Supplementary Information for: Convergent Concordant Mode Approach: CMA-2A

Nathaniel L. Kitzmiller, Mitchell E. Lahm, Wesley D. Allen, Henry F. Schaefer III

March 19, 2024

S1 Remarks

The supplementary information pertaining to each molecule in this benchmark study can be found in the TOC. For each molecule, the Cartesian coordinates of the structure optimized at CCSD(T)/cc-pVTZ are printed in Bohr. Second, the unnormalized natural internal coordinates are provided. Last, a table of vibrational frequencies are displayed. In each table, the CCSD(T)/cc-pVTZ and MP2/cc-pVTZ frequencies are printed in the first column. The third column corresponds to the CMA-0A frequencies. The last two columns correspond to the CMA-2A[(T)/TZ,MP2/TZ] ($\xi=0.05$) frequencies and the corresponding number of off-diagonal elements for each molecule.

Contents

1 Rema	rks Si
S1.1	Cyclopropane
S1.2	Methane
S1.3	Ammonia
S1.4	Silane
S1.5	Benzene
S1.6	Cyclopropene
S1.7	Allene
S1.8	Spiropentane
S1.9	Aluminum Trichloride
S1.10	Aluminium Trifluoride
S1.11	Boron Trichloride
S1.12	Boron Trifluoride
S1.13	Tetrachloromethane
S1.14	Tetrafluoromethane
S1.15	Dichloromethane
S1.16	Difluoromethane
S1.17	Formic Acid
S1.18	Formaldehyde
S1.19	Singlet Carbene
S1.20	Chloromethane
S1.21	Thiomethanol
S1.22	Trichloromethane
S1.23	Trifluoromethan
S1.24	Methyl Nitrite
S1.25	Nitromethane
S1.26	Methylamine
S1.27	Ethylene
S1.28	Tetrafluoroethylene
S1.29	Tetrachloroethylene

S1.30	Acetylene	7
S1.31	Glycoxal	3
S1.32	Ketene)
S1.33	Vinyl Fluoride	Ĺ
S1.34	Vinyl Chloride	3
S1.35	Acetyl Chloride	ó
S1.36	Acetyl Fluoride	
S1.37	Acetic Acid	
S1.38	Methyl Formate	
S1.39	Acetaldehyde	
S1.40	Ethyl Chloride	
S1.41	Ethane	
S1.42	Dimethyl Ether	
S1.42	Ethanol	
S1.43	Acetonitrile	
S1.44	Propyene	
S1.46	Trifluoroacetonitrile	
S1.40 S1.47	Silicon Tetrachloride	
S1.47 S1.48		
-	Silicon Tetrafluoride	
S1.49	Disilane	
S1.50	Methyl Silane	
S1.51	Phosphane	
S1.52	Phosphorus Trifluoride	
S1.53	Hypochlorous Acide	
S1.54	Nitrosyl Chloride	
S1.55	Ozone	
S1.56	Oxygen Difluroide	
S1.57	Water	
S1.58	Trifluoroamine	
S1.59	Chlorine Trifluoride	
S1.60	Hydrogen Peroxide	
S1.61	Carbonyl Fluoride	í
S1.62	Singlet Silylene	;
S1.63	Nitrous Oxide	7
S1.64	Hydrazine	3
S1.65	Cyanogen)()
S1.66	Aziridine)1
S1.67	Acetamide)3
S1.68	Dimethylamine)5
S1.69	Ethylamine)7
S1.70	Acetone)9
S1.71	1-Chloropropane	11
S1.72	Methoxyethane	13
S1.73	Isopropyl Alcohol	16
S1.74	Propane	19
S1.75	Acrylonitrile	
S1.76	Trimethylamine	23
S1.77	Isobutane	26
S1.78	n-Butane	
S1.79	Furan	
S1.80	1,3-Butadiene	
S1.81	2-Butyne	
S1.81	Bicylcobutane	
S1.82	Cyclobutane	
S1.84	Methylenecyclopropane	
S1.85	Cyclobutane	
~-•-	,	

S1.86	Isobutene
S1.87	Pyrrole
S1.88	Pyradine
S1.89	Sulfur Dioxide
S1.90	Hydrogen Sulfide
S1.91	Carbonyl Sulfide
S1.92	Thiirane
S1.93	Dimethyl Sulfide
S1.94	Thioethanol
S1.95	Dimethyl Sulfoxide
S1.96	Thiopene
S1.97	Methanol
S1.98	Propene
	Oxirane
	Hydrogen Cycanide
	Triplet Carbene
	Formyl Radical
	Vinyl Radical
	Acetyl Radical
	Hydroxymethyl Radical
	Triplet Silylene
	Silyl Radical
	Phosphino Radical
	Nitrogen Dioxide
	Amino Radical
	Ethyl Radical
Q1 119	tort - Butyl Radical S187

S1.1 Cyclopropane

Geometries

Table S1: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) -1.426676521 \mathbf{C} 0.00000000-0.82369207С 2 -0.000000000.000000001.64738415 3 \mathbf{C} 1.42667652-0.00000000-0.82369207H -2.379366674 1.72210724-1.373727995 H -2.37936667-1.72210724-1.373727996 Η -0.00000000-1.722107242.74745597 7 H -0.0000000001.722107242.74745597 Η 1.72210724-1.373727998 2.37936667 9 Η 2.37936667-1.72210724-1.37372799

Natural Internal Coordinates

Table S2: Symmetrized, unnormalized natural internal coordinates for Cyclopropane.

```
1
         r_{2,3} + r_{1,2} + r_{1,3}
2
        2r_{2,3} - r_{1,2} - r_{1,3}
3
        r_{1,2} - r_{1,3}
4
        r_{1,4} + r_{1,5} + r_{2,6} + r_{2,7} + r_{3,8} + r_{3,9}
        2r_{1,4} + 2r_{1,5} - r_{2,6} - r_{2,7} - r_{3,8} - r_{3,9}
5
        r_{2,6} + r_{2,7} - r_{3,8} - r_{3,9}
6
7
        r_{1,4} - r_{1,5} + r_{2,6} - r_{2,7} + r_{3,8} - r_{3,9}
         2r_{1,4} - 2r_{1,5} - r_{2,6} + r_{2,7} - r_{3,8} + r_{3,9}
        r_{2.6} - r_{2.7} - r_{3.8} + r_{3.9}
10 \quad 4\phi_{4,1,5} - \phi_{4,1,2} - \phi_{4,1,3} - \phi_{5,1,2} - \phi_{5,1,3} + 4\phi_{6,2,7} - \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3}
         +4\phi_{8,3,9} - \phi_{8,3,1} - \phi_{8,3,2} - \phi_{9,3,1} - \phi_{9,3,2}
11 \quad 8\phi_{4,1,5} - 2\phi_{4,1,2} - 2\phi_{4,1,3} - 2\phi_{5,1,2} - 2\phi_{5,1,3} - 4\phi_{6,2,7} + \phi_{6,2,1} + \phi_{6,2,3} + \phi_{7,2,1} + \phi_{7,2,3}
         -4\phi_{8,3,9} + \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2}
12 4\phi_{6,2,7} - \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} - 4\phi_{8,3,9} + \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2}
13 \phi_{4,1,2} + \phi_{4,1,3} - \phi_{5,1,2} - \phi_{5,1,3} + \phi_{6,2,1} + \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,3,1} + \phi_{8,3,2}
         -\phi_{9,3,1}-\phi_{9,3,2}
14 2\phi_{4,1,2} + 2\phi_{4,1,3} - 2\phi_{5,1,2} - 2\phi_{5,1,3} - \phi_{6,2,1} - \phi_{6,2,3} + \phi_{7,2,1} + \phi_{7,2,3} - \phi_{8,3,1} - \phi_{8,3,2}
         +\phi_{9,3,1}+\phi_{9,3,2}
        \phi_{6,2,1} + \phi_{6,2,3} - \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,3,1} - \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2}
16 \phi_{4,1,2} - \phi_{4,1,3} + \phi_{5,1,2} - \phi_{5,1,3} + \phi_{6,2,1} - \phi_{6,2,3} + \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,3,1} - \phi_{8,3,2}
         +\phi_{9,3,1}-\phi_{9,3,2}
17 2\phi_{4,1,2} - 2\phi_{4,1,3} + 2\phi_{5,1,2} - 2\phi_{5,1,3} - \phi_{6,2,1} + \phi_{6,2,3} - \phi_{7,2,1} + \phi_{7,2,3} - \phi_{8,3,1} + \phi_{8,3,2}
18 \phi_{6,2,1} - \phi_{6,2,3} + \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,3,1} + \phi_{8,3,2} - \phi_{9,3,1} + \phi_{9,3,2}
19 \phi_{4,1,2} - \phi_{4,1,3} - \phi_{5,1,2} + \phi_{5,1,3} + \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} + \phi_{7,2,3} + \phi_{8,3,1} - \phi_{8,3,2}
         -\phi_{9,3,1}+\phi_{9,3,2}
20 2\phi_{4,1,2} - 2\phi_{4,1,3} - 2\phi_{5,1,2} + 2\phi_{5,1,3} - \phi_{6,2,1} + \phi_{6,2,3} + \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,3,1} + \phi_{8,3,2}
         +\phi_{9,3,1}-\phi_{9,3,2}
21 \phi_{6,2,1} - \phi_{6,2,3} - \phi_{7,2,1} + \phi_{7,2,3} - \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} - \phi_{9,3,2}
```

Table S3: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	740.85	740.68	740.86	740.86	0
2	740.85	740.69	740.86	740.86	0
3	857.68	860.46	857.69	857.69	0
4	891.96	894.34	892.19	892.19	0
5	891.96	894.37	892.19	892.19	0
6	1060.52	1047.44	1060.34	1060.34	0
7	1060.52	1047.59	1060.34	1060.34	0
8	1088.57	1077.74	1088.57	1088.57	0
9	1160.87	1163.77	1160.87	1160.87	0
10	1214.39	1213.98	1214.43	1214.43	0
11	1217.35	1214.00	1217.35	1217.35	0
12	1217.35	1217.37	1217.35	1217.35	0
13	1478.32	1478.47	1478.31	1478.31	0
14	1478.32	1478.47	1478.31	1478.31	0
15	1528.61	1524.51	1528.58	1528.58	0
16	3146.29	3163.10	3146.29	3146.29	0
17	3146.29	3163.15	3146.30	3146.30	0
18	3156.95	3171.65	3156.89	3156.89	0
19	3228.73	3252.54	3228.70	3228.70	0
20	3228.73	3252.74	3228.81	3228.81	0
21	3248.62	3271.15	3248.62	3248.62	0

S1.2 Methane

Geometries

Table S4: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

		· · · · · · · · · · · · · · · · · · ·			,
1	\mathbf{C}	0.00000000	0.00000000	0.00000000	
2	Η	0.00000000	-1.68028027	1.18813758	
3	Η	0.00000000	1.68028027	1.18813758	
4	Η	1.68028027	0.00000000	-1.18813758	
5	Η	-1.68028027	-0.00000000	-1.18813758	

Natural Internal Coordinates

Table S5: Symmetrized, unnormalized natural internal coordinates for Methane.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad -r_{1,2} r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad -r_{1,2} + r_{1,3} r_{1,4} + r_{1,5}$
- 4 $r_{1,2} r_{1,3} r_{1,4} + r_{1,5}$
- $5 \quad 2\phi_{2,1,3} + 2\phi_{4,1,5} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 6 $\phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 7 $-\phi_{2,1,3} + \phi_{4,1,5}$
- 8 $-\phi_{2,1,4} + \phi_{3,1,5}$
- 9 $\phi_{2,1,5} \phi_{3,1,4}$

Table S6: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T) MP2		MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1343.99	1343.17	1344.00	1344.00	0
2	1343.99	1343.17	1344.00	1344.00	0
3	1343.99	1343.24	1344.00	1344.00	0
4	1570.80	1578.60	1570.80	1570.80	0
5	1570.80	1578.60	1570.80	1570.80	0
6	3034.66	3045.57	3034.64	3034.64	0
7	3153.78	3178.77	3153.78	3153.78	0
8	3153.78	3178.77	3153.78	3153.78	0
9	3153.78	3179.02	3153.80	3153.80	0

S1.3 Ammonia

Geometries

Table S7: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	N	-0.13335323	-0.00000078	-0.00000000
2	Η	0.61762190	-1.76309423	-0.00000000
3	Η	0.61761729	0.88155253	1.52688219
4	Η	0.61761729	0.88155253	-1.52688219

Natural Internal Coordinates

Table S8: Symmetrized, unnormalized natural internal coordinates for Ammonia.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- $2 \quad 2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- 4 $2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- 6 $\gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

Table S9: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1109.21	1097.96	1109.22	1109.22	0
2	1687.93	1683.54	1687.93	1687.93	0
3	1687.93	1683.58	1687.93	1687.93	0
4	3471.91	3483.02	3471.91	3471.91	0
5	3597.54	3623.41	3597.54	3597.54	0
6	3597.54	3623.57	3597.54	3597.54	0

S1.4 Silane

Geometries

Table S10: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Si 0.000000000.000000000.000000002 Η 0.00000000-2.283085411.614377633 Η 0.000000002.283085411.614377634 Η 2.283085410.00000000-1.61437763Η 5 -2.283085410.00000000-1.61437763

Natural Internal Coordinates

Table S11: Symmetrized, unnormalized natural internal coordinates for Silane.

- 1 $r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad -r_{1,2} r_{1,3} + r_{1,4} + r_{1,5}$
- $3 -r_{1,2} + r_{1,3} r_{1,4} + r_{1,5}$
- 4 $r_{1,2} r_{1,3} r_{1,4} + r_{1,5}$
- $5 \quad 2\phi_{2,1,3} + 2\phi_{4,1,5} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 6 $\phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 7 $-\phi_{2,1,3} + \phi_{4,1,5}$
- 8 $-\phi_{2,1,4} + \phi_{3,1,5}$
- 9 $\phi_{2,1,5} \phi_{3,1,4}$

Table S12: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T) MP2		MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	933.79	949.08	933.79	933.79	0
2	933.80	949.08	933.80	933.80	0
3	933.80	949.14	933.80	933.80	0
4	985.48	1000.33	985.48	985.48	0
5	985.49	1000.33	985.49	985.49	0
6	2250.62	2270.48	2250.62	2250.62	0
7	2255.36	2274.13	2255.36	2255.36	0
8	2255.36	2274.13	2255.36	2255.36	0
9	2255.36	2274.24	2255.36	2255.36	0

S1.5 Benzene

Geometries

Table	S13:	CC	SD(T)/cc-pV	ΓZ Cartesian	Coordinates (Bohr)
	1	$^{\mathrm{C}}$	0.00000000	2.64096559	-0.00000000
	2	$^{\mathrm{C}}$	-2.28714329	1.32048279	-0.00000000
	3	$^{\mathrm{C}}$	-2.28714329	-1.32048279	0.00000000
	4	С	-0.00000000	-2.64096559	0.00000000
	5	С	2.28714329	-1.32048279	0.00000000
	6	$^{\mathrm{C}}$	2.28714329	1.32048279	-0.00000000
	7	Н	0.00000000	4.68777554	-0.00000000
	8	Н	-4.05973271	2.34388777	-0.00000000
	9	Н	-4.05973271	-2.34388777	0.00000000
	10	Н	-0.00000000	-4.68777554	0.00000000
	11	Н	4.05973271	-2.34388777	0.00000000
	12	Н	4.05973271	2.34388777	-0.00000000

Natural Internal Coordinates

Table S14: Symmetrized, unnormalized natural internal coordinates for Benzene.

```
1 r_{1,2} + r_{2,3} + r_{3,4} + r_{4,5} + r_{5,6} + r_{6,1}
```

$$2 r_{1,2} - r_{2,3} + r_{3,4} - r_{4,5} + r_{5,6} - r_{6,1}$$

$$3 2r_{1,2} + r_{2,3} - r_{3,4} - 2r_{4,5} - r_{5,6} + r_{6,1}$$

4
$$r_{2,3} + r_{3,4} - r_{5,6} - r_{6,1}$$

$$5 \qquad 2r_{1,2} - r_{2,3} - r_{3,4} + 2r_{4,5} - r_{5,6} - r_{6,1}$$

$$6 \qquad r_{2,3} - r_{3,4} + r_{5,6} - r_{6,1}$$

7
$$r_{1,7} + r_{2,8} + r_{3,9} + r_{4,10} + r_{5,11} + r_{6,12}$$

$$8 r_{1,7} - r_{2,8} + r_{3,9} - r_{4,10} + r_{5,11} - r_{6,12}$$

9
$$2r_{1,7} + r_{2,8} - r_{3,9} - 2r_{4,10} - r_{5,11} + r_{6,12}$$

10
$$r_{2,8} + r_{3,9} - r_{5,11} - r_{6,12}$$

11
$$2r_{1,7} - r_{2,8} - r_{3,9} + 2r_{4,10} - r_{5,11} - r_{6,12}$$

12
$$r_{2,8} - r_{3,9} + r_{5,11} - r_{6,12}$$

13
$$\phi_{6,1,2} - \phi_{1,2,3} + \phi_{2,3,4} - \phi_{3,4,5} + \phi_{4,5,6} - \phi_{5,6,1}$$

14
$$2\phi_{6,1,2} - \phi_{1,2,3} - \phi_{2,3,4} + 2\phi_{3,4,5} - \phi_{4,5,6} - \phi_{5,6,1}$$

15
$$\phi_{1,2,3} - \phi_{2,3,4} + \phi_{4,5,6} - \phi_{5,6,1}$$

16
$$\phi_{7,1,2} - \phi_{7,1,6} + \phi_{8,2,3} - \phi_{8,2,1} + \phi_{9,3,4} - \phi_{9,3,2} + \phi_{10,4,5} - \phi_{10,4,3} + \phi_{11,5,6} - \phi_{11,5,4} + \phi_{12,6,1} - \phi_{12,6,5}$$

17
$$\phi_{7,1,2} - \phi_{7,1,6} - \phi_{8,2,3} + \phi_{8,2,1} + \phi_{9,3,4} - \phi_{9,3,2} - \phi_{10,4,5} + \phi_{10,4,3} + \phi_{11,5,6} - \phi_{11,5,4} - \phi_{12,6,1} + \phi_{12,6,5}$$

18
$$2\phi_{7,1,2} - 2\phi_{7,1,6} + \phi_{8,2,3} - \phi_{8,2,1} - \phi_{9,3,4} + \phi_{9,3,2} - 2\phi_{10,4,5} + 2\phi_{10,4,3} - \phi_{11,5,6} + \phi_{11,5,4} + \phi_{12,6,1} - \phi_{12,6,5}$$

19
$$\phi_{8,2,3} - \phi_{8,2,1} + \phi_{9,3,4} - \phi_{9,3,2} - \phi_{11,5,6} + \phi_{11,5,4} - \phi_{12,6,1} + \phi_{12,6,5}$$

20
$$2\phi_{7,1,2} - 2\phi_{7,1,6} - \phi_{8,2,3} + \phi_{8,2,1} - \phi_{9,3,4} + \phi_{9,3,2} + 2\phi_{10,4,5} - 2\phi_{10,4,3} - \phi_{11,5,6} + \phi_{11,5,4} - \phi_{12,6,1} + \phi_{12,6,5}$$

$$21 \quad \phi_{8,2,3} - \phi_{8,2,1} - \phi_{9,3,4} + \phi_{9,3,2} + \phi_{11,5,6} - \phi_{11,5,4} - \phi_{12,6,1} + \phi_{12,6,5}$$

22
$$\tau_{1,2,3,4} - \tau_{2,3,4,5} + \tau_{3,4,5,6} - \tau_{4,5,6,1} + \tau_{5,6,1,2} - \tau_{6,1,2,3}$$

23
$$\tau_{1,2,3,4} - \tau_{3,4,5,6} + \tau_{4,5,6,1} - \tau_{6,1,2,3}$$

$$24 \quad -\tau_{1,2,3,4} + 2\tau_{2,3,4,5} - \tau_{3,4,5,6} - \tau_{4,5,6,1} + 2\tau_{5,6,1,2} - \tau_{6,1,2,3}$$

25
$$\gamma_{7,1,2,6} + \gamma_{8,2,3,1} + \gamma_{9,3,4,2} + \gamma_{10,4,5,3} + \gamma_{11,5,6,4} + \gamma_{12,6,1,5}$$

$$26 \quad \gamma_{7,1,2,6} - \gamma_{8,2,3,1} + \gamma_{9,3,4,2} - \gamma_{10,4,5,3} + \gamma_{11,5,6,4} - \gamma_{12,6,1,5}$$

27
$$2\gamma_{7,1,2,6} + \gamma_{8,2,3,1} - \gamma_{9,3,4,2} - 2\gamma_{10,4,5,3} - \gamma_{11,5,6,4} + \gamma_{12,6,1,5}$$

28
$$\gamma_{8,2,3,1} + \gamma_{9,3,4,2} - \gamma_{11,5,6,4} - \gamma_{12,6,1,5}$$

$$29 \quad 2\gamma_{7,1,2,6} - \gamma_{8,2,3,1} - \gamma_{9,3,4,2} + 2\gamma_{10,4,5,3} - \gamma_{11,5,6,4} - \gamma_{12,6,1,5}$$

$$30 \quad \gamma_{8,2,3,1} - \gamma_{9,3,4,2} + \gamma_{11,5,6,4} - \gamma_{12,6,1,5}$$

Table S15: Harmonic frequencies for reference and CMA data.					
	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	401.34	402.87	401.34	401.34	0
2	401.34	402.88	401.34	401.34	0
3	607.13	603.07	607.14	607.14	0
4	607.13	603.08	607.14	607.14	0
5	674.67	682.19	674.80	674.67	1
6	685.29	687.72	685.29	685.29	0
7	856.44	859.05	856.44	856.44	0
8	856.44	859.05	856.44	856.44	0
9	959.08	958.03	959.08	959.08	0
10	959.08	958.05	959.08	959.08	0
11	966.66	971.83	966.57	966.66	1
12	1004.54	1003.25	1004.54	1004.54	0
13	1010.33	1012.70	1010.33	1010.33	0
14	1054.36	1053.52	1054.37	1054.37	0
15	1054.36	1053.53	1054.37	1054.37	0
16	1158.88	1164.22	1163.79	1158.88	1
17	1190.57	1190.37	1190.61	1190.61	0
18	1190.57	1190.38	1190.61	1190.61	0
19	1328.17	1364.96	1323.88	1328.17	0
20	1370.18	1439.45	1370.18	1370.18	1
21	1506.94	1497.84	1506.94	1506.94	0
22	1506.94	1497.85	1506.94	1506.94	0
23	1637.23	1624.57	1637.21	1637.21	0
24	1637.23	1624.59	1637.21	1637.21	0
25	3169.39	3186.60	3169.39	3169.39	0
26	3180.74	3198.06	3180.74	3180.74	0
27	3180.74	3198.12	3180.74	3180.74	0
28	3198.33	3214.52	3198.33	3198.33	0
29	3198.33	3214.58	3198.33	3198.33	0
30	3209.15	3224.30	3209.15	3209.15	0

S1.6 Cyclopropene

Geometries

Table S16: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -0.00000000-0.000000001.67420069 2 Η 0.00001614-1.726422402.789157423 H -0.000016141.726422402.789157424 С 1.229178080.00000291-0.90945117C -1.229178085 -0.00000291-0.909451176 Η 2.98721276-0.00000494-1.927688567 H -2.987212760.00000494-1.92768856

Natural Internal Coordinates

Table S17: Symmetrized, unnormalized natural internal coordinates for Cyclopropene.

```
r_{1,4} + r_{1,5} + r_{4,5}
2
        r_{1,4} - r_{1,5}
3
      -r_{1,4}-r_{1,5}+2r_{4,5}
4
       r_{1,2} + r_{1,3}
5
       r_{1,2} - r_{1,3}
6
        r_{4,6} + r_{5,7}
7
        r_{4,6} - r_{5,7}
        4\phi_{2,1,3} - \phi_{3,1,4} - \phi_{3,1,5} - \phi_{2,1,4} - \phi_{2,1,5}
        \phi_{3,1,4} + \phi_{3,1,5} - \phi_{2,1,4} - \phi_{2,1,5}
10 \quad \phi_{3,1,4} - \phi_{3,1,5} + \phi_{2,1,4} - \phi_{2,1,5}
11 \phi_{3,1,4} - \phi_{3,1,5} - \phi_{2,1,4} + \phi_{2,1,5}
12 \phi_{6,4,1} - \phi_{6,4,5} + \phi_{7,5,1} - \phi_{7,5,4}
13 \phi_{6,4,1} - \phi_{6,4,5} - \phi_{7,5,1} + \phi_{7,5,4}
14 \gamma_{6,4,1,5} + \gamma_{7,5,1,4}
15 \gamma_{6,4,1,5} - \gamma_{7,5,1,4}
```

Table S18: Harmonic frequencies for reference and CMA data. CMA-2A(0.05) n Reference CMA-0ACCSD(T)MP2 ${\rm MP2}$ ${\rm MP2}$ /cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 01 575.68584.69575.69575.692 791.69790.47791.950791.95 0 3 824.74825.12825.12838.844 927.46929.75927.54927.540 0 5 1020.591020.261020.261023.63 6 1042.081033.501042.901042.900 0 7 1074.231064.441073.271073.278 1108.961108.970 1111.631108.979 1158.161153.881158.161158.160 0 10 1524.771526.621524.751524.75111682.961677.341682.941682.94012 0 3071.863088.423071.853071.850 13 3143.033167.073143.023143.0214 3264.573280.373264.573264.5700 15 3310.753326.633310.753310.75

S1.7 Allene

Geometries

Table S19: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) \mathbf{C} 1 0.000000000.00000000-0.000000012 \mathbf{C} 0.000000000.00000000-2.48178976С 3 0.000000000.000000002.481789714 Η -1.756413550.00000000-3.532789725 Η 1.756413550.00000000-3.532789726 Η 0.00000000-1.756413383.53279007 7 Η 0.000000001.756413383.53279007

Natural Internal Coordinates

Table S20: Symmetrized, unnormalized natural internal coordinates for Allene.

```
r_{1,2} + r_{1,3}
2
        r_{1,2} - r_{1,3}
3
       r_{2,4} + r_{2,5} + r_{3,6} + r_{3,7}
4
       r_{2,4} + r_{2,5} - r_{3,6} - r_{3,7}
5
       r_{2,4} - r_{2,5} + r_{3,6} - r_{3,7}
6
       r_{2,4} - r_{2,5} - r_{3,6} + r_{3,7}
7
        2\phi_{4,2,5} - \phi_{1,2,4} - \phi_{1,2,5} + 2\phi_{6,3,7} - \phi_{1,3,6} - \phi_{1,3,7}
        2\phi_{4,2,5} - \phi_{1,2,4} - \phi_{1,2,5} - 2\phi_{6,3,7} + \phi_{1,3,6} + \phi_{1,3,7}
       \phi_{1,2,4} - \phi_{1,2,5} + \phi_{1,3,6} - \phi_{1,3,7}
10 \phi_{1,2,4} - \phi_{1,2,5} - \phi_{1,3,6} + \phi_{1,3,7}
11 \tau_{4,2,3,6} + \tau_{4,2,3,7} + \tau_{5,2,3,6} + \tau_{5,2,3,7}
12 \gamma_{1,2,4,5} + \gamma_{1,3,7,6}
13 \gamma_{1,2,4,5} - \gamma_{1,3,7,6}
14 \alpha_{4,2,1,3}^x - \alpha_{5,2,1,3}^x + \alpha_{6,3,1,2}^x - \alpha_{7,3,1,2}^x
15 \alpha_{4,2,1,3}^x - \alpha_{5,2,1,3}^x - \alpha_{6,3,1,2}^x + \alpha_{7,3,1,2}^x
```

Table S21: Harmonic frequencies for reference and CMA data. CMA-2A(0.05) n Reference CMA-0ACCSD(T)MP2 ${\rm MP2}$ ${\rm MP2}$ /cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 01 347.95356.60348.20348.202 347.950 356.61348.21348.210 3 856.73855.11856.73856.734 856.73855.14856.73856.730 0 5 870.31870.31892.05870.31 6 1017.661011.09 1017.571017.570 0 7 1017.781011.11 1017.701017.708 1080.751082.061080.761080.760 9 1438.381433.301438.411438.410 0 10 1488.521481.351488.521488.52112012.152009.822012.122012.12012 0 3142.753159.363142.803142.800 13 3144.283159.723144.203144.2014 3226.413247.563226.413226.410 0 15 3247.743226.453226.413226.45

S1.8 Spiropentane

Geometries

Table	S22:	CC	SD(T)/cc-pV	ΓZ Cartesian	Coordinates (Bohr)	
	1	\mathbf{C}	0.00000000	-0.00000000	0.00000000	
	2	\mathbf{C}	-1.02524750	-1.02524750	-2.39918091	
	3	\mathbf{C}	1.02524750	1.02524750	-2.39918091	
	4	\mathbf{C}	1.02524750	-1.02524750	2.39918091	
	5	\mathbf{C}	-1.02524750	1.02524750	2.39918091	
	6	Η	-0.46577708	-2.91033012	-2.96611806	
	7	Η	-2.91033012	-0.46577708	-2.96611806	
	8	Н	0.46577708	2.91033012	-2.96611806	
	9	Н	2.91033012	0.46577708	-2.96611806	
	10	Η	0.46577708	-2.91033012	2.96611806	
	11	Η	2.91033012	-0.46577708	2.96611806	
	12	Η	-0.46577708	2.91033012	2.96611806	
	13	Η	-2.91033012	0.46577708	2.96611806	

Natural Internal Coordinates

```
Table S23: Symmetrized, unnormalized natural internal coordinates for Spiropentane.
1
     r_{1,2} + r_{1,3} + r_{2,3} + r_{1,4} + r_{1,5} + r_{4,5}
```

- $2 r_{1,2} + r_{1,3} + r_{2,3} r_{1,4} r_{1,5} r_{4,5}$
- $-r_{1,2} r_{1,3} + 2r_{2,3} r_{1,4} r_{1,5} + 2r_{4,5}$ 3
- 4 $-r_{1,2}-r_{1,3}+2r_{2,3}+r_{1,4}+r_{1,5}-2r_{4,5}$
- 5 $r_{1,2} - r_{1,3} + r_{1,4} - r_{1,5}$
- 6 $r_{1,2} - r_{1,3} - r_{1,4} + r_{1,5}$
- 7 $r_{2,6} + r_{2,7} + r_{3,8} + r_{3,9} + r_{4,10} + r_{4,11} + r_{5,12} + r_{5,13}$
- 8 $r_{2,6} + r_{2,7} + r_{3,8} + r_{3,9} - r_{4,10} - r_{4,11} - r_{5,12} - r_{5,13}$
- 9 $r_{2,6} + r_{2,7} - r_{3,8} - r_{3,9} + r_{4,10} + r_{4,11} - r_{5,12} - r_{5,13}$
- $10 \quad r_{2,6} + r_{2,7} r_{3,8} r_{3,9} r_{4,10} r_{4,11} + r_{5,12} + r_{5,13}$
- 11 $r_{2,6} r_{2,7} + r_{3,8} r_{3,9} + r_{4,10} r_{4,11} + r_{5,12} r_{5,13}$
- 12 $r_{2,6} r_{2,7} + r_{3,8} r_{3,9} r_{4,10} + r_{4,11} r_{5,12} + r_{5,13}$
- 13 $r_{2,6} r_{2,7} r_{3,8} + r_{3,9} + r_{4,10} r_{4,11} r_{5,12} + r_{5,13}$
- $14 \quad r_{2,6} r_{2,7} r_{3,8} + r_{3,9} r_{4,10} + r_{4,11} + r_{5,12} r_{5,13}$
- 15 $\phi_{2,1,4} + \phi_{3,1,4} \phi_{2,1,5} \phi_{3,1,5}$
- 16 $\phi_{2,1,4} \phi_{3,1,4} + \phi_{2,1,5} \phi_{3,1,5}$
- 17 $\phi_{2,1,4} \phi_{3,1,4} \phi_{2,1,5} + \phi_{3,1,5}$
- $18 \quad 4\phi_{6,2,7} \phi_{6,2,1} \phi_{6,2,3} \phi_{7,2,1} \phi_{7,2,3} + 4\phi_{8,3,9} \phi_{8,3,1} \phi_{8,3,2} \phi_{9,3,1} \phi_{9,3,2}$ $+4\phi_{10,4,11} - \phi_{10,4,1} - \phi_{10,4,5} - \phi_{11,4,1} - \phi_{11,4,5} + 4\phi_{12,5,13} - \phi_{12,5,1} - \phi_{12,5,4} - \phi_{13,5,1} - \phi_{13,5,4}$
- $19 \quad 4\phi_{6,2,7} \phi_{6,2,1} \phi_{6,2,3} \phi_{7,2,1} \phi_{7,2,3} + 4\phi_{8,3,9} \phi_{8,3,1} \phi_{8,3,2} \phi_{9,3,1} \phi_{9,3,2}$ $-4\phi_{10,4,11}+\phi_{10,4,1}+\phi_{10,4,5}+\phi_{11,4,1}+\phi_{11,4,5}-4\phi_{12,5,13}+\phi_{12,5,1}+\phi_{12,5,4}+\phi_{13,5,1}+\phi_{13,5,4}$
- 20 $4\phi_{6,2,7} \phi_{6,2,1} \phi_{6,2,3} \phi_{7,2,1} \phi_{7,2,3} 4\phi_{8,3,9} + \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2}$ $+4\phi_{10,4,11}-\phi_{10,4,1}-\phi_{10,4,5}-\phi_{11,4,1}-\phi_{11,4,5}-4\phi_{12,5,13}+\phi_{12,5,1}+\phi_{12,5,4}+\phi_{13,5,1}+\phi_{13,5,4}$
- 21 $4\phi_{6,2,7} \phi_{6,2,1} \phi_{6,2,3} \phi_{7,2,1} \phi_{7,2,3} 4\phi_{8,3,9} + \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2}$ $-4\phi_{10,4,11}+\phi_{10,4,1}+\phi_{10,4,5}+\phi_{11,4,1}+\phi_{11,4,5}+4\phi_{12,5,13}-\phi_{12,5,1}-\phi_{12,5,4}-\phi_{13,5,1}-\phi_{13,5,4}$
- 22 $\phi_{6,2,1} + \phi_{6,2,3} \phi_{7,2,1} \phi_{7,2,3} + \phi_{8,3,1} + \phi_{8,3,2} \phi_{9,3,1} \phi_{9,3,2} + \phi_{10,4,1} + \phi_{10,4,5}$ $-\phi_{11,4,1} - \phi_{11,4,5} + \phi_{12,5,1} + \phi_{12,5,4} - \phi_{13,5,1} - \phi_{13,5,4}$
- $\phi_{6,2,1} + \phi_{6,2,3} \phi_{7,2,1} \phi_{7,2,3} + \phi_{8,3,1} + \phi_{8,3,2} \phi_{9,3,1} \phi_{9,3,2} \phi_{10,4,1} \phi_{10,4,5}$ $+\phi_{11,4,1}+\phi_{11,4,5}-\phi_{12,5,1}-\phi_{12,5,4}+\phi_{13,5,1}+\phi_{13,5,4}$
- $\phi_{6,2,1} + \phi_{6,2,3} \phi_{7,2,1} \phi_{7,2,3} \phi_{8,3,1} \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,4,1} + \phi_{10,4,5}$ $-\phi_{11,4,1}-\phi_{11,4,5}-\phi_{12,5,1}-\phi_{12,5,4}+\phi_{13,5,1}+\phi_{13,5,4}$
- $\phi_{6,2,1} + \phi_{6,2,3} \phi_{7,2,1} \phi_{7,2,3} \phi_{8,3,1} \phi_{8,3,2} + \phi_{9,3,1} + \phi_{9,3,2} \phi_{10,4,1} \phi_{10,4,5}$ $+\phi_{11,4,1}+\phi_{11,4,5}+\phi_{12,5,1}+\phi_{12,5,4}-\phi_{13,5,1}-\phi_{13,5,4}$
- $\phi_{6,2,1} \phi_{6,2,3} + \phi_{7,2,1} \phi_{7,2,3} + \phi_{8,3,1} \phi_{8,3,2} + \phi_{9,3,1} \phi_{9,3,2} + \phi_{10,4,1} \phi_{10,4,5}$ $+\phi_{11,4,1}-\phi_{11,4,5}+\phi_{12,5,1}-\phi_{12,5,4}+\phi_{13,5,1}-\phi_{13,5,4}$
- $\phi_{6,2,1} \phi_{6,2,3} + \phi_{7,2,1} \phi_{7,2,3} + \phi_{8,3,1} \phi_{8,3,2} + \phi_{9,3,1} \phi_{9,3,2} \phi_{10,4,1} + \phi_{10,4,5}$ $-\phi_{11,4,1} + \phi_{11,4,5} - \phi_{12,5,1} + \phi_{12,5,4} - \phi_{13,5,1} + \phi_{13,5,4}$
- $28 \quad \phi_{6,2,1} \phi_{6,2,3} + \phi_{7,2,1} \phi_{7,2,3} \phi_{8,3,1} + \phi_{8,3,2} \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,4,1} \phi_{10,4,5}$ $+\phi_{11,4,1} - \phi_{11,4,5} - \phi_{12,5,1} + \phi_{12,5,4} - \phi_{13,5,1} + \phi_{13,5,4}$
- $\phi_{6,2,1} \phi_{6,2,3} + \phi_{7,2,1} \phi_{7,2,3} \phi_{8,3,1} + \phi_{8,3,2} \phi_{9,3,1} + \phi_{9,3,2} \phi_{10,4,1} + \phi_{10,4,5}$ $-\phi_{11,4,1} + \phi_{11,4,5} + \phi_{12,5,1} - \phi_{12,5,4} + \phi_{13,5,1} - \phi_{13,5,4}$
- 30 $\phi_{6,2,1} \phi_{6,2,3} \phi_{7,2,1} + \phi_{7,2,3} + \phi_{8,3,1} \phi_{8,3,2} \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,4,1} \phi_{10,4,5}$ $-\phi_{11,4,1} + \phi_{11,4,5} + \phi_{12,5,1} - \phi_{12,5,4} - \phi_{13,5,1} + \phi_{13,5,4}$
- $\phi_{6,2,1} \phi_{6,2,3} \phi_{7,2,1} + \phi_{7,2,3} + \phi_{8,3,1} \phi_{8,3,2} \phi_{9,3,1} + \phi_{9,3,2} \phi_{10,4,1} + \phi_{10,4,5}$ $+\phi_{11,4,1} - \phi_{11,4,5} - \phi_{12,5,1} + \phi_{12,5,4} + \phi_{13,5,1} - \phi_{13,5,4}$
- 32 $\phi_{6,2,1} \phi_{6,2,3} \phi_{7,2,1} + \phi_{7,2,3} \phi_{8,3,1} + \phi_{8,3,2} + \phi_{9,3,1} \phi_{9,3,2} + \phi_{10,4,1} \phi_{10,4,5}$ $-\phi_{11,4,1} + \phi_{11,4,5} - \phi_{12,5,1} + \phi_{12,5,4} + \phi_{13,5,1} - \phi_{13,5,4}$
- $\begin{array}{ll} 33 & \phi_{6,2,1}-\phi_{6,2,3}-\phi_{7,2,1}+\phi_{7,2,3}-\phi_{8,3,1}+\phi_{8,3,2}+\phi_{9,3,1}-\phi_{9,3,2}-\phi_{10,4,1}+\phi_{10,4,5}\\ & +\phi_{11,4,1}-\phi_{11,4,5}+\phi_{12,5,1}-\phi_{12,5,4}-\phi_{13,5,1}+\phi_{13,5,4} \end{array}$

