# PART 1 Filtration Efficiency of 1.9-30 nm Nanoparticles through Eight Different Membrane Filters

## PART 2 CFD Simulation of Liquid Filtration in Different Conditions

Handol Lee<sup>1</sup>, Seungkoo Kang<sup>1</sup>, Shawn Chen<sup>1</sup>, Doris Segets<sup>2</sup> and David Y. H. Pui<sup>1</sup>

<sup>1</sup>Particle Technology Laboratory, Mechanical Engineering, University of Minnesota <sup>2</sup>Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany



#### PART 1

# Filtration Efficiency of 1.9-30 nm Nanoparticles through Eight Different Membrane Filters



## Introduction

- Micro- (100 nm ~ 1 μm) and ultra-filtration (10 nm ~ 100 nm) using membranes have been widely applied as an effective technique to separate suspended particles from liquid in many industries.
- It is important to investigate the filtration behaviors of nanoparticles against different membranes.
- Filtration behaviors vary with interaction energy between particle and filter surfaces.
- Particles can be rejected by a membrane and resuspension, adsorption and penetration can occur.



## **Objectives**

- Investigating filtration behaviors for different filters with different materials, structures and pore sizes
- Obtaining filtration efficiencies of nanoparticles with sizes of 1.9 nm quantum dots and 5, 10 and 20 nm Au particles
- Understanding particle rejection (retention) mechanisms and the fraction of each mechanism (e.g., percentages of re-suspension, adsorption and penetration)

## **SEM Images of Membranes**



**PVDF: Polyvinylidene difluoride** 

**PCTE: Polycarbonate track-etched** 

**PTFE: Polytetrafluoroethylene** 

**PES: Polyethersulfone** 

**PP: Polypropylene** 

**MCE: Mixed cellulose ester** 

**UHMWPE: Ultra-high-molecular-weight polyethylene** 



## **Filtration Process**

Stirred cell filtration system (constant pressure)





- Stop filtration when permeate volume reaches 30 ml
- Measure concentration of each sample using ES-SMPS
  - √ Feed (upstream, F)
  - √ Permeate (30 ml downstream, P)
  - √ Retentate (20 ml, R)

## **Filtration Efficiency**

• Retention efficiency  $(E_{retention}) = 1 - \frac{C_P}{C_E}$ 

• Recovery efficiency (
$$E_{recovery}$$
) =  $\frac{C_R V_R + C_P V_P}{C_F V_F}$ 

**C<sub>F</sub>V<sub>F</sub>: Number of particles in feed** 

**C<sub>R</sub>V<sub>R</sub>: Number of particles in retentate** 

**C<sub>P</sub>V<sub>P</sub>: Number of particles in permeate** 



#### ex) 100% adsorption without re-suspension into upstream ( $C_p = 0$ )

$$E_{\text{recovery}} = \frac{C_R^{\prime} V_R}{C_F^{\prime} V_F} = 20/50 = 0.4 \text{ (minimum value)}$$

ex) 0% adsorption 
$$(C_R V_R + C_P V_P = C_F V_F)$$
  
 $E_{recovery} = (C_R V_R + C_P V_P)/C_F V_F = 1$  (maximum value)





## Filtration Efficiency

- Retention efficiency  $(E_{retention}) = 1 \frac{C_P}{C_F}$
- Recovery efficiency ( $E_{recovery}$ ) =  $\frac{C_R V_R + C_P V_P}{C_F V_F}$





30 [#] inside membrane

Ex 1) If  $E_{recovery}$  = 1, all particles are in upstream and downstream (no particles in membrane).

Ex 2) If E<sub>recovery</sub> = 0.4, all particles passing membrane are adsorbed into the membrane (no re-suspension).

