



#### What is the class about?



- Course description and syllabus:
  - http://www.nyu.edu/classes/jcf/g22.3033-002/
  - http://www.cs.nyu.edu/courses/spring10/G22.3033-002/index.html

# Textbooks:

» Data Mining: Concepts and Techniques (2<sup>nd</sup> Edition)



Jiawei Han, Micheline Kamber

Morgan Kaufmann

ISBN-10: 1-55860-901-6, ISBN-13: 978-1-55860-901-3, (2006)

» Microsoft SQL Server 2008 Analysis Services Step by Step Scott Cameron



Microsoft Press

ISBN-10: 0-73562-620-0, ISBN-13: 978-0-73562-620-31 1st Edition (04/15/09)

.

# **Session Agenda**

- Basic concepts and a roadmap
- Scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association to correlation analysis
- Constraint-based association mining
- Mining colossal patterns
- Summary





#### Mining Frequent Patterns, Association and Correlations – Sub-Topics

- - Basic concepts and a road map
  - Scalable frequent itemset mining methods
  - Mining various kinds of association rules
  - From association to correlation analysis
  - Constraint-based association mining
  - Mining colossal patterns
  - Summary

7

# **What Is Frequent Pattern Analysis?**

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
  - What products were often purchased together?— Beer and diapers?!
  - What are the subsequent purchases after buying a PC?
  - What kinds of DNA are sensitive to this new drug?
  - Can we automatically classify web documents?
- Applications
  - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

#### Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
  - Association, correlation, and causality analysis
  - Sequential, structural (e.g., sub-graph) patterns
  - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
  - Classification: discriminative, frequent pattern analysis
  - Cluster analysis: frequent pattern-based clustering
  - Data warehousing: iceberg cube and cube-gradient
  - Semantic data compression: fascicles
  - Broad applications

۵

# **Basic Concepts: Frequent Patterns**

| Tid | Items bought                     |
|-----|----------------------------------|
| 10  | Beer, Nuts, Diaper               |
| 20  | Beer, Coffee, Diaper             |
| 30  | Beer, Diaper, Eggs               |
| 40  | Nuts, Eggs, Milk                 |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |



- itemset: A set of one or more items
- k-itemset  $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold

#### **Basic Concepts: Association Rules**

| Tid | Items bought                     |
|-----|----------------------------------|
| 10  | Beer, Nuts, Diaper               |
| 20  | Beer, Coffee, Diaper             |
| 30  | Beer, Diaper, Eggs               |
| 40  | Nuts, Eggs, Milk                 |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |



- Find all the rules X → Y with minimum support and confidence
  - support, s, probability that a transaction contains X ∪ Y
  - confidence, c, conditional probability that a transaction having X also contains Y
- Let minsup = 50%, minconf = 50%
- Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3
- Association rules: (many more!)
  - Beer → Diaper (60%, 100%)
  - *Diaper* → *Beer* (60%, 75%)

11

#### **Closed Patterns and Max-Patterns**

- A long pattern contains a combinatorial number of subpatterns, e.g.,  $\{a_1, ..., a_{100}\}$  contains  $\binom{1}{100} + \binom{1}{100} + ... + \binom{1}{100} \binom{0}{100} = 2^{100} - 1 = 1.27 \times 10^{30}$  sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no super-pattern Y o X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y o X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
  - Reducing the # of patterns and rules

#### **Closed Patterns and Max-Patterns**

- Exercise. DB =  $\{ < a_1, ..., a_{100} >, < a_1, ..., a_{50} > \}$ 
  - Min sup = 1.
- What is the set of closed itemset?
  - <a<sub>1</sub>, ..., a<sub>100</sub>>: 1
  - < a<sub>1</sub>, ..., a<sub>50</sub>>: 2
- What is the set of max-pattern?
  - <a<sub>1</sub>, ..., a<sub>100</sub>>: 1
- What is the set of all patterns?
  - **-** !!

12

# **Computational Complexity of Frequent Itemset Mining**

- How many itemsets are potentially to be generated in the worst case?
  - The number of frequent itemsets to be generated is senstive to the minsup threshold
  - When minsup is low, there exist potentially an exponential number of frequent itemsets
  - The worst case: M<sup>N</sup> where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
  - Ex. Suppose Walmart has 10<sup>4</sup> kinds of products
    - The chance to pick up one product 10-4
    - The chance to pick up a particular set of 10 products: ~10<sup>-40</sup>
    - What is the chance this particular set of 10 products to be frequent 10³ times in 109 transactions?

#### Mining Frequent Patterns, Association and Correlations – Sub-Topics

- Basic concepts and a road map
- Scalable frequent itemset mining methods
  - Mining various kinds of association rules
  - From association to correlation analysis
  - Constraint-based association mining
  - Mining colossal patterns
  - Summary

1 =

# The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
  - Any subset of a frequent itemset must be frequent
  - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
  - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
  - Apriori (Agrawal & Srikant@VLDB'94)
  - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
  - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

### **Apriori: A Candidate Generation & Test Approach**

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
  - Initially, scan DB once to get frequent 1-itemset
  - Generate length (k+1) candidate itemsets from length k frequent itemsets
  - Test the candidates against DB
  - Terminate when no frequent or candidate set can be generated



# The Apriori Algorithm (Pseudo-Code)

 $C_{k}$ : Candidate itemset of size k

```
L_k: frequent itemset of size k

L_1 = {frequent items};

for (k = 1; L_k != \emptyset; k++) do begin

C_{k+1} = candidates generated from L_k;

for each transaction t in database do

increment the count of all candidates in C_{k+1} that are

contained in t

L_{k+1} = candidates in C_{k+1} with min_support

end

return \bigcup_k L_k;
```

### Implementation of Apriori

- How to generate candidates?
  - Step 1: self-joining *L*<sub>k</sub>
  - Step 2: pruning
- Example of Candidate-generation
  - L<sub>3</sub>={abc, abd, acd, ace, bcd}
  - Self-joining: L<sub>3</sub>\*L<sub>3</sub>
    - abcd from abc and abd
    - acde from acd and ace
  - Pruning:
    - acde is removed because ade is not in L<sub>3</sub>
  - $C_4 = \{abcd\}$

# **How to Count Supports of Candidates?**

- Why counting supports of candidates a problem?
  - The total number of candidates can be very huge
  - One transaction may contain many candidates
- Method:
  - Candidate itemsets are stored in a hash-tree
  - Leaf node of hash-tree contains a list of itemsets and counts
  - Interior node contains a hash table
  - Subset function: finds all the candidates contained in a transaction



# **Candidate Generation: An SQL Implementation**

- SQL Implementation of candidate generation
  - Suppose the items in L<sub>k-1</sub> are listed in an order
  - Step 1: self-joining L<sub>k-1</sub>
    - insert into C<sub>k</sub>
    - select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k-1</sub>, q.item<sub>k-1</sub>
    - from L<sub>k-1</sub> p, L<sub>k-1</sub> q
    - where p.item₁=q.item₁, ..., p.item₂₂=q.item₂₂, p.item₂₁ < q.item₂₁</p>
  - Step 2: pruning
    - forall itemsets c in  $C_k$  do
      - forall (k-1)-subsets s of c do
        - if (s is not in L<sub>k-1</sub>) then delete c from C<sub>k</sub>
- Use object-relational extensions like UDFs, BLOBs, and Table functions for efficient implementation [S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98]

23

# **Further Improvements of Mining Methods**

- AFOPT (Liu, et al. @ KDD'03)
  - A "push-right" method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD'03)
  - Mine data sets with small rows but numerous columns
  - Construct a row-enumeration tree for efficient mining
- FPgrowth+ (Grahne and Zhu, FIMI'03)
  - Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- TD-Close (Liu, et al, SDM'06)

#### **Further Improvement of the Apriori Method**

- Major computational challenges
  - Multiple scans of transaction database
  - Huge number of candidates
  - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
  - Reduce passes of transaction database scans
  - Shrink number of candidates.
  - Facilitate support counting of candidates

25

# **Partition: Scan Database Only Twice**

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
  - Scan 1: partition database and find local frequent patterns
  - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski and S. Navathe, VLDB'95



