Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_şt-nat*

Barem de evaluare și de notare

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^2 = (2+i)^2 = 4+4i+i^2 =$	2n
	z = (2+i) = 4+4i+i =	3 p
	=3+4i	2p
2.	f(m)=1	2p
	$m-3=1 \Leftrightarrow m=4$	3p
3.	x-3=9	3p
	x=12 care verifică ecuația	2p
4.	Numărul submulțimilor cu un număr impar de elemente ale unei mulțimi cu 4 elemente este	_
	egal cu $C_4^1 + C_4^3 =$	3p
	= 8	2p
5.	$\overrightarrow{MB} = \overrightarrow{MA} + \overrightarrow{AB}$	2 p
	$\overrightarrow{MC} = \overrightarrow{MD} + \overrightarrow{DC} \Rightarrow \overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{AB}$	3 p
6.	$\cos C = \sin B , \sin C = \cos B$	2p
	$\sin B \cdot \cos C + \sin C \cdot \cos B = \sin^2 B + \cos^2 B = 1$	3 p

1.a)	$\det A = \begin{vmatrix} 0 & 2014 \\ 1 & -1 \end{vmatrix} = 0 \cdot (-1) - 1 \cdot 2014 =$	3 p
	= -2014	2p
b)	$A \cdot A = \begin{pmatrix} 0 & 2014 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 2014 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2014 & -2014 \\ -1 & 2015 \end{pmatrix}$	3p
	$A + A \cdot A = \begin{pmatrix} 0 & 2014 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} 2014 & -2014 \\ -1 & 2015 \end{pmatrix} = \begin{pmatrix} 2014 & 0 \\ 0 & 2014 \end{pmatrix} = 2014I_2$	2p
c)	$A^{-1} = \frac{1}{2014} \begin{pmatrix} 1 & 2014 \\ 1 & 0 \end{pmatrix}$	3р
	$X = 2014 A^{-1} = \begin{pmatrix} 1 & 2014 \\ 1 & 0 \end{pmatrix}$	2p
2.a)	$f(0) = 0^3 - 6 \cdot 0^2 + m \cdot 0 - 6 =$	2p
	=-6	3 p
b)	$x_1 + x_2 + x_3 = 6$, $x_1 x_2 x_3 = 6$	2p
	$\frac{1}{x_1 x_2} + \frac{1}{x_1 x_3} + \frac{1}{x_2 x_3} = \frac{x_1 + x_2 + x_3}{x_1 x_2 x_3} = \frac{6}{6} = 1$	3p
c)	f are rădăcinile $x_1 = k - 1$, $x_2 = k$ și $x_3 = k + 1$ unde $k \in \mathbb{Z} \Rightarrow x_1 + x_2 + x_3 = 3k \Rightarrow k = 2$	2p
	$x_1 x_2 + x_1 x_3 + x_2 x_3 = 1 \cdot 2 + 1 \cdot 3 + 2 \cdot 3 \Rightarrow m = 11$	3 p

	`	incte)
1.a)	$f'(x) = \frac{x'(x^2+1) - x(x^2+1)'}{(x^2+1)^2} =$	2p
	$= \frac{1 - x^2}{\left(x^2 + 1\right)^2} = \frac{(1 - x)(1 + x)}{\left(x^2 + 1\right)^2}, \ x \in \mathbb{R}$	3р
b)	y - f(1) = f'(1)(x-1)	2p
	$f(1) = \frac{1}{2}$, $f'(1) = 0$, deci ecuația tangentei este $y = \frac{1}{2}$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ sau } x = -1$	2p
	$f'(x) < 0$ pentru $x \in (-\infty, -1)$, $f'(x) > 0$ pentru $x \in (-1, 1)$, $f'(x) < 0$ pentru $x \in (1, +\infty)$	2p
	Punctele de extrem sunt $x = -1$ și $x = 1$	1p
2.a)	$\int_{0}^{1} \left(f(x) - \frac{1}{x+2} - \frac{1}{x+3} \right) dx = \int_{0}^{1} \frac{1}{x+1} dx =$	2p
	$= \ln\left(x+1\right) \Big _{0}^{1} = \ln 2$	3р
b)	F este o primitivă a lui $f \Rightarrow F''(x) = f'(x) = -\frac{1}{(x+1)^2} - \frac{1}{(x+2)^2} - \frac{1}{(x+3)^2}$	2p
	$F''(x) < 0$ pentru orice $x \in (-1, +\infty)$, deci F este concavă pe $(-1, +\infty)$	3 p
c)	$\mathcal{A} = \int_{0}^{n} f(x) dx = \int_{0}^{n} \left(\frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} \right) dx = \ln\left((x+1)(x+2)(x+3) \right) \Big _{0}^{n} =$	2p
	$= \ln \frac{(n+1)(n+2)(n+3)}{\epsilon}$	1p
	$n \ge 1 \Rightarrow (n+1)(n+2)(n+3) \ge 24 \Rightarrow A \ge \ln 4$ pentru orice număr natural nenul n	2p

Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_st-nat*

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numărul complex z = 2 + i. Calculați z^2 .
- **5p 2.** Determinați numărul real m știind că punctul M(m,1) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 3.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_3(x-3)=2$.
- **5p 4.** Determinați numărul submulțimilor cu număr impar de elemente ale mulțimii $A = \{1, 2, 3, 4\}$.
- **5p** | **5.** În dreptunghiul ABCD se notează cu M mijlocul laturii AD. Arătați că $\overrightarrow{MB} + \overrightarrow{MC} = 2\overrightarrow{AB}$.
- **5p** | **6.** Se consideră triunghiul ABC dreptunghic în A. Arătați că $\sin B \cdot \cos C + \sin C \cdot \cos B = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 0 & 2014 \\ 1 & -1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** | **a**) Calculați det A.
- **5p b**) Arătați că $A + A \cdot A = 2014I_2$.
- **5p** c) Rezolvați în $\mathcal{M}_2(\mathbb{R})$ ecuația matriceală $A \cdot X = 2014 I_2$.
 - **2.** Se consideră polinomul $f = X^3 6X^2 + mX 6$, unde m este număr real.
- **5p** a) Calculați f(0).
- $\mathbf{5p}$ **b)** Arătați că $\frac{1}{x_1x_2} + \frac{1}{x_1x_3} + \frac{1}{x_2x_3} = 1$ știind că x_1, x_2 și x_3 sunt rădăcinile polinomului f.
- **5p** c) Determinați numărul real m știind că rădăcinile polinomului f sunt trei numere întregi consecutive.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^2 + 1}$.
- **5p** a) Arătați că $f'(x) = \frac{(1-x)(1+x)}{(x^2+1)^2}, x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$, situat pe graficul funcției f.
- **5p** $| \mathbf{c} |$ Determinați punctele de extrem ale funcției f.
 - 2. Se consideră funcția $f:(-1,+\infty)\to\mathbb{R}$, $f(x)=\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}$.
- **5p** a) Arătați că $\int_{0}^{1} \left(f(x) \frac{1}{x+2} \frac{1}{x+3} \right) dx = \ln 2$.
- **5p b**) Arătați că orice primitivă a funcției f este concavă pe intervalul $(-1, +\infty)$.
- **5p** c) Arătați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = n, are aria mai mare sau egală cu $\ln 4$, pentru orice număr natural nenul n.

Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_şt-nat* Barem de evaluare și de notare

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	` 1	/
1.	z = 3 + 2 - 2i =	3p
	=5-2i, deci partea reală a numărului z este egală cu 5	2p
2.	$x_1 + x_2 = 3$, $x_1 x_2 = 10$	3 p
	$x_1 + x_2 + 2x_1x_2 = 3 + 2 \cdot 10 = 23$	2p
3.	$x^2 + x + 1 = 1 \Rightarrow x^2 + x = 0$	3 p
	$x_1 = -1$ și $x_2 = 0$ care verifică ecuația	2p
4.	Cifra unităților poate fi aleasă în 2 moduri	2p
	Cum cifrele sunt distincte, cifra zecilor poate fi aleasă în 2 moduri, iar cifra sutelor poate fi aleasă într-un singur mod	2p
	Se pot forma $2 \cdot 2 \cdot 1 = 4$ numere	1p
5.	a-1=2	3p
	a = 3	2p
6.	$A = \frac{\pi}{2}$	2p
	$R = \frac{5}{2}$	3р

1.a)	$\det(A(2)) = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - 1 \cdot 1 =$	3p
	= 3	2 p
b)	$A(x) \cdot A(-x) = \begin{pmatrix} x & 1 \\ 1 & x \end{pmatrix} \begin{pmatrix} -x & 1 \\ 1 & -x \end{pmatrix} = \begin{pmatrix} -x^2 + 1 & 0 \\ 0 & -x^2 + 1 \end{pmatrix}$	3 p
	$ \begin{pmatrix} -x^2 + 1 & 0 \\ 0 & -x^2 + 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow x = 0 $	2p
c)	$A(1) + A(2) + \dots + A(n) = \begin{pmatrix} 1+2+\dots+n & n \\ n & 1+2+\dots+n \end{pmatrix} = \begin{pmatrix} \frac{n(n+1)}{2} & n \\ n & \frac{n(n+1)}{2} \end{pmatrix}$	2p
	$\begin{vmatrix} \frac{n(n+1)}{2} & n \\ n & \frac{n(n+1)}{2} \end{vmatrix} = \frac{n(n+1)}{2} \cdot \frac{n(n+1)}{2} - n \cdot n = \frac{n^2(n-1)(n+3)}{4} \text{ pentru orice număr natural nenul } n$	3 p
2.a)	$2*4=4(2+4-3)-2\cdot 4=$	3p
	=12-8=4	2p

b)	x * y = 4x + 4y - 12 - xy = 4 - xy + 4x + 4y - 16 =	2 p
	=4-x(y-4)+4(y-4)=4-(x-4)(y-4) pentru orice numere reale x şi y	3 p
c)	$x * x = 4 - (x - 4)^2 \Rightarrow x * x * x = 4 + (x - 4)^3$	2p
	$(x-4)^3 = x-4 \Rightarrow x=3 \text{ sau } x=4 \text{ sau } x=5$	3p

SUBIECTUL al III-lea (30 de puncte) $\lim_{x \to e} f(x) = \lim_{x \to e} (x \ln x - x + 1) =$ 2p 3p $f'(x) = (x \ln x - x + 1)' = \ln x + x \cdot \frac{1}{x} - 1 =$ 3p 2p 3p $f(x) \ge f(1) \Rightarrow f(x) \ge 0 \text{ pentru orice } x \in (0, +\infty)$ 2.a) $\int_{0}^{2014} (x+3)(x+5) f(x) dx = \int_{0}^{2014} 1 dx =$ 2p 2p **3p 3p** $= \frac{1}{2} \left(\frac{1}{576} - \frac{1}{64} \right) = -\frac{1}{144}$ c) $\mathcal{A} = \int_{0}^{a} |f(x)| dx = \int_{0}^{a} \frac{1}{(x+4)^{2} - 1} dx = \frac{1}{2} \ln \frac{x+3}{x+5} \Big|_{0}^{a} = \frac{1}{2} \ln \frac{5(a+3)}{3(a+5)}$ 2p **3p** $\frac{5(a+3)}{3(a+5)} = \frac{10}{9} \Rightarrow a = 1$ **2**p

Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_st-nat*

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați partea reală a numărului complex z = 3 + 2(1 i).
- **5p** 2. Arătați că $x_1 + x_2 + 2x_1x_2 = 23$ știind că x_1 și x_2 sunt soluțiile ecuației $x^2 3x + 10 = 0$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + x + 1} = 1$.
- **5p** | **4.** Determinați câte numere naturale impare de trei cifre distincte se pot forma cu elementele mulțimii {1, 2, 3}.
- **5p 5.** Determinați numărul real a pentru care dreptele de ecuații y = (a-1)x+1 și y = 2x-3 sunt paralele.
- **5p** | **6.** Determinați raza cercului circumscris triunghiului ABC în care AB = 3, AC = 4 și BC = 5.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x & 1 \\ 1 & x \end{pmatrix}$, unde x este număr real.
- **5p** a) Calculați $\det(A(2))$.
- **5p b)** Determinați numărul real x pentru care $A(x) \cdot A(-x) = I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Arătați că $\det(A(1)+A(2)+\cdots+A(n))=\frac{n^2(n-1)(n+3)}{4}$ pentru orice număr natural nenul n.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = 4(x + y 3) xy.
- **5p a**) Calculați 2*4.
- **5p** | **b**) Arătați că x * y = 4 (x 4)(y 4) pentru orice numere reale x și y.
- **5p** | **c**) Rezolvați în mulțimea numerelor reale ecuația x * x * x = x.

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=x\ln x-x+1$.
- **5p** a) Arătați că $\lim_{x \to a} f(x) = 1$.
- **5p b**) Arătați că $f'(x) = \ln x$, $x \in (0, +\infty)$.
- **5p** c) Arătați că $f(x) \ge 0$ pentru orice $x \in (0, +\infty)$.
 - 2. Se consideră funcția $f:(-3,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x^2 + 8x + 15}$.
- **5p** a) Arătați că $\int_{0}^{2014} (x+3)(x+5) f(x) dx = 2014$.
- **5p b)** Arătați că $\int_{1}^{1} f(x) \cdot f'(x) dx = -\frac{1}{144}$.
- **5p c**) Determinați numărul real a, a > 0 știind că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = a, are aria egală cu $\frac{1}{2} \ln \frac{10}{9}$.

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_șt-nat*

Barem de evaluare și de notare

Varianta 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$x+2=\frac{2+10}{2}$	3p
	x = 4	2 p
2.	$\Delta = 44$	2p
	Valoarea minimă a funcției f este egală cu $-\frac{\Delta}{4a} = -11$	3 p
3.	$x^2 - 2x - 8 = 0$	3 p
	$x_1 = -2$ și $x_2 = 4$, care verifică ecuația	2 p
4.	Sunt 45 de numere pare de două cifre, deci sunt 45 de cazuri favorabile	2p
	Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{90} = \frac{1}{2}$	2p
	nr. cazuri posibile 90 2	2p
5.	$\vec{u} = -\vec{v} \Leftrightarrow a - 2 = -3$	3p
	a = -1	2p
6.	$\cos A = \frac{16 + 25 - 36}{2 \cdot 4 \cdot 5} =$	3 p
	$=\frac{1}{8}$	2p

SUBIECTUL al II-lea

1.a)	$\det B = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = 0 + 0 + 0 - 1 - 0 - 0 =$	3 p
	=-1	2 p
b)	$AB = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	2p
	$BA = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow AB = BA$	3 p
c)	$\det(B + xA) = \begin{vmatrix} 0 & x & 1 \\ x & 1 & x \\ 1 & x & 0 \end{vmatrix} = 2x^2 - 1$	3 p
	$2x^2 - 1 = 1 \Leftrightarrow x_1 = -1 \text{ si } x_2 = 1$	2 p
2.a)	$4*5 = 4\cdot 5 - 4(4+5-5) =$	3 p
	=4	2 p

b)	x * y = xy - 4x - 4y + 16 + 4 =	2p
	= x(y-4)-4(y-4)+4=(x-4)(y-4)+4 pentru orice numere reale x şi y	3 p
c)	x*4=4*x=4 pentru orice număr real x	2p
	1*2*3**2014 = (1*2*3)*4*(5**2014) = 4*(5**2014) = 4	3 p

SUBII	ECTUL al III-lea	(30 de puncte)
1.a)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - 3}{x^2 + 3} =$	2p
	=1	3p
b)	$f'(x) = \frac{(x^2 - 3) \cdot (x^2 + 3) - (x^2 - 3) \cdot (x^2 + 3)}{(x^2 + 3)^2} =$	2 p
	$= \frac{2x(x^2+3)-2x(x^2-3)}{(x^2+3)^2} = \frac{12x}{(x^2+3)^2}, \ x \in \mathbb{R}$	3р
c)	$f''(x) = \frac{36(1-x^2)}{(x^2+3)^3}, \ x \in \mathbb{R}$	3р
	$f''(x) > 0$ pentru orice $x \in (-1,1) \Rightarrow f$ este convexă pe intervalul $(-1,1)$	2 p
2.a)	$\left \int_{1}^{e} f(x) \cdot f'(x) dx = \frac{1}{2} f^{2}(x) \right _{1}^{e} =$	3р
	$= \frac{1}{2} (f^{2}(e) - f^{2}(1)) = \frac{1}{2}$	2 p
b)	$\int_{1}^{e} x^{3} f(x) dx = \int_{1}^{e} \left(\frac{x^{4}}{4}\right) \ln x dx = \frac{x^{4}}{4} \ln x \Big _{1}^{e} - \int_{1}^{e} \frac{x^{4}}{4} \cdot \frac{1}{x} dx =$	2 p
	$=\frac{e^4}{4} - \frac{x^4}{16} \bigg _1^e = \frac{3e^4 + 1}{16}$	3р
c)	$\mathcal{A} = \int_{1}^{e} f(x) dx = \int_{1}^{e} \ln x dx = \left(x \ln x - x\right) \Big _{1}^{e} =$	3р
	$=(e \ln e - e) - (\ln 1 - 1) = 1$	2p

