Statistics One

Lecture 18 Repeated measures ANOVA

Two segments

• Repeated measures: Pros & Cons Repeated measures: Example

Lecture 18 ~ Segment 1

Repeated measures Pros & Cons

Repeated measures: Pros & cons

- Less cost (fewer subjects required)
 More statistical power
 This is the important new concept

Repeated measures: Pros & cons

- · Working memory training example
- Four independent groups (8, 12, 17, 19)
 - There were 20 subjects per group
 - Total N = 80

Repeated measures: Pros & cons

- · Working memory training example
- · Repeated measures design $-\dot{N} = 20$

Repeated measures: Pros & cons

- · More statistical power
 - Variance across subjects may be systematic
 If so, it will not contribute to the error term

Between groups design (SS) Systematic/ Unsystematic/

Repeated measures design (SS)

Error in a repeated measures design is the inconsistency of subjects from one condition to another

Therefore:

 $F_A = MS_A / MS_{AxS}$

MS and F

- MS_A = SS_A / df_A
 MS_{AxS} = SS_{AxS} / df_{AxS}
- $F = MS_A / MS_{AxS}$

Repeated measures: Pros & cons

- Cons
 - Order effects
 - Counterbalancing
 - Missing data
 - Extra assumption

Counterbalancing

- Consider a simple design with just two conditions, A1 and A2
- One approach is a Blocked Design

 Subjects are randomly assigned to one of two "order" conditions
 A1, A2
 A2, A1

Counterbalancing

- Another approach is a Randomized Design - Conditions are presented randomly in a mixed fashion
 - A2, A1, A1, A2, A2, A1, A2.....

Counterbalancing

- Now suppose a = 3 and a blocked design
- There are 6 possible orders (3!)

 A1, A2, A3

 A1, A3, A2

 A2, A1, A3

 A2, A3, A1

 A3, A1, A2

 A3, A1, A2

Counterbalancing

- To completely counterbalance, subjects would be randomly assigned to one of 6 order conditions
- The number of conditions needed to completely counterbalance becomes large with more conditions

 - 4! = 24 5! = 120

Counterbalancing

- · With many levels of the IV a better approach is to use a "Latin Squares" design
- Latin Squares designs aren't completely counterbalanced but every condition appears at every position at least once

Counterbalancing

- For example, if a = 3, then
 - A1, A2, A3
 - A2, A3, A1
 - A3, A1, A2

Missing data

- · Two issues to consider
 - Relative amount of missing data
 - Pattern of missing data

Missing data ~ Relative amount

- · How much is a lot?
 - No hard and fast rules
 - A rule of thumb is
 - Less than 10% on any one variable, OK
 - · Greater than 10%, not OK

Missing data ~ Pattern?

- · Is the pattern random or lawful?
 - This can easily be detected
 - For any variable of interest (X) create a new variable (XM)
 - XM = 0 if X is missing
 - XM = 1 if X is not missing
 - Conduct a t-test with XM as the IV
 - If significant then pattern of missing data may be lawful

Missing data ~ Remedies

- · Drop all cases without a perfect profile

 - Drastic
 Use only if you can afford it
- · Keep all cases and estimate the values of the missing data points
 - There are several options for how to estimate values

Sphericity assumption

- · Homogeneity of variance
- · Homogeneity of covariance

Sphericity assumption

- · How to test?
 - Mauchly's test
 - If significant then report an adjusted p-value
 - Greenhouse-Geisser
 - Huyn-Feldt

Segment summary

- Pros
 - Less cost (fewer subjects required)
 - More statistical power
 - This is the important new concept

Segment summary

- Cons
 - Order effects
 - Counterbalancing
 - Missing data
 - Extra assumption

END SEGMENT

Lecture 18 ~ Segment 2

Repeated measures ANOVA Example

Repeated measures: Pros & cons

- Working memory training example
- Four independent groups (8, 12, 17, 19)
 There were 20 subjects per group
 Total N = 80

Repeated measures: Pros & cons

- · Working memory training example
- Repeated measures design
 N = 20

29

subject A1 (8) A2 (12) A3 (17) A4 (12) 1 2 3 4 4 4

31

R dataframe				
subject	condition	IQ		
1	A1 (8)			
1	A2 (12)			
1	A3 (17)			
1	A4 (19)			
2	A1 (8)			
2	A2 (12)			

Results: ANOVA

summary(anova <- aov(WM\$IQ ~ WM\$condition + Error(factor(WM\$subject)/WM\$condition)))

Error: factor(WM\$subject)

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 19 175.6 9.242

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Results: Post-hoc tests (Holm)

> with (WM, pairwise.t.test(IQ, condition, paired=T)) #all comp.

Pairwise comparisons using paired t tests

data: IQ and condition

12 days 17 days 19 days 17 days 0.01924 - -19 days 0.00269 0.39572 -8 days 0.39572 0.00237 0.00055 P value adjustment method: holm

Results: Post-hoc tests (Bonferroni)

> with(WM, pairwise.t.test(IQ, condition, paired=T, p.adjust.method="bonferroni")) #all comp.

Pairwise comparisons using paired t tests

data: IQ and condition

12 days 17 days 19 days 17 days 0.03910 - -19 days 0.00405 1.00000 -8 days 1.00000 0.00293 0.00054

P value adjustment method: bonferroni

Results: Paired t-test 12 vs. 17

> t.test(Days12, Days17, paired=T)

Paired t-test

data: Days12 and Days17 t = -3.8549, df = 19, p-value = 0.006517 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -3.7157116 - 0.0942884-3.7157116 -0.03-22-sample estimates: mean of the differences -2.205

> cohensD(Days12, Days17) [1] 0.9087788

35

36

Comparison of procedures

Procedure	p-value for 12 vs. 17
Paired t-test	0.0065
Holm	0.0192
Bonferroni	0.0391

Repeated measures ANOVA

- Appropriate when comparing group means
 Three or more group means

 - Same subjects tested in each condition
 - F-test
 - Post-hoc testss

END SEGMENT

END LECTURE 18