Вячеслав Васильевич Степанов

КУРС ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОГЛАВЛЕНИЕ

Предисловие к пятому изданию	5
От издательства	6
Глава І. Общие понятия. Интегрируемые типы уравнений первого порядка,	7
разрешённых относительно производной	
§ 1. Введение	7
§ 2. Метод, разделения переменных	18
§ 3. Однородные уравнения	27
§ 4. Линейные уравнения	34
§ 5. Уравнение Якоби	41
§ 6. Уравнение Риккати	47
Глава II. Вопросы существования решений уравнения первого порядка,	57
разрешённого относительно производной	
§ 1. Теорема существования (Коши и Пеано)	57
§ 2. Особые точки	76
§ 3. Интегрирующий множитель	94
Глава III. Уравнения первого порядка, не разрешённые относительно	104
производной	
§ 1. Уравнения первого порядка n-й степени	104
§ 2. Уравнения, не содержащие явно одного из переменных	110
§ 3. Общий метод введения параметра. Уравнения Лагранжа и Клеро	113
§ 4. Особые решения	120
§ 5. Задача о траекториях	135
Глава IV. Дифференциальные уравнения высших порядков	140
§ 1. Теорема существования	140
§ 2. Типы уравнений п-го порядка, разрешаемые в квадратурах	154
§ 3. Промежуточные интегралы. Уравнения, допускающие понижение порядка	167
§ 4. Уравнения, левая часть которых является точной производной	177
Глава V. Общая теория линейных дифференциальных уравнений	180
§ 1. Определения и общие свойства	180
§ 2. Общая теория линейного однородного уравнения	183
§ 3. Неоднородные линейные уравнения	199
§ 4. Сопряжённое уравнение	205
Глава VI. Частные виды линейных дифференциальных уравнений	214
§ 1. Линейные уравнения с постоянными коэффициентами и приводимые к ним	214
§ 2. Линейные уравнения второго порядка	241
Глава VII. Системы обыкновенных дифференциальных уравнений	260
§ 1. Нормальная форма системы дифференциальных уравнений	260
§ 2. Системы линейных дифференциальных уравнений	270
§ 3. Существование производных по начальным значениям от решений	298

системы		
§ 4. Первые интегралы системы обыкновен уравнений	ных дифференциальных	307
§ 5. Симметричная форма системы диффер	енциальных уравнений	312
§ 6. Устойчивость по Ляпунову. Теорема об	· -	317
приближению		
Глава VIII. Уравнения с частными произво	дными. Линейные уравнения в	330
частных производных первого порядк	a	
§ 1. Постановка задачи об интегрировании производными	уравнений с частными	330
§ 2. Линейное однородное уравнение в част порядка	гных производных первого	338
§ 3. Линейные неоднородные уравнения с ч порядка	настными производными первого	343
	Глава IX. Нелинейные уравнения в частных производных первого порядка	
§ 1. Система двух совместных уравнений первого порядка		355
§ 2. Уравнение Пфаффа		360
§ 3. Полный, общий и. особый интегралы уравнения в частных производных первого порядка		370
		381
§ 5. Метод Коши для двух независимых переменных		393
§ 6. Метод Коши для п независимых переменных		406
§ 7. Геометрическая теория уравнений с частными производными первого порядка		420
Глава Х. Исторический очерк		428
Ответы		459
Алфавитный указатель		466
АЛФАВИТНЫЙ УКАЗАТЕЛЬ		
(Д. у. — дифференциа	альное уравнение)	
Абель Н. 447	Бернулли Я. 38, 433	
Александров П. С. 457	Бернштейн С. Н. 456, 457	
Амплитуда колебания 219	Бессель Ф. 451	
Аналитическая теория д. у. ^х) 108	Бесселевы функции 245, 250	
Андронов А.А. 457	Бессела уравнение 237, 238, 242,	244,
Арбог Л. 441	245, 250, 255	
Арцела теорема 69	Билинейная форма 290	
Аффинная группа 36	Биркгоф Д. 45В	
Барроу И. 430	Боголюбов Н. Н. 457, 458	
Бендиксон И. 84, 92, 455	Больцано Б. 440, 446	
Бернулли Д. 433—436, 440, 449, 451,	Брук И. С. 458	
452	Вандермонда определитель 216	
Бернулли И. 38, 433	Ванцель П. 447	
Бернулли Н. 435	Вариации уравнения в вариациях	
Бернулли уравнение 38	304, 320	

