Lecture 1, 1/11/13

Homological algebra is the study of complexes of R-modules, where R is a ring with identity $1 \neq 0$. Notationally, R-mod is the category of all left R-modules, and R-mod is the category of all finitely generated R-modules.

Definition 0.1. Let A_n " \in "R-mod for $n \in \mathbb{Z}$ and $d_n \in \operatorname{Hom}_R(A_n, A_{n-1})$ such that $d_{n-1} \circ d_n = 0$ for all $n \in \mathbb{Z}$. Then the sequence

$$\cdots \xrightarrow{d_{n+2}} A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \xrightarrow{d_{n-1}} \cdots$$

is called a complex of R-modules, assuming $\operatorname{im}(d_n) \subseteq \ker(d_{n-1})$. The sequence

$$0 \longrightarrow A_m \longrightarrow A_{m-1} \longrightarrow \cdots \longrightarrow A_{n+1} \longrightarrow A_n \longrightarrow 0$$

will occur more frequently. A complex \mathbb{A} is an exact sequence if $\operatorname{im}(d_n) = \ker(d_{n-1})$ for all $n \in \mathbb{Z}$. This is called a short exact sequence if there are no more than 3 non-zero terms. Given a complex \mathbb{A} , the <u>nth homology modules</u> (or groups, in some cases) of \mathbb{A} is

$$H_n(\mathbb{A}) = \frac{\ker(d_{n-1})}{\operatorname{im}(d_n)}$$

Remark. Given a short exact sequence (hereby abbv. as SES)

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

f is a mono and g is an epi, so $C \simeq B/\operatorname{im}(f)$. If A, B are known, but not f, then infinitely many C are available to complete the short exact sequence.

Example 0.1. Let R = k, a field, and take $A = B = k^{(\mathbb{N})} = \bigoplus_{i \in \mathbb{N}} k$.

- (i) $0 \longrightarrow A \stackrel{\text{Id}}{\longrightarrow} B \longrightarrow 0$ is a SES.
- (ii) Define $f: A \to B$ by

$$f(b_i) = b_{2i} \text{ for } i \in \mathbb{N}$$
$$g(b_0) = \begin{cases} 0 & i \text{ even} \\ b_{\tau(i)} & i \text{ odd} \end{cases}$$

Where $\tau:(2\mathbb{N}-1)\to\mathbb{N}$ is a bijection. If $A=B=C=\kappa^{(\mathbb{N})}$, then

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

is a SES.

(iii) Let $R = \mathbb{Z}$. Then

$$0 \longrightarrow 3\mathbb{Z} \xrightarrow{\iota} \mathbb{Z} \xrightarrow{\equiv} \mathbb{Z}/3\mathbb{Z} \longrightarrow 0$$

is a SES.

(iv) Let $R = \mathbb{Z}$. The sequence

$$0 \longrightarrow \overbrace{6\mathbb{Z}}^{A_1} \xrightarrow{\iota} \overbrace{\mathbb{Z}}^{A_0} \xrightarrow{=} \overbrace{\mathbb{Z}/3\mathbb{Z}}^{A_{-1}} \longrightarrow 0$$

is a complex which is not exact. In fact, $H_0(\mathbb{A}) = \underbrace{3\mathbb{Z}}^{\ker(g)} / \underbrace{6\mathbb{Z}}_{\operatorname{im}(f)} \cong \mathbb{Z}/2\mathbb{Z}$.

(v) Let $R = \kappa[x, y]$, κ a field. Let f be the inclusion $(x) \hookrightarrow R[x, y]$. The sequence

$$0 \longrightarrow (x) \stackrel{f}{\longrightarrow} R \stackrel{g}{\longrightarrow} \kappa[y] \longrightarrow 0$$

where

$$g\left(\sum_{i,j=0}^{\text{finite}} a_{ij} x^i y^j\right) = \sum_{j>0}^{\text{finite}} a_{\sigma_j} y^j$$

is exact.

(vi) Let $R = \kappa[x, y]$. Define A as

$$0 \longrightarrow \overbrace{(x)}^{A_1} \xrightarrow{f} \overbrace{R}^{A_0} \xrightarrow{g} \overbrace{\underset{=R/(x,y)}{\kappa}}^{A_{-1}} \longrightarrow 0$$

where

$$g\left(\sum_{i,j=0}^{\text{finite}} a_{ij}x^i y^j\right) = a_{\infty}$$

then ker(g) = (x, y) and im(f) = (x), so A is not exact. In fact,

$$H_0(\mathbb{A}) = (x, y)/(x)$$

 $\simeq (y)$
 $\simeq R$

Note: If R is an integral domain and $x \in R \setminus \{0\}$, then $(x) \simeq R$ (as R-modules, <u>not</u> as rings!), with isomorphism $r \mapsto rx$.

