

Radicals - exercises

1.
$$3\sqrt{12} # 6\sqrt{3}$$

3.
$$7\sqrt{128} # 56\sqrt{2}$$

5.
$$-7\sqrt{63} \# -21\sqrt{7}$$

7.
$$\sqrt{343b}$$
 # $7\sqrt{7b}$

9.
$$\sqrt{100n^3} # 10n\sqrt{n}$$

2.
$$6\sqrt{128}$$
 # $48\sqrt{2}$

4.
$$-8\sqrt{392}$$
 # $-112\sqrt{2}$

6.
$$\sqrt{192n} # 8\sqrt{3n}$$

8.
$$\sqrt{196v^2}$$
 # 14v

10.
$$\sqrt{200a^3} # 10a\sqrt{2a}$$

Exponents, logarithms and radicals

x = np.linspace(0,100,10)
y1 = np.sqrt(x)
plt.plot(x, y1,'-m', label='y=sqrt(x)')
plt.show()

$$x = np.linspace(0,100,10)$$

y1 = np.log(x)
plt.plot(x, y1,'-m', label='y=log(x)')
plt.show()

Multiple functions for comparisons


```
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,3,10)
v1 = 2**x
y2 = 3**x
y3 = (2**x) + 4
y4 = (2**(x-1))
plt.plot(x,y1, 'm', label= '2**x')
plt.plot(x, y2, '-b', label=
'3**x')
plt.plot(x, y3, '-r', label=
(2**x) + 4!
plt.plot(x, y4, label= '(2**(x-
1))')
plt.title(' Exponential function')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(loc='upper left')
plt.grid()
plt.show()
```

```
class BigFile:
               if.names = [x.strip() for x in str.split(open(idfile).read()) if x.strip()]
           idfile = os.path.join(datadir, "id.txt")
               lf.name2index = dict(zip(self.names, range(len(self.names))))
             self.featurefile = os.path.join(datadir, "feature.bin")
print "[BigFile] %d features, %d dimensions" % (len(self.names), self.ndums)
                                      lary: %s" % self.featurefile
txt: %s" % idfile

    STrigonometry>

                          ex_name_array = [(x, self.names[x]) for x in requested]
                             pead(self.featurefile, self.ndims, [x[0] for x in index_name_ar
i[1] for x in index_name_arrayl, vecs
                             e array.sort()
                            (1):
(len(self.names), self.ndims)
```

Trigonometric

SOH-CAH-TOA

$$\sin = \frac{opposite}{hypoteneuse} \qquad \sin A = \frac{a}{c} \qquad \sin B = \frac{b}{c}$$

$$\cos = \frac{adjacent}{hypoteneuse} \qquad \cos A = \frac{b}{c} \qquad \cos B = \frac{a}{c}$$

$$\tan = \frac{opposite}{adjacent} \qquad \tan A = \frac{a}{b} \qquad \tan B = \frac{b}{a}$$

$$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{6}{10} = \frac{3}{5}$$

$$\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{8}{10} = \frac{4}{5}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{6}{8} = \frac{3}{4}$$

$$\sin \alpha = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{8}{10} = \frac{4}{5}$$

$$\cos \alpha = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{6}{10} = \frac{3}{5}$$

$$\tan \alpha = \frac{\text{opposite}}{\text{adjacent}} = \frac{8}{6} = \frac{4}{3}$$

Trigonometry - examples

Trigonometry – examples

B
$$5 \int_{52.3}^{x} X$$

$$C \qquad A \qquad \cos\theta = \frac{\text{adjacent hypotenus}}{\text{hypotenus}}$$
#8.17

Radians and Degrees

Observer's perspective

Degrees to radians

 $360^{\circ} = 2\pi \text{ radians}$ $180^{\circ} = \pi \text{ radians}$

Examples

$$45^{\circ} * \frac{\pi}{180} \text{ rad } = \frac{\pi}{4}$$

$$150^{\circ} * \frac{\pi}{180} \text{ rad} = \frac{5\pi}{6}$$
 $60^{\circ} * \frac{180}{\pi \text{ rad}} = \frac{\pi}{3}$

Radians to degrees

 $360^{\circ} = 2\pi$ radians $180^{\circ} = \pi \text{ radians}$

Examples

$$45^{\circ} * \frac{\pi}{180} \text{ rad} = \frac{\pi}{4} \qquad \frac{\pi}{4} \text{ rad} * \frac{180}{\pi \text{ rad}} = 45^{\circ}$$

$$60^{\circ} * \frac{180}{\pi \text{ rad}} = \frac{\pi}{3}$$

Driver's perspective

Trigonometric

$$\sin^{-1}\left(\frac{\text{opposite}}{\text{hypotenuse}}\right) = \theta \quad \cos^{-1}\left(\frac{\text{adjacent}}{\text{hypotenuse}}\right) = \theta \quad \tan^{-1}\left(\frac{\text{opposite}}{\text{adjacent}}\right) = \theta$$

