

LAMRINI Mohamed-Amin, MONIN Louis ING2 MI2 – Mathématiques Appliquées

# Introduction aux séries temporelles

Projet

LAIB Naamane 2023-2024

# Contents

| Introduction                                                                          | 3  |
|---------------------------------------------------------------------------------------|----|
| Partie 1 : Caractéristiques de la série                                               | 3  |
| Description de la série                                                               | 3  |
| Présentation du dataset                                                               | 3  |
| Analyse de la tendance et de la saisonnalité                                          | 8  |
| Analyse de la corrélation                                                             | 9  |
| Analyse de l'auto-corrélation partielle                                               | 10 |
| Analyse de la stationnarité                                                           | 11 |
| Type de modèle (additif/multiplicatif)                                                | 12 |
| Partie 2 : Désaisonnalistion (tableur/R)                                              | 14 |
| 1 <sup>ère</sup> méthode : Moyenne mobile                                             | 14 |
| Calculs des coefficients saisonniers par Moyenne mobile                               | 14 |
| Série corrigée des variations saisonnières avec Moyennes mobiles                      | 15 |
| Prévision par moyenne mobile                                                          | 17 |
| 2 <sup>ème</sup> méthode : Régression sur le temps et avec des variables indicatrices | 17 |
| Calculs des coefficients saisonniers par Moyenne mobile                               | 17 |
| Prévisions par régression linéaire                                                    | 19 |
| Comparaison des deux méthodes                                                         | 20 |
| Partie 3 : Prévision par lisaage exponentiel                                          | 20 |
| 1 <sup>ère</sup> méthode : Lissage exponentiel double                                 | 20 |
| Lissage                                                                               | 20 |
| Prévisions                                                                            | 22 |
| 2 <sup>ème</sup> méthode : Lissage exponentiel avec Holt-Winters                      | 23 |
| Lissage                                                                               | 23 |
| Prévision                                                                             | 24 |
| Comparaison des deux méthodes                                                         | 24 |
| Annovo                                                                                | 25 |

#### Introduction

Le mini-projet a pour objectif de mettre en application les différentes méthodes vues en cours sur un jeu de données réelles que nous aurons choisi. Pour mener à bien ce projet, ce dernier est composé de trois étapes qui sont les caractéristiques de la série. Puis la désaisonnalisation avec deux méthodes qui sont la moyenne mobile et la régression sur le temps et avec des variables indicatrices. Enfin, nous aurons une prévision de la série par lissage exponentiel.

# Partie 1 : Caractéristiques de la série

## Description de la série

#### Présentation du dataset

A l'origine le fichier représente la température quotidienne régionale (depuis le 1er janvier 2016 au 31 janvier 2024). Ce jeu de données présente les températures minimales, maximales et moyennes quotidiennes (en degré celsius), par région administrative française, du 1er janvier 2016 à aujourd'hui.

Il est basé sur les mesures officielles du réseau de stations météorologiques françaises. La mise à jour de ce jeu de données est mensuelle.

Lien du site internet : <a href="https://www.data.gouv.fr/fr/datasets/temperature-quotidienne-regionale-depuis-janvier-2016/">https://www.data.gouv.fr/fr/datasets/temperature-quotidienne-regionale-depuis-janvier-2016/</a>

 $URL\ du\ dataset: \underline{https://www.data.gouv.fr/fr/datasets/r/d707a3b3-c0eb-404b-b3ef-2d4e0ddb96f4}$ 

#### Description du fichier:

-ID: id[text]

-Date : date[date] Date de l'observation

-Code INSEE région : code\_insee\_region[int] Code INSEE région administrative

-Région : region[text] Région administrative

-TMin (°C): tmin[double] Température minimale quotidienne

-TMax (°C): tmax[double] Température maximale quotidienne

-TMoy (°C): tmoy[double] Température moyenne quotidienne

A l'aide d'un programme python nous avons supprimer toutes les données des régions qui n'était pas celles de l'ile-de-France.

Puis nous avons supprimer les colonnes contenant l'ID, le code\_insee\_region, la région, la température minimale et maximale. Nous avons conservé uniquement la date et la température moyenne.

Enfin nous avons fait une moyenne par mois des températures. Le code se présente sous la forme d'un fichier .py nommé « Code\_Transformer\_Donnees » donné en annexe. [1]

Finalement, notre dataset correspond à une moyenne par mois des relevés de la température de l'île-de-France du 1<sup>er</sup> janvier 2016 au 31 janvier 2024.

donnees <- read.xlsx("Temperature\_moyenne\_mensuelle\_ile\_de\_france\_v2.xlsx", sheet = 1)
View(donnees)</pre>

| •  | Mois-Annee     | tmoy      |
|----|----------------|-----------|
| 1  | Janvier-2016   | 5.534839  |
| 2  | Février-2016   | 6.138276  |
| 3  | Mars-2016      | 6.791290  |
| 4  | Avril-2016     | 9.883000  |
| 5  | Mai-2016       | 14.412258 |
| 6  | Juin-2016      | 17.576667 |
| 7  | Juillet-2016   | 20.325484 |
| 8  | Août-2016      | 20.919677 |
| 9  | Septembre-2016 | 18.782000 |
| 10 | Octobre-2016   | 11.459355 |
| 11 | Novembre-2016  | 7.657333  |
| 12 | Décembre-2016  | 4.457742  |
| 13 | Janvier-2017   | 1.950000  |
| 14 | Février-2017   | 7.284286  |
| 15 | Mars-2017      | 10.492903 |
| 16 | Avril-2017     | 10.490667 |

