Homework 3

Songyu Ye

September 20, 2025

Problem 4 was written up with the help of ChatGPT. I believe I understand the correspondence but I had a hard time writing down why the constructions are inverses of each other.

Problem 1 Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\zeta_p)$, where ζ_p is a primitive p-th root of unity. Set $A = \mathbb{Z}$. Let B be the integral closure of A in L.

1. Prove that

$$(p) = \prod_{i=1}^{p-1} (1 - \zeta_p^i).$$

2. Show that $(p) = (1 - \zeta_p)^{p-1}$ as ideals of B. Deduce that (p) is totally ramified in $\mathbb{Q}(\zeta_p)/\mathbb{Q}$ (Recall that totally ramified in this context means that the ramification index is equal to the degree of the extension).

Solution:

1. Recall the p-th cyclotomic polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = 1 + x + \dots + x^{p-1} = \prod_{i=1}^{p-1} (x - \zeta^i)$$

where ζ is a primitive p-th root of unity. Evaluate $\Phi_p(x)$ at x=1:

$$\Phi_p(1) = 1 + 1 + \dots + 1 = p$$

On the other hand,

$$\Phi_p(1) = \prod_{i=1}^{p-1} (1 - \zeta^i)$$

Therefore, in the ring $B \subset L$,

$$p = \prod_{i=1}^{p-1} (1 - \zeta^i)$$

which implies the equality on the level of ideals.

2. For any a with $1 \le a \le p - 1$, $1 - \zeta^a = (1 - \zeta)(1 + \zeta + \dots + \zeta^{a-1})$, so $(1 - \zeta)$ divides $(1 - \zeta^a)$.

Since gcd(a, p) = 1, pick $b \in \{1, ..., p - 1\}$ with $ab \equiv 1 \pmod{p}$. Because $\zeta^p = 1$, we have $\zeta = \zeta^{ab}$. Thus

$$1 - \zeta = 1 - (\zeta^a)^b = (1 - \zeta^a)(1 + \zeta^a + \dots + (\zeta^a)^{b-1})$$

So $(1 - \zeta^a)$ divides $(1 - \zeta)$. This shows that $(1 - \zeta^a)$ and $(1 - \zeta)$ generate the same ideal in B.

Therefore,

$$(p) = \prod_{i=1}^{p-1} (1 - \zeta^i) = (1 - \zeta)^{p-1}$$

This shows that the ramification index is p-1, which is equal to the degree of the extension. Therefore, (p) is totally ramified in $\mathbb{Q}(\zeta_p)/\mathbb{Q}$.

Problem 2 Keep using the notation from Problem 1.

1. For all positive integers i, prove that

$$B = \mathbb{Z}[\zeta_p] + (1 - \zeta_p)^i B.$$

2. Show that

$$p^m B \subset \mathbb{Z}[\zeta_p]$$

for some positive integer m.

3. Conclude from (1) and (2) that $B = \mathbb{Z}[\zeta_p]$.

Solution:

1. It is enough to check that the equality holds at every localization at a prime ideal \mathfrak{q} of B. Let $\pi = 1 - \zeta$ and $\mathfrak{p} = (\pi)$ be the prime ideal above p. Then π is a uniformizer of the discrete valuation ring $B_{\mathfrak{p}}$, and the residue field $B_{\mathfrak{p}}/\mathfrak{p} \cong \mathbb{F}_p$ (because ef = n and we showed above that e = n).

Suppose $\mathfrak{q} \neq \mathfrak{p}$. Then π is a unit in $B_{\mathfrak{q}}$, so the equality holds trivially.

Thus we need to check that

$$B_{\mathfrak{p}} = \mathbb{Z}[\zeta]_{\mathfrak{p}} + (1 - \zeta)^{i} B_{\mathfrak{p}}$$

for all $i \geq 1$. Consider the inclusion of $\mathbb{Z}[\zeta]_{\mathfrak{p}}$ into $B_{\mathfrak{p}}$ followed by the quotient map to the residue field:

$$\mathbb{Z}[\zeta]_{\mathfrak{p}} \to B_{\mathfrak{p}}/\mathfrak{p} \cong \mathbb{F}_p$$
$$(a/s) \mapsto a(1)/s(1) \mod p$$

where we are thinking of

$$a = \sum_{k=0}^{p-2} a_k \zeta^k \in \mathbb{Z}[\zeta]$$
$$s = \sum_{k=0}^{p-2} s_k \zeta^k \in \mathbb{Z}[\zeta] \setminus \mathfrak{p}$$

where $s \notin \mathfrak{p}$ implies that $s(1) \not\equiv 0 \mod p$, and f(1) means evaluating f at 1. This map is clearly a surjection between we can just choose a_k so that their sum is any element of \mathbb{F}_p , and then choose s = 1.

