Comprehensive Pandas Cheat Sheet

This cheat sheet covers the essential and advanced features of Pandas, a powerful library for data manipulation and analysis in Python.

1. Introduction

1.1 What is Pandas?

Pandas is a powerful, open-source library used for data manipulation and analysis in Python. It provides data structures like Series and DataFrame which make data manipulation easy and intuitive.

1.2 Installing Pandas

You can install Pandas using pip:

pip install pandas

Or, if you are using Anaconda:

conda install pandas

1.3 Importing Pandas

To use Pandas, you need to import it in your script:

In [1]: import pandas as pd
Now you can use Pandas functions with the pd prefix

2. Data Structures

2.1 Series ¶

A Series is a one-dimensional labeled array capable of holding any data type.

2.1.1 Creating Series

```
In [2]: # Creating a Series
        import pandas as pd
        import numpy as np
        data = np.array([1, 2, 3, 4, 5])
        series = pd.Series(data)
        print(series)
        0
        1
             2
        2
             3
        3
             4
              5
        4
        dtype: int64
```

2.1.2 Accessing Series Elements

```
In [3]: |# Accessing elements in a Series
        print(series[0]) # Output: 1
        print(series[:3]) # Output:
        # 0
               1
        # 1
               2
        # 2
               3
        # dtype: int64
        1
        0
             1
             2
        1
        2
        dtype: int64
```

2.1.3 Series Methods

```
In [4]: # Series methods
print(series.max()) # Output: 5
print(series.min()) # Output: 1
print(series.mean()) # Output: 3.0
5
1
3.0
```

2.2 DataFrame

A DataFrame is a two-dimensional labeled data structure with columns of potentially different types.

2.2.1 Creating DataFrame

```
Name Age City
0 John 28 New York
1 Anna 24 Paris
2 Peter 35 Berlin
3 Linda 32 London
```

2.2.2 Accessing DataFrame Elements

```
In [6]: # Accessing DataFrame elements
print(df['Name']) # Accessing a single column
print(df[['Name', 'City']]) # Accessing multiple columns
print(df.loc[1]) # Accessing a row by index
print(df.iloc[2]) # Accessing a row by position
```

```
0
     John
1
     Anna
2
    Peter
3
    Linda
Name: Name, dtype: object
   Name
             City
   John New York
0
   Anna
1
           Paris
2 Peter
           Berlin
3 Linda
           London
Name Anna
          24
Age
      Paris
City
Name: 1, dtype: object
Name
       Peter
Aae
           35
City Berlin
Name: 2, dtype: object
```

2.2.3 DataFrame Methods

```
In [7]: # DataFrame methods
        print(df.describe()) # Summary statistics
        print(df.info()) # DataFrame information
        print(df.head(2)) # First two rows
```

```
Age
        4.000000
count
       29.750000
mean
std
       4.787136
min
       24.000000
25%
       27.000000
50%
      30.000000
75%
      32.750000
       35.000000
max
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 3 columns):
     Column Non-Null Count
                             Dtype
 0
             4 non-null
                             object
    Name
 1
     Aae
             4 non-null
                             int64
 2
     City
          4 non-null
                             object
dtypes: int64(1), object(2)
memory usage: 224.0+ bytes
None
  Name
                  City
         Age
  John
          28 New York
1 Anna
          24
                 Paris
```

3. Data Manipulation

3.1 Reading and Writing Data

Pandas provides functions to read data from various file formats and write data to these formats.

3.1.1 Reading Data from CSV

2

Peter 3 Linda

```
In [8]: # Reading data from CSV
        df_csv = pd.read_csv('file.csv')
        print(df_csv.head())
                           City
            Name Age
                   28 New York
        0
            John
        1
                   24
                          Paris
            Anna
```

35

32

Berlin

London

3.1.2 Writing Data to CSV, Excel

```
In [9]: # Writing data to CSV
df.to_csv('output.csv', index=False)

# Writing data to Excel
df.to_excel('output.xlsx', index=False)
```

3.2 Handling Missing Data

Handling missing data is crucial for data cleaning and preparation.

