MODELLING SLIDING MODE CONTROLLER AND SIMULATION OF VEHICLE SUSPENSION SYSTEM WITH ACTIVE AND SEMI-ACTIVE DAMPERS

Sukriti Singh (14EE150)
Sukanya M. Sundaram (14EE247)

HALF CAR MODEL

FBD OF FRONT WHEEL

Equations from the free-body diagram:

$$mf x1" = F2sf + F2df - F1sf - F1df$$

 $mf x1" = k2f (y1 - x1) + b2f (y1' - x1') - k1f$
 $(x1 - r1) - b1f (x1' - r1')$

Substituting for $y1 = y + a \Theta$ and rearranging,

$$-k2fy - b2fy' - k2fa\Theta - b2fa\Theta' + mfx1'' + k2fx1 + k1fx1 + b2fx1' + b1fx1' = k1fr1 + b1fr1'$$

FBD OF SUSPENSION SYSTEM

- Equations from the free-body diagram: mb y" = k2f (y1 x1)
 b2f (y1' x1') k2r (y2 x2) b2r (y2' x2')
- Substituting for $(y1 = y + a \Theta)$ and $(y2 = y b \Theta)$ and rearranging,

 $k2f y + k2r y + b2f y' + b2r y' + mb y'' + k2f a \Theta - k2r b \Theta + b2f a \Theta' - b2r b \Theta' - k2f x1 - b2fx1' - k2r x2 - b2r x2' = 0$

DYNAMIC MODELLING OF THE HALF CAR

• $M\ddot{x} + Sx + Tx = Du + Er$,

 Where the state, active control and excitation vectors are given by:

$$x = (y_1 \ x_1 \ y_2 \ x_2 \ \dot{y_1} \ \dot{x_1} \ \dot{y_2} \ \dot{x_2})^T$$

$$u = (u_f \ u_r)^T$$

$$r = (\dot{r_1} \ r_1 \ \dot{r_2} \ r_2)^T$$

MATRICES

$$\bullet M = \begin{pmatrix} (bm_b)/L & 0 & (am_b)/L & 0 \\ I_b/L & 0 & -I_b/L & 0 \\ 0 & m_1 & 0 & 0 \\ 0 & 0 & 0 & m_2 \end{pmatrix}$$

$$\bullet S = \begin{pmatrix} b_{2f} & -b_{2f} & b_{2r} & b_{2r} \\ a(b_{2f}) & -a(b_{2f}) & -b(b_{2r}) & b(b_{2r}) \\ -b_{2f} & b_{2f} & 0 & 0 \\ 0 & 0 & -b_{2r} & b_{2r} \end{pmatrix}$$

Where I_b is the moment of inertia for the vehicle body

MATRICES

$$T = \begin{pmatrix} k_{2f} & -k_{2f} & k_{2r} & -k_{2r} \\ a(k_{2f}) & -a(k_{2f}) & -b(k_{2r}) & -b(k_{2r}) \\ -k_{2f} & (k_{2f} + k_{1f}) & 0 & 0 \\ 0 & 0 & (-k_{2r}) & (k_{2r} + k_{1r}) \end{pmatrix}$$

$$E = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ k_{1f} & 0 & 0 & 0 \\ 0 & 0 & k_{1r} & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 1 \\ a & -b \\ -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 1 \\ a & -b \\ -1 & 0 \\ 0 & -1 \end{pmatrix}$$

STATE SPACE EQUATION AND SMC

•
$$x\dot{(}t) = Ax(t) + B_{in}u(t) + r(t)$$

Where $x(t) \in \mathbb{R}^n$ is state vector and $u(t) \in \mathbb{R}^m$ is the control input and r(t) represents uncertainties with mismatched conditions.