Now recall Nakayama's lemma: If M is a finitely generated module over a local ring R with maximal ideal \mathfrak{m} , and if a submodule $N \subseteq M$ maps surjectively onto the residue module $M/\mathfrak{m}M$, then N=M.

This implies that $\mathbb{Z}[\zeta]_{\mathfrak{p}} = B_{\mathfrak{p}}$ and therefore

$$B_{\mathfrak{p}} = \mathbb{Z}[\zeta]_{\mathfrak{p}} + \pi B_{\mathfrak{p}}$$

Multipling by π^{i-1} gives

$$B_{\mathfrak{p}} = \mathbb{Z}[\zeta]_{\mathfrak{p}} + \pi^i B_{\mathfrak{p}}$$

for all $i \geq 1$. This proves (1).

2. By the hint, it is enough to prove that $p^n\mathbb{Z}[\zeta]^*\subset\mathbb{Z}[\zeta]$ for some n. Let $e_i=\zeta^i$ be a basis of $\mathbb{Z}[\zeta]$ over \mathbb{Z} , and let f_i be the dual basis with respect to the trace form, i.e. $\operatorname{Tr}(e_if_j)=\delta_{ij}$. Expand the f's in the e-basis:

$$f_i = \sum_j a_{ij} e_j, \quad a_{ij} \in \mathbb{Q}.$$

The matrix A is invertible. Define the matrix $G = (G_{ik})_{i,k}$, where

$$G_{ik} = \langle e_i, e_k \rangle = \text{Tr}(e_i e_k)$$

Now compute

$$\delta_{ij} = \langle e_i, f_j \rangle$$

$$= \left\langle e_i, \sum_k a_{kj} e_k \right\rangle$$

$$= \sum_k a_{kj} \langle e_i, e_k \rangle$$

$$= \sum_k G_{ik} a_{kj}.$$

which implies that AG = I. Thus $A = G^{-1}$. I claim that

$$G_{ij} = \begin{cases} p - 1, & i + j \equiv 0 \pmod{p}, \\ -1, & \text{otherwise.} \end{cases}$$

where the indices i, j run from 0 to p-2. I also claim that from this computation one gets that $\det G = \pm p^{p-2}$. For the moment suppose that we have these two claims. Now observe that $G^{-1} = \frac{1}{\det G} \operatorname{adj}(G)$. Since $\operatorname{adj}(G)$ has integer entries, all denominators in G^{-1} divide $\det G$. Thus $M^* \subset \frac{1}{\det G}M$, i.e. $|(\det G)|M^* \subset M$ as desired.

It remains to prove the two claims about G. For the first claim, we have to show that

$$\operatorname{Tr}(\zeta^{i}\zeta^{j}) = \begin{cases} p-1, & i+j \equiv 0 \pmod{p}, \\ -1, & \text{otherwise.} \end{cases}$$

Let X be the linear operator on L defined by multiplication by ζ , and let s_i be the sequence of numbers $\text{Tr}(X^i)$. Then $s_0 = p-1$ is clear. To calculate s_i for $1 \le i \le p-1$, note that the trace is going to be equal to coefficient of ζ^j in $\zeta^i \zeta^j = \zeta^{i+j}$ summed over $j = 1, \ldots, p-1$. These coefficients are all zero except in one instance when we have $i+j \cong p-1$, in which case the coefficient is -1 because we have to expand using the relation. Thus $s_i = -1$ for $1 \le i \le p-1$.

To compute the determinant of G, recall that we can add multiples of one column to another without changing the determinant. We will demonstrate the p=5 case, which will hopefully illustrate the general case. The matrix is

$$G = \begin{pmatrix} 4 & -1 & -1 & -1 \\ -1 & -1 & -1 & 4 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & -1 \end{pmatrix}$$

Subtracting the second column from the first, third, and fourth columns gives

$$G \sim \begin{pmatrix} 5 & -1 & 0 & 0 \\ 0 & -1 & 0 & 5 \\ 0 & -1 & 5 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

and one can quickly check that expanding along the first column gives $\det G = \pm 5^3$. The general case is similar, and one gets $\det G = \pm p^{p-2}$.

