Методы оптимизации Лекция 4: Примеры задач выпуклой оптимизации

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

3 октября 2022 г.

На прошлой лекции

- Автоматическое дифференцирование
- Выпуклые функции и способы проверки функции на выпуклость

Стандартная форма записи задачи выпуклой оптимизации

$$\min f_0(\mathbf{x})$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p$

- $ightharpoonup f_0$ выпуклая целевая функция
- $ightharpoonup f_i$ выпуклые функции для ограничений типа неравенств
- Ограничения типа равенств только линейные

Стандартная форма записи задачи выпуклой оптимизации

$$\min f_0(\mathbf{x})$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ $f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, p$

- $ightharpoonup f_0$ выпуклая целевая функция
- $ightharpoonup f_i$ выпуклые функции для ограничений типа неравенств
- Ограничения типа равенств только линейные

Ограничения стандартной формы записи

Выпуклое множество может быть задано более общим образом

$$\min x^2$$
s.t. $(x-2)^2 = 0$

$$x^3 \ge 0$$

$$\min \mathbf{c}^{\top}\mathbf{x}$$

s.t.
$$Ax = b$$

$$x_i \ge 0, \ i = 1, \dots, n$$

$$\min \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$
 $x_i \ge 0, \ i = 1, \dots, n$

 Существуют различные формы задачи LP, но все они сводятся к указанной

 $\min \mathbf{c}^{\top} \mathbf{x}$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$x_i \ge 0, \ i = 1, \dots, n$$

- Существуют различные формы задачи LP, но все они сводятся к указанной
- Простейший пример задачи конической оптимизации

 $\min \mathbf{c}^{\top} \mathbf{x}$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$x_i \ge 0, \ i = 1, \dots, n$$

- Существуют различные формы задачи LP, но все они сводятся к указанной
- Простейший пример задачи конической оптимизации
- ightharpoonup Замена \mathbb{R}^n_+ на другие конусы даёт более богатое семейство задач, примеры далее

 $\min \mathbf{c}^{\top} \mathbf{x}$ s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$x_i \ge 0, \ i = 1, \dots, n$$

- Существуют различные формы задачи LP, но все они сводятся к указанной
- Простейший пример задачи конической оптимизации
- ightharpoonup Замена \mathbb{R}^n_+ на другие конусы даёт более богатое семейство задач, примеры далее

 $\min \mathbf{c}^{\top} \mathbf{x}$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$x_i \ge 0, \ i = 1, \dots, n$$

- Существуют различные формы задачи LP, но все они сводятся к указанной
- Простейший пример задачи конической оптимизации
- ightharpoonup Замена \mathbb{R}^n_+ на другие конусы даёт более богатое семейство задач, примеры далее

Пример: составление диеты минимальной стоимости

lacktriangle Дано n продуктов, цена единицы каждого c_i

$$\min \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$
 $x_i \ge 0, \ i = 1, \dots, n$

- Существуют различные формы задачи LP, но все они сводятся к указанной
- Простейший пример задачи конической оптимизации
- ightharpoonup Замена \mathbb{R}^n_+ на другие конусы даёт более богатое семейство задач, примеры далее

- lacktriangle Дано n продуктов, цена единицы каждого c_i
- Необходимо, чтобы человек получил m питательных веществ в количествах не менее b_1,\dots,b_m

$$\min \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$
 $x_i \geq 0, \ i = 1, \dots, n$

- Существуют различные формы задачи LP, но все они сводятся к указанной
- Простейший пример задачи конической оптимизации
- ightharpoonup Замена \mathbb{R}^n_+ на другие конусы даёт более богатое семейство задач, примеры далее

- lacktriangle Дано n продуктов, цена единицы каждого c_i
- Необходимо, чтобы человек получил m питательных веществ в количествах не менее b_1, \dots, b_m
- ▶ Известно, что в j-ом продукте содержится a_{ij} i-го питательного вещества

 $\min \mathbf{c}^{\top} \mathbf{x}$

s.t. Ax = b

$$x_i \ge 0, \ i = 1, \dots, n$$

- Существуют различные формы задачи LP, но все они сводятся к указанной
- Простейший пример задачи конической оптимизации
- ightharpoonup Замена \mathbb{R}^n_+ на другие конусы даёт более богатое семейство задач, примеры далее

- lacktriangle Дано n продуктов, цена единицы каждого c_i
- Необходимо, чтобы человек получил m питательных веществ в количествах не менее b_1, \ldots, b_m
- ▶ Известно, что в j-ом продукте содержится a_{ij} i-го питательного вещества
- Необходимо определить количество каждого продукта

$$\begin{aligned} \min \frac{1}{2} \mathbf{x}^{\top} \mathbf{P}_0 \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r_0 \\ \text{s.t. } \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \frac{1}{2} \mathbf{x}^{\top} \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^{\top} \mathbf{x} + r_i \leq 0, \ i = 1, \dots, n \end{aligned}$$

$$\min \frac{1}{2} \mathbf{x}^{\top} \mathbf{P}_0 \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r_0$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\frac{1}{2} \mathbf{x}^{\top} \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^{\top} \mathbf{x} + r_i \leq 0, \ i = 1, \dots, n$$

lacktriangle Задача будет выпукла, если все $\mathbf{P}_i \in \mathbf{S}^n_+$

$$\min \frac{1}{2} \mathbf{x}^{\top} \mathbf{P}_0 \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r_0$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\frac{1}{2} \mathbf{x}^{\top} \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^{\top} \mathbf{x} + r_i \leq 0, \ i = 1, \dots, n$$

