Deterministic and Stochastic Optimal Control of a Batch Cooling Crystallizer

Tushar Gupta (13CH30023)

Guide: Prof. Debasis Sarkar

Overview

Importance

- The batch system helps to obtain a narrower Particle size distribution (PSD) with high crystal purity.
- Finding effective control strategy to obtain a desired CSD is significant in order for improving the performance of batch crystallization processes

Objective

 The project aims to obtain optimal control analysis of batch crystallization process characterized by determination of the time varying profiles.

Concepts

- Deterministic Control using Maximum Principle
 Formulation.
- Propagation of Uncertainties through Stochastic Ito Processes and Polynomial Chaos Expansions.

Contents

- Model Formulation
- Deterministic Optimal Control
- Uncertainty Quantification
 - Ito Processes
 - Polynomial Chaos Expansions
- Application to Unseeded Crystallization Process

Essentials for Control Strategy

• The main control parameters affecting crystallization are **Temperature** and **Supersaturation**.

Supersaturation =
$$\Delta C = C - C_s$$

Relative supersaturation =
$$S = \frac{\Delta C}{C_s}$$

- Crystallization occurs through the following main phenomena:
 - a. Nucleation
 - b. Crystal Growth
 - c. Agglomeration
 - d. Breakage
- It is essential to be incorporate the above kinetics accurately to build a precise computational model.

Model Formulation

Modelling Batch Crystallization

Population Balance equations

 Modeling of a batch crystallizer involves the use of population balances to model the crystal size distribution.

$$\frac{\partial n(r,t)}{\partial t} + \frac{\partial G(r,t)n(r,t)}{\partial r} = B$$

• Moment Model for reduction of Population Balance Equations to O.D.E

$$\mu_i^n = \int_0^\infty r^i n(r, t) dr$$

$$\mu_i^s = \int_{r_g}^\infty r^i n(r, t) dr$$

The subscript i indicates the order of the corresponding moment.

Definition :

$$\mu_0^s = \text{constant}$$

$$\frac{d\mu_0^n}{dt} = B(t)$$

$$\frac{d\mu_i^s}{dt} = iG(t)\mu_{i-1}^s(t) \qquad i = 1, 2, 3$$

$$\frac{d\mu_i^n}{dt} = iG(t)\mu_{i-1}^n(t) \qquad i = 1, 2, 3$$

- Fourth-order moments and higher do not affect third-order moments and lower, implying that only the first four moments and concentration can adequately represent the crystallization dynamics .
- Thus, State variables are defined as:

$$y_i = \begin{bmatrix} C & \mu_0^s & \mu_1^s & \mu_2^s & \mu_3^s & \mu_0^n & \mu_1^n & \mu_2^n & \mu_3^n \end{bmatrix}$$
 where,
$$\frac{\mathrm{d}C}{\mathrm{d}t} = -3\rho k_\nu G(t) \mu_2(t)$$

Deterministic Optimal Control

Problem Definition

- **Aim**: find an optimal temperature trajectory, which minimizes the total volume of fine crystals, and maximizes the size of seeded crystals in order to satisfy the product quality requirements.
- Objective Function :

$$\max_{T(t)} \{ \mu_3^s(t_f) - \mu_3^n(t_f) \}$$

• Active Constraints (maintains the supersaturation condition):

$$C_s \leq C \leq C_m$$

• A **Maximum Principle** formulation is used where Hamiltonian takes an extreme value for the control variable at each control point.

$$T^{new}(t) = T^{old}(t) + M\left(\frac{dH}{dT}\right)$$

Algorithm

Overall Flowchart

Image Source : Yenkie et al.

- Objective function reaches a peak value of 9.153 X 10⁹ at t = 1387s which is the required aim of the modelling.
- The modelling has been done for potassium sulphate crystals
- Various methods of integrating ordinary differential equations were experimented upon during the implementation in Python and Matlab

- This cooling profile is obtained for the final iteration.
- The initial temperature here is 323 K which gets reduced to 300 K.
- Remains at a steady value after reaching that point.

