Machine Learning

Exercise

Fabio Vandin

November 25, 2022

Exercise

Consider the classification problem with $\mathcal{X} = \mathbb{R}^2$, $\mathbb{Y} = \{0, 1\}$. Consider the hypothesis class $\mathcal{H} = \{h_{(\mathbf{c}, a)}, \mathbf{c} \in \mathbb{R}^2, a \in \mathbb{R}\}$ with

$$h_{(\mathbf{c},a)}(\mathbf{x}) = \begin{cases} 1 & \text{if } ||\mathbf{x} - \mathbf{c}|| \leq a \\ 0 & \text{otherwise} \end{cases}$$

Find the VC-dimension of \mathcal{H} .

Vdim (*) = 3 Solution -> 12 VC dim (H) = 4 -> 10

i) VCdin(H) 7, 3: we need to show a set of 3 instances/vectors in R2 that is shattered by H

ii) VC dim (H) \le 3: heed to show that there is no set of \(\text{installes} \) that can be shattered by H.

Consider on arbitrary set of \(\text{instances} \). Then there are a triangle and the ath instance i) 3 instances constitute is inside the triangle > impossible to abtain from the shattered ii) 3 instances that constitute a triangle and the Ath instance is outside the triangle

-

Assign bold 1 to instances on the "longest biogenal" and O to other instances => impossible to obtain => the set control be shattered iii) 10001 => impossible to obtain => the set connot be shottered From i), iii) => there is no set of a points that can be shattered by it >> Vedin (H) 63 => VCdim (H)=3

Exercise

Let

$$\mathcal{H}_d = \{h_{\mathbf{w}}(\mathbf{x}) : h_{\mathbf{w}}(\mathbf{x}) = \operatorname{sign}(<\mathbf{w}, \mathbf{x}>)\}$$

where $\mathcal{X} = \mathbb{R}^d$.

Prove that $VCdim(\mathcal{H}_d) = d$. Solution We need to prove that $VCdim(\mathcal{H}_d) \gg d$ and that $VCdim(\mathcal{H}_d) \leq d$.

i) VCdim(HJ) 2d. We need to show a set of d vectors in IRd that is shattered by HJ.

Consider $\{\vec{e}_3, \vec{e}_2, ..., \vec{e}_d\}$ with $\vec{e}_i = \{\vec{e}_3, \vec{e}_2, ..., \vec{e}_d\}$

This set is shattered by H_d : we need to show that far every labelly y_3, y_2, \dots, y_d , where y_i is the lobel of E_i , with $y_i \in \{-1, 1\}$, there is an hypothesis in H_d that

assigns such labels to the set.

Consider an arbitrary labeling $y_3, y_2, ..., y_d$: consider the hypothesis $h_{\vec{w}}$ where $\tilde{\vec{w}} = \begin{bmatrix} y_1 \\ y_2 \\ y_d \end{bmatrix}$. We have that for every i, with 12i2d: $h_{\overrightarrow{w}}(\overrightarrow{e_i}) = Sign(\overrightarrow{w}, \overrightarrow{e_i}) = Sign(\langle (\overrightarrow{y_i}) | (\overrightarrow{v_i}) \rangle) = Sign(\cancel{y_i}) = \cancel{y_i}$ ii) VCdim (tfd) Ed: we need to show that no set of des vectors in Rd can be shattened by Hd.

Consider an arbitrary set {x3, x2,..., xd41} with zelled They cannot be likewish independent $\Rightarrow \exists \ a_1, a_2, ..., a_{d+1}$ with $a_i \in \mathbb{R}$, $1 \le i \le d+1$, such that:

- Not all
$$\delta_{i}$$
 is die δ (A)

- Note and δ_{i} is die δ (A)

Define: $I = \{i: \delta_{i} > 0\}$. Note that it cannot be

 $I = \{j: \delta_{i} < 0\}$. That $I = \emptyset = \delta$ (due to (A))

There die $I = \{i: \delta_{i} > 0\}$. Then

Case i) we see assuming $I \neq \emptyset \neq J$. Then

$$I = \{i: \delta_{i} > 0\}$$

$$I$$

Case ii): $I \neq \emptyset = J$: so he steps last to 0 < ... < 0 > contradiction Case iii): $I = \emptyset \neq J$: same steps lead to

Exercise

Consider the ridge regression problem $\arg\min_{\mathbf{w}} \lambda ||\mathbf{w}||^2 + \sum_{i=1}^m (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$. Let: h_S be the hypothesis obtained by ridge regression with training set S; h^* be the hypothesis of minimum generalization error among all linear models.

- (A) Draw, in the plot below, a *typical* behaviour of (i) the training error and (ii) the test/generalization error of h_S as a function of λ .
- (B) Draw, in the plot below, a *typical* behaviour of (i) $L_{\mathcal{D}}(h_S) L_{\mathcal{D}}(h^*)$ and (ii) $L_{\mathcal{D}}(h_S) L_S(h_S)$ as a function of λ .

