

Institut für Gründlagen und Theorie der Elektrotechnik Technische Universität Graz

437.162 / 437.202 / 437.307: Grundlagen der Elektrotechnik - UE - 2. Teilklausur Gruppe 2

Alle Zetteln sind mit Namen und Matr. Nr. zu versehen und abzugeben. Es sind keine Hilfsmittel wie Taschenrechner und Formelzettel erlaubt!

Name: Matr. Nr.:

Aufgabe 1: Frequenzkennlinienverfahren

1. [9 P] Ermitteln Sie für die Schaltung aus Abb. 1 die Übertragungsfunktion $\underline{F}(j\omega)$ und fertigen Sie das Bode-Diagramm an. Die Bauteilwerte sind gegeben mit: $R_1 = 10\,\Omega,\, R_2 = 90\,\Omega,\, C = \frac{1}{90}\,\mathrm{mF}$.

Abbildung 1: Netzwerk zu Aufgabe 1

Prüfungsfragenausarbeitung 03.02.2023

Aufgabe 2: Komplexes Netzwerk

- 1. [8 P] Gegeben ist das komplexe Netzwerk aus Abb. 2. Die Bauteilwerte sind gegeben mit: $R_1=1\,\mathrm{k}\Omega,\,R_2=1\,\mathrm{k}\Omega,\,C=1\,\mathrm{\mu}\mathrm{F}$ und $\omega=1000\,\mathrm{s}^{-1}$.
 - (a) Berechnen Sie allgemein die Impedanz an den Klemmen k und l, und geben Sie den Realund Imaginärteil separat an. (Allgemein Rechnen - Keine Werte einsetzen)
 - (b) Welchen Wert muss L annehmen damit das Netzwerk kompensiert ist?

Abbildung 2: Netzwerk zu Aufgabe 2

Aufgabe 3: Schaltvorgang

- 1. [8 P] Gegeben ist das Netzwerk aus Abb. 3 mit den Bauteilwerten: $R_1=75\,\Omega,\,R_2=50\,\Omega,\,R_3=50\,\Omega,\,C=1\,\mathrm{mF}$ und der Quellspannung $U_\mathrm{q}=10\,\mathrm{V}.$
 - (a) Für $t<0\,\mathrm{s}$ war der Schalter S schon lange in der gegebenen Position (durchgezogene Schalterstellung). Überlegen Sie sich die Anfangsbedingung für die stetige Größe des Kondensators.
 - (b) Zum Zeitpunkt $t=0\,\mathrm{s}$ schließt der Schalter S (strichlierte Schalterstellung). Ermitteln Sie die Differentialgleichung für die stetige Größe des Kondensators.
 - (c) Ermitteln Sie die Zeitkonstante des Ausschaltvorgangs.
 - (d) Welchen Wert wird die stetige Größe nach sehr langer Zeit annehmen.

Abbildung 3. Netzwerk zu Aufgabe 3

