Путевые заметки о билетах к экзамену по анализу

13.01.2015

Матан осилит ботающий

Пределы

19. Сходимость в себе

Определение 1. (x_n) называется сходящейся в себе (фундаментальной), если

$$\forall \varepsilon > 0 \exists N : \forall m, n > N |x_n - x_m| < \varepsilon$$

Лемма 1. (x_n) $cxodumcs \Rightarrow (x_n) - \phi y + \partial a м e + m a л b + a s$.

Лемма 2. Если последовательность сходится в себе, то ограничена она

 \blacksquare

Рассмотрим $\varepsilon = 1$, тогда $\forall n, m > N \ |x_n - x_m| < 1$. Зафиксируем m, ведь для любых же верно. Тогда $x_m - 1 < x_n < x_m + 1$. Тогда число элементов снаружи ограничено. Выберем из них максимальный и минимальный— победа.

•

Теорема 1 (Больцано-Коши). (x_n) — фундаментальная $\Leftrightarrow x_n \xrightarrow[n \to \infty]{} L$

= : см. лемму 1

 \implies : по лемме $2 \exists A, B : A \le x_n \le B$. Тогда из неё можно выбрать сходящуюся подпоследовательность $x_{n_k} \to L$.

$$\forall \varepsilon > 0 \exists N : \forall m, n > N |x_m - x_n| < \varepsilon$$
$$\forall \varepsilon > 0 \exists K : \forall k > K |x_{n_k} - L| < \varepsilon$$

Пусть $M=\max K, N,\, m=n_k.$ Тогда $k>M\Rightarrow n_k\geq k>M\geq N,\, |x_n-x_m|<\varepsilon.$

$$k>M\Rightarrow k\geq K\Rightarrow |x_{n_k}-L|=|x_m-L|<\varepsilon|x_n-L|=|x_n-x_m+x_m-L|\leq |x_n-x_m|+|x_m-L|<2\varepsilon$$

Непрерывности

20. Непрерывность, разрывы

Определение 2. $f: A \to \mathbb{R}$ непрерывная в $x_0 \in A$

Определение 3. Непрерывность на промежутке

Определение 4. Изолированная точка, точка сгущения

Определение 5. Разрыв

(а) 1 рода:

$$\begin{cases} f(x_0 - 0), f(x_0 + 0) \text{ оба существуют} \\ f(x_0 - 0) = f(x_0 + 0) \neq f(x_0) \end{cases}$$

(b) 2 рода:

Хотя бы один предел не существует или бесконечен

Свойства непрерывности:

(a)
$$f, g \in C(x_o) \Rightarrow f \pm g, f g, \frac{f}{g}, |f| \in C(x_0)$$

(b)
$$f \in C(x_0), g \in C(f(x_0), f : X \to Y, g : Y \to \mathbb{R} \Rightarrow g \circ f \in C(x_0)$$

21. Теорема Больцано-Коши

Теорема 2. Пусть
$$f:[a;b] \to [A;B], \ f \in C([a,b])$$
 . Тогда $\forall C \in [A;B] \ \exists c \in [a;b] : f(c) = C$

22-23. Теоремы о монотонной функции на промежутке и её разрывах

Теорема 1. Пусть $f: I \to \mathbb{R}, \ I$ —промежуток $u \ f$ монотонна на I. Тогда все её разрывы — скачки

Теорема 2. Пусть $I \in \mathbb{R}$ —промежуток, $f \in C(I)$. Тогда и f(I) — промежуток

Теорема 3. Пусть $f: I \to \mathbb{R}, \ I$ —промежуток, f монотонна. Тогда $u \ f(I)$ — промежуток $\Leftrightarrow f \in C(I)$

Теорема 4. Пусть $f: I \to \mathbb{R}, f \in C(I)$ —-строго монотонная функция. Тогда $\exists f^{-1}$, тоже строго монотонная, непрерывная на I, c такой же монотонностью, что u f

- 24. Корень
- 25. Экспонента

Определение 1. Пусть
$$x=n\in\mathbb{N}$$
. Тогда $a^n:=\underbrace{a\cdot\ldots a}_{n\text{ pas}}$.

Определение 2. Пусть $x = m \in \mathbb{Z} \setminus \mathbb{N}$. Тогда:

$$x = 0$$
: $a^x := 1$

$$x < 0$$
: $a^x := \frac{1}{a^{-x}}$

Определение 3. Пусть $x=\frac{m}{n}\in\mathbb{Q}$. Тогда $a^x:=\sqrt[n]{a^m}$.

