### Natürliche Vorkommen der Elemente

**Elemente (Gold)** 



Halogenide (Steinsalz NaCl)



Sulfide (Pyrit FeS<sub>2</sub>)



Oxide (Rubin Al<sub>2</sub>O<sub>3</sub>)



#### Natürliche Vorkommen der Elemente

#### Carbonate (Calcit CaCO<sub>3</sub>)



**Phosphate (Pyromorphit)** 



Sulfate (Gips CaSO<sub>4</sub> x 2 H<sub>2</sub>O)



Silikate (Lapislazuli)



## Natürliche Vorkommen der Elemente

|                         | Gediegene<br>Metalle | Oxide u. a. Sauer-<br>stoffverbindungen              | Sulfide                                  | Halogenide                                            |
|-------------------------|----------------------|------------------------------------------------------|------------------------------------------|-------------------------------------------------------|
| Beispiele               | Au                   | Fe <sub>3</sub> O <sub>4</sub> (Magnetit)            | FeS <sub>2</sub> (Pyrit)                 | NaCl (Steinsalz)                                      |
|                         | Pt-Metalle           | Al <sub>2</sub> O <sub>3</sub> (Korund)              | CuFeS <sub>2</sub> (Kupferkies)          | KCI (Sylvin)                                          |
|                         | Ag                   | FeO·Cr <sub>2</sub> O <sub>3</sub> (Chromeisenstein) | ZnS (Zinkblende)                         | CaF <sub>2</sub> (Flussspat)                          |
|                         | Cu                   | PbCrO <sub>4</sub>                                   | PbS (Bleiglanz)                          | KCI-MgCl <sub>2</sub> -6 H <sub>2</sub> O (Carnallit) |
|                         | Hg                   | (Gelbbleierz)                                        | As <sub>4</sub> S <sub>4</sub> (Realgar) | AgCl (Hornsilber)                                     |
|                         | Bi                   | CaCO <sub>3</sub> (Kalkstein)                        | VS <sub>2</sub> (Patronit)               | / tgor (i formalion)                                  |
|                         |                      | CuCO <sub>3</sub> ·Cu(OH) <sub>2</sub><br>(Malachit) | VO <sub>2</sub> (Fationit)               |                                                       |
| Elektrone-<br>gativität | 1.92.4               | 0.91.9                                               | 1.62.0                                   | 0.81.9                                                |

#### Reduktionsverfahren

#### Chemische Reduktionsmittel

mittel

| Kohlenstoff bzw. CO               | p-Metalle, Si, d-Metalle<br>(nicht bei Carbidbildung) | $2 \operatorname{Fe_2O_3} + 3 \operatorname{C} \longrightarrow 4 \operatorname{Fe} + 3 \operatorname{CO_2}$<br>$\operatorname{Fe_2O_3} + 3 \operatorname{CO} \longrightarrow 2 \operatorname{Fe} + 3 \operatorname{CO_2}$ |
|-----------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metalle (Al, Na, Mg, Ca)          | carbidbildende d-Metalle<br>f-Metalle, Si             | $3 \text{ SiO}_2 + 4 \text{ Al} \longrightarrow 3 \text{ Si} + 2 \text{ Al}_2\text{O}_3$ (aluminothermische Reduktion)                                                                                                    |
| Wasserstoff                       | p-Metalle, d-Metalle                                  | $MoO_3 + 3 H_2 \longrightarrow Mo + 3 H_2O$                                                                                                                                                                               |
| Elektrolyse                       |                                                       |                                                                                                                                                                                                                           |
| Schmelzflusselektrolyse           | s-Metalle, Aluminium                                  | $Al_2O_3 + 3 C \longrightarrow 2 Al + 3 CO$                                                                                                                                                                               |
| Elektrolyse wässriger<br>Lösungen | Cu, Ag, Cd, Zn, Pb                                    | $Pb^{2+} + 2 CH_3COO^{-} + H_2O \longrightarrow$<br>$Pb + 0.5 O_2 + 2 CH_3COOH$                                                                                                                                           |
| Anionen als Reduktions-           | sulfidische Erze                                      | HgS                                                                                                                                                                                                                       |

 $2 \text{ PbO} + \text{PbS} \longrightarrow 3 \text{ Pb} + \text{SO}_2$ 

#### **Reduktion von CuO**



 $\underline{https://www.cci.ethz.ch/mainmov.html?picnum=-1\&language=0\&expnum=120\&ismovie=-1$ 

### **Elektrolyse von Bleiacetat**



 $\underline{https://www.cci.ethz.ch/mainmov.html?picnum=-1\&language=0\&expnum=131\&ismovie=-1$ 

#### Reinigungsverfahren

#### Transportreaktionen

Mond-Verfahren

$$Ni + 4 CO \xrightarrow{80^{\circ}C} Ni(CO)_4 \xrightarrow{180^{\circ}C} Ni + 4 CO$$

Aufwachs-Verfahren für Ti, V, Zr, Hf Ti + 2 I<sub>2</sub> (*van Arkel* und *de Boer*)

$$Ti + 2 I_2$$
  $\xrightarrow{500^{\circ}C}$   $TiI_4$   $\xrightarrow{1200^{\circ}C}$   $Ti + 2 I_2$ 