#### **DHP: Reduce the Number of Candidates**

- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
  - Candidates: a, b, c, d, e
  - Hash entries: {ab, ad, ae} {bd, be, de} ...
  - Frequent 1-itemset: a, b, d, e
  - ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold
- J. Park, M. Chen, and P. Yu. An effective hashbased algorithm for mining association rules. In SIGMOD'95

2-

# Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only borders of closure of frequent patterns are checked
  - Example: check abcd instead of ab, ac, ..., etc.
- Scan database again to find missed frequent patterns
- H. Toivonen. Sampling large databases for association rules. In VLDB'96



# Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

mining i requeste i atterns without bandidate beneration

- Bottlenecks of the Apriori approach
  - Breadth-first (i.e., level-wise) search
  - Candidate generation and test
    - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
  - Depth-first search
  - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
  - "abc" is a frequent pattern
  - Get all transactions having "abc", i.e., project DB on abc: DB|abc
  - "d" is a local frequent item in DB|abc → abcd is a frequent pattern



item pattern)

**Construct FP-tree from a Transaction Database** 

- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree



#### **Partition Patterns and Databases**

- Frequent patterns can be partitioned into subsets according to f-list
  - F-list = f-c-a-b-m-p
  - Patterns containing p
  - Patterns having m but no p

  - Patterns having c but no a nor b, m, p
  - Pattern f
- Completeness and non-redundancy

#### Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FPtree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base



| Condi       | itional pattern bases |  |  |  |  |  |
|-------------|-----------------------|--|--|--|--|--|
| <u>item</u> | cond. pattern base    |  |  |  |  |  |
| c           | f:3                   |  |  |  |  |  |
| a           | fc:3                  |  |  |  |  |  |
| b           | fca:1, f:1, c:1       |  |  |  |  |  |
| m           | fca:2, fcab:1         |  |  |  |  |  |
| p           | fcam:2, cb:1          |  |  |  |  |  |

33

# From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
  - Accumulate the count for each item in the base
  - Construct the FP-tree for the frequent items of the pattern base



# **Recursion: Mining Each Conditional FP-tree**

Cond. pattern base of "am": (fc:3) 
$$f:3$$

$$f:3$$

$$f:3$$

$$c:3$$

$$am\text{-conditional FP-tree}$$

$$c:3$$

$$am:3$$

$$m\text{-conditional FP-tree}$$

$$f:3$$

cm-conditional FP-tree

Cond. pattern base of "cam": (f:3) 
$$\begin{cases} \{ \} \\ f:3 \end{cases}$$

cam-conditional FP-tree

25

# A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
  - Reduction of the single prefix path into one node
  - Concatenation of the mining results of the two parts

#### Benefits of the FP-tree Structure

# Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

# Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database (not count node-links and the count field)

37

# The Frequent Pattern Growth Mining Method

- Idea: Frequent pattern growth
  - Recursively grow frequent patterns by pattern and database partition

#### Method

- For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree
- Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

#### Scaling FP-growth by Database Projection

- What about if FP-tree cannot fit in memory?
  - DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. partition projection techniques
  - Parallel projection
    - Project the DB in parallel for each frequent item
    - Parallel projection is space costly
    - All the partitions can be processed in parallel
  - Partition projection
    - Partition the DB based on the ordered frequent items
    - Passing the unprocessed parts to the subsequent partitions







#### **Advantages of the Pattern Growth Approach**

- Divide-and-conquer:
  - Decompose both the mining task and DB according to the frequent patterns obtained so far
  - Lead to focused search of smaller databases
- Other factors
  - No candidate generation, no candidate test
  - Compressed database: FP-tree structure
  - No repeated scan of entire database
  - Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching
- A good open-source implementation and refinement of FPGrowth
  - FPGrowth+ (Grahne and J. Zhu, FIMI'03)

12

# **Extension of Pattern Growth Mining Methodology**

- Mining closed frequent itemsets and max-patterns
  - CLOSET (DMKD'00), FPclose, and FPMax (Grahne & Zhu, Fimi'03)
- Mining sequential patterns
  - PrefixSpan (ICDE'01), CloSpan (SDM'03), BIDE (ICDE'04)
- Mining graph patterns
  - gSpan (ICDM'02), CloseGraph (KDD'03)
- Constraint-based mining of frequent patterns
  - Convertible constraints (ICDE'01), gPrune (PAKDD'03)
- Computing iceberg data cubes with complex measures
  - H-tree, H-cubing, and Star-cubing (SIGMOD'01, VLDB'03)
- Pattern-growth-based Clustering
  - MaPle (Pei, et al., ICDM'03)
- Pattern-Growth-Based Classification
  - Mining frequent and discriminative patterns (Cheng, et al, ICDE'07)

#### **MaxMiner: Mining Max-patterns**

- 1st scan: find frequent items
  - A, B, C, D, E

2<sup>nd</sup> scan: find support for

| • | AB, | AC, | AD, | AE, | AB | CDE |
|---|-----|-----|-----|-----|----|-----|
|---|-----|-----|-----|-----|----|-----|

■ BC, BD, BE, BCDE ←

■ CD, CE, CDE, DE,

| Tid | Items     |
|-----|-----------|
| 10  | A,B,C,D,E |
| 20  | B,C,D,E,  |
| 30  | A,C,D,F   |

Potential max-patterns

- Since BCDE is a max-pattern, no need to check BCD, BDE, CDE in later scan
- R. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98

45

# **Mining Frequent Closed Patterns: CLOSET**

- Flist: list of all frequent items in support ascending order
  - Flist: d-a-f-e-c
- Divide search space
  - Patterns having d
  - Patterns having d but no a, etc.

Min\_sup=2

| TID | Items         |
|-----|---------------|
| 10  | a, c, d, e, f |
| 20  | a, b, e       |
| 30  | c, e, f       |
| 40  | a, c, d, f    |
| 50  | c, e, f       |

- Find frequent closed pattern recursively
  - Every transaction having d also has cfa → cfad is a frequent closed pattern
- J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets", DMKD'00.

#### **CLOSET+: Mining Closed Itemsets by Pattern-Growth**

- Itemset merging: if Y appears in every occurrence of X, then Y is merged with X
- Sub-itemset pruning: if Y > X, and sup(X) = sup(Y), X and all of X's descendants in the set enumeration tree can be pruned
- Hybrid tree projection
  - Bottom-up physical tree-projection
  - Top-down pseudo tree-projection
- Item skipping: if a local frequent item has the same support in several header tables at different levels, one can prune it from the header table at higher levels
- Efficient subset checking

47

# **CHARM / ECLAT: Mining by Exploring Vertical Data Format**

- Vertical format: t(AB) = {T<sub>11</sub>, T<sub>25</sub>, ...}
  - tid-list: list of trans.-ids containing an itemset
- Deriving closed patterns based on vertical intersections
  - t(X) = t(Y): X and Y always happen together
  - t(X) ⊂ t(Y): transaction having X always has Y
- Using diffset to accelerate mining
  - Only keep track of differences of tids
  - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
  - Diffset (XY, X) = {T₂}
- Eclat/MaxEclat (Zaki et al. @KDD'97), VIPER(P. Shenoy et al.@SIGMOD'00), CHARM (Zaki & Hsiao@SDM'02)







#### Mining Frequent Patterns, Association and Correlations – Sub-Topics

- Basic concepts and a road map
- Scalable frequent itemset mining methods
- Mining various kinds of association rules
  - From association to correlation analysis
  - Constraint-based association mining
  - From association to correlation analysis
  - Mining colossal patterns
  - Summary

### **Mining Various Kinds of Association Rules**

- Mining multilevel association
- Mining multidimensional association
- Mining quantitative association
- Mining interesting correlation patterns

53

# **Mining Multiple-Level Association Rules**

- Items often form hierarchies
- Flexible support settings
  - Items at the lower level are expected to have lower support
- Exploration of shared multi-level mining (Agrawal & Srikant@VLB'95, Han & Fu@VLDB'95)

#### uniform support reduced support Level 1 Milk Level 1 min\_sup = 5% $min\_sup = 5\%$ [support = 10%]Skim Milk 2% Milk Level 2 Level 2 [support = 4%]min\_sup = 3% min sup = 5%[support = 6%]

#### Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items
- Example
  - milk ⇒ wheat bread [support = 8%, confidence = 70%]
  - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]
- We say the first rule is an ancestor of the second rule
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor

--

# **Mining Multi-Dimensional Association**

- Single-dimensional rules:
  - buys(X, "milk") ⇒ buys(X, "bread")
- Multi-dimensional rules: ≥ 2 dimensions or predicates
  - Inter-dimension assoc. rules (no repeated predicates)
    - age(X,"19-25") ∧ occupation(X,"student") ⇒ buys(X, "coke")
  - hybrid-dimension assoc. rules (repeated predicates)
    - age(X,"19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
- Categorical Attributes: finite number of possible values, no ordering among values—data cube approach
- Quantitative Attributes: Numeric, implicit ordering among values—discretization, clustering, and gradient approaches

#### **Mining Quantitative Associations**

- Techniques can be categorized by how numerical attributes, such as age or salary are treated:
  - 1. Static discretization based on predefined concept hierarchies (data cube methods)
  - 2. Dynamic discretization based on data distribution (quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)
  - Clustering: Distance-based association (e.g., Yang & Miller@SIGMOD97)
    - One dimensional clustering then association
  - 4. Deviation: (such as Aumann and Lindell@KDD99)

    Sex = female => Wage: mean=\$7/hr (overall mean = \$9)

57

#### Static Discretization of Quantitative Attributes

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges
- In relational database, finding all frequent k-predicate sets will require *k* or *k*+1 table scans
- Data cube is well suited for mining
- The cells of an n-dimensional cuboid correspond to the predicate sets
- Mining from data cubes can be much faster



#### **Quantitative Association Rules**

- Proposed by Lent, Swami and Widom ICDE'97
- Numeric attributes are dynamically discretized
  - » Such that the confidence or compactness of the rules mined is maximized
- 2-D quantitative association rules: A<sub>quan1</sub> ∧ A<sub>quan2</sub> ⇒ A<sub>cat</sub>
- Cluster adjacent association rules to form general rules using a 2-D grid
- Example

age(X, "34-35")  $\land$  income(X, "30-50K")  $\Rightarrow$  buys(X, "high resolution TV")



# **Mining Other Interesting Patterns**

- Flexible support constraints (Wang, et al. @ VLDB'02)
  - Some items (e.g., diamond) may occur rarely but are valuable
  - Customized sup<sub>min</sub> specification and application
- Top-K closed frequent patterns (Han, et al. @ ICDM'02)
  - Hard to specify sup<sub>min</sub>, but top-k with length<sub>min</sub> is more desirable
  - Dynamically raise sup<sub>min</sub> in FP-tree construction and mining, and select most promising path to mine

#### Mining Frequent Patterns, Association and Correlations – Sub-Topics

- Basic concepts and a road map
- Scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association to correlation analysis
  - Constraint-based association mining
  - Mining colossal patterns
  - Summary

61

# **Interestingness Measure: Correlations (Lift)**

- play basketball ⇒ eat cereal [40%, 66.7%] is misleading
  - The overall % of students eating cereal is 75% > 66.7%.
- play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

 $lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$ 

|            | Basketball | Not basketball | Sum (row) |  |  |  |
|------------|------------|----------------|-----------|--|--|--|
| Cereal     | 2000       | 1750           | 3750      |  |  |  |
| Not cereal | 1000       | 250            | 1250      |  |  |  |
| Sum(col.)  | 3000       | 2000           | 5000      |  |  |  |

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

# Are *lift* and $\chi^2$ Good Measures of Correlation?

- "Buy walnuts ⇒ buy milk [1%, 80%]" is misleading if 85% of customers buy milk
- Support and confidence are not good to indicate correlations
- Over 20 interestingness measures have been proposed (see Tan, Kumar, Sritastava @KDD'02)
- Which are good ones?

| symbol   | measure              | range      | formula                                                                                                                                                                               |
|----------|----------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | φ-coefficient        | -11        | $\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$                                                                                                                             |
| Q        | Yule's Q             | -11        | $P(A,B)P(\overline{A},\overline{B})-P(A,\overline{B})P(\overline{A},B)$<br>$P(A,B)P(\overline{A},\overline{B})+P(A,B)P(\overline{A},B)$                                               |
| Y        | Yule's Y             | -1 1       | $\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$ |
| k        | Cohen's              | -1 1       | $\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$                                                       |
| PS       | Piatetsky-Shapiro's  | -0.25 0.25 | P(A, B) - P(A)P(B)                                                                                                                                                                    |
| F        | Certainty factor     | -11        | $\max(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)})$                                                                                                                        |
| AV       | added value          | -0.5 1     | $\max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                                  |
| K        | Klosgen's Q          | -0.33 0.38 | $\sqrt{P(A, B)} \max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                   |
| g        | Goodman-kruskal's    | 01         | $\frac{\sum_{j} \max_{k} P(A_j, B_k) + \sum_{k} \max_{j} P(A_j, B_k) - \max_{j} P(A_j) - \max_{k} P(B_k)}{2 - \max_{j} P(A_j) - \max_{k} P(B_k)}$                                     |
| M        | Mutual Information   | 01         | $\frac{\Sigma_i \Sigma_j P(A_i, B_j) \log \frac{P(A_i, B_j)}{p(A_j) P(B_j)}}{\min(-\Sigma_i P(A_i) \log P(A_i)) \log P(A_i) \log P(A_i) \log P(B_j) \log P(B_j)}$                     |
| J        | J-Measure            | 01         | $max(P(A, B) \log(\frac{P(B)A}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B})A}{P(\overline{B})}))$                                                                             |
|          |                      |            | $P(A, B) \log \left( \frac{P(A B)}{P(A)} \right) + P(\overline{A}B) \log \left( \frac{P(\overline{A} B)}{P(\overline{A})} \right)$                                                    |
| G        | Gini index           | 01         | $mon(P(A) P(B)A)^2 + P(\overline{B} A)^2  + P(\overline{A} P(B \overline{A})^2 + P(\overline{B} \overline{A})^2  - P(B)^2 - P(\overline{B})^2$ ,                                      |
|          | NC SECTOR SECTION OF | 4445555    | $P(B)[P(A B)^2 + P(\overline{A} B)^2] + P(\overline{B}[P(A \overline{B})^2 + P(\overline{A} \overline{B})^2] - P(A)^2 - P(\overline{A})^2$                                            |
| 8        | support              | 01         | P(A, B)                                                                                                                                                                               |
| c        | confidence           | 01         | max(P(B A), P(A B))                                                                                                                                                                   |
| L        | Laplace              | 01         | $\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$                                                                                                                          |
| IS       | Cosine               | 01         | $\frac{P(A,B)}{\sqrt{P(A)P(B)}}$                                                                                                                                                      |
| 7        | coherence(Jaccard)   | 01         | $\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$                                                                                                                                                     |
| α        | all_confidence       | 01         | $\frac{P(A,B)}{\max(P(A),P(B))}$                                                                                                                                                      |
| 0        | odds ratio           | 0 ∞        | $P(A,B)P(\overline{A},\overline{B})$<br>$P(\overline{A},B)P(A,\overline{B})$                                                                                                          |
| V        | Conviction           | 0.5 ∞      | $\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$                                                                                    |
| λ        | lift                 | 0∞         | $\frac{P(A,B)}{P(A)P(B)}$                                                                                                                                                             |
| S        | Collective strength  | 0 ∞        | $\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$                          |
| $\chi^2$ | $\chi^2$             | 0∞         | $\sum_{i} \frac{(P(A_i) + P(A_i))^2}{(P(A_i) + P(A_i))^2}$                                                                                                                            |

