

Deep Learning

Einführung - Thema 2

Silas Hoffmann

11. April 2020

Fachhochschule Wedel

Deep Learning

Deep Learning

W

Einführung - Thema 2

Silas Hoffmann 11. April 2020 Fachbachschule Wiedd

Geschichtliche Entwicklung

McCulloch-Pitts-Neuron

Deep Learning
Geschichtliche Entwicklung
McCulloch-Pitts-Neuron

Geschichtliche Entwicklung
McCulloch-Pitts-Neuron

Zusammenhang - Biologisches Neuron

Schematic of a biological neuron.

Deep Learning

2020-04

Geschichtliche Entwicklung

-McCulloch-Pitts-Neuron

Zusammenhang - Biologisches Neuron

- 1. Dendriten: Nehmen Infos auf
 - besizten Rezeptoren und Signale anderer Dendriten aufzunehmen
- 2. Signale: bewirken elektrische Veränderungen
 - werden vom Zellkern (Soma) interpretiert / verarbeitet
 - Zellkern sammelt Infos, speichert diese im Axonhügel
- 3. Ursprung vom Axon / Neuriten
- 4. Wenn Signal stark genug: an Axon weitergeleitet
 - auch als Aktionspotential bezeichnet
 - Signal am Ende über Axonterminale per Neurotransmitter mit nächste Dendriten verbunden

MP-Neuron

- Modell soll Funktionalität des biologischen Neurons imitieren
- Klassifizierungsproblem als grundlegende Problemstellung
- Lineare Entscheidungsfunktion zur binären Klassifizierung verwendet

Example of a linear decision boundary for binary classification.

Deep Learning

2020-04

Geschichtliche Entwicklung

☐ McCulloch-Pitts-Neuron☐ MP-Neuron

Darreje of a locar fercision boars to binary classification.

Modell soll Funktionalität des

biologischen Neurons imitiere Klassifizierungsproblem als grundlegende Problematellun

- 1. 1943: Warren McCulloch & Walter Pitts
- 2. soll biologisches Neuron imitieren
- 3. Klassifizierungsproblem: anhand vom geg. Merkmalsvektor entscheiden ob Objekt X in Klasse K liegt
- 4. hier lediglich binäre Klassifikation
 - Unterscheidung nur zwischen zwei Klassen
 - Sonderfall dieses Modells: nur boolesche Eingabewerte
- 5. muss mittels linearer Entscheidungsfunktion definierbar sein

Aufbau und Funktionsweise

$$g(x_1, x_2, \dots, x_n) = g(x) = \sum_{i=1}^n x_i$$
 $f(g(x)) = \begin{cases} 1 & \text{if } g(x) \ge \theta \\ 0 & \text{if } g(x) < \theta \end{cases}$

Deep Learning

Casabiabelia

2020-04-11

Geschichtliche Entwicklung
McCulloch-Pitts-Neuron

 $\begin{array}{c} r_1 \\ r_2 \\ \hline \\ g(n,n_2,...,n_r) \equiv g(r) = \sum_{i=1}^r n_i \\ \end{array} \qquad \begin{array}{c} r_i \in [0,1] \\ \hline \\ g(n_i,n_2,...,n_r) \equiv g(r) = \sum_{i=1}^r n_i \\ \end{array} \qquad \begin{array}{c} r_i \in [0,1] \\ f = g(r) \geq 1 \\ \end{array}$

1. beliebig viele Eigabewerte

- müssen boolescher Natur sein

-Aufbau und Funktionsweise

- 2. Arbeitsschritte:
 - Alle Werte aufaddiert (Fkt. g)
 - Fkt. f prüft ob Schwellwert überschritten

Notation AND-Gatter

Deep Learning

Geschichtliche Entwicklung

McCulloch-Pitts-Neuron

Notation AND-Gatter

2020-04-11

Notation AND-Gatter

1. Anhand von Grafik erläutern

Notation OR-Gatter

Deep Learning

Geschichtliche Entwicklung

McCulloch-Pitts-Neuron

Notation OR-Gatter

2020-04-11

Notation OR-Gatter

1. Anhand von Grafik erläutern, auch im 3d - Raum möglich

Nachteile

- Keine kontinuierlichen Eingabewerte (nur boolesche Werte)
- Schwelle muss manuell gesetzt werden, keine automatische Aktualisierung vorgesehen
- Keine Priorisierungsmöglichkeit der Eingabewerte möglich
- Funktionen müssen durch lineare Entscheidungsfunktion getrennt werden können

Deep Learning

2020-04

Geschichtliche Entwicklung

McCulloch-Pitts-Neuron

└─ Nachteile

- 1. keine kontinuierlichen Eignabewerte
 - nur boolesche Werte
 - Schwierig für komplexe Anwendungen
 - siehe Bilderkennung Farbwerte
- 2. Schwelle muss manuelle gesetzt werden
 - Sprich kein Lernalgorithmus vorhanden
- 3. Keine Priorisierungsmöglichkeiten
 - siehe Gewichtete Eingaben
- 4. Funktionen durch lineare Entscheidungsfunktion getrennt
 - schwierig bei überlappenden Cluster
 - keine Polynome wie bei späteren Entwicklungen möglich
- 5. auch gedeckelte Fkt. wie XOR können nicht dargestellt werden
 - Schwelle muss genau getroffen werden