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M șt-nat*

Varianta 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați numărul real x pentru care numerele 2, x+2 și 10 sunt termeni consecutivi ai unei progresii aritmetice.
- **5p** 2. Determinați valoarea minimă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x 10$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2 2x) = 3$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie par.
- **5p** | **5.** Determinați numărul real a pentru care vectorii $\vec{u} = (a-2)\vec{i} 2\vec{j}$ și $\vec{v} = 3\vec{i} + 2\vec{j}$ sunt opuși.
- **5p 6.** Calculați cosinusul unghiului A al triunghiului ABC în care AB = 4, AC = 5 și BC = 6.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.
- **5p a)** Calculati $\det B$.
- **5p** | **b**) Arătați că AB = BA.
- **5p** c) Determinați numerele reale x pentru care $\det(B + xA) = 1$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = xy 4(x + y 5).
- **5p a**) Calculați 4 * 5.
- **5p b)** Arătați că x * y = (x-4)(y-4)+4 pentru orice numere reale x și y.
- **5p** | **c**) Calculați $1 * 2 * 3 * \cdots * 2014$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 3}{x^2 + 3}$.
- **5p a**) Calculați $\lim_{x \to +\infty} f(x)$.
- **5p b)** Arătați că $f'(x) = \frac{12x}{(x^2+3)^2}, x \in \mathbb{R}$.
- **5p** c) Arătați că funcția f este convexă pe intervalul (-1,1).
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \ln x$.
- **5p a)** Arătați că $\int_{1}^{e} f(x) \cdot f'(x) dx = \frac{1}{2}$.
- **5p b)** Arătați că $\int_{1}^{e} x^3 f(x) dx = \frac{3e^4 + 1}{16}$.
- **5p** c) Determinați aria suprafaței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = e.

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_şt-nat* Barem de evaluare și de notare

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	(* · · · · · · · · · · · · · · · · · · ·	
1.	$\begin{vmatrix} b_5 = b_2 q^3 \Rightarrow q^3 = 8 \\ q = 2 \end{vmatrix}$	3p 2p
2.	f(0)=7	2p
	$f(0) = 7 (f \circ f)(0) = f(7) = 70$	3p
3.	$(x-3)^2 = x-1 \Rightarrow x^2 - 7x + 10 = 0$	2p
	$x_1 = 2$ nu verifică ecuația și $x_2 = 5$ verifică ecuația	3 p
4.	Numerele divizibile cu 11 din mulțimea A sunt 11, 22, 33 și $44 \Rightarrow 4$ cazuri favorabile Numărul elementelor mulțimii A este $50 \Rightarrow 50$ de cazuri posibile $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{25}$	2p 1p 2p
5.	$\frac{1}{1} = \frac{3}{2}$	3p
6.	<i>a</i> = 3	2p
•	$\sin x = \frac{1}{2}$	2p
	$x = \frac{\pi}{6}$	3p

1.a)	$A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 20 \end{pmatrix}$	2p
	$B \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 20 \end{pmatrix} \Rightarrow A \cdot B = B \cdot A$	3p
b)	$A + B = \begin{pmatrix} 2 & 0 \\ 0 & 9 \end{pmatrix} \Rightarrow \det(A + B) = 18$	2p
	$\det A + \det B = 4 + 5 = 9 \Longrightarrow \det (A + B) > \det A + \det B$	3 p
c)	$X^2 = \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix}$	2p
	$ \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \Rightarrow \begin{cases} a^2 = 1 \\ b^2 = 4 \end{cases} \Rightarrow a = \pm 1, \ b = \pm 2 \Rightarrow \text{sunt 4 matrice } X \text{ care verifică cerințele} $	3 p
2.a)	$f = X^3 + X - 2 \Rightarrow f(1) = 1^3 + 1 - 2 =$	3p
	=2-2=0	2p
b)	$(2-x_1)(2-x_2)(2-x_3) = f(2)$ $f(2)=10+a \Rightarrow a=-8$	3 p
	$f(2)=10+a \Rightarrow a=-8$	2 p

c)	$x_1 + x_2 + x_3 = 0$, $x_1x_2 + x_2x_3 + x_3x_1 = 1$, $x_1x_2x_3 = -a$	1p
	$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = -\frac{1}{a}, \ \frac{1}{x_1} \cdot \frac{1}{x_2} + \frac{1}{x_2} \cdot \frac{1}{x_3} + \frac{1}{x_3} \cdot \frac{1}{x_1} = 0, \ \frac{1}{x_1} \cdot \frac{1}{x_2} \cdot \frac{1}{x_3} = -\frac{1}{a}$	3р
	Un polinom este $g = aX^3 + X^2 + 1$	1p

SUBII	ECTUL al III-lea	(30 de puncte)
1.a)	$f'(x) = (\ln(x+1))' - (\ln x)' =$	2p
	$=\frac{1}{x+1}-\frac{1}{x}$, pentru orice $x \in (0,+\infty)$	3p
b)	$f'(x) = -\frac{1}{x(x+1)}$, pentru orice $x \in (0, +\infty)$	2p
	$f'(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este descrescătoare	3р
c)	$\lim_{x \to +\infty} xf(x) = \lim_{x \to +\infty} \frac{\ln(x+1) - \ln x}{\frac{1}{x}} =$	2p
	$= \lim_{x \to +\infty} \frac{\frac{1}{x+1} - \frac{1}{x}}{-\frac{1}{x^2}} = 1$ $\int_{0}^{1} (x+2)f(x)dx = \int_{0}^{1} x dx = $	3р
2.a)	$\int_{0}^{1} (x+2)f(x)dx = \int_{0}^{1} xdx =$	2p
	$=\frac{x^2}{2}\Big _0^1 = \frac{1}{2}$	3р
b)	$f'(x) = \frac{2}{(x+2)^2} \Rightarrow f(x) + (x+2)f'(x) = 1 \text{ pentru orice } x \in (-2, +\infty)$	3р
	$\int_{2013}^{2014} 1 \cdot dx = x \begin{vmatrix} 2014 \\ 2013 \end{vmatrix} = 1$	2p
c)	$V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} (x+2)^{2} dx =$	3p
	$= \pi \frac{(x+2)^3}{3} \Big _{1}^{2} = \frac{37\pi}{3}$	2 p

