B.Tech II Year I Semester (R13) Regular Examinations December 2014

DISCRETE MATHEMATICS

(Common to IT and CSE)

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Without using truth table show that $P \to (Q \to P) \Rightarrow \neg P \to (P \to Q)$
- State Boolean algebra. (b)
- When a lattice is said to be bounded? (c)
- Prove that p, p \rightarrow q, q \rightarrow r \Rightarrow r. (d)
- State necessary and sufficient conditions for the existence of an Eulerian path is connected.
- Prove that the identity of a subgroup is same as that of the group. (f)
- What is a group? (g)
- Find the recurrence relation satisfying the equation $y_n = A(3)^n + B(-4)^n$ (h)
- What is the generating function of the sequence {0, 1, 0-1, 0, 1, 0, -1, 0......}? (i)
- What is a tree? (j)

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

Use pigeonhole principal to show that in any set of eleven integers, there are two integers whose difference 2 in divisible by 10.

3 Write an equivalent formula $\neg(p \leftrightarrow (q \rightarrow (r \lor p)))$ which does not contains any conditional (\rightarrow) and bi conditional (\leftrightarrow)

UNIT - II

4 In a Lattice (L, \leq), prove that $x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z)$

5 If (A, \leq) and (B, \leq) are posets, then prove that $\{AxB, \leq\}$ is a poset with partial order \leq defined as (a, b) \leq (a b), if $a \leq a$ in A, if $b \leq b$ in B.

UNIT - III

6 State and prove Lagrange's theorem.

OR

7 Let (S,*) be a semi group, then prove that there exists a homomorphism $g:S\to S^S$ where $<S^S$, o> is a semi group of a function from S to S under the operation of the Composition.

- (i) Use Mathematical induction show that $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ 8
 - (ii) Using the generating function, solve the difference equation:

$$y_{n+2} - y_{n+1} - 6y_n = 0, y_1 = 1, y_0 = 2$$

Solve the recurrence relation, S(n) = S(n-1) + 2(n-1) with S(0) = 3, S(1) = 1 by finding its generating function. 9

UNIT - V

- Prove that a simple graph has a spanning tree, iff it is connected. 10
- www.MahaResults.co.in

 Define Eulerian graph. Show that a non empty connected graph is Eulerian if and only if all its vertices are of 11 even degree.