Лабораторная работа Nº1.2.2

Маллаев Руслан 25 октября 2020 г. **Цель работы:** экспериментально проверить уравнение вращательного движения, получив зависимость углового ускорения от момента инерции и момента прикладываемых к системе сил, а также проанализировать влияние сил трения, действующих в оси вращения.

Приборы, используемые в работе: маятник обербека, разновесы, штангенциркуль, компьютер с предустановленной программой, датчик движения.

Соберем установку, как показано на рисунке 1:

Рисунок №1

1 Балансировка

 $l_1=(2.496\pm0.001)$ см; $l_2=(2.500\pm0.001)$ см; $l_3=(2.500\pm0.001)$ см; $l_4=(2.500\pm0.001)$ см, где l - длина грузов.

Тогда $R_1 - \frac{l_1}{2} = (8,040 \pm 0.001)$ см; $R_2 - \frac{l_2}{2} = (8,110 \pm 0.001)$ см; $R_3 - \frac{l_3}{2} = (8,650 \pm 0.001)$ см; $R_4 - \frac{l_4}{2} = (8,260 \pm 0.001)$ см;

$$R_1 = (9.288 \pm 0.002)$$
см $R_2 = (9.360 \pm 0.002)$ см $R_3 = (9.900 \pm 0.002)$ см $R_4 = (9.510 \pm 0.002)$ см

 $2r_{\text{6ш}}$ (радиус большого шкива) = (3.510 ± 0.001) см $2r_{\text{мш}}$ (радиус малого шкива) = (1.800 ± 0.001) см

2 Оценка момента сил трения покоя M_0

Масса платформы $m_{\rm n} = 6.171$ г при подвешивании платформы на малый шкив маятник медленно начинает вращаться, значит

$$M_0 < m_{\pi} \cdot g \cdot r_{\text{mil}} = 11 \cdot 10^{-3} \text{H}$$

То есть точно измерить его у нас не получится

3 Измерение коэффициентов прямой $\beta = \beta_0 + k\omega$ и обработка результатов измерения

• $m_{\text{г}} = (30.1 \pm 0.1)$ г, большой шкив $1)\beta_0 = (0.5267 \pm 0.0330) \frac{\text{рад}}{\text{c}^2}$ $k = (-0.02036 \pm 0.02700) \frac{1}{\text{c}}$ $2)\beta_0 = (0.5769 \pm 0.0086) \frac{\text{рад}}{\text{c}^2}$ $k = (-0.02377 \pm 0.00670) \frac{1}{\text{c}}$ $3)\beta_0 = (0.5470 \pm 0.0089) \frac{\text{рад}}{\text{c}^2}$ $k = (-0.02227 \pm 0.00730) \frac{1}{\text{c}}$ $4)\beta_0 = (0.5793 \pm 0.0090) \frac{\text{рад}}{\text{c}^2}$ $k = (-0.02522 \pm 0.00710) \frac{1}{\text{c}}$

5)
$$\beta_0 = (0.5917 \pm 0.0078) \frac{\text{pag}}{\text{c}^2}$$

 $k = (-0.02916 \pm 0.00660) \frac{1}{\text{c}}$

$$\sigma_{\beta} = \frac{1}{N} \cdot \sqrt{\sum_{i=1}^{n} (\overline{\beta} - \beta_i)^2}$$

$$\sigma_{eta}=0.0107rac{\mathrm{pag}}{c^{2}}$$
 — случайная погрешность

$$M_1 = 1.25 \cdot 10^{-2} H \cdot M$$

• $m_{\scriptscriptstyle \Gamma}=(62.9\pm0.1)$ г, большой шкив $eta_0=(0.5917\pm0.0078)rac{{
m pag}}{c^2}$ $k=(-0.02916\pm0.00660)rac{1}{c}$

$$M_2 = 1.29 \cdot 10^{-2} H \cdot M$$

• $m_{\scriptscriptstyle \Gamma}=(93.0\pm0.1)$ г, большой шкив $eta_0=(1.2000\pm0.0015) {{
m pag}\over c^2} \ k=(-0.01481\pm0.00078) {1\over c}$

