This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(9) BUNDESREPUBLIK
DEUTSCHLAND

[®] Offenlegungsschrift
[®] DE 3730410 A1

DEUTSCHES PATENTAMT

(1) Aktenzeichen: P 37 30 410.0
 (2) Anmeldetag: 10. 9.87
 (3) Offenlegungstag: 7. 4.88

(51) Int. Cl. 4:

C 03 C 3/09/1

C 03 C 3/093 H 01 L 31/02 H 01 L 27/12 // C03C 17/09, G09F 9/35

DE 3730410 A1

AL""

(3) Unionspriorität: (3) (3) (3) (17.09.86 JP P 218743/86

(1) Anmelder: Nippon Electric Glass Co., Ltd., Otsu, Shiga, JP

Tetzner, V., Dipl.-Ing. Dr.-Ing. Dr.jur., Pat.- u. Rechtsanw., 8000 München ② Erfinder:

Imai, Katsuhiko, Otsu, Shiga, JP; Yamamoto, Shigeru, Kyoto, JP

Substrat zur Verwendung bei einem elektronischen Anzeigegerät, einer Solarzelle und dergleichen mit dünnem Film

Substrat für eine Verwendung in Flüssigkristall-Anzeigegeräten, die dünne Filmtransistoren benutzen, Solarzellen, Elektroluminiszenz-Anzeigegeräten und/oder anderen Geräten, bei denen auf dem Substrat ein dünner Film aus einem Glas gebildet ist. Das Glas ist im wesentlichen frei von Alkalimetalloxyd, Bleioxyd und Magnesiumoxyd und besitzt einen hohen chemischen Widerstand. Das Glas enthält im wesentlichen 52 bis 60 Gew.-% SiO₂, 7 bis 14 Gew.-% Al₂O₃, 3 bis 13 Gew.-% CaO, 10 bis 22 Gew.-% BaO, 0 bis 10 Gew.-% SrO, 0 bis 10 Gew.-% ZnO.

DE 3730410 A1

Patentansprüche

1. Substrat zur Verwendung bei einem elektronischen Anzeigegerät, einer Solarzelle und/oder anderen Einrichtungen, bei denen auf dem Substrat ein dünner Film gebildet ist, dadurch gekennzeichnet, daß dieses Substrat aus einem Glas zubereitet ist, das im wesentlichen frei ist von Alkalimetalloxyd, Bleioxyd und Magnesiumoxyd, das ferner einen hohen chemischen Widerstand besitzt und im wesentlichen — in Gew.-% — 52 bis 60% SiO₂, 7 bis 14% Al₂O₃, 3 bis 12% B₂O₃, 3 bis 13% CaO, 10 bis 22% BaO, 0 bis 10% SrO, 0 bis 10% ZnO enthält.

2. Substrat nach Anspruch 1, dadurch gekennzeichnet, daß das Glas im wesentlichen — in Gew.-% — 55 bis 58% SiO₂, 8 bis 13% Al₂O₃, 4 bis 10% B₂O₃, 4 bis 7% CaO, 11 bis 20% BaO, 0 bis 5% SrO, 0,5 bis 7% ZnO enthält.

Beschreibung

Die Erfindung bezieht sich auf Glassubstrate für eine Verwendung bei Flüssigkristall-Anzeigegeräten, die Dünnfilmtransistoren, sogenannte "TFT" (=thin film transistors), verwenden, ferner bei Solarzellen, Elektrolumineszenz-Anzeigegeräten und/oder anderen Geräten und Einrichtungen, bei denen auf dem Substrat ein dünner Film ausgebildet ist, und insbesondere betrifft die Erfindung ein solches Substrat, das einen verbesserten chemischen Widerstand besitzt.

Ein Glas für die Verwendung bei Solarzellen, das chemisch, elektrisch und physikalisch vergleichbar ist mit Silizium, das durch Aufdampfen auf dem Susbstrat abgelagert ist, und das insbesondere einen linearen thermischen Ausdehnungskoeffizienten besitzt, der nahezu dem von Silizium über den ganzen Temperaturbereich von der Aufdampfungstemperatur bis hin zur Raumtemperatur gleichkommt, während es gegenüber den im Aufdampfungsprozeß verwendeten Materialien chemisch inert ist, ist in der US-PS 41 80 618 (Druckschrift 1) mit einem Glassubstrat offenbart ist, das ein Alkalierdemetall-Aluminiumsilikatglas ist, das im wesentlichen folgende Gewichtsanteile enthält: etwa 55 bis 75% SiO₂, 5 bis 25% Al₂O₃ und wenigstens ein Alkalierdemetalloxyd, das aus der Gruppe ausgewählt ist, die aus 9 bis 15% CaO, 14 bis 20% SrO, 18 bis 26% BaO besteht, sowie Mischungen daraus in einer Gesamtmenge, die einer Molbasis von 9 bis 15% CaO gleichkommt.

