Лабораторная работа 6

Разложение чисел на множители

Греков Максим Сергеевич

Содержание

1	Цель работы	4
2	Описание задачи 2.1 Каноническое разложение	5 5
3	Описание алгоритма	6
4	Реализация алгоритма	7
5	Программный код	8
6	Выводы	9

List of Figures

3.1	р-Метод Полларда	(
4 1	Реализация алгоритма	7

1 Цель работы

- Ознакомиться с задачей разложения простого числа на множители
- Рассмотреть каноническое представление числа
- Реализовать метод нахождения нетривиальных сомножителей

2 Описание задачи

2.1 Каноническое разложение

Задача разложения на множители - одна из первых задач, использованных для построения криптосистем с открытым ключом.

Задача разложения составного числа на множители формулируется следующим образом:

для данного положительного целого числа n найти его каноническое разложение $n=p_1^{a_1}p_2^{a_2}...p_s^{a_s}$, где p_i - попарно различные простые числа, $a_i>=1$

2.2 Задача нахождения сомножителей

На практике не обязательно находить каноническое разложение числа n.

Достаточно найти его разложение на два нетривиальных сомножителя: n=pq, 1 <= p <= q < n.

Далее будем понимать задачу разложения именно в этом смысле. Для её решения воспользуемся р-Методом Полларда (рис. 3.1) и реализуем его посредством Python (рис. 4.1)

3 Описание алгоритма

p–Метод Полларда. Пусть n – нечетное составное число, $S=\{0,1,...,n-1\}$ и $f\colon S\to S$ – случайное отображение, обладающее сжимающими свойствами, например $f(x)\equiv x^2+1\ (mod\ n)$. Основная идея метода состоит в следующем. Выбираем случайный элемент $x_0\in S$ и строим последовательность $x_0,x_1,x_{2,...}$, определяемую рекуррентным соотношением

$$x_{i+1} = f(x_i),$$

где $i \geq 0$, до тех пор, пока не найдем такие числа i,j, что i < j и $x_i = x_j$. Поскольку множество S конечно, такие индексы i,j существуют (последовательность «зацикливается»). Последовательность $\{x_i\}$ будет состоять из «хвоста» x_0, x_1, \dots, x_{i-1} длины $O\left(\sqrt{\frac{\pi n}{8}}\right)$ и цикла $x_i = x_j, x_{i+1}, \dots, x_{j-1}$ той же

Figure 3.1: p-Метод Полларда

4 Реализация алгоритма

Figure 4.1: Реализация алгоритма

5 Программный код

```
from random import randint
def pollard(n: int) -> int:
  f = lambda x: (x**2 + 1) \% n
  c = randint(0,n-1)
  a = c
  b = c
  while True:
    a = f(a)
    b = f(f(b))
    d = math.gcd(a-b, n)
    if 1 < d < n:
       return d
    elif d == n:
       return None
for i in range(10000, 10100):
  p = pollard(i)
  if p: print(i, p, i//p)
```

import math

6 Выводы

- Ознакомились с задачей разложения простого числа на множители
- Рассмотрели каноническое представление числа
- Реализовали метод нахождения нетривиальных сомножителей