What influence do lifestyle and genetic factors have on the severity of cancer? (Welchen Einfluss haben Lebensstil und genetische Faktoren auf die schwere der Krebserkrankung?)

1. Dataset:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 50000 entries, 0 to 49999 Data columns (total 15 columns):

#	Column	Non-Null Count Dtype			
0	Patient_ID	50000 non-null object			
1	Age	50000 non-null int64			
2	Gender	50000 non-null object			
3	Country_Region	50000 non-null object			
4	Year	50000 non-null int64			
5	Genetic_Risk	50000 non-null float64			
6	Air_Pollution	50000 non-null float64			
7	Alcohol_Use	50000 non-null float64			
8	Smoking	50000 non-null float64			
9	Obesity_Level	50000 non-null float64			
10	Cancer_Type	50000 non-null object			
11	Cancer_Stage	50000 non-null object			
12	Treatment_Cost_USD	50000 non-null float64			
13	Survival_Years	50000 non-null float64			
14	Target_Severity_Score	50000 non-null float64			
dty	pes: float64(8), int64(2), o	bject(5)			
me	memory usage: 5.7+ MB				

None

Dataset overview:

Р	atient_ID	Age Ger	nder Cou	intry_Regi	on Year \
count	50000	50000.00000	00 50000	500	000 50000.000000
unique	e 50000	NaN	3	10	NaN
top	PT000000	0 NaN	Male	Australia	NaN
freq	1	NaN	16796	5092	NaN
mean	NaN	54.421540	NaN	NaN	2019.480520
std	NaN	20.224451	NaN	NaN	2.871485
min	NaN	20.000000	NaN	NaN	2015.000000
25%	NaN	37.000000	NaN	NaN	2017.000000
50%	NaN	54.000000	NaN	NaN	2019.000000
75%	NaN	72.000000	NaN	NaN	2022.000000
max	NaN	89.000000	NaN	NaN	2024.000000

Genetic_Risk Air_Pollution Alcohol_Use Smoking \ count 50000.000000 50000.000000 50000.000000 50000.000000 NaN unique NaN NaN NaN top NaN NaN NaN NaN NaN NaN NaN NaN freq 5.001698 5.010126 5.010880 4.989826 mean

std	2.885773	2.888399	2.888769	2.881579
min	0.000000	0.000000	0.000000	0.000000
25%	2.500000	2.500000	2.500000	2.500000
50%	5.000000	5.000000	5.000000	5.000000
75%	7.500000	7.500000	7.500000	7.500000
max	10.000000	10.000000	10.000000	10.000000

Ob	pesity_Level Can	cer_Type	Cancer_Stage	Treatment_Cost_USD	١
count	50000.000000	50000	50000	50000.000000	
unique	NaN	8	5	NaN	
top	NaN	Colon	Stage II	NaN	
freq	NaN	6376	10124	NaN	
mean	4.991176	NaN	NaN	52467.298239	
std	2.894504	NaN	NaN	27363.229379	
min	0.000000	NaN	NaN	5000.050000	
25%	2.500000	NaN	NaN	28686.225000	
50%	5.000000	NaN	NaN	52474.310000	
75%	7.500000	NaN	NaN	76232.720000	
max	10.000000	NaN	NaN	99999.840000	

Su	rvival_Years Target_	_Severity_Score
count	50000.000000	50000.000000
unique	NaN	NaN
top	NaN	NaN
freq	NaN	NaN
mean	5.006462	4.951207
std	2.883335	1.199677
min	0.000000	0.900000
25%	2.500000	4.120000
50%	5.000000	4.950000
75%	7.500000	5.780000
max	10.000000	9.160000

Die Zielgröße "Target_Severity_Score" ist eine kontinuierliche numerische Variable ohne fehlende Werte, was sie ideal für ein Regressionsmodell im Supervised Learning macht. Die erklärenden Variablen wie "Genetic_Risk" und "Obesity_Leve"l sind ebenfalls numerisch und vollständig, sodass sie zuverlässig zur Modellbildung genutzt werden können. Diese Struktur passt exakt zur Forschungsfrage, da das Modell quantifizieren kann, wie stark genetische und lebensstilbedingte Faktoren die Schwere einer Krebserkrankung beeinflussen.

2. Correlation analysis for Target_Severity_Score

Top correlational Features with Target_Severity_Score:

Smoking	0.484420
Genetic_Risk	0.478700
Treatment_Cost_USD	0.466058
Air_Pollution	0.366963
Alcohol_Use	0.363250

Name: Target_Severity_Score, dtype: float64

Allgemeine Bedeutung der Werte:

Der Target Severity Score zeigt die Schwere einer Krebserkrankung an.

