Topologie et Calcul différentiel

Semaine 3 : Théorème des fonctions implicites

Mardi 28 Février 2023

Debrief du QCM de jeudi dernier

Pour montrer qu'une fonction à deux variables n'est pas de classe \mathcal{C}^1 sur un ouvert O:

- Il suffit de montrer qu'une de ses dérivées partielles n'est pas continue sur O. √
- Il suffit de montrer qu'elle n'est pas continue.
- Il faut montrer qu'il existe un point pour lequel est n'a aucune dérivée directionnelle continue.
- Il faut impérativement commencer par calculer sa différentielle, et ensuite montrer qu'elle n'est pas continue.

Debrief du QCM de jeudi dernier

Pour une fonction différentiable sur un ouvert, quel est le lien entre sa dérivée partielle en un point x dans la direction v, et sa dérivée partielle en ce même point x dans la direction 2v?

- Elles sont dans la même direction, et dérivée partielle dans la direction v est deux fois plus petite que celle dans la direction 2v.
- Elles sont dans la même direction, et dérivée partielle dans la direction v est deux fois plus grande que celle dans la direction 2v.
- Elles sont égales.
- Elles ne sont pas nécessairement dans la même direction.

$$\int_{z_{v}} f(x) = df_{x}(z_{v}) = 2 \cdot df_{x}(v) = 2 \cdot \int_{v} f(x)$$

Debrief du QCM de jeudi dernier

if
$$M_n(R) \longrightarrow M_n(R)$$

A $\longmapsto A$ tinéaire (donc d = t)

Ijhéaire + dimension Finie =) continue (semaine 15 et 16)

La fonction f définie sur \mathbb{R}^2 par $f(x,y)=\sqrt{1+x^2y^2}$ est-elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

- Oui, comme somme et composée de fonctions de classes C^1 et parce que $1 + x^2y^2 > 0$.
- Non, car la fonction racine n'est pas définie sur $]-\infty,0[$.
- Oui car ses dérivées partielles en (0,0) existent.
- Non car une composée de fonctions de classe \mathcal{C}^1 n'est jamais de classe \mathcal{C}^1 .

```
NB: L'ensemble C^4(f_f)(k \in \mathbb{N}) or k = +\infty) est stable par

• addition

• reliptication si F = \mathbb{R} (i) Fout que f(x) \neq g(x) ait un sens)

• quotient si f = \mathbb{R} et g(x) \neq 0

• composition si F = \mathbb{E}
```

Introduction

Introduction

Soit $O \subset \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ et soit $f: O \to \mathbb{R}^p$. On s'intéresse à l'ensemble

$$\Gamma_f := \{(x, y) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}, \ f(x, y) = 0\}$$

Exemple

- équation d'un cercle: $f(x,y) = x^2 + y^2 1 = 0$;
- relation de dispersion $f(k,\omega) = k^2 \frac{\omega^2 \omega_c^2}{c^2} = 0$ (optique/électromagnétisme);

But

Savoir si on peut écrire y en fonction de x (ou inversement).

dévivées?

Exemple introductif: le cas linéaire

$$\begin{cases} 4x + y + 3z = 4 \\ x - y + 2z = 1 \end{cases} \xrightarrow{L_2} \leftarrow L_1 + L_1$$

$$\begin{cases} 4x + y + 3z = 4 \\ 5x + 5z = 5 \end{cases} \xrightarrow{O_{11}} \xrightarrow{Vert les} \text{ grandes coordannses en Fonction des petites:}$$

$$z = \varphi(x,y) \text{ ov } \begin{cases} z = \varphi_1(x) \\ y = \varphi_2(x) \end{cases}$$

$$\begin{cases} y = 4 - 3z - 4x = 4 - 3(1-x) - 4x = 1 - x \\ z = 1 - x \end{cases}$$

$$\begin{cases} 0 \text{ on } c = y = \varphi_1(x) \text{ ov } \varphi_1(x) = 1 - x \\ z = \varphi_2(x) \text{ ov } \varphi_2(x) = 1 - x \end{cases}$$

Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. En notant $A \in \mathrm{M}_{p,n}(\mathbb{R})$ la matrice de f dans les bases canoniques de \mathbb{R}^n et \mathbb{R}^p , alors

$$f(x_1,\ldots,x_n)=0_{\mathbb{R}^p}\Leftrightarrow \ldots \stackrel{A}{\wedge} \stackrel{X=O}{\sim} \ldots$$

