

Mensch-Maschine-Kommunikation 2

1. Allgemeines

Vorverarbeitung - Merkmalsextraktion - Erkennung - Training

1.1. 2D-Fouriertransformation

$$\begin{split} G_c(\omega_1,\omega_2) &= \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} g(x_1,x_2) e^{-j\cdot(\omega_1x_1+\omega_2x_2)} \, \mathrm{d}x_1 \, \mathrm{d}x_2 \\ \hline g(x_1,x_2) & G_c(\omega_1,\omega_2) \\ g(ax_1,bx_2), (\mathsf{a},\mathsf{b} \, \mathsf{reel}) & \frac{1}{|ab|} G_c(\frac{\omega_1}{a},\frac{\omega_2}{b}) \\ g(x_1-a,x_2-b), (\mathsf{a},\mathsf{b} \, \mathsf{reel}) & e^{-j\cdot(\omega_1a+\omega_2b)} G_c(\omega_1,\omega_2) \\ e^{-j\cdot(ax_1+bx_2)} g(x_1,x_2) & G_c(\omega_1-a,\omega_2-b) \\ \frac{\partial m}{\partial x_1^m} \frac{\partial n}{\partial x_2^n} g(x_1,x_2) & (j\omega_1)^m (j\omega_2)^n G_c(\omega_1,\omega_2) \\ (-j\omega_1)^m (-j\omega_2)^n g(x_1,x_2) & \frac{\partial m}{\partial \omega_1^m} \frac{\partial n}{\partial \omega_2^n} G_c(\omega_1,\omega_2) \\ G_c(x_1,x_2) & (2\pi)^2 g(-\omega_1,-\omega_2) \\ \hline \delta(x_1-a,x_2-b) & e^{-j\cdot(\omega_1a+\omega_2b)} \\ &= \delta(x_1-a)\delta(x_2-b) & e^{-j\cdot(\omega_1a+\omega_2b)} \\ &= \delta(x_1-a)\delta(x_2-b) & e^{-j\cdot(\omega_1^2a+\omega_2^2b)} \\ \begin{cases} 1 & \text{fiir}|x_1| < a, |x_2| < b \\ 0 & \text{sonst} \end{cases} & 4 \frac{\sin(a\omega_1)\sin(b\omega_2)}{\omega_1\omega_2} \\ \begin{cases} 1 & \text{fiir}|x_1| < a \\ 0 & \text{sonst} \end{cases} & 2 \frac{\sin(a\omega_1)}{\omega_1} \delta(\omega_2) \end{split}$$

1.2. Klassifikation

0 sonst

Erkennung	X vorhanden	X nicht vorhanden
X erkannt	a) richtig positiv	b) falsch positiv
X nicht erkannt	c) falsch negativ	d) richtig negativ

1.3. Farbräume

1.3.1 RGB

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.140 \\ 1 & -0.395 & -0.581 \\ 1 & 2.033 & 0 \end{bmatrix} \begin{bmatrix} Y \\ U \\ V \end{bmatrix}$$

1.3.2 YUV

Y: Chrominanz (Helligkeit)
$$U=0.492\cdot(B-Y)$$
 U, V: Luminanz (Farbe) $V=0.877\cdot(R-Y)$

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.1 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

1.3.3 HSV (nicht blau, weiß und schwarz!!!)

- H: Farbton (hue)
- S: Sättigung (saturation)
- V: Farbwert (value)

$$\begin{split} V &= \max\{R,G,B\} \text{ , } S = \begin{cases} 0 & \text{ für } V = 0 \\ \frac{C-B}{V} & \text{ sonst. } \end{cases} \\ H &= \begin{cases} \frac{G-B}{V-\min\{R,G,B\}} & \text{ für } V = R,S \neq 0 \\ 2 + \frac{C-\min\{R,G,B\}}{V-\min\{R,G,B\}} & \text{ für } V = G,S \neq 0 \\ 4 + \frac{R-G}{V-\min\{R,G,B\}} & \text{ für } V = B,S \neq 0 \\ 0 & \text{ sonst. } \end{cases} \end{split}$$

