CSE6706: Advanced Digital Image Processing

Dr. Md. Monirul Islam

Reference Book

- Digital Image Processing, 3rd Edition
 - Gonzalez and Woods

Grading

• Attendance : 15%

• Midterm 1 : 15%

• Midterm 2 : 15%

• Final Exam : 30%

• Project : 25%

Paper Presentation : 10%

Project Implementation : 15%

Presentation Outline

- Importance of digital image processing
- Major areas
- Image processing basics
- Selected areas principles and issues

Origin of DIP

Crossing the Atlantic, 1921 From London to New York

Origin of DIP

1922

1929

Crossing the Atlantic

Origin of DIP: Scientific Research

First picture of the moon, 1964 taken by spacecraft Ranger 7

Tiger Woods makes his second ...

Tiger beetle

- uses only file name or text descriptions
- does not look at the image content

- · Results might be different, if we could
 - use DIP to extract image features
 - let the machine learn the features and understand the images

- DIP is not limited to image retrieval (IR)
- A large number of other areas:
 - Core area
 - Application area

DIP Research Area

Core area

- Image enhancement
- Image de-noising
- Image segmentation
- Image & video retrieval
- Image Security
 - watermarking and registration
- Image compression

DIP Research Area

- Application area
 - Security and surveillance
 - Biometric application: face, iris, finger print, palm print recognition . . .
 - Medical imaging
 - automatic scanning and detection: X-ray, CT, MRI, PET, angiogram, ECG, echo, endoscopy,
 - Document Analysis/Classification/Preservation
 - · Character recognition
 - Object and shape recognition
 - Intelligent transport system
 - Environmental monitoring and remote sensing
 - and, so on, . . .

Image Processing Basics

A sample benchmark image

Let us start with a gray scale image

A gray scale image

A matrix
OR
2 D function

A gray scale image

• 2 attributes:

- A location (x, y): picture element, pixel, pel, etc
- A value f(x, y) at pixel (x, y): gray scale value

A gray scale image

-f(x, y) can take any value from 0.0 (black) to 1.0 (white)

A gray scale image

Similarly: x and y can take any real numbers

What is a Digital Image

A gray scale image

- In a digital image, f(x, y) can take only discrete values

COMPUTER SCIENCE & ENGINEERING

Bangladesh University of Engineering & Technology

What is a Digital Image

A gray scale image

Similarly: pixels' locations (x, y) are also discrete

What is a Digital Image

A gray scale image

- Digital image means
 - pixels' locations (x, y) are discrete
 - gray level values f(x,y) are also discrete

Image Acquisition and Digitization

Representation of Digital Image

Matrix Representation

department of COMPUTER SCIENCE & ENGINEERING

Bangladesh University of Engineering & Technology

Digital Image from Matrix

A matrix An imaige

Any matrix can be visualized as an image

Images from Non-Visible EM Band: X-Ray Imaging

- Too many uses
 - Medical diagnostic
 - Security
 - Factory inspection, etc
- Digitization:
 - Scanning
 - Direct method
 - guiding x-ray to an x-raysensor

department of COMPUTER SCIENCE & ENGINEERING

Bangladesh University of Engineering & Technology

Images from Non-Visible EM Band: Imaging in Radio Band

MRI

- Patient is placed in a strong magnetic place
- Radio wave passes through body

Images from Non-Visible EM Band: Ultrasound

Images from Non-Visible EM Band: Gamma Ray Imaging

Main difference:

- Inject radio-active element into body
- Radiations collected by gamma ray detectors

Images from Reconstruction: CT, CAT, PET Technology

- These have similar arrangements
- CAT, CT:
 - Uses external X-ray source
- PET:
 - injected radioactive element works as an energy source

department of COMPUTER SCIENCE & ENGINEERING

Bangladesh University of Engineering & Technology

Images from Reconstruction: Illumination Source

Each energy band can produce images

Images from Reconstruction: Illumination Source

- Each energy band can produce images
- Human can see only in the visible spectrum

Digital Image Processing

processing of digital images using digital devices (computers)

Scope of DIP

- Is it DIP?

Scope of DIP

3 levels of DIP

- Low level
 - Input/Output: both are images
 - Example: Enhancement, sharpening, blurring, de-noising
- Mid level:
 - Input: image
 - Output: object, regions
 - Example: Image segmentation
- High level:
 - Input: image
 - Output: class labels
 - Example: Recognition, classification, etc

department of COMPUTER SCIENCE & ENGINEERING Bangladesh University of Engineering & Technology

$$g(x,y) = T[f(x,y)]$$

r = f(x, y)

$$s = g(x, y)$$

Neighborhood can be as small as 1X1 sub-image

$$s = T(r)$$

Image Enhancement: Thresholding

Power Law Transform:

$$s = cr^{\gamma}$$

department of COMPUTER SCIENCE & ENGINEERING Bangladesh University of Engineering & Technology

Image Enhancement Application: Segment out Region of Interest

Original Image

Transformation function

Enhanced image

Image Enhancement Application: Medical Diagnostic

- Mask mode radiography
 - The first picture is used as mask
 - Contrast medium injected into blood stream

