AnalizaGrafoviSjever_2022

May 20, 2025

Analiza podataka i njihov grafički prikaz

1.0.1 U ovom jupyter notebooku se analiziraju vrijednosti mjerene na kalorimetru koji se nalazi na sjeveru 11. kata C zgrade FER-a u 2022. godini. Bilo je potrebno podatke filtrirati kako bi maknuli neželjena odstupanja koja nam mogu bitno naškoditi skupu za učenje kojeg koristimo pri kreiranju modela. Sve tehnike obrade podataka su prikazane uz vezano svojstvo.

```
[]:
     instaliranje nužnih library - ja
     !pip install pandas openpyxl
[30]:
     Requirement already satisfied: pandas in c:\users\martin\anaconda3\lib\site-
     packages (2.2.2)
     Requirement already satisfied: openpyxl in c:\users\martin\anaconda3\lib\site-
     packages (3.1.5)
     Requirement already satisfied: numpy>=1.26.0 in
     c:\users\martin\anaconda3\lib\site-packages (from pandas) (1.26.4)
     Requirement already satisfied: python-dateutil>=2.8.2 in
     c:\users\martin\anaconda3\lib\site-packages (from pandas) (2.9.0.post0)
     Requirement already satisfied: pytz>=2020.1 in
     c:\users\martin\anaconda3\lib\site-packages (from pandas) (2024.1)
     Requirement already satisfied: tzdata>=2022.7 in
     c:\users\martin\anaconda3\lib\site-packages (from pandas) (2023.3)
     Requirement already satisfied: et-xmlfile in c:\users\martin\anaconda3\lib\site-
     packages (from openpyxl) (1.1.0)
     Requirement already satisfied: six>=1.5 in c:\users\martin\anaconda3\lib\site-
     packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
```

1.1 Ucitavanje podataka iz csv fileova

```
[32]: import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

# Pathovi CSV fileova
file_path = "../../../data/2022/23/calorimeter_23_year_2022.csv"
```

```
file_path1="../../data/2022/23/zones_23_year_2022.csv"

# citanje CSV fileova
data = pd.read_csv(file_path, index_col=[0])
data1=pd.read_csv(file_path1, index_col=[0])
```

1.1.1 Analiza supply_temperature

```
[34]: df = pd.DataFrame(data) #ucitavamo dataframe

import pandas as pd
import matplotlib.pyplot as plt

df['timestamp'] = pd.to_datetime(df['timestamp'])

plt.figure(figsize=(10, 5))

df.plot.scatter(x='timestamp', y='supply_temperature', s=0.3, ax=plt.gca())

plt.xlabel('Timestamp')
plt.ylabel('Supply Temperature (°C)')
plt.title('Supply Temperature tokom vremena')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()

# Prikazivanje grafa
plt.show()
```



```
[36]: filtered_data = df[df['supply_temperature'] != 0]
print(f"Maknuti podatci u kojima je supply_temperature 0")
df=filtered_data.copy()
```

Maknuti podatci u kojima je supply_temperature 0

Primjenjena 3-sigma za supply_temperature.

Vizualno iz grafa možemo odrediti da je granica uzmeđu hlađenja i grijanja oko 23 stupnjeva.

```
[39]: df['interval_d'] = df['timestamp'].dt.to_period('D')
grupe_intervala = df.groupby('interval_d')
rezultat = []
```

```
for interval, group in grupe_intervala:
    ukupno = len(group)
    ispod_23 = len(group[group['supply_temperature'] < 23])</pre>
    iznad_23 = ukupno - ispod_23
    # Odredimo većinu
    vecina = "Ispod 23°C" if ispod_23 > iznad_23 else "Iznad 23°C"
    # Dodamo rezultate u listu
    rezultat.append({
        'interval': interval,
        'ukupno_podataka': ukupno,
        'ispod_23': ispod_23,
        'iznad_23': iznad_23,
        'vecina': vecina
    })
df_intervals = pd.DataFrame(rezultat)
start_date = pd.Period("2022-05-05", freq='D')
end_date = pd.Period("2022-05-20", freq='D')
# Filtriranje podataka
konacni = df_intervals[(df_intervals['interval'] > start_date) &__
 ⇔(df_intervals['interval'] < end_date)]
konacni
```