SWITCHING SURFACE AND CONTROLLER DESIGN

The sliding surface is given as:

$$\sigma(t) = Cx(t)$$

• To enter sliding mode, $\sigma(t) = 0$

•
$$\sigma(t) = 0$$

•
$$u_{eq} = (CB_{in})^{-1}(-CAx - Cr(t))$$

•
$$u = u_{eq} + u_{sw}$$

• Thus,

$$u = -(CB_{in})^{-1}((CAx + Cr) + \operatorname{sgn}(\sigma))$$

Simulations

Road Input	Simulation figure
Sine wave (0.1m Amplitude, Freq = 1 Hz)	\Downloads\HC Active\hcsine 0.1 1 f.fig\Downloads\HC Active\hcsine 0.1 1 r.fig\Downloads\HC Active\hcsine 0.1 1 control.fig
Sine wave (0.1m Amplitude, Freq= 0.5Hz)	\Downloads\HC Active\hcsine 0.1 0.5 f.fig\Downloads\HC Active\hcsine 0.1 0.5 r.fig
Sine wave (0.1m Amplitude, Freq= 2 Hz)	\Downloads\HC Active\hcsine 0.1 2 f.fig\Downloads\HC Active\hcsine 0.1 2 r.fig
Step Input (0.1m Amplitude)	\Downloads\HC Active\hcstep 0.1 f.fig\Downloads\HC Active\hcstep 0.1 r.fig
Pulse (0.049m Amp., 0.56s width)	\Downloads\HC Active\hcpulse 0.49amp 0.56width f.fig\Downloads\HC Active\hcpulse 0.49amp 0.56width r.fig
Random (0.046m Amplitude)	\Downloads\HC Active\hcrandom 0.46max f.fig\Downloads\HC Active\hcrandom 0.46max r.fig

Semi-active suspension

Advantages

- Cost-effective
- Lower power consumption
- Robust

Fig: Quarter Car Model with Semi-active suspension

Quarter Car Model with MR Damper

$$f_d = C_0(\dot{a}) + K_0 a + \alpha(z) + f_0$$

$$\dot{z} = -\gamma |\dot{a}|z|z|^{n-1} - \beta(\dot{a})|z|^n + \delta(\dot{a})$$

$$\alpha = \alpha_a + \alpha_b \, V$$

$$C_0 = C_{0a} + (C_{0b})V$$

$$\dot{V} = -\eta(V - v)$$

Deriving Controller Output

- $m_s(\ddot{y}) + k_s(y x) + f_d = 0$
- $m_w \ddot{x} k_s (y x) k_t (r x) f_d = 0$

Sliding Surface:

$$S = \dot{e} + \lambda e$$

$$e = y - y_{ref}$$

$$f_c = f_{d0} - (k_d)sgn(S)$$

Deriving k_d

$$\dot{V_{SMC}} = S\dot{S} \le -\phi|S|$$

$$f_{d0} = -k_s(y-x) - m_{s0}(y\ddot{r}ef) + m_{s0}(\lambda)(\dot{y} - y\dot{r}ef)$$

$$\dot{S} = \frac{1}{m_s} [(-k_s)(y - x) - f_d] - y_{ref}^{"} + \lambda \dot{e}$$

$$\dot{V_{SMC}} = \left[\left(\frac{1}{m_S} - \frac{1}{m_{S0}} \right) \left(-k_S y + k_S x - f_{d0} + \frac{k_d}{m_S} sgn(s) \right] s$$

$$\left[\left(\frac{1}{m_s} - \frac{1}{m_{s0}} \right) (-K_s y + K_s x - f_{d0}) + \frac{k}{m_s} sgn(s) \right] s \le -\phi. s. sgn(s)$$

$$k_d = -m_{s0}q\phi - (q-1)(|f_{d0}| + k_s|y| + k_s|x|)$$

Damper Control Strategy

$$v = G(f_c - f_d)sgn(f_d)$$
 If $G(f_c - f_d)sgn(f_d) > V_{max}$, then $v = V_{max}$

If $G(f_c - f_d)sgn(f_d) < V_{min}$, then $v = V_{min}$

Simulink Model

Simulations

Road Input	Simulation figure
Sine wave (0.1m Amplitude, Freq = 1 Hz)	\Downloads\QC Semiactive MR\qcsine 0. 1 1.fig
Sine wave (0.1m Amplitude, Freq= 0.5Hz)	\Downloads\QC Semiactive MR\qcsine 0. 1 0.5.fig
Sine wave (0.1m Amplitude, Freq= 2 Hz)	\Downloads\QC Semiactive MR\qcsine 0. 1 2.fig
Step Input (0.1m Amplitude)	\Downloads\QC Semiactive MR\qcstep 0 .1.fig
Pulse (0.049m Amp., 0.56s width)	\Downloads\QC Semiactive MR\qcpulse 0.49amp 0.56width.fig
Random (0.046m Amplitude)	\Downloads\QC Semiactive MR\qcrando m 0.46maxamp.fig