MA3205 AY24/25 Sem 2

by ngmh

Chapter 2 - 8

EP2.36 There is a bijection $F: \mathcal{P}(X) \to \{0,1\}^X$.

$$F(a)(x) = \left\{ \begin{array}{ll} 0 & \text{if } x \in A \\ 1 & \text{if } x \notin A \end{array} \right. \text{ which is } 1-1 \text{ and onto.}$$

D2.37 Cartesian Product Let F be a function with dom(F) as a set. $\prod F = \{f: f \text{ is a function} \land dom(f) = dom(F) \land \forall x \in dom(F) \ [f(x) \in F(x)]\}.$ If $F = \langle A_i : i \in I \rangle$, then

 $\prod F = \prod_{i \in I} A_i = \{f: f \text{ is a function} \land dom(f) = I \land \forall i \in I \ [f(i) \in A_i] \}$ **A2.38 Axiom of Choice** If $\langle A_i : i \in I \rangle$ is a sequence of sets such that $\forall i \in I \ [A_i \neq \emptyset]$, then $\prod_{i \in I} A_i \neq \emptyset$

T5.11 Schröder-Bernstein If $A \lesssim B$ and $B \lesssim A$, then $A \approx B$.

D5.19 A set is finite if there exits $n \in \mathbb{N}$ such that $n \approx A$. A is infinite if it is not finite. A is countable if $A \lesssim \mathbb{N}$. A is uncountable if it is not countable.

D6.45/13 Partial/Linear/Well Order

- 1. $\forall x \in X [x \not< x]$
- 2. $\forall x, y, z \in X [(x < y \land y < z) \Rightarrow x < z]$
- 3. $\forall x, y \in X [x = y \lor x \lhd y \lor y \lhd x]$ (linear order)
- 4. $\forall A \subseteq X \ [A \neq \emptyset \Rightarrow \exists a \in A \ \forall a' \in A \ [a \leq a']]$ (well order)

D6.9 Maximal / **Minimal Element** $x \in X$ is maximal if $\forall y \in X \ [x \not< y]$. **D6.11** $C \subseteq X$ is a chain if $\forall x, y \in C \ [x \text{ and } y \text{ are comparable}]$. $A \subseteq X$ is an antichain if $\forall x, y \in A \ [x \neq y \Rightarrow x \text{ and } y \text{ are incomparable}]$. A chain is maximal if there is no chain $C' \subseteq X$ where $C \subsetneq C'$. \emptyset and singletons are chains and antichains.

L6.12 For a finite partial order, every chain or antichain is contained in a maximal chain or antichain.

D6.16 For a linear order $\langle X, < \rangle$ $pred_{\langle X, < \rangle}(x) = \{x' \in X : x' < x\}$, or the set of predecessors of x in X for the ordering <. A subset $A \subseteq X$ is downwards closed if $\forall a \in A \ \forall x \in X \ [x < a \Rightarrow x \in A]$. The predecessor subset is downwards closed along with the entire set.

D6.33/34 If $\langle X, \operatorname{\triangleleft} \rangle$ and $\langle Y, \operatorname{\prec} \rangle$ are linear orders, $f: X \to Y$ is an isomorphism between them if f is (1-1) and onto and $\forall x,y \in X \ [x \operatorname{\triangleleft} y \Leftrightarrow f(x) \operatorname{\prec} f(y)]$. Two linear orders are isomorphic if f exists which is an isomorphism.

D6.35 $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ are linear orders. $f: X \to Y$ is an embedding it is 1-1 and order preserving. $\langle X, < \rangle \hookrightarrow \langle Y, \prec \rangle$.

D6.42 A linear order $\langle X, \lhd \rangle$ has type omega ω if X is infinite and $\forall x \in X$, $pred_{\langle X, \lhd \rangle}(x)$ is finite.

L7.6 (AC) A countable union of countable sets is countable.

L7.8 $\mathbb{Q} \approx \mathbb{N}$.

F7.12 If $x, y \in \mathbb{R}$ and x < y, there is a $q \in \mathbb{Q}$ with x < q < y.

T7.14/15 \approx : $2^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$, $\mathcal{P}(\mathbb{N} \times \mathbb{N})$, $\mathcal{P}(\mathbb{N})$, $\mathcal{P}(\mathbb{Q})$, \mathbb{R} , \mathfrak{c} , \mathbb{R}^2 $\mathbb{R}^{\mathbb{N}}$.

