

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

ΓΡΑΜΜΙΚΗ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΡΓΑΣΙΑ 2^η

ΝΑΤΑΛΙΑ ΡΟΥΣΚΑ - ΑΜ 1092581

ΥΠΕΥΘΎΝΗ ΚΑΘΗΓΗΤΡΙΑ ΣΟΦΙΑ ΔΑΣΚΑΛΑΚΗ

PIO 31 MAIOY 2025

Άσκηση 1

(α) Το LP problem εισάγοντας μεταβλητές χαλάρωσης x_6 , x_7 , x_8

```
\max 3x_1 + 11x_2 + 9x_3 - x_4 - 29x_5
x_2 + x_3 + x_4 - 2x_5 + x_6 = 4
x_1 - x_2 + x_3 + 2x_4 + x_5 - x_7 = 0
x_1 + x_2 + x_3 - 3x_5 + x_8 = 1
x_1 \in \mathbb{R}, x_2, x_3, x_4, x_5 \ge 0
```

Χρησιμοποιώντας το module pulp που χρησιμοποιεί τον CBC MILP solver, λύνω το πρόβλημα LP.

Κώδικας 1α

```
import pulp
def solver():
    prob = pulp.LpProblem("exersice1", pulp.LpMaximize)
    # Variables
   x3 = pulp.LpVariable("x3", 0, None)
x4 = pulp.LpVariable("x4", 0, None)
   x5 = pulp.LpVariable("x5", 0, None)
    prob += 3*x1 + 11*x2 + 9*x3 - x4 - 29*x5, "obj"
    prob += x^2 + x^3 + x^4 - 2*x^5 <= 4, "c1"
prob += x^1 - x^2 + x^3 + x^4 + x^5 >= 0, "c2"
    prob += x1 + x2 + x3 - 3*x5 <= 1, "c3"
    # solve the problem using the default solver
    prob.solve()
    print("Status:", pulp.LpStatus[prob.status])
    print("objective =", pulp.value(prob.objective))
    for v in prob.variables():
    print(f'{v.name} = {v.varValue:5.2f}')
    print("Sensitivity Analysis\nConstraint\t\t Shadow Price\t\tSlack")
    for name, c in prob.constraints.items():
    print(f'{name} : {c} \t{c.pi} \t\t{c.slack}')
if __name__ == "__main__":
    solver()
```

Οπότε παίρνω το παρακάτω αποτέλεσμα.

```
Status: Optimal
objective = 28.0
x1 = -3.00
x2 = 0.50
     3.50
x4 = 0.00
x5 = 0.00
Sensitivity Analysis
Constraint
                                  Shadow Price
                                                        Slack 
c1 : x2 + x3 + x4 - 2*x5 <= 4
                                                        -0.0
                                        6.0
                                        -1.0
                                                        -0.0
c2 : x1 - x2 + x3 + 2*x4 + x5 >= 0
c3 : x1 + x2 + x3 - 3*x5 <= 1
                                        4.0
                                                        -0.0
```

Δηλαδή η βέλτιστη τιμή της αντικειμενικής συνάρτησης είναι $\mathbf{z}^* = 28$ και οι μεταβλητές απόφασεις παίρνουν τιμές $x_1 = -3$, $x_2 = 0.5$, $x_3 = 3.5$, $x_4 = 0$, $x_5 = 0$. Η βασική λύση είναι $x_B = B^{-1}b = [-3, 0.5, 3.5]^T$ οπότε οι βασικές μεταβλητές είναι οι $\{x_1, x_2, x_3\}$ και οι ελεύθερες είναι οι μηδενικές $x_N = \{x_4, x_5, x_6, x_7, x_8\}$.

Ο βέλτιστος βασικός πίνακας σχηματίζεται από τις στήλες των βασικών μεταβλητών του πίνακα [A | I $_3$]

Οι δεσμευτικοί περιορισμοί είναι εκείνοι για τους οποίους ικανοποιείται ισότητα στην βέλτιστη κορυφή. Παρατηρούμε ότι και οι τρεις είναι δεσμευτικοί, αφού οι μεταβλητές χαλάρωσης είναι όλες μηδενικές

Η βέλτιστη κορυφή στο R^5 ορίζεται από την τομή 5 ακριβώς υπερεπίπεδων, τα τρία των δεσμευτικών περιορισμών και τα $x_4=0$, $x_5=0$. Άρα πρόκειται για μη εκφυλισμένη κορυφή.