#### **Null-Invariant Measures**

Table 6: Properties of interestingness measures. Note that none of the measures satisfies all the properties

| Symbol    | Measure             | Range                                                                                                    | PI   | P2  | P3  | 01   | 02  | 03   | 03  | 04  |
|-----------|---------------------|----------------------------------------------------------------------------------------------------------|------|-----|-----|------|-----|------|-----|-----|
| φ         | $\phi$ -coefficient | $-1 \cdots 0 \cdots 1$                                                                                   | Yes  | Yes | Yes | Yes  | No  | Yes  | Yes | No  |
| $\lambda$ | Goodman-Kruskal's   | $0 \cdots 1$                                                                                             | Yes  | No  | No  | Yes  | No  | No*  | Yes | No  |
| $\alpha$  | odds ratio          | $0\cdots 1\cdots \infty$                                                                                 | Yes* | Yes | Yes | Yes  | Yes | Yes* | Yes | No  |
| Q         | Yule's Q            | $-1 \cdots 0 \cdots 1$                                                                                   | Yes  | Yes | Yes | Yes  | Yes | Yes  | Yes | No  |
| Y         | Yule's Y            | $-1 \cdots 0 \cdots 1$                                                                                   | Yes  | Yes | Yes | Yes  | Yes | Yes  | Yes | No  |
| $\kappa$  | Cohen's             | $-1 \cdots 0 \cdots 1$                                                                                   | Yes  | Yes | Yes | Yes  | No  | No   | Yes | No  |
| M         | Mutual Information  | $0 \cdots 1$                                                                                             | Yes  | Yes | Yes | No** | No  | No*  | Yes | No  |
| J         | J-Measure           | $0 \cdots 1$                                                                                             | Yes  | No  | No  | No** | No  | No   | No  | No  |
| G         | Gini index          | $0 \cdots 1$                                                                                             | Yes  | No  | No  | No** | No  | No*  | Yes | No  |
| s         | Support             | $0 \cdots 1$                                                                                             | No   | Yes | No  | Yes  | No  | No   | No  | No  |
| c         | Confidence          | $0 \cdots 1$                                                                                             | No   | Yes | No  | No** | No  | No   | No  | Yes |
| L         | Laplace             | $0 \cdots 1$                                                                                             | No   | Yes | No  | No** | No  | No   | No  | No  |
| V         | Conviction          | $0.5 \cdots 1 \cdots \infty$                                                                             | No   | Yes | No  | No** | No  | No   | Yes | No  |
| I         | Interest            | $0 \cdots 1 \cdots \infty$                                                                               | Yes* | Yes | Yes | Yes  | No  | No   | No  | No  |
| IS        | Cosine              | $0 \cdots \sqrt{P(A, B)} \cdots 1$                                                                       | No   | Yes | Yes | Yes  | No  | No   | No  | Yes |
| PS        | Piatetsky-Shapiro's | $-0.25 \cdots 0 \cdots 0.25$                                                                             | Yes  | Yes | Yes | Yes  | No  | Yes  | Yes | No  |
| F         | Certainty factor    | $-1 \cdots 0 \cdots 1$                                                                                   | Yes  | Yes | Yes | No** | No  | No   | Yes | No  |
| AV        | Added value         | $-0.5 \cdots 0 \cdots 1$                                                                                 | Yes  | Yes | Yes | No** | No  | No   | No  | No  |
| S         | Collective strength | $0 \cdots 1 \cdots \infty$                                                                               | No   | Yes | Yes | Yes  | No  | Yes* | Yes | No  |
| ζ         | Jaccard             | $0 \cdots 1$                                                                                             | No   | Yes | Yes | Yes  | No  | No   | No  | Yes |
| K         | Klosgen's           | $(\frac{2}{\sqrt{3}} - 1)^{1/2} [2 - \sqrt{3} - \frac{1}{\sqrt{3}}] \cdots 0 \cdots \frac{2}{3\sqrt{3}}$ | Yes  | Yes | Yes | No** | No  | No   | No  | No  |

 $\sqrt{3}$   $\sqrt{3}$ 

O3:

Property 4: Inversion invariance.

Property 5: Null invariance.

Yes if measure is normalized.

No\*: Symmetry under row or column permutation. No\*\*: No unless the measure is symmetrized by taking  $\max(M(A,B),M(B,A))$ .

# **Comparison of Interestingness Measures**

- Null-(transaction) invariance is crucial for correlation analysis
- Lift and  $\chi^2$  are not null-invariant
- 5 null-invariant measures

|              | Milk  | No Milk | Sum<br>(row) |
|--------------|-------|---------|--------------|
| Coffee       | m, c  | ~m, c   | С            |
| No<br>Coffee | m, ~c | ~m, ~c  | ~c           |
| Sum(col.     | m     | ~m      | Σ            |

| Measure         | Definition                                                      | Range         | Null-Invarian |
|-----------------|-----------------------------------------------------------------|---------------|---------------|
| $\chi^2(a, b)$  | $\sum_{i,j=0,1} \frac{(e(a_i,b_j) - o(a_i,b_j))^2}{e(a_i,b_j)}$ | $[0,\infty]$  | No            |
| Lift(a, b)      | $\frac{P(ab)}{P(a)P(b)}$                                        | $[0, \infty]$ | No            |
| AllConf(a, b)   | $\frac{sup(ab)}{max\{sup(a), sup(b)\}}$                         | [0, 1]        | Yes           |
| Coherence(a, b) | $\frac{sup(ab)}{sup(a)+sup(b)-sup(ab)}$                         | [0, 1]        | Yes           |
| Cosine(a, b)    | $\frac{sup(ab)}{\sqrt{sup(a)sup(b)}}$                           | [0, 1]        | Yes           |
| Kulc(a,b)       | $\frac{sup(ab)}{2}(\frac{1}{sup(a)} + \frac{1}{sup(b)})$        | [0, 1]        | Yes           |
| MaxConf(a,b)    | $max\{\frac{sup(ab)}{sup(ab)}, \frac{sup(ab)}{sup(ab)}\}$       | [0, 1]        | Yes /         |

**Null-transactions** w.r.t. m and c

Kulczynski Table 3. interestingness measure definitions. measure (1927)

Null-invariant

| Data set | mc     | $\overline{m}c$ | $m\overline{s}$ | $\overline{mc}$ | χ-    | Lift  | AllConf | Coherence | Cosine | Kulc | MaxConf |
|----------|--------|-----------------|-----------------|-----------------|-------|-------|---------|-----------|--------|------|---------|
| $D_1$    | 10,000 | 1,000           | 1,000           | 100,000         | 90557 | 9.26  | 0.91    | 0.83      | 0.91   | 0.91 | 0.91    |
| $D_2$    | 10,000 | 1,000           | 1,000           | 100             | 0     | 1     | 0.91    | 0.83      | 0.91   | 0.91 | 0.91    |
| $D_3$    | 100    | 1,000           | 1,000           | 100,000         | 670   | 8.44  | 0.09    | 0.05      | 0.09   | 0.09 | 0.09    |
| $D_4$    | 1,000  | 1,000           | 1,000           | 100,000         | 24740 | 25.75 | 0.5     | 0.33      | 0.5    | 0.5  | 0.5     |
| $D_5$    | 1,000  | 100             | 10,000          | 100,000         | 8173  | 9(18  | 0.09    | 0.09      | 0.29   | 0.5  | 0.91    |
| $D_6$    | 1,000  | 10              | 100,000         | 100,000         | 965   | 1.97  | 0.01    | 0.01      | 0.10   | 0.5  | 0.99    |
|          |        |                 |                 | T 11            | 0 T   |       | 1 1 4   | 4         | 1.11   | -1   | 100     |

Table 2. Example data sets. Subtle: They disagree

# **Analysis of DBLP Coauthor Relationships**

Recent DB conferences, removing balanced associations, low sup, etc.

| ID | Author $a$           | Author $b$           | sup(ab)       | sup(a) | sup(b) | Coherence | Cosine    | Kulc       |
|----|----------------------|----------------------|---------------|--------|--------|-----------|-----------|------------|
| 1  | Hans-Peter Kriegel   | Martin Ester         | 28            | 146    | 54     | 0.163(2)  | 0.315(7)  | 0.355(9)   |
| 2  | Michael Carey        | Miron Livny          | 26            | 104    | 58     | 0.191(1)  | 0.335(4)  | 0.349 (10) |
| 3  | Hans-Peter Kriegel   | Joerg Sander         | 24            | 146    | 36     | 0.152(3)  | 0.331(5)  | 0.416(8)   |
| 4  |                      | Spiros Papadimitriou | 20            | 162    | 26     | 0.119(7)  | 0.308(10) | 0.446(7)   |
| 5  | Hans-Peter Kriegel   | Martin Pfeifle       | 18            | 146    | 18) <  | 0.123(6)  | 0.351(2)  | 0.562(2)   |
| 6  | Hector Garcia-Molina |                      | 16            | 144    | 18     | 0.110(9)  | 0.314(8)  | 0.500(4)   |
| 7  | Divyakant Agrawal    | Wang Hsiung          | 16            | 120    | 16     | 0.133(5)  | 0.365(1)  | 0.567(1)   |
| 8  | Elke Rundensteiner   | Murali Mani          | 16            | 104    | 20     | 0.148(4)  | 0.351(3)  | 0.477(6)   |
| 9  | Divyakant Agrawal    | Oliver Po            | $\bigcirc$ 12 | 120    | 12     | 0.100(10) | 0.316(6)  | 0.550(3)   |
| 10 | Gerhard Weikum       | Martin Theobald      | 12            | 106    | 14     | 0.111 (8) | 0.312(9)  | 0 485 (5)  |

Table 5. Experiment on DBLP data set.

