3. Autómatas Finitos

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

Objetivos

- Definir el concepto de Autómata Finito Determinista (AFD).
- Definir el concepto de Autómata Finito No Determinista (AFND).
- Establecer las equivalencias entre AFD.
- Convertir un AFND en un AFD.
- Minimizar AFD.
- Identificar el tipo de lenguaje aceptado por un AFND.

Autómatas Finitos

- · Los Autómatas Finitos son de dos tipos:
 - Deterministas:
 - cada combinación (estado, símbolo de entrada) produce un solo (estado).
 - No Deterministas:
 - cada combinación (estado, símbolo de entrada) produce varios (estado1, estado 2, ..., estado i).
 - son posibles transiciones con λ

5

Autómatas Finitos. Representación

- Se pueden representar mediante:
 - 1. Diagramas de transición o
 - 2. Tablas de transición
- 1. Diagramas de transición:
 - Nodos etiquetados por los estados (qi ∈ Conjunto de estados)
 - Arcos entre nodos q_i a q_j etiquetados con e_i
 (e_i es un símbolo de entrada) si existe la transición de q_i, a q_j con e_i
 - El estado inicial se señala con \rightarrow
 - El estado final se señala con * o doble círculo

Autómatas Finitos Deterministas

AF Deterministas, AFD's: se definen mediante una quíntupla

(Σ , Q, f, q_0 , F), donde:

- Σ: alfabeto de entrada
- Q: conjunto de estados, es conjunto finito no vacío, realmente un alfabeto para distinguir a los estados
- f: QxΣ→ Q, función de transición
- q₀∈Q, estado inicial
- F⊂Q: conjunto de estados finales o de aceptación

9

Autómatas Finitos Deterministas

• Ejemplo: El AFD₁ = ({0,1}, {p,q,r}, f, p, {q}), donde f está definida por:

f(p,0) = q f(p,1) = r f(q,0) = q f(q,1) = rf(r,0) = r f(r,1) = r

Tiene la tabla de transición y el diagrama de estados siguientes:

- Cuando un AF transita desde q_0 a un <u>estado final</u> en varios movimientos, se ha producido <u>el RECONOCIMIENTO o</u>

 <u>ACEPTACIÓN</u> de la cadena de entrada
- Cuando un AF no es capaz de alcanzar un estado final, se dice que el <u>AF NO RECONOCE</u> la cadena de entrada y que ésta <u>NO PERTENECE al lenguaje reconocido por el AF</u>

[12]

AFD. Conceptos Básicos

- En el AFD₁ (de la figura), indicar el resultado de las siguientes expresiones:
 - f'(p,λ)
 - f'(p, 0ⁿ)
 - f'(p,11)
 - f'(p,0011010)
 - f' (p,100)

15

AFD. Conceptos Básicos

Lenguaje asociado a un AFD:

- Sea un AFD = (Σ, Q, f, q₀, F), se dice que una palabra x es aceptada o reconocida por el AFD si f' (q₀,x) ∈ F
- Se llama lenguaje asociado a un AFD al conjunto de todas las palabras aceptadas por éste:

$$L = \{ x / x \in \Sigma * and f'(q_0, x) \in F \}$$

- Si $F = \{\} = \emptyset \Rightarrow L = \emptyset$
- Si $F = Q \Rightarrow L = \Sigma *$
- Otra definición:

L = $\{x \mid x \in \Sigma \text{ and } (q_0, x) \rightarrow (q, \lambda) \text{ and } q \in F\}$

Contract to the second

AFD. Conceptos Básicos

Estados accesibles y Autómatas conexos:

Sea un AFD = (Σ, Q, f, q₀, F), el estado p ∈ Q es ACCESIBLE desde q ∈ Q si ∃ x ∈ Σ* f'(q,x) = p. En otro caso se dice que INACCESIBLE.
 Todo estado es accesible desde sí mismo pues f'(p,λ) = p

Teoremas:

- teorema 3.2.2, libro 1 de la bibliografía. Sea un AFD, |Q| = n, \forall p, q ∈ Q p es accesible desde q sii \exists x∈ Σ *, |x|<n / f'(q,x) = p
- teorema 3.2.3, libro 1 de la bibliografía Sea un AFD, |Q| = n, entonces L_{AFD} ≠φ sii el AFD acepta al menos una palabra x∈Σ*, |x| < n Nota: sii= "si y solo si"

23

AFD. Conceptos Básicos

Estados accesibles y **Autómatas conexos**:

Sea un AFD = (Σ , Q, f, q₀, F). Diremos que el autómata es conexo si todos los estados de Q son accesibles desde q₀

Dado un autómata no conexo, podemos obtener a partir de él otro autómata equivalente conexo eliminando los estados inaccesibles desde el estado inicial. Los autómatas reconocen el mismo lenguaje.