C7.24 If $B \approx C$, then $A^B \approx A^C$.

C7.25 If $A \lesssim D$, $B \lesssim C$, and $B \neq \emptyset$, then $A^B \lesssim D^C$.

L7.27 Suppose A, B, and C are sets with $B \cap C = \emptyset$. $A^B \times A^C \approx A^{B \cup C}$.

C7.28 $\mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$ using $A \cup B = \mathbb{N}, A \cap B = \emptyset$.

L7.31/32 Let A, B, C be sets. $A^{(B \times C)} \approx (A^B)^C$. $(\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$.

E7.37 $\mathbb{R}^{\mathbb{R}} \approx 2^{\mathbb{R}}$.

E7.39 There are only c many increasing functions.

D8.8 Let $\langle X, < \rangle$ be a partial order and $A \subseteq X.$ $x \in X$ is an upper bound of A if $\forall a \in A \ [a \le x].$ x is a lower bound if $\forall a \in A \ [x \le a].$ Let U be the set of upper bounds of A and L be the set of lower bounds of A. If there exists $u \in U$ such that $\forall x \in U \ [u \le x]$, then u is the supremum of A in X or $sup_X(A)$ or minimal upper bound. For L and $[x \le l]$, it is called the infimum or $inf_X(A)$ or greatest lower bound. There can only be at most one supremum or infimum.

D8.13 A linear order $\langle X, < \rangle$ is dense if

 $\forall x,y \in X \; \exists z \in X \; [x < y \Rightarrow x < z < y].$

D8.14 A linear order is without endpoints if it has neither a maximal nor minimal element. A countable dense linear order with no endpoints is universal for all countable linear orders; every countable linear order embeds into such an order. **T8.15 (Cantor, AC)** Suppose $\langle X, < \rangle$ is a non-empty dense linear order without endpoints. Let $\langle Y, \prec \rangle$ be any countable linear order. Then $\langle Y, \prec \rangle \hookrightarrow \langle X, < \rangle$. **T8.16 (Cantor)** Let $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ be non-empty countable dense linear orders without endpoints. Then they are isomorphic.

9. Well-Ordered Sets

F9.1 If $\langle X, < \rangle$ is a linear order of type ω , then it is a well-order.

L9.2 Suppose A and B are downwards closed subsert of X where $\langle X, < \rangle$ is a well-order. If $\langle A, < \rangle \cong \langle B, < \rangle$, then A = B.

C9.3 Suppose $\langle X, < \rangle$ is a well-order, and $x < x' \in X$. Then

 $\langle pred_{\langle X, < \rangle}(x'), < \rangle \ncong \langle pred_{\langle X, < \rangle}(x), < \rangle.$

C9.4 Suppose $\langle X, < \rangle$ is a well-order. Then for any $x \in X$,

 $\langle pred_{\langle X, < \rangle}(x), < \rangle \not\cong \langle X, < \rangle.$

L9.5 If $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ are isomorphic well-orders, then the isomorphism between them is unique.

T9.6 Suppose $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ are well-orders. Then exactly one of the following holds:

- 1. $\langle X, < \rangle \cong \langle Y, \prec \rangle$
- 2. $\exists x \in X \ [\langle pred_{\langle X, < \rangle}(x), < \rangle \cong \langle Y, \prec \rangle]$
- 3. $\exists y \in Y \ [\langle X, < \rangle \cong \langle pred_{\langle Y, \prec \rangle}(y), \prec \rangle]$

E9.11 Define the product of X and Y to be $Z = Y \times X$. The dictionary order \triangleleft on Z is a well-order.

E9.13 Given well-orders $\langle X, <_X \rangle \cong \langle A, <_A \rangle, \langle Y, <_Y \rangle \cong \langle B, <_B \rangle$, then the product and sum of $\langle X, <_X \rangle, \langle Y, <_Y \rangle \cong \langle A, <_A \rangle, \langle B, <_B \rangle$.

10. Ordinals

 $WO = \{\langle X, \langle \rangle : X \text{ is a set } \land \langle \text{ is a well-ordering of } X \}$

10.1 Basic Properties of Ordinals

D10.1 A set x is transitive if every element of x is a subset of x, or $\forall y \ [y \in x \Rightarrow y \subset x]$.

