GEO-LOCATOR

FRANCESCA BALESTRIERI ZACK BEZEMEK DANTE BONOLIS LEONHARD HOCHFILZER AASHRAYA JHA

MOTIVATING PROBLEM

ROME or MADRID? MADRID or ROME?

MADRID OR ROME?

ROME OR MADRID?

OUR APPROACH

AN IMAGE IS QUITE **UNSTRUCTURED**

EXPERT DOMAIN KNOWLEDGE

INSPIRED BY GEOGUESSR PROS: they use **man-made** homogeneous/persistent features highly specific to each country as discriminants

BY ALSO CONSIDERING SPECIFIC FEATURES (IF AVAILABLE), WE IMPOSE EXTRA STRUCTURE ON THE IMAGE

THE DATASET

GSV-CITIES arxiv:2210.10239 / Neurocomputing 2022

- It contains ~530k images, across 23 different cities
- There are more than 62k different places, spread across multiple cities
- Each place is depicted by at least 4 images (up to 20 images)
- All places are physically distant (at least 100 meters between any pair of places)

EXAMPLE OF IMAGE METADATA:

	place_id	year	month	northdeg	city_id	lat	lon	panoid
0	1678	2014	10	370	Barcelona	41.402066	2.198988	DB4DzlzCRq4IyE9FMx_9Ow

EXAMPLE OF A PLACE (BARCELONA, PLACE ID 17801):

ORIGINAL DATASET

23 cities

Total number of images = **529506**Total number of places = **64394**

Avg Images per place by City: Original Dataset

ORIGINAL DATASET

23 cities

Total number of images = **529506**Total number of places = **64394**

CLEANING AND NORMALIZATION

BALANCED DATASET

17 cities

Total number of images = **324697**Total number of places = **57618**

Image/Place Count by City: Original Dataset

Image/Place Count by City: Normalized Dataset

Avg Images per place by City: Original Dataset

Avg Images per place by City: Normalized Dataset

THE WORKFLOW

WORKFLOW

Predictions

FINAL PREDICTION

Feature detectors

Predictions

Feature-based classifier

Predictions

Feature-based classifier

Predictions

WORKFLOW (NO FEATURES DETECTED)

THE PIPELINE

INPUT:

End-to-end classifier

Predictions

OUTPUT: FINAL PREDICTION

Feature detectors

Predictions

Feature-based classifier

Predictions

Feature-based classifier

Predictions

END-TO-END CLASSIFIER

Predictions

END-TO-END CLASSIFIER

- The architecture of the end-to-end model uses a pre-trained **mobilenetV2** as a backbone, with the addition of **3 dense layers** at the end, which were trained using our balanced dataset.
- For regularisation purposes, the 3 dense layers at the end have **dropout layers** in-between them, which randomly deactivate a certain proportion of neurons of the dense layers for each training iteration, to prevent overfitting.

	BASELINES	PERFORMANCES (ACCURACY)					
Feature	Baseline (top k)	Top 1	Top 2	Top 3	Top 1	Top 2	Top 3
Ø	$\max_{i_1 < \dots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r}\right) \right\}$	0.094	0.185	0.271	0.634	0.789	0.865
*	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathrm{CITY}_{i_r} \middle \mathbf{F} \right) \right\}$	0.169	0.333	0.484	0.595	0.762	0.866
STOP	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathrm{CITY}_{i_r} \middle \mathbf{STOP} \right) \right\}$	0.263	0.391	0.495	0.536	0.643	0.821
₹	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathrm{CITY}_{i_r} \middle \mathbf{s} \right) \right\}$	0.325	0.486	0.601	0.750	0.851	0.895
	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathrm{CITY}_{i_r} \right) \right\}$	0.128	0.253	0.360	0.636	0.802	0.877
	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathrm{CITY}_{i_r} \middle \bigcap \right) \right\}$	0.349	0.425	0.494	0.632	0.743	0.827
7	$\max_{i_1 < \dots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r} \middle \mathbf{T} \right) \right\}$	0.142	0.241	0.321	0.630	0.783	0.865

Intuitively, if the end-to-end classifier does not take into account features in its prediction, then we would expect that the accuracies on the feature-specific domains should be roughly the same as the accuracy on the whole (non-feature-specific) domain. That is, we would expect that the accuracy should stay the same, independently of whether a feature was detected or not. This seems to be the case for the features

But the accuracies on the feature-specific domains are different than expected for [12]!