Typical questions addressed by homological algebra:

(i) Suppose

$$\mathbb{A}: \cdots \longrightarrow A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \longrightarrow \cdots$$

is an exact sequence in R-mod and $F: R-\operatorname{mod} \to S-\operatorname{mod}$ is a functor. Is the sequence

$$\cdots \longrightarrow F(A_{n+1}) \xrightarrow{F(d_{n+1})} F(A_n) \xrightarrow{F(d_n)} F(A_{n-1}) \longrightarrow \cdots$$

exact? $F(\mathbb{A})$ is a complex when F is additive, but it may or may not be exact.

(ii) Given $A, C \in R - \text{mod}$, characterize all modules B such that there exists an exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

As an example, $R = \mathbb{Z}, A = C = \mathbb{A}/p\mathbb{Z}$, p prime, then

$$0 \longrightarrow \mathbb{Z}/p\mathbb{Z} \stackrel{f}{\longrightarrow} \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z} \stackrel{g}{\longrightarrow} \mathbb{Z}/p\mathbb{Z} \longrightarrow 0$$

with $f: x \mapsto (x,0)$ and $g: (x,y) \mapsto y$ is a SES. Alternatively, we could take $f: x + p\mathbb{Z} \mapsto px + p^2\mathbb{Z}$ and $g: y + p^2\mathbb{Z} \mapsto y + p\mathbb{Z}$ to make

$$0 \longrightarrow \mathbb{Z}/p\mathbb{Z} \stackrel{f}{\longrightarrow} \mathbb{Z}/p^2\mathbb{Z} \stackrel{g}{\longrightarrow} \mathbb{Z}/p\mathbb{Z} \longrightarrow 0$$

a SES. These are the only possibilities in this case! In general, though, there are infinitely many possibilities for B. Why is this interesting? If R is an artinian ring and M " \in "R — mod, then there are only finitely many simple s_1, \ldots, s_n " \in "R — mod up to isomorphism. Moreover, for M " \in "R — mod, there is a chain

$$M = M_0 \supset M_1 \supset \cdots \supset M_\ell = 0$$

such that M_i/M_{i+1} is simple for all $i < \ell$. If the answer to question (ii) is known, then all objects in R - mod of fixed length ℓ are known up to isomorphism! Simply proved by induction.

Algebraic Topology

Definition 0.2. The standard n-simplex Δ_n in \mathbb{R}^n is the convex hull of v_0, v_1, \ldots, v_n ,

where $v_0 = 0$ and $v_i = (0, ..., 0, 1, 0, ..., 0)$ (so the standard basis).

An oriented simplex is $(\Delta_x, [\pi])$, where $[\pi]$ is an equivalence class of permutations of $\{0, \ldots, n\}$, where $\pi \sim \pi' \iff \operatorname{sgn}(\pi) = \operatorname{sgn}(\pi')$. We write

$$(\triangle_x, \pi) = [v_{\pi(0)}, v_{\pi(1)}, \dots, v_{\pi(n)}]$$

and identify \triangle_n with $[0, 1, \dots, n]$. The ngative is $-[w_0, \dots, w_n]$.

Definition 0.3. Let X be a topological space. An n-simplex in X is a continuous map

$$\sigma: \triangle_n \to X$$

The group of *n*-chains of X, $S_n(x)$, is the free abelian group having as basis the *n*-simplices in X. The singular chain complex of X is

$$\cdots \longrightarrow S_n(X) \xrightarrow{\partial_n} S_{n-1}(X) \xrightarrow{\partial_{n-1}} \cdots \longrightarrow S_0(X) \longrightarrow 0$$

denoted S, where $\partial_n: S_n(X) \to S_{n-1}(X)$ is the <u>nth</u> boundary map, which can be defined if we define $\partial_n(\sigma)$ for all *n*-simplices σ in \overline{X} (i.e. in the basis of $S_n(X)$). Consider the map

$$\tau_i: \mathbb{R}^{n-1} \to \mathbb{R}^n$$
 $(a_1, \dots, a_{n-1}) \mapsto (a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_n)$

For $i \in \{0, ..., n\}$. Then τ_i is continuous and $\tau_i(\triangle_{n-1}) = \triangle_n$. Define

$$\partial_n(\sigma) = \sum_{i=0}^n (-1)^i \sigma(\tau_i)$$

Theorem 0.1. $\partial_{n-1} \circ \partial_n = 0$ for all $n \in \mathbb{N}$, i.e. \mathbb{S} is a complex in \mathbb{Z} -mod.

Definition 0.4. The group of n-cycles is $Z_n(X) = \ker(\partial_{n-1})$, and the group of n-boundaries is $B_n = \operatorname{im}(\partial_n)$.

The *n*th homology group is $H_n(X) = Z_n(X)/B_n(X)$.

