Теория и решение примеров Шага 5, Ступени 1

Содержание

1	§Oc	новные п	рав	ИJ	ıa	K	O	м	5и	на	ìΤ	эp	и	ки	Ι														4
	1.1	Задание 1							•					•		٠													5
	1.2	Задание 2																											6
	1.3	Задание 3																											7
	1.4	Задание 4															٠												8
	1.5	Задание 5																											9
	1.6	Задание 6																											10
	1.7	Задание 7															٠												11
	1.8	Задание 8															٠												12
	1.9	Задание 9															٠												13
	1.10	Задание 1	0 .																										14
2	•	учайное с							_						e	П	00	СI	гp	aı	HC	T	ВС	Ο.	K	ĹЛ	a	c -	
		еское опр							_																				15
	2.1	Задание 1																											15
	2.2	Задание 1																											16
	2.3	Задание 1		•	٠	•	٠	٠	•		•	٠	•	•		•	٠	٠	•	•		•	٠	•	٠	•	•	•	17
	2.4	Задание 1			•		•	•	•			•		•		•	٠	٠		•		•	•	•	•			•	18
	2.5	Задание 1		•	•		•		•		•	•		•		•		•		•		•	•	•	•	•	•	•	19
	2.6	Задание 1		•	•		•		•		•	•		•		•		•		•		•	•	•	•	•	•	•	20
	2.7	Задание 1	7.	•	٠	•	٠	•	•		•	٠		•		٠	٠	٠	•	•		•	٠	•	٠	•	•	٠	21
	2.8	Задание 1	8 .	•	٠	•	٠	•	•		•	٠		•		٠	٠	٠	•	•		•	٠	•	٠	•	•	٠	22
	2.9	ר ז	9													٠											•	•	23
	2.10	Задание 1																											
		Задание 1			•		•		•							٠		•	•	•								•	24
	2.11	, ,	0 .																										2425
	2.11 2.12	Задание 2 Задание 2 Задание 2	0 . 1 . 2 .		•	•						•	•	٠		•		•	•							•	•		25 26
	2.11 2.12	Задание 2 Задание 2	0 . 1 . 2 .															•											25

	2.15	Задание 25			•				•	•																	29
	2.16	Задание 26							•																		30
	2.17	Задание 27							•																		31
	2.18	Задание 28							•	•																	32
	2.19	Задание 29																									33
	2.20	Задание 30																	٠							•	34
3	§Оп	ерации с со	бы	ти	ям	ш	, d	þo	pı	му	/л:	a c	эл	OΣ	K€	e H	ия	ΙB	ej	00	Я.	гн	O	ст	ге	й,	
	•	висимые с					, -		-										-	-						,	35
	3.1	Задание 31							•	•																	36
	3.2	Задание 32							•	•											•						37
	3.3	Задание 33							•																	•	38
	3.4	Задание 34								•											•						39
	3.5	Задание 35			•					•					٠				٠								40
	3.6	Задание 36			•					•					٠				٠								41
	3.7	Задание 37																									42
	3.8	Задание 38																									43
	3.9	Задание 39							•																		44
	3.10	Задание 40							•																		45
	3.11	Задание 41																									46
4	8Vc	ловная веро	\am	шО	Сm	т.																					47
•	4.1	Задание 42																									
	4.2	Задание 43																									48
		Задание 44	•	•	•		•	٠	•	•		•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	49
	4.4	Задание 45		•	•		•	•	•	•		•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	50
	4.5	Задание 46																									
	4.6	Задание 47																									52
	4.7	Задание 48																									53
	4.8	Задание 49																									
	-	r 1		-		•						-							-	-							_

	4.9	Задание 50																										55
	4.10	Задание 51								•				•	•			٠	٠	٠		٠	٠	•			٠	56
5	§Фс	рмулы пол	НО	й	В	ep	0	R	Τŀ	10	C'	ΤV	1 :	И	Б	a	й	ec	a									57
	5.1	Задание 52		•					•																			57
	5.2	Задание 53								٠							•				•					٠		58
	5.3	Задание 54															•				•							59
	5.4	Задание 55															•				•							60
	5.5	Задание 56															•				•							61
	5.6	Задание 57																										62
	5.7	Задание 58																										63
	5.8	Задание 59		•					•																			64
	5.0	Запанио 60																										65

1 §Основные правила комбинаторики

Теория отлично дана в книге, поэтому сюда я ее не переписывал. Условия тоже не переписываются.

