New characterizations of the summatory function of the Möbius function

Maxie Dion Schmidt Georgia Institute of Technology School of Mathematics

<u>Last Revised:</u> Wednesday 6th January, 2021 @ 17:21:32 - Compiled with LATEX2e

Abstract

The Mertens function, $M(x) := \sum_{n \leq x} \mu(n)$, is defined as the summatory function of the Möbius function for $x \geq 1$. The inverse function sequence $\{g^{-1}(n)\}_{n\geq 1}$ taken with respect to Dirichlet convolution is defined in terms of the strongly additive function $\omega(n)$ that counts the number of distinct prime factors of any integer $n \geq 2$. For large x and $n \leq x$, we associate a natural combinatorial significance to the magnitude of the distinct values of the function $g^{-1}(n)$ that depends directly on the exponent patterns in the prime factorizations of the integers in $\{2,3,\ldots,x\}$ viewed as multisets.

We prove an Erdös-Kac theorem analog for the distribution of the unsigned sequence $|g^{-1}(n)|$ with a limiting central limit theorem type tendency towards normal as $x \to \infty$. For all $x \ge 1$, discrete convolutions of $G^{-1}(x) := \sum_{n \le x} \lambda(n) |g^{-1}(n)|$ with the prime counting function $\pi(x)$ determine exact formulas and asymptotic bounds for M(x). In this way, we prove another concrete link between the distributions of both $L(x) := \sum_{n \le x} \lambda(n)$ and the Mertens function and connect these classical summatory functions with sums weighted by an explicit normal tending probability distribution at large x. The proofs of these resulting combinatorially motivated new characterizations of M(x) in the article are rigorous and unconditional.

Keywords and Phrases: Möbius function; Mertens function; Dirichlet inverse; Liouville lambda function; prime omega function; prime counting function; Dirichlet generating function (DGF); Erdös-Kac theorem; strongly additive function.

Math Subject Classifications (MSC 2010): 11N37; 11A25; 11N60; 11N64; and 11-04.

1 Introduction

1.1 Preliminaries

1.1.1 Definitions

We define the $M\ddot{o}bius\ function$ to be the signed indicator function of the squarefree integers in the form of [18, A008683]

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1; \\ (-1)^{\omega(n)}, & \text{if } \omega(n) = \Omega(n) \text{ and } n \ge 2; \\ 0, & \text{otherwise.} \end{cases}$$

The Mertens function, or summatory function of $\mu(n)$, is defined on the positive integers as

$$M(x) = \sum_{n \le x} \mu(n), x \ge 1.$$

The sequence of slow growing oscillatory values of this summatory function begins as follows [18, A002321]:

$$\{M(x)\}_{x>1} = \{1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, -3, -2, -1, -1, -2, -2, -3, -3, -2, -1, -2, \ldots\}.$$

The Mertens function satisfies that $\sum_{n \leq x} M\left(\left\lfloor \frac{x}{n}\right\rfloor\right) = 1$, and is related to the summatory function $L(x) := \sum_{n \leq x} \lambda(n)$ via the relation [5, 9]

$$L(x) = \sum_{d \le \sqrt{x}} M\left(\left\lfloor \frac{x}{d^2} \right\rfloor\right), x \ge 1.$$

Clearly, a positive integer $n \ge 1$ is squarefree, or contains no divisors (other than one) which are squares, if and only if $\mu^2(n) = 1$. A related summatory function which counts the number of squarefree integers $n \le x$ satisfies [4, §18.6] [18, A013928]

$$Q(x) = \sum_{n \le x} \mu^2(n) \sim \frac{6x}{\pi^2} + O\left(\sqrt{x}\right).$$

It is known that the asymptotic density of the positively versus negatively weighted sets of squarefree numbers characterized by the sign of the Möbius function are in fact equal as $x \to \infty$:

$$\mu_{+}(x) := \frac{\#\{1 \le n \le x : \mu(n) = +1\}}{x} \xrightarrow[\pi^{2}]{} \frac{x \to \infty}{\pi^{2}}$$

$$\mu_{-}(x) := \frac{\#\{1 \le n \le x : \mu(n) = -1\}}{x} \xrightarrow[\pi^{2}]{} \frac{x \to \infty}{\pi^{2}}.$$

1.1.2 Properties

A conventional approach to evaluating the limiting asymptotic behavior of M(x) for large $x \to \infty$ considers an inverse Mellin transformation of the reciprocal of the Riemann zeta function. In particular, since

$$\frac{1}{\zeta(s)} = \prod_{p} \left(1 - \frac{1}{p^s} \right) = s \cdot \int_1^\infty \frac{M(x)}{x^{s+1}} dx, \operatorname{Re}(s) > 1,$$

we obtain that

$$M(x) = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{T - i\infty}^{T + i\infty} \frac{x^s}{s \cdot \zeta(s)} ds.$$

The previous two representations lead us to the exact expression of M(x) for any real x > 0 given by the next theorem.

Theorem 1.1 (Analytic Formula for M(x), Titchmarsh). Assuming the Riemann Hypothesis (RH), there exists an infinite sequence $\{T_k\}_{k\geq 1}$ satisfying $k\leq T_k\leq k+1$ for each k such that for any real x>0

$$M(x) = \lim_{k \to \infty} \sum_{\substack{\rho: \zeta(\rho) = 0 \\ |\operatorname{Im}(\rho)| < T_k}} \frac{x^{\rho}}{\rho \cdot \zeta'(\rho)} - 2 + \sum_{n \ge 1} \frac{(-1)^{n-1}}{n \cdot (2n)! \zeta(2n+1)} \left(\frac{2\pi}{x}\right)^{2n} + \frac{\mu(x)}{2} \left[x \in \mathbb{Z}^+\right]_{\delta}.$$

A historical unconditional bound on the Mertens function due to Walfisz (circa 1963) states that there is an absolute constant C > 0 such that

$$M(x) \ll x \cdot \exp\left(-C \cdot \log^{\frac{3}{5}}(x)(\log\log x)^{-\frac{3}{5}}\right).$$

Under the assumption of the RH, Soundararajan proved new updated estimates bounding M(x) from above for large x in the following forms [19]:

$$\begin{split} &M(x) \ll \sqrt{x} \cdot \exp\left((\log x)^{\frac{1}{2}} (\log\log x)^{14}\right), \\ &M(x) = O\left(\sqrt{x} \cdot \exp\left((\log x)^{\frac{1}{2}} (\log\log x)^{\frac{5}{2} + \epsilon}\right)\right), \ \forall \epsilon > 0. \end{split}$$

1.1.3 Conjectures on boundedness and limiting behavior

The RH is equivalent to showing that $M(x) = O\left(x^{\frac{1}{2}+\epsilon}\right)$ for any $0 < \epsilon < \frac{1}{2}$. There is a rich history to the original statement of the *Mertens conjecture* which asserts that

$$|M(x)| < C \cdot \sqrt{x}$$
, for some absolute constant $C > 0$.

The conjecture was first verified by Mertens himself for C=1 and all x<10000 without the benefit of modern computation. Since its beginnings in 1897, the Mertens conjecture has been disproven by computational methods with non-trivial simple zeta function zeros with comparitively small imaginary parts in a famous paper by Odlyzko and té Riele [12]. More recent attempts at bounding M(x) naturally consider determining the rates at which the function $M(x)/\sqrt{x}$ grows with or without bound along infinite subsequences, e.g., considering the asymptotics of the function in the limit supremum and limit infimum senses.

We cite that it is only known by computation that [15, cf. §4.1] [18, cf. A051400; A051401]

$$\limsup_{x \to \infty} \frac{M(x)}{\sqrt{x}} > 1.060 \qquad \text{(now } \ge 1.826054),$$

and

$$\liminf_{x \to \infty} \frac{M(x)}{\sqrt{x}} < -1.009 \qquad \text{(now } \le -1.837625\text{)}.$$

Based on work by Odlyzyko and té Riele, it seems probable that each of these limits should evaluate to $\pm \infty$, respectively [12, 7, 8, 6]. Extensive computational evidence has produced a conjecture due to Gonek that in fact the limiting behavior of M(x) satisfies [11]

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x} \cdot (\log \log \log x)^{\frac{5}{4}}} = O(1).$$

1.2 A concrete new approach to characterizing M(x)

The main interpretation to take away from the article is that we have rigorously motivated an equivalent alternate characterization of M(x) by constructing combinatorially relevant sequences related to the distribution of the primes and to standard strongly additive functions that have not yet been studied in the literature surrounding the Mertens function. The prime-related combinatorics at hand here are discussed in more detail

by the remarks given in Section 3.3. This new perspective offers equivalent exact characterizations of M(x) for all $x \geq 1$ by formulas involving discrete convolutions of $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$ with the prime counting function $\pi(x)$ given in Section 5. The new sequence $g^{-1}(n)$ defined precisely below and $G^{-1}(x)$ are crucially tied to standard, canonical examples of strongly and completely additive functions, e.g., $\omega(n)$ and $\Omega(n)$, respectively. The definitions of the core subsequences we define and the parameterized bivariate DGF based proof method that is given in the spirit of Montgomery and Vaughan's work allow us to reconcile the property of strong additivity in a novel way with signed sums of multiplicative functions and their classical importance.

The proofs of key properties of these new sequences bundles with it a scaled normal tending probability distribution for the unsigned magnitude of $|g^{-1}(n)|$ that is similar in many ways to the Erdös-Kac theorems for $\omega(n)$ and $\Omega(n)$. Moreover, since $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$, it follows that we have a new probabilistic perspective from which to express distributional features of the summatory functions $G^{-1}(x)$ as $x \to \infty$ in terms of the properties of $|g^{-1}(n)|$ and $L(x) := \sum_{n \le x} \lambda(n)$. Note that formalizing the properties of the distribution of L(x) is typically viewed as a problem on par with, or equally as difficult in order to understanding the distribution of M(x) well as $x \to \infty$. The results in this article concretely connect the distributions of L(x), a well defined scaled normally tending probability distribution, and M(x) as $x \to \infty$.

1.2.1 Summatory functions of Dirichlet convolutions of arithmetic functions

Theorem 1.2 (Summatory functions of Dirichlet convolutions). Let $f, h : \mathbb{Z}^+ \to \mathbb{C}$ be any arithmetic functions such that $f(1) \neq 0$. Suppose that $F(x) := \sum_{n \leq x} f(n)$ and $H(x) := \sum_{n \leq x} h(n)$ denote the summatory functions of f and h, respectively, and that $F^{-1}(x) := \sum_{n \leq x} f^{-1}(n)$ denotes the summatory function of the Dirichlet inverse of f for any $x \geq 1$. We have the following exact expressions for the summatory function of the convolution f * h for all integers $x \geq 1$:

$$\pi_{f*h}(x) := \sum_{n \le x} \sum_{d|n} f(d)h(n/d)$$

$$= \sum_{d \le x} f(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$

$$= \sum_{k=1}^{x} H(k) \left[F\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - F\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right].$$

Moreover, for all $x \geq 1$

$$H(x) = \sum_{j=1}^{x} \pi_{f*h}(j) \left[F^{-1} \left(\left\lfloor \frac{x}{j} \right\rfloor \right) - F^{-1} \left(\left\lfloor \frac{x}{j+1} \right\rfloor \right) \right]$$
$$= \sum_{k=1}^{x} f^{-1}(k) \cdot \pi_{f*h} \left(\left\lfloor \frac{x}{k} \right\rfloor \right).$$

Corollary 1.3 (Convolutions arising from Möbius inversion). Suppose that h is an arithmetic function such that $h(1) \neq 0$. Define the summatory function of the convolution of h with μ by $\widetilde{H}(x) := \sum_{n \leq x} (h * \mu)(n)$. Then the Mertens function is expressed by the sum

$$M(x) = \sum_{k=1}^{x} \left(\sum_{j=\lfloor \frac{x}{k+1} \rfloor + 1}^{\lfloor \frac{x}{k} \rfloor} h^{-1}(j) \right) \widetilde{H}(k), \forall x \ge 1.$$

Corollary 1.4 (A motivating special case). We have that for all $x \ge 1$

$$M(x) = \sum_{k=1}^{x} (\omega + 1)^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right]. \tag{1}$$

1.2.2 An exact expression for M(x) via strongly additive functions

Fix the notation for the Dirichlet invertible function $g(n) := \omega(n) + 1$ and define its inverse with respect to Dirichlet convolution by $g^{-1}(n) = (\omega + 1)^{-1}(n)$. We can compute exactly that (see Table T.1 starting on page 35)

$$\{g^{-1}(n)\}_{n>1} = \{1, -2, -2, 2, -2, 5, -2, -2, 2, 5, -2, -7, -2, 5, 5, 2, -2, -7, -2, -7, 5, 5, -2, 9, \ldots\}.$$

There is not a simple meaningful direct recursion between the distinct values of $g^{-1}(n)$. The distribution of distinct sets of prime exponents is still clearly quite regular since $\omega(n)$ and $\Omega(n)$ play a crucial role in the repitition of common values of $g^{-1}(n)$. The following observation is suggestive of the quasi-periodicity of the distribution of distinct values of this inverse function we notice below over $n \geq 2$:

Heuristic 1.5 (Symmetry in $g^{-1}(n)$ in the prime factorizations of $n \le x$). Suppose that $n_1, n_2 \ge 2$ are such that their factorizations into distinct primes are given by $n_1 = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ and $n_2 = q_1^{\beta_1} \cdots q_r^{\beta_r}$ for $\omega(n_i) \ge 1$. If $\{\alpha_1, \ldots, \alpha_r\} \equiv \{\beta_1, \ldots, \beta_r\}$ as multisets of prime exponents, then $g^{-1}(n_1) = g^{-1}(n_2)$. For example, g^{-1} has the same values on the squarefree integers with exactly one, two, three, and so on prime factors.

Conjecture 1.6 (Characteristic properties of the inverse sequence). We have the following properties characterizing the Dirichlet inverse function $g^{-1}(n)$:

- (A) For all $n \ge 1$, $sgn(g^{-1}(n)) = \lambda(n)$;
- (B) For all squarefree integers $n \geq 1$, we have that

$$|g^{-1}(n)| = \sum_{m=0}^{\omega(n)} {\omega(n) \choose m} \cdot m!;$$

(C) If $n \geq 2$ and $\Omega(n) = k$, then

$$2 \le |g^{-1}(n)| \le \sum_{j=0}^{k} {k \choose j} \cdot j!.$$

We illustrate the conjecture clearly using the computation of initial values of this inverse sequence in Table T.1. The signedness property in (A) is proved precisely in Proposition 2.1. A proof of (B) in fact follows from Lemma 3.1 stated on page 13. The realization that the beautiful and remarkably simple combinatorial form of property (B) in Conjecture 1.6 holds for all squarefree $n \ge 1$ motivates our pursuit of simpler formulas for the inverse functions $g^{-1}(n)$ through the sums of auxiliary subsequences $C_k(n)$ (see Section 3). That is, we observe a familiar formula for $g^{-1}(n)$ on an asymptotically dense infinite subset of integers and the seek to extrapolate by proving there are regular tendencies of this sequence viewed more generally over any $n \ge 2$.

An exact expression for $g^{-1}(n)$ is given by

$$g^{-1}(n) = \lambda(n) \times \sum_{d|n} \mu^2\left(\frac{n}{d}\right) C_{\Omega(d)}(d), n \ge 1,$$

where the sequence $\lambda(n)C_{\Omega(n)}(n)$ has DGF $(P(s)+1)^{-1}$ for Re(s) > 1 (see Proposition 2.1). In Corollary 4.5, we prove that the approximate average order of the unsigned sequence satisfies

$$\mathbb{E}|g^{-1}(n)| \simeq (\log n)^2 \sqrt{\log \log n}$$
, as $n \to \infty$.

In Section 4, we prove the next variant of an Erdös-Kac theorem like analog for a component sequence $C_{\Omega(n)}(n)$. This leads us to conclude the following uniform statement for any fixed Y > 0, $\mu_x(C) := \log \log x + \hat{a} - \frac{1}{2} \log \log \log x$, $\sigma_x(C) := \sqrt{\mu_x(C)}$, \hat{a} an absolute constant, and for all $-Y \le y \le Y$ (see Corollary 4.7):

$$\frac{1}{x} \cdot \#\{2 \le n \le x : |g^{-1}(n)| - \mathbb{E}|g^{-1}(n)| \le y\} = \Phi\left(\frac{\frac{\pi^2}{6}y - \mu_x(C)}{\sigma_x(C)}\right) + O\left(\frac{1}{\sqrt{\log\log x}}\right), \text{ as } x \to \infty.$$

The regularity and quasi-periodicity we have alluded to in the remarks above are actually quantifiable in so much as the distrubution of $|g^{-1}(n)|$ for $n \leq x$ tends to its average order with a non-central normal tendency depending on x as $x \to \infty$. That is, if $x \geq 2$ is sufficiently large and if we pick any integer $n \in [2, x]$ uniformly at random, then each of the following statements holds:

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le 0\right) = o(1)$$
(A)

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2}\mathbb{E}|g^{-1}(n)| \le \frac{6}{\pi^2}\mu_x(C)\right) = \frac{1}{2} + o(1).$$
(B)

Moreover, for any positive real $\delta > 0$ we have that

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le \frac{6}{\pi^2} \mu_x(C)^{1+\delta}\right) = 1 + o_{\delta}(1), \text{ as } x \to \infty.$$
 (C)

A consequence of (A) and (C) in the probability estimates above is that for any fixed $\delta > 0$ and $n \in \mathcal{S}_1(\delta)$ taken within a set of asymptotic density one we have that

$$\frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le |g^{-1}(n)| \le \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| + \frac{6}{\pi^2} \mu_x(C)^{\frac{1}{2} + \delta}.$$

Hence when we integrate over a set of wide enough disjoint consecutive intervals containing large enough integer values, we can assume that an asymptotic lower bound on the contribution of $|g^{-1}(n)|$ is given by the function's average order, and a limiting upper bound is given by the same inequality above for any fixed $\delta > 0$. Moreover, observe that the exceptional values of the sequence do not exceed these bounds as

$$\frac{\pi^2}{6 \cdot \sigma_x(C)} \times \int_{-\infty}^{\infty} z \cdot \Phi' \left(\frac{\frac{\pi^2}{6} z - \mu_x(C)}{\sigma_x(C)} \right) dz = \frac{6}{\pi^2} \cdot \sigma_x(C) = o\left(\mathbb{E}|g^{-1}(x)| \right).$$

Remark 1.7 (Uniform asymptotics from certain bivariate counting DGFs). We emphasize the recency of the method demonstrated by Montgomery and Vaughan in constructing their original proof of Theorem 2.5 (stated below). To the best of our knowledge, this textbook reference is one of the first clear cut applications documenting something of a hybrid DGF-and-OGF type approach to enumerating sequences of arithmetic functions and their summatory functions. This interpretation of certain bivariate DGFs offers a window into the best of both generating function series worlds. It combines the additivity implicit to the coefficients indexed by a formal power series variable formed by multiplication of these structures, while coordinating the distinct DGF-best property of the multiplicativity with respect to distinct prime powers invoked by taking powers of a reciprocal Euler type product. A proof constructed from this type of bivariate power series DGF is given in Section 4.

1.2.3 Formulas illustrating the new characterizations of M(x)

Let $G^{-1}(x) := \sum_{n \le x} g^{-1}(n)$ for integers $x \ge 1$. We prove that (see Proposition 5.3)

$$M(x) = G^{-1}(x) + G^{-1}\left(\left\lfloor \frac{x}{2} \right\rfloor\right) + \sum_{k=1}^{\frac{x}{2}-1} G^{-1}(k) \left[\pi\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - \pi\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right]$$

$$= G^{-1}(x) + \sum_{p \le x} G^{-1}\left(\left\lfloor \frac{x}{p} \right\rfloor\right), x \ge 1.$$
(2)

This formula implies that we can establish new asymptotic bounds on M(x) along large infinite subsequences by bounding the summatory function $G^{-1}(x)$. The take on the regularity of $|g^{-1}(n)|$ is then imperative to our arguments that formally bound the growth of M(x) by its new identification with $G^{-1}(x)$. A more combinatorial approach to summing $G^{-1}(x)$ for large x based on the distribution of the primes is outlined in our remarks in Section 3.3. Theorem 5.1 proves that like the known elementary bound for M(x), we have that $G^{-1}(x) = o(x)$ as $x \to \infty$. The results in Corollary 5.2 prove that for almost every sufficiently large x

$$G^{-1}(x) = O\left(\max_{1 \le t \le x} |L(t)| \times \mathbb{E}|g^{-1}(x)|\right).$$

Moreover, if the RH is true, then we have the following result for any $\varepsilon > 0$ and almost every integer $x \ge 1$:

$$G^{-1}(x) = O\left(\frac{\sqrt{x} \cdot (\log x)^{\frac{5}{2}}}{(\log \log x)^{2+\varepsilon}} \times \exp\left(\sqrt{\log x} \cdot (\log \log x)^{\frac{5}{2}+\varepsilon}\right)\right).$$

In Corollary 5.5, we prove that as $x \to \infty$

$$M(x) = O\left(G^{-1}(x) + G^{-1}\left(\left\lfloor \frac{x}{2} \right\rfloor\right) + \frac{\sqrt{x} \cdot G^{-1}\left(\left\lfloor \sqrt{x} \right\rfloor\right)}{\log x} + \sqrt{x} \cdot (\log \log x)\right).$$

Moving forward, a discussion of the properties of the summatory functions $G^{-1}(x)$ motivates more study in the future to extend the full range of possibilities for viewing this new structure behind M(x).

