

On Forging SPHINCS+-Haraka Signatures

on a Fault-tolerant Quantum Computer

Robin Berger & Marcel Tiepelt | 2021

Origins

LatinCrypt 2021 (eprint)

SPHINCS+-128 Explicit (Universal) Forgery

Q#-implementation of SHAKE-256 and Haraka

Quantum Resource Estimate inspired by [Amy et al. 2017]

2021

Outline

Results: Resource Estimate

SPHINCS*-Components

- Hash function H.
- Forest Of Random Subsets (FORS)
- Winternitz One-Time Signatures (WOTS)
- eXtended Merkle Signature Scheme (XMSS)

Keys:
$$pk_{HT} := pk_{SPHINCS^+}$$

 sk_{WOTS}, sk_{FORS}

Signature:
$$\sigma^m_{\text{SPHINCS}^+} := \left(..., Path_{\text{XMSS}}, \sigma^{pk_{\text{FORS}}}_{\text{WOTS}}, \sigma^{\mathcal{H}(m,...)}_{\text{FORS}}\right)$$

2021

SPHINCS*

SPHINCS*

1. Compute message digest $\mathcal{H}(m,...) := y$

SPHINCS*

1. Compute message digest $\mathcal{H}(m,...) := y$

2. Generate FORS instance (*pk*_{FORS}) and sign message digest σ_{FORS}^{y}

SPHINCS+

1. Compute message digest $\mathcal{H}(m,...) := y$

2. Generate FORS instance (pk_{FORS}) and sign message digest σ_{FORS}^{y}

3. Sign pk_{FORS} with WOTS $\sigma_{WOTS}^{pk_{FORS}}$

SPHINCS+

1. Compute message digest $\mathcal{H}(m,...) := y$

2. Generate FORS instance (pk_{FORS}) and sign message digest σ_{FOBS}^{y}

3. Sign pk_{FORS} with WOTS $\sigma_{WOTS}^{pk_{FORS}}$

4. Compute XMSS path to pk_{SPHINCS}+ Path_{XMSS}

2021

Outline

Results: Resource Estimate

General Attack Scheme

Forgeries

Target	Component	Existential Forgery	Universal Forgery
$\mathcal{H}(m,) := y$	\mathcal{H}	(oracle depth $= 1$)	×
σ_{FORS}^{y}	FORS	✓	(oracle depth = 2) (or multiple pre-images)
$\sigma_{ m HT}^{\it pk_{FORS}}$	WOTS	✓	(oracle depth $= 5$)
Path _{XMSS}	XMSS Path	✓	(oracle depth $= 1$)

Forest Of Random Subsets: Sign and Verify

- k trees generated from sk_{FORS}
- pk is hash of all roots
- $lackbox{}{\mathcal H}(m,\ldots)$ determines which (private-key) leaves used
- σ_{FORS} contains Path_{FORS} for each tree

2021

Forest Of Random Subsets: Forgery

• First mutable sibling $\tilde{s_1}$

• Find $pk_{\mathsf{FORS}} := \mathcal{H}(\tilde{r_1}, ..., \tilde{r_k} := \mathcal{H}(\tilde{s_1}, \tilde{s_2}))$

Pre-image search with oracle depth 2

Winternitz One-Time Signatures (WOTS)

- pk_{WOTS} generated from σ_{WOTS}
- \bullet σ_i generated from chain of hashes
- Find $pk_{WOTS} := \mathcal{H}(\mathcal{H}(\mathcal{H}(...)))$

Pre-image search with oracle depth 5

eXtended Merkle Signature Scheme (XMSS)

- First *mutable* sibling \tilde{v}_r
- Find $pk_{sphines} := \mathcal{H}(\tilde{v}_l, \tilde{v}_r)$

Pre-image search with oracle depth 1

Outline

Results: Resource Estimate

Target: Hash Functions

	Level	Security	
Haraka	< III V	128-bit 192-bit 256-bit	SHAKE-256

- Collision on Haraka-Sponge
 - → second-pre-image
- ho $\approx 2^{129.5}$ classical hash function invocations [Bertoni et al. 2011]

- Fault-tolerant cost following [N. C. Jones et al. 2012]
 - Assumptions on current state-of-the-art
 - Optimizations for magic-state distillation

Metrics

- (Physical, Logical) #Qubits
- #surface code cycles
- #T-gates
- Logical-Qubit-Cycle (≈ classical hash function invoc.) [Amy et al. 2017]

Assumptions

- Cost Fault-tolerant QC ≈ surface codes
- 2. #physical gubits to embed log. gubit into surface code [Gidney and Ekerå 2021]
- 3. Error rates qubits p_{in} , gates p_{oate} , time for SCC [Fowler, Devitt, and C. Jones 2013]
- 4. Quantum gates distributed uniformly across layers

Results

SPHINCS+-			SHAKE-256	Haraka
Collision Attack Chailloux, Naya-Plasencia, and Schrottenloher 2017	#Grover Iterations Time-Space Product		_ _	1.32 · 2 ¹⁰² 1.51 · 2 ¹⁵³
Onamoux, Naya Flascricia, and Ocinotemone: 2017	#Classical hash funct	ion invocations	_	2 ^{129.5}
Path _{xmss}	#Distilleries #Log. Qubits	ϕ Q log	83 × 3 23876	3 × 3 2120
on SPHINCS+-128	#Total Phys. Qubits #Total ECC cycles logical-qubit-cycles	Q ^{phy} COST _{SCC} COST _{Iqc}	$8.65 \cdot 10^{6}$ $1.6 \cdot 2^{84}$ $2.65 \cdot 2^{99}$	$2.03 \cdot 10^{6}$ $1.5 \cdot 2^{90}$ $1.55 \cdot 2^{101}$

Conclusion

Target	Component	Universal Forgery
σ_{FORS}^{y}	FORS	(oracle depth = 2) (or multiple pre-images)
$\sigma_{\rm HT}^{\it pk_{FORS}}$	WOTS	(oracle depth $= 5$)
Path _{XMSS}	XMSS Path	(oracle depth = 1)

Conclusion

Target	Component	Universal Forgery
σ_{FORS}^{y}	FORS	(oracle depth = 2) (or multiple pre-images)
$\sigma_{HT}^{\mathit{pk_{FORS}}}$	WOTS	(oracle depth $= 5$)
Path _{XMSS}	XMSS Path	(oracle depth = 1)

Resource Estimate

SPHINCS+-128		Haraka
Path _{XMSS}	#Log. Qubits #Total Phys. Qubits #Total ECC cycles logical-qubit-cycles	$ 2120 2.03 \cdot 10^{6} 1.5 \cdot 2^{90} 1.55 \cdot 2^{101} $

Conclusion

Target	Component	Universal Forgery
σ_{FORS}^{y}	FORS	(oracle depth = 2) (or multiple pre-images)
$\sigma_{\rm HT}^{\it pk_{FORS}}$	WOTS	(oracle depth $= 5$)
Path _{XMSS}	XMSS Path	(oracle depth = 1)

SPHINCS+-128		Haraka
Path _{XMSS}	#Log. Qubits #Total Phys. Qubits #Total ECC cycles logical-qubit-cycles	2120 2.03 · 10 ⁶ 1.5 · 2 ⁹⁰ 1.55 · 2 ¹⁰¹

Questions?

Architecture

Optimization: Magic-State Distillation

