

LICENSE PLATE BLOCKER

CASEY DUNCAN

DESCRIPTION & GOAL

Project Description

1. Colorado License Plate Detector (Target Finding)

2. License Plate Censoring with Mask (Templating)

3. Car-to-Camera Pose Estimator (Pose Estimation & Camera Calibration)

Implementation

- Python 3.7.4
- OpenCV 4.1.1

HISTORY & PREVIOUS WORK

History

- First Attempted in 1976
- Became widely used in 1990s

Research

- 1. 1990s 2016
 - Edge detection using various techniques
 - Sobel edge detector vertical edges or rectangles
 - Filter edges based on width-to-height ratio
 - Filter based on number of objects within potential license plates
 - Search for Color Features
 - Sets of Hue, Saturation, Intensity
 - Color patterns common in specific plates
 - ~96% success rate
- 2. 2017 Present
 - Training deep CNNs using over 20k images
 - 100% success rate

APPROACH

Colorado License Plate Detector (Target Finding)

- 1. Convert to Black & White
- 2. Thresholding
 - Blur Background
 - Detect Edges
- 3. Find Edge Contours and min & max (x,y) for each contour
- 4. Filter contours to find License Plate Character (LPC) contours
 - LCP Width-to-Length ratio
 - Minimum Y-Position of LPCs
 - Similar area of bounding boxes around LPCs
 - 6 LPCs in a row
- 5. Box LPCs
 - Save min (x,y) for left LPC
 - Save max (x,y) for right LPC

APPROACH CONT.

Issues with Approach

- 1. License Plate contours blend with Car contours
 - Cannot separate License Plate from Car features
- 2. Min & Max (x,y) of License Plate Character are not the correct points
 - Finding P1A & P4A
 - Want P1 P4
 - Characters edges (ex: "A" or "V") are not always parallel to License Plate edges

Causes problems with License Plate Censoring & Car-to-Camera Pose Estimator

APPROACH CONT.

License Plate Censoring with Mask (Templating)

1. Select photo for Mask

- 2. Select corners of Mask to map to corners of License Plate Characters (LPCs)
- 3. Warp Mask to LPC corners
- 4. Place warped mask onto LPCs

NOTE: LPC corners are not true corners so mapping is not perfect.

APPROACH CONT.

Car-to-Camera Pose Estimator (Pose Estimation & Camera Calibration)

- 1. Measure Avg LPC dimensions & define world axis
 - Avg Colorado LPC dimensions = 10.25" x 2.5"
- 2. Find Homogeneous Transformation Matrix between LPC corners in World coordinates & Camera coordinates
 - OpenCV → solvePnP()
 - Camera Intrinsic Parameters needed
 - Found using MATLAB Camera Calibration
- 3. Project (x,y,z) axis points to Camera Coordinates
- 4. Plot axis to image

NOTE: LPC corners are not true corners so axis are not accurate.

EXPERIMENTS & RESULTS

- Tested on:
 - Different views of cars
 - Difference State/Country License Plates
- License Plate Detector not very robust
 - Works on 70% of tests (10 photos)
 - Research has ~96% success
 - Must be parked directly in front or behind (6 ft max)
 License Plate to detect

<u>Success</u>

<u>Fail</u>

EXPERIMENTS & RESULTS CONT.

- License Plate Detector not very robust (see demo)
 - ~82% of frames found LPCs
 - Research has ~96% success
 - Must be parked directly in front or behind (6 ft max)
 License Plate to detect

DEMO VIDEO HERE

IMPROVEMENTS & FUTURE WORK

Limitations

- Real time detection is extremely slow
- Cannot find correct License Plate Corners

Current Method Improvements

- Use camera zoom to detect from further than 6 ft away
- Implement other techniques to find License Plate Corners:
 - Find vertical edges or parallel edges with OpenCV Sobel()
 - Search for Color Features

Future Work

Use ML to read License Plate Characters

QUESTIONS?