Technische Universität Berlin

Fakultät II – Institut für Mathematik Ferus/Grigorieff/Penn-Karras/Renesse WS 06/07 02. April 2007

April – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studi	engang	:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hi	fsmittel
Die Lösungen sind in Reinschrift au geschriebene Klausuren können nicht				geben.	Mit	Bleistift
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechen	aufgab	en. G	leben S	Sie imr	ner den
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1:				*	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 4 Punkte

Berechnen Sie die Hessematrix der Funktion

$$f: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}, \ f(x,y) = \frac{\ln(x)}{y}.$$

2. Aufgabe 9 Punkte

Finden Sie alle lokalen Maximal- und Minimalstellen der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = x^3 + 8y^3 - 6xy + 1.$$

Untersuchen Sie, ob die von Ihnen gefundenen lokalen Extrema auch globale Extrema sind.

3. Aufgabe 10 Punkte

Gegeben seien die auf \mathbb{R}^3 definierten Vektorfelder

$$\vec{v}(x,y,z) = \begin{pmatrix} 2xy + e^x \\ x^2 + yz^2 \\ zy^2 \end{pmatrix}$$

und

$$\vec{u}(x,y,z) = \left(\begin{array}{c} x+z\\0\\z \end{array}\right)$$

sowie die Kurve $\vec{\gamma}$, die die Punkte $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ entlang einer Geraden verbindet.

- a) Entscheiden Sie ob \vec{v} , \vec{u} Potentialfelder sind und finden sie gegebenenfalls eine Stammfunktion.
- b) Parametrisieren Sie die Kurve $\vec{\gamma}$.
- c) Berechnen Sie $\int_{\vec{\gamma}} \vec{u} \cdot \vec{ds}$ sowie $\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds}$.

4. Aufgabe 7 Punkte

Berechnen Sie das Volumen des folgenden Körpers K:

$$K = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 0 \le x \le 1, 2x \le y \le 2x + 1, 0 \le z \le x \right\}$$

5. Aufgabe 10 Punkte

Es sei $E=\left\{\begin{pmatrix}x\\y\\z\end{pmatrix}:x^2+y^2+z^2=1,z\geq0\right\}$. Skizzieren Sie E und die Schnittmengen von E mit der xy-Ebene. Berechnen Sie mit dem Satz von Stokes

$$\iint_E \operatorname{rot} \, \vec{v} \cdot d\vec{O},$$

wobei

$$\vec{v}(x, y, z) = \begin{pmatrix} -x - y \\ x \\ xy \sin(z) \end{pmatrix}.$$

Sie dürfen $\int_0^{2\pi} \sin(t) \cos(t) dt = 0$ benutzen.