

Welcome to the workshop!

Nice to meet you!

Dr Kakia Chatsiou Senior Research Officer University of Essex

Areas of interest:

Information Extraction • Natural Language Processing • Deep Learning • Cloud Computing • Al methods for Text mining

Administrative data • Digital Transformation • Algorithmic Ethics & Bias

Workshop aims (1)

recent advancements in Al technologies that could be used to address different civil protection challenges

ideas/examples/case studies of the use of AI in an emergency response setting that could find an application in the Colombian context

how different types of data (numbers, images, text) are being used to help societies meet prevention, mitigation and emergency response needs

Workshop aims (2)

- Discuss important considerations for using AI to meet prevention, mitigation and emergency response needs such as:
 - data quality,
 - fairness,
 - ethics,
 - privacy,
 - explainability, transparency, accountability,
 - compliance with data protection laws

Time(Colombia)	Time (UK)	Topic
10.00 - 10.10	15.00 – 15.10	Welcome to the workshop & Aims Introductions
10.10 - 11.00	15.10 – 16.00	Using AI in Civil protection & Emergency response: definitions and common ground - What is AI? What is not AI? - Disaster management cycle - Civil protection challenges & opportunities - Activity 1: Civil protection challenges in Colombia
11.00 - 11.15	16.00 – 16.15	Break
11.15 - 12.00	16.15 – 17.00	Using AI in Civil protection & Emergency response: from response to prevention - AI helping on the ground responders (response) - AI helping restoring and reconstructing (recovery) - AI helping understand risks & raising awareness (mitigation) - AI helps understand and reduce risk (prevention/ preparedness)
12.00 - 12.15	17.00 – 17.15	Break
12.15 - 13.00	17.15 – 18.00	Activity 2: Can any of these examples apply to the challenges identified in Activity 1? Discussion & Summary of ideas

Useful links

- LinkedIn Group: http://bit.ly/AI4Dis_group
- Link to workshop material: https://github.com/kakiac/Al4Disasters ColGov/
- Link to virtual whiteboard: http://bit.ly/Al4dis_whiteboard

Introductions

Using AI in Civil protection & Emergency response

Definitions and common ground

The impact of disasters worldwide (2019, EMDAT)

- 11 755 deaths
- 95 million people affected
- 103 billion US\$ in economic losses
- Floods were the deadliest type of disaster accounting for 43.5% of deaths, followed by extreme temperatures at 25% and storms at 21.5%.

Exposure to volcano

Number of volcanoes	15
Total population living within 30km from a volcano	3,236,251
% of population living with 30km distance from a volcano	7

Source:

https://www.preventionweb.net/countries/col/data/

In a disaster...

... smart, timely decisions are needed to avert, mitigate and manage risks

...and can save lives!

In a disaster...

- Tight resources with an exhausted workforce
- Large volumes of data generated daily (real and simulation data) e.g. social media, telecommunications data, remote sensing
- Quick decision making is needed, but not enough time for evaluation of all resources and data available.

Could AI help?

Disaster Management Cycle

What is Artificial Intelligence?

- "any task performed by a machine that would have previously been considered to require human intelligence" (Minsky & MacCarthy, 1950s)
- "the efficiency with which a machine acquires new skills at tasks they didn't previously prepare for" (Chollet): narrow Al
 - at least some elements of human intelligence are possible e.g. planning, learning, reasoning, problem solving, knowledge representation, motion

Al methods

- Supervised models
 - Trained on pre-existing data that humans have labelled
- Unsupervised models
 - No human input required, statistical methods that automatically extract information in data and groups/labels
- Deep Learning
 - Use multiple layers to extract information from the data. Learning over and over again using the same data and new knowledge

Al Methods

- Reinforcement Learning
 - Like deep learning (learning in layers, with multiple runs); decisions are made in a sequence. Needs to be trained with data very close to tasks to be performed
- Optimisation
 - Finding the best model possible for each task
 - (not an Al method per se, but a core part of any disaster management process)

Al in our daily lives

- Recommend what you should buy next online
- Understanding what you say to Siri/Alexa
- Recognise who or what is in a photo
- Spot spam emails
- Detect credit card fraud
- Automatically suggest the next words when you are writing an email

Civil Protection Challenges: can Al help?

- Can improve disaster response
- Can reduce time to assess damage
- Can help monitor social media to flag a disaster happening
- Can help deliver aid more effectively
- Can help with quicker decision making

But: be careful of limitations of AI and data used to train it!

What is PESTEL Analysis?