#### Elektrolytische Raffination

Reinigung von Rohkupfer sowie anderer edler Metalle

Cu 
$$\xrightarrow{-2 e^{\ominus}}$$
 Cu<sup>2+</sup>  $\xrightarrow{+2 e^{\ominus}}$  Cu

#### Destillation flüchtiger Derivate

Si + 3 HCl 
$$\xrightarrow{-H_2}$$
 HSiCl<sub>3</sub>  $\xrightarrow{+H_2}$  Si + 3 HCl  
99% Kp. 31°C >99.99%

#### Zonenschmelzen

Herstellung von Reinstsilicium Verunreinigungen < 10 <sup>-9</sup> Atom-%

#### Silicium-Einkristall



# Umsetzung der Elemente mit Sauerstoff und Wasser

Fast alle Elemente reagieren mit Sauerstoff zu Oxiden E<sub>x</sub>O<sub>y</sub>

Die stöchiometrische Zusammensetzung wird durch Hauptgruppennummer von E bestimmt, da Sauerstoff immer als O<sup>2-</sup> vorliegt. Ausnahme: Gegenüber Fluor hat Sauerstoff die Ox.-zahl +2.

$$Li_2O$$
 BeO  $B_2O_3$   $CO_2$   $N_2O_5$  -  $F_2O$   $Na_2O$  MgO  $AI_2O_3$   $SiO_2$   $P_2O_5$   $SO_3$   $CI_2O_7$ 

Alle Oxide reagieren mit Wasser zu Hydroxiden (links im PSE) oder Sauerstoffsäuren (rechts im PSE).

NaOH  $Mg(OH)_2$  AI $(OH)_3$  Si $(OH)_4$   $P(OH)_5$  S $(OH)_6$  CI $(OH)_7$ 

NaOH  $Mg(OH)_2$   $AI(OH)_3$   $Si(OH)_4$   $P(OH)_5$   $S(OH)_6$   $CI(OH)_7$ 

Die Zentralatome E in Sauerstoffsäuren der 3. Periode besitzen häufig die Koordinationszahl 4. Es handelt sich dabei um wasserärmere Formen der obigen Hydroxyverbindungen mit der allgemeinen Formel (HO)<sub>4-n</sub>EO<sub>n</sub>.

$$-H_2O$$
  $-2H_2O$   $-3H_2O$ 

 $Si(OH)_4$  (HO)<sub>3</sub>PO (HO)<sub>2</sub>SO<sub>2</sub> (HO)ClO<sub>3</sub>

Säurestärke:

$$H_4SiO_4 < H_3PO_4 < H_2SO_4 < HCIO_4$$

Kieselsäure

Phosphorsäure

Schwefelsäure

Perchlorsäure

#### **Saure und basische Oxide**



## **Umsetzung von Magnesium mit Trockeneis**



https://www.cci.ethz.ch/mainmov.html?picnum=-1&language=0&expnum=11&ismovie=-1

## Element-Wasserstoff-Verbindungen



Herstellung: aus den Elementen

$$2 \text{ Li} + \text{H}_2 \longrightarrow 2 \text{ LiH}$$

$$N_2 + 3 H_2 \longrightarrow 2 NH_3$$

## Umsetzung mit Wasser:

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

$$LiH + H_2O \longrightarrow LiOH + H_2$$

$$SiH_4 + 4 H_2O \longrightarrow Si(OH)_4 + 4 H_2$$

#### **Reaktion von Lithiumalanat mit Wasser**



https://www.cci.ethz.ch/mainmov.html?picnum=-1&language=0&expnum=27&ismovie=-1

## Ammoniakspringbrunnen



https://www.cci.ethz.ch/mainmov.html?picnum=-1&language=0&expnum=51&ismovie=-1

# Element-Halogen-Verbindungen



#### Herstellung: aus den Elementen

$$2 \text{ K} + \text{Cl}_2 \longrightarrow 2 \text{ KCl}$$

$$2 \text{ Al} + 3 \text{ Br}_2 \longrightarrow 2 \text{ AlBr}_3$$

#### Umsetzung mit Wasser:

$$E^+CI^- + n H_2O \longrightarrow [E(H_2O)_n]^+ + CI^-$$

$$[E(H_2O)_n]^{m+}$$
  $\longrightarrow$   $[E(H_2O)_{n-1}(OH)]^{(m-1)+}$  +  $H^+$ 

$$ECI_x + x H_2O \longrightarrow E(OH)_x + x HCI$$

#### **Reaktion von Aluminium mit Brom**



https://www.cci.ethz.ch/mainmov.html?picnum=-1&language=0&expnum=26&ismovie=-1

#### Salze

Salze entstehen bei der Neutralisation einer Säure mit einer Base.