Table S24: Harmonic frequencies for reference and CMA data. Reference CMA-0A CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 293.06 292.70 293.07 293.07 2 297.15293.90297.18 0297.183 297.15293.94297.18297.180 4 598.43599.04598.50 598.500 786.27 0 5 786.27787.57 786.276 786.270 786.27787.58 786.270 7 840.13840.14 838.36840.14 0 8 897.42896.82897.50 897.50 9 0 897.42896.84897.50 897.5010 900.83898.59901.91 900.881 11 1019.251006.351018.431019.33 1 0 12 1027.321027.541027.391027.39 13 1054.411050.781058.081054.411 0 14 1076.02 1064.14 1072.421076.03 151077.331064.211077.351077.350 16 1077.331067.661077.351077.351 0 17 1173.461171.62 1173.461173.4618 1183.501180.661183.451183.45 0 0 19 1189.88 1183.00 1189.861189.86 20 1189.881189.860 1183.011189.8621 0 1439.26 1439.83 1439.241439.2422 1468.811467.341468.781468.78 0 23 1468.811467.341468.781468.780 24 0 1501.43 1497.87 1501.401501.4025 1596.211586.541596.150 1596.1526 3130.04 3146.053130.043130.04 0 27 3130.043146.133130.043130.040 28 0 3134.853148.683134.853134.8529 0 3135.93 3151.113135.933135.930 30 3212.32 3235.553212.323212.32 0 31 3213.223236.813213.223213.2232 3225.323247.843225.323225.32 0 33 3225.323247.933225.323225.320

S1.9 Aluminum Trichloride

Geometries

Table S25: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Al	0.00000000	0.00000000	0.00000069
2	Cl	0.00000000	0.000000000	-3.92579486
3	Cl	0.00000000	3.39983903	1.96289716
4	Cl	0.00000000	-3.39983903	1.96289716

Natural Internal Coordinates

Table S26: Symmetrized, unnormalized natural internal coordinates for Aluminum Trichloride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- $2 \quad 2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- 6 $\gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

Table S27: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	147.27	146.23	147.27	147.27	0
2	147.29	146.24	147.29	147.29	0
3	207.49	206.64	207.49	207.49	0
4	388.75	388.95	388.75	388.75	0
5	628.44	628.70	628.44	628.44	0
6	628.44	628.71	628.44	628.44	0

S1.10 Aluminium Trifluoride

Geometries

Table S28: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Al	0.00000000	0.00000000	0.00000081
2	\mathbf{F}	0.00000000	0.00000000	-3.08479068
3	\mathbf{F}	0.00000000	2.67150833	1.54239476
4	F	0.00000000	-2.67150833	1.54239476

Natural Internal Coordinates

Table S29: Symmetrized, unnormalized natural internal coordinates for Aluminium Trifluoride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- $2 \quad 2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- 6 $\gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

Table S30: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	244.84	245.46	244.85	244.85	0
2	244.99	245.47	244.98	244.98	0
3	301.32	301.60	301.32	301.32	0
4	695.29	697.03	695.29	695.29	0
5	962.28	965.75	962.28	962.28	0
6	962.29	965.79	962.28	962.28	0

S1.11 Boron Trichloride

Geometries

Table S31: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	В	0.00000000	0.00000000	0.00000105
2	Cl	0.00000000	0.00000000	-3.29682188
3	Cl	0.00000000	2.85513240	1.64841078
4	Cl	0.00000000	-2.85513240	1.64841078

Natural Internal Coordinates

Table S32: Symmetrized, unnormalized natural internal coordinates for Boron Trichloride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- $2 \quad 2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- 6 $\gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

Table S33: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	257.16	256.31	257.17	257.17	0
2	257.22	256.31	257.22	257.22	0
3	462.52	461.48	462.52	462.52	0
4	476.79	476.64	476.79	476.79	0
5	972.61	966.90	972.61	972.61	0
6	972.62	966.93	972.61	972.61	0

S1.12 Boron Trifluoride

Geometries

Table S34: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	В	0.00000000	0.000000000	-0.00000000
2	F	0.00000000	-2.14848994	1.24043124
3	F	0.00000000	-0.000000000	-2.48086249
4	\mathbf{F}	-0.00000000	2.14848994	1.24043124

Natural Internal Coordinates

Table S35: Symmetrized, unnormalized natural internal coordinates for Boron Trifluoride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- $2 \quad 2r_{1,2} r_{1,3} r_{1,4}$
- $3 \quad r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \quad \gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

Table S36: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	483.70	483.53	483.71	483.71	0
2	483.70	483.55	483.71	483.71	0
3	700.10	700.36	700.10	700.10	0
4	899.30	900.36	899.30	899.30	0
5	1493.14	1492.98	1493.14	1493.14	0
6	1493.14	1493.05	1493.14	1493.14	0

S1.13 Tetrachloromethane

Geometries

 $2 \quad \text{Cl} \quad 0.00000000 \quad -2.73683182 \quad 1.93523230$

 $3 \quad \text{Cl} \qquad 0.00000000 \qquad 2.73683182 \qquad 1.93523230$

4 Cl 2.73683173 0.00000000 -1.93523231

5 Cl -2.73683173 0.00000000 -1.93523231

Natural Internal Coordinates

Table S38: Symmetrized, unnormalized natural internal coordinates for Tetrachloromethane.

$$1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$$

$$2 \quad -r_{1,2} - r_{1,3} + r_{1,4} + r_{1,5}$$

$$3 -r_{1,2} + r_{1,3} - r_{1,4} + r_{1,5}$$

4
$$r_{1,2} - r_{1,3} - r_{1,4} + r_{1,5}$$

5
$$2\phi_{2,1,3} + 2\phi_{4,1,5} - \phi_{2,1,4} - \phi_{2,1,5} - \phi_{3,1,4} - \phi_{3,1,5}$$

6
$$\phi_{2,1,4} - \phi_{2,1,5} - \phi_{3,1,4} + \phi_{3,1,5}$$

7
$$-\phi_{2,1,3} + \phi_{4,1,5}$$

8
$$-\phi_{2,1,4} + \phi_{3,1,5}$$

9
$$\phi_{2,1,5} - \phi_{3,1,4}$$

Table S39: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	\mathbf{n}
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	218.41	217.54	218.42	218.42	0
2	218.44	217.55	218.42	218.42	0
3	316.69	315.68	316.69	316.69	0
4	316.70	315.68	316.73	316.73	0
5	316.79	315.70	316.76	316.76	0
6	463.23	461.64	463.23	463.23	0
7	802.53	788.95	802.54	802.54	0
8	802.56	788.95	802.55	802.55	0
9	802.57	789.03	802.57	802.57	0

S1.14 Tetrafluoromethane

Geometries

Table S40: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -0.000000000.000000000.000000002 \mathbf{F} 0.00000000-2.035446241.439277843 F -0.000000002.035446241.439277844 \mathbf{F} 2.035446240.00000000-1.43927784

-0.00000000

-1.43927784

Natural Internal Coordinates

Table S41: Symmetrized, unnormalized natural internal coordinates for Tetrafluoromethane.

 $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$

-2.03544624

5

- $2 \quad -r_{1,2} r_{1,3} + r_{1,4} + r_{1,5}$
- $3 -r_{1,2} + r_{1,3} r_{1,4} + r_{1,5}$
- 4 $r_{1,2} r_{1,3} r_{1,4} + r_{1,5}$
- 5 $2\phi_{2,1,3} + 2\phi_{4,1,5} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 6 $\phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 7 $-\phi_{2,1,3} + \phi_{4,1,5}$
- 8 $-\phi_{2,1,4} + \phi_{3,1,5}$
- 9 $\phi_{2,1,5} \phi_{3,1,4}$

Table S42: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	440.04	440.48	440.04	440.04	0
2	440.04	440.49	440.04	440.04	0
3	638.99	640.34	639.00	639.00	0
4	638.99	640.34	639.00	639.00	0
5	638.99	640.38	639.00	639.00	0
6	923.21	925.21	923.21	923.21	0
7	1323.00	1312.62	1323.00	1323.00	0
8	1323.00	1312.62	1323.00	1323.00	0
9	1323.00	1312.80	1323.00	1323.00	0

S1.15 Dichloromethane

Geometries

Table S43: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} -0.000000001.522593740.000000002 Cl -2.78829097-0.338314090.000000003 Cl2.78829098-0.338314260.000000004 Η -0.00000182.67397215-1.69354225-0.000000185 Η 2.673972151.69354225

Natural Internal Coordinates

Table S44: Symmetrized, unnormalized natural internal coordinates for Dichloromethane.

- 1 $r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 r_{1,4} + r_{1,5}$
- 4 $r_{1,4} r_{1,5}$
- 5 $4\phi_{2,1,3} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 6 $\phi_{2,1,4} + \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 7 $\phi_{2,1,4} \phi_{2,1,5} + \phi_{3,1,4} \phi_{3,1,5}$
- 8 $\phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 9 $-\phi_{2,1,3} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5} + 5\phi_{4,1,5}$

Table S45: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	\mathbf{n}
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	284.60	284.30	284.60	284.60	0
2	723.57	725.46	723.58	723.58	0
3	776.83	774.86	776.86	776.86	0
4	906.97	909.44	906.97	906.97	0
5	1180.95	1185.94	1180.95	1180.95	0
6	1293.06	1291.47	1293.05	1293.05	0
7	1474.48	1477.10	1474.48	1474.48	0
8	3127.54	3142.79	3127.54	3127.54	0
9	3202.53	3224.11	3202.53	3202.53	0

S1.16 Difluoromethane

Geometries

Table S46: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) \mathbf{C} 1 0.000000001.04690947-0.000000002 F -2.07913590-0.446531090.000000003 F 2.07913592-0.446531080.000000004 Η -0.000000102.18482447-1.71602833H -0.000000105 2.184824471.71602833

Natural Internal Coordinates

Table S47: Symmetrized, unnormalized natural internal coordinates for Difluoromethane.

- 1 $r_{1,2} + r_{1,3}$
- $2 \quad r_{1,2} r_{1,3}$
- $3 r_{1,4} + r_{1,5}$
- 4 $r_{1,4} r_{1,5}$
- 5 $4\phi_{2,1,3} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 6 $\phi_{2,1,4} + \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 7 $\phi_{2,1,4} \phi_{2,1,5} + \phi_{3,1,4} \phi_{3,1,5}$
- 8 $\phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$
- 9 $-\phi_{2,1,3} \phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5} + 5\phi_{4,1,5}$

Table S48: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	\mathbf{n}
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	536.99	538.02	536.99	536.99	0
2	1141.59	1138.11	1141.60	1141.60	0
3	1142.17	1144.15	1142.20	1142.20	0
4	1202.57	1207.65	1202.58	1202.58	0
5	1292.33	1297.51	1292.33	1292.33	0
6	1482.31	1487.77	1482.28	1482.28	0
7	1556.46	1565.86	1556.46	1556.46	0
8	3075.76	3092.64	3075.76	3075.76	0
9	3148.01	3173.45	3148.00	3148.00	0

S1.17 Formic Acid

Geometries

Table S49: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Η 0.054689552.84555164-0.000000002 \mathbf{C} 0.187759500.78180753-0.000000003 Ο 2.12426566-0.40608921-0.000000004 Ο -2.14789723-0.230810350.00000000Η -1.91525954-2.046341835 0.00000000

Natural Internal Coordinates

Table S50: Symmetrized, unnormalized natural internal coordinates for Formic Acid.

- $1 r_{2,3}$
- $2 r_{2,4}$
- $3 r_{2,1}$
- $4 r_{4,5}$
- 5 $\phi_{2,4,5}$
- 6 $2\phi_{3,2,4} \phi_{3,2,1} \phi_{4,2,1}$
- 7 $\phi_{3,2,1} \phi_{4,2,1}$
- 8 $\tau_{1,2,4,5} + \tau_{3,2,4,5}$
- 9 $\gamma_{1,2,3,4}$

Table S51: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T) MP2		MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	629.41	629.42	629.42	629.42	0
2	675.64	684.33	675.68	675.64	1
3	1061.21	1067.48	1061.18	1061.21	1
4	1137.12	1132.56	1137.64	1137.37	1
5	1326.19	1315.23	1326.02	1326.25	1
6	1415.80	1415.99	1415.64	1415.64	0
7	1824.55	1822.20	1824.47	1824.47	0
8	3089.21	3106.69	3089.21	3089.21	0
9	3764.00	3775.33	3764.00	3764.00	0

S1.18 Formaldehyde

Geometries

Table S52: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	$^{\rm C}$	0.00000000	0.00000000	1.14423616
2	Η	0.00000000	-1.76987484	2.24620597
3	Η	0.00000000	1.76987484	2.24620597
4	Ο	-0.00000000	0.00000000	-1.14151276

Natural Internal Coordinates

Table S53: Symmetrized, unnormalized natural internal coordinates for Formaldehyde.

- 1 $r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- $6 \quad \gamma_{4,1,2,3}$

Table S54: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T) MP2		MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1192.19	1206.13	1192.19	1192.19	0
2	1274.88	1278.43	1274.88	1274.88	0
3	1543.21	1550.09	1543.24	1543.24	0
4	1780.76	1775.33	1780.75	1780.75	0
5	2929.23	2946.14	2929.22	2929.22	0
6	2995.85	3017.92	2995.85	2995.85	0

S1.19 Singlet Carbene

Geometries

Table S55: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

Natural Internal Coordinates

Table S56: Symmetrized, unnormalized natural internal coordinates for Singlet Carbene.

- $1 \quad r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 \quad \phi_{2,1,3}$

Table S57: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1406.59	1421.07	1406.59	1406.59	0
2	2912.05	2939.49	2912.05	2912.05	0
3	2983.12	3014.35	2983.12	2983.12	0

S1.20 Chloromethane

Geometries

Table S58: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) \mathbf{C} 1 2.32154417-0.000003900.000000002 Cl -1.053779240.000001430.000000003 Η 2.973701521.946010450.000000004 Η 2.97370577-0.973006771.685296212.97370577-0.973006775 Η -1.68529621

Natural Internal Coordinates

Table S59: Symmetrized, unnormalized natural internal coordinates for Chloromethane.

- $1 r_{1,2}$
- $2 \quad r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad 2r_{1,3} r_{1,4} r_{1,5}$
- $4 \quad r_{1,4} r_{1,5}$
- 5 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2}$
- 6 $\phi_{4,1,2} \phi_{5,1,2}$
- 7 $\phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2} \phi_{3,1,4} \phi_{4,1,5} \phi_{5,1,3}$
- 8 $2\phi_{3,1,4} \phi_{4,1,5} \phi_{5,1,3}$
- 9 $\phi_{4,1,5} \phi_{5,1,3}$

Table S60: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T) MP2		MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	746.24	750.33	746.24	746.24	0
2	1031.74	1035.40	1031.76	1031.76	0
3	1031.75	1035.40	1031.76	1031.76	0
4	1385.57	1385.91	1385.57	1385.57	0
5	1493.13	1498.37	1493.12	1493.12	0
6	1493.13	1498.39	1493.12	1493.12	0
7	3078.66	3092.10	3078.62	3078.62	0
8	3179.26	3202.42	3179.26	3179.26	0
9	3179.27	3202.54	3179.30	3179.30	0

S1.21 Thiomethanol

Geometries

Table S61: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С $-2.32717426 \quad -0.02137589$ 0.000000002 \mathbf{S} 0.000000001.112153420.083165953 H -2.962833141.936209290.00000001H -3.04519469 -0.950843694 1.68762099 H -3.04519470 -0.950843645 -1.687621026 Η 1.48072095-2.41834559-0.00000002

Natural Internal Coordinates

Table S62: Symmetrized, unnormalized natural internal coordinates for Thiomethanol.

```
r_{1,2}
2
        r_{2,6}
3
        r_{1,3} + r_{1,4} + r_{1,5}
4
        r_{1,4} - r_{1,5}
5
        2r_{1,3} - r_{1,4} - r_{1,5}
6
7
        \phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2} - \phi_{3,1,4} - \phi_{3,1,5} - \phi_{4,1,5}
8
        2\phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2}
9
        \phi_{4,1,2} - \phi_{5,1,2}
10 2\phi_{3,1,4} - \phi_{3,1,5} - \phi_{4,1,5}
11
        \phi_{3,1,5} - \phi_{4,1,5}
12 \tau_{3,1,2,6} + \tau_{4,1,2,6} + \tau_{5,1,2,6}
```

Table S63: Harmonic frequencies for reference and CMA data. Reference CMA-2A(0.05) ${\rm CMA\text{-}0A}$ CCSD(T)MP2MP2MP2/cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 237.57241.32237.58237.582 720.90722.47720.960 720.963 0 799.89802.89799.89 799.894 976.28979.01976.30976.3000 5 1099.811097.50 1099.81 1099.81 6 1362.141358.951362.141362.1407 0 1482.931486.561482.921482.928 1497.030 1500.671497.011497.019 2712.632739.042712.642712.640 0 10 3059.913073.203059.913059.9111 0 3150.013173.803150.013150.01

3151.27

0

3151.27

12

3151.27

3175.13

S1.22 Trichloromethane

Geometries

Table S64: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) \mathbf{C} 1 0.000000700.894897300.000000002 Η 0.000000882.939249610.000000003 Cl-3.18361737-0.130602580.000000004 Cl 1.59180855-0.13060186-2.75709409Cl5 1.59180855-0.130601862.75709409

Natural Internal Coordinates

Table S65: Symmetrized, unnormalized natural internal coordinates for Trichloromethane.

- $1 r_{1,2}$
- $2 \quad r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad 2r_{1,3} r_{1,4} r_{1,5}$
- $4 \quad r_{1,4} r_{1,5}$
- 5 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2}$
- 6 $\phi_{4,1,2} \phi_{5,1,2}$
- 7 $\phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2} \phi_{3,1,4} \phi_{3,1,5} \phi_{4,1,5}$
- 8 $-\phi_{3,1,4} \phi_{3,1,5} + 2\phi_{4,1,5}$
- 9 $\phi_{3,1,4} \phi_{3,1,5}$

Table S66: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	\mathbf{n}
	CCSD(T) MP2		MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	261.66	260.93	261.69	261.69	0
2	261.72	260.94	261.69	261.69	0
3	368.48	367.99	368.48	368.48	0
4	678.57	679.33	678.57	678.57	0
5	789.88	782.53	789.98	789.98	0
6	789.90	782.54	789.98	789.98	0
7	1244.75	1243.31	1244.69	1244.69	0
8	1244.75	1243.33	1244.69	1244.69	0
9	3181.88	3198.65	3181.88	3181.88	0

S1.23 Trifluoromethan

Geometries

Table S67: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С 1 0.68502199-0.000000000.000000002 Η 2.73949866-0.000000000.000000003 1.18093464 \mathbf{F} -0.19266881-2.045438804 \mathbf{F} -0.19266881-2.36186929-0.00000000-0.19266881 \mathbf{F} 5 1.180934642.04543880

Natural Internal Coordinates

Table S68: Symmetrized, unnormalized natural internal coordinates for Trifluoromethan.

- $1 r_{1,2}$
- $2 \quad r_{1,3} + r_{1,4} + r_{1,5}$
- $3 \quad 2r_{1,3} r_{1,4} r_{1,5}$
- $4 r_{1,4} r_{1,5}$
- 5 $2\phi_{3,1,2} \phi_{4,1,2} \phi_{5,1,2}$
- 6 $\phi_{4,1,2} \phi_{5,1,2}$
- 7 $\phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2} \phi_{3,1,4} \phi_{3,1,5} \phi_{4,1,5}$
- 8 $-\phi_{3,1,4} \phi_{3,1,5} + 2\phi_{4,1,5}$
- 9 $\phi_{3,1,4} \phi_{3,1,5}$

Table S69: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T) MP2		MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	514.80	515.45	514.81	514.81	0
2	514.80	515.48	514.81	514.81	0
3	710.23	711.57	710.23	710.23	0
4	1161.90	1164.53	1161.89	1161.89	0
5	1203.17	1197.08	1203.35	1203.35	0
6	1203.17	1197.12	1203.37	1203.37	0
7	1424.32	1427.20	1424.17	1424.17	0
8	1424.32	1427.23	1424.17	1424.17	0
9	3160.87	3181.06	3160.86	3160.86	0

S1.24 Methyl Nitrite

Geometries

Table S70: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 С -3.259278730.341723100.000000012 Ο -0.88672134-0.95845750-0.000000013 Ν 1.109104620.845579650.000000034 Ο 3.08906348-0.16302337-0.000000015 H -2.932712502.376335510.000000126 Η -4.31133488-0.19761898-1.685387427 Η -4.31133508-0.197619561.68538715

Natural Internal Coordinates

Table S71: Symmetrized, unnormalized natural internal coordinates for Methyl Nitrite.

```
r_{1,2}
2
        r_{2,3}
3
        r_{3,4}
4
        r_{1,5} + r_{1,6} + r_{1,7}
5
        2r_{1,5} - r_{1,6} - r_{1,7}
6
        r_{1,6} - r_{1,7}
7
        \phi_{2,3,4}
8
        \phi_{1,2,3}
         \phi_{2,1,5} + \phi_{2,1,6} + \phi_{2,1,7} - \phi_{5,1,6} - \phi_{5,1,7} - \phi_{6,1,7}
        2\phi_{2,1,5} - \phi_{2,1,6} - \phi_{2,1,7}
11 \phi_{2,1,6} - \phi_{2,1,7}
        -\phi_{5,1,6} - \phi_{5,1,7} + 2\phi_{6,1,7}
13 \phi_{5,1,6} - \phi_{5,1,7}
14 \tau_{1,2,3,4}
15 \tau_{3,2,1,5} + \tau_{3,2,1,6} + \tau_{3,2,1,7}
```

Table S72: Harmonic frequencies for reference and CMA data. Reference CMA-2A(0.05) n CMA-0ACCSD(T)MP2 ${\rm MP2}$ ${\rm MP2}$ /cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 2 1 79.7499.6679.9379.772 220.92229.50220.922 220.89 0 3 380.32375.76380.49380.494 595.01575.13598.57598.570 0 5 847.80827.78846.95846.956 1086.781082.351086.811086.810 7 1176.791179.551176.801176.801 0 8 1204.431209.141209.091209.099 1462.981462.451462.921462.920 1 10 1494.351499.641494.351494.35111518.631524.681518.621518.62012 1670.960 1710.30 1709.541709.540 13 3048.983060.463048.983048.9814 3137.263160.803137.283137.2803138.430 15 3138.463161.153138.43

S1.25 Nitromethane

Geometries

Table S73: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -2.64676127-0.00000018-0.001336812 Ν 0.174506600.00000001-0.01682025Ο 3 1.224905562.060931930.005018084 Ο 1.22490588-2.060931760.005018085 H -3.280371701.70855430-0.939976136 Η -3.28037150-1.70855540-0.939974927 Η -3.229665070.000000521.97029345

Natural Internal Coordinates

Table S74: Symmetrized, unnormalized natural internal coordinates for Nitromethane.

```
r_{1,2}
2
        r_{2,3} + r_{2,4}
3
        r_{2,3} - r_{2,4}
4
        r_{1,5} + r_{1,6} + r_{1,7}
5
        -r_{1,5} - r_{1,6} + 2r_{1,7}
6
        r_{1,5} - r_{1,6}
7
        2\phi_{3,2,4} - \phi_{1,2,3} - \phi_{1,2,4}
8
        \phi_{1,2,3} - \phi_{1,2,4}
9
        \phi_{2,1,7} + \phi_{2,1,5} + \phi_{2,1,6} - \phi_{5,1,6} - \phi_{5,1,7} - \phi_{6,1,7}
10 2\phi_{2,1,7} - \phi_{2,1,5} - \phi_{2,1,6}
11 \phi_{2,1,5} - \phi_{2,1,6}
12 2\phi_{5,1,6} - \phi_{5,1,7} - \phi_{6,1,7}
13 \phi_{5,1,7} - \phi_{6,1,7}
14 \tau_{3,2,1,5} + \tau_{3,2,1,6} + \tau_{3,2,1,7} + \tau_{4,2,1,5} + \tau_{4,2,1,6} + \tau_{4,2,1,7}
       \gamma_{1,2,3,4}
```

Table S75: Harmonic frequencies for reference and CMA data. CMA-2A(0.05) n Reference CMA-0ACCSD(T)MP2 ${\rm MP2}$ ${\rm MP2}$ /cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 5 1 23.4025.0324.0723.402 476.95478.52476.952 477.030 3 608.74608.76609.44608.764 670.00674.13670.02670.0200 5 935.44940.68935.45935.456 1110.761117.681113.471110.88 2 0 7 1142.471141.731142.541142.548 1409.561409.251409.64 0 1409.649 1425.541427.951425.421425.420 1 10 1475.671482.991476.791476.7911 1487.851493.041487.831487.83012 3 1642.571787.821639.701641.490 13 3088.793099.953088.813088.8114 3186.713207.193186.693186.69015 3215.043235.091 3215.043215.04

S1.26 Methylamine

Geometries

Table S76: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -1.40168824-0.000000000.026052392 Ν 1.36882488-0.00000000-0.140394303 Η 2.055039521.523928930.795715784 Η 2.05503953-1.523928920.795715795 H -2.136085561.65964124-0.951808266 Η -2.13608556-1.65964127-0.951808227 Η -2.167178530.000000031.95267120

Natural Internal Coordinates

Table S77: Symmetrized, unnormalized natural internal coordinates for Methylamine.

```
1
        r_{1,2}
2
        r_{2,3} + r_{2,4}
3
        r_{2,3} - r_{2,4}
4
        r_{1,5} + r_{1,6} + r_{1,7}
5
        -r_{1,5} - r_{1,6} + 2r_{1,7}
        r_{1,5} - r_{1,6}
6
7
        2\phi_{3,2,4} - \phi_{1,2,3} - \phi_{1,2,4}
8
        \phi_{1,2,3} - \phi_{1,2,4}
9
        \phi_{2,1,7} + \phi_{2,1,5} + \phi_{2,1,6} - \phi_{5,1,6} - \phi_{5,1,7} - \phi_{6,1,7}
10 2\phi_{2,1,7} - \phi_{2,1,5} - \phi_{2,1,6}
11 \phi_{2,1,5} - \phi_{2,1,6}
12 2\phi_{5,1,6} - \phi_{5,1,7} - \phi_{6,1,7}
13 \phi_{5,1,7} - \phi_{6,1,7}
14 \tau_{3,2,1,5} + \tau_{3,2,1,6} + \tau_{3,2,1,7} + \tau_{4,2,1,5} + \tau_{4,2,1,6} + \tau_{4,2,1,7}
       \gamma_{1,2,3,4}
```

Table S78: Harmonic frequencies for reference and CMA data. CMA-2A(0.05) n Reference CMA-0ACCSD(T)MP2 ${\rm MP2}$ MP2/cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 306.35309.02306.36306.362 878.35872.190 878.51878.513 0 976.31976.32977.96976.324 1065.571066.661065.601065.6000 5 1188.021185.981187.951187.956 1359.391355.661359.401359.400 0 7 1458.061456.341458.081458.088 1512.9401508.161508.131508.139 1527.651532.771527.651527.6500 10 1667.461658.621667.451667.4511 2996.98 3013.702997.332997.33012 3079.580 3079.943102.89 3079.580 13 3115.363141.513115.383115.3814 3498.273513.793498.263498.2600 15 3579.123605.773579.123579.12

S1.27 Ethylene

Geometries

Table S79: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С 1 1.263404500.000000000.000000002 Η 0.000000002.33147619-1.746164253 Η 2.331476191.746164250.00000000 4 С -1.263404500.00000000-0.00000000H -2.331476195 -1.74616425-0.000000006 Η -2.331476191.74616425-0.00000000

Natural Internal Coordinates

Table S80: Symmetrized, unnormalized natural internal coordinates for Ethylene.

```
2
        r_{1,2} + r_{1,3} + r_{4,5} + r_{4,6}
3
        r_{1,2} + r_{1,3} - r_{4,5} - r_{4,6}
4
        r_{1,2} - r_{1,3} + r_{4,5} - r_{4,6}
5
        r_{1,2} - r_{1,3} - r_{4,5} + r_{4,6}
6
        \phi_{2,1,4} + \phi_{3,1,4} + \phi_{5,4,1} + \phi_{6,4,1}
7
        \phi_{2,1,4} - \phi_{3,1,4} + \phi_{5,4,1} - \phi_{6,4,1}
8
        \phi_{2,1,4} - \phi_{3,1,4} - \phi_{5,4,1} + \phi_{6,4,1}
9
        \phi_{2,1,4} + \phi_{3,1,4} - \phi_{5,4,1} - \phi_{6,4,1}
10 \tau_{2,1,4,5} + \tau_{3,1,4,6}
11 \gamma_{1,4,5,6} + \gamma_{4,1,2,3}
12 \gamma_{1,4,5,6} - \gamma_{4,1,2,3}
```

Table S81: Harmonic frequencies for reference and CMA data. Reference CMA-2A(0.05) ${\rm CMA}\text{-}0{\rm A}$ CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 823.04820.93823.05823.052 941.840 957.22941.84941.843 0 966.67981.28966.67966.674 1046.961070.981046.9601046.960 5 1242.161238.741242.161242.166 1368.981373.221368.991368.9907 0 1479.061479.211479.061479.068 0 1671.731666.271671.731671.739 3139.113155.693139.083139.080 0 10 3157.093173.053157.093157.0911 3241.740 3219.263219.293219.29

3246.13

0

3246.13

12

3246.14

3268.43

S1.28 Tetrafluoroethylene

Geometries

Table S82: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С 1 -0.000000001.25411723-0.000000002 \mathbf{F} -0.000000002.61971410-2.078633493 \mathbf{F} -0.000000002.619714082.078633504 \mathbf{C} 0.00000000-1.25411723-0.00000000 \mathbf{F} -2.619714105 0.00000000-2.07863349F 6 0.00000000-2.619714082.07863350

Natural Internal Coordinates

Table S83: Symmetrized, unnormalized natural internal coordinates for Tetrafluoroethylene.

```
r_{1,4}
2
        r_{1,2} + r_{1,3} + r_{4,5} + r_{4,6}
3
        r_{1,2} + r_{1,3} - r_{4,5} - r_{4,6}
4
        r_{1,2} - r_{1,3} + r_{4,5} - r_{4,6}
5
        r_{1,2} - r_{1,3} - r_{4,5} + r_{4,6}
6
        \phi_{2,1,4} + \phi_{3,1,4} + \phi_{5,4,1} + \phi_{6,4,1}
7
        \phi_{2,1,4} - \phi_{3,1,4} + \phi_{5,4,1} - \phi_{6,4,1}
8
        \phi_{2,1,4} - \phi_{3,1,4} - \phi_{5,4,1} + \phi_{6,4,1}
9
        \phi_{2,1,4} + \phi_{3,1,4} - \phi_{5,4,1} - \phi_{6,4,1}
10 \tau_{2,1,4,5} + \tau_{3,1,4,6}
11 \gamma_{1,4,5,6} + \gamma_{4,1,2,3}
12 \gamma_{1,4,5,6} - \gamma_{4,1,2,3}
```

Reference CMA-2A(0.05) ${\rm CMA}\text{-}0{\rm A}$ CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 201.37204.23201.37201.372 210.88210.73210.880 210.883 0 401.04401.72401.04401.044 429.82418.440418.44418.440 5 511.82544.36511.82511.826 556.41557.57556.41556.4107 0 559.79560.96559.79559.798 0 797.32798.26797.32797.32

1208.55

1376.54

1385.81

1921.15

1208.55

1376.54

1385.81

1921.15

 $0 \\ 0$

0

0

1209.09

1370.04

1374.39

1919.42

9

10

11

12

1208.55

1376.54

1385.81

1921.15

Table S84: Harmonic frequencies for reference and CMA data.

S1.29 Tetrachloroethylene

Geometries

Table S85: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) \mathbf{C} 1 1.273932620.000000000.000000002 Cl 0.000000003.00539606-2.746142383 Cl3.005396062.746142380.000000004 С -1.273932620.000000000.00000000Cl -3.005396065 -2.746142380.000000006 Cl-3.005396062.746142380.00000000

Natural Internal Coordinates

Table S86: Symmetrized, unnormalized natural internal coordinates for Tetrachloroethylene.

```
r_{1,4}
2
         r_{1,2} + r_{1,3} + r_{4,5} + r_{4,6}
3
        r_{1,2} + r_{1,3} - r_{4,5} - r_{4,6}
4
        r_{1,2} - r_{1,3} + r_{4,5} - r_{4,6}
5
        r_{1,2} - r_{1,3} - r_{4,5} + r_{4,6}
6
        \phi_{2,1,4} + \phi_{3,1,4} + \phi_{5,4,1} + \phi_{6,4,1}
7
        \phi_{2,1,4} - \phi_{3,1,4} + \phi_{5,4,1} - \phi_{6,4,1}
8
        \phi_{2,1,4} - \phi_{3,1,4} - \phi_{5,4,1} + \phi_{6,4,1}
9
         \phi_{2,1,4} + \phi_{3,1,4} - \phi_{5,4,1} - \phi_{6,4,1}
10 \tau_{2,1,4,5} + \tau_{3,1,4,6}
11
        \gamma_{1,4,5,6} + \gamma_{4,1,2,3}
12 \gamma_{1,4,5,6} - \gamma_{4,1,2,3}
```

Table S87: Harmonic frequencies for reference and CMA data. Reference CMA-2A(0.05) ${\rm CMA}\text{-}0{\rm A}$ $\mathrm{CCSD}(\mathrm{T})$ MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 99.15101.0999.1599.152 176.420 173.07176.42176.423 236.380 234.26236.39236.394 288.16289.29288.16288.1600 5 312.17311.43312.17312.176 348.10347.47348.10348.1007 0 452.08450.75452.08452.088 0 517.55523.90517.55517.559 0 785.28780.62785.28785.280 10 928.96919.10928.96928.9611 1009.16 0 988.511009.161009.1612 1614.671614.6701601.17 1614.67

S1.30 Acetylene

Geometries

Table S88: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)					
1	X	1.00000000	0.00000000	1.14300021	
2	\mathbf{C}	-0.00000000	0.00000000	1.14300021	
3	X	-0.00000000	1.00000000	1.14300021	
4	X	1.00000000	0.00000000	-1.14300021	
5	\mathbf{C}	-0.00000000	0.00000000	-1.14300021	
6	X	-0.00000000	1.00000000	-1.14300021	
7	Η	-0.00000000	0.00000000	3.15309138	
8	Η	-0.00000000	-0.00000000	-3.15309138	

Natural Internal Coordinates

Table S89: Symmetrized, unnormalized natural internal coordinates for Acetylene.

- $1 r_{2,5}$
- $2 r_{2,7} + r_{5,8}$
- $3 \quad r_{2,7} r_{5,8}$
- 4 $\theta_{7,2,5,1} + \theta_{7,2,5,3}$
- 5 $\theta_{7,2,5,1} \theta_{7,2,5,3}$
- 6 $\theta_{8,5,2,4} + \theta_{8,5,2,6}$
- 7 $\theta_{8,5,2,4} \theta_{8,5,2,6}$

Table S90: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	577.56	591.03	577.56	577.56	0
2	577.56	591.11	577.56	577.56	0
3	746.28	752.04	746.28	746.28	0
4	746.28	752.11	746.28	746.28	0
5	2000.86	1983.61	2000.91	2000.91	0
6	3409.95	3424.96	3409.95	3409.95	0
7	3510.94	3522.34	3510.91	3510.91	0

S1.31 Glycoxal

Geometries

Table S91: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} 1.21889603-0.76024287-0.000000002 Η $0.96585913 \quad -2.82956991$ -0.00000000Ο 3 3.264093810.26574464-0.000000004 \mathbf{C} -1.218896030.760242860.00000000-0.965859125 Η 2.829569900.000000006 Ο -3.26409381-0.265744630.00000000

Natural Internal Coordinates

Table S92: Symmetrized, unnormalized natural internal coordinates for Glycoxal.

```
1
        r_{1,4}
2
        r_{1,2} + r_{4,5}
3
        r_{1,2} - r_{4,5}
4
        r_{1,3} + r_{4,6}
5
        r_{1,3} - r_{4,6}
6
        \phi_{2,1,4} - \phi_{2,1,3} + \phi_{5,4,6} - \phi_{5,4,1}
7
        \phi_{2,1,4} - \phi_{2,1,3} - \phi_{5,4,6} + \phi_{5,4,1}
8
         -\phi_{2,1,4} - \phi_{2,1,3} + 2\phi_{4,1,3} - \phi_{5,4,6} - \phi_{5,4,1} + 2\phi_{1,4,6}
9
         -\phi_{2,1,4} - \phi_{2,1,3} + 2\phi_{4,1,3} + \phi_{5,4,6} + \phi_{5,4,1} - 2\phi_{1,4,6}
10
        	au_{6,4,1,3}
11
        \gamma_{5,4,6,1} + \gamma_{2,1,3,4}
12
        \gamma_{5,4,6,1} - \gamma_{2,1,3,4}
```

Table S93: Harmonic frequencies for reference and CMA data. Reference CMA-2A(0.05) ${\rm CMA}\text{-}0{\rm A}$ CCSD(T)MP2MP2MP2/cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 1 136.26135.79136.32136.261 2 330.98329.78330.98330.980 3 560.080 560.06557.98560.084 823.86832.67823.85823.861 0 5 1068.80 1079.341068.801068.80 6 1095.401095.621095.491095.4907 0 1342.001343.961342.011342.01 8 0 1384.841387.701384.841384.849 1757.891750.671757.881757.880 0 10 1779.771763.001779.711779.7111 2982.13 2998.212982.142982.140 12 02987.103002.93 2987.092987.09

S1.32 Ketene

Geometries

Table S94: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 C -0.00000000 0.00000000 -2.45258708

-0.000000000.00000000-2.452587082 \mathbf{C} -0.000000000.000000000.039161573 Η 1.779868100.00000000-3.442217034 Η -1.77986810-0.00000000-3.44221703

-0.00000000

2.24442655

Natural Internal Coordinates

Table S95: Symmetrized, unnormalized natural internal coordinates for Ketene.

