

Koch Curve

How to draw a Koch curve.

*In the middle third produce
an equilateral triangle

* Then remove the base

Repeat the process for each of the line segments

This gives STAGE 2

Repeating the process again for each line segments gives STAGE 3

This iterative process can be repeated again and again and again..... Below is STAGE 4

Starting with an equilateral ** triangle produces the ** Koch Snowflake

The Koch Snowflake

• The snowflake curve (Koch curve) was proposed by Niels Fabian Helge von Koch (25 Jan 1870 - 11 March 1924), a Swedish mathematician. It is created by iteratively adding a smaller triangular "bump" to each side of the figure. This fractal process, when continued indefinitely, produces a figure with infinite perimeter but finite area. This series of figures show the first five steps in the process and one of the six "petals" at the sixth stage.

You could start with a polygon rather than a straight line

Koch Snowflake

- Three copies of the Koch curve placed outward around the three sides of an equilateral triangle form a simple closed curve that forms the boundary of the Koch Snowflake.
- Three copies of the Koch curve placed so that they point inside the equilateral triangle create a simple closed curve that forms the boundary of the Koch antisnowflake

