Design process of room temperature monitor

Your Name

BU ID: Your BU ID

1 Summary

2 Introduction

Comfortable indoor temperatures matter for both well-being and energy savings: every degree of over-heating or over-cooling wastes power. To explore a simple feedback approach, we built a compact monitor using a TMP36 sensor and an Arduino Uno, displaying readings on a $16\times2~I^2C$ LCD (ground, VCC, SDA, SCL). Green and red LEDs (1 k Ω and 220 Ω , respectively) plus a buzzer signal when thresholds are crossed. Powered by a 9 V battery and switched manually, the circuit uses 22 AWG hookup wire (with female-to-female jumper leads for SDA/SCL). We also designed a custom CAD enclosure, lid, battery holder, and base

plate to house all components. The following sections detail our design choices, assembly, and performance

insights.

3 Design elements

Explain your design decisions. Address each of the following:

1. asa List all components used in your design electronic components, hardware, etc.

2. **Precision measurements** Make a table of relevant dimensions (see example below).

1

Table 1: Relevant dimensions of all components

Item	Sketch identification	W [mm]	L [mm]	H [mm]	Diameter [mm]
ABS enclosure					
Arduino Board					
Switch					
LCD 2X16					
Buzzer					
Temperature sensor					
LED					

3. CAD drawings

Include a screenshot of your final assembly.

Figure 1: CAD assembly of the prototype.

4. Prototype photographs

Top view of actual prototype, with and without lid, powered on.

(a) With lid (b) Without lid

Figure 2: Top views of the working prototype.

5. Purpose of using an Arduino board

Explain role of the Arduino in the circuit.

6. Wiring diagram and methods

Show diagram and discuss soldering, jumper wires, twist nut caps, spade connectors, etc.

Figure 3: Circuit wiring diagram.

7. Wire gauge and resistor values

Specify wire gauge used and justify choice (jumper vs. 22 AWG). State resistor values in series with green/red LEDs, calculate operating currents using KVL.

8. Internal power supply

Discuss why a 9 V battery, its charge capacity, expected runtime, and external power options.

9. Arduino code

Provide the code listing used in your design.

Listing 1: Arduino sketch for temperature monitoring

```
// Example placeholder code
void setup() {
    Serial.begin(9600);
    // initialization...
}
void loop() {
    float temp = readTemperature();
    Serial.println(temp);
    // control LEDs...
    delay(1000);
}
```

10. Prototype specifications

List:

- Voltage of power supply
- Operating voltage of circuit
- Total current drawn (measured with DMM)
- Battery operating time
- Sensor temperature range (from datasheet)
- Comfortable temperature range
- Use KVL to explain resistor choices (1 k Ω for green LED, 220 Ω for red LED)

4 Evaluation of Results

- Degree to which design objectives were met
- Summary of outcomes and comparison to standard thermometers
- Limitations and recommendations for future work (battery life, size, weight, etc.)
- Highlight usefulness of the design

A Supporting Materials