Devoir maison n°7: Autour de Farey

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Partie A - Somme des cancres dans \mathbb{Q}_+ .

Soient $x=\frac{a}{b},y=\frac{c}{d},z=\frac{e}{f}, \text{ avec } a,c,e\in\mathbb{N}, \text{ et } b,d,f\in\mathbb{N}^*.$

1)

$$x \oplus x = \frac{a}{b} \oplus \frac{a}{b} = \frac{2a}{2b} = \frac{a}{b}$$

Donc $x \oplus x = x$.

2)

$$x \oplus y = \frac{a+c}{b+d}$$
 et $y \oplus x = \frac{c+a}{d+b} = \frac{a+c}{b+d}$

 $x \oplus y = y \oplus x$ donc l'opération est commutative.

3) D'une part :

$$(x \oplus y) \oplus z = \left(\frac{a+c}{b+d}\right) \oplus \frac{e}{f} = \frac{a+c+e}{b+d+f}$$

Et d'autre part :

$$x \oplus (y \oplus z) = \frac{a}{b} \oplus \left(\frac{c+e}{d+f}\right) = \frac{a+c+e}{b+d+f}$$

 $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ donc l'opération est associative.

- **4)** Raisonnons par contraposée : Montrons que $(x \geqslant x \oplus y \lor x \oplus y \geqslant y) \Longrightarrow x \geqslant y$.
- Supposons $x \geqslant x \oplus y$:

$$x \geqslant x \oplus y \Longrightarrow \frac{a}{b} \geqslant \frac{a+c}{b+d}$$

$$\Longrightarrow \frac{ab+ad-ab-bc}{b(b+d)} \geqslant 0$$

$$\Longrightarrow ad-bc \geqslant 0 \quad \text{car } b(b+d) \in \mathbb{N}$$

$$\Longrightarrow \frac{a}{b} \geqslant \frac{c}{d}$$

$$\Longrightarrow x \geqslant y$$

• Supposons $x \oplus y \geqslant y$:

$$\begin{split} x \oplus y \geqslant y &\Longrightarrow \frac{a+c}{b+d} \geqslant \frac{c}{d} \\ &\Longrightarrow \frac{ad+cd-bc-cd}{d(b+d)} \geqslant 0 \\ &\Longrightarrow ad-bc \geqslant 0 \quad \text{car } d(b+d) \in \mathbb{N} \\ &\Longrightarrow \frac{a}{b} \geqslant \frac{c}{d} \\ &\Longrightarrow x \geqslant y \end{split}$$

Nous avons montré que $(x \geqslant x \oplus y \lor x \oplus y \geqslant y) \Longrightarrow x \geqslant y$, et donc, par contraposée, que $x < y \Longrightarrow x < x \oplus y < y$.

Partie B - Déterminant de deux nombres de \mathbb{Q}_+ .

Nous reprenons x, y tels que dans la partie précédente.

- **1)** Montrons que : $x = y \iff \delta(x, y) = 0$.
- Supposons que x = y. Alors :

$$\delta(x,y) = \delta(x,x)$$

$$= ab - ba$$

$$= 0$$

• Supposons que $\delta(x,y)=0$. Alors :

$$ad - bc = 0$$

$$ad = bc$$

$$\frac{a}{b} = \frac{c}{d}$$

$$x = y$$

Nous avons donc montré que $x=y \Longleftrightarrow \delta(x,y)=0.$

2) D'une part :

$$\delta(y,x) = \begin{vmatrix} c & a \\ d & b \end{vmatrix} = bc - ad$$

D'autre part :

$$-\delta(x,y) = - \begin{vmatrix} a & c \\ b & d \end{vmatrix} = -ad + bc$$

Donc $\delta(y, x) = -\delta(x, y)$.