Il est composé de 2 colonnes les mois entre 2016 et 2024 et la température moyenne (tmoy). Avec la librairie knitr, on peut présenter le dataset sous une autre forme.

```
#<u>Générer le tableau des valeurs avec knitr</u>
library(knitr)
```

knitr::kable(donnees, booktabs = TRUE, col.names = c("Mois-Annee", "tmoy"))

| Mois-Annee     | tmoy      |
|----------------|-----------|
| :              | :         |
| Janvier-2016   | 5.534839  |
| Février-2016   | 6.138276  |
| Mars-2016      | 6.791290  |
| Avril-2016     | 9.883000  |
| Mai-2016       | 14.412258 |
| Juin-2016      | 17.576667 |
| Juillet-2016   | 20.325484 |
| Août-2016      | 20.919677 |
| Septembre-2016 | 18.782000 |
| Octobre-2016   | 11.459355 |
| Novembre-2016  | 7.657333  |
| Décembre-2016  | 4.457742  |
| Janvier-2017   | 1.950000  |
| Février-2017   | 7.284286  |
| Mars-2017      | 10.492903 |
| Avril-2017     | 10.490667 |
| Mai-2017       | 16.156774 |
| Juin-2017      | 20.366333 |
| Juillet-2017   | 20.752903 |
| Août-2017      | 19.644839 |
| Septembre-2017 | 15.462000 |
| Octobre-2017   | 14.045161 |
| Novembre-2017  | 7.749333  |
| Décembre-2017  | 5.342903  |
| Janvier-2018   | 7.578387  |
| Février-2018   | 1.783929  |
| Mars-2018      | 7.249032  |

Pour continuer l'étude de notre dataset, nous utilisions la commande ts pour transformer les données des températures moyennes en une série temporelle en supposant une fréquence annuelle de 12 mois et en indiquant que la série commence en 2016 et se termine en 2024.

```
# Créer une série temporelle
donnees_ts <- ts(donnees$tmoy, frequency=12, start=c(2016,1), end =c(2024,1))
donnees_ts</pre>
```

Pour mieux analyser le contenu de chaque périodicité, nous avons effectué un tracé saisonnier des températures moyennes en Ile-de-France. On constate une forte hausse des températures à la période de Juillet-Août pour chaque année, ce qui en adéquation avec le fait que c'est l'été et que les températures augmentent.

```
# Utiliser ggseasonplot pour visualiser les données
# Charger les packages nécessaires

library(forecast)
library(ggplot2)

ggseasonplot(donnees_ts, year.labels=TRUE, year.labels.left=TRUE) +
   ylab("Température moyenne (°C)") +
   xlab("Date (mois-années)") +
   ggtitle("Tracé saisonnier : Températures moyennes en Île-de-France")
```



```
# Utiliser ggseasonplot en mode polaire pour visualiser les données
ggseasonplot(donnees_ts, polar=TRUE) +
  ylab("Température moyenne (°C)") +
  xlab("Date (mois-années)") +
  ggtitle("Tracé saisonnier polaire : Températures moyennes en Île-de-France")
```

# Tracé saisonnier polaire : Températures moyennes en Île-de-France



Date (mois-années)

Pour compléter notre étude sur notre dataset, nous avons réalisé un graphique saisonnier alternatif. Les lignes horizontales indiquent les moyennes pour chaque mois. Cette forme de graphique permet de voir clairement le modèle saisonnier sous-jacent et montre également les changements de saisonnalité au fil du temps. De ce graphique, on peut observer que les températures augmentent et diminuent dans un motif répétitif qui correspond aux saisons. Les températures culminent en été (Juillet-Août) et son au plus bas en hiver (Janvier-Février). On peut aussi discerner quelques fluctuations importantes d'une année à l'autre, comme témoignent les pointes et les creux variables à certains mois. Par exemple, il y a des pointes qui dépassent les tendances saisonnières habituelles, qui pourraient indiquer des vagues de chaleur exceptionnelles.

```
ggsubseriesplot(donnees_ts) +
  ylab("Température moyenne (°C)") +
  xlab("Date (mois-années)") +
  ggtitle("Graphique de sous-séries saisonnières : Températures moyennes en Île-de-France")
```





Analyse de la tendance et de la saisonnalité

Pour réaliser une étude de la tendance et de la saisonnalité, nous avons réaliser une étude sur R avec la méthode stl.

```
#Analyse de la tendance et de la saisonnalité
# Décomposition STL

decomp <- stl(donnees_ts, s.window="periodic")
# Visualiser la décomposition
plot(decomp)</pre>
```



Le premier graphique montre la décomposition STL de notre série temporelle en trois composantes : saisonnalité, tendance et résidus. Au niveau des données saisonnières (deuxième graphique du haut), il semble y avoir un motif saisonnier clair et cohérent qui se répète chaque année, ce qui est attendu pour des données de températures (plus chaud en été, plus froid en hiver).

La tendance (troisième graphique du haut) est relativement lisse sans fluctuations extrêmes, suggérant des changements graduels dans les températures moyennes sur plusieurs années.

Enfin, le résidus (graphique du bas) semblent être relativement faibles et aléatoires, ce qui indique que la décomposition a capturé la plupart des comportement systématiques de la série temporelle et ce qui reste est principalement du bruit.

#### Analyse de la corrélation

Lors de l'étude de la corrélation de notre série nous avons obtenu ce résultat.

