

TOKENFORMER: RETHINKING TRANSFORMER SCALING WITH TOKENIZED MODEL PARAMETERS

----Wang et al.,2024

Li Weizhen

School of Mathematical Sciences, Zhejiang University

2024.12.31

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @ >

1 / 12

Contents

Introduction

Transformer

TokenFormer

Experiments

wzl Dec. 31 2024

Introduction

Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However,

- scaling these models requires substantial costs;
- architectural modifications typically require the entire model to be retrained from scratch.

The **Tokenformer**, a natively scalable architecture that totally leverages the attention mechanism, was proposed.

- Treat model parameters as tokens and replace all linear projections in Transformers with token-parameter attention layers;
- Input tokens act as gueries and model parameters as keys and values:
- Allow for progressive and efficient scaling without retraining from scratch;
- Achieve performance comparable to Transformers while greatly reducing the training costs.

3 / 12

Transformer vs Tokenformer

wzl

图: A simple comparasion between Transformers and Tokenformers.

Transformer

Input tokens: $X \in \mathbb{R}^{T \times d}$

$$Q = X \cdot W^{Q}, \quad K = X \cdot W^{K}, \quad V = X \cdot W^{V};$$
 (1)
$$W^{Q}, W^{K} \in \mathbb{R}^{d \times d_{k}}, W^{V} \in \mathbb{R}^{d \times d_{v}}.$$

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}}) V.$$
 (2)

Output:

$$O = X_{\mathsf{att}} \cdot W^O, \quad W^O \in \mathbb{R}^{d_v \times d}.$$

FFN:

$$X_{\mathsf{ffn}} = \mathsf{Activation}(O \cdot W_1 + b_1) W_2 + b_2.$$

$$W_1 \in \mathbb{R}^{d \times d_{\mathsf{ffn}}}, W_2 \in \mathbb{R}^{d_{\mathsf{ffn}} \times d}$$

wzl Dec. 31 2024 Tokenformer 5 / 12

TokenFormer

Pattention Layer

Let $K_P \in \mathbb{R}^{n \times d_1}$ and $V_P \in \mathbb{R}^{n \times d_2}$ represent the learnable parameter tokens.(n is the number of key-value pairs)

$$\mathsf{Pattention}(X, K_P, V_P) = \theta(X \cdot K_P^T) \cdot V_P, \tag{3}$$

where θ is the modified softmax function. The output Pattention scores, $S \in \mathbb{R}^{n \times n}$, are computed as:

$$S_{ij} = \text{GeLU}\left(\frac{A_{ij} \times \tau}{\sqrt{\sum_{k=1}^{n} |A_{ik}|^2}}\right), \quad \forall i, j \in 1...n,$$

$$\tag{4}$$

where $A = X \cdot K_P^T$ and τ is a scale factor.

In transformer, we have $Q = X \cdot W_Q$.

In tokenformer, we have $Q = \mathsf{Pattention}(X, K_P^Q, V_P^Q)$.

4□ > 4□ > 4 = > 4 = > = 990

wzl

Overall Architecture

• QKV Pattention:

$$Q = \mathsf{Pattention}(X, K_P^Q, \, V_P^Q), \quad K = \mathsf{Pattention}(X, K_P^K, \, V_P^K), \quad V = \mathsf{Pattention}(X, K_P^V, \, V_P^V).$$

Token-Token Attention:

$$X_{\mathsf{att}} = \mathsf{softmax}\left(rac{Q \cdot K^T}{\sqrt{d}}
ight) \cdot \mathit{V},$$

$$O_{\mathsf{att}} = \mathsf{Pattention}(X_{\mathsf{att}}, K_P^O, V_P^O).$$

FFN:

$$O_{\mathsf{ffn}} = \mathsf{Pattention}(O_{\mathsf{att}}, K_P^{\mathsf{ffn}}, V_P^{\mathsf{ffn}}).$$