Eliminación de estados inaccesibles.

 ¿Qué algoritmo, para ser implementado en un programa, se podría implementar para marcar los accesibles?

- Hallar el AFD conexo equivalente al dado: AF= ({0,1}, {p,q,r,s}, p, f, {q,r,s}), donde f viene dada por la tabla.
 - Se eliminan todos los estados innacesibles y todos las transiciones (i.e. arcos) que salen desde dichos estados innacesibles.

	0	1
р	r	р
*q	r	р
*r	r	р
*s	s	s

 Indicar, además el leguaje reconocido por ambos AFD's (original y conexo).

- Es posible tener varios autómatas que reconozcan el mismo lenguaje.
- Para todo autómata se puede obtener un autómata equivalente (i.e. reconoce el mismo lenguaje) donde el número de estados del autómata sea el mínimo.
- ¿Por qué interesa obtener el mínimo? (Apartado 4.4 Libro 2 bibliografía)

27

AFD. Equivalencia y Minimización

¿Por qué interesa obtener el AFD mínimo? (Ap. 4.3 y 4.4 Libro 2 bibliograf)

- Se dispone de un descriptor del lenguaje (lenguaje regular): gramática tipo 3, AFD, AFND, expresión regular.
- Se plantean problemas de decisión:
 - ¿El lenguaje descrito es vacio?
 - ¿Existe una determinada cadena w en el lenguaje descrito?
 - ¿Dos descripciones de un lenguaje describen realmente el mismo lenguaje?
 - Nota: usualmente los lenguajes son infinitos, con lo que no es posible plantear la pregunta y recorrer el conjunto INFINITO de cadenas.
- Los algoritmos para responder a las dos primeras preguntas son sencillos.
 ¿Pero y para la última pregunta ?
 - ¿Dos descripciones de un lenguaje describen realmente el mismo lenguaje? Consecuencia de esta comprobación: es necesario obtener el AFD mínimo equivalente

Teoremas:

• Equivalencia de estados:

```
p E q, donde p,q \in Q, si \forall x \in \Sigma* se verifica que f'(p,x) \in F \Leftrightarrow f'(q,x) \in F
```

• Equivalencia de orden (o de longitud) "n" $p \ E_n \ q, \ donde \ p,q \in Q, \ si \ \forall \ x \in \Sigma^* \ / \ \left| \ x \right| \leq n \ se \ verfica \ que \\ f'(p,x) \in F \iff f'(q,x) \in F$

E y E_n son relaciones de equivalencia.

29

AFD. Equivalencia y Minimización

Equivalencia de estados - Casos particulares:

■ $\mathbf{E_{0}}$, x palabra $|x| \le 0 \Rightarrow x = \lambda$ se verifica que $p \ E_0 \ q$, $\forall \ p,q \in Q$, si $\forall \ x \in \Sigma^* \ / \ |x| \le 0$ se verifica que $f'(p,x) \in F \Leftrightarrow f'(q,x) \in F$

x es lamba

$$\begin{split} f'(p,x) &= f'(p,\lambda) = p \text{ (por definición de f')} \\ f(p,\lambda) &\in F \Leftrightarrow f(q,\lambda) \in F \text{ $->$} p \in F \Leftrightarrow q \in F \end{split}$$

Todos los estados finales de son E₀ equivalentes.

 \forall p,q \in F se cumple que p E_0 q

 \forall p,q \in Q - F se cumple que p E_0 q

Equivalencia de estados - Casos particulares:

E₁, x palabra $|x| \le 1$, $(x \in \Sigma)$ se verifica que

p
$${\rm E_1}\,{\rm q},\,\forall$$
 p,q \in Q, si \forall x \in Σ^* / $\,\big|\,{\rm x}\,\big| \leq$ 1 se verifica que

$$f'(p,x) \in F \Leftrightarrow f'(q,x) \in F$$

x es lamba o símbolo del alfabeto.

$$f'(p,x) = f'(p,a) = f(p,a)$$
 ó $f'(p,x) = f'(p,\lambda) = p$ (por definición de f')

$$f(p,a) \in F \Leftrightarrow f(q,a) \in F$$

Partiendo de p y q con una sola transición se debe llegar a un estado final para ambos casos o uno no final para ambos casos.

