AAAI24 Embedded Feature Selection on Graph-Based Multi-View Clustering 202200130267 张宇欣

1. 问题陈述

基于锚图的多视图聚类有以下几个问题

- (1) 必须通过后处理来获取聚类标签,这可能会限制聚类性能;
- (2) 锚图中的所有数据点都被使用,这可能会引入冗余数据并导致效率低下;
- (3) 这些方法分别处理每个视图,这使得它们无法充分利用不同视图的邻接矩阵中的互补信息。

2. 方法概述

作者提出了一种名为 EFSGMC (Efficient Feature Selection and Graph-based Multi-view Clustering) 的方法,专注于多视图聚类问题。核心思想是利用图结构和特征选择技术,同时结合多视图权重分配,通过优化目标函数实现高效的聚类。

采用非负矩阵分解对锚图进行一步分解,从而获得最终的全局聚类分配矩阵,避免了后续处理。目标函数为:

$$\begin{split} & \min_{\mathbf{G}^v, \mathbf{H}^v} \sum_{v=1}^V \frac{1}{\alpha^v} \left\{ \| \mathbf{S}^v - \mathbf{G}^v \mathbf{H}^{v\mathrm{T}} \|_{2,p} + \lambda \| \mathbf{H}^v \|_{2,p} \right\} \\ & \text{s.t. } \mathbf{G}^{v\mathrm{T}} \mathbf{G}^v = \mathbf{I}, \, \mathbf{G}^v \geq \mathbf{0}, \sum_{v=1}^V \alpha^v = 1, \alpha^v \geq 0 \end{split}$$

加入稀疏正则化和邻域关系,引入局部保持正则化项,得到

$$\min_{\mathbf{G}^{v}, \mathbf{H}^{v}} \sum_{v=1}^{V} \frac{1}{\alpha^{v}} \left\{ \|\mathbf{S}^{v} - \mathbf{G}^{v} \mathbf{H}^{vT}\|_{2, p} + \gamma \operatorname{tr}(\mathbf{G}^{vT} \widetilde{\mathbf{L}}^{v} \mathbf{G}^{v}) + \lambda \|\mathbf{H}^{v}\|_{2, p} \right\}$$
s.t.
$$\mathbf{G}^{vT} \mathbf{G}^{v} = \mathbf{I}, \mathbf{G}^{v} \ge \mathbf{0}, \sum_{v=1}^{V} \alpha^{v} = 1, \alpha^{v} \ge 0$$
(7)

最终目标函数: 使用张量 Schatten p-范数统一不同视角的聚类分配矩阵Gv, 最终模型为

$$\min_{\mathbf{G}^{v},\mathbf{H}^{v}} \sum_{v=1}^{V} \frac{1}{\alpha^{v}} \left\{ \|\mathbf{S}^{v} - \mathbf{G}^{v} \mathbf{H}^{vT}\|_{2,p} + \frac{\gamma}{2} \|\mathbf{G}^{vT} \mathbf{T}^{vT}\|_{1} + \lambda \|\mathbf{H}^{v}\|_{2,p} \right\} + \beta \|\mathbf{\mathcal{G}}\|_{\mathfrak{P}}^{p} \tag{11}$$
s.t.
$$\mathbf{G}^{vT} \mathbf{G}^{v} = \mathbf{I}, \mathbf{G}^{v} \ge \mathbf{0}, \sum_{v=1}^{V} \alpha^{v} = 1, \alpha^{v} \ge 0$$

文章使用了一种基于 ALM 的优化方法,用于求解一个具有多个约束的复杂目标函数。引用辅助变量,将优化问题重新表述为以下形式

$$\min \sum_{v=1}^{V} \frac{1}{\alpha^{v}} \left\{ \|\mathbf{P}^{v}\|_{2,p} + \frac{\rho_{0}}{2} \|\mathbf{S}^{v} - \mathbf{G}^{v} \mathbf{H}^{vT} - \mathbf{P}^{v} + \frac{\mathbf{K}^{v}}{\rho_{0}} \|_{F}^{2} + \frac{\gamma}{2} \|\mathbf{Q}^{v}\|_{1} + \frac{\rho_{1}}{2} \|\mathbf{G}^{vT} \mathbf{T}^{vT} - \mathbf{Q}^{v} + \frac{\mathbf{M}^{v}}{\rho_{1}} \|_{F}^{2} + \lambda \|\mathbf{H}^{v}\|_{2,p} \right\} + \beta \|\mathcal{J}\|_{\mathfrak{P}}^{p} + \frac{\rho_{2}}{2} \|\mathcal{G} - \mathcal{J} + \frac{\mathcal{W}}{\rho_{2}} \|_{F}^{2}$$
s.t.
$$\mathbf{G}^{vT} \mathbf{G}^{v} = \mathbf{I}, \mathbf{Q}^{v} \ge \mathbf{0}, \sum_{v=1}^{V} \alpha^{v} = 1, \alpha^{v} \ge 0$$
(12)

