模拟赛

${\rm demerzel}$

2019年3月27日

题目名称	下棋	大树	数轴
题目类型	非传统题	传统题	传统题
可执行文件名	chess	tree	number
输入文件名	N/A	tree.in	number.in
输出文件名	N/A	tree.out	number.out
测试点数量	N/A	20	25
测试点时限	N/A	2.0s	4.0s
内存限制	N/A	256MB	256MB
编译选项	-O2 -std=c++11		

这是 NOIP 模拟赛 demerzel

1 下棋

(white.cpp/black.cpp)

1.1 Description

这是一道非传统题。

五子棋是一个老少咸宜的棋类游戏。规则如下:在一个 $n \times m(n, m \le 8)$ 的网格上,黑白双方轮流落子,黑棋先手。当某一方的五个棋子在横、竖、斜中某个方向上成一条相邻的线,则获胜,若棋盘下满了还没有哪一方获胜,则平局。

请实现一个会下棋的程序,接口及说明如下

```
namespace Black {
      void Init(int n,int m);
      int Turn(int pos);
}
namespace White {
      void Init(int n,int m);
      int Turn(int pos);
}
```

其中 Init 函数会在最开始调用一次,用来告知你棋盘的大小是 n 行 m 列,游戏通过调用 Turn 函数来进行,该函数中的参数表示上一轮对方的落子点是在 ($\lfloor \frac{pos}{m} \rfloor + 1, pos\%m + 1$),若 pos = -1 则表示由你先手,而你的返回值则是表示接下来你的落子点,表示方法同上,注意你不能在已经有棋子的地方落子。

请实现上面的函数。具体来说,你需要提交两个文件 black.cpp 和 white.cpp ,其中分别实现两个 namespace 中的函数。详情参见下发的 black_sample.cpp 和 white_sample.cpp 注意: 最好不要在 namespace 外实现代码,否则可能产生未知错误。

1.1.1 测试方法

通过在命令行中输入 g++ chess.cpp black.cpp white.cpp -o chess -O2 -std=c++11 来 编译,之后通过输入 ./chess 来进行测试。

1.1.2 评分方法

首先将让你的两个 ai 进行一场比赛, 若总用时超过 10s 或着程序没有正常退出则计零分(内存不做特殊限制)

之后出题人将通过某种未知的方法为所有参赛选手的程序排好名次,之后名次为 x 的选手将获得 $100*(0.96114447)^{x-1}$ 分。

这是 NOIP 模拟赛 demerzel

2 大树

(tree.cpp)

2.1 Description

有一棵 n 个点的带边权的以 1 号点为根的有根树,小 Z 一开始站在根,有一个宝箱位于一号点之外的某一个点。

现在小 Z 可以在树上随便走,走过一条权值为 x 的边需要花费 x 秒,请告诉小 Z,在按照最优策略走的情况下,期望多少秒来到有宝箱的节点。输出这个值,误差 1e-6 以内被认为是对的。

2.2 Input format

第一行一个数 n。

接下来 n-1 行每行三个数 u,v,w,表示 u 到 v 之间一条权值为 w 的边。

2.3 Output format

一行一个实数表示答案。

2.4 Sample input

 $4\ 1\ 2\ 1\ 1\ 3\ 1\ 3\ 4\ 2$

2.5 Sample output

3.000

2.6 Explanation

最优的路线是 $1 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 4$, 期望花费为 3 秒。

2.7 Constraints

对于测试点 $1 \sim 5$: $n \leq 8$.

对于测试点 6~7: 所有点的父亲都是 1号点。

对于测试点 8~11: 每个点最多两个儿子。

对于测试点 $12 \sim 20$: $n \leq 100000$ 。

对于所有测试点,边权≤1000。

这是 NOIP 模拟赛 demerzel

3 数轴

(number.cpp)

3.1 Description

数轴上有 n 个区间,第 i 个区间是 $[L_i, R_i]$,你可以进行不超过 k 次操作,每次操作可以选定一个区间,将其左移或右移一个单位长度。

操作完之后,求出所有区间的交,最终收益为交中的"好数"的个数。求最大收益。

若一个正数的十进制表示中只有 "4" 和 "7" 出现,那么这就是一个好数。比如 474,4477 是好数,475,233 则不是。

3.2 Input format

第一行两个数 n,k。

接下来 n 行每行两个数 L_i, R_i 。

3.3 Output format

一行一个数表示答案。

3.4 Sample input

- 47
- 1 4
- 69
- 4 7
- 3 5

3.5 Sample output

1

3.6 Constraints

对于测试点 $1 \sim 4$: $n, k \leq 8$

对于测试点 $5 \sim 12$: $n \leq 10^3$, $R_i \leq 10^9$ 。

对于测试点 $13 \sim 16$: $n \leq 10^5$, 存在一个区间满足 $L_i = R_i$ 。

对于测试点 $17 \sim 25$: $n \leq 10^5$, $k \leq 10^{18}$, $R_i \leq 10^{18}$ 。

对于所有测试点, $L_i \leq R_i$ 。