Die US-Patentschriften 46 34 683 (Druckschrift 2) und 46 34 684 (Druckschrift 3) der Firma Corning Glass Works offenbaren Glassubstrate für eine Verwendung in Flüssigkristall-Anzeigegeräten, in denen TFT benutzt werden, wobei diese Glassubstrate frei sind von Alkalimetallionen, und sie sind transparent, flach, glatt, inert, kompatibel mit Silizium, hinsichtlich der thermischen Ausdehnung, sowie in der Lage, einer Verarbeitungstemperatur von wenigstens 850°C zu widerstehen.

Das in der Druckschrift 2 offenbarte Substratglas besteht im wesentlichen aus extrem feinkörnigen Kristallen, die in einer Glasmatrix homogen dispergiert sind; das Basisglas dafür ist im wesentlichen frei von Alkalimetalloxyd und besteht im wesentlichen — in Mol-% — aus 2 bis 6% BaO und/oder SrO, 18 bis 26% Al₂O₃ und 68 bis 80% SiO₂.

Das Substrat gemäß Druckschrift 3 ist aufbereitet aus einem Strontium-Aluminiumsilikatglas, das im wesentlichen aus — in Mol-% — etwa 9 bis 12% SrO, 9 bis 12% Al₂O₃ und 77 bis 82% SiO₂ besteht.

Allgemein ausgedrückt, wird ein dünner Film, z. B. Silizium, nachdem er aus einem Substrat abgelagert ist, durch Photoätzung in ein gewünschtes Muster geformt, um ein betriebsfähiges Gerät herzustellen. Im Photoätzungsprozeß werden verschiedene Säuren, wie z. B. Schwefelsäure, Fluorwasserstoffsäure und/oder andere, sowie Alkalilösungen verwendet. Für das Substrat ist es daher erforderlich, daß es einen chemischen Widerstand gegenüber diesen Säuren und alkalischen Lösungen besitzt.

In den Druckschriften 1 bis 3 sind die darin offenbarten Substrate chemisch inert gegenüber Materialien, die im Aufdampfungsprozeß verwendet werden, aber diese Druckschriften 1 bis 3 sagen nichts darüber aus, ob diese Substrate gegenüber Materialien, die im Photoätzungsprozeß verwendet werden, inert sind oder nicht.

Die in den Druckschriften 1 und 2 und die meisten in der Druckschrift 3 offenbarten Substrate enthalten eine verhältnismäßig große Menge an Al₂O₃, beispielsweise mehr als 15 Gew.-%. Al₂O₃ neigt dazu, mit Ammoniumionen und Fluorwasserstoffionen von gepufferter Fluorwasserstoffsäure (wobei es sich um Fluorwasserstoffsäure handelt, der Ammoniumfluorid als Puffer zugefügt ist) zu reagieren, die im Photoätzungsprozeß verwendet werden, wobei die Oberfläche des Substrats wolkig-weiß ist. Es ist unmöglich, die weißen Wolken durch ein Säubern mit Wasser oder anderen Lösungen zu entfernen-Obwohl-die weißen Wolken beispielsweise durch einen Schwamm abgerieben werden können, ist die Oberfläche des Substrats beschädigt.

Einige der in den Druckschriften 1 und 3 offenbarten Substrate enthalten MgO, das ebenfalls mit Ammoniumionen und Fluorwasserstoffionen reagiert, um die Substratoberfläche weiß zu bewölken oder zu trüben.

55

Ferner besitzt das Aluminiumsilikatglas, das in den Druckschriften 1 bis 3 offenbart ist, eine beträchtlich hohe Schmelztemperatur und eine hohe Liquidustemperatur. Daher ist es sehr schwierig, sowohl einen Gegenstand von gewünschter Form zu bilden als auch ein homogenes Glas ohne Blasen, Einschlüsse, Steine, Rillen und dergleichen zu produzieren. Um diese Schwierigkeit zu beseitigen, kann daran gedacht werden, PbO als Flußmittel im Glas zu verwenden. PbO verdampft jedoch von der Glasschmelze und verschmutzt die Umgebung.

