BIOS 662 Fall 2018

Linear Regression, Part II

David Couper, Ph.D.

 $david_couper@unc.edu$

or

couper@bios.unc.edu

https://sakai.unc.edu/portal

Outline

- ANOVA
- Matrix formulation
- Two-sample t-test
- Diagnostics
- Measurement error

• Recall that under $H_0: \beta = 0$,

$$t = \frac{\hat{\beta}}{\sqrt{s_{y.x}^2 / \sum_{i} (X_i - \bar{X})^2}} \sim t_{N-2}$$

• Equivalently,

$$t = \frac{[XY]/[X^2]}{\sqrt{s_{y.x}^2/[X^2]}} \sim t_{N-2}$$

• In general, if $T \sim t_{\nu}$, then $T^2 \sim F_{1,\nu}$. Thus

$$t^2 = \frac{[XY]^2/[X^2]}{s_{y.x}^2} \sim F_{1,N-2}$$

• Note

$$SSR = \sum (\hat{Y}_i - \overline{Y})^2 = \sum (\hat{\alpha} + \hat{\beta}X_i - \overline{Y})^2$$

$$= \sum (\overline{Y} - \hat{\beta}\overline{X} + \hat{\beta}X_i - \overline{Y})^2$$

$$= \sum \hat{\beta}^2 (X_i - \overline{X})^2$$

$$= \frac{[XY]^2}{[X^2]^2} \sum (X_i - \overline{X})^2 = \frac{[XY]^2}{[X^2]}$$

• Thus

$$t^2 = \frac{\text{SSR}}{\text{MSE}} = \frac{\text{SSR}}{\text{SSE}/(N-2)}$$

• If $\beta = 0$ then

$$\frac{\text{SSR}}{\sigma^2} \sim \chi_1^2 \perp \frac{\text{SSE}}{\sigma^2} \sim \chi_{N-2}^2$$

(Cochran's theorem: cf. Neter et al. p.76, 1996)

• Thus

$$t^2 = \frac{\text{SSR/1}}{\text{SSE/}(N-2)} \sim F_{1,N-2}$$

- For $H_0: \beta=0$ vs. $H_A: \beta\neq 0$, we can use F with $C_{\alpha}=\{F: F>F_{1,N-2;1-\alpha}\}$
- ullet For the two-sided alternative the F and t tests are equivalent
- \bullet For a one-sided alternative, use t

• ANOVA table:

Source	df	SS	MS	F
Regression	1	SSR	SSR	MSR/MSE
Residual	N-2	SSE	SSE/(N-2)	
Total	N-1	SST		

Matrix Formulation

• Let

$$oldsymbol{Y} = egin{pmatrix} Y_1 \ Y_2 \ dots \ Y_N \end{pmatrix}, \quad oldsymbol{X} = egin{pmatrix} 1 & X_1 \ 1 & X_2 \ dots & dots \ 1 & X_N \end{pmatrix}, \quad oldsymbol{\epsilon} = egin{pmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_N \end{pmatrix},$$

$$\boldsymbol{\beta} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

• Linear model

$$oldsymbol{Y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

Matrix Formulation

• Equations (1) and (2) from previous set of notes:

$$-\bar{Y} + \alpha + \beta \bar{X} = 0$$
$$-\sum_{i} X_{i}Y_{i} + \alpha \sum_{i} X_{i} + \beta \sum_{i} X_{i}^{2} = 0$$

• Equivalent to:

$$X'X\beta = X'Y$$

Matrix Formulation

• Therefore

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X'X})^{-1}\boldsymbol{X'Y}$$

• We can also show

$$SST = \mathbf{Y'Y} - \frac{1}{N}\mathbf{Y'JY}$$

$$SSR = \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{Y} - \frac{1}{N} \boldsymbol{Y}' \boldsymbol{J} \boldsymbol{Y}$$

$$SSE = \mathbf{Y'Y} - \hat{\boldsymbol{\beta}}' \mathbf{X'Y}$$

where \boldsymbol{J} is an $n \times n$ matrix of 1s

• Define

$$X = \begin{cases} 1 & \text{if in group 1} \\ 0 & \text{if in group 2} \end{cases}$$

