STANISLAS Exercices

Arithmétique & Polynômes Chapitre

PSI 2021-2022

_ _ _

I. Arithmétique des entiers naturels

Exercice 1. [X] Soit $n=101010\cdots0101$ avec 2016 zéros. Montrer que n n'est pas premier.

II. Polynômes

Exercice 2. [ENSAM] Soit P un polynôme à coefficients réels.

- **1.** On suppose que, pour tout $x \in \mathbb{R}$, $P(x) + P'(x) \ge 0$. Montrer que $P(x) \ge 0$ pour tout $x \in \mathbb{R}$.
- **2.** On suppose maintenant que, pour tout $x \in \mathbb{R}$, $P(x) P''(x) \ge 0$. Montrer que $P(x) \ge 0$ pour tout $x \in \mathbb{R}$.
- **3.** On suppose ici que, pour tout $x \in \mathbb{R}$, $P(x) P'(x) P''(x) + P'''(x) \ge 0$. Peut-on dire que $P(x) \ge 0$ pour tout $x \in \mathbb{R}$?
- **Exercice 3.** [Mines] Déterminer les nombres complexes solutions de l'équation $1 + 2z + \cdots + 2z^{n-1} + z^n = 0$.
- **Exercice 4.** Soient n un entier naturel non nul et $P = \frac{1}{n!}X^n(4-2X)^n$. Montrer que toutes les dérivées de P en 0 et en 2 sont des nombres entiers.

Exercice 5. (Polynôme réciproque) [Centrale] Un polynôme $P = \sum_{k=0}^{n} a_k X^k$ de degré n est réciproque si pour tout $k \in [0, n]$, $a_k = a_{n-k}$.

- **1.** Montrer que P est réciproque si et seulement si $P(X) = X^n P\left(\frac{1}{X}\right)$. Dans toute la suite, P désigne un polynôme réciproque.
- **2.** Montrer que, si 1 est racine de P, alors sa multiplicité est strictement supérieure à 1.
- **3.** Discuter de la racine -1.

- **4.** Montrer que tout polynôme réciproque de degré pair s'écrit sous la forme $P=a_{2p}\prod^p(X^2-\alpha_kX+1)$.
- **5.** Que dire si $\stackrel{k=0}{P}$ est réciproque de degré impair?

Exercice 6. [Mines] Déterminer un polynôme $P \in \mathbb{R}[X]$ de degré minimal tel que le reste de la division de P par

$$X^{2} + X + 1$$
 soit $X - \frac{1}{2}$ et celui par $X^{2} - X + 1$ soit $-X + \frac{1}{2}$.

III. Avec Python

Exercice 7. [Centrale] Soient $P = X^2 - X + 41$ et $T = X^2 - 79X + 1601$.

- **1.** Soit p = P(42) et t = T(80). Écrire une suite d'instructions Python pour vérifier que pour tout $k \in [-15, 15]$, l'entier P(42+kp) est divisible par p et l'entier T(80+kt) est divisible par t.
- **2.** Soient P un polynôme non constant à coefficients entiers et n, k deux entiers. On suppose que m = P(n) est non nul. Montrer que P(n + km) est divisible par m.
- **3.** Écrire une fonction $est_premier$ qui prend en argument un entier naturel n et renvoie True si n est premier, False sinon. On rappelle que n est premier si et seulement si les restes de la division euclidienne de n par k, pour $k \in [2, |\sqrt{n}|]$ sont tous non nuls.
- **4.** Vérifier que P(n) est premier pour tout $n \in [0, 40]$, ainsi que T(n) pour tout $n \in [0, 79]$. Est-ce encore vrai pour P(41) et T(80)?
- **5.** Montrer qu'il n'existe pas de polynôme Q non constant à coefficients dans \mathbb{Z} tel que |Q(n)| soit premier pour tout entier naturel n.

Euler exhiba en 1772 le polynôme $P(X) = X^2 - X + 41$ pour lequel, pour tout $n \in [0,39]$, P(n) est un nombre premier. Cependant, $P(40) = 41^2$ n'est pas premier. La recherche de polynômes prenant des valeurs premières est encore d'actualité. Ces équations permettent de caractériser des nombres répartis selon des diagonales dans la spirale d'Ulam.