卒業論文 (2020年)

せん断流下における マイクロスイマー希薄分散系の動的挙動

京都大学工学部工業化学科 化学プロセス工学コース 移動現象論分野

荊尾 太雅

目次

1	緒言		2	
	1.1	研究背景	2	
	1.2	研究目的	2	
2	計算手法			
	2.1	Suirmer モデル	3	
	2.2	Smoothed Profile Method	4	
	2.3	支配方程式	5	
		2.3.1 Navier-Stokes 方程式	5	
		2.3.2 運動方程式	5	
3	理論	i de la companya de	7	
	3.1	トルクと粒子の回転	7	
	3.2	粒子の回転が系に及ぼす影響	8	
4	結果	· ·と考察	10	
	4.1	せん断流下での bottom heavy 性を有する粒子の挙動	10	
	4.2	理論値との比較	10	
	4.3	有効粘度の評価	11	
5	結言		13	
謝辞				
参	考文南	₹	15	
Aŗ	Appendix			
A パラメーター一覧				

1 緒言

1.1 研究背景

マイクロスイマーとは、水中の微生物に代表される、周辺流体との流体力学的相互作用により、粘性流体中を自己推進する微小な物体の総称である。マイクロスイマーが分散した流体は、自己 泳動しないコロイド粒子が分散した流体とは、大きく性質が異なることが知られている。マイクロスイマーの挙動の解析は、医療器具などの汚染の原因となるバイオフィルムの形成過程の説明 や、ドラッグデリバリーシステムへの応用など、様々な分野での活用が期待されている。しかし、流体的相互作用が複雑であり、莫大な計算コストを要することから、解析例が少ない対象でもある。そのため、マイクロスイマーを解析するには計算負荷を軽減することが重要となる。

1.2 研究目的

マイクロスイマー分散系がコロイド分散系と異なる値を示す一例として有効粘度が挙げられる. 有効粘度は,式(1)のように表される.

$$\eta_{\text{eff}} = \frac{\sigma}{\dot{\gamma}} \tag{1}$$

ここで, σ は系にかかる応力, $\dot{\gamma}$ はせん断速度である.Rafai らは,泳動するクラミドモナスと泳動しないクラミドモナスとで,有効粘度の値に違いが見られることを実験により検証しており,マイクロスイマーの進行方向が異方的であることから,その値の違いが生じると述べられている \Box . そこで,シミュレーション上でマイクロスイマーの進行方向が異方的になる原因と予測される性質を付加し,その挙動を調べることを本研究の目的とした.本研究では,マイクロスイマーが,重心が体の中心からずれている bottom heavy 性を持ち,せん断流下に存在することで異方的挙動を再現できると考え,それらを考慮したシミュレーションを行った.また,研究の第一歩として,マイクロスイマー単体が存在する系を考えた.

Fig. 1 泳動の有無による有効粘度の違い

2 計算手法

2.1 Suirmer モデル

Fig. 2 本実験の座標系

マイクロスイマーのモデルとして、Squirmer モデル ^[] を採用した. このモデルでは、球形の粒子表面において、粒子と流体の速度差が式(2)で表されるような sliding 境界条件を用いる.

$$u^{s} = \sum_{n=1}^{\infty} \frac{2}{n(n+1)} B_{n} P'_{n}(\cos \theta) \sin \theta \hat{\theta}$$
 (2)

ここで、式中の θ , $\hat{\theta}$ は Fig.2 のように表される角度および単位角度ベクトルである。本研究では、xy 平面上をx 軸正の向きに流れるせん断流を考えたので、Fig.2 中の φ は $\pi/2$ で固定されているとした。また、 u^s はマイクロスイマー表面の重心に対する slide 速度、 B_n は係数、 P'_n は n 次 Legendre 多項式の導関数である。しかし、n=1 の項は squirmer の泳動速度を、n=2 の項は squirmer の存在によって生じる応力を決めるが、 $n \geq 3$ の項は、泳動速度、および応力に影響を与えないので、式 (2) は、第 1、2 項のみを考えることで、式 (3) の様に簡略化できる。

$$\boldsymbol{u}^{s} = B_{1} \left(\sin \theta + \frac{\alpha}{2} \sin 2\theta \right) \hat{\boldsymbol{\theta}} \tag{3}$$

