				 	··	 ·
Register No.						
	!	Į.	ł .	f .		

BE Degree Examination November 2015

Third Semester

Computer Science and Engineering

14CST34 – DIGITAL LOGIC AND VERILOG PROGRAMMING

(Regulations 2014)

Time: Three hours

Maximum: 100 marks

Answer all Questions

$$Part - A (10 \times 2 = 20 \text{ marks})$$

- 1. Determine the ones and twos complement of "11101110".
- 2. Simplify the expression Y = A'B'C' + A'BC' + AB'C' + ABC' using Boolean laws.
- 3. Draw the Ex-OR gate with truth table.
- 4. Discover a OR gate using NAND gates.
- 5. Tell about data flow modeling in HDL.
- 6. Sketch a 4 input priority encoder.
- 7. Differentiate a latch and flip flop.
- 8. List the two keywords used in behavioural model with an appropriate example.
- 9. Classify the types of ROM.
- 10. Write the basic syntax for loop statement in HDL.

$$Part - B (5 \times 13 = 65 \text{ marks})$$

11. a. i) Transform the following from one number system to the other as per the (8) given in base.

$$(\text{A3B})_{16} = (?)_{10} \,, \; (\text{F3})_{16} == (?)_{10} \,, \; (1111111011)_2 = (?)_{16} \,, \; (12456)_{10} = (?)_8 \,.$$

ii) Enumerate the basic properties of Boolean algebra.

(5)

(OR)

b. Summarize the basic Boolean laws and theorems.

- (13)
- 12. a. Determine the Prime implicates of the following function using suitable K-map (13) reduction technique. $F(w,x,y,z) = \sum m(0,2,3,6,7,8,10,12,13)$.

(OR)

	b.	i)	Simplify the following Boolean expression using four variable map $y = AB'C + B'CD' + BCD + ACD' + A'B'C + A'BC'D$.	(8)
		ii)	Which gates are called are called as "Universal gates"? Why? Tabulate the truth table for such gates.	(5)
13.	a.	i)	Explain the gate-level modeling of a full adder.	(8)
		ii)	Using a suitable example, discuss the concept of gate level modeling in HDL.	(5)
			(OR)	
	b.	follo F1 F2	ng decoder and external gates design a combinational circuit defined by the owing Boolean function. $= X'Y'Z' + XZ \\ = XY'Z' + XY \\ = XY'Z + XY .$	(13)
14.	a.		ng JK Flip-flop design a synchronous counter which counts in the sequence , 111, 101, 110, 001, 010, 000.	(13)
			(OR)	
	b.	i)	sign a sequential circuit with two D-Flip-flops A and B and one input x. When $x = 0$, the state of the circuit remains the same, when $x = 1$ the circuit goes through the state transitions from 00 to 01 to 11, to 10 and back to 00 and repeats. When $x = 0$, the state of the circuit remains the same, when $x = 1$ the circuit	(13)
		11)	goes through the state transitions from 00 to 11, to 01, to 10 and back to 00 and repeats.	
15.	a.	1)	Interpret a verilog HDL code to perform read and write operations of memory.	(8)
		ii)	Using suitable example, construct AND-OR PLA.	(5)
			(OR)	
-	b.	Wit.	h an example illustrate the working principle of Hamming code.	(13)
			Part – C $(1 \times 15 = 15 \text{ marks})$	
16.	a.	i)	With neat diagram explain the operation of master slave flip flop configuration.	(10)
		ii)	Compare combinational logic and sequential logic circuits.	(5)
			(OR)	
	b.	i)	Construct of 3 bit magnitude comparator.	(10)
		ii)	Compare synchronous and asynchronous counters.	(5)

2