Analyse Numérique Exercices – Série 13

12 décembre 2019 **Questions marquées de** \star à rendre le 19 décembre 2019

1. (Elimination de Gauss – version de Doolittle) On considère l'algorithme de Doolittle suivant pour calculer la décomposition A = LU d'une matrice $A \in \mathbb{R}^{n \times n}$ à l'aide de la méthode de Gauss, ici formulé sans recherche de pivot :

(Algorithme de Doolittle)

1:
$$U \leftarrow A, L \leftarrow I$$

2: **for** $k = 1, ..., n$ **do**
3: **for** $j = k, ..., n$ **do**
4: $u_{kj} \leftarrow a_{kj} - \ell_{k,1:k-1}^T u_{1:k-1,j}$
5: **for** $i = k+1, ..., n$ **do**
6: $\ell_{ik} \leftarrow (a_{ik} - \ell_{i,1:k-1}^T u_{1:k-1,k})/u_{kk}$

- (a) Justifier que l'on peut remplacer les termes a_{kj} , a_{ik} qui apparaissent dans l'algorithme ci-dessus par respectivement u_{kj} , u_{ik} , sans modifier le résultat de l'algorithme.
- (b) Justifier que cet algorithme met en oeuvre l'algorithme de la décomposition A = LU, où L est une matrice triangulaire inférieure avec des 1 sur la diagonale.

Indication. Pour les parties triangulaires supérieure et inférieure de la matrice A, montrer :

$$a_{kj} = \ell_{k,1:k-1}^T \mathbf{u}_{1:k-1,j} + \ell_{kk} u_{kj}, \quad j = k, \dots, n,$$

 $a_{ik} = \ell_{i,1:k-1}^T \mathbf{u}_{1:k-1,k} + \ell_{ik} u_{kk}, \quad i = k+1, \dots, n.$

(c) (0.5 pts) (*) Modifier l'algorithme pour ajouter la recherche partielle de pivot.

1:
$$U \leftarrow A, L \leftarrow I, P \leftarrow I$$

2: **for** $k = 1, ..., n$ **do**
3: ...(à compléter)
4: **for** $j = k, ..., n$ **do**
5: $u_{kj} \leftarrow u_{kj} - \ell_{k,1:k-1}^T u_{1:k-1,j}$
6: **for** $i = k+1, ..., n$ **do**
7: $\ell_{ik} \leftarrow (u_{ik} - \ell_{i,1:k-1}^T u_{1:k-1,k})/u_{kk}$

2. (*, tout l'exercice) (Décomposition LU et élimination de Gauss)

Soit $A = (a_{ij})$ une matrice carrée à diagonale dominante par colonne, c.-à-d.,

$$|a_{jj}| > \sum_{i \neq j} |a_{ij}|, \ \forall j. \tag{1}$$

- (a) (0.25 pts) Montrer que A est inversible. Indication: Montrer que $A^{T}x = 0$ implique x = 0.
- (b) (0.25 pts) Démontrer qu'au premier pas d'une décomposition LU de A, il n'y a pas d'échanges de lignes, même si on utilise la recherche de pivot partielle (c'est-à-dire une recherche de pivots dans la même colonne à chaque étape de l'algorithme).

(c) (0.25 pts) Démontrer
$$\sum_{i=2}^n |\ell_{i1}| < 1$$
 où $\ell_{i1} = a_{i1}/a_{11}.$

(d) (0.75 pts) En utilisant les points précédents et un raisonnement par récurrence, démontrer que pendant la décomposition LU de A, il n'y a pas d'échanges de lignes, même si on utilise la recherche de pivot partielle.

3. (Algorithme de Thomas)

L'algorithme de Thomas est une formulation simplifiée de la factorisation LU qui peut être utilisée pour résoudre des systèmes linéaires Ax = b où la matrice A est une matrice tridiagonale. Soit A une matrice tridiagonale (de taille $n \times n$):

$$A = \begin{pmatrix} d_1 & r_1 & & & \\ \ell_2 & d_2 & r_2 & & & \\ & \ell_3 & \ddots & \ddots & \\ & & \ddots & \ddots & r_{n-1} \\ & & & \ell_n & d_n \end{pmatrix}.$$

- (a) Calculer la décomposition LU de A.
- (b) Quel est le nombre approximatif d'opérations dont on a besoin pour construire L et U? Donner la solution sous la forme Cn^k .
- (c) On suppose maintenant que L et U sont construits. Résoudre le système linéaire Ax = b en utilisant les résultats précédents. Quel est le nombre approximatif d'opérations, donné sous la forme Cn^k , de cet algorithme?