

Aula 21 de abril de 2023

Problemas
Propriedades de superfícies

- 1) A tensão superficial da água é de 72 mN m⁻¹ a 298K. Calcule a elevação capilar num tubo de 0,5 mm de diâmetro para um ângulo de contacto de 30 º. [ρ_{H2O}=1.0 g.cm⁻³]
- 2) Medidas de tensão superficial de soluções aquosas do tensioativo CTAB16, a 20ºC, deram os seguintes resultados:

Cx10 ⁴ /M	1	2	5	10	50	100
γ/mN m⁻¹	68	60	48	39	36	36

- a) Utilizando a isotérmica de adsorção de Gibbs, calcule a área ocupada por molécula de CTAB16 à superfície da solução
- b) Calcule a concentração micelar crítica.

3) A tabela seguinte dá o volume de azoto (a 0ºC e 1 bar) adsorvido por grama de carvão ativado a diferentes pressões:

p/mbar	5.17	17.08	30.18	44.75	73.99
V/cm³ g-1	0.987	3.04	5.08	7.04	10.31

- a) Construa um gráfico de forma a verificar a aplicabilidade da isotérmica de Langmuir a estes resultados experimentais
- b) Determine a área superficial por grama de carvão, admitindo que a área ocupada por molécula de azoto é 16 Å².

4) Mediu-se a adsorção de metano em carvão ativado, a 20 º C, obtendo-se os seguintes resultados:

n ads/mol g-1	p/bar
4.20E-04	0.133
6.38E-04	0.267
8.01E-04	0.400
9.25E-04	0.533

Utilizando a isotérmica de adsorção de Langmuir, calcule a fração de área ocupada pelo metano, θ_{CH4} , à pressão de 0.4 bar.

- 5) Proponha mecanismos baseados na isotérmica de adsorção de Langmuir para as seguintes reações catalisadas heterogeneamente:
- a) A decomposição de NO em N₂ e O₂ catalisada numa superfície de Pt obedece à lei de velocidade

$$\frac{d p_{NO}}{d t} = -k \frac{p_{NO}}{p_{O}}$$

b) A cinética da reacção entre NO e CO sobre Rh(100) para dar N₂ e CO₂ é dada por

$$\frac{d p_{co_2}}{d t} = k \frac{p_{No} p_{co}}{p_{co_2}}$$

6) A decomposição do óxido nitroso sobre metais nobres e óxidos de cálcio e alumínio dá-se segundo:

$$2N_2O \xrightarrow{cat} 2N_2 + O_2$$

Foram obtidos os tempos de semi-reação da tabela ao lado para diferentes pressões parciais iniciais de óxido nitroso a 925 °C. Com base nos dados experimentais apresentados, proponha um mecanismo de catálise heterogénea para esta reação.

<u>p_{N20} (bar)</u>	t <u>½</u> (s)
0.1	3460
0.5	3450
0.7	3460
1.0	3458
1.4	3450
3.4	8625
6.4	16235
13.4	34000

p/mbar	n/mmol
20,4	16,6
51,1	18,9
81,7	21,2
112,3	21,8
204,2	25,4
306,3	29,0
410,7	32,5

- 7) Na tabela apresentam-se valores de quantidades (mmol) de azoto adsorvidas numa massa de 3,258 g de silicagel a 77 K às pressões indicadas.
 - a) Calcule a área superficial da silicagel usada para adsorver o azoto, com base na isotérmica de Langmuir, admitindo que cada molécula de azoto ocupa a área de 16x 10⁻²⁰ m².
 - b) Explique porque é que a isotérmica de adsorção de Langmuir não é realmente o modelo adequado para calcular a área superficial de adsorventes a partir de valores de adsorção de azoto. Proponha um modelo (isotérmica de adsorção) alternativo.

8) A seguinte reação é uma reação bimolecular envolvendo as moléculas de NO e CO, catalisada heterogeneamente à superfície de vários metais:

$$NO(g) + CO(g) \rightarrow \frac{1}{2} N_2(g) + CO_2(g)$$

Quando a reação se processa sobre tungsténio, a velocidade é dada por: $v=k'\frac{p_{NO}p_{CO}}{(p_{N2})^2}$

Quando a reação se processa sobre níquel, a velocidade é dada por: $v = k'' \frac{p_{No}p_{Co}}{p_{N2}}$

Quando a reação se processa sobre ródio, a velocidade é dada por: $v = k''' \frac{p_{NO}}{p_{CO}}$

Explique **detalhadamente** a razão destas observações, deduzindo as expressões, definindo k', k" e k" e avançando um mecanismo para cada caso.