CHƯƠNG 3: TRANSISTOR LƯỚNG CỰC TS. PHẠM NGUYỄN THANH LOAN

Tổ chức lớp

- □ Số tín chỉ: 3
- Giảng viên: TS. Phạm Nguyễn Thanh Loan
- □ Văn phòng: Phòng 618, thư viện Điện Tử
- □ Email: <u>loanpham.sinhvien@gmail.com</u>
- □ Sách:
 - 1. Electronic Devices and Circuit Theory, Robert Boylestad and Louis Nashelsky
 - 2. Kỹ thuật Mạch điện tử, Phạm Minh Hà
- Bài tập tại lớp, bài tập về nhà theo nhóm được cung cấp tại lớp

Nội dung chương 3

- □ Nhắc lại kiến thức cơ bản
- Mạch khuếch đại tín hiệu nhỏ
- Các phương pháp phân tích
 - Dùng sơ đồ tương đương: kiểu tham số hỗn hợp, kiểu mô hình r_e chương 7
 - Dùng đồ thị chương 7
- Dặc điểm kỹ thuật
- Anh hưởng của các yếu tố đến hoạt động
- On định hoạt động

Nhắc lại kiến thức cơ bản

- □ Cấu trúc và hoạt động
- □ Các cách mắc mạch
- Định thiên cho bộ khuếch đại làm việc ở chế độ tuyến tính
 - Bằng dòng bazơ cổ định
 - Bằng phân áp
 - Bằng hồi tiếp điện áp

Cấu trúc và hoạt động BJT

Cấu tạo của BJT

- Transistor luõng cực BJT (Bipolar Junction Transistor)
- □ Hai loại BJT: NPN và PNP
- □ Ba cực điện: E, B và C
- □ E: Emitter; B: Base, C: Collector
- Lóp base nằm giữa, và mỏng hơn rất nhiều so với emitter và collector

Cấu trúc và hoạt động (NPN)

❖ Phân cực tiếp giáp BE và BC

- Tiếp giáp BE phân cực thuận: electron (e) đi từ miền E vào miền B, tạo thành dòng I_E (dòng khuếch tán, dòng của hạt đa số)
- Tiếp giáp BC phân cực ngược: hầu hết các evượt qua miền B để sang miền C, tạo thành dòng I_C (dòng trôi, dòng của hạt thiếu số)
- Một số (e) tái hợp với lỗ trống trong miền B, tạo thành dòng I_B
- \square Do vậy: $I_E = I_C + I_B$

Cấu trúc và hoạt động

* Ký hiệu của BJT

- □ 3 cực: B, E và C
- Mũi tên chỉ chiều dòng điện giữa 2 cực B và E
- Dòng điện quy ước là dòng của hạt dẫn dương (lỗ trống)
- \square NPN: B \rightarrow E
- \square PNP: E \rightarrow B

Tham số kỹ thuật

$$\bullet \quad I_E = I_C + I_B$$

•
$$I_C = \beta I_B$$

•
$$\beta = 100 \div 200$$
 (có thể lớn hơn)

β là hệ số khuếch đại dòng điện

$$\Box \quad I_C = \alpha I_E + I_{CBO}$$

$$\ \ \square \ \ I_{C} \approx \ \alpha I_{E} \ (\text{bỏ qua} \ I_{\text{CBO}} \ \text{vì rất nhỏ})$$

$$\alpha = 0.9 \div 0.998.$$

α là hệ số truyền đạt dòng điện

$$\alpha = \frac{\beta}{\beta + 1}$$

Tham số kỹ thuật

$$\bullet \quad \mathbf{I}_{\mathbf{E}} = \mathbf{I}_{\mathbf{C}} + \mathbf{I}_{\mathbf{B}}$$

•
$$I_C = \beta I_B$$

•
$$\beta = 100 \div 200$$
 (có thể lớn hơn)

