STAT 30400: Distribution Theory

Fall 2019

Homework 4

Solutions by

JINHONG DU

12243476

STAT 30400, Homework 4

- 1. (13 pts) Let X be a random variable.
 - (a) Show that X is integrable if and only if

$$\sum_{n=1}^{\infty} \mathbb{P}(|X| \ge n) < \infty.$$

Proof. Since

$$X$$
 is integrable \iff $\mathbb{E}X^+ < \infty, \mathbb{E}X^- < \infty$
 \iff $\mathbb{E}|X| = \mathbb{E}X^+ + \mathbb{E}X^- < \infty.$

next we just need to prove that |X| is integrable if and only if $\sum_{n=1}^{\infty} \mathbb{P}(|X| \ge n) < \infty$. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space and $E_k = \{\omega : k \le |X(\omega)| < k+1\}$, then $\Omega = \bigcup_{k=0}^{\infty} E_k$. Since for all $k \in \mathbb{Z}$,

$$k\mathbb{P}(E_k) \le \int_{E_k} |X(\omega)| d\mathbb{P}(\omega) \le (k+1)\mathbb{P}(E_k),$$

we have

$$\sum_{k=0}^{\infty} k \mathbb{P}(E_k) \le \int_{\Omega} |X(\omega)| d\mathbb{P}(\omega) \le \sum_{k=0}^{\infty} (k+1) \mathbb{P}(E_k)$$

$$\le \sum_{k=0}^{\infty} k \mathbb{P}(E_k) + \sum_{k=0}^{\infty} \mathbb{P}(E_k)$$

$$= \sum_{k=0}^{\infty} k \mathbb{P}(E_k) + 1.$$

Therefore,

$$|X|$$
 is integrable if and only if $\sum_{k=0}^{\infty} k \mathbb{P}(E_k) < \infty$. (1)

 \Longrightarrow

Since |X| is integrable, $\mathbb{P}(|X| = \infty) = 0$ (Otherwise, $\mathbb{E}|X| \ge \infty \times \mathbb{P}(|X| = \infty) = \infty$). Then

$$\begin{split} \sum_{n=0}^{\infty} \mathbb{P}(|X| \geq n) &= \sum_{n=0}^{\infty} \sum_{k=n}^{\infty} \mathbb{P}(E_k) \\ &= \sum_{k=0}^{\infty} \sum_{n=0}^{k-1} \mathbb{P}(E_k) \\ &= \sum_{k=0}^{\infty} k \mathbb{P}(E_k). \end{split}$$

From (1), we have $\sum_{k=1}^{\infty} k \mathbb{P}(E_k) \leq \sum_{k=0}^{\infty} k \mathbb{P}(E_k) < \infty$.

 \Leftarrow

Since $\sum_{n=1}^{\infty} \mathbb{P}(|X| \geq n) < \infty$ implies $\mathbb{P}(|X| = \infty) = 0$, otherwise $\sum_{n=1}^{\infty} \mathbb{P}(|X| \geq n) \geq \sum_{n=1}^{\infty} \mathbb{P}(|X| = \infty) = \infty$, which is a contradiction. So again

$$\sum_{k=0}^{\infty} k \mathbb{P}(E_k) = \sum_{n=0}^{\infty} \mathbb{P}(|X| \ge n) = \mathbb{P}(|X| \ge 0) + \sum_{n=1}^{\infty} \mathbb{P}(|X| \ge n) < \infty$$

and from (1), |X| is integrable.

(b) Show that there exists a transformation $f:[0,\infty)\to [0,\infty)$ that is increasing, such that f(0)=0, $f(x)\to\infty$ as $x\to\infty$, and f(|X|) is integrable.

Proof. If X is integrable, then f(x) = x satisfies the conditions.

If X is not integrable, $\mathbb{E}|X| = \mathbb{E}X^+ + \mathbb{E}X^- = \infty$.

Let $Q(u) = \inf\{x : F_{|X|}(x) \ge u\}$ be the quantile function of |X|. Define

$$f(x) = \begin{cases} 0, & 0 \\ n, & Q\left(1 - \frac{1}{2^{n-1}}\right) < x \le Q\left(1 - \frac{1}{2^n}\right) & n = 1, 2, \dots \end{cases}$$

Obviously, f(0) = 0 and f is increasing since Q(u) is non-decreasing.