1.1 Задание 1

Тут надо знать, что 000 для цифр быть не может

Способ решения является следствием из правила умножения. У нас есть 3 позиции одного типа(для цифр) и 3 позиции другого типа(для букв). Для первого типа количетво всех возможных значений равно 10, для второго - 12. В учебнике аналогичный пример, только количество позиций каждого типа равно 1. В любом случае, в таких ситуациях количество всех возможных значений - это основание, а количество позиций - это степень.

Слеовательно, всех вариантов с цифрами может быть:

 $10^3 - 1 = 999$

Для букв:

 12^{3}

Правильный ответ (по правилу умножения):

 $12^3 * 999 = 1726272$

1.2 Задание 2

Тут все просто, 4 позиции, количество всех возможных значений 10. $10^4 = 10000$

1.3 Задание 3

Тут нужно понять, сколько видов бутеров у нас получается и составить решение по правилу умножения для каждого типа.

Первый тип, когда в бутере есть все компоненты.

Хлеб: 1 позиция, 3 вида хлеба = 3 в степени 1 = 3.

Колбаса: 5.

Масло: 1.

Количество всех возможных вариантов для первого типа бутеров:

 $3 \cdot 5 \cdot 1 = 15$

Второй тип, когда в бутере нет колбасы.

Хлеб:3.

Масло: 1.

Количество всех возможных вариантов для второго типа бутеров:

 $3 \cdot 1 = 3$

Третий тип, когда в бутере нет масла.

Хлеб:3.

Колбаса: 5.

Количество всех возможных вариантов для третьего типа бутеров:

 $3 \cdot 5 = 15$

Для всех типов:

15 + 15 + 3 = 33

1.4 Задание 4

От A до K, исключая Ё и Й будет 10 букв. Цифр тоже 10.

1 позиция для букв, 3 для цифр: $10(\text{букв}) \cdot 10(\text{цифр}) \cdot 10(\text{цифр}) \cdot 10(\text{цифр}) = 10000$

1.5 Задание 5

Тут подвох в том, что правильных ответа 3. Ведь один и тот же человек может решить все хадачи(правило умножения), любые 4 человека могут быть выбраны из 20(порядок не важен - правило сочетаний) и каждая задача может быть предначертана преподом конкретному студенту(порядок важен - правило размещений).

Поэтому:

по правилу умножения:

 20^{4}

по правилу сочетаний

$$C_n^k = \frac{20 \cdot 19 \cdot 18 \cdot 17}{1 \cdot 2 \cdot 3 \cdot 4} = 4845$$

по правилу размещений

$$A_n^k = 20 \cdot 19 \cdot 18 \cdot 17 = 116280$$

1.6 Задание 6

$$n=36, k=3$$

Иногда проще решать задачу наоборот. Вытащим всех тузов из колоды - количетсво всех неинтересующих нас случаев:

$$C_{32}^{3}$$

Количество вообще всех случаев:

$$C_{36}^{3}$$

Тогда проще вычесть из всех неинтересующие случаи, тогда получим только интересющие!

$$C_{36}^3 - C_{32}^3$$

1.7 Задание 7

 C_{10}^{3}

1.8 Задание 8

- а) 16!, потому что нужно составить все возможные варианты очередей(правило перестановок)
- б) A_{16}^3

1.9 Задание 9

$$n = 2^6 = 64$$

Исключаем вариант "все решки"и все варианты "1 орла": 64-1-6=57

1.10 Задание 10

 $n_1 = 20$

 $n_2 = 3$ $C_{20}^5 \cdot 3$

2 §Случайное событие. Вероятностное пространство. Классическое определение вероятности.

2.1 Задание 11

```
1)например, 6,6, орел.
```

3)дублей с орлом всего может быть 6, тогда

$$p$$
(дубль с орлом) = $\frac{6}{72}$

2.2 Задание 12

```
позиций = 4, алфавит = 2, тогда всего исходов: 2^4=16 Количество исходов, когда нет орлов = 1. Есть хотя бы 1 орел:16-1=15 p(\text{хотя бы 1 орел})=\frac{15}{16}
```

2.3 Задание 13

```
позиций = 2, алфавит = 6 Всего: 6^2 = 36 интересующие нас случаи(их 5): 2-6, 3-5, 4-4, 5-3, 6-2 p(\text{сумма очков равна 8}) = \frac{5}{36}
```

2.4 Задание 14

позиций =3, алфавит =6.