University of Minnesota

## **Permeability of Membranes**

|                   | Filtration time<br>[min] | Filtered solution<br>[ml] | Applied pressure<br>[Inch of H <sub>2</sub> O] | Permeability<br>[L/m²h] |
|-------------------|--------------------------|---------------------------|------------------------------------------------|-------------------------|
| PVDF (100 nm)     | 28                       | 30                        | 1                                              | 47.97                   |
| Nylon (100 nm)    | 25                       | 30                        | 0                                              | 53.73                   |
| PCTE (100 nm)     | 34                       | 30                        | 10                                             | 39.51                   |
| PTFE (100 nm)     | 10                       | 30                        | 0                                              | 134.32                  |
| PES (100 nm)      | 11                       | 30                        | 0                                              | 116.81                  |
| PP (100 nm)       | 7                        | 30                        | 0                                              | 191.90                  |
| MCE (25 nm)       | 30                       | 30                        | 90                                             | 44.78                   |
| PES (30 nm)       | 22                       | 30                        | 0                                              | 61.06                   |
| PCTE (15 nm)      | 66                       | 30                        | 1107                                           | 20.35                   |
| UHMWPE (sub-5 nm) | 35                       | 30                        | 70                                             | 38.38                   |

- Effective filtration area: 13.4 cm<sup>2</sup>
- Permeability calculated from flow rate and filtration area
- Pressure drop

```
PCTE (15 nm) > MCE (25 nm) > UHMWPE (sub-5 nm) > PCTE (100 nm) > PVDF (100 nm) > Nylon (100 nm) > PES (30 nm) > PES (100 nm) > PTFE (100 nm) > PP (100 nm)
```



### Au 10 nm through 100 nm rated membranes





- Nylon and PCTE have the highest retention.
- Nylon rejects particles by adsorption (minimum recovery ~ 0.4) and PCTE rejects particles by preventing particles from entering pores of the membrane (high recovery).
- PVDF has around 50% retention and 95% recovery so it rejects particles by repulsing or re-suspending the particles.
- PP has almost 100% penetration for 10 nm Au particles.



## Flux (Face Velocity) Effect



- Nylon (100 nm rated Au 10 nm) has high retention at low and high flux, but PES (30 nm rated – Au 5 nm) has very low retention at high flux (high flow velocity).
- Retention mechanisms for Nylon and PES are adsorption and rejection to entering pores (resuspension), respectively.
- Higher flow drag force than repulsion results in carrying particles into the membrane.



### Ultrafiltration of 1.9 nm Quantum Dots





- Nylon (100 nm), MCE (25 nm), PES (30 nm), UHMWPE (sub-5 nm) and PCTE (15 nm) membranes were challenged by 1.9 nm QD.
- Retention efficiencies of QD are generally low with high recovery efficiency, which means that QD is not easily rejected by both adsorption and repulsion, compared to Au nanoparticles.
- The pore size does not have the significant effect on retention efficiency but interaction energy might be more important.

  UNIVERSITY OF MINNESOTA

## Conclusion

- Different structures and materials of membranes result in different rejection mechanisms.
- Therefore, it would be important to choose a proper membrane according to types of filtration systems.
  - Dead-end filtration: membranes with high retention / low recovery
  - ✓ Cross-flow filtration: membranes with high retention / high recovery



 For very small nanoparticles with specific materials (e.g., QD), the effective rejection mechanism would be sieving due to the weak adsorption to membrane.

### PART 2

## CFD Simulation of Liquid Filtration in Different Conditions



## Introduction

- The performance (efficiency) of liquid filtration is hard to predict due to complex interactions between solid surfaces in liquid.
- Unlike air filtration, particle detachment can easily occur due to high viscosity flow and repulsion energy between surfaces.
- From the valid and proper simulation of particle behaviors through filters, one can predict the membrane efficiency under specific conditions.

## **Objectives**

- CFD simulation to predict filtration performance of filter media with different structures, e.g., fibrous, granular filters
- Validation of CFD simulation by comparing with existing empirical equations and experimental data
  - ✓ Single sphere efficiency (favorable / unfavorable)
  - ✓ Single fiber efficiency (favorable)
- 2-D fibrous filter media (many fibers) simulation
  - ✓ Solution chemistry (ionic strength / zeta potential)
  - √ Flow velocity (hydrodynamic drag)
  - √ Fiber and particle (size / material)



## **Overall Methods**

- Solve continuity, momentum and energy equations using ANSYS Fluent
- Track particles in a Lagrangian reference frame using discrete phase model (DPM)

$$\sqrt{\frac{d\vec{v}_p}{dt}} = \frac{1}{m_p} \sum \overrightarrow{F} : \text{Gravitational, Brownian and Stokes drag forces}$$