Ein anderes bekanntes Glas ist ein SiO₂-B₂O₃-Al₂O₃-BaO-Glas, wie es unter der Nr. 7059 von der Firma Corning Glass Works produziert und verkauft wird. Obwohl das Glas einen reduzierten Anteil an Al₂O₃ und kein MgO enthält, ist die Menge an SiO₂ gering, so daß das Glas in seinem Säurewiderstand nicht so zufriedenstellend ist. Daher reagiert das Glas mit Säuren, wie z. B. Schwefelsäure und anderen, die im Photoätzungsprozeß verwendet werden, und die Substratoberfläche ist ebenfalls wolkig-weiß. Das Glas hat ferner keinen ausreichend hohen Beanspruchungs- bzw. Spannungspunkt und besitzt keinen guten Wärmewiderstand.

Dementsprechend ist es eine Aufgabe der vorliegenden Erfindung, ein Glassubstrat für eine Verwendung in

einem TFT-Flüssigkeitskristall-Anzeigegerät, eine Solarzelle und/oder dergleichen zu schaffen, auf dem ein dünner Film gebildet ist und das einen verbesserten chemischen Widerstand besitzt, insbesondere einen hohen Widerstand gegenüber einer gepufferten Fluorwasserstoffsäure, und das sich ferner leicht schmelzen läßt, zur Entfernung von Blasen, Riefen und anderen Fehlern, und einen ausgezeichneten Wärmewiderstand sowie eine lineare Wärmeausdehnung besitzt.

Kurz gesagt versucht die vorliegende Erfindung SiO₂ mit 52% (Gew.-%) oder mehr zu verwenden, um dadurch den Widerstand gegenüber Schwefelsäure zu verbessern, und einen reduzierten Anteil an Al₂O₃ mit 14 Gew.-% oder weniger ohne Einschluß von MgO zu verwenden, um dadurch den Widerstand gegenüber gepufferter Fluorwasserstoffsäure zu erhöhen. Weiterhin wird die Schmelzeigenschaft des Glases dadurch verbessert, daß es geeignete Mengen an B₂O₃ und CaO enthält.

Ein Substrat zur Verwendung bei einem elektronischen Anzeigegerät, einer Solarzelle und/oder anderen Einrichtungen, bei denen auf dem Substrat ein dünner Film gebildet ist, zeichnet sich erfindungsgemäß durch die im Kennzeichen des Anspruches 1 angegebene Ausbildung und Zusammensetzung aus.

Gemäß einer bevorzugten Ausgestaltung der Erfindung besteht das Glas im wesentlichen aus der im Anspruch 2 angegebenen Zusammensetzung.

Nachfolgend seien die Gründe erläutert, warum die Mengen der Bestandteile in der beschriebenen Weise begrenzt sind.

Eine Verwendung von SiO₂ mit weniger als 52 Gew.-% setzt den Widerstand gegenüber Schwefelsäure in ungünstiger Weise herab und führt zu einem niedrigen Spannungspunkt (Beanspruchungspunkt), was in einem niedrigen Wärmewiderstand resultiert. Dagegen erhöht ein Anteil von mehr als 60 Gew.-% an SiO₂ die Viskosität bei einer hohen Temperatur, und die Schmelzeigenschaft wird reduziert und die Liquidustemperatur wird erhöht, so daß ein Fehler, z. B. eine Entglasung von Cristobalit, im Glas auftreten kann. Daher ist die Menge an SiO₂ innerhalb eines Bereiches von 52 bis 60 Gew.-%, vorzugsweise 55 bis 58 Gew.-% begrenzt.

Wenn der Anteil an Al₂O₃ geringer ist als 7 Gew.-%, dann neigt das Glas zum Entglasen, weil die Liquidustemperatur beträchtlich erhöht wird. Falls jedoch Al₂O₃ über 14 Gew.-% beträgt, dann reagiert das Glas mit der gepufferten Fluorwasserstoffsäure und führt zu einer weißen Wolke in der Substratoberfläche. Daher ist die Menge an Al₂O₃ begrenzt auf 7 bis 14 Gew.-%, vorzugsweise auf 8 bis 13 Gew.-%.

B₂O₃ wird als Flußmittel (Schmelzzusatz) zur Herabsetzung der Viskosität des Glases benutzt und macht es leicht, das Glas zu schmelzen. Falls der Anteil an B₂O₃ kleiner ist als 3 Gew.-%, wird keine Wirkung des Flußmittels erwartet. Übersteigt B₂O₃ aber 12 Gew.-%, dann verschlechtert es den Widerstand gegenüber Schwefelsäure des Glases, und es verringert den Spannungspunkt des Glases, was in einem ungenügenden Wärmewiderstand resultiert. Infolgedessen wird B₂O₃ in einem Bereich von einer Menge von 3 bis 12 Gew.-%, vorzugsweise 4 bis 10 Gew.-% verwendet.