- lacktriangle Задача будет выпукла, если все $\mathbf{P}_i \in \mathbf{S}^n_+$
- lacktriangle Может быть сведена к оптимизации на конусе второго порядка $\mathcal{Q}^n = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\|_2 \leq t\}$

$$\min \frac{1}{2} \mathbf{x}^{\top} \mathbf{P}_0 \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r_0$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\frac{1}{2} \mathbf{x}^{\top} \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^{\top} \mathbf{x} + r_i \leq 0, \ i = 1, \dots, n$$

- lacktriangle Задача будет выпукла, если все $\mathbf{P}_i \in \mathbf{S}^n_+$
- ▶ Может быть сведена к оптимизации на конусе второго порядка $\mathcal{Q}^n = \{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\|_2 \leq t\}$
- lackbox При ${f P}_i=0$ получим задачу LP

Линейная задача наименьших квадратов

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Возможно добавление линейных ограничений вида $l_i \leq x_i \leq u_i$

Линейная задача наименьших квадратов

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Возможно добавление линейных ограничений вида $l_i \leq x_i \leq u_i$

▶ Поиск решения минимальной нормы

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x}\|_2^2$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

Линейная задача наименьших квадратов

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Возможно добавление линейных ограничений вида $l_i \leq x_i \leq u_i$

▶ Поиск решения минимальной нормы

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x}\|_2^2$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

Q: Каков геометрический смысл у решения?

Линейная задача наименьших квадратов

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Возможно добавление линейных ограничений вида $l_i \leq x_i \leq u_i$

▶ Поиск решения минимальной нормы

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x}\|_2^2$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

Q: Каков геометрический смысл у решения?

Q: К какой задаче сводится похожая задача?

$$\min_{\mathbf{x}}\|\mathbf{x}\|_{\infty}$$

s.t.
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

Дано

ightharpoonup n активов

Дано

- ightharpoonup n активов
- lacktriangle Изменение относительной цены активов случайный вектор со средним $ar{\mathbf{p}}$ и ковариационной матрицей $oldsymbol{\Sigma}$

Дано

- ightharpoonup n активов
- lacktriangle Изменение относительной цены активов случайный вектор со средним $ar{\mathbf{p}}$ и ковариационной матрицей $oldsymbol{\Sigma}$
- lacktriangle Минимально допустимый средний доход $ar{r}$

Дано

- ightharpoonup n активов
- lacktriangle Изменение относительной цены активов случайный вектор со средним $ar{\mathbf{p}}$ и ковариационной матрицей $oldsymbol{\Sigma}$
- lacktriangle Минимально допустимый средний доход ar r

Классическая задача составления оптимального портфеля

$$\min \mathbf{x}^{\top} \mathbf{\Sigma} \mathbf{x}$$
s.t. $\bar{\mathbf{p}}^{\top} \mathbf{x} \geq \bar{r}$

$$\sum_{i=1}^{n} x_i = 1, \ x_i \geq 0, \ i = 1, \dots, n$$

- Минимум риска при минимально допустимом доходе
- Существуют многочисленные вариации, которые не выводят задачу из класса QCQP или SOCP

- lacktriangle Дана выборка (\mathbf{x}_i,y_i) , где $\mathbf{x}_i\in\mathbb{R}^n$, а $y_i\in\{-1,+1\}$
- lacktriangle Необходимо построить гиперплоскость так, чтобы ${f a}^{ op}{f x}_i+b>0$, если $y_i=+1$ и ${f a}^{ op}{f x}_i+b<0$, если $y_i<0$

- lacktriangle Дана выборка (\mathbf{x}_i,y_i) , где $\mathbf{x}_i\in\mathbb{R}^n$, а $y_i\in\{-1,+1\}$
- lacktriangle Необходимо построить гиперплоскость так, чтобы ${f a}^{ op}{f x}_i+b>0$, если $y_i=+1$ и ${f a}^{ op}{f x}_i+b<0$, если $y_i<0$

- lacktriangle Дана выборка (\mathbf{x}_i,y_i) , где $\mathbf{x}_i\in\mathbb{R}^n$, а $y_i\in\{-1,+1\}$
- lacktriangle Необходимо построить гиперплоскость так, чтобы ${f a}^{ op}{f x}_i+b>0$, если $y_i=+1$ и ${f a}^{ op}{f x}_i+b<0$, если $y_i<0$

- lacktriangle Дана выборка (\mathbf{x}_i,y_i) , где $\mathbf{x}_i\in\mathbb{R}^n$, а $y_i\in\{-1,+1\}$
- lacktriangle Необходимо построить гиперплоскость так, чтобы ${f a}^{ op}{f x}_i+b>0$, если $y_i=+1$ и ${f a}^{ op}{f x}_i+b<0$, если $y_i<0$

- lacktriangle Дана выборка (\mathbf{x}_i,y_i) , где $\mathbf{x}_i\in\mathbb{R}^n$, а $y_i\in\{-1,+1\}$
- lacktriangle Необходимо построить гиперплоскость так, чтобы ${f a}^{ op}{f x}_i+b>0$, если $y_i=+1$ и ${f a}^{ op}{f x}_i+b<0$, если $y_i<0$

- lacktriangle Дана выборка (\mathbf{x}_i,y_i) , где $\mathbf{x}_i\in\mathbb{R}^n$, а $y_i\in\{-1,+1\}$
- lacktriangle Необходимо построить гиперплоскость так, чтобы ${f a}^{ op}{f x}_i+b>0$, если $y_i=+1$ и ${f a}^{ op}{f x}_i+b<0$, если $y_i<0$

Q: Как однозначно задать разделяющую гиперплоскость?

▶ Для опорных объектов каждого класса выполнено

$$\begin{cases} \mathbf{a}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{a}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ Для опорных объектов каждого класса выполнено

$$\begin{cases} \mathbf{a}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{a}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ Расстояние между гиперплоскостями

$$d = \frac{|c_1 - c_2|}{\|\mathbf{a}\|} = \frac{2}{\|\mathbf{a}\|_2}$$

▶ Для опорных объектов каждого класса выполнено

$$\begin{cases} \mathbf{a}^{\top} \mathbf{x}_k + b = 1, & y_k = +1 \\ \mathbf{a}^{\top} \mathbf{x}_j + b = -1, & y_j = -1 \end{cases}$$

▶ Расстояние между гиперплоскостями

$$d = \frac{|c_1 - c_2|}{\|\mathbf{a}\|} = \frac{2}{\|\mathbf{a}\|_2}$$

Финальная задача

$$\min_{\mathbf{a},b} \frac{1}{2} \|\mathbf{a}\|_2^2$$
 s.t. $y_i(\mathbf{a}^{\top}\mathbf{x}_i + b) \ge 1, \ i = 1, \dots, m$

Оптимальная разделяющая гиперплоскость

Оптимизация на конусе второго порядка (SOCP)

$$egin{aligned} \min \mathbf{f}^{ op} \mathbf{x} \ & ext{s.t. } \|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\|_2 \leq \mathbf{c}_i^{ op} \mathbf{x} + d_i \ & \mathbf{F} \mathbf{x} = \mathbf{g} \end{aligned}$$

$$\min \mathbf{f}^{\top} \mathbf{x}$$
s.t. $(\mathbf{A}_i \mathbf{x} + \mathbf{b}_i, \mathbf{c}_i^{\top} \mathbf{x} + d_i) \succeq_{K_i} 0$

$$\mathbf{F} \mathbf{x} = \mathbf{g}$$

$QCQP \rightarrow SOCP$

- ightharpoonup Пусть $\mathbf{x}^{ op}\mathbf{P}\mathbf{x} + \mathbf{q}^{ op}\mathbf{x} + r \leq 0$ и $0 \prec \mathbf{P} = \mathbf{L}\mathbf{L}^{ op}$
- $(\mathbf{L}^{\top} \mathbf{x})^{\top} (\mathbf{L}^{\top} \mathbf{x}) + 2\tilde{\mathbf{q}}^{\top} \mathbf{L}^{-\top} \mathbf{L}^{\top} \mathbf{x} + \|\mathbf{L}^{-1} \tilde{\mathbf{q}}\|_{2}^{2} \le \|\mathbf{L}^{-1} \tilde{\mathbf{q}}\|_{2}^{2} r$
- lackbox Или $\|\mathbf{L}^{ op}\mathbf{x}+\mathbf{L}^{-1} ilde{\mathbf{q}}\|_2 \leq \sqrt{ ilde{\mathbf{q}}^{ op}\mathbf{P}^{-1} ilde{\mathbf{q}}-r}$

Отношения между рассмотренными типами задач

$$\mathsf{LP} \subset \mathsf{QCQP} \subset \mathsf{SOCP}$$

Задача геометрического программирования (geometric programming)

Определения

- lacktriangle Функцию вида $f(\mathbf{x}) = cx_1^{a_1} \dots x_n^{a_n}$, где $c>0, a_i \in \mathbb{R}$, $\mathrm{dom} f = \mathbb{R}^n_{++}$ называют обобщённым мономом
- lacktriangle Функцию вида $f(\mathbf{x})=\sum_{k=1}^K c_k x_1^{a_{1k}}\dots x_n^{a_{nk}}$, где $c_k>0, a_{ik}\in\mathbb{R}$ и $\mathrm{dom} f=\mathbb{R}^n_{++}$ называют позиномом

Задача геометрического программирования (geometric programming)

Определения

- lacktriangle Функцию вида $f(\mathbf{x})=cx_1^{a_1}\dots x_n^{a_n}$, где $c>0, a_i\in\mathbb{R}$, $\mathrm{dom} f=\mathbb{R}^n_{++}$ называют обобщённым мономом
- lacktriangle Функцию вида $f(\mathbf{x}) = \sum_{k=1}^K c_k x_1^{a_{1k}} \dots x_n^{a_{nk}}$, где $c_k>0, a_{ik}\in\mathbb{R}$ и $\mathrm{dom} f=\mathbb{R}^n_{++}$ называют позиномом

Общий вид задачи

$$\min f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq 1$
 $h_j(\mathbf{x}) = 1$,

где f_i — позиномы, а h_j — обобщённые мономы

lacktriangle Преобразование переменных: $x_i=e^{y_i}$

- ightharpoonup Преобразование переменных: $x_i = e^{y_i}$
- lacktriangle Обобщенный моном превращается в $\widetilde{f}(\mathbf{x}) = e^{\mathbf{a}^{\top}\mathbf{y} + b}$

- ightharpoonup Преобразование переменных: $x_i = e^{y_i}$
- lacktriangle Обобщенный моном превращается в $\widetilde{f}(\mathbf{x}) = e^{\mathbf{a}^{ op} \mathbf{y} + b}$
- lacktriangle Позином превращается в $ilde{f}(\mathbf{x}) = \sum_{k=1}^K e^{\mathbf{a}_k^{ op} \mathbf{y} + b_k}$