1.4. Hauptachsentransformation / PCA

Zweck: Reduktion der Merkmale durch Verwendung der repäsentativsten Hauptachsen, Rechenaufwand geringer

Berechnung

- 1. Mittelwert der Punkte: $\underline{\overline{a}} = \frac{1}{M} \sum_{i=1}^{M} \underline{a}_{i}$
- 2. Mittelwertbefreites Essemble: $\underline{\Psi} \stackrel{i=1}{=} [(\underline{a}_1 \overline{\underline{a}}), ..., (\underline{a}_M \overline{\underline{a}})]$
- 3. Kovarianzmatirix: $\Phi = \frac{1}{M} \Psi \Psi^T$ 4. Eigenwerte: $\det(\Phi \lambda \cdot I) = 0$
- 5. Eigenvektoren: $\underline{\Phi} \cdot \underline{u}_k = \underline{\underline{u}}_k \cdot \lambda_k \Rightarrow (\underline{\Phi} \lambda_k \cdot \underline{I})\underline{u}_k = 0$
- 6. Eigenvektoren normieren ⇒ Eigenvektoren sind orthogonal

2. Handschrifterkennung

2.1. Vorverarbeitung

Eingabemethoden

- freie Eingabe (hohe Vorverarbeitung)
- liniengeführte Eingabe • feldgeführte Eingabe
- Eingangssignal: $x(t) = (x(t), y(t), p(t))^T$

ı	$\underline{\underline{w}}(v) = (w(v), g(v), p(v))$		
	×(t)	x-Koordinate	
	y(t)	y-Koordinate	
	p(t)	Druck (des Stifts)	

2.1.1 Abtastung

Abtastung / Neuabtastung

- 1. Diskretisierung von x(t) mit $n \cdot \Delta T \Rightarrow$ zeitäquidistante Abtastung
- 2. Lineare Interpolation der Stifttrajektorie
- 3. Neuabtastung \Rightarrow ortsäguidistante Abtastpunkte $\boldsymbol{x}_{na}[k]$

Länge einer Kurve
$$\underline{r}(t) = (x(t), y(t))^T$$
:
$$L(a,b) = \int\limits_a^b \sqrt{(\frac{\mathrm{d}x(t)}{\mathrm{d}t})^2 + (\frac{\mathrm{d}y(t)}{\mathrm{d}t})^2} \; \mathrm{d}t$$

2.1.2 Korrekturen

Zeilenneigung (skew)

- 1. Horizontale Ausrichtung der Kernlinie des Geschriebenen
- 2. Drehung um den Mittelpunkt \underline{m} d. Kernlinie um den Winkel α_0
- 3. Bestimmung von α_0 mit Projektionsprofilen oder Richtungshistogrammen in y-Richtung, $H_{y}(\alpha)$ muss möglichst klein sein

Entropie: (B: Anzahl d. Bins, $N(B_i)$: Anzahl d. Punkte in Bin i)

$$\begin{split} H_y(\alpha) &= \sum_{i=1}^{B} I(i) \\ I(B_i) &= -\frac{N(B_i)}{\sum\limits_{j=1}^{B} N(B_j)} (ld) \frac{N(B_i)}{\sum\limits_{j=1}^{B} N(B_j)} \end{split}$$

$$m = \frac{\sum\limits_{i=1}^{N}\left[(x_i-\overline{x})(y_i-\overline{y})\right]}{\sum\limits_{i=1}^{N}(x_i-\overline{x})^2} \text{ und } b = \overline{y}-m\overline{x}$$

$$\underline{\boldsymbol{x}}_{skew}[k] = \begin{bmatrix} \cos\alpha_0 & -\sin\alpha_0 & 0 \\ \sin\alpha_0 & \cos\alpha_0 & 0 \\ 0 & 0 & 1 \end{bmatrix} (\underline{\boldsymbol{x}}_{re}[k] - \underline{\boldsymbol{m}}) + \underline{\boldsymbol{m}}$$

Schriftneigung (slant)