- √ Trap by interception, impaction and Brownian diffusion
- ✓ User Defined Function (UDF) to implement interaction energy between particle and filter surfaces for adhesion criteria
- ✓ UDF to implement adhesion and drag torques for detachment criteria
- 1) TRANSPORT: How many particles get close to filter surface
- 2) ADHESION: How many particles near filter attach to the filter surface
- 3) TORQUE: How many attached particles remain onto the filter surface



## Calculations in UDF

- Distance between particle and fiber surfaces
- Total interaction energy between particle and filter surfaces in every time step based on DLVO theory
  - ✓ Van der Waals energy:  $\Phi^{VDW}$  (H) =  $-\frac{Aa_p}{6H} \left( \frac{1}{1+14H/\lambda} \right)$
- **Double layer energy:**  $\Phi^{DL}(H) = \pi \varepsilon \varepsilon_0 a_\rho \left\{ 2\psi_\rho \psi_s \ln \left[ \frac{1 + \exp\left(-\kappa H\right)}{1 \exp\left(-\kappa H\right)} \right] + \left(\psi_\rho^2 + \psi_s^2\right) \ln \left[1 \exp\left(-2\kappa H\right)\right] \right\}$
- **Born energy:**  $\Phi^{BR}(H) = \frac{A\sigma^6}{7560} \left[ \frac{8a_p + H}{(2a_p + H)^7} + \frac{6a_p H}{H^7} \right]$
- Collision efficiency (α) at primary and secondary minimum based on Maxwell approach
- Torque acting on particles due to hydrodynamic drag force and adhesion force



## **Calculation Domain for Validation**

#### Single sphere efficiency



**Half sphere** 

#### Single fiber efficiency



|               | Collector size [µm] | Porosity | Approach velocity [m/s] |
|---------------|---------------------|----------|-------------------------|
|               | 328                 | 0.67     | 1.2E-5                  |
| Single sphere | 400                 | 0.6      | 4E-5                    |
|               | 600                 | 0.6      | 2.8E-3                  |
|               | 0.5                 | 0.8      |                         |
| Single fiber  | 2                   | 0.8      | 5E-4                    |
|               | 20                  | 0.8      |                         |

## **Single Collector Theory (Hydrosol)**

Single sphere efficiency (Tufenkji and Elimelech, 2004)

$$\eta_{favor} = \underbrace{2.4A_S^{1/3}N_R^{-0.081}N_{Pe}^{-0.715}N_{vdW}^{0.052}}_{\textbf{Diffusion}} + \underbrace{0.55A_SN_R^{1.675}N_A^{0.125}}_{\textbf{Interception}} + \underbrace{0.22N_R^{-0.24}N_G^{1.11}N_{vdW}^{0.053}}_{\textbf{Gravity}}$$

Single fiber efficiency (Choo and Tien, 1992)

$$\eta_{favor} = \frac{\pi d_f}{4(1-\varepsilon_0)} \times (\lambda_0 + \lambda_{BM})$$

Interception / gravitation / London-van der Waals

$$\lambda_0 = \left(\frac{6}{\pi}\right) \frac{1 - \varepsilon_0}{d_f} A_S \left[0.216 \times 10^{-0.41\varepsilon_0} N_R^{1.55} N_{LO}^{0.1542} + 2.99 \times 10^{-4} \times 10^{3\varepsilon_0} N_G^{1.1} N_R^{-0.3}\right]$$

#### **Diffusion**

$$\lambda_{BM} = \left(\frac{9.2}{\pi}\right) (c_1 + c_2)^{1/3} [(1 - \varepsilon_0)/d_f] N_{Pe}^{-2/3}$$



## Favorable (Interception & Diffusion)

#### Single sphere efficiency



#### Single fiber efficiency



- CFD results were obtained for the valid particle size range, i.e.,
   D<sub>p</sub>/D<sub>F</sub> < 0.1.</li>
- Good agreement between CFD and empirical results of both single sphere and single fiber theory in liquid medium under favorable (no detachment) condition.