(β) Εφαρμόζω μία διαταραχή γ στον συντελεστή c_1 της βασικής μεταβλητής x_1 . Για να παραμείνει η βέλτιστη λύση στην ίδια κορυφή πρέπει οι αντικειμενικοί συντελεστές των μη βασικών μεταβλητών να παραμείνουν αρνητικοί δηλαδή $c_N^T - (c_B + \gamma e_1)^T B^{-1} N \le 0$

$$z (c_{B} + \gamma e_{1}) = c_{B}^{T} B^{-1} b + [c_{N}^{T} - (c_{B} + \gamma e_{1})^{T} B^{-1} N] x_{N}$$

$$c_{B}^{T} = [3, 11, 9] c_{N}^{T} = [-1, -29, 0, 0, 0] \qquad B^{-1} = \begin{matrix} -1 & 0 & 1 \\ 0 & -0.5 & 0.5 \\ 1 & 0.5 & -0.5 \end{matrix}$$

$$[-1, -29, 0, 0, 0] - [3 + \gamma, 11, 9] B^{-1} N \le 0 \Rightarrow$$

$$[-1, -29, 0, 0, 0] - [4 - \gamma, -25 - \gamma, -12 - \gamma, 1, 4 + \gamma] \le 0 \Rightarrow -4 \le \gamma \le 4 \Rightarrow$$

$$-1 \le c_{1} \le 7$$

Αν ο συντελεστής c_1 είναι μέσα στο διάστημα ανοχής [-1,7] τότε η βέλτιστη κορυφή δεν αλλάζει, ενώ η αντικειμενική συνάρτηση μεταβάλλεται κατά $\Delta z = \gamma e_1^T x_B = -3\delta$

Εφαρμόζω μία διαταραχή γ στον συντελεστή c_4 της βασικής μεταβλητής x_4 . Για να παραμείνει η βέλτιστη λύση στην ίδια κορυφή πρέπει οι αντικειμενικοί συντελεστές των μη βασικών μεταβλητών να παραμείνουν αρνητικοί δηλαδή $(c_N + \gamma e_1)^T - c_B^T B^{-1} N \leq 0$

$$[-1 + \gamma, -29, 0, 0, 0] - [4, -25, -12, 1, 4] \le 0 => \gamma \le 5 => c_4 \le 4$$

Αν ο συντελεστής c_1 είναι μέσα στο διάστημα ανοχής [-inf, 4] τότε η βέλτιστη κορυφή δεν αλλάζει, ενώ η αντικειμενική συνάρτηση επίσης δεν αλλάζει αφού $\Delta z = \gamma e_1^T x_N$, $x_N = 0$

(γ) Εφαρμόζω μία διαταραχή γ στον δεσμευτικό περιορισμό 1

$$x_2 + x_3 + x_4 - 2x_5 \le 4 + \gamma$$

Η βέλτιστη λύση μπορεί να αλλάξει, όμως μας ενδιαφέρει ο ρυθμός μεταβολής της αντικείμενικής συνάρτησης καθώς μεταβάλλεται το b1 (σκιώδες κόστος περιορισμού)

Το διάστημα ανοχής για τον περιορισμό 1 ορίζεται από το κριτήριο εφικτότητας δηλ.

$$B^{-1}(b + \gamma e_1) \ge 0 = [-3, 0.5, 3.5]^T + \gamma [-1, 0, 1]^T \ge 0 = -3.5 \le \gamma \le -3$$

Για αυτό το διάστημα τιμών του γ , η z μεταβάλλεται σταθερά με ρυθμό όσο η βέλτιστη τιμή της αντίστοιχης δυικής μεταβλητής $y_1 = 6$

Εφαρμόζω μία διαταραχή γ στον χαλαρό περιορισμό προσήμου $x_2 \ge \gamma$

Το σκιώδες κόστος του περιορισμού αυτού είναι μηδέν, επειδή η μεταβλητή χαλάρωσης του είναι μη μηδενική και μέσω συμπληρωματικής χαλαρότητας η αντίστοιχη δυική μεταβλητή είναι 0. Άρα για το διάστημα ανοχής $(B^{-1}b) \ge \gamma e_2 \Rightarrow (-3, 0.5, 3.5) \ge (0, \gamma, 0)$

 $\gamma \leq 0.5 \,$ η βέλτιστη κορυφή δεν αλλάζει και η αντικειμενική συνάρτηση μένει σταθερή.