D10.2 Ordinals A set α is an ordinal if it is transitive and well-ordered by \in . Let $\in_{\alpha} = \{\langle \beta, \gamma \rangle \in \alpha \times \alpha : \beta \in \gamma \}$. α is an ordinal if α is transitive and $\langle \alpha, \in_{\alpha} \rangle$ is a well-order. The subscript of \in_{α} is often omitted.

F10.3 $\mathbb N$ is an ordinal. Every $n \in \mathbb N$ is also an ordinal.

T10.4 Let x be an ordinal. The following hold:

- 1. $\forall y \in x \ [y \text{ is an ordinal } \land y = pred_{\langle x, \in \rangle}(y)]$
- 2. if y is any ordinal and $\langle x, \in \rangle \cong \langle y, \in \rangle$ then x = y
- 3. if y is any ordinal, then exactly one of the following things hold:

 $x \in y, x = y, y \in x$

- 4. if y, z are ordinals and $x \in y$ and $y \in z$, then $x \in z$
- 5. if C is a non-empty class of ordinals, then $\exists y \in \mathbb{C} \ \forall z \in \mathbb{C} \ [y \in z \lor y = z]$

D10.5 ORD = $\{\alpha : \alpha \text{ is an ordinal}\}\$ is the class of all ordinals.

T10.6 Burali-Forti ORD is not a set.

L10.7 Every transitive set of ordinals is an ordinal.

T10.8 Let $\langle X, < \rangle$ be a well-ordered set. Then there exists a unique α such that $\langle X, < \rangle \cong \langle \alpha, \in_{\alpha} \rangle$.

D10.11 If $\langle X, < \rangle$ is any well-ordered set, then $otp(\langle X, < \rangle)$, or the order type of $\langle X, < \rangle$ is the unique ordinal α such that $\langle X, < \rangle$ is isomorphic to $\langle \alpha, \in_{\alpha} \rangle$.

L10.13 For ordinals α , β , $\alpha < \beta$ iff $\alpha \subseteq \beta$.

L10.14 If A is a non-empty set of ordinals, then $min(A) = \bigcap A$. If A is any set of ordinals, then $sup_{\mathbf{ORD}}(A) = \bigcup A$.

L10.15 For any α , $S(\alpha)$ is an ordinal, $\alpha < S(\alpha)$, and

 $\forall \beta \ [\beta < S(\alpha) \iff \beta \leq \alpha].$

D10.16 α is a successor ordinal if $\exists \beta \ [\alpha = S(\beta)]$. α is a limit ordinal if $\alpha \neq 0$ and α is not a successor ordinal.

L10.17 An ordinal α is a natural number iff $\forall \beta \leq \alpha \ [\beta = 0 \lor \beta \text{ is a successor ordinal}].$

Induction and Recursion on the Ordinals

T10.19 Let $P(\alpha)$ be some property. If $\forall \alpha \in \mathbf{ORD} \ [\forall \beta < \alpha \ [P(\beta)] \Longrightarrow P(\alpha)]$ then $\forall \alpha \in \mathbf{ORD} \ [P(\alpha)]$.

D10.20 Let $\mathbf{FOD} = \{\sigma : \sigma \text{ is a function } \land \exists \alpha \in \mathbf{ORD} \ [dom(\sigma) = a] \}$ denote the class of all functions whose domain is some ordinal. An ordinal extender is a function $\mathbf{E} : \mathbf{FOD} \to \mathbf{V}$. When you plug in a function with domain α into an ordinal extender, the output tells you what the value of the function at α ought to be

T10.21 Suppose $E: FOD \to V$ is any extender. Then there exists a unique function $F: ORD \to V$ satisfying the condition that

 $\forall \alpha \in \mathbf{ORD} \ [\mathbf{F}(\alpha) = \mathbf{E}(\mathbf{F} \upharpoonright \alpha)].$ The function generated is a proper class and not a set. $\mathbf{F} \upharpoonright \alpha$ is a function with $dom(\mathbf{F} \upharpoonright \alpha) = \alpha$ because $\alpha \subseteq \mathbf{ORD}$.