  UNIVERSITY OF MINNESOTA

## Validation of Unfavorable Condition (Repulsion)





- 30 and 1156 nm PSL particles and 300 ~ 355  $\mu m$  Quartz sand experiments (Shen et al., 2010)
- Ionic strength with different zeta potentials
- Collision efficiency ( $\alpha$ ) is the rate of successful collisions resulting in attachment of colloidal particles.  $E_{unfavorable}$

 $\alpha = \frac{E_{unfavorable}}{E_{favorable}} \le 1$ 

Increasing ionic strength – increasing collision efficiency



#### Simulation of 2-D Fibrous Filter Media

**Solidity 10%** 

Solidity 5%

5 µm

Fiber diameter

Solidity [%]

Flow velocity [m/s]

1 µm

5%

0.001 m/s

Filtration performance under favorable and unfavorable conditions

10%

15%

 Considering various parameters, e.g., fiber diameter, solidity, flow velocity, Hamaker constant, zeta potential and ionic strength



 $0.0001 \, \text{m/s}$ 

 $0.00001 \, \text{m/s}$ 

**Solidity 15%** 

## Effects of Fiber Diameter, SVF and Fluid Velocity











### Effects of Fiber Diameter, SVF and Fluid Velocity



### Effects of Fiber Diameter, SVF and Fluid Velocity



## **Effects of Ionic Strength**





Favorable D<sub>p</sub> = 100 nm



- Higher efficiency for smaller particles
- As ionic strength decreases, efficiency deceases due to the repulsion between particle and filter surfaces.
- Energy barrier decreases with higher ionic strength.



## **Effects of Ionic Strength**





Favorable D<sub>p</sub> = 100 nm



- Higher efficiency for smaller particles
- As ionic strength decreases, efficiency deceases due to the repulsion between particle and filter surfaces.
- Energy barrier decreases with higher ionic strength.



#### **Effects of Hamaker constant and zeta potential**

#### $D_f = 1 \mu m / SVF = 10\% / U = 0.001 m/s$



- Favorable D<sub>n</sub> = 100 nm

- Higher Hamaker constant increases van der Waals attraction resulting in higher efficiency.
- Increasing zeta potential results in stronger repulsion between particle and filter surfaces (higher double layer force).









Hamaker = 2E-20 J  $\zeta_p$  = -20 mV  $\zeta_f$  = -40 mV  $D_p$  = 100 nm



## Conclusion

- Low flow velocity increases filtration efficiency due to enhanced Brownian motion and reduced hydrodynamic drag.
- Hydrodynamic drag significantly affects filtration efficiency due to detachment of already deposited particles.
- High Hamaker constant and low zeta potential increase attraction energy, which results in higher filtration efficiency.
- With different solution conditions and material types, filtration performance can change significantly (Efficiency can vary from 0 to 100%).

## **Future Work**

- Polydisperse fiber diameters
- 3-D CFD simulation under unfavorable condition

## THANK YOU

Q/A



## APPENDIX



### PART 2

## CFD Simulation of Liquid Filtration in Different Conditions



## **Single Collector Theory**

#### Single sphere efficiency

$$A_{\mathcal{S}} = \frac{2(1-p^5)}{w}$$

$$w = 2 - 3p + 3p^5 - 2p^6$$

$$p=(1-\varepsilon_0)^{1/3}$$

#### Single fiber efficiency

$$A_{S} = \frac{(2/3)(4c_{1} + c_{4})}{c_{1}[(1/\varepsilon_{s}) - 2 + \varepsilon_{s}] + (c_{4}/2)(\varepsilon_{s} - 1 - \ln \varepsilon_{s})}$$

$$c_{1} = \frac{-\varepsilon_{s}c_{4}}{4}$$
  $c_{3} = c_{1} + \frac{c_{4}}{2}$   $c_{2} = -c_{1} - c_{3}$   $c_{4} = \frac{-4}{2\ln\varepsilon_{s} + 3 - 4\varepsilon_{s} + \varepsilon_{s}^{2}}$ 

$$N_R = rac{d_p}{d_g}$$
 $N_{Pe} = rac{Ud_g}{D_{BM}}$ 
 $N_G = rac{2(
ho_p - 
ho_0)a_p^2g}{9\mu U}$ 

$$N_{vdW} = \frac{A}{k_B T}$$

$$N_{LO} = \frac{A}{9\pi \mu a_p^2 U}$$

$$\varepsilon_0 (porosity) = 1 - \varepsilon_s$$

$$d_g (or d_f)$$

