Evolution Strategies for Neural Policy Search

Paul Templier

ISAE Supaero, Département Ingéniérie des Systèmes Complexes (DISC)

June 29, 2022

Plan

Mid-thesis report

Mid-thesis report

Initial topic

Bio-inspired methods for artificial neural networks

Mid-thesis report

Initial topic

Bio-inspired methods for artificial neural networks

Goal of this report

Organize past and present work, and highlight future research directions.

- 0
- 2
- 3

- 1
- 2
- 3
- 4

- 1
- 2
- 3
- 4
- 5

- 1
- 2
- (3)
- 4
- 5
- 6

Policy search

Policy search

Environment

https://github.com/d9w/evolution/blob/master/imgs/erl.png

Neural networks

Neural Network used in Deep Q Networks [?]

Variants of

Evolution Strategies

- (μ, λ) ES
- SNES
- Canonical ES
- OpenAl ES

- CMA-ES
- XNES
- Cross-Entropy Method
- Augmented Random Search

Variants of

Evolution Strategies

- (μ, λ) ES
- SNES
- Canonical ES
- OpenAl ES

- CMA-ES
- XNES
- Cross-Entropy Method
- Augmented Random Search

Neuroevolution for policy search

- large dimensions (1.6 .10⁶ parameters)
- expensive evaluation

Reproduction settings

Reproducing Canonical ES [?] and OpenAl ES [?] on the Arcade Learning Environment.

Figure: Evolution of Canonical ES and OpenAl ES on Alien with 800 CPUh compute budget

A Geometric Encoding for Neural Network Evolution

Fully connected neural network

A Geometric Encoding for Neural Network Evolution

Fully connected neural network

GENE encoding

: Distance functions

$$w_{i,j} = dist(n_i, n_j) \tag{1}$$

Euclidean distance

$$\sqrt{\sum_{k=1}^{D} (n_1^k - n_2^k)^2}$$
 (2)

: Weight distribution

Figure: Distribution of weight values in networks evolved with different encodings.

Competitive results - Arcade Learning Environment

Figure: SNES on SpaceInvaders

Figure: XNES on SpaceInvaders

Competitive results - Arcade Learning Environment

Figure: SNES on SpaceInvaders

Figure: XNES on SpaceInvaders

Figure: SNES on Krull

Figure: XNES on Krull

Improving results - Arcade Learning Environment

Figure: SNES on IceHockey

Figure: XNES on IceHockey

Improving results - Arcade Learning Environment

Figure: SNES on IceHockey

Figure: SNES on Seaguest

Figure: XNES on IceHockey

Figure: XNES on Seaquest

Computational cost

Evolutionary Strategy update of μ and σ

Encoding	D	Genes		Mean time (s)	Memory (KiB)
pL2-GENE	3	804	SNES	0.000357	630.56
pL2-GENE	10	2211	SNES	0.000678	1372.16
Direct	-	5609	SNES	0.001350	3133.44
pL2-GENE	3	804	XNES	1.475000	1352663.04
pL2-GENE	10	2211	XNES	14.244000	11806965.76
Direct	-	5609	XNES	119.976000	79765176.32

Distance functions

Design new distance functions, or optimize them through co-evolution.

Hybrid encoding

Switch between indirect and direct encodings during the evolution.

Gradient descent

Use backpropagation and gradient descent to optimize genomes instead of evolution.

Complex networks

Design encodings for convolution layers and recurrent networks.

ES on noisy environments

ES on noisy environments

Figure: ES on BigFish, same level

ES on noisy environments

Figure: ES on BigFish, same level

Figure: ES on BigFish, random level

Objective: identify the **best** μ individuals with as **few evaluations** as possible. [?]

P. Templier (ISAE/DISC)

Objective: identify the **best** μ individuals with as **few evaluations** as possible. [?]

P. Templier (ISAE/DISC)

ONEMAX and LEADINGONES

ONEMAX and LEADINGONES

2cm(0cm,0.9cm) %noise

LUCIES

- Explore (μ, λ) ES
- Ranking in Bandit problems
- Heritage (Importance Mixing, elitism)
- Scalability

LUCIES

- Explore (μ, λ) ES
- Ranking in Bandit problems
- Heritage (Importance Mixing, elitism)
- Scalability

ES for Policy Search

- Neuroevolution constraints and theory
- Ablation study of existing methods

LUCIES

- Explore (μ, λ) ES
- Ranking in Bandit problems
- Heritage (Importance Mixing, elitism)
- Scalability

ES for Policy Search

- Neuroevolution constraints and theory
- Ablation study of existing methods

Evolving Evolution Strategies

- Make ES methods emerge from scratch
- Neuromodulation: adapting ES during the evolution

Timeline

Signed distances

Bounded identity function

$$\alpha: \left\{ \begin{array}{ll} & \text{if } x \geq 1 : \alpha(x) = 1 \\ & \text{if } x \leq -1 : \alpha(x) = -1 \\ & \text{else: } \alpha(x) = x \end{array} \right. \tag{3}$$

Distance functions

pL2-GENE

$$\alpha \left(\prod_{k=1}^{D} n_1^k - n_2^k \right) \sqrt{\sum_{j=1}^{D} \left(n_1^j - n_2^j \right)^2}$$
 (4)

tag-GENE

$$\sum_{j=2}^{D} \alpha (n_1^j - n_2^1) e^{-|n_1^j - n_2^1|}$$
 (5)

Classic Control

2cm(0cm,0.7cm) %noise

References I

P. Chrabaszcz, I. Loshchilov, and F. Hutter.

Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari.

pages 1419-1426, 2018.

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution Strategies as a Scalable Alternative to Reinforcement Learning.

Mar. 2017.