31

AFD. Equivalencia y Minimización

- Propiedades Nota: en estas expresiones matemáticas, "n" <u>no</u> significa
 - Lema: $p E q \Rightarrow p E_n q$, $\forall n, p, q \in Q$
 - Lema: $p E_n q \Rightarrow p E_k q$, $\forall n > k$
 - Lema: $p E_{n+1} q \Leftrightarrow p E_n q$ and $f(p,a) E_n f(q,a) \forall a \in \Sigma$
- Teorema: p E q \Leftrightarrow p E_{n-2} q , donde n= |Q| > 1

(Teorema 5.1 (pag 117 libro 4 bibliografia))

 $p \; E \; q \; \text{ sii } \forall \; x \in \Sigma^*, \; \left| \; x \; \right| = m \leq \text{n-2 se verifica que } f(p,x) \in F \Leftrightarrow f(q,x) \in F$

m = n-2 es el valor más pequeño que cumple este teorema

(n-1 sí lo cumple, pero n-3 no se garantiza que se cumpla)

(Santa na

"E" es una relación de equivalencia. ¿Qué significa Q/E?

- Q/E es una partición de Q,
- Q/E = $\{C_1, C_2, ..., C_m\}$, donde $C_i \cap C_j = \emptyset$
 - p E q \Leftrightarrow (p,q \in C_i), por lo tanto

 $\forall x \in \Sigma^*$ se verifica que $f'(p,x) \in C_i \Leftrightarrow f'(q,x) \in C_i$

Nota: en libro 1 biblio, p,q \in Ci se representa por p = q = C_i;

- Para la relación de orden n
 - E_n : $Q/E_n = \{C_1, C_2, ..., C_m\}$, C_i intersección $C_i = \emptyset$
 - $p E_n q \Leftrightarrow p,q \in C_i$;
 - por lo tanto $\forall x \in \Sigma^*$, $|x| \le n$ se verifica que $f'(p,x) \in C_i \Leftrightarrow f'(q,x) \in C_i$

33

AFD. Equivalencia y Minimización

Propiedades. (Lemas)

- Lema: Si $Q/E_n = Q/E_{n+1} \Rightarrow Q/E_n = Q/E_{n+i} \forall i = 0, 1, ...$
- Lema: Si $Q/E_n = Q/E_{n+1} \Rightarrow Q/E_n = Q/E$ conjunto cociente
- Lema: Si $|Q/E_0| = 1 \Rightarrow Q/E_0 = Q/E_1$
- Lema: $n = |Q| > 1 \Rightarrow Q/E_{n-2} = Q/E_{n-1}$
- $p E_{n+1} q \Leftrightarrow (p E_n q \text{ and } f(p,a) E_n f(q,a) \forall a \in \Sigma)$

Interpretación lemas anteriores:

El objetivo es obtener la partición Q/E, puesto que será el autómata mínimo, sin estados equivalentes .

- En cuanto se obtienen dos particiones consecutivas
 Q/E_k = Q/_{Ek+1}, se para.
- Para obtener Q/E, hay que empezar por Q/E₀, Q/E₁, etc.
- Para obtener Q/E, hay que obtener Q/E_{n-2} en el peor caso, ya que si se obtiene Q/E_{n-k} = Q/E_{n-k+1}, con k>=3, se habría obtenido ya Q/E.
- El lema p E_{n+1} q ⇔ p E_n q and f(p,a) E_n f(q,a) ∀ a ∈ Σ, permite es extender la equivalencia de orden n desde E₀ y E₁

35

AFD. Equivalencia y Minimización

□ Teorema:

 $pEq \Leftrightarrow pE_{n-2}q \text{ donde } |Q| = n > 1 (**)$

Es decir, $p E q Sii \ \forall \ x \in \Sigma^*, \ |x| \le n-2$, $f'(p,x) \in F \Leftrightarrow f'(q,x) \in F$

n-2 es el valor más pequeño que cumple este teorema

Algoritmo formal para obtener Q/E:

1. $Q/E_0 = \{ F, no F \}$

1ª división en función de si son o no estados finales.

