

# Evaluating Safety-Critical Systems: A (Conservative) Bayesian's View

Dr. Xingyu Zhao [phonetically, Sing-You]

@ TAS Node in Resilience

19-June-2023

Assistant Professor in Safety-Critical Systems,
V&V Group | Intelligent Vehicles | WMG | University of Warwick,
<a href="https://www.xzhao.me/">https://www.xzhao.me/</a>



# The talk covers joint works with...

- PhD and PDRAs
  - PhD (started in 2013): Centre for Software Reliability, City University of London
    - Probabilistic assessment of safety-critical software (Nuclear PPS)
  - PDRA: Heriot-Watt University
    - Probabilistic verification on Robotics and Autonomous Systems (RASs)
  - Programme Fellow: University of York
    - Assuring Autonomy International Programme (AAIP)
  - PDRA: University of Liverpool
    - DL testing, XAI, safety analysis for Learning-Enabled Systems (LESs)
- Lecturer in AI at University of Liverpool since 2021
- Assistant Professor at Warwick in June 2023
- 11 related publications (listed at the end)



#### ... compared to assessing the fairness of a coin

|                                       | Assessing A Coin                                  | Assessing Safety-Critical Systems (SCSs)                                            |
|---------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------|
| Metrics                               | probability of seeing tail in the next toss, ~0.5 | E.g. pfd (prob. of failure per demand), SIL4, ~10^-4                                |
| Amount of testing                     | A few trials of flipping the coin                 | Impractical number of tests needed, and expensive                                   |
| Assumptions in the stochastic process | No doubts in assuming a Bernoulli Process         | Complex and may have doubts in the assumptions                                      |
| Prior knowledge (PK)                  | Easy to elicit and formalise                      | More careful/reluctant to express; limited PK; non-informative priors is misleading |
| Conjugacy                             | Why not                                           | Introducing implicit knowledge/assumptions                                          |
| Application context                   | In a simple gambling game?                        | Complex, interactive, dynamic, .e.g., RAS missions                                  |



#### Correspondingly, 6 (correlated) questions:

- 1. How to practically assessing ultra-high reliability, with clear definitions of metrics?
- 2. How to effectively model failure-free/sparse-failure evidence?
- 3. How to incorporate doubts on assumptions in the stochastic failure process?
- 4. How to incorporate limited, partial/vague prior knowledge?
- 5. Can we get rid of conjugacy in the reasoning?
- 6. How to model SCSs in a more dynamic, interactive application context?
- Q1, Q2 and Q6 are specific to SCSs; Q3 is generic to any statistical inference; Q4 and Q5 are fundamental to any Bayesian methods;
- Have we solved them?

# "The RAND study"

[HTML] **Driving** to **safety**: How **many miles** of **driving** would it take to demonstrate autonomous vehicle reliability?

N Kalra, SM Paddock - Transportation Research Part A: Policy and Practice, 2016 - Elsevier ... of **miles** of **driving** that would be needed to provide clear statistical evidence of autonomous vehicle **safety**. ... injuries are rare events compared to vehicle **miles** traveled, we show that fully ...

☆ Save ⑰ Cite Cited by 1248 Related articles All 7 versions ≫

#### Context:

- AVs tested on public roads in the US for years; millions of autonomous miles have been driven
- Metrics, inc.
  - probability of fatality-event per driven mile (pfm)
- Method: A common frequentist statistical inference model
  - For claiming AVs is XX times safer than human with levels of confidence
  - seeing evidence millions/billions of autonomous miles driven
- Conclusions: inc. Operational testing alone is impractical
  - E.g., to claim, with 95% conf., AVs are as safe as human, it needs 275 millions of fatality-free miles.



### We agree with RAND, but...

The main message is not new, while RAND nicely reformulated it for AVs

The infeasibility of quantifying the reliability of life-critical real-time software RW Butler, GB Finelli - IEEE Transactions on Software ..., 1993 - ieeexplore.ieee.org ... software reliability. Research efforts started with reliability growth models in the early 1970's. In recent years, an emphasis on developing methods that enable reliability quantification of ...  $\Rightarrow$  Save  $\Im$  Cite Cited by 526 Related articles All 24 versions

Validation of ultra-high dependability for software-based systems

B Littlewood, L Strigini - Communications of the ACM, 1993
... dependability required. This can be very difficult, as we shall see later; validating: gaining confidence that a certain dependability ... levels of dependability that can currently be validated. ...

★ Save 为 Cite Cited by 420 Related articles All 23 versions

- No one puts SCSs in operational/statistical testing without strong prior confidence in safety
- So how to incorporate prior knowledge (PK) in safety in statistical inference?
  - In a statistical principled way
  - Bayesian inference seems to be a good answer



# Bayesian inference, a reminder...

Seeing data, the prior distribution is "scaled" into a posterior distribution, according to the likelihoods.

