

지하철 편의 개선 제안

기업 프로젝트 기반 AI 빅데이터 융합 전문가 양성과정

01. 주제 및 목적 | 연구배경

"2300만 인구가 모여 사는 수도권. 과밀은 일상이 됐다.

서울 용산구 이태원 참사 이후 다수의 인원이 좁은 공간에 밀집하는 상황을 개선해야 한다는 지적이 나온다.

• • •

압박감으로 인해 지하철에서 실신을 경험하거나 목격했다는 증언도 있었다.

김포골드라인을 타고 서울로 출퇴근하는 최아라(26·여)씨는 "출퇴근 시간, 산소가 부족하다고 느낄 정도로 심각할 때가 많다"며 "한 달 전쯤 실신할 뻔한 적도 있다.

그때 제 앞에 계시던 분도 쓰러졌다. 종점에서 내리면 헉헉대며 숨을 고르는 사람들도 종종 보인다"고 말했다. 김은지(34·여)씨도 "(압박받는 가운데) 히터까지 틀면 가슴이 심하게 답답할 때가 있다"며 "겨울철에는 열차에서 내린 후 숨쉬기가 답답한지 플랫폼 의자에 누워 쉬는 사람들도 있다"고 설명했다.

• • •

김포골드라인 정원은 172명이지만 출퇴근 시간대에는 300~400명의 시민이 탑승한다. 김포시에 따르면 1일 기준 출근 시간대 평균 혼잡률은 230%다."

참고 기사: https://news.nate.com/view/20221101n21388

01. 주제 및 목적 | 연구배경

- -대중교통 수단 선택시 이용객의 주요 관심사는 "시간"과 "<mark>혼잡도</mark>"
- -지하철 평균 혼잡도는 희망 수준의 2.3배
- -출퇴근 시 <mark>지하철 출퇴근자 행복지수</mark>에 혼잡도가 큰 영향을 준다는 연구 결과
- 환승 혼잡도가 대중교통 정책 우선순위 고려사항이 되어야 한다는 제안

출처: http://www.sijung.co.kr/news/articleView.html?idxno=96114

02. 연구 방법 및 과정 | 연구 가설

가설 1: 지하철 <mark>이용객 수</mark>와 혼잡도가 양의 상관관계를 보일 것이다.

- 혼잡도와 이용객 수 사이의 상관관계 분석
- 환승 가능 여부와 이용객 수 사이의 상관관계 분석
- 총 이용객 수 상위 30개 역의 환승 가능 여부 비율 분석
- 총 이용객 수 상위 6개, 하위 6개 역의 시간대 별 이용객 수 분석

02. 연구 방법 및 과정 | 연구 가설

가설 2: <mark>무임승차자 수</mark>와 열차의 <mark>혼잡도</mark>는 양의 상관관계를 보일 것이다.

- 시간대 별 혼잡도 분석
- 노인 승하차 수가 많은 역 5개의 시간대별 혼잡도 분석
- 주요 무임승차 대상인 노인의 승차자 수와 혼잡도간 상관관계 분석

02. 연구 방법 및 과정 | 연구 가설

가설 3: <mark>지하철 역의 구조적 특성</mark>과 <mark>혼잡도</mark>는 상관관계를 보일 것이다.

- 역사의 혼잡도, 층수, 면적 간 상관계수 분석
- 출근시간대 혼잡도 상위 25%역의 층수, 면적, 혼잡도 간 상관계수 분석
- 퇴근시간대 혼잡도 상위 25%역의 층수, 면적, 혼잡도 간 상관계수 분석

02. 연구 방법 및 과정 | 연구 과정

 1.
 2.
 3.
 4.
 5.