If $F_{|X|}(x_0)=1$ for some $x_0\in\mathbb{R}$, then $\mathbb{E}|X|\leq x_0<\infty$, i.e., X is integrable. So if X is not integrable, then $F_{|X|}(x)<1$ for $x<\infty$. So as $n\to\infty$, $Q(1-\frac{1}{2^n})\to Q(1-)=\infty$. Since $\bigcup_{n=1}^{\infty}(Q\left(1-\frac{1}{2^{n-1}}\right),Q\left(1-\frac{1}{2^n}\right)]=(0,\infty), \lim_{x\to\infty}f(x)=\lim_{n\to\infty}n=\infty$. Also,

$$\mathbb{E}f(|X|) = \sum_{n=1}^{\infty} n \mathbb{P}\left(Q\left(1 - \frac{1}{2^{n-1}}\right) < |X| \le Q\left(1 - \frac{1}{2^n}\right)\right)$$

$$= \sum_{n=1}^{\infty} n \mathbb{P}\left(1 - \frac{1}{2^{n-1}} < F(|X|) \le 1 - \frac{1}{2^n}\right)$$

$$= \sum_{n=1}^{\infty} \frac{n}{2^{n-1}}$$

$$= \sum_{n=1}^{\infty} \frac{dx^n}{dx} \Big|_{x=\frac{1}{2}}$$

$$= \frac{d}{dx} \left(\sum_{n=1}^{\infty} x^n\right) \Big|_{x=\frac{1}{2}}$$

$$= \frac{d}{dx} \frac{x}{1-x} \Big|_{x=\frac{1}{2}}$$

$$= \frac{1}{(1-x)^2} \Big|_{x=\frac{1}{2}}$$

$$= 4,$$

i.e., f(|X|) is integrable.

- 2. (12 pts) Let X and Y be random variables with finite variances. We denote with μ_X and μ_Y the means, σ_X and σ_Y the standard deviations and with ρ the correlation.
 - (a) Find the value of $\beta \in \mathbb{R}$ that minimizes $Var(Y \beta X)$.

If $\sigma_X = 0$, then X = c a.s.. So $Var(Y - \beta X) = Var(Y)$ is irrelevant to β . If $\sigma_X \neq 0$,

$$\begin{aligned} Var(Y - \beta X) &= Var(Y) + \beta^2 Var(X) - 2Cov(Y, \beta X) \\ &= Var(Y) + \beta^2 Var(X) - 2\beta Cov(Y, X) \\ &= \sigma_X^2 \beta^2 - 2\rho \sigma_X \sigma_Y \beta + \sigma_Y^2 \\ &= \sigma_X^2 \left(\beta - \frac{\rho \sigma_Y}{\sigma_X}\right)^2 + (1 - \rho^2)\sigma_Y^2 \\ &\geq (1 - \rho^2)\sigma_Y^2, \end{aligned}$$

the inequality holds when $\beta = \frac{\rho \sigma_Y}{\sigma_X}$.

(b) Find the values of $\beta \in \mathbb{R}$ such that Y and $Y - \beta X$ are uncorrelated.

If $\sigma_X = \sigma_Y = 0$ then ρ does not exist. So either one must be nonzero.

If Y and $Y - \beta X$ are uncorrelated, then $Cor(Y, Y - \beta X) = 0$ and $Cov(Y, Y - \beta X) = 0$. So

$$Cov(Y, Y - \beta X) = Var(Y) - \beta Cov(Y, X)$$
$$= \sigma_Y^2 - \beta \rho \sigma_X \sigma_Y$$
$$= 0,$$

which implies $\beta = \frac{\sigma_Y}{\rho \sigma_X}$ when $\sigma_X, \sigma_Y \neq 0$. If $\sigma_X \neq 0$ and $\sigma_Y = 0$, then $\forall \beta \in \mathbb{R}$ satisfies the condition. If $\sigma_X = 0$ and $\sigma_Y \neq 0$, then there is no such β .

(c) Find the values of $\beta \in \mathbb{R}$ such that X and $Y - \beta X$ are uncorrelated.

Analogously,

$$Cov(X, Y - \beta X) = Cov(X, Y) - \beta Var(X)$$
$$= \rho \sigma_X \sigma_Y - \beta \sigma_X^2$$
$$= 0.$$

which implies $\beta = \frac{\rho \sigma_Y}{\sigma_X}$ when $\sigma_X \neq 0$. If $\sigma_X = 0$, then $\forall \beta \in \mathbb{R}$ satisfies the condition.