Exemple introductif: le cas linéaire

avec
$$X_1 = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
, $X_2 = \begin{pmatrix} x_{j+1} \\ \vdots \\ x_n \end{pmatrix}$, $B = \begin{pmatrix} A_{5,1} & \cdots & A_{5,j} \\ \vdots & \ddots & \vdots \\ A_{p,1} & \cdots & A_{p,j} \end{pmatrix}$ at $C = \begin{pmatrix} A_{5,j+1} & \cdots & A_{5,n} \\ \vdots & \ddots & \vdots \\ A_{p,j+1} & \cdots & A_{p,n} \end{pmatrix}$

$$\leftarrow M_{p,n+j}(\mathbb{R})$$

$$\int_{\text{onc}} A X = Q \iff \beta X_1 + C X_2 = O_{p,1}$$

$$\iff C X_2 = -\beta X_1$$

Donc, on peut écrire
$$X_2$$
 en Fonction X_1 ($x_2 = \phi(X_1)$)

si C est inversible (et donc une matrice carrée, donc $p = n-j$).

(=) $X_2 = C^{-1}BX_1$
 $p < n$

$$(=) (x_{j+1},...,x_n) = \phi(x_n,...,x_j)$$

Cas général : f n'est pas linéaire

Exemple

La situation est beaucoup plus compliquée. Par exemple, dans le cadre des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$,

- si $f:(x,y)\mapsto x^2+y^2-1$, Γ_f est le cercle centré en (0,0) de rayon 1;
- si $f:(x,y)\mapsto x^2+y^2$, Γ_f est réduit au singleton $\{(0,0)\}$;
- si $f:(x,y)\mapsto x^2+y^2+1$, Γ_f est l'ensemble vide \emptyset .

Idée

L'idée centrale du calcul différentiel : .Li.néani.sex. La géométrie de Γ_f va donc dépendre .de...la..différentielle de f \cline{f}

Différentielle partielle

Notation

Si f est une fonction définie sur un ouvert non vide O de $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ à valeurs dans \mathbb{R}^p qui est différentiable en un point $(a,b) \in O$, on note

$$M_{P,m_2}(\mathbb{R}) \ni d[f(a,\cdot)]_b$$
 doit être inversible.

la différentielle de la fonction $y \in \mathbb{R}^{n_2} \mapsto f(a,y)$ en b. On parle alors de différentielle partielle de f. De même, on note

$$\mathrm{d}[f(\cdot,b)]_a$$

la différentielle de la fonction $x \in \mathbb{R}^{n_1} \mapsto f(x, b)$ en a.

Matrice jacobienne des dérivées partielles

Les matrices de $d[f(\cdot, b)]_a$ et $d[f(a, \cdot)]_b$ dans les bases canoniques correspondent respectivement aux n_1 premières colonnes et aux n_2 dernières colonnes de la matrice jacobienne $Jf_{(a,b)}$ de f:

• matrice de $d[f(a,\cdot)]_b$:

• matrice de
$$d[f(a,\cdot)]_b$$
:
$$\begin{bmatrix} \partial_{n_1+1}f_1(x_0) & \partial_{n_1+2}f_1(x_0) & \cdots & \partial_{n_1+n_2}f_1(x_0) \\ \partial_{n_1+1}f_2(x_0) & \partial_{n_1+2}f_2(x_0) & \cdots & \partial_{n_1+n_2}f_2(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{n_1+1}f_p(x_0) & \partial_{n_1+2}f_p(x_0) & \cdots & \partial_{n_1+n_2}f_p(x_0) \end{bmatrix} \in \mathcal{M}_{p,n_2}(\mathbb{R});$$
• matrice de $d[f(\cdot,b)]_a$:
$$\begin{bmatrix} \partial_1f_1(x_0) & \partial_2f_1(x_0) & \cdots & \partial_{n_1}f_1(x_0) \\ \partial_1f_2(x_0) & \partial_2f_2(x_0) & \cdots & \partial_{n_1}f_2(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_1f_p(x_0) & \partial_2f_p(x_0) & \cdots & \partial_{n_1}f_p(x_0) \end{bmatrix} \in \mathcal{M}_{p,n_1}(\mathbb{R}).$$

$$\begin{bmatrix} \partial_1 f_1(x_0) & \partial_2 f_1(x_0) & \cdots & \partial_{n_1} f_1(x_0) \\ \partial_1 f_2(x_0) & \partial_2 f_2(x_0) & \cdots & \partial_{n_1} f_2(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_1 f_p(x_0) & \partial_2 f_p(x_0) & \cdots & \partial_{n_1} f_p(x_0) \end{bmatrix} \in \mathcal{M}_{p,n_1}(\mathbb{R})$$

