

Discrete Mathematics

UCS	A Term,	${\rm MMXVII}$
nt Name:		

Print Name: ,	
Sign:	

- 1. (6 points) Let X, Y, and Z be sets. Prove that $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ using the double inclusion method.
- ♣ We first show $X \cap (Y \cup Z) \subseteq (X \cap Y) \cup (X \cap Z)$. Let $a \in X \cap (Y \cup Z)$, so $a \in X$ and $a \in Y \cup Z$. Since $a \in Y \cup Z$ there are two cases.

If $a \in Y$, then $a \in X \cap Y$. Since $a \in X \cap Y$, $a \in (X \cap Y) \cup (X \cap Z)$, as required. If $a \in Z$, then $a \in X \cap Z$. Since $a \in X \cap Z$, $a \in (X \cap Y) \cup (X \cap Z)$, as required. In either case, $a \in (X \cap Y) \cup (X \cap Z)$, so $X \cap (Y \cup Z) \subset (X \cap Y) \cup (X \cap Z)$.

Next we show $(X \cap Y) \cup (X \cap Z) \subseteq X \cap (Y \cup Z)$.

Let $b \in (X \cap Y) \cup (X \cap Z)$, so there are two cases.

If $b \in X \cap Y$ then $b \in X$ and $b \in Y$. Since $b \in Y$, $b \in Y \cup Z$, and so $b \in X \cap (Y \cup Z)$, as required.

If $b \in X \cap Z$ then $b \in X$ and $b \in Z$. Since $b \in Z$, $b \in Y \cup Z$, and so $b \in X \cap (Y \cup Z)$, as required.

So in either case, $b \in X \cap (Y \cup Z)$ and $(X \cap Y) \cup (X \cap Z) \subseteq X \cap (Y \cup Z)$.

Since $X \cap (Y \cup Z) \subseteq (X \cap Y) \cup (X \cap Z)$ and $(X \cap Y) \cup (X \cap Z) \subseteq X \cap (Y \cup Z)$, we have proved $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$

- 2. (4 points) Let $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $E = \{0, 2, 4, 6, 8\}$ and $O = \{1, 3, 5, 7, 9\}$, and let them be ordered as usual in \mathbb{N} . Let $E \times D \times O$ be ordered lexicographically.
 - a) What are the 5 elements following (5,0,5) in $E \times D \times O$?
- ♣ [What's the matter with you? $(5,0,5) \notin E \times D \times O!$ Oh, true, use (4,0,5).] The five elements following (4,0,5) are (4,0,7), (4,0,9), (4,1,1), (4,1,3), (4,1,5). ♣
- b) What is the 101'st element of $E \times D \times O$ in lexicographic order (starting from the 0'th, (0,0,1))?
- ♣ To determine the rightmost digit, divide 101 by |O| = 5: $101 \div 5 = 20 R$ 1, so the rightmost digit is 3.

To determine the middle digit, divide 20 by |D| = 10: $20 \div 10 = 2$ R 0, so the middle digit is 0.

To determine the leftmost digit, divide 2 by |E| = 5: $2 \div 5 = 0$ R 2, so the leftmost digit is 4.

It is (4,0,3).

*