SEQUENCE LISTING

<110> Guida, Marco Hall, Jeff Petros, William Vredenburgh, James Colvin, Oliver Marks, Jeffrey	
<120> Methods for Evaluating the Ability to Metabolize Pharmaceuticals ositions Therefor	and Co
<130> 4389-5-C1	
<150> 09/144,367 <151> 1998-08-31	
<150> 60/271,630 <151> 2001-02-26	
<160> 6	
<170> PatentIn version 3.0	
<210> 1 <211> 18 <212> DNA <213> Homo sapiens	
<400> 1 gacaagggca ggacagag	8
<210> 2 <211> 34 <212> DNA <213> Homo sapiens	·
<400> 2 cgattctttg ctactggctg cagctgcagc cccg	4
<210> 3 <211> 1345 <212> DNA <213> Homo sapiens	
<pre><400> 3 ctgcagtgac cactgcccca tcattgctgg ctgaggtggt tggggtccat ctggctatct 6</pre>	50
gggcagctgt totottotot cotttototo otgtttocag acatgoagta tttocagaga 12	20
gaaggggcca ctctttggca aagaacctgt ctaacttgct atctatggca ggacctttga 18	3 C
agggttcaca ggaagcagca caaattgata ctattccacc aagccatcag ctccatctca 24	10
tocatgooot gtototoott taggggtooc ottgooaaca gaatcacaga ggaccagoot 30	00
gaaagtgcag agacagcagc tgaggcacag ccaagagctc tggctgtatt aatgacctaa 30	50

gaagtcacca gaaagtcaga aggatgcata gcagaggccc agcaatctca gctaagtcaa 420 ctccaccage ctttctagtt gcccactgtg tgtacagcac cctggtaggg accagagcca 480 tgacagggaa taagactaga ctatgccctt gaggagctca cctctgttca gggaaacagg 540 cgtggaaaca caatggtggt aaagaggaaa gaggacaata ggattgcatg aaggggatgg 600 aaagtgccca ggggaggaaa tggttacatc tgtgtgagga gtttggtgag gaaagactct 660 aagagaaggc tctgtctgtc tgggtttgga aggatgtgta ggagtcttct agggggcaca 720 ggcacactcc aggcataggt aaagatctgt aggtgtggct tgttgggatg aatttcaagt 780 attttggaat gaggacagcc atagagacaa gggcargaga gaggcgattt aatagatttt 840 atgccaatgg ctccacttga gtttctgata agaacccaga acccttggac tccccagtaa 900 cattgattga gttgtttatg atacctcata gaatatgaac tcaaaggagg tcagtgagtg 960 gtgtgtgtgt gattctttgc caacttccaa ggtggagaag cctcttccaa ctgcaggcag 1020 agcacaggtg gccctgctac tggctgcagc tccagccctg cctccttctc tagcatataa 1080 acaatccaac agcctcactg aatcactgct gtgcagggca ggaaagctcc atgcacatag 1140 cccagcaaag agcaacacag agctgaaagg aagactcaga ggagagagat aagtaaggaa 1200 agtagtgatg geteteatee cagacttgge catggaaace tggettetee tggetgteag 1260 cetggtgctc ctctatctgt gagtaactgt tcaggctcct cttctctgtt tcttggactt 1320 1345 ggggtcgtaa tcaggcctct ctttt

<210> 4 <211> 1254 <212> DNA

<213> Homo sapiens

<400> 60 ggcacacaaa gagacattgc atgttctcac ttatttgtgg gatctacaaa tcaaaacaat 120 tgagctaatg tctgggtctt agtcaatttt gtaccctaag tacagggagc acagccatta gaatacatga tgaatgcttt aatacaggaa tgaataggtg agaggcacag ggtggttggg 180 240 tgttcttctg atacatagta tcttccttga cacattcagt acaactctca acaggtaagt 300 ctcttcatgt atgttacctt ctgaggaatt aagtggcaga acatgccttc tattattttc 360 ctttgcagaa caagaccaat tgcattagtt gggaaacagt gctggctgca tctgagcccc 420 aagcaaccat tagtctattg ctatcaccac agactcagag gggatgacac acaggggccc 480 agcaatctca cccaagtcaa ctccaccaac atttctggtc acccaccatg tgtacagtac cctgctaggg tccagggtca tgaaagtaaa taataccaga ctgtgccctt gaggaactca 540

cctctgctaa	gggaaacagg	cacagaaacc	cacaagggtg	gtagagagga	aataggacaa	600
taggactgtg	tgagggggat	aggaggcacc	cagaggagga	aatggttaca	tctgtgtgag	660
gaggttggta	aggaaagact	ttaatagaag	gggtctgtct	ggctgggctt	gcaaggatgt	720
gtaggagtca	tctagggggc	acaagtacac	tccaggcaga	gggaattgca	tgggtaaaga	780
tctgcagttg	tggcttgtgg	ggatggattt	caagtattct	ggaatgaaga	cagccatgga	840
aacaagggca	ggtgagagga	tatttaagag	gcttcatgcc	aatggctcca	cttcagtttc	900
tgataagaac	tcaggttccg	tggactccct	gataaaactg	attaagttgt	ttatgattcc	960
ccatagaata	tgaactcaaa	ggaggtaagc	aaaggggtgt	gtgcgattct	ttgctactgg	1020
ctgcagctgc	agccccacct	ccttctccag	cacataaaca	tttcagcagc	ttgacctaag	1080
actgctgtgc	agggcaggga	tgctccaggc	agacagccca	gcaaacaaca	gcacacagct	1140
gaaagtaaga	ctcagaggag	acagttgaag	aaggcaagtg	gcgatggacc	tcatcccaaa	1200
tttggcggtg	gaaacctggc	ttctcctggc	tgtcagcctg	gtgctcctct	atct	1254
<210> 5 <211> 18 <212> DNA <213> Homo <400> 5 gacaagggca	sapiens agagagag					18
<210> 6 <211> 34 <212> DNA <213> Homo	o sapiens					
<400> 6 cgattctttg	ctactggctg	cagctgcagc	ccca			34