Einführung in Sage - Einheit 6 Folgen, Reihen, Potenzreihen, Vertiefung Schleifen

Jochen Schulz

Georg-August Universität Göttingen

- Folgen
- 2 Reihen
- 3 Potenzreihen
- **4** Vertiefung Schleifen

- Folgen
- 2 Reihen
- 3 Potenzreihen
- 4 Vertiefung Schleifen

Folgen

- reelle Zahlenfolge: Abbildung $a: \mathbb{N} \to \mathbb{R}$.
- Alternative Notation: $(a_n)_{n\in\mathbb{N}}$ oder $(a_n)_n$.
- Glieder der Folge: Die Zahlen an.
- Teilfolge: $(a_{n_i})_{n_i}$ ist eine Abbildung $a: N \to \mathbb{R}$, wobei $N \subset \mathbb{N}$ eine Menge mit unendlich vielen Elementen ist.
- Bemerkung: Wir beschränken uns auf den Fall reeller Zahlenfolgen.

Konvergenz von Folgen

Eine Zahlenfolge $(a_n)_n$ ist konvergent gegen den Grenzwert oder Limes $a \in \mathbb{R}$, wenn es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass für alle $n \geq n_0$ die Abschätzung

$$|a_n - a| < \varepsilon$$

gilt. Man schreibt

$$a=\lim_{n\to\infty}a_n.$$

divergent: nicht konvergente Folge.

Bemerkungen

- Nullfolge: Folge konvergiert gegen 0.
- Häufungspunkt: Grenzwert einer konvergenten Teilfolge $(a_{n_i})_{n_i}$.
 - Ein Folge kann keinen aber auch mehrere Häufungspunkte besitzten
 - konvergente Folgen haben genau einen Häufungspunkt.
- Cauchy-Folge: eine Folge $(a_n)_n$ bei der für alle $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ existiert, so dass für alle $n, m \ge n_0$ gilt: $|a_n a_m| < \varepsilon$.
- In ℝ ist eine Folge konvergent, genau dann wenn sie eine Cauchy-Folge ist (Vollständigkeit).
- ε -Umgebung: $U_{\varepsilon}(a)$ von a ist definiert durch

$$U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon) := \{x \in \mathbb{R} \mid |x - a| < \varepsilon\}.$$

Konvergenzkriterien

- Jede monotone, beschränkte Folge konvergiert.
- Konvergenz bei Addition: Sind $(a_n)_n$ und $(b_n)_n$ konvergente Folgen, $\alpha, \beta \in \mathbb{R}$, so ist auch die Folge $(\alpha a_n + \beta b_n)_n$ konvergent mit dem Grenzwert

$$\lim_{n\to\infty}(\alpha a_n+\beta b_n)=\alpha\lim_{n\to\infty}a_n+\beta\lim_{n\to\infty}b_n.$$

• Konvergenz bei Multiplikation: Sind $(a_n)_n$ und $(b_n)_n$ konvergente Folgen, so ist auch die Folge $(a_nb_n)_n$ konvergent mit dem Grenzwert

$$\lim_{n\to\infty}(a_nb_n)=(\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n).$$

 Bemerkung: Weglassen oder Hinzufügen endlich vieler Glieder verändert das Konvergenzverhalten nicht.

Wichtige Sätze

- (Bolzano-Weierstrass): Jede beschränkte Folge besitzt (mindestens) eine konvergente Teilfolge.
- Jede Teilfolge einer konvergenten Folge konvergiert gegen den Grenzwert der ursprünglichen Folge.
- Jede konvergente Folge ist beschränkt, d.h. es gibt ein K > 0, so dass $|a_n| \le K$ gilt für alle $n \in \mathbb{N}$.
- Zwischenfolge: Seien $(a_n)_n$ und $(b_n)_n$ konvergente Folgen mit $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$. Dann gilt für eine Folge $(c_n)_n$ mit $a_n \le c_n \le b_n$, $n \in \mathbb{N}$, dass sie konvergiert mit $\lim_{n\to\infty} c_n = \lim_{n\to\infty} b_n$.

