### Cryptography

Vincent Macri



© Caroline Liu, Vincent Macri, and Samantha Unger, 2018





### Table of Contents

1 Modular Arithmetic

2 Primes



#### Quick review Modular Arithmetic

We define the **mod** operator as being the remainder when dividing two numbers. That is:

$$a \bmod b =$$
the remainder of  $a \div b$ 

In some programming languages, modulo is written as % or rem. Use whichever notation you are most comfortable with.

#### **Examples**

$$4 \mod 2 = 0$$

$$7 \mod 3 = 1$$

$$5 \mod 2 = 1$$

$$9 \mod 5 = 4$$

The definition of modulo (mod for short) is a bit trickier with negative numbers. It also doesn't matter for today, as we're only looking at mod with positive numbers.

## Divisibility Modular Arithmetic

We will also introduce a new notation, which is more of a shortcut. If b divides a with no remainder, then we will write  $b \mid a$ . More formally:

$$b \mid a \equiv a \bmod b = 0$$

Or:

$$b \mid a \iff a = bc$$

Where a, b, and c and positive integers.



### Table of Contents

1 Modular Arithmetic

2 Primes



## What is a prime number? Primes

A **prime number** is a positive integer that is only divisible by 1 and itself.

#### Examples

$$\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, \dots\}$$

If an integer greater than 1 is not prime, it is called a **composite** number.

1 is special, and is called the **unit number** 

## What is a prime number? Primes

A **prime number** is a positive integer that is only divisible by 1 and itself.

#### Examples

$$\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, \dots\}$$

If an integer greater than 1 is not prime, it is called a **composite** number.

1 is special, and is called the unit number

#### Proof 1 is not prime.

In the past, some mathematicians said that 1 is prime. All of them are dead now.

$$\therefore 1 \notin \mathbb{P}$$



The largest known prime number<sup>1</sup> is:

$$M_{77232917} = 2^{77232917} - 1$$

If you were to print this number out, it would be 6055 pages long! This prime was discovered by Jonathan Pace on December 26, 2017 after 6 days of continuous computer computations. The discovery was published on January 3, 2018.



The largest known prime number<sup>1</sup> is:

$$M_{77\,232\,917} = 2^{77\,232\,917} - 1$$

If you were to print this number out, it would be 6055 pages long!

This prime was discovered by Jonathan Pace on December 26, 2017 after 6 days of continuous computer computations. The discovery was published on January 3, 2018.

This number is a **Mersenne prime**. These are prime numbers of the form  $2^n - 1$ , and we label these primes as  $M_n$  for short.



The largest known prime number<sup>1</sup> is:

$$M_{77\,232\,917} = 2^{77\,232\,917} - 1$$

If you were to print this number out, it would be 6055 pages long!

This prime was discovered by Jonathan Pace on December 26, 2017 after 6 days of continuous computer computations. The discovery was published on January 3, 2018.

This number is a **Mersenne prime**. These are prime numbers of the form  $2^n - 1$ , and we label these primes as  $M_n$  for short.

What's special and useful about Mersenne primes?



The largest known prime number<sup>1</sup> is:

$$M_{77\,232\,917} = 2^{77\,232\,917} - 1$$

If you were to print this number out, it would be 6055 pages long!

This prime was discovered by Jonathan Pace on December 26, 2017 after 6 days of continuous computer computations. The discovery was published on January 3, 2018.

This number is a **Mersenne prime**. These are prime numbers of the form  $2^n - 1$ , and we label these primes as  $M_n$  for short.

What's special and useful about Mersenne primes? Not much.



How many primes are there?

Primes

Is the number of primes finite?



### How many primes are there? Primes

Is the number of primes finite?

No! There are infinite prime numbers!

This was proved thousands of years ago by Euclid.



## Proof of infinite primes Primes

Assume the list of primes is finite, and there are only n prime numbers. We will call our list of prime numbers P.

$$P = \{p_1, p_2, \dots, p_{n-1}, p_n\}$$

Where  $p_k$  is the kth prime number.