- \bullet X is called an *indicator* or *dummy* variable
- Model

$$Y = \alpha + \beta X + \epsilon$$

• Suppose we have two groups of observations: Y_{1i} for $i=1,\ldots,n_1$ and Y_{2i} for $i=1,\ldots,n_2$

• Recall that the test statistic for the two sample t-test is

$$t = \frac{\bar{Y}_1 - \bar{Y}_2}{s_p \sqrt{1/n_1 + 1/n_2}}$$

where

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{N - 2}$$

• Let

$$N = n_1 + n_2$$

$$(Y_1,\ldots,Y_{n_1})=(Y_{11},\ldots,Y_{1n_1})$$

$$(Y_{n_1+1},\ldots,Y_N)=(Y_{21},\ldots,Y_{2n_2})$$

$$X_i = \begin{cases} 1 & \text{if in group 1} \\ 0 & \text{if in group 2} \end{cases}$$

• Consider the regression model:

$$Y_i = \alpha + \beta X_i + \epsilon_i; \quad i = 1, 2, 3, \dots, N$$

• Note that

$$[X^{2}] = \sum_{i} (X_{i} - \bar{X})^{2} = \sum_{i} X_{i}^{2} - N\bar{X}^{2}$$

$$= n_{1} - N \left(\frac{n_{1}}{N}\right)^{2}$$

$$= n_{1} \left(1 - \frac{n_{1}}{N}\right)$$

$$= \frac{n_{1}n_{2}}{N}$$

• Recall that

$$\hat{\beta} = \sum c_i Y_i$$
 where $c_i = (X_i - \bar{X})/[X^2]$

• Thus

$$\hat{\beta} = \frac{(1 - \bar{X}) \sum_{i=1}^{n_1} Y_i}{[X^2]} + \frac{(-\bar{X}) \sum_{i=n_1+1}^{N} Y_i}{[X^2]}$$

$$= \bar{Y}_1 - \bar{Y}_2$$

• We can show that

$$s_{y \cdot x}^2 = s_p^2$$

• Therefore:

$$t = \frac{\hat{\beta}}{\sqrt{s_{y\cdot x}^2 / \sum_{i} (X_i - \bar{X})^2}}$$
$$= \frac{\bar{Y}_1 - \bar{Y}_2}{s_p \sqrt{N/(n_1 n_2)}}$$

- Example: Body fat in Native American children
- Percent body fact (PBF) measured by bioelectric impedance and skinfold thickness
- Two tribes: Apache (mountains) and Tohona (desert)
- Question: Is the mean PBF the same in Apache and Tohona children?
- Samples: Tohona (n = 63); Apache (n = 35)

• Two sample t-test:

```
proc ttest;
   var pbf;
   class tribe;
The TTEST Procedure
Variable: pbf
                                   Std Dev
                                                Std Err
tribe
                N
                         Mean
Apache
               35
                      33.1757
                                    6.9215
                                                1.1700
Tohona
               63
                      37.3615
                                    8.0349
                                                 1.0123
Diff (1-2)
                      -4.1857
                                    7.6591
                                                 1.6147
Method
                 Variances
                                   DF
                                         t Value
                                                    Pr > |t|
                                                       0.0110
Pooled
                 Equal
                                   96
                                           -2.59
Satterthwaite
                 Unequal
                               79.523
                                           -2.71
                                                       0.0083
```

• Model

$$Y = \alpha + \beta X + \epsilon$$

where

$$Y = PBF$$

and

$$X = \begin{cases} 1 & \text{if Apache} \\ 0 & \text{if Tohona} \end{cases}$$

proc reg;
 model pbf=apache;

