

David Maykon Krepsky Silva João Luis Grizinsky de Brito

Modulações ASK, FSK e PSK multiníveis

Data de realização do experimento:

24 de novembro de 2015

Série/Turma:

1000/1011

Prof. Jaime Laelson Jacob

Resumo

Nos sistemas de telecomunicações reais, sempre há a presença de ruído na recepção de um sinal. Um dos modelos utilizado para simular a presença de ruído em uma transmissão é o AWGN (aditive white Gaussian noise), o qual representa o ruído térmico. Esse ruído perturba o sinal de forma a prejudicar a recuperação da informação, sendo que quanto mair a potência do ruído, maior a dificuldade em recuperar a informação original. Neste trabalho é analisado a eficiência na transmissão de dados utilizando as técnicas te modulação ASK, FSK e PSK M-ários, em um canal com ruído do tipo AWGN, de modo a avaliar a eficiência de cada uma delas. Foram realizados estudos para transmissões com e sem o uso da codificação Gray, que é uma técnica utilizada para melhorar a BER nos sistemas de telecomunicações. O critério de avaliação adotado para determinar a o desempenho do sistema foi a taxa de erro de bit (BER - Bit Error Rate). Foi possível observar que conforme a quantidade de ruído aumenta, a taxa de erro de bit também aumenta e que a BER se aproxima bastante do valor calculado teoricamente.

Sumário

R	esumo	1				
1	Introdução Revisão da Teoria					
2						
	2.1 Modulação ASK	4				
	2.2 Modulação FSK	4				
	2.2.1 Circuito modulador FSK	6				
	2.2.2 Circuito demodulador					
	2.2.3 FSK M-ário					
	2.3 Modulação PSK					
3	Metodologia Experimental	8				
	3.1 Materiais	8				
	3.2 Simulação M-ASK					
	3.3 Modulação M-FSK					
	3.4 Modulação M-PSK					
	3.5 Comparação entre as técnicas de modulação					
4	Resultados	14				
5	Discussão e Conclusão	15				

1 Introdução

Atualmente, os principais sistemas de comunicação utilizam modulação digital. A internet, os celulares e até mesmo a TV necessitam de modems digitais para seu funcionamento. Isso se deve ao grande número de vantagens das técnicas de transmissão digital em relação as analógicas. Embora bastante robustas contra ruídos, as modulações digitais também perdem informação quando a quantidade de ruído é alta. Para um mesmo canal AWGN, os diferentes tipos de modulação digital possuem uma taxa de erro de bits diferente. Sendo assim, faz-se necessário uma análise do desempenho para cada uma das técnicas, de modo a possibilitar a escolha da que melhor atenda as necessidades de comunicação no canal utilizado.

2 Revisão da Teoria

2.1 Modulação ASK

A modulação ASK ("Amplitude Shift Keying") é uma maneira bem simples de modulação digital. Essa técnica consiste em transmitir dados através da variação da amplitude da tensão de um sinal, ou seja, a informação a ser transmitida é inserida na amplitude de uma sequência de pulsos elétricos, como mostra a figura 1.

Figura 1: Modulação 4-ASK de um sinal de dados.

2.1.1 Modulador ASK

O modulador ASK é de fácil implementação, pois consiste em um multiplicador, o qual multiplica a portadora, de frequência f_c , pelo sinal digital, como pode ser visto na figura ??.

Figura 2: Modulador ASK.

Para o M-ASK, é necessário codificar os dados de entrada antes de aplicar a modulação, fazendo com que cada conjunto de bits se torne um nível de tensão distinto.

2.2 Modulação FSK

A modulação FSK ("Frequency Shift Keying") é uma técnica de modulação que consiste em variar a frequência da portadora em função do sinal modulante, no caso o sinal digital a ser transmitido. Pode-se considerar que este tipo de modulação é equivalente a modulação FM analógica.