β là hệ số khuếch đại dòng điện

$$\Box \quad I_C = \alpha I_E + I_{CBO}$$

$$\ \ \square \ \ I_{C} \approx \ \alpha I_{E} \ (\text{bỏ qua} \ I_{\text{CBO}} \ \text{vì rất nhỏ})$$

$$\alpha = 0.9 \div 0.998.$$

α là hệ số truyền đạt dòng điện

$$\alpha = \frac{\beta}{\beta + 1}$$

Các cách mắc mạch

- □ Có 3 cách mắc mạch (hoặc gọi là cấu hình)
 - BC (chung bazo)
 - EC (chung emitto)
 - CC (chung colecto)
- Cấu hình được phân biệt bởi cực nào được nối với đầu vào và đầu ra

Cấu hình	Đầu vào	Đầu ra
ВС	Е	С
EC	В	С
CC	В	Е

Cấu hình CB

- Chung B giữa đầu vào và đầu ra
- □ Đầu vào: r_e là điện trở xoay chiều của 1 điốt:
 r_e=26mV/I_E
- Cách ly giữa đầu vào và đầu ra
- Đầu ra: dòng điều khiển
 I_e, I_c=αI_e

Cấu hình CB

- 1) $Z_i = r_e$ $(n\Omega-50 \Omega)$
- 3) $A_v = \alpha R_L/r_e \approx R_L/r_e$ tương đối lớn, $U_o \& U_i$ đồng pha
- $A_i = -\alpha \approx 1$

Cấu hình CE

Cấu hình CE

- □ Chung E giữa vào và ra
- Đầu vào: 1 điốt tương đương, với r_e = điện trở xoay chiều của điốt
- Dầu ra: nguồn dòng điều khiển I_c = $βI_b$

Cấu hình CE

 \Box $Z_i = U_{be}/I_b \approx \beta I_b r_e/I_b \approx \beta r_e$

Khoảng n 100Ω - n $K\Omega$

$$\mathbf{Z}_{\mathbf{o}} = \mathbf{r}_{\mathbf{o}} \approx \infty$$

(không được đưa vào trong mô hình r_e)

Xác định từ phân tích đặc tuyến ra: $r_0 = 40-50$ KΩ

$$\Box A_{v} = -R_{L}/r_{e} (r_{o} = \infty)$$

Sơ đồ có Z_i , Z_o trung bình; A_v , A_i lớn

Cấu hình CC

- Sơ đồ giống cấu hình CE
 - Tham khảo sách Electronic Devices and Circuit theory

Đặc tuyến của BJT

□ Đặc tuyến vào và ra cho mạch E chung (EC)

Đặc tuyến của BJT

□ Đặc tuyến vào và ra cho mạch B chung (BC)

Giới hạn hoạt động của BJT

Phân cực 1 chiều cho BJT

- Để có thể khuếch đại tín hiệu, BJT cần được "đặt" ở vùng tích cực (vùng cắt và vùng bão hòa được dùng trong chế độ chuyển mạch: switch)
- → Tiếp giáp BE phân cực thuận, tiếp giáp BC phân cực ngược
- Phân cực: thiết lập điện áp, dòng điện một chiều theo yêu cấu
 - \blacksquare NPN: $V_E < V_B < V_C$
 - \blacksquare PNP: $V_E > V_B > V_C$

Phân cực cho BJT

 $\hfill\Box$ Chú ý: các tham số kỹ thuật và mối liên hệ $V_{BE} \approx 0.6 \div 0.7 \mbox{V (Si)} \; ; \; 0.2 \div 0.3 \mbox{(Ge)}$ $I_E = I_C + I_B I_C = \beta I_B \qquad I_C \approx \alpha I_E$

- □ Co 3 cach phan cuc
 - □ Fixed base current
 - Feedback current (emitter current)
 - Voltage divider

