

Name: Mina Sabry Abdelmessih

ID: 686876

Report: Pressure Sensor

Contents:

- 1.Case Study
- 2.Method
- 3. Requirments
- ***** 4. Space Exploration
- 5. System Analysis
- 6.System Design

1.Case Study:

Problem:

There is a danger for the airplane if pressure is above than 20.

Target:

Build an embedded system to measure the pressure and make an alarm for a while if pressure more than Threshold.

How?:

We will make a pressure system using STM32 to measure pressure and and make alarm for a 60 seconds if above than 20.

2.Method

Using waterfall:

Why?

- 1. Requirements are clear and fixed that may not change.
- 2. There are no ambiguous requirements (no confusion).
- 3. It is good to use this model when the technology is well understood.
- 4. The project is short and cast is low.
- 5. Risk is zero or minimum.

3.Requirments

The Main is Pressure_Detection_LID: The system shall protect the crew form high pressure.

Pressure_Detection_LID contains: of High_Detection & Crew_Alram & Oprional_Saving_Values.

1.High_Detection: The system shall check pressure in cabine & contains: Pressure_Threshold & Read_From_Pressure_sensor.

Pressure_Threshold: The System Shall Check if it is Below than Predefined Threshold=20 par.

Read_From_Pressure_sensor: System shall read from preasure sensor.

- 2. Crew_Alram: The system shall infrom the crew through the alarm that there were a High Pressure & contains: Inform_By_LED.

 Inform_By_LED: The system will alarm By turn on led for (60 Sec).
- 3. Oprional_Saving_Values. The system shall store the pressure values in flash Memory & contains: Write_Flash_Memory.

Write_Flash_Memory: the system shall save values in fifo inside flash memory in a section(Recorded_Val_Section).

4.Space Exploration:

Using:STM32F103C6:

Mainstream Performance line, Arm Cortex-M3 MCU with 32 Kbytes of Flash memory, 72 MHz CPU

- 1 Method: Scaling up number before and down after calculation. Yes Accuracy is down and Timing in micro seconds.
- 2 Method: Partition of float number into mantissa and fraction (Float to Fixed conversion) than do calculation. Accuracy is good but took too much time near 7-8 microsecond for single float multiplication.

For my requirements any method will be okay, condition-Accuracy should be good and Float Multiplication time should below 1 microsecond.

5.System Analysis:

1. Use Case Diagram:

There are 3 actuators: 1.Pressure_Sensor

- 2. Alaram_Actuator
- 3. Flas_Memory

Main_Alg. Includes each of get_pressure_value & Monitor_Alram & extends Store_Pressure-value (because it is an optional).

2. Activity Diagram:

At first it is event Read_pressure_Senesor :measure the pressure degree .

and get signal Optional_Store_pressure_value:store the value at flash memory.

And there is a conditional test if [Pressure_value > Threshold] then send signal Alram_On and Wait_for_periodtime:wait for 60 sec. Then send signal Alram_Off then go to first step.

Else: Go to first step.

3. Sequence Diagram:

There are 3 Actuators: Pressure_Sensor & Alram_Actuator & Flash_memory.

Main_alg: is the code

First: Pressure_Sensor measure the pressure than

Send to Main_alg: compare it to 20

IF Greater than 20: will send to Alram_Actuator to start timer for 60 secs then send to Flash_memory to store the value than Alram_Actuator send to Main_alg that's time is finished and Main_alg send to it back to rest timer.

Else: Send to Flash_memory to store the value.

6.System Design:

Steps:

- 1.Pressure_Sensor sends Random value to Main_Alg.
- 2.Main_Alg compare the random value.

[IF it is morethan 20]

- . Main_Alg sends (High_pressure_Detection) to Alram_Monitor
- .Alram_Monitor sends (Alram_ON) to

Alram_Actuator.

. Pressure_Sensor start timer of 100 Seconds.

- .Alram_Monitor starts timer of 60 seconds.
- Alram_Monitor sends to Alram_Driver (Alram_ON)
- .Alram_Monitor timer expires.
- .Alram_Monitor timer reset.
- .Alram_Monitor sends to Alram_Driver (Alram_OFF)
- .Pressure_Sensor timer expires.
- .Pressure_Sensor timer reset.

[Else]

- . Pressure_Sensor start timer of 100 Seconds.
- .Pressure_Sensor timer expires.
- .Pressure_Sensor timer reset.