#Analyse de la corrélation
#Autocorrélation
acf(donnees\_ts)

# Series donnees\_ts



Dans notre cas la série  $(X_t)1 \le t \le n$  est une série périodique pure  $X_t = a\cos(2\pi t/p)$ , où p est la période, car pour tout h fixé :

$$\rho$$
 n(h)  $\rightarrow$  cos(  $2h\pi/p$ ) quand n  $\rightarrow +\infty$ 

Finalement on retrouve la présence d'une tendance et d'une saisonnalité en examinant les auto-corrélations.

#### Analyse de l'auto-corrélation partielle

L'auto-corrélation partielle empirique d'ordre h est une fonction de h, noté r(h), qui quantifie la corrélation entre deux données espacées de h par pas de temps, en enlevant l'effet des données intermédiaires.

# Series donnees\_ts



Analyse de la stationnarité

Le test de Dickey-Fuller augmenté (ADF) est utilisé pour déterminer si une série temporelle est stationnaire ou non, c'est-à-dire si la série présente une tendance au fil du temps.

# > adf.test(donnees\_ts)

Augmented Dickey-Fuller Test

data: donnees\_ts
Dickey-Fuller = -10.548, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

Valeur de Dickey-Fuller : -10.548. Cette statistique est négative, ce qui est un bon indicateur. Plus cette valeur est négative, plus la preuve contre l'hypothèse nulle (la présence d'une racine unitaire, indiquant une non-stationnarité) est forte.

Ordre de retard (Lag order) : 4. Cela indique que le test a utilisé 4 retards dans la construction de l'équation de test ADF pour la série temporelle, ce qui correspond au nombre de périodes prises en compte pour calculer la corrélation dans la série.

Valeur-p: 0.01. En statistiques, la valeur-p est utilisée pour déterminer la signification statistique du résultat du test. Une valeur-p inférieure à un seuil (généralement 0.05) indique que vous pouvez rejeter l'hypothèse nulle. Dans ce cas, une valeur-p de 0.01 suggère que vous pouvez rejeter l'hypothèse de non-stationnarité avec une confiance de 99 %.

Hypothèse alternative : stationnaire. Le test ADF a une hypothèse alternative selon laquelle la série est stationnaire. Le message d'avertissement indique que la valeur-p réelle est encore plus petite que la valeur imprimée, renforçant l'évidence contre l'hypothèse nulle.

En conclusion, le résultat du test ADF suggère fortement que la série temporelle est stationnaire. Cela signifie que la série temporelle n'a pas de tendance ou de modèle autorégressif intégré, ce qui est une propriété souhaitable lors de l'utilisation de modèles de prévision tels que ARIMA. Cela signifie également que la série temporelle est appropriée pour une analyse plus approfondie et le développement de modèles prédictifs sans nécessiter de différenciation pour rendre la série stationnaire.

## Type de modèle (additif/multiplicatif)

Pour choisir notre modèle, nous avons choisi de d'abord procédé par la méthode de l'amplitude qui consiste à représenter les données en fonction de t, puis de tracer les droites des max et des min et de voir si elles sont parallèles dans ce cas on a un modèle additif, sinon on a un modèle multiplicatif.



Nous avons donc obtenu ce résultat qui conforte l'idée que notre modèle est un modèle additif car la droite des max (en orange) et la droite des min (en gris) ne sont pas parallèles.





On constat une forte corrélation entre l'écart-type et la moyenne, avec un coefficient de corrélation linéaire égal à 0.3624. Ce qui renforce l'idée que notre modèle est multiplicatif.

Pour analyser convenablement le modèle et conforter l'idée que notre modèle est bien multiplicatif, nous avons classé les trimestres selon la méthode de Buys-Ballot

|      |    | Classemen |    |    |
|------|----|-----------|----|----|
| 2016 | T3 | T2        | T4 | T1 |
| 2017 | T3 | T2        | T1 | T4 |
| 2018 | T3 | T2        | T4 | T1 |
| 2019 | T3 | T2        | T4 | T1 |
| 2020 | T3 | T2        | T4 | T1 |
| 2021 | T3 | T2        | T4 | T1 |
| 2022 | T3 | T2        | T4 | T1 |
| 2023 | T3 | T2        | T4 | T1 |

Ce tableau indique la persistance du même classement quelque soit l'année avec le troisième trimestre en première place et le deuxième trimestre en deuxième place et presque tous les premiers trimestres en dernière place. Il existe donc une stationnarité rigide à cette série, qui nous conforte dans le choix d'un modèle additif

# Partie 2 : Désaisonnalistion (tableur/R)

1<sup>ère</sup> méthode : Moyenne mobile

Calculs des coefficients saisonniers par Moyenne mobile

Pour calculer les moyennes mobiles, nous devons calculer les coefficients saisonniers. Notre première application fût sur R, en utilisant la fonction decompose() :

```
#Effectuer la décomposition saisonnière
decomp <- decompose(donnees_ts)
decomp
```

Pour comparer les résultats obtenus sur R, nous avons effectuer un travail pour obtenir la valeur des coefficients saisonniers. Tout d'abord, nous avons calculer les moyennes mobiles pour 12 mois soit à partir de t=6 jusqu'à t=72-6. Ensuite, on soustrait aux moyennes mobiles trouvées (Dt), puis on calcule les coefficients provisoires St en calculant la moyenne du résultat précédent pour chaque mois. Afin de center nos coefficients saisonniers, nous soustrayons aux coefficients provisoires leur moyenne.