2 Initial proofs of new results

2.1 Establishing the summatory function properties and inversion identities

We will offer a proof of Theorem 1.2 suggested by an intuitive construction through matrix based methods. Related results on summations of Dirichlet convolutions appear in [1, §2.14; §3.10; §3.12; cf. §4.9, p. 95]. It is not difficult to prove the related identity

$$\sum_{n \leq x} h(n)(f * g)(n) = \sum_{n \leq x} f(n) \times \sum_{k \leq \left \lfloor \frac{x}{n} \right \rfloor} g(k)h(kn).$$

Proof of Theorem 1.2. Let h, g be arithmetic functions such that $g(1) \neq 0$. Denote the summatory functions of h and g, respectively, by $H(x) = \sum_{n \leq x} h(n)$ and $G(x) = \sum_{n \leq x} g(n)$. We define $\pi_{g*h}(x)$ to be the summatory function of the Dirichlet convolution of g with h. We have that the following formulas hold for all $x \geq 1$:

$$\pi_{g*h}(x) := \sum_{n=1}^{x} \sum_{d|n} g(n)h(n/d) = \sum_{d=1}^{x} g(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i=1}^{x} \left[G\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right) \right] H(i). \tag{3}$$

The first formula above is well known. The second formula is justified directly using summation by parts as [13, §2.10(ii)]

$$\pi_{g*h}(x) = \sum_{d=1}^{x} h(d)G\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i \le x} \left(\sum_{j \le i} h(j)\right) \times \left[G\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right)\right].$$

We next form the invertible matrix of coefficients associated with this linear system defining H(j) for all $1 \le j \le x$ in (3) by setting

$$g_{x,j} := G\left(\left|\frac{x}{j}\right|\right) - G\left(\left|\frac{x}{j+1}\right|\right) \equiv G_{x,j} - G_{x,j+1},$$

where

$$G_{x,j} := G\left(\left|\frac{x}{j}\right|\right), 1 \le j \le x.$$

Since $g_{x,x} = G(1) = g(1)$ and $g_{x,j} = 0$ for all j > x, the matrix we must work with in this problem is lower triangular with a non-zero constant on its diagonals, and is hence invertible. Moreover, if we let $\hat{G} := (G_{x,j})$, then this matrix is expressed by applying an invertible shift operation as

$$(g_{x,j}) = \hat{G}(I - U^T).$$

Here, U is a square matrix with sufficiently large finite dimensions whose $(i,j)^{th}$ entries are defined by $(U)_{i,j} = \delta_{i+1,j}$ such that

$$[(I - U^T)^{-1}]_{i,j} = [j \le i]_{\delta}.$$

Observe that

$$\left\lfloor \frac{x}{j} \right\rfloor - \left\lfloor \frac{x-1}{j} \right\rfloor = \begin{cases} 1, & \text{if } j | x; \\ 0, & \text{otherwise.} \end{cases}$$

The previous property implies that

$$G\left(\left\lfloor \frac{x}{j}\right\rfloor\right) - G\left(\left\lfloor \frac{x-1}{j}\right\rfloor\right) = \begin{cases} g\left(\frac{x}{j}\right), & \text{if } j|x; \\ 0, & \text{otherwise.} \end{cases}$$
 (4)

We use the last property in (4) to shift the matrix \hat{G} , and then invert the result to obtain a matrix involving the Dirichlet inverse of g in the following forms:

$$\left[(I - U^T) \hat{G} \right]^{-1} = \left(g \left(\frac{x}{j} \right) [j|x]_{\delta} \right)^{-1} = \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right).$$

In particular, our target matrix in the inversion problem is defined by

$$(g_{x,j}) = (I - U^T) \left(g \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)^{-1}.$$

We can express its inverse by a similarity transformation conjugated by shift operators as

$$(g_{x,j})^{-1} = (I - U^T)^{-1} \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) - \sum_{k=1}^{\left\lfloor \frac{x}{j+1} \right\rfloor} g^{-1}(k) \right).$$

Hence, the summatory function H(x) is given exactly for any $x \ge 1$ by a vector product with the inverse matrix from the previous equation in the form of

$$H(x) = \sum_{k=1}^{x} \left(\sum_{j=\lfloor \frac{x}{k+1} \rfloor + 1}^{\lfloor \frac{x}{k} \rfloor} g^{-1}(j) \right) \cdot \pi_{g*h}(k).$$

We can prove an inversion formula providing the coefficients of the summatory function $G^{-1}(i)$ for $1 \le i \le x$ given by the last equation by adapting our argument to prove (3) above. This leads to the following equivalent identity:

$$H(x) = \sum_{k=1}^{x} g^{-1}(x) \cdot \pi_{g*h} \left(\left\lfloor \frac{x}{k} \right\rfloor \right).$$

2.2 Proving the characteristic signedness property of $g^{-1}(n)$

Let $\chi_{\mathbb{P}}$ denote the characteristic function of the primes, let $\varepsilon(n) = \delta_{n,1}$ be the multiplicative identity with respect to Dirichlet convolution, and denote by $\omega(n)$ the strongly additive function that counts the number of distinct prime factors of n. Then we can easily prove using DGFs (or other elementary methods) that

$$\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu. \tag{5}$$

When combined with Corollary 1.3 this convolution identity yields the exact formula for M(x) stated in (1) of Corollary 1.4.

Proposition 2.1 (The signedness property of $g^{-1}(n)$). Let the operator $\operatorname{sgn}(h(n)) = \frac{h(n)}{|h(n)| + [h(n) = 0]_{\delta}} \in \{0, \pm 1\}$ denote the sign of the arithmetic function h at integers $n \geq 1$. For the Dirichlet invertible function $g(n) := \omega(n) + 1$, we have that $\operatorname{sgn}(g^{-1}(n)) = \lambda(n) \neq 0$ for all $n \geq 1$.

Proof. The function $D_f(s) := \sum_{n \geq 1} f(n) n^{-s}$ denotes the Dirichlet generating function (DGF) of any arithmetic function f(n) which is convergent for all $s \in \mathbb{C}$ satisfying $Re(s) > \sigma_f$ for σ_f the abscissa of convergence of the

series. Recall that $D_1(s) = \zeta(s)$, $D_{\mu}(s) = \zeta(s)^{-1}$ and $D_{\omega}(s) = P(s)\zeta(s)$ for Re(s) > 1. Then by (5) and the known property that the DGF of $f^{-1}(n)$ is the reciprocal of the DGF of any arithmetic function f such that $f(1) \neq 0$ (e.g., this relation between the DGFs of these two functions holds whenever f^{-1} exists), we have for all Re(s) > 1 that

$$D_{(\omega+1)^{-1}}(s) = \frac{1}{(P(s)+1)\zeta(s)}. (6)$$

It follows that $(\omega + 1)^{-1}(n) = (h^{-1} * \mu)(n)$ when we take $h := \chi_{\mathbb{P}} + \varepsilon$. We first show that $\operatorname{sgn}(h^{-1}) = \lambda$. This observation implies that $\operatorname{sgn}(h^{-1} * \mu) = \lambda$. The remainder of the proof fills in the precise details needed to make our claims and this intuition rigorous.

By the recurrence relation that defines the Dirichlet inverse function of any arithmetic function h such that h(1) = 1, we have that $[1, \S 2.7]$

$$h^{-1}(n) = \begin{cases} 1, & n = 1; \\ -\sum_{\substack{d|n\\d>1}} h(d)h^{-1}(n/d), & n \ge 2. \end{cases}$$
 (7)

For $n \ge 2$, the summands in (7) can be simply indexed over the primes p|n given our definition of h from above. This observation yields that we can inductively unfold these sums into nested divisor sums provided the depth of the expanded divisor sums does not exceed the capacity to index summations over the primes dividing n. Namely, notice that for $n \ge 2$

$$h^{-1}(n) = -\sum_{p|n} h^{-1}\left(\frac{n}{p}\right), \qquad \text{if } \Omega(n) \ge 1$$

$$= \sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} h^{-1}\left(\frac{n}{p_1 p_2}\right), \qquad \text{if } \Omega(n) \ge 2$$

$$= -\sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} \sum_{p_3|\frac{n}{p_1 p_2}} h^{-1}\left(\frac{n}{p_1 p_2 p_3}\right), \qquad \text{if } \Omega(n) \ge 3.$$

Then by induction with $h^{-1}(1) = h(1) = 1$, we expand these nested divisor sums as above to the maximal possible depth as

$$\lambda(n) \cdot h^{-1}(n) = \sum_{p_1 \mid n} \sum_{p_2 \mid \frac{n}{p_1}} \times \dots \times \sum_{p_{\Omega(n)} \mid \frac{n}{p_1 p_2 \dots p_{\Omega(n)} - 1}} 1, n \ge 2.$$
 (8)

In fact, by a combinatorial argument related to multinomial coefficient expansions of the sums in (8), we recover exactly that

$$h^{-1}(n) = \lambda(n)(\Omega(n))! \times \prod_{p^{\alpha}||n} \frac{1}{\alpha!}, n \ge 2.$$
(9)

The last two expansions imply that the following property holds for all $n \geq 1$:

$$\operatorname{sgn}(h^{-1}(n)) = \lambda(n).$$

In particular, since λ is completely multiplicative we have that $\lambda\left(\frac{n}{d}\right)\lambda(d)=\lambda(n)$ for all divisors d|n when $n\geq 1$. We also know that $\mu(n)=\lambda(n)$ whenever n is squarefree, so that we obtain the following result:

$$g^{-1}(n) = (h^{-1} * \mu)(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) |h^{-1}(n)|, n \ge 1.$$

2.3 Statements of known limiting asymptotic formulas

Facts 2.2 (The incomplete gamma function). The (upper) incomplete gamma function is defined by [13, §8.4]

$$\Gamma(s,x) = \int_x^\infty t^{s-1} e^{-t} dt, \operatorname{Re}(s) > 0.$$

The following properties of $\Gamma(s,x)$ hold:

$$\Gamma(s,x) = (s-1)! \cdot e^{-x} \times \sum_{k=0}^{s-1} \frac{x^k}{k!}, s \in \mathbb{Z}^+, x > 0,$$
(10a)

$$\Gamma(s,x) \sim x^{s-1} \cdot e^{-x}, s > 0, \text{ as } x \to \infty.$$
 (10b)

2.4 Results on the distribution of exceptional values of $\omega(n)$ and $\Omega(n)$

The next theorems reproduced from [10, §7.4] characterize the relative scarcity of the distribution of the $\Omega(n)$ for $n \leq x$ such that $\Omega(n) > \log \log x$. Since $\mathbb{E}[\Omega(n)] = \log \log n + B$ for $B \in (0,1)$ an absolute constant, these results imply a very regular, normal tendency of this arithmetic function towards its average order.

Theorem 2.3 (Upper bounds on exceptional values of $\Omega(n)$ for large n). Let

$$A(x,r) := \# \{ n \le x : \Omega(n) \le r \cdot \log \log x \},$$

$$B(x,r) := \# \{ n \le x : \Omega(n) \ge r \cdot \log \log x \}.$$

If $0 < r \le 1$ and $x \ge 2$, then

$$A(x,r) \ll x(\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

If $1 \le r \le R < 2$ and $x \ge 2$, then

$$B(x,r) \ll_R x \cdot (\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

Theorem 2.4 is a special case analog to the celebrated Erdös-Kac theorem typically stated for the normally distributed values of the scaled-shifted function $\omega(n)$ over $n \leq x$ as $x \to \infty$ [10, cf. Thm. 7.21].

Theorem 2.4 (Exact limiting bounds on exceptional values of $\Omega(n)$ for large n). We have that as $x \to \infty$

$$\# \left\{ 3 \le n \le x : \Omega(n) - \log \log n \le 0 \right\} = \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right).$$

Theorem 2.5 (Montgomery and Vaughan). Recall that we have defined

$$\widehat{\pi}_k(x) := \#\{n \le x : \Omega(n) = k\}.$$

For R < 2 we have that uniformly for all $1 \le k \le R \cdot \log \log x$

$$\widehat{\pi}_k(x) = \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \frac{(\log\log x)^{k-1}}{(k-1)!} \left[1 + O_R\left(\frac{k}{(\log\log x)^2}\right) \right],$$

where

$$\mathcal{G}(z) := \frac{1}{\Gamma(z+1)} \times \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}, 0 \leq |z| < R.$$

Remark 2.6. We can extend the work in [10] with $\Omega(n)$ to see that for 0 < R < 2

$$\pi_k(x) = \widehat{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \cdot \frac{(\log\log x)^{k-1}}{k!} \left[1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right], \text{ uniformly for } 1 \le k \le R\log\log x.$$

The analogous function to express these bounds for $\omega(n)$ is defined by $\widehat{\mathcal{G}}(z) := \widehat{F}(1,z)/\Gamma(1+z)$ where we take

$$\widehat{F}(s,z) := \prod_{p} \left(1 + \frac{z}{p^s - 1} \right) \left(1 - \frac{1}{p^s} \right)^z, \operatorname{Re}(s) > \frac{1}{2}; |z| \le R < 2.$$

Let the functions

$$C(x,r) := \#\{n \le x : \omega(n) \le r \log \log x\}$$

 $D(x,r) := \#\{n \le x : \omega(n) > r \log \log x\}.$

Then we have the next uniform upper bounds given by

$$C(x,r) \ll x(\log x)^{r-1-r\log r}$$
, uniformly for $0 < r \le 1$, $D(x,r) \ll x(\log x)^{r-1-r\log r}$, uniformly for $1 \le r \le R < 2$.

Corollary 2.7. Suppose that for x > e we define the functions

$$\mathcal{N}_{\omega}(x) := \left| \sum_{k > \log \log x} (-1)^k \pi_k(x) \right|$$

$$\mathcal{D}_{\omega}(x) := \left| \sum_{k \leq \log \log x} (-1)^k \pi_k(x) \right|$$

$$\mathcal{A}_{\omega}(x) := \left| \sum_{k \geq 1} (-1)^k \pi_k(x) \right|.$$

Then as $x \to \infty$, we have that $\mathcal{N}_{\omega}(x)/\mathcal{D}_{\omega}(x) = o(1)$ and $\mathcal{A}_{\omega}(x) \asymp \mathcal{D}_{\omega}(x)$.

Proof. First, we sum the function $\mathcal{D}_{\omega}(x)$ exactly, and then apply the limiting asymptotics for the incomplete gamma function from (10b) and Stirling's formula, to obtain that

$$\mathcal{D}_{\omega}(x) = \left| \sum_{k \le \log \log x} \frac{(-1)^k \cdot x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \right|$$

$$= \left| \frac{x}{(\log x)^2} \cdot \frac{\Gamma(\log \log x, -\log \log x)}{\Gamma(\log \log x)} \right|$$

$$\approx \frac{x}{\log x} \cdot \frac{(\log \log x)^{\log \log x-1}}{\Gamma(\log \log x)}$$

$$\approx \frac{x}{\sqrt{\log \log x}}.$$

Next, we notice that for any $\delta_{x,k} > 0$ when we define $r \log \log x \le k := \log \log x + \delta_{x,k}$, we obtain the bounds that $r \le \frac{\log x}{\log \log x}$. Expanding logarithms leads to

$$x(\log x)^{r-1-r\log r} = O\left(\frac{x}{(\log x)^{1+\log x}}\right).$$

Then we see that

$$\frac{\mathcal{N}_{\omega}(x)}{\mathcal{D}_{\omega}(x)} \ll \frac{\sqrt{\log \log x}}{(\log x)^{1 + \log x}} = o(1), \text{ as } x \to \infty.$$

Now we have the bounds

$$1 + o(1) = \frac{\mathcal{D}_{\omega}(x) - \mathcal{N}_{\omega}(x)}{\mathcal{D}_{\omega}(x)} \ll \frac{\mathcal{A}_{\omega}(x)}{\mathcal{D}_{\omega}(x)} \ll \frac{\mathcal{N}_{\omega}(x) - \mathcal{D}_{\omega}(x)}{\mathcal{D}_{\omega}(x)} = 1 + o(1).$$

The last equation implies that $\mathcal{A}_{\omega}(x) \simeq \mathcal{D}_{\omega}(x)$ as $x \to \infty$. Hence, we can accurately approximate asymptotic order of the sums $\mathcal{A}_{\omega}(x)$ for large x by only considering the truncated sums $\mathcal{D}_{\omega}(x)$ where we have the uniform bounds for $1 \le k \le \log \log x$.

3 Auxiliary sequences to express the Dirichlet inverse function $g^{-1}(n)$

The pages of tabular data given as Table T.1 in the appendix section (refer to page 35) are intended to provide clear insight into why we eventually arrived at the approximations to $g^{-1}(n)$ initially proved in this section. The table provides illustrative numerical data by examining the approximate behavior at hand for the cases of $1 \le n \le 500$ with *Mathematica* [17]. In Section 4, we will use these relations between $g^{-1}(n)$ and $C_{\Omega(n)}(n)$ to prove an Erdös-Kac like analog for the distribution of this function.

3.1 Definitions and properties of triangular component function sequences

We define the following auxiliary coefficient sequence for integers $n \ge 1$ and $k \ge 0$:

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1}(n/d), & \text{if } k \ge 1. \end{cases}$$

$$\tag{11}$$

By recursively expanding the definition of $C_k(n)$ at any fixed $n \geq 2$, we see that we can form a chain of at most $\Omega(n)$ iterated (or nested) divisor sums by unfolding the definition of (11) inductively. By the same argument, we see that at fixed n, the function $C_k(n)$ is seen to be non-zero only for positive integers $k \leq \Omega(n)$ whenever $n \geq 2$. A sequence of relevant signed semi-diagonals of the functions $C_k(n)$ begins as follows [18, A008480]:

$$\{\lambda(n)\cdot C_{\Omega(n)}(n)\}_{n\geq 1}\mapsto \{1,-1,-1,1,-1,2,-1,-1,1,2,-1,-3,-1,2,2,1,-1,-3,-1,-3,2,2,-1,4,1,2,\ldots\}.$$

We can see that $C_{\Omega(n)}(n) \leq (\Omega(n))!$ for all $n \geq 1$. In fact, $h^{-1}(n) \equiv \lambda(n)C_{\Omega(n)}(n)$ is the same function given by the formula in (9) from Proposition 2.1.

3.2 Relating the function $C_{\Omega(n)}(n)$ to exact formulas for $g^{-1}(n)$

Lemma 3.1 (An exact initial formula for $g^{-1}(n)$). For all $n \geq 1$, we have that

$$g^{-1}(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega(d)}(d).$$

Proof. We first write out the standard recurrence relation for the Dirichlet inverse as

$$g^{-1}(n) = -\sum_{\substack{d|n\\d>1}} (\omega(d) + 1)g^{-1}(n/d) \implies (g^{-1} * 1)(n) = -(\omega * g^{-1})(n).$$
 (12)

We argue that for $1 \le m \le \Omega(n)$, we can inductively expand the implication on the right-hand-side of (12) in the form of $(g^{-1} * 1)(n) = F_m(n)$ where $F_m(n) := (-1)^m \cdot (C_m(-) * g^{-1})(n)$, or so that

$$F_{m}(n) = -\begin{cases} \sum_{\substack{d \mid n \\ d > 1}} F_{m-1}(d) \times \sum_{\substack{r \mid \frac{n}{d} \\ r > 1}} \omega(r) g^{-1} \left(\frac{n}{dr} \right), & 2 \leq m \leq \Omega(n), \\ (\omega * g^{-1})(n), & m = 1. \end{cases}$$

By repeatedly expanding the right-hand-side of the previous equation, we find that for $m := \Omega(n)$ (i.e., with the expansions taken to a maximal depth in the previous equation)

$$(g^{-1} * 1)(n) = (-1)^{\Omega(n)} C_{\Omega(n)}(n) = \lambda(n) C_{\Omega(n)}(n).$$
(13)

The formula then follows from (13) by Möbius inversion applied to each side of the last equation.

