I	II	III	IV	V	VI	VII	TOTAL
11	10	14	23	14	14	14	100

I. Let X, Y, and Z be statements.

Are the following statements equivalent to "If X is true, then Y is true or Z is true"? Please circle your answers.

1]	If X is true and Y is false, then Z is true	YES	NO
2]	If X is true and Z is false, then Y is true	YES	NO
3]	If Y is false and Z is false, then X is false	YES	NO
4]	If Y is false or Z is false, then X is false	YES	NO
5]	If Y is true or Z is true, then X is true	YES	NO
6]	If X is true, then Y is true and Z is true	YES	NO
7]	If X is false, then Y is false and Z is false	YES	NO
8]	If X is false, then Y is false or Z is false	YES	NO
9]	X is false or Y is true or Z is true	YES	NO
10]	X is true and Y is true and Z is true	YES	NO
11]	X is true and Y is true, or X is true and Z is true	YES	NO

II.	For each of the following five questions, four possible answers are provided, but only one of them is correct: write the corresponding letter in the box!						
	II/1.	Let $f \colon X \to Y$ be a function. Let x and x' be elements of X such that $f(x) = f(x')$. What do we need to know about f to conclude that $x = x'$?					
	II/2.	Let $f \colon X \to Y$ be a function. Let x and x' be elements of X such that $x = x'$. What do we need to know about f to conclude that $f(x) = f(x')$?					
	II/3.	Let $f \colon X \to Y$ be a function. Let y be an element of Y . What do we need to know about f to conclude that $y = f(x)$ for some $x \in X$?					
	II/4.	Let $f: X \to Y$ be a function. Let y be an element of Y . What do we need to know about f to conclude that $y = f(x)$ for exactly one $x \in X$? D A] Nothing: this is true for all functions f . B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective.					
	II/5.	Let $f: X \to Y$ be a function. Let y be an element of Y . What do we need to know about f to conclude that $y = f(x)$ for at most one $x \in X$? B A] Nothing: this is true for all functions f . B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective.					

- III. Let a and b be integers, i.e., $a, b \in \mathbb{Z}$.
 - III/1. What exactly does it mean to say that "a is divisible by b", or equivalently that "b divides a"?

 $\exists k \in \mathbb{Z} \text{ s.t. } a = kb.$

III/2. Is it true or false that for every natural number $n \in \mathbb{N}$, 6^n is not divisible by 5? TRUE Prove your claim.

Since 6=5+1, by the division theorem 6 is not divisible by 5. Assume that for some $n \in \mathbb{N}$, 6^n is not divisible by 5. Since 5 is a prime number and 5 does not divide 6 nor 6^n , then by Euclid's lemma 5 does not divide $6 \cdot 6^n = 6^{n+1}$. Therefore by induction $\forall n \in \mathbb{N}$, 6^n is not divisible by 5.

Alternative solution: prove by induction that $\forall n \in \mathbb{N} \ \exists k \in \mathbb{N} \ s.t. \ 6^n = 5k+1$, which is obviously true for n=1, and which implies the claim by the division theorem. Assume that for some $n \in \mathbb{N}$, $\exists k \in \mathbb{N} \ s.t. \ 6^n = 5k+1$. Then $6^{n+1} = 6^n \cdot 6 = (5k+1)6 = 5(6k+1)+1$.

- IV. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers.
 - IV/1. What exactly does it mean to say that $(x_n)_{n\in\mathbb{N}}$ is convergent?

 $\exists \ \ell \in \mathbb{R} \ s.t. \ \forall \ \varepsilon \in \mathbb{R}_{>0} \ \exists \ N \in \mathbb{N} \ s.t. \ \forall \ n \in \mathbb{N}, \ \text{if} \ n \geq N \ \ then \ |x_n - \ell| < \varepsilon.$

IV/2. Prove the following statement: If $(x_n)_{n\in\mathbb{N}}$ is convergent, then for every $\varepsilon\in\mathbb{R}_{>0}$ there exists an $N\in\mathbb{N}$ such that for all $m,n\in\mathbb{N}$, if $m\geq N$ and $n\geq N$ then $|x_m-x_n|<\varepsilon$.