Mạch phân cực bằng dòng bazơ cố định

Mạch phân cực bằng dòng bazơ cố định

Vòng BE:

$$Vcc - I_BR_B - U_{BE} = 0$$
→
$$I_B = (Vcc - U_{BE})/R_B$$

$$I_C = \beta * I_B$$
Vòng CE:
→
$$U_{CE} = Vcc - I_CR_C$$

Mạch đơn giản nhưng không ổn định

Mạch phân cực bằng bộ phân áp

Dòng và áp không phụ thuộc β

Cách 1: Mạch tương đương Thevenin:

$$R_{BB}=R_1//R_2$$

$$V_{BB} = V_{cc} * R_2 / (R_1 + R_2)$$

⇒ Tương đương mạch phân cực bằng dòng bazơ

Cách 2: Tính toán xấp xỉ:

Nếu $β*R_2 \ge 10R_2 -> I_2 \approx I_1$

$$\Rightarrow V_{BB} = V_{cc} * R_2 / (R_1 + R_2)$$

$$\Rightarrow$$
 $V_E = V_{BB} - U_{BE} \rightarrow I_c \approx I_e = V_e / R_e$

$$\Rightarrow U_{CE} = V_{cc} - I_C(R_C + R_E)$$

Mạch phân cực bằng điện áp hồi tiếp

Độ ổn định tương đối tốt

Vòng BE:

(1)
$$V_{cc} - I_{c} R_{C} - I_{B} R_{B} - U_{BE} - I_{E} R_{E} = 0$$

(2)
$$I_C = \beta * I_B ; I_E \cong I_C$$

(3) Kirchoof cho dòng tại C: $I_C = I_B + I_c$ $\rightarrow I_c$ = $I_C - I_B = (\beta - 1)I_B$

$$(1)+(2)+(3)$$

$$\rightarrow I_B = (Vcc - U_{BE})/[R_B + \beta(Rc + Re)]$$

Vòng CE:

$$U_{CE} = Vcc - I_{C}(R_{C} + R_{E})$$

Mạch phân cực bằng bộ phân áp

Mạch phân cực bằng bộ phân áp

Định lý Thévenin:

$$R_{BB}=R_1//R_2$$

$$E_{BB} = R_2 V_{cc} / (R_1 + R_2)$$

⇒ Tương đương mạch phân cực bằng dòng bazơ

Mạch phân cực bằng bộ phân áp

Tính toán xấp xỉ

Nếu
$$\beta * R_E \ge 10R_2 \rightarrow I_2 \approx I_1$$

$$\Rightarrow V_B = R_2 * V_{CC} / (R_1 + R_2)$$

$$\Rightarrow V_E = V_B - U_{BE} = > I_C \approx I_E = V_E / R_E$$

$$\Rightarrow U_{CE} = V_{CC} - I_C(R_C + R_E)$$

Dòng và áp không phụ thuộc β

Mạch phân cực bằng điện áp hồi tiếp

Mạch phân cực bằng điện áp hồi tiếp

Vòng BE:

$$\begin{aligned} &V_{CC}\text{-}I'_{C}R_{C}\text{-}I_{B}R_{B}\text{-}U_{BE}\text{-}I_{E}R_{E}\text{=}0\\ &I_{B}\text{=}(V_{CC}\text{-}U_{BE)}\text{/}(R_{B}\text{+}\beta(R_{C}\text{+}R_{E}))\\ &\text{v\'{o}i}\ I'_{C}\text{\approx}\ I_{C}\quad I_{E}\text{\approx}\ I_{C} \end{aligned}$$

Vòng CE:

$$U_{CE} = V_{CC} - I_C(R_C + R_E)$$

Trouble Shooting

0.3 V = saturation 0 V = short-circuit state or poor connection Normally a few volts or more

Mô hình tín hiệu nhỏ

Mô hình tín hiệu nhỏ

- □ Tín hiệu nhỏ:
 - Không có giới hạn chính xác, phụ thuộc tương quan giữa tín hiệu vào và tham số linh kiện
 - □ Vùng làm việc được coi là tuyến tính
- Khuếch đại xoay chiều:
 - □ P_{out} > P_{in} (??? Định luật bảo toàn năng lượng)
- □ Mô hình BJT:
 - Mô hình là 1 mạch điện tử miêu tả xấp xỉ hoạt động của thiết bị trong vùng làm việc đang xét
 - Khuếch đại BJT tín hiệu nhỏ được coi là tuyến tính cho hầu hết các ứng dụng

