BAYESIAN OPTIMIZATION 101

Black box optimization – the sophisticated one

Diego Klabjan

Northwestern ENGINEERING

Acknowledgment

- Images contributed by
 - Ryan P. Adams, School of Engineering and Applied Sciences, Harvard University

Key Concepts

- Function evaluated at certain points
- Non-evaluated points
 - Probabilistically estimate values
 - At any other point model the value as a distribution
 - Normal distribution
- Selecting the next point to evaluate
 - At each point we can calculate the expected value
 - Select a point with the lowest expected value

- However
 - Such a point might have high variance
 - Uncertainty
 - Lower uncertainty of points with high variance
- Trade-off
 - Low expected value
 - High variance

Gaussian Process

Infinite and possibly uncountable many points

$${X_t: t \in T}$$

- Any finite subset of points distributed
 - Multi-variate Gaussian
- Equivalent to
 - Every linear combination is distributed based on single variate Gaussian

Formalism

Marginal likelihood

$$\ln p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}) = -\frac{N}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{K}_{\boldsymbol{\theta}}| - \frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \boldsymbol{K}_{\boldsymbol{\theta}}^{-1} \boldsymbol{y}$$

- Test distribution on $\{x_m\}_1^M$
 - In BO used with M=1

$$m{y}^{\mathsf{test}} \sim \mathcal{N}(m{m}, m{\Sigma})$$
 $m{m} = m{k}_{ heta}^{\mathsf{T}} m{K}_{ heta}^{-1} m{y}$ $m{\Sigma} = m{\kappa}_{ heta} - m{k}_{ heta}^{\mathsf{T}} m{K}_{ heta}^{-1} m{k}_{ heta}$

Northwestern | ENGINEERING

Formalism

- Quantities
 - Covariance matrices

$$[\boldsymbol{K}_{ heta}]_{n,n'} = C(\boldsymbol{x}_n, \boldsymbol{x}_{n'}; \theta)$$
 $[\boldsymbol{k}_{ heta}]_{n,m} = C(\boldsymbol{x}_n, \boldsymbol{x}_m; \theta)$ $[\boldsymbol{\kappa}_{ heta}]_{m,m'} = C(\boldsymbol{x}_m, \boldsymbol{x}_{m'}; \theta)$

- Parameter included if parametric covariance used
 - Notion of kernel
 - Kernels are usually parametric

Acquisition function

- Selection of next point to evaluate
- $\max_{x} m(x) c \Sigma(x)$
- Max of mean c standard deviation
 - Upper confidence bound
- Other acquisition functions possible
 - Probability of improvement
 - Expected improvement

Algorithm

- S = set of a small number of random points
- Loop
 - Compute the covariance matrix $K = [u_{ij}] = [e^{-||x_i x_j||}]_{x_i \in s, x_j \in S}$
 - Define vector $y = (f(x_i))_i$
 - Define vector $k(x) = \left[e^{-\left||x-x_j|\right|}\right]_{x_j \in S}$
 - Calculate $m(x) = k(x)K^{-1}y$
 - Calculate $\Sigma(x) = k(x) k(x)K^{-1}k(x)$
 - Solve the acquisition problem
 - Let \bar{x} be a solution
 - Evaluate $f(\bar{x})$
 - $S = S \cup \{\bar{x}\}$