标题

Didnelpsun

目录

1	总体	与样本																		1
	1.1	总体定	义																	1
	1.2	样本 .							•											1
		1.2.1	定义						•											1
		1.2.2	分布													 •				1
2	统计量与分布														1					
	2.1	统计量	·						•											1
	2.2	常用统	计量						•											2
	2.3	顺序统	计量																	2
		2.3.1	概念						•											2
		2.3.2	性质						•											2
	2.4	三大分	布																	3
		2.4.1	χ^2 分布																	3
			2.4.1.1	概念																3
			2.4.1.2	性质					•											3
		2.4.2	t 分布 .						•											4
			2.4.2.1	概念																4
			2.4.2.2	性质					•											4
		2.4.3	F 分布													 •				4
			2.4.3.1	概念					•											4
			2.4.3.2	性质																5
	2.5	正态总	休下结论																	5

古计法	6 6 6 6 7												
古计法 大似然估计	6 6												
大似然估计	6												
2.1 定义	6												
	-												
2.2 步骤	7												
	1												
9标准	8												
扁性	8												
效性	9												
攻性	9												
参数区间估计与假设检验													
	9												
	9												
Š	9												
念	10												
忘总体均值的置信空间													
 总体均值的置信空间	10												
悠总体均值的置信空间	10 10												

1 总体与样本

1.1 总体定义

定义:研究对象的全体称为总体,组成总体的每一个元素称为个体。

1.2 样本

1.2.1 定义

定义: n 个相互独立且域总体 X 有相同概率分布的随机变量 X_1, X_2, \cdots, X_n 所组成的整体 (X_1, X_2, \cdots, X_n) 称为来自总体 X,容量为 n 个一个简单随机样本,简称样本。一次抽样结果的 n 个具体值 (x_1, x_2, \cdots, x_n) 称为来自样本 X_1, X_2, \cdots, X_n 的一个观测值或样本值。

在概率论中称为独立同分布,而在数理统计就称为简单随机样本。

1.2.2 分布

对于容量为 n 的样本 X_1, X_2, \cdots, X_n 有如下定理: 假设总体 X 的分布函数为 F(x)(概率密度为 f(x),或概率分布为 $p_i = P\{X = x_i\}$),则 (X_1, X_2, \cdots, X_n) 的分布函数为 $F(x_1, x_2, \cdots, x_n) = \prod_{i=1}^n F(x_i)$ 。 对于离散型随机变量联合分布: $F(X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n) = x_n$

对于离散型随机变量联合分布: $F(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^{n} P\{X_i = x_i\}$ 。

对于连续型随机变量联合概率密度: $f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i)$ 。

2 统计量与分布

2.1 统计量

设 X_1, X_2, \dots, X_n 来自总体 X 的一个样本, $g(x_1, x_2, \dots, x_n)$ 为 n 元函数,若 g 中不含有任何未知参数,则称 $g(X_1, X_2, \dots, X_n)$ 为样本 X_1, X_2, \dots, X_n 的一个统计量。若 (x_1, x_2, \dots, x_n) 为样本值,则称 $g(x_1, x_2, \dots, x_n)$ 为 $g(X_1, X_2, \dots, X_n)$ 的观测值。

2.2 常用统计量

- 样本均值: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ 。
- 样本标准差: $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2}$.
- 样本 k 阶(原点)矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ $(k = 1, 2, \cdots)$ 。
- 样本 k 中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^k \ (k = 1, 2, \cdots)$ 。

2.3 顺序统计量

2.3.1 概念

将样本 X_1, X_2, \dots, X_n 的 n 个观测量按其值从小到大的顺序排列,得到 $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$ 。

随机变量 $X_{(k)}$ $(k = 1, 2, \dots, n)$ 称为**第** k **顺序统计量**,其中 $X_{(1)}$ 是最小顺序统计量,而 $X_{(n)}$ 是最大顺序统计量。

