROCESS	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZINC FINCED DEOTERS	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITTATION ZING ENIGED PROTERY	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX TRANSCRIPTION BEGIN ATOMINA
Coumpound	DOMAIN) MUTANT WITH 1PAA 4 PRO 131 REPLACED BY ALA, PRO 133 REPLACED BY ALA, CYS 140 1PAA 5 REPLACED BY ALA (P131A,P133A,C140A) (NMR,	SP1F2; CHAIN: NULL;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D, 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold score				111.05			
PMF score		0.35	0.98		p==4	-	-
Verify score		0.27	0.17		0.36	0.38	0.26
PSI- BLAST		5.40E-07	1.80E-38	2.60E-61	9.00E-36	7.20E-37	2.60E-49
End AA		312	270	310	312	235	254
Start AA		286	118	145	174	06	144
Chain ID			¥	A	·	A	O
PDB ID		lsp2	1116	1466	1tf6	146	lubd
SEQ ID NO:		813	813	813	813	813	813

PDB annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGII, ATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILI ATIONDIA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILL ATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1, TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX
Coumpound	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold score		105.14				
PMF			,	-	0.94	86.0
Verify score	0.25		0.03	0.37	0.49	0.34
PSI- BLAST	3.60E-35	1.30E-50	7.80E-50	1.30E-50	2.60E-43	1.80E-33
End	254	283	283	310	170	170
Start AA	153	172	178	199	99	69
Chain ID	ပ	ပ	v	ပ	ပ	U
PDB ID	lubd	lubd	Iubd	1ubd	lubd	Iubd
SEQ NO:	813	813	813	813	813	813

SEO	PDB	Chain	Start	Find	PSI.	Verify	PMF	Seaffold	Commonned	DND canadatica
e ö	A	A	AA	AA	BLAST	score	score	score		L DD annotation
										(TRANSCRIPTION REGULATION/DNA)
813	Jubd I	ပ	62	198	1.80E-34	0.62	_		YYI; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION
									ASSOCIATED VIKOS PS	TEGULATION/UNA) YING-YANG I;
									CHAIN: A, B;	INTIATOR ELEMENT, YY1, ZINC 2
									`	FINGER PROTEIN, DNA-PROTEIN
										RECOGNITION, 3 COMPLEX
9			,							(TRANSCRIPTION REGULATION/DNA)
813	Zadr		79	116	2.60E-23	0.74	_		ADRI; CHAIN: NULL;	TRANSCRIPTION REGULATION
							_			TRANSCRIPTION REGULATION, ADR 1 2 INC FINGER NAME
813	2gli	A	145	284	3.90E-62			107.07	ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
									CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
			•						D;	ZINC FINGER, COMPLEX (DNA-
013	:			0,0	27 400 6		١			BINDING PROTEIN/DNA)
510	1187	₹	140	312	3.90E-62	0.23	0.98		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
									CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
									ث	SINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
813	2gli	Y	181	309	5.40E-34	0.39	_		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
									CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
									Ď	ZINC FINGER, COMPLEX (DNA-
513			Ş							BINDING PROTEIN/DNA)
813	ııg7	¥	62	172	3.90E-43	0.4]			ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
									CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
									ä	ZINC FINGER, COMPLEX (DNA-
813	20li	4	73	160	1 205 30	2,70	-		יייייי יייייי מחיייים מימד	BINDING PROTEIN/DNA)
;	i P	:		<u>}</u>	1.502-00	24.0	-		CHARLA: DNA: CHARLO	COMPLEX (DNA-BINDING
									CHAIN: A, DIVA, CHAIN: C, D:	ZINC FINGER COMPLEY (DNA
									•	BINDING PROTEIN/DNA)
813	2gli	∢	68	256	9.10E-60	0.4	1		ZINC FINGER PROTEIN GLI1;	COMPLEX (DNA-BINDING
									CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
									Ď;	ZINC FINGER, COMPLEX (DNA-
813	20li	A	07	225	1 80E 33	0.45	200		יייים ימידים מת מתסימים סומיב	BINDING FROI EIN/DNA)
3	197	ς	`	777	1.005-33	0.40	9.74		CHAIN A DNA CHAIN GLII;	COMPLEX (DNA-BINDING PROTFIN/DNA) FIVE-FINGER C11: C11
		-							D;	ZINC FINGER, COMPLEX (DNA-
										BINDING PROTEIN/DNA)
5.5	1262		,	9	2- 400					
\$10	90g1		7	997	9.00E-58	-0.02	0.34		HNRNP ARGININE N-	TRANSFERASE SAM-BINDING

				·						_											_	
PDB annotation	DOMAIN, BETA-BARREL, MIXED ALPHA-BETA, HEXAMER, 2 DIMER	SCAFFOLD PROTEIN SCAFFOLD PROTEIN, PP2A, PHOSPHORYLATION, HEAT REPEAT	TOXIN BINDING PROTEIN TWO DOMAINS: BETA PROPELLER AND ALPHA/BETA FOLD	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	COMPLEX (GTP- BINDING/TRANSDUCER) BETAI,	I KANSDOCIN BETA SUBUNIT; GAMMAT, TRANSDUCIN GAMMA	SUBUNIT; COMPLEX (GTP-	BINDING/TRANSDUCEK), G PROTEIN, HETEROTRIMER 2 SIGNAL TPANSDIJCTION	COMPLEX OTTO	BINDING/TRANSDUCER) BETA1,	IRANSDUCIN BETA SUBUNIT; GAMMAT TRANSDICIN GAMMA	SUBUNIT; COMPLEX (GTP-	BINDING/TRANSDUCER), G PROTEIN,	HETEROTRIMER 2 SIGNAL TRANSDUCTION	NUCLEAR TRANSPORT PROTEIN	COMPLEX HEAT KEFEATS, NUCLEAR TRANSPORT PROTEIN COMPLEX	ARMADILLO REPEAT ARMADILLO	REPEAT, BETA-CATENIN,	CYTOSKELETON	COMPLEX (HSP24/HSP70) HSP70	GRPE, MOLECULAR CHAPERONE, NUCLEOTIDE EXCHANGE 2 FACTOR.
Coumpound	METHYLTRANSFERASE; CHAIN: 1, 2, 3, 4, 5, 6;	PROTEIN PHOSPHATASE PP2A; CHAIN: A, B;	TOLB PROTEIN; CHAIN: A;	TRANSCRIPTIONAL REPRESSOR TUP!; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B, C;	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-	GAMMA; CHAIN: G;			CT AT DUA/CT AT DUA	CHIMERA; CHAIN: A; GT.	GAMMA: CHAIN: B; G1-				KARYOPHERIN BETA2;	CHAIN: B; KAIN; CHAIN: C;	BETA-CATENIN; CHAIN:	NULL;		NUCL EOTIDE EXCHANGE	FACTOR GRPE; CHAIN: A, B; MOLECULAR CHAPERONE
SeqFold score									-		-	-	-	-							78.03	
PMF score		0.98	0.03	_	1					-	-			_		0.07	_	0.23				
Verify score		0.32	0.16	0.12	0.28	0.18				0.63	8					-0.04		-0.02				
PSI- BLAST		1.20E-07	0.0036	3.60E-60	3.60E-68	3.60E-60				3 60F-73	2000					5.20E-05		2.60E-15			5.20E-41	
End AA		520	1078	1099	1147	1096				1144						653		653			222	
Start AA		235	821	962	831	758				873	}					861		345			51	
Chain ID		A	A	¥	٧	æ				8	1					മ					A	
PDB ID		1b3u	lcrz	lerj	lerj	1got				lgot	6					19bk		3bct			1dkg	
SEQ NO:		817	817	218	817	817				817						817		817			818	

			T	_								-		т
PDB annotation	COILED-COIL, COMPLEX (HSP24/HSP70)	COMPLEX (HSP24/HSP70) HSP70, GRPE, MOLECULAR CHAPERONE, NUCLEOTIDE EXCHANGE 2 FACTOR, COILED-COIL, COMPLEX	COMPLEX (HSP24/HSP70) HSP70, GRPE, MOLECULAR CHAPERONE, NUCLEOTIDE EXCHANGE 2 FACTOR, COILED-COIL, COMPLEX (HSP24/HSP70)		COMPLEX (DNA-BINDING PROTEIN/DNA) MYN PROTEIN; MAX, DNA BINDING, BASIC-HELIX-LOOP- HELIX-LEUCINE ZIPPER, 2 TRANSCRIPTION FACTOR, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) MYN PROTEIN; MAX, DNA BINDING, BASIC-HELIX-LOOP- HELIX-LEUCINE ZIPPER, 2 TRANSCRIPTION FACTOR, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (TRANSCRIPTION FACTOR MAX/DNA) TRANSCRIPTIONAL REGULATION, DNA BINDING, COMPLEX 2 (TRANSCRIPTION FACTOR MAX/DNA)	COMPLEX (TRANSCRIPTION FACTOR	MAX/DNA) TRANSCRIPTIONAL	KEGULATION, DNA BINDING, COMPLEX 2 (TRANSCRIPTION	FACTOR MAX/DNA)	To the state of th	SCAFFOLD PROTEIN SCAFFOLD PROTEIN, PP2A, PHOSPHORYLATION, HEAT REPEAT	SMALL GTPASE KARYOPHERIN BETA, P95 SMALL GTPASE, NUCLEAR
Coumpound	DNAK; CHAIN: D;	NUCLEOTIDE EXCHANGE FACTOR GRPE; CHAIN: A, B; MOLECULAR CHAPERONE DNAK; CHAIN: D;	NUCLEOTIDE EXCHANGE FACTOR GRPE; CHAIN: A, B; MOLECULAR CHAPERONE DNAK; CHAIN: D;		MAX PROTEIN; CHAIN: A, C; DNA; CHAIN: B, D;	MAX PROTEIN; CHAIN: A, C; DNA; CHAIN; B, D;	TRANSCRIPTION FACTOR MAX; CHAIN: A, B; DNA (5'- D(*CP*AP*CP*CP*AP*CP*GP *TP*GP*GP*T)-3', CHAIN: C, D:	TRANSCRIPTION FACTOR	MAX; CHAIN: A, B; DNA (5'-	D(*CP*AP*CP*CP*AP*CP*GP *TP*GP*GP*T)-3', CHAIN: C.	D;	no taringonia inautoua	PP2A; CHAIN: A, B;	RAN; CHAIN: A, C; IMPORTIN BETA SUBUNIT;
SeqFold score														
PMF		0.83	0.42		0.03	0.09	0	0.28				-	-	0.82
Verify score		-0.15	-0.29		-0.73	8.0-	-0.58	-0.27				0.55	CC:0	0.25
PSI- BLAST		1.80E-20	5.20E-41		3.60E-14	2.60E-13	1.60E-14	1.80E-14				6 SOE 08	0.502-08	0.0026
End AA		221	220		203	219	203	203				173		235
Start AA		8	19		135	140	131	132				7/7	:	131
Chain ID		∢	V		4	¥	4	В				A	:	В
PDB ID		ldkg	1 dkg		lan2	lan2	1hlo	1hlo				16311		libr
SEQ NO:		818	818		820	820	820	820				824	5	824

	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
									CHAIN: B, D;	TRANSPORT RECEPTOR
	libr	മ	201	303	6.50E-06	90.0	0.47		RAN; CHAIN: A, C; IMPORTIN BETA SUBUNIT; CHAIN: B. D:	SMALL GTPASE KARYOPHERIN BETA, P95 SMALL GTPASE, NUCLEAR TRANSPORT RECEPTOR
	3bct		154	404	6.50E-14	0.41	0.99		BETA-CATENIN; CHAIN:	ARMADILLO REPEAT ARMADILLO
									NULL;	REPEAT, BETA-CATENIN, CYTOSKELETON
	1402	\ <	ç	250	2.400		3			
	gon 1	ζ	//	294	5.40E-14	0.41	0.22		1-AMINOCYCLOPROPANE-1- CARBOXYLATE SYNTHASE; CHAIN: A. B:	LYASE ACC SYNTHASE, S- ADENOSYL-L-METHIONINE ETHYLENE BIOSYNTHESIS
	1b9h	A	26	317	3.60E-37	0.12	-0.13		3-AMINO-5- HYDROXYBENZOIC ACID	RIFAMYCIN BIOSYNTHESIS (RIFD GENE) AHBA SYNTHASE: RIFAMYCIN
				_					SYNTHASE; CHAIN: A;	BIOSYNTHESIS (RIFD GENE)
	15j4 	∢		312	5.40E-50	0.25	0		SERINE HYDROXYMETHYLTRANSF	TRANSFERASE TRANSFERASE, METABOLIC ROLE, PYRIDOXAL 5'-
	Ibiw	A	3	300	1 80F-52	0.00			ACDADIATE	AMMIOTE AMERIE AST
	,			}		}	1202.08		AMINOTRANSFERASE;	AMINOTRANSFERASE, PYRIDOXAL
	140	\ <	1	212	70000			3	CHAIN: A, B;	ENZYME
	200	¢	-	31/	7.20E-06			52.33	8-AMINO-7-OXONANOATE SYNTHASE; CHAIN: A;	TRANSFERASE AONS, 8-AMINO-7- KETOPELARGONATE SYNTHASE; PI P-DEPENDENT ACYL COA
									_	SYNTHASE, BIOTIN BIOSYNTHESIS.
										8-2 AMINO-7-0XONANOATE
										SYNTHASE, 8-AMINO-7-
										KETOPELARGONATE 3 SYNTHASE, TRANSFERASE
_	<u>မ</u> ှာ (A.	10	311	9.00E-57	0.51	_		CSDB PROTEIN; CHAIN: A;	LYASE ALPHA/BETA FOLD
	Icj0	∢	_	312	3.60E-51	0.04	-1.41		SERINE HYDROXYMETHYLTRANSF	TRANSFERASE SHMT; HYDROXYMETHYL TRANSFERASE
									ERASE; CHAIN: A, B;	CARBON METABOLISM
		ν.	93	314	3.60E-16	0.1	-0.19		CYSTATHIONINE BETA-	METHIONINE BIOSYNTHESIS BETA
									LYASE; CHAIN: A, B;	CYSTATHIONASE; PLP-DEPENDENT ENTXYAES METHONASE;
										BIOSYNTHESIS, C-S BETA 2 LYASE
	183 1	¥	22	313	5.40E-34	0.2	-0.03		CYSTATHIONINE GAMMA-	LYASE CGS; LYASE, LLP-DEPENDENT
									SYNTHASE; CHAIN: A, B, C, D;	ENZYMES, METHIONINE BIOSYNTHESIS
	1d2f	A	135	259	1.80E-09	90:0-	0.51		MALY PROTEIN; CHAIN: A, B:	TRANSFERASE AMINOTRANSFERASE FOLD LARGE PLP-RINDING DOMAIN

PDB annotation	SMALL C- 2 TERMINAL DOMAIN, OPEN ALPHA-BETA STRUCTURE.	ļ	ERASE; TRANSFERASE PLP-DEPENDENT ENZYMES, IRON-SULFUR-CLUSTER SYNTHESIS C-8 2 RFTA 1 YASE				VOL-LYASE; LYASE LYASE, PLP-DEPENDENT ENZYME, PYRIDOXAL PHOSPHATE	A, B, C;	JUGATING UBIQUITIN LIGASE, E2 2 UBIQUITIN AIN: D; CONJUGATING ENZYME		Ä. Ä;	 	SER COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC
Coumpound		SERINE HYDROXYMETHYLTRANSF ERASE; CHAIN: A, B, C, D;	AMINOTRANSFERASE; CHAIN: A, B;	SERINE HYDROXYMETHYLTRANSF ERASE; CHAIN: A, B, C, D;	CYSTATHIONINE GAMMA- SYNTHASE; CHAIN: A, B, C, D, E, F, G, H;	LYASE(CARBON-CARBON) TYROSINE PHENOL-LYASE (E.C.4.1.99.2) 1TPL 3	TYROSINE PHENOL-LYASE; CHAIN: A, B;	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C;	UBIQUITIN CONJUGATING ENZYME E2; CHAIN: D;	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME E2: CHAIN: D:	WWPROTOTYPE; CHAIN: A;	WWPROTOTYPE; CHAIN: A;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX
SeqFold score								217.98					
PMF score		0.17		-1.41	-0.06	-0.03	-0.06			_	0.29	0.35	0.24
Verify score		-0.07	0.62	0.09	0.19	0.21	0.02			0.38	90.0	0.01	-0.37
PSI- BLAST		9.00E-54	3.60E-58	5.40E-50	7.20E-21	3.60E-09	1.30E-08	1.10E-45		1.10E-45	2.60E-11	3.90E-12	3.60E-26
End		314	317	312	311	311	311	1566		1565	841	1019	259
Start AA		&	32	-	20	101	101	1213		1239	608	586	179
Chain ID		A	¥	¥	A	A	∢	A		∢	¥	A	A
PDB ID		0Jp1	leg5	leji	1qgn	1tpl	2tpl	1c4z		1c4z	1e0 m	1c0	lalh
SEQ NO:		826	826	826	826	826	826	830		830	830	830	832

PDB annotation	COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC
PDB	COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA), COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA), COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA), COMPLEX (ZINC FINGER/DNA), Z FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEI CRYSTAL STRUCTURE, (ZINC FINGER/DNA)	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEI CRYSTAL STRUCTURE, (ZINC FINGER/DNA)	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEI CRYSTAL STRUCTURE, (ZINC FINGER/DNA)	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEI CRYSTAL STRUCTURE, (ZINC FINGER/DNA)	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA INTERACTION, PROTEI CRYSTAL STRUCTURE,	COMPLEX (ZINC
Coumpound	PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE: CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A. B. D. E.
SeqFold score										
PMF		-	0.99	0.98	0.07	0.52	_	-	-	
Verify score		0.48	0.41	0.27	-0.35	-0.16	0.1	0.23	0.55	0.49
PSI- BLAST		9.10E-38	1.40E-30	3.90E-39	3.60E-40	1.10E-43	3.60E-45	1.60E-46	1.40E-47	1.30E-48
End		344	678	678	231		287	315	343	371
Start AA		263	598	598	150	178		234	262	290
Chain D		A	¥	A	ပ	ပ	ပ	ပ	ပ	U
PDB ID		lalh	lalh	laih	Ime y	Ime y	Jme y	lme y	Ime y	Jme
SEQ B		832	832	832	832	832	832	832	832	832

	T	T	1				T		
PDB annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTEIN-DNA
Coumpound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A. B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN, CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER
SeqFold score							·		
PMF score		_	-	_	.	-	0.98	_	-
Verify score		0.62	0.34	0.27	0.42	0.16	-0.22	0.1	0.43
PSI- BLAST		1.80E-49	1.40E-49	3.60E-50	5.40E-50	7.20E-50	6.50E-33	1.10E-49	7.20E-48
End AA		399	427	455	483	511	538	539	594
Start AA		318	346	374	402	430	430	458	514
Chain ID		O	၁	၁	၁	၁	ე	ပ	၁
PDB ID	>	Ime y	lme y	Ime y	<u> </u>	lme y	1me y	Ime y	Ime y
SEQ ID NO:		832	832	832	832		832	832	832

PDB annotation	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CDXXEAST STRUCKING COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTEIN-DNA	INTERACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) TFIIIA; 5S GENE;	NMR, TFIIIA, PROTEIN, DNA,	TRANSCRIPTION FACTOR, 5S RNA 2	GENE, DNA BINDING PROTEIN, ZINC	FINGER, COMPLEX 3	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) TFIIIA; 5S GENE;	TE ANSCRIPTION FACTOR SCIENCE	GENE DNA BINDING PROTEIN ZING	FINGER, COMPLEX 3
Coumpound	PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	PROTFIN: CHAIN: C F G:			TRANSCRIPTION FACTOR	IIIA; CHAIN: A; 5S RNA	GENE; CHAIN: E, F;					TRANSCRIPTION FACTOR	IIIA; CHAIN: A; 5S RNA	OBINE; CHAIN: E, F;		
SeqFold score					101.87												-							•			_							
PMF score		1							1					_					0.94				0.99							0				
Verify score		69'0							0.71			_		0.39					90.0				0.15							-0.18				
PSI- BLAST		1.80E-50			1.80E-50				3.60E-50					1.80E-49					1.30E-12				1.40E-20							3.60E-18				
End		622			623				650					678					371				511];	995				
Start AA		541			541				695			_		597					344				431							487				
Chain ID		၁			ပ				၁					ပ				,	יב				⋖							V				
PDB ID		lme у			Ime	^			Ime	^				Ime	>			Į.	=				至							<u>=</u>				
SEQ D NO:		832			832				832					832				3	837				832						000	832				

PDB annotation	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION	CONTRIBUTE AND FINGER PROTEIN	COMPLEX (TRANSCRIPTION	KEGULA I ION/DNA) COMPLEX	REGIII ATION/DNA) RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX	(JKANSCKIPTION REGITI ATTONONA) BNA	יייייין איייין איייין איייין איייין איייין איייין איייין אייייין איייין איייין איייין איייין איייין איייין איייין
Coumpound		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE;	CHAIN: B. C, E, F;			TEILIA: CHAIN: A P. 55	IFIIIA; CHAIN: A, D; 38	KIBOSOMAL KNA GENE; CHAIN: B. C. F. F.				TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE;	CHAIN: B, C, E, F;				TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE;	CHAIN: B, C, E, F;				TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE;	CHAIN: B. C, E, F;				TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL RNA GENE;	CHAIN: B, C, E, F;				TFIIIA; CHAIN: A, D; 5S	KIBOSOMAL KNA GENE;	CHAIN: B, C, E, F;	
SeqFold score						105 92	102.00																									•							
PMF score		0.84										_						-1.41						-1.41						0.89						98.0			
Verify score		0.09										0.15						0.32						0.16						-0.05					;	-0.0 40.0			
PSI- BLAST		1.80E-36				1 305 66	00-700:1					1.60E-36						3.60E-37						1.30E-36						1.60E-36			•		20 000 .	1.80E-35			
End AA		352	,			431	<u>-</u>					408						464						575					3,	603	•					031			
Start AA		207				262	7		-			263						319						431					0.5	459					107	40/			
Chain ID		⋖					1					V						¥						¥						∢						₹			
PDB ID		9#1				1+fk	2			•]#16						1#6] tt6					2	 911			_		75.	0717	-		
SEQ ID NO:		832				832	3					832						832					1	832					5	837					022	700			

										_															_							
PDB annotation	POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION	REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGIL ATTONOMA) VING YANG 1:	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIII ATTONONA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	RECOGNITION 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	KECUGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	TRANSCRIPTION INTERFECT AND 1;	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN
Coumpound		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;		0.000	YYI; CHAIN: C; ADENO-	INITIATOR ELEMENT DNA;	CHAIN: A, B;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YYI; CHAIN: C; ADENO-	ASSOCIATED VINOS ES	CHAIN: A, B;	
SeqFold score																																
PMF		-		,	0.18					96.0						69.0						96.0						-	_			
Verify score		0.3		, ,	-0.36			-		-0.38						-0.37						-0.07							-0.01			
PSI- BLAST		7.20E-35		00 00	9.00E-29					3.60E-31						1.30E-34						2.60E-48						20, 10, 1	3.60E-32			
End AA		099		0,0	729					287						315		-				371						7,7	343			
Start AA		515			82					186						188						232				_		5	747			
Chain 1D		¥			ာ					၁	-					၁						၁						ļ	ر			
PDB ID		1116			pan					1ubd	_					lubd						1 ubd						14:1	panı			
SEQ NO:		832		000	832					832						832						832						022	750			

	т						_						,								,																	
PDB annotation	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGUL ATTOMIDNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	INCLUSION INTERPRETATION, PRINTER TOP TO SERVICE TO SER	FRICED PROTEIN N. Y Y I, ZINC Z	FINGER FROI EIN, DNA-PROI EIN	KECUGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG I;	TRANSCRIPTION INITIATION,	INITIATION ELEMENT YYL ZINC 2
Coumpound		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	CHAIN: A B:	CIDIN: A, B,			0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	INITIATOR ELEMENT DNA;	CHAIN: A, B;
SeqFold score																					-					_												
PMF score		1					_						000	0.88														0.99								-		
Verify score		0.23					0.27						700	40.0							0.2			-			0	 							-0.06			
PSI- BLAST		1.80E-34				70 000	5.40E-34						6 500 50	0.50E-52							3.60E-34						70000	7.2UE-30				•			1.40E-34			
End		371				000	399						102	465							455						707	465							=======================================			
Start AA		270				800	867						344	+							334						207	707							410			
Chain ID		ပ				,	ر.	_						,							ر						l							,	ــــ ر			
PDB ID		lubd				1:12	Dani						luhd							╁	 pon r	-					1.15							+	non i			-
SEQ ID NO:		832				023	760	*					832	3						622	760						833	700						933	750			

																												_		_	
PDB annotation	FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	MILIATOR ELEMENT, Y 11, ZINC 2 FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIII ATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	INTIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION PEGIT ATTOMANA) WING WANG	TRANSCRIPTION INITIATION	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG I;	INITIATOR ELEMENT, YYI, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	COMPLEY (TO ANISO IDTION	REGULATION/DNA) YING-YANG 1:	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	TRANSCRIPTION INITIATION
Coumpound		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	Chally, A, B,		YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	CHAIN: A. B.				YYI; CHAIN: C; ADENO-	INITIATOR ELEMENT DNA:	CHAIN: A, B;			Creat Crating that	YYI; CHAIN: C; ADENO-	ASSOCIATED VIKUS PS INITIATOR FILEMENT DNA:	CHAIN: A, B;			VVI. CHAIN: C. ADENO.	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YYI; CHAIN: C; ADENO-	INITIATOR ELEMENT DNA:
SeqFold score																														86.51	
PMF score		0.53	•			0.34							-				_						86 0								
Verify score		-0.42				0.02						0.23					5	0.22					0.43								-
PSI- BLAST		3.90E-42				3.60E-32					2, 400.	1.30E-47					5 40E 26	3.40E-30					5.20E-51						2000	5.202-51	
End		594			-	999					3	779					622	770					829						35	6/0	
Start AA		428				466						919					577	776					567						0,75	209	
Chain ID		U				၁					,	ر					L						ပ						C	 ر	
PDB ID		pqn]				lubd					╁	Don I		-	_		1.hd	_		•			Iubd						74[
SEQ ID NO:		832				832					6,6	700	-				832	700					832						937	935	

PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold	Coumpound CHAIN: A R.	PDB annotation NITIATOR EI EMENT VVI 27NC 2
				١				CITAIN: A, B,	FINGER PROTEIN, 171, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
ပ		577	678	5.40E-34	-0.06	_		YYI; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION PEGIII ATIONIANA) VING VANG II
								INITIATOR ELEMENT DNA;	TRANSCRIPTION INITIATION,
								CHAIN: A, B;	INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN
									RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
ပ		651	089	2.60E-06	-0.04	0.18		YY1; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION
		_						ASSOCIATED VIKUS PS INITIATOR ELEMENT DNA;	REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION.
								CHAIN: A, B;	INITIATOR ELEMENT, YY1, ZINC 2
									FINGER PROTEIN, DNA-PROTEIN
								:	(TRANSCRIPTION REGULATION/DNA)
		653	089	0.00013	0.15	0.72		SWI5; CHAIN: NULL;	ZINC FINGER DNA BINDING DOMAIN
									DIVA BINDING MOTIF, LINC FINGER DNA BINDING DOMAIN
	∢	133	317	1.30E-36	-0.16	0.46		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
								CHAIN: A; DNA; CHAIN: C, D:	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
_									BINDING PROTEIN/DNA)
	⋖	150	286	1.60E-31	-0.24	0.49		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
								CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
									BINDING PROTEIN/DNA)
_	∢	708	345	2.60E-52	-0.21			ZINC FINGER PROTEIN GLI1;	COMPLEX (DNA-BINDING
								CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
								.; ``	ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
_	Ą	235	401	5.20E-63	-0.1	_		ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING
								CHAIN: A; DNA; CHAIN: C,	PROTEIN/DNA) FIVE-FINGER GLI; GLI,
								.;	ZINC FINGER, COMPLEX (DNA-
_		363	420	2 000 54	200	,		· · · · · · · · · · · · · · · · · · ·	BINDING FROIEIN/DINA)
		707	674	3.306-04	90.0	- -		CHAIN: A; DNA; CHAIN: C,	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI,
								á	ZINC FINGER, COMPLEX (DNA-
4									עווייבייווביו טיו טיוולויוול

PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Coumpound	PDB annotation
	e	-	AA	BLAST	score	score	score		
A		270	398	3.60E-33	0.01	_		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
<u></u>		318	485	2.60E-64	0.25	0.99		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
⋖		346	596	3.90E-57	-0.4	0.19		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
A		354	482	3.60E-34	0.03	0.99		ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
<u> </u>		438	565	1.10E-32	-0.21	0.49		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
<		459	652	5.20E-60	-0.07	0.19		ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
∀		494	624	5.40E-31	-0.02	0.99		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
¥	_	541	678	3.90E-64	0.53	_		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
	4	541	089	3.90E-64			91.33	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
1b6g		1240	1332	0.00078	1.0-	0.12		HALOALKANE DEHALOGENASE; CHAIN: NULL:	HYDROLASE HYDROLASE, HALOALKANE DEHALOGENASE, ALPHA/BETA-HYDROLASE
1cqw '	A	1240	1332	0.0013	-0.19	0.21		HALOALKANE	HYDROLASE A/B HYDROLASE FOLD,

	T		_		_	1	-		_	_		т-					т		т
PDB annotation	DEHALOGENASE 1-S BOND	HYDROLASE TRIACYLGLYCEROL- HYDROLASE, X-RAY CRYSTALLOGRAPHY, 2 PSEUDOMONADACEAE, OXYANION, CIS-PEPTIDE HYDROI ASE	HYDROLASE ALPHA/BETA HYDROLASE, GLYCOPROTEIN	HYDROLASE TRIACYL-GLYCEROL LIPASE, LIPASE, ALPHA-BETA HYDROLASE FOLD, PSEUDOMONAS, PHOSPHONATE 2 INHIBITOR		TRYPTOPHAN BIOSYNTHESIS TRYPTOPHAN INDOLE-LYASE; TRYPTOPHAN BIOSYNTHESIS, TRYPTOPHAN INDOLE-LYASE, PYRIDOXAL 2 5'-PHOSPHATE, MONOVALENT CATION BINDING SITE	TO ANGLES AND A GENERAL AND A SECOND ASSESSMENT	IKANSFEKASE IKANSFEKASE, METABOLIC ROLE, PYRIDOXAL 5'- PHOSPHATE	I VASE AI PHA/RETA EOI D	EL ANGRES (ST. ST. ST. ST. ST. ST. ST. ST. ST. ST.	TRANSFERASE SHMT; HYDROXYMETHYL TRANSFERASE, 1 CARBON METABOLISM	LYASE CGS; LYASE, LLP-DEPENDENT	ENZYMES, METHIONINE BIOSYNTHESIS	TRANSFERASE SHMT, SERINE	METHYLASE; ALPHA PLP	ASPARTATE, AMINO TRANSFERASE, (AAT)-LIKE FOLD	TRANSFERASE PLP-DEPENDENT	ENZYMES, IRON-SULFUR-CLUSTER SYNTHESIS. C-S 2 BETA LYASE	TRANSFERASE PLP-DEPENDENT ENZYMES, IRON-SULFUR-CLUSTER SYNTHESIS, C-S 2 BETA LYASE
Coumpound	DEHALOGENASE; 1- CHLOROHEXANE CHAIN: A;	TRIACYLGLYCEROL HYDROLASE; CHAIN: NULL;	PALMITOYL PROTEIN THIOESTERASE 1: CHAIN: A:	LACTONIZING LIPASE; CHAIN: A;		TRYPTOPHANASE; CHAIN: A, B, C, D;	SED INTE	SERINE HYDROXYMETHYLTRANSF ERASE: CHAIN: A:	CSDR PROTEIN CHAIN: A:	CEDE INCIDIN, CIMIN. A,	SEKINE HYDROXYMETHYLTRANSF ERASE; CHAIN: A, B;	CYSTATHIONINE GAMMA-	SYNTHASE; CHAIN: A, B, C, D;	SERINE	HYDROXYMETHYLTRANSF	LICTURE, CHAIN. A, B, C, D.	AMINOTRANSFERASE;	CHAIN: A, B:	AMINOTRANSFERASE; CHAIN: A, B;
SeqFold score																			
PMF score		69.0	0.53	0.46		0.06	0.07	9	-141	113	-0.13	0		-1.41			1		-
Verify score		0.04	-0.1	0.13		0.23	80 0	200	0.08	20.0	0.03	-0.28		0.17			0.22		0.1
PSI- BLAST		0.00026	0.00026	0.00026		5.40E-07	7 20E-36		9.00E-41	7 200 27	/.20E-3/	1.60E-31		3.60E-40			1.30E-50		1.80E-45
End		1362	1362	1362		241	246	2	244	246	740	242		252	-		248		248
Start AA		1251	1251	1251		13	13		2	1.2	71	4		4					-
Chain ID			A	A		∢	A		A	4	ζ.	∀		٧			∢		¥
PDB ED		Icv	lei9	lex9		lax4	1hi4	ĵ.	1c0n	loi o	5	lcs1		1dfo			leg5		leg5
SEQ NO:		834	834	834		836	836		836	836	000	836		836			836		836

	AL	SIS,	Σ	JC						
PDB annotation	TRANSFERASE SHMT; SERINE- GLYCINE CONVERSION, PYRIDOXAL 5'-PHOSPHATE, 2 TETRAHYDROFOLATE, ASYMMETRIC DIMER	LYASE FES CLUSTER BIOSYNTHESIS, PYRIDOXAL 5'-PHOSPHATE, 2 THIOCYSTEINE, AMINOACRYLATE, ENZYME-PRODUCT COMPLEX	CARBOXYLIC ESTER HYDROLASE PHOSPHOLIPASE, TRIMER, CALCIUM BINDING, ACTIVATOR SITE, 2 CARBOXYLIC ESTER HYDROLASE	HYDROLASE PLA2, PHOSPHATIDE SN-2 ACYLHYDROLASE; HYDROLASE, PHOSPHOLIPASE A2, LIPID DEGRADATION, PRESYNAPTIC 2 NEUROTOXIN, VENOM	HYDROLASE HYDROLASE, PHOSPHOLIPASE A2, PLATELET AGGREGATION INHIBITOR, 2 PBPB HEADER MODRES					LIPID DEGRADATION PHOSPHOLIPASE A2, LIPID
Coumpound	SERINE HYDROXYMETHYLTRANSF ERASE; CHAIN: A, B, C, D;	L-CYSTEINE/L-CYSTINE C-S LYASE; CHAIN: A, B;	PHOSPHOLIPASE A2; CHAIN: NULL;	PHOSPHOLIPASE A2; CHAIN: NULL;	PHOSPHOLIPASE A2; CHAIN: NULL;	HYDROLASE PHOSPHOLIPASE A2 (E.C.3.1.1.4) IPOA 3	HYDROLASE PHOSPHOLIPASE A2 (E.C.3.1.1.4) COMPLEX WITH THE IPOC 3 TRANSITION- STATE ANALOGHE IPOC 4	HYDROLASE PHOSPHOLIPASE A2 (E.C.3.1.1.4) COMPLEX WITH THE 1POC 3 TRANSITION- STATE ANALOGUE 1POC 4	HYDROLASE CALCIUM- FREE PHOSPHOLIPASE A=2= (E.C.3.1.1.4) IPP2 4	PHOSPHOLIPASE A2; CHAIN: A, B;
SeqFold score							99.59			
PMF score	-0.11	0.83	-0.08	-0.18	-0.13	-0.14		0.21	-0.14	-0.17
Verify score	0.41	-0.03	0.38	0.07	0.07	0.3		0.08	0.2	0.12
PSI- BLAST	7.20E-35	3.90E-28	4.80E-39	4.80E-41	1.60E-40	1.60E-38	1.40E-36	0.0054	1.60E-38	3.20E-44
End	246	241	234	244	253	234	289	438	253	253
Start AA	12		131	131	131	131	151	355		131
Chain ID	A	¥.							R	A
PDB ID	leji	lelu	1a3d	lae7	16k9	l poa	lpoc	lpoc	1pp2	lvap
SEQ ID NO:	836	836	837	837	837	837	837	837	837	837

PDB annotation	DEGRADATION, HYDROLASE HYDROLASE HYDROLASE, PHOSPHOLIPASE A2,	ANTICOAGULANT HYDROLASE HYDROLASE, LIPID DEGRADATION, CALCIUM, PRESYNAPTIC 2 NEUROTOXIN, VENOM		OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	CYTOKINE LCF; CYTOKINE, LYMPHOCYTE CHEMOATTRACTANT FACTOR, PDZ DOMAIN	CYTOKINE LCF; CYTOKINE, LYMPHOCYTE CHEMOATTRACTANT FACTOR PDZ DOMAIN	KINASE HCASK, GLGF REPEAT, DHR; PDZ DOMAIN, NEUREXIN, SYNDECAN, RECEPTOR CLUSTERING,	SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL
	DEGRA HYDR(PHOSP	HYDROI DEGRAI PRESYN VENOM		OXIDO NNOS.	RECOCAL	RECOC LOCAL	CYTOK LYMPH FACTO	CYTOK LYMPI FACTO	KINASE PDZ DOI SYNDEC	SIGNAI DHR3 [
Coumpound	PHOSPHOLIPASE A2; CHAIN: NULL;	PHOSPHOLIPASE A2; CHAIN: A, B;	HYDROLASE(CARBOXYL ESTER) PHOSPHOLIPASE A=2= (PHOSPHATIDE-2- ACYL-HYDROLASE) MUTANT 3P2P 4 WITH ASP 59 REPLACED BY SER, SER 60 REPLACED BY GLY, 3P2P 5 62-66 DELETED, ASN 67 REPLACED BY TYR 3P2P 6 (D59SS, /S60GS, DEL(62-66),	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE: CHAIN: R:	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	INTERLEUKIN 16; CHAIN: NULL;	INTERLEUKIN 16; CHAIN: NULL;	HCASK/LM-2 PROTEIN; CHAIN: A, B;	HUMAN DISCS LARGE PROTEIN; CHAIN: NULL;
SeqFold score										
PMF score	-0.11	-0.08	-0.06	86.0	0.72	0.1	0.99	0.45	0.66	0.88
Verify score	0.15	0.4	0.34	0.79	0.21	-0.25	65.0	-0.03	0.04	0.45
PSI- BLAST	4.80E-41	1.30E-40	1.60E-38	1.30E-13	1.10E-18	6.40E-10	7.20E-16	1.40E-14	1.30E-14	6.40E-17
End AA	248	244	236	901	102	317	109	801	108	113
Start AA	131	131	132	21		254	21	4	21	20
Chain ID		A	A	∢	A	Ą			A	
PDB ID	lvip	2not	3p2p	1b8q	1be9	1be9	1i16	1116	lkwa	1pdr
SEQ ID NO:	837	837	837	838	838	838	838	838	838	838

SEQ B NO:	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
										TRANSDUCTION, SH3 DOMAIN, REPEAT
838	Iqau	∢	21	106	9.00E-15	-0.12	0.57		NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1- 130); CHAIN: A;	OXIDOREDUCTASE BETA-FINGER
838	Iqav	Y	20	103	3.20E-17	0.49	0.86		ALPHA-1 SYNTROPHIN (RESIDUES 77-171); CHAIN: A; NEURONAL NITRIC OXIDE SYNTHASE (RESIDUES 1-130); CHAIN: B;	MEMBRANE PROTEIN/OXIDOREDUCTASE BETA- FINGER, HETERODIMER
838	1qlc	¥	20	107	1.40E-18	0.28			POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;	PEPTIDE RECOGNITION PSD-95; PDZ DOMAIN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BINDING
838	3pdz	Ą	23	66	6.40E-17	-0.09	0.45		TYROSINE PHOSPHATASE (PTP-BAS, TYPE 1); CHAIN: A;	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTP1E, PTP-BAS, SPECIFICITY 2 OF BINDING
		_	_							
840	1bg6		481	594	1.60E-05	-0.18	0.17		N-(1-D-CARBOXYLETHYL)- L-NORVALINE DEHYDROGENASE; CHAIN: NULL;	OXIDOREDUCTASE (D, L) STEREOSPECIFIC OPINE DEHYDROGENASE, OXIDOREDUCTASE
840	1cf2	6 .	480	570	0.0069	-0.1	60.0		GLYCERALDEHYDE-3- PHOSPHATE DEHYDROGENASE; CHAIN: P, R, O, Q;	OXYDOREDUCTASE OXYDOREDUCTASE
840	leyz	A	482	599	0.0054	-0.09	0.05	·	PHOSPHORIBOSYLGLYCINA MIDE FORMYLTRANSFERASE 2; CHAIN: A, B;	TRANSFERASE TRANSFORMYLASE, PURINE BIOSYNTHESIS, ATP-GRASP
840	1ff9	∀	481	924	4.80E-58	1.04			SACCHAROPINE REDUCTASE; CHAIN: A;	OXIDOREDUCTASE LYSINE BIOSYNTHESIS, ALPHA- AMINOADIPATE PATHWAY, 2 SACCHAROPINE REDUCTASE, DEHYDROGENASE
840	1pjc	V	25	460	1.30E-61	-0.24	0.49		L-ALANINE DEHYDROGENASE; CHAIN: A;	OXIDOREDUCTASE OXIDOREDUCTASE, OXIDOREDUCTASE, NAD
6,0	1				0 700	3				מסשטים ושווייים עם טיישי יעסשטירי עש
847	non D		711	213	9.60E-48	0.14			BONE MORPHOGENETIC PROTEIN-7; CHAIN: NULL;	I KANSFORMING GROWTH FACTOR OSTEOGENIC PROTEIN-1, HOP-1,

		1			T				
PDB annotation	BMP-7; MORPHOGEN, TRANSFORMING GROWTH FACTOR, CYTOKINE, BONE, 2 CARTILAGE, GLYCOPROTEIN	TRANSFORMING GROWTH FACTOR OSTEOGENIC PROTEIN-1, HOP-1, BMP-7; MORPHOGEN, TRANSFORMING GROWTH FACTOR, CYTOKINE, BONE, 2 CARTILAGE, GLYCOPROTEIN				CYTOKINE CYTOKINE, BONE MORPHOGENETIC PROTEIN, CYSTIN- KNOT, TGFB- 2 FAMILY	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRICTIUE	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY
Coumpound		BONE MORPHOGENETIC PROTEIN-7; CHAIN: NULL;	GROWTH FACTOR TRANSFORMING GROWTH FACTOR-BETA TWO (TGF- B2) 2TGI 3	GROWTH FACTOR TRANSFORMING GROWTH FACTOR-BETA TWO (TGF-	GROWTH FACTOR TRANSFORMING GROWTH FACTOR-BETA TWO (TGF- R2) 2TG! 3	BONE MORPHOGENETIC PROTEIN 2 (BMP-2); CHAIN: A;	SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;
SeqFold score		104.28	67.81				·		
PMF score				0.81	0.6	_	0.25	0.11	8.0
Verify score				0.04	0.11	0.05	0.16	0.23	0.47
PSI- BLAST		9.60E-48	1.80E-38	1.60E-36	1.80E-38	4.80E-48	0.00013	1.60E-07	1.40E-05
End AA		214	214	213	213	213	605	805	1103
Start AA		112	100	102	112	111	430	965	992
Chain ID	į					A			
PDB		ng d	2tgi	2tgi	2tgi	3bm p	lal7	lal7	lal7
SEQ ID NO:	9	842	842	842	842	842	843	843	843

		,			r					
PDB annotation	KINASE KINASE, SH3 DOMAIN, TRANSFERASE, PHOSPHOTRANSFERASE, 2 PROTO- ONCOGENE, MULTIPLE DOMAIN, LEUKEMIA	COMPLEX (SH3 DOMAIN/VIRAL ENHANCER) SRC-HOMOLOGY 3 DOMAIN; COMPLEX (SH3 DOMAIN/VIRAL ENHANCER), PROTO-ONCOGENE, 2 TRANSFERASE, TYROSINE-PROTEIN KINASE, PHOSPHORYLATION, 3 AIDS, MYRISTYLATION, GTP-BINDING, ATP-BINDING, SH3 DOMAIN, 4 SH2 DOMAIN, PPII HELIX, PXXP MOTIF	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT. HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN BINDING	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-BP, PEROXIN-5,
Coumpound	ABL TYROSINE KINASE; CHAIN: NULL;	FYN TYROSINE KINASE; CHAIN: A, C; HIV-1 NEF PROTEIN; CHAIN: B, D;	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	TPRZA-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	TPR2A-DOMAIN OF HOP: CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	TPR.I-DOMAIN OF HOP; CHAIN: A, B; HSC70- PEPTIDE; CHAIN: C, D;	TPR I-DOMAIN OF HOP; CHAIN: A, B; HSC70- PEPTIDE; CHAIN: C, D;	TPRI-DOMAIN OF HOP; CHAIN: A, B; HSC70- PEPTIDE; CHAIN: C, D;	PEROXISOMAL TARGETING SIGNAL I RECEPTOR;
SeqFold score										
PMF	0.66	0.19	0.57	90.0	0.04	0.22	-0.08	0.09	0.06	0.75
Verify score	0.22	0.46	0.32	0.11	-0.02	-0.08	0.02	0.24	0.33	0.22
PSI- BLAST	1.30E-06	7.20E-08	1.10E-05	9.60E-08	8.00E-08	3.20E-10	6.40E-11	0.00014	1.10E-06	9.00E-07
End	242	242	594	526	815	668	1119	575	873	601
Start AA	193		432	452	720	783	1000	441	742	375
Chain ID		∢	∢	V	A	. V	∢ _	٧	¥	4
PDB ID	lawo	lefn	lelr	lelr	1elr	lelr	1elw	1elw	1elw	1fch
SEQ No.	843	843	843	843	843	843	843	843	843	843

COO	_	7.5.1.	7	-	*04					
NO B	E E	E E	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold	Coumpound	PDB annotation
									CHAIN: A, B; PTSI. CONTAINING PEPTIDE; CHAIN: C, D:	PTSI PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT, TPR, 2 HELICAL REPEAT
843	1fch	∢	445	804	3.60E-09	0.29	0.62		PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI- CONTAINING PEPTIDE; CHAIN: C D.	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-BP, PEROXIN-5, PTS1 PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT, TPR, 2
843	1fch	A	452	669	1.30E-20	0.06	-0.15		PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI- CONTAINING PEPTIDE; CHAIN: C, D:	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-BP, PEROXIN-5, PTS1 PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT, TPR, 2 HF1 1CA1 PEPEAT
843	1 fich	∢	576	842	1.10E-12	0.02	66.0		PEROXISOMAL TARGETING SIGNAL 1 RECEPTOR; CHAIN: A, B; PTS1- CONTAINING PEPTIDE; CHAIN: C, D:	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-BP, PEROXIN-5, PTS1 PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT, TPR, 2 HELICAL REPEAT
843	1fýn	∢	193	242	1.80E-07	0.23	0.4		PHOSPHOTRANSFERASE FYN; CHAIN: A; 3BP-2; CHAIN: B;	TRANSFERASE PROTO-ONCOGENE TYROSINE KINASE; PROTO- ONCOGENE, TRANSFERASE, TYROSINE-PROTEIN KINASE, 2 PHOSPHORYLATION, ATP-BINDING, MYRISTYLATION, SH3 DOMAIN. 3 COMPLEX
843	1gbr	Y	181	249	1.40E-06	0.74	0.59		SIGNAL TRANSDUCTION PROTEIN GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2 (GRB2, N-TERMINAL IGBR 3 SH3 DOMAIN) COMPLEXED WITH SOS-A PEPTIDE IGBR 4 (NMR, 29 STRUCTURES) IGBR 5	(HIOST HOT KANSTER LIDE)
843	<u>\$</u>	٧	193	288	1.80E-05	60:0	0.28		P56=LCK= TYROSINE KINASE; ILCK 7 CHAIN: A; ILCK 8 TAIL PHOSPHOPEPTIDE TEGQ(PHOSPHO)YQPQPA; ILCK 14 CHAIN: B: 11 CK 15	COMPLEX (KINASE/PEPTIDE)
843	lulo	S	193	242	1.80E-07	0.4	0.29		C-SRC; CHAIN: C; NL1 (MN7-	COMPLEX (TRANSFERASE/PEPTIDE)

PDB annotation	IN: SRC, SH3 DOMAIN, LIGANDS, NON- PEPTIDE ELEMENTS, 2 COMPLEX (TRANSFERASE/PEPTIDE)	L 3-	A; KINASE-INHIBITOR COMPLEX, DOWN-REGULATED KINASE, 2 ORDERED ACTIVATION LOOP	T PROTEIN TRANSPORT HELIX-TURN: A; HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT	÷		TRANSFERASE HCK; SH3, PROTEIN TYROSINE KINASE, SIGNAL TRANSDUCTION, 2 TRANSFERASE	I, M, IMMUNOGLOBULIN	IN: IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB FRAGMENT, HUMANISATION	
Coumpound	MN2-MN1-PLPPLP); CHAIN: N;	PHOSPHOTRANSFERASE PHOSPHATIDYLINOSITOL 3- KINASE (P85-ALPHA SUBUNIT, IPNJ 3 SH3 DOMAIN) (NMR, MINIMIZED AVERAGE STRUCTURE) IPNJ 4	HAEMATOPOETIC CELL KINASE (HCK); CHAIN: A;	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	PHOSPHOTRANSFERASE FYN PROTO-ONCOGENE TYROSINE KINASE (E.C.2.7.1.112) ISHF 3 (SH3 DOMAIN) ISHF 4	HEMATOPOIETIC CELL KINASE; CHAIN: NULL;	2E8 (IGG1=KAPPA=) ANTIBODY; CHAIN: L, H, M, P;	ANTIBODY CTM01; CHAIN: L, H;	HUMAN IMMUNODEFICIENCY VIRUS TYPE I CAPSID CHAIN: A, B; ANTIBODY FAB25.3 FRAGMENT; CHAIN: H, K, L,
SeqFold score										
PMF score		0.17	0.17	0.15	60.0	0.54	0.89	-0.06	0.03	0.24
Verify score		0.54	60.0	90.0	-0.03	0.38	0.45	0.08	-0.18	0.05
PSI- BLAST		9.00E-10	3.60E-07	1.80E-07	8.00E-06	9.00E-08	9.00E-06	6.40E-51	4.80E-53	4.80E-63
End		249	282	573	1101	242	255	414	599	220
Start AA		182	193	418	949		193	236	419	21
Chain ID		· · · 	A	Ą	A	A		Н	Н	H.
PDB ID		1 pnj	1qcf	Iqqe	lqqe	1shf	4hck	1.20 E+09	1ae6	lafv
SEQ No:		843	843	843	843	843	843	846	846	846

	т							_			_							_											_							
PDB annotation	CAPSID PROTEIN, 2 P24	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING,	HOMOPHILIC ADHESION	INSECT IMMUNITY INSECT	IMMONII Y, ELS-BINDING, HOMOPHILIC ADHESION	INSECT IMMUNITY INSECT	IMMUNITY, LPS-BINDING,	HOMOPHIEIC ADHESION	INSECT IMMONITY INSECT	IMMONITY, EPS-BINDING, HOMOPHILIC ADHESION	INSECT IMMUNITY INSECT	IMMUNITY, LPS-BINDING,	HOMOPHILIC ADHESION	RECEPTOR RECEPTOR, SIGNAL	TRANSDUCER OF IL-6 TYPE	CYTOKINES, THIRD 2 N-TERMINAL	DOMAIN, TRANSMEMBRANE,	ULI COLACIEIN	IMMORE STATEM IMMINOGROBILIN IMMINE	SYSTEM		IMMI BIOCI OBLILINI	IMMINOGLOBULIN FAB COMPLEX	IDIOTOPE, ANTI-IDIOTOPE					IMMUNE SYSTEM	IMMUNOGLOBULIN, IGG1;	IMMUNOGLOBULIN, IGGI;	IMMUNOGLOBULIN, IGGI FAB	FRAGMENT, CROSS-REACTIVITY,	HIVI PROTEASE, ENZYME 2	INHIBITION, IMMUNOGLOBULIN	IMMUNE SYSTEM ANTI-PRION FAR
Coumpound		HEMOLIN; CHAIN: A, B;	2	HEMOLIN; CHAIN: A, B;		HEMOLIN; CHAIN: A, B;		TEMOT BLOTTABLA B	nemolin; Chain: A, B;		HEMOLIN; CHAIN: A, B;			GP130; CHAIN: NULL;				WOONTENA TAIN ON TO WOOM	MRK-16 (LIGHT CHAIN):	CHAIN: A, C; MONOCLONAL	ANTIBODY MRK-16 (HEAVY	IG HEAVY CHAIN V	REGIONS: CHAIN: A: 1G	HEAVY CHAIN V REGIONS:	CHAIN: B; IG HEAVY CHAIN	V REGIONS; CHAIN: C; IG	HEAVY CHAIN V REGIONS:	CHAIN: D;	IGGI ANTIBODY 1696	(LIGHT CHAIN); CHAIN: L;	IGGI ANTIBODY 1696	(VARIABLE HEAVY CHAIN);	CHAIN: H; IGG1 ANTIBODY	1696 (CONSTANT HEAVY	CHAIN); CHAIN: I;	FAB ANTIBODY LIGHT
SeqFold score		159.92							•																											
PMF			-	_		0.54		77 0	0.00		0.21		0.00					70 0	† 0:0			-0 13)						-0.19							-0.11
Verify score			90.0	0.40		0.29		0.15	 		0.14		,	0.0				0.36	2.0			0.17	:						0.03							90.0
PSI- BLAST		5.40E-62	67 100 5	J.+0E-02		1.60E-31		7 20E 48	7.20E-40		3.20E-22		1 400 10	1.40E-12				3 20E-64	10702			1.60F-49							6.40E-23							3.20E-49
End AA		503	503	5		493		404	†		713		203	160				220	244			412							603							415
Start AA		134	135	<u> </u>		138		27	1		323		800	on C				21	i			235							523						į	236
Chain ID		∢	\ <	c		٧			ć		4							В)			В							_							H
PDB ID		lbih	14.14			lbih		1hih			1bih		11:0	<u>6</u>				141			-, ·-	lcic							lcl7							Icry
SEQ NO.		846	846	}		846		846	2		846		31/8	2				846))			846							846						1	840