Вариация постоянного 35, 201, 281	Декарт Р. 429
Вейерштрасса теорема 166	Декремент логарифмический 220
Вековой член 231	Делители элементарные матрицы 291
Векуа И. Н. 457	Дикритический узел 84, 92
Винтнер А. 75	Динамика точки 162
Возврата точки 130	Динамическая система 267
Вполне интегрируемое уравнение	Дирихле формула 155
362	Дискриминантнаа кривая 126
Вронский Г. 435	Дифференциальное уравнение (см.
Вронского определитель 185	также соотв. название д. у.)
Второго порядка линейное уравнение	Дифференциальный оператор 183
192, 241	Дифференциалы полные, точные 94
Высших порядков д. у. 140	Егоров Д. Ф. 41, 450
Галеркин Б. В, 458	Единственность решения я. у. 63,
Галилей Г. 429, 439	120, 150
Галуа Э, 447	Ермаков В. П. 450
Гамильтона функция 412	Живых сил интеграл 163
Гармоническое колебание 218	Задача Коши 140, ,152, 335, 339, 348,
Гаусс К. 446, 451	352, 390, 401, 411
Геометрическая теория уравнений в	Зернов Н. Е. 453
частных	Изогональные траектории 135
производных 420	Изоклины 11
Гершгорин С. А. 458	Имшенецкий В. Г. 451, 452, 453, 455
Гипергеометрический ряд 249	Инвариантный множитель 291
Гипергеометричеекое уравнение	Инволюция 385
247	Инерции момент 312
Гиперповерхность 315, 336	Интеграл д. у. 22
Главные моменты инерции 312	— живых сил 163
Гомотетия 33	—общий 151, 167, 375
Грина функция 211	— особый 374
Группа преобразований 32	—первый 168
Гурса Э. 451	— полный 414
Гутенмахер Л. И. 458	— промежуточный 167
Гюнтер Н. М. 457	— системы д. у. 308
Давидов A. Ю. 452	Интегральная гиперповерхность 338
Даламбер Ж. 434, 437, 439, 441, 442,	—кривая 10, 32, 84, 423 ¹
443, 445, 452	— поверхность 378
Дарбу Г. 54, 449, 450	Интегральный элемент 407
Дарбу уравнение 54	Интегрирование д. у. 7, 8
Движение 267, 317	Интегрируемости условие 95
— возмущённое 318	Интегрирующий множитель 97, 98,
—невозмущённое 318	363
— стационарное 267	Истечение жидкости из сосуда 25
Дебон Ф. 429	Каменков Г. В. 457

Каналов поверхность 379	Лаппо-Данилевский И. А. 457
Каноническая система д. у. 260, 412	Лежандр А. 451
Канторович Л. В. 458	Лежандра уравнение 247, 251
Квадратура 8, решение д. у. в	Лежен-Дирихле П. 446
квадратурах 20, 154	Лейбниц Г. 430, 433
Келдыш М. В. 458	Лекселль А. И, 435, 438
Клейн ф. 153	Летников А. В. 451
Клеро А. 434, 435, 437	Ли С. 33, 444, 453, 454
—уравнение 117, 130	Линейно зависимая система 278
— обобщённое 389	—независимая система 277, 278
Кнезера теорема 256	Линейные уравнения 100, 180
Ковалевская С. В. 332, 335, 448, 455	— второго порядка 192, 241
Колебание гармоническое 218	— в частных производных 338
— затухающее 220	— первого порядка 34
—упругое 219, 230	— с постоянными коэффициентами
Колеблющееся в интервале решение	214
251	, системы 250
Комплексная область (теорема	, частные виды 214
существования)74	Линейный дифференциальный
Конус Т 420	оператор 183
Коркин А. Н. 450	Линии погони 170
Коши О. 440, 446, 447, 448, 452	— тока 268
доказательство существования 57	—характеристические 380
— задача (см. задача Коши)	Липшиц Р. 448
— метод 393, 406	Липшица условие 58
— нормальная форма 262	Лиувилль Ж. 53, 449, 450, 451
— формула 156	Лиувилля-Остроградского формула
Крейн М. Г. 457	192
Кривая дискриминантная 126	Лобачевский Н. И. 446, 447, 453, 457
—интегральная 10, 32, 84, 423	Логарифмический декремент 220
— Монжа 423	Лузин Н. Н. 488
— характеристическая 351	Люстерник Л. А. 458
Кристаль Г. 449	Ляпунов А. М. 453, 455
Кристофель Э. 435	Майера скобка 385
Крылов А. Н. 458	Максимович В. П.
Крылов Н. М. 457, 458	449
Курно А. 449	Малкин И. Г. 457
Лаврентьев М. А. 457	Марков А. А. 457
Лагранж Ж. 434, 435, 437, 438, 441,	Маятник математический Юб
442, 443	Мгновенная скорость 312
Лагранжа уравнение 116	Метод (см. соответств. название)
Лагранжа-Шарпи метод 381	Микеладзе III. Е. 458
Ламэ Г. 451	Миндинг Ф. Г. 450, 455
Лаплас П. 441, 442	Многочлен неприводимый 108