- 1. Scherung der Schrift an der Grundlinie y_S
- 2. Scherung um den Winkel ϕ_0
- 3. Bestimmun von ϕ_0 mit Projektionsprofilen oder Richtungshistogrammen in x-Richtung, $H_x(\phi)$ muss möglichst klein sein

$$\underline{\boldsymbol{x}}_{slant}[k] = \begin{bmatrix} 1 & -\tan\phi_0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} (\underline{\boldsymbol{x}}_{skew}[k] - \begin{bmatrix} 0 \\ y_S \\ 0 \end{bmatrix}) + \begin{bmatrix} 0 \\ y_S \\ 0 \end{bmatrix}$$

- 1 Schätzen der Referenzlinien
- 2. Berechnung der Kernhöhe
- 3. Normirung des Schriftzuges
- W: Höhe der Bins, P: Projektionsprofil

Oberlängenlinie: $y_{ober} = y_{max}$, Unterlängenlinie: $y_{unter} = y_{min}$

Kernlinie: $y_{kern} = \operatorname{argmin}(\frac{d}{di}P_y(j)) - 0.5)W + y_{min}$ Basislinie: $y_{grund} = \operatorname{argmax}(\frac{\mathrm{d}}{\mathrm{d}\,i}P_{y}(j)) - 0.5)W + y_{min}$

 $\text{Kernh\"{o}he: } h_{kern} = |y_{kern} - \overset{\circ}{y}_{grund}|$

 $\underline{\boldsymbol{x}}_{norm}[k] = \frac{1}{h_{kern}} \begin{bmatrix} \boldsymbol{x}[k] - \boldsymbol{x}_{min} \\ \boldsymbol{y}[k] - (\boldsymbol{y}_{grund} + \frac{h_{kern}}{2}) \end{bmatrix}$

2.2. Merkmalsextraktion

Extraktion aus dem normalisierten Schriftzug

Sekantensteigungswinkel:

$$\begin{split} \theta[k] &= \frac{\pi}{2} + \begin{cases} \arctan(\frac{\Delta y}{\Delta x}) - \frac{\pi}{2} \operatorname{sgn}(\Delta x) & \text{für } \Delta x \neq 0 \\ \frac{\pi}{2}(1 - \operatorname{sgn}(\Delta x)) & \text{für } \Delta x = 0 \\ \Delta x &= x_{norm}[k+1] - x_{norm}[k], \Delta y &= y_{norm}[k+1] - y_{norm}[k] \\ \text{Richtungsänderung:} \end{cases} \end{split}$$

 $\Delta\theta[k] = \theta[k+1] - \theta[k]$

5-dim. Merkmalsvektor:
$$\underline{\boldsymbol{m}}[k] = \begin{bmatrix} \sin(\theta[k]) \\ \cos(\theta[k]) \\ \sin(\Delta\theta[k]) \\ \cos(\Delta\theta[k]) \\ p[k] \end{bmatrix}$$

2.3. Erkennung

Trainig und Erkennung läuft über Hidden-Markov-Modelle (HMM) mit Graphemen (z.B. Buchstabe, Sonderzeichen od. Ziffern) als kleinste

Training: Baum-Welch-Alogrithmus

Erkennung: Viterbi-Algorithmus

3. Bildverarbeitung

3.1. Separierbarkeit

Das Signal $q(x_1, x_2)$ lässt sich schreiben als:

$$g(x_1, x_2) = g_1(x_1) \cdot g_2(x_2)$$

Bildfilter möglichst immer separieren, um Laufzeit bzw. Operationen zu

3.2. Diskrete Signale

3.2.1 Kausalität

kausal, wenn:
$$g[n_1,n_2] = \begin{cases} \text{beliebig} & \text{für} n_1,n_2 > 0 \\ 0 & \text{sonst.} \end{cases}$$

3.2.2 Abtastung

Abtastabstände:
$$X_1, X_2$$

Abtastheorem:
$$\frac{\pi}{X_1} \ge \omega_{g,1}$$
 und $\frac{\pi}{X_2} \ge \omega_{g,2}$

Abtastabstände: X_1,X_2 Abtastheorem: $\frac{\pi}{X_1} \geq \omega_{g,1}$ und $\frac{\pi}{X_2} \geq \omega_{g,2}$ Grenzfrequenz $\omega_{g,i}$: maximal vorkommende Frequenz in Richtung ω_i

