madrid_2007

In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Ridg
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\csvs_per_year\csvs_per_year\madrid_200
df

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2007- 12-01 01:00:00	NaN	2.86	NaN	NaN	NaN	282.200012	1054.000000	NaN	4.030000	156.1
1	2007- 12-01 01:00:00	NaN	1.82	NaN	NaN	NaN	86.419998	354.600006	NaN	3.260000	80.8
2	2007- 12-01 01:00:00	NaN	1.47	NaN	NaN	NaN	94.639999	319.000000	NaN	5.310000	53.0
3	2007- 12-01 01:00:00	NaN	1.64	NaN	NaN	NaN	127.900002	476.700012	NaN	4.500000	105.3
4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.5
225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	6.7
225116	2007- 03-01 00:00:00	NaN	0.16	NaN	NaN	NaN	46.820000	51.480000	NaN	22.150000	5.7
225117	2007- 03-01 00:00:00	0.24	NaN	0.20	NaN	0.09	51.259998	66.809998	NaN	18.540001	13.0
225118	2007- 03-01 00:00:00	0.11	NaN	1.00	NaN	0.05	24.240000	36.930000	NaN	NaN	6.6
225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	10.2

225120 rows × 17 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 225120 entries, 0 to 225119
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	date	225120 non-null	object
1	BEN	68885 non-null	float64
2	CO	206748 non-null	float64
3	EBE	68883 non-null	float64
4	MXY	26061 non-null	float64
5	NMHC	86883 non-null	float64
6	NO_2	223985 non-null	float64
7	NOx	223972 non-null	float64
8	OXY	26062 non-null	float64
9	0_3	211850 non-null	float64
10	PM10	222588 non-null	float64
11	PM25	68870 non-null	float64
12	PXY	26062 non-null	float64
13	S0_2	224372 non-null	float64
14	TCH	87026 non-null	float64
15	TOL	68845 non-null	float64
16	station	225120 non-null	int64
dtyp	es: float	64(15), int64(1),	object(1)

memory usage: 29.2+ MB

In [4]: df1=df.dropna()
 df1

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	F
4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.50
21	2007- 12-01 01:00:00	1.98	0.31	2.56	6.06	0.35	76.059998	208.899994	1.70	1.000000	37.79
25	2007- 12-01 01:00:00	2.82	1.42	3.15	7.02	0.49	123.099998	402.399994	2.60	7.160000	70.80
30	2007- 12-01 02:00:00	4.65	1.89	4.41	8.21	0.65	151.000000	622.700012	3.55	58.080002	117.09
47	2007- 12-01 02:00:00	1.97	0.30	2.15	5.08	0.33	78.760002	189.800003	1.62	1.000000	34.74
225073	2007- 02-28 23:00:00	2.12	0.47	2.51	4.99	0.05	43.560001	83.889999	2.57	13.090000	21.86
225094	2007- 02-28 23:00:00	0.87	0.45	1.19	2.66	0.13	40.000000	61.959999	1.79	20.440001	15.07
225098	2007- 03-01 00:00:00	0.95	0.41	1.55	3.11	0.05	36.090000	63.349998	1.74	17.160000	9.21
225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	6.76
225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	10.26

25443 rows × 17 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: | sns.heatmap(df1.corr())
Out[6]: <AxesSubplot:>
                                                        -1.0
            BEN
             CO
                                                        - 0.8
            EBE
            MXY
                                                        - 0.6
           NMHC
           NO 2
                                                        0.4
            NŌx
            OXY
                                                        - 0.2
            03
           PMI0
                                                        - 0.0
           PM25
            PXY
            SO 2
            TĊH
            TOL
          station
                In [7]: plt.plot(df1["EBE"],df1["PXY"],"o")
Out[7]: [<matplotlib.lines.Line2D at 0x247361778e0>]
          30
          25
          20
          15
          10
           5
           0
                                 15
                                        20
                                              25
                           10
                                                     30
In [8]: data=df[["EBE","PXY"]]
In [9]: # sns.stripplot(x=df["EBE"],y=df["PXY"],jitter=True,marker='o',color='blue')
In [10]: x=df1.drop(["EBE"],axis=1)
         y=df1["EBE"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