Определение 4. Пусть $x = \in \mathbb{R}$. Тогда

$$a > 1$$
: $a^x := \sup_{r \in \mathbb{O}} \{ a^r \mid r \le x \}$

$$a = 0$$
: $a^x := 1$

$$0 < a < 1$$
: $a^x := \left(\frac{1}{a}\right)^{-x}$

Лемма 3. Пусть $a > 1, n \in \mathbb{N}$. Тогда $a^{1/n} - 1 \leq \frac{a-1}{n}$

Теорема 1. Пусть $f(x) = a^x = \exp_a(x), x \in \mathbb{R}, a > 0$. Тогда:

- (a) $f: \mathbb{R} \to (0; +\infty)$
- (b) $f \uparrow npu \ a > 1 \ u \ f \downarrow npu \ 0 < a < 1$
- (c) $f(x+y) = f(x) \cdot f(y)$
- (d) $f \in C$

(a) $f: \mathbb{R} \to (0; +\infty)$ Пусть $y_0 \in \mathbb{R}_+$

$$\triangleleft A = \{x \in \mathbb{R} \mid a^x < y_0\}$$
 и $B = \{x \in \mathbb{R} \mid y_0 < a^x\}$

Эти множества не пусты, в них есть хотя бы рациональные числа. Из пункта 25b одно правее другого. Тогда из аксиомы полноты $\forall x_1 \in A, x_2 \in B \; \exists \, x_0 : x_1 \leq x_0 \leq x_2$. Осталось доказать только, что $a^{x_0} = y_0$, а это почти как теорема о $\sqrt{2}$. Разве что добавку можно взять равной 1/n.

(b) $a > 1, x_1, x_2 \in \mathbb{R}$ $x_1 < x_2 \Rightarrow a^{x_1} < a^{x_2}$ По теореме о плотности \mathbb{Q} : $\exists r_1, r_2 \in \mathbb{Q}$: $x_1 < r_1 < r_2 < x_2, \exists r_3 \in \mathbb{Q}$: $r_2 < r_3 < x_2$. Тогда

$$a^{x_1} = \sup\{a^r \mid r \le x_1\} < a^{r_1}$$

$$r_2 < r_3 < x_2 \Rightarrow a^{r_2} < a^{r_3} \Rightarrow a^{x_2} = \sup\{a^r \mid r \le x_2\} > a^{r_2}$$

Таким образом $a^{x_1} < a^{r_1} < a^{r_2} < a^{x_2}$.

- (c) $f(x+y) = f(x) \cdot f(y)$ Следует из аналогичного свойства для рациональных чисел по 25d
- (d) $f \in C$ Из принципа Архимеда $\exists n: |x-x_0| < \frac{1}{n}$. Также $\exists r_1, r_2 \in \mathbb{Q}: r_1 < x < x_0 < r_2, |r_1-r_2| < 1/n$. Тогда по 25b

$$a^{r_1} < a^{x_1} < a^{x_0} < a^{r_2} \Rightarrow 0 < a^{x_0} - a^x < a^{r_2} - a^{r_1} < a^{r_1}(a^{r_2 - r_1} - 1) < a^{r_1}\left(\frac{a - 1}{n}\right) < \varepsilon$$

26. Логарифм и степенная функция

27. О-символика

Определение 1.
$$f(x) = o(g(x))$$
 при $x \to c \Leftrightarrow \lim_{x \to c} \frac{f(x)}{g(x)} = 0$

Определение 2.
$$f(x) = O(g(x))$$
 при $x \to c \Leftrightarrow \exists M : \lim_{x \to c} \frac{|f(x)|}{g(x)|} \le M$

Определение 3.
$$f(x) \sim g(x)$$
 при $x \to c \Leftrightarrow \lim_{x \to c} \frac{f(x)}{g(x)} = 1$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad x \sim \sin x \qquad \sin x - x = o(x)$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \quad \frac{x^2}{2} \sim \cos x \qquad \cos x - 1 - \frac{x^2}{2} = o(x^2)$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1 \qquad x \sim \ln(x+1) \quad \ln(x+1) - x = o(x)$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \qquad e^x \sim 1 + x \qquad e^x = 1 + x + o(x)$$

Таблица 1: Полезные пределы

28. Теорема Вейерштрасса

Теорема 1. Пусть $f \in C([a;b])$. Тогда f ограничена и достигает своих наибольшего и наименьшего значений.

