

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА НА ТЕМУ: «Методы решения задачи коммивояжёра»

Студент: Смирнов И.В.

Руководитель: Кострицкий А.С.

Формализованная постановка задачи

Ниже приведённая формализация описывает задачу коммивояжёра через графовую постановку. Пусть задан взвешенный полный граф

$$G = (V, E),$$
 (2.1)

где $V = \{1, 2, ..., n\}$ — множество вершин (городов), а E — множество ребер. Каждому ребру $(i, j) \in E$ соответсвует стоимость (расстояние) c_{ij} . Необходимо найти такую перестановку городов $\pi = (\pi_1, \pi_2, ..., \pi_n)$, что функционал

$$f(\pi) = \sum_{k=1}^{n-1} c_{\pi_k \pi_{k+1}} + c_{\pi_n \pi_1}, \qquad (2.2)$$

минимален. Другими словами, требуется определить маршрут, проходящий по всем городам ровно один раз и возвращающийся в исходный пункт так, чтобы суммарная длина этого маршрута была наименьшей.

Результаты сравнения методов решения

Метод	Точность	Сложность	Масштаб.	Простота	Распарал.
МПП	+	0(n!)	-	+	-
мдп	+	$O(n^2 \cdot 2^n)$	-	±	±
ВГ	+	$O(2^n)$	±	±	±
ММЛ	±	$O(n^4)$	±	-	±
МБС	-	$O(n^2)$	+	+	+
ГА	-	$O(n^4)$	+	±	+
MA	-	$O(n^4)$	±	±	+
МИО	-	$O(n^3)$	+	+	±
МРЧ	-	$O(n^4)$	+	±	+