EP10.24 Define $V_0 = \emptyset$. Fix $\alpha \in \mathbf{ORD}$ and suppose V_β is given for all $\beta < \alpha$. If $\alpha = S(\beta)$ for some β let $V_\alpha = \mathcal{P}(V_\beta)$. If α is a limit ordinal, then $V_\alpha = \bigcup \{V_\beta : \beta < \alpha\}$. Define $\mathbf{E} : \mathbf{FOD} \to \mathbf{V}$ as follows. Fix $\sigma \in \mathbf{FOD}$. Let $\alpha = dom(\sigma) \in \mathbf{ORD}$. If $\alpha = 0$, $\mathbf{E}(\sigma) = \emptyset$. If α is a successor ordinal, $\exists !\beta, S(\beta) = \alpha$. Then $\beta \in \alpha$, so $\sigma(\beta)$ is defined and in \mathbf{V} . Let $\mathbf{E}(\sigma) = \mathcal{P}(\sigma(\beta))$. If α is a limit ordinal, then let $\mathbf{E}(\sigma) = \bigcup ran(\sigma)$.

E10.26 Call C trans-finitely inductive if:

- 1. 0 ∈ C
- 2. $\forall x \in \mathbb{C} [S(x) \in \mathbb{C}]$
- 3. for any set $X \subseteq \mathbb{C}, \bigcup X \in \mathbb{C}$

ORD is the smallest trans-finitely inductive class.

E10.27 Let α be any ordinal. If $X \subseteq \alpha$, then $otp(\langle X, \in \rangle) \leq \alpha$.

E10.28 Let α be any ordinal. α is a limit ordinal iff $\bigcup \alpha = \alpha$.

E10.29 For EP10.24, for each $\alpha \in \mathbf{ORD}$, V_{α} is transitive and $\bigcup_{\alpha \in \mathbf{ORD}} V_{\alpha}$ is transitive, $\alpha \subseteq V_{\alpha}$ and $\alpha \notin V_{\alpha}$.

11. Ordinal Arithmetic

11.1 Addition and Multiplication

D11.1 Let $\langle X, <_X \rangle$ and $\langle Y, <_Y \rangle$ be well-orders. Define

 $X \oplus Y = (\{0\} \times X) \cup (\{1\} \times Y)$. Define $<_{X \oplus Y}$ to be:

- 1. $\forall x, x' \in X \left[\langle 0, x \rangle <_{X \oplus Y} \langle 0, x' \rangle \iff x <_X x' \right]$
- 2. $\forall y, y' \in Y \left[\langle 1, y \rangle <_{X \oplus Y} \langle 1, y' \rangle \iff y <_Y y' \right]$
- 3. $\forall x \in X \forall y \in Y \left[\langle 0, x \rangle <_{X \oplus Y} \langle 1, y \rangle \right]$

Then it is a well-order.

D11.2 Suppose α and β are ordinals. Define $\alpha+\beta$ to be the order-type of the well-order $\langle \alpha \oplus \beta, <_{\alpha \oplus \beta} \rangle$, where $<_{\alpha} = \in_{\alpha}$ and $<_{\beta} = \in_{\beta}$.

L11.4 Let $\langle X, <_X \rangle, \langle Y, <_Y \rangle, \langle Z, <_Z \rangle$ be well-orders. Suppose $A, B \subseteq Z$.

Assume $A \cup B = Z$ and $\forall a \in A \ \forall b \in B \ [a <_Z b]$. Then if

 $\langle A, <_Z \rangle \cong \langle X, <_X \rangle$ and $\langle B, <_Z \rangle \cong \langle Y, <_Y \rangle$, then $\langle Z, <_Z \rangle \cong \langle X \oplus Y, <_{X \oplus Y} \rangle$.

L11.5 For any α, β, γ :

- 1. $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- 2. $\alpha + 0 = \alpha$
- 3. $\alpha + 1 = S(\alpha)$
- 4. $\alpha + S(\beta) = S(\alpha + \beta)$
- 5. If β is a limit ordinal, then $\alpha + \beta = \sup\{\alpha + \xi : \xi < \beta\}$

R11.6 (2), (3), (5) can be used to give an inductive definition of +. For a fixed α , we can define \dotplus which is equivalent to + on **ORD** by:

- 1. $\alpha + 0 = \alpha$
- 2. $\alpha + S(\beta) = S(\alpha + \beta)$
- 3. if β is a limit ordinal, then $\alpha + \beta = \sup\{\alpha + \xi : \xi < \beta\}$

D11.7 Let α and β be ordinals. Let $<_{\alpha\cdot\beta}$ be the dictionary order on $\beta\times\alpha$. That is, for $\langle\zeta,\xi\rangle,\langle\zeta',\xi'\rangle\in\beta\times\alpha,\langle\zeta,\xi\rangle<_{\alpha\cdot\beta}\langle\zeta',\xi'\rangle$ iff either $\zeta<\zeta'$ or $\zeta=\zeta'$ and $\xi<\xi'$. Then it is a well-order and $\alpha\cdot\beta=otp(\langle\beta\times\alpha,<_{\alpha\cdot\beta}\rangle)$ which is β copies of α .