Lemma 3.2. For all positive integers $n \geq 1$, we have that

$$|g^{-1}(n)| = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega(d)}(d). \tag{14}$$

Proof. By applying Lemma 3.1, Proposition 2.1 and the complete multiplicativity of $\lambda(n)$, we easily obtain the stated result. In particular, since $\mu(n)$ is non-zero only at squarefree integers and at any squarefree $d \ge 1$ we have $\mu(d) = (-1)^{\omega(d)} = \lambda(d)$, Lemma 3.1 implies

$$|g^{-1}(n)| = \lambda(n) \times \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega(d)}(d)$$

$$= \sum_{d|n} \mu^2\left(\frac{n}{d}\right) \lambda\left(\frac{n}{d}\right) \lambda(nd) C_{\Omega(d)}(d)$$

$$= \lambda(n^2) \times \sum_{d|n} \mu^2\left(\frac{n}{d}\right) C_{\Omega(d)}(d).$$

In the last equation, we see that that $\lambda(n^2) = +1$ for all $n \geq 1$ since the number of distinct prime factors (counting multiplicity) of any square integer is even.

Since $C_{\Omega(n)}(n) = |h^{-1}(n)|$ using the notation defined in the the proof of Proposition 2.1, we can see that $C_{\Omega(n)}(n) = (\omega(n))!$ for squarefree $n \geq 1$. A proof of part (B) of Conjecture 1.6 follows as an immediate consequence.

Remark 3.3. Combined with the signedness property of $g^{-1}(n)$ guaranteed by Proposition 2.1, Lemma 3.2 shows that its summatory function is expressed as

$$G^{-1}(x) = \sum_{d \le x} \lambda(d) C_{\Omega(d)}(d) M\left(\left\lfloor \frac{x}{d} \right\rfloor\right).$$

Additionally, since (5) implies that

$$\lambda(d)C_{\Omega(d)}(d) = (g^{-1} * 1)(d) = (\chi_{\mathbb{P}} + \varepsilon)^{-1}(d),$$

where $\chi_{\mathbb{P}}$ denotes the characteristic function of the primes, we also clearly recover by inversion that

$$M(x) = G^{-1}(x) + \sum_{p \le x} G^{-1}\left(\left\lfloor \frac{x}{p} \right\rfloor\right), x \ge 1.$$

This connection between the summatory function of $g^{-1}(n)$ and the primes is also conveyed by the form of the identity we prove for M(x) in Proposition 5.3 involving the prime counting function, $\pi(x)$.

3.3 A connection to the distribution of the primes

The combinatorial complexity of $g^{-1}(n)$ is deeply tied to the distribution of the primes $p \leq n$ as $n \to \infty$. The magnitudes and dispersion of the primes $p \leq x$ certainly restricts the repeating of these distinct sequence values. Nonetheless, we can see that the following is still clear about the relation of the weight functions $|g^{-1}(n)|$ to the distribution of the primes: The value of $|g^{-1}(n)|$ is entirely dependent on the pattern of the *exponents* (viewed as multisets) of the distinct prime factors of $n \geq 2$, rather than on the prime factor weights themselves (cf. Heuristic 1.5).

Example 3.4 (Combinatorial significance to the distribution of $g^{-1}(n)$). We have a natural extremal behavior with respect to distinct values of $\Omega(n)$ corresponding to squarefree integers and prime powers. Namely, if for

 $k \geq 1$ we define the infinite sets M_k and m_k to correspond to the maximal (minimal) sets of positive integers such that

$$M_k := \left\{ n \ge 2 : |g^{-1}(n)| = \sup_{\substack{j \ge 2\\ \Omega(j) = k}} |g^{-1}(j)| \right\} \subseteq \mathbb{Z}^+,$$

$$m_k := \left\{ n \ge 2 : |g^{-1}(n)| = \inf_{\substack{j \ge 2\\ \Omega(j) = k}} |g^{-1}(j)| \right\} \subseteq \mathbb{Z}^+,$$

then any element of M_k is squarefree and any element of m_k is a prime power. In particular, we have that for any $N_k \in M_k$ and $n_k \in m_k$

$$(-1)^k \cdot g^{-1}(N_k) = \sum_{j=0}^k {k \choose j} \cdot j!, \quad \text{and} \quad (-1)^k \cdot g^{-1}(n_k) = 2.$$

The formula for the function $h^{-1}(n) = (g^{-1} * 1)(n)$ defined in the proof of Proposition 2.1 implies that we can express an exact formula for $g^{-1}(n)$ in terms of symmetric polynomials in the exponents of the prime factorization of n. Namely, for $n \ge 2$ and $0 \le k \le \omega(n)$ let

$$\widehat{e}_k(n) := [z^k] \prod_{p|n} (1 + z \cdot \nu_p(n)) = [z^k] \prod_{p^{\alpha}||n} (1 + \alpha z).$$

Then we have essentially shown using (9) and (14) that we can expand formulas for these inverse functions in the following form:

$$g^{-1}(n) = h^{-1}(n) \times \sum_{k=0}^{\omega(n)} {\Omega(n) \choose k}^{-1} \frac{\widehat{e}_k(n)}{k!}, n \ge 2.$$

The combinatorial formula for $h^{-1}(n) = \lambda(n) \cdot (\Omega(n))! \times \prod_{p^{\alpha}||n} (\alpha!)^{-1}$ we derived in the proof of the key signedness proposition from Section 2 suggests additional patterns and more regularity in the contributions of the distinct weighted terms for $G^{-1}(x)$.

4 The distributions of the unsigned sequences $C_{\Omega(n)}(n)$ and $|g^{-1}(n)|$

We have already suggested in the introduction that the relation of the component functions, $g^{-1}(n)$ and $C_{\Omega(n)}(n)$, to the canonical additive functions $\omega(n)$ and $\Omega(n)$ leads to the regular properties of these functions cited á priori in Table T.1. Each of $\omega(n)$ and $\Omega(n)$ satisfies an Erdös-Kac theorem that shows that the density of a shifted and scaled variant of each of the sets of these function values for $n \leq x$ can be expressed through a limiting normal distribution as $x \to \infty$ [3, 2, 14]. In the remainder of this section we establish more analytical proofs of related properties of these key sequences used to express $G^{-1}(x)$, again in the spirit of Montgomery and Vaughan's modern reference manual (cf. Remark 1.7).

Proposition 4.1. Let the function $\widehat{F}(s,z)$ is defined for $\operatorname{Re}(s) \geq 2$ and $|z| < |P(s)|^{-1}$ in terms of the prime zeta function by

$$\widehat{F}(s,z) := \frac{1}{1 - P(s)z} \times \prod_{p} \left(1 - \frac{1}{p^s}\right)^z.$$

For $|z| < P(2)^{-1} \approx 2.21118$, the summatory function of the coefficients of $\widehat{F}(s,z)$ expanded as a DGF are defined as follows:

$$\widehat{A}_z(x) := \sum_{n < x} (-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)}.$$

Moreover, we have that for all sufficiently large x

$$\widehat{A}_z(x) = \frac{x}{\Gamma(z)} \cdot \widehat{F}(2, z) \cdot (\log x)^{z-1} + O_z \left(x \cdot (\log x)^{\text{Re}(z) - 2} \right), |z| < P(2)^{-1}.$$

Proof. We can see by adapting the notation from the proof of Proposition 2.1 that for $n \geq 2$

$$C_{\Omega(n)}(n) = (\Omega(n))! \times \prod_{n \in \mathbb{N}} \frac{1}{\alpha!}.$$

We can generate scaled forms of these terms through a product identity of the following form:

$$\sum_{n\geq 1} \frac{C_{\Omega(n)}(n)}{(\Omega(n))!} \cdot \frac{(-1)^{\omega(n)} z^{\Omega(n)}}{n^s} = \prod_{p} \left(1 + \sum_{r\geq 1} \frac{z^{\Omega(p^r)}}{r! \cdot p^{rs}}\right)^{-1} = \exp\left(z \cdot P(s)\right), \operatorname{Re}(s) \geq 2, z \in \mathbb{C}.$$

This product based expansion is similar in construction to the parameterized bivariate DGF used in [10, §7.4]. By computing a Laplace transform on the right-hand-side of the above equation, we obtain

$$\sum_{n \geq 1} \frac{C_{\Omega(n)}(n) \cdot (-1)^{\omega(n)} z^{\Omega(n)}}{n^s} = \int_0^\infty e^{-t} \exp\left(tz \cdot P(s)\right) dt = \frac{1}{1 - P(s)z}, \operatorname{Re}(s) \geq 2, |z| < |P(s)|^{-1}.$$

It follows that

$$\sum_{n>1} \frac{(-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)}}{n^s} = \zeta(s)^z \times \widehat{F}(s, z), \operatorname{Re}(s) \ge 2, |z| < |P(s)|^{-1}.$$

Since $\widehat{F}(s,z)$ is an analytic function of s for all $\operatorname{Re}(s) > 1$ whenever the parameter $|z| < |P(s)|^{-1}$, if $b_z(n)$ denotes the coefficients over $n \ge 1$ in the DGF expansion of $\widehat{F}(s,z)$, then

$$\left| \sum_{n \ge 1} \frac{b_z(n)(\log n)^{2R+1}}{n^s} \right| < +\infty,$$

is uniformly bounded for $|z| \leq R < +\infty$. This fact follows by repeated termwise differentiation with respect to s.

Let the function $d_z(n)$ be generated as the coefficients of the DGF $\zeta(s)^z = \sum_{n \geq 1} \frac{d_z(n)}{n^s}$ for Re(s) > 1, and with corresponding summatory function $D_z(x) := \sum_{n \leq x} d_z(n)$. The theorem proved in the reference [10, Thm. 7.17; §7.4] shows that for any $z \in \mathbb{C}$ and integers $x \geq 2$

$$D_z(x) = \frac{x(\log x)^{z-1}}{\Gamma(z)} + O\left(x \cdot (\log x)^{\operatorname{Re}(z)-2}\right).$$

We set $b_z(n) \equiv (-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)}$, let the convolution $a_z(n) := \sum_{d|n} b_z(d) d_z(n/d)$, and define its summatory function by $A_z(x) := \sum_{n < x} a_z(n)$. Then we have that

$$A_{z}(x) = \sum_{m \le x/2} b_{z}(m) D_{z}(x/m) + \sum_{x/2 < m \le x} b_{z}(m)$$

$$= \frac{x}{\Gamma(z)} \times \sum_{m \le x/2} \frac{b_{z}(m)}{m^{2}} \times m \cdot \log\left(\frac{x}{m}\right)^{z-1} + O\left(\sum_{m \le x} \frac{x \cdot |b_{z}(m)|}{m^{2}} \times m \cdot \log\left(\frac{2x}{m}\right)^{\operatorname{Re}(z)-2}\right). \tag{15}$$

We can sum the coefficients for u > e sufficiently large as follows:

$$\sum_{m \le u} \frac{b_z(m)}{m} = \left(\widehat{F}(2, z) + O(u^{-2})\right) u - \int_1^u \left(\widehat{F}(2, z) + O(t^{-2})\right) dt = \widehat{F}(2, z) + O(1 + u^{-1}).$$

Suppose that $|z| \leq R < P(2)^{-1}$. Then the error term in (15) satisfies

$$\sum_{m \le x} \frac{x \cdot |b_z(m)|}{m^2} \times m \cdot \log\left(\frac{2x}{m}\right)^{\text{Re}(z) - 2} \ll x(\log x)^{\text{Re}(z) - 2} \times \sum_{m \le \sqrt{x}} \frac{|b_z(m)|}{m} + x(\log x)^{-(R+2)} \times \sum_{m > \sqrt{x}} \frac{|b_z(m)|}{m} (\log m)^{2R}$$

$$\ll x(\log x)^{\text{Re}(z) - 2} \cdot \widehat{F}(2, z) = O_z\left(x \cdot (\log x)^{\text{Re}(z) - 2}\right), |z| \le R.$$

In the main term estimate for $A_z(x)$ from (15), when $m \leq \sqrt{x}$ we have

$$\log\left(\frac{x}{m}\right)^{z-1} = (\log x)^{z-1} + O\left((\log m)(\log x)^{\operatorname{Re}(z)-2}\right).$$

The total sum over the interval $m \le x/2$ corresponds to bounding the following sum components when we take $|z| \le R$:

$$\begin{split} \sum_{m \leq x/2} b_z(m) D_z(x/m) &= \frac{x}{\Gamma(z)} (\log x)^{z-1} \times \sum_{m \leq x/2} \frac{b_z(m)}{m} \\ &+ O_z \left(x (\log x)^{\text{Re}(z)-2} \times \sum_{m \leq \sqrt{x}} \frac{|b_z(m)|}{m} + x (\log x)^{R-1} \times \sum_{m > \sqrt{x}} \frac{|b_z(m)|}{m} \right) \\ &= \frac{x}{\Gamma(z)} (\log x)^{z-1} \widehat{F}(2,z) + O_z \left(x (\log x)^{\text{Re}(z)-2} \times \sum_{m \geq 1} \frac{b_z(m) (\log m)^{2R+1}}{m^2} \right) \\ &= \frac{x}{\Gamma(z)} (\log x)^{z-1} \widehat{F}(2,z) + O_{z,R} \left(x (\log x)^{\text{Re}(z)-2} \right). \end{split}$$

Theorem 4.2. We have uniformly for $1 \le k < \log \log x$ that as $x \to \infty$

$$\widehat{C}_k(x) := \sum_{\substack{n \leq x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_k(n) \asymp \frac{x}{\log x} \cdot \frac{(\log \log x + \log \zeta(2))^{k-1}}{(k-1)!} \left[1 + O\left(\frac{k}{(\log \log x)^2}\right) \right].$$

Proof. We begin by bounding a contour integral over the error term for fixed large x when $r := \frac{k-1}{\log \log x}$ with r < 2 and $k \ge 2$:

$$\left| \int_{|v|=r} \frac{x \cdot (\log x)^{-(\operatorname{Re}(v)+2)}}{v^{k+1}} dv \right| \ll x (\log x)^{-(r+2)} r^{-(k+1)} \ll \frac{x}{(\log x)^2} \cdot \frac{(\log \log x)^{k+1}}{(k-1)^{k+1}} \cdot \frac{1}{e^{k-1}} \right|$$

$$\ll \frac{x}{(\log x)^2} \cdot \frac{(\log \log x)^{k+1}}{(k-1)^{3/2}} \cdot \frac{1}{e^{2k} (k-1)!}$$

$$\ll \frac{x}{(\log x)^2} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \ll \frac{x}{\log x} \cdot \frac{k \cdot (\log \log x)^{k-5}}{(k-1)!}.$$

When k = 1 we have that

$$\left| \int_{|v|=r} \frac{x \cdot (\log x)^{-(\operatorname{Re}(v)+2)}}{v^2} dv \right| = \left| \frac{1}{1!} \times \frac{d}{dv} \left[x \cdot (\log x)^{-(\operatorname{Re}(v)+2)} \right] \right|$$

$$\ll \left| \frac{d}{dr} \left[\frac{x}{(\log x)^2} \cdot \exp(-r \log \log x) \right] \right|$$

$$\ll \frac{x}{(\log x)(\log \log x)^2}.$$

We must now find an asymptotically accurate main term approximation to the coefficients of the following contour integral for $r \in [0, z_{\text{max}}]$ where $z_{\text{max}} < P(2)^{-1}$ according to Proposition 4.1:

$$\widetilde{A}_r(x) := \int_{|v|=r} \frac{x \cdot (\log x)^{-v} \zeta(2)^{-v}}{(\log x) \Gamma(1+v) \cdot v^k (1+P(2)v)} dv. \tag{16}$$

We can show that provided a restriction to $1 \le r < 1$, we can approximate the contour integral in (16) where the resulting main term is accurate up to a bounded constant factor. This procedure removes the gamma function term in the denominator of the integrand by essentially applying a mean value theorem type analog for smoothly parameterized contours. The logic used to justify this simplification is discussed next.

We observe that for r := 1, the function $|\Gamma(1+re^{2\pi it})|$ has a singularity (pole) when $t := \frac{1}{2}$. We restrict the range of |v| = r so that $0 \le r < 1$ to necessarily avoid this problematic value of t when we parameterize $v = re^{2\pi it}$ by a real-line integral over $t \in [0, 1]$. We can numerically evaluate the finite extremal values of this function as

$$\min_{\substack{0 \le r < 1 \\ 0 \le t \le 1}} |\Gamma(1 + re^{2\pi it})| = |\Gamma(1 + re^{2\pi it})| \Big|_{\substack{(r,t) \approx (1,0.740592)}} \approx 0.520089$$

$$\max_{\substack{0 \le r < 1 \\ 0 \le t \le 1}} |\Gamma(1 + re^{2\pi it})| = |\Gamma(1 + re^{2\pi it})| \Big|_{\substack{(r,t) \approx (1,0.999887)}} \approx 1.$$

This shows that

$$\widetilde{A}_r(x) \simeq \int_{|v|=r} \frac{x \cdot (\log x)^{-v} \zeta(2)^{-v}}{(\log x) \cdot v^k (1 + P(2)v)} dv, \tag{17}$$

where as $x \to \infty$

$$\frac{A_r(x)}{\int_{|v|=r} \frac{x(\log x)^{-v}\zeta(2)^{-v}}{(\log x) \cdot v^k (1+P(2)v)} dv} \in [1, 1.92275].$$

By induction we can compute the remaining coefficients $[z^k]\Gamma(1+z) \times \widehat{A}_z(x)$ with respect to x for fixed $k \le \log \log x$ using the Cauchy integral formula. Namely, it is not difficult to see that for any integer $m \ge 0$, we have the m^{th} partial derivative of the integrand with respect to z has the following limiting expansion by applying (10b):

$$\frac{1}{m!} \times \frac{\partial^{(m)}}{\partial v^{(m)}} \left[\frac{(\log x)^{-v} \zeta(2)^{-v}}{1 + P(2)v} \right]_{v=0} = \sum_{j=0}^{m} \frac{(-1)^m P(2)^j (\log \log x + \log \zeta(2))^{m-j}}{(m-j)!}$$

$$= \frac{(-P(2))^m (\log x)^{\frac{1}{P(2)}} \zeta(2)^{\frac{1}{P(2)}}}{m!} \times \Gamma\left(m+1, \frac{\log\log x + \log\zeta(2)}{P(2)}\right)$$
$$\sim \frac{(-1)^m (\log\log x + \log\zeta(2))^m}{m!}.$$

Now by parameterizing the countour around $|z|=r:=\frac{k-1}{\log\log x}<1$ we deduce that the main term of our approximation corresponds to

$$\int_{|v|=r} \frac{x \cdot (\log x)^{-v} \zeta(2)^{-v}}{(\log x) v^k (1 + P(2)v)} dv \approx \frac{x}{\log x} \cdot \frac{(-1)^{k-1} (\log \log x + \log \zeta(2))^{k-1}}{(k-1)!}.$$

Corollary 4.3. We have that for large $x \ge 2$ uniformly for $1 \le k \le \log \log x$

$$\sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \approx 2\sqrt{2\pi} \cdot x \times \frac{(\log \log x)^{k + \frac{1}{2}}}{(2k+1)(k-1)!}.$$

Proof. We have an integral formula involving the non-sign-weighted sequence that results by applying ordinary Abel summation (and integrating by parts) in the form of the next equations.

$$\sum_{n \le x} \lambda_*(n) h(n) = \left(\sum_{n \le x} \lambda_*(n)\right) h(x) - \int_1^x \left(\sum_{n \le t} \lambda_*(n)\right) h'(t) dt$$

$$\left\{ \begin{array}{l} u_t = L_*(t) & v_t' = h'(t) dt \\ u_t' = L_*'(t) dt & v_t = h(t) \end{array} \right\}$$

$$\approx \int_1^x \frac{d}{dt} \left[\sum_{n \le t} \lambda_*(n)\right] h(t) dt$$

$$(18)$$

Let the signed left-hand-side summatory function for our function corresponding to (18) be defined by

$$\widehat{C}_{k,*}(x) := \sum_{\substack{n \leq x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_{\Omega(n)}(n)
\approx \frac{x}{\log x} \cdot \frac{(\log \log x + \log \zeta(2))^{k-1}}{(k-1)!} \left[1 + O\left(\frac{1}{\log \log x}\right) \right]
\approx \frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \left[1 + O\left(\frac{1}{\log \log x}\right) \right]$$

where the second equation above follows from the proof of Theorem 4.2. We adopt the notation that $\lambda_*(n) = (-1)^{\omega(n)}$ for $n \ge 1$.