Geschichtliche Entwicklung

Perceptron

Deep Learning

Geschichtliche Entwicklung
Perceptron

Geschichtliche Entwicklung

Perceptron

Perceptron

- Jedoch gewichtete Eingabewerte

Unit step function.

$$\mathbf{z} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

$$\mathbf{z} = w_1 x_1 + \dots + w_m x_m$$

$$= \sum_{j=1}^m x_j w_j$$

$$= \mathbf{w}^T \mathbf{x}$$

Deep Learning

1

2020-04-

Geschichtliche Entwicklung
Perceptron
Perceptron

- 1. 1958: US-amerikanische Psychologe / Informatiker Frank Rosenblatt
- 2. älteste heutzutage noch genutzte NN
- 3. inspiriert vom Auge einer Fliege
- Flugrichtung Entscheidungen teils direkt im Auge getroffen
- 4. Weiterentwicklung der MP-Zelle
- 5. Eingabewerte mit Gewichten priorisiert
 - Auf Formel verweisen
- 6. Gleich bleibt jedoch die binäre Klassifikation
 - Verweis auf Unit step function
 - hier jedoch nicht Wahrheitswerte sondern -1 und 1

Aufbau

Schematic of Rosenblatt's perceptron.

$$g(z) = \begin{cases} 0 & \text{if } z \le 0 \\ 1 & \text{if } z > 0 \end{cases}$$

$$z = \mathbf{w_0 x_0} + w_1 x_1 + \dots + w_m x_m$$

$$= \sum_{j=0}^m x_j w_j$$

$$= w^T x$$

Geschichtliche Entwicklung
Perceptron
Aufbau

Deep Learning

- 1. Grafik erläutern
- 2. Konvention:
 - erleichtert später Notation der Lernregel
 - Schwellwert auf andere Seite der z-Wert Gleichung ziehen

Lernregel - Ablauf

- Modell übernimmt selbst die Anpassung der Gewichte
- Test mittels einer Menge von gelabelten Trainingsdatensätzen

Grober Ablauf

- Initialisiere die Gewichte mit einem sehr kleinen Wert oder 0.
- Für jeden Datensatz der Menge von Trainingsdatensätzen:
 - Berechne den Ausgabewert des Systems
 - Gleiche die Gewichte an

1. Rosenblatt erfindet lernenden Algorithmus

2020-04-

- 2. Auf Menge von Trainingsdatensätzen zurückgegriffen
 - Datensätze bestehen aus Ein- und erwarteten Ausgabewerten
 - in Literatur auch *gelabelte* Werte genannt
- 3. Lernalgorithmus grobe Zusammenfassung
 - Gewichte mit kleinem Wert / 0 vorinitialisieren
 - Datensätze durchiterieren
 - Ausgabewert berechnenGewichte angleichen

Lernregel - Formel

Angleichung der Gewichte

- Gewichte komponentenweise angleichen: $w_i := w_i + \Delta w_i$
- Gewichtsänderung: $\Delta w_i = \eta \left(\text{target}^{(i)} \text{output}^{(i)} \right) x_i^{(i)}$
- Beispiel Iteration mit zweidimensionalem Trainingsvektor:

$$egin{aligned} \Delta \textit{w}_0 &= \eta(\mathsf{target}^{(i)} - \mathsf{output}^{(i)}) \ \Delta \textit{w}_1 &= \eta(\mathsf{target}^{(i)} - \mathsf{output}^{(i)}) \ \textit{x}_1^{(i)} \ \Delta \textit{w}_2 &= \eta(\mathsf{target}^{(i)} - \mathsf{output}^{(i)}) \ \textit{x}_2^{(i)} \end{aligned}$$

- 1. Erste Formel auf Slide beschreiben
 - Gewichte können zu Gewichtsvektor zusammengezogen werden
 - hier komponentenweise betrachtet
 - Delta (Dreieck) wird stets als Änderung verstanden
- 2. Exponent i hierbei jeweils als Index des Trainingsvektors in Menge
- 3. Lernalgorithmus arbeitet inkrementell
 Lernrate (eta) bestimmt wie stark die Gewichte pro Durchlauf
 - angeglichen werden

 Differenz mit Lernrate und Eingabewert multipliziert
- 4. Iteration mit 2d Eingabevektor
 - w0 hierbei der Schwellwert selbst
 - Faktor x weggelassen da bereits gleich 1
 - Nutzung der beschriebenen Notation

Lernregel - Trainingsbeispiele

Gewichtsänderung

$$\Delta w_j = \eta \left(\mathsf{target}^{(i)} - \mathsf{output}^{(i)} \right) x_i^{(i)}$$

• Trainingsdatensatz richtig erkannt:

$$\Delta w_j = \eta ((-1^{(i)}) - (-1^{(i)})) \ x_j^{(i)} = 0$$
$$\Delta w_j = \eta (1^{(i)} - 1^{(i)}) \ x_j^{(i)} = 0$$