Всего исходов: $6^3 = 216$

Нас интересуют случаи(их 4):

666

665

656

566

 $p(\text{сумма очков больше 16}) = \frac{4}{216}$

2.5 Задание 15

```
позиций = 5, алфавит = 6.
```

Всего: 6^5

Нас интересуют случаи(их 6):

11111

11112

11121

11211

12111

21111

p(сумма мегьше, либо равна 6) = $\frac{6}{6^5} = \frac{1}{6^4}$

2.6 Задание 16

позиций =2, алфавит =6

Всего: $6^6 = 36$

Нас интересуют:

- 6-1
- 6-2
- 6-3
- 6-4
- 6-5
- 1-6
- 2-6
- 3-6
- 4-6
- 5-6

p(не более одного раза) = $\frac{10}{36} = \frac{5}{18}$

2.7 Задание 17

позиций =4, алфавит =10

Всего: $10^4 = 10000$

3 попытки. Тут странно, так как если ты ввел какой-нибудь пин-код, а он неверный, то вводить его еще раз ты не будешь. Значит, каждая следующая попытка уменьшает количество пинковод на 1, тем самым чуть-чуть увеличивая вероятность успеха. То есть

 $p(\text{угадать пин-код с 3 попытки}) = \frac{1}{10000} + \frac{1}{9999} + \frac{1}{9998}$ Но в ответах почему-то $\frac{3}{10000}$

2.8 Задание 18

 $\frac{n}{k}$

2.9 Задание 19

к сожалению, я не знаю, как это решить. Мне кажется, что в условии чего-то не хватает.

2.10 Задание 20

6 юношей, 14 девушек.

количество всех возможных способов вырать 2 юношей из 6:

$$C_6^2 = \frac{6 \cdot 5}{1 \cdot 2} = 15$$

количество всех возможных способов вырать 1 девушку из 14:

$$C_{14}^1 = 14$$

колиество способов выбрать 3 любых студента из $\mathrm{scex}(6+14=20)$:

$$C_{20}^3 = \frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3} = 20 \cdot 19 \cdot 3$$

$$p = \frac{C_6^2 \cdot C_{14}^1}{C_{20}^3} = \frac{14 \cdot 15}{20 \cdot 19 \cdot 3} = \frac{7}{38}$$

2.11 Задание 21

количество всех возможных способов вырать 3 из 12:

$$C_{12}^3 = \frac{12 \cdot 11 \cdot 10}{1 \cdot 2 \cdot 3} = 220$$

колиество способов выбрать 3 любых из вcex(12+3=15):

$$C_{15}^3 = \frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3} = 455$$

$$C_{15}^3 - C_{12}^3 = 455 - 220 = 235$$

$$C_{15}^{3} = \frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3} = 455$$

$$C_{15}^{3} - C_{12}^{3} = 455 - 220 = 235$$

$$p = \frac{C_{15}^{3} - C_{12}^{3}}{C_{15}^{3}} = \frac{235}{455} = \frac{47}{91}$$

2.12Задание 22

 C_n^m

В подобных задачах лучше чтобы у всех С, п было минимально. Тогда легче счистать.

Число интересующих исходов:

$$C_{20}^3 - (C_5^2 \cdot C_{15}^1 + C_5^3)$$

$$C_5^2 = \frac{5\cdot 4}{1\cdot 2} = 10$$

$$C_{15}^1 = 15$$

$$C_5^2 \cdot C_{15}^1 = 150$$

$$C_5^3 = \frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} = 10$$

$$C_5^2 \cdot C_{15}^1 + C_5^3 = 150 + 10 = 160$$

$$C_{20}^3 = \frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3} = 1140$$

$$C_{20}^3 - (C_5^2 \cdot C_{15}^1 + C_5^3) = 1140 - 160 = 980$$

$$C_{20}^{3} = \frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3} = 1140$$

$$C_{20}^{3} - \left(C_{5}^{2} \cdot C_{15}^{1} + C_{5}^{3}\right) = 1140 - 160 = 980$$

$$p = \frac{C_{20}^{3} - \left(C_{5}^{2} \cdot C_{15}^{1} + C_{5}^{3}\right)}{C_{20}^{3}} = \frac{890}{1140} = \frac{49}{57}$$

