Partitioning Edge-Coloured Graphs into Monochromatic Paths and Cycles

Jess Ryan

Definitions

Edge-colouring

A graph G is r-edge-coloured if its edges are coloured using at most r colours.

Figure: 2-edge-coloured K_6

Where it all started...

Question:

Can we partition the vertices of an edge-coloured graph into a number of monochromatic subgraphs depending only on the number of colours used (and not on n)?

Conjecture (Gyárfás, 1989)

At most r disjoint monochromatic paths are needed to partition the vertices of any r-edge-coloured K_n .

Conjecture (Erdős, Gyárfás and Pyber, 1991)

At most r disjoint monochromatic cycles are needed to partition the vertices of any r-edge-coloured K_n .

Partitioning K_n into paths

Conjecture (Gyárfás, 1989)

At most r disjoint monochromatic paths are needed to partition the vertices of any r-edge-coloured K_n .

- $r = 1 \checkmark \text{(trivial)}$
- r = 2 ✓ (Gyárfás and Gerencsér, 1967)

r = 2 proof:

Basic idea:

• Construct a maximal red path followed by a maximal blue path.

• While there are uncovered vertices, extend the path while maintaining the single colour change property.

Continue until all vertices are covered.

Partitioning K_n into paths

Conjecture (Gyárfás, 1989)

At most r disjoint monochromatic paths are needed to partition the vertices of any r-edge-coloured K_n .

- $r = 1 \checkmark \text{(trivial)}$
- r = 2 (Gyárfás and Gerencsér, 1967)
- $r = 3 \checkmark (Pokrovskiy, 2014)$
- $r \ge 4$?

Partitioning K_n into cycles

Conjecture (Erdös, Gyárfás and Pyber, 1991)

At most r disjoint monochromatic cycles are needed to partition the vertices of any r-edge-coloured K_n .

- $r = 1 \checkmark \text{(trivial)}$
- $r = 2 \checkmark$ (Bessy and Thomassé, 2010)
- $r \ge 3 \times (Pokrovskiy, 2014)$

Conjecture (Pokrovskiy, 2014)

The vertices of any r-edge-coloured K_n can be partitioned into r (not necessarily disjoint) monochromatic cycles.

Conjecture (Pokrovskiy, 2014)

At most r disjoint monochromatic cycles are needed to cover all but c_r of the vertices of any r-edge-coloured K_n .

Definitions

Local-colouring

An edge colouring of a graph G is an r-local-colouring if each vertex in G is incident to at most r distinct colours.

Figure: 2-local colouring of K_6

Definitions

Mean-colouring

An edge colouring of a graph G is an r-mean colouring if the mean number of colours incident to a vertex in G is equal to r.

Figure: 2-mean colouring of K_6

Partitioning K_n into cycles

Theorem (Bessy & Thomassé, 2010)

The vertices of any 2-edge-coloured K_n can be partitioned into 2 disjoint cycles of different colours.

Theorem (Conlon & Stein, 2014)

The vertices of any 2-locally coloured K_n can be partitioned into 2 disjoint cycles of different colours.

Theorem (Conlon & Stein, 2014)

The vertices of any 2-mean coloured K_n can be partitioned into 2 disjoint cycles of different colours.

Partitioning $K_{n,n}$ into paths

Conjecture (Pokrovskiy, 2014)

At most 2r-1 disjoint monochromatic paths are needed to partition the vertices of any r-edge-coloured $K_{n,n}$.

• $r = 2 \checkmark (Pokrovskiy, 2014)$

Theorem (Lang & Stein, 2015)

The vertices of any 2-locally coloured $K_{n,n}$ can be partitioned into 3 disjoint monochromatic paths.

Conjecture

The vertices of any 2-mean coloured $K_{n,n}$ can be partitioned into 3 disjoint monochromatic paths.

Partitioning $K_{n,n}$ into cycles

Conjecture

The vertices of any 2-edge-coloured $K_{n,n}$ can be partitioned into 3 disjoint monochromatic cycles.

Conjecture

The vertices of any 2-locally coloured $K_{n,n}$ can be partitioned into 3 disjoint monochromatic cycles.

Conjecture

The vertices of any 2-mean coloured $K_{n,n}$ can be partitioned into 3 disjoint monochromatic cycles.