 \Box Нетрудно понять, что $\exists y_n \in f([a;b]) : y_n \to \sup[a;b] f(x) = s$. Из теоремы Больцано–Коши $\exists x_n \in [a;b] : y_n = f(x_n)$. А из x_n можно вытащить $x_{n_i} \to c \Rightarrow y_{n_i} = f(x_{n_i}) \to f(c)$ по непрерывности f. А по теореме о пределе подпоследовательности f(c) = s. Ограниченность очевидна. Для инфимума тоже самое. \blacksquare

29. Равномерная непрерывность и теорема Кантора

Определение 1.
$$f: X \to \mathbb{R}$$
 равномерно непрерывна $\Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 \forall x_1 \in X \forall x_2 \in X |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$

Пример 1. $f(x) = \sin \frac{1}{x}$ помимо всех прочих её неприятных особенностей непрерывна на (0;1), но не равномерно непрерывна там же $(E, g, \varepsilon = 1)$

Теорема 1 (Кантора - Гейне). $f \in C([a;b]) \Leftrightarrow f$ равномерно непрерывна на [a;b]

 \square Пойдём от противного. Пусть $\exists \varepsilon_0 > 0 : \forall \delta > 0 \; \exists \; x, x' \in [a;b] \; |x-x'| < \delta \Rightarrow |f(x)-f(x')| \geq \varepsilon_0$ Пусть $\delta_n = 1/n$. Тогда (тут пользуемся пределом по Гейне) $\exists \; x_n, x'_n \in [a;b] \; |x_n-x'_n| < \frac{1}{n}|f(x_n)-f(x'_n)| \geq \varepsilon_0$

Извлечём из (x_n) сходящуюся подпоследовательность $(x_{n_k}): x_{n_k} \xrightarrow[k \to \infty]{} c, c \in [a;b]$. По непрерывности

$$\begin{cases}
f(x'_{n_k}) \to f(c) \\
f(x_{n_k}) \to f(c)
\end{cases} \Rightarrow f(x'_{n_k}) - f(x_{n_k}) \xrightarrow[k \to \infty]{} 0$$

Но по предположению $|f(x'_{n_k}) - f(x_{n_k})| \ge \varepsilon_0$ ■

Производные

31. Дифференцируемость и прочие нужные определения

Определение 1. Пусть $f:X\to\mathbb{R}$. Тогда производной функции f называется $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$

Определение 2. $f: X \to \mathbb{R}$ называется дифференцируемой в $x_0 \in X$, если $\Delta f = f(x_0 + \Delta x) - f(x_0) = \mathop{A}_{\in \mathbb{R}} h + o(h)$

Дифференцируемость равносильна наличию конечной производной (это довольно простая теорема). Вот теперь A = f'(x).

Определение 3. Дифференциал функции f в точке x_0 — новая функция $\mathrm{d} f(x;h) := A \, h = f'(x) \, h$ (линейная часть приращения).

Важный частный случай: $f = \mathrm{id}_X$. Тогда f'(x) = 1 и $\mathrm{d}f = h$. Вводится обозначение: $\mathrm{d}x := \Delta x = h$. Ещё пара довольно общих свойств:

- $f \in C^1(x_0) \Rightarrow f \in C(x_0)$
- $f \in C^1(x_0) \Rightarrow \exists \varphi \in C(0) : f(x+h) = \varphi(h) h + f(x) \land \varphi(0) = f'(h)$
- 32. Дифференцируемость частного (остальное неинтересно)

Утверждение 1.
$$f,g \in C^1(x) \land g(x) \neq 0 \Rightarrow \frac{f}{g} \in C^1(x)$$
 и $\frac{f'}{g} = \frac{f'g - fg'}{g^2}$

Рассмотрим приращение частного f и g.

$$\Delta\left(\frac{f}{g}\right) = \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} = \frac{\left(f(x) + \varphi(h)h\right)g(x) - \left(g(x) + \psi(h)h\right)f(x)}{g(x)g(x+h)} = \frac{\left(\varphi(h)g(x) - \psi(h)f(x)\right) \cdot h}{g(x)g(x+h)} = \eta(x) \cdot h$$

Легко показать, что $\eta \in C(0)$ (числитель и знаменатель непрерывны, знаменатель не ноль). А тогда

$$\left(\frac{f}{g}\right)' = \eta(0) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}$$

33. Дифференцируемость композиции и обратной.

Утверждение 1. $f \in C^1(x), g \in C^1(y), y = f(x)$. Тогда $g \circ f \in C^1(x)$ u $(g \circ f)' = g' \circ f \cdot f'$. Доказывается через свойство 2 из 31 билета

Утверждение 2. Пусть $f \uparrow I$, J = f(I), $g = f^{-1}: J \to I$, $x \in I$, y = f(x). Также пусть $f \in C^1(x), \ f'(x) \neq 0$. Тогда

$$(g^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Тут доказывать через производную композиции нельзя, зато можно через предел композиции. Нам ведь ещё неизвестна дифференцируемость f^{-1} в y_0 .

- 34. Табличка производных это слишком просто и скучно
- 35. Теоремы Ферма и Ролля.

Теорема 1 (Ферма). Пусть $f: I \to \mathbb{R}, c \in I$ (без концов). Также пусть f достигает экстремума в точке c и $f \in C^1(c)$. Тогда f'(c) = 0.

Доказывается через предельный переход в неравенствах.

