

<u>Help</u> dougsweetser ▼

Course

<u>Progress</u>

<u>Dates</u>

Discussion

<u>Wiki</u>

* Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Exercises

Previous				Next >

Problem 3.1

☐ Bookmark this page

Problem 3.1

3 points possible (ungraded)

Evaluate the integrals (use pi for π ans sqrt(#) for $\sqrt{\#}$)

1)
$$\int_{-\infty}^{\infty} rac{x^4}{1+x^6} dx$$

2)
$$\int_0^{2\pi} rac{\cos 2 heta}{2+\cos heta} d heta$$

$z_{ \alpha }$	$\int_{-\infty}^{\infty}$	$\frac{dx}{(x^2+a^2)(x^2+b^2)^2}$	for real a, b	$=\frac{\left \begin{array}{c c} +2 \\ \end{array}\right }{2 a } + b $
----------------	---------------------------	-----------------------------------	-----------------	---

$ a $ $ b $ $ a ^2$ $ b ^2$ $ a ^3$ $ b ^3$	
---	--

Submit You have used 0 of 6 attempts

< Previous Next >

© All Rights Reserved