The cardidate is being asked to prove the Pumping Lemma (or rather, its contrapositive).

Suppose L has the given property. We assume L is regular and derive a contradition:

If L is regular, then L = L(M), the language accepted by some DFA M. Consider $\ell \triangleq number \in States$ in M.

If $w \in L$ with length(w) $\geq L$, say $w = a_1 a_2 ... a_n$ ($n \geq l$), since w is accepted by M, we have a transition sequence in M of the form a_1 a_2 a_3 a_4 a_4

the form $S_{M} = q_{0} \xrightarrow{\alpha_{1}} q_{1} \xrightarrow{\alpha_{2}} q_{2} \dots \xrightarrow{\alpha_{k}} q_{k} \dots \xrightarrow{\alpha_{k}} q_{n} \in A(apt_{M})$

Since l+1 is one more than the number of states in M, 90,..., 91 can't all be distinct states: so 9:=9; for some 0 si< j ≤ l and the above transition sequence looks like

 $S_{M} = q_{0} \xrightarrow{u_{1}} q_{i} = q_{j} \xrightarrow{u_{2}} q_{n} \in Accept_{m}$

Where $u_1 = a_1 \dots a_L$, $v = a_{i+1} \dots a_j$, $u_2 = a_{j+1} \dots a_n$ Thus length $(u_1) = i \le L$, length $(v) = j - i \ge 1$ and $u_1 v^n u_2 \in U(n) = L$, for all n. Contradicting the property of l.

3

2

12)

(a) Not regular. Show that Li has the property mentioned in the first part of the question. Given any 121, consider w= albab EL, length(w) = 2(l+1) > ltor any splitting w= u, vuz with length(u,v) $\leq l$, length(v) ≥ 1 , can only Varre Some p, q with

p+q ≤ l & q ≥ 1 u2= al-p-2 b al b So u,v°u2 = al-1 b al b & L, because if al-abalb = un for some u, then u ends in b ('us un does), so can only have u= al-9b, u= alb; but 921, so al-9b+alb. So I does not have the Rumping Lemma Property. (\$) so is not regular. (b) Is regular. For taking W = E, we have that L2 2 { EVE (VE E*) = E* and hence L= I* - Which is regular: e.g. is a FDA accepting It.