• Trainingsdatensatz falsch erkannt:

$$\Delta w_j = \eta (1^{(i)} - (-1^{(i)})) x_j^{(i)} = \eta(2) x_j^{(i)}$$

$$\Delta w_j = \eta ((-1^{(i)}) - 1^{(i)}) x_i^{(i)} = \eta(-2) x_i^{(i)}$$

Deep Learning

2020-04-11

Geschichtliche Entwicklung

Perceptron
Lernregel - Trainingsbeispiele

Graduit informed, $\Delta u_0 = \eta \left(\operatorname{trapell} - \operatorname{noispell} \right) \chi^{(1)}$ • Training determine it white glutters: $\Delta u_0 = \eta \left(\operatorname{trapell} - \operatorname{noispell} \right) \chi^{(1)} = 0$ $\Delta u_0 = \eta \left(1 - 2^{10} \right) - \left(-2^{10} \right) \chi^{(1)} = 0$ $\Delta u_0 = \eta \left(1 - 2^{10} \right) \chi^{(1)} = 0$ $\Delta u_0 = \eta \left(1 - 2^{10} \right) \chi^{(1)} = \eta \left(2 - 2^{10} \right) \chi^{(1)$

Lernregel - Trainingsbeispiele

- 1. Erinnerung: erst target dann output
- 2. Richtig erkannt
 - Generell Ausgabe 0, keine Änderung
 - Beide Falsch: -1Beide Richtig: +1
- 3. Falsch erkannt
 - output zu klein
 - ullet erwartetet +1 bekommen -1
 - Positiver (Differenz-)Faktor
 - output zu groß
 - ullet erwartetet -1 bekommen +1
 - Negativer (Differen-)Faktor

Geschichtliche Entwicklung

Adeline

Deep Learning Geschichtliche Entwicklung └─Adeline

Geschichtliche Entwicklung

ADAptive **LIN**ear **E**lement

Deep Learning

Geschichtliche Entwicklung

Adeline

ADAptive LINear Element

2020-04

- 1. 1959: Stanford Prof. Bernard Widrow & Elektroingenieur Marcian Edward Hoff
- 2. ADELINE: ADAptive LINear Element
- 3. Modell: Verzicht auf Einheitssprungfunktion bei Angleichung der Gewichte
 - Stattdessen lineare Aktierungsfunktion
 - erstmal nur Identitätsfunktion verwendet
 - Entscheidungsfunktion für output weiterhin verwendet

Delta-Regel

- Leralgorithmus durch Erfinder geprägt
- auch unter Least-Mean-Square-Algrithmus bekannt
- Wesentlicher Vorteil: Ableitbare Kostenfunktion

Notation

$$J(w) = rac{1}{2} \sum (\mathsf{target}^{(i)} - \mathsf{output}^{(i)})^2 \qquad \mathsf{output}^{(i)} \in \mathbb{R}$$

Deep Learning

Geschichtliche Entwicklung

Adeline
Delta-Regel

1. Auch unter Least-Mean-Square-Algorithmus bzw.

Regressionsquadratsumme bekannt

- noch heute relevant
- 2. Funktion stellt Kostenfunktion dar
 - Fehler bei Kostenfunktion soll mithilfe der Lernregel minimiert werden
- 3. Vorteil dieses Ansatzes: Ableitbare Kostenfunktion
- 4. Formel erläutern:

2020-04-

- Differenz quadriert um Vorzeichen zu verlieren
- Faktor 1 / 2 vorschieben um Ableitung einfacher zu gestalten
- über alle Trainingsdatensätze der Menge iterieren
 - Größe i
- 5. Für genaueres Verständnis erstmal Einschub mit Gradientenverfahren

• Ziel: Gradientenvektor für bestimmten Input bestimmen:

$$\nabla J \equiv \left(\frac{\partial J}{\partial w_1}, \dots, \frac{\partial J}{\partial w_m}\right)^T$$
.

Schematic of gradient descent.

Deep Learning
Geschichtliche Entwicklung
Adeline
Gradientenverfahren

1

2020-04

- 1. Wesentlicher Nachteil der Sprungfunktion: Nicht stetig & damit nicht differenzierbar
- 2. Adeline verwendet Identitätsfunktion
- 3. Abbildung erläutern, Metapher: Ball rollt Hügel herunter
 - Abbildung erstmal nur mit einem einzelnen Gewicht geplottet
 - Ableitung an einer bestimmten Stelle gleich der Steigung
 - Gradientenvektor gibt diese Richtung an
 - Mehrdimensional wenn mehreren Eingabeargumenten vorhanden
 - Steigung muss invertiert werden
- 4. Es folgt: Exkurs Partielle Ableitungen

Partielle Ableitungen

- Differenzieren von Funktionen mit mehreren Eingabewerten
- Beispiel: $z = f(x) = x^2 + y^2$

Partielle Ableitung - Notation

 $\partial AbzuleitendeFkt.$ ∂B etrachteteKomponente

Deep Learning

2020-04

Partielle Ableitungen

1. Notation: Bruch

- Zähler: Abzuleitende Funktion

- Nenner: Betrachtete Komponente

2. Abbildung: Fkt. geplottet mit 2 Eingabekomponenten

- Funktion: $z = f(x) = x^2 + y^2$

- Metapher: Blickwinkel erläutern

nächste Folie miteinbeziehen

Ableitung - Beispiel

$$z = f(x, y) = x^{2} + y^{2}$$
$$\frac{\partial z}{\partial x} = 2x \qquad \frac{\partial z}{\partial y} = 2y$$

1. Metapher: Blickwinkel erläutern

Large learning rate: Overshooting. Sm

Small learning rate: Many iterations until convergence and trapping in local minima.

