2018年至2020年国际油轮运输市场趋势

宋深科 515021910648 彭正皓 515021910506 支鹏飞 515021910369 简心语 515021910260 庞雪怡 5140219001

刘子平 515021910250

概述

- 背景
- 数据获取——2001年初至2017年 末共6039组数据
- 近年现状
- VAR建模——获取多变量回归模型,获取关系式
- GAM建模——单变量自回归模型,获取预测值
- 未来趋势分析

数据获取

- 我们得到了BDTI/BCTI/钢铁价格/原油价格/标普500/纳斯达克/全球油轮数量/全球油轮运力/油轮租船数量等6039组历史数据。
- 数据获取与清洗的过程详见报告《2018年至2020年国际油轮运输市场趋势》附录A。

我们获得了十二组数据,分别是波罗的海成品油运价指数(BCTI)、波罗的海原油运价指数(BDTI)、波罗的海干散货指数(BDI)、全球油轮总书(tankernum)、全球油轮总载重吨(tankerton)、前两者的增长量(tankernumgrad、tankertongrad)、原油价格(oil price)、钢铁价格(steel price)、油轮租赁数量(renting)、纳斯达克指数(nasdaq)、标普五百指数(sp500)。

历年的BCTI、BDTI、BDI、全球油轮总数、全球油轮总数、全球油轮总载重吨、油轮租船市场数据均采集于国际船舶网。油价、纳斯达克指数、标普五百指数采集于雅虎财经。钢铁价格来自于西本新干线网。

意义

举足轻重

研究分析油轮运输市场的周期性波动及其未来的发展趋势

制定合理的企业经营策略并采取一定的措施合 理规避企业经营风险,增强自身的核心竞争力 从而确保经营收益、

新造船市场

- 全球新签订单量持续减少, 2016年万吨以上的油轮新订单 总数仅72艘,同比下降 85.15%
- 2017年,由于低价刺激,出现 初步复苏迹象,年初至今油轮 新船投资同比增幅133%
- 交付量维持在较高水平

二手船市场

- 成交量同比增长, 2016年总成交量443艘, 相比2015年增长了40.19%
- 价格持续走低,如阿芙拉型油轮,2016年一年价格下降了36.04%。
- 灵便型二手油轮始终占据主导地位
- 油轮运力过剩,运价走低, 导致了二手船市场的低迷

日期	总成交量 /艘	环比	载重 /万吨	环比
2016年1月	34	-15%	203.5	-7.69%
2016年2月	28	-17.65%	135.4	-33.46%
2016年3月	48	64.29%	329.5	143.33%
2016年4月	32	-30.43%	177.7	-46.07%
2016年5月	31	-3.13%	321.8	81.08%
2016年6月	53	70.97%	443.5	37.82%
2016年7月	48	-9.43%	325.8	-26.53%
2016年8月	28	41.67%	257.1	21.08%
2016年9月	21	25%	94.6	63.21%
2016年10月	32	52.38%	289.6	206.19%
2016年11月	43	34.88%	420	44.82%
2016年12月	45	4.65%	480	14.22%
总成交量/艘	443			

拆船市场

• 近年油轮拆船量相对温和, 2015和2016年均处于较低水 平

原因:油轮船龄短,压载水公约推迟

• 2017年往后拆船量逐渐回升,有助于缓解过剩的运力

原因: 较低运费和较低船价的

双重压力

油运市场

- 运价持续走低
- 运力严重过剩

原因:

OPEC减产协议,油价稳定 后,进口国减少原油储备,原 油运输需求大幅下降;

2015年新造船大量交付,存储运力释放,运力大幅增加

11

Vector autoregression model

• 数据处理:对数据取对数变换。

• 对数据进行单位根检验。

以下以LBDTI为例:

Null Hypothesis: LBDTI has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=18)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ıller test statistic	-4.012257	0.0015
Test critical values:	1% level	-3.441019	
	5% level	-2.866139	
	10% level	-2.569278	

VAR模型的介绍:向量自回归模型简称VAR模型,是一种常用的计量经济模型,1980年由克里斯托弗·西姆斯(Christopher Sims)提出。 VAR模型是用模型中所有当期变量对所有变量的若干滞后变量进行回归。VAR模型用来估计联合内生变量的动态关系,而不带有任何事先约 束条件。它是AR模型的推广,此模型目前已得到广泛应用。