En

|    | Α              | В  | С          | D       | E            | F                      | G           | Н               |
|----|----------------|----|------------|---------|--------------|------------------------|-------------|-----------------|
| 1  |                |    |            |         |              | Lissage Moyenne Mobile |             |                 |
| 2  | Mois-Annee     | t  | tmoy (Xt)  | M12(X)  | Dt=Xt-M12    | St = ct (provisoire)   | ct*(modifié | Xt_CSV(Additif) |
| 3  | Janvier-2016   | 1  | 5.53483871 |         |              |                        | -7.897202   | 13.43204085     |
| 4  | Février-2016   | 2  | 6.13827586 |         |              |                        | -6.360918   | 12.49919419     |
| 5  | Mars-2016      | 3  | 6.79129032 |         |              |                        | -3.920104   | 10.71139479     |
| 6  | Avril-2016     | 4  | 9.883      |         |              |                        | -0.925349   | 10.8083488      |
| 7  | Mai-2016       | 5  | 14.4122581 |         |              |                        | 2.121601    | 12.29065697     |
| 8  | Juin-2016      | 6  | 17.5766667 |         |              |                        | 6.65589     | 10.92077651     |
| 9  | Juillet-2016   | 7  | 20.3254839 | 11.8455 | 8.480025399  | 8.554671944            | 8.53206     | 11.79342366     |
| 10 | Août-2016      | 8  | 20.9196774 | 11.7438 | 9.175836816  | 8.205511647            | 8.1829      | 12.73677751     |
| 11 | Septembre-2016 | 9  | 18.782     | 11.9458 | 6.836175115  | 4.665681457            | 4.64307     | 14.13893028     |
| 12 | Octobre-2016   | 10 | 11.4593548 | 12.1254 | -0.666023361 | 0.310653324            | 0.288042    | 11.17131325     |
| 13 | Novembre-2016  | 11 | 7.65733333 | 12.2234 | -4.566052483 | -4.507845777           | -4.530458   | 12.18779085     |
| 14 | Décembre-2016  | 12 | 4.45774194 | 12.4123 | -7.954568164 | -6.766919702           | -6.789531   | 11.24727337     |
| 15 | Janvier-2017   | 13 | 1.95       | 12.5464 | -10.59635535 | -7.874590401           | -7.897202   | 9.847202135     |
| 16 | Février-2017   | 14 | 7.28428571 | 12.511  | -5.226760497 | -6.338306593           | -6.360918   | 13.64520404     |
| 17 | Mars-2017      | 15 | 10.4929032 | 12.3196 | -1.826691372 | -3.89749273            | -3.920104   | 14.41300769     |
| 18 | Avril-2017     | 16 | 10.4906667 | 12.289  | -1.798336534 | -0.90273707            | -0.925349   | 11.41601547     |
| 19 | Mai-2017       | 17 | 16.1567742 | 12.4006 | 3.756195725  | 2.144212825            | 2.121601    | 14.0351731      |
| 20 | Juin-2017      | 18 | 20.3663333 | 12.4413 | 7.925039811  | 6.678501893            | 6.65589     | 13.71044317     |
| 21 | Juillet-2017   | 19 | 20.7529032 | 12.7127 | 8.040211854  |                        | 8.53206     | 12.22084302     |
| 22 | Août-2017      | 20 | 19.6448387 | 12.718  | 6.926812756  |                        | 8.1829      | 11.4619388      |
| 23 | Septembre-2017 | 21 | 15.462     | 12.3537 | 3.108316884  |                        | 4.64307     | 10.81893028     |
| 24 | Octobre-2017   | 22 | 14.0451613 | 12.3473 | 1.697847798  |                        | 0.288042    | 13.7571197      |
| 25 | Novembre-2017  | 23 | 7.74933333 | 12.4867 | -4.737390105 |                        | -4.530458   | 12.27979085     |
| 26 | Décembre-2017  | 24 | 5.34290323 | 12.4539 | -7.111007937 |                        | -6.789531   | 12.13243466     |
| 27 | Janvier-2018   | 25 | 7.5783871  | 12.5162 | -4.937792435 |                        | -7.897202   | 15.47558923     |
| 28 | Février-2018   | 26 | 1.78392857 | 12.6836 | -10.89965687 |                        | -6.360918   | 8.144846899     |
| 29 | Mars-2018      | 27 | 7.24903226 | 12.8115 | -5.562454621 |                        | -3.920104   | 11.16913672     |
| 30 | Avril-2018     | 28 | 13.5816667 | 12.8737 | 0.707950397  |                        | -0.925349   | 14.50701547     |
| 31 | Mai-2018       | 29 | 16.4116129 | 12.8811 | 3.530486687  |                        | 2.121601    | 14.29001181     |
| 32 | Juin-2018      | 30 | 19.324     | 12.9514 | 6.372600934  |                        | 6.65589     | 12.66810984     |
| 33 | Juillet-2018   | 31 | 23.2896774 | 12.866  | 10.4236547   |                        | 8.53206     | 14.75761721     |
| 34 | Août-2018      | 32 | 21.1258065 | 12.9599 | 8.165947805  |                        | 8.1829      | 12.94290654     |
| 35 | Septembre-2018 | 33 | 17.0506667 | 13.2913 | 3.759324245  |                        | 4.64307     | 12.40759694     |
| 36 | Octobre-2018   | 34 | 13.95      | 13.2942 | 0.6558117    |                        | 0.288042    | 13.66195841     |
| 37 | Novembre-2018  | 35 | 8.02233333 | 13.0745 | -5.0521202   |                        | -4.530458   | 12.55279085     |

En comparant nos deux résultats sur R et sur Excel, on observe que les résultats sont presque similaires ce qui implique une bonne réalisation de la méthode sur R et Excel.