CaO ist ein Bestandteil, der benutzt wird, um das Glas leicht schmelzen zu lassen und die Glasviskosität bei hoher Temperatur herabzusetzen. Um eine Wirkung von CaO zu erzielen, sind wenigstens 3 Gew.-% CaO im Glas erforderlich. Falls aber mehr als 13 Gew.-% enthalten sind, neigt ein sich daraus ergebendes Glas dazu, in der gepufferten Fluorwasserstoffsäure wolkig-weiß zu werden. Daher ist der CaO-Anteil auf 3 bis 13 Gew.-%, vorzugsweise 4 bis 7 Gew.-% zu begrenzen.

BaO ist ein Zusatzstoff zur Verbesserung der Schmelzeigenschaft und Formungseigenschaft des Glases ohne eine Herabsetzung des Widerstandes gegenüber der gepufferten Fluorwasserstoffsäure des Glases. Um den Effekt des BaO sicherzustellen, müssen wenigstens 10 Gew.-% BaO im Glas zugegeben werden; es können jedoch nicht mehr als 22 Gew.-% verwendet werden, weil der Spannungspunkt herabgesetzt wird, mit einer Verringerung des Wärmewiderstandes des Glases. Daher beträgt die Menge an BaO 10 bis 22 Gew.-%, vorzugsweise 11 bis 20 Gew.-%.

SrO mit bis zu 10 Gew.-% kann für einen gleichartigen Zweck wie BaO verwendet werden. Übersteigt es jedoch 10 Gew.-%, dann erhöht sich die Entglasung des Glases in unvorteilhafter Weise. Vorzugsweise wird SrO unterhalb 5 Gew.-% verwendet.

Eine Verwendung von ZnO bis zu 10 Gew.-% erhöht den Widerstand gegenüber gepufferter Fluorwasserstoffsäure. Eine übermäßige Verwendung über 10 Gew.-% läßt ein resultierendes Glas leicht entglasen und verringert den Spannungspunkt, mit einem reduzierten Wärmewiderstand.

Das Substratglas gemäß der vorliegenden Erfindung kann eine kleine Menge an ZrO₂ und TiO₂ enthalten, die Eigenschaften des Glases nicht beeinträchtigen. Ferner kann das erfindungsgemäße Substratglas wenigstens ein Veredlungsmittel enthalten, wie z. B. As₂O₃, Sb₂O₃, F₂, Cl₂, SO₃ und/oder andere.

Beispiele

55

Die Proben 1 bis 10 in den Tabellen 1 und 2 sind solche gemäß der vorliegenden Erfindung, und die Proben 11 und 12 sind Vergleichsproben. Probe 11 ist das Glassubstrat der oben beschriebenen Nr. 7059 der Firma Corning Glass Works.

Jede der Proben 1 bis 12 wurde wie folgt hergestellt: Mischen von Rohmaterialien, um eine Charge zu bilden, die jeweils eine in den Tabellen gezeigte Zusammensetzung besitzt; Schmelzen der Charge in einem Platin-Schmelztiegel bei einer Temperatur von 1550°C während 16 Stunden, um ein geschmolzenes Glas zu bilden; Ausgießen des geschmolzenen Glases auf eine Kohlenstoffplatte, um eine Glasplatte zu bilden. Dann wurden die Oberflächen der Probenglasplatten poliert.

Jede Probe wurde Tests ausgesetzt, um den Widerstand gegenüber Schwefelsäure und den Widerstand gegenüber Fluorwasserstoffsäure zu messen.

Der Widerstand gegenüber Schwefelsäure wurde bewertet durch Betrachten des Oberflächenzustandes jeder Probenglasplatte, nachdem die Probe in eine wäßrige Lösung mit 10 Gew.-% Schwefelsäure bei 8°C während

OS 37 30 410

drei Stunden eingetaucht worden ist. Eine Probe wurde als schlecht in ihrem Widerstand gegenüber Schwefelsäure angesehen, wenn sie eine weiße wolkige Oberfläche oder einen ernsthaft rauhen Oberflächenzustand, wie z. B. eine gesprungene Oberfläche, hatte, und sie wurde in den Tabellen mit \times markiert. Eine andere Probe, die eine leicht rauhe Oberfläche hatte, wurde als nicht gut angesehen und durch ein Δ in den Tabellen markiert. Eine Probe, die einen polierten Oberflächenzustand beibehielt, wurde als gut beurteilt und durch O in den Tabellen markiert.

7	` 2	h	el	le.	

