Fig. 1

A Is table of structures

В

BEST AVAILABLE COPY

Fig. 2

Fig. 3A

Fig. 3B

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Carbohydrate antigens on S. mansoni SEA

Carbohydrate epitope	Shortname	anti-glycan MAb		
	Lewis-X	CB10 (32)		
<u>β4</u> ■ R	LDN	SMLDN1.1 (31)		
$\Box_{\overline{\beta4}}^{\bigcirc \alpha3} = R$ $\Diamond_{\alpha2}$	LDNF	SMLDNF1 (4)		
α3 	LDN-DF	114-5B1-A (12)		
● Gal ■ GlcNAc ☐ GalNAc △ Fucose				

Fig. 14

Fig. 15

Fig. 16

Fig. 17

SUBSTITUTE SHEET (RUI F 26)

Fig. 18

Fig. 19

PCT/NL2003/000781 10/533981

Fig. 20A

Fig. 20B

Fig. 21

Granulocytes

Fig. 22A

Fig. 22B

Fig. 22C

SUBSTITUTE SHFFT (RIII F 26)

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

- 1. control
- 2. ICAM-2
- 3. ICAM-3
- 4. DC-SIGN ligand
- 5. LFA-1

→ DC-SIGN binds
ICAM-2? and 75
kD ligand on NK
cells

Fig. 28

Fig. 29

Fig. 30

Fig. 31

HSV-1 binding

HSV-2 binding

Fig. 32

Fig. 33A

mSIGNR1 binds mannose-containing carbohydrates, similar to DC-SIGN and L-SIGN

Fig. 33B

DC-SIGN, L-SIGN and mSIGNR1 bind differently to Lewis antigens

Fig. 33C

Carbohydrate specificity of DC-SIGN, L-SIGN and mSIGNR1

	DC-SIGN	L-SIGN	mSIGNR1
LewisX	+	\bigcirc	+
sialyl LewisX	-	-	+
sulfo LewisX	+	\bigcirc	+
LewisY	+	+	+
LewisA	+	+	+
sialyl LewisA	-	-	(+)
sulfo LewisA	+	+	+
LewisB	+	+	+

Fig. 34

pathogens with mannose-containing carbohydrates bind mSIGNR1

Fig. 35

DC-SIGN-Fc binds HCV-envelope proteins

Fig. 36

Cellular DC-SIGN and L-SIGN bind HCV E1 and E2 proteins

DC-SIGN has similar binding site for gp120 and HCV

Fig. 36D

Essential amino acid residues in DC-SIGN binding to its ligands gp120 and HCV envelope proteins

DC-SIGN mutant				
DC-SIGIV HIULAIIL	gp120	HCV E1	HCV E2	HCV E1/E2
Wild type	% 45	% 50	% 45	% 50
E347Q N349D N365D	4 0 0	3 5 Lig 5 bir	gand 7 nding 9	7 7 9
D366A	3		a ²⁺ te 2	6
D320A E324A N350A D355A	7 0 1 2	4 4 Si 4 Si	te 1 8	5 6 5 7

Stable K562 transfectamts

Fig. 37

HCV is internalized by DC-SIGN and L-SIGN; internalization pathway depends on cell-line

Fig. 38

Immature and mature DC bind HCV via DC-SIGN

Fig. 39

Immature DC capture and internalize HCV through DC-SIGN; HCV is targeted to the early endosomes

Fig. 40

Immature DC internalize carbohydrates via DC-SIGN

Fig. 41

HCV binding to Liver sections

Fig. 42

Lewis blood group antigens and some of their substructures bind to DC-SIGN.

		.	OD 430
		b	
Structure	Antigen	Lev Lex	
		Fuca1-4GlcNAc	
Fucα1→ 2Galβ1→3GlcNAc	H type 1	Fuca1-3GlcNAc	
·		Fucα1-2Galβ	
Fucα1→ 2Galβ1→4GlcNAc	H type 2	Fuc Gaip1-3GicNAc	_
		Galp1-4GICNAC	
→3 (Galβ1→4GlcNAcβ1→) _n	i-anti gen	Gal 🚾	
		GicNAc]	
Galβ1→ 4GlcNAc	Lewis x (Le ^x)	H type 1	
3 ↑		,	
Fuca1			OD 494
		c 1	2
Fucα1 → 2Galβ1→ 4GlcNAc	Lewis y (Le ^y)	(Lex) ₂	
3 ↑		(Lex),	
Fuca1			

Fig. 43

Binding of *H. pylori* is dependent on Lewis antigen expression.

Fig. 44

LPS phase variation in *H. pylori* occurs in vivo.

а	Strain	Number of colonies (%)	Serotype							
		•	Ley	mono-Lex	(Lex) ^u	i-antigen	H type 1			
	J223.3	6/30 (20)	+++	-	++	++	+++			
	J223.8	24/30 (80)	-	-	•	+++	+++			

b	Strain	Length of C-tract in gene			Serotype				
		futA	futB	Ley	mono-Le ^x	(Le _x) _n	i-antigen	H type 1	
	J223.3	n=9 ("off")	n=10 ("on")	+++	•	++	++	+++	
	J223.8	n=9 ("off")	n=9 ("off")	-	-	-	+++	+++	
	J223.3 ∆ <i>futB</i>	N.D.	N.D	-	-	-	+++	+++	

C	J223.3 futA			J223.3			futB	
	1 61	GAAAGCGCTT	CCCTATTAGA CGCCTTCATA CCATTGAAAA AATGGCCTCT CCCCCTAA (STOP)		1 61	GAAAGCGCTT	CCCTATTAGA CCATTGAAAA CCCCCCTAAA	AATGGCCTCT
	J223	3.8			J223	3.8		
	1 61	GAAAGCGCTT	CCCTATTAGA CGCCTTCATA CCATTGAAAA AATGGCCTCT CCCCCTAA (STOP)	ļ !	1 61	GAAAGCGCTT	CCCTATTAGA CCATTGAAAA CCCCCTAA (AATGGCCTCT

Fig. 45

DC-SIGN is expressed on gastric DCs and is the major receptor for Le positive *H. pylori*.