 Python 을 이용한 지하철 등계자료 분석
 수치 데이터 간 상관관계 및 시각화
 Python과 R을 이용한 분석 대이터 시각화
 지하철 혼잡도 가설 입증
 및 기대효과 예측

02. 연구 방법 및 과정 | 프로젝트 관리

	2/8 - 2/12	2/13 -	- 2/19	2/20 - 2	/26	2/27-3/3
기획 및 설계						
	주제 선정 데이터	거 수집				
	세부 주제 선정					
서론 및 이론적 배경						
	연구 주	제 관련 정보 습득				
	데이터 전처리 및 결합	데이터 분	부석 계획			
연구 모형 수립 및 설계						
		상관관계 분석				
		Api 데이터 처리				
실증 분석 및 결론						
			데이터 시각화			
					지하철 노선도	- 시각화
해결방안 검증						
			결론 도출	환승역 제안을 위한	필터링 조건 수립	
			데이터 예측		PPT 작성 및	발표 준비

03. 분석 및 시각화 | 이용객 수 및 혼잡도

배경 및 분석 대상

- 특정 역에 승하차인원 쏠림 현상
- 특정 호선에 승하차인원 쏠림 현상
- 이용객수가 유난히 많은 역을 살펴 혼잡도가 높은 원인을 규명

총 이용객 수가 많은 역 10개에 지하철 전체 이용객의 13.9%가 포함된다.

모든 역에 이용객이 골고루 분포되어 있다면 10개의 역에는 총 이용객수의 약 3.37%가 포함되어야 한다.

따라서 현재 특정 역에 이용객이 몰려있다는 것을 알 수 있다.

03. 분석 및 시각화 | 이용객 수 및 혼잡도 - 이용객 수 상위 6개 역 시간대별 승하차인원

총 이용객 수 상위 6개 역을 뽑아 본 결과 잠실, 강남, 고속터미널, 홍대입구, 사당, 신림역이 추출되었다.

출근시간대(7시~10시)는 빨간색 띠로, 퇴근시간대(17시~20시)는 파란색 띠로 표시하였다.

출퇴근 시간대에 최소 약 55,000명에서 최대 약 360,000명의 인원이 이용하였다.

고속터미널역과 홍대입구역 외에는 모두 출퇴근시간대 승하차인원이 눈에 띄게 많다. 이는 특정 시간대에 상대적으로 더 혼잡함을 알 수 있다.

한편 출근시간대에 승차가 많은 역은 거주지역으로, 퇴근시간대에 승차가 많은 역은 회사들이 몰려있는 지역으로 예상된다.

또한 6개의 역 중 4개의 역이 퇴근시간대에 승차가 많은 것으로 보아 직장이 몰려있는 지역이 지하철 이용객이 많은 것으로 추측된다.

03. 분석 및 시각화 | 이용객 수 및 혼잡도 - 이용객 수 하위 6개 역 시간대별 승하차인원

총 이용객 수 하위 6개 역을 뽑아 본 결과 둔촌오륜, 신내, 도림천, 신답, 남태령, 응봉역이 추출되었다.

출근시간대(7시~10시)는 빨간색 띠로, 퇴근시간대(17시~20시)는 파란색 띠로 표시하였다.

출퇴근 시간대에 최소 약 2,000명에서 최대 약 9,500명의 인원이 이용하였다.

6개의 역 모두 앞서 본 상위 6개 역과 같이 출퇴근시간대에 승하차인원이 눈에 띄게 많은 것을 볼 수 있다.

03. 분석 및 시각화 | 이용객 수 및 혼잡도 - 총 승차인원과 혼잡도 관계

총 승차인원과 혼잡도 사이의 상관계수를 구하였다.

출퇴근시간대 혼잡도, 그 외 시간대 혼잡도, 전체 운영 시간대 혼잡도 모두 총 승차인원과 유의미한 상관계수가 도출되었다.

아래 산점도 또한 선형적인 모양을 가지고 분포되어있는 것을 볼 수 있다.

이를 통해 총 승차인원과 혼잡도는 약한 양의 상관관계를 가짐을 알 수 있다.

