MAT 2384: Numerical Methods Lecture Notes

Last Updated:

June 30, 2023

Contents

1	Iter	rative Methods to Solve The Equation $f(x) = 0$	2
	1.1	Fixed-Point Iteration	
		1.1.1 Steps to Solving Using Fixed-Point Iteration	4
		Newton's Method	
	1.3	The Secant Method	7
2	Interpolation		
	2.1	Generalities	Ć
	2.2	Lagrange Interpolation	Ć
	2.3	Newton's Divided Difference Interpolation Polynomial	13
3	Nu	merical Integration	15
		Midpoint Method	15

Chapter 1

Iterative Methods to Solve The Equation f(x) = 0

Given a continuous function f, the goal of this chapter is to estimate the solution of the equation f(x) = 0 in a certain interval I numerically.

Theorem 1.0.1 (Intermediate Value Theorem). Let $f:[a,b] \to \mathbb{R}$ be a continous function. Let $y \in \mathbb{R}$ be any value between f(a) and f(b). Then there exists $z \in [a,b]$ such that f(z) = y.

Bolzano's Theorem is a special case of the Intermediate Value Theorem, which states

Theorem 1.0.2 (Bolzano's Theorem). If a continuous function defined on an interval I is sometimes positive and sometimes negative, then it must be 0 at some point. So there exists $x_0 \in I$ such that $f(x_0) = 0$.

Proof. Without loss of generality, assume $f(a) \leq f(b)$. Let $y \in [f(a), f(b)]$. Set

$$S := \{x \in [a, b] : f(x) \le y_0\}$$

S is a subset of [a, b] so it is bounded, $a \in S$ since $f(a) \le y_0$. Therefore $S \ne \emptyset$. Thus by completeness, there exists $x_0 := \sup S \in [a, b]$. We want $f(x_0) = y_0$. Consider the cases where $f(x_0) = y_0$, $f(x_0) < y_0$, and $f(x_0) \ge y_0$.

- Case 1: $f(x_0) = y_0$ This case is trivial since this is the result we want.
- Case 2: $f(x_0) < y_0$ Set $\epsilon := y_0 f(x_0)$. Since f is continous at x_0 , $\exists \delta > 0$ such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

Since $f(x_0) < y_0 \le f(b)$, we can find $x > x_0$ such that $x \in [a, b]$ and $|x - x_0| < \delta$. Then $f(x) < f(x_0) + \epsilon = y_0$. So $x \in S$ by the definition of S, but $x > x_0$ which contradicts the fact that $x_0 = \sup S$.

• Case 3: $f(x_0) > y_0$ Set $\epsilon := f(x_0) - y_0$. Since f is continous at x_0 , $\exists \delta > 0$ such that if $x \in [a,b]$ and $|x-x_0| < \delta$, then $|f(x)-f(x_0)| < \epsilon$. So $f(x) > f(x_0) - \epsilon = y_0$ and $x_0 > a$. We can assume that $x - \delta > a$ since δ can be arbitrarly small, and we claim $x_0 - \delta$ is an upper bound for S. To prove this, if $x > x - \delta$, then either $|x - x_0| < \delta$, in which case $f(x) > f(x_0) - \epsilon = y_0$, or $x > x_0$ then $x \neq S$ since x_0 is an upper bound for S. Therefore, if $x > x_0 - \delta$, then $x \neq S$, thus proving the claim. This contradicts that x_0 is the supremum of S.

Example. Prove that the equation

$$2x^3 + 2x - 4 = 0$$

has a unique root in [0, 1].

Proof. Set $f(x) := 3x^2 + 2x - 4$, this function is continuous since it is a polynomial. We have f(0) = -4 < 0 and f(1) = 1 > 0, so by the intermediate value theorem, there exists $c \in [0,1]$ such that f(c) = 0. It follows that c is unique since the polynomial is injective by virtue of x^3 and x being injective.

1.1 Fixed-Point Iteration

Definition 1.1.1. We say that the value x = r is a fixed point for a function g(x) if g(r) = r.

Example. $g(x) = \frac{5-x^2}{4}$. r = 1 is a fixed-point for g since g(1) = 1.

Graphically, fixed-point of g(x) correspond to the intersection of the graph of g(x) and the line y = x. Given an equation f(x) = 0, we can write it under the form

$$g(x) = x$$

by isolating one x in the equation.

Example. $3x^3 + 2x - 5 = 0$. We can write this as

$$x = \frac{5 - 3x^3}{2}$$

Set $g(x) := \frac{5-3x^3}{2}$. Then g(x) = x. Finding a root for f(x) = 0 is equivalent to finding a fixed-point for g(x).

