Elementi Di Teoria Delle Rappresentazioni

F. Ghiró

19 luglio 2016

Indice

1 Notazioni

- V spazio vettoriale, #V = dim(V), V^{\vee} il suo duale
- G gruppo, H < G sottogruppo, $N \triangleleft G$ sottogruppo normale
- X insieme, S(X) gruppo delle bigezioni di X in sè
- $Y \hookrightarrow X$: Y immerso in X
- $\varphi:G\curvearrowright X$ azione di G su X tramite φ (aka $\varphi:G\to S(X)$ omomorfismo)
- $\delta_{i,j}$ indica la delta di Kronecker. <u>Achtung!</u> Nel seguito i e j non saranno necessariamente indici ma qualsiasi oggetti (rappresentazioni, funzioni etc...) il significato sará quello "classico": 0 se oggetto diverso da oggetto 1, 1 se sono isomorfi/uguali

2 Algebra Lineare e Multilineare

Costruzioni Universali

Blanket Hypothesis: D'ora in avanti K indicherá un generico campo, V un K-spazio vettoriale.

2.1 Somma diretta

TODO Prossimamente

Def: Sia $W \subseteq V$ un ssv. Allora $U \subseteq V$ si dice **supplementare** se $V = W \oplus U$ (**da sistemare per bene:** la somma diretta non vive in V...).

2.2 Spazio quoziente

Def: Sia $W \subseteq V$ un sottospazio vettoriale di V. Un **quoziente** di V su W é una coppia $(V/W, \pi)$, con V/W K-spazio vettoriale e $\pi: V \to V/W$ lineare tale che:

- π é suriettiva;
- Se U é un qualsiasi K-spazio vettoriale e $\psi:V\to U$ lineare con $W\subseteq \mathcal{K}\mathrm{er}(\psi),\;\exists!\;\varphi:V/W\to U$ che fa commutare il diagramma:

Oss: $W \subseteq \mathcal{K}er(\pi)$.

Thm: Sia $W \subseteq V$ un s.s.v. Allora $\exists !$ (a meno di isomorfismi) lo spazio quoziente.

Dim:

 \exists

Poiché W é un sottogruppo di un gruppo abeliano V, é possibile costruire il gruppo quoziente Q = V/W. Basta ora definire una moltiplicazione per scalari $\circ: K \times Q \to V/W$ che renda lineare la proiezione al quoziente. $\circ: (\lambda, [v]) = [\lambda v]$, le verifiche (buona definizione, assiomi di spazio vettoriale, linearit di π etc...) sono banali. Lievemente piú delicata la verifica

della proprietá universale. Infatti sia U un K-spazio e $f: V \to U$ una mappa lineare con $W \subseteq \mathcal{K}\mathrm{er}(f)$, allora $\exists ! \varphi: Q \to U$ omomorfismo di gruppi. Bisogna ora mostrare che φ é anche omogenea; $\forall \lambda \in K$ e $\forall [v] \in Q$ $\varphi([\lambda v]) = f(\lambda v) = \lambda f(v) = \lambda \varphi([v]) \Rightarrow$ il quoziente esiste nella categoria Vec_K (per chi é abbastanza uomo da conoscere le categorie).

!

Siano $(V/W, \pi_1)$ e (Q, π_2) due quozienti di V su W. Per proprietá universale di Q la mappa π_1 si fattorizza al quoziente in $\phi: Q \to V/W$, analogamente π_2 si fattorizza tramite π_1 in $\psi: V/W \to Q$. Da cui il diagramma commutativo:

In particolare, $\psi \circ \phi$ fa commutare il triangolo esterno; ma anche l'identitá $\mathbb{1}_Q$ lo fa $\Rightarrow \psi \circ \phi \equiv \mathbb{1}_Q$. Scambiando Q e V/W nel diagramma, si ottiene che $\phi \circ \psi \equiv \mathbb{1}_{V/W} \Rightarrow \phi \equiv \psi^{-1}$ e $V/W \simeq Q$.

<u>Piccola idea di dimostrazione:</u> per mostrare che due spazi sono uguali, costruisco due mappe (una per direzione) e mostro che la composizione é l'identitá (passando per la proprietá universale).