(δ) Εφαρμόζοντας τους κανόνες μετασχηματισμού πρωτεύοντος σε δυικό πρόβλημα που φαίνονται παρακάτω προκύπτει το δυικό πρόβλημα

maximization minimization Πίνακας συντελεστών: \mathbf{A}^T Πίναχας συντελεστών: Α Διάνυσμα δεξιάς πλευράς: b Αντικειμενικοί συντελεστές: b Αντικειμενικοί συντελεστές: c Διάνυσμα δεξιάς πλευράς: c Ο j περιορισμός είναι με " = " Η y_j μεταβλητή είναι ελεύθερη $(y_j \in \mathbb{R})$ Ο j περιορισμός είναι με " \leq " Η y_j μεταβλητή είναι μη-αρνητική $(y_j \ge 0)$ Ο j περιορισμός είναι με " \geq " Η y_i μεταβλητή είναι μη-θετική $(y_i \leq 0)$ Η x_i μεταβλητή είναι ελεύθερη Ο ί περιορισμός είναι με " = ' Η x_i μεταβλητή είναι μη-αρνητική O(i) περιορισμός είναι με " \geq " Ο i περιορισμός είναι με " \leq " Η xi μεταβλητή είναι μη-θετική

$\min \{4y_1 + y_3\}$
$y_2 + y_3 = 3$
$y_1 - y_2 + y_3 \ge 11$
$y_1 + y_2 + y_3 \ge 9$
$y_1 + 2y_2 \ge -1$
$-2y_1 + y_2 - 3y_3 \ge -29$
$y_1, y_3 \ge 0$, $y_2 \le 0$

Εισάγοντας μεταβλητές χαλάρωσης έχουμε:

$\min \{4y_1 + y_3\}$
$y_2 + y_3 + y_4 = 3$
$y_1 - y_2 + y_3 + y_5 = 11$
$y_1 + y_2 + y_3 + y_6 = 9$
$y_1 + 2y_2 + y_7 = -1$
$-2y_1 + y_2 - 3y_3 + y_8 = -29$
$y_1, y_3 \ge 0$, $y_2 \le 0$

Κώδικας 1δ

```
def solver():
     prob = pulp.LpProblem("exersice1d", pulp.LpMinimize)
    y1 = pulp.LpVariable("y1", 0, None)
y2 = pulp.LpVariable("y2", None, 0)
y3 = pulp.LpVariable("y3", 0, None)
    prob += 4*y1 + y3 , "obj"
    prob += y2 + y3 == 3, "c1"
prob += y1 - y2 + y3 >= 11, "c2"
    prob += y1 + y2 + y3 >= 9, "c3"
prob += y1 + 2*y2 >= -1, "c4"
    prob += -2*y1 + y2 -3*y3 >= -29, "c5"
     prob.solve()
    print("Status:", pulp.LpStatus[prob.status])
# print the value of the objective
     print("objective =", pulp.value(prob.objective))
     for v in prob.variables():
        print(f'{v.name} = {v.varValue:5.2f}')
     print("\nSensitivity Analysis")
print("{:<30} {:<15} {:<15}".format("Constraint", "Shadow Price", "Slack"))</pre>
     for name, c in prob.constraints.items():
          print("{:<30} {:<15} {:<15}".format(
             f"{name} : {c}",
               str(c.slack)
if __name__ == "__main__":
     solver()
```

Παρατηρούμε την λύση του δυικού, που έχει ίδια βέλτιστη τιμή αντικειμενικής συνάρτησης $z^* = 28$ με το πρωτεύον.

```
Status: Optimal
objective = 28.0
y1 = 6.00
y2 = -1.00
y3 = 4.00
Sensitivity Analysis
Constraint
                             Shadow Price
                                            S1ack
c1 : y2 + y3 = 3
                                            -0.0
                             -3.0
                                            -0.0
c2 : y1 - y2 + y3 >= 11
                             0.5
c3 : y1 + y2 + y3 >= 9
                                            -0.0
                            3.5
c4 : y1 + 2*y2 >= -1
                             0.0
                                            -5.0
c5 : -2*y1 + y2 - 3*y3 >= -29 0.0
                                            -4.0
```

