Nanopore automata

Ian $\mathrm{Holmes}^{1,2,*}$

- 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- 2 Department of Bioengineering, University of California, Berkeley, CA, USA

Contents

1	Abstract						
2	Specification						
	2.1	Parameterization algorithm	2				
	2.2	Reference search algorithm	3				
	2.3	Implementation	3				
	2.4	Evaluation	3				
3	Me	thods	3				
	3.1	Model	4				
	3.2	Baum-Welch algorithm	5				
	3.3	Viterbi algorithm	5				
4	Results						
5	Discussion						
6	Acknowledgments						
7	Figure Legends						
8	Appendix						
	8.1	Exponential distribution	9				
	8.2	Gamma distribution	9				

Nanopore automata					
8.3 Normal distribution	Q				

1 Abstract

State machine algorithms for aligning Nanopore reads.

2 Specification

Initial goal (Preliminary Results) is simple reusable code for aligning a segmented nanopore read (with segment currents summarized) to a reference sequence.

Longer-term goals (Specific Aims) include

- quasi-hierarchical series of models for processed→raw data (raw, FAST5, FASTQ, FASTA)
- transducer intersection-style models for read-pair alignment
- systematic strategies for approximation/optimization algorithms, climbing the hierarchy (starting with k-mer or FM-index approaches)
- transducer intersection models for aligning reads from different sequencing technologies

2.1 Parameterization algorithm

Given the following inputs

- Reference genome (FASTA)
- Segment-called reads (FAST5/HDF5)

Perform the following steps

• Perform Baum-Welch to fit a rich model

Rich model incorporates segment statistics.

2.2 Reference search algorithm

Given the following inputs

- Reference genome
- Segment-called reads (FAST5/HDF5)
- Parameterized rich model

Perform the following steps

• Perform Viterbi alignment

2.3 Implementation

Libraries etc.

 $\mathrm{HDF}5...$

2.4 Evaluation

Strategy...

Data sets...

3 Methods

Model & inference algorithms.

3.1 Model

- \bullet Order-N transducer.
- Input: nucleotide alphabet Ω
- \bullet Output: real numbers signifying current levels \Re
- States: Start, $\mathrm{Match}_{x_1...x_N},$ Delete $_{x_1...x_N},$ End

Transitions:

Source	Destination	Weight	Absorbs	Emits
Start	Start	$p^{ ext{StartEmit}}$		$y_s \sim {}_{ ext{Normal}}(\mu^{ ext{Start}}, au^{ ext{Start}})$
Start	Start	1	$x\in\Omega$	
Start	$\mathrm{Match}_{x_1x_N}$	$1-p^{\scriptscriptstyle \rm StartEmit}$	$x_1 \dots x_N \in \Omega^N$	
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Match}_{x_1x_N}$	$p_{x_1x_N}^{ ext{MatchEmit}}$		$y_m \sim {}_{\scriptscriptstyle{ ext{Normal}}}(\mu^{\scriptscriptstyle{ ext{Match}}}_{x_1x_N}, au^{\scriptscriptstyle{ ext{Match}}}_{x_1x_N})$
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Match}_{x_2x_{N+1}}$	$(1-p_{x_1x_N}^{{\rm\scriptscriptstyle MatchEmit}})$	$x_{N+1} \in \Omega$	
		$\times (1 - p^{\text{\tiny BeginDelete}})$		
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Delete}_{x_2x_{N+1}}$	$(1-p_{x_1x_N}^{{\rm \tiny MatchEmit}})$	$x_{N+1} \in \Omega$	
		$ imes p^{ ext{BeginDelete}}$		
$\mathrm{Match}_{x_1x_N}$	End	$1-p_{x_1\dots x_N}^{\text{\tiny MatchEmit}}$		
$\mathrm{Delete}_{x_1x_N}$	$\mathrm{Delete}_{x_2x_{N+1}}$	$p^{\scriptscriptstyle m ExtendDelete}$	$x_{N+1} \in \Omega$	
$\mathrm{Delete}_{x_1x_N}$	$\mathrm{Match}_{x_1x_N}$	$1 - p^{\text{ExtendDelete}}$		
End	End	1	$x\in\Omega$	

3.2 Baum-Welch algorithm

As usual.

3.3 Viterbi algorithm

As usual.

- 4 Results
- 5 Discussion

6 Acknowledgments

7 Figure Legends

8 Appendix

8.1 Exponential distribution

$$x \sim \text{Exponential}(\kappa)$$

$$P(x|\kappa) = \kappa \exp(-\kappa x)$$

$$\text{E}[x] = \kappa^{-1}$$

$$\text{Var}[x] = \kappa^{-2}$$

Rate parameter κ .

8.2 Gamma distribution

$$\begin{array}{rcl} x & \sim & \operatorname{Gamma}(\alpha,\beta) \\ P(x|\alpha,\beta) & = & \frac{x^{\alpha-1}\beta^{\alpha}\exp(-x\beta)}{\Gamma(\alpha)} \\ & \operatorname{E}[x] & = & \alpha/\beta \end{array}$$

$$\operatorname{Var}[x] & = & \alpha/\beta^2$$

Shape parameter α , rate parameter β . $\Gamma()$ is the gamma function

$$\Gamma(\alpha) = \int_0^\infty z^{\alpha - 1} \exp(-z) dz$$

Note $\Gamma(n) = (n-1)!$ for positive integer n.

8.3 Normal distribution

$$x \sim \text{Normal}(\mu, \tau)$$

Mean μ , precision τ (precision is reciprocal of variance).

$$P(x|\mu,\tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau}{2}(x-\mu)^2\right)$$