

Aprendizado Automático de Sum-Product Networks

Renato Lui Geh, Orientador: Denis Deratani Mauá

Instituto de Matemática e Estatística, Universidade de São Paulo - MAC0215 Atividade Curricular em Pesquisa

Motivação

Um dos maiores problemas na área de Aprendizado Computacional em Inteligência Artificial é a questão da intractabilidade da inferência, e portanto aprendizado, em amostras muito grandes, já que a complexidade na maioria dos Modelos Gráficos Probabilísticos (PGM) é exponencial. Apesar de existirem modelos onde a inferência é, de fato, tratável, elas possuem limitações quanto à compactibilidade de suas representações.

Em 2011[PD11], Pedro Domingos e Hoifung Poon introduziram um novo tipo de modelo probabilístico cuja inferência é sempre tratável e ainda assim é mais flexível que muitos outros modelos. Por meio de experimentos também comprovou-se que tanto inferência quanto aprendizado foram mais rápidos e precisos que outras redes profundas.

O objetivo desse estudo é aprender a definição, estrutura e propriedades de Sum-Product Networks e em seguida estudar os vários tipos de aprendizado que podemos efetuar neste modelo.

Sum-Product Networks

Uma Sum-Product Network (SPN) com variáveis $x_1, ..., x_d$ é um grafo enraizado, direcionado e acíclico (DAG) cujas folhas são indicadores $x_1, ..., x_d$ e $\overline{x}_1, ..., \overline{x}_d$ e cujos nós internos são nós somas ou produtos. Toda aresta ij onde i tem origem em um nó soma tem um peso $w_{ij} \geq 0$ associado. O valor de um nó i é v_i . O valor de um nó soma i é $\sum_{j \in Ch(i)} w_{ij}v_j$. O valor de um nó produto i é $\prod_{j \in Ch(i)} v_j$. Ch(i) é o conjunto de nós filhos de i. O valor de um nó folha é o valor da própria variável. O valor de uma SPN S é o valor de sua raíz.

Figura: A esquerda uma SPN implementando uma naive Bayes mixture model. A direita uma SPN implementando uma junction tree. Fonte: Poon e Domingos[PD11].

Definição

Uma SPN S é válida sse $S(e) = \Phi_S(e)$ para toda evidência e, onde Φ_S é a distribuição de probabilidade não-normalizada da SPN S.

Definição

Uma SPN é completa sse todos os filhos do mesmo nó soma tem mesmo escopo.

Definição

Uma SPN é consistente sse nenhuma variável aparece negada em um filho de um nó produto e não-negada em outro.

Teorema

Uma SPN é válida se ela é completa e consistente.

SPNs válidas são desejáveis pois uma SPN válida computa a probabilidade de evidência em tempo linear em seu tamanho, além de completude e consistência permitirem que a inferência da SPN seja garantidamente eficiente.

Aprendizado

Podemos gerar uma SPN por aprendizado criando uma SPN densa inicialmente e em seguida aprendermos os pesos. Domingos e Poon[PD11] sugerem um algoritmo que cria uma SPN inicial e em seguida aprende os pesos por Gradient Descent ou Expectation-Maximization (EM) que é mostrada na seção Algoritmo de Aprendizado. No entanto, há outros jeitos de se aprender uma SPN.

Gens e Domingos[GD13] desenvolveram um método de aprendizado que explora dependência e independência dos dados do conjunto de treino para melhorar a flexibilidade e custo de aprendizado de uma SPN. O método proposto usa a expressividade da estrutura de SPNs para alcançar resultados superiores aos experimentos realizados anteriormente.

Outros métodos de aprendizado incluem buscas gulosas[DV15], clustering de variáveis[DV12] e o uso de Non-Parametric Bayesian Sum-Product Networks[LWZ14].

Algoritmo de Aprendizado

Input: Conjunto *D* de instâncias sobre variáveis *X*.

Output: Uma SPN com estrutura e parâmetros construídos por aprendizado. /* Cria uma SPN inicial que seja válida. */

 $S \leftarrow \mathsf{GenerateDenseSPN}(X);$

InitializeWeights(S);

repeat

forall the $d \in D$ do

/* Atualiza pesos por Gradient Descent ou EM. */
UpdateWeights(S, Inference(S, d));

end

until convergência;

/* Apara arestas com peso $w_{ij} = 0$ e nós não-raíz sem pais. * $S \leftarrow \text{PruneZeroWeights}(S)$;

return S

Experimentos

Os experimentos mostrados a seguir foram extraídos a partir da implementação do algoritmo mostrado na seção anterior e mostram os resultados do código [DP] implementado por Domingos e Poon e citados em [PD11].

Figura : A saída do algoritmo consiste na compleção do lado esquerdo das imagens a partir de um conjunto de treino. Para cada par de imagens, a imagem da esquerda é a original, enquanto que a direita tem a metade esquerda completada pela SPN e a outra metade igual a da original como evidência.

Arquitetura	Rostos	Motos	Carros
SPN	0.99	0.99	0.98
CDBN	0.95	0.81	0.87

Tabela: Comparação entre SPNs e CDBNs (Convolutional Deep Belief Networks) em classificação (reconhecimento) de imagens.

Pode-se ver que os resultados das SPNs são muito promissores e, dado que o algoritmo produzido por Domingos e Poon não toma muita vantagem da expressividade da estrutura local de SPNs, é fácil notar que ainda há muito espaço para melhorias.

Trabalhos futuros

Pretende-se estudar a implementação do método de aprendizado proposto por Poon e Domingos[PD11] e explorar mais a fundo as propriedades de uma SPN, principalmente o uso de estrutura local para tornar o aprendizado mais rápido e preciso.

Em seguida planeja-se estudar outros tipos de aprendizado em SPNs, como o introduzido por Gens e Domingos[GD13], buscas gulosas e clustering por Dennis e Ventura[DV12, DV15] e Non-Parametric Bayesian Sum-Product Networks[LWZ14].

Referências

- Pedro Domingos and Hoifung Poon.
 Sum-product networks: A new deep architecture (code).
 URL: http://spn.cs.washington.edu/spn/.
- Aaron Dennis and Dan Ventura.

 Learning the architecture of sum-product networks using clustering on variables.

 Advances in Neural Information Processing Systems, 25, 2012.
- Aaron Dennis and Dan Ventura.

 Greedy structure search for sum-product networks.

 International Joint Conference on Artificial Intelligence, 24, 2015.
- Robert Gens and Pedro Domingos.

 Learning the structure of sum-product networks.

 International Conference on Machine Learning, 30, 2013.
- Sang-Woo Lee, Christopher Watkins, and Byoung-Tak Zhang. Non-parametric bayesian sum-product networks.

 Workshop on Learning Tractable Probabilistic Models, 2014.
- Hoifung Poon and Pedro Domingos.
 Sum-product networks: A new deep architecture.
 Uncertainty in Artificial Intelligence, 27, 2011.