

Optimizing Platform Survivability Using Scenario Analysis and Stochastic Linear Programs

A Research Proposal

Jeffrey A. Smith
25 April 2000

Organization

- **Introduction**
- **Research Proposal**
- **The Next Steps**
- **Tool Application**
- **Summary**
- **Conclusions**

Introduction

- **The Army in Transformation**
 - A new “objective force” is being created.
- **An Objective Force with Design Goals of:**
 - Increased responsivity and deployability,
 - Increased agility and versatility,
 - Increased lethality and survivability,
 - Decreased logistics footprint.
- **Obstacles in Meeting these Goals include:**
 - Increased threat weapons lethality,
 - A diverse threat,
 - Different operational situations, and
 - Varied mission requirements and terrain types.

Some Definitions

- **A platform is:**

- A single instance of a vehicle such as an Abrams tank, a Bradley personnel carrier or other vehicle.
 - The term platform is used to establish a reference for illustrating the application of stochastic linear programming and scenario analysis.

- **Survivability is the end result of:**

- Making it through an encounter with a threat system with some level of effectiveness or functionality intact.
 - This definition does not assume that a platform will make it through unscathed simply that it will not be destroyed.

Examples of Design

Trade Offs

- Increase deployability implies decreasing platform burdens such as:
 - Weight (which includes armor) and electrical power.
 - Volume and dimension.
- Increased survivability implies
 - Maintaining battlefield effectiveness
 - Meeting or exceeding survivability of today's platforms
 - Reducing platform burdens
- A budget that is 60% of what it was 10 years ago.

Motivating Question

- **Question: “How can one maintain platform effectiveness while addressing the design issues of deployability, responsivity, agility, versatility, survivability, lethality and sustainability in addition to meeting the increased survivability goal?”**

Community Approach

Observations

- Platform design considers:
 - Many diverse missions and tasks to perform.
 - Many design constraints, not just survivability.
 - A survivability design task that must consider a changing threat.
- The survivability suite:
 - The collections of survivability options is finite.
 - There are MANY design approaches and technology solutions for addressing the areas of platform survivability.
 - There may be performance synergies (positive or negative) between various survivability options.
- The threat:
 - The threat space may be large, but it is finite.
 - The threat varies with mission, location and environment.
 - The threat also varies with time (the threat evolves and responds).

Research Question

- **How can a designer field a platform that**
 - **Considers the diverse mission requirements,**
 - **Maintains effectiveness,**
 - **Meets the design goals,**
 - **Survives on future battlefields, and**
 - **Lives within budgetary concerns?**
- **The answer is a combination of scenario analysis and stochastic programming approaches**
 - **Scenario analysis captures variations in time and mission.**
 - **Stochastic programming captures uncertainty within a given scenario.**

Scenario Analysis

Stochastic Programming

- **Chance constrained linear programming**

- “Here and now” approach.
 - Finds a solution that meets the constraints for all but a small fraction of the threat array.
 - This topic will be carried forward in this discussion.

- **Stochastic programming with recourse**

- “Wait and see” approach.
 - Is representative of the design process when the designer considers what approaches to “design in” versus what “technology solutions” are added later.
 - This topic is included in the proposal but not in this presentation.

Research Statement

- **As English:** how can I field a platform that
 - Considers the scenario specific mission requirements,
 - Meets the design goals,
 - Considers the budgetary concerns, and
 - Survives on future battlefields
- **As an optimization problem:**
 - » $\min z = w^T x$
 - subject to
 - » $Ax \leq b$ □ known requirements (volume, power, cost, etc.)
 - and
 - » $P_s(S_s, \Omega(\cdot)) \geq 0$ □ survivability constraint

Chance Program

- As English: how can I field a platform that

- Considers the scenario specific mission requirements,
 - Meets the design goals,
 - Considers the budgetary concerns, and
 - Survives engagements with all but a small fraction of the threats

- The problem as a chance constrained program is:

- » $\min z = w^T x$

- subject to
» $Ax \leq b$ $x \in X = \{0,1\}^{n_x}$ where $n_x = \#(S_m)$

- and

- » $P[P_s(S_s, \cdot)] \geq \alpha]$ $S_s = \{s_j \mid S_m | x_j = 1, j = 1, \dots, n_x\}$

Definitions

- A_D design approaches for avoiding detection,
- A_H technology solutions for avoiding hit,
- A_P design approaches for avoiding penetration,
- A_K design approaches to avoid being killed,
- S_m a set of survivability measures
 - A_D □ A_H □ A_P □ A_K
- S_s a survivability suite under consideration
 - S_s □ S_m
- Note: all sets are finite sets.