- ightharpoonup Преобразование переменных: $x_i=e^{y_i}$
- lacktriangle Обобщенный моном превращается в $\tilde{f}(\mathbf{x}) = e^{\mathbf{a}^{\top}\mathbf{y} + b}$
- ▶ Позином превращается в $\tilde{f}(\mathbf{x}) = \sum_{k=1}^K e^{\mathbf{a}_k^{\mathsf{T}}\mathbf{y} + b_k}$
- Общий вид переписывается в выпуклой форме

- ightharpoonup Преобразование переменных: $x_i=e^{y_i}$
- lacktriangle Обобщенный моном превращается в $\tilde{f}(\mathbf{x}) = e^{\mathbf{a}^{\top}\mathbf{y} + b}$
- ▶ Позином превращается в $\tilde{f}(\mathbf{x}) = \sum_{k=1}^K e^{\mathbf{a}_k^{\mathsf{T}}\mathbf{y} + b_k}$
- Общий вид переписывается в выпуклой форме

- ightharpoonup Преобразование переменных: $x_i=e^{y_i}$
- lacktriangle Обобщенный моном превращается в $ilde{f}(\mathbf{x}) = e^{\mathbf{a}^{ op}\mathbf{y} + b}$
- lacktriangle Позином превращается в $\widetilde{f}(\mathbf{x}) = \sum_{k=1}^K e^{\mathbf{a}_k^{\mathsf{T}}\mathbf{y} + b_k}$
- Общий вид переписывается в выпуклой форме

$$\min_{\mathbf{y}} \sum_{k=1}^{K} e^{\mathbf{a}_{k0}^{\top} \mathbf{y} + b_{k0}}$$
s.t.
$$\sum_{k=1}^{K} e^{\mathbf{a}_{ki}^{\top} \mathbf{y} + b_{ki}} \leq 1$$

$$e^{\mathbf{d}_{j}^{\top} \mathbf{y} + p_{j}} = 1$$

- ightharpoonup Преобразование переменных: $x_i=e^{y_i}$
- lacktriangle Обобщенный моном превращается в $ilde{f}(\mathbf{x}) = e^{\mathbf{a}^{ op} \mathbf{y} + b}$
- ▶ Позином превращается в $\tilde{f}(\mathbf{x}) = \sum_{k=1}^K e^{\mathbf{a}_k^{\mathsf{T}}\mathbf{y} + b_k}$
- ▶ Общий вид переписывается в выпуклой форме

$$\begin{aligned} & \min_{\mathbf{y}} \sum_{k=1}^{K} e^{\mathbf{a}_{k0}^{\top} \mathbf{y} + b_{k0}} & \min_{\mathbf{y}} \log \left(\sum_{k=1}^{K} e^{\mathbf{a}_{k0}^{\top} \mathbf{y} + b_{k0}} \right) \\ \text{s.t. } & \sum_{k=1}^{K} e^{\mathbf{a}_{ki}^{\top} \mathbf{y} + b_{ki}} \leq 1 & \text{s.t. } \log \left(\sum_{k=1}^{K} e^{\mathbf{a}_{ki}^{\top} \mathbf{y} + b_{ki}} \right) \leq 0 \\ & e^{\mathbf{d}_{j}^{\top} \mathbf{y} + p_{j}} = 1 & \mathbf{d}_{j}^{\top} \mathbf{y} + p_{j} = 0 \end{aligned}$$

ightharpoonup Пусть есть n трансмиттеров и n ресиверов

- ightharpoonup Пусть есть n трансмиттеров и n ресиверов
- ightharpoonup Мощность сигнала p_i на трансмиттере

- ightharpoonup Пусть есть n трансмиттеров и n ресиверов
- ightharpoonup Мощность сигнала p_i на трансмиттере
- lacktriangle Мощность сигнала на i-ом ресивере $G_{ii}p_i$, $G_{ii}>0$

- ightharpoonup Пусть есть n трансмиттеров и n ресиверов
- lacktriangle Мощность сигнала p_i на трансмиттере
- lacktriangle Мощность сигнала на i-ом ресивере $G_{ii}p_i$, $G_{ii}>0$
- lacktriangle Мощность интерференции на i-ом ресивере $\sum_{j
 eq i} G_{ij} p_j$

- ightharpoonup Пусть есть n трансмиттеров и n ресиверов
- lacktriangle Мощность сигнала p_i на трансмиттере
- lacktriangle Мощность сигнала на i-ом ресивере $G_{ii}p_i$, $G_{ii}>0$
- lacktriangle Мощность интерференции на i-ом ресивере $\sum_{j
 eq i} G_{ij} p_j$
- lacktriangle Отношение сингал-шум (SINR) $\frac{G_{ii}p_i}{\sigma_i+\sum_{j\neq i}G_{ij}p_j}$, где σ_i мощность шума на i-ом ресивере

- ightharpoonup Пусть есть n трансмиттеров и n ресиверов
- lacktriangle Мощность сигнала p_i на трансмиттере
- lacktriangle Мощность сигнала на i-ом ресивере $G_{ii}p_i$, $G_{ii}>0$
- lacktriangle Мощность интерференции на i-ом ресивере $\sum_{j
 eq i} G_{ij} p_j$
- lacktriangle Отношение сингал-шум (SINR) $\frac{G_{ii}p_i}{\sigma_i+\sum_{j\neq i}G_{ij}p_j}$, где σ_i мощность шума на i-ом ресивере

Задача минимизации мощности

$$\begin{split} \min_{\mathbf{p}} \sum_{i=1} p_i \\ \text{s.t. } p^{\min} &\leq p_i \leq p^{\max} \\ \frac{G_{ii}p_i}{\sigma_i + \sum_{j \neq i} G_{ij}p_j} \geq S_i \end{split}$$

