Agenda:-		
Bit wise (Perator	<u>.</u>
	Fi laola	
	Holew	Problems ,
10 -> 1018		a = 5;
10 -> 1010	in1	to = 10',
no' -> Binary		a (hit when) b
		aperater)
The open	enators	which act
	upon	the binary
	ં લ્	the binary

					_
Touth table of Bitwise Openators					
					> xoR
<u>a</u>	ه	ع2 <i>P</i>	a / P	arb	~a
0	0	0	Ð	0	
0	1	0	1	\	
1	0	0	•	`	0
1	\	\	1	0	0
		I	1	1	

Bosic	And properties	
1)	Even/odd number	
-'		

In binary representation, if a number is even, then its least significant bit (LSB) is 0.

Conversely, if a number is odd, then its LSB is 1.

$$A \leftarrow A Q A \in \mathcal{E}$$

Of freeboart of

Commutative Property
Lo Order doesn't change the
<u> </u>
0 l b - b l q
alb = bla
9nb - bna
Associative Property
Lo grouping destrit impact the averall
जाता <u>ताप</u> .
(A & B) & C - A & (B & C)
(A (B) (= A1 (B(C)
(AAB) AC = AA (BAC)
- ·

Ove	
Evaluate t	the expression: a ^ b ^ a ^ d ^ b
	$\mathcal T$
	a^b^a^d^b
	\mathcal{T}
	Ond n b n b n d
	0 V P V P V Q
	<u> </u>
	$p \vee p \vee q$
	7
	$\frac{1}{2}$
Oves	
	ne expression: 1 ^ 3 ^ 5 ^ 3 ^ 2 ^ 1 ^ 5
	<u>↓</u>
	1112323050502
	<u> </u>
	2 ,

```
deft shift Operator (<<)
       det's say we have 8 bit numbers,
       a = 10
00101000 => 40=>10122
Q < < 2 =
Q<<3 = 0 1 0 1 0 0 0 0 => 80 => 10x23
0 < < 4 = 1000000 => 160 => 10x24
axx5 = 01000000 => 320
                     on primare)
        a<< m = a + 2m
                          (cooppes co
                         95
                         1 < < 5
```

Right Shift Operator (>>)

$$Q = 20 = 3$$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 0
 $0 = 0$
 0
 $0 = 0$
 0
 $0 = 0$
 0
 0
 0
 0

$$\frac{1}{3m}$$

$$1 > > m = \frac{1}{3m}$$

$$1 \times 2 + 1 \times 2^{2} = 2 \times 10^{2}$$

function check bit (10, 1) \(\) \(Complete	0 h - 10 h '	\	•
11 4011 was used 7. C ± O(1) 2 shot newless 3 sh/9 3 sh/9 2 sh/9		1	Check	+ (N, 1) 2	
2. C=20(1) 3. C=20(1) 3. C=20(1) 3. C=20(1)	i3 ((N2 C1<<1)) ==0) €				
2 elle ? surface ;					
elle & elle ;				entot ne	
<u> </u>			elhe &	- Augus Tous	
		3			

Oves Count no of set toils in N. N=12 , →> 1100 → Ans → 2, Approach 1:-カニノの function complit (N) & T.C = O(1) 8.C4000 000 = 0', for (1=0; 1<32; 1++) & id (chack bit cro, ii) & and ++3 , an newless 3 Approach 2: 8 Pit 20 N= 1010 → 21-000000 10100000 (=1880) 0 0 0 0 0 0 0 1 2 1 166666

IRCTC (India's train ticketing system) wants to improve how it shows train options to its users. They've decided that trains which run more **frequently** should appear higher up in the search results. To figure this out, they look at a **28-day period** to see how often each train runs.

For **each** train, they've come up with a **special number**. This isn't just any number, though. If you were to write it down in binary form (which is like a special code of 0s and 1s), each of the 28 **digits** corresponds to a day in that **period**. A '1' means the train runs on that day, and a '0' means it doesn't.

Your task is to help **IRCTC** by writing a program. Given a list **A** of these **special numbers** for different **trains**, your program should find the train that runs the most.

A group of computer scientists is working on a project that involves encoding binary numbers. They need to create a binary number with a specific pattern for their project. The pattern requires A 0's followed by B 1's followed by C 0's. To simplify the process, they need a function that takes A, B, and C as inputs and returns the decimal value of the resulting binary number. Can you help them by writing a function that can solve this problem efficiently?

6.3 6.3

A= 2, B= 4, C= 3

0 0 0 0 0 0 0 0

for (1=0', i<B'; i++) ?

| N= Del-Bit (N, C+i)',

T= 0(B) ~ 0(1)