- 1. Lernrate kann als Schrittweite verstanden werden
- 2. Zwei mögliche Probleme:
 - Overshooting: Schrittweite zu groß Minimum wird nicht erkannt
 - Lokales Minimum wird gefunden Globales bleibt unerkannt
- 3. Gradientenabstieg bisher nur in 2 Dimensionen (siehe nächste Folie

Deep Learning

Geschichtliche Entwicklung
Adeline
Gradientenverfahren

- 1. Abbildung: Gradientenabstieg in 3 Dimensionen geplottet
- 2. Hier Ball-Metapher dargestellt
- $3. \ \, \text{Es folgt kompletter Durchlauf des Gradientenabsiegs}$

Deep Learning

Geschichtliche Entwicklung
Adeline
Gradientenverfahren

- 1. Abbildung: Gradientenabstieg in 3 Dimensionen geplottet
- 2. Hier durchgeführter Gradientenabstieg

Gradientenverfahren - Anwendung

Gradientenvektor

$$\nabla J \equiv \left(\frac{\partial J}{\partial w_1}, \dots, \frac{\partial J}{\partial w_m}\right)^T$$
.

• Allgemein: Vektorielle Darstellung

$$\Delta w = -\eta \nabla J(w)$$

• Für die jeweiligen Gewichte: Komponentenweise Darstellung

$$\Delta w_j = -\eta \frac{\partial J}{\partial w_j}$$

• Angleichung der Gewichte $w = w + \Delta w$

- 1. Gradientenvektor: Richtung des Abstiegs
 - mit Nabla dargestellt (Dreieck)
 - kann auch mehrdimensional sein
- 2. Vektorielle Darstellung

2020-04-11

- Eingabeparameter werden als Vektor verstanden
- mit Gradientenvektor und Negativer Lernrate verrechnet / multipliziert
- 3. Komponentenweise Darstellung
 - negative Lernrate mit partieller Ableitung verrechnet
- 4. Angleichung der Gewichte:
 - wie schon bei vorherigen Modellen
 - Mathematische Darstellung: $w = w + \Delta w$

Kostenfunktion ableiten

$$\frac{\partial J}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} \frac{1}{2} \sum_{i} (t^{(i)} - o^{(i)})^{2}
= \frac{1}{2} \sum_{i} \frac{\partial}{\partial w_{j}} (t^{(i)} - o^{(i)})^{2}
= \frac{1}{2} \sum_{i} 2(t^{(i)} - o^{(i)}) \frac{\partial}{\partial w_{j}} (t^{(i)} - o^{(i)})
= \sum_{i} (t^{(i)} - o^{(i)}) \frac{\partial}{\partial w_{j}} \left(t^{(i)} - \sum_{j} w_{j} x_{j}^{(i)} \right)
= \sum_{i} (t^{(i)} - o^{(i)}) (-x_{j}^{(i)})$$

Deep Learning

Geschichtliche Entwicklung

2020-04-11

-Adeline

-Kostenfunktion ableiten

- 1. Ableiten der bisher vorgestellten Kostenfuntion (Least-Mean-Square)
- 2. Summe und Faktor vorziehen
- 3. Kettenregel anwenden
 - äußere Ableitung bereits bestimmt (Vorfaktor 2)
 - innere Ableitung steht noch aus
- 4. Faktor 2 kann vorgezogen werden, wird mit 1/2 verrechnet
- 5. Ursprüngliche Notation für die Ausgabe wird eingesetzt:
 - Ausgabe: $\sum_{i} w_{i} x_{i}^{(i)}$
- 6. Summe aufgelöst
 - es wird nach w_i abgeleitet
 - alle Summanden in denen dieser Faktor nicht vorkommt entfallen

Geschichtliche Entwicklung

Backpropagation

Deep Learning

Geschichtliche Entwicklung
Backpropagation

Geschichtliche Entwicklung
Backpropagation

Notation

Deep Learning

Geschichtliche Entwicklung

schichtliche Entwicklung
-Backpropagation
- Notation

- 1. I: Exponent, steht für die Schicht
 - I 1, weil man stets von hinten nach vorne schaut
- 2. Eingabe wird auch als eigene Schicht verstanden
- 3. j: Index Zielneuron
- 4. k: Index Startneuron

Notation

 $a'_j = \sigma \left(\sum_k w'_{jk} a'^{-1}_k + b'_j \right) \Rightarrow \begin{cases} a' = \sigma(z') \\ z' = w' a'^{-1} + b' \end{cases}$

