

 A_1, A_2, \ldots, A_n finite sets

 A_1, A_2, \dots, A_n finite sets $S(i_1, i_2, \dots, i_k) = \cap X_i$ where,

 A_1, A_2, \dots, A_n finite sets $S(i_1, i_2, \dots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

$$S(i_1, i_2, \dots, i_k) \cap S(j_1, j_2, \dots, j_k) = \emptyset$$

 A_1, A_2, \dots, A_n finite sets $S(i_1, i_2, \dots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

$$S(i_1, i_2, \dots, i_k) \cap S(j_1, j_2, \dots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \dots, i_k)$

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$. Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$. Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$. Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

$$S(i_1, i_2, \dots, i_k) \cap S(j_1, j_2, \dots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \dots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$. Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

$$S(i_1, i_2, \dots, i_k) \cap S(j_1, j_2, \dots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \dots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$. Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

$$S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \cap A_{i_l}$$

$$A_1, A_2, \ldots, A_n$$
 finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$. Eg.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

$$S(i_1, i_2, \dots, i_k) \cap S(j_1, j_2, \dots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \dots, i_k)$ set of elements with exactly k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \bigcap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$A_1, A_2, \ldots, A_n$$
 finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$. Eg.

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $A_1 \cap A_2 \cap A_3^c \cap A_4$

$$S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \cap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

$$A_1, A_2, \ldots, A_n$$
 finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$. Eg.

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $A_1 \cap A_2 \cap A_3^c \cap A_4$

$$S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \cap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

$$x \in S(k),$$

 A_1, A_2, \ldots, A_n finite sets

$$S(i_1, i_2, \dots, i_k) = \cap X_i$$
 where,

$$X_j = A_j^c$$
 if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

$$S(i_1, i_2, \dots, i_k) \cap S(j_1, j_2, \dots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \dots, i_k)$ set of elements with *exactly*

k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \cap A_{i_k}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

$$x \in S(k), n > k$$

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \cap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$

 $A_1^c \cap A_2 \cap A_3^c \cap A_4$

$$S(i_1, i_2, \dots, i_k) \cap S(j_1, j_2, \dots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \dots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \cap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

 $x \in S(k), n > k$ $x \in S(j_1, j_2, ..., j_k)$ for some $j_1, j_2, ..., j_k$

$$A_1, A_2, \ldots, A_n$$
 finite sets $S(i_1, i_2, \ldots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

$$S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$$

 $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = |A_{i_l}|$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

 A_1, A_2, \dots, A_n finite sets $S(i_1, i_2, \dots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \bigcap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

$$x \in S(k), n > k$$

 $x \in S(j_1, j_2, ..., j_k)$ for some $j_1, j_2, ..., j_k$
 $x \in \cap A_{i_l}$ for any $i_1, i_2, ..., i_l$ chosen out of $j_1, j_2, ..., j_k$.

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \cap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

 $x \in S(k), n > k$ $x \in S(j_1, j_2, ..., j_k)$ for some $j_1, j_2, ..., j_k$ $x \in \cap A_{i_l}$ for any $i_1, i_2, ..., i_l$ chosen out of $j_1, j_2, ..., j_k$. x is counted $\binom{l}{k}$ times in $\omega(k)$.

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \bigcap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

 $x \in S(k), n > k$ $x \in S(j_1, j_2, ..., j_k)$ for some $j_1, j_2, ..., j_k$ $x \in \cap A_{i_l}$ for any $i_1, i_2, ..., i_l$ chosen out of $j_1, j_2, ..., j_k$. x is counted $\binom{l}{k}$ times in $\omega(k)$.

Inclusion exclusions principle, equivalent to

 A_1, A_2, \dots, A_n finite sets $S(i_1, i_2, \dots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \bigcap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

$$x \in S(k), n > k$$

 $x \in S(j_1, j_2, ..., j_k)$ for some $j_1, j_2, ..., j_k$
 $x \in \cap A_{i_l}$ for any $i_1, i_2, ..., i_l$ chosen out of $j_1, j_2, ..., j_k$.
 x is counted $\binom{l}{k}$ times in $\omega(k)$.

