Complessità del calcolo

Caso pessimo

$$T_M(n) = \max \{T_M(x), |x| = n\}$$

 $S_M(n) = \max \{T_M(x), |x| = n\}$

Notazioni

- O-grande: limite asintotico superiore. Data g(n), $O(g(n)) = \{f(n) \mid \exists c, n_0 \ (c, n_0 > 0 : \forall n \geq n_0 0 \leq f(n) \leq cg(n))\}$
- Ω -grande: limite asintotico inferiore. Data $g(n), \Omega(g(n)) = \{f(n) \mid \exists c, n_0 \ (c, n_0 > 0 : \forall n \geq n_0 0 \leq c g(n) \leq f(n))\}$
- Θ -grande: limite asintotico sia superiore sia inferiore. Data g(n), $\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2, n_0 \ (c_1, c_2, n_0 > 0 : \forall n \geq n_0 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n))\}$

Teoremi di accelererazione lineare

- Se L è accettato da una MT M a k nastri con complessità $S_M(n)$, per ogni $c>0 (c\in R)$ si può costruire una MT M' a k nastri con complessità $S_{M'}(n)< cS_M(n)$
- Se L è accettato da una MT M a k nastri con complessità $S_M(n)$, si può costruire una MT M' a 1 nastro (non a nastro singolo) con complessità $S_{M'}(n) = S_M(n)$
- Se L è accettato da una MT M a k nastri con complessità $S_M(n)$, per ogni $c>0 (c\in R)$ si può costruire una MT M' a 1 nastro con complessità $S_{M'}(n)< cS_M(n)$
- Se L è accettato da una MT M a k nastri con complessità $T_M(n)$, per ogni $c>0 (c\in R)$ si può costruire una MT M' (a k+1 nastri) con complessità $T_{M'}(n)=\max\{n+1,cT_M(n)\}$

Conseguenze pratiche

- Lo schema di dimostrazione è valido per qualsiasi tipo di modello di calcolo, quindi anche per calcolatori reali (es.: aumentare il parallelismo fisico (16bit → 32bit → ...)).
- Aumentando la potenza di calcolo in termini di risorse disponibili si può aumentare la velocità di esecuzione, ma il miglioramento è al più lineare.
- Miglioramenti di grandezza superiore possono essere ottenuti solo cambiando algoritmo e non in modo automatico.

Macchina RAM

Glossario

Accumulatore: è la prima cella del modello della memoria, indicata con M[0].

Immediato: è un numero intero.

ADD: Sono le operazioni elementari di somma (ADD), sottrazione (SUB), moltiplicazione (MULT), divisione (DIV).

Costi Logaritmici

Il costo della copia di un numero n da una cella all'altra è tante micro-operazioni elementari quanti sono i bit necessari a codificare n, cioè $\log(n)$.

Il costo dell'accesso ad una cella di posizione n-esima è portuno polinomio.

l'apertura di $\log(n)$ gate logici ad altrettanti banchi di memoria.

In forma sintetica:

$$l(i) = if i = 0 then 1 else \lfloor \log_2 |i| \rfloor + 1$$

Teorema di correlazione polinomiale

Sotto "ragionevoli" ipotesi di criteri di costo (il criterio di costo costante per la RAM non è ragionevole) se un problema è risolvibile mediante un modello di calcolo M_1 con complessità $C_1(n)$, allora è risolvibile da qualsiasi altro modello di calcolo M_2 con complessità $C_2(n) \leq P_2(C_1(n))$, essendo P_2 un opportuno polinomio.

Comando		Operazione	Complessità	Descrizione
LOAD	Х	M[O] = M[X]	l(x)	Carica in M[0] il contenuto della
				cella X
LOAD=	Х		l(x) + l(M[x])	Carica in M[0] l'immediato X
LOAD*	Х	M[O] = M[M[X]]	l(x) + l(M[x]) + l(M[M[x]])	Carica in M[0] dall'indirizzo
				M[X]
STORE	Х	M[X] = M[O]	l(x) + l(M[0])	Carica in M[X] il contenuto di
				M[0]
STORE*	Х	M[X] = M[M[O]]	l(x) + l(M[x]) + l(M[0])	Carica in M[X] dall'indirizzo
			1/35[0]) . 1/) . 1/35[])	M[0]
ADD	Х	M[O] = M[O] + M[X]	l(M[0]) + l(x) + l(M[x])	Carica in M[0] il risultato
ADD	v	MEOJ MEOJ V	1/1/[0]) + 1/)	dell'operazione
ADD=	Х	M[O] = M[O] + X	l(M[0]) + l(x)	
ADD*	Х	M[O] = M[O] + M[M[X]]	l(M[0]) + l(x) + l(M[x]) + l(M[M[x]])	Calva in Vilvalara latta in innut
READ	Х	M[X] = read()	$l(input \ value) + l(x)$	Salva in X il valore letto in input
READ*	X	write (MIVI)	$\begin{array}{c} l(\textit{input value}) + l(x) + l(M[x]) \\ l(x) + l(M[x]) \end{array}$	Cariva in autaut il valora di V
WRITE WRITE=	X X	write(M[X]) write(X)	$ \begin{vmatrix} l(x) + l(M[x]) \\ l(x) \end{vmatrix} $	Scrive in output il valore di X Scrive in output l'immediato X
WRITE-	X	write(M[M[X]])	$ \begin{vmatrix} l(x) \\ l(x) + l(M[x]) + l(M[M[x]]) \end{vmatrix} $	Scrive in output l'indirizzo di X
waiie* JUMP	label	PC= b(label)	$ \begin{vmatrix} \iota(x) + \iota(M[x]) + \iota(M[M[x]]) \\ 1 \end{vmatrix} $	Salta alla label indicata
JZ	label	if M[0] == 0	$\begin{vmatrix} 1 \\ l(M[0]) \end{vmatrix}$	Salta alla label indicata se
34	Tabel	11 11[0] 0		l'accumulatore è 0.
JGZ	label	if M[0] > 0	l(M[0])	Salta alla label indicata se
0 4 2	14001	11[0] , 0		l'accumulatore è maggiore di 0.
HALT			1	Interrompe l'esecuzione del
				programma.
		I	I	- - - - - - - - -

Algoritmi

Si adotta il criterio di **costo costante** (manipoliamo numeri che non richiedono quantità di memoria molto più grandi della dimensione dell'input).