- Where to get the priors?
  - Non-informative priors (for SCSs)?
- What is the Likelihood?
  - Poisson/Binomial/Bernoulli Process?
- What forms of posteriors are of practical interest?
  - A complete post. dist. is costly/luxury
  - Posterior mean
  - Posterior confidence bounds



$$f(x|\text{data}) \propto L(\text{data}|x)f(x)$$



# With only limited, partial prior knowledge...

$$Pr(X \le p \mid k\&n) \tag{1}$$

$$Pr(X \leqslant \epsilon) = \theta \tag{2}$$

- Posteriors:
  - a posterior confidence bound in a required *pfm p*, after seeing *k* fatality-events in *n* driven miles, cf. Eq. (1).
- Examples of PK in Eq. (2)
  - far from being specific about a singe, complete f(x).
  - an infinite set of distributions satisfying Eq. (2)
- Bayesian inference is a new optimisation problem
  - To minimise (1), subject to (2), what is the corresponding f(x)?



# With only partial priors, solutions

- Optimisation can be analytically solved.
  - formal guarantees on conservatism
- NB, no parametric families, no conjugacy, being different to:
  - Robust Bayesian inference
  - Imprecise probabilities
- References [2,4,5,10,11]
  - for different PKs/posteriors/ observations/applications







### More PK, on versions of SCSs

- Safety regulation principles
  - GALE: globally at least equivalent (French Railway, US FDA medical devices)
  - A high confidence that "the new system should be no unsafe than existing systems"
- Formalise such knowledge as PK

$$Pr(Y \leqslant X) = \phi,$$

- A joint prior dist. of failure probabilities of two versions
- Probability mass  $M_i$  in different region i encodes PKs, e.g.,  $p_B$ 
  - $M5 + M7 + M3 = \phi$  (New B is no unsafe than old A)
  - $M1 + M4 + M5 = \theta$  (Marginal conf. bound. on old A)
- Again, constraints on prior distributions.





# More PK, on versions of SCSs

- Similarly, another optimisation problem, but 2D:
  - what is the worst-case joint prior distinction, that

minimise 
$$Pr(Y \leq p_B | n_A, n_B)$$
  
subject to  $Pr(X \leq \epsilon) = \theta,$   
 $Pr(Y \leq X) = \phi,$ 

- Refs [2, 3, 6]
  - Various forms of priors/posterior
  - More interesting scenarios/RQs



**Fig. 7.** Fatality-free miles that need to be driven in City-B (by Version-B), given that  $n_A$  fatality-free miles have been driven in City-A (by Version-A) in scenarios Q4 and Q5. The straight horizontal and vertical lines show the amount of road testing that would yield the target confidence c = 95% in the required bound  $pfm \le 1.09e - 8$  in the single-version, single-city scenario of Q1.



# OK, what about the likelihood?

- Allowing doubts in fundamental assumptions behind a likelihood
- How to formalise?
  - Using Klotz's model to relax i.i.d.
    - while i.i.d. is a special case  $(x = \lambda)$
  - Doubts in iid, combinations of x,  $\lambda$
  - "instead of a single likelihood function, we introduce a set of likelihoods allowing doubts"
    - Loosely speaking only
- Optimisation, over a set of likelihoods

#### Statistical inference in Bernoulli trials with dependence

J Klotz - The Annals of statistics, 1973 - JSTOR

A model for **Bernoulli trials** with Markov dependence is developed which possesses the usual frequency parameter p = P[X | i = 1] and an additional dependence parameter  $\lambda = P[X | i = 1]$ ...

☆ Save ☑ Cite Cited by 148 Related articles All 4 versions



Fig. 1: The Klotz model with dependent Bernoulli trials [17].



# OK, what about the likelihood?

- X axis: number of tests
- Y axis: poster confidence in a bound
- Curves representing levels of doubts  $(\phi_2)$  in i.i.d.
  - i.i.d. is the special case (black dotted)
- More interesting results
  - E.g., i.i.d. is not always optimistic
  - In some cases, posteriors not sensitive to doubts at all.
  - Ref. TSE [1], QRE (under review)





# A quick summary, so far....

- A set of priors
  - representing limited, partial PK

$$f(x|\mathrm{data}) \propto L(\mathrm{data}|x)f(x)$$

- A set of likelihoods
  - encoding doubts in assumptions behind
- Guaranteed conservatism, for different forms of posteriors
- Bayesian inference as an optimisation
  - Finding the worst-case combination of priors and likelihood, for the given posters
  - No assumptions on parametric families/conjugacy
  - Analytical solutions
    - For runtime Bayesian estimators, next...