Sự khuếch đại trong BJT

- Mạch KĐ dùng BJT được coi là tuyến tính
- => có thể sử dụng nguyên lý xếp chồng: phân tích DC và AC riêng biệt
- Phân tích bằng đồ thị
- □ Phân tích dựa trên các sơ đồ tương đương:
 - Sơ đồ tương đương tham số hỗn hợp H
 - Sơ đồ tương đương tham số dẫn nạp Y
 - Sơ đồ tương đương mô hình r_e

Đặc tuyến vào ra transistor BJT mắc CE

Điểm làm việc Q và đường tải:

- Điểm làm việc Q: điểm làm việc cố định trên đường đặc tuyến, được xác định bằng phân cực
- $\hfill \Box$ Đường tải: hình vẽ của tất cả giá trị phối hợp có thể của I_C và $V_{CE.}$
- □ 2 loại đường tải:

Đường tải tĩnh (chế độ 1 chiều): $V_{CE} = V_{CC} - I_{C}R_{C}$

Đường tải động (chế độ xoay chiều): $\mathbf{v}_{CE} = V_{CC} - I_c(R_C //R_L)$

Dốc hơn so với đường tải tĩnh => ảnh hưởng đến điện áp ra

Xác định đường tải động

- * Đường tải động dốc hơn đường tải tĩnh
- $ON = OQ + QN \ m\grave{a} \ QN = IQ/HSG_AC = IQ*(Rc//Rtai)$
- �Đường tải động đi qua điểm hoạt động tĩnh Q và N

□ Ví dụ: Xác định đường tải cho đồ thị trên

Vị trí Q tương ứng khi R_c, V_{cc}, I_b lần lượt thay đổi

□ Tương ứng với đặc tuyến vào và ra (tín hiệu lớn) → xác định tín hiệu nhỏ vào và ra tương ứng (biến đổi theo thời gian)

- □ Tín hiệu vào: thay đổi dòng vào Δi_b bằng thay đổi Δv_{be}
- \Box Tín hiệu ra: thay đổi Δv_{ce} , Δi_{c}

$$\Box$$
 $A_i = i_o/i_i = \Delta i_c/\Delta i_b$

$$\Box A_{\rm V} = v_{\rm o}/v_{\rm i} = \Delta v_{\rm ce}/\Delta v_{\rm be}$$

$$\square$$
 $Z_{in} = v_i/i_i = \Delta v_{be}/\Delta i_b$

$$\Box$$
 $Z_{out} = v_o/i_o = \Delta v_{ce}/\Delta i_c$

- Ånh hưởng của vị trí điểm Q (điều kiện 1 chiều) đến tín hiệu xoay chiều (ra)
- □ Điểm Q gần vùng cắt (cutoff): BJT sẽ rơi vào vùng không dẫn dù khi giá trị vào rất bé → cắt phần dương điện áp ra (tín hiệu ra tại Collector nghịch pha với tín hiệu vào tại Base)
- Diểm Q gần vùng bão hoà (saturation): BJT rơi vào vùng bão hoà dễ dàng, dẫn tới cắt phần âm điện áp ra
- □ Tín hiệu vào quá lớn gây ra cắt cả phần âm và dương điện áp ra

Dễ dàng "quan sát" lập luận trên bằng đồ thị đường tải tĩnh

- □ Mạch KĐ dùng BJT được coi là tuyến tính
- => có thể sử dụng nguyên lý xếp chồng: phân tích DC và AC riêng biệt
- □ Phân tích bằng đồ thị
- □ Phân tích dựa trên các sơ đồ tương đương:
 - Sơ đồ tương đương tham số hỗn hợp H
 - Sơ đồ tương đương tham số dẫn nạp Y
 - Sơ đồ tương đương mô hình r_e

