A.3 Fonction carré

Définition A.2 La fonction carré est la fonction définie sur \mathbb{R} par $f(x) = x^2$

Un carré est toujours positif ou nul : pour tout $x \in \mathbb{R}$ on a $x^2 \ge 0$.

Proposition A.3 — sens de variation. La fonction carré est strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;-\infty[$:

- Si $a < b \le 0$ alors $a^2 > b^2 \ge 0$
- Si $0 \le a < b$ alors $0 \le a^2 < b^2$

 $x \qquad -\infty \qquad 0 \qquad +\infty$ $f(x) = x^2 \qquad +\infty$ Signe de f(x) $\qquad + \qquad 0 \qquad +$

Figure A.2 – Tableau de variation de la fonction carré

Démonstration. Exigible en fin de seconde

A.3 Fonction carré 9

Figure A.4 – Les solutions de l'équation $x^2 = k$ inconnue x, selon les valeurs de k.

Figure A.5 – Les solutions de l'inéquation $f(x) \leq k$ inconnue x.

Exemple A.3 En isolant x^2 , résoudre dans \mathbb{R} les équations et inéquations suivantes d'inconnue x:

- a) $5x^2 = 15$
- | b) $x^2 5 < 11$ | c) $12 > 2x^2 2 > 7$ | d) $1 5x^2 \ge 2$

Exercices: Fonction carré

Exercice 1 — calculer les images et antécédents par une fonction carré.

f est la fonction carré définie dans \mathbb{R} par $f(x) = x^2$

- a) Sans calculatrice. Calculer (et simplifier) les images de $-\sqrt{6}$, 10^{-2} , $\frac{7}{12}$ et $1-\sqrt{2}$.
- b) Quels sont les antécédents éventuels de 10? de 0? de -4?

Exercice 2 — Révisions. Résoudre dans \mathbb{R} les inéquations suivantes en isolant x^2 .

a)
$$x^2 = 9$$

b)
$$3x^2 = 5$$

| b)
$$3x^2 = 5$$
 | c) $2x^2 - 5 = 3$ | d) $1 - 4x^2 = 5$ | e) $3x^2 - 5 = 13$

d)
$$1 - 4x^2 = 4$$

e)
$$3x^2 - 5 = 13$$

Exercice 3 — Résoudre des inéquations de la forme f(x) < k. En s'aidant éventuellement de la courbe de la fonction carré, donner les solutions des inéquations suivantes d'inconnues x:

a)
$$x^2 \ge 9$$

d)
$$x^2 < -5$$

g)
$$12 < x^2 < 18$$

b)
$$x^2 > 3$$

e)
$$x^2 > -5$$

g)
$$12 < x^2 < 18$$

h) $0 \le x^2 < 27$
i) $-5 < x^2 \le 2$

c)
$$-2 < x^2$$

d)
$$x^{2} < -5$$

e) $x^{2} > -5$
f) $5 \le x^{2} \le 7$

i)
$$-5 < x^2 \le 2$$

Exercice 4 — Utiliser le sens de variation de la fonction carré. Comparer et encadrer si possible a^2 et b^2 dans les cas suivants :

a) Si
$$0 \ge a > b$$
 alors $\dots a^2 \dots b^2 \dots$

b) Si
$$a < b < -2$$
 alors $a^2 ... b^2$

■ Exemple A.4 — Utiliser le sens de variation de la fonction carré.

Soit a un nombre réel. En s'aidant éventuellement de la courbe de la fonction carré ou de son tableau de variation, encadrer au mieux a^2 dans chaque cas suivant :

$$2\sqrt{3} < a \leqslant 4$$

$$-5 < a < 3$$

Exercice 5 Mêmes consignes

a)
$$a > 3\sqrt{2}$$

c)
$$-5 \le a < -2$$

g)
$$-5 < a < 0$$

b)
$$-2 < a \le 0$$

d)
$$0 < a < 2\sqrt{7}$$

f)
$$a < -5$$

h)
$$-5 < a$$

 $solution \ de \ l'exercice \ \mathcal{J}. \ \mathscr{S}_1 =]-\infty, -3] \cup [3, \infty[; \mathscr{S}_2 = \left]-\infty, -\sqrt{3}\right[\cup \left]\sqrt{3}, \infty\left[; \mathscr{S}_3 = \mathbb{R}; \mathscr{S}_4 = \emptyset; \mathscr{S}_5 = \mathbb{R}; \mathscr{S} = \left[-\sqrt{7}, -\sqrt{5}\right] \cup \left[\sqrt{5}, \sqrt{7}\right] \mathscr{S} = \left]-3\sqrt{2}, -2\sqrt{3}\right[\cup \left]2\sqrt{3}, 3\sqrt{2}\right[\mathscr{S} = \left]-3\sqrt{3}, 3\sqrt{3}\right[\mathscr{S} = \left[-\sqrt{2}, \sqrt{2}\right] \right]$