Priebeh funkcie - 2.časť

Zuzana Minarechová

Katedra matematiky a deskriptívnej geometrie Slovenská technická univerzita, Stavebná fakulta

19 Október 2020

Obsah prednášky

- Priebeh funkcie
- Najmenšia a najväčšia hodnota funkcie

Priebeh funkcie

Priebeh funkcie

- Zisťovanie priebehu funkcie spočíva v popise jej vlastností a načrtnutí jej grafu.
- Postup by mal obsahovať:
 - 1) Definičný obor funkcie;

- Zisťovanie priebehu funkcie spočíva v popise jej vlastností a načrtnutí jej grafu.
- Postup by mal obsahovať:
 - 1) Definičný obor funkcie;
 - 2) Vlastnosti symetrie: párnosť, nepárnosť, periodickosť;

- Zisťovanie priebehu funkcie spočíva v popise jej vlastností a načrtnutí jej grafu.
- Postup by mal obsahovať:
 - 1) Definičný obor funkcie;
 - 2) Vlastnosti symetrie: párnosť, nepárnosť, periodickosť;
 - Významné body: napr. nulové body funkcie (t.j. priesečníky s osami); body nespojitosti (v nich treba potom určiť jednostranné limity); body, v ktorých neexistuje derivácia a pod.;

- Zisťovanie priebehu funkcie spočíva v popise jej vlastností a načrtnutí jej grafu.
- Postup by mal obsahovať:
 - 1) Definičný obor funkcie;
 - 2) Vlastnosti symetrie: párnosť, nepárnosť, periodickosť;
 - Významné body: napr. nulové body funkcie (t.j. priesečníky s osami); body nespojitosti (v nich treba potom určiť jednostranné limity); body, v ktorých neexistuje derivácia a pod.;
 - 4) Asymptoty grafu funkcie;

- Zisťovanie priebehu funkcie spočíva v popise jej vlastností a načrtnutí jej grafu.
- Postup by mal obsahovať:
 - 1) Definičný obor funkcie;
 - 2) Vlastnosti symetrie: párnosť, nepárnosť, periodickosť;
 - Významné body: napr. nulové body funkcie (t.j. priesečníky s osami); body nespojitosti (v nich treba potom určiť jednostranné limity); body, v ktorých neexistuje derivácia a pod.;
 - 4) Asymptoty grafu funkcie;
 - 5) Intervaly monotónnosti funkcie a jej lokálne extrémy;

- Zisťovanie priebehu funkcie spočíva v popise jej vlastností a načrtnutí jej grafu.
- Postup by mal obsahovať:
 - 1) Definičný obor funkcie;
 - 2) Vlastnosti symetrie: párnosť, nepárnosť, periodickosť;
 - Významné body: napr. nulové body funkcie (t.j. priesečníky s osami); body nespojitosti (v nich treba potom určiť jednostranné limity); body, v ktorých neexistuje derivácia a pod.;
 - 4) Asymptoty grafu funkcie;
 - 5) Intervaly monotónnosti funkcie a jej lokálne extrémy;
 - 6) Intervaly, kde je funkcia konvexná, konkávna a jej inflexné body;

- Zisťovanie priebehu funkcie spočíva v popise jej vlastností a načrtnutí jej grafu.
- Postup by mal obsahovať:
 - 1) Definičný obor funkcie;
 - 2) Vlastnosti symetrie: párnosť, nepárnosť, periodickosť;
 - Významné body: napr. nulové body funkcie (t.j. priesečníky s osami); body nespojitosti (v nich treba potom určiť jednostranné limity); body, v ktorých neexistuje derivácia a pod.;
 - 4) Asymptoty grafu funkcie;
 - 5) Intervaly monotónnosti funkcie a jej lokálne extrémy;
 - 6) Intervaly, kde je funkcia konvexná, konkávna a jej inflexné body;
 - 7) Náčrtok grafu funkcie.

Príklad

Zistíme priebeh funkcie $y = \frac{2x^3}{x^2-1}$.

Riešenie:

- 1) Definičný obor funkcie je množina $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$.
- 2) Počítame

$$y(-x) = \frac{2(-x)^3}{(-x)^2 - 1} = -\frac{2x^3}{x^2 - 1} = -y(x),$$

funkcia je nepárna, nie je periodická.

- 3) Funkcia je spojitá, jediný nulový bod funkcie je bod [0,0].
- 4) Asymptoty grafu funkcie bez smernice sú priamky x=-1 a x=1, lebo jednostranné limity v nich sú nevlastné.