Mô Hình Mạng Hai Cửa

Mô hình mạng hai cửa

- * Mô hình biểu diễn cho hầu hết các loại mạch: để phân tích tín hiệu nhỏ
- * Đặc trưng bởi 2 cực vào (input) và 2 cực ra (output)
- * Vào và Ra thường có chung 1 cực

Mô hình mạng 2 cửa (tiếp theo)

Phân tích tín hiệu nhỏ (AC)

Nguyên tắc vẽ mô hình tín hiệu nhỏ

- Nguồn DC: xem như nối đất (đất ảo)
- Các tụ điện trong mạch được xem như ngắn mạch (thành dây dẫn)
- 3) Nhóm các transistor song song
- Vẽ lại mạch điện một cách hợp lý và logic

Sơ đồ tương đương của BJT

- □ Phân tích dựa trên các sơ đồ tương đương:
 - Sơ đồ tương đương tham số hỗn hợp H
 - Sơ đồ tương đương tham số dẫn nạp Y
 - Sơ đồ tương đương mô hình r_e
- □ Phân tích bằng đồ thị

Sơ đồ tương đương hỗn hợp H

Công thức mạng 4 cực:

$$U_v = h_{11}I_v + h_{12}U_r$$

 $I_r = h_{21}I_v + h_{22}U_r$

- Giá trị các tham số được xác định tại một điểm làm việc danh định (có thể không phải điểm Q thực tế)
- Chỉ số e (hoặc b, c) cho các cấu trúc CE (hoặc CB, CC)

Sơ đồ tương đương hỗn họp H

Tham số	EC	ВС	CC
h ₁₁ (h _i)	1kΩ	20Ω	1kΩ
h ₁₂ (h _r)	2,5x10-4	3x10-4	≈1
h ₂₁ (h _f)	50	-0,98	-50
h ₂₂ (h _o)	25µA/V	0,5µA/V	25µA/V
1/h ₂₂	40kΩ	2ΜΩ	40kΩ

Sơ đồ tương đương dẫn nạp Y

Công thức mạng 4 cực:

$$I_v = y_{11}U_v + y_{12}U_r$$

$$I_r = y_{21}U_v + y_{22}U_r$$

- Chỉ số e (hoặc b, c) cho các cấu trúc CE (hoặc CB, CC)
- Bảng khoảng giá trị tham khảo trong sách

Sơ đồ tương đương mô hình r_e

Mô hình hoá BJT bằng một điốt và nguồn dòng điều khiển, đưa vào cấu trúc mạng 2 cửa

Trong đó:

- Dầu vào: tiếp giáp BE (phân cực thuận) làm việc như 1 điốt
- \checkmark Đầu ra: nguồn dòng điều khiển, với dòng điều khiển là dòng vào, mô tả liên hệ $I_c = \beta I_b$ hoặc $I_c = \alpha I_e$.

Các loại cấu hình EC; BC và CC

Đo thử

So sánh mô hình tương đương

Mô hình tham số H	Mô hình r _e
Cố định. Không biến đổi theo điểm làm việc	Có biến đổi theo điểm làm việc
Có xét đến tín hiệu hồi tiếp	Bỏ qua tín hiệu hồi tiếp
Có xét đến điện trở ra	Bỏ qua điện trở ra

Sơ đồ tương đương mô hình r_e

Sơ đồ tương đương mô hình r_e

- *Liên hệ đến mô hình transistor đã học ở lớp Cấu kiện
- $ightharpoonup X\acute{a}c$ định Rin và quan hệ Iout =f(Iin) để vẽ mô hình r_e

Input: ib, vb
Output: ic, vc $Rin = Vb/ib = \beta r_e$

Input: ie, ve
Output: ic, vc $Rin = ve/ie = r_e$

Input: ib, vb
Output: ic, vc $Rin = Vb/ib = \beta r_{\rho}$

Các phương pháp phân tích $So~\textrm{đô}~tương~\textrm{đương}~m\textrm{ô}~\textrm{hình}~r_{e}$