 $1 r_{1,2}$

0.00000000

5 O

- $2 r_{2,5}$
- $3 r_{1,3} + r_{1,4}$
- 4 $r_{1,3} r_{1,4}$
- 5 $2\phi_{3,1,4} \phi_{3,1,2} \phi_{4,1,2}$
- 6 $\phi_{3,1,2} \phi_{4,1,2}$
- 7 $\gamma_{2,1,3,4}$
- 8 $\alpha_{3,1,2,5}^x \alpha_{4,1,2,5}^x$
- 9 $\alpha_{3,1,2,5}^y \alpha_{4,1,2,5}^y$

Table S96: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	434.17	432.90	434.38	434.38	0
2	514.86	504.86	521.98	514.86	1
3	590.76	583.94	584.48	590.76	1
4	993.60	986.64	993.51	993.51	0
5	1151.97	1152.32	1151.98	1151.98	0
6	1419.96	1412.28	1419.97	1419.97	0
7	2196.66	2215.50	2196.65	2196.65	0
8	3201.09	3215.62	3201.09	3201.09	0
9	3305.76	3323.30	3305.76	3305.76	0

S1.33 Vinyl Fluoride

Geometries

Table S97: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 C -0.230627270.000000000.849272172 \mathbf{F} 2.01489057-0.00000000-0.333482843 H -0.038835372.884555050.000000004 С -2.40187281-0.41086779-0.00000000H -2.44489109-2.452754805 -0.000000006 Η -4.154035420.63464361-0.00000000

Natural Internal Coordinates

Table S98: Symmetrized, unnormalized natural internal coordinates for Vinyl Fluoride.

```
r_{1,4}
2
        r_{1,2}
3
        r_{1,3}
4
        r_{4,5} + r_{4,6}
5
        r_{4,5} - r_{4,6}
        2\phi_{2,1,4} - \phi_{2,1,3} - \phi_{4,1,3}
6
        \phi_{2,1,3} - \phi_{4,1,3}
        2\phi_{5,4,6} - \phi_{5,4,1} - \phi_{6,4,1}
9
        \phi_{5,4,1} - \phi_{6,4,1}
10
       \tau_{6,4,1,2} + \tau_{5,4,1,2}
11
        \gamma_{1,4,5,6}
12 \gamma_{3,1,2,4}
```

Table S99: Harmonic frequencies for reference and CMA data. Reference CMA-2A(0.05) ${\rm CMA}\text{-}0{\rm A}$ CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 481.38481.34481.41481.412 725.01738.020 725.10725.103 0 871.03871.03871.09871.094 945.55942.22945.561 945.590 5 956.17973.16956.06956.066 1186.161183.931186.171186.201 7 0 1335.381337.101335.381335.388 0 1424.871422.871424.851424.859 1703.221696.191703.211703.210 0 10 3178.283194.103178.293178.2911 3235.180 3216.733216.713216.7112 03280.453301.10 3280.453280.45

S1.34 Vinyl Chloride

Geometries

Table S100: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) -1.254572030.000000001 \mathbf{C} 0.960433442 Cl 0.000000001.82672009-0.156814953 Η -1.37832434 $2.99846821 \quad 0.00000000$ 4 \mathbf{C} -3.26305888-0.559164940.00000000Η -3.076373325 -2.594076510.000000006 Η -5.136981930.258835360.00000000

Natural Internal Coordinates

Table S101: Symmetrized, unnormalized natural internal coordinates for Vinyl Chloride.

```
1
         r_{1,4}
2
        r_{1,2}
3
        r_{1,3}
4
        r_{4,5} + r_{4,6}
5
        r_{4,5} - r_{4,6}
6
        -\phi_{2,1,3} + 2\phi_{2,1,4} - \phi_{3,1,4}
7
        \phi_{2,1,3} - \phi_{3,1,4}
8
        2\phi_{5,4,6} - \phi_{5,4,1} - \phi_{6,4,1}
9
        \phi_{5,4,1} - \phi_{6,4,1}
10
       \tau_{2,1,4,6} + \tau_{3,1,4,5}
11
       \gamma_{1,4,5,6}
12 \gamma_{4,1,2,3}
```

Table S102: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	393.16	392.78	393.17	393.17	0
2	624.92	635.79	624.94	624.94	0
3	728.91	728.17	728.92	728.92	0
4	906.85	907.59	906.93	906.93	0
5	967.57	982.20	967.48	967.48	0
6	1043.79	1038.88	1043.83	1043.83	0
7	1303.91	1302.52	1303.94	1303.94	0
8	1409.03	1407.89	1408.98	1408.98	0
9	1648.92	1640.61	1648.90	1648.90	0
10	3163.14	3178.41	3163.14	3163.14	0
11	3219.69	3237.30	3219.69	3219.69	0
12	3261.58	3282.15	3261.58	3261.58	0

S1.35 Acetyl Chloride

Geometries

Table S103: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} 2.377569912.26850483-0.000553612 \mathbf{C} 1.05905955-0.246835670.000144733 Ο 2.00061832-2.287263970.000840094 Cl-2.325300650.10341395-0.000181255 Η 4.411243451.96733004-0.000327896 Η 1.800053763.33615707-1.665081157 Η 1.799838523.337193911.66323370

Natural Internal Coordinates

Table S104: Symmetrized, unnormalized natural internal coordinates for Acetyl Chloride.

```
r_{1,2}
2
        r_{2,3}
3
        r_{2,4}
4
        r_{1,5} + r_{1,6} + r_{1,7}
5
        2r_{1,5} - r_{1,6} - r_{1,7}
6
        r_{1,6} - r_{1,7}
7
        2\phi_{3,2,4} - \phi_{1,2,3} - \phi_{1,2,4}
8
        \phi_{1,2,3} - \phi_{1,2,4}
9
        \phi_{2,1,5} + \phi_{2,1,7} + \phi_{2,1,6} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
10 2\phi_{2,1,5} - \phi_{2,1,7} - \phi_{2,1,6}
11 \phi_{2,1,7} - \phi_{2,1,6}
12 2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
13 \phi_{5,1,6} - \phi_{5,1,7}
14 \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,4} + \tau_{7,1,2,4}
        \gamma_{4,2,3,1}
```

Table S105: Harmonic frequencies for reference and CMA data. Reference CMA-0ACMA-2A(0.05)CCSD(T)MP2 ${\rm MP2}$ MP2/cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 01 143.29141.31143.38143.382 343.070343.02343.09 343.090 3 448.70445.39449.01449.014 518.05518.31518.07518.070 0 613.58607.92613.535 613.536 969.93964.69969.97969.970 0 7 1047.491043.561047.491047.498 1127.041126.991126.990 1119.34 9 1394.091384.661394.111394.11 0 0 10 1472.261473.361472.231472.2311 1478.201479.881478.191478.1900 12 1859.03 1851.751859.001859.000 13 3062.213073.633062.223062.2214 3142.853165.103142.853142.850 0 15 3169.133169.143190.523169.13

S1.36 Acetyl Fluoride

Geometries

Table S106: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) \mathbf{C} 1 2.764542710.014575450.000000002 \mathbf{C} -0.04920230-0.29403538-0.000000023 Ο -1.26541246-2.180099430.000000014 \mathbf{F} -1.197364971.993332850.00000000Η 5 3.66400828-1.829952830.000000076 Η 3.329656551.09054359-1.663566927 Η 3.329656491.090543681.66356688

Natural Internal Coordinates

Table S107: Symmetrized, unnormalized natural internal coordinates for Acetyl Fluoride.

```
1
        r_{1,2}
2
        r_{2,3}
3
        r_{2,4}
4
        r_{1,5} + r_{1,6} + r_{1,7}
5
        2r_{1,5} - r_{1,6} - r_{1,7}
6
        r_{1,6} - r_{1,7}
7
        2\phi_{3,2,4} - \phi_{1,2,3} - \phi_{1,2,4}
8
        \phi_{1,2,3} - \phi_{1,2,4}
9
        \phi_{2,1,5} + \phi_{2,1,7} + \phi_{2,1,6} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
10 2\phi_{2,1,5} - \phi_{2,1,7} - \phi_{2,1,6}
11 \phi_{2,1,7} - \phi_{2,1,6}
12 2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
13 \phi_{5,1,6} - \phi_{5,1,7}
14 \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,4} + \tau_{7,1,2,4}
        \gamma_{4,2,3,1}
```

Table S108: Harmonic frequencies for reference and CMA data. Reference CMA-0ACMA-2A(0.05)CCSD(T)MP2 ${\rm MP2}$ ${\rm MP2}$ /cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 01 135.38132.54135.45135.452 412.95412.960414.29412.960 3 572.45574.75572.47572.474 605.07605.58605.08605.080 0 5 854.81852.71854.85854.856 1017.141013.961017.181017.180 0 7 1073.071071.021073.061073.068 1229.961221.961229.930 1229.939 1409.071402.511409.081409.080 0 10 1478.051480.421478.011478.0111 1486.581489.921486.581486.58012 0 1905.64 1901.44 1905.631905.630 13 3067.893079.933067.883067.8814 3141.373163.753141.393141.390 0 15 3183.943205.213183.91 3183.91

S1.37 Acetic Acid

Geometries

Table S109: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) \mathbf{C} $-2.75458669 \quad -0.07584462$ 0.000000062 \mathbf{C} 0.075151330.191635840.000000053 Ο 1.240724422.152361110.00000001Ο $1.22880289 \quad -2.09877025$ -0.000000034 5 H -3.616442521.786771730.000000056 H -3.34756391 -1.13717476-1.663771167 Η $-3.34756393 \quad -1.13717626$ 1.66377031Η 3.02195767 -1.74165265-0.00000015

Natural Internal Coordinates

Table S110: Symmetrized, unnormalized natural internal coordinates for Acetic Acid.

```
1
        r_{1,2}
2
        r_{2,3}
3
        r_{2,4}
4
        r_{4,8}
5
        r_{1,5} + r_{1,6} + r_{1,7}
6
        2r_{1,5} - r_{1,6} - r_{1,7}
7
        r_{1,6} - r_{1,7}
8
        \phi_{1,2,3} - \phi_{3,2,4}
9
        -\phi_{1,2,3}-\phi_{3,2,4}+2\phi_{4,2,1}
10
        \phi_{2,4,8}
11
        \phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
        2\phi_{5,1,2}-\phi_{6,1,2}-\phi_{7,1,2}
13
        \phi_{6,1,2} - \phi_{7,1,2}
14 2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
15
        \phi_{5,1,6} - \phi_{5,1,7}
       \tau_{1,2,4,8} + \tau_{3,2,4,8}
17
        \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,4} + \tau_{7,1,2,4}
        \gamma_{3,2,1,4}
```

Table S111: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2 ${\rm MP2}$ ${\rm MP2}$ /cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 78.240 1 78.1874.6378.242 418.78418.93418.790418.793 545.73550.36545.87545.731 4 584.13584.54584.13584.130 5 664.471 669.23664.36664.470 6 869.68868.69869.70869.707 0 1005.01 1001.341005.101005.108 1071.351068.94 1071.361071.360 9 1220.341207.391220.481220.480 0 10 1355.181345.921355.101355.1011 1422.271414.331422.331422.330 12 1482.910 1481.231481.151481.1513 1487.620 1490.521487.611487.610 14 1837.111834.761837.051837.0515 3064.963077.093064.963064.960 3160.273137.423137.42016 3137.390 17 3180.573202.283180.543180.5418 3776.293786.743776.293776.290

S1.38 Methyl Formate

Geometries

Table S112: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -2.564746271.03805801-0.000000012 Ο -1.13832898-1.277194140.00000001С 3 1.37333384 -0.93569129-0.000000004 Ο 2.440230241.075001630.000000005 H -2.126059912.14890436-1.676477246 H -4.537238890.471583330.000000027 Η -2.126059892.148904401.67647720Η 2.31318467 -2.77931310-0.00000007

Natural Internal Coordinates

Table S113: Symmetrized, unnormalized natural internal coordinates for Methyl Formate.

```
1
        r_{1,2}
2
        r_{2,3}
3
        r_{3,4}
4
        r_{3,8}
5
       r_{1,6} + r_{1,5} + r_{1,7}
6
        2r_{1,6} - r_{1,5} - r_{1,7}
7
        r_{1,5} - r_{1,7}
8
        \phi_{1,2,3}
9
        2\phi_{2,3,4} - \phi_{4,3,8} - \phi_{2,3,8}
10
       \phi_{4,3,8} - \phi_{2,3,8}
        \phi_{5,1,7} + \phi_{6,1,5} + \phi_{6,1,7} - \phi_{6,1,2} - \phi_{5,1,2} - \phi_{7,1,2}
12
        2\phi_{5,1,7} - \phi_{6,1,5} - \phi_{6,1,7}
        \phi_{6,1,5} - \phi_{6,1,7}
13
14 2\phi_{6,1,2} - \phi_{5,1,2} - \phi_{7,1,2}
15
        \phi_{5,1,2} - \phi_{7,1,2}
16
       \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3}
17
        \tau_{1,2,3,4} + \tau_{1,2,3,8}
18
        \gamma_{8,3,2,4}
```

Table S114: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 1 1 144.91146.02144.93144.922 310.98307.680311.00 311.00 3 2 339.98345.55339.98 339.984 776.79775.66776.84776.840 5 957.60957.660 956.35957.666 0 1049.471051.931049.501049.507 1185.121186.881185.111185.111 8 1195.911192.67 1195.901195.891 9 1243.841243.951243.951 1244.630 10 1404.551405.231404.511404.5111 1472.501472.531472.541472.540 12 1495.320 1495.321501.541495.3213 1509.790 1514.421509.731509.730 14 1799.601796.871799.541799.5415 3063.30 3075.573063.313063.310 3094.680 16 3078.263078.253078.250 17 3143.883167.123143.903143.9018 3176.953200.923176.943176.940

S1.39 Acetaldehyde

Geometries

Table S115: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -2.383367800.31344831-0.000000002 \mathbf{C} 0.23682939-0.796076210.000000003 Ο 2.164610690.43923199-0.000000004 Η 0.32309962-2.887232390.000000005 H -2.290513822.36809272-0.000000006 Η -3.41403157-0.352611541.661967037 Η -3.41403157-0.35261154-1.66196703

Natural Internal Coordinates

Table S116: Symmetrized, unnormalized natural internal coordinates for Acetaldehyde.

```
r_{1,2}
2
        r_{2,3}
3
        r_{2,4}
4
        r_{1,5} + r_{1,6} + r_{1,7}
5
        2r_{1,5} - r_{1,6} - r_{1,7}
6
        r_{1,6} - r_{1,7}
7
        2\phi_{3,2,4} - \phi_{1,2,3} - \phi_{1,2,4}
8
        \phi_{1,2,3} - \phi_{1,2,4}
9
        \phi_{2,1,5} + \phi_{2,1,7} + \phi_{2,1,6} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
10 2\phi_{2,1,5} - \phi_{2,1,7} - \phi_{2,1,6}
11 \phi_{2,1,7} - \phi_{2,1,6}
12 2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
13 \phi_{5,1,6} - \phi_{5,1,7}
14 \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,4} + \tau_{7,1,2,4}
       \gamma_{4,2,3,1}
```

Table S117: Harmonic frequencies for reference and CMA data. Reference CMA-0ACMA-2A(0.05)CCSD(T)MP2MP2 ${\rm MP2}$ /cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 01 156.12156.62156.22156.222 503.56504.010 503.57503.570 3 777.41776.76777.53777.534 895.54892.86895.58895.580 0 1132.411132.34 5 1132.221132.346 1134.441134.441134.471134.470 0 7 1383.161376.141383.331383.33 8 1433.070 1431.321431.241431.249 1469.931471.251469.881469.880 0 10 1481.191483.821481.181481.1811 1793.141785.541793.101793.10012 0 2918.882935.712918.892918.89 13 3037.723050.233037.743037.74014 3105.973130.033105.963105.960 0 15 3156.223178.163156.183156.18

S1.40 Ethyl Chloride

Geometries

Table S118: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 С $-3.24283313 \quad -0.71079689$ 0.000017802 С -1.154249101.253643390.000018653 H = -3.11757518 = -1.908439031.67184314Η -5.080836490.23136791-0.000018054 5 Η $-3.11753003 \quad -1.90846919$ -1.671780786 Η -1.224837762.445256341.673928597 Η -1.224863612.44528373-1.67387166Cl1.90564864 -0.22389552-0.000015438

Natural Internal Coordinates

Table S119: Symmetrized, unnormalized natural internal coordinates for Ethyl Chloride.

```
1
        r_{1,2}
2
        r_{2,8}
3
        r_{1,4} + r_{1,3} + r_{1,5}
4
        2r_{1,4} - r_{1,3} - r_{1,5}
5
       r_{1,3} - r_{1,5}
6
        r_{2,6} + r_{2,7}
7
        r_{2,6} - r_{2,7}
8
        \phi_{1,2,8}
9
        \phi_{6,2,1} + \phi_{6,2,8} - \phi_{7,2,1} - \phi_{7,2,8}
10 \phi_{6,2,1} - \phi_{6,2,8} + \phi_{7,2,1} - \phi_{7,2,8}
        \phi_{6,2,1} - \phi_{6,2,8} - \phi_{7,2,1} + \phi_{7,2,8}
12
        -\phi_{6,2,1} - \phi_{6,2,8} - \phi_{7,2,1} - \phi_{7,2,8} + 4\phi_{6,2,7}
13
        \phi_{4,1,2} + \phi_{3,1,2} + \phi_{5,1,2} - \phi_{3,1,5} - \phi_{4,1,3} - \phi_{4,1,5}
14 2\phi_{4,1,2} - \phi_{3,1,2} - \phi_{5,1,2}
15
        \phi_{3,1,2} - \phi_{5,1,2}
16 2\phi_{3,1,5} - \phi_{4,1,3} - \phi_{4,1,5}
17
        \phi_{4,1,3} - \phi_{4,1,5}
18
       \tau_{3,1,2,8} + \tau_{4,1,2,8} + \tau_{5,1,2,8}
```

Table S120: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 261.87265.79261.89261.892 331.54330.18331.550 331.553 0 688.50691.87688.51688.514 787.64788.34787.64787.640 5 993.23991.27993.270 993.27 6 0 1080.781081.09 1080.851080.857 0 1094.08 1092.661094.111094.118 1280.401281.031280.351280.350 9 1321.691318.361321.701321.700 0 10 1414.251406.601414.251414.2511 1492.911495.201492.901492.900 12 1499.580 1498.261498.251498.2513 0 1507.541510.151507.491507.490 14 3042.953055.653042.993042.9915 3091.31 3107.383091.34 3091.34 0 3119.730 16 3143.553119.603119.600 17 3127.713152.193127.753127.7518 3154.383177.693154.393154.390

S1.41Ethane

Geometries

Table S121: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) C -1.44464665-0.000000020.000000012 С 1.444646650.00000008-0.00000008H -2.19072560 -1.855340393 0.50798051H -2.190725681.367594174 1.352781655 H -2.190725740.48774615-1.860762072.19072576 -0.48774633Η 1.86076194 6 7 Η 2.190725581.85534053 -0.50798031Η 2.19072568 -1.36759487-1.352780948

Natural Internal Coordinates

Table S122: Symmetrized, unnormalized natural internal coordinates for Ethane.

```
1
2
        r_{1,3} + r_{1,4} + r_{1,5} + r_{2,7} + r_{2,6} + r_{2,8}
3
        r_{1,3} + r_{1,4} + r_{1,5} - r_{2,7} - r_{2,6} - r_{2,8}
        2r_{1,3} - r_{1,4} - r_{1,5} + 2r_{2,7} - r_{2,6} - r_{2,8}
4
        2r_{1,3} - r_{1,4} - r_{1,5} - 2r_{2,7} + r_{2,6} + r_{2,8}
5
6
       r_{1,4} - r_{1,5} + r_{2,6} - r_{2,8}
7
        r_{1,4} - r_{1,5} - r_{2,6} + r_{2,8}
        \phi_{4,1,5} + \phi_{3,1,4} + \phi_{3,1,5} - \phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2} + \phi_{6,2,8} + \phi_{7,2,6} + \phi_{7,2,8} - \phi_{7,2,1}
         -\phi_{6,2,1}-\phi_{8,2,1}
        \phi_{4,1,5} + \phi_{3,1,4} + \phi_{3,1,5} - \phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,2,8} - \phi_{7,2,6} - \phi_{7,2,8} + \phi_{7,2,1}
         +\phi_{6,2,1}+\phi_{8,2,1}
        2\phi_{4,1,5} - \phi_{3,1,4} - \phi_{3,1,5} + 2\phi_{6,2,8} - \phi_{7,2,6} - \phi_{7,2,8}
        2\phi_{4,1,5} - \phi_{3,1,4} - \phi_{3,1,5} - 2\phi_{6,2,8} + \phi_{7,2,6} + \phi_{7,2,8}
12 \phi_{3,1,4} - \phi_{3,1,5} + \phi_{7,2,6} - \phi_{7,2,8}
        \phi_{3,1,4} - \phi_{3,1,5} - \phi_{7,2,6} + \phi_{7,2,8}
14 2\phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2} + 2\phi_{7,2,1} - \phi_{6,2,1} - \phi_{8,2,1}
15
        2\phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2} - 2\phi_{7,2,1} + \phi_{6,2,1} + \phi_{8,2,1}
16 \phi_{4,1,2} - \phi_{5,1,2} + \phi_{6,2,1} - \phi_{8,2,1}
17
        \phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,2,1} + \phi_{8,2,1}
18 \tau_{3,1,2,7} + \tau_{7,2,1,3} + \tau_{4,1,2,8} + \tau_{8,2,1,4} + \tau_{5,1,2,6} + \tau_{6,2,1,5}
```

Table S123: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 310.010 1 310.01314.19310.012 820.85821.76820.87820.870 3 0 820.85821.77820.87820.874 1013.931015.051013.951013.950 5 1224.791222.441224.821224.820 6 1222.451224.820 1224.791224.827 0 1406.531402.281406.531406.538 1427.461421.321427.461427.460 9 1510.831515.391510.811510.810 0 10 1510.83 1515.401510.821510.8211 1512.521515.611512.511512.510 12 1515.620 1512.521512.521512.5213 0 3038.00 3051.30 3037.913037.910 14 3039.533052.913039.493039.4915 3096.883123.443096.903096.90 0 16 3096.88 3123.503096.953096.950 0 17 3120.063145.543120.063120.0618 3120.063145.603120.113120.110

S1.42 Dimethyl Ether

Geometries

Table S124: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 С -2.194095400.47534797-0.000000002 Ο 0.00000000-1.039439170.000000003 \mathbf{C} 2.194095400.47534797-0.00000000Η -0.785167534 -3.820412250.000000005 H -2.276392901.68680381-1.682146096 Η -2.276392901.686803811.68214609 7 Η 2.276392891.686803831.68214608 Η 2.27639289-1.682146088 1.68680383 9 Η 3.82041225-0.785167540.00000000

Natural Internal Coordinates

Table S125: Symmetrized, unnormalized natural internal coordinates for Dimethyl Ether.

```
1
        r_{1,2} + r_{2,3}
2
       r_{1,2} - r_{2,3}
3
       r_{1,4} + r_{1,5} + r_{1,6} + r_{3,9} + r_{3,7} + r_{3,8}
4
       r_{1,4} + r_{1,5} + r_{1,6} - r_{3,9} - r_{3,7} - r_{3,8}
5
        2r_{1,4} - r_{1,5} - r_{1,6} + 2r_{3,9} - r_{3,7} - r_{3,8}
6
        2r_{1,4} - r_{1,5} - r_{1,6} - 2r_{3,9} + r_{3,7} + r_{3,8}
7
       r_{1,5} - r_{1,6} + r_{3,7} - r_{3,8}
       r_{1,5} - r_{1,6} - r_{3,7} + r_{3,8}
9
        \phi_{1,2,3}
10 \quad \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + \phi_{9,3,2} + \phi_{7,3,2} + \phi_{8,3,2} - \phi_{7,3,8}
         -\phi_{9,3,7}-\phi_{9,3,8}
        \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - \phi_{9,3,2} - \phi_{7,3,2} - \phi_{8,3,2} + \phi_{7,3,8}
         +\phi_{9,3,7}+\phi_{9,3,8}
12
        2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} + 2\phi_{9,3,2} - \phi_{7,3,2} - \phi_{8,3,2}
13 2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} - 2\phi_{9,3,2} + \phi_{7,3,2} + \phi_{8,3,2}
14 \phi_{5,1,2} - \phi_{6,1,2} + \phi_{7,3,2} - \phi_{8,3,2}
15 \phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,3,2} + \phi_{8,3,2}
        2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + 2\phi_{7,3,8} - \phi_{9,3,7} - \phi_{9,3,8}
17 2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - 2\phi_{7,3,8} + \phi_{9,3,7} + \phi_{9,3,8}
18 \phi_{4,1,5} - \phi_{4,1,6} + \phi_{9,3,7} - \phi_{9,3,8}
19 \phi_{4,1,5} - \phi_{4,1,6} - \phi_{9,3,7} + \phi_{9,3,8}
20 \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,3,2,1} + \tau_{8,3,2,1} + \tau_{9,3,2,1}
      \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} - \tau_{7,3,2,1} - \tau_{8,3,2,1} - \tau_{9,3,2,1}
```

Table S126: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 203.09 207.76203.10 203.10 2 255.06258.31255.06255.061 3 418.84414.76418.85418.850 4 964.06961.48964.15964.150 5 1128.791130.96 1128.831128.83 1 0 6 1169.38 1169.37 1171.811169.387 1202.411202.561202.421202.421 8 1212.111211.19 1212.151212.151 9 1277.411272.641277.381277.380 10 1460.111459.711460.071460.070 1490.451494.210 11 1490.451490.4512 1494.981495.83 1495.121495.120 1505.740 13 1500.07 1500.071500.0714 1508.701513.111508.681508.68 01526.670 15 1526.821530.651526.6716 2978.192992.862978.262978.260 172987.432999.992987.542987.540 18 0 3030.843055.533030.843030.8419 3036.253062.583036.253036.250 0 20 3129.143153.253129.083129.08213130.943154.273130.843130.840

S1.43 Ethanol

Geometries

Table S127: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 С -2.381605580.473963490.000000022 \mathbf{C} 0.01654024-1.09258611-0.000000023 Η -2.445605261.678007471.672205514 Η -2.445605331.67800746-1.672205505 Η -4.04445451-0.747417130.000000066 Η 0.06559877-2.312321951.674268177 Η 0.06559875-2.31232193-1.67426821Ο 2.100796640.61455797-0.000000028 9 Η 3.62372825-0.371601240.00000035

Natural Internal Coordinates

Table S128: Symmetrized, unnormalized natural internal coordinates for Ethanol.

```
1
2
        r_{2,8}
3
        r_{8,9}
4
       r_{1,5} + r_{1,3} + r_{1,4}
5
        2r_{1,5} - r_{1,3} - r_{1,4}
6
        r_{1,3} - r_{1,4}
7
        r_{2,6} + r_{2,7}
8
        r_{2,6} - r_{2,7}
9
        \phi_{1,2,8}
10
        \phi_{2,8,9}
11
        \phi_{5,1,2} + \phi_{3,1,2} + \phi_{4,1,2} - \phi_{3,1,4} - \phi_{5,1,3} - \phi_{5,1,4}
        2\phi_{5,1,2} - \phi_{3,1,2} - \phi_{4,1,2}
13 \phi_{3,1,2} - \phi_{4,1,2}
        2\phi_{3,1,4} - \phi_{5,1,3} - \phi_{5,1,4}
15 \phi_{5,1,3} - \phi_{5,1,4}
16 2\phi_{6,2,7} - \phi_{6,2,1} - \phi_{6,2,8} - \phi_{7,2,1} - \phi_{7,2,8}
17 \phi_{6,2,1} + \phi_{6,2,8} - \phi_{7,2,1} - \phi_{7,2,8}
18
        \phi_{6,2,1} - \phi_{6,2,8} + \phi_{7,2,1} - \phi_{7,2,8}
19 \phi_{6,2,1} - \phi_{6,2,8} - \phi_{7,2,1} + \phi_{7,2,8}
20 \quad \tau_{5,1,2,8} + \tau_{3,1,2,8} + \tau_{4,1,2,8}
21
        	au_{9,8,2,1}
```

Table S129: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 235.41239.15235.45235.451 2 280.63285.48280.63280.630 3 413.74412.37413.75413.7504 818.70819.61818.71818.710 909.1405 908.42909.19 909.190 6 1050.781047.151050.931050.93 7 1121.481120.551121.591121.590 8 0 1187.04 1185.90 1187.091187.099 1285.131276.071285.061285.060 10 1306.081308.601306.061306.060 11 1403.220 1397.501403.221403.2212 1468.041460.93 1467.981467.98 0 0 13 1489.67 1492.61 1489.651489.6514 1508.411511.491508.331508.3301538.390 15 1538.401541.121538.3916 3000.323016.783000.343000.340 173032.333057.803032.323032.320 18 0 3045.113058.833045.063045.0619 3123.33 3148.583123.33 3123.33 0 0 20 3128.353153.323128.393128.39213857.30 3874.393857.30 3857.30 0

S1.44 Acetonitrile

Geometries

Table S130: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Ν $2.51255949 \quad -0.000000000$ 0.000000002 \mathbf{C} $0.31660733 \quad -0.000000000$ 0.000000003 C -2.454205720.00000000-0.00000000H -3.152787894 0.96811431-1.67682317H -3.15278789 -1.936228625 -0.00000000Η -3.152787890.968114311.67682317

Natural Internal Coordinates

Table S131: Symmetrized, unnormalized natural internal coordinates for Acetonitrile.

```
1
         r_{1,2}
2
         r_{2,3}
3
        r_{3,4} + r_{3,5} + r_{3,6}
4
         2r_{3,4} - r_{3,5} - r_{3,6}
5
        r_{3,5} - r_{3,6}
6
        \phi_{4,3,2} + \phi_{5,3,2} + \phi_{6,3,2} - \phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}
7
        2\phi_{4,3,2} - \phi_{5,3,2} - \phi_{6,3,2}
8
         \phi_{5,3,2} - \phi_{6,3,2}
9
         2\phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}
10 \phi_{4,3,5} - \phi_{4,3,6}
11 2\alpha_{4,3,2,1}^x - \alpha_{5,3,2,1}^x - \alpha_{6,3,2,1}^x
12 2\alpha_{4,3,2,1}^y - \alpha_{5,3,2,1}^y - \alpha_{6,3,2,1}^y
```

Table S132: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	361.14	362.27	361.14	361.14	0
2	361.14	362.28	361.14	361.14	0
3	921.28	919.61	921.35	921.35	0
4	1062.13	1062.25	1062.14	1062.14	0
5	1062.13	1062.26	1062.14	1062.14	0
6	1414.02	1409.05	1414.03	1414.03	0
7	1487.57	1490.60	1487.56	1487.56	0
8	1487.57	1490.61	1487.56	1487.56	0
9	2298.73	2261.22	2298.70	2298.70	0
10	3066.03	3078.30	3066.02	3066.02	0
11	3149.91	3171.86	3149.91	3149.91	0
12	3149.91	3171.98	3149.92	3149.92	0

S1.45 Propyene

Geometries

Table S133: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Η 4.59758364-0.000000010.000000002 \mathbf{C} 2.58924928-0.00000000-0.000000003 С 0.300519070.00000001-0.000000004 С -2.47081506-0.00000000-0.00000000H -3.195329585 1.929925650.000000006 Η -3.19532957-0.96496284-1.671364657 Η -3.19532957-0.964962841.67136465

Natural Internal Coordinates

Table S134: Symmetrized, unnormalized natural internal coordinates for Propyene.

```
r_{1,2}
2
         r_{2,3}
3
         r_{3,4}
4
         r_{4,5} + r_{4,6} + r_{4,7}
         2r_{4,5} - r_{4,6} - r_{4,7}
5
6
        r_{4,6} - r_{4,7}
7
         \phi_{6,4,7} + \phi_{5,4,6} + \phi_{5,4,7} - \phi_{5,4,3} - \phi_{6,4,3} - \phi_{7,4,3}
8
         2\phi_{6,4,7} - \phi_{5,4,6} - \phi_{5,4,7}
         \phi_{5,4,6} - \phi_{5,4,7}
10 2\phi_{5,4,3} - \phi_{6,4,3} - \phi_{7,4,3}
11 \phi_{6,4,3} - \phi_{7,4,3}
12 \quad 2\alpha_{5,4,3,2}^x - \alpha_{6,4,3,2}^x - \alpha_{7,4,3,2}^x
13 \alpha_{6,4,3,2}^x - \alpha_{7,4,3,2}^x
14 \quad 2\alpha_{5,4,2,1}^x - \alpha_{6,4,2,1}^x - \alpha_{7,4,2,1}^x
15 \alpha_{6,4,2,1}^x - \alpha_{7,4,2,1}^x
```

Table S135: Harmonic frequencies for reference and CMA data. Reference CMA-0ACMA-2A(0.05)CCSD(T)MP2 ${\rm MP2}$ ${\rm MP2}$ /cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 1 1 322.43325.90322.49322.442 322.43325.91322.49322.441 1 3 619.78627.58619.76619.784 619.78627.61619.76619.781 0 935.50935.515 934.18935.516 1059.941059.061059.951059.950 0 7 1059.941059.07 1059.961059.968 0 1417.121410.48 1417.131417.139 1491.361493.711491.351491.350 0 10 1491.361493.731491.351491.3511 2177.612158.842177.642177.6400 12 3048.353060.933048.333048.330 13 3122.333145.883122.333122.3314 3122.333145.993122.333122.330 0 15 3470.253470.233483.453470.23

S1.46 Trifluoroacetonitrile

Geometries

Table S136: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Ν $4.43122755 \qquad -0.00000000$ 0.000000002 \mathbf{C} 0.000000002.23806724-0.000000003 C -0.57616305 -0.0000000000.000000004 \mathbf{F} -1.438606121.17812158-2.04056644 \mathbf{F} $-1.43860612 \quad -2.35624316$ 5 -0.00000000 \mathbf{F} -1.438606121.178121582.04056644

Natural Internal Coordinates

Table S137: Symmetrized, unnormalized natural internal coordinates for Trifluoroacetonitrile.

```
r_{1,2}
2
         r_{2,3}
3
        r_{3,4} + r_{3,5} + r_{3,6}
4
         2r_{3,4} - r_{3,5} - r_{3,6}
5
        r_{3,5} - r_{3,6}
6
         \phi_{4,3,2} + \phi_{5,3,2} + \phi_{6,3,2} - \phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}
7
        2\phi_{4,3,2} - \phi_{5,3,2} - \phi_{6,3,2}
8
         \phi_{5,3,2} - \phi_{6,3,2}
9
         2\phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}
10 \phi_{4,3,5} - \phi_{4,3,6}
11 2\alpha_{4,3,2,1}^x - \alpha_{5,3,2,1}^x - \alpha_{6,3,2,1}^x
12 2\alpha_{4,3,2,1}^y - \alpha_{5,3,2,1}^y - \alpha_{6,3,2,1}^y
```

Table S138: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	189.86	190.44	189.88	189.88	0
2	189.86	190.44	189.88	189.88	0
3	469.33	470.41	469.34	469.33	1
4	469.33	470.42	469.34	469.33	1
5	527.15	526.30	527.20	527.20	0
6	629.30	631.92	629.30	629.30	1
7	629.30	631.93	629.30	629.30	1
8	821.09	821.56	821.11	821.11	0
9	1258.53	1246.94	1258.38	1258.38	0
10	1258.53	1246.99	1258.53	1258.53	0
11	1258.85	1254.44	1259.00	1259.00	0
12	2304.40	2254.12	2304.38	2304.38	0

S1.47 Silicon Tetrachloride

Geometries

Table S139: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Si 0.000000000.00000000-0.000000002 Cl 0.00000000-3.130637392.21369401Cl3 0.000000003.130637392.213694014 Cl 3.130637380.00000000-2.21369401Cl-2.213694015 -3.130637380.00000000

Natural Internal Coordinates

Table S140: Symmetrized, unnormalized natural internal coordinates for Silicon Tetrachloride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad r_{1,2} + r_{1,3} r_{1,4} r_{1,5}$
- $3 \quad r_{1,2} r_{1,3}$
- 4 $r_{1,4} r_{1,5}$
- 5 $\phi_{2,1,3} + \phi_{4,1,5}$
- 6 $\phi_{2,1,3} \phi_{4,1,5}$
- 7 $\phi_{2,1,4} \phi_{2,1,5} + \phi_{3,1,4} \phi_{3,1,5}$
- 8 $\phi_{2,1,4} + \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 9 $\phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$

Table S141: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	146.56	145.92	146.56	146.56	0
2	146.57	145.92	146.57	146.57	0
3	221.54	220.44	221.58	221.58	0
4	221.56	220.44	221.63	221.63	0
5	221.78	220.46	221.65	221.65	0
6	424.70	424.37	424.70	424.70	0
7	627.16	625.14	627.19	627.19	0
8	627.19	625.16	627.19	627.19	0
9	627.23	625.18	627.19	627.19	0

S1.48 Silicon Tetrafluoride

Geometries

Table S142: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Si 0.000000000.00000000-0.000000032 F 0.00000000-2.409605151.703847293 F 0.000000002.409605151.70384729 4 F 2.409605190.00000000-1.70384727-1.703847275 \mathbf{F} -2.409605190.00000000

Natural Internal Coordinates

Table S143: Symmetrized, unnormalized natural internal coordinates for Silicon Tetrafluoride.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4} + r_{1,5}$
- $2 \quad r_{1,2} + r_{1,3} r_{1,4} r_{1,5}$
- $3 \quad r_{1,2} r_{1,3}$
- 4 $r_{1,4} r_{1,5}$
- 5 $\phi_{2,1,3} + \phi_{4,1,5}$
- 6 $\phi_{2,1,3} \phi_{4,1,5}$
- 7 $\phi_{2,1,4} \phi_{2,1,5} + \phi_{3,1,4} \phi_{3,1,5}$
- 8 $\phi_{2,1,4} + \phi_{2,1,5} \phi_{3,1,4} \phi_{3,1,5}$
- 9 $\phi_{2,1,4} \phi_{2,1,5} \phi_{3,1,4} + \phi_{3,1,5}$

Table S144: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	263.22	263.81	263.24	263.24	0
2	263.27	263.82	263.25	263.25	0
3	387.72	388.18	387.73	387.73	0
4	387.76	388.19	387.76	387.76	0
5	387.78	388.21	387.77	387.77	0
6	798.06	799.38	798.06	798.06	0
7	1038.05	1040.66	1038.04	1038.04	0
8	1038.06	1040.71	1038.06	1038.06	0
9	1038.07	1040.75	1038.07	1038.07	0

Disilane S1.49

Geometries

Table S145: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Si 0.000002092.218950840.00000000Si 2 -0.00000209-2.218950840.000000003 H -1.314049503.19278368-2.27600840Η -1.314049503.192783682.27600840 4 5 Η 2.628106513.192794590.000000006 Η -2.62810651-3.192794590.000000007 Η 1.31404950 -3.192783682.27600840 Η 1.31404950 -3.19278368-2.276008408

Natural Internal Coordinates

Table S146: Symmetrized, unnormalized natural internal coordinates for Disilane.

```
1
2
        r_{1,3} + r_{1,4} + r_{1,5} + r_{2,7} + r_{2,6} + r_{2,8}
3
        r_{1,3} + r_{1,4} + r_{1,5} - r_{2,7} - r_{2,6} - r_{2,8}
        2r_{1,3} - r_{1,4} - r_{1,5} + 2r_{2,7} - r_{2,6} - r_{2,8}
4
        2r_{1,3} - r_{1,4} - r_{1,5} - 2r_{2,7} + r_{2,6} + r_{2,8}
5
6
       r_{1,4} - r_{1,5} + r_{2,6} - r_{2,8}
7
        r_{1,4} - r_{1,5} - r_{2,6} + r_{2,8}
        \phi_{4,1,5} + \phi_{3,1,4} + \phi_{3,1,5} - \phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2} + \phi_{6,2,8} + \phi_{7,2,6} + \phi_{7,2,8} - \phi_{7,2,1}
         -\phi_{6,2,1}-\phi_{8,2,1}
        \phi_{4,1,5} + \phi_{3,1,4} + \phi_{3,1,5} - \phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,2,8} - \phi_{7,2,6} - \phi_{7,2,8} + \phi_{7,2,1}
         +\phi_{6,2,1}+\phi_{8,2,1}
        2\phi_{4,1,5} - \phi_{3,1,4} - \phi_{3,1,5} + 2\phi_{6,2,8} - \phi_{7,2,6} - \phi_{7,2,8}
        2\phi_{4,1,5} - \phi_{3,1,4} - \phi_{3,1,5} - 2\phi_{6,2,8} + \phi_{7,2,6} + \phi_{7,2,8}
12 \phi_{3,1,4} - \phi_{3,1,5} + \phi_{7,2,6} - \phi_{7,2,8}
13
        \phi_{3,1,4} - \phi_{3,1,5} - \phi_{7,2,6} + \phi_{7,2,8}
14 2\phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2} + 2\phi_{7,2,1} - \phi_{6,2,1} - \phi_{8,2,1}
15
        2\phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2} - 2\phi_{7,2,1} + \phi_{6,2,1} + \phi_{8,2,1}
16 \phi_{4,1,2} - \phi_{5,1,2} + \phi_{6,2,1} - \phi_{8,2,1}
17
        \phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,2,1} + \phi_{8,2,1}
      \tau_{3,1,2,7} + \tau_{7,2,1,3} + \tau_{4,1,2,8} + \tau_{8,2,1,4} + \tau_{5,1,2,6} + \tau_{6,2,1,5}
```

Table S147: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 137.39140.45137.39137.392 371.94372.11371.940 371.943 0 371.94372.11371.94371.944 437.94440.91437.95437.950 5 636.90642.790 636.91636.916 0 636.90642.79636.91636.917 0 860.79869.97860.79860.798 935.18946.79935.18935.180 9 952.27966.05952.27952.270 0 10 952.28966.06952.28952.2811 966.37980.57966.38 966.380 12 966.380 966.39980.58966.38 0 13 2221.822241.562221.812221.810 14 2229.682249.062229.682229.68 15 2229.682249.082229.682229.680 2230.822249.932230.822230.820 16 0 17 2238.142257.812238.142238.1418 2238.142257.832238.152238.150

S1.50 Methyl Silane

Geometries

Table S148: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Si 1.14265735 -0.000001060.000000002 \mathbf{C} -2.408535040.000003950.000000003 Η 2.12904008-1.31148904-2.27156471Η 2.129051652.622970240.00000000 4 5 Η $2.12904008 \quad -1.31148904$ 2.271564716 H -3.142989170.96423858-1.670117427 Η -3.142989170.964238581.67011742Η -3.14297141 -1.928486980.00000000

Natural Internal Coordinates

Table S149: Symmetrized, unnormalized natural internal coordinates for Methyl Silane.

```
1
        r_{1,2}
2
        r_{1,4} + r_{1,3} + r_{1,5}
3
        2r_{1,4} - r_{1,3} - r_{1,5}
4
       r_{1,3} - r_{1,5}
5
       r_{2,8} + r_{2,6} + r_{2,7}
6
        2r_{2,8} - r_{2,6} - r_{2,7}
7
       r_{2,6} - r_{2,7}
8
        \phi_{4,1,2} + \phi_{3,1,2} + \phi_{5,1,2} - \phi_{3,1,5} - \phi_{4,1,3} - \phi_{4,1,5}
9
        2\phi_{4,1,2} - \phi_{3,1,2} - \phi_{5,1,2}
10 \phi_{3,1,2} - \phi_{5,1,2}
        2\phi_{3,1,5} - \phi_{4,1,3} - \phi_{4,1,5}
12 \phi_{4,1,3} - \phi_{4,1,5}
        \phi_{8,2,1} + \phi_{6,2,1} + \phi_{7,2,1} - \phi_{6,2,7} - \phi_{8,2,6} - \phi_{8,2,7}
14 2\phi_{8,2,1} - \phi_{6,2,1} - \phi_{7,2,1}
15
        \phi_{6,2,1} - \phi_{7,2,1}
16 2\phi_{6,2,7} - \phi_{8,2,6} - \phi_{8,2,7}
17
        \phi_{8,2,6} - \phi_{8,2,7}
18
       \tau_{8,2,1,4} + \tau_{6,2,1,5} + \tau_{7,2,1,3}
```

Table S150: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 01 204.58206.93204.58204.582 517.82519.120 517.88517.883 0 517.82519.13517.88517.884 705.49706.73705.52705.520 5 887.60887.590 888.31 887.59 6 0 887.60888.31887.59 887.597 0 957.95969.03957.94957.948 973.68986.96973.68 973.680 9 973.70986.97973.69973.690 0 10 1294.071286.331294.07 1294.0711 1469.421470.261469.411469.410 12 1469.440 1470.271469.431469.4313 2233.650 2233.652251.792233.650 14 2233.662251.832233.662233.66 15 2235.392253.802235.382235.380 3038.033038.023038.020 16 3051.790 17 3122.333147.193122.343122.3418 3122.343147.303122.343122.340

S1.51 Phosphane

Geometries

Table S151: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Ρ	0.12868063	0.00000031	0.00000000
2	Η	-1.31825839	1.12497772	-1.94852696
3	Η	-1.31826007	-2.24996482	0.00000000
4	Η	-1.31825839	1.12497772	1.94852696

Natural Internal Coordinates

Table S152: Symmetrized, unnormalized natural internal coordinates for Phosphane.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- $2 \quad 2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- $5 \quad \phi_{2,1,4} \phi_{3,1,4}$
- 6 $\gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

Table S153: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1021.69	1019.60	1021.71	1021.71	0
2	1145.25	1158.76	1145.24	1145.24	0
3	1145.25	1159.76	1145.25	1145.25	0
4	2415.52	2439.27	2415.52	2415.52	0
5	2422.82	2450.00	2422.82	2422.82	0
6	2422.82	2450.06	2422.82	2422.82	0

S1.52 Phosphorus Trifluoride

Geometries

Table S154: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Ρ	-0.00000092	0.94258107	0.00000000
2	F	-1.28867646	-0.51224165	2.23205457
3	F	-1.28867646	-0.51224165	-2.23205457
4	F	2.57735441	-0.51223963	0.00000000

Natural Internal Coordinates

 ${\bf Table~S155:~Symmetrized,~unnormalized~natural~internal~coordinates~for~Phosphorus~Trifluoride.}$

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- $2 \quad 2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- 6 $\gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

Table S156: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	359.12	348.74	359.13	359.13	0
2	359.14	348.88	359.13	359.13	0
3	501.47	491.44	501.48	501.48	0
4	897.80	887.57	897.80	897.80	0
5	897.81	887.61	897.81	897.81	0
6	915.76	913.41	915.76	915.76	0

S1.53 Hypochlorous Acide

Geometries

Table S157: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Η	-2.59688895	1.66013000	0.00000000
2	Ο	-2.15400490	-0.10905861	0.00000000
3	Cl	1.06009581	0.00203789	0.00000000

Natural Internal Coordinates

Table S158: Symmetrized, unnormalized natural internal coordinates for Hypochlorous Acide.

