Задание 7.1. Механический «черный» ящик.

<u>Оборудование</u>: «чёрный» ящик с пластиковой трубкой внутри (начало и конец трубки выступают наружу); 2 шприца; пластиковый стакан с водой; линейка; нить; пластиковая тарелка; салфетки.

Задание. С помощью предложенного вам оборудования определите следующие параметры пластиковой трубки:

- 1) Внешний диаметр D трубки.
- 2) Внутренний диаметр d трубки.
- 3) Длину L_0 всей трубки.

Опишите ваши измерения и сделайте поясняющие рисунки.

Примечания:

- 1) Укажите в отчёте номер «чёрного» ящика, который вам выдан.
- 2) Вскрывать «чёрный» ящик или вытаскивать из него трубку запрещено.
- 3) Внутренний и внешний диаметры трубки считайте неизменными по всей её длине.
- 4) Длина окружности $L_d = \pi d$, где d её диаметр, $\pi \approx 3,14$; площадь круга $S = \pi d^2/4$, объем цилиндра равен произведению площади основания на высоту.
- 5) Шприц № 1 объемом 5 мл и шприц № 2 инсулиновый объемом 1 мл.
- 6) Тарелка и салфетки используются для поддержания порядка на рабочем месте.

Задание 7.2. Клякса.

Оборудование: лист бумаги с изображением кляксы, карандаш, линейка, ножницы.

Задание.

Вырежьте кляксу из листа. Определите: 1) площадь кляксы; 2) массу кляксы; 3) объемную плотность ρ бумаги.

<u>Примечание</u>. Поверхностная плотность выданной вам бумаги $\sigma = 80$ г/м ².

Лист с изображением кляксы можно разрезать, но помните, что новый лист вам не выдадут!

Задание 7.1. Механический «черный» ящик

Возможное решение

1. Для определения внешнего диаметра трубки воспользуемся методом рядов. Плотно намотаем N витков нити на трубку, затем с помощью линейки измерим длину L намотки.

Тогда длина окружности трубки равна L/N, а внешний диаметр $D = \frac{L}{\pi N}$ (результат зависит от используемого оборудования). В авторском исполнении $D \approx 4,4$ мм.

2. Для определения внутреннего диаметра трубки в шприц № 2 наберем объем воды $V_1 = 1$ мл. Присоединим шприц к длинном концу трубки аккуратно выдавим всю воду из шприца в трубку. С помощью линейки измерим длину $L_{\text{зап}}$ заполненной части трубки. В авторском исполнении $L_{\text{зап}} = 160 \, \text{мм}$. Вычислим площадь внутреннего сечения трубки

$$S = \frac{V_1}{L_{_{
m 3AII}}}$$
 , а затем и внутренний диаметр $\,d = 2\sqrt{\frac{S}{\pi}} pprox 3$ мм .

3. Для определения полной длины трубки заполним её водой из шприца № 1. По шкале шприца определим израсходованный объем воды V_0 . Используя результаты предыдущего пункта найдём $L_0 = L_{\rm san} V_0 / V_1$. Выдуем всю воду из трубки и повторим опыт еще 2 раза, результаты усредним.

Примечание. Инсулиновый шприц используется для более точного определения внутреннего диаметра трубки, так как его цена деления 0,02 мл.

Критерии оценивания:

1. Понят	1 балл	
2. Найде	3 балла	
a.	Использован метод рядов	0,5 балла
b.	Измерена длина нити при $N \ge 5$	1 балл
c.	Выведены необходимые формулы	0,5 балла
d.	Получен результат с точностью не хуже 10%.	1 балл
3. Найден внутренний диаметр		
a.	Предложен метод, с использованием шприца № 2	1 балл
b.	Водой заполнено более половины длинного конца трубки	0,5 балла
c.	Выведены необходимые формулы	0,5 балла
d.	Получен результат с точностью не хуже 10%.	1 балл
4. Длина трубки		3 балла
a.	Предложен правильный метод	1 балл
b.	Опыт проделан два и более раз	1 балл
	один раз	0,5 балла
c.	Получен результат с точностью не хуже 10%.	1 балл

Задание 7.2. Клякса

Возможное решение

- 1. Для определения площади кляксы S наносим на нее сетку из клеток размером 1 см на 1 см. Подсчитываем общее число целых клеток N_1 и не целых клеток N_2 . Умножаем N_1 на 1 см², N_2 на 0,5 см² и суммируем результаты.
- 2. Находим массу кляксы по формуле $m = S \cdot \sigma$.
- 3. Разрезаем кляксу на большое число N_3 бумажных полосок. Складываем полоски в стопку и разрезаем получившуюся толстую полоску на N_4 отрезков. Складываем их в стопку и измеряем её толщину D. Толщину листа бумаги определим по формуле $d=\frac{D}{N_3N_4}\approx 0,1\,$ мм .
- 4. Объемная плотность бумаги $\rho = \frac{\sigma}{d} \approx 800 \text{ кг/м}^3$.

Рекомендации организаторам

- 1. Кляксу нужно распечатать на листе А4 и вырезать из бумаги.
- 2. Карандаш нужен заточенный.
- 3. Ножницы, так же как и все остальное, выдаются каждому участнику.
- 4. Линейка должна быть длиной 30 40 см.