A tool that helps you analyse the context which might have impact on an issue or concept. Elements include:

- Political: challenges dependant on government policy, political stability or instability, trade restrictions, tax policy etc
- Economic: challenges relevant to economic growth, income & spending of consumers, interest rates
- Societal: challenges relevant to people and society
- Technological: challenges related to technology or digital skills
- Environmental & Ethical: challenges related to environmental and ethical factors
- Legal: challenges related to the legislation and the regulatory framework in place

http://bit.ly/Al4dis_whiteboard

PESTEL analysis

Political	Economic	Societal	Technological	Environmental	Legal

Break

Time(Colombia)	Time (UK)	Topic
10.00 - 10.10	15.00 – 15.10	Welcome to the workshop & Aims Introductions
10.10 - 11.00	15.10 – 16.00	Using AI in Civil protection & Emergency response: definitions and common ground - What is AI? What is not AI? - Disaster management cycle - Civil protection challenges & opportunities - Activity 1: Civil protection challenges in Colombia
11.00 - 11.15	16.00 – 16.15	Break
11.15 - 12.00	16.15 – 17.00	Using AI in Civil protection & Emergency response: from response to prevention - AI helping on the ground responders (response) - AI helping restoring and reconstructing (recovery) - AI helping understand risks & raising awareness (mitigation) - AI helps understand and reduce risk (prevention/ preparedness)
12.00 - 12.15	17.00 – 17.15	Break
12.15 - 13.00	17.15 – 18.00	Activity 2: Can any of these examples apply to the challenges identified in Activity 1? Discussion & Summary of ideas

Using Al in Civil protection & Emergency response

Use cases: from response to prevention

1. Predicting and classifying damage

- Al models can use satellite and other data to predict areas at risk
- Damaged buildings and routes can be geotagged to help relief workers identify areas and allocate resources in an optimal way

Drones for disaster damage assessment in Vanuatu – World Bank

- Cyclone Pam struck the South Pacific archipelago nation of Vanuatu on 13-14 March 2015
- Need for quick assessment of damages emerged
- Solution: using drones to capture images, then open source maps (Mapbox) to visualize existing state of buildings
 - Twitter image geotagged overlayed
 - Quickly determined which houses were unrepairable, aid was directed quickly

2. Drones used for rescuing swimmers in Australia

3. Twitter used during the Chennai Flood, India

- Monsoons in 2015, 90% above normal rainfall for over 100 years
- Est 500 people died, 1.8 million people were displaced
- No telephones, but internet access!
- Twitter India publicized three hashtags to be used during the flood, depending on the nature of the tweet: #ChennaiRainsHelp, #ChennaiRescue and #ChennaiVolunteer

Twitter used during the Chennai Flood, India

4. Artificial intelligence for earthquake detection and prediction

5. Topic Modelling of Local Government Resilience Action Plans

- high-level strategic documents, describing ways a nation or a municipality should react in case of emergency and how it plans to build up capacity to improve its resilience
- Latent Dirichlet Allocation Topic Modelling (Blei et al, 2003; Blei 2011)
- Corpus available: https://github.com/kakiac/ResiliencePolicyDatabase

Topics

gene 0.04 0.02 dna genetic 0.01 . . .

life 0.02 0.01 evolve organism 0.01

0.04 brain 0.02 neuron nerve 0.01

0.02 data 0.02 number computer 0.01 . . .

Documents

Topic proportions and assignments

Seeking Life's Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK- "are not all that far apart," especially in How many genes does an organism need to survive. Last week at the genome meeting here, "two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and esti-

800 genes are plenty to do the job-but that anything short of 100 wouldn't be enough. Although the numbers don't

mated that for this organism.

match precisely, those predictions

* Genome Mapping and Sequencing, Cold Spring Harbor, New York,

May 8 to 12.

comparison to the 75,000 genes in the human genome, notes Siv Andersson of University in S der. But coming up with sus answer may be more than just a numbers paine, particularly as m more genomes are completely to sequenced. "It may be a way of organiz any newly sequenced genome," explains Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing

Stripping down, Computer analysis yields an estimate of the minimum modern and ancient genomes.