 $1 r_{1,2}$

 $2 r_{2,3}$

 $3 \quad \phi_{1,2,3}$

Table S159: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	732.53	746.75	732.59	732.59	0
2	1281.33	1271.95	1281.35	1281.35	0
3	3809.62	3822.52	3809.60	3809.60	0

S1.54 Nitrosyl Chloride

Geometries

Table S160: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	O	-2.97939346	0.63940304	0.00000000
2	N	-1.57525854	-0.99888693	0.00000000
3	Cl	1.99359145	0.10753257	0.00000000

Natural Internal Coordinates

Table S161: Symmetrized, unnormalized natural internal coordinates for Nitrosyl Chloride.

 $1 r_{1,2}$

 $2 r_{2,3}$

 $3 \quad \phi_{1,2,3}$

Table S162: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	342.84	347.69	342.99	342.84	2
2	609.86	615.76	609.88	609.86	2
3	1828.88	1827.82	1828.85	1828.88	2

S1.55 Ozone

Geometries

Table S163: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	O	0.00000000	-2.05457709	0.42011174
2	Ο	0.00000000	0.00000000	-0.84022349
3	Ο	0.00000000	2.05457709	0.42011174

Natural Internal Coordinates

Table S164: Symmetrized, unnormalized natural internal coordinates for Ozone.

- 1 $r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 \quad \phi_{2,1,3}$

Table S165: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	715.68	747.86	716.31	715.68	2
2	1054.32	1186.64	1054.32	1054.32	1
3	1153.11	2202.81	1152.72	1153.11	1

S1.56 Oxygen Difluroide

Geometries

Table S166: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

Natural Internal Coordinates

Table S167: Symmetrized, unnormalized natural internal coordinates for Oxygen Difluroide.

- $1 \quad r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 \quad \phi_{2,1,3}$

Table S168: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	469.29	474.29	469.34	469.34	0
2	867.42	888.05	867.42	867.42	0
3	950.11	959.11	950.08	950.08	0

S1.57 Water

Geometries

Table S169: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Ο	0.00000000	0.00000000	0.12550454	
2	Η	0.00000000	-1.42462540	-0.99592409	
3	Η	0.00000000	1.42462540	-0.99592409	

Natural Internal Coordinates

Table S170: Symmetrized, unnormalized natural internal coordinates for Water.

1
$$r_{1,2} + r_{1,3}$$

$$2 r_{1,2} - r_{1,3}$$

$$3 \quad \phi_{2,1,3}$$

Table S171: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1668.87	1650.39	1668.88	1668.88	0
2	3840.92	3850.50	3840.92	3840.92	0
3	3945.53	3971.33	3945.53	3945.53	0

S1.58 Trifluoroamine

Geometries

Table S172: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Ν	0.92019321	0.00000000	-0.00000000
2	\mathbf{F}	-0.22608099	1.16249337	-2.01349759
3	\mathbf{F}	-0.22608099	-2.32498675	0.00000000
4	\mathbf{F}	-0.22608099	1.16249337	2.01349759

Natural Internal Coordinates

Table S173: Symmetrized, unnormalized natural internal coordinates for Trifluoroamine.

- $1 \quad r_{1,2} + r_{1,3} + r_{1,4}$
- $2 \quad 2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- 6 $\gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

Table S174: Harmonic frequencies for reference and CMA data.

	Refer	Reference		CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	502.48	503.59	502.53	502.53	0
2	502.48	503.66	502.53	502.53	0
3	659.91	666.00	659.91	659.91	0
4	949.20	933.31	949.17	949.17	0
5	949.20	933.38	949.17	949.17	0
6	1058.35	1059.49	1058.35	1058.35	0

S1.59 Chlorine Trifluoride

Geometries

Table S175: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Cl	0.00000000	0.00000000	0.69252140
2	F	0.00000000	0.00000000	-2.33980384
3	\mathbf{F}	0.00000000	3.20469409	0.53256734
4	\mathbf{F}	0.00000000	-3.20469409	0.53256734

Natural Internal Coordinates

Table S176: Symmetrized, unnormalized natural internal coordinates for Chlorine Trifluoride.

- $1 r_{1,2}$
- $2 r_{1,3} + r_{1,4}$
- $3 r_{1,3} r_{1,4}$
- 4 $\phi_{3,1,2} + \phi_{4,1,2}$
- 5 $\phi_{3,1,2} \phi_{4,1,2}$
- 6 $\gamma_{2,1,3,4}$

Table S177: Harmonic frequencies for reference and CMA data.

	Refer	Reference		CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	336.96	337.43	337.00	337.00	0
2	338.43	338.07	338.44	338.44	0
3	441.96	444.95	441.96	441.96	0
4	543.99	542.82	544.21	544.21	0
5	735.59	752.25	735.59	735.59	0
6	765.58	772.22	765.40	765.40	0

S1.60 Hydrogen Peroxide

Geometries

Table S178: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Η	-1.79701451	1.36358961	0.92174870
2	Ο	-1.37290862	-0.11245968	-0.05807855
3	Ο	1.37290862	0.11245968	-0.05807855
4	Η	1.79701451	-1.36358961	0.92174870

Natural Internal Coordinates

Table S179: Symmetrized, unnormalized natural internal coordinates for Hydrogen Peroxide.

- $1 r_{2,3}$
- $2 r_{1,2} + r_{3,4}$
- $3 r_{1,2} r_{3,4}$
- 4 $\phi_{1,2,3} + \phi_{2,3,4}$
- 5 $\phi_{1,2,3} \phi_{2,3,4}$
- 6 $\tau_{1,2,3,4}$

Table S180: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	372.17	370.94	372.26	372.18	1
2	911.79	924.21	912.43	911.93	1
3	1323.64	1319.01	1323.64	1323.64	0
4	1435.98	1426.62	1435.66	1436.00	2
5	3807.91	3825.40	3807.97	3807.97	0
6	3809.29	3826.79	3809.18	3809.18	0

S1.61 Carbonyl Fluoride

Geometries

Table S181: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

		\ //		,	
1	\mathbf{C}	-0.30295787	-0.00000001	0.00000000	
2	\mathbf{F}	1.15873701	-2.00577068	0.00000000	
3	F	1.15873683	2.00577078	0.00000000	
4	Ο	-2.52535314	-0.00000011	-0.00000000	

Natural Internal Coordinates

Table S182: Symmetrized, unnormalized natural internal coordinates for Carbonyl Fluoride.

- 1 $r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 r_{1,4}$
- $4 \quad 2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 5 $\phi_{2,1,4} \phi_{3,1,4}$
- 6 $\gamma_{4,1,2,3}$

Table S183: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	588.74	590.42	588.74	588.74	0
2	626.11	626.93	626.11	626.11	0
3	786.02	791.18	786.02	786.02	0
4	983.53	982.88	983.52	983.52	0
5	1293.99	1281.37	1293.99	1293.99	0
6	1978.03	1979.81	1978.03	1978.03	0

S1.62 Singlet Silylene

Geometries

Table S184: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Si	0.00000000	0.00000000	0.13352287
2	Η	0.00000000	-2.07118886	-1.85327784
3	Η	0.00000000	2.07118886	-1.85327784

Natural Internal Coordinates

Table S185: Symmetrized, unnormalized natural internal coordinates for Singlet Silylene.

- 1 $r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 \quad \phi_{2,1,3}$

Table S186: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1025.33	1043.37	1025.33	1025.33	0
2	2060.52	2083.23	2060.52	2060.52	0
3	2063.17	2085.73	2063.16	2063.16	0

S1.63 Nitrous Oxide

Geometries

Table	S18	7: C	CSD(T)/cc-pV	TZ Cartesian	Coordinates (Bohr
	1	N	-0.00000000	-0.00000000	-2.27661556
	2	X	1.00000000	-0.00000000	-0.13588985
	3	N	-0.00000000	-0.00000000	-0.13588985
	4	X	-0.00000000	1.00000000	-0.13588985

0.00000000

2.11207702

0.00000000

Natural Internal Coordinates

5 O

Table S188: Symmetrized, unnormalized natural internal coordinates for Nitrous Oxide.

- $1 r_{1,3}$
- $2 r_{3,5}$
- $\theta_{1,3,5,2}$
- 4 $\theta_{1,3,5,4}$

Table S189: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	601.18	607.30	601.18	601.18	0
2	601.18	607.31	601.18	601.18	0
3	1297.09	1322.29	1306.43	1297.09	1
4	2282.57	2307.73	2277.23	2282.57	1

S1.64 Hydrazine

Geometries

Table S190: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) N -0.17939083 -1.392590490.000000002 Ν 0.179390831.392590490.000000003 Η 0.87854704 -1.97545387-1.496719214 Η $0.87854704 \quad -1.97545387$ 1.496719215 H -0.878547041.97545387-1.496719216 Η -0.878547041.975453871.49671921

Natural Internal Coordinates

Table S191: Symmetrized, unnormalized natural internal coordinates for Hydrazine.

```
1
2
        r_{1,3} + r_{1,4} + r_{2,5} + r_{2,6}
3
       r_{1,3} + r_{1,4} - r_{2,5} - r_{2,6}
4
       r_{1,3} - r_{1,4} + r_{2,5} - r_{2,6}
       r_{1,3} - r_{1,4} - r_{2,5} + r_{2,6}
5
        2\phi_{3,1,4} - \phi_{3,1,2} - \phi_{4,1,2} + 2\phi_{5,2,6} - \phi_{5,2,1} - \phi_{6,2,1}
6
        2\phi_{3,1,4} - \phi_{3,1,2} - \phi_{4,1,2} - 2\phi_{5,2,6} + \phi_{5,2,1} + \phi_{6,2,1}
7
8
        \phi_{3,1,2} - \phi_{4,1,2} + \phi_{5,2,1} - \phi_{6,2,1}
9
        \phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,2,1} + \phi_{6,2,1}
10 \tau_{3,1,2,5} + \tau_{3,1,2,6} + \tau_{4,1,2,5} + \tau_{4,1,2,6}
11
       \gamma_{1,2,5,6} + \gamma_{2,1,3,4}
12 \gamma_{1,2,5,6} - \gamma_{2,1,3,4}
```

Table S192: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	25.68	37.17	26.30	26.30	0
2	943.78	942.12	944.42	943.85	1
3	1068.37	1059.20	1068.40	1068.40	0
4	1108.51	1106.06	1108.50	1108.50	0
5	1256.79	1243.44	1256.37	1256.80	1
6	1487.98	1479.54	1487.98	1487.98	0
7	1638.68	1630.83	1638.66	1638.66	0
8	1690.46	1684.70	1690.44	1690.44	0
9	3437.77	3454.45	3437.77	3437.77	0
10	3455.35	3472.41	3455.35	3455.35	0
11	3512.91	3541.31	3512.91	3512.91	0
12	3533.97	3561.31	3533.97	3533.97	0

S1.65 Cyanogen

Geometries

Table S193	3: C	CSD(T)/cc-pV	TZ Cartesian	Coordinates (Bohr)
1	X	1.00000000	0.00000000	1.31251829
2	$^{\rm C}$	-0.00000000	0.00000000	1.31251829
3	X	-0.00000000	1.00000000	1.31251829
4	X	1.00000000	0.00000000	-1.31251829
5	$^{\rm C}$	0.00000000	0.00000000	-1.31251829
6	X	0.00000000	1.00000000	-1.31251829
7	N	0.00000000	0.00000000	3.51379022
8	Ν	-0.00000000	0.00000000	-3.51379022

Natural Internal Coordinates

 ${\it Table~S194:~Symmetrized,~unnormalized~natural~internal~coordinates~for~Cyanogen.}$

- $1 r_{2,5}$
- $2 r_{2,7} + r_{5,8}$
- $3 \quad r_{2,7} r_{5,8}$
- 4 $\theta_{7,2,5,1} + \theta_{7,2,5,3}$
- 5 $\theta_{7,2,5,1} \theta_{7,2,5,3}$
- 6 $\theta_{8,5,2,4} + \theta_{8,5,2,6}$
- 7 $\theta_{8,5,2,4} \theta_{8,5,2,6}$

Table S195: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	236.26	240.68	236.26	236.26	0
2	236.26	240.71	236.26	236.26	0
3	498.61	510.80	498.61	498.61	0
4	498.61	510.88	498.61	498.61	0
5	855.82	848.47	855.89	855.89	0
6	2175.85	2131.38	2175.85	2175.85	0
7	2367.74	2309.29	2367.72	2367.72	0

S1.66Aziridine

Geometries

Table S196: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Ν 1.595827030.176179840.000000002 С -0.81575373-0.026391251.401465413 C -0.81575373 -0.02639125-1.40146541H -1.14815063-1.788554434 2.385633231.655627975 H -1.437459532.38563323H -1.437459536 1.65562797-2.385633237 Η $-1.14815063 \quad -1.78855443$ -2.38563323Н 2.42432052 -1.553579170.000000008

Natural Internal Coordinates

Table S197: Symmetrized, unnormalized natural internal coordinates for Aziridine.

```
1
2
        r_{2,3} + r_{1,2} + r_{1,3}
3
        2r_{2,3} - r_{1,2} - r_{1,3}
4
        r_{1,2} - r_{1,3}
5
        r_{2,4} + r_{2,5} + r_{3,6} + r_{3,7}
6
        r_{2,4} + r_{2,5} - r_{3,6} - r_{3,7}
7
        r_{2,4} - r_{2,5} - r_{3,6} + r_{3,7}
8
        r_{2,4} - r_{2,5} + r_{3,6} - r_{3,7}
9
         \phi_{8,1,2} - \phi_{8,1,3}
10
        4\phi_{4,2,5} - \phi_{4,2,1} - \phi_{4,2,3} - \phi_{5,2,1} - \phi_{5,2,3} + 4\phi_{6,3,7} - \phi_{6,3,1} - \phi_{6,3,2} - \phi_{7,3,1} - \phi_{7,3,2}
        4\phi_{4,2,5} - \phi_{4,2,1} - \phi_{4,2,3} - \phi_{5,2,1} - \phi_{5,2,3} - 4\phi_{6,3,7} + \phi_{6,3,1} + \phi_{6,3,2} + \phi_{7,3,1} + \phi_{7,3,2}
12
        \phi_{4,2,1} - \phi_{4,2,3} + \phi_{5,2,1} - \phi_{5,2,3} + \phi_{6,3,1} - \phi_{6,3,2} + \phi_{7,3,1} - \phi_{7,3,2}
        \phi_{4,2,1} - \phi_{4,2,3} + \phi_{5,2,1} - \phi_{5,2,3} - \phi_{6,3,1} + \phi_{6,3,2} - \phi_{7,3,1} + \phi_{7,3,2}
       \phi_{4,2,1} + \phi_{4,2,3} - \phi_{5,2,1} - \phi_{5,2,3} + \phi_{6,3,1} + \phi_{6,3,2} - \phi_{7,3,1} - \phi_{7,3,2}
        \phi_{4,2,1} + \phi_{4,2,3} - \phi_{5,2,1} - \phi_{5,2,3} - \phi_{6,3,1} - \phi_{6,3,2} + \phi_{7,3,1} + \phi_{7,3,2}
       \phi_{4,2,1} - \phi_{4,2,3} - \phi_{5,2,1} + \phi_{5,2,3} + \phi_{6,3,1} - \phi_{6,3,2} - \phi_{7,3,1} + \phi_{7,3,2}
17
        \phi_{4,2,1} - \phi_{4,2,3} - \phi_{5,2,1} + \phi_{5,2,3} - \phi_{6,3,1} + \phi_{6,3,2} + \phi_{7,3,1} - \phi_{7,3,2}
18
        \gamma_{8,1,2,3}
```

Table S198: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 01 782.13773.27783.89783.892 840.79842.612 841.45841.19 3 0 874.83876.98874.10 874.104 923.43918.64924.22924.221 0 5 1022.461025.721022.571022.570 6 1113.591101.90 1113.601113.607 0 1120.201108.141119.961119.968 1162.601164.931162.561162.560 9 1245.941244.311246.551246.550 1271.791 10 1272.261260.661271.620 11 1307.581302.111306.881306.8812 1501.671501.670 1501.761503.5413 0 1532.651530.551532.551532.550 14 3130.263146.663130.223130.2215 3137.273152.693137.233137.230 3238.400 16 3214.743214.713214.710 17 3228.033250.973227.993227.9918 3515.023536.093515.013515.010

S1.67 Acetamide

Geometries

Table S199: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 С 2.712574080.46659407-0.000298962 \mathbf{C} -0.08279841-0.165442870.006912523 Ο -0.87869630-2.32459739-0.00775877Ν -1.661518591.893770140.055534764 5 Η 3.75222131-1.120209410.788199406 Η 3.333182760.75461502-1.947956337 Η 3.117965362.177737911.075250638 Η -0.983873433.61876868-0.348371869 Η -3.500515141.56367391-0.29435040

Natural Internal Coordinates

Table S200: Symmetrized, unnormalized natural internal coordinates for Acetamide.

```
1
2
        r_{2,3}
3
        r_{2,4}
4
        r_{1,5} + r_{1,6} + r_{1,7}
5
        2r_{1,5} - r_{1,6} - r_{1,7}
6
        r_{1,6} - r_{1,7}
7
        r_{4,8} + r_{4,9}
8
        r_{4,8} - r_{4,9}
9
        2\phi_{1,2,4} - \phi_{1,2,3} - \phi_{4,2,3}
10 \phi_{1,2,3} - \phi_{4,2,3}
11
        \phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
12
        2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2}
13 \phi_{6,1,2} - \phi_{7,1,2}
14 2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
       \phi_{5,1,6} - \phi_{5,1,7}
       2\phi_{8,4,9} - \phi_{8,4,2} - \phi_{9,4,2}
17 \phi_{8,4,2} - \phi_{9,4,2}
        \tau_{5,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,3} + \tau_{6,1,2,4} + \tau_{7,1,2,3} + \tau_{7,1,2,4}
19
       \tau_{8,4,2,1} + \tau_{8,4,2,3} + \tau_{9,4,2,1} + \tau_{9,4,2,3}
20
        \gamma_{3,2,1,4}
21
        \gamma_{2,4,8,9}
```

Table S201: Harmonic frequencies for reference and CMA data.					
	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	56.09	56.97	56.31	56.27	4
2	300.01	321.99	300.20	300.15	2
3	416.23	416.62	416.22	416.22	1
4	508.36	510.84	508.41	508.41	1
5	553.53	554.19	553.53	553.53	0
6	638.47	642.37	638.42	638.42	1
7	854.16	852.39	854.18	854.18	0
8	981.94	978.59	981.96	981.96	1
9	1057.36	1053.87	1057.38	1057.38	0
10	1134.12	1130.72	1134.15	1134.15	0
11	1344.17	1338.81	1344.18	1344.18	0
12	1409.87	1401.90	1409.96	1409.96	0
13	1480.84	1482.47	1480.80	1480.80	0
14	1495.75	1498.58	1495.74	1495.74	0
15	1628.26	1622.06	1628.25	1628.25	0
16	1794.31	1797.06	1794.24	1794.24	2
17	3050.62	3063.10	3050.69	3050.69	0
18	3122.95	3146.22	3122.92	3122.92	0
19	3165.52	3187.23	3165.47	3165.47	0
20	3604.29	3612.64	3604.30	3604.30	0
21	3738.95	3755.73	3738.94	3738.94	0

S1.68 Dimethylamine

Geometries

Table S202: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Ν 1.05866364 -0.163144340.000000002 Η -0.000000002.322321131.27592347-0.488560833 \mathbf{C} 0.030018092.27606500 \mathbf{C} 4 -0.488560830.03001809-2.276065005 Η 0.719576200.019628783.94620566 6 Η -1.73337996-1.613709272.386613317 H -1.684868371.732090792.33361602Η 8 0.719576200.01962878-3.946205669 H -1.73337996-1.61370927-2.3866133110 H -1.684868371.73209079 -2.33361602

Natural Internal Coordinates

 $-\tau_{10,4,1,3} - \tau_{10,4,1,2}$

Table S203: Symmetrized, unnormalized natural internal coordinates for Dimethylamine.

```
1
         r_{1,2}
2
         r_{1,3} + r_{1,4}
3
        r_{1,3} - r_{1,4}
4
        r_{3,6} + r_{3,5} + r_{3,7} + r_{4,9} + r_{4,8} + r_{4,10}
5
         r_{3,6} + r_{3,5} + r_{3,7} - r_{4,9} - r_{4,8} - r_{4,10}
6
         2r_{3,6} - r_{3,5} - r_{3,7} + 2r_{4,9} - r_{4,8} - r_{4,10}
7
         2r_{3,6} - r_{3,5} - r_{3,7} - 2r_{4,9} + r_{4,8} + r_{4,10}
         r_{3,5} - r_{3,7} + r_{4,8} - r_{4,10}
9
         r_{3,5} - r_{3,7} - r_{4,8} + r_{4,10}
10
        \phi_{3,1,4}
11
         \phi_{2,1,3} + \phi_{2,1,4}
12 \phi_{2,1,3} - \phi_{2,1,4}
         \phi_{6,3,1} + \phi_{5,3,1} + \phi_{7,3,1} - \phi_{5,3,7} - \phi_{6,3,7} - \phi_{5,3,6} + \phi_{9,4,1} + \phi_{8,4,1} + \phi_{10,4,1} - \phi_{8,4,10}
         -\phi_{9,4,10} - \phi_{8,4,9}
        \phi_{6,3,1} + \phi_{5,3,1} + \phi_{7,3,1} - \phi_{5,3,7} - \phi_{6,3,7} - \phi_{5,3,6} - \phi_{9,4,1} - \phi_{8,4,1} - \phi_{10,4,1} + \phi_{8,4,10}
14
         +\phi_{9,4,10}+\phi_{8,4,9}
15
         2\phi_{6,3,1} - \phi_{5,3,1} - \phi_{7,3,1} + 2\phi_{9,4,1} - \phi_{8,4,1} - \phi_{10,4,1}
       2\phi_{6,3,1} - \phi_{5,3,1} - \phi_{7,3,1} - 2\phi_{9,4,1} + \phi_{8,4,1} + \phi_{10,4,1}
17
         \phi_{5,3,1} - \phi_{7,3,1} + \phi_{8,4,1} - \phi_{10,4,1}
         \phi_{5,3,1} - \phi_{7,3,1} - \phi_{8,4,1} + \phi_{10,4,1}
19
         2\phi_{5,3,7} - \phi_{6,3,7} - \phi_{5,3,6} + 2\phi_{8,4,10} - \phi_{9,4,10} - \phi_{8,4,9}
20 2\phi_{5,3,7} - \phi_{6,3,7} - \phi_{5,3,6} - 2\phi_{8,4,10} + \phi_{9,4,10} + \phi_{8,4,9}
21
         \phi_{6,3,7} - \phi_{5,3,6} + \phi_{9,4,10} - \phi_{8,4,9}
22 \phi_{6,3,7} - \phi_{5,3,6} - \phi_{9,4,10} + \phi_{8,4,9}
       \tau_{5,3,1,4} + \tau_{5,3,1,2} + \tau_{6,3,1,4} + \tau_{6,3,1,2} + \tau_{7,3,1,4} + \tau_{7,3,1,2} + \tau_{8,4,1,3} + \tau_{8,4,1,2} + \tau_{9,4,1,3} + \tau_{9,4,1,2}
         +\tau_{10,4,1,3}+\tau_{10,4,1,2}
24 \quad \tau_{5,3,1,4} + \tau_{5,3,1,2} + \tau_{6,3,1,4} + \tau_{6,3,1,2} + \tau_{7,3,1,4} + \tau_{7,3,1,2} - \tau_{8,4,1,3} - \tau_{8,4,1,2} - \tau_{9,4,1,3} - \tau_{9,4,1,2}
```

Table S204: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	223.19	227.53	223.19	223.19	1
2	268.98	272.35	269.00	269.00	1
3	385.55	382.31	385.57	385.57	0
4	812.70	806.34	812.80	812.80	0
5	953.41	952.91	953.44	953.44	0
6	1028.85	1029.19	1028.87	1028.87	1
7	1100.92	1102.64	1100.95	1100.95	0
8	1177.66	1175.95	1177.77	1177.77	0
9	1198.28	1194.60	1198.24	1198.24	1
10	1273.32	1269.74	1273.33	1273.33	0
11	1438.95	1435.42	1438.91	1438.91	0
12	1467.77	1464.15	1467.82	1467.82	0
13	1478.41	1470.34	1479.09	1479.09	0
14	1492.67	1495.80	1492.45	1492.45	0
15	1504.35	1507.96	1504.27	1504.27	0
16	1522.52	1523.91	1522.02	1522.02	0
17	1524.85	1528.90	1524.84	1524.84	0
18	2958.30	2975.76	2958.58	2958.58	0
19	2959.91	2976.09	2960.34	2960.34	0
20	3065.27	3085.82	3064.95	3064.95	0
21	3066.32	3088.88	3066.03	3066.03	0
22	3112.90	3138.53	3112.93	3112.93	0
23	3113.81	3138.73	3113.70	3113.70	0
24	3524.72	3545.68	3524.71	3524.71	0

S1.69 Ethylamine

Geometries

Table S205: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} -2.415995940.501466910.000000002 \mathbf{C} 0.01027304-1.06763773-0.000000003 Ν 2.367900560.395956530.00000000Η -4.09501177-0.70240098-0.000000004 5 Η -2.498750001.71532507-1.670140016 Η -2.498750001.715325071.670140017 Η 0.04170761-2.304748421.653786978 Η 0.04170761-2.30474842-1.653786979 Η 2.376593661.560493901.5250455410 Η 2.376593661.56049390-1.52504554

Natural Internal Coordinates

Table S206: Symmetrized, unnormalized natural internal coordinates for Ethylamine.

```
1
        r_{1,2}
2
        r_{2,3}
3
        r_{1,4} + r_{1,5} + r_{1,6}
4
        2r_{1,4} - r_{1,5} - r_{1,6}
5
        r_{1,5} - r_{1,6}
6
        r_{2,7} + r_{2,8}
7
        r_{2,7} - r_{2,8}
8
        r_{3,9} + r_{3,10}
9
        r_{3,9} - r_{3,10}
10
        \phi_{1,2,3}
11
        \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6}
12
        2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2}
13
        \phi_{5,1,2} - \phi_{6,1,2}
14
        2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6}
15
        \phi_{4,1,5} - \phi_{4,1,6}
16
      2\phi_{7,2,8} - \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,2,1} - \phi_{8,2,3}
17
        \phi_{7,2,1} + \phi_{7,2,3} - \phi_{8,2,1} - \phi_{8,2,3}
18
        \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,2,1} - \phi_{8,2,3}
19
        \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,2,1} + \phi_{8,2,3}
20
      2\phi_{9,3,10} - \phi_{9,3,2} - \phi_{10,3,2}
21
        \phi_{9,3,2} - \phi_{10,3,2}
22
       \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3}
23
        \tau_{9,3,2,1} + \tau_{10,3,2,1}
24
        \gamma_{2,3,9,10}
```

Table S207: Harmonic frequencies for reference and CMA data.					
	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	254.09	257.07	254.18	254.18	0
2	288.51	290.76	288.45	288.45	0
3	396.61	396.27	396.61	396.61	0
4	777.12	778.23	777.12	777.12	0
5	877.07	871.99	877.81	877.14	1
6	914.85	909.23	914.29	914.94	1
7	1008.36	1007.33	1008.38	1008.38	0
8	1081.55	1079.91	1081.60	1081.60	0
9	1160.25	1157.59	1160.24	1160.24	0
10	1276.10	1273.23	1276.18	1276.18	0
11	1380.25	1373.99	1380.28	1380.28	0
12	1396.10	1394.03	1396.03	1396.03	0
13	1408.58	1400.43	1408.50	1408.50	0
14	1493.31	1495.53	1493.33	1493.33	0
15	1499.43	1502.18	1499.42	1499.42	0
16	1511.30	1512.65	1511.25	1511.25	0
17	1663.18	1653.07	1663.16	1663.16	0
18	3022.37	3034.86	3022.43	3022.43	0
19	3043.45	3060.46	3043.39	3043.39	0
20	3074.11	3100.85	3074.13	3074.13	0
21	3100.09	3125.35	3100.05	3100.05	0
22	3103.24	3128.83	3103.26	3103.26	0
23	3477.75	3492.65	3477.74	3477.74	0
24	3559.16	3585.79	3559.16	3559.16	0

S1.70 Acetone

Geometries

Table S208: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} -0.00000000-2.431464491.32246298 2 -0.00000000 \mathbf{C} -0.00000000-0.191616113 \mathbf{C} 0.000000002.431464491.32246298 -4.046960820.051283674 Η -0.000000005 Η -1.66203278-2.500634072.54685039 6 Η 1.66203278-2.500634072.546850397 Η 0.000000004.046960820.05128367Η 2.500634078 1.66203278 2.54685039 9 Η -1.662032782.500634072.5468503910 Ο -0.000000000.00000000-2.48892898

Natural Internal Coordinates

Table S209: Symmetrized, unnormalized natural internal coordinates for Acetone.

```
1
        r_{2,10}
2
        r_{1,2} + r_{2,3}
3
       r_{1,2} - r_{2,3}
4
       r_{1,4} + r_{1,5} + r_{1,6} + r_{3,7} + r_{3,8} + r_{3,9}
5
        r_{1,4} + r_{1,5} + r_{1,6} - r_{3,7} - r_{3,8} - r_{3,9}
        2r_{1,4} - r_{1,5} - r_{1,6} + 2r_{3,7} - r_{3,8} - r_{3,9}
6
7
        2r_{1,4} - r_{1,5} - r_{1,6} - 2r_{3,7} + r_{3,8} + r_{3,9}
8
       r_{1,5} - r_{1,6} + r_{3,8} - r_{3,9}
9
        r_{1,5} - r_{1,6} - r_{3,8} + r_{3,9}
10 2\phi_{1,2,3} - \phi_{1,2,10} - \phi_{3,2,10}
        \phi_{1,2,10} - \phi_{3,2,10}
11
       \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + \phi_{7,3,2} + \phi_{8,3,2} + \phi_{9,3,2} - \phi_{8,3,9}
         -\phi_{7,3,8} - \phi_{7,3,9}
        \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - \phi_{7,3,2} - \phi_{8,3,2} - \phi_{9,3,2} + \phi_{8,3,9}
         +\phi_{7,3,8}+\phi_{7,3,9}
14
        2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} + 2\phi_{7,3,2} - \phi_{8,3,2} - \phi_{9,3,2}
        2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} - 2\phi_{7,3,2} + \phi_{8,3,2} + \phi_{9,3,2}
        \phi_{5,1,2} - \phi_{6,1,2} + \phi_{8,3,2} - \phi_{9,3,2}
17
        \phi_{5,1,2} - \phi_{6,1,2} - \phi_{8,3,2} + \phi_{9,3,2}
18 2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + 2\phi_{8,3,9} - \phi_{7,3,8} - \phi_{7,3,9}
        2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - 2\phi_{8,3,9} + \phi_{7,3,8} + \phi_{7,3,9}
19
20
        \phi_{4,1,5} - \phi_{4,1,6} + \phi_{7,3,8} - \phi_{7,3,9}
21
        \phi_{4,1,5} - \phi_{4,1,6} - \phi_{7,3,8} + \phi_{7,3,9}
22
        \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,3,2,1} + \tau_{8,3,2,1} + \tau_{9,3,2,1}
23
        \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} - \tau_{7,3,2,1} - \tau_{8,3,2,1} - \tau_{9,3,2,1}
24
        \gamma_{10,2,1,3}
```

$\underline{ \mbox{ Table S210: Harmonic frequencies for reference and CMA data. } }$						
	Refer	rence	CMA-0A	CMA-2A(0.05)	n	
	CCSD(T)	MP2	MP2	MP2		
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ		
1	20.78	-10.52	21.35	20.79	2	
2	141.09	140.80	141.21	141.21	0	
3	371.56	371.71	371.56	371.56	0	
4	480.47	481.32	480.48	480.48	0	
5	527.58	528.02	527.58	527.58	0	
6	794.73	792.57	794.75	794.75	0	
7	887.40	881.97	887.40	887.41	1	
8	894.52	888.87	894.55	894.55	0	
9	1081.17	1078.21	1081.21	1081.21	0	
10	1116.27	1112.83	1116.27	1116.27	0	
11	1246.46	1240.20	1246.47	1246.47	0	
12	1386.96	1377.91	1387.02	1387.02	0	
13	1395.11	1385.60	1395.14	1395.14	0	
14	1468.80	1469.13	1468.76	1468.76	0	
15	1474.27	1475.62	1474.26	1474.27	1	
16	1476.54	1477.39	1476.53	1476.53	0	
17	1495.93	1498.65	1495.92	1495.92	0	
18	1786.22	1778.64	1786.17	1786.17	0	
19	3037.08	3049.81	3037.11	3037.11	0	
20	3042.41	3054.46	3042.47	3042.47	0	
21	3104.03	3128.22	3104.02	3104.02	0	
22	3110.28	3134.05	3110.28	3110.28	0	
23	3157.81	3179.74	3157.77	3157.77	0	
24	3159.26	3180.75	3159.20	3159.20	0	

S1.71 1-Chloropropane

Geometries

Table S211: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} -4.781858160.135475910.000000002 \mathbf{C} -0.971393300.00000000-2.111098763 С -0.142449811.119190670.000000004 Cl-0.141445080.000000003.009819985 Η -6.19879779-1.362329620.000000006 Η -5.099860731.30896986-1.669457947 Η -5.099860731.308969861.669457948 Η -1.82642436-2.165060201.66021781 9 Η -1.82642436-2.16506020-1.6602178110 Η -0.306005572.30469630 1.67497536 11 Η -0.306005572.30469630-1.67497536

Natural Internal Coordinates

Table S212: Symmetrized, unnormalized natural internal coordinates for 1-Chloropropane.

```
r_{1,2}
2
        r_{2,3}
3
        r_{3,4}
4
        r_{1,5} + r_{1,6} + r_{1,7}
5
        2r_{1,5} - r_{1,6} - r_{1,7}
6
        r_{1,6} - r_{1,7}
7
        r_{2,8} + r_{2,9}
8
        r_{2,8} - r_{2,9}
9
        r_{3,10} + r_{3,11}
10
       r_{3,10} - r_{3,11}
11
        \phi_{1,2,3}
12
        \phi_{2,3,4}
        \phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
14
        2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2}
15
        \phi_{6,1,2} - \phi_{7,1,2}
16
        2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7}
17
        \phi_{5,1,6} - \phi_{5,1,7}
        4\phi_{8,2,9} - \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3}
19
        \phi_{8,2,1} + \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3}
20
        \phi_{8,2,1} - \phi_{8,2,3} + \phi_{9,2,1} - \phi_{9,2,3}
21
        \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} + \phi_{9,2,3}
22
        4\phi_{10,3,11} - \phi_{10,3,2} - \phi_{10,3,4} - \phi_{11,3,2} - \phi_{11,3,4}
23
        \phi_{10,3,2} + \phi_{10,3,4} - \phi_{11,3,2} - \phi_{11,3,4}
24
        \phi_{10,3,2} - \phi_{10,3,4} + \phi_{11,3,2} - \phi_{11,3,4}
25
        \phi_{10,3,2} - \phi_{10,3,4} - \phi_{11,3,2} + \phi_{11,3,4}
26
        	au_{1,2,3,4}
        \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3}
```

Table S213: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	$/\mathrm{cc}\text{-pVTZ}$	
1	117.40	119.31	117.41	117.41	0
2	231.61	231.48	231.62	231.62	0
3	233.16	234.70	233.18	233.18	0
4	363.85	362.94	363.86	363.86	0
5	750.95	752.49	750.96	750.96	0
6	757.78	760.27	757.80	757.80	0
7	870.11	870.09	870.11	870.11	0
8	915.17	913.50	915.21	915.21	0
9	1055.55	1054.26	1055.61	1055.61	0
10	1097.32	1097.60	1097.41	1097.41	0
11	1125.98	1123.80	1126.02	1126.02	0
12	1251.33	1249.66	1251.27	1251.27	0
13	1284.71	1280.89	1284.73	1284.73	0
14	1322.93	1322.45	1322.92	1322.92	0
15	1375.19	1363.53	1375.35	1375.35	0
16	1414.57	1406.73	1414.41	1414.41	0
17	1493.06	1492.70	1493.06	1493.06	0
18	1499.57	1500.06	1499.72	1499.72	0
19	1506.44	1509.11	1506.43	1506.43	0
20	1514.46	1515.22	1514.21	1514.21	0
21	3033.76	3046.21	3033.83	3033.83	0
22	3054.12	3069.68	3054.11	3054.11	0
23	3079.76	3095.29	3079.65	3079.65	0
24	3086.79	3112.35	3086.84	3086.84	0
25	3108.28	3133.25	3108.31	3108.31	0
26	3116.65	3141.29	3116.59	3116.59	0
27	3139.46	3162.47	3139.47	3139.47	0

S1.72 Methoxyethane

Geometries

Table S214: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) \mathbf{C} -0.000000001 -3.515556120.290442052 С -0.00000000-0.95458299-0.99195423Ο -0.000000003 0.935899700.900955034 \mathbf{C} 3.37683746-0.172804470.00000000Η -1.115992115 -5.02516284-0.000000006 Η -3.719094891.47840980-1.672343007 Η -3.719094891.478409801.672343008 Η -0.74126596-2.204209261.674159209 Η -0.74126596-2.20420926-1.67415920Η 1.372092290.0000000010 4.7362677311 Η 3.68698239-1.34648639-1.6821363612 Η 3.68698239-1.346486391.68213636

Natural Internal Coordinates

Table S215: Symmetrized, unnormalized natural internal coordinates for Methoxyethane.

