ME 599/699 Robot Modeling & Control Fall 2021

Twists and Wrenches

Hasan A. Poonawala

Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

► We've derived the relationship

$$\dot{R}(t) = S(t)R(t) \tag{1}$$

where $S(t) \in \mathfrak{so}(3)$

► We've derived the relationship

$$\dot{R}(t) = S(t)R(t) \tag{1}$$

where $S(t) \in \mathfrak{so}(3)$

Due to the 1-to-1 relationship between \mathbb{R}^3 and $\mathfrak{so}(3)$, we can say that $S(t) = S(\omega(t)) = [\omega(t)]$ for some time-varying angular velocity $\omega(t)$

We've derived the relationship

$$\dot{R}(t) = S(t)R(t) \tag{1}$$

where $S(t) \in \mathfrak{so}(3)$

Due to the 1-to-1 relationship between \mathbb{R}^3 and $\mathfrak{so}(3)$, we can say that $S(t) = S(\omega(t)) = [\omega(t)]$ for some time-varying angular velocity $\omega(t)$

$$[x] = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$$

► We've derived the relationship

$$\dot{R}(t) = S(t)R(t) \tag{1}$$

where $S(t) \in \mathfrak{so}(3)$

Due to the 1-to-1 relationship between \mathbb{R}^3 and $\mathfrak{so}(3)$, we can say that $S(t) = S(\omega(t)) = [\omega(t)]$ for some time-varying angular velocity $\omega(t)$

$$[x] = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$$

▶ for constant angular velocity $\omega(t) \equiv \omega$, we can solve (1) like a linear system $\dot{x}(t) = Ax(t)$:

$$R(t) = e^{[\omega]t}R(0) \tag{2}$$

▶ When R(0) = I, and choosing t = 1 we get

$$R(1) = e^{[\omega]} \tag{3}$$

▶ When R(0) = I, and choosing t = 1 we get

$$R(1) = e^{[\omega]} \tag{3}$$

► We now have a (nearly) 1-to-1 relationship between angular velocities, and orientations/rotations.

▶ When R(0) = I, and choosing t = 1 we get

$$R(1) = e^{[\omega]} \tag{3}$$

- ▶ We now have a (nearly) 1-to-1 relationship between angular velocities, and orientations/rotations.
- ▶ Let $\hat{\omega} = \omega/\|\omega\|_2$ (unit norm) and $\theta = \dot{\theta} \cdot 1 = \|\omega\|_2$.

▶ When R(0) = I, and choosing t = 1 we get

$$R(1) = e^{[\omega]} \tag{3}$$

- ► We now have a (nearly) 1-to-1 relationship between angular velocities, and orientations/rotations.
- ▶ Let $\hat{\omega} = \omega/\|\omega\|_2$ (unit norm) and $\theta = \dot{\theta} \cdot 1 = \|\omega\|_2$.
- ► Exponential map $\exp: [\hat{\omega}]\theta \in \mathfrak{so}(3) \to R \in SO(3)$. Logarithm map $\log: R \in SO(3) \to [\hat{\omega}]\theta \in \mathfrak{so}(3)$.

If we view ω as $\hat{\omega}\theta$, where $\hat{\omega}$ is unit norm and $\theta = \dot{\theta} \cdot 1 = \|\omega\|_2$ then

$$R = e^{[\hat{\omega}]\theta} = I + (\sin \theta)[\hat{\omega}] + (1 - \cos \theta)[\hat{\omega}]^2, \tag{4}$$

where $e^{(At)} = I + At + A^2t^2/2! + \dots$ is the matrix exponential

If we view ω as $\hat{\omega}\theta$, where $\hat{\omega}$ is unit norm and $\theta = \dot{\theta} \cdot 1 = \|\omega\|_2$ then

$$R = e^{[\hat{\omega}]\theta} = I + (\sin \theta)[\hat{\omega}] + (1 - \cos \theta)[\hat{\omega}]^2, \tag{4}$$

where $e^{(At)} = I + At + A^2t^2/2! + \dots$ is the matrix exponential

 \triangleright $\hat{\omega}\theta$ are therefore the exponential coordinates of R

If we view ω as $\hat{\omega}\theta$, where $\hat{\omega}$ is unit norm and $\theta = \dot{\theta} \cdot 1 = \|\omega\|_2$ then

$$R = e^{[\hat{\omega}]\theta} = I + (\sin \theta)[\hat{\omega}] + (1 - \cos \theta)[\hat{\omega}]^2, \tag{4}$$

where $e^{(At)} = I + At + A^2t^2/2! + \dots$ is the matrix exponential

- \triangleright $\hat{\omega}\theta$ are therefore the exponential coordinates of R
- We may interpret exponential coordinates as coming from a constant angular velocity applied for one second

