PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

MAT1100-3 - Luis Arias - laarias@uc.cl

Ayudantía 5

Cálculo de función derivada por definición y determinar su dominio, Derivabilidad de una función en algún valor

1. Resumen

1.1. Derivadas

• Definición:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{dy}{dx} = \frac{d}{dx}f(x)$$

También esta es una definición equivalente:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- \blacksquare Recta tangente en el punto (a,f(a)) :
 - Pendiente $\rightarrow m = f'(a)$
 - Punto $\rightarrow (a, f(a))$

$$\Rightarrow y - f(a) = f'(a)(x - a)$$

2. Problemas

2.1. Problema 1

Determine la ecuación de a recta tangente a la curva en el punto dado.

(a)
$$y = 3x^2 - 5x + 1$$
 en el punto $(1, -1)$

(b)
$$y = x - \frac{1}{x}$$
 en el punto $(1,0)$

2.2. Problema 2

Determine la ecuación de la recta, con pendiente negativa, que es tangente a la curva $y = 2x^2 - 3x + 8$ y pasa por el punto (0,0)

2.3. Problema 3

Calcule la derivada de las siguientes funciones, en punto indicado, usando la definición de derivada.

(a)
$$f(x) = x + \sqrt{x}, \quad x = 4$$

(b)
$$f(x) = \cos(x)$$

(c)
$$g(x) = ax^2 + bx + c$$

2.4. Problema 4

Determine si la función f(x) = |x| es derivable en x = 0. Luego, haga lo mismo para $g(x) = \frac{1}{2}x|x|$. De ser derivables, determine f'(x) y g'(x).

2.5. Problema 5

Considere la función

$$f(x) = \begin{cases} \frac{x-p}{x+1} & \text{si } x > 0\\ x^2 + qx & \text{si } x \le 0 \end{cases}$$

Determine los valores de p y q de manera que la función sea derivable en x = 0. Determine f'(x) e indique su dominio

2

2.6. Problema 6

Demuestre que la función f(x) = (x+1)|x+1| es derivable en x = -1

2.7. Problema 7

Sea f una función definida en todo \mathbb{R} tal que f(0)=0 y lím $_{x\to 0}$ $\frac{f(x)}{x}=L$. Determine si las siguientes afirmaciones es (son) siempre verdadera(s). Justifique

- a) f es derivable en 0
- b) L = 0
- c) $\lim_{x \to 0} f(x) = 0$