ここで、 B_1 はマイクロスイマーの進行速度の大きさ ($U=2/3B_1$) を与える。ただし、本研究では、squirmer 粒子の移動の影響を排除するために、 $B_1=0.01$ と十分に小さい値に設定した。また、 $\alpha=B_2/B_1$ はその符号によりスイマーの種類を表す定数となる。 $\alpha>0$ を Puller 型、 $\alpha=0$ を Neutral 型、 $\alpha<0$ を Pusher 型と呼ぶ.Puller 型は、周辺流体に収縮流を生成し、Pusher 型は伸長流を生成する.

Fig. 3 Squirmer モデルにおける Pusher 型, Neutral 型, Puller 型の概略図

2.2 Smoothed Profile Method

固液二相シミュレーションにおいて,固体-液体の移動境界の取り扱いは非常に重要である.今回のシミュレーションでは,物理量とは異なる識別関数を導入し,仮想流体領域を考える Smoothed Profile Method(SPM) を用いた.SPM では,流体と粒子の界面に Fig.4 で表されるような界面関数 ϕ を導入する.ここで,a は粒子の半径, ξ は界面の幅を表す.この界面関数は,流体領域で ϕ = 0,粒子領域で ϕ = 1 をとり,幅 ξ の界面領域では 0 < ϕ < 1 の間の値をとる連続関数である.界面関数の導入により,境界条件を解く必要がなくなり,計算負荷を軽減され,以下で説明する Navier-Stokes 方程式,および運動方程式を直接数値計算によって解くことが可能となる.

Fig. 4 SPM の界面関数

2.3 支配方程式

本研究では、流体の運動を非圧縮条件の Navier-Stokes 方程式、マイクロスイマーの運動を Newton 方程式, および Euler 方程式を用いて解いた.

2.3.1 Navier-Stokes 方程式

$$\rho_{f}(\partial_{t} + \boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \rho_{f} \left(\phi \boldsymbol{f}_{p} + \boldsymbol{f}_{sq} + \boldsymbol{f}_{s} \right)$$
(4)

$$\nabla \cdot \boldsymbol{u} = 0 \tag{5}$$

ここで,t は時間, ho_{f} は流体の質量密度, σ は流体の応力テンソル, ϕf_{p} は粒子の剛直性を保証 する体積力, \mathbf{f}_{sq} は流体と粒子間の速度差を生じる力, \mathbf{f}_{s} はジグザグ流を生じる力である.ジグザ グ流とは、式(6)のような速度プロファイルで表される流体の流れである.

$$v_{x}(y) = \begin{cases} \dot{\gamma} \left(-y - L_{y}/2 \right) & (-L_{y}/2 < y \ge -L_{y}/4) \\ \dot{\gamma} y & (-L_{y}/4 < y \ge L_{y}/4) \\ \dot{\gamma} \left(-y + L_{y}/2 \right) & (L_{y}/4 < y \ge L_{y}/2) \end{cases}$$
(6)

Fig. 5 ジグザグ流の速度プロファイル

ここで、 $\dot{\gamma}$ はせん断速度、y はy 座標の値、 L_y はy 軸方向の系の大きさである。本研究では、せん 断流を表現するためにジグザグ流を用いた.