▶ The equation $\dot{R}(t) = [\omega(t)]R(t)$ involves terms defined in a fixed reference frame, called the *space frame* $\{s\}$ in MR, so really

$$\dot{R}(t) = [\omega_s]R(t)$$
 $(R = \underbrace{R_b^s}_{RMC} = \underbrace{R_{sb}}_{MR})$

The rotation R(t) is the orientation of body frame $\{b\}$ relative to $\{s\}$

The equation $\dot{R}(t) = [\omega(t)]R(t)$ involves terms defined in a fixed reference frame, called the *space frame* $\{s\}$ in MR, so really

$$\dot{R}(t) = [\omega_s]R(t)$$
 $(R = \underbrace{R_b^s}_{\mathsf{RMC}} = \underbrace{R_{sb}}_{\mathsf{MR}})$

The rotation R(t) is the orientation of body frame $\{b\}$ relative to $\{s\}$

▶ If ω_s is the angular velocity of the body in $\{s\}$, then in $\{b\}$ the angular velocity looks like

$$\omega_b = R^T \omega_s$$

The equation $\dot{R}(t) = [\omega(t)]R(t)$ involves terms defined in a fixed reference frame, called the *space frame* $\{s\}$ in MR, so really

$$\dot{R}(t) = [\omega_s]R(t)$$
 $(R = \underbrace{R_b^s}_{\mathsf{RMC}} = \underbrace{R_{sb}}_{\mathsf{MR}})$

The rotation R(t) is the orientation of body frame $\{b\}$ relative to $\{s\}$

▶ If ω_s is the angular velocity of the body in $\{s\}$, then in $\{b\}$ the angular velocity looks like

$$\omega_b = R^T \omega_s$$

▶ The equations may therefore be rewritten as

$$\dot{R}(t) = R(t)[\omega_b]$$

► We've seen:

$$\omega \in \mathbb{R}^3 \to [\omega] \in \mathfrak{so}(3) \to \dot{R}(t) \to R \in \mathsf{SO}(3)$$

▶ We've seen:

$$\omega \in \mathbb{R}^3 \to [\omega] \in \mathfrak{so}(3) \to \dot{R}(t) \to R \in \mathsf{SO}(3)$$

► These transformations are well-defined because SO(3) is a *Lie* group: a group with a manifold structure

▶ We've seen:

$$\omega \in \mathbb{R}^3 \to [\omega] \in \mathfrak{so}(3) \to \dot{R}(t) \to R \in \mathsf{SO}(3)$$

- ► These transformations are well-defined because SO(3) is a *Lie* group: a group with a manifold structure
- Any Lie group has a similar set of manipulations

▶ We've seen:

$$\omega \in \mathbb{R}^3 \to [\omega] \in \mathfrak{so}(3) \to \dot{R}(t) \to R \in \mathsf{SO}(3)$$

- ► These transformations are well-defined because SO(3) is a *Lie* group: a group with a manifold structure
- ▶ Any Lie group has a similar set of manipulations
- ► SE(3) (homogenous transformations) are also a Lie group

We've seen:

$$\omega \in \mathbb{R}^3 \to [\omega] \in \mathfrak{so}(3) \to \dot{R}(t) \to R \in \mathsf{SO}(3)$$

- ► These transformations are well-defined because SO(3) is a *Lie* group: a group with a manifold structure
- ▶ Any Lie group has a similar set of manipulations
- ► SE(3) (homogenous transformations) are also a Lie group
- ▶ The 'angular velocity' corresponding to SE(3) is a *twist*

▶ We've seen:

$$\omega \in \mathbb{R}^3 \to [\omega] \in \mathfrak{so}(3) \to \dot{R}(t) \to R \in \mathsf{SO}(3)$$

- ► These transformations are well-defined because SO(3) is a *Lie* group: a group with a manifold structure
- ▶ Any Lie group has a similar set of manipulations
- ► SE(3) (homogenous transformations) are also a Lie group
- ▶ The 'angular velocity' corresponding to SE(3) is a *twist*
- ► Twists for SE are not as intuitive as angular velocities for SO(3).