(d) Find conditions under which, for some β , $Y - \beta X$ is uncorrelated with both X and Y.

If $\sigma_X = 0$ and $\sigma_Y \neq 0$, then $Cov(Y - \beta X) = Var(Y) > 0$. So there is no such β .

If $\sigma_Y = 0$ and $\sigma_X \neq 0$, then $Cov(Y - \beta X) = \beta^2 Var(X)$. If b = 0, then $Y - \beta X$ is uncorrelated with both X and Y.

If $\sigma_Y \neq 0$ and $\sigma_X \neq 0$, from (b) and (c), we have $Y - \beta X$ is uncorrelated with both X and Y when $\beta = \frac{\sigma_Y}{\rho \sigma_X} = \frac{\rho \sigma_Y}{\sigma_X}$. So $(1 - \rho^2)\sigma_X \sigma_Y = 0$. Since $\sigma_Y \neq 0$ and $\sigma_X \neq 0$, we have $\rho = \pm 1$.

3

- 3. (10 pts) Let X be a random variable with mean μ and variance σ^2 .
 - (a) Show that,

$$\mathbb{P}(X - \mu \ge \alpha) \le \frac{\sigma^2}{\sigma^2 + \alpha^2}, \qquad \alpha \ge 0.$$

Proof. If $\alpha = 0$, then $\mathbb{P}(X - \mu \ge \alpha) \le 1$ always holds. If $\alpha > 0$, $\forall u \ge 0$,

$$\mathbb{P}(X - \mu \ge \alpha) = \mathbb{P}(X - \mu + u \ge \alpha + u)$$

$$\le \mathbb{P}((X - \mu + u)^2 \ge (\alpha + u)^2)$$

$$\le \frac{\mathbb{E}[(X - \mu + u)^2]}{(\alpha + u)^2}$$

$$= \frac{\sigma^2 + u^2}{(\alpha + u)^2}$$

Let $f(u) = \frac{\sigma^2 + u^2}{(\alpha + u)^2}$. By seting

$$f'(u) = \frac{2u(\alpha + u)^2 - 2(\alpha + u)(\sigma^2 + u^2)}{(\alpha + u)^4}$$

$$= \frac{2u(\alpha + u) - 2(\sigma^2 + u^2)}{(\alpha + u)^3}$$

$$= \frac{2u\alpha - 2\sigma^2}{(\alpha + u)^3}$$

$$= 0,$$

we have $u^* = \frac{\sigma^2}{\alpha}$ is a stationary point. f'(u) < 0 when $0 \le u < u^*$; f'(u) > 0 when $u > u^*$. So $f(u) \ge f(u^*) = \frac{\sigma^2}{\sigma^2 + \alpha^2}$. Let $u = u^*$, we have

$$\mathbb{P}(X - \mu \ge \alpha) \le \frac{\sigma^2}{\sigma^2 + \alpha^2}, \qquad \alpha \ge 0.$$

(b) Show that,

$$\mathbb{P}(|X - \mu| \ge \alpha) \le \frac{2\sigma^2}{\sigma^2 + \alpha^2}, \qquad \alpha \ge 0.$$

When is this better than Chebyshev's inequality?

If $\alpha = 0$, the inequality holds naturally.

If $\alpha < 0, \forall u \ge 0$,

$$\mathbb{P}(X - \mu \le \alpha) = \mathbb{P}(\mu - X + u \ge -\alpha + u)$$

$$\le \mathbb{P}((\mu - X + u)^2 \le (-\alpha + u)^2)$$

$$\le \frac{\mathbb{E}[(\mu - X + u)^2]}{(-\alpha + u)^2}$$

$$= \frac{\sigma^2 + u^2}{(-\alpha + u)^2}$$

Solution (cont.)