LINEAR

```
In [11]: li=LinearRegression()
         li.fit(x_train,y_train)
Out[11]: LinearRegression()
In [12]: prediction=li.predict(x_test)
         plt.scatter(y_test,prediction)
Out[12]: <matplotlib.collections.PathCollection at 0x247361f8130>
           16
           14
           12
           10
           8
            6
           4
           2
           0
                              10
                                      15
                                             20
                                                     25
                      5
In [13]: lis=li.score(x_test,y_test)
In [14]: |df1["TCH"].value_counts()
Out[14]: 1.34
                  1130
         1.33
                  1067
         1.35
                  1037
         1.36
                  1002
         1.32
                   991
         4.07
                     1
         2.71
                     1
         0.40
                     1
         0.38
                     1
         3.32
         Name: TCH, Length: 250, dtype: int64
In [15]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
         df1.loc[df1["TCH"]>1.40,"TCH"]=2
         df1["TCH"].value_counts()
Out[15]: 1.0
                 14025
         2.0
                 11418
         Name: TCH, dtype: int64
In [16]: # Lasso
```

```
In [17]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
Out[17]: Lasso(alpha=5)
```

In [18]: prediction1=la.predict(x_test)
 plt.scatter(y_test,prediction1)

Out[18]: <matplotlib.collections.PathCollection at 0x247370a44c0>

In [19]: las=la.score(x_test,y_test)

RIDGE

```
In [20]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

Out[20]: Ridge(alpha=1)

```
In [21]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[21]: <matplotlib.collections.PathCollection at 0x2473614b460>

In [22]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [23]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[23]: ElasticNet()

```
In [24]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[24]: <matplotlib.collections.PathCollection at 0x24737132c40>


```
In [25]: ens=en.score(x_test,y_test)
In [26]: print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.8868504352876135
Out[26]: 0.8718454557494321
         LOGISTIC
In [27]: | g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[27]: Low
                 14025
         High
                 11418
         Name: TCH, dtype: int64
In [28]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [29]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out[29]: LogisticRegression()
In [30]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[30]: <matplotlib.collections.PathCollection at 0x24736b8cdf0>
          Low
                                                      High
              Low
In [31]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [32]: | from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
In [33]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [34]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [35]: |rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[35]: RandomForestClassifier()
In [36]: parameter={
              'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
In [37]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accur
         grid search.fit(x train,y train)
Out[37]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [38]: rfcs=grid_search.best_score_
In [39]: rfc_best=grid_search.best_estimator_
```

