C241 HW13

Zac Monroe

November 2018

1. (a)
$$\sum_{i=1}^{4} 2i = 2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + 2 \cdot 4 = 2 + 4 + 6 + 8 = 20$$

(b)
$$\sum_{i=0}^{3} (2i+i^2) = (2 \cdot 0 + 0^2) + (2 \cdot 1 + 1^2) + (2 \cdot 2 + 2^2) + (2 \cdot 3 + 3^2)$$

$$= 0 + 3 + 8 + 15 = 26$$

(c)
$$\sum_{i=1}^{3} \frac{1}{i} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = \frac{6}{6} + \frac{3}{6} + \frac{2}{6} = \frac{6+3+2}{6} = \frac{11}{6x}$$

2. (a) Claim: For all $n \in \mathbb{N}$, if $n \ge 2$, $3^n > n^2$.

Proof. Choose some $n \in \mathbb{N}$ with $n \geq 2$.

Base case (n=2):

$$3^{2} = 9$$

 $2^{2} = 4$
 $9 > 4 \text{ so } 3^{2} > 2^{2}$

Induction case (n > 2):

Choose some $k \in \mathbb{N}$ such that $k \geq 2$ and $3^k > k^2$.

$$3^{k+1} = 3 \cdot 3^k$$

$$3 \cdot 3^k >^{IH} 3 \cdot k^2$$
 so $3^k + 3^k + 3^k > k^2 + k^2 + k^2$

$$(k+1)^2 = k^2 + k + k + 1 = k^2 + 2k + 1$$

$$k^2 + k^2 \ge 2 \cdot k + 4$$
 because $k \ge 2$, so $k^2 + k^2 + k^2 \ge k^2 + 2k + 4$

$$4 > 1$$
 so $k^2 + 2k + 4 > k^2 + 2k + 1$
 $3^{k+1} = 3 \cdot 3^k$

$$3^{k+1} - 3 \cdot 3^k$$

$$=3^k+3^k+3^k$$

$$> k^2 + k^2 + k^2$$

$$> k^2 + 2k + 4$$

$$> k^2 + 2k + 1$$

$$=(k+1)^2$$

So
$$3^{k+1} > (k+1)^2$$

(b) Claim: For all $n \in \mathbb{N}$, if $n \ge 7$, $3^n < n!$.

Proof. Choose some $n \in \mathbb{N}$ with n > 7.

Base case (n=7): $3^7 = 2187$ 7! = 5040

So
$$3^7 < 7!$$
.

Induction case (n > 7):

Suppose $3^k < k!$ for some $k \in \mathbb{N}$ with $k \geq 7$.

$$3^{k+1} = 3 \cdot 3^k$$

 $3 \cdot 3^k <^{IH} 3 \cdot k!$

$$(k+1)! = (k+1) \cdot k!$$

 $(k+1)! = (k+1) \cdot k!$ $k+1 \ge 8$ because $k \ge 7$

So
$$(k+1) \cdot k! \ge 8 \cdot k!$$

Clearly, 8 > 3, so $8 \cdot k! > 3 \cdot k!$

$$3^{k+1} = 3 \cdot 3^k$$

$$< 3 \cdot k$$

$$< 8 \cdot k!$$

$$\leq (k+1) \cdot k$$

$$= (k+1)!$$

$$< 8 \cdot k!$$

 $\le (k+1) \cdot k!$
 $= (k+1)!$
So $3^{k+1} < (k+1)!$

(c) Claim: For all $n \in \mathbb{N}$, if $n \ge 1$, $\sum_{i=1}^{n} 2i = n(n+1)$.

Proof. Choose some $n \in \mathbb{N}$ with $n \geq 1$.

