Decision Trees – part 2

"I know you're a new analyst but there's no need to hide from our clients." "I'm not hiding!
I'm trying a new
technique I learned
on the web:
The Decision Tree".

Announcements

- A2 due November 7 (make sure you are using the latest pdf – there was a change in the first paragraph of part 1, updated on October 25)
- A3 and optional A4 to follow (A4 will have a deadline during the last week of classes)
- Regrade requests are being processed if it's been more than a week since you submitted your request, you can follow up on Q&A

Predicate as a Decision Tree

The predicate CONCEPT(x) \Leftrightarrow A(x) \land (\neg B(x) v C(x)) can be represented by the following decision tree:

Top-down induction of decision tree

Ex. #	Α	В	С	D	E	CONCEPT
1	<u>False</u>	<u>False</u>	True	<u>False</u>	True	<u>False</u>
2	<u>False</u>	True	<u>False</u>	<u>False</u>	<u>False</u>	<u>False</u>
3	<u>False</u>	True	True	True	True	<u>False</u>
4	<u>False</u>	<u>False</u>	True	<u>False</u>	<u>False</u>	<u>False</u>
5	<u>False</u>	<u>False</u>	<u>False</u>	True	True	<u>False</u>
6	True	<u>False</u>	True	<u>False</u>	<u>False</u>	True
7	True	<u>False</u>	<u>False</u>	True	<u>False</u>	True
8	True	<u>False</u>	True	<u>False</u>	True	True
9	True	True	True	<u>False</u>	True	True
10	True	True	True	True	True	True
11	True	True	<u>False</u>	<u>False</u>	<u>False</u>	<u>False</u>
12	True	True	<u>False</u>	<u>False</u>	True	<u>False</u>
13	True	<u>False</u>	True	True	True	True

DTL(D, Predicates)

- 1. If all examples in D are positive then return True
- 2. If all examples in D are negative then return False
- 3. If Predicates is empty then return failure
- 4. A ← <u>error-minimizing</u> predicate in <u>Predicates</u>
- 5. Return the tree whose:
 - root is A,
 - left branch is DTL(D^{+A}, Predicates-A),
 - right branch is DTL(D^{-A}, Predicates-A)

Choice of Second Predicate

→ The number of misclassified examples from the training set is 1

Choice of Third Predicate

Final Tree

CONCEPT $\Leftrightarrow A \land (C \lor \neg B)$

CONCEPT \Leftrightarrow A \land (\neg B v C)

Generalizing decision trees

Name	Hair	Height	Weight	Lotion	Result
Sarah	Blonde	Average	Light	No	Burn
Dana	Blonde	Tall	Average	Yes	None
Alex	Brown	Short	Average	Yes	None
Annie	Blonde	Short	Average	No	Burn
Emily	Red	Average	Heavy	No	Burn
Pete	Brown	Tall	Heavy	No	None
John	Brown	Average	Heavy	No	None
Katie	Blonde	Short	Light	Yes	None

Building Decision Trees

- Goal: Build a small tree such that all samples at leaves have same class
- Greedy solution:
 - At each node, pick test such that branches are closest to having same class
 - Split into subsets with least "disorder"
 - (Disorder ~ Entropy)
 - Find test that minimizes disorder

Name	Hair	Height	Weight	Lotion	Result
Sarah	Blonde	Average	Light	No	Burn
Dana	Blonde	Tall	Average	Yes	None
Alex	Brown	Short	Average	Yes	None
Annie	Blonde	Short	Average	No	Burn
Emily	Red	Average	Heavy	No	Burn
Pete	Brown	Tall	Heavy	No	None
John	Brown	Average	Heavy	No	None
Katie	Blonde	Short	Light	Yes	None

Minimizing Disorder

Name	Hair	Height	Weight	Lotion	Result
Sarah	Blonde	Average	Light	No	Burn
Dana	Blonde	Tall	Average	Yes	None
Alex	Brown	Short	Average	Yes	None
Annie	Blonde	Short	Average	No	Burn
Emily	Red	Average	Heavy	No	Burn
Pete	Brown	Tall	Heavy	No	None
John	Brown	Average	Heavy	No	None
Katie	Blonde	Short	Light	Yes	None

Minimizing Disorder

Sunburn Identification Tree

Measuring Disorder

Problem:

 In general, tests on large DB's don't yield homogeneous subsets

Solution:

- General information theoretic measure of disorder
- Desired features:
 - Homogeneous set: least disorder = 0
 - Even split: most disorder = 1

Measuring Entropy

 If split we m objects into 2 bins of size m₁ and m₂, what is the entropy?

$$\sum_{i} -\frac{m_i}{m} \log_2 \frac{m_i}{m} =$$

$$-\frac{m_1}{m} \log_2 \frac{m_1}{m} - \frac{m_2}{m} \log_2 \frac{m_2}{m}$$

Computing Disorder

Entropy in Sunburn Example

$$AvgDisorder = \sum_{i=1}^{k} \left(\frac{n_i}{n_t} \sum_{c \in class} - \frac{n_{i,c}}{n_i} \log_2 \frac{n_{i,c}}{n_i} \right)$$

Name	Hair	Height	Weight	Lotion	Result
Sarah	Blonde	Average	Light	No	Burn
Dana	Blonde	Tall	Average	Yes	None
Alex	Brown	Short	Average	Yes	None
Annie	Blonde	Short	Average	No	Burn
Emily	Red	Average	Heavy	No	Burn
Pete	Brown	Tall	Heavy	No	None
John	Brown	Average	Heavy	No	None
Katie	Blonde	Short	Light	Yes	None

Entropy in Sunburn Example

AvgDisorder =
$$\sum_{i=1}^{k} \left(\frac{n_i}{n_t} \sum_{c \in class} -\frac{n_{i,c}}{n_i} \log_2 \frac{n_{i,c}}{n_i} \right)$$

Name	Hair	Height	Weight	Lotion	Result
Sarah	Blonde	Average	Light	No	Burn
Dana	Blonde	Tall	Average	Yes	None
Alex	Brown	Short	Average	Yes	None
Annie	Blonde	Short	Average	No	Burn
Emily	Red	Average	Heavy	No	Burn
Pete	Brown	Tall	Heavy	No	None
John	Brown	Average	Heavy	No	None
Katie	Blonde	Short	Light	Yes	None

```
Hair color = 4/8(-2/4 \log 2/4 - 2/4 \log 2/4) + 1/8*0 + 3/8*0
= 0.5
Height = 0.69
Weight = 0.94
Lotion = 0.61
```

Entropy in Sunburn Example

$$AvgDisorder = \sum_{i=1}^{k} \left(\frac{n_i}{n_t} \sum_{c \in class} -\frac{n_{i,c}}{n_i} \log_2 \frac{n_{i,c}}{n_i} \right)$$

Name	Hair	Height	Weight	Lotion	Result
Sarah	Blonde	Average	Light	No	Burn
Dana	Blonde	Tall	Average	Yes	None
Alex	Brown	Short	Average	Yes	None
Annie	Blonde	Short	Average	No	Burn
Emily	Red	Average	Heavy	No	Burn
Pete	Brown	Tall	Heavy	No	None
John	Brown	Average	Heavy	No	None
Katie	Blonde	Short	Light	Yes	None

Hair color already happened!

```
Height = 2/4(-1/2\log 1/2-1/2\log 1/2) + 1/4*0+1/4*0 = 0.5
```

Weight = $2/4(-1/2\log 1/2-1/2\log 1/2) + 2/4(-1/2\log 1/2-1/2\log 1/2) = 1$

Lotion = 0

So after hair color, we should expand lotion

ID3 Algorithm

Iterative Dichotomiser 3 -- Ross Quinlan (1986)

ID3 (Examples, Target_Attribute, Attributes)

- Create a root node for the tree
- If all examples are positive, Return the single-node tree Root, with label = +.
- If all examples are negative, Return the single-node tree Root, with label = -.
- If # of attributes is empty, return Root, with label = most common value of target.
- Otherwise:
- A ← Attribute that best classifies examples, use this attribute as Root
- For each possible value, v_i, of A,
- Add a new tree branch below Root, corresponding to the test $A = v_i$.
- Let Examples (v_i) be the subset of examples that have the value v_i for A
- If Examples(v_i) empty, add leaf with label = most common value of target, otherwise add subtree ID3 (Examples(v_i), Target_Attribute, Attributes –

{A})

Return Root

Decision tree properties

- Widely used
- Greedy
- Robust to noise (incorrect examples)
- Easily understood by humans; this is important in medical, financial, military applications