1.1.1 Steps to Solving Using Fixed-Point Iteration

Start with a first estimation x_0 (will be given) of the root, and form the following sequence (known as the *iteration sequence*)

$$x_0, x_1 = g(x_0), x_2 = g(x_1), \dots, x_n = g(x_{n-1})$$

If this sequence converges to a value a, then we can prove that a is a fixed-point for g, hence a root for f(x) = 0.

Theorem 1.1.1. Assume that the function g has a fixed-point s on an interval I, if

- (i) g(x) is continuous on I
- (ii) g'(x) is continuous on I
- (iii) |g'(x)| < 1 for all $x \in I$

Then the iteration sequence converges.

The steps for solving are as follows

- 1. Start with f(x) = 0
- 2. Rewrite f(x) = 0 under the form x = g(x)
- 3. Verify that the sequence $x_0, x_1 = g(x_0), x_2 = g(x_1), \dots, x_n = g(x_{n-1})$ converges using the above theorem (or otherwise)
- 4. Compute terms of the above sequence and stop when you reach the required accuracy

Example. Consider the equation

$$x^3 + 12x - 3 = 0$$

- 1. Prove that the equation has a unique root in [-1.9, 1.9]
- 2. Use the Fixed-Point iteration method to estimate the value of the root to 6 decimal points starting with $x_0=1.8$

Solution: Using the steps, we have

- 1. Set $f(x) := x^3 + 12x 3$. Since f(x) is a polynomial, it is continuous, so by the intermediate value theorem, we have there exists $c \in [-1.9, 1.9]$ such that f(c) = 0. f(x) is injective since x^3 and x are injective, so c is unique.
- 2. Set $g(x) := \frac{3-x^3}{12}$.

3. Checking the conditions of the theorem, g(x) is continuous since it is a polynomial, $g'(x) = -\frac{x^2}{4}$ is continuous since it is a polynomial. Then

$$|g'(x)| = \frac{x^2}{4} \le \frac{1.9^2}{4} = 0.902 < 1$$

Therefore, the sequence converges.

4. We have to calculate the terms of the iteration sequence,

$$x_0 = 1.8$$

$$x_1 = g(x_0) = \frac{3 - 1.8^2}{12} = -0.236000$$

$$x_2 = g(x_1) = \frac{3 - (0.236)^2}{12} = 0.251095$$

$$x_3 = g(x_2) = \frac{3 - (0.251095)^2}{12} = 0.24861$$

$$x_4 = g(x_3) = \frac{3 - (0.24861)^2}{12} = 0.248718$$

$$x_5 = g(x_4) = \frac{3 - (0.248718)^2}{12} = 0.248718$$

We stop when 2 consecutive terms agree on the first 6 decimal points. So the root is 0.248718 correct to 6 decimal points.

1.2 Newton's Method

Newton's method is a technique for solving equations of the form f(x) = 0 by successive approximation. The idea is to pick an initial guess x_0 such that $f(x_0)$ is reasonably close to 0. We then find the equation of the line tangent to y = f(x) at $x = x_0$, and determine where this tangent line intersects the x axis at the new point x_1 . So,

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

We then find the equation of the line tangent to y = f(x) at $x = x_1$, and repeat this process, so we have

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Example. Using Newton's method, estimate the value of the root of the equation

$$x^3 + 12x - 3 = 0$$

on [0,2]. Start by showing that the equation has a unique root on [0,2], then approximate (to 6 decimal places) with the starting point $x_0 = 1.8$.

Solution. We have $f(x) = x^3 + 12x - 3$, and

$$f(0) = -3$$
 and $f(2) = 29$

Therefore by the intermediate value theorem, there exists $c \in [0, 2]$ such that f(c) = 0. f(x) is injective since $f'(x) = 2x^2 + 12$ is strictly increasing on [0, 2], so c is unique. Now using Newton's method,

$$x_0 = 1.8$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.675138$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.270469$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.248748$$

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = 0.248718$$

$$x_5 = x_4 - \frac{f(x_4)}{f'(x_4)} = 0.248718$$

Therefore, the our root is 0.248718 correct to 6 decimal places.

Example. Consider the equation

$$x^3 - 2x - 5 = 0$$

- (i) Prove that the equation has a unique root in [2, 3]
- (ii) Starting with $x_0 = 3$, estimate the root of the equation to 6 decimal places using Newton's method.

Solution.