THIS SUGGESTS THAT, PERHAPS, THE END-TO-END MODEL'S PREDICTION IS SOMEHOW

AFFECTED BY WHETHER OR NOT WE DETECTED A MOTORCYCLE (+) OR A STOP SIGN (-).

(Of course, we can't be completely sure of this because, since lack of transparency in how the mode

(Of course, we can't be completely sure of this because, since lack of transparency in how the model learns to classify means that there could be confounding factors.)

INPUT:

INPUT:

End-to-end classifier

Predictions

OUTPUT: FINAL PREDICTION

Feature detectors

Predictions

Feature-based classifier

Predictions

Feature-based classifier

Predictions

FEATURE DETECTORS

Feature detectors

■ We used a neural network model (ssd_mobilenet_v1_coco_11_06_2017) pre-trained on

COMMON OBJECTS IN CONTEXT

■ We used a neural network model (ssd_mobilenet_v1_coco_11_06_2017) pre-trained on

COMMON OBJECTS IN CONTEXT

arxiv:1405.0312

FEATURE	FREQUENCY	TOP 3 CITIES BY FREQUENCY
3	P (③) ≈ 0.01	(1) CHICAGO (2) LONDON (3) PHOENIX
STOP	$P(\mathfrak{so}) \approx 0.0025$	(1) MIAMI (2) CHICAGO (3) BOSTON
5	P (⑤) ≈ 0.005	(1) BANGKOK (2) ROME (3) LONDON
~	P (♠) ≈ 0.418*	(1) LONDON (2) LISBON (3) ROME
	P (□) ≈ 0.009	(1) LONDON (2) ROME (3) PRS

INPUT:

End-to-end classifier

Predictions

OUTPUT: FINAL PREDICTION

Feature detectors

Predictions

Feature-based classifier

Predictions

Feature-based classifier

Predictions

FEATURE-BASED CLASSIFIERS

FEATURE-BASED CLASSIFIERS

■ Basic CNN model:

Layer (type)	Output Shape	Param #
rescaling_1 (Rescaling)	(None, 50, 50, 3)	0
conv2d_2 (Conv2D)	(None, 50, 50, 16)	448
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 25, 25, 16)	0
conv2d_3 (Conv2D)	(None, 25, 25, 32)	4640
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 12, 12, 32)	0
flatten_1 (Flatten)	(None, 4608)	0
dense_2 (Dense)	(None, 64)	294976
dense_3 (Dense)	(None, 23)	1495

Total params: 301,559 Trainable params: 301,559 Non-trainable params: 0

- Trained on the datasets created by using the feature detectors to crop images the specified feature
- Not enough training data right now to be able to satisfactorily train more complex model architectures

	BASELINES				PERFORMANCES (ACCURACY)
Feature	Baseline (top k)	Top 1	Top 2	Top 3	Top 1
3	$\max_{i_1 < \dots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r} \right) \right\}$	0.169	0.333	0.484	0.264
STOP	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathrm{CITY}_{i_r} \right) \right\}$	0.263	0.391	0.495	0.363
5	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathrm{CITY}_{i_r} \right) \right\}$	0.325	0.486	0.601	0.444
	$\max_{i_1 < \dots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathrm{CITY}_{i_r} \right) \right\}$	0.128	0.253	0.360	0.208
	$\max_{i_1 < \dots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathrm{CITY}_{i_r} \right) \right\}$	0.349	0.425	0.494	0.416
>	$\max_{i_1 < \dots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\mathbf{CITY}_{i_r} \right) \right\}$	0.142	0.241	0.321	0.208

INPUT:

End-to-end classifier

Predictions

OUTPUT: FINAL PREDICTION

Feature detectors

Predictions

Feature-based classifier

Predictions

Feature-based classifier

Predictions

ENSEMBLE

RESULTS

PERFORMANCE ANALYSIS

Performance results of the complete pipeline according to various metrics

FINAL ACCURACY: 0.635 (essentially the end-to-end model)

■ The model seems to mix up cities from similar geographic areas, but is able to distinguish between different geographic regions fairly well!

FUTURE IMPROVEMENTS

- Improve the feature-based classifiers by getting more quality data for the training, so to be able to also explore more complex models.
- Add more features (a starting point could be to add all the "COCO outdoors objects" features).
- Include rural areas and use texture-based features (such as GCLM).
- Improve the end-to-end model by experimenting with other architectures.
- Optimise the final model's ensemble weighting and explore other ways to aggregate and combine the predictions from the classifiers and the end-to-end model.

MADRID

MADRID MADRID

THANK YOU

DEMO AVAILABLE AT

https://github.com/hochfilzer/geo-locator