A amplitude da onda portadora modulada é mantida constante durante todo o processo de modulação, quando o sinal digital apresenta nível lógico "1" a frequência da portadora é alterada para posteriormente ser detectada no processo de demodulação. A frequência resultante transmitida será a frequência da onda portadora f_c diminuida de uma frequência de desvio f_d . Ou seja

$$f_r = f_c - f_d \tag{1}$$

Para a ocorrência de um nível lógico "0", a frequência resultante será a frequência da portadora mais a frequência de desvio.

$$f_r = f_c + f_d \tag{2}$$

Figura 3: Modulação FSK

A Figura 2 mostra um sinal modulante, uma portadora $f_c = 5kHz$ com $f_d = 3kHz$. É possível observar um sinal em 8kHz quando o sinal modulante é "1" e em 2kHz quando o sinal modulante é "0", ou seja, o esquema FSK se utiliza da frequência como um meio de transportar a informação, sendo que, para cada frequência f_i , é mapeado um simbolo s_i .

A largura de banda utilizada na transmissão de sinais modulados em FSK é:

$$BW = 2 \cdot \Delta f + 2B.$$

Onde BW é a largura de banda ocupada, Δf é a variação de frequência para representar os bits e B é a banda ocupada desde $f_c + \Delta f$ até o primeiro nódulo da onda sinc, a qual representa o espectro de um nível do sinal. Esse fato fica evidente ao analisarmos a figura 3, a qual mostra o espectro de um sinal FSK.

Figura 4: Espectro de uma sinal modulado com FSK.

2.2.1 Circuito modulador FSK

A figura 4 representa o diagrama de blocos de um modulador FSK, onde um sinal de mensagem entra em $Digital\ Signal\ e$, através do VCO ($Voltage\ Controled\ Oscillator$), modifica a frequência da onda de saída. A frequência da portadora, f_c , é dada por um circuito que pode ser feito com um resistor e um capacitor, os quais determinam o período de oscilação da frequência central.

Figura 5: Modulador FSK com VCO.

2.2.2 Circuito demodulador

O detector utilizado é um detector coerente, ou seja, possui as informações de fase e frequência da portadora. O método escolhido para a demodulação é através de um PLL, o qual rastreia a frequência do sinal recebido de forma a ser aplicada no detector coerente.

Figura 6: Detector coerente com PLL.

O funcionamento do circuito da figura ?? é melhor entendido se analisarmos o diagrama de blocos da figura 5. Nesta imagem é possível ver que o trabalho do CI 565 consiste em extrair as informações de fase e frequência do sinal transmito, de modo a produzir, com um VCO, um sinal semelhante, o qual é utilizado como referência para aplicação no detector coerente.

Desta forma é possível obter na saída a representação binaria do dado transmitido.

2.2.3 FSK M-ário

Para o FSK M-ário, a diferença é que outros símbolos são representados por mais frequências.

2.3 Modulação PSK

3 Metodologia Experimental

3.1 Materiais

Para a realização do experimento foi utilizado o software Simulink do pacote Matlab.

O experimento foi realizado em três partes. De início, foi estudado o comportamento da modulação ASK multinível. Em seguida, foi analisada a modulação FSK multinível e por ultimo, a modulação PSK multinível.

3.2 Simulação M-ASK

Na primeira atividade, foi montado o circuito da figura 6 com ajuda do roteiro que continha todos os parâmetros necessários para configurar os blocos.

Figura 7: Diagrama do sistema 4-ASK.

Um sistema de comunicação digital ASK retangular 4-ário com canal AWGN e um receptor coerente ótimo implementado com um integrador e um limiar é mostrado na figura 6. Os pulsos 4-ASK retangular tem, a priori, igual probabilidade de ocorrência. O sistema de comunicação 4-ASK retangular com código Gray de 2 bits é similar ao sistema retangular não codificado. O código Gray atribuí entrada de i-bits 00, 01, 10 e 11 como os quatro níveis de saída 0, 1, 3 e 2, respectivamente. Os parâmetros de simulação devem ser ajustados de acordo com o roteiro.

O próximo passo é montar um codificador para código *Gray*, conforme a figura 7. Para recuperar a informação, é necessário montar um conversor símbolos *Gray* para pulsos binários, conforme a figura 8.

