#Important packages import pandas as pd

import seaborn as sns import matplotlib.pyplot as plt

import numpy as np

from sklearn.model_selection import train_test_split, GridSearchCV

 $from \ sklearn.tree \ import \ DecisionTreeClassifier, \ export_text, \ plot_tree$

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, ConfusionMatrixDisplay from imblearn.over_sampling import SMOTE # For handling class imbalance

 $from \ sklearn.ensemble \ import \ Random Forest Classifier$

#TASK 1

Load dataset

df = pd.read_csv("customer_churn.csv")

Check first few rows

df.head()

₹		CustomerID	Age	Subscription_Length_Months	Watch_Time_Hours	Number_of_Logins	Preferred_Content_Type	Membership_Typ
	0	1	56	35	62.579266	73	TV Shows	Bas
	1	2	69	15	159.714415	1	Sports	Bas
	2	3	46	25	41.119547	36	Movies	Premiu
	3	4	32	28	183.961735	35	Movies	Standa
	4	5	60	10	87.782848	66	Movies	Standa

Summary statistics df.describe()

-	₹	_
-	7	•
	-	_

7	CustomerID	Age	Subscription_Length_Months	Watch_Time_Hours	Number_of_Logins	Payment_Issues	Number_of_Co
со	unt 1000.000000	1000.00000	1000.000000	1000.000000	1000.000000	1000.000000	10
me	ean 500.500000	43.81900	18.218000	100.794546	50.387000	0.154000	
s	td 288.819436	14.99103	10.177822	56.477606	28.224171	0.361129	
m	in 1.000000	18.00000	1.000000	5.036738	1.000000	0.000000	
2	5% 250.750000	31.00000	9.000000	50.383080	26.000000	0.000000	
50	500.500000	44.00000	18.000000	100.234954	51.000000	0.000000	
7	7 50.250000	56.00000	27.000000	150.445885	75.000000	0.000000	
m	ax 1000.000000	69.00000	35.000000	199.944192	99.000000	1.000000	

Check missing values df.isnull().sum()

	0
CustomerID	0
Age	0
Subscription_Length_Months	0
Watch_Time_Hours	0
Number_of_Logins	0
Preferred_Content_Type	0
Membership_Type	0
Payment_Method	0
Payment_Issues	0
Number_of_Complaints	0
Resolution_Time_Days	0
Churn	0

dtype: int64

```
# Check dataset info
df.info()
```

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	1000 non-null	int64
1	Age	1000 non-null	int64
2	Subscription_Length_Months	1000 non-null	int64
3	Watch_Time_Hours	1000 non-null	float64
4	Number_of_Logins	1000 non-null	int64
5	Preferred_Content_Type	1000 non-null	object
6	Membership_Type	1000 non-null	object
7	Payment_Method	1000 non-null	object
8	Payment_Issues	1000 non-null	int64
9	Number_of_Complaints	1000 non-null	int64
10	Resolution_Time_Days	1000 non-null	int64
11	Churn	1000 non-null	int64
dtype	es: float64(1), int64(8), ob	ject(3)	

#Visualize data distributions

memory usage: 93.9+ KB

```
plt.figure(figsize=(22, 6))
sns.boxplot(x=df["Age"], y=df["Watch_Time_Hours"], palette="coolwarm")
plt.title("Watch Time Hours by Age Group")
plt.xlabel("Age Group")
plt.ylabel("Watch Time (Hours)")
plt.xticks(rotation=45)
plt.show();
```

→ <ipython-input-33-e5adb9a3225d>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue`

 $\verb|sns.boxplot(x=df["Age"], y=df["Watch_Time_Hours"], palette="coolwarm")|\\$


```
plt.figure(figsize=(8, 5))
sns.boxplot(x=df["Churn"], y=df["Watch_Time_Hours"], palette="coolwarm")
plt.title("Watch Time vs Churn")
plt.xlabel("Churn (0 = Not Churned, 1 = Churned)")
plt.ylabel("Watch Time (Hours)")
plt.xticks([0, 1], ["Not Churned", "Churned"])
plt.show()
```

<ipython-input-34-7786c40664a3>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.boxplot(x=df["Churn"], y=df["Watch_Time_Hours"], palette="coolwarm")


```
plt.figure(figsize=(8, 5))
sns.boxplot(x=df["Churn"], y=df["Resolution_Time_Days"], palette="coolwarm")
plt.title("Resolution Time vs Churn")
plt.xlabel("Churn (0 = Not Churned, 1 = Churned)")
plt.ylabel("Resolution Time (Days)")
plt.show()
```

<ipython-input-35-914ed4838e07>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.boxplot(x=df["Churn"], y=df["Resolution_Time_Days"], palette="coolwarm")


```
# Histogram for Subscription Length
plt.hist(df['Subscription_Length_Months'], bins=20, edgecolor='k')
plt.title('Distribution of Subscription_Length_Months')
plt.xlabel('Subscription_Length_Months')
plt.ylabel('Number of Subscriptions')
plt.show()
```



```
# Histogram for Churn - checking for class imbalance
plt.hist(df['Churn'], bins=2, edgecolor='k')
plt.title('Distribution of Churn')
plt.xlabel('Churn')
plt.ylabel('Number of Subscriptions')
plt.show()
```

0.2

0

0.0


```
plt.figure(figsize=(8, 5))
plt.hist(df["Age"], bins=10, edgecolor="black", color="purple", alpha=0.7)
plt.title("Age Distribution of Customers")
plt.xlabel("Age")
plt.ylabel("Number of Customers")
plt.show()
```

0.4

0.6

Churn

0.8

1.0


```
plt.figure(figsize=(8, 5))
plt.hist(df["Subscription_Length_Months"], bins=15, edgecolor="black", color="green", alpha=0.7)
plt.title("Subscription Length Distribution")
plt.xlabel("Subscription Length (Months)")
plt.ylabel("Number of Customers")
plt.show()
```



```
import seaborn as sns

plt.figure(figsize=(8, 5))
sns.boxplot(x=df["Churn"], y=df["Number_of_Complaints"], palette="coolwarm")
plt.title("Number of Complaints vs Churn")
plt.xlabel("Churn (0 = Not Churned, 1 = Churned)")
plt.ylabel("Number of Complaints")
plt.xticks([0, 1], ["Not Churned", "Churned"])
plt.show()
```

₹

```
<ipython-input-40-1d58590b928b>:4: FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.boxplot(x=df["Churn"], y=df["Number_of_Complaints"], palette="coolwarm")


```
plt.figure(figsize=(8, 5))
plt.hist(df[df["Churn"] == 0]["Number_of_Complaints"], bins=10, alpha=0.6, label="Not Churned", color="blue", edgecolor="blae")
plt.hist(df[df["Churn"] == 1]["Number_of_Complaints"], bins=10, alpha=0.6, label="Churned", color="red", edgecolor="black")
plt.title("Number of Complaints Distribution by Churn")
plt.xlabel("Number of Complaints")
plt.ylabel("Number of Customers")
plt.legend()
plt.show()

churn_counts = df["Churn"].value_counts()
print(churn_counts, "\n")
correlation = df["Number_of_Complaints"].corr(df["Churn"])
print(f"Correlation between Complaints and Churn: {correlation:.2f}")
```



```
Churn
0 735
1 265
Name: count, dtype: int64
```

Correlation between Complaints and Churn: 0.00

```
plt.figure(figsize=(10, 5))
sns.boxplot(x=df["Number_of_Complaints"], y=df["Resolution_Time_Days"], palette="coolwarm")
plt.title("Resolution Time Distribution by Number of Complaints")
```

```
plt.xlabel("Number of Complaints")
plt.ylabel("Resolution Time (Days)")
plt.show()
```

<ipython-input-42-7a713d04199a>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.boxplot(x=df["Number_of_Complaints"], y=df["Resolution_Time_Days"], palette="coolwarm")


```
plt.figure(figsize=(8, 5))
sns.boxplot(x=df["Churn"], y=df["Watch_Time_Hours"], palette="coolwarm")
plt.title("Watch Time vs Churn")
plt.xlabel("Churn (0 = Not Churned, 1 = Churned)")
plt.ylabel("Watch Time (Hours)")
plt.xticks([0, 1], ["Not Churned", "Churned"])
plt.show()
```

<ipython-input-43-7786c40664a3>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` sns.boxplot(x=df["Churn"], y=df["Watch_Time_Hours"], palette="coolwarm")

#CORRELATION BETWEEN VARIABLE

```
# Drop non-numeric columns for correlation analysis
numeric_df = df.select_dtypes(include=['float64', 'int64'])
```

```
# Calculate the correlation matrix
correlation_matrix = numeric_df.corr()

# Display the correlation matrix
print("Correlation Matrix:")
print(correlation_matrix)

# Visualize the correlation matrix using a heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
plt.title("Correlation Matrix Heatmap")
plt.show()
```

→ Correlation Matrix:

Correlation Matrix:				
	CustomerID Age	Subscription_Length_Months \		
CustomerID	1.000000 -0.011816	-0.006179		
Age	-0.011816 1.000000	-0.018938		
Subscription_Length_Months	-0.006179 -0.018938	1.000000		
Watch_Time_Hours	0.032126 -0.046360	0.024732		
Number_of_Logins	0.025595 0.018846	-0.056609		
Payment Issues	0.003177 -0.026649	-0.024939		
Number_of_Complaints	0.008697 0.059649	0.015968		
Resolution Time Days	0.062073 -0.001181	-0.020476		
Churn	-0.005506 0.005136	-0.033582		
CHATH	0.003300 0.003130	0.033302		
	Watch_Time_Hours Nur	mber_of_Logins \		
CustomerID	0.032126	0.025595		
Age	-0.046360	0.018846		
Subscription_Length_Months	0.024732	-0.056609		
Watch Time Hours	1.000000	-0.047729		
Number of Logins	-0.047729	1.000000		
Payment_Issues	-0.013810	-0.009978		
Number of Complaints	-0.001512	0.004564		
	-0.001512 -0.021412	0.025105		
Resolution_Time_Days				
Churn	-0.025224	0.062204		
	Payment_Issues Number	er_of_Complaints \		
CustomerID	0.003177	er_of_Complaints \ 0.008697		
	-0.026649			
Age		0.059649		
Subscription_Length_Months	-0.024939	0.015968		
Watch_Time_Hours	-0.013810	-0.001512		
Number_of_Logins	-0.009978	0.004564		
Payment_Issues	1.000000	0.023658		
Number_of_Complaints	0.023658	1.000000		
Resolution_Time_Days	-0.014245	-0.058042		
Churn	0.001193	0.004123		
	Resolution_Time_Days			
CustomerID		-0.005506		
Age	-0.001181 0.005136			
Subscription_Length_Months	-0.020476			
Watch_Time_Hours	-0.021412	-0.025224		
Number_of_Logins	0.025105			
Payment_Issues	-0.014245	0.001193		
Number_of_Complaints				
Daniel Landson Time Device	-0.058042			
Resolution_Time_Days		0.004123 -0.034181		
Churn		-0.034181		
	1.000000	-0.034181		


```
# TASK 2
# --- Decision Tree ---
# Features (X) and Target (y)
X = df.drop(["Churn", "CustomerID"], axis=1)
y = df["Churn"]
# One-Hot Encode Categorical Variables
X = pd.get_dummies(X, drop_first=True)
# Split into Training and Testing Sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
# Address Class Imbalance Using SMOTE
smote_dt = SMOTE(random_state=42)
X_train_resampled, y_train_resampled = smote_dt.fit_resample(X_train, y_train)
# Train a Decision Tree Classifier with Hyperparameter Tuning
param_grid_dt = {
    'max_depth': [3, 5, 10, None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'criterion': ['gini', 'entropy'] # Add criterion as a parameter
}
# Perform GridSearchCV with F1 scoring
grid_search = GridSearchCV(DecisionTreeClassifier(random_state=42), param_grid_dt, cv=5, scoring='f1')
grid_search.fit(X_train_resampled, y_train_resampled)
# Get the Best Model
best_dt_model = grid_search.best_estimator_
# Predict on the Test Set
best_dt_prediction = best_dt_model.predict(X_test)
# Evaluate the Optimized Model
best_dt_accuracy = accuracy_score(y_test, best_dt_prediction)
best_dt_precision = precision_score(y_test, best_dt_prediction)
best_dt_recall = recall_score(y_test, best_dt_prediction)
best_dt_f1 = f1_score(y_test, best_dt_prediction)
# Print Evaluation Metrics
print("\nOptimized Decision Tree Performance Metrics:")
print("Accuracy:", best_dt_accuracy)
print("Precision:", best_dt_precision)
print("Recall:", best_dt_recall)
print("F1 Score:", best_dt_f1)
₹
     Optimized Decision Tree Performance Metrics:
     Accuracy: 0.615
     Precision: 0.3064516129032258
     Recall: 0.3584905660377358
     F1 Score: 0.33043478260869563
# Confusion Matrix - Decision Tree
conf_matrix_dt = confusion_matrix(y_test, best_dt_prediction)
disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix_dt, display_labels=["Not Churned", "Churned"])
disp.plot(cmap="Blues")
plt.title("Confusion Matrix - Optimized Decision Tree")
plt.show()
```


Visualize the Decision Tree
plt.figure(figsize=(20, 10))
plot_tree(best_dt_model, feature_names=X.columns, class_names=["Not Churned", "Churned"], filled=True, rounded=True)
plt.title("Optimized Decision Tree")
plt.show()


```
test_size=0.2,
    stratify=y_res,
    random_state=42
)
# Hyperparameter Tuning
param_grid = {
    'n_estimators': [100, 200],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5],
    'class_weight': ['balanced', None]
}
rf = RandomForestClassifier(random_state=42)
grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='recall', n_jobs=-1)
grid_search.fit(X_train, y_train)
best_rf = grid_search.best_estimator_
# Evaluation the model
y_pred_rf = best_rf.predict(X_test)
y_proba_rf = best_rf.predict_proba(X_test)[:,1]
accuracy_rf = accuracy_score(y_test, y_pred_rf)
precision_rf = precision_score(y_test, y_pred_rf)
recall_rf = recall_score(y_test, y_pred_rf)
f1_rf = f1_score(y_test, y_pred_rf)
print("Random Forest Performance Metrics:")
print("Accuracy: ", accuracy_rf)
print("Precision: ", precision_rf)
print("Recall: ", recall_rf)
print("F1 Score: ", f1_rf)
   Random Forest Performance Metrics:
     Accuracy: 0.7789115646258503
     Precision: 0.8106060606060606
     Recall: 0.7278911564625851
     F1 Score: 0.7670250896057348
# Confusion matrix - Random Forest
conf_matrix_rf = confusion_matrix(y_test, y_pred_rf)
# Create heatmap
plt.figure(figsize=(6, 4))
sns.heatmap(conf_matrix_rf, annot=True, fmt='d', cmap='Blues', xticklabels=['Not Churned', 'Churned'], yticklabels=['Not Chu
plt.title('Confusion Matrix - Random Forest')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
₹
```


PERFORMANCE COMPARISON

```
# Performance Metrics for Decision Tree
dt_metrics = {
    "Accuracy": best_dt_accuracy,
    "Precision": best_dt_precision,
    "Recall": best_dt_recall,
    "F1 Score": best_dt_f1
```

```
2/16/25, 5:58 PM
                                                                       assignment_1_final - Colab
    }
    # Performance Metrics for Random Forest
    rf_metrics = {
        "Accuracy": accuracy_rf,
        "Precision": precision_rf,
        "Recall": recall_rf,
        "F1 Score": f1_rf
    }
    # Create a bar chart for comparison
    labels = list(dt_metrics.keys())
    dt_values = list(dt_metrics.values())
    rf_values = list(rf_metrics.values())
    x = np.arange(len(labels)) # Label locations
   width = 0.35 # Width of the bars
    fig, ax = plt.subplots(figsize=(10, 6))
   rects1 = ax.bar(x - width/2, dt_values, width, label='Decision Tree', color='skyblue'
rects2 = ax.bar(x + width/2, rf_values, width, label='Random Forest', color='orange')
    # Add some text for labels, title, and custom x-axis tick labels
    ax.set_ylabel('Scores')
    ax.set_title('Comparison of Decision Tree and Random Forest Performance Metrics')
    ax.set_xticks(x)
    ax.set_xticklabels(labels)
    ax.legend()
    # Add value labels on top of each bar
    def add_labels(rects):
        for rect in rects:
            height = rect.get_height()
            ax.annotate(f'{height:.2f}'
                          xy=(rect.get_x() + rect.get_width() / 2, height),
                          xytext=(0, 3), # 3 points vertical offset
                          textcoords="offset points",
                          ha='center', va='bottom')
    add_labels(rects1)
    add_labels(rects2)
    fig.tight_layout()
    plt.show()
```


Comparison of Decision Tree and Random Forest Performance Metrics