—приводимый 108	Однородная линейная система 271
— характеристический 215	Однородные уравнения 27, 34
—Чебышева 237	——линейные 34
Множитель инвариантный 291	— — в частных производных 338
— интегрирующий 97,- 98, 363	— — с постоянными
Моисеев Н. Д. 457	коэффициентами 214
Моменты инерции главные 312	Оператор дифференциальный 183
Монж Г. 443, 444, 445	 — самосопряжённый 208
Монжа кривые 423	Определитель Вандермонда 216
— обозначения 351	— Вронского 185
— уравнения 260	Ортогональные траектории
Мордухай-Болтовской Д. Д.	135
449	Особые начальные значения
Муаньо Ф. 448, 449	314
Мусхелишвили Н. И. 457	—решения 121, 131
Мышкис А. Д. 457	—точки 76
Направлений поле 11	Особый интеграл 374
Начальная фаза 219	Остроградский M. B. 450, 453
Начальные значения особые	Остроградского-Лиувилля формула
314	192
— условия 9	Панов Д. Ю. 458
Неколеблющееся в интервале	Пеано Д. 448
решение 251	Первого порядка д. у. 9
Нелинейные уравнения в частных	— линейные уравнения 34
производных 355	— уравнения в частных
Немыцкий В. В. 457	производных 99
Неоднородная линейная система 271	— характеристика 395, 407, 409
Неоднородное уравнение, формула	—приближения система 320
Коши 2Ц	Первый интеграл 168
— — линейное 34, 180, 199, 224	— системы д. y. 308
Непер Д. 428, 429	Переменных разделение 23, 388
Неприводимый многочлен 108	Перенос 32
Неустойчивое положение равновесия	Период колебания 219
165	Персидский К.П. 457
Нормальная форма Коши 262	Петерсон К. М. 452
— системы д. y. 260	Петровский И. Г. 332, 457, 458
Нормальной формы система 241	Пикар Э. 448, 449
Ньютон И. 430, 431, 432	Пикара доказательство
Общее решение 7, 12, 18	существования 57
— уравнения в частных	— метод последовательных
производных 333	приближений 142
Общий интеграл 151, 167, 375	Поверхность интегральная 378
— — системы д. y. 308	Погони линии 170
Огибающая 122, 132	Подобие ,33
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Поле направлений 11	Риккати Д. 434, 436
Полные дифференциалы 94	Риккати уравнение 47, 50, 244
Полный интеграл 414	Рикье, теорема существования 332
Полоса характеристическая 381	Руффини П. 447
Понижение порядка д. у. 167, 173,	Ряд гипергеометрический 249
198, 200	—степенной 245
Порядок д. у. 10	Ряды тригонометрические 233
 уравнения с частными 	Самосопряжённое уравнение 208
производными 330	Самосопряжённый оператор 208
Последовательных приближений	Свободное гармоническое колебание
метод 57 74, 144	218
Постоянная энергии 419	Седловина 79
Постоянного вариация 35, 201, 281	Сила живая 163
Постоянные коэффициенты, д. у. с	Симметричная форма системы д. у.
постоянными коэффициентами	313
214	Синцов Д. М. 452
Преобразование переноса 32	Система динамическая 267
— подобия 33	—д. y. 260
Преобразований группа 32	— — в частных производных 331
Приводимый многочлен	— каноническая 260, 412
108	—— фундаментальная 187
Прикосновения точки 130	Скобка Майера 385
— элемент 378	— Пуассона 385
Продолжение решения д. у.	Скорость мгновенная 312
65	Смирнов В. И. 457
Производная точная 177	Соболев С. Л. 457
Производных существование	Совместности условия 332, 356
298	Совместные уравнения 355
Промежуточный интеграл	Сонин Н. Я. 451, 453
167	Сопряженное дифференциальное
Пространство фазовое 266	выражение 206
Пуанкаре А. 84, 455	— уравнение 206
Пуассон 453	Сравнения теорема 253
Пуассона скобка 385	Стационарное движение 267
Пфафф И. 444, 451	Стеклов В. А. 453, 455
Пфаффа уравнение 360, 387	Степанов В. В. 457
Пфаффова форма 366	Степенной ряд 245
Пеано Д. 68, 448	Существования теорема 57, 68, 140,
Пеано теорема 68	270
Равновесия положение 165	Т, конус 420
Разделение переменных 23,	Тейлор Б. 437, 439
388	Теорема (см. соответств. название)
Решение д. у. 7, 8	Тихонов А. Н. 457
—особое 121. 131	Тока линии 268

Точки возврата 130 — первого порядка 395, 407, 409 — особые 76 Характеристическая полоса 361 прикосновения 130 Характеристические кривые 351 Точная производная 177 Характеристический многочлен 215 Точные дифференциалы 94 Характеристическое уравнение 284, Траектория движения 267 323 , задача о траекториях 135 Хинчин А. Я. 457 Тривиальное решение 319, 321, 325, Центр 81, 92 326, 327 Чаплыгин С. А. 458 Тригонометрические ряды 233 Частное решение д. у. 8, 12, 18 Узел 79, 83, 92 Частные производные, уравнения в Упругие колебания 219, 230 частных производных 99, 330 Условие (см. соответств. название) Частота колебания 219 Устойчивое положение равновесия Чебышев 11. Л. 237, 449, 455, 457 166 Чебышева многочлен 237 Устойчивость по Ляпунову 317 **Четаев Н. Г. 457** Фаза начальная 219 Шарпи П. 442 Фазовое пространство 266 Шарпи-Лагранжа метод 381 Фокус 81, 91 Шпета теорема 256 Форма билинейная 290 Штурм Ж. 450 нормальная Коши 262 Штурма теорема 252 Форма нормальная системы д. у. 141 Эйлер Л. П. 95, 431, 433—443, 445, — Пфаффова 366 450—452, 455, 457 симметричная системы д, у. 313 Эйлера уравнение 238, Формула Лиувилля 192 256 Фроммера метод 84 Элемент интегральный 407 Фукс Л. 435, 451 прикосновения 378 Фундаментальная система Элементарные делители матрицы 291 187 Функция Бееселя 245, 250 Энергии постоянная 419 —Гамильтона 412 Якоби К. 450, 457 — Грина 211 — метод 412, 416 Фурье Ж. 452 — теорема 414 Характеристика 336, 351, 405, 406 — уравнение 41, 93, 414

ПРЕДИСЛОВИЕ К ПЯТОМУ ИЗДАНИЮ.

Курс дифференциальных уравнений в объёме нашей университетской программы по необходимости слагается из глав, соответствующих различным отделам научной теории этой ветви математического анализа. Элементарные методы интеграции, теоремы существования, особые решения, общая теория линейных уравнений — эти главы в современном состоянии науки связаны с теорией групп Ли, с применением методов теории функций действительного и комплексного переменного, с методами линейной алгебры и т. п.

Современное понятие о математической строгости, постепенно внедряющейся в курсы анализа, не позволяет строить учебник дифференциальных уравнений с невыясненной точки зрения на взаимную связь отделов—например, элементарных методов интегрирования и теорем существования. Далее, развитие самой теории и современных её приложений требует введения в университетский курс новых отделов, связанных, с одной стороны, с развитием качественных методов, с другой стороны, с теоремами колебания для линейных дифференциальных уравнений.