Examenul de bacalaureat national 2014 Proba E. c) Matematică M şt-nat

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

- 1. Determinați rația progresiei geometrice $(b_n)_{n>1}$ cu termeni reali, știind că $b_2 = 1$ și $b_5 = 8$.
- **2.** Calculați $(f \circ f)(0)$ pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 2x + 7$. 5p
- 3. Rezolvați în mulțimea numerelor reale ecuația $2\log_5(x-3) = \log_5(x-1)$. **5p**
- **5**p **4.** Calculați probabilitatea ca, alegând la întâmplare un număr din mulțimea $A = \{1, 2, 3, ..., 50\}$, acesta să fie număr divizibil cu 11.
- **5.** Determinați numărul real \vec{a} pentru care vectorii $\vec{v} = 2\vec{i} + (a+1)\vec{j}$ și $\vec{u} = \vec{i} + 2\vec{j}$ sunt coliniari. 5p
- **6.** Rezolvați în mulțimea $\left(0, \frac{\pi}{2}\right)$ ecuația $2\sin x 1 = 0$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ și $B = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$.
- **5p** a) Arătați că $A \cdot B = B \cdot A$.
- **b)** Verificați dacă $\det(A+B) > \det A + \det B$.
- c) Determinați numărul matricelor $X = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ pentru care $X^2 = A$, unde a și b sunt numere reale. **5**p
 - **2.** Se consideră x_1, x_2, x_3 rădăcinile complexe ale polinomului $f = X^3 + X + a$, unde a este număr
- a) Pentru a = -2, arătați că f(1) = 0.
- **b**) Determinați numărul real a, știind că $(2-x_1)(2-x_2)(2-x_3)=2$. 5p
- c) Pentru $a \neq 0$, determinați un polinom de grad trei, având coeficienții reali, care are rădăcinile **5p**

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \ln(x+1) \ln x$.
- a) Calculați f'(x), $x \in (0, +\infty)$. 5p
- **b)** Arătați că funcția f este descrescătoare. **5p**
- c) Calculați $\lim_{x \to +\infty} xf(x)$. 5p
 - **2.** Se consideră funcția $f:(-2,+\infty) \to \mathbb{R}$, $f(x) = \frac{x}{x+2}$.
- **5**p
- a) Calculați $\int_{0}^{1} (x+2)f(x)dx.$ b) Arătați că $\int_{0}^{2014} (f(x)+(x+2)f'(x))dx = 1.$ 5p
- \mathbf{c}) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}, \ g(x) = \frac{x}{f(x)}.$

Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_şt-nat*

Simulare pentru elevii clasei a XII-a

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	(e) a. p	,
1.	z = 1 + i - 1 - i + 1 + i - 1 =	3p
	$=i \Rightarrow \overline{z} = -i$	2p
2.	$\Delta = -4$	2p
	Valoarea maximă a funcției f este $-\frac{\Delta}{4a} = -1$	3p
3.	$3-x = \sqrt{x^2+3} \Rightarrow 9-6x+x^2 = x^2+3$	3p
	x=1, care verifică ecuația	2p
4.	Sunt 81 de numere naturale de două cifre care au cifrele distincte, deci sunt 81 de cazuri favorabile	2p
	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{81}{90} = \frac{9}{10}$	2p
5.	$AC = 3$, $BC = 2$ şi $m(< C) = 90^\circ$	3p
	$\mathcal{A}_{\Delta ABC} = \frac{AC \cdot BC}{2} = 3$	2 p
6.	$\left(\sin x + \cos x\right)^2 = 1 + 2\sin x \cos x$	2p
	$\left(\sin x - \cos x\right)^2 = 1 - 2\sin x \cos x \Rightarrow \left(\sin x + \cos x\right)^2 + \left(\sin x - \cos x\right)^2 = 2$	3 p

1.a)	1 1 1	
	$D(1,0) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{vmatrix} =$	2p
	=0	3 p
b)	$D(a,b) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & a-1 & b-1 \\ 1 & a^2-1 & b^2-1 \end{vmatrix} =$	
	$D(a,b) = \begin{vmatrix} 1 & a-1 & b-1 \end{vmatrix} =$	2p
	$\begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & a+1 & b+1 \end{vmatrix} = (a-1)(b-1)(b-a), \text{ pentru orice numere reale } a \text{ și } b$	3 p
	$\begin{vmatrix} 1 & a+1 & b+1 \end{vmatrix}$	
c)	D(m,n) = (m-1)(n-1)(n-m)	1p
	m și n au aceeași paritate $\Rightarrow n-m$ este număr par, deci $D(m,n)$ este par	2p
	m și n au parități diferite $\Rightarrow m-1$ și $n-1$ au parități diferite $\Rightarrow (m-1)(n-1)$ este număr par,	
	deci $D(a,b)$ este par	2 p
2.a)	$\hat{3}x = \hat{3}$	2p
	$x_1 = \hat{1}, \ x_2 = \hat{3}, \ x_3 = \hat{5}$	3 p

b)	$\hat{0}^3 = \hat{0}, \hat{1}^3 = \hat{1}, \hat{2}^3 = \hat{2}, \hat{3}^3 = \hat{3}, \hat{4}^3 = \hat{4}, \hat{5}^3 = \hat{5}$	3p
	$Deci Im f = \{\hat{0}\}$	2p
c)	$x^3 = x \Rightarrow x^{10} = x^2$, pentru orice $x \in \mathbb{Z}_6$	2p
	$H = \left\{x^2 \mid x \in \mathbb{Z}_6\right\} = \left\{\hat{0}, \hat{1}, \hat{3}, \hat{4}\right\}, \text{ deci mulțimea } H \text{ are 4 elemente}$	3 p