03. 분석 및 시각화 | 이용객 수 및 혼잡도

- 총 이용객 수 상위 30개 역의 환승 가능 여부 비율

이용객 수가 많은 역의 특징을 알아보기 위해 총 이용객 수를 기준으로 정렬해보았다.

이용객 수가 많은 역들은 대체적으로 환승역인 것을 알 수 있었다. 정확한 수치를 얻기 위해 총 이용객 수 상위 30개의 역을 환승 가능 여부에 따라 구성비를 구해보았다.

그 결과 환승이 가능한 역이 30개 역 중 66.7%를 차지한다는 것을 확인할 수 있었다.

이를 통해 환승 가능 여부와 총 이용객 수 사이에 관련성이 있을 것이라고 추측하고 이에 대해 알아보고자 한다.

03. 분석 및 시각화 | 이용객 수 및 혼잡도 - 환승 가능 여부와 총 승차인원 관계

보다 구체적인 환승 가능 여부에 따른 이용객 수를 보기 위해 역별 총 승차인원을 환승 가능 여부에 따라 박스 플롯을 그려보았다.

박스플롯을 통해 환승 가능한 역의 총 승차인원 중앙 값이 환승 불가능한 역보다 확실히 더 큰 것을 알 수 있고, 상자의 위치 또한 환승 가능한 역의 상자가 높게 형성 됨을 볼 수 있다.

이는 환승 가능 여부와 총 이용객 수 사이에 관련성이 있음을 시각적으로 보여준다.

03. 분석 및 시각화 | 이용객 수 및 혼잡도

- 환승 가능 여부와 총 승차인원 관계

		Statistic	df	р		
총 승차인원	Student's t	-12.1°	520	< .001		
Note. Ha µ N 7	έ μγ			·		
^a Levene's test is significant (p < .05), suggesting a violation of						

'환승 가능 여부에 따라 총 승차인원이 같다'라는 귀무가설을 통계적으로 확인하기 위해 독립 t검정을 해보았다.

P-value 값이 유의수준 0.05보다 작아 귀무가설을 기각하게 되면서 환승 가능 여부에 따라 총 승차인원이 다르다는 결론에 도달하였다.

> cor(df\$환승,df\$총.승차인원, method = 'spearman', use = 'complete.obs') [1] 0.4025975

추가적으로 환승 가능 여부와 총 승차인원 간의 스피어만 상관계수를 구해보았는데, 약 0.4로 양의 상관관계가 있다고 할 수 있다.

03. 분석 및 시각화 | 이용객 수 및 혼잡도 - 환승역 개설 전 후 총 이용객 수 변화

고속버스터미널 역

연도	8	0	9	총합	
2007년	122,107명	29,496명		151,603명	= 4 01 -11 -1
2008년	116,699명	32,386명		149,085명	환승역 개설 전
2009년	115,646명	33,342명	15,394명	164,382명	
2010년	115,888명	34,055명	19,564명	169,507명	환승역 개설 후
2011년	113,515명	35,362명	20,700명	169,577명	J

종로3가 역

연도	0	3	5	총합	
1997년	93,417명	16,217명	자료없음	109,634명)
1998년	93,086명	15,078명	시요하급	108,164명	환승역 개설 전
1999년	자료없음	자료없음		18-3	J
2000년	99,957명	13,773명	24,117명	137,847명)
2001년	102,596명	13,742명	25,299명	141,637명	환승역 개설 후
2002년	99,379명	13,857명	25,051명	138,287명	J

약수 역

	총합	6	3	연도
)			23,508명	1998년
환승역 개설 전			자료없음	1999년
J			26,222명	2000년
	31,489명	4,872명	26,617명	2001년
환승역 개설 후	32,423명	5,587명	26,836명	2002년
J	32,726명	6,320명	26,406명	2003년

이수 역

	총합	7	4	연토
)			63,897명	1997년
> 환승역 개설 전			62,701명	1998년
J			자료없음	1999년
	75,277명	19,104명	56,173명	2000년
환승역 개설 후	75,422명	23,718명	51,704명	2001년
)	77,245명	25,863명	51,382명	2002년

실제로 환승역 개설 후 총 이용객 수가 어떻게 변화하였는지 살펴보기 위해 현재 환승역인 역들 중 몇 개를 가져와 보았다. 대체로 환승역 개설 전보다 환승역을 개설 한 후에 이용객 수가 확연히 증가한 것을 볼 수 있다.

