Curso de Graduação em Engenharia Mecatrônica Departamento de Engenharia Elétrica - FT - UnB Disciplina: Dispositivos e Circuitos Eletrônicos - Período 2003.1

Nota:

Professor: Geovany Araújo Borges

Prova 3: Tiristores, optoeletrônica e ampops - Data: 07/07/2003

Nome:	Matrícula:
-------	------------

Instruções:

- Tempo máximo de duração: 2 horas.
- Explique o desenvolvimento das questões. Resultados sem explicações e sem desenvolvimentos não serão aceitos;
- Não use aproximações, exceto quando explicitamente indicado;
- Não é permitido o uso de máquina calculadora;
- Quando forem solicitados resultados analíticos (*i.e.*, fórmulas literais), estes devem ser desenvolvidos envolvendo as variáveis de interesse e os parâmetros do modelo. Outras variáveis dependentes não devem estar presentes nas fórmulas.

Principais fórmulas:

- Amplificador operacional:

Modelo de primeira ordem (domínio s):

$$V_S(s) = \frac{A_0}{1 + \frac{s}{\omega_b}} \cdot (V_2(s) - V_1(s)),$$

no qual ω_b é a freqüência de corte de malha aberta e $\omega_t = \omega_b \cdot A_0$ é a freqüência de transição. As imperfeições DC são desprezadas.

Modelos de ordem zero (domínio de tempo):

 $v_S = A \cdot (v_2 - v_1)$, considerando ganho finito de malha aberta, e desconsiderando V_{OS} .

 $v_S = A \cdot (v_2 - v_1 + V_{OS})$, considerando ganho finito de malha aberta e imperfeições DC.

Sobre as imperfeições DC:

$$I_B = \frac{I_{B1} + I_{B2}}{2}.$$
 $I_{OS} = |I_{B1} - I_{B2}|.$

Questões:

1. O circuito da Figura 1(a) usa um SCR para acionar uma carga resistiva R_L por ângulo de disparo. O disparo ocorre quando, para $v_{AK} > 0$, a tensão v_{GK} entre os terminais G e K do SCR for igual a $V_{BE} > 0$, valor este que é mantido devido à junção PN existente entre os terminais G e K. Se v_{GK} for menor que V_{BE} , o SCR não dispara. No entanto, uma vez disparado, ele somente abre se ocorrer ao mesmo tempo de a corrente

que passa pela carga R_L ser nula e $v_{GK} < V_{BE}$. O instante de disparo a cada semiciclo pode ser controlado pelos valores das resistências R e R_{GK} . v(t) é uma fonte de tensão senoidal dada por $v(t) = A \cdot sen(\omega t)$, com $A, \omega > 0$. Supondo que o SCR funciona como uma chave unidirecional ideal, isto é, $v_{AK} = 0$ quando disparado, e $v_{AK} = v(t)$ quando em aberto, responda às questões seguintes:

- (a) Conforme ilustrado nos gráficos da Figura 1(b), desenvolva as fórmulas para calcular os tempos de disparo positivo t_P (pontos: 0,8) e negativo t_N (pontos: 0,8) em função dos parâmetros dados;
- (b) Sendo R_{GK} de valor fixo e podendo R pertencer ao intervalo $[R_{\min}, +\infty[$, a quais intervalos pertencem t_P (pontos: 0,5) e t_N (pontos: 0,4)? Considere que com $R = R_{\min}$, existe pelo menos um instante para o qual $v_{GK} = V_{BE}$ durante um período de v(t).
- 2. Os circuitos da Figura 2 são empregados na amplificação da corrente i_{λ} de fotodiodos, que é em grande parte decorrente da energia luminosa incidente. Os amplificadores operacionais usados nesses circuitos possuem corrente de polarização I_B e de deslocamento I_{OS} negligíveis, bem como um ganho em malha aberta A muito grande. No entanto, a tensão de deslocamento V_{OS} não pode ser descartada, como por exemplo na família do TL081. Desconsidere também efeitos ligados à saturação do amplificador operacional. Responda às questões abaixo:
 - (a) Determine a tensão de saída v_S do circuito da Figura 2(a) considerando i_λ e V_{OS} (pontos: 0,8).
 - (b) Determine a tensão de saída v_S do circuito da Figura 2(b) considerando i_λ e V_{OS} (pontos: 1,0).
 - (c) Considerando $R_2 >> R_1$, qual destes circuitos é melhor indicado para minimizar a influência de V_{OS} em v_S ? Justifique matematicamente sua resposta (pontos: 1,2).

Figura 1: (a) Circuito da questão 1. (b) Curvas de disparo.

Figura 2: Circuitos da questão 2

- 3. Um amplificador inversor com ganho nominal de -19 V/V para DC usa um amplificador operacional com ganho $A_0 = 10^5$ e freqüência de ganho unitário (ou de transição) de 10^6 Hz. Responda desconsiderando a influência de imperfeições DC:
 - (a) Qual o valor do ganho de realimentação β (pontos: 1,0)? Assuma $1-19\cdot 10^{-5}\approx 1$.
 - (b) Qual a freqüência de corte f_{3dB} , em Hertz, do circuito amplificador inversor (**pontos: 1,5**)?
- 4. No circuito da Figura 3, um amplificador operacional é usado na compensação de não-linearidades inerentes a diodos retificadores semicondutores. Neste caso, assume-se que os diodos D_1 e D_2 apresentam modelos queda-de-tensão-constante com parâmetros V_{D01} e V_{D02} , respectivamente. Desconsiderando as imperfeições DC do amplificador operacional, mas levando em conta um ganho finito A no modelo de ordem zero, analise o circuito e esboce a curva característica $v_S \times v_E$, apontando os principais pontos característicos (pontos: 2,0). Sugestão: monte duas malhas de realimentação, uma para cada diodo em condição de polarização direta.

Figura 3: Circuito da questão 4

BOA PROVA!