We transform our previous results for the partial sums over the signed sequences $\lambda_*(n) \cdot C_{\Omega(n)}(n)$ such that $\Omega(n) = k$. The argument is based on approximating the smooth summatory function of $\lambda_*(n) := (-1)^{\omega(n)}$ using the following known uniform asymptotics for $\pi_k(x)$ when $1 \le k \le \log \log x$:

$$\pi_k(x) \approx \frac{x}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!} (1 + o(1)), \text{ as } x \to \infty.$$

In particular, we have by an asymptotic approximation to the incomplete gamma function and Corollary 2.7 that

$$L_*(t) := \left| \sum_{n \le t} (-1)^{\omega(n)} \right| \asymp \left| \sum_{k=1}^{\log \log t} (-1)^k \pi_k(x) \right| \sim \frac{t}{\sqrt{2\pi} \sqrt{\log \log t}}, \text{ as } t \to \infty.$$

The main term for the reciprocal of the derivative of this summatory function is asymptotic to

$$\frac{1}{L'_*(t)} \asymp \sqrt{2\pi} \cdot (\log \log t)^{\frac{1}{2}}.$$

After applying the formula from (18), we thus deduce that the unsigned summatory function variant satisfies

$$\widehat{C}_{k,*}(x) = \int_1^x L_*'(t) C_{\Omega(t)}(t) dt \qquad \Longrightarrow C_{\Omega(x)}(x) \asymp \frac{\widehat{C}_{k,*}'(x)}{L_*'(x)} \qquad \Longrightarrow$$

$$C_{\Omega(x)}(x) \asymp \sqrt{2\pi} \cdot \frac{(\log \log x)^{\frac{1}{2}}}{\log x} \cdot \left[\frac{(\log \log x)^{k-1}}{(k-1)!} \left(1 - \frac{1}{\log x} \right) + \frac{(\log \log x)^{k-2}}{(\log x)(k-2)!} \right]$$

$$\asymp \sqrt{2\pi} \cdot \frac{(\log \log x)^{k-\frac{1}{2}}}{(\log x)(k-1)!} =: \widehat{C}_{k,**}(x), \text{ as } x \to \infty.$$

The ordinary Abel summation formula, and integration by parts, implies that we obtain the main term

$$\sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \approx \int \widehat{C}_{k,**}(x) dx$$

$$\approx 2\sqrt{2\pi} \cdot x \times \frac{(\log \log x)^{k + \frac{1}{2}}}{(2k+1)(k-1)!}.$$

Lemma 4.4. We have that as $x \to \infty$

$$\mathbb{E}\left[C_{\Omega(n)}(n)\right] \asymp 2\sqrt{2\pi} \cdot (\log n) \sqrt{\log \log n}.$$

Proof. We first compute the following summatory function by applying Corollary 4.3:

$$\sum_{k=1}^{\log\log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \approx 2\sqrt{2\pi} \cdot x \cdot (\log x) \sqrt{\log\log x}.$$
 (20)

We claim that

$$\sum_{n \le x} C_{\Omega(n)}(n) = \sum_{k=1}^{\log_2(x)} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \approx \sum_{k=1}^{\log\log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n).$$
(21)

Then (20) clearly implies our result. To prove (21) it suffices to show that

$$\frac{\sum\limits_{\log\log x < k \le \log_2(x)} \sum\limits_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n)}{\sum\limits_{k=1}^{\log\log x} \sum\limits_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n)} = o(1), \text{ as } x \to \infty.$$
(22)

We define the following component sums for large x and $0 < \varepsilon < 1$ so that $(\log \log x)^{\frac{\varepsilon \log \log x}{\log \log \log x}} = o(\log x)$:

$$S_{2,\varepsilon}(x) := \sum_{\log\log x < k \leq (\log\log x)^{\frac{\varepsilon\log\log x}{\log\log\log x}}} \sum_{\substack{n \leq x \\ \Omega(n) = k}} C_{\Omega(n)}(n).$$

Then

$$\sum_{k=\log\log x}^{\log_2(x)} \sum_{\substack{n \leq x \\ \Omega(n)=k}} C_{\Omega(n)}(n) \gg S_{2,\varepsilon}(x),$$

with equality as $\varepsilon \to 1$ so that the upper bound of summation tends to $\log x$. Observe that whenever $\Omega(n) = k$, we have that $C_{\Omega(n)}(n) \le k!$, with equality at the upper bound precisely when $\mu^2(n) = 1$. We can then bound the sums defined above using Theorem 2.3 with $r := \frac{k}{\log \log x}$ for large $x \to \infty$ by

$$\begin{split} S_{2,\varepsilon}(x) & \leq \sum_{\log\log x} \sum_{\substack{n \leq x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \ll \sum_{k=\log\log x}^{\frac{\varepsilon\log\log x}{\log\log\log x}} \frac{\widehat{\pi}_k(x)}{x} \cdot k! \\ & \ll \sum_{k=\log\log x}^{\frac{\varepsilon\log\log x}{\log\log\log\log x}} (\log x)^{\frac{k}{\log\log\log x} - 1 - \frac{k}{\log\log x} (\log k - \log\log\log x)} \cdot \left(\frac{k}{e}\right)^k \sqrt{2\pi k} \\ & \ll \sum_{k=\log\log x}^{\frac{\varepsilon\log\log x}{\log\log\log x}} (\log x)^{\frac{2k \cdot \log\log\log x}{\log\log x} - 2 + k} \sqrt{k} \\ & \ll \frac{1}{(\log x)^2} \times \int_{\log\log x}^{\frac{\varepsilon\log\log x}{\log\log\log x}} (\log x)^{\frac{2k \cdot \log\log\log x}{\log\log\log x}} (\log x)^{\frac{2k \cdot \log\log\log x}{\log\log\log x}} + t \sqrt{t} \cdot dt \\ & \ll \frac{1}{(\log\log x)} \sqrt{\frac{\varepsilon \cdot \log\log x}{\log\log\log x}} \times (\log x)^{\frac{\varepsilon \cdot \log\log x}{\log\log\log x}} (\log\log x)^{\frac{2\varepsilon \cdot \log\log x}{\log\log\log x}} = o(x). \end{split}$$

Thus by (20) the ratio in (22) clearly tends to zero.

Corollary 4.5. We have that as $n \to \infty$, the average order of the unsigned inverse sequence satisfies

$$\mathbb{E}|g^{-1}(n)| \simeq (\log n)^2 \sqrt{\log \log n}.$$

Proof. We use the formula from Lemma 4.4 to find $\mathbb{E}[C_{\Omega(n)}(n)]$ up to a small bounded multiplicative constant factor as $n \to \infty$. This implies that for large t

$$\int \frac{\mathbb{E}[C_{\Omega(t)}(t)]}{t} dt \approx \sqrt{2\pi} \cdot (\log t)^2 \sqrt{\log \log t} - \frac{\pi}{2} \operatorname{erfi}\left(\sqrt{2\log \log t}\right)$$
$$\approx \sqrt{2\pi} \cdot (\log t)^2 \sqrt{\log \log t}.$$

Recall from the introduction that the summatory function of the squarefree integers is approximated by

$$Q(x) := \sum_{n \le x} \mu^2(n) = \frac{6x}{\pi^2} + O(\sqrt{x}).$$

Therefore summing over the formula from (14) we find that

$$\mathbb{E}|g^{-1}(n)| = \frac{1}{n} \times \sum_{d \le n} C_{\Omega(d)}(d) Q\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

$$\sim \sum_{d \le n} C_{\Omega(d)}(d) \left[\frac{6}{d \cdot \pi^2} + O\left(\frac{1}{\sqrt{dn}}\right)\right]$$

$$= \frac{6}{\pi^2} \left[\mathbb{E}[C_{\Omega(n)}(n)] + \sum_{d < n} \frac{\mathbb{E}[C_{\Omega(d)}(d)]}{d}\right] + O\left(\frac{1}{\sqrt{n}} \times \int_0^n t^{-1/2} dt\right)$$

$$\approx \frac{6\sqrt{2}}{\pi^{\frac{3}{2}}} (\log n)^2 \sqrt{\log \log n} + O(1).$$

Theorem 4.6. Let the mean and variance parameters be denoted by

$$\mu_x(C) := \log \log x + \hat{a} - \frac{1}{2} \cdot \log \log \log x,$$
 and $\sigma_x(C) := \sqrt{\mu_x(C)},$

where we define the absolute constant $\hat{a} := \log\left(\frac{1}{\sqrt{2\pi}}\right) \approx -0.918939$. Let Y > 0 be fixed. Then we have uniformly for all $-Y \le z \le Y$ that

$$\frac{1}{x} \cdot \# \left\{ 2 \le n \le x : \frac{C_{\Omega(n)}(n) - \mu_x(C)}{\sigma_x(C)} \le z \right\} = \Phi(z) + O\left(\frac{1}{\sqrt{\log \log x}}\right), \text{ as } x \to \infty.$$

Proof. Fix any Y > 0 and set $z \in [-Y, Y]$. For large x and $n \le x$, define the following auxiliary variables:

$$\alpha_n := \frac{C_{\Omega(n)}(n) - \mu_n(C)}{\sigma_n(C)}, \text{ and } \beta_{n,x} := \frac{C_{\Omega(n)}(n) - \mu_x(C)}{\sigma_x(C)}.$$

Let the corresponding densities (whose limiting distributions we must verify) be defined by the functions

$$\Phi_1(x,z) := \frac{1}{x} \cdot \#\{n \le x : \alpha_n \le z\},\$$

and

$$\Phi_2(x,z) := \frac{1}{x} \cdot \#\{n \le x : \beta_{n,x} \le z\}.$$

We first argue that it suffices to consider the distribution of $\Phi_2(x,z)$ as $x \to \infty$ in place of $\Phi_1(x,z)$ to obtain our desired result. The difference of the two auxiliary variables is neglibible as $x \to \infty$ for $(n,x) \in [1,\infty)^2$ taken over the ranges that contribute the non-trivial weight to the main term of each density function. In particular, we have for $\sqrt{x} \le n \le x$ and $C_{\Omega(n)}(n) \le 2 \cdot \mu_x(C)$ that the following is true:

$$|\alpha_n - \beta_{n,x}| \ll \frac{1}{\sigma_x(C)} \xrightarrow{x \to \infty} 0.$$

Thus we can replace α_n by $\beta_{n,x}$ and estimate the limiting densities corresponding to the alternate terms. The rest of our argument follows the method in the proof of the related theorem in [10, Thm. 7.21; §7.4] closely. Readers familiar with the reference will see many parallels to those constructions.

We use the formula proved in Corollary 4.3 to estimate the densities claimed within the ranges bounded by z as $x \to \infty$. Let $k \ge 1$ be a natural number and set $k := t + \mu_x(C)$. We write the small parameter $\delta_{t,x} := \frac{t}{\mu_x(C)}$. When $|t| \le \frac{1}{2}\mu_x(C)$, we have by Stirling's formula that

$$2\sqrt{2\pi} \cdot x \times \frac{(\log\log x)^{k+\frac{1}{2}}}{(2k+1)(k-1)!} \sim \frac{e^{\hat{a}+t}(\log\log x)^{\mu_x(C)(1+\delta_{t,x})}}{\sigma_x(C) \cdot \mu_x(C)^{\mu_x(C)(1+\delta_{t,x})}(1+\delta_{t,x})^{\mu_x(C)(1+\delta_{t,x})+\frac{3}{2}}}$$
$$\sim \frac{e^t}{\sqrt{2\pi} \cdot \sigma_x(C)} (1+\delta_{t,x})^{-\left(\mu_x(C)(1+\delta_{t,x})+\frac{3}{2}\right)},$$

since $\frac{\mu_x(C)}{\log\log x} = 1 + o(1)$ as $x \to \infty$.

We have the uniform estimate that $\log(1 + \delta_{t,x}) = \delta_{t,x} - \frac{\delta_{t,x}^2}{2} + O(|\delta_{t,x}|^3)$ whenever $|\delta_{t,x}| \leq \frac{1}{2}$. Then we can expand the factor involving $\delta_{t,x}$ in the previous equation as follows:

$$(1 + \delta_{t,x})^{-\mu_x(C)(1+\delta_{t,x}) - \frac{1}{2}} = \exp\left(\left(\frac{1}{2} + \mu_x(C)(1+\delta_{t,x})\right) \times \left(-\delta_{t,x} + \frac{\delta_{t,x}^2}{2} + O(|\delta_{t,x}|^3)\right)\right)$$
$$= \exp\left(-t - \frac{3t + t^2}{2\mu_x(C)} + \frac{3t^2}{4\mu_x(C)^2} + O\left(\frac{|t|^3}{\mu_x(C)^2}\right)\right).$$

For both $|t| \le \mu_x(C)^{1/2}$ and $\mu_x(C)^{1/2} < |t| \le \mu_x(C)^{2/3}$, we see that

$$\frac{t}{\mu_x(C)} \ll \frac{1}{\sqrt{\mu_x(C)}} + \frac{|t|^3}{\mu_x(C)^2}.$$

Similarly, for $|t| \le 1$ and |t| > 1, we see that both

$$\frac{t^2}{\mu_x(C)^2} \ll \frac{1}{\sqrt{\mu_x(C)}} + \frac{|t|^3}{\mu_x(C)^2}.$$

Let the corresponding error terms in (x,t) be denoted by

$$\widetilde{E}(x,t) := O\left(\frac{1}{\sigma_x(C)} + \frac{|t|^3}{\mu_x(C)^2}\right).$$

Combining these estimates with the previous computations, we can deduce that uniformly for $|t| \leq \mu_x(C)^{2/3}$

$$2\sqrt{2\pi} \cdot x \times \frac{(\log\log x)^{k+\frac{1}{2}}}{(2k+1)(k-1)!} \sim \frac{1}{\sqrt{2\pi} \cdot \sigma_x(C)} \cdot \exp\left(-\frac{t^2}{2\sigma_x(C)^2}\right) \times \left[1 + \widetilde{E}(x,t)\right].$$

By the same argument utilized in the proof of Lemma 4.4, we see that the contributions of these summatory functions for $k \leq \mu_x(C) - \mu_x(C)^{2/3}$ is negligible. We also require that $k \leq \log \log x$ for all large x as we have worked out in Theorem 4.2. We then sum over a corresponding range of

$$\mu_x(C) - \mu_x(C)^{2/3} \le k \le \mu_x(C) + z \cdot \sigma_x(C)$$

to approximate the stated normalized densities. Then finally as $x \to \infty$, the three terms that result (one main term and two error terms, respectively) can be considered to each correspond to a Riemann sum for an associated integral.

Corollary 4.7. Let Y > 0. Suppose that $\mu_x(C)$ and $\sigma_x(C)$ are defined as in Theorem 4.6 for large x > e. Uniformly for Y > 0 and all $-Y \le y \le Y$ we have that

$$\frac{1}{x} \cdot \# \left\{ 2 \le n \le x : |g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le y \right\} = \Phi \left(\frac{\frac{\pi^2}{6} y - \mu_x(C)}{\sigma_x(C)} \right) + O\left(\frac{1}{\sqrt{\log \log x}} \right), \text{ as } x \to \infty.$$

Proof. We claim that

$$|g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \sim \frac{6}{\pi^2} C_{\Omega(n)}(n).$$

Since $|g^{-1}(n)| = \sum_{d|n} C_{\Omega(d)}(d)$ for all squarefree $n \geq 1$, we obtain that

$$\frac{1}{x} \times \sum_{n \le x} |g^{-1}(n)| = \frac{6}{\pi^2} \left[\mathbb{E}[C_{\Omega(x)}(x)] + \sum_{d < x} \frac{\mathbb{E}[C_{\Omega(d)}(d)]}{d} \right] + O(1).$$

Let the backwards difference operator with respect to x be defined for $x \ge 2$ and any arithmetic function f as $\Delta_x(f(x)) := f(x) - f(x-1)$. Then from the proof of Corollary 4.5, we see that for large n

$$|g^{-1}(n)| = \Delta_n(n \cdot \mathbb{E}|g^{-1}(n)|) \sim \Delta_n \left(\sum_{d \le n} \frac{6}{\pi^2} \cdot C_{\Omega(d)}(d) \cdot \frac{n}{d} \right)$$

$$= \frac{6}{\pi^2} \left[C_{\Omega(n)}(n) + \sum_{d < n} C_{\Omega(d)}(d) \frac{n}{d} - \sum_{d < n} C_{\Omega(d)}(d) \frac{(n-1)}{d} \right]$$

$$= \frac{6}{\pi^2} C_{\Omega(n)}(n) + \frac{6}{\pi^2}, \text{ as } n \to \infty.$$

Since $\mathbb{E}|g^{-1}(n-1)| \sim \mathbb{E}|g^{-1}(n)|$ at all sufficiently large n, by Corollary 4.5, the result finally follows from Theorem 4.6.

Lemma 4.8. Suppose that $\mu_x(C)$ and $\sigma_x(C)$ are defined as in Theorem 4.6 for large x > e. If x is sufficiently large and we pick any integer $n \in [2, x]$ uniformly at random, then each of the following statements holds as $x \to \infty$:

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le 0\right) = o(1)$$
(A)

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2}\mathbb{E}|g^{-1}(n)| \le \frac{6}{\pi^2}\mu_x(C)\right) = \frac{1}{2} + o(1).$$
(B)

Moreover, for any positive real $\delta > 0$ we have that

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2}\mathbb{E}|g^{-1}(n)| \le \frac{6}{\pi^2}\mu_x(C)^{1+\delta}\right) = 1 + o_{\delta}(1), \text{ as } x \to \infty.$$
 (C)

Proof. Each of these results is a consequence of Corollary 4.7. Let the densities $\gamma_z(x)$ be defined for $z \in \mathbb{R}$ and sufficiently large x > e as follows:

$$\gamma_z(x) := \frac{1}{x} \cdot \#\{2 \le n \le x : |g^{-1}(n)| - \mathbb{E}|g^{-1}(n)| \le z\}.$$

To prove (A), observe that by Corollary 4.7 for z := 0 we have that

$$\gamma_0(x) = \Phi(-\sigma_x(C)) + o(1), \text{ as } x \to \infty.$$

We can see that $\sigma_x(C) \xrightarrow{x \to \infty} +\infty$ where for $z \ge 0$ we have the reflection identity for the normal distribution CDF $\Phi(z) = 1 - \Phi(-z)$. Since we have by an asymptotic approximation to the error function expanded by

$$\Phi(z) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{z}{\sqrt{2}} \right) \right)$$

$$= 1 - \frac{2e^{-z^2/2}}{\sqrt{2\pi}} \left[z^{-1} - z^{-3} + 3z^{-5} - 15z^{-7} + \cdots \right], \text{ as } |z| \to \infty,$$

we can see that

$$\gamma_0(x) = \Phi\left(-\sigma_x(C)\right) \approx \frac{1}{\sigma_x(C)\exp(\mu_x(C)/2)} = o(1).$$

To prove (B), observe setting $z_1 := \frac{6}{\pi^2} \mu_x(C)$ yields that

$$\gamma_{z_1}(x) = \Phi(0) + o(1) = \frac{1}{2} + o(1), \text{ as } x \to \infty.$$

To prove (C), we require that $\mu_x(C)^{\frac{1}{2}+\delta} - \sigma_x(C) \xrightarrow{x\to\infty} +\infty$. Since this happens as $x\to\infty$ for any fixed $\delta>0$, we have that with $z(\delta):=\frac{6}{\pi^2}\mu_x(C)^{1+\delta}$

$$\gamma_{z(\delta)} = \Phi\left(\mu_x(C)^{\frac{1}{2} + \delta} - \sigma_x(C)\right) + o(1)$$

$$\sim 1 - \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\left(\mu_x(C)^{\frac{1}{2} + \delta} - \sigma_x(C)\right)} \times \exp\left(-\frac{\mu_x(C)}{4} \cdot \left(\mu_x(C)^{\delta} - 1\right)^2\right)$$

$$= 1 + o_{\delta}(1), \text{ as } x \to \infty.$$

Remark 4.9. A consequence of (A) and (C) in Lemma 4.8 is that for any fixed $\delta > 0$ and $n \in \mathcal{S}_1(\delta)$ taken within a set of asymptotic density one we have that

$$\frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le |g^{-1}(n)| \le \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| + \frac{6}{\pi^2} \mu_n(C)^{\frac{1}{2} + \delta}. \tag{23}$$

Thus when we integrate over a sufficiently spaced set of (e.g., set of wide enough) disjoint consecutive intervals containing large enough integer values, we can assume that an asymptotic lower bound on the contribution of

 $|g^{-1}(n)|$ is given by the function's average order, and an upper bound is given by the same inequality above for any fixed $\delta > 0$. Observe that by Corollary 4.7 and Corollary 4.5 we can see that

$$\frac{\pi^2}{6 \cdot \sigma_x(C)} \times \int_{-\infty}^{\infty} z \cdot \Phi' \left(\frac{\frac{\pi^2}{6} z - \mu_x(C)}{\sigma_x(C)} \right) dz = \frac{6}{\pi^2} \cdot \sigma_x(C) = o\left(\mathbb{E}|g^{-1}(x)| \right).$$

Emphasizing the point above, we again interpret the previous calculation as implying that for n on a large interval, the contribution from $|g^{-1}(n)|$ can be approximated above and below accurately as in the bounds from (23).

