Machine Learning System Design

5 questions

1 point

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's accuracy (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.095

2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which are the two?			
	The features $oldsymbol{x}$ contain sufficient		
	information to predict \boldsymbol{y} accurately. (For example, one		
	way to verify this is if a human expert on the domain		
	can confidently predict y when given only x).		
	When we are willing to include high		
	order polynomial features of x (such as x_1^2 , x_2^2 ,		
	x_1x_2 , etc.).		
	We train a learning algorithm with a		
	large number of parameters (that is able to		
	learn/represent fairly complex functions).		
	We train a learning algorithm with a		
	small number of parameters (that is thus unlikely to		
	overfit).		

1 point

3.

Suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.			
Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x)lt$ threshold, where currently the threshold is set to 0.5.			
Suppose you decrease the threshold to 0.1. Which of the following are true? Check all that apply.			
	The classifier is likely to now have higher precision.		
	The classifier is likely to have unchanged precision and recall, but		
	lower accuracy.		
	The classifier is likely to now have higher recall.		
	The classifier is likely to have unchanged precision and recall, but		
	higher accuracy.		
1 point			
4. Suppose you are working on a spam classifier, where spam			
emails are positive examples ($y=1$) and non-spam emails are			
negative examples ($y=0$). You have a training set of emails			
in which 99% of the emails are non-spam and the other 1% is			
spam. Which of the following statements are true? Check all			
that apply.			
	If you always predict non-spam (output		
	$y{=}0$), your classifier will have an accuracy of		
	99%.		
If you always predict non-spam (output			
	y=0), your classifier will have 99% accuracy on the		

	collecting a large amount of data before building
	your first version of a learning algorithm.
	Using a very large training set
	makes it unlikely for model to overfit the training
	data.
	If your model is underfitting the
	training set, then obtaining more data is likely to
	help.
~	I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code Anderson Banihirwe
	Submit Quiz