배경

지하철 이용객 중 무임 승차자의 비율이 16%로 유임 승차자의 약 1/6을 차지한다.

배경

- 지하철 무임승차에 노인이 큰 비중을 차지

5년(2017~2021)간의 무임승차자 구성을 보았을 때, 무임승차자 중에서 노인이 80% 이상을 차지하고 있다.

따라서 노인 무임승차자에 초점을 맞춰 분석을 진행하도록 하였다.

분석 대상

- 시간대별 노인 승하차 인원 (2019-2022)
- 운영시간대 혼잡도와 노인승차 인원의 상관관계
- 출퇴근 시간대 혼잡도와 노인승차 인원의 상관관계

분석 내용

- 평일과 주말의 노인승차 인원 비교

- 주말보다 평일에 노인 승차자 수가 많음
- 따라서 다른 시간대보다 출퇴근시간대에 많은 지 확인해 볼 필요 있음

분석 내용

- 운영시간대 (6시 이전-23시 이후) 지하철역 혼잡도 및 노인승차 인원 비교

- 혼잡도는 출퇴근 시간에 집중적으로 높은 반면, 노인 승차인원 수는 출근시간부터 꾸준히 증가하여 오후 3~4시에 가장 많음
- 노인 승차인원 수가 출퇴근 시간대 혼잡도에 크게 영향을 주지 않을 것이라고 예상됨

분석 내용

- 출근시간대에는 0.16으로 유의미한 상관관계가 있다고 보기 어려움

- 퇴근시간대에도 0.3으로 유의미한 상관관계가 있다고 보기 어려움

03. 분석 및 시각화 | 역 구조 및 혼잡도

배경 및 분석 대상

- 지하철 이용자의 역 내 동선을 수평 이동 (면적)과 수직 이동 (층수)을 통해 파악한다.
- 특정 역 구조가 혼잡도 해소에 도움을 줄 수 있는지 분석한다.

*예시: 수평 이동을 주요 동선으로 하는 강변역 *예시: 수직 이동을 주요 동선으로 하는 신도림 *예시: 수직/수평 이동을 주요 동선으로 하는 청담

03. 분석 및 시각화 | 역 구조 및 혼잡도

분석 내용

- 운영시간내 혼잡도와 층수, 면적 간 상관계수는 각 -0.36, -0.14
- 출근시간대(07-10시) 혼잡도와 층수, 면적 간 상관계수는 각 -0.39, -0.26
- 퇴근시간대(17-20시) 혼잡도와 층수, 면적 간 상관계수는 각 -0.24, -0.1
- 혼잡도와 층수는 강한 음의 상관관계, 혼잡도와 면적은 약한 음의 상관 관계

04. 결론 | 무임승차 및 혼잡도

- 노인 무임승차는 운영시간내 지하철 혼잡도에 영향을 미치고 있다고 보기 어렵다.
- 노인 무임승차는 출근시간 혼잡도에 영향을 준다고 보기 어렵다.
- 노인 무임승차는 퇴근시간 혼잡도에 영향을 준다고 보기 어렵다.