Počítame asymptoty so smernicou:

$$k = \lim_{x \to \infty} \frac{2x^2}{x^2 - 1} = 2.$$

$$q = \lim_{x \to \infty} \frac{2x^3 - 2x(x^2 - 1)}{x^2 - 1} = \lim_{x \to \infty} \frac{2x}{x^2 - 1} = 0.$$

Vzhľadom na nepárnosť funkcie existuje jediná asymptota jej grafu so smernicou: y=2x.

- 5) Intervaly monotónnosti funkcie určíme pomocou prvej derivácie $y'(x)=\frac{2x^2(x^2-3)}{(x^2-1)^2}$. Analýza znamienok derivácie vedie k výsledku:
 - Funkcia je rastúca v intervaloch $(-\infty, -\sqrt{3}), \ (\sqrt{3}, \infty).$
 - Funkcia je klesajúca v intervaloch $(-\sqrt{3},-1),\ (-1,1),\ (1,\sqrt{3}).$

Lokálne extrémy funkcie sú v bodoch, kde funkcia mení rast na klesanie alebo naopak. Pretože body ± 1 nie sú v jej definičnom obore, jediné jej extrémy sú:

- Funkcia má lokálne maximum $-3\sqrt{3}$ v bode $-\sqrt{3}$.
- Funkcia má lokálne minimum $3\sqrt{3}$ v bode $\sqrt{3}$. (pozn. Všimnite si, že lokálne minimum je väčšie ako lokálne maximum.)
- 6) Intervaly, kde je funkcia konvexná, konkávna určíme pomocou druhej derivácie $y''(x)=\frac{4x(x^2+3)}{(x^2-1)^3}$, t.j.,
 - Funkcia je konvexná v intervaloch $(-1,0),\ (1,\infty)$,
 - funkcia je konkávna v intervaloch $(-\infty, -1), (0, 1).$

Funkcia má jediný inflexný bod v bode [0,0].

7) Náčrtok grafu funkcie:

Obr.: Graf funkcie
$$y = \frac{2x^3}{x^2-1}$$

Príklad

Zistíme priebeh funkcie $y = \ln\left(\frac{1+x}{1-x}\right)$.

Riešenie:

- 1) Definičný obor funkcie je interval (-1,1).
- 2) Počítame

$$y(-x) = \ln\left(\frac{1-x}{1+x}\right) = \ln\left(\frac{1+x}{1-x}\right)^{-1} = -\ln\left(\frac{1+x}{1-x}\right) = -f(x).$$

Funkcia je nepárna, nie je periodická.

- 3) Funkcia je spojitá v definičnom obore, jediný nulový bod je bod [0,0].
- 4) Graf funkcie má asymptoty bez smernice x=-1 a x=1 v krajných bodoch definičného oboru, lebo $\lim_{x\to 1^-}\ln\left(\frac{1+x}{1-x}\right)=\infty$ a

$$\lim_{x \to -1^+} \ln \left(\frac{1+x}{1-x} \right) = -\infty.$$

Asymptoty so smernicou nemá z dôvodu ohraničenosti svojho definičného oboru.

- 5) Derivácia funkcie $y'(x)=\frac{2}{1-x^2}$ je kladná v celom definičnom obore, preto funkcia je rastúca, nemá lokálne extrémy.
- 6) Znamienko druhej derivácie $y''(x) = \frac{4x}{(1-x^2)^2}$ je zhodné so znamienkom x a mení sa v bode 0. Preto
 - Funkcia je konvexná v intervale (0,1),
 - konkávna v intervale (-1,0)
 - a má jediný inflexný bod [0,0].
- 7) Náčrtok grafu funkcie:

Obr.: Graf funkcie
$$y = \ln\left(\frac{1+x}{1-x}\right)$$

Príklad

Zistíme priebeh funkcie $y = e^{\sin x}$.

Riešenie:

- 1) Definičný obor funkcie je množina všetkých reálnych čísel R.
- 2) Počítame

$$y(-x) = e^{\sin(-x)} = e^{-\sin x} = \frac{1}{e^{\sin x}}.$$

Táto hodnota nie je rovná ani jednej z hodnôt $\pm y(x)$, preto funkcia nie je párna ani nepárna. Je periodická s periódou 2π .

- 3) Funkcia je spojitá, nemá nulové body.
- 4) Z dôvodu spojitosti nemá graf funkcie asymptoty bez smernice, keďže je periodická, nemá graf ani asymptoty so smernicou.

- 5) Prvá derivácia $y'(x) = \cos x e^{\sin x}$ má znamienko zhodné so znamienkom funkcie cos. Preto
 - funkcia rastie v intervaloch $(-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi)$ a klesá v intervaloch $(\frac{\pi}{2}+2k\pi,\frac{3\pi}{2}+2k\pi)$,

 - funkcia má lokálne maximá e v bodoch $\frac{\pi}{2} + 2k\pi$ a
 - funkcia má lokálne minimá $\frac{1}{e}$ v bodoch $-\frac{\pi}{2} + 2k\pi$,

kde k je ľubovoľné celé číslo.

