

Run-length encoding

Mouse Stofl wants to memorize a long sequence of numbers. The sequence contains many repeated numbers, hence Stofl developed a special technique to make the sequence easier to memorize.

If there are k adjacent occurrences of the number x in the sequence, Stofl simply memorizes the two numbers x and k. This is also called a run-length encoding.

The computation of the run-length encoding is a lot of work for Stofl. He therefore asks you to write a program that computed the encoding for him.

Input

The first line contains an integer N, the length of the sequence $(a_i)_i$. The second line contains the N numbers a_i .

Output

Print a line contains a single integer M, the number of pairs (x_i, k_i) followed by M lines each containing one pair (x_i, k_i) .

You should minimize the number M as Stofl dislikes memorizing long sequences.

Limits

In all test groups $1 \le N$ and $1 \le a_i \le 10^9$.

- In the first test group (20 points) $N \le 10$.
- In the second test group (40 points) $n \le 1000$.
- In the third test group (40 points) $n \le 10^6$.

Examples

Input	Output
7	4
7 7 1 2 3 3 3	7 2
	1 1
	2 1
	3 3

Task runlengthencoding

Input	Output
15	9
1 2 3 4 3 4 4 4 4 3 3 3 2 2 9	1 1
	2 1
	3 1
	4 1
	3 1
	4 4
	3 3
	2 2
	9 1