Sequences and Series

Binomial Series:

- 1. Write out the binomial expansion of $(a + b)^n$.
- 2. Write out Pascal's triangle as far as the level which begins $1, 6, \ldots$
- 3. Expand $(x+1)^6$.
- 4. Expand $2^n = (1+1)^n$ by the binomial theorem. Hence write down the sum of the n^{th} row of Pascal's triangle.
- 5. (a) Expand $(1+x)^{-1/2}$ up to and including the term in x^3 .
 - (b) If we substitute x = 10, then $(1+x)^{-1/2} = \frac{1}{\sqrt{11}}$; do you expect the series expansion with x = 10 to give a good approximation to $\frac{1}{\sqrt{11}}$? Why/why not? Plug in x = 10 to your series expansion and compare with what your calculator gives you for $\frac{1}{\sqrt{11}}$.
 - (c) Show that

$$\frac{3}{10} \left(1 - \frac{1}{100} \right)^{-1/2} = \frac{1}{\sqrt{11}}.$$

- (d) Substitute $x = -\frac{1}{100}$ into your series expansion for $(1+x)^{-1/2}$ and multiply by $\frac{3}{10}$ to estimate $\frac{1}{\sqrt{11}}$. Compare with the answer given by your calculator.
- 6. Expand $(2+x)^{3/5}$ up to and including the term in x^3 . For what values of x is this expansion valid?

Arithmetic Series:

- 1. Write down the expression for the $n^{\rm th}$ term of an arithmetic sequence with first term -7 and common difference 3. Find the $8^{\rm th}$ term.
- 2. Let (a_k) be an arithmetic progression. Write down the formula for

$$\sum_{k=1}^{n} a_k$$

and prove it.

- 3. Find the sum of the first 1000 integers.
- 4. An arithmetic progression has first term 12 and common difference 18.4. What is the first term greater than 100? After how many terms does the sum first exceed 500?

Geometric Series:

- 1. Write down the expression for the n^{th} term of a geometric sequence with first term 3 and common ratio 5. Find the 3^{rd} term.
- 2. Let (a_k) be a geometric progression. Write down the formula for

$$\sum_{k=1}^{n} a_k$$

and prove it.

- 3. Find the sum of the first 10 terms of the geometric progression with first term 273 and common ratio $-\frac{1}{3}$. Find the sum to infinity of the same series.
- 4. A savings account is set up with £5000. It pays 4% interest *per annum* (believe it or not, there was a time this might have been a realistic question!). No money is withdrawn. After how many years will the interest payment first exceed £100? After how many years will the account balance first exceed £10000?
- 5. There is a classic (and bad) maths joke that begins as follows: an infinite number of mathematicians walk into a bar; the first orders a pint, the second orders half a pint, the third orders a quarter of a pint, and so on. Find the punchline by determining how many pints the bartender should pour, assuming the mathematicians don't mind sharing glasses.