2. Q/E_{i+1}

partiendo de $\mathbf{Q/E_i} = \{C_1, C_2, ... C_n\}$, se construye $\mathbf{Q/E_{i+1}}$: p y q están en la misma clase si: p, q $\in C_k \in \mathbf{Q/E_i} \ \forall \ a \in \Sigma \Rightarrow f(p,a) \ y \ f(q,a) \in C_m \in \mathbf{Q/E_i}$

Si Q/E_i = Q/E_{i+1} entonces Q/E_i = Q/E
 Si no, repetir el paso 2 partiendo de Q/E_{i+1}

37

AFD. Equivalencia y Minimización

• Ejercicio: Hallar el AFD mínimo equivalente

AFD. Equivalencia

Autómatas Equivalentes:

- Estados equivalentes en AFD's distintos:
 - Sean 2 AFD's: (Σ,Q,f,q_0,F) y (Σ',Q',f'',q_0',F')
 - Los estados p,q / p \in Q y q \in Q' son equivalentes (pEq) si se verifica que f''(p,x) \in F \Leftrightarrow f''(q,x) \in F' \forall x \in Σ^*
- Estados equivalentes en AFD's distintos:
 - Dos AFD's son equivalentes si reconocen el mismo lenguaje, es decir: Si $f(q_0, x) \in F \Leftrightarrow f(q_0^-, x) \in F' \ \forall \ x \in \Sigma^*$. Es decir:
 - Dos AFD's son equivalentes si lo son sus estados iniciales: q₀ E q₀'

. 39

AFD. Equivalencia

¿Qué es la suma directa de 2 AFD's?

Sean 2 AFD's:

A1 =
$$(\Sigma, Q_1, f_1, q_{01}, F_1)$$

A2 = $(\Sigma', Q_2, f_2, q_{02}, F_2)$

Donde $Q_1 \cap Q_2 = \phi$

Se llama suma directa de A1 y A2 al AF A:

$$\begin{split} \text{A} &= \text{A1} + \text{A2} = (\Sigma, \, \text{Q}_1 \cup \text{Q}_2, \, \text{f, } \, \text{q}_0, \, \text{F}_1 \cup \text{F}_2), \, \, \text{donde:} \\ &\quad \text{q}_0 \text{ es el estado inicial de uno de los AF's} \\ &\quad \text{f: } f(\text{p,a}) = \text{f1 (p,a) si p} \in \text{Q}_1 \\ &\quad f(\text{p,a}) = \text{f2 (p,a) si p} \in \text{Q}_2 \end{split}$$

AFD. Equivalencia

☐ **Teorema:** (el teorema (**) aplicado a la suma directa de dos autómatas):

sean A1, A2 $/ Q_1 \cap Q_2 = \phi$, $|Q_1| = n_1$, $|Q_2| = n_2$

 $A_1 E A_2 si q_{01} E q_{02} en A = A_1 + A_2$

Es decir, si A $_1$ y A $_2$ aceptan las mismas palabras x / $\left|\,x\,\right|\,\leq n_1+n_2-2$

además, n₁+n₂-2 es el valor mínimo que cumple el teorema

41

AFD. Equivalencia

Autómatas equivalentes, comprobación:

Algoritmo para comprobar la equivalencia de AFDs

- 1. Se hace la suma directa de los dos AFD's
- 2. Se hace Q/E del AFD suma
- 3. Si los dos estados iniciales están en la misma clase de equivalencia de Q/E \Rightarrow los 2 AFD's son equivalentes

AFD. Equivalencia • Eiercicio 7 de la hoja 2 de ejercicios

• Ejercicio 7 de la hoja 2 de ejercicios: Comprobar si los dos AFD son equivalentes (obteniendo el mínimo para cada uno).