Fig. 46

Binding of *H. pylori* to induces DC-SIGN-dependent increase of IL-10 and IL-12 production, but no changes in IL12p70.

Fig. 47

Binding of *H. pylori* to DC-SIGN induces skewing of naïve T cells to Th2.

Lactobacilli induce partial DC maturation

Fig. 48A

Cytokine profiles induced on DC by lactoballi

Fig. 48B

Fig. 49A

Fig. 49B

Fig. 49D

SUBSTITUTE SHEET (RUI F 26)

SUBSTITUTE SHEET (RULE 26)

Induction of T reg cells through targeting DC-SIGN by probiotic bacteria

Fig. 52

Fig. 53

PMN express the DC-SIGN ligand Lewis^x and bind with high affinity to recombinant DC-SIGN.

Fig. 54
CEACAM1 expressed on PMN is a ligand of DC-SIGN and binds through its Lewis^x moieties.

Fig. 55

Cellular DC-SIGN expressed on K562 transfectants and immature DC binds native CEACAM1 from PMN.

Fig. 56

DC-SIGN is involved in clustering of DC and PMN.

Fig. 57

Localization of PMN and DC in colonic mucosa of patients with Crohn's disease.

Fig. 58

PMN activate immature DC through binding DC-SIGN.

PMN induce upreguation of co-stimulatory CD86 on DC, which is dependent on DC-SIGN binding

PMN induce secretion of inflammatory cytokines by DC, which is dependent on DC-SIGN binding

Fig. 59

DC-SIGN binds Lex expressing CD11b present on neutroph

Fig. 59D

DC-SIGN bindsCD66acd and CD11b on PMN

- . Biotinylated PMN:
- 1. IP ICAM-3-Fc, IB streptavidin,
- 2. IP DC-SIGN-Fc, IB streptavidin,
- 3. IP anti-DC-SIGN, IB streptavidin,
- 4. IP anti-CD66acd, IB streptavidin,
- 5. IP anti-CD11b, IB streptavidin,
- 6. IP DC-SIGN-Fc, IB anti-CD66acd,
- 7. IP DC-SIGN-Fc, IB anti-CD11b,
- 8 IP anti-DC-SIGN, IB DC-SIGN-Fc,
- 9. IP anti-CD66acd, IB DC-SIGN-Fc,
- 10. IP anti-CD11b, IB DC-SIGN-Fc.
- IB, immunoblotting (detection/binding)
- IP, immunoprecipitation (capture)

Fig. 60

DC-SIGN binds Lewis on CD11b

Biotinylated PMN, IP anti-CD11b, IB streptavidin:

- 1. control
- 2. PNGaseF

Biotinylated SW948, IP anti-CD11b, IB DC-SIGN-Fc

- 3. control
- 4. PNGaseF

Biotinylated PMN, IP anti-CD11b, IB streptavidin:

- 5. control
- 6. α -1,3/4-Fucosidase

Biotinylated PMN, IP anti-CD11b, IB DC-SIGN-Fc

- 7. control
- 8. α -1,3/4-Fucosidase
- IB, immunoblotting (detection/binding)
- IP, immunoprecipitation (capture)

Fig. 61
DC-SIGN binds tumor cells expressing CD66e
DC-SIGN binds the tumor antigen CD66e=CEA

<u>1 2 3 4</u>

- b. Biotinylated SW948:
- 1. IP ICAM-3-Fc, IB streptavidin,
- 2. IP DC-SIGN-Fc, IB streptavidin
- 3. IP anti-CD66ae, IB streptavidin
- 4. IP anti-CD11b, IB streptavidin
- 5. IP anti-CD66ae, IB DC-SIGN-Fc
- 6. IP anti-CD11b, IB DC-SIGN-Fc
- IB, immunoblotting (detection/binding)
- IP, immunoprecipitation (capture)

Biotinylated SW948, IP anti-Biotinylated SW948, IP anti-CD66a&e, IB streptavidin: CD66a&e, IB DC-SIGN-Fc $\mathbf{\omega}$ 2. α-1,3/4-Fucosidase 4. α-1,3/4-Fucosidase SW948 lysate СD66 DC-SIGN recognizes Le^x-Le^y on CD66e on tumor cells □ no lysate 1. control 3. control CD50 (lgG2b Isotype) СБ66а&е CD11a (lgG1 isotype) 1.2 ö Adhesion DC-SIGN-Fc (OD 450 nm) Fig. 62 Lewis(b) GCD11a (lgG1 isotype) DC-SIGN-Fc ■CD66a&e Lewis(a) Lewis(y) ICAM-3-Fc □ CD66a&e Lewis(x) 0.35 0.25 0.2 Expression Lewis on SW948 (OD 450 nm) Adhesion CD66a&e(OD 450 nm) 4 C

SUBSTITUTE SHEET (RUI F 26)

Neisseria meningitis-GlcNAc specificity

Binding of Neisseria Meningitidis to 293T transfectants (100703)

Fig. 64

Binding of Neisseria Meningitidis to DCs (100703)

Fig. 65

Fig. 66

DC-SIGNFc binds GlcNAc expressing CHOP8 cells

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.