3.2.1 Detecting Missing Data

```
In [10]: # Detecting missing data
         data = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [10, 20
         df = pd.DataFrame(data)
         print(df)
         print(df.isnull()) # Detect missing values
         print(df.isnull().sum()) # Count missing values
                       C
              Α
                   В
         0
            1.0
                 5.0
                      10
         1 2.0
                NaN
                      20
         2 NaN NaN 30
                Α
                       В
                              C
           False False False
         1
            False
                   True False
         2
             True
                   True False
         Α
              1
         В
              2
```

3.2.2 Filling Missing Data

dtype: int64

```
In [11]: # Filling missing data
print(df.fillna(0)) # Fill with a specified value
print(df.fillna(method='ffill')) # Forward fill
print(df.fillna(method='bfill')) # Backward fill
```

```
В
     Α
   1.0
        5.0
             10
0
1
   2.0
        0.0
             20
   0.0
        0.0
             30
             C
     Α
         В
        5.0
0
   1.0
             10
        5.0
1
  2.0
             20
2
   2.0
        5.0
             30
          В
             C
     Α
0
   1.0
        5.0
             10
        NaN
1
   2.0
             20
2 NaN NaN 30
```

3.2.3 Dropping Missing Data

```
In [12]: # Dropping missing data
print(df.dropna()) # Drop rows with any missing value
print(df.dropna(axis=1)) # Drop columns with any missing value
```

```
A B C
0 1.0 5.0 10
    C
0 10
1 20
2 30
```

3.3 Data Transformation

Transforming data is often necessary to prepare it for analysis.

3.3.1 Sorting

```
In [13]: # Sorting data
data = {'Name': ['John', 'Anna', 'Peter', 'Linda'], 'Age': [28, 24,
    df = pd.DataFrame(data)
    print(df.sort_values(by='Age')) # Sort by age
    print(df.sort_values(by='Name')) # Sort by name
```

Name Age Anna 1 24 0 John 28 3 Linda 32 2 Peter 35 Name Age 1 Anna 24 28 0 John 3 Linda 32 2 Peter 35

3.3.2 Ranking

```
In [14]: # Ranking data
df['Rank'] = df['Age'].rank()
print(df)
```

Name Age Rank John 28 2.0 0 1 Anna 24 1.0 35 4.0 2 Peter 3 Linda 32 3.0

3.3.3 Applying Functions

```
In [15]: # Applying functions
    df['AgePlusTen'] = df['Age'].apply(lambda x: x + 10)
    print(df)

# Using applymap to apply function to each element
    df[['Age', 'AgePlusTen']] = df[['Age', 'AgePlusTen']].applymap(lamb)
    print(df)
```

```
Name Age
               Rank AgePlusTen
0
    John
           28
                2.0
                              38
           24
                              34
1
   Anna
                1.0
2
  Peter
           35
                4.0
                              45
                              42
3 Linda
           32
                3.0
   Name Age Rank AgePlusTen
0
   John
           56
                2.0
                              76
1
   Anna
           48
                1.0
                              68
2
  Peter
           70
                4.0
                              90
3 Linda
           64
                3.0
                              84
```

4. Data Aggregation and Grouping

4.1 GroupBy Operations

GroupBy operations allow you to split data into groups based on some criteria, apply a function to each group, and then combine the results.

4.2 Pivot Tables

40

В

```
In [17]: # Pivot tables
         pivot_table = df.pivot_table(values='Points', index='Team', columns
         print(pivot table)
         Player
                 Anna John Linda
                                    Peter
         Team
                                      10.0
         Α
                  NaN
                       10.0
                               NaN
         В
                 15.0
                        NaN
                               25.0
                                      NaN
```

4.3 Cross Tabulation

```
In [18]: # Cross tabulation
         cross_tab = pd.crosstab(df['Team'], df['Player'], values=df['Points
         print(cross_tab)
         Player
                 Anna John Linda Peter
         Team
                  NaN
                       10.0
                               NaN
                                     10.0
         Α
         В
                 15.0
                        NaN
                              25.0
                                      NaN
```

