Topic 1: Sets

Ch2.1 Sets

A set is countable when it is finite or has the same size as the set of positive integers.

 \rightarrow The set of rational numbers is countable, the set of real numbers is not (bc there can be infinite 0.1, 0.01, 0.001...)

A *set* is an unordered collection of objects, called *elements* or *members* of the set. $a \in A$: a is an element of the set A; $a \notin A$: a is not an element of the set A.

Roster Method (Listing Method)

• Listing the elements inside braces, i.e. {2, 4, 6, 8}

 $N=\{0, 1, 2, 3,...\}$, the set of **natural numbers**

 $Z = \{..., -2, -1, 0, 1, 2,...\}$, the set of **integers**

 $Z^{+} = \{1, 2, 3,...\}$, the set of **positive integers**

 $Q = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } q = 0\}, \text{ the set of } \mathbf{rational } \mathbf{numbers}$

R, the set of **real numbers**

 R^+ , the set of **positive real numbers**

C, the set of **complex numbers**

[a, b] is called the **closed interval** (include); (a, b) is called the **open interval** (not include)

 $A \subseteq B$: The set A is a subset of B *iff* every element of A is also an element of B; $A \subset B$: A is a subset of B, but $A \neq B$ (proper subset)

Two sets are *equal iff* they have the same elements. A and B are equal *iff* $\forall x (x \in A \leftrightarrow x \in B)$. To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

For every set S, (i) $\emptyset \subseteq S$ and (ii) $S \subseteq S$

|S|: the cardinality of S, distinct elements in S. $\mathcal{P}(S)$: the power set of S, the set of all subsets of S.

 $A \times B$: is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$. $A \times B \neq B \times A$ unless $A = \emptyset$ or $B = \emptyset$ or A = B.

Ch2.2 Set Operations

Union $A \cup B$

Intersection $A \cap B$

Disjoint $A \cap B = \emptyset$

Difference A - B

 $REAL \; \mathbb{R}$

Whole No

Natural N

Irrational \mathbb{Q}'

Complement \overline{A}

The principle of inclusion-exclusion (PIE)

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Full table of Set Identities in Apendix A.

Important Set identities

$$A - B = A \cap \overline{B}$$

Topic 1: Sets