

Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Computadores CE 3201 — Taller de Diseño Digital

Laboratorio 1:

Introducción a los lenguajes de descripción de hardware

Fecha de asignación: 09 febrero 2024 | Fecha de entrega: 21 febrero 2024

Grupos: 3 personas Profesor: Luis Barboza Artavia

1. Introducción

Este laboratorio introduce al estudiante al diseño de circuitos digitales por medio de lenguajes de descripción de hardware (HDL). Un HDL es una forma de describir la especificación, comportamiento o estructura de un módulo de hardware, por medio de una estructura programática. Pese a su similitud con un lenguaje de programación (tipos de datos, estructuras básicas, sintaxis, etc) los HDL deben describir hardware, por lo que para todo diseño, se debe tener conocimiento completo de qué componente se está diseñando. Esto implica la realización previa de tablas de verdad, diagramas de estados, diagramas de bloques, etc.

En este laboratorio se trabajarán los lenguajes *System Verilog* y VHDL. Para más información sobre los lenguajes a utilizar, se recomienda estudiar el capítulo 4 de [?].

1.1. Procedimiento

A lo largo del laboratorio se desarrollarán varios ejercicios que guiarán a los estudiantes por el proceso de diseño, implementación y verificación de circuitos digitales básicos, por medio de lenguajes de descripción de hardware.

- 1. Lea y trate de comprender todo el trabajo solicitado antes de iniciarlo.
- 2. Para la presentación funcional, se le pedirá que muestre algunos de los ejercicios propuestos, ya sea en implementación o simulación. Dicha selección se hará el día de la presentación.

2. Investigación

Para el desarrollo de este laboratorio se deben responder las siguientes preguntas.

- 1. Explique el modelado de comportamiento y de estructura en diseño digital. Brinde un ejemplo de cada uno.
- 2. Explique el proceso de síntesis lógica en el diseño de circuitos digitales.

- 3. Investigue sobre la tecnología de FPGAs. Describa el funcionamiento de la lógica programable en general, así como los componentes básicos de una.
- 4. Investigue sobre los actuales modelos de FPGA utilizados en la industrias.
- 5. Investigue sobre cuáles son las aplicaciones más comunes en la industria que tienen las FPGA.

3. Ejercicios

A continuación se presentan 3 ejercicios prácticos, los cuales debe resolver de manera completa.

3.1. Problema 1

- 1. Diseñe un decodificador que permita convertir un número de 4 bits en binario a su respectiva representación en BCD (binary-coded decimal), mediante modelo de comportamiento en SystemVerilog.
- 2. Realice un *testbech*, en SystemVerilog, en el que se muestre de manera simple el funcionamiento del decodificador. Muestre el resultado de la prueba para al menos 8 valores diferentes.
- 3. Implemente el decodificador en la FPGA. Utilice los switches (iniciando en el cero) como entrada y un display para 7 segmentos para visualizar el funcionamiento del decodificador.

3.2. Problema 2

- 1. Diseñe un sumador completo de 4 bits con modelo de estructura en VHDL. Parta del diseño un sumador completo de 1 bit.
- 2. Realice un *testbench* para el sumador del punto anterior, en VHDL. Muestre las pruebas para al menos 4 valores diferentes de operandos.
- 3. Implemente el sumador completo en FPGA. Utilice los switches de las tarjeta para los datos de entrada, así como los display de 7 segmentos para mostrar el resultado correcto (en hexadecimal).

3.3. Problema 3

- 1. Diseñe un contador parametrizable de N bits con reset asincrónico en el lenguaje de descripción de su preferencia.
- 2. Realice un *testbench* de auto-chequeo (self-checking) para el contador del punto anterior. Muestre el resultado del *testbench* para 2, 4 y 6 bits.
- 3. Implemente el contador para 6 bits en la FPGA, utilice un botón para decrementar, un switch como reset, así como el display de 7 segmentos para visualizar el funcionamiento del contador. Además utilice los botones para establecer el valor inicial del contador regresivo.

4. Metodología de trabajo

El proyecto debe seguir los siguientes aspectos de desarrollo, sino, la parte funcional no será calificada y obtendrá nota de cero:

- 1. Utilice una cuenta de repositorio gratuita.
- 2. Cree un repositorio con el siguiente nombre: <user_id>_digital_design_lab_2023. El user_id estará compuesto por la primera letra del nombre y el apellido. Por ejemplo, para el estudiante Luis Barboza, el nombre del repositorio será:

lbarboza_digital_design_lab_2023.

- 3. Si el repositorio es privado, proporcione acceso a luisbarbozaCE (GitHub y GitLab).
- 4. El repositorio de Git contendrá dos ramas principales: master y development.
- 5. Inicialmente, la rama de development se crea a partir del master.
- 6. Al trabajar en un proyecto, el estudiante debe crear una nueva rama de trabajo desde develop y cuando la función esté lista, la rama debe fusionarse para develop. Cualquier corrección o modificación adicional después de merge debería requerir que se repita el proceso (es decir, crear la rama desde develop y fusionar los cambios más tarde). Una vez que el código de desarrollo esté listo, se fusionará con master y se debe crear una tag. El proceso se describe en la siguiente Figura 1.

Adicionalmente se coloca este enlace recomendado.

- 7. Después de haber realizado algunos laboratorio la rama master debe verse así:
 - master/
 - laboratorio_1

Figura 1: Git workflow

- laboratorio_2
- ...

. . . .

Donde cada directorio de laboratorio_x contiene todos los entregables para cada laboratorio.

No es permitido realizar todo el trabajo en un solo commit, es decir, que realice el trabajo de forma local y solo suba el último entregable en el repositorio. Si no, obtendrá nota de cero. Debe mostrar avance incremental (se revisarán estadísticas).

5. Bitácora

La bitácora será manejada por medio de Github. Se revisará un avance incremental en los commits y la participación de todos los integrantes.

6. Fecha de entrega

El enlace del Git debe cargarse al tecdigital.

Si tienen dudas puede escribir al profesor al correo electrónico. Los documentos serán sometidos a control de plagios. La entrega se debe realizar por medio del TEC-Digital en la pestaña de evaluación. No se aceptan entregas extemporáneas después de la fecha de entrega a las 11:59 pm como máximo.