SCIENCE • VOL. 272 • 24 MAY 1996

(Blei 2011)

Topics: Europe

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7
Terrorism	Heatwave	Community	Health	Preparation	Nuclear	Health
Vigilance	Measures	Trigger	County	Cyberwar	Biological	Risk
Plan	Fire	Mobilisation	Interregional	Hacking	Hazards	Ebola
Prefecture	Мар	Forecast	System	Intensification	Threat-to-life	Pandemic
Warning	Weather	Prevention	Alerts	Computers	Accident	Sanitary
Information	Seasonal	Resilience	Limits	Smartphones	Environment	Animals
System	Risk	Strengthening	Hospitals	Espionage	Substances	Contagious

Topic 1

Terrorism Vigilance Plan Prefecture Warning Information System

Topic 2

Heatwave Measures Fire Map Weather Seasonal Risk

Topic 3

Community Health Trigger County Mobilisation Interregional Hacking Forecast System Prevention Alerts Resilience Limits Strengthening Hospitals

Topic 4

Topic 5

Preparation Cyberwar Intensification Computers Smartphones Environment Espionage

Topic 6

Nuclear Health Biological Risk Hazards Ebola Threat-to-life Pandemic Accident Sanitary Animals Substances Contagious

Topic 7

Topic 1

Terrorism
Vigilance
Plan
Prefecture
Warning
Information
System

Topic 2

Heatwave Measures Fire Map Weather Seasonal Risk

Topic 3 Topic 4

Community Health Preparate Cyberwal Mobilisation Interregional Hacking Intensific Computer Prevention Alerts Computer Resilience Limits Smartph Espionage

Topic 5

Preparation Nuclear
Cyberwar Biological
Hacking Hazards
Intensificatior Threat-to-life
Computers Accident
Smartphones Environment
Espionage Substances

Topic 6 Topic 7

Nuclear Health
Biological Risk
Hazards Ebola
Threat-to-life Pandemic
Accident Sanitary
Environment Animals
Substances Contagious

Topic 1

Terrorism Vigilance Plan Prefecture Warning Information System

Topic 2

Heatwave Measures Fire Map Weather Seasonal Risk

Topic 3 **Topic 4**

Community Health Trigger County Mobilisation Interregional Forecast System Prevention Alerts Resilience Limits Strengthening Hospitals

Topic 5

Preparation Cyberwar Hacking Intensification Computers Espionage

ropic 6 **Topic 7**

Nuclear Health Biological Risk Hazards Ebola Threat-to-life Pandemic Accident Sanitary Smartphones Environment Animals Substances Contagious

Topic 1

Terrorism Vigilance Plan Prefecture Warning Information System

Topic 2

Heatwave Measures Fire Map Weather Seasonal Risk

Topic 3 **Topic 4**

Community Health Trigger County Mobilisation Interregional Forecast System Prevention Alerts Resilience Limits Strengthening Hospitals

Topic 5

Preparation Cyberwar Hacking Intensification Computers Espionage

ropic 6 **Topic 7**

Nuclear Health Biological Risk Hazards Ebola Threat-to-life Pandemic Accident Sanitary Smartphones Environment Animals Substances Contagious

Topic 1

Terrorism Vigilance Plan Prefecture Warning Information System

Topic 2

Heatwave Measures Fire Map Weather Seasonal Risk

Topic 3 **Topic 4**

Community Health Trigger County Mobilisation Interregional Forecast System Prevention Alerts Resilience Limits Strengthening Hospitals

Topic 5

Preparation Cyberwar Hacking Intensification Computers Smartphones Environment Espionage

ropic 6 **Topic 7**

Nuclear Health Biological Risk Hazards Ebola Threat-to-life Pandemic Accident Sanitary Animals Substances Contagious

EUROPE

	•	4
10	DIC	7
10	סומ	
		_

Terrorism Vigilance Plan Prefecture Warning Information System

Topic 2

Heatwave Measures Fire Map Weather Seasonal Risk

Topic 3 **Topic 4**

Community Health Trigger County Mobilisation Interregional System Forecast Prevention Alerts Resilience Limits Strengthening Hospitals

Topic 5

Preparation Cyberwar Hacking Intensification Computers Smartphones Environment Espionage

Topic 6 **Topic 7**

Health Nuclear Biological Risk Hazards Ebola Threat-to-life Pandemic Accident Sanitary Animals Substances Contagious

IRELAND

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7
Flood	Local group	Public	Recovery	Authorities	Weather	Agencies
Local	Emergency	Rescue	Affected	Framework	Met	Communications
Response	Co-ordination	Defence	Damage	Services	Infrastructure	Coast
Water authority	Information	Resources	Appropriate	Rescue	Community	Protocol
Equipment	Management	Services	Support	Event	Incident	Critical
Ma nagement	Areas	Risk	Significant	Assistance	Property	Met
Assessment	Service	Persons	Evacuation	Warnings	Assessment	Housing agencies

EUROPE

Topic 1

Terrorism Vigilance Plan Prefecture Warning Information System

Topic 2

Heatwave Measures Fire Map Weather Seasonal Risk

Topic 3 **Topic 4**

Community Health Trigger County Mobilisation Interregional System Forecast Prevention Alerts Resilience Limits Strengthening Hospitals