5. Data Merging and Concatenation

5.1 Concatenation

Concatenation combines data from multiple DataFrames into one.

```
In [19]: # Concatenation
          df1 = pd.DataFrame({'A': ['A0',
                                            'A1',
                                                   'A2',
                                                          'A3'],
                                'B': ['B0',
                                             'B1',
                                                          'B3'],
                                                   'C2',
                                'C': ['C0',
                                            'C1',
                                                          'C3'],
                                            'D1',
                                'D': ['D0',
                                                   'D2',
                                                         'D3'1})
                                             'A5',
          df2 = pd.DataFrame({'A': ['A4'
                                                   'A6'
                                                          'A7'l.
                                'B': ['B4',
                                             'B5',
                                                   'B6',
                                                          'B7'],
                                                   'C6',
                               'C': ['C4',
                                             'C5',
                                                          'C7'],
                                'D': ['D4',
                                             'D5',
                                                   'D6',
                                                         'D7']})
          df3 = pd.DataFrame({'A': ['A8',
                                            'A9',
                                                   'A10',
                                                          'A11'],
                                                   'B10',
                                'B': ['B8',
                                            'B9',
                                                           'B11'|.
                                            'C9',
                                                   'C10',
                               'C': ['C8',
                                                          'C11'],
                                'D': ['D8', 'D9', 'D10', 'D11']})
          frames = [df1, df2, df3]
          result = pd.concat(frames)
          print(result)
```

```
Α
            В
                        D
                  C
0
    Α0
          B0
                 C0
                       DØ
1
    Α1
          B1
                C1
                       D1
2
    A2
          B2
                C2
                       D2
3
    A3
          B3
                C3
                       D3
0
    Α4
          B4
                C4
                       D4
1
    Α5
          B5
                 C5
                       D5
2
    A6
          B6
                C6
                       D6
3
    Α7
          B7
                 C7
                       D7
0
    8A
          B8
                 C8
                       D8
1
    Α9
          B9
                 C9
                       D9
2
   A10
         B10
               C10
                      D10
3
   A11
         B11
               C11
                     D11
```

5.2 Merging

Merging combines DataFrames based on keys or indexes.

```
C
                     D
  key
        Α
            В
               C0
                   DØ
  K0
       Α0
           B0
1
  K1
       Α1
           B1
               C1
                   D1
               C2
2
  K2
       Α2
           B2
                   D2
  K3
      А3
           В3
               C3 D3
```

5.3 Joining

Joining combines DataFrames on their indexes.

```
In [21]: # Joining
left = left.set_index('key')
right = right.set_index('key')
result = left.join(right)
print(result)
```

```
Α
           В
               C
                    D
key
          B0
              C0
                  DØ
K0
     Α0
Κ1
     Α1
          В1
              C1
                  D1
K2
     Α2
          B2
              C2
                   D2
K3
     А3
          В3
              C3
                  D3
```

6. Time Series Analysis

6.1 Date and Time Functions

Pandas provides rich functionality for working with dates and times.

```
In [22]: # Date and time functions
         rng = pd.date_range('2024-01-01', periods=10, freg='D')
         print(rng)
         ts = pd.Series(np.random.randn(len(rng)), index=rng)
         print(ts)
         DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-
         04',
                         '2024-01-05', '2024-01-06', '2024-01-07', '2024-01-
         08',
                         '2024-01-09', '2024-01-10'],
                        dtype='datetime64[ns]', freq='D')
         2024-01-01
                      -0.939045
         2024-01-02
                        1.104689
         2024-01-03
                        1.043026
         2024-01-04
                      -0.384542
         2024-01-05
                       0.299754
         2024-01-06
                       0.356170
         2024-01-07
                       2.105780
         2024-01-08
                      -0.874885
         2024-01-09
                       0.194465
         2024-01-10
                      -0.669901
         Freq: D, dtype: float64
```

6.2 Resampling

Resampling changes the frequency of your time series data.

```
In [23]: # Resampling
    ts_resampled = ts.resample('5D').mean()
    print(ts_resampled)

2024-01-01    0.224776
    2024-01-06    0.222326
    Freq: 5D, dtype: float64
```

