MATH 501, Section 14 Solutions

2. Find the order of $G = (\mathbb{Z}_4 \times \mathbb{Z}_{12})/(\langle 2 \rangle \times \langle 2 \rangle)$.

Notice that $|\langle 2 \rangle \times \langle 2 \rangle| = 2 \cdot 6 = 12$. Since this subgroup has 12 elements and $G = \mathbb{Z}_4 \times \mathbb{Z}_{12}$ has 48 elements, the group G must have 48/12=4 elements. Thus G has order 4.

6. Find the order of $G = (\mathbb{Z}_{12} \times \mathbb{Z}_{18})/\langle (4,3) \rangle$.

Notice that $\langle (4,3) \rangle = \{(0,0),(4,3),(8,6),(0,9),(4,12),(8,15)\}$ has 6 elements, and $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ has 216 elements. Thus |G| = 216/6 = 36

10. Find the order of $26 + \langle 12 \rangle$ in the group $\mathbb{Z}_{60}/\langle 12 \rangle$.

Doing calculations in the group $\mathbb{Z}_{60}/\langle 12 \rangle$, we have:

$$1(26 + \langle 12 \rangle) = 26 + \langle 12 \rangle$$

$$2(26 + \langle 12 \rangle) = 52 + \langle 12 \rangle$$

$$3(26 + \langle 12 \rangle) = 18 + \langle 12 \rangle$$

$$4(26 + \langle 12 \rangle) = 44 + \langle 12 \rangle$$

$$5(26 + \langle 12 \rangle) = 10 + \langle 12 \rangle$$

$$6(26 + \langle 12 \rangle) = 36 + \langle 12 \rangle = 0 + \langle 12 \rangle$$

Thus $26 + \langle 12 \rangle$ has order 6.

30. Suppose that H is a normal subgroup of G and m = (G: H). Show $a^m \in H$ for all $a \in G$.

Proof. Let a be an element of G. Since |G/K|=(G:H)=m, and aH is an element of G/K, we know that the order k of aH in G/K must divide m (Theorem 10.12). Thus there is an integer n for which m=kn. Now we have $a^mH=(aH)^m=(aH)^{kn}=((aH)^k)^n=(eH)^n=e^nH=eH=H$. Thus $a^mH=H$, and this means $a^m\in H$.