SEQ NO:	PDB CD	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									CHAIN; CHAIN: L; FAB ANTIBODY HEAVY CHAIN; CHAIN: H;	3F4; ANTI-PRION FAB 3F4 ANTI-PRION ANTIBODY, FAB 3F4
846	1cs6	А	135	503	3.60E-59	0.08			AXONIN-1; CHAIN: A;	CELL ADHESION NEURAL CELL ADHESION
846	1cs6	Ą	138	503	4.80E-45	0.24	-		AXONIN-1; CHAIN: A;	CELL ADHESION NEURAL CELL ADHESION
846	1cs6	А	2	321	1.60E-47	-0.14	0.43		AXONIN-1; CHAIN: A;	CELL ADHESION NEURAL CELL ADHESION
846	1cs6	Ą	20	412	1.10E-37	0.02	-0.14		AXONIN-1; CHAIN: A;	CELL ADHESION NEURAL CELL ADHESION
846	1cs6	Y	226	592	1.80E-44	0.23	96.0		AXONIN-1; CHAIN: A;	CELL ADHESION NEURAL CELL ADHESION
846	1cs6	٧	236	602	6.40E-42	0.13	1		AXONIN-1; CHAIN: A;	CELL ADHESION NEURAL CELL ADHESION
846	1cs6	А	24	404	1.60E-53	0.07	0.58		AXONIN-1; CHAIN: A;	CELL ADHESION NEURAL CELL ADHESION
846	1cs6	Ą	320	713	3.20E-33	0.07	0.51		AXONIN-1; CHAIN: A;	CELL ADHESION NEURAL CELL ADHESION
846	lcvs	ပ	135	320	1.80E-30	0.15	0.94		FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH FACTOR
									FACTOR 2; CHAIN: A, B;	RECEPTOR FGF, FGFR,
									FIBROBLAST GROWTH	IMMUNOGLOBULIN-LIKE, SIGNAL
									FACTOR RECEPTOR 1;	TRANSDUCTION, 2 DIMERIZATION,
									CHAIN: C, D;	GROWTH FACTOR/GROWTH FACTOR RECEPTOR
846	lcvs	ပ	430	109	3.20E-21	0.07	0.22		FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH FACTOR
									FACTOR 2; CHAIN: A, B;	RECEPTOR FGF, FGFR,
									FIBRUBLASI GROWIN	TRANSPICTION 2 PINEBIZATION
									CHAIN: C, D;	GROWTH FACTOR/GROWTH FACTOR
										RECEPTOR
846	lcvs	Ω	135	320	1.80E-32	0.22	66.0		FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH FACTOR
									FACTOR 2; CHAIN: A, B;	RECEPTOR FGF, FGFR,
									FIBROBLAST GROWTH	IMMUNOGLOBULIN-LIKE, SIGNAL
									CHAIN: C D:	CBOWTH FACTOR CBOWTH FACTOR
								•	(1)	RECEPTOR
846	Icvs	Ω	430	601	8.00E-21	0.26	-0.03		FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH FACTOR
									FACTOR 2; CHAIN: A, B;	RECEPTOR FGF, FGFR,
									FACTOR RECEPTOR 1;	TRANSDUCTION, 2 DIMERIZATION,

	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
									CHAIN: C, D;	GROWTH FACTOR/GROWTH FACTOR RECEPTOR
	ldgi	<u>ل</u> ا	141	404	7.20E-36	-0.3	0.65		POLJOVIRUS RECEPTOR; CHAIN: R; VP1; CHAIN: 1; VP2; CHAIN: 2; VP3; CHAIN: 3; VP4; CHAIN: 4;	VIRUSAVIRAL PROTEIN, RECEPTOR CD155, PVR, HUMAN POLIOVIRUS, ELECTRON MICROSCOPY, 2 POLIOVIRUS-RECEPTOR COMPLEX, VIDUISATION PROCESSING RECEPTOR
1	Idgi	×	228	503	1.10E-38	-0.31	0.21		POLIOVIRUS RECEPTOR; CHAIN: R; VPI; CHAIN: 1; VP2; CHAIN: 2; VP3; CHAIN: 3; VP4; CHAIN: 4;	VIRUSAVIRAL PROTEIN, RECEPTOR VIRUSAVIRAL PROTEIN, RECEPTOR CD155, PVR, HUMAN POLIOVIRUS, ELECTRON MICROSCOPY, 2 POLIOVIRUS-RECEPTOR COMPLEX, VIRISAVIRAL PROTEIN, PECEPTOR
	1dgi	<u>×</u>	28	319	3.60E-44	-0.4	0.01		POLIOVIRUS RECEPTOR; CHAIN: R; VPI; CHAIN: 1; VP2; CHAIN: 2; VP3; CHAIN: 3; VP4; CHAIN: 4;	VIRUS/VIRAL PROTEIN, RECEPTOR CD155, PVR, HUMAN POLIOVIRUS, ELECTRON MICROSCOPY, 2 POLIOVIRUS-RECEPTOR COMPLEX, VIRUS/VIRAL PROTEIN RECEPTOR
, I	1dn2	A	234	411	8.00E-40	-0.27	0.05		IMMUNOGLOBULIN LAMBDA HEAVY CHAIN; CHAIN: A, B; ENGINEERED PEPTIDE; CHAIN: E, F;	IMMUNE SYSTEM FC IGG PHAGE DISPLAY PEPTIDE
	1dql	Н	21	130	3.20E-38	0.09	-0.09		IGM MEZ IMMUNOGLOBULIN; CHAIN: L; IGM MEZ IMMUNOGLOBULIN; CHAIN: H;	IMMUNE SYSTEM IMMUNOGLOBULIN FOLD, ANTIBODY, IGM, FV
	1dzb	А	21	206	6.40E-42	0.14	-0.03		SCFV FRAGMENT 1F9; CHAIN: A, B; TURKEY EGG- WHITE LYSOZYME C; CHAIN: X, Y;	COMPLEX (ANTIBODY ANTIGEN) 1,4-BETA-N-ACETYLMURAMIDASE C; SINGLE-DOMAIN ANTIBODY, TURKEY EGG-WHITE LYSOZYME, 2 ANTIBODY-PROTEIN COMPLEX, SINGLE-CHAIN FV FRAGMENT
	lepf	A	142	319	1.80E-31	0.34	6.0		NEURAL CELL ADHESION MOLECULE; CHAIN: A, B, C, D:	CELL ADHESION NCAM, IMMUNOGLOBULIN FOLD, GLYCOPROTEN
	lepf	¥	324	503	1.30E-24	0.37	0.78		NEURAL CELL ADHESION MOLECULE; CHAIN: A, B, C, D;	CELL ADHESION NCAM; NCAM, IMMUNOGLOBULIN FOLD, GLYCOPROTEIN
1	lev2	ш	135	320	1.40E-34	0.07	96'0		FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, C, D; FIBROBLAST GROWTH	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN (IG)LIKE

PDB annotation	DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2;	IMMUNOGLOBULIN (IG)LIKE	2 SUBGROUP WITHIN IG-LIKE	DOMAINS, B-TREFOIL FOLD	GROWTH FACTOR/GROWTH FACTOR	RECEPTOR FOFZ; FOFKZ; IMMUNOGLOBULIN (IG)LIKE	DOMAINS BELONGING TO THE I-SET	2 SUBGROUP WITHIN IG-LIKE	GROWTH FACTORICE FOLD			DOMAINS BELONGING TO THE I-SET	2 SUBGROUP WITHIN IG-LIKE	DOMAINS, B-TREFOIL FOLD			IMMUNOGLOBULIN (IG)LIKE	DOMAINS BELONGING TO THE I-SET	2 SUBGROUP WITHIN IG-LIKE	DOMAINS, B-IREFOIL FOLD	GROWTH FACTOR/GROWTH FACTOR	KECEPTOK FGFI; FGFRI;	IMMUNOGLOBULIN (IG) LIKE	DOMAINS BELONGING TO THE I-SET	DOMAINS, B-TREFOIL FOLD	GROWTH FACTOR/GROWTH FACTOR	RECEPTOR FGF1; FGFR1;	IMMUNOGLOBULIN (IG) LIKE	DOMAINS BELONGING TO THE I-SET	2 SUBGROUP WITHIN IG-LIKE	IMMUNE SYSTEM FC-EPSILON RI-	ALPHA; IMMUNOGLOBULIN FOLD,
Coumpound	FACTOR RECEPTOR 2; CHAIN: E, F, G, H;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B, C, D;	FIBROBLAST GROWTH	CHAIN: E, F, G, H;		FIBROBLAST GROWTH	FIBROBLAST GROWTH	FACTOR RECEPTOR 2;	CHAIN: E, F, G, H;	RIPPORT AST CROWTH	FACTOR 2: CHAIN: A. B. C. D.	FIBROBLAST GROWTH	FACTOR RECEPTOR 2;	CHAIN: E, F, G, H;		FIBROBLAST GROWTH	FACTOR 2; CHAIN: A, B, C, D;	FIBROBLAST GROWTH	FACTOR RECEPTOR 2;	CHAIN: E, F, G, H;		FIBROBLAST GROWTH	FACTOR I; CHAIN: A, B;	FIBROBLAST GROWTH	FACTOR RECEPTOR 1;	CDAIN: C, D;	FIBROBLAST GROWTH	FACTOR I; CHAIN: A, B;	FIBROBLAST GROWTH	FACTOR RECEPTOR 1;	CHAIN: C, D;	HIGH AFFINITY	IMMUNOGLOBULIN
SeqFold score																									-								
PMF score		0.17				0.94			_	10.0	16.0					0.07						69:0					0.07					0.29	
Verify score		0.15				0.23				76.0	7.0			_		0.15						0.11			-		-0.07					0.09	
PSI- BLAST		7.20E-23				5.40E-33				3 KNE-24	1.00C					1.60E-19						1.30E-30					6.40E-20					7.20E-28	
End AA		224				322				\$0\$	2					601						320					601					322	
Start AA		33				135				320	77					430					,	135					430					136	
Chain ID		a				ტ				6)					ပ						ပ					ပ					A	
PDB ID		lev2				lev2		_		Cval	1					lev2						levt					levt					1fZq	
SEQ NO:		846				846				846	}					846					,;;	846					846					846	

			1								
PDB annotation	GLYCOPROTEIN, RECEPTOR, IGE- BINDING 2 PROTEIN	IMMUNE SYSTEM ANTI- CARBOHYDRATE ANTIBODY	IMMUNE SYSTEM HIGH AFFINITY IGE-FC RECEPTOR, FC(EPSILON) IGE- FC; IMMUNOGLOBULIN FOLD, GLYCOPROTEIN, RECEPTOR, IGE- BINDING 2 PROTEIN, IGE ANTIBODY, IGE-FC	HORMONE/GROWTH FACTOR/HORMONE RECEPTOR 4- HELICAL BUNDLE, ALPHA HELICAL BUNDLE, TERNARY COMPLEX, FN 2 III DOMAINS, BETA SHEET DOMAINS, CYTOKINE, RECEPTOR COMPLEY		IMMUNE SYSTEM, MEMBRANE PROTEIN CD32; FC RECEPTOR, IMMUNOGLOULIN, LEUKOCYTE,	HEPARIN AND INTEGRIN BINDING HEPARIN AND INTEGRIN BINDING	IMMUNE SYSTEM RECEPTOR BETA SANDWICH, IMMUNOGLOBULIN- LIKE, RECEPTOR			IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN V REGION C
Coumpound	EPSILON RECEPTOR CHAIN: A;	ANTIBODY S-20-4, FAB FRAGMENT, LIGHT CHAIN; CHAIN: L; ANTIBODY S-20-4, FAB FRAGMENT, HEAVY CHAIN: CHAIN: H	HIGH AFFINITY IMMUNOGLOBULIN EPSILON RECEPTOR CHAIN: A; IG EPSILON CHAIN C REGION; CHAIN: B, D;	PLACENTAL LACTOGEN; CHAIN: A; PROLACTIN RECEPTOR; CHAIN: B, C;	IMMUNOGLOBULIN IMMUNOGLOBULIN FC AND FRAGMENT B OF PROTEIN A COMPLEX 1FC2 4	FC RECEPTOR FC(GAMMA)RIIA; CHAIN: A;	FIBRONECTIN; CHAIN: A;	LOW AFFINITY IMMUNOGLOBULIN GAMMA FC REGION CHAIN:	T.YMPHOCYTE ADHESION GLYCOPROTEIN CD2 (HIJMAN) IHNF 3	TLYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (RAT) IHNG 3	IGG2A INTACT ANTIBODY - MAB231; CHAIN: A, B, C, D
SeqFold score											
PMF score		0	0.18	0.03	0.07	0.23	0.52	0.36	0.04	0.05	0.11
Verify score		0.02	0.17	0.05	-0.03	-0.16	0.17	-0.02	-0.31	0.03	-0.16
PSI- BLAST		1.60E-62	1.10E-29	9.00E-15	1.10E-39	1.10E-24	3.60E-17	1.80E-22	1.60E-21	3.60E-27	0
End AA		220	322	715	411	319	708	319	305	319	412
Start AA		21	132	524	234	143	512	139	141	143	21
Chain ID		н	¥	В	Ω	∢	۷ I	⋖		Ą	В
PDB ID		1f4w	1f6a	1f6f	1fc2	lfcg	1fnh	를 	lhnf	Ihng	ligt
SEQ NO:		846	846	846	846	846	846	846	846	846	846

PDB annotation	REGION, IMMUNOGLOBULIN	IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN, V REGION, C REGION, HINGE REGION	IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN, V REGION, C	REGION, HINGE REGION	COMPLEX (IMMUNOGLOBULIN/RECEPTOR) IMMUNOGLOBULIN FOLD,	TRANSMEMBRANE, GLYCOPROTEIN, RECEPTOR, 2 SIGNAL, COMPLEX (IMMUNOGLOBULIN/RECEPTOR)	COMPLEX	(IMMUNOGLOBULIN/RECEPTOR) TCR	RECEPTOR, STRAND SWITCH, FAB,	ANTICLONOTYPIC, 2															
Coumpound	RE	IGGI INTACT ANTIBODY MAB61.1.3; CHAIN: A, B, C, D IM	IGGI INTACT ANTIBODY IM MAB61.1.3; CHAIN: A, B, C, D IM		KIN-1 BETA; TYPE 1 KIN-1 RECEPTOR;	CHAIN: B; TR	z	RECEPTOR; CHAIN: A, B; (IN		¥ €	IMMUNOGLOBULIN ANTI-	SPECIFIC PHOSPHOLIPASE C	DIABODY 1LMK 3	DIABODY, SINGLE-CHAIN	INMINOGIOBILIN	ANTIGEN-BINDING	FRAGMENT (FAB) (IGG2B, KAPPA) IMAM 3	IMMUNOGLOBULIN	IMMUNOGLOBULIN G1	(IGG1) (MCG) WITH A HINGE DELETION IMCO 3	IMMUNOGLOBULIN	IMMUNOGLOBULIN GI	(IGG1) (MCG) WITH A HINGE DELETION IMCO 3	IMMUNOGLOBULIN	IMMUNOGLOBULIN FAB
SeqFold score		110.16						·													123.28				
PMF score			0.24		0.49		-0.17				0.01				0 22			0.04	•					90.0	
Verify			-0.05		0.21		0.11				-0.23				-0.05			-0.17						-0.26	
PSI- BLAST		3.20E-95	3.20E-95		5.40E-29		1.10E-49				3.20E-39				4.80E-62			1.60E-93			1.60E-93		ı	8.00E-46	
End		412	411		203		413				206				220			411			416			210	
Start AA		13	21		225		235				21				21			20			24			21	
Chain ID		മ	a	6	Σ1		H				A				H			Н			H			I	
PDB ID		ligy	ligy		<u> </u>		1kb5				11mk		-		Ima	E		1mc	0		1mc			lmc	۵
SEQ NO:		846	846	,	840		846				846				846			846	_		846			846	

SEQ ID NO:	PDB ID	Chain ID	Start AA	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									IMCP 4	
846	1mfn		512	715	3.60E-21	-0.03	0.15		FIBRONECTIN; CHAIN: NULL;	CELL ADHESION PROTEIN CELL ADHESION PROTEIN, RGD, EXTRACELLULAR MATRIX, 2 HEPARIN-BINDING, GLYCOPROTEIN
846	Imrd	Н	21	220	9.60E-64	0.05	-0.06		IMMUNOGLOBULIN IGG JEL 103 FAB FRAGMENT COMPLEXED WITH IMRD 3 INOSINE-5'-DIPHOSPHATE	
846	1nfd	ᇆ	21	220	4.80E-62	0.05	-0.05		NI5 ALPHA-BETA T-CELL RECEPTOR; CHAIN: A, B, C, D; H57 FAB; CHAIN: E, F, G, H	COMPLEX (IMMUNORECEPTOR/IMMUNOGLOBU LIN) COMPLEX (IMMUNORECEPTOR/IMMUNOGLOBU LIN)
846	lngp	Н	21	220	1.60E-63	0.14	0.13		NIG9 (IGGI=LAMBDA=); CHAIN: L, H;	IMMUNOGLOBULIN IMMUNOGLOBULIN,
846	Inqb	V	21	206	3.20E-43	-0.11	0.04		SINGLE-CHAIN ANTIBODY FRAGMENT; CHAIN: A, C;	IMMUNOGLOBULIN VARIABLE HEAVY (VH) DOMAIN, VARIABLE LIGHT (VL) ANTIBODY FRAGMENT, MULTIVALENT ANTIBODY, DIABODY, DOMAIN 2 SWAPPING, IMMUNOGLOBULIN
846	1qg3	٧	449	299	5.40E-15	0.08	0.21		INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN
846	1qg3	A	508	715	1.80E-23	0.1	0.24		INTEGRIN BETA-4 SUBUNIT; CHAIN: A, B;	STRUCTURAL PROTEIN INTEGRIN, HEMIDESMOSOME, FIBRONECTIN, CARCINOMA, STRUCTURAL 2 PROTEIN
846	1 qkz	н	21	220	3.20E-63	0.12	-0.01		ANTIBODY; CHAIN: H, L; PROTEIN G-PRIME; CHAIN: A; MAJOR OUTER MEMBRANE PROTEIN P1.16; CHAIN: P;	IMMUNE SYSTEM FAB, PORA, NEISSERIA MENINGITIDIS, PORIN
846	1qok	Ą	21	211	8.00E-40	0.24	0.25		MFE-23 RECOMBINANT ANTIBODY FRAGMENT; CHAIN: A;	IMMUNOGLOBULIN IMMUNOGLOBULIN, SINGLE-CHAIN FV, ANTI-CARCINOEMBRYONIC 2
846	1qr4	A	512	713	5.40E-19	0.04	0.19		TENASCIN; CHAIN: A, B;	STRUCTURAL PROTEIN TENASCIN,

908 80 81	B Chain	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									FIBRONECTIN TYPE-III, HEPARIN, EXTRACELLULAR 2 MATRIX, ADHESION, FUSION PROTEIN, STRUCTURAL PROTEIN
lvca	a A	137	319	3.60E-24	0.19	0.74		HUMAN VASCULAR CELL	CELL ADHESION PROTEIN VCAM-
								ADHESION MOLECULE-1; IVCA 4 CHAIN: A, B; IVCA 5	DI,S, IVCA & IMMUNOCICBULIN SUPERFAMILY, INTEGRIN-BINDING IVCA 15
l wej	H	236	413	8.00E-50	0.00	-0.14		E8 ANTIBODY; CHAIN: L, H;	COMPLEX (ANTIBODY/ELECTRON
								CYTOCHROME C; CHAIN: F;	TRANSPORT) FAB E8; CYT C, ANTIGEN; IMMUNOGLOBULIN, IGG1
									KAPPA, FAB FKAGMEN I, HOKSE 2 CYTOCHROME C, COMPLEX (ANTIBODY/FI FCTRON TRANSPORT)
lyuh	н н	419	602	8.00E-53	0	-0.15		FAB FRAGMENT; CHAIN:	IMMUNOGLOBULIN ANTI-
								NULL;	NITROPHENOL, LAMBDA LIGHT CHAIN, IMMUNOGLOBULIN
lzxq		135	326	1.80E-34	0	60.0		INTERCELLULAR	CELL ADHESION ICAM-2;
								ADHESION MOLECULE-2;	IMMUNOGLOBULIN FOLD, CELL
						:		Circuis, INClais,	TRANSMEMBRANE, REPEAT, SIGNAL
2dli	Ą	134	320	7.20E-28	0.29	60'0		MHC CLASS I NK CELL	IMMUNE SYSTEM PS8 NATURAL
								KECEPIOR PRECURSOR;	KILLER CELL RECEPTOR; KIR,
								CIPILY, A,	INHIBITORY RECEPTOR, 2 IMMUNOGLOBULIN
2fbj	Ή	21	210	3.20E-50	0.12	61.0		IMMUNOGLOBULIN IG*A	
								(GALACTAN-BINDING) 2FBJ	
2fcb	A .	135	323	7.20E-36	0.13	0.81		FC GAMMA RIIB; CHAIN: A;	IMMUNE SYSTEM CD32; RECEPTOR, FC, CD32, IMMUNE SYSTEM
2fcb	V V	226	410	9.00E-29	-0.04	. 0.21		FC GAMMA RIIB; CHAIN: A;	IMMUNE SYSTEM CD32; RECEPTOR, FC. CD32, IMMUNE SYSTEM
8fab	A (234	407	9.60E-28	-0.35	0		IMMUNOGLOBULIN FAB	
		-,			_			IMMUNOGLOBULIN IGGI	
ldn1	l B	299	480	1.60E-09	0.05	0.11		SYNTAXIN BINDING PROTEIN 1; CHAIN: A;	ENDOCYTOSIS/EXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX,

SEQ	PDB	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Coumpound	PDB annotation
g ö	a	≘	AA	AA	BLAST	score	score	score		
									SYNTAXIN 1A; CHAIN: B;	MULTI-SUBUNIT
848	1d2k	Ą	2	297	4.80E-63	0.35			CHITINASE 1: CHAIN: A:	HYDROL ASE BETA-A! PHA BARRE!
848	1dqc	∢	323	367	1.60E-10	0.19	-0.09		TACHYCITIN; CHAIN: A	ANTIMICROBIAL PROTEIN DISULFIDE-RICH
848	1.00 E+15	٧	_	265	1.10E-81	0.47			CHITINASE B; CHAIN: A, B;	HYDROLASE HYDROLASE, CHITIN DEGRADATION
848	1.00 E+15	А	2	799	1.60E-59	0.51	_		CHITINASE B; CHAIN: A, B;	HYDROLASE HYDROLASE, CHITIN DEGRADATION
848	1edq	А	1	281	3.60E-79	0.41	_		CHITINASE A; CHAIN: A;	HYDROLASE BETA-ALPHA (TIM) BARREL
848	ledq	¥	4	260	9.60E-70	0.33			CHITINASE A; CHAIN: A;	HYDROLASE BETA-ALPHA (TIM) BARREL
848	ledt		4	146	4.80E-05	-0.15	0.13		HYDROLASE (GLUCOSIDASE) ENDO- BETA-N-	
						•			ACETYLGLUCOSAMINIDAS E H, ENDO H (E.C.3.2.1.96)	
848	2ebn		_	204	7.20E-51	0.25	0.06		HYDROLASE(GLUCOSIDASE) ENDO-BETA-N- ACETYLGLUCOSAMINIDAS	
									E F1 (E.C.3.2.1.96) 2EBN 3 · (ENDOGLYCOSIDASE F1, ENDO F1) 2EBN 4	
848	2ebn		4	111	0.0067	-0.3	0.77		HYDROLASE(GLUCOSIDASE) ENDO-BETA-N-	
									ACETYLGLUCOSAMINIDAS E F1 (E.C.3.2.1.96) 2EBN 3 (ENDOGLYCOSIDASE F1,	
									ENDO F1) 2EBN 4	
849	lahd	Ь	284	351	7.20E-33			77.33	DNA-BINDING PROTEIN	
									(HOMEODOMAIN) MUTANT	
									WITH CYS 39 IAHD 3 REPLACED BY SER (C39S)	
									COMPLEX WITH DNA (NMR, IAHD 4 16 STRUCTURES)	·
070	13/2	٤	,00	T	,				1AHD 5	
5	Tand	_	780	337	6.40E-29	0.13			DNA-BINDING PROTEIN	

PDB annotation			PROTEIN/DNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	PROTEIN/DNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	TRANSCRIPTION/DNA ULTRABITHORAX; PBX PROTEIN; DNA BINDING, HOMEODOMAIN, HOMEOTIC PROTEINS, DEVELOPMENT, 2 SPECIFICITY	TRANSCRIPTION/DNA ULTRABITHORAX; PBX PROTEIN; DNA BINDING, HOMEODOMAIN, HOMEOTIC PROTEINS, DEVELOPMENT, 2 SPECIFICITY	TRANSFERASE DINUCLEOTIDE- BINDING MOTIF, PHOSPHORIBOSYL TRANSFERASE	
Coumpound	ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 1AHD 3 REPLACED BY SER (C39S) COMPLEX WITH DNA (NMR, 1AHD 4 16 STRUCTURES)	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 IAHD 3 REPLACED BY SER (C39S) COMPLEX WITH DNA (NMR, IAHD 4 16 STRUCTURES) IAHD 5	HOMEOBOX PROTEIN HOX- B1; CHAIN: A; PBX1; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	HOMEOBOX PROTEIN HOX- BI; CHAIN: A; PBXI; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	ULTRABITHORAX HOMEOTIC PROTEIN IV; CHAIN: A; HOMEOBOX PROTEIN EXTRADENTICLE; CHAIN: B; DNA (5'- CHAIN: C; DNA (5'- CHAIN: D;	ULTRABITHORAX HOMEOTIC PROTEIN IV; CHAIN: A; HOMEOBOX PROTEIN EXTRADENTICLE; CHAIN: B; DNA (5- CHAIN: C; DNA (5- CHAIN: D;	NICOTINATE MONONUCLEOTIDE:5,6- CHAIN: A;	DNA-BINDING FUSHI TARAZU PROTEIN (HOMEODOMAIN) (NMR, 20
SeqFold score			62.11		65.54			68.94
PMF		-		-			61.0-	
Verify score		-0.38		-0.08		-0.11	0.15	
PSI- BLAST		7.20E-33	5.40E-32	5.40E-32	5.40E-31	5.40E-31	7.20E-11	1.30E-27
End AA		351	346	346	342	342	238	351
Start AA		286	274	286	285	286	35	283
Chain ID		ď	. V	A	A	¥	∢	
PDB ID		lahd	1672		168i	1b8i	sop I	1ftz
SEQ NO:		849	849	849	849	849	849	849