Inclusion exclusions principle, equivalent to $\omega(1) - \omega(2) + \omega(3) + \ldots + (-1)^{l+1}\omega(l)$

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \bigcap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

 $x \in S(k), n > k$ $x \in S(j_1, j_2, ..., j_k)$ for some $j_1, j_2, ..., j_k$ $x \in \cap A_{i_l}$ for any $i_1, i_2, ..., i_l$ chosen out of $j_1, j_2, ..., j_k$. x is counted $\binom{l}{k}$ times in $\omega(k)$.

Inclusion exclusions principle, equivalent to $\omega(1) - \omega(2) + \omega(3) + \ldots + (-1)^{l+1}\omega(l) = 1$

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \bigcap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

 $x \in S(k), n > k$ $x \in S(j_1, j_2, ..., j_k)$ for some $j_1, j_2, ..., j_k$ $x \in \cap A_{i_l}$ for any $i_1, i_2, ..., i_l$ chosen out of $j_1, j_2, ..., j_k$. x is counted $\binom{l}{k}$ times in $\omega(k)$.

Inclusion exclusions principle, equivalent to $\omega(1) - \omega(2) + \omega(3) + \ldots + (-1)^{l+1}\omega(l) = 1$ Every element is counted once!

 A_1, A_2, \dots, A_n finite sets $S(i_1, i_2, \dots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with *exactly* k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \bigcap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

 $x \in S(k), n > k$ $x \in S(j_1, j_2, ..., j_k)$ for some $j_1, j_2, ..., j_k$ $x \in \cap A_{i_l}$ for any $i_1, i_2, ..., i_l$ chosen out of $j_1, j_2, ..., j_k$. x is counted $\binom{l}{k}$ times in $\omega(k)$.

Inclusion exclusions principle, equivalent to $\omega(1) - \omega(2) + \omega(3) + \ldots + (-1)^{l+1}\omega(l) = 1$ Every element is counted once!

In general,

 A_1, A_2, \ldots, A_n finite sets $S(i_1, i_2, \ldots, i_k) = \bigcap X_i$ where, $X_j = A_j^c$ if $j \neq i_l$ and $X = A_j$ if $j = i_l$.

Eg.

$$A_1 \cap A_2 \cap A_3^c \cap A_4$$
$$A_1^c \cap A_2 \cap A_3^c \cap A_4$$

 $S(i_1, i_2, \ldots, i_k) \cap S(j_1, j_2, \ldots, j_k) = \emptyset$ $E(k) = \omega(k) - S(k) := \bigcup S(i_1, i_2, \ldots, i_k)$ set of elements with exactly $(-1)^{n-k} \binom{n}{k} \omega(n)$ k belongs to exactly k sets, but does not belong to the others.

$$E(k) := |S(k)| = \Sigma |S(i_1, i_2, \dots, i_k)|$$

$$\Omega(i_1, i_2, \dots, i_k) = \bigcap A_{i_l}$$

$$\omega(i_1, i_2, \dots, i_k) = |\Omega(i_1, i_2, \dots, i_k)|$$

$$\omega(k) := \Sigma |\omega(i_1, i_2, \dots, i_k)| = \Sigma |\cap A_{i_l}|$$

 $x \in S(k), n > k$ $x \in S(j_1, j_2, ..., j_k)$ for some $j_1, j_2, ..., j_k$ $x \in \cap A_{i_l}$ for any $i_1, i_2, ..., i_l$ chosen out of $j_1, j_2, ..., j_k$. x is counted $\binom{l}{k}$ times in $\omega(k)$.

Inclusion exclusions principle, equivalent to $\omega(1) - \omega(2) + \omega(3) + \ldots + (-1)^{l+1}\omega(l) = 1$ Every element is counted once!