SUBII	ECTUL al III-lea (30 de	puncte)
1.a)	$f'(x) = -\frac{1}{x^2} + \frac{1}{x}, \ x \in (0, +\infty)$	2p
	$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2) = \frac{1}{4}$	3p
b)	f(1)=1, f'(1)=0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = 1$	3 p
c)	$x \in (0,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,1]$	2 p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	2 p
	$f(x) \ge f(1) \Rightarrow f(x) \ge 1$ pentru orice $x \in (0, +\infty)$	1p
2.a)	$\int_{0}^{1} (x+1)f(x)dx = \int_{0}^{1} x^{2}dx =$	2 p
	$=\frac{x^3}{3}\Big _0^1 = \frac{1}{3}$	3р
b)	$\int_{1}^{e} (x+1) f(x) \ln x dx = \int_{1}^{e} x^{2} \ln x dx =$	2 p
	$= \left(\frac{x^3}{3} \cdot \ln x\right) \Big _{1}^{e} - \int_{1}^{e} \frac{x^2}{3} dx = \frac{2e^3 + 1}{9}$	3р
c)	$\int \frac{x^2}{x+1} dx = \int \left(x - 1 + \frac{1}{x+1}\right) dx = \frac{x^2}{2} - x + \ln(x+1) + C \Rightarrow F(x) = \frac{x^2}{2} - x + \ln(x+1) + C$	3р
	$F(0) = 1 \Rightarrow c = 1$	1p
	$F(e-1) = \frac{e^2 - 4e + 7}{2}$	1p

Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_şt-nat* Simulare pentru elevii clasei a XII-a

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați conjugatul numărului complex $z = 1 + i + i^2 + i^3 + i^4 + i^5 + i^6$.
- **5p** 2. Determinați valoarea maximă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 + 4x 5$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3 \sqrt{x^2 + 3} = x$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifrele distincte.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,3), B(4,0) și C(2,0). Determinați aria triunghiului ABC.
- **5p 6.** Arătați că $(\sin x + \cos x)^2 + (\sin x \cos x)^2 = 2$ pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră determinantul $D(a,b) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & a & b \\ 1 & a^2 & b^2 \end{vmatrix}$, unde a și b sunt numere reale.
- **5p a**) Calculați D(1,0).
- **5p b**) Arătați că D(a,b) = (a-1)(b-1)(b-a) pentru orice numere reale a și b.
- **5p** c) Demonstrați că numărul D(m,n) este par pentru orice numere întregi m și n.
 - **2.** Se consideră inelul $(\mathbb{Z}_6,+,\cdot)$, unde $\mathbb{Z}_6 = \{\hat{0},\hat{1},\hat{2},\hat{3},\hat{4},\hat{5}\}$.
- **5p** a) Rezolvați în \mathbb{Z}_6 ecuația 3x + 2 = 5.
- **5p b**) Determinați mulțimea valorilor funcției $f: \mathbb{Z}_6 \to \mathbb{Z}_6$, $f(x) = x^3 x$.
- **5p** c) Determinați numărul elementelor mulțimii $H = \{x^{10} \mid x \in \mathbb{Z}_6\}$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x} + \ln x$.
- **5p** a) Calculați $\lim_{x\to 2} \frac{f(x)-f(2)}{x-2}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $f(x) \ge 1$ pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2}{x+1}$.
- **5p** a) Calculați $\int_{0}^{1} (x+1) f(x) dx$.
- **5p b)** Calculați $\int_{1}^{e} (x+1) f(x) \ln x dx$.
- **5p** c) Arătați că $F(e-1) = \frac{e^2 4e + 7}{2}$, unde $F:(-1,+\infty) \to \mathbb{R}$ este primitiva funcției f pentru care F(0) = 1.

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_st-nat* Simulare pentru elevii clasei a XI-a

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$36^2 = 4x$	2p
	x = 324	3p
2.	(x+a)+a=x pentru orice număr real x	3 p
	a = 0	2 p
3.	$-x+2=\frac{1}{2}$	3р
	$x = \frac{3}{2}$	2p
4.	Numărul submulțimilor cu cel mult 3 elemente ale mulțimii M este $C_4^0 + C_4^1 + C_4^2 + C_4^3 =$	2p
	$=2^4-1=15$	3 p
5.	$m_d = -2$ și $m_h \cdot m_d = -1 \Rightarrow m_h = \frac{1}{2}$, unde h este dreapta care trece prin punctul A și este	
	perpendiculară pe dreapta d	2p
	h: x-2y-8=0	3p
6.	$\sin^2 x + \cos^2 x = 1 \Rightarrow \sin x = \frac{2}{7}$	2p
	$\sin 2x = 2\sin x \cdot \cos x = \frac{12\sqrt{5}}{49}$	3p

SUBIECTUL al II-lea

1.a)		
	$\begin{vmatrix} AC : & 0 & 2 & 1 \\ 6 & 8 & 1 \end{vmatrix} = 0$	2 p
	6 8 1	
	AC: x - y + 2 = 0	3 p
b)	0 2 1	
	$\begin{vmatrix} 3 & 5 & 1 \ 3 & 5 & 1 \ \end{vmatrix} = 0 + 24 + 12 - 30 - 6 - 0 =$	3 p
	6 8 1	
	$=0 \Rightarrow$ punctele A, B şi C sunt coliniare	2p
c)		
	$\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & 1 \\ 3 & 5 & 1 \end{bmatrix} = 6 \Rightarrow \mathcal{A}_{AOB} = 3$	2 p
	3 5 1	
	$\begin{vmatrix} 0 & 0 & 1 \end{vmatrix} = 6 \Rightarrow \mathcal{A}_{BOC} = 3 \Rightarrow \mathcal{A}_{AOB} = \mathcal{A}_{BOC}$	3 p
	6 8 1	