5 Proofs of new formulas and limiting relations for M(x)

5.1 Establishing initial asymptotic bounds on the summatory function $G^{-1}(x)$

Theorem 5.1. For all sufficiently large $x \to \infty$, we have that $G^{-1}(x) = o(x)$.

Proof. We proved in establishing Lemma 3.1 that for all $n \geq 1$

$$(g^{-1} * 1)(n) = \lambda(n) \cdot C_{\Omega(n)}(n).$$

We also know by another direct application of the lemma that

$$G^{-1}(x) = \sum_{n \le x} \sum_{d|n} \lambda(d) C_{\Omega(d)}(d) \mu\left(\frac{n}{d}\right)$$
$$= \sum_{n \le x} (g^{-1} * 1)(n) M\left(\left\lfloor \frac{x}{n} \right\rfloor\right).$$

We apply Theorem 1.2 to see that

$$G^{-1}(x) \approx \sum_{r=1}^{x} M(r) \left[\sum_{j=1}^{\left\lfloor \frac{x}{r} \right\rfloor} g^{-1}(j) \left\lfloor \frac{x}{rj} \right\rfloor - \sum_{j=1}^{\left\lfloor \frac{x}{r+1} \right\rfloor} g^{-1}(j) \left\lfloor \frac{x}{(r+1)j} \right\rfloor \right]$$
$$\approx \sum_{r=1}^{x} \sum_{j=\left\lfloor \frac{x}{r+1} \right\rfloor}^{\left\lfloor \frac{x}{r} \right\rfloor} M(r) \cdot \frac{g^{-1}(j)}{j} \cdot \frac{x}{r^2}.$$

An elementary bound on the Mertens function provides that M(x) = o(x) so that we have

$$|G^{-1}(x)| \le o\left(\sum_{r \le x} \frac{x}{r} \times \sum_{j=\lfloor \frac{x}{r+1} \rfloor}^{\lfloor \frac{x}{r} \rfloor} \frac{|g^{-1}(j)|}{j}\right).$$

For fixed x, let

$$a_{x,r} := \sum_{j=1}^{\left\lfloor \frac{x}{r} \right\rfloor} \frac{|g^{-1}(j)|}{j}.$$

We use the probabilistic interpretation motivated in Remark 4.9 of the last section to bound the significant contributions from $|g^{-1}(j)|$ by logarithmic powers in j. For any fixed $m, s \in \mathbb{Q}^+$, by the limiting asymptotic relations for the incomplete gamma function we cited above, we obtain the following indefinite integral formulas as $t \to \infty$:

$$\int \frac{(\log t)^m (\log \log t)^s}{t} dt \approx \frac{(\log t)^{m+1} (\log \log t)^s}{m+1}$$
$$\int \frac{(\log t)^2 \sqrt{\log \log t}}{t} dt \approx (\log t)^3 \sqrt{\log \log t}.$$

Then we assert that for large x and $\frac{x}{r} > e$

$$a_{x,r} \simeq (\log t)^3 \sqrt{\log \log t} \Big|_{t=\frac{x}{2}}.$$

It follows that we can sum the telescoping sum over these coefficients by parts as

$$\sum_{r \le x} \frac{x}{r} (a_{x,r} - a_{x,r+1}) = a_{x,1} - a_{x,x+1} + \sum_{r \le x} \frac{x}{r^2} (a_{x,r+1} - a_{x,1})$$

$$\leq o(x) + \sum_{3 \leq r \leq x} \frac{x}{r^2} (\log r)^3 \sqrt{\log \log r}$$

$$\leq o(x) + o\left((\log x)^3 \sqrt{\log \log x}\right), \text{ as } x \to \infty.$$

The result clearly follows from the previous expansions.

The most recent best known upper bound on L(x) (assuming the RH) is established by Humphries based on Soundararajan's result bounding M(x) stated in the following form [5]:

$$L(x) = O\left(\sqrt{x} \cdot \exp\left((\log x)^{\frac{1}{2}}(\log\log x)^{\frac{5}{2} + \varepsilon}\right)\right), \text{ for any } \varepsilon > 0; \text{ as } x \to \infty.$$
 (24)

Corollary 5.2. Let $L(x) := \sum_{n \leq x} \lambda(n)$ for $x \geq 1$. We have that for almost every sufficiently large x, the summatory function of $g^{-1}(n)$ is bounded by

$$G^{-1}(x) = O\left(\max_{1 \le t \le x} |L(t)| \cdot \mathbb{E}|g^{-1}(x)|\right).$$

If the RH is true, then for any $\varepsilon > 0$ and almost every large integer $x \geq 1$

$$G^{-1}(x) = O\left(\frac{\sqrt{x} \cdot (\log x)^{\frac{5}{2}}}{(\log \log x)^{2+\varepsilon}} \times \exp\left(\sqrt{\log x} \cdot (\log \log x)^{\frac{5}{2}+\varepsilon}\right)\right).$$

Proof. We write the next formulas for $G^{-1}(x)$ by Abel summation for almost every large $x \ge 1$ by applying the mean value theorem:

$$G^{-1}(x) = \sum_{n \le x} \lambda(n) |g^{-1}(n)|$$

$$= L(x) |g^{-1}(x)| - \int L(x) \frac{d}{dx} |g^{-1}(x)| dx$$

$$= O\left(\max_{1 \le t \le x} |L(t)| \cdot \mathbb{E}|g^{-1}(x)|\right). \tag{25}$$

The proof of this result appeals to the material we used to establish the more probabilistic interpretations of the distribution of $|g^{-1}(n)|$ as $n \to \infty$ from Section 4.

For $x \geq 2$ taken sufficiently large and any fixed $\delta > 0$, let the sets

$$\mathcal{R}_{\delta}(x) := [1, x] \setminus \bigcup_{\substack{n \le x \\ |g^{-1}(n)| > \frac{6}{\pi^2} \left(\mathbb{E}[g^{-1}(n)| + \mu_x(C)^{\frac{1}{2} + \delta} \right)}} [n, n+1).$$

The formula from (18) similarly implies that for almost every large x and some finite, bounded $\delta > 0$

$$G^{-1}(x) = O\left(\int L'(x)|g^{-1}(x)|dx\right)$$
$$= O_{\delta}\left(\mathbb{E}|g^{-1}(x)| \times \int_{\mathcal{R}_{\delta}(x)} L'(t)dt\right).$$

Then to prove the second claim, we consider the derivative of the asymptotic formula for L(x) cited in (24) in the following form:

$$\frac{d}{dx} \left[\sqrt{x} \cdot \exp\left((\log x)^{\frac{1}{2}} (\log \log x)^{\frac{5}{2} + \varepsilon} \right) \right] = O\left(\frac{\exp\left((\log x)^{\frac{1}{2}} (\log \log x)^{\frac{5}{2} + \varepsilon} \right)}{\sqrt{x}} \right).$$

We next expand the Taylor series for the exponential function, apply the mean value theorem, and integrate the result termwise to obtain the expansions

$$\int L'(x)dx = O\left(\sqrt{x} \times \int \sum_{k\geq 0} \frac{(\log x)^{\frac{k}{2}} (\log \log x)^{(\frac{5}{2}+\varepsilon)k}}{k! \cdot x} dx\right)$$

$$= O\left(\sum_{k\geq 0} \frac{\sqrt{x}}{k!} \cdot \frac{(\log x)^{1+\frac{k}{2}}}{(k+2)} \cdot (\log \log x)^{(\frac{5}{2}+\varepsilon)k}\right)$$

$$= O\left(\sqrt{x} \cdot \frac{\sqrt{\log x}}{(\log \log x)^{\frac{5}{2}+\varepsilon}} \times \exp\left((\log x)^{\frac{1}{2}} (\log \log x)^{\frac{5}{2}+\varepsilon}\right)\right).$$

The last equation, combined with Corollary 4.5, imply the stated upper bound under the assumption of the RH. \Box

5.2 Bounding M(x) by asymptotics for $G^{-1}(x)$

Proposition 5.3. For all sufficiently large x, we have that the Mertens function satisfies

$$M(x) = G^{-1}(x) + \sum_{k=1}^{\frac{x}{2}} G^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k+1} \right\rfloor \right) \right]. \tag{26}$$

Proof. We know by applying Corollary 1.4 that

$$\begin{split} M(x) &= \sum_{k=1}^x g^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right] \\ &= G^{-1}(x) + \sum_{k=1}^{\frac{x}{2}} g^{-1}(k) \pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) \\ &= G^{-1}(x) + G^{-1} \left(\left\lfloor \frac{x}{2} \right\rfloor \right) + \sum_{k=1}^{\frac{x}{2}-1} G^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k+1} \right\rfloor \right) \right]. \end{split}$$

The upper bound on the sum is truncated in the second equation above due to the fact that $\pi(1) = 0$. The third formula follows from summation by parts.

Lemma 5.4. For sufficiently large x, integers $k \in \left[\sqrt{x}, \frac{x}{2}\right]$ and $m \ge 0$, we have that

$$\frac{x}{k \cdot \log^m \left(\frac{x}{k}\right)} - \frac{x}{(k+1) \cdot \log^m \left(\frac{x}{k+1}\right)} \gg \frac{x}{(\log x)^m \cdot k(k+1)},\tag{A}$$

and

$$\sum_{k=\sqrt{x}}^{\frac{x}{2}} \frac{x}{k(k+1)} = \sum_{k=\sqrt{x}}^{\frac{x}{2}} \frac{x}{k^2} + O(1).$$
 (B)

Proof. The proof of (A) is obvious since for $k_0 \in \left[\sqrt{x}, \frac{x}{2}\right]$ we have that

$$\log(2)(1 + o(1)) \le \log\left(\frac{x}{k_0}\right) \le \log(x).$$

To prove (B), notice that

$$\frac{x}{k(k+1)} - \frac{x}{k^2} = -\frac{x}{k^2(k+1)}.$$

Then we see that

$$\left| \int_{\sqrt{x}}^{\frac{x}{2}} \frac{x}{t^2(t+1)} dt \right| \le \left| \int_{\sqrt{x}}^{\frac{x}{2}} \frac{x}{t^3} dt \right| \approx 1.$$

Corollary 5.5. We have that as $x \to \infty$

$$M(x) = O\left(G^{-1}(x) + G^{-1}\left(\frac{x}{2}\right) + \frac{\sqrt{x} \cdot G^{-1}(\sqrt{x})}{\log x} + \sqrt{x} \cdot (\log \log x)\right).$$

Proof. We need to first bound the prime counting function differences in the formula given by Proposition 5.3. We will require the following known bounds on the prime counting function due to Rosser and Schoenfeld for large x > 59 [16, Thm. 1]:

$$\frac{x}{\log x} \left(1 + \frac{1}{2\log x} \right) \le \pi(x) \le \frac{x}{\log x} \left(1 + \frac{3}{2\log x} \right). \tag{27}$$

The result in (27) together with Lemma 5.4 implies that for $\sqrt{x} \le k \le \frac{x}{2}$

$$\pi\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - \pi\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right) = O\left(\frac{x}{k^2 \cdot \log\left(\frac{x}{k}\right)}\right).$$

We will rewrite the intermediate formula from the proof of Proposition 5.3 as a sum of two components with summands taken over disjoint intervals. For large x > e, let

$$S_1(x) := \sum_{1 \le k \le x} g^{-1}(k) \pi\left(\frac{x}{k}\right)$$
$$S_2(x) := \sum_{\sqrt{x} < k \le \frac{x}{2}} g^{-1}(k) \pi\left(\frac{x}{k}\right).$$

Since $\pi(x)$ is non-decreasing we assert by the asymptotic formulas for the prime counting function that

$$S_1(x) = O\left(\frac{\sqrt{x} \cdot G^{-1}(\sqrt{x})}{\log x}\right)$$

To bound the second sum, we perform summation by parts as in the proof of the proposition, apply the bound above for the difference of the summand functions, and use the mean value theorem to obtain that

$$S_2(x) = O\left(G^{-1}\left(\frac{x}{2}\right) + \int_{\sqrt{x}}^{\frac{x}{2}} \frac{G^{-1}(t)}{t^2 \log\left(\frac{x}{t}\right)} dt\right)$$
$$= O\left(G^{-1}\left(\frac{x}{2}\right) + (\log\log x) \times \max_{\sqrt{x} < k < \frac{x}{2}} \frac{|G^{-1}(k)|}{k}\right).$$

The rightmost term in the previous bound is combined with Theorem 5.1 to find

$$S_2(x) = O\left(G^{-1}\left(\frac{x}{2}\right) + \sqrt{x} \cdot (\log\log x)\right).$$

6 Conclusions

We have identified a key sequence, $\{g^{-1}(n)\}_{n\geq 1}$, which is the Dirichlet inverse of the shifted additive function, $g:=\omega+1$. In general, we find that the Dirichlet inverse of any arithmetic function f such that $f(1)\neq 0$ is expressed at each $n\geq 2$ as a signed sum of m-fold convolutions of f with itself for $1\leq m\leq \Omega(n)$. As we discussed in the remarks in Section 3.3, it happens that there is a natural combinatorial interpretation to the distribution of distinct values of $|g^{-1}(n)|$ for $n\leq x$ involving the primes $p\leq x$ at large x. In particular, the magnitude of $|g^{-1}(n)|$ depends only on the pattern of the exponents of the prime factorization of n in so much as $|g^{-1}(n_1)| = |g^{-1}(n_2)|$ whenever $\omega(n_1) = \omega(n_2)$, $\Omega(n_1) = \Omega(n_2)$, and where the is a one-to-one correspondence $\nu_{p_1}(n_1) = \nu_{p_2}(n_2)$ between the distinct primes $p_1|n_1$ and $p_2|n_2$. The signedness of $g^{-1}(n)$ is given by $\lambda(n)$ for all $n\geq 1$. This leads to a familiar dependence of the summatory functions $G^{-1}(x)$ on the distribution of the summatory function L(x).

Section 5 provides equivalent characterizations of the limiting properties of M(x) by exact formulas and asymptotic relations involving $G^{-1}(x)$ and L(x). We emphasize that our new work on the Mertens function proved within this article is significant in providing a new window through which we can view bounding M(x), rather than in proving explicit new best known bounds on the classical function at this point. The computational data generated in Table T.1 suggests numerically, especially when compared to the initial values of M(x), that the distribution of $|G^{-1}(x)|$ may be easier to work with that those of |M(x)| or |L(x)|. The remarks given in Section 3.3 about the direct combinatorial relation of the distinct (and repitition of) values of $|g^{-1}(n)|$ for $n \leq x$ are also suggestive towards bounding main terms for $G^{-1}(x)$ along infinite subsequences.

One topic that we do not touch on in the article is to consider the limiting correlation between $\lambda(n)$ and the unsigned sequence of $|g^{-1}(n)|$ whose limiting distribution is proved in Corollary 4.7. Much in the same way that variants of the Erdös-Kac theorem are proved by defining the random variables related to $\omega(n)$, we suggest an analysis of the summatory function $G^{-1}(x)$ by scaling the explicitly distributed $|g^{-1}(n)|$ for $n \leq x$ as $x \to \infty$ by its signed weight of $\lambda(n)$ using an initial heuristic along these lines. Another experiment illustrated in the online computational reference [17] suggests that for many, if not most sufficiently large x, we may consider replacing the summatory function with terms weighted by $\lambda(n)$

$$G^{-1}(x) := \sum_{n \le x} \lambda(n) |g^{-1}(n)|, x \ge 1,$$

by alternate sums that average these sequences differently while still preserving the original asymptotic order of $|G^{-1}(x)|$. For example, each of the following three summatory functions offers a unique interpretation of an average of sorts that "mixes" the values of $\lambda(n)$ with the unsigned sequence $|g^{-1}(n)|$ over $1 \le n \le x$:

$$G_*^{-1}(x) := \sum_{n \le x} \frac{1}{2\gamma - 1 + \log n} \times \sum_{d|n} \lambda \left(\frac{n}{d}\right) |g^{-1}(d)|$$

$$G_{**}^{-1}(x) := \sum_{n \le x} \frac{1}{2\gamma - 1 + \log n} \times \sum_{d|n} \lambda \left(\frac{n}{d}\right) g^{-1}(d)$$

$$G_{***}^{-1}(x) := \sum_{n \le x} \frac{1}{2\gamma - 1 + \log n} \times \sum_{d|n} g^{-1}(d).$$

Then based on preliminary numerical results, a large proportion of the $y \leq x$ for large x satisfy

$$\left| \frac{G_*^{-1}(y)}{G^{-1}(y)} \right|^{-1}, \left| \frac{G_{**}^{-1}(y)}{G^{-1}(y)} \right|, \left| \frac{G_{***}^{-1}(y)}{G^{-1}(y)} \right| \in (0, 3].$$

Variants of this type of summatory function identity exchange are similarly suggested for future work on these topics.

Acknowledgements

We thank and give much due appreciation to the following professors that offered discussion, feedback and correspondence while the article was written: Paul Pollack, Steven J. Miller, Ernie Croot, Bruce Reznick and Michael Lacey. The work on the article was supported in part by relief funding made available within the School of Mathematics at the Georgia Institute of Technology in 2020. Without this combined support, the article would not have been possible.

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- [2] P. Billingsly. On the central limit theorem for the prime divisor function. *Amer. Math. Monthly*, 76(2):132–139, 1969.
- [3] P. Erdös and M. Kac. The guassian errors in the theory of additive arithmetic functions. *American Journal of Mathematics*, 62(1):738–742, 1940.
- [4] G. H. Hardy and E. M. Wright, editors. An Introduction to the Theory of Numbers. Oxford University Press, 2008 (Sixth Edition).
- [5] P. Humphries. The distribution of weighted sums of the Liouville function and Pólya's conjecture. J. Number Theory, 133:545–582, 2013.
- [6] G. Hurst. Computations of the Mertens function and improved bounds on the Mertens conjecture. *Math. Comp.*, 87:1013–1028, 2018.
- [7] T. Kotnik and H. té Riele. The Mertens conjecture revisited. *Algorithmic Number Theory*, 7th International Symposium, 2006.
- [8] T. Kotnik and J. van de Lune. On the order of the Mertens function. Exp. Math., 2004.
- [9] R. S. Lehman. On Liouville's function. *Math. Comput.*, 14:311–320, 1960.
- [10] H. L. Montgomery and R. C. Vaughan. Multiplicative Number Theory: I. Classical Theory. Cambridge, 2006.
- [11] N. Ng. The distribution of the summatory function of the Móbius function. *Proc. London Math. Soc.*, 89(3):361–389, 2004.
- [12] A. M. Odlyzko and H. J. J. té Riele. Disproof of the Mertens conjecture. J. Reine Angew. Math, 1985.
- [13] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors. *NIST Handbook of Mathematical Functions*. Cambridge University Press, 2010.
- [14] A. Renyi and P. Turan. On a theorem of Erdös-Kac. Acta Arithmetica, 4(1):71–84, 1958.
- [15] P. Ribenboim. The new book of prime number records. Springer, 1996.
- [16] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. *Illinois J. Math.*, 6:64–94, 1962.
- [17] M. D. Schmidt. SageMath and Mathematica software for computations with the Mertens function, 2020. https://github.com/maxieds/MertensFunctionComputations.
- [18] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2020. http://oeis.org.
- [19] K. Soundararajan. Partial sums of the Möbius function. Annals of Mathematics, 2009.
- [20] E. C. Titchmarsh. The theory of the Riemann zeta function. Clarendon Press, 1951.

