Foundations of Computing Lecture 20

Arkady Yerukhimovich

April 3, 2025

Outline

Lecture 19 Review

- Verifying vs. Deciding
- 3 Nondeterministic Polynomial Time

Lecture 19 Review

- Polynomial Time Computation
- ullet The Complexity Class ${\cal P}$

$$\mathcal{P} = \bigcup_{k} TIME(n^{k})$$

Outline

Lecture 19 Review

- 2 Verifying vs. Deciding
- 3 Nondeterministic Polynomial Time

ullet ${\cal P}$ is the class of languages decidable in polynomial time

- ullet ${\mathcal P}$ is the class of languages decidable in polynomial time
- Many examples of such (efficiently decidable) languages:
 - PATH
 - RELPRIME
 - Pretty much everything you studied in algorithms class

- ullet ${\mathcal P}$ is the class of languages decidable in polynomial time
- Many examples of such (efficiently decidable) languages:
 - PATH
 - RELPRIME
 - Pretty much everything you studied in algorithms class
- But, some problems have resisted our efforts to find efficient algorithms

- ullet ${\cal P}$ is the class of languages decidable in polynomial time
- Many examples of such (efficiently decidable) languages:
 - PATH
 - RELPRIME
 - Pretty much everything you studied in algorithms class
- But, some problems have resisted our efforts to find efficient algorithms
- Today we will study one important class of such problems

Hamiltonian Path

A Hamiltonian path in directed graph G is a path that goes through each node exactly once.

Hamiltonian Path

A Hamiltonian path in directed graph G is a path that goes through each node exactly once.

Hamiltonian Path

A Hamiltonian path in directed graph G is a path that goes through each node exactly once.

Hamiltonian Path

A Hamiltonian path in directed graph G is a path that goes through each node exactly once.

But, not every graph has a Hamiltonian Path.

Hamiltonian Path Problem

$$HAMPATH = \{\langle G, s, t \rangle \mid G \text{ is a directed graph with a}$$
 Hamiltonian path from $s \text{ to } t \}$

Hamiltonian Path Problem

$$HAMPATH = \{\langle G, s, t \rangle \mid G \text{ is a directed graph with a}$$

$$Hamiltonian path from s \text{ to } t \}$$

Easy to find an exponential time algorithm for HAMPATH

Hamiltonian Path Problem

$$HAMPATH = \{\langle G, s, t \rangle \mid G \text{ is a directed graph with a}$$

$$Hamiltonian path from s \text{ to } t\}$$

- Easy to find an exponential time algorithm for HAMPATH
- But, no one knows a polynomial time algorithm for it

Hamiltonian Path Problem

$$HAMPATH = \{\langle G, s, t \rangle \mid G \text{ is a directed graph with a}$$

$$Hamiltonian path from s \text{ to } t\}$$

- Easy to find an exponential time algorithm for HAMPATH
- But, no one knows a polynomial time algorithm for it

Polynomial Verifiability

However, given a path from s to t, can easily verify whether it is Hamiltonian in polynomial time.

Boolean Formula

A Boolean formula is an expression inolving Boolean variables and logic operations AND (\land), OR (\lor), and NOT (\neg or \overline{x}).

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

Boolean Formula

A Boolean formula is an expression inolving Boolean variables and logic operations AND (\land), OR (\lor), and NOT (\neg or \overline{x}).

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

- A satisfying assignment is an assignment of 0 or 1 to the variables such that the formula evaluates to 1
- ullet Example: x=0, y=1, z=0 is a satisfying assignment for ϕ

Boolean Formula

A Boolean formula is an expression inolving Boolean variables and logic operations AND (\wedge), OR (\vee), and NOT (\neg or \overline{x}).

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

- A satisfying assignment is an assignment of 0 or 1 to the variables such that the formula evaluates to 1
- Example: x = 0, y = 1, z = 0 is a satisfying assignment for ϕ
- We say that formula ϕ is satisfiable if it has a satisfying assignment

Boolean Formula

A Boolean formula is an expression inolving Boolean variables and logic operations AND (\land), OR (\lor), and NOT (\neg or \overline{x}).

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

- A satisfying assignment is an assignment of 0 or 1 to the variables such that the formula evaluates to 1
- Example: x=0, y=1, z=0 is a satisfying assignment for ϕ
- \bullet We say that formula ϕ is satisfiable if it has a satisfying assignment
- Not all formulas are satisfiable

$$\phi' = (\overline{x} \wedge y) \wedge (x \wedge \overline{z})$$

Satisfiability Problem

 $SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

Satisfiability Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

Easy to find an exponential time algorithm for SAT

Satisfiability Problem

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$$

- Easy to find an exponential time algorithm for SAT
- But, it is widely believed no polynomial time algorithm exists

Satisfiability Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}$

- Easy to find an exponential time algorithm for SAT
- But, it is widely believed no polynomial time algorithm exists

Polynomial Verifiability

However, given an assignment (i.e., values for all the variables), can easily verify whether ϕ is satisfied by this assignment in polynomial time.