2.3.2 運動方程式

$$\dot{R}_i = V_i \tag{7}$$

$$M_{\rm p}\dot{V}_i = F_i^{\rm H} \tag{8}$$

$$M_{p}\dot{\mathbf{V}}_{i} = \mathbf{F}_{i}^{H}$$

$$\mathbf{I}_{p} \cdot \dot{\mathbf{\Omega}}_{i} = \mathbf{N}_{i}^{H} + \mathbf{N}_{i}^{\text{b.h.}}$$

$$(9)$$

ここで, $F_i^{\rm H}$ は流体から受ける力, $N_i^{\rm H}$ は流体から受けるトルク, $N_i^{\rm b.h.}$ は bottom heavy 性によるトルクである. $M_{\rm p}$ は粒子の質量, I_i は慣性モーメント, \dot{R}_i は粒子の位置, V_i は粒子の速度, $\dot{\Omega}_i$ は粒子の角速度である.Fig.6 のように,球の中心と粒子の重心がずれている,bottom heavy 性を有する squirmer について,その性質に起因するトルクは式 (10) で計算される.

$$N^{\text{b.h.}} = \frac{4}{3}\pi a^3 \rho h \hat{e} \times g \tag{10}$$

ここで、a は粒子の半径、 ρ は粒子の密度、h は球の中心と粒子の重心との距離、 \hat{e} は粒子の方向ベクトル、g は重力ベクトルである.

Fig. 6 bottom heavy 性を有する squirmer

3 理論

3.1 トルクと粒子の回転

xy 平面上を x 軸方向に流れるせん断流下に球形粒子が存在する場合,流体から受けるトルクは式 (11) で表される \square .

$$N_z^{\rm H} = 4\pi\mu a^3 \dot{\gamma} \tag{11}$$

ここで、 μ は流体の粘度、a は粒子の半径、 $\dot{\gamma}$ はせん断速度である。流体から受けるトルクに加えて、2.3.2 で述べた bottom heavy 性によるトルクを考えることで、粒子の回転の有無を考えることができる。本研究では、xy 平面上を x 軸方向に流れるせん断流を考えたため、squirmer は xy 平面上を移動すると考えた。したがって、squirmer の方向ベクトルは θ を用いて $\hat{e}=(\sin\theta,\cos\theta,0)$ のように表すことができる。また、系にかかる重力を y 軸方向下向きとし、g=(0,-g,0) と表すと、式 (10) は、式 (12) のように表される。

$$N^{\text{b.h.}} = \frac{4}{3}\pi\rho h \cdot (\sin\theta, \cos\theta, 0) \times (0, -g, 0)$$

$$\therefore N_z^{\text{b.h.}} = -\frac{4}{3}\pi\rho hg\sin\theta$$
 (12)

これにより、流体から受けるトルクと、bottom heavy 性によるトルクの和のz成分は、式 (13) のように表される.

$$N_z = N_z^{\rm H} + N_z^{\rm b.h.}$$
$$= 4\pi \mu a^3 \dot{\gamma} - \frac{4}{3}\pi \rho h g \sin \theta \tag{13}$$

したがって、粒子の進行方向と粒子にはたらくトルクのz成分の関係は、せん断速度の大きさにより、Fig.7(a)~(c) のように 3 種類のグラフで表すことができる.せん断速度が小さい場合には、bottom heavy 性によるトルクが支配的となり、Fig.7(a) のように、トルクの和が 0 となる $0 \le \theta < \pi/2$ の間の角度で粒子の進行方向が固定され、粒子は回転しないことが予想される.また、Fig.7(b) のように、流体から受けるトルクの値が、bottom heavy 性によるトルクの大きさの最大値となる場合は、粒子の進行方向は $\theta = \pi/2$ に固定され、粒子は回転しないことが予想される.せん断速度がその値よりも大きくなると、Fig.7(c) のように、流体から受けるトルクが支配的となり、粒子が定常的に回転することが予想される.このように、流体から受けるトルクと bottom heavy 性によるトルクの釣り合いから、粒子の進行方向が異方的になることが予想される.

