

Algoritmos y Estructuras de Datos

Cursada 2015

Prof. Alejandra Schiavoni Prof. Catalina Mostaccio

Facultad de Informática – UNLP

Árboles Generales

Agenda

- Definición
- Descripción y terminología
- > Ejemplos
- Representaciones
- Recorridos

Definición

- > Un árbol es una colección de nodos, tal que:
 - puede estar vacía. (Árbol vacío)
 - puede estar formada por un nodo distinguido R, llamado raiz y un conjunto de árboles T_1 , T_2 , T_k , $k \ge 0$ (subárboles), donde la raíz de cada subárbol T_i está conectado a R por medio de una arista

Descripción y terminología

- *Grado* del árbol es el grado del nodo con mayor grado.
- Árbol lleno: Dado un árbol T de grado k y altura h, diremos que T es lleno si cada nodo interno tiene grado k y todas las hojas están en el mismo nivel (h).

Es decir, recursivamente, T es lleno si :

- 1.- T es un nodo simple (árbol lleno de altura 0), o
- 2.- T es de altura h y todos sus sub-árboles son llenos de altura h-1.

Descripción y terminología

- Árbol completo: Dado un árbol T de grado k y altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol <u>lleno</u>:

Sea T un árbol lleno de grado k y altura h, la cantidad de nodos N es $(k^{h+1}-1)/(k-1)$ ya que:

Nivel $0 \rightarrow k^0$ nodos

Nivel 1 \rightarrow k¹ nodos

Nivel 2 \rightarrow k² nodos

Nivel 3 \rightarrow k³ nodos

$$N = k^0 + k^1 + k^2 + k^3 + ...$$

La suma de los términos de una serie geométrica de razón k es:

$$(k^{h+1}-1)/(k-1)$$

Descripción y terminología

• Cantidad de nodos en un árbol completo:

Sea T un árbol completo de grado k y altura h, la cantidad de nodos N varía entre $(k^h+k-2)/(k-1)$ y $(k^{h+1}-1)/(k-1)$ ya que ...

· Si el árbol es lleno,

$$N = (k^{h+1}-1)/(k-1)$$

• Si no, el árbol es lleno en la altura *h-1* y tiene por lo menos un nodo en el nivel *h*:

$$N = (k^{(h-1)+1}-1) / (k-1) + 1$$
$$= (k^h + k - 2) / (k-1)$$

Ejemplos

- ✓ Organigrama de una empresa
- ✓ Árboles genealógicos
- ✓ Taxonomía que clasifica organismos
- ✓ Sistemas de archivos
- Organización de un libro en capítulos y secciones

:

M

Ejemplo: Sistema de archivos

Representaciones

- ✓ Lista de hijos
 - Cada nodo tiene:
 - Información propia del nodo
 - Una lista de todos sus hijos
- Hijo más izquierdo y hermano derecho
 - Cada nodo tiene:
 - Información propia del nodo
 - Referencia al hijo más izquierdo
 - Referencia al hermano derecho

Representación: Lista de hijos

- ✓ La lista de hijos, puede estar implementada a través de:
 - Arreglos
 - Desventaja: espacio ocupado
 - Listas dinámicas
 - Mayor flexibilidad en el uso

Representación: Lista de hijos

Implementada con Arreglos

Implementada con Listas enlazadas

Representación: Hijo más izquierdo y hermano derecho

Recorridos

Preorden

Se procesa primero la raíz y luego los hijos

> Inorden

Se procesa el primer hijo, luego la raíz y por último los restantes hijos

Postorden

Se procesan primero los hijos y luego la raíz

Por niveles

Se procesan los nodos teniendo en cuenta sus niveles, primero la raíz, luego los hijos, los hijos de éstos, etc.

м

Recorrido: Preorden

Ejemplo: Listado del contenido de un directorio

Recorrido: Postorden

Ejemplo: Calcular el tamaño ocupado por un directorio

Recorrido: Por niveles

Recorrido: Preorden

```
public void preOrden() {
imprimir (dato);
obtener lista de hijos;
mientras (tenga hijos) {
    hijo ← obtenerHijo;
    hijo.preOrden();
```


Recorrido: Por niveles

```
public void porNiveles() {
 encolar(raíz);
 mientras cola no se vacíe {
    v \leftarrow desencolar();
    imprimir (dato de v);
    para cada hijo de v
    encolar(hijo);
```