- 6) Druhá derivácia funkcie $y''(x) = e^{\sin x}(1 \sin x \sin^2 x)$ má znamienko zhodné so znamienkom výrazu v zátvorke. Výpočet nulových bodov tohoto výrazu je možné vykonať len približne. Dostávame:
 - funkcia je konvexná v intervaloch $((-1,212+2k)\pi,(0,212+2k)\pi)$,
 - funkcia je konkávna v intervaloch $((0,212+2k)\pi,(0,788+2k)\pi)$ a
 - má inflexné body v bodoch $(0,212+2k)\pi$ a $(0,788+2k)\pi$),

kde k je ľubovoľné celé číslo.

7) Náčrtok grafu funkcie:

Obr.: Graf funkcie $y = e^{\sin x}$

Príklad

Zistite priebeh funkcie:

a)
$$f(x) = x \ln(x^2)$$

b) $f(x) = e^{-x^2}$

b)
$$f(x) = e^{-x^2}$$

Obr.: a) Graf funkcie $f(x) = x \ln(x^2)$

Obr.: b) Graf funkcie $f(x) = e^{-x^2}$

Najmenšia a najväčšia hodnota

Najmenšia a najväčšia hodnota

Najmenšia a najväčšia hodnota - postup

V praxi je často potrebné určiť **najväčšiu alebo najmenšiu hodnotu funkcie** v niektorom intervale $\langle a, b \rangle$. Postupujeme nasledovne:

- 1) Určíme všetky lokálne maximá funkcie v intervale (a,b).
- 2) Nájdeme najväčšiu z hodnôt všetkých lokálnych maxím a hodnôt v krajných bodoch intervalu: f(a) a f(b).

Analogicky postupujeme pri určovaní najmenšej hodnoty.

Príklad

Zistíme najmenšie a najväčšie hodnoty:

- a) funkcie $y = x^3 6x^2 + 7$ v intervale $\langle -1, 2 \rangle$,
- b) funkcie $y = 2x + \cos 2x$ v intervale $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$,
- c) funkcie $y = 3 e^{|x|}$ v intervale $\langle -2, 3 \rangle$.

Riešenie:

a) Funkcia má deriváciu v každom bode intervalu, preto lokálne extrémy môžu byť len v jej stacionárnych bodoch. Tie sú určené rovnicou $3x^2-12x=0$, t.j. $x_1=0$ a $x_2=4$. Z nich do daného intervalu patrí len $x_1=0$. Test pomocou druhej derivácie potvrdí lokálne maximum funkcie v tomto bode. Na extrémne hodnoty máme teda troch kandidátov: f(0)=7, f(-1)=0 a f(2)=-9. Najmenšou hodnotou funkcie v danom intervale je preto hodnota -9 nadobudnutá v bode 2 a najväčšou hodnota 7 nadobudnutá v bode 0.

Obr.: a) Graf funkcie $y=x^3-6x^2+7$ na intervale $\langle -1,2\rangle$ s vyznačením najmenšej a najväčšej hodnoty

b) Funkcia má deriváciu v každom bode intervalu, preto lokálne extrémy môžu byť len v jej stacionárnych bodoch. Tie sú určené rovnicou $2-2\sin 2x=0$, ktorej riešením v danom intervale je jediné číslo $x=\frac{\pi}{4}$. Ďalej postupujeme podobne ako v predchádzajúcej časti. Najmenšou hodnotou v danom intervale je hodnota $-\pi-1$ a najväčšou hodnota $\pi-1$.

Obr.: b) Graf funkcie $y=2x+\cos 2x$ na intervale $\langle -\frac{\pi}{2},\frac{\pi}{2}\rangle$ s vyznačením najmenšej a najväčšej hodnoty

c) Pre x>0 je $y=3-e^x$ a $y'=-e^x<0$. Pre x<0 je $y=3-e^{-x}$ a $y'=e^{-x}>0$. Znamienka derivácie určujú, že v bode 0 má funkcia najväčšiu hodnotu f(0)=2 Najmenšiu hodnotu môže nadobudnúť len v krajných bodoch intervalu, z ktorých jeden do intervalu nepatrí. Platí $f(-2)=3-e^2>f(3)=3-e^3$. Pretože funkcia je spojitá, v intervale $\langle -2,3 \rangle$ nenadobudne najmenšiu hodnotu.

Obr.: c) Graf funkcie $y=3-e^{|x|}$ na intervale $\langle -2,3\rangle$ s vyznačením najväčšej hodnoty

Ďakujem za pozornosť.