3.2.3 Quantisierung

normalerweise lineare Quantisierung mit $N=2^b$ Stufen. (b: #Bits) fürs menschliche Auge genügen 256 Graustufen

3.2.4 Dynamikbereich

Bereich zwischen dem gößten (g_{max}) und kleinsten Grauwert (g_{min})

3.2.5 Speicherbedarf von Grauwertbildern

Bits für Dynamikbereich: $b = \lceil \operatorname{Id}(g_{max} - g_{min} + 1) \rceil$ M: #Zeilen, N: #Spalten Speicherplatz: $b \cdot M \cdot N$

3.2.6 Z-Transformation

$$G(z_1,z_2) = \sum\limits_{n_1 = -\infty}^{\infty} \sum\limits_{n_2 = -\infty}^{\infty} g[n_1,n_2] z_1^{-n_1} z_2^{-n_2}$$

$$g[n_1, n_2]$$
 $G(z_1, z_2)$ $\delta[n_1, n_2]$ 1 $\delta[n_1 - a, n_2 - b]$ $z_1^{-a} z_2^{-b}$

Von der Filtermatrix zur Übertragungsfunktion

1. Filtermatrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ -1 & 0 & 0 \end{bmatrix}$$

- 2. Impulsantwort: $g[n_1, n_2] =$ $= -\delta[n_1, n_2] + 2\delta[n_1 - 1, n_2 - 1] + 3\delta[n_1 - 2, n_2 - 1] +$
- 3. Übertragungsfunktion: $G(z_1, z_2) = -1 + 2z_1^{-1}z_2^{-1} + 3z_1^{-2}z_2^{-1} + z_2^{-2}$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + \ldots + b_m z^{-m}}{1 + a_1 z^{-1} + \ldots + a_m z^{-m}}$$

3.3. Bildstörungen

3.3.1 Additive Bildstörung

- weißes, gaußverteiltes Rauschen: ensteht durch spontane Ladungstrennung oder thermischen Störung bei der Analog/Digitalwandlung
- Impulsrauschen ("Salt'n'Pepper"):
- fehlerhafte Pixel erscheinen als schwarze oder weiße Bildpunkte

3.3.2 Lineare, ortsinvariante Bildstörungen

- Motion Blur:
- Verwischung durch Bewegung von Objekt oder Sensor
- Focus Blur:
- Unschärfe durch falsche Fokussierung

3.4. Bildrestauration /-verbesserung

3.4.1 Rauschkompensation

Kompensationfilter

 Medianfilter: akt. Pixel bekommt den Wert des Medians der Filtermaske zugewiesen

Median wird aus auf- oder absteigend geordnetet Werten $\boldsymbol{x} = \{x_1, ..., x_N\}$ gebildet.

$$\mathsf{Median}(\underline{\boldsymbol{x}}) = \begin{cases} x \, \frac{N+1}{2} & \text{für N ungerade} \\ 0.5 \cdot (x \, \frac{N}{2} + x \, \frac{N+2}{2}) & \text{für N gerade} \end{cases}$$

3.4.2 Blurkompensation

Finde raus wie die Störfunktion $H(z_1,z_2)$ aussieht und musltipliziere mit $\frac{1}{H(z_1,z_2)}$ \Rightarrow alles roger.... total einfach... am besten mit dieser Aufgabe anfangen..... NICHT!!!

3.4.3 Histogrammausgleich

Vorteil: Kontrasterverbesserung Nachteil: u.u. unnatürliches Bild

kontinuierlich

momentane Verteilung: p_q , angestrebte Vereilung: p_f , Gesucht: $T_f(g) = f$

$$\int_{0}^{f} p_f(f_0) \, \mathrm{d}f_0 \stackrel{!}{=} \int_{0}^{g} p_g(g_0) \, \mathrm{d}g_0$$

bei angestrebter Gleichverteilung: $T_f(g) = f = \int\limits_0^g p_g(g_0) \; \mathrm{d}g_0$

diskret

$$T(g) = \mathop{\mathrm{argmin}}_{0 \leq g_{norm} \leq G-1} |K_b(g) - K_{b,norm}(g_{norm})|$$