2.a)	$2A = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$	2p
	$2B = \begin{pmatrix} 8 & 6 \\ 4 & 2 \end{pmatrix}$	2p
	$2A + 2B = \begin{pmatrix} 10 & 10 \\ 10 & 10 \end{pmatrix}$	1p
b)	$A - B = \begin{pmatrix} -3 & -1 \\ 1 & 3 \end{pmatrix}$	1p
	$B - A = \begin{pmatrix} 3 & 1 \\ -1 & -3 \end{pmatrix}$	1p
	$(A-B)\cdot (B-A) = \begin{pmatrix} -8 & 0 \\ 0 & -8 \end{pmatrix} = -8I_2$	3р
c)	$A \cdot X = \begin{pmatrix} a+2 & b+6 \\ 3a+4 & 3b+12 \end{pmatrix}, \ X \cdot B = \begin{pmatrix} 4a+2b & 3a+b \\ 10 & 6 \end{pmatrix}$	2p
	$ \begin{pmatrix} a+2 & b+6 \\ 3a+4 & 3b+12 \end{pmatrix} = \begin{pmatrix} 4a+2b & 3a+b \\ 10 & 6 \end{pmatrix} \Rightarrow a=2 \text{ si } b=-2, \text{ deci } X = \begin{pmatrix} 2 & -2 \\ 1 & 3 \end{pmatrix} $	3p

SUBIECTUL al III-lea

БСБП	So de po	incic)
1.a)	$\lim_{x \to e} f(x) = \lim_{x \to e} \left(\ln \frac{x}{x + e} \right) =$	2p
	$= \ln \frac{1}{2}$	3 p
b)	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\ln \frac{x}{x+e} \right) =$	2p
	$=-\infty \Rightarrow$ dreapta de ecuație $x=0$ este asimptotă verticală la graficul funcției f	3 p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\ln \frac{x}{x+e} \right) = \ln \left(\lim_{x \to +\infty} \frac{1}{1 + \frac{e}{x}} \right) =$	3p
	$= \ln 1 = 0 \Rightarrow$ ecuația asimptotei spre $+\infty$ la graficul funcției f este $y = 0$	2 p
2.a)	f este continuă în $x = 2 \Rightarrow \lim_{\substack{x \to 2 \ x < 2}} f(x) = \lim_{\substack{x \to 2 \ x > 2}} f(x) = f(2)$	2p
	$4 - a = -4 \Rightarrow a = 8$	3 p
b)	$x \in (-\infty, 2]$ și $f(x) = 0 \Rightarrow x = 6$ nu convine	2 p
	$x \in (2, +\infty)$ și $f(x) = 0 \Rightarrow x^2 = 8 \Rightarrow x = -2\sqrt{2}$ nu convine, $x = 2\sqrt{2}$ convine	3 p
c)	$x \in (-\infty, 2]$ și $f(x) = x - 6 \Rightarrow f(x) < 0$	1p
	$x \in (2, 2\sqrt{2})$ și $f(x) = x^2 - 8 \Rightarrow f(x) < 0$; $f(2\sqrt{2}) = 0$	2p
	$x \in (2\sqrt{2}, +\infty)$ și $f(x) = x^2 - 8 \Rightarrow f(x) > 0$	2p

Examenul de bacalaureat național 2014

Proba E. c)

Matematică *M_şt-nat*

Simulare pentru elevii clasei a XI-a

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numărul real x știind că numerele 4, 36 și x sunt în progresie geometrică.
- **5p** 2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = x + a, unde a este număr real. Determinați numărul real a pentru care $(f \circ f)(x) = x$ pentru orice număr real x.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $3^{-x+2} = \sqrt{3}$.
- **5p** | **4.** Determinați numărul submulțimilor cu cel mult 3 elemente ale mulțimii $M = \{1, 2, 3, 4\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(2,-3) și dreapta d:2x+y-5=0. Determinați ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta d.
- **5p 6.** Calculați $\sin 2x$, știind că $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{3\sqrt{5}}{7}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** În reperul cartezian xOy se consideră punctele O(0,0), A(0,2), B(3,5) și C(6,8).
- **5p** a) Determinați ecuația dreptei AC.
- **5p b)** Verificați dacă punctele A, B și C sunt coliniare.
- $\mathbf{5p}$ \mathbf{c}) Demonstrați că aria triunghiului AOB este egală cu aria triunghiului BOC.
 - **2.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ și $B = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$.
- **5p** a) Calculati 2A + 2B.
- **5p b**) Arătați că $(A-B) \cdot (B-A) = -8I_2$.
- **5p** c) Determinați matricea $X = \begin{pmatrix} a & b \\ 1 & 3 \end{pmatrix} \in M_2(\mathbb{R})$ cu proprietatea că $A \cdot X = X \cdot B$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \ln \frac{x}{x+a}$.
- **5p** a) Calculați $\lim_{x \to e} f(x)$.
- **5p b**) Arătați că dreapta de ecuație x = 0 este asimptotă verticală la graficul funcției f.
- $\mathbf{5p}$ c) Determinați ecuația asimptotei spre $+\infty$ la graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x-6, & x \le 2 \\ x^2-a, & x > 2 \end{cases}$, unde a este număr real.
- **5p** a) Determinați numărul real a știind că funcția f este continuă în punctul x = 2.
- **5p b)** Pentru a = 8, rezolvați ecuația f(x) = 0.
- **5p c**) Pentru a = 8, stabiliți semnul funcției f.

Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_şt-nat*Barem de evaluare și de notare

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	_	
1.	$z^2 = 2^2 + 2 \cdot 2 \cdot 3i + (3i)^2 =$	3 p
	=-5+12i	2 p
2.	$f(x) = 0 \Rightarrow (x-3)^2 = 0$	3 p
	x = 3 si y = 0	2 p
3.	$x^2 + 5 = 9 \Rightarrow x^2 - 4 = 0$	3 p
	$x_1 = -2$ și $x_2 = 2$, care verifică ecuația	2 p
4.	Sunt 7 numere de două cifre divizibile cu 13, deci sunt 7 cazuri favorabile	2p
	Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{1} = \frac{7}{1}$	2
	nr. cazuri posibile 90	2 p
5.	AB=4, $CO=3$ și CO este înălțime	3 p
	$\mathcal{A}_{\Delta ABC} = \frac{4 \cdot 3}{2} = 6$	2p
6.	$E\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} + \sin\frac{\pi}{4} =$	3p
	$=0+\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}$	2p

1.a)	$\det(A(1)) = \begin{vmatrix} 3 & 1 \\ 0 & 2 \end{vmatrix} = 3 \cdot 2 - 1 \cdot 0 =$	3p
	= 6	2p
b)	$\det(A(a)) = \begin{vmatrix} 2a+1 & 1\\ 1-a & 2 \end{vmatrix} = 5a+1$	3р
	$5a+1=1 \Rightarrow a=0$	2p
c)	$A(0) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}; \det(A(0)) = 1$	2p
	$\left(A(0)\right)^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$	3 p
2.a)	$1 \circ 2 = 2 \cdot 1 \cdot 2 - 3 \cdot 1 - 3 \cdot 2 + 6 =$	3 p
	=1	2 p
b)	$x \circ y = 2\left(xy - \frac{3}{2}x - \frac{3}{2}y + \frac{9}{4} + \frac{3}{4}\right) =$	2p
	$=2\left(x\left(y-\frac{3}{2}\right)-\frac{3}{2}\left(y-\frac{3}{2}\right)\right)+\frac{3}{2}=2\left(x-\frac{3}{2}\right)\left(y-\frac{3}{2}\right)+\frac{3}{2} \text{ pentru orice numere reale } x \text{ și } y$	3 p

c)	$2\left(x-\frac{3}{2}\right)^2 + \frac{3}{2} = 2 \Rightarrow \left(x-\frac{3}{2}\right)^2 = \frac{1}{4}$	3p
	$x_1 = 1$ și $x_2 = 2$	2 p

SUBIECTUL al III-lea

Sezzio rez in in ieu		unetc)
1.a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{e^{-x}}{x - 2} = \frac{e^{-1}}{1 - 2} =$	3р
	$=-\frac{1}{e}$	2p
b)	$f'(x) = \frac{\left(e^{-x}\right)' \cdot (x-2) - e^{-x} \cdot (x-2)'}{\left(x-2\right)^2} = \frac{-e^{-x} \cdot (x-2) - e^{-x}}{\left(x-2\right)^2}$	3р
	$= \frac{-e^{-x} \cdot (x-1)}{(x-2)^2} = \frac{(1-x)e^{-x}}{(x-2)^2}, \ x \in (-\infty, 2)$	2p
c)	$f'(1) = 0$, $f'(x) > 0$ pentru orice $x \in (-\infty, 1)$ și $f'(x) < 0$ pentru orice $x \in (1, 2)$	3 p
	$f(x) \le f(1) \Rightarrow f(x) \le -\frac{1}{e}$ pentru orice $x \in (-\infty, 2)$	2p
2.a)	$\int_{1}^{2} (x+1) f(x) dx = \int_{1}^{2} \ln x dx = x \ln x \Big _{1}^{2} - \int_{1}^{2} 1 dx =$	3p
	$= 2\ln 2 - x \Big _{1}^{2} = 2\ln 2 - 1$	2p
b)	$\int_{1}^{e} (f(x) + (x+1) \cdot f'(x)) dx = \int_{1}^{e} ((x+1) \cdot f(x))' dx =$	3p
	$= (x+1) f(x) \Big _{1}^{e} = \ln e = 1$	2p
c)	$V = \pi \cdot \int_{2}^{3} g^{2}(x) dx = \pi \cdot \int_{2}^{3} (x+1)^{2} dx =$	2 p
	$=\pi \cdot \frac{(x+1)^3}{3} \Big _2^3 = \frac{37\pi}{3}$	3p

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_st-nat*

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Se consideră numărul complex z = 2 + 3i. Calculați z^2 .
- **5p** 2. Determinați coordonatele punctului de intersecție cu axa Ox a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 6x + 9$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\log_9(x^2+5)=1$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 13.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-2,0), B(2,0) și C(0,3). Calculați aria triunghiului ABC.
- **5p 6.** Se consideră $E(x) = \cos x + \sin \frac{x}{2}$, unde x este număr real. Calculați $E\left(\frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(a) = \begin{pmatrix} 2a+1 & 1 \\ 1-a & 2 \end{pmatrix}$, unde a este număr real.
- **5p a**) Calculați $\det(A(1))$.
- **5p b**) Determinați numărul real a știind că $\det(A(a)) = 1$.
- **5p** c) Determinați inversa matricei A(0).
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 2xy 3x 3y + 6$.
- **5p** a) Calculați 1∘2.
- **5p b)** Arătați că $x \circ y = 2\left(x \frac{3}{2}\right)\left(y \frac{3}{2}\right) + \frac{3}{2}$ pentru orice numere reale x și y.
- **5p** | **c**) Rezolvați în mulțimea numerelor reale ecuația $x \circ x = 2$.

- **1.** Se consideră funcția $f:(-\infty,2) \to \mathbb{R}$, $f(x) = \frac{e^{-x}}{x-2}$.
- **5p a)** Calculați $\lim_{x \to 1} f(x)$.
- **5p b)** Arătați că $f'(x) = \frac{(1-x)e^{-x}}{(x-2)^2}, x \in (-\infty, 2)$.
- **5p** c) Arătați că $f(x) \le -\frac{1}{e}$ pentru orice $x \in (-\infty, 2)$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{\ln x}{x+1}$
- **5p** a) Arătați că $\int_{1}^{2} (x+1) f(x) dx = 2 \ln 2 1$.
- **5p b)** Arătați că $\int_{1}^{e} (f(x) + (x+1)f'(x)) dx = 1$.
- **5p** c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[2,3] \to \mathbb{R}$, $g(x) = \frac{\ln x}{f(x)}$.