

Decision Tree Numeric Examples

Maryam Abdolali KNTU, Fall 2024

Example 1- Gini

age	likes dogs	likes gravity	going to be an astronaut
24	0	0	0
30	1	1	1
36	0	1	1
36	0	0	0
42	0	0	0
44	1	1	1
46	1	0	0
47	1	1	1
47	0	1	0
51	1	1	1

Gini Impurity =
$$\frac{6}{10} \cdot 0.28 + \frac{4}{10} \cdot 0 = 0.168$$

case 2

Dataset 1 🗸

yes: 4

no: 1

Gini: 0.32

going to be an astronaut

true

mpurity: 0.32
Gini Impurity =
$$\frac{5}{10} \cdot 0.32 + \frac{5}{10}$$

For purity: 0.32 Gini Impurity =
$$\frac{5}{10} \cdot 0.32 + \frac{5}{10} \cdot 0.32 = 0.32$$

likes dogs

false

going to be an astronaut

Dataset 2

yes: 1

no: 4

Gini: 0.32

Example 2: Add a numerical Variable

age	likes dogs	likes gravity	going to be an astronaut
24	0	0	0
30	1	1	1
36	0	1	1
36	0	0	0
42	0	0	0
44	1	1	1
46	1	0	0
47	1	1	1
47	0	1	0
51	1	1	1
	24 30 36 36 42 44 46 47	24 0 30 1 36 0 36 0 42 0 44 1 46 1 47 1 47 0	24 0 0 30 1 1 36 0 1 36 0 0 42 0 0 44 1 1 46 1 0 47 1 1 47 0 1

-cont-

age	likes dogs	going to be an astronaut	
30	1	1	
36	0	1	
44	1	1	
47	1	1	
47	0	0	
51	1	1	

https://towardsdatascience.com/decision-trees-for-classification-complete-example-d0bc17fcf1c2

-cont-

Example 3-

We have some data about when people go hiking. The data take into effect, whether hike is on a weekend or not, if the weather is rainy or sunny, and if the person will have company during the hike.

Weekend?	Company?	Weather	Go Hiking?
Y	N	R	N
Y	Y	\mathbf{R}	N
Y	Y	R	Y
Y	Y	S	Y
Y	N	S	Y
Y	N	S	N
Y	Y	R	N
Y	Y	S	Y
N	Y	S	N
N	Y	R	N
N	N	S	N

Solution

- ► For the first step, the Weekend attribute achieve this:
 - ► Weekend: $\frac{8}{11}H(\frac{1}{2},\frac{1}{2}) + \frac{3}{11}H(0,1) = \frac{8}{11}$
 - ► Weather: $\frac{5}{11}H\left(\frac{1}{5},\frac{4}{5}\right) + \frac{6}{11}H\left(\frac{1}{2},\frac{1}{2}\right) = \frac{9.6}{11}$
 - ► Company: $\frac{4}{11}H(\frac{1}{4},\frac{3}{4}) + \frac{7}{11}H(\frac{3}{7},\frac{4}{7}) = \frac{10.1}{11}$
- Therefore we first split on weekend attribute.
 - ► If weekend = NO: then Go Hiking = NO.
 - ▶ If weekend = YES, we need to choose second attribute to split on:
 - Weather: $\frac{4}{8}H\left(\frac{1}{4},\frac{3}{4}\right) + \frac{4}{8}H\left(\frac{1}{4},\frac{3}{4}\right) = \frac{6.4}{8}$
 - ► Company: $\frac{5}{8}H\left(\frac{2}{5},\frac{3}{5}\right) + \frac{3}{8}H\left(\frac{1}{3},\frac{2}{3}\right) = \frac{7.6}{8}$

solution

Q. How about the probability of going to hike on a rainy weekend when having some company? A. 1/3