Συμπληρωματικά ζεύγη μεταβλητών στη βέλτιστη λύση

$x_1^* = -3$	$y_4^* = 0$
$x_2^* = 0.5$	$y_5^* = 0$
$x_3^* = 3.5$	$y_6^* = 0$
$x_4^* = 0$	$y_7^* = -5$
$x_5^* = 0$	$y_8^* = -4$
$x_6^* = 0$	$y_1^* = 6$
$x_7^* = 0$	$y_2^* = -1$
$x_8^* = 0$	$y_3^* = 4$

Άρα επαληθέυται το θεώρημα συμπληρωματικής χαλαρότητας, δηλαδή $y^{*T}x_s^*=0$ και $y_s^{*T}x^*=0$

Άσκηση 2

(α) Εφαρμόζοντας τους κανόνες μετασχηματισμού πρωτεύοντος σε δυικό πρόβλημα προκύπτει το δυικό πρόβλημα

$min z = 6y_2 + 3y_3$
$2y_1 - y_2 + 3y_3 \ge 1$
$3y_1 + y_2 + y_3 \le 1$
$y_1 + 2y_2 + 4y_3 = 0$
$y_1 + y_2 + 2y_3 \le 0$
$y_2 \in \mathbb{R}, \ y_1 \le 0, y_3 \ge 0$

Χρησιμοποιώντας το module pulp που χρησιμοποιεί τον CBC MILP solver, λύνω το πρόβλημα LP.

```
Status: Optimal
objective = -1.80
y1 = 0.00
y2 = -0.40
y3 = 0.20
Sensitivity Analysis
                               Shadow Price
Constraint
                                                S1ack
                                                -0.0
c1 : 2*y1 - y2 + 3*y3 >= 1
                               -1.8
c2 : 3*y1 + y2 + y3 <= 1
                               -0.0
                                                1.2
c3 : y1 + 2*y2 + 4*y3 = 0
                                                -0.0
                               2.1
c4 : y1 + y2 + 2*y3 <= 0
                               -0.0
                                                -0.0
```

Η βέλτιστη βασική λύση αποτελείται από 4 μεταβλητές, τις μη μηδενικές y_2 , y_3 , s_2 και μία μηδενική από τις y_1 , s_1 , s_3 , s_4 . Άρα πρόκειται για εκφυλισμένη βασική λύση.

Οι Π1, Π3, Π4 είναι δεσμευτικοί περιορισμοί και ο περιορισμός προσήμου για την y_1 είναι δεσμευτικός. Η βέλτιστη κορυφή στο \mathbf{R}^3 σχηματίζεται από την τομή 4 υπερεπιπέδων, τα τρία των δεσμευτικών περιορισμών και το $y_1=0$, άρα πρόκειται για εκφυλισμένη κορυφή.

(β) Με βάση τις συνθήκες συμπληρωματικής χαλαρότητας

- Αν ο περιορισμός i του δυϊκού (πρωτεύοντος) ικανοποιείται ως γνήσια ανισότητα (μη δεσμευτικός περιορισμός), τότε η i μεταβλητή του πρωτεύοντος (δυϊκού) είναι υποχρεωτικά μηδέν,
- 2. Αν η j μεταβλητή του δυϊκού (πρωτεύοντος) είναι θετική τότε ο j περιορισμός του πρωτεύοντος (δυϊκού) ικανοποιείται υποχρεωτικά ως ισότητα (δεσμευτικός περιορισμός).

Ο Π2 του δυικού είναι μη δεσμευτικός, οπότε η $x_2=0 \xrightarrow{z=x_2+x_1=-1.8} x_1=-1.8$

Η $y_3>0$, οπότε ο Π3 του πρωτεύοντος είναι δεσμευτικός στη βέλτιστη λύση

$$Π3: 3x_1 + x_2 + 4x_3 + 2x_4 = 3 => 4x_3 + 2x_4 = 8.4$$

$$Π2: -x_1 + x_2 + 2x_3 + x_4 = 6 => 2x_3 + x_4 = 4.2$$

$$Π1: x_3 + x_4 \leq 3.6$$

Οπότε $x_3 \ge 0.6$ και $x_4 \le 3$ τ. ω να ισχύουν οι $\Pi 2$, $\Pi 1$, $x_2 = 0$, $x_1 = -1.8$, δηλαδή το πρωτεύον έχει πολλαπλές βέλτιστες λύσεις