$$L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$$

A verifier for a language L is an algorithm V, where

$$L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$$

• Runtime of V is measured as a function of |x|

$$L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$$

- Runtime of V is measured as a function of |x|
- V is a polynomial time verifier if it runs in time poly(|x|)

$$L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$$

- Runtime of V is measured as a function of |x|
- V is a polynomial time verifier if it runs in time poly(|x|)
- L is polynomially verfiable if it has a polynomial time verifier

$$L = \{x \mid V \text{ accepts } \langle x, w \rangle \text{ for some string } w\}$$

- Runtime of V is measured as a function of |x|
- V is a polynomial time verifier if it runs in time poly(|x|)
- L is polynomially verfiable if it has a polynomial time verifier
- String w is called a witness that $x \in L$

Definition

 $\mathcal{N}\mathcal{P}$ is the class of languages that have polynomial time verifiers.

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

ullet We already saw that HAMPATH and SAT are in \mathcal{NP}

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- ullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} :

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- ullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- ullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Intuition

 $oldsymbol{ ilde{\mathcal{P}}}$ is the class of problems where you can find a solution in poly-time

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- ullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Intuition

- $oldsymbol{ ilde{\mathcal{P}}}$ is the class of problems where you can find a solution in poly-time
- \bullet $\mathcal{N}\mathcal{P}$ is the class of problems where you can verify a solution in poly-time

Definition

 \mathcal{NP} is the class of languages that have polynomial time verifiers.

- ullet We already saw that HAMPATH and SAT are in \mathcal{NP}
- Every $L \in \mathcal{P}$ is also in \mathcal{NP} : $\mathcal{P} \subseteq \mathcal{NP}$

Intuition

- $oldsymbol{ ilde{\mathcal{P}}}$ is the class of problems where you can find a solution in poly-time
- \bullet \mathcal{NP} is the class of problems where you can verify a solution in poly-time
- Question: $\mathcal{P} \stackrel{?}{=} \mathcal{N} \mathcal{P}$

Outline

Lecture 19 Review

- 2 Verifying vs. Deciding
- 3 Nondeterministic Polynomial Time

ullet \mathcal{NP} stands for non-deterministic polynomial time

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent: For any language L,

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent:

For any language L,

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

Proof Idea:

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent:

For any language L,

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

Proof Idea:

Need to prove both directions

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent:

For any language L,

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

Proof Idea:

- Need to prove both directions
- (\Rightarrow) An NTM simulates the verifier by guessing the witness w

- ullet \mathcal{NP} stands for non-deterministic polynomial time
- ullet \mathcal{NP} is the set of languages decided by poly-time NTMs

Theorem

The two definitions of \mathcal{NP} are equivalent:

For any language L,

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

Proof Idea:

- Need to prove both directions
- (\Rightarrow) An NTM simulates the verifier by guessing the witness w
- (⇐) A verifier simulates the NTM by using the accepting branch as the witness

Theorem

L is poly-time verifiable \iff L is decided by a poly-time NTM

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

Proof:

 (\Rightarrow) Verifiability implies decidability by NTM

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- $oldsymbol{0}$ (\Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- (⇒) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- (⇒) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **1** Nondeterministically select string w of length n^k

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- (⇒) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **1** Nondeterministically select string w of length n^k
 - 2 Run V on input $\langle x, w \rangle$

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- (⇒) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **1** Nondeterministically select string w of length n^k
 - 2 Run V on input $\langle x, w \rangle$
 - Accept if V accepts and reject otherwise

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- (⇒) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **1** Nondeterministically select string w of length n^k
 - 2 Run V on input $\langle x, w \rangle$
 - $oldsymbol{3}$ Accept if V accepts and reject otherwise
- ② (⇐) Decidability by NTM implies verifiability

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- (⇒) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **1** Nondeterministically select string w of length n^k
 - 2 Run V on input $\langle x, w \rangle$
- ② (⇐) Decidability by NTM implies verifiability
 - Let N be an NTM deciding L

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- (⇒) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **1** Nondeterministically select string w of length n^k
 - **2** Run *V* on input $\langle x, w \rangle$
 - 3 Accept if V accepts and reject otherwise
- ② (←) Decidability by NTM implies verifiability
 - Let N be an NTM deciding L
 - Construct verifier V as follows: On input $\langle x, w \rangle$,

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- (\Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **1** Nondeterministically select string w of length n^k
 - 2 Run V on input $\langle x, w \rangle$
 - Solution
 Accept if V accepts and reject otherwise
- ② (⇐) Decidability by NTM implies verifiability
 - Let N be an NTM deciding L
 - Construct verifier V as follows: On input $\langle x, w \rangle$,
 - Simulate N on input x, treating each symbol of w as a description of the nondeterministic choice to make at each step

