

Raumkinematik - Quaternionen

Prof. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Quaternionen

- Probleme von (homogenen) Rotationsmatrizen
 - Hohe Redundanz
 - Viele Rechenoperationen bei Verkettung
 - Singularitäten
- Orientierung eines starren Körpers
 - Quaternion: Rotationsachse (3 dim. Vektor \vec{r}) und Winkel ϕ ausreichend
 - Verringerung des benötigten Rechenaufwandes

Reelle Quaternionen

- Reelles Quaternion $Q = (r_1, r_2, r_3, r_4)$ mit $r_1, r_2, r_3, r_4 \in \mathbb{R}$
- Häufig Darstellung als linearer Vektorraum über R
 - $Q = r_1 + i \cdot r_2 + j \cdot r_3 + k \cdot r_4$ (Erweiterung von \mathbb{C})
- Für Basiselemente 1, i, j, k gilt folgende multiplikative Verknüpfungstabelle (nicht kommutativ):

Reelle Quaternionen

- Skalarteil: r_1 (Drehwinkel)
- Vektorteil: $i \cdot r_2 + j \cdot r_3 + k \cdot r_4$ (Drehachse)
- Damit können durch Quaternionen alle Drehungen dargestellt werden, bei denen die Drehachse durch den Ursprung des Bezugssystems geht
 - Konjugierte: $\bar{Q} = r_1 i \cdot r_2 j \cdot r_3 k \cdot r_4$
 - Betrag: $|Q| = \sqrt{Q \cdot \bar{Q}}$
 - Inverse: $Q^{-1} = \frac{\bar{Q}}{|Q|^2} \to Q \cdot Q^{-1} = Q^{-1} \cdot Q = 1$

Reelle Quaternionen: Beispiel

- Seien $Q_1 = (3,2,-4,1)$ und $Q_2 = (4,-3,1,-5)$
- Dann gilt ...
 - $Q_1 + Q_2 = (7, -1, -3, -4)$
 - $Q_1 \cdot Q_2 = (27,18,-6,-21)$
 - $Q_2 \cdot Q_1 = (27, -20, -20, -1)$
 - $Q_1^{-1} = \frac{(3-2i+4j-k)}{30}$

Rotation von Punkt mittels Quaternionen

Einheitsquaternion: $|Q| = 1 \Rightarrow Q^{-1} = \overline{Q}$, da $|Q|^2 = 1 \rightarrow$ Einfache Vor-/Rückwärtsrechnung

Rotation eines Punktes \vec{p} um Achse \vec{v} mit Winkel ϕ

1. Einheitsquaternion aus v und ϕ erstellen

(1) Normierung von \vec{v} auf 1

(2)
$$Q = \left[\cos\frac{\phi}{2}, \sin\left(\frac{\phi}{2}\right)\vec{v}\right]$$
, da $\cos^2 + \sin^2 = 1$

- 2. Punkt \vec{p} als Quaternion darstellen: $P = [0, \vec{p}]$
- 3. Abschließendes Drehen: $P' = Q \cdot P \cdot Q^{-1} = Q \cdot P \cdot \overline{Q}$

Konvertierung Quaternion/Rotationsmatrix

- Rotationsquaternion Q = (s, (x, y, z))
- Aus Rotation mittels Einheitsquaternion $|Q| = 1 \Rightarrow Q^{-1} = \bar{Q}$ folgt die Rotationsmatrix R:

$$R = \begin{bmatrix} 1 - 2(y^2 + z^2) & 2xy - 2sz & 2sy + 2xz \\ 2xy + 2sz & 1 - 2(x^2 + z^2) & -2sx + 2yz \\ -2sy + 2xz & 2sx - 2yz & 1 - 2(x^2 + y^2) \end{bmatrix}$$

- Aus R mit den Einträgen r_{ij} , $i,j \in \{1,2,3\}$ berechnet sich der entsprechende Rotationsquaternion Q = (s, (x, y, z)) wie folgt:
 - $s = \frac{1}{2} \sqrt{1 + r_{11} + r_{22} + r_{33}}$
 - $x = \frac{r_{32} r_{23}}{4s}$
 - $y = \frac{r_{13} r_{31}}{4s}$
 - $z = \frac{r_{21} r_{12}}{4s}$

Duale Quaternionen

- Reelle Quaternionen eignen sich für die Beschreibung der Orientierung, nicht aber der Lage eines Objektes
- Um neben der Orientierung auch die Lage mit Quaternionen ausdrücken zu können, werden die 4 reellen Werte durch Dualzahlen ersetzt
 - $D_q = (d_1, d_2, d_3, d_4)$
 - $d_i = dp_i + \varepsilon \cdot ds_i$
 - $\varepsilon^2 = 0$
 - d₁: Winkelwert und Verschiebungslänge
 - d_2, d_3, d_4 : Beschreibung einer gerichteten Gerade im Raum, bzgl. der die Rotation und Translation erfolgt

Eigenschaften Dualer Quaternionen

- Duale Quaternionen zur Lagebeschreibung geeignet
- Operationen auf Dualen Quaternionen erlauben alle benötigten Transformationen
- Geringe Redundanz, da nur 8 Kenndaten
- Gimbal lock nicht vorhanden
- Schwächen
 - Schwierigkeit für den Anwender, eine Lage durch Angabe einer Dualquaternion zu beschreiben
 - Komplexe Verarbeitungsvorschriften (z.B. Multiplikation)