Je näher der Wert an 1 ist, desto höher ist die Korrelation zwischen dem getesteten Feature und dem Target Severity Score. Für die Beantwortung der Forschungsfrage werden folgende Features betrachtet: Smoking, Genetic_Risk, Air_Pollution, Alcohol_Use. Zudem wird Obisity_Level statt Treatment_Cost_USD, da dieses Feature besser zur Forschungsfrage passt.

3. Visualize pairwise relationships

Die Achsen enthalten jeweil dieselbe 6 Variablen:

Obesity_Level, Genetic_Risk, Smoking, Alcohol_Use, Air_Pollution und Target_Severity_Score (Zielvariable)

Die Diagonalachsen (z. B. ganz oben links oder ganz unten rechts) zeigen die Verteilung jeder einzelnen Variable als Histogramm:

- Target Severity Score: nahezu normalverteilt, was gut für Regression ist.
- Die anderen (z. B. Genetic Risk, Smoking) sind eher gleichverteilt.

Die nicht-diagonalen Felder zeigen Streudiagramme (Punktwolken) für die Paarweise-Beziehungen zwischen je zwei Variablen:

Beobachtungen

3.1. Target_Severity_Score vs. andere Variablen

Genetic_Risk: Deutlich positiver Zusammenhang, je höher das genetische Risiko, desto höher die Schwere der Erkrankung.

Obesity_Level: Ebenfalls moderat positiver Zusammenhang erkennbar.

Smoking, Alcohol_Use, Air_Pollution: Zusammenhang etwas diffuser, aber leicht steigend ggf. schwache oder nicht-lineare Korrelation.

3.2. Zwischen anderen Eingangsvariablen

Wenig Korrelation untereinander \rightarrow gut für Regression, da keine starke Multikollinearität vorliegt.

Die Streudiagramme sind meist diffus verteilt (wolkenartig ohne klare Linie) das bedeutet: diese Merkmale sind relativ unabhängig voneinander.

Fazit zur Interpretation:

Target_Severity_Score hängt am stärksten von Genetic_Risk ab.

Auch Obesity Level zeigt einen messbaren Einfluss.

Die anderen Lifestyle-Faktoren (Smoking, Alcohol_Use, Air_Pollution) wirken tendenziell verstärkend, aber nicht so stark.

Die Feature-Wahl für dein Regressionsmodell war gut und begründet.

4. Correlation Heatmap

Jeder Wert zeigt, wie stark zwei Variablen linear miteinander zusammenhängen.

Die Werte liegen zwischen -1 (perfekt negativ) und +1 (perfekt positiv).

Ein Wert nahe 0 bedeutet: kein linearer Zusammenhang.

Merkmal	Korrelation mit Target_Severity_Score	Interpretation
Smoking	0.48	Stärkste Korrelation – mehr Rauchen → höherer Schweregrad
Genetic_Risk	0.47	Hoher genetischer Risikowert → höherer Schweregrad
Alcohol_Use	0.36	Deutlicher Zusammenhang mit Schweregrad
Air_Pollution	0.36	Ähnlich wie Alkoholkonsum, moderater Einfluss
Obesity_Level	0.25	Schwächerer, aber dennoch positiver Zusammenhang

5. Histogram plots

- 5.1. Obesity_Level, Genetic_Risk, Smoking, Alcohol_Use, Air_Pollution:
 - Die Verteilungen dieser Lebensstil- und Umweltvariablen sind nahezu gleichmäßig (uniform).
 - Das bedeutet: In deinem Datensatz kommen alle Wertebereiche gleich häufig vor, von niedrig (0) bis hoch (10).
- 5.2 Target_Severity_Score (Zielvariable):
 - Diese Variable ist glockenförmig verteilt, also normalverteilt.

• Die meisten Patienten haben einen mittleren Score (~5), extrem niedrige oder hohe Werte sind seltener.

6. Evaluate model

Intercept: 4.953531535869042

R^2 score (test set): 0.785514503604383

• Intercept: 4.95

Das ist der Achsenabschnitt der Regressionsgeraden.

Er gibt den geschätzten Target_Severity_Score an, wenn alle Einflussvariablen den Wert 0 haben (z. B. kein Rauchen, kein Alkohol etc.).

In deinem Fall bedeutet das: Ein Patient ohne Risikobelastung hätte einen durchschnittlichen Schweregrad von ca. 4.95.

Da der Score zwischen 0 und 10 liegt, ist das ein mittlerer Schweregrad.

• R² Score (Test Set): 0.785

Das Bestimmtheitsmaß R² zeigt, wie gut das Modell die Streuung der Zielvariable erklärt.