Advisor-advisee relation: Kulc: high, coherence: low, cosine: middle

 Tianyi Wu, Yuguo Chen and Jiawei Han, "Association Mining in Large Databases: A Re-Examination of Its Measures", Proc. 2007 Int. Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD'07), Sept. 2007

#### Which Null-Invariant Measure Is Better?

 IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications

$$IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)}$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D<sub>4</sub> through D<sub>6</sub>
  - D₄ is balanced & neutral
  - D<sub>5</sub> is imbalanced & neutral
  - D<sub>6</sub> is very imbalanced & neutral

| Data              | mc     | $\overline{m}c$ | $m\overline{c}$ | $\overline{mc}$ | $all\_conf.$ | $max\_conf.$ | Kulc. | cosine | IR.  |
|-------------------|--------|-----------------|-----------------|-----------------|--------------|--------------|-------|--------|------|
| $D_1$             | 10,000 | 1,000           | 1,000           | 100,000         | 0.91         | 0.91         | 0.91  | 0.91   | 0.0  |
| $D_1$ $D_2$ $D_3$ | 10,000 | 1,000           | 1,000           | 100             | 0.91         | 0.91         | 0.91  | 0.91   | 0.0  |
| $D_3$             | 100    | 1,000           | 1,000           | 100,000         | 0.09         | 0.09         | 0.09  | 0.09   | 0.0  |
| $D_4$ $D_5$ $D_6$ | 1,000  | 1,000           | 1,000           | 100,000         | 0.5          | 0.5          | 0.5   | 0.5    | 0.0  |
| $D_5$             | 1,000  | 100             | 10,000          | 100,000         | 0.09         | 0.91         | 0.5   | 0.29   | 0.89 |
| $D_{6}$           | 1.000  | 10              | 100.000         | 100,000         | 0.01         | 0.99         | 0.5   | 0.10   | 0.99 |
|                   |        |                 |                 |                 |              |              |       |        |      |
|                   |        |                 |                 |                 |              |              |       |        | 67   |

# Mining Frequent Patterns, Association and Correlations – Sub-Topics

- Basic concepts and a road map
- Scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association to correlation analysis
- Constraint-based association mining
  - Mining colossal patterns
  - Summary

#### Constraint-based (Query-Directed) Mining

- Finding all the patterns in a database autonomously? unrealistic!
  - The patterns could be too many but not focused!
- Data mining should be an interactive process
  - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
  - User flexibility: provides constraints on what to be mined
  - System optimization: explores such constraints for efficient mining — constraint-based mining: constraint-pushing, similar to push selection first in DB query processing
  - Note: still find all the answers satisfying constraints, not finding some answers in "heuristic search"

69

# **Constraints in Data Mining**

- Knowledge type constraint:
  - classification, association, etc.
- Data constraint using SQL-like queries
  - find product pairs sold together in stores in Chicago in Dec.'02
- Dimension/level constraint
  - in relevance to region, price, brand, customer category
- Rule (or pattern) constraint
  - small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
  - strong rules: min\_support ≥ 3%, min\_confidence ≥ 60%

#### **Constraint-Based Frequent Pattern Mining**

- Classification of constraints based on their constraint-pushing capabilities
  - Anti-monotonic: If constraint c is violated, its further mining can be terminated
  - Monotonic: If c is satisfied, no need to check c again
  - Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned from its further mining
  - Succinct: c must be satisfied, so one can start with the data sets satisfying c
  - Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it if items in the transaction can be properly ordered

71

# **Anti-Monotonicity in Constraint Pushing**

- A constraint C is antimonotone if the super pattern satisfies C, all of its sub-patterns do so
- In other words, anti-monotonicity: If an itemset S violates the constraint, so does any of its superset
- Ex. 1.  $sum(S.price) \le v$  is anti-monotone
- Ex. 2. range(S.profit) ≤ 15 is anti-monotone
  - Itemset ab violates C
  - So does every superset of ab
- Ex. 3.  $sum(S.Price) \ge v$  is not anti-monotone
- Ex. 4. support count is anti-monotone: core property used in Apriori

TDB (min sup=2)

| TID | Transaction      |
|-----|------------------|
| 10  | a, b, c, d, f    |
| 20  | b, c, d, f, g, h |
| 30  | a, c, d, e, f    |
| 40  | c, e, f, g       |

| fit |
|-----|
| )   |
|     |
| )   |
| )   |
| )   |
| )   |
| )   |
| )   |
|     |

#### **Monotonicity for Constraint Pushing**

- A constraint C is monotone if the pattern satisfies C, we do not need to check C in subsequent mining
- Alternatively, monotonicity: If an itemset
   S satisfies the constraint, so does any of its superset
- Ex. 1.  $sum(S.Price) \ge v$  is monotone
- Ex. 2.  $min(S.Price) \le v$  is monotone
- Ex. 3. C: range(S.profit) ≥ 15
  - Itemset ab satisfies C
  - So does every superset of ab

TDB (min sup=2)

| TID | Transaction      |  |
|-----|------------------|--|
| 10  | a, b, c, d, f    |  |
| 20  | b, c, d, f, g, h |  |
| 30  | a, c, d, e, f    |  |
| 40  | c, e, f, g       |  |

| Item | Profit |
|------|--------|
| а    | 40     |
| b    | 0      |
| С    | -20    |
| d    | 10     |
| е    | -30    |
| f    | 30     |
| g    | 20     |
| h    | -10    |
|      |        |

73

# **Data Antimonotonicity: Pruning Data Space**

- A constraint c is data antimonotone if for a pattern p cannot satisfy a transaction t under c, p's superset cannot satisfy t under c either
- The key for data antimonotone is recursive data reduction
- Ex. 1.  $sum(S.Price) \ge v$  is data antimonotone
- Ex. 2.  $min(S.Price) \le v$  is data antimonotone
- Ex. 3. C: range(S.profit) ≥ 25 is data antimonotone
  - Itemset {b, c}'s projected DB:
    - T10': {d, f, h}, T20': {d, f, g, h}, T30': {d, f, g}
  - since C cannot satisfy T10', T10' can be pruned

TDB (min sup=2)

| TID | Transaction      |  |
|-----|------------------|--|
| 10  | a, b, c, d, f, h |  |
| 20  | b, c, d, f, g, h |  |
| 30  | b, c, d, f, g    |  |
| 40  | c. e. f. a       |  |

| -, -, ., 3 |        |  |
|------------|--------|--|
| Item       | Profit |  |
| а          | 40     |  |
| b          | 0      |  |
| С          | -20    |  |
| d          | -15    |  |
| е          | -30    |  |
| f          | -10    |  |
| g          | 20     |  |
| h          | -5     |  |

#### **Succinctness**

- Succinctness:
  - Given A<sub>1</sub>, the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A<sub>1</sub>, i.e., S contains a subset belonging to A<sub>1</sub>
  - Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
  - $min(S.Price) \le v$  is succinct
  - $sum(S.Price) \ge v$  is not succinct
- Optimization: If C is succinct, C is pre-counting pushable













# **Converting "Tough" Constraints**

- Convert tough constraints into anti-monotone or monotone by properly ordering items
- Examine C: avg(S.profit) ≥ 25
  - Order items in value-descending order
    - <a, f, g, d, b, h, c, e>
  - If an itemset afb violates C
    - So does afbh, afb\*
    - It becomes anti-monotone!