[39]:		interval	ukupno_podataka	ispod_23	iznad_23	vecina
	125	2022-05-06	1440	0	1440	Iznad 23°C
_	126	2022-05-07	1440	0	1440	Iznad 23°C
_	127	2022-05-08		0	1440	
1	L Z /	2022-05-06	1440	U	1440	Iznad 23°C
1	128	2022-05-09	1440	0	1440	Iznad 23°C
1	129	2022-05-10	1440	0	1440	Iznad 23°C
1	L30	2022-05-11	1440	0	1440	Iznad 23°C
1	l31	2022-05-12	1440	0	1440	Iznad 23°C
1	132	2022-05-13	1440	967	473	Ispod 23°C
1	L33	2022-05-14	1440	1440	0	Ispod 23°C
1	L34	2022-05-15	1440	290	1150	Iznad 23°C
1	L35	2022-05-16	1440	1184	256	Ispod 23°C
1	L36	2022-05-17	1440	1398	42	Ispod 23°C
1	L37	2022-05-18	1440	1432	8	Ispod 23°C
1	L38	2022-05-19	1440	1440	0	Ispod 23°C

Iz sljedećih podataka možemo zaključiti da je 2019-05-13 završio period grijanja, a krenuo period hlađenja.

[41]:	interval	ukupno_podataka	ispod_23	iznad_23	vecina
258	2022-09-21	1440	1440	0	Ispod 23°C
259	2022-09-22	1440	1440	0	Ispod 23°C
260	2022-09-23	1440	1440	0	Ispod 23°C
261	2022-09-24	1440	1440	0	Ispod 23°C
262	2022-09-25	1440	1440	0	Ispod 23°C
263	2022-09-26	1440	1440	0	Ispod 23°C
264	2022-09-27	1440	831	609	Ispod 23°C
265	2022-09-28	1440	0	1440	Iznad 23°C
266	2022-09-29	1334	179	1155	Iznad 23°C
267	2022-09-30	1440	0	1440	Iznad 23°C
268	2022-10-01	1440	0	1440	Iznad 23°C
269	2022-10-02	1440	0	1440	Iznad 23°C
270	2022-10-03	1440	0	1440	Iznad 23°C
271	2022-10-04	1440	0	1440	Iznad 23°C
272	2022-10-05	1440	0	1440	Iznad 23°C
273	2022-10-06	1440	0	1440	Iznad 23°C
274	2022-10-07	1440	0	1440	Iznad 23°C
275	2022-10-08	1440	0	1440	Iznad 23°C
276	2022-10-09	1440	0	1440	Iznad 23°C

Iz sljedećih podataka možemo zaključiti da je 2019-09-28 završio period hlađenja, a krenuo period grijanja.

1.1.2 Analiza return_temperature

```
[44]: # 'timestamp' se pretvara u datetime
df['timestamp'] = pd.to_datetime(df['timestamp'])

plt.figure(figsize=(10, 5))
# crtanje grafa
df.plot.scatter(x='timestamp', y='return_temperature', s=0.3, ax=plt.gca())
plt.xlabel('Timestamp')
plt.ylabel('Return Temperature (°C)')
plt.title('Return Temperature tokom vremena')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



```
[45]: filtered_data = df[df['return_temperature'] != 0]

print(f"Maknuti podatci u kojima je return temp 0")
df = filtered_data.copy()
```

Maknuti podatci u kojima je return temp 0

Primjenjena 3-sigma za return_temperature.

1.1.3 Analiza mass_volume_flow

```
[48]: # 'timestamp' se pretvara u datetime
df['timestamp'] = pd.to_datetime(df['timestamp'])

plt.figure(figsize=(10, 5))
# crtanje grafa
df.plot.scatter(x='timestamp', y='mass_volume_flow', s=0.3, ax=plt.gca())
```

```
plt.xlabel('Timestamp')
plt.ylabel(' Mass Volume FLow ')
plt.title(' Mass Volume Flow')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Primjenjena 3-sigma za mass_volume_flow.