Topic 5

Preparation Cyberwar Hacking Intensification Computers Espionage

fopic 6 Topic 7

Nuclear Health Biological Risk Hazards Ebola Threat-to-life Pandemic Accident Sanitary Smartphones Environment Animals Substances Contagious

IRELAND

Topic 1

Flood Local Response Water authority Information Equipment **Ma**nagement Assessment

Topic 2

Local group Emergency Co-ordination Defence Management Areas Service

Topic 3

Topic 4 Public Recovery Rescue Affected Damage Resources Appropriate Rescue Services Support Risk Significant Evacuation Persons

Topic 5

Warnings

Authorities Weather Framework Met Services Infrastructure Coast Community Incident Event Assistance Property

Topic 6

Assessment

Topic 7

Agencies Communications Protocol Critical Met

Housing agencies

EUROPE

	•	4
10	nic	7
10	DIC	
_	_	

Terrorism Vigilance Plan Prefecture Warning Information System

Topic 2

Heatwave Measures Fire Map Weather Seasonal Risk

Topic 3 **Topic 4**

Community Health Trigger County Mobilisation Interregional System Forecast Prevention Alerts Resilience Limits Strengthening Hospitals

Topic 5

Preparation Cyberwar Hacking Intensification Computers Espionage

fopic 6 Topic 7

Nuclear Health Biological Risk Hazards Ebola Threat-to-life Pandemic Accident Sanitary Smartphones Environment Animals Substances Contagious

IRELAND

Topic 1 Flood Local Response Equipment

Management

Assessment

Topic 2 _ocal group Emergency Co-ordination Defence Water authority Information Management Services Areas Service

Topic 3 Topic 4 Public Rescue Resources Risk

Persons

		•
	Recovery	Authorities
	Affected	Framework
	Damage	Services
S	Appropriate	Rescue
	Support	Event
	Significant	Assistance
	Evacuation	Warnings

Authorities	We
Framework	Met
Services	Infr
Rescue	Cor
Event	Inci
Assistance	Pro

Topic 5	Topic 6	Topic 7
Authorities	Weather	Agencies
Framework	Met	Communications
Services	Infrastructure	Coast
Rescue	Community	Protocol
Event	Incident	Critical
Assistance	Property	Met
Warnings	Assessment	Housing agencies

6. Planning optimal delivery routes

 Al can provide optimal route planning based on the damage assessment maps for faster aid delivery in post-disaster areas

7. Estimate funding requirements

Faster damage
 assessments can help
 governments and
 funders understand
 and provide
 necessary resources
 faster

8. Early warning system to prevent floods and allow disaster management in Colombian rivers

- On May 18th 2015, the Colombian village of Salgar was devastated by a landslide. The La Liboriana river flood caused 83 deaths and left devastation and destruction on the communities all over the area.
- National Unit for Disaster Risk Management Unidad Nacional para la Gestión de Riesgos de Desastres (UNGRD)
- plan to monitor and compile information on the La Liboriana, La Clara and Barroso rivers to prevent tragedies like the Salgar landslide

6. Early warning system to prevent floods and allow disaster management in Colombian rivers

Early warning system to prevent floods and allow disaster management in Colombian rivers

Al for Disaster Response: Things to consider

Legal Misinformation Skills shortage Big Data implications Readiness & (upfront) set Regulation infrastructure Scaling up and ownership up costs resilience Algorithmic Data quality bias

Break

Time(Colombia)	Time (UK)	Topic
10.00 - 10.10	15.00 – 15.10	Welcome to the workshop & Aims Introductions
10.10 - 11.00	15.10 – 16.00	Using AI in Civil protection & Emergency response: definitions and common ground - What is AI? What is not AI? - Disaster management cycle - Civil protection challenges & opportunities - Activity 1: Civil protection challenges in Colombia
11.00 - 11.15	16.00 – 16.15	Break
11.15 - 12.00	16.15 – 17.00	Using AI in Civil protection & Emergency response: from response to prevention - AI helping on the ground responders (response) - AI helping restoring and reconstructing (recovery) - AI helping understand risks & raising awareness (mitigation) - AI helps understand and reduce risk (prevention/ preparedness)
12.00 - 12.15	17.00 – 17.15	Break
12.15 - 13.00	17.15 – 18.00	Activity 2: Can any of these examples apply to the challenges identified in Activity 1? Discussion & Summary of ideas

Mapping challenges to solutions

Discussion

- LinkedIn Group:
 http://bit.ly/AI4Dis_group
- Link to workshop material: https://github.com/kakiac/AI4Di sasters ColGov/
- Link to virtual whiteboard: http://bit.ly/AI4dis_whiteboard