TDB (min sup=2)

| ( <u>-</u> <u>F</u> |                  |  |
|---------------------|------------------|--|
| TID                 | Transaction      |  |
| 10                  | a, b, c, d, f    |  |
| 20                  | b, c, d, f, g, h |  |
| 30                  | a, c, d, e, f    |  |
| 40                  | c, e, f, g       |  |

| Item | Profit |
|------|--------|
| а    | 40     |
| b    | 0      |
| С    | -20    |
| d    | 10     |
| е    | -30    |
| f    | 30     |
| g    | 20     |
| h    | -10    |

#### **Strongly Convertible Constraints**

- avg(X) ≥ 25 is convertible anti-monotone w.r.t. item value descending order R: <a, f, g, d, b, h, c, e>
  - If an itemset af violates a constraint C, so does every itemset with af as prefix, such as afd
- avg(X) ≥ 25 is convertible monotone w.r.t. item value ascending order R<sup>-1</sup>:
   <e, c, h, b, d, g, f, a>
  - If an itemset d satisfies a constraint C, so does itemsets df and dfa, which having d as a prefix
- Thus, avg(X) ≥ 25 is strongly convertible

| Item | Profit |
|------|--------|
| а    | 40     |
| b    | 0      |
| С    | -20    |
| d    | 10     |
| е    | -30    |
| f    | 30     |
| g    | 20     |
| h    | -10    |

# **Can Apriori Handle Convertible Constraints?**

- A convertible, not monotone nor antimonotone nor succinct constraint cannot be pushed deep into the an Apriori mining algorithm
  - Within the level wise framework, no direct pruning based on the constraint can be made
  - Itemset df violates constraint C: avg(X) >= 25
  - Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned
- But it can be pushed into frequent-pattern growth framework!

| Item | Value |
|------|-------|
| а    | 40    |
| b    | 0     |
| С    | -20   |
| d    | 10    |
| е    | -30   |
| f    | 30    |
| g    | 20    |
| h    | -10   |

#### **Mining With Convertible Constraints**

- C: avg(X) >= 25, min\_sup=2
- List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
  - C is convertible anti-monotone w.r.t. R
- Scan TDB once
  - remove infrequent items
    - Item h is dropped
  - Itemsets a and f are good, ...
- Projection-based mining
  - Imposing an appropriate order on item projection
  - Many tough constraints can be converted into (anti)-monotone

| Item | Value |
|------|-------|
| а    | 40    |
| f    | 30    |
| g    | 20    |
| d    | 10    |
| b    | 0     |
| h    | -10   |
| С    | -20   |
| е    | -30   |
|      |       |

TDB (min\_sup=2)

| TID | Transaction   |
|-----|---------------|
| 10  | a, f, d, b, c |
| 20  | f, g, d, b, c |
| 30  | a, f, d, c, e |
| 40  | f, g, h, c, e |
|     | 0.5           |

#### 8

# **Handling Multiple Constraints**

- Different constraints may require different or even conflicting item-ordering
- If there exists an order R s.t. both C<sub>1</sub> and C<sub>2</sub> are convertible w.r.t. R, then there is no conflict between the two convertible constraints
- If there exists conflict on order of items
  - Try to satisfy one constraint first
  - Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

# **What Constraints Are Convertible?**

| Constraint                                               | Convertible anti-monotone | Convertible monotone | Strongly convertible |
|----------------------------------------------------------|---------------------------|----------------------|----------------------|
| avg(S) ≤ , ≥ v                                           | Yes                       | Yes                  | Yes                  |
| $median(S) \le , \ge v$                                  | Yes                       | Yes                  | Yes                  |
| $sum(S) \le v$ (items could be of any value, $v \ge 0$ ) | Yes                       | No                   | No                   |
| $sum(S) \le v$ (items could be of any value, $v \le 0$ ) | No                        | Yes                  | No                   |
| $sum(S) \ge v$ (items could be of any value, $v \ge 0$ ) | No                        | Yes                  | No                   |
| $sum(S) \ge v$ (items could be of any value, $v \le 0$ ) | Yes                       | No                   | No                   |
|                                                          |                           |                      |                      |

87

# Constraint-Based Mining — A General Picture

| Constraint                                      | Antimonotone | Monotone    | Succinct |
|-------------------------------------------------|--------------|-------------|----------|
| v ∈ S                                           | no           | yes         | yes      |
| S⊇V                                             | no           | yes         | yes      |
| S⊆V                                             | yes          | no          | yes      |
| min(S) ≤ v                                      | no           | yes         | yes      |
| min(S) ≥ v                                      | yes          | no          | yes      |
| max(S) ≤ v                                      | yes          | no          | yes      |
| max(S) ≥ v                                      | no           | yes         | yes      |
| count(S) ≤ v                                    | yes          | no          | weakly   |
| count(S) ≥ v                                    | no           | yes         | weakly   |
| sum(S) ≤ v ( a ∈ S, a ≥ 0 )                     | yes          | no          | no       |
| sum(S) ≥ v (a ∈ S, a ≥ 0)                       | no           | yes         | no       |
| range(S) ≤ v                                    | yes          | no          | no       |
| range(S) ≥ v                                    | no           | yes         | no       |
| $avg(S) \theta v, \theta \in \{=, \leq, \geq\}$ | convertible  | convertible | no       |
| support(S) ≥ ξ                                  | yes          | no          | no       |
| support(S) ≤ ξ                                  | no           | yes         | no       |



# Mining Frequent Patterns, Association and Correlations – Sub-Topics

- Basic concepts and a road map
- Scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association to correlation analysis
- Constraint-based association mining
- Mining colossal patterns
  - Summary

#### **Why Mining Colossal Frequent Patterns?**

- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, "Mining Colossal Frequent Patterns by Core Pattern Fusion", ICDE'07.
- We have many algorithms, but can we mine large (i.e., colossal) patterns? – such as just size around 50 to 100? Unfortunately, not!
- Why not? the curse of "downward closure" of frequent patterns
  - The "downward closure" property
    - Any sub-pattern of a frequent pattern is frequent.
  - Example. If  $(a_1, a_2, ..., a_{100})$  is frequent, then  $a_1, a_2, ..., a_{100}, (a_1, a_2)$ ,  $(a_1, a_3), ..., (a_1, a_{100}), (a_1, a_2, a_3), ...$  are all frequent! There are about 2<sup>100</sup> such frequent itemsets!
  - No matter using breadth-first search (e.g., Apriori) or depth-first search (FPgrowth), we have to examine so many patterns
- Thus the downward closure property leads to explosion!

# **Colossal Patterns: A Motivating Example**

# Let's make a set of 40 transactions T1 = 1 2 3 4 ..... 39 40 T2 = 1 2 3 4 ..... 39 40

T40=1 2 3 4 ..... 39 40

Closed/maximal patterns may partially alleviate the problem but not really solve it: We often need to mine scattered large patterns!

Let the minimum support threshold  $\sigma$ = 20

There are  $\lfloor 20 \rfloor$  frequent patterns of size 20

Then delete the items on the diagonal Each is closed and maximal

# patterns = 
$$\binom{n}{n/2} \approx \sqrt{2/\pi} \frac{2^n}{\sqrt{n}}$$

The size of the answer set is exponential to n

#### **Colossal Pattern Set: Small but Interesting**

- It is often the case that only a small number of patterns are colossal, i.e., of large size
- Colossal patterns are usually attached with greater importance than those of small pattern sizes



93

# Mining Colossal Patterns: Motivation and Philosophy

- Motivation: Many real-world tasks need mining colossal patterns
  - Micro-array analysis in bioinformatics (when support is low)
  - Biological sequence patterns
  - Biological/sociological/information graph pattern mining
- No hope for completeness
  - If the mining of mid-sized patterns is explosive in size, there is no hope to find colossal patterns efficiently by insisting "complete set" mining philosophy
- Jumping out of the swamp of the mid-sized results
  - What we may develop is a philosophy that may jump out of the swamp of mid-sized results that are explosive in size and jump to reach colossal patterns
- Striving for mining almost complete colossal patterns
  - The key is to develop a mechanism that may quickly reach colossal patterns and discover most of them

#### Alas, A Show of Colossal Pattern Mining!

Let the min-support threshold  $\sigma$ = 20

Then there are \( \begin{aligned} \cdot \c

However, there is only one with size greater than 20, (*i.e.*, colossal):

$$\alpha$$
= {41,42,...,79} of size 39

The existing fastest mining algorithms (e.g., FPClose, LCM) fail to complete running

