Ranking postsecondary institutions in the US

Team 16

How can we rate universities in a more inclusive way?

01	Fall Enrollment	•	Ethnicities
02	Outcome Measures	•	Graduation Rate after 2-4 years
03	Admissions and Test Scores	•	Admission Rate (Proportion of admissions out of all applications)
04	Institutional Finance	s •	Total profit made on tuition fees

Problem

Method and Workflow

What characterizes a good institution?

- diverse student body
- high graduate rate
- low tuition fees
- low selectivity rate
- → Assumptions based on **historical and current facts** about the US postsecondary system: high tuition fees, racial segregation etc.

Define quality metric per institution*:

 $\frac{\text{student body diversity indicator} \cdot \text{graduation rate}}{\text{tuition fees intensity} \cdot \text{selectivity rate}}$

- Student body diversity: based on JS distance measure
- Tuition fees intensity: based on CDF of university total profit from tuition fees
- ightarrow All these metrics belong to [0, 1] for comparability purposes

Key Insights - Efficiency Measure

- Initial "unoptimized" results ranking universities
- Distribution is skewed towards low quality
- High peak around 0: system is indeed inefficient
- → Optimize efficiency features

Optimization of the system

- Calibrate **proportion of ethnicity** per institution
- Feature parametrization: feed graduation and selection rates into a ML model
 - Causal inference for diversity onto those features

Efficiency Measure

Objective: maximize overall effectiveness

$$\left(p_{1}^{(q)*},...,p_{e}^{(q)*}\right)_{q\in\mathcal{Q}} = \underset{\left(p_{1}^{(q)},...,p_{e}^{(q)}\right)_{q\in\mathcal{Q}}}{\operatorname{Argmin}} - \frac{1}{|\mathcal{Q}|} \sum_{q\in\mathcal{Q}} \frac{\left(1 - \Delta\left(p_{1}^{(q)},...,p_{e}^{(q)}\right)\right)g(q)}{\mathbf{F}_{\mathrm{fee}}(q)s(q)}$$

- Numerator: maximize the quality of ethnic diversity of the school, graduation rate
- o Denominator: minimise selection rates, tuition fees
- Parametrization of features is very computationally time-costly

Limitation & Future Work (1)

Limitation

Future Work

Model Assumptions

Model Validation

Limited number of features chosen from dataset, using undergraduate data only

Get **niche results** of unknown small institutions that do well on one particular metric Add more features from data:

faculty-student ratio, student aid, library budget and classical features (e.g. number of publications, awards)

Weight features to calibrate model

Optimization Tractability

Does not converge in short period

New objective function (linearized version)

Future Work (2)

- **Customising Rankings:** Develop personalised rankings for students
- Predict-Optimize Framework on Quality: Find the most important features from a predictive model on system quality and re-parameterize model
- Optimization Idea: Weight each feature in the objective function and find the optimal weights
- Holistic Rankings: Weight our model with current ranking models (FT etc.) and formulate as a multi objective optimization
- Price of Diversity: With constrained optimization, we could estimate the impact of controlling diversity on quality of cohorts

Appendix - Efficiency Measure

 $orall q \in \mathcal{Q}, \qquad \mathbf{F}_{\mathrm{fees}}(a_q) = rac{1}{|\mathcal{Q}|} \sum_{a' \in O}^{\cdot \cdot} \mathbf{1}_{(a_q \leq a_{q'})}.$ with $\mathbf{D}(p||q)$ the Kullback-Leibler divergence defined by: $\mathbf{D}(p||q) := \sum_{x} p(x) \log \left(\frac{p(x)}{q(x)}\right)$ Quality of an institution q: $\pi(Q) := rac{\left(1 - \Delta\left(p_1^{(q)}, \dots, p_e^{(q)}
ight)
ight)g(q)}{\Gamma(q)}$ equivalent to

 $\Delta(q) := \sqrt{\frac{\mathcal{D}(\left(\overline{p_{1}},...,\overline{p_{e}})||(p_{1}^{(q)},...,p_{e}^{(q)})\right) + \mathcal{D}\left((p_{1}^{(q)},...,p_{e}^{(q)})||(\overline{p_{1}},...,\overline{p_{e}})\right)}{2}} \in [0,1],$

student body diversity indicator · graduation rate tuition fees intensity \cdot selectivity rate

Effectiveness of the education system:

$$\pi(\mathcal{Q}) = \frac{1}{|\mathcal{Q}|} \sum_{q \in \mathcal{Q}} \pi(q).$$

Appendix - Optimization

Q&A

- price of diversity?
- mix of this ranking and current ones
- why did we try to work on this question?
 - take a global question rather than focusing on one specific part of the data
 - introduction of the paper: find strength and weakeness
 - build metrics to assess those strengths and weakeness
- if we add more time, what other parameters would have we added (from the dataset)?
- faculty/student ratio (max that), student aid (max that), library budget / number of available literature (max)

from not the dataset: could add metrics for tailored choices (publications, famous alumni etc)