Potluri Vachan Deep

Research Engineer - Development, Convergent Science India LLP

🖂 vachanpotluri1997@gmail.com 🧳 +91-773-869-5898 🛅 Vachan Potluri 🏶 https://vachan-potluri.github.io/

Skills

Programming languages	C++, Python, MATLAB/Scilab
CFD software	OpenFOAM, SU2, deal.II, FLEXI/FLUXO
CFD pre- and post-processing software	ParaView, SALOME, Gmsh
Other software/tools	Git/GitHub, Linux, LATEX, SOLIDWORKS

Education

Ph.D. Mechanical Engineering | IIT Bombay

Jul '18 - Dec '23

	··· = ···g·····g ··· = ·····a,	0 0	_ 00 _0
Thesis topic	Development and analysis of discontinuous Galerkin computational framework for I simulation of hypersonic shock-boundary layer interaction	nigh orde	r
Key electives	High Performance Scientific Computing, Galerkin Methods for Fluid Dynamics, Magnetohydrodynamics and its engineering applications		
CPI	9.86		

B.Tech. Mechanical Engineering | IIT Bombay

Jul '14 – Jul '18

CPI	9.72
Key electives	Numerical Methods for Conservation Laws, Computational Fluid Dynamics and Heat Transfer, Finite Element and Boundary Element Methods, Essentials of Turbulence, Fuels and Combustion, Introduction to Thermoacoustics

Related experience

Research Engineer - Development

Jan '24 - Present

Convergent Science India LLP

- Provided enhancement and bug fixes to material physical modelling among other software enhancement tasks
- Development and analysis of discontinuous Galerkin simulation framework for compressible flows

Jul '19 - Dec '23

Ph.D. thesis | IIT Bombay

- Developed a solver implementing a DG subcell limiter using deal.II C++ FEM library
- Performed an extensive computational study and demonstrated superior accuracy/DoFs of high order solutions even in presence of shocks
- Proposed and validated an extension of the subcell limiter for its use in hypersonic regime
- Conducted a performance comparison of an equivalent solver FLUXO with OpenFOAM and SU2 and illustrated its higher accuracy/cost and accuracy/memory

High performance parallel programming task

Jan '19 - Apr '19

Course project | IIT Bombay

- Developed and tested OpenMP, MPI and CUDA versions of a 2D cartesian inviscid compressible flow solver
- Development of high resolution schemes for compressible flows in OpenFOAM B.Tech. project | IIT Bombay

Dec '16 - Apr '18

- Modified an existing compressible flow solver to use TVD-RK3 time integration scheme
- Introduced a new solver to implement AUSM*-up flux scheme along with TVD-RK3 time integration method
- Presented a comparative study of these two solvers by performing simulations of several 1D and 2D test cases to identify vulnerabilities of the corresponding flux schemes

GE90 HPC airfoil durability analysis

May '17 - Jul '17

Internship | John F. Welch Technology Center, General Electric, Bangalore

- Modified existing mesh of GE90-115B high pressure compressor stage-9 rotor blade, to model
 - 1. Three kinds of damaged blades by making notches at different locations on the leading edge

- Defectively manufactured blades by changing leading edge thickness according to manufacturing tolerance
- Generated Campbell Diagrams by simulating the vibration response in ANSYS and recalculated fatigue factor of safety at critical locations of undamaged, damaged and defected blades for 3 different materials

Other experience

♦ Guest Lecturer Apr '21 – Apr '23

Prime Minister's Research Fellowship deliverable | VJTI, Mumbai

- Taught gas dynamics and incompressible potential flow as part of M.Tech. fluid dynamics course
- Delivered software demonstrations of OpenFOAM and Scilab as part of B.Tech. CFD lab

Unified 2D Finite Element development

Mar '18 - Apr '18

Course project | IIT Bombay

• Implemented and validated a subroutine in FORTRAN77 library FEAP for a new combined Plane Stress, Plain Strain and Axi-symmetric linear Elasto-static element

Stair climbing chair project

Jul '17 - Dec '17

Course project | IIT Bombay

- Designed a mechanism for a passive chair capable of climbing stairs using a companion's force
- Built a full-scale basic functioning prototype costing less than INR 10,000 in 2 months
- Demonstrated the prototype effectiveness on 2 different stair geometries

Publications

Journal articles

- [1] V. D. Potluri, B. P. Puranik, and K. V. Bodi. "High order discontinuous Galerkin simulation of hypersonic shock-boundary layer interaction using subcell limiting approach". In: *Journal of Computational Physics* 485 (2023), p. 112117.
- [2] V. D. Potluri, B. P. Puranik, and K. V. Bodi. "The effect of basis polynomial degree on the performance of discontinuous Galerkin simulations of compressible flows". In: *Computers & Fluids* 272 (2024), p. 106183.

Conference proceedings

- [1] V. D. Potluri, B. P. Puranik, and K. V. Bodi. "Effect of polynomial degree on discontinuous Galerkin simulation of Euler equations". In: *24th International Shock Interaction Symposium*. Springer Nature, 2022.
- [2] V. D. Potluri, B. P. Puranik, and K. V. Bodi. "A performance comparison of OpenFOAM, SU2 and FLUXO for simulation of shock boundary layer interaction". In: 14th Asian Computational Fluid Dynamics Conference. 2023.

Honours

0	Awarded Prime Minister's Research Fellowship (PMRF) to pursue Ph.D. in high order numerical methods for hypersonic flows	May '18
0	Scored 829 in Graduate Aptitude Test in Engineering (GATE) 2018	Mar '18
0	Secured All India Rank 129 in JEE Advanced 2014 in general category	May '14
0	Offered Kishore Vigyanik Protshahan Yogana (KVPY) fellowship by Indian Institute of Science (IISc), Bangalore	Dec '13
0	Secured position among top 1% students of former Andhra Pradesh who appeared for National Standard Examination in Physics (NSEP)	Dec '13

Extracurricular activities

Grade 6 Guitar musician certified by Trinity College London	Sep '11
 Grade 8 Piano musician certified by Trinity College London 	Nov '10
Grade 5 music theory scholar certified by Trinity College London	