6.3 Time Zone Handling

Pandas makes it easy to convert date and time data to different time zones.

```
In [24]: # Time zone handling
         ts_utc = ts.tz_localize('UTC')
         print(ts_utc)
         ts_est = ts_utc.tz_convert('US/Eastern')
         print(ts_est)
         2024-01-01 00:00:00+00:00
                                      -0.939045
         2024-01-02 00:00:00+00:00
                                       1.104689
         2024-01-03 00:00:00+00:00
                                       1.043026
         2024-01-04 00:00:00+00:00
                                      -0.384542
         2024-01-05 00:00:00+00:00
                                       0.299754
         2024-01-06 00:00:00+00:00
                                       0.356170
         2024-01-07 00:00:00+00:00
                                       2.105780
         2024-01-08 00:00:00+00:00
                                      -0.874885
         2024-01-09 00:00:00+00:00
                                       0.194465
         2024-01-10 00:00:00+00:00
                                      -0.669901
         Freq: D, dtype: float64
         2023-12-31 19:00:00-05:00
                                      -0.939045
         2024-01-01 19:00:00-05:00
                                       1.104689
         2024-01-02 19:00:00-05:00
                                       1.043026
         2024-01-03 19:00:00-05:00
                                      -0.384542
         2024-01-04 19:00:00-05:00
                                       0.299754
         2024-01-05 19:00:00-05:00
                                       0.356170
         2024-01-06 19:00:00-05:00
                                       2.105780
         2024-01-07 19:00:00-05:00
                                      -0.874885
         2024-01-08 19:00:00-05:00
                                       0.194465
         2024-01-09 19:00:00-05:00
                                      -0.669901
         Freq: D, dtype: float64
```

7. Visualization

7.1 Plotting with Pandas

Pandas integrates with Matplotlib to provide easy plotting functionality.

```
In [25]: # Plotting with Pandas
import matplotlib.pyplot as plt

ts.plot(title='Random Time Series')
plt.show()
```


7.2 Customizing Plots

```
In [26]: # Customizing plots
    ts.plot(title='Customized Plot', color='green', style='--')
    plt.xlabel('Date')
    plt.ylabel('Value')
    plt.show()
```


8. Advanced Topics

8.1 MultiIndex

MultiIndex allows you to work with hierarchical indexing in Pandas.

```
In [27]: # MultiIndex
    arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
    index = pd.MultiIndex.from_arrays(arrays, names=('number', 'color')
    df = pd.DataFrame({'value': [1, 2, 3, 4]}, index=index)
    print(df)
```

```
value
number color
1 red 1
blue 2
2 red 3
blue 4
```

8.2 Sparse Data

```
In [28]: # Sparse data
         s = pd.Series([0, 0, 1, 0, 2], dtype='Sparse[int]')
         print(s)
         df = pd.DataFrame({'A': [0, 1, 0], 'B': [1, 0, 0]}, dtype='Sparse[i
         print(df)
         0
               0
         1
               0
         2
               1
         3
               0
               2
         dtype: Sparse[int64, 0]
            Α
            0
               1
            1
         1
         2
            0
               0
```

9. Working with Built-in Datasets

Pandas can work with datasets from various sources. In this section, we'll demonstrate how to use built-in datasets from popular libraries.

9.1 Loading Built-in Datasets

We'll use the seaborn library to load a built-in dataset and perform various Pandas operations on it.

```
In [29]: import seaborn as sns
import pandas as pd

# Load the 'titanic' dataset
titanic = sns.load_dataset('titanic')
print(titanic.head())
```

	vived	pclass	sex	age	sibsp	parch	fare	embarked
class 0 Third	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
First 2 Third	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
First 4 Third	0	3	male	35.0	0	0	8.0500	S

	who	adult_male	deck	embark_town	alive	alone
0	man	True	NaN	Southampton	no	False
1	woman	False	C	Cherbourg	yes	False
2	woman	False	NaN	Southampton	yes	True
3	woman	False	C	Southampton	yes	False
4	man	True	NaN	Southampton	no	True