Ein Wert von 0.785 bedeutet: 78,5 % der Varianz im Target_Severity_Score können durch die verwendeten Prädiktoren erklärt werden.

Das ist ein sehr guter Wert für Regressionsmodelle im medizinischen Kontext – besonders bei soziodemografischen und Lebensstil-Daten.

7. Cross-validation

10-Fold Cross-Validation R^2 Scores: [0.78391818 0.78114007 0.78412132 0.78544372 0.78656452 0.7899394

0.78995208 0.78778703 0.79710573 0.78700209]

Mean R^2 Score: 0.7872974138402786

Die 10-Fold Cross-Validation R² Scores und ihr Durchschnitt geben eine robuste Aussage darüber, wie stabil und zuverlässig das Modell auf unbekannten Daten performt:

1. Was ist 10-Fold Cross-Validation?

Der Datensatz wurde in 10 gleich große Teile (Folds) geteilt.

In jedem Durchgang wurde das Modell mit 9 Teilen trainiert und mit dem 10. Teil getestet.

Das wurde 10-mal wiederholt, sodass jedes Teilstück einmal Testdaten war.

Dabei wurde der R²-Wert für jeden Durchlauf berechnet.

[0.7839, 0.7811, 0.7841, 0.7854, 0.7866, 0.7899, 0.7899, 0.7878, 0.7971, 0.7870] Die einzelnen Werte liegen alle sehr eng beieinander (zwischen 0.78 und 0.80).

Das zeigt eine hohe Konsistenz und Stabilität des Modells.

Keine starken Ausreißer \rightarrow kein Overfitting oder instabiles Verhalten bei neuen Daten.

Mean R² Score: 0.7873

Das ist der durchschnittliche Erklärungswert über alle 10 Durchläufe.

Das Modell erklärt durchschnittlich 78,7 % der Varianz im Target_Severity_Score, unabhängig von der Datenaufteilung.

8. Scatter plot actual vs predicted

Der Plot "Actual vs Predicted Target Severity Score" zeigt die tatsächlichen (x-Achse) gegen die vom Modell vorhergesagten Werte (y-Achse) der Target_Severity_Score-Variable.

Interpretation:

Die Punkte liegen nahe einer diagonalen Linie von unten links nach oben rechts.

Das bedeutet: Die Vorhersagen des Modells stimmen sehr gut mit den tatsächlichen Werten überein.

Es gibt keine erkennbaren systematischen Abweichungen (keine gekrümmte Streuung, kein Bias).

Die Vorhersagen sind präzise, besonders im mittleren Wertebereich.

9. Zusammenfassung

In dieser Untersuchung wurde mittels linearer Regressionsanalyse der Einfluss von Lebensstil- und genetischen Faktoren auf die Schwere einer Krebserkrankung (Target_Severity_Score) analysiert. Als erklärende Variablen wurden Obesity_Level, Genetic_Risk, Smoking, Alcohol_Use und Air_Pollution berücksichtigt.

Nach IQR-basierter Ausreißerbehandlung und Skalierung der numerischen Merkmale wurde das Modell auf einem 75/25-Trainings-Test-Split trainiert und zusätzlich durch eine 10-fache Kreuzvalidierung evaluiert.

Das Regressionsmodell erzielte auf dem Testdatensatz einen R²-Wert von 0.7855, dies bedeutet, dass etwa 78,5 % der Varianz im Schweregrad der Erkrankung durch die gewählten Einflussfaktoren erklärt werden konnten. Die Kreuzvalidierung bestätigte diese Stabilität mit einem durchschnittlichen R²-Wert von 0.7873. Die Einzelwerte aller Folds lagen eng beieinander (zwischen 0.78 und 0.80). Auch die Visualisierung der tatsächlichen versus vorhergesagten Schweregrade zeigte eine sehr hohe Übereinstimmung.

Daraus folgt die Antwort auf die Forschungsfrage (Welchen Einfluss haben Lebensstil und genetische Faktoren auf die Schwere einer Krebserkrankung?):

Die Ergebnisse zeigen eindeutig, dass sowohl Lebensstilfaktoren (wie Adipositas, Rauchen und Alkoholkonsum) als auch genetische Disposition (Genetic Risk) einen starken Einfluss auf den Schweregrad einer Krebserkrankung haben. Insbesondere Obesity_Level und Genetic_Risk zeigten eine hohe Korrelation mit dem Schweregrad.

Das entwickelte Regressionsmodell konnte anhand dieser Variablen den Target_Severity_Score mit hoher Genauigkeit vorhersagen. Die hohe erklärte Varianz und die stabilen Validierungsergebnisse lassen den Schluss zu, dass diese Merkmale relevante Prädiktoren für die individuelle Schwere der Krebserkrankung darstellen.