

The University of Texas at Austin McCombs School of Business

Final Exam Review

r<mark>epare for Final Test 1 material Test 2 Material New Material New Material New Material Test 2 Material New Material New Material New Material</mark>

What's included in the Final?

The final will be on Wednesday, May 13, 7 pm 2 hour exam (probably 25 questions)

- Material since Test 2 about 50%
 - Chapter 12 Testing Hypotheses
 - Chapter 13 More about Tests and Intervals
 - Chapter 14 Comparing Two Means
 - Chapter 16 Inference for Regression
 - Chapter 18 Multiple Regression
- Test 1 and Test 2 material about 50%

Ground Rules:

- Test will be on Zoom
- Open book/open notes
- You must <u>stay on video</u> and have Zoom controller or Chat window open so that host may contact you if there is a problem with your video
- You must show your work in Rscript for any problem requiring calculations

r<mark>epare for Final Test 1 material Test 2 Material New Mat</mark>

Final covers chapters 1 - 8, 10 - 14, 16, and 18

Skip the following:

- Transforming Skewed Data (Section 3.11)
- Regression to the mean and non-linear relationships (in Chapter 4)
- Probability trees and Bayes' rule (in Chapter 5)
- The Binomial formula; Uniform, Geometric, and Poisson distributions (in Chapter 6)
- Continuity correction and 7.6 (in Chapter 7)
- Stratified, Cluster, Multistage, and Systematic Samples (in Chapter 8)
- Bootstrapping (in Chapter 11)
- Bootstrap Hypothesis Tests and Intervals (in Chapter 12)
- Critical Values (Section 13.3)
- The Pooled t-Test (Section 14.5)
- Sections 16.3 and 16.4
- Adjusted R² and 18.6 (in Chapter 18)

r<mark>epare for Final Test 1 material Test 2 Material New Material New Material New Material Test 2 Material New Material New Material New Material</mark>

Suggestions

- Work problems (especially from textbook)
- Review the "What have I learned?" sections at the end of each chapter
- Review problems on Test 1 and Test 2
- Make notes (even though test is open book)
- Work the Sample Final Exam (using your notes)
- Don't stay up all night!!

Data

- Variables and Cases
- Variables can be categorical or quantitative
 Quantitative data can be nominal or ordinal
 Data can be cross sectional or time series
- Distributions describe the values of the variable and how often they occur

Categorical variables

- Graph with bar charts and pie charts plot or pie
- Contingency tables table
- Joint, marginal, and conditional distributions prop.table and margin.table barplot and mosaicplot

Quantitative Data

- Histograms, stemplots, and time series plots hist, stem, and plot(data\$x, type = "1")
- Look for overall pattern and deviations from that pattern
- Describe: center, spread, and shape
 - Symmetric or skewed
 - Outliers

Numerical Descriptions

• Center: mean and median

- Spread or variability:
 - Range
 - Quartiles and IQR
 - Variance
 - Standard deviation

mean, median, sd

Numerical Descriptions

- Five number summary fivenum
- Boxplotsboxplot

Examining Relationships

- Explanatory and response variables
 Independent and dependent variables
- Scatterplots plot(x,y)
 - Positive or negative association
 - Outliers
 - Linear patterns
- Correlation cor
 - Measures strength and direction of a linear relationship
 - $-1 \le r \le +1$
 - $r = \pm 1$ only for perfect linear relationships
 - Correlation does not imply a cause and effect relationship

Regression

- Least squares regression lm(y ∼ x)
- Regression coefficients and their interpretation
- Standard error of the estimate
- Percentage of variation explained: R²

Randomness and Probability

- **Random** individual outcomes are uncertain but there is a regular distribution of outcomes in the long term.
- Probability of a random phenomenon
- Empirical (relative frequency) probabilities
 Personal or subjective probabilities

Probability Models

- Sample Spaces
- Probability Rules
 - $0 \le P(A) \le 1$ for any event A
 - P(S) = 1
 - $P(A^{c}) = 1 P(A)$
 - Addition rule for disjoint events General addition rule
 - Multiplication rule for independent events General multiplication rule
- Discrete vs Continuous models

General Probability Rules

- Additional rule for disjoint events
 P(at least one of events A, B, C,... occurs)
 = P(A) + P(B) + P(C) + ...
- General addition ruleP(A or B) = P(A) + P(B) P(A and B)
- Multiplication rule for independent events
 P(A and B) = P(A)P(B)
- General multiplication rule P(A and B) = P(A)P(B|A) Conditional probability: $P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$

Random Variables

Mean

$$\mu_X = X_1 P_1 + X_2 P_2 + \dots + X_k P_k$$

Variance

$$\sigma_X^2 = (x_1 - \mu_X)^2 P_1 + (x_2 - \mu_X)^2 P_2 + \dots + (x_k - \mu_X)^2 P_k$$

Standard Deviation

$$\sigma_{\chi} = \sqrt{\sigma_{\chi}^2}$$

Adding and subtracting random variables:

$$E(X \pm Y) = E(X) \pm E(Y)$$

 $Var(X \pm Y) = V(X) + Var(Y)$ (if X and Y are **independent**)

Bernoulli

B is the number of successes from one trial where *p* is the probability of success E[B] = p and Var(B) = p(1 - p)

Binomial

X is the number of successes from n independent trials where p is the probability of success E[X] = np and Var(X) = np(1-p)

Sample Proportion

 $\hat{p} = \frac{X}{n}$ is the proportion of successes from n independent trials where p is the probability of success

$$E[\hat{p}] = \frac{E[X]}{n} = p$$
 and $Var(\hat{p}) = \frac{Var(X)}{n^2} = \frac{p(1-p)}{n}$

We did not cover Uniform, Geometric, or