3. Let $A := B/\mathbb{Z}[\zeta_p]$. We have $B = \mathbb{Z}[\zeta_p] + (1 - \zeta_p)^i B$ for all $i \geq 1$. Mod $\mathbb{Z}[\zeta_p]$ this says $A = (1 - \zeta_p)^i A$ for all $i \geq 1$. Take i = p - 1. Recall that we have from the first problem that $(1 - \zeta_p)^{p-1} \in pB$. Hence $A = (1 - \zeta_p)^{p-1} A \subset pA$, so A = pA.

We also have $p^m B \subset \mathbb{Z}[\zeta_p]$, i.e. $p^m A = 0$. But A = pA implies $A = p^k A$ for all k. Taking k = m gives $A = p^m A = 0$. Therefore $B/\mathbb{Z}[\zeta_p] = 0$, i.e. $B = \mathbb{Z}[\zeta_p]$ as desired.

Problem 3 Let d be a square-free number (positive or negative) such that $d \neq 1$ and $d \equiv 1 \pmod{4}$. Give a numerical condition for each rational prime p to be split, inert, or ramified in $\mathbb{Q}(\sqrt{d})$.

Solution: Recall the Dedekind-Webber theorem.

Theorem 0.1 (Dedekind-Webber). Let K be a number field and \mathcal{O}_K the ring of algebraic integers in K. Let $\alpha \in \mathcal{O}_K$ and let f be the minimal polynomial of α over $\mathbb{Z}[x]$. For any prime p not dividing the index $[\mathcal{O}_K : \mathbb{Z}[\alpha]]$ of the free $\mathbb{Z}[\alpha]$ -module \mathcal{O}_K , write

$$f(x) \equiv \pi_1(x)^{e_1} \cdots \pi_q(x)^{e_g} \pmod{p},$$

where $\pi_i(x)$ are monic irreducible polynomials in $\mathbb{F}_p[x]$. Then the ideal $(p) = p\mathcal{O}_K$ factors into prime ideals as

$$(p) = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_q^{e_g},$$

where the residue field degrees satisfy

$$N(\mathfrak{p}_i) = p^{\deg \pi_i},$$

and N denotes the ideal norm.

We have $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ because $d \equiv 1 \pmod{4}$. The minimal polynomial of $\frac{1+\sqrt{d}}{2}$ is $f(x) = x^2 - x + \frac{1-d}{4}$. The index $[\mathcal{O}_K : \mathbb{Z}[\frac{1+\sqrt{d}}{2}]] = 1$, so the Dedekind-Webber theorem applies to all primes. Now consider an odd prime p. Recall a double root occurs if and only if f and f' share a root mod p. Here f'(x) = 2x - 1. So a common root would be $x \equiv \frac{1}{2} \pmod{p}$; evaluate: $f(\frac{1}{2}) = \frac{1}{4} - \frac{1}{2} + \frac{1-d}{4} = -\frac{d}{4}$. Thus $f(\frac{1}{2}) \equiv 0 \pmod{p}$ if and only if $p \mid d$. Hence p is ramified if and only if $p \mid d$.

Now let p be an odd prime not dividing d. Then we can write

$$4f(x) = (2x - 1)^2 - d.$$

Over \mathbb{F}_p , f has a root iff $(2x-1)^2 \equiv d$, i.e. iff d is a square mod p. Therefore p is split if d is a square mod p and p is inert if d is not a square mod p.

Finally consider the prime p=2. Reduce $f \mod 2$: $f(x) \equiv x^2 - x + \frac{1-d}{4} \pmod{2}$. Now $\frac{1-d}{4} \equiv 0$ or 1 (mod 2). If $d \equiv 1 \pmod{8}$: $f(x) \equiv x^2 - x = x(x-1)$ splits, so 2 splits. If $d \equiv 5 \pmod{8}$: $f(x) \equiv x^2 - x + 1 = x^2 + x + 1$ is irreducible over \mathbb{F}_2 , so 2 is inert. Also $f'(x) = 2x - 1 \equiv 1 \pmod{2}$ never vanishes, so no double root. In particular, 2 does not ramify.