Теорема 2 (Ролля). Пусть $f:[a;b] \to \mathbb{R}, \ f \in C^1((a;b))$. Также пусть f(a) = f(b). Тогда $\exists c \in (a;b): f'(c) = 0$.

Доказывается через теоремы Вейерштрасса и Ферма.

36. Теоремы Коши и Лагранжа

Теорема 3 (Коши). Пусть $f,g:[a;b]\to \mathbb{R}, f,g\in C^1((a;b))$. Тогда $\exists c\in (a;b):(f(b)-f(a))g'(c)=(g(b)-g(a))f'(c)$.

Доказывается через теорему Ролля вводом новой понятно какой функции.

Теорема 4 (Лагранжа). Пусть $f:[a;b] \to \mathbb{R}, f \in C^1((a;b))$. Тогда $\exists c \in (a;b): (f(b)-f(a)) = (b-a)f'(c)$.

37-39. Производные и монотонность

Теорема 1. Пусть $f: I \to \mathbb{R}, f \in C^1(I)$. Тогда

- $f \uparrow I \Leftrightarrow f' \geq 0$
- $f \downarrow I \Leftrightarrow f' \leq 0$
- $f \equiv const$ на $I \Leftrightarrow f' \equiv 0$

Туда (⇒) — очевидно, обратно через теорему Лагранжа

Теорема 2 (Признак строгой монотонности). Пусть $f: I \to \mathbb{R}, f \in C^1(I)$. Тогда

- $f \uparrow I \Leftrightarrow f' \geq 0 \land \forall x_1, x_2 \in I : x_1 < x_2 \exists c \in (x_1, x_2) : f'(c) > 0$
- $f \downarrow I \Leftrightarrow f' \leq 0 \land \forall x_1, x_2 \in I : x_1 < x_2 \exists c \in (x_1, x_2) : f'(c) < 0$

Теорема 3 (Доказательство неравенств). Пусть $f, g : [a; b] \to \mathbb{R}, f, g \in C^1((a; b)), f(a) = f(b), f'(x) \le g'(x)$ на (a; b). Тогда $f(x) \le g(x)$ на (a; b)

- 40. Правило Лопиталя.
- 41. Многочлен Тейлора.

Определение 1. $f^{(n)} := (f^{(n-1)})'$, причём $f^{(0)} := f$

Определение 2. $d^n f(x) := f^{(n)}(x) dx^n$, при этом x – независимая переменная (иначе там всё плохо)

Теорема 1. Пусть $p(x) \in \mathbb{R}[x]: p(x) = b_n \, x^n + \dots + b_0, \ a \in \mathbb{R}$. Тогда p(x) также представим в виде $p(x) = \sum_{k=0}^n c_k (x-a)^k$, где $c_k = \frac{p^{(k)}(a)}{k!}$. Дифференцируем много раз – получаем то что нужно.

42. Асимптотическая формула Тейлора

Теорема 2. $f:I\to\mathbb{R},\ a\in I,\ \exists\, f^{(n)}(a).$ Тогда:

$$f(x)=T_n(x)+R_n(x),$$

$$z\partial e\ T_n(x)=\sum_{k=0}^n c_k(x-a)^k \ -\$$
многочлен Тейлора,
$$R_n(x)=o((x-a)^n)\ -\ ocmamoчный\$$
член в форме Пеано ,
$$c_k=\frac{f^{(k)}(a)}{k!}$$

(формула Тейлора)

 \square Из предыдущей теоремы $c_k = \frac{T_n^{(k)}(a)}{k!}$. Таким образом, все n производных f и T_n равны. Вообще надо доказать, что

$$\lim_{x \to a} \frac{R_n(x)}{(x-a)^n} = 0 \Leftrightarrow \lim_{x \to a} \frac{f(x) - T_n(x)}{(x-a)^n} = 0$$

Применим n-1 раз правило Лопиталя. Тут очень важно, что для применения этого чудного правила нам нужна дифференцируемость хотя бы в некоторой *окрестности* a. Но нам известно только, что в некоторой окрестности a существует $f^{(n-1)}$ (иначе как мы продифференцируем последний раз?). Мы знаем лишь, что $f \in C^n(a)$. Итак,

$$\lim_{x \to a} \frac{f(x) - T_n(x)}{(x - a)^n} = 0 \iff \lim_{x \to a} \frac{f^{(n-1)}(x) - T_n^{(n-1)}(x)}{n!(x - a)} = 0$$

Α

$$\lim_{x \to a} \frac{f^{(n-1)}(x) - T_n^{(n-1)}(x)}{n! (x - a)} = \lim_{x \to a} \frac{f^{(n-1)}(x) - f^{(n-1)}(a)}{n! (x - a)} - \lim_{x \to a} \frac{T_n^{(n-1)}(x) - T_n^{(n-1)}(a)}{n! (x - a)} = \frac{1}{n!} (f^{(n)}(a) - T_n^{(n)}(a)) = 0$$

просто по определению производной.