 $egin{array}{cccc} 2 & & r_{2,3} \ 3 & & r_{3,4} \ 4 & & r_{1,5} \ \end{array}$

- $4 \qquad r_{1,5} + r_{1,6} + r_{1,7}$
- $5 \qquad 2r_{1,5} r_{1,6} r_{1,7}$
- $6 \qquad r_{1,6} r_{1,7}$

 $r_{1,2}$

- $7 r_{2,8} + r_{2,9}$
- $8 r_{2,8} r_{2,9}$
- $9 \qquad r_{4,10} + r_{4,11} + r_{4,12}$
- $10 \quad 2r_{4,10} r_{4,11} r_{4,12}$
- $r_{4,11} r_{4,12}$
- $\phi_{1,2,3}$
- $\phi_{2,3,4}$
- $\phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} \phi_{6,1,7} \phi_{5,1,6} \phi_{5,1,7}$
- $2\phi_{5,1,2} \phi_{6,1,2} \phi_{7,1,2}$
- $\phi_{6,1,2} \phi_{7,1,2}$
- $2\phi_{6,1,7} \phi_{5,1,6} \phi_{5,1,7}$
- $\phi_{5,1,6} \phi_{5,1,7}$
- $4\phi_{8,2,9} \phi_{8,2,1} \phi_{8,2,3} \phi_{9,2,1} \phi_{9,2,3}$
- $\phi_{8,2,1} + \phi_{8,2,3} \phi_{9,2,1} \phi_{9,2,3}$
- $\phi_{8,2,1} \phi_{8,2,3} + \phi_{9,2,1} \phi_{9,2,3}$
- $\phi_{8,2,1} \phi_{8,2,3} \phi_{9,2,1} + \phi_{9,2,3}$
- $\phi_{10,4,3} + \phi_{11,4,3} + \phi_{12,4,3} \phi_{11,4,12} \phi_{10,4,11} \phi_{10,4,12}$
- $2\phi_{10,4,3} \phi_{11,4,3} \phi_{12,4,3}$
- $\phi_{11,4,3} \phi_{12,4,3}$
- $26 \quad 2\phi_{11,4,12} \phi_{10,4,11} \phi_{10,4,12}$
- $\phi_{10,4,11} \phi_{10,4,12}$
- $\tau_{1,2,3,4}$
- $\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3}$
- $\tau_{10,4,3,2} + \tau_{11,4,3,2} + \tau_{12,4,3,2}$

Table S216: Harmonic frequencies for reference and CMA data. Reference CMA-0A CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 1 112.85 115.08 112.87112.862 2 209.79213.20209.80 209.80 2 3 259.12262.99259.13259.143 288.79288.800 4 286.76288.80 5 468.22465.34468.230 468.230 6 820.71821.84820.73820.737 0 874.88872.53874.93874.938 0 1048.431045.211048.531048.539 0 1119.09 1117.88 1119.151119.1510 1171.741172.061171.831171.830 1174.171174.220 11 1172.531174.2212 1 1204.651203.261204.601204.60 0 13 1244.731239.941244.681244.68 14 1301.19 1302.331301.191301.19 0 15 1396.671391.311396.711396.710 0 16 1431.74 1424.411431.711431.71 17 1480.961479.151480.991480.990 0 18 1490.30 1493.01 1490.291490.2919 0 1495.371500.651495.361495.3620 1506.901509.561506.841506.84 0 21 1515.641519.591515.631515.630 22 01538.291539.621538.211538.210 23 2971.392987.062971.41 2971.41 24 2985.252998.08 2985.322985.320 25 3002.003027.673002.033002.030 26 3034.723058.253034.693034.69 0 27 0 3045.763060.253045.723045.7228 3123.74 0 3148.853123.733123.7329 3128.053152.283127.933127.930 30 0 3128.683153.703128.763128.76

S1.73 Isopropyl Alcohol

Geometries

Table S	S217	: CC	CSD(T)/cc-pV	TZ Cartesian	Coordinates (Bohr)
	1	\mathbf{C}	-2.38831701	-1.37281068	0.19751772
:	2	\mathbf{C}	-0.00000002	-0.02316624	-0.68077558
;	3	\mathbf{C}	2.38831634	-1.37281178	0.19751772
4	4	Н	-4.06437603	-0.36748732	-0.45670502
	5	Η	-2.44637430	-1.47961484	2.26098859
(6	Н	-2.44637460	-3.30273182	-0.54053624
,	7	Η	-0.00000003	0.07560930	-2.74320395
:	8	Ο	0.00000063	2.56018606	0.10662450
9	9	Η	0.00000066	2.55954490	1.92575998
	10	Η	4.06437582	-0.36748919	-0.45670501
	11	Η	2.44637317	-3.30273286	-0.54053635
	12	Н	2.44637346	-1.47961611	2.26098862

Natural Internal Coordinates

Table S218: Symmetrized, unnormalized natural internal coordinates for Isopropyl Alcohol.

```
2
        r_{2,7}
3
        r_{8,9}
4
        r_{2,1} + r_{2,3}
5
       r_{2,1} - r_{2,3}
6
       r_{1,6} + r_{1,4} + r_{1,5} + r_{3,11} + r_{3,10} + r_{3,12}
7
       r_{1,6} + r_{1,4} + r_{1,5} - r_{3,11} - r_{3,10} - r_{3,12}
8 2r_{1,6} - r_{1,4} - r_{1,5} + 2r_{3,11} - r_{3,10} - r_{3,12}
9
       2r_{1,6} - r_{1,4} - r_{1,5} - 2r_{3,11} + r_{3,10} + r_{3,12}
10 r_{1,4} - r_{1,5} + r_{3,10} - r_{3,12}
11 r_{1,4} - r_{1,5} - r_{3,10} + r_{3,12}
12 \phi_{2,8,9}
13 \phi_{1,2,3}
14 \phi_{1,2,7} - \phi_{3,2,7}
15 \phi_{1,2,8} - \phi_{3,2,8}
16 \quad \phi_{6,1,2} + \phi_{4,1,2} + \phi_{5,1,2} - \phi_{4,1,5} - \phi_{4,1,6} - \phi_{5,1,6} + \phi_{11,3,2} + \phi_{10,3,2} + \phi_{12,3,2} - \phi_{10,3,12}
         -\phi_{10,3,11}-\phi_{12,3,11}
17 \phi_{6,1,2} + \phi_{4,1,2} + \phi_{5,1,2} - \phi_{4,1,5} - \phi_{4,1,6} - \phi_{5,1,6} - \phi_{11,3,2} - \phi_{10,3,2} - \phi_{12,3,2} + \phi_{10,3,12}
         +\phi_{10,3,11}+\phi_{12,3,11}
18 2\phi_{6,1,2} - \phi_{4,1,2} - \phi_{5,1,2} + 2\phi_{11,3,2} - \phi_{10,3,2} - \phi_{12,3,2}
19 2\phi_{6,1,2} - \phi_{4,1,2} - \phi_{5,1,2} - 2\phi_{11,3,2} + \phi_{10,3,2} + \phi_{12,3,2}
20 \phi_{4,1,2} - \phi_{5,1,2} + \phi_{10,3,2} - \phi_{12,3,2}
21 \phi_{4,1,2} - \phi_{5,1,2} - \phi_{10,3,2} + \phi_{12,3,2}
22 \quad 2\phi_{4,1,5} - \phi_{4,1,6} - \phi_{5,1,6} + 2\phi_{10,3,12} - \phi_{10,3,11} - \phi_{12,3,11}
23 2\phi_{4,1,5} - \phi_{4,1,6} - \phi_{5,1,6} - 2\phi_{10,3,12} + \phi_{10,3,11} + \phi_{12,3,11}
24 \phi_{4,1,6} - \phi_{5,1,6} - \phi_{10,3,11} + \phi_{12,3,11}
25 \phi_{4,1,6} - \phi_{5,1,6} + \phi_{10,3,11} - \phi_{12,3,11}
26 \quad \tau_{9,8,2,7}
27
       \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{10,3,2,1} + \tau_{11,3,2,1} + \tau_{12,3,2,1}
       \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} - \tau_{10,3,2,1} - \tau_{11,3,2,1} - \tau_{12,3,2,1}
```

29

 $\gamma_{7,2,1,3}$ $30 \quad \gamma_{8,2,1,3}$

Table S219: Harmonic frequencies for reference and CMA data. Reference CMA-0A CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 227.33224.71224.691 1 224.492 270.92272.30271.02 271.021 3 272.99274.91273.01273.040 0 4 357.74356.46357.74357.745 0 425.28423.89425.26425.260 6 464.61464.44464.64464.647 0 825.99824.93826.02826.028 0 922.41920.54922.43 922.430 9 939.40 936.87939.44 939.4410 983.15981.53983.24983.240 0 11 1092.181084.99 1092.361092.3612 0 1159.761160.051159.841159.8413 1196.431192.161196.561196.560 14 1315.361308.11 1315.501315.500 15 1367.151367.121367.120 1362.980 16 1403.421393.681403.391403.3917 1410.33 1402.751410.351410.350 1427.150 18 1417.561426.841426.840 19 1487.921490.441489.261489.2620 1491.04 1492.121489.631489.630 21 1503.801505.121503.901503.900 22 0 1511.471514.791511.251511.250 23 3024.63 3037.593024.583024.58243028.61 3028.650 3040.233028.65253060.753082.500 3060.773060.7726 3092.773118.423092.863092.860 27 0 3103.923128.003103.903103.9028 0 3121.533146.053121.503121.5029 3124.153147.953124.103124.100 30 0 3819.49 3837.203819.493819.49

S1.74Propane

Geometries

Table S220: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -2.395928640.511796670.000000002 \mathbf{C} 0.00000000-1.102177890.000000002.39592869 \mathbf{C} 3 0.511796610.000000004 Η -4.09939241-0.65278475-0.000000005 Η -2.458206701.73037440-1.667345566 Η -2.458206701.73037440 1.66734556 7 Η -0.00000041-2.340117191.65598761 8 Η -0.00000041-2.34011719-1.655987619 Η 4.09939243-0.652784850.00000000Η 1.7303743410 2.458206781.66734556 11 Η 2.458206781.73037434 -1.66734556

Natural Internal Coordinates

Table S221: Symmetrized, unnormalized natural internal coordinates for Propane.

```
r_{1,2} + r_{2,3}
2
        r_{1,2} - r_{2,3}
3
        r_{1,4} + r_{1,5} + r_{1,6} + r_{3,9} + r_{3,10} + r_{3,11}
4
        r_{1,4} + r_{1,5} + r_{1,6} - r_{3,9} - r_{3,10} - r_{3,11}
5
        2r_{1,4} - r_{1,5} - r_{1,6} + 2r_{3,9} - r_{3,10} - r_{3,11}
6
        2r_{1,4} - r_{1,5} - r_{1,6} - 2r_{3,9} + r_{3,10} + r_{3,11}
7
        r_{1,5} - r_{1,6} + r_{3,10} - r_{3,11}
8
        r_{1,5} - r_{1,6} - r_{3,10} + r_{3,11}
9
        r_{2,7} + r_{2,8}
10
      r_{2,7} - r_{2,8}
11
        \phi_{1,2,3}
       \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + \phi_{9,3,2} + \phi_{10,3,2} + \phi_{11,3,2} - \phi_{10,3,11}
         -\phi_{9,3,10} - \phi_{9,3,11}
      \phi_{4,1,2} + \phi_{5,1,2} + \phi_{6,1,2} - \phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - \phi_{9,3,2} - \phi_{10,3,2} - \phi_{11,3,2} + \phi_{10,3,11}
        +\phi_{9,3,10}+\phi_{9,3,11}
14 2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} + 2\phi_{9,3,2} - \phi_{10,3,2} - \phi_{11,3,2}
        2\phi_{4,1,2} - \phi_{5,1,2} - \phi_{6,1,2} - 2\phi_{9,3,2} + \phi_{10,3,2} + \phi_{11,3,2}
       \phi_{5,1,2} - \phi_{6,1,2} + \phi_{10,3,2} - \phi_{11,3,2}
17
        \phi_{5,1,2} - \phi_{6,1,2} - \phi_{10,3,2} + \phi_{11,3,2}
18 2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} + 2\phi_{10,3,11} - \phi_{9,3,10} - \phi_{9,3,11}
19
        2\phi_{5,1,6} - \phi_{4,1,5} - \phi_{4,1,6} - 2\phi_{10,3,11} + \phi_{9,3,10} + \phi_{9,3,11}
20
      \phi_{4,1,5} - \phi_{4,1,6} + \phi_{9,3,10} - \phi_{9,3,11}
21
      \phi_{4,1,5} - \phi_{4,1,6} - \phi_{9,3,10} + \phi_{9,3,11}
22 4\phi_{7,2,8} - \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,2,1} - \phi_{8,2,3}
23 \phi_{7,2,1} + \phi_{7,2,3} - \phi_{8,2,1} - \phi_{8,2,3}
24 \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,2,1} - \phi_{8,2,3}
25 \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,2,1} + \phi_{8,2,3}
26 \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{9,3,2,1} + \tau_{10,3,2,1} + \tau_{11,3,2,1}
27 \tau_{4,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,3} - \tau_{9,3,2,1} - \tau_{10,3,2,1} - \tau_{11,3,2,1}
```

Table S222: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	$/\mathrm{cc}\text{-pVTZ}$	
1	215.56	219.01	215.56	215.56	0
2	273.41	277.19	273.42	273.42	0
3	362.53	360.93	362.54	362.54	0
4	748.63	749.35	748.64	748.64	0
5	885.78	885.83	885.79	885.79	0
6	906.61	906.42	906.63	906.63	0
7	928.98	928.28	929.00	929.00	0
8	1074.04	1074.70	1074.07	1074.07	0
9	1181.29	1178.69	1181.33	1181.33	0
10	1217.54	1213.24	1217.56	1217.56	0
11	1319.32	1319.47	1319.33	1319.33	0
12	1367.14	1359.66	1367.30	1367.30	0
13	1407.52	1398.58	1407.36	1407.36	0
14	1420.81	1414.04	1420.82	1420.82	0
15	1496.33	1497.26	1496.47	1496.47	0
16	1496.59	1499.10	1496.57	1496.57	0
17	1503.87	1506.01	1503.86	1503.86	0
18	1513.81	1517.05	1513.71	1513.71	0
19	1518.58	1519.97	1518.50	1518.50	0
20	3026.70	3040.09	3026.73	3026.73	0
21	3028.77	3040.48	3028.89	3028.89	0
22	3033.74	3051.22	3033.57	3033.57	0
23	3061.46	3088.50	3061.50	3061.50	0
24	3093.71	3120.11	3093.71	3093.71	0
25	3104.68	3129.58	3104.70	3104.70	0
26	3105.03	3130.85	3105.04	3105.04	0
27	3107.75	3132.58	3107.69	3107.69	0

S1.75 Acrylonitrile

Geometries

Table S223: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -3.191569250.72327464-0.000000002 \mathbf{C} -1.30268767-0.96690359-0.000000003 С 1.30844710-0.21134227-0.000000004 Ν 3.422669530.400431860.00000000H -5.137815635 0.09913705-0.00000000-2.820717176 Η 2.73416350-0.000000007 Η -1.66434467 -2.979776770.00000000

Natural Internal Coordinates

Table S224: Symmetrized, unnormalized natural internal coordinates for Acrylonitrile.

```
r_{1,2}
2
         r_{2,3}
3
         r_{3,4}
4
         r_{2,7}
5
         r_{1,5} + r_{1,6}
6
         r_{1,5} - r_{1,6}
         2\phi_{1,2,3} - \phi_{1,2,7} - \phi_{3,2,7}
7
         \phi_{1,2,7} - \phi_{3,2,7}
         2\phi_{6,1,5} - \phi_{2,1,6} - \phi_{2,1,5}
10
         \phi_{2,1,6} - \phi_{2,1,5}
11
         \tau_{6,1,2,3} + \tau_{5,1,2,3} + \tau_{6,1,2,7} + \tau_{5,1,2,7}
12
        \gamma_{2,1,6,5}
13
        \gamma_{7,2,3,1}
14
       \alpha_{1,2,3,4}^{x}
15 \alpha_{1,2,3,4}^y
```

Table S225: Harmonic frequencies for reference and CMA data. Reference CMA-0ACMA-2A(0.05) n CCSD(T)MP2 ${\rm MP2}$ MP2/cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 1 1 227.13226.78227.14227.132 337.741 336.95337.76337.741 3 559.50559.08559.51559.524 688.12700.45688.14688.151 0 873.155 871.30 873.21 873.21 6 969.04972.04969.15969.150 0 7 993.491012.85993.35 993.358 0 1104.141101.66 1104.171104.179 1314.401313.061314.511314.510 0 10 1447.121447.651447.041447.0411 1659.641653.401659.631659.6300 12 2271.922235.152271.892271.890 13 3164.323178.913164.333164.3314 3202.583219.723202.573202.570 0 15 3262.583282.293262.583262.58

S1.76 Trimethylamine

Geometries

Table	S226	: C0	CSD(T)/cc-pV	TZ Cartesian	Coordinates (Bohr)
	1	X	-2.60567339	0.00000000	0.00000000
	2	N	-0.71594686	0.00000000	0.00000000
	3	С	0.17737959	-1.30146773	-2.25420824
	4	С	0.17737959	2.60293546	0.00000000
	5	С	0.17737959	-1.30146773	2.25420824
	6	Η	2.26161442	-1.36371156	-2.36201770
	7	Η	-0.52888531	-0.34189560	-3.93805529
	8	Η	-0.52888531	-3.23950812	-2.26511792
	9	Η	2.26161442	2.72742311	0.00000000
	10	Η	-0.52888531	3.58140372	1.67293737
	11	Η	-0.52888531	3.58140372	-1.67293737
	12	Η	2.26161442	-1.36371156	2.36201770
	13	Η	-0.52888531	-3.23950812	2.26511792
	14	Н	-0.52888531	-0.34189560	3.93805529

Natural Internal Coordinates

Table S227: Symmetrized, unnormalized natural internal coordinates for Trimethylamine.

```
1
        r_{2,3} + r_{2,4} + r_{2,5}
        2r_{2,3} - r_{2,4} - r_{2,5}
       r_{2,4} - r_{2,5}
        r_{3,6} + r_{3,7} + r_{3,8} + r_{4,9} + r_{4,10} + r_{4,11} + r_{5,12} + r_{5,13} + r_{5,14}
        2r_{3,6} + 2r_{3,7} + 2r_{3,8} - r_{4,9} - r_{4,10} - r_{4,11} - r_{5,12} - r_{5,13} - r_{5,14}
        r_{4,9} + r_{4,10} + r_{4,11} - r_{5,12} - r_{5,13} - r_{5,14}
        2r_{3,6} - r_{3,7} - r_{3,8} + 2r_{4,9} - r_{4,10} - r_{4,11} + 2r_{5,12} - r_{5,13} - r_{5,14}
8
        4r_{3,6} - 2r_{3,7} - 2r_{3,8} - 2r_{4,9} + r_{4,10} + r_{4,11} - 2r_{5,12} + r_{5,13} + r_{5,14}
        2r_{4,9} - r_{4,10} - r_{4,11} - 2r_{5,12} + r_{5,13} + r_{5,14}
10 r_{3,7} - r_{3,8} + r_{4,10} - r_{4,11} + r_{5,13} - r_{5,14}
11 2r_{3,7} - 2r_{3,8} - r_{4,10} + r_{4,11} - r_{5,13} + r_{5,14}
12 \quad r_{4,10} - r_{4,11} - r_{5,13} + r_{5,14}
13 2\phi_{4,2,5} - \phi_{3,2,4} - \phi_{3,2,5}
14 \phi_{3,2,4} - \phi_{3,2,5}
15 \phi_{4,2,5} + \phi_{3,2,4} + \phi_{3,2,5} - \gamma_{3,2,4,5} - \gamma_{4,2,5,3} - \gamma_{5,2,3,4}
16 \phi_{6,3,2} + \phi_{7,3,2} + \phi_{8,3,2} - \phi_{7,3,8} - \phi_{6,3,8} - \phi_{6,3,7} + \phi_{9,4,2} + \phi_{10,4,2} + \phi_{11,4,2} - \phi_{10,4,11}
         -\phi_{9,4,11} - \phi_{9,4,10} + \phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2} - \phi_{13,5,14} - \phi_{12,5,14} - \phi_{12,5,13}
17 2\phi_{6,3,2} + 2\phi_{7,3,2} + 2\phi_{8,3,2} - 2\phi_{7,3,8} - 2\phi_{6,3,8} - 2\phi_{6,3,7} - \phi_{9,4,2} - \phi_{10,4,2} - \phi_{11,4,2} + \phi_{10,4,11}
         +\phi_{9,4,11}+\phi_{9,4,10}-\phi_{12,5,2}-\phi_{13,5,2}-\phi_{14,5,2}+\phi_{13,5,14}+\phi_{12,5,14}+\phi_{12,5,13}
18 \phi_{9,4,2} + \phi_{10,4,2} + \phi_{11,4,2} - \phi_{10,4,11} - \phi_{9,4,11} - \phi_{9,4,10} - \phi_{12,5,2} - \phi_{13,5,2} - \phi_{14,5,2} + \phi_{13,5,14}
        +\phi_{12,5,14}+\phi_{12,5,13}
19 2\phi_{6,3,2} - \phi_{7,3,2} - \phi_{8,3,2} + 2\phi_{9,4,2} - \phi_{10,4,2} - \phi_{11,4,2} + 2\phi_{12,5,2} - \phi_{13,5,2} - \phi_{14,5,2}
20 \quad 4\phi_{6,3,2} - 2\phi_{7,3,2} - 2\phi_{8,3,2} - 2\phi_{9,4,2} + \phi_{10,4,2} + \phi_{11,4,2} - 2\phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2}
21 2\phi_{9,4,2} - \phi_{10,4,2} - \phi_{11,4,2} - 2\phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2}
22 \phi_{7,3,2} - \phi_{8,3,2} + \phi_{10,4,2} - \phi_{11,4,2} + \phi_{13,5,2} - \phi_{14,5,2}
23 2\phi_{7,3,2} - 2\phi_{8,3,2} - \phi_{10,4,2} + \phi_{11,4,2} - \phi_{13,5,2} + \phi_{14,5,2}
24 \phi_{10,4,2} - \phi_{11,4,2} - \phi_{13,5,2} + \phi_{14,5,2}
25 \quad 2\phi_{7,3,8} - \phi_{6,3,8} - \phi_{6,3,7} + 2\phi_{10,4,11} - \phi_{9,4,11} - \phi_{9,4,10} + 2\phi_{13,5,14} - \phi_{12,5,14} - \phi_{12,5,13}
26 4\phi_{7,3,8} - 2\phi_{6,3,8} - 2\phi_{6,3,7} - 2\phi_{10,4,11} + \phi_{9,4,11} + \phi_{9,4,10} - 2\phi_{13,5,14} + \phi_{12,5,14} + \phi_{12,5,13}
27 2\phi_{10,4,11} - \phi_{9,4,11} - \phi_{9,4,10} - 2\phi_{13,5,14} + \phi_{12,5,14} + \phi_{12,5,13}
28
       \phi_{6,3,8} - \phi_{6,3,7} + \phi_{9,4,11} - \phi_{9,4,10} + \phi_{12,5,14} - \phi_{12,5,13}
29 \quad 2\phi_{6,3,8} - 2\phi_{6,3,7} - \phi_{9,4,11} + \phi_{9,4,10} - \phi_{12,5,14} + \phi_{12,5,13}
30 \phi_{9,4,11} - \phi_{9,4,10} - \phi_{12,5,14} + \phi_{12,5,13}
31 \tau_{6,3,2,4} + \tau_{6,3,2,5} + \tau_{7,3,2,4} + \tau_{7,3,2,5} + \tau_{8,3,2,4} + \tau_{8,3,2,5} + \tau_{9,4,2,5} + \tau_{9,4,2,3} + \tau_{10,4,2,5} + \tau_{10,4,2,3}
         +\tau_{11,4,2,5}+\tau_{11,4,2,3}+\tau_{12,5,2,3}+\tau_{12,5,2,4}+\tau_{13,5,2,3}+\tau_{13,5,2,4}+\tau_{14,5,2,3}+\tau_{14,5,2,4}
32 \quad 2\tau_{6,3,2,4} + 2\tau_{6,3,2,5} + 2\tau_{7,3,2,4} + 2\tau_{7,3,2,5} + 2\tau_{8,3,2,4} + 2\tau_{8,3,2,5} - \tau_{9,4,2,5} - \tau_{9,4,2,3} - \tau_{10,4,2,5} - \tau_{10,4,2,3}
```

 $-\tau_{11,4,2,5}-\tau_{11,4,2,3}-\tau_{12,5,2,3}-\tau_{12,5,2,4}-\tau_{13,5,2,3}-\tau_{13,5,2,4}-\tau_{14,5,2,3}-\tau_{14,5,2,4}$

 $-\tau_{14,5,2,3}-\tau_{14,5,2,4}$

 $33 \quad \tau_{9,4,2,5} + \tau_{9,4,2,3} + \tau_{10,4,2,5} + \tau_{10,4,2,3} + \tau_{11,4,2,5} + \tau_{11,4,2,3} - \tau_{12,5,2,3} - \tau_{12,5,2,4} - \tau_{13,5,2,3} - \tau_{13,5,2,4}$

Table S228: Harmonic frequencies for reference and CMA data. Reference CMA-0A CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 1 240.77247.42240.78 240.781 2 279.99283.97280.06 280.06 03 279.99283.97280.06 280.060 4 373.11367.48373.12 373.120 417.230 5 417.26414.44417.236 0 417.26414.46417.24417.247 847.53843.27847.58 847.580 8 1063.581062.41 1063.601063.601 9 0 1065.00 1064.36 1065.071065.07 10 1065.001064.381065.071065.07 0 11 1120.561119.471120.571120.570 12 0 1120.561119.48 1120.571120.5713 1215.491209.151215.491215.490 14 0 1309.86 1301.46 1309.96 1309.96 151309.861301.471309.961309.960 16 1436.741430.471436.631436.630 0 17 1436.741430.50 1436.631436.6318 1478.581472.091478.611478.61 0 0 19 1488.681491.19 1488.671488.6720 1488.690 1491.201488.671488.6721 1496.490 1496.49 1498.35 1496.49 22 1508.19 1511.17 1508.141508.14 0 23 1517.121519.890 1517.111517.1124 0 1517.12 1519.90 1517.111517.1125 2925.302925.61 2925.61 0 2943.1126 2925.30 2943.192925.612925.61 0 27 2934.802949.462935.122935.120 28 0 3068.493088.653068.193068.1929 3068.49 3088.66 3068.190 3068.190 30 3071.93 3089.563071.61 3071.610 31 3112.253137.913112.253112.2532 3140.69 0 3116.44 3116.433116.43 33 3116.44 3140.743116.433116.430

S1.77 Isobutane

Geometries

Table	S229	: CC	CSD(T)/cc-pV	TZ Cartesian	Coordinates (Bohr)
	1	Н	-2.77578707	0.00000000	0.00000000
	2	С	-0.70454753	0.00000000	0.00000000
	3	С	0.20096794	-1.37289317	-2.37792072
	4	С	0.20096794	2.74578634	-0.00000000
	5	С	0.20096794	-1.37289317	2.37792072
	6	Н	2.26618320	-1.40919603	-2.44079912
	7	Н	-0.46875139	-0.42944159	-4.09015926
	8	Н	-0.46875139	-3.32746103	-2.41698695
	9	Η	2.26618320	2.81839206	0.00000000
	10	Η	-0.46875139	3.75690262	1.67317231
	11	Η	-0.46875139	3.75690262	-1.67317231
	12	Η	2.26618320	-1.40919603	2.44079912
	13	Η	-0.46875139	-3.32746103	2.41698695
	14	Н	-0.46875139	-0.42944159	4.09015926

Natural Internal Coordinates

Table S230: Symmetrized, unnormalized natural internal coordinates for Isobutane.

```
1
        r_{1,2}
        r_{2,3} + r_{2,4} + r_{2,5}
3
        2r_{2,3} - r_{2,4} - r_{2,5}
       r_{2,4}-r_{2,5}
5
        r_{3,6} + r_{3,7} + r_{3,8} + r_{4,9} + r_{4,10} + r_{4,11} + r_{5,12} + r_{5,13} + r_{5,14}
6
        2r_{3,6} + 2r_{3,7} + 2r_{3,8} - r_{4,9} - r_{4,10} - r_{4,11} - r_{5,12} - r_{5,13} - r_{5,14}
        r_{4,9} + r_{4,10} + r_{4,11} - r_{5,12} - r_{5,13} - r_{5,14}
        2r_{3,6} - r_{3,7} - r_{3,8} + 2r_{4,9} - r_{4,10} - r_{4,11} + 2r_{5,12} - r_{5,13} - r_{5,14}
        4r_{3,6} - 2r_{3,7} - 2r_{3,8} - 2r_{4,9} + r_{4,10} + r_{4,11} - 2r_{5,12} + r_{5,13} + r_{5,14}
10 2r_{4,9} - r_{4,10} - r_{4,11} - 2r_{5,12} + r_{5,13} + r_{5,14}
11 r_{3.7} - r_{3.8} + r_{4.10} - r_{4.11} + r_{5.13} - r_{5.14}
12 2r_{3,7} - 2r_{3,8} - r_{4,10} + r_{4,11} - r_{5,13} + r_{5,14}
13 r_{4,10} - r_{4,11} - r_{5,13} + r_{5,14}
14 \phi_{4,2,5} + \phi_{3,2,4} + \phi_{3,2,5} - \phi_{1,2,3} - \phi_{1,2,4} - \phi_{1,2,5}
15 2\phi_{4,2,5} - \phi_{3,2,4} - \phi_{3,2,5}
16 \phi_{3,2,4} - \phi_{3,2,5}
17 2\phi_{1,2,3} - \phi_{1,2,4} - \phi_{1,2,5}
18 \phi_{1,2,4} - \phi_{1,2,5}
19 \phi_{7,3,8} + \phi_{6,3,7} + \phi_{6,3,8} - \phi_{6,3,2} - \phi_{7,3,2} - \phi_{8,3,2} + \phi_{10,4,11} + \phi_{9,4,10} + \phi_{9,4,11} - \phi_{9,4,2}
         -\phi_{10,4,2}-\phi_{11,4,2}+\phi_{13,5,14}+\phi_{12,5,13}+\phi_{12,5,14}-\phi_{12,5,2}-\phi_{13,5,2}-\phi_{14,5,2}
20 2\phi_{7,3,8} + 2\phi_{6,3,7} + 2\phi_{6,3,8} - 2\phi_{6,3,2} - 2\phi_{7,3,2} - 2\phi_{8,3,2} - \phi_{10,4,11} - \phi_{9,4,10} - \phi_{9,4,11} + \phi_{9,4,2}
         +\phi_{10,4,2}+\phi_{11,4,2}-\phi_{13,5,14}-\phi_{12,5,13}-\phi_{12,5,14}+\phi_{12,5,2}+\phi_{13,5,2}+\phi_{14,5,2}
21 \phi_{10,4,11} + \phi_{9,4,10} + \phi_{9,4,11} - \phi_{9,4,2} - \phi_{10,4,2} - \phi_{11,4,2} - \phi_{13,5,14} - \phi_{12,5,13} - \phi_{12,5,14} + \phi_{12,5,2}
         +\phi_{13.5.2} + \phi_{14.5.2}
22 \quad 2\phi_{7,3,8} - \phi_{6,3,7} - \phi_{6,3,8} + 2\phi_{10,4,11} - \phi_{9,4,10} - \phi_{9,4,11} + 2\phi_{13,5,14} - \phi_{12,5,13} - \phi_{12,5,14}
23 4\phi_{7,3,8} - 2\phi_{6,3,7} - 2\phi_{6,3,8} - 2\phi_{10,4,11} + \phi_{9,4,10} + \phi_{9,4,11} - 2\phi_{13,5,14} + \phi_{12,5,13} + \phi_{12,5,14}
24 2\phi_{10,4,11} - \phi_{9,4,10} - \phi_{9,4,11} - 2\phi_{13,5,14} + \phi_{12,5,13} + \phi_{12,5,14}
25 \phi_{6,3,7} - \phi_{6,3,8} + \phi_{9,4,10} - \phi_{9,4,11} + \phi_{12,5,13} - \phi_{12,5,14}
26 \quad 2\phi_{6,3,7} - 2\phi_{6,3,8} - \phi_{9,4,10} + \phi_{9,4,11} - \phi_{12,5,13} + \phi_{12,5,14}
27 \phi_{9,4,10} - \phi_{9,4,11} - \phi_{12,5,13} + \phi_{12,5,14}
28 \quad 2\phi_{6,3,2} - \phi_{7,3,2} - \phi_{8,3,2} + 2\phi_{9,4,2} - \phi_{10,4,2} - \phi_{11,4,2} + 2\phi_{12,5,2} - \phi_{13,5,2} - \phi_{14,5,2}
29 4\phi_{6,3,2} - 2\phi_{7,3,2} - 2\phi_{8,3,2} - 2\phi_{9,4,2} + \phi_{10,4,2} + \phi_{11,4,2} - 2\phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2}
30 2\phi_{9,4,2} - \phi_{10,4,2} - \phi_{11,4,2} - 2\phi_{12,5,2} + \phi_{13,5,2} + \phi_{14,5,2}
31 \phi_{7,3,2} - \phi_{8,3,2} + \phi_{10,4,2} - \phi_{11,4,2} + \phi_{13,5,2} - \phi_{14,5,2}
32 2\phi_{7,3,2} - 2\phi_{8,3,2} - \phi_{10,4,2} + \phi_{11,4,2} - \phi_{13,5,2} + \phi_{14,5,2}
33 \phi_{10,4,2} - \phi_{11,4,2} - \phi_{13,5,2} + \phi_{14,5,2}
34 \quad \tau_{6,3,2,4} + \tau_{7,3,2,4} + \tau_{8,3,2,4} + \tau_{9,4,2,5} + \tau_{10,4,2,5} + \tau_{11,4,2,5} + \tau_{12,5,2,3} + \tau_{13,5,2,3} + \tau_{14,5,2,3}
35 \quad 2\tau_{6,3,2,4} + 2\tau_{7,3,2,4} + 2\tau_{8,3,2,4} - \tau_{9,4,2,5} - \tau_{10,4,2,5} - \tau_{11,4,2,5} - \tau_{12,5,2,3} - \tau_{13,5,2,3} - \tau_{14,5,2,3}
```

36 $\tau_{9,4,2,5} + \tau_{10,4,2,5} + \tau_{11,4,2,5} - \tau_{12,5,2,3} - \tau_{13,5,2,3} - \tau_{14,5,2,3}$

Table S231: Harmonic frequencies for reference and CMA data. Reference CMA-0A CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 1 200.11 205.13200.19200.190 2 0 258.96263.39259.02259.023 258.96259.02 259.020 263.39359.15359.160 4 356.07359.165 0 359.15356.09 359.16359.166 423.35422.48423.39423.390 7 0 808.93807.93808.93 808.93 8 0 921.64920.60921.69921.690 9 921.64920.60921.69 921.690 10 952.74950.37952.75952.750 11 984.82983.60984.84 984.840 12 984.82983.61 984.84 984.84 13 1199.431199.501199.500 1196.81 14 0 1199.431196.821199.501199.500 15 1214.06 1208.651214.111214.1116 1361.63 1353.221361.731361.730 17 1361.730 1361.63 1353.24 1361.7318 0 1401.341391.261401.201401.200 19 1401.341391.281401.221401.2220 1425.680 1417.351425.711425.710 21 1487.521489.531487.511487.5122 0 1493.961494.691493.941493.9423 1493.961494.701493.941493.94 0 24 1511.911514.461511.871511.87 0 25 0 1511.921514.461511.871511.8726 1519.451521.041519.401519.400 3019.9827 0 3032.543019.143019.1428 0 3019.983032.583019.973019.9729 3020.643035.243021.433021.43 0 0 30 3024.99 3042.963024.983024.98 0 313092.85 3118.663092.793092.7932 3092.85 3118.713092.843092.84 0 0 33 3092.893119.003093.02 3093.02 340 3096.86 3121.603096.853096.8535 3096.86 3121.663096.863096.86 0 36 3102.02 3125.723102.033102.030

S1.78 n-Butane

Geometries

Table	S232	: CC	CSD(T)/cc-pV	TZ Cartesian	Coordinates (Bohr)
	1	\mathbf{C}	-3.68479476	0.24819108	-0.00000000
	2	\mathbf{C}	-1.06753027	-0.97316796	-0.00000000
	3	\mathbf{C}	1.06753027	0.97316796	-0.00000000
	4	\mathbf{C}	3.68479476	-0.24819108	0.00000000
	5	Η	-5.18541024	-1.16829556	-0.00000000
	6	Η	-3.93796232	1.44128610	-1.66759012
	7	Η	-3.93796232	1.44128610	1.66759012
	8	Η	-0.86739103	-2.19780833	1.65727692
	9	Η	-0.86739103	-2.19780833	-1.65727692
	10	Η	0.86739103	2.19780833	1.65727692
	11	Η	0.86739103	2.19780833	-1.65727692
	12	Η	5.18541024	1.16829556	0.00000000
	13	Η	3.93796232	-1.44128610	-1.66759012
	14	Η	3.93796232	-1.44128610	1.66759012

Natural Internal Coordinates

```
Table S233: Symmetrized, unnormalized natural internal coordinates for n-Butane.
```

```
\begin{array}{ccc}
1 & r_{1,2} + r_{3,4} \\
2 & r_{1,2} - r_{3,4}
\end{array}
```

$$3 r_{2,3}$$

$$4 \qquad r_{2,8} + r_{2,9} + r_{3,10} + r_{3,11}$$

5
$$r_{2,8} + r_{2,9} - r_{3,10} - r_{3,11}$$

$$6 r_{2,8} - r_{2,9} + r_{3,10} - r_{3,11}$$

7
$$r_{2,8} - r_{2,9} - r_{3,10} + r_{3,11}$$

8
$$r_{1,5} + r_{1,6} + r_{1,7} + r_{4,12} + r_{4,13} + r_{4,14}$$

9
$$r_{1,5} + r_{1,6} + r_{1,7} - r_{4,12} - r_{4,13} - r_{4,14}$$

$$10 \quad 2r_{1,5} - r_{1,6} - r_{1,7} + 2r_{4,12} - r_{4,13} - r_{4,14}$$

11
$$2r_{1,5} - r_{1,6} - r_{1,7} - 2r_{4,12} + r_{4,13} + r_{4,14}$$

12
$$r_{1,6} - r_{1,7} + r_{4,13} - r_{4,14}$$

13
$$r_{1,6} - r_{1,7} - r_{4,13} + r_{4,14}$$

14
$$\phi_{1,2,3} + \phi_{2,3,4}$$

15
$$\phi_{1,2,3} - \phi_{2,3,4}$$

$$16 \quad 4\phi_{8,2,9} - \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3} + 4\phi_{10,3,11} - \phi_{10,3,2} - \phi_{10,3,4} - \phi_{11,3,2} - \phi_{11,3,4}$$

$$17 \quad 4\phi_{8,2,9} - \phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3} - 4\phi_{10,3,11} + \phi_{10,3,2} + \phi_{10,3,4} + \phi_{11,3,2} + \phi_{11,3,4}$$

