Loop Subdivison 算法

课程:几何造型基础

姓名: 赵崇遥 (PHD first year)

学号: 11821039

开发环境

系统信息

系统	信息		
操作系统	Linux Mint 19 Cinnamon		
处理器	Intel© Core™ i7-4790 CPU @ 3.60GHz × 4		
内存	32GB		
显卡	GeForce GTX 750		
编译器	gcc 7.3		
编译工具	Cmake 3.10.2		

项目依赖库

矩阵库: Eigen3

并行库: Openmp(verison:4.5)

常用库:Boost(version:1.65.1)

具体查看根目录下的CMakeLists.txt

编译运行

在满足依赖的情况下,进入根目录,开启终端运行:

\$ mkdir build & cd build & cmake .. & make -k

输入模型

将模型(.obj格式)放入根目录下的models/中,并修改根目录下的input.json文件。

input.json

```
{
    "indir":"../../models/",
    "outdir":"../../output/",
    "surf":"bunny",
    "times":5
```

将surf中的bunny改为模型名称。可以直接使用bunny作为demo测试。times是细分次数。

运行

开启终端进入build/bin/目录,并运行./z_buffer

```
$ cd build/bin/
$ ./z_buffer
```

数据结构 edge_core类

很明显该算法是一个可以并行的算法。

本来考虑使用半边结构来做,后来觉得使用半边结构在处理并行的时候比较复杂比较烦,就简单的建立一个边表,类似于翼边结构。

单边结构

```
struct one_edge{
  int f1,f2,v1,v2,v3,v4;
  }
};
```


建立两个数组,一个数组存放边,为

std::vector<one_edge edges_;</pre>

一个数组存放每个顶点的valence,即有多少个相邻点与之相连。

vector<size_t> valences_;

算法简介

在原三角形网格上的每一个边上插入一个点,称之为odd vertex,而原来的点称之为even vertex。

然后分别去更新odd vertices 和 even vertices的位置。

因此该算法是可以并行的,每一次细分下每个边的更新互不影响。

算法并行实现及优化

对于每一个面片,在加上边后按照一定的顺序设置新的拓扑关系,从而可以并行的在每个边上做处理。这里使用openmp实现线程并行。

建立单边结构的数组

使用一次哈希的方式建立单边结构数组。

更新odd点的位置和even点的位置(new_verts)

这一步直接按照公式,对每条边去算就可以了。

更新拓扑(new_tris)

按照上面的图的顺序在循环每条边,在new_tris中设置 6 个面片(f1 上三个,对面的f2上也是三个)上的六个顶点。

更新单边结构数组

在多次细分时不需要重新建立单边数据结构,每细分一次,单边结构数组的大小为原来的两倍加上细分前面片的数量乘3。

循环每条边添加一个单边结构并且更新旧的单边结构。

循环每个面添加三个单边结构。

总结与思考

- 在已知拓扑更新方式并且需要知道adjoint table 的时候,使用半边结构不一定是最好的方式。
- 使用智能指针避免在每次循环的时候拷贝数据。

•	细分算法可能并不需要细分很多次,-	般细分三到四次可能就差不多了,	其次细分前的原网格可能也并不复
	杂。	132473 — 23 — 90 3135302 T 2 3 7	