# Bayesian estimators in Prob. Model Checking WARWICK

- Previously, modelling SCSs at a very high-level
  - Only one variable of reliability for each SCS...
- In Model-driven Engineering,
  - System behaviours, e.g., DTMC/CTMC/MDP
  - Properties, e.g., PCTL/CSL
  - Verification, e.g., PMC (offline or at runtime)







# `... only as good as the formal model"

- How to get an accurate Markov model?
  - E.g., the key transition parameters.
- What if the formal model is subject to changes?
  - How to do accurate change-point detection?
  - What is the new formal model after the change?
- Formulated as statistical inference problems
  - runtime Bayesian estimators with "fresh data"
  - aforementioned ideas for fundamental problems
  - efficient enough for runtime verification





### Case studies of UUVs

- A video demo
  - <a href="https://drive.google.com/file/d/1fLZ3Bip8Y0KRiaWfMOMRZStPbPpCdHqy/viewpressharing">https://drive.google.com/file/d/1fLZ3Bip8Y0KRiaWfMOMRZStPbPpCdHqy/viewpressharing</a>

• Refs [7,9]



Figure 1: The integration of BIPP and IPSP Bayesian inference with interval CTMC model checking supports the online robust quantitative verification and reconfiguration of autonomous systems under parametric uncertainty.



# Take home message...

- When doing statistical testing for SCSs, no one starting from nothing...
  - too risky; too expensive; how to incorporate PK (in a principled way)?—Bayes
- Bayesian inference is hard to apply...
  - Elicit and formalise a prior distribution—at least, something as limited as a conf. bound;
    - Don't simply use uniform/non-informal priors for SCSs.
  - Doubts in assumptions of the likelihood—model the doubts!
    - Two use cases: conservative claims, model validation (i.e., claims should be insensitive to doubts)
  - Conjugacy/parametric-families—we don't need it!
- Versatile and efficient at different abstraction levels
  - Estimate some single reliability metric
  - Bayesian estimators for the underlying models in model-driven engineering



### Publications related to this talk

#### Journal Publications

- M. Salako and Zhao, X., "The Unnecessity of Assuming Statistically Independent Tests in Bayesian Software Reliability Assessments," IEEE Tran. on Software Engineering, vol. 49, no. 4, pp. 2829–2838, 2023
- 2 Zhao, X., K. Salako, L. Strigini, V. Robu, and D. Flynn, "Assessing safety-critical systems from operational testing: A study on autonomous vehicles," *Information and Software Technology*, vol. 128, p. 106393, 2020
- 3 B. Littlewood, K. Salako, L. Strigini, and **Zhao, X.**, "On reliability assessment when a software-based system is replaced by a thought-to-be-better one," *Reliability Engineering & System Safety*, vol. 197, p. 106752, 2020
- 4 Zhao, X., B. Littlewood, A. Povyakalo, L. Strigini, and D. Wright, "Conservative claims for the probability of perfection of a software-based system using operational experience of previous similar systems," Reliability Engineering & System Safety, vol. 175, pp. 265 282, 2018
- 5 Zhao, X., B. Littlewood, A. Povyakalo, L. Strigini, and D. Wright, "Modeling the probability of failure on demand (pfd) of a 1-out-of-2 system in which one channel is "quasi-perfect"," Reliability Engineering & System Safety, vol. 158, pp. 230–245, 2017

#### Conference Publications

- [6] K. Salako, L. Strigini, and **Zhao, X.**, "Conservative confidence bounds in safety, from generalised claims of improvement & statistical evidence," in 51st Annual IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN'21), pp. 451–462, IEEE, 2021
- [7] Zhao, X., R. Calinescu, S. Gerasimou, V. Robu, and D. Flynn, "Interval change-point detection for runtime probabilistic model checking," in *Proc. of the 35th IEEE/ACM Int. Conf. on Automated Software Engineering (ASE'20)*, pp. 163–174, ACM, 2020
- [8] **Zhao, X.**, A. Banks, J. Sharp, V. Robu, D. Flynn, M. Fisher, and X. Huang, "A safety framework for critical systems utilising deep neural networks," in *Computer Safety*, *Reliability*, and *Security* (SafeComp'20), vol. 12234 of *LNCS*, pp. 244–259, Springer, 2020
- 2 Zhao, X., V. Robu, D. Flynn, F. Dinmohammadi, M. Fisher, and M. Webster, "Probabilistic model checking of robots deployed in extreme environments," in *Proc. of the 33rd AAAI Conference on Artificial Intelligence (AAAI'19)*, vol. 33, (Honolulu, Hawaii, USA), pp. 8076–8084, 2019
- **Zhao, X.**, V. Robu, D. Flynn, K. Salako, and L. Strigini, "Assessing the safety and reliability of autonomous vehicles from road testing," in *Proc. of the 30th Int. Symp. on Software Reliability Engineering (ISSRE'19)*, (Berlin, Germany), pp. 13–23, IEEE, 2019. (Best Paper Nominee: 3/134)
- 111 Zhao, X., B. Littlewood, A. Povyakalo, and D. Wright, "Conservative claims about the probability of perfection of software-based systems," in *Proc. of the 26th IEEE Int. Symp. on Software Reliability Engineering (ISSRE'15)*, (Gaithersbury, MD, USA), pp. 130–140, IEEE, 2015





# Thank you

- xingyu.zhao@warwick.ac.uk
- www.xzhao.me