Московский физико-технический институт

Лабораторная работа

Экспериментальная проверка закона Видемана-Франца

выполнила студентка 653 группы $\Phi\Phi$ КЭ Карпова Татьяна

1 Цель работы

Экспериментальное определение величины постоянной Лоренца $L=\frac{\kappa}{\sigma T}$ при комнатной температуре для меди, алюминия, латуни, дюралюминия

2 Физическая суть явления

В металлах теплопроводность электронов сильно превышает теплопроводность кристаллической решётки, поэтому вкладом решётки (фононным вкладом) можно пренебречь, и использовать для вычисления теплопроводности модель электронного газа. В более горячей части металла электроны в среднем имеют чуть большую энергию. Перемещаясь в более холодную часть образца они, взаимодействуя друг с другом и с кристаллом, теряют этот избыток энергии — в кристалле устанавливается некоторый равновесный градиент температур ∇T . Эти процессы взаимодействия приводят к перераспределению (релаксации) избытка энергии у электрона, их процессами релаксации. Используя термодинамический подход, определить средний установившийся поток тепла, а также коэффициент теплопроводности металла.

При включении внешнего магнитного поля изменяется квазиимпульс электрона. Если в кристалле часто происходят процессы релаксации (рассеяние на электронов на других электронах, дефектах решётки, фононах), то можно считать, что в среднем изменяются квазиимпульсы всех электронов. Используя модель ферми-сферы, можно показать, что приложение к металлу внешнего электрического поля приводит к появлению в нём тока. Может быть вычислен соответствующий поток электронов и, следовательно, проводимость металла.

Процессы релаксации ограничивают перенос заряда и перенос тепла. При низких температурах $T\sim 5-10{\rm K}$ времена релаксации процесса переноса тепла τ_{th} и процесса переноса заряда τ_e не зависят от температуры и определяются концентрацией дефектов примесей. В случае $T\geq\Theta_D$ (для многих металлов - при комнатной температуре, когда в решётке возбуждаются фононы с энергией и импульсом порядка дебаевских) рассеяние в основном происходит на фононах решётки. Существенно при этом изменение направления движения электрона. В таком случает также совпадают времена релаксации τ_{th} и τ_e . При температурах от 10 K до $\Theta_D/2$ основным механизмом также является рассеяние на фононах решётки, но фононы при таких температурах имеют импульс заметно меньший, чем фермиевский импульс электрона. При столкновении с таким фононом электрон значительно изменяет свою энергию, но импульс изменяется мало. Таким образом, процесс эффективен в смысле ограничения теплопроводности, но для ограничения электропроводности требуется большое количество таких процесов рассеяния. Таким образом, τ_{th} и τ_e в этом случае различаются.

При совпадении au_{th} и au_e можно получить соотношение, называемое законом Видемана-Франца:

$$L = \frac{\kappa}{\sigma T} = \frac{\pi^2 k_B^2}{3e^2} = 2.44 \cdot 10^{-8} \frac{Wt \cdot \Omega}{K^2}$$
 (1)

Величина L, называемая nocmoshhoй Лоренца, не зависит от параметров материала.

3 Теоретические положения

В процессах теплопроводности поток тепла, устанавливающийся в металле:

$$q = -\frac{1}{3}nc\tau_{th}V_F^2 \nabla T, \tag{2}$$

где n - концентрация электронов, c - теплоёмкость на электрон, τ_{th} - время релаксации в процессе теплопроводности, $V_F = \frac{\hbar k_f}{m*}$ - фермиевская скорость, ∇T - градиент температур. Тогда коэффициент теплопроводности вычисляется по формуле

$$\kappa = \frac{1}{3}nc\tau_{th}V_F^2 = \frac{\pi^2 nk_B^2 T}{m^*}\tau_{th} \tag{3}$$

Окончательная формула для потока заряда в металле:

$$j_x = -\frac{e^2 n \tau_e}{m^*} E,\tag{4}$$

где τ_e - время релаксации процесса электропроводности, E - напряжённость приложенного поля. Тогда проводимость будет вычисляться по формуле

$$\sigma = \frac{e^2 n \tau_e}{m^*} \tag{5}$$

При $au_{th} = au_e$ получаем постоянную Лоренца

$$L = \frac{\pi^2 k_B^2}{3e^2} = \frac{\kappa}{\sigma T} = 2.44 \cdot 10^{-8} \frac{Wt \cdot \Omega}{K^2}$$
 (6)

