Intégration et Probabilités

ENS Paris, 2023/2024

Benoît Laslier laslier@dma.ens.fr

DM1: Atomes

Exercice 1. [Atomes d'une tribu] On considère un ensemble e muni d'une tribu \mathcal{F} . On introduit l'atome engendré par $x \in E$ comme l'ensemble $\dot{x} := \bigcap_{\{A \in \mathcal{F}: x \in A\}} A$.

- 1. Montrer que les atomes forment une partition de E.
- 2. Montrer que tout $A \in \mathcal{F}$ s'écrit de manière unique comme une union d'atome.

On suppose maintenant que \mathcal{F} est générée par un ensemble dénombrable, c.a.d que $\mathcal{F} = \sigma(\mathcal{C})$ pour un ensemble $\mathcal{C} \subset \mathcal{P}(E)$ dénombrable.

- 3. Soit $x, y \in E$, on suppose que pour tout $C \in \mathcal{C}$ on a soit $\{x, y\} \subset C$ soit $\{x, y\} \cap C = \emptyset$. Montrer que c'est le cas pour tout élément de \mathcal{F} .
- 4. En déduire que pour tout $x, \dot{x} = \left(\bigcap_{\{C \in \mathcal{C}: x \in C\}} C\right) \cap \left(\bigcap_{\{C \in \mathcal{C}: x \notin C\}} C^c\right)$ puis que $\dot{x} \in \mathcal{F}$.

On s'intéresse enfin au cas où \mathcal{F} n'est pas générée par un ensemble dénombrable. On pose $E = \mathcal{P}(\mathbb{R})$ que l'on muni de la tribu \mathcal{F} engendré par $\mathcal{C} = \{C_x | x \in \mathbb{R}\}$ où C_x est l'ensemble des parties de \mathbb{R} contenant x.

- 5. Soit $A \in \mathcal{F}$, montrer qu'il existe un ensemble dénombrable X(A) tel que pour tout $e, e' \in E$ si $e \in A$ et $e \cap X(A) = e' \cap X(A)$ alors $e' \in A$.
- 6. En déduire que \mathcal{F} ne contient pas les singletons.
- 7. Quels sont les atomes de \mathcal{F} ?

Remarque : La tribu étudiée dans les questions 5 à 7 n'est autre que la tribu produit si l'on voit $\mathcal{P}(\mathbb{R})$ comme $\{0,1\}^{\mathbb{R}}$. Elle est similaire à la tribu produit sur $\mathbb{R}^{\mathbb{R}}$ qui intervient assez naturellement quand par exemple on cherche à étudier une fonction de \mathbb{R} dans \mathbb{R} choisie aléatoirement.

Exercice 2. [Atomes d'une mesure] On considère un espace mesuré (E, \mathcal{F}, μ) et on suppose que $\mu(E) < \infty$. Pour $A \in \mathcal{F}$, on note $\operatorname{div}(A) = \{\mu(B) | B \subset A\}$. On dit que A est un atome de μ si $\mu(A) > 0$ et $\operatorname{div}(A) = \{0, \mu(A)\}$.

- 1. Expliquer rapidement pourquoi le terme d'atome est approprié dans la définition.
- 2. On suppose qu'il existe $\epsilon \in (0, \frac{1}{4})$ et A tel que $\operatorname{div}(A) \cap [\epsilon \mu(A), (1 \epsilon)\mu(A)] = \emptyset$, montrer que μ a un atome.
- 3. On suppose maintenant que μ n'a pas d'atome, montrer qu'il existe ϵ tel que pour tout A, $\operatorname{div}(A) \cap [\epsilon \mu(A), (1-\epsilon)\mu(A)] \neq \emptyset$.
- 4. En déduire que pour tout A, $\operatorname{div}(A) = [0, \mu(A)]$.

On rappel que pour $x \in E$, la mesure de Dirac en x, notée δ_x est définie par $\delta_x(A) = 1$ si $x \in A$ et 0 sinon. On considère μ une mesure admettant un atome A.

- 5. * Montrer que si \mathcal{F} est générée par un ensemble dénombrable, montrer qu'on peut trouver $x \in E$ et ν une mesure tels que $\mu = \nu + \mu(A)\delta_x$.
- 6. * Construire un contre-exemple pour une tribu qui n'est pas générée par un ensemble dénombrable.