Deep Learning
Geschichtliche Entwicklung
Backpropagation
Notation

- 1. Ähnlich zu Gewichtsnotation
 - I bezieht sich hierbei jedoch auf aktuelle Schicht
 - j wie gehabt Index in Schicht
 - Notation gilt auch f
 ür Aktivierung a
- 2. Wichtig: σ bezieht sich auf Vektor \Rightarrow Vektorielle Funktion
- 3. Jede Komponente einzeln mit σ verarbeitet
- 4. Abstraktion vom Ausgabewert vor der Aktivierungsfkt
 - hilft später beim Ableiten

Backpropagation

- Kostenfunktion soll minimiert werden.
- Ziel: Optimale Gewichte und Schwellwerte finden
- Grobe Vorgehensweise: Iterativer Prozess
 - Fehlervektor der letzten Schicht berechnen
 - Fehler schichtweise zum Eingabelayer zurückführen
 - Parameter schichtweise nach Gradienten angleichen

Learning	
Caschichtlicha	

Deer

2020-04-11

Seschichtliche Entwicklung

—Backpropagation

☐Backpropagation

aga	ш		

- Kostenfunktion soll minimiert werden
 Ziel: Optimale Gewichte und Schwellwerte finder
- Grobe Vorgehensweise: Iterativer Prozess
- Fehlervektor der letzten Schicht berechnen
 Fehler schichtweise zum Eingabelayer zursckfahrer
- Fehler schichtweise zum Eingabelayer zurschliche
 Parameter schichtweise nach Gradienten angleich

- 1. 1970er entwickelt, 1986 von Rummelhart, Hilten und Williams in Paper bekannt gemacht
- 2. Kostenfunktion wie bei Gradientenabstieg / Adeline
 - Unterschied: Hier mehrschichtiges Netz
 - Gradientenabstieg grob erläutert, ausgeblieben -
 - Anwendung im mehrschichtigen Netz und mehrdimensionale Kostenfunktion
- 3. Fehlervektor der letzten Schicht berechnen
 - Fehler schichtweise zum Eingabelayer zurückführen
- 4. Parameter schichtweise nach Gradienten angleichen

Fehler - Ausgabeschicht

$$\delta_{j}^{L} = \frac{\partial C}{\partial z_{j}^{L}}$$

$$= \sum_{k} \frac{\partial C}{\partial a_{k}^{L}} \frac{\partial a_{k}^{L}}{\partial z_{j}^{L}}$$

$$= \frac{\partial C}{\partial a_{j}^{L}} \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}}$$

$$= \frac{\partial C}{\partial a_{k}^{L}} \sigma'(z_{j}^{L})$$

Anmerkung: Kettenregel

$$\frac{d}{dx}\left[f\left(u\right)\right] = \frac{d}{du}\left[f\left(u\right)\right]\frac{du}{dx}$$

- **C**: Kostenfunktion
- y: Erwartete Ausgabe

- 1. Baum nur für Netz mit einer einzigen Aktivierung
- 2. Zusammenhang mit Kettenregel erläutern
- 3. Großes L immer für Ausgabeschicht

Fehler - Ausgabeschicht

Zusammenfassung

Um den Fehlervektor der letzten Schicht zu bestimmen:

$$\delta^L = \nabla_a C \odot \sigma'(z^L)$$

• Äquivalent zu:

$$\delta^L = (a^L - y) \odot \sigma'(z^L)$$

• Um die Fehler komponentenweise zu bestimmen:

$$\delta_j^L = \frac{\partial C}{\partial a_i^L} \sigma'(z_j^L)$$

- 1. $\nabla_a C$ entspricht dabei Vektor aller $\frac{\partial C}{\partial a_i^L}$ einer Schicht
- 2. ①: Komponentenweise Multiplikation zweier Vektoren

Fehler - Zwischenschicht

- Zusammenhang zwischen Fehler zweier Schichten herleiten
- Es gilt: $\delta_i^l = \partial C/\partial z_i^l$ sowie $\delta_k^{l+1} = \partial C/\partial z_k^{l+1}$

$$\delta_{j}^{l} = \frac{\partial C}{\partial z_{j}^{l}}$$

$$= \sum_{k} \frac{\partial C}{\partial z_{k}^{l+1}} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}}$$

$$= \sum_{k} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} \delta_{k}^{l+1}$$

$$w^{l} a^{l-1} b$$

$$w^{l+1} b^{l+1}$$

$$z^{l} b^{l+1}$$

$$z^{l} b^{l+1}$$

$$w^{l} a^{l-1} b^{l+1}$$

Fehler - Zwischenschicht

$$z_k^{l+1} = \sum_{j} w_{kj}^{l+1} a_j^l + b_k^{l+1} = \sum_{j} w_{kj}^{l+1} \sigma(z_j^l) + b_k^{l+1}$$
$$\frac{\partial z_k^{l+1}}{\partial z_j^l} = w_{kj}^{l+1} \sigma'(z_j^l)$$

Zusammenfassung

- Komponentenweise Darstellung: $\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l)$
- Vektorielle Darstellung: $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$

