Durée: 1h30

DS électronique analogique No2

Mardi 1 Avril 2014

POLYTECH'

- □ Cours et documents non autorisés.
- □ Calculatrice de type collège autorisée
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous devez:
 - indiquer votre nom et votre prénom.
 - éteindre votre téléphone portable (- 1 point par sonnerie).

RAPPELS:

EXERCICE I : L'amplificateur en émetteur commun (4.5 pts)

Soit le circuit ci-contre

0.5 I.1. Déterminer l'expression du courant I_B qui entre dans la base du transistor.

 $I_B =$

Figure I.1

I.2. En régime linéaire, donner l'expression de V_{CE} en fonction de E_G et des éléments du montage

 $V_{\rm CE} =$

1 I.3. Donner l'expression du gain en tension

$$A_V = \frac{\partial V_{CE}}{\partial E_G} =$$

I.4. En régime linéaire, donner le schéma petit signal du circuit. Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, ib, et β.ib. La résistance parasite 1/h_{oe} sera négligée.

T = 1		1	1 /		. 1	1	1,	•	1	•		
1 A A	noutin	An.	aahama	notit	armal	donnon	1 037	nnoggion	A11	COIN	α	tongion
I) / \	Dartin	uu	schema	Delli	SIPHAL	aonner	$I \leftarrow X$	pression	uu	Palli	e11	LEUSION

0,5

$$A_V = \frac{v_{ce}}{eg} =$$

Brouillon

EXERCICE II: L'amplificateur non inverseur (9.5 pts)

Soit le circuit ci-contre dont les éléments sont : $V_{DD}=3$ V, $R_B=10$ k Ω , $R_E=2$ k Ω , pour le transistor : $V_S=0.6$ V, $R_S=1$ k Ω , $\beta=100$, $V_{CEsat}=0.2$ V.

Figure II.1

II.1. Etude du montage pour $E_G = 2 V$

II.1.1. Déterminer l'expression et la valeur du courant I_B qui entre dans la base du transistor.

 $I_B =$

II.1.2. Donner l'expression et la valeur du courant, Ic, qui entre dans le collecteur.

 $I_C =$

0,25

0,5

II.1.3. Donner l'expression et la valeur de la tension, V_E.

 $V_{\rm E} =$

II.1.	4. Dans quel régime se trouve le transistor ?	0,25
A	Bloqué	
В	Linéaire	
\mathbf{C}	Saturé	
II.2. D	éblocage du transistor	
II.2.	1. A partir de quelle tension E _G le transistor se débloque ?	0,25
$\mathbf{E}_{\mathrm{G}} =$	=	
II.2.	${f 2.}$ Quelle est la valeur de V_E lorsque le transistor est bloqué ?	0,25
$V_{\rm E} =$	=	
Brouillon		

II.1.4. Dans quel régime se trouve le transistor ?

Broui	illon
Ι	I.3. Saturation du transistor
0,5	II.3.1. Déterminer l'expression et la valeur de $I_{\rm B}$ qui correspond à la limite de la saturation.
	${ m I}_{ m Bsat}$ =
0,25	II.3.2. Déterminer l'expression et la valeur de E_{G} à partir de laquelle le transistor est saturé.
	${ m E_G}=$
0,25	II.3.3. Quelle est la valeur de $V_{\rm E}$ quand le transistor est saturé
	$ m V_E =$

II.4. Caractéristique $V_E(E_G)$

II.4.1. Sur la figure (II.2) tracer la caractéristique $V_E(E_G)$ en indiquant les 3 régimes du transistor.

1,5

II.4.2. Placer le point (V_E, E_G) trouvé à la question (II.1).

0,25

Figure II.2.

II.5. Gain en tension en régime linéaire

II.5.1. Déterminer l'expression de VE en fonction de EG.

1

 $V_{\rm E} =$

II.5.2. Donner alors l'expression et la valeur du gain de l'inverseur en régime linéaire.

1

$$A_{\rm V} = \frac{{\rm dV_E}}{{\rm dE_G}} =$$

Brouillon	
II.6. Régime de petit signal	

- II.6.1. Quelle est la condition sur le régime du transistor pour pourvoir représenter le circuit de la figure (II.1) en petit signal ?
 - A Bloqué
 - B Linéaire
 - C Saturé
 - D Alternativement Bloqué et saturé car c'est un amplificateur non inverseur
 - E Alternativement Bloqué et linéaire
- II.6.2. Représenter le circuit en régime de petit signal. 1/h_{oe} sera négligée. Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, i_b, et β.i_b.

$$A_V = \frac{v_e}{e_g} =$$

Brouillon	

EXERCICE III: Amplificateur en collecteur commun (6 pts)

Soit le circuit de la figure (III.1). L'entrée du montage est E_G et la sortie est V_{E} . La résistance parasite $1/h_{oe}$ sera négligée.

Figure III.1

III.1 Gain dans la bande passante

On considère que C₁ est un court-circuit aux fréquences de E_G.

III.1.1 Donner le schéma en régime petit signal du schéma de la figure (III.1). Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, i_b, et β.i_b.

III.1.2 Donner l'expression du gain en tension :

$$A_{V} = \frac{v_{e}}{e_{g}} =$$

1,5

III.2 Fréquence de coupure liée à C1

III.2.1. Quel est le rôle de la capacité C1 (entourer la bonne réponse)?

0,25

- A Augmenter le gain en alternatif en court-circuitant la résistance R2
- B Eviter l'échauffement du transistor
- C Empêcher que la partie statique de E_G modifie le point de polarisation du transistor.
- D Court-circuiter la base pour laisser passer la partie alternative de E_G
- E Empêcher que la partie statique de V_{DD} modifie le point de polarisation du transistor.
- III.2.2. Pour le circuit, la capacité C1 représente un filtre :

0,25

- A Passe Bas
- B Passe Haut
- C Passe Ionata

III.2.3. Soit R_e = R_1 // R_2 // [R_S + (1 + β) R_E] la résistance d'entrée du circuit, déterminer l'expression du gain en tension :

1

$${\rm A_{VC1}} = \frac{{\rm v_{bc}}}{{\rm e_g}} =$$

III.2.4. Identifier alors l'expression de la fréquence du filtre, F_{C1} :

0,5

 $F_{C1} =$

1

III.2.5. On souhaite amplifier un signal audio dont les fréquences sont comprises entre 20 Hz et 20 kHz. Quelle valeur choisissez-vous pour la fréquence F_{CB} ? Représenter le filtre sur la figure (III.2)

Figure III.2