 $X_{(n)}$ 的分布函数为 $F_{(n)}(x) = [F(x)]^n$,概率密度为 $f_{(n)}(x) = n[F(x)]^{n-1}f(x)$ 。 证明: $F_{(n)}(x) = P\{X_{(n)} \leqslant x\} = P\{\max\{x_1, \cdots, x_n\} \leqslant x\} = P\{x_1 \leqslant x, \cdots, x_n \leqslant x\} = P\{x_1 \leqslant x\} \cdots P\{x_n \leqslant x\} = F_{(1)}(x) \cdots F_{(n)}(x) = [F(x)]^n$ 。

 $X_{(1)}$ 的分布函数为 $F_{(1)}(x) = 1 - [1 - F(x)]^n$,概率密度为 $f_{(1)}(x) = n[1 - F(x)]^{n-1}f(x)$ 。

证明: $F_{(1)}(x) = P\{X_{(1)} \le x\} = P\{\min\{x_1, \cdots, x_n\} \le x\} = 1 - P\{\min\{x_1, \cdots, x_n\} > x\} = 1 - P\{x_1 > x, \cdots, x_n > x\} = 1 - P\{x_1 > x\} \cdots P\{x_n > x\} = 1 - [1 - P\{x_1 \le x\}] \cdots [1 - P\{x_n \le x\}] = 1 - [1 - F_{(1)}(x)] \cdots [1 - F_{(n)}(x)] = 1 - [1 - F_{(n)}(x)]^n$ 。

2.3.2 性质

设总体 X 的期望 $EX = \mu$,方差 $DX = \sigma^2$,样本 X_1, X_2, \dots, X_n 取自 X, \overline{X} 和 S^2 分别为样本的均值和方差,则:

- $EX_i = \mu_{\circ}$
- $DX_i = \sigma^2$

• $E\overline{X} = EX = \mu_{\circ}$

•
$$D\overline{X} = D\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) = \frac{1}{n^2}n\sigma^2 = \frac{1}{n}DX = \frac{\sigma^2}{n}$$

•
$$E(S^2) = E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i - \overline{x})^2\right) = E\left(\frac{1}{n-1}\sum_{i=1}^n(x_i^2 - 2x_i\overline{x} + \overline{x}^2)\right) =$$

$$E\left(\frac{1}{n-1}\left(\sum_{i=1}^nx_i^2 - 2\overline{x}\cdot\sum_{i=1}^nx_i + n\overline{x}^2\right)\right) = E\left(\frac{1}{n-1}\left(\sum_{i=1}^nx_i^2 - n\overline{x}^2\right)\right) =$$

$$\frac{1}{n-1}E\left(\sum_{i=1}^nx_i^2 - n\overline{x}^2\right) = \frac{1}{n-1}\left(\sum_{i=1}^nEx_i^2 - nE\overline{x}^2\right) = \frac{n}{n-1}[(Ex_i)^2 + Dx_i - (E\overline{x})^2 - D\overline{x}] = \frac{n}{n-1}\left(\mu^2 + \sigma^2 - \mu^2 - \frac{\sigma^2}{n}\right) = DX = \sigma^2.$$

2.4 三大分布

2.4.1 χ^2 分布

2.4.1.1 概念

定义: 若随机变量 X_1, X_2, \cdots, X_n 相互独立,且都服从标准正态分布,则随机变量 $X = \sum_{i=1}^n X_i^2$ 服从自由度为 n 的 χ^2 分布,记为 $X \sim \chi^2(n)$,特别地 $X_i^2 \sim \chi^2(1)$ 。

对给定的 α (0 < α < 1) 称满足 $P\{\chi^2 > \chi^2_\alpha(n)\} = \int_{\chi^2_\alpha(n)}^{+\infty} f(x) \, \mathrm{d}x = \alpha$ 的 $\chi^2_\alpha(n)$ 为 $\chi^2(n)$ 分布的上 α 分位点。

