

Session Outline

- Introduce the maximum cut example
- Exercise: develop a QUBO for the maximum cut problem
- Review the solution

Session Goals

1. Practice formulating a QUBO

Problem

The maximum cut problem seeks to cut through the maximum amount of edges in a graph.

Another way of saying this is:

A maximum cut is a subset of a graph's vertices such that the number of edges between this subset and the remaining vertices is as large as possible

Problem

The maximum cut problem seeks to cut through the maximum amount of edges in a graph.

Another way of saying this is:

A maximum cut is a subset of a graph's vertices such that the number of edges between this subset and the remaining vertices is as large as possible

Problem

The maximum cut problem seeks to cut through the maximum amount of edges in a graph.

Exercise

Follow the QUBO formulation steps to write a QUBO that finds the subset of the graph below that cuts through a maximum amount of edges.

Problem

Partition the set so that the partition cuts through a maximum number of edges

QUBO Writing Process

- 1. Write out the objective and constraints in your problem domain
- 2. Define the binary variables
- 3. Write out objective in QUBO form
- 4. Write out constraints in QUBO form
- 5. Combine objectives and constraints
- 6. Solve and interpret results
- 7. Tune your QUBO to get better results

Problem

The maximum cut problem seeks to cut through the maximum amount of edges in a graph.

Exercise

Follow the QUBO formulation steps to write a QUBO that finds the subset of the graph below that cuts through a maximum amount of edges.

Hint

In this domain you're working with the graph's edges (whereas in the number partitioning problem you were thinking about the sums of numbers). You want edges in the same set to increase the QUBO's energy.

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 1. Write out the objective and constraints in your problem domain

Objective:

Maximize the number of cut edges

Constraints:

No constraints this time

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 2. Define the binary values

$$E_{qubo} = \sum_{i} a_i x_i + \sum_{i} b_{i,j} x_i x_j$$

We're working in QUBO so our binary variables are $x_i \in \{0, 1\}$

Let's define them as

$$x_i = \begin{cases} 1 & \text{if i is in Set A} \\ 0 & \text{if i is in Set B} \end{cases}$$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

If we cut an edge, the nodes it was connecting will be in opposite sets.

Since we want to maximize cut edges we want to favor edges between nodes with opposite values.

а	b	Cut Edge(a, b)
0	0	0
0	1	1
1	0	1
1	1	0

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

X _i	X_{j}	edge(i, j)
0	0	0
0	1	1
1	0	1
1	1	0

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

Construct a system of equations using

$$ax_i + bx_j + cx_ix_j$$

Truth table

Eqn	X _i	X_{j}	Cut Edge (i, j)
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

Construct a system of equations using

Eqn	X _i	X_{j}	Cut Edge (i, j)
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

$$ax_i + bx_j + cx_ix_j$$

$$(1)$$
 0 + 0 + 0 = 0

$$\bigcirc 0 + b + 0 = 1 \rightarrow b = 1$$

3
$$a+0+0=1$$
 $\rightarrow a=1$

4
$$a+b+c=0$$
 $\rightarrow c=-2$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

Construct a system of equations using

$$ax_i + bx_j + cx_ix_j$$

To describe two nodes we get

$$x_i + x_j - 2x_i x_j$$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

To describe our entire graph we can sum up our relationship over every node and edge

$$\sum_{(i,j)\in E} x_i + x_j - 2x_i x_j$$

where

 $E = \{(a,b), (b,c), (b,d), (c,d), (c,f), (d,e), (d,f), (e,f)\}$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 3. Write out the objective in QUBO form

Since the QPU naturally finds the minimum of a landscape, we change our objective function to minimize instead of maximize

$$-\sum_{(i,j)\in E} x_i + x_j - 2x_i x_j$$

where

 $E = \{(a,b), (b,c), (b,d), (c,d), (c,f), (d,e), (d,f), (e,f)\}$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 4. Write out the constraints in QUBO form

There aren't any constraints in this problem so we skip this step

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 5. Combine objectives and constraints

$$E_{qubo} = \min(objective) + \gamma(constraints)$$

$$E_{qubo} = \sum_{(i,j)\in E} -x_i - x_j + 2x_i x_j$$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 5. Combine objectives and constraints

$$E_{qubo} = \sum_{(i,j)\in E} -x_i - x_j + 2x_i x_j$$

where E = {(a,b), (b,c), (b,d), (c,d), (c,f), (d,e), (d,f), (e,f)}

Need to expand this for our problem

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 5. Combine objectives and constraints

$$E_{qubo} = \sum_{(i,j)\in E} -x_i - x_j + 2x_i x_j$$

b d e

Let's expand this for our problem:

$$E_{qubo} = (-x_a - x_b + 2x_a x_b) + (-x_b - x_c + 2x_b x_c) + (-x_b - x_d + 2x_b x_d) + (-x_c - x_d + 2x_c x_d) + (-x_c - x_f + 2x_c x_f) + \dots$$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 5. Combine objectives and constraints

$$E_{qubo} = \sum_{(i,j)\in E} -x_i - x_j + 2x_i x_j$$

b f

Let's expand this for our problem:

$$E_{qubo} = (-x_a - x_b + 2x_a x_b) + (-x_b - x_c + 2x_b x_c) + (-x_b - x_d + 2x_b x_d) + (-x_c - x_d + 2x_c x_d) + (-x_c - x_f + 2x_c x_f) + \dots$$

$$E_{qubo} = -x_a - 3x_b - 3x_c + \dots + 2x_a x_b + 2x_b x_c + 2x_b x_d + \dots$$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 5. Combine objectives and constraints

$$E_{qubo} = \sum_{(i,j)\in E} -x_i - x_j + 2x_i x_j$$

Let's expand this for our problem:

The coefficients =
- (the number of edges
connected to the
node)

$$E_{qubo} = (-x_a - x_b + 2x_a x_b) + (-x_b - x_c + 2x_b x_c) + (-x_b - x_d + 2x_b x_d) + (-x_c - x_d + 2x_c x_d) + (-x_c - x_f + 2x_c x_f) + \dots$$

$$E_{qubo} = -x_a - 3x_b - 3x_c + \dots + 2x_a x_b + 2x_b x_c + 2x_b x_d + \dots$$

Quadratic biases are always 2

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 5. Combine objectives and constraints

$$E_{qubo} = \sum_{(i,j)\in E} -x_i - x_j + 2x_i x_j$$

Let's expand this for our problem:

$$E_{qubo} = \begin{cases} -1 & 2 & 0 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & 0 \\ & -3 & 2 & 2 & 0 & 0 \\ & & -3 & 2 & 0 & 2 \\ & & & -4 & 2 & 2 \\ & & & & -2 & 2 \\ & & & & & -3 \end{cases}$$

Problem

Partition the set so that the partition cuts through a maximum number of edges

Step 6. Solve and interpret results

You've got this (later today)!