Βέλτιστη λύση πρωτεύοντος		Βέλτιστη λύση δυϊκού	
Πολλαπλές λύσεις	\Rightarrow	Εκφυλισμένη λύση	
Μοναδική μη-εκφυλισμένη	\Rightarrow	Μοναδική μη-εκφυλισμένη	
Πολλαπλές μη-εκφυλισμένες	\Rightarrow	Μοναδική εκφυλισμένη	
Μοναδική εκφυλισμένη	\Rightarrow	Πολλαπλές λύσεις	

```
import pulp
def solver():
    # A LP problem
   prob = pulp.LpProblem("ex2", pulp.LpMaximize)
   # Variables
   y1 = pulp.LpVariable("y1", None, 0)
   y2 = pulp.LpVariable("y2", None, None)
   y3 = pulp.LpVariable("y3", 0, None)
   # Objective
    prob += 6*y2 + 3*y3, "obj"
   # Constraints
   prob += 2*y1 - y2 + 3*y3 >= 1, "c1"
   prob += 3*y1 + y2 + y3 <= 1, "c2"
   prob += y1 + 2*y2 + 4*y3 == 0, "c3"
   prob += y1 + y2 + 2*y3 <= 0, "c4"
    # solve the problem using the default solver
   prob.solve()
    # print the status of the solved LP
    print("Status:", pulp.LpStatus[prob.status])
    # print the value of the objective
    print(f"objective = {pulp.value(prob.objective):5.2f}")
    # print the value of the variables at the optimum
    for v in prob.variables():
        print(f'{v.name} = {v.varValue:5.2f}')
    print("\nSensitivity Analysis")
    print("{:<30} {:<15} {:<15}".format("Constraint", "Shadow Price", "Slack"))</pre>
    for name, c in prob.constraints.items():
        print("{:<30} {:<15} {:<15}".format(</pre>
            f"{name} : {c}",
            str(c.pi),
            str(c.slack)
if __name__ == "__main__":
   solver()
```

$\max z = 6x_1 + x_2 - x_3 - x_4$
$x_1 + 2x_2 + x_3 + x_4 \le 5$
$3x_1 + x_2 - x_3 \le 8$
$x_2 + x_3 + x_4 = 1$
$x_1, x_2 \in \mathbb{R}, \ x_3, x_4 \ge 0$

Εξετάζω τη λύση x = (3, -1, 0, 2) με βάση το παρακάτω θεώρημα από το βιβλίο των Sierksma and Zwols για τη συνθήκη βελτιστότητας.

Theorem 4.2.5. (Optimality condition for nonstandard LO-models) The vector \mathbf{x} is an optimal solution of the nonstandard LO-model (GM) if

- (i) **x** is feasible, and
- (ii) there exists a vector \mathbf{y} that is feasible for (DGM) with $\mathbf{c}^\mathsf{T}\mathbf{x} = \mathbf{b}^\mathsf{T}\mathbf{y}$.

Η τιμή της αντικειμενικής συνάρτησης για x=(3,-1,0,2) είναι z=15 και ελέγχω αν ισχύουν οι περιορισμοί

$\Pi 1: 3 - 2 + 0 + 2 = 3 \le 5$	μη δεσμευτικός x_5 = 2
$\Pi 2: 3*3-1-0=8$	δεσμευτικός x_6 = 0
$\Pi 3: -1+0+2=1$	δεσμευτικός x_7 = 0

Άρα ικανοποιούνται όλοι οι περιορισμοί, οπότε το x=(3,-1,0,2) πρόκειται για εφικτή λύση.

Το δυικό πρόβλημα φαίνεται παρακάτω

$\min z = 5y_1 + 8y_2 + y_3$
$\Pi 1: y_1 + 3y_2 = 6$
$\Pi 2: 2y_1 + y_2 + y_3 = 1$
$\Pi 3: y_1 - y_2 + y_3 \ge -1$
$\Pi 4: y_1 + y_3 \ge -1$
$y_3 \in \mathbb{R}, y_1, y_2 \ge 0$

Ο Π1 του πρωτεύοντος είναι μη δεσμευτικός, άρα από συμπληρωματική χαλαρότητα ισχύει $y_1=0$.