2.4.1.2 性质

• 若 $X_1 \sim \chi^2(n_1)$, $X_2 \sim \chi^2(n_2)$, X_1X_2 相互独立,则 $X_1 + X_2 \sim \chi^2(n_1 + n_2)$ 。 一般,若 $X_i \sim \chi^2(n_i)$ $(i = 1, 2, \cdots, m)$, X_1, X_2, \cdots, X_m 相互独立,则

$$\sum_{i=1}^{m} X_i \sim \chi^2 \left(\sum_{i=1}^{m} n_i \right) \circ$$

2.4.2 t 分布

2.4.2.1 概念

也称为学生分布。

若随机变量 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, XY 相互独立, 则随机变量 $t = \frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布,记为 $t \sim t(n)$ 。

当 $t \to \infty$ 时,t 分布就是标准正态分布。其是偶函数,所以 Et = 0。

t 分布用于根据小样本来估计呈正态分布且方差未知的总体的均值。

2.4.2.2 性质

由 t 分布的概率密度 f(x) 图形的对称性可知 $P\{t > -t_{\alpha}(n)\} = P\{t > t_{1-\alpha}(n)\}$,所以 $t_{1-\alpha}(n) = -t_{\alpha}(n)$ 。

2.4.3 F 分布

2.4.3.1 概念

若随机变量 $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$,且 X 与 Y 相互独立,则 $F = \frac{X/n_1}{Y/n_2}$ 服从自由度为 (n_1, n_2) 的 F 分布,记为 $F \sim F(n_1, n_2)$,其中 n_1 为第一自由度, n_2 为第二自由度。

2.4.3.2 性质

•
$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}}(n_2, n_1)$$
.

证明性质二:记 $F \sim F(n_2, n_1)$ 。

2.5 正态总体下结论

设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的一个样本, \overline{X} , S^2 分别是样本的均值和方差,则:

1.
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, $\mathbb{P}\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0, 1)\right)$

2.
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$
.

3.
$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1) \; (\mu \; 未知时,在 2 中用 \overline{X} 代替 μ)。$$

4.
$$\overline{X}$$
 与 S^2 相互独立, $\frac{\sqrt{n}(\overline{X}-\mu)}{S}\sim t(n-1)$ (σ 未知时在 1 中用 S 代替 σ)。 进一步有 $\frac{n(\overline{X}-\mu)^2}{S^2}\sim F(1,n-1)$ 。

3 参数点估计

3.1 概念

定义: 设总体 X 的分布函数为 $F(x;\theta)$,其中 θ 为一个未知参数, X_1, X_2, \cdots , X_n 是取自总体 X 的一个样本。由样本构造一个适当的统计量 $\hat{\theta}(X_1, X_2, \cdots, X_n)$ 作为参数 θ 的估计,称统计量 $\hat{\theta}(X_1, X_2, \cdots, X_n)$ 为 θ 的估计量,一般记为 $\hat{\theta} = \hat{\theta}(X_1, X_2, \cdots, X_n)$ 。

如果 x_1, x_2, \dots, x_n 是样本的一个观察值,将其代入估计量 $\hat{\theta}$ 中得到值 $\hat{\theta}(x_1, x_2, \dots, x_n)$,并且此值作为未知参数 θ 的参数值,统计值称这个值为未知参数 θ 的估计值。

建立一个适当的统计量作为未知参数 θ 的估计量并以相应的观察值作为未知参数估计值的问题,就是参数 θ 的点估计问题。

3.2 方法

3.2.1 矩估计法

例题: 来自总体的 X 的简单随机样本 X_1, X_2, \cdots, X_n ,总体 X 的概率分布为 $X \sim \begin{pmatrix} -1 & 0 & 2 \\ 2\theta & \theta & 1-3\theta \end{pmatrix}$,其中 $0 < \theta < \frac{1}{3}$,求参数 θ 的矩估计量。 解: 令 $\overline{X} = EX$,即 $\frac{1}{n}\sum_{i=1}^n X_i = (-1)2\theta + 0\theta + 2(1-3\theta) = 2-8\theta$ 。 所以 $\hat{\theta} = \frac{2-\overline{X}}{8}$ 。

例题:来自总体的 X 的概率密度为 $f(x) = \begin{cases} (1+\theta)x^{\theta}, & 0 < x < 1 \\ 0, & \text{其中} \end{cases}$,其中 $\theta > -1$ 为未知参数,设 X_1, X_2, \cdots, X_n 为来自总体 X 的样本容量为 n 的简单随机样本,求 θ 的矩估计量。

