CONCEPT OF LINEAR ALGEBRA HOMEWORK 11

Submit a single PDF to Gradescope. Your solution to each problem should be complete, show all work, and be written in complete sentences where appropriate. Use GeoGebra to clearly create and label all images. You are encouraged to use L^AT_EX .

- (1) Consider the complex number z = 4 + 3i.
 - (a) Use GeoGebra or sketch by hand z and z. Be sure this is clearly labelled.
 - (b) Find the polar representation of this complex number.
 - (c) Compute z² using both the Cartesian and polar representations. Which one was easier?


```
representation
 Volution
                 of a complex number z = q + bi
The polar Form
      Z= 8 ( (0) 0+ 15 in 0)
 The obsolute value of 8.
                         970
   The organient & Vince
           0 = tan-1 3/5
            0 = 0.6.
              5 ( cos (0.6) + i sin (0.6)
                          tan -1 (24)
                    25 (cos 3.488+ i sin B.428
                  = 25 (cos 3 428 + isin 8.428
```

(2) We can define a transformation of the complex plane $T:C \; ! \; C$ where, given a complex number z, we then

output iz. Recall that the complex plane C is just the plane R² with multiplication with the identification

z = x + iy\$ z = y. It turns out that there exists a 2 2 real matrix A such that iz = Az.

(a) Find A.

b)

(b) Are you surprised by this matrix? Why or why not?

(c) What if we now consider w = a + bi and a new transformation T : C ! C where, given a complex number z, we then output wz. Can you find the associated matrix A? You are encouraged to use GeoGebra in your initial exploration.

	Date
	Date .
	MTWT
Question 2.	
Find A.	
$Z = X + i^{\circ}y$	
As a 2x2 Matrix.	
A = [10]	
A = [1 0]	
b. The Mohix is a 2 x 2 Mohix.	

Answer

The matrix acquired is a rationalized matrix of A As it yields

(0 1

(1 0)

Answer A and B

(a) Compute disc(A) and then use this to determine the number of invariant lines A has in the plane. (b) Find $p_A(1)$. (c) Use the quadratic formula to find and simplify the eigenvalues l_1 and l_2 .

- (d) Set up, but do not evaluate, an augmented matrix whose solution sets correspond to a complex eigenspace.
- (e) Find the parametric equations for the A-invariant line and pick an eigenvector v. (Note: You will have complex numbers, that is okay.)
- (f) Give a complex diagonalization of A.
- (g) Use v to find an ordered rotation basis B.
- (h) Using complete sentences and geometric words, verbally explain how A transforms the plane.

(i) Symbolically express your rotationalization of A.

(j) Using GeoGebra, visually represent the B-coordinate grid, the B-unit square, S_B, and depict how A transforms S_B.

d. Xugmented Motrix

$$xygA = \begin{bmatrix} 2 & -4 & y & J \\ 2 & -2 & y_2 \end{bmatrix} - - - - (ii)$$

e. A = [2 -4]	X = t(a - 4m)	
[La-a]	X = t(a - am)	
y= mx	x = t and $x = t$	
X= t	2-4m 2-2m	
y=mt	x = x = a - 4m = 1	
[2-47[t]	Q-4m 2-2m 1 2-2m	
[a-a][mt]	= (2-4m)(2-2m) = 4-4m-8m+8m2	
= 2t-4mt	= 4 - 12m + 8m2	
at -amt	= 4-4m-8m +8m2	

= 4 (1-m)-8m(m-8m)

(1-8m) (1-m) 4=8m m= 1/2

1-M = M=1

The Parametric equations are.

m: /a and m=1