- ightharpoonup Пусть есть n трансмиттеров и n ресиверов
- ightharpoonup Мощность сигнала p_i на трансмиттере
- lacktriangle Мощность сигнала на i-ом ресивере $G_{ii}p_i$, $G_{ii}>0$
- lacktriangle Мощность интерференции на i-ом ресивере $\sum_{j
 eq i} G_{ij} p_j$
- lacktriangle Отношение сингал-шум (SINR) $\frac{G_{ii}p_i}{\sigma_i+\sum_{j\neq i}G_{ij}p_j}$, где σ_i мощность шума на i-ом ресивере

Задача минимизации мощности

$$\min_{\mathbf{p}} \sum_{i=1}^{N} p_i$$
s.t. $p^{\min} \leq p_i \leq p^{\max}$
 $\frac{G_{ii}p_i}{\sigma_i + \sum_{j \neq i} G_{ij}p_j} \geq S_i$

Больше примеров можно найти в этом туториале 1

https://web.stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf

 После равносильных преобразований задач достаточно описать неравенство

$$\log\left(\sum_{k=1}^{m} e^{z_k}\right) \le t$$

в конической форме

 После равносильных преобразований задач достаточно описать неравенство

$$\log\left(\sum_{k=1}^{m} e^{z_k}\right) \le t$$

в конической форме

lacktriangle Эквивалентная запись $\sum_{k=1}^m e^{z_k-t} \leq 1$

 После равносильных преобразований задач достаточно описать неравенство

$$\log\left(\sum_{k=1}^{m} e^{z_k}\right) \le t$$

в конической форме

- lacktriangle Эквивалентная запись $\sum_{k=1}^{m} e^{z_k t} \leq 1$
- ightharpoonup Введём переменную $e^{z_k-t} \leq u_k$

 После равносильных преобразований задач достаточно описать неравенство

$$\log\left(\sum_{k=1}^{m} e^{z_k}\right) \le t$$

в конической форме

- lacktriangle Эквивалентная запись $\sum_{k=1}^{m} e^{z_k t} \leq 1$
- ightharpoonup Введём переменную $e^{z_k-t} \leq u_k$
- lacktriangle Тогда $\sum_{k=1}^m u_k \leq 1$ линейное неравенство

 После равносильных преобразований задач достаточно описать неравенство

$$\log\left(\sum_{k=1}^{m} e^{z_k}\right) \le t$$

в конической форме

- ▶ Эквивалентная запись $\sum_{k=1}^{m} e^{z_k t} \le 1$
- ightharpoonup Введём переменную $e^{z_k-t} \leq u_k$
- lacktriangle Тогда $\sum_{k=1}^m u_k \leq 1$ линейное неравенство

Определение

Экспоненциальным конусом называется такой конус

$$K_{\text{exp}} = \{(x, y, z) \mid x \ge y e^{z/y}, \ y > 0\} \cup \{(x, 0, z) \mid x \ge 0, \ z \le 0\}$$

 После равносильных преобразований задач достаточно описать неравенство

$$\log\left(\sum_{k=1}^{m} e^{z_k}\right) \le t$$

в конической форме

- ▶ Эквивалентная запись $\sum_{k=1}^{m} e^{z_k t} \le 1$
- ightharpoonup Введём переменную $e^{z_k-t} \leq u_k$
- lacktriangle Тогда $\sum_{k=1}^m u_k \leq 1$ линейное неравенство

Определение

Экспоненциальным конусом называется такой конус

$$K_{\text{exp}} = \{(x, y, z) \mid x \ge ye^{z/y}, \ y > 0\} \cup \{(x, 0, z) \mid x \ge 0, \ z \le 0\}$$

 $e^{z_k-t} \le u_k \Leftrightarrow (u_k, 1, z_k - t) \in K_{\exp}$

Оптимизация на конусе \mathbf{S}^n_+ (SDP)

Коническая форма

$$\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}$$

s.t.
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{G} + \sum_{i=1}^{n} x_i \mathbf{F}_i \le 0,$$

где $\mathbf{G} \in \mathbf{S}^n$ и все $\mathbf{F}_i \in \mathbf{S}^n$.

Стандартная форма

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$

s.t.
$$\operatorname{trace}(\mathbf{A}_i \mathbf{X}) = b_i$$

 $\mathbf{X} \succeq 0$.

где
$$\mathbf{C} \in \mathbf{S}^n$$
 и все $\mathbf{A}_i \in \mathbf{S}^n$

Оптимизация на конусе \mathbf{S}_{+}^{n} (SDP)

Коническая форма Стандартная форма
$$\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}$$
 $\min_{\mathbf{X}} \operatorname{trace}(\mathbf{C}\mathbf{X})$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ s.t. $\operatorname{trace}(\mathbf{A}_i\mathbf{X}) = b_i$ $\mathbf{X} \succeq 0,$ где $\mathbf{C} \in \mathbf{S}^n$ и все $\mathbf{A}_i \in \mathbf{S}^n$

где $\mathbf{G} \in \mathbf{S}^n$ и все $\mathbf{F}_i \in \mathbf{S}^n$.

 Полная аналогия с LP с точностью до определения скалярного произведения и конуса

Оптимизация на конусе \mathbf{S}_{+}^{n} (SDP)

Коническая форма Стандартная форма
$$\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}$$
 $\min_{\mathbf{X}} \mathrm{trace}(\mathbf{C}\mathbf{X})$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ s.t. $\mathrm{trace}(\mathbf{A}_i\mathbf{X}) = b_i$ $\mathbf{X} \succeq 0,$ где $\mathbf{C} \in \mathbf{S}^n$ и все $\mathbf{A}_i \in \mathbf{S}^n$

где $\mathbf{G} \in \mathbf{S}^n$ и все $\mathbf{F}_i \in \mathbf{S}^n$.

