

RISCV with Sanctum Enclaves

Victor Costan, Ilia Lebedev, Srini Devadas

Today, privilege implies trust (1/3)

If computing remotely, what is the TCB?

> trusted computing base

CPU HW Priviledge Hypervisor OS OS **Process Process** Process

Today, privilege implies trust (2/3)

If computing remotely, what is the TCB?

> trusted computing base

Sanctum <u>decouples</u> HW protection from trust!

Today, privilege implies trust (3/3)

Side channels leak privacy

Sanctum uses hardware-assisted isolation

Strong privacy & integrity with low overhead

Remote Software Attestation (1/2)

Trusted HW creates proof for remote user

Remote Software Attestation (2 /2)

Remote user decides whether or not to trust certificate

Prior work: TPM, TXT

SW in their attestation

7

Recent "Success": Intel SGX

Threat Model (Intel SGX)

Protect <u>privacy</u>* and <u>integrity</u>** of an **enclave** against a privileged SW adversary (OS/Hypervisor) **SGX** prevents:

Directly reading/ tampering with:

- Config. registers
- **Enclave memory**
- **Enclave process structures**
- DMA-capable devices

Some specific physical attacks:

Physical

*Indirect observation?

**Can SGX keep its keys private?

- DRAM contents
- Device secret

Threat Model (Sanctum)

Protect <u>privacy</u> and <u>integrity</u> of an **enclave** against **a privileged SW adversary** (OS/Hypervisor) **Sanctum** prevents:

Directly read/ tamper with:

- Config. registers
- Enclave memory
- Enclave process structures
- DMA-capable devices

Indirectly* observe private state via shared:

- Caches
- Microarchitectural state
- Data structures managed by the OS
- Interrupts / Faults

Sanctum's Chain of Trust

Sanctum's Contributions

- Formally verifiable open source SM
- Truly small TCB for attestation
 - (small SW and HW)
- Hardware-assisted isolation with strong guarantees

Unprivileged (user mode)

Sanctum modifies a RISCV Rocket Chip:

4 cores

Build hardware support for small, trusted software to enforce isolation guarantees for unprivileged software.

Explicitly multiplex between private and OS-controlled state

Enclaves execute on private cores

- Private L1 caches
- Private registers,
- Private branch target buffer
- Private TLB

Security monitor cleans up private state when allocating cores to enclaves / OS

Isolated Physical Memory in Sanctum

"DRAM region" is a unit of isolated memory

Isolating in the LLC (1/8)

Set associative (banked) cache

Isolating in the LLC (2/8)

LLC sharing leaks privacy!

LLC sharing leaks Isolating in the LLC (2/8)privacy! 15 11 Physical Address Line Offset Tag Set Index Give private LLC sets to enclaves! LLC

64 bytes

To isolate enclaves in LLC, allocate <u>exclusively</u>, at region granularity!

Hardware-assisted Isolation

Maintain an invariant:

TLB entries are safe!

HW enforces invariants at page walk

Protect SM memory from everyone

OS could rewrite S.M. code, do evil fix by...

Never map VAddr to SM memory

S.M. sanitizes mode switch

Isolating Enclaves in Physical Memory

OS could read/write Enclave memory

fix by...

Enforce DRAM Region permissions to at page walk

S.M. updates permissions when scheduling enclaves

Isolating enclave page tables

Should this VA use enclave's tables?

OS could spy on enclave's page table entries

fix by...

Implement enclave-private page tables

Sanctum modifies RISCV Rocket Chip (1/3)

Sanctum modifies RISCV Rocket Chip (2/3)

Sanctum modifies RISCV Rocket Chip (3/3)

Core Core Add hardware at interfaces only! PTW PTW Enclave PTs -TLB TLB PTW invariant -Datapath Datapath checker LLC addr. Rotation Private Cache **Private Cache** DMA whitelist -128 FFs Device secret LLC Bank LLC Bank **Boot ROM** Device **Boot** DRAM ROM Secret ~2% area increase in total!

Measuring Overheads: Experimental setup

this slide is intentionally left blank

A Detailed Look at Sanctum's Overheads (2/3)

Enclave overhead with a DRAM region allocation of 1/4 of LLC sets Benefit from a large LLC

A Detailed Look at Sanctum's Overheads (3/3)

Enclave overhead for various enclave sizes

Trusted Manufacturer as CA

Remote Software Attestation Trusted Platform AK: Attestation Key **Endorsement Certificate** Data Owner's Computer Secure Container Initial State Key exchange: A, gA Public Code + Data g Key exchange: B, g^A Shared key: K = g^{AB} g^{B} , Sign_{AK}(g^{A} , g^{B} , M) M = Hash(Initial State) Shared key: $K = g^{AB}$ Enc_k(secret code/data) → Secret Code + Data Computation Results Enc_K(results) Computation Results

Attestation in Sanctum

Physical Memory in Sacntum (1/2)

Physical Memory in Sacntum (1/2)