• The value of the Hamiltonian derivative is shown after each iteration :

Iteration 3 Iteration 4

Uncertainty Quantification

The Need for Uncertainty Quantification

 The kinetic parameters are generally empirical constants determined by fitting experimental data to the model, and, hence, are a source of uncertainty within the system

kinetic constants	value from experiments/ model fitting	range of values
	Uncertainty	G
$k_{\rm g}$	$1.44 \times 10^8 \ \mu \text{m s}^{-1}$	$1.368 \times 10^8 - 1.512 \times 10^8$
$\frac{k_{\rm g}}{E_{\rm g}/R}$	4859 K	4616.05-5101.95
g	1.5	1.425-1.575
	Uncertainty	В
$k_{\rm b}$	285 (s μm^3) ⁻¹	270.75-299.25
$E_{\rm b}/R$	7517 K	7141.15-7892.85
b	1.45	1.3775-1.5225

$$B(t) = k_b \exp\left(\frac{-E_b}{RT}\right) \left(\frac{C - C_s(T)}{C_s(T)}\right)^b \mu_3(t)$$

$$G(t) = k_g \exp\left(\frac{-E_g}{RT}\right) \left(\frac{C - C_s(T)}{C_s(T)}\right)^g$$

Stochastic Optimal Control of a Batch Crystallizer

 The time-dependent uncertainties are incorporated into the model equations through stochastic processes known as Ito processes.

$$dy = a(y, t) dt + b(y, t) dz$$

- **dz** is the increment of the Wiener process(Brownian Motion) equal to $\varepsilon_t(\Delta t)^{1/2}$, and a(y,t) and b(y,t) are known functions. The random value ε_t has a unit normal distribution with zero mean and a standard deviation of 1.
- The equations for state variables get updated to stochastic differential equations.
- For example :

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = -3\rho k_v G(t)(y_4 + y_8)$$

$$dY_i = f(\overline{Y}_i, t)\Delta t + g_i \varepsilon_i \sqrt{\Delta t}$$

$$dy_1 = [-3\rho k_v G(t)(y_4 + y_8)]\Delta t + g_1 \varepsilon_1 \sqrt{\Delta t}$$

Problem Definition

• Objective function :

$$\max_{T} L = \mathbf{E} \left[\mu_3^s(t_f) - \mu_3^n(t_f) \right]$$

Active Constraints :

$$C_s \leq C \leq C_m$$

• The optimization problem is solved similarly as the Deterministic Case. The difference lies in the integration of Stochastic Differential Equations using **SDE-Toolbox** in **Matlab**.

$$T^{new}(t) = T^{old}(t) + M\left(\frac{dH}{dT}\right)$$

Algorithm

Image Source : Yenkie et al.

- It reaches a maximum value of 9.978 * 10^9 at t
 = 1800 s which is higher than the deterministic
 case
- The optimum values are unstable and varies with small amplitude.
- The implementation has been done in **Matlab**.

- The temperature profile decreases abruptly.
- It goes down to reach a value of around 303 K.
- Same fluctuations can be seen at the end of the time horizon.

Polynomial Chaos Expansions(P.C.E)

• A Polynomial Chaos Expansion describes a random process as a spectral expansion of random variables(θi), using orthogonal basis functions, Φ*i*

$$\begin{split} y^d = \, a_0^d \Phi_0 + \sum\nolimits_{i_1 = 1}^\infty a_{i1}^d \Phi_1 \Big(\theta_{i_1} \Big) + \sum\nolimits_{i_1 = 1}^\infty \sum\nolimits_{i_2 = 1}^{i_1} a_{i_1 i_2}^d \Phi_2 \Big(\theta_{i_1}, \theta_{i_2} \Big) \\ + \sum\nolimits_{i_1 = 1}^\infty \sum\nolimits_{i_2 = 1}^{i_1} \sum\nolimits_{i_3 = 1}^{i_2} a_{i_1 i_2 i_3}^d \Phi_3 \Big(\theta_{i_1}, \theta_{i_2}, \theta_{i_3} \Big) \end{split}$$

• It is approximated as:

$$y^d \approx \sum_{i=1}^{P_{PCE}} a_i^d \Phi_i(\theta)$$

• It uses a polynomial approximation to introduce the variance in the parameters and is found to be more efficient than traditional methods for solving complex nonlinear systems.