## Série corrigée des variations saisonnières avec Moyennes mobiles

Par la suite de cette étude, on va calculer la série corrigée des variations saisonnières  $X_t^{\text{cvs}}$  grâce à la formule suivante :

$$S_T^* = \{c_j^*, j \in T_j\}, X_t^{cvs} = X_t - S_t^*$$

Par construction graphique sur Excel, on obtient le résultat suivant :



#### Puis, avec le logiciel R, on obtient :

```
#Régression linéaire sur les données lissées par moyenne mobile

Xt_CVS <- read.xlsx("Tableur_MONIN_Louis_LAMRINI_Mohamed_ING2MI2_Serie_Temporelle_Projet.xlsx", sheet = "Xt_CVS MoyMob")
View(Xt_CVS)

reg_moymob <- lm(`Xt_CSV(Additif)` ~ t, data = Xt_CVS)
summary(reg_moymob)</pre>
```

#### Coefficients:

Residual standard error: 1.393 on 70 degrees of freedom Multiple R-squared: 0.0126, Adjusted R-squared: -0.001507 F-statistic: 0.8932 on 1 and 70 DF, p-value: 0.3479 On obtient exactement les mêmes résultats avec l'intercept égale à 11.99, le coefficient directeur de la droite de régression linéaire est égal à 0.01 et un R² égale à 0.003, ce qui signifie qu'il y a une faible corrélation entre la série CVS et l'indice de temps t.

#### Prévision par moyenne mobile



Nous constatons que les prédictions de notre modèle sur les données de validations sont très proches de la réalité car l'écart entre le courbe tmoy (Xt) et la courbe des prévisions MoyMob est faible : la méthode des moyennes mobiles est relativement efficace.

2<sup>ème</sup> méthode : Régression sur le temps et avec des variables indicatrices

#### Calculs des coefficients saisonniers par Moyenne mobile

Pour la suite de cette étude, nous allons effectuer la même chose mais avec la méthode des moyenne mobiles.

| ⊿ A               | В  | С           | D                    | E                           | F                | G                | Н | 1 | J               | K           | L |
|-------------------|----|-------------|----------------------|-----------------------------|------------------|------------------|---|---|-----------------|-------------|---|
| 1                 |    |             |                      | Lissage Régression linéaire |                  |                  |   |   |                 |             |   |
| 2 Mois-Annee      | t  | tmoy (Xt)   | St = Ct (provisoire) | Ct* (modifié)               | M(t)=B(0)+B(1)*t | Xt_CVS (Additif) |   |   |                 |             |   |
| 3 Janvier-2016    | 1  | 5.53483871  | 4.997903226          | -7.639479852                | 12.00930296      | 4.369823111      |   |   |                 |             |   |
| 4 Février-2016    | 2  | 6.138275862 | 6.36058087           | -6.276802208                | 12.02699536      | 5.750193153      |   |   | Moyenne(t)      | 36.5        |   |
| 5 Mars-2016       | 3  | 6.791290323 | 8.487311828          | -4.15007125                 | 12.04468776      | 7.894616508      |   |   | Moyenne(Xt)     | 12.63738308 |   |
| 6 Avril-2016      | 4  | 9.883       | 11.50419349          | -1.133189592                | 12.06238016      | 10.92919056      |   |   | Cov(t,Xt)       | 7.74927015  |   |
| 7 Mai-2016        | 5  | 14.41225806 | 14.79973118          | 2.162348105                 | 12.08007255      | 14.24242066      |   |   | Var(t)          | 438         |   |
| 8 Juin-2016       | 6  | 17.57666667 | 19.11627778          | 6.4788947                   | 12.09776495      | 18.57665965      |   |   | Moyenne des St  | 12.63738308 |   |
| 9 Juillet-2016    | 7  | 20.32548387 | 21.04801075          | 8.410627675                 | 12.11545735      | 20.52608502      |   |   | Moyenne des Ct* | 1.62833E-15 |   |
| 10 Août-2016      | 8  | 20.91967742 | 20.60145161          | 7.964068535                 | 12.13314975      | 20.09721828      |   |   |                 |             |   |
| 11 Septembre-2016 | 9  | 18.782      | 17.60844444          | 4.971061366                 | 12.15084214      | 17.12190351      |   |   |                 |             |   |
| 12 Octobre-2016   | 10 | 11.45935484 | 12.99548387          | 0.358100793                 | 12.16853454      | 12.52663533      |   |   | alpha=          | 11.99161057 |   |
| 13 Novembre-2016  | 11 | 7.657333333 | 7.993777778          | -4.6436053                  | 12.18622694      | 7.542621639      |   |   | bêta=           | 0.017692398 |   |
| 14 Décembre-2016  | 12 | 4.457741935 | 6.135430108          | -6.501952971                | 12.20391934      | 5.701966366      |   |   |                 |             |   |
| 15 Janvier-2017   | 13 | 1.95        |                      | -7.639479852                | 12.22161173      | 4.582131882      |   |   |                 |             |   |
| 16 Février-2017   | 14 | 7.284285714 |                      | -6.276802208                | 12.23930413      | 5.962501924      |   |   |                 |             |   |
| 17 Mars-2017      | 15 | 10.49290323 |                      | -4.15007125                 | 12.25699653      | 8.10692528       |   |   |                 |             |   |
| 18 Avril-2017     | 16 | 10.49066667 |                      | -1.133189592                | 12.27468893      | 11.14149934      |   |   |                 |             |   |
| 19 Mai-2017       | 17 | 16.15677419 |                      | 2.162348105                 | 12.29238132      | 14.45472943      |   |   |                 |             |   |
| 20 Juin-2017      | 18 | 20.36633333 |                      | 6.4788947                   | 12.31007372      | 18.78896842      |   |   |                 |             |   |
| 21 Juillet-2017   | 19 | 20.75290323 |                      | 8.410627675                 | 12.32776612      | 20.73839379      |   |   |                 |             |   |
| 22 Août-2017      | 20 | 19.64483871 |                      | 7.964068535                 | 12.34545852      | 20.30952705      |   |   |                 |             |   |
| 23 Septembre-2017 | 21 | 15.462      |                      | 4.971061366                 | 12.36315092      | 17.33421228      |   |   |                 |             |   |
| 24 Octobre-2017   | 22 | 14.04516129 |                      | 0.358100793                 | 12.38084331      | 12.73894411      |   |   |                 |             |   |
| 25 Novembre-2017  | 23 | 7.749333333 |                      | -4.6436053                  | 12.39853571      | 7.75493041       |   |   |                 |             |   |
| 26 Décembre-2017  | 24 | 5.342903226 |                      | -6.501952971                | 12.41622811      | 5.914275137      |   |   |                 |             |   |
| 27 Janvier-2018   | 25 | 7.578387097 |                      | -7.639479852                | 12.43392051      | 4.794440653      |   |   |                 |             |   |
| 28 Février-2018   | 26 | 1.783928571 |                      | -6.276802208                | 12.4516129       | 6.174810695      |   |   |                 |             |   |
| 29 Mars-2018      | 27 | 7.249032258 |                      | -4.15007125                 | 12.4693053       | 8.319234051      |   |   |                 |             |   |
| 30 Avril-2018     | 28 | 13.58166667 |                      | -1.133189592                | 12.4869977       | 11.35380811      |   |   |                 |             |   |
| 31 Mai-2018       | 29 | 16.4116129  |                      | 2.162348105                 | 12.5046901       | 14.6670382       |   |   |                 |             |   |
| 32 Juin-2018      | 30 | 19.324      |                      | 6.4788947                   | 12.52238249      | 19.00127719      |   |   |                 |             |   |
| 33 Juillet-2018   | 31 | 23.28967742 |                      | 8.410627675                 | 12.54007489      | 20.95070257      |   |   |                 |             |   |