Phân tích mạch EC

- $Z_i = R_b || \beta r_e \quad \text{n\'eu } R_b \ge 10 \beta r_e, \ Z_i \approx \beta r_e$
- $Z_{o} = R_{c} || r_{o}$ nếu $r_{o} \ge 10R_{c}$, $Z_{o} \approx R_{c}$
- 3) $A_v = -(R_c||r_o)/r_e \approx -R_c/r_e$ $(\beta \text{ không xuất hiện tuy nhiên vẫn cần để xác định }r_e)$ $U_i \& U_o$ lệch pha 180^o
- 4) $A_i = \beta R_b r_o / [(r_o + R_c)(R_b + \beta r_e)] \approx \beta$ $(I_i \text{ là nguồn dòng. } I_o \text{ là dòng collector})$

Cấu hình EC phân áp

Cấu hình EC phân áp

 $\approx \beta$

Cấu hình EC phân áp

```
1) Z_{i} = R_{1}||R_{2}||\beta r_{e} = R'||\beta r_{e}
2) Z_{o} = R_{c}||r_{o} \text{ (If } r_{o} \geq 10R_{c}, Z_{o} \approx R_{c})
3) A_{v} = -(R_{c}||r_{o})/r_{e} \approx -R_{c}/r_{e}
Giống như đã có trong cấu hình CE phân cực cố định
4) A_{i} = \beta R'r_{o}/[(r_{o}+R_{c})(R'+\beta r_{e})]
\approx \beta R'/(R'+\beta r_{e}) \qquad \text{nếu } r_{o} \geq 10R_{c}
```

nếu R'≥ 10 β r_e

Cấu hình EC phân áp

Cấu hình CE hồi tiếp

Cấu hình EC hồi tiếp

Cấu hình EC hồi tiếp

1)
$$Z_i = r_e/(1/\beta + R_c/R_f)$$

2) $Z_o = R_c//R_f$
3) $A_v = -R_c/r_e$
4) $A_i = \beta R_f/(R_f + \beta R_c)$
 $\approx R_f/R_c$
 $n\acute{e}u \ \beta R_c >> R_f$
Khi $r_o \neq \infty$ cần thêm r_o trong công thức

Các phương pháp phân tích $So~\textrm{đô}~tương~\textrm{đương}~m\textrm{ô}~\textrm{hình}~r_{e}$

Phân tích mạch BC

$$Z_i = R_e || r_e$$
 Trở kháng vào tương đối nhỏ

$$Z_0 = R_c$$
 Trở kháng ra lớn

3)
$$A_v = \alpha R_c / r_e \approx R_c / r_e$$
 Tương đối lớn $U_i \& U_o$ cùng pha

A_i = - α ≈ -1 Không khuếch đại dòng

Các phương pháp phân tích $So~\textrm{đ\ensuremath{\^{o}}}~tương~\textrm{dương}~\textrm{m\ensuremath{\^{o}}}~\textrm{hình}~r_e$

Phân tích mạch CC

Sơ đồ tính trở kháng ra

$$Z_i = R_b \parallel [\beta r_e + (\beta + 1)R_e] \approx R_b \parallel \beta (r_e + R_e)$$

Trở kháng vào cao

$$Z_o = R_e || r_e \approx r_e \quad \text{vi} \quad R_e >> r_e$$

Trở kháng ra nhỏ

$$A_v = R_e/(R_e + r_e) \approx 1$$

Điện áp ra cùng pha và nhỏ hơn điện áp vào 1 chút => "mạch lặp emiter"

4)
$$A_i = -\beta R_b / [R_b + \beta (r_e + R_e)]$$

Úng dụng: phối hợp trở kháng.