Deep Learning

Geschichtliche Entwicklung
Backpropagation
Fehler - Zwischenschicht

$$\begin{split} x_i^{l+1} &= \sum_{j} u_0^{l+1} t_j^l + k_i^{l+1} = \sum_{j} u_0^{l+1} t_j^l + k_i^{l+1} \\ &= \frac{\partial t_j^{l+1}}{\partial t_j^l} = u_0^{l+1} t_i^l t_j^l \end{split}$$
 Zimanomorfassong . • Komponentensius Dantellung. $\beta_i^l = \sum_{j} u_0^{l+1} t_j^{l+1} t_j^{l+1} t_j^l t_j^l t_j^l \\ • Vettariska Dantellung. <math>\ell^l = (u^{l+1})^l \beta_i^{l+1} \oplus v^l (\ell^l)$

Fehler - Zwischenschicht

Fehler - Schwellwerte & Gewichte

$$z'_{k} = \sum_{i} w'_{ki} a'_{i}^{-1} + b'_{k} = \sum_{i} w'_{ki} \sigma(z'_{i}^{-1}) + b'_{k}$$

Schwellwerte

$$\frac{\partial C}{\partial b_j^l} = \frac{\partial C}{\partial z_j^l} \frac{\partial z_j^l}{\partial b_j^l} = \delta_j^l$$

Gewichte

$$\frac{\partial C}{\partial w_{jk}^{l}} = \frac{\partial C}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial w_{jk}^{l}} = a_{k}^{l-1} \delta_{j}$$

Fehler - Schwellwerte & Gewichte Deep Learning Geschichtliche Entwicklung Backpropagation Fehler - Schwellwerte & Gewichte

 $z_{k}^{l} = \sum_{j} w_{kj}^{l} z_{j}^{l-1} + b_{k}^{l} = \sum_{j} w_{kj}^{l} \sigma(z_{j}^{l-1}) + b_{k}^{l}$

Anwendung

- Menge an Trainingsdatensätzen auswählen
- Für jeden einzelnen Datensatz:
 - 1. **Feedforward**: Z-Wert und Aktivierung für jede Schicht

$$l=2,3,\ldots,L$$
 berechnen.

• Z-Wert:
$$z^{x,l} = w^l a^{l-1} + b^l$$

• Aktivierung
$$a^{x,l} = \sigma(z^l)$$

- 2. **Ausgabe-Fehler** $\delta^{x,L}$: Fehlervektor der Ausgabeschicht berechnen.
 - $\delta^L = \nabla_a C \odot \sigma'(z^L)$
- 3. Backpropagation-Fehler: Rückwirkend Fehlervektor aller Schichten berechnen.

•
$$\delta^{x,l} = ((w^{l+1})^T \delta^{x,l+1}) \odot \sigma'(z^{x,l})$$

- **Gradientenabstieg**: Gewichte und Schwellwerte getrennt anpassen.
 - Gewichte: $w^l \to w^l \frac{\eta}{m} \sum_{x} \delta^{x,l} (a^{x,l-1})^T$
 - Schwellwerte: $b^l \to b^l \frac{\eta}{m} \sum_{x} \delta^{x,l}$

Deep Learning Geschichtliche Entwicklung -Backpropagation —Anwendung

 Menge an Trainingsdatensätzen auswählen · Für ieden einzelnen Datensatz

 Feedforward: Z-Wert und Aktivierung für iede Schicht Z-West: x^{a,j} = w^jx^{j-1} + b^j

 Althierung a^{n l} = r(z^l) 2. Ausrabe-Fehler 8*1: Fehlervektor der Ausrabeschicht berechner

3. Backpropagation-Fehler: Rockwirland Fehlervektor aller Schichte

· Gradientenabsties: Gewichte und Schwellwerte getrennt anpasser

 Gewichte: w¹ → w¹ − ± ∑ⁿ, δ^{n,1}(x^{n,1+1})^T Schwellwerte: b' → b' − ≅ Σ′. δ''.

Aktuelle Entwicklung

Convolutional Neural Network

Aktuelle Entwicklung

Convolutional Neural Network

Biologische Zellarten

A Simple cell

B Complex cell

Deep Learning

2020-04-11

Aktuelle Entwicklung

Convolutional Neural Network

Biologische Zellarten

- 1. 1962: zwei Neurophysiologen Torsten Wiesel und David Hubel
- 2. Konzept der simple und complex cells
- 3. nicht positionsbunden spatial invariance, räumliche Invarianz
- 4. Arten von Zellen zur Erkennung einfacher Kanten und Balken
- 5. simple cells: ist Positionsgebunden
- 6. complex cells: Muster können an beliebigen Positionen auftauchen
- 7. 1962: Konzept wie im Bild
- 8. 1980er Dr. Kunihiko Fukushima: erstes Modell nach diesem Konzept

Anfänge

- Yann LeCun: erstes Modell zum Erkennen von Handschrift
- Verwendung von MNIST database of handwritten digits
 - 60.000 Trainingsdatensätze
 - 10.000 zum Berechnen des Fehlers