Pour calculer les c<sub>t</sub> provisoires, on prend la moyenne de chaque mois de l'année en question en utilisant les températures enregistrées en 2016 et 2021. Si la moyenne des c<sub>t</sub> n'est pas égale à zéro, on doit soustraire la moyenne de chaque c<sub>t</sub> individuel pour obtenir les valeurs modifiées dans la colonnes c<sub>t</sub>\*.

Une fois les valeurs modifiées obtenues, on peut effectuer une régression pour trouver les valeurs  $\alpha$  et de  $\beta$  en fonction du temps en utilisant les ventes enregistrées sur la période spécifiée.

$$S_{\mathrm{T}}^* = \{c_j^*, j \in T_{\mathrm{j}}\}, \quad c_j^* = S_j - S_j^-$$

On effectue la même démarche sur R et on obtient les résultats suivants.

#### Coefficients:

Residual standard error: 5.903 on 70 degrees of freedom Multiple R-squared: 0.003974, Adjusted R-squared: -0.01025 F-statistic: 0.2793 on 1 and 70 DF, p-value: 0.5988

On remarque tout de suite que les résultats obtenus sont les mêmes sur R et Excel.

#### Prévisions par régression linéaire

Pour calculer les  $c_t$  provisoires, on prend la moyenne de chaque mois de l'année en question en utilisant les ventes enregistrées entre 2022 et 2024. Si la moyenne des  $c_t$  n'est pas égale à zéro, on doit soustraire la moyenne de chaque  $c_t$  individuel pour obtenir les valeurs modifiées dans la colonne  $c_t^*$ . Une fois les valeurs modifiées obtenues, on peut effectuer une régression pour trouver les valeurs de  $\alpha$  et de  $\beta$  en fonction des ventes en utilisant les ventes enregistrées sur la période spécifiée. Les prévisions sont trouvées grâce à la formule :

$$X_t^{cvs} = \alpha + \beta t + c_t^*$$



Nous pouvons ainsi constater que la méthode de régression linéaire fournit une prédiction précise de la réalité.

#### Comparaison des deux méthodes



#### Prévision de la température moyenne



Lorsque l'on trace les courbes obtenues, on constate que les courbes des deux prédictions sont presque superposées, donc identiques, ce qui rend difficile leur comparaison. La courbe de régression linéaire est plus adaptée pour étudier les tendances à court et très court terme, tandis que la moyenne mobile convient mieux pour les moyens et longs termes. A vu d'œil, on observer une très légère victoire pour la régression linéaire, mais qui n'est clairement pas importante au vu des résultats.