3)

$$\begin{aligned} x < y &\iff \frac{a}{b} < \frac{c}{d} \\ &\iff ad < bc \ \text{car} \ b, d > 0 \\ &\iff ad - bc < 0 \\ &\iff \delta(x,y) < 0 \\ &\iff \delta(x,y) \leqslant -1 \ \text{car} \ \delta(x,y) \in \mathbb{Z}. \end{aligned}$$

Donc $x < y \iff \delta(x, y) \leqslant -1$.

Partie C - Ensembles de Farey.

- **1)** Bah non en fait, Thomas python please
- **2)** Si $\frac{m}{n} \in F_n$, alors $0 \le m \le n$ et $n \ge n m \ge 0$. Donc $\frac{n-m}{n} \in F_n$.

Comme $n-(n-m)=m, \frac{m}{n}\in F_n$ si et seulement si $\frac{n-m}{n}\in F_n$, qui est son symétrique par rapport à leur moyenne $\frac{1}{2}$. Ce centre de symétrie ne dépend pas de m: on en conclut donc que $\frac{1}{2}$ est le centre de F_n pour $n\geq 2$.

3) Pas trouvé:/

- **4)** Notons pour $n \in \mathbb{N}^*, P(n)$ l'assertion suivante : Si x < y sont deux fractions consécutives de F_n , alors :
- $\delta(x,y) = -1$
- La première fraction qui apparaıt dans un $F_m, m > n$ est $x \oplus y$

Il s'agit de prouver par récurrence P(n) pour tout $n \in \mathbb{N}^*$.

- a) Initialisation : Les seules fractions de F_1 sont $\frac{0}{1}$ et $\frac{1}{1}$. On a bien $\delta\left(\frac{0}{1},\frac{1}{1}\right)=-1$ et la première fraction qui apparaît entre elles dans un F_m suivant est $\frac{1}{2}$ dans F_2 : or, $\frac{1}{2}=\frac{0}{1}\oplus\frac{1}{1}$. Donc P(1) est vraie.
 - **b)** Hérédité : On suppose par la suite P(n) pour $n \in \mathbb{N}^*$, et on prouve P(n+1).

On pose $x=\frac{a}{b}$ et $y=\frac{c}{d}$ deux fractions irréductibles et consécutives dans F_{n+1} . Par **C.3**, on sait que $x\in F_n$ ou $y\in F_n$.

$$\mathbf{1}^{\operatorname{er}}\operatorname{\mathbf{cas}}:x\in F_n \text{ et } y\in F_n.$$

Comme x et y sont consécutives dans F_{n+1} , alors elles le sont aussi dans F_n , car $F_n\subseteq F_{n+1}$. Alors par l'hypothèse de récurrence, $\delta(x,y)=-1$. De plus, la première fraction qui apparaît entre x et y est $x\oplus y$ dans $F_m, m>n$. Mais x et y sont consécutives dans F_{n+1} , donc m>n+1. Ainsi, dans ce cas, P(n+1) est vérifiée.

 $\mathbf{2}^{\mathbf{e}}$ cas : $x \in F_n$ et $y \in F_{n+1} \setminus F_n$. Posons $z \in F_n$ la fraction successive de x dans F_n .

Par hypothèse de récurrence, comme y doit être la première fraction à s'être intercalée entre x et y, on doit avoir $y=x\oplus z$. De plus, on a $\delta(x,z)=-1$. On a donc

$$\delta(x,y) = \delta(x,x \oplus z) = \delta(x,z) = -1$$

Ce qui valide la première condition de P(n + 1).

Posons maintenant $t=\frac{r}{s}$ la première fraction irréductible à apparaître entre x et y dans un F_m pour m>n+1.

D'abord, on a les équivalences suivantes :

$$\begin{cases} \delta(t,x) \geq 1 & \text{B.2} \\ \delta(y,t) \geq 1 & \Longleftrightarrow \end{cases} \begin{cases} \delta(x,t) \leq -1 \\ \delta(t,y) \leq -1 \end{cases}$$

$$\overset{\text{B.3}}{\Longleftrightarrow} x < t < y$$

Comme t s'intercale entre x et y, $\delta(t,x)$ et $\delta(y,t)$ sont bien supérieurs ou égaux à 1.

