Diskrete und stetige Verteilung 1

 ${\bf Zufalls experiment} \hbox{: Ein Vorgang, bei dem folgende Bedingungen erfllt sind:} \\$

- Vorgäng lässt sich unter den gleichen äusseren Bedingungen beliebig oft wiederholen
- Mehrere sich gegenseitig ausschliesende Ergebnisse möglich
- Ergebnis lässt sich nicht mit Sicherheit voraussagen

Mögliche, sich gegenseitig ausschliessende Ergebnisse $\omega_1, \omega_2, ...$ werden zur Menge Ω

 $\mathbf{diskret}$: ist immer numerisch

stetig: Sind numerische Werte, die zwischen zwei beliebigen Werten eine unendliche Anzahl von Werten aufweisen

Disrekte und stetige Zufahlsvariablen

Kumulative Verteilungsfunktion: $F(x) = P(X \le x)$

Für stetige Zufallsvariablen

$$F(x) = P(X \leq x) = \int_{-\infty}^{x} f(u) du$$
f ist die Dichtefunktion / PDF

Es gilt immer: $f(x) \geq 0$ für alle $x \in R$ UND $\int_{-\infty}^{\infty} f(u) du = 1$ Erwartungswert von X: $\mu = E(X) = \int -\infty^{\infty} f(x) * x dx$ Varianz von X: $\sigma^2 = V(X) = \int -\infty^{\infty} f(x) * (x - E(X))^2 dx$ Standardabweichung: $\sigma = \sqrt{V(X)}$