Chapter 5 Datalink layer & LANs

A note on the use of these PowerPoint slides: We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a fot of work on our part. In return for use, we only ask the following.

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2023 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach 8th edition Jim Kurose, Keith Ross

Pearson, 2020

Chapter 5: Datalink layer & LANs

our goals:

- understand principles behind link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - local area networks: Ethernet
- instantiation, implementation of various link layer technologies

5-2

Chapter 5: outline

5.1 Link layer services

- 5.2 Error-detection and Error-correlation techniques
- 5.3 Multiple access links and protocols
- 5.4 Switched local area networks
 - addressing, ARP
 - Ethernet
 - switches

5.5 data center networking

5.6 Summary: A cycle of a Web page request

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

5-4

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

transportation analogy:

- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - plane: JFK to Geneva
 - train: Geneva to Lausanne
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm

5-5

Link layer services

- framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, destination
 - · different from IP address!
- reliable delivery between adjacent nodes
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit-error link (fiber, some twisted pair)
 - · wireless links: high error rates
 - · Q: why both link-level and end-end reliability?

5-6

Link layer services (cont.)

- flow control:
 - pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - · signals sender for retransmission or drops frame
- error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- · in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC) or on a chip
 - Ethernet card, 802.11 card;
 Ethernet chipset
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

5-8

- 5.1 Link layer services
- 5.2 Error-detection and Error-correlation techniques
- 5.3 Multiple access links and protocols
- 5.4 Switched local area networks
 - addressing, ARP
 - Ethernet
 - switches
- 5.5 data center networking
- 5.6 Summary: A cycle of a Web page request

Internet checksum (review)

goal: detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?

5-13

Cyclic redundancy check

- · more powerful error-detection coding
- view data bits, D, as a binary number
- choose r+1 bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder; error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi, ATM)

5-14

CRC example

want:

 $D \cdot 2^r XOR R = nG$

equivalently:

 $D\cdot 2^r = nG XOR R$

equivalently:

if we divide D·2^r by G, want remainder R to satisfy:

$$R = remainder[\frac{D \cdot 2^r}{G}]$$

5-15

Chapter 5: outline

5.1 Link layer services

5.2 Error-detection and Error-correlation techniques

5.3 Multiple access links and protocols

- 5.4 Switched local area networks
 - addressing, ARP
 - Ethernet
 - switches

5.5 data center networking

5.6 Summary: A cycle of a Web page request

Multiple access links, protocols

two types of "links":

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch, host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

iFi) s

shared F (satellite

numans at a cocktail party (shared air, acoustical)

5-17

5-19

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

5-18

An ideal multiple access protocol

given: broadcast channel of rate R bps *desiderata:*

- 1. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- · unused slots go idle
- example: 6-station LAN, 1,3,4 have packet, slots 2,5,6 idle

5-21

5-23

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- · each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet, frequency bands 2.5,6 idle

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes → "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- · nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with probability p until success

5-24

6

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions, wasting slots
- · idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

5-25

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- prob that given node has success in a slot = p(1p)^{N-1}
- prob that any node has a success = Np(1-p)^{N-1}

- max efficiency: find p* that maximizes Np(1-p)^{N-1}
- for many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives:

max efficiency = 1/e = .37

at best: channel used for useful transmissions 37% of time!

5-26

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

Pure ALOHA efficiency

P(success by given node) = P(node transmits)

P(no other node transmits in $[t_0-1,t_0]$ P(no other node transmits in $[t_0-1,t_0]$

=
$$p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$

= $p \cdot (1-p)^{2(N-1)}$

... choosing optimum p and then letting n $\rightarrow \infty$

$$= 1/(2e) = .18$$

even worse than slotted Aloha!

CSMA (carrier sense multiple access)

CSMA: listen before transmit:

if channel sensed idle: transmit entire frame

- * if channel sensed busy, defer transmission
- human analogy: don't interrupt others!

5-29

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

5-30

CSMA/CD (collision detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- · collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

csma/cd (collision detection)

spatial layout of nodes

collision
detect/abort
time

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle. starts frame transmission. If 5. After aborting, NIC enters NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!
- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
 - binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from $\{0,1,2, ..., 2^{m}-1\}$. NIC waits K.512 bit times, returns to Step 2
 - longer backoff interval with more collisions

5-33

5-35

CSMA/CD efficiency

- ❖ T_{prop} = max prop delay between 2 nodes in LAN
- ❖ t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to 1
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

"Taking turns" MAC protocols

polling:

- master node "invites" slave nodes to transmit in turn
- typically used with "dumb" slave devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - polling from central site, token passing
 - bluetooth, FDDI, token ring

- 5.1 Link layer services
- 5.2 Error-detection and Error-correlation techniques
- 5.3 Multiple access links and protocols
- 5.4 Switched local area networks
 - addressing, ARP
 - Ethernet
 - switches

5.5 data center networking 5.6 Summary: A cycle of a

Web page request

5-41

5-43

MAC addresses and ARP

- 32-bit IP address:
 - network-layer address for interface
 - used for layer 3 (network layer) forwarding
- * MAC (or LAN or physical or Ethernet) address:
 - function: used 'locally" to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD

hexadecimal (base 16) notation (each "number" represents 4 bits)

