

FocalTech

车联网边缘缓存策略研究

作者: 薛拯 导师: 韩国军教授

关键词:车联网;边缘缓存;内容传输时延;传输成本。

摘要

- 提出双层云车联网边缘缓存模型,推导平均内容传输 时延及成本。
- 该模型充分利用车辆和路边单元的缓存能力最小化用 户获取缓存内容的平均时延以及运营商传输内容的平 均成本。
- 提出交替动态规划搜索算法和低复杂度合作贪婪算法 求解优化模型。
- 室内搭建车联网设备平台,实现系统模型原型。仿真 和实测数据验证了缓存策略的有效性。

- 车辆编队行驶进入双向道路路口,请求下载内容。
- 车载网络分为车辆云层和路边单元云层,内容服务商 提供缓存内容。
- 通信方式: V2V, V2R, V2RC, V2B。

研究流程

场景

- 系统网络模型
- 车辆移动模型
- 通信模型
- 内容及请求概率模型
- 车辆获取内容流程

优化目标分析

- 推导车辆下载内容传 输时延
- 推导车辆下载内容传 输成本
- 推导平均内容命中率

集中式问题

- 系统中心出发,求全 局最优策略
- 容易实施、稳定性好
- 信令开销大

优化问题

- 充分利用车辆及路边 单元存储容量最小化 系统内容下载所需平 均时延及成本
- 目标函数复杂,为非 线性整数规划问题

大规模场景

小规模场景

- 交替动态规划搜索算
- 动态规划算法求解子 问题 • 复杂度高

• 充分利用车辆和路边 单元合作进行缓存

• 合作贪婪算法

- 复杂度低
- 系统原型实现 内容传输系统
- 实测数据

结果分析

- 仿真性能分析
- 实测数据验证算法

 U_l in (29)

RSU1 caches

Caching scheme Optimal RSU1 (00)2.00 (10)1.52 Content 1 (20)1.20 Content 1&2 (01)1.46 (11)Content 2 (21)0.90 Content 2&3 (02)(12)0.86 (22)Content 1&3 | Content 1&2 | 0.82 Final solution

Stage 3

				content	
0	.44	0.38	0.34	0.92	
0	.29	0.25	0.22	0.60	
0	.23	0.20	0.17	0.48	
4 paths t	from stage 2 to	stage 3			
path		Caching placement		Ontimal value	
paui	RSU1	RSU2	Optimal value		
22)	Content 2&3	Content 1&3	0.67 + 0.17	= 0.84	
22)	Content 1&2	Content 1&3	0.63 ± 0.20	- 0.83	
		Comem rees	0.00 . 0.20	- 0.03	
22)		Content 1&2			
	4 paths 2 2 2)	Caching p RSU1 2 2) Content 2&3	0.29	0.29	

RSU2 caches

RSU1 and 2 do

RSU1 and 2

多阶段决策问题:分为三个阶段,每个阶段依次缓存内容1,2,3。基于前一阶段不同状态对应的最优值以及阶段间 的递归关系,选择最优路径作为下一阶段状态的结果。最后一阶段的问题与原问题相同,得到原问题的最优解。

小规模场景算法性能及运行时间对比 PoBCS (S^V=3) O ... PoBCS (SV=6) PoBCS RBCS VLLCP (S^V=3)

大规模场景算法性能对比

™... LLCP (S^V=6) \star CBG (S^V=3)

- 实测数据验证了缓存策略的有效性。当 $\gamma = 0.85$ 时,与 基于流行度缓存方案相比, 平均传输时延和成本分别 减少10%和24%,内容命中率提高30%。
- 由基站集中式进行计算, 求解得到的缓存指示因子发 送给路边单元和车辆。容易实施,稳定性好。

1.2 1.4