- Полная аналогия с LP с точностью до определения скалярного произведения и конуса
- ▶ Геометрию таких задач рассмотрим ближе к концу курса, когда будем говорить о методах

Оптимизация на конусе \mathbf{S}_{+}^{n} (SDP)

Коническая форма Стандартная форма
$$\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}$$
 $\min_{\mathbf{X}} \mathrm{trace}(\mathbf{C}\mathbf{X})$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ s.t. $\mathrm{trace}(\mathbf{A}_i\mathbf{X}) = b_i$ $\mathbf{X} \succeq 0,$ где $\mathbf{C} \in \mathbf{S}^n$ и все $\mathbf{A}_i \in \mathbf{S}^n$

где $\mathbf{G} \in \mathbf{S}^n$ и все $\mathbf{F}_i \in \mathbf{S}^n$.

- Полная аналогия с LP с точностью до определения скалярного произведения и конуса
- Геометрию таких задач рассмотрим ближе к концу курса, когда будем говорить о методах
- ▶ Из одной формы можно получить другую

LP и SOCP как задачи SDP

LP

- $ightharpoonup \mathbf{G} = 0$
- $lackbox{f F}_i$ такие, что $\sum\limits_{i=1}^n x_i {f F}_i = -{
 m diag}({f x})$

LP и SOCP как задачи SDP

LP

$$ightharpoonup \mathbf{G} = 0$$

$$ightharpoonup \mathbf{F}_i$$
 такие, что $\sum\limits_{i=1}^n x_i \mathbf{F}_i = -\mathrm{diag}(\mathbf{x})$

Дополнение по Шуру

Если $\mathbf{C} \succ 0$, то

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C} \end{bmatrix} \succeq 0 \Leftrightarrow \mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\top} \succeq 0$$

LP и SOCP как задачи SDP

LP

$$\mathbf{G} = 0$$

$$ightharpoonup \mathbf{F}_i$$
 такие, что $\sum\limits_{i=1}^n x_i \mathbf{F}_i = -\mathrm{diag}(\mathbf{x})$

Дополнение по Шуру

Если $\mathbf{C} \succ 0$, то

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C} \end{bmatrix} \succeq 0 \Leftrightarrow \mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\top} \succeq 0$$

SOCP

$$\|\mathbf{x}\|_2 \le t \Leftrightarrow \begin{bmatrix} t & \mathbf{x}^{\top} \\ \mathbf{x} & t\mathbf{I} \end{bmatrix} \succeq 0$$

Аналогично для SOCP:

$$\|\mathbf{A}^{\top}\mathbf{x} + \mathbf{b}_i\|_2 \le \mathbf{c}^{\top}\mathbf{x} + d_i \Leftrightarrow \begin{bmatrix} \mathbf{c}^{\top}\mathbf{x} + d_i & (\mathbf{A}^{\top}\mathbf{x} + \mathbf{b}_i)^{\top} \\ \mathbf{A}^{\top}\mathbf{x} + \mathbf{b}_i & (\mathbf{c}^{\top}\mathbf{x} + d_i)\mathbf{I} \end{bmatrix} \succeq 0$$

Немного про дополнение по Шуру

Блочное исключение

- $\blacktriangleright \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\top & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{g} \\ \mathbf{h} \end{bmatrix}$
- lacktriangle Выразим $\mathbf{y} = \mathbf{C}^{-1}(\mathbf{h} \mathbf{B}^{ op}\mathbf{x})$
- $oldsymbol{ iny}$ Первое уравнение сводится к $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{C}^{-1}(\mathbf{h} \mathbf{B}^{ op}\mathbf{x}) = (\mathbf{A} \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{ op})\mathbf{x} + \mathbf{B}\mathbf{C}^{-1}\mathbf{h} = \mathbf{g}$
- Получили дополнение по Шуру для матрицы С

Немного про дополнение по Шуру

Блочное исключение

- $\blacktriangleright \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\top & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{g} \\ \mathbf{h} \end{bmatrix}$
- lackbox Выразим $\mathbf{y} = \mathbf{C}^{-1}(\mathbf{h} \mathbf{B}^{ op}\mathbf{x})$
- $oldsymbol{ iny}$ Первое уравнение сводится к $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{C}^{-1}(\mathbf{h} \mathbf{B}^{ op}\mathbf{x}) = (\mathbf{A} \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{ op})\mathbf{x} + \mathbf{B}\mathbf{C}^{-1}\mathbf{h} = \mathbf{g}$
- Получили дополнение по Шуру для матрицы С

Доказательство факта с предыдущего слайда

- ▶ Пусть $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\top & \mathbf{C} \end{bmatrix} \succeq 0$ тогда по определению $g(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\top \mathbf{A} \mathbf{x} + 2 \mathbf{y}^\top \mathbf{B} \mathbf{x} + \mathbf{y}^\top \mathbf{C} \mathbf{y} \ge 0$
- lacktriangle Значит функция $f(\mathbf{x}) = \min_{\mathbf{y}} g(\mathbf{x}, \mathbf{y}) \geq 0$
- $f extbf{ }$ Функция g выпукла при каждом фиксированном ${f x}$, тогда ${f y}^*=-{f C}^{-1}{f B}{f x}$ и $f({f x})={f x}^ op({f A}-{f B}^ op{f C}^{-1}{f B}){f x}$
- ightharpoonup Значит $\mathbf{A} \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\top} \succeq 0$

