Um Algoritmo de Escalonamento para Redução do Consumo de Energia em Computação em Nuvem

Pedro Paulo Vezzá Campos

MACo499 – Trabalho de Formatura Supervisionado Instituto de Matemática e Estatística Universidade de São Paulo, São Paulo, Brasil pedro@vezza.com.br

3 de novembro de 2013

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Experimentos

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Experimentos

Canclusões

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Experimentos

O desenvolvimento de um novo algoritmo: Exitos e frustrações

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Experimentos

O desenvolvimento de um novo algoritmo: Exitos e frustrações

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Experimentos

O desenvolvimento de um novo algoritmo: Êxitos e frustrações

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Experimentos

O desenvolvimento de um novo algoritmo: Éxitos e frustrações

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Experimentos

O desenvolvimento de um novo algoritmo: Êxitos e frustrações

Conclusões

Análise das contribuições e resultados obtidos

Motivação & Conceitos

- Consumo energético
- Escalonamento de fluxos de trabalho
- Um algoritmo clássico: Heterogeneous Earliest Finish Time

Experimentos

O desenvolvimento de um novo algoritmo: Êxitos e frustrações

Conclusões

Análise das contribuições e resultados obtidos

1 Motivação

2 Conceitos

3 Experimentos

Figura: Lei de Moore 1

¹ Fonte: Wikipédia, http://pt.wikipedia.org/wiki/Ficheiro:Lei_de_moore_2006.svg.png, em domínio público

Figura: Montage: Gerador de mosaicos astronômicos ²

²Fonte: Projeto Pegasus,

1 Motivação

2 Conceitos

3 Experimentos

Computação em nuvem

Estratégias para economia de energia

- DVFS: Dynamic Voltage and Frequency Scaling
- Migração de máquinas virtuais
- Algoritmos de escalonamento energeticamente eficientes

Estratégias para economia de energia

- DVFS: Dynamic Voltage and Frequency Scaling
- Migração de máquinas virtuais
- Algoritmos de escalonamento energeticamente eficientes

Estratégias para economia de energia

- DVFS: Dynamic Voltage and Frequency Scaling
- Migração de máquinas virtuais
- Algoritmos de escalonamento energeticamente eficientes

HEFT: Heterogeneous Earliest Finish Time

- Publicado em 2002
- Bastante aceito na comunidade científica (Quase mil citações)
- Duas fases: priorização e seleção

HEFT: Heterogeneous Earliest Finish Time

- Publicado em 2002
- Bastante aceito na comunidade científica (Quase mil citações)
- Duas fases: priorização e seleção

HEFT: Heterogeneous Earliest Finish Time

- Publicado em 2002
- Bastante aceito na comunidade científica (Quase mil citações)
- Duas fases: priorização e seleção

Fase de priorização

- Qual tarefa escalonar primeiro?
- Algoritmo offline
- Ordenação topológica:

$$rank_u(n_i) = \overline{w_i} + \max_{n_i \in succ(n_i)} (\overline{c_{i,j}} + rank_u(n_j))$$

Fase de priorização

- Qual tarefa escalonar primeiro?
- Algoritmo offline
- Ordenação topológica:

$$rank_u(n_i) = \overline{w_i} + \max_{n_i \in succ(n_i)} (\overline{c_{i,j}} + rank_u(n_j))$$

Fase de priorização

- Qual tarefa escalonar primeiro?
- Algoritmo offline
- Ordenação topológica:

$$rank_{u}(n_{i}) = \overline{w_{i}} + \max_{n_{i} \in succ(n_{i})} (\overline{c_{i,j}} + rank_{u}(n_{j}))$$

Fase de seleção

- Minimizar o tempo mais cedo de conclusão (Earliest finish time)
- Busca por um espaço vago grande o suficiente

Fase de seleção

- Minimizar o tempo mais cedo de conclusão (Earliest finish time)
- Busca por um espaço vago grande o suficiente

Tarefa	P1	P2	P3	rank _u (n _i)
1	14	16	9	108.000
2	13	19	18	77.000
3	11	13	19	80.000
4	13	8	17	80.000
5	12	13	10	69.000
6	13	16	9	63.333
7	7	15	11	42.667
8	5	11	14	35.667
9	18	12	20	44.333
10	21	7	16	14.667

Tarefa	P1	P2	P3	rank _u (n _i)
1	14	16	9	108.000
2	13	19	18	77.000
3	11	13	19	80.000
4	13	8	17	80.000
5	12	13	10	69.000
6	13	16	9	63.333
7	7	15	11	42.667
8	5	11	14	35.667
9	18	12	20	44.333
10	21	7	16	14.667

1 Motivação

2 Conceitos

3 Experimentos

Simuladores

CloudSim lançado em 2010, já na versão 3, quase 300 citações

WorkflowSim lançado em abril de 2013

CloudSim DVFS lançado em junho de 2013 (!!

Simuladores

CloudSim lançado em **2010**, já na versão 3, quase 300 citações WorkflowSim lançado em **abril de 2013**

CloudSim_DVFS lançado em junho de 2013 (!!]

Simuladores

CloudSim lançado em **2010**, já na versão 3, quase 300 citações WorkflowSim lançado em **abril de 2013**CloudSim DVFS lançado em junho de **2013** (!!)

PowerHEFT: Algoritmo proposto

■ Variante do HEFT, faz uso de uma estratégia de lookahead