Chapter 9

Classification (Part 2)

Xike Xie

Slides are based on Prof. Ben Kao's work.

Overview

- Nearest-neighbor classifiers
- Bayesian classifiers
- Support vector machines
- Ensemble methods

Nearest Neighbor Classifiers

- Basic idea:
 - Given an unlabeled record *Y*, find the records in the training set that are most similar to *Y* (the nearest neighbors) to infer the label of *Y*.

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored labeled records
 - Distance Metric to compute distance between records
 - The value of *k*, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the *k* smallest distances to x

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the knearest neighbors
 - We can also weigh the votes according to neighbors' distances
 - weight factor, $w = 1/d^2$
- Attributes have to be normalized.

Nearest Neighbor Classification

- Choosing the value of k:
 - If *k* is too small, sensitive to noise points

• If *k* is too large, neighborhood may include points from

other classes

Nearest Neighbor Classification

- *k*-NN classifiers are *lazy learners*
 - they do not build model explicitly
 - Avoid expensive model-building
 - *K*-NN search could be expensive
 - *K*-NN search is typically assisted by indices.
- Distance-based so it performs poorly in highdimensional spaces.
- Feature selection is important.
 - E.g., highly-correlated features shouldn't be all included in the distance function.

Bayesian Classifier

- Based on Bayes Theorem:
 - Given a hypothesis/class H and an observation X, denote P(H|X) as the probability that the hypothesis H is true given X happens.
- Example:
 - H =an object Ois an apple
 - *X* = an object *O* is red and round
 - P(H|X) = prob. that an object O is an apple given that O is red and round

Bayes Theorem

- Note that we can consider
 - P(H) = probability that an arbitrary object is an apple
 - P(X) = probability that an arbitrary object is red and round
 - P(X|H) = probability that an object O is red and round given that O is an apple
 - P(H|X) = probability that an object O is an apple given that O is red and round

Bayes Theorem

- P(H|X) = P(H,X) / P(X)
- P(X|H) = P(H,X) / P(H)
- P(H|X) = P(X|H) * P(H) / P(X)

Applying Bayes theorem to classification

- given an unlabeled record *r*, we consider
 - P(C₁) = probability that a record should be labeled class
 C₁
 - P(X) = probability that a record has r's attribute values
 - $P(X|C_1)$ = probability that a record has r's attribute values given that the record is labeled C_1
 - $P(C_1|X)$ = probability that a record is labeled C_1 given that it has r's attribute values

Applying Bayes theorem to classification

- suppose there are m class labels: $C_1, C_2, ..., C_m$
- we want to determine which class record r should belong
- method: compare $P(C_1|X)$, $P(C_2|X)$, ..., $P(C_m|X)$ and pick the C_i with the largest probability

Applying Bayes theorem to classification

- Note that:
 - $P(C_1|X) = P(X|C_1) * P(C_1) / P(X)$
 - $P(C_2|X) = P(X|C_2) * P(C_2) / P(X)$
 - $P(C_1|X) > P(C_2|X) \Leftrightarrow$ $P(X|C_1)P(C_1) > P(X|C_2)P(C_2)$
 - Then, the job is to pick the class C_i with the largest value of $P(X|C_i)P(C_i)$
 - To calculate $P(C_i)$ is easy. Given a training set D, we can estimate $P(C_i)$ by n_i/N , where
 - n_i = number of records in D of class C_i , and
 - N = total number of records in D

Naïve Bayesian Classification

- $P(X|C_i)$, however, is difficult to estimate
- Naïve Bayesian Classification assumes that the values of the attributes are conditionally independent of one another.
- That is,

$$P(X \mid C_i) = \prod_{k=1}^n P(x_k \mid C_i)$$

 x_k = value of a record r for attribute k

Naïve Bayesian Classification

• If Attribute k is categorical (e.g., nominal, ordinal), then $P(x_k|C_i)$ can be estimated by

$$n_{ik} / n_i$$

where n_{ik} = number of records in the dataset that are of class C_i and whose values for attribute k is x_k

Record id	Age	Income	Student	Credit- rating	Own- computer
1	< 30	High	No	Bad	No
2	< 30	High	No	Good	No
3	30 40	High	No	Bad	Yes
4	> 40	Medium	No	Bad	Yes
5	>40	Low	Yes	Bad	Yes
6	> 40	Low	Yes	Good	No
7	30 40	Low	Yes	Good	Yes
8	< 30	Medium	No	Bad	No
9	< 30	Low	Yes	Bad	Yes
10	> 40	Medium	Yes	Bad	Yes
11	< 30	Medium	Yes	Good	Yes
12	30 40	Medium	No	Good	Yes
13	30 40	High	Yes	Bad	Yes
14	> 40	Medium	No	Good	No

Example

• Given a record *X*:

Age	Income	Student	Credit- rating
< 30	medium	yes	fair

is *X* a computer-owner or not?

Example

- 2 classes:
 - $C_1 = O.C. = yes; P(C_1) = 9/14$
 - $C_2 = O.C. = no; P(C_2) = 5/14$
- 4 attributes:
 - $P(Age < 30 \mid C_1) = 2/9$
 - P(Income = medium $| C_1 \rangle = 4/9$
 - $P(Student = yes \mid C_1) = 6/9$
 - $P(C.R = fair \mid C_1) = 6/9$
- Hence,
 - $P(X|C_1) = (2/9)(4/9)(6/9)(6/9) = 0.044$

Example

- Similarly, we have:
 - $P(X|C_2) = 0.019$
- Therefore,
 - $P(X|C_1)P(C_1) = (9/14) * 0.044 = 0.028$
 - $P(X|C_2)P(C_2) = (5/14) * 0.019 = 0.007$
- *X* is classified as C₁, or *X* is a computer-owner

What about numerical attributes?

- For numerical attributes:
 - Discretize the range into bins
 - replace by ordinal attribute
 - result sensitive to discretization
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional *probability density* $P'(x_k|C_i)$
 - Compare classes based on their probability densities.

Naïve Bayes (Summary)

- Robust to isolated noise points
- Robust to noisy attributes that are uncorrelated to class
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN) to capture attributes correlation

Find a linear hyperplane (decision boundary) that will separate the data

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

- Which one is better? B1 or B2?
- How do you define better?

Find hyperplane maximizes the margin => B1^b1s better than B2

What if the problem is not linearly separable?

No straight line can separate the examples into their classes

What if the problem is not linearly separable?

- $\mathbf{x} = [x_1, x_2]^t$
- $\phi([x_1, x_2]^t) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2]^t$

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers
 - voting

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are *independent*
 - Probability that the ensemble classifier makes a wrong prediction:

Random Forest

Random Forest:

Each classifier in the ensemble is a *decision tree* classifier and is generated using a random selection of attributes at each node to determine the split

During classification, each tree votes and the most popular class is returned

Two Methods to construct Random Forest:

Forest-RI (*random input* selection): Randomly select, at each node, F attributes as candidates for the split at the node.

Forest-RC (*random linear combinations*): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)

Figure 5.30. Comparison between errors of base classifiers and errors of the ensemble classifier.

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - use different training sets
 - use different attribute sets for input
 - use different partitions of class labels
 - use different learning algorithms