При вычислении κ и σ необходим учёт геометрии образца. Эксперимент проводится с одинаковой геометрией (цилиндрическая форма) для обоих процессов. Сопротивление образца можно рассчитать по формуле

$$R = \frac{l}{\sigma S},\tag{7}$$

где l - длина образца, S -площадь поперечного сечения. Также используем формулу

$$\frac{P}{S} = \kappa \frac{\Delta T}{l},\tag{8}$$

где P - мощность на одном из концов, $\triangle T$ - перепад температур на разных концах. Тогда в итоге получим постоянную Лоренца

$$L = \frac{\kappa}{\sigma T} = \frac{PR}{\Delta T} \tag{9}$$

4 Экспериментальная установка

Рис. 1: Эскиз экспериментальной ячейки и схема электрических цепей экспериментальной ячейки

Основание ячейки установлено на радиаторе, так что его температура поддерживается примерно равной комнатной. В основание крепится образец - стержень из одного из металлов. На второй конец образца установлен нагреватель, изготовленный из намотанного на медный каркас высокоомного провода. В образце перпендикулярно к его оси сделано два отверстия малого диаметра, в которых монтируются измерительные контакты: потенциометрические контакты для измерения сопротивления и спаи термопары для измерения перепада температур. В медный и латунный образцы потенциометрические контакты впаяны, в алюминиевом и дюралюминиевом образцах в отверстия ввёрнуты латунные винты, к которым припаяны потенциометрические контакты.

Образец окружён коаксиальным экраном, нижний конец которого термализуется с тем же основанием, что и образец, а на верхнем конце установлен нагреватель (также изготовленный из высокоомного провода) на одном уровне с нагревателем образца. Перепад температур между «горячими» концами образца и экрана контролируется отдельной термопарой. В ходе эксперимента подбирается мощность нагрева экрана так, чтобы перепад температур (термоЭДС этой термопары) обращался в ноль. При измерении сопротивления образца измерительный ток пропускается через весь образец, токоведущие провода крепятся к основанию ячейки и к корпусу нагревателя образца.

Для уменьшения количества проводов и количества используемых приборов некоторые цепи экспериментальной ячейки коммутируются при переключении между режимами измерения сопротивления и

теплопроводности. Переключатели установлены на основании ячейки, оба переключателя во время эксперимента должны находиться в одинаковом положении («измерение сопротивления» или «измерение теплопроводности»).

5 Выполнение работы

Исследуемый материал - медь. Диаметр образца $5\,\mathrm{mm}$, расстояние между измерительными точками - $50\,\mathrm{mm}$

1. Проведём измерение вольт-амперной характеристики образца в двух направлениях для определения сопротивления. Результаты измерений занесём в таблицы 1 и 2.

Таблица 1: Вольт-амперная характеристика образца, прямая ветвь

U, mV	0,003	0,008	0,013	0,017	0,022	0,027	0,032	0,037	0,041	0,046	0,05
I, A	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1

Таблица 2: Вольт-амперная характеристика образца, обратная ветвь

U, mV	0,003	-0,004	-0,009	-0,014	-0,019	-0,023	-0,028	-0,033	-0,037	-0,038	-0,043
I, A	0	-0,1	-0,2	-0,3	-0,4	-0,5	-0,6	-0,7	-0,8	-0,9	-1

2. Измерим зависимость перепада температур между измерительными точками образца от выделяемой на нагревателе мощности. Сначала убедимся, что при подаче тока на нагреватель показания вольтметров с термопар изменяются. Далее проведём измерения перепада температур на образце для разных значений мощности нагрева. При каждом измерении необходимо, зафиксировав ток нагревателя образца, подбирать ток нагревателя экрана так, чтобы в установившемся режиме как можно точнее занулялось напряжение на термопаре между образцом и экраном. По установлении равновесия фиксируем: время установления равновесия (t), ток и напряжение на нагревателе образца (I_C, U_O) , напряжение на термопаре образца (U_T) , ток через нагреватель экрана (I_E) , напряжение на термопаре между образцом и экраном (U_{TOE}) . Результаты занесём в таблицу 3.