Analogously, let $u = u^* = \frac{\sigma^2}{-\alpha}$, we have

$$\mathbb{P}(X - \mu < \alpha) \le \frac{\sigma^2}{\sigma^2 + \alpha^2}, \quad \alpha < 0.$$

Therefore, for $\alpha \geq 0$,

$$\mathbb{P}(|X - \mu| \ge \alpha) = \mathbb{P}(X - \mu \ge \alpha) + \mathbb{P}(\mu - X \ge \alpha)$$
$$= \mathbb{P}(X - \mu \ge \alpha) + \mathbb{P}(X - \mu \le -\alpha)$$
$$\le \frac{2\sigma^2}{\sigma^2 + \alpha^2}.$$

For the Chebyshev's inequality,

$$\mathbb{P}(|X - \mu| \ge \alpha) \le \frac{\sigma^2}{\alpha}$$

$$\tfrac{2\sigma^2}{\sigma^2+\alpha^2} \leq \tfrac{\sigma^2}{\alpha} \text{ when } \sigma^2 \geq 1, \, \text{or, } \sigma^2 < 1 \text{ and } \alpha \in (0,1-\sqrt{1-\sigma^2}) \cup (1+\sqrt{1-\sigma^2},\infty).$$

- 4. (15 pts) Let X_r denote a Gamma(r, 1) random variable.
 - (a) Find the g-means of X_r for the power transformations defined as $g_{\lambda}(x) = x^{\lambda}$, $\lambda \neq 0$ and $g_0(x) = \log(x)$.

Since $X_r \sim \text{Gamma}(r, 1)$, the density function of X_r is given by

$$f_{X_r}(x) = \frac{1}{\Gamma(r)} x^{r-1} e^{-x} \mathbb{1}_{(0,\infty)}.$$

Then

$$\mathbb{E}g_{\lambda}(X_r) = \int_0^{\infty} x^{\lambda} \frac{1}{\Gamma(r)} x^{r-1} e^{-x} dx$$

$$= \frac{\Gamma(r+\lambda)}{\Gamma(r)} \int_0^{\infty} \frac{1}{\Gamma(r+\lambda)} x^{\lambda+r-1} e^{-x} dx$$

$$= \frac{\Gamma(r+\lambda)}{\Gamma(r)}.$$

So

$$g_{\lambda}^{-1}(\mathbb{E}g_{\lambda}(X_r)) = \left(\frac{\Gamma(r+\lambda)}{\Gamma(r)}\right)^{-\lambda}$$

The distribution of $g_0(X_r)$ is given by

$$\begin{split} f_{g_0(X_r)}(y) &= f_{X_r}(e^y)e^{-y} \\ &= \frac{1}{\Gamma(r)}e^{(r-1)y}e^{-e^{-y}}\mathbb{1}_{(1,\infty)} \end{split}$$

Since

$$\frac{\mathrm{d}}{\mathrm{d}r}e^{(r-1)y}e^{-e^{-y}} = ye^{(r-1)y}e^{-e^{-y}} = \Gamma(r)yf_{g_0(X_r)}(y),$$

we have

$$\mathbb{E}g_0(X_r) = \int_{\mathbb{R}} y f_{g_0(X_r)}(y) dy$$

$$= \int_1^{\infty} \frac{1}{\Gamma(r)} \frac{d}{dr} e^{(r-1)y} e^{-e^{-y}} dy$$

$$= \frac{1}{\Gamma(r)} \frac{d}{dr} \int_1^{\infty} e^{(r-1)y} e^{-e^{-y}} dy$$

$$= \frac{1}{\Gamma(r)} \frac{d}{dr} \Gamma(r)$$

$$= \frac{d}{dr} \log(\Gamma(r)),$$

so

$$g_0^{-1}(\mathbb{E}g_0(X_r)) = e^{\frac{\mathrm{d}}{\mathrm{d}r}\log(\Gamma(r))}.$$

(b) For r = 1, 4, and 16, numerically plot and evaluate the g_{λ} -mean and the g_{λ} -median (defined similarly to the g-mean, as discussed in class) against λ in the interval [-1/6, 1]. Make a separate plot for each r but include the mean and median on the same plot.

(c) For which value of λ do you think the distribution of $g_{\lambda}(X)$ is most nearly symmetric?

Since the density of X_r is unimodal and g_{λ} is strictly monotone, the density of $g_{\lambda}(X_r)$ is also unimode. Then if $g_{\lambda}(X_r)$ has equal mean and median, which equals to g_{λ} -mean= g_{λ} -median, then the density of it is mostly symmetric. In the plots, we see that $\lambda \approx 0.3$, g_{λ} -mean= g_{λ} -median, which means that the density of $g_{\lambda}(X_r)$ is mostly symmetric.