In general, $E(k) = \omega(k) - {\binom{k+1}{k}}\omega(k+1) + {\binom{k+2}{k}}\omega(k+1) - \dots +$

Let A_1, A_2, \ldots, A_k be subsets of S.

$$E(n) =$$

Let A_1, A_2, \ldots, A_k be subsets of S.

$$E(n) = \omega(n) -$$

Let A_1, A_2, \ldots, A_k be subsets of S.

$$E(n) = \omega(n) - \binom{n+1}{n}\omega(n+1)$$

Let A_1, A_2, \ldots, A_k be subsets of S.

$$E(n) = \omega(n) - \binom{n+1}{n}\omega(n+1) + \cdots$$

Let A_1, A_2, \ldots, A_k be subsets of S.

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof.

Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$,

Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t.

Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$,

 $x \in S(t)$ for some t.

 $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections

Theorem. Consider a set S such that |S| = N.

Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$,

 $x \in S(t)$ for some t.

 $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections

x cannot belong to m intersections for $m \geq n$

Theorem. Consider a set S such that |S| = N. Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Theorem. Consider a set S such that |S| = N. Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1) + \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n.

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n.

x is in exactly n intersections

Theorem. Consider a set S such that |S| = N.

Let A_1, A_2, \ldots, A_k be subsets of S.

For each $n = 0, 1, \ldots, k$,

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$,

 $x \in S(t)$ for some t.

 $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections

x cannot belong to m intersections for $m \ge n > t$

x is counted 0 times in $\omega(m)$ for $m \geq n$

0 = 0

Case 2: t = n.

x is in exactly n intersections

x is counted once in E(n)

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n)x is counted once in $\omega(n)$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m>n

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > nx is counted 0 times in $\omega(m)$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n. x is in exactly t intersections

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

x is in exactly t intersections x is counted 0 times in E(n)

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

x is in exactly t intersections x is counted 0 times in E(n) Assume x is in precisely $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

x is in exactly t intersections x is counted 0 times in E(n)Assume x is in precisely $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$ x will be counted once in any n

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n.

x is in exactly n intersections

x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

x is in exactly t intersections x is counted 0 times in E(n) Assume x is in precisely $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$ x will be counted once in any n(< t) intersection that

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n.

x is in exactly n intersections

x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

x is in exactly t intersections x is counted 0 times in E(n) Assume x is in precisely $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$ x will be counted once in any n(< t) intersection that involves some of these $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1) + \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \geq n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n)x is counted once in $\omega(n)$ x cannot belong to m intersections for m > nx is counted 0 times in $\omega(m)$ 1 = 1Case 2: t > n.

x is in exactly t intersections x is counted 0 times in E(n)Assume x is in precisely $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$ x will be counted once in any n(< t) intersection that involves some of these $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$ There are $\binom{t}{n}$ choices for such intersections

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m>n x is counted 0 times in $\omega(m)$ 1=1Case 2: t>n.

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1) + \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \geq n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n)x is counted once in $\omega(n)$ x cannot belong to m intersections for m > nx is counted 0 times in $\omega(m)$ 1 = 1Case 2: t > n.

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1) + \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

$$0 = \binom{t}{n} -$$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

$$0 = \binom{t}{n} - \binom{n+1}{n} \binom{t}{n+1}$$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

$$0 = \binom{t}{n} - \binom{n+1}{n} \binom{t}{n+1}$$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1)$$
$$+ \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n.

x is in exactly n intersections

x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

x is in exactly t intersections

x is counted 0 times in E(n)

Assume x is in precisely $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$

x will be counted once in any n(< t) intersection that

involves some of these $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$

There are $\binom{t}{n}$ choices for such intersections

x is counted $\binom{t}{n}$ times in $\omega(n)$

In the RHS, x is counted,

$$0 = {t \choose n} - {n+1 \choose n} {t \choose n+1} + \cdots$$

$$E(n) = \omega(n) - \binom{n+1}{n} \omega(n+1) + \dots + (-1)^{k-n} \binom{k}{n} \omega(k)$$

