blatt3.md 5/20/2022

Computerphysik I: Blatt 03

von Aurel Müller-Schönau und Leon Oleschko

a)

Um die Fehlerabhängigkeit von verschiedenen numerischen Methoden zu prüfen, wurde ein harmonischer Oszillator (Periodendauer \$T\$) für \$1000\$ Oszillationen mit verschiedenen Zeitlichen Auflösungen \$H\$ simuliert. Dabei ist \$H\in[0.001;0.001;0.5]/2\pi T\$. Dies ist zwar unrealistisch hoch, lässt aber eine schnelle Simulation zu.

In der Abbildung unten sind der Auslenkungsfehler \$x\$, der Geschwindigkeitsfehler \$v\$ und der Energiefehler \$E\$ für verschiedene Zeitauflösungen \$H\$ dargestellt.

Die Erkenntnis, dass die Energie nur beim Runge Kutta Verfahren erhalten ist (zumindest praktisch) ist trotzdem gute zu erkennen.

b)

Im Diagramm unten ist das Phasendiagramm für verschiedene Dämpfungen \$\gamma\$ dargestellt. Simuliert mit dem Verlet Verfahren.

blatt3.md 5/20/2022

c), d), e)

c) In der oberen Abbildung ist für verschiedene Dämpfungen \$\gamma\$ die Resonanzkurve dargestellt. Dabei berechnet das Programm für \$\gamma\in [0;0.05;10)\$ die Resonanzkurven, diese können dann selektiv dargestellt werden.

Die Amplitude wird bestimmt, indem das Maximum nach einer Einschwingzeit bestimmt wird.

e) Indem an diesem Zeitpunkt die Phase der antreibenden Schwingung gespeichert wird, kann auch die Phasenverschiebung zwischen der antreibenden und resultierenden Schwingung bestimmt werden. Diese ist in \$rad\$ in dem unteren Diagram rechts dargestellt. Dabei ist schön der Phasensprung von \$Pi\$ bei der Resonanzkatastrophe bei schwacher Dämpfung zu sehen.

blatt3.md 5/20/2022

d) unten ist der etwas unübersichtlicher der 3D Plot dargestellt:

