

VIENNA UNIVERSITY OF TECHNOLOGY

Institute of Applied Physics

SURFACE SCIENCE

Bachelors Thesis

Title

Author: Martin Kronberger Group 119

Tutor:

December 1, 2024

Contents

1	The	eory	3
	1.1	Formulary	3
		Thermodynamics	
		Continuous one-dimensional flow	
	1.2	Foundational principles	4
		Idealized flow regimes	
		Turbulence	
		Mach regimes	
		Dimensionality of the flow	
2	Δns	alytical work	5
_	2.1	Scope and objectives	
	$\frac{2.1}{2.2}$	Framework for Analysis	
	2.2	· · · · · · · · · · · · · · · · · · ·	
		Important assumptions	
		Regions of interest	
	0.0	Limits of the theory	
	2.3	Analytical Descriptions	6
3	Disc	cussion	7
4	Cor	nclusion	8
R	References		

1 Theory

1.1 Formulary

Thermodynamics

Continuous one-dimensional flow

Thermal equation of state:

$$\frac{p}{\rho} = RT$$
 [term perf]

Dynamic equation:

$$\frac{1}{\rho}dp + VdV = 0$$

Speed of Sound:

$$a = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_s} = \sqrt{\gamma \left(\frac{\partial p}{\partial \rho}\right)_T}$$

$$a = \sqrt{\gamma \frac{p}{\rho}} = \sqrt{\gamma RT}$$
 [term perf] (36)

Mach Number:

$$M = \frac{V}{a} \tag{4}$$

Dynamic Pressure:

$$q = \frac{1}{2}\rho V^2$$

$$q = \frac{\gamma}{2} p M^2$$

From the dynamic equation and the speed of sound relation:

$$\frac{p}{\rho^{\gamma}} = \text{constant} = \frac{p_t}{\rho_t^{\gamma}} \quad \text{[isen, perf]}$$
 (34)

(1) From which:

(2)

$$\frac{p}{p_t} = \left(\frac{\rho}{\rho_t}\right)^{\gamma} = \left(\frac{T}{T_t}\right)^{\frac{\gamma}{\gamma - 1}} = \left(\frac{a}{a_t}\right)^{\frac{2\gamma}{\gamma - 1}} \quad [\text{isen, perf}]$$
(35)

Combining the above equations gives Bernoulli's equation for compressible flow:

(3)
$$\frac{\gamma}{\gamma - 1} \left(\frac{p_t}{\rho_t}\right)^{\frac{\gamma - 1}{\gamma}} \left(\frac{p}{p_t}\right)^{\frac{1}{\gamma}} + \frac{V^2}{2} = \frac{\gamma}{\gamma - 1} \frac{p_t}{\rho_t} \quad [\text{isen, perf}]$$
(36)

Usefull Ratios

$$\frac{T}{T_t} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-1} \quad \text{[adiab, perf]} \quad (43)$$

$$\frac{p}{p_t} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-\frac{\gamma}{\gamma - 1}} \quad \text{[isen, perf]} \quad (44)$$

(5)
$$\frac{\rho}{\rho_t} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-\frac{1}{\gamma - 1}} \quad \text{[isen, perf]} \quad (45)$$

(6)
$$\frac{a}{a_t} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-\frac{1}{2}}$$
 [adiab, perf] (46)

1.2 Foundational principles

Idealized flow regimes

Turbulence

Mach regimes

Dimensionality of the flow

2 Analytical work

- 2.1 Scope and objectives
- 2.2 Framework for Analysis

Important assumptions

Regions of interest

Limits of the theory

2.3 Analytical Descriptions

Testing the waters. Lets do this.

3 Discussion

4 Conclusion

this is a test

List of Figures

List of Tables