Partie 3 : Prévision par lisaage exponentiel

1<sup>ère</sup> méthode : Lissage exponentiel double

Lissage

On a opté pour le lissage exponentiel double en raison de la présence d'une tendance dans notre ensemble de données. Pour déterminer les coefficients saisonniers, nous avons procédé de la même manière que précédemment en utilisant la moyenne des ventes pour chaque période mensuelle.

De plus, on a choisi un  $\alpha$  grand ( $\alpha > 0.7$ ) pour donner moins d'importance aux observations les plus anciennes.

Le premier lissage peut être calculé par :

$$L_1(t) = X_t \alpha + (1 - \alpha) + L_1(t - 1)$$

Le deuxième lissage peut être calculé par :

$$L_2(t) = L_1(t)\alpha + (1 - \alpha) + L_2(t - 1)$$

Ensuite, on calcule a et b avec les formules suivantes :

$$a = (\alpha / (1 - \alpha)) * (L_1(t) - L_2(t))$$
  
$$b = 2L_1(t) - L_2(t)$$

Avec l'utilisation d'Excel, on obtient les résultats suivants :

| D                 | E            | F                          | G                   | Н       | 1      | J                            | K | L | М              | N       |
|-------------------|--------------|----------------------------|---------------------|---------|--------|------------------------------|---|---|----------------|---------|
|                   |              | Lissage exponentiel double |                     |         |        |                              |   |   |                |         |
| St=Ct (provisoire | Ct* (modifié | 1er lissage (L1(t))        | 2ème lissage (L2(t) | a = â2  | b = â1 | Prévision Lissage exp double |   |   |                |         |
| 4.997903226       | -7.639479852 | 5.53483871                 | 5.53483871          | 0       | 5.5348 | 5.53483871                   |   |   |                |         |
| 6.36058087        | -6.276802208 | 6.077932147                | 6.023622803         | 0.4888  | 6.1322 | 6.621025584                  |   |   | Moyenne des St | 12.6374 |
| 8.487311828       | -4.15007125  | 6.719954505                | 6.650321335         | 0.6267  | 6.7896 | 7.416286207                  |   |   | alpha (donné)  | 0.9     |
| 11.50419349       | -1.133189592 | 9.566695451                | 9.275058039         | 2.6247  | 9.8583 | 12.48306957                  |   |   |                |         |
| 14.79973118       | 2.162348105  | 13.9277018                 | 13.46243743         | 4.1874  | 14.393 | 18.58034557                  |   |   | Moyenne(t)     | 36.5    |
| 19.11627778       | 6.4788947    | 17.21177018                | 16.8368369          | 3.3744  | 17.587 | 20.96110293                  |   |   | Moyenne(Xt)    | 12.6585 |
| 21.04801075       | 8.410627675  | 20.0141125                 | 19.69638494         | 2.8595  | 20.332 | 23.1913881                   |   |   | Cov(t,Xt)      | 1.33298 |
| 20.60145161       | 7.964068535  | 20.82912093                | 20.71584733         | 1.0195  | 20.942 | 21.96185691                  |   |   | Var(t)         | 438     |
| 17.60844444       | 4.971061366  | 18.98671209                | 19.15962562         | -1.5562 | 18.814 | 17.25757686                  |   |   |                |         |
| 12.99548387       | 0.358100793  | 12.21209056                | 12.90684407         | -6.2528 | 11.517 | 5.264555512                  |   |   | alpha=         | 12.5474 |
| 7.993777778       | -4.6436053   | 8.112809056                | 8.592212558         | -4.3146 | 7.6334 | 3.318774043                  |   |   | bêta=          | 0.00304 |
| 6.135430108       | -6.501952971 | 4.823248648                | 5.200145039         | -3.3921 | 4.4464 | 1.054284737                  |   |   |                |         |
|                   | -7.639479852 | 2.237324865                | 2.533606882         | -2.6665 | 1.941  | -0.725495309                 |   |   |                |         |
|                   | -6.276802208 | 6.779589629                | 6.354991355         | 3.8214  | 7.2042 | 11.02557238                  |   |   |                |         |
|                   | -4.15007125  | 10.12157187                | 9.744913815         | 3.3899  | 10.498 | 13.88815238                  |   |   |                |         |
|                   | -1.133189592 | 10.45375719                | 10.38287285         | 0.638   | 10.525 | 11.16260056                  |   |   |                |         |
|                   | 2.162348105  | 15.58647249                | 15.06611253         | 4.6832  | 16.107 | 20.79007214                  |   |   |                |         |
|                   | 6.4788947    | 19.88834725                | 19.40612378         | 4.34    | 20.371 | 24.71058197                  |   |   |                |         |
|                   | 8.410627675  | 20.66644763                | 20.54041524         | 1.1343  | 20.792 | 21.92677148                  |   |   |                |         |
|                   | 7.964068535  | 19.7469996                 | 19.82634117         | -0.7141 | 19.668 | 18.95358396                  |   |   |                |         |
|                   | 4.971061366  | 15.89049996                | 16.28408408         | -3.5423 | 15.497 | 11.95465875                  |   |   |                |         |
|                   | 0.358100793  | 14.22969516                | 14.43513405         | -1.849  | 14.024 | 12.17530623                  |   |   |                |         |
|                   | -4.6436053   | 8.397369516                | 9.001145969         | -5.434  | 7.7936 | 2.359604982                  |   |   |                |         |