3.5. Kantenhervorhebung

akt. Pixel ist rot und fett

3.5.1 Gradientenfilter in n_1 -Richtung

3.5.2 Gradientenfilter in n_1 -Richtung

Detektion harter Kanten

$$\begin{array}{c} \text{Pixeldifferenz:} \begin{bmatrix} -1 \\ \mathbf{1} \end{bmatrix} \text{ separ. Pixeldiff.: } \begin{bmatrix} -1 \\ \mathbf{0} \\ 1 \end{bmatrix} \\ \text{Prewitt:} \begin{bmatrix} 1 & 1 & 1 \\ 0 & \mathbf{0} & 0 \\ -1 & -1 & -1 \end{bmatrix} \text{ Sobel: } \begin{bmatrix} 1 & 2 & 1 \\ 0 & \mathbf{0} & 0 \\ -1 & -2 & -1 \end{bmatrix} \\ \text{Frei-Chen:} \begin{bmatrix} 1 & \sqrt{2} & -1 \\ 0 & \mathbf{0} & 0 \\ -1 & -\sqrt{2} & -1 \end{bmatrix}$$

3.5.3 Laplacefilter

Detektion weicher Kanten $\begin{bmatrix} 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$

3.5.4 Binarisierung

weitere Herausarbeitung der Kanten z.B für anschließende Segmentierung oder Skelettierung

$$b_{Bin}[n_1, n_2] = \begin{cases} 1 & \text{für } b[n_1, n_2] \ge s \\ 0 & \text{für } b[n_1, n_2] < s \end{cases}$$

s ist die Entscheiderschwelle. Meist ist s < 50

3.6. Morphologische Operatoren

Anwendung auf Binärbilder mit kleinen Strukturelementen.

Vergleich des aktuellen Pixels und Umgebung mit dem Muster des Strukturelements

3.6.1 Erosion

komplettes Muster stimmt mit der Umgebung des akt. Pixels überein ⇒ akt. Pixel ist 1 (Fläche nimmt ab)

3.6.2 Dilatation

ein Teil des Musters stimmt mit der Umgebung des akt. Pixels überein ⇒ akt. Pixel ist 1 (Fläche nimmt zu)

3.6.3 Öffnen

Erosion, dann Dilatation

(Unruhige Teile des Bildes werden entfernt)

3.6.4 Schließen

Dilatation, dann Erosion

(kleine, getrennt liegende Teile werde zu einem größeren Objekt zusammengefasst)

4. Gesichtsdetektion

Gesichter werden auf Bildern erkannt.

4.1. Farbbasierte Gesichtsdetektion

Hautfarbensegmentierung: Analyse sehr vieler verschiedener Gesichter typische Farbwerte für Gesichter im HSV-Raum:

 $0 < H < 36^{\circ} \text{ und } 0, 1 < S < 0.57$

⇒Binarisierung der Gesichtsbilder

Fazit: eignet sich für genauere Überprüfungen von erkannten Gesichtern aus anderen Verfahren

4.2. Multiskalen-basierte Gesichtsdetektion

Skalierte Bilder, um verschiedene Blockgrößen für unterschiedliche Gesichtsgrößen erhalten zu können

Tiefpassfilterung des Bildes

Unterabtastung um den Faktor $2 \Rightarrow \frac{N}{4}$ neue Bildpunkte

Speicherung: $N_{qes} = \frac{4}{2} \cdot N$ (geomtr. Reihe)

4.3. Viola-Jones

ist formbasiert

hohe Erkennungsrate und geringe Rechenzeit für Detektion

Allgemeine Form: $m_{\scriptscriptstyle S} \cdot m \times n_{\scriptscriptstyle S} \cdot n$

Тур	Basis	min. Höhe $(m_{\scriptscriptstyle S}\cdot m)$	min. Breite $(n_S\cdot n)$
А	$\begin{bmatrix} 1 & -1 \end{bmatrix}$	$1 \cdot m$	$2 \cdot n$
В	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$2\cdot m$	$1 \cdot n$
С	$\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$	$1\cdot m$	$3 \cdot n$
D	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$	$3\cdot m$	$1 \cdot n$
E	$\begin{bmatrix} 1 & J \\ 1 & -1 \\ -1 & 1 \end{bmatrix}$	$2\cdot m$	$2\cdot n$