Problem 4 Let A be a Dedekind domain and K its fraction field. Show that the following two sets are in bijection:

- 1. The set of nonzero prime ideals \mathfrak{p} of A.
- 2. The set of discrete valuations v on K which have nonnegative values on A,

via
$$\mathfrak{p} \mapsto v_{\mathfrak{p}}$$
 and $v \mapsto \mathfrak{p}_v := \{a \in A : v(a) > 0\}.$

Solution: Let $\mathfrak{p} \neq (0)$ be a prime of A. Since A is Dedekind, the localization $A_{\mathfrak{p}}$ is a discrete valuation ring (DVR) with maximal ideal $\mathfrak{m}_{\mathfrak{p}} = \mathfrak{p}A_{\mathfrak{p}}$. Choose a uniformizer $\pi \in \mathfrak{m}_{\mathfrak{p}}$ so that $\mathfrak{m}_{\mathfrak{p}} = (\pi)$.

Define $v_{\mathfrak{p}}: K^{\times} \to \mathbb{Z}$ by: for $x \in K^{\times}$ write uniquely $x = u\pi^n$ with $u \in A_{\mathfrak{p}}^{\times}$ and $n \in \mathbb{Z}$, and set $v_{\mathfrak{p}}(x) = n$ (and $v_{\mathfrak{p}}(0) = +\infty$). This is a discrete valuation; moreover $v_{\mathfrak{p}}(a) \geq 0$ for every $a \in A$ (since $A \subset A_{\mathfrak{p}}$). Finally,

$$\mathfrak{p}_{v_{\mathfrak{p}}} = \{ a \in A : v_{\mathfrak{p}}(a) > 0 \} = \{ a \in A : a \in \mathfrak{m}_{\mathfrak{p}} \cap A \} = \mathfrak{p}.$$

Let v be a nontrivial discrete valuation on K with $v(A) \geq 0$. Let

$$\mathcal{O}_v := \{ x \in K : v(x) \ge 0 \}, \qquad \mathfrak{m}_v := \{ x \in K : v(x) > 0 \}$$

be its valuation ring and maximal ideal. Then \mathcal{O}_v is a DVR with fraction field K. Since $v(A) \geq 0$, we have an inclusion $A \subset \mathcal{O}_v$ and the contraction $\mathfrak{p}_v := A \cap \mathfrak{m}_v = \{a \in A : v(a) > 0\}$ is a nonzero prime of A.

Because $A \subset \mathcal{O}_v$ and elements of $A \setminus \mathfrak{p}_v$ have valuation 0, the universal property of localization yields a local injective ring map

$$\iota: A_{\mathfrak{p}_v} \hookrightarrow \mathcal{O}_v.$$

Both $A_{\mathfrak{p}_v}$ and \mathcal{O}_v are DVRs with fraction field K. We claim ι is an isomorphism.

Let $\pi \in K^{\times}$ be a uniformizer for \mathcal{O}_v , so $v(\pi) = 1$ and $\pi \mathcal{O}_v = \mathfrak{m}_v$. In any DVR R with valuation w, one has $xR = \mathfrak{m}_R^{w(x)}$ for $x \in K^{\times}$. Apply this in $R = \mathcal{O}_v$:

$$\pi \, \mathcal{O}_v = \mathfrak{m}_v. \tag{*}$$

Write in $A_{\mathfrak{p}_v}$:

$$\pi A_{\mathfrak{p}_v} = \mathfrak{m}_{\mathfrak{p}_v}^n, \qquad n := v_{\mathfrak{p}_v}(\pi) \in \mathbb{Z}_{\geq 1},$$

where $v_{\mathfrak{p}_v}$ is the normalized valuation of the DVR $A_{\mathfrak{p}_v}$ and $\mathfrak{m}_{\mathfrak{p}_v} = \mathfrak{p}_v A_{\mathfrak{p}_v}$. Extending ideals from $A_{\mathfrak{p}_v}$ to \mathcal{O}_v (through ι) gives

$$\pi \, \mathcal{O}_v = (\pi \, A_{\mathfrak{p}_v}) \, \mathcal{O}_v = (\mathfrak{m}_{\mathfrak{p}_v} \mathcal{O}_v)^n.$$

Comparing with (*) and using that powers of the unique maximal ideal of a DVR are strictly decreasing, we deduce

$$\mathfrak{m}_{\mathfrak{n}_v} \mathcal{O}_v = \mathfrak{m}_v$$
 and $n = 1$.

Hence the local map ι identifies the maximal ideals and sends a uniformizer of $A_{\mathfrak{p}_v}$ to a uniformizer of \mathcal{O}_v ; therefore ι is an isomorphism of DVRs. In particular the induced valuations agree on K:

$$v_{\mathfrak{p}_v}=v.$$