1)

Give an example of sets a and B for which $a \in B$ but $\mathcal{P}a \notin \mathcal{P}B$.

2)

Show that the following four conditions are equivalent.

(a) $A \subseteq B$,

(b) $A - B = \emptyset$,

(c) $A \cup B = B$,

(d) $A \cap B = A$.

3)

Is $\mathcal{P}(A-B)$ always equal to $\mathcal{P}A-\mathcal{P}B$? Is it ever equal to $\mathcal{P}A-\mathcal{P}B$?

4)

Let A, B, and C be sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Show that B = C.

5)

Assume that $\mathcal{P}A = \mathcal{P}B$. Prove that A = B.

6)

Prove that for all sets the following are valid.

- (a) $A \subseteq C \& B \subseteq C \Leftrightarrow A \cup B \subseteq C$.
- (b) $C \subseteq A \& C \subseteq B \Leftrightarrow C \subseteq A \cap B$.

7)

- (a) Show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- (b) Show that if $A \times B = A \times C$ and $A \neq \emptyset$, then B = C.

8)

Assume that f and g are functions with $f \subseteq g$ and dom $g \subseteq \text{dom } f$. Show that f = g.

9

Assume that f and g are functions.

- (a) Show that $f \cap g$ is a function.
- (b) Show that $f \cup g$ is a function iff f(x) = g(x) for every x in $(\text{dom } f) \cap (\text{dom } g)$.

10)

Show that $(R \circ S) \circ T = R \circ (S \circ T)$ for any sets R, S, and T.

11)

- (a) Show that R is symmetric iff $R^{-1} \subseteq R$.
- (b) Show that R is transitive iff $R \circ R \subseteq R$.

12)

Show that R is a symmetric and transitive relation iff $R = R^{-1} \circ R$.

13)

Assume that R is a linear ordering on a set A. Show that R^{-1} is also a linear ordering on A.

14)

Assume that $<_A$ and $<_B$ are linear orderings on A and B, respectively. Define the binary relation $<_L$ on the Cartesian product $A \times B$ by:

$$\langle a_1, b_1 \rangle <_L \langle a_2, b_2 \rangle$$
 iff either $a_1 <_A a_2$ or $(a_1 = a_2 \& b_1 <_B b_2)$

Show that $<_L$ is a linear ordering on $A \times B$. (The relation $<_L$ is called lexicographic ordering, being the ordering used in making dictionaries.)