

Time Series Analysis ETS

Dr. Ludovic Amruthalingam

ludovic.amruthalingam@hslu.ch

Informatik

Outline

- Simple exponential smoothing
- (Damped) Holt's linear trend
- Holt-Winters methods
- Time series decompositions with Holt-Winters
- Innovation state space models ETS
- Prediction confidence intervals
- Connection to ARIMA

HSLU Seite 2

Simple exponential smoothing (SES)

Given a TS realization $\{x_1, x_2, ... x_t, ... x_n\}$, the 1-step ahead forecast is modeled as a weighted average (avg_w) of the current observation x_t and the previous 1-step ahead forecast.

$$\hat{x}_{t+1|t} = \alpha x_t + (1-\alpha)\hat{x}_{t|t-1}$$
 with $\alpha \in [0,1]$.

Choosing a large (small) α value assigns more weight to recent (older) observations.

Substituting the intermediate forecasts: $\hat{x}_{t+1|t} = \alpha x_t + \alpha (1-\alpha) x_{t-1} + \alpha (1-\alpha)^2 x_{t-2} + \cdots$

$$\hat{x}_{t+1|t} = \alpha \sum_{i=0}^{t-1} (1-\alpha)^i x_{t-i} + (1-\alpha)^t l_0$$
 with $\hat{x}_{1|0}$ denoted as l_0 .

i.e., forecast as weighted averages of past observations with exponentially decaying weights.

SES generates flat forecast trajectories

$$\hat{x}_{t+h|t} = \alpha \hat{x}_{t+h-1|t} + (1-\alpha)\hat{x}_{t+h-1|t} = \hat{x}_{t+h-1|t} = \cdots = \hat{x}_{t+1|t}$$

SES assumes the data fluctuate randomly around a constant mean level: data without trend or seasonality.

Year

Seite 4

HSLU

SES component form

Represent model components separately.

SES only considers the **level** l_t of the time series.

Forecast equation: $\hat{x}_{t+h|t} = l_t$

Level equation: $l_t = \alpha x_t + (1 - \alpha)l_{t-1}$ with $\alpha \in [0,1]$

 l_t is the avg_w of observation x_t and the previous level i.e., the previous 1-step ahead forecast $\hat{x}_{t|t-1} = l_{t-1}$.

Estimate α and l_0 from $\{x_1, x_2, ... x_T\}$ by minimizing the **sum of squared errors** (SSE)

$$SSE = \sum_{i=1}^{T} (x_t - \hat{x}_{t|t-1})^2$$

Holt's linear trend method

Extend SES by adding an estimate of the level's rate of change, called the trend component.

Forecast equation: $\hat{x}_{t+h|t} = l_t + hb_t$

Level equation: $l_t = \alpha x_t + (1 - \alpha)(l_{t-1} + b_{t-1})$

Trend equation: $b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1}$ with $\alpha, \beta^* \in [0,1]$

 l_t is the avg_w of observation x_t and the previous 1-step ahead forecast $\hat{x}_{t|t-1} = l_{t-1} + b_{t-1}$. b_t is the avg_w of the current trend estimate $l_t - l_{t-1}$ and the previous trend b_{t-1} .

Generates linear forecast trajectories function of h.

Estimate α , l_0 , β^* , b_0 from $\{x_1, x_2, ... x_T\}$ by minimizing the SSE.

Damped Holt's linear trend method

Purely linear trend tend to **over-forecast** especially for longer forecast horizons → consider **damped trend**.

Forecast equation: $\hat{x}_{t+h|t} = l_t + b_t \sum_{i=1}^h \phi^i$

Level equation: $l_t = \alpha x_t + (1 - \alpha)(l_{t-1} + \phi b_{t-1})$

Trend equation: $b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)\phi b_{t-1}$ with $\alpha, \beta^*, \phi \in [0,1]$

For $\phi = 1$, the method is equivalent to Holt's linear trend method.

The damping effect is **stronger** (weaker) for smaller (larger) ϕ values.

For long horizons (and provided $\phi < 1$), the trend **tends to a constant** since $\lim_{h\to\infty} \hat{x}_{t+h|t} = l_t + b_t \frac{\phi}{1-\phi}$.

Estimate α , l_0 , β^* , b_0 , ϕ from $\{x_1, x_2, ... x_T\}$ by minimizing the SSE. In practice ϕ typically lies within [0.8, 0.98].