L11.8 Suppose α, β, γ are ordinals. Suppose $A \subseteq \gamma$ and $\langle A, \in \rangle \cong \langle \beta, \in \rangle$.

Then $\langle A \times \alpha, <_{\alpha \cdot \gamma} \rangle \cong \langle \beta \times \alpha, <_{\alpha \cdot \beta} \rangle$.

L11.9 For any α, β, γ :

1. $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$

 $2. \ \alpha \cdot 0 = 0$

3. $\alpha \cdot 1 = \alpha$

4. $\alpha \cdot S(\beta) = a \cdot \beta + \alpha$

5. if β is a limit ordinal, $\alpha \cdot \beta = \sup\{a \cdot \xi : \xi < \beta\}$

6. $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$

Also, \cdot is not commutative on **ORD** since $2 \cdot \omega \neq \omega \cdot 2$. (6) fails for multiplication on the right since $(1+1) \cdot \omega = \omega \neq 1 \cdot \omega + 1 \cdot \omega$.

Exponentiation

D11.10 For a fixed α , define α^{β} by recursion on β using the following clauses:

1. if $\alpha = 0$, then $\alpha^0 = 0$; if $\alpha > 0$, then $\alpha^0 = 1$

2. $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$

3. if β is a limit ordinal, then $\alpha^{\beta} = \sup\{a^{\xi} : \xi < \beta\}$

E11.11 Define the extender $\mathbf{E}_{\alpha}^{+}: \mathbf{FOD} \to \mathbf{V}$ as follows. For any $\sigma \in \mathbf{FOD}$,

$$\mathbf{E}_{\alpha}^{+}(\sigma) = \left\{ \begin{array}{ll} \alpha & \text{if } dom(\sigma) = 0 \\ S(\sigma(\beta)) & \text{if } dom(\sigma) = S(\beta) \\ \bigcup ran(\sigma) & \text{if } dom(\sigma) \text{ is a limit ordinal} \end{array} \right.$$

For other operations need to check the case where $\sigma(\beta) \notin \mathbf{ORD}$.

E11.12 For any ordinal $\alpha > 0$, $\alpha \cdot \omega > \alpha$.

E11.13 $\alpha<\beta\Rightarrow\gamma+\alpha<\gamma+\beta\wedge\alpha+\gamma\leq\beta+\gamma$ but not < on the second clause.

E11.14 If $\alpha \geq \omega$ is an ordinal, then $1 + \alpha = \alpha$.

E11.15 If $\gamma>0$, then $\alpha<\beta\Rightarrow\gamma\cdot\alpha<\gamma\cdot\beta\wedge\alpha\cdot\gamma\leq\beta\cdot\gamma$ but not < on the second clause.

E11.16 Let $0<\alpha\leq\beta$ be ordinals. There exist unique δ,ξ such that $\xi<\alpha$ and $\alpha\cdot\delta+\xi=\beta$.

E11.17 $\alpha^{(\beta+\gamma)} = \alpha^{\beta} \cdot \alpha^{\gamma}$ for ordinals $\alpha > 0$.

E11.18 Define $\alpha_0 = \omega$ and $\forall n \in \omega, a_{n+1} = \omega^{\alpha_n}$. Let $\epsilon_0 = \sup\{\alpha_n : n \in \omega\}$. Then $\omega^{\epsilon_0} = \epsilon_0$.

Cardinals and Cardinal Arithmetic

D12.1 A set X is said to be well-orderable if there exists a relation $\leq X \times X$ such that $\langle X, < \rangle$ is a well-order.

D12.2 Let X be a well-orderable set. Define the cardinality of X, |X|, to be the minimal element of $\{\alpha \in \mathbf{ORD} : \alpha \approx X\}$. $|\alpha|$ is defined for every $\alpha \in \mathbf{ORD}$, and $|\alpha| < \alpha$.