• A twist $\mathcal V$ combines an angular velocity ω with a linear velocity v, so $\mathcal V \in \mathbb R^6$

- A twist $\mathcal V$ combines an angular velocity ω with a linear velocity v, so $\mathcal V \in \mathbb R^6$
- ▶ If $\omega \in \mathbb{R}^3$ represent velocities for SO(3), twists \mathcal{V} represent velocities for SE(3)

- A twist $\mathcal V$ combines an angular velocity ω with a linear velocity v, so $\mathcal V \in \mathbb R^6$
- ▶ If $\omega \in \mathbb{R}^3$ represent velocities for SO(3), twists \mathcal{V} represent velocities for SE(3)
- ► Consider a homogenous tranformation $T(t) \in SE(3)$ representing a rigid body pose of $\{b\}$ in $\{s\}$:

$$T(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix} \quad (T = \underbrace{T_b^s}_{\mathsf{RMC}} = \underbrace{T_{sb}}_{\mathsf{MR}} = \underbrace{H_b^s}_{\mathsf{HP}}) \tag{5}$$

▶ If the angular velocity in the body frame is ω_b , and the velocity of the origin is v_b , then

$$\dot{R}(t) = R(t)[\omega_b], \quad \dot{p}(t) = R(t)v_b$$

If the angular velocity in the body frame is ω_b , and the velocity of the origin is v_b , then

$$\dot{R}(t) = R(t)[\omega_b], \quad \dot{p}(t) = R(t)v_b$$

▶ The body twist V_b is $V_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$

▶ If the angular velocity in the body frame is ω_b , and the velocity of the origin is v_b , then

$$\dot{R}(t) = R(t)[\omega_b], \quad \dot{p}(t) = R(t)v_b$$

- ▶ The body twist V_b is $V_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$
- ► Then, we may write

$$\dot{T}(t) = T(t) \begin{bmatrix} [\omega_b] & v_b \\ 0 & 1 \end{bmatrix}$$

If the angular velocity in the body frame is ω_b , and the velocity of the origin is v_b , then

$$\dot{R}(t) = R(t)[\omega_b], \quad \dot{p}(t) = R(t)v_b$$

- ▶ The body twist V_b is $V_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$
- ► Then, we may write

$$\dot{\mathcal{T}}(t) = \mathcal{T}(t) egin{bmatrix} [\omega_b] & v_b \ 0 & 1 \end{bmatrix}$$

► The body twist has simple physical meaning: instantaneous angular velocity of {b} as seen in {b}, and instantaneous velocity of origin of {b} as seen in {b}

 $lackbox{We can convert the body twist } \mathcal{V}_b = egin{bmatrix} \omega_b \\ v_b \end{bmatrix}$ into a spatial twist

$$\mathcal{V}_s = egin{bmatrix} \omega_s \ v_s \end{bmatrix}$$

• We can convert the body twist $V_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$ into a spatial twist

$$\mathcal{V}_s = egin{bmatrix} \omega_s \ v_s \end{bmatrix}$$

 \triangleright ω_s is the angular velocity of $\{b\}$ as viewed in $\{s\}$

• We can convert the body twist $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$ into a spatial twist $\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix}$

- ω_s is the angular velocity of $\{b\}$ as viewed in $\{s\}$
- ▶ However, v_s is **not** the velocity of the origin of {b} as viewed in {s}

• We can convert the body twist $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$ into a spatial twist $\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix}$

- ω_s is the angular velocity of $\{b\}$ as viewed in $\{s\}$
- ▶ However, v_s is **not** the velocity of the origin of {b} as viewed in {s}
- v_s a fictitious velocity of the origin of $\{s\}$ as if the space frame $\{s\}$ was rotating about axis ω_s that passes through origin of $\{b\}$ (Fig 3.17 in MR).

$\mathfrak{se}(3)$

▶ Recall: $\mathfrak{so}(3)$ represents the space of velocities of SO(3), and an element of $\mathfrak{so}(3)$ corresponds physically to an angular velocity

$$\mathfrak{se}(3)$$

- ▶ Recall: $\mathfrak{so}(3)$ represents the space of velocities of SO(3), and an element of $\mathfrak{so}(3)$ corresponds physically to an angular velocity
- ► Similarly, a twist $\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix}$ defines an element of $\mathfrak{se}(3)$ through the transformation

$$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \rightarrow [\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 1 \end{bmatrix} \in \mathfrak{se}(3)$$

$$\mathfrak{se}(3)$$

- ▶ Recall: $\mathfrak{so}(3)$ represents the space of velocities of SO(3), and an element of $\mathfrak{so}(3)$ corresponds physically to an angular velocity
- ▶ Similarly, a twist $\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix}$ defines an element of $\mathfrak{se}(3)$ through the transformation

$$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \rightarrow [\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 1 \end{bmatrix} \in \mathfrak{se}(3)$$