```
In [40]: from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',"N
Out[40]: [Text(2385.3243243243246, 2019.0857142857144, '0 3 <= 16.525\ngini = 0.495
         nsamples = 11230 nvalue = [9794, 8016] nclass = Yes'),
          Text(1211.5135135135135, 1708.457142857143, 'CO <= 0.795\ngini = 0.234\nsa
         mples = 3587\nvalue = [768, 4915]\nclass = No'),
          Text(643.4594594594595, 1397.8285714285716, 'BEN <= 0.595\ngini = 0.325\ns
         amples = 2209\nvalue = [719, 2806]\nclass = No'),
          Text(321.72972972972974, 1087.2, 'PXY <= 0.405\ngini = 0.495\nsamples = 26
         5\nvalue = [176, 216]\nclass = No'),
          Text(160.86486486486487, 776.5714285714287, '0 3 <= 8.09\ngini = 0.306\nsa
         mples = 50\nvalue = [69, 16]\nclass = Yes'),
          Text(80.43243243243, 465.9428571428573, 'PXY <= 0.345\ngini = 0.5\nsamp
         les = 16\nvalue = [11, 11]\nclass = Yes'),
          Text(40.21621621621622, 155.3142857142857, 'gini = 0.346\nsamples = 7\nval
         ue = [2, 7]\nclass = No'),
          Text(120.64864864864865, 155.3142857142857, 'gini = 0.426\nsamples = 9\nva
         lue = [9, 4]\nclass = Yes'),
          Text(241.2972972972973, 465.9428571428573, 'PM25 <= 18.455\ngini = 0.146\n
         samples = 34\nvalue = [58, 5]\nclass = Yes'),
          Text(201.0810810810811, 155.3142857142857, 'gini = 0.069\nsamples = 29\nva
In [41]: |print("Linear:",lis)
         print("Lasso:",las)
         print("Ridge:",rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         print("Random Forest:",rfcs)
```

Linear: 0.8868506867530143 Lasso: 0.47173015549407227 Ridge: 0.8868504352876135 ElasticNet: 0.8232884213400748 Logistic: 0.5465740862046378 Random Forest: 0.8695115103874228

Best Model is Random Forest

madrid_2008

In [42]: df2=pd.read_csv(r"C:\Users\user\Downloads\csvs_per_year\csvs_per_year\madrid_20
df2

Out[42]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	0_3	PI
0	2008- 06-01 01:00:00	NaN	0.47	NaN	NaN	NaN	83.089996	120.699997	NaN	16.990000	16.889
1	2008- 06-01 01:00:00	NaN	0.59	NaN	NaN	NaN	94.820000	130.399994	NaN	17.469999	19.040
2	2008- 06-01 01:00:00	NaN	0.55	NaN	NaN	NaN	75.919998	104.599998	NaN	13.470000	20.270
3	2008- 06-01 01:00:00	NaN	0.36	NaN	NaN	NaN	61.029999	66.559998	NaN	23.110001	10.850
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160
226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.450
226388	2008- 11-01 00:00:00	NaN	0.30	NaN	NaN	NaN	41.880001	48.500000	NaN	35.830002	15.020
226389	2008- 11-01 00:00:00	0.25	NaN	0.56	NaN	0.11	83.610001	102.199997	NaN	14.130000	17.540
226390	2008- 11-01 00:00:00	0.54	NaN	2.70	NaN	0.18	70.639999	81.860001	NaN	NaN	11.910
226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.690

226392 rows × 17 columns

In [43]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 226392 entries, 0 to 226391
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	date	226392 non-null	object
1	BEN	67047 non-null	float64
2	CO	208109 non-null	float64
3	EBE	67044 non-null	float64
4	MXY	25867 non-null	float64
5	NMHC	85079 non-null	float64
6	NO_2	225315 non-null	float64
7	NOx	225311 non-null	float64
8	OXY	25878 non-null	float64
9	0_3	215716 non-null	float64
10	PM10	220179 non-null	float64
11	PM25	67833 non-null	float64
12	PXY	25877 non-null	float64
13	S0_2	225405 non-null	float64
14	TCH	85107 non-null	float64
15	TOL	66940 non-null	float64
16	station	226392 non-null	int64
dtyp	es: float	64(15), int64(1),	object(1)

memory usage: 29.4+ MB

In [44]: df3=df2.dropna()
 df3

Out[44]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	0_3	PI
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160
21	2008- 06-01 01:00:00	0.32	0.37	1.00	0.39	0.33	21.580000	22.180000	1.00	35.770000	7.900
25	2008- 06-01 01:00:00	0.73	0.39	1.04	1.70	0.18	64.839996	86.709999	1.31	23.379999	14.760
30	2008- 06-01 02:00:00	1.95	0.51	1.98	3.77	0.24	79.750000	143.399994	2.03	18.090000	31.139
47	2008- 06-01 02:00:00	0.36	0.39	0.39	0.50	0.34	26.790001	27.389999	1.00	33.029999	7.620
226362	2008- 10-31 23:00:00	0.47	0.35	0.65	1.00	0.33	22.480000	25.020000	1.00	33.509998	10.200
226366	2008- 10-31 23:00:00	0.92	0.46	1.21	2.75	0.19	78.440002	106.199997	1.70	18.320000	14.140
226371	2008- 11-01 00:00:00	1.83	0.53	2.22	4.51	0.17	93.260002	158.399994	2.38	18.770000	20.750
226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.450
226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.690

25631 rows × 17 columns

In [45]: df3=df3.drop(["date"],axis=1)