Figura 8: Conversor de binário para código Gray.

Figura 9: Conversor de símbolos em codificação *Gray* para binário.

Em seguida, obter os gráficos nos pontos onde há osciloscópio para o 4-ASK e também verificar o atraso no sinal recebido em relação ao transmitido. Plotar o gráfico BER x Eb/No (semilogy).

Em seguida, montar uma tabela de acordo com a tabela 1, com os dados obtidos nas simulações. O valor de P_b é dado pela equação 3.

$$P_{b,4bits,cod.Gray} = \frac{3}{4} \mathcal{Q} \left(\sqrt{\frac{0,286E_b}{N_0}} \right)$$
 (3)

Como ultimo passo, obter o gráfico da densidade espectral de potência (PSD) da modulação 4-ASK com os blocos mostrados na figura 9.

Figura 10: Blocos para obtenção do gráfico da PSD da modulação 4-ASK utilizada.

Tabela 1: Tabela BER x Eb/No para modulação 4-ASK

$\frac{Eb}{No}$ [dB]	BER	P_b
14	$2,3 \times 10^{-3}$	
12		$1,27 \times 10^{-2}$
10		
8		
6		
4		
2		
0		

3.3 Modulação M-FSK

Como próxima atividade, simular o circuito 4-FSK com codificação binária.

Figura 11: Sistema 4-FSK com codificação binária.

Os blocos com o codificador e decodificador binário estão nas figuras 11 e 12, respectivamente.

Figura 12: Blocos para codificação em binário.

Figura 13: Blocos para decodificação de binário.

Por conseguinte, gerar os gráficos nos pontos onde possui o osciloscópio. Verificar o atraso no sinal recebido em relação ao transmitido e plotar o gráfico BER x Eb/No (semilogy). A tabela 2 deverá ser preenchida com os dados encontrados. A equação 5 deve ser utilizada para encontrar os valores de P_b .

$$P_{b,4bits,cod.binria} = \frac{M}{2} \mathcal{Q} \left(\sqrt{\log_2 M \left[\frac{E_b}{N_0} \right]} \right) \qquad para M > 4.$$
 (4)

Tabela 2: Tabela BER x Eb/No para 4-FSK com codificação binária.

$\frac{Eb}{No}$ [dB]	BER	P_b
8	1×10^{-4}	
6		$4,8 \times 10^{-3}$
4		
2		
0		

Obter também o gráfico da densidade espectral de potência com os blocos da figura 13.

Figura 14: Blocos para obter a PSD para modulação FSK.

3.4 Modulação M-PSK

Como próxima atividade, simular o circuito 4-PSK com codificação Gray.

Figura 15: Sistema 4-PSK com codificação *Gray*.

Os blocos com o codificador e decodificador binário estão nas figuras 7 e 8, respectivamente. Gerar os gráficos nos pontos onde possui o osciloscópio. Verificar o atraso no sinal recebido em relação ao transmitido e plotar o gráfico BER x Eb/No (semilogy). A tabela 3 deverá ser preenchida com os dados encontrados. A equação ?? deve ser utilizada para encontrar os valores de P_b .

$$P_{b,4bits,cod.Gray} = \frac{M}{M-1} \mathcal{Q} \left(\sqrt{2 \log_2 M \left[\frac{E_b}{N_0} \right] sen^2 \frac{\pi}{M}} \right) \qquad para M > 4.$$
 (5)

Tabela 3: Tabela BER x Eb/No para 4-PSK com codificação Gray.

$\frac{Eb}{No}$ [dB]	BER	P_b
8	2×10^{-4}	
6		$2,4 \times 10^{-3}$
4		
2		
0		

Obter também o gráfico da densidade espectral de potência com os blocos da figura 15.

Figura 16: Blocos para obter a PSD para modulação PSK.

3.5 Comparação entre as técnicas de modulação

Como ultimo passo, montar um gráfico contendo a BER para os três tipo de modulação estudados e comparar o desempenho das mesmas.

4 Resultados

5 Discussão e Conclusão

Referências

[1] C. H. G. Treviso, "Roteiro da atividade prática,"