$$\sin A = 0.5$$
$$\sin^{-1}(0.5) = A$$
$$30^{\circ} = A$$

$$\cos B = 0.667$$

 $\cos^{-1}(0.667) = B$
 $48^{\circ} = B$

Exercises

Exercises

 $\tan^{-1} \left(\frac{\text{opposite}}{\text{adjacent}} \right)$ #42.7

Most used angles in math located in the first quadrant

θ	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan heta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undefined

```
import numpy as np
numpy.set printoptions(precision=2)
numpy.set printoptions(formatter={"fl
oat":'{:0.2f}'.format})
a = np.array([0,30,45,60,90])
print('Sine of different angles:')
# Convert to radians by multiplying
to pi/180
print (np.sin (a*np.pi/180), "\n")
print ("Cosine values for angles in
array:")
print (np.cos (a*np.pi/180), "\n")
print('Tangent values for given
angles:')
print(np.tan(a*np.pi/180))
```


[0.00 0.58 1.00 1.73 16331239353195370.00]

Trigonometric relation in the circle

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$

Periodic functions definition

A **periodic function** occurs when a specific horizontal shift, P, results in the original function; where f(x + P) = f(x) for all values of x. When this occurs we call the horizontal shift the **period** of the function.

Periodic functions definition

A **periodic function** occurs when a specific horizontal shift, P, results in the original function; where f(x + P) = f(x) for all values of x. When this occurs we call the horizontal shift the **period** of the function.

Periodic functions

1 0 90° 180° 270° 360° x

radians representation

Degrees representation


```
C:\Users\Josifefe\Desktop\python\pythoncode5\readFile\test.py
                                                                                  * * G G Q Q 145 %
temp.py × readJson.py × readfile.py × test.py
    90 # x1 = np.array([[-1, 3],[4,2]])
                                                                          1.00
    91 # x2 = np.array([[1, 2],[3,4]])
    92 # x4 = x1+x2
                                                                          0.50
        \# x5 = x1*x2
                                                                          0.25
    94 + x3 = np.dot(x1,x2)
        # print(x3)
                                                                          -0.25
        # print(x4)
                                                                          -0.50
        # print(x5)
                                                                         -0.75
                                                                         -1.00
                                                                                                12.5 15.0 17.5
                                                                                             10.0
         import matplotlib.pyplot as plt
                                                                                      Explorador de variáveis Ajuda Figuras Arquivos
         values = np.linspace(-(2*np.pi),2*np.pi, 20)
                                                                        Console 1/A >
                                                                                                                  cos values = np.cos(values)
                                                                         Desktop/python/pythoncode5/readFile/
         sin values = np.sin(values)
                                                                         test.py', wdir='C:/Users/Josifefe/
                                                                         Desktop/python/pythoncode5/readFile')
         plt.plot(cos values, color = 'blue', marker= '*')
                                                                         2020-11-02 2020-11-03 2020-11-04
         plt.plot(sin values, color = 'red')
                                                                         731 1
         plt.show()
                                                                         [[2. 2. 2. 2. 2. 2.]
                                                                          [2. 2. 2. 2. 2.]]
   109
   110
                                                                         In [156]:
```


cos (x) in degrees

cos (x) in radians


```
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-2*np.pi, 2*np.pi, 40)
y = np.cos(x)
plt.plot(x,y)
plt.xlabel('radians')
plt.ylabel('cos(x)')
```


iscte

Periodic functions

- Amplitude
- Period
- Phase shift

$$y = A \sin \left[B(x - C) \right] + D$$

|A| is the amplitude

The period is $\frac{2\pi}{B}$

Phase (horizontal) shift is C

Vertical shift is D

The same applies for the Cosine Function.

$$y=4+\frac{1}{2}\sin(x)$$

$$y = -4 \cos(3x - \pi)$$

Periodic functions – exercises spyder

$$y = 4 + \frac{1}{2}\sin(x)$$

Radians

degrees

samples

$$y = -4 \cos(3x - \pi)$$

What is the period of these functions?

What is the amplitude?

How many samples (minimum amount) is needed to see the smoothing charts?

Periodic functions – exercises spyder

What is not a function?

Circle equation

$$X^2 + Y^2 = 16$$

 $(X-1)^{**}2 + (Y+3)^{**}2 = 16$


```
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
f = X^* + 2 + Y^* + 2 - 16
fig, ax = plt.subplots()
ax.contour(X,Y,f,[0])
plt.title('circle graph ')
plt.xlabel('x', color='#1C2836')
plt.ylabel('y', color='#1C2833')
plt.legend(loc='upper left')
plt.grid()
plt.show()
```


What are functions here?

a)

c)

b)

d)

What are functions here?

a)

Function

c)

Function

b)

Non-Function

d)

Non-Function

44

- •Make it work
- •Make it Right
- Make it Fast