(i) We have f(2) = -1 and f(3) = 16, therefore by the intermediate value theorem there exists $c \in [2,3]$ such that f(c) = 0. $f'(x) = 3x^2 - 2$ is injective since if $f(x_1) = f(x_2)$, then we have

$$f(x_1) = f(x_2)$$

$$\implies x_1^3 - 2x_1 - 5 = x_2^3 - 2x_2 - 5$$

$$\implies x_1^3 - 2x_1 = x_2^3 - 2x_2$$

Then x^3 and x are injective functions, so we must have that $x_1 = x_2$ and therefore the root is unique. Alternatively, we can look at the derivative on its interval.

$$2 \le x \le 3$$
$$4 \le x^{2} \le 9$$
$$12 \le 3x^{2} \le 27$$
$$10 \le 3x^{2} - 2 \le 25$$

Therefore the derivative is positive so the function is strictly increasing, and thus injective.

(ii) Starting with $x_0 = 3$, using Newton's method we get

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 3 - \frac{3^3 - 2(3) - 5}{3(3)^2 - 2} = 2.600000$$

$$x_2 = 2.6 - \frac{f(2.6)}{f'(2.6)} = 2.127197$$

$$x_3 x_2 - \frac{f(2.127197)}{f'(2.127197)} = 2.0945136$$

$$x_4 = x_3 - \frac{f(2.094552)}{f'(2.094552)} = 2.094552$$

$$x_5 = x_4 - \frac{f(x_4)}{f'(x_4)} = 2.094551$$

$$x_6 = x_5 - \frac{f(x_5)}{f'(x_5)} = 2.094551$$

Therefore, we have $x \approx 2.094551$ correct to 6 decimal places.

Example. Use Newton's Method with $x_0 = 2$ to estimate the value of $\sqrt[3]{7.9}$ correct to 6 decimal places.

Solution. We can set $x := \sqrt[3]{7.9}$, so we have $x^3 - 7.9 = 0$. Then this can be solved the same as the previous examples.

1.3 The Secant Method

The tangent line to the curve of y = f(x) with the point of tangency (x0, f(x0)) was used in Newton's approach. The graph of the tangent line about $x = \alpha$ is essentially the same as the graph of y = f(x) when $x_0 \approx \alpha$. The root of the tangent line was used to approximate α . Consider employing an approximating

line based on interpolation. Given 2 root estimations x_0 and x_1 , then we have a linear function

$$q(x) = a_0 + a_1 x$$

with $q(x_0) = f(x_0)$, and $q(x_1) = f(x_1)$. This line is all known as the secant line, with the formula

$$q(x) = \frac{(x_1 - x)f(x_0) + (x - x_0)f(x_1)}{x_1 - x_0}$$

The linear equation q(x) = 0 with the root denoted by x_2 is given by

$$x_2 = x_1 - f(x_1) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

This equation can now be employed for every term in the sequence,

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Example. Use the secant method with $x_0 = 2$ and $x_1 = 1.9$ to estimate the root of the equation to 6 decimal places

$$2\sin x - x = 0$$

Solution. We have $f(x) = 2\sin x - x$, we can start calculating the terms of the sequnce

$$x_2 = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)} = 1.9 - (2\sin(1.9) - 1.9) \frac{1.9 - 2}{(2\sin(1.9) - 1.9) - (2\sin(2) - 2)} = 1.895747$$

$$x_3 = x_2 - f(x_2) \frac{x_2 - x_1}{f(x_2) - f(x_1)} = 1.895747$$

Therefore the root is $x \approx 1.895747$ correct to 6 decimal places.

Chapter 2

Interpolation

2.1 Generalities

Given a set of n+1 data points $(x_0, f_0), \ldots, (x_n, f_n)$ where

$$f_i = f(x_i)$$

for some unknown function f, the goal is to find a *polynomial* function of degree n, say $p_n(x)$, where its graph goes through all the datapoints. We then can use the approximation $f(x) \approx p_n(x)$.

