

Introduction to Machine Learning Week 2

Olivier JAYLET

School of Information Technology and Engineering

Jaylet (KBTU) Intro ML 2025 1/23

Quantitative Vs. Qualitative data

Quantitative data are numbers-based, countable, or measurable. Example:

- Average temperature in Almaty
- Number of students in a class
- Gross income

Qualitative data is interpretation-based, descriptive, and relating to language.

Example:

- Customer feedback
- Review Sentiments
- Survey Open-Ended Answers

2025 2/23 Jaylet (KBTU) Intro ML

Numerical data

Features with **numerical data** represent quantitative attributes that can be measured and expressed as numbers. Example:

- age
- income
- temperature

Numerical data can further be divided into **continuous** and **discrete**.

Jaylet (KBTU) Intro ML 2025 3/23

Continuous variables can take any value within a given range, including fractions or decimals. They are typically **associated with measurements** that can be infinitely precise, depending on the level of measurement detail.

Examples:

- height of a person
- execution time of a program
- distance traveled
- speed of a vehicle

Jaylet (KBTU) Intro ML 2025 4/23

Discrete variable

Discrete variables can only take specific, distinct values, often whole numbers. These values are countable, and there are no intermediate values between them. Discrete variables are usually related to counting:

- number of employees in a company
- number of products sold
- goals scored in a soccer match

2025 5/23 Jaylet (KBTU) Intro ML

Categorical variable

Categorical data represent qualitative attributes and are often divided into distinct categories, **nominal** & **ordinal**:

- Categorical **nominal** variable consists of categories with no inherent order or ranking.
- Categorical **ordinal** variable includes categories with a meaningful order or ranking.

Jaylet (KBTU) Intro ML 2025 6/23

What is a dataset

A dataset is a structured collection of data organized and stored together for analysis or processing.

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
59	23.0	4	97.0	54	2254	23.5	72	2	volkswagen type 3
203	29.5	4	97.0	71	1825	12.2	76	2	volkswagen rabbit
191	22.0	6	225.0	100	3233	15.4	76	1	plymouth valiant
220	33.5	4	85.0	70	1945	16.8	77	3	datsun f-10 hatchback
326	43.4	4	90.0	48	2335	23.7	80	2	vw dasher (diesel)
324	40.8	4	85.0	65	2110	19.2	80	3	datsun 210
369	34.0	4	112.0	88	2395	18.0	82	1	chevrolet cavalier 2- door

Jaylet (KBTU) Intro ML 2025 7/23

Data processing

0000

Data processing is the collection and manipulation of digital data to produce meaningful information.

- Data collection
- 2 Data cleaning
- Data exploration and visualization
- 4 feature engineering

Jaylet (KBTU) Intro ML 2025 8/23

reacare engineering

Feature engineering preprocesses raw data into a machine-readable format. It optimizes ML model performance by transforming and selecting relevant features.

- 1 Feature creation
- Peature transformation
- 3 Feature selection
- 4 Outliers policy

Feature matrix

A tabular numerical dataset can be represented as a feature matrix X of shape $n \times d$ where :

- n = number of sample (rows)
- d = number of features (columns)

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

2025 10/23 Jaylet (KBTU) Intro ML

How can we do math with categorical features?

The case of boolean features¹

A Boolean variable is a type of variable that can only hold two possible values: true or false (can also be any other couple of words like yes/no, male/female, win/defeat et cetera.).

	Age	Height	Is_Student]
	25	170	False
$\mathbf{X} =$	30	160	False
	18	180	True
	50	165	False

Jaylet (KBTU) Intro ML 2025 12/23

Binary encoding

The case of categorical nominal variables

	Age	Height	Weight	Category Adult
	25	170	65	Adult
X =	30	160	70	Adult
	18	180	75	Youth
	50	165	80	Senior

Jaylet (KBTU) Intro ML 2025 13/23

One-hot encoding in action

Using One-hot encoding, a Binary Column is created for each Unique Category in the variable.

	「Age	Height	Weight 65	Adult	Youth	Senior	
			65	1	0	0	
$\mathbf{X} =$	30	160	70	1	0	0	
	18	180	75	0	1	0	
	50	165	80	0	0	1	

(Don't forget to drop ex category column)

One-hot encoding

If a categorical feature belongs to the finite set $\{1,..., K\}$, it is encoded by a binary vector :

$$(\delta_1,\ldots,\delta_K)\in\{0,1\}^K,\quad \sum_{k=1}^K\delta_k=1.$$

where $(\delta_1, \dots, \delta_K)$ is a vector of K features.

Jaylet (KBTU) Intro ML 2025 15/23

One-hot encoding

If a categorical feature belongs to the finite set $\{1,..., K\}$, it is encoded by a binary vector :

$$(\delta_1,\ldots,\delta_K)\in\{0,1\}^K,\quad \sum_{k=1}^K\delta_k=1.$$

where $(\delta_1, \dots, \delta_K)$ is a vector of K features.

Properties:

- **1** Each δ_k is binary (0 or 1)
- ② Only one δ_k can be 1 at a time.

Jaylet (KBTU) Intro ML 2025 16/23

One-hot encoding issue

Some models like **linear regression** rely on **matrix inversions** and assume that independent variables exhibit **full rank**.

It can also increase the dimensions of the matrix.

Dummy encoding

Similar to one-hot encoding, but seeks to avoid linear dependence.

While one hot encoding uses K binary variables for K categories in a variable. Dummy encoding uses K-1 features to represent K categories (labels).

Jaylet (KBTU) Intro ML 2025 18/23

Label encoding

Each unique category is assigned a unique integer value.

	Name	Education Level	Education Level
	Alice	High School	0
X =	Bob	Bachelor's	1
	Charlie	Master's	2
	Diana	PhD	3
	Eve	High School	0

Jaylet (KBTU) Intro ML 2025 19/23

Different Scales

Features in a dataset can have vastly different ranges. For instance, Income (in thousands) might range from 20 to 200, while Age might range from 0 to 100.

Some models can be affected by those difference in range.

Min-Max scaling

$$X_{\mathsf{norm}} = \frac{X - \mathsf{min}(X)}{\mathsf{max}(X) - \mathsf{min}(X)}$$

Jaylet (KBTU) Intro ML 2025 21/23

$X_{\text{standardized}} = \frac{X - \text{mean}(X)}{\text{sqrt(var (X))}}$

Jaylet (KBTU) Intro ML 2025 22/23

Thank you for your attention!

