

Korelacja i regresja liniowa

Statystyka i analiza danych 2017/2018

Jurek Błaszczyński, na podstawie slajdów Wojtka Kotłowskiego 13 maja 2018

Kowariancja

• Populacyjna:

$$C(X,Y) = E[(X - \mu_X)(Y - \mu_Y)],$$

gdzie μ_X , μ_Y są średnimi zmiennych X i Y.

C(X,Y) mierzy **zależność liniową** dwóch zmiennych losowych.

Szczególny przypadek: wariancja $D^2[X] = C(X, X)$.

• **Próbkowa** - dla zbioru n par $(X_1, Y_1), \ldots, (X_n, Y_n)$:

$$s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}).$$

1

Korelacja

To unormowana kowariancja – populacyjna:

$$\rho(X,Y) = \frac{C(X,Y)}{D[X]D[Y]}, \qquad \rho(X,Y) \in [-1,1]$$

Jeśli X, Y – niezależne, to $\rho(X, Y) = 0$ (ale nie odwrotnie!)

• **Próbkowa** - dla zbioru n par $(X_1, Y_1), \ldots, (X_n, Y_n)$:

$$r = \frac{s_{XY}}{s_X s_Y} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\left(\sum_{i=1}^n (X_i - \overline{X})^2\right)\left(\sum_{i=1}^n (Y_i - \overline{Y})^2\right)}}$$

Zachodzi $r \in [-1,1]$, wartości skrajne $\{-1,1\}$ przyjmowane są **wtedy i tylko wtedy** gdy Y_i są funkcją liniową X_i (lub odwrotnie)

Przykłady korelacji

Przykłady korelacji

Test na istotność korelacji

• Układ hipotez:

Ho:
$$ho=0$$
 $(
ho\geq0)$ $(
ho\leq0)$ $H_1:$ $ho\neq0$ $ho<0$ $ho>0$

Statystyka testowa:

$$T = \frac{r}{\sqrt{1-r^2}}\sqrt{n-2} \sim t(n-2)$$

Wartość krytyczną (lub p-wartość) otrzymujemy z rozkładu t-Studenta z n-2 stopniami swobody.

Regresja liniowa

Korelacja mierzy siłę zależności liniowej.

Regresja to wyznaczanie **współczynników zależności liniowej**: Mając zbiór n punktów $(X_1, Y_1), \dots (X_n, Y_n)$ wyznacz

współczynniki a, b zależności liniowej Y = aX + b.

Metoda najmniejszych kwadratów

Dla każdego X_i błąd modelu liniowego to różnica między wartością odczytaną z prostej $\widehat{Y}_i = aX_i + b$ a prawdziwą wartością Y_i :

Minimalizujemy sume kwadratów błędów:

$$a, b \longleftarrow \min_{a,b} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - aX_i - b)^2$$

Wyprowadzenie

$$L(a,b) = \sum_{i=1}^{n} (Y_i - aX_i - b)^2$$

Przyrównujemy pochodne cząstkowe do zera:

$$\frac{\partial L}{\partial b} = 0 \iff -\sum_{i=1}^{n} 2(Y_i - aX_i - b) = 0 \iff b = \overline{Y} - a\overline{X}$$

$$\frac{\partial L}{\partial a} = 0 \iff -\sum_{i=1}^{n} 2(Y_i - aX_i - b)X_i = 0$$

$$\iff \sum_{i=1}^{n} (Y_i - \overline{Y})X_i = a\sum_{i=1}^{n} (X_i - \overline{X})X_i$$

$$\iff \sum_{i=1}^{n} (Y_i - \overline{Y})(X_i - \overline{X}) = a\sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})$$

$$\iff a = \frac{\sum_{i=1}^{n} (Y_i - \overline{Y})(X_i - \overline{X})}{\sum_{i=1}^{n} (X_i - \overline{X})^2} = \frac{s_{XY}}{s_X^2}.$$

7

Współczynniki regresji

$$a = \frac{s_{XY}}{s_X^2} = r \frac{s_Y}{s_X}$$
$$b = \overline{Y} - a\overline{X}$$

- Linia regresji przechodzi przez punkt $(\overline{X}, \overline{Y})$
- Współczynnik kierunkowy a ma ten sam znak co współczynnik korelacji r.