Weekly Apple Inc. (AAPL) Closing Prices

Weekly Apple Inc. (AAPL) Closing Prices

Holt-Winters additive method

Extend Holt's linear trend method by adding an estimate of the seasonal component of the time series.

Forecast equation: $\hat{x}_{t+h|t} = l_t + hb_t + s_{t+h-P[h/P]}$

Level equation: $l_t = \alpha(x_t - s_{t-P}) + (1 - \alpha)(l_{t-1} + b_{t-1})$

Trend equation: $b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1}$

Seasonal equation: $s_t = \gamma^*(x_t - l_t) + (1 - \gamma^*)s_{t-P}$ with $\alpha, \beta^*, \gamma^* \in [0,1]$

 l_t is the avg_w of the seasonality adjusted observation $x_t - s_{t-P}$ and the previous 1-step ahead non-seasonal forecast. b_t is the avg_w of the current trend estimate $l_t - l_{t-1}$ and the previous trend b_{t-1} .

 s_t is the avg_w of the level adjusted observation $x_t - l_t$ and the seasonal index from the previous period.

Replacing l_t in the seasonal equation yields $s_t = \gamma(x_t - l_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-P}$ with $\gamma = \gamma^*(1 - \alpha)$ and $\gamma \in [0, 1 - \alpha]$. s_t is the avg_w of the current seasonal index estimate $x_t - l_{t-1} - b_{t-1}$ and the seasonal index from the previous period.

Estimate $\alpha, l_0, \beta^*, b_0, \gamma, s_{0,-1,-2,...-(P-1)}$ from $\{x_1, x_2, ... x_T\}$ by minimizing the SSE.

Holt-Winters multiplicative method

Use Holt-Winters' additive method when the seasonal variations are roughly constant.

• $s_{t+1,...t+P}$ are expressed in absolute terms with the same unit as the TS and sum up to approximately zero.

When the seasonal variations are roughly **proportional** to the TS level, consider either non-linear transforms or the Holt-Winters' **multiplicative method**.

• $s_{t+1,...,t+P}$ are expressed in relative terms and sum up to approximately P.

Forecast equation: $\hat{x}_{t+h|t} = (l_t + hb_t)s_{t+h-P[h/P]}$

Level equation: $l_t = \alpha \frac{x_t}{s_{t-P}} + (1 - \alpha)(l_{t-1} + b_{t-1})$

Trend equation: $b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1}$

Seasonal equation: $s_t = \gamma \frac{x_t}{l_{t-1} + b_{t-1}} + (1 - \gamma)s_{t-p}$ with $\alpha, \beta^* \in [0,1]$ and $\gamma \in [0,1-\alpha]$

Monthly Average Temperature in Switzerland

Monthly Death Rates Over the Last 20 Years in France

Holt-Winters' damped method

Damped trend and additive seasonality

Forecast equation: $\hat{x}_{t+h|t} = l_t + b_t \sum_{i=1}^h \phi^i + s_{t+h-P[h/P]}$

Level equation: $l_t = \alpha(x_t - s_{t-P}) + (1 - \alpha)(l_{t-1} + \phi b_{t-1})$

Trend equation: $b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)\phi b_{t-1}$

Seasonal equation: $s_t = \gamma(x_t - l_{t-1} - \phi b_{t-1}) + (1 - \gamma)s_{t-P}$

with $\alpha, \beta^*, \phi \in [0,1]$ and $\gamma \in [0,1-\alpha]$

Damped trend and multiplicative seasonality

Forecast equation: $\hat{x}_{t+h|t} = \left(l_t + b_t \sum_{i=1}^h \phi^i\right) s_{t+h-P[h/P]}$

Level equation: $l_t = \alpha \frac{x_t}{s_{t-P}} + (1 - \alpha)(l_{t-1} + \phi b_{t-1})$

Trend equation: $b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)\phi b_{t-1}$

Seasonal equation: $s_t = \gamma \frac{x_t}{l_{t-1} - \phi b_{t-1}} + (1 - \gamma) s_{t-P}$

with $\alpha, \beta^*, \phi \in [0,1]$ and $\gamma \in [0,1-\alpha]$

Time series decomposition with Holt-Winters

Holt-Winters' components provides a decomposition comparable to decomposition methods like STL decomposition.

Note that Holt-Winters' level component corresponds to the trend component of decomposition methods.