Fig. 7 せん断速度の大きさの違いによる粒子にはたらくトルクの分類

3.2 粒子の回転が系に及ぼす影響

粒子が系に存在することで生じる応力は、式(14)のように、それぞれの粒子が存在することによる応力の総和を系の体積で割ることで求めることができる.

$$\Sigma^{(p)} = \frac{1}{V} \sum S$$
 (14)

系に存在する粒子が、squirmer 単体である場合には、その存在による応力は、式 (15) のように表される.

$$S_{\text{sol}} = \frac{4}{3}\pi a^2 (3ee - I)B_2 \tag{15}$$

式 (15) を (14) に代入し、squirmer の方向ベクトルを成分表示し、応力の xy 成分を抽出すると、式 (16) のように表される.

$$\Sigma_{xy}^{(p)} = \frac{4\pi a^2 B_2}{V} e_x e_y$$

$$= \frac{4\pi a^2 B_2}{V} \sin \theta \cos \theta$$
(16)

この応力は、 $B_2 > 0$ の場合、Fig.8 のように表される.

Fig. 8 単体 squirmer の存在による応力の xy 成分

このグラフより、粒子が定常的に回転している場合には、粒子の存在による応力の時間平均をとると、プラスとマイナスで打ち消し合い、系に影響は与えないと予想される.一方、粒子の進行方向がオレンジ色で示した範囲内に固定される場合には、系の応力を大きくする方向にはたらき、水色で示した範囲内に固定される場合には、系の応力を小さくする方向にはたらくことが分かる. $B_2 < 0$ の場合は逆に、粒子の進行方向がオレンジ色で示した範囲内に固定される場合には、系の応力を小さくする方向にはたらき、水色で示した範囲内に固定される場合には、系の応力を大きくする方向にはたらくことが分かる.ここで、 $\ref{2}$ で述べた有効粘度の式を再掲する.

$$\eta_{\text{eff}} = \frac{\sigma}{\dot{\gamma}} \tag{17}$$

この式から,系にはたらく応力が大きくなると有効粘度は大きくなり,応力が小さくなると有効粘度は小さくなることがわかる.したがって,3.1 で述べたように,squirmer の進行方向が, $0 \le \theta < \pi/2$ で固定された場合,Puller 型の場合は,有効粘度を大きくする方向にはたらき,Pusher 型の場合は,有効粘度を小さく方向にはたらくことが予想される.

4 結果と考察

4.1 せん断流下での bottom heavy 性を有する粒子の挙動

Fig.9 はシミュレーション結果を模式的に表したものである.

Fig. 9 シミュレーションの模式図

上段は,通常の球形粒子に bottom heavy 性を仮定したもの,中段は, $B_2=0.5$ の Puller 型の squirmer,下段は, $B_2=-0.5$ の Pusher 型の squirmer のシミュレーション結果である. 図中の直線の矢印は,定常せん断下での粒子の定常進行方向を表し,曲がった矢印は粒子が定常回転していることを表す. 図の右側に行くにつれてせん断速度が大きいシミュレーションを表す. また,左下に示したように,せん断は図の右向きに,重力は図の下向きにかかっている. この図より,せん断速度が小さい場合には,粒子はある進行方向に固定され,粒子は回転せずに定常的にその方向に進むのに対し,せん断速度が大きい場合には,定常的な回転運動を始めることが分かる. これは,3.1 で述べた予想に反しないと言うことができる.

4.2 理論値との比較

通常の球形粒子に botton heavy 性を仮定した場合について理論値との比較を行う. この場合, 3.1 で述べたように, 粒子にかかるトルクは, 式(13)のように表される.

$$N_z = N_z^{\text{H}} + N_z^{\text{b.h.}}$$

$$= 4\pi\mu a^3 \dot{\gamma} - \frac{4}{3}\pi\rho hg \sin\theta$$
(18)

このトルクは Fig.10 のように表される.

Fig. 10 流体から受けるトルクと bottom heavy 性によるトルクの和

本研究では、パラメータを表1のように設定した.