Oss: Questo dimostra anche che vale $W = \mathcal{K}er(\pi)$.

Thm: $W, W' \subseteq V$ ssv,con $i_W : W' \hookrightarrow V$ l'inclusione e $\pi : V \to V/W$ la proiezione al quoziente. Allora

 $V = W \oplus W' \Leftrightarrow W' \simeq V/W$ tramite la mappa $\pi \circ i_{W'}$

2.3 Basi e Spazi Vettoriali Liberi

Blanket Hypothesis: I é un generico insieme di indici.

Def: $e: I \to V$ si dice **base** per V se, data una qualsiasi funzione $f: I \to W$ (W un K-spazio vettoriale), $\exists ! \varphi: V \to W$ lineare che chiuda diagramma:

Def: Una funzione $a:I\to K$ si dice **a supporto finito** se l'insieme $\{i\in I|\ a_i\neq 0\}$ é finito.

Thm: Sia $e: I \to V$. Allora $e \notin \text{base} \Leftrightarrow \forall v \in V \exists ! \ a: I \to K \text{ a supporto}$ finito tale che $v = \sum_{i \in I} a_i e_i$

Dim:

 \leftarrow

Sia W un K-spazio e $f: I \to W$ una funzione. Definisco $\varphi: V \to W$, $\varphi: x = \sum_{i \in I} a_i e_i \mapsto \sum_{i \in I} a_i f(i)$. Questa é ben definita, lineare e fa commutare il diagramma (tutte facili verifiche).

 \Rightarrow

Mostriamo prima l'esistenza di tale a e poi l'unicitá.

П

Sia $W = \{v \in V | \exists a : I \to K \text{ a supporto finito tale che } v = \sum_i a_i e_i \};$ questo é un sottospazio di V e dunque é possibile considerare il quoziente Q = V/W, sia inoltre π la proiezione. La tesi é allora equivalente a mostrare che $Q = \{0\}$; si consideri ora il seguente diagramma:

Poiché $\forall i \in I \ \pi(e_i) = 0$ si ha che π lo chiude. Tuttavia anche la mappa nulla $\mathbb{O}: V \to Q$ chiude il diagramma, per unicitá si ha che $\pi \equiv \mathbb{O}$. <u>Piccola idea di dimostrazione:</u> per mostrare che un sottospazio é in realtá tutto, quoziento e mostro che viene banale.

!

Basta mostrare che $\sum_{i \in I} a_i e_i = 0 \Rightarrow \forall i \in I \ a_i = 0.$

P.A. $\exists j \in I \text{ t.c. } a_j \neq 0$. Sia $f_j : I \to K$, $f_j : i \mapsto \delta_{i,j}$. Per proprietá universale di base $\exists ! \varphi : V \to K$ che fa commutare il diagramma:

Si ha quindi che $\varphi(e_i) = \delta_{i,j}$, tuttavia $0 = \varphi(0) = \varphi(\sum_{i \in I} a_i e_i) = a_j$

Diamo ora un'altra dimostrazione di questo fatto utilizzando peró un approccio diverso, molto simile a quello usato per mostrare l'unicitá del quoziente.

Dim: Sia W come sopra. Allora $i:W\hookrightarrow V$ immersione $(W\subseteq V)$ ed $\exists !\Phi:V\to W$ che chiude il primo triangolo:

Si ha che $i \circ \Phi$ fa commutare il triangolo esterno. Ma anche l'identitá $\mathbbm{1}_V$ lo fa $\Rightarrow i \circ \Phi \equiv \mathbbm{1}_V \Rightarrow i$ suriettiva, cioé W = V.

Def: Sia I insieme, V K-spazio, si dice K-spazio vettoriale libero su I se $\exists e: I \to V$ base.

Thm: Ogni insieme ammette un K-spazio libero.

Dim: L'insieme $V = K^{(I)} = \{f : I \to K | f \text{ \'e a supporto finito}\}$ ha una naturale struttura di K-spazio vettoriale $(f + g : i \mapsto f(i) + g(i) \in \lambda f : i \mapsto \lambda f(i))$. Inoltre $e : I \to V$ $e : i \mapsto (j \mapsto \delta_{i,j})$ é una base (facile verifica con la caratterizzazione equivalente).