Holt-Winters' trend component has no counterpart in decomposition methods.

Holt-Winters' trend component can be understood as the projected direction or trajectory of the time series.

HSLU Seite 13

HSLU

Seite 14

Innovation state space models – ETS

The methods described so far are deterministic and cannot provide uncertainty estimates.

Innovation state space models are stochastic processes that describe how the current state of the system depends on its **previous state** and a **random innovation term**.

- They can produce a forecast distribution that enables to compute prediction intervals.
- Their parameters are estimated with maximum likelihood estimation.
- The goodness of fit can be evaluated with information criteria.

We consider the Exponential smoothing with Trend and Seasonality (ETS) class of innovation state space models.

- The innovation term is a random error process $E_t \sim iid \mathcal{N}(0, \sigma^2)$
- Realizations can be expressed in absolute terms (additive errors): $\varepsilon_t = x_t \hat{x}_{t|t-1}$
- Realizations can be expressed in relative terms (multiplicative errors): $\varepsilon_t = \frac{x_t \hat{x}_{t|t-1}}{\hat{x}_{t|t-1}}$
- Choose multiplicative errors when the (residuals) variance is proportional to the level of the TS.

Simple exponential smoothing with error process

Recall the **forecast equation**

$$\hat{x}_{i+h|i} = l_i \stackrel{h=1}{\Longleftrightarrow} \hat{x}_{i+1|i} = l_i \stackrel{i=t-1}{\Longleftrightarrow} \hat{x}_{t|t-1} = l_{t-1}$$

With additive errors

$$\varepsilon_t = x_t - \hat{x}_{t|t-1} = x_t - l_{t-1}$$

Observation equation:

$$x_t = l_{t-1} + \epsilon_t$$

Level state equation:

$$l_t = \alpha x_t + (1 - \alpha)l_{t-1} = l_{t-1} + \alpha \underbrace{(x_t - l_{t-1})}_{\epsilon_t} = l_{t-1} + \alpha \epsilon_t$$

With multiplicative errors

$$\varepsilon_t = \frac{x_t - \hat{x}_{t|t-1}}{\hat{x}_{t|t-1}} = \frac{x_t - l_{t-1}}{l_{t-1}}$$

Observation equation:

$$x_t = l_{t-1}(1 + \epsilon_t)$$

Level state equation:

$$l_t = l_{t-1} + \alpha \underbrace{(x_t - l_{t-1})}_{\epsilon_t l_{t-1}} = l_{t-1} + \alpha \epsilon_t l_{t-1} = l_{t-1} (1 + \alpha \epsilon_t)$$

with $\alpha \in [0,1]$

with $\alpha \in [0,1]$

Damped Holt's linear trend with error process

Recall the **forecast equation**

$$\hat{x}_{i+h|i} = l_i + b_i \sum_{j=1}^h \phi^j \overset{h=1}{\Longleftrightarrow} \hat{x}_{i+1|i} = l_i + \phi b_i \overset{i=t-1}{\Longleftrightarrow} \hat{x}_{t|t-1} = l_{t-1} + \phi b_{t-1}$$

With additive errors

$$\varepsilon_t = x_t - \hat{x}_{t|t-1} = x_t - (l_{t-1} + \phi b_{t-1})$$

Observation equation:

 $x_t = l_{t-1} + \phi b_{t-1} + \epsilon_t$

Level state equation:

 $l_{t} = \alpha x_{t} + (1 - \alpha)(l_{t-1} + \phi b_{t-1}) = l_{t-1} + \phi b_{t-1} + \alpha \epsilon_{t}$

Trend state equation:

 $b_t = \beta^* (l_t - l_{t-1}) + (1 - \beta^*) \phi b_{t-1} = \phi b_{t-1} + \beta \epsilon_t$

with $\alpha, \beta^*, \phi \in [0,1]$ and $\beta = \alpha \beta^*$

With multiplicative errors

$$\varepsilon_t = \frac{x_t - \hat{x}_{t|t-1}}{\hat{x}_{t|t-1}} = \frac{x_t - (l_{t-1} + \phi b_{t-1})}{l_{t-1} + \phi b_{t-1}}$$

Observation equation:

 $x_t = (l_{t-1} + \phi b_{t-1})(1 + \epsilon_t)$

Level state equation:

 $l_t = (l_{t-1} + \phi b_{t-1})(1 + \alpha \epsilon_t)$

Trend state equation:

$$b_{t} = \phi b_{t-1} + \beta (l_{t-1} + \phi b_{t-1}) \epsilon_{t}$$

with $\alpha, \beta^*, \phi \in [0,1]$ and $\beta = \alpha \beta^*$

Holt-Winters additive method with additive error process

Recall the **forecast equation**

$$\hat{x}_{i+h|i} = l_i + hb_i + s_{i+h-P[h/P]} \stackrel{h=1}{\Longleftrightarrow} \hat{x}_{i+1|i} = l_i + b_i + s_{i+1-P} \stackrel{i=t-1}{\Longleftrightarrow} \hat{x}_{t|t-1} = l_{t-1} + b_{t-1} + s_{t-P}$$

SES with additive errors

$$\varepsilon_t = x_t - \hat{x}_{t|t-1} = x_t - l_{t-1} - b_{t-1} - s_{t-P}$$

Observation equation:

$$x_t = l_{t-1} + b_{t-1} + s_{t-P} + \epsilon_t$$

Level state equation:

$$l_t = l_{t-1} + b_{t-1} + \alpha \epsilon_t$$

Trend state equation:

$$b_t = b_{t-1} + \beta \epsilon_t$$

Seasonal state equation:

$$s_t = \gamma (x_t - l_{t-1} - b_{t-1}) + (1 - \gamma) s_{t-P} = s_{t-P} + \gamma \epsilon_t$$

with $\alpha, \beta^* \in [0,1]$, $\beta = \alpha \beta^*$ and $\gamma \in [0,1-\alpha]$

ETS nomenclature

ETS models are labeled as ETS (\cdot,\cdot,\cdot) for respectively the error, trend, and seasonal types.

- Error is either additive (A) or multiplicative (M)
- Trend is either none (N), (A), additive damped (A_d).
- Seasonal is either (N), (A) or (M)

Multiplicative (damped) ($M_{(d)}$) trend methods are not considered since they tend to produce poor forecast.

Name	Method
ETS(A,N,N)	SES with additive error
ETS(A,A,N)	Holt's linear trend with additive error
ETS(M,A _d ,N)	Damped Holt's linear trend with multiplicative error
ETS(M,A,A)	Additive Holt-Winters method with multiplicative error
ETS(M,A _d ,M)	Damped multiplicative Holt-Winters method with multiplicative error

HSLU Seite 22

Prediction confidence intervals

Confidence intervals provide a measure of forecast uncertainty.

When the residuals are **normally distributed**, the CI of $\hat{x}_{T+h|T}$ is $\hat{x}_{T+h|T} \pm z_{1-\alpha/2}\hat{\sigma}_{h|T}$

- $z_{1-\alpha/2}$ is the critical value of the normal distribution e.g., for 95% CI $z_{1-\alpha/2}=1.96$
- $\hat{\sigma}_{h|T}$ is an **estimate of the standard deviation** of the h-step forecast with $\hat{\sigma}_1 = \hat{\sigma}_e$ (residuals std)

For h > 1, $\hat{\sigma}_{h|T}$ depends on the ETS model and how the **innovations accumulate**:

ETS(A,N,N)	ETS(A,A,N)	ETS(A,N,A)
$\hat{\sigma}_{h T}^2 = \hat{\sigma}_e^2 \left(1 + \alpha^2 (h - 1) \right)$	$\hat{\sigma}_{h T}^{2} = \hat{\sigma}_{e}^{2} \left(1 + (h-1) \left(\alpha^{2} + \alpha \beta h + \frac{1}{6} \beta^{2} h (2h-1) \right) \right)$	$\hat{\sigma}_{h T}^2 = \hat{\sigma}_e^2 \left(1 + \alpha^2 (h - 1) + \gamma \left[\frac{h}{P} \right] (2\alpha + \gamma) \right)$

Use bootstrapping for non-normal residuals that are uncorrelated and have constant variance.