Problem Definition

• Given a process model with uncertain output,

$$y_i = f(x(\theta), \lambda_i(\theta))$$

where, x is the uncertain input and λ is the uncertain parameter,

- **Aim** is to quantify uncertainty in $y(\theta)$ from $x(\theta)$ and $\lambda(\theta)$ using the process model.
- The first step is to construct PCEs of $x(\theta)$, and $\lambda(\theta)$ using the expressions :

$$x(\theta) = \sum_{i=1}^{P_{PCE}} x_i \phi(\theta)$$

$$\lambda(\theta) = \sum_{i=1}^{P_{PCE}} \lambda_i \phi(\theta)$$

$$x_i = \frac{\int x \phi_i(\theta) g(\theta) d\theta}{\left\langle \phi_i^2 \right\rangle}$$

$$\lambda_i = \frac{\int \lambda \phi_i(\theta) g(\theta) d\theta}{\left\langle \phi_i^2 \right\rangle}$$

Usage of PCE in Batch Crystallization

The batch crystallizer consists of 9 state variables given by :

$$y_i = [C \ \mu_0^s \ \mu_1^s \ \mu_2^s \ \mu_3^s \ \mu_0^n \ \mu_1^n \ \mu_2^n \ \mu_3^n]$$

- The outputs of the model become uncertain due to the existence of variation in 6 kinetic parameters $\lambda i = kg$, g, Eg, kb, b and Eb.
- This work follows a Non-Intrusive approach which involves evaluating the model at N sample points to approximate the deterministic coefficients.
- The samples are drawn by constructing a joint distribution of the kinetic parameters.
- For each of the above sample, the optimization problem is solved using the Steepest Ascent Hamiltonian method

$$y_i = \frac{1}{\langle \phi_i^2 \rangle} \frac{1}{N} \sum_{j=1}^N y^j \phi_i(\theta)$$

As the above Equation averages over N samples, the resultant maximises the objective function :

$$\max_{T} L = \mathbf{E} \left[\mu_3^s(t_f) - \mu_3^n(t_f) \right]$$

• The following profile was obtained :

- The implementation was performed in Python by using chaospy library for generating samples and determining coefficients.
- A python source code was used for evaluating optimum Temperature profile for each sample.
- The cooling carries on to about 311 K.

Application to Unseeded

Crystallization

Case Study

- To build a predictive model for unseeded batch crystallization of **L-Asparagine**Monohydrate(LAM) crystals using kinetics developed at our lab.
- Population Balance Equations also hold valid for these crystals.
- The key differences :

$$B = k_{j_1} S \exp\left(-k_{j_2} \frac{\ln^3 C_c / C^*}{\ln^2 S}\right)$$
 $G = k_g (S - 1)^g$

• The new process parameters get reduced to 4 : Kj1, Kj2, Kg and g

Problem Definition

- The model developed in this work has been extended to LAM crystals to prove the validity of **PCE** with the **Hamiltonian Optimization Scheme**.
- Objective Function now involves maximising the weight mean size of the crystals by optimising the temperature profile:

$$\max_{T(t)} \phi = \mu_4/\mu_3 \quad at \quad t_f$$

• No seeding has been done, therefore **state variables** are now defined as :

$$y_i = [C \mu_0 \mu_1 \mu_2 \mu_3 \mu_4]$$

State Equations :

$$\frac{du_0}{dt} = B$$

$$\frac{du_j}{dt} = jG\mu_{j-1}$$

- The temperature profile obtained here confirms with the one obtained in the original work.
- It consists of 3 regions of cooling corresponding to crystallization of LAM crystals.
- The maximised value of the objective function was obtained at : 300µm