D12.3 α is a cardinal if $|\alpha| = \alpha$.

F12.4 If $n \in \omega$, then n is a cardinal. ω is a cardinal.

L12.5 If $|\alpha| < \beta < \alpha$, then $|\beta| = |\alpha|$.

L12.6 A se is finite iff $|X| < \omega$. A set is countable iff $|X| < \omega$.

D12.7 Let κ and λ be cardinals. These are well-orderable:

1. $\kappa \boxplus \lambda = |(\{0\} \times \kappa) \cup (\{1\} \times \lambda)|$

2. $\kappa \boxtimes \lambda = |\kappa \times \lambda|$

L12.8 Every infinite cardinal is a limit ordinal.

T12.9 If κ is an infinite cardinal, then $\kappa \boxtimes \kappa = \kappa$.

C12.10 Let κ and λ be infinite cardinals. Then $\kappa \boxplus \lambda = \kappa \boxtimes \lambda = max\{\kappa, \lambda\}$.

T12.11 For every set X there is a cardinal α such that there is no 1-1 function $f: \alpha \to X$.

D12.16 For each $\alpha \in \mathbf{ORD}$, α^+ is the least cardinal strictly greater than α .

L12.17 Suppose $\mathbf{F}: \mathbf{ORD} \to \mathbf{ORD}$ is a function such that

 $\forall \alpha,\beta \in \mathbf{ORD} \ [\alpha < \beta \Rightarrow \mathbf{F}(\alpha) < \mathbf{F}(\beta)]. \ \mathsf{Then} \ \forall \beta \in \mathbf{ORD} \ [\beta \leq \mathbf{F}(\beta)].$

D12.18 Define a sequence $\langle \omega_\alpha : \alpha \in \mathbf{ORD} \rangle$ by induction using the following clauses:

1. $\omega_0 = \omega$

2. $\omega_{S(\alpha)} = \omega_{\alpha}^{+}$

3. if α is a limit ordinal, then $\omega_{\alpha} = \sup\{\omega_{\xi} : \xi < \alpha\}$

R12.19 ω_{α} is sometimes deonted as \aleph_{α}

L12.20 $\alpha < \beta \Longrightarrow \aleph_{\alpha} < \aleph_{\beta}$ and every infinite cardinal is equal to \aleph_{α} for some $\alpha \in \mathbf{ORD}$.

12.1 Choice and Cardinality

D12.21 Let X be any set. F is a choice function on X if F is a function, $dom(F) = X \setminus \{0\}$, and $\forall a \in X \setminus \{0\} \mid F(a) \in a]$.

T12.22 Zermelo TFAE for a set X:

1. X is well-orderable

2. there exists a choice function on $\mathcal{P}(X)$

T12.26 AC TFAE:

- 1. the Cartesian product of non-empty sets is non-empty
- 2. for every set X there exists a choice function on X
- 3. every set is well-orderable
- 4. for any two sets X and Y, either $X \lesssim Y$ or $Y \lesssim X$
- 5. for every set X there is an ordinal α and a 1-1 function $f: X \to \alpha$
- 6. for every set X there is a cardinal κ such that $X \approx \kappa$

Cardinal Exponentiation and König's Theorem

D12.28 (AC) Let κ and λ be cardinals. Define

 $\kappa^{\lambda} = |\{f : f \text{ is a function } \wedge dom(f) = \lambda \wedge ran(f) \subseteq \kappa\}|.$

L12.30 Let κ , λ , θ be cardinals. The following hold:

1. $(\kappa^{\lambda})^{\theta} = \kappa^{(\lambda \boxtimes \theta)}$

2. $(\kappa^{\lambda}) \boxtimes (\kappa^{\theta}) = \kappa^{(\lambda \boxplus \theta)}$

D12.31 Define a squence of cardinals $\langle \beth_\alpha : \alpha \in \mathbf{ORD} \rangle$ by induction using the following clauses:

1. $\beth_0 = \omega$

2. $\beth_{S(\alpha)} = 2^{\beth_{\alpha}}$

3. if α is a limit ordinal, then $\beth_{\alpha} = \sup\{\beth_{\xi} : \xi < \alpha\}$

D12.32 The Generalised Continuum Hypothesis is the statement that $\forall \alpha \in \mathbf{ORD} \ [\exists_{\alpha} = \aleph_{\alpha}]$. The Continuum Hypothesis is the statement that $\exists_{1} = \aleph_{1}$. Note $\exists_{1} = 2^{\exists_{0}} = 2^{\aleph_{0}}$, so CH savs $2^{\aleph_{0}} = \aleph_{1}$.