Ogni istruzione viene eseguita in un tempo costante c_i .

Complessità di un algoritmo divide et impera

- Si divide il problem in b sottoproblemi, ciascuno con dimensione $\frac{1}{b}$.
- Se il problema ha dimensione n piccola a sufficienza (n < c, c costante caratteristica del problema), esso può essere risolto in tempo costante ($\Theta(1)$).
- D(n) è il costo di dividere il problema, e C(n) è il costo di ricombinare i sottoproblemi. T(n) è il costo per risolvere il problema totale.

Equazione di Ricorrenza
$$T(n) = \begin{cases} \Theta(1) & \text{se } n < c \\ D(n) + aT(\frac{n}{b}) + C(n) & \text{altrimenti} \end{cases}$$

Insertion Sort

```
INSERTION - SORT(A)
    for j = 2 to A.length
        key = A[j]
    i = j - 1
    while i > 0 and A[i] > key
        A[i+1] = A[i]
        i = i - 1
    A[i+1] = key
```

Merge Sort

```
MERGE-SORT(A, p, r)
    if p < r
         q = \lfloor (p+r)/2 \rfloor
         MERGE-SORT(A, p, q)
         MERGE-SORT(A, q+1, r)
         MERGE(A, p, q, r)
MERGE (A, p, q, r)
n_1 = q - p + 1
n_2 = r - q
CreaArray(L[1...n_1+1] e R[1...n_2+1])
for i = 1 to n_1
    L[i] = A[p+i-1]
for j = 1 to n_2
    R[j] = A[q+j]
L[n_1+1] = \infty
R[n_2+1] = \infty
i = 1
j = 2
for k = p to r
    if L[i] <= R[j]
         A[k] = L[i]
         i = i+1
         A[k] = R[j]
         j = j+1
```

Heapsort

```
PARENT(i)
    return |i/2|
LEFT(i)
    return 2*i
RIGHT(i)
    return 2*i+1
MAX-HEAPIFY(A, i)
    1 = LEFT(i)
    r = RIGHT(i)
    if 1 <= A.heapsize and A[1] > A[i]
        max = 1
    else
        max = i
    if r <= A.heapsize and A[r] > A[max]
        max = r
    if max != i
         \texttt{swap A[i]} \leftrightarrow \texttt{A[max]}
        MAX-HEAPIFY(A, max)
BUILD-MAX-HEAP(A)
    A.heapsize = A.length
    for i = A.length/2 to 1
```

MAX-HEAPIFY(A, i)

```
HEAPSORT(A)
BUILD-MAX-HEAP(A)
for i = A.length to 2
    swap A[1] \( \to A[i] \)
A.heapsize = A.heapsize - 1
MAX-HEAPIFY(A, 1)
```

Quicksort

```
QUICKSORT(A, p, r)

if p < r

q = PARTITION(A, p, r)

QUICKSORT(A, p, q-1)

QUICKSORT(A, q+1, r)

PARTITION(A, p, r)

x = A[r]

i = p-1

for j = p to r-1

if A[j] <= X

i = i+1

swap A[i] ↔ A[j]

swap A[i+1] ↔ A[r]

return i+1
```

Counting Sort

```
COUNTING-SORT(A, B, k)
  for i = 0 to k
        C[i] = 0
  for j = 1 to A.length
        C[A[j]] = C[A[j]] + 1
  for i = 1 to k
        C[i] = C[i] + C[i-1]
  for j = A.length to 1
        B[C[A[j]]] = A[j]
        C[A[j]] = C[A[j]] - 1
```

Risoluzione di ricorrenze

- · Metodo della sostituzione
 - formulare un'ipotesi di soluzione
 - sostituire la soluzione nella ricorrenza, e dimostrazione (per induzione) che è in effetti una soluzione.
- Teorema dell'esperto (Master Theorem)
 - Data la ricorrenza $T(n)=aT(\frac{n}{b})+f(n)$, in cui $a\geq 1,\,b>1,\,\left\lfloor\frac{n}{b}\right\rfloor$ o $\left\lceil\frac{n}{b}\right\rceil$.
 - 1. se $f(n) = O\left(n^{\log_b a \varepsilon}\right)$ per qualche $\varepsilon > 0$, allora $T(n) = \Theta\left(n^{\log_b a}\right)$
 - 2. se $f(n) = \Theta\left(n^{\log_b a}\right)$, allora $T(n) = \Theta\left(n^{\log_b a}\log(n)\right)$
 - 3. se $f(n)=\Omega\left(n^{\log_b a+\varepsilon}\right)$ per qualche $\varepsilon>0$, e $af\left(\frac{n}{b}\right)\leq cf(n)$ per qualche c<1 e per tutti gli n grandi a sufficienza, allora $T(n)=\Theta(f(n))$
 - Se $f(n) = \Theta(n^k)$, con k una qualche costante:
 - 1. se $k < \log_b a \to T(n) = \Theta\left(n^{\log_b a}\right)$
 - 2. se $k = \log_b a \to T(n) = \Theta\left(n^k \log(n)\right)$
 - 3. se $k > \log_b a \to T(n) = \Theta\left(n^k\right)$