(a)

## Decision network



## Conditional probability table:





Utility function (I gave a little happiness when the biker can get on a bike without helmet LOL)

| Utility Table for U |        |         |
|---------------------|--------|---------|
| Accident            | Helmet | Utility |
| T                   | Т      | -5.0    |
| T                   | F      | -10.0   |
| F                   | Т      | 0.0     |
| F                   | F      | 0.1     |
|                     | ОК     |         |

For my assumption above, the optimal decision is always put on a safety helmet.

Some sample calculation:

Without any information,

With helmet, E(U) = -0.22

Without helmet,  $\dot{E}(U) = -0.34$ 

Hence it is better expected utility when we put on a safety helmet.

The general policy the biker should follow is to always put on a safety helmet to maximize the expected utility.

(b)

Decision network:



Conditional probability tables and utility function are all the same as in (a).

The optimal decision would be:

| Decision Function for Helmet                      |  |  |
|---------------------------------------------------|--|--|
| Traffic Helmet                                    |  |  |
| Good ☐ T ✓ F                                      |  |  |
| Moderate ✓ T ☐ F                                  |  |  |
| Poor VT F                                         |  |  |
| This decision function was created by optimizing. |  |  |
| Clear OK Cancel                                   |  |  |

Some sample calculation:

For Traffic = Good,

With helmet, E(U) = -0.05

Without helmet,  $\dot{E}(U) = 0$ 

For Traffic = Moderate,

With helmet, E(U) = -0.25

Without helmet,  $\dot{E}(U) = -0.4$ 

Then the general rule would be: If the traffic is good, do not put on helmet. If it is not, put on helmet.

Value of buying the app = (-0.2) - (-0.22) = 0.02

It is worthwhile for me to buy the app, because it increases my expected utility.