由于该目标函数复杂,作者将其分解为多个子问题。优化过程可以分为以下步骤: 1. Qv 子问题:

$$\underset{\mathbf{Q}^{v}}{\operatorname{arg\,min}} \frac{\gamma}{2\rho_{1}} \|\mathbf{Q}^{v}\|_{1} + \frac{1}{2} \|\mathbf{Q}^{v} - \mathbf{C}^{v}\|_{F}^{2} \quad \text{s.t.} \quad \mathbf{G}^{v^{\mathsf{T}}} \mathbf{G}^{v} = \mathbf{I}, \, \mathbf{Q}^{v} \ge \mathbf{0}$$

$$\tag{14}$$

2. Hv 子问题

$$\underset{\mathbf{H}^{v}}{\operatorname{arg\,min}} \sum_{v=1}^{V} \frac{1}{\alpha^{v}} \left\{ \frac{1}{2} \|\mathbf{A}^{v} - \mathbf{H}^{v}\|_{F}^{2} + \frac{\lambda}{\rho_{0}} \|\mathbf{H}^{v}\|_{2,p} \right\}$$
s.t.
$$\mathbf{G}^{v} \mathbf{G}^{v} = \mathbf{I}, \sum_{v=1}^{V} \alpha^{v} = 1, \alpha^{v} \geq 0$$

3. J 子问题

$$\underset{\mathcal{J}}{\operatorname{arg\,min}} \beta \|\mathcal{J}\|_{\mathfrak{P}}^{p} + \frac{\rho_{2}}{2} \|\mathcal{G} - \mathcal{J} + \frac{\mathcal{W}}{\rho_{2}}\|_{F}^{2} \text{ s.t. } \mathbf{G}^{vT} \mathbf{G}^{v} = \mathbf{I}$$
(31)

4. Gv 子问题

$$\underset{\mathbf{G}^{v},\mathbf{H}^{v}}{\operatorname{arg\,max}} \sum_{v=1}^{V} \frac{1}{\alpha^{v}} \left\{ tr(\mathbf{G}^{v\mathsf{T}} \mathbf{D}^{v} \mathbf{G}^{v}) + 2tr(\mathbf{G}^{v\mathsf{T}} \mathbf{E}^{v}) \right\}$$

5. Pv 子问题

$$\underset{\mathbf{P}^v}{\arg\min} \sum_{v=1}^V \frac{1}{\alpha^v} \left\{ \frac{1}{2} \| \mathbf{P}^v - \mathbf{N}^v \|_F^2 + \frac{1}{\rho_0} \| \mathbf{P}^v \|_{2,p} \right\}$$
 s.t.
$$\mathbf{G}^{v\mathsf{T}} \mathbf{G}^v = \mathbf{I}, \sum_{v=1}^V \alpha^v = 1, \alpha^v \geq 0$$

6. av 子问题

$$\alpha^v = \sqrt{\tau_{(v)}} / \sum_{v=1}^V \sqrt{\tau^v}$$

算法流程:

Algorithm 1: EFSGMC

Input: Data matrices: $\{\mathbf{X}^v\}_{v=1}^V \in \mathbb{R}^{N \times d_v}$, anchors number M, and cluster number K.

Output: Cluster assignment matrix $\hat{\mathbf{G}}$ with K classes.

- 1: Initialize $W = \mathcal{J} = \mathbf{0}, \mathbf{K}^v = \mathbf{M}^v = \mathbf{0}, \rho_0, \rho_1, \rho_2, pho_{\rho} = 1.1, max_{\rho} = 10^{10}, \alpha^v = \frac{1}{V}, \gamma, \lambda, \beta.$
- 2: while not converg do
- 3: Update \mathbf{Q}^v by using (15)
- 4: Update \mathbf{H}^v by using (30)
- 5: Update \mathcal{J} by using (34)
- 6: Update G^v by solving (36)
- 7: Update P^v by solving (37)
- 8: Update α^v by using (41)
- 9: Update \mathbf{K}^v , \mathbf{M}^v , \mathbf{W} and ρ_i by using (42), (43), (44) and (45), respectively;
- 10: Directly achieve the K clusters based on the cluster assignment matrix $\widetilde{\mathbf{G}} = \sum_{\mathbf{v}=1}^{\mathbf{V}} \frac{\mathbf{G}^{\mathbf{v}}}{\alpha^{\mathbf{v}}}$;
- 11: end while
- 12: return Clustering results.

