

Modelo de ameaças

- Um utilizador malicioso pode invocar operações que afetem o saldo de um outro utilizador de forma ilegítima
- Um atacante pode adulterar as mensagens na rede

2017/18

SD

Departamento de Engenharia Informátic

Política de segurança

- Um utilizador malicioso pode invocar operações que afetem o saldo de um outro utilizador de forma ilegítima
 - Autenticar as invocações feitas pelo cliente ao servidor Binas
 - Apenas autorizar pedidos que dizem respeito ao utilizador autenticado
 - Está fora do âmbito a comunicação entre o Binas e as estações
- Um atacante pode adulterar as mensagens na rede
 - A integridade das invocações pedido e resposta deve ser garantida
 - O pedido e a resposta podem seguir em claro, ou seja, não se exige que pedido/resposta sejam confidenciais

2017/1

S

I

Departamento de Engenharia Informátic

Mecanismos de segurança

- Autenticação de utilizadores
 - Cada utilizador tem uma conta e uma senha partilhada com o Kerberos
 - O Kerberos autentica os utilizadores e gera chaves de sessão
- Controlo de acessos
 - A autenticação é fresca
 - Confirmar que o email dos pedidos corresponde ao do utilizador autenticado
- Integridade dos pedidos e das respostas
 - Adicionar um MAC (Message Authentication Code) às mensagens SOAP
 - Usar a chave de sessão do Kerberos para o MAC

7/18

Valorização

- A terceira parte vale 6 valores em 20, da seguinte forma:
 - Qualidade da estrutura base (20%)
 - Autenticação de utilizadores (20%)
 - Controlo de acessos (20%)
 - Integridade de pedidos (20%)
 - Relatório e demonstração (20%)

Sistemas Distribuídos 201

9

Departamento de Engenharia Informática

Etapas de concretização

- 1. Preparar
- 2. Desenhar
- 3. Implementar
- 4. Demonstrar

2017/1

Etapas de concretização: Preparar

1. Preparar

- a) Criptografia em Java
 - Ver página dos laboratórios
- b) Protocolo Kerberos simplificado
 - Ver slides das teóricas
- c) Intercetores de mensagens SOAP
 - Ver página dos laboratórios sobre JAX-WS Handlers

2017/18

SD

Departamento de Engenharia Informátic

Etapas de concretização: Desenhar

2. Desenhar

- a) Para cada mecanismo de segurança, definir quem faz o quê
 - Autenticação com o Kerberos
 - Controlo de acessos
 - MAC
- Escrever proposta da solução no RELATÓRIO e validar com professor
 - Detalhes na secção 4.7 do enunciado, página 9

2017/1

Etapas de concretização: Implementar

3. Implementar

- a) Criar programa para testar a biblioteca e o servidor Kerberos
 - Classe de teste / classe executável main()
 - Parte "cliente": autentica-se e recebe chave de sessão e ticket; cria autenticador
 - Parte "servidor": abre e valida ticket, valida autenticador
- b) Criar handlers Kerberos (na biblioteca ws-handlers)
 - Cliente
 - Servidor
- c) Criar handlers de segurança (na biblioteca ws-handlers)
 - Autorização email do pedido corresponde ao utilizador autenticado?
 - MAC protege mensagens de saída, valida mensagens de chegada

/18

Departamento de Engenharia Informática

Etapas de concretização: **Demonstrar**

4. Demonstrar

Construir exemplos e fazer GUIÃO de DEMONSTRAÇÃO

- S1 funcionamento normal da segurança
- S2 resistência a um ataque

Detalhes na secção 4.8 do enunciado, página 9

2017/1

Calendário de aulas de laboratório

Mês	2a	3a	4a	5a	6a	2a	3a	4a	Laboratório
fev	19	20	21	22	23				Java, Maven & Eclipse
fev/mar	26	27	28	1	2	ĺ			Sockets
mar	5	6	7	8	9				Sun RPC (mE1)
mar	12	13	14	15	16				Java RMI (mE2)
mar	19	20	21	22	23				Web Services (mE3)
mar	F	F	F	F	F				Férias da Páscoa
abr	2	3	4	5	6				Web Services II: UDDI
abr	9	10	11	12	13				Apoio (P1)
abr	16	17	18	19	20				Web Services III: timeouts, one- way, asynchronous calls [atualizado]
abr/mai	23	24	F	26	27	30	F	2	Apoio (P2)
mai				3	4	7	8	9	Criptografia
mai			Î	10	11	14	15	16	Web Services IV: handlers
mai				17	18				Apoio (P3)
mai	21	22	23	24	25				Discussões
mai/jun	28	29	30	F	1				Discussoes

Devido aos feriados vamos ter **desdobramento** das semanas

e **horários** de dúvidas **extra**, junto às datas de entrega

2017/1

SD

Departamento de Engenharia Informática

Questões...

- 1. Preparar
- 2. Desenhar
- 3. Implementar
- 4. Demonstrar

2017/1

Hipótese A: cifrar antes dos stubs

- Ou seja:
 - Cifrar valor do(s) argumentos
 - Chamar função remota passando os argumentos cifrados
- O que se perde?
 - Stub deixa de ser capaz de tratar a heterogeneidade do parâmetro cifrado
 - Ou seja, perdemos uma grande vantagem dos sistemas de RPC!
 - Tratar a heterogeneidade automaticamente nas funções de adaptação stub
- Logo, a cifra tem de ser feita abaixo do stub...
 - Mas convém que seja dentro do mecanismo de RPC para garantir segurança de extremo-a-extremo (end-to-end)

Sistemas Distribuídos 2018

19

Departamento de Engenharia Informátic

Hipótese B: usar HTTPS como transporte

- Usar HTTPS como transporte, em vez de HTTP
- O que perco?
 - Se a mensagem SOAP tiver intermediários, estes conseguem acesso aos dados em claro
 - Todo o conteúdo da mensagem é cifrado
 - Mesmo as partes que não são confidenciais
- Logo, a cifra deve acontecer abaixo do stub mas acima do protocolo de transporte...

Sistemas Distribuídos 2018

Hipótese C: cifrar num Web Service handler

Abaixo do stub

e

• Acima do protocolo de transporte

Sistemas Distribuídos 2018

Texto cifrado em formato binário...

Como enviar texto cifrado em XML/SOAP?

Sistemas Distribuídos 2018

25

Departamento de Engenharia Informátic

Codificação de Base 64

- Representa dados binários em texto
- Usa um subconjunto de 64 caracteres do ASCII que são os caracteres mais "universais"
 - Caracteres que são iguais em praticamente todos os códigos:
 - A-Z, a-z, 0-9, +, /
- Caracter '=' usado no final para identificar quantidade de enchimento (padding) requerido
- Aumenta tamanho do conteúdo... Qual o sobrecusto (overhead)?
- Fundamental para sistemas baseados na comunicação em texto
 - Como os Web Services, Email, ...

Sistemas Distribuídos 2018

Exemplo de codificação em base 64

Text content		М							a								n							
ASCII		77 (0x4d)									97	(0	0x61)				110 (0x6e)							
Bit pattern	0	1	0	0	1	1	0	1	0	1	1	0	0	0	0	1	0	1	1	0	1	1	1	0
Index		19							22						Ę	5			46					
Base64-encoded		Т						w						F	-				u					

Octetos transformados em grupos de 6 bits $(2^6 = 64)$

Overhead = 4/3 = +33%

Sistemas Distribuídos 2018