04. 결론 | 역 구조 및 혼잡도

- 역의 높은 층수는 혼잡도 해소에 도움을 주는 것으로 보인다.
- 역의 크기는 혼잡도 해소에 다소간 도움을 주는 것으로 보인다.
- 새로운 지하철 환승역 제안 시 많은 층수와 넓은 면적을 조건의 우선순위 부여

04. 결론 | 이용객 수 및 혼잡도

- 승하차 인원이 많은 역은 배차 간격 조정을 통해 혼잡도 완화를 위한 노력이 이루어진 것으로 보인다.
- 이용객 수와 혼잡도는 유의미한 양의 상관관계를 보인다.
- 승하차 인원과 혼잡도가 여전히 양의 상관관계와 유의미성을 보이는 것으로 보아 추가적 조정이 필요한 것으로 해석 된다.
- 환승 가능 여부와 이용객 수 사이에 양의 상관관계를 갖는다.

조건 적용 순서

- 1-1. 현재 환승역인 역들의 층수의 1분위수인 3층을 기준으로 3층보다 많은 층수를 가진 역 채택
- 1-2. 현재 환승역인 역들의 면적의 1분위수인 10209.725m²를 기준으로 이보다 넓은 면적을 가진 역 채택
- 2. 이미 환승역인 역은 제외
- 3. 환승 후보역 반경 2.3km 내 후보역과 다른 호선인 역만 채택
- 4. 환승 후보역 반경 5.75km 내 해당 후보역과 3번에서 채택된 역간의 환승역이 존재하지 않는 경우 연결

환승 후보역

결합할 호선

서울 내 지하철 역 노선별로 표시

각 환승 후보역마다 두 정거장의 거리인 2.3km를 반경으로 인근역을 제한 (한 정거장의 평균 거리 : 1.15km)

반경에 들어오지 못한 나머지 역을 지도에서 지우기

환승 후보역과 다른 호선이면서 환승역이 아닌 역 선택

환승 후보역 중 반경 안에 역이 남아 있는 후보역만 선택

반경 5.75km(약 5정거장 거리)내에 후보역의 호선과 연결할 수 있는 역의 호선간 환승역이 존재하는 경우 후보역에서 제외

	후보역	지하철역	주소	위도	경도	호선명	거리	7
0	강변(동서울터미널)	광나루(장신대)	서울 광진구 광장동 237	37.545299	127.089565	5호선	1.370774	1
1	봉화산(서울의료원)	망우	서울 중랑구 상봉동 172	37.599296	127.092367	중앙선	2.005859	/
2	일원	삼전	서울 송파구 잠실동 347	37.504549	127.087364	9호선	2.299789	

-기존 강변역 -> 광나루역 최소 소요 시간

환승역을 제안한 역 중 강변역을 5호선과 환승 할 수 있게 바꾼다고 가정해보았다.

기존에 강변에서 광나루를 가기 위해 두번을 환승하여 21분을 돌아가야했었지만 환승역이 개설되면 지하철이 2.3분만에 강변역에서 광나루역을 갈 수 있게 된다.

여기서 2.3분은 지하철이 한 정거장을 이동할 때 평균 속력 35km 정도로 달린다고 가정하고 계산한 시간이다.

-환승역 추가 후 강변역 -> 광나루역 예상 소요 시간 (시속 35km 기준)

	후보역	지하철역	거리	기존 소요시간	기대 소요시간
0	강변(<mark>동서울터미널</mark>)	광나루(장신대)	1.370774	21분	2.3

-기존 봉화산역 -> 망우역 최소 소요 시간

이번엔 봉화산역에 중앙선을 연결한다고 가정해보았다.

기존에 봉화산역에서 망우역을 가기 위해 한번을 환승하여 22분을 돌아가야했었지만 환승역이 개설되면 지하철이 3.4 분만에 봉화산역에서 망우역을 갈 수 있게 된다.

여기서도 마찬가지로 3.4분은 지하철이 한 정거장을 이동할 때 평균 속력 35km 정도로 달린다고 가정하고 계산한 시간이다.