 $\begin{array}{ll} \text{max. Skalierung} & \text{mit Bild } M \times N : \\ m_{max} = \lfloor \frac{M}{m_s} \rfloor & \text{und } n_{max} = \lfloor \frac{N}{n_s} \rfloor \end{array}$

Anzahl d. Translationen in n- und m-Richtung:

 $N_{m,trans} = M - m_s m + 1$ und $N_{n,trans} = N - n_s n + 1$

Anzahl d. Realisierungen N_{aes}

$$\begin{split} N_{ges} &= \sum_{n=1}^{n_{max}} \sum_{m=1}^{m_{max}} N_{n,trans} \cdot N_{m,trans} = \\ &= \sum_{n=1}^{n_{max}} N_{n,trans} \sum_{m=1}^{m_{max}} N_{m,trans} = \\ &= \frac{n_{max}[2N + 2 - n_s(n_{max} + 1)] \cdot m_{max}[2M + 2 - m_s(m_{max} + 1)]}{4} \end{split}$$

4.3.2 Integralbild

Integration des Orginalbildes (Aufsummierung der Pixelwerte bis zum aktuellen Pixel)

 $b_{int}[n_1,n_2] = \sum \sum b[n_1,n_2] \text{ mit } 1 \leq n_1 \leq N_1$, $1 \leq n_2 \leq N_2$ ⇒ Einspaarungen von Operationen: Bei Rechteckfiltern ⇒ Reduzierung auf 4 Operationen (Verrechnung der Eckwerte)

⇒ Unabhängigkeit von der Merkmalsskalierung

Schnelles Aufstellen des Integralbildes

2. Berechnung d. Spaltensummen: 2 2 2

3. Berechnung d. Zeilensummen: 2 4 6

4.3.3 AdaBoost-Algorithmus

Maschinelles Lernen zur Merkmalsselektion & optimale Kombination der selektierten Klassifikatoren

viele schwache Klassifikatoren sind zusammen stark

macht aus schwachen Klassifikatoren starke Klassifikatoren

4.3.4 Kaskadierung

Kaskadierung mehrerer starker Klassifikatoren. Die Komplexität nimmt da-

5. Gesichtsidentifikation

Merkmale von bereits erkannten Gesichtern werden weiterverabeitet

5.1. Gesichtserkennung mit Eigengesichtern

Darstellung von Gesichtsbildern in einem anderen Koordinatensystem duch Hauptachsentransformation

Hauptachsen sind Vektoren die selbst als Gesichtsbilder aufgefssst werden können ⇒ Eigengesichter

starke Reduktion der Dimensionalität möglich

dann Abstandsklassifikatoren im reduzierten Merkmalsraum

M Gesichtsbilder der Größe $N_1 \times N_2$

Verfahren siehe PCA(Allgemeines)

5.2. Prokrustes Analyse

Ziel: Möglichst gute Übereinstimmung der zwei Vielecke

$$m{P}=[m{p}_1,...,m{p}_N]$$
 , $m{Q}=[m{q}_1,...,m{q}_N]$

$$\underline{\underline{\mathcal{M}}}(a_x,a_y) = \begin{bmatrix} a_x & -a_y \\ a_y & a_x \end{bmatrix} = \underline{\underline{\mathcal{A}}}_{skal} \cdot \underline{\underline{\mathcal{A}}}_{rot}$$
: Skalierung, Rotation

 $a_x = s \cos \alpha, a_y = s \sin \alpha$

 $oldsymbol{t}$: Translation

Gewichtungsfaktorci (meistens 1)

