What is the best body type for the NBA?

Zach Shinnick

Context

Analysing correlation between NBA performance and physical attributes.

Relevance:

- Large fan base, attracts players from all over the world

- Sports news channels use similar statistical analysis to predict outcomes.

- Determine the players most likely to have a successful career (by body type).

Identify body type with greatest positive impact to a team

METHODOLOGY

- Data from NBA stat API (every player since 1996, over 11,000 players)(11,146 x 22)
- Found on kaggle
- Python to filter and separate data to suit the specific graph

Filtered out players who did not play in the season

Utilised Seaborn and Matplotlib for graphing the data

- Utilised Matplotlib for styling of the graphs

Investigation 1: NBA Height and Weight Trends

- Grouped players by season
- Filtered average height and weight of season
- Seaborn line plot

Observations

Almost Identical Trends

Takeaways

 Clear trend of NBA players getting smaller

Further Questions

 As players are getting smaller, are the smaller players statistically better then larger players?

Investigation 2: NBA Height vs Scoring

- Data Separated into 10 cm increments of players
- Presented with Seaborn Boxplot
- Plots average PPG per height group

Observations:

 Over 220cm has highest median points and upper quartile

 190-200 cm has highest top scoring players.

Takeaways:

On average, over 220cm is the best scoring height range

Investigation 3: NBA Weight vs Statistical Performance

- Filtered players into 5 kg increments of weight
- Line Plot graphing average statistics of that weight range (Matplotlib)

Outlier:

- Sim Bhullar (1 minute per game)
- Only player over 155kg

Observations:

- Dramatic increase in all statistics begins at 135 kg
- PPG relatively similar until 135kg (blue)
- RPG consistent linear increase (green)
- APG decrease until 135kg

Takeaways:

 The heaviest and tallest players have better statistical careers on average.

Investigation 4: BMI vs Net Rating

- Rounded players to nearest BMI
- Average Net rating of that BMI
- MATPLOTLIB graph

Observations:

- Smallest BMI has worst impact for team (-6.3)
- Every BMI over 30 is positive
- 32 BMI has highest positive impact to a team (+7.2)

Takeaways:

- Bigger is Better!

Investigation 5: BMI vs Games Played vs True Shooting %

- Rounded to nearest BMI
- MATPLOTLIB graph of averages.

Observations:

- No trend between games played and BMI
- Highest four true shooting percentage is BMI of 31, 32, 33, 34
- Smallest BMI (20) = 50.1% and largest BMI(34) = 57.9% increase of 7.8%

Takeaways:

- Adds to previous investigation, not only are BMI > 31 more impactful for team, allo more efficient.

Conclusion

Ideal Player - Yao Ming Height - 229cm Weight - 141 kg Ideal Player - Shaquille O'Neal BMI - 32 Weight - 147 kg

Findings

Over 220 cm and 135 kg are best in terms of individual statistics

- As BMI increases value to team also increases

 Ideal BMI is 31 or over for net rating and also efficiency.