2020-04-11

- 1. Pioniere, fr. Informatiker Yann LeCun
- 2. Bekannteste Ausarbeitung über CNN für Handschriften

Convolutinal Layer - Filter

- Mehrdimensionales Array mit Farbwerten zur Repräsentation im Rechner
- Durch Filter auf bestimmte Low-Level Eigenschaften schließen

Deep Learning

Aktuelle Entwicklung

Convolutional Neural Network

Convolutional Layer - Filter

1. Farbwertearray kann pro Pixel mehrere Werte enthalten

2020-04-11

Filter

Generell

- Besitzt feste Pixelgröße (Kernelsize) & Schrittweite
- Scannt Bild Zeilenweise
- Padding legt Verfahren für Rand des Bildes fest
- Ausgabe wird activation oder feature map genannt

Praxis

- Convolutional Layer mit 32 oder 16 Bit
- Jeder Filter generiert eigene Ausgabematrix
- Nächster Convolutional Layer verwendet Ausgabematrizen als Input
- Ausgabe wird in *Pooling Layer* gesteckt

- 1. Bsp. Filter 2×2 , Schrittweite: 2 führt zu Halbierung der InputMatrix
- 2. Im Bsp. hängen immer 4 Pixel an einem Filter, die Eingabematrix wird gefaltet (convolute)

Filter - Funktionsweise

Deep Learning

Aktuelle Entwicklung

Convolutional Neural Network
Filter - Funktionsweise

Pooling Layer

- Aggregiert die Ergebnisse von Convolutional Layern
- Ziele
 - Nur die relevantesten Signale an nächste Schicht weitergeben
 - Anzahl der Parameter im Netz reduzieren
- MaxPooling Layer am weitesten verbreitet

 während die Größe des Inputs durch die Faltungen und das Pooling immer weiter reduziert wird, erhöht sich die Anzahl der Filter zur Erkennung von übergeordneten Signalen zunehmend

Fully Connected Layer

- Ausgagngspunkt: High-Level Merkmale bereits durch frühere Schichten erkannt.
- Alle Neuronen der Ausgabeschicht sowie dieser Merkmale alle direkt miteinander verbunden
- Ausgabe sollte mit den richtigen Gewichten / Schwellwerten relativ eindeutige Ausgaben generieren

Deep Learning Aktuelle Entwicklung Convolutional Neural Network Fully Connected Layer

2020-04-11

Fully Connected Layer

- Ausgagngspunkt: High-Level Merkmale bereits durch frühere Schichten erkannt.
- Alle Neuronen der Ausgabeschicht sowie dieser Merkmale alle direk miteinander verbunden
- miteinander verbunden

 Ausgabe sollte mit den richtigen Gewichten / Schwellwerten relativ
- Ausgabe some mit den normgen Gewonnen / Schweiwerten reistr eindeutige Ausgaben generieren

Deep Learning

Einführung - Thema 2

Silas Hoffmann

11. April 2020

Fachhochschule Wedel

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides.

metropolis will automatically turn off slide numbering and progress bars for slides in the appendix.

2020-04-11

-Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendix number beamer parkage in your resemble and call. Immediate in the fore your backup slides.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides. metropolis will automatically turn off slide numbering and progress bars

Backup Slides

Multilayer Perceptron

Deep Learning

Backup Slides

Multilayer Perceptron

Backup Slides

Multilayer Perceptron

Multilayer Perceptron

• In Grundzügen bereits beim Backpropagation Algorithmus erläutert

Anwendungsbereiche:

- Mustererkennung
- Funktionenapproximation
- Klassifizierung
- Prognose
- Diagnose
- Steuerung
- Optimierung

Deep Learning

Backup Slides

Multilayer Perceptron

Multilayer Perceptron

- 1. vielfältige Struktur
- 2. Mehrschichtiges Netz, bereits beim BPAlgo. verwendet
- 3. Zu tiefe Netz: Probleme beim Training
- 4. Techniken unter Deep learning zusammengefasst
- 5. Stuktur: mehrschichtiges forwärtsgekoppeltes Netz
- 6. Feedforward: durchiterieren von Eingabewerten
- 7.

2020-04-

8.

Sigmoid Aktivierungsfunktion

- Einfach / schnell zu berechnen
- Einfach / schnell abzuleiten

$$f(x) = \frac{1}{1 + exp(-b * x)}$$
$$f'(x) = b * f(x)(1 - f(x))$$

Deep Learning

Backup Slides

Multilayer Perceptron
Sigmoid Aktivierungsfunktion

2020-04-11

- 1. Wertebereich: zwischen 0 und 1
- 2. Konstante berschreibt Steilheit der Kurve
- 3. Über die komplette Domäne differenzierbar

Backup Slides

Recurrent Neural Network

Deep Learning
Backup Slides
Recurrent Neural Network

Backup Slides

Recurrent Neural Network

Recurrent Neural Network

• Bekommen sowohl von Eingangssignale sowohl durch Trainingsdatensatz als auch durch Rückkopplungen.