Conclusions

- An analysis of 3 different methods of Optimal Control was done for a batch cooled crystallization process which produced effective results.
- After comparing the final values of the objective functions[particle volume] the following values were obtained:
 - 1. Deterministic : $9.153 \times 10^9 \mu m^3$
 - 2. Expected value for Stochastic involving Ito Processes : 9.978 × 10 9 µm 3
 - 3. Expected value for Stochastic case involving PCE: 8.64 × 10^9 µm^3
- The validity of the novel approach of PCE was reaffirmed when applied to an existing crystallization problem.
- The model maximises the value of objective function at **300μm** which is at par with other cooling policies such as cubic cooling policy(251μm).
- This proves the efficacy of P.C.E in the field of batch crystallization

References

- [1] Mulin, J. W.; Nyvlt, J. Programmed cooling of batch crystallizers. Chem. Eng. Sci. 1971, 26, 369377.
- [2] Jones, A. G. Optimal operation of a batch cooling crystallizer. Chem. Eng. Sci. 1974, 29, 10751087.
- [3] Rawlings, J. B.; Witkowski, W. R.; Eaton, J. W. Modeling and control of crystallizers. Powder Technol. 1992, 69, 39.
- [4] Miller, S. M.; Rawlings, J. B. Model identification and control strategies for batch cooling crystallizers. AIChE J. 1994, 40, 1312 1327.
- [5] Hu, Q.; Rohani, S.; Jutan, A. Modelling and optimization of seeded batch crystallizers. Comput. Chem. Eng. 2005, 29, 911918.
- [6] Shi, D.; El-Farra, N.; Li, M.; Mhaskar, P.; Christofides, P. D. Predictive control of particle size distribution in particulate processes. Chem. Eng. Sci. 2006, 61, 26828.
- [7] Paengjuntuek, W.; Arpornwichanop, A.; Kittisupakorn, P. Product quality improvement of batch crystallizers by a batch to batch optimization and nonlinear control approach. Chem. Eng. J. 2008, 139, 344350.
- [8] Diwekar, U. Introduction to Applied Optimization, 2nd ed.; Springer: New York, 2008

References

- [9] Benavides, P. T.; Diwekar, U. Optimal control of biodiesel production in a batch reactor. Part I: Deterministic control. Fuel 2011, DOI: 10.1016/j.fuel.2011.08.035.
- [10] Yenkie, K. M., Diwekar, U. Stochastic optimal control of seeded batch crystallizer applying the ito process. Industrial Engineering Chemistry Research, 2012, 52(1), 108-122.
- [11] Wong, E.; Zakai, M. On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 1965, 3, 213229
- [12] Corriou, J. P.; Rohani, S. A new look at optimal control of a batch crystallizer. AIChE J.,2008, 54, 31883206.
- [13] Grosso, M.; Cogoni, G.; Baratti, R.; Romagnoli, J. A. Stochastic Approach for the prediction of PSD in crystallization processes: Formulation and comparative assessment of different stochastic models. Ind. Eng. Chem. Res., 2011, 50, 21332143.
- [14] Ma, D. L.; Chung, S. H.; Braatz, R. D. Worst-case performance analysis of optimal batch control trajectories. AIChE J. 1999, 45, 14691476.
- [15] Benavides, P. T.; Diwekar, U. Optimal control of biodiesel production in a batch reactor. Part II: Stochastic control. Fuel 2012, 94, 218226.

References

- [16] Rico-Ramirez, V.; Diwekar, U. M. Stochastic maximum principle for optimal control under uncertainty. Comput. Chem. Eng. 2004, 28, 28452849
- [17] Feinberg, J., Langtangen, H. P. Chaospy: An open source tool for designing methods of uncertainty quantification. Journal of Computational Science, 2015, 11, 46-57.
- [18] C. Lindenberg and M. Mazzotti, AIChE J., 2011, 57, 942950.
- [19] Z. Nagy, Comput. Chem. Eng., 2009, 33, 16851691.
- [20] Z. Nagy, M. Fujiwara, X. Woo and R. Braatz, Ind. Eng. Chem. Res., 2008, 47, 12451252.
- [21] Bhoi, Stutee, Maheswata Lenka, and Debasis Sarkar. "Particle engineering by optimization for the unseeded batch cooling crystallization of L-asparagine monohydrate." CrystEngComm 19.42 (2017), 6373-6382

Thank You