Από τον Π1 του δυικού προκύπτει ότι $y_2=2$ και έπειτα από τον Π2 του δυικού προκύπτει ότι $y_3=-1$

Όμως ο Π3 του δυικού για τη λύση y = (0, 2, -1) δεν ικανοποιείται, οπότε δεν είναι εφικτή.

Τελικά αφού δεν βρέθηκε εφικτή λύση y στο δυικό μέσω συμπληρωματικής χαλαρότητας για την οποία να ισχύει b^Ty =15 σημαίνει ότι η λύση x=(3,-1,0,2) δεν είναι βέλτιστη στο πρωτεύον.

Άσκηση 4

(α) Μοντελοποιήση του προβλήματος ακέραιου γραμμικού προγραμματισμού.

Μέρες εργασίας	Αριθμός σερβιτόρων
Βάρδια	(μεταβλητή απόφασης)
Κυριακή - Πέμπτη	x_1
Δευτέρα - Παρασκευή	x_2
Τρίτη - Σάββατο	x_3
Τετάρτη - Κυριακή	x_4
Πέμπτη - Δευτέρα	x_5
Παρασκευή - Τρίτη	x_6
Σάββατο - Τετάρτη	x_7

Περιορισμοί

Κυριακή	$x_1 + x_4 + x_5 + x_6 + x_7 \ge 10$	
Δευτέρα	$x_1 + x_2 + x_5 + x_6 + x_7 \ge 8$	
Τρίτη	$x_1 + x_2 + x_3 + x_6 + x_7 \ge 8$	
Τετάρτη	$x_1 + x_2 + x_3 + x_4 + x_7 \ge 8$	
Πέμπτη	$x_1 + x_2 + x_3 + x_4 + x_5 \ge 8$	
Παρασκευή	$x_2 + x_3 + x_4 + x_5 + x_6 \ge 15$	
Σάββατο	$x_3 + x_4 + x_5 + x_6 + x_7 \ge 15$	
-	$x_i \ge 0 \ \forall i$	
x _i ακέραιος ∀ i		

Πρόβλημα ελαχιστοποίησης του πλήθους των σερβιτόρων άρα η αντικειμενική συνάρτηση $\min\{x_1+x_2+x_3+x_4+x_5+x_6+x_7\}$

(β) Αρχικά χαλαρώνουμε τον περιορισμό για ακέραιες λύσεις και λύνουμε το πρόβλημα γ.π χρησιμοποιώντας το module pulp που χρησιμοποιεί τον CBC MILP solver.

Με τη μέθοδο Branch and Bound βρέθηκαν 3 βέλτιστες λύσεις με z =16, οπότε σταματάμε τη διακλάδωση

Κώδικας 4

```
import pulp
def solver():
   prob = pulp.LpProblem("dovetail", pulp.LpMinimize)
   x = pulp.LpVariable.dicts('x', range(1,8),lowBound=0, upBound = None, cat=pulp.LpContinuous)
   # Objective
   prob += x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7], 'obj'
   prob += x[1] + x[4] + x[5] + x[6] + x[7] >= 10 #sunday
   prob += x[1] + x[2] + x[5] + x[6] + x[7] >= 8 \#monday
   prob += x[1] + x[2] + x[3] + x[6] + x[7] >= 8 #tuesday
   prob += x[1] + x[2] + x[3] + x[4] + x[7] >= 8 #wednesday
   prob += x[1] + x[2] + x[3] + x[4] + x[5] >= 8 #thursday
   prob += x[2] + x[3] + x[4] + x[5] + x[6] >= 15 #friday
   prob += x[3] + x[4] + x[5] + x[6] + x[7] >= 15 #saturday
   prob += x[2] <=0
   prob += x[3] <= 5
   \#prob += x[3]>= 6
   prob += x[4] >= 3
   # solve the problem using the default solver
   prob.solve()
   print("Status:", pulp.LpStatus[prob.status])
   print("objective =", pulp.value(prob.objective))
   for v in prob.variables():
       print(f'{v.name} = {v.varValue:5.2f}')
  __name__=='__main__':
   solver()
```

Άσκηση 5

Αρχικά χαλαρώνουμε τον περιορισμό για ακέραιες λύσεις και λύνουμε το πρόβλημα γ.π. Επιλέγω τη x_1 για διόρθωση, οπότε προκύπτει το πρώτο branching και δημιουργούνται δύο νέα προβληματα γ.π. Η επιλόγη του επόμενου κόμβου για διακλάδωση γίνεται με Jumptracking, δηλ. επιλέγεται αυτός με τη μεγαλύτερη τιμή αντικειμενικής συνάρτησης.