- Mustererkennung
- Muster ergänzen
- Sprachanalyse

- 1. Bisher nur feedforward NN
- 2. Hierbei Reihenfolge von Bedeutung

Alle Meterialen sind unter folgender URL zu finden:

https://github.com/derMacon/deeplearning_seminar

Deep Learning
11 Backup Slides
CRecurrent Neural Network

Alle Meteralen sind unter lolgender UML zu finden: https://github.com/derMacon/deeplearning_seminar

References i

3Blue1Brown - Videokurs zur Einführung in die Neuralen Netze. https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi.

Aufgerufen am: 16-03-2020.

Übersicht - verschiedene Architekturen.

https://www.asimovinstitute.org/neural-network-zoo/. Aufgerufen am: 22-03-2020.

Definition Klassifizierungssproblem. http://ekpwww.physik.uni-karlsruhe.de/~tkuhr/ HauptseminarWS1112/Keck_handout.pdf. Aufgerufen am: 15-03-2020. Deep Learning

Backup Slides

Recurrent Neural Network

References

References i

BlackBoon: Videolow az Enfillmen in die Merzien Nates
hitter general des enfilleren in der Merzien Nates
hitter general des enfilleren des enfilleren
hitter general des enfilleren
hitter general des enfilleren des enfilleren
hitter general des enfilleren des enfilleren
hitter general des enfilleren des enfilleren des enfilleren
hitter general des enfilleren des enf

References ii

Einführung Convolutional neural network. https://adeshpande3.github.io/A-Beginner% 27s-Guide-To-Understanding-Convolutional-Neural-Networks/.

Aufgerufen am: 18-03-2020.

Öffentliche Datensätze - Übersicht. https://github.com/awesomedata/awesome-public-datasets.

Aufgerufen am: 18-03-2020.

Funktionsweise - CNN.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890437/.

Aufgerufen am: 18-03-2020. Funktionsweise - CNN.

https://bit.ly/2QGK0Ej. Aufgerufen am: 18-03-2020.

Backup Slides Recurrent Neural Network -References

Deep Learning

Einführung Convolutional neural network. https://adephpande3.github.io/A-Beginner% 27s-Guide-To-Understanding-Convolutional-Neural-Networks/ Glientliche Datensätze - Übersicht https://github.com/avezomedata/avezome-public-datazets. Aufgerufen am: 18-03-2020 https://www.mcbi.nlm.nih.gov/pmc/articles/PMC1890437/ Aufgerufen am: 18-03-2020 Funktionsweise - CNN httms://bit.lv/20GKOE1

References iii

Geschichte der Convolutional neuronalen Netze. https://glassboxmedicine.com/2019/04/13/

a-short-history-of-convolutional-neural-networks/.

Aufgerufen am: 18-03-2020.

Khan Academy - Partielle Ableitungen (Funktion mit zwei Eingabewerten.

https://www.youtube.com/watch?v=1CMDS4-PKKQ&t=542s. Aufgerufen am: 16-03-2020.

Künstliche Neuronale Netzwerke und Deep Learning - Stefan Stelle. https://www.htwsaar.de/wiwi/fakultaet/personen/profile/selle-stefan/Selle2018e_Kuenstliche_Neuronale_Netzwerke.pdf/at_download/file.

Aufgerufen am: 24-03-2020.

Deep Learning

Backup Slides

Recurrent Neural Network
References

2020-04-

References III

Geschichte der Convolutional neuronalen Netze.

https://glamsboxmedicine.com/2019/04/13/ a-short-history-of-convolutional-neural-networks/ Aufgerufen am: 18-03-2020.

Eingabewrien.
https://www.youtube.com/watch?v=109064-PXXQkt=542a
Aufgerufen am: 16-03-2020.

Kinstliche Neuronale Netzwerke und Deep Learning - Stefan Stefle https://www.htvwaar.de/utw/fishultaet/perronem/ profile/aralle-wited/Schile2018e_Usenstliche_Weuronale Netzwerke.pdf/ar_download/file. Aufgurufen zem: 24-03-2002

References iv

McCulloch-Pitts Neuron.
https://towardsdatascience.com/

mcculloch-pitts-model-5fdf65ac5dd1.

Aufgerufen am: 14-03-2020.

Perceptron - Python Implementierung.

https://github.com/rasbt/mlxtend/blob/master/mlxtend/
classifier/perceptron.py.

Aufgerufen am: 16-03-2020.

Single-Layer Neural Networks and Gradient Descent. https://sebastianraschka.com/Articles/2015_ singlelayer_neurons.html.

Aufgerufen am: 14-03-2020.

M. Nielsen.

Neural Networks and Deep Learning.

Determination Press, 2015.

Deep Learning McCulloch-Pitts Neuron. httms://towardsdatascience.com/ Backup Slides mcculloch-pitts-model-5fdf65ac5dd1 Perceptron - Python Implementierung. https://github.com/rasbt/mlxtend/blob/master/mlxtend/ Recurrent Neural Network classifier/perceptron.pv. Single-Layer Neural Networks and Gradient Descent -References https://sebastiamraschka.com/Articles/2015 singlelayer neurons.html. Aufgerufen am: 14-03-2020. M Nieben Neural Networks and Deep Learning.