Tutorial 9: Transaction Processing Concepts and Theory CS3402 Database Systems

Question 1

- Which of the following schedules is (conflict) serializable? For each serializable schedule, determine the equivalent serial schedules.
 - a) A: $r_1(X)$; $r_3(X)$; $w_1(X)$; $r_2(X)$; $w_3(X)$;
 - b) B: $r_1(X)$; $r_3(X)$; $w_3(X)$; $w_1(X)$; $r_2(X)$;
 - c) C: $r_3(X)$; $r_2(X)$; $w_3(X)$; $r_1(X)$; $w_1(X)$;

Question 2

• Consider the following concurrent schedule S. Draw the serialization graph for the schedule. Is it conflict serializable?

T ₁	T ₂	T ₃
	Read(X)	
Write(Y)		
		Read(Y)
	Write(Y)	
Write(X)		
	Commit	
		Write(Z)
Commit		
		Commit

Question 3

- Consider schedules S₁, S₂ and S₃ below. Determine whether each schedule is strict, cascadeless, recoverable, or nonrecoverable. Determine the strictest recoverability condition that each schedule satisfies.
 - a) S_1 : $r_1(X)$; $w_1(X)$; $r_2(X)$; $r_1(Y)$; $w_2(X)$; c_2 ; c_1 ;
 - b) S_2 : $r_1(X)$; $w_1(X)$; $r_2(X)$; $r_1(Y)$; $w_2(X)$; $w_1(Y)$; c_1 ; c_2 ;
 - c) S_3 : $r_1(X)$; $w_1(X)$; $w_2(X)$; $w_1(Y)$; c_1 ; $r_2(X)$; c_2 ;

Can you change schedule S₃ into a strict schedule?