Area under investigation also used as mask image

Image Enhancement Application: Medical Diagnostic

 contrast medium goes through blood vessels

The mask is subtracted from each subsequent photograph

mask image

A single diff. image. Along with other shots, it appears as a video

Image Enhancement Application: Space Research

Noisy image

Image Enhancement Application: Space Research

Noisy image

$$\overline{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$$

Image Enhancement Application: Space Research

Enhanced by averaging

Image Enhancement Application: Steganography

A plain image

Image Enhancement Application: Steganography

A plain image

Message decrypted using histogram equalization

Image Enhancement Application: De-noising

Noisy image

Image Enhancement Application: De-noising

Noisy image

 Replace each pixel's value by the median of its neighbors

Image Enhancement Application: De-noising

Noisy image

Noise reduction by median filter

Image Compression

- Objectives: minimize
 - Coding redundancy
 - Spatial and temporal redundancy
 - Irrelevant information

Example Image

Contribution of individual bits

Contribution of individual bits

Reconstructed Images from fewer bits

Using bit 6 and 7

Using bit 5, 6 and 7

Using bit 4, 5, 6 and 7

Reconstructed Images from fewer bits

Using bit 6 and 7

Using bit 5, 6 and 7

Using bit 4, 5, 6 and 7

Most 4 significant bits are enough

Image Reconstruction from fewer bits

Reconstructed Image from fewer bits

A typical **Z** matrix

$$\hat{T}(u,v)$$
 = round $\left[\frac{T(u,v)}{Z(u,v)}\right]$

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

-26	-3	-6	2	2	0	0	0
1	-2	-4	0	0	0	0	0
-3	1	5	-1	-1	0	0	0
-4	1	2	-1	0	0	0	0
1	0	()	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Quantized Coefficients values of the first block

Zigzag scan sequence

Recognition: LPR, OCR

department of COMPUTER SCIENCE & ENGINEERING

Bangladesh University of Engineering & Technology

Recognition: LPR, OCR

Issues

- Variable illumination
- Slanted/distorted image
- Hazardous conditions
 - Fog, rain, darkness
- Overlaps between lines and characters

Image Retrieval

CBIR: Content Based Image Retrieval

- Issues
 - semantic gap
 - subjectivity

department of COMPUTER SCIENCE & ENGINEERING

Bangladesh University of Engineering & Technology

(Traditional) SBIR: Semantic Based Image Retrieval

Retrieved by Google images using keyword 'cat', 'horse' and 'tiger'

Textual description in web: The official line is that cats carry

Textual description in web: ... famous and
enigmatic White **Horse** is
the oldest chalk-cut hill ...

Textual description in web: *Tiger*Woods, who is considered one ...

(Traditional) SBIR: Semantic Based Image Retrieval

Mirpur.jpg

Safari park.jpg

Sundarban.jpg

- Human annotation is
 - tedious
 - misleading
 - subjective

Recent Trend in SBIR

Translation from image document to text document

Recent Trend in SBIR

Issues in SBIR

Challenges:

- Accurate image segmentation
- Feature extraction for irregular shape
- Inadequate number of regions (terms) per image (document)

Issues in SBIR

Irregular shape

Issues in SBIR

• Inadequate number of regions to use *tf-idf* principle

An image with 3 flower regions

Image Segmentation

Segmentation

- Objective:
 - separate semantically meaningful regions (objects)

Image Segmentation: Thresholding – A Simple Approach

Let a color image

Graph Representation

- Strong relation between pixels
- ···· Weak relation between pixels

- Strong relation between pixels
- ···· Weak relation between pixels
- Partition boundary

- Strong relation between pixels
- ··· Weak relation between pixels
- Partition boundary

Image Segmentation: JSEG – A Widely Used Algorithm

An image

Image Segmentation: JSEG – A Widely Used Algorithm

image with class maps

Image Segmentation: JSEG – A Widely Used Algorithm

Class maps of 3 different images

Image Segmentation: JSEG Approach

Image Segmentation: JSEG Approach

$$J_{avg} = 0$$

$$J_0 = 0, J_{00} = 0.011$$

$$J_{avg} = 0.05$$

Image Segmentation: JSEG Output

original image

segmented image

Image Segmentation

- Issues in all segmentation algorithms:
 - over/under segmentation
 - overlapping segments
 - variable illumination

Segmentation Issues: Variable Illumination

Segmentation Issues in Color Images

Improving using Visible Color Difference

department of COMPUTER SCIENCE & ENGINEERING

Bangladesh University of Engineering & Technology

Work on License Plate Detection

Issues

- Variable illumination
- Slanted/distorted image
- Hazardous conditions
 - Fog, rain, darkness
- Overlaps between lines and characters

Work on License Plate Detection Courtesy: Samiul Azam

Hazardous Conditions

- **Hazardous weather**
- Low contrast
- **Background objects**
- Tilted view of license plate

(rain, fog)

(indoor, night, blur)

(other objects in background)

(horizontally tilted LP)

Rain

Indoor

Complex **Background**

Tilted

department of COMPUTER SCIENCE & ENGINEERING

Bangladesh University of Engineering & Technology

Rain Effect Removal

Consider rain streaks as periodic noise

Frequency domain

Rain removed image

Rain mask

department of

COMPLETER SCILNCE & ENGINEERING

Banglade Univ sity of Engineering & Technology

LPD in Hazardous Weather Conditions

Experiment on indoor, day, night, blurry and foggy Images
 Blurry
 Foggy
 Indoor
 Counterly
 Night

Detected LPs

Tilt Angle Correction in LPD

Tilt Angle Correction in LPD

Thank you