 Таблица 3: Зависимость перепада температур между измерительными точками образца от выделяемой на нагревателе мощности

I_O , A	0,2	0,308	0,355	0,404	0,455
U_O, V	2,52	3,83	4,414	5,033	5,664
U_T , mV	0,120	0,281	0,385	0,512	0,658
I_E , A	0,316	0,494	0,535	0,607	0,689
U_{TOE} , mV	-0,004	-0,009	-0,001	0	-0,004

3. По результатам измерений п.1 определим сопротивление образца. Для этого построим вольт-амперную характеристику по данным таблиц 1 и 2 (в координатах U(I), рис. 2). Приближая график линейной функцией, получаем зависимость U(mV) от I(A):

$$U = 0.0022 + 0.0483I$$

Тогда сопротивление образца $R = 4.83 \cdot 10^{-5}$ Ом.

- 4. По результатам измерений п.2 определим тепловое сопротивление образца $\Delta T = AP$. Для этого построим зависимость перепада температур на образце $\Delta T = U_T/0.043$ мкB/K от мощности, выделяемой на образце $(P = I_O U_O)$ (рис. 3). Получаем A = 6.067 K/BT
- 5. Используя результаты пп. 3-4, определим постоянную Лоренца ($T=300~{
 m K}$):

$$L = \frac{PR}{T} \frac{1}{T} = \frac{R}{A} \frac{1}{T} = 2.654 \cdot 10^{-8} \,\, \mathrm{Bt} \, \cdot \, \mathrm{Om/K^2}$$

Рис. 2: Вольт-амперная характеристика исследуемого образца

Рис. 3: Зависимость перепада температур на образце от выделяемой мощности

6 Анализ полученных результатов

1. Получившееся по результатам измерений значение постоянной Лоренца для меди:

$$L = 2.654 \cdot 10^{-8} \; \mathrm{Bt} \cdot \mathrm{Om/K^2}$$

Табличное значение постоянной Лоренца для меди:

$$L = 2.23 \cdot 10^{-8} \text{ Bt} \cdot \text{Om/K}^2 (0^{\circ}\text{C})$$

$$L = 2.33 \cdot 10^{-8} \text{ Bt} \cdot \text{Om/K}^2 \text{ (100°C)}$$

Значение, полученное экспериментально, с хорошей точностью совпадает с теоретическим (отличие составляет 17,4%).

2. Для анализа причин погрешности определим удельное сопротивление и коэффициент теплопроводности исследуемого образца.

Удельное сопротивление образца найдём по формуле (7):

$$\rho = \frac{RS}{I} = 1.895 \cdot 10^{-8} \text{ Om} \cdot \text{m}$$

Табличное значение удельного сопротивления меди:

$$\rho = 1.55 - 1.78 \cdot 10^{-8} \text{Om} \cdot \text{m}$$

Значения практически совпадают, но экспериментальное значение немного больше теоретического, отличие составляет 6,5 %. Вероятнее всего, при проведении эксперимента не было полностью исключено сопротивление подводящих проводов, поэтому измеренное сопротивление образца оказалось немного больше фактического.

Коэффициент теплопроводности определим по формуле (8):

$$\kappa = \frac{l}{s} \frac{P}{\wedge T} = 419.9 \text{ BT/M} \cdot \text{K}$$

Табличное значение коэффициента теплопроводности меди:

$$\kappa = 370 - 401 \; \mathrm{Bt/m} \cdot \mathrm{K}$$

Экспериментальное значение также немного больше теоретического, отличие составляет 4,7 %. К несовпадению результатов могли привести потери тепла в процессе измерения.

7 Вывод

В ходе работы был экспериментально проверен закон Видемана-Франца. Была определена постоянная Лоренца для меди $L=2.654\cdot 10^{-8}~{\rm Bt\cdot Om/K^2}$, это значение ненамного отличается от табличного (в большую сторону). Также были экспериментально определены удельное сопротивление ($\rho=1.895\cdot 10^{-8}~{\rm Om\cdot m}$) и коэффициент теплопроводности ($\kappa=419.9~{\rm Bt/m\cdot K}$) меди. Эти значения также незначительно превышают табличные, возможная причина этого - падение напряжения на подводящих проводах и тепловые потери. В целом, использованный метод позволяет определить постоянную Лоренца с достаточно хорошей точностью (порядка 20%)