ЛАБОРАТОРНАЯ РАБОТА

«Корреляционный анализ»

1.1. Описание метода.

Пусть дана матрица данных $Z(N \times p)$.

$$\overline{z}^{\, j} -$$
 среднее значение $\, j-$ го признака $\, \overline{z}^{\, j} = \frac{1}{N} \sum_{i=1}^N z_{ij} \, , \, \, \, j = \overline{1,p} \, ; \, \,$

$$(S^2)^j = \frac{1}{N} \sum_{i=1}^N (z_{ij} - \bar{z}^j)^2 - \text{ оценка дисперсии } j$$
-го столбца, $j = \overline{1, p}$.

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2p} \\ \dots & \dots & \dots & \dots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_{pp} \end{pmatrix} \qquad \qquad \text{ковариационная} \qquad \text{матрица,} \qquad \Gamma \text{де}$$

$$\sigma_{ij} = \frac{1}{N} \sum_{k=1}^{N} \left(z_{ki} - \overline{z}^{i} \right) \left(z_{kj} - \overline{z}^{j} \right).$$

$$X(N \times p)$$
 — стандартизованная матрица: $X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \dots & \dots & \dots & \dots \\ x_{N1} & x_{N2} & \dots & x_{Np} \end{pmatrix}$, где

$$x_{ij} = \frac{z_{ij} - \overline{z}^j}{s^j}.$$

 $R(p \times p)$ — корреляционная матрица, $r_{ij} = \frac{1}{N} \sum_{k=1}^{N} x_{ki} x_{kj}$

1.2. Оценка значимости коэффициента корреляции.

Пусть имеются статистические гипотезы:

 H_0 : $\rho(x,y) = 0$, связи между признаками х и у нет.

 H_1 : $\rho(x,y) \neq 0$, то есть связь есть. Здесь $\rho(x,y)$ - коэффициент корреляции между х и у.

	•	
Действие	H_0 принимаем	H_0 отвергаем
Состоя-	•	
ние природы		
верна H_0	верное решение	α
верна H_1	β	верное решение

- α вероятность ошибки первого рода вероятность отвергнуть верную гипотезу,
- β вероятность ошибки второго рода вероятность принять неверную гипотезу.

Надо сформулировать такое правило , чтобы α и β были достаточно малыми. В математической статистике показано, что статистика

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

при условии, что H_0 справедлива, подчиняется закону распределения Стьюдента.

1.3. Алгоритм проверки статистической гипотезы о значимости коэффициента корреляции.

1) Пусть имеются экспериментальные данные

$$(x_1, y_1)$$

 (x_2, y_2)
...
 (x_n, y_n) .

Вычисляем r(x, y) — выборочный коэффициент корреляции.

- 2) Задаемся приемлемой для нас вероятностью ошибки α , пусть α =0,05.
- 3) Вычисляем статистику t.
- 4) По выбранному α и числу степеней свободы f=n-2 определяем $t_{\text{табличное}}$.
- 5) Правило вынесения решения: если $|t_{\text{расч}}| \ge t_{\text{табл}}$, то справедлива гипотеза H_I , в противном случае H_0 , а отличие от нуля коэффициента корреляции обусловлено случайными причинами.

1.4. Порядок выполнения работы.

Пусть дана Z — матрица данных размером $N \times p$.

- 1) Составить программу для вычисления
 - а) средних по столбцам, дисперсий по столбцам;
 - б) стандартизованной матрицы;

- в) ковариационной матрицы;
- г) корреляционной матрицы.
- 2) Проверить гипотезу о значимости коэффициентов корреляции между столбцами матрицы данных.

1.5. Задание.

Выполнить работу для конкретной матрицы Z и результаты расчетов вывести на печать.