数据处理:目的:减小异方差、增强数据的平稳性、具体请参见我们的附录B.1

数据进行单位根检验:目的:检验是否存在单位根,确定是否为平稳时间序列,具体内容请参见我们的报告。以LBDTI为例,检验是否存在单位根,由表中得到,原假设存在单位根,表中t-Statistic小于1%水平,说平拒绝原假设,LBDTI不存在单位根,即单值平稳。

Vector autoregression model

- 确定滞后阶数,寻找最优 滞后期
- 由表中得到,最优滞后阶 数为2, 即最后滞后期为 2, 我们以10天一个单位 进行建模, 即滞后期为20 天

_	ıs variables: C 17/17 Time: 2	20:11				
nple: 1		.0.11				
	observations: 59	91				
Lag	LogL	LR	FPE	AIC	SC	HQ
0	8763.065	NA	3.19e-22	-29.63135	-29.57945	-29.61114
1	9355.227	1168.294	5.08e-23	-31.46947	-31.05427*	-31.30773
2	9457.961	200.2522	4.23e-23*	-31.65131*	-30.87281	-31.34805*
3	9506.856	94.15048	4.24e-23	-31.65095	-30.50916	-31.20617
4	9548.500	79.20061	4.34e-23	-31.62606	-30.12097	-31.03976
5	9599.299	95.40981	4.32e-23	-31.63215	-29.76376	-30.90433
6	9630.740	58.30554	4.59e-23	-31.57272	-29.34104	-30.70339
7	9674.994	81.01998	4.67e-23	-31.55666	-28.96168	-30.54580
8	9690.667	28.32308	5.23e-23	-31.44388	-28.48560	-30.29150
9	9715.832	44.87943	5.68e-23	-31.36322	-28.04164	-30.06932
10	9752.362	64.28384	5.94e-23	-31.32102	-27.63615	-29.88560
11	9835.310	144.0014	5.31e-23	-31.43591	-27.38773	-29.85897
12	9914.584	135.7445*	4.81e-23	-31.53836	-27.12688	-29.81990

AIC: Akaike information criterion

SC: Schwarz information criterion

Vector autoregression model

- Granger因果检验
- 由此可见LNASDAQ和 LSP500是LBDTI的 Granger原因,而LBDTI 是LOILPRICE的 Granger原因

Pairwise Granger Causality Tests			
Date: 12/16/17 Time: 23:42			
Sample: 5/21/2001 8/01/2015			
Lags: 2			
Null Hypothesis:	Obs	F-Statistic	Prob.
DLNADAQ does not Granger Cause DLBDTI	5178	1.74658	0.0936
DLBDTI does not Granger Cause DLNADAQ		1.02087	0.4140
DLOILPRICE does not Granger Cause DLBDTI	5178	1.26196	0.2651
DLBDTI does not Granger Cause DLOILPRICE		2.32463	0.0229
DLSP500 does not Granger Cause DLBDTI	5178	1.86371	0.0712
DLBDTI does not Granger Cause DLSP500		1.52504	0.1537
DLSTEELPRICE does not Granger Cause DLBDTI	5178	1.00177	0.4277
DLBDTI does not Granger Cause DLSTEELPRICE		1.62811	0.1225
DLTANKERNUM does not Granger Cause DLBDTI	5178	0.55250	0.7949
DLBDTI does not Granger Cause DLTANKERNUM		1.38534	0.2067
DLTANKTON does not Granger Cause DLBDTI	5056	1.03282	0.4055
DLBDTI does not Granger Cause DLTANKTON		0.90473	0.5015

简单来说,变量X是变量Y的Granger原因,就是通过比较已知上一时刻所有信息,这一时刻的X的概率分布情况和已知上一时刻除Y以外的所有信息,这一时刻X的分布情况来判断Y对X是否存在因果关系。

• 多元回归模型

Dependent Variable: LBDTI Method: Least Squares Date: 12/17/17 Time: 20:48 Sample (adjusted): 3 604 Included observations: 602 after adjustments Coefficient Std. Error t-Statistic Prob. 30.57629 2.996668 10.20343 0.0000 LNASDAQ(-2) 0.603560 0.253212 2.383611 0.0175 LSP500(-2) -0.485602 0.295890 -1.641159 0.1013 LSTEELPRICE(-2) 0.363625 0.068711 5.292123 0.0000 LTANKERTON(-2) 4.836854 0.957968 5.049078 0.0000 LTANKERNUM(-2) -6.900668 0.937939 -7.357269 0.0000 LOILPRICE(-2) 0.349835 0.050039 6.991200 0.0000 R-squared 0.538373 Mean dependent var 6.843029 Adjusted R-squared 0.533717 S.D. dependent var 0.368491 S.E. of regression 0.251624 Akaike info criterion 0.089794 37.67206 Schwarz criterion 0.140960 Log likelihood -20.02806 Hannan-Quinn criter. F-statistic 115.6530 Durbin-Watson stat 0.114209 Prob(F-statistic) 0.000000