Connection to ARIMA (1)

Consider a zero-mean ARIMA(0,1,1) where $\theta = \alpha - 1$:

$$\Phi(B)\nabla x_t = c + \Theta(B)w_t$$

$$\Leftrightarrow \nabla x_t = w_t + (\alpha - 1)w_{t-1}$$

Setting $y_t = \nabla x_t$:

$$y_t = w_t + (\alpha - 1)w_{t-1} \Leftrightarrow w_t = y_t + (1 - \alpha)w_{t-1}$$

Rewriting the model as an $AR(\infty)$:

$$w_{t} = y_{t} + (1 - \alpha)w_{t-1}$$

$$= y_{t} + (1 - \alpha)(y_{t-1} + (1 - \alpha)w_{t-2})$$

$$= y_{t} + (1 - \alpha)y_{t-1} + (1 - \alpha)^{2}(y_{t-2} + (1 - \alpha)w_{t-3})$$

$$= \cdots$$

$$= y_t + \sum_{i=1}^{\infty} (1 - \alpha)^i y_{t-i}$$

Connection to ARIMA (2)

Substituting back $y_t = \nabla x_t = x_t - x_{t-1}$:

$$x_t - x_{t-1} = w_t - \sum_{i=1}^{\infty} (1 - \alpha)^i (x_{t-i} - x_{t-i-1})$$

Expanding the sum, choosing two different indexes for clarity:

$$x_{t} = x_{t-1} + w_{t} - \sum_{i=1}^{\infty} (1 - \alpha)^{i} x_{t-i} + \sum_{j=1}^{\infty} (1 - \alpha)^{j} x_{t-j-1}$$

$$= x_{t-1} + w_{t} - \sum_{i=1}^{\infty} (1 - \alpha)^{i} x_{t-i} + \sum_{k=2}^{\infty} (1 - \alpha)^{k-1} x_{t-(k-1)-1} \qquad (j = k - 1)$$

$$= w_{t} - \sum_{i=1}^{\infty} (1 - \alpha)^{i} x_{t-i} + \sum_{k=1}^{\infty} (1 - \alpha)^{k-1} x_{t-k}$$

$$= w_{t} + \sum_{i=1}^{\infty} (1 - \alpha)^{i-1} x_{t-i} (1 - (1 - \alpha)) = w_{t} + \sum_{i=1}^{\infty} \alpha (1 - \alpha)^{i-1} x_{t-i} \qquad (k = i)$$

Connection to ARIMA (3)

Consider the 1-step ahead prediction:

$$\hat{x}_{t+1|t} = \underbrace{w_{t+1}}_{0} + \sum_{i=1}^{\infty} \alpha (1 - \alpha)^{i-1} x_{t+1-i}$$

$$= \alpha x_{t} + \sum_{i=2}^{\infty} \alpha (1 - \alpha)^{i-1} x_{t+1-i}$$

$$= \alpha x_{t} + \sum_{k=1}^{\infty} \alpha (1 - \alpha)^{k} x_{t-k}$$

$$= \alpha x_{t} + (1 - \alpha) \sum_{k=1}^{\infty} \alpha (1 - \alpha)^{k-1} x_{t-k}$$

$$= \alpha x_{t} + (1 - \alpha) \hat{x}_{t|t-1}$$

$$(k = i - 1)$$

 $\hat{x}_{t+1|t}$ is the avg_w of the current observation x_t and the previous prediction $\hat{x}_{t|t-1}$. Thus, the zero-mean ARIMA(0,1,1) is **equivalent** to simple exponential smoothing.

HSLU

Connection to ARIMA (4)

ETS models are non-stationary while some ARIMA models are stationary.

- ETS models with seasonality or non-damped trend have two unit-roots i.e., require two levels of differencing.
- Other ETS models have one unit root i.e., require one level of differencing.

Fully additive ETS	ARIMA equivalent
ETS(A,N,N)	ARIMA(0,1,1)
ETS(A,A,N)	ARIMA(0,2,2)
ETS(A,A _d ,N)	ARIMA(1,1,2)
ETS(A,N,A)	$ARIMA(0,1,P)(0,1,0)_{P}$
ETS(A,A,A)	$ARIMA(0,1,P+1)(0,1,0)_{P}$
ETS(A,A _d ,A)	$ARIMA(1,0,P+1)(0,1,0)_{P}$

Forecasting: Principles and Practice (3rd ed)

Exercise

Review statsmodels <u>notebook</u> on exponential smoothing.

Simulate and analyze different synthetic signals

- Compare variations of ETS error, trend, seasonality
- Confirm equivalence with ARIMA models when applicable.
- Estimate the model parameters from the generated data.

Model real-world time series

- Compare ETS models with information criteria and residual analysis
- Compare with ARIMA performance using cross-validation
- Compare prediction intervals
- Compare ETS components with decomposition methods

HSLU Seite 28