Minimierung des Quadrates der gewichteten Fehler:

$$\begin{split} E &= \sum_{i=1}^{N} E_i = \sum_{i=1}^{N} c_i | \underline{\boldsymbol{p}}_i - \underline{\boldsymbol{M}}(a_x, a_y) [\underline{\boldsymbol{q}}_i] - \underline{\boldsymbol{t}}|^2 \\ \frac{\partial E}{\partial (a_x, a_y, t_x, t_y)} &= 0 \\ &\Rightarrow \frac{\partial E}{\partial a_x} = 0, \frac{\partial E}{\partial a_y} = 0, \frac{\partial E}{\partial t_x} = 0, \frac{\partial E}{\partial t_y} = 0 \\ \begin{bmatrix} Z & 0 & X_q & y_q \end{bmatrix} \begin{bmatrix} a_x \end{bmatrix} \begin{bmatrix} C_1 \end{bmatrix} \end{split}$$

$$\begin{bmatrix} Z & 0 & X_q & y_q \\ 0 & Z & -Y_q & X_q \\ X_q & -Y_q & N & 0 \\ Y_q & X_q & 0 & N \end{bmatrix} \cdot \begin{bmatrix} a_x \\ a_y \\ t_x \\ t_y \end{bmatrix} = \begin{bmatrix} C_1 \\ C_2 \\ X_1 \\ Y_T \end{bmatrix}$$

 $X_p = \sum_{i=1}^{N} c_i \cdot p_{x,i}$

 $Y_p = \sum_{i=1}^{N} c_i \cdot p_{y,i}$ $X_q = \sum_{i=1}^{N} c_i \cdot q_{x,i}$

 $\begin{aligned} Y_q &= \sum_{i=1}^{N} c_i \cdot q_{y,i} \\ Z &= \sum_{i=1}^{N} c_i \cdot (q_{x,i}^2 + q_{y,i}^2) \\ C &= \sum_{i=1}^{N} c_i \end{aligned}$

 $C_1 = \sum_{i=1}^{N} c_i \cdot (p_{x,i} \cdot q_{x,i} + p_{y,i} \cdot q_{y,i})$ $C_2 = \sum_{i=1}^{N} c_i \cdot (p_{y,i} \cdot q_{x,i} - p_{x,i} \cdot q_{y,i})$

 $a_x = -\frac{X_p \cdot X_q + Y_p \cdot Y_q - X \cdot C_1}{X_p \cdot X_q + Y_p \cdot Y_q - X \cdot C_1}$ $N \cdot Z - X_a^2 - Y_a^2$

 $a_{y} = \frac{X_{p} \cdot X_{q} - Y_{p} \cdot Y_{q} + C \cdot C_{2}}{N \cdot Z - X_{q}^{2} - Y_{2}}$ $t_{x} = \frac{X_{p} \cdot Z - C_{1} \cdot X_{q} + C_{2} \cdot Y_{q}}{N \cdot Z - X_{q}^{2} - Y_{q}^{2}}$

 $t_y = \frac{Y_p \cdot Z - C_1 \cdot Y_q - C_2 \cdot X_q}{N \cdot Z - X_q^2 - Y_q^2}$ $s = \sqrt{a_x^2 + a_y^2}$

 $\alpha = \arccos\left(\frac{a_x}{a_x}\right) = \arcsin\left(\frac{a_y}{a_x}\right)$

5.3. Delaunay-Kriterium

Erfüllt, wenn sich im Umkreis des Dreiecks a, b, c kein weiterer Punkt $oldsymbol{p}_{-}$ befindet. Der Mittelpunkt des Umkreises ist der Schnittpunkt der Seitenhalbierenden.

$$\begin{split} \underline{\boldsymbol{g}} &= \underline{\boldsymbol{s}}_a + \lambda \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} (\underline{\boldsymbol{b}} - \underline{\boldsymbol{a}}) \\ \underline{\boldsymbol{s}}_a &= \underline{\boldsymbol{a}} + 0.5(\underline{\boldsymbol{b}} - \underline{\boldsymbol{a}}) \\ \underline{\boldsymbol{h}} &= \underline{\boldsymbol{s}}_b + \mu \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} (\underline{\boldsymbol{c}} - \underline{\boldsymbol{a}}) \end{split}$$

g = h setzen \Rightarrow 2 Geleichungen mit 2 Unbekannten $\mu, \lambda \Rightarrow$ Einsetzen in g oder h ⇒ Umkreismittelpunkt ⇒ Radius bestimmen