## Authorship Attribution Datasets by Numbers

Each dataset is gathered from different sources such as web blogs, twitter and newspapers. A shallow analysis of the topic, source and author distributions is given in Table 3. Statistics for sampled datasets with specified numbers of authors are obtained for the union of 10 test datasets generated by 10-fold stratified cross-validation. In Table 1, datasets are described by L for large, S for small, and Top-k for the top-k authors. Author count is the number of distinct authors, document count is the number of documents, and token count is the number of distinct tokens in all documents. Average (Avg.) values are computed via Eq. 26, Eq. 27, Eq. 28 and Eq. 29. We obtained topic models by Latent Dirichlet Allocation (LDA) with a topic size of three on the complete datasets and used these models to analyze the training and testing datasets.

$$Avg. \, authors \, per \, topic = \frac{\sum_{k}^{authors} number \, of \, topics \, written \, by \, author_{k}}{number \, of \, authors}$$

$$(26)$$

$$Avg. \, topics \, per \, author = \frac{\sum_{p}^{topics} number \, of \, authors \, write \, in \, topic_{p}}{number \, of \, topics}$$

$$(27)$$

$$Avg. \, authors \, per \, source = \frac{\sum_{k}^{authors} number \, of \, sources \, written \, by \, author_{k}}{number \, of \, authors}$$

$$(28)$$

$$Avg. \, sources \, per \, author = \frac{\sum_{s}^{sources} number \, of \, authors \, write \, in \, source_{s}}{number \, of \, sources}$$

(29)

Table 1. Dataset statistics

| Dataset                   | Author | Document | Token<br>count | Avg.<br>authors per<br>topic | Avg. topics per author | Avg.<br>authors per<br>source | Avg.<br>sources per<br>author |
|---------------------------|--------|----------|----------------|------------------------------|------------------------|-------------------------------|-------------------------------|
| PAN11-L Train             | 72     | 10635    | 32069          | 35                           | 2.430                  | -                             | -                             |
| PAN11-L Test              | 72     | 1300     | 9424           | 16.8                         | 1.412                  | -                             | -                             |
| PAN11-S Train             | 26     | 3519     | 14936          | 9.6                          | 1.846                  | -                             | -                             |
| PAN11-S Test              | 26     | 495      | 4778           | 12.5                         | 1.186                  | -                             | -                             |
| PAN18-1 Train             | 20     | 140      | 10480          | -                            | -                      | -                             | -                             |
| PAN18-1 Test              | 20     | 105      | 8235           | -                            | -                      | -                             | -                             |
| PAN18-2 Train             | 5      | 35       | 4662           | -                            | -                      | -                             | -                             |
| PAN18-2 Test              | 5      | 21       | 3255           | -                            | -                      | -                             | -                             |
| PAN18 1&2 Train           | 25     | 175      | 10480          | -                            | -                      | -                             | -                             |
| PAN18 1&2 Test            | 25     | 126      | 8235           | -                            | -                      | -                             | -                             |
| C10 Train                 | 10     | 500      | 15467          | -                            | -                      | -                             | -                             |
| C10 Test                  | 10     | 500      | 15737          | -                            | -                      | -                             | -                             |
| C50 Train                 | 50     | 2500     | 36845          | 50.0                         | 3.0                    | -                             | -                             |
| C50 Test                  | 50     | 2500     | 37914          | 45.6                         | 2.7                    | -                             | -                             |
| PAN11 Top-5               | 5      | 600      | 5551           | 5.0                          | 3.0                    | -                             | -                             |
| PAN11 Top-10              | 10     | 1200     | 8767           | 10.0                         | 3.0                    | -                             | -                             |
| Articles Top-5            | 5      | 600      | 25242          | 5.0                          | 3.0                    | -                             | -                             |
| Articles Top-10           | 10     | 1200     | 46228          | 8.6                          | 2.6                    | -                             | -                             |
| Blogs Top-5               | 5      | 600      | 48718          | 5.0                          | 3.0                    | -                             | -                             |
| Blogs Top-10              | 10     | 1200     | 94764          | 7.1                          | 2.2                    | -                             | -                             |
| Tweets Top-5              | 5      | 600      | 3794           | 5.0                          | 3.0                    | -                             | -                             |
| Tweets Top-10             | 10     | 1200     | 6255           | 9.6                          | 2.9                    | -                             | -                             |
| Articles & Blogs          | 10     | 1200     | 50666          | 8.6                          | 2.6                    | 5.0                           | 1.0                           |
| Articles & Tweets         | 10     | 1200     | 27070          | 8.6                          | 2.6                    | 8.5                           | 1.7                           |
| Blogs & Tweets            | 10     | 1200     | 30723          | 9.66                         | 2.9                    | 7.5                           | 1.4                           |
| Articles & Blogs & Tweets | 10     | 1200     | 36191          | 10.0                         | 3.0                    | 6.33                          | 1.9                           |

In Table 1, the token count represents the number of unique tokens in the dataset. Token counts depend on the topic diversity, the number of documents and the token lengths of the documents in the dataset. All datasets have balanced topic distributions and most of the documents are written on a single topic. The distributions of topics among authors and author topic tendencies are effective measures in the analysis of performance. Table 1 provides a shallow insight on these topic distributions; for example, in the C50 dataset, all authors are associated with documents on all topics.

In Figure 1, a shallow analysis of the topic distributions for each author is presented for sampled datasets. A, T, and S denote author, topic and source, respectively. In addition to topic distributions, source distributions for each author are included for multisource datasets (except Article & Blogs because in the Article & Blogs dataset, the authors write either articles or blogs). Source abbreviations are given in the datasets by order of appearance. For example, in the Article & Tweets datasets, S0 corresponds to articles and S1 corresponds to tweets. The main objective of these visualizations is to facilitate understanding of the topical clusters and the distribution of sources to determine whether a correlation exists with the AA scores. To the best of our knowledge of the sources and authors, these topics fall into the subcategories of politics, sports and technology. More accurate topic models can be obtained by using external sources such as Wikipedia; however, this is outside the scope of this analysis.



Figure 1. Topic and source distributions for authors in sampled datasets