2.13 Задание 23

Здесь проще наоборот, решаем случай, когда вообще нет юношей. Это когда есть только девушки)

Число всех интересующий исходов в таком случае:

$$\begin{split} &C_{25}^3 - C_{15}^3 \\ &p = \frac{C_{25}^3 - C_{15}^3}{C_{25}^3} \\ &C_{25}^3 = 2300 \\ &C_{15}^3 = 455 \\ &C_{25}^3 - C_{15}^3 = 2300 - 455 = 1845 \\ &p = \frac{C_{25}^3 - C_{15}^3}{C_{25}^3} = \frac{1845}{2300} = \frac{369}{460} \end{split}$$

2.14 Задание 24

На интересуют случаи, когда выбраны только 4 парня или когда выбраны 3 парня и 1 девушка:

$$C_{10}^4 + C_{10}^3 \cdot C_5^1$$

Тогда вероятность всех этих исходов будет:
$$p=\frac{C_{10}^4+C_{10}^3\cdot C_5^1}{C_{15}^4}=\frac{810}{1365}=\frac{54}{91}$$

2.15 Задание 25

Нас интересуют случаи, когда повезло 2 новичкам и одному бывалому и

$$3$$
 новичкам:
$$p=\frac{C_6^3+C_6^2\cdot C_9^1}{C_{15}^3}=\frac{135+20}{455}=\frac{31}{91}$$

2.16 Задание 26

Хотя бы один, это значит 1 и более.

Проше решать обратную задачу - найти количество всех вариантов англоговорящих делегаций, далее из вообще всех вариантов вычесть это число. Получим как раз те случаи, когда в делегации есть хоть один неговорящий. Число вариантов хорошо говорящих делегаций:

 C_6^3

Число всех:

 C_{10}^{3}

Число вариантов вообще не говорящих по английски делегаций:

$$C_{10}^3 - C_6^3$$

Вероятность того, что в делегацию попадет хотя бы один неговорящий:

$$p = \frac{C_{10}^3 - C_6^3}{C_{10}^3} = \frac{120 - 20}{120} = \frac{5}{6}$$

2.17 Задание 27

Нас интересуют случаи, когда проконтроллированы 2 брака и 2 нормальных трубы, и проконтроллированы все 3 брака и 1 нормальная труба: $p=\frac{C_3^2\cdot C_{12}^2+C_3^3\cdot C_{12}^1}{C_{15}^4}=\frac{198+12}{1365}=\frac{2}{13}$

2.18 Задание 28

$$p = \frac{C_{12}^3 \cdot C_{10}^1 + C_{12}^4}{C_{22}^4} = \frac{7}{19}$$

Задание 29 2.19

- 1) Тут проще сначала решать наоборот.
- $p = \frac{C_{23}^5 (C_8^1 \cdot C_{15}^4 + C_{15}^5)}{C_{23}^5}$ $2) \ p = \frac{C_{15}^3 \cdot C_8^2}{C_{23}^3}$

2.20 Задание 30

Нужно найти вероятности прохождения первого и второго туров.

$$p_1 = \frac{C_{25}^3 \cdot C_5^1 + C_{25}^4}{C_{30}^4}$$

$$p_2 = \frac{C_{18}^3 \cdot C_6^1 + C_{18}^4}{C_{24}^4}$$

Тут придется сначала прочитать теорию к следующе главе, чтобы знать, почему вероятности исходов первого и второго тура в коннце надо умножить.

$$p_1 \cdot p_2 = \frac{C_{25}^3 \cdot C_5^1 + C_{25}^4}{C_{30}^4} \cdot \frac{C_{18}^3 \cdot C_6^1 + C_{18}^4}{C_{24}^4}$$

3 §Операции с событиями, формула сложения вероятностей, независимые события

Чтобы здесь хоть что-то решить, лучше полностью выучить теорию из всех прерыдущих глав.