Κώδικας 5

```
import pulp
def solver():
    prob = pulp.LpProblem("ex5", pulp.LpMaximize)
    #Variables
    x = pulp.LpVariable.dicts('x', range(1,4),lowBound=0, upBound = None, cat=pulp.LpContinuous)
    prob += 34*x[1]+29*x[2]+2*x[3], 'obj'
    prob += 7*x[1] + 5*x[2] - x[3] <= 16
    prob += -x[1] + 3*x[2] + x[3] <= 10
    prob += -x[2] + 2*x[3] <= 3
    #prob += x[1]<=0
#prob += x[1]>=1
    #prob += x[1]<=1
#prob += x[1]>=2
    #prob += x[2]<=3
#prob += x[2]>=4
```

```
##80 branching
#prob += x[2]<=0
#prob += x[2]>=1

# solve the problem using the default solver
prob.solve()

# print the status of the solved LP
print("Status:", pulp.LpStatus[prob.status])

# print the value of the objective
print(f"objective = {pulp.value(prob.objective):5.2f}")

# print the value of the variables at the optimum
for v in prob.variables():
    print(f'{v.name} = {v.varValue:5.2f}')

if __name__=='__main__':
    solver()
```

Άσκηση 6

(a)

Δέμα	Όγκος	Κέρδος
1	2	10
2	3	14
3	4	31
4	6	48
5	8	60

Μοντελοποίηση: Έστω η δυαδική μεταβλητή x_i , $i=1,\ldots,5$ που παίρνει τιμή 1 όταν το δέμα παραδίδεται και 0 στην αντίθετη περίπτωση.

Πρόβλημα μεγιστοποίησης της αντικειμενικής συνάρτησης

$$z = 10x_1 + 14x_2 + 31x_3 + 48x_4 + 60x_5$$

Περιορισμοί

$$2x_1 + 3x_2 + 4x_3 + 6x_4 + 8x_5 \le 11$$
, $x_i \in \{0,1\} \ \forall i$

Πρόκειται για πρόβλημα τύπου Knapsack

Διατάσσω τα δέματα με βάση το κέρδος τους ανά μονάδα όγκου, και ορίζω νέες μεταβλητές σύμφωνα με τη διάταξη. Χαλαρώνω τον περιορισμό για δυικές μεταβλητές.

Δέμα	Κέρδος/Όγκος	Σειρά
1	5	$x_{[4]}$
2	14/3	<i>x</i> _[5]
3	7.75	$x_{[2]}$
4	8	$x_{[1]}$
5	7.5	x _[3]

Χαλαρωμένο πρόβλημα

$$z = 10x_{[4]} + 14x_{[5]} + 31x_{[2]} + 48x_{[1]} + 60x_{[3]}$$

$$2x_{[4]} + 3x_{[5]} + 4x_{[2]} + 6x_{[1]} + 8x_{[3]} \le 11, \quad x_i \in [0,1] \, \forall i$$

Προφανής λύση
$$x_{[1]}=1$$
, $x_{[2]}=1$, $x_{[3]}=\frac{1}{8}$, $x_{[4]}=x_{[5]}=0$, $z=86.5$

Οι υπόλοιποι κόμβοι τερματίζονται γιατί η καλύτερη μέχρι τώρα λύση έχει $z=79>z_u$ του κάθε κόμβου

Άρα η βέλτιστη λύση είναι να παραδοθούν τα δέματα 3, 4.