18
$$\phi_{8,2,1} + \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3} + \phi_{10,3,2} + \phi_{10,3,4} - \phi_{11,3,2} - \phi_{11,3,4}$$

19
$$\phi_{8,2,1} + \phi_{8,2,3} - \phi_{9,2,1} - \phi_{9,2,3} - \phi_{10,3,2} - \phi_{10,3,4} + \phi_{11,3,2} + \phi_{11,3,4}$$

20
$$\phi_{8,2,1} - \phi_{8,2,3} + \phi_{9,2,1} - \phi_{9,2,3} + \phi_{10,3,2} - \phi_{10,3,4} + \phi_{11,3,2} - \phi_{11,3,4}$$

$$21 \quad \phi_{8,2,1} - \phi_{8,2,3} + \phi_{9,2,1} - \phi_{9,2,3} - \phi_{10,3,2} + \phi_{10,3,4} - \phi_{11,3,2} + \phi_{11,3,4}$$

22
$$\phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} + \phi_{9,2,3} + \phi_{10,3,2} - \phi_{10,3,4} - \phi_{11,3,2} + \phi_{11,3,4}$$

23
$$\phi_{8,2,1} - \phi_{8,2,3} - \phi_{9,2,1} + \phi_{9,2,3} - \phi_{10,3,2} + \phi_{10,3,4} + \phi_{11,3,2} - \phi_{11,3,4}$$

24
$$\phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7} + \phi_{12,4,3} + \phi_{13,4,3} + \phi_{14,4,3} - \phi_{13,4,14} - \phi_{12,4,13} - \phi_{12,4,14}$$

25
$$\phi_{5,1,2} + \phi_{6,1,2} + \phi_{7,1,2} - \phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7} - \phi_{12,4,3} - \phi_{13,4,3} - \phi_{14,4,3} + \phi_{13,4,14} + \phi_{12,4,13} + \phi_{12,4,14}$$

$$26 \quad 2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2} + 2\phi_{12,4,3} - \phi_{13,4,3} - \phi_{14,4,3}$$

27
$$2\phi_{5,1,2} - \phi_{6,1,2} - \phi_{7,1,2} - 2\phi_{12,4,3} + \phi_{13,4,3} + \phi_{14,4,3}$$

28
$$\phi_{6,1,2} - \phi_{7,1,2} + \phi_{13,4,3} - \phi_{14,4,3}$$

29
$$\phi_{6,1,2} - \phi_{7,1,2} - \phi_{13,4,3} + \phi_{14,4,3}$$

30
$$2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7} + 2\phi_{13,4,14} - \phi_{12,4,13} - \phi_{12,4,14}$$

31
$$2\phi_{6,1,7} - \phi_{5,1,6} - \phi_{5,1,7} - 2\phi_{13,4,14} + \phi_{12,4,13} + \phi_{12,4,14}$$

32
$$\phi_{5,1,6} - \phi_{5,1,7} + \phi_{12,4,13} - \phi_{12,4,14}$$

33
$$\phi_{5,1,6} - \phi_{5,1,7} - \phi_{12,4,13} + \phi_{12,4,14}$$

$$34 \quad \tau_{1,2,3,4}$$

35
$$\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} + \tau_{12,4,3,2} + \tau_{13,4,3,2} + \tau_{14,4,3,2}$$

36
$$\tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{7,1,2,3} - \tau_{12,4,3,2} - \tau_{13,4,3,2} - \tau_{14,4,3,2}$$

Table S234: Harmonic frequencies for reference and CMA data. Reference CMA-0A CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 1 115.69117.41115.69115.690 2 0 221.77224.72221.78221.783 253.430 251.97253.43253.434 257.32257.330 261.42257.335 422.72422.720 422.71421.236 733.72734.90733.73733.730 7 0 807.44807.24807.46 807.46 8 0 848.71848.58848.73848.730 9 957.85957.29957.87 957.870 10 977.87977.88977.88976.610 11 1032.281031.42 1032.31 1032.310 12 1082.98 1082.83 1083.02 1083.02 13 1175.121172.341175.161175.160 14 0 1213.01 1207.91 1213.031213.030 15 1290.421288.701290.431290.43 16 1318.771311.281318.781318.780 17 1332.591332.311332.590 1332.5918 0 1398.231385.101398.901398.901411.890 19 1412.551403.95 1411.8920 1414.031406.141413.990 1413.990 21 1490.651489.391490.721490.7222 0 1496.911497.331497.121497.1223 1505.131507.691505.121505.120 24 1506.701509.561506.691506.690 25 0 1511.271513.151511.151511.1526 1515.991516.151515.771515.770 27 3016.900 3016.77 3032.413016.90283039.180 3023.91 3025.693025.6929 3028.053041.163026.243026.240 30 0 3028.91 3042.963028.753028.750 313042.42 3069.353042.363042.36 32 3064.03 3090.753064.013064.01 0 0 33 3097.423123.333097.463097.46340 3101.233126.123101.283101.2835 3105.51 3130.84 3105.533105.530 36 3106.193131.403106.243106.240

S1.79 Furan

Geometries

Table S235: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Х 0.000000000.00000000-0.257846712 Ο 0.000000000.00000000-2.147573233 \mathbf{C} -0.000000002.06569237-0.602659674 \mathbf{C} -0.00000000-2.06569237-0.60265967 \mathbf{C} 5 -0.00000000-1.360125631.87072136 6 \mathbf{C} 0.000000001.360125631.870721367 Η 0.000000003.87067042-1.53834798-0.000000008 Η -3.87067042-1.538347989 Η 0.00000000-2.604201943.4815275110 Η 0.000000002.604201943.48152751

Natural Internal Coordinates

Table S236: Symmetrized, unnormalized natural internal coordinates for Furan.

```
1
        r_{5,6} + r_{3,6} + r_{4,5} + r_{2,3} + r_{2,4}
2
        3r_{5,6} + r_{3,6} + r_{4,5} - 3r_{2,3} - 3r_{2,4}
3
        2r_{3,6} - 2r_{4,5} + r_{2,3} - r_{2,4}
4
        3r_{5,6} - 3r_{3,6} - 3r_{4,5} + r_{2,3} + r_{2,4}
5
        r_{3,6} - r_{4,5} - 2r_{2,3} + 2r_{2,4}
        r_{3,7} + r_{4,8}
        r_{3,7} - r_{4,8}
        r_{6,10} + r_{5,9}
        r_{6,10} - r_{5,9}
10
        3\phi_{4,5,6} - 3\phi_{5,6,3} + \phi_{6,3,2} + \phi_{3,2,4} - 3\phi_{2,4,5}
11
         -\phi_{5,6,3} + 2\phi_{6,3,2} - 2\phi_{3,2,4} + \phi_{2,4,5}
12
        \phi_{7,3,2} - \phi_{7,3,6} + \phi_{8,4,5} - \phi_{8,4,2}
13
        \phi_{7,3,2} - \phi_{7,3,6} - \phi_{8,4,5} + \phi_{8,4,2}
14
        \phi_{10,6,3} - \phi_{10,6,5} + \phi_{9,5,6} - \phi_{9,5,4}
15
        \phi_{10,6,3} - \phi_{10,6,5} - \phi_{9,5,6} + \phi_{9,5,4}
16
        \tau_{5,6,3,2} - 3\tau_{6,3,2,4} + 3\tau_{3,2,4,5} - 3\tau_{2,4,5,6} + \tau_{3,6,5,4}
17
         -2\tau_{5,6,3,2}+\tau_{6,3,2,4}-\tau_{2,4,5,6}+2\tau_{3,6,5,4}
18
        \gamma_{7,3,2,6} + \gamma_{8,4,5,2}
19
        \gamma_{7,3,2,6} - \gamma_{8,4,5,2}
20
        \gamma_{10,6,3,5} + \gamma_{9,5,6,4}
21
        \gamma_{10,6,3,5} - \gamma_{9,5,6,4}
```

Table S237: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 1 1 603.17607.85603.36 603.27 2 612.43624.20612.520612.523 731.42727.34731.57731.331 4 759.65759.46759.66 759.660 05 844.41838.39844.34 844.342 6 860.43860.49860.16 860.437 877.52872.05877.55 877.5508 0 882.50 876.45882.52882.529 1012.31 1009.761012.431012.430 10 1061.141060.691061.351061.171 11 1090.49 1093.310 1090.461090.46 12 1160.711156.621160.701160.700 2 1217.7713 1226.871217.731217.7714 1289.601285.691289.591289.5901398.901416.520 15 1416.471416.520 16 1524.351512.971524.251524.25171591.821583.301591.711591.801 18 3257.603257.620 3274.653257.6219 3268.393284.343268.393268.390 20 0 3287.593303.223287.583287.58213295.053310.293295.043295.040

S1.80 1,3-Butadiene

Geometries

Table S238: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} 0.14744698-2.892733160.964406262 \mathbf{C} -0.23148527-1.37327643-1.031358680.231485273 \mathbf{C} 1.37327643-1.03135868 \mathbf{C} 2.892733164 -0.147446980.964406265 Η 0.89800063-2.163429752.725364186 Η -0.26186351-4.894402100.86513287Η 7 -0.89144700-2.19256181-2.793306028 Η 0.891447002.19256181-2.79330602-0.898000639 Η 2.163429752.7253641810 Η 0.261863514.894402100.86513287

Natural Internal Coordinates

Table S239: Symmetrized, unnormalized natural internal coordinates for 1,3-Butadiene.

```
1
        r_{1,2} + r_{3,4}
2
        r_{1,2} - r_{3,4}
3
        r_{2,3}
4
        r_{1,5} + r_{1,6} + r_{4,9} + r_{4,10}
5
        r_{1,5} + r_{1,6} - r_{4,9} - r_{4,10}
6
        r_{1,5} - r_{1,6} + r_{4,9} - r_{4,10}
7
        r_{1,5} - r_{1,6} - r_{4,9} + r_{4,10}
8
        r_{2,7} + r_{3,8}
9
        r_{2,7} - r_{3,8}
10
        \phi_{1,2,3} + \phi_{2,3,4}
        \phi_{1,2,3} - \phi_{2,3,4}
        2\phi_{5,1,6} - \phi_{5,1,2} - \phi_{6,1,2} + 2\phi_{9,4,10} - \phi_{9,4,3} - \phi_{10,4,3}
        2\phi_{5,1,6} - \phi_{5,1,2} - \phi_{6,1,2} - 2\phi_{9,4,10} + \phi_{9,4,3} + \phi_{10,4,3}
        \phi_{5,1,2} - \phi_{6,1,2} + \phi_{9,4,3} - \phi_{10,4,3}
15
        \phi_{5,1,2} - \phi_{6,1,2} - \phi_{9,4,3} + \phi_{10,4,3}
        \phi_{7,2,1} - \phi_{7,2,3} + \phi_{8,3,2} - \phi_{8,3,4}
17
        \phi_{7,2,1} - \phi_{7,2,3} - \phi_{8,3,2} + \phi_{8,3,4}
18
19
        \tau_{5,1,2,3} + \tau_{6,1,2,3} + \tau_{9,4,3,2} + \tau_{10,4,3,2}
20
        \tau_{5,1,2,3} + \tau_{6,1,2,3} - \tau_{9,4,3,2} - \tau_{10,4,3,2}
21
        \gamma_{2,1,5,6} + \gamma_{3,4,9,10}
22
        \gamma_{2,1,5,6} - \gamma_{3,4,9,10}
23
        \gamma_{7,2,1,3} + \gamma_{8,3,2,4}
24
        \gamma_{7,2,1,3} - \gamma_{8,3,2,4}
```

$\underline{ \mbox{ Table S240: Harmonic frequencies for reference and CMA data. } }$						
	Refer	rence	CMA-0A	CMA-2A(0.05)	n	
	CCSD(T)	MP2	MP2	MP2		
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ		
1	164.78	173.70	164.89	164.89	0	
2	271.87	267.75	271.84	271.84	0	
3	466.84	468.32	467.02	467.02	0	
4	610.05	611.18	609.97	609.97	0	
5	742.41	753.06	742.58	742.58	0	
6	886.41	884.96	886.50	886.50	0	
7	927.69	933.10	927.66	927.66	0	
8	929.55	934.50	929.55	929.55	0	
9	998.56	1010.88	998.70	998.70	0	
10	1017.20	1032.35	1017.18	1017.18	0	
11	1058.55	1056.31	1058.29	1058.29	0	
12	1098.92	1095.22	1098.97	1098.97	0	
13	1301.44	1299.57	1301.44	1301.44	0	
14	1333.34	1330.93	1333.51	1333.51	0	
15	1437.31	1435.30	1437.28	1437.28	0	
16	1468.45	1465.89	1468.37	1468.37	0	
17	1666.75	1656.11	1666.67	1666.67	0	
18	1674.83	1666.91	1674.81	1674.81	0	
19	3143.07	3159.11	3143.35	3143.35	0	
20	3145.60	3161.35	3145.62	3145.62	0	
21	3152.06	3169.91	3151.79	3151.79	0	
22	3164.73	3181.75	3164.69	3164.69	0	
23	3237.22	3258.54	3237.23	3237.23	0	
24	3238.88	3260.07	3238.87	3238.87	0	

S1.81 2-Butyne

Geometries

Table S241: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} -0.000000001.145160960.000000002 \mathbf{C} -0.00000000-1.145160960.000000003 \mathbf{C} -0.000000003.918313220.00000000 \mathbf{C} -3.918313224 0.00000000-0.000000005 Η 1.67000248 4.64975827-0.964176596 Η -1.670002654.64975827-0.964176297 Η 0.000000184.649758271.92835287Η -4.649758278 -0.000000181.92835287 9 Η 1.67000266-4.64975827-0.9641762810 Η -1.67000248-4.64975827-0.96417659

Natural Internal Coordinates

Table S242: Symmetrized, unnormalized natural internal coordinates for 2-Butyne.

```
1
         r_{1,2}
2
        r_{1,3} + r_{2,4}
3
        r_{1,3} - r_{2,4}
4
        r_{3,6} + r_{3,5} + r_{3,7} + r_{4,10} + r_{4,8} + r_{4,9}
5
        r_{3,6} + r_{3,5} + r_{3,7} - r_{4,10} - r_{4,8} - r_{4,9}
        2r_{3,6} - r_{3,5} - r_{3,7} + 2r_{4,10} - r_{4,8} - r_{4,9}
         2r_{3,6} - r_{3,5} - r_{3,7} - 2r_{4,10} + r_{4,8} + r_{4,9}
        r_{3,5} - r_{3,7} + r_{4,8} - r_{4,9}
         r_{3,5} - r_{3,7} - r_{4,8} + r_{4,9}
10 \phi_{6,3,1} + \phi_{5,3,1} + \phi_{7,3,1} - \phi_{5,3,7} - \phi_{6,3,5} - \phi_{6,3,7} + \phi_{10,4,2} + \phi_{8,4,2} + \phi_{9,4,2} - \phi_{8,4,9}
         -\phi_{10,4,8} - \phi_{10,4,9}
       \phi_{6,3,1} + \phi_{5,3,1} + \phi_{7,3,1} - \phi_{5,3,7} - \phi_{6,3,5} - \phi_{6,3,7} - \phi_{10,4,2} - \phi_{8,4,2} - \phi_{9,4,2} + \phi_{8,4,9}
         +\phi_{10,4,8} + \phi_{10,4,9}
        2\phi_{6,3,1} - \phi_{5,3,1} - \phi_{7,3,1} + 2\phi_{10,4,2} - \phi_{8,4,2} - \phi_{9,4,2}
13
        2\phi_{6,3,1} - \phi_{5,3,1} - \phi_{7,3,1} - 2\phi_{10,4,2} + \phi_{8,4,2} + \phi_{9,4,2}
14 \phi_{5,3,1} - \phi_{7,3,1} + \phi_{8,4,2} - \phi_{9,4,2}
15
        \phi_{5,3,1} - \phi_{7,3,1} - \phi_{8,4,2} + \phi_{9,4,2}
16
       2\phi_{5,3,7} - \phi_{6,3,5} - \phi_{6,3,7} + 2\phi_{8,4,9} - \phi_{10,4,8} - \phi_{10,4,9}
17
         2\phi_{5,3,7} - \phi_{6,3,5} - \phi_{6,3,7} - 2\phi_{8,4,9} + \phi_{10,4,8} + \phi_{10,4,9}
18
        \phi_{6,3,5} - \phi_{6,3,7} + \phi_{10,4,8} - \phi_{10,4,9}
19
        \phi_{6,3,5} - \phi_{6,3,7} - \phi_{10,4,8} + \phi_{10,4,9}
20
        \tau_{5,3,4,9} + \tau_{6,3,4,10} + \tau_{7,3,4,8}
         2\alpha_{6,3,1,2}^x - \alpha_{5,3,1,2}^x - \alpha_{7,3,1,2}^x + 2\alpha_{10,4,2,1}^x - \alpha_{8,4,2,1}^x - \alpha_{9,4,2,1}^x
21
22
        2\alpha_{6,3,1,2}^x - \alpha_{5,3,1,2}^x - \alpha_{7,3,1,2}^x - 2\alpha_{10,4,2,1}^x + \alpha_{8,4,2,1}^x + \alpha_{9,4,2,1}^x
        \alpha_{5,3,1,2}^x - \alpha_{7,3,1,2}^x + \alpha_{8,4,2,1}^x - \alpha_{9,4,2,1}^x
23
24 \alpha_{5,3,1,2}^x - \alpha_{7,3,1,2}^x - \alpha_{8,4,2,1}^x + \alpha_{9,4,2,1}^x
```

$\underline{ \mbox{ Table S243: Harmonic frequencies for reference and CMA data. } }$						
	Refer	rence	CMA-0A	CMA-2A(0.05)	n	
	CCSD(T)	MP2	MP2	MP2		
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ		
1	17.80	19.92	17.80	17.80	0	
2	197.33	197.41	197.33	197.33	0	
3	197.35	197.41	197.35	197.35	0	
4	348.81	354.25	348.83	348.82	1	
5	348.82	354.29	348.83	348.82	1	
6	716.45	714.98	716.46	716.46	0	
7	1046.03	1046.54	1046.04	1046.05	1	
8	1046.03	1046.55	1046.04	1046.05	1	
9	1067.92	1065.64	1067.94	1067.94	0	
10	1067.92	1065.65	1067.94	1067.94	0	
11	1167.27	1165.94	1167.28	1167.28	0	
12	1415.87	1408.81	1415.86	1415.86	0	
13	1420.58	1413.47	1420.60	1420.60	0	
14	1492.10	1494.21	1492.09	1492.09	0	
15	1492.12	1494.22	1492.11	1492.11	0	
16	1493.14	1495.33	1493.14	1493.14	0	
17	1493.16	1495.35	1493.15	1493.15	0	
18	2324.07	2302.31	2324.07	2324.07	0	
19	3042.19	3054.20	3042.11	3042.11	0	
20	3042.56	3055.26	3042.49	3042.49	0	
21	3113.29	3136.90	3113.29	3113.29	0	
22	3113.29	3136.94	3113.35	3113.35	0	
23	3113.85	3137.62	3113.84	3113.84	0	
24	3113.85	3137.69	3113.93	3113.93	0	

S1.82Bicylcobutane

Geometries

Table S244: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} -2.14477327-0.000000010.59607608 2 Χ -0.000000000.00000000-0.599972203 \mathbf{C} 2.144773270.000000010.59607608 \mathbf{C} 4 0.00000000-1.41792102-0.599972205 \mathbf{C} -0.000000001.41792102-0.599972206 Η 0.00000005-2.68099401-2.193121637 Η -0.000000052.68099401-2.19312163-2.306698878 Η -0.000000012.64760291 9 Η -3.93191124-0.00000001-0.40809085Η 10 2.306698870.000000012.64760291Η 3.931911240.00000001-0.4080908511

Natural Internal Coordinates

Table S245: Symmetrized, unnormalized natural internal coordinates for Bicylcobutane.

```
1
2
        r_{4,1} + r_{4,3} + r_{5,1} + r_{5,3}
3
        r_{4,1} + r_{4,3} - r_{5,1} - r_{5,3}
4
        r_{4,1} - r_{4,3} + r_{5,1} - r_{5,3}
5
        r_{4,1} - r_{4,3} - r_{5,1} + r_{5,3}
6
        r_{4,6} + r_{5,7}
7
        r_{4,6} - r_{5,7}
8
        r_{1,8} + r_{1,9} + r_{3,10} + r_{3,11}
9
        r_{1,8} + r_{1,9} - r_{3,10} - r_{3,11}
10 \quad r_{1,8} - r_{1,9} + r_{3,10} - r_{3,11}
11 r_{1,8} - r_{1,9} - r_{3,10} + r_{3,11}
12
        \phi_{6,4,1} - \phi_{6,4,3} + \phi_{7,5,1} - \phi_{7,5,3}
13 \phi_{6,4,1} - \phi_{6,4,3} - \phi_{7,5,1} + \phi_{7,5,3}
14 4\phi_{8,1,9} - \phi_{8,1,4} - \phi_{8,1,5} - \phi_{9,1,4} - \phi_{9,1,5} + 4\phi_{10,3,11} - \phi_{10,3,4} - \phi_{10,3,5} - \phi_{11,3,4} - \phi_{11,3,5}
15
        4\phi_{8,1,9}-\phi_{8,1,4}-\phi_{8,1,5}-\phi_{9,1,4}-\phi_{9,1,5}-4\phi_{10,3,11}+\phi_{10,3,4}+\phi_{10,3,5}+\phi_{11,3,4}+\phi_{11,3,5}
16
        \phi_{8,1,4} + \phi_{8,1,5} - \phi_{9,1,4} - \phi_{9,1,5} + \phi_{10,3,4} + \phi_{10,3,5} - \phi_{11,3,4} - \phi_{11,3,5}
17
       \phi_{8,1,4} + \phi_{8,1,5} - \phi_{9,1,4} - \phi_{9,1,5} - \phi_{10,3,4} - \phi_{10,3,5} + \phi_{11,3,4} + \phi_{11,3,5}
18
        \phi_{8,1,4} - \phi_{8,1,5} + \phi_{9,1,4} - \phi_{9,1,5} + \phi_{10,3,4} - \phi_{10,3,5} + \phi_{11,3,4} - \phi_{11,3,5}
19
        \phi_{8,1,4} - \phi_{8,1,5} + \phi_{9,1,4} - \phi_{9,1,5} - \phi_{10,3,4} + \phi_{10,3,5} - \phi_{11,3,4} + \phi_{11,3,5}
20
        \phi_{8,1,4} - \phi_{8,1,5} - \phi_{9,1,4} + \phi_{9,1,5} + \phi_{10,3,4} - \phi_{10,3,5} - \phi_{11,3,4} + \phi_{11,3,5}
21
        \phi_{8,1,4} - \phi_{8,1,5} - \phi_{9,1,4} + \phi_{9,1,5} - \phi_{10,3,4} + \phi_{10,3,5} + \phi_{11,3,4} - \phi_{11,3,5}
22
        	au_{3,4,5,1}
23
        \gamma_{6,4,1,3} + \gamma_{7,5,3,1}
24
        \gamma_{6,4,1,3} - \gamma_{7,5,3,1}
```

Table S246: Harmonic frequencies for reference and CMA data.						
	Reference		CMA-0A	CMA-2A(0.05)	n	
	CCSD(T)	MP2	MP2	MP2		
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ		
1	413.18	409.77	413.31	413.31	0	
2	664.94	655.84	665.01	665.01	0	
3	751.54	749.52	751.66	751.66	0	
4	865.50	859.13	866.00	865.93	1	
5	867.00	870.33	866.95	866.95	0	
6	925.74	927.99	925.71	925.77	1	
7	948.54	949.43	948.56	948.56	0	
8	1003.90	997.61	1004.02	1004.02	0	
9	1091.12	1082.06	1090.90	1090.90	0	
10	1106.79	1106.54	1106.86	1106.86	0	
11	1109.26	1107.92	1109.31	1109.31	0	
12	1145.12	1137.90	1146.41	1146.41	0	
13	1172.20	1163.71	1170.76	1170.76	0	
14	1185.40	1177.59	1185.26	1185.26	0	
15	1290.37	1287.31	1290.31	1290.31	0	
16	1320.75	1312.78	1320.80	1320.80	0	
17	1498.45	1496.02	1498.36	1498.36	0	
18	1533.54	1531.42	1533.52	1533.52	0	
19	3076.39	3091.77	3076.43	3076.43	0	
20	3082.35	3099.87	3082.41	3082.41	0	
21	3182.39	3203.94	3182.35	3182.35	0	
22	3184.18	3206.66	3184.11	3184.11	0	
23	3259.49	3276.75	3259.49	3259.49	0	
24	3272.01	3288.97	3272.00	3272.00	0	

S1.83Cyclobutane

Geometries

```
Table S247: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)
                                             -1.56928405
      1
           Х
                 0.00000000
                                0.00000000
      2
           \mathbf{C}
                -1.27271501
                                0.00000000
                                               1.49443431
      3
           \mathbf{C}
                 1.27271501
                                0.00000000
                                               1.49443431
           С
      4
               -1.48500902
                               -0.00000000
                                             -1.37404402
      5
           \mathbf{C}
                 1.48500902
                                0.00000000
                                             -1.37404402
      6
           Η
               -2.68110230
                               -0.00000000
                                               2.97904070
      7
           Η
                 2.68110230
                                0.00000000
                                               2.97904070
      8
           Η
               -2.34440091
                                1.68113477
                                             -2.20625364
      9
           Η
               -2.34440091
                               -1.68113477
                                             -2.20625364
           Η
      10
                 2.34440091
                               -1.68113477
                                             -2.20625364
           Η
                 2.34440091
                                1.68113477
                                             -2.20625364
      11
```

Natural Internal Coordinates

Table S248: Symmetrized, unnormalized natural internal coordinates for Cyclobutane.

```
1
         r_{2,3} + r_{4,5} + r_{2,4} + r_{3,5}
2
        r_{2,3} + r_{4,5} - r_{2,4} - r_{3,5}
3
        r_{2,3} - r_{4,5}
4
        r_{2,4} - r_{3,5}
5
         r_{2,6} + r_{3,7}
6
        r_{2,6} - r_{3,7}
7
        r_{4,8} + r_{4,9} + r_{5,10} + r_{5,11}
8
        r_{4,8} + r_{4,9} - r_{5,10} - r_{5,11}
9
         r_{4,8} - r_{4,9} + r_{5,10} - r_{5,11}
10 \quad r_{4,8} - r_{4,9} - r_{5,10} + r_{5,11}
11 \phi_{2,3,5} - \phi_{3,5,4} + \phi_{5,4,2} - \phi_{4,2,3}
        \phi_{6,2,3} - \phi_{6,2,4} + \phi_{7,3,2} - \phi_{7,3,5}
12
13 \phi_{6,2,3} - \phi_{6,2,4} - \phi_{7,3,2} + \phi_{7,3,5}
14 \quad 4\phi_{8,4,9} - \phi_{8,4,2} - \phi_{8,4,5} - \phi_{9,4,2} - \phi_{9,4,5} + 4\phi_{10,5,11} - \phi_{10,5,3} - \phi_{10,5,4} - \phi_{11,5,3} - \phi_{11,5,4}
15
        4\phi_{8,4,9} - \phi_{8,4,2} - \phi_{8,4,5} - \phi_{9,4,2} - \phi_{9,4,5} - 4\phi_{10,5,11} + \phi_{10,5,3} + \phi_{10,5,4} + \phi_{11,5,3} + \phi_{11,5,4}
16
        \phi_{8,4,2} + \phi_{8,4,5} - \phi_{9,4,2} - \phi_{9,4,5} + \phi_{10,5,3} + \phi_{10,5,4} - \phi_{11,5,3} - \phi_{11,5,4}
17
       \phi_{8,4,2} + \phi_{8,4,5} - \phi_{9,4,2} - \phi_{9,4,5} - \phi_{10,5,3} - \phi_{10,5,4} + \phi_{11,5,3} + \phi_{11,5,4}
18
         \phi_{8,4,2} - \phi_{8,4,5} + \phi_{9,4,2} - \phi_{9,4,5} + \phi_{10,5,3} - \phi_{10,5,4} + \phi_{11,5,3} - \phi_{11,5,4}
19
         \phi_{8,4,2} - \phi_{8,4,5} + \phi_{9,4,2} - \phi_{9,4,5} - \phi_{10,5,3} + \phi_{10,5,4} - \phi_{11,5,3} + \phi_{11,5,4}
20
         \phi_{8,4,2} - \phi_{8,4,5} - \phi_{9,4,2} + \phi_{9,4,5} + \phi_{10,5,3} - \phi_{10,5,4} - \phi_{11,5,3} + \phi_{11,5,4}
21
         \phi_{8,4,2} - \phi_{8,4,5} - \phi_{9,4,2} + \phi_{9,4,5} - \phi_{10,5,3} + \phi_{10,5,4} + \phi_{11,5,3} - \phi_{11,5,4}
22
        \tau_{2,3,5,4} - \tau_{3,5,4,2} + \tau_{5,4,2,3} - \tau_{4,2,3,5}
23
        \gamma_{6,2,3,4} + \gamma_{7,3,5,2}
24
         \gamma_{6,2,3,4} - \gamma_{7,3,5,2}
```

$\underline{ \mbox{ Table S249: Harmonic frequencies for reference and CMA data. } }$						
	Refer	rence	CMA-0A	CMA-2A(0.05)	n	
	CCSD(T)	MP2	MP2	MP2		
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ		
1	302.28	295.95	302.36	302.36	0	
2	644.45	643.28	644.54	644.54	0	
3	856.43	843.87	856.50	856.50	0	
4	864.96	868.94	864.92	864.92	0	
5	895.58	896.44	895.65	895.65	0	
6	901.87	902.24	901.88	901.88	0	
7	916.36	927.16	916.68	916.68	0	
8	1002.35	1002.52	1002.36	1002.36	0	
9	1029.84	1024.24	1029.74	1029.74	0	
10	1099.90	1100.17	1099.88	1099.88	0	
11	1134.81	1131.89	1135.05	1135.05	0	
12	1176.53	1173.10	1176.36	1176.36	0	
13	1219.17	1205.37	1218.92	1218.92	0	
14	1232.80	1226.09	1233.04	1233.04	0	
15	1323.48	1315.33	1323.27	1323.27	0	
16	1470.95	1467.98	1470.90	1470.90	0	
17	1493.88	1490.12	1493.91	1493.91	0	
18	1604.92	1595.32	1604.88	1604.88	0	
19	3052.18	3070.00	3052.17	3052.17	0	
20	3058.21	3073.98	3058.21	3058.21	0	
21	3097.01	3123.92	3097.00	3097.00	0	
22	3111.42	3136.64	3111.42	3111.42	0	
23	3181.94	3198.25	3181.94	3181.94	0	
24	3213.66	3230.26	3213.66	3213.66	0	

S1.84 Methylenecyclopropane

Geometries

```
Table S250: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)
      1
           \mathbf{C}
               -0.00000000
                              -0.00000000
                                             -3.08775292
      2
           \mathbf{C}
               -0.00000000
                              -0.00000000
                                             -0.58010955
                             -0.00000000
      3
           \mathbf{C}
                 1.45965770
                                              1.78621232
           \mathbf{C}
               -1.45965770
                                              1.78621232
      4
                                0.00000000
      5
           Η
                 1.75483322
                             -0.00000000
                                             -4.14277197
      6
           Η
               -1.75483322
                                0.00000000
                                             -4.14277197
      7
           Η
                 2.39963805
                                1.72748285
                                               2.35547647
           Η
                 2.39963805
                                               2.35547647
      8
                              -1.72748285
      9
           Η
               -2.39963805
                              -1.72748285
                                               2.35547647
      10
           Η
               -2.39963805
                                1.72748285
                                               2.35547647
```

Natural Internal Coordinates

Table S251: Symmetrized, unnormalized natural internal coordinates for Methylenecyclopropane.

```
1
         r_{1,2}
2
         r_{3,4} + r_{2,3} + r_{2,4}
3
         2r_{3,4} - r_{2,3} - r_{2,4}
4
         r_{2,3} - r_{2,4}
5
         r_{1,5} + r_{1,6}
6
        r_{1,5} - r_{1,6}
7
         r_{3,7} + r_{3,8} + r_{4,9} + r_{4,10}
         r_{3,7} + r_{3,8} - r_{4,9} - r_{4,10}
9
         r_{3,7} - r_{3,8} + r_{4,9} - r_{4,10}
        r_{3,7} - r_{3,8} - r_{4,9} + r_{4,10}
        \phi_{1,2,3} - \phi_{1,2,4}
11
12
        2\phi_{5,1,6} - \phi_{5,1,2} - \phi_{6,1,2}
13
        \phi_{5,1,2} - \phi_{6,1,2}
        4\phi_{7,3,8} - \phi_{7,3,2} - \phi_{7,3,4} - \phi_{8,3,2} - \phi_{8,3,4} + 4\phi_{9,4,10} - \phi_{9,4,2} - \phi_{9,4,3} - \phi_{10,4,2} - \phi_{10,4,3}
15
        4\phi_{7,3,8} - \phi_{7,3,2} - \phi_{7,3,4} - \phi_{8,3,2} - \phi_{8,3,4} - 4\phi_{9,4,10} + \phi_{9,4,2} + \phi_{9,4,3} + \phi_{10,4,2} + \phi_{10,4,3}
16
        \phi_{7,3,2} + \phi_{7,3,4} - \phi_{8,3,2} - \phi_{8,3,4} + \phi_{9,4,2} + \phi_{9,4,3} - \phi_{10,4,2} - \phi_{10,4,3}
17
        \phi_{7,3,2} + \phi_{7,3,4} - \phi_{8,3,2} - \phi_{8,3,4} - \phi_{9,4,2} - \phi_{9,4,3} + \phi_{10,4,2} + \phi_{10,4,3}
        \phi_{7,3,2} - \phi_{7,3,4} + \phi_{8,3,2} - \phi_{8,3,4} + \phi_{9,4,2} - \phi_{9,4,3} + \phi_{10,4,2} - \phi_{10,4,3}
19
        \phi_{7,3,2} - \phi_{7,3,4} + \phi_{8,3,2} - \phi_{8,3,4} - \phi_{9,4,2} + \phi_{9,4,3} - \phi_{10,4,2} + \phi_{10,4,3}
20
        \phi_{7,3,2} - \phi_{7,3,4} - \phi_{8,3,2} + \phi_{8,3,4} + \phi_{9,4,2} - \phi_{9,4,3} - \phi_{10,4,2} + \phi_{10,4,3}
21
         \phi_{7,3,2} - \phi_{7,3,4} - \phi_{8,3,2} + \phi_{8,3,4} - \phi_{9,4,2} + \phi_{9,4,3} + \phi_{10,4,2} - \phi_{10,4,3}
22
         \tau_{5,1,2,3} + \tau_{5,1,2,4} + \tau_{6,1,2,3} + \tau_{6,1,2,4}
23
         \gamma_{1,2,3,4}
24
        \gamma_{2,1,5,6}
```

Table S252: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 277.65274.80277.71277.712 349.27348.13349.32349.3203 0615.74618.36616.06616.060 4 737.67740.32737.77737.77753.14752.42753.1205 753.120 6 907.70 905.44907.70 907.70 7 908.26914.21908.30 908.300 8 953.99961.00953.80 953.800 9 1041.240 1041.01 1026.721041.24 0 10 1055.321057.261055.09 1055.0911 1072.851060.07 1072.961072.96 0 12 1097.511095.051097.511097.510 0 13 1147.391137.201147.301147.3014 1171.651170.631171.641171.640 0 15 1450.531449.231450.581450.5816 1455.650 1453.461455.611455.6117 1493.031489.041493.011493.0100 18 1819.351813.461819.301819.3019 3142.673126.9203126.923126.920 20 3130.333144.863130.323130.32213139.913155.363139.890 3139.8922 3207.303229.973207.333207.330 233219.403241.353219.403219.400 24 3225.953247.723225.950 3225.95

S1.85 Cyclobutane

Geometries

Table	S253	: CC	$\mathrm{CSD}(\mathrm{T})/\mathrm{cc} ext{-pV}$	TZ Cartesian	Coordinates (Bohr)
	1	$^{\mathrm{C}}$	1.44092954	1.44092961	0.27437752
	2	$^{\mathrm{C}}$	-1.44092954	-1.44092961	0.27437752
	3	С	-1.44092961	1.44092954	-0.27437752
	4	\mathbf{C}	1.44092961	-1.44092954	-0.27437752
	5	Η	2.65209587	2.65209594	-0.87006940
	6	Н	1.80908702	1.80908712	2.27117006
	7	Н	-2.65209587	-2.65209594	-0.87006940
	8	Н	-1.80908702	-1.80908712	2.27117006
	9	Н	-2.65209600	2.65209581	0.87006940
	10	Н	-1.80908711	1.80908703	-2.27117006
	11	Н	2.65209600	-2.65209581	0.87006940
	12	Н	1.80908711	-1.80908703	-2.27117006

Natural Internal Coordinates

Table S254: Symmetrized, unnormalized natural internal coordinates for Cyclobutane.

