Consider the matrices $\mathbf{X}_1,...,\mathbf{X}_m$, where \mathbf{X}_j is an $n_j \times p$ matrix of rank q_j . Let $\mathbf{X} = (\mathbf{X}_1',\mathbf{X}_2',...,\mathbf{X}_m')'$ and assume that \mathbf{X} has full column rank p. Denote $N = \sum_{j=1}^m n_j$. Let $\mathbf{W}_1,...,\mathbf{W}_m$ be symmetric matrices of full rank, with \mathbf{W}_j having dimension $n_j \times n_j$. Let \mathbf{W} be the block-diagonal matrix with components $\mathbf{W}_1,...,\mathbf{W}_m$, i.e., $\mathbf{W} = \bigoplus_{j=1}^m \mathbf{W}_j$. Let $\mathbf{M} = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}$. Let \mathbf{J}_j be an $n_j \times N$ matrix consisting of the rows of the identity matrix that correspond to \mathbf{X}_j , so that $\mathbf{J}_j\mathbf{X} = \mathbf{X}_j$.

Lemma. Let $\mathbf{L} = (\mathbf{X}'\mathbf{W}\mathbf{X} - \mathbf{X}_j\mathbf{W}_j\mathbf{X}_j)$ and assume that \mathbf{L} has full rank p. Then

$$\mathbf{X}_{j} \subset span\left[\mathbf{J}_{j}\left(\mathbf{I}_{N} - \mathbf{X}\mathbf{M}\mathbf{X}'\mathbf{W}\right)\right].$$

Proof. Let $\mathbf{Z}_j = \mathbf{0}$ be a $n_j \times p$ matrix of zeros. Define the $n_k \times p$ matrices $\mathbf{Z}_k = -\mathbf{X}_k \mathbf{L}^{-1} \mathbf{X}' \mathbf{W} \mathbf{X}$, for $k \neq j$. Set $\mathbf{Z} = (\mathbf{Z}_1', ..., \mathbf{Z}_m')'$. Then

$$\mathbf{J}_{j}\left(\mathbf{I}_{N} - \mathbf{X}\mathbf{M}\mathbf{X}'\mathbf{W}\right)\mathbf{Z} = \mathbf{Z}_{j} - \mathbf{X}_{j}\mathbf{M}\sum_{k=1}^{m}\mathbf{X}_{k}'\mathbf{W}_{k}\mathbf{Z}_{k}$$

$$= \mathbf{X}_{j}\mathbf{M}\left(\sum_{k\neq j}\mathbf{X}_{k}'\mathbf{W}_{k}\mathbf{X}_{k}\right)\mathbf{L}^{-1}\mathbf{X}'\mathbf{W}\mathbf{X}$$

$$= \mathbf{X}_{j}\mathbf{M}\mathbf{L}\mathbf{L}^{-1}\mathbf{M}^{-1}$$

$$= \mathbf{X}_{j}.$$

Thus, there exists an $N \times p$ matrix **Z** such that $\mathbf{J}_j (\mathbf{I}_N - \mathbf{X}\mathbf{M}\mathbf{X}'\mathbf{W}) \mathbf{Z} = \mathbf{X}_j$.