Probability of Survival

- Probability of survival is defined as follows:

$$\square P_s(S_s, x(w)) = \prod_{i=1}^4 P_i(S_s, x(w))$$

- Where $P_i(S_s, x(w))$ is defined as the probability that the threat

- $\square P_1(S_s, x(w))$: detects the platform,
- $\square P_2(S_s, x(w))$: hits given platform detection,
- $\square P_3(S_s, x(w))$: penetrates the platform given hit,
- $\square P_4(S_s, x(w))$: kills the platform given hit,

With survivability suite S_s applied to the platform

Solution Approach

- This approach is intuitive:
 - It frames the problem as a typical engineering design problem, with
 - Costs and burdens as design constraints, and
 - The probability of survival treated as a design goal to be met at some desired threshold.
- This approach uses:
 - Burdens as a series of deterministic design constraints that restrict the choice of survivability measures, and
 - Probability of survival as another constraint which we will meet at a specified level of tolerance.

Simple Example

- For an unrealistic example for illustration, assume:
 - Only one survivability measure per avoidance area,
 - No interaction among survivability measures, nor
 - Interaction among avoidance areas.
- Define:
$$T_j(\mathbf{w}) = \begin{cases} \ln \frac{1}{e} - P_1(s_j, \mathbf{x}(\mathbf{w})) & " s_j \in (S_s \setminus A_H) \\ \ln \frac{1}{e} - P_2(s_j, \mathbf{x}(\mathbf{w})) & " s_j \in (S_s \setminus A_P) \\ \ln \frac{1}{e} - P_3(s_j, \mathbf{x}(\mathbf{w})) & " s_j \in (S_s \setminus A_K) \end{cases}$$

Solution

Requirements

The chance constraint is convex under the following general conditions:

- Let ω have a finite discrete distribution described by:
 $P(w=w_j) = p_j, j=1, \dots, u$ and $p_j > 0 \forall j$.

then for

$$a > 1 - \min_{j \in \{1, \dots, u\}} p_j$$

the feasible set defined by:

$$B(a) = \{x \mid P[w|T(w)x \geq h(w)] \geq a\}$$

is convex where $h(\omega) = \ln(p)$.

The Next Steps

- Further develop the functional form of $P_s(S_s, \Pi(\emptyset))$
 - This formulation does not include factors such as threat recognition and classification. This is assumed for this proposal.
- Questions to be answered
 - Are there reasonable approximations which can be used to model $P_s(S_s, \Pi(\emptyset))$, and if so, under what conditions are they valid?
- Evaluate solution approaches for $P_s(S_s, \Pi(\emptyset))$
 - It does not appear necessary for the form of $P_s(S_s, \Pi(\emptyset))$ to be completely known to evaluate solution approaches.

Analytical Approach

- **Using recourse programming to reduce the dimensionality of the set of survivability measures.**
 - **With recourse programming, if you meet the constraints, you have a potential solution. So, make a loose set of requirements, and use them to screen the candidates.**
- **Use the designed in survivability measures to find a solution. Then the recourse becomes the technology solution necessary to reach the true design goal.**

Analytical Approach

- **Use a chance programming approach to drive to a true optimal solution.**
 - Chance programming accepts that you will not be able to address all the threats, use this feature to find a satisfactory solution for most all cases.
- **Use a different form of the objective to create weighted solutions.**
 - Objective weights can be used to give preference to existing or status quo approaches versus notional approaches by giving higher weights to the notional approach.

Summary

- The survivability of both the current and future fleets of vehicles will rely on “survivability suites” for protection, not just an armor solution.
- Optimizing platform survivability can be approached using stochastic linear programming and scenario analysis.
- There are solution approaches available to solve the chance program in various forms.
 - The approaches depend on the information available regarding the underlying distribution of $P_s(S_s, \Pi(\Pi))$, and
 - The approaches may depend the definition of $P_s(S_s, \Pi(\Pi))$.

Conclusions

- **The Army needs a selection tool for determining an optimal survivability suite**
 - Considering the threat space,
 - The design goals, and
 - The available design approaches.
- **Stochastic programming and scenario analysis provides a rigorous methodology for determining a “best” suite of survivability measures for a given platform.**
- **Chance programming may also provide a way to trade off various design criteria in meeting single engagement and force survival requirements.**

Discussion

Are there any questions?

Contact Information

US Army Research Laboratory

ATTN: AMSRL-SL-EM (Jeffrey A. Smith)

Survivability\Lethality Analysis Directorate

WSMR, NM 88002-5513

(505)678-1332 DSN 258-1332

email: jsmith@arl.mil