

G. Hénaff

Opening modes

G. Hénaff – 2016

Standard specimens

G. Hénaff – 2016

Compact tension specimen

G. Hénaff – 2016

5

Fatigue crack propagation test

- Pre-cracked specimens
- Crack length monitoring of the crack length as a function of the number of aplled cycles (optical, compliance, potential drop)

δ

Crack length monitoring

Optical method (direct)

• Potential drop (requires a calibration)

G. Hénaff – 2016

Propagation curves

G. Hénaff – 2016

Use of LEFM

Static or monotonic loading: the stress intensity factor accounts for the stress/strain field at the crack tip

Use of LEFM

Idea: consider the stress intensity factor range ΔK as the driving force for crack growth under cylic loading

NB: even when $\Delta\sigma$ is kept constant, ΔK increases during crack growth

G. Hénaff – 2016

Stress intensity factor

COMPACT TENSION SPECIMEN

$$\Delta K = \frac{\Delta P}{B \sqrt{W}} \frac{(2+\alpha)}{(1-\alpha)^{3/2}} \left[0.886 + 4.64 \times -13.32 \times^2 + 14.72 \times^3 -5.6 \times^4 \right]$$

$$\alpha = a/W$$

where
$$\Delta P = P_{max} - P_{min}$$
 for $R > 0$
 $\Delta P = P_{max}$ for $R \le 0$

THIS EXPRESSION IS VALID FOR a/W ≥ 0.2

CENTER CRACKED PANEL SPECIMEN

$$\Delta K = \frac{\Delta P}{B} \sqrt{\frac{\pi \alpha}{2W}} SEC \frac{\pi \alpha}{2}$$
 WHERE $\alpha = 2a/W$

THIS EXPRESSION IS VALID FOR 2a/W < 0.95

11

LEFM concepts

Principle of similarity: a given value of ΔK (for a wide variety of σ and a values) induces the same cyclic stress/strain field at the crack tip, therefore the same damage and as a consequence the same crack growth rate

G. Hénaff – 2016

Principle of similarity

13 G. Hénaff – 2016

Paris correlation

Conclusion

On the basis of the experimental data given, it is evident that rates of crack growth—for example, those in 2024-T3 and 7075-T6 skins of aircraft structure—may be computed by the theory presented over a wide range of nominal stress levels and crack sizes. The ramifications of such broad correlation imply an analytic theory of fatigue based on a concept of growth from initial imperfections through which structural life may be predicted.

14 G. Hénaff – 2016

Transposability of laboratory data to structures

G. Hénaff – 2016

da/dN-∆K curve

G. Hénaff – 2016

Mechanisms

G. Hénaff – 2016

Cyclic deformation at the crack tip

G. Hénaff – 2016

Cyclic plastic zone size

G. Hénaff – 2016

Propagation mechanisms: fatigue striations

- Periodic markings on fracture surfaces;
- Intermediate crack growth rate range (5x10⁻⁸ 10⁻⁵ m/cycle);
- Clearly defined in Aluminum alloys, much less in high strength alloys;
- No striation in inert environment.

G. Hénaff – 2016

Propagation mechanisms: fatigue striations

Striations afte fatigue at R=0.1 in a 2024 T351 alloy from the teardown of a A320 MSN004 wing: tip, maximum stress 400 MPa (a) and 300 MPa (b); engine area maximum stress 275 MPa (c) et 300 MPa (d) (Thèse F. Billy, ENSMA)

G. Hénaff – 2016 21

Mécanismes de Propagation : Stries de Fatigue

Striations in a precipition-hardened martensitic stainless steel used in aerostructures (thèse L. Dimithe-Aboumou, ENSMA)

Striation formation: Laird mechanism

Striation formation: Pelloux mechanism

Propagation mechanisms in the nearthreshold region

More brittle aspect of the fracture surfaces(cleavage-like fracture, intergranular decohesions,....)

G. Hénaff – 2016 25

Factors of influence

Influence of load ratio

G. Hénaff – 2016 27

Crack closure

Elber (1970): $\Delta K_{eff} = U \times \Delta K$

of ΔK_{eff}

For the 2024 T351 alloy in Paris regime: $U = a + b \times R$

G. Hénaff – 2016

Crack closure sources

G. Hénaff – 2016

Plasticity-Induced Closure

The material flow from the bulk that accumulates on the crack flanks, thereby giving rise to the premature contact as noted by Sun and Sehitoglu

G. Hénaff – 2016

Roughness-Induced Closure

Garcia and Sehitoglu modelled roughness-induced crack closure as a contact problem with random distribution of surface asperities.

G. Hénaff – 2016

Opening kinematics

FEM Simulation of the crack opening in a CCT specimen (after Chermahini et al. 1988).

Experimental measurement of the crack opening load

Experimental measurement of the crack opening load

G. Hénaff – 2016

Influence of metallurgical parameters

Grain size

The coarser the grain, the higher the threshold \leftrightarrow crack closure effect

G. Hénaff – 2016

Yield strength

The higher the yield strength, the lower the threshold \leftrightarrow crack closure effect

35

36

G. Hénaff – 2016

Influence of environment

A moist environment induces a loss of resistance

Propagation assistée par l'hydrogène

37

Fatigue Crack Propagation Laws

Empirical Laws:

$$\frac{d\mathbf{a}}{d\mathbf{N}} = \mathbf{C} \times \Delta \mathbf{K}^{\mathbf{m}}$$

$$\frac{da}{dN} = \frac{C \times \Delta K^{m}}{((1-R)K_{c} - \Delta K)}$$

Paris

Forman

Theoretical approaches:

$$\frac{da}{dN} = A \times \frac{\Delta K^4}{\mu \sigma_0^2 U}$$

Cumulative damage at the crack tip

$$\frac{da}{dN} = A \times \frac{\Delta K^4}{\epsilon_f E^2 \sigma_v^2 \rho}$$

Manson-Coffin at the crack tip (McClintock, Antolovitch,...)

CTOD (Pelloux)

Intrinsic fatigue crack growth (inert, ΔK_{eff})

Short cracks

Def: cracks for which at least one dimension is small with respect to other dimensions (geometry, grain size,...)

G. Hénaff – 2016

Kitagawa diagram

G. Hénaff – 2016

Kitagawa Diagram

42 G. Hénaff – 2016