Théorème des fonctions implicites

Soit O un ouvert non vide de $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^p$, soit $(a, b) \in O$ et soit $(a, b) \in O \to \mathbb{R}^p$ une application de classe $(a, b) \in O \to \mathbb{R}^p$ avec $(a, b) \in O \to \mathbb{R}^p$ ou $(a, b) \in O \to \mathbb{R}^p$ ou (

$$f(a,b)=0_{\mathbb{R}^p}$$
 et $\mathrm{d}[f(a,\cdot)]_b$. est inversible

Alors il existe un ouvert U de \mathbb{R}^n qui contient a, un ouvert V de \mathbb{R}^p qui contient b avec $U \times V \subset O$ et une fonction O $U \to V$ de classe C^k tels que

$$\forall x \in U, \ \forall y \in V, \quad f(x,y) = 0_{\mathbb{R}^p} \iff y = \phi(x)$$

Preuve : admise (preuve dans le cas p = n = 1 en exercice dans le poly)

Remarques

- On a $\phi(\mathbf{q}.) = .b.$
- La condition $d[f(a,\cdot)]_b$ est inversible se traduit matriciellement par le fait que la matrice

$$\begin{bmatrix} \partial_{n+1} f_1(x_0) & \partial_{n+2} f_1(x_0) & \cdots & \partial_{n+p} f_1(x_0) \\ \partial_{n+1} f_2(x_0) & \partial_{n+2} f_2(x_0) & \cdots & \partial_{n+p} f_2(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{n+1} f_p(x_0) & \partial_{n+2} f_p(x_0) & \cdots & \partial_{n+p} f_p(x_0) \end{bmatrix} \in M_p(\mathbb{R})$$

est inversible ssi son déterminant est $\neq 0$.

• Puisque $\mathrm{d}[f(a,\cdot)]_b$ est inversible et que $\mathrm{d}f$ est continue, on en déduit que $\mathrm{d}[f(x,\cdot)]_y$ est inversible sur un voisinage de $U\times V$. De plus, différentier la relation $f(x,\phi(x))=0_{\mathbb{R}^p}$ dans ce voisinage donne

Remarques

• Puisque $d[f(a,\cdot)]_b$ est inversible et que df est continue, on en déduit que $d[f(x,\cdot)]_y$ est inversible sur un voisinage de $U \times V$. De plus, différentier la relation $f(x,\phi(x)) = 0_{\mathbb{R}^p}$ dans ce voisinage donne

$$d\left[f(\cdot,\phi(x))\right]_{x} + d\left[f(x,\cdot)\right]_{\phi(x)} d\phi_{x} = O_{\mathbb{R}^{p}}$$

$$d\left[f(x,\cdot)\right]_{\phi(x)} d\phi_{x} = -d\left[f(\cdot,\phi(x))\right]_{x}$$

$$d\phi_{x} = -\left(d\left[f(x,\cdot)\right]_{\phi(x)}\right)^{-1} d\left[f(\cdot,\phi(x))\right]_{x}$$

Cas particuliers

Les courbes dans \mathbb{R}^2 et les surfaces dans \mathbb{R}^3

- Cas des courbes du plan. C'est le cas n=1. et p=1.

 La condition d'inversibilité est $f(x,y)=x^{\epsilon_1}+y^{\epsilon_2}-1=0$ f(x,y)=2y f(x,y)=2y
 - avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$. Si c'est le cas, au voisinage de (a,b), si f(x,y) = 0 alors y = y(x).
- Cas des surfaces de l'espace. C'est le cas n=2. et p=1. La condition d'inversibilité est $f(x,y,z) = x^2 + y^2 z 1 = 0$

avec $a \in \mathbb{R}^2$ et $b \in \mathbb{R}$. Si c'est le cas, au voisinage de (a, b), si f(x, y, z) = 0 alors z = z(x, y).

Cas particuliers

Les courbes dans \mathbb{R}^3

• Cas des courbes de l'espace. C'est le cas n = 1. et p = 2. La condition d'inversibilité est

$$= \operatorname{est} \left[\begin{array}{ccc} \lambda_{2} f_{1}(x, y, 1) & \lambda_{3} f_{1}(x, y, 1) \\ \lambda_{2} f_{1}(x, y, 2) & \lambda_{3} f_{1}(x, y, 2) \end{array} \right] \neq 0$$

avec $a \in \mathbb{R}$ et $b \in \mathbb{R}^2$. Au voisinage de (a, b), si f(x, y, z) = 0 alors y = y(x) et z = z(x).