LAN addresses and ARP

each adapter on LAN has unique LAN address

LAN addresses (cont.)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- ♦ MAC flat address → portability
 - can move LAN card from one LAN to another
- ❖ IP hierarchical address not portable
 - address depends on IP subnet to which node is attached

ARP: address resolution protocol Question: how to determine interface's MAC address. knowing its IP address? ARP table: each IP node (host, router) on LAN has 137.196.7.78 table 1A-2F-BB-76-09-AD IP/MAC address mappings 137.196.7.23 for some LAN nodes: 137.196.7.14 < IP address; MAC address; TTL> LAN TTL (Time To Live): time 71-65-F7-2B-08-53 after which address 58-23-D7-FA-20-B0 mapping will be forgotten (typically 20 min) -0C-C4-11-6F-E3-98 137.196.7.88

5-45

ARP protocol: same LAN

- · A wants to send datagram to B
 - B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - dest MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

5-46

Addressing: routing to another LAN

walkthrough: send datagram from A to B via R

- focus on addressing at IP (datagram) and MAC layer (frame)
- assume A knows B's IP address
- assume A knows IP address of first hop router, R (how?)
- assume A knows R's MAC address (how?)

Addressing: routing to another LAN A creates IP datagram with IP source A, destination B A creates link-layer frame with R's MAC address as destination. frame contains A-to-B IP datagram MAC src: 74-29-9C-E8-FF-55 MAC dest: E6-E9-00-17-BB-4B IP src: 111.111.111.111 IP dest: 222.222.222.222 Eth Phy 111.111.111.111 222.222.222.222 74-29-9C-E8-FF-55 49-BD-D2-C7-56-2A 222.222.222.220 1A-23-F9-CD-06-9B 111.111.111.110 222 222 222 221 111.111.111.112 E6-E9-00-17-BB-4B 88-B2-2F-54-1A-0F 5-48

- 5.1 Link layer services
- 5.2 Error-detection and Error-correlation techniques
- 5.3 Multiple access links and protocols
- 5.4 Switched local area networks
 - addressing, ARP
 - Ethernet
 - switches

5.5 data center networking5.6 Summary: A cycle of a Web page request

5-53

Ethernet

"dominant" wired LAN technology:

- cheap \$20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- ❖ kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

5-54

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch star

Ethernet frame structure

sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet frame structure (cont.)

- addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- * CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

5-57

Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- unreliable: receiving NIC doesn't send acks or nacks to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

5-58

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - different physical layer media: fiber, cable

Chapter 5: outline

- 5.1 Link layer services
- 5.2 Error-detection and Error-correlation techniques
- 5.3 Multiple access links and protocols
- 5.4 Switched local area networks
 - addressing, ARP
 - Ethernet
 - switches

5.5 data center networking

5.6 Summary: A cycle of a Web page request

Ethernet switch

- link-layer device: takes an active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- * Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- * switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

switch with six interfaces (1,2,3,4,5,6)

Switch forwarding table

Q: how does switch know A' reachable via interface 4. B' reachable via interface 5?

- * A: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - looks like a routing table!

Q: how are entries created, maintained in switch table?

something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

5-63

Switch: self-learning

- * switch learns which hosts can be reached through which interfaces
 - when frame received. switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface	TTL	
А	1	60	Switch table (initially empty

(initially empty)

Switch: frame filtering/forwarding

when frame received at switch:

- I. record incoming link, MAC address of sending host
- 2. index switch table using MAC destination address
- 3. if entry found for destination then {

if destination on segment from which frame arrived then drop frame

else forward frame on interface indicated by entry

else flood /* forward on all interfaces except arriving interface */

5-65

5-67

Interconnecting switches

* switches can be connected together

 \underline{Q} : sending from A to G - how does S_1 know to forward frame destined to F via S_4 and S_3 ?

 <u>A:</u> self learning! (works exactly the same as in singleswitch case!) Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

 Q: show switch tables and packet forwarding in S₁, S₂, S₃, S₄

- 5.1 Link layer services
- 5.2 Error-detection and Error-correlation techniques
- 5.3 Multiple access links and protocols
- 5.4 Switched local area networks
 - addressing, ARP
 - Ethernet
 - switches

5.5 data center networking

5.6 Summary: A cycle of a Web page request

5 71

Data center networks

- 10's to 100's of thousands of hosts, often closely coupled, in close proximity:
 - e-business (e.g. Amazon)
 - content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 - search engines, data mining (e.g., Google)
- challenges:
 - multiple applications, each serving massive numbers of clients
 - managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center

Data center networks

- rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy

Chapter 5: outline

- 5.1 Link layer services
- 5.2 Error-detection and Error-correlation techniques
- 5.3 Multiple access links and protocols
- 5.4 Switched local area networks
 - addressing, ARP
 - Ethernet
 - switches
- 5.5 data center networking
- 5.6 Summary: A cycle of a Web page request

5-75

Synthesis: a day in the life of a web request

- journey down protocol stack complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

Chapter 5: Summary

- principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
- instantiation and implementation of various link layer technologies
 - Ethernet
 - switched LANs,
- synthesis: a day in the life of a web request

References

Jim Kurose, Keith Ross, "Computer Networking: A Top-Down Approach" 8th edition, Pearson, 2020.