PDB annotation							COMPLEX (DNA-BINDING PROTEIN/DNA) HD; HOMEODOMAIN, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) HD; HOMEODOMAIN, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING
Coumpound	STRUCTURES) IFTZ 3	DNA-BINDING FUSHI TARAZU PROTEIN (HOMEODOMAIN) (NMR, 20 STBIICTI IDES), 15T7 3	DNA-BINDING PROTEIN OCT-1 (POU DOMAIN) 10CT	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 1SAN 3 REPLACED BY SER AND RESIDUES 1-6 DELETED (C39S,DEL 1-6) 1SAN 4	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 ISAN 3 REPLACED BY SER AND RESIDUES I-6 DELETED (C39S,DEL I-6) ISAN 5 20 STRUCTURES) ISAN 5	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 ISAN 3 REPLACED BY SER AND RESIDUES I-6 DELETED (C39S,DEL I-6) ISAN 5	ANTENNAPEDIA PROTEIN; CHAIN: A, B; DNA; CHAIN: C, D, E, F;	ANTENNAPEDIA PROTEIN; CHAIN: A, B; DNA; CHAIN: C, D, E, F;	ANTENNAPEDIA PROTEIN;
SeqFold score				72.13				90.69	
PMF score		0.84	0.12		_		·		1
Verify		.0.31	-0.2		-0.21	-0.2	0.11		0.27
PSI- BLAST		1.30E-27	7.20E-34	5,40E-30	1,40E-26	5.40E-30	1.30E-27	9.00E-30	9.00E-30
End		337	344	351	337	351	337	344	344
Start AA		284	205	290	291	292	289	289	289
Chain ID			O				4	Ą	A
PDB ID		1 f fz	- ö	Isan	Isan	1san	9ant	9ant	9ant
SEQ SO SO SO SO SO SO SO SO SO SO SO SO SO		849	849	849	849	849	849	849	849

PDB annotation	HAIN: C, PROTEIN/DNA) HD; HOMEODOMAIN, COMPLEX (DNA-BINDING PROTEIN/DNA)		B; CLIP; COMPLEX (TRANSMEMBRANE/GLYCOPROTEIN) MHC GLYCOPROTEIN, COMPLEX TO ANSWERS AND AND COMPLEX	1				IY DIKA, DRB1 01010; COMPLEX (MHC B, D. E, PROTEIN/ANTIGEN),		╅	A-DR2; BASIC PROTEIN, MULTIPLE SCLEROSIS, 2 AUTOIMMUNITY, IMMUNE SYSTEM		IMMUNE SYSTEM HLA-DR4; HLA- IY DR4; SEB, SUPERANTIGEN; COMPLEX HLA (MHC CLASS II/SUPERANTIGEN), IMMUNE SYSTEM		á í	
Coumpound	CHAIN: A, B; DNA; CHAIN: C, D, E, F;		HLA-DR3; CHAIN: A, B; CLIP; CHAIN: C;	HLA-DR3; CHAIN: A, B; CLIP; CHAIN: C;	HLA-DRI CLASS II HISTOCOMPATIBILITY PROTEIN; CHAIN: A, B, D, E,	G, H, J, K; HLA-A2; CHAIN: C, F, I. L:	HLA-DRI CLASS II	HISTOCOMPATIBILITY PROTEIN; CHAIN: A, B,	G, H, J, K; HLA-A2; CHÁIN: C,	HLA-DR2; CHAIN: A, D; HLA-	DR2; CHAIN: B, E; HLA-DR2; CHAIN: C, F;	HLA-DR2; CHAIN: A, D; HLA- DR2; CHAIN: B, E; HLA-DR2; CHAIN: C, F;	HLA CLASS II HISTOCOMPATIBILITY ANTIGEN; CHAIN: A; HLA CLASS II	HISTOCOMPATIBILITY ANTIGEN; CHAIN: B;	CHAIN: C; PEPTIDE INHIBITOR: CHAIN: D:	
SeqFold score			54.43				55.9					52.4				
PMF score				0.93	0.63					0.87		`	0.92			200
Verify score				-0.32	-0.33					-0.22			-0.33			,
PSI- BLAST			3.20E-66	3.20E-66	6.40E-69		6.40E-69			1.60E-69		1.60E-69	4.80E-62			2 200 6
End			157	147	147		157			147		157	147			1/7
Start AA		_	33	34	33		33		. <u> </u>	32		32	31			30
Chain ID			В	В	œ		В			В		Ø	<u>a</u>			۵
PDB JD			1a6a 	la6a	laqd		laqd			1bx2		lbx2	1d5			14,1
SEQ NO:			851	851	851		851			851		851	851			941

	Τ			_	Т	γ		1	т	_		1		
PDB annotation		HISTOCOMPATIBILITY ANTIGEN I-AK HISTOCOMPATIBILITY ANTIGEN, MHC. PEPTIDE COMPLEX	MHC II MHC II, CLASS II MHC, I-A, OVALBUMIN PEPTIDE	MHC II MHC II, CLASS II MHC, I-A, OVALBUMIN PEPTIDE	HISTOCOMPATIBILITY ANTIGEN HISTOCOMPATIBILITY ANTIGEN	HISTOCOMPATIBILITY ANTIGEN HISTOCOMPATIBILITY ANTIGEN	HISTOCOMPATIBILITY ANTIGEN HISTOCOMPATIBILITY ANTIGEN	MHC II MHC II, CLASS II MHC I-AD	MHC II MHC II, CLASS II MHC I-AD		BLOOD COAGULATION BLOOD COAGULATION, EGF, HYDROLASE, SERINE PROTEASE	STRUCTURAL PROTEIN INTEGRIN- BINDING PROTEIN, INV GENE		BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)
Coumpound	COMPLEX ALPHA CHAIN; CHAIN: A, D; MAJOR HISTOCOMPATIBILITY COMPLEX BETA CHAIN; CHAIN: B, E; MYELIN BASIC PROTEIN; CHAIN: C, F;	MHC CLASS II I-AK; CHAIN: A, B, P; HEN EGGWHITE LYSOZYME PEPTIDE	MHC CLASS II I-AD; CHAIN: A, B;	MHC CLASS II I-AD; CHAIN: A, B;	MHC CLASS II I-EK; CHAIN: A, B, C, D;	MHC CLASS II I-EK; CHAIN: A. B. C. D:	MHC CLASS II I-EK; CHAIN: A. B. C. D:	MHC CLASS II I-AD; CHAIN: A. B:	MHC CLASS II I-AD; CHAIN: A, B;		FACTOR VII; CHAIN: NULL;	INVASIN; CHAIN: A;	GLYCOSYLTRANSFERASE CYCLODEXTRIN GLUCANOTRANSFERASE (E.C.2.4.1.19) (CGTASE) 1CYG	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D-PHE-PHE- ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;
SeqFold score			52.61			50.29		52.73						
PMF		0.46		0.71	6:0		0.87		-		0.17	-0.19	-0.19	0.04
Verify score		-0.4		-0.39	-0.27		-0.43		-0.5		-0.42	0.05	0.07	-0.24
PSI- BLAST		4.80E-53	9.60E-57	9.60E-57	1.40E-63	1.40E-63	8.00E-64	3.20E-58	3.20E-58		0.0072	3.60E-19	7.20E-15	0.009
End AA		147	157	147	147	157	147	157	147		474	229	226	475
Start AA		36	23	35	29	∞	24	22	26		443	2	17	404
Chain ID		В	В	В	д	В	В	В	В			¥		1
PDB ID		liak	liao	liao	liea	liea	1 ieb	2iad	2iad		1949	Icwv	lcyg	1dan
SEQ ID NO:		851	851	851	851	851	851	851	851		856	856	856	856

							.,			
PDB annotation	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	HYDROLASE NEURAMINIDASE; HYDROLASE, GLYCOSIDASE	BLOOD CLOTTING FACTOR VII, BLOOD COAGULATION, EGF-LIKE DOMAIN, BLOOD 2 CLOTTING	GROWTH FACTOR NEU DIFFERENTIATION FACTOR (RAT), ACETYLCHOLINE GROWTH FACTOR		GLYCOSYLTRANSFERASE TRANSFERASE, GLYCOSYLTRANSFERASE, CALCIUM, SIGNAL	HYDROLASE HYDROLASE, LIPID DEGRADATION, PANCREATIC LIPASE	HYDROLASE HYDROLASE, LIPID DEGRADATION, PANCREATIC LIPASE	COMPLEX (HYDROLASE/COFACTOR) TRIACYLGLYCEROL LIPASE; COMPLEX (HYDROLASE/COFACTOR). LIPID DEGRADATION	COMPLEX (HYDROLASE/COFACTOR) TRIACYLGLYCEROL LIPASE; COMPLEX (HYDROLASE/COFACTOR), LIPID DEGRADATION
Coumpound	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	SIALIDASE; CHAIN: NULL;	BLOOD COAGULATION FACTOR VII; CHAIN: A;	HEREGULIN-ALPHA; CHAIN: NULL;	GROWTH FACTOR HEREGULIN-ALPHA (EPIDERMAL GROWTH FACTOR-LIKE DOMAIN) IHRE 3 (NMR, MINIMIZED AVERAGE STRUCTURE) IHRE 4	CYCLODEXTRIN GLUCANOTRANSFERASE; CHAIN: A, B;	PANCREATIC LIPASE RELATED PROTEIN 2; CHAIN: A;	PANCREATIC LIPASE RELATED PROTEIN 2; CHAIN: A:	TRIACYLGLYCEROL ACYL- HYDROLASE; CHAIN: A. C; COLIPASE; CHAIN: B, D	TRIACYLGLYCEROL ACYL- HYDROLASE; CHAIN: A, C; COLIPASE; CHAIN: B, D
SeqFold score									167.54	
PMF	0.28	-0.19	0.11	0	0.23	-0.19	-	_		-
Verify score	0.07	0.22	-0.28	-0.21	-0.7	0.04	0.85	0.81		0.65
PSI- BLAST	0.0036	7.20E-13	0.0036	0.0072	0.0072	5.40E-12	3.60E-83	4.80E-65	1.60E-66	1.60E-66
End	472	232	475	482	254	171	256	276	276	276
Start AA	429	18	443	429	230		18	81	81	81
Chain ID	1		A			V	А	А	A	¥
PDB ID	ldva	leut	1f7e	Ihae	Thre	1pa m	15u8	16u8	1eth	leth
SEQ ID NO:	958	856	856	856	856	856	857	857	857	857

PDB annotation	SERINE ESTERASE RELATED PROTEIN 2 LIPASE; SERINE ESTERASE, HYDROLASE, LIPID DEGRADATION, PANCREAS, 2 GLYCOPROTEIN CHIMERIC	SERINE ESTERASE RELATED PROTEIN 2 LIPASE; SERINE ESTERASE, HYDROLASE, LIPID DEGRADATION, PANCREAS, 2 GLYCOPROTEIN, CHIMERIC	SERINE ESTERASE RELATED PROTEIN 2 LIPASE; SERINE ESTERASE. HYDROLASE, LIPID DEGRADATION, PANCREAS, 2 GLYCOPROTEIN, CHIMERIC				
Coumpound	RP2 LIPASE; CHAIN: NULL;	RP2 LIPASE; CHAIN: NULL;	RP2 LIPASE; CHAIN: NULL;	HYDROLASE(CARBOXYLIC ESTERASE) LIPASE (E.C.3.1.1.3) (TRIACYLGLYCEROL HYDROLASE) 14P1 3	HYDROLASE(CARBOXYLIC ESTERASE) LIPASE (E.C.3.1.1.3) COMPLEXED WITH COLIPASE AND INHIBITED ILPB 3 BY UNDECANE PHOSPHONATE METHYL ESTER (TWO CONFORMATIONS) 11 PB 4	HYDROLASE(CARBOXYLIC ESTERASE) LIPASE (E.C.3.1.1.3) COMPLEXED WITH COLIPASE AND INHIBITED ILPB 3 BY UNDECANE PHOSPHONATE METHYL ESTER (TWO	HYDROLASE(CARBOXYLIC ESTERASE) LIPASE (E.C.3.1.1.3) COMPLEXED WITH COLIPASE AND INHIBITED 1LPB 3 BY
SeqFold score	176.81			167		173.41	
PMF		-	-		_		_
Verify score		0.87	0.76		0.83		0.81
PSI- BLAST	1.80E-80	1.80E-80	3.20E-65	1.60E-76	1.10E-79	1.10E-79	1.60E-65
End AA	276	256	276	274	256	276	276
Start AA	18	19	61	18	18	18	81
Chain ID				∢	ø	α	В
PDB ID	lgp(1gp1	lgpl	lhpl	11pb	11pb	qd]]
SEQ NO:	857	857	857	857	857	857	857

PDB annotation		HYDROLASE HYDROLASE, LIPID DEGRADATION, PANCREATIC LIPASE	HYDROLASE HYDROLASE, LIPID DEGRADATION, PANCREATIC LIPASE	HYDROLASE HYDROLASE, LIPID DEGRADATION, PANCREATIC LIPASE	ENDOCYTOSIS/EXOCYTOSIS NSECI; PROTEIN-PROTEIN COMPLEX,	T	TRANSCRIPTION INHIBITOR BETA- PROPELLER		BINDING/TRANSDUCER) BETAI,	SETA SUBUNIT;	GAMMAI, IKANSDUCIN GAMMA	BINDING/TRANSDUCER), G PROTEIN,	R 2 SIGNAL N		BINDING/TRANSDUCER) BETAI,	SETA SUBUNIT;	GAMMAI, TRANSDUCIN GAMMA	PLEX (GTP-	BINDING/TRANSDUCER), G PROTEIN,	R 2 SIGNAL	2	BINDING/TE ANSTRUCED BETA 1	ETA SUBUNIT:	GAMMAI, TRANSDUCIN GAMMA	PLEX (GTP-	BINDING/TRANSDICER) G PROTEIN
PDE		HYDROLASE H' DEGRADATION	HYDROLASE H DEGRADATION	HYDROLASE H DEGRADATION	ENDOCYTOSIS/EXOCYTOSIS PROTEIN-PROTEIN COMPLEX,	MULTI-SUBUNIT	TRANSCRIPTION PROPELLER	COMPI EX (GTP.	BINDING/TRAN	TRANSDUCIN BETA SUBUNIT;	GAIMIMAI, IRAINDUCIN GAID.	BINDING/TRAN	HETEROTRIMER 2 SIGNAL TRANSDUCTION	COMPLEX (GTP-	BINDING/TRAN	TRANSDUCIN BETA SUBUNIT;	GAMMAI, TRAI	SUBUNIT; COMPLEX (GTP.	BINDING/IRAN	HETEROTRIMER 2 SIGNAL	COMPIEY (GTP	COIMIL LEA (OII	TRANSDUCIN BETA SUBUNIT:	GAMMAI, TRAI	SUBUNIT; COMPLEX (GTP-	BINDING YIKAN
Coumpound	UNDECANE PHOSPHONATE METHYL ESTER (TWO CONFORMATIONS) 1LPB 4	PANCREATIC LIPASE RELATED PROTEIN 1; CHAIN: NULL;	PANCREATIC LIPASE RELATED PROTEIN I; CHAIN: NULL;	PANCREATIC LIPASE RELATED PROTEIN 1; CHAIN: NULL;	SYNTAXIN BINDING PROTEIN 1; CHAIN: A;	SYNTAXIN 1A; CHAIN: B;	TRANSCRIPTIONAL REPRESSOR TUP1; CHAIN: A, B. C:	GT-AI PHA/GI-AI PHA	CHIMERA; CHAIN: A; GT-	BETA; CHAIN: B; GT-	GAMIMA; CHAIN: G;			GT-ALPHA/GI-ALPHA	CHIMERA; CHAIN: A; GT-	BETA: CHAIN: B; GT-	GAMMA; CHAIN: G;				GT_A1 BHA/GLA1 BHA	CHIMED A: CHADI: A: GT	BETA: CHAIN: B; GT-	GAMMA; CHAIN: G;		
SeqFold score			183.05							-				52.34												
PMF score		-		-	0		0.07	0.12	0.12												0 11	- - -				
Verify score		69:0		0.71	-0.08		0.28	0 10	0.13												0 13	3				
PSI- BLAST		5.40E-83	5.40E-83	1.60E-63	0.00036		1.30E-44	8 OOF-46	0:007					1.10E-40							1 10E-40	1:101:1				
End		257	274	276	156		308	298	2					309							300	3				
Start AA		81	18	18	4		151	133	701					∞				•			95	`				
Chain ID					ш		⋖	ď	a					В							ď)		_		
PDB ID		lrp1	lp1	िका	Idn1		lej.	loot	9					lgot							lant					
SEQ	Ö	857	857	857	859		826	850	3					859							850	}		_		

				ပ္		ပ္									 ပ	-	O		_		Τ,	<u> </u>				C	_
PDB annotation	HETEROTRIMER 2 SIGNAL TRANSDUCTION	OXIDOREDUCTASE ENZYME, NITRITE REDUCTASE, OXIDOREDUCTASE, DENITRIFICATION, 2 ELECTRON TRANSPORT, PERIPLASMIC		COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN		COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN			COMPLEX (ZINC FINGER/DNA), ZINC	ringer, Diva-binding Profession	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEY (ZINC EINCER (DAIL)	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-UNA
Coumpound		CYTOCHROME CDI NITRITE REDUCTASE; CHAIN: A, B;		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	OGSR ZINC FINGER	PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE	BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER	PEPTIDE; CHAIN: A; DUPLEX	BINDING SITE; CHAIN; B. C.	QGSR ZINC FINGER	PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE	BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER	PEPTIDE; CHAIN: A; DUPLEX OTTGONLICT FOTTIDE	BINDING SITE; CHAIN: B, C;	DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	FROIEIN; CHAIN: C, F, G;		DNA: CHAIN: A B D E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSEINSON ZING FINGER
SeqFold score																											
PMF score		-0.12	9	0.15	_			_			96.0			66.0			0.07				0.57					_	
Verify score		0		-0.3	0.04			0.48			0.27			0.41			-0.35				-0 16					0.1	
PSI- BLAST		1.30E-14		1.60E-25	1.80E-39			9.00E-38			3.60E-39			6.40E-31			1.10E-39				3 20F-43	!				1.40E-44	
End AA		304		221	277			306			640			640			193				221					249	
Start AA		221		141	197			225			999			260			112				140					891	
Chain ID		¥		¥	A			٧			A			A			ပ				O					ບ	
PDB ID		1qks		lalh	lalh			lalh			lalh			lalh			1me	>			Ime	>				Jac	`
SEQ ID NO:		829		860	860			098			098			098			098				860				,	098	

SEQ D NO:	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify	PMF	SeqFold score	Coumpound	PDB annotation
										CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
098	1me y	ပ	196	277	1.60E-46	0.23	1		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX
										(ZINC FINGER/DNA)
098	lme y	ပ	224	305	1.60E-47	0.55			DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX
860	Ime	C	253	333	1 40E-48	0 40	-		DNA: CHAIN: A B D E.	COMPLEX (ZRIC FINCER DAILY) ZRIC
3	, ×)	767	CCC	1.405-40	0.43	_		CONSENSUS ZINC FINGER	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2
										CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
860	lme	၁	280	361	3.20E-49	0.62	_		DNA: CHAIN: A. B. D. E.	COMPLEX (ZINC FINGER/DNA) ZINC
	۲								CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2
										CRYSTAL STRUCTURE, COMPLEX
9	1	ļ	900	900	2000					(ZINC FINGER/DNA)
0 0 0 0	y y	ن	308	389	8.00E-50	0.34	-		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTEIN-DNA
									PROTEIN: CHAIN: C. F. G.	INTERACTION, PROTEIN DESIGN 2
_										CRYSTAL STRUCTURE, COMPLEX
9,0			,							(ZINC FINGER/DNA)
990	ıme ,	د-	336	417	1.60E-50	0.27	_		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
	-								CONSENSOS ZINC FINGER	FINGER, PROTEIN-DNA
									PKOLEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2
										CRISIAL SIRUCIURE, COMPLEX
998	lme	ပ	364	445	1.60E-50	0.42	_		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
	>								CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2
										CRYSTAL STRUCTURE, COMPLEX
3,3										(ZINC FINGER/DNA)
000	ıme ,	د	392	473	4.80E-50	0.16	-		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
	`								CONSENSOS ZINC FINGER	FINGER, PROTEIN-DNA
									rkolein; chain: c, f, G;	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE COMPLEX
								A		

PDB annotation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGEK, PKOLEIN-UNA	CBNSTA1 STRIICTHE COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, FROI EIN-DNA	CRYSTAL STRICTIBE COMBLEY	(2TNC ENGED ONA)
Coumpound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA: CHAIN: A. B. D. E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSOS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: C F C.	incitati, citalii. C, i, C,	
SeqFold score												***			-							101.87											-	
PMF score		86.0			1				96.0				1					_		_						1					_			
Verify score		-0.22			0.1				0.15				0.43					69.0								0.71					0.39			_
PSI- BLAST		7.20E-33			9.60E-50				3.20E-47				3.20E-47					9.60E-50				8.00E-50				8.00E-50					1.60E-49			
End		200			501				528				556					284				585				612					640			
Start AA		392			420				448				476					503				503				188					959			
Chain ID		U			၁			1	၁				C					ر-				υ υ				ာ			-		ر-			
PDB ID		Ime y			lme	>			Ime	<u>~</u>			1me	^			1	· me	_			lme ;	<u> </u>			lme	<u>></u>				= - = -	`		
SEQ NO:		098			98				098				98				,	800				098				098				9,6	860			

PDB annotation	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZNIC FINGER PROTERN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION TRICED BROTEEN	COMPLEX (TRANSCRIPTION
Coumpound	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C. E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A. D. 5S
SeqFold score					105.92			
PMF score	0.94	0.94	0.12	0.99		_	1	0.99
Verify	0.06	90.00	-0.25	0.11		0.21	0.32	0.16
PSI- BLAST	3.60E-14	4.80E-13	4.80E-31	1.60E-35	1.80E-66	4.80E-37	1.60E-38	1.30E-36
End	333	333	258	314	393	370	426	537
Start AA	306	306	113	169	224	225	281	393
Chain ID	O	ى ق	∢	¥	V	A	<	Ą
PDB ID	lme y	lme y	1466	1116	1tf6	1116	1116	1tf6
SEQ NO:	098	098	860	860	860	860	098	980

PDB annotation	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIL! ATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2
Coumpound	RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold score							
PMF score		0.64	0.68	_	0	0.83	0.69
Verify score		0.11	-0.1	0.06	-0.43	-0.19	-0.37
PSI- BLAST		8.00E-38	6.40E-35	9.60E-35	9.60E-29	1,30E-30	1.80E-34
End AA		565	298	979	221	249	277
Start AA		421	449	477	115	148	150
Chain ID		А	A	A	C	S	O
PDB ID		1tf6	1tf6	1tf6	Jubd	lubd	1ubd
SEQ NO:		860	980	860	098	860	098

d PDB annotation	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)		S PS REGULATION/DNA) YING-YANG I;		FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX		ENO- COMPLEX (TRANSCRIPTION S P5 DEGITI ATTOMONA) VING VANG 1:			FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX		_			ENGED DOTTEN DNA DOTTEN	RECOGNITION 3 COMPLEX	(TRANSCRIPTION REGULATION/DNA)	-			INITIATOR ELEMENT, YYI, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX		_			INTITATOR ELEMENT, YY1, CINC 2	PERCORPED 2 COMPLEY	TECOGNITION, 3 CONTECTS (TRANSCRIPTION REGILI ATTONIONA)		
d Coumpound		YY1; CHAIN: C; ADENO-	ASSOCIATED VIKUS PS	CHAIN: A, B:				YYI; CHAIN: C; ADENO-	INITIATOR ELEMENT DNA:	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	OTTABLE A D.	CHAUN: A, B;			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIKUS PS	CHAPI A D.	CHAIN: A, B;			YY1; CHAIN: C; ADENO-	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
SeqFold score					····																						-							
PMF		0.93						96.0						_						-						3	0.88						_	
Verify score		-0.19						-0.07						0.19						0.27							0.04						0.2	
PSI- BLAST		3.20E-32						1.80E-48						4.80E-34						3.20E-34					_	100	5.40E-52						3.20E-34	
End		277						333					-	333						361						1	445						417	_
Start AA		170					١	194				_		227						260						,00	306						316	
Chain ID		2					,	ပ					ļ	ပ						၁						,	ن						ပ	
PDB ID	•	1 ubd						pan						Iubd						1ubd						1	pgn:						lubd	
SEQ ID NO:		098					3,0	098					[098						980						9	860						098	_

SEQ D	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
Ö									CHAIN: A, B;	INITIATOR ELEMENT, YY1, ZINC 2
										RECOGNITION, 3 COMPLEX
98	1ubd	၁	372	473	4.80E-35	-0.14	_		YY1; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION
									ASSOCIATED VIRUS P5	REGULATION/DNA) YING-YANG 1;
									INITIATOR ELEMENT DNA;	TRANSCRIPTION INITIATION,
									CHAIN: A, B;	FINGER PROTEIN DNA-PROTEIN
	•									RECOGNITION, 3 COMPLEX
860	11114	C	300	255	2 COE 42	ç	6,50			(TRANSCRIPTION REGULATION/DNA)
2	200	ر	065	000	3.00E-42	-0.47	0.33		YYI; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION
									ASSOCIATED VIKUS PS INITIATOR ET EMENT DNA:	REGULATION/DNA) YING-YANG I;
									CHAIN: A, B;	INITIATOR ELEMENT, YY 1, ZINC 2
										FINGER PROTEIN, DNA-PROTEIN
										RECOGNITION, 3 COMPLEX
3	1.1.1	C	90,			,				(TRANSCRIPTION REGULATION/DNA)
000	pon.	ر	400	100	6.40E-35	0	0.78		YY1; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION
									ASSOCIATED VIRUS P5	REGULATION/DNA) YING-YANG 1;
									INITIATOR ELEMENT DNA;	TRANSCRIPTION INITIATION,
									CHAIN: A, B;	INITIATOR ELEMENT, YY1, ZINC 2
										FINGER FROI EIN, DNA-PROTEIN
										KECUGNI ION, 3 COMPLEX (TRANSCRIPTION PEGI II ATTONIONA)
098	Jubd	ပ	456	556	3.20E-31	-0.07	96 0		VVI. CHAMI: C. ADENO	COMMITTE ANGORITHMS
)		10000	?	?		ASSOCIATED VIRIE PS	COMPLEX (IKANSCKIPTION PEGIT ATTON/DNA) WING MAND I
									INITIATOR ELEMENT DNA:	TRANSCRIPTION INITIATION
									CHAIN: A, B;	INITIATOR ELEMENT, YYI, ZINC 2
										FINGER PROTEIN, DNA-PROTEIN
										RECOGNITION, 3 COMPLEX
070	1.1.1	C	101	, 65	27 1100					(TRANSCRIPTION REGULATION/DNA)
000	Don I		481	284	1.80E-47	0.23			YY1; CHAIN: C; ADENO-	COMPLEX (TRANSCRIPTION
									ASSOCIATED VIRUS P5	REGULATION/DNA) YING-YANG 1;
									INITIATION ELEMENT DNA;	TRANSCRIPTION INITIATION,
									CHAIN: A, B;	INITIATOR ELEMENT, YY1, ZINC 2
								-		FINGER PROTEIN, DNA-PROTEIN
										KECUGNITION, 3 COMPLEX
098	lubd	ပ	484	584	3.20E-36	0.22	_		YY1; CHAIN: C. ADENO-	COMPLEX (TRANSCRIPTION
									ASSOCIATED VIRUS P5	REGULATION/DNA) YING-YANG 1:

	3	3	3	9	7	ı.	<u> </u>	,,
PDB annotation	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	ZINC FINGER DNA BINDING DOMAIN DNA BINDING MOTIF, ZINC FINGER DNA BINDING DOMAIN	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLJ; GLJ, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI, GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
Coumpound	INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	SWIS; CHAIN: NULL;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;
SeqFold score	,		86.51					
PMF score		0.98			0.72	96.0		
Verify score		0.43		-0.06	0.15	-0.04	-0.21	-0.1
PSI- BLAST		5.40E-51	5.40E-51	3.20E-34	0.00016	3.20E-31	3.60E-52	5.40E-63
End AA		640	641	640	642	276	307	363
Start AA		529		539	615	140	170	197
Chain ID		ပ	ပ	ပ		V	4	A
PDB ID		lubd	lubd	lubd	pJz1	2gli	2gli	2gli
SEQ NO:		098	098	860	098	860	860	860

CEC	H	1	1	1	, ou		1	3		
NO B		<u>a</u>	AA	AA	rst- BLAST	verity score	Score	SeqFold	Coumpound	PDB annotation
860	2gli	4	224	391	3.60E-64	0.06			ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
860	2gli	V	722	360	1.60E-33	0.13	0.98		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
098	2gli	A	280	447	1.80E-64	0.25	66.0		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
860	2gli	4	308	558	3.60E-57	-0.4	0.19		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- RINDING PROTEIN/DNA)
098	2gli	¥	316	444	1.30E-34	0.03	0.99		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
098	2gli	A	400	527	1.60E-32	-0.21	0.49		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
098	2gli	V	421	614	5.40E-60	-0.07	0.19		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
098	2gli	¥	456	586	1.30E-30	-0.02	0.99		ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
860	2gli	∢	484	611	1.40E-35	0.27	_	·	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D:	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
860	2gli	∢	503	640	3.60E-64	0.53	_		ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
860	2gli	A	503	642	3.60E-64			91.33	ZINC FINGER PROTEIN GLII;	COMPLEX (DNA-BINDING

PDB annotation	AIN: C, PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	AIN: C, PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING) PROTEIN/DNA)	HYDROLYTIC ENZYME DLH; DIENELACTONE HYDROLASE, AROMATIC HYDROCARBON CATABOLISM, 2 SERINE ESTERASE, CARBOXYMETHYLENEBUTENOLIDA SE, 3 HYDROLYTIC ENZYME	\dashv	OR TU; COMPLEX OF TWO ELONGATION FACTORS FE-TH: FE-TS:		EXCHANGE, GTP-BINDING, 2	FACTORS		B D: FOR TRANSFER HEAT INSTABLE	 TRANSFER, HEAT STABLE,	ELONGATION FACTOR, COMPLEX (TWO ELONGATION FACTORS)		HAIN: HMG-BOX DOMAIN A OF RAT HMG!;			1AAB 8 HMG-BOX 1AAB 20		HAIN: HMG-BOX DOMAIN A OF RAT HMG1;	╁	_
Coumpound	CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	DIENELACTONE HYDROLASE; CHAIN: NULL;		ELONGATION FACTOR TU;	ELONGATION FACTOR TS;	CHAIN: C, D, G, H;		ELONGATION FACTOR TU;	FACTOR TS: CHAIN: B D:			HIGH MOBILITY GROUP	PROTEIN; 1AAB 5 CHAIN: NIII 1 : 14 4B 6	HIGH MOBILITY GROUP	PROTEIN; 1AAB 5 CHAIN:	NULL; IAAB 6	HIGH MOBILITY GROUP	PROTEIN; 1AAB 5 CHAIN:	NON HISTONE PROTEIN 6 A:	
SeqFold score																					
PMF score		0.46	0.96		99:0				0.75				68.0		-			0.33		0.94	:
Verify score		-0.16	0.02		0.02				-0.56				-0.09		0.68			0.41		-0.12	
PSI- BLAST		1.40E-36	0.00013		0.00018				0.00018		 		9.00E-18		5.40E-16			1.80E-06		1.80E-16	
End		279	338		2676				2673				185		433			290		180	
Start AA		95	255		2646	·,			2646		 		106		363			528		112	
Chain D		∢			ပ				В											A	
PDB ID		2gli	1din		laip				1efu				laab		laab			laab		1cg7)
SEQ TD NO:		860	862		864				864				865		865			865		865	

PDB annotation	PROTEIN BROTEIN UNG BOY	DNA BENDING TROTEIN HWG BOX, DNA BENDING, DNA RECOGNITION, CHROMATIN, NMR, DNA 2 BINDING PROTEIN	DNA BINDING PROTEIN HMG BOX, DNA BENDING, DNA RECOGNITION, CHROMATIN, NMR, DNA 2 BINDING PROTEIN	DNA BINDING PROTEIN HMG BOX, DNA BENDING, DNA RECOGNITION, CHROMATIN, NMR, DNA 2 BINDING PROTEIN	DNA BINDING PROTEIN HMG BOX, DNA BENDING, DNA RECOGNITION, CHROMATIN, NMR, DNA 2 BINDING PROTEIN	GENE REGULATION/DNA HMG-1, AMPHOTERIN, HEPARIN-BINDING PROTEIN P30; HIGH-MOBILITY GROUP DOMAIN, BENT DNA, PROTEIN-DRUG-DNA 2 COMPLEX, GENF RFGIII ATION/DNA	GENE REGULATION/DNA HMG-1, AMPHOTERIN, HEPARIN-BINDING PROTEIN P30; HIGH-MOBILITY GROUP DOMAIN, BENT DNA, PROTEIN-DRUG-DNA 2 COMPLEX, GENE REGILL ATION/DNA	GENE REGULATION/DIA HMG-1, AMPHOTERIN, HEPARIN-BINDING PROTEIN P30; HIGH-MOBILITY GROUP DOMAIN, BENT DNA, PROTEIN-DRUG-DNA 2 COMPLEX, GENF REGILLATION DAA	GENE REGULATION/DNA HMG-1, GENE REGULATION/DNA HMG-1, AMPHOTERIN, HEPARIN-BINDING PROTEIN P30; HIGH-MOBILITY GROUP DOMAIN, BENT DNA. PROTEIN-DRUG-DNA 2 COMPLEX, GENE REGULATION/DNA
Coumpound	NON HISTONE PROTEIN 6 4:	CHAIN: A;	NON HISTONE PROTEIN 6 A; CHAIN: A;	NON HISTONE PROTEIN 6 A; CHAIN: A;	NON HISTONE PROTEIN 6 A; CHAIN: A;	HIGH MOBILITY GROUP I PROTEIN; CHAIN: A; DNA (5'- D(*CP*CP*(IDO) CHAIN: B; DNA (5'- CHAIN: C;	HIGH MOBILITY GROUP I PROTEIN; CHAIN: A; DNA (5'- D(*CP*CP*(IDO) CHAIN: B; DNA (5'- CHAIN: C;	HIGH MOBILITY GROUP 1 PROTEIN; CHAIN: A; DNA (5'- D(*CP*CP*(IDO) CHAIN: B; DNA (5'- CHAIN: C;	HIGH MOBILITY GROUP I PROTEIN; CHAIN: A; DNA (5'- D(*CP*CP*(IDO) CHAIN: B; DNA (5'- CHAIN: C;
SeqFold score							·		
PMF score	0.83		_	0.42	0.24	0.92	0.71	66:0	0.11
Verify score	0.3		0.45	-0.4	0.28	-0.29	0.02	0.4	0.03
PSI- BLAST	3.60E-07		5.40E-16	7.20E-06	1.80E-06	5.40E-14	3.60E-07	3.60E-15	7.20E-05
End	320		433	516	601	177	320	433	510
Start AA	262		369	476	532	112	262	369	476
Chain D	A		∢	∀	¥	A	¥	A	A
PDB ID	1cg7)	lcg7	1cg7	lcg7	1ckt	1 ckt	lckt	lckt
SEQ NO:	865		865	865	865		865	865	865

			, 					
PDB annotation	GENE REGULATION/DNA HMG-1, AMPHOTERIN, HEPARIN-BINDING PROTEIN P30; HIGH-MOBILITY GROUP DOMAIN, BENT DNA, PROTEIN-DRUG-DNA 2 COMPLEX, GENE REGULATION/DNA	STRUCTURAL PROTEIN TWO REPEATS OF SPECTRIN, ALPHA HELICAL LINKER REGION, 2 2 TANDEM 3-HELIX COILED-COILS, STRUCTURAL PROTEIN				COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA)	
Coumpound	HIGH MOBILITY GROUP I PROTEIN; CHAIN: A; DNA (5'- D(*CP*CP*(IDO) CHAIN: B; DNA (5'- CHAIN: C;	ALPHA SPECTRIN; CHAIN: A, B, C;	DNA-BINDING HIGH MOBILITY GROUP PROTEIN FRAGMENT-B (HMGB) (DNA-BINDING IHME 3 HMG-BOX DOMAIN B OF RAT HMG1) (NMR, 1 STRUCTURE) 1HME 4	DNA-BINDING HIGH MOBILITY GROUP PROTEIN FRAGMENT-B (HMGB) (DNA-BINDING IHME 3 HMG-BOX DOMAIN B OF RAT HMG1) (NMR, 1 STRUCTURE) 1HME 4	DNA-BINDING HIGH MOBILITY GROUP PROTEIN FRAGMENT-B (HMGB) (DNA-BINDING IHME 3 HMG-BOX DOMAIN B OF RAT HMG1) (NMR, 1 STRUCTURE) IHME 4	HUMAN SRY; IHRY 6 CHAIN: A; IHRY 7 DNA; IHRY 9 CHAIN: B; IHRY 10	HUMAN SRY; IHRY 6 CHAIN: A; IHRY 7 DNA; IHRY 9 CHAIN: B; IHRY 10	DNA-BINDING HIGH MOBILITY GROUP PROTEIN 1 (HMG1) BOX 2,
SeqFold score								
PMF	0.01	0	0.57	0.43		0.39	0.78	0.21
Verify score	-0.01	-0.16	0	-0.19	0.04	-0.52	0.19	0.44
PSI- BLAST	1.40E-05	7.20E-08	3.60E-14	0.00036	3.60E-13	9.00E-15	1.80E-16	9.00E-12
End	290	585	160	303	418	180	433	160
Start AA	530	382	107	257	369	110	368	112
Chain ID	4	¥				A	V	
PDB ID	lckt	lcun	Ihm e	lhm e	Ihm e	1hry	Ihry	lhsm
SEQ NO.	865	865	865	865	865	865	865	865

SEQ B B S	PDB CD	Chain ID	Start AA	End	PSJ- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
									COMPLEXED WITH 1HSM 3 MERCAPTOETHANOL (NMR, MINIMIZED AVERAGE STRUCTURE) 1HSM 4	
865	1hsm		262	303	0.00036	0.02	0.37		DNA-BINDING HIGH MOBILITY GROUP PROTEIN I (HMG1) BOX 2, COMPLEXED WITH IHSM 3 MERCAPTOETHANOL (NMR, MINIMIZED AVERAGE STRUCTURE) 1HSM 4	
865	lhsm		369	418	5.40E-13	9.0	_		DNA-BINDING HIGH MOBILITY GROUP PROTEIN I (HMG1) BOX 2, COMPLEXED WITH 1HSM 3 MERCAPTOETHANOL (NMR, MINIMIZED AVERAGE STRUCTURE) 1HSM 4	
865	1qrv	٧	112	153	1.10E-10	-0.69	0.01		DNA (5'- D(*GP*CP*GP*AP*TP*AP*TP *CP*GP*C)-3'); CHAIN: C, D; HIGH MOBILITY GROUP PROTEIN D: CHAIN: A. B:	GENE REGULATION/DNA HMG-D; PROTEIN-DNA COMPLEX, HMG DOMAIN, NON-SEQUENCE SPECIFIC 2 CHROMOSOMAL PROTEIN HMG-D
865	Iqrv	А	367	411	5.40E-12	0.18	0.78		DNA (5'- D(*GP*CP*GP*AP*TP*AP*TP *CP*GP*C)-3'); CHAIN: C, D; HIGH MOBILITY GROUP PROTEIN D: CHAIN: A B:	GENE REGULATION/DNA HMG-D; PROTEIN-DNA COMPLEX, HMG DOMAIN, NON-SEQUENCE SPECIFIC 2 CHROMOSOMAL PROTEIN HMG-D
865	2lef	¥	113	180	1.80E-14	-0.23	0.36		LYMPHOID ENHANCER- BINDING FACTOR; CHAIN: A; DNA (5'- CHAIN: B; DNA (5'- CHAIN: C;	GENE REGULATION/DNA LEF-I HMG; LEFI, HMG, TCR-A, TRANSCRIPTION FACTOR, DNA BINDING, DNA 2 BENDING, COMPLEX (HMG DOMAIN/DNA), GENE REGII, ATION/DNA
865	2lef	<	262	320	3.60E-07	0.11	0.58		LYMPHOID ENHANCER- BINDING FACTOR; CHAIN: A; DNA (5'- CHAIN: B; DNA (5'- CHAIN: C;	GENE REGULATION/DNA LEF-1 HMG; LEF1, HMG, TCR-A, TRANSCRIPTION FACTOR, DNA BINDING, DNA 2 BENDING, COMPLEX (HMG DOMAIN/DNA), GENE
865	2lef	A	371	433	1.10E-14	0.76			LYMPHOID ENHANCER-	GENE REGULATION/DNA LEF-1 HMG;

PDB annotation	LEFI, HMG, TCR-A, TRANSCRIPTION FACTOR, DNA BINDING, DNA 2 BENDING, COMPLEX (HMG DOMAIN/DNA), GENE REGULATION/DNA	GENE REGULATION/DNA LEF-1 HMG; LEF1, HMG, TCR-A, TRANSCRIPTION FACTOR, DNA BINDING, DNA 2 BENDING, COMPLEX (HMG DOMAIN/DNA), GENE REGULATION/DNA	COMPLEX (TRANSDUCERTRANSDUCTION) GT BETA-GAMMA; MEKA, PP33; PHOSDUCIN, TRANSDUCIN, BETA- GAMMA, SIGNAL TRANSDUCTION, 2 REGULATION, PHOSPHORYLATION, G PROTEINS, THIOREDOXIN, 3 VISION, MEKA, COMPLEX (TRANSDUCERTRANSDUCTION)		ENDOCYTOSIS/EXOCYTOSIS SYNAPTOTAGMIN ASSOCIATED 35 KDA PROTEIN, P35A, THREE HELIX BUNDLE	CONTRACTILE PROTEIN TRIPLE- HELIX COILED COIL, CONTRACTILE PROTEIN	ISOMERASE ISOMERASE, MUTASE, INTRAMOLECULAR TRANSFERASE	ISOMERASE ISOMERASE, MUTASE, INTRAMOLECULAR TRANSFERASE	TRANSCRIPTION REGULATION SIGMA70; RNA POLYMERASE SIGMA FACTOR, TRANSCRIPTION REGULATION	TRANSFERASE GLYCOSYLTRANSFERASE
	LEF1, I FACTC BENDI DOMA REGUI	GENE LEF1, I FACTC BENDI DOMA	COMPLEX (TRANSDU BETA-GAN PHOSDUCI GAMMA, S REGULATI G PROTEIN VISION, M		SYNAPTC SYNAPTC KDA PRO BUNDLE	CONTRAC HELIX CC PROTEIN	ISOME	ISOME	SIGMA FACTO REGUI	GLYCO
Coumpound	BINDING FACTOR; CHAIN: A; DNA (5'- CHAIN: B; DNA (5'- CHAIN: C;	LYMPHOID ENHANCER- BINDING FACTOR; CHAIN: A; DNA (5'- CHAIN: B; DNA (5'- CHAIN: C;	TRANSDUCIN; CHAIN: B, G; PHOSDUCIN; CHAIN: P;		SYNTAXIN-IA; CHAIN: A, B, C;	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	METHYLMALONYL-COA MUTASE; CHAIN: A, B. C. D;	METHYLMALONYL-COA MUTASE: CHAIN: A. B. C. D:	RNA POLYMERASE PRIMARY SIGMA FACTOR; CHAIN: NULL;	SPORE COAT POLYSACCHARIDE BIOSYNTHESIS PROTEIN CHAIN: A;
SeqFold score										
PMF score		0.68	-0.19		-0.2	-0.19	-0.2	-0.19	-0.19	0.22
Verify		0.28	0.78	1	0.53	0.58	0.36	0.64	0.09	90.0
PSI- BLAST		3.60E-06	3.60E-12		1.80E-09	5.40E-09	3.60E-12	1.80E-10	1.80E-08	0.0018
End AA		290	709		465	467	464	482	463	302
Start AA		532	639	_ ; _ ;	396	396	390	396	386	97
Chain ID		A	ч		<	∢ .	₹	Ą		¥
PDB ID		2lef	2trc	,	1623	lquu	Ireq	1req	1sig	Iqgq
SEQ NO:		865	865	,,,,	800	998	998	998	998	871

	T	z.				· · · · · · · · · · · · · · · · · · ·		4R	
PDB annotation		RNA-BINDING PROTEINRNA TRA PRE-MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1, RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1, RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	RNA BINDING PROTEIN RNA- BINDING DOMAIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	
Coumpound		SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (S'- R(P*GP*UP*UP*GP*UP*U P*UP*UP*UP*UP*U)- CHAIN: P, O;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP *AP*AP*AP*A)-3'); CHAIN: M. N. O. P. O. R. S. T.	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*AP*A)-3'); CHAIN: M, N, O, P, O, R, S, T;	POLYDENYLATE BINDING PROTEIN I; CHAIN: A, B, C, D. E. F. G. H: RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP *AP*AP*AP*A;);); CHAIN: M. N. O. P. O. R. S. T.	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP *AP*AP*AP*A)-3'); CHAIN: M, N, O, P, O, R, S, T;	HU ANTIGEN C; CHAIN: A;	HNRNP A1; CHAIN: NULL;	RNA-BINDING PROTEIN SEX-LETHAL PROTEIN (C-
SeqFold score									
PMF score		-	0.92		-	-	<u>.</u>	1	0.92
Verify score		0.52	0.52	0.99	0.92	0.95	0.83	0.48	0.56
PSI- BLAST		1.40 E-2 1	6.40E-24	1.60E-20	1.60E-20	1.60E-20	1.10E-21	3.20E-22	1.40E-21
End AA		104	110	106	106	901	106	124	109
Start AA		9	9	27	27	27	22	21	24
Chain 10		Ą	¥	В	tr.	н	A		
PDB ID		167f	lcvj	1cvj	1cvj	lcvj	148z	lha!	1sxl
SEQ So do		872	872	872	872	872	872	872	872

PDB annotation		COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	CALCIUM/PHOSPHOLIPID BINDING PROTEIN PII, CALPACTIN LIGHT CHAIN; SI00 FAMILY, EF-HAND PROTEIN, LIGAND OF ANNEXIN II, 2 CALCIUM/PHOSPHOLIPID BINDING PROTEIN	CALCIUM-BINDING CNTNC; CALCIUM-BINDING, REGULATION, TROPONIN C, CARDIAC MUSCLE 2 CONTRACTION	CALCTUM BINDING CALCTUM BINDING	METAL BINDING PROTEIN CAVP, EF- HAND FAMILY, CALCIUM BINDING PROTEIN, NMR		
		COMPLEX (RIBONUC A1, UP1; O (RIBONUC HETEROGI RIBONUCI	RNA BII DOMAII MOTIF, TRANSI DETERN DOSAGI	CALCIUM PROTEIN CHAIN; S PROTEIN, CALCIUM PROTEIN	CALCIL CALCIL TROPOI CONTR	CALCTUM	METAL HAND F PROTEI		
Coumpound	RNA-BINDING DOMAIN ISXL 3 (RBD-2), RESIDUES 199 - 294 PLUS N-TERMINAL MET) ISXL 4 (NMR, 17 STRUCTURES) ISXL 5	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	SEX-LETHAL; CHAIN: A, B, C;	S100A10; CHAIN: A, B;	CARDIAC N-TROPONIN C; CHAIN: NULL;	CALCIUM-BINDING PROTEIN; CHAIN: NULL;	CALCIUM VECTOR PROTEIN; CHAIN: A;	CALCTUM-BINDING PROTEIN CALBINDIN D9K (INTACT FORM) (NMR, 13 STRUCTURES) 1CB1 3	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3
SeqFold score									
PMF score		0.99	0.99		0.29	0.15	0.16		0.16
Verify score		89.0	0.58	0.66	-0.25	-0.05	-0.22	0.35	-0.14
PSI- BLAST		1.30E-22	1.60E-20	7.20E-18	9.00E-07	5.40E-07	7.20E-07	9.00E-22	3.60E-07
End		124	104	93	77	78	78	83	92
Start AA		19	9	=	21	22	22	&	11
Chain ID		¥	A	⋖			A		
PDB ID	. –	2up1	3sxl	1а4р	Jap4	1bu3	1c7w	[cb]	lcll
SEQ NO:		872	872	873	873	873	873	873	873

PDB Chain Start End PSI- ID ID AA AA BLAST 1fpw A 11 81 9.00E-08	Chain Start End PSI- ID AA AA BLAST 11 81 9.00E-08	AA AA BLAST 81 9.00E-08	A BLAST 9.00E-08		<u> </u>	Verify score	PMF score	SeqFold score	Coumpound CALCIUM-BINDING	PDB annotation METAL RINDING PROTEIN VEAST
A 1 93 1.80E-17 0.15	1 93 1.80E-17 0.15	93 1.80E-17 0.15	1.80E-17 0.15	0.15		_ 0	0.81		PROTEIN NCS-1; CHAIN: A; MIGRATION INHIBITORY FACTOR-RELATED PROTEIN 8; CHAIN: A, B;	METAL BINDING PROTEIN YEAST FREQUENIN EF-HAND, CALCIUM METAL TRANSPORT MRP8, S100A8, CALGRANULIN A CALCIUM-BINDING PROTEIN, CRYSTAL STRUCTURE, MAD MIGRATION 2 INHIRITORY
1qls A 8 92 1.80E-18 0.38 1	8 92 1.80E-18	92 1.80E-18	1.80E-18	8	0.38	-			S100C PROTEIN; CHAIN: A; ANNEXIN I; CHAIN: D;	FACTOR_RELATED PROTEIN 8, S100 PROTEIN COMPLEX (LIGAND/ANNEXIN) CALGIZZARIN; S100 FAMILY, EF. HAND PROTEIN, COMPLEX
						[]				(LICAND/ANNEXIN), 2 LIGAND OF ANNEXIN II, CALCIUM/PHOSPHOLIPID BINDING PROTEIN
lauk 39 330 9.60E-65 0.29	330 9.60E-65 0.29	330 9.60E-65 0.29	9.60E-65 0.29	3-65 0.29		-	0.46		ARYLSULFATASE A; CHAIN: NULL;	HYDROLASE CEREBROSIDE-3- SULFATE-SULFATASE; CEREBROSIDE-3-SULFATE HYDROLYSIS, LYSOSOMAL ENZYME, 2 HYDROLASE
A 48 121 1.80E-14 -0.17	48 121 1.80E-14 -0.17	121 1.80E-14 -0.17	1.80E-14 -0.17	-0.17	<u> </u>	-	0.17	·	DIENOYL-COA ISOMERASE; CHAIN: A, B, C;	LYASE DELTA3,5,DELTA2,4- DIENOYL-COENZYME A ISOMERASE, LYASE, DIENOYL-COA ISOMERASE
A 55 144 3.20E-22 -0.02	55 144 3.20E-22 -0.02	144 3.20E-22 -0.02	3.20E-22 -0.02	-0.05			0.35		DIENOYL-COA ISOMERASE; CHAIN: A, B, C;	LYASE DELTA3,5,DELTA2,4. DIENOYL-COENZYME A ISOMERASE, LYASE, DIENOYL-COA ISOMERASE
A 45 145	45 145 1.60E-18	145 1.60E-18	1.60E-18		-0.23		0.01		METHYLMALONYL COA DECARBOXYLASE; CHAIN: A, B, C;	LYASE METHYLMALONYL COA, DECARBOXYLASE
A 47 144	47 144 4.80E-21	144 4.80E-21	4.80E-21		0.3		-0.11		4-CHLOROBENZOYL COENZYME A DEHALOGENASE; CHAIN: A, B, C;	LYASE DEHALOGENASE; LYASE
2dub A 47 . 144 3.20E-24 -0.11	47 · 144 3.20E-24 -0.11	. 144 3.20E-24 -0.11	3.20E-24 -0.11	-0.11		Ψ,	.0.13		2-ENOYL-COA HYDRATASE; CHAIN: A. B, C, D. E, F.	LYASE CROTONASE, ENOYL-COA HYDRATASE 1: LYASE, HYDRATASE, B-OXIDATION, FATTY ACID DEGRADATION, COA, 2 LIGAND BINDING

nd PDB annotation	JGATING UBIQUITIN CONJUGATION UBC2; HAIN: A, B, UBIQUITIN CONJUGATION, UBIQUITIN-CONJUGATING ENZYME	, a		-	ATING			IN POLPHOX; SIGNALLING COMPLEX, AIN: A: GTPASE NADPH OXIDASE PROTEIN-		CHAIN: B;		PEPTIDE PEPTIDE-COMPLEX, HELICAL	-		C, D; REPEAT, HSC70, 2 HSP70, PROTEIN BINDING	-		(IIDE; TETRATRICOPEPTIDE REPEAT, 1PR, 2 HETICAT REPEAT	+			IDE;	HELICAL REPEAT		OXIDOREDUCTASE, TROPANE	ALKALOID BIOSYNTHESIS,	כה הייסומס מה כיהס ויסודסו ומחת
Coumpound	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C;	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C;	UBIQUITIN CONJUGATING ENZYME; CHAIN: A;	UBIQUITIN CONJUGATING ENZYME; CHAIN: A;	UBIQUITIN CONJUGATING ENZYME; CHAIN: A;		RAS-RELATED C3	SUBSTRATE 1: CHAIN: A:	NEUTROPHIL CYTOSOL	FACTOR 2 (NCF-2) CHAIN: B;	TPR2A-DOMAIN OF HOP,	CHAIN: A; HSP90-PEP11DE MEEVD: CHAIN: B:	TPR1-DOMAIN OF HOP:	CHAIN: A, B; HSC70-	PEPTIDE; CHAIN: C, D;	PEROXISOMAL TARGETING	SIGNAL 1 RECEPTOR;	CHAIN: A, B; PTSI-	CONTAINING PEPTIDE;	PEROXISOMAL TARGETING	SIGNAL I RECEPTOR;	CHAIN: A, B; PTS1-	CONTAINING PEPTIDE;	CHAIN: C, D;	TROPINONE REDUCTASE-I;	CHAIN: A, B;		_
SeqFold score	139.32		226.34																									_
PMF score		_		_			-0.14				-0.15		-0.19			-0.18				-0.18					·1			
Verify score		0.84		16:0	0.71		0.15				0.31		0.02			0.04				0.01					0.35		_	_
PSI- BLAST	3.60E-63	3.60E-63	9.00E-63	9.00E-63	4.80E-62		3.20E-09				1.60E-18		8.00E-09	!		4.80E-14				1.40E-23					6.40E-29	_		-
End	151	146	147	147	146		137				112		153			157				241					147			
Start AA	-	2		2	3		12				7		54							12					33			_
Chain ID	A	A	A	A	¥		<u>m</u>		-		٧		A			A				¥					¥			
PDB ID	layz	layz	lqcq	ldcd	Iqcq	1	00.1	5 5 7			lel.		lelw			1fch				1 fch					laei			
SEQ NO:	877	877	877	877	877		878				878		878			878				878					881		_	