## Proof of infinite primes Primes

Assume the list of primes is finite, and there are only n prime numbers. We will call our list of prime numbers P.

$$P = \{p_1, p_2, \dots, p_{n-1}, p_n\}$$

Where  $p_k$  is the kth prime number.

Now, let m be the product of all numbers in P plus 1.

$$m = (p_1 \times p_2 \times \dots \times p_{n-1} \times p_n) + 1 = \left(\sum_{i=1}^n p_i\right) + 1$$

m is either prime or not prime. Let's look at both cases.



First, let's consider the case that m is prime.



## Proof of infinite primes: m is prime $_{\mathrm{Primes}}$

First, let's consider the case that m is prime.

Note that m is not in our original list, P.



First, let's consider the case that m is prime.

Note that m is not in our original list, P.

If m is prime, our original list is incomplete, and there are more prime numbers than we listed.





If m is not prime, then it must be divisible by a prime number. Notice that m cannot be divisible by any numbers in P, as they would not divide a number that is a multiple of themselves plus 1.

If m is not prime, then it must be divisible by a prime number. Notice that m cannot be divisible by any numbers in P, as they would not divide a number that is a multiple of themselves plus 1.

For example:

$$P = \{2, 3, 5, 7, 11, 13\}$$

$$m = 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031$$

If m is not prime, then it must be divisible by a prime number. Notice that m cannot be divisible by any numbers in P, as they would not divide a number that is a multiple of themselves plus 1.

For example:

$$P = \{2, 3, 5, 7, 11, 13\}$$
 $m = 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30\,031$ 
 $30\,031 \bmod 2 = 1$ 
 $30\,031 \bmod 3 = 1$ 
 $30\,031 \bmod 11 = 1$ 
 $30\,031 \bmod 5 = 1$ 
 $30\,031 \bmod 13 = 1$ 

If m is not prime, then it must be divisible by a prime number. Notice that m cannot be divisible by any numbers in P, as they would not divide a number that is a multiple of themselves plus 1.

For example:

$$P = \{2, 3, 5, 7, 11, 13\}$$
 $m = 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30\,031$ 
 $30\,031 \bmod 2 = 1$ 
 $30\,031 \bmod 3 = 1$ 
 $30\,031 \bmod 11 = 1$ 
 $30\,031 \bmod 5 = 1$ 
 $30\,031 \bmod 13 = 1$ 

Here, we can see that since  $30\,031$  is a multiple plus 1 of every number in P, no numbers in P will divide it.





If m is not prime, then it must be divisible by a prime number. Notice that m cannot be divisible by any numbers in P, as they would not divide a number that is a multiple of themselves plus 1.

For example:

$$P = \{2, 3, 5, 7, 11, 13\}$$
 $m = 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30\,031$ 
 $30\,031 \bmod 2 = 1$ 
 $30\,031 \bmod 3 = 1$ 
 $30\,031 \bmod 11 = 1$ 
 $30\,031 \bmod 5 = 1$ 
 $30\,031 \bmod 13 = 1$ 

Here, we can see that since  $30\,031$  is a multiple plus 1 of every number in P, no numbers in P will divide it. But if  $30\,031$  is not prime, then it divisible by a prime number, so there must be some prime numbers missing from our original list.





If m is not prime, then it must be divisible by a prime number. Notice that m cannot be divisible by any numbers in P, as they would not divide a number that is a multiple of themselves plus 1.

For example:

$$P = \{2, 3, 5, 7, 11, 13\}$$
 $m = 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30\,031$ 
 $30\,031 \bmod 2 = 1$ 
 $30\,031 \bmod 3 = 1$ 
 $30\,031 \bmod 1 = 1$ 
 $30\,031 \bmod 5 = 1$ 
 $30\,031 \bmod 1 = 1$ 

Here, we can see that since  $30\,031$  is a multiple plus 1 of every number in P, no numbers in P will divide it. But if  $30\,031$  is not prime, then it divisible by a prime number, so there must be some prime numbers missing from our original list.  $30\,031$  is divisible by 59 and 509, so these numbers are missing from our list.