$$M_3 = 1.77 \cdot 10^{-2} H \cdot M$$

• $m_{\scriptscriptstyle \Gamma}=(127.1\pm0.1)$ г, большой шкив $\beta_0=(1.7140\pm0.0099)\frac{{\rm рад}}{{
m c}^2}$ $k=(-0.02406\pm0.00430)\frac{1}{{
m c}}$

$$M_4 = 2.32 \cdot 10^{-2} H \cdot M$$

• $m_{\scriptscriptstyle \Gamma}=(62.9\pm0.1)$ г, малый шкив $\beta_0=(0.5027\pm0.0080)\frac{{\rm рад}}{{\rm c}^2}$ $k=(-0.02283\pm0.00520)\frac{1}{{\rm c}}$

$$M_5 = 0.57 \cdot 10^{-2} H \cdot M$$

• $m_{\scriptscriptstyle \Gamma}=(93.0\pm0.1)$ г, малый шкив $\beta_0=(0.6187\pm0.0056)\frac{{
m pag}}{{
m c}^2}$ $k=(-0.01684\pm0.00270)\frac{1}{c}$

$$M_6 = 0.79 \cdot 10^{-2} H \cdot M$$

•
$$m_{\scriptscriptstyle \Gamma}=(127.1\pm0.1)$$
г, малый шкив $\beta_0=(0.9422\pm0.0940)\frac{\mathrm{рад}}{\mathrm{c}^2}$ $k=(-0.02827\pm0.03700)\frac{1}{\mathrm{c}}$

$$M_7 = 1.03 \cdot 10^{-2} H \cdot M$$

Построим графики зависимости β_0 от M для малого и большого шкивов на графике N1:

График №1

Откуда найдем значения моментов инерции как величину обратную к коэффициенту наклона графиков:

$$I_{\mathrm{m}} = 10.4 \cdot 10^{-3} \mathrm{kr} \cdot \mathrm{m}^2$$

$$I_{\rm G} = 9.2 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

Значения немного отличаются, это можно объяснить малым количеством точек и разбалансировкой

$$\overline{I} = 9.8 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

4 Измерение зависимости углового ускорения от момента инерции системы

$$I = \frac{m_{\scriptscriptstyle \rm H} \cdot g \cdot R}{\beta_0}$$

Измерения будут проводиться для $m_{\scriptscriptstyle \Gamma}=100$ г; Результаты измерений занесем в таблицу №1:

Таблица №1

R, см	10.73	11.83	13.06
$\beta_0, \frac{\text{pag}}{\text{c}^2}$	1.53 ± 0.10	1.21 ± 0.01	1.09 ± 0.01
$k, \frac{1}{c}$	-0.040 ± 0.047	-0.018 ± 0.004	-0.017 ± 0.004
$I \cdot 10^3, H \cdot M$	12.4	15.7	17.4

Построим график зависимости I от \mathbb{R}^2 на графике \mathbb{N}_2 , чтобы проверить формулу

$$I = \sum_{i} m_i \cdot R_i^2$$

График №2

Из графика получим I_0 , равный точке, в которой прямая пересекает ось у:

$$I_0 = 2.58 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

5 Измерение углового ускорения для маятника Обербека без грузов

$$I_0 = \frac{m_{\scriptscriptstyle H} \cdot g \cdot R}{\beta_0}$$

• $m_{\text{r}}=(62.9\pm0.1)$ г, большой шкив $\beta_0=(2.43\pm0.01)\frac{\text{рад}}{\text{c}^2}$ $k=(-0.0483\pm0.0026)\frac{1}{\text{c}}$

$$I_0 = 5.21 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

• $m_{\scriptscriptstyle \Gamma}=(100.0\pm0.1)$ г, большой шкив $\beta_0=(3.54\pm0.01)\frac{{\rm pag}}{{\rm c}^2}$ $k=(-0.0514\pm0.0034)\frac{1}{{\rm c}}$

$$I_0 = 5.29 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

• $m_{\scriptscriptstyle \Gamma}=(144.6\pm0.1)$ г, большой шкив $\beta_0=(5.01\pm0.11)\frac{{
m pag}}{{
m c}^2}$ $k=(-0.0684\pm0.0029)\frac{1}{{
m c}}$

$$I_0 = 5.17 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\Delta_{\overline{I_0}} = 0.54 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\overline{I_0} = 5.22 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

6 Вывод

Мы на практике проверили закон вращательного движения и нашли свободный момент инерции маятника Обербека