Proof. For any $x \in S$, $x \in S(t)$ for some t. $x \in S(i_1, i_2, \dots, i_t)$

Case 1: t < n.

x is in exactly t intersections x cannot belong to m intersections for $m \ge n > t$ x is counted 0 times in $\omega(m)$ for $m \ge n$ 0 = 0

Case 2: t = n. x is in exactly n intersections x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

x is in exactly t intersections x is counted 0 times in E(n)Assume x is in precisely A:

$$0 = {t \choose n} - {n+1 \choose n} {t \choose n+1} + \dots + (-1)^{t-n} {t \choose n} {t \choose t}$$

$$\binom{n+r}{n}\binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

Case 2: t > n.

$$0 = {t \choose n} - {n+1 \choose n} {t \choose n+1} + \dots + (-1)^{t-n} {t \choose n} {t \choose t}$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!} = \frac{t!}{n!r!(t-n-r)!}$$

Case 2: t > n.

$$0 = {t \choose n} - {n+1 \choose n} {t \choose n+1} + \dots + (-1)^{t-n} {t \choose n} {t \choose t}$$

$$\binom{n+r}{n}\binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

$$= \frac{t!}{n!r!(t-n-r)!}$$

$$= \frac{t!}{r!(t-r)!} \frac{(t-r)!}{n!(t-n-r)!}$$

Case 2: t > n.

$$0 = {t \choose n} - {n+1 \choose n} {t \choose n+1} + \dots + (-1)^{t-n} {t \choose n} {t \choose t}$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

$$= \frac{t!}{n!r!(t-n-r)!}$$

$$= \frac{t!}{r!(t-r)!} \frac{(t-r)!}{n!(t-n-r)!}$$

$$= \binom{t}{r} \binom{t-r}{r}$$

Case 2: t > n.

$$0 = {t \choose n} - {n+1 \choose n} {t \choose n+1} + \dots + (-1)^{t-n} {t \choose n} {t \choose t}$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

$$= \frac{t!}{n!r!(t-n-r)!}$$

$$= \frac{t!}{n!(t-n)!} \frac{(t-n)!}{r!(t-n-r)!}$$

$$= \binom{t}{n} \binom{t-n}{r}$$

Case 2: t > n.

$$0 = {t \choose n} - {n+1 \choose n} {t \choose n+1} + \dots + (-1)^{t-n} {t \choose n} {t \choose t}$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

$$= \frac{t!}{n!r!(t-n-r)!}$$

$$= \frac{t!}{n!(t-n)!} \frac{(t-n)!}{r!(t-n-r)!}$$

$$= \binom{t}{n} \binom{t-n}{r}$$

So, RHS is

$$0 = {t \choose n} - {t \choose n} {t-n \choose 1} + \dots + (-1)^{t-n} {t \choose n} {t-n \choose t-n}$$

x is counted once in E(n) x is counted once in $\omega(n)$ x cannot belong to m intersections for m > n x is counted 0 times in $\omega(m)$ 1 = 1

Case 2: t > n.

x is in exactly t intersections

x is counted 0 times in E(n)

Assume x is in precisely $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$

x will be counted once in any n(< t) intersection that

involves some of these $A_{i_1}, A_{i_2}, \ldots, A_{i_t}$

There are $\binom{t}{n}$ choices for such intersections

x is counted $\binom{t}{n}$ times in $\omega(n)$

In the RHS, x is counted,

$$0 = {t \choose n} - {n+1 \choose n} {t \choose n+1}$$

$$+ \cdots + (-1)^{t-n} {t \choose n} {t \choose t}$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

$$= \frac{t!}{n!r!(t-n-r)!}$$

$$= \frac{t!}{n!(t-n)!} \frac{(t-n)!}{r!(t-n-r)!}$$

$$= \binom{t}{n} \binom{t-n}{r}$$

So, RHS is

$$0 = {t \choose n} - {t \choose n} {t-n \choose 1} + \dots + (-1)^{t-n} {t \choose n} {t-n \choose t-n}$$