Theorem 2.1.1. Given a collection of n+1 data points $(x_0, f_0), \ldots, (x_n, f_n)$ in the cartesian plane such that

$$x_0 < x_1 < x_2 < \dots < x_n$$

Then there exists a unique polynomial of degree $\leq n$ such that

$$p_n(x_i) = f_i \ \forall i \in \{0, 1, \dots, n\}$$

If we use the approximation $f(x) \approx p_n(x)$, then the absolute error $(|f(x) - p_n(x)|)$ is given by the following theorem.

$$|f(x) - p_n(x)| = |(x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(t)}{(n+1)!}$$

2.2 Lagrange Interpolation

Recall that our objective is approximate the function f(x) given n+1 datapoints of the form $(x_0, f_0), (x_1, f_1), \ldots, (x_n, f_n)$. Lagrange proved that the following polynomial goes through all of these points

$$p_n(x) = L_0(x)f_0 + L_1(x)f_1 + \cdots + L_n(x)f_n$$

Where

$$L_0 = \frac{(x - x_1)(x - x_2) \cdots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_n)}$$

$$L_1 = \frac{(x - x_0)(x - x_2) \cdots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \cdots (x_1 - x_n)}$$

$$L_2 = \frac{(x - x_0)(x - x_1)(x - x_3) \cdots (x - x_n)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_n)}$$

Example. Consider the following 3 data points

where $f_i = f(x_i)$ for an unknown function f.

- (i) Find the Lagrange interpolation polynomial $p_2(x)$.
- (ii) Interpolate f(1).
- (iii) If $2 \le |f'''(t)| \le 3$ for all $t \in [0.7, 1.6]$, find an upper bound for the error in the approximation $f(1) \approx p_2(1)$.

Solution.

(i) We know that our polynomial is of the form

$$p_2(x) = L_0(x)f_0 + L_1(x)f_1 + L_2(x)f_2$$

Where f_0, f_1, f_2 are given. We can calculate the L_i 's as follows

$$L_0 = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$= \frac{(x - 1.3)(x - 1.6)}{(0.7 - 1.3)(0.7 - 1.6)}$$

$$= 1.519x^2 - 5.3704x + 3.8519$$

$$L_1 = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$= \frac{(x - 0.7)(x - 1.6)}{(1.3 - 0.7)(1.3 - 1.6)}$$

$$= -5.6667x^2 + 12.77778x - 6.22222$$

$$L_1 = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

$$= \frac{(x - 0.7)(x - 1.3)}{(1.6 - 0.7)(1.6 - 1.3)}$$

$$= 3.7037x^2 - 7.4074x + 3.3704$$

So our polynomial is

$$p_2(x) = (1.519x^2 - 5.3704x + 3.8519)(2.2) + (-5.6667x^2 + 12.77778x - 6.22222)(3.1) + (3.7037x^2 - 7.4074x + 3.3704)(4)$$

= 1.66667x - 1.83333x + 2.66667

We can check that this polynomial does go through all our points.

(ii) We can interpolate f(1) by plugging in x = 1 into our polynomial, so we have

$$f(1) \approx p_2(x) = 2.50000$$

(iii) We can use the error formula to find an upper bound for the error,

$$|f(1) - p_2(1)| = \left| (1 - 0.7)(1 - 0.13)(1 - 1.6) \frac{f'''(t)}{3!} \right| = 0.009|f'''(t)|$$

$$0.0009(2) = 0.0018 \le |f(1) - p_2(1)| \le 0.009(3) = 0.027$$

Therefore our lower bound is 0.0018 and our upper bound is 0.027.

Example. Consider the 4 points (x_i, f_i) ,

$$(0,1), (1,0.765) (2,0.224), (3,-0.260)$$

- (i) Find the Interpolation polynomial $p_3(x)$ using your Lagrange. Round your answer to 3 decimal places.
- (ii) Interpolate a value for f(2.5)
- (iii) GIven that $0.75 \le |f^{(4)}(t)| \le 1.17$ for any $t \in [0,3]$, give an upper and a lower bound for the error in the approximation $f(2.5) \approx p_3(2.5)$.

Solution.

(i) We start with the Lagrange polynomial

$$p_3(x) = L_0(x)f_0 + L_1(x)f_1 + L_2(x)f_2 + L_3(x)f_3$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$$

$$= \frac{(x - 1)(x - 2)(x - 3)}{(0 - 1)(0 - 2)(0 - 3)}$$

$$= -0.167x^3 + x^2 - 1.833x + 1$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)}$$

$$= \frac{(x - 0)(x - 2)(x - 3)}{(1 - 0)(1 - 2)(1 - 3)}$$

$$= 0.5x^3 - 2.5x^2 + 3x$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)}$$

$$= \frac{(x - 0)(x - 1)(x - 3)}{(2 - 0)(2 - 1)(2 - 3)}$$

$$= -0.5x^3 + 2x^2 - 1.5x$$

$$L_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

$$= \frac{(x - 0)(x - 1)(x - 2)}{(3 - 0)(3 - 1)(3 - 2)}$$

$$= 0.167x^3 - 0.5x^2 + 0.33x$$

Then.