Glossary of notation and conventions

Symbol Definition

5

We write that $f(x) \approx g(x)$ if |f(x) - g(x)| = O(1) as $x \to \infty$.

 $\mathbb{E}[f(x)], \stackrel{\mathbb{E}}{\sim}$

We use the expectation notation of $\mathbb{E}[f(x)] = h(x)$, or sometimes write that $f(x) \stackrel{\mathbb{E}}{\sim} h(x)$, to denote that f has an average order growth rate of h(x). This means that $\frac{1}{x} \sum_{n < x} f(n) \sim h(x)$, or equivalently that

$$\lim_{x \to \infty} \frac{\frac{1}{x} \sum_{n \le x} f(n)}{h(x)} = 1.$$

B The absolute constant $B \approx 0.2614972$ from the statement of Mertens theorem.

 $\chi_{\mathbb{P}}(n)$ The characteristic (or indicator) function of the primes equals one if and only if $n \in \mathbb{Z}^+$ is prime, and is zero-valued otherwise.

 $C_k(n)$ The sequence is defined recursively for $n \geq 1$ as follows:

$$C_k(n) := \begin{cases} \delta_{n,1}, & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1}(n/d), & \text{if } k \ge 1. \end{cases}$$

It represents the multiple, k-fold convolution of the function $\omega(n)$ with itself.

The coefficient of q^n in the power series expansion of F(q) about zero when F(q) is treated as the ordinary generating function of some sequence, $\{f_n\}_{n\geq 0}$. Namely, for integers $n\geq 0$ we define $[q^n]F(q)=f_n$ whenever $F(q):=\sum_{n\geq 0}f_nq^n$.

 $\varepsilon(n)$ The multiplicative identity with respect to Dirichlet convolution, $\varepsilon(n) := \delta_{n,1}$, defined such that for any arithmetic f we have that $f * \varepsilon = \varepsilon * f = f$ where * denotes Dirichlet convolution (see definition below).

f * g The Dirichlet convolution of f and g, $(f * g)(n) := \sum_{d|n} f(d)g(n/d)$, where the sum is taken over the divisors of any $n \ge 1$.

The Dirichlet inverse of f with respect to convolution is defined recursively by $f^{-1}(n) = -\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d > 1}} f(d) f^{-1}(n/d)$ for $n \ge 2$ with $f^{-1}(1) = 1/f(1)$. The Dirichlet inverse of f with respect to convolution is defined recursively by

let inverse of f exists if and only if $f(1) \neq 0$. This inverse function, denoted by f^{-1} when it exists, is unique and satisfies the characteristic convolution relations providing that $f^{-1} * f = f * f^{-1} = \varepsilon$.

 $\gamma \qquad \qquad \text{The Euler gamma constant defined by } \gamma := \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \log n \right) \approx 0.5772157.$

 \gg, \ll, \asymp For functions A, B, the notation $A \ll B$ implies that A = O(B). Similarly, for $B \geq 0$ the notation $A \gg B$ implies that B = O(A). When we have that $A \ll B$ and $B \ll A$, we write $A \asymp B$.

 $g^{-1}(n), G^{-1}(x)$ The Dirichlet inverse function, $g^{-1}(n) = (\omega + 1)^{-1}(n)$ with corresponding summatory function $G^{-1}(x) := \sum_{n \le x} g^{-1}(n)$.

Symbol	Definition
$[n=k]_{\delta},[{\rm cond}]_{\delta}$	The symbol $[n=k]_{\delta}$ is a synonym for $\delta_{n,k}$ which is one if and only if $n=k$, and is zero otherwise. For boolean-valued conditions, cond, the symbol $[\operatorname{cond}]_{\delta}$ evaluates to one precisely when cond is true, and to zero otherwise. This notation is called <i>Iverson's convention</i> .
$\lambda_*(n)$	For positive integers $n \geq 2$, we define the next variant of the Liouville lambda function, $\lambda(n)$, as follows: $\lambda_*(n) := (-1)^{\omega(n)}$. We have the initial condition that $\lambda_*(1) = 1$.
$\lambda(n), L(x)$	The Liouville lambda function is the completely multiplicative function defined by $\lambda(n) := (-1)^{\Omega(n)}$. Its summatory function is defined by $L(x) := \sum_{n \leq x} \lambda(n)$.
$\mu(n)$	The Möbius function defined such that $\mu^2(n)$ is the indicator function of the squarefree integers, and so that $\mu(n) = (-1)^{\omega(n)}$ whenever n is squarefree.
$\mu_x(C), \sigma_x(C)$	We define these analogs to the mean and variance of the function $C_{\Omega(n)}(n)$ in the context of our new Erdös-Kac like theorems as $\mu_x(C) := \log \log x + \hat{a} - \frac{1}{2} \log \log \log x$ and $\sigma_x(C) := \sqrt{\mu_x(C)}$ where $\hat{a} := \log \left(\frac{1}{\sqrt{2\pi}}\right) \approx -0.918939$ is an absolute constant.
M(x)	The Mertens function is the summatory function of $\mu(n)$ defined for all integers $x \ge 1$ by $M(x) := \sum_{n \le x} \mu(n)$.
$\Phi(z)$	For $x \in \mathbb{R}$, we define the function giving the normal distribution CDF by $\Phi(z) := \frac{1}{\sqrt{2\pi}} \times \int_{-\infty}^{z} e^{-t^2/2} dt$.
$ u_p(n)$	The valuation function that extracts the maximal exponent of p in the prime factorization of n , e.g., $\nu_p(n)=0$ if $p\nmid n$ and $\nu_p(n)=\alpha$ if $p^\alpha n$ (or when p^α exactly divides n) for p prime, $\alpha\geq 1$ and $n\geq 2$.
$\omega(n),\!\Omega(n)$	We define the strongly additive function $\omega(n) := \sum_{p n} 1$ and the completely additive function $\Omega(n) := \sum_{p^{\alpha} n} \alpha$. This means that if the prime factorization of $n \geq 2$ is given by $n := p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ with $p_i \neq p_j$ for all $i \neq j$, then $\omega(n) = r$ and $\Omega(n) = \alpha_1 + \cdots + \alpha_r$. By convention, we require that $\omega(1) = \Omega(1) = 0$.
$\pi_k(x), \widehat{\pi}_k(x)$	The prime counting function variant $\pi_k(x)$ denotes the number of integers $1 \le n \le x$ for $x \ge 2$ with exactly k distinct prime factors: $\pi_k(x) := \#\{n \le x : \omega(n) = k\}$. Similarly, the function $\widehat{\pi}_k(x) := \#\{n \le x : \Omega(n) = k\}$ for $x \ge 2$.
P(s)	For complex s with $\text{Re}(s) > 1$, we define the prime zeta function to be the Dirichlet generating function $P(s) = \sum_{n \geq 1} \frac{\chi_{\mathbb{P}}(n)}{n^s}$.
Q(x)	For $x \geq 1$, we define $Q(x)$ to be the summatory function indicating the number of squarefree integers $n \leq x$. More precisely, this function is summed and identified with its limiting asymptotic formula as $x \to \infty$ in the following form: $Q(x) := \sum_{n \leq x} \mu^2(n) \sim \frac{6x}{\pi^2} + O(\sqrt{x})$.
~	We say that two arithmetic functions $A(x)$, $B(x)$ satisfy the relation $A \sim B$ if $\lim_{x\to\infty} \frac{A(x)}{B(x)} = 1$.
$\zeta(s)$	The Riemann zeta function is defined by $\zeta(s) := \sum_{n \geq 1} n^{-s}$ when $\operatorname{Re}(s) > 1$, and by analytic continuation on the rest of the complex plane with the

exception of a simple pole at s=1 of residue one.

Table: The Dirichlet inverse function $g^{-1}(n)$ and the distribution of its T.1 summatory function

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ q^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
1	1^{1}	Y	N	1	0	1.0000000	1.000000	0.000000	1	1	0
2	2^1	Y	Y	-2	0	1.0000000	0.500000	0.500000	-1	1	-2
3	3^1	Y	Y	-2	0	1.0000000	0.333333	0.666667	-3	1	-4
4	2^{2}	N	Y	2	0	1.5000000	0.500000	0.500000	-1	3	-4
5	5^1	Y	Y	-2	0	1.0000000	0.400000	0.600000	-3	3	-6
6	$2^{1}3^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	2	8	-6
7	7^1	Y	Y	-2	0	1.0000000	0.428571	0.571429	0	8	-8
8	2^{3}	N	Y	-2	0	2.0000000	0.375000	0.625000	-2	8	-10
9	3^{2}	N	Y	2	0	1.5000000	0.444444	0.555556	0	10	-10
10	$2^{1}5^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	5	15	-10
11	11^{1}	Y	Y	-2	0	1.0000000	0.454545	0.545455	3	15	-12
12	$2^{2}3^{1}$	N	N	-7	2	1.2857143	0.416667	0.583333	-4	15	-19
13	13^{1}	Y	Y	-2	0	1.0000000	0.384615	0.615385	-6	15	-21
14	$2^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-1	20	-21
15	$3^{1}5^{1}$	Y	N	5	0	1.0000000	0.466667	0.533333	4	25	-21
16	2^{4}	N	Y	2	0	2.5000000	0.500000	0.500000	6	27	-21
17	17^{1}	Y	Y	-2	0	1.0000000	0.470588	0.529412	4	27	-23
18	$2^{1}3^{2}$	N	N	-7	2	1.2857143	0.444444	0.555556	-3	27	-30
19	19^{1}	Y	Y	-2	0	1.0000000	0.421053	0.578947	-5	27	-32
20	$2^{2}5^{1}$	N	N	-7	2	1.2857143	0.400000	0.600000	-12	27	-39
21	$3^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-7	32	-39
22	$2^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-2	37	-39
23	23^{1}	Y	Y	-2	0	1.0000000	0.434783	0.565217	-4	37	-41
24	$2^{3}3^{1}$	N	N	9	4	1.5555556	0.458333	0.541667	5	46	-41
25	5^{2}	N	Y	2	0	1.5000000	0.480000	0.520000	7	48	-41
26	$2^{1}13^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	12	53	-41
27	3^{3}	N	Y	-2	0	2.0000000	0.481481	0.518519	10	53	-43
28	$2^{2}7^{1}$	N	N	-7	2	1.2857143	0.464286	0.535714	3	53	-50
29	29^{1}	Y	Y	-2	0	1.0000000	0.448276	0.551724	1	53	-52
30	$2^{1}3^{1}5^{1}$	Y	N	-16	0	1.0000000	0.433333	0.566667	-15	53	-68
31	31^{1}	Y	Y	-2	0	1.0000000	0.419355	0.580645	-17	53	-70
32	2^{5}	N	Y	-2	0	3.0000000	0.406250	0.593750	-19	53	-72
33	$3^{1}11^{1}$	Y	N	5	0	1.0000000	0.424242	0.575758	-14	58	-72
34	$2^{1}17^{1}$	Y	N	5	0	1.0000000	0.441176	0.558824	-9	63	-72
35	$5^{1}7^{1}$	Y	N	5	0	1.0000000	0.457143	0.542857	-4	68	-72
36	$2^{2}3^{2}$	N	N	14	9	1.3571429	0.472222	0.527778	10	82	-72
37	37^{1}	Y	Y	-2	0	1.0000000	0.459459	0.540541	8	82	-74
38	$2^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	13	87	-74
39	$3^{1}13^{1}$	Y	N	5	0	1.0000000	0.487179	0.512821	18	92	-74
40	$2^{3}5^{1}$	N	N	9	4	1.555556	0.500000	0.500000	27	101	-74
41	41^1	Y	Y	-2	0	1.0000000	0.487805	0.512195	25	101	-76
42	$2^13^17^1$	Y	N	-16	0	1.0000000	0.476190	0.523810	9	101	-92
43	43^{1}	Y	Y	-2	0	1.0000000	0.465116	0.534884	7	101	-94
44	2^211^1	N	N	-7	2	1.2857143	0.454545	0.545455	0	101	-101
45	$3^{2}5^{1}$	N	N	-7	2	1.2857143	0.444444	0.555556	-7	101	-108
46	$2^{1}23^{1}$	Y	N	5	0	1.0000000	0.456522	0.543478	-2	106	-108
47	47^{1}	Y	Y	-2	0	1.0000000	0.446809	0.553191	-4	106	-110
48	$2^4 3^1$	N	N	-11	6	1.8181818	0.437500	0.562500	-15	106	-121
	'	1					1				

Table T.1: Computations with $g^{-1}(n) \equiv (\omega + 1)^{-1}(n)$ for $1 \le n \le 500$.

[▶] The column labeled Primes provides the prime factorization of each n so that the values of $\omega(n)$ and $\Omega(n)$ are easily extracted. The columns labeled Sqfree and PPower, respectively, list inclusion of n in the sets of squarefree integers and the prime powers.

The next three columns provide the explicit values of the inverse function $g^{-1}(n)$ and compare its explicit value with

<sup>The next three columns provide the explicit values of the inverse function g⁻¹(n) and compare its explicit value with other estimates. We define the function f̄₁(n) := ∑_{k=0}^{ω(n)} (^{ω(n)}_k) · k!.
The last columns indicate properties of the summatory function of g⁻¹(n). The notation for the densities of the sign weight of g⁻¹(n) is defined as L_±(x) := ½_n · # {n ≤ x : λ(n) = ±1}. The last three columns then show the explicit components to the signed summatory function, G⁻¹(x) := ∑_{n≤x} g⁻¹(n), decomposed into its respective positive and negative magnitude sum contributions: G⁻¹(x) = G⁻¹₊(x) + G⁻¹₋(x) where G⁻¹₊(x) > 0 and G⁻¹₋(x) < 0 for all x ≥ 1.</sup>

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
49	72	N	Y	2	$\frac{\chi(n)g^{-}(n)-f_1(n)}{0}$	$ g^{-1}(n) $ 1.5000000	0.448980	0.551020	-13	108	$\frac{G_{-}(n)}{-121}$
50	$2^{1}5^{2}$	N	N	-7	2	1.2857143	0.440000	0.560000	-20	108	-121
51	$3^{1}17^{1}$	Y	N	5	0	1.0000000	0.450980	0.549020	-15	113	-128
52	2^213^1	N	N	-7	2	1.2857143	0.442308	0.557692	-22	113	-135
53	53^{1}	Y	Y	-2	0	1.0000000	0.433962	0.566038	-24	113	-137
54	$2^{1}3^{3}$	N	N	9	4	1.5555556	0.444444	0.555556	-15	122	-137
55	$5^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-10	127	-137
56	$2^{3}7^{1}$	N	N	9	4	1.5555556	0.464286	0.535714	-1	136	-137
57	$3^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	4	141	-137
58	$2^{1}29^{1}$	Y	N	5	0	1.0000000	0.482759	0.517241	9	146	-137
59	59 ¹	Y	Y	-2	0	1.0000000	0.474576	0.525424	7	146	-139
60	$2^{2}3^{1}5^{1}$	N	N	30	14	1.1666667	0.483333	0.516667	37	176	-139
61	61 ¹	Y	Y	-2	0	1.0000000	0.475410	0.524590	35	176	-141
62 63	$2^{1}31^{1}$ $3^{2}7^{1}$	Y N	N N	5 -7	$0 \\ 2$	1.0000000 1.2857143	0.483871 0.476190	0.516129 0.523810	40 33	181 181	$-141 \\ -148$
64	2^6	N	Y	2	0	3.5000000	0.470190	0.525610 0.515625	35	183	-148 -148
65	$5^{1}13^{1}$	Y	N	5	0	1.0000000	0.492308	0.507692	40	188	-148
66	$2^{1}3^{1}11^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	24	188	-164
67	67^{1}	Y	Y	-2	0	1.0000000	0.477612	0.522388	22	188	-166
68	2^217^1	N	N	-7	2	1.2857143	0.470588	0.529412	15	188	-173
69	$3^{1}23^{1}$	Y	N	5	0	1.0000000	0.478261	0.521739	20	193	-173
70	$2^{1}5^{1}7^{1}$	Y	N	-16	0	1.0000000	0.471429	0.528571	4	193	-189
71	71^{1}	Y	Y	-2	0	1.0000000	0.464789	0.535211	2	193	-191
72	$2^{3}3^{2}$	N	N	-23	18	1.4782609	0.458333	0.541667	-21	193	-214
73	73^{1}	Y	Y	-2	0	1.0000000	0.452055	0.547945	-23	193	-216
74	$2^{1}37^{1}$	Y	N	5	0	1.0000000	0.459459	0.540541	-18	198	-216
75	$3^{1}5^{2}$	N	N	-7	2	1.2857143	0.453333	0.546667	-25	198	-223
76	$2^{2}19^{1}$	N	N	-7	2	1.2857143	0.447368	0.552632	-32	198	-230
77	$7^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-27	203	-230
78	$2^{1}3^{1}13^{1}$ 79^{1}	Y	N	-16	0	1.0000000	0.448718	0.551282	-43	203	-246
79 80	$2^{4}5^{1}$	Y N	Y N	$-2 \\ -11$	0 6	1.0000000 1.8181818	0.443038 0.437500	0.556962 0.562500	-45 -56	203 203	$-248 \\ -259$
81	$\frac{2}{3^4}$	N	Y	2	0	2.5000000	0.437300	0.555556	-54	205	-259 -259
82	$2^{1}41^{1}$	Y	N	5	0	1.0000000	0.451220	0.548780	-49	210	-259
83	831	Y	Y	-2	0	1.0000000	0.445783	0.554217	-51	210	-261
84	$2^{2}3^{1}7^{1}$	N	N	30	14	1.1666667	0.452381	0.547619	-21	240	-261
85	$5^{1}17^{1}$	Y	N	5	0	1.0000000	0.458824	0.541176	-16	245	-261
86	$2^{1}43^{1}$	Y	N	5	0	1.0000000	0.465116	0.534884	-11	250	-261
87	$3^{1}29^{1}$	Y	N	5	0	1.0000000	0.471264	0.528736	-6	255	-261
88	$2^{3}11^{1}$	N	N	9	4	1.5555556	0.477273	0.522727	3	264	-261
89	89 ¹	Y	Y	-2	0	1.0000000	0.471910	0.528090	1	264	-263
90	$2^{1}3^{2}5^{1}$	N	N	30	14	1.1666667	0.477778	0.522222	31	294	-263
91	$7^{1}13^{1}$	Y	N	5	0	1.0000000	0.483516	0.516484	36	299	-263
92	$2^{2}23^{1}$	N	N	-7	2	1.2857143	0.478261	0.521739	29	299	-270
93	$3^{1}31^{1}$ $2^{1}47^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	34	304	-270
94	$5^{1}19^{1}$	Y Y	N	5	0	1.0000000	0.489362	0.510638	39	309	-270
95 96	$2^{5}3^{1}$	N N	N N	5 13	0 8	1.0000000 2.0769231	0.494737 0.500000	0.505263 0.500000	44 57	$\frac{314}{327}$	$-270 \\ -270$
97	97^{1}	Y	Y	-2	0	1.0000000	0.494845	0.505155	55	327	-270 -272
98	$2^{1}7^{2}$	N	N	-7	2	1.2857143	0.489796	0.510204	48	327	-279
99	3^211^1	N	N	-7	2	1.2857143	0.484848	0.515152	41	327	-286
100	$2^{2}5^{2}$	N	N	14	9	1.3571429	0.490000	0.510000	55	341	-286
101	101^{1}	Y	Y	-2	0	1.0000000	0.485149	0.514851	53	341	-288
102	$2^{1}3^{1}17^{1}$	Y	N	-16	0	1.0000000	0.480392	0.519608	37	341	-304
103	103 ¹	Y	Y	-2	0	1.0000000	0.475728	0.524272	35	341	-306
104	$2^{3}13^{1}$	N	N	9	4	1.5555556	0.480769	0.519231	44	350	-306
105	$3^{1}5^{1}7^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	28	350	-322
106	$2^{1}53^{1}$	Y	N	5	0	1.0000000	0.481132	0.518868	33	355	-322
107	107^{1} $2^{2}3^{3}$	Y	Y	-2	0	1.0000000	0.476636	0.523364	31	355	-324
108 109	$\frac{2^2 3^3}{109^1}$	N Y	N V	-23 -2	18	1.4782609	0.472222 0.467890	0.527778	8	355	-347
1109	$2^{1}5^{1}11^{1}$	Y	Y N	-2 -16	0 0	1.0000000 1.0000000	0.467890	0.532110 0.536364	6 -10	355 355	$-349 \\ -365$
111	$3^{1}37^{1}$	Y	N	5	0	1.0000000	0.468468	0.531532	-10 -5	360	-365 -365
111	$2^{4}7^{1}$	N	N	-11	6	1.8181818	0.464286	0.535714	-16	360	-376
113	113 ¹	Y	Y	-2	0	1.0000000	0.460177	0.539823	-18	360	-378
114	$2^13^119^1$	Y	N	-16	0	1.0000000	0.456140	0.543860	-34	360	-394
115	$5^{1}23^{1}$	Y	N	5	0	1.0000000	0.460870	0.539130	-29	365	-394
116	$2^{2}29^{1}$	N	N	-7	2	1.2857143	0.456897	0.543103	-36	365	-401
117	3^213^1	N	N	-7	2	1.2857143	0.452991	0.547009	-43	365	-408
118	$2^{1}59^{1}$	Y	N	5	0	1.0000000	0.457627	0.542373	-38	370	-408
119	$7^{1}17^{1}$	Y	N	5	0	1.0000000	0.462185	0.537815	-33	375	-408
120	$2^{3}3^{1}5^{1}$	N	N	-48	32	1.3333333	0.458333	0.541667	-81	375	-456
121	11^2	N	Y	2	0	1.5000000	0.462810	0.537190	-79	377	-456
122	$2^{1}61^{1}$ $3^{1}41^{1}$	Y	N	5	0	1.0000000	0.467213	0.532787	-74	382	-456
123	$3^{1}41^{1}$ $2^{2}31^{1}$	Y	N	5	0	1.0000000	0.471545	0.528455	-69 76	387	-456
124	∠ 31 -	N	N	-7	2	1.2857143	0.467742	0.532258	-76	387	-463