43. Разложение элементарных функций

$$\bullet \ e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$$

•
$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o(x^{2n+2})$$

•
$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2n+1})$$

•
$$\ln(x+1) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k!} x^k + o(x^n)$$

•
$$(1+x)^{\mu} = \sum_{k=0}^{n} {\mu \choose k} x^k + o(x^n)$$

44-45. Условия экстремума

Теорема 1 (Необходимое условие экстремума). См. теорему Ферма

Теорема 2 (Достаточное условие экстремума). Пусть $\overset{\circ}{U}(a) \subset I$, $f \in C^1(\overset{\circ}{U}(a))$ и f' меняет знак при переходе через a. Тогда в a- экстремум.

Теорема 3 (Достаточное условие экстремума с производными высшего порядка).

Пусть
$$\overset{\circ}{U}(a) \subset I$$
, $f \in C^n(\overset{\circ}{U}(a))$, $f'(a) = \cdots = f^{(n-1)}(a)$, $a f^{(n)} \neq 0$. Тогда:

- (a) n чётно в a экстремум.
- (b) n нечётно в a нет экстремума.

Через формулу Тейлора докажется.

46. Формула Тейлора с остатком в форме Лагранжа

Теорема 1. $f:I\to\mathbb{R},\ a\in I,\ \exists\, f^{(n+1)}(I).$ Тогда:

$$f(x) = T_n(x) + R_n(x),$$

$$r\partial e \ T_n(x) = \sum_{k=0}^n \alpha_k (x - a)^k,$$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1}, \ c \in (a; x),$$

$$\alpha_k = \frac{f^{(k)}(a)}{k!}$$

В качестве наводящих соображений:

$$a \quad c_{n+1} = c \quad \dots \quad c_1 \qquad x$$

47. Выпуклость.

Определение 1. $X \subset \mathbb{R}^n$. X — выпуклое, если $\forall a,b \in X \ [a;b] \subset X$

Лемма 4. Пусть $x, a, b \in \mathbb{R}^n$. Тогда $\forall x \in [a; b] \exists \theta \in [0; 1] : x = a + \theta (b - a)$

Лемма 5. Пусть $x, a, b \in \mathbb{R}^n$. Тогда $\forall x \in [a; b] \exists \lambda_1, \lambda_2 \in [0; 1] : \lambda_1 + \lambda_2 \wedge x = \lambda_1 a + \lambda_2 b$

Определение 2. f называется выпуклой (выпуклой вниз) на I, если $\{(x;y)|x\in I,y\geq f(x)\}$ — выпуклое множество. Почему-то почти не встречается обозначение $f \subseteq I$, однако мне оно приглянулось \odot

Определение 3. f называется вогнутой (выпуклой вверх) на I, если $\{(x;y)|x\in I,y\leq f(x)\}$ — выпуклое множество. Аналогичные соображения про обозначение $f\overline{\cap}I$.

Теорема 1 (Условие выпуклости функции). Пусть $f: I \to \mathbb{R}$. Тогда $f \subseteq I \Leftrightarrow \forall x_1, x_2 \in I \forall \lambda_1, \lambda_2 \in [0; 1]: \lambda_1 + \lambda_2 = 1$ $f(\lambda_1 x_1 + \lambda_2 x_2) \leq \lambda_1 f(x_1) + \lambda_2 f(x_2)$

Лемма 6 (О 3 хордах). Пусть $f: I \to \mathbb{R}, \ f \subseteq I, \ x_1, x, x_2 \in I: x_1 < x < x_2$. Тогда и только тогда:

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$$

Давайте объявим её очевидной из геометрии. (На самом деле она спокойно докажется из определения, но это длинно и не шибко интересно)

48. Неравенство Енсена (Йенсена, Иенсена — как только его не называют...)

Определение 1. $x_1, \ldots, x_n \in I, \ \lambda_1, \ldots, \lambda_n \in [0; 1], \ \sum_{i=1}^n \lambda_i = 1.$

Тогда $\sum_{i=1}^{n} \lambda_i x_i$ — выпуклая комбинация.

Замечание 1. $\sum_{i=1}^{n} \lambda_i x_i \in I$

Теорема 1 (Неравенство Енсена). Пусть $f: I \to \mathbb{R}, \ f \subseteq I$. Тогда :

$$\forall x_1, \dots, x_n \in I, \ \forall \lambda_1, \dots, \lambda_n \in [0:1]: \sum_{i=1}^n \lambda_i = 1 \quad f\left(\sum_{i=1}^n \lambda_i x_i\right) \le \sum_{i=1}^n \lambda_i f(x_i)$$

Индукцией побеждается

49. Дифференциальные условия выпуклости.

Поскольку теоремы кажутся очевидными, давайте их докажем.