Base case (n = 1):

$$\sum_{i=1}^{1} 2i = 2 \cdot 1 = 2$$

$$1(1+1) = 2$$
So
$$\sum_{i=1}^{1} 2i = 1(1+1)$$

Induction case (n > 1):

Choose some $k \in \mathbb{N}$ with $k \ge 1$ and $\sum_{i=1}^{k} 2i = k(k+1)$.

$$\sum_{i=1}^{k+1} 2i = \sum_{i=1}^{k} 2i + 2(k+1)$$

$$= {}^{IH} k(k+1) + 2(k+1)$$

$$= (k+2)(k+1)$$

$$= (k+1)(k+2)$$

$$= (k+1)(k+1+1)$$

(d) Claim: For all $n \in \mathbb{N}$, if $n \ge 1$, $\sum_{i=1}^{n} 2^{i-1} = 2^n - 1$.

Proof. Choose some $n \in \mathbb{N}$ with $n \geq 1$.

Base case (n = 1):

$$\sum_{i=1}^{1} 2^{i-1} = 2^{1-1} = 1$$

$$2^{1} - 1 = 2 - 1 = 1$$
So
$$\sum_{i=1}^{1} 2^{i-1} = 2^{1} - 1.$$

Induction case (n > 1):

Suppose
$$\sum_{i=1}^{k} 2^{i-1} = 2^k - 1 \text{ for some } k \in \mathbb{N} \text{ with } k \ge 1.$$

$$\sum_{i=1}^{k+1} 2^{i-1} = \sum_{i=1}^{k} 2^{i-1} + 2^{k+1-1}$$

$$= {}^{IH} 2^k - 1 + 2^{k+1-1}$$

$$= 2^k - 1 + 2^k$$

$$= 2 \cdot 2^k - 1$$

$$= 2^{k+1}$$

(e) Claim: For all $n \in \mathbb{N}$, $\sum_{i=0}^{n} i! \cdot i = (n+1)! - 1$.

Proof. Choose some $n \in \mathbb{N}$.

Base case (n = 0):

$$\sum_{i=0}^{0} i! \cdot i = 0! \cdot 0 = 0$$
$$(0+1)! - 1 = 1! - 1 = 0$$
So
$$\sum_{i=0}^{0} i! \cdot i = (0+1)! - 1.$$

Induction case (n > 0):

Suppose
$$\sum_{i=0}^{k} i! \cdot i = (k+1)! - 1$$
 for some $k \in \mathbb{N}$.

$$\sum_{i=0}^{k+1} i! \cdot i = (k+1)! \cdot (k+1) + \sum_{i=0}^{k} i! \cdot i$$

$$= {}^{IH} (k+1)! \cdot (k+1) + (k+1)! - 1$$

$$= (k+1)! \cdot (k+1+1) - 1$$

$$= (k+2)! - 1$$

$$= (k+1)! - 1$$

(f) Claim: For all $n \in \mathbb{N}$, $n^2 - 3n$ is even.

Proof. Choose some $n \in \mathbb{N}$.

Base case (n = 0):

$$0^2 - 3 \cdot 0 = 0 - 0 = 0$$

 $0 = 2 \cdot 0$ and $0 \in \mathbb{Z}$, so 0 is even.

So $0^2 - 3 \cdot 0$ is even.

Induction case (n > 0):

Choose some $k \in \mathbb{N}$ such that $k^2 - 3k$ is even.

Since $k^2 - 3k$ is even (by IH), there exists some $l \in \mathbb{Z}$ such that $k^2 - 3k = 2l$.

$$(k+1)^{2} - 3(k+1) = (k^{2} + 2k + 1) - (3k + 3)$$
$$= k^{2} + 2k + 1 - 3k - 3$$
$$= k^{2} - 3k + 2k - 2$$
$$= 2l + 2k - 2$$
$$= 2(l + k - 1)$$

Since $l, k, 1 \in \mathbb{Z}, l+k+1 \in \mathbb{Z}$.

Since $(k+1)^2 = 2(l+k-1)$ and $l+k+1 \in \mathbb{Z}$, $(k+1)^2 - 3(k+1)$ is even.