SEQ ID	PDB ID	Chain ID	Start AA	End	PSI- BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
;										DEHYDROGENASE
188	lael	В	33	147	6.40E-29	0.36	1		TROPINONE REDUCTASE-I;	OXIDOREDUCTASE
									CHAIN: A, B;	OXIDOREDUCTASE, TROPANE ALKALOID BIOSYNTHESIS,
										REDUCTION OF 2 TROPINONE TO
										TROPINE, SHORT-CHAIN DEHYDROGENASE
881	1616	∀	38	129	1.40E-21	0.14	6.0		ALCOHOL DEHYDROGENASE: CHAIN:	OXIDOREDUCTASE OXIDOREDICTASE
									A, B;	DETOXIFICATION, METABOLISM,
-										ALCOHOL 2 DEHYDROGENASE, DROSOPHII A 1 FRANONENSIS
										SHORT-CHAIN 3
										DEHYDROGENASES/REDUCTASES,
										TERNARY COMPLEX, NAD-3- PENTANONE 4 ADDITCT
881	1 pqp		36	147	1.60E-24	0.32	0.93		CIS-BIPHENYL-2,3-	OXIDOREDUCTASE NAD-DEPENDENT
									DIHYDRODIOL-2,3-	OXIDOREDUCTASE, SHORT-CHAIN
				-					DEHYDROGENASE, CHAIN:	ALCOHOL 2 DEHYDROGENASE, PCB
881	1cyd	V	36	148	4.80F-21	0.1	80 0		CARBONYI BEDITCHASE	DEGRADATION OVIDOBEDITICE STICKE CITYER
)		CHAIN: A, B, C, D;	DEHYDROGENASE,
-	3.		,	;						OXIDOREDUCTASE
188	om I	∢	31	147	1.60E-34	89.0			7 ALPHA- HYDROXYSTEROID	OXIDOREDUCTASE SHORT-CHAIN DEHYDROGENASE/REDUCTASE, BILE
									DEHYDROGENASE; CHAIN: A, B;	ACID CATABOLISM
88	1hdc	∀	35	148	1.10E-29	0.34	0.99		OXIDOREDUCTASE 3-	
_					·				ALPHA, 20-BETA-	
									DEHYDROGENASE	
								-	(E.C.I.1.1.53) IHDC 3	
									COMPLEXED WITH	
188	loaa		38	129	1.80E-20	0.47	6.0		SEPIAPTERIN REDUCTASE:	OXIDOREDUCTASE SEPIAPTERIN
									CHAIN: NULL;	REDUCTASE,
	•						-			TETRAHYDROBIOPTERIN,
881	1ybv	A	23	147	4.80E-33	0.38	_		TRIHYDROXYNAPHTHALEN	OXIDOREDUCTASE NAPHTHOL
-	,			\top					E REDUCTASE; CHAIN: A, B;	REDUCTASE, OXIDOREDUCTASE
188	7ae7	٧	31	147	6.40E-29	0.49	0.99		TROPINONE REDUCTASE-II;	OXIDOREDUCTASE

PDB ID	Chain	Start	End	PSI- BLAST	Verify	PMF score	SeqFold score	Coumpound Cuan. A D.	PDB annotation
								Chain: A, B;	OXIDOKEDUCTASE, TROPANE ALKALOID BIOSYNTHESIS, REDUCTION OF 2 TROPINONE TO PSEUDOTROPINE, SHORT-CHAIN DEHYDROGENASE
⋖		9	157	1.10E-45	0.49	_		UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C:	UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIOUITIN-CONJUGATING ENZYME
4		9	171	1.10E-45			90.32	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C;	UBIQUITIN CONJUGATION UBC2: UBIQUITIN CONJUGATION, UBIQUITIN-CONJUGATING ENZYME
Ω		10	121	6.40E-39	0.3	_		UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME E2; CHAIN: D;	LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME
α		10	166	6.40E-39			89.72	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME E2: CHAIN: D:	LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN CONIUGATING ENZYME
4		7	168	9.60E-49			87.99	UBIQUITIN CONJUGATING ENZYME; CHAIN: A;	LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME. YEAST
٧		8	157	9.60E-49	9.0	_		UBIQUITIN CONJUGATING ENZYME; CHAIN: A;	LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST
Y	_1	3	891	9.60E-43			74.26	UBC9; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME; UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-DIRECTED 2 PROTEOLYSIS, CELL CYCLE CONTROL, LIGASE
	A	5	157	9.60E-43	0.17	_		UBC9; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME; UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-DIRECTED 2 PROTEOLYSIS, CELL CYCLE CONTROL, LIGASE
]		5	157	6.40E-48	0.38	_		UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION UBCI: UBIQUITIN CONJUGATION, LIGASE
		9	148	6.40E-48			93.12	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGASE
			156	3.20E-44			81.53	UBIQUITIN CONJUGATING	UBIQUITIN CONJUGATION

PDB annotation	JLL; UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE				-	├──		 	 	 		
Coumpound	ENZYME; CHAIN: NULL;	UBIQUITIN CONIUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C:	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C:	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME E2: CHAIN: D:	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME E2: CHAIN: D.	UBIQUITIN CONJUGATING ENZYME: CHAIN: A:	UBIQUITIN CONJUGATING ENZYME: CHAIN: A:	UBC9; CHAIN: NULL;	UBC9; CHAIN: NULL;
SeqFold score				121.4	114.6			104.56	104.4		94.76	
PMF score		_	-			_	-			_		_
Verify score		0.27	0.63			0.73	0.4			0.53		8.0
PSI- BLAST		3.20E-44	3.20E-51	3.20E-51	6.40E-50	6.40E-50	3.20E-42	3.20E-42	1.10E-53	1.10E-53	4.80E-45	4.80E-45
End		157	157	165	178	178	165	169	166	166	174	173
Start AA		3	9	7	9	9		10	7	8	m	5
Chain ID					¥	Ą	Ω	Q	A	A	A	¥
PDB ID		2e2c	2ncz	2ucz	layz	layz	1042	1c4z	1qcq	lqcq	1u9a	1u9a
SEQ ID NO:		882	882	882	882	882	882	882	882	882	882	882

		,	,						,			,					_										_				
PDB annotation	PROTEOLYSIS, CELL CYCLE CONTROL, LIGASE	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGASE	UBIQUITIN CONJUGATION UBCI;	UBIQUITIN CONJUGATION	UBIQUITIN CONJUGATION,	THIOESTER 2 BOND, LIGASE	UBIQUITIN CONJUGATION	UBIQUITIN CARRIER PROTEIN,	THIOESTER 2 BOND, LIGASE	UBIQUITIN CONJUGATION UBC7;	VEAST	UBIQUITIN CONJUGATION UBC7;	UBIQUITIN CONJUGATION, LIGASE,	TBIOLITIN CONTINGATION TIBCS:	UBIOLITIN CONTIGATION	UBIQUITIN-CONJUGATING ENZYME	LIGASE E6AP; UBCH7; BILOBAL	STRUCTURE, ELONGATED SHAPE, E3	UBIQUITIN LIGASE, E2 2 UBIQUITIN	CONJUGATING ENCYME	LIGASE E6AP; UBCH/; BILOBAL	SIKUCIUKE, ELONGALED SHAPE, E3	CONJUGATING ENZYME	LIGASE UBIQUITIN, UBIQUITIN-	CONJUGATING ENZYME, YEAST	UBIQUITIN-CONJUGATING ENZYME	UBIQUITIN-CONJUGATING ENCYME;	UBIQUITIN-CONJUGATING ENCYME,	UBIQUIIIN-DIRECTED 2	FROTEOUTIST, CELL CTCLE CONTROL, LIGASE	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGASE
Coumpound		UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING	UBIQUITIN CONJUGATING	ENZYME; CHAIN: NULL;		UBIQUITIN CONJUGATING	ישטעי פוואון: אוני פואון איני		UBIQUITIN CONJUGATING	בואב ז ואוב, כוזאווא. ואטבה,	UBIQUITIN CONJUGATING	ENZYME; CHAIN: NULL;	I IBIOI II TIN-CONII IGATING	ENZYME RAD6: CHAIN: A B	C.	UBIQUITIN-PROTEIN	LIGASE E3A; CHAIN: A, B, C;	UBIQUITIN CONJUGATING	ENCYME EZ; CHAIN: D;	UBIQUITIN-PROTEIN	LIGASE ESA; CHAIN: A, B, C;	ENZYME E2; CHAIN: D;	UBIQUITIN CONJUGATING	ENZYME; CHAIN: A;	UBC9; CHAIN: NULL;					UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;
SeqFold score			116.78	109.63						_		148.79								00.13	51.09										
PMF score		1					-			- -				0.75	•		0.54							9.0		0.72					0.55
Verify score		0.62					0.55			0.59				0.19	:		-0.22							0.2		-0.18					0.06
PSI- BLAST		8.00E-52	8.00E-52	1.60E-45			1.60E-45			1.60E-55		1.60E-55		4.80E-37			1.60E-28			1 200 30	1.00E-20			3.20E-39		3.20E-34					3.20E-38
End AA		172	174	176			160		,	091		174		128			128			163	<u> </u>			128		128					128
Start AA		S	9	-			<u>ع</u>			9		7		9			2			12	2			8		·Λ					٥.
Chain ID														4			Ω			c	Ĵ			A		∢					
PDB ED		2aak	2aak	2e2c			2e2c		1	Zncz		2ncz		layz	,		lc4z			1001	7 1			lqcq		lu9a					2aak
SEQ B Si Si Si Si Si Si Si Si Si Si Si Si Si S		882	882	882			887		3	887		882		882			887			882	700			882	3	887					882

-	l UBCI;		EC,	EIN, SE I UBC7; I, LIGASE,	EIN, SE UBC7; LIGASE, UBC7;	EIN, SE UBC7; LIGASE, LUBC7;	EIN, SE UBC7; LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, LIBC2; LIGASE, LIBC2; LIGASE, LIBC2;	EIN, SE UBC7; LIGASE, LIGASE, LIGASE, UBC2; BENZYME	EIN, SE UBC7; LIGASE,	EIN, SE UBC7; LIGASE,	EIN, SE UBC7; LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, SENZYME SENZYME SENZYME SHAPE, E3 BIQUITIN	EEN, SE UBC7; LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, SENZYME SENZYME SHAPE, E3 BIQUITIN	EEN, SE UBC7; LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, SENZYME DBC2; SENZYME SHAPE, E3 BIQUITIN DBAL SHAPE, E3 SHAPE, E3	EEN, SE UBC7; LIGASE, UBC7; LIGASE, UBC2; ENZYME UBC2; SENZYME SHAPE, E3 BIQUITIN DBAL SHAPE, E3 BIQUITIN	EEN, SE UBC7; LIGASE, LIGASE, LIGASE, LIGASE, ENZYME UBC2; ENZYME SHAPE, E3 BIQUITIN SHAPE, E3 BIQUITIN SHAPE, E3 BIQUITIN SHAPE, E3 BIQUITIN	EEN, SE UBC7; LIGASE, LIGASE, LIGASE, LIGASE, ENZYME UBC2; ENZYME SHAPE, E3 BIQUITIN SHAPE, E3 BIQUITIN ITIN- ITIN-	EEN, SE UBC7; LIGASE, LIGASE, LIGASE, LIGASE, EENZYME UBC2; SHAPE, E3 BIQUITIN SHAPE, E3 BIQUITIN TITIN- TEAST TITIN- TEAST	EEN, SE UBC7; LIGASE, LIGASE, LIGASE, LIGASE, LIGASE, ENZYME UBC2; ENZYME SHAPE, E3 BIQUITIN SHAPE, E3 BIQUITIN ITIN- FEAST	EEN, SE UBC7; LIGASE, UBC7; LIGASE, UBC2; ENZYME SHAPE, E3 BIQUITIN TENZYME SHAPE, E3 BIQUITIN TEAST EAST EAST EENZYME SHAPE, E3 BIQUITIN TEAST EENZYME TEAST TENZYME TENZYME TEAST	EEN, SE UBC7; LIGASE, LIGASE, UBC7; LIGASE, UBC2; ENZYME SHAPE, E3 BIQUITIN JITIN- FEAST SHAPE, E3 BIQUITIN JITIN- FEAST SHAPE, E3 BIQUITIN JITIN- FEAST SHAPE, E3 BIQUITIN JITIN- FEAST SHAPE, E3 BIQUITIN JITIN- FEAST JITIN- FEAST JITIN- FEAST JITIN- FEAST JITIN- FEAST JITIN- FEAST JITIN- FEAST JITIN- FEAST JITIN- FEAST	EEN, SE UBC7; LIGASE, UBC7; LIGASE, UBC7; LIGASE, UBC2; ENZYME SHAPE, E3 BIQUITIN JITIN- TEAST SHAPE, E3 BIQUITIN TEAST SHAPE, E3 BIQUITIN- TEAST SH	EIN, SE UBC7; LIGASE, UBC7; LIGASE, UBC7; LIGASE, UBC2; ENZYME UBC2; SHAPE, E3 BIQUITIN SHAPE, E3 BIQUITIN ITIN- TEAST SHAPE, E3 BIQUITIN- TEAST SHA	EIN, SE UBC7; LIGASE, UBC7; LIGASE, UBC2; UBC2; UBC2; UBC2; UBC2; UBC2; UBC2; UBC2; UBC2; UBC2; UBC2; UBC2; UBC7;	EEN, SE UBC7; LIGASE, LIGASE, LIGASE, LIGASE, UBC2; ENZYME SHAPE, E3 BIQUITIN JITIN- TEAST SHAPE, E3 BIQUITIN TEAST TEAS
	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGAS		UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN,	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CARRIER PROT THIOESTER 2 BOND, LIGAS UBIQUITIN CONJUGATION VEAST UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION VEAST	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE UBIQUITIN CONJUGATION UBC7, UBIQUITIN CONJUGATION, LIGAS YEAST UBIQUITIN CONJUGATION, LIGAS YEAST UBIQUITIN CONJUGATION, LIGAS UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, LIGAS UBIQUITIN CONJUGATION, LIGAS	UBIQUITIN CONJUGATION UBIQUITIN CARRIER PROTEIN, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE, UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION LIGASE, YEAST UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION,	UBIQUITIN CONJUGATION UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE, UBIQUITIN CONJUGATION, LIGASE, YEAST UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION LIGASE, YEAST UBIQUITIN CONJUGATION, LIGASE, YEAST UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION,	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, LIGASE, YEAST UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN LIGASE, E3 UBIQUITIN CONJIGATING ENZYME	UBIQUITIN CONJUGATION UBIQUITIN CARRIER PROT THIOESTER 2 BOND, LIGAS UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION VEAST UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN LIGASE, EL 2 2 U CONJUGATING ENZYME	UBIQUITIN CONJUGATION UBIQUITIN CARRIER PROTEIN, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, LIGASE UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE, UBIQUITIN CONJUGATION, LIGASE, YEAST UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION LIGASE, YEAST UBIQUITIN CONJUGATION, LIGASE, UBIQUITIN CONJUGATION, LIGASE, UBIQUITIN CONJUGATION, UBC2; UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, LIGASE UBIQUITIN CONJUGATION, LIGASE UBIQUITIN CONJUGATION, LIGASE UBIQUITIN CONJUGATION, LIGASE UBIQUITIN CONJUGATION UBCZ UBIQUITIN CONJUGATION UBCZ UBIQUITIN CONJUGATION UBCZ UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN LIGASE, E2 2 UBIQUI CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAP UBIQUITIN LIGASE, E2 2 UBIQUI CONJUGATING ENZYME LIGASE UBIQUITIN. UBIQUITIN LIGASE, E2 2 UBIQUI CONJUGATING ENZYME LIGASE UBIQUITIN.	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION UBC UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN LIGASE, E2 2 UBIQUI STRUCTURE, ELONGATED SHAP UBIQUITIN LIGASE, E2 2 UBIQUI CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAP UBIQUITIN LIGASE, E2 2 UBIQUI CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN- LIGASE UBIQUITIN, UBIQUITIN-	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, LIGASE UBIQUITIN CONJUGATION UBC: UBIQUITIN CONJUGATION UBC: UBIQUITIN CONJUGATION UBC: UBIQUITIN CONJUGATION UBC: UBIQUITIN CONJUGATION, LIGAST UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN LIGASE, E2 2 UBIQUI CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAP UBIQUITIN LIGASE, E2 2 UBIQUI CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN LIGASE, E2 2 UBIQUI CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE, UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST UBIQUITIN CONJUGATION, LIGASE, UBIQUITIN CONJUGATION, LIGASE, UBIQUITIN CONJUGATION, UBC2; UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN ELONGATED SHAPE, E. UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E. UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE, UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST UBIQUITIN CONJUGATION, LIGASE, YEAST UBIQUITIN CONJUGATION, LIGASE, UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME UGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE, UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, LIGASE, YEAST UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST UGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-ONJUGATING ENZYME, UBIQUITIN-ONJUGATING ENZYME, UBIQUITIN-ONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-ONJUGATING ENZYME,	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN LIGASE, E2 2 UBI CONJUGATING ENZYME LIGASE E6AP; UBCH; BILOF STRUCTURE, ELONGATED SI UBIQUITIN LIGASE, E2 2 UBI CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUIT CONJUGATING ENZYME, YE UBIQUITIN-CONJUGATING E UBIQUITIN-CONJUGATING E UBIQUITIN-CONJUGATING E UBIQUITIN-CONJUGATING E UBIQUITIN-CONJUGATING E UBIQUITIN-DIRECTED 2	UBIQUITIN CONJUGATION UBIQUITIN CARRIER PROJ THIOESTER 2 BOND, LIGAS UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION UBIQUITIN LIGASE, E2 2 U CONJUGATING ENZYME LIGASE E6AP, UBCH7; BILC STRUCTURE, ELONGATED UBIQUITIN LIGASE, E2 2 U CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQU CONJUGATING ENZYME, Y LIGASE UBIQUITIN, UBIQU CONJUGATING ENZYME, Y LIGASE UBIQUITIN, UBIQU CONJUGATING ENZYME, Y UBIQUITIN-CONJUGATING UBIQUITIN-CONJUGATING UBIQUITIN-CONJUGATING UBIQUITIN-CONJUGATING UBIQUITIN-DIRECTED 2 PROTEOLYSIS, CELL CYCL	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, LIGASE, UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E. UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE UBIQUITIN, UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE, UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN CONJUGATION, UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN-CONJUGATING ENZYME, UGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST UGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST UBIQUITIN-CONJUGATING ENZYME,
	ప్	r					<u>6</u>	8 8	8 8		g g (5						ATING ATING ATING ATING ATING IN: A, B, A, B, C; ATING D; A, B, C; ATING ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING ATING A, B, C; ATING A, B, C; ATING ATING	ATING ATING ATING ATING ILL; ATING IN: A, B, C; A, B, C, C, C, C, C, C, C, C, C, C, C, C, C,	ATING ATING ATING ATING ILL; ATING IN: A, B, C; ATING D; ATING D; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING	ATING ATING ATING ATING ILL; ATING IN: A, B, C; ATING D; ATING D; ATING	ATING ATING ATING ATING ILL; A, B, C; A, B, C; ATING D; A, B, C; ATING D; A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING A, B, C; ATING ATING ATING ATING ATING	ATING ATING ATING ILL; ATING IN: A, B, C; ATING IN: A, B, C; ATING D; A, B, C; ATING D; ATING A, B, C; ATING D; ATING A, B, C;	ATING ATING ATING ATING ILL; ATING IN: A, B, A, B, C; ATING D; A, B, C; ATING D; A, B, C; ATING D; A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; ATING A, A, B, C; A, B, C, C, C, C, C, C, C, C, C, C, C, C, C,	ATING ATING ATING ATING ILL; A, B, C; A, B, C; A, B, C; A, B, C; A, B, C; A, B, C; ATING D; ATING D; ATING A
CO LATITIOIDIE	UBIQUITIN CONJUGATIN ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;		UBIQUITIN CONJUGATIN ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATINENZYME; CHAIN: NULL; UBIQUITIN CONJUGATINENZYME; CHAIN: NULL;	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RADO	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RAD(C; UBIQUITIN-CO UBIQUITIN-CO ENZYME RAD(C;	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RAD(C; UBIQUITIN-CO ENZYME RAD(C; C; C; C; C; C; C; C;	UBIQUITIN CONJUGA ENZYME; CHAIN: NU UBIQUITIN CONJUGA ENZYME; CHAIN: NU UBIQUITIN-CONJUGA C; UBIQUITIN-CONJUGA C; UBIQUITIN-RODICA C; UBIQUITIN-RODICA C; UBIQUITIN-RODICA C; UBIQUITIN-RODICA C; UBIQUITIN-PROTEIN	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RAD(C; UBIQUITIN-CO ENZYME RAD(C; UBIQUITIN-PR LIGASE E3A; C UBIQUITIN CO ENZYME F2- C	UBIQUITIN CONJUGAT ENZYME; CHAIN: NULI UBIQUITIN CONJUGAT ENZYME; CHAIN: NULI ENZYME RAD6; CHAIN C; UBIQUITIN-CONJUGAT ENZYME RAD6; CHAIN C; UBIQUITIN-PROTEIN C; UBIQUITIN-PROTEIN LIGASE E34; CHAIN: A, UBIQUITIN CONJUGAT ENZYME E2; CHAIN: D, UBIQUITIN CONJUGAT ENZYME E2; CHAIN: D,	UBIQUITIN CONJUGA ENZYME; CHAIN: NU UBIQUITIN-CONJUGA ENZYME; CHAIN: NU ENZYME RAD6; CHA C; UBIQUITIN-CONJUGA ENZYME RAD6; CHA C; UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN:	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RAD(C; UBIQUITIN-RAD(C; UBIQUITIN-PR LIGASE E34; C UBIQUITIN-PR LIGASE E34; C UBIQUITIN-PR LIGASE E34; C UBIQUITIN-PR LIGASE E34; C UBIQUITIN-PR LIGASE E34; C UBIQUITIN-PR LIGASE E34; C UBIQUITIN-PR LIGASE E34; C UBIQUITIN-PR LIGASE E34; C	UBIQUITIN CONJUGAT ENZYME; CHAIN: NULI UBIQUITIN CONJUGAT ENZYME; CHAIN: NULI ENZYME; CHAIN: NULI UBIQUITIN-CONJUGAT ENZYME RAD6; CHAIN C; UBIQUITIN-PROTEIN LIGASE E34; CHAIN: A, UBIQUITIN-PROTEIN LIGASE E34; CHAIN: D, UBIQUITIN-PROTEIN LIGASE E34; CHAIN: D, UBIQUITIN-PROTEIN LIGASE E34; CHAIN: D, UBIQUITIN CONJUGAT ENZYME E2; CHAIN: A, UBIQUITIN CONJUGAT ENZYME E2; CHAIN: A, UBIQUITIN CONJUGAT ENZYME E2; CHAIN: A, UBIQUITIN CONJUGAT	UBIQUITIN CONJUGENZYME; CHAIN: NUENZYME; CHAIN: NUENZYME; CHAIN: NUENZYME; CHAIN: NUENZYME RAD6; CHAC; CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN CONJUGENZYME E2; CHAIN: UBIQUITIN CONJUGENZYME E2; CHAIN: UBIQUITIN CONJUGENZYME E2; CHAIN: UBIQUITIN CONJUGENZYME; CHAIN: UBIQUITIN CONJUGENZYME; CHAIN: UBIQUITIN CONJUGENZYME; CHAIN: A; UBIQUITIN CONJUGENZYME; CHAIN	UBIQUITIN CONJUGENZYME; CHAIN: NUENZYME; CHAIN: NUENZYME; CHAIN: NUENZYME; CHAIN: NUENZYME RAD6; CHACK, CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: UBIQUITIN CONJUGENZYME; CHAIN: UBIQUITIN CONJUGENZYME; CHAIN: UBIQUITIN CONJUGENZYME; CHAIN: UBIQUITIN CONJUGENZYME; CHAIN: UBIQUITIN CONJUGENZYME; CHAIN: UBIQUITIN CONJUGENZYME; CHAIN: A; UBIQUITIN CONJUGENZYME; CHAIN: A; UBIQUITIN CONJUGENZYME; CHAIN: A; CHAIN:	UBIQUITIN CONJUGA ENZYME; CHAIN: NU UBIQUITIN-CONJUGA ENZYME; CHAIN: NU C; UBIQUITIN-PROTEIN LIGASE B3A; CHAIN: UBIQUITIN-PROTEIN LIGASE B3A; CHAIN: UBIQUITIN-PROTEIN LIGASE B3A; CHAIN: UBIQUITIN CONJUGA ENZYME E2; CHAIN: UBIQUITIN CONJUGA ENZYME; CHAIN: UBIQUITIN CONJUGA ENZYME; CHAIN: UBIQUITIN CONJUGA ENZYME; CHAIN: UBIQUITIN CONJUGA ENZYME; CHAIN: A; UBIQUITIN CONJUGA	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RAD(C; UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-PR UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RAD(C; UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-PR LIGASE E3A; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RAD C; UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RAD C; UBIQUITIN-PR LIGASE E3A; C UBIQUITIN-PR LIGASE E3A; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA	UBIQUITIN CONJUGA ENZYME; CHAIN: NU. UBIQUITIN CONJUGA ENZYME; CHAIN: NU. UBIQUITIN-CONJUGA ENZYME RAD6; CHACA; UBIQUITIN-CONJUGA ENZYME E2; CHAIN: UBIQUITIN CONJUGA ENZYME E2; CHAIN: UBIQUITIN CONJUGA ENZYME E2; CHAIN: UBIQUITIN CONJUGA ENZYME E2; CHAIN: UBIQUITIN CONJUGA ENZYME; CHAIN: A; UBIQUITIN CONJUGA ENZYME; CHAIN: A; UBIQUITIN CONJUGA ENZYME; CHAIN: A; UBIQUITIN CONJUGA ENZYME; CHAIN: A; UBIQUITIN CONJUGA	UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN-CO ENZYME RAD(C; UBIQUITIN-PR LIGASE E3A; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME E2; C UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHA UBIQUITIN CO ENZYME; CHAIN:
	50.62				56.09	56.09	56.09	56.09	56.09	56.09	56.09	56.09	56.09	90.32	90.32	90.32	90.32	\$6.09 90.32 89.72 87.99	56.09 90.32 89.72 87.99	56.09 90.32 89.72 87.99	56.09 90.32 89.72 87.99	56.09 90.32 89.72 87.99	56.09 90.32 89.72 87.99	56.09 90.32 89.72 87.99
		0.25		0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49
score		0.17	-0.09				0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.3	0.3	0.3	0.3	0.49	0.49	0.3	0.3	0.9 0.3 0.3	0.49
ISUTA	3.20E-38	1.10E-35	1.60E-35	. <u></u>	1.60E-35	1.60E-35	1.60E-35 1.10E-45	1.10E-45	1.10E-45	1.10E-45 1.10E-45 6.40E-39	1.10E-45 1.10E-45 6.40E-39	1.10E-45 1.10E-45 1.10E-45 6.40E-39	1.10E-45 1.10E-45 1.10E-45 6.40E-39	1.10E-45 1.10E-45 6.40E-39 6.40E-39	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-39	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-49 9.60E-49	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-49 9.60E-49	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-39 9.60E-49 9.60E-49	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-49 9.60E-49 9.60E-49	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-49 9.60E-49 9.60E-49	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-49 9.60E-49 9.60E-49	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-39 9.60E-49 9.60E-49	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-49 9.60E-49 9.60E-43	1.10E-45 1.10E-45 1.10E-45 6.40E-39 6.40E-49 9.60E-49 9.60E-43
AA	155	126	128		136	136	136	136	136	136	136	136	136 171 171 157 166											
AA	9	<u>ო</u>	9		7	7	7	9 9	9	6 6 10	6 6 10	6 6 6	6 6 10 10	6 6 10 10	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 6 6 7 7 7 8 8	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 6 6 7 7 7 8 8 8 8	6 6 6 7 7 7 3	7 6 6 7 7 7 3	6 6 6 7 7 7 7 3 3 3	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 6 6 7 7 7 7 8 8 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3							∀	A A	A A	A A D	D A	A A D C	P P D D	Р Р Д Д	A D D A	A A D D A A	A A D D A A	A A D D A A A			A A D D A A	A A D D A A	A A D D A A A	
	2aak	2e2c	2ucz	_	2ucz	2ucz	2ucz layz	2ucz layz layz	2ucz layz layz	2ucz layz layz lc4z	2ucz 1ayz 1ayz 1c4z	2ucz layz layz lc4z lc4z	2ucz 1ayz 1ayz 1c4z 1c4z	2ucz layz layz lc4z lc4z	2ucz 1ayz 1ayz 1c4z 1c4z	2ucz 1ayz 1ayz 1c4z 1c4z 1qcq 1qcq	2ucz 1ayz 1ayz 1c4z 1c4z 1qcq 1qcq	2ucz 1ayz 1ayz 1c4z 1c4z 1qcq 1qcq 1u9a	2ucz 1ayz 1ayz 1c4z 1c4z 1c4z 1qcq 1qcq	2ucz 1ayz 1ayz 1c4z 1c4z 1qcq 1qcq 1u9a	2ucz 1ayz 1ayz 1c4z 1c4z 1qcq 1qcq 1u9a 1u	2ucz 1ayz 1ayz 1c4z 1c4z 1qcq 1qcq 1u9a	2ucz 1ayz 1ayz 1c4z 1c4z 1c4z 1c4z 1u9a	2ucz 1ayz 1ayz 1c4z 1c4z 1c4z 1qcq 1u9a
g ö	882	883	882		882	882	882	883	883	883 883 883	883 883	883 883 883 883	883 883 883 883	883 883 883 883	883 883 883 883 883 883 883 883 883 883	883 883 883 883 883 883 883 883	883 883 883 883 883 883 883	883 883 883 883 883 883 883 883	883 883 883 883 883 883 883	883 883 883 883 883 883 883 883 883 883	883 883 883 883 883 883	883 883 883 883 883 883 883 883 883 883	883 883 883 883 883 883 883 883	883 883 883 883 883 883