T12.34 König $(\aleph_{\omega})^{\aleph_0} > \aleph_{\omega}$.

C12.35 $2^{\aleph_0} \neq \aleph_{\omega}$.

E12.36 Let κ, λ be infinite cardinals where $\lambda \leq \kappa$. Then

 $\kappa^{\lambda} = |\{X \subseteq \kappa : |X| = \lambda\}|.$

E12.37 Let κ , λ , θ , χ be cardinals. If $\kappa \leq \lambda$, then $\kappa^{\theta} \leq \lambda^{\theta}$. If $\kappa \leq \chi$, $\lambda \leq \theta$ and $\lambda \neq 0$, then $\kappa^{\lambda} < \chi^{\theta}$.

E12.38 Let α be an ordinal. Let $W = \{\langle Y, \lhd \rangle : Y \subseteq \alpha \land \langle Y, \lhd \rangle \text{ is a well-order}\}$ $\alpha^+ = \{otp(\langle Y, \lhd \rangle) : \langle Y, \lhd \rangle \in W\}.$

E12.39 There is a cardinal $\kappa = \aleph_{\kappa}$ and $\kappa = \beth_{\kappa}$.

E12.40 Suppose $\mathbf{F}: \mathbf{ORD} \to \mathbf{ORD}$ and

 $\forall \alpha, \beta \in \mathbf{ORD} \ [\alpha < \beta \Longrightarrow \mathbf{F}(\alpha) < \mathbf{F}(\beta)] \ \text{and for any limit ordinal } \beta,$

 $\mathbf{F}(\beta) = \sup\{\mathbf{F}(\alpha) : \alpha < \beta\}. \text{ Then } \forall \alpha \in \mathbf{ORD} \ \exists \beta > \alpha \ [\mathbf{F}(\beta) = \beta].$

E12.41 $(\aleph_{\omega_1})^{\aleph_1} > \aleph_{\omega_1}$ and $2^{\aleph_1} \neq \aleph_{\omega}, \aleph_{\omega_1}$.

13. Some applications of AC

D13.1 Let A be any set. $\mathcal{F} \subseteq \mathcal{P}(A)$ is of finite character iff $\forall X \subseteq A, X \in \mathcal{F} \Longleftrightarrow \forall Y \subseteq X \ [|Y| < \omega \Longrightarrow Y \in \mathcal{F}]$. All of X's finite subsets are in \mathcal{F} .

L13.2 Suppose $\mathcal{F}\subseteq\mathcal{P}(A)$ is of finite character. Then for any $X\in\mathcal{F}$ and any $Y\subseteq X,Y\in\mathcal{F}$.

T13.3 TFAE:

1. AC

2. for any set A and any $\mathcal{F} \subseteq \mathcal{P}(A)$, if F has finite character, then for every $X \in \mathcal{F}$, there exists $Y \in \mathcal{F}$ such that $X \subseteq Y$ and Y is maximal in $\langle \mathcal{F}, \subsetneq \rangle$ (Teichmüller-Tukey Lemma)

3. every chain in every partial order is contained in a maximal chain (Hausdorff's maximal chain theorem)

4. if $\langle X, < \rangle$ is any partial order where every chain in $\langle X, < \rangle$ has an upper bound in $\langle X, < \rangle$, then $\langle X, < \rangle$ has a maximal element (Zorn's lemma)

 $(4)\Longrightarrow (1)$: Prove the standard version of AC. Let I be any set and suppose $\langle X_i:i\in I\rangle$ is any sequence of non-empty sets. Consider