- $r_{1,3} + r_{3,2} + r_{2,4} + r_{4,5}$
- $2 r_{1,3} + r_{3,2} r_{2,4} r_{4,5}$
- $3 r_{1,3} r_{3,2} + r_{2,4} r_{4,5}$
- $r_{1,3} r_{3,2} r_{2,4} + r_{4,5}$
- $5 r_{1,5} + r_{1,6} + r_{3,9} + r_{3,10} + r_{2,7} + r_{2,8} + r_{4,11} + r_{4,12}$
- $r_{1,5} + r_{1,6} + r_{3,9} + r_{3,10} r_{2,7} r_{2,8} r_{4,11} r_{4,12}$
- $7 r_{1,5} + r_{1,6} r_{3,9} r_{3,10} + r_{2,7} + r_{2,8} r_{4,11} r_{4,12}$
- $r_{1,5} + r_{1,6} r_{3,9} r_{3,10} r_{2,7} r_{2,8} + r_{4,11} + r_{4,12}$
- $9 r_{1,5} r_{1,6} + r_{3,9} r_{3,10} + r_{2,7} r_{2,8} + r_{4,11} r_{4,12}$
- $10 \quad r_{1,5} r_{1,6} + r_{3,9} r_{3,10} r_{2,7} + r_{2,8} r_{4,11} + r_{4,12}$
- $r_{1,5} r_{1,6} r_{3,9} + r_{3,10} + r_{2,7} r_{2,8} r_{4,11} + r_{4,12}$
- $r_{1,5} r_{1,6} r_{3,9} + r_{3,10} r_{2,7} + r_{2,8} + r_{4,11} r_{4,12}$
- $\phi_{4,1,3} \phi_{1,3,2} + \phi_{2,3,4} \phi_{2,4,1}$
- $14 \quad 4\phi_{5,1,6} \phi_{5,1,3} \phi_{5,1,4} \phi_{6,1,3} \phi_{6,1,4} + 4\phi_{9,3,10} \phi_{9,3,1} \phi_{9,3,2} \phi_{10,3,1} \phi_{10,3,2} + 4\phi_{7,2,8} \phi_{7,2,3} \phi_{7,2,4} \phi_{8,2,3} \phi_{8,2,4} + 4\phi_{11,4,12} \phi_{11,4,2} \phi_{11,4,1} \phi_{12,4,2} \phi_{12,4,1}$
- $4\phi_{5,1,6} \phi_{5,1,3} \phi_{5,1,4} \phi_{6,1,3} \phi_{6,1,4} + 4\phi_{9,3,10} \phi_{9,3,1} \phi_{9,3,2} \phi_{10,3,1} \phi_{10,3,2} 4\phi_{7,2,8} + \phi_{7,2,3} + \phi_{7,2,4} + \phi_{8,2,3} + \phi_{8,2,4} 4\phi_{11,4,12} + \phi_{11,4,2} + \phi_{11,4,1} + \phi_{12,4,2} + \phi_{12,4,1}$
- $4\phi_{5,1,6} \phi_{5,1,3} \phi_{5,1,4} \phi_{6,1,3} \phi_{6,1,4} 4\phi_{9,3,10} + \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,3,1} + \phi_{10,3,2} + 4\phi_{7,2,8} \phi_{7,2,3} \phi_{7,2,4} \phi_{8,2,3} \phi_{8,2,4} 4\phi_{11,4,12} + \phi_{11,4,2} + \phi_{11,4,1} + \phi_{12,4,2} + \phi_{12,4,1}$
- $4\phi_{5,1,6} \phi_{5,1,3} \phi_{5,1,4} \phi_{6,1,3} \phi_{6,1,4} 4\phi_{9,3,10} + \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,3,1} + \phi_{10,3,2} 4\phi_{7,2,8} + \phi_{7,2,3} + \phi_{7,2,4} + \phi_{8,2,3} + \phi_{8,2,4} + 4\phi_{11,4,12} \phi_{11,4,2} \phi_{11,4,1} \phi_{12,4,2} \phi_{12,4,1}$
- $\phi_{5,1,3} + \phi_{5,1,4} \phi_{6,1,3} \phi_{6,1,4} + \phi_{9,3,1} + \phi_{9,3,2} \phi_{10,3,1} \phi_{10,3,2} + \phi_{7,2,3} + \phi_{7,2,4} \phi_{8,2,3} \phi_{8,2,4} + \phi_{11,4,2} + \phi_{11,4,1} \phi_{12,4,2} \phi_{12,4,1}$
- $\phi_{5,1,3} + \phi_{5,1,4} \phi_{6,1,3} \phi_{6,1,4} + \phi_{9,3,1} + \phi_{9,3,2} \phi_{10,3,1} \phi_{10,3,2} \phi_{7,2,3} \phi_{7,2,4} + \phi_{8,2,3} + \phi_{8,2,4} \phi_{11,4,2} \phi_{11,4,1} + \phi_{12,4,2} + \phi_{12,4,1}$
- $\phi_{5,1,3} + \phi_{5,1,4} \phi_{6,1,3} \phi_{6,1,4} \phi_{9,3,1} \phi_{9,3,2} + \phi_{10,3,1} + \phi_{10,3,2} + \phi_{7,2,3} + \phi_{7,2,4} \phi_{8,2,3} \phi_{8,2,4} \phi_{11,4,2} \phi_{11,4,1} + \phi_{12,4,2} + \phi_{12,4,1}$
- $\phi_{5,1,3} + \phi_{5,1,4} \phi_{6,1,3} \phi_{6,1,4} \phi_{9,3,1} \phi_{9,3,2} + \phi_{10,3,1} + \phi_{10,3,2} \phi_{7,2,3} \phi_{7,2,4} + \phi_{8,2,3} + \phi_{8,2,4} + \phi_{11,4,2} + \phi_{11,4,1} \phi_{12,4,2} \phi_{12,4,1}$
- $\phi_{5,1,3} \phi_{5,1,4} + \phi_{6,1,3} \phi_{6,1,4} + \phi_{9,3,1} \phi_{9,3,2} + \phi_{10,3,1} \phi_{10,3,2} + \phi_{7,2,3} \phi_{7,2,4} + \phi_{8,2,3} \phi_{8,2,4} + \phi_{11,4,2} \phi_{11,4,1} + \phi_{12,4,2} \phi_{12,4,1}$
- $\phi_{5,1,3} \phi_{5,1,4} + \phi_{6,1,3} \phi_{6,1,4} + \phi_{9,3,1} \phi_{9,3,2} + \phi_{10,3,1} \phi_{10,3,2} \phi_{7,2,3} + \phi_{7,2,4} \phi_{8,2,3} + \phi_{8,2,4} \phi_{11,4,2} + \phi_{11,4,1} \phi_{12,4,2} + \phi_{12,4,1}$
- $\phi_{5,1,3} \phi_{5,1,4} + \phi_{6,1,3} \phi_{6,1,4} \phi_{9,3,1} + \phi_{9,3,2} \phi_{10,3,1} + \phi_{10,3,2} + \phi_{7,2,3} \phi_{7,2,4} + \phi_{8,2,3} \phi_{8,2,4} \phi_{11,4,2} + \phi_{11,4,1} \phi_{12,4,2} + \phi_{12,4,1}$
- $\phi_{5,1,3} \phi_{5,1,4} + \phi_{6,1,3} \phi_{6,1,4} \phi_{9,3,1} + \phi_{9,3,2} \phi_{10,3,1} + \phi_{10,3,2} \phi_{7,2,3} + \phi_{7,2,4} \phi_{8,2,3} + \phi_{8,2,4} + \phi_{11,4,2} \phi_{11,4,1} + \phi_{12,4,2} \phi_{12,4,1}$
- $\phi_{5,1,3} \phi_{5,1,4} \phi_{6,1,3} + \phi_{6,1,4} + \phi_{9,3,1} \phi_{9,3,2} \phi_{10,3,1} + \phi_{10,3,2} + \phi_{7,2,3} \phi_{7,2,4} \phi_{8,2,3} + \phi_{8,2,4} + \phi_{11,4,2} \phi_{11,4,1} \phi_{12,4,2} + \phi_{12,4,1}$
- $\phi_{5,1,3} \phi_{5,1,4} \phi_{6,1,3} + \phi_{6,1,4} + \phi_{9,3,1} \phi_{9,3,2} \phi_{10,3,1} + \phi_{10,3,2} \phi_{7,2,3} + \phi_{7,2,4} + \phi_{8,2,3} \phi_{8,2,4} \phi_{11,4,2} + \phi_{11,4,1} + \phi_{12,4,2} \phi_{12,4,1}$
- $\phi_{5,1,3} \phi_{5,1,4} \phi_{6,1,3} + \phi_{6,1,4} \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,3,1} \phi_{10,3,2} + \phi_{7,2,3} \phi_{7,2,4} \phi_{8,2,3} + \phi_{8,2,4} \phi_{11,4,2} + \phi_{11,4,1} + \phi_{12,4,2} \phi_{12,4,1}$
- $\phi_{5,1,3} \phi_{5,1,4} \phi_{6,1,3} + \phi_{6,1,4} \phi_{9,3,1} + \phi_{9,3,2} + \phi_{10,3,1} \phi_{10,3,2} \phi_{7,2,3} + \phi_{7,2,4} + \phi_{8,2,3} \phi_{8,2,4} + \phi_{11,4,2} \phi_{11,4,1} \phi_{12,4,2} + \phi_{12,4,1}$
- $\tau_{1,3,2,4} \tau_{3,2,4,1} + \tau_{2,4,1,3} \tau_{4,1,3,2}$

Table S255: Harmonic frequencies for reference and CMA data. Reference CMA-0A CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 1 230.64224.33230.65 230.6502 620.26615.47620.48620.480 3 755.06753.12755.09 755.090 755.06755.150 4 755.55755.155 909.40904.46909.350 909.350 6 916.90919.07916.93916.937 0 916.90919.24916.94916.948 0 942.94946.24943.02 943.029 0 958.26960.15958.27 958.2710 1025.351025.141025.361025.360 11 1166.92 1168.701168.700 1167.7012 0 1180.551173.251180.201180.20 13 1253.511250.661254.011254.010 14 1253.511252.80 1254.901254.900 15 1254.841255.041255.421255.420 0 16 1259.25 1257.251257.391257.39 17 1288.371278.431287.681287.680 1288.370 18 1282.441287.861287.8619 0 1486.521484.22 1486.471486.4720 1486.521485.561486.661486.66 0 21 1493.48 1492.941493.33 1493.33 0 22 0 1526.191524.611526.111526.110 23 3058.08 3075.293058.233058.23 24 3058.793075.723058.693058.69 0 25 3058.793075.893058.903058.900 26 3063.38 3078.663063.853063.850 27 0 3104.843128.893104.283104.2828 0 3115.63 3141.233115.463115.4629 3115.633141.393115.623115.620 30 3131.28 0 3155.623131.383131.38

S1.86 Isobutene

${\bf Geometries}$

Tabla	9256		VT) /00 PV	T7 Cartagian	Coordinates (Pohr)	
rabie	5250	: 00	25D(1)/cc-pv	12 Cartesian	Coordinates (Bohr)	
	1	\mathbf{C}	-0.00000000	0.00000000	2.71646372	
	2	\mathbf{C}	-0.00000000	0.00000000	0.18428612	
	3	\mathbf{C}	0.00000001	2.41084481	-1.32906270	
	4	\mathbf{C}	-0.00000001	-2.41084481	-1.32906270	
	5	Η	0.00000000	1.75056828	3.77931442	
	6	Η	-0.00000000	-1.75056828	3.77931442	
	7	Η	0.00000001	4.07103635	-0.10803955	
	8	Η	1.66120238	2.49911784	-2.55785943	
	9	Η	-1.66120264	2.49911759	-2.55785931	
	10	Η	-0.00000001	-4.07103635	-0.10803955	
	11	Н	-1.66120238	-2.49911784	-2.55785943	
	12	Н	1.66120264	-2.49911759	-2.55785931	

Natural Internal Coordinates

```
Table S257: Symmetrized, unnormalized natural internal coordinates for Isobutene.
```

```
1
        r_{1,2}
2 \qquad r_{2,3} + r_{2,4}
3 r_{2,3} - r_{2,4}
4 \qquad r_{1,5} + r_{1,6}
5 r_{1,5} - r_{1,6}
6
     r_{3,7} + r_{3,9} + r_{3,8} + r_{4,10} + r_{4,11} + r_{4,12}
7
        r_{3,7} + r_{3,9} + r_{3,8} - r_{4,10} - r_{4,11} - r_{4,12}
8
      2r_{3,7} - r_{3,9} - r_{3,8} + 2r_{4,10} - r_{4,11} - r_{4,12}
9 2r_{3,7} - r_{3,9} - r_{3,8} - 2r_{4,10} + r_{4,11} + r_{4,12}
10 \quad r_{3,9} - r_{3,8} + r_{4,11} - r_{4,12}
11 r_{3,9} - r_{3,8} - r_{4,11} + r_{4,12}
12 2\phi_{3,2,4} - \phi_{3,2,1} - \phi_{4,2,1}
13 \phi_{3,2,1} - \phi_{4,2,1}
14 2\phi_{5,1,6} - \phi_{5,1,2} - \phi_{6,1,2}
15 \phi_{5,1,2} - \phi_{6,1,2}
16 \phi_{7,3,2} + \phi_{9,3,2} + \phi_{8,3,2} - \phi_{8,3,9} - \phi_{7,3,9} - \phi_{7,3,8} + \phi_{10,4,2} + \phi_{11,4,2} + \phi_{12,4,2} - \phi_{11,4,12}
         -\phi_{10,4,11} - \phi_{10,4,12}
17 \quad \phi_{7,3,2} + \phi_{9,3,2} + \phi_{8,3,2} - \phi_{8,3,9} - \phi_{7,3,9} - \phi_{7,3,8} - \phi_{10,4,2} - \phi_{11,4,2} - \phi_{12,4,2} + \phi_{11,4,12}
         +\phi_{10,4,11}+\phi_{10,4,12}
18 \quad 2\phi_{7,3,2} - \phi_{9,3,2} - \phi_{8,3,2} + 2\phi_{10,4,2} - \phi_{11,4,2} - \phi_{12,4,2}
19 2\phi_{7,3,2} - \phi_{9,3,2} - \phi_{8,3,2} - 2\phi_{10,4,2} + \phi_{11,4,2} + \phi_{12,4,2}
20 \quad \phi_{9,3,2} - \phi_{8,3,2} + \phi_{11,4,2} - \phi_{12,4,2}
21 \phi_{9,3,2} - \phi_{8,3,2} - \phi_{11,4,2} + \phi_{12,4,2}
22 \quad 2\phi_{8,3,9} - \phi_{7,3,9} - \phi_{7,3,8} + 2\phi_{11,4,12} - \phi_{10,4,11} - \phi_{10,4,12}
23 \quad 2\phi_{8,3,9} - \phi_{7,3,9} - \phi_{7,3,8} - 2\phi_{11,4,12} + \phi_{10,4,11} + \phi_{10,4,12}
24 \phi_{7,3,9} - \phi_{7,3,8} + \phi_{10,4,11} - \phi_{10,4,12}
25 \phi_{7,3,9} - \phi_{7,3,8} - \phi_{10,4,11} + \phi_{10,4,12}
26 \quad \gamma_{1,2,3,4}
27 \quad \gamma_{2,1,5,6}
28 \quad \tau_{6,1,2,4} + \tau_{5,1,2,3}
29 \quad \tau_{7,3,2,1} + \tau_{9,3,2,1} + \tau_{8,3,2,1} + \tau_{7,3,2,4} + \tau_{9,3,2,4} + \tau_{8,3,2,4} + \tau_{10,4,2,1} + \tau_{11,4,2,1} + \tau_{12,4,2,1} + \tau_{10,4,2,3}
```

 $30 \quad \tau_{7,3,2,1} + \tau_{9,3,2,1} + \tau_{8,3,2,1} + \tau_{7,3,2,4} + \tau_{9,3,2,4} + \tau_{8,3,2,4} - \tau_{10,4,2,1} - \tau_{11,4,2,1} - \tau_{12,4,2,1} - \tau_{10,4,2,3}$

 $+\tau_{11,4,2,3}+\tau_{12,4,2,3}$

 $-\tau_{11,4,2,3}-\tau_{12,4,2,3}$

Table S258: Harmonic frequencies for reference and CMA data. Reference CMA-0A CMA-2A(0.05)CCSD(T)MP2MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 1 161.02164.97161.05161.0502 206.05210.54206.05 206.050 3 368.49367.10368.49368.490 424.330 4 424.36424.74424.335 425.380 426.37426.42426.420 6 702.97710.00703.22703.227 0 818.69817.06818.71818.718 0 905.25910.55905.26 905.269 0 963.57959.99963.59 963.59 10 988.25985.44988.26988.260 1019.60 0 11 1019.761021.151019.6012 0 1081.39 1078.021081.421081.42 13 1103.261099.421103.271103.270 14 1305.991297.701306.081306.08 0 15 1410.680 1410.431402.461410.680 16 1414.34 1402.741414.231414.2317 1447.531445.171447.341447.340 1478.410 18 1478.951478.401478.4019 0 1491.261491.93 1491.251491.2520 1495.101496.741495.091495.090 21 1506.871507.531506.891506.890 22 0 1710.581703.281710.531710.530 23 3020.523033.413020.583020.58 24 3024.21 3036.243024.280 3024.2825 3077.663103.203077.673077.67 0 26 3079.753104.293079.603079.600 27 0 3119.463143.273119.463119.4628 0 3121.463144.543121.483121.4829 3140.783155.983140.773140.770 30 3226.120 3248.143226.113226.11

S1.87 Pyrrole

Geometries

Table S259: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Ν 0.000000000.00000000-2.120014082 \mathbf{C} -0.000000002.12543160-0.627150503 \mathbf{C} -0.00000000-2.12543160-0.62715050-0.00000000 \mathbf{C} -1.349284251.861286524 5 \mathbf{C} 0.000000001.349284251.861286526 Η 0.000000003.98802740-1.44697684Η 7 -0.00000000-3.98802740-1.446976840.00000000-2.574299478 Η 3.48805942 9 Η 0.000000002.574299473.4880594210 Η 0.000000000.00000000-4.01523914

Natural Internal Coordinates

Table S260: Symmetrized, unnormalized natural internal coordinates for Pyrrole.

```
1
        r_{1,10}
2
        r_{4,5} + r_{2,5} + r_{3,4} + r_{1,2} + r_{1,3}
3
        3r_{4,5} + r_{2,5} + r_{3,4} - 3r_{1,2} - 3r_{1,3}
4
        2r_{2,5} - 2r_{3,4} + r_{1,2} - r_{1,3}
5
        3r_{4,5} - 3r_{2,5} - 3r_{3,4} + r_{1,2} + r_{1,3}
        r_{2,5} - r_{3,4} - 2r_{1,2} + 2r_{1,3}
        r_{2,6} + r_{3,7}
8
        r_{2,6} - r_{3,7}
9
        r_{4,8} + r_{5,9}
10
       r_{4,8} - r_{5,9}
11
        \phi_{10,1,2} - \phi_{10,1,3}
12
        3\phi_{2,1,3} - 3\phi_{1,2,5} - 3\phi_{1,3,4} + \phi_{2,5,4} + \phi_{3,4,5}
13
        -\phi_{1,2,5} + \phi_{1,3,4} + 2\phi_{2,5,4} - 2\phi_{3,4,5}
14
        \phi_{6,2,1} - \phi_{6,2,5} + \phi_{7,3,1} - \phi_{7,3,4}
15
        \phi_{6,2,1} - \phi_{6,2,5} - \phi_{7,3,1} + \phi_{7,3,4}
16
        \phi_{8,4,3} - \phi_{8,4,5} + \phi_{9,5,2} - \phi_{9,5,4}
17
         \phi_{8,4,3} - \phi_{8,4,5} - \phi_{9,5,2} + \phi_{9,5,4}
18
        3\tau_{2,5,4,3} + \tau_{4,3,1,2} + \tau_{3,1,2,5} - 3\tau_{5,4,3,1} - 3\tau_{1,2,5,4}
19
        2\tau_{4,3,1,2} - 2\tau_{3,1,2,5} - \tau_{5,4,3,1} + \tau_{1,2,5,4}
20
        \gamma_{10,1,3,2}
21
        \gamma_{6,2,1,5} + \gamma_{7,3,4,1}
22
        \gamma_{6,2,1,5} - \gamma_{7,3,4,1}
23
        \gamma_{8,4,5,3} + \gamma_{9,5,2,4}
24
        \gamma_{8,4,5,3} - \gamma_{9,5,2,4}
```

Table S261: Harmonic frequencies for reference and CMA data.					
	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	441.88	475.16	442.38	442.35	1
2	615.62	619.22	615.74	615.64	1
3	634.23	643.44	634.28	634.15	1
4	689.51	679.30	689.71	689.71	0
5	732.17	729.73	732.24	732.26	1
6	825.18	817.74	824.81	824.91	1
7	854.80	853.99	854.55	854.62	1
8	868.69	862.38	868.76	868.76	0
9	889.60	884.03	889.61	889.61	0
10	1032.96	1031.24	1033.01	1033.01	0
11	1065.99	1063.65	1066.05	1066.05	0
12	1094.84	1100.08	1095.54	1095.02	2
13	1159.51	1160.93	1160.11	1159.45	1
14	1167.23	1164.53	1167.19	1167.19	0
15	1310.43	1305.07	1310.64	1310.64	0
16	1423.16	1415.40	1423.60	1423.12	2
17	1465.60	1468.23	1465.76	1465.33	2
18	1508.88	1506.22	1508.04	1508.86	2
19	1572.76	1562.95	1571.83	1572.74	1
20	3246.88	3264.03	3246.85	3246.85	0
21	3257.75	3273.66	3257.77	3257.77	0
22	3272.13	3287.47	3272.10	3272.10	0
23	3279.10	3294.26	3279.12	3279.12	0
24	3700.44	3711.27	3700.44	3700.44	0

S1.88 Pyradine

Geometries

Table S262: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} 0.000000000.00000000-2.676752772 \mathbf{C} -1.32678046-0.000000002.263704993 \mathbf{C} 0.00000000-2.26370499-1.32678046 \mathbf{C} 4 0.000000002.157697261.31051941 5 \mathbf{C} -0.00000000-2.157697261.31051941 6 Ν -0.00000000-0.000000002.643189467 Η -0.000000000.00000000-4.723217794.071984248 Η 0.00000000-2.282215009 Η -0.00000000-4.07198424-2.2822150010 Η 0.000000002.410559703.8871685111 Η -0.00000000-3.887168512.41055970

Natural Internal Coordinates

Table S263: Symmetrized, unnormalized natural internal coordinates for Pyradine.

```
r_{5,3} + r_{3,1} + r_{1,2} + r_{2,4} + r_{4,6} + r_{6,5}
2
        r_{5,3} - r_{3,1} + r_{1,2} - r_{2,4} + r_{4,6} - r_{6,5}
3
        2r_{5,3} - r_{3,1} - r_{1,2} + 2r_{2,4} - r_{4,6} - r_{6,5}
4
        2r_{5,3} + r_{3,1} - r_{1,2} - 2r_{2,4} - r_{4,6} + r_{6,5}
5
        r_{3,1} + r_{1,2} - r_{4,6} - r_{6,5}
6
        r_{3,1} - r_{1,2} + r_{4,6} - r_{6,5}
        r_{5,11} + r_{4,10}
        r_{5,11} - r_{4,10}
9
        r_{3,9} + r_{2,8}
10
       r_{3,9} - r_{2,8}
11
      r_{1.7}
12
        \phi_{5,3,1} - \phi_{3,1,2} + \phi_{1,2,4} - \phi_{2,4,6} + \phi_{4,6,5} - \phi_{6,5,3}
13 2\phi_{5,3,1} - \phi_{3,1,2} - \phi_{1,2,4} + 2\phi_{2,4,6} - \phi_{4,6,5} - \phi_{6,5,3}
14 \phi_{3,1,2} - \phi_{1,2,4} + \phi_{4,6,5} - \phi_{6,5,3}
15 \phi_{11,5,6} - \phi_{11,5,3} + \phi_{10,4,6} - \phi_{10,4,2}
16
       \phi_{11,5,6} - \phi_{11,5,3} - \phi_{10,4,6} + \phi_{10,4,2}
17 \phi_{9,3,5} - \phi_{9,3,1} + \phi_{8,2,1} - \phi_{8,2,4}
18 \phi_{9,3,5} - \phi_{9,3,1} - \phi_{8,2,1} + \phi_{8,2,4}
19 \phi_{7,1,2} - \phi_{7,1,3}
20 \tau_{5,3,1,2} - \tau_{3,1,2,4} + \tau_{1,2,4,6} - \tau_{2,4,6,5} + \tau_{4,6,5,3} - \tau_{6,5,3,1}
21 \tau_{5,3,1,2} - \tau_{1,2,4,6} + \tau_{2,4,6,5} - \tau_{6,5,3,1}
22
       -\tau_{5,3,1,2} + 2\tau_{3,1,2,4} - \tau_{1,2,4,6} - \tau_{2,4,6,5} + 2\tau_{4,6,5,3} - \tau_{6,5,3,1}
23 \gamma_{11,5,3,6} + \gamma_{10,4,6,2}
24 \gamma_{11,5,3,6} - \gamma_{10,4,6,2}
25
       \gamma_{9,3,1,5} + \gamma_{8,2,4,1}
26
        \gamma_{9,3,1,5} - \gamma_{8,2,4,1}
27
        \gamma_{7,1,2,3}
```

Table S264: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	378.44	380.58	378.45	378.45	0
2	409.22	410.92	409.23	409.23	0
3	603.31	598.28	603.33	603.33	0
4	656.98	653.89	656.99	656.99	0
5	711.89	721.89	712.25	712.25	0
6	753.17	755.51	753.19	752.87	1
7	890.79	900.98	891.35	891.35	0
8	953.64	949.47	953.76	953.76	0
9	995.11	993.06	994.60	994.60	0
10	996.87	1001.37	996.46	996.71	1
11	1001.24	1001.53	1001.41	1001.41	0
12	1043.14	1040.70	1043.14	1043.14	0
13	1071.35	1070.09	1071.42	1071.42	0
14	1087.86	1085.89	1087.79	1087.79	0
15	1158.82	1164.77	1163.69	1160.84	1
16	1236.72	1236.85	1236.80	1236.80	0
17	1266.95	1373.79	1294.55	1267.51	1
18	1379.21	1387.70	1356.60	1376.98	3
19	1464.66	1462.98	1458.21	1465.11	1
20	1510.12	1499.80	1510.22	1510.22	0
21	1618.43	1607.59	1617.95	1617.95	0
22	1630.29	1615.76	1630.11	1630.11	0
23	3168.42	3184.23	3168.42	3168.42	0
24	3169.83	3185.67	3169.86	3169.86	0
25	3187.57	3203.93	3187.62	3187.62	0
26	3204.49	3221.97	3204.47	3204.47	0
27	3212.85	3228.80	3212.79	3212.79	0

S1.89 Sulfur Dioxide

Geometries

Table S265: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	\mathbf{S}	0.00000000	0.00000000	0.68492417
2	Ο	0.00000000	-2.35105565	-0.68454394
3	Ο	0.00000000	2.35105565	-0.68454394

Natural Internal Coordinates

Table S266: Symmetrized, unnormalized natural internal coordinates for Sulfur Dioxide.

1
$$r_{1,2} + r_{1,3}$$

$$2 r_{1,2} - r_{1,3}$$

$$3 \quad \phi_{2,1,3}$$

Table S267: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	519.25	515.52	519.27	519.27	0
2	1169.10	1164.04	1169.09	1169.09	0
3	1388.91	1395.57	1388.91	1388.91	0

S1.90 Hydrogen Sulfide

Geometries

Table S268: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	\mathbf{S}	0.00000000	0.00000000	0.10390451
2	Η	0.00000000	-1.82244988	-1.64812453
3	Η	0.00000000	1.82244988	-1.64812453

Natural Internal Coordinates

Table S269: Symmetrized, unnormalized natural internal coordinates for Hydrogen Sulfide.

1
$$r_{1,2} + r_{1,3}$$

$$2 r_{1,2} - r_{1,3}$$

$$3 \quad \phi_{2,1,3}$$

Table S270: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1209.65	1208.58	1209.65	1209.65	0
2	2722.07	2745.91	2722.08	2722.08	0
3	2736.76	2764.62	2736.76	2736.76	0

S1.91 Carbonyl Sulfide

Geometries

Table	S27	1: C	$\mathrm{CSD}(\mathrm{T})/\mathrm{cc} ext{-pV}$	TZ Cartesian	Coordinates (Bohr)
	1	\mathbf{S}	-0.00000000	-0.00000000	1.97114916
	2	\mathbf{C}	0.00000000	-0.00000000	-0.99620667
	3	X	1.88972652	-0.00000000	-0.99620667
	4	Ο	0.00000000	0.00000000	-3.19271727
	5	X	0.00000000	1.88972652	-0.99620667

Natural Internal Coordinates

Table S272: Symmetrized, unnormalized natural internal coordinates for Carbonyl Sulfide.

- $1 r_{1,2}$
- $2 r_{2,4}$
- $\theta_{1,2,4,3}$
- 4 $\theta_{1,2,4,5}$

Table S273: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	523.09	525.27	523.09	523.09	0
2	523.09	525.29	523.09	523.09	0
3	869.09	879.34	869.41	869.09	1
4	2091.68	2124.84	2091.55	2091.68	1

S1.92 Thiirane

Geometries

Table S274: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{S} -0.000000000.00000000-1.504175122 \mathbf{C} -1.405204041.64054308 0.000000003 \mathbf{C} 1.405204040.000000001.64054308 4 H -2.363081752.162716551.729686425 H -2.36308175-1.729686422.162716552.363081756 Η -1.729686422.162716557 Η 2.363081751.729686422.16271655

Natural Internal Coordinates

Table S275: Symmetrized, unnormalized natural internal coordinates for Thiirane.

```
1 r_{1,2} + r_{1,3} + r_{2,3}
```

$$2 r_{1,2} - r_{1,3}$$

$$3 -r_{1,2} - r_{1,3} + 2r_{2,3}$$

$$4 \qquad r_{2,4} + r_{2,5} + r_{3,6} + r_{3,7}$$

$$5 \qquad r_{2,4} + r_{2,5} - r_{3,6} - r_{3,7}$$

$$6 \qquad r_{2,4} - r_{2,5} + r_{3,6} - r_{3,7}$$

$$7 \qquad r_{2,4} - r_{2,5} - r_{3,6} + r_{3,7}$$

$$8 4\phi_{4,2,5} + 4\phi_{6,3,7} - \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} - \phi_{2,3,6} - \phi_{1,3,7} - \phi_{2,3,7}$$

$$9 4\phi_{4,2,5} - 4\phi_{6,3,7} - \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} + \phi_{2,3,6} + \phi_{1,3,7} + \phi_{2,3,7}$$

10
$$\phi_{1,2,4} + \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} + \phi_{2,3,6} - \phi_{1,3,7} - \phi_{2,3,7}$$

11
$$\phi_{1,2,4} + \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} - \phi_{2,3,6} + \phi_{1,3,7} + \phi_{2,3,7}$$

12
$$\phi_{1,2,4} - \phi_{3,2,4} + \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} - \phi_{2,3,6} + \phi_{1,3,7} - \phi_{2,3,7}$$

13
$$\phi_{1,2,4} - \phi_{3,2,4} + \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} + \phi_{2,3,6} - \phi_{1,3,7} + \phi_{2,3,7}$$

14
$$\phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} + \phi_{3,2,5} + \phi_{1,3,6} - \phi_{2,3,6} - \phi_{1,3,7} + \phi_{2,3,7}$$

15 $\phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} + \phi_{3,2,5} - \phi_{1,3,6} + \phi_{2,3,6} + \phi_{1,3,7} - \phi_{2,3,7}$

Table S276: Harmonic frequencies for reference and CMA data. Reference CMA-0ACMA-2A(0.05)CCSD(T)MP2MP2 ${\rm MP2}$ /cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 01 640.95643.30640.97640.972 679.820687.93679.84679.840 3 833.27834.17833.28833.284 904.36909.91904.39904.390 0 962.71962.53962.705 962.706 1048.531045.381048.621048.620 0 7 1073.841065.631073.841073.848 1139.930 1139.421139.911139.919 1198.601195.981198.581198.580 0 10 1477.311477.331477.311477.31111502.571499.431502.521502.52012 0 3139.043154.953139.053139.050 13 3142.693157.093142.683142.683224.343224.3414 3224.343246.370

3238.01

15

3238.02

3259.14

0

3238.01

S1.93 Dimethyl Sulfide

Geometries

Table S277: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{S} -0.00000000-0.000000001.12636820 2 \mathbf{C} -0.00000000-2.58599764-1.112005623 \mathbf{C} -0.000000002.58599764-1.11200562Η -0.031612134 0.00000000-4.339001745 Η 1.68595712 -2.53090490-2.29714225H -1.685957126 -2.53090490-2.297142257 H -0.000000004.33900174-0.03161213Η -1.68595712-2.297142258 2.53090490 Η 9 1.685957122.53090490-2.29714225

Natural Internal Coordinates

Table S278: Symmetrized, unnormalized natural internal coordinates for Dimethyl Sulfide.

```
1
        r_{1,2} + r_{1,3}
2
       r_{1,2} - r_{1,3}
3
       r_{2,4} + r_{2,5} + r_{2,6} + r_{3,7} + r_{3,8} + r_{3,9}
4
       r_{2,4} + r_{2,5} + r_{2,6} - r_{3,7} - r_{3,8} - r_{3,9}
5
        2r_{2,4} - r_{2,5} - r_{2,6} + 2r_{3,7} - r_{3,8} - r_{3,9}
6
        2r_{2,4} - r_{2,5} - r_{2,6} - 2r_{3,7} + r_{3,8} + r_{3,9}
7
       r_{2,5} - r_{2,6} + r_{3,8} - r_{3,9}
       r_{2,5} - r_{2,6} - r_{3,8} + r_{3,9}
9
        \phi_{2,1,3}
10 \quad \phi_{4,2,1} + \phi_{5,2,1} + \phi_{6,2,1} - \phi_{5,2,6} - \phi_{4,2,5} - \phi_{4,2,6} + \phi_{7,3,1} + \phi_{8,3,1} + \phi_{9,3,1} - \phi_{8,3,9}
         -\phi_{7,3,8}-\phi_{7,3,9}
        \phi_{4,2,1} + \phi_{5,2,1} + \phi_{6,2,1} - \phi_{5,2,6} - \phi_{4,2,5} - \phi_{4,2,6} - \phi_{7,3,1} - \phi_{8,3,1} - \phi_{9,3,1} + \phi_{8,3,9}
         +\phi_{7,3,8}+\phi_{7,3,9}
12
        2\phi_{4,2,1} - \phi_{5,2,1} - \phi_{6,2,1} + 2\phi_{7,3,1} - \phi_{8,3,1} - \phi_{9,3,1}
13 2\phi_{4,2,1} - \phi_{5,2,1} - \phi_{6,2,1} - 2\phi_{7,3,1} + \phi_{8,3,1} + \phi_{9,3,1}
14 \phi_{5,2,1} - \phi_{6,2,1} + \phi_{8,3,1} - \phi_{9,3,1}
15 \phi_{5,2,1} - \phi_{6,2,1} - \phi_{8,3,1} + \phi_{9,3,1}
16
        2\phi_{5,2,6} - \phi_{4,2,5} - \phi_{4,2,6} + 2\phi_{8,3,9} - \phi_{7,3,8} - \phi_{7,3,9}
17 2\phi_{5,2,6} - \phi_{4,2,5} - \phi_{4,2,6} - 2\phi_{8,3,9} + \phi_{7,3,8} + \phi_{7,3,9}
18 \phi_{4,2,5} - \phi_{4,2,6} + \phi_{7,3,8} - \phi_{7,3,9}
19 \phi_{4,2,5} - \phi_{4,2,6} - \phi_{7,3,8} + \phi_{7,3,9}
20 \tau_{4,2,1,3} + \tau_{5,2,1,3} + \tau_{6,2,1,3} + \tau_{7,3,2,1} + \tau_{8,3,2,1} + \tau_{9,3,2,1}
      \tau_{4,2,1,3} + \tau_{5,2,1,3} + \tau_{6,2,1,3} - \tau_{7,3,2,1} - \tau_{8,3,2,1} - \tau_{9,3,2,1}
```

Table S279: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T) ${\rm MP2}$ MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 1 1 174.71179.11 174.72174.722 186.14189.92186.14186.151 3 262.33259.82262.34 262.3404 708.45709.73708.46708.460 762.13763.02762.16762.1605 0 6 911.62911.62911.61913.677 953.94956.03953.96953.961 8 990.25991.78 990.27 990.27 1 9 1050.491049.351050.521050.520 0 10 1343.741338.401343.731343.7311 1368.121368.12 0 1362.901368.1212 1469.601472.071469.591469.59 0 0 13 1478.621481.451478.611478.6114 1486.481488.711486.471486.4701494.031494.010 15 1496.771494.01 0 16 3034.903046.893034.903034.90173038.723052.173038.733038.730 18 0 3113.453136.843113.453113.4519 3120.933145.503120.933120.930 0 20 3138.713161.793138.703138.70213139.38 3163.123139.363139.360

S1.94 Thioethanol

Geometries

Table S280: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{S} -1.944130620.321392460.000000002 \mathbf{C} -1.291828360.000000001.11416252 \mathbf{C} 3 3.200282020.698359770.000000004 Η -3.38597804-1.75712103-0.000000005 Η 1.25064962-2.482700081.674695316 Η 1.25064962-2.48270008-1.674695317 Η 5.05305419-0.208460790.00000000 Η 3.067771491.900755388 1.67101309 9 Η 3.067771491.90075538-1.67101309

Natural Internal Coordinates

Table S281: Symmetrized, unnormalized natural internal coordinates for Thioethanol.

```
1
2
        r_{3,1}
3
        r_{1,4}
4
        r_{3,7} + r_{3,8} + r_{3,9}
5
        2r_{3,7} - r_{3,8} - r_{3,9}
6
        r_{3,8} - r_{3,9}
7
        r_{2,5} + r_{2,6}
8
        r_{2,5} - r_{2,6}
9
        \phi_{3,2,1}
10
        \phi_{2,1,4}
11
        \phi_{7,3,2} + \phi_{8,3,2} + \phi_{9,3,2} - \phi_{8,3,9} - \phi_{7,3,8} - \phi_{7,3,9}
        2\phi_{7,3,2} - \phi_{8,3,2} - \phi_{9,3,2}
13 \phi_{8,3,2} - \phi_{9,3,2}
14
        2\phi_{8,3,9} - \phi_{7,3,8} - \phi_{7,3,9}
15 \phi_{7,3,8} - \phi_{7,3,9}
16 2\phi_{5,2,6} - \phi_{5,2,3} - \phi_{5,2,1} - \phi_{6,2,3} - \phi_{6,2,1}
17 \phi_{5,2,3} + \phi_{5,2,1} - \phi_{6,2,3} - \phi_{6,2,1}
18
        \phi_{5,2,3} - \phi_{5,2,1} + \phi_{6,2,3} - \phi_{6,2,1}
19 \phi_{5,2,3} - \phi_{5,2,1} - \phi_{6,2,3} + \phi_{6,2,1}
20 \quad \tau_{7,3,2,1} + \tau_{8,3,2,1} + \tau_{9,3,2,1}
21
        	au_{3,2,1,4}
```

Table S282: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T) ${\rm MP2}$ MP2 ${\rm MP2}$ /cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 177.40180.91 177.41 177.41 2 252.94252.94252.940257.213 301.94302.94302.01 302.0104 687.08690.71687.12687.120 05 789.89 790.16789.89789.89 0 6 863.95860.49863.94 863.947 1001.771000.801001.811001.81 0 8 0 1046.641047.511046.701046.709 1116.091114.461116.111116.110 10 1271.871271.301271.841271.840 11 1295.280 1302.201302.201302.20 12 1413.611405.611413.601413.600 0 13 1496.401496.441496.431496.4314 1500.201502.561500.191500.1900 15 1510.011512.181509.941509.940 16 2709.332735.182709.332709.33173040.583052.883040.633040.630 18 0 3068.163084.443068.123068.1219 3107.063132.133107.083107.080 0 20 3118.153142.843118.133118.13213129.763153.763129.773129.770

S1.95 Dimethyl Sulfoxide

Geometries

Table S283: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 S-0.79551986-0.28979430-0.000000002 Ο -0.000000000.70249582-2.667359483 \mathbf{C} 0.427482111.65658768 2.53093481 \mathbf{C} 4 0.427482111.65658768-2.530934815 Η -0.130396890.768734974.30213494 6 Η -0.399265123.540582282.39620963 7 Η 2.483615261.729134972.39620963Η 8 -0.130396890.76873497-4.302134949 Η 2.483615261.72913497-2.3962096310 Η -0.399265123.54058228-2.39620963

Natural Internal Coordinates

Table S284: Symmetrized, unnormalized natural internal coordinates for Dimethyl Sulfoxide.

```
1
        r_{1,2}
2
        r_{1,3} + r_{1,4}
3
       r_{1,3} - r_{1,4}
4
        r_{3,5} + r_{3,6} + r_{3,7} + r_{4,8} + r_{4,9} + r_{4,10}
5
        r_{3,5} + r_{3,6} + r_{3,7} - r_{4,8} - r_{4,9} - r_{4,10}
6
        2r_{3,5} - r_{3,6} - r_{3,7} + 2r_{4,8} - r_{4,9} - r_{4,10}
7
        2r_{3,5} - r_{3,6} - r_{3,7} - 2r_{4,8} + r_{4,9} + r_{4,10}
8
        r_{3,6} - r_{3,7} + r_{4,9} - r_{4,10}
        r_{3,6} - r_{3,7} - r_{4,9} + r_{4,10}
10
       2\phi_{3,1,4} - \phi_{2,1,3} - \phi_{2,1,4}
11
        \phi_{2,1,3} - \phi_{2,1,4}
       \phi_{5,3,1} + \phi_{6,3,1} + \phi_{7,3,1} - \phi_{6,3,7} - \phi_{5,3,6} - \phi_{5,3,7} + \phi_{8,4,1} + \phi_{9,4,1} + \phi_{10,4,1} - \phi_{9,4,10}
12
         -\phi_{8,4,9} - \phi_{8,4,10}
13
        \phi_{5,3,1} + \phi_{6,3,1} + \phi_{7,3,1} - \phi_{6,3,7} - \phi_{5,3,6} - \phi_{5,3,7} - \phi_{8,4,1} - \phi_{9,4,1} - \phi_{10,4,1} + \phi_{9,4,10}
         +\phi_{8,4,9}+\phi_{8,4,10}
14
        2\phi_{5,3,1} - \phi_{6,3,1} - \phi_{7,3,1} + 2\phi_{8,4,1} - \phi_{9,4,1} - \phi_{10,4,1}
15
        2\phi_{5,3,1} - \phi_{6,3,1} - \phi_{7,3,1} - 2\phi_{8,4,1} + \phi_{9,4,1} + \phi_{10,4,1}
16
        \phi_{6,3,1} - \phi_{7,3,1} + \phi_{9,4,1} - \phi_{10,4,1}
17
        \phi_{6,3,1} - \phi_{7,3,1} - \phi_{9,4,1} + \phi_{10,4,1}
18
        2\phi_{6,3,7} - \phi_{5,3,6} - \phi_{5,3,7} + 2\phi_{9,4,10} - \phi_{8,4,9} - \phi_{8,4,10}
19
        2\phi_{6,3,7} - \phi_{5,3,6} - \phi_{5,3,7} - 2\phi_{9,4,10} + \phi_{8,4,9} + \phi_{8,4,10}
20
        \phi_{5,3,6} - \phi_{5,3,7} + \phi_{8,4,9} - \phi_{8,4,10}
21
        \phi_{5,3,6} - \phi_{5,3,7} - \phi_{8,4,9} + \phi_{8,4,10}
22
        \tau_{5,3,1,4} + \tau_{6,3,1,4} + \tau_{7,3,1,4} + \tau_{8,4,1,3} + \tau_{9,4,1,3} + \tau_{10,4,1,3}
23
        \tau_{5,3,1,4} + \tau_{6,3,1,4} + \tau_{7,3,1,4} - \tau_{8,4,1,3} - \tau_{9,4,1,3} - \tau_{10,4,1,3}
24
        \gamma_{2,1,3,4}
```