45

AFD. Equivalencia

- Ejercicio 7 de la hoja 2 de ejercicios: AF1 es mínimo. AF2:
- Q/E0 = {{q4,q8}, {q1,q2,q3,q5,q6,q7}} = C1, C2 OJO, Q8 es inaccesible y habría que quitarlo. Aparece tachado en la solución.
- Q/E1={{q4,q8}, {q1,q2,q5,q6}, {q3,q7}}= C1,C2,C3
- Q/E2 = {{q4,q8}, {q1,q5}, {q2,q6}, {q3,q7}}= C1,C2,C3,C4
- Q/E3 = Q/E2 = {{{ $q4,q8}$ }, {q1,q5}, {q2,q6}, {q3,q7}}= C1,C2,C3,C4

	0	1	0	1	0	1	0	1
->q1	q2	q5	C2	C2	C2	C2	C3	C2
q2	q2	q3	C2	C2	C2	C3	C3	C4
q3	q4	q5	C1	C2	c1	C2	c1	C2
*q4	q2	q3	C2	C2	C2	C3	C3	C4
q5	q6	q5	C2	C2	C2	C2	C3	C2
q6	q6	q7	C2	C2	C2	C3	C3	C4
q7	q4	q5	c1	C2	c1	C2	c1	C2
*q8	q6	q7	C2	C2	C2	C3	C3	C4

• El AF2 y el AF1 son ISOMORFOS y por tanto son equivalentes.

AFD. Equivalencia

- Sean dos autómatas:
 - A1 = $(\Sigma, Q_1, f_1, q_{01}, F_1)$ y A2 = $(\Sigma', Q_2, f_2, q_{02}, F_2)$, tales que $|Q_1| = |Q_2|$
- Se dice que A1 y A2 son isomorfos, si existe una aplicación biyectiva
 - $i: Q_1 \rightarrow Q_2$ que cumple:
 - 1. $i(q_{01}) = q_{02}$, es decir, los estados iniciales son correspondientes
 - 2. $q \in F_1 \Leftrightarrow i(q) \in F_2$ es decir, los estados finales son correspondientes
 - 3. $i(f_1(q,a)) = f_2(i(q),a) \forall a \in \Sigma q \in Q_1$
 - En definitiva, a cada estado le corresponde otro equivalente que solo se diferencia en el nombre de sus estados.
- Dos AFDs isomorfos, también son equivalentes y reconocen el mismo lenguaje.

47

AFD. Minimización

Sea el AFD, A = (Σ, Q, f, q_0, F) :

- 1. Partir del AFD conexo, i.e. eliminar estados inaccesibles desde el estado inicial
- 2. Construir Q/E del autómata conexo
- 3. El AFD mínimo, salvo isomorfismos, es:

$$A' = (\Sigma, Q', f', q_0', F')$$

donde:

Q' = Q/E

f' se construye: f' $(C_i,a) = C_i$ si $\exists q \in C_i$, $p \in C_i / f(q,a) = p$

 $q_0\text{'}=C_0\,\text{si}\,q0\in C_0\text{,}\,C_0\in Q/E$

 $F' \, = \, \{C \, / \, C \, \text{contiene al menos un estado de F(} \, \exists \, \text{un } q \in F \, \text{tal que } q \in C)\}$

COROLARIO:

2 AFD's son equivalentes si sus AF mínimos respectivos son isomorfos.

Autómatas Finitos No Deterministas

Definiciones de AFND:

- 1. AFND = (Σ, Q, f, q_0, F) , donde
 - f: Q x (Σ U λ) \rightarrow Q es No determinista,

es decir, por ejemplo: $f(p,a) = \{q,r\} y f(p,\lambda) = \{q,r\}$

- 2. AFND = $(\Sigma, Q, f, q_0, F, T)$, donde
 - f : Q x $\Sigma \rightarrow P(Q)$: conjunto de las partes de Q
 - T : Relación definida sobre pares de elementos de Q.

pTq = (p,q) \in T si está definida la transición f(p, λ)=q

Nota: "T" es la definición formal de la transición λ

Autómatas Finitos No Deterministas

Ejemplo: Sea el AFND siguiente:

 $A = (\{a,b\}, \{p,q,r,s\}, f,p, \{p,s\}, T = \{(q,s), (r,r), (r,s), (s,r)\})$ donde f:

 $f(p,a) = \{q\}$

 $f(p,b) = \{\}$

 $f(q,a) = \{p,r,s\}$

 $f(q,b) = \{p,r\}$

 $f(r,a) = {}$

 $f(r,b) = \{p,s\}$

 $f(s,a) = \{\}$

 $f(s,b) = {}$

La tabla de transiciones es

	а	b	λ
$\rightarrow *p$	q		
q	{p,r,s}	p,r	S
r		p,s	r,s
* s			r

52

AFNDs. Función de Transición extendida a palabras

• Se define a partir de f, una función de transición f", que actúa sobre palabras de Σ^* ;

f" es la función de transición sobre palabras.