Ví dụ

Đặc điểm kỹ thuật

- □ Tên: 2N+số, ví dụ 2N4123, 2N2218...
- □ Thông số cơ bản:

Tối đa: Uce, Ucb, Ueb, Ic, Pdis, T

Đặc tính điện:

- > OFF chars.: điện áp đánh thủng của CE, CB, EB, $I_{ccutoff}$, $I_{ecutoff}$
- > ON chars.: DC β , $U_{ce(sat)}$, $U_{be(sat)}$
- Tín hiệu nhỏ:current-gain bandwidth product (β*f), small-signal β

Ảnh hưởng của các yếu tố kỹ thuật đến hoạt động thiết bị

- Ånh hưởng của cấu trúc BJT:
 - Vật liệu chế tạo: Ge, Si
 - Mức độ pha tạp
 - Kích thước BJT...
- · Ảnh hưởng của tần số làm việc
- Ánh hưởng của thời gian sử dụng
- · Ảnh hưởng của độ ổn định nguồn
- Ånh hưởng của nhiệt độ

Các ảnh hưởng khác

- · Ảnh hưởng của tần số làm việc
 - Xét trong phần đáp ứng tần số
- · Anh hưởng của thời gian sử dụng
- · Ảnh hưởng của độ ổn định nguồn
 - Gây méo tín hiệu ra
- Ånh hưởng của cấu trúc BJT:
 - Vật liệu chế tạo: Ge, Si → V_{be}, β,nhiệt độ...
 - Mức độ pha tạp → áp, dòng, β,nhiệt độ...
 - Kích thước BJT → độ lớn của dòng

Ảnh hưởng của nhiệt độ

- Nhiệt độ ảnh hưởng nhiều đến các tham số thiết bị
- Khi nhiệt độ tăng:
 - Hệ số β tăng
 - Dòng dò I_{cbo} tăng
 - Điện áp V_{be} giảm
- → gây ra sự không ổn định của mạch do sự dịch chuyển của điểm làm việc Q
- → chất lượng tín hiệu ra giảm
- Đối với BJT chế tạo từ Si, β chịu ảnh hưởng nhiều của nhiệt độ

Ôn định nhiệt

Ở nhiệt độ phòng

Khi T = 100°C

Hệ số ổn định

- ✓ $S(I_{co})=\Delta I_c/\Delta I_{cbo}$ ảnh hưởng nhiều đến BJT dùng Germani
- < $S(U_{be})=\Delta I_c/\Delta U_{be}$ anh hưởng ít
- \sim S(β)= $\Delta I_c/\Delta \beta$ ảnh hưởng nhiều đến BJT dùng Silic

Tổng ảnh hưởng đến dòng I_c

$$\Delta I_c = S(I_{co}) * \Delta I_{cbo} + S(U_{be}) * \Delta U_{be} + S(\beta) * \Delta \beta$$

Ôn định hoạt động BJT

- \square Hồi tiếp âm điện áp hoặc dòng điện (thêm R_E tại cực E)
- □ Làm mát bằng quạt hoặc nước
- □ Ôn định nguồn cung cấp
- □ Chọn BJT thích hợp với ứng dụng (công suất cao hay thấp, môi trường và nhiệt độ làm việc etc.)

Ôn định chế độ một chiều bằng điện trở $R_{\rm E}$

$$\square$$
 $Z_i = R_B //\beta (r_e + R_E)$

$$\square$$
 $Z_o = R_C$

$$A_i = \beta R_B / [R_B + \beta (r_e + R_E)]$$

Trở kháng vào tăng nhưng hệ số khuếch đại điện áp giảm

=> sử dụng tụ để ngắn mạch R_E ở chế độ xoay chiều

Sơ đồ CE dùng tụ ngắn mạch $R_{\rm E}$

Thiết kế mạch phân cực có $R_{\rm E}$ ổn định nhiệt

Thiết kế mạch phân cực phân áp

Bài tập

- □ Chương 3: 3, 5, 11, 14, 21, 28, 30, 33
- □ Chương 4: 5, 6, 7, **10, 11**, 14, <u>19, 26</u>, <u>28</u>, <u>32, 33</u>
- □ Chương 7: 6, 8, 10, 23
- □ Chương 8: 1, 4, 7, 11, 14, 15, 16, 19, 28

Tóm Tắt (p. 383, sách của tác giả Boylstad)

TABLE 8.1 Relative Levels for the Important Parameters of the CE, CB, and CC Transistor Amplifiers

