

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración Participantes Observaciones (Cambios y justificaciones)

Cancún, Q. Roo, 14/04/2010

Anilú Gómez Pantoja Se actualizó el programa en su formato Nancy Aguas García y contenido.

Relación con otras asignaturas

Anteriores Posteriores

Asignatura(s)

a) Taller de computación

Tema(s) No aplica

- a) Creación de hojas de cálculo
- b) Creación de bases de datos

Nombre de la asignatura Departamento o Licenciatura

Taller de software para ingeniería Ingeniería en Telemática

Ciclo	Clave	Créditos	Área de formación curricular
2 - 2	113472	6	Profesional Asociado y Licenciatura Elección Libre

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Taller	16	32	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Diferenciar las principales herramientas de software especializado en ingeniería para su elección de acuerdo a las necesidades.

Objetivo procedimental

Emplear software especializado en ingeniería como herramienta de trabajo para su utilización en las áreas correspondientes.

Objetivo actitudinal

Propiciar la cultura del esfuerzo y del trabajo en el empleo del software especializado en la ingeniería para la obtención de la habilidad en su manejo.

Unidades y temas

Unidad I. SOFTWARE PARA INGENIERIA

Diferenciar los principales conceptos relacionados con software de ingeniería para sus aplicaciones representativas.

- 1) Conceptos principales
- 2) Aplicaciones

Unidad II. SOFTWARE PARA MATEMÁTICAS Y ESTADÍSTICA

Emplear software de matemáticas y estadísticas para la solución de problemas.

- 1) Conceptos principales
- 2) Características principales
- 3) Funciones
- 4) Procedimientos generales
- 5) Aplicaciones

Unidad III. SOFTWARE PARA CIENCIAS BÁSICAS

Aplicar software de ciencias básicas para la solución de problemas.

1) Conceptos principales
2) Características principales
3) Funciones
4) Procedimientos generales
5) Aplicaciones
Unidad IV. SOFTWARE PARA CIENCIAS APLICADAS
Usar software de ciencias aplicadas para la solución de problemas.
1) Conceptos principales
2) Características principales
3) Funciones
4) Procedimientos generales
5) Aplicaciones
Unidad V. SOFTWARE DE DISEÑO ASISTIDO POR COMPUTADORA
Operar software de CAD para la solución de problemas.
1) Conceptos principales
2) Características principales
3) Funciones
4) Procedimientos generales
5) Aplicaciones

Actividades que promueven el aprendizaje

Docente Estudiante

Promover el trabajo individual en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos. Realizar demostraciones de software. Aplicar prácticas para el uso del software. Definir estrategias para identificar las herramientas utilizadas en el ámbito laboral. Realizar tareas asignadas
Participar en el trabajo individual y en equipo
Resolver casos prácticos
Discutir temas en el aula
Participar en actividades extraescolares

Actividades de aprendizaje en Internet

Realizar tareas asignadas

Participar en el trabajo individual y en equipo

Resolver casos prácticos

Discutir temas en el aula

Participar en actividades extraescolares

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Tareas	20
Evidencias individuales	30
Evidencias grupales	20
Total	100

Fuentes de referencia básica

Bibliográficas

Chapman S. J. MATLAB Programming for Engineers (4 edition). CL-Engineering

Campbell S. L., Chancelier J. P. y Nikoukhah R. (2000). Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4. New York, E.U.A: Springer

Dalgaard P. (2008) Introductory Statistics with R (Statistics and Computing).2nd edition.

Desmond J Higham (2000). MATLAB Guide (2 edition): Soc for Industrial & Applied Math

Wolfram S. (1999). The Mathematica Book (4 edition): Cambridge University Press

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

No aplica

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con Ingeniería en Sistemas Computacionales o Ingeniería Industrial.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en el manejo de software de ingeniería y/o en la programación o investigación de sistemas aplicados a la ingeniería.