Ensuite, on a:

$$\begin{split} a\delta(y,t) + c\delta(t,x) &= a(cs-dr) + c(br-as) \\ &= acs - acs + rbc - rad \\ &= r(bc-ad) \\ &= -r\delta(x,y) \\ &= r \end{split}$$

Similairement, on a:

$$\begin{split} b\delta(y,t) + d\delta(t,x) &= b(cs-dr) + d(br-as) \\ &= bdr - bdr + sbc - sad \\ &= s(bc-ad) \\ &= -s\delta(x,y) \\ &= s \end{split}$$

Si $\delta(t,x) \neq 1$ ou $\delta(t,y) \neq 1$, alors la fraction $t' = x \oplus y$ a un dénominateur s' = b + d < s. De plus, comme $\delta(x,y) = -1$, t' est irréductible. Donc t' s'intercale entre x et y strictement avant t, ce qui contredit la minimalité de t. Donc $\delta(x,t) = \delta(y,t) = 1$, et $t = x \oplus y$, ce qui conclut la preuve de la deuxième condition de P(n+1) dans ce cas.

3e cas: TODO

Partie D - Cercles de Ford.

1) Tangents à l'axe des abscisses.

Prouvons que tout cercle de Ford est tangent à l'axe des abscisses. Soit $\frac{a}{b}$ une fraction irréductible. Son cercle de Ford associé est de centre $\left(\frac{a}{b}, \frac{1}{2b^2}\right)$ et de rayon $\frac{1}{2b^2}$. Comme le rayon du cercle et son ordonnée sont égaux, tout cercle Ford est bien tangent à l'axe des abscisses.

2) Tangents entre eux quand consécutifs.

Nous allons raisonner par équivalence.

Soient α et β deux fractions consécutives de F_n tel que

$$\alpha = \frac{m}{a}$$
 et $\beta = \frac{n}{b}$

avec $m, n \in \mathbb{N}$, $a, b \in \mathbb{N}^*$ et $\alpha < \beta$.

Les deux cercles de Ford C_{α} et C_{β} associés à α et β sont tangents à l'axe des abscisses d'après la propriété ci-dessus. On nomme r_{α} et r_{β} les rayons respectifs des cercles, et D la distance entre leur centre.

Le triangle rectangle vert existe avec les longeurs indiquées si et seulement si les deux cercles sont tangents.

 C_{α} et C_{β} sont tangents ssi

$$D^2 = \left(r_\alpha + r_\beta\right)^2 - \left(y_\alpha - y_\beta\right)^2$$

$$\Leftrightarrow \qquad D^2 = \left(\frac{1}{2a^2} + \frac{1}{2b^2}\right)^2 - \left(\frac{1}{2a^2} - \frac{1}{2b^2}\right)^2$$

$$\Leftrightarrow \qquad D^2 = \left(2\left(\frac{1}{2a^2}\right)\right)\left(2\left(\frac{1}{2b^2}\right)\right)$$

$$\Leftrightarrow \qquad D^2 = \left(\frac{1}{ab}\right)^2 \quad \text{Or } D > 0 \text{ et } a, b \in \mathbb{N}^*$$

$$\Leftrightarrow \qquad D = \frac{1}{df}$$

$$\Leftrightarrow \qquad \frac{n}{b} - \frac{m}{a} = \frac{1}{df} \quad \text{car } \alpha < \beta$$

$$\Leftrightarrow \qquad \frac{an - mb - 1}{df} = 0$$

$$\Leftrightarrow \qquad mb - an = -1$$

$$\Leftrightarrow \qquad \delta(\alpha, \beta) = -1$$

Or $\delta(\alpha,\beta)$ est bien égal à –1 car TODO donc par équivalence, α et β sont tangeants.

Nous avons prouvé que les cercles Ford associés à deux fractions consécutives de ${\cal F}_n$ sont tangeants entre eux.