Критерии оценивания

№	Содержание критерия	Баллы
1.	Предложен способ измерения площади кляксы	1
2.	Измерена площадь с точностью не хуже 10%	1
3.	Записана формула для вычисления массы (0,5 балла) и получено	1
	численное значение с единицами измерений (0,5 балла)	
4.	Предложен метод измерения толщины бумаги (метод рядов)	1
5.	Явно приведены результаты измерений: <i>N</i> и <i>D</i> .	1
6.	Количество полосок $N > 50$	1
7.	Измеренная толщина попадает в диапазон [0,09 – 0,11] мм	2
	Измеренная толщина попадает в диапазон [0,08 – 0,12] мм	1
8.	Вычислена объемная плотность р бумаги	2
	Записана формула $\rho = \sigma / d$	1
	Измеренная плотность попадает в диапазон [$660 - 1000$] кг/м ³	1

Задание 8.1. Вариации на тему!

<u>Оборудование</u>: три листа картона, ножницы, карандаш, линейка, три листа миллиметровой бумаги.

Задание.

Центр тяжести плоской однородной симметричной фигуры лежит на оси симметрии. Докажите экспериментально, что положение центра тяжести описывается уравнением:

$$x_0 = kH$$
.

Для этого проведите серию измерений для двух типов геометрических фигур: равнобедренного треугольника и равнобокой трапеции, основания которой относятся как **2:1**.

- Для фигур с разными значениями H определите положения центра тяжести x_0 .
- Постройте график полученных зависимостей $x_0(H)$ (не менее чем для 7 точек в возможно большем диапазоне измеряемых величин).
- С помощью графика определите значения k для треугольника и трапеции.

Задание 8.2. Плотность риса

<u>Оборудование</u>: два блюдца (одно пустое, другое с рисом), одноразовый стаканчик, наполненный водой примерно на две трети, кусок марли, нить хлопчатобумажная, электронные весы.

Задание. Определите плотность зерен риса.

Внимание! В течение всего времени, отведенного на выполнение задания, дополнительные порции воды и риса вам не выдадут!

Блюдца используйте лишь в качестве поддона для риса, чтобы он не рассыпался по столу. Использовать блюдца для других целей нельзя! Плотность воды $\rho = 1~000~{\rm kr/m^3}$.

Задание 8.1. Центр тяжести

Возможное решение

Вырезая из картона равнобедренные треугольники с разной высотой H, определяем положение их центра тяжести x_0 , например, уравновешивая их на краю стола. Строим график полученной зависимости из которого находим $k_1 = 1/3$.

Повторяя аналогичные измерения для равнобоких трапеций, находим $k_2 = 4/9$.

Критерии оценивания

1. Описание метода измерения x_0				
2. Результаты измерений (таблица) (по 1 баллу для треугольника и для трапеции) 2 б				
3. Графики зависимости $x_0(H)$ для треугольника и трапеции				
Подписаны величины и единицы измерений	0,5 балла х 2			
Выбран удобный масштаб 0,5 балла х 2				
Нанесены на график экспериментальные точки	0,5 балла х 2			
Проведена прямая (не ломаная)	0,5 балла х 2			
4. Получены значения k (по 1 баллу для треугольника и для трапеции)				
5. Сделан вывод о справедливости линейной связи x_0 и H				

Задание 8.2. Плотность риса

Возможное решение

В кусок марли насыпаем порцию риса 50 г. Сворачиваем марлю в мешочек, внутри которого оказался рис, завязываем получившийся узелок нитью, оставляя небольшой свободный конец, за который удобно держать узелок. Определяем массу узелка с рисом. Определяем массу стаканчика с водой. Теперь устанавливаем стаканчик на весы и опускаем в него узелок с рисом, удерживая его за нить так, чтобы он не касался дна и стенок. Узелок должен быть полностью погружен в воду. На рис со стороны воды действует сила Архимеда $F_A = \rho_0 gV$, где ρ_0 - плотность воды, V- объём риса. По третьему закону Ньютона с такой же силой рис действует на воду, увеличивая вес стаканчика с водой на F_A . Таким образом, показания весов увеличатся на $\Delta mg = F_A = \rho_0 Vg$, и, следовательно, объем риса $V = \frac{\Delta m}{\rho_0}$, где Δm -увеличение показания весов при погружении риса в воду. Тогда плотность риса

$$\rho = \frac{m}{V} = \rho_0 \frac{m}{\Delta m}.$$

Измерения следует повторить несколько раз и усреднить полученные результаты.

Критерии оценивания

1.	Описание метода измерения плотности риса		1 балл
2.	Использование порции риса массой более 50 г.		1 балл
3.	Определена масса порции риса		1 балл
4.	Определен объем риса в узелке		3 балла
	Вывод формулы $V = \frac{\Delta m}{\rho_0}$	2 балла	
	Измерение объема	1 балл	
5.	Найдена плотность риса		2 балла
	В пределах 10% от контрольного значения	2 балла	
	В пределах от 10% до 20%	1 балл	
6.	Проведены повторные измерения		2 балла
	Однократное повторение	1 балл	