3.1 Задание 31

Тут ошибка в ответах!

$$n=36$$

А - на 1 кости четное

В - на 1 и 2 кости в сумме больше 3

Число исходов события В проще посчитать, если посчитать число исходов обратных В и вычесть это число из всех. Всего исходов для \overline{B} :

11

12

21

Тогда,

$$n_B = 36 - 3 = 33$$

$$n_A = 3 \cdot 6 = 18$$

$$P(A) = \frac{18}{36} = \frac{1}{2}$$

$$P(B) = \frac{33}{36} = \frac{11}{12}$$

a)
$$A \cap B$$
:

$$n_{A \cap B} = 6 + 6 + 5 = 17$$

$$P(A \cap B) = \frac{17}{36}$$

6)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{11}{12} - \frac{17}{36} = \frac{34}{36} = \frac{17}{18}$$

B)
$$P(A) = \frac{18}{36} = \frac{1}{2}$$

$$\Gamma) \ P(\bar{A}) = \frac{18}{36} = \frac{1}{2}$$

д)
$$n_{\overline{A} \cap \overline{B}} = 36 - 17 = 19P(\overline{A \cap B}) = \frac{19}{36}$$

3.2 Задание 32

А - Анжи победит МЮ

В - Зенит победит Барселону

С - наши победят

D - только одна наша команда победит

Е - никто из наших не победит

F - выиграет только Зенит

$$P(A) = 0.3$$

$$P(B) = 0.4$$

$$P(C) = P(A \cap B) = 0.3 \cdot 0.4 = 0.12$$

$$P(D) = P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) = 0.3 \cdot 0.6 + 0.7 \cdot 0.4 = 0.4 \cdot 0.4 \cdot 0.4 \cdot 0.4 = 0.4 \cdot 0.4 = 0.4 \cdot 0.4 \cdot 0.4 =$$

0.76

$$P(E) = P(\overline{A} \cap \overline{B}) = P(\overline{A}) \cdot P(\overline{B}) = 0.6 \cdot 0.7 = 0.42$$

$$P(F) = P(\overline{A} \cap B) = 0.28$$

3.3 Задание 33

$$n=36$$

$$P(A \cup B) - ?$$

$$n_A = 6$$

$$n_B = 6$$

$$A\cap B:6-6,5-5.$$

$$n_{A\cap B}=2$$

$$P(A) = \frac{6}{36}$$

$$P(B) = \frac{6}{36}$$

$$P(A \cap B) = \frac{2}{36}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{6}{36} + \frac{6}{36} - \frac{2}{36} = \frac{10}{36} = \frac{5}{18}$$

3.4 Задание 34

$$\begin{split} P(A \cap B) &= P(A) \cdot P(B) \\ P(A) &= 0.4 \\ P(B) &= 0.9 \\ P((A \cap \overline{B}) \cup (\overline{A} \cap B) \cup P(\overline{B}) \cdot P(\overline{A})) &= P(A \cap \overline{B}) + P(\overline{A} \cap B) + P(\overline{B}) \cdot P(\overline{A}) = \\ P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) + P(\overline{A}) \cdot P(\overline{B}) &= 0.4 \cdot 0.1 + 0.6 \cdot 0.9 + 0.1 \cdot 0.6 = 0.64 \end{split}$$

3.5 Задание 35

А - книга есть в первой библиотеке В - книга есть во второй библиотеке

$$P(A) = 0.7$$

$$P(B) = 0.5$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (A \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) + P(A) \cdot P(B) = 0.7 \cdot 0.5 + 0.3 \cdot 0.5 + 0.7 \cdot 0.5 = 0.5 \cdot (0.7 + 0.3 + 0.7) = 0.5 \cdot 1.7 = 0.85$$

3.6 Задание 36

$$P(A) = 0.4$$

$$P(B) = 0.7$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) = 0.4 \cdot 0.3 + 0.6 \cdot 0.7 = 0.54$$

3.7 Задание 37

$$\begin{split} P(A) &= 0.6 \\ P(B) &= 0.4 \\ P((A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (A \cap B)) &= P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) + P(A) \cdot P(B) = \\ 0.4 \cdot 0.4 + 0.6 \cdot 0.6 + 0.6 \cdot 0.4 = 0.76 \end{split}$$