#### Puis, avec l'utilisation de R, on obtient :

```
> fitLED <- ets(ts_train,model="AAN")
> summary(fitLED)
ETS(A,Ad,N)
Call:
 ets(y = ts_train, model = "AAN")
  Smoothing parameters:
    alpha = 0.8343
beta = 0.8343
    phi
          = 0.8057
  Initial states:
    1 = 3.2042
b = 3.76
  sigma: 3.3312
AIC AICC BIC 396.8394 398.4243 409.4055
Training set error measures:
                         ME
                                 RMSE
                                             MAE
                                                        MPE
                                                                  MAPE
                                                                            MASE
Training set -0.09533787 3.189368 2.498579 -2.024306 27.97603 1.393125 0.01367607
```

#### Prévisions

Les prévisions sont calculées avec la formule suivante :

$$X_t^{exp} = a_{t-1} - b_{t-1}$$

Ainsi, on obtient les prédictions suivantes avec Excel:



En poursuivant cette étude, on obtient le résultat suivant sur R :

```
fitLED <- ets(ts_train,mode]="AAN")
summary(fitLED)
predLED <- forecast(fitLED,h=36)
plot(predLED)
points(ts_test,type=']',co]='darkgreen'',lwd=2)
legend('top',c("Valeurs observées","Prédictions"),co]=c("darkgreen","blue"),lty=rep(1,2),lwd = rep(2,2))</pre>
```

#### Forecasts from ETS(A,Ad,N)



On remarque que le modèle étant plus général, l'erreur moyenne est nécessairement inférieure mais cette méthode ne semble pas préférable car le paramètre  $\beta$  estimé est très petit, l'AIC, l'AICc et le BIC sont plus grands et l'erreur moyenne relative est à peu près du même ordre.

2<sup>ème</sup> méthode : Lissage exponentiel avec Holt-Winters

#### Lissage

Contrairement à la méthode précédente, le paramètre  $\beta$  estimé est élevé, l'AIC, l'AICc et le BIC sont assez faible et de même pour l'erreur moyenne.

#### Prévision

```
#Méthode 2 : Lissage Holt-Winters

fitHW <- ets(ts_train,model="AAA")
summary(fitHW)
predHW <- forecast(fitHW,h=36)
plot(predHW)
points(ts_test,type='l',col='darkgreen'',lwd=2)
legend('top',c("Valeurs observées","Prédictions"),col=c("darkgreen","blue"),lty=rep(1,2),lwd = rep(2,2))</pre>
```

#### Forecasts from ETS(A,A,A)



# Comparaison des deux méthodes

Après avoir comparé notre lissage exponentiel double et celui de Holt-Winters, nous avons remarqué qu'ils présentent quelques différences notables, bien que tous deux soient fiables. Si nous devions choisir une prévision entre les deux, nous opterions pour notre lissage exponentiel double, car il s'approche plus fidèlement du modèle réel sur plusieurs parties de la courbe. Néanmoins, il faut garder à l'esprit que les deux prévisions sont très similaires, mais notre lissage exponentiel double présente une légère avance en termes de précision.

#### **Annexe**

```
import pandas as pd
# Charger le fichier CSV
df = pd.read csv('temperature-quotidienne-regionale.csv')
# Filtrer les lignes qui contiennent le mot "Île-de-France" dans la première colonne
df idf = df[df.iloc[:, 0].str.contains('Île-de-France', case=False, na=False)]
# Trier les lignes par ordre de dates
df_idf_sorted = df_idf.sort_values(by='Nom_de_la_colonne_date')
df idf sorted.to csv('idf seulement.csv', index=False)
# Charger le fichier CSV en spécifiant le délimiteur comme ';'
df = pd.read csv('idf seulement.csv', delimiter=';')
# Renommer les colonnes
df.columns = ['ID', 'Date', 'code insee region', 'region', 'tmin', 'tmax', 'tmoy']
# Supprimer les colonnes spécifiées
colonnes_a_supprimer = ['code_insee_region', 'region', 'tmin', 'tmax']
df = df.drop(columns=colonnes_a_supprimer)
# Enregistrer le fichier modifié
df.to csv('Temperature moyenne ile de france.csv', index=False)
#Enfin nous avons fait une moyenne par mois des températures.
# Charger les données
df = pd.read csv('Temperature moyenne ile de france.csv')
# Convertir les dates en datetime pour extraire facilement l'année et le mois
df['Date'] = pd.to_datetime(df['Date'], format='%d/%m/%y')
```

```
# Ajouter des colonnes pour l'année et le mois

df['Year'] = df['Date'].dt.year

df['Month'] = df['Date'].dt.month

# Dictionnaire pour le nom des mois en français

months_fr = {

1: 'Janvier', 2: 'Février', 3: 'Mars', 4: 'Avril', 5: 'Mai', 6: 'Juin',

7: 'Juillet', 8: 'Août', 9: 'Septembre', 10: 'Octobre', 11: 'Novembre', 12: 'Décembre'

# Calculer la moyenne des températures par mois et par année

monthly_avg = df.groupby(['Year', 'Month'])['tmoy'].mean().reset_index()

# Convertir le numéro du mois en son nom en français et ajouter l'année

monthly_avg['Mois-Annee'] = monthly_avg.apply(lambda x: f"{months_fr[x['Month']}}-{x['Year']}", axis=1)

# Sélectionner les colonnes d'intérêt pour le fichier final

result = monthly_avg[['Mois-Annee', 'tmoy']]

# Sauvegarder le résultat dans un nouveau fichier Excel

result.to_excel('Temperature_moyenne_ile_de_france_v2.xlsx', index=False)
```