- Es una aplicación: f": Q x $\Sigma^* \to P(Q)$. Donde :
 - 1. $f''(q,\lambda) = \{p \ / \ qT^*p \ \forall q \in Q\}$ (T* se define más adelante) donde se cumple que $q \in f'(q,\lambda)$
 - 2. sea $x = a_1 a_2 a_3 ... a_n$, n > 0

 $f''(q,x) = \{p \ / \ p \ es \ accesible \ desde \ q \ por \ medio \ de \ la \\ palabra \underbrace{\lambda^* a_1 \ \lambda^* a_2 \ \lambda^* a_3 \ \lambda^* ... \ \lambda^* a_n \ \lambda^*}_{es \ idéntica \ a \ x} \ \forall \ q \ \in Q \}$

Lectura recomendada: Apartado 3.3.4 del primer libro de la bibliografía básica

53

AFNDs. Función de Transición extendida a palabras

Calculo de T*

Sea AFND = $(\Sigma, Q, f, q_0, F, T)$.

- Para calcular f" es necesario extender las transiciones con una λ a λ*, es decir calcular T* del AFND= (Σ,Q, f,q₀,F, <u>T</u>)
- Para ello existe el método formal de las matrices booleanas, o el método de la matriz de pares (estado, estado).

AFNDs. Función de Transición extendida a palabras

Calculo de T*. Método de la matriz de pares de estados

- Se construye una matriz con tantas filas como estados.
- En la 1ª columna se coloca el par correspondiente al estado en cuestión, es decir, por ej. (p,p) puesto que cada estado es accesible desde si mismo.
- En las columnas siguientes se añaden las transiciones λ definidas en el AFND, considerando si el hecho de añadirlas permite extender alguna transición más.
 - Pej. Si existe la transición λ (q,r) y se añade la transición λ (r,s), habrá que añadir asimismo, la transición (q,s).
- Cuando no sea posible añadir ningún par más, se habrá terminado T*

55

AFNDs. Función de Transición extendida a palabras

Calculo de T*. Ejemplo 2:

• Se extiende la tabla de transición anterior para contener T*, insertando una nueva columna correspondiente a λ^*

	a	Ь	\ λ /	λ*
→* p	q		$\backslash /$	р
q	p,r,s	p,r	XX,	q,s,r
r		p,s	7,3	r,s
* S			/r\	r,s

57

AFNDs. Función de Transición extendida a palabras

Calculo de T*. Ejemplo 3:

• Y ahora se calcula la tabla de transición correspondiente a f", cambiando las transiciones con a por λ^*a λ^* y las de b por λ^*b λ^* .

		α	Ь	\ 2	/ ا	λ*			λ*αλ*	λ*b λ *
	→* p	q		1	Τ	р	•	→* p	q,r,s	Φ
Ī	q	p,r,s	p,r			q,s,r	\longrightarrow	q	p,r,s	p,r,s
Ī	r		p,s	1	\$	r,s	•	r	Φ	p,r,s
Ī	*s			/ r	7	r.s	-	* s	Φ	p,r,s

AFND. Lenguaje aceptado por un AFND

- Una palabra $x \in \Sigma$ * es aceptada por un AFND si:
 - f' (q0,x) y F tienen al menos un elemento común, es decir, que f'(q0,x) contiene al menos un estado final.
- El conjunto de todas las palabras aceptadas por un AFND es el lenguaje aceptado por ese AFND.