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	394.20974	394.20974	6.72	0.0110
Error	96	5631.59441	58.66244		
Corrected Total	97	6025.80415			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	37.36147	0.96496	38.72	<.0001
apache	1	-4.18574	1.61469	-2.59	0.0110

Diagnostics

- Assumptions for linear regression
 - 1. Linearity: $Y_i = \alpha + \beta X_i + \epsilon_i$
 - 2. Xs are fixed constants
 - 3. ϵ_i iid $\sim N(0, \sigma^2)$ (homogeneity of variance)
- Residual plot: Scatterplot of

$$(\hat{Y}_i, r_i) = (\hat{Y}_i, Y_i - \hat{Y}_i)$$

• If we see lack of homogeneity of variance or of linearity, consider transformations; see Table 10.28 (page 399) of the text

Diagnostics

- The following three pages contain prototypical residual plots indicating successively:
 - 1. linear regression model is appropriate
 - 2. assumption of linearity questionable
 - 3. assumption of constant variance questionable

Regression: Residuals

Regression: Residuals

Regression: Residuals

Regression: Example

 \bullet FEV₁ as a function of age in male children

proc reg;
 model fev1=age;

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	221.89640	221.89640	641.57	<.0001
Error	334	115.51840	0.34586		
Corrected Total	335	337.41480			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.07360	0.11279	0.65	0.5145
age	1	0.27348	0.01080	25.33	<.0001

Regression: Example cont.

Regression: Example cont.

 \bullet Regress $\log(\text{FEV}_1)$ on age for male children

proc reg;
 model logfev1=age;

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	28.76362	28.76362	651.53	<.0001
Error	334	14.74543	0.04415		
Corrected Total	335	43.50906			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.01569	0.04030	-0.39	0.6973
age	1	0.09846	0.00386	25.53	<.0001

Regression: Example cont.

Normality Diagnostics

- \bullet Assumption: The ϵ_i are normally distributed
- \bullet This assumption is not as important if N is large (CLT)
- Inference robust to small departures from normality
- Violations of other assumptions can suggest non-normality
- Tests of normality of residuals; beware lack of power
- qq-plot, histogram, boxplot of residuals

Normality Diagnostics: FEV₁

Normality Diagnostics: log(FEV₁)

Regression: Diagnostics

• Beware influential observations; always check scatterplot

Regression: Graphical Diagnostics in SAS

- Use ODS graphics in SAS 9.2 or later
- Default plots often sufficient, use options in plots= to specify particular plots

```
ods graphics on;
ods rtf file='diagnostics.rtf';
proc reg data=diagnostics;
  model y = x;

run; quit;
ods rtf close;
```

Regression: Graphical Diagnostics in SAS

Regression: Graphical Diagnostics in SAS

Regression: Graphical Diagnostics in SAS

Remedial Measures

- Transformations, e.g., $\log(Y) = \alpha + \beta X$
- Multiple regression, e.g., $Y = \alpha + \beta_1 X + \beta_2 X^2$
- Nonparametric procedures, e.g., Kendall's tau
- More sophisticated models allowing for
 - dependencies/clusters (e.g., GEE)
 - heterogeneity of variance (e.g., weighted least squares)

Regression: X Random

- \bullet Assumption: Xs are known
- \bullet Suppose X and Y are both random variables

$$Y = \alpha + \beta_{y \cdot x} X + \epsilon$$

$$X \perp \epsilon$$
; $Var(X) = \delta^2$

- Results on estimation, testing, and prediction still hold (Neter et al., 1996 p 85; Section 2.9.2 of Abraham and Ledolter, 2006)
- ullet The covariance between two random variables X and Y is defined as

$$Cov(X, Y) = E\{(X - \mu_X)(Y - \mu_Y)\}$$

Regression: X Random

• Now

$$\beta_{y \cdot x} = \frac{\operatorname{Cov}(Y, X)}{\operatorname{Var}(X)}$$

- Proof: We have Cov(a + bW, U) = b Cov(W, U)and Cov(W, U + V) = Cov(W, U) + Cov(W, V)
- Thus

$$Cov(Y, X) = Cov(\alpha + \beta_{y \cdot x} X + \epsilon, X)$$
$$= \beta_{y \cdot x} Cov(X, X) + Cov(\epsilon, X)$$
$$= \beta_{y \cdot x} Var(X)$$