1925 38	n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	(n)	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								$\mathcal{L}_{+}(n)$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												$-465 \\ -465$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-467
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-469
131 131 1	129	$3^{1}43^{1}$			5		1.0000000					-469
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130	$2^15^113^1$	Y	N	-16	0	1.0000000	0.461538	0.538462	-63	422	-485
1313 2 2 2 2 2 2 2 2 2	131		Y	Y	-2	0	1.0000000	0.458015	0.541985	-65	422	-487
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	132				1			0.462121	0.537879	-35	452	-487
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												-487
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1							-487
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-487
138 2 ¹ 3 ¹ 2 ¹ 4 Y					1							-487 -489
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												-409 -505
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-507
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-507
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3^147^1		N	1							-507
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	142	2^171^1	Y	N	5	0	1.0000000	0.478873	0.521127	13	520	-507
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	143		Y	N	5	0	1.0000000	0.482517	0.517483	18	525	-507
$ \begin{vmatrix} 146 & 2^173^1 & Y & N & 5 \\ 148 & 2^237^2 & N & N & -7 \\ 2 & 1.2857143 & 0.489456 & 0.510504 & 55 & 569 \\ -1 & 2^231^2 & N & N & -7 \\ 2 & 1.2857143 & 0.489456 & 0.510514 & 48 & 569 \\ -1 & 10 & 2^13^52 & N & N & 30 \\ 110 & 2^13^52 & N & N & 30 \\ 111 & 151^1 & Y & Y & -2 & 0 & 1.0000000 & 0.485221 & 0.51670 & 46 & 669 \\ -1 & 10 & 2^13^52 & N & N & 30 \\ 112 & 2^319^1 & N & N & 9 & 4 & 1.5555556 & 0.489842 & 0.516353 & 608 \\ -1 & 2^319^1 & N & N & 9 & 4 & 1.5555556 & 0.489842 & 0.51636 & 74 & 599 \\ 112 & 2^319^1 & N & N & 9 & 4 & 1.5555556 & 0.489842 & 0.51636 & 74 & 599 \\ 113 & 3^217^1 & N & N & -7 & 2 & 1.2857143 & 0.48960 & 0.51840 & 76 & 608 \\ 114 & 2^17^111^1 & Y & N & -16 & 0 & 1.0000000 & 0.480519 & 0.519481 & 60 & 608 \\ 12^3313^1 & N & N & 30 & 14 & 1.1666667 & 0.487179 & 0.519481 & 60 & 608 \\ 12^3313^1 & N & N & 30 & 14 & 1.1666667 & 0.487179 & 0.512821 & 95 & 643 \\ 12^3 & 2^319^1 & N & N & 5 & 0 & 1.0000000 & 0.480519 & 0.512821 & 95 & 643 \\ 12^3 & 2^319^1 & Y & N & 5 & 0 & 1.0000000 & 0.487342 & 0.512658 & 98 & 648 \\ 12^3 & 2^313^1 & Y & N & 5 & 0 & 1.0000000 & 0.487342 & 0.512658 & 98 & 648 \\ 12^3 & 2^3 & N & N & 13 & 8 & 2.0769231 & 0.493750 & 0.566250 & 116 & 666 & -16 \\ 12^3 & 123^1 & N & N & 13 & 8 & 2.0769231 & 0.493750 & 0.566250 & 116 & 666 & -16 \\ 12^3 & 123^1 & N & N & -7 & 2 & 1.2857143 & 0.487805 & 0.51295 & 101 & 671 & -16 \\ 101 & 7^123^1 & N & N & -7 & 2 & 1.2857143 & 0.487805 & 0.51295 & 101 & 671 & -16 \\ 102 & 2^13^3 & N & N & -7 & 2 & 1.2857143 & 0.487805 & 0.51295 & 101 & 671 & -16 \\ 103 & 163^1 & Y & N & 5 & 0 & 1.0000000 & 0.48732 & 0.506173 & 110 & 671 & -16 \\ 104 & 2^241^1 & N & N & -7 & 2 & 1.2857143 & 0.487805 & 0.51295 & 101 & 671 & -16 \\ 105 & 3^15^11^1 & N & N & -7 & 2 & 1.2857143 & 0.487805 & 0.51295 & 101 & 671 & -16 \\ 104 & 2^241^1 & N & N & -7 & 2 & 1.2857143 & 0.487805 & 0.51295 & 101 & 678 & -17 \\ 105 & 2^13^2 & N & N & 5 & 0 & 1.0000000 & 0.48927 & 0.560173 & 10 & 678 & -17 \\ 105 & 3^15^1 & N & N & -7 & 2 & 1.2857143 & 0.487805 & 0.512915 & 101 & 678 & -17 \\ 116 & 2$	144			N	34			0.486111	0.513889	52	559	-507
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-507
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-507
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-514
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-521 -523
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												-523 -523
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1							-525
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-525
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	153	3^217^1	N	N	-7	2		0.483660	0.516340	76	608	-532
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	154		Y	N	-16	0	1.0000000	0.480519	0.519481	60	608	-548
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-548
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-548
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-550
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-550
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							$-550 \\ -550$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-550
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-561
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	163	163^{1}		Y	-2							-563
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	164	2^241^1	N	N	-7	2	1.2857143	0.487805	0.512195	101	671	-570
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	165				1		1.0000000	0.484848	0.515152	85	671	-586
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-586
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-588
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-636
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							$-636 \\ -652$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-652 -659
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				1							-666
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				1							-668
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				1							-684
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	175	5^27^1	N	N	-7	2	1.2857143	0.468571	0.531429	-13	678	-691
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	176		N	N	-11	6	1.8181818	0.465909	0.534091	-24	678	-702
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-702
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-702
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				1							-704
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				1							-778
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				1							$-780 \\ -796$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1							-796 -796
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				1							-796
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1							-796
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	186	$2^{1}3^{1}31^{1}$		N	1	0		0.467742	0.532258		707	-812
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			N	1		1.0000000				712	-812
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1							-819
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1							-819
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1							-835
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1				1							-837
$ \begin{bmatrix} 194 & 2^197^1 & Y & N & 5 & 0 & 1.000000 & 0.463918 & 0.536082 & -128 & 726 & -195 & 3^15^113^1 & Y & N & -16 & 0 & 1.000000 & 0.461538 & 0.538462 & -144 & 726 & -196 & 2^27^2 & N & N & 14 & 9 & 1.3571429 & 0.464286 & 0.535714 & -130 & 740 & -197 & 197^1 & Y & Y & -2 & 0 & 1.0000000 & 0.461929 & 0.538071 & -132 & 740 & -198 & 2^13^211^1 & N & N & 30 & 14 & 1.1666667 & 0.464646 & 0.535354 & -102 & 770$					1							$-852 \\ -854$
$ \begin{bmatrix} 195 & 3^15^113^1 & Y & N & -16 & 0 & 1.000000 & 0.461538 & 0.538462 & -144 & 726 & -196 & 2^27^2 & N & N & 14 & 9 & 1.3571429 & 0.464286 & 0.535714 & -130 & 740 & -197 & 197^1 & Y & Y & -2 & 0 & 1.0000000 & 0.461929 & 0.538071 & -132 & 740 & -198 & 2^13^211^1 & N & N & 30 & 14 & 1.1666667 & 0.464646 & 0.535354 & -102 & 770 & -140 &$					1							-854 -854
					1							-870
	1				1							-870 -870
198 2 ¹ 3 ² 11 ¹ N N 30 14 1.1666667 0.464646 0.535354 -102 770 -	1				1							-872
100 100 ¹ V V 2	198	$2^1 3^2 11^1$	N	N	30	14		0.464646		-102		-872
	199	199^{1}	Y	Y	-2	0	1.0000000	0.462312	0.537688	-104	770	-874
$\begin{bmatrix} 200 & 2^35^2 & N & N & -23 & 18 & 1.4782609 & 0.460000 & 0.540000 & -127 & 770 & -128 & -$	200	$2^{3}5^{2}$	N	N	-23	18	1.4782609	0.460000	0.540000	-127	770	-897

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
201	$3^{1}67^{1}$	Y	N	5	0	$\frac{ g^{-1}(n) }{1.0000000}$	0.462687	0.537313	-122	775	-897
201	$2^{1}101^{1}$	Y	N	5	0	1.0000000	0.465347	0.534653	-117	780	-897
203	$7^{1}29^{1}$	Y	N	5	0	1.0000000	0.467980	0.532020	-112	785	-897
204	$2^{2}3^{1}17^{1}$	N	N	30	14	1.1666667	0.470588	0.529412	-82	815	-897
204	$5^{1}41^{1}$	Y	N	5	0	1.0000007	0.470388	0.526829	-82 -77	820	-897
206	$2^{1}103^{1}$	Y	N	5	0	1.0000000	0.475728	0.524272	-77	825	-897
207	$3^{2}23^{1}$	N	N	-7	2	1.2857143	0.473430	0.526570	-72 -79	825	-904
208	$2^{4}13^{1}$	N	N	-11	6	1.8181818	0.473430	0.528846	-79 -90	825	-904 -915
209	$11^{1}19^{1}$	Y	N	5	0	1.0000000	0.471134	0.526316	-85	830	-915
210	$2^{1}3^{1}5^{1}7^{1}$	Y	N	65	0	1.0000000	0.476190	0.523810	-20	895	-915
211	$2 \ 3 \ 3 \ 7$ 211^{1}	Y	Y	-2	0	1.0000000	0.473934	0.526066	-20 -22	895	-917
212	$2^{2}53^{1}$	N	N	-7	2	1.2857143	0.471698	0.528302	-29	895	-924
213	$3^{1}71^{1}$	Y	N	5	0	1.0000000	0.471038	0.525822	-24	900	-924 -924
214	$2^{1}107^{1}$	Y	N	5	0	1.0000000	0.476636	0.523364	-19	905	-924 -924
215	$5^{1}43^{1}$	Y	N	5	0	1.0000000	0.479070	0.520930	-14	910	-924 -924
216	$2^{3}3^{3}$	N	N	46	41	1.5000000	0.481481	0.518519	32	956	-924
217	$7^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	37	961	-924
218	$2^{1}109^{1}$	Y	N	5	0	1.0000000	0.486239	0.513761	42	966	-924
219	$3^{1}73^{1}$	Y	N	5	0	1.0000000	0.488584	0.511416	47	971	-924
220	$2^{2}5^{1}11^{1}$	N	N	30	14	1.1666667	0.490909	0.509091	77	1001	-924
221	$13^{1}17^{1}$	Y	N	5	0	1.0000007	0.493213	0.506787	82	1001	-924 -924
222	$2^{1}3^{1}37^{1}$	Y	N	-16	0	1.0000000	0.490991	0.509009	66	1006	-940
223	223 ¹	Y	Y	-2	0	1.0000000	0.488789	0.511211	64	1006	-940
224	$2^{5}7^{1}$	N	N	13	8	2.0769231	0.491071	0.508929	77	1019	-942
225	$3^{2}5^{2}$	N	N	14	9	1.3571429	0.493333	0.506667	91	1033	-942
226	$2^{1}113^{1}$	Y	N	5	0	1.0000000	0.495575	0.504425	96	1038	-942
227	27^{1}	Y	Y	-2	0	1.0000000	0.493392	0.506608	94	1038	-944
228	$2^23^119^1$	N	N	30	14	1.1666667	0.495614	0.504386	124	1068	-944
229	229^{1}	Y	Y	-2	0	1.0000000	0.493450	0.506550	122	1068	-946
230	$2^{1}5^{1}23^{1}$	Y	N	-16	0	1.0000000	0.491304	0.508696	106	1068	-962
231	$3^{1}7^{1}11^{1}$	Y	N	-16	0	1.0000000	0.489177	0.510823	90	1068	-978
232	$2^{3}29^{1}$	N	N	9	4	1.5555556	0.491379	0.508621	99	1077	-978
233	233^{1}	Y	Y	-2	0	1.0000000	0.489270	0.510730	97	1077	-980
234	$2^{1}3^{2}13^{1}$	N	N	30	14	1.1666667	0.491453	0.508547	127	1107	-980
235	$5^{1}47^{1}$	Y	N	5	0	1.0000000	0.493617	0.506383	132	1112	-980
236	2^259^1	N	N	-7	2	1.2857143	0.491525	0.508475	125	1112	-987
237	3^179^1	Y	N	5	0	1.0000000	0.493671	0.506329	130	1117	-987
238	$2^17^117^1$	Y	N	-16	0	1.0000000	0.491597	0.508403	114	1117	-1003
239	239^{1}	Y	Y	-2	0	1.0000000	0.489540	0.510460	112	1117	-1005
240	$2^43^15^1$	N	N	70	54	1.5000000	0.491667	0.508333	182	1187	-1005
241	241^{1}	Y	Y	-2	0	1.0000000	0.489627	0.510373	180	1187	-1007
242	$2^{1}11^{2}$	N	N	-7	2	1.2857143	0.487603	0.512397	173	1187	-1014
243	3^5	N	Y	-2	0	3.0000000	0.485597	0.514403	171	1187	-1016
244	2^261^1	N	N	-7	2	1.2857143	0.483607	0.516393	164	1187	-1023
245	$5^{1}7^{2}$	N	N	-7	2	1.2857143	0.481633	0.518367	157	1187	-1030
246	$2^{1}3^{1}41^{1}$	Y	N	-16	0	1.0000000	0.479675	0.520325	141	1187	-1046
247	$13^{1}19^{1}$	Y	N	5	0	1.0000000	0.481781	0.518219	146	1192	-1046
248	$2^{3}31^{1}$	N	N	9	4	1.5555556	0.483871	0.516129	155	1201	-1046
249	31831	Y	N	5	0	1.0000000	0.485944	0.514056	160	1206	-1046
250	$2^{1}5^{3}$	N	N	9	4	1.555556	0.488000	0.512000	169	1215	-1046
251	251^{1}	Y	Y	-2	0	1.0000000	0.486056	0.513944	167	1215	-1048
252	$2^{2}3^{2}7^{1}$	N	N	-74	58	1.2162162	0.484127	0.515873	93	1215	-1122
253	11 ¹ 23 ¹	Y	N	5	0	1.0000000	0.486166	0.513834	98	1220	-1122
254	$2^{1}127^{1}$	Y	N	5	0	1.0000000	0.488189	0.511811	103	1225	-1122
255	$3^{1}5^{1}17^{1}$	Y	N	-16	0	1.0000000	0.486275	0.513725	87	1225	-1138
256	2^{8} 257^{1}	N	Y	2	0	4.5000000	0.488281	0.511719	89	1227	-1138
257	257^{2} $2^{1}3^{1}43^{1}$	Y	Y	-2 16	0	1.0000000	0.486381	0.513619	87	1227	-1140
258	$7^{1}37^{1}$	Y Y	N	-16 5	0	1.0000000	0.484496	0.515504	71	1227	-1156
259	$2^{2}5^{1}13^{1}$	l	N N	5	0	1.0000000	0.486486	0.513514	76 106	1232	-1156 -1156
260	$3^{2}29^{1}$	N N	N N	30	$\frac{14}{2}$	1.1666667	0.488462 0.486590	0.511538	106	1262	-1156 -1163
261 262	$2^{1}131^{1}$	Y Y	N N	-7 5	0	1.2857143 1.0000000	0.486590	0.513410 0.511450	99 104	1262 1267	-1163 -1163
263	263^{1}	Y	Y	-2	0	1.0000000	0.486692	0.511430	104	1267	-1165 -1165
264	2^{03} $2^{3}3^{1}11^{1}$	N Y	Y N	-2 -48	32	1.3333333	0.486692	0.515308	54	1267	-1105 -1213
265	$5^{1}53^{1}$	Y	N	5	0	1.0000000	0.484848	0.513132	59	1207	-1213 -1213
266	$2^{1}7^{1}19^{1}$	Y	N	-16	0	1.0000000	0.486792	0.515208	43	1272	-1213 -1229
267	$3^{1}89^{1}$	Y	N	5	0	1.0000000	0.484902	0.513038	48	1277	-1229 -1229
268	$2^{2}67^{1}$	N	N	-7	2	1.2857143	0.485075	0.513109	48	1277	-1229 -1236
269	$\frac{2}{269^1}$	Y	Y	-7	0	1.0000000	0.483073	0.514925 0.516729	39	1277	-1236 -1238
270	$2^{1}3^{3}5^{1}$	N	N	-2 -48	32	1.3333333	0.483271	0.516729	-9	1277	-1238 -1286
271	271^{1}	Y	Y	-48 -2	0	1.0000000	0.481481	0.510319	-9 -11	1277	-1280 -1288
271	$2^{4}17^{1}$	N	N	-2 -11	6	1.8181818	0.479703	0.520295	-11 -22	1277	-1288 -1299
273	$3^{1}7^{1}13^{1}$	Y	N	-16	0	1.0000000	0.477941	0.523810	-22 -38	1277	-1299 -1315
274	$2^{1}137^{1}$	Y	N	5	0	1.0000000	0.478102	0.523810	-33	1282	-1315 -1315
275	5^211^1	N	N	-7	2	1.2857143	0.476364	0.523636	-40	1282	-1313 -1322
276	$2^{2}3^{1}23^{1}$	N	N	30	14	1.1666667	0.478261	0.523030	-10	1312	-1322 -1322
277	277^{1}	Y	Y	-2	0	1.0000007	0.476534	0.521739	-10 -12	1312	-1322 -1324
2	211			ı	Ü	1.5000000	1 3.110004	5.525400	12	1012	1024

