

Физические основы дистанционного зондирования

Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)» Физтех-школа аэрокосмических технологий Кафедра систем, устройств и методов геокосмической физики

ФИЗИЧЕСКИЕ ОСНОВЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ

Факультетский курс ФАКИ ФАКТ МФТИ в рамках направления подготовки бакалавров (7 и 8 семестры) «Прикладные математика и физика» для базовых предприятий: РКК «Энергия» (управленцы), РКС, «Комета», СУМГФ, ЦНИИХМ, ВНИИФТРИ и др. Преподаватель: лектор – профессор кафедры СУМГФ, д.ф.м.-н. Кондранин Тимофей Владимирович (tvk494@yandex.ru).

Структура курса:

VII семестр 2024-2025 учебного года: 2/2/0. Отчетность: простой зачет

VIII семестр 2024-2025: 2/1/0. Отчетность: экзамен.

- The most fruitful areas for growth of the sciences are those between established fields.
- Science has been increasingly the task of specialists, in fields which show a tendency to grow progressively narrower.
- Important work is delayed by the unavailability in one field of results that may have already become classical in the next field.
- It is these boundary regions of science that offer the richest opportunities to the qualified investigator.
- EDUCATION IS AN ADMIRABLE THING, BUT IT IS WELL TO REMEMBER FROM TIME TO TIME THAT NOTHING IS WORTH KNOWING CAN BE TAUGHT.

05.09.2024

Физические основы дистанционного зондирования

Дистанционное зондирование (Remote Sensing)—метод получения информации об объекте или явлении путем анализа данных, собранных без контакта с изучаемым объектом. Технологии Д33 — совокупность методов и средств, определяемых конкретной задачей. Преимущества и недостатки технологий Д33 (гражданский сегмент) см. (Exploring the Pros and Cons: Advantages and Disadvantages of Remote Sensing April 20, 2023).

«Этажерка»: космический, авиационный (в т.ч. БПЛА), аэростатный и наземный сегменты систем ДЗ.

Физические основы дистанционного зондирования. Введние I

Что такое дистанционное зондирование?

What is Remote Sensing?

Дистанционное зондирование - технология получения информации о состоянии объекта путем анализа данных, собранных с помощью специальных приборов, которые физически не соприкасаются с исследуемым объектом. Методы и средства ДЗ предполагают использование «изображений», получаемых специальными устройствами (датчики/сенсоры), в том числе, устанавливаемые на платформах (летательные или космические аппараты) для регистрации отраженного и/или испускаемого электромагнитного излучения.

Авиакосмические системы ДЗ зондируют поверхность или атмосферу Земли, других планет с помощью специальной аппаратуры (датчики) на спутниках и ЛА, которые регистрируют отраженную или излучаемую энергию. Системы ДЗ обеспечивают глобальную перспективу и огромное количество данных о наблюдаемых объектах, позволяют принимать решения на их основе.
В целом проблематика авиакосмического ДЗ включает в себя

в целом проблематика авиакосмического дз включает в сеоя комплекс взаимосвязанных разделов науки и техники, ключевыми которыми являются: 1) Баллистика КА (орбиты КА) и траектории ЛА.

- 2) Получение информации с помощью электромагнитнгого спектра.
- 3) Аппаратура Д3 (датчик/сенсор) на борту платформы. 4) Обеспечение условий «съемки» для получения максимальной информации. 5) Получение, обработка, интерпретация и анализ данных. 6) Поисковые системы данных Д3.

https://www.earthdata.nasa.gov/learn/backgrounders/remote-sensing

Физические основы дистанционного зондирования. Введение II

Важнейшие приложения Д3

Eyes on the Earth https://eyes.jpl.nasa.gov/eyes-on-the-earth.html

Military Remote Sensing Missions. MRSM include reconnaissance (including broad area search, combat intelligence, indications and warning of war, and arms control verification); mapping, charting, and geodesy; and meteorology. https://innoter.com/en/articles/us-military-space-satellites What Is Intelligence, Surveillance, and Reconnaissance (ISR)?

Application of Remote Sensing In Environmental Monitoring-Enhancing Sustainability

https://www.spatialpost.com/remote-sensing-environmental-monitoring

REMOTE SENSING

Fields Where Remote Sensing be used

Физические основы дистанционного зондирования. Введение III

Важнейшие приложения ДЗ

https://www.nec.com/en/global/solutions/space/remote_sensing/index.html

Real-time sensing

Физические основы ДЗ. Рабочая программа курса

http://www.geo.mipt.ru

Физические основы ДЗ. Разделы модуля V

Энергетический баланс в системе «Солнце-планета Земля». Простейшие модели парникового эффекта.