Κώδικας 6α

```
import pulp
     def solver():
         prob = pulp.LpProblem("ex6", pulp.LpMaximize)
         x = pulp.LpVariable.dicts('x', range(1,6),lowBound=0, upBound = 1, cat=pulp.LpContinuous)
         prob += 10*x[4]+14*x[5]+31*x[2]+48*x[1]+60*x[3], 'obj'
11
         prob += 2*x[4] + 3*x[5] + 4*x[2] + 6*x[1] + 8*x[3] <= 11
         prob += x[3] == 0
         prob += x[4]==1
         prob += x[1]==1
         \#prob += x[5]==1
         \#prob += x[2]==1
30
         prob += x[2] ==1
         prob.solve()
         print("Status:", pulp.LpStatus[prob.status])
         print(f"objective = {pulp.value(prob.objective):5.2f}")
         for v in prob.variables():
             print(f'{v.name} = {v.varValue:5.2f}')
     if __name__=='__main__':
         solver()
```

(β) Το χαλαρωμένο πρόβλημα μαζί με το δυικό του φαίνονται παρακάτω:

$\max z = 10x_{[4]} + 14x_{[5]} + 31x_{[2]} + 48x_{[1]}$
$+60x_{[3]}$
$2x_{[4]} + 3x_{[5]} + 4x_{[2]} + 6x_{[1]} + 8x_{[3]} \le 11$
$x_{[1]} \le 1$
$x_{[2]} \le 1$
$x_{[3]} \le 1$
$x_{[4]} \le 1$
$x_{[5]} \le 1$
$x_i \ge 0 \forall i$

$\min z = 11y_1 + y_2 + y_3 + y_4 + y_5 + y_6$
$6y_1 + y_2 \ge 48$
$4y_1 + y_3 \ge 31$
$8y_1 + y_4 \ge 60$
$2y_1 + y_5 \ge 10$
$3y_1 + y_6 \ge 14$
$y_i \ge 0 \forall i$

Στη βέλτιστη λύση του πρωτεύοντος ισχύει

$$x_{[1]} = 1$$
, $x_{[2]} = 1$, $x_{[3]} = \frac{1}{8}$, $x_{[4]} = x_{[5]} = 0$, $z = 86.5$

Άρα με βάση τις συνθήκες συμπληρωματικής χαλαρότητας

- Αν ο περιορισμός i του δυϊκού (πρωτεύοντος) ικανοποιείται ως γνήσια ανισότητα (μη δεσμευτικός περιορισμός), τότε η i μεταβλητή του πρωτεύοντος (δυϊκού) είναι υποχρεωτικά μηδέν,
- 2. Αν η j μεταβλητή του δυϊκού (πρωτεύοντος) είναι θετική τότε ο j περιορισμός του πρωτεύοντος (δυϊκού) ικανοποιείται υποχρεωτικά ως ισότητα (δεσμευτικός περιορισμός).

Οι Π1, Π2, Π3 του δυικού είναι δεσμευτικοί και $y_4 = y_5 = y_6 = 0$,

Οπότε βρίσκουμε επίσης $y_1 = 7.5, y_2 = 3, y_3 = 1$

Η λύση αυτή είναι εφικτή και δίνει z =86.5, οπότε οι δύο λύσεις είναι βέλτιστες στα προβλήματα.

(γ) Η βέλτιστη ακέραια λύση του δυικού είναι

```
Status: Optimal objective = 88.00 
y_1 = 8.00 
y_2 = 0.00 
y_3 = 0.00 
y_4 = 0.00 
y_5 = 0.00 
y_6 = 0.00
```

Παρατηρώ ότι στο πρωτεύον ακέραιο πρόβλημα η βέλτιστη λύση έχει z=79, ενώ στο δυικό ακέραιο έχει z=88

Επομένως δεν ισχύουν οι συνθήκες συμπληρωματικής χαλαρότητας για το ακέραιο πρωτεύον και το δυικό του.

Κώδικας 6γ

```
import pulp
def solver():
   prob = pulp.LpProblem("ex6c", pulp.LpMinimize)
   y = pulp.LpVariable.dicts('y', range(1,7),lowBound=0, upBound = None, cat=pulp.LpInteger)
   prob += 11*y[1]+y[2]+y[3]+y[4]+y[5]+y[6], 'obj'
   prob += 6*y[1] + y[2] >=48
   prob += 4*y[1] + y[3] >= 31
   prob += 8*y[1] + y[4] >=60
   prob += 2*y[1] + y[5] >=10
   prob += 3*y[1] + y[6] >= 14
   prob.solve()
   print("Status:", pulp.LpStatus[prob.status])
   print(f"objective = {pulp.value(prob.objective):5.2f}")
   for v in prob.variables():
       print(f'{v.name} = {v.varValue:5.2f}')
if <u>__name__</u>=='<u>__main__</u>':
```