解: 令
$$\overline{X} = EX$$
, $EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x (1+\theta) x^{\theta} dx = (1+\theta) \frac{x^{\theta+2}}{\theta+2} \Big|_{0}^{1} = \frac{1+\theta}{2+\theta}$ 。
解得 $\hat{\theta} = \frac{2\overline{X}-1}{1-\overline{X}}$ 。

3.2.2 最大似然估计

3.2.2.1 定义

对未知参数 θ 进行估计时,在该参数可能取值的范围 I 内选取,使得样本获得次观测值 x_1, x_2, \cdots, x_n 的概率最大的参数值 $\hat{\theta}$ 作为 θ 的估计,这样的 $\hat{\theta}$ 最有利于 x_1, x_2, \cdots, x_n 的出现。

设总体 X 是离散型,其概率分布为 $P\{X=x\}=p(x;\theta)$, $\theta\in I$, θ 为未知 参数, X_1,X_2,\cdots,X_n 为 X 的一个样本,则 X_1,X_2,\cdots,X_n 取值为 x_1,x_2,\cdots,x_n 的概率为 $P\{X_1=x_1,X_2=x_2,\cdots,X_n=x_n\}=\prod_{i=1}^n P\{X_i=x_i\}=\prod_{i=1}^n p(x_i;\theta)$ 。显然这个概率值为 θ 的函数,记为 $L(\theta)=L(x_1,x_2,\cdots,x_n;\theta)=\prod_{i=1}^n p(x_i;\theta)$ 。称 $L(\theta)$ 为样本的**似然函数**。

定义: 若存在 $\hat{\theta} \in I$, 使得 $L(x_1, x_2, \dots, x_n; \hat{\theta}) = \max_{\theta \in I} L(x_1, x_2, \dots, x_n; \theta)$, 则称 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为参数 θ 的最大似然估计,对应的统计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 称为参数 θ 的最大似然估计量。

同理若总体 X 为连续型随机变量,其概率密度为 $f(x;\theta)$, $\theta \in I$,则样本的 似然函数为 $L(\theta) = L(x_1, x_2, \cdots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$.

定义: 若存在 $\hat{\theta} \in I$,使得 $L(x_1, x_2, \dots, x_n) = \max_{\theta \in I} \prod_{i=1}^n f(x_i; \theta)$,则称 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为参数 θ 的最大似然估计,对应的统计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 称为参数 θ 的最大似然估计量。

3.2.2.2 步骤

- 1. 写出样本的似然函数。 $L(\theta) = L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_k) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_k)$ 或 $\prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_k)$ 。
- 2. 如果 $p(x; \theta_1, \theta_2, \dots, \theta_k)$ 或 $f(x; \theta_1, \theta_2, \dots, \theta_k)$ 关于 θ_i 可微,则令 $\frac{\partial L(\theta)}{\partial \theta_i} = 0$ 或 $\frac{\partial \ln L(\theta)}{\partial \theta_i} = 0$ 。由于 $L(\theta)$ 是乘积形式,且 $\ln x$ 单调增,所以 $L(\theta)$ 域 $\ln L(\theta)$ 在同一 θ 处取极值,所以更多采用后面一种对数似然方程组来解。 求得 θ_i 的最大似然估计量为 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ $(i = 1, 2, \dots, k)$ 。
- 3. 如果 $p(x; \theta_1, \theta_2, \dots, \theta_k)$ 或 $f(x; \theta_1, \theta_2, \dots, \theta_k)$ 不可微,或似然方程组无解,则应由定义用其他方法求 $\hat{\theta}$,如当 $L(\theta)$ 为 θ 的单调函数时, $\hat{\theta}$ 为 θ 的取值上限或下限。

即将概率密度或概率分布连乘,然后取对数,再求导令其为 0 解出 $\overline{\theta}$ 。 **例题**: 设总体 X 的概率分布为:

其中 $\theta \int \left(0, \frac{1}{2}\right)$ 为未知参数,从总体 X 中抽取容量为 8 的一组样本,其样本值为 3,1,3,0,3,1,2,3。求 θ 的矩估计值和最大似然估计值。

解: 首先将所有的概率相乘: $L(\theta)l = (1-2\theta)^4[2\theta(1-\theta)]^2 \cdot \theta^2 \cdot \theta^2 = 4\theta^6(1-\theta)^2(1-2\theta)^4$ 。

对其求对数:
$$\ln L(\theta) = \ln 4 + 6 \ln \theta + 2 \ln(1-\theta) + 4 \ln(1-2\theta)$$
。 对其求导: $\frac{d \ln L(\theta)}{d \theta} = \frac{6}{\theta} - \frac{2}{1-\theta} - \frac{8}{1-2\theta} = 0$ 。解得 $\theta = \frac{7 \pm \sqrt{13}}{12}$ 。 $0 < \theta < \frac{1}{2}$,舍去正值,得到 $\hat{\theta} = \frac{7 - \sqrt{13}}{12}$ 。

解: 这是上面的矩估计的题目的延申。

首先
$$L(\theta) = (1+\theta)x_1^{\theta} \cdot (1+\theta)x_2^{\theta} \cdot \dots = (1+\theta) \cdot \prod_{i=1}^n x_i^{\theta}$$
。
取对数 $\ln L(\theta) = n \ln(1+\theta) + \theta \sum_{i=1}^n \ln x_i$
对其求导: $\frac{\mathrm{d} \ln L(\theta)}{\mathrm{d} \theta} = \frac{n}{1+\theta} + \sum_{i=1}^n \ln x_i = 0$,解得 $\hat{\theta} = -\frac{n}{\sum_{i=1}^n \ln x_i} - 1$ 。
最大似然估计量为 $-\frac{n}{\sum_{i=1}^n \ln X_i}$

注意: 估计值用小写 x, 估计量用大写 X。

3.3 估计量平均标准

不同的估计法所产生的估计量有所差异,需要有一套标准来评判估计量。

3.3.1 无偏性

定义: 若参数 θ 的估计量 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 对一切 n 及 $\theta \in I$,有 $E\hat{\theta} = \theta$,则称 $\hat{\theta}$ 为 θ 的无偏估计量。

例题: 设 X_1, X_2, \cdots, X_n 是正态总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,为使 $D = k \sum_{i=1}^{n} -1(X_{i+1} - X_i)^2$ 称为总体方差 σ^2 的无偏估计量,求 k。

解:已知总体方差为 σ^2 ,所以代入:

$$ED = \sigma^2 = kE\left(\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2\right) = kE\left(\sum_{i=1}^{n-1} (X_{i+1}^2 - 2X_i X_{i+1} + X_i^2)\right).$$

3.3.2 有效性

也称为最小方差性。

定义:设 $\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, \cdots, X_n)$ 与 $\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, \cdots, X_n)$ 都是 θ 的无偏估计量,若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ **有效**。

$$EX_i^2 = EX_{i+1}^2 = (EX_{i+1})^2 + DX_{i+1} = \mu^2 + \sigma^2$$
, $2EX_iE_{i+1} = 2(EX_i)^2 = 2\mu^2$ 。
代入: $= k \sum_{i=1}^{n-1} (2\mu^2 + 2\sigma^2 - 2\mu^2) = 2k\sigma^2(n-1) = \sigma$ 。解得 $k = \frac{1}{2(n-1)}$ 。

3.3.3 一致性

也称为相合性。

定义:设 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 为未知参数 θ 的估计量,若对任意 $\epsilon > 0$,有 $\lim_{n \to \infty} P\{|\hat{\theta} - \theta| < \epsilon\} = 1$,即 $\hat{\theta} \xrightarrow{P} \theta(n \to \infty)$,则称 $\hat{\theta}$ 为 θ 的一致估计量(相合估计量)。