Теорема 1. Пусть $f \subseteq I = \langle a; b \rangle$. Тогда:

(a)
$$x \in (a;b) \Rightarrow \exists f'(x-0), f'(x+0) \ u \ f'(x-0) \le f'(x+0).$$

(b)
$$x_1, x_2, x \in I, x_1 < x_2 \Rightarrow f'(x_1 + 0) \le f'(x_2 - 0)$$

(c)
$$f \in C(a;b)$$

(а) Пусть $\varphi(h):=\frac{f(x+h)-f(x)}{h}, 0\not\in \mathscr{D}(\varphi)$ $\lessdot h_1,h_2\in (a;b):h_1< h_2.$ Пусть $h_1>0.$ Переобозначим: $y_1:=x,y:=x+h_1,y_2:=x+h_2.$ По лемме о 3 хордах:

$$\frac{f(y) - f(y_1)}{y - y_1} \le \frac{f(y_2) - f(y_1)}{y_2 - y_1} \Leftrightarrow \frac{f(x + h_1) - f(x)}{h_1} \le \frac{f(x + h_2) - f(x)}{h_2} \Leftrightarrow \varphi(h_1) \le \varphi(h_2)$$

Аналогичное верно и для $h_1 < 0 < h_2$ и $h_1 < h_2 < 0$, таким образом φ монотонна в U(0) и непрерывна в ней. Все разрывы монотонной функции — скачки. Тогда каждая из половинок монотонна и ограничена. А значит $\exists \varphi(+0), \varphi(-0)$ и равны f'(x+0), f'(x-0) соответственно. При этом никто не гарантирует, что $\exists f'(x) = f'(x-0) = f'(x+0)$.

(b) По лемме о 3 хордах

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x) - f(x_2)}{x - x_2}$$
$$(x \to x_1 + 0) \downarrow \qquad \downarrow (x \to x_2 - 0)$$
$$f'(x_1 + 0) \le f'(x_2 - 0)$$

(c) Так как существуют конечные f'(x-0) и f'(x+0), то f(x-0)=f(x+0)=0. То есть $f \in C(x)$. Однако нам ничего не известно про границы I. Заметим также, что число точек «перелома» не более чем счётно. Как было доказано ранее, в точках, где не существует производная $f(x_0-0) < f(x_0+0)$. По теореме о полноте $\mathbb Q$ между ними есть $r \in \mathbb Q$. Также отметим, что $r_1 < f(x_1+0) < f(x_2-0) < r_2 \Rightarrow r_1 < r_2$. Мы построили сюръекцию из $\mathbb Q$ в множество разрывов — победа.

Теорема 2. Пусть $f: I \to \mathbb{R}, f \in C^1(I)$. Тогда $f \cup I \Leftrightarrow f' \uparrow I$.

⇒ следует из теоремы 1

 \leftarrow Пусть $x_1 < x < x_2 \in I$. Из теоремы Лагранжа

$$\exists c_1 \in (x_1, x), c_2 \in (x; x_2) : f'(c_1) = \frac{f(x) - f(x_1)}{x - x_1}, \ f'(c_2) = \frac{f(x_2) - f(x)}{x_2 - x} \Rightarrow \frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$$

и по утверждению обратному к лемме о 3 хордах $f \, \underline{\cup} \, I$

Теорема 3. Пусть $f \in C^2(I)$. Тогда $f \cup I \Leftrightarrow f'' \geq 0$ на I

50. Неравенство Гёльдера

Теорема 1. $\forall a_1, \ldots, a_n; b_1, \ldots, b_n > 0, \ \forall p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}$$

Докажется через неравенство Енсена (при p > 1 $x^p \cup \mathbb{R}_+$) не без помощи магии.

Интегралы

51–52. Первообразная и неопределённый интеграл.

Определение 1. Пусть $f, F: I \to \mathbb{R}$. Тогда $F' = f \Leftrightarrow F$ — первообразная для f.

Теорема 1. $f \in C(I) \Rightarrow \exists F : F' = f$

Теорема 2. $F,G,f:I\to\mathbb{R}:F'=G'=f$. Тогда $F-G\equiv c(c\in\mathbb{R})$.

Определение 2. Неопределённый интеграл $\int f(x) dx := \{F(x) + c | c \in \mathbb{R} | F - \text{первообразная } f\}$

Свойства первообразной:

(a)
$$d \int f(x) dx = f(x) dx$$

(b)
$$\int dF(x) = F(x) + c, c \in \mathbb{R}$$

(c)
$$\int \alpha f(x) + \beta g(x) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

(d) Формула интегрирования по частям.

$$u, v \in C^1(I) \Rightarrow \int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

(е) Замена переменной в неопределённом интеграле.