C	onfiguration	Z_{i}	Z_o	A_{ν}	A_{i}
Fixed-bias:	-∘ V _{CC} c -∘	Medium (1 k Ω) $= \boxed{R_B \ \beta r_e}$ $\cong \boxed{\beta r_e}$ $(R_B \ge 10 \beta r_e)$	Medium (2 k Ω) $= \boxed{R_C r_o }$ $\cong \boxed{R_C}$ $(r_o \ge 10R_C)$	High (-200) $= \boxed{-\frac{(R_C r_o)}{r_e}}$ $\cong \boxed{-\frac{R_C}{r_e}}$ $(r_o \ge 10R_C)$	High (100) $= \frac{\beta R_B r_o}{(r_o + R_C)(R_B + \beta r_e)}$ $\cong \beta$ $(r_o \ge 10R_C, R_B \ge 10\beta r_e)$
Voltage-divider bias: R ₁	V_{CC} R_C C_E	Medium (1 k Ω) $= \boxed{R_1 \ R_2\ oldsymbol{eta} r_e}$	Medium (2 k Ω) $= \boxed{R_C r_o}$ $\cong \boxed{R_C}$ $(r_o \ge 10R_C)$	High (-200) $= \frac{-\frac{R_C r_o }{r_e}}{-\frac{R_C}{r_e}}$ $\cong \frac{-\frac{R_C}{r_e}}{(r_o \ge 10R_C)}$	High (50) $= \frac{\beta(R_1 R_2) r_o}{(r_o + R_C)(R_1 R_2 + \beta r_e)}$ $\cong \frac{\beta (R_1 R_2)}{R_1 R_2 + \beta r_e}$ $(r_o \ge 10R_C)$
Unbypassed emitter bias:	R_C	High (100 k Ω) $= R_B \ Z_b \ $ $Z_b \cong \beta(r_e + R_E)$ $\cong R_B \ \beta R_E \ $ $(R_E \gg r_e)$	$\operatorname{Medium}\ (2\ \mathrm{k}\Omega)$ $= egin{bmatrix} R_C \ \\ (\mathrm{any\ level} \ \\ \mathrm{of}\ r_{o}) \end{bmatrix}$	$Low (-5)$ $= \boxed{-\frac{R_C}{r_e + R_E}}$ $\cong \boxed{-\frac{R_C}{R_E}}$ $(R_E \gg r_e)$	High (50) $\cong \frac{\beta R_B}{-R_B + Z_b}$

Emitter- follower: R_{B} R_{E}	High (100 k Ω) $= \boxed{R_B Z_b}$ $Z_b \cong \beta(r_e + R_E)$ $\cong \boxed{R_B \beta R_E}$ $(R_E \gg r_e)$	Low (20 Ω) $= R_{E} \ r_{e} \ $ $\cong r_{e} \ $ $(R_{E} \gg r_{e})$	Low (\approx 1) $= \frac{R_E}{R_E + r_e}$ $\approx \boxed{1}$	$ \begin{aligned} &\text{High } (-50) \\ &\cong \boxed{-\frac{\beta R_B}{R_B + Z_b}} \end{aligned} $
Commonbase: R_E V_{EE} V_{CC}	Low (20 Ω) $= \boxed{R_E r_e}$ $\cong \boxed{r_e}$ $(R_E \gg r_e)$		High (200) $\cong \frac{R_C}{r_e}$	Low (−1) ≅
Collector feedback:	Medium (1 k Ω) $= \frac{r_e}{\frac{1}{\beta} + \frac{R_C}{R_E}}$ $(r_o \ge 10R_C)$	Medium (2 k Ω) $\cong \boxed{R_C R_F }$ $(r_o \ge 10R_C)$	High (-200) $\cong \boxed{-\frac{R_C}{r_e}}$ $(r_o \ge 10R_C)$ $R_F \gg R_C)$	High (50) $= \frac{\beta R_F}{R_F + \beta R_C}$ $\cong \frac{R_F}{R_C}$