3.8 Задание 38

А - первый студент придет в срок

В - второй студент придет в срок

$$P(A) = 0.8$$

$$P(B) = 0.7$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) = 0.2 \cdot 0.7 + 0.8 \cdot 0.3 = 0.38$$

3.9 Задание 39

А - увидеть на телевидении

В - прочитать в прессе

$$P(A) = 0.7$$

$$P(B) = 0.4$$

$$P(A \cap \overline{B}) = 0.7 \cdot 0.6 = 0.42$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.7 + 0.4 - 0.7 \cdot 0.4 = 0.82$$

3.10 Задание 40

А - отлично по первому предмету

В - отлично по второму предмету

$$P(A) = 0.3$$

$$P(B) = 0.5$$

$$P(A \cap B) = P(A) \cdot P(B) = 0.3 \cdot 0.5 = 0.15$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) = 0.3 \cdot 0.5 + 0.7 \cdot 0.5 = 0.5$$

3.11 Задание 41

А - первый студент опоздает

В - второй студент опоздает

$$P(A) = 0.2$$

$$P(B) = 0.6$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (A \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) + P(A) \cdot P(B) = 0.8 \cdot 0.6 + 0.2 \cdot 0.4 + 0.2 \cdot 0.6 = 0.68$$

§Условная вероятность

4.1 Задание 42

А - сумма очков бюольше 8

В - выпало четное число

$$n = 36$$

$$n_{A\cap B}=3$$

$$n_B = 9$$

$$P(B) = \frac{9}{36}$$

$$P(A \cap B) = \frac{3}{36}$$

$$P(A \cap B) = \frac{3}{36}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3}{36} : \frac{9}{36} = \frac{1}{3}$$

4.2 Задание 43

А - на 1 любой выпало 6

В - на всех разные цифры

$$n = 216$$

$$n_B = 6 \cdot 5 \cdot 4$$

$$P(B) = \frac{120}{216}$$

$$n_{A \cap B} = 5 \cdot 4 \cdot 3 = 60$$

$$P(A \cap B) = \frac{60}{216}$$

$$P(A \cap B) = \frac{60}{216}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{60}{216} : \frac{120}{216} = \frac{1}{2}$$

Задание 44 4.3

А - четное на 1

В - в сумме 8

$$n = 36$$

$$n_B = 5$$

$$P(B) = \frac{5}{36}$$

$$n_A = 6 \cdot 3 = 18$$

$$P(A) = \frac{18}{36}$$

$$n_{A \cap B} = 3$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{3}{36} \neq \frac{18}{36} \cdot \frac{5}{36}$$

$$\frac{\frac{3}{36} \neq \frac{18}{36} \cdot \frac{5}{36}}{p(A|B)} = \frac{P(A \cap B)}{P(B)} = \frac{3}{36} : \frac{36}{5} = \frac{6}{10}$$

4.4 Задание 45

А - четное на 1

$$n = 8$$

$$n_B = 4$$

$$P(B) = \frac{4}{8}$$

$$n_A = 4$$

$$P(A) = \frac{4}{8}$$

$$n_{A\cap B}=3$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{3}{8} \neq \frac{4}{8} \cdot \frac{8}{4}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3}{36} : \frac{36}{5} = \frac{6}{10}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3}{36} : \frac{36}{5} = \frac{6}{10}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{4}{8} + \frac{4}{8} - \frac{3}{8} = 0.685$$

4.5 Задание 46

$$n = 36$$

$$n_B = 18$$

$$P(B) = \frac{18}{36}$$

$$n_A = 6$$

$$P(A) = \frac{6}{36}$$

$$n_{A \cap B} = 4$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{4}{36} \neq \frac{18}{36} \cdot \frac{6}{36}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{4}{36} : \frac{36}{18} = \frac{2}{9}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{6}{36} + \frac{18}{36} - \frac{4}{36} = \frac{20}{36}$$

4.6 Задание 47

$$\begin{split} n &= 216 \\ n_B &= 10 \\ P(B) &= \frac{10}{216} \\ n_A &= 180 \\ P(A) &= \frac{180}{216} \\ n_{A\cap B} &= 8 \\ P(A\cap B) &= P(A)\cdot P(B) \\ \frac{8}{216} &\neq \frac{10}{216} \cdot \frac{180}{216} \\ p(A|B) &= \frac{P(A\cap B)}{P(B)} = \frac{8}{216} : \frac{216}{10} = \frac{8}{10} \end{split}$$