Пусть
$$\varphi: I_t \to I, \ \varphi \in C^1(I_t), \ x = \varphi(t)$$
. Тогда $\int f(x) \, \mathrm{d}x = \int (f \circ \varphi)(t) \, \varphi'(t) \, \mathrm{d}t$

53. Алгоритмические вопросы интегрирования

Теорема 1. $\int R(x) dx$, $\epsilon de R(x) \in \mathbb{R}(x)$ — выражается через элементарные функции.

- □ Основные пункты доказательства:
 - І. Представимость в виде суммы многочлена и простейших дробей
 - II. Интегрируемость $\frac{A}{x-a}$
- III. Интегрируемость $\frac{A}{(x-a)^n}$
- IV. Интегрируемость $\frac{Ax+B}{x^2+px+q}$

i.
$$\frac{2x+p}{x^2+px+q}$$

ii.
$$\frac{1}{x^2 + px + q}$$

V. Интегрируемость $\frac{Ax+B}{(x^2+px+q)^n}$

i.
$$\frac{2x+p}{(x^2+px+q)^n}$$

ii.
$$\frac{1}{(x^2 + px + q)^n}$$

• $\frac{1}{(u^2+1)^n}$ — берётся по частям, понижая на каждом шаге степень знаменателя.

Теорема 2. $\int R(\sin x, \cos x) \, dx$, где $R(u, v) \in \mathbb{R}(u, v)$ — выражается через элементарные функции.

 \square $\triangleleft t = \operatorname{tg} \frac{x}{2}$. Тогда

$$\sin x = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$, a d $x = \frac{2}{1+t^2}$ dt

. Таким образом

$$R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \to \tilde{R}(t) \in \mathbb{R}(t)$$

Теорема 3. $\int R(x, \sqrt{ax^2 + bx + c}) dx$, $\epsilon de R(u, v) \in \mathbb{R}(u, v)$ — выражается через элементарные функции.

 $\square \, \lessdot t = \sqrt{ax^2 + bx + c} + \sqrt{a}\,x (noдстановка Эйлера).$ Тогда

$$x = \frac{t^2 - c}{2\sqrt{a}t + b}, \ \sqrt{ax^2 + bx + c} = \frac{\sqrt{a}t^2 + bt + c\sqrt{a}}{2\sqrt{a}t + b}, \ dx = 2\frac{\sqrt{a}t^2 + bt + c\sqrt{a}}{(2\sqrt{a}t + b)^2} dt$$

. Рационализация достигнута.

Теорема 4. $\int R(x, \sqrt[n]{\frac{ax+b}{cx+d}}) dx$, $\epsilon \partial e \ R(u,v) \in \mathbb{R}(u,v)$ — выражается через элементарные функции.

 $\square \lessdot t^n = \frac{ax+b}{cx+d} x$. Тогда

$$x = \frac{dt^n - b}{a - ct^n}, \ \sqrt[n]{\frac{ax + b}{cx + d}} = t, \ dx = \frac{(ad - bc)nt^{n-1}}{(ct^n - a)^2}dt$$

. Рационализация достигнута.

54. Определённый интеграл

Определение 1. Пусть $f:I \to \mathbb{R}, \ f \in C(I) \ a,b \in I$ и F —первообразная. Тогда

$$\int_a^b f \equiv \int_a^b f(x) \, \mathrm{d}x := F(b) - F(a)$$

(формула Ньютона-Лейбница)

Интересные свойства:

- (а) Совсем простые (написаны просто чтобы не забыть)
 - линейность

•
$$a < c < b \in I$$
 $\int_a^b f = \int_a^c f + \int_c^b f$

$$\bullet \int_a^b f = -\int_b^a f$$

•
$$\forall a \in I \int_{a}^{a} f = 0$$

• (Теорема Барроу)
$$f \in C(I), \ a, x \in I \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \int_a^x f = f$$

(b) Чуть сложнее (нужна невероятная теорема про неравенства и производные)

•
$$f \ge 0, \ a \le b \Rightarrow \int_a^b f \ge 0$$
 (такой значок: $\le -$ будет использоваться для функций для красоты)

•
$$f \ge 0$$
, $a < b$, $\int_a^b f > 0 \Rightarrow \exists c : f(c) > 0$

•
$$f \leq g$$
, $a < b \Rightarrow \int_a^b f \leq \int_a^b g$ (интегрирование неравенств)

•
$$|f| \leq g, \ a \leq b \Rightarrow \left| \int_a^b f \right| \leq \int_a^b g$$

•
$$a \le b \Rightarrow \left| \int_a^b f \right| \le \int_a^b |f|$$

•
$$f \leq M$$
, $a \leq b \Rightarrow \left| \int_a^b f \right| \leq M(b-a)$ (ограниченность)