The algorithm outputs this colossal pattern in seconds

05

# **Methodology of Pattern-Fusion Strategy**

- Pattern-Fusion traverses the tree in a bounded-breadth way
  - Always pushes down a frontier of a bounded-size candidate pool
  - Only a fixed number of patterns in the current candidate pool will be used as the starting nodes to go down in the pattern tree
     thus avoids the exponential search space
- Pattern-Fusion identifies "shortcuts" whenever possible
  - Pattern growth is not performed by single-item addition but by leaps and bounded: agglomeration of multiple patterns in the pool
  - These shortcuts will direct the search down the tree much more rapidly towards the colossal patterns

#### **Observation: Colossal Patterns and Core Patterns**



Subpatterns  $\alpha_1$  to  $\alpha_k$  cluster tightly around the colossal pattern  $\alpha$  by sharing a similar support. We call such subpatterns *core patterns* of  $\alpha$ 

07

#### **Robustness of Colossal Patterns**

Core Patterns

Intuitively, for a frequent pattern  $\alpha$ , a subpattern  $\beta$  is a  $\tau$ -core pattern of  $\alpha$  if  $\beta$  shares a similar support set with  $\alpha$ , i.e.,

$$\frac{\mid D_{\alpha}\mid}{\mid D_{\beta}\mid} \geq \tau \qquad 0 < \tau \leq 1$$

where  $\tau$  is called the core ratio

Robustness of Colossal Patterns

A colossal pattern is robust in the sense that it tends to have much more core patterns than small patterns

#### **Example: Core Patterns**

- A colossal pattern has far more core patterns than a small-sized pattern
- A colossal pattern has far more core descendants of a smaller size c
- A random draw from a complete set of pattern of size c would more likely to pick a core descendant of a colossal pattern
- A colossal pattern can be generated by merging a set of core patterns

| Transaction (# of Ts) | Core Patterns ( $\tau$ = 0.5)                                                                                                                                                   |  |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| (abe) (100)           | (abe), (ab), (be), (ae), (e)                                                                                                                                                    |  |  |  |  |  |
| (bcf) (100)           | (bcf), (bc), (bf)                                                                                                                                                               |  |  |  |  |  |
| (acf) (100)           | (acf), (ac), (af)                                                                                                                                                               |  |  |  |  |  |
| (abcef) (100)         | (ab), (ac), (af), (ae), (bc), (bf), (be) (ce), (fe), (e), (abc), (abf), (abe), (ace), (acf), (afe), (bcf), (bce), (bfe), (cfe), (abcf), (abce), (bcfe), (acfe), (abfe), (abcef) |  |  |  |  |  |

99

#### Robustness of Colossal Patterns

- (d, $\tau$ )-robustness: A pattern  $\alpha$  is (d,  $\tau$ )-robust if d is the maximum number of items that can be removed from  $\alpha$  for the resulting pattern to remain a  $\tau$ -core pattern of  $\alpha$
- For a  $(d,\tau)$ -robust pattern  $\alpha$ , it has  $\Omega(2^d)$  core patterns
  - » A colossal patterns tend to have a large number of core patterns
- Pattern distance: For patterns α and β, the pattern distance of α and β is defined to be  $Dist(\alpha, \beta) = 1 \frac{\left|D_{\alpha} \cap D_{\beta}\right|}{\left|D_{\alpha} \cup D_{\beta}\right|}$
- If two patterns α and β are both core patterns of a same pattern, they would be bounded by a "ball" of a radius specified by their core ratio τ

Dist 
$$(\alpha, \beta) \le 1 - \frac{1}{2/\tau - 1} = r(\tau)$$

 Once we identify one core pattern, we will be able to find all the other core patterns by a bounding ball of radius r(τ)

#### **Colossal Patterns Correspond to Dense Balls**

- Due to their robustness, colossal patterns correspond to dense balls
  - Ω( 2<sup>d</sup>) in population
- A random draw in the pattern space will hit somewhere in the ball with high probability



101

# Idea of Pattern-Fusion Algorithm

- Generate a complete set of frequent patterns up to a small size
- Randomly pick a pattern β, and β has a high probability to be a core-descendant of some colossal pattern α
- Identify all α's descendants in this complete set, and merge all of them — This would generate a much larger core-descendant of α
- In the same fashion, we select K patterns. This set of larger core-descendants will be the candidate pool for the next iteration

#### Pattern-Fusion: The Algorithm

- Initialization (Initial pool): Use an existing algorithm to mine all frequent patterns up to a small size, e.g., 3
- Iteration (Iterative Pattern Fusion):
  - At each iteration, k seed patterns are randomly picked from the current pattern pool
  - For each seed pattern thus picked, we find all the patterns within a bounding ball centered at the seed pattern
  - All these patterns found are fused together to generate a set of super-patterns. All the super-patterns thus generated form a new pool for the next iteration
- Termination: when the current pool contains no more than K patterns at the beginning of an iteration

103

# Why Is Pattern-Fusion Efficient?

- A bounded-breadth pattern tree traversal
  - It avoids explosion in mining mid-sized ones
  - Randomness comes to help to stay on the right path
- Ability to identify "shortcuts" and take "leaps"
  - fuse small patterns together in one step to generate new patterns of significant sizes
  - Efficiency



#### **Pattern-Fusion Leads to Good Approximation**

- Gearing toward colossal patterns
  - The larger the pattern, the greater the chance it will be generated
- Catching outliers
  - The more distinct the pattern, the greater the chance it will be generated

105

#### **Experimental Setting**

- Synthetic data set
  - Diag<sub>n</sub> an n x (n-1) table where i<sup>th</sup> row has integers from 1 to n except
     i. Each row is taken as an itemset. min\_support is n/2.
- Real data set
  - Replace: A program trace data set collected from the "replace" program, widely used in software engineering research
  - ALL: A popular gene expression data set, a clinical data on ALL-AML leukemia (www.broad.mit.edu/tools/data.html).
    - Each item is a column, representing the activitiy level of gene/protein in the same
    - Frequent pattern would reveal important correlation between gene expression patterns and disease outcomes

# Experiment Results on Diag, LCM run time increases Run Time (seconds) exponentially with pattern size n Pattern-Fusion finishes 10° efficiently 101 The approximation error of Pattern-Fusion (with min-sup 20) in comparison with the Approximation Error 4(A<sub>C</sub>) complete set) is rather close to uniform sampling (which randomly picks K patterns from the complete answer set)

# **Experimental Results on ALL**

- ALL: A popular gene expression data set with 38 transactions, each with 866 columns
  - There are 1736 items in total
  - The table shows a high frequency threshold of 30

| Pattern Size     | 110 | 107 | 102 | 91 | 86 | 84 | 83 |
|------------------|-----|-----|-----|----|----|----|----|
| The complete set | 1   | 1   | 1   | 1  | 1  | 2  | 6  |
| Pattern-Fusion   | 1   | 1   | 1   | 1  | 1  | 1  | 4  |
| Pattern Size     | 82  | 77  | 76  | 75 | 74 | 73 | 71 |
| The complete set | 1   | 2   | 1   | 1  | 1  | 2  | 1  |
| Pattern-Fusion   | 0   | 2   | 0   | 1  | 1  | 1  | 1  |

#### **Experimental Results on REPLACE**

#### REPLACE

- A program trace data set, recording 4395 calls and transitions
- The data set contains 4395 transactions with 57 items in total
- With support threshold of 0.03, the largest patterns are of size 44
- They are all discovered by Pattern-Fusion with different settings of K and τ, when started with an initial pool of 20948 patterns of size
   <=3</li>

100

# **Experimental Results on REPLACE**

- Approximation error when compared with the complete mining result
- Example. Out of the total 98 patterns of size >=42, when K=100, Pattern-Fusion returns 80 of them
- A good approximation to the colossal patterns in the sense that any pattern in the complete set is on average at most 0.17 items away from one of these 80 patterns





# **Frequent-Pattern Mining: Summary**

- Frequent pattern mining—an important task in data mining
- Scalable frequent pattern mining methods
  - Apriori (Candidate generation & test)
  - Projection-based (FPgrowth, CLOSET+, ...)
  - Vertical format approach (CHARM, ...)
- Mining a variety of rules and interesting patterns
- Constraint-based mining
- Mining sequential and structured patterns
- Extensions and applications

#### Frequent-Pattern Mining: Research Problems

- Mining fault-tolerant frequent, sequential and structured patterns
  - Patterns allows limited faults (insertion, deletion, mutation)
- Mining truly interesting patterns
  - Surprising, novel, concise, ...
- Application exploration
  - E.g., DNA sequence analysis and bio-pattern classification
  - "Invisible" data mining

113

# **Ref: Basic Concepts of Frequent Pattern Mining**

- (Association Rules) R. Agrawal, T. Imielinski, and A.
   Swami. Mining association rules between sets of items in large databases. SIGMOD'93.
- (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98.
- (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT'99.
- (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95

#### **Ref: Apriori and Its Improvements**

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94.
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95.
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95.
- H. Toivonen. Sampling large databases for association rules. VLDB'96.
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98.

