

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN CÁTEDRA DE ANÁLISIS MATEMÁTICO II

UNIDAD Nº4: CÁLCULO INTEGRAL EN CAMPOS ESCALARES

1. Calcule: a)
$$\int_0^1 \int_y^1 \left(x^2 + 3y^2\right) dx dy$$
, b) $\int_0^1 \int_0^{2x} \sqrt{1 - x^2} dy dx$, c) $\int_0^\pi \int_0^{\sqrt{4 - y^2}} \frac{2}{\sqrt{4 - y^2}} dx dy$

- 2. Supuesta la existencia de las integrales, calcularlas por integración iteradas.
 - a) $\int \int_R xy(x+y)dxdy$ donde $R = [0,1] \times [0,1]$
 - b) $\int \int_R (\sqrt{y} + x 3xy^2) dxdy$ donde $R = [0,1] \times [1,3]$
 - c) $\int \int_{R} y^{-3} e^{tx/y} dx dy$, donde $R = [0, t] \times [1, t], t > 0$
- 3. En cada caso sea f un campo escalar definido en el rectángulo R. Realice un gráfico del recinto de ordenadas de f sobre R y calcule su volumen por medio de una integral doble. (Supóngase que la integral existe)

a)
$$R = [0, 2] \times [0, 1]$$
 $f(x, y) = 1 + 2x + 2y$

b)
$$R = [0, 2] \times [0, 2]$$
 $f(x, y) = 4 - x^2$

c)
$$R = [0,1] \times [0,1]$$

$$f(x,y) = \begin{cases} 1 - x - y & si \quad x + y \le 1\\ 0 & si \quad x + y > 1 \end{cases}$$

d) $R = [-1, 1] \times [-1, 1]$ tal que

$$f(x,y) = \begin{cases} x^2 + y^2 & si \quad x^2 + y^2 \le 1\\ 0 & si \quad x^2 + y^2 > 1 \end{cases}$$

- 4. Esbozar la región de integración, intercambiar el orden de integración y evaluar las siguientes integrales: a) $\int_0^1 \int_{1-y}^1 (x+y^2) dx dy$ b) $\int_0^1 \int_y^1 (e^{-x^2}) dx dy$
- 5. Sea D la región acotada por la curva de ecuación $y=\sqrt{x}$ y la recta de ecuación y=x. Sea $f(x,y)=\frac{\sin y}{y}$ si $y\neq 0$ y f(x,0)=1. Calcule $\int\limits_D f(x,y)dA$.
- 6. Sea $D = \left\{ (x,y) \in \mathbb{R}^2 : -\varphi(x) \leq y \leq \varphi(x), a \leq x \leq b \right\}$, donde φ es una función continua y no negativa en [a,b]. Dado el campo escalar f continuo en D y tal que f(x,-y) = -f(x,y) para todo $(x,y) \in D$. Mostrar que $\iint\limits_D f(x,y) = 0$. Presente otras situaciones similares.
- 7. Calcular los volúmenes de los cuerpos limitados por las superficies

a)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
, $x = 0$, $y = 0$ y $z = 0$.

b)
$$z = 0, x + y + z = 3$$
 y $x^2 + y^2 = 1$.

c)
$$z = 4 - x^2$$
, $y = x$, $y = 0$ y $z = 0$.

8. Sea f un campo escalar continuo en $R=[a,b]\times[c,d]$, para a< x< b y c< y< d se define $G(x,y)=\int_a^x\int_c^y f(u,v)dvdu$. Mostrar que $D_{12}G(x,y)=D_{21}G(x,y)=f(x,y)$.

- 9. Sea D la región del plano acotada por las rectas $x-2y=0,\ x-2y=-4,\ x+y=4,\ x+y=1.$ Calcule $\iint\limits_D 3xydA$.
- 10. Sea D la región del plano acotada por las curvas $y=x^2+4,\ y=x^2,\ y+x^2=6,\ y+x^2=12$ en el semiplano $x\geq 0$ Calcule $\iint\limits_D xydA$.
- 11. Combinar la suma de las integrales en una única integral iterada y evaluar

$$\int_{0}^{8/\sqrt{13}} \int_{0}^{3x/2} xy \, dy dx + \int_{8/\sqrt{13}}^{4} \int_{0}^{\sqrt{16-x^2}} xy \, dy dx$$

- 12. Calcule las siguientes integrales triples: a) $\int_{1}^{3} \int_{0}^{2} \int_{0}^{4} (x+y-z) dV$ b) $\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{4} (z \sin x) dV$
- 13. Encuentre el centro de masa de una placa triangular delgada limitada por el eje y y las rectas y=x, y=2-x, si la densidad es $\delta(x,y)=6x+3y+3$.