Example. Find the number of non-negative integer solutions of

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

$$= \frac{t!}{n!r!(t-n-r)!}$$

$$= \frac{t!}{n!(t-n)!} \frac{(t-n)!}{r!(t-n-r)!}$$

$$= \binom{t}{n} \binom{t-n}{r}$$

So, RHS is

$$0 = {t \choose n} - {t \choose n} {t-n \choose 1} + \dots + (-1)^{t-n} {t \choose n} {t-n \choose t-n}$$

Example. Find the number of non-negative integer solutions of

$$x + y + z = 20$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$
 lutions of
$$z+y+z=20$$

$$= \frac{t!}{n!r!(t-n-r)!}$$
 So that $x \le 5$,
$$= \frac{t!}{n!(t-n)!} \frac{(t-n)!}{r!(t-n-r)!}$$

$$= \binom{t}{n} \binom{t-n}{r}$$

Example. Find the number of non-negative integer solutions of

$$x + y + z = 20$$

$$0 = {t \choose n} - {t \choose n} {t-n \choose 1} + \dots + (-1)^{t-n} {t \choose n} {t-n \choose t-n}$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$
 lutions of
$$z+y+z=20$$

$$= \frac{t!}{n!r!(t-n-r)!}$$
 So that $x \le 5, y \le 7,$
$$= \frac{t!}{n!(t-n)!} \frac{(t-n)!}{r!(t-n-r)!}$$

$$= \binom{t}{n} \binom{t-n}{r}$$

Example. Find the number of non-negative integer solutions of

$$x + y + z = 20$$

$$0 = {t \choose n} - {t \choose n} {t-n \choose 1} + \dots + (-1)^{t-n} {t \choose n} {t-n \choose t-n}$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

$$= \frac{t!}{n!r!(t-n-r)!}$$

$$= \frac{t!}{n!(t-n)!} \frac{(t-n)!}{r!(t-n-r)!}$$

$$= \binom{t}{n} \binom{t-n}{r}$$
So that $x \le 5, y \le 7$

$$= \binom{t}{n} \binom{t-n}{r}$$

Example. Find the number of non-negative integer solutions of

$$x + y + z = 20$$

So that $x \leq 5$, $y \leq 7$, and $z \leq 9$

$$0 = {t \choose n} - {t \choose n} {t-n \choose 1} + \dots + (-1)^{t-n} {t \choose n} {t-n \choose t-n}$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

$$= \frac{t!}{n!r!(t-n-r)!}$$

$$= \frac{t!}{n!(t-n)!} \frac{(t-n)!}{r!(t-n-r)!}$$

$$= \binom{t}{n} \binom{t-n}{r}$$

Example. Find the number of non-negative integer solutions of

$$x + y + z = 20$$

So that $x \leq 5$, $y \leq 7$, and $z \leq 9$

Solution.

$$0 = {t \choose n} - {t \choose n} {t-n \choose 1} + \dots + (-1)^{t-n} {t \choose n} {t-n \choose t-n}$$

$$\binom{n+r}{n} \binom{t}{n+r} = \frac{(n+r)!}{n!r!} \frac{t!}{(n+r)!(t-n-r)!}$$

$$= \frac{t!}{n!r!(t-n-r)!}$$

$$= \frac{t!}{n!(t-n)!} \frac{(t-n)!}{r!(t-n-r)!}$$

$$= \binom{t}{n} \binom{t-n}{r}$$

Example. Find the number of non-negative integer solutions of

$$x + y + z = 20$$

So that $x \leq 5$, $y \leq 7$, and $z \leq 9$

Solution.

$$0 = {t \choose n} - {t \choose n} {t-n \choose 1} + \dots + (-1)^{t-n} {t \choose n} {t-n \choose t-n}$$