SEQ	_	Chain	Start	End	PSI-	Verify	PMF	SeqFold	Coumpound	PDB annotation
ΒÖ	a	a	AA	AA	BLAST	score	score	score		
										PROTEOLYSIS, CELL CYCLE CONTROL, LIGASE
883	2aak		5	157	6.40E-48	0.38	_		UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGASE
883	2aak		9	148	6.40E-48			93.12	UBIQUITIN CONJUGATING	UBIQUITIN CONJUGATION UBCI;
883	2e2c		<u> </u>	156	3.20E-44			81.53	UBIQUITIN CONJUGATING	UBIOUITIN CONJUGATION
		****				-			ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN,
3										THIOESTER 2 BOND, LIGASE
883	2e2c	·	<u>ლ</u>	157	3.20E-44	0.27			UBIQUITIN CONJUGATING ENZYME: CHAIN: NULL:	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION
										UBIQUITIN CARRIER PROTEIN,
883	2ucz		9	157	3.20E-51	0.63	1		UBIQUITIN CONJUGATING	UBIOUITIN CONJUGATION UBC7:
									ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION, LIGASE, YEAST
883	2ncz		7	165	3.20E-51			121.4	UBIQUITIN CONJUGATING	UBIQUITIN CONJUGATION UBC7;
									ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION, LIGASE,
883	layz	¥	9	178	6.40E-50			114.6	UBIOUITIN-CONJUGATING	UBIOUTIN CONTUGATION UBC2:
									ENZYME RAD6; CHAIN: A, B,	UBIQUITIN CONJUGATION,
									C;	UBIQUITIN-CONJUGATING ENZYME
883	layz	٧	9	178	6.40E-50	0.73	_		UBIQUITIN-CONJUGATING	UBIQUITIN CONJUGATION UBC2;
									ENZYME RAD6; CHAIN: A, B,	UBIQUITIN CONJUGATION,
003	100	6	2	271	2 200	,			()	UBIQUITIN-CONJUGATING ENCYME
60	1042	۵	2	6	3.20E-42	0.4	_		UBIQUITIN-PROTEIN	
									LIGANE ESA; CHAIN: A, B, C;	SIRUCIURE, ELONGATED SHAPE, E3
									ENZYME E2: CHAIN: D:	CONJUGATING ENZYME
883	1c4z	Ω	10	169	3.20E-42			104.56	UBIQUITIN-PROTEIN	LIGASE E6AP; UBCH7; BILOBAL
									LIGASE E3A; CHAIN: A, B, C;	STRUCTURE, ELONGATED SHAPE, E3
									UBIQUITIN CONJUGATING	UBIQUITIN LIGASE, E2 2 UBIQUITIN
600	1		ľ		2000				ENZYME E2; CHAIN: D;	CONJUGATING ENZYME
Ç 00	<u>)</u>	<	`	80	1.10E-53	181 8		104.4	UBIQUITIN CONJUGATING	LIGASE UBIQUITIN, UBIQUITIN-
600	1355				25 401 .	3,0	_ -		ENZYME; CHAIN: A;	CONJUGATING ENZYME, YEAST
600	14cd	۲	.	00 	1.105-53	60.0			UBIQUITIN CONJUGATING ENZYME: CHAIN: A:	LIGASE UBIQUITIN, UBIQUITIN. CONTIGATING ENZYME YEAST
883	lu9a	A	3	174	4.80E-45			94.76	UBC9; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME
			•							UBIQUITIN-CONJUGATING ENZYME;
										UBIQUITIN-CONJUGATING ENZYME,

ound PDB annotation	UBIQUITIN-DIRECTED 2 PROTEOLYSIS, CELL CYCLE CONTROL, LIGASE		UBIQUITIN-DIRECTED 2 PROTEOLYSIS, CELL CYCLE	IJUGATING UBIQUITIN CONJUGATION UBCI; IN NULL; UBIQUITIN CONJUGATION, LIGASE	IJUGATING UBIQUITIN CONJUGATION UBCI;	UBIQUITIN CONJUGATION	N: NULL; UBIQUITIN CONJUGATION,	THIOESTER 2 BOND, LIGASE		N: NULL; UBIQUITIN CONJUGATION,	THIOESTER 2 BOND, LIGASE	_	N: NULL; UBIQUITIN CONJUGATION, LIGASE,	-	V: NULL; UBIQUITIN CONJUGATION, LIGASE, YEAST	_	CHAIN: A, B, UBIQUITIN CONJUGATION, IJBIQUITIN-CONJUGATING ENZYME	+		JUGATING UBIQUITIN LIGASE, E2 2 UBIQUITIN				\dashv	JUGATING LIGASE UBIQUITIN, UBIQUITIN- 4: A:	
Coumpound		UBC9; CHAIN: NULL;		UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME: CHAIN: NULL:	UBIQUITIN CONJUGATING	ENZYME; CHAIN: NULL;		UBIQUITIN CONJUGATING	ENZYME; CHAIN: NULL;		UBIQUITIN CONJUGATING	ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING	ENZYME; CHAIN: NULL;	UBIQUITIN-CONJUGATING	ENZYME KAD6; CHAIN: A, B, C:	UBIQUITIN-PROTEIN	LIGASE E3A; CHAIN: A, B, C;	UBIQUITIN CONJUGATING FN2VMF F2: CHAIN: D:	UBIQUITIN-PROTEIN	LIGASE E3A; CHAIN: A, B, C;	UBIQUITIN CONJUGATING	ENZYME E2; CHAIN: D;	UBIQUITIN CONJUGATING FNZYMF: CHAIN: A:	
SeqFold score					116.78	109.63								148.79							51.09					•
PMF score		_		, 1					-			_				0.75		0.54						,	0.0	
Verify score		8.0		0.62					0.55			0.59				0.19		-0.22							7.0	
PSI- BLAST	!	4.80E-45		8.00E-52	8.00E-52	1.60E-45			1.60E-45			1.60E-55		1.60E-55		4.80E-37		1.60E-28			1.60E-28			2000	3.20E-39	
End		173		172	174	176			160			160		174		128		128			163			925	971	
Start AA		23		2	9				m			9	_	7		9		01			10			·	o	
Chain ID		¥														∢		D			D				€	
PDB ID		1u9a		2aak	2aak	2e2c			2e2c			2ucz		2ucz		layz		1c4z			1c4z			1000	3	
SEQ ID NO:		883		883	883	883			833			883		883		883		883			883			003	600	

PDB annotation	UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-DIRECTED 2 PROTEOLYSIS, CELL CYCLE CONTROL, LIGASE	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGASE	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGASE	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN, THIOESTER 2 BOND, LIGASE	UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST	UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST	UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN-CONJUGATING ENZYME	UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION,	UBIQUITIN-CONJUGATING ENZYME		STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 UBIQUITIN	LIGASE E6AP: UBCH7: BILOBAL	STRUCTURE, ELONGATED SHAPE, E3	UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME	LIGASE UBIQUITIN, UBIQUITIN-	CONJUGATING ENZYME, YEAST	LIGASE UBIQUITIN. CONTIGATING ENZYME YEAST	UBIQUITIN-CONJUGATING ENZYME	UBIQUITIN-CONJUGATING ENZYME; UBIQUITIN-CONJUGATING ENZYME.
Coumpound		UBIQUITIN CONJUGATING ENZYME: CHAIN: NULL:	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME RAD6: CHAIN: A, B, C:	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B,	Ċ	UBIQUITIN-PROTEIN	LIGASE ESA; CHAIN: A, B, C; UBIQUITIN CONJUGATING FN2YMF F2: CHAIN: D.	UBIQUITM-PROTEIN	LIGASE E3A; CHAIN: A, B, C;	UBIQUITIN CONJUGATING ENZYME E2; CHAIN: D;	UBIQUITIN CONJUGATING	ENZYME; CHAIN: A;	UBIQUITIN CONJUGATING ENZYME: CHAIN: A:	UBC9; CHAIN: NULL;	
SeqFold score			50.62			56.09		90.32				89.72			87.99			74.26	
PMF score		0.55		0.25	0.49		_												
Verify score		90.0		0.17	-0.09		0.49			0.3							9.0		
PSI- BLAST		3.20E-38	3.20E-38	1.10E-35	1.60E-35	1.60E-35	1.10E-45	1.10E-45		6.40E-39		6.40E-39			9.60E-49		9.60E-49	9.60E-43	
End		128	155	126	128	136	157	171		157		991			168		157	891	
Start AA		5	9	3	9	7	9	9		0		10			7		∞	3	
Chain ID							4	A		Ω		Ω			<		¥	¥	
PDB ID		2aak	2aak	2e2c	2ucz	2ncz	layz	layz		1c4z		1c4z			Iqed	 	1969	lu9a	
SEQ NO:		883	883	883	883	883	884	884		884		884			884	,	884	884	

	T	T	T	T	T	1	T	7	T	T	T	
PDB annotation	UBIQUITIN-DIRECTED 2 PROTEOLYSIS, CELL CYCLE CONTROL, LIGASE	UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-DIRECTED 2 PROTEOLYSIS, CELL CYCLE	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGASE	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGASE	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN,	UBIQUITIN CONJUGATION UBIQUITIN CONJUGATION, UBIQUITIN CARRIER PROTEIN,	UBIQUITIN CONJUGATION, LIGASE, VEAST	UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST	UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION, UBIQUITIN-CONJUGATING ENZYME	UBIQUITIN CONJUGATION UBC2; UBIQUITIN CONJUGATION,	LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN	LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN
Coumpound		UBC9; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME: CHAIN: NULL:	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B, C;	UBIQUITIN-CONJUGATING ENZYME RAD6; CHAIN: A, B,	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME F7: CHAIN: D.	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME E2: CHAIN: D.
SeqFold score				93.12	81.53			121.4	114.6			104.56
PMF score		_	_			_	_			_	_	
Verify score		0.17	0.38			0.27	0.63			0.73	0.4	
PSI- BLAST		9.60E-43	6.40E-48	6.40E-48	3.20E-44	3.20E-44	3.20E-51	3.20E-51	6.40E-50	6.40E-50	3.20E-42	3.20E-42
End AA		157	157	148	156	157	157	165	178	178	165	691
Start AA		۶.	5	9		3	9	7	9	9	. 01	10
Chain ID		⋖							∢ .	A	Q	D
PDB ID		lu9a	2aak	2aak	2e2c	2e2c	Zucz	2ucz	layz	layz	1c4z	1c4z
SEQ ID NO:		884	884	884	884	884	884	884	884	884	884	884

SEQ ID NO:	PDB ID	Chain ID	Start AA	End AA	PSI. BLAST	Verify score	PMF	SeqFold score	Coumpound	PDB annotation
884	lqcq	۷.	7	991	1.10E-53			104.4	UBIQUITIN CONJUGATING ENZYME; CHAIN: A;	LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST
884	lqcq	Ą	8	991	1.10E-53	0.53	_		UBIQUITIN CONJUGATING ENZYME: CHAIN: A:	LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST
884	1u9a	Ą	3	174	4.80E-45			94.76	UBC9; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME
										UBIQUITIN-CONJUGATING ENZYME;
										UBIOUITIN-DIRECTED 2
									-	PROTEOLYSIS, CELL CYCLE
è				į	27, 1100, 7	ç				CONTROL, LIGASE
884	luya	⋖	α	173	4.80E-45	8.0			UBC9; CHAIN: NULL;	UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-CONJUGATING ENZYME;
				_						UBIQUITIN-CONJUGATING ENZYME,
										UBIQUITIN-DIRECTED 2
										PROTEOLYSIS, CELL CYCLE CONTROL, LIGASE
884	2aak		. 5	172	8.00E-52	0.62			UBIQUITIN CONJUGATING FN2VMF: CHAIN: NIII 1:	UBIQUITIN CONJUGATION UBCI;
884	2aak		9	174	8.00E-52			116.78	IBIOUITIN CONILGATING	TIBIOLITIN CONTIGATION TIBCL
									ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION, LIGASE
884	2e2c		_	176	1.60E-45			109.63	UBIQUITIN CONJUGATING	UBIQUITIN CONJUGATION
									ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION,
										UBIQUITIN CARRIER PROTEIN,
8	2,5		,	55.	1 707					I HIUES I ER 2 BUND, LIGASE
684	2797		n	091	1.60E-45	0.55	_		UBIQUITIN CONJUGATING	UBIQUITIN CONJUGATION
									ENGINE, CARIN: NOLL;	UBIQUITIN CONJUCATION,
										THIOESTER 2 BOND, LIGASE
884	2ncz		9	160	1.60E-55	65.0	1		UBIQUITIN CONJUGATING	UBIQUITIN CONJUGATION UBC7;
									ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION, LIGASE, YEAST
884	Zncz		7	174	1.60E-55			148.79	UBIQUITIN CONJUGATING	UBIQUITIN CONJUGATION UBC7;
					1				ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATION, LIGASE, YEAST
884	layz	4	9	128	4.80E-37	61.0	0.75		UBIQUITIN-CONJUGATING	UBIQUITIN CONJUGATION UBC2;
									ENZYME RAD6; CHAIN: A, B,	UBIQUITIN CONJUGATION,
700		6							ပ်	UBIQUITIN-CONJUGATING ENZYME
900	Z#21	<u> </u>	2	871	1.60E-28	-0.22	0.54		UBIQUITIN-PROTEIN	LIGASE E6AP; UBCH7; BILOBAL
									LIGASE ESA, CHAIN: A, B, C,	TIBIOTHEN LIGAGE ESTREMENTS
									ENZYME E2; CHAIN: D;	CONJUGATING ENZYME

PDB annotation	LIGASE E6AP; UBCH7; BILOBAL STRUCTURE, ELONGATED SHAPE, E3 UBIQUITIN LIGASE, E2 2 UBIQUITIN CONJUGATING ENZYME	LIGASE UBIQUITIN, UBIQUITIN- CONJUGATING ENZYME, YEAST	UBIQUITIN-CONJUGATING ENZYME UBIQUITIN-CONJUGATING ENZYME; UBIQUITIN-CONJUGATING ENZYME, UBIQUITIN-DIRECTED 2 PROTEOLYSIS, CELL CYCLE CONTROL, LIGASE	UBIQUITIN CONJUGATION UBCI; UBIQUITIN CONJUGATION, LIGASE	UBIQUITIN CONJUGATION UBC1; UBIQUITIN CONJUGATION, LIGASE		UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST	UBIQUITIN CONJUGATION UBC7; UBIQUITIN CONJUGATION, LIGASE, YEAST	LIPID TRANSPORT APO A-1; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT-	HYDROLASE ERA, GTPASE, RNA- RINDING PAS-1 IKE HYDROLASE	TRANSLATION TRANSLATIONAL GTPASE	CONTRACTILE PROTEIN TRIPLE- HELIX COILED COIL, CONTRACTILE PROTEIN	CONTRACTILE PROTEIN TRIPLE-
Coumpound	UBIQUITIN-PROTEIN LIGASE E3A; CHAIN: A, B, C; UBIQUITIN CONJUGATING ENZYME E2; CHAIN: D;	UBIQUITIN CONJUGATING ENZYME: CHAIN; A;	UBC9; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONJUGATING ENZYME; CHAIN: NULL;	UBIQUITIN CONIUGATING ENZYME, CHAIN: NULL;	APOLIPOPROTEIN A-1; CHAIN: A, B, C, D;	GTP-BINDING PROTEIN ERA; CHAIN: A R:	TRANSLATION INITIATION FACTOR IF2/EIF5B; CHAIN: A:	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A:	HUMAN SKELETAL MUSCLE
SeqFold score	51.09				50.62			56.09	53.53				
PMF score		9.0	0.72	0.55		0.25	0.49			0.01	0.03	-0.01	-0.01
Verify score		0.2	-0.18	90.0		0.17	-0.09			-0.14	-0.34	0.23	0.23
PSI- BLAST	1.60E-28	3.20E-39	3.20E-34	3.20E-38	3.20E-38	1.10E-35	1.60E-35	1.60E-35	5.40E-07	1.60E-37	6.40E-06	1.80E-08	1.80E-08
End AA	163	128	128	128	155	126	128	136	427	350	289	426	445
Start AA	. 10	∞	5	\$	9	3	9	7	237	39	45	283	302
Chain ID	D	A	V						∢	A	¥	¥	A
PDB ID	1c4z	Iqcq	1u9a	2aak	2aak	2e2c	2ucz	2ucz	lavl	lega	1g7s	lquu	14mn
SEQ NO:	884	884	884	884	884	884	884	884	885	882	882	882	885

Chain Start ID AA	Stari	1_	End AA	PSI- BLAST	Verify score	PMF score	SeqFold score	Coumpound	PDB annotation
								ALPHA-ACTININ 2; CHAIN: A;	HELIX COILED COIL, CONTRACTILE PROTEIN
A 237 427		427		5.40E-07			53.53	APOLIPOPROTEIN A-1; CHAIN: A, B, C, D;	LIPID TRANSPORT APO A-1; LIPOPROTEIN, LIPID TRANSPORT, CHOLESTEROL METABOLISM, 2 ATHEROSCLEROSIS, HDL, LCAT-
A 39 350		350	1	1.60E-37	-0.14	0.01		GTP-BINDING PROTEIN ERA; CHAIN: A. B:	HYDROLASE ERA, GTPASE, RNA- BINDING, RAS-LIKE, HYDROLASE
A 45 289		289		6.40E-06	-0.34	0.03		TRANSLATION INITIATION FACTOR IF2/EIF5B; CHAIN: A:	TRANSLATION TRANSLATIONAL GTPASE
A 283 426		426	 	1.80E-08	0.23	-0.01		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A:	CONTRACTILE PROTEIN TRIPLE- HELIX COILED COIL, CONTRACTILE PROTEIN
A 302 445		445		1.80E-08	0.23	-0.01		HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2; CHAIN: A;	CONTRACTILE PROTEIN TRIPLE. HELIX COILED COIL, CONTRACTILE PROTEIN
A 19 118		118	+	3.20E-41	0.2	0.17		IMMUNOGLOBULIN; CHAIN: A, B;	IMMUNOGLOBULIN, KAPPA LIGHT-
Т 19 116		116		3.20E-43	0.13	0.11		FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELIAL GROWTH FACTOR: CHAIN: V W.	CHAIN DIMEK HEADEK COMPLEX (ANTIBODY/ANTIGEN) FAB-12; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR
A 19 119		119		1.60E-42	0.18	60.0-		HULYSII; CHAIN: A, B, D, E; LYSOZYME; CHAIN: C, F;	COMPLEX (HUMANIZED ANTIBODY/HYDROLASE) MURAMIDASE; HUMANIZED ANTIBODY, ANTIBODY COMPLEX, FV, ANTI-LYSOZYME, 2 COMPLEX (HUMANIZED
A 19 T18		118		4.80E-43	0.15	0.34		IG KAPPA CHAIN V-I REGION REI; CHAIN: A, B;	IMMUNE SYSTEM REIV, STABILIZED IMMUNOGLOBULIN FRAGMENT, BENCE-JONES 2 PROTEIN, IMMUNE SYSTEM
A 19 115		115		3.20E-43	-0.2	.0.1		IGM RF 2A2; CHAIN: A, C, E; IGM RF 2A2; CHAIN: B, D, F; IMMUNOGLOBULIN G	IMMUNE SYSTEM FAB-IBP COMPLEX CRYSTAL STRUCTURE 2.7A RESOLUTION BINDING 2 OUTSIDE

								Ţ	T	
PDB annotation	THE ANTIGEN COMBINING SITE SUPERANTIGEN FAB VH3 3 SPECIFICITY			IMMUNOGLOBULIN TR1.9, ANTI- THYROID PEROXIDASE, AUTOANTIBODY, 2 IMMUNOGLOBULIN		DNA-BINDING PROTEIN ISL-1HD DNA-BINDING PROTEIN, HOMEODOMAIN, LIM DOMAIN	COMPLEX (DNA-BINDING PROTEIN/DNA) DNA-BINDING PROTEIN, DNA, PAIRED BOX, TRANSCRIPTION 2 REGULATION	COMPLEX (DNA-BINDING PROTEIN/DNA) DNA-BINDING PROTEIN, DNA, PAIRED BOX, TRANSCRIPTION 2 REGILIATION	COMPLEX (DNA-BINDING PROTEIN/DNA) DNA-BINDING PROTEIN, DNA, PAIRED BOX, TRANSCRIPTION 2 REGILI A TION	COMPLEX (DNA-BINDING PROTEIN/DNA) DNA-BINDING PROTEIN, DNA, PAIRED BOX,
Coumpound	BINDING PROTEIN A; CHAIN: G. H:	IMMUNOGLOBULIN FV FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 1FGV 3 ANTIBODY 'HS2' (HUH52-AA	IMMUNOGLOBULIN IMMUNOGLOBULIN M (IG- M) FV FRAGMENT IIGM 3	TRI.9 FAB; CHAIN: L, H;	IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 2FGW 3 ANTIBODY 'H52' (HUH52-OZ FAB) 2FGW 4	INSULIN GENE ENHANCER PROTEIN ISL-1; CHAIN: NULL;	PAIRED PROTEIN; CHAIN: A, B, C; DNA; CHAIN: D, E, F	PAIRED PROTEIN; CHAIN: A, B. C; DNA; CHAIN: D, E, F	PAIRED PROTEIN; CHAIN: A, B, C; DNA; CHAIN: D, E, F	PAIRED PROTEIN; CHAIN: A, B, C; DNA; CHAIN: D, E, F
SeqFold score								76.5	72.69	
PMF score		0.13	-0.06	0.23	0.1	0.42				1
Verify score		0.31	0	0.15	0.32	0.14	0.28			0.02
PSI- BLAST		3.20E-44	1.40E-42	6.40E-41	1.60E-44	9.00E-31	1.10E-28	1.10E-28	9.00E-28	9.00E-28
End AA		116	125	118	116	275	275	280	273	274
Start AA		61	19	22	19	216	216	216	217	217
Chain ID		1	T	L	J		¥	∢	В	æ
PDB ID		lfgv	ligm	lvge	2fgw	1bw 5	1.61	<u>1</u>	16)[151
SEQ NO:		887	887	887	887	888	888	888	888	888