Mass_volume flow nakon 3-sigma

```
[51]: plt.figure(figsize=(10, 5))
# crtanje grafa
df.plot.scatter(x='timestamp', y='mass_volume_flow', s=0.3, ax=plt.gca())
plt.xlabel('Timestamp')
```

```
plt.ylabel(' Mass Volume FLow ')
plt.title(' Mass Volume Flow')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


1.1.4 Analiza thermal power

```
[53]: # 'timestamp' se pretvara u datetime
    df['timestamp'] = pd.to_datetime(df['timestamp'])
    plt.figure(figsize=(10, 5))
    # crtanje grafa
    df.plot.scatter(x='timestamp', y='thermal_power', s=0.3, ax=plt.gca())
    plt.xlabel('Timestamp')
    plt.ylabel('Thermal power')
    plt.title('Thermal power')
    plt.grid(True)
    plt.sticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


1.1.5 Analiza zone_temperature

```
[55]: df1 = pd.DataFrame(data1)

[56]: df1['timestamp'] = pd.to_datetime(df1['timestamp'])
    plt.figure(figsize=(10, 5))

    df1.plot.scatter(x='timestamp', y='zone_temperature', s=0.3, ax=plt.gca())
    plt.xlabel('Timestamp')
    plt.ylabel('Zone temperature')
    plt.title('Zone temperature')
    plt.grid(True)
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


Primjenjena 3-sigma za zone_temperature.

Prikaz zone_temperature nakon 3-sigma

zbog velikih odstupanja prikazujemo novi graf

```
[60]: df1['timestamp'] = pd.to_datetime(df1['timestamp'])
    plt.figure(figsize=(10, 5))
    # crtanje grafa
    df1.plot.scatter(x='timestamp', y='zone_temperature', s=0.3, ax=plt.gca())
    plt.xlabel('Timestamp')
    plt.ylabel('Zone temperature')
    plt.title('Zone temperature')
    plt.grid(True)
    plt.xticks(rotation=45)
    plt.tight_layout()
```

plt.show()

1.1.6 Analiza zone_fan_speed

```
[62]: df1['timestamp'] = pd.to_datetime(df1['timestamp'])

plt.figure(figsize=(10, 5))

df1.plot.scatter(x='timestamp', y='zone_fan_speed', s=0.3, ax=plt.gca())

plt.xlabel('Timestamp')

plt.ylabel('Zone fan speed')

plt.title('Zone fan speed')

plt.grid(True)

plt.xticks(rotation=45)

plt.tight_layout()

plt.show()
```


Primjenjena 3-sigma za zone_fan_speed.

1.1.7 Analiza temperature setpoint

```
[65]: df1['timestamp'] = pd.to_datetime(df1['timestamp'])
   plt.figure(figsize=(10, 5))

df1.plot.scatter(x='timestamp', y='temperature_setpoint', s=0.3, ax=plt.gca())
   plt.xlabel('Timestamp')
   plt.ylabel('Temperature setpoint')
   plt.title('Temperature setpoint')
   plt.grid(True)
   plt.xticks(rotation=45)
   plt.tight_layout()
   plt.show()
```



```
[66]: filtered_data = df1[df1['temperature_setpoint'] != 0]

print(f"Maknuti podatci u kojima je temperature_setpoint 0")
df1 = filtered_data.copy()
```

Maknuti podatci u kojima je temperature_setpoint 0

1.1.8 Exportanje rezultata u CVS fileove

```
[68]: df.to_csv('../../results/2022/23/calorimeter_23_year_2022filtriranje.csv',⊔

⇔index=False)
df1.to_csv('../../results/2022/23/zones_23_year_2022filtriranje.csv',⊔

⇔index=False)
print("Upisani podatci")
```

Upisani podatci

1.1.9 Na kraju filtrirane podatke pohranjujemo u zasebne CSV fileove

```
[]:
```