4.7Задание 48

$$n = 216$$

$$n_B = 108$$

$$P(B) = \frac{108}{216}$$

$$n_A = 10$$

$$P(A) = \frac{10}{216}$$

$$n_{A\cap B}=7$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{7}{216} : \frac{216}{108} = \frac{7}{108}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{7}{216} : \frac{216}{108} = \frac{7}{108}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{10}{216} + \frac{108}{216} - \frac{7}{216} = \frac{111}{216} = \frac{37}{72}$$

4.8 Задание 49

$$\begin{split} n &= 216 \\ n_B &= 4 \\ P(B) &= \frac{4}{216} \\ n_A &= 6 \\ P(A) &= \frac{6}{216} \\ n_{A\cap B} &= 1 \\ P(A\cap B) &= P(A)\cdot P(B) \\ \frac{1}{216} &\neq \frac{6}{216} \cdot \frac{4}{216} \\ p(A|B) &= \frac{P(A\cap B)}{P(B)} = \frac{1}{216} : \frac{216}{4} = \frac{1}{4} = 0.25 \end{split}$$

4.9 Задание 50

$$n = 10$$

$$n_B = 6$$

$$P(B) = \frac{6}{10}$$

$$n_A = 9$$

$$P(A) = \frac{9}{10}$$

$$n_{A \cap B} = 6$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{6}{10} \neq \frac{9}{10} \cdot \frac{6}{10}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{6}{10} : \frac{10}{9} = \frac{2}{3}$$

4.10 Задание 51

А - учебник у одного из друзей.

$$P(A) = \frac{8}{10}$$

$$P(\overline{A}) = \frac{2}{10}$$

А₁-учебник у Вани

 A_2 -учебник у Пети

$$P(A_1) = P(A_2) = \frac{4}{10}$$

В - у Вани учебника нет - учебник или у Пети или потерян

$$P(B) = P(A_2) + P(\overline{A}) = 0.4 - 0.2 = 0.6$$

P(учебник у Пети, если у васи его нет) = $\frac{P(A_2)}{P(B)} = \frac{0.4}{0.6} = \frac{2}{3}$

5 §Формулы полной вероятности и Байеса

5.1 Задание 52

- n=30 $n_1=15$ $n_2=6$ $n_3=9$ H_1 -первый сорт H_2 -второй сорт H_3 -третий сорт A-червивое $P(A|H_1)=0.2$ $P(A|H_2)=0.5$
- $P(A|H_3) = 0.1$

$$P(H_1) = \frac{15}{30}$$

$$P(H_2) = \frac{6}{30}$$

$$P(H_3) = \frac{9}{30}$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2) + P(A|H_3) \cdot P(H_3)$$

$$P(A) = 0.2 \cdot \frac{15}{30} + 0.5 \cdot \frac{6}{30} + 0.1 \cdot \frac{9}{30} = 0.23$$

5.2 Задание 53

$$n = 150$$

$$n_1 = 75$$

$$n_2 = 60$$

$$n_3 = 15$$

 H_1 -первая партия

 H_2 -вторая партия

 H_3 -третья партия

$$P(A|H_1) = 0.3$$

$$P(A|H_2) = 0.4$$

$$P(A|H_3) = 0.7$$

$$P(H_1) = \frac{75}{150}$$

$$P(H_2) = \frac{60}{150}$$

$$P(H_3) = \frac{15}{150}$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2) + P(A|H_3) \cdot P(H_3)$$

$$P(A) = 0.3 \cdot \frac{75}{150} + 0.4 \cdot \frac{60}{150} + 0.7 \cdot \frac{15}{150} = 0.38$$