Bestandteile	Proben	2 3			5	6
	•	<u> </u>			55.5	56.5
SiO ₂ (Gew%)	·55 , 8	55,8	55,8	<i>55</i> ,8	55,5	56,5
Al ₂ O ₃ (Gew%)	10,0	10,0	11,0	11,0	11,0	9,0
B ₂ O ₃ (Gew%)	7,0	.9,0	7,0	7,0	9,0	6,0
CaO (Gew%)	6,0	6,0	5,0	5,0	5,0	7,0
BaO (Gew%)	17,3	16,3	15,3	16,3	13,2	18,7
SrO (Gew%)	1,0	1,0	3,0	1,0	5,0	1,0
ZnO (Gew%)	2,6	2,6	2,6	3,6	1,0	1,5
As ₂ O ₃ (Gew%)	0,3	0,3	0,3	0,3	0,3	0,3
MgO (Gew%)		-	· -		- .	-
PbO (Gew%)	-	· <u> </u>	-	.—	-	_
Spannungspunkt (°C)	624	624	632	628	623	635
Temperatur (°C) für 10 ^{2.5} Poise	1511 ·	1461	1481	1492	1503	151
Widerstand zu Schwefelsäure	Ó	0	Ο	0	0	0
Widerstand zu Fluorwasser- stoffsäure	Ο.	0	. 0	0 .	Ο.	0

o = gut.

45

40

Δ = nicht gut. x = schlecht.

Tabelle 2

		•					,
Bestandteile	Proben			· · · · · · · · · · · · · · · · · · ·			
	7	· 8	9	10	11	12	5
SiO ₂ (Gew%)	57,5	55,5	56,0	55,8	49,0	55,0	-
Al ₂ O ₃ (Gew%)	11,5	12,0	10,0	10,5	11,0	15,0	
B_2O_3 (Gew%)	8,0	. 8,0	5,0	9,0	15,0	_	10
CaO (Gew%)	7,0	4,5	7,0	6,0	· _	9,0	
BaO (Gew%)	13,7	13,0	16,1	15,8	25,0		
SrO (Gew%)	1,0	1,5	3,0	•	-	, -	
ZnO (Gew%)	1,0	5,2	2,6	2,6		10,5	15
As ₂ O ₃ (Gew%)	0,3	0,3	0,3	0,3	-		•
MgO (Gew%)	, - ·	· · · - ·		-	_	6,0	
PbO (Gew%)	-	-	-		_	4,5	20
Spannungspunkt (°C)	643	631	626	624	590	656	
Temperatur (°C) für 10 ^{2.5} Poise	1505	1486	1493	1467	1470	1360	
Widerstand zu Schwefelsäure	0	0 -	0	0	×	0	25
Viderstand zu Fluorwasser- toffsäure	0 .	0	0	0	Δ .	×	
a mut				٠.			

o = gut.

Der Widerstand gegenüber gepufferter Fluorwasserstoffsäure wurde dadurch beurteilt, daß der Oberflächenzustand jeder Probenglasplatte betrachtet wurde, nachdem sie in eine gepufferte Fluorwasserstoffsäure getaucht wurde, die 30 Gew.-% Ammoniumfluorwasserstoffsäure, 6 Gew.-% Fluorwasserstoffsäure und als Ausgleich Wasser enthielt. Solche mit einer offensichtlich weißen wolkigen Oberfläche wurde als schlecht beurteilt und durch \times in den Tabellen markiert, und eine solche mit einer dünnen weißen wolkigen Oberfläche wurde als nicht gut beurteilt und durch Δ in den Tabellen markiert. Eine Probe ohne weiße Wolke wurde als gut beurteilt und in den Tabellen durch Δ markiert.

Aus den Tabellen 1 und 2 läßt sich ersehen, daß die Proben 1 bis 10 gemäß der vorliegenden Erfindung in ihrem Widerstand gegenüber Schwefelsäure und gepufferter Fluorwasserstoffsäure ausgezeichnet sind.

Die Tabellen 1 und 2 geben einen Spannungspunkt und eine Temperatur für eine gegebene Viskosität von 10²⁵ Poise für jedes Probenglas wieder. Die erfindungsgemäßen Proben 1 bis 10 haben Spannungspunkte oberhalb 600°C und besitzen daher einen ausgezeichneten Wärmewiderstand.

Weiterhin ist für die Proben 1 bis 10 gemäß der vorliegenden Erfindung eine Viskosität von 10²⁵ Poise bei einer Temperatur unterhalb 1520°C realisiert, die beachtlich niedrig ist. Demzufolge ist das erfindungsgemäße Glas gut in seiner Glasschmelzeigenschaft.

50

30

55

65

 $[\]Delta = nicht gut.$

x = schlecht.

- Leerseite -