EOH + HX 
$$\longrightarrow$$
 EX + H<sub>2</sub>O  
KOH + HCI  $\longrightarrow$  KCI + H<sub>2</sub>O  
Ca(OH)<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub>  $\longrightarrow$  CaSO<sub>4</sub> + 2 H<sub>2</sub>O  
NaOH + H<sub>3</sub>PO<sub>4</sub>  $\longrightarrow$  NaH<sub>2</sub>PO<sub>4</sub> + H<sub>2</sub>O

Starke Säuren verdrängen schwache Säuren aus dem Salz.

$$Na_3BO_3 + 3 HCI$$
  $\longrightarrow$   $3 NaCI + H_3BO_3$   
 $CaCO_3 + 2 HNO_3$   $\longrightarrow$   $Ca(NO_3)_2 + H_2O + CO_2$   
"H<sub>2</sub>CO<sub>3</sub>"

Starke Basen verdrängen schwache Basen aus dem Salz.

$$NH_4CI + NaOH$$
  $\longrightarrow$   $NaCI + NH_3 + H_2O$  " $NH_4OH$ "

# Bildung von Salzen durch Auflösung von Metallen in verdünnten Mineralsäuren (c = 1 mol/l)

$$Mn + 2 H^{+} + 2 X^{-} \longrightarrow Mn^{2+} + H_{2} + 2 X^{-}$$

$$E^{\circ} (Mn^{2+}/Mn) = -1.18 \text{ V}$$
  $E^{\circ} (2 \text{ H}^{+}/\text{H}_{2}) = 0 \text{ V}$ 

$$Mn + 2 HCl \longrightarrow MnCl_2 + H_2$$

$$Mn + 2 HNO_3 \longrightarrow Mn(NO_3)_2 + H_2$$

$$Mn + H_2SO_4 \longrightarrow MnSO_4 + H_2$$

aber: 
$$E^{\circ}$$
 (Cu<sup>2+</sup>/Cu) = + 0.34 V

$$Cu + 2 HNO_3$$

$$Cu + H_2SO_4$$

Pb + 2 HCl 
$$\rightarrow$$
 PbCl<sub>2</sub> + H<sub>2</sub>

Pb + 2 HNO<sub>3</sub> 
$$\longrightarrow$$
 Pb(NO<sub>3</sub>)<sub>2</sub> + H<sub>2</sub>

$$Pb + H_2SO_4$$
  $\rightarrow$   $PbSO_4 + H_2$ 

$$E^{\circ} (Pb^{2+}/Pb) = -0.13 \text{ V}$$
  $K_{s0}(PbCl_2) = 10^{-5}$   $K_{s0}(PbSO_4) = 10^{-8}$ 

## Der pH-Wert wässriger Salzlösungen

Auflösung eines Salzes in Wasser:

$$EX + n H2O \longrightarrow [E(H2O)n]+ + X-$$

$$[Na(H_2O)_n]^+ + Cl^-$$

Das Salz einer starken Base (NaOH) und einer starken Säure (HCI) reagiert in wässriger Lösung neutral.

$$[Na(H_2O)_n]^+ + CH_3COO^- + H_2O \longrightarrow$$
  
 $[Na(H_2O)_n]^+ + CH_3COOH + OH^-$ 

Das Salz einer starken Base (NaOH) und einer schwachen Säure (CH<sub>3</sub>COOH) reagiert in wässriger Lösung basisch.

$$[AI(H_2O)_6]^{3+}$$
 +  $3CI^-$  +  $H_2O$   $\longrightarrow$   $[AI(H_2O)_5(OH)]^{2+}$  +  $3CI^-$  +  $H_3O^+$ 

Das Salz einer schwachen Base (Al(OH)<sub>3</sub>) und einer starken Säure (HCl) reagiert in wässriger Lösung sauer.

$$2 [AI(H2O)6]3+ +  $3 CO32 \longrightarrow$   $2 [AI(H2O)3(OH)3] +  $3 H2CO3$$$$

Das Salz einer schwachen Base ( $Al(OH)_3$ ) und einer schwachen Säure ( $H_2CO_3$ ) hydrolysiert.

#### Löslichkeit von Salzen:

Fast alle Alkalimetallsalze sind in Wasser leicht löslich. (Ausnahme: Natriumhydrogencarbonat NaHCO<sub>3</sub>)

Fast alle Nitrate sind in Wasser leicht löslich. (Ausnahme: Bismutylnitrat (BiO)NO<sub>3</sub>)

Die meisten Erdalkalimetallcarbonate und -sulfate sind in Wasser schwer löslich.

"Reziproke Salzpaare":

$$Na_{2}CO_{3} + Ca(NO_{3})_{2} \longrightarrow 2 NaNO_{3} + CaCO_{3}$$

$$2 Na^{+} + CO_{3}^{2^{-}} + Ca^{2^{+}} + 2 NO_{3}^{-} \longrightarrow 2 Na^{+} + 2 NO_{3}^{-} + CaCO_{3}$$

Auflösung schwerlöslicher Carbonate:

$$SrCO_3 + 2 HNO_3 \longrightarrow Sr(NO_3)_2 + "H_2CO_3"$$

aber:

$$SrSO_4 + 2 HNO_3$$
  $\longrightarrow$   $Sr(NO_3)_2 + H_2SO_4$ 

denn H<sub>2</sub>SO<sub>4</sub> ist eine stärkere Säure als HNO<sub>3.</sub>