Задача MAXCUT и её выпуклая релаксация

lacktriangle Граф G=(V,E) и матрица весов рёбер $\mathbf{W}\in\mathbf{S}^n$ и $\mathbf{W}\geq 0$

Задача MAXCUT и её выпуклая релаксация

- lacktriangle Граф G=(V,E) и матрица весов рёбер $\mathbf{W}\in\mathbf{S}^n$ и $\mathbf{W}\geq 0$
- ▶ Задача MAXCUT

$$\max \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j)$$
 s.t. $x_i \in \{-1, +1\}$

Задача MAXCUT и её выпуклая релаксация

- lacktriangle Граф G=(V,E) и матрица весов рёбер $\mathbf{W}\in\mathbf{S}^n$ и $\mathbf{W}\geq 0$
- ▶ Задача MAXCUT

$$\max \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j)$$

s.t.
$$x_i \in \{-1, +1\}$$

▶ В матрично-векторном виде

$$\min rac{1}{2}\mathbf{x}^{ op}\mathbf{W}\mathbf{x}$$
 s.t. $x_i \in \{-1, +1\}$

Задача MAXCUT и её выпуклая релаксация

- lackbox Граф G=(V,E) и матрица весов рёбер $\mathbf{W}\in\mathbf{S}^n$ и $\mathbf{W}\geq 0$
- ▶ Задача MAXCUT

$$\max \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j)$$

s.t.
$$x_i \in \{-1, +1\}$$

В матрично-векторном виде

$$\min \frac{1}{2} \mathbf{x}^{\top} \mathbf{W} \mathbf{x}$$

s.t.
$$x_i \in \{-1, +1\}$$

Эквивалентный вид

$$\min \frac{1}{2} \operatorname{trace}(\mathbf{W}\mathbf{X})$$

s.t.
$$\mathbf{X} \succeq 0$$
, rank $(\mathbf{X}) = 1$, diag $(\mathbf{X}) = \mathbf{1}$

Задача MAXCUT и её выпуклая релаксация

- lacktriangle Граф G=(V,E) и матрица весов рёбер $\mathbf{W}\in\mathbf{S}^n$ и $\mathbf{W}\geq 0$
- Задача MAXCUT

$$\max \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j)$$

s.t.
$$x_i \in \{-1, +1\}$$

В матрично-векторном виде

$$\min \frac{1}{2} \mathbf{x}^{\top} \mathbf{W} \mathbf{x}$$

s.t.
$$x_i \in \{-1, +1\}$$

Эквивалентный вид

$$\min \frac{1}{2} \operatorname{trace}(\mathbf{W}\mathbf{X})$$

s.t.
$$\mathbf{X} \succeq 0$$
, rank $(\mathbf{X}) = 1$, diag $(\mathbf{X}) = \mathbf{1}$

► SDP релаксация

$$\min \operatorname{trace}(\mathbf{W}\mathbf{X})$$

s.t.
$$X \succeq 0$$
, $rank(X) \equiv 1$, $diag(X) = 1$

lacktriangle Дано k точек $\mathbf{x}_i \in \mathbb{R}^n$

- ightharpoonup Дано k точек $\mathbf{x}_i \in \mathbb{R}^n$
- Необходимо найти эллипсоид минимальной площади, который покрывает все \mathbf{x}_i

- ightharpoonup Дано k точек $\mathbf{x}_i \in \mathbb{R}^n$
- Необходимо найти эллипсоид минимальной площади, который покрывает все \mathbf{x}_i
- ▶ Эллипсоид можно задать аффинным преобразованием

$$\{\mathbf{x} \mid \|\mathbf{x}\|_2^2 \leq 1\} \rightarrow \{\mathbf{u} \mid \|\mathbf{u}\|_2^2 \leq 1, \ \mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{b}\}$$

- lacktriangle Дано k точек $\mathbf{x}_i \in \mathbb{R}^n$
- Необходимо найти эллипсоид минимальной площади, который покрывает все \mathbf{x}_i
- ▶ Эллипсоид можно задать аффинным преобразованием

$$\{\mathbf{x} \mid \|\mathbf{x}\|_{2}^{2} \le 1\} \to \{\mathbf{u} \mid \|\mathbf{u}\|_{2}^{2} \le 1, \ \mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{b}\}$$

lacktriangle Тогда площадь увеличивается в $\det(\mathbf{A}^{-1})$ раз.

- lacktriangle Дано k точек $\mathbf{x}_i \in \mathbb{R}^n$
- Необходимо найти эллипсоид минимальной площади, который покрывает все \mathbf{x}_i
- ▶ Эллипсоид можно задать аффинным преобразованием

$$\{\mathbf{x} \mid \|\mathbf{x}\|_{2}^{2} \le 1\} \to \{\mathbf{u} \mid \|\mathbf{u}\|_{2}^{2} \le 1, \ \mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{b}\}$$

- lacktriangle Тогда площадь увеличивается в $\det(\mathbf{A}^{-1})$ раз.
- ▶ Детерминант не является выпуклой/вогнутой функцией

- lacktriangle Дано k точек $\mathbf{x}_i \in \mathbb{R}^n$
- Необходимо найти эллипсоид минимальной площади, который покрывает все \mathbf{x}_i
- > Эллипсоид можно задать аффинным преобразованием

$$\{\mathbf{x} \mid \|\mathbf{x}\|_{2}^{2} \le 1\} \to \{\mathbf{u} \mid \|\mathbf{u}\|_{2}^{2} \le 1, \ \mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{b}\}$$