$$p_3(x) = (-0.167x^3 + x^2 - 1.833x + 1)(1) + (0.5x^3 - 2.5x^2 + 3x)(0.765)$$

$$+ (-0.5x^3 + 2x^2 - 1.5x)(0.224)$$

$$+ (0.167x^3 - 0.5x^2 + 0.33x)(-0.260)$$

$$= 0.061x^3 - 0.335x^2 + 0.040x + 1$$

(ii) Then we can calculate $f(2.5) \approx p_3(2.5)$

$$p_3(2.5) = 0.061(2.5)^3 - 0.335(2.5)^2 + 0.040(2.5) + 1 = -0.048$$

(iii) Then the error is given by

$$|f(2.5) - p_3(2.5)| = \left| (2.5 - 0)(2.5 - 1)(2.5 - 2)(2.5 - 3) \frac{f^{(4)}(t)}{4!} \right|$$
$$= 0.039|f^{(4)}(t)|$$

Then using $0.75 \le |f^{(4)}(t)| \le 1.17$, we have

$$0.039(0.75) \le |f(2.5) - p_3(2.5)| \le 0.039(1.17)$$

2.3 Newton's Divided Difference Interpolation Polynomial

Similar to Lagrange Interpolation, we start with n datapoints $(x_0, f_0), \ldots, (x_n, f_n)$ where $f_i = f(x_i)$ for some unknown function f.

Definition 2.3.1. Given a node x_i ,

1. The first divided difference at x_i is defined as

$$f(x_i, x_{i+1}) = \frac{f_{i+1} - f_i}{x_{i+1} - x_i}$$

2. The second divided difference at x_i is

$$f(x_i, x_{i+1}, x_{i+2}) = \frac{f(x_{i+1}, x_{i+2}) - f(x_1, x_{i+1})}{x_{i+2} - x_i}$$

3. In general, the kth divided difference at x_i is

$$f(x_i, x_{i+1}, \dots x_{i+k}) = \frac{f(x_{i+1}, \dots, x_{i+k}) - f(x_i, \dots x_{i+k-1})}{x_{i+k} - x_i}$$

Then, we can define Newton's Interpolation polynomial as

$$p_n(x) = f_0 + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \cdots + f(x_0, \dots, x_n)(x - x_0)(x - x_1) \cdots (x - x_n)$$

Example. Given 3 datapoints,

Calculate the interpolation polynomial using Newton's Divided Difference method and approximate f(1.8).

Solution. We start by calculating all the first divided differences,

$$f(x_0, x_1) = \frac{f_1 - f_0}{x_1 - x_0} = \frac{5.9 - 4.5}{1.7 - 1.2} = 2.8$$

$$f(x_1, x_2) = \frac{f_2 - f_1}{x_2 - x_1} = \frac{7.4 - 5.9}{2.1 - 1.7} = 3.75$$

Now we can calculate all the second divided differences, in this case there is only one

$$f(x_0, x_1, x_2) = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0} = \frac{3.75 - 2.8}{2.1 - 1.2} = 1.05556$$

So the Newton's Interpolation polynomial is

$$p_2(x) = f_0 + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1)$$

$$= 4.5 + 2.8(x - 1.2) + 1.05556(x - 1.2)(x - 1.7)$$

$$= 1.05556x^2 - 0.26111x + 3.29333$$

Then we can use this polynomial to approximate f(1.8),

$$f(1.8) \approx p_2(1.8) = 6.24333$$

Chapter 3

Numerical Integration

The fundemental theorem of calculus states that if f is continuous on [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

where F'(x) = f(x). In practice, it is often difficult to find an antiderivative of f(x), so the goal of this chapter is to explore numerical methods to estimate the value of the integral.

3.1 Midpoint Method

The idea is to divide the interval [a,b] into n subintervals of equal length, and approximate the function f(x) with the constant function $y = f(x_i^*)$ on $[x_i, x_{i+1}]$ where

$$x_i^* = \frac{x_i + x_{i+1}}{2}$$

is the mid point of the sub interval. The length of each subinterval is

$$h = \frac{b - a}{n}$$

So we approximate the integral with

$$\int_{a}^{b} f(x)dx \approx h[f(x_{1}^{*}) + f(x_{2}^{*}) + \dots + f(x_{n}^{*})]$$

The error in the midpoint rule satisfies the following inequality

$$|E_m| \le \frac{M(b-a)^3}{24n^2}$$

where M is an upper bound for |f''(t)| for $t \in [a, b]$.