Table S285: Harmonic frequencies for reference and CMA data.					
	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	179.27	181.45	179.49	179.33	1
2	238.88	242.22	239.20	239.20	0
3	290.44	290.22	290.26	290.26	0
4	314.56	314.81	314.55	314.55	0
5	368.56	368.28	368.57	368.56	1
6	669.27	670.43	669.35	669.35	0
7	693.75	691.80	693.77	693.77	0
8	886.07	883.37	886.08	886.11	1
9	924.12	922.91	924.13	924.13	0
10	955.70	954.59	955.88	955.74	2
11	1024.64	1020.25	1024.65	1024.65	0
12	1134.06	1153.60	1133.92	1134.04	1
13	1315.06	1307.53	1315.07	1315.07	0
14	1337.37	1329.52	1337.37	1337.37	0
15	1446.99	1447.15	1446.96	1446.96	0
16	1460.90	1462.20	1460.89	1460.89	0
17	1463.94	1466.37	1463.91	1463.91	0
18	1482.86	1485.95	1482.85	1482.85	0
19	3039.48	3051.27	3039.49	3039.49	0
20	3041.26	3052.17	3041.22	3041.22	0
21	3141.10	3163.13	3141.05	3141.05	0
22	3145.65	3167.13	3145.67	3145.67	0
23	3152.29	3174.30	3152.29	3152.29	0
24	3153.52	3175.30	3153.59	3153.59	0

S1.96 Thiopene

Geometries

Table S286: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Х 0.000000000.00000000-0.281928182 S 0.000000000.00000000-2.171654713 \mathbf{C} 0.000000002.337628870.09177468-2.33762887 \mathbf{C} -0.000000000.091774684 \mathbf{C} 5 -0.00000000-1.350302592.488877666 \mathbf{C} 0.000000001.350302592.488877667 Η 0.000000004.29941975-0.458736058 Η -0.00000000-4.29941975-0.458736059 Η -0.00000000-2.498247044.1779538410 Η 0.000000002.498247044.17795384

Natural Internal Coordinates

Table S287: Symmetrized, unnormalized natural internal coordinates for Thiopene.

```
1
        r_{5,6} + r_{3,6} + r_{4,5} + r_{2,3} + r_{2,4}
2
        3r_{5,6} + r_{3,6} + r_{4,5} - 3r_{2,3} - 3r_{2,4}
3
        2r_{3,6} - 2r_{4,5} + r_{2,3} - r_{2,4}
4
        3r_{5,6} - 3r_{3,6} - 3r_{4,5} + r_{2,3} + r_{2,4}
5
        r_{3,6} - r_{4,5} - 2r_{2,3} + 2r_{2,4}
        r_{3,7} + r_{4,8}
        r_{3,7} - r_{4,8}
8
        r_{6,10} + r_{5,9}
9
        r_{6,10} - r_{5,9}
10
        3\phi_{3,2,4} - 3\phi_{2,3,6} - 3\phi_{2,4,5} + \phi_{3,6,5} + \phi_{4,5,6}
        -\phi_{2,3,6}+\phi_{2,4,5}+2\phi_{3,6,5}-2\phi_{4,5,6}
11
12
       \phi_{7,3,2} - \phi_{7,3,6} + \phi_{8,4,5} - \phi_{8,4,2}
13
        \phi_{7,3,2} - \phi_{7,3,6} - \phi_{8,4,5} + \phi_{8,4,2}
14
        \phi_{10,6,3} - \phi_{10,6,5} + \phi_{9,5,6} - \phi_{9,5,4}
15
        \phi_{10,6,3} - \phi_{10,6,5} - \phi_{9,5,6} + \phi_{9,5,4}
16
        3\tau_{3,6,5,4} + \tau_{6,3,2,4} + \tau_{3,2,4,5} - 3\tau_{5,6,3,2} - 3\tau_{2,4,5,6}
17
        2\tau_{6,3,2,4} - 2\tau_{3,2,4,5} - \tau_{5,6,3,2} + \tau_{2,4,5,6}
18
        \gamma_{7,3,2,6} + \gamma_{8,4,5,2}
19
        \gamma_{7,3,2,6} - \gamma_{8,4,5,2}
20
        \gamma_{10,6,3,5} + \gamma_{9,5,6,4}
21
        \gamma_{10,6,3,5} - \gamma_{9,5,6,4}
```

Table S288: Harmonic frequencies for reference and CMA data.					
	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	453.25	459.14	453.37	453.34	1
2	565.53	571.96	565.75	565.53	1
3	609.94	606.71	610.00	609.95	1
4	688.05	680.28	688.19	688.19	0
5	725.76	728.43	725.74	725.74	0
6	758.88	753.31	758.94	758.94	0
7	845.49	847.36	845.64	845.56	2
8	875.51	867.37	875.47	875.48	1
9	878.28	875.65	878.29	878.29	0
10	902.59	900.27	902.35	902.49	1
11	1051.60	1050.01	1051.60	1051.60	0
12	1098.26	1093.06	1098.27	1098.23	1
13	1100.85	1098.46	1100.87	1100.87	0
14	1278.90	1269.49	1278.87	1278.87	0
15	1396.08	1386.94	1396.85	1396.07	1
16	1442.59	1431.23	1441.73	1442.59	3
17	1545.40	1531.83	1545.37	1545.37	0
18	3213.82	3230.60	3213.83	3213.83	0
19	3227.81	3243.42	3227.80	3227.80	0
20	3256.05	3271.37	3256.06	3256.06	0
21	3259.29	3274.25	3259.28	3259.28	0

S1.97 Methanol

Geometries

Table S289: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) C -1.37507311 -0.024276860.000000352 Ο 0.000000301.306016360.120701283 H -2.077873951.90961292-0.000079914 H -2.10898758 -0.979272691.68197389H -2.10898055 -0.979403935 -1.681901736 Η 1.94117467 -1.57749284-0.00000131

Natural Internal Coordinates

Table S290: Symmetrized, unnormalized natural internal coordinates for Methanol.

 $r_{1,2}$ 2 $r_{2,6}$ 3 $r_{1,3} + r_{1,4} + r_{1,5}$ 4 $r_{1,4} - r_{1,5}$ 5 $2r_{1,3} - r_{1,4} - r_{1,5}$ 6 $\phi_{1,2,6}$ $2\phi_{3,1,2} - \phi_{4,1,2} - \phi_{5,1,2}$ 8 $\phi_{3,1,2} + \phi_{4,1,2} + \phi_{5,1,2}$ 9 $\phi_{4,1,2} - \phi_{5,1,2}$ 10 $-\phi_{3,1,4} - \phi_{3,1,5} + 2\phi_{4,1,5}$ 11 $\phi_{3,1,4} - \phi_{3,1,5}$

 $12 \quad \tau_{3,1,2,6}$

 $\frac{ \text{Table S291: Harmonic frequencies for reference and CMA data.}}{\text{Reference}} \quad \frac{\text{CMA-0A}}{\text{CMA-2A}(0.05)} \quad \text{n}$

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	304.11	306.45	304.13	304.13	0
2	1065.02	1062.30	1065.28	1065.28	0
3	1095.54	1097.63	1095.56	1095.56	0
4	1179.62	1182.53	1179.63	1179.63	0
5	1393.88	1383.49	1393.72	1393.72	0
6	1487.64	1489.03	1487.62	1487.62	0
7	1507.67	1514.46	1507.70	1507.70	0
8	1523.24	1529.06	1523.20	1523.20	0
9	3009.29	3023.79	3009.34	3009.34	0
10	3064.49	3090.54	3064.51	3064.51	0
11	3128.11	3153.00	3128.03	3128.03	0
12	3864.98	3883.16	3864.97	3864.97	0

S1.98 Propene

Geometries

Table S292: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 \mathbf{C} -2.376872970.338338820.000000072 \mathbf{C} 0.19870321-0.85510046-0.00000006С 3 2.373141500.435155970.000000034 Η 0.26291668-2.90753182-0.000000115 Η 4.18218979-0.52060166-0.000000052.389998776 Η 2.484864510.000000167 Η -2.236720932.39600543-0.000000308 Η -3.45993967-0.24053555-1.661450879 Η -3.45993980-0.240536251.66145068

Natural Internal Coordinates

Table S293: Symmetrized, unnormalized natural internal coordinates for Propene.

```
1
2
        r_{2,3}
3
        r_{1,7} + r_{1,8} + r_{1,9}
4
        2r_{1,7} - r_{1,8} - r_{1,9}
5
        r_{1,8} - r_{1,9}
6
        r_{2,4}
7
        r_{3,5} + r_{3,6}
8
        r_{3,5} - r_{3,6}
9
        2\phi_{1,2,3} - \phi_{4,2,1} - \phi_{4,2,3}
        \phi_{4,2,1} - \phi_{4,2,3}
10
11 \phi_{7,1,2} + \phi_{8,1,2} + \phi_{9,1,2} - \phi_{8,1,9} - \phi_{7,1,8} - \phi_{7,1,9}
        2\phi_{7,1,2} - \phi_{8,1,2} - \phi_{9,1,2}
13 \phi_{8,1,2} - \phi_{9,1,2}
14 2\phi_{8,1,9} - \phi_{7,1,8} - \phi_{7,1,9}
15 \phi_{7,1,8} - \phi_{7,1,9}
16 2\phi_{5,3,6} - \phi_{5,3,2} - \phi_{6,3,2}
17 \phi_{5,3,2} - \phi_{6,3,2}
18
        \tau_{7,1,2,3} + \tau_{8,1,2,3} + \tau_{9,1,2,3}
19
      \tau_{5,3,2,1} + \tau_{6,3,2,1}
20
        \gamma_{4,2,1,3}
21
        \gamma_{2,3,5,6}
```

Table S294: Harmonic frequencies for reference and CMA data. Reference ${\rm CMA}\text{-}0{\rm A}$ CMA-2A(0.05)CCSD(T) ${\rm MP2}$ MP2MP2/cc-pVTZ /cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 199.43203.87199.44 199.44 2 418.07418.080417.01418.083 582.65587.09582.77 582.7704 925.24929.74925.24925.240 05 930.94931.88930.97 930.970 6 942.39942.38939.58942.397 1014.261029.361014.221014.220 8 0 1067.991066.451067.981067.989 1191.641187.571191.681191.68 0 10 1320.291319.321320.341320.340 11 1408.101408.25 0 1401.191408.2512 1455.831453.331455.661455.66 0 0 13 1488.141489.931488.131488.1314 1501.661503.151501.661501.6601696.340 15 1696.39 1688.421696.3416 3029.483042.193029.513029.510 173089.803115.113089.773089.770 18 0 3113.173137.283113.213113.2119 3138.193154.553138.273138.270 0 20 3151.663170.073151.543151.54213230.273252.343230.273230.270

S1.99 Oxirane

Geometries

Table S295: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 Ο 0.00000000-0.000000001.517051622 \mathbf{C} -1.38721508-0.806107740.000000003 \mathbf{C} -0.000000001.38721508-0.806107744 Η -2.39048176-1.22008415-1.73830814-2.390481765 Η 1.73830814-1.22008415-1.220084156 Η -1.738308142.390481767 Η 1.738308142.39048176-1.22008415

Natural Internal Coordinates

Table S296: Symmetrized, unnormalized natural internal coordinates for Oxirane.

```
1 r_{1,2} + r_{1,3} + r_{2,3}
```

$$2 r_{1,2} - r_{1,3}$$

$$3 -r_{1,2} - r_{1,3} + 2r_{2,3}$$

$$4 \qquad r_{2,4} + r_{2,5} + r_{3,6} + r_{3,7}$$

$$5 \qquad r_{2,4} + r_{2,5} - r_{3,6} - r_{3,7}$$

$$6 \qquad r_{2,4} - r_{2,5} + r_{3,6} - r_{3,7}$$

$$7 \qquad r_{2,4} - r_{2,5} - r_{3,6} + r_{3,7}$$

$$8 \qquad 4\phi_{4,2,5} + 4\phi_{6,3,7} - \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} - \phi_{2,3,6} - \phi_{1,3,7} - \phi_{2,3,7}$$

9
$$4\phi_{4,2,5} - 4\phi_{6,3,7} - \phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} + \phi_{2,3,6} + \phi_{1,3,7} + \phi_{2,3,7}$$

10
$$\phi_{1,2,4} + \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} + \phi_{2,3,6} - \phi_{1,3,7} - \phi_{2,3,7}$$

11
$$\phi_{1,2,4} + \phi_{3,2,4} - \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} - \phi_{2,3,6} + \phi_{1,3,7} + \phi_{2,3,7}$$

12
$$\phi_{1,2,4} - \phi_{3,2,4} + \phi_{1,2,5} - \phi_{3,2,5} + \phi_{1,3,6} - \phi_{2,3,6} + \phi_{1,3,7} - \phi_{2,3,7}$$

13
$$\phi_{1,2,4} - \phi_{3,2,4} + \phi_{1,2,5} - \phi_{3,2,5} - \phi_{1,3,6} + \phi_{2,3,6} - \phi_{1,3,7} + \phi_{2,3,7}$$

14
$$\phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} + \phi_{3,2,5} + \phi_{1,3,6} - \phi_{2,3,6} - \phi_{1,3,7} + \phi_{2,3,7}$$

15
$$\phi_{1,2,4} - \phi_{3,2,4} - \phi_{1,2,5} + \phi_{3,2,5} - \phi_{1,3,6} + \phi_{2,3,6} + \phi_{1,3,7} - \phi_{2,3,7}$$

Table S297: Harmonic frequencies for reference and CMA data. CMA-2A(0.05) n Reference CMA-0ACCSD(T)MP2MP2 ${\rm MP2}$ /cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 0 1 816.26819.77816.27816.272 849.93856.010 850.01850.013 0 899.68900.96899.78899.784 1052.001054.881052.001052.0000 5 1156.671150.361156.611156.616 1157.921151.721157.901157.900 0 7 1175.071175.401175.071175.078 1176.571175.521176.5801176.589 1300.141301.101300.151300.1500 10 1513.261516.141513.261513.26111549.961548.521549.911549.91012 0 3109.143125.283109.143109.140 13 3117.423132.893117.393117.3914 3196.113219.803196.143196.1400 15 3210.773233.793210.763210.76

S1.100 Hydrogen Cycanide

Geometries

Table S298: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) Χ -1.00000000-0.00000000-1.061294872 \mathbf{C} -0.000000000.00000000-1.06129487-1.000000003 Χ 0.00000000-1.061294874 Η -0.00000000-0.00000000-3.07732615

-0.00000000

1.13096201

Ν

5

0.00000000

Natural Internal Coordinates

Table S299: Symmetrized, unnormalized natural internal coordinates for Hydrogen Cycanide.

- $1 r_{2,4}$
- $2 r_{2,5}$
- $\theta_{4,2,5,1}$
- 4 $\theta_{4,2,5,3}$

Table S300: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	716.01	723.18	716.01	716.01	0
2	716.01	723.19	716.01	716.01	0
3	2111.38	2072.67	2111.51	2111.51	0
4	3443.43	3455.99	3443.35	3443.35	0

S1.101 Triplet Carbene

Geometries

Table S301: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	С	0.00000000	0.00000000	0.11580983
2	Η	0.00000000	-1.87219122	-0.68946391
3	Η	0.00000000	1.87219122	-0.68946391

Natural Internal Coordinates

Table S302: Symmetrized, unnormalized natural internal coordinates for Triplet Carbene.

- 1 $r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 \quad \phi_{2,1,3}$

Table S303: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1105.77	1122.31	1105.77	1105.77	0
2	3139.22	3154.90	3139.22	3139.22	0
3	3365.40	3391.01	3365.40	3365.40	0

S1.102 Formyl Radical

Geometries

Table S304: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	$^{\rm C}$	-1.17736294	0.18900598	0.00000000
2	Η	-2.55461370	-1.42021423	0.00000000
3	Ο	1.04426684	-0.05231315	0.00000000

Natural Internal Coordinates

Table S305: Symmetrized, unnormalized natural internal coordinates for Formyl Radical.

 $1 r_{1,2}$

 $2 r_{1,3}$

 $3 \quad \phi_{2,1,3}$

Table S306: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1122.70	1077.12	1123.00	1123.00	0
2	1888.38	1898.35	1888.27	1888.27	0
3	2691.42	2706.97	2691.37	2691.37	0

S1.103 Vinyl Radical

Geometries

Table S307: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) 1 С 1.17395959-0.039868330.000000002 Η 0.000000002.10304999-1.879186023 Η 2.391835201.609426240.000000004 \mathbf{C} -1.307722230.156263080.00000000 $-2.90219632 \quad -1.11613248$ 5 Η 0.00000000

Natural Internal Coordinates

Table S308: Symmetrized, unnormalized natural internal coordinates for Vinyl Radical.

- 1 $r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 r_{1,4}$
- $4 r_{4,5}$
- 5 $\phi_{1,4,5}$
- 6 $2\phi_{2,1,3} \phi_{2,1,4} \phi_{3,1,4}$
- 7 $\phi_{2,1,4} \phi_{3,1,4}$
- 8 $\tau_{2,1,4,5} + \tau_{3,1,4,5}$
- 9 $\tau_{2,1,4,5} \tau_{3,1,4,5}$

Table S309: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	\mathbf{n}
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	726.00	722.51	726.16	726.16	0
2	806.12	818.34	806.24	806.24	0
3	914.78	924.31	914.68	914.68	0
4	1070.93	1067.67	1070.84	1070.84	0
5	1395.98	1398.34	1395.98	1395.98	0
6	1614.03	1615.88	1614.06	1614.06	0
7	3074.49	3099.49	3074.69	3074.69	0
8	3178.90	3204.67	3178.70	3178.70	0
9	3246.53	3263.15	3246.51	3246.51	0

S1.104 Acetyl Radical

Geometries

Table S310: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -0.258736900.000000000.804503042 Ο -2.191219440.00000000-0.332855893 С 2.40971826 -0.245638210.000000004 Η 2.38285691-2.308959560.00000000Η 5 3.391009570.46865813-1.664228366 Η 3.391009570.468658131.66422836

Natural Internal Coordinates

Table S311: Symmetrized, unnormalized natural internal coordinates for Acetyl Radical.

```
r_{3,1}
2
        r_{1,2}
3
        r_{3,4} + r_{3,5} + r_{3,6}
4
        2r_{3,4} - r_{3,5} - r_{3,6}
5
        r_{3,5} - r_{3,6}
6
        \phi_{3,1,2}
7
        \phi_{4,3,1} + \phi_{5,3,1} + \phi_{6,3,1} - \phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}
8
        2\phi_{4,3,1} - \phi_{5,3,1} - \phi_{6,3,1}
9
         \phi_{5,3,1} - \phi_{6,3,1}
10 2\phi_{5,3,6} - \phi_{4,3,5} - \phi_{4,3,6}
11
        \phi_{4,3,5} - \phi_{4,3,6}
12
        	au_{4,3,1,2}
```

Table S312: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	98.52	90.81	98.61	98.60	1
2	466.47	462.95	466.86	466.50	1
3	861.02	859.24	861.13	861.13	0
4	954.71	953.10	954.72	954.72	0
5	1050.41	1040.22	1050.28	1050.45	1
6	1355.85	1349.67	1355.84	1355.84	0
7	1467.61	1470.72	1467.61	1467.61	1
8	1468.66	1471.61	1468.61	1468.61	0
9	1899.32	1911.57	1899.29	1899.29	0
10	3039.37	3052.44	3039.38	3039.38	0
11	3137.39	3159.37	3137.38	3137.38	0
12	3143.08	3166.75	3143.08	3143.08	0

S1.105 Hydroxymethyl Radical

Geometries

Table S313: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) \mathbf{C} -1.379039100.023230440.057549462 Ο 1.20513902-0.11712615-0.005358013 Η 1.868983041.563934830.159506514 Η -2.279048521.78239326-0.47148778H -2.29638299-1.764051925 -0.28821473

Natural Internal Coordinates

Table S314: Symmetrized, unnormalized natural internal coordinates for Hydroxymethyl Radical.

- 1 $r_{1,4} + r_{1,5}$
- $2 r_{1,4} r_{1,5}$
- $3 r_{1,2}$
- $4 r_{2,3}$
- 5 $\phi_{1,2,3}$
- 6 $2\phi_{4,1,5} \phi_{4,1,2} \phi_{5,1,2}$
- 7 $\phi_{4,1,2} \phi_{5,1,2}$
- 8 $\tau_{4,1,2,3} + \tau_{5,1,2,3}$
- 9 $\tau_{4,1,2,3} \tau_{5,1,2,3}$

Table S315: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	\mathbf{n}
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	432.11	433.91	432.33	432.13	1
2	620.09	613.31	620.00	620.15	1
3	1064.75	1066.45	1064.99	1064.99	0
4	1209.21	1204.96	1209.27	1209.27	0
5	1383.73	1375.21	1383.55	1383.55	0
6	1498.77	1505.91	1498.71	1498.71	0
7	3139.51	3156.77	3139.52	3139.52	0
8	3280.03	3305.27	3280.01	3280.01	0
9	3861.95	3878.86	3861.95	3861.95	0

S1.106 Triplet Silylene

Geometries

Table S316: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Si	0.00000000	0.00000000	0.09643776
2	Η	0.00000000	-2.40430265	-1.33854198
3	Η	0.00000000	2.40430265	-1.33854198

Natural Internal Coordinates

Table S317: Symmetrized, unnormalized natural internal coordinates for Triplet Silylene.

- 1 $r_{1,2} + r_{1,3}$
- $2 r_{1,2} r_{1,3}$
- $3 \quad \phi_{2,1,3}$

Table S318: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	890.15	908.61	890.17	890.17	0
2	2189.75	2216.29	2189.74	2189.74	0
3	2249.86	2272.92	2249.86	2249.86	0

S1.107 Silyl Radical

Geometries

Table S319: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	X	-1.97286216	-0.00000000	0.00000000	
2	SI	-0.08313564	-0.00000000	0.00000000	
3	\mathbf{H}	0.76927368	-1.33284055	-2.30854755	
4	Η	0.76927368	2.66568110	0.00000000	
5	Η	0.76927368	-1.33284055	2.30854755	

Natural Internal Coordinates

Table S320: Symmetrized, unnormalized natural internal coordinates for Silyl Radical.

- $1 \quad r_{2,3} + r_{2,4} + r_{2,5}$
- $2 \quad 2r_{2,3} r_{2,4} r_{2,5}$
- $3 r_{2,4} r_{2,5}$
- 4 $2\phi_{3,2,4} \phi_{3,2,5} \phi_{4,2,5}$
- 5 $\phi_{3,2,5} \phi_{4,2,5}$
- 6 $\gamma_{3,2,4,5} + \gamma_{4,2,3,5} + \gamma_{5,2,3,4}$

Table S321: Harmonic frequencies for reference and CMA data.

	Reference		CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	778.72	789.22	778.85	778.85	0
2	943.18	953.24	943.08	943.08	0
3	943.18	962.71	943.18	943.18	0
4	2217.25	2237.61	2217.24	2217.24	0
5	2250.40	2270.42	2250.40	2250.40	0
6	2250.40	2270.49	2250.40	2250.40	0

S1.108 Phosphino Radical

Geometries

Table S322: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Р	0.00000000	0.00000000	0.11404634
2	Η	0.00000000	-1.92750368	-1.75250871
3	Η	0.00000000	1.92750368	-1.75250871

Natural Internal Coordinates

Table S323: Symmetrized, unnormalized natural internal coordinates for Phosphino Radical.

1
$$r_{1,2} + r_{1,3}$$

$$2 r_{1,2} - r_{1,3}$$

$$3 \quad \phi_{2,1,3}$$

Table S324: Harmonic frequencies for reference and CMA data.

	Refer	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1128.13	1137.28	1128.13	1128.13	0
2	2389.74	2417.26	2389.74	2389.74	0
3	2397.35	2426.90	2397.35	2397.35	0

S1.109 Nitrogen Dioxide

Geometries

Table S325: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Ο	0.00000000	-2.08779511	0.26863662
2	N	0.00000000	0.00000000	-0.61369664
3	Ο	0.00000000	2.08779511	0.26863662

Natural Internal Coordinates

Table S326: Symmetrized, unnormalized natural internal coordinates for Nitrogen Dioxide.

1
$$r_{1,2} + r_{2,3}$$

$$2 r_{1,2} - r_{2,3}$$

$$3 \quad \phi_{1,2,3}$$

Table S327: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	758.21	766.81	758.94	758.21	1
2	1350.21	1349.16	1349.80	1350.21	1
3	1679.70	1888.26	1679.70	1679.70	0

S1.110 Amino Radical

Geometries

Table S328: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr)

1	Η	0.00000000	-1.51058428	1.06481029
2	N	0.00000000	0.00000000	-0.15327241
3	Η	0.00000000	1.51058428	1.06481029

Natural Internal Coordinates

Table S329: Symmetrized, unnormalized natural internal coordinates for Amino Radical.

1
$$r_{1,2} + r_{2,3}$$

$$2 r_{1,2} - r_{2,3}$$

$$3 \quad \phi_{1,2,3}$$

Table S330: Harmonic frequencies for reference and CMA data.

	Refe	rence	CMA-0A	CMA-2A(0.05)	n
	CCSD(T)	MP2	MP2	MP2	
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	
1	1557.74	1551.54	1557.75	1557.75	0
2	3364.81	3388.84	3364.81	3364.81	0
3	3457.67	3491.44	3457.67	3457.67	0

S1.111 Ethyl Radical

Geometries

Table S331: CCSD(T)/cc-pVTZ Cartesian Coordinates (Bohr) С -0.00547866 -1.354406960.000000002 \mathbf{C} -0.019372981.465501600.000000003 Η 1.92815108-2.111685840.000000004 H -0.94432912-2.116104531.672235985 H -0.94432912 -2.11610453-1.672235986 Η 0.128205692.51055499-1.749495537 Η 0.128205692.510554991.74949553

Natural Internal Coordinates

Table S332: Symmetrized, unnormalized natural internal coordinates for Ethyl Radical.

```
1
        r_{1,2}
2
        r_{2,6} + r_{2,7}
3
        r_{2,6} - r_{2,7}
4
        r_{1,4} + r_{1,5} + r_{1,3}
5
        -r_{1,4} - r_{1,5} + 2r_{1,3}
6
        r_{1,4} - r_{1,5}
7
        2\phi_{6,2,7} - \phi_{6,2,1} - \phi_{7,2,1}
8
        \phi_{6,2,1} - \phi_{7,2,1}
9
        \phi_{2,1,3} + \phi_{2,1,4} + \phi_{2,1,5} - \phi_{4,1,5} - \phi_{4,1,3} - \phi_{5,1,3}
10 2\phi_{2,1,3} - \phi_{2,1,4} - \phi_{2,1,5}
11 \phi_{2,1,4} - \phi_{2,1,5}
12 2\phi_{4,1,5} - \phi_{4,1,3} - \phi_{5,1,3}
13 \phi_{4,1,3} - \phi_{5,1,3}
14 \tau_{6,2,1,3} + \tau_{6,2,1,4} + \tau_{6,2,1,5} + \tau_{7,2,1,3} + \tau_{7,2,1,4} + \tau_{7,2,1,5}
       \gamma_{1,2,6,7}
```

Table S333: Harmonic frequencies for reference and CMA data. Reference CMA-0ACMA-2A(0.05)CCSD(T)MP2 ${\rm MP2}$ MP2/cc-pVTZ/cc-pVTZ /cc-pVTZ /cc-pVTZ 1 128.41128.72128.45128.431 2 469.482 486.59469.53469.490 3 809.09812.51809.11 809.114 987.41985.90987.43987.451 0 5 1069.911072.271069.941069.946 1200.871202.111200.891200.890 0 7 1403.421401.451403.491403.498 1479.971485.111 1479.991479.999 1492.291497.051492.281492.281 0 10 1493.371497.861493.271493.27112983.433005.262984.132984.13012 0 3064.923088.67 3064.223064.220 13 3108.803135.143108.813108.8114 3157.243175.873157.223157.220 0 15 3260.353286.013260.353260.35

$S1.112 \hspace{1.5cm} tert-Butyl \, Radical \,$

${\bf Geometries}$

Table	S334	: CC	CSD(T)/cc-pV	TZ Cartesian	Coordinates (Bohr)	
	1	\mathbf{C}	-0.32334039	-0.00000205	0.00000000	
	2	\mathbf{C}	0.06114007	-1.40087768	-2.42638089	
	3	\mathbf{C}	0.06102027	2.80175965	0.00000000	
	4	\mathbf{C}	0.06114007	-1.40087768	2.42638089	
	5	Η	2.08693792	-1.64409780	-2.84744106	
	6	H	-0.76540572	-0.38822110	-4.02548203	
	7	Η	-0.76556895	-3.29200016	-2.34898777	
	8	Η	2.08679900	3.28810311	0.00000000	
	9	Η	-0.76564669	3.68025423	1.67650059	
	10	Η	-0.76564669	3.68025423	-1.67650059	
	11	Η	2.08693792	-1.64409780	2.84744106	
	12	Н	-0.76556895	-3.29200016	2.34898777	
	13	Н	-0.76540572	-0.38822110	4.02548203	

Natural Internal Coordinates

Table S335: Symmetrized, unnormalized natural internal coordinates for tert-Butyl Radical.

- $r_{1,2} + r_{1,3} + r_{1,4}$
- $2 2r_{1,2} r_{1,3} r_{1,4}$
- $3 r_{1.3} r_{1.4}$
- $4 r_{2,5} + r_{2,6} + r_{2,7} + r_{3,8} + r_{3,9} + r_{3,10} + r_{4,11} + r_{4,12} + r_{4,13}$
- $2r_{2,5} + 2r_{2,6} + 2r_{2,7} r_{3,8} r_{3,9} r_{3,10} r_{4,11} r_{4,12} r_{4,13}$
- $6 r_{3,8} + r_{3,9} + r_{3,10} r_{4,11} r_{4,12} r_{4,13}$
- $2r_{2,5} r_{2,6} r_{2,7} + 2r_{3,8} r_{3,9} r_{3,10} + 2r_{4,11} r_{4,12} r_{4,13}$
- $8 4r_{2,5} 2r_{2,6} 2r_{2,7} 2r_{3,8} + r_{3,9} + r_{3,10} 2r_{4,11} + r_{4,12} + r_{4,13}$
- $2r_{3,8} r_{3,9} r_{3,10} 2r_{4,11} + r_{4,12} + r_{4,13}$
- $r_{2,6} r_{2,7} + r_{3,9} r_{3,10} + r_{4,12} r_{4,13}$
- $2r_{2,6} 2r_{2,7} r_{3,9} + r_{3,10} r_{4,12} + r_{4,13}$
- $r_{3,9} r_{3,10} r_{4,12} + r_{4,13}$
- $2\phi_{3,1,4} \phi_{2,1,3} \phi_{2,1,4}$
- $\phi_{2,1,3} \phi_{2,1,4}$
- $\phi_{1,2,5} + \phi_{1,2,6} + \phi_{1,2,7} \phi_{6,2,7} \phi_{5,2,6} \phi_{5,2,7} + \phi_{1,3,8} + \phi_{1,3,9} + \phi_{1,3,10} \phi_{9,3,10} \phi_{8,3,9} \phi_{8,3,10} + \phi_{1,4,11} + \phi_{1,4,12} + \phi_{1,4,13} \phi_{12,4,13} \phi_{11,4,12} \phi_{11,4,13}$
- $\begin{array}{ll} 16 & 2\phi_{1,2,5} + 2\phi_{1,2,6} + 2\phi_{1,2,7} 2\phi_{6,2,7} 2\phi_{5,2,6} 2\phi_{5,2,7} \phi_{1,3,8} \phi_{1,3,9} \phi_{1,3,10} + \phi_{9,3,10} \\ & + \phi_{8,3,9} + \phi_{8,3,10} \phi_{1,4,11} \phi_{1,4,12} \phi_{1,4,13} + \phi_{12,4,13} + \phi_{11,4,12} + \phi_{11,4,13} \end{array}$
- $\phi_{1,3,8} + \phi_{1,3,9} + \phi_{1,3,10} \phi_{9,3,10} \phi_{8,3,9} \phi_{8,3,10} \phi_{1,4,11} \phi_{1,4,12} \phi_{1,4,13} + \phi_{12,4,13} + \phi_{11,4,12} + \phi_{11,4,13}$
- $2\phi_{1,2,5} \phi_{1,2,6} \phi_{1,2,7} + 2\phi_{1,3,8} \phi_{1,3,9} \phi_{1,3,10} + 2\phi_{1,4,11} \phi_{1,4,12} \phi_{1,4,13}$
- $4\phi_{1,2,5} 2\phi_{1,2,6} 2\phi_{1,2,7} 2\phi_{1,3,8} + \phi_{1,3,9} + \phi_{1,3,10} 2\phi_{1,4,11} + \phi_{1,4,12} + \phi_{1,4,13}$
- $2\phi_{1,3,8} \phi_{1,3,9} \phi_{1,3,10} 2\phi_{1,4,11} + \phi_{1,4,12} + \phi_{1,4,13}$
- $\phi_{1,2,6} \phi_{1,2,7} + \phi_{1,3,9} \phi_{1,3,10} + \phi_{1,4,12} \phi_{1,4,13}$
- $2\phi_{1,2,6} 2\phi_{1,2,7} \phi_{1,3,9} + \phi_{1,3,10} \phi_{1,4,12} + \phi_{1,4,13}$
- $\phi_{1,3,9} \phi_{1,3,10} \phi_{1,4,12} + \phi_{1,4,13}$
- $24 \quad 2\phi_{6,2,7} \phi_{5,2,6} \phi_{5,2,7} + 2\phi_{9,3,10} \phi_{8,3,9} \phi_{8,3,10} + 2\phi_{12,4,13} \phi_{11,4,12} \phi_{11,4,13}$
- $25 \quad 4\phi_{6,2,7} 2\phi_{5,2,6} 2\phi_{5,2,7} 2\phi_{9,3,10} + \phi_{8,3,9} + \phi_{8,3,10} 2\phi_{12,4,13} + \phi_{11,4,12} + \phi_{11,4,13}$
- $26 \quad 2\phi_{9,3,10} \phi_{8,3,9} \phi_{8,3,10} 2\phi_{12,4,13} + \phi_{11,4,12} + \phi_{11,4,13}$
- $\phi_{5,2,6} \phi_{5,2,7} + \phi_{8,3,9} \phi_{8,3,10} \phi_{11,4,12} + \phi_{11,4,13}$
- $28 \quad 2\phi_{5,2,6} 2\phi_{5,2,7} \phi_{8,3,9} + \phi_{8,3,10} + \phi_{11,4,12} \phi_{11,4,13}$
- $\phi_{8,3,9} \phi_{8,3,10} + \phi_{11,4,12} \phi_{11,4,13}$
- $\tau_{5,2,1,3} + \tau_{5,2,1,4} + \tau_{6,2,1,3} + \tau_{6,2,1,4} + \tau_{7,2,1,3} + \tau_{7,2,1,4} + \tau_{8,3,1,2} + \tau_{8,3,1,4} + \tau_{9,3,1,2} + \tau_{9,3,1,4} + \tau_{10,3,1,2} + \tau_{10,3,1,4} + \tau_{11,4,1,2} + \tau_{11,4,1,3} + \tau_{12,4,1,2} + \tau_{12,4,1,3} + \tau_{13,4,1,2} + \tau_{13,4,1,3}$
- $2\tau_{5,2,1,3} + 2\tau_{5,2,1,4} + 2\tau_{6,2,1,3} + 2\tau_{6,2,1,4} + 2\tau_{7,2,1,3} + 2\tau_{7,2,1,4} \tau_{8,3,1,2} \tau_{8,3,1,4} \tau_{9,3,1,2} \tau_{9,3,1,4} \tau_{10,3,1,2} \tau_{10,3,1,4} \tau_{11,4,1,2} \tau_{11,4,1,3} \tau_{12,4,1,2} \tau_{12,4,1,3} \tau_{13,4,1,2} \tau_{13,4,1,3}$
- $\tau_{8,3,1,2} + \tau_{8,3,1,4} + \tau_{9,3,1,2} + \tau_{9,3,1,4} + \tau_{10,3,1,2} + \tau_{10,3,1,4} \tau_{11,4,1,2} \tau_{11,4,1,3} \tau_{12,4,1,2} \tau_{12,4,1,3} \tau_{13,4,1,2} \tau_{13,4,1,3}$
- $\gamma_{2,1,3,4} + \gamma_{3,1,4,2} + \gamma_{4,1,2,3}$

Table S336: Harmonic frequencies for reference and CMA data.						
	Refe	rence	CMA-0A	CMA-2A(0.05)	n	
	CCSD(T)	MP2	MP2	MP2		
	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ	/cc-pVTZ		
1	132.72	133.81	132.73	132.73	1	
2	147.62	149.41	147.65	147.65	2	
3	147.75	149.44	147.79	147.78	2	
4	261.22	256.88	261.24	261.24	0	
5	367.05	366.68	367.04	367.04	0	
6	367.07	366.69	367.06	367.06	0	
7	767.88	765.54	767.91	767.91	0	
8	933.80	929.75	933.83	933.83	0	
9	933.83	929.76	933.84	933.84	0	
10	964.11	963.08	964.13	964.13	0	
11	1013.92	1013.43	1013.95	1013.95	0	
12	1013.95	1013.43	1013.98	1013.98	0	
13	1105.28	1098.54	1105.28	1105.28	0	
14	1303.87	1299.34	1303.90	1303.90	0	
15	1303.90	1299.35	1303.91	1303.91	0	
16	1397.75	1390.31	1397.76	1397.76	0	
17	1397.76	1390.34	1397.79	1397.79	0	
18	1419.84	1412.99	1419.88	1419.88	0	
19	1474.27	1475.99	1474.25	1474.25	1	
20	1477.68	1479.52	1477.66	1477.66	0	
21	1477.70	1479.53	1477.66	1477.66	0	
22	1496.35	1498.88	1496.29	1496.29	0	
23	1497.72	1500.47	1497.71	1497.71	2	
24	1497.74	1500.48	1497.76	1497.76	2	
25	2947.90	2970.74	2948.56	2948.56	0	
26	2947.91	2970.81	2948.57	2948.57	0	
27	2954.07	2973.89	2954.77	2954.77	0	
28	3052.83	3074.49	3052.20	3052.20	0	
29	3052.84	3074.85	3052.20	3052.20	0	
30	3054.29	3074.87	3053.59	3053.59	0	
31	3098.03	3124.14	3098.03	3098.03	0	
32	3102.33	3127.25	3102.32	3102.32	0	
33	3102.34	3127.31	3102.34	3102.34	0	