 $A = \{\sigma: \sigma \text{ is a function } \land dom(\sigma) \subseteq I \land \forall i \in dom(\sigma) \ [\sigma(i) \in X_i] \}. \text{ Partially order } A \text{ by } \subseteq. \text{ Let } C \subseteq A \text{ be any chain. } C \text{ is a directed collection of functions.}$ So $\bigcup C = \tau$ is a function and $dom(\tau) = \bigcup \{dom(\sigma): \sigma \in C\} \subseteq I.$ $\tau(i) = \sigma(i) \in X_i.$ Therefore $\tau \in A$ and $\forall \sigma \in C \ [\sigma \subseteq \tau].$ So τ is an upper bound for C. So every chain has an upper bound and there is a maximal $\sigma \in A$ by Zorn's lemma. We claim that $dom(\sigma) = I.$ If not, there exists $i \in I \backslash dom(\sigma).$ Since $X_i \neq 0$, choose $x_i \in X_i.$ Put $\tau = \sigma \cup \{\langle i, x_i \rangle\}.$ Then $\tau \in A$ and $\sigma \subseteq \tau$, contradicting maximality of σ .

Using Zorn's Lemma $\langle X, < \rangle$ is a partial order. If every chain in $\langle X, < \rangle$ has an upper bound in $\langle X, < \rangle$, then $\langle X, < \rangle$ has a maximal element.

1. Find a relevant $\langle X, < \rangle$, e.g. $\langle \mathcal{P}(X), \subseteq \rangle$ which might be given.

Take a chain ζ ⊆ X. Show ζ has an upper bound in ⟨X, <⟩. Usually this involves taking unions of things in ζ. But you have to check that these unions belong to X. Also, ζ = ∅ is always a chain.

3. By Zorn's lemma $\exists x \in X$ maximal in $\langle X, < \rangle$. Now maximality will imply x has some special property. Most of the time you check x has the relevant property, because if it did not it would contradict maximality in $\langle X, < \rangle$.

E13.16 Let $\langle X, < \rangle$ be a partial order. Every antichain in $\langle X, < \rangle$ is contained in a maximal antichain. Let $A \subseteq X$ be an antichain.

1. $P = \{B \subseteq X : A \subseteq B \land B \text{ is an antichain}\}. \langle P, \subsetneq \rangle$ is a partial order.

2. Let $\zeta\subseteq P$ be a chain in $\langle P,\subsetneq\rangle$. Case I: $\zeta=\emptyset$. Then $A\in P$ and $\forall B\in \zeta\ [B\subseteq A]$. So A is an upper bound for $\zeta\in P$. Case II: $\zeta\neq\emptyset$. Let $D=\bigcup\zeta$. For any $B\in\zeta$, $B\subseteq D$. If $D\in P$, then D would be an upper bound of ζ as $\forall B\in\zeta\ [B\subseteq D]$. So We want to show $D\in P$. $D\subseteq X$ as $\forall B\in\zeta\ [B\subseteq X]$. As $\zeta\neq\emptyset$, $\exists B\in\zeta$ such that $A\subseteq B\subseteq D$. So $A\subseteq D$. Show D is an antichain. Suppose $x,y\in D, x\neq y$. $\exists B,B'\in\zeta$ with $x\in B,y\in B'$. As ζ is a chain, WLOG $B\subseteq B'$. So $x,y\in B'$. Since B' is an antichain, $x\not\leq y,y\not\leq x$. So D is an antichain and $D\in P$.

3. By Zorn's, $\exists B \in P$ which is maximal in $\langle P, \subsetneq \rangle$. Now $A \subseteq B, B$ is an antichain. If $\exists D, B \subsetneq D$, then $D \in P$ as $A \subseteq B \subseteq D$, contradicting maximality of B in $\langle P, \subsetneq \rangle$.

otherwise

23/24 Q4 F(0) = 1, **F**(β) = **F**(α) · β if $\beta = \alpha + 1$,

 $\mathbf{F}(\beta) = \sup\{\mathbf{F}(\alpha) : \alpha < \beta\} \text{ if } \beta \text{ is a limit ordinal. The extender is} \\ \mathbf{E}(\sigma) = \begin{cases} 1 & \text{if } dom(\sigma) = 0 \\ \sigma(\bigcup dom(\sigma)) \cdot dom(\sigma) & \text{if } dom(\sigma) = S(\beta) \\ \bigcup ran(\sigma) & \text{if } dom(\sigma) \text{ is a limit ordinal} \end{cases}$

Swap out $\beta = dom(\sigma)$, $\mathbf{F}(\alpha) = \sigma(\bigcup dom(\sigma))$ where $\beta = \alpha + 1$, $sup... = \bigcup ran(\sigma)$