Sage

https://sage.math.uni-goettingen.de/home/pub/38/

- Folgen
- Reihen
- 3 Potenzreihen
- 4 Vertiefung Schleifen

Reihen

Sei $(a_n)_n$ eine Folge reeller Zahlen. Eine (unendliche) Reihe mit den Gliedern a_n , in Zeichen

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots,$$

ist definiert durch die Folge $(s_n)_n$ der Partialsummen

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \cdots + a_n$$

Der Grenzwert s der Folge $(s_n)_n$ wird als Wert oder Summe der Reihe bezeichnet. Man schreibt

$$s=\sum_{n=1}^{\infty}a_n.$$

Bemerkungen

- Reihen sind eine spezielle Art von Folgen.
- Indizierung mit m: $\sum_{n=m}^{\infty} a_n$.
- Bei Abänderung, Weglassen oder Hinzufügen endlich vieler Glieder bleiben Konvergenz und Divergenz unberührt. I.A. wird sich aber der Grenzwert ändern.

Konvergenzkriterien

- Cauchykriterium: Eine Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert genau dann, wenn es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass für alle $m, n \geq n_0$ gilt $|\sum_{k=m}^{n} a_k| < \varepsilon$.
- Notwendiges Kriterium: Konvergiert eine Reihe, so bilden ihre Glieder eine Nullfolge. Dieses Kriterium ist nicht hinreichend!
- Verdichtungskriterium: Eine Reihe $\sum_{n=1}^{\infty} a_n$ mit einer Folge nichtnegativer, monoton fallender Glieder konvergiert genau dann, wenn die Reihe $\sum_{n=1}^{\infty} 2^n a_{2^n}$ konvergiert.

Konvergenzkriterien

Gilt $0 \le c_n \le a_n \le b_n$ für alle $n \in \mathbb{N}$

- Minorante: $\sum_{n=1}^{\infty} c_n$
- Majorante: $\sum_{n=1}^{\infty} b_n$

Die Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert, wenn...

Majorantenkriterium: eine konvergente Majorante besitzt (nichtnegative Glieder).

Quotientenkriterium: Die Glieder positiv sind und ein q < 1 existiert, so dass für $n \in \mathbb{N}$ gilt $\frac{a_{n+1}}{a_n} \leq q$.

Wurzelkriterium: Die Glieder positiv sind und ein q<1 existiert, so dass für $n\in\mathbb{N}$ gilt $\sqrt[n]{a_n}\leq q$.

Leibnizsches Kriterium: wenn die Folge $(a_n)_n$ bei $\sum_{n=1}^{\infty} (-1)^n a_n$ eine monoton fallende Nullfolge ist.

Die Reihe $\sum_{n=1}^{\infty} a_n$ divergiert, wenn...

Majorantenkriterium: sie eine divergente Minorante besitzt.

Absolute und bedingte Konvergenz

absolut konvergent: Ist eine Reihe $\sum_{n=0}^{\infty} a_n$ genau dann wenn $\sum_{n=0}^{\infty} |a_n|$ konvergiert.

bedingt konvergent: konvergent, aber nicht absolut konvergent.

- Absolut konvergente Reihen können beliebig umgeordnet werden.
- Dies ist i.d.R. bei nicht absolut konvergenten Reihen falsch!

Sage

https://sage.math.uni-goettingen.de/home/pub/40/

- Folgen
- 2 Reihen
- 3 Potenzreihen
- 4 Vertiefung Schleifen

Potenzreihen

Potenzreihe:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

mit $x_0 \in \mathbb{R}$.

Konvergenzradius:

$$\rho := \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

Ist $a_n \neq 0$ für alle $n > n_0$:

$$\rho = \limsup_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}.$$

Konvergenzverhalten:

- konvergiert absolut für $|x x_0| < \rho$.
- divergiert für $|x x_0| > \rho$.
- Die Konvergenz an den Stellen $x_0 \rho$ und $x_0 + \rho$ muss bei jeder Reihe individuell geprüft werden.

Sage

https://sage.math.uni-goettingen.de/home/pub/39/

- Folgen
- Reihen
- 3 Potenzreihen
- **4** Vertiefung Schleifen

Sage

https://sage.math.uni-goettingen.de/home/pub/41/