Настоящий курс построен целиком в области действительного переменного; это обусловливается как положением курса в плане университетского преподавания (он начинается раньше теории аналитических функций), так и указанной выше необходимостью дать курс, объединённый общей идеей. Вопросы существования и единственности решений ставятся уже при изложении элементарных методов интеграции. В связи с общей структурой курса теорема существования решения уравнения первого порядка появляется близко от начала курса. Классические понятия общего решения, интегрирующего множителя, первого интеграла удаётся, по нашему мнению, обосновать достаточно строго и не слишком громоздко, если ограничиться локальной точкой зрения. В связи с этим в курсе даётся (мелким шрифтом) достаточно развёрнутая качественная теория распределения интегральных кривых в окрестности особой точки и оставляется стороне исследование общего течения интегральных кривых. К сожалению, отмеченная выше строгость основывается на теореме о дифференцируемости решения по параметру; эта теорема ввиду её сложности приведена лишь в мелком шрифте главы VII. С принятой здесь точки зрения особое решение определяется как решение,

в каждой точке которого нарушается единственность; теория особых решений для уравнений степени выше первой относительно производной, конечно, не может быть достаточно систематически изложена в пействительной области. В связи с уравнениями второго порядка дано механическое приложение — периодические движения. В теории линейных уравнений даны «нетрадиционные» теоремы — Штурма и теорема сравнения. Краевые задачи не вошли в рассматриваемый курс, их место — при изучении уравнений математической физики, так как постановка задачи с параметром и его собственными значениями непонятна без обращения к первоисточнику — уравнению с частными производными второго порядка. Параграф об интегрировании с помощью степенных рядов, важный для приложений, конечно, не может быть сколько-нибудь полным без обращения к аналитическим функциям; он является в курсе эпизодическим и не содержит, например, уравнений Бесселя и Лежандра, относимых нами к курсу уравнений математической физики. Новым является параграф о применении тригонометрических рядов к линейным уравнениям.

Другие отступления от традиций легко обнаружатся при сравнении настоящего курса с другими руководствами.

Вопросы, не входящие в университетскую программу, но тесно примыкающие к её темам, даны мелким шрифтом.

От изучающего настоящий курс требуется знание университетского курса анализа в достаточно строгом и углублённом изложении, основные сведения из теории определителей, высшей алгебры и дифференциальной геометрии.

ОТ ИЗДАТЕЛЬСТВА

В. В. Степанов, автор учебника, скончался 22 июля 1950 года в период подготовки пятого издания. В пятом издании к главе VII добавлен § 6 об устойчивости по Ляпунову; в составлении этого параграфа большое содействие автору по его просьбе оказал С. А. Гальперн. В качестве последней главы был помещён исторический очерк, написанный для этой книги по просьбе автора А. П. Юшкевичем.

Для шестого издания были исправлены лишь замеченные опечатки и частично переработан А. П. Юшкевичем исторический очерк (глава X).

ГЛАВА Г.

общие понятия.

интегрируемые типы уравнений первого порядка, разрешённых относительно производной.

§ 1. Введение.

1. С точки зрения формально-математической задача решения (интегрирования) дифференциальных уравнений есть задача, обратная дифференцированию. Задача дифференциального исчисления состоит в том, чтобы по заданной функции найти её производную. Простейшая обратная задача уже встречается в интегральном исчислении: дана функция f(x), найти её примитивную (неопределённый интеграл). Если искомую примитивную функцию обозначить через y, то указанная задача может быть записана в форме уравнения:

$$\frac{dy}{dx} = f(x) \tag{1}$$

или

$$dy = f(x) dx. (2)$$

Равносильные между собой уравнения (1) и (2) являются простейшими дифференциальными уравнениями. Мы уже умеем их решать; в самом деле, из интегрального исчисления известно, что наиболее общая функция у, удовлетворяющая уравнению (1), или, что то же, уравнению (2), имеет вид:

$$y = \int f(x) \, dx + C. \tag{3}$$

В решении (3) символ неопределённого интеграла обозначает какуюнибудь примитивную, а С есть произвольное постоянное. Итак, оказывается, что искомая функция у определяется из уравнения (1) или (2) неоднозначно. Наше дифференциальное уравнение имеет бесчисленное множество решений, каждое из которых получится, если произвольному постоянному С придать определённое числовое значение. Решение (3) уравнения (1), содержащее произвольное постоянное, называется общим решением; каждое решение, которое получается

8

функция у:

из общего, если дать постоянному C определённое числовое вначение, называется частным решением. Следующий пример возьмём из механики. Исследуем движение

точки m по вертикальной прямой под действием силы земного притяжения. Примем за ось Оу вертикальную прямую, по которой дви-

жется (падает) точка; начало поместим на поверхности земли, а положительное направление условимся отсчитывать вверх. Чтобы знать движение, т. е. положение нашей точки в любой момент t после начала движения (соответствующего значению t=0), надо знать выражение единственной координаты этой точки у как функции t. Таким образом, у нас независимым переменным является t, а искомой функцией у. Составим уравнение для нахождения у. Из механического смысла второй производной следует, что ускорение равно $\frac{d^2y}{dt^2}$; с другой стороны, мы знаем, что ускорение силы тяжести в каждой точке земной поверхности и вблизи неё постоянно и (приблизительно) равно 981 $cm/ce\kappa^2$, оно обозначается буквой $g,g\approx 981$ $cm/ce\kappa^2$; оно

направлено вниз, следовательно, в нашей системе координат ему надо придать знак —. Приравнивая два найденных выражения для уско-