```
In [46]: sns.heatmap(df3.corr())
```

Out[46]: <AxesSubplot:>


```
In [47]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [48]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[48]: LinearRegression()

```
In [49]: prediction=li.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[49]: <matplotlib.collections.PathCollection at 0x24737a11fa0>


```
In [50]: lis=li.score(x_test,y_test)
In [51]: df3["TCH"].value_counts()
Out[51]: 1.38
                  1274
         1.37
                  1246
         1.36
                  1243
         1.39
                  1242
         1.35
                  1209
         2.41
                     1
         2.95
                     1
         0.98
                     1
         2.64
                     1
         2.61
         Name: TCH, Length: 177, dtype: int64
In [52]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[52]: 2.0
                 12904
         1.0
                 12727
         Name: TCH, dtype: int64
```

Lasso

1.0

1.5

```
In [53]: la=Lasso(alpha=5)
         la.fit(x_train,y_train)
Out[53]: Lasso(alpha=5)
In [54]: prediction1=la.predict(x_test)
         plt.scatter(y_test,prediction1)
Out[54]: <matplotlib.collections.PathCollection at 0x247371ca610>
```


2.0

2.5

3.0

```
In [55]: las=la.score(x_test,y_test)
```

Ridge

```
In [56]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

```
Out[56]: Ridge(alpha=1)
```

```
In [57]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[57]: <matplotlib.collections.PathCollection at 0x24737218be0>


```
In [58]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [59]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[59]: ElasticNet()

```
In [60]: prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[60]: <matplotlib.collections.PathCollection at 0x2473726ac70>
          3.5
          3.0
          2.5
          2.0
          1.5
                         1.5
                                           2.5
                                                    3.0
                1.0
                                  2.0
In [61]: ens=en.score(x_test,y_test)
In [62]: print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.6788306248393834
Out[62]: 0.6510323782465062
         Logistic
In [63]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
Out[63]: High
                  12904
         Low
                  12727
         Name: TCH, dtype: int64
In [64]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [65]: lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out[65]: LogisticRegression()
```

```
In [66]: prediction3=lo.predict(x_test)
   plt.scatter(y_test,prediction3)
```

Out[66]: <matplotlib.collections.PathCollection at 0x24736a44be0>


```
In [67]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [68]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV

In [69]: g1={"TCH":{"Low":1.0,"High":2.0}}
    df3=df3.replace(g1)

In [70]: x=df3.drop(["TCH"],axis=1)
    y=df3["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [71]: rfc=RandomForestClassifier()
    rfc.fit(x_train,y_train)

Out[71]: RandomForestClassifier()

In [72]: parameter={
        'max_depth':[1,2,4,5,6],
        'min_samples_leaf':[5,10,15,20,25],
        'n_estimators':[10,20,30,40,50]
}
```

```
In [73]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accur")
         grid_search.fit(x_train,y_train)
Out[73]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [74]: rfcs=grid_search.best_score_
In [75]: rfc_best=grid_search.best_estimator_
In [76]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"N
          Text(4417.5, 155.3142857142857, 'gini = 0.006\nsamples = 1607\nvalue = [7, 🔺
         2470]\nclass = No')]
```

```
In [77]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.678849766548985 Lasso: 0.4704282524306074 Ridge: 0.6788306248393834 ElasticNet: 0.5841605950723971 Logistic: 0.506892067620286

Random Forest: 0.8297755793565964

```
In [ ]:
```