1.1. Оценка равновесной поверхностной температуры планеты Земля (без учёта влияния атмосферы) 1.2. Упрощенная модель парникового эффекта

Семинар №1

Оценка равновесной поверхностной температуры планеты Земля (без учёта влияния атмосферы). Звезда по имени Солнце! (В.Цой)

Near-real-time solar images at http://sdo.gsfc.nasa.gov/data/

Протон-протонный цикл - совокупность термоядерных реакций (термоядерная реакция — разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счёт кинетической энергии их теплового движения), в ходе которых водород превращается в гелий в звёздах массой порядка массы Солнца или меньше, находящихся на главной звёздной последовательности (ГСП); ПП (http://nuclphys.sinp.msu.ru/astro/astro12.htm) основная альтернатива СОО-циклу (http://nuclphys.sinp.msu.ru/enc/e181.htm)

СNO-цикл — термоядерная реакция превращения водорода в гелий, в которой углерод, кислород и азот выступают как катализаторы. CNO —цикл- основной процесс термоядерного синтеза в **массивных звёздах ГСП.**

Диаметр Солнца = 1 390 600 км (109 D Земли). Объем Солнца = 1,41018 км3 (1 303 800 V 3). Масса Солнца = 1,989 1033 г (333 434 М 3). Ср. плотность = 1,4 г/см3 (0,256 р 3). Плотность в центре Солнца 160 г/см3. Ускорение силы тяжести на

поверхности Солнца = 2,7398 104 см/сек2 (27,9g). Расстояние Солнце-Земля — 1 а.е.

На ПП цикл приходится до 98 % выделяемой энергии, излучаемой с «поверхности» (фотосфера), которая уходит в окружающее пространство. Часть энергии попадает на планеты системы, в том числе и на Землю. Именно эта энергия и формирует все макроскопические явления и процессы, протекающие во внешних геофизических оболочках планеты (атмосфера, подстилающая поверхность, океан, моря и т. п.). Наиболее известными являются климат и погода. В последние десятилетия в связи с развитием космических исследований, в особенности, приборной базы, оказалось возможным осуществлять регулярные и высокоточные наблюдения солнечного излучения с использованием специализированных ИСЗ ДЗ, среди которых особое место занимают аппараты NASA серии SORCE (Solar Radiation and Climate Experiment)

Искусственный спутник Земли серии (Solar Radiation and Climate Experiment).

Масса спутника	290 кг		
Потребляемая	348 Вт		
мощность			
Связь	Приёмопередатчик S-диапазона		
Inertial pointing	Slew Rate > 1°/sec Knowledge < 60 arcsec		
Solar Arrays	Fixed GaAs		
Redundancy	Nearly fully redundant		
Orbit	645km, 40° inclination		
Срок службы	5 лет (ресурс – 6 лет)		

Орбита КА – круговая Н=645 км

https://eospso.nasa.gov/missions/solar-radiation-and-climate-experiment

SORCE, запущенный 25.01. 2003 года, был рассчитан на 5 лет. После завершения номинальной миссии НАСА расширила миссию, чтобы обеспечить непрерывность данных. Через 8 лет износ батареи SORCE начал сказываться на работе. Через 10 лет миссия изменила концепцию и перешла на работу только в дневное время в феврале 2014 года. SORSE проработалеще 6 лет, что позволило создать и запустить новый прибор и непрерывность данных по Солнцу.

Redundancy existence of more than one means for performing a given function with the intention of increasing reliability

Бортовая (научная) аппаратура SORCE

	2. SIM	SOLSTICE A & B	1. TIM	4.XPS
Spectral Range	310-2400 nm	115-310 nm	TSI (full solar spectrum)	1-27 nm
Spectral Resolution	1-27 nm	1 nm	N/A	1-10 nm
Absolute Accuracy (1 σ)	2%	1.2-6 %	350 ppm	12-24 %
(Requirement)	2%	0.5-10 %	150 ppm	30%
Precision (1 σ)	< 150 ppm	< 0.5 %	< 4 ppm	< 2%
Relative Accuracy (Stability) (1 σ)	.03%/yr	0.5%/yr	10 ppm/yr	< 1%/yr
(Requirement)	.03%/yr	0.5 %	10 ppm/yr	10%/yr
Detector	Diodes, ESR	Photomultiplier tubes	ESR	Diodes
Optical Channel	spectrometer	spectrometer	Radiometer	Filter Photometer

