\bigoplus

Chapter 6

Exercise 6A

- **1 a** a = -4, b = 1
 - **b** a = -5, b = 2, c = -1
 - **c** a = 4, b = -2, c = 0
- **2 a** $(x, \theta) = (-\sqrt{3}, \frac{5\pi}{6})$
 - **b** $(x,\theta) = (\sqrt{3}, \frac{-5\pi}{6})$
- **3** 0 resultant force; all forces cancel.
- **4 a** $F_3 = \begin{pmatrix} -15 \\ -37 \end{pmatrix}$
 - **b** 40*N*
- **5** 15.13*N*
- **6 a** $q = \begin{pmatrix} 12.4 \\ -6.3 \end{pmatrix}$
 - **b** 14*N*
- 7 **a** $\begin{pmatrix} -470 \\ 235 \\ 290 \end{pmatrix}$
 - **b** 600*N*
- 8 x = 120, y = -210, z = -280, 370N

Exercise 6B

- **1 a** 3
 - **b** $\frac{3}{\sqrt{2}}$
 - **c** $-\frac{15\sqrt{3}}{2}$
 - **d** $-\sqrt{15}$
 - **e** 4
 - **f** -3
- **2** a −4
 - **b** -4
 - **c** $8 \sqrt{6}$
 - **d** 22
 - **e** $6 2\sqrt{15}$
 - **f** $1 + 6\sqrt{2}$

- **3 a** 24
 - **b** -14
- **4 a** −81
 - **b** -12
- **5** 5
- **6** −2
- **7 a** −1
 - **b** –21
 - **c** 25

Exercise 6C

- 1 answers in radians
 - **a** 1.48
 - **b** 1.9368
 - **c** 1.3807
- 2 answers in radians
 - a 0.868
 - **b** 1.412
 - **c** 0.3319
- **3** 0.782 radians
- 4 a E(6,0,5)
 - B(6,3,0)
 - G(0,3,5)
 - **b** 1.3386 radians
- 5 **a** B(8,8,0)
 - **b** 0.7716 radians
- 6 a P(8,0,0)
 - R(0,6,0)
 - **b** 1.014197
- 7 a A(8,0,0)
 - B(8,5,0)
 - F(8,5,6)
 - **b** (8,5,2)
 - **c** 0.2089 radians

- 0.8218 radians

9 a
$$AY = \begin{pmatrix} 0 \\ 7 \\ -11 \end{pmatrix}$$
$$AX = \begin{pmatrix} 6 \\ \frac{29}{2} \\ -\frac{25}{2} \end{pmatrix}$$

$$AX = \begin{pmatrix} 6 \\ \frac{29}{2} \\ -\frac{25}{2} \end{pmatrix}$$

- 0.4186 radians
- **10 a** A(8,0,0)

D(0,0,15)

E(8,0,15)

b P(8,0,5)

 $Q(8,\frac{27}{5},15)$

R(2,0,15)

- **c** 1.2473 radians
- **d** 43.49
- **11 a** 8 km

1.4836 radians

12 a 11 $\sqrt{1246}N$

b 0.2666 radians

13 148.29

Exercise 6D

- $3 * 5 + 2(-3) + (-1)9 = 0 \Rightarrow$ perpendicular
 - **b** $2*3-2*3=0 \Rightarrow$ perpendicular
 - \mathbf{c} 2 * 6 + 8 (-5) + 7 * 4 = 0 \Rightarrow perpendicular
 - **d** (-1) 8 + (-3) (-10) + (-2) 11 = 0 \Rightarrow perpendicular
 - **e** $4(-1) + (-3) 2 + (-5) (-2) = 0 \Rightarrow$ perpendicular

- $\mathbf{f} = 6 * 5 + 8 * 3 + 9 (-6) = 0 \Rightarrow$ perpendicular
- 2 a acute a.b > 0
 - **b** obtuse, q.r < 0
 - \mathbf{c} obtuse, u.v < 0
 - **d** acute, AB.AC > 0
- 3 QP.QR = $0 \Rightarrow$ perpendicular at Q
- 4 AB.BC = $0 \Rightarrow$ perpendicular
- **5** 0.5
- **6** 0.5
- **7** {(-1.5), (5)}

8 a
$$\overrightarrow{AB} = \begin{pmatrix} 2\\3\\6 \end{pmatrix}$$

$$\overrightarrow{CD} = \begin{pmatrix} 1\\2\\5 \end{pmatrix}$$

$$\overrightarrow{CD} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$

b
$$\{\{p=-\frac{4}{3}\}, \{q=\frac{1}{3}\}\}$$

- 9 $\{\{k = -5\}, \{k = 5\}\}$
- **10** $\{\{y = -2\}, \{y = 4\}\}$

Exercise 6E

1 a
$$a \bullet b = a1b1 + a2b2 + a3b3$$

$$b \bullet a = a1b1 + a2b2 + a3b3$$

b
$$a \bullet (b+c) = a1b1 + a2b2 + a3b3 + a1c1 + a2c2 + a3c3$$

c
$$a \bullet b + a \bullet c = a1b1 + a2b2 + a3b3 + a1c1 + a2c2 + a3c3$$

(2)

(1)

- 2 a $\frac{65}{2}$
- 4 $\theta = 60^{\circ}$
- **5** 9

ANSWERS

6 a
$$\frac{75}{2}$$

8
$$(u+v) \bullet (u+v) = u \bullet u + 2u \bullet v + v \bullet v$$

= $|u|^2 + 2u \bullet v + |v|^2$

However we are told this = $u \cdot u + v \cdot v$ which equals $|u|^2 + |v|^2$

So $u \bullet v = 0$ therefore right angled at B

10
$$10\sqrt{3}$$
, 4

11
$$\overrightarrow{BA} = a - b$$

$$\overrightarrow{BC} = -(a+b)$$

$$\overrightarrow{BA} \bullet \overrightarrow{BC} = -(a+b) \bullet (a-b) = |b|^2 - |a|^2$$

But $|b|^2 = |a|^2$ so dot product is $0 \Rightarrow$ right angled at B