广义相加模型

Generalized Additive Model

——为了获得单变量的预测值

$$y(t) = g(t) + s(t) + h(t) + \varepsilon(t)$$

虽然我们使用VAR模型进行了多因素回归分析得到BDTI的表达式,但没有其各个变量的预测值仍然无法做出靠谱的预测。 所以我们需要对单变量进行了预测分析。

我们尝试了许多方法,例如谱分析方法和ARIMA方法,都无法获得有益的结果。这部分的详细内容请参见我们报告的附录C。

我们使用的是广义相加模型GAM,GAM是这样建模的:认为目标值由四个部分组成,一为趋势项,二为季节项,三为假日项,四为随机项。具体实现我们是用Facebook开发的开源大规模预测系统Prophet。它除了预测外,还能做很多有意思的事。

下面就以油价为例,阐述利用Prophet得到结果。如图,根据我们掌握的油价数据,也就是图中的黑色曲线,用分段线性拟合出趋势成分,也就是蓝色曲线。Prophet会从数据中找出转折点,来自动检测趋势变化。这里,我们只预测了未来一年的油价变化情况,也就是18-19年这一段蓝色曲线。蓝色区域表示置信区间,这里我们只设定了80%的置信度,当然可以更大,但再大我的电脑就跑不动了。

17

最上面的一幅图表示整个油价的走势。中间图表示通过对过去所有时间油价数据的分析,我们得到的一年中油价最有可能的变化规律,从图中可以看到,九月份油价往往最低,而一月最高。同理,最下面的图表示一周中油价最有可能的规律。但是鉴于一周中的数据往往缺乏代表性,被噪声所淹没,所以在我们的最终报告中并没有呈现第三幅图。

举三个指数进行分析,首先BDTI指数在一年中有明显的季节性,在北半球的夏季有一个低谷,而在公历新年是最高峰。如果进行横向对比发现,这个趋势与BCTI基本一致,与油价的季节性特性呈现明显的相反关系。我们认为,这个现象佐证了一个基本观点:油价降低,石油需求增加,油轮运输市场更景气。有趣的是,我们可以看出,在入冬季节,即九月初至十二月中旬, BCTI、 BDTI都有快速的上升,这反映了入冬之后能源需求增大的现象。同时可以看出租船市场在北半球春季较为火热,我们认为这是因为在冬季油轮市场火爆,各航运公司油轮不堪重负,在春季进行检修维护,所以租借已有船只盘活资金链。我们认为,国际航运市场的季节性不会变化,未来仍将如此。

虽然BDTI具有明显的季节性,然而其趋势一直是十分平稳的。图二是平稳化后的总体趋势。将未来三年的GAM预测的趋势(也就是去除掉季节性和节假日效应的总体趋势)代入VAR模型中,可以得到VAR模型给出的BDTI的预测值,在图中是蓝色虚线。可以看到蓝色实线,即GAM给出的BDTI趋势,和蓝色虚线,即VAR给出的BDTI趋势非常接近。可以看见,无论是GAM模型还是VAR模型,都给出了未来BDTI,虽然会出现上文所述的季节性波动,但是总体保持稳定,平衡在800点附近的趋势。

租船市场同样具有明显的季节性,但是总体上看,租船市场走势平稳,但是距克拉克森的报告显示,近年来许多 20 年期油轮即将退役,在新船入列之前各航运公司还是需要通过租船实现运转,所以估计未来租船市场会有小幅的上涨。

21

从右图的全球油轮数目可见,自两千年以来油轮造船市场持续火爆,全球油轮数量持续攀升,但是近年来有所放缓。据克拉克森预计,周期性的复苏预计将从2018年开始。随着2018年相当一部分油轮的船龄达到或超过20年,不少船舶将被送往拆船厂拆解。

我们断言,由于全球油轮数目将保持稳定的小幅上涨,而又有很多船只要退役,所以拆船市场会有所发展,为了弥补退役船只的缺口,新造船市场也会有所发展。