- 1. Монитор полной интенсивности падающего излучения TIM (Total Irradiance Monitor).
- 2. Монитор спектральной интенсивности падающего излучения SIM (Spectral Irradiance Monitor).
- 3. Аппаратура для сравнения интенсивности падающего солнечного и звездного излучений Solstice (Solar Stellar Irradian I Comparison Experiment).
- 4. Фотометр крайней ультрафиолетовой области XPS (Extreme Ultraviolet Photometer System)

Результаты обработки данных SIM

Сравнение экспериментальной зависимости излучения Солнца с теоретической кривой излучения АЧТ

Закон Стефана-Больцмана

$$\pi \int_{0}^{\infty} B(\lambda, T = 5770 \text{ K}) d\lambda = \sigma T^4 (5770 \text{ K})$$

Площади под обеими кривыми практически совпадают!!!

Оценка равновесной поверхностной температуры планеты Земля (без учёта влияния атмосферы)

Рассмотрим далее следующую задачу (см. рис. П1.2): Солнце — сфера радиусом $R_{\odot}\cong 7\cdot 10^8$ м представляет собой АЧТ при $T_{\odot}\cong 5770$ К. Полная энергия, излучаемая этим АЧТ вокруг себя равна

$$L_{\odot} = 4\pi R_{\odot}^2 \sigma T_{\odot}^4 \simeq 3.83 \cdot 10^{26} \text{ Bt.}$$
 (III.1)

Планета Земля находится от Солнца на расстоянии одной астрономической единицы $a_{\odot\oplus}\cong 1.49\cdot 10^{11}$ м.

На поверхность Земли, как на диск $R_{\oplus} \simeq 6.4 \cdot 10^6$ м ($R_{\oplus} \ll R_{\odot} \ll a_{\oplus \odot}$) попадает часть энергии L_{\odot} , равная

$$P = L_{\odot} \Delta \Omega_{\oplus} = L_{\odot} \frac{\pi R_{\oplus}^2}{4\pi a_{\odot\oplus}^2} = \frac{L_{\odot}}{4} \left(\frac{R_{\oplus}}{a_{\odot\oplus}}\right)^2 \approx 1,75 \cdot 10^{17} \text{ Bt.}$$
 (II1.2)

Очевидно, что аналогично можно записать выражение и для спектральной энергии излучения:

$$P(\lambda) d\lambda = L_{\odot}(\lambda) \frac{1}{4} \left(\frac{R_{\oplus}}{a_{\odot \oplus}}\right)^2 d\lambda.$$
 (II1.3)

Рис. П1.2. Упрощённая геометрия системы «Солнце—Земля»

Упрощённая модель взаимодействия солнечного излучения *P* с планетой Земля

Энергетический баланс без учета влияния атмосферы

$$E_{\oplus}^{\downarrow} = E_{\oplus}^{\uparrow}. \tag{\Pi1.4}$$

$$P \cong P \cdot A + Q_R^{\uparrow} + Q_C^{\uparrow}. \tag{\Pi1.5}$$

В правой части: $P \cdot A$ — отражённое от поверхности излучение; Q_R^{\uparrow} — энергия, излучаемая в окружающий космос; Q_C^{\uparrow} — дополнительная энергия, подводимая к поверхности Земли за счёт тепловых источников, находящихся в её недрах.

А – интегральное визуальное альбедо планеты

$$Q_R^{\uparrow} = L_{\oplus}$$

Рис. П1.3. Упрощённая модель взаимодействия солнечного излучения P и планетой Земля

Схема спутникового измерения «пепельного света луны»

Определение <u>интегрального визуального</u> <u>сферического альбедо планеты Земля</u> <u>(альбедо Бонда) А</u>

«Пепельный свет» Луны - излучение Солнца в коротковолновой части спектра ($\lambda \leq 2.5$ мкм) отражённое земной поверхностью и затем переотражённое Луной. По разным источникам значение А лежит в диапазоне 0,25 — 0,45; спутниковые измерения в отсутствие облачности дали значение \sim 0,3.