Assume that (x_n) converges to $\ell \in \mathbb{R}$. For any $\varepsilon > 0$ let $\varepsilon' = \frac{\varepsilon}{2}$. Then $\exists N \in \mathbb{N}$ s.t. $\forall n \geq N, |x_n - \ell| < \varepsilon'$. Hence if $m \geq N$ and $n \geq N, |x_m - \ell| < \varepsilon'$ and $|x_n - \ell| < \varepsilon'$, and therefore by the triangle inequality $|x_m - x_n| \leq |x_m - \ell| + |\ell - x_n| = |x_m - \ell| + |x_n - \ell| < \varepsilon' + \varepsilon' = \varepsilon$. IV/3. What is the contrapositive of the statement in IV/2?

If $\exists \varepsilon \in \mathbb{R}_{>0}$ s.t. $\forall N \in \mathbb{N} \ \exists m, n \in \mathbb{N}$ s.t. $m \ge N$ and $n \ge N$ and $|x_m - x_n| \ge \varepsilon$ then (x_n) is divergent.

IV/4. Use IV/3 to show that the sequence $x_n = (-1)^n$ is divergent.

Choose $\varepsilon = 1$, and for any $N \in \mathbb{N}$ take n = N and m = N + 1. Then $|x_m - x_n| = 2 > 1 = \varepsilon$. Therefore (x_n) is divergent by IV/3.

- V. For each natural number $n \in \mathbb{N}$, define $x_n = \sum_{j=1}^n \frac{1}{j^2}$.
 - V/1. Prove that for all $n \in \mathbb{N}$, $x_n \leq 2 \frac{1}{n}$.

$$x_1 = 1 \le 2 - 1.$$

Assume that for some $n \in \mathbb{N}$, $x_n \leq 2 - \frac{1}{n}$. Then $x_{n+1} = x_n + \frac{1}{(n+1)^2} \leq 2 - \frac{1}{n} + \frac{1}{(n+1)^2} = 2 - \frac{n^2 + n + 1}{n(n+1)^2} < 2 - \frac{n^2 + n}{n(n+1)^2} = 2 - \frac{1}{n+1}$. Therefore by induction $\forall n \in \mathbb{N}$, $x_n \leq 2 - \frac{1}{n}$.

> By V/1 the sequence (x_n) is bounded above by 2. Since $x_{n+1} = x_n + \frac{1}{(n+1)^2} > x_n$, (x_n) is increasing. Therefore (x_n) is convergent.

For all $x, y, z \in \mathbb{R}$:

- $x \sim x \text{ since } x x = 0 \in \mathbb{Z};$
- if $x \sim y$ then $x y \in \mathbb{Z}$, hence $-(x y) = y x \in \mathbb{Z}$, and so $y \sim x$;
- if $x \sim y$ and $y \sim z$ then $x-y \in \mathbb{Z}$ and $y-z \in \mathbb{Z}$, hence $(x-y)+(y-z)=x-z \in \mathbb{Z}$, and so $x \sim z$.

VI/2. More generally, let A be a subset of \mathbb{R} and define a relation \backsim on \mathbb{R} by declaring $x \backsim y$ if and only if $x - y \in A$. What conditions must A satisfy in order for \backsim to be an equivalence relation?

- $0 \in A$;
- $\forall a \in A, -a \in A$;
- $\forall a, b \in A, a+b \in A$.

VII. Suppose that you have a set A and a subset $B\subseteq A$ such that $B\neq A$. VII/1. What exactly do these conditions mean? $B\subseteq A$

 $\forall b \in B, b \in A.$

 $B \neq A$

 $\exists a \in A \text{ s.t. } a \notin B.$

- VII/2. Given A and B satisfying the above conditions, is it possible for A and B to have the same cardinality, i.e., $A \simeq B$?
 - A] No, it is not possible for any A.
 - B] Yes, it is possible for any A.
 - C] Yes, but only if A is empty.
 - D Yes, but only if A is not empty.
 - E] Yes, but only if A is finite.
 - F] Yes, but only if A is infinite.
 - G] Yes, but only if A is countable.
 - H Yes, but only if A is uncountable.
- VII/3. Prove that your answer to VII/2 is correct.

It is possible for infinite sets, e.g., $\mathbb{Z} \simeq \mathbb{N}$ and $\mathbb{R} \simeq \mathbb{R}_{>0}$. On the other hand, suppose that A is finite and $B \subseteq A$ and $B \neq A$. Then B is finite and |B| < |A|. Since for finite sets A and B, $A \simeq B$ if and only if |A| = |B|, it follows that $A \not\simeq B$.

Have a great summer!