Controlled Evolution of Collaborative Networks: Is it a Good Idea?

Alexey Nikolaev, Saad Mneimneh, Amotz Bar-Noy, CUNY, New York, NY. Ram Ramanathan, BBN, Cambridge, MA. email: anikolaev@gradcenter.cuny.edu

Simplicial complex networks

Abstract symplicial complex (SC) is a collection of sets Δ with the property that if a set $F \in \Delta$, then all subsets of F belong to Δ as well. A set $F \in \Delta$ is called a **face** of the complex. And a **facet** of a complex is a maximal face that is not contained in any other faces.

Graphs are a special case of SCs containing sets of size at most 2 (i.e. nodes and edges).

In this work, **collaborating teams are modeled as facets** of the SC. Thus collaborations of any size can be captured.

Neutral network growth model

RANDOM MUTATION:

- with 25% probability: **Add a new person** to an existing team sampled uniformly at random.
- with 25% probability: **Make a new team** by taking a union of all people from two or more already existing teams, and sampling their subset.
- with 50% probability: **Split an existing team** into two, assigning the team members randomly.

NEUTRAL (NOT GUIDED BY A METRIC) NETWORK GROWTH PROCEDURE:

- Start with a simplicial complex with one node.
- Apply RANDOM MUTATION to the network until the stopping condition is met.

Stopping conditions: (a) when the network has been "mutated" the required number of times, or (b) when the number of nodes in the network reaches the required limit.

Degree distributions

Facet degree of a node is the number of facets (teams) the node belongs to. **Edge degree** of a node is its degree in the underlying graph (=the number of neighbors).

Figure 1: Neutral (not guided) generation procedure. Facet degree distribution. Edge degree distribution. Facet size distribution. Obtained from a network generated in 8000 mutation operations.

How realistic this model is? Wikipedia talk pages discussions exhibit similar distribution properties:

Guided network growth model

Metric-guided network growth procedure:

- Start with a simplicial complex with one node.
- Sample three RANDOM MUTATIONS of the current state of the network, and proceed with the one that maximizes the metric.

Neutral

Guided

• Repeat until the stopping condition is met.

Guided

Guiding metrics: Proviously the authors cons

Previously, the authors considered [1] the following performance-measuring functions (all sums over f go over all *facets* of the complex and d(v) is the facet degree of the node v). Now we use them to guide the network growth:

$$\mathbf{M1}(\Delta) = \prod_{v} \left(1 + \frac{1}{d(v)} \right)^{d(v)}$$

$$\mathbf{M5}(\Delta) = \sum_{f} \left(H_{|f|} \sum_{v \in f} \frac{1}{d(v)} \right)$$

$$\mathbf{M2}(\Delta) = \prod_{f} \frac{1}{|f|} \cdot \sum_{v \in f} \left(1 + \frac{1}{d(v)} \right)^{|f|}$$

$$\mathbf{M6}(\Delta) = \sum_{f} \left(\sum_{v \in f} \frac{1}{\sqrt{d(v)}} \right)^{2}$$

$$\mathbf{M3}(\Delta) = \prod_{f} \left(1 + \frac{1}{\sum_{v \in f} d(v)} \right)^{\sum_{v \in f} d(v)}$$

$$\mathbf{M7}(\Delta) = \sum_{f} \sqrt{\sum_{v \in f} \frac{1}{d(v)^{2}}}$$

$$\mathbf{M4}(\Delta) = \sum_{f} \left((|f| - 1) \cdot \prod_{v \in f} \frac{1}{d(v)} \right)$$

$$\mathbf{M8}(\Delta) = \sum_{f} |f|!$$

$$\mathbf{M1/M2}$$

$$\mathbf{M4}$$

$$\mathbf{M5/M6}$$

$$\mathbf{M5/M6}$$

$$\mathbf{M8}$$

Figure 2: Some typical networks with 20 nodes generated with the metric-guided generation processes.

Degree distributions - Guided

Observed properties The following table summerings the

Teams are formed

and split, the

ambivalent, **no**

specific goal or

process is

direction.

The following table summarizes the properties of the metrics M1-M8 observed from statistics on large networks and from visual inspection of small networks of size 20.

Accumulation of

new teams and

members. Not

overloading with

too many tasks.

worried by

Metric	-	ping teams facet degee*)	# of teams (w.r.t. Neutral)	Team size (w.r.t. Neutral)	# of connect. components	Allows single big team
M1	yes	(1.66)	<u> </u>	+	few (1–3)	_
M2	yes	(1.73)		+	few	_
M3	yes	(1.71)	+	0—**	some (2–6)	_
M4	no	(1.00)		+	some	yes
M5	okay	(1.31)		+	few	yes
M6	okay	(1.23)	——	+	few	yes
M7	no	(1.03)	+	_	many (> 10)	_
M8	ves!	(1.81)	_	+	few	ves

Table 1: (*) Average facet degree of a node is reported for small networks of size 20. For larger networks, M5 and M6 eventually catch up with M1-M3, but M8 still surpasses them all by the factor of 1.5–2. (**) The metric M3 slightly decreases the team sizes with respect to the neutral generation process.

References

Multitasking is

teams **became**

members were

introduced.

discouraged. All

disjoint, new team

[1] A. Assarpour et al., "Measuring the strength of networks of teams: Metrics and properties", 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 414–419, IEEE, 2015.