ADA 139906

Noise Measuremen Flight Test: Data/Analyses Bell 222 Twin Jell

Environmental and Energy in JUC. 20531

eld, Virgir ia 2216 .

APR 09 1984

MABOUT THE COVER

(and sebsequent seports in this series) is the bayen ballcopeers to red during the summer that the light the saven ballcopeers to red during the summer that the light of the summer that the light of the summer that the light of the selection of the light of the light of the light of the light of the selection of the light of the linterest of the light of the light of the light of the light of th

NOTICE

The United States Covernment does not eat a compact of seat and interest of the course of the seat as the subject to a contract of t

Technical Report Documentation Page

1. Report No.	2. Government Acces	tion No. 3	. Recipierit's Catalog N	0.	
	$\Delta \Lambda \Lambda \Delta G$		· · · · · · · · · · · · · · · · · · ·		
FAA-EE-84-1	<u> 1711-171</u>	37706			
4. Title and Subtitle		1	. Report Date		
Noise Measurement Flight To			February 1984		
Jet Helicopter: Data and Analyses			6. Performing Organization Code		
		_	. Performing Organization	on Report No.	
7. Author's) J. Steven Newman Tyrone L. Bland, Sharon A.				•	
Performing Organization Name and Address Federal Aviation Administra		of Environment	0. Work Unit No. (TRAI	5)	
and Energy, Noise Abatemen Branch, (AEE-J20), 800 Inde			1. Contract or Grant No		
Washington, DC 20591	,		10.7		
		1	3. Type of Report and P	eriad Covered	
12. Sponsoring Agency Name and Address Federal Aviation Administra	ation Office	of Environment			
and Energy, Noise Abatemen	· · · · · · · · · · · · · · · · · · ·	3			
Branch, (AEE-120), 800 Inde			4. Spansoring Agency C	od•	
Washington, DC 20591					
15. Supplementary Notes (1) U.S. Department of Tra	nsportation, T	ransportation Sy	ystems Center,	Kendall:	
Square, Cambridge, Mass O	2142				
16. Abstract					
This report documents the	results of a F	ederal Aviation	Administration	(FAA) ņoise	
measurement flight test pr					
report contains documentar	y sections des	cribing the acou	ustical charact	eristics of	
the subject helicopter and	provides anal	yses and discuss	sions addressin	g topics	
ranging from acoustical pr	opagation to e	nvironmental imp	pact of helicop	ter noise.	
"This report is the first in					
measurement program conduc			•		
of 1983. The Bell 222 tes position and meteorological		ived the acquisi	ition of defail	ed acoustical,	
position and meteorological	i uaca.				
This test program was desi	gned to addres	s a series of ob	niectives inclu	ding:	
1) evaluation of "Fly Nei					
helicopters, 2) acquisitio		•			
impact, 3) documentation o					
helicopters, 4) establishm					
propagation relationships	for helicopter	s, 5) determinat	cion of noise e	vent duration	
influences on energy dose	acoustical met	rics, 6) examina	ation of the di	fferences	
between noise measured by					
height of four feet (1.2 meters), and 7) documentation of noise levels acquired usin				acquired using	
international helicopter n	oise certifica	tion test proced	lures.		
17. Key Words		18. Distribution Stateme	nt	· · · · · · · · · · · · · · · · · · ·	
helicopter, noise, Bell 22	2, heliport		is available t	o the	
environmental impact, directivity, public through the National Technical			Technical		
noise certification standa	rds	Information Se	ervice, Springf	ield, VA	
22161					
19. Security Classif, (of this report)	20. Security Cless	if. (of this page)	31. No. of Pages	22. Price	
Unclassified	Unclassifi		22/		
0110193211700	I OUCTOSSIII	Cu	224	•	

Acknowledgments

ويرسرون وروس والمدعد والمتاب والتان المتاب بالمتاب المتاب المتاب المتاب والمتاب والمتا

The authors wish to thank the following individuals and organizations who contributed to the success of the measurement program and/or the production of this report.

- The Bell Helicopter Textron, for providing the test helicopter, the flight crew, and the test coordination assistance of Mr. Charlie Cox.
- 2. The Dulles Air Traffic Control Tower Mr. Art Harrison, Chief
- 3. The National Air and Space Administration (NASA), Rotorcraft Office, and Mr. John Ward for their support of data reduction activities.
- 4. Ms. Kristy Beattie of ORI, Inc. for report coordination and editorial assistance.
- Ms. Loretta Harrison for her typing and report production assistance.

Acces	sion For		
HTIS GRAMI DTIC TAB Unannounced Justification			
 -			
Ву			
Distr	ibution/		
Avai	lability	Codes	
	Avail and	/or	
Dist	Special		
A-1			

がある。 第一次のでは、 1912年 - 1912年

ı

TABLE OF CONTENTS

			PAGE
LIST	OF TA	ABLES	iv
LIST	OF F	IGURES	v
GLOSS	SARY.		vii
1.0	INTRO	DDUCTION	1
2.0	TEST	HELICOPTER DESCRIPTION	3
3.0	TEST	SYNOPSIS	6
	3.1	MEASUREMENT FACILITY	7
	3.2	MICROPHONE LOCATIONS	10
	3.3	FLIGHT PATH MARKERS AND GUIDANCE SYSTEMS LOCATIONS	10
4.0	TEST	PLANNING AND BACKGROUND	13
	4.1	ADVANCE BRIEFINGS AND COORDINATION	13
	4.2	TEST COMMUNICATIONS	13
	4.3	LOCAL MEDIA NOTIFICATION	14
	4.4	AMBIENT NOISE	14
5.0	DATA	ACQUISITION AND GUIDANCE SYSTEMS	17
	5.1	APPROACH GUIDANCE SYSTEM	17
	5.2	PHOTO ALTITUDE DETERMINATION SYSTEM	19
	5.3	COCKPIT PHOTO DATA	22
	5.4	UPPER AIR METEOROLOGICAL DATA/NWS: STERLING, VA	23
	5.5	SURFACE METEOROLOGICAL DATA/NWS: DULLES AIRPORT	25
	5.6	NOISE MEASUREMENT INSTRUMENTATION	26
		5.6.1 TSC MAGNETIC RECORDING SYSTEM	27
		5.6.2 FAA DIRECT READ MEASUREMENT SYSTEM	29
		5.6.3 FAA MAGNETIC RECORDING SYSTEM	31
		INSTRUMENTATION	31

のなっている。これは、これのことは、「は、これのことは、これのことは、「は、これのことは、これのことは、「は、これのことは、これのことは、「は、これのことは、これのことは、「は、これのことはいいいいいいは、これのことは、これの

			PAGI
6.0	NOISI	E DATA REDUCTION	37
	6.1	TSC MAGNETIC RECORDING DATA REDUCTION	37 37 38 38 38 39 39
	6.2	FAA DIRECT READ DATA PROCESSING	40
		6.2.1 AIRCRAFT POSITION AND TRAJECTORY	40 40
	6.3	FAA MAGNETIC RECORDING DATA REDUCTION	41
7.0	TEST	SERIES DESCRIPTION	43
		TEST LOG FOR JUNE 14, 1983	45 47 48
8.0		MENTARY ANALYSES/PROCESSING OF TRAJECTORY AND TEOROLOGICAL DATA	50
	8.1 8.2	PHOTO ALTITUDE/FLIGHT PATH TRAJECTORY ANALYSES UPPER AIR METEOROLOGICAL DATA	50 52
9.0	EXPL	ORATORY ANALYSES AND DISCUSSIONS	57
	9.1	VARIATION IN NOISE LEVELS WITH AIRSPEED FOR LEVEL FLYOVER OPERATIONS	58
	9.2	STATIC DATA ANALYSIS: SOURCE DIRECTIVITY AND HARD VS. SOFT PROPAGATION CHARACTERISTICS	62
	9.3	COMPARISON OF NOISE DATA: 4-ft VS. GROUND MICROPHONES	65
	9.4 9.5	DURATION EFFECT ANALYSISANALYSIS OF VARIABILITY IN NOISE LEVELS FOR TWO	68
	9.6	SITES EQUIDISTANT OVER SIMILAR PROPAGATION PATHS VARIATION IN NOISE LEVELS WITH AIRSPEED AND RATE OF	73
	9.7	DESCENT FOR THE APPROACH OPERATION VARIATION IN NOISE LEVELS FOR MULTI-SEGMENT	76
	- • .		70

THE REPORT OF THE PROPERTY OF

	PAGE
9.8 ANALYSIS OF GROUND-TO-GROUND ACOUSTICAL PROPAGATION	0.0
FOR A NOMINALLY SOFT PROPAGATION PATH 9.9 ACOUSTICAL PROPAGATION ANALYSIS/DISCUSSION OF	82
VARIABILITY	87
REFERENCES	93
10.0 APPENDICES	
APPENDIX A: MAGNETIC RECORDING ACOUSTICAL DATA AND DURATION FACTORS FOR FLIGHT OPERATIONS ON JUNE 14 and 15	
APPENDIX B: MAGNETIC RECORDING ACOUSTICAL DATA FOR FLIGHT OPERATIONS ON JUNE 16	
APPENDIX C: DIRECT READ ACOUSTICAL DATA AND DUR TION FACTORS FOR FLIGHT OPERATIONS	
APPENDIX D: MAGNETIC RECORDING ACOUSTICAL DATA FOR STATIC OPERATIONS	
APPENDIX E: DIRECT READ ACOUSTICAL DATA FOR STATIC OPERATIONS	
APPENDIX F: COCKPIT INSTRUMENT PHOTO DATA	
APPENDIX G: PHOTO-ALTITUDE AND FLIGHT PATH TRAJECTORY DATA	
APPENDIX H: NWS UPPER AIR METEOROLOGICAL DATA	
APPENDIX I: NWS-IAD SURFACE METEOROLOGICAL DATA	
APPENDIX J: ON-SITE METEOROLOGICAL DATA	
iii	

LIST OF TABLES

		PAGES
2.1	HELICOPTER CHARACTERISTICS	4
2.2	ICAO REFERENCE PARAMETERS	5
5.1	REFERENCE HELICOPTER ALTITUDES FOR APPROACH	18
7.1	TEST SERIES DESCRIPTION	44
9.1	COMPARISON OF GROUND AND 4-FT MICROPHONE DATA	67
9.2	COMPARISON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: HIGE	74
9.3	COMPARTSON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: HOGE	75
9.4	COMPARISON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES: FI	75
9.5	MULTI-SEGMENT APPROACH ANALYSIS	81
9.6	DATA USED IN COMPUTING EMPIRICAL PROPAGATION CONSTANTS	85
9.7	EMPIRICAL PROPAGATION CONSTANTS	86
9.8	PROPAGATION CONSTANT ANALYSIS	89
9.9	SITE-TO-SITE VARIATION IN LFO NOISE LEVELS	91
9.10	PROPAGATION CONSTANT ANALYSIS FOR APPROACH OPERATION	92

ない。これは、「は、これのでは、「一般のできない。」というでは、「一般のできない」というでは、「は、これのできない」とは、「は、これのできない」とは、「は、これのできない」というできない。「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、「は、これのできない」というでは、これのできない。」というでは、これのできない。「は、これのできない」というでは、これのできない。「は、これのできない。」というでは、これのできない。「は、これのできない。」というでは、これのできない。「は、これのできない。」というでは、これのできない。「は、これのできない。」というでは、これのできない。「は、これのできない。」というでは、これのできない。「は、これのできない。」」というでは、これのできない。「は、これのできない。」というでは、これのできない。」というでは、これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできない。これのできないでは、これのできない。これのでは、これのできない。これのでは、これのでは、これのできない。これのでは、これので

LIST OF FIGURES

		PAGE
3.1	FLIGHT TEST AND NOISE MEASUREMENT PERSONNEL IN ACTION	8
3.2	DULLES AIRPORT AND TEST FLIGHT TRACK	9
3.3	NOISE MEASUREMENT AND PHOTO-SITE SCHEMATIC	12
4.1	COMMUNICATIONS NETWORK	16
5.1	POP SYSTEM	20
5.2	COCKPIT PHOTOGRAPH	23
5.3	TECHNICIANS LAUNCHING RADIOSONDE BALLOON	24
5.4	ACOUSTICAL MEASUREMENT INSTRUMENTATION	28
5.5	ACOUSTICAL MEASUREMENT INSTRUMENTATION	30
5.6	ACOUSTICAL MEASUREMENT INSTRUMENTATION	32
5.7	MICROPHONE AND ACOUSTICAL EQUIPMENT DEPLOYMENT FOR FLIGHT OPERATIONS (JUNE 14, 15)	34
5.8	MICROPHONE AND ACOUSTICAL EQUIPMENT DEPLOYMENT FOR FLIGHT OPERATIONS (JUNE 16)	35
5.9	MICROPHONE AND ACOUSTICAL EQUIPMENT DEPLOYMENT FOR STATIC OPERATIONS	36
6.1	ACOUSTICAL EMISSION ANGLE CONVENTION	42
8.1	TIME HISTORY ANALYSIS FOR TEMPERATURE	55
8.2	TIME HISTORY ANALYSIS FOR RELATIVE HUMIDITY	55
8.3	WIND SPEED VS. TIME-HEAD: TAIL WIND	56
8.4	WIND SPEED VS. TIME: CROSS WIND	56
9.1	LFO: SEL VS. INDICATED AIRSPEED.	60

		PAGE
9.2	LFO: AL VS. INDICATED AIRSPEED	60
9.3	LFO: EPNL VS. INDICATED AIRSPEED	60
9.4	LFO: PNLTM VS. INDICATED AIRSPEED	60
9.5	HELICOPTER NOISE MEASUREMENT DATA	61
9.6	HARD VS. SOFT PATH DIRECTIVITY: HIGE	63
9.7	HARD VS. SOFT PATH DIRECTIVITY: HOGE	63
9.8	HARD VS. SOFT PATH DIRECTIVITY: FI	64
9.9	HARD VS. SOFT PATH DIRECTIVITY: GI	64
9.10	DURATION ANALYSIS - 500 FT LFO	71
9.11	DURATION ANALYSIS - 12 DEGREE APPROACH	72
9.12	DURATION ANALYSIS - 6 DEGREE APPROACH	72
9.13	APPROACH OPERATION: SEL VS. INDICATED AIRSPEED	77
9.14	APPROACH OPERATION: LA VS. INDICATED AIRSPEED	77
9.15	APPROACH OPERATION: EPNL VS. INDICATED AIRSPEED	77
0 16	APPROACH OPERATIONS PRITE US INDICATED AIRSDEED	77

GLOSSARY

AGL	~	Above ground level
ATR	-	Aerospace Information Report
AL	-	A-Weighted sound level, expressed in decidels (See $L_{\mbox{A}}$)
ALM	-	Maximum A-weighted sound level, expressed in decibels (see $L_{\mbox{AM}}$)
AL _{AM}	-	As measured maximum A-weighted Level
ALT	-	Aircraft altitude above the microphone location
APP	-	Approach operational mode
CLC	-	Centerline Center
CPA	-	Closest point of approach
ď	-	Distance
dB	-	Decibel
dBA	-	A-Weighted sound level expressed in units of decibels (see ${\sf A}_{L}$)
df	-	Degree of freedom
\triangle	-	Delta, or change in value
Δı	-	Correction term obtained by correcting SPL values for atmospheric absorption and flight track deviations per FAR 36, Amendment 9, Appendix A, Section A36.11, Paragraph d
∆ 2	-	Correction term accounting for changes in event duration with deviations from the reference flight path
dB	-	Decibel
DUR(A)		"10 dB-Down" duration of LA time history

EPNL	••	Effective perceived noise level (symbol is LEPN)
EV	_	Event, test run number
FAA	_	Federal Aviation Administration
FAR	-	Federal Aviation Regulation
FAR-36	-	Federal Aviation Regulation, Part 36
GLR	•	Graphic level recorder
HIGE	-	Hover-in-ground effect
HOGE	-	Hover-out-of-ground effect
IAS	-	Indicated airspeed
ICAO	-	International Civil Aviation Organization
IRIG-B	-	Inter-Range Instrumentation Group B (established technical time code standard)
K(A)	-	Propagation constant describing the change in dBA with distance
K(DUR)	-	The constant used to correct SEL for distance and velocity duration effects in $\Delta 2$
KIAS	-	Knots Indicated Air Speed
K(S)	•	Propagation constant describing the change in SEL with distance
Kts	-	Knots
Leq		Symbol for equivalent sound level
LFO	••	Level Flyover operational mode
N	-	Sample Size
NWS	-	National Weather Service
OASPLM	-	Maximum overall sound pressure level in decibels
PISLM	-	Precision integrating sound level meter

PNL_M - Maximum perceived noise level

PNLT_M - Maximum tone corrected perceived noise level

POP - Photo overhead positioning system

Q - Time history "shape factor"

RH - Relative Humidity in percent

RPM - Revolutions per minute

SAE - Society of Automotive Engineers

SEL - Sound exposure level expressed in decibels. The integration of the AL time history, normalized to

l second (symbol is LAE)

 ${\sf SEL}_{\sf AM}$ - As measured sound exposure level

SEL-AL_M - Duration correction factor

SHP - Shaft horse power

SLR - Single lens reflex (35 mm camera)

SPL - Sound pressure level

T - Ten dB down duration time

TC - Tone correction calcualted at $PNLT_M$

T/O -- Takeoff

TSC - Department of Transportation, Transportation Systems

Center

V - Velocity

VASI - Visual Approach Slope Indicator

V_H - Maximum speed in level flight with maximum

continuous power

V_{NE} - Never-exceed speed

Vy - Velocity for best rate of climb

1.0 Introduction - This report documents the results of a Federal Aviation Administration (FAA) noise measurement/flight test program involving the Bell 222 twin-jet helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise.

This report is the first in a series of seven documenting the FAA helicopter noise measurement program conducted at Dulles International Airport during the summer of 1983.

The test program was conducted by the FAA in connection with Bell Helicopter Textron and a number of supporting Federal agencies. The rigorously controlled tests involved the acquisition of detailed acoustical, position and meteorological data.

後と、「他のできた。 「他のできた。 「他のできた。」 「他のできた。 「他のできた。」 「他のできた。 「他のできた。」 「他のできた。 「他のできた。」 「他のできた。 「他のできた。」 「他のできた。 「他のできた。 「他のできた。 「他のできた。 「他のできた。 「他のできたた。 「他のできた。 「他のできたた。 「他のできたたた。 「他のできたた。 「他のできたた。 「他のできたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたたた。 「他のできたたたた。 「他のできたたたた。 「他のできたたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたたたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたたた。 「他のできたた。 「他ので。 「他ので。 「他ので。 「他ので。 「他ので。 「他ので。 「他ので。 「他ので。 「他ので。 「

This test program was designed to address a series of objectives including: 1) evaluation of "Fly Neighborly" (minimum noise) operating procedures for helicopters, 2) acquisition of acoustical data for use in heliport environmental impact analyses, 3) documentation of directivity characteristics for static operation of helicopters, (4) establishment of ground-to-ground and air-to-ground acoustical propagation relationships for helicopters, 5) determination of noise event duration influences on energy dose acoustical metrics, 6) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and 7) documentation of noise levels acquired using international helicopter noise certification tes' procedures.

The appendices to this document provide a reference set of acoustical data for the Bell 222 helicopter operating in a variety of typical flight regimes. The first seven chapters contain the introduction and description of the helicopter, test procedures and test equipment.

Chapter 8 describes analyses of flight trajectories and meteorological data and is documentary in nature. Chapter 9 delves into the areas of acoustical propagation, helicopter directivity for static operations, and variability in measured acoustical data over various propagation surfaces. The analyses of Chapter 9 in some cases succeed in establishing relationships characterizing the acoustic nature of the subject helicopter, while in other instances the results are too variant and anomalous to draw any firm conclusions. In any event, all of the analyses provide useful insight to people working in the field of helicopter environmental acoustics, either in providing a tool or by identifying areas which need the illumination of further research efforts.

TEST HELICOPTER DESCRIPTION

ことのできないというとのできないというできないという

Test Helicopter Description - The Bell 202 is a twin turbine-powered transport helicopter capable of carrying 8 passengers and a crew of two. The helicopter is manufactured by Bell Helicopter Textron of Ft. Worth, Texas, and was certificated by the FAA in August 1979. It was the first commercial light twin-engined helicopter to be built in the United States of America. Standard features of the aircraft include a 135 cubic foot (3.82m³) passenger cabin which provides space for people over 6 feet tall, a 500 lb baggage compartment, provisions for an environmental control system and soundproofing.

Besides the standard configuration (the Bell 222A), the helicopter is available in two others: the 222 Executive, which features luxury accommodations, and the 222 Offshore, a craft equipped with a flotation system and auxiliary fuel tanks for operations over water.

Selected operational characteristics, obtained from the helicopter manufacturer, are presented in Table 2.1.

Table 2.2 presents a summary of the operational reference parameters determined using the procedures specified in the International Civil Aviation Organization (ICAO) noise certification testing requirements. Presented along with the operational parameters are the altitudes that one would expect the helicopter to attain (referred to the ICAO reference test sites). This information is provided so that the reader may implement an ICAO type data correction using the "As Measured" data contained in this report. This report does not undertake such a correction, leaving it as the topic of a subsequent report.

TABLE 2.1

HELICOPTER CHARACTERISTICS

HELICOPTER MANUFACTURER	: BELL HELICOPTER TEXTRON	
HELICOPTER MODEL	: BELL 222	
HELICOPTER TYPE	: SINGLE ROTOR	
TEST HELICOPTER N-NUMBER	: N2057B	
MAXIMUM GROSS TAKEOFF WEIGHT	; 7850 lbs 93560 kg)	
NUMBER AND TYPE OF ENGINE(S)	: 2 LYCOMING LTS 101-650C-3	
SHAFT HORSE POWER (PER ENGINE)	Takeoff power installs: 575 SHP sea level standard (sea level standard)	lled day
MAXIMUM CONTINUOUS POWER	: 1110 SHP 555 SHP per engine	day;
SPECIFIC FUEL CONSUMPTION AT MAXIMUM POWER (LB/HR/HP)	: .514 (lb/hr/hp)	
NEVER EXCEED SPEED (VNE)	: 141 KIAS	
MAX SPEED IN LEVEL FLIGHT WITH MAX CONTINUOUS POWER (VH)	: 141 KIAS	
SPEED FOR BEST RATE OF CLIMB (Vy)	: 65 KIAS	·
BEST RATE OF CLIMB	: 1600 fpm	
MAIN AND TAIL	ROTOR SPECIFICATIONS	
	MAIN T	AIL
ROTOR SPEED (100%)	: 348 rpm 18	81 rpm
DIAMETER	: 477.0 in 7	8.0 in
CHORD	: 28.6 in 1	0.0 in
NUMBER OF BLADES	2	2
PERIPHERAL VELOCITY	: 724 fps 64	1 fps
BLADE LOAD	: 83 lb/ft ²	
FUNDAMENTAL BLADE PASSAGE FREQUENCY	: 12 Hz	63 Hz
ROTATIONAL TIP MACH NUMBER (77°F)	: .6375 .	5636

TABLE 2.2

ICAO REFERENCE PARAMETERS

	TAKEOFF	APPROACH	LEVEL FLYOVER
AIRSPEED (KTS) RATE OF CLIMB/DESCENT (fpm) CLIMB/DESCENT ANGLE (DEGREES)	: 65 : 1600 : 14.1	65 688 6 - 0	NA NA
ALTITUDE/CPA (FEET) SITE 5 SITE 1 SITE 4	: 257/249 : 412/400 : 536/520	329/327 394/392 446/443	492 492 492
SLANT RANGE (FEET) TO SITE 2 SITE 3	<u>642</u>	630 630	696 696

が出来ない。これでは、これでは、これでは、これでは、これでは、これでは、これでは、一般のできたが、は、自然のできたが、これでは、自然のできたが、これでは、自然のできたとうとは、これでは、自然のできたが、

とうものできる。その世界にいいというのとは国家できたられる。最初でもなるのでは、自然にいいいことのは国家ではなっては、国家では、「自然のでは、「国家では、「自然のでは、「国家では、「国家では、「国家では、

TEST SYNOPS'S

- 3.0 <u>Test Synopsis</u> Below is a listing of pertinent details pertaining to the execution of the helicopter tests.
- 1. Test Sponsor, Frogram Management, and Data Analysis: Federal
 Aviation Administration, Office of Environment and Energy, Noise Abatement
 Division, Noise Technology Branch (AEE-120).
 - 2. Test Helicopter: Bell-222, provided by Bell Helicopter Textron.
- 3. Test Dates: Tuesday, June 14, Wednesday, June 15, and Thursday, June 16, 1983.
- 4. Test Location: Dulles International Airport, Runway 30 over-run area.
- 5. Noise Data Measurement (recording), processing and analysis:
 Department of Transportation (DOT), Transportation Systems Center (TSC),
 Noise Measurement and Assessment Facility.
- 6. Noise Data Measurement (direct-read), processing and analaysis: FAA, Noise Technology Branch, (AEE-120).
- 7. Cockpit instrument photo documentation; photo-altitude determination system; documentary photographs: Department of Transportation, Photographic Services Laboratory.
- 8. Meteorological Data (fifteen minute observations): National Weather Service Office, Dulles International Airport.
- 9. Meteorological Data (radiosonde/rawinsonde weather balloon launches): National Weather Service Upper Air Station, Sterling Park, Virginia.

- 10. Meteorological Data (on site observations): DOT-TSC.
- 11. Flight Path Guidance (portable visual approach slope indicator (VASI) and theodolite/verbal course corrections): FAA Technical Center, ACT-310.
- 12. Air Traffic Control: Dulles International Airport Air Traffic Control Tower.
- 13. Test site preparation; surveying, clearing underbrush, connecting electrical power, providing markers, painting signs, and building the radar pad: Dulles International Airport Grounds and Maintenance, and Airways Facilities personnel.

Figure 3.1 is a photo collage of flight test and measurement personnel performing their tasks.

3.1 Measurement Facility - The noise measurement testing area was located adjacent to the approach end of Runway 12 at Dulles International Airport. (The approach end of Runway 12 is synonymous with Runway 30 over-run area.) The low ambient noise level, the availability of emergency equipment, and the security of the area all made this location desirable. Figure 3.2 provides a picture of the Dulles terminal and of the test area.

The test area adjacent to the runway was nominally flat with a ground cover of short, clipped grass, approximately 1800 feet by 2200 feet, and bordered on north, south, and west by woods. There was minimum interference from the commercial and general aviation activity at the airport since Runway 12/30 was closed to normal traffic during the tests. The runways used for normal traffic, 1L and 1R, were approximately 2 and 3 miles east, respectively, of the test site.

Figure 3.1 Flight Test and Noise Measurement Personnel In Action

Figure 3.2

The Terminal and Air Traffic Control Tower at Dulles International Airport

Approach to Runway 12 at Dulles Noise Measurement Site for 1983 Hel copter Tests

The flight track centerline was located parallel to Runway 12/30 between the runway and the taxiway. The helicopter hover point for the static operation was located on the southwest corner of the approach end of Runway 12. Eight noise measurement sites were established in the grassy area adjacent to the Runway 12 approach ground track.

- 3.2 <u>Microphone Locations</u> There were eight separate microphone sites located within the testing area, making up two measurement arrays. One array was used for the flight operations, the other for the static operations. A schematic of the test area is shown in Figure 3.3.
- A. Flight Operations The microphone array for flight operations consisted of two sideline sites, numbered 2 and 3 in Figure 3.3, and three centerline sites, numbered 5, 1, and 4, located directly below the flight path of the helicopter. Since site number 3, the north sideline site, was located in a lightly wooded area, it was necessary to offset it 46 feet to the west to provide sufficient clearance from surrounding trees and bushes.
- B. Static Operations The microphone array for static operations consisted of sites 7ii, 5ii, 1ii, 2, and 4ii. These sites were situated around the helicopter hover point which was located on the southwest corner of the approach end of Runway 12. These site locations allowed for both hard and soft ground-to-ground propagation paths.
- 3.3 Flight Path Markers and Guidance System Locations Visual cues in the form of squares of plywood painted bright yellow with a black "X" in the center were provided to define the takeoff rotation point. This point was located 1640 feet (500 m) from centerline center (CLC) microphone

location. Four portable, battery-powered spotlights were deployed at various locations to assist pilots in maintaining the array centerline. To provide visual guidance during the approach portion of the test, a standard visual approach slope indicator (VASI) system was used. In addition to the visual guidance, the VASI crew also provided verbal guidance with the aid of a transit. Both methods assisted the helicopter pilot in adhering to the microphone array centerline and in maintaining the proper approach path. The locations of the VASI from CLC are shown in the following table.

Approach Angle	Discance from CLC		
(degrees)	(feet)		
12	1830		
9	2456		
6	3392		
3	7423		

Each of these locations provided a glidepath which crossed over the centerline center microphone location at an altitude of 394 feet.

Figure 3.3

Noise Measurement and Photo Site Schematic

NOTES: Broken Line Indicates not to Scale. Metric Measurements to Nearest Meter.

TEST PLANNING AND BACKGROUND

- 4.0 Test Planning/Background Activities This section provides a brief discussion of important administrative and test planning activities.
- 4.1 Test Program Advance Briefings and Coordination A pre-test briefing was conducted approximately one month prior to the test. The meeting was attended by all pilots participating in the test, along with FAA program managers, manufacturer test coordinators, and other key test participants from the Dulles Airport community. During this meeting, the airspace safety and communications protocol were rigorously defined and at the same time test participants were able to iron out logistical and procedural details. On the morning of the test, a final brief meeting was convened on the flight line to review safety rules and coordinate last-minute changes in the test schedule.
- 4.2 <u>Communications Network</u> During the helicopter noise measurement test, an elaborate communications network was utilized to manage the various systems and crews. This network was headed by a central group which coordinated the testing using three two-way radio 3ystems, designated as Radios 1-3.

Radio 1 was a walkie talkie system operating on 169.275 MHz, providing communications between the VASI, National Weather Service, FAA Acoustic Measurement crew, the TSC acoustic team coordinator, and the noise test coordinating team.

Radio 2 was a second walkie talkie system operating on 170.40 MHz, providing communications between the TSC acoustic team coordinator and the TSC acoustic measurement teams.

Radio 3, a multi-channel transceiver, was used as both an air-to-ground and ground-to-ground communications system. In air-to-ground mode it provided communications between VASI, helicopter flight crews, and noise test control on 123.175 MHz. In ground-to-ground mode it provided communications between the air traffic control tower (121.9 MHz), Page Avjet (the fuel source) (122.95 MHz), and noise test control.

A schematic of this network is shown in Figure 4.1.

以外的2個數分分子分類數分子分類數分子分類數分子分子類數分子分子的數位在分子的數數分子的

- 4.3 Local Media Notification Noise test program managers working through the FAA Office of Public Affairs prepared an article for release to local media explaining that helicopter noise tests were to be conducted at Dulles Airport during the week of June 13, each test day commencing around dawn and extending through midday. The article described general test objectives, flight paths, and rationale behind the very early morning start time (low wind requirements). In the case of a farm located very close to the airport, a member of the program management team personally visited the residents and explained what was going to be involved in the test. As a consequence of these efforts (it is assumed), there were very few complaints about the test program.
- 4.4 Ambient Noise One of the reasons that the Dulles Runway 30 over-run area was selected as the test site was the low ambient noise level in the area. Typically one observed an A-Weighted LEQ on the order of 45 dB, with dominant transient noise sources primarily from the avian and insect families. The primary offender was the Collinus Virginianus, commonly known as the bobwhite, quail, or partridge. The infrequent intrusive

sound pressure levels were on the order of 55 dB within the 2000 Hz one-third octave band.

では、100mmでは、100mmでは、100mmではなどのできた。100mmではないでは、100mmでは

As an additional measure for safety and for lessening ambient noise, a Notice to Airmen or NOTAM was issued advising aircraft of the noise test, and indicating that Runway 12/30 was closed for the duration of the test.

Helicopter Noise Test Communication Network Schematic Figure 4.1

DATA ACQUISITION AND GUIDANCE SYSTEMS

- Data Acquisition and Guidance Systems This section provides a detailed description of the test program data acquisition systems, with special attention given to documenting the operational accuracy of each system. In addition, discussion is provided (as needed) which relates field experiences which might be of help to others engaged in controlled helicopter noise measurements. In each case, the location of a given measurement system is described relative to the helicopter flight path.
- 5.1 Approach Guidance System Approach guidance was provided to the pilot by means of a visual approach slope indicator (VASI) and through verbal commands from an observer using a ballon-tracking theodolite. (A picture of the theodolite is included in Figure 3.1, in Section 3.0.) The VASI and theodolite were positioned at the point where the approach path intercepted the ground.

The VASI system used in the test was a 3-light arrangement giving vertical displacement information within ±0.5 degrees of the reference approach slope. The pilot observed a green light if the helicopter was within 0.5 degrees of the approach slope, red if below the approach slope, white if above. The VASI was adjusted and repositioned to provide a variety of approach angles.

The theodolite system, used in conjunction with the VASI, also provided accurate approach guidance to the pilot. A brief time lag existed between the instant the theodolite observor perceived deviation, transmitted a command, and the pilot made the correction; however, the theodolite crew was generally able to alert the pilot of approach path deviations (slope and lateral displacement) before the helicopter exceeded the limits of the one degree green light of the VASI. Thus, the helicopter only

TABLE 5.1

REFERENCE HELICOPTER ALTITUDES FOR APPROACH TESTS
(all distances expressed in feet)

	MICROPHONE	MICROPHONE	MICROPHONE
	NO. 4	NO. 1	NO. 5
APPROACH ANGLE = 3°	A = 8010 B = 420 C = +70	A = 7518 B = 394 C = +66	A = 7026 B = 368 C = <u>+</u> 62
6°	A = 4241	A = 3749	A = 3257
	B = 446	B = 394	B = 342
	C = ±37	C = <u>+</u> 33	C = <u>+</u> 29
9°	A = 2980	A = 2488	A = 1362
	B = 472	B = 394	B = 316
	C = +27	C = +22	C = ±18

A = distance from VASI to microphone location

B = reference helicopter altitude

C = boundary of the 1 degree VASI glide slope
 "beam width".

occasionally and temporarily deviated more than 0.5 degrees from the reference approach path.

Approach paths of 6 and 9 degrees were used during the test program.

Table 5.1 summarizes the VASI beam width at each measurement location for a variety of the approach angles used in this test.

では、このできないのでは、

5.2 Photo Altitude Determination Systems - The helicopter altitude over a given microphone was determined by the photographic technique described in the Society of Automotive Engineers report AIR-902 (ref. 1). This technique involves photographing an aircraft during a flyover event and proportionally scaling the resulting image with the known dimensions of the aircraft. The camera is initially calibrated by photographing a test object of known size and distance. Measuring the resulting image enables calculation of the effective focal length from the proportional relationship:

(image length)/(object length)=(effective focal length)/(object distance)

This relationship is used to calculate the slant distance from microphone to aircraft. Effective focal length is determined during camera calibration, object length is determined from the physical dimensions of the aircraft (typically the rotor diameter or foselage) and the image size is measured on the photograph. These measurements lead to the calculation of object distance, or the slant distance from camera or microphone to aircraft. The concept applies similarly to measuring an image on a print, or measuring a projected image from a slide.

Figure 5.1
Photo Overhead Positioning System (Pop System)

The SAE AIR-902 technique was implemented during the 1983 helicopter tests with three 35mm single lens reflex (SLR) cameras using slide film. A camera was positioned 100 feet from each of the centerline microphone locations. Lenses with different focal lengths, each individually calibrated, were used in photographing helicopters at differing altitudes in order to more fully "fill the frame" and reduce image measurement error.

The photoscaling technique assumes the aircraft is photographed directly overhead. Although SAE AIR-902 does present equations to account for deviations caused by photographing too soon or late, or by the aircraft deviating from the centerline, these corrections are not required when deviations are small. Typically, most of the deviations were acoustically insignificant. Consequently, corrections were not required for any of the 1983 test photos.

AND THE VALUE OF T

The photographer was aided in estimating when the helicopter was directly overhead by means of a photo-overhead positioning system (POPS) as illustrated in Figure 5.1. A picture of the POP system is also included in the photo collage (Figure 3.1) in Section 3.0. The POP system consisted of two parallel (to the ground) wires in a vertical plane orthogonal to the flight path. The photographer, lying beneath the POP system, initially positioned the camera to coincide with the vertical plane of the two guide wires. The photographer tracked the approaching helicopter in the viewfinder and tripped the shutter when the helicopter crossed the superimposed wires. This process of tracking the helicopter also minimized image blurring and the consequent elongation of the image of the fuselage.

A scale graduated in 1/32-inch increments was used to measure the projected image. This scaling resolution translated to an error in altitude of less than one percent. A potential error lies in the scaler's interpretation of the edge of the image. In an effort to quantify this error, a test group of ten individuals measured a selection of the fuzziest photographs from the helciopter tests. The resulting statistics revealed that 2/3 of the participants were within two percent of the mean altitude. SAE AIR-902 indicates that the overall photoscaling technique has a minimum (at its worst) accuracy of 12 percent which is equivalent to a maximum of 1 d3 error in corrected sound level data. Actual accuracy varies from photo to photo; however, by using skilled photographers and exercising reasonable care in the measurements, the accuracy is good enough to ignore the resulting small error in altitude.

は、一般のでは、これは、これを行うなが、これが、これを行うない。

5.3 Cockpit Photo Data - During each flight operation of the test program, cockpit instrument panel photographs were taken with a 35mm SLR camera, with a 85mm lens, and high speed slide film. These pictures served as verification of the helicopter's speed, altitude, and torque at a particular point during a test event. The photos were intended to be taken when the aircraft was directly over the centerline-center microphone site, site #1 (see Figure 3.3). Although the photos were not always taken at precisely that point, the pictures do represent a typical moment during the test event. The word typical is important because the snapshot freezes instrument readings at one moment in time, while actually the readings are constantly changing by a small amount because of instrument fluctuation and pilot input. Thus, fluctuations above or below reference conditions are to be anticipated. A reproduction of a typical cockpit photo is shown in Figure 5.2. The use of video tape is being considered

for the future tests to acquire a continuous record of cockpit parameters. When slides were projected onto a screen, it was possible to read and record the instrument readings with reasonable accuracy. This data acquisition system was augmented by the presence of an experienced cockpit observor who provided additional documentation of operational parameters.

Figure 5.2

5.4 Upper Air Meteorological Data Acquisition/NWS: Sterling, VA - The National Weather Service (NWS) at Sterling, Virginia provided upper air meteorological data obtained from balloon-borne radiosondes. These data consisted of pressure, temperature, relative humidity, wind direction, and speed at 100' intervals from ground level through the highest test altitude. The balloons were launched approximately 2 miles north of the measurement array. To slow the ascent rate of the balloon, an inverted parachute was attached to the end of the flight train. The VIZ Accu-Lok (manufacturer) radiosonde employed in these tests consisted of sensors

which sampled the ambient temperature, relative humidity, and pressure of the air. Each radiosonde was individually calibrated by the manufacturer. The sensors were coupled to a radio transmitter which emitted an RF signal of 1680 MHz sequentially pulse-modulated at rates corresponding to the sampled meteorological parameters. These signals were received by the ground-based tracking system control circuitry and converted into a continuous trace on a strip chart recorder. The levels were then extracted manually and entered into a minicomputer, and the calculations were performed automatically. Wind speed and direction were determined from changes in position and direction of the "flight train" as detected by the radiosonde tracking system. Figure 5.3 shows technicians preparing to launch a radiosonde.

Figure 5.3

The manufacturer's specifications for accuracy are:

Pressure = +4 mb up to 250 mb

Temperature = +0.5°C, over a range of +30°C to -30°C

Humidity = +5% over a range of 25°C +5°C (20%-96%)

The National Weather Service has determined the "operational accuracy" of radiosonde (a documented in an unpublished report entitled "Standard for Weather Bureau Field Programs", 1-1-67) to be as follows:

Pressure = ± 2 mb, over a range of 1050 - 5 mb Temperature = ± 1 °C, over a range of ± 50 °C to ± 70 °C Humidity = $\pm 5\%$ over a range of ± 40 °C to ± 40 °C (10% to 100%)

The temperature and pressure data are considered accurate enough for our purposes. The relative humidity data are the least reliable. The radiosonde reports lower than actual humidities when the air is near seturation. These inaccuracies are attributable to the slow response time of the VIZ humidity sensor to sudden changes, (Ref. 2).

Surface Meteorological Data Acquisition/NWS: Dulles Airport - The National Weather Service Station at Dulles provided temperature, windspeed, and wind direction on the test day. Readings were noted every 15 minutes. These data are presented in Appendix H. The temperature transducers were located approximately 2.5 miles east of the test site at a height of 6 feet (1.8 m) above the ground, the wind instruments were at a height of 30 feet (10 m) above ground level. The dry bulb thermometer and dew point transducer were contained in the Bristol (manufacturer) HO-61 system operating with + one degree accuracy. The windspeed and direction were measured with the electric speed indicator company F420C System, operating with an accuracy of 1 knot and +5° (maximum).

On-site meterological data were also obtained by TSC personnel using a Climatronics (manufacturer) model EWS weather system. The anemometer and temperature sensor were located 10 feet above ground level at noise site 4. These data are presented in Appendix I. The following table identifies the accuracy of the individual components of the EWS system.

Sensor	Accuracy	Range	Time Constant
Windspeed	+.025 mph or 1.5%	0-100 mph	5 sec
Wind Direction	<u>+</u> 1.5%	0-360° Mech 0-540° Elect	15 sec
Relative Humidity	+2% 0-100% RH	0-100% RH	10 sec
Temperature	<u>+</u> 1.0°F	-40 to +120°F	10 sec

After "detection" (sensing), the meteorological data are recorded on a Rustrak (manufacturer) paperchart recorder. The following table identifies the range and resolutions associated with the recording of each parameter.

Sensor	Range	Chart Resolution
Windspeed	0-25 TSC mod 0-50 mph	+0.5 mph
Wind Direction	0-540°	<u>+</u> 5°
Relative Humidity	0-100% RH	<u>+</u> 2% RH
Temperature	-40° to 120°F	±1°F

5.6.0 Noise Data Acquisition Sytems/System Deployment - This section provides a detailed description of the acoustical measurement systems employed in the test program along with the deployment plan utilized in each phase of testing.

deployed Nagra two-channel direct-mode tape recorders. Noise data were recorded with essentially flat frequency response on one channel. The same input data was weighted and amplified using a high frequency pre-emphasis filter and was recorded on the second channel. The pre-emphasis network rolled off those frequencies below 10,000 Hz at 20 dB per decade. The use of pre-emphasis was necessary in order to boost the high frequency portion of the acoustical signal (such as a helicopter spectrum) characterized by large level differences (30 to 60 dB) between the high and low frequencies. Recording gains were adjusted so that the best possible signal-to-noise ratio would be achieved while allowing enough "head room" to comply with applicable distortion avoidance requirements.

いいと、一角のことにいいない。日本のでは、これには、日本のでは、これには、日本のできないとなっています。

IRIG-B time code synchronized with the tracking time base was recorded on the cue channel of each system. The typical measurement system consisted of a General Radio 1/2 inch electret microphone oriented for grazing incidence driving a General Radio P-42 preamp and mounted at a height of four feet (1.2 meters). A 100-foot (30.5 meters) cable was used between the tripod and the instrumentation vehicle located at the perimeter of the test circle. A schematic of the acoustical instrumentation is shown in Figure 5.4.

Figure 5.4 also shows the cutaway windscreen mounting for the ground microphone. This configuration places the lower edge of the microphone diaphram approximately one-half inch from the plywood (4 ft by 4 ft) surface. The ground microphone was located off center in order to avoid natural mode resonant vibration of the plywood square.

Acoustical Measurement Insert mentation

5.6.2 <u>FAA Direct Read Measurement Systems</u> - In addition to the recording systems deployed by TSC, four direct read, Type-1 noise measurement systems were deployed at selected sites. Each noise measurement site consisted of an identical microphone-preamplifier system omprised of a General Radio 1/2-inch electret microphone (1962-9610) driving a General Radio P-42 preamplifier mounted 4 feet (1.2m) above the ground and oriented for grazing incidence. Each microphone was covered with a 3-inch windscreen.

Three of the direct read systems utilized a 100-foot cable connecting the microphone system with a General Radio 1988 Precision Integrating Soound Level Meter (PISLM). In each case, the slow response A-weighted sound level was output to a graphic level recorder (GLR). The GLRs operated at a paper transport speed of 5 centimeters per minute (300 cm/hr). These systems collected single event data consisting of maximum A-weighted Sound Level (AL), Sound Exposure Level (SEL), integration time 'T), and equivalent sound level (LEO).

The fourth microphone system was connected to a General Radio 1981B Sound Level Meter. This meter, used at site 7H for static operations only, provided A-weighted Sound Level values which were processed using a micro sampling technique to determine LEQ.

All instruments were calibrated at the beginning and end of each test day and approximately every hour in between. A schematic drawing of the basic direct read system is shown in Figure 5.5.

Figure 5.5
Acoustical Measurement Instrumentation

Direct Read Noise Measurement System

このことととの 日本できない こうこう 自然の はんこう はんしゅう かんしん こうしゅう かんしん こうしゅうしゅう しゅうしょう しゅうしゅう しゅうしゅう

- Section 5.6.4), an FAA mobile magnetic tape recording system was deployed at a single measurement site. This system consisted of the identical microphone pre-amplifier system used with the direct read noise measurement equipment described in the previous section. The microphone pre-amplifier system was connected by a 100-foot cable (30.5 m) to a two-channel Nagra IV-SJ magnetic tape recorder. Amplification was provided by an Ithaco model 451 amplifier. Data were recorded simultaneously on both channels in the linear mode. IRIG-B time code synchronized with field time was recorded on the cue channel. A schematic of the accustical instrumentation is shown in Figure 5.6.
- 5.6.4 <u>Deployment of Acoustical Measurement Instrumentation</u> This section describes the deployment of the magnetic tape recording and direct read noise measurement systems.

では、「他のでは、これでは、「他のでは、これでは、「他のでは、」」。「他のでは、」」。「他のでは、「他のでは、「他のでは、「他のでは、「他のでは、「他のでは、「他のでは、「他のでは、「他のでは、「他のでは、」」。「他のでは、「他のでは、「他のでは、「他のでは、」」。「他のでは、「他のでは、「他のでは、「他のでは、」」。「他のでは、「他のでは、「他のでは、」」。「他のでは、「他のでは、「他のでは、」」。「他のでは、「他のでは、「他のでは、」」。「他のでは、「他のでは、」」。「他のでは、「他のでは、」」。「他のでは、「他のでは、」」。「他のでは、「他のでは、」」。「他のでは、「他のでは、」」。「他のでは、」」。「他のでは、「他のでは、」」。「他のでは、「他のでは、」」。「他のでは、」」。「他のでは、「他のでは、」」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。「他のでは、」」」。「他のでは、」」。「他のでは、」」。」」。「他のでは、」」。「他のでは、」」。「他のでは、」」。」」。「他のでは、」」。「他のでは、」」。」」。「他のでは、」」。」」。「他のでは、」」。」」。「他のでは、」」。」」。「他のでは、」」。」」。「他のでは、」」。」」。「他のでは、」」。」」。「他のでは、」」。」」。「他のでは、」」。」」。「他のでは、」」。」」。「他のでは、」」。」。」。「他のでは、」」。」。「他のでは、」」。」。「他のでは、」」。」。「他のでは、」」。」。「他のでは、」」。」。「他のでは、」」。」。」。「他のでは、」」。」。「他のでは、」」。」。」。「他のでは、」」。」。「他のでは、」」。」。」。「他のでは、」」。」。「他のでは、」」。」。「他のでは、」」。」。」。「他のでは、」」。」。」。「他のでは、」」。」。」。「他のでは、」」。」。」。「他のでは、」」。」。「他のでは、」」。」。」。「他のでは、」」。」。「他のでは、」」。」

On the first two days of testing, TSC deployed six magnetic tape recording systems. During the flight operations, four of these recording system were located at the three centerline sites: one system at site 4, one at site 5, and two of the systems at centerline center with the microphone of one of those systems at 4 feet above ground, the microphone of the other at ground level. The two remaining recording systems were located at the two sidelines sites. The FAA deployed three direct read systems at the three centerline sites during the flight operations. Figure 5.7 provides a schematic drawing of the equipment deployment for the flight operations.

Figure 5.6

NAGRA Tape Recorder
Acoustical Measurement Instrumentation

がから、関係があった。2018年のからからのでは、関係のなどのなどは、関係のなどのでは、関係のなどのなどは、関係のなどのでは、100mmのでは、1

In the case of static operations, only four of the six recorder systems were used. The recorder system with the 4-foot microphone at site 1 moved to site 1H. The recorders at sites 4 and 5 moved to 4H and 5H respectively. The recorder at site 2, the south sideline site, was also used. The three direct read systems were moved from the centerline sites to sites 5H, 2, and 4H. The fourth direct read system was employed at site 7H. Figure 5.8 provides a schematic diagram of the equipment deployment for the static operations.

After the second day of testing, the major portion of the program had been completed. Because of a questionable weather outlook and transportation difficulties on the third day, it was determined that the remainder of the test would be conducted using an abbreviated acoustical array. It was deemed sufficient to use the four direct read noise measurement systems and one FAA magnetic tape recording system. The four direct read systems were located at the three centerline sites and site 3, the north sideline site. The magnetic tape recorder was located at site 2, the south sideline site. The deployment of this equipment is shown in Figure 5.9.

Figure 5.7
Wicrophone and Acoustical Measurement
Instrument Deployment
Flight Operations

3@ •

Figure 5.8
Microphone and Acoustical Measurement
Instrument Deployment
Flight Operations on 6-16-83

3⊚€

Figure 5.9

Microphone and Acoustical Measurement
Instrument Deployment
Static Operations

CONSTRUCTION OF A CARRON HONORAN CONTROL OF THE STANDARD CONTROL OF THE STANDA

ACOUSTICAL DATA REDUCTION

- 6.0 Acoustical Data Reduction This section describes the treatment of tape recorded and direct read acoustical data from the point of acquisition to point of entry into the data tables shown in the appendices of this document.
- recordings analyzed at the TSC facility in Cambridge, Massachusetts were fed into magnetic disc storage after filtering and digitizing using the GenRad 1921 one-third octave real-time analyzer. Recording system frequency response adjustments were applied, assuring overall linearity of the recording and reduction system. The stored 24, one-third octave sound pressure levels (SPLs) for contiguous one-half second integration periods making up each event comprise the base of "raw data." Data reduction followed the basic procedures defined in Federal Aviation Regulation (FAR) Part 36 (Ref. 3). The following sections describe the steps involved in arriving at final sound level values.

- 6.1.1 Ambient Noise The ambient noise is considered to consist of both the acoustical background noise and the electrical noise of the measurement system. For each event, the ambient level was taken as the five to ten-second time averaged one-third octave band taken immediately prior to the event. The ambient noise was used to correct the measured raw spectral data by substracting the ambient level from the measured noise levels on an energy basis. This substraction yielded the corrected noise level of the aircraft. The following execptions are noted:
- 1. At one-third octave frequencies of 630 Hz and below, if the measured level was within 3 dB of the ambient level, the measured level was corrected by being set equal to the ambient. If the measured level was less than the ambient level, the measured level was not corrected.

- 2. At one-third octave frequencies above 630 Hz, if the measured level was within 3 dB or less of the ambient, the level was identified as "masked."
- 6.1.2 Spectral Shaping The raw spectral data, corrected for ambient noise, were adjusted by sloping the spectrum shape at -2 dB per one-third octave for those bands (above 1.25 kHz) where the signal to noise ratio was less than 3 dB, i.e., "masked" bands. This procedure was applied in cases involving no more than 9 "masked" one-third octave bands. The shaping of the spectrum over this 9-band range was conducted to minimize EPNL data loss. This spectral shaping methodology deviates from FAR-36 procedures in that the extrapolation includes four more bands than normally allowed.
- 6.1.3 Analysis System Time Constant/Slow Response The corrected raw spectral data (contiguous linear 1/2 second records of data) were processed using a sliding window or weighted running logarithmic averaging procedure to achieve the "slow" dynamic response equivalent to the "slow response" characteristic of sound level meters as required under the provisions of FAR-36. The following relationship using four consecutive data records was used:

のでは、これでは、10mmで

 $L_i = 10 \text{ Log } [0.13(10^{0.1}\text{Li}^{-3}) + 0.21(10^{0.1}\text{Li}^{-2}) + 0.27(10^{0.1}\text{Li}^{-1}) + 0.39(10^{0.1}\text{Li})]$ where L_i is the one-third octave band sound pressure level for the ith one-half second record number.

6.1.4 Bandsharing of Tones - All calculations of PNLTM included testing for the presence of band sharing and adjustment in accordance with the procedures defined in FAR-36, Appendix B, Section B 36.2.3.3, (Ref. 4).

- 6.1.5 Tone Corrections Tone corrections were computed using the helicopter acoustical spectrum from 24 Hz to 11,200 Hz, (bands 14 through 40). Tone correction values were computed for bands 17 through 40, the same set of bands used in computing the EPNL and PNLT. The initiation of the tone correction procedure at a lower frequency reflects recognition of the strong low frequency tonal content of helicopter noise. This procedure is in accordance with the requirements of ICAO Annex 16, Appendix 4, paragraph 4.3. (Ref. 5)
- 6.1.6 Other Metrics In addition to the EPNL/PNLT family of metrics and the SEL/AL family, the overall sound pressure level and 10-dB down duration times are presented as part of the "As Measured" data set in Appendix A. Two factors relating to the event time history (distance duration and speed corrections, discussed in a later section) are also presented.
- 6.1.7 Spectral Data/Static Tests In the case of static operations, thirty-two seconds of corrected raw spectral data (64 contiguous 1/2 second data records) were energy averaged to produce the data tabulated in Appendix D. The spectral data presented is "as measured" at the emission angles shown in Figure 6.1, established relative to each microphone location. Also included in the tables are the 360 degree (eight emission angles) average levels, calculated by both arithmetic and energy averaging.

Note that "masked" levels (see Section 6.1.1) are replaced in the tables of Appendix D with a dash (-). The indexes shown, however, were calculated with a shaped spectra as per Section 6.1.2.

6.2 FAA Direct Read Data Reduction - FAA direct read data was reduced using the Apple IIc microcomputer and the VISICALCO software package. VISICALCO Is an electronic worksheet composed of 256 x 256 rows and columns which can support mathematical manipulation of the data placed anywhere on the worksheet. This form of computer software lends itself to a variety of data analyses, by means of constructing templates (worksheets constructed for specific purposes). Data files can be constructed to contain a variety of information such as noise data and position data using a file format called DIF (data interchange format).

Data analysis can be performed by loading DIF files onto analysis templates. The output or results can be displayed in a format suitable for inclusion in reports or presentations. Data tables generated using these techniques are contained in Appendices C and E, and are discussed in Section 9.0.

- 6.2.1 Aircraft Position and Trajectory A VISICALC® DIF file was created to contain the photo altitude data for each event of each test series for the test conducted. These data were input into a VISICALC® template designated HELO ALT. The template HELO ALT was designed to perform a 3-point regression through the photo altitude data from which estimates of aircraft altitudes could be determined for each microphone location.
- 6.2.2 Direct Read Noise Data HELO NOISE was designed to take as input two VISICALCO DIF files. The first contained the "as measured" noise

levels SEL and dBA obtained from the FAA direct read systems and the 10-dB duration time obtained from the graphic level recorder strips, for each of the three microphone sites.

The second consisted of the estimates of aircraft altitude over three microphone sites. HELO NOISE also performed calculations to determine two figures of merit related to the event duration influences on the SEL energy dose metric. This analysis is described in Section 9.4. All of the available HELO NOISE output templates are presented in Appendix C.

FAA Magnetic Recording Data Reduction - FAA noise data which were recorded on magnetic tape were input into a General Radio 1995 one-third octave analyzer. The analyzer filtered and digitized the data which were in turn imput to a General Radio TDS-20 computer system and stored on an RKO-5 magnetic disc. These data were processed according to the procedures outlined in FAR Part 36 (and detailed in Section 6.1). These processed noise levels consisted of those values belonging to the EPNL/PNLT and SEL/AL families of acoustical metrics.

Figure 6.1

Acoustical Emission Angle Convention

Right Side

TEST SERIES DESCRIPTION

7.0 Test Series Description - The first and core part of the noise measurement/flight test schedule for the Bell 222 included the ICAO noise certification operations (takeoff, approach, and level flyover) supplemented by level flyovers at various altitudes (at a constant airspeed) and at various airspeeds (at a constant altitude). The core test was rounded out by a series of static operations designed to assess helicopter directivity patterns and examine ground-to-ground propagation.

The second part, the elective test program, gave the helicopter manufacturer the opportunity to specify the operational regimes which best embody "Fly Neighborly" concepts. In addition, the manufacturer was invited to specify any other operations which might assist in establishing Fly Neighborly procedures or promote a better understanding of test limitations, acoustical propagation or other phenomena of interest.

Table 7.1 provides a summary of the test dates, test series, and operational description of the tests conducted on the Bell 222. Further information is included in Sections 7.1-7.3, which describe the Bell-222 test schedule by test series, each test series representing a group of similar events. Each noise event is identified by a letter prefix, corresponding to the appropriate test series, followed by a number which represents the numerical sequence of event (i.e., Al, A2, A3, A4, B5, B6). In the case of static operations, data are reported angle-referenced to each individual microphone location (i.e., JJ20, J165, J210, J255, J300, J345, J030, J75). Both Table 7.1 and the following test series descriptions specify "test target" values (provided by Bell Helicopter) for IAS and other parameters. Actual test run values are presented in Appendix F.

TABLE 7.1

TEST SUMMARY

Test Series	Operational Description	Test Date
A	1000' LFO TAS = 123 KTS	June 15
В	500' LFO IAS = 137 KTS	June 15
С	500' LFO IAS = 123 KTS	June 15
α	500' LFO IAS = 110 KTS	June 15
E	500' LFO IAS = 96 KTS	June 15
F	500' INO IAS = 82 KTS	Omitted from Flight Plan
G	700' LFO IAS = 137 KTS	June 16
Н	700' LFO IAS = 123 KTS	June 16
ı	700' LFO IAS = 110 KTS	June 16
J	700' LFO IAS = 96 KTS	Omitted from Flight Plan
к	ICAO T/O	June 14
L	ICAO APP.	June 14
M	6 Deg App IAS = 45 KTS	June 14
N	6 Deg App IAS = 55 KTS	June 14
o	6 Deg App IAS = 75 KTS	June 14
P	6 Deg App IAS = 85 KTS	June 14
Q	Multi Segment APP	June 15, 16
R	Multi Segment APP	June 15
S	Multi Segment APP	June 15
r	12 Deg App IAS = 45 KTS	June 14
υ	12 Deg App IAS = 55 KTS	June 14
v	12 Deg App IAS = 65 ETS	June 14
W	12 Deg App IAS = 75 XTS	June 14
X	Static (Hover-In-Ground- Effect)	June 14
Y	Static (Flight Idle/ Ground Idle)	June 14
Z	Static (Hover-Out-of- Ground-Effect)	June 14

7.1 Test Log for June 14 - The following paragraphs present the test series operational descriptions in chronological order beginning on Tuesday, June 14.

June 14: The test, slated to start at 5:45 am, was delayed due to low visibility. The decision was made to begin testing with static operations. After repositioning the measurement array, the test started at 6:41 am.

Test Series Y: Hover-in-ground effect, skid height approximately 5 feet above ground level. A one minute sample of noise data was acquired for each of eight directivity angles.

Test Series X: Flight Idle/Ground Operations, (skids on ground). Flight idle event numbers are followed by a lower case "a", while ground idle events are followed by a lower case "b", (i.e., X300, X300b). The flight idle operations were conducted with main rotor RPM at 100 percent, while ground idle operations reflected a 67 percent RPM value. A one-minute noise sample was acquired for flight idle RPM for each of eight directivity angles. In the case of ground idle operations, data were acquired for four directivity angles.

Test Series Z: Hover-out-of-ground-effect, skid height approximately 60 feet (18.28 meters). With main rotor RPM at 100 percent, a one-minute sample of noise data was acquired for each of eight directivity angles.

Test Series L: Runs L1, L2, L3, L4, L5, L6. Approach operations, flown on a heading of 120 degrees magnetic, with the helicopter passing over sites 4, 1, and 5 in succession. This series reflects ICAO certification requirements, which call for a 6 degree approach path at a constant target airspeed of 65 knots, (Vy, the speed for best rate of climb).

Test Series M: Runs M7, M8, M9. This series consisted of 6 degree approaches, virtually identical to series L except that a constant target airspeed of 45 knots was used.

Test Series N: Runs N10, N11, N12, N13. This series consisted of 6 degree approaches similiar to those in Series L and M, except that a constant target airspeed of 55 knots was used.

Test Series 0: Runs 014, 015, 016. This series consisted of 6 degree approaches (as above) conducted at a constant target airspeed of 75 knots.

Test Series P: Runs P17, P18, P19. This series consisted of 6 degree approaches (as above) conducted at a constant target airspeed of 85 knots.

Test Series K: Runs K20, K21, K22, K23, K24, K25. This test series reflects ICAO certification takeoff test requirements. All takeoff operations were flown in the 300 degree direction, passing first over site 5, then sites 1 and 4. The airspeed requirement stipulates a constant velocity equal to Vy, which is 65 knots for the Bel1-222.

Test Series T: Runs T26, T27, T28, T29. This test series consisted of 12 degree approaches conducted at a constant target airspeed of 45 knots.

Test Series U: Runs U30, U31, U32. This test series consisted of 12 degree approaches conducted at a constant target airspeed of 55 knots.

Test Series V: Runs V33, V34, V35. This test series consisted of 12 degree approaches conducted at a constant target airspeed of 65 knots.

Test Series W: Runs W36, W37, W38, W39, W40. This test series consisted of 12 degree approaches conducted at constant target airspeed of 75 knots.

This first day of testing ended at 1:15 pm.

7.2 Test Log for June 15. The second day of testing, Wednesday, June 15, began with the same conditions of haze and fog which delayed the previous day's testing. After several false starts and a near cancellation, the test got underway at 1:00 pm. The test event numerical sequence was started over with Number 1, rather than picking up with Number 41, the last number of the first day.

Test Series A: Runs Al, A2, A3, A4, A5, A6. This series consisted of level flyovers at a target altitude of 1000 feet (304.8 meters) above ground level (AGL), at a target airspeed of 123 knots, 90 percent of Vne, the never-exceed velocity. All level flyovers in this test were conducted on a heading of 120 degrees.

Test Series B: Runs B7, B8, B9. This series consisted of level flyovers at a altitude of 500 feet AGL (152.4 meters) at a target airspeed of Vne, 137 knots.

Test Series C: Runs C10, C11, C12, C13, C14, C15. This series consisted of level flyovers at a target altitude of 500 feet AGL, at a target airspeed of 123 knots, 90 percent of Vne.

Test Series D: Runs D16, D17, D18. This series consisted of level flyovers at a target altitude of 500 AGL, at a target airspeed of 110 knots, 80 percent of Vne.

Test Series E: Run El9. Because of the limited time remaining due to late start and increasing air traffic only one event in this series was conducted. This event consisted of a single, level flyover at a target altitude of 500 feet AGL, and a target airspeed of 96 knots.

Test Series Q, R, and S: Runs Q20, Q21, R22, and S23. These three test series were defined as experimental multi-segment approaches. Each event was characterized by a different rate of descent, torque, and airspeed. In some cases there was deceleration taking place during the event.

The second day of testing ended at 2:30 pm.

7.3 Test Log for June 16 - The third day of testing, Thursday, June 16, began, as did the previous two days, hazy with visibility under three miles. After considerable delay the test got under way at about 10:45 am.

Test Series Q: Runs Q24 through Q44. This series represents a continuation of the experimental multi-segment approaches (series Q, R, and S) conducted on the 15th. Section 8.0 includes a discussion of variation in noise levels with approach operation parameters.

Test Series G: Runs G41, G42, G43, G44. This test series was comprised of level flyovers on a heading of 120 degrees at a target altitude of 700 feet AGL and a target airspeed of 137 knots.

Test Series H: This test series was comprised of level flyover in the 120 degree direction at a target altitude of 700 feet AGL and a target airspeed of 123 knots.

Test Series I: Runs I48 and I49. This test series consisted of level flyovers in the 120 degree direction at a target altitude of 700 feet AGL and a target airspeed of 110 knots.

TOTAL MERCANDA COMPANION DE LA CAMBINESSA SENTINGUES DE LA COMPANION DE LA CAMBINA CAMBINA CAMBINA DE LA CAMBINA DEL CAMBINA

The third test day ended at 12:30 in the afternoon.

DOCUMENTARY ANALYSES

- 8.0 Documentary Analyses/Processing of Trajectory and Meteorological

 Data This section contains analyses which were performed to document
 the flight path trajectory and upper air meteorological characteristics
 (as a function of time) during the Bell 222 test program.
- 8.1 Photo-Altitude Flight Path Trajectory Analyses Data acquired from the three centerline photo-altitude sites were processed on an Apple IIe microcomputer using a VISICALC® (manufacturer) electronic spread sheet template developed by the authors for this specific application. The scaled photo-altitudes for each event (from all three photo sites) were entered as a single data set. The template operated on these data, calculating the straight line slope in degrees between the helicopter position over each pair of sites. In addition, a linear regression analysis was performed in order to creat a straight line approximation to the actual flight path. This regression line was then used to compute estimated altitudes and CPA's (Closest Point of Approach) referenced to each microphone location (Note: Photo sites were offset from microphone sites by 100 feet). The results of this analysis are contained in the tables of Appendix G.

である。これでは、10mmのでは、10m

<u>Discussion</u> - While the photo-altitude data do provide a reasonable description of the helicopter trajectory and provide the means to effect distance corrections to a reference flight path (not implemented in this report), there is the need to exercise caution in interpretation of the

data. The following excerpt makes an important point for those trying to relate the descent profiles (in approach test series) to resulting acoustical data.

In our experience, attempts by the pilot to fly down a very narrow VASI beam produce a continuously varying rate of descent. Thus while the mean flight path is maintained within a reasonable degree of test precision, the rate of descent (important parameter connected with blade/vortex interactions) at any instant in time may vary much more than during operational flying. (Ref. 6)

Further, care is necessary when using the regression slope and the regression estimated altitudes; one must be sure that the site-to-site slopes are similiar (approximate constant angle) and that they are in agreement with the regression slope. If these slopes are not in agreement, then use photo altitude data along with the site-to-site slopes in computations.

8.2 Upper Air (500-2000 ft) Meteorological Data - This section documents the coarse variation in upper air meteorological parameters as a function of time for the June 14 test program. The timing delays encountered in conducting the measurement program on June 15 and June 16 led to complications resulting in an absence of upper air data on those two days.

TO A TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTA

The National Weather Service office in Sterling, Virginia provided preliminary data processing resulting in the data tables shown in Appendix H. Supplementary analyses were then undertaken to develop time histories of various parameters over the period of testing for selected altitudes. Each time history was constructed using least square linear regression techniques for the five available data points (one for each launch). The plots attempt to represent the gross (macro) meteorological trends over the test period.

Temperature - Figure 8.1 presents the time history analysis for temperature. In this plot one can observe nearly constant temperatures at 1000 and 2000 feet above ground level with a gradual warming trend at the 500 foot level. It is worth noting that a shallow (2-degree) temperature inversion persisted between 500 and 1000 feet throughout the first four hours of testing. This minor inversion is not considered a significant influence on propagation.

Relative Humidity - In the case of relative humidity, shown in Figure 8.2, one observes a fall off in humidity with 500 and 2000 feet with an increase level at 1000 feet. It is significant to note that the variation in humidity at 500 and 1000 feet over the duration of the test falls within the 45 to 55 percent range. This degree of stability in the

temperature-relative humidity pair results in relatively stable atmospheric absorption characteristic throughout the test. This in turn suggests that atmospheric absorption corrections required in FAR-36 or ICAO Annex 16 (referred to as the Delta-1 correction) would tend to be of similar magnitude for events conducted at different times.

From the perspective of atmospheric absorption, it appears that conditions within the air mass in the test vicinity were typical, relatively stable, and displayed the variations one would expect with the daily summer barn off of surface moisture and the dissipation of the inversion layer.

Wind Vector - The data shown in Figures 8.3 and 8.4 depict the along-track and cross-track wind vector components showing variation as a function of time for the three altitudes considered. In order to assess the head, tail, and cross wind influences on a single event one must first establish the direction of travel. This can be determined by examination of the cockpit data contained in Appendix F. At 500 and 1000 foot altitudes one observes maximum crosswind components (7 to 10 knots) around 7:00 to 8:00 am, with lesser values at other times. It is interesting to note the shift in wind direction between 500 feet and higher altitudes.

Again, during the 7:00 to 8:00 am period, one observes the strongest headwind/tailwind component reaching approximately 10 knots at an altitude of 500 feet. It is interesting to note the very low on-track wind present at altitudes above 500 feet.

Discussion - In the context of a noise measurement/flight test one attempts to avoid so-called anomalous meteorological conditions, (see ref. 3) a concept that is difficult to define. In the initial paragraphs of this section, the topic of atmospheric absorption was addressed, concluding with a statement about the apparent stability in values.

Although the reasons behind the requirement to avoid "anomalous conditions" arose from concerns involved with atmospheric absorption, one might extend the requirement to include concerns for smooth flight, and normal attitudinal operation of the helicopter. While extreme cross wind components and/or strong shifts in wind in the vicinity of the test site might suggest the presence of buffeting or turbulance, it is primarily the pilot's reported ease or difficulty in flying the helicopter which identifies a potential problem. While the data do suggest the presence of variation in wind speed and direction, they do not connote an extreme condition which might lead to concern.

As a final note, the influence of wind on blade-vortex interactions (a strong function) cannot be completely addressed using the data presented in this section. Rather, it is necessary to acquire data virtually concurrent with the flight operations and in very close proximity to the test helicopter. It is anticipated that future tests will employ tethered balloon systems deployed in close proximity to the test area.

Figure 8.1

Figure 8.2

アンプラス 教育の とうしょう 二 国際語 さんりょう アンス かんかいしょう 重要 アンプラン・コード 自動 こくさい コート 手書き てきない しょうし

Figure 8.3
HEAD/TAIL WIND

Figure 8.4 CHOSS WIND

EXPLORATORY ANALYSES AND DISCUSSIONS

9.0 Exploratory Analyses and Discussion - This section is comprised of a series of distinct and separate analyses of the data acquired with the Bell 222 test helicopter. In each analysis section an introductory discussion is provided describing pre-processing of data (beyond the basic reduction previously described), followed by presentation of either a data table or graph(s), or reference to appropriate appendices. Each section concludes with a discussion of salient results and presentation of conclusions.

The following list identifies the analyses which are contained in this section.

- 9.1 Variation in noise levels with airspeed for level flyover operations
- 9.2 Static data analysis: source directivity and hard vs. soft propagation characteristics
- 9.3 Comparison of noise data: 4-foot vs. ground microphones
- 9.4 Duration effect analysis
- 9.5 Analysis of variability in noise levels for two sites equidistant over similar propagation paths
- 9.6 Variation in noise levels with airspeed and rate of descent for approach operations
- 9.7 Variation in noise levels for multi-segment approachs
- 9.8 Analysis of ground-to-ground acoustical propagation for a nominally soft propagation path
- 9.9 Acoustical propagation analysis/discussion of variability

9.1 Variation in Noise Levels with Airspeed for Level Flyover

Operations - This section analyzes the variation in noise levels for level flyover operations as a function of airspeed. Data acquired from the centerline-center location (site 1) TSC recorder system have been utilized in this analysis. All data are "as measured", uncorrected for the minor variations in altitude from event to event.

The data scatter plotted in Figures 9.1 through 9.4 represent individual noise events for each acoustical metric. The line in each plot links the average observation at each target airspeed. The line does not extend to 96 knots as only one data point was available at that speed.

Discussion - The plots show the general trend that can be expected with an increase in airspeed during level flyover operations. It has been observed that as a helicopter increases its airspeed, two acoustically-related events take place. First, the noise event duration is decreased as the helicopter passes more quickly. Second, the source acoustical emission characteristics change. These changes reflect the aerodynamic effects which accompany an increase in speed. At speeds higher than the speed for minimum power, the power required increases with an increase in airspeed. These influences lead to a noise-intensity-versus-airspeed relationship which can be approximated by a parabolic curve. The steep upturn in noise level ge erally observed at higher speeds is a consequence of advancing blade tip Mach number effects, which result in impulsive noise.

Figure 9.5 shows the parabolic nature of data collected for one test helicopter for a series of 500° level flyovers with a indicated airspeed range of 90-150 kts, taken from an earlier series of tests.

In the case of the Bell 222, the noise versus indicated airspeed plots tend to reflect a linear approximation to a parabola, possible due to lower helical tip Mach numbers during its flight regime. It is thought that the Bell 222 data reflect a situation where the parabola has reached its minimum value and has started to turn up; however, the airspeeds and related sdvancing tip Mach numbers have not yet reached the region of steep increases in noise with increased airspeed. Thus, one observes a first order relationship between noise level and airspeed.

BELL 222 500 FT LEVEL FLYOVER DATA

100+

99

97

96

Figure 9.3

Figure 9.4

BELL 222 500' LFO DATA

Figure 9.5 **Helicopter Noise Measurement Data**(June 24, 1980 Ref. Table A.3-2.1)

9.2 Static Operations: Analysis of Source Directivity and Hard vs. Soft

Path Propagation Characteristics - This analysis is comprised of two

principal components. First, the plots shown in Figures 9.6 through 9.9

depict the time averaged directivity patterns for various static

operations for measurement sites located equidistant from the hover point.

The second component involves the fact that one of the two sites lies

separated from the hover point by a hard asphalt surface, while the other

site is separated from the hover point by a soft grassy surface. The

difference in the propagation of sound over the two disparate surfaces is

reflected in the difference between the upper and lower curves in each

plot.

A 2 M S ALL PROPERTY OF THE PARTY OF THE PAR

Time averaged (approximately 60 seconds) data are shown for acoustical emission directivity angles (see Figure 6.1) established every 45 degrees from the nose of the helicopter (zero degrees), in a clockwise fashion.

Data plotted in these figures can be found in Appendix D for microphones 5H and 2.

Discussion - The plots contained in this analysis dramatically portray the highly directive nature of the Bell 222 acoustical radiation pattern for static operations. Further, this analysis reveals a spacially averaged difference of 4 to 6 dB in sound levels for sites located 500 feet from a helipad, with one site over a soft surface and the other over a hard surface. Another significant observation is the marked maximum observed in the radiation pattern off the left side of the helicopter. This increase in noise level is likely associated with the influence of the tail rotor, located on the left side of the tail cone. In each case discussed below, observations concerning noise impact and acceptability are based on consideration of typical urban/community ambient noise

levels and the levels of urban transportation noise sources. In general, the interpretation of environmental impact requires careful consideration of the ambient sound levels in the vicinity of the specific heliport under consideration.

Discussion: Hover in Ground Effect (HIGE) - The HIGE data plot, Figure 9.6, shows the marked left side directivity pattern mentioned above. The sound level values, in the lower to mid 70's for the hard path (at 500 feet), can in some situations present an environmental noise problem. On the other hand, the soft path values range in the mid 60's, values which are less of a concern (for short durations) in an urban environment. The point is that there exists a significant advantage in situating a heliport in a location where noise sensitive areas are separated from the heliport by an acoustically absorbent surface such as grass.

Discussion: Hover Out of Ground Effect (HOGE) - The comments made above certainly apply as well in the case of HOGE, a transitional flight regime, shown in Figure 9.7. The sound level (AL), in the vicinity of 80 dB, are invariably of short duration, being associated with ingress/egress operations.

Figure 9.6

Figure 9.7

Discussion: Flight Idle (FI) - The flight idle operations, shown in Figure 9.8, are of little potential environmental concern (at a distance of 500 feet) over a soft propagation path. Again, the hard path scenario could pose minor concern in certain urban residential situations.

Discussion: Ground Idle (GI) - The ground idle operation, shown in Figure -9, (of limited duration) should cause very little environmental problem at a distance of 500 feet in an urban environment, especially over soft propagation paths. Part of an effective "Fly Neighborly" program is the practice of reducing rotor RPM from FI conditions to GI conditions as quickly as cooling requirements will allow. As implied above, the well-designed heliport will utilize the readily available noise benefit associated with a grassy buffer area whenever possible.

Figure 9.8

Figure 9.9

9.3 Comparison of Measured Sound Levels: 4 Foot vs. Ground Microphones - This analysis addresses the comparability of noise levels measured at different heights above the ground surface. The topic is discussed in the context of noise certification testing requirements. The analysis involves examination of differences between noise levels acquired for ground mounted and 4-ft mounted microphone systems. The objectives of this analysis are as follows: 1) to observe the value and variability of empirical ground/4-ft microphone differences and identify the degree of phase coherence, and 2) to examine the variation with operational configuration.

The data employed in this analysis are from microphone site #1, using TSC magnetic recordings. The mean differences between the ground and four foot microphones are shown in Table 9.1 for seventeen different test series.

In conducting this analysis, our initial assumption was that the ground-mounted microphone experiences phase coherent pressure doubling (a reasonable assumption at the frequencies of interest). At the 4-foot microphone, one would expect to see a lower value, somehwere within the range of 0 to 3 dB, depending on the degree of random verses coherent phase between incident and reflected sound waves. It is also possible to experience phase cancellation between the two sound paths. If cancellation occurs at dominant frequencies, then one is likely to observe noise levels at the 4-foot microphone more than 3 dB below the ground microphon values.

Discussion - It is argued that acquisition of data from ground-mounted microphones provides a cleaner spectrum, closer to the spectrum actually emitted by the helicopter--that is, not influenced by a mixture of constructive and destructive ground reflections. Theoretically, one would be interested in correcting ground-based data to levels expected at 4 feet or vice versa in order to maintain equally stringent regulatory policy. In other words, to change a certification procedure with a limit of 90 dB at a 4-ft. microphone to fit a ground-based microphone test, one theoretically would have to increase the limit 3 dB to maintain equal stringency.

Examination of the results in Table 9.1 show that, most differences do fall between 0 and 3 dB, with some differences on the order of 4 to 5 dB. These results are consistent with theory and suggest that a value of 4 or 5 dB would be appropriate for use in a regulatory revision (as discussed above). It is also interesting to note that the most pronounced differences (greater than 3 dB) occur for test series N, the 55 kt, 6-degree approach operation. Looking ahead to section 9.6, one finds this operation to be a highly impulsive flight regime for the Bell 222.

HELICOPTER: BELL 222

TABLE 9.1

COMPARISON OF GROUND AND 4 FT. (1.2 M) MICROPHONE DATA

			TARGET	DELTA dB = 0	וו ניסוט מאפו	inus (4 Fi.	nit.)
YEST		SAMPLE	ias				
SERIES	OPERATION	SIZE	(KTS)	SEL	AL	EPNL	PNLTM
A	1000' LFO	6	123	2.8	2.4	2.7	2
8	500' LFO	3	137	3.2	3.3	3.i	3.6
C	500' LFO	6	123	3.3	3.4	3.1	3.4
D	500' LFO	3	110	3.4	3.5	3.2	3.7
K	500' LFO	6	65	3.2	3.6	3.2	2.5
L	1CAO T/0	6	6 3	3.1	3.3	2.8	2.4
H	6 DEG APP	3	45	3.7	3.3	4.9	3.4
N	6 DEG APP	4	5 5	5. 1	5.5	4.7	4.6
0	6 DEG APP	3	75	4.7	4.5	NA	4
P	6 DES APP	3	85	3.5	4.4	3	3.3
Ť	12 DEG APP	3	45	4.1	3.8	3.4	2.9
Ü	12 DEB AFP	3	44	2.7	2	2.5	1.6
Ÿ	12 DEB APP	3	65	3.4	3.2	3	2.8
A	12 DEG APP	4	75	3.3	3.1	2.9	2.6
		WEIGHT	ED AVERAGE	3,5	3.5	3.2	3

- 9.4 Analysis of Duration Effects This analysis explores the relationship between the helicopter noise event (intensity) time-history, the maximum intensity, and the total acoustical energy of the event. Our interests in this endeavor include the following:
- 1) It is often necessary to estimate an acoustical metric given only part of the information required.
- 2) The time history duration is related to the ground speed and altitude of a helicopter. Thus any data adjustments for different altitudes and speeds will affect duration time and consequently the SEL (energy metric). Needs to adjust data for these effects often arise in environmental impact analysis around heliports. In addition, the need to implement data corrections in helicopter noise certification tests further warrants the study of duration effects.

の心臓を含みなみの間のである。とは、一般のでは、一般のなどのでは、一般のなどのないない。

Two different approaches have been utilized in analyzing the effect of event 10-dB-down duration on the accumulated energy dose (Sound Exposure Level).

Both techniques are empirical, each employing the same input data but using a different theoretical approach to describe duration influences.

The fundamental question one may ask is "If we know the maximum A-weighted sound level and we know the 10-dB-down duration time, can we with confidence estimate the acoustical energy dose, the Sound Exposure Level?" A rephrasing of this question might be: If we know the SEL, the AL, and the 10-dB-down duration time (DURATION), can we construct a universal relationship linking all three?

both attempts to establish relationships involve taking the difference between the SEL and AL (delta), placing the delta on the left side of the equation and solving as a function of duration. The form which this function takes represents the differences in approach.

In the first case, one assumes that delta equals some constant K(DUR) multiplied by the base 10 logarithm of DURATION, 1 e.,

SEL - AL = K(DUR) X LOG(DURATION)

こうことになったこうとかに、

In the second case, we retain the 10 x LOG dependency, consistent with theory, while achieving the equality through the shape factor, Q, which is some value less than unity i.e., SEL-AL = 10 x LOG(Q X DURATION). In a situation where the flyover noise event time history was represented by a step function or square wave shape, we would expect to see a value of Q equaling precisely onc. However, we know that the time history for typical non-impulsive event is much closer in shape to an isoceles triangle and consequently likely to have a Q much closer to 0.5

Through investigating the characteristics of the shape factor, that is, the variation in Q with ground speed and distance (i.e., Duration) one may be able to derive the expression for the aggregate acoustical radiation pattern such as dipole (R/2), quadrupole (R/4), or monopole. This can be determined by solving the relationship between Q and the ratio (R/J), where J is the value which determines the radiation pattern.

Another possible use of this analytical approach for the assessment of duration effects is in correcting noise certification test data which were acquired under conditions of nonstandard ground speed and/or distance.

Discussion - Each of the noise template data tables lists both of the duration related figures of merit for each individual event (see Appendix C). One immediate observation is the apparent insensitivity of the metrics to changes in operation, and the relatively small variation in the range of metric values, 0.4 to 0.6 in the case of Q, and 6.0 to 8.0 in the case of K(A). Plots have been provided in Figures 9.10, 9.11, and 9.12 which show the variation of both metrics with airspeed for several different operational configurations for the microphone site 1 direct read system. The lack of variation in the parameters suggests that a simple and nearly constant dependency exists between SEL, AL, and log DURATION, relatively unaffected by changes in airspeed, in turn suggesting a consistent time history shape for the range of airspeed evaluated in this test. As SEL increases with airspeed, the increase appears to be related to increase in ALM but mitigated in part by reduced duration time (and a nearly constant K-7).

Another interesting question to ponder is whether or not other helicopter models will have unique values for K and Q different from those for the Bell 222. The implication is that it may be appropriate to develop unique constants for different helicopter models for use in implementing duration corrections.

As mentioned above, it is possible to establish an empirical aggregate acoustical radiation pattern by examining the relationship between Q and the ratio 71/J where J reflects the geometric nature of the radiation pattern. The term empirical aggregate is used in acknowledging the multi-component characteristics of acoustical radiation from rotating airfoils. While the constant J may be of limited use in detailed, first-principal predictive acoustics, there way be uses in many

semi-empirical engineering applications. As is evident, the value of J $(J = \pi/Q)$ determined from this empirical analysis falls between approximately 6 and 8.

では、一般のでは、これをは、これをは、これを表している。これには、これできるとは、これできるとしていることは、

Figure 9.10

Figure 9.11

Figura 9.12

Propagation Paths - This analysis examines the differences in noise levels observed for two sites each located 500 feet away from the hover point over similar terrain. The objective of the analysis was to examine variability in noise levels associated with ground-to-ground propagation over nominally similar propagation paths. The key word in the last sentence was nominally...in fact the only difference in the propagation paths is that microphone lf is located in a slight depression, (elevation is minus 2.5 feet relative to the hover point), while site 2 has an elevation of plus 0.2 feet relative to the hover point. This is a net difference of 2.7 feet over a distance of 500 feet. This configuration serves to demonstrate the sensitivity of ground-to-ground sound propagation on minor terrain variations.

Discussion - The results presented in Table 9.2, 9.3, and 9.4 show the observed differences in time average noise levels for eight directivity angles and the spacial average. It is observed that a difference in noise level occurs (on the order of 3 dB) for the low angle (ground-to-ground propagation scenarios) while the higher angle operation (HOGE - helicopter 30 feet above ground level) reveals a difference of only 1 dB. It may be concluded that vary minor variations in site elevation may lead to differences in the measured noise levels for static operations. While these differences are insignificant in a community noise impact analysis, they would be important in aircraft noise certification.

It is also appropriate to acknowledge possible variation in the acoustical source characteristics. In this analysis, data from microphone site 2 are compared with data recorded at site 1H approximately one minute later.

That is the helicopter rotated 45 degrees every sixty seconds, in order to project each directivity angle; there is a 45 degree separation

possible that the helicopter "aim," based on magnetic compass readings may have been slightly different in each case, resulting in the projection of different intensities and accounting for the observed differences. A final item of consideration is the possibility of shadowing and refraction, discussed in following sections. Regardless of what the mechanisms are which create this variance, one can agree that static operations are prone to many phenomena and often display sound levels highly variant in both direction and time.

TABLE 9.2

COMPARISON OF NOISE VERSUS DIRECTIVITY ANGLES FOR TWO SOFT SURFACES

HELICOPTER: BELL 222

OPERATION: HOVER-IN-GROUND EFFECT

DIRECTIVITY ANGLES (DEGREES)								Lav(360 DEGREE)		
SITE	0	45	90	135	180	225	270	315	ENERGY	ARITH.
المناقبة والمساب	r£8	LEO	FE6	FEO	LEO	LEO	LEQ	LEQ	LEQ	LEQ
OFT 18	61.6	62.2	62	64.7	62.6	63.3	61.8	64.2	62.9	62.8
OFT 2	64.5	64.1	66.6	66.2	66.3	66.2	64.1	69	66.2	65.9
ELTA d9	-2.9	-1.9	-4.6	-1.5	-3.7	-2.9	-2.3	-4.8	-3.3	-3.1

[#] DFLTA dB # (SITE 1H) minus (SITE 2)

TABLE 9.3

COMPARISON OF NOISE VERSUS DIRECTIVITY ANGLES

TWO SOFT SURFACES

HELICOPTER: BELL 222

OPERATION: HOVER-OUT-OF-BROUND EFFECT

DIRECTIVITY ANGLES (DEGREES)						Lar(350 DEBREE)				
SITE	0	45	90	135	180	225	270	315	ENERGY	ARITH.
. - 1 - 2 - 2 - 2 - 2 2 	rea	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEQ	LEG	LEG
0FT 1K	73.4	78.4	73.8	77.4	77.4	76.6	77.4	79.9	77.2	76.8
CFT 2	75.1	75.9	75.8	77.9	76.5	75.4	71.9	77	76	75.7
£LTA d9	-1.7	2.5	-2	5	.9	1.2	5.5	2.9	1,2	5.1

DELTA dB = (SITE 1H) minus (SITE 2)

TABLE 9.4

COMPARISON OF
NOISE VERSUS DIRECTIVITY ANGLES
FOR
TWO SOFT SURFACES

HELICOPTER: BELL 222

OPERATION: FLIGHT TOLE

		DIRECTIVITY ANGLES (DEGREES)						Lav(360 DESREE)		
SITE	0	45	90	135	180	225	270	315	ENEREY	ARITH.
	LEO	LEQ	LEA	LEQ	LEO	LEQ	LEO	LEA	LES	LEO
FT 1H	NA	60.6	59.4	58.7	62.4	58.4	59	58	59.8	59.5
DFT 2	61.2	63.1	61.9	63.2	64.4	61.4	62.4	61.1	62.5	62.3
ELTA de	N i A	-2.5	-2.5	-4.5	-2	-3	-3.4	-3.1	-2.7	-2.8

9.6 Variation in Noise Levels With Airspeed for 6 and 12 Degree Approach
Operations - This section contains an analysis of the variation in noise
Level as airspeed varies for 6 and 12 degree approach angles. The
appropriate "As Measured" acoustical data contained in Appendix A, have
been plotted (uncorrected for the minor differences in altitude) in Figure
9.13 through 9.16. The objective in conducting this analysis is twofold:
first, to evaluate further the realm of "Fly Neighborly" operating
possibilities, and second, to consider whether or not it is reasonable to
establish a range of approach operating conditions as allowable in a noise
certification test.

Discussion - In the approach operational mode, impulsive (banging or slapping) acoustical signatures are a result of the interaction between vortices (generated by the fundamental rotor blade action) colliding with successive sweeps of the rotor blades. As reported in reference 5, maximum interaction occurs at airspeeds in the 50 to 70 knot range, for rates-of-descent ranging from 200 to 400 feet per minute. When the rotor blade enters the vortex region, it experiences local pressure fluctuations and associated changes in blade loading. These perturbations and resulting pressure gradients generate the characteristic impulsive signature

The data plotted in Figure 9.13 through 9.16 demonstrate the noise/airspeed/approach angle relationship for the Bell 222 helicopter. Apparently, certain operational configurations create significantly more noise than others. It is anticipated that each individual helicopter will exhibit its own special characteristics, but generally will remain within the range of parameters discussed above.

Figure 9.13

Figure 9.14

Figure 9.15

Figure 9.16

9.7 <u>Variation in Noise Levels for Multi-Segment Approaches</u> - This section presents a tabular summary of noise levels and operational parameters for the various experimental multi-segment approach operations conducted during the test program.

The data used in this analysis are from the centerline-center location (Mic. 1), four-foot microphone, FAA direct read system (see Appendix C). The analysis involved examination of A-weighted metrics only. In order to provide a direct comparison of noise levels for different operations, it was necessary to normalize noise data to a reference altitude, taken as the mean altitude (250 feet) for the eighteen events examined. A correction factor was also applied to the ten-dB down duration-time values as a further step in the normalization process.

The following equations were used to compute distance normalized noise levels, SEL (Sound Exposure Level) and ALM (Maximum A-weighted Noise Level) respectively presented in Table 9.5.

where ALT_{Ref} is the average altitude for test series Q, which is approximately 250 feet. The propagation constants K_S and K_A have been determined empirically in previous measurement programs to be in the range of 13 to 20 and 20 to 27, respectively, for SEL and ALM. For this analysis K_S and K_A were chosen to be 16 and 23.

Normalizing the 10-dB-down time history for each event (for distance), required a pre-analysis to determine the relationship that exists between the 10-dB-down time history and altitude, for a given range of airspeeds. A regression analysis was performed for constant speed approaches at 6° and 12° approach angles.

It was found that the 10-dB-down time history (duration) can be related to distance (altitude) for the test data examined by the following equation:

$$T(10 \text{ dB}) = K_T(Dist)$$

where K_{T} represents the slope of the regression line through the test data.

This analysis was performed for a target indicated airspeed range of 40-80 kts and resulted in an average $K_T = 0.36$.

Having determined the proportionality constant, the T(10 dB) or 10-dB-down time history of each event was normalized for distance by the following equation.

$$T(10 \text{ aB}) = T(10 \text{ dB})_{AM} + K_T(ALT_{Ref} - ALT_{Test})$$

Table 9.5 shows the results of test series Q having being normalized for distance. The set of operating parameters are displayed to provide the quietest approach by ranking the series by SEL and dBA, where a rank of 1 corresponds to the quietest operating regime.

Discussion - Table 9.5 presents a summary of noise level and operational data, rank ordered from quietest to loudest (based on the SEL metric). It is interesting to note that noise levels span a range of 5 dB, exhibiting a significant openatial for reducing environmental noise impact.

The interpretation of these data requires some caution, as the operational parameters are only coarsely defined (i.e., average descent angles, and instantaneous photo-readings of the instrument panel). While a truly definitive test would require continuous monitoring of the helicopter operational parameters, these results do provide a dramatic demonstration of the potential benefit associated with "Fly Neighborly" operations.

TABLE 9.5

MULTI-SEGNENT APPROACH

ANALYSIS

EVENT	sel Rank #	DBA RANK#	DIST. NORM SEL	DIST. NORM 1 DBA	(10-DB) (SEC)	K(A)	IAS# (KTS)	TORQUE*	ANGLE 5-1	ANGLE 1-4
Q32	1	1	88.3	80.21	15.26	8.6	45	35	19.5	12.4
Q 30	2	2	88.68	81.03	11.65	6.9	48	25	11	15.4
029	3	11	89.31	82.81	۶.32	6.6	80	10	8.2	4.9
Q 26	4	7	89.56	82.08	10.49	7.2	72	10	10.1	8.2
Q41	5	5	89.65	8i .53	13.12	7.3	60	10	19.8	7,9
Q31	6	4	89.71	81.48	15.13	7.2	45	10	20.2	6.2
Q35	7	6	90.17	81.93	12.51	7.5	70	5	12.6	6.7
Q2 7	8	12	90.23	83	10.94	6.9	60	10	12.5	10.4
Q33	9	3	90.28	81.27	13.69	8.1	68	5	16.6	5.4
Q4 0	10	8	90.39	82.17	14.47	7.1	60	10	19.4	12
6 38	11	13	90.61	83.1	10.61	7.3	70	0	12.8	8.7
636	12	10	90.64	82.43	13.08	7.5	65	0	12.2	6.7
Q34	13	9	96.78	82.31	13.63	7.6	60	5	17.8	6
63 9	14	14	91.06	63.36	11.3	7.3	55	1Û	14.6	5.ÿ
928	15	15	91.85	84.27	12.59	7.1	58	10	17.3	10.9
Q 37	16	16	92.14	84.54	11.64	7.3	5 5	15	16.4	7.2
925	17	17	92.61	85.75	18.87	6.6	79	25	8.7	6.3
Q24	18	18	93.17	85.29	11.48	7.2	64	30	6.1	4.6

^{*}THESE VALUES ARE INSTANTANEOUS VALUES TAKEN FROM COCKPIT PHOTOS (SEE APPENDIX F).

9.8 Analysis of Ground-to-Ground Acoustical Propagation for a Nominally

Soft Propagation Path - This analysis involves the empirical derivation of

propagation constants for a nominally level, "soft" path, a ground surface

composed of mixed grasses. As discussed in previous analyses, the several

physical phenomena involved in the diminution of sound over distance makes

it necessary to draw upon all pertinent theory to explain the various

results obtained.

A-weighted Leq data for the four static operational modes HIGE, HOGE, Flight Idle, and Ground Idle have been analyzed in each case for eight different directivity angles. Data from sites 2 and 4H have been used to calculate the propagation constants (K) as follows:

K = (Leq(site) - Leq(site 4))/Log (2/1)
where the Log (2/1) factor represents the doubling of distance
dependency (Site 2 is 492 feet and site 4H is 984 feet from the hover
point).

For each mode of operation, the average (over various directivity angles) propagation constant has also been computed.

The data used in this analysis (derived from Appendix D) are displayed in Table 9.6 and the results are summarized in Table 9.7.

At first glance the results may appear somewhat distressing and inconsistent. However, upon consideration of the change in spectral content between different operational scenarios, one may approach a degree of understanding. The following paragraphs attempt to interpret the trends we observe.

Discussion -

では、他のようには、1982年のことは、1982年の19

HIGE - In the case of HIGE, one observes the aggregate influence of spreading loss, along with the lumped effects of "ground-to-ground attenuation." The potential exists for refraction effects as well, which might result in shadowing or focusing of sound. In the case of HIGE, there appears to be a high rate of attenuation which reflects a grouping of these effects.

HOGE - In the case of HOGE, several changes take place. First, the helicopter is at an altitude of approximately 30 feet above ground level, resulting in less tendency for excess ground attenuation. Secondly, the frequency spectra shift toward a greater dominance of low frequency components. It is seen that the rate of attenuation, described by the propagation constant, is much less than in the case of HIGE operations in a ground-to-ground propagation mode.

Flight Idle - In the case of the flight idle operation, one observes a rate of attenuation somewhat higher than in the case of ground idle. It can be speculated that as the frequency content becomes richer in low frequency components the effects of refraction are diminished. The average K, 22.3 for this operation, falls in the range one might expect for the presence of spherical spreading and atmospheric absorption.

Again, it remains a matter of speculation to decide what particular effects are dominant in this scenario.

The mercurial nature of ground-to-ground propagation of helicopter noise is very evident from examination of the results presented and discussed

above. The primary information value of these results can perhaps be summarized as follows:

- 1. The rate of diminution in sound will vary with operational mode.
- The influence of temperature inversions, typically encountered early on summer mornings, is significant on surface propagation of sound (giving rise to strong refraction effects).
 - An axiom to this observation is the need to avoid early morning noise assessment/flight testing of helicopters in the static operational modes.
- 3. While the issue of selecting a representative ground-to-ground attenuation value to use in conducting environmental noise impact analyses remains unresolved, considerable research in this area continues.

が会議である。 では、これでは、これでは、これでは、これでは、日本のでは、日本

TABLE 9.6

AND CONTROL OF THE PROPERTY OF

DATA UTILIZED IN COMPUTING EMPIRICAL PROPAGATION CONSTANTS (K)

_		
м	-11	~~~

6-14-83

SITE 4H--HOVER DATA

HI 6E		HOSE		FLT. IDLE		end. IDLE		
Y-9	71.1	Z-0	73.8	X-OA	69.3	X-0B	55.5	
Y-315	72.2	2-315	74,3	X-315A	67.9	<i>X</i> −2708	55.5	
Y-270	71.3	Z -270	71.1	X-270A	68.2	X-180B	55.1	
Y-225	73.7	2-225	73.4	X-225A	68.6	X-90B	58.5	
Y-180	71.8	Z-180	75.3	X-180A	70.8			
Y-135	72.3	2-135	75. 7	X-135A	69.1			
Y-90	71.8	Z-90	73.8	X-90A	68.5			
Y-45	70	2-45	72.8	X-45A	69.3			

BELL 222

6-14-83

SITE 2--HOWER DATA

HIGE		H06E		FLT. IDLE		GNO. IDLE	
Y-0	81.7	2-0	76	X-OA	61.5	X-08	50.9
Y-315	86.3	Z-315	78	X-315A	61.1	X-270B	52.3
Y-270	82.8	Z-270	71.6	X-180A	62.4	X-180B	50.8
Y-225	85	7-225	75.7	X-135A	64	X-90B	53.9
Y-160	84.2	Z-160	76.7	X-90A	62.4		
Y-135A	84.8	Z-135	77.9	X-45A	63.4		
Y-90A	85.4	Z-90	75.9				
Y-45	83	7-45	76.3				

TABLE 9.7
EMPIRICAL PROPAGATION CONSTANTS (K)

	K	K	K	<u> </u>
Emission Angle	HIGE	HOGE	FLT IDLE	GND IDLE
0°	35.3	7.3	26.0	15.3
315°	47.0	12.3	22.7	
270°	38.3	1.7		10.7
225°	37.7	7.7		
180°	41.3	4.7	28.0	14.3
135°	41.7	7.3	17.0	
90°	45.3	7.0	20.3	15.3
45°	43.3	11.7	19.7	
	41.0			
AVERAGE	41.2	9.1	22.3	13。9

approach and takeoff operations provided the opportunity to assess empirically the influences of spherical spreading and atmospheric absorption. Through utilization of both noise and position data at each of the three flight track centerline locations (microphones 5, 1, and 4), it was possible to determine air-to-ground propagation constants.

The propagation constants (one would expect) would reflect the aggregate influences of spherical spreading and atmospheric absorption. It is assumed that the acoustical source characteristics remain constant as the helicopter passes over the measurement array. In the case of a 60-knot approach or takeoff, a helicopter would require approximately 10 seconds to travel the distance between measurements sites 4 and 5.

In both the case of the single event intensity metric, AL, and the single event energy metric, SEL, the difference between SEL and AL is determined for each pair of centerline sites. The delta in each case is then equated with the base ten logarithm of the respective altitude ratio multiplied by the propagation constant (either KP(AL) or KP(SEL), the values to be determined.

Discussion - The results of this analysis, shown in Table 9.8, are consistent only in their inconsistency, that is to say ...the values one observes for KP(AL) vary over a range which clearly demonstrates that the initial assumption of the analysis is invalid.

While this analysis fails to provide insight into nominal propagation characteristics of the atmosphere, it does succeed in identifying an interesting phenomenon: the time variant nature of helicopter noise for a nominally steady flight configuration. In order to examine this apparent anomaly, level flyover data have been examined for the three centerline

microphone locations. (See Table 9.9) The standard deviation (AL_M) has been computed for individual events across the three centerline sites. The average standard deviation has been determined for each test series.

It can be seen that the site-to-site variation in noise levels for the level flyover mode of operation is very small, averaging less than 0.5 dB. At this point it appears that the variation observed in the approach operational mode may be characteristic of that mode of flight. In order to assess further this possibility, an analysis was undertaken to determine propagation constants for approach data acquired in a 1980 FAA test (Ref. 7). This analysis, shown in Table 9.10, again reveals wide variation in computed propagation constants for the approach operation. It can be concluded that the extreme sensitivity of the approach operation to micro-meteorological effects and pilot technique makes it difficult to assume "constant source characteristics" (necessary for the highly sensitive propagation analysis) for an entire data run. However, from the standpoint of noise certification, which requires a sample of six events, the observed variation in noise levels (typically less than 1.5 dB) is not considered excessive.

TABLE 9.8 PROPAGATION CONSTANT ANALYSIS

6 Degree Approach/Target IAS = 65 kts

EVENT NO.	K (AL _M)				
Ll	14.8				
L2	11.6				
L3	12.7				
L4	17.1				
L5	12.8				
L6	10.6				
	Avg = 13.3				
	$\ddot{\sigma}$ = 2.3				

6 Degree Approach/Target IAS = 45 kts

EVENT NO.	K (AL _M)			
M7	-26.4			
M8	25.2			
м9	-3.8			
	Avg = -1.67			
	O = 25.87			

6 Degree Approach/Target IAS = 55 kts

EVENT	NO.	K	(ALM)
N10			30.6
NII			21.3
N12			6.1
N13			10.2
		Α·	/g = 17.1
			$\sigma = 11.08$

6 Degree Approach/Target IAS = 75 kts

EVENT	NO.	K (AL _M)	
014		13.0	
015		6.5	
016		15.7	
		Avg = 11.7	
		$\tilde{\mathbf{O}} = 4.73$	

12 Degree Approach/Target IAS = 45 kts

EVZNT	NO.	K (AL _M)
T27		25.5
T28		25.2
T29		15.5
		Avg = 22.1
		Ö = 5.69

12 Degree Approach/Target IAS = 55 kts

EVENT	NO.	K (AL _M)	
U30	•	28	
U31		14.2	
Ų32		22.6	
		Avg = 21.5	
		` Ŏ = 6.95	

リストの動物により合われたと言語でしたとう人ととは言語にい

12 Degree Approach/Target IAS = 65 kts

EVENT NO.	K (AL _M)	
V3 3	18.9	
V 34	17.5	
V35	18.3	
	Avg = 18.2	
	Ō = . 70	

12 Degree Approach/Target IAS = 75 kts

EVENT NO.	K (AL _M)
W36	20.2
W37	17.6
W38	20
W39	NA
W40	19.9
	Avg = 19.4
	$\sigma = 1.22$

TABLE 9.9
SITE-TO-SITE VARIATION IN LEVEL FLYOVER NOISE LEVELS

500 FT IAS = 137	Kt8
-------------------	-----

	${\tt L}_{\sf AM}$	L _{AM}	L _{AM}		
EVENT	150M	CENTERLINE	150M	3 MIC	3 MIC
NO.	EAST MIC	CENTER MIC	WEST MIC	AVG	STD DEV
В7	79.3	79.3	79.0	79.2	•17
B8	81.9	82.0	81.0	81.6	•55
B9	81.4	81.5	81.4	81.4	•06
					$\overline{AVG} = 0.26$
		500 F	r IAS = 123 k	tts	
C10	80.1	79.8	80.2	80.0	•21
C11	79.2	79.7	78.9	79.3	•40
C12	79.6	79.9	79.9	79.8	•17
C13	81.4	81.2	80.8	81.1	•31
C14	79.7	79.6	79.4	79.6	•15
C15	79.0	79.0	78.6	78.9	.23
					$\overline{AVG} = 0.25$
		500 F	r IAS = 110 k	ts	
D16	78.1	78.9	78.1	78.4	•46
D17	78.4	78.6	77.6	78.2	•53
D18	78.6	78.5	77.5	78.2	.61
					$\overline{AVG} = 0.53$
		1000'	FT IAS = 123	kts	
Al	72.2	72.7	71.7	72.2	•50
A2	71.1	70.8	70.5	70.8	.30
A3	71.1	71.5	71.0	71.2	•26
<u>A</u> 4	70.7	71.4	70.0	70.7	.70
A5	72.1	71.0	70.0	71.0	1.05
A6	73.2	72.6	72.7	72.8	•32
					AVG = .52

TABLE 9.10

PROPAGATION CONSTANT ANALYSIS FOR APPROACH OPERATION

(DATA FROM REFERENCE 6)

		UH60A	Si	lte 2	-3	
EVENT	NO.		K			
16			9.2			
17		8.3				
18			3.3			
19			3.3			
20		30.0				
21			8.0			
22			3.3			
23			6.7			
24			5.0			
			VC =	22.2		
			*	8.1		
	S7	6 100%	Main	Roto	r RPM	
34		3	8.3			
36			4.2			
40			5.0			
42			3.3			
44			NA	No	Tracking	Data
54			2.5			
56		4	0.0			
		Ā	VG =	37.2		
			=	9.8		
			A-1 09)		
24		3	6.7			
26			4.2			
28			9.2			
32			8.3			
34			5.0			
36			7.5			
38			5.8			
40			0.8			
		Ā	VG =	30.9		

= 10.4

REFERENCES

- "Determination of Minimum Distance from Ground Observor to Aircraft for Acoustic Tests," Aerospace Information Report 902, Society of Automotive Engineers, May 15, 1966.
- Richner, Hans and Peter Phillips, "Reproducibility of VIZ Radiosonde Data and Some Sources of Air," <u>Journal of Applied Meteorology</u>, 26, November 1980, May 1981.
- 3. "Noise Standards: Aircraft Type and Airworthiness Certification," Federal Aviation Regulations Part 36, Department of Transportation, Washington, D.C., June 1974.
- 4. FAR 36, Appendix B, Section B36.2.3.3.

- 5. "International Standards and Recommended Practices Aircraft Noise," Annex 16, International Civil Aviation Organization, May 1981, Appendix 4, paragraph 4.3.
- 6. Westland Helicopters Limited, via P. R. Kearsey, personal communication, January 1984.
- 7. Cox, C. R., "Helicopter Rotor Aerodynamic and Aeroacoustic Environments," paper at the 4th AIAA Aeroacoustic Conference, Atlanta, GA, October 1977.

APPENDIX A

Magnetic Recording Acoustical Data and Duration Factors for Flight Operations on June 14 and 15

This appendix contains magnetic recording acoustical data acquired during flight operations on June 14, and 15, 1983. A detailed discussion is provided in section which describes the data reduction and processing procedures. Helpful cross reference include, measurement location layout, Figure 3.3; measurement equipment schematic, Figure 5.4; and measurement deployment plan, Figure 5.7. The magnetic recording data for June 16 are contained in Appendix B. Tables A.a and A.b which follow below provide the reader with a guide to the structure of the appendix and the definition of terms used herein.

TABLE A.a

1-1.

1

The key to the table numbering system is as follows:

Α.

Appendix No
Helicopter No. & Microphone Location
Page No. of Group

Table No. A.5-X.X, where the number 5 represents the Bell 222 helicopter.

Microphone No.

Table No.

- 1 centerline-center
- 1G centerline-center(flush)
- 2 sideline 492 feet (150m) south
- 3 sideline 492 feet (150m) north
- 4 centerline 492 feet (150m) west
- 5 centerline feet (188m) east

TABLE A.b

Definitions

A brief synopsis of Appendix A data column headings is presented.

EV	Event Number
SEL	Sound Exposure Level, the total sound energy measured within the period determined by the 10 dB down juration of the A-weighted time history. Reference duration, 1-second.
ALm	A-weighted Sound Level(maximum)
SEL-ALm	Duration Correction Factor
K(A)	A-weighted duration constant where:
	K(A) = (SEL-ALm) + (Log DUR(A))
Q	Time History Shape Factor, where:
	$Q = (10^{0.1}(SEL-ALm) + (DUR(A))$
EPNL	Effective Perceived Noise Level
PNLA	Perceived Noise Level(maximum)
PNL Tm	Tone Corrected Perceived Noise Level(maximum)
K(P)	Constant used to obtain the Duration Correction for EPNL, where:
	K(P) = (EPNL-FNLTm + 10) + (Log DUR(P))
0ASPLm	Overall Sound Pressure Level(maximum)
DUR(A)	The 10 dB down Duration Time for the A-weighted time history
DUR(P)	The 10 dB down Duration Time for the PNLT time history
TC	Tone Correction calculated at PNLTm

Each set of data is headed by the site number, microphone location and test date. The target reference condtions are specified above each data subset.

					BELL	: NO. A.5 222 HELI NOISE LE	COPTER	'A				DOT. 8/2	/TSC 6/83
						S MEASURE							
		SI	TE: 1		CEN	TEXLINE -	- CENTE	}		JUNE 14	,1983		
EV	SEL	ALa	SEL-ALD	K(A)	Q	EPNL	PHL	PNLT	K(P)	GASPL	DUR(A)	OUR(P)	TC
12 DEG	REE API	RUACH	TARGE	T IAS 4	SKTS.								
127 128 129	93.0 91.9 93.1	85.4 85.3 84.4	7.5 6.6 8.7	7.2 4.8 6.8	0.5 0.2 0.4	97.2 96.0 97.4	98.7 98.7 97.9	99.4 99.5 98.7	7.4 6.0 6.8	96.8 97.0 96.9	11.0 23.5 19.0	11.5 12.0 19.0	0.9 1.0 0.8
Avg. Std Dv 90% C		85.0 0.5 0.9	7.6 1.0 1.7	6.3 1.3 2.2	0.4 0.2 0.3	96.9 0.7 1.2	98.4 0.5 0.8	99.2 0.5 0.8	6.7 0.7 1.1	96.9 0.1 0.1	17.8 6.3 10.7	14.2 4.2 7.1	0.9 0.1 0.2
12 DE6	GREE AP	PROACH	TARGE	T IAS S	iskts.								
U30 U31 U32	82.1 90.1 89.9	79.5 80.0 82.6	8.5 10.1 7.3	7.0 7.9 6.9	0.4 0.5 0.5	93.2 95.1 95.2	94.3 94.6 97.4	95.2 95.4 98.3	6.8 7.8 6.6	94.4 93.4 96.1	16.5 19.0 11.5	15.5 18.0 11.0	0.9 0.8 1.0
Avg. Std D 90% C	89.4 v 1.1 i 1.9	80.7 1.7 2.8	8.6 1.4 2.4	7.3 0.5 0.9	0.5 0.1 0.1	94.5 1.1 1.8	95.4 1.7 2.9	96.3 1.8 3.0	7.0 0.6 1.1	94.6 1.3 2.3	15.7 3.8 6.4	14.8 3.5 6.0	0.9 0.1 0.2
12 DE(gree ap	PROACH	TARGE	T IAS	SSKTS.								
933 934 935	85.2 63.0 87.1	80.2 79.9 81.4	8.1	7.6 7.3 7.0	0.6 0.5 0.5	93.3 93.4 94.3	95.1 94.7 96.1	95.8 95.5 97.0	7.3 7.3 6.9	94.7 94.2 95.1	11.5 13.0 13.0	10.5 12.0 11.5	0.7 0.8 0.8
Avg. Std D 90% C	88.4 v 0.6 I 1.0	80.5 0.8 1.3	0.2	7.3 0.3 0.5	0.5 0.0 0.1	93.7 0.6 0.9	95.3 0.7 1.2	96.1 0.8 1.3	7.2 0.2 0.4	94.7 0.4 0.7	12.5 0.9 1.5	11.3 0.8 1.3	0.8 0.1 0.1
12 DE	gref af	PROACH	TARGE	T ias	75KTS.								
W36 W37 W38 W40	87.9 88.2 88.0 87.7	79.6 80.5 80.0 79.6	7.7 7.9	7.2 7.2 7.3 7.0	0.5 0.5 0.5 0.4	92.6 93.4 93.1 92.3	94.1 95.4 94.7 93.9	95.1 96.3 96.0 94.6	7.0 6.9 6.9 6.8	94.0 94.4 94.9 94.2	14.5 11.5 12.0 14.5	10.5 10.5	0.9 1.0 1.3 0.8
Avg. Std D	87.9 by 0.2	79.9 0.4 0.5	8.0 8.3	7.2 0.2 0.2	0.5 0.0 0.0	92.8 0.5 0.5	94.5 0.7 0.8	95.5 0.8 0.9	6,9 0.1 0.1	94.4 0.4 0.5	13.1 1.6 1.9	11.6	1.0 0.2 0.2
# -	- Moise For ti	indexe Enperay	es Calicul Ure, Hunii	ATED US	SING HEA	SURED DA' FT DEVIA	ta unco	RRECTED OH REF F	FLIGHT T	rack			

TABLE NO. A.5-1.2 BELL 222 HELICOPTER SURMARY MOISE LEVEL DATA

AS HEASURED *

001/TSC 8/26/83

JUNE 14,1983 SITE: 1 CENTERLINE - CENTER EPHL PNLB PHLTM X(P) DASPLA DUR(A) DUR(F) TC ALD SEL-ALD 0 E۷ SEL K(A) 6 DEGREE APPROACH -- TARGET IAS 45KTS. 17.0 22.5 27.5 95.1 94.5 98.2 93.5 16.0 22.5 29.0 1.1 7.6 9.5 10.1 6.3 7.0 6.9 96.3 93.0 94.5 97.1 92.8 6.6 X7 91.8 0.4 88.4 90.0 78.9 79.9 0.4 M8 93.8 0.1 0.4 6.6 119 22.5 6.5 11.0 0.9 0.2 0.3 22.3 5.3 8.9 94.7 2.2 3.7 81.0 2.8 4.7 9.1 1.3 2.2 94.6 1.7 2.8 95.5 2.4 4.1 6.7 0.2 0.4 94.4 90.1 1.7 2.9 0.4 6.8 Avg. Std Dv 90% CI 0.6 0.4 0.0 0.0 6 DEGREE APPROACH -- TARGET IAS 55KTS. 7.0 7.4 6.1 7.2 97.8 96.2 98.6 98.2 98.3 96.6 100.1 97.7 97.4 95.6 97.5 97.5 14.5 15.0 13.0 15.5 14.5 15.0 13.5 14.5 1.1 1.0 0.9 2.4 92.8 92.0 94.0 93.3 84.6 83.4 87.2 84.7 99.4 97.7 101.0 8.2 6.7 0.5 0.5 0.4 7.2 7.2 6.7 N10 Mil 8.6 ¥12 0.5 7.0 N13 100.1 97.0 1.0 1.1 93.0 0.8 1.0 98.2 1.4 1.7 99.6 1.4 1.7 7.0 0.2 0.3 14.5 1.1 1.3 14.4 1.4 97.7 85.0 1.6 1.9 2.1 6.9 0.4 Sta Dv 90% CI 0.9 0.6 0.1 1.1 0.8 TARGET IAS 75KTS. A DEGREE APPROACH 8.2 8.0 8.1 98.9 98.2 98.4 0.4 0.7 0.7 0.6 0.5 0.4 97.5 96.7 96.8 99.4 98.9 99.1 7.5 7.2 7.3 98.8 98.3 97.1 12.0 12.0 14.5 12.0 12.0 11.5 93.1 92.3 92.5 84.9 84.3 84.4 7.6 7.4 7.0 015 016 99.1 0.2 0.3 7.3 0.2 0.3 98.1 0.9 1.5 11.8 0.3 0.5 0.6 0.2 0.3 84.5 0.3 0.6 7.3 0.5 97.0 98.5 12.8 8.1 Avg. Std Dv 90% CI 0.4 0.1 0.3 0.1 0.4 0.4 0.6 6 DEGREE APPROACH -- TARGET IAS 85KTS. 96.8 96.1 96.9 7.4 7.0 6.8 97.6 97.0 97.8 7.0 7.1 7.0 96.4 95.2 96.3 12.5 14.0 11.5 13.5 0.8 0.5 95.0 99.6 8.1 91.0 91.8 83.0 84.4 8.0 7.4 0.5 0.5 95.1 95.5 P18 P19 12.5 0.9 97.5 12.8 12.5 0.9 7.1 0.5 95.2 96.0 83.3 7.8 96.6 Avg. Std Dv 90Z CI 0.3 0.5 0.6 1.0 0.4 0.0 0.1 0.3 0.4 0.4 0.1 0.6 1.0 1.0 0.1

がは、 関係のできた。 できたいできた。 できたいできたが、 できたが、 できたができたが、 できたが、 できたが、 できたができたが、 できたができたが、 できたができたが、 できたができたが、 できたができたが、 できたが、 できたができたが、 できたができたができたができたがでをできたができたができたが、 できたができたができたができたができたができたができ

 ⁻ NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, MUNICITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-1.3

BELL 222 HELICOFTER

SUMMARY NOISE LEVEL DATA

AS NEASURED *

		SI	TE: 1		CENT	ERLINE	- CENTE	R		JUNE 14	,1983		
EV	SEL	ALP	SEL-ALD	K(A)	0	EPAL	PHLa	PHLTS	K(P)	GASPLE	DUR(A)	DUR(P)	TC
6 DE	GREE APPR	oech	- TARGET	1AS 65	KTS. (10	(OA)							
L1 L2 L3 L4 L5 L6	92.8 93.9 94.1 93.4 93.7 94.6	84.2 86.1 86.6 86.3 86.2 87.0	8.6 7.8 7.5 7.1 7.5 7.6	7.5 7.2 7.2 6.7 7.3 7.3	0.5 0.5 0.4 0.5 0.5	97.2 98.3 98.7 98.0 58.1 99.1	98.3 100.2 100.6 100.2 100.3 101.1	99.1 100.8 101.5 100.9 101.1 101.7	7.2 6.9 6.6 7.1 7.3	97.1 99.2 99.9 99.7 99.5 100.2	14.0 12.0 11.0 11.5 10.5 11.0	13.0 12.0 11.0 11.5 9.5 10.5	0.9 0.6 0.9 0.7 0.8 0.7
Avg Std 901	Dv 0.6	86.1 1.0 0.8	7.7 0.5 0.4	7.2 0.3 0.2	0.5 0.0 0.0	98.2 0.7 0.6	1.0 1.0 0.8	100.9 0.9 (.8	7.0 0.2 0.2	99.3 1.1 0.9	11.7 1.3 1.0	11.2 1.2 1.0	0.8 0.1 0.1
TAK	EOFF T	arget i	ias 65kts	. (ICAI	3)								
K20 K21 K22 K23 K24 K25	83.8 83.4 83.6 83.9	73.8 73.8 72.8 74.5 73.5 73.2	10.8 10.0 10.7 9.1 10.5 10.3	7.9 7.6 7.5 7.0 7.6 7.5	0.5 0.5 0.4 0.4 0.5	88.5 88.3 87.8 87.7 87.7 87.5	86.8 87.6 86.4 87.5 86.6 85.6	89.2 89.8 88.5 89.4 86.8 88.0	7.3 6.9 6.6 6.8 7.1 7.1	82.9 84.4 83.6 84.2 82.6 82.1	23.0 20.5 27.0 20.0 24.0 24.0	18.5 17.0 25.5 16.5 19.0 21.0	2.4 2.2 2.3 1.9 2.7
Avg Std 901	. 83.8 Dv 0.4 CI 0.3	73.6 0.6 0.5	10.2 0.6 0.5	7.5 0.3 0.2	0.5 0.0 0.0	87.9 0.4 0.3	86.8 8.0 6.0	89.0 6,7 0.5	7.0 0.3 0.2	83.3 0.9 0.8	23.1 2.6 2.1	19.6 3.3 2.7	2.3 0.3 0.2

^{* -} NOISE INDEXES CLACUALTED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

DOT/TSC 8/26/83

TARLE NO. A.5-1.4 BELL 222 HELICOPTER SUNWARY NOISE LEVEL DATA

AS NEASUKED *

DOT/TSC 8/26/83

SITE. 1 CENTERS INC - CENTER

		Si	TE: 1		CEN	rerline ·	- CENTE	₹		JUNE 15	,1983		
EV	SEL	ALB	SEIALm	K(A)	9	EPNL	PHL	PHLTs	K(P)		DUR(A)	DUR(P)	TC
500 F1	. FLYON	JER	TARGET 14	IS 137K	TS.								
87 88 82	86.5 88.5 88.6	79.3 82.0 81.5	7.2 6.5 7.1	6.9 6.5 6.9	0.5 0.4 0.5	91.1 53.2 93.2	92.5 95.4 95.1	93.7 96.0 96.0	6.8 6.8 6.9	93.4 96.1 96.1	11.0 10.0 10.5	12.5 11.5 11.0	1.4 1.0 0.9
Avg. Std Dv 90% C		80.9 1.4 2.4	6.9 0.3 0.6	6.8 0.2 0.4	0.5 6.0 0.0	92.5 1.2 2.0	94.3 1.6 2.7	95.2 1.3 2.3	6.8 0.1 0.1	95.2 1.6 2.7	10.5 0.5 0.8	11.7 0.8 1.3	1.1 0.2 0.4
500 F	r. FLYON	/ER	TARGET 1	\S 123K	rs.								
C10 C11 C12 C13 C14 C15	87.0 87.7 87.6 86.6 85.7	79.8 79.7 79.9 81.2 79.6 79.0	7.2 7.2 7.8 6.4 7.0 6.7	6.8 6.6 6.8 6.4 6.7 6.5	0.5 0.4 0.4 0.5 0.4	91.7 91.6 92.4 92.4 91.2 90.3	93.6 93.7 93.6 95.2 93.4 92.7	94.3 94.3 94.1 95.8 94.0 93.3	6.4 7.1 6.5 6.5 6.5	94.3 94.2 94.7 95.8 93.8 93.3	11.5 12.5 14.0 10.0 11.0	12.0 13.5 14.5 10.0 12.5 12.0	0.7 0.6 0.6 1.0 0.7 0.6
Avg. Std D 90% C	86.9 v 0.7 i 0.6	79.9 0.7 6.6	7.1 0.5 0.4	6.6 0.2 0.2	0.4 0.0 0.0	91.6 0.8 0.6	93.7 0.8 0.7	94.3 0.8 0.7	6.6 0.3 0.2	94.3 0.8 0.7	11.7 1.4 1.2	12.4 1.5 1.3	0.7 0.2 0.1
500 F	T. FLYO	WER	TARGET I	AS 110	KTS.								
D16 D17 D18	86.0 85.9 86.1	78.9 78.6 78.5	7.1 7.3 7.6	6.4 6.9 6.4	0.4 0.5 0.4	90.3 90.1 90.7	92.5 92.4 92.4	93.1 93.0 93.2	6.5 6.6 6.3	93.0 92.7 92.5	13.0 11.5 15.5	13.0 12.0 15.0	0.6 0.7 0.9
	86.0 v 0.1 i 0.2	78.7 0.2 0.3	0.3	6.6 0.3 0.5	0.4 0.0 0.1	90.4 0.3 0.5	92.4 0.1 0.2	93.1 0.1 0.1	6.5 0.1 0.2	92.7 0.2 0.4	13.3 2.0 3.4	13.3 1.5 2.6	0.7 0.1 0.2
500 F	r. FLYO	VER	TARGET I	AS 96K1	rs.								
E 19	85.2	78.7	6.5	6.1	0.4	89.9	93.2	94.1	5.8	90.6	11.5	10.0	0.9
Avg. Std D 90% C	85.2 1 -	78.7 - -	6.5	6.1	0.4	89.9	93.2	94.1	5.8	90.6	11.5	10.0	0.9 -

⁻ MOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, MUMIDITY, OR AIRCRAFT DEVIATION FRUM REF FLIGHT TRACK

TABLE NO. A.5-1.5

BELL 222 HELICOPTER

SUNKARY NOISE LEVEL DATA

AS MEASURED #

SITE: 1 CENTERLINE - CENTER JUNE 15,1983 E۷ SEL SEL-ALB K(A) Q EPNL. PNLE PHLTs K(P) DASPLm DUR(A) DUR(P) TC ALB 1000 FT. FLYOVER -- TARGET IAS 123XTS. 21.0 25.5 23.5 23.0 26.0 72.7 70.8 71.5 71.4 71.0 72.6 87.2 85.3 85.9 85.9 85.5 86.6 7.4 7.4 7.2 6.8 7.0 98.1 85.9 86.3 85.7 95.9 88.1 22.6 25.5 23.0 23.5 27.0 24.0 83.0 81.7 81.8 81.5 81.5 10.3 10.9 10.3 10.1 10.6 10.0 86.9 85.7 85.7 85.2 85.4 86.2 84.2 84.9 84.8 84.6 85.9 1.0 1.1 1.1 机配品品品 7.6 7.6 7.4 7.4 7.3 0.5 0.5 0.4 0.4 1.1 0.9 0.7 10.4 0.3 0.3 85.8 0.7 0.6 85.1 0.8 0.6 Avg. 82.0 Std Dv 0.6 90% Cl 0.5 71.7 0.8 0.7 7.2 0.2 0.2 86.7 1.1 0.9 24.2 1.8 1.5 23.8 2.0 1.9 1.0 0.2 0.1 7.5 0.2 0.2 0.0 0.0 86.1 0.7 0.6 APPROACH -- MULTI-SEG. 1 921 100.1 7.5 7.5 90.3 0.5 99.2 100.1 6.0 0.9 84.8 5.5 6.3 100.1 Avg. Std Dv 90% CI 90.3 84.8 5.3 6.3 0.5 95.4 99.2 100.1 6.0 7.5 7.5 0.9 APPROACH -- MULTI-SEG. 2 R22 90.3 83.4 6.9 6.9 0.5 95.8 98.6 99.4 6.7 99.1 10.0 9.0 0.8 99.4 Avg. Std Dv 90% CI 90.3 83.4 6.9 6.9 0.5 95.8 98.6 6.7 99.1 10.0 9.0 8.0 APPROACH -- MULTI-SEG. 3 6.9 101.8 102.7 98.8 **S23** 94.7 87.9 6.9 0.5 99.6 6.7 10.0 10.5 0.9 Avg . Std Dv 902 CT 87.9 4.9 5.0 0.5 97.6 101.8 102.7 6.7 ¥.8Ÿ 10.0 10.5 0.9

00T/TSC 8/26/83 12日 とはなるのではなる。 はしてんかん かんかん こうし

NOISE INDEXES CALCULATED USING HEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

SUMMARY NOISE LEVEL DATA

AS MEASURED *

に重要が対対の重要というには関係が

SITE: 16 CENTERLINE-CENTER (FLUSH) JUNE 14,1983 E۷ SEL ALm SEL-ALm K(A) Q EPNL PNLB PNLTm K(P) DASPLm DUR(A) DUR(P) TC 12 L'EGREE APPROACH -- TARGET LAS 45KTS. 101.9 101.3 101.2 10.5 18.5 19.0 89.3 88.7 0.5 100.6 100.1 102.6 101.9 7.5 6.4 100.0 99.0 1.0 T27 96.8 96.7 7.5 8.0 7.3 6.3 6.3 11.5 19.0 19.0 128 129 99.0 96.6 88.5 100.1 101.8 0.3 0.6 6.7 100.3 Avg. 96.7 Std Dv 0.1 90% Cl 0.1 101.4 99.3 16.5 88.8 0.4 102.1 6.8 16.0 0.3 0.4 0.4 0.3 0.5 0.1 4.3 0.2 0.4 0.6 0.6 4.8 8.0 1.0 12 DEGREE APPROACH -- TARGET LAS SSKTS. 7.3 0. 7.7 0 NO DATA 0.5 0.5 97.3 98.4 91.3 93.0 82.3 83.1 9.1 9.8 96.1 97.8 96.5 7.2 7.3 96.0 U31 U32 19.0 97.9 0.7 3.3 96.9 0.7 2.9 Avg. 92.1 Std Dv 1.2 90% CI 5.2 9.4 0.5 2.5 7.5 0.3 1.3 0.5 97.0 7.2 0.1 0.5 96.2 0.3 1.3 18.0 82.7 18.2 1.0 0.6 1.1 5.1 0.2 0.0 1.1 1.4 12 DEGREE APPROACH -- TARGET IAS 65KTS. IAS V33 V34 83.2 83.0 8.1 8.2 7.5 6.9 7.1 0.5 96.3 96.0 98.1 97.1 99.2 99.1 97.9 97.9 97.5 91.3 91.2 7.1 7.1 7.1 10.5 14.5 1.0 V35 92.8 84.9 8.0 0.5 97.7 99.8 99.5 0.6 7.1 0.3 0.5 8.1 0.5 96.7 Avg. 91.8 Std Dv 0.9 90% CI 1.6 83.7 98.1 98.9 7.1 98.3 13.7 12.7 0.9 1.0 0.1 0.9 1.5 1.1 0.0 1.1 1.8 2.0 3.4 0.2 0.1 1.0 1.6 12 DEGREE APPROACH -- TARGET IAS 75KTS. 95.5 96.2 95.9 95.2 97.2 99.1 99.2 96.9 97.5 97.7 98.2 97.7 82.4 63.7 83.5 82.5 7.5 6.9 7.0 7.3 96.4 98.2 98.1 96.3 7.3 6.8 6.5 7.0 14.5 14.0 12.5 13.5 11.5 11.0 15.0 8.7 7.9 7.7 0.9 0.9 1.1 0.5 91.6 91.3 90.9 0.4 0.5 0.5 ¥37 **₩38 440** 0.6 98.1 1.2 1.4 Avg. 91.2 Std Dv 0.3 90% Cl 0.3 83.0 0.7 8.2 0.4 0.5 7.2 6.3 95.7 0.5 97.2 1.0 1.2 6.9 0.4 97.8 0.3 13.9 12.7 1.8 2.2 0.9 0.5 0.0

0.0

0.8

0.5

DOT/TSC 8/19/83

⁻ NGISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, MUNIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

RELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 16 CENTERLINE-CENTER (FLUSH) JUNE 14,1983 E۷ SEL ALM SEL-ALM K(A) **EPNL** PNLTB K(P) DASPL DUR(A) DUR(P) CT 6 DEGREE APPROACH -- TARGET IAS 45KTS. 95.1 91.6 8.7 19.0 19.0 **M**7 86.4 99.7 97.7 0.7 0.4 100.4 96.0 99.3 96.6 99.6 0.5 H8 98.1 0.6 19 94.8 10.0 6.8 6.7 99.7 29.0 0.4 9.5 0.7 1.2 22.3 5.8 9.7 Avg. Std Dv 90% Ci 93.8 0.4 98.3 98.9 6.7 98.5 29.0 0.6 2.0 1.9 3.2 0.5 0.1 2.0 3.4 1.0 0.1 0.1 6 DEGREE APPROACH -- TARGET IAS 55KTS. 90.5 89.3 91.6 7.8 8.2 6.9 102.9 101.5 102.9 102.0 102.8 15.5 16.5 13.5 N10 98.3 97.5 98.5 103.7 102.8 104.3 103.4 16.0 17.0 0.4 7.1 0.4 6.8 6.1 N11 N12 6.6 0.6 103.0 NO DATA N13 104.2 0.8 1.3 102.4 0.8 1.4 103.7 0.9 1.5 102.6 0.5 0.8 15.2 1.5 2.6 58.1 0.5 0.9 90.5 1.1 1.9 7.7 6.5 0.3 0.5 0.4 0.0 0.0 6.8 0.3 16.3 0.7 Avg. Std Dv 90% CI 0.7 0.2 6 DEGREE APPROACH -- TARGET IAS 75KTS. 014 NO DATA 8.3 8.0 ND DATA 0.6 015 97.3 89.0 102.7 103.1 102.6 11.0 0.5 016 102.6 97.3 8.3 0.8 102.7 Avg. Std Dv 90% CI 0.6 103.1 11.0 0.5 6 DEGREE APPROACH -- TARGET IAS 85KTS. 100.4 99.3 100.9 86.9 87.2 89.1 7.1 7.2 6.1 0.4 0.5 0.5 7.0 7.1 6.9 100.4 11.5 11.5 9.0 11.5 12.5 10.5 100.9 94.5 95.2 8.8 6.4 98.1 98.3 100.3 1.0 P18 99.6 P19 Avg. 94.6 Std Dv 0.6 90% CI 1.0 6.6 0.2 0.4 0.7 0.3 0.5 6.8 0.5 98.2 100.2 100.8 7.0 99.7 10.7 11.5 1.2 1.0 0.0 0.8 0.5 0.8 0.1 0.1 1.4 0.6 0.6

DOT/TSC 8/24/83

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

BELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 16 CENTERLINE-CENTER (FLUSH) JUNE 1

JUNE 14,1983

			161 40		OLKIL	MEINE OF		LUUIII	01		20		
EV	SEL	ALB	SEL-AL	K(A)	6	EPNL	PNL	PNLT	K(P)	DASPL		OUR(P)	TC.
6 DEG	REE APPF	ROACH -	- TARGET	IAS 65	KTS. (I	CAO)							
L1 L2 L3 L4 L5 L6	95.2 97.0 96.7 96.9 97.0 98.0	86.5 90.2 89.4 89.9 89.6 90.6	8.7 6.8 7.3 7.0 7.3 7.5	7.2 6.1 6.8 6.6 7.0 6.8	0.5 0.4 0.4 0.5 0.5	99.5 101.2 100.9 101.2 101.1 102.3	100.0 103.4 102.8 103.2 102.9 104.0	101.0 104.0 103.3 103.7 103.2 104.5	7.4 6.4 6.9 6.9 7.1 7.0	99.4 101.8 101.8 102.6 102.3 102.9	16.0 13.0 12.0 11.5 11.0 12.5	14.0 13.5 12.5 12.5 12.5 13.0	1.0 0.5 0.5 0.5 0.3
Avg. Std 0 90% C		89.4 1.4 1.2	7.4 0.7 0.5	6.8 0.4 0.3	0.4 0.0 0.0	101.0 0.9 6.7	102.7 1.4 1.1	103.3 1.2 1.0	7.0 0.3 0.3	101.8 1.2 1.0	12.7 1.8 1.5	13.0 0.6 0.5	0.5 0.3 0.2
TAKEC	FF T	ARGET !	IAS 65KTS	. IAS (ICAO)								
K20 K21 K22 K23 K24 K25	87.2 87.2 86.8 96.8 87.0	77.2 77.6 77.0 76.6 76.7 77.0	9.9 9.6 9.9 10.1 10.4 9.1	7.4 7.6 7.2 7.4 7.5 7.0	0.4 0.5 0.4 0.4 0.5	91.1 91.5 90.8 90.9 91.2 90.8	87.5 89.7 89.0 88.8 98.7 89.7	91.8 91.8 91.3 91.2 91.0 91.9	7.3 7.7 7.2 7.3 7.6 7.1	86.3 87.0 85.7 87.1 86.0 85.7	22.0 18.0 23.0 27.0 23.5 19.5	19.0 18.0 21.0 21.5 22.5 18.5	2.3 2.1 2.3 2.5 2.4 2.1
Avg. Std I 90% C	87.0 v 0.2 1 0.1	77.2 0.5 0.4	9.8 0.5 0.4	7.4 0.2 0.2	0.4 0.0 0.0	91.1 0.3 0.2	89.2 0.5 0.4	91.5 0.4 0.3	7.4 0.2 0.2	86.3 0.6 0.5	21.5 2.2 1.8	20.1 1.8 1.5	2.3 0.2 0.1

NOISE INVEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUHIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

AND THE COLOR OF THE PROPERTY OF THE PROPERTY

001/1SC 8/22/83 TABLE NO. A.5-16.4

BELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 16 CENTERLINE-CENTER (FLUSH) JUNE 15,1983

DOT/TSC 8/22/83

EV	SEL	ALD	SEL· ALm	K(A)	9	EPNL	PNL	PNLT	K(P)	OASPI.	PUR(A)	DUR(P)	īc_
500 F	T, FLYO	VER	TARGET 14	IS 137K	TS.								
87 88 89	87.5 91.8 91.7	82.3 85.3 85.1	7.2 6.5 6.6	7.0 6.8 6.7	0.5 0.5 0.5	93.9 96.5 96.4	95.4 98.7 98.6	96.6 100.3 99.6	6.4 6.8	96.0 98.9 99.4	11.0 9.0 9.5	11.5 9.0 10.0	1.4 1.8 1.4
Avg. Std D 90% (84.2 1.7 2.9	6.8 0.4 0.7	6.8 0.1 0.2	0.5 0.0 0.0	95.6 1.4 2.4	97.6 1.9 3.2	98.8 2.0 3.3	6.7 0.2 0.4	98.1 1.8 3.1	9.8 1.0 1.8	10.2 1.3 2.1	1.5 0.2 0.4
500 F	T. FLYO	VER	TARGET 14	AS 123K	15.								
C10 C11 C12 C13 C14 C15	90.5 90.0 90.8 90.6 90.0 89.3	83.3 82.9 83.7 84.4 83.4 82.0	7.2 7.2 7.1 6.2 6.6 7.3	6.9 6.5 6.7 6.7 6.6 7.0	0.5 0.4 0.4 0.5 0.5	95.0 94.5 95.3 95.4 94.4 93.6	97.0 96.5 97.3 98.2 96.7 95.5	98.0 97.4 97.6 99.5 98.1 95.9	6.7 6.5 5.9 6.3 6.2 7.3	97.6 97.1 97.6 98.6 96.9 96.3	11.0 13.0 11.5 8.5 10.0 11.0	11.0 12.5 13.0 8.5 10.5 11.5	1.4 1.4 0.3 1.8 1.4 0.4
Avg. Std [90% [90.2 V 0.5 I 0.4	83.3 0.8 0.7	6.9 0.4 0.3	6.7 0.2 0.2	0.5 v.o 0.0	94.7 0.7 0.6	96.9 0.9 0.7	97.7 1.2 1.0	6.7 0.4 0.3	97.3 0.8 0.7	10.8 1.5 1.2	11.2 1.6 1.3	1.1 0.6 0.5
500 F	T. FLYO	ver	TARGET I	AS 110K	ITS.								
016 017 018	88.9 85.1 70.1	82.0 81.6 82.9	6.9 7.5 7.1	6.5 7.0 6.5	0.4 0.5 0.4	93.1 93.4 94.4	95.5 95.2 96.6	96.7 96.6 97.3	6.2 6.4 6.4	96.3 96.1 97.1	11.5 12.0 12.5	11.0 11.5 13.5	1.9 1.7 1.7
Avg. Std D 90% (82.2 0.7 1.1	7.2 0.3 0.5	6.7 0.3 0.4	0.4 0.0 0.0	93.6 0.7 1.2	95.7 0.7 1.2	96.8 0.4 0.6	6.3 0.1 0.2	96.5 0.6 0.9	12.0 0.5 0.8	12.0 1.3 2.2	1.8 0.1 0.2
500 F	T. FLYO	VER	TARGET I	as 9 6KT	S.								
E1º				NO DA	ATA .								
Avg. Std (90% (-	-	- -	- - ::	- -	-	- -	- -	- -	- - -	-	-

^{* -} NOISE INDEXES CALCULATED USING HEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

Υ\

DOT/TSC 8/22/83

TARLE NO. A.5-1G.5 BELL 222 HELICOPTER SUMMARY MOISE LEVEL DATA

AS MEASURED #

のでは、100mmの

		SI	TE: 16		CENTE	RLINE-CE	NTER (F	LUSH)	Jt	INE 15,19	83		
EV	SEL	ALm	SEL-AL	K(A)	Q	EPNL	PNLm	PNLTm	K(P)	UASPL	DUR(A)	DUR(P)	10
1000 F	T. FLY(OVER	TARGET	IAS 123	KTS.								
A1 A2 A3 A4 A5 A6	85.4 84.6 84.8 84.0 84.5	74.6 73.4 74.0 73.9 73.6 74.9	10.8 11.2 10.8 10.1 10.9 10.5	8.0 8.0 7.8 7.4 7.6 7.5	0.5 0.5 0.5 0.4 0.4	89.1 88.2 98.3 87.8 88.1 89.2	88.1 86.7 87.0 87.1 87.1 88.5	88.8 87.4 87.7 87.8 87.7 89.4	7.7 7.7 7.8 7.4 7.3 7.3	89.9 88.8 89.1 88.6 88.6 90.7	22.5 26.0 23.5 23.5 27.5 24.5	22.0 25.0 22.5 23.0 27.0 21.5	0.7 0.8 0.7 0.8 0.6 0.9
Avg. Std D 90% CI	84.8 v 0.5 l 0.4	74.1 0.6 0.5	10.7 0.4 0.3	7.7 0.2 0.2	0.5 0.0 0.0	88.5 0.6 0.5	87.4 0.7 0.6	88.1 0.8 0.6	7.5 0.2 0.2	89.3 0.8 0.7	24.6 1.9 1.5	23.5 2.1 1.7	0.7 0.1 0.1
APPRO	ACH	MULTI-9	SEG. 1										
010 021	91.5 94.8	86.4 89.3	5.1 5.4	6.3 6.0	0.5 0.4	96.1 99.7	100.5 103.5	101.3 104.4	5.8 5.9	101.1 103.5	6.5 8.0	6.5 8.0	0.9 1.3
Avg. Std D 90% C	93.1 2.3 1 10.3	87.8 2.1 9.3	5.3 0.2 1.0	6.2 0.2 0.9	0.5 0.0 0.2	97.9 2.6 11.6	102.0 2.2 9.6	102.8 2.2 9.6	5.9 0.1 0.3	102.3 1.7 7.6	7.2 1.1 4.7	7.2 1.1 4.7	1.1 0.3 1.3
APPRO	ACH	MULTI-9	5EG. 2										
R22	94.0	87.6	6.4	6.6	0.5	99.4	102.4	103.0	6.9	101.5	9.5	8.5	0.6
Avg. Sid D 90% C	94.0 1 -	87.6	6.4	6.6	0.5	99.4 - -	102.4	103.0	6.9	101.5	9.5	8.5	0.6
APPRO	ACH i	MULT!-9	SEG. 3										
523	99.3	92.7	6.6	6.6	0.5	103.3	105.4	106.4	6.6	103.4	10.0	11.0	1.0
Avg. Sid D 901 C	99.3 V -	92.7 _	6.6	6.6	0.5	103.3	105.4	106.4	6.6	103.4	10.0	11.0	1.0

^{* -} NOISE INDEXES CALCULATED USING NEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-2.1

BELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

DOT/TSC 8/18/83

AS MEASURED *

	SI	TE: 2		SINE	LINE -	150 H.	SOUTH		JUNE 14	,1983		
EV SEL	ALB	SEL-ALM	K(A)	()	EPNL	PNL	PNLTm	K(P)	DASPL	DUR(A)	DUR(P)	TC
12 DEGREE A	PPROACH ·	TARGET	IAS 4	SKTS.								
T27 91.0	82.0	8.4	6.2	0.3	95.3	96.2	97.1	6.1	94.0	22.5	22.0	0.9
T28 90.0		8.0	5.7	0.3	94.2	95.4	96.4	5.7	93.4	24.5	23.5	0.9
T29 91.7		8.7	6.9	0.4	95.8	96.5	97.4	6.8	93.9	18.0	17.0	0.9
Avg. 90.9	0.5	8.3	6.3	0.3	95.1	96.0	96.9	6.2	93.8	21.7	20.8	0.9
Std Dv 6.9		0.4	0.6	0.1	0.8	0.5	0.5	0.6	0.3	3.3	3.4	0.0
90% CI 1.5		0.6	1.0	0.1	1.4	0.9	0.9	1.0	0.5	5.6	5.7	0.0
12 DEGREE A	PPRBACH :	TARGET	IAS 5	SKTS.								
U30 90.2	81.6	9.3	7.2	0.4	94.6	94.8	95.9	6.9	92.8	19.5	19.0	1.1
U31 91.0		9.5	7.5	0.5	95.2	94.5	95.4	7.7	92.6	18.0	19.5	0.9
U32 90.2		7.5	6.4	0.4	94.4	96.3	97.1	6.6	94.2	15.0	13.0	0.8
Avg. 90.5	0.9	8.8	7.1	0.4	94.8	95.2	96.1	7.0	93.2	17.5	17.2	0.9
Std Dv 0.5		1.1	0.6	0.1	0.4	1.0	0.9	0.5	0.9	2.3	3.6	0.1
90% CI 0.8		1.8	1.0	0.1	0.7	1.6	1.5	0.9	1.5	3.9	6.1	0.2
12 DEGREE A	PPROACH	TARGET	IAS 6	SSKTS.								
V33 88.9	81.1	7.7	7.2	0.5	93.4	95.3	96.1	7.0	93.9	11.5	11.0	0.7
V34 88.7		7.7	7.0	0.5	93.3	94.9	95.6	7.1	93.5	12.5	12.0	0.7
V35 89.1		7.8	6.9	0.4	93.5	95.1	95.8	6.9	93.4	13.5	13.0	0.8
Avg. 88.5	81.2	7.7	7.0	0.5	93.4	95.1	95.8	7.0	93.6	12.5	12.0	0.7
Std Dv 0.2	0.1	0.0	0.2	0.0	0.1	0.2	0.2	0.1	0.2	1.0	1.0	0.0
90% CI 0.3	0.2	0.1	0.3	0.1	0.2	0.4	0.4	0.2	0.4	1.7	1.7	0.0
12 DEGREE A	FPROACH	TARGET	I IAS I	75KTS.								
W36 88.6	80.8	8,2	7.1	0.5	92.8	93.9	94.9	6.9	92.6	14.0	13.5	1.1
W37 88.4		7.6	6.7	0.4	92.9	94.3	95.5	6.6	92.7	13.5	13.0	1.2
W38 88.5		7.5	6.6	0.4	92.7	94.4	95.7	6.6	92.7	13.5	11.5	1.2
W40 88.1		8.3	7.1	0.5	92.7	94.1	95.2	6.6	91.8	15.0	14.0	1.1
Avg. 88.5	0.4	7.9	6.9	0.4	92.8	94.2	95.3	6.7	92.5	14.0	13.0	1.2
Std Dv 0.5		0.4	0.2	0.0	0.1	0.3	0.3	0.2	0.4	0.7	1.1	0.1
90% CI 0.5		0.5	0.3	0.0	0.1	0.3	0.4	0.2	0.5	0.8	1.3	0.1

では、100mmのようと、100mmのなどのなどのは、100mmのは

^{* -} MOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

RELL 222 HELICOPTER

SUNHARY HOISE LEVEL DATA

AS MEASURED *

SITE: 2

SIDELINE - 150 M. SOUTH

JUNE 14,1983

DOT/TSC 8/18/83

										522	.,		
EV	SEL	ALB	SEL-AL	K(A)	0	EPNL	PNLD	PNLTa	K(P)	DASPL	DUR(A)	DUR(P)	TC
6 DEGF	REE APPI	ROACH -	- TARGET	IAS 45	KTS.								
N7 N8 N9	86.4 85.0 85.6	75.2 74.1 74.6	11.0 11.0	7.7 6.8 7.1	0.5 0.3 0.4	90.3 88.4 89.5	88.3 86.4 88.0	89.6 88.1 89.3	7.5 7.1 6.6	93.0 92.5 92.0	28.0 41.5 35.5	27.0 28.0 35.0	1.7 1.7 1.1
	85.7 0.7 i 1.2	74.6 0.6 0.9	11.1 0.1 0.2	7.2 0.5 0.8	0.4 0.1 0.1	89.4 1.0 1.7	87.6 1.0 1.7	89.0 0.8 1.4	7.0 0.4 0.7	92.5 0.5 0.9	35.0 6.8 11.4	30.0 4.4 7.3	1.5 0.4 0.6
6 DEGF	REE APPI	ROACH -	- TARGET	IAS 55	KTS.								
N10 N11 N12 N13	87.1 85.6 89.5 86.0	78.0 75.8 80.7 75.5	9.1 7.7 8.7 10.4	7.0 7.2 6.8 7.4	0.4 0.4 0.4	91.7 90.0 94.2 90.7	91.8 89.7 94.1 89.7	93.5 91.1 95.9 91.3	6.6 6.8 6.7 6.9	92.5 93.2 92.5 92.0	20.0 22.0 19.0 25.5	18.0 20.5 17.5 23.5	1.6 1.3 1.7 1.6
Avg. Std D 90% CI	87.0 v 1.8 l 2.1	77.5 2.4 2.8	7.5 0.7 0.9	7.1 0.3 0.3	0.4 0.0 0.0	91.6 1.8 2.2	91.3 2.1 2.5	92.9 2.2 2.6	6.7 0.1 0.2	92.6 0.5 0.6	21.6 2.9 3.4	19.9 2.7 3.2	1.6 0.2 0.2
6 DEGI	REE APP	ROACH -	- TARGET	IAS 75	KTS.								
014 015 016	90.5 89.2 89.5	82.6 31.0 81.0	7.9 8.2 8.5	7.2 7.7 7.3	0.5 0.6 0.5	95.0 94.0 94.3	95.6 94.5 94.7	97.0 96.0 96.2	7.3 7.5 7.2	93.2 92.4 93.1	12.5 11.5 14.5	12.5 11.5 13.0	1.4 1.5 1.6
Avg. Std Dv 90% C	89.7 0.7 I 1.2	81.5 0.9 1.6	8.2 0.3 0.5	7.4 0.3 0.4	0.5 0.0 0.1	94.4 0.5 0.9	94.9 0.6 1.0	95.4 0.5 0.8	7.3 0.2 0.3	92.9 0.4 0.7	12.8 1.5 2.6	12.3 0.8 1.3	1.5 0.1 0.1
6 DEGR	REE APPI	ROACH -	- TARGET	1AS 85	KTS.								
P17 P18 P19	88.8 88.4 88.2	81.1 80.9 80.4	7.7 7.6 7.8	6.8 6.5	0.4 0.4 0.4	93.0 92.6 92.2	94.6 94.2 93.8	95.9 95.1 94.8	6.9 6.8 6.4	93.2 92.7 92.9	13.5 13.0 15.5	11.0 12.5 14.5	1.7 0.9 1.0
Avg. Std Dv 90% C		80.8 0.3 0.6	7.7 0.1 0.2	6.7 0.2 0.3	0.4 0.0 0.0	92.6 0.4 0.7	94.2 0.4 0.7	95.3 0.6 1.0	6.7 0.3 0.5	93.0 0.2 0.4	14.0 1.3 2.2	12.7 1.8 3.0	1.2 0.4 0.7

NOISE INDEXES CALCULATED USING HEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-2.3 BELL 222 HELICOPTER

.....

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 2 SIDELINE - 150 M. SOUTH JUNE 14,1983 ALm SEL-ALm K(A) EV SEL 0 EPNL PNL PNLTm K(P) DASPL DUR(A) DUR(P) TC 6 DEGREE APPROACH -- TARGET IAS 65KTS. (ICAO) 10.0 9.9 7.6 9.0 9.9 9.7 94.2 92.3 92.7 92.6 92.3 92.8 21.5 20.5 16.5 17.5 22.0 19.0 95.1 93.3 93.6 94.5 7.5 7.6 6.3 7.3 93.9 92.9 93.1 93.8 92.7 93.5 90.0 80.0 78.8 0.5 0.5 L1 L2 L3 L4 L5 7.6 7.1 7.6 7.6 16.0 18.0 0.9 93.2 92.2 93.3 92.8 93.4 88.7 87.7 1.8 80.1 79.9 78.4 0.4 16.5 14.5 1.0 89.0 1.8 0.4 93.8 94.3 88.3 88.7 7.4 16.5 15.5 79.0 93.2 0.7 0.6 92.8 0.7 94.1 0.7 0.5 7.5 0.3 0.2 93.3 0.5 0.4 19.5 2.2 1.8 Avg. 88.7 Std Dv 0.8 90% CI 0.6 79.4 0.7 0.6 9.4 0.9 0.8 16.2 1.2 1.0 0.4 7.3 0.5 0.4 0.4 0.0 0.6 TAKEOFF -- TARGET IAS 65KTS. (ICAO) 72.7 73.0 72.2 72.4 71.9 71.5 23.0 24.0 23.0 19.5 21.0 22.0 83.2 83.1 82.5 82.7 82.4 81.7 10.5 10.1 10.3 10.3 10.5 10.5 25.5 25.0 25.5 26.0 24.5 25.5 88.9 88.8 88.1 99.1 88.3 85.7 86.2 85.4 85.7 84.9 K20 ⊁21 7.5 7.3 7.3 7.3 7.3 88.3 86.2 2.6 2.4 2.7 2.8 2.4 2.7 86.4 85.4 86.3 85.9 85.1 6.7 7.0 6.8 7.0 0.4 88.1 K22 K23 K24 0.4 0.4 0.5 87.6 87.9 87.7 87.1 84.6 87.8 K25 0.4 Avg. 82.6 Std Dv 0.6 90% CI 0.5 72.3 0.6 0.5 10.3 0.2 0.1 7.4 0.4 85.9 0.5 88.5 0.5 6.9 85.4 25.3 0.5 22.1 1.6 1.3 2.6 0.2 0.1 87.8 0.6 0.5 0.4 0.4 0.0 0.4 0.4 0.1

001/TSC 8/17/83

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-2.4 BELL 222 HELICOPTER SUHMARY NOISE LEVEL DATA

DOT/TSC 8/17/83

AS MEASURED *

		SI	ITE: 2		SIC	ELINE -	- 150 H.	. SOUTH		JUME 1	5,1983		
EV	SEL	ALB	SEL-ALB	K(A)	0	EPNL	PNL	PNLTs	K(P)	DASPLE	DUR(A)	DUR(P)	TC
500 F	T. FLYO	VER	TARGET 14	IS 137K	TS.								
87 88 89	87.2 88.4 88.0	78.9 80.6 79.7	8.4 7.8 8.4	7.3 7.1 7.0	0.5 0.5 0.4	91.8 93.3 93.0	92.1 94.2 93.5	92.6 95.0 94.1	7.6 7.3 7.5	95.9 98.1 97.5	14.0 12.5 15.5	16.5 13.5 15.5	0.4 0.8 0.6
Avg. Std D 90% C	87.9 v 0.6 i 1.0	79.7 0.9 1.5	8.2 0.3 0.6	7.1 0.1 0.2	0.5 0.0 0.0	92.7 0.8 1.3	93.3 1.1 1.8	73.9 1.2 2.1	7.5 0.1 0.2	97.2 1.1 1.9	14.0 1.5 2.5	15.2 1.5 2.6	0.6 0.2 0.3
500 F1	1. FLYD	VER	TARGET IA	S 123K	TS.								
C10 C11 C12 C13 C14 C15	86.2 86.3 87.4 86.3 86.4	78.6 78.2 78.6 79.8 78.9 78.0	7.6 8.0 7.8 7.6 7.4 8.4	6.6 5.3 6.9 6.5 6.7 6.9	0.4 0.3 0.4 0.4 0.4 G.4	90.6 90.7 91.1 91.8 90.4 90.7	91.5 90.9 91.3 92.4 91.6 90.5	92.2 91.7 91.8 93.5 92.2 91.3	7.0 6.9 7.2 7.1 7.1 7.6	95.3 94.7 94.6 95.7 94.7 94.6	14.5 19.0 13.5 14.5 12.5 16.0	16.0 20.0 19.5 14.5 14.5	0.6 1.0 0.5 1.1 0.7
Avg. Std Dv 90% CI	86.5 7 0.4 1 0.4	78.7 0.6 0.5	7.8 0.3 0.3	6.7 0.2 0.2	0.4 0.0 0.0	90.9 0.5 0.4	91.4 0.7 0.5	92.1 0.7 0.6	7.1 0.2 0.2	94.9 0.5 0.4	15.0 2.3 1.9	17.0 2.4 2.0	0.8
500 F1	r. FLYO	VER	TARGET IA	S 110K	TS.								
D16 D17 D18	84.5 84.7 84.5	75.4 75.8 76.2	9.1 8.9 8.3	6.7 7.0 6.8	0.4 0.4 0.4	88.3 88.6 88.3	97.4 87.9 88.2	87.9 88.8 88.9	7.5 7.5 7.5	92.4 92.4 92.2	23.0 19.0 16.5	24.0 20.5 18.0	0.5 0.9 0.8
Avg. Std Dv 90% CI		75.8 0.4 0.6	8.8 0.4 0.7	6.8 0.1 0.2	0.4 0.0 0.1	88.4 0.2 0.3	87.8 0.4 0.7	88.5 0.6 1.0	7.5 0.1 0.1	92.3 0.1 0.2	19,5 3,3 5,5	20.8 3.0 5.1	0.7 0.2 0.3
500 FT	. FLYOV	ER 1	ARGET 1A	96KT	3.								
E19	83.1	73.4	9.2	7.2	0.4	86.9	85.9	86.7	7.4	89.8	18.5	23.5	0.8
Avg. Std Dv 90% CI	83.1	73.9 -	9.2	7.2	0.4	96.9 _	85.9 -	86.7	7.4	89.8 	18.5	23.5	0.8

^{* -} MOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, MUNIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

BELL 222 HELICOPTER

DOT/TSC 8/18/83

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 2 SIDELINE - 150 F SOUTH JUNE 15,1983 EPNL PNLm PNLTB K(P) DASPL® DUR(A) DUR(P) TC SEL AL SEL-ALM K(A) Q 1000 FT. FLYDVER -- TARGET IAS 123KTS. 86.3 85.4 85.3 84.6 85.5 85.6 87.3 86.1 86.3 85.6 86.2 86.7 90.2 89.0 89.2 88.7 89.2 90.7 73.0 71.8 72.3 71.9 71.9 72.7 87.7 86.5 86.7 85.9 87.2 88.1 7.3 7.4 7.3 7.1 7.5 8.1 26.5 26.0 24.5 26.0 29.0 25.0 26.5 25.0 26.5 28.5 28.5 26.0 0.8 0.8 83.5 0.4 10.5 7.4637777777 82.6 82.5 8° 0 10.8 10.2 10.2 1.0 1.0 1.0 1.2 0.4 B. . . 7 11.1 0.4 85.5 0.5 0.4 89.5 0.8 0.6 Avg. 82.9 Std Dv 0.6 90% CI 0.5 72.3 0.5 0.4 7.5 0.3 0.2 0.4 0.0 0.0 87.0 0.8 0.7 86.4 0.6 0.5 7.5 0.3 0.3 26.2 1.6 1.3 26.8 1.4 1.2 1.0 0.1 10.6 0.4 0.1 APPROACH -- MULTI-SEG. 1 6.8 7.7 90.3 92.1 91.6 7.0 7.4 91.B 92.1 19.0 13.0 18.0 11.5 86.7 87.8 78.0 79.2 8.7 8.6 90.4 1.4 0.4 0.6 91.9 91.2 1.3 5.9 92.3 1.7 7.6 7.2 92.0 16.0 7.3 0.5 91.1 14.7 87.3 78.6 8.7 1.6 0.3 0.8 3.6 0.9 3.9 0.2 0.6 1.0 4.2 18.9 4.6 0.4 0.1 0.1 20.5 0.5 1.6 V.3 4.6 APPROACH -- HULTI-SEG. 2 88.2 79.7 8.5 7.1 0.5 92.2 92.4 93.6 7.3 91.5 15.5 15.0 1.4 92.4 93.6 91.5 15.5 15.0 88.2 79.7 .8.5 7.1 0.5 92.2 7.3 1.4 APPROACI: -- MULTI-SEG. 3 94.1 19.5 91.3 10.5 7.9 0.5 95.3 95.7 7.5 92.1 21.5 2.0 80.8 95.7 21.5 80.8 7.9 0.5 95.3 94.1 7.5 92.1 19.5 2.0 10.5

⁻ NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-3.1

BELL 222 HELICOPTER

DOT/TSC 8/24/83

SUMMARY NOISE LEVEL DATA AS MEASURED *

		Sì	TE: 3		SIDE	LINE -	150 M.	NORTH		JUNE 14	1,1983		
EV	SEL	ALB	SEL-AL	K(A)	Q	EPNL	PNL	PNLTB	K(P)	OASPLE	DUR(A)	DUR(P)	70
12 DEG	REE APP	ROACH	TARGET	IAS 4	ISKTS.								
T27 T28 T29	85.1 84.6 87.5	75.2 73.8 76.2	9.9 10.8 11.3	6.7 7.3 7.9	0.3 0.4 0.5	89.3 88.3 91.4	89.2 86.5 88.6	90.0 88.3 90.3	7.0 6.9 7.8	87.9 88.2 89.5	30.0 30.0 26.5	21.5 27.5 26.0	0.8 1.9 1.8
Avg. Std Dv 90% CI		75.1 1.2 2.0	10.6 0.7 1.2	7.3 0.6 1.0	0.4 0.1 0.2	89.7 1.6 2.6	88.1 1.4 2.4	89.5 1.1 1.8	7.2 0.5 0.8	88.5 0.9 1.5	28.8 2.0 3.4	25.0 3.1 5.3	1.5 0.6 1.0
12 DEGI	ree app	ROACH	TARGET	IAS S	SSKTS.								
U30 U31 U32	83.9 83.7 82.9	73.8 73.4 73.2	10.1 10.2 9.7	7.2 7.7 6.9	0.4 0.5 0.4	87.7 87.5 87.1	85.4 85.6 85.4	86.4 86.7 86.8	8.0 7.9 7.4	89.3 89.1 88.7	25.5 21.0 25.0	26.0 23.5 25.0	1.0 1.3 1.9
Avg. Std Dv 90% CI	83.5 0.5 0.9	73.5 0.3 0.5	10.0 0.3 0.5	7.3 0.4 0.7	0.4 0.1 0.1	87.4 0.3 0.5	85.5 0.1 0.1	86.7 0.2 0.3	7.7 0.3 0.5	89.0 0.3 0.5	23.8 2.5 4.2	24.8 1.3 2.1	1.4 0.5 0.8
12 DEG	REI APP	RDACH	TARGET	IAS (SSKTS.								
V33 V34 V35	83.0 82.3 83.3	73.2 73.6 74.8	9.8 8.7 8.5	6.5 7.3 6.7	0.7 0.7 0.4	86.5 86.9	84.9 85.4 86.7	86.5 86.5 87.4	6.7	88.9 89.5 88.5	32.0 15.5 18.5	32.0 24.0	1.8 1.1 0.7
Avg. Std Dv 90% CI		73.9 0.9 1.4	9.0 0.7 1.2	6.8 0.4 0.7	0,4 0,1 0,2	86.7 0.3 1.3	85.6 1.0 1.6	86.8 0.5 0.9	6.8 0.2 0.8	89.0 0.5 0.9	22.0 8.8 14.8	28.0 5.7 25.3	1.2 0.5 0.9
12 DEG	ree app	ROACH	TARGET	IAS :	75XTS.								
W36 W37 W38 W40	83.3 83.6 83.1 83.2	74.7 74.8 74.9 76.0	8.6 8.8 8.2 7.2	7.0 7.3 7.0 6.3	0.4 0.5 0.4 0.4	86.6 87.3 87.0 86.5	86.9 86.9 86.7 87.5	87.7 88.1 87.8 88.0	7.2 7.6 6.9 6.9	90.1 91.4 91.1 89.9	16.5 16.0 15.0 14.0	17.5 16.0 21.5 17.0	0.8 1.9 1.1 0.5
Avg. Std Dv 90% CI		75.1 0.6 0.7	8.2 0.7 0.8	6.9 0.4 0.5	0.4 0.0 0.0	86.8 0.4 0.4	87.0 0.4 0.4	87.9 0.2 0.3	7.1 0.3 0.4	90.6 0.8 0.9	15.4 1.1 1.3	18.0 2.4 2.8	1.1 0.6 0.7

^{* -} NOISE INDEXES CALCULATED USING HEASURED DATA UNCORRECTED FOR TEMPERATURE, MUNIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-3.2 BELL 222 HELICOPTER

SUNMARY NOISE LEVEL DATA

AS MEASURED *

DOT/TSC 8/24/83

		SI	TE: 3		SID	ELINE -	150 N.	NORTH		JUNE 1	4,19 83		
EV	SEL	ALB	SEL-AL	K(A)	Q	EPHL	PHLM	PNLTa	K(P)	OASPL:	DUR(A)	DUR(P)	TC
6 DEGR	KEE APPI	ROACH -	- TARGET	1AS 45	KTS.								
H7	88.2	80.2	8.0	6.0	0.3	92.3	92.1	93.8	6.4	91.5	21.5	21.0	1.9
H8	86.0	74.0	12.0	8.0	0.5	89.8	86.7	88.1	7.9	91.1	32.0	30.5	1.9
H9	88.2	76.8	11.4	7.6	0.4	92.2	89.4	90.9	7.7	90.0	31.5	28.5	1.6
Avg.	87.5	77.0	10.5	7.2	0.4	91.4	89.4	90.9	7.4	90.9	28.3	26.7	1.8
Std Dv	1.2	3.1	2.2	1.1	0.1	1.4	2.7	2.9	0.8	0.8	5.9	5.0	0.2
90% C	1 2.1	5.2	3.7	1.9	0.2	2.3	4.6	4.8	1.4	1.3	10.0	8.4	0.3
6 DESF	KEE APPR	Roach -	- TARGET	1A3 55	KTS.								
N10	89.1	78.0	11.1	8.3	0.6	93.5	92.2	93.2	7.8	89.5	22.0	20.5	1.0
N11	87.1	77.2	9.9	7.4	0.5	91.5	90.3	92.0	7.2	88.8	21.5	20.5	1.8
N12	86.1	75.7	10.4	7.1	0.4	90.8	90.2	92.0	6.8	89.3	29.5	19.5	1.8
N13	87.1	75.1	12.0	7.7	0.4	91.2	89.0	90.4	7.6	89.8	35.5	26.0	2.1
Avg.		76.5	10.9	7.6	0.5	91.8	90.4	91.9	7.4	89.3	27.1	21.6	1.7
Std Dy		1.3	0.9	0.5	0.1	1.2	1.3	1.1	0.5	0.4	6.7	3.0	0.5
90% CI		1.6	1.0	0.6	0.1	1.4	1.5	1.3	0.5	0.5	7.9	3.5	0.5
6 DEGI	ree app	ROACH -	TARGET	IAS 75	KTS.								
014 015 016	86.9 86.1	76.9 78.3 76.5	10.6 9.6	7.6 6.6	0.5 0.3	90.9 90.0	89.2 90.6 89.3	91.6 92.7 90.1	7.4 6.9	90.0 90.5 89.7	20.0	17.5 27.5	2.4 2.3 1.2
Avg.	86.5	77.2	9.8	7.1	0.4	90.4	89.7	91.5	7.1	90.1	24.0	22.5	2.0
Std Dv	0.6	0.9	0.2	0.7	0.1	0.6	0.8	1.5	0.4	0.4	5.7	7.1	0.6
90% C	1 2.5	1.6	1.0	3.2	0.5	2.7	1.3	2.2	1.8	0.6	25.3	31.6	1.1
6 DEGF	REE APPI	RDACH -	- TARGET	1AS 85	KTS.								
P17	84.0	75.4	8.7	7.1	0.4	88.2	88.1	89.9	7.0	90.7	16.5	15.5	1.8
P18	84.9	76.9	8.0	6.8	0.4	89.2	89.9	91.4	6.6	89.9	15.0	15.0	1.6
P19	83.8	75.9	7.9	6.7	0.4	87.9	89.0	90.5	6.4	88.1	15.0	14.0	1.6
Avg.	84.2	76.1	8.2	6.9	0.4	88.4	89.0	90.6	6.7	89.6	15.5	14.8	1.6
Std Dv	v 0.6	0.8	0.4	0.2	0.0	0.7	0.9	0.8	0.3	1.3	0.9	0.8	0.2
902 C	l 1.0	1.3	0.7	0.4	0.0	1.1	1.5	1.3	0.5	2.3	1.5	1.3	0.3

^{* -} MOISE INDEXES CALCULATED USING HEASURED DATA UNCORRECTED FOR TEMPERATURE, MUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

			BEL SUMMAR	LE NO. A. L 222 HELI LY NOISE LI AS MFASURE	COPTER Evel da	TA				DOT. 8/2	/TSC 12/83
	s	ITE: 3	S	DELIKE -	150 H.	NORTH		JUNE 1	4,1983		
EV	SEL ALM	SEL-ALM	K(A) Q	EPNL	PNLs	PNLTa	K(P)	OASPL:	DUR(A)	DUR(P)	TC
6 DEG	GREE APPROACH -	TARGET I	AS 65KTS. (ICAO)							
L1 L2 L3 L4 L5 L6	85.6 75.9 87.2 76.8 87.2 77.2 85.7 77.1 84.5 76.4 86.5 76.1	10.0 8.6	7.2 0.4 7.6 0.5 6.9 0.4 7.0 0.4 7.1 0.4 7.6 0.5	89.7 91.3 91.4 90.2 90.5 90.8	88.8 89.6 89.2 90.2 88.9 89.4	90.9 90.6 91.2 91.7 91.0 91.4	7.1 7.8 7.0 7.1 7.4 7.2	90.0 89.9 90.4 90.7 90.4 90.3	22.0 23.5 28.5 17.0 26.5 23.0	18.0 23.5 28.5 16.0 19.0 20.0	2.1 1.0 2.4 1.5 2.2 2.1
Avg. Std 1 90% C	86.4 76.6 No 0.7 0.5 No 0.6 0.4	0.7	7.2 0.4 0.3 0.0 0.2 0.0	90.7 0.6 0.5	89.3 0.5 0.4	91.1 0.4 0.3	7.3 0.3 0.2	90.3 0.3 0.2	23.4 4.0 3.3	20.9 4.5 3.7	1.9 0.5 0.4
	OFF TARGET			0/.4	6E 7	A7 A		04.7	21. 4	40.0	2 6
N20 N21 N22 N23 N24 N25	82.3 73.1 82.4 72.5 82.1 71.9 82.3 72.7 82.4 72.2 82.2 72.1	9.2 9.9 10.2 10.1 10.1	6.9 0.4 7.5 0.5 7.1 0.4 7.6 0.5 7.3 0.4 7.2 0.4	86.4 86.1 86.1 86.3 86.3	85.3 84.6 84.4 84.2 84.4 84.1	87.8 86.9 86.9 95.5 86.7 86.6	6.8 7.2 6.8 7.5 7.1 6.9	84.3 85.3 84.6 83.4 83.2 83.6	21.0 20.5 27.0 21.0 24.0 26.0	19.0 19.5 22.0 19.5 22.5 24.5	2.5 2.6 2.4 2.5
Avg. Std I 90% C	Dv 0.1 0.4	9.9 0.4 0.3	7.3 0.4 0.3 0.0 0.2 0.0	86.2 0.1 0.1	94.5 6.4 0.4	86.9 0.4 0.4	7.0 0.3 0.2	84.1 0.8 0.6	23.2 2.8 2.3	21.2 2.2 1.8	2.4 0.1 0.1
*	- NOISF INDEXE FOR TEMPERAT	S CALCULATE	ED USING ME IY,OR AIRCR/	ASURED DAT	A UNCOR	RECTED M REF FI	LIGHT TR	ACK			

⁻ NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-3.4

BELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

00T/TSC 8/17/83

as measured *

** A PODO DO CONTRADO DE SENTE DE LO DE LO DESENTA DE CONTRADO DE

		SI	TE: 3		SID	ELINE -	150 M.	NORTH		JUNE 1	5 ,19 83		
EV	SEL	ALE	SEL-AL:	K(A)	Q	EPNL	PNLs	PNLTE	K(P)	DASPL	DUR(A)	DUR(P)	TC
500 FT	. FLYOV	ER	TARGET IA	S 137K	īs.								
B7 B8 B9	85.7 86.5 86.3	77.8 79.4 79.2	7.9 7.2 7.1	6.7 6.2 6.6	0.4 0.4 0.4	89.6 90.4 90.3	89.9 91.2 90.9	90.7 92.7 92.2	6.9 6.6 7.3	91.8 93.5 92.4	15.0 14.0 12.0	19.5 14.5 13.0	0.8 1.6 1.6
Avg. Std Dv 902 Cl		78.8 0.9 1.5	7.4 0.4 0.7	6.5 0.2 0.4	0.4 0.0 0.0	90.1 0.4 0.7	90.6 0.7 1.1	91.9 1.1 1.8	6.9 0.3 0.6	92.6 0.9 1.5	13.7 1.5 2.6	15.7 3.4 5.7	1.3 0.4 0.7
500 FT	. FLYON	JER	TARGET 14	S 123K	TS.								
C10 C11 C12 C13 C14 C15	85.4 85.0 85.9 85.2 85.6 85.1	77.7 77.7 76.9 77.3 78.1 77.1	7.8 7.3 9.0 7.9 7.5 8.0	6.5 6.5 7.4 6.9 6.2 6.5	0.4 0.4 0.5 0.4 0.4	89.4 88.7 90.3 89.1 89.7 89.0	89.5 89.8 88.9 88.9 89.9 89.9	91.2 91.5 90.1 89.5 91.7 90.2	6.9 6.5 8.3 8.0 6.3 7.2	91.3 90.9 92.2 91.7 91.3 91.1	15.5 13.0 16.5 14.0 16.0 17.0	16.0 12.5 17.0 16.0 18.5 17.0	1.7 1.7 1.4 0.9 1.8
Avg. Std Dv 90% CI	85.4 0.3	77.4 0.5 0.4	7.9 0.6 0.5	6.7 0.4 0.3	0.4 0.0 0.0	89.4 0.6 0.5	89.3 0.5 0.4	90.7 0.9 0.7	7.2 0.8 0.7	91.4 0.5 0.4	15.3 1.5 1.3	16.2 2.0 1.7	1.5 0.3 0.3
500 F	T. FLYD	VER	TARGET I	AS 110M	ITS.								
D16 D17 D18	84.1 83.8 84.0	75.4 75.8 75.4	8.8 8.0 8.7	7.2 6.8 7.1	0.5 0.4 0.4	87.9 87.8 87.6	87.2 87.2 87.0	88.7 88.7 88.3	7.4 6.9 7.4	90.4 89.9 90.1	16.5 15.0 16.5	17.5 20.5 18.0	1.4 1.5 1.4
Avg. Std Dv 90% C	84.0 0.2 1 0.3	75.5 0.3 0.4	8.5 0.4 0.7	7.0 0.2 0.3	0.4 0.0 0.0	87.8 0.1 0.2	87.2 0.1 0.2	88.6 0.2 0.3	7.3 0.3 0.5	90.1 0.2 0.4	16.0 0.9 1.5	18.7 1.6 2.7	1.4 0.1 0.1
500 F1	r. FLYO	VER	TARGET 1	as 94Kt	S.								
E19	83.3	74.1	9.2	7.2	0.4	87.1	86.6	87.5	7.5	89.2	19.0	18.5	1.0
Avg. Std Dv 90% C	83.3	74.1		7.2 - -	0.4	87.1	86.6	87.5	7.5 -	89.2	19.0	18.5	1.0

^{* -} HOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

BELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

AS MEASURED *

JUNE 15.1983 SITE: 3 SIDELINE - 150 M. NORTH DASPL® DUR(A) DUR(P) PNL E۷ SEL ALB SEL-ALB K(A) 6 EPNL PNLTm K(P) TC 1000 FT. FLYOVER -- TARGET IAS 123KTS. 84.7 83.9 83.8 84.2 83.7 85.1 85.8 84.9 85.3 86.1 85.0 85.6 85.6 85.9 85.6 87.4 86.5 86.7 27.0 26.0 72.5 71.7 9.9 9.9 0.4 0.5 0.5 7.6 7.5 7.7 23.0 21.5 A1 7.3 7.4 7.5 7.5 7.7 81.6 82.1 81.5 82.0 82.9 A2 A3 1.1 1.7 1.9 24.0 20.5 27.5 24.5 71.7 72.3 71.2 72.2 10.4 9.2 10.8 10.7 24.0 24.0 A4 A5 A6 86.4 86.4 88.0 0.4 6.9 86.8 7.8 24.0 23.5 2.5 2.0 Avg. 82.1 Std Dv 0.5 90% CI 0.4 85.5 0.5 7.5 0.3 0.3 86.9 0.6 0.5 25.0 1.4 1.3 71.9 0.5 7.4 0.2 0.2 1.5 10.2 84.2 0,4 86.1 0.6 0.6 0.6 0.5 0.0 0.4 0.3 0.0 APPROACH -- NULTI-SEG. 1 Q20 Q21 84.4 84.7 76.2 77.4 8.1 7.4 7.0 6.7 87.9 88.3 88.6 90.3 90.6 90.6 14.5 12.5 14.0 13.5 1.8 6.6 6.8 88.9 0.5 2.3 Avg. 84.6 Std Dv 0.2 90% CI 1.1 7.7 0.5 2.4 6.9 0.2 0.9 90.4 0.3 13.7 88.1 6.7 90.8 13.5 1.5 76.8 0.4 0.8 0.3 1.3 0.4 0.4 0.0 0.1 1.4 û.ú 1.2 APPROACH -- MULTI-SEG. 2 87.6 R22 84.2 75.1 9.2 7.2 1.98 7.4 19.0 0.4 86.8 90.2 19.0 1.4 84.2 9.2 87.6 88.1 7.4 90.2 19.0 19.0 75.1 7,2 0.4 86.8 1.4 Avg. 90% CI APPROACH -- MULTI-SEG. 3 85.3 35.0 523 73.4 7.2 89.3 86.3 87.5 7.0 88.2 45.0 1.1 11.9 0.3 88.2 35.0 Avg. Std Dv 90% CI 73.4 11.9 7.2 0.3 89.3 86.3 87.5 7.6 45.0 1.1

DOT/TSC 8/24/83

NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-4.1

RELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 4 CENTERLINE - 150 H. WEST JUNE 14,1983 E۷ SEL ALE SEL-ALE K(A) EPNL PNL PNLTa K(P) DASPLm DUR(A) DUR(P) TC 12 DEGREE APPROACH -- TARGET IAS 45KTS. 9.3 10.2 27.0 25.5 22.0 21.5 24.5 94.1 94.4 93.2 95.4 94.2 6.5 7.0 7.5 127 0.3 1.0 0.4 **T28** 89.6 79.4 1.1 T29 93.1 82.7 10.4 96.7 96.0 96.9 21.0 0.8 95.5 1.3 2.2 90.8 1.9 3.3 80.9 1.7 2.8 7.2 0.6 24.8 2.6 4.3 22.3 1.9 3.2 Avg. Std Dv 90% CI 10.0 0.4 94.9 94.5 7.0 92.9 1.0 0.6 0.1 1.6 1.4 2.4 0.5 0.1 1.4 12 DEGREE APPROACH -- TARGET IAS 55KTS. U30 79.7 83.1 78.9 9.3 7.5 9.0 0.4 0.5 0.4 93.9 95.9 92.3 93.8 96.2 93.1 94.9 97.9 94.0 93.1 94.2 92.8 20.5 12.5 18.5 7.3 7.3 6.7 16.5 12.5 17.0 1.1 1.7 0.9 U31 U32 90.6 87.8 6.9 7.1 8.6 15.3 2.5 4.2 Avg. Std Dv 90% CI 39.2 80.4 7.0 0.4 94.0 94.4 95.6 7.1 93.3 17.2 1.2 2.0 2.2 3.8 1.8 3.0 0.1 1.4 0.0 1.6 0.3 0.7 1.6 0.0 12 DEGREE APPROACH -- TARGET IAS 65KTS. 6.9 7.0 7.3 92.4 92.4 93.1 93.2 93.6 94.3 8.2 15.5 19.5 **V33** 85.9 77.7 0.4 90.9 6.7 14.0 0.8 91.6 92.4 6.8 7.0 V34 86.4 77.4 9.0 0.4 15.0 91.6 87.4 78.0 9.4 0.5 1.2 Avg. 86.6 Std Dv 0.7 90% CI 1.2 8.9 92.6 77.7 7.1 0.4 91.6 93.7 14.5 0.5 0.8 Avg. Std Dv 91.4 6.8 18.0 1:1 0.3 0.2 0.8 1.3 0.5 0.9 0.2 2.2 3.7 0.3 0.6 0.4 0.0 0.1 0.0 12 DEGREE APPROACH -- TARGET IAS 75KTS. 9.3 8.2 8.9 8.2 91.6 91.4 91.5 91.3 92.1 93.0 92.6 92.7 77.6 78.5 77.8 92.1 92.2 92.0 18.0 15.0 18.0 7.4 6.8 7.1 14.0 13.5 12.5 0.5 86.9 7.5 3.8 86.7 0.4 94.0 93.5 6.5 7.3 7.2 W37 0.9 W38 1.0 93.6 92.6 ₩40 86.7 78.4 1.0 Avg. 86.8 Std Dv 0.1 78.1 8.7 92.6 7.1 0.5 91.4 93.5 7.1 92.2 16.5 12.9 0.9 0.2 0.4 0.5 0.3 0.4 0.4 0.3 1.9 1.1 0.4 0.0 0.1 90% CI 0.1 0.5 0.6 0.0

DOT/TSC 8/18/83

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, MUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.S-4.2

BELL 222 HELICEPTER
SUMMARY NOISE LEVEL DATA

AS MEASURED #

DOT/TSC 8/17/83

JUNE 14,1983 SITE: 4 CENTERLINE - 150 M. WEST EPNL DASPL DUR(A) DUR(P) TC E۷ SEL ALD SEL-ALD K(A) 0 PNL PNLTs K(P) 6 DEGREE APPROACH -- TARGET IAS 45KTS. 8.1 10.5 10.0 96.3 92.8 94.7 97.0 90.8 99.1 91.7 95.2 90.5 23.0 27.0 29.5 14.0 27.0 29.5 2.1 83.7 77.9 79.9 6.0 7.3 6.8 6.3 7.7 7.3 0.3 **H7** H8 88.4 89.9 0.4 94.0 92.8 1.1 23.5 8.3 14.0 7.1 0.7 1.2 92.7 2.3 3.9 26.5 3.3 5.5 80.5 3.0 5.0 94.6 1.8 3.0 93.5 3.2 5.3 94.9 3.8 6.4 90.0 1.7 2.9 9.6 1.2 2.1 6.7 0.7 1.2 0.3 1.0 1.0 Avg. Std Dv 90% CI 1.4 1.0 6 DEGREE APPROACH -- TARGET IAS 55KTS. 94.0 95.3 96.1 96.5 94.9 96.2 97.2 97.7 20.5 17.0 20.5 16.5 80.2 81.3 82.6 83.4 7.2 7.1 7.1 7.0 93.4 94.4 94.9 94.4 21.0 18.0 21.0 17.5 1.0 0.9 1.1 1.1 89.7 90.2 91.9 9.5 8.9 9.3 0.4 0.4 0.4 94.5 94.8 96.9 7.3 7.0 7.3 7.3 HIO N11 N12 N13 92.0 8.6 0.4 96.6 19.4 1.9 2.2 95.7 1.2 1.4 96.5 1.2 1.4 94.3 0.6 0.8 18.6 2.2 2.6 9.1 0.4 0.5 7.1 0.1 0.1 0.4 0.0 0.0 95.5 1.1 1.3 7.2 0.2 0.2 1.0 0.1 0.2 Avg. 91.0 Std Dv 1.2 90% Cl 1.4 81.9 1.4 1.6 6 DEGREE APPROACH -- TARGET IAS 75KTS. 91.0 90.8 91.3 83.3 83.9 83.4 7.7 6.9 7.9 0.5 0.4 0.5 95.5 95.1 95.5 97.4 97.5 97.1 98.2 98.0 98.0 6.5 7.0 96.1 95.8 95.8 13.0 12.5 13.0 12.5 12.5 12.0 0.8 0.5 0.8 7.0 015 016 6.3 7.1 12.3 0.3 0.5 83.5 0.3 0.5 6.8 0.4 0.7 0.4 0.0 0.1 95.4 0.2 0.4 97.4 6.2 0.3 98.1 0.1 0.2 6.7 0.2 0.4 95.9 0.2 0.3 7.5 0.6 0.9 12.8 0.7 Avg. Std Dv 90% CI 91.0 0.2 0.3 0.3 0.3 6 DEGREE APPROACH -- TARGET LAS 85KTS. 90.2 90.0 89.9 12.5 12.5 13.0 P17 P18 81.5 81.9 81.7 8.7 8.1 8.2 7.7 7.3 7.4 0.5 0.5 0.5 94.6 94.0 93.7 96.0 95.0 94.1 97.0 96.3 7.0 7.0 7.8 95.1 94.1 93.2 13.5 13.0 13.0 1.0 P19 0.8

0.5 0.0 0.0

81.7 0.2 0.3

Avg. Std Dv 90% CI

90.0 0.2 0.3 8.4 0.3 0.5 7.5 0.2 0.4 94.1 0.5 0.8 95.0 0.9 1.6 96.1 1.0 1.7 7.3 0.5 0.8 94,1 0.9 1,5 13.2 0.3 0.5 12.7 0.3 0.5 1.0 0.3 0.4

THE PARTY OF THE P

MOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

BELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

AS MEASURED *

		SI	TE: 4		CENT	ERLINE -	150 H.	WEST		JUNE 14	4,1983		
EV	SEL	AL	SEL-AL	K(A)	0	EPNL	PNLs	PNLTs	K(P)	0A3PLm	DUR(A)	DUR(P)	TC
6 DEG	REE Alips	ROACH -	- TARGET	IAS 65	KTS. (10	CAO)							
L1 L2 L3 L4 L5 L6	92.8 93.1 92.8 93.2 92.9 93.3	84.1 85.3 85.0 85.9 85.9	8.7 7.8 7.8 7.2 7.9 8.0	7.2 6.7 6.6 6.8 7.1 7.3	0.5 0.4 0.5 0.5 0.5	96.9 97.4 96.8 97.4 97.4 77.8	98.0 99.0 98.9 99.7 98.9 99.1	98.7 100.0 99.6 100.4 99.6 99.9	7.4 6.6 7.0 6.9 6.9	96.4 97.3 98.1 97.8 97.6 97.2	16.0 14.5 15.0 11.5 13.0 12.5	13.0 13.5 11.0 11.0 13.0	0.7 1.0 0.7 0.7 0.7
Avg. Sid D 90% C	93.0 0.2 1 0.2	85.1 0.6 0.5	7.9 0.5 0.4	7.0 0.3 0.2	0.5 0.0 0.0	97.3 0.4 0.3	98.9 0.6 0.5	99.7 0.6 0.5	7.0 0.3 0.2	97.4 0.6 0.5	13.7 1.7 1.4	12.4 1.1 0.9	0.8 0.1 0.1
TAKEC)FF T	ARGET !	IAS 65KTS	. (ICAC))								
K20 K21 K22 K23 K24 K25	82.4 82.9 82.1 82.4 82.8 82.2	71.6 72.2 72.0 70.7 71.8 71.3	10.8 10.7 10.1 11.8 11.0 10.9	7.6 7.4 6.8 8.1 7.5 7.3	0.4 0.4 0.3 0.5 0.4 0.4	86.5 86.9 86.2 86.4 86.7 86.1	84.7 85.0 84.0 83.6 84.7 83.2	87.1 87.1 86.1 86.1 86.7 85.2	6.9 7.0 7.0 7.5 7.3 7.4	81.5 81.7 81.2 82.3 81.3 81.3	27.0 28.0 30.0 28.0 28.5 31.5	23.0 25.0 27.0 24.5 24.0 29.0	2.4 2.1 2.1 2.5 2.0 2.0
Avg. Std I 90% C	82.5 Ov 0.3	71.6 0.5 0.5	10.9 0.5 0.4	7.5 0.4 0.3	0.4 0.1 0.1	86.5 0.3 0.3	84.2 0.7 0.6	86.4 0.7 0.6	7.2 0.2 0.2	81.6 0.4 0.3	28.8 1.6 1.3	25.4 2.2 1.8	2.2 0.2 0.2

NOISE INDEXES CALCULATED USING HEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

00T/TSC 8/22/83

では、1000年の1000年間である。1900年の1900年では、1000年間では、1000年間では、1000年間である。1900年には、1000年間には、1000年には、1000年間には、1000年には、1000年間には、1000年には、1000

TABLE NO. A.5-4.4 BELL 222 HELICOPTER SUMMARY NOISE LEVEL DATA

DOT/TSC 8/17/83

AS MEASURED *

		Si	TE: 4		CENTE	ERLINE -	150 M.	WEST		JUNE 15	i ,19 83		
EV	SEL	ALB	SEL-AL®	K(A)	0	EPHL	PNL	PNLTm	K(P)	OASPLE	DUR(A)	DUR(F)	TC
500 FT	r. FLYON)ER	TARGET 1A	IS 137K	TS.								
87 88 89	86.4 88.0 80.5	79.0 81.0 81.4	7.4 7.0 7.1	6.8 6.7 6.9	0.5 0.5 0.5	90.7 92.6 93.1	92.3 94.4 94.8	92.9 94.9 95.6	7.0 6.9 6.9	92.5 95.1 96.3	12.0 11.0 11.0	13.0 12.5 12.5	1.2 0.9 0.9
Avg. Std Dv 90% C		80.4 1.3 2.1	7.2 0.2 0.3	6.8 0.1 0.1	0.5 0.0 0.0	92.1 1.3 2.2	93.8 1.4 2.3	94.5 1.4 2.3	6.9 0.0 0.1	94.6 2.0 3.3	11.3 0.6 1.0	12.7 0.3 0.5	1.0 0.2 0.3
500 F1	T. FLYO	VER	TARGET 14	4S 123K	TS.								
C10 C11 C12 C13 C14 C15	87.6 86.8 87.6 87.4 86.4 85.7	80.2 78.9 79.9 80.8 79.4 78.6	7.5 7.9 7.8 6.6 7.0 7.1	6.5 7.3 7.0 6.8 6.7 6.6	0.4 0.5 0.5 0.5 0.5	92.2 91.3 92.1 92.0 90.9 90.1	93.9 92.9 93.6 94.8 93.3 92.2	94.6 93.6 94.2 95.4 94.1 92.9	6.6 6.7 7.0 6.4 6.4	94.8 94.1 94.6 95.1 94.1 93.0	14.0 12.0 13.0 9.5 11.0 12.0	14.5 13.0 13.5 11.0 12.0 12.5	0.7 0.7 0.6 1.0 0.8
Avg. Std D 90% C	86.9 0.0 1 0.6	79.6 0.8 0.7	7.3 0.5 0.4	6.8 0.3 0.2	0.5 0.0 0.0	91.4 0.8 0.7	93.5 0.9 0.7	94.1 0.8 0.7	6.6 0.2 0.2	94.3 0.7 0.6	11.9 1.6 1.3	12.7 1.2 1.0	0.7 0.2 0.1
500 F	T. FLYO	ver	TARGET I	AS 110	KTS.								
D16 D17 D18	85.3 85.4 85.7	78.1 77.6 77.5	7.3 7.8 3.2	6.9 7.0 7.1	0.5 0.5 0.5	89.6 89.7 90.1	91.7 91.7 91.6	92.5 92.5 92.4	6.6	92.0 92.1 91.8	11.5 13.0 14.5	12.0 12.5 14.0	0.8 0.8 0.9
Avg. Std D 90% C		77.7 0.3 0.5	0.5	7.0 0.1 0.2	0.5 0.0 0.0	89.9 0.2 0.4	91.7 0.1 0.1	92.5 0.0 0.1	6.6 0.0 0.0	92.0 0.1 0.2	13.0 1.5 2.5	12.8 1.0 1.8	8.0 0.0 0.0
500 F	T. FLYO	VER	TARGET I	A\$ 96KT	īš.								
E19	85.5	78.9	5.6	6.0	0.4	90.2	93.0	94.3	5.8	91.0	12.5	10.5	1.3
Avg. Std D 90% C		78.9 _ _	6.6	6.0	0.4	90.2 - -	93.0	94.3	5.8 - -	91.0	12,5	10.5	1.3

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TARLE NO. A.5-4.5

BLL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 4 CENTERLINE - 150 M. WEST JUNE 15,1983 E۷ SEL ALD SEL-ALD K(A) EPNL PNL PNLTm K(P) DASPLm DUR(A) DUR(P) TC 1000 FT. FLYDVER -- TARGET IAS 123KTS. 25.0 30.0 25.5 26.5 29.0 19.5 71.7 70.5 71.0 7.9 7.5 7.5 7.5 85.5 83.9 25.0 7.9 B6.9 1.1 0.7 82.8 86.5 84.8 A1 81.6 AZ A3 A4 0.4 85.9 11.1 83.2 85.6 84.7 86.5 84.8 81.6 0.4 85.4 84.7 7.0 25.0 0.9 10.6 83.7 1.0 80.7 70.0 10.6 0.4 7.7 7.7 A5 A6 81.8 82.7 70.0 72.7 11.8 10.0 8.1 7.8 0.5 0.5 85.6 86.7 83.6 84.4 86.9 86.0 88.2 0.8 28.0 85.2 1.0 0.9 86.0 0.6 0.7 86.4 1.2 0.9 24.2 3.8 4.4 Avg. 81.9 Std Dv 0.8 90% CI 0.6 7.7 0.2 0.2 25.9 3.7 3.0 10.9 0.5 84.4 7.6 0.9 1.1 1.0 0.6 0.0 0.4 0.1 0.1 APPROACH -- MULTI-SEG. 1 96.9 100.0 100.9 95.4 98.4 99.2 98.6 97.4 9.0 020 021 91.7 85.2 84.2 6.5 6.8 6.5 0.5 0.5 6.8 7.5 8.5 98.4 0.8 6.6 99.2 1.2 5.2 100.1 1.3 5.6 6.4 0.2 6.7 0.2 8.0 0.7 3.2 Avg. 91.1 Std Dv 0.9 84.7 0.7 0.5 96.1 6.7 98.0 9.0 1.0 0.0 0.2 0.8 3.5 90% C1 4.2 1.0 1.0 0.1 4.8 0.4 0.0 0.9 APPROACH -- HULTI-SEG. 2 7.1 0.5 95.4 98.1 95.7 **R22** 90.1 81.9 8.2 96.9 6.9 14.0 11.5 1.2 96.9 6.9 90.1 81.9 8.2 7.1 0.5 95.4 98.1 95.7 14.0 11.5 1.2 Avg. Std Dv 90% C1 APPROACH -- MULTI-SEG. 3 0.9 7.1 98.9 99.0 100.0 7.5 96.5 15.5 15.5 **S23** 94.5 86.1 8.4 0.4 7.1 98.9 99.0 0.9 94.5 8.4 0.4 100.0 7.5 96.5 15.5 15.5 86.1 Avg. Std Dv 90% CI

DOT/TSC 8/24/83

NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-5.1 BELL 222 HELICOPTER SUMMARY NOISE LEVEL DATA

AS NEASURED *

DOT/TSC 8/25/83

SITE: 5 CENTERLINE - 188 M. EAST JUNE 14,1983

EV SEL	AL	SEL-ALD	K(A)	0	EPNL	PNLm	PNLTm	K(P)	OASPL®		DUR(P)	TC
12 DEGREE AP	PROACH -	TARGET	IAS 4	SKTS.								
T27 94.8 T28 95.8 T29 94.3	87.9 87.1 87.4	6.9 8.7 6.9	6.4 8.0 6.1	0.4 0.6 0.4	99.0 100.2 99.0	100.5 101.3 101.8	101.3 102.3 102.7	7.1 7.5 6.1	98.2 99.3 99.7	12.0 12.5 13.5	12.5 11.5 10.5	0.7 1.0 0.9
Avg. 95.0 Std Dv 0.8 90% CI 1.3	87.5 0.4 0.7	7.5 1.1 1.8	6.8 1.0 1.7	0.5 0.1 0.2	99.4 0.7 1.2	101.2 0.6 1.1	102.1 0.8 1.3	6.9 0.7 1.2	99.0 0.8 1.3	12.7 0.8 1.3	11.5 1.0 1.7	0.9 0.1 0.2
12 DEGREE AP	PROACH -	TARGET	IAS S	SKTS.								
U30 93.5 U31 93.0 U32 92.4	87.8 86.9 84.8	5.7 6.1 7.7	6.5 6.8 7.2	0.5 0.5 0.5	98.9 98.6 97.9	101.8 101.6 99.3	102.9 102.6 100.6	6.7 6.8 7.0	100.6 100.4 98.3	7.5 8.0 11.5	8.0 7.5 11.0	1.2 1.0 1.4
Avg. 93.0 Std Dv 0.5 90% CI 0.9	86.5 1.6 2.7	6.5 1.1 1.8	6.8 0.4 0.6	0.5 0.0 0.0	98.5 0.5 0.9	100.9 1.4 2.4	102.0 1.2 2.1	6.9 0.2 0.3	99.8 1.3 2.2	9.0 2.2 3.7	8.8 1.9 3.2	1.2 0.2 0.3
12 DEGREE AP	PROACH ·	TARGET	ins (SSKTS.								
V33 89.3 V34 89.4 V35 90.6	83.4 82.3 83.1	5.9 7.1 7.5	7.0 6.8 7.2	0.6 0.5 0.5	- 95.9	98.5 96.8 98.2	99.4 97.7 98.9	7.0	97.8 97.0 97.4	7.0 11.0 11.0	10.0	1.0 0.9 0.6
Avg. 89.8 Std Dv 0.7 90% CI 1.2	82.9 0.6 0.9	6.8 0.8 1.4	7.0 0.2 0.3	0.5 0.0 0.1	95.9 - -	97.8 0.9 1.5	98.7 0.9 1.5	7.0 -	97.4 0.4 0.6	9.7 2.3 3.9	10.0	0.8 0.2 0.3
12 DEGREE AP	PROACH ·	TARGET	IAS	75KTS.								
W36 89.3 W37 89.8 W38 90.2 W40 89.9	83.4 83.4 84.0 83.8	6.0 6.4 6.2 6.1	6.5 6.9 6.6 6.7	0.5 0.5 0.5 0.5	94.6 95.6 96.1 95.7	98.3 98.4 99.8 99.3	99.1 99.5 100.9 100.3	6.3 7.0 5.9 6.4	99.4 98.1 98.6 98.7	8.5 8.5 8.0	7.5 7.5 7.5 7.0	0.7 1.1 1.1 1.0
Avg. 89.8 Std Dv 0.4 90% CI 0.4	83.6 0.4 0.4	6.2 0.2 0.2	8.7 0.2 0.2	0.5 0.0 0.0	95.5 0.6 0.7	98.9 0.7 0.8	99.9 0.8 0.9	6.4 0.4 0.5	98.5 0.3 0.3	8.4 0.2 0.3	7.4 0.2 0.3	1.0 0.2 0.2

⁻ NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

TABLE NO. A.5-5.2 BELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 5 CENTERLINE - 188 M. EAST JUNE 14,1983

		51	1E: 5		CENTI	EKLINE -	188 n.	EASI		JUNE 14	1,1783		
EV	SEL	ALM	SEL-AL	K(A)	0	EPNL	PNLik	PNLTm	K(P)	DASPLS	DUR(A)	DUR(P)	TC
6 DEGRE	EE APPR	OACH -	- TARGET	1AS 45	KTS.								
M7 M8 M9	89.4 89.6 89.1	79.5 80.7 79.3	9.9 8.9 9.8	7.4 7.4 6.9	0.5 0.5 0.4	94.6 93.8	94.0 95.3 93.6	94.8 96.2 94.4	7.2 7.3	94.2 94.9 94.0	21.5 16.0 26.0	15.0 20.0	0.8 0.9 0.9
Avg. Std Dv 90% CI		79.9 0.8 1.3	9.5 0.6 1.0	7.3 0.3 0.5	0.4 0.1 0.1	94.2 0.5 2.4	94.3 0.9 1.4	95.1 0.9 1.6	7.2 0.1 0.4	94.4 0.5 0.8	21.2 5.0 8.4	17.5 3.5 15.8	0.9 0.0 0.1
6 DEGRI	EE APPR	OACH -	- TARGET	1AS 55	KTS.								
N10 N11 N12 N13	93.9 92.2 92.3 92.7	85.7 84.2 84.0 85.0	8.2 8.0 8.3 7.7	7.2 7.0 7.0 6.9	0.5 0.5 0.4 0.4	99.0 96.8 97.3 97.8	99.6 97.2 97.6 99.2	101.4 98.7 99.0 100.4	6.8 7.1 7.1 6.7	97.7 96.0 96.3 97.2	13.5 14.0 15.0 13.5	13.0 14.0 15.0 12.5	1.8 1.4 1.3 1.3
Avg. Std Dv 90% CI		84.7 0.8 0.7	8.1 0.2 0.3	7.0 0.1 0.2	0.5 0.0 0.0	97.7 0.9 1.1	98.4 1.1 1.3	99.9 1.3 1.5	6.9 0.2 0.2	96.8 0.8 1.0	14.0 0.7 0.8	13.6 1.1 1.3	1.5 0.2 0.3
6 DEGR	EE APPI	ROACH -	TARGET	IAS 7	SKTS.								
014 015 016	92.7 92.8 92.8	85.0 84.8 85.7	7.7 8.0 7.1	7.2 7.2 7.1	0.5 0.5 0.5	96.9 97.2 97.5	99.1 99.5 100.0	99.7 100.3 100.6	7.2 6.6 7.0	98.2 98.6 99.1	11.5 13.0 10.0	10.0 11.0 9.5	0.6 0.8 0.8
Avg. Std Dv 90% CI		85.2 0.5 0.8	7.6 0.5 0.8	7.2 0.1 0.1	0.5 0.0 0.0	97.2 0.3 0.5	99.5 0.5 0.8	100.2 0.5 0.8	6.9 0.3 0.5	98.6 0.5 0.8	11.5 1.5 2.5	10.2 0.8 1.3	0.7 0.1 0.2
6 DEGR	EE APPI	koach -	- TARGET	IAS 85	SKTS.								
P17 P18 P19	91.7 90.2 91.7	85.6 83.6 84.6	6.6 7.2	5.4 6.4 7.0	0.5 0.4 0.5	96.1 94.7 96.0	99.0 97.0 97.6	99.6 97.7 98.2	6.8 6.7 7.8	98.2 96.6 97.5	9.0 11.0 10.5	9.0 11.0 10.0	0.6 0.8 0.7
Avg. Std Dv 90% Cl		84.6 1.0 1.7	6.6 0.5 0.9	6.6 0.4 0.6	0.5 0.0 0.1	95.6 0.8 1.3	97.8 1.0 1.7	98.5 1.0 1.6	7.1 0.6 1.0	97.4 0.8 1.4	10.2 1.0 1.8	10.0 1.0 1.7	0.7 0.1 0.2

^{* -} NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

DOT/TSC 8/24/83

TABLE NG. A.5-5.3 BELL 222 HELICOPTER SUMMARY HOISE LEVEL DATA

00T/TSC 8/22/83

AS MEASURED *

		Si	TE: 5		CENTI	ERLINE -	188 M.	EAST		JUNE 1	1,1983		
EV	SEL	ALE	SEL-ALB	K(A)	Q	EPHL	PNLa	PNLTm	K(P)	DASPL	DUR(A)	DUR(P)	TC
6 DEG	REE APPR	ROACH -	- TARGET	IAS 65	KTS. (10	(OAC							
L1 L2 L3 L4 L5 L6	93.4 94.7 93.9 95.0 94.5 94.3	86.4 87.2 86.7 88.7 87.1 87.4	7.0 7.4 7.2 6.2 7.5 7.0	6.9 7.0 7.1 6.7 7.5 6.8	0.5 0.5 0.5 0.6 0.5	97.9 99.2 98.7 99.6 99.0 98.8	100.3 101.4 101.1 103.2 101.6 101.6	101.1 102.1 101.9 103.8 102.4 102.5	6.9 6.9 6.4 6.8 6.3	98.9 99.2 99.6 100.5 99.7 99.5	10.5 11.5 10.5 8.5 10.0 10.5	9.5 11.0 10.0 8.0 9.5 10.0	0.8 0.6 0.7 0.6 0.8 1.0
Avg. Std D 90% C	94.3 v 0.6 I 0.5	37.3 0.8 0.7	7.1 0.5 0.4	7.0 0.3 0.2	0.5 0.0 0.0	98.9 0.6 0.5	101.6 0.9 0.3	102.3 0.9 0.7	6.7 0.3 0.2	99.6 0.6 0.5	10.2 1.0 0.8	9.7 1.0 0.8	0.7 0.1 0.1
TAKES)FF T	ARGET I	AS 65KTS	. (ICA))								
K20 K21 K22 K23 K24 K25	85.0 85.6 84.7 85.3 84.9 84.5	75.8 76.9 74.8 76.0 75.1 75.1	9.2 8.8 10.0 7.3 9.8 9.4	7.3 7.1 7.8 7.5 7.5 7.6	0.5 0.4 0.5 0.5 0.5	89.7 90.3 89.2 69.7 89.7	87.3 90.5 88.1 89.4 89.8 88.3	91.5 92.5 90.6 91.5 90.3 90.8	6.7 6.6 7.0 7.1 7.3 7.1	86.2 86.7 84.8 36.8 86.8 85.1	18.0 17.0 19.0 17.5 20.0 17.5	17.0 15.5 17.5 14.0 17.0 16.0	2.2 2.4 2.1 2.3 2.6
Avg. Std 5 90% C	85.0 0 0.4 1 0.3	75.6 0.8 0.6	9.4 0.4 0.4	7.5 0.2 0.2	0.5 0.0 0.0	87.7 0.4 0.3	89.1 0.9 0.7	91.3 0.7 0.6	6.9 0.3 0.2	86.1 0.9 0.7	18.2 1.1 0.9	16.2 1.3 1.1	2.3 0.2 0.1

NOISE INDEXES CALCULATED USING NEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

またいないからないできない。このでは、1980年には、1980年によっています。 1980年によっています 1980年によったいます 1980年によっています 1980年によったいます 1

						BELL YRARY	E NO. A. 222 HELI NUISE LI S MEASURI	COPTER Evel da	TA					/1SC B/83
			si	TE: 5		CENT	ERLINE -	188 K.	EAST		JUNE 1	5,1983		
EV		SEL	AL	SEL-AL	K(A)	0	EPHL	PNLs	PNLTs	K(P)	DASPL	DUR(A)	DUR(P)	TC
500	FT.	. FLYOV	ER	TARGET 14	IS 137K	īs.								
87 88 89		87.2 89.0 88.4	79.3 81.9 81.4	7.9 7.1 7.0	6.9 7.0 6.8	0.4 0.5 0.5	91.7 93.7 93.1	92.6 95.7 95.1	93.5 96.1 95.6	7.2 7.4 7.0	94.2 97.3 96.6	14.0 10.5 11.0	14.0 10.5 12.0	0.9 0.5 0.4
Avg Std 902	D٧	88.2 0.9 1.6	60,8 1,4 2,3	7.4 0.5 0.8	6.9 0.1 0.2	0.5 0.0 0.0	92.9 1.0 1.7	74.5 1.6 2.8	95.1 1.4 2.3	7.2 0.2 0.4	96.0 1.6 2.7	11.8 1.9 3.2	12.2 1.8 3.0	0.6 0.3 0.5
500	Fï.	. FLYON	/ER	TARGET I	4S 123K	TS.								
C10 C11 C12 C13 C14 C15	3	87.3 87.3 87.0 88.1 85.9 86.2	80.1 79.2 79.6 81.4 79.7 79.0	7.2 8.1 7.4 6.7 6.1 7.2	6.6 6.8 6.5 6.3 6.5	0.4 0.5 0.4 0.4 0.4	92.1 91.9 91.8 92.8 90.5 90.9	94.1 93.2 93.7 95.0 93.9 92.9	94.8 94.0 94.6 95.8 94.6 93.6	6.7 6.8 6.9 6.0 6.7	95.6 94.7 94.9 96.2 95.3 93.9	12.0 16.0 12.0 10.5 9.5 12.5	12.5 15.5 11.5 10.5 9.5 12.5	0.6 0.7 0.9 0.8 0.7
Avg Sto	Dv	87.0 0.8 0.7	79.8 0.9 0.7	7.1 0.7 0.6	6.6 0.2 0.2	0.4 0.0 0.0	91.7 0.8 0.7	93.8 0.7 0.6	94.5 0.8 0.6	6.6 0.3 0.3	95.1 0.8 0.6	12.1 2.2 1.8	12.0 2.1 1.7	0.7 0.1 0.1
500) Fĭ	. FLYO	ver	TARGET I	AS 110	KTS.								
018 017 018	7	86.0 86.0 86.1	78.1 78.4 78.6	7.9 7.6 7.5	5.7 6.8 6.7	0.4 0.4 0.4	90.4 90.6 90.6	91.9 92.6 92.6	92.9 93.3 93.4	6.4 6.5 6.4	92.6 93.2 93.6	15.5 13.0 13.0	14.5 13.0 13.0	1.1 0.7 0.8
	Dv	86.0 0.0 0.0	78.4 0.2 0.4	7.7 0.2 0.4	6.7 0.1 0.2	0.4 0.0 0.0	90.5 0.1 0.2	92.3 0.4 0.7	93.2 0.2 0.4	6.5 0.1 0.1	93.1 0.5 0.8	13.8 1.4 2.4	13.5 0.9 1.5	0.9 0.2 0.3
50%) FT	. FLYO	ver	TARGET I	AS 96K	rs.								
E19	7	85.0	76.7	8.3	6.9	0.4	89.6	91.0	92.0	6.5	89.9	16.0	15.0	1.0
Av Sti 90	g. J Dv Z Ci	85.0 -	76.; - -	8,3	6.9	0.4	89.6 -	91.0 -	92.0	6.5	89.9 -	16.0	15.0	1.0
**	-	MOISE FOR TE	INDEXE	S CALCULA URE,HUMIC	TED US	ING MEAS AIRCRA	BURED DAT FT DEVIA	A UNCOR	RRECTED OM REF F	LIGHT T	RACK			

TABLE NO. A.5-5.5 BELL 222 HELICOPTER

SUMMARY NOISE LEVEL DATA

AS MEASURED *

SITE: 5 CENTERLINE - 188 M. EAST JUNE 15,1983 OASPL# DUR(A) DUR(P) E۷ SEL EPNL PMLTa K(P) ALm SEL-ALm K(A) PNLE 1000 FT. FLYOVER -- TARGET IAS 123KTS. 72.2 71.1 71.1 70.7 72.1 73.2 86.5 85.7 85.5 84.9 86.0 87.2 85.1 84.3 85.1 84.1 85.8 25.0 31.5 26.5 28.5 29.5 23.5 24.0 27.5 25.0 25.5 28.0 23.5 10.2 10.6 10.3 10.4 87.0 85.2 86.1 85.2 6.9 7.3 6.8 7.0 6.5 87.6 86.3 7.3 7.1 7.3 7.1 6.9 7.1 0.9 A2 A3 A4 A5 81.8 81.4 81.1 82.2 0.4 1.0 86.8 86.2 0.4 1.0 1.0 0.9 86.6 88.5 10.1 86.6 Avg. 82.0 Std Dv 0.7 90% CI 0.6 71.7 10.2 0.3 0.2 7.1 0.2 0.1 85.3 1.0 6.9 0.3 0.2 87.0 0.9 25.6 1.8 1.0 86.0 86.3 27.4 3.0 2.4 0.8 0.1 0.0 1.0 0.8 0.6 0.8 0.8 0.7 0.0 APPROACH -- MULTI-SEG, 1 020 NO DATA 93.3 Q21 88.2 5.0 99.0 103.4 104.2 6.1 103.1 6.5 6.0 0.8 93.3 60.2 5.0 Ú.S 103.1 6.5 0.8 Avg. Std Dv 6.2 99.0 103.4 104.2 6.1 6.0 90% CI APPROACH -- MULTI-SEG. 2 R22 95.9 4.2 5.7 101.5 106.9 107.6 5.6 105.5 5.5 5.0 91.7 0.7 Avg. Sta Dv 90% CI 91.7 4.2 5,7 0.5 101.5 106.9 107.6 5.6 105.5 5.0 0.7 APPROACH -- MULTI-SEG. 3 105.5 109.9 110.6 523 100.8 95.6 5.2 6.1 0.5 5.8 107.1 7.0 7.0 0.7 Avg. 1 Std Dv 90Z CI 100.8 95.6 5.2 6.1 0.5 105.5 5.8 107.1 7.0 7.0 0.7

DOT/TSC 8/18/83

NOISE INDEXES CALCULATED USING MEASURED DATA UNCORRECTED FOR TEMPERATURE, HUMIDITY, OR AIRCRAFT DEVIATION FROM REF FLIGHT TRACK

APPENDIX B

Magnetic Recording Acoustical Data for Flight Operations on June 16

On the third day of testing, an FAA mobile magnetic tape recording system was deployed at a single measurement. The data acquisition is described in Section 5.6.3.

EPNL, SEL, and ancillary indexes were calculated according to FAR-36 procedure using "As Measured" data, i.e., noise data uncorrected for temperature, humidity or aircraft deviations from reference flight track. The data reduction is further described in Section 6.3.

This Appendix contain "As Measured" noise level data for the June 16, 1983 tests of the Bell 222 at one microphone during approach and level flyover operations. The magnetic recording acoustical data for June 14 and 15, conducted by TSC rather than FAA, are presented in Appendix A.

Each table within this appendix contains the following information:

EV	The event, the test run number
SEL	Sound Exposure Level, expressed in decibels
$\mathtt{AL}_{\mathtt{M}}$	Maximum A-weighted Sound Level, expressed in decibles
EPNL	Effective Perceived Noise Level
PNL _M	Maximum Perceived Noise Level
PNLT _M	Maximum Tone Corrected Perceived Noise Level
OASPL	Maximum Overall Sound Level
DUR(A)	10 dB-down Duration of AL time history
DUR(P)	10 dB-down Duration of PNLT time history
TC	Tone Correction calculated at $PNLT_{M}$

TABLE B.1
BELL 222 HELICOPTER
SUMMARY NOISE LEVEL DATA
AS MEASURED*
SIDELINE - 150M SOUTH

APFROACHES

EV	SEL	LA _M	EPNL,	PNL _M	PNLT _M	OASPL	DUR (A)	DUR(P)	TC
Q26	88.8	81.2	93.5	94.6	96.0	89.5	14.5	14.0	1.4
Q27	89.7	81.9	94.3	95.4	97.0	90.6	14.5	12.5	1.6
Q28	89.9	80.0	94.6	93.9	95.0	89.9	20.0	19.0	1.1
Q29	86.7	77.6	90.9	91.0	92.0	87.9	18.5	19.0	1.0
Q30	89.4	81.0	93.6	94.3	95.1	90.3	14.5	15.5	0.9
Q31	90.5	81.0	95.1	94.6	95.4	90.4	20.0	19.0	0.8
Ų32	87.7	79.3	92.4	93.3	94.5	89,2	19.5	17.5	1.1
Q33	90.8	82.2	95.4	95.6	96.4	91.4	16.5	16.0	0.8
Q34	89.9	81.5	94.4	95.4	96.3	91.5	14.5	13.0	1.0
Q35	89.9	81.5	94.6	95.2	96.3	91.1	14.5	13.5	1.2
Q3 6	88.1	78.2	92.4	91.8	93.1	87.7	20.0	20.5	1.5
Q37	90.7	82.0	95.3	96.0	96.8	92.8	18.0	16.5	0.8
Q38	89.5	81.3	93.8	94.7	96.3	90.8	17.5	16.0	1.7
Q39	89.4	81.8	93.9	95.1	96.2	90.2	14.0	13.0	1.1
Q40	-	77.7	_	91.5	92.9	87.5	_	_	1.4
Q41	89.5	80.7	94.2	94.3	95.7	90.5	16.5	14.0	1.7

^{*}Noise indexes calculated using measured data uncorrected for temperature, humidity, or aircraft deviation from ref flight track.

TABLE B.2 BELL 222 HELICOPTER SUMMARY NOISE LEVEL DATA AS MEASURED* SIDELINE - 150M SOUTH

LEVEL FLYOVERS

EV	SEL	LA _M	EPNL	PNLM	PNLT _M	OASPL	DUR(A)	DUR (P)	TC
G 42	86.8	77.5	91.9	92.8	93.4	92.3	17.0	16.0	0.7
G 43	85.8	77.7	91.2	90.8	91.7	89.5	16.0	21.5	0.9
G 44	85.7	76.5	90.4	90.2	91.5	89.8	15.5	16.5	1.3
н 45	84.4	75.1	88.9	88.4	89.2	87.0	17.5	19.5	0.9
н 46	84.4	74.8	88.9	88.2	88.8	86.6	22.0	22.0	0.6
Н 47	84.2	75.1	88.4	87.7	88.5	85.5	18.0	19.5	0.8
I 48	82.5	73.0	86.1	85.1	85.9	83.8	19.0	20.0	0.9
I 49.	82.7	72.8	86.6	85.6	86.3	83.2	21.0	21.5	0.7

^{*}Noise indexes calculated using measured data uncorrected for temperature, humidity, or aircraft deviation from ref flight track.

APPENDIX C

Direct Read Acoustical Data and Duration Factors for Flight Operations

In addition to the magnetic recording systems, four direct-read, Type-1 noise measurement systems were deployed at selected sites during flight operations. The data acquisition is described in Section 5.6.2.

These direct read systems collected single event data consisting of maximum A-weighted sound level (AL), Sound Exposure Level (SEL), integration time (T), and equivalent sound level (LEQ). The SEL and d3A, as well as the integration time were put into a computer data file and analyzed to determine two figures of merit related to the event duration influence on the SEL energy dose metric. The data reduction is further described in Section 6.2.2; the analysis of these data is discussed in Section 9.4.

This appendix presents direct read data and contains the results of the helicopter noise duration effect analysis for flight operations. The direct read acoustical data for static operations is presented in Appendix E.

Each table within this appendix provides the following information:

Run No.	The test run number
SEL(dB)	Sound Exposure Level, expressed in decibels
AL(dB)	A-Weighted Sound Level, expressed in decibels
T(10-dB)	Integration time
K(A)	Propagation constant describing the change in dBA with distance
Q	Time History "shape factor"
Average	The average of the column
N	Sample size
Std Dev	Standard Deviation
90% C.I.	Ninety percent confidence interval
Mic Site	The centerline mircophone site at which the measurements were taken

HELICOPTER: BELL 222 TABLE C.1

TEST DATE: 6-15-83

OPERATION: 1000 FT FLYOVER(0.9#VNE)/TARGET IAS=123 KTS

RUN NO.	SEL(DB)		NIC SITE:		1
		AL(08)	T(10-08)	K(A)	Q
AI	82	72.1	25	7.1	.4
A2	81.5	70.8	27	7.5	.4
A3	82.1	71.4	27	7.5	.4
A4	81.3	71.1	25	7.3	.4
A5	82	71	30	7.4	.4
A6	83	72.6	24	7.5	.5
AVERAGE	82.00	71.50	26.30	7.40	.4
N	6	6	6	6	6
STD.DEV.	0.59	0.70	2.16	.17	.02
96% C.I.	0.49	0.58	1.78	.14	.02

HELICOPTER: BELL 222

SANTONIA DE LA COMPANSA DEL COMPANSA DE LA COMPANSA DEL COMPANSA DE LA COMPANSA DEL COMPANSA DE LA COMPANSA DE LA COMPANSA DE LA COMPANSA DEL COMPANSA DE LA COMPANSA DEL COMPANSA DE LA COMPANSA DEL COMPANSA DE LA COMPANSA DEL COMPANSA DE LA COMPA

TABLE C.2

TEST DATE: 6-15-83

OPERATION: 500 FT FLYOVER(VNE)/TARGET IAS=137 KTS

RUN NO.	SEL(DB)		MIC SITE:		1
		AL(DB)	T(10-08)	K(A)	9
B7	87.2	79.1	13	7.3	.5
58	88.7	81.6	11	6.8	.5
89	88.8	81.2	12	7	.5
averase	88.20	80.60	12.00	7.00	.5
N	3	3	3	3	3
STO.DEV.	0.90	1.34	1.00	.23	.02
90% C.I.	1.51	2.26	1.69	.38	.03

HELICOPTER: BELL 222 TABLE C.3

TEST DATE: 6-15-83

OPERATION: 500 FT FLYOVER(0.9: NE)/TARGET IAS=123 KTS

MIC SITE: 1 RUN NO. SEL(DB) AL(DB) T(10-DB) K(A) C10 87.1 79.4 13 6.9 87.1 79.3 C11 14 6.8 79.7 C12 87.7 15 6.8 C13 87.8 80.9 13 6.2 **C14** 86.6 79.3 12 6.8 AVERAGE 87.30 79.70 13.40 6.70 .4 N 5 5 5 5 STD.DEV. 0.49 86.0 1.14 .29 .03

90% C.1. 0.47 0.65 1.09 .27

HELICOPTER: BELL 222 TABLE C.4

TEST DATE: 6-15-83

OPERATION: 500 FT FLYOVER(0.8 NNE)/TARGET IAS=110 KTS

MIC SITE: 1

.03

RUN NO.	SEL(DB)	AL(08) T	(10-DB)	K(A)	6
D16	86	78.5	13	6.7	.4
D17	85.8	78.4	12	6.9	.5
D18	86	78.1	10	7.9	.6
AVERAGE	85.90	78.30	11.70	7.20	.5
N	3	3	3	3	3
STO.DEV.	0.12	0.21	1.53	.64	.1
90% C.I.	0.19	0.35	2.58	1.08	.17

HELICOPTER: BELL 222 TABLE C.5

TEST DATE: 6-15-83

OPERATION: 500 FT FLYOVER(0.7#VHE)/TARGET IAS=96 KTS

MIC SITE: 1

(K(A)	T(10-08)	AL(DB)	SEL(DB)	RUN NO.
•	6.4	12	79.2	86.1	E19
	6.40	12.00	79.20	86.10	AVERAGE
:	1	1	1	1	N
ERRO	ERROR	ERROR	ERROR	ERROR	STD.DEV.
ERROI	ERROR	ERROR	ERROR	ERROR	90% C.I.

HELICOPTER: BELL 222 TABLE C.6.1

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(UNE)/TARGET 1AS=137 KTS

MIC SITE: 5 RUN NO. SEL(D8) AL(D8) T(10-D8) K(A) 642 84.4 75.8 16 7.1 .5 76.7 76 643 85.5 7.5 15 .5 644 85.2 76 16 7.6 .5 76.20 15.70 7.40 .5 AVERAGE 85.00 N 3 3 3 3 STO.DEV. 0.57 0.47 0.58 .25 .04 90% C.I. 0.96 0.80 0.97 .43 .06

HELICOPTER: BELL 222 TABLE C.6.2

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(UNE)/TARGET IAS=137 KTS

MIC SITE: 1 RUN NO. SEL(DB) AL(DB) T(10-DB) K(A) 642 87.1 79.3 13 7 ۰5 G43 86.7 77.9 12 8.2 G44 87.3 78.5 16 7.3 .6 .5 AVERAGE 87.00 78.60 13.70 7.50 .5 . N 3 3 3 3 3 STD.DEV. 0.31 0.70 2.08 .6 .09 90% C.I. 0.52 1.18 3.51 1.01 .16

HELICOPTER: BELL 222 TABLE C.6.3

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(UNE)/TARGET IAS=137 KTS

4	SITE:				
G	K(A)	T(10-D8)	AL(DB)	SEL(0B)	RUN NO.
.6	7.9	14	77.6	86.6	642
.5	7.4	16	76.9	85.8	643
.6	7.7	13	77.4	86	644
.5	7.79	14.30	77.30	86.10	AVERAGE
3	3	3	3	3	N
.04	.24	1.53	0.36	0.42	STO.DEV.
.07	.4	2.58	0.61	0.70	90% C.1.

HELICOPTER: BELL 222 TABLE C.7.1

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(0.9#UNE)/TARGET IAS=123 KTS

	MIC SITE:				5
RUN NO.	SEL(DB)	AL(DB)	T(10-08)	K(A)	Q
H45	83.7	74.6	19	7.1	.4
H46	84.3	74	23	7.6	.5
H47	84	74.6	18	7.5	.5
average	84.00	74.40	20.00	7.40	.5
N	3	3	3	3	3
STD.DEV.	0.30	0.35	2.65	.24	.03
90% C.I.	0.51	0.58	4.46	.4	.05

HELICOP/ER: BELL 222 TABLE C.7.2

MIC SITE:

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(0.9#WNE)/TARGET IAS=123 KTS

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
H45	85.6	76.6	19	7	.4
H46	84.9	75.7	19	7.2	.4
H47	86.4	76.3	19	7.9	.5
AVER AGE	85.60	76.20	19.00	7.40	.5
N	3	3	3	3	3
STD.DEV.	0.75	0.46	0.00	.16	.06
90% 0.1.	1.27	0.77	0.00	.77	.11

HELICOPTER: RELL 222 TABLE C.7.3

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(0.9*\NE)/TARGET IAS=123KTS

RUN NO.		MIC SITE:				
	SEL(DB)	AL(08)	T(10- D 8)	K(A)	Q	
H45	84.1	74.4	18	7.7	.5	
H46	84.5	75.4	18	7.2	.5	
H47	84.3	74.5	17	8	.6	
AVERAGE	84.30	74.80	17.70	7.60	.5	
N	3	3	3	3	3	
STD.DEV.	ŭ.20	0.55	0.58	.36	.06	
90% C.I.	0.34	0.93	0.97	-61	.09	

HELICOPTER: BELL 222 TABLE C.8.1

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(0.8#VNE)/TARGET IAS=110 KTS

MIC SITE: 5

RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
148 149	81.8 82.8	71.7 73.7	22 18	7.5 7.2	.5 .5
average	82.30	72.70	20.00	7.40	.5
N	2	2	2	2	2
STD.DEV.	0.71	1.41	2.83	.19	.01
90% C.1.	3.16	6.32	12.64	.87	.04

MELICOPTER: BELL 222 TABLE C.8.2

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(0.8*UNE)/TARSET IAS=110 KTS

MIC SITE:

Q	K(A)	(10-DB)	AL(DB) T	SEL(DB)	RUN NO.
.5	7.5	21	72.7	82.6	148
.4	7.2	24	72.8	82.7	149
	7.30	22.50	72.80	82.70	AVERAGE
7	2	2	2	2	ĸ
.04	.22	2.12	0.07	0.07	STO.DEV.
.19	.99	9.48	0.32	0.32	90% C.I.

HELICOPTER: BELL 222 TABLE C.9.1

TEST DATE: 6-14-83

OPERATION: ICAD TAKEOFF

			3		
RUN NO.	SEL(DB)	AL(08)	T(10-DB)	K(A)	Q
K20	84.4	75.4	18	7.2	.4
K21	85.7	76.8	18	7.1	.4
K22	84.3	74.4	19	7.7	.5
K23	85.1	76.2	17	7.2	.5
K24	84.8	74.6	21	7.7	.5
K25	84.3	74.8	17	7.7	.5
AVERAGE	84.80	75.40	18.30	7.40	.5
N	6	6	6	ó	6
STD.DEV.	0.56	0.96	1.51	.31	.84
90% C.I.	0.46	0.79	1.24	.26	.03

HELICOPTER: BELL 222 TABLE C.9.2

TEST DATE: 6-14-83

のできない。 1997年 - 1997

OPERATION: ICAO TAKEOFF

	MIC SITE:					
RUN NO.	3EL(D8)	AL(DB)	T(10-DB)	K(A)	Q	
K39	83.6	73.3	23	7.6	.5	
K21	84.1	73.8	21	7.8	.5	
K22	83.3	72.8	23	7.7	.5	
K23	83.2	74.1	20	7	.4	
K24	83.5	73	24	7.6	.5	
K25	83.1	72.7	24	7.5	.5	
AVERAGE	83.50	73.30	22.50	7.50	.5	
N	6	6	6	6	ó	
STD.DEV.	0.36	0.53	1.64	.28	.03	
90% C.I.	0.00	0.46	i.35	.23	.03	

HELICOPTER: BELL 222 TABLE C.10.1

TEST DATE: 6-14-83

OPERATION: 6 DEGREE ICAO APPROACH/TARGET IAS=65 KTS

5	HIC SITE:				
2	K(A)	T(10-DB)	AL(DB)	SEL(DB)	RUN NO.
.5	7	10	87.3	94.3	L1
.4	6.5	11	88.7	95.5	L2
.5	7.1	11	87.1	94.5	L3
.5	6.8	8	89.9	96	L4
.6	7.5	10	27.8	95.3	L5
.4	6.1	10	88.5	94.9	Ló
.5	6.90	10.00	88.20	95.10	AVERAGE
6	6	6	6	6	N
.05	.4	1.10	1_04	0.69	STO.DEV.
.04	.33	0.90	8.8	0.53	90% C.1.

HELICOPTER: BELL 222 TABLE C.10.2

NIC SITE:

TEST DATE: 6-14-83

OPERATION: 6 DEGREE ICAO APPROACH/TARGET IAS=65 KTS

					-	
RUN NO.	SEL(D8)	`AL(D8)	T(10-08)	K(A)	Q	
LI	92.4	83.7	14	7.6	.5	
L2	93.7	85.7	12	7.4	.5	
L3	93.7	85.9	11	7.5	.5	
L4	93.2	85.7	11	7.2	.5	
Ł5	93.5	85.7	11	7.5	.5	
Ló	94.2	86.3	12	7.3	.5	
AVERAGE	93.50	85.50	11.80	7.40	.5	
N	6	6	ś	6	5	
STI).DEV.	0.61	0.91	1.17	.14	.02	
90% C.I.	0.50	0.75	0.96	.11	.01	

MELICOPTER: BELL 222

TABLE C.11.1

TEST DATE: 6-14-83

OPERATION: 6 DEGREE APPROACH/TARGET 1AS-45 KTS

		HIC SITE:			
RUN NO.	SEL(DR)	AL(DB)	T(10-DB)	K(A)	Q
H7	87.5	80.1	24	5.4	.2
M8	90.3	81.9	16	7	.4
M9	97.3	\$€.2	20	7	.4
average	89.00	80.70	20.00	4.40	.4
N	3	3	я	3	3
STO.DEV.	1.42	1.01	4.00	.94	.11
90% C.I.	2.39	1.71	6.74	1.59	.19

HELICOPTEP: BELL 222 TABLE C.11.2

TEST DATE: 6-14-83

OPERATION: 6 DEGREE APPROACH/TARGET 1AS=45 KTS

RUN NO.		MIC SITE:			
	SEL(DB)	AL(DB)	T(10-D2)	K(A)	Q
H 7	91.5	83.6	17	6.4	.4
N8	87.1	78.3	19	6.9	.4
M9	89	79.7	20	7.1	.4
AVERAGE	89.20	80.50	18.70	6.80	.4
N	3	3	3	3	3
STD.DEV.	2.21	2.75	1.53	.37	.03
90% C.1.	3.72	4.63	2.58	.62	.05

HEL) COPTER: BELL 222 TABLE C.12.1

TEST DATE: 4-14-83

OPERATION: 6 DEGREE APPROACH/TARGET !AS=55 KTS

	MIC SITE:				
RUN NO.	SEL(DB)	WF(DB)	T(10-DB)	K(A)	Q
N10	94.6	86.5	13	7.3	.5
N11	92.4	84.5	13	7.1	.5
N12	92.7	84.5	16	6.8	.4
N13	93.1	85.3	14	4.8	.4
AVERAGE	93.20	85.20	14.05	7.00	.5
N	. 4	4	4	4	4
STD.DEV.	0.98	0.95	1.41	.23	.04
90% €.1.	1.15	1.11	1.66	.27	05

HELICOPTER: BELL 222 TABLE C.12.2

TEST DATE: 6-14-83

OPERATION: 6 DEGREE APPROACH/TARGET IAS=55 KTS

•			MIC SITE:		
RUN NO.	SEL(DB)	AL(DB)	T(10-58)	K(A)	Q
NIO	91.9	83.7	14	7.2	.5
N11	90.6	81.9	15	7.5	.5
N12	93.5	87.1	12	5.9	.4
N13	92.4	83.7	15	7.4	.5
AVERAGE	92.10	84.10	14.00	7.00	.5
N	4	4	4	4	4
STD.DEV.	1.20	2.21	1.41	.72	.06
90% C.1.	1.42	2.60	1.66	.85	.08

HELICOPTER: BELL 222 TABLE C.13.1

TEST DATE: 6-14-83

OPERATION: 6 DEGREE APPROACH/TAXGET IAS=75 KTS

RUN NO.	MIC SITE:				5
	SEL(D8)	AL(DB)	T(10-DB)	K(V)	e
014	93.1	85.6	11	7.2	.5
015	93	85.5	11	7.2	.5
816	93	86	10	7	.5
AVERAGE	93.06	85.70	10.70	7.10	,5
N	3	3	3	3	3
STD.DEV.	0.06	0.26	0.58	.12	.01
90% C.I.	0.10	0.45	0.97	.2	.01

HELICOPTER: BELL 222

TABLE C.13.2

TEST DATE: 6-14-83

OPERATION: 6 DEGREE APPROACH/TARGET IAS=75 KTS

		MIC SITE:			
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	9
014	92	83.7	13	7.5	,5
015	91.5	83.3	13	7.4	.5
016	92	83.7	13	7.5	.5 .5
average	91.80	83.60	13.00	7.40	.5
N	3	3	3	3	3
STD.DEV.	0.29	0.23	0.00	.05	.01
90% C.I.	0.49	0.39	0.00	.09	.01

HELICOPTER: BELL 222 TABLE C.14.1

TEST DATE: 6-14-83

OPERATION: 6 DEGREE APPROACH/TARGET IAS=85 KTS

5	SITE:	MIC			
Q	K(A)	(10-09)	AL(DR) T	·SEL(DB)	RUM NO.
.4	6.3	9	85.7	91.7	P17
.4	6.1	11	84.2	90.6	P18
.5	7.1	10	84.2	91.3	P19
.5	6.50	10.00	84.70	91.20	AVERAGE
3	3	3	3	3	N
.06	.51	1.00	0.87	0.36	STD.DEV.
.1	.87	1.69	1.46	0.94	90% C.1.

MELICOPTER: BELL 222 TABLE C.14.2

TEST DATE: 6-14-83

OPERATION: 6 DEGREE APPROACH/TARGET IAS=85 KTS

			C SITE:		
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(Á)	ð
P17	89.7	8.13	12	7.3	.5
P18	90.2	81.9	12	7.7	.6
P19	90.5	83.2		6.8	.4
AVERAGE	90.10	82.30	12.00	7.30	.5
N	3	3	3	3	3
STD.DEV.	0.40	0.78	0.00	.47	.06
90% C.I.	83.0	1.32	0.00	.79	.1

HELICOPTER: BELL 222

TABLE C.15.1

TEST DATE: 6-15-83

			MIC SITE:			
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q	
920 921	94.9 92.3	89.4 86.4	6	7.1 6.5	.6 .5	
AVERAGE	93.60	87.90	7.00	6.69	.5	
Ņ	2	2	2	2	2	
STD.DEV.	1.64	2.12	1.41	.38	.07	
9t% C.I.	8.25	9.48	6.32	1.69	.33	

HELICOPTER: BELL 222 TABLE C.15.2

TEST DATE: 6-15-83

OPERATION: EXPERIMENTAL HULTI SEGMENT APPROACH

RUN NO.	MIC SITE:				
	SEL(D8)	AL(08)	T(10-D8)	K(A)	Q
920 921	101 98.6	94.8 92.4	7 9	7.3 6.5	.6 .5
AVERAGE	99.80	93.60	8.00	6.90	.5
N	2	2	2	2	2
STD.DEV.	1.70	1.70	1.41	.59	.1
90% C.1.	7.58	7.58	6.32	2.65	.44

HELICOPTER: BELL 222 TABLE C.16.1

TEST DATE: 6-16-83

		C SITE:	5		
RUN NG.	SEL(DB)	AL(DB)	T(16-08)	K(A)	Q
Q24	84.5	74.4	12	9.4	.9
Q25	86.5	76.4	19	7.9	.5
026	86.7	77.3		7.8	.5
Q 27	87.5	78.5		7.3	.5
028	88.3	79.3		7.2	.4
Q29	85.9	77.4	16	7.1	.4
630	85.9	75.3		8.1	.6
Q 31	90	81.8		7.2	.5
Q32	84.4	76.4	19	6.3	.3
AVERAGE	86.60	77.40	16.80	7.60	.5
N	9	9	9	9	9
STD.DEV.	1.79	2.22	2.59	.87	.14
90% C.1.	1 11	1.38	1 40	54	no.

HELICOPTER: BELL 222 TABLE C. 16.2

MIC SITE: 1

TEST DATE: 6-16-83

OPERATION: EXPERIMENTAL MULTI SEGMENT APPROACH

RUN NO.	SEL(DB)	AL(DB)	T(10-08)	K(A)	9
924	95.4	88.5	9	7.2	.5
Q25	95.5	89.9	7	6.6	.5
Q26	91.8	85.3	8	7.2	.6
Q27	91	84.1	10	6.9	.5
928	90.2	81.9	15	7.1	.5
Q29	92.5	87.4	6	6.6	۰5
030	91.1	84.5	9	6.9	.5
Q3 1	88.4	79.6	17	7.2	.4
932	88.5	80.5	15	8.6	.4
AVERAGE	91.60	84.60	10.70	6.90	.5
N	9	9	9	9	9
STD.DEV.	2.57	3.55	3.97	.24	.05
90% C.1.	1.59	2.20	2.46	.15	.03

HELICOPTER: BELL 222 TABLE C.16.3

TEST DATE: 6-16-83

RUN NO.	MIC SI				4
	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
024	85	74.8	16	8.5	.7
235	89.6	80.8	13	7.9	.6
626	89.9	82.3	16	6,3	.4
¥27	89.9	81.6	17	6.7	.4
928	90.2	81.2	i 7	7.3	.5
029	87.8	79.8		6.8	.4
930	90.5	81.9		6.3	.3
031	90.7	81.1	26	6.8	.4
032	88.5	78.7	18	7.8	.5
AVERAGE	89.10	80.20	17.90	7.20	.5
N	9	9	9	9	9
STD.DEV.	1.81	2.32	4.08	.76	.11
90% C.I.	1.12	1.44	2.53	.47	.07

HELICOPTER: BELL 222 TABLE C.17.1

MIC SITE:

5

TEST DATE: 6-16-83

OPERATION: EXPERIMENTAL MULTI SEGMENT APPROACH

RUN NO.	SEL(DB)	AL(DB)	T(10DB)	K(A)	Q
233	88.9	81	16	6.6	.4
Q34	88.4	78.1	23	7.6	.5
Q 35	88.6	80.5	16	6.7	.4
639	86.9	77.2	28	<i>₹</i> .7	.3
237	89.3	79.7	19	7.5	.5
638	87.8	79.7	16	6.7	.4
Q39	87.6	79.1	17	6.9	.4
940	85.8	76.1	24	7	.4
Q41	87.3	78.1	21	7	.4
AVERAGE	87.80	78.80	20.00	7.00	.4
N	9	9	9	9	9
STD.DEV.	1.09	1.59	4.30	.35	.04
90% C.I.	0.68	0.99	2.67	.22	.03

HELICOPTER: BELL 222

TABLE C.17.2

TEST DATE: 6-16-83

TO THE REPORT OF THE PROPERTY OF THE PARTY O

	MIC SITE:					
RUN NO.	SEL(D8)	AL(DB)	T(10~DB)	K(A)	Q	
233	88.7	79	16	8.1	.6	
934	89.8	80.9	15	7.6	.5	
935	89.8	81.4	13	7.5	,5	
Q 36	89.3	80.5	15	7.5	.5	
Q37	89.4	80.6	16	7.3	.5	
038	91.1	83.8	10	7.3	.5	
Q39	91.3	83.7	11	7.3	.5	
Q40	90	81.6	15	7.1	.5	
941	89	80.6	14	7.3	.5	
AVERAGE	89.90	81.30	13.90	7.40	.5	
N	9	9	9	9	9	
STD.DEV.	0.88	1.55	2.15	.27	.04	
90% C.I.	0.55	0.96	1.33	.16	.02	

HELICOPTER: BELL 222 TABLE C.17.3

TEST DATE: 6-16-83

OPERATION: EXPERIMENTAL MULTI SEGMENT APPROACH

		IC SITE:	4		
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q
233	87.9	81	16	7.4	.5
Q34	98	81.4	14	7.5	.5
235	90.3	82.2	18	6.5	.4
236	87.7	78.6	18	7.2	.5
937	88.8	79.9	18	7.1	.4
938	88.2	79.3	16	7.4	.5
939	88.8	79.6	20	7.1	.4
940	88.9	79.8		7.9	. 6
Q41	89.4	80.9	20	6.5	.4
AVERAGE	89.10	80.30	17.10	7.20	.5
N	9	9	9	9	9
STO.DEV.	0.86	1.14	2.26	.47	.07
90% C.I.	0.54	0.71	1.40	.29	.05

HELICOPTER: BELL 222 TABLE C.18

TEST DATE: 6-15-83

1	IC SITE:				
Q	K(A)	T(10-08)	AL(DB)	SEL(DB)	RUN NO.
.5	7.2	10	85	92.2	R22
.5	7.20	10.00	85.00	92.20	AVERAGE
1	1	1	1	1	N
ERROR	ERROR	ERROR	ERROR	ERROR	STD.DEV.
ERROR	FRRAR	FRRAR	FRRAR	FRRAR	907 C.I.

HELICOPTER: BELL 222 TABLE C.19.1

MIC SITE: 5

TEST DATE: 6-15-83

OPERATION: EXPERIMENTAL MULTI SEGMENT APPROACH

Q	K(A)	T(1u-DB)	AL(08)	SEL(DB)	RUN NO.
.5	4.2	7	96.2	101.4	\$23
.5	6.20	7.00	96.20	101.40	AVERAGE
1	1	1	1	1	N
ERROR	ERROR	ERROR	ERROR	ERROR	STD.DEV.
ERROR	ERROR	ERROR	ERROR	ERROR	90% C.I.

HELICOPTER: BELL 222 TABLE C.19.2

1

TEST DATE: 6-15-83

1	IC SITE:					
(K(A)	T(10-DB)	AL(DB)	SEL(DB)	RUN NO.	
.:	7.2	10	89.5	96.7	\$23	
.:	7.20	10.00	89.50	96.70	AVERAGE	
1	1	1	1	1	N	
ERROI	ERROR	ERROR	ERROR	ERROR	STD.DEV.	
ERROF	ERROR	ERROR	ERROR	ERROR	90% C.1.	

HELICOPTER: BELL 222

TABLE C.20.1

TEST DATE: 6-14-83

OPERATION: 12 DEGREE APPROACH/TARGET IAS=45 KTS

	MIC SITE:						
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	9		
T26	100.9	91.6	18	7.4	.5		
T27	97.2	88.5	11	8.4	.7		
T28	97.4	87.7	12	9	.8		
T29	100.5	91.5	11	8.6	.7		
average	99.00	89.80	13.00	8.30	.7		
N	4	4	4	4	4		
STD.DEV.	1.97	2.02	3.37	. 48	.13		
90% C.I.	2.32	2.38	3.96	.8	.16		

HELICOPTER: BELL 222

TABLE C.20.2

TEST DATE: 6-14-83

OPERATIUM: 12 DEGREE APPROACH/TARGET 1AS=45 KTS

			MIC SITE:			
RUN NO.	SEL(DB)	AL(DB)	T(10-D8)	K(A)	Q	
T26	94.6	85.6	15	7.7	.5	
T27	94.3	86.6	11	7.4	.5	
T28	92.8	86	13	6.1	.4	
T29	94.2	85.4	20	6.8	.4	
AVERAGE	94.00	85.90	14.80	7.00	.5	
N	4	4	4	4	4	
STD.DEV.	0.80	0.53	3.86	.69	.09	
90% C.1.	0.94	0.62	4.54	.81	-11	

HELICOPTER: BELL 222 TABLE C.21.1

TEST DATE: 6-14-83

OPERATION: 12 DEGREE APPROACH/TARGET IAS=55 KTS

		MIC SITE:				
RUN NO.	SEL(DB)	AL(DB)	T(10-DB)	K(A)	Q	
U30	93.4	87.5	8	6.5	.5	
U31	92.8	86.6	8	6.9	.5	
U32	92.3	85.1	11	6.9	.5	
AVERAGE	92.80	86.40	9.00	6.80	.5	
N	3	3	3	3	3	
STD.DEV.	0.55	1.21	1.73	.21	.02	
90% C.1.	0.93	2.04	2.92	.35	.04	

HELICOPTER: BELL 222 TABLE C.21.2

TEST DATE: 6-14-83

OPERATION: 12 DEGREE APPROACH/TARGET IAS=55 KTS

1	C SITE:	HI			
Q	K(A)	T(10-DB)	AL(DB) T	SEL(DB)	RUN NO.
.4	6.7	17	80.5	88.8	U30
.5	7.7	18	80.8	90.5	U31
.4	6.8	12	83.4	90.7	V32
.5	7.10	15.70	81.60	90.00	average
3	3	3	3	3	N
.06	.56	3.21	1.59	1.04	STD.DEV.
.1	.95	5.42	2.69	1,76	90% C.I.

HELICOPTER: BELL 222 TABLE C.22.1

TEST DATE: 6-14-83

OPERATION: 12 DEGREE APPROACH/TARGET IAS=65 KTS

		HIC SITE:				
RUN NO.	SEL(DB)	AL(DB)	T(10-DR)	K(A)	Q	
V33	90.3	83.4	8	7.6	.6	
V34	89.5	82.3	12	6.7	.4	
V35	90.8	63.6	10	7.3	5	
AVERAGE	90.20	83.10	10.00	7.20	.5	
N	3	3	3	3	3	
STD.DEV.	0.66	0.70	2.00	.49	.09	
90% C.I.	1.11	1.18	3.37	.82	.15	

HELICOPTER: BELL 222 TABLE C.22.2

TEST DATE: 6-14-83

OPERATION: 12 CEGREE APPROACH/TARGET IAS=65 KTS

			HIU SITE:							
RUN NO.	SEL(DB)	AL(DB)	T(10~DB)	K(A)	Q					
V33	88.2	80.6	12	7	.5					
V34	88.3	80.5	12	7.2	.5					
V35	89.5	82	13	6.7	.4					
AVERAGE	88.7 0	81.00	12.30	7.00	.5					
N	3	3	3	3	3					
STD.DEV.	0.72	0.84	0.58	.25	.04					
90% C.I.	1.22	1.41	0.97	.42	.06					

HELICOPTER: BELL 222 TABLE C.23.1

TEST DATE: 6-14-83

OPERATION: 12 DEGREE APPROACH/TARSET IAS=70 KTS

MIC SITE:

5

						_
1	RUM NO.	SEL(DB)	AJ.(08)	T(10-08)	K(A)	Q
	W36	85.7	63.7	9	2.3	.2
	W37	90.3	83.9	9	6.7	.5
	W38	90.∺	84.6	8	6.5	.5
	W39	89.9	83.7	8	6.9	.5
	W 40	90.5	84.3	7	6.9	.5
A	VERAGE	90.10	84.00	8.20	6.60	.5
	N	5	5	5	5	5
S	TD.DEV.	0.38	0.40	0.64	,33	.05
9	0% C.I.	0.37	0.38	0.80	.31	.04

HELICOTTER: BELL 222 TABLE C.23.2

TEST DATE: 6-14-83

OPERATION: 12 LEBREE APPROACH/TARGET IAS=70 KTS

			MI	C SITE:	1
RUN NO.	SEL(DB)	AL(08)	T(10-0B)	K(A)	Q
W36	80 .1	79.7	14	7.3	.5
W37	98.5	80.5	12	7.4	.5
638	88.3	90.5	12	7.2	.5
W39	87.4	79.7	13	6.4	.4
W4 9	87.6	79.7	15	6.7	.4
AVERAGE	88.00	80 .00	13.80	7.00	.5
N	5	5	5	5	5
£10.0€V.	0.47	0.44	1.79	.44	.07
90% C.I.	0.44	0.42	1,71	.42	.06

APPEND1

Magnetic Recording Acoustical Data for Static Operations

This appendix contains time average, A-weighted sound level data along with time average, one-third octave sound pressure level information for eight different directivity emission angles. These data were acquired June 14 using the TSC magnetic recording system discussed in Section 5.6.1.

Thirty-two seconds of corrected raw spectral data (64 contiguous 1/2 second data records) have been energy averaged to produce the data tabulated in this appendix. The spectral data presented are "As Measured" for the given emission angles established relative to each microphone location. Also included in the tables are the 360 degree (eight emission angle) average levels, calculated by both arithmetic and energy averaging. The data reduction is further described in Section 6.1. Figure 6.1 (previously shown) provides the reader with a quick reference to the emission angle convention.

The data contained in these tables have been used in analyses presented in Sections 9.2 and 9.8. The reader may cross reference the magnetic recording data of this appendix with direct read static data presented in Appendix E.

CASA TRANSPORTATION OF A SECURIOR OF THE SECUR

Appendix D

Static Tests - "As Measured" 1/3 Octave Noise Data are presented.

The key to the table numbering system is as follows:

Tabl	e No.	D.		1-1H.
Appendix	No			
Helicopter	No. & Mic	rophone Lco	cation	
Page No. o	of Group -			
Table No.	D.1-X.X D.2-X.X D.3-X.X D.4-X.X D.5-X.X D.6-X.X D.7-X.X	Bell Hughes	ale ale	SA-365N (Dauphin) SA-355F (Twinstar) AS-350D (Astar) S-76 (Spirit) 222 500D CH-470D (Chinook)
Microphon	e Nu.	1H 2 4H 5H	(soft) (soft) (soft) (hard)	150 m northwest 150 m west 300 m west 150 m north
Page No.		1 2 3 4	Flight Idle Ground Id	

TABLE NO. D.5-1H.1

BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

SITE: 1H

いが、一般などのでは、一般のでは、これでは、一般のでは、これでは、一般のでは、これでは、一般のでは、これでは、一般のでは、これでは、一般のでは、これでは、一般のでは、これでは、これでは、これでは、これでは、

(SOFT) - 150 M. NW

JUNE 14,1983

HOVER-IN-GROUND-EFFECT

	LEVEL	S @ AC	OUSTIC	EMMIS	ION AN	GLES O	F (DEG	REES)	Las	(365 DE)	GREE
BAND NO.*	o	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		ຣດບ	ND PRE	SSURE	LEVEL	dB re	20 mic	ropasca	1		
111111122222222222333333334 1111112222222222	558219453823383974458371562 265786591318725556675865962 877776666655344444644444444	975885073133601813910817567 975885073133601813910817567	962384646811645284417218835 962384646811645284417218835	38208608023710387603698968	215569799550103231858591431 77777766766433444444444445	149007690468673757265715933	9746676554444444444444444444444444444444	8777766765544444555555444444 8777766765544444555555444444	907418708597693334373372350 9776676654444444444444444444444444444444	886456626349069;80829549739 864687523431256778786754541 777776676654444444444444444444444444444	311021031125211221221211210
AL OASPL PNL FNLT	61.6 86.0 77.9 79.2	62.2 84.0 78.1 79.2	62.0 83.7 78.1 79.1	64.7 87.5 82.1 84.0	62.6 84.2 79.1 61.0	63.3 84.4 79.8 81.4	61.8 84.7 78.0 79.3	64.2 86.4 80.1 81.3	62.9 85.3 79.0 80.0	62.8 85.1 79.1 80.6	1.2

^{* - 14} TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz
** - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
*** - 32 SECOND AVERGING TIME

TABLE NO. D.5-1H.2

BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

SITE: 1H

(SOFT) - 150 M. NW JUNE 14,1983

FLIGHT IDLE

	LEVELS @ ACCUSTIC EMMISION ANGLES OF (DEGR								GREES) Lav(360 DEGREE)			
BAND NO.*	٥	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv	
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasca	1			
456789012345678901234567890		777776677564333344444444444443	7777766666654344444443333333333333333333	8888621513341544378997 8524563190418997777655 8888621513341544378997	1706991705353728653968 7777766766543343333333333	149649628280773164056014693 952466388119692322220086743 333334444444333333	019014859942499408791551954 963669560332112221009865532 77777666666544444444433333333	7777766656543444444444333333 9535575491218012221200877534 796967178757635343715110791	77777667665439977777574112801 7777766766543344444443333333	104424751010665443995031872 77777666654334444439987754	3000111312221212120489172149	
AL OASPL PNL PNLT		60.6 82.4 76.7 78.4	59.4 84.2 74.5 75.5	58.7 83.5 74.2 75.9	62.4 84.7 77.7 79.8	58.4 83.5 74.3 75.5	59.0 84.1 74.5 75.6	58.0 83.9 74.0 74.9	59.8 83.8 75.5 76.9	59.5 83.8 75.1 76.5	1.5 0.7 1.5 1.8	

^{- 14} TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - 32 SECOND AVERGING TIME

TABLE NO. D.5-1H.3

BELL 222 HELICOPTER

1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

SITE: 1H

では、重要では、人名の教育のというない。 では、重要では、人名の教育のというない。 では、自然のでは、というないでは、自然の

(SOFT) - 150 M. NW

JUNE 14,1983

GROUND IDLE

	LEVELS	@ ACO	USTIC	EKMIS	ION A	NGLES (OF (DE	GREES)	La	4(360 DE	DREE >
BAND NO.*	0	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		SOUN	ID PRE	SSURE	LEVEL	d8 re	20 mi	croPasca	ı 1		
14	-	_		50.4		241576249106605032121679548 11113275732635633133222131348 5565555555435333333333333333		51.6 48.7	51.1	51.1	0.6
15	••			50.0		51.4	****	48.7	50.2	50.0	1.4
16	•••			50.0	_	61.1	•-	54.5	59.1	58.3	3.4
17	-	•••,		53.6		53.5		52.3	53.2	53.1	0.7
18				54.0	4***	52.7	_	50.8	52.7	52.5	1.6
19		~ ,	***	59.8	_	57.6		54.9	57.9	57.4	2.5
20		-		54.1		55.2		52.7	54.1	54.0	1.3
21				59.0		57.4		53.9	57.2	56.8	0.7 1.65 1.3 1.3
<u>2</u> 2	-	-		53.4	***	53.9	_	52.7	53.4	53.3	0.6
23	-		-	52.8		52.1		51.6	52.2	52,2	0.6
24				47.0	_	46.0		44.2	45.9	45.7	1.4
25		•••	a	35.1	-	33.6	-	30.2	33.4	33.0	2.5
28		-		33.1		35.6		30.4	33.5	33.0	2.6
27		***	***	32.0	-	36.0	***	30.4	33.5	32.8	2.9
28	-	-	-	32.1		33.5		32.0	32.6	32.5	0.3
29	-	****	***	31.2		33.0	-	32.7	32.4	32.3	1.0
30	-			31.8		31.3		31.5	31.5	31.5	0.3
33	-	•		32.1		33.2		33.8	33.1	33.0	0.9
32	-	-		27.8		33.1		34.9	33.1	32.6	2.6
33	_	1000 1100 1100 1100 1100 1100		608104801101281863 549495275520112980 555555543555553333333025		32.2	 	5389797622444075897179679 55555555554333333333333333333333333333	127912429455-045111096485 932747325533222133333333333333333333333333333	3.154083270085750405128711 8727445255322221322245566	001222010025232432
34		-		30.3		32.1	-	35.1	33.0	32.5	2.4
35	••••	***		***	78	31.6	~	36.7	34.9	34.1	3.6
36	-		**	-	**	33.7		36.9	35.6	35.3	2.3
37		***		-		31.9		38.6	36.4	35.2	4.7
38	***					33.5		38.7	36.8	36.1	3.7
39	•••			_	_	34.4	p p	37.9	36.5	34.1	2.5
11102000000000000000000000000000000000	-	80.0	***	-		28.8	24	33.0	31.4	30.9	3.0
AL		•••	***	48.9		47.1 65.9 62.6	***	49.5 62.9 63.4 63.9	49.5 45.2 43.0	49.2	0.3
UASPL.		**	_	48.9	_	65.9		62.9	45.Ž	65.0 62.7	1.8
F'NL.	-			62.2	-	62.6		63.4	63.0	62.7	0.6
PNIT	_	-		43.7		X3.2	_	43.9	63.8	63.4	0.4

DOT/TSC 9/ 7/83

^{* -- 14} TO 40 -- STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz ** -- ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - 32 SECOND AVERGING TIME

TABLE NO. D.5-1H.4 BELL 222 HELICOPTER

DOT/TSC 10/12/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED***

SITE: 1H

(SOFT) - 150 M. NW

JUNE 14,1983

HOVER-DUT-OF-GROUND-EFFECT

	LEVELS @ ACOUSTIC EMMISION ANGLES OF (DEG								Lav(360 DEGREE)		
BAND NO.*	0	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasca	1 1		
11111112000000000000000000000000000000	319049080469519103727061302 284607512605045764197741204	30738893134646±263296513802 062556555042934392327641093	8777763349441310215024819994 063458705609485858005429851	506496998289728468082922308 162591250044923142599530850 877777777766677776665555554444	415349844721864228739790479 306891363276033032498520740 306891363276033032498520740	615363876975378998423706754 051478718945022931397429851	456762522883992001464968870 284688424732813281438529851	877777667676767135388370931353880548747603135388054874760313	87777667667666677776666655555544 274589938943812184319631072	978718918241600770425459893 17777667666666777766665555444	476389548245630854853958117 ***********************************
AL DASPL PNL PNLT	73.4 86.7 85.3 86.7	78.4 85.9 89.0 90.6	73.8 85.0 85.2 86.1	77.4 87.0 89.0 90.3	77.4 88.6 89.3 90.5	76.6 85.6 87.9	77.4 87.1 88.2 89.5	79.9 87.8 89.8 91.1	77.2 86.9 88.5 89.4	76,8 66.7 87.9 89.2	2.2 1.2 1.8 1.9

^{* - 14} TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz ** - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - 32 SECOND AVERGING TIME

TABLE NO. D.5-2H.1 BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

SITE: 2

(SOFT) - 150 M. WEST

JUNE 14,1983

HOVER-IN-GROUND-EFFECT

	LEVEL	S @ AC	OUSTIC	EMMIS	ION AN	GLES C	F (DEG	REES)	Las	V(360 DE	GREE)
BAND NO.*	٥	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasca	41		
11111112000000000000000000000000000000	\$8778677776658444444444444444444444444444	88777777766544444444444444444 983215649167798267788886853417	695324119706658362902991362 88778777676144688888787643418	5179231600770784247363316482 5179231600770784247363316482	883298269013248379191769091	939479596087093924078153794 3179320780114447555431197862 3179320780114447555431197862	610928691282037556195093590 3189121188099357787654410085	503028400371615374792004919 2180020417755570000987753438	920468889036168385073658113 318912058231457777765531317 8877877767654444444444443	810637836830945041538013678 81891205802135577776645531206	8365575360031278091917Q3524
AL OASPL PNL PNLT	64.5 89.3 80.6 81.7	64.1 88.6 80.1 81.0	66.6 88.5 82.6 83.7	66.2 88.9 82.2 83.2	66.3 89.0 81.9 83.3	66.2 89.4 82.3 83.7	64.1 88.5 80.6 81.4	69.0 88.5 84.7 86.0	66.2 88.9 81.7 82.7	65.9 88.8 81.9 83.0	1.6 0.4 1.5 1.6

¹⁴ TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES 32 SECOND AVERGING TIME

TABLE NO. D.5-2H.2 BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

SITE: 2

(SOFT) - 150 M. WEST JUNE 14,1983

FLIGHT IDLE

	LEVEL	S @ AC	OUSTIC	EMMIS	ION AN	GLES O	F (DEG	REES)	Lav	/(360 DE	GREE)
BAND NO.*	٥	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasca	1		
11111100000000000000000000000000000000	390554616236255834340120050297890711566543669912221087752	9167172667444527709036085956	670632137440474661304775867 197872092897992122211998533307	516243837578446402690709433 1968896448071132333211974518	696157702261909681411209227 186809764076891234332196740 1868767675435444443333333	809753182452212987077493186 8776880812587013122219853496	852831489809849E4988098 197777776666643444444433	877777666654444444443209 1978707427 1506344443209	877777676654302727646838738323333333333333333333333333333333	839445204999405435727615908 1968808137869022332200975539	00001113111111111110001111122
AL DASPL PNL PNLT	61.2 87.1 77.3 78.4	63.1 86.5 78.1 79.4	61.7 86.6 76.8 78.1	63.2 86.6 78.4 79.8	64.4 87.1 79.7 81.4	61.4 86.6 76.8 77.9	62.4 86.7 77.3 78.3	61.1 86.5 76.6 77.7	62.5 86.7 77.4 78.6	62.3 86.7 77.6 78.9	1.2 0.2 1.1 1.3

^{* - 14} TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz
** - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
*** - 32 SECOND AVERGING TIME

TABLE NO. D.5-2H.3

BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

SITE: 2

(SOFT) - 150 M. WEST

JUNE 14,1983

GROUND IDLE

	LEVELS	e Ac	COUSTIC	EMM19	A NOI	GLES	DF (DEG	REES)	Lav	/(360 DE	GREE)
BAND NO.*	o	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		sou	IND PRE	SSURE	LEVEL	dB re	20 mic	roPasc	a l		
11111110000000000000000000000000000000	172978968238630225901262904 404316232379296534688778750 		449507760306004344494 421332539612531329909 556556565554334332252		8212212178617345027356 3066287565091122221009 55655555553333333333333		5338678483396472905 5166269676101123220 55555555555553333333333		556555555554333333333333333333333333333	51.1	6926689475956822513374
AL OASPL PNL PNLT	50.7 66.8 64.4 66.1		52.8 69.2 66.0 68.7		50.3 68.7 63.3 63.9	_	50.9 66.6 63.1 63.7		51.8 68.0 65.5 66.4	51.2 67.8 64.2 65.6	1.1 1.3 1.3 2.3

^{- 14} TO 40 - STANDARD 1/3 OCTAVE RANDS 25 TO 10KHz - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES - 32 SECOND AVERGING TIME

TABLE NO. D.5-2H.4 BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED***

SITE: 2

(SOFT) - 150 M. WEST

JUNE 14,1983

HOVER-OUT-OF-GROUND-EFFECT

	LEVEL	S @ AC	OUSTIC	EMMIS	F (DEGREES) Lav(360 DEG			GREE)			
BAND NO.*	0	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasca	i l		
11111112000000000000000000000000000000	7091051149961111580440772680 7091051149961111580440772680	87777766766656677666655555443	840897718355510421358960126 840897718355510421358960126	8777777777776677776665555544443	88778777776667776666555544443 306704574483612921489529637	877777677765667665565555444 296791950159491948308630850	8777777676847815157506066318648 1967770847815157506066318648 19677776767686889900737	023320447822593919028670021 023320447822593919028670021	87777777777666777666655555444 8777777777666777666655555444	117047868968228510136108571 877777676765667666665554444	719823440792355003520414810
AL OASPL PNL PNLT	75.1 89.1 87.3 89.1	75.9 87.6 87.3 88.6	75.8 87.4 87.5 88.8	77.9 68.2 89.8 91.1	76.5 88.9 88.9 90.4	75.4 87.8 87.4 88.6	71.9 86.7 84.4 85.5	77.0 83.2 87.4 89.0	74.0 87.7 87.8 88.6	75.7 87.4 87.5 88.9	1.9 1.6 1.6

¹⁴ TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KH≥ ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES 32 SECOND AVERGING TIME

TABLE NO. D.5-4H.1 BELL 222 RELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED***

SITE: 4H

(SOFT) - 300 M. WEST

JUNE 14,1983

HOVER-IN-GROUND-EFFECT

	LEVEL	S @ AC	OUSTIC	EMMIS	ION AN	GLES C	F (DEG	REES)	La	v(360 DE	GREE)
BAND NO.*	o	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasc	al		
456789012345678901234567890	8205589457c 71852023051 53012306645421000087634 	776776565543344333333333	77677666555448345333333333			999764827141680077420 	9690428493064290690189 4281342476508869988753 	0064707509269043852065 33912406652424211099854	7797589995835198203398 77677666554439298876533	9797378445569054768858 77677666554434333333333	7476400238354311301127
AL OASFL PNL PNLT	55.0 80.4 69.9 71.4	53.7 79.7 68.3 70.5	56.1 79.7 71.0 72.6	55.7 80.1 70.3 71.8	56.0 80.2 70.5 72.4	57.8 81.0 72.5 74.4	54.9 80.0 70.0 71.0	58.5 79.9 73.0 74.5	56.2 80.1 71.1 72.5	56.0 80.1 70.7 72.3	1.6 0.4 1.5 1.5

^{* - 14} TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz ** - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - 32 SECOND AVERGING TIME

TABLE NO. D.5-4H.2 BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED***

SITE: 4H

(SOFT) - 300 M. WEST JUNE 14,1983

FLIGHT IDLE

	LEVEL	S @ AC	DUSTIC	EMMIS	ION AN	GLES C	F (DEG	REES)	Lav(360 DEGREE)				
EIAND NO.*	0	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv		
		SOU	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasca	41				
456789012345678901234567890	3179129553333333333333333333333333333333333	7766675565543333333333333333333333333333	571036743139588275804 20779930216843432211092	27766755655543333333333333333333333333333		39926954370529204951 776765565443333333333			1732279137188145723571 77667656554335333333333	7766765655543333333333333333333333333333	435825906104673920060 		
AL DASPL PNL PNLT	53.2 78.5 67.5 68.8	51.9 77.4 65.7 67.1	52.1 77.6 65.9 67.8	53.1 77.5 67.8 69.7	54.5 78.3 68.7 71.0	51.1 78.1 64.9 66.2	50.5 77.9 63.9 64.9	49.7 77.8 64.1 65.0	52.3 77.9 66.6 68.0	52.0 77.9 66.1 67.6	1.6 0.4 1.8 2.2		

^{# - 14} TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz
#* - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES
#** - 32 SECOND AVERGING TIME

Provide the state of the state

TABLE NO. D.5-4H.3

BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED***

SITE 4H

(SOFT) - 300 M. WEST

JUNE 14,1983

GROUND IDLE ****

	LEVELS	G AC	OUSTIC	EMMIS	A NOI	GLES (OF (DEG	REES)	Lav(360 DEGREE)			
BAND NO.*	0	45	90	135	180	225	270	315	ENERGY	ARTTH**	Std Dv	
		SOL	IND PRE	SSURE	LEVEL	dB re	20 mic	noPasc	a 1			
456789012345678901234567890	570298851679285469458696229 979094975917163917788798689 9790949759177163917788798689		379732964660013805101940204 996227250349201776671688669		568534011596883979979347571 879193287127990876667795525 445544432222322222222232		634651430617457255712035066 9720833082477790877667964413 945545554432223222222222222		4455555544323532222222222232 44555555544323332222222222	210206046830164642817757560 21020604483011887678786592 44555555544323552222222222222	013111132110231020011011132 513169672736054716507969018	
AL DASFL PNL PNLT	43.2 62.0 557.3	***** **** ****	45.0 63.5 58.3 59.7		42.7 62.6 55.5 56.7	 	43.0 60.5 55.8	2011 2011 2011 2011	43.6 62.3 56.2 57.3	43.5 62.2 56.3 57.6	1.0 1.3 1.3	

^{* - 14} TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz ** - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - 32 SECOND AVERGING TIME

^{****-} TABULATED LEVELS ARE CONTAMINATED BY LOCAL AMBIENT

TABLE NO. D.5-4H.4 BELL 222 HELICOPTER 1/3 SCTAVE NOISE DATA -- STATIC TESTS

AS MEASURE " ***

SITE: 4H

(SOFT) - 300 M. WEST

JUNE 14,1983

HOVER-OUT-OF-GROUND-EFFECT

	LEVEL	S @ AC	GUSTIC	EMMIS	SION A	NGLES C	F (DEG	REES	La	Lav(360 DEGREE)			
BAND NO.*	٥	45	90	135	180	225	270	315	ENERGY	AR) TH**	Std Dv		
		รถบ	ND PRE	SSURE	LEVEL.	dß re	20 mic	noPasc	3 1				
111-111WQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ	7766765656555556666655544432	9105942%17800637820098708 42771842%87668*1110480517 	44.6	9422718638174094516241741 2179054656510345427121406 		7382490341616640835844516 7768009712074752108378616 7766765666555556665554445	37396685270041058178947410 31789185907424677752974181 37396685270041058178947410	246590573630638344963575487 776676565665555666555744432	962897745052342276644030239 7766765666655566665555443332	776676536365655566665555444332 77667656565655566665555444332 77667656565655566665555444332	10001050405000000001100111051		
AL DASPL PNL FHLT	59.0 20.0 80.9 83.0	69.0 79.3 79.7 81.1	69,3 79.0 79.4 80.4	7), 4 77, 9 81, 7 82, 4		68.6 78.9 79.5 80.7	65.4 78.5 79.3 78.4	69.0 79.0 80.5 62.3	89.1 79.3 80.2 81.2	68.8 79.2 79.3 81.2	1.8 0.5 1.4 1.6		

¹⁴ TG 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHZ ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES 32 SECOND AVERGING TIME

TABLE NO. D.5-5H.1 BELL 222 HELICOPTER

DOT/TSC 9/ 8/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED***

SITE: 5H

(HARD) - 150 M. NORTH JUNE 14,1983

HOVER-IN-GROUND-EFFECT

	LEVEL	VELS @ ACOUSTIC EMMISION ANGLES OF (DEGREES)						REES)	Lav(360 DEGREE)		
BAND NO.#	0	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasca	1		
111111100NC200NCXCNBBBBBBBBB	919423303187444964887*77880 084668786975342975432420517	6763701599362127962141471088 1745486834421197.05421389073	87777667366666666555555555444444 7701460795110780338194220384	777776676666666666555554444444 9634575247664431966430865762	1050106669541447189387097894 073598645085343096431097894 4444718938709522	258388654993820458984959767 0735286782099999753086431106 877786676776666666655555554	7777766666666666655555544444 974589674665443108543198873 974589674665443108543198873	951056279137824951549643526 851056279137824951549643526	87777667666666666555555541417 8777766766666666655555554597666666666666555555545697656666666665555555555	877778615875443197555544444 87777667666666655555542298984	956575878611537988208028087
AL OARPL PNL PNLT	70.0 95.5 83.7 84.1	67.7 85.2 81.6 62.8	70.7 85.4 83.7 84.5	69.1 84.4 82.3 83.5	70.4 85.6 84.1 85.5	75.4 87.5 88.1 89.9	70,4 85.2 83.1 84.2	70.9 E4.4 83.4 84.0	71.2 85.5 84.0 85.1	70 <u>- 6</u> 85 - 4 83 - 7 84 - 8	2:2 1:0 1:9 2:2

^{* - 14} TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz ** - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - 32 SECOND AVERGING TIME

TABLE NO. D.5-5H.2 BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

SITE: 5H

(HARD) - 150 M. NORTH JUNE 14,1983

FLIGHT IDLE

	LEVEL	S @ AC	OUSTIC	EMMIS	AA NOI	IGLES C	F (DEG	REES)	Lav	√(360 DE	PREE
EAND NO.*	0	45	90	135	180	325	270	315	ENERGY	ARITH**	Sto De
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasca	: 1		
1111112222222222333333333334 456789012345678901234567890	77777666566555555555444444 964567479208898775321976641	250178575642962723989113322 964536490519868665321076652	4452001348318786/5102280030 863558630420887665431954418 77777666666665555555444443	977/7766766666666555554444433 963556321554432986419742296 977/776676666666555555444420	157994510885431386050961746 963476463162098643209643206 6767666555555444443	872076167319392828397637109 85355542286645441075308644527 85355542286645441075308644527	777776655384827266600003834 963448572843332108531853207 963448572843332108531853207	777776666666666665555555288755 77777666666666665555555288755	64451781142676 666666555555555	35904126721575843 66666665555554444	333459644848755605109067612
AL OASPL PNL PNL T	66.4 84.1 79.7 80.6	66.5 83.8 80.0 81.2	66.3 83.3 79.3 79.8	69.0 84.1 81.4 83.0	68.0 85.0 82.7 84.8	70.4 84.1 82.5 84.0	69.5 83.9 81.7 82.4	67.5 83.9 80.0 80.6	68.2 84.0 81.1 62.4	68.0 84.0 80.9 82.0	1.6 0.5 1.3 1.8

^{* - 12} TO 40 - STANDARD 1/2 OCTAVE BANDS 25 TO 10KHz ** - ARTHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - 32 SECOND AVERGING TIME

TABLE NO. D.5-5H.3 BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS AS MEASURED***

SITL: 5H

(HARD) - 150 M. NORTH

JUNE 14,1983

GROUND IDLE

!	LEVELS	2A 9	oustic	EMMIS	א אסונ	GLES (OF (DEG	REES)	Lav	(360 DE	GREE)
	0	45	90	135	180	225	276	315	ENERGY	ARITH**	Std Dv
		ຣດບ	NO PRE	SSURE	LEVEL	dB re	20 mic	roPasca	1		
	55545555555554444444355588584981109979974477		04281282X - 5594719 16775529774643312		13543M002053004794 155555555555444444444	1000 1000 1000 1000 1000 1000 1000 100	99999896431 555555555555555555555555555555555555	60 kg 60 kg 60 kg 60 kg 60 kg	55555646555555555555555555555555555555	44.2 44.2 45.3	528661232306967734190946174
L	61.1 66.1 74.1 75.1	_ _ _	60.4 66.8 72.7 73.3	-	50.5 67.4 70.8 71.2		64.2 70.0 76.3 76.9	** <u>=</u>	61.6 67.8 73.9 74.5	61.0 67.6 73.5 74.1	2.4 1.7 2.3 2.4

^{# - 14} TO 40 - STANDARD 1/3 SCHAVE BANDS 25 TO 10KHz ## - ARITHMETIC AVERAGE OF MRAQURED FEVELS UNER 360 DEGREES ### - 32 SECOND AVERGING TIME

TABLE NO. D.5-5H.4

BELL 222 HELICOPTER

DOT/TSC 9/ 7/83

1/3 OCTAVE NOISE DATA -- STATIC TESTS

AS MEASURED***

SITE: 5H

TAXABLE SEED SEED STORY OF THE SECOND PROPERTY OF THE SECOND PROPERT

(HARD) - 150 M. NORTH JUNE 14,1983

HOVER-OUT-OF-GROUND-EFFECT

	LEVEL	S Q AC	OUSTIC	EMMIS	A MOL	IGLES C	F (DEG	REES)	La	V(360 DE	GREE)
BAND NO.*	0	45	90	135	180	225	270	315	ENERGY	ARITH**	Std Dv
		sou	ND PRE	SSURE	LEVEL	dB re	20 mic	roPasca	1		
11111112222222222233333333333334 456789012345678901234567890	263292649918875552478485665 307911968429749330562106760	87777776538261196348212725042 4968809605318435653200655517	8777787677777777766677766665555554	877778767777666729191237420816 694017125866729191237420816	962979000626363960204951797 962979000626363960204951797 962979000626363960204951797	933253861188169701401176363 933253861188169701401176363	922670482970703997522191107 922670482970703997522191107	877777767777776666777777666655557	877722304939574402646291655 8777877777667777766666555554	877787777777866777766666555554577778777777786677776666666555554	1212217052078573494982270515
AL OASPL PNL PNLT	79.5 89.2 91.5 92.7	75.6 88.5 89.2 90.2	76.1 89.2 90.4 91.9	77.1 88.1 89.0 90.5	80.3 91.0 92.7 94.2	82.3 91.4 94.3 95.6	79.8 88.8 91.9 93.2	80.2 87.9 91.4 92.6	79.5 89.4 91.6 92.5	79.1 89.3 91.3 92.6	2.1 1.3 1.8 1.8

^{* - 14} TO 40 - STANDARD 1/3 OCTAVE BANDS 25 TO 10KHz ** - ARITHMETIC AVERAGE OF MEASURED LEVELS OVER 360 DEGREES *** - 32 SECOND AVERGING TIME

APPENDIX E

Direct Read Accustical Data for Static Operations

This appendix contains time averaged, A-weighted sound level data (Leq values) obtained using direct read Precision Integrating Sound Level meters. Data are presented for microphone locations 5H, 2, and 4 (see Figure 3.3).

A description of the measurement systems is provided in Section 5.6.2, and a figure of the typical PISLM system is shown in Figure 5.4. Data are shown in Table E-1, depicting the equivalent sound levels for eight different source emission angles. In each case the angle is indexed to the specific measurement site. A figure showing the emission angle convention is included in the text (Figure 6.1). In each case, the Leq (or time averaged AL) represents an average over a sample period of approximately 60 seconds.

Quantities appearing in this appendix include:

HIGE Hover-in-ground-effect, skid height 5 feet above

ground level

HOGE Hover-out-of-ground-effect, skid height 30 feet

above ground level

Flight Idle Skids on ground

Ground Idle Skids on ground

TABLE E.1 STATIC OPERATIONS

DIRECT READ DATA

CALL VALUES A-WEIGHTED LEG, EXPRESSED IN DECIBELS)

851.L 2	22
---------	----

6-14-63

SITE 2 (SOFT SITE)

H16E		HOSE		FLT. IDLE		GAD. IDLE	
Y-0	81.7	7-0	76	X-8A	61.5	X-0B	50.9
Y-315	83.3	2-315	78	X-3154	61 - 1	X-270B	52.3
Y-270	82.8	2 - 278	71.5	X-180A	62.4	X-180B	50.8
Y-225	85	2-225	75.7	X-135A	54	X-90B	53.9
Y-180	84.2	Z-120	76.7	X-90A	62.4		
Y-135A	84.0	2-135	77.9	X-45A	63.4		
Y-90A	85.4	Z-90	75.9				
Y-45	8 3	2-45	76.3				

BELL 222

4-14-83

SITE 48 (SOFT SITE)

HIGE		HU8E		FLT.IDLE		end. Idle	
Y-0	71.1	2~მ	73.8	X-8A	69.3	X-08	55.5
Y-315	72.2	7-315	74.3	X-315A	67.9	X-270B	55.5
Y-270	71.3	Z-270	71.1	X-278A	68.2	X-1808	55.1
Y-225	73.7	2-225	73.4	X-225A	68.6	X-90E	58,5
Y-180	71.9	2-189	75.3	X-180A	70.8		
Y-135	72.3	Z-135	75.7	X-135A	69.1		
Y-90	71.8	2-90	73.8	X-90A	68.5		
Y-45	70	2-45	72.8	X-45A	69.3		

BELL 222

5-14-83

SUME SHICKARD SITE)

H165		HOGE		FLT. IDLE		GND. IDLE	
Y-0	71.2	Z-0	79.9	X-84	67.9	X-08	63.4
Y-315	72.7	Z-315	81	X-315A	68.6	X-270B	35.2
Y-270	71.5	Z-279	80.4	X-2764	71.4	X-1808	60.1
Y-235	77.1	7-225	82.7	X-225A	71.8	x-90B	61.9
Y-180	71.6	Z-180	81.3	F-1884	69.9		
Y-135	70.7	2-135	78	X-135A	70.5		
Y-90	72.1	2-90	79.4	X-98A	67.2		
Y-45	69.1	2-45	76.5	X-454	4.33		

APPENDIX F

Cockpit Instrument Photo Data

During each event of the June 1983 Helicopter Noise Measurement program cockpit photos were taken. The slides were projected onto a screen (considerably enlarged) making it possible to read the instruments with The photos were supposed to be taken when the reasonable accuracy. aircraft was directly over the centerline-center microphone site. Although this was not achieved in each case the cockpit photos reflect the helicopter "stabilized" configuration during the test event. important caution is necessary in interpreting the photographic information; the snapshot freezes instrument readings at one moment of time whereas most readings are constantly changing by a small amount as the pilot "hunts" for the reference condition. Thus fluctuations above or below reference conditions are to be anticipated. The instrument readings are most useful in terms of verifying the region of operation for The data acquisition is discussed in Section 5.3 different parameters.

Each table within this appendix provides the following inforantion:

Event No. This event number along with the test date provides

a cross reference to other data.

Event Type This specifies the event.

Time of Photo The time of the range control synchronized clock

consistent with acoustical and tracking time

bases.

である。これでは、これでは、日本の人は、日本のりは、日本の人は、日本の人は、日本の人は、日本の人は、日本の人は、日本の人は、日本の人は、日本の人は、日本の人は、日本の人は、日本

Heading The compass magnetic heading which fluctuates

around the target heading.

Altimeter Specifies the barometric altimeter reading, one of

the more stable indicators.

IAS Indicated airspeed, a fairly stable indicator.

Rotor Speed Main Rotor speed in RPM or percent, a very stable

indicator.

Torque The torque on the main rotor shaft, a fairly stable

value.

TABLE F.1

COCKPIT PHOTO DATA

	IAS ROTOR SPEED TORQUE (TS) (%)	100	100	100		100	100	44 100 40	100	100 40	100	100	50 100 30	100	100	75 100 30	100		80 100 20	100	100	100	100	22	001	70 100 99 100 100 100 100 100 100 100 100
ALTIMETER (AGL) IAS FT. (METERS) (KTS) 760 65 750 68							940 65	620 44						750 56		760 75					800			760 70		
S)		150	120	120	120	120	.120	120	120	120	120	120	120	120	120	120	120	120	120	120	295	300	300	300	300	עככ
	THOTO	6:44:07	9:48	9:52	9:56	6:26	10:09	10:17	10:21	10:25	10:32	10:36	10:41	10:44	10:48	10:52	10:55	10:59		11:11	11:20	11:24	11:27	11:30	11:33	11.26
	EVENT TYPE	APP ICAO					APP ICAO	APPROACH	APPROACH	APPROACH	APPROACH	APPROAC'	APPROACH	APPROACH	APPROACH	APPROACH	APPROACH	APPROACH	APPROACH	APPROACH	T/O ICAC	T/O ICAO		T/O ICAO		
	EVENT NO.	, -1	1.2	13	1.4	1.5	F6	M7	<u>%</u>	óм	N10	LUN	N12	N13	014	015	016	P17	P18	P19	K20	K21	K22	K03	K24	70.

TABLE F.1 (CONT)

CCCKPIT PHOTO DATA

HEL.ICOPTER	BELL 222 (CONT)	(CONT)	ł		TEST DATE	5-14-83	
EVENT NO.	Event TYPE	TIME OF PHOTO	HEADING (DEGREES)	ALTIMETER (AGL) FT. (METERS)	IAS (KTS)	ROTOR SPEED (%)	TORQUE (%)
T26	APPROACH	12:21	125	940	4 3	100	20
T27	APPROACH	12:24	125	096	47	100	20
128	APPROACH	12:27	125	920	45	100	10
T29	APPROACH	12:32	120	006	45	100	25
U30	APPROACH	12:36	125	750	52	100	10
บรา	APPROACH	12:39	120	820	53	100	20
U32	APPR. 'CH	12:42	125	880	55	100	10
V33	APPROACH	12:48	120	840	65	100	0
V34	APPROACH	12:51	120	820	64	100	0
V35	APPROACH	12:54	125	850	62	100	10
M36	APPROACH	12:57	125	800	75	100	5
W37	APPROACH	13:00	125	760	72	100	Ф
M38	APPROACH	13:03	125	630	73	100	0
6:M	APPROACH	13:06	125	820	42	100	10
05M	APPROACH	13:09	120	006	70	100	10

TABLE F.2 COCKPIT PHOTO DATA

HELICOPTER	SR BELL 222				TEST DATE	TE 6-15-83	
EVENT NO.	EVENT	TIME OF PHOTO	HEADING (DEGREES)	ALTIMETER (AGL) FT. (METERS)	IAS (KTS)	ROTOR SPEED (%)	TORQUE
A1	Lro 1000'.9Vne	13:00	120	1220	126	100	80
A2	LFO 1000'.9Vne	13:03	120	1320	127	100	85
A3	LFO 1000'.9Vne	13:06	125	1260	125	100	83
A4		13:09	120	1320	125	100	96
A5	LFO 1000'.9Vne	13:12	120	1320	125	100	78
A6	LFO 1000'.9Vne	13:17	120	1240	128	100	80
B7	LFO 500' Vne	13:20	120	860	140	100	100
B 8	500	13:24	120	780	146	100	100
B9	500	13:27	120	780	140	100	90
C10	LFO 500'.9Vne	13:31	120	790	127	100	75
C11	LFO 500'.9Vne	13:36	120	820	127	100	75
C12		13:44	120	780	127	100	20
C13		13:49	120	720	128	100	80
C14	LFO 500'.9Vne	13:53	120	800	127	100	80
C15	LFO 500'.9Vne	13:56	120	840	126	100	80
D16	LFO 500'.8Vne	14:00	120	800	114	100	9
D17	LFO 500'.8Vne	14:03	120	820	115	100	99
D18	LFO 500'.8Vne	14:07	120	820	115	100	09
E19	LFO 500'.7Vne	14:17	120	830	26	100	55
020	APPROACH	14:20	125	620	80	100	20
- 2	AFFRUACE	(7:4)	621	000	0	0	2
R22	APPROACH	14:27	125	740	65	100	10
\$23	APPROACH	14:30	127	900	45	100	20

TABLE F.3

COCKPIT PHOTO DATA

6-16-83	
TEST DATE	•
	•
BELL 222	
SLICOPTER	

HELICOPTER BI	BELL 222				TEST DATE	re 6-16-83	
EVENT EVENT NO. TYPE		TIME OF PHOTO	HEADING (DEGREES)	ALTIMETER (AGL) FT. (METERS)	IAS (KTS)	ROTOR SPEED	TORQUE
	APPROACH	10:46	120	909	99	100	30
Q25 APP		10:50	120	500	0.2	100	25
		10:53	120	520	72	100	10
		10:56	120	680	09	100	10
		10:59	120	780	58	0,	10
		11:02	120	560	80	001	10
		11:05	130	380	48	100	25
		11:08	125	620	45	100	10
	АРРКОАСН	11:12	125	390	45	100	35
	APPROACH	11:14	125	790	99	100	IJ
	APPROACH	11:17	125	720	09	100	w
	APPROACH	11:20	120	680	70	100	Ŋ
	APPROACH	11:23	130	660	65	100	0
	APPROACH	11:27	130	800	55	100	15
	APPROACH	11:30	125	700	70	100	0
	APPROACH	••	125	560	55	100	10
	APPROACH	1:3	125	820	09	100	9
041 APPI	APPROACH	11:40	125	700	09	100	10
	700'Vne	12:06	120	096	140	100	06
G43 LFO		12:09	120	096	140	100	96
G44 LFO	700'Vne	12:12	120	980	140	100	96
		12:15	120	066	125	100	70
	7001.	··	120	1020	125	100	70
H47 LFO	7001.9Vne	12:20	120	1060	127	100	90
148 LFO 149 LFC	700'.8Vne 700'.8Vne	12:23 12:25	120 125	1000	21.5	100	65 60

APPENDIX G

Photo-Altitude and Flight Path Trajectory Data

This appendix contains the results of the photo-altitude and flight path trajectory analysis.

The helicopter altitude over a given microphone was determined by a photographic technique which involves photographing an aircraft during a flyover event and proportionally scaling the resulting image with the known dimensions of the aircraft. The data acquisition is described in detail in Section 5.2. The detailed data reduction procedures is set out in Section 6.2.1; the analysis of these data is discussed in Section 8.2

Each table within this appendix provides the following information:

Event No.	the test run number
Est. Alt.	estimated altitude above microphone site
P-Alt.	altitude above photo site, determined by photographic technique
Est. CPA	estimated closest point of approach to microphone site
Est. ANG	Helicopter elevation with respect to the ground as viewed from a sideline site as the helicopter passes through a plane perpendicular to the flight track and coincident with the observer location.
ANG 5-1	flight path slope, expressed in degrees, between P-Alt site 5 and P-Alt site 1.
ANG 1-4	flight path slope, expressed in degrees, between P-Alt Site 1 and P-Alt Site 4.
ANG 5-4	flight path slope, expressed in degrees, between P-Alt Site 5 and P-Alt Site 4.
Reg C/D Angle	flight path slope, expressed in degress, of regression line through P-Alt data points.

HELICOPTER: BELL 222

TEST DATE: 6-15-83

OPERATION: 1000 FT FLYGVER(0.9*WNE)/TARGET IAS=123 KTS

CENTERLINE

SIDELINE

	H	IC #5	M	IC #1	M	IC #4	HI	C #2	HI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ANG	ang	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	angle
A1	901.1	942.6	1103.2	903	1264.3	1324.7	1207.9	66	1184.3	66.3	-4.50	40.60	21.22	18.8
A2	1015.2	1019	1042.4	1019.6	1064.1	1069.9	1152.7	64.7	1149.5	64.8	0.10	5.80	2.96	2.5
A3	969	966.7	965.5	972.5	962.8	959.8	1083.7	63	1084.1	63	0.70	-1.40	-0.40	~.2
A4	1043.2	1048.3	1017.4	1019.6	996.8	1002.1	1130.1	64.2	1133.1	64.2	-3.20	-1.90	-2.69	-2.3
A5	1039.4	1040.3	1002.9	1020.1	973.9	973.5	1117.1	63.9	1121.3	63.8	-2.30	-5,30	-3.88	-3.3
A6	917.4	908.6	901.3	929.6	888.5	876.8	1026.8	61.4	1028.7	61.3	2,40	-6.00	-1.85	-1.4

HELICOPTER: BELL 222 TABLE G.2

TEST DATE: 6-15-83

OPERATION: 500 FT FLYOVER(VNE)/TARGET IAS=137 KTS

CENTERLINE

SIDELINE

	M	IC #5	H	IC #i	Н	IC #4	MI	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ANG	ang	C/D
EVENT KO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
87	460.2	457	454.4	464.8	449.8	445.5	669.8	42.7	670.3	42.7	0.90	-2.10	-0.67	~,4
88	383.4	384,7	394	380.8	384.4	386	624.1	38	624	38	-0.40	0.60	0.08	0
B 9	365.2	366	374.1	367.5	391.2	382.6	618.1	37.2	617.4	37.3	0.20	1.60	0.97	.8

HELICOPTER: BELL 222 TABLE G.3

TEST DATE: 6-15-83

OPERATION: 500 FT FLYOVER(G.9#WNE)/TARGET 1AS=123 KTS

CENTERLINE	SIDELINE

	H	IIC 8 5	H	1C #1	N	IC #4	MI	C #2	N.	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST .	ELEV	ang	ang	AN6	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT,	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
C10	409.3	410.2	393.8	400.1	381.5	381.9	630.2	38.7	631.5	38.6	-1.10	~2,00	-1.65	-1.3
C11	452.5	444.9	451.5	469.1	450.7	441.1	667.7	42.5	667.8	42.5	2.89	-3.20	-0.22	0
C12	407.7	400	392.4	417.8	380.2	369.9	629.3	38.6	630.5	38.5	2.10	-5.50	-1.75	-1.3
C13	347.5	345.3	343.8	350.8	340.8	337.8	600.2	34.9	600.5	34.9	0.60	-1.40	-0.44	3
C14	386.3	382.8	382.8	392.6	380.1	375.5	623.4	37.9	623.7	37.9	1.10	-1.90	~0.43	2
C15	460	451.5	446.6	472.7	435.9	424.7	664.4	42.2	665.6	42.2	2.50	-5.50	-1.56	-1.1

HELICOPTER: BELL 222

TEST DATE: 6-15-83

OPERATION: 500 FT FLYOVER(0.8#UNE)/TARGET TAS=110 KTS

CENTERLINE

SIDELINE

	NI	IC #5	H	IC #1	N	IC #4	MI	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ang	ANG	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
D16	430.4	418.9	421	451.8	413.5	398.7	647.5	40.6	648.3	40.5	3.89	-6.10	-1.18	8
D17	431.6	422.7	428.6	450.1	426.2	415	652.5	41.1	652.7	41	3.20	-4.00	-0.45	2
D18	424.4	412.1	430.8	455.1	435.9	420.8	654	41.2	653.4	41.2	5.00	-3.90	0.51	.6

HELICOPTER: BELL 222

TABLE G.5

YEST DATE: 6-15-83

OPERATION: 500 FT FLYOVER(0.7#NE)/TARGET IAS=96 KTS

CENTERLINE

SIDELINE

	H	16 #5	H	IC #1	H	IC #4	MI	C #2	M3	IC #3				REG.
	EST.		EST.		est.		EST.	ELEV	EST.	ELEV	₩C	ANG	₩ C	C/0
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
E19	330.1	471.3	305.2	0	285.3	461.4	579	31.8	580.7	31.7	-43.70	43.20	-0.58	-2.2

HELICOPTER: BELL 222

TABLE G.6

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(VNE)/TAREST IAS=137 KTS

CENTERLINE

	N	IC #5	H	IIC #1	н	1C 44	HI	C #2	NI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	TLEV	ang	ANG	ANG	S/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	AN6	CPA	ANG	5-i	1-4	5-4	ANGLE
642	571.2	666.4	659	676.3	649.2	642.7	822.4	53.3	823.7	53.2	1.20	-3.80	-1.38	-1
643	653.5	647.6	652.6	661.9	651.8	646.9	817.3	53	817.4	53	1.40	-1.60	-0.16	0
644	673.3	667.9	669.7	683.7	666.9	660	831	53.7	831.4	53.7	1.80	-2.70	-0.46	2

ويري والمنطوع والمنطوع والمنطوع والمنطوع والمناوي والمنطوع والمنط والمنط والمنطوع والمنط والمنطوع والمنطوع والمنطوع والمنطوع والمنطوع والم

HELICOPTER: BELL 222

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(0.9#VNE)/TARGET 1AS=123 KTS

CENTERLINE

SIDELINE

	H	1C #5	H	IC #1	N	IC #4	M	C #2	M	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ang	ang	ang	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANS	CPA	ANG	5-1	1-4	5-4	ANGLE
H45	691.7	685.7	721.1	715.1	758.5	NA	372.9	55.7	875.2	NA	3.40	NA	NA	3.4
H46	784.9	778	778.8	797.6	773.9	765	921.2	57.7	921.8	57.7	2.30	-3.70	-0.76	5
H47	767.3	767.5	769.6	768	771.5	771.8	913.5	57.4	913.2	57.4	0.10	0.40	0.25	.2

TABLE G.8

HELICOPTER: BELL 222

TEST DATE: 6-16-83

OPERATION: 700 FT FLYOVER(0.8*VNE)/TARGET IAS=110 KTS

CENTERLINE

SIDELINE

	N	IC #5	H	IC #1	H	IC #4	NI	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ang	ANG	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	AN6	CPA	ang	5-1	1-4	5-4	ANGLE
148	756.5	752.6	762.2	768.1	766.6	761.9	907.2	57.2	906.6	57.2	1.80	-0.60	0.54	.5
149	720.1	714.3	726.5	736.3	731.6	724.6	877.5	55.9	876.8	55.9	2.60	-1.30	0.40	.6

HELICOPTER: BELL 222

TARLE G.9

TEST DATE: 6-14-83

OPERATION: ICAO TAKEOFF

CENTERLINE

		(IC #5		IC #1		IC #4	NI	C #2	HI	C #3				REG.
	EST.	.20 10	EST.		EST.		EST.	ELEV	ES7	ELEV	AN6	ANG	ANS	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-CLT.	ALT,	P-ALT.	CPA	ANG	SPA	ANG	5-1	1-4	5-4	ANGLE
K20	689.1	NA	737.3	729.9	776.6	768.7	884.8	56.3	889.8	NA	NA	4.50	NA	4.5
K21	472.6	438.1	618.5	619.3	734.9	697.7	790.4	51.5	775.8	52	20.20	9.10	14.78	13.6
K22	563.4	529.8	728.4	717.1	859.9	824.6	879	53	861.6	56.4	20.80	12.30	16.68	15.3
K23	523.2	481.3	760.6	729.9	949.8	907	905.8	57.1	880.5	57.7	26.80	19.89	23,39	22
K24	552.4	513.9	735	725.6	880.6	839.8	884.5	56.2	865.2	56.7	23.30	13.10	18.32	17
K25	576.6	546.8	808.i	753.2	992.7	964.9	946.1	58.7	920.9	59.2	22.80	23.30	23.02	21.5

	M	IIC 45	•	nc #1	H	IC #4	NI	C #2	MI	C #3				REG.
	EST.		EST.		EST,		EST.	ELEV	ES).	ELEV	ang	ang	AN6	CVD
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
LI	307.1	295.9	380.4	367	438.8	427.8	621.9	37.7	616.2	38.1	8.20	7.00	7.63	6.8
L2	313.1	303.8	392.8	371.7	456.3	447.9	629.5	38.6	623.2	39	7,90	8.80	8.33	7.4
L3	293.8	287.2	352.9	336.7	400	394.1	605.5	35.7	601.1	36	5.70	6.70	6.20	5.5
L4	290.2	282.4	364	342.8	422.9	416.1	612	36.5	606.5	36.9	7.00	8.50	7.74	6.9
L5	286.1	279	359	336.7	417.2	411.2	609.1	36.1	603.6	36.5	6.70	8.60	7.65	6.8
Ló	283.1	280.1	374.1	332.8	446.8	446.8	618.1	37.3	611.1	37.7	6.10	13.00	9.62	8.5

	MIC #5	MIC #	I MIC #4	MIC #2	MIF #3		REG.
	EST.	EST.	EST.	EST. ELEV	EST. ELEV	ANG ANG	ANG C/D
EVENT NO	ALT, P-AL	T. ALT. P-AI	.T. ALT. P-ALT.	CPA ANG	CPA ANG	5-1 1-4	5-4 ANGLE
M7	285.4 275	.6 355.4 34	U.7 411.3 401.8	697 35.8	601.8 36.2	7.50 7.10	7.31 6.5
M8	303.1 298	.5 352.2 33	6.7 391.4 387.6	605.1 35.6	601.4 35.9	4.40 5.90	5.17 4.6
M 0	292.1 284	.8 360.4 34	0.7 414.9 408.6	609.9 36.2	604.7 36.6	6.50 7.90	7.17 6.3

EVENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. CPA ANG CPA ANG 5-1 1-4 5-4 ANG M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G.12 TABLE G.12 TABLE G.12 CENTERLINE SIDELINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 RE EST. EST. EST. ELEV EST. ELEV ANG ANG ANG CENTERLINE EVENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	HEL TONOTES	e RELL	222				TAB	LE G.10)						
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTERLY EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG CENTERLY EVENT MO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	TEST DATE.	. UKLL	-03												
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTERLY EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG CENTERLY EVENT MO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	1631 PM16:	0-14	-00												
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. CPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	OPERATION:	6 DE	GREE 1CA) Approa	CH/TARGET	I IAS≖65	+73								
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. CPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7				CSN	TERLINE				SII	ELINE					
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTERLY EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG CENTERLY EVENT MO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7		Let N	IC 42	K EET	1C #1	ECT	IC #4	NI Set	C #2	MI COS	C #3	ANC	ANIC	ANC	REG.
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTENT MO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANS	CPA	ANG	5-1	1-4	5-4	ANGLE
H7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 H8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 H9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CENTERLINE SIDELINE NIC 85 MIC 81 MIC 84 MIC 82 MIC 83 RE EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE ST. ELEV ANG ANG CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE ST. ELEV A	LI	307.1	295.9	380.4	367	438.8	427.8	621.9	37.7	616.2	38.1	8.20	7.00	7.63	6.8
N7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 #ELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TEST DATE: 6-14-83 DPERATION: 6 DEGREE APPROACH/TARGET IAS=55 KTS CENTERLINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 RE EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG CENTERLINE CENTERLINE ST. ELEV EST. ELEV ANG ANG CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE CENTERLINE ST. EST. ELEV ANG ANG CENTERLINE CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE C	L2	313.1	303.8 207 2	392.8	371.7 7 224 7	456.3	447.9	629.5 ∡n¤ =	38.6 25.7	623.2	39 24	7,90	8.80	8.33	7.4
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTENT MO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	L3 L4	273.6 290.2	282.4	364	342.8	422.9	374.1 416.1	612	36.5	606.5	აი 36.9	3.70 7.00	8.5N	0.2U 7.74	5.5 6.5
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G.12 TABLE G.12 TABLE G.12 CONTERLINE SIDELINE NIC #8 MIC #8 MIC #8 MIC #8 MIC #8 MIC #8 REEL #8 FS KTS EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG ANG CELEVENT MO ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	L5	286.1	279	359	336.7	417.2	411.2	609.1	36.1	603.6	36.5	6.70	8.60	7.65	6.8
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. CPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	Ló	283.1	280.1	374.1	332.8	446.8	446.8	618.1	37.3	611.1	37.7	6.10	13.00	9.62	8.5
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. CPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	HELICOPTER	: BELL	222				TAB	LE G.1	l						
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G.12 TABLE G.12 TABLE G.12 CONTERLINE SIDELINE MIC #8 MIC #8 MIC #8 MIC #8 MIC #8 MIC #8 REEL #8 ANG ANG CENTERLY AND ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	TEST DATE:	6-14	-83												
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTENT MO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7															
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 1	NOSBATION :	. A DE	GÜEF AĞĞI	inoru /ī a	PÊST 1AS	245 VÌS									
H7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 H8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 H9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CENTERLINE SIDELINE NIC 85 MIC 81 MIC 84 MIC 82 MIC 83 RE EST. EST. EST. EST. EST. ELEV EST. ELEV ANG ANG CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE ST. ELEV ANG ANG CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE ST. ELEV A	OPERATION:	6 DE	GREE APPI	ROACH/TA	rbet las	=45 KÌS									
M7 285.4 275.6 355.4 340.7 411.3 401.8 607 35.8 601.8 36.2 7.50 7.10 7.31 6 M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CONTERLINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 REEST. EST. EST. ELEV ANG ANG CENTENT MO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	operation:	6 DE	gree appi	roach/ta Cen	rbet 149 Terline	=45 KÌS			ŞI	DELINE					
M8 303.1 298.5 352.2 336.7 391.4 387.6 605.1 35.6 601.4 35.9 4.40 5.90 5.17 4 M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TABLE G. 12 TABLE G. 12 CENTERLINE CENTERLINE SIDELINE NIC 85 MIC 81 NIC 84 MIC 82 NIC 83 RE EST. EST. EST. EST. EST. ELEV ANG ANG ANG CENTERLINE ST. ELEV ANG ANG CENTERLINE ST. EVENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	operation:	6 DE	GREE APPI	roach/Ta Cen M Est.	rßet 1AS Terline IC #1	*45 KÌS N FST.	11C #4	M] Est.	\$11 C #2 FIFU	DELINE Hi est.	- #3 F(RJ	ANG	ANS	ang	REG.
M9 292.1 284.8 360.4 340.7 414.9 408.6 609.9 36.2 604.7 36.6 6.50 7.90 7.17 6 HELICOPTER: BELL 222 TABLE G. 12 TEST DATE: 6-14-83 OPERATION: 6 DEGREE APPROACH/TARBET IAS=55 KTS CENTERLINE SIDELINE NIC #5 MIC #1 MIC #4 MIC #2 MIC #3 RE EST. EST. EST. EST. ELEV ANG ANG CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE CENTERLINE CENTERLINE ST. ELEV ANG ANG CENTERLINE CENTERLINE CENTERLINE CENTERLINE CENTERLINE AND CONTROL AND	operation: Event no	M EST. ALT.	GREE APPI IC #5 P-ALT.	CEN H EST. ALT.	rget las Iterline IC #1 P-alt.	×45 KTS N EST. ALT.	IIC #4 P-ALT.	MI EST. CPA	SII C #2 ELEV ANG	DELINE MI EST. CPA	F#3 ELEV ANG	ANG 5-1	ANS 1-4	ANG 5-4	REG. C/C ANGLE
TEST DATE: 6-14-83 OPERATION: 6 DEGREE APPROACH/TARGET IAS=55 KTS CENTERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MIC #3 RE EST. EST. EST. EST. ELEV EST. ELEV ANG ANG CE EVENT NO ALT. P-ALT. ALT. P-ALT. ALT, P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG N10 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	M7	285.4	275.6	355.4	340.7	411.3	401.8	697	35.8	601.8	36.2	7.50	7.10	7.31	6.5
TEST DATE: 6-14-83 OPERATION: 6 DEGREE APPROACH/TARGET IAS=55 KTS CENTERLINE SIDELINE MIC #5 MIC #1 MIC #4 MIC #2 MIC #3 RE EST. EST. EST. EST. ELEV EST. ELEV ANG ANG CE EVENT NO ALT. P-ALT. ALT. P-ALT. ALT, P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG N10 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	M7 M8	285.4 303.1	275.6 298.5	355.4 352.2	340.7 336.7	411.3 391.4	401.8 387.6	69 <i>7</i> 605.1	35.8 35.6	601.8 601.4	36.2 35.9	7.50 4.40	7.10 5.90	7.31 5.17	
OPERATION: 6 DEGREE APPROACH/TARGET IAS=55 KTS CENTERLINE SIDELINE MIC #5 MIC #1 NIC #4 NIC #2 MIC #3 RE EST. EST. EST. EST. EST. ELEV ANG ANG ANG CENTENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG N10 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	M7 M8	285.4 303.1	275.6 298.5	355.4 352.2	340.7 336.7	411.3 391.4	401.8 387.6	69 <i>7</i> 605.1	35.8 35.6	601.8 601.4	36.2 35.9	7.50 4.40	7.10 5.90	7.31 5.17	6.5 4.6
CENTERLINE SIDELINE MIC #5 MIC #1 HIC #4 MIC #2 MIC #3 RE EST. EST. EST. EST. ELEV EST. ELEV ANG ANG ANG C EVENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 3.20 11.20 8.70 7	M7 M8 K9	285.4 303.1 272.1	275.6 298.5 284.8	355.4 352.2	340.7 336.7	411.3 391.4	401.8 387.6 408.6	69 <i>7</i> 605.1 609.9	35.8 35.6	601.8 601.4	36.2 35.9	7.50 4.40	7.10 5.90	7.31 5.17	6.5 4.6
NIC #5 MIC #1 NIC #4 MIC #2 MIC #3 RE EST. EST. EST. ELEV ANG ANG CE EVENT NO ALT. P-ALT. ALT. P-ALT. ALT, P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	H7 H8 H7 HELICOPTER	285.4 303.1 292.1	275.6 298.5 284.8	355.4 352.2	340.7 336.7	411.3 391.4	401.8 387.6 408.6	69 <i>7</i> 605.1 609.9	35.8 35.6	601.8 601.4	36.2 35.9	7.50 4.40	7.10 5.90	7.31 5.17	6.5 4.6
EST. EST. EST. EST. ELEV EST. ELEV ANG ANG ANG CEVENT NO ALT. P-ALT. ALT. P-ALT. ALT. P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG N10 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	H7 H8 H9 HELICOPTER TEST DATE:	285.4 303.1 272.1 2: BELL	275.6 298.5 284.8 . 222	355.4 352.2 360.4	340.7 336.7 340.7	411.3 391.4 414.7	401.8 387.6 408.6	69 <i>7</i> 605.1 609.9	35.8 35.6	601.8 601.4	36.2 35.9	7.50 4.40	7.10 5.90	7.31 5.17	6.5 4.6
EVENT NO ALT. P-ALT. ALT. P-ALT. ALT, P-ALT. LPA ANG CPA ANG 5-1 1-4 5-4 ANG NIO 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	N7 M8 M9 HELICOPTER TEST DATE:	285.4 303.1 272.1 2: BELL	275.6 298.5 284.8 . 222	355.4 352.2 360.4 Roach/ta	340.7 336.7 340.7	411.3 391.4 414.7	401.8 387.6 408.6	69 <i>7</i> 605.1 609.9	35.8 35.6 36.2	601.8 601.4 604.7	36.2 35.9	7.50 4.40	7.10 5.90	7.31 5.17	6.5 4.6
N10 289.8 285.4 372.3 338.7 438.1 436 617 37.1 610.7 37.6 5.20 11.20 8.70 7	H7 H8 H9 HELICOPTER TEST DATE:	285.4 303.1 272.1 R: BELL : 6-14	275.6 298.5 284.8 222 -83 GREE APPI	355.4 352.2 360.4 ROACH/TA	340.7 336.7 340.7 REET IAS	411.3 391.4 414.7	401.8 387.6 408.6 TABL	697 605.1 609.9	35.8 35.6 36.2	601.8 601.4 604.7	36.2 35.9 36.6	7.50 4.40	7.10 5.90	7.31 5.17	6.5 4.6 6.5
	H7 H8 H9 HELICOPTER TEST DATE:	285.4 303.1 272.1 R: BELL 6-14 6 0E	275.6 298.5 284.8 222 -83 GREE APPI	355.4 352.2 360.4 ROACH/TA CEN	340.7 336.7 340.7 REET IAS	411.3 391.4 414.7 =55 KTS	401.8 387.6 408.6 TABL	697 605.1 607.9 E G.12 MI EST.	35.8 35.6 36.2 Si C #2 ELEV	601.8 601.4 604.7	36.2 35.9 36.6 C #3 ELEV	7.50 4.40 6.50	7.10 5.90 7.90	7.31 5.17 7.17	6 .: 4 . 6 6 .: REG C/I
	H7 H8 H9 HELICOPTER TEST DATE:	285.4 303.1 272.1 R: BELL 6-14 6 0E	275.6 298.5 284.8 222 -83 GREE APPI	355.4 352.2 360.4 ROACH/TA CEN	340.7 336.7 340.7 REET IAS	411.3 391.4 414.7 =55 KTS	401.8 387.6 408.6 TABL	697 605.1 607.9 E G.12 MI EST.	35.8 35.6 36.2 Si C #2 ELEV	601.8 601.4 604.7	36.2 35.9 36.6 C #3 ELEV	7.50 4.40 6.50	7.10 5.90 7.90	7.31 5.17 7.17	6.5 4.6
	HELICOPTER TEST DATE: OPERATION:	285.4 303.1 292.1 R: BELL 6-14 6 DE	275.6 298.5 294.8 222 1-83 GREE APPI	355.4 352.2 360.4 ROACH/TA CEN M EST. ALT.	340.7 336.7 340.7 REET IAS TERLINE IIC 81 P-ALT.	411.3 391.4 414.7 =55 KTS =55 KTS	401.8 387.6 408.6 TABL	697 605.1 607.9 E G.12 NI EST. LPA	35.8 35.6 36.2 86.2 ELEV	601.8 601.4 604.7 DELINE MI EST. CPA	36.2 35.9 36.6 C #3 ELEV ANS	7.50 4.40 6.50 ANG 5-1	7.10 5.90 7.90 ANG 1-4	7.31 5.17 7.17 ANG 5-4	REG C/I
NI2 281.8 276.7 391.1 344.9 478.4 476.5 628.5 38.5 619.9 39.1 7.90 1j.00 11.48 10	M7 M8 M9 HELICOPTER TEST DATE: OPERATION:	285.4 303.1 292.1 R: BELL 6-14 6 DE	275.6 298.5 294.8 222 1-83 GREE APPI	355.4 352.2 360.4 ROACH/TA CEN M EST. ALT.	340.7 336.7 340.7 REET IAS TERLINE IIC 81 P-ALT.	411.3 391.4 414.7 =55 KTS =55 KTS	401.8 387.6 408.6 TABL	697 605.1 607.9 E G.12 NI EST. LPA	35.8 35.6 36.2 86.2 ELEV	601.8 601.4 604.7 DELINE MI EST. CPA	36.2 35.9 36.6 C #3 ELEV ANS	7.50 4.40 6.50 ANG 5-1	7.10 5.90 7.90 ANG 1-4	7.31 5.17 7.17 ANG 5-4	6.5 4.6 6.3 REG.

HELICOPTER	: BELL	222				TAB	LE G.1	3						
TEST DATE:	6~14	-83												
OPERATION:	6 D E(BREE APPI	roach/ta	rget ias	=75 KTS									
			CEV	TERLINE				SII	DELINE					
		IC 45		IC #1		IC #4		C #2		C #3				REG
EVENT NO	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. CPA	elev Ang	EST. CPA	elev Ang	AN6 5-1	ANG 1-4	ANG 5-4	C./ ANGL
014 015 016	296.9 306.1 284.8	289.6 298.5 273.4	354.9 370 348.5	340.7 353.4 340.7	401.1 420.9 399.3	394.4 414 387.6	606.6 615.6 602.9	35.8 36.9 35.3	602.3 610.7 598.3	36.1 37.3 35.7	5.90 6.40 7.80	6.20 7.00 5.40	6.08 6.69 6.62	5. 5. 5.
HEL1COPTER	: BELL	222				ТАВ	LE G.1	4						
TEST DATE:	6-14	-83												
OPERATION:	6 DE	GREE APPI	roach/ta	rget ias	=85 KTS									
			CEN	TERLINE				SI	DELINE					
		IC #5		IC #1		IC #4		C #2		C #3	4115		4140	REG
EVENT NO	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. CPA	ang Elev	EST. CPA	elev ang	ANG 5-1	ANG 1-4	ANG 5-4	C/ ANGL
P17 P18 P19	287.1 306.1 310.5	277 295.9 298.9	352.3 376.4 374.7	340.7 362.3 367	484.4 432.4 425.9	394.4 422.5 414	605.2 619.4 619.4	35.6 37.4 37.3	600.3 614 613.5	36 37.8 37.6	7.40 7.70 7.90	6.20 7.00 5.50	6.80 7.33 6.67	6. 6.
HELICOPTER	: BELL	222				ТАВ	LE G.1	5						
TEST DATE:	6-15	-83												
OPERATION:	EXPI	MENTAL N	ULTI SEG	HENT APP	ROACH									
			CEN	TERLINE				Si	DELINE					
event no	EST.	IC #5 P-ALT.	EST.	IC #1 P-ALT.	EST.	MIC W4	MI EST. CPA	IC #2 ELEV ANG	MI EST. CPA	IC #3 ELEV ANG	ANG 5-1	ANG 1-4	ANG 5-4	REG C/ ANGL
Q 20	196.4 172.7	98.8 160.7	171.5 239.9	154.4 231.4	223.3 293.5		521 547.4	19.2 26	518.3 543.7	19.7 26.5	6.40 8.20	7.20 5.80	6.82 6.99	6.

	N	IC #5	M	IIC #1	H	IC #4	H1	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	ang	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	AN6	5-1	1-4	5-4	ANGLE
P17	287.1	277	352.3	340.7	464.4	394.4	605.2	35.6	600.3	36	7.40	6.20	6.80	6.1
P18	306.1	295.9	376.4	362.3	432.4	422.5	619.4	37.4	614	37.8	7.70	7.00	7.33	6.5
P19	310.5	298.9	374.7	367	425.9	414	618.4	37.3	613.5	37.6	7.90	5.50	6.67	6

	N:	IC #5	H	IC #1	H	1C #4	MI	C #2	M	C #3				REG.
EVENT NO	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. CPA	elev Ang	EST. CPA	ELEV ANG	ANG 5-1	ANG 1-4	ANG 5-4	C/D ANGLE
Q 20	196.4	98.8		154.4					518.3	19.7	6.40	7.20	6.82	6
Q21	172.7	160.7	239.9	231.4	293.5	281.3	547.4	26	543.7	26.5	8.20	5.80	6.99	6.2

TEST DATE: OPERATION:	6-16						G.16							
OPERATION:	- 10	-93												
	EXPE	KINENTAL	MULTI S	e ome nt ai	PROACH									
			CEN	TERLINE				S II	DELINE					
		1C #5		IC #1		IIC #4		C #2		C #3	ANID	4110	AND	REG.
EVENT NO	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. CPA	elev Ang	EST. CPA	elev an g	ANG 5-1	ANG 1-4	ang 5-4	C/D ANGLE
	140.8	132	192.4	184.9	233.6	224.7	528.3	21.4	525.9	21.7	6.10	4.60	5.38	4.8
	107.	95.2	186.1	170.8	237.7	224.7	523.9	20.1	520.8	20,7	8.70	6.30	7.50	6.7
	114.5 136.2	97.5 118.8	203.1 247.1	194.8 227.8	273.8 335.6	256.1 318.4	532.3 550.6	22.4 26.7	528.1 544.4	23.1 27.4	11.20 12.50	7.10 10.40	9.16 11.47	8.2 10.3
	207.1	180.1	346	333.7	456.7	428.5	601.5	35.1	591.4	35.9	17.30	10.90	14.17	12.9
	108.2	95.6	171.3	166.4	231.6	208.4	521	19.2	518.4	19.7	8.20	4.90	გ.54	5.9
630	75.9	64.9	202.9	160.6	304.3	295.8	532.2	22.4	526.2	23.4	11.00	15.40	13.21	11.8
	196.8	160.3	329.6	341.7	435.5	395.2	592.2	33.8	582.9	34.6	20.20	6.20	13.43	12.3
	117.6 228.3	87 199.1	275.6 337.1	261.2 345.4	401.6 423.9	369.7 371.8	563.9 596.4	29.3 34.4	554.3 588.6	30.3 35.1	19.50 16.60	12.40 5.40	16.03 11.08	14.7 10.1
	194.3	162.9	312.8	321.2	407.3	372.7	583	32.4	575	33.2	17.80	6.00	12.04	11
	189.4	169.2	283.5	279.3	358.5	337.1	567.6	29.9	561.9	36.6	12.60	6.70	9.68	8.7
	230.9	211.5	322.9	318.1	396.3	375.8	588.5	33.3	582.1	33.8	12.2Û	6.70	ŷ,48	8,5
	279.4	251.8	395.7	396.6	488.3	458.5	631.4	38.8	622.1	39.4	16.40	7.20	11.86	10.8
	150.6	131.3	255	243.4	338.3	318.4	554.2	27.4	548.1	28.1	12.60	8.70	10.77	9.7
939 940	162 141.8	137.2 111.1	262.8 296.9	265.5 284.3	343.1 420.6	316.2 388.5	557.8 574.7	28.1 31.1	551.8 564.6	28.8 32.1	14.60 19.40	5.90 12.00	10.31 15.74	9.4 14.4
041	165	130.7	303.3	307.6	413.6	376.3	578	31.7	568.9	32.5	19.80	7.90	14.01	12.8
									•					

HELICOPTER: BELL 222

TEST DATE: 6-15-83

OPERATION: EXPERIMENTAL MULTI SEGMENT APPROACH

CENTERLINE

SIDELINE

		IC #5		IC #1	Ħ	IC #4	MI	C #2	N)	C #3				REG.
EVENT NO	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. CPA	elev Ang	est. Cpa	ELEV ANG	ANG 5-1	ang 1-4	ang 5-4	C/D ANGLE
R22	108.6	88.4	238.6	215.6	342.3	322.3	544.8	25.9	537.8	26.8	14.50	12.20	13.37	12.1

HELICOPTER: BELL 222

TABLE G.18

TEST DATE: 6-15-83

OPERATION: EXPERIMENTAL MULTI SEGMENT APPROACH

CENTERLINE

SIDELINE

		15		IIC #1	N	IIC 84	M	C #2	M)	IC #3				REG.
event no	EST. ALT. F	'-ALT.	EST. ALT.	P-ALT.	EST. ALT.	P-ALT.	EST. CPA	ELEV ANG	EST. CPA	elev ang	ANG 5-1	ANG 1-4	ANG 5-4	C/D
\$23	116.7	92.1	280.4	249.4	411	386.5	566.3	29.7	556.2	30.7	17.70	15.40	14 40	15 2

HELICOPTER: BELL 222

TABLE G.19

TEST DATE: 6-14-83

OPERATION: 12 DEGREE APPROACH/TARGET IAS=45 KTS

CENTERLINE

		IIC #5		IC #1	١	(IC #4	N2	IC #2	M	IC #3				REG.
EVENT NO	EST. ALT.	P-ALT.	EST. ALT.	P-ALT,	EST. ALT.	P-ALT,	est. Cpa	ANG ELEV	EST. CPA	elev Ans	ANG 5-1	ANG 1-4	ang 5-4	C/D ANGLE
T26	NA OZO	159.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N / A	NA
127	270.3	251.3	413.6	380.8	527.9	510	642.8	40.1	631.1	40.8	14.70	14.70	14.73	13.3
728	248.7	229.9	389.9	357.8	502.5	484.7	627.8	38.4	616.7	39.1	14.60	14.50	14.52	13.1
T29	250.7	228.6	391.2	367	503.3	481.3	628.6	38.5	617.6	39.2	15.70	13.10	14 40	13.1

HELICOPTER: BELL 222

TEST DATE: 6-14-83

OPERATION: 12 DEGREE APPROACH/TARGET IAS=55 KTS

CENTERLINE

SIDELINE

	MIC #5	MIC #1	MIC #4	HI	#2	MI	C #3				REG.
	EST.	EST.	EST.	EST.	ELEV	EST.	EFEA	ang	ang	ang	C/Ď
EVENT NO	ALT. P-ALT.	ALT. P-ALT.	ALT. P-ALT.	CPA	AN6	CPA	ANG	5-1	1-4	5-4	ANGLE
U30	254.7 239	388.7 353.4	495.5 481.3	627	38.3	616.5	39	13.10	14.60	13.83	12.4
U31	267.9 248.5	395.3 371.7	496.9 477.9	631.1	38.8	621			12.20		11.8
U32	264.5 248.5	385.5 357.8	482 466.9	625	38.1	615.6	38.7	12.50	12.50	12.51	11.2

TABLE G.21

HELICOPTER: BELL 222

TEST DATE: 6-14-83

のない。関係は、自己のでは、自己のなどのでは、自己のなどのでは、自己のなどのでは、自己のなどのでは、自己のなどのなどのなどのなどのでは、自己のなどのでは、自己のなどのでは、自己のなどのでは、自己のなどのでは、

OPERATION: 12 DEGREE APPROACH/TARGET IAS=65 KTS

CENTERLINE

SIDELINE

	H	IC #5	M	1C #1	H	IIC #4	HI	C #2	HI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ANG	ang	C/0
event no	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
V33	252	232.5	392.4	362.3	504.4	485.7	629.3	36.6	618.3	39.3	14.80	14.10	14.43	13
V34	258.5	233.3	388.4	376.6	491.5	465.7	626.8	38.3	616.6	39	16.20	10.30	13.29	12.1
V35	258.7	237.8	388.4	367	491.9	471.1	626.9	38.3	616.7	39	14.70	11.90	13.34	12.1

TABLE G.22

HELICOPTER: BELL 222

TEST DATE: 6-14-83

OPERATION: 12 DEGREE APPROACH/TARGET IAS=70 KTS

CENTERLINE

	M	C #5	H	IC #1	н	IIC #4	MI	C #2	MI	C #3				REG.
	EST.		EST.		EST.		EST.	ELEV	EST.	ELEV	ANG	ang	ang	C/D
EVENT NO	ALT.	P-ALT.	ALT.	P-ALT.	ALT.	P-ALT.	CPA	ANG	CPA	ANG	5-1	1-4	5-4	ANGLE
W36	277.5	243.2	418.5	421.4	531	493.8	645.9	40.4	634.4	41.1	19,90	8.40	14.29	13.1
W 37	264.2	236.3	395.8	389.3	500.7	471.1	631.4	38.8	621	39.5	17.30	9.40	13.42	12.2
W38	254.2	227.1	401.7	384.9	519.3	491.4	635.1	39.2	623.4	40	17.80	12.20	15.03	13.7
W39	254.3	227.1	393.7	381.6	504.9	476.5	630.2	38.7	619.2	39.4	17.40	10.90	14.22	12.9
W40	271.8	234.2	402.9		507.4		635.9	39.3	625.4	40	20.50	5.50	13.24	12.2

APPENDIX H

NWS Upper Air Meteorological Data

This appendix presents a summary of meteorological data gleaned from National Weather Service radiosonde (rawinsonde) weather balloon ascensions conducted at Sterling, VA. The data collection is further described in Section 5.4. Tables are identified by launch date and launch time. Within each table the following data are provided:

Time expressed first in eastern standard, then in

eastern daylight time

Surface Height height of launch point with respect to sea level

Height height above ground level, expressed in feet

Pressure expressed in millibars

Temperature expressed in degrees centigrade

Relative expressed as a percent

Humidity

Wind Direction measured in the direction from which the wind is

blowing

Wind Speed expressed in knots

が、1、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000000のでは、1000000のでは、

TIME: 5	508 EST FLIGHT	GHT # 1 608 EDI	DT		
SURFACE	HEIGHT= 279 F	FT HSL -999=	MISSING	DATA	
HEIGHT	PRESSURE	TEMPERATURE	RELATIVE	GNIB	WIND SPEED
FEET	WB.	DEG C	HUMIDIIY	DIRECTION	EDN KTS
0	1007.9	17.2	95	0	0
100	1004.4	18.4	66	565-	666-
200	1000.8	19.5	66	666-	666-
300	5.766		84	334	12
400	993.8	23.1	99	349	6
500	2.044	24.8	9	351	7
909	6.986	25.3	40	360	91
200	983.5	25.6	20	353	
800	980.1	25.5	49	351	-
004	976.7	25.4	49	351	N
1000	973.4	25.2	43	73	
1100		25.1	8	œ	7
1200		24.9	48	92	9
1300		24.6	49	3	40
1400	959.9	24.4	60	58	9
1500	956.6	24.1	6	36	_
1500	953.2	23.8	20	35	2
1700	949.9	23.6	20	31	7
1800	7.946	23.3	50	35	8
1900	4.040	23.1	51	39	7
2000	940.1	22.9	51	43	9
2100	6.926	22.7	51	6E	9
2200	•	22.4	522	35	7
2300	930.3	22.2	52	34	^
2400	927.0	22.0	52	38	9
2500	923.8	21.8	53	38	•9
2600		21.5	53	39	9
2700	•	21.2	54	40	ស
2800		20.9	40	35	ic.
2900	-	20.6	52	37	•
K					

,					
TIME: 533	EST FLIGHT	3HT # 2 633	33 EDT		
SURFACE HEI	HEIGHT= 279 F	FT MSL -999#	" MISSING DATA	LA	
HEIGHT	PRESSURE	TEMPERATURE	RELATIVE		WIND SPEED
FEET	A	DEG C	HUMINITY	DIRECTION	KTS
0	1,008.5	16.8	95	0	0
100	1004.9	19.2	47	666-	666-
200	1001.4	19.6	16	666-	666-
300		20.4	80	358	٥
400	40404	21.4	69	3.39	10
200	6.066	22.3	63	232	10
009	987.4	2:3:2	58	335	0
200	984.0	24.0	26	344	7
800	9.086	24.2	010	352	
006	977.2	74.4	J. A.	357	•
1000	973.8	24.6	54	329	80
1100	970.4	24.6	34	N	æ
1200	1.736	24.6	40	15	8
1300	2.596	24.6	U.S.	17	8
1400	960.3	24.6	53	25	8
1500	957.0	24.5	53	31	7
1600	953.7	24.3	53	.3.4	00
1700		24.1	10 4	32	83
1800	947.2	23.9	46	22	٥
1900	943.9	23.7	55	& 35	æ
2000	640.7	23.5	35	37	æ
2100	937.4	23.2	55	38	ထ
2200	934.1	23.0	56	35	8
2300	930.8	22.8	56	31	^
2400	927.6	•	25	34	ç
2500	924.3	22.4	57	33	9
2600	921.1	22.1	557	32	ıo
2700	917.9	21.8	58	29	n
2800	914.7	21.6	310	30	מו
2900	911.6	21.3	26	31	ın
2000	XXX				

Temperatures above surface are about 0.8°C higher than they should be. NOTE:

TIME: 556	EST FLIGHT	HT # 3 656	EDT		
SURFACE HEIGHT≖	GHT= 279 FT	T MSL -999=	P= MISSING DATA	14	
HEIGHT	PRESSURE	TEMPERATURE	KELATIVE	QNIA	WIND SPEED
FEET	Я¥	DEG C	HUMIDITY	DIRECTION	
C	1008.8	17.7	95	340	2
100	1005.2	18.5	90	666-	666-
200	1001.7	20.7	83	666-	666-
300	998.2	22.4	74	666-	666-
400	694.7	23.1	65	351	M
500	991.3	23.6	61	321	18
909	8.786	24.1	59	315	15
200	984.4	24.6	56	327	6
800	981.0	24.8	55	9	7
900	977.6	24.7	* ************************************		, ,
1000	974.2	24.7	54	24	8
1100	970.9	24.7	53	14	• •
1200	967.5	24.7	53	349	7
1300	964.1	24.6	52	345	11
1400	2.096	24.5	52	351	11
1500	957.4	24.2	52	356	##
1600	954.1	23.9	52	12	8
1700	950.8	23.7	52	36	9
1800	947.5	23.4	53	17	œ
1900	944.2	23.1	53	15	0
2000	940.8	22.8	53	15	10
2100	937.5	22.5	N N) - -
2200	934.3	22.3	53	18	-
2300	931,1	22.1	70	92	
2400	927.8		400	a v	0
2500	924.6	21.6	ហ) a)	00
2600	921.4	21.3	55	525	0
2700	918.1	21.1	N	80	• •
2800	914.9	20.8	56	47	M
2900	911.7	20.6	26	752)
0000					

CC0 +31141	EST FLIGHT	3HT & 4 935	5 EDT		
SURFACE HEIGHT	= 279	FT HSL -999=	HISSING	DATA	
HEIGHT	PRESSURE	TEMPERATURE	RELATIVE	ETNE	WIND SPEED
FEET	NE.	DEG C	HUMIDITY	DIRECTION	,
0	1009.4	25.6	70	340	10
100	1005.9	24.8	89	666-	656-
200		24.4	99	666-	666-
300	6.866	24.3	49	356	N
900	995.5	24.1	62	352	6
200	992.0	23.9	61	350	10
009	9886	23.7	52	356	11
20C	•	24.2	56	360	11
800		24.4	55	2	12
900	•	24.5	₹n	٥	12
1000	•	24.6	53	17	11
1100	•	24.6	53	31	0
1200		24.5	53	28	6
1300	•	24.4	53	30	00
1400		24.4	53	2.7	6
1500	•	24.1	53	17	6
1600	•	23.9	53	20	Ø
1700	951.6	23.6	53	18	63
1600		23.4	53	17	œ
1900		23.1	54	16	σ.
2000	٠	22.9	54	16	8
2100	•	22.6	54	21	0
2200		22.4	554	23	6
2300		22.1	u 4	21	Û
2400			55	18	٥
2500	٠	•	52	21	0
2600	922.1	21.3	55	20	10
2700		21.0	56	22	0
2800	915.6	20.7	56	20	6
2900	912.4	20.5	200	17	0
	,	•			

アプレビンをは、これのこれには、他のこれできる。これできるという。他のできるとなっては、他のできるとのないない。これをはいないという。他のできるという。他のできるというないできるという。これできるという

### BATE: 6 / 14 / 83 TIME: 858 EST FLIGHT # 5 958 ENT BURFACE HEIGHT # 279 FT MBL		
E HEIGHT # 5 958 E HEIGHT Z79 FT MSL -999- T PRESSURE TEMPERATURE R HB DEG C H 1009.3 26.1 1005.8 26.1 1005.4 25.1 995.4 25.1 995.4 24.5 985.2 24.8 985.2 24.8 986.2 24.8 986.2 24.8 986.2 24.8 986.2 24.8 986.2 24.8 986.2 24.8 986.2 24.8 986.2 24.8 986.2 24.8 986.2 24.8 986.2 24.8 986.2 22.8 986.9 23.8 986.9 23.8 986.9 23.8 986.9 23.8 986.9 22.8 986.		
T PRESSURE TEMPERATURE R HB DEG C H HB DEG C H 1009.3 26.1 1002.4 25.4 998.9 26.0 1002.4 25.4 998.9 24.9 988.6 24.9 988.6 24.9 988.2 24.5 978.3 24.4 978.2 24.5 968.2 24.5 968.2 24.5 968.2 24.5 968.2 24.5 968.2 24.5 968.2 24.5 968.2 24.5 978.2 24.5 978.2 22.8 978.3 22.8 978.3 22.8 978.3 22.8 978.4 9 23.0 978.4 9 23.0 978.5 23.4 978.6 22.6 978.6 22.6 978.6 22.7 978.7 21.7 918.9 21.5	958	
HB DEG C HB DEG C 1009.3 26.1 1005.8 26.1 1005.4 25.8 995.4 25.1 995.4 25.1 985.2 24.8 985.2 24.8 978.3 24.4 971.6 24.5 978.2 24.5 978.2 24.5 978.2 24.5 978.2 24.5 978.2 24.5 978.2 24.5 978.2 24.5 978.2 22.8 978.3 22.8 978.3 22.8 978.4 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8 978.5 2 22.8	-666-	
HB DEG C 1009.3 26.1 1005.8 26.0 1002.4 25.8 998.9 25.4 998.6 22.4 985.2 24.8 978.3 24.4 974.9 24.5 964.9 23.5 964.9 23.5 964.9 23.5 978.3 22.8 978.2 23.8 978.2 23.8 978.2 23.8 978.2 23.8 978.2 23.8 978.2 23.8 978.2 23.8 978.2 23.8 978.2 23.8 978.2 23.8 978.3 22.8 978.5 22.8 978.5 22.8 978.6 22.6 978.9 22.1 978.9 22.1 978.9 22.1 978.9 22.1		Ta Ta
1009.3 26.1 1005.8 26.0 1002.4 25.8 998.9 25.4 998.6 24.8 988.6 24.8 988.6 24.8 978.3 24.4 978.2 24.5 978.2 24.5 964.9 24.5 964.9 24.5 964.9 24.5 964.9 24.5 964.9 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.4 22.6 958.4 22.6 958.6 22.6 933.0 22.4 958.6 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 955.1 21.7		DIRECTION KIS
1005.8 26.0 1002.4 25.8 998.9 25.4 998.9 25.4 998.6 24.8 988.6 24.8 985.2 24.8 978.3 24.4 978.2 24.5 964.9 24.5 964.9 24.5 964.9 24.5 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.2 23.8 958.3 22.8 978.3 22.8 978.9 22.1 918.9 21.7 918.9 21.7	•1	340
1002.4 25.8 998.9 25.4 998.4 25.1 992.0 24.8 988.6 24.8 981.7 24.3 978.3 24.4 974.9 24.5 961.5 23.6 951.5 23.6 931.6 22.6 931.8 22.4 922.1 21.7 918.9 21.1 912.5 21.1		661
998.9 995.4 995.4 995.4 995.4 25.1 998.6 988.6 978.3 974.9 978.2 958.2 958.2 958.2 958.2 958.3 958.3 958.3 958.4 958.6 958.7 958.6		
995.4 25.1 992.0 24.9 988.6 24.8 981.7 24.3 978.3 24.4 978.3 24.5 968.2 24.5 968.2 24.5 968.2 24.5 968.2 24.5 968.2 24.5 968.2 24.5 958.2 23.8 958.2 23.8 958.3 22.8 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 931.8 22.4 925.4 21.7 925.1 21.7		
992.0 24.8 985.2 24.8 985.2 24.8 974.9 24.3 974.9 24.5 964.9 24.5 961.5 24.5 961.5 24.5 961.5 24.5 961.5 22.8 951.5 22.4 935.0 22.6 935.0 22.6 935.0 22.4 928.6 22.2 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6		Ļ
988.6 24.8 985.2 24.5 981.7 24.3 978.3 24.5 974.9 24.5 964.9 24.5 964.9 24.5 961.5 24.5 958.2 24.5 958.2 23.8 958.2 23.8 958.2 23.6 951.5 22.4 941.6 23.0 935.0 22.6 935.0 22.6 935.0 22.4 935.0 22.4		337
985.2 24.6 981.7 24.3 978.3 24.4 974.9 24.5 968.2 24.5 968.2 24.5 968.2 24.5 958.2 24.5 958.2 22.8 958.2 23.6 958.2 23.6 958.2 22.6 958.6 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.6		354 7
981.7 24.3 978.3 24.4 974.9 24.5 968.2 24.5 968.2 24.5 961.5 24.5 958.2 23.8 958.2 23.8 951.5 23.4 944.9 23.0 941.6 23.0 935.0 22.6 935.0 22.4 928.4 22.1 935.0 22.4 935.0 22.4 928.4 22.1 935.0 22.4 935.0 22.4		
978.3 974.9 974.9 24.5 968.2 964.9 256.2 958.2 958.2 958.2 958.2 958.2 958.2 958.2 958.2 958.2 958.2 958.2 958.2 948.9 938.3 938.3 938.3 938.3 938.3 938.4 948.9 938.4 948.9 938.4 948.9 938.5 938.5 938.7 948.9 958.6 958.6 958.6 958.6 958.6 958.6 958.7 958.6 958.7 958		26 5
974.9 24.5 968.2 24.5 964.9 24.5 958.2 24.5 958.2 23.8 954.9 23.5 948.2 23.5 948.2 23.5 941.6 23.0 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.7 915.7 21.7 912.5 21.1		
971.6 968.2 964.9 961.5 958.2 958.2 958.2 954.8 954.8 948.2 948.2 948.2 948.2 948.2 93.5 941.6 93.0 938.3 931.8 923.4 935.0 936.4 935.0 936.4 937.0 938.3 938.		33
968.2 24.5 964.9 24.5 961.5 24.2 958.2 23.8 951.5 23.5 948.2 23.5 948.2 23.5 948.2 23.4 941.6 23.0 938.3 22.8 935.0 22.6 935.0 22.6 935.0 22.6 935.0 22.7 915.7 21.7 912.5 21.3		
964.9 961.5 961.5 958.2 958.2 954.8 954.9 948.2 23.5 941.6 941.6 23.0 938.3 22.8 935.0		
961.5 24.2 958.2 23.8 954.8 23.5 948.2 23.5 944.9 23.2 941.6 23.0 938.3 22.8 935.0 22.6 935.0 22.6 935.0 22.4 915.7 21.7 912.5 21.5		
958.2 23.8 954.8 23.5 948.2 23.5 944.9 23.0 941.6 23.0 938.3 22.8 935.0 22.6 935.0 22.6 928.6 22.4 928.6 22.7 918.9 21.7 918.9 21.7 915.7 21.3		
954.8 23.5 948.2 23.5 948.2 23.4 944.9 23.0 938.3 22.8 935.0 22.6 931.8 22.4 928.6 22.4 928.6 22.4 928.6 22.7 918.9 21.7 918.9 21.7 915.7 21.3		
951.5 948.2 23.4 944.9 23.2 941.6 23.0 938.3 22.8 935.0 22.6 931.8 22.4 928.6 22.2 928.6 928.6 22.1 928.6 22.2 928.6 928.6 928.6 928.6 928.6 928.6 928.6 928.6 928.6 928.6 928.7		34
948.2 23.4 944.9 23.2 941.6 23.0 935.0 22.8 935.0 22.6 931.8 22.4 928.6 22.2 925.4 21.9 925.4 21.7 918.9 21.7 915.7 21.3 912.5 21.1		
944.9 23.2 941.6 23.0 938.3 22.8 935.0 22.6 931.8 22.4 928.6 22.2 925.4 21.9 925.4 21.7 918.9 21.7 915.7 21.3 912.5 21.1		
941.6 23.0 938.3 22.8 935.0 22.6 931.8 22.4 928.6 22.2 925.4 21.9 922.1 21.7 918.9 21.7 915.7 21.3 912.5 21.1		
935.0 22.6 931.8 22.4 928.6 22.4 928.6 22.2 925.4 21.9 925.1 21.7 918.9 21.7 915.7 21.3 912.5 21.1		
935.0 22.6 931.8 22.4 928.6 22.2 925.4 21.9 925.1 21.7 918.9 21.7 915.7 21.3 912.5 21.1		
931.8 928.6 925.4 22.2 925.4 21.7 918.9 915.7 912.5 21.3 912.5 21.1		
928.6 925.4 21.9 922.1 21.7 918.9 21.5 912.5 21.1 909.2	4.	_
925.4 21.9 922.1 21.7 918.9 21.5 915.7 21.3 912.5 21.1	•2	
922.1 21.7 918.9 21.5 915.7 21.3 912.5 21.1	.9	•
918.9 21.5 915.7 21.3 912.5 21.1 909.2 20.8	1.7	17
915.7 21.3 912.5 21.1 909.2 20.8	1.5	
912.5 21.1 909.2 20.8	1.3	18 9
909.2 20.8	1.1	
	8.0	02

いれて、一般のでは、これのでは、一般のでは、これのでは、一般のでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのできない。これでは、これのでは、これのでは、これのでは、

TIME:	1000 EST	FLIGHT & 6	1100 EDT		
SURFACE	HEIGHT= 279	FT MSL -999=	HISSING DATA	ΓA	
HEIGHT	PRESSIJRE	TEMPERATURE	RELATIVE	GNIS	WIND SPEED
FEET	A Z	DEG C	HUMIDITY	DIRECTION	: !
0	10001	27.9	29	330	*
100	1005.6	27.3	40	666-	666-
200		27.1	54	666-	666-
300	2.866	26.8	40	350	9
400		26.5	55	354	ķů
500	•	26.1	55	314	•
6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	988.5 985.1	25.8	55	342	40 N.
800	. .	25.2	57	353	מי
006	•	24.9	38	2.4	4
1000	9.4.9	24.6	58	44	4
1100	•	24.2	59	27	រ
1260	958.2	24.1	58	31	'n
1300	•	24.0	56	21	4
1400		23.8	50.4	2	4
1500	958.1	23.7	53	352	9
1,600	•	23.0	51	355	9
1700	951.4	23.5	50	358	9
1800	•	23.5	49	œ	9
1900	•	23.5	48	12	7
2000		23.4	47	15	7
2100	938.3	23.1	47		7
2200		22.8	47	10	œ
2300	931.8	N	47	12	œ
2400			47		8
2500	•		47	12	60
2600	922.0	21.7	47	11	œ
2700	•	٠	47	13	80
2800		21.2	6.7	16	8
2900		21.0	48	16	60
0001	1	ł			

			H 0 1 0 1		
1146: 11	1156 EST	FLIGHT # 1	1250 EUI		
SURFACE +	HEIGHT= 279	FT HSL -999=	7= MISSING DATA	TA	
HEIGHT	PRESSURE	TEMPERATURE	RELATIUE	CINIS	WIND SPEED
FEET	3.	DEG C	HUMIDITY	DIRECTION	
0	1002.1	29.2	54	0	0
100	1001.6	28.8	59	666-	666-
200	2.866	28.5	61	666-	666-
300	994.8	28.3	62	112	8
400	991.5	28.0	62	249	9
200		27.8	£9	240	*
909	[●	27.6	63	254	7
700	•	27.4	63	12	+1
800	977.9	27.2	64	280	1
900	974.6	26.9	64	283	N
1000	971.3	26.6	59	311	-
1100	•	26.4	99	260	-
1200	964.6	26.1	99	273	1
1300	-	25.8	29	257	#
1400	958.0	25.6	89	218	7
1500	954.7	25.3	69	190	ન
1600	951.4	24.9	70	207	N
1700	948.1	24.6	71	154	4
1800	944.8	24.3	73	135	4
1900	•	23.9	4	126	49
2000	٠	23.5	74	122	\$
2100	•	23.1	75	120	v
2200	931.7	22.7	75	117	
2300	928.5	22.5	75	134	40
2400	925.3	22.4	76	116	9
2500	-	22.3	75	128	0
2600	918.8	22.1	75	132	
2700	915.6	21.9	26	128	v 0
2800	912.4	21.7	76	128	9
2900	909.2	21.5	76	25.5	*
444)	3

THE STATE OF THE PARTY OF THE P

などの意思というという問題からしている。質問というとのは個問となるない。例如はないないには関いていると、は関いていると、と思いているというできない。

TIME: 758	EST FLIGHT	HT ♣ 2 858	8 ELT		
SURFACE HEI	HEIGHT= 279 F	FT MSL -999=	= MISSING DATA	•	
HEIGHT	PRESSURE	TEMPERATURE	RELATIVE	UNIM	WIND SPEED
FEET		DEG	Y.LIGIHIH.	DIRECTION	
0	1004.	30.6	53	0	0
100	1001.3	29.9	₽. •	566-	666-
200	Ĭ.	29.3	55	666-	666-
300		28.9	50	666-	666-
400		28.4	57	232	ונא
200	2.186	28.0	57	139	M
009	984.3	2/02	000	86	\tau
200	981.0	27.1	59	44	N
800	i	26.7	59	210	M
006		26.4	90	236	m
1000	. Г.	26.2	09	213	
1100	•	25.9	9	158	Ħ
1200		25.7	- 61	137	7
1300	•	25.4	61	136	2
1400	927.6	25.1	19	149	7
1500	954.3	24.9	62	174	~4
1600	951.0	24.6	52	194	C
1700	947.7	N. 4.N	63	211	2
1800	944.4	23.7	49	224	M
1900		23.3	63	225	4
2000	937.8	22.9	66	213	4
2100		755.7	89	198	▼
2200	931.3	22.6	70	169	*
2300	928.0	22.2	99	148	4
2400		22.0	- 29	153	•
2500	921.6	21.8	67	150	n
2600	918.4	21.5	89	142	M
2700	915,2	21.3	89	141	8
2800	912.0	21.1	69	141	M3
2900	8.806	20.9	67	140	M
		i			

FELT HEIGHT # 1 1051 EDT SURFACE HEIGHT = 279 FT HSL						
E HEIGHT= 279 FT MSL -999= MISSING INATA PRESSURE TEMPERATURE RELATIVE WIND 1000.0		E O S	+ 1	1 EDT		
PRESSURE TEMPERATURE RELATIVE WIND		279	HSL	MISSING	ΤA	
HB DEG C HUMINITY DIRECTION 10007.5	HE I GHT	PRESSURE	TEMPERATURE	RELATIVE	ania	WIND SPEED
1000.6 1000.6 25.9 65 997.1 25.9 65 997.1 25.9 65 997.1 25.9 65 997.1 25.9 983.5 25.1 986.1 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 24.3 73 965.6 965 973.2 973.4 27.7 9746.7 9746.7 973.4 27.7 975.7 975.7 975.7 975.7 975.7 975.7 975.7 975.7 975.7 975.7 975.7 975.7 975.7 975.7 975.7 977.7	1334	E E		HUMITITY		
1000.0 1000.0 1000.0 26.5 997.1 25.9 65 996.3 25.4 66 996.3 25.4 66 986.9 976.6 24.3 72 986.1 24.3 72 986.1 24.3 72 986.1 24.3 72 966.2 24.3 72 966.6 966.9 966.9 966.9 966.9 966.9 966.9 966.9 973.2 22.7 946.5 22.7 946.5 22.7 946.5 946.5 22.7 946.5 920.1 946.5 920.1 920.3 920.1 920.3 920.1 920.3	0	1007.3	27.8	53	210	
10000.6 26.5 63 997.1 25.9 65 990.3 25.4 69 990.3 25.4 69 984.9 25.1 73 985.9 24.3 73 965.6 24.3 73 969.9 24.3 73 969.9 24.3 73 969.9 24.3 73 969.9 23.4 73 969.9 23.5 68 969.9 23.5 68 969.9 23.5 65 949.9 22.7 64 943.2 22.7 64 943.2 21.9 65 943.2 21.5 65 943.4 21.5 65 943.5 21.5 65 930.1 21.0 65 923.6 20.3 66 917.1 20.1 68 917.1 20.1 20.1 910.7 20.1 20.1	100	1004.0	27.0	09	666-	666-
997.1 25.9 65 990.3 25.4 66 990.3 25.4 69 983.5 25.1 72 983.5 25.1 72 969.9 24.3 73 969.9 24.3 73 969.9 23.8 71 965.6 23.7 69 956.5 23.2 66 956.5 23.2 65 940.0 21.7 66 940.0 21.7 66 936.7 21.5 65 936.7 21.5 65 936.7 21.5 65 930.1 21.0 66 925.8 20.4 67 930.1 21.0 66 930.1 21.0 66 920.3 20.4 67 917.1 20.1 68	200	1000.6	26.5	63	257	N
990.3 25.4 66 990.3 25.3 72 983.5 25.1 73 976.6 24.7 73 976.6 24.3 73 976.6 24.3 73 976.6 24.7 73 976.6 24.3 73 969.9 23.8 73 969.9 23.8 66 956.5 23.2 65 940.9 22.3 65 940.0 21.7 66 940.0 21.7 65 936.7 21.2 65 936.7 21.2 65 936.7 21.2 65 936.7 21.2 65 936.7 21.2 65 936.7 20.3 66 923.4 20.3 66 920.3 20.3 66 910.7 20.1 66 910.7 20.1 68	300	997.1	25.9	65	281	i
990.3 990.3 986.9 986.9 986.9 986.1 980.1 24.7 72 986.6 24.3 73 976.6 24.3 73 976.6 24.3 73 976.6 24.3 73 976.6 24.3 73 976.6 24.3 73 969.9 23.4 23.5 956.5 956.5 956.5 956.5 976.5 976.6 976.6 976.5 976.7 976.8 976.8 976.8 976.9 977.1 20.2 986.9	400	人・門かみ	23.4	99	283	110
986.9 25.3 72 983.5 25.1 73 980.1 24.3 73 976.6 24.3 73 976.6 24.3 73 969.9 23.8 73 969.9 23.8 68 963.2 23.5 68 956.5 23.5 68 956.5 23.2 65 949.9 22.7 64 940.0 21.9 66 936.7 21.5 65 936.7 21.5 65 936.7 21.5 65 936.1 21.0 66 926.8 20.7 66 923.1 20.7 66 923.2 20.3 66 923.4 20.3 66 923.5 20.3 66 923.6 20.3 66 923.6 20.3 66 923.6 20.3 66 920.1 68 910.7 20.1 68	200	5.066	25.4	69	273	•
983.5 25.1 73 980.1 24.7 72 976.6 24.3 73 969.9 24.0 73 969.9 23.8 73 963.2 23.7 69 963.2 23.4 64 963.2 23.5 68 956.5 23.5 65 949.9 22.7 64 940.0 21.9 66 940.0 21.9 66 936.7 21.5 65 936.7 21.2 65 936.7 21.2 65 936.1 21.0 66 926.8 20.7 66 926.9 20.7 66 927.1 20.3 66 920.3 20.1 66 917.1 20.1 66 910.7 20.1 66 910.7 20.1 66	200	986.9	25.3	72	254	0
976.6 24.3 73 976.6 24.3 73 969.9 23.8 73 969.9 23.8 68 956.5 23.2 68 956.5 23.2 65 949.9 22.7 64 946.5 22.3 65 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 65 940.0 21.7 65 936.7 21.5 65 930.1 21.0 65 926.8 20.1 66 917.1 20.2 68 917.7 20.1 40 910.7 20.1 40 910.7 20.1 40	200	983.5	25.1	73	208	10
976.6 24.3 73 975.3 24.0 73 969.9 23.8 73 963.2 23.5 68 956.5 23.2 66 956.5 23.2 65 949.9 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 65 943.2 21.7 65 936.7 21.7 65 933.4 21.2 65 933.4 21.2 65 926.8 20.1 66 923.6 20.3 66 917.1 21.0 66 923.6 66 66 923.6 66 66 923.6 66 66 923.6 66 66 923.6 66 66 923.6 66 66 923.6 66 66 923.6 66 66 923.6 66 67 913.7 66 67 913.7 66 67 913.7 66 67 910.7	800	780.1	24.7	72	218	2
973.3 24.0 /3 969.9 23.8 73 963.2 23.4 68 956.5 23.4 66 956.5 23.2 65 949.9 22.7 64 946.5 22.7 64 946.5 22.7 65 946.5 22.7 65 946.5 22.7 65 946.5 22.7 65 943.2 21.9 65 936.7 21.5 65 930.1 21.0 65 926.8 20.4 67 920.3 20.3 68 917.1 20.2 68 917.1 20.1 68	006	976.6	24.3	73	226	וה
969.9 23.8 71 965.6 23.7 68 953.2 23.5 68 956.5 23.2 65 956.5 22.7 65 949.9 22.7 64 946.5 22.7 65 946.5 22.7 65 946.5 22.7 65 943.2 21.9 66 936.7 21.5 65 933.4 21.5 65 930.1 21.5 65 926.8 20.4 67 920.3 20.3 67 913.9 20.1 68 913.9 20.1 68	1000	973.3	24.0	7.3	223	110
963.2 23.5 68 956.5 23.5 68 956.5 23.2 65 949.9 22.7 64 949.9 22.3 65 940.0 22.7 64 940.0 21.7 66 936.7 21.5 65 933.4 21.5 65 930.1 21.0 66 926.8 20.1 66 920.3 20.4 67 917.1 20.2 68 913.9 20.1 68 913.9 20.1 68	1100	6.696	23.8	7.	229	4
963.2 23.5 68 956.5 23.2 65 949.9 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 21.7 66 936.7 21.5 65 933.4 21.2 65 930.1 21.0 66 926.8 20.4 67 917.1 20.2 68 913.9 20.1 68 913.9 20.1 68 910.7 20.1 68	1200	966.6	23.7	69	242	4
956.5 23.2 66 956.5 23.2 65 949.9 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 22.7 64 946.5 21.9 66 936.7 21.5 65 933.4 21.5 65 930.1 21.0 66 926.8 20.4 67 917.1 20.2 68 913.9 20.1 68 910.7 20.1 68	1300	963.2	23.5	89	231	4
956.5 23.2 65 949.9 22.7 64 946.5 22.7 64 943.2 22.3 65 936.7 21.7 66 933.4 21.5 65 933.4 21.5 65 926.8 20.1 66 923.6 20.4 67 917.1 20.2 68 913.9 20.1 68 910.7 20.1 68	1400	626.6	23.4	99	218	4
949.9 22.7 64 946.5 22.7 64 946.5 22.7 65 943.2 21.9 66 936.7 21.5 65 933.4 21.5 65 930.1 21.0 66 926.8 20.1 66 923.6 20.4 67 920.3 20.3 67 917.1 20.2 68 913.9 20.1 68 910.7 20.1 68	1200	956.5	23.2	65	221	4
946.5 946.5 946.5 943.2 22.3 65 943.2 21.9 66 936.7 21.5 65 930.1 21.0 66 926.8 20.1 20.2 913.9 913.9 940.0	1600	953.2	23.0	59	225	10
946.5 22.3 65 943.2 21.9 66 940.0 21.7 65 936.7 21.5 65 933.4 21.5 65 930.1 21.0 66 926.8 20.4 67 920.3 20.3 67 917.1 20.2 68 913.9 20.1 68 910.7 20.1 68	1700	949.9	22.7	64	224	4
943.2 21.9 66 940.0 21.7 65 936.7 21.5 65 933.4 21.0 65 926.8 20.4 67 920.3 20.2 68 913.9 20.1 68	1800	946.5	22.3	65	222	4
940.0 21.7 66 936.7 21.5 65 933.4 21.5 65 926.8 20.4 66 923.6 20.4 67 920.3 20.3 68 917.1 20.2 68 913.9 20.1 68 910.7 20.1 68	1900	943.2	21.9	99	222	. 4
936.7 21.5 65 933.4 21.2 65 930.1 21.0 66 926.8 20.7 66 923.6 20.4 67 920.3 20.3 67 917.1 20.2 68 913.9 20.1 68 910.7 20.1 68	2000	940.0	21.,7	99	214	4
933.4 21.2 65 930.1 21.0 66 926.8 20.7 66 923.6 20.4 67 920.3 20.3 67 917.1 20.2 68 913.9 20.1 68	2100	936.7	21.5	6 5	221	' द
930.1 21.0 66 926.8 20.7 66 923.6 20.4 67 920.3 67 917.1 20.2 68 913.9 20.1 68	2200	633.4	21.2		215	. [5]
926.8 923.6 923.6 920.3 917.1 913.9 913.9 910.7	2300	930.1	21.0	66	217	M
923.6 20.4 67 920.3 20.3 68 917.1 20.2 68 913.9 20.1 68	2400	926.8	20.7	99	203	
917.1 20.2 68 917.1 20.2 68 913.9 20.1 68	2500	923.6	20.4	67	23.4	• ◆
917.1 20.2 68 913.9 20.1 68	2600	920.3	20:3		215	5
913.9 20.1 68	2700	927.2	20.2	89	214	i)
910.7	2800	913.9	20.1	89	21.4	S
***** /***	2900	910.7	* 48			

TIME: 1	1047 EST	FLIGHT & 2	1147 EDT		
SURFACE	HEIGHT= 279	FT MSL -999-	MISSING	DATA	
HEIGHT	PRESSURE	TEMPERATURE	RELATIVE	MIND	WIND SPEED
FEET	20.	DEG C	HUMIDITY	PIRECTI	UN KTS
0	1,007.5	28.9	53	6	0
001	•	28.2	56	666-	666-
200	2,000,5	27.5	59	666-	666-
300	2010	27.1	61	666-	666-
007	1:556	26.7	62	782	5
0000	6900.3	26.4	63	22	~ 4
600	41984	26.0	64	53	3
766	w. wo	25.7	65	63	м
008	750.1	25.5	99	95	2
006	976.7	25.3	29	102	(M
1000	97504	24.9	89	131	2
1100	970.0	24.6	69	192	M
1200	755.6	20.02	0/	234	2
1300	963.3	100 mg	71	240	N
1400	á*656	23.5	72	214	2
1200	956.6	N. 10.	73	208	N
1690	953+3	2302	73	205	9
700	950.0	22.9	74	202	⋖
7806	7.554	9.22	75	221	4
1900	044.4	22.2	77	212	ก
2002	940.0	21.9	78	214	្រ
2100	936.8	23.4	77	222	•
2200	933.6	21.1	79	211	n
2300	930.2	20.7	81	198	•
2400		20.4	83	302	4
2500	452.7	20.3	38	223	4
2600	\$20.5	2002	78	212	O.
2700		70.7	75	202	9
2800	914.1	20.1	72	213	ព
2900	910.9	20.0	70	214	9
CKK					

THE THE STATE OF THE

APPENDIX I

NWS - IAD Surface Meteorological Data

This appendix presents a summary of meteorological data gleaned from measurements conducted by the National Weather Service Station at Dulles. Readings were noted evey 15 minutes during the test. The data acquisition is described in Section 5.5.

Within each table the following data are provided:

Time(EDT) time the measurement was taken, expressed in

eastern daylight time

Barometric expressed in inches of mercury

pressure

がでは、東京というという。東京が1967年代では、東京のイスのでは、東京というとは、東京というとは、東京というという。東京の1967年代の東京のイスのできた。 1967年 - 1967

Temperature expressed in degrees fahrenheit and centigrade

Humidity relative, expressed as a percent

Wind Speed expressed in knots

Wind Direction direction from which the wind is moving

TABLE I.1

SURFACE METEOROLOGICAL DATA (NWS)

TEST DATE:	6-14-83	HELICOPTER:	BELL 222	LOCATION: DULLES AIRPORT*	S AIRPORT#
TIME	BAROMETRIC PRESSURE	TEMPERATURE	TIGIMUH	SPEED	WIND DIRECTION
05:30	(inches)	61 (46)	(8)	(HTM)	(טפראבהט)
05:30	30.00			2	5
05:45	30.07	61 (16)	100	00	00
00:90	30.07	62 (17)	100	00	00
06:15	30.08	62 (17)	16	03	350
06:30	30.08	(11)	26	03	350
94:90	30.08	(18)	26	03	350
00:00	30.05	65 (18)	93	63	360
07:15	30.09	(61) 99	63	04	010
07:30	30.09	(61) 29	63	70	350
07:45	30.05	(04 89	63	92	350
08:00	30.09	(12) 69	93	92	350
08:15	30.10	70 (21)	63	05	340
08:31	30.10	72 623	06	92	350
03:45	30.11	73 23	85	05	340
00:60	30.11	75 64)	82	04	350
09:15	30.11	76 (24)	82	05	340
06:30	30.11	77 (25)	62	90	340
94:60	30.11	18 (56)	77	05	045
10:00	30.10	79 (26)	74	60	350
10:15	30.10	80 PM	72	03	360
10:30	30.10	81 27	70	90	340

SENSORES LOCATED APPROXIMATELY 2 MILES EAST OF MEASUREMENT ARRAY. *NOTE:

TABLE I.1 (continued)

のことは、これのは、これのでは、これでは、これでは、これのは、これのなどのでは、これのなどのでは、これのなどのでは、これのなどのでは、これのなどのでは、これのなどのでは、これのなどのでは、これのなどのでは、

SURFACE METEOROLOGICAL DATA (NWS)

LOCATION: DULLES AIRPORT*	
HELICOPTER: BELL 222 (CONT)	
TEST DATE: 6-14-83	

TIME (EDI)	BAROMETRIC PRESSURE (INCHES)	TEMPERATURE °F(°C)	HUMIDITY (%)	SPEED (MPH)	WIND DIRECTION (DECREES)
10:44	30.10	81 (27)	69	90	340
10:59	36.10	82 (28)	99	63	310
11:15	30.10	83 (28)	63	92	020
11:30	30.09	62) 78	61	07	320
11:45	30.05	84 (29)	61	20	290
12.00	30.09	62) 48	09	04	350
1:00	30.09	85 (29)	57	92	080
2:00	30.09	37 (30)	52	90	340
3:00	30.05	87 (30)	87	90	290
7:00	30.09	89 (31)	45	90	020

^{*}NOTE: SENSORS LOCATED APPROXIMATELY 2 MILES EAST OF MEASUREMENT ARRAY.

	SURFACE		TABLE I.2 METEOROLOGICAL DATA (NWS)		
TEST DATE:	6-16-83	HELICOPTER: BI	BISLL 222	LOCATION: DUL	DULLES AIRPORT*
TIME (EDT)	BAROMETRIC PRESSURE (INCHES)	TEMPERATURE °F(°C)	HUMIDITY (%)	SPEED (MPH)	WIND DIRECTION (DEGREES)
10:00	30.05	78 (26)	79	00	00
10:17	30.05	79 (26)	77	03	300
10:31	30.05	80 (27)	74	03	360
10:46	30.05	80 (27)	47	00	000
11:16	30.05	81 (27)	74	03	540
11:31	30.05	82 (28)	72	05	240
11:43	30.05	82 (28)	72	00	000
*NOTE: S	SENSORS LOCATED APPROXIMATELY	2 MILES	EAS: OF MEASUREMENT ARRAY.		

APPENDIX J

On-Site Meteorological Data

This appendix presents a summary of meteorological data collected on-site by TSC personnel using a climatronics model EWS weather system. The anemometer and temperature sensor were located 5 feet above ground level at noise site 4. The data collection is further described in Section 5.5.

Within each table, the following data are provided:

Time(EDT) expressed in Eastern Daylight time

Temperature expressed in degrees fahrenheit and centigrade

Humidity expressed as a percent

Windspeed expressed in knots

Wind Direction direction from which the wind is blowing

Remarks observations concerning cloud cover and visibility

			TABLE J.1		
		SUI	SURFACE METEOROLOGICAL DATA	DATA	
TEST DATE:	6-14-83	H	HELICOPTER: BELL 22	222	LOCATION: DULLES, SITE #4*
TIME (EDT)	TEMPERATURE	HUMIDITY (%)	WINDSPEED AVG RANGE (MPH) (14PH)	WIND DIRECTION (DEGREES)	REMARKS
co:90	64 (18)		no data recorded	pel	
06:15	(61) 99		no data recorded	ped	
06:30	(04 89	88	no data recorded	led	Low Fog, 1/4 Mi. Vis.
64:45	69 21)		no data recorded	led	Wet Grass, Damp Soil
00:20	71 22)		no data recorded	leď	
07:15	72 62)		no data recorded	pel	
02:10	74 63		no data recorded	led	
07:45	74 63)		no data recorded	pel	
00:00	(50 94)		no data recorded	pe	
08:15	75 (24)		no data recorded	ed	
08:30	69 67		no data recorded	led	
08:45	80 (27)		no data recorded	pa	
00:60	82 (28)		no data recorded	ed	
09:15	67 ₇₈		no data recorded	ed	
06:30	83 (23)		no data recorded	led	
69:42	85 (29)		no data recorded	ped	
10:00	86 (30)		no data recorded	pel	
10:15	86 (30)	65	no data recorded	led	Hazy, Hot, Humid, Surny
10:30	87 (31)		no data recorded	led	Dry Grass, Damp Soil
10:45	88 (3.1)		no data recorded	led	
11:00	88 (31)		no data recorded	led	
11:15	90 (82)		no data recorded	pel	
11:30	91 (33)		no data recorded	led	
*NOTE: SI	SENSOR IS LOCATED	5 FEET ABOVE TH	THE GROUND.		

TABLE J.1 (continued)

SURFACE METEOROLOGICAL DATA

LOCATION: DULLES, SITE
BELL 222 (CONT)
HELICOPTER:
6–14–83
TEST DATE:

* 7 #

TEMPI	TEMPERATURE °F(°C)	XTIGIMUH (%)	WINDSPEED AVG RI (MPH) (1)	EED RANGE (14PH)	WIND DIRECTION (DEGREES)	REMARKS
	(34)		ŭ	no data recorded	nded	
	91 (33)		ŭ	no data recorded	rded	

^{*}NOTE: SENSOR IS LOCATED 5 FEET ABOVE THE GROUND.

TABLE J. 2

SURFACE METEOROLOGICAL DATA

TEST DATE:		6-15-83		HELICOPTER: _	BELL 222	22	LOCATION: DULLES, SITE #4*
TIME (EDT)	TEMP	TEMPERATURE °F(°C)	HUMIDITY (%)	WINDSPEED AVG R (MPH) (1	SED RANGE (MPH)	WIND DIRECTION (DEGREES)	REMARKS
12:00	84	67)		ou	no data recorded	rded	
12:15	87	(31)		ou	no data recorded	rded	
12:30	78	62)		ou	no data recorded	nded	
12:45	98	(30)		ou	no data recorded	rded	
13:00	86	යථ	09	04	no data recorded	rded	Hazy, High Clouds
13:15	82	(28)		ou	data recorded	rded	No Sun
13:30	88	(32)		ou	data recorded	rded	Dry Grass, Moist Soil
13:45	96	(33)		ou	data recorded	rded	
14:00	95	(35)		S S	no data recorded	rded	