Formalmente:

 $\mathsf{L}_{\mathsf{AFND}} = \{ \mathsf{x} \ / \ \mathsf{x} \in \Sigma \ ^* \ \mathsf{y} \ \exists \ \mathsf{q}_\mathsf{o} \to \mathsf{F} \} = \{ \mathsf{x} \ / \ \mathsf{x} \in \Sigma \ ^* \ \mathsf{y} \ \mathsf{f}'(\mathsf{q}_\mathsf{o}, \mathsf{x}) \ \cap \mathsf{F} \neq \emptyset \}$

59

AFND. Lenguaje aceptado por un AFND

- Al ser un AFND, desde q_o puede haber más de un camino para la palabra "x", y "x" es aceptada sólo con que uno de los caminos lleve a un estado final.
- Además:

 $\lambda \in L \text{ AFND si}$:

- q_o ∈ F ó
- ∃ un estado final, q ∈ F, tal que está en relación T* con q₀ (q₀ T* q)

AFD equivalente a un AFND. Ejemplo

Obtener el AFD correspondiente al siguiente AFND

	a	b	λ
→*p	q		
q	p,r,s	p,r	S
r		p,s	r,s
*s			r

- Pasos:
 - 1. Eliminar transiciones λ
 - a) Determinar λ^* (el cierre de las transiciones λ , T*)
 - b) Obtener la tabla sin transiciones λ
 - 2. Aplicar algoritmo de creación de nuevos estados que pertenecen a P(Q), añadiendo su transiciones.

63

AFD equivalente a un AFND. Ejemplo

- 1. Eliminar transiciones λ
 - a) Determinar λ^* (el cierre de las transiciones λ) a partir de la tabla de transiciones.

	a	b	λ		
→*p	q				
q	p,r,s	p,r	S		
r		p,s	r,s		
*s			r		

		· · · · · · · · · · · · · · · · · · ·		
	а	b	\ λ /	λ*
→*p	q			p
q	p,r,s	p,r	X,	q ,s,r
r		p,s	/r,s\	<i>r</i> ,s
*s			/ r \	s,r

AFD equivalente a un AFND. Ejemplo

- 1. Eliminar transiciones λ
 - a) Determinar λ^* (el cierre de las transiciones λ)

	а	b	\ λ/	λ*
→*p	q		\/	р
q	p,r,s	p,r	X s	q,r,s
r		p,s	/r, \$	r,s
*s			/ r\	r,s

b) Obtener la tabla sin transiciones λ (transiciones con entrada λ^* a λ^* , para cada elemento, a, del alfabeto Σ)

	λ*αλ*	λ*b λ*
→* p	q,r,s	Ø
q	p,r,s	p,r,s
r	Ø	p,r,s
*s	Ø	p.r.s

65

AFD equivalente a un AFND. Ejemplo

2. Aplicar algoritmo de creación de nuevos estados que pertenecen a P(Q), añadiendo su transiciones.

	λ*αλ*	λ*bλ*
→* p	q,r,s	Ø
q	p,r,s	p,r,s
r	Ø	p,r,s
*s	Ø	p,r,s

	α	Ь		
→* p	{q,r,s}	Ø		
4	p,r,s	p,r,s		
£	₽	p,r,s		
≛ \$	₽	p,r,s		
{q,r,s}	{p,r,s}U Ø U Ø	{p,r,s}U {p,r,s}U{p,r,s}		

2. Aplicar algoritmo de creación de nuevos estados que pertenecen a P(Q), añadiendo sus transiciones.

	λ*αλ*	λ*b λ*
→* p	q,r,s	Ø
q	p,r,s	p,r,s
r	Ø	p,r,s
*s	Ø	p,r,s

	λ*αλ*	λ*bλ*
→* p	{q,r,s}	Ø
9	p,r,s	p,r,s
¥	₽	p,r,s
*g	₽	p,r,s
{q,r,s}	{p,r,s}	{p,r,s}

	λ*αλ*	λ*bλ*
→* p	{q,r,s}	Ø
4	(p,r,s)	(p,r,s)
#	₽	(p,r,s)
≛g	₽	(p,r,s)
{q,r,s}	{p,r,s}	{p,r,s}

	λ*αλ*	λ*bλ*	
→* p	{q,r,s}	Ø	
#	p,r,s	p,r,s	
ŧ	₽	p,r,s	
≛g	₽	p,r,s	
{q,r,s}	{p,r,s}	{p,r,s}	
{p,r,s}	{q,r,s} U Ø U Ø	Ø U {p,r,s} U {p,r,s}	

	λ*αλ*	λ*b λ*
→* p	{q,r,s}	Ø
{q,r,s}	{p,r,s}	{p,r,s}
{p,r,s}	{q,r,s}	{p,r,s}

67

3. Autómatas Finitos

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