Oss: Siano $e: I \to V$ e $f: I \to V$ basi. Allora $\exists ! \ \psi: V \to V$ isomorfismo tale che $\forall i \in I \ \psi(e_i) = f_i$.

Thm: Ogni spazio vettoriale ammette una base

Dim: classica applicazione del lemma di Zorn TODO Prossimamente

Thm: Ogni sottospazio vettoriale ammette un supplementare.

Dim: TODO Prossimamente

2.4 Mappe multilineari e prodotto tensore

Def: Siano V, W, Z K-spazi vettoriali. Una mappa $B: V \times W \to Z$ si dice bilineare se:

- $\forall v \in V$ la mappa $B(v, \bullet) : W \to Z$ é lineare.
- $\forall w \in W$ la mappa $B(\bullet, w) : V \to Z$ é lineare.

Def: Siano V, W K-spazi. Un **prodotto tensore** tra V e W é una coppia $(V \otimes W, \bigotimes)$, con $V \otimes W$ un K-spazio e $\bigotimes : V \times W \to V \otimes W$ mappa bilineare, tale che, se Z é un K-spazio e $h: V \times W \to Z$ é una funzione bilineare, $\exists ! \ \bar{h} : V \otimes W \to Z$ lineare che chiuda il diagramma:

Thm: Siano $V \in W$ K-spazi. Allora esiste il prodotto tensore ed é unico a meno di isomorfismi.

Dim:

!

Siano (P, T_P) e (Q, T_Q) due prodotti tensori. Poiché T_Q e T_P sono bilineari, entrambe fattorizzano al prodotto tensore in Φ e Ψ rispettivamente:

Da cui $\Psi \circ \Phi$ fa commutare il diagramma esterno $\Rightarrow \Psi \circ \Phi \equiv \mathbb{1}_P$. *Mutati mutandis*, si ottiene $\Phi \circ \Psi \equiv \mathbb{1}_Q$

2.5 Mappe alternanti e potenze esterne

2.6 Mappe e potenze simmetriche

3 Definizioni e Primi Risultati

Def: Sia G gruppo, una **rappresentazione** di G consiste in una coppia (V, ρ) , con V spazio vettoriale su K, $\rho : G \to End(V)$ omomorfismo (in seguito il termine "rappresentazione" potrá essere usato per indicare solo uno dei due elementi della coppia).

Oss: Equivalentemente si può chiedere che $\rho: G \curvearrowright V$ sia un'azione lineare $(\rho(g) \in Aut(V) \subseteq S(V))$

Oss: Dal momento che ogni elemento $g \in G$ é invertibile, $Im(\rho) \subseteq Aut(V) \subseteq End(V)$.

Se non specificato, il campo base è \mathbb{C} ; inoltre se ρ è rappresentazione di G, lo spazio vettoriale su cui agisce si indica con V_{ρ}

Def: G gruppo, ρ, σ rappresentazioni, $\psi: V_{\rho} \to V_{\sigma}$ si dice **omomorfismo** di rappresentazioni se è lineare e $\forall g \in G, \sigma(g) \circ \psi = \psi \circ \rho(g)$; se ψ è anche un isomorfismo (di spazi vettorali) allora si dice **isomorfismo** di rappresentazioni.

Oss: Composizione di omomorfismi è omomorfismo, composizione di isomorfismi è isomorfismo; inverso di isomorfismo è isomorfismo (per gli eroi categorici: le rappresentazioni di un gruppo G fissato sono la categoria Rep_G dei funtori da G a Vec_K).

Def: Sia G gruppo, ρ rappresentazione, $\#V_{\rho} \in \mathbb{N}$, si dice **grado** di ρ la dimensione di V_{ρ} , $deg(\rho) = \#V_{\rho}$.

Oss: Una rapp. di grado 1 di G è un omomorfismo da G in \mathbb{C}^* (indipendentemente dallo spazio vettoriale su cui G agisce).

Ora un paio di teoremi fondamentali (lol):

Thm: Tutte le rappresentazioni di grado zero sono isomorfe.

Thm: Due rappresentazioni ρ e σ di grado 1 sono isomorfe $\Leftrightarrow \forall g \in G$ $\rho(g) = \sigma(g)$