wzl

Progressive Model Scaling

Consider an existing Tokenformer model equipped with a set of pre-trained key-value parameter tokens, denoted as $K_P^{\text{old}}, V_P^{\text{old}} \in \mathbb{R}^{n \times d}$. To scale the model, just augment this set by appending new key-value parameter tokens $K_P^{\text{new}}, V_P^{\text{new}} \in \mathbb{R}^{m \times d}$ as

$$K_P^{\text{scale}} = \left[K_P^{\text{old}}, K_P^{\text{new}} \right], \qquad V_P^{\text{scale}} = \left[V_P^{\text{old}}, V_P^{\text{new}} \right].$$
 (5)

$$O = \mathsf{Pattention}\left(X, K_P^{\mathsf{scale}}, V_P^{\mathsf{scale}}\right). \tag{6}$$

Importantly, by initializing $K_P^{\rm new}$ with zero, the model can perfectly resume the model state from the pre-training phase without losing the well-learned knowledge, facilitating faster convergence and accelerating the overall scaling process.

wzl Dec. 31 2024 Tokenformer

Experiments—Progressive Modeling Scaling

wzl Dec. 31 2024 Tokenformer 10 / 12

Experiments—Benchmarking

Model	#Param	Pile ppl ↓	LAMBADA ppl ↓	LAMBADA acc ↑	HellaSwag acc ↑	PIQA acc ↑	Arc-E acc ↑	Arc-C acc ↑	WinoGrande acc ↑	Average acc ↑
Pythia-160M	160M	29.64	37.25	35.4	30.3	62.3	43.6	23.6	51.3 50.4	40.1
Ours (TokenFormer-150M)	150M	10.45	16.38	45.0	35.5	64.9	47.3	24.9		44.7
Pythia-410M	410M	9.95	10.84	51.4	40.6	66.9	52.1	24.6	53.8	48.2
Ours (TokenFormer-450M)	450M	8.28	7.69	57.3	47.5	69.5	56.2	26.7	54.6	52.0
Pythia-1B Ours (TokenFormer-900M)	1B	7.82	7.92	56.1	47.2	70.7	57.0	27.1	53.5	51.9
	900M	7.38	5.46	64.0	55.3	72.4	59.9	30.6	56.4	56.4
GPT-Neo 1.3B	1.3B	-	7.50	57.2	48.9	71.1	56.2	25.9	54.9	52.4
OPT-1.3B	1.3B		6.64	58.0	53.7	72.4	56.7	29.6	59.5	55.0
Pythia-1.3B GPT-Neo 2.7B	1.3B 2.7B	7.51 -	6.08 5.63	61.7 62.2	52.1 55.8	$71.0 \\ 71.1$	$60.5 \\ 61.1$	28.5 30.2	57.2 57.6	55.2 56.5
OPT-2.7B	2.7B	-	5.12	63.6	60.6	74.8	60.8	31.3	61.0	58.7
Pythia-2.8B	2.8B		5.04	64.7	59.3	74.0	64.1	32.9	59.7	59.1
Ours (TokenFormer-1.5B)	1.5B	6.91	5.24	64.7	60.0	74.8	64.8	32.0	59.7	59.3

表: Zero-shot Evaluations.

wzl Dec. 31 2024 Tokenformer 11 / 12

Experiments—Benchmarking

Method	Image Size	#Param	Top-1 acc	
ViT-B/16	384^{2}	86M	77.9	
DeiT-B/16	224^{2}	86M	81.8	
ViT-B/16 (MAE)	224^{2}	86M	82.3	
Ours (TokenFormer-B/16†)	224^{2}	86M	82.1	
Ours (TokenFormer-B/16)	224^{2}	109M	82.5	
ViT-L/16	384^{2}	307M	76.5	
ViT-L/16 (MAE)	224^{2}	307M	82.6	
Ours (TokenFormer-L/ 16^{\dagger})	224^{2}	307M	83.0	
Ours (TokenFormer-L/16)	224 ²	407M	83.1	

表: Image Classification.

12 / 12

wzl Dec. 31 2024 Tokenformer