рения точки, получаем уравнение, в котором известной является $\frac{d^2y}{dt^2} = -g.$ **(4)**

Ггл. г

ное уравнение 1). Взяв два раза неопределённый интеграл от обеих частей равенства (4) по t, мы получаем последовательно: **(5)**

$$\frac{dy}{dt} = -gt + C_1, (5)$$

$$y = -\frac{gt^2}{2} + C_1t + C_2.$$
(6)

Выражение (6) есть общее решение уравнения (4); оно содержит две произвольные постоянные
$$C_1$$
 и C_2 . Выясним физический смысл этих постоянных. Полагая в уравнении (5) $t=0$, получаем:

$$C_1 = \left(\frac{dy}{dt}\right)_{t=0} = v_0$$
 (начальная скорость точки);

аналогично из уравнения (6):

$$C_2 = (y)_{t=0} = y_0$$
 (начальное положение точки).

¹⁾ Обыкновенно вместо выражения «решить дифференциальное уравнение» говорят: «интегрировать дифференциальное уравнение». Чтобы избежать путаницы, операцию взятия неопределённого интеграла называют «квадратурой».

С этими новыми обозначениями произвольных постоянных мы напишем общее решение (6) дифференциального уравнения (4) в виде:

$$y = -\frac{gt^2}{2} + v_0 t + y_0. \tag{7}$$

Теперь ясно, какие дополнительные данные нужно иметь, чтобы получить частное решение, описывающее одно вполне определённое движение: нужно знать числовые значения начального положения точки y_0 и начальной скорости v_0 (начальные условия).

ЗАДАЧИ.

1. Найти уравнение движения точки, падающей с высоты 10 м без начальной скорости. Через сколько секунд точка упадёт на землю?

2. Найти уравнение движения точки, брошенной вверх со скоростью 1 м/сек. Через сколько времени точка достигнет наивысшего положения?

3. Найти общие решения уравнений: $\frac{dy}{dx} = 2$; $\frac{dy}{dx} = -x^3$; $\frac{d^2y}{dx^2} = \sin x$.

2. В уравнение (1) входила только первая производная от искомой функции. Это — дифференциальное уравнение первого порядка. Самое общее дифференциальное уравнение первого порядка имеет вид:

$$F\left(x, \ y, \frac{dy}{dx}\right) = 0,\tag{8}$$

где F — заданная непрерывная функция трёх своих аргументов; в частности, она может не зависеть от x или от y (или от обоих этих аргументов), но непременно должна содержать $\frac{dy}{dx}$. Если уравнение (8) определяет $\frac{dy}{dx}$ как неявную функцию двух остальных аргументов 1) (в дальнейшем мы всегда будем предполагать это условие выполненным), то его можно представить в виде, разрешённом относительно $\frac{dy}{dx}$:

$$\frac{dy}{dx} = f(x, y). \tag{9}$$

Здесь f — непрерывная заданная функция от x, y [в частности, она может не содержать одного или обоих аргументов: в уравнении (1) f не зависит от y; в задаче 3, пример 1, правая часть не зависит

¹⁾ Чтобы существовала неявная функция y'=f(x,y), определяемая уравнением F(x,y,y')=0 и принимающая значение y_0' при $x=x_0$ и $y=y_0$, достаточно, чтобы выполнялось равенство $F(x_0,y_0,y_0')=0$, существовала непрерывная частная производная $F_{y'}'$ в окрестности значений x_0,y_0,y_0' и чтобы было $F_{y'}'(x_0,y_0,y_0')\neq 0$; тогда соотношение (8) определяет непрерывную функцию (9) в окрестности значений x_0,y_0 независимых переменных, причём $f(x_0,y_0)=y_0'$.

ни от x, ни от y]. В дифференциальном уравнении (8) или (9) x является независимым переменным, y—искомой функцией. Итак, дифференциальное уравнение первого порядка есть соотношение, связывающее искомую функцию, независимое переменное и первую производную от искомой функции.

Решением дифференциального уравнения (8) или (9) называется всякая функция $y = \varphi(x)$, которая, будучи подставлена в уравнение (8) или (9), обратит его в тождество.

Упариомия (4) со горичето в тождество,

Уравнение (4) содержало вторую производную от искомой функции; это было уравнение второго порядка. Общий вид дифференциального уравнения второго порядка есть

$$F(x, y, y', y'') = 0,$$
 (10)

или, предполагая его разрешённым относительно второй производной (если это разрешение возможно),

$$y'' = f(x, y, y').$$
 (10')

(Мы для краткости письма обозначаем производные от y по x штри-хами.) Здесь F и f—данные непрерывные функции своих аргументов, x— независимое переменное, y— искомая функция; некоторые из аргументов x, y, y' (или все они) могут не входить в уравнение, но y'' непременно входит. Решением опять называется функция $\varphi(x)$, которая, будучи подставлена на место y в уравнение (10) [или (10')], обратит его в тождество.

Вообще порядком дифференциального уравнения называется порядок наивысшей входящей в него производной от искомой функции. Так, уравнение n-го порядка имеет вид:

$$F(x, y, y', y'', \ldots, y^{(n)}) = 0,$$

причём у(п) непременно входит в уравнение.

3. Дифференциальному уравнению первого порядка можно дать геометрическое толкование, которое выяснит нам вопрос о характере множественности решений такого уравнения. Пусть дано уравнение в виде:

$$\frac{dy}{dx} = f(x, y). \tag{9}$$

Примем x, y за декартовы прямоугольные координаты плоскости. Каждой точке (x, y) той области, где определена функция f, уравнение (9) ставит в соответствие определенное значение $\frac{dy}{dx}$. Пусть $y = \varphi(x)$ есть решение уравнения (9); тогда кривая, определяемая уравнением $y = \varphi(x)$, называется интегральной кривой дифференциального уравнения. Значение $\frac{dy}{dx}$ есть тангенс угла, образуемого касательной к этой кривой с осью Ox. Таким образом, каждой точке (x, y) рассматриваемой области уравнение (9) ставит в соот-

ветствие некоторое направление: мы получаем поле направлений. Это поле можно изобразить, поместив в соответствующих точках области стрелки, образующие с осью Ox углы $arctg \frac{dy}{dx}$ (положительное направление стрелки можно взять произвольным, так как арктангенс определяет угол лишь с точностью до кратного п). Задача интегри-

рования дифференциального уравнения может быть теперь истолкована так: найти такую кривую, чтобы её касательная в каждой точке имела направление, совпадающее с направлением поля в этой точке. Грубо говоря, нужно провести кривую так, чтобы расставленные на стрелки показывали каждой точке направление касательной к искомой кривой.

Рассмотрим подробнее следующий пример:

$$\frac{dy}{dx} = x^2 + y^2$$
. (11)

Расставим стрелки, найдя предварительно наклон олинии. гле наков (изоклины). Так. если y'=0, мы имеем x = y = 0 (начало коор-

Черт. 1.

динат), если $y' = \frac{1}{2}$, то $x^2 + y^2 = \frac{1}{2}$ (круг радиуса $\frac{1}{\sqrt{2}}$ с центром в начале), y'=1 на окружности $x^2+y^2=1$ и т. д. (черт. 1). Чтобы начертить интегральную кривую уравнения (11), надо взять некоторую точку (x_0, y_0) на плоскости и провести через неё кривую так, чтобы она в каждой точке имела направление поля на чертеже кривые через точки (0, 0), $(0, -\frac{1}{2})$, $(\sqrt{2}, 0)$. Мы проведены видим, что получается не одна кривая, а целое семейство от одного параметра (за параметр можно взять, например, отрезок, отсекаемый кривою на оси Оу). Это же заключение будет при известных ограничениях справедливо и для любого поля, т. е. любого дифференциального уравнения. Таким образом, мы вправе ожидать такого

ответа на вопрос о множестве интегральных кривых дифференциального уравнения: интегральные кривые дифференциального уравнения первого порядка образуют семейство, зависящее от одного параметра:

$$y = \varphi(x, C). \tag{12}$$

Замечая, что функция $\varphi(x,C)$ при любом C есть решение дифференциального уравнения, мы можем также ожидать следующего результата.

Общее решение дифференциального уравнения первого порядка даётся формулой (12), заключающей одно произвольное постоянное 1).

Наконец, вспомнив, что мы получаем каждую отдельную интегральную кривую, задавая точку (x_0, y_0) , через которую она проходит, мы приходим к следующему заключению:

Чтобы однозначно определить частное решение дифференциального уравнения первого порядка, надо задать то значение y_0 , которое искомая функция принимает при заданном значении x_0 независимого переменного (начальные значения).

В самом деле, если x_0 и y_0 даны, то, подставляя их в уравнение (12), мы получим: $y_0 = \varphi(x_0, C)$ —одно уравнение для определения одного неизвестного C; наши геометрические соображения позволяют ожидать, что это уравнение имеет решение.

Примечание. Рассуждения настоящего раздела 3 не являются строгими доказательствами существования решения дифференциального уравнения и однозначного определения частного решения начальными данными, так как они ссылаются на геометрическую картину; все приведённые результаты справедливы лишь при определённых ограничениях, наложенных на функцию f; строгие доказательства будут даны в главе II. Наши рассуждения только показывают, каких обстоятельств мы вправе ожидать в простейших случаях, и дают практический приём для приближённого вычерчивания интегральных кривых.

ЗАДАЧА.

- **4.** Построить поле направлений для уравнения $\frac{dy}{dx} = x^2 y^2$ (построить изоклины y' = 0, $y' = \pm 1$, ± 2). Провести интегральные кривые через точки (0, 0), (0, 1), (1, 0).
- 4. Мы видели, что свойство общего решения дифференциального уравнения первого порядка зависеть от одного произвольного постоянного, выявленное на простейшем примере (1), подтверждается соображениями предыдущего раздела и для более общих уравнений первого порядка. Естественно ожидать, что, по аналогии с примером (4), решение общего дифференциального уравнения второго по-

Точное определение общего и частного решения мы сможем дать лишь в дальнейшем.

рядка (10) или (10') будет заключать два произвольных постоянных, а общее решение дифференциального уравнения n-го порядка будет зависеть от n произвольных постоянных. Так оно и есть (при известных ограничениях); мы не будем здесь приводить геометрических соображений, а подойдём к вопросу с другой стороны, благодаря чему наши соображения по аналогии получат значительное подтверждение.

Поставим задачу, в некотором смысле обратную задаче интегрирования дифференциального уравнения. Пусть дано соотношение:

$$y = \varphi(x, C), \tag{13}$$

где C есть параметр; дифференцируя по x^{-1}), получим:

$$y' = \varphi_x'(x, C). \tag{14}$$

Если правая часть выражения (14) не содержит C, то мы уже произвели исключение параметра C и получили дифференциальное уравнение:

$$y' = \varphi_2'(x); \tag{14'}$$

очевидно, что в этом случае соотношение (13) имеет вид:

$$y = \varphi(x) + C$$

и является решением уравнения (14').

Пусть теперь правая часть равенства (14) содержит C; тогда и правая часть равенства (13) содержит C, т. е. $\varphi_{\sigma}'(x,C)\not\equiv 0$, и в окрестности значений x_0 , C_0 , для которых $\varphi_{\sigma}'(x_0,C_0)\not\equiv 0$, мы можем определить C как функцию от x и y:

$$C = \psi(x, y). \tag{15}$$

Очевидно, что имеет место тождество (по переменным x и C):

$$\psi(x, \varphi(x, C)) \equiv C. \tag{16}$$

Подставляя значение C, определённое формулой (15), в выражение (14), мы получим дифференциальное уравнение первого порядка:

$$y' = \varphi_x'(x, \psi(x, y)). \tag{17}$$

Легко убедиться в том, что (13) представляет его решение при любом значении C; в самом деле, если мы подставим это выражение для y в уравнение (17), то в левой части получим $\varphi_x'(x, C)$, а в правой $\varphi_x'(x, \psi[x, \varphi(x, C)])$, а это, в силу тождества (16), тоже даёт $\varphi_x'(x, C)$.

¹⁾ Мы предполагаем, что все входящие в рассуждения производные существуют.

Если соотношение между x, y, C дано в неявном виде:

$$\Phi(x, y, C) = 0,$$
 (13')

то, дифференцируя его по x, находим:

$$\Phi_x' + \Phi_y' y' = 0. (14'')$$

Исключая C из соотношений (13') и (14''), приходим, при выполнении соответствующих условий из теории неявных функций, к уравнению

$$F(x, y, y') = 0.$$
 (17')

Предыдущие рассуждения показывают, что (13') определяет его решение.

Пусть теперь дано соотношение

$$\Phi(x, y, C_1, C_2, \ldots, C_n) = 0,$$
 (18)

связывающее функцию y и независимое переменное x и заключающее n параметров C_1, C_2, \ldots, C_n . Нельзя ли построить дифференциальное уравнение, которому удовлетворяет функция y, определённая соотношением (18), при любых постоянных значениях параметров? Мы предположим, что Φ непрерывна по всем аргументам и дифференцируема по x и y достаточное число раз. Дифференцируем в указанных предположениях равенство (18) n раз [оно является тождеством, если вместо y подставить функцию $y = \varphi(x, C_1, C_2, \ldots, C_n)$, определяемую соотношением (18)]. Имеем:

Соотношения (18) и (19) образуют систему n+1 уравнений; они содержат n параметров C_1 , C_2 , ..., C_n . Вообще говоря 1), из этой системы можно исключить все параметры, т. е. найти их выражения через x, y, y', ..., $y^{(n)}$ из n уравнений и вставить эти выражения в (n+1)-е уравнение. Мы придём к соотношению вида:

$$F(x, y, y', \ldots, y^{(n)}) = 0,$$
 (20)

 $^{^{1}}$) Даже для случая линейных уравнений мы знаем, что не всегда из n уравнений можно определить n неизвестных.

т. е. к дифференциальному уравнению n-го порядка. Мы уже отметили, что при подстановке в уравнение (18) на место y его выражения $\varphi(x, C_1, C_2, \ldots, C_n)$ получается тождество, и то же справедливо относительно уравнений (19); поэтому и уравнение (20), являющееся следствием уравнений (18) и (19), обратится в тождество, если в него подставить вместо y функцию $\varphi(x, C_1, C_2, \ldots, C_n)$, а это значит, что y, определяемый из уравнения (18), есть решение уравнения (20). Таким образом, эта функция, содержащая n произвольных постоянных, является решением некоторого дифференциального уравнения n-го порядка. Можно было бы провести и более точное рассуждение, как мы это сделали для уравнения первого порядка. Теперь мы вправе ожидать, что исходное решение является общим и что, обратно, общее решение дифференциального уравнения n-го порядка содержит n произвольных постоянных.

ЗАДАЧИ.

5. Найти дифференциальное уравнение всех прямых на плоскости (взять общую форму); проинтегрировать это уравнение.

6. Найти дифференциальное уравнение софокусных эллипсов с данным

фокусным расстоянием 2с.

У к а з а н и е. Уравнение семейства $\frac{x^2}{a^2} + \frac{y^2}{a^2 - e^2} = 1$, где a — произвольный параметр, дифференцируем по x, считая y функцией x; по сокращении имеем:

$$\frac{x^2}{a^2} + \frac{yy'}{a^2 - c^2} = 0.$$

Исключив из этих двух уравнений a^2 , получим искомое уравнение первого порядка.

Пример 1. Семейство всех кругов на плоскости

$$(x-\alpha)^2 + (y-\beta)^2 = r^2$$

содержит три параметра. Дифференцируем три раза:

$$x - \alpha + (y - \beta)y' = 0$$
, $1 + (y - \beta)y'' + y'^2 = 0$, $(y - \beta)y''' + 3y''y' = 0$.

Параметры α и r исключились при дифференцировании; нам остаётся исключить β из двух последних уравнений, и мы получим (приравнивая два выражения для $y - \beta$):

$$y'''(1+y'^2)-3y'y''^2=0.$$

Пример 2. В качестве последнего примера возьмём уравнение всех конических сечений. Из аналитической геометрии известно, что оно зависит от пяти параметров (отношения шести коэффициентов) и имеет вид:

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0.$$

Предположим, что $a_{22} \neq 0$, и разрешим это уравнение относительно у:

$$y = -\frac{a_{12}x + a_{23}}{a_{22}} \pm \sqrt{\left(\frac{a_{12}x + a_{23}}{a_{22}}\right)^2 - \frac{a_{11}x^2 + 2a_{13}x + a_{33}}{a_{22}}},$$

или

$$y = -\frac{a_{12}}{a_{22}}x - \frac{a_{23}}{a_{22}} \pm \sqrt{\frac{a_{12}^2 - a_{11}a_{22}}{a_{23}^2}x^2 + 2\frac{a_{12}a_{23} - a_{13}a_{22}}{a_{22}^2}x + \frac{a_{23}^2 - a_{21}a_{33}}{a_{22}^2}}.$$

Обозначив постоянные новыми буквами, мы получим окончательно:

$$y = Ax + B + \sqrt{Cx^2 + 2Dx + E}.$$
 (21)

В это уравнение входит пять параметров; надо их исключить из данного уравнения и тех уравнений, которые из него получатся после одного, двух, ..., пяти дифференцирований.

Итак, дифференцируем обе части уравнения (21) по x:

$$y' = A + \frac{Cx + D}{\sqrt{Cx^2 + 2Dx + E}},$$

$$y'' = \frac{C(Cx^2 + 2Dx + E) - (Cx + D)^2}{(Cx^2 + 2Dx + E)^{\frac{3}{2}}} = \frac{CE - D^2}{(Cx^2 + 2Dx + E)^{\frac{3}{2}}}.$$

Постоянные А и В исключились; мы имеем в числителе правой части постоянные, в знаменателе — квадратный трёхчлен в степени $\frac{3}{2}$. Для дальнейшего исключения постоянных выгодно возвести обе части в степень — $\frac{2}{3}$; тогда мы получим:

$$(y'')^{-\frac{2}{3}} = (CE - D^2)^{-\frac{2}{3}}(Cx^2 + 2Dx + E),$$

т. е. в правой части квадратный трёхчлен относительно x; если его продифференцировать три раза, то все постоянные исключатся, так как в правой части получится 0. Итак, искомое дифференциальное уравнение сразу запишется в виде:

$$(y''^{-\frac{2}{3}})''' = 0.$$

Проведём это дифференцирование последовательно

$$(y''^{-\frac{2}{3}})' = -\frac{2}{3}y''^{-\frac{5}{3}}y''', \quad (y''^{-\frac{2}{3}})'' = \frac{10}{9}y''^{-\frac{8}{3}}y'''^{2} - \frac{2}{3}y''^{-\frac{5}{3}}y^{\text{IV}}$$

и, наконец,

$$(y''^{-\frac{2}{3}})''' = -\frac{80}{27}y''^{-\frac{11}{3}}y'''^{3} + \frac{20}{9}y''^{-\frac{8}{3}}y'''y^{IV} + \frac{10}{9}y''^{-\frac{8}{3}}y'''y^{IV} - \frac{2}{3}y''^{-\frac{5}{3}}y^{V} = 0.$$

Упростим последнее уравнение, приведя подобные члены и умножив

обе части на $y''^{\frac{11}{8}}$, чтобы не иметь отрицательных степеней; далее, умножим все члены на числовой множитель — $\frac{27}{2}$. Мы получим окончательно:

$$9y''^2y'' - 45y''y'''y^{IV} + 40y'''^3 = 0.$$

Примечание 1. Мы взяли в формуле (21) перед радикалом знак +; легко проверить, что тот же окончательный результат получится, если взять знак -.

Примечание 2. Заметим, что $C = \frac{a_{12}^2 - a_{11}a_{22}}{a_{22}^2}$; в случае параболы мы имеем C = 0, и уравнение парабол (зависящее от четырёх

параметров) имеет вид:
$$y = Ax + B + \sqrt{2Dx + E}$$
.

Примечание 3. Мы предположили $a_{22} \neq 0$; разбор случая $a_{22} = 0$ отнесён к задачам.

ЗАДАЧИ.

7. Вывести дифференциальное уравнение конических сечений, у которых $a_{22}=0$. Каково геометрическое свойство этих кривых, выделяющее их из всех кривых второго порядка? (Рассмотреть два случая: $a_{12}\neq 0$, $a_{12}=0$.)

8. Вывести дифференциальное уравнение парабол, для которых $a_{12} \neq 0$, $a_{12} = 0$.)

и тех парабол, для которых $a_{22}=0$. Примечание. Если мы имели соотношение между x и y, содержащее n параметров, то мы утверждали, что, «вообще говоря», для исключения этих параметров надо иметь n+1 уравнений. В отдельных случаях параметры могут исключиться из меньшего числа уравнений; например, из семейства $y=C_1(C_2x+C_3)$ получается после исключения параметров уравнение второго порядка y''=0, так как на самом деле это семейство зависит от двух параметров C_1C_2 и C_1C_3 .

Труднее обнаружить этот факт на уравнении $y^2 = 2bxy + cx^2$, представляющем семейство распадающихся кривых второго порядка с двойной точкой в начале координат. Как геометрический образ, это семейство действительно зависит от двух параметров; но если разрешить уравнение относительно y, мы получим:

$$y = (b \pm \sqrt{b^2 + c}) x;$$

с функциональной точки зрения y, рассматриваемый как одназначная функция от x, зависит от x и одной комбинации параметров:

$$k = b + \sqrt{b^2 + c}.$$

И действительно, дифференцируя данное соотношение, находим:

$$yy' = b(xy' + y) + cx;$$

исключая с из этого уравнения и из данного, получим:

$$xyy'-y^2=b(x^2y'-xy)$$
 или $(y-bx)(xy'-y)=0$.

Второй множитель, приравненный нулю, даёт искомое дифференциальное уравнение xy'-y=0; легко видеть, что, приравняв нулю первый множитель, мы получим частное решение того же дифференциального уравнения.