VIETNAM GENERAL CONFEDERATION OF LABOUR TON DUC THANG UNIVERSITY FACULTY OF MATHEMATICS AND STATISTICS

HAWKES PROCESSES

bу

Nguyen Le Thao Trang Le Thi Minh Phuong advised by

Dr. Nguyen Chi Thien

Ho Chi Minh City, Jun 2019

Outline

Introduction

2 Background

Simulation Algorithms

Introduction

Definition 1

(Point process) Let $\{T_i, i \in \mathbb{N}\}$ be a sequence of non-negative random variables such that $\forall i \in \mathbb{N}, T_i < T_{i+1}$. Then $\{T_i, i \in \mathbb{N}\}$ is a (simple) point process.

Definition 2

(Counting process) A counting process is a stochastic process $(N(t):t\geq 0)$ taking values in \mathbb{N}_0 that satisfies N(0)=0, is almost surely finite, and is a right-continuous step function with increments of size +1. Denote by $(\mathcal{H}(u):u\geq 0)$ the history of the arrivals up to time u.

Figure 1: Point process $\{t_1, t_2, ...\}$ and corresponding counting process N(t).

Definition 3

(Inhomogeneous Poisson Process) Consider $(N(t): t \ge 0)$ a counting process and that satisfies

$$\mathbb{P}(N(t+h)-N(t)=m|N(t))=egin{cases} \lambda(t)h, & ext{if } m=1\ o(h), & ext{if } m>1\ 1-\lambda(t)h+o(h), & ext{if } m=0 \end{cases}$$

Then N(t) is called a inhomogeneous Poisson process with $\lambda : \mathbb{R}^+ \to \mathbb{R}^+$.

Definition 4

(Hawkes process) Consider $(N(t): t \ge 0)$ a counting process, with associated history $\mathcal{H}(t): t \ge 0$, that satisfies

$$\mathbb{P}(N(t+h)-N(t)=m|\mathcal{H}(t)) = \begin{cases} \lambda^*(t)h+o(h), & \text{if } m=1\\ o(h), & \text{if } m>1\\ 1-\lambda^*(t)h+o(h), & \text{if } m=0 \end{cases}$$

Suppose the process' conditional intensity function is of the form

$$\lambda^*(t) = \lambda + \int_0^t \mu(t - u) dN(u)$$

for some $\lambda>0$ and $\mu:(0,\infty)\to[0,\infty)$ which are called the background intensity and excitation function respectively. Suppose that $\mu(.)\neq 0$, then a process N(.) is a Hawkes process.

Simulation Algorithms - Inhomogeneous Poisson

$\textbf{Algorithm} \ 1 \ \mathsf{Generate} \ \mathsf{an} \ \mathsf{inhomogeneous} \ \mathsf{Poisson} \ \mathsf{process} \ \mathsf{by} \ \mathsf{thinning}.$

INPUT: T is the time to simulate;

 $\lambda(.)$ is the intensity function;

M is bounded value;

OUTPUT: The vector *P* containing the times of occurrences

$$\{t_1, t_2, ..., t_n\};$$

Require: $\lambda(.) \leq M$ on [0, T].

Step 1: Set $P \leftarrow []$, $t \leftarrow 0$

Step 2: while t < T do

- a. Generate next candidate point $E \leftarrow \operatorname{Exp}(M)$, $t \leftarrow t + E$
- b. Keep it with some probability $U \leftarrow \text{Unif}(0, M)$
- c. if t < T and $U \le \lambda(t)$ then $P \leftarrow [P, t]$

Simulation Algorithms - Inhomogeneous Poisson

Figure 2: Inhomogeneous Poisson.

Simulation Algorithms - Intensity-based Hawkes Process

Algorithm 2 Generate a Hawkes process by thinning.

INPUT: T is the time to simulate;

 $\lambda^*(.)$ is the conditional intensity function;

OUTPUT: The vector P containing the times of occurrences $\{t_1, t_2, ..., t_n\}$;

Require: $\lambda^*(.)$ non-increasing in periods without any arrivals.

Step 1: Set $\varepsilon \leftarrow 10^{-10}$, $P \leftarrow []$, $t \leftarrow 0$

Step 2: while t < T do

- a. Find new upper bound: $M \leftarrow \lambda^*(t+\varepsilon)$
- b. Generate next candidate point $E \leftarrow \text{Exp}(M)$, $t \leftarrow t + E$
- c. Keep it with some probability $U \leftarrow \text{Unif}(0, M)$
- d. if t < T and $U \le \lambda^*(t)$ then $P \leftarrow [P, t]$

Simulation Algorithms - Intensity-based Hawkes Process

Figure 3: Intensity-based Hawkes Process.

Simulation Algorithms - Cluster-based Hawkes Process

Algorithm 3 Generate a Hawkes process by clusters.

INPUT: T is the time to simulate;

 (λ, α, β) are parameters of the conditional intensity function;

OUTPUT: *P* is the union of all the clusters $\{C_1, C_2, ..., C_k\}$;

Step 1: Set $P \leftarrow \{\}$

Step 2: Generate the immigrants:

- a. $k \leftarrow Poi(\lambda T)$
- b. $C_1, C_2, ..., C_k$ independent and identically distributed Unif(0, T)

Step 3: Generate the descendants:

a. $D_1, D_2, ..., D_k$ independent and identically distributed $\operatorname{Poi}(\alpha/\beta)$

Step 4: for $i \leftarrow 1$ to k do

- a. if $D_i > 0$ then
 - a.1 $E_1, E_2, ..., E_{D_i}$ independent and identically distributed $Exp(\beta)$
 - a.2 $P \leftarrow P \cup \{C_i + E_1, C_i + E_2, ..., C_i + E_{D_i}\}$

Simulation Algorithms - Cluster-based Hawkes Process

Step 5: Remove descendant outside [0, T]

$$P \leftarrow \{P_i : P_i \in P, P_i \leq T\}$$

Step 6: Add in immigrants and sort: $P \leftarrow \text{Sort} (P \cup \{C_1, C_2, ..., C_k\})$

Simulation Algorithms - Cluster-based Hawkes Process

Figure 4: Cluster-based Hawkes Process.

THANK YOU!