9.2 Data Overview

```
In [30]: # Display basic information about the dataset
    print(titanic.info())
    # Display summary statistics
    print(titanic.describe(include='all'))
    # Check for missing values
    print(titanic.isnull().sum())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	class	891 non-null	category
9	who	891 non-null	object
10	adult_male	891 non-null	bool

	aliv alor es: I	ark_town ve ne	203 non-nul 889 non-nul 891 non-nul 891 non-nul ategory(2), + KB	l o l o l b	atego bject bject ool 64(2)		, obje	ct(5)	
		survived	pclas	s se	X	age	S	ibsp	
parch count 00000	t 8	391.000000	891.00000	00 89	1 71	4.000000	891.00	0000	891.
uniqu NaN		NaN	Na	aN	2	NaN		NaN	
top NaN		NaN	Na	aN mal	e	NaN		NaN	
freq		NaN	Na	aN 57	7	NaN		NaN	
NaN mean	2.4	0.383838	2.30864	l2 Na	N 2	9.699118	0.52	3008	0.
38159 std		0.486592	0.83607	'1 Na	N 1	.4.526497	1.10	2743	0.
80605 min		0.000000	1.00000)0 Na	N	0.420000	0.00	0000	0.
00000 25%		0.000000	2.00000)0 Na	N 2	0.125000	0.00	0000	0.
00000 50%		0.000000	3.00000)0 Na	N 2	8.000000	0.00	0000	0.
00000 75%		1.000000	3.00000)0 Na	N 3	8.000000	1.00	0000	0.
00000 max		1.000000	3.00000)0 Na	N 8	0.000000	8.00	0000	6.
00000	0 0								
wn a	live		embarked	class	who	adult_male	e deck	embar	k_to
count		391.000000	889	891	891	891	203		8
uniqu 3		NaN	3	3	3	2	2 7		
top		NaN	S	Third	man	True	e C	South	ampt
on freq	no	NaN	644	491	537	537	7 59		6
44 mean	549	32.204208	NaN	NaN	NaN	NaN	I NaN		N
aN std	NaN	49.693429	NaN	NaN	NaN	NaN	I NaN		N
aN min	NaN	0.000000	NaN	NaN	NaN	NaN	I NaN		N
aN 25%	NaN	7.910400	NaN	NaN	NaN	NaN	I NaN		N
aN 50%	NaN	14.454200	NaN	NaN	NaN	NaN	I NaN		N
aN 75%	NaN	31.000000	NaN	NaN	NaN	NaN	I NaN		N

aN Na max aN Na	512.329200	NaN	NaN	NaN	NaN	NaN	N
count unique top freq mean std min 25% 50% 75% max survive pclass sex age sibsp parch fare embarke class who adult_m deck embark_ alive alone dtype:	0 0 177 0 0 0 ed 2 0 0 0 nale 0						

9.3 Handling Missing Data

```
In [31]: # Fill missing values in 'age' with the mean age
    titanic['age'].fillna(titanic['age'].mean(), inplace=True)
    # Fill missing values in 'embarked' with the most frequent value
    titanic['embarked'].fillna(titanic['embarked'].mode()[0], inplace=T
    # Drop rows with missing 'deck' values
    titanic.drop(columns=['deck'], inplace=True)
    # Verify missing values are handled
    print(titanic.isnull().sum())
```

survived 0 pclass 0 0 sex age 0 0 sibsp parch 0 fare 0 embarked 0 class who 0 adult_male 0 embark_town 2 alive 0 alone dtype: int64

9.4 Data Transformation

```
In [32]: # Convert 'sex' to numerical values
    titanic['sex'] = titanic['sex'].map({'male': 0, 'female': 1})
    # Convert 'embarked' to numerical values
    titanic = pd.get_dummies(titanic, columns=['embarked'], drop_first=
    print(titanic.head())

    survived pclass sex age sibsp parch fare class wh
    o \
    0     0     3     0     22.0     1     0     7.2500 Third ma
    n
```

		p = 10.00		٠. ي و	0 = 0 0 0	p 3 3		0 10.00	
0	\								
0	0	3	0	22.0	1	0	7.2500	Third	ma
n									
1	1	1	1	38.0	1	0	71.2833	First	woma
n									
2	1	3	1	26.0	0	0	7.9250	Third	woma
n									
3	1	1	1	35.0	1	0	53.1000	First	woma
n									
4	0	3	0	35.0	0	0	8.0500	Third	ma
n									

	adult_male	embark_town	alive	alone	embarked_Q	embarked_S
0	True	Southampton	no	False	0	1
1	False	Cherbourg	yes	False	0	0
2	False	Southampton	yes	True	0	1
3	False	Southampton	yes	False	0	1
4	True	Southampton	no	True	0	1

9.5 Data Aggregation and Grouping

```
In [33]: # Group by 'pclass' and calculate the mean age and fare
grouped = titanic.groupby('pclass').agg({'age': 'mean', 'fare': 'me
print(grouped)
```

	age	fare
pclass		
1	37.048118	84.154687
2	29.866958	20.662183
3	26.403259	13,675550

9.6 Data Visualization

```
In [34]: import matplotlib.pyplot as plt
import seaborn as sns

# Plot the distribution of ages
sns.histplot(titanic['age'], kde=True)
plt.title('Age Distribution')
plt.show()

# Plot the count of passengers by class
sns.countplot(x='pclass', data=titanic)
```

plt.title('Passenger Count by Class')
plt.show()

pclass