-환승역 추가 후 봉화산역 -> 망우역 예상 소요 시간 (시속 35km 기준)

후보역	지하철역	거리	기존 소요시간	기대 소요시간
1 봉화산(서울의료원)	망우	2.005859	22분	3.4

-기존 일원역 -> 삼전역 최소 소요 시간

마지막으로 일원역에 9호선을 추가한다고 가정해보았다.

기존에 일원역에서 삼전역을 가기 위해 두번을 환승하여 22분을 돌아가야했었지만 환승역이 개설되면 지하철이 3.9 분만에 일원역에서 삼전역을 갈 수 있게 된다.

여기서 3.9분 또한 지하철이 한 정거장을 이동할 때 평균 속력 35km 정도로 달린다고 가정하고 계산한 시간이다.

-환승역 추가 후 일원역 -> 삼전역 예상 소요 시간 (시속 35km 기준)

	후보역	지하철역	거리	기존 소요시간	기대 소요시간
2	일원	삼전	2.299789	22분	3.9

-기존 광나루 -> 구로디지털단지 최소 소요시간

앞서 본 것처럼 단거리가 아닌 장거리를 가는 경우를 가정해보았다.

광나루역에서 출근을 하기 위해 구로디지털단지역을 간다고 했을 때, 기존에는 두번을 환승하여 51분이 걸렸다.

그러나 강변역에 5호선 환승역을 개설하게 되면 총소요시간이 41.3분으로 예상되어 이전보다 약 10분의 시간 절약을 기대해 볼 수 있다.

- 환승역 개설 후 광나루 -> 구로디지털단지 예상 소요시간

-기존 구리 -> 월곡 최소 소요시간

이번에는 구리역에서 등교를 하기 위해 월곡역을 간다고 해보았다.

기존에는 두번을 환승하여 30분이 걸렸다.

그러나 봉화산역에 중앙선 환승역을 개설하게 되면 총소요시간이 19.4분으로 예상되어 이전보다 약 10분의 시간 절약을 기대해 볼 수 있다.

- 환승역 개설 후 구리 -> 월곡 예상 소요시간

05. 한계점

- 수집할 당시의 형태 그대로인 로그 데이터가 아니라 1차 가공 된 통계 데이터를 토대로 분석이 진행 되었다.
- 데이터 형태가 상이해 지하철 상선과 하선 데이터에 의한 차이가 반영되지 못했다.

05. 한계점

- 버스, 택시, 도보 이용 등 지하철 상하차 및 혼잡도에 영향을 줄만 한 기타 변수에 대한 고려가 이루어지지 못했다.
- 환승역 지정과 이용객 수의 일정한 상관관계를 파악하였음에도, 둘 사이의 인과관계를 파악하기 어렵기에, 환승역 지정으로 이용객 수 및 혼잡도를 효과적으로 낮췄다고 보기 어렵다.

05. 한계점

- 전체 역 이용시에 대한 검증이 아니라 특정 역 간 변화에 대한 결과만이 검증에 사용되었다.
- 기타 변수를 제한 하기 위해 여러가지 가정을 사용하여 해당 내용이 현실을 모두 반영한다고 보기 어렵다.
- 기타 변수 추가 및 시뮬레이션을 통해 더 정확한 제안 검증이 이루어 져야 한다.