Сравнение АЧТ. Оптические свойства природных образований **МФТИ**

Сравнение спектрального излучения двух сфер АЧТ (Солнце -кривая 1) и (Земля кривая 3) и излучения, падающеего от Солнца на диск Земли (кривая 2)

$$L_{\odot}(\lambda) = 4\pi R_{\odot}^{2} \pi B (\lambda, T_{\odot} \approx 5770 \text{K}) - (1)$$

$$P(\lambda) = L_{\odot}(\lambda) \frac{1}{4} \left(\frac{R_{\oplus}}{a_{\oplus}\odot}\right)^{2} - (2)$$

$$L_{\oplus}(\lambda) = 4\pi R_{\oplus}^{2} \pi B (\lambda, T_{\oplus} \approx 300 \text{K}) - (3) L_{\oplus} = 4\pi R_{\oplus}^{2} \sigma T_{\oplus}^{4}$$

Спектральная зависимость степени черноты некоторых природных образований в ИК-диапазоне спектра.

$$Q_R^{\uparrow} \approx E \bullet L_{\bigoplus} \approx 4\pi R_{\bigoplus}^2 \sigma T_{\bigoplus}^4$$

E - интегральная по спектру степень чернотыповерхности планеты Земля в ИК- диапазоне спектра ($E \approx 1!!!$)

Оценка величины потока поступающего к поверхности изнутри Земли

Оценим теперь величину потока тепла, поступающего к поверхности Земли «изнутри» — Q_C^\uparrow . Действительно, известно, что температура в недрах Земли намного выше, чем у поверхности. Об этом свидетельствуют также такие явления, как извержения вулканов, геотермальные источники и пр. Более или менее достоверные данные о количественном значении градиента температуры dT/dr (рис. П1.3) дают измерения со сверхглубоких геофизических скважин. Одна из глубочайших в мире скважин (достигнутая глубина — 12262 м) находится в Мурманской области РФ. Для грубой оценки можно принять $(dT/dr)\approx 0.03$ K/м. Обычно в качестве модели подповерхностной структуры Земли используют минерал типа базальта, коэффициент теплопроводности которого $\lambda_6\approx 2$ Вт · м $^{-1}$ · K $^{-1}$.

Тогда

$$Q_C^{\uparrow} \approx 4\pi R_{\oplus}^2 \cdot \lambda_6 \left(\frac{dT}{dr}\right) \approx 3 \cdot 10^{13} \text{ Bt.}$$
 (II1.7)

Окончательная формула для среднепланетарной температуры / моти

$$P = L_{\odot}\Delta\Omega_{\oplus} = L_{\odot}\frac{\pi R_{\oplus}^{2}}{4\pi a_{\odot\oplus}^{2}} = \frac{L_{\odot}}{4}\left(\frac{R_{\oplus}}{a_{\odot\oplus}}\right)^{2} \approx 1,75 \cdot 10^{17} \text{ Bt.}$$
 (III.2) $P \cong P \cdot A + Q_{R}^{\uparrow} + Q_{C}^{\uparrow}$. $L_{\odot} = 4\pi R_{\odot}^{2}\sigma T_{\odot}^{4} \simeq 3,83 \cdot 10^{26} \text{ Bt.}$ (III.1)

Так как $Q_C^{\uparrow} \ll P \sim P \cdot A$, уравнение (П1.5) можно представить в виде:

$$P(1-A) = 4\pi R_{\oplus}^2 \sigma T_{\oplus}^4,$$
 (П1.8) и (П.1.1)

откуда, с учётом (П1.2), получаем формулу для равновесной глобальной температуры поверхности планеты Земля:

$$T_{\oplus} = T_{\odot} \sqrt{\frac{R_{\odot}}{2a_{\odot\oplus}}} (1 - A)^{1/4}. \tag{\Pi1.9}$$

Подставляя в (П1.9) необходимые константы, получим $T_{\oplus} \approx 257 \, \mathrm{K} \, (-16^{\circ} \, \mathrm{C})$.

Геометрия системы «Земля – Солнце»

Рис. S положение солнца, E положение земли , ES (a.e.) расстояние между Землей и Солнцем. Точки: P - перигелий, A - афелий, AE - осеннее равноденствие, VE - весеннее равноденствие, WS - зимнее солнцестояние и SS - летнее солнцестояние. Векторы: n — нормаль к плоскости эклиптики; а — направление земной оси, δ - склонение Солнца по отношению к плоскости земного экватора, ∈ - наклонный угол земной оси, ω - долгота перигелия относительно точки весеннего равноденствия, v - истинная аномалия Земли в данное время, λ - истинная долгота Земли, О центр эллипса, ОА (или ФР) бъльшая полуось, ОВ малая полуось,