CIRMS 15th Annual Meeting 23 October 2006

Measurement Uncertainty Assessment & Reports: Practical Considerations

R. Collé

Radioactivity Group NIST Physics Laboratory

Objective / Goal of this Talk:

Nothing new –

no methods; no techniques; no propaganda

Just some insight –

things to consider & think about

Practical considerations

Practical consideration: want realistic uncertainties (like the 3 bears: not too big, not too small, "just right"

Constraint (whether good, bad or indifferent)

Ground rules (boundary conditions):

Must follow Internationally-accepted (ISO, et alia) GUM + NIST guidance

Guidance based on 5 simple <u>recommendations</u> of a 1980 BIPM Working Group and CIPM

which led to an 8-step **procedure** in the "Guide"

Assume you know it

Here's a short version

- 1. Express math relation between input X_i & output Y(i.e., MODEL)
- 2. Get values of X_i
- 3. Evaluate "standard uncertainty" $u(X_i)$ on each by type A or type B evaluations square of these assumed to act like "variances" $u(X_i)^2$
- 4. Evaluate any "covariances" $u(X_i, X_j)$ associated with X values -- Oops, a small problem here when reporting)
- 5. Calculate Y from the math function
- 6. Determine the "combined standard uncertainty" $u_c(Y)$ assumed to be positive square root of total "variance" obtained by summing all variance $u(X_i)^2$ and covariance $u(X_i, X_j)$ components using "Propagation of Error Law"
- 7. If need higher level of confidence, multiply $u_c(Y)$ by coverage factor k to get U whether you know what it means or not
- 8. Report Y and U or $u_c(Y)$ -- AND list all uncertainty components & how evaluated

One underlying Principle of the Guidance (often violated):

Thou shalt not take "STATISTICS" in vain

Most frequently misunderstood concept

Type A

&

Type B

Who believes that a good job on uncertainties is being done?

"Just right"

Not too big

Not too small

Half-life of ¹⁰⁹Cd

WHY?

It's the Model, Stu!!d

What is a *Measurement Model*?

Given as:

"Formalization of the relationship between input and output quantities involved in a measurement and how the uncertainty in an input quantity leads to an uncertainty in the output quantity"

Doesn't help much for making realistic uncertainty assessment

$$A = \frac{\left(\frac{C}{t} - B\right)}{m\varepsilon \exp\left[\frac{-\ln(2)T}{T_{1/2}}\right]}$$

A =massic activity

C = number counts

t =measurement livetime

B =background count rate

m =source mass

 ε = detection efficiency

T =reference time interval

 $T_{1/2}$ = half-life

Uncertainties

(components of inaccuracy)

IF measurement THEN model

The model is often exactly what you did – knowingly or unknowingly

Look at experiment

Look at data

Think

Look at Experiment (measurement method) -- THINK

Look at Data -- THINK

How measurement is performed influences data treatment

How measurement is performed influences what effects might be seen

How measurement is performed influences what uncertainties might be considered & assessed

Oh yes, might think about doing it backward in designing experiment to get realistic uncertainty

Activity deviation from mean

Obviously something going on here

Really nice data here

Sample	55	60	68	71	78	82	96
	40.320	40.360	40.362	40.379	40.418	40.367	40.359
	40.371	40.365	40.404	40.317	40.419	40.433	40.284
	40.310	40.335	40.326	40.363	40.373	40.385	40.391
	40.341	40.329	40.390	40.367	40.392	40.372	40.316
	40.409	40.413	40.321	40.375	40.341	40.522	40.464
	40.457	40.424	40.401	40.311	40.338	40.418	40.396
	40.333	40.435	40.364	40.331	40.397	40.400	40.412
	40.417	40.344	40.376	40.414	40.312	40.299	40.476
	40.364	40.386	40.404	40.375	40.447	40.413	40.416
	40.396	40.380	40.353	40.394	40.330	40.353	40.401
	40.442	40.426	40.354	40.452	40.294	40.451	40.369
	40.325	40.356	40.346	40.386	40.340	40.356	40.335
	40.392	40.371	40.354	40.426	40.335	40.424	40.398
	40.336	40.334	40.406	40.291	40.439	40.413	40.352
	40.391	40.373	40.411	40.320	40.361	40.387	40.439
	40.400	40.466	40.364	40.379	40.391	40.443	40.355
	40.369	40.381	40.499	40.306	40.347	40.408	40.435
	40.460	40.550	40.388	40.405	40.378	40.370	40.496
mean	40.380	40.390	40.379	40.366	40.370	40.401	40.394
sd	0.047	0.055	0.041	0.045	0.044	0.048	0.056

From eFits

Anderson-Darling test: at 95 % level, data do come from normal dist.

Wilk-Shapiro test: at 95 % and 99 %, accept normality assumption

Normal PPCC test accept normality at 95 % and 99 %

Nice data ...
What is the sdm?

$$s = (0.0110^2 + 0.0128^2)^{1/2} = 0.017$$

Something going on here too!

Mass deviation from mean

Thanks to Pommé for data

Appl. Radiat. Isot. 64, 1412 (2006)

Pb-210: all counters; Composition 1

Often miss various instabilities & additional components of variance

Need to look at additional variables

Can divide instabilities according to frequency

HIGH

Counting statistics

Noise

Repeat measurement replication

Other short-term random effects

Etc....

MEDIUM

Day-to-day

"seasonal"

Between-measurement effects (same sample, different occasion)

Between-sample effects

Between-instrument/geometry effects

Short-lived impurity

Etc....

Most of these not in the model's formula!

LOW

Deadtime

Background subtraction

Detector degradation

Reference source changes

Geometry changes

Etc....

Lots of tools available

(if have data from measurements)

"statistics"

ANOVA

Correlation & autocorrelation analyses

Dataplot / eFit

Etc ...

USE THEM

.. but <u>not</u> GUM software or spreadsheets

Main uncertainty reporting problems and issues

Loss of information

Meaning & interpretation

Incomplete assessments

OK to say negligible, but thought about it!

Correlations hard to put into component lists

FIN....

THANKS