PDB annotation	TRANSCRIPTION 2 REGULATION	COMPLEX (GENE REGULATING PROTEIN/DNA) PAX, PRD, PAIRED DOMAIN, DNA-BINDING PROTEIN IPDN 14	COMPLEX (GENE REGULATING PROTEIN/DNA) PAX, PRD, PAIRED DOMAIN, DNA-BINDING PROTEIN 1PDN 14	COMPLEX (GENE REGULATING PROTEIN/DNA) PAX, PRD, PAIRED DOMAIN, DNA-BINDING PROTEIN IPDN 14	DNA-BINDING DNA-BINDING, TRANSCRIPTION FACTOR, LFBI/HNF1, 2 HELIX-TURN-HELIX, DNA-BINDING DOMAIN	GENE REGULATION/DNA PAX, PAIRED DOMAIN, TRANSCRIPTION, PROTEIN-DNA INTERACTIONS, 2 GENE REGULATION/DNA	GENE REGULATION/DNA PAX, PAIRED DOMAIN, TRANSCRIPTION, PROTEIN-DNA INTERACTIONS, 2 GENE REGULATION/DNA	GENE REGULATION/DNA PAX, PAIRED DOMAIN, TRANSCRIPTION, PROTEIN-DNA INTERACTIONS, 2 GENE REGULATION/DNA
Coumpound		PRD PAIRED DOMAIN; CHAIN: C; IPDN 4 DNA; CHAIN: A, B IPDN 5	PRD PAIRED DOMAIN; CHAIN: C; IPDN 4 DNA; CHAIN: A, B IPDN 5	PRD PAIRED DOMAIN; CHAIN: C; IPDN 4 DNA; CHAIN: A, B IPDN 5	LFBI/HNF I TRANSCRIPTION FACTOR; CHAIN: NULL;	HOMEOBOX PROTEIN PAX- 6; CHAIN: A; 26 NUCLEOTIDE DNA; CHAIN: B; 26 NUCLEOTIDE DNA; CHAIN: C:	HOMEOBOX PROTEIN PAX- 6; CHAIN: A; 26 NUCLEOTIDE DNA; CHAIN: B; 26 NUCLEOTIDE DNA; CHAIN: C;	HOMEOBOX PROTEIN PAX- 6; CHAIN: A; 26 NUCLEOTIDE DNA; CHAIN: B; 26 NUCLEOTIDE DNA; CHAIN: C;
SeqFold score			168.62			143.36		·
PMF score		-			0.33			_
Verify		0.57		99.0	0.31		0.61	0.48
PSI- BLAST		9.60E-29	1.10E-63	1.10E-63	1.40E-30	1.60E-67	1.60E-31	1.60E-67
End AA		152	091	160	280	691	152	169
Start AA		35	35	35	209	34	35	36
Chain ID		ပ	ပ	၁		∢	Ą	¥
PDB ID		1pdn	1 pdn	l pdn	2lfb	брах	брах	брах
SEQ NO:		888	888	888	888	888	888	888

TABLE 6

SEQ ID NO:	Position of Last Amino Acid of Signal Peptide	Maximum Score	Mean Score
445	21	0.993	0.931
446	14	0.975	0.962
447	42	0.986	0.606
448	18	0.908	0.703
449	24	0.967	0.778
450	30	0.992	0.946
452	17	0.997	0.973
454	32	0.907	0.575
455	27	0.931	0.672
456	40	0.988	0.755
457	26	0.986	0.916
458	18	0.920	0.750
459	15	0.946	0.790
460	21	0.993	0.931
461	47	0.942	0.644
463	24	0.886	0.712
464	36	0.985	0.865
465	42	0.965	0.679
466	25	0.980	
467	27	0.969	0.946
469	26	0.950	0.858
470	45	0.983	0.793
471	25	0.981	0.687
472	30		0.821
473	18	0.998	0.963
474	27	0.977 0.949	0.915
475	23	0.913	0.644
476	19		0.768
477	15	0.947	0.901
478	17	0.936	0.628
479	†	0.956	0.893
480	17	0.942	0.720
481		0.952	0.730
483	17	0.970	0.916
486	14	0.975	0.962
488	47	0.955	0.727
	23	0.991	0.952
495	42	0.986	0.606
496	11	0.971	0.594
502	29	0.896	0.743
509	18	0.908	0.703
510	13	0.959	0.908
512	20	0.957	0.858
516	24	0.967	0.778
517	35	0.991	0.851
518	26	0.939	0.722
519	47	0.983	0.640
522	30	0.992	0.946
538	16	0.974	0.924
550	17	0.997	0.973
551	42	0.947	0.588
555	30	0.981	0.684
576	32	0.907	0.575
577	26	0.973	0.927
578	27	0.931	0.672
589	40	0.988	0.755
590	38	0.985	0.775

595 20 0.938 0.818 611 18 0.920 0.750 615 25 0.949 0.775 616 33 0.995 0.835 617 15 0.946 0.790 623 19 0.921 0.819 627 21 0.993 0.931 634 20 0.961 0.674 635 28 0.954 0.648 645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708
615 616 33 0.995 0.835 617 15 0.946 0.790 623 19 0.921 0.819 627 21 0.993 0.931 634 20 0.961 635 28 0.954 0.664 645 645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.6667 709 24 0.965 0.679 708 2 0.979 0.667 710 17 0.911 0.745 717 25 0.984 0.984 0.886 0.867 710 17 0.911 0.745 717 25 0.980 0.984 0.996 730 730 17 0.991 0.667 731 74 0.991 0.667 739 0.966 739 0.667 749 0.979 0.667 759 0.882 0.979 0.667 759 0.984 0.885 0.885 750 755 17 0.981 0.985 0.988 0.9946 7710 17 0.991 0.9667 7799 0.9667 7799 0.9667 7799 0.9667 7799 0.9667 7799 0.9667 7799 0.9667 7799 0.979 0.867 7710 0.981 0.988 0.997 0.988 0.9946 7710 0.981 0.984 0.851 7766 0.985 0.988 0.887 7771 0.981 0.981 0.884 771 0.981 0.884 771 0.981 0.983 0.877 771 0.981 0.890 0.668 764 0.985 0.983 0.887 773 0.997 0.801 0.793 0.871 0.981 0.884 0.891 0.994 0.983 0.835 0.897 0.997 0.801 0.793 0.871 0.994 0.998 0.997 0.801 0.998 0.997 0.801 0.998 0.993 0.997 0.801 0.998 0.993 0.997 0.801 0.998 0.993 0.997 0.801 0.998 0.993 0.997 0.801 0.994 0.998 0.993 0.997 0.801 0.994 0.998 0.993 0.997 0.801 0.994 0.998 0.993 0.997 0.801 0.994 0.994 0.998 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827 0.995 0.827
616 33 0.995 0.835 617 15 0.946 0.790 623 19 0.921 0.819 627 21 0.993 0.931 634 20 0.961 0.674 635 28 0.954 0.648 645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 673 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.665 695 23 0.954 0.851 710 17 0.911 0.745 709
617 15 0.946 0.790 623 19 0.921 0.819 627 21 0.993 0.931 634 20 0.961 0.674 635 28 0.954 0.648 645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.754 707 42 0.965 0.757 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717
623 19 0.921 0.819 627 21 0.993 0.931 634 20 0.961 0.674 635 28 0.954 0.648 645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 711 25 0.980 0.946 718 35 0.988 0.851 711
627 21 0.993 0.931 634 20 0.961 0.674 635 28 0.954 0.648 645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 711 17 0.911 0.745 711 25 0.980 0.946 718
627 21 0.993 0.931 634 20 0.961 0.674 635 28 0.954 0.648 645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 711 17 0.911 0.745 711 25 0.980 0.946 718
634 20 0.961 0.674 635 28 0.954 0.648 645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.989 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.989 0.946 718
635 28 0.954 0.648 645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755
645 47 0.942 0.644 647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.753 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741
647 31 0.962 0.776 650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768
650 16 0.949 0.782 651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764
651 14 0.963 0.613 654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 771 45 0.958 0.827 771 45 0.983 0.687 773
654 20 0.984 0.958 670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.9969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768
670 24 0.886 0.712 673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 730 17 0.891 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771
673 17 0.934 0.753 678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789
678 36 0.985 0.865 695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.993 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792
695 23 0.954 0.754 707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.953 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.687 792 31 0.966 0.815 796 22 0.887 0.572 797
707 42 0.965 0.679 708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797
708 2 0.979 0.667 709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807
709 24 0.984 0.851 710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808
710 17 0.911 0.745 717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 811
717 25 0.980 0.946 718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 811 27 0.959 0.827 812
718 35 0.988 0.871 726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812
726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815
726 27 0.969 0.858 730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815
730 17 0.981 0.844 741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816
741 22 0.937 0.871 755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818
755 17 0.890 0.668 764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
764 26 0.950 0.793 768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
768 32 0.958 0.827 771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
771 45 0.983 0.687 773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
773 39 0.997 0.801 776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
776 17 0.945 0.650 787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
787 32 0.983 0.835 789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
789 25 0.981 0.821 792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
792 31 0.966 0.815 796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
796 22 0.887 0.572 797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
797 19 0.941 0.691 807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
807 30 0.998 0.963 808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
808 18 0.977 0.915 809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
809 18 0.977 0.915 811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
811 27 0.959 0.827 812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
812 16 0.925 0.734 815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
815 19 0.934 0.564 816 21 0.960 0.858 818 27 0.949 0.644
816 21 0.960 0.858 818 27 0.949 0.644
818 27 0.949 0.644
821 27 0.943 0.758
823 27 0.908 0.728
833 23 0.913 0.768
837 19 0.947 0.901
841 22 0.967 0.826
845 15 0.936 0.628
846 20 0.975 0.840
846 20 0.975 0.840 851 31 0.985 0.908
852 19 0.965 0.922
853 39 0.984 0.743
857 17 0.956 0.893
858 21 0.957 0.868

871	43	0.973	0.560
873	19	0.952	0.730
874	33	0.923	0.717
879	23	0.978	0.911
881	16	0.947	0.884
887	17	0.970	0.916

TABLE 7

SEQ ID NO:	Position of Last Amino Acid of Signal Peptide	Maximum Score	Mean Score
445	21	0.993	0.931
446	14	0.975	0.962
447	42	0.986	0.606
448	18	0.908	0.703
449	24	0.967	0.778
450	30	0.992	0.946
452	17	0.997	0.973
454	32	0.907	0.575
455	27	0.931	0.672
456	40	0.988	0.755
457	26	0.986	0.916
458	18	0.920	0.750
459	15	0.946	0.790
460	21	0.993	0.931
461	47	0.942	0.644
463	24	0.886	0.712
464	36	0.985	0.865
465	42	0.965	0.679
466	25	0.980	0.946
467	27	0.969	0.858
469	26	0.950	0.793
470	45	0.983	0.687
471	25	0.981	0.821
472	30	0.998	0.963
473	18	0.977	0.915
474	27	0.949	0.644
475	23	0.913	0.768
476	19	0.947	0.901
477	15	0.936	0.628
478	17	0.956	0.893
479	17	0.942	0.720
480	19	0.952	0.730
481	17	0.970	0.916
483	14	0.975	0.962
486	47	0.955	0.727
488	23	0.991	0.952
495	42	0.986	0.606
496	11	0.971	0.594
502	29	0.896	0.743
509	18	0.908	0.703
510	13	0.959	0.908
512	20	0.957	0.858
516	24	0.967	0.778
517	35	0.991	0.851
518	26	0.939	0.722
519	47	0.983	0.640
522	30	0.992	0.946
538	16	0.974	0.924
550	17	0.997	0.973
551	42	0.947	0.588
555	30	0.981	0.684
576	32	0.907	0.575
577	26	0.973	0.927
578	27	0.931	0.672
589	40	0.988	0.755

590	38	0.985	0.775
595	20	0.938	0.818
611	18	0.920	0.750
615	25	0.949	0.775
616	33	0.995	0.835
617	15	0.946	0.790
623	19	0.921	0.819
627	21	0.993	0.931
634	20	0.961	0.674
635	28	0.954	0.648
645	47	0.942	0.644
647	31	0.962	0.776
650	16	0.949	0.782
651	14	0.963	0.613
654	20	0.984	0.958
670	24	0.886	0.712
673	17	0.934	0.753
678	36	0.985	0.865
695	23	0.954	0.754
707	42	0.965	0.679
708	2	0.979	0.667
709	24	0.984	0.851
710	17	0.911	0.745
717	25	0.980	0.946
718	35	0.988	0.871
726	27	0.969	0.858
730	17	0.981	0.844
741	22	0.937	0.871
755	17	0.890	0.668
. 764	26	0.950	0.793
768	32	0.958	0.827
771	45	0.983	0.687
773	39	0.997	0.801
776	17	0.945	0.650
787	32	0.983	0.835
789	25	0.981	0.821
792 796	31	0.966	0.815
797	22 19	0.887	0.572
807	30	0.941	0.691
808		0.998	0.963
809	18 18	0.977	0.915 0.915
811	27	0.959	0.913
812	16	0.925	0.734
815	19	0.934	0.564
816	21	0.960	0.858
818	27	0.949	0.644
821	27	0.943	0.758
823	27	0.908	0.728
833	23	0.913	0.768
837	19	0.947	0.901
841	22	0.967	0.826
845	15	0.936	0.628
846	20	0.975	0.840
851	31	0.985	0.908
852	19	0.965	0.922
853	39	0.984	0.743
857	17	0.956	0.893
858	21	0.957	0.868
861	22	0.975	0.866

868	21	0.942	0.736
871	43	0.973	0.560
873	19	0.952	0.730
874	33	0.923	0.717
879	23	0.978	0.911
881	16	0.947	0.884
887	17	0.970	0.916

TABLE 8

SEQ ID NO: of	SEQ ID NO: of	SEQ ID NO: in USSN
Nucleotide Sequence	Polypeptide Sequence	09/659,671
Tracicottae Sequence	1 orypeptide Sequence	097039,071
1	445	2
2	446	5
3	447	6
4	448	7
5	449	8
6	450	9
7	451	11
8	452	12
9	453	13
10	454	14
11	455	15
12	456	16
13	457	17
14	458	
15	459	18
16	460	19
17	461	20 21
18	462	23
19	463	
20	464	24 25
21		
22	465 466	28
23		29
24	467	30
25	468	31
26	469	34
27	470 471	35
28		37
29	472	38
30	473	39
31	474	40
32	475	41
33	476	42
34		43
35	478	44
	479	45
36	480	46
37 38	481	47
	482	49
39	483	50
40	484	51
41	485	52
42	486	53
43	487	54
44	488	55
45	489	56
46	490	57
47	491	58
48	492	59
49	493	60
50	494	61
51	495	62
52	496	63
53	497	64
54	498	65

55 499 66 56 500 67 57 501 68 58 502 69 59 503 70 60 504 71 61 505 72 62 306 73 63 507 74 64 508 75 65 509 76 66 510 77 67 511 78 68 512 79 69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524			
57 501 68 58 502 69 59 503 70 60 504 71 61 505 72 62 506 73 63 507 74 64 508 75 65 509 76 66 510 77 67 511 78 68 512 79 69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526	55	499	66
57 501 68 58 502 69 59 503 70 60 504 71 61 505 72 62 506 73 63 507 74 64 508 75 65 509 76 66 510 77 67 511 78 68 512 79 69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526	56	500	67
58 502 69 59 503 70 60 504 71 61 505 72 62 506 73 63 507 74 64 508 75 65 509 76 66 510 77 67 511 78 68 512 79 69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527			68
59 503 70 60 304 71 61 505 72 62 506 73 63 507 74 64 308 75 65 509 76 66 510 77 67 511 78 68 512 79 69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528			
60			
61 505 72 62 506 73 63 507 74 64 508 75 65 509 76 66 510 77 67 511 78 68 512 79 69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530			
62			
63			
64			
65 509 76 66 510 77 67 511 78 68 512 79 69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90			
66 \$10 77 67 \$11 78 68 \$12 79 69 \$13 80 70 \$14 81 71 \$15 82 72 \$16 83 73 \$17 85 74 \$18 86 75 \$19 88 76 \$20 89 77 \$21 90 78 \$522 91 79 \$23 92 80 \$524 93 81 \$525 94 82 \$266 95 83 \$527 96 84 \$528 97 85 \$529 98 86 \$530 99 87 \$31 100 88 \$532 101 89 \$33 102 90 \$34 105 91			
67 511 78 68 512 79 69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 <t< td=""><td></td><td></td><td></td></t<>			
68 512 79 69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 <		510	
69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94	67	511	78
69 513 80 70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94	68	512	79
70 514 81 71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95		513	
71 515 82 72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96			
72 516 83 73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97			
73 517 85 74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98	72		
74 518 86 75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99			
75 519 88 76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100			
76 520 89 77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101			
77 521 90 78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 <td></td> <td></td> <td></td>			
78 522 91 79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103<			
79 523 92 80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 10			
80 524 93 81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119			
81 525 94 82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 <t< td=""><td>79</td><td>523</td><td>92</td></t<>	79	523	92
82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121	80	524	93
82 526 95 83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121	81	525	94
83 527 96 84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122		526	
84 528 97 85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125			
85 529 98 86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124			
86 530 99 87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 <td></td> <td></td> <td></td>			
87 531 100 88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128 <			
88 532 101 89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
89 533 102 90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
90 534 105 91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
91 535 106 92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
92 536 107 93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
93 537 108 94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
94 538 109 95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
95 539 110 96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
96 540 111 97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128	95	539	110
97 541 112 98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128	96	540	111
98 542 113 99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
99 543 114 100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
100 544 115 101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
101 545 116 102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
102 546 117 103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
103 547 118 104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
104 548 119 105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
105 549 120 106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
106 550 121 107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
107 551 122 108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
108 552 123 109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
109 553 124 110 554 125 111 555 126 112 556 127 113 557 128			
109 553 124 110 554 125 111 555 126 112 556 127 113 557 128	108		
110 554 125 111 555 126 112 556 127 113 557 128			
111 555 126 112 556 127 113 557 128			
112 556 127 113 557 128			
113 557 128			
114 330 129			
	114	٥٠ر	129

		
115	559	130
116	560	131
117	561	132
118	562	133
119	563	134
120 121	564	135
121	565	136
122	566 567	137
123	568	138
125	569	139 140
126	570	141
127	571	142
128	572	142
129	573	144
130	574	145
131	575	146
132	576	147
133	577	149
134	578	150
135	579	151
136	580	152
137	581	153
138	582	154
139	583	155
140	584	156
141	585	157
142	586	158
143	587	159
144	588	160
145	589	161
146	590	162
147 148	591	163
149	592 593	165 166
150	594	167
151	595	168
152	596	169
153	597	170
154	598	171
155	599	172
156	600	173
157	601	174
158	602	175
159	603	176
160	604	177
161	605	178
162	606	179
163	607	180
164	608	181
165	609	182
166	610	183
167	611	184
168	612	185
169	613	186
170	614	187
171	615	188
172	616	189
173 174	617	190
	010	191

175	619	192
176	620	193
177	621	194
178	622	195
179	623	197
180	624	198
181	625	199
182	626	200
183	627	201
184	628	202
185	629	203
186	630	204
187	631	205
188	632	205
	633	
189		207
190	634	208
191	635	209
192	636	210
193	637	211
194	638	212
195	639	213
196	640	214
197	641	215
198	642	216
199	643	217
200	644	218
201	645	219
202	646	220
203	647	221
204	648	222
205	649	223
206	650	225
207	651	226
208	652	227
209	653	228
210	654	229
211	655	230
212	656	231
213	657	232
214	658	233
215	659	234
216	660	235
217	661	236
218	662	237
219	663	238
220	664	239
221	665	240
222	666	241
223	667	242
224	668	243
225	669	244
226	670	245
227	671	246
228	. 672	247
229	673	248
230	674	249
231	675	250
232	676	251
232	677	252
234	678	253
234	0/8	233

. ...

235	679	254
236	680	255
237	681	256
238	682	258
239	683	259
240	684	260
241	685	261
242	686	262
243	687	263
244	688	264
245	689	265
246	690	266
247	691	267
248	692	268
249	693	269
250	694	270
251	695	271
252	696	272
253	697	273
254	698	274
255	699	275
256 257	700	277
258	701 702	278 279
259	702	280
260	703	282
261	705	283
262	706	. 284
263	707	285
264	708	286
265	709	287
266	710	288
267	711	289
268	712	290
269	713	291
270	714	292
271	715	293
272	716	294
273	717	295
274	718	296
275	719	297
276	720	298
277	721	299
278	722	300
280	723 724	301 302
281	725	302
282	725	304
283	727	306
284	728	307
285	729	308
286	730	309
287	731	310
288	732	311
289	733	312
290	734	313
291	735	314
292	736	316
293	737	317
294	738	318

295	739	319
296	740	320
297	741	321
298	742	322
299	743	323
300	744	324
301	745	325
302	746	326
303	747	327
304	748	328
305	749	329
306	750	330
. 307	751	331
308	752	332
309	753	333
310	754	334
311	755	335
312	756	336
313	757	337
314	758	338
315	759	339
316	760	340
317	761	341
318	762	342
319	763	343
320	764	344
321	765	345
322	766	346
323	767	347
324	768	348
325	769	349
326	770	350
327	771	351
328	772	352
329	773	353
330	774	354
331	775	355
332	776	356
333	777	357
334	778	358
335	779	359
336	780	360
337	781	361
338	782	362
339	783	363
340	784	364
341	785	366
342	786	367
343	787	368
344	788	369
345	789	370
346	790	371
347	791	372_
348	792	373
349	793	374
350	794	376
351	795	377
352	796	378
353	797	379
354	798	380

355 799 381 382 386 800 382 383 385 802 384 359 803 385 360 804 386 361 805 387 362 806 388 363 364 808 390 365 366 810 392 366 810 392 366 811 393 368 812 395 369 813 396 371 815 398 377 821 404 403 387 418 397 411 385 388 382 417 389 834 422 399 843 422 406 850 439 406 850 439 408 855 441 408 855 441 411 855 441 415 441 415 441 415 441 415 441 415 441 415 441 415 441 441 4558 445 445 441 441 445			,
357	355	799	381
358 802 384 359 803 385 360 804 386 361 805 387 362 806 388 363 807 389 364 808 390 365 809 391 366 810 392 367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 377 821 404 377 821 404 377 821 404 378 822 406 379 823 407			382
359 803 385 360 804 386 361 805 387 362 806 388 363 807 389 364 808 390 365 809 391 366 810 392 367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411	357	801	383
359 803 385 360 804 386 361 805 387 362 806 388 363 807 389 364 808 390 365 809 391 366 810 392 367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411	358	802	384
360 804 386 361 805 387 362 806 388 363 807 389 364 808 390 365 809 391 366 810 392 367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 375 819 402 376 820 403 377 821 404 377 821 404 378 822 406 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410	359	803	
361 805 387 362 806 388 363 807 389 364 808 390 365 809 391 366 810 392 367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 381 822 406 379 823 407 381 825 409 381 825 409 382 826 410 383 827 411			
362 806 388 363 807 389 364 808 390 365 809 391 366 810 392 367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414			
363 807 389 364 808 390 365 809 391 366 810 392 367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416			
364 808 390 391 365 809 391 392 367 811 393 368 812 395 369 813 396 370 814 397 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 402 375 819 402 376 820 403 377 821 404 402 377 821 404 403 377 821 404 408 381 822 406 379 823 407 380 824 408 381 825 409 381 825 409 382 826 410 383 827 411 404 383 827 411 384 828 412 384 828 412 384 384 828 412 385 829 <t< td=""><td></td><td></td><td></td></t<>			
365 809 391 366 810 392 367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418			
366 810 392 367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 388 832 417 389 833 418			
367 811 393 368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420			
368 812 395 369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421			
369 813 396 370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 387 831 416 388 830 414 387 831 416 388 832 417 388 832 417 389 833 418 390 834 419 391 835 420			
370 814 397 371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 429 413 416 417 389 833 418 390 834 419			
371 815 398 372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424			396
372 816 399 373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425	370	814	397
373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426	371	815	398
373 817 400 374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426	372	816	399
374 818 401 375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 395 839 424 398 841 426 398 842 427			the state of the s
375 819 402 376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428			
376 820 403 377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430			
377 821 404 378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 397 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430			
378 822 406 379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431			
379 823 407 380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432			
380 824 408 381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433			
381 825 409 382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435			
382 826 410 383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436			
383 827 411 384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437			
384 828 412 385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438			
385 829 413 386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439			
386 830 414 387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440			
387 831 416 388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441			413
388 832 417 389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443		830	414
389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443	387	831	416
389 833 418 390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443	388	832	417
390 834 419 391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443	389	833	
391 835 420 392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443		834	
392 836 421 393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
393 837 422 394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
394 838 423 395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
395 839 424 396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
396 840 425 397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
397 841 426 398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
398 842 427 399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
399 843 428 400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
400 844 429 401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
401 845 430 402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
402 846 431 403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
403 847 432 404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
404 848 433 405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
405 849 435 406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			432
406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			433
406 850 436 407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443		849	435
407 851 437 408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443	406		
408 852 438 409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
409 853 439 410 854 440 411 855 441 412 856 442 413 857 443			
410 854 440 411 855 441 412 856 442 413 857 443			
411 855 441 412 856 442 413 857 443			
412 856 442 413 857 443			
413 857 443			
414 858 445			
	414	838	445

415	859	446
416	860	447
417	861	448
418	862	449
419	863	450
420	864	451
421	865	452
422	866	453
423	867	454
424	868	455
425	869	456
426	870	457
427	871	458
428	872	459
429	873	460
430	874	461
431	875	462
432	876	463
433	877	464
434 .	878	465
435	879	466
436	880	467
437	881	468
438	882	469
439	883	470
440	884	471
441	885	472
442	886	473
443	887	474
444	888	475

WHAT IS CLAIMED IS:

- 1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-444, a mature protein coding portion of SEQ ID NO: 1-444, an active domain coding portion of SEQ ID NO: 1-444, and complementary sequences thereof.
- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
- 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
- 5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
- 6. A vector comprising the polynucleotide of claim 1.
- 7. An expression vector comprising the polynucleotide of claim 1.
- 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
- 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:
 - (a) a polypeptide encoded by any one of the polynucleotides of claim 1; and
 - (b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO: 1-444.

WO 02/22660 PCT/US01/26015

- 11. A composition comprising the polypeptide of claim 10 and a carrier.
- 12. An antibody directed against the polypeptide of claim 10.
- 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex; and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
- b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
- c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
- 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and
- b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.
- 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.

- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
- b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from SEQ ID NO: 1-444, a mature protein coding portion of SEQ ID NO: 1-444, an active domain coding portion of SEQ ID NO: 1-444, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-444, under conditions sufficient to express the polypeptide in said cell; and
 - b) isolating the polypeptide from the cell culture or cells of step (a).
- 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of any one of the polypeptides SEQ ID NO: 217-432, or 649-864, the mature protein portion thereof, or the active domain thereof.
- 21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.
- 22. A collection of polynucleotides, wherein the collection comprising the sequence information of at least one of SEQ ID NO: 1-444.
- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
- 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.

4645

- The collection of claim 22, wherein the collection is provided in a computer-readable 26. format.
- 27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
- 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

6.434

tion .

• ·

•