(с) Почти такие же, как у неопределённого интеграла

• Замена переменной

$$f: I \to \mathbb{R}, f \in C(I), \ \varphi: J \to I, \varphi \in C^1(J), \ a, b \in I, \ \alpha, \beta \in J: \varphi(\alpha) = a \land \varphi(\beta) = b,$$
$$\int_{\alpha}^{\beta} (f \circ \varphi)(t) \varphi'(t) \, \mathrm{d}t = \int_{a}^{b} f(x) \, \mathrm{d}x$$

55. Теорема о среднем

Теорема 1. Пусть $f, g \in C([a;b]), g \ge 0, g \not\equiv 0$. Тогда

$$\exists c \in (a;b) : f(c) = \frac{\int_a^b fg}{\int_a^b g}$$

Доказывается через теоремы Вейерштрасса и Больцано-Коши о непрерывной функции.

Определение 1. Пусть $f \in C([a;b]), a < b$. Тогда

$$\langle f \rangle \equiv f_{\rm cp} := \frac{1}{b-a} \int_a^b f$$

Теорема 2. Пусть $f \in C([a;b])$. Тогда $\exists c \in (a;b) : f(c) = \langle f \rangle$. См. теорему 1.

56. Интеграл как предел Римановых сумм

Определение 2. Пусть $f \in C([a;b])$ $a < x_1 < \cdots < x_{n-1} < x_n = b, \ \xi_i \in [x_i; x_{i+1}]$. Тогда

- $\tau = \{x_1, \dots, x_{n-1}\}$ разбиение отрезка [a; b]
- $\xi = \{\xi_1, \dots, \xi_{n-1}\}$ оснащение разбиения au
- $\Delta x_i = x_{i+1} x_i$ длина i-го отрезка
- $r = r(\tau) = \max_i \{\Delta x_i\}$ ранг разбиения

•
$$\sigma = \sigma(\tau, \xi, f) := \sum_{i=0}^{n-1} f(\xi_i) \cdot \Delta x_i$$
 — сумма Римана

Теорема 3. Пусть $f:[a;b]\to\mathbb{R},\ f\in C([a;b]).$ Тогда $\int_a^b f=\lim_{r(\tau)\to 0}\sigma(\tau,\xi,f)$ Единственная теорема, для которой нужна равномерная непрерывность, так как δ выбирается для всего разбиения сразу. Приближенные формулы:

(a) Формула левых прямоугольников $x_i = a + i \frac{b-a}{n}, \ \Delta x_i = \frac{b-a}{n}, \ \tau = \{x_i\}_{i=1}^{n-1}, \ \xi_i = x_i$

$$\int_{a}^{b} f \approx \sum_{i=0}^{n-1} f\left(a + i\frac{b-a}{n}\right) \cdot \frac{b-a}{n}$$

(b) Формула правых прямоугольников $x_i = a + i \frac{b-a}{n}, \ \Delta x_i = \frac{b-a}{n}, \ \tau = \{x_i\}_{i=1}^{n-1}, \ \xi_i = x_{i+1}$

$$\int_{a}^{b} f \approx \sum_{i=0}^{n-1} f\left(a + (i+1)\frac{b-a}{n}\right) \cdot \frac{b-a}{n}$$

(c) Формула трапеций $x_i=a+i\frac{b-a}{n},\ \Delta x_i=\frac{b-a}{n},\ \tau=\{x_i\}_{i=1}^{n-1},$ $\xi_i=c\in[x_i;x_{i+1}]:f(c)=\frac{f(x_i)+f(x_{i+1})}{2}$

$$\int_{a}^{b} f \approx \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} \cdot \frac{b-a}{n}$$

(d) Формула Симпсона $x_i=a+i\frac{b-a}{n},\ \Delta x_i=\frac{b-a}{n},\ \tau=\{x_i\}_{i=1}^{n-1},$ $\xi_i=c\in[x_i;x_{i+1}]:f(c)=\frac{f(x_i)+4f\left(\frac{x+x_{i+1}}{2}\right)+f(x_{i+1})}{6}$

$$\int_{a}^{b} f \approx \sum_{i=0}^{n-1} \frac{f(x_i) + 4f(x_{i+\frac{1}{2}}) + f(x_{i+1})}{6} \cdot \frac{b-a}{n}$$

57. Интегральная форма остаточного члена формулы Тейлора

Теорема 4. Пусть $f: I \to \mathbb{R}, \ f \in C^{n+1}(I), \ a \in I$. Тогда:

$$f(x) = T_n(x) + R_n(x),$$

$$i \partial e \ T_n(x) = \sum_{k=0}^n \alpha_k (x - a)^k,$$

$$R_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t) (x - t)^{n+1} dx,$$

$$\alpha_k = \frac{f^{(k)}(a)}{k!}$$

Докажется индукцией по n с интегрированием по частям на каждом шаге Ещё, конечно, есть примечания, но там вроде всё уже знакомое.