- lacktriangle Тогда площадь увеличивается в $\det(\mathbf{A}^{-1})$ раз.
- Детерминант не является выпуклой/вогнутой функцией
- $lack \log \det(\mathbf{A}^{-1}) = -\log \det(\mathbf{A})$ выпуклая функция при $\mathbf{A}\succ 0$

- lacktriangle Дано k точек $\mathbf{x}_i \in \mathbb{R}^n$
- Необходимо найти эллипсоид минимальной площади, который покрывает все \mathbf{x}_i
- ▶ Эллипсоид можно задать аффинным преобразованием

$$\{\mathbf{x} \mid \|\mathbf{x}\|_{2}^{2} \le 1\} \to \{\mathbf{u} \mid \|\mathbf{u}\|_{2}^{2} \le 1, \ \mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{b}\}$$

- lacktriangle Тогда площадь увеличивается в $\det(\mathbf{A}^{-1})$ раз.
- Детерминант не является выпуклой/вогнутой функцией
- $lackbox{lack} \log \det(\mathbf{A}^{-1}) = -\log \det(\mathbf{A})$ выпуклая функция при $\mathbf{A}\succ 0$

$$\min_{\mathbf{A}, \mathbf{b}} \log \det \mathbf{A}^{-1}$$
s.t. $\mathbf{A} \succ 0$

$$\|\mathbf{A}\mathbf{x}_i + \mathbf{b}\|_2 \le 1$$

- lacktriangle Дано k точек $\mathbf{x}_i \in \mathbb{R}^n$
- Необходимо найти эллипсоид минимальной площади, который покрывает все \mathbf{x}_i
- ▶ Эллипсоид можно задать аффинным преобразованием

$$\{\mathbf{x} \mid \|\mathbf{x}\|_{2}^{2} \le 1\} \to \{\mathbf{u} \mid \|\mathbf{u}\|_{2}^{2} \le 1, \ \mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{b}\}$$

- lacktriangle Тогда площадь увеличивается в $\det(\mathbf{A}^{-1})$ раз.
- Детерминант не является выпуклой/вогнутой функцией
- $lackbox{lack} \log \det(\mathbf{A}^{-1}) = -\log \det(\mathbf{A})$ выпуклая функция при $\mathbf{A}\succ 0$

$$\min_{\mathbf{A}, \mathbf{b}} \log \det \mathbf{A}^{-1}$$
s.t. $\mathbf{A} \succ 0$

$$\|\mathbf{A}\mathbf{x}_i + \mathbf{b}\|_2 \le 1$$

Эллипсоид Лёвнера-Джона (Löwner-John)

Постановка аналогична только не для точек, а для некоторого выпуклого множества

Пример построения экстремального эллипсоида

Пример построения экстремального эллипсоида

Равносильные преобразования задач

Равносильные преобразования задач

Запись через надграфик

$$\min_{\mathbf{x}} f_0(\mathbf{x}) \\ \text{s.t. } \mathbf{A}\mathbf{x} = \mathbf{b} \\ f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m \end{cases} \implies \sup_{\mathbf{x}, \ t} t$$

$$\mathbf{x} = \mathbf{b}$$

$$f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m$$

$$f_0(\mathbf{x}) \le t$$

Равносильные преобразования задач

Запись через надграфик

$$\min_{\mathbf{x}} f_0(\mathbf{x}) \\ \text{s.t. } \mathbf{A}\mathbf{x} = \mathbf{b} \\ f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m \end{cases} \implies \text{s.t. } \mathbf{A}\mathbf{x} = \mathbf{b} \\ f_0(\mathbf{x}) \le 0, \ i = 1, \dots, m$$

Преобразования ограничений

- $Ax \le b \to Ax + y = b, y \ge 0$
- $\mathbf{x} \to \mathbf{x}_1 \mathbf{x}_2, \ \mathbf{x}_1 \ge 0, \ \mathbf{x}_2 \ge 0$
- ightharpoonup Выпуклые ограничения неравенства ightharpoonup конические ограничения

$$f(\mathbf{x}) \le t \Leftrightarrow (\mathbf{x}, 1, t) \in \mathcal{K}_f$$

 $\mathcal{K}_f = \{(\mathbf{x}, y, z) \mid yf(\mathbf{x}/y) \le z\} \cup (0, 0, 0)$

▶ Стандартная форма задачи выпуклой оптимизации

- ▶ Стандартная форма задачи выпуклой оптимизации
- ▶ Линейное программирование

- ▶ Стандартная форма задачи выпуклой оптимизации
- ▶ Линейное программирование
- ► Коническая оптимизация: LP, SOCP и SDP

- Стандартная форма задачи выпуклой оптимизации
- Линейное программирование
- ▶ Коническая оптимизация: LP, SOCP и SDP
- Решение линейных систем с неквадратными матрицами

- Стандартная форма задачи выпуклой оптимизации
- Линейное программирование
- ▶ Коническая оптимизация: LP, SOCP и SDP
- Решение линейных систем с неквадратными матрицами
- Задача классификации и SVM

- Стандартная форма задачи выпуклой оптимизации
- Линейное программирование
- Коническая оптимизация: LP, SOCP и SDP
- Решение линейных систем с неквадратными матрицами
- Задача классификации и SVM
- Выпуклая релаксация задачи MAXCUT

- Стандартная форма задачи выпуклой оптимизации
- Линейное программирование
- Коническая оптимизация: LP, SOCP и SDP
- Решение линейных систем с неквадратными матрицами
- Задача классификации и SVM
- Выпуклая релаксация задачи MAXCUT
- Задача построения оптимального эллипсоида