5.3 Задание 54

ЭТА ЗАДАЧА РЕШЕНА НЕВЕРНО ЭТА ЗАДАЧА РЕШЕНА НЕВЕРНО ЭТА ЗАДАЧА РЕШЕНА НЕВЕРНО

$$n = 10$$

$$n_1 = 7$$

$$n_2 = 3$$

$$H_1$$
-в клетку

$$H_2$$
-в линейку

$$A$$
—забыл

$$P(A|H_1) = \frac{1}{7}$$

$$P(A|H_2) = \frac{1}{3}$$

$$P(H_1) = \frac{7}{10}$$

$$P(H_2) = \frac{3}{10}$$

$$P(H_1|A) = \frac{P(A|H_1) \cdot P(H_1)}{P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)}$$

$$P(H_1|A) = \frac{\frac{1}{7} \cdot \frac{7}{10}}{\frac{1}{7} \cdot \frac{7}{10} + \frac{1}{3} \cdot \frac{3}{10}} =$$

$$P(H_1|A) = \frac{\frac{1}{7} \cdot \frac{7}{10}}{\frac{1}{7} \cdot \frac{7}{10} + \frac{1}{3} \cdot \frac{3}{10}} =$$

5.4 Задание 55

 H_1 -благоприятная ситуация

 H_2 -неблагоприятная ситуация

A-продать

$$P(A|H_1) = 0.7$$

$$P(A|H_2) = 0.2$$

$$P(H_1) = 0.15$$

$$P(H_2) = 0.85$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.7 \cdot 0.15 + 0.2 \cdot 0.85 = 0.275$$

$$P(H_2|A) = \frac{P(A|H_2) \cdot P(H_2)}{P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)}$$

$$P(H_2|A) = \frac{0.2 \cdot 0.85}{0.275} = \frac{34}{55}$$

$$P(H_2|A) = \frac{0.2 \cdot 0.85}{0.275} = \frac{34}{55}$$

5.5 Задание 56

 H_1 -опытный

 H_2 -неопытный

A—ошибка

$$P(A|H_1) = 0.02$$

$$P(A|H_2) = 0.1$$

$$P(H_1) = 0.9$$

$$P(H_2) = 0.1$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.02 \cdot 0.9 + 0.1 \cdot 0.1 = 0.028$$

$$P(\overline{A}) = 1 - P(\overline{A})$$

$$P(\overline{A}) = 1 - 0.028 = 0.972$$

$$P(H_2|\overline{A}) = \frac{P(\overline{A}|H_2) \cdot P(H_2)}{P(\overline{A})}$$

$$P(H_2|\overline{A}) = \frac{P(\overline{A}|H_2) \cdot P(H_2)}{P(\overline{A})}$$

$$P(H_2|\overline{A}) = \frac{9}{10} \cdot \frac{1}{10} \cdot \frac{1000}{972} = \frac{5}{54}$$

5.6 Задание 57

 H_1 -первый округ

 H_2 -второй округ

 H_3 -третий округ

A—будет избран

$$P(A|H_1) = 0.4$$

$$P(A|H_2) = 0.2$$

$$P(A|H_3) = 0.8$$

$$P(H_1) = 0.3$$

$$P(H_2) = 0.2$$

$$P(H_2) = 0.5$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2) + P(A|H_3) \cdot P(H_3)$$

$$P(A) = 0.4 \cdot 0.3 + 0.2 \cdot 0.2 + 0.8 \cdot 0.5 = 0.56$$

5.7 Задание 58

 H_1 -отлично по математике на первом курсе

 H_2 —неотлично по математике на первом курсе

A-отлично по математике на втором курсе

$$P(A|H_1) = 0.8$$

$$P(A|H_2) = 0.15$$

$$P(H_1) = 0.1$$

$$P(H_2) = 0.9$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.8 \cdot 0.1 + 0.15 \cdot 0.9 = 0.215$$

5.8 Задание 59

 H_1 -отлично по математике на первом курсе

 H_2 —неотлично по математике на первом курсе

A—отлично по математике на втором курсе

$$P(A|H_1) = 0.7$$

$$P(A|H_2) = 0.25$$

$$P(H_1) = 0.2$$

$$P(H_2) = 0.8$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.7 \cdot 0.2 + 0.25 \cdot 0.8 = 0.34$$

Значит, 34 процента

5.9 Задание 60

 H_1 -горожанин

 H_2 -сельчанин

A—голос за Единую Россию

$$P(A|H_1) = 0.4$$

$$P(A|H_2) = 0.6$$

$$P(H_1) = 0.75$$

$$P(H_2) = 0.25$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.4 \cdot 0.75 + 0.6 \cdot 0.25 = 0.45$$

$$P(\overline{A}) = 1 - P(A) = 0.55$$