• Instead of observing X, we observe

$$W = X + U$$

where U is a random variable with

$$E(U) = 0, \ \operatorname{Var}(U) = \tau^2$$
 $U \perp X, \ U \perp Y$

• Then

$$Cov(W, Y) = Cov(X + U, Y)$$

$$= \operatorname{Cov}(X, Y) + \operatorname{Cov}(U, Y) = \operatorname{Cov}(X, Y)$$

• By independence

$$Var(W) = Var(X) + Var(U) = \delta^2 + \tau^2$$

• Thus

$$\beta_{y \cdot w} = \frac{\text{Cov}(Y, W)}{\text{Var}(W)}$$

$$= \frac{\text{Cov}(Y, X)}{\delta^2 + \tau^2}$$

$$= \frac{\delta^2}{\delta^2 + \tau^2} \frac{\text{Cov}(Y, X)}{\delta^2}$$

$$= \frac{\delta^2}{\delta^2 + \tau^2} \beta_{y \cdot x}$$

• Because

$$0 \le \frac{\delta^2}{\delta^2 + \tau^2} \le 1,$$

it follows that

$$|\beta_{y \cdot w}| \le |\beta_{y \cdot x}|$$

• That is, there is attenuation towards the null

- ullet Thus if X is not determined precisely, we underestimate the strength of association between X and Y
- \bullet Reliability coefficient of X:

$$R_{\rm rel} = \frac{\delta^2}{\delta^2 + \tau^2}$$

• If $R_{\rm rel}$ is known,

$$\tilde{\beta} = R_{\text{rel}}^{-1} \, \hat{\beta}_{y \cdot w}$$

is an unbiased estimator of $\beta_{y\cdot x}$

• Because

$$\operatorname{Var}(\tilde{\beta}) = R_{\mathrm{rel}}^{-2} \operatorname{Var}(\hat{\beta}_{y \cdot w})$$

the t-statistic for testing $H_0: \beta_{y\cdot x} = 0$ is

$$t_{y \cdot x} = \frac{\tilde{\beta}}{\sqrt{\operatorname{Var}(\tilde{\beta})}} = \frac{R_{\text{rel}}^{-1} \hat{\beta}_{y \cdot w}}{\sqrt{R_{\text{rel}}^{-2} \operatorname{Var}(\hat{\beta}_{y \cdot w})}} = t_{y \cdot w}$$

- Suppose there are k independent measures of W made on each person in a study
- It can be shown that

$$Var(\bar{W}_k) = \delta^2 + \frac{\tau^2}{k}$$

• Therefore

$$\beta_{y \cdot \bar{w}_k} = \frac{\delta^2}{\delta^2 + \tau^2/k} \beta_{y \cdot x} \to \beta_{y \cdot x} \text{ as } k \to \infty$$

- ullet For example, suppose W is a physiological variable such as BP or cholesterol
- If we get two or more measures of W, the bias will be reduced
- For cholesterol, $R_{\rm rel} \approx 0.8$ and $\delta^2 + \tau^2 \approx 1600$
- Therefore

$$\tau^2 = 0.2(1600) = 320$$

• If k = 2, 1280/(1280 + 320/2) = 0.89

If
$$k = 3$$
, $1280/(1280 + 320/3) = 0.92$

- Measurement error is likely to be present in most situations; however, it is usually ignored because:
 - Often practically negligible (e.g., if can use precise instrumentation)
 - Interest is in inference/prediction based on observable random variables
- \bullet Random measurement error in Y is absorbed into ϵ