Lecture 2, 1/13/23

Chapter I: Categories and functors

There is a definition page on the Gaucho that has all the most basic definitions - objects, morphisms, compositions, etc.

If $f \in \text{Hom}_C(A, B)$, we often write $A \xrightarrow{f} B$ even if f is not literally a map.

Example 0.2. 1. The category of all sets, Set. The object class consists of all sets, and the morphisms are just set maps.

- 2. The category of all topological spaces, Top. The object class consists of all topological spaces, and the morphisms are continuous functions.
- **3.** The category of all groups, **Grp**. The object class consists of all groups, and the morphisms are group homomorphisms.
- **4.** Let (P, \leq) be a partially ordered set with a relation \leq which is reflexive, antisymmetric, and transitive. Then we can make P into a category, whose objects are the elements of p, and for $u, s \in P$, $\operatorname{Hom}_P(u, s) = \begin{cases} (u, s) & u \leq s \\ \varnothing & u \not\leq s \end{cases}$. We define the composition $(s, t)(u, s) \stackrel{\text{def}}{=} (u, t)$.
- **5.** The opposite category of a category C, C^{op} .
- **6.** Let R be a ring. R-Mod is the category of left R modules. R-mod is the finitely generated R-modules, and similarly for Mod-R and mod-R, which are the right R-modules.
- 7. R-comp. The object class consists of complexes of left R-modules. Let A, A' be objects of R-comp. Note: it is problematic to say "A, $A' \in R$ -comp, as R-comp is not a set!

Say $\mathbb{A} = \cdots \longrightarrow A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \longrightarrow \cdots$, and similarly for \mathbb{A}' . An element of $\operatorname{Hom}_{R-comp}(\mathbb{A}, \mathbb{A}')$ will be a sequence of R-module homomorphisms $f_n: A_n \to A'_n$ which make the following diagram commute:

- 8. The category of rings Ring, whose obejcts are rings and whose morphisms are ring homomorphisms.
- **9.** The category of \mathbb{Z} -modules is usually denoted Ab. This is also the category of Abelian groups, and is the prototypical example of an Abelian category.

Definition 0.5. A category \mathcal{C} is called <u>pre-additive</u> if for all A, B objects of \mathcal{C} , the set $\operatorname{Hom}_{\mathcal{C}}(A, B)$ is an additive Abelian group (additive means we use the symbol "+") such that for all eligible morphisms f, g, h, k,

$$h(f+g) = hf + hg$$
$$(f+g)k = fk + gk$$

where "elibigle" means that these expressions make sense and are well-defined.

Example 0.3. 1. R-mod (in particular Ab)

- **2.** *R*-comp
- **3.** Ring fails to be pre-additive, because the identity morphisms add to be something which is not the identity morphism.

Definition 0.6. Let \mathcal{C}, \mathcal{D} be categories. A <u>functor</u> $F : \mathcal{C} \to \mathcal{D}$ consists of an assignment $F_0 : \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$, and for each pair of objects $A, B \in \mathrm{Obj}(\mathcal{C})$, a map (this actually is a map because we assume hom-sets are in fact sets). $F_{A,B} : \mathrm{Hom}_{\mathcal{C}}(A, B) \to \mathrm{Hom}_{\mathcal{D}}(F(A), F(B))$ such that, for all eligible morphisms f, g, and all $A \in \mathrm{C}$

- (a) $F(\mathrm{Id}_A) = \mathrm{Id}_{F(A)}$
- (b) $F(f \circ g) = F(f) \circ F(g)$

Example 0.4. 1. Let \mathcal{C} be a category. Then we have the identity functor $\mathrm{Id}_{\mathcal{C}}$, which assigns $\mathrm{Id}_{\mathcal{C}}(A) = A$, and $\mathrm{Id}_{\mathcal{A}}(f) = f$ for any eligible A " \in " $\mathrm{Obj}(\mathcal{D})$ and morphisms f.

- **2.** Functors $\pi_n : \mathsf{Top} \to \mathsf{Grp}$ which sends $X \mapsto \pi_n(X)$
- **3.** $\mathbb{S}: \mathsf{Top} \to \mathbb{Z}\text{-comp}$, which sends $X \mapsto \mathbb{S}(X)$, which is a complex

$$\cdots \longrightarrow S_{n+1}(X) \xrightarrow{\partial_{n+1}} S_n(X) \xrightarrow{\partial_n} S_{n-1}(X) \xrightarrow{\partial_{n-1}} \cdots \longrightarrow S_0(x) \xrightarrow{\partial_0} 0$$

Let $\phi: X \to Y$ be continuous for X, Y " \in "Top. Then $\mathbb{S}(\phi)_n: S_n(X) \to S_n(Y)$ is given by $\sigma \mapsto \phi \circ \sigma$, and we can extend this for σ an n-simplex of X.