Theorem

L is poly-time verifiable $\iff L$ is decided by a poly-time NTM

- (\Rightarrow) Verifiability implies decidability by NTM
 - Let V be a verifier for L running in time n^k
 - Construct NTM N as follows: On input x of length n
 - **1** Nondeterministically select string w of length n^k
 - ② Run V on input $\langle x, w \rangle$
 - Solution
 Accept if V accepts and reject otherwise
- ② (⇐) Decidability by NTM implies verifiability
 - Let N be an NTM deciding L
 - Construct verifier V as follows: On input $\langle x, w \rangle$,
 - Simulate N on input x, treating each symbol of w as a description of the nondeterministic choice to make at each step
 - ② If this branch of N's computation accepts, accept, otherwise reject

The Class \mathcal{NP}

We can define the class of languages decided by poly-time NTMs

Definition

$$NTIME(t(n)) = \{L \mid L \text{ is a language decided by a } O(t(n))$$

time NTM $\}$

The Class \mathcal{NP}

We can define the class of languages decided by poly-time NTMs

Definition

$$NTIME(t(n)) = \{L \mid L \text{ is a language decided by a } O(t(n))$$

time NTM $\}$

$$\mathcal{NP} = \bigcup_{k} NTIME(n^k)$$

Clique

A clique in and undirected graph is a subset of nodes s.t. every two nodes are connected by an edge. A k-clique is a clique containing k nodes

Clique

A clique in and undirected graph is a subset of nodes s.t. every two nodes are connected by an edge. A k-clique is a clique containing k nodes

 $CLIQUE = \{\langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique}\}$

Subset Sum

Given a collection of integers $\{x_1, \ldots, x_k\}$ is there a subset of them that adds up to k?

Subset Sum

Given a collection of integers $\{x_1, \ldots, x_k\}$ is there a subset of them that adds up to k?

$$SUBSET - SUM = \{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\} \text{ and for some}$$
$$\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, \sum y_i = t\}$$

The Million Dollar Question

$$\mathcal{P} \stackrel{?}{=} \mathcal{N} \mathcal{P}$$

The Million Dollar Question

$$\mathcal{P}\stackrel{?}{=}\mathcal{N}\mathcal{P}$$

- Is it easier to verify a solution than to find that solution?
- This is the biggest open question in complexity theory

Let's Try to Answer It

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

Let's Try to Answer It

Theorem

Every nondeterministic TM has an equivalent deterministic TM.

- Recall that an execution of a DTM is a sequence of configurations
- Execution of an NTM is a tree of configurations (branches correspond to non-deterministic choices)
- If any node in the tree is an accept node, the NTM accepts
- To simulate an NTM by a DTM, need to try all configurations in the tree to see if we find an accepting one

To simulate an NTM N by a DTM D, we use three tapes:

To simulate an NTM N by a DTM D, we use three tapes:

Input tape – stores the input and doesn't change

To simulate an NTM N by a DTM D, we use three tapes:

- Input tape stores the input and doesn't change
- Simulation tape work tape for the NTM on one branch of nondeterminism

To simulate an NTM N by a DTM D, we use three tapes:

- Input tape stores the input and doesn't change
- Simulation tape work tape for the NTM on one branch of nondeterminism
- Address tape use to store which nondeterministic branch you are on

Simulating an NTM N

• Start with input w on tape 1, and tapes 2,3 empty

- Start with input w on tape 1, and tapes 2,3 empty
- ② Copy w to tape 2

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Suse tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Use tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Suse tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- If N ever enters an accept state, stop and accept

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Subsetting the State of St
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- If N ever enters an accept state, stop and accept

What's the Problem?

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- 2 Copy w to tape 2
- Suse tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- If N ever enters an accept state, stop and accept

What's the Problem?

• NTM running in time t(n), makes O(t(n)) non-deterministic choices

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Suse tape 2 to simulate a run of N. Whenever it needs to make a non-deterministic choice, see next symbol on tape 3 for which branch to take. If no symbols left, go to step 4
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- If N ever enters an accept state, stop and accept

What's the Problem?

- NTM running in time t(n), makes O(t(n)) non-deterministic choices
- Above algorithm tries all possible values for these branches: $2^{O(t(n))}$

Simulating an NTM N

- Start with input w on tape 1, and tapes 2,3 empty
- Copy w to tape 2
- Subsetting the State of St
- Replace string on tape 3 with the lexicographically next one (move onto next non-deterministic branch)
- If N ever enters an accept state, stop and accept

What's the Problem?

- NTM running in time t(n), makes O(t(n)) non-deterministic choices
- Above algorithm tries all possible values for these branches: $2^{O(t(n))}$
- Resulting DTM runs in exponential time

Next Week

 \bullet We will study properties of languages in \mathcal{NP}

Next Week

- ullet We will study properties of languages in \mathcal{NP}
- \bullet We will show that there are $\mathcal{NP}\text{--complete}$ languages that are as hard as any other language in \mathcal{NP}

Next Week

- ullet We will study properties of languages in \mathcal{NP}
- \bullet We will show that there are $\mathcal{NP}\text{--complete}$ languages that are as hard as any other language in \mathcal{NP}
- We will show this using reductions Yay!