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
278	$2^{1}139^{1}$	Y	N	5	0	1.0000000	0.478417	0.521583	-7	1317	-1324
279	3^231^1	N	N	-7	2	1.2857143	0.476703	0.523297	-14	1317	-1331
280	$2^35^17^1$	N	N	-48	32	1.3333333	0.475000	0.525000	-62	1317	-1379
281	281^{1}	Y	Y	-2	0	1.0000000	0.473310	0.526690	-64	1317	-1381
282	$2^{1}3^{1}47^{1}$	Y	N	-16	0	1.0000000	0.471631	0.528369	-80	1317	-1397
283	283^{1}	Y	Y	-2	0	1.0000000	0.469965	0.530035	-82	1317	-1399
284	2^271^1	N	N	-7	2	1.2857143	0.468310	0.531690	-89	1317	-1406
285	$3^15^119^1$	Y	N	-16	0	1.0000000	0.466667	0.533333	-105	1317	-1422
286	$2^111^113^1$	Y	N	-16	0	1.0000000	0.465035	0.534965	-121	1317	-1438
287	$7^{1}41^{1}$	Y	N	5	0	1.0000000	0.466899	0.533101	-116	1322	-1438
288	$2^{5}3^{2}$	N	N	-47	42	1.7659574	0.465278	0.534722	-163	1322	-1485
289	17^{2}	N	Y	2	0	1.5000000	0.467128	0.532872	-161	1324	-1485
290	$2^{1}5^{1}29^{1}$	Y	N	-16	0	1.0000000	0.465517	0.534483	-177	1324	-1501
291	$3^{1}97^{1}$	Y	N	5	0	1.0000000	0.467354	0.532646	-172	1329	-1501
292	$2^{2}73^{1}$	N	N	-7	2	1.2857143	0.465753	0.534247	-179	1329	-1508
293	293^{1} $2^{1}3^{1}7^{2}$	Y	Y	-2	0	1.0000000	0.464164	0.535836	-181	1329	-1510
294	$5^{1}59^{1}$	N	N	30	14	1.1666667	0.465986	0.534014	-151	1359	-1510
295	$2^{3}37^{1}$	Y	N	5	0	1.0000000	0.467797	0.532203	-146	1364	-1510
296 297	$3^{3}11^{1}$	N N	N N	9 9	4	1.5555556	0.469595 0.471380	0.530405	-137 -128	1373	-1510 -1510
297	$2^{1}149^{1}$	Y	N N	5	4 0	1.555556 1.0000000	0.471380	0.528620 0.526846	-128 -123	1382 1387	-1510 -1510
298	$13^{1}23^{1}$	Y	N N	5	0	1.0000000	0.473154	0.526846 0.525084	-123 -118	1392	-1510 -1510
300	$2^{2}3^{1}5^{2}$	N	N	-74	58	1.2162162	0.474910	0.525084	-118 -192	1392	-1510 -1584
301	$7^{1}43^{1}$	Y	N	5	0	1.0000000	0.475083	0.524917	-192 -187	1392	-1584 -1584
301	$2^{1}151^{1}$	Y	N	5	0	1.0000000	0.475083	0.523179	-182	1402	-1584 -1584
303	$3^{1}101^{1}$	Y	N	5	0	1.0000000	0.478548	0.523179	-177	1407	-1584
304	2^419^1	N	N	-11	6	1.8181818	0.476974	0.523026	-188	1407	-1595
305	$5^{1}61^{1}$	Y	N	5	0	1.0000000	0.478689	0.521311	-183	1412	-1595
306	$2^{1}3^{2}17^{1}$	N	N	30	14	1.1666667	0.480392	0.519608	-153	1442	-1595
307	307^{1}	Y	Y	-2	0	1.0000000	0.478827	0.521173	-155	1442	-1597
308	$2^27^111^1$	N	N	30	14	1.1666667	0.480519	0.519481	-125	1472	-1597
309	3^1103^1	Y	N	5	0	1.0000000	0.482201	0.517799	-120	1477	-1597
310	$2^{1}5^{1}31^{1}$	Y	N	-16	0	1.0000000	0.480645	0.519355	-136	1477	-1613
311	311^{1}	Y	Y	-2	0	1.0000000	0.479100	0.520900	-138	1477	-1615
312	$2^{3}3^{1}13^{1}$	N	N	-48	32	1.3333333	0.477564	0.522436	-186	1477	-1663
313	3131	Y	Y	-2	0	1.0000000	0.476038	0.523962	-188	1477	-1665
314	$2^{1}157^{1}$	Y	N	5	0	1.0000000	0.477707	0.522293	-183	1482	-1665
315	$3^{2}5^{1}7^{1}$	N	N	30	14	1.1666667	0.479365	0.520635	-153	1512	-1665
316	$2^{2}79^{1}$	N	N	-7	2	1.2857143	0.477848	0.522152	-160	1512	-1672
317	317^1 $2^13^153^1$	Y	Y	-2	0	1.0000000	0.476341	0.523659	-162	1512	-1674
318	$11^{1}29^{1}$	Y Y	N	-16	0	1.0000000	0.474843	0.525157	-178	1512	-1690
319 320	$2^{6}5^{1}$	N N	N N	5 -15	0 10	1.0000000 2.3333333	0.476489 0.475000	0.523511 0.525000	-173 -188	1517	-1690 -1705
320	$3^{1}107^{1}$	Y	N	5	0	1.0000000	0.476636	0.523364	-183	1517 1522	-1705 -1705
321	$2^{1}7^{1}23^{1}$	Y	N	-16	0	1.0000000	0.475155	0.524845	-199	1522	-1703 -1721
323	$17^{1}19^{1}$	Y	N	5	0	1.0000000	0.476780	0.523220	-194	1527	-1721 -1721
324	$2^{2}3^{4}$	N	N	34	29	1.6176471	0.478395	0.521605	-160	1561	-1721
325	$5^{2}13^{1}$	N	N	-7	2	1.2857143	0.476923	0.523077	-167	1561	-1728
326	$2^{1}163^{1}$	Y	N	5	0	1.0000000	0.478528	0.521472	-162	1566	-1728
327	$3^{1}109^{1}$	Y	N	5	0	1.0000000	0.480122	0.519878	-157	1571	-1728
328	2^341^1	N	N	9	4	1.5555556	0.481707	0.518293	-148	1580	-1728
329	7^147^1	Y	N	5	0	1.0000000	0.483283	0.516717	-143	1585	-1728
330	$2^{1}3^{1}5^{1}11^{1}$	Y	N	65	0	1.0000000	0.484848	0.515152	-78	1650	-1728
331	331^{1}	Y	Y	-2	0	1.0000000	0.483384	0.516616	-80	1650	-1730
332	$2^{2}83^{1}$	N	N	-7	2	1.2857143	0.481928	0.518072	-87	1650	-1737
333	3^237^1	N	N	-7	2	1.2857143	0.480480	0.519520	-94	1650	-1744
334	$2^{1}167^{1}$	Y	N	5	0	1.0000000	0.482036	0.517964	-89	1655	-1744
335	$5^{1}67^{1}$	Y	N	5	0	1.0000000	0.483582	0.516418	-84	1660	-1744
336	$2^43^17^1$	N	N	70	54	1.5000000	0.485119	0.514881	-14	1730	-1744
337	337 ¹	Y	Y	-2	0	1.0000000	0.483680	0.516320	-16	1730	-1746
338	$2^{1}13^{2}$	N	N	-7	2	1.2857143	0.482249	0.517751	-23	1730	-1753
339	3 ¹ 113 ¹	Y	N	5	0	1.0000000	0.483776	0.516224	-18	1735	-1753
340	$2^{2}5^{1}17^{1}$	N	N	30	14	1.1666667	0.485294	0.514706	12	1765	-1753
341	$11^{1}31^{1}$ $2^{1}3^{2}19^{1}$	Y	N	5	0	1.0000000	0.486804	0.513196	17	1770	-1753
342	$2^{1}3^{2}19^{1}$ 7^{3}	N	N	30	14	1.1666667	0.488304	0.511696	47	1800	-1753
343 344	$2^{3}43^{1}$	N N	Y N	-2 9	0	2.0000000	0.486880	0.513120	45	1800	-1755
344	$3^{1}5^{1}23^{1}$	Y	N N	9 -16	4 0	1.5555556 1.0000000	0.488372 0.486957	0.511628 0.513043	54 38	1809 1809	-1755 -1771
345	$2^{1}173^{1}$	Y	N N	5	0	1.0000000	0.486957	0.513043 0.511561	43	1814	-1771 -1771
347	347^{1}	Y	Y	-2	0	1.0000000	0.487032	0.511361	41	1814	-1771 -1773
348	$2^{2}3^{1}29^{1}$	N	N	30	14	1.1666667	0.488506	0.511494	71	1844	-1773
349	349^{1}	Y	Y	-2	0	1.0000000	0.487106	0.512894	69	1844	-1775
350	$2^{1}5^{2}7^{1}$	N	N	30	14	1.1666667	0.488571	0.511429	99	1874	-1775
		•		•					•		

361 361 37 37 37 37 37 37 37 3		Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
S52	_	$3^{3}13^{1}$		N							1883	-1775
S53 S53 Y			1								1896	-1775
Safe 2 3 5 5 7 8 N			1								1896	-1777
156	4										1896	-1793
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$5^{1}71^{1}$	Y	N	5	0	1.0000000	0.490141	0.509859	108	1901	-1793
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$2^{2}89^{1}$	N	N	-7	2	1.2857143	0.488764	0.511236	101	1901	-1800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$;	$3^17^117^1$	Y	N	-16	0	1.0000000	0.487395	0.512605	85	1901	-1816
San 2 ³ / ₉ 3 ⁵ / ₁ N		$2^{1}179^{1}$	Y	N	5	0	1.0000000	0.488827	0.511173	90	1906	-1816
381 192 N			Y	Y	-2	0	1.0000000	0.487465	0.512535	88	1906	-1818
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			N		145		1.3034483	0.488889	0.511111	233	2051	-1818
383 3 11 2					2		1.5000000	0.490305	0.509695	235	2053	-1818
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											2058	-1818
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											2058	-1825
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-										2088	-1825
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											2093	-1825
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2										2093	-1841
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											2093	-1843
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											2093	-1854
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1								2093	-1861
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:		1								2093 2098	-1877 -1877
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											2098 2128	-1877 -1877
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											2128	-1877 -1879
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2		1								2128	-1879 -1895
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_										2137	-1895
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											2146	-1895 -1895
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1								2151	-1895
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											2151	-1943
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		379^{1}	Y								2151	-1945
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	$2^25^119^1$	N	N	30	14	1.1666667	0.489474	0.510526	236	2181	-1945
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3^1127^1	Y	N	5	0	1.0000000	0.490814	0.509186	241	2186	-1945
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Y	N	5	0	1.0000000	0.492147	0.507853	246	2191	-1945
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Y	Y	-2	0	1.0000000	0.490862	0.509138	244	2191	-1947
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			N	N	17	12	2.5882353	0.492188	0.507812	261	2208	-1947
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		-16	0	1.0000000	0.490909	0.509091	245	2208	-1963
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											2213	-1963
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.509044		2213	-1970
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2213	-1977
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2213	-1979
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											2278	-1979
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1								2283	-1979
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2283	-2002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											2288	-2002 -2002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								$\frac{2293}{2298}$	-2002 -2002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2298	-2002 -2076
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•										2298	-2078
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2303	-2078
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											2303	-2094
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•										2337	-2094
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2337	-2096
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		1								2337	-2112
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$13^{1}31^{1}$	Y	N							2342	-2112
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			N	N	-7	2	1.2857143	0.490099	0.509901	223	2342	-2119
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1						0.511111	212	2342	-2130
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.512315	196	2342	-2146
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2347	-2146
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		1								2347	-2194
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2347	-2196
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											2347	-2212
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											2352	-2212
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2352	-2219
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2357	-2219
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-										2387	-2219
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											2392	-2219
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2405	-2219
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2410 2410	-2219 -2235
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2										2410 2410	-2235 -2237
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		1								2410	-2237 -2392
422 2 ¹ 211 ¹ Y N 5 0 1.0000000 0.488152 0.511848 21	_		1								2410	-2392 -2394
			1								2415	-2394 -2394
		$3^{2}47^{1}$	N	N	-7	2	1.2857143	0.486998	0.511048	14	2415	-2394 -2401
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											2413	-2401 -2401
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								2424	-2401 -2408

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
426	$2^{1}3^{1}71^{1}$	Y	N	-16	0	$\frac{ g^{-1}(n) }{1.0000000}$	0.485915	0.514085	0	2424	-2424
427	$7^{1}61^{1}$	Y	N	5	0	1.0000000	0.483313	0.512881	5	2429	-2424 -2424
428	$2^{2}107^{1}$	N	N	-7	2	1.2857143	0.485981	0.514019	-2	2429	-2424 -2431
429	$3^{1}11^{1}13^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	-18	2429	-2431 -2447
430	$2^{1}5^{1}43^{1}$	Y	N	-16	0	1.0000000	0.483721	0.516279	-34	2429	-2463
431	431^{1}	Y	Y	-2	0	1.0000000	0.483721	0.517401	-36	2429	-2465
432	$2^{4}3^{3}$	N	N	-80	75	1.5625000	0.482399	0.517401	-36 -116	2429	-2405 -2545
	433^{1}	Y	Y	-30 -2	0	1.0000000	0.481481	0.519630	-118		-2545 -2547
433	$2^{1}7^{1}31^{1}$	Y	Y N		0		1			2429	
434	$3^{1}5^{1}29^{1}$	Y		-16		1.0000000	0.479263	0.520737	-134	2429	-2563
435	$2^{2}109^{1}$		N	$-16 \\ -7$	0	1.0000000	0.478161	0.521839	-150	2429	-2579
436	19 ¹ 23 ¹	N	N		2	1.2857143	0.477064	0.522936	-157	2429	-2586
437	$2^{1}3^{1}73^{1}$	Y	N	5	0	1.0000000	0.478261	0.521739	-152	2434	-2586
438	439^{1}	Y	N	-16	0	1.0000000	0.477169	0.522831	-168	2434	-2602
439	$2^{3}5^{1}11^{1}$	Y	Y	-2	0	1.0000000	0.476082	0.523918	-170	2434	-2604
440	$3^{2}7^{2}$	N	N	-48	32	1.3333333	0.475000	0.525000	-218	2434	-2652
441		N	N	14	9	1.3571429	0.476190	0.523810	-204	2448	-2652
442	$2^{1}13^{1}17^{1}$	Y	N	-16	0	1.0000000	0.475113	0.524887	-220	2448	-2668
443	443 ¹	Y	Y	-2	0	1.0000000	0.474041	0.525959	-222	2448	-2670
444	$2^{2}3^{1}37^{1}$	N	N	30	14	1.1666667	0.475225	0.524775	-192	2478	-2670
445	$5^{1}89^{1}$	Y	N	5	0	1.0000000	0.476404	0.523596	-187	2483	-2670
446	$2^{1}223^{1}$	Y	N	5	0	1.0000000	0.477578	0.522422	-182	2488	-2670
447	$3^{1}149^{1}$	Y	N	5	0	1.0000000	0.478747	0.521253	-177	2493	-2670
448	$2^{6}7^{1}$	N	N	-15	10	2.3333333	0.477679	0.522321	-192	2493	-2685
449	449^{1}	Y	Y	-2	0	1.0000000	0.476615	0.523385	-194	2493	-2687
450	$2^{1}3^{2}5^{2}$	N	N	-74	58	1.2162162	0.475556	0.524444	-268	2493	-2761
451	$11^{1}41^{1}$	Y	N	5	0	1.0000000	0.476718	0.523282	-263	2498	-2761
452	$2^{2}113^{1}$	N	N	-7	2	1.2857143	0.475664	0.524336	-270	2498	-2768
453	$3^{1}151^{1}$	Y	N	5	0	1.0000000	0.476821	0.523179	-265	2503	-2768
454	$2^{1}227^{1}$	Y	N	5	0	1.0000000	0.477974	0.522026	-260	2508	-2768
455	$5^{1}7^{1}13^{1}$	Y	N	-16	0	1.0000000	0.476923	0.523077	-276	2508	-2784
456	$2^{3}3^{1}19^{1}$	N	N	-48	32	1.3333333	0.475877	0.524123	-324	2508	-2832
457	457^{1}	Y	Y	-2	0	1.0000000	0.474836	0.525164	-326	2508	-2834
458	$2^{1}229^{1}$	Y	N	5	0	1.0000000	0.475983	0.524017	-321	2513	-2834
459	$3^{3}17^{1}$ $2^{2}5^{1}23^{1}$	N	N	9	4	1.5555556	0.477124	0.522876	-312	2522	-2834
460		N	N	30	14	1.1666667	0.478261	0.521739	-282	2552	-2834
461	461^{1} $2^{1}3^{1}7^{1}11^{1}$	Y	Y	-2	0	1.0000000	0.477223	0.522777	-284	2552	-2836
462	463^{1}	Y	N	65	0	1.0000000	0.478355	0.521645	-219	2617	-2836
463	$2^{4}29^{1}$	Y N	Y N	$-2 \\ -11$	0 6	1.0000000	0.477322 0.476293	0.522678	-221 -232	2617	-2838
$\frac{464}{465}$	$3^{1}5^{1}31^{1}$	Y	N	-11 -16	0	1.8181818 1.0000000	0.475269	0.523707	-232 -248	2617 2617	-2849 -2865
466	$2^{1}233^{1}$	Y	N	5	0	1.0000000	0.475269	0.524731 0.523605	-248 -243	2622	-2865 -2865
467	$\frac{2}{467}$	Y	Y	-2	0	1.0000000	0.475375	0.524625	-245 -245	2622	-2865 -2867
468	$2^{2}3^{2}13^{1}$	N	N	-74	58	1.2162162	0.473373	0.525641	-319	2622	-2941
469	$7^{1}67^{1}$	Y	N	5	0	1.0000000	0.474333	0.524520	-314	2627	-2941
470	$2^{1}5^{1}47^{1}$	Y	N	-16	0	1.0000000	0.473468	0.525532	-330	2627	-2941 -2957
471	$3^{1}157^{1}$	Y	N	5	0	1.0000000	0.474403	0.524416	-325	2632	-2957
472	$2^{3}59^{1}$	N	N	9	4	1.5555556	0.476695	0.523305	-316	2641	-2957
473	$11^{1}43^{1}$	Y	N	5	0	1.0000000	0.477801	0.522199	-311	2646	-2957
474	$2^{1}3^{1}79^{1}$	Y	N	-16	0	1.0000000	0.477801	0.523207	-311 -327	2646	-2973
475	$5^{2}19^{1}$	N	N	-7	2	1.2857143	0.475789	0.524211	-334	2646	-2980
476	$2^{2}7^{1}17^{1}$	N	N	30	14	1.1666667	0.476891	0.523109	-304	2676	-2980
477	$3^{2}53^{1}$	N	N	-7	2	1.2857143	0.475891	0.524109	-304 -311	2676	-2980 -2987
477	$2^{1}239^{1}$	Y	N	5	0	1.0000000	0.475891	0.523013	-311 -306	2681	-2987 -2987
479	479^{1}	Y	Y	-2	0	1.0000000	0.475992	0.524008	-308	2681	-2989
480	$2^{5}3^{1}5^{1}$	N	N	-2 -96	80	1.6666667	0.475992	0.525000	-308 -404	2681	-2989 -3085
481	$13^{1}37^{1}$	Y	N	-96 5	0	1.0000007	0.475000	0.523909	-404 -399	2686	-3085 -3085
481	$2^{1}241^{1}$	Y	N	5	0	1.0000000	0.477178	0.523909 0.522822	-399 -394	2691	-3085 -3085
483	$3^{1}7^{1}23^{1}$	Y	N	-16	0	1.0000000	0.477178	0.523810	-394 -410	2691	-3085 -3101
484	$2^{2}11^{2}$	N	N	14	9	1.3571429	0.476190	0.523810 0.522727	-410 -396	2705	-3101 -3101
485	$5^{1}97^{1}$	Y	N	5	0	1.0000000	0.477273	0.521649	-390 -391	2703	-3101 -3101
486	$2^{1}3^{5}$	N	N	13	8	2.0769231	0.478331	0.521549	-378	2710	-3101 -3101
487	$\frac{2}{487^1}$	Y	Y	-2	0	1.0000000	0.479424	0.520576 0.521561	-378 -380	2723	-3101 -3103
488	$2^{3}61^{1}$	N	N	9	4	1.5555556	0.478439	0.521301 0.520492	-371	2732	-3103 -3103
489	$3^{1}163^{1}$	Y	N	5	0	1.0000000	0.479308	0.520492 0.519427	-366	2737	-3103 -3103
490	$2^{1}5^{1}7^{2}$	N	N	30	14	1.1666667	0.480373	0.518367	-336 -336	2767	-3103 -3103
491	491 ¹	Y	Y	-2	0	1.0000007	0.481653	0.519348	-338	2767	-3103 -3105
492	$2^{2}3^{1}41^{1}$	N	N	30	14	1.1666667	0.480032	0.518293	-308	2797	-3105 -3105
493	$17^{1}29^{1}$	Y	N	5	0	1.0000007	0.481707	0.517241	-303	2802	-3105 -3105
494	$2^{1}13^{1}19^{1}$	Y	N	-16	0	1.0000000	0.481781	0.517241	-319	2802	-3121
495	$3^25^111^1$	N	N	30	14	1.1666667	0.482828	0.517172	-289	2832	-3121
496	2^431^1	N	N	-11	6	1.8181818	0.481855	0.518145	-300	2832	-3132
		Y	N	5	0	1.0000000	0.482897	0.517103	-295	2837	-3132
497	$7^{1}71^{1}$										
	$2^{1}3^{1}83^{1}$	Y	N	-16	0	1.0000000	0.481928	0.518072	-311	2837	-3148
497				$-16 \\ -2$	0 0	1.0000000 1.0000000	0.481928 0.480962	$\begin{array}{c} 0.518072 \\ 0.519038 \end{array}$	-311 -313	2837 2837	