作者的方法是在前人的多视图聚类方法的基础上改进而来,包括: 1. 多视图聚类方法: 2. 增强拉格朗日方法 (ALM)。

3. 实验

作者使用了以下数据集:

数据集链接:

HW: UCI Machine Learning Repository

Scale		Large			
Dataset	MSRC	HW	Mnist	Cal101	Reuters
Size	210	2000	4000	2386	18758
Sample	1622	345	69	3766	107727
Views	5	4	3	6	5
Clusters	7	10	4	20	6

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Dataset	MSRC		HW		Mnist		Cal101			Reuters					
Metric	ACC	NMI	Purity	ACC	NMI	Purity	ACC	NMI	Purity	ACC	NMI	Purity	ACC	NMI	Purity
Co-reg	0.635	0.578	0.659	0.784	0.758	0.795	0.785	0.602	0.786	0.412	0.587	0.754	0.563	0.326	0.552
SwMC	0.776	0.774	0.805	0.758	0.833	0.792	0.914	0.799	0.912	0.599	0.493	0.700	OM	OM	OM
MVSC	0.794	0.672	0.756	0.796	0.820	0.808	0.733	0.651	0.780	0.595	0.613	0.717	0.596	0.347	0.574
SMSC	0.766	0.717	0.804	0.742	0.781	0.759	0.913	0.789	0.913	0.582	0.590	0.748	OM	OM	OM
AMGL	0.751	0.704	0.789	0.704	0.762	0.732	0.910	0.785	0.910	0.557	0.552	0.677	OM	OM	OM
MLAN	0.681	0.630	0.733	0.778	0.832	0.812	0.744	0.659	0.744	0.526	0.474	0.666	OM	OM	OM
SFMC	0.810	0.721	0.810	0.853	0.871	0.873	0.917	0.801	0.917	0.642	0.595	0.748	0.602	0.354	0.552
RMSC	0.762	0.663	0.769	0.681	0.661	0.713	0.705	0.486	0.705	0.385	0.512	0.742	OM	OM	OM
CSMSC	0.758	0.735	0.793	0.806	0.793	0.867	0.643	0.645	0.832	0.474	0.648	0.563	OM	OM	OM
MSC-BG	0.981	0.960	0.981	0.889	0.922	0.889	0.938	0.861	0.938	0.667	0.727	0.794	0.640	0.484	0.686
FPMVS-CAG	0.843	0.738	0.843	0.85	0.787	0.850	0.887	0.719	0.887	0.635	0.611	0.723	0.526	0.323	0.603
EFSGMC	1.000	1.000	1.000	0.994	0.984	0.994	0.951	0.866	0.951	0.741	0.725	0.839	0.618	0.518	0.739

具体而言,作者的方法和 MSC-BG 算法均获得了最优和次优的聚类性能。作者的模型在多个数据集上取得了显著的实验结果,其高效的特征选择机制和 Schatten p-norm 优化是性能提升的关键。

4. 思考

论文引入了一种基于锚点图的 ℓ 2, p-范数特征选择方法,有效去除了冗余和噪声数据,并提供了可行的解决方案。最小化聚类分配矩阵的张量 Schatten p-范数,用于探索不同视角之间的互补信息和潜在结构,大幅提升了多视图聚类的性能。并通过大量实验验证了 EFSGMC 的有效性。

文中未提供代码和实现的公开链接,这可能导致研究难以复现,降低了论文的可用性。同时, 论文主要集中于理论方法和实验验证,但未展示算法在真实世界问题(如图像聚类、文本分析等)中的应用效果。

未来可以扩展到更大规模或更高维的多视图数据集,验证算法的通用性和效率。探讨 EFSGMC 对噪声数据或不完整数据的鲁棒性,通过引入对抗性训练或自适应机制进行改进。测试 EFSGMC 在实际任务中的表现,例如社交网络分析、推荐系统和医学图像聚类。

5. 其它(选填)

需要特别记录的其它笔记