▶ However, only for the body twist do we see a clear physical interpretation of its component ω and v in terms of frame velocities

$$\mathfrak{se}(3)$$

- ▶ Recall: $\mathfrak{so}(3)$ represents the space of velocities of SO(3), and an element of $\mathfrak{so}(3)$ corresponds physically to an angular velocity
- ▶ Similarly, a twist $\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix}$ defines an element of $\mathfrak{se}(3)$ through the transformation

$$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \rightarrow [\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 1 \end{bmatrix} \in \mathfrak{se}(3)$$

- lacktriangle However, only for the body twist do we see a clear physical interpretation of its component ω and v in terms of frame velocities
- ▶ The remaining notation is about how to transform between V_b and V_s , or between $[V_b]$ and $[V_s]$

Screws

▶ Just as an angular velocity ω defines an axis of rotation $\hat{\omega}$, a twist \mathcal{V} defines a *screw* axis \mathcal{S}

Screws

▶ Just as an angular velocity ω defines an axis of rotation $\hat{\omega}$, a twist $\mathcal V$ defines a *screw* axis $\mathcal S$

$$\mathbf{V} = \mathcal{S}\dot{\theta}$$
, just like $\omega = \hat{\omega}\dot{\theta}$

Screws

- ▶ Just as an angular velocity ω defines an axis of rotation $\hat{\omega}$, a twist \mathcal{V} defines a *screw* axis \mathcal{S}
- $ightharpoonup \mathcal{V} = \mathcal{S}\dot{\theta}$, just like $\omega = \hat{\omega}\dot{\theta}$
- ▶ The result of following a constant spatial twist \mathcal{V}_s for one second can be interpreted as a screw motion : translation along an axis and rotation about that axis.

A wrench $\mathcal{F} \in \mathbb{R}^6$ converts 3D forces and moments applied at any point in a frame into an equivalent moment and force applied at the origin of the frame

- ▶ A wrench $\mathcal{F} \in \mathbb{R}^6$ converts 3D forces and moments applied at any point in a frame into an equivalent moment and force applied at the origin of the frame
- ▶ For a force f_a applied at a point r_a in frame $\{a\}$,

$$\mathcal{F} = \begin{bmatrix} m_a = r_a \times f_a \\ f_a \end{bmatrix}$$

- ▶ A wrench $\mathcal{F} \in \mathbb{R}^6$ converts 3D forces and moments applied at any point in a frame into an equivalent moment and force applied at the origin of the frame
- ▶ For a force f_a applied at a point r_a in frame $\{a\}$,

$$\mathcal{F} = \begin{bmatrix} m_{\mathsf{a}} = r_{\mathsf{a}} \times f_{\mathsf{a}} \\ f_{\mathsf{a}} \end{bmatrix}$$

As long as two wrenches are expressed in the same frame, they belong to the same vector space, and can be summed.

- ▶ A wrench $\mathcal{F} \in \mathbb{R}^6$ converts 3D forces and moments applied at any point in a frame into an equivalent moment and force applied at the origin of the frame
- For a force f_a applied at a point r_a in frame $\{a\}$,

$$\mathcal{F} = \begin{bmatrix} m_{\mathsf{a}} = r_{\mathsf{a}} \times f_{\mathsf{a}} \\ f_{\mathsf{a}} \end{bmatrix}$$

- As long as two wrenches are expressed in the same frame, they belong to the same vector space, and can be summed.
- As usual, a generic force and moment can be expressed in either {b} or {s}

- ▶ A wrench $\mathcal{F} \in \mathbb{R}^6$ converts 3D forces and moments applied at any point in a frame into an equivalent moment and force applied at the origin of the frame
- ▶ For a force f_a applied at a point r_a in frame $\{a\}$,

$$\mathcal{F} = \begin{bmatrix} m_a = r_a \times f_a \\ f_a \end{bmatrix}$$

- As long as two wrenches are expressed in the same frame, they belong to the same vector space, and can be summed.
- As usual, a generic force and moment can be expressed in either {b} or {s}
- The conversion between expressions is related to the conversion for $[V_b]$ and $[V_s]$ (pg. 108 in MR)