A Note on Recovering Matrices in Linear Families from Generic Matrix-Vector Products *

Samuel E. Otto[†]

In this note we consider a recovery problem for an unknown matrix A lying in a known linear subspace $\mathcal{A} \subset \mathbb{R}^{m \times n}$ of real $m \times n$ matrices. Examples of such subspaces or "linear families" of matrices include Toeplitz, Hankel, circulant, and tridiagonal matrices. With fixed nonnegative integers q_R and q_L , the goal of the recovery problem is to choose a matrix $X_R \in \mathbb{R}^{n \times q_R}$ and a matrix $X_L \in \mathbb{R}^{m \times q_L}$ so that $A \in \mathcal{A}$ is uniquely determined when $Y_R = AX_R$ and $Y_L = A^TX_L$ are known. The columns of Y_R and Y_L are formed by matrix-vector products of A and A^T with the columns of X_R and X_L . To be precise, (X_R, X_L) solves the recovery problem and we write $(X_R, X_L) \in R(\mathcal{A}, q_R, q_L)$ if and only if the linear map $L_{(X_R, X_L)} : \mathcal{A} \to \mathbb{R}^{m \times q_R} \times \mathbb{R}^{n \times q_L}$ defined by

$$L_{(X_R, X_L)}: A \mapsto (AX_R, A^T X_L) \tag{1}$$

is injective. For certain linear families \mathcal{A} including those named above, Halikias and Townsend [2] provide cleverly constructed $(X_R, X_L) \in R(\mathcal{A}, q_R, q_L)$ where $q_R + q_L$ is as small as possible. We strengthen these results by proving the following:

Proposition 1. If $R(A, q_R, q_L)$ is nonempty, then its complement in $\mathbb{R}^{n \times q_R} \times \mathbb{R}^{m \times q_L}$ has zero Lebesgue measure.

Proof. Choosing a basis $\{A_k\}_{k=1}^p$ for \mathcal{A} , we have $(X_R, X_L) \in R(\mathcal{A}, q_R, q_L)$ if and only if $\hat{L}_{(X_R, X_L)} : \mathbb{R}^p \to \mathbb{R}^{m \times q_R} \times \mathbb{R}^{n \times q_L}$ defined by

$$\hat{L}_{(X_R, X_L)} : x \mapsto L_{(X_R, X_L)} \left(\sum_{k=1}^p x_k A_k \right) = \left(\sum_{k=1}^p x_k A_k X_R, \ x_k A_k^T X_L \right)$$
 (2)

is injective. This map is injective if and only if its $p \times p$ Gram matrix

$$G_{(X_R, X_L)} = \hat{L}_{(X_R, X_L)}^* \hat{L}_{(X_R, X_L)} = \left[\text{Tr} \left(X_R^T A_i^T A_j X_R \right) + \text{Tr} \left(X_L^T A_i A_j^T X_L \right) \right]_{1 \le i, j \le p}$$
(3)

is invertible. The map $\phi: (X_R, X_L) \mapsto \det \left[G_{(X_R, X_L)} \right]$ is a polynomial function on the Euclidean space $\mathbb{R}^{n \times q_R} \times \mathbb{R}^{m \times q_L}$. The key property of this map is that it satisfies $\phi(X_R, X_L) \neq 0$ if and only if $(X_R, X_L) \in R(\mathcal{A}, q_R, q_L)$. Moreover, ϕ is not a constant because $\phi(0, 0) = 0$ and $R(\mathcal{A}, q_R, q_L)$ is assumed to be nonempty. Since ϕ is a non-constant polynomial, the level set $\phi^{-1}(0) = (\mathbb{R}^{n \times q_R} \times \mathbb{R}^{m \times q_L}) \setminus R(\mathcal{A}, q_R, q_L)$ has zero Lebesgue measure in $\mathbb{R}^{n \times q_R} \times \mathbb{R}^{m \times q_L}$ thanks to the main result in [1].

As corollaries to this proposition and the results of Halikias and Townsend [2], an $n \times n$ Toeplitz matrix A is uniquely determined by AX for almost every $X \in \mathbb{R}^{n \times 2}$ with respect to Lebesgue measure. The same holds for an $n \times n$ Hankel matrix. An $n \times n$ circulant matrix A is uniquely determined by Ax for almost every $x \in \mathbb{R}^n$. An $n \times n$ tridiagonal matrix A is uniquely determined by AX for almost every $X \in \mathbb{R}^{n \times 3}$.

References

- [1] R. CARON AND T. TRAYNOR, The zero set of a polynomial, WSMR Report 05-02, (2005).
- [2] D. Halikias and A. Townsend, *Matrix recovery from matrix-vector products*, arXiv preprint arXiv:2212.09841, (2022).

^{*}Compiled May 9, 2023.

[†]AI Institute in Dynamic Systems, University of Washington, Seattle, WA (email: ottoncdr@uw.edu)