115

# Ref: Depth-First, Projection-Based FP Mining

- R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. J. Parallel and Distributed Computing:02.
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD' 00.
- J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. KDD'02.
- J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without Minimum Support. ICDM'02.
- J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. KDD'03.
- G. Liu, H. Lu, W. Lou, J. X. Yu. On Computing, Storing and Querying Frequent Patterns. KDD'03.
- G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003

#### **Ref: Vertical Format and Row Enumeration Methods**

- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association rules. DAMI:97.
- Zaki and Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Mining, SDM'02.
- C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints. KDD'02.
- F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki, CARPENTER: Finding Closed Patterns in Long Biological Datasets. KDD'03.
- H. Liu, J. Han, D. Xin, and Z. Shao, Mining Interesting Patterns from Very High Dimensional Data: A Top-Down Row Enumeration Approach, SDM'06.

117

# Ref: Mining Multi-Level and Quantitative Rules

- R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95.
- J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95.
- R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD'96.
- T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. SIGMOD'96.
- K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama.
   Computing optimized rectilinear regions for association rules. KDD'97.
- R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97.
- Y. Aumann and Y. Lindell. A Statistical Theory for Quantitative Association Rules KDD'99.

#### **Ref: Mining Correlations and Interesting Rules**

- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94.
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97.
- C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98.
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02.
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03.
- T. Wu, Y. Chen and J. Han, "Association Mining in Large Databases:
   A Re-Examination of Its Measures", PKDD'07

110

# **Ref: Mining Other Kinds of Rules**

- R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96.
- B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97.
- A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of customer transactions. ICDE'98.
- D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A generalization of association-rule mining. SIGMOD'98.
- F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data mining. VLDB'98.
- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, "Mining Colossal Frequent Patterns by Core Pattern Fusion", ICDE'07.

#### **Ref: Constraint-Based Pattern Mining**

- R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97
- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang. Exploratory mining and pruning optimizations of constrained association rules. SIGMOD'98
- G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. ICDE'00
- J. Pei, J. Han, and L. V. S. Lakshmanan. Mining Frequent Itemsets with Convertible Constraints. ICDE'01
- J. Pei, J. Han, and W. Wang, Mining Sequential Patterns with Constraints in Large Databases, CIKM'02
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte:
   Anticipated Data Reduction in Constrained Pattern Mining, PKDD'03
- F. Zhu, X. Yan, J. Han, and P. S. Yu, "gPrune: A Constraint Pushing Framework for Graph Pattern Mining", PAKDD'07

121

# **Ref: Mining Sequential and Structured Patterns**

- R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. EDBT'96.
- H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. DAMI:97.
- M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences.
   Machine Learning:01.
- J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. ICDE'01.
- M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. ICDM'01.
- X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets. SDM'03.
- X. Yan and J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. KDD'03.

#### Ref: Mining Spatial, Multimedia, and Web Data

- K. Koperski and J. Han, Discovery of Spatial Association Rules in Geographic Information Databases, SSD'95.
- O. R. Zaiane, M. Xin, J. Han, Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining Technology on Web Logs. ADL'98.
- O. R. Zaiane, J. Han, and H. Zhu, Mining Recurrent Items in Multimedia with Progressive Resolution Refinement. ICDE'00.
- D. Gunopulos and I. Tsoukatos. Efficient Mining of Spatiotemporal Patterns. SSTD'01.

123

# **Ref: Mining Frequent Patterns in Time-Series Data**

- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98.
- J. Han, G. Dong and Y. Yin, Efficient Mining of Partial Periodic Patterns in Time Series Database, ICDE'99.
- H. Lu, L. Feng, and J. Han. Beyond Intra-Transaction Association Analysis: Mining Multi-Dimensional Inter-Transaction Association Rules. TOIS:00.
- B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A. Biliris. Online Data Mining for Co-Evolving Time Sequences. ICDE'00.
- W. Wang, J. Yang, R. Muntz. TAR: Temporal Association Rules on Evolving Numerical Attributes. ICDE'01.
- J. Yang, W. Wang, P. S. Yu. Mining Asynchronous Periodic Patterns in Time Series Data. TKDE'03.

#### **Ref: Iceberg Cube and Cube Computation**

- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96.
- Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous multidi-mensional aggregates. SIGMOD'97.
- J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. DAMI: 97.
- M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries efficiently. VLDB'98.
- S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data cubes. EDBT'98.
- K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. SIGMOD'99.

125

# Ref: Iceberg Cube and Cube Exploration

- J. Han, J. Pei, G. Dong, and K. Wang, Computing Iceberg Data Cubes with Complex Measures. SIGMOD' 01.
- W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed Cube: An Effective Approach to Reducing Data Cube Size. ICDE'02.
- G. Dong, J. Han, J. Lam, J. Pei, and K. Wang. Mining Multi-Dimensional Constrained Gradients in Data Cubes. VLDB'01.
- T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association rules. DAMI:02.
- L. V. S. Lakshmanan, J. Pei, and J. Han. Quotient Cube: How to Summarize the Semantics of a Data Cube. VLDB'02.
- D. Xin, J. Han, X. Li, B. W. Wah. Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up Integration. VLDB'03.

#### **Ref: FP for Classification and Clustering**

- G. Dong and J. Li. Efficient mining of emerging patterns:
   Discovering trends and differences. KDD'99.
- B. Liu, W. Hsu, Y. Ma. Integrating Classification and Association Rule Mining. KDD'98.
- W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules. ICDM'01.
- H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets. SIGMOD' 02.
- J. Yang and W. Wang. CLUSEQ: efficient and effective sequence clustering. ICDE'03.
- X. Yin and J. Han. CPAR: Classification based on Predictive Association Rules. SDM'03.
- H. Cheng, X. Yan, J. Han, and C.-W. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification", ICDE'07.

127

# **Ref: Stream and Privacy-Preserving FP Mining**

- A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke. Privacy Preserving Mining of Association Rules. KDD'02.
- J. Vaidya and C. Clifton. Privacy Preserving Association Rule Mining in Vertically Partitioned Data. KDD'02.
- G. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. VLDB'02.
- Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-Dimensional Regression Analysis of Time-Series Data Streams. VLDB'02.
- C. Giannella, J. Han, J. Pei, X. Yan and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities, Next Generation Data Mining:03.
- A. Evfimievski, J. Gehrke, and R. Srikant. Limiting Privacy Breaches in Privacy Preserving Data Mining. PODS'03.

#### **Ref: Other Freq. Pattern Mining Applications**

- Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen.
   Efficient Discovery of Functional and Approximate
   Dependencies Using Partitions. ICDE'98.
- H. V. Jagadish, J. Madar, and R. Ng. Semantic Compression and Pattern Extraction with Fascicles. VLDB'99.
- T. Dasu, T. Johnson, S. Muthukrishnan, and V.
   Shkapenyuk. Mining Database Structure; or How to Build a Data Quality Browser. SIGMOD'02.
- K. Wang, S. Zhou, J. Han. Profit Mining: From Patterns to Actions. EDBT'02.

120

# **Further Improvements of Mining Methods**

- AFOPT (Liu, et al. @ KDD'03)
  - A "push-right" method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD'03)
  - Mine data sets with small rows but numerous columns
  - Construct a row-enumeration tree for efficient mining
- FPgrowth+ (Grahne and Zhu, FIMI'03)
  - Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- TD-Close (Liu, et al, SDM'06)

# Assignments & Readings Readings Chapter 5 Individual Project #1 Ongoing

| Next Session: Classification and Prediction |     |  |  |  |  |  |  |  |  |
|---------------------------------------------|-----|--|--|--|--|--|--|--|--|
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             |     |  |  |  |  |  |  |  |  |
|                                             | 132 |  |  |  |  |  |  |  |  |