Aplicação de modelos de aprendizado de máquina para classificação de Fake News

Alexandre Augusto Foppa¹, Cristiane Machado¹, Marcelo Reis Bohrer¹

¹Universidade do Vale do Rio dos Sinos (UNISINOS)

alfoppa@hotmail.com, crism.stg@gmail.com, marceloreisbohrer@gmail.com

1. Introdução

No ambiente online as mídias sociais são um vasto campo para divulgação e propagação dos mais diversos conteúdos, e o que mais se destaca atualmente são as notícias falsas ou as chamadas *Fake News*. Além de ser o conteúdo mais acessado, as notícias falsas tem um grande potencial de circulação e podem ser postadas por qualquer pessoa ou entidade. Em razão disso, tais notícias devem, na medida do possível, ser verificadas quanto à sua autenticidade. Dentro deste contexto, o presente trabalho propõe mecanismos técnicos de classificação de notícias verdadeiras e falsas, ajudando a combater os danos causados pela disseminação da desinformação.

2. Definição dos objetivos

Baseados na problemática de *Fake News* e no conhecimento adquirido na disciplina de *Machine Learning*, foram pesquisados modelos utilizados para identificação de notícias falsas e reais. O objetivo desta modelagem é a formulação de um modelo de *machine learning* que auxilie na classificação de notícias.

O processo representado na Figura 1, foi especificado como forma de trabalho na fase de desenvolvimento do projeto

Figura 1. Metodologia de trabalho

3. Identificação e levantamento de dados

A escolha do dataset deu-se por meio de busca no site Kaggle, utilizando a palavra-chave "fake news". Optamos por um dataset em língua inglesa, por conveniência, e, para o projeto, utilizamos os rótulos disponíveis no banco de dados e apenas o texto da mensagem, visando o desenvolvimento de uma aplicação que possa

ser integrada com um leitor HTML, independente do emissor ou canal de compartilhamento.

Utilizamos o dado disponibilizado na coluna "text_without_stopwords", partindo do texto pré-processado sem palavras de ordem. A saída esperada do algoritmo é uma inferência boolena indicando se a notícia é verdadeira ou não, e/ou um escore de 0 a 1 indicando a probabilidade de ser verdadeira ou não.

4. Identificação de tipos de algoritmos para a abordagem

Dada a natureza textual do dado, será utilizado um algoritmo de Processamento de Linguagem Natural (PLN), utilizando um algoritmo para extração de features do texto da biblioteca *Scikit-learn*. Com as features extraídas, testaremos diferentes modelos para avaliar o que melhor atende a demanda, sendo eles *Decision Tree, Random Forest, Naive Bayes, Extra Trees* e *Logistic Regression*, também através da biblioteca citada. Além disso, testaremos uma *Artificial Neural Networks* (ANN), utilizando Keras e Tensorflow para avaliarmos o desempenho de um algoritmo de *deep learning*.

5. Conclusão

Com base na literatura, acreditamos ser possível as seguintes hipóteses:

- Com base nos dados disponíveis, o algoritmo terá uma eficácia aceitável para diferenciar notícias reais de falsas;
- Com base nos dados disponíveis, o algoritmo terá uma eficácia aceitável para identificar notícias reais, reduzindo a quantidade de notícias a ser analisadas, mas terá dificuldade de identificar notícias falsas [Edell 2018];
- Com base nos dados disponíveis, o algoritmo não terá uma eficácia aceitável para diferenciar notícias reais de falsas;

As duas primeiras hipóteses atendem o objetivo, sendo a primeira um cenário ideal, e a segunda um cenário mais realista de acordo com a literatura. Caso a terceira hipótese se comprovar verdadeira, serão buscadas alternativas, como utilização de outros tipos de dados disponíveis no dataset atual, ou buscar um dataset alternativo.

7. Referências

Edell, Aaron.(2018) "I trained fake news detection AI with >95% accuracy, and almost went crazy", https://towardsdatascience.com/i-trained-fake-news-detection-ai-with-95-accura cy-and-almost-went-crazy-d10589aa57c, October.

Kaggle.(2020)<u>https://www.kaggle.com/ruchi798/source-based-news-classification?select=news-articles.csv</u>, October.

Shu, Kay, et. al.(2017) "Fake News detection on Social Media: A Data mining perspective", https://doi.org/10.1145/3137597.3137600, New York, ACM, Volume 19, October

Scikit-learn.(2020) https://scikit-learn.org/stable/modules/classes.html, October.