4 参数区间估计与假设检验

4.1 区间估计

区间估计是根据样本估计总体期望 μ 所在的区间。

4.1.1 概念

定义:已知从总体 X 中取出一部分样本 X_n ,则这些样本的平均值 \overline{X} 不一定等于 X 的期望即应该的平均值 μ ,但是其之间的差距应该不大,即差距较小的概率较大,从而表示为 $P(|\overline{X} - \mu| < \Delta) = 1 - \alpha$, α 为显著性水平,其一般是一个较小的正数。而 $1 - \alpha$ 称为置信度或置信水平。

4.1.2 正态总体均值的置信空间

假设 $X \sim N(\mu, \frac{\sigma^2}{\sigma^2})$ (若不服从正态分布就用中心极限定理来解决),则 $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, $P\left(\left|\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right| < \frac{\Delta}{\sigma/\sqrt{n}}\right) = 1 - \alpha$ 。记 $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = Z$,则 $Z \sim N(0, 1)$ 。 $\therefore P\left(|Z| < \frac{\Delta}{\sigma/\sqrt{n}}\right) = 1 - \alpha$,从而中间面积为 $1 - \alpha$,得到两端面积 $\frac{\alpha}{2}$ 。

得到上
$$\alpha$$
分位数 $Z_{\frac{\alpha}{2}}$, $\therefore \frac{\Delta}{\sigma/\sqrt{n}} = Z_{\frac{\alpha}{2}}$, 解得 $\Delta = Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ 。
代入:解得 $\mu \in (\overline{X} - \Delta, \overline{X} + \Delta) = (\overline{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}})$ 。

这个 μ 所处的区间就是**置信区间**,区间上限就是**置信上限**,区间下限就是**置信下限**。

当 σ 未知的时候就无法求出置信区间了,所以根据正态总体下的结论,用样本方差 S 代替方差 σ ,且 $\frac{\sqrt{n}(\overline{X}-\mu)}{S}\sim t(n-1)$ 。

所以
$$P\left(\left|\frac{\overline{X}-\mu}{S/\sqrt{n}}\right| < \frac{\Delta}{S/\sqrt{n}}\right) = 1 - \alpha$$
, 令 $\frac{\overline{X}-\mu}{S/\sqrt{n}} = t$, 所以 $t \sim t(n-1)$ 。可得上 α 分位点 $t_{\frac{\alpha}{2}}(n-1)$, 所以 $\frac{\Delta}{S/\sqrt{n}} = t_{\frac{\alpha}{2}}(n-1)$, 解得 $\Delta = t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}$ 。代入: 解得 $\mu \in (\overline{X}-\Delta, \overline{X}+\Delta) = \mu \in (\overline{X}-t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}, \overline{X}+t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}})$ 。综上: 求置信空间的关键是求 Δ :

- 当 σ 已知时, $\Delta = Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ 。
- 当 σ 未知时, $\Delta = t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}$ 。

4.2 假设检验

已经有了对期望 μ 的假设,对这个假设进行检验。若所处的区间在拒绝域中,就拒绝原假设。

4.2.1 思想

已经有了假设样本期望为 $\mu=\mu_0$ 。则 $P(|\overline{X}-\mu_0|<\Delta)=1-\alpha$,所以取对立事件 $P(|\overline{X}-\mu_0|\geqslant\Delta)=\alpha$,这是一个小概率事件。若对这个小概率事件发生了,则否定原假设。

若 σ 已知,则 $\Delta = Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$,则区间 $(-\infty, \mu_0 - \Delta] \cup [\mu_0 + \Delta, +\infty)$ 称为**拒绝** 域,即小概率发生的区间。

若
$$\sigma$$
 未知,则 $\Delta = t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}$,拒绝域一样。

4.2.2 正态总体下的六大检验与拒绝域

4.3 两类错误

第一类错误(弃真): 若 H_0 为真,按检验法则否定 H_0 。发生概率为 $\alpha = P\{拒绝<math>H_0|H_0$ 为真 $\}$ 。

第二类错误(存伪): 若 H_0 为假,按检验法则接受 H_0 。发生概率为 $\beta=P\{$ 接受 $H_0|H_0$ 为假 $\}=P\{$ 接受 $H_0|H_1$ 为真 $\}$ 。