2. ID case:

Given
$$g$$
, h and $g = h *f$, find f .

Applying Fourier Transform to $g = h *f - 0$

$$G = HF$$

$$F = G_1 \qquad f = F'(G_1) \qquad F(f_1) = F$$

$$F(h) = F$$

$$h is gradient kurnel. Hence,$$

$$H is high pass filter.$$

$$H(u) \approx 0 \quad fo \approx small \quad u$$
.

The value G blows up for small u and it is G and G and G are G are G and G are G and G are G and G are G are G are G and G are G are G and G are G are G are G are G and G are G are G are G are G and G are G are G and G are G are G are G and G are G are G are G are G and G are G are G and G are G and G are G are G are G are G are G and G are G are G are G and G are G are G are G are G and G are G are G are G and G are G are G and G are G and G are G and G are G are G are G are G and G are G are G are G and G are G are G are G and G are G and G are G are G are G and G are G are G and G are G are G are G are G are G and G are G are G are G and G are G are G and G are G are G are G and G are G are G and G are G

But natural images have large contribution from small frequencies in F(u). So, it is difficult to retrieve the image Also, small even small noise get amplified at small u and retrieval of F(u) too small u is made difficult by even presence of small noise.

For 2): case:

$$g_x = h_x + f - D$$
 $g_y = h_y + f - D$
 h_x , h_y are desivative hereof $h_x \times and \times dx$ directions respectively.

At Given g_x, g_y , h_x , h_y , need to find E f .

Applying Fourier transform to D and D
 $G_x = H_x + F$ $G_y = H_y + F$
 $f = G_y + G_y + G$
 $f = G_$

 $$\neq $50, when both u and v are small, both <math>H_{\alpha}(u,v) \rightarrow 0$.

Hy(u,v) $\rightarrow 0$.

Fren small noise, if present in Gin, Gry, blow up

Natural images have large components of low (u,v) in Flu, v)

and losing the this makes retrieval difficult.

Intuitively, if f is constant, Garaty Ja Jy = 0. Thore is

no way to retrieve f. This corresponds to retrieving F(0,0),

no way to retrieve f. only F(0,0) > 0 and F(u,v) = 0

Since for constant image only F(0,0) > 0 and F(u,v) = 0

Q2 continued:

Also, if a constant value is added to each pixel in the f, g_x and g_y do not change. So, multiple images can correspond to same g_x and g_y for fixed h_x and h_y . Here, the constant value added corresponds to F(0, 0). That constant cannot be retrieved as F(0, 0) cannot be retrieved.