表 1 設定したパラメータ
$$\mu$$
 1.0 a 5.0 Δ ρ 1.0 h 2.5 Δ g 0.06

ここで、 Δ は格子間距離であり、長さの次元として用いている。また、流体の粘度 μ と質量密度 ρ を基本単位として用いて、単位時間を $\rho\Delta^2/\mu$ としている。 $\dot{\gamma}<0.05$ の場合には粒子の進行方向は $0<\theta<\pi/2$ のある角度に固定され、 $\dot{\gamma}=0.05$ の場合に、粒子の進行方向は $\theta=\pi/2$ に固定され、 $\dot{\gamma}>0.05$ の場合に定常的に回転すると予想される。Fig.??は、11 の上段のシミュレーション結果を抽出したものである。

Fig. 11 $B_2=0$ の場合のシミュレーション模式図とそのときのせん断速度の値 この図から、シミュレーション結果は理論的な値とよく一致していることが分かる.

4.3 有効粘度の評価

Fig.12 はせん断速度と有効粘度の関係を表す.

Fig. 12 せん断速度と有効粘度の関係

このグラフから、せん断速度が小さい領域では、 $B_2>0$ の Puller 型は有効粘度を大きくする方向に、 $B_2<0$ の Pusehr 型は有効粘度を小さくする方向にはたらいていることが分かる。また、せん断速度が大きい領域では squirmer の種類によらず、ほぼ等しい有効粘度を示していることが分かる。

5 結言

謝辞

本研究をご指導いただいた山本量一教授にまず心より御礼申し上げます. コロイド粒子分散系について基礎的な知識もなかった私に何度も丁寧にご指導いただき,多くのことを学べました. 先生のご指導なしでは,私の拙い研究が卒業論文という形にまとまらなかったと思います. ゼミや普段の研究生活でご助言いただいた谷口貴志准教授,John Molina 助教に心よりお礼申し上げます. 鋭い考察で研究について指導してくださった D2 の佐藤さん,M2 の小栗さん,笹倉さん,馬場さん,松田さん,土岸さん,スライドの体裁や発表について丁寧に指導してくださった M1 の瀬領さん,玉造さん,濱田さん,山口さん,養田さん,張さんに心よりお礼申し上げます. 最後に,同輩たちはとても優秀で刺激を受ける機会が多く,充実した研究生活が送れました. 1 講座の皆様,本当にありがとうございました.

参考文献

- [1] D. Helbing, et al., Transport. Sci., 39, 1(2005)
- [2] Teun Vissers, et al., Soft Matter, 7, 2352(2011)
- [3] Yasuya Nakayama and Ryoichi Yamamoto, Phys. Rev. E, 71, 036707(2005)
- [4] Hiroyuki Ohshima, J. Colloid Interface Sci., 180, 299(1996)

Appendix

A パラメーター一覧

 記号	パラメーター
Δ	 格子幅
а	粒子半径
d	粒子径
λ_B	ビエルム長
e	電気素量
$k_{\rm B}$	ボルツマン定数
T	絶対温度
E	電場強度
ϵ	誘電率
η	溶媒の粘度
ρ	溶媒の密度
D_{lpha}	拡散係数
z_{α}	lpha 種のイオン価数
Ψ	静電ポテンシャル
κ^{-1}	デバイ長さ
ϕ	界面関数
ξ	界面幅
$oldsymbol{f}_{ extsf{p}}$	粒子の剛体性を保証する力
\boldsymbol{n}	単位ベクトル
I	単位テンソル
C_{α}	イオン密度
C_{lpha}^{*}	補助イオン密度
μ_{lpha}	化学ポテンシャル
$M_{ m p}$	粒子質量
V_i	粒子iの速度
$m{F_i^{ ext{H}}}$	粒子iに働く流体からの力
$m{F_i^{\mathrm{C}}}$	粒子iに働く相互作用力
R_i	粒子iの位置
$oldsymbol{I}_{ m p}$	粒子の慣性モーメント
Ω_i	粒子iの角速度
$N_i^{ m H}$	粒子iのトルク