06. 느낀점

- 예상했던 바와 다르게 결과가 도출되었을 때 당황스럽기도 했지만 새로운 사실을 알 수 있는 좋은 기회였다고 생각한다.
- 지금까지 배웠던 분석 기법들을 직접 다시 사용해보고 문제가 생긴 부분들은 스스로 해결하면서 프로그램에 한층 가까워진 것 같아 뿌듯하다.
- 가설 검증을 위한 방법론에 대해 더 자세히 공부하면 유의미한 분석에 도움이 될 것이라는 생각이 든다.
- 공부해 왔던 파이썬과 R을 비롯해 api, folium, selenium을 적극적으로 사용한 점이 긍정적이었다. 또한 사회이슈와 관련해서 분석 및 해결방안을 제시했다는 점도 좋은 방향이었다.
- 중간에 주제가 몇 번 바뀌어 보다 깊이 있는 분석을 할 수 있었던 시간들을 허비하게 만든 점이 아쉬웠지만, 다음에는데이터 분석을 미리 계획하고 구조적으로 데이터에 접근해 해결할 수 있을 것 같다.
- 초반에 팀원 한명이 개인적인 이유로 이탈하게 된 것이 역할 분담하는데 있어 어렵게 다가왔지만 개개인이 잘하는 부분을 빠르게 파악하고 분담한게 프로젝트 완성으로 이어질 수 있었던 것 같다.

07. 참조 | 업무 분장

현정환

- 지하철 이용현황, 유무임 승하차 현황 전처리 및 호선별 시간대 이용객 수 분석
- 환승 가능 여부와 이용객수의 관계분석
 - 역 구조와 이용현황을 결합 및 환승 후보역 추출, 제안 과정 구현

송수린

- 노인 무임 승하차, 혼잡도 데이터 전처리 및 혼잡도 분석
- 지하철 노선과 환승역 제안 과정 지도에 시각화
- 시간대 별 승하차인원과 혼잡도,
 환승 가능 여부 및 가능 노선 간의
 상관관계 분석 및 시각화

이윤

- 노인 무임 승하차 및 혼잡도 데이터 분석 및 시각화
- 노인 무임 승하차 연령 변경 시 데이터 예측
- 역 구조 및 혼잡도 데이터 분석 및 시각화

-ppt 제작

07. 참조 | 개발 환경

07. 참조 | 활용 데이터

무임승차 및 혼잡도

- -서울교통공사 지하철 혼잡도 정보 (https://www.data.go,kr/data/15071311/fileData.do?recommendDataYn=Y#layer_data_infomation)
- -서울특별시 지하철 호선별 역별 유/무임 승하차 인원 정보 (http://data.seoul.go.kr/dataList/OA-12251/S/1/datasetView.do)
- 무임승차 대상별 현황 정보 (https://kosis.kr/statHtml/statHtml.do?tblld=DT_357001_A027&orgld=357&language=kor&conn_path=&vw_cd=&list_id)
- -서울교통공사 역별 월별 노인 승하차인원 정보 (https://www.data.go.kr/data/15062070/fileData.do?recommendDataYn=Y)

역 구조 및 혼잡도

- -서울교통공사 지하철 혼잡도 정보 (https://www.data.go,kr/data/15071311/fileData,do?recommendDataYn=Y#laver_data_infomation)
- -서울교통공사 연도별 일별 시간대별 역별 승하차 인원 (https://data.seoul.go.kr/dataList/OA-12921/F/1/datasetView.do)
- -서울교통공사 역사 건축 정보 (https://data.kric.go.kr/rips/M_01_01/intro.do)
- -서울교통공사 지하철역사 건축 현황 (http://data.seoul.go.kr/dataList/OA-11572/A/1/datasetView.do;jsessionid=395A41B820F7CAF76FA6A2A4BA7DF090.new_portal-svr-11)

환승역 부족 및 혼잡도

- -서울교통공사 지하철 혼잡도 정보 (https://www.data.go.kr/data/15071311/fileData.do?recommendDataYn=Y#laver_data_infomation)
- -서울교통공사 역사건축정보 (https://data.kric.go.kr/rips/M_01_01/intro.do)

API 및 크롤링

- -서울시 역의 위치 데이터(카카오 API)
- -네이버 지하철 (https://map.naver.com/v5/subway/1000/-/-/?c=15,0,0,0,dh)

연령 계층별 인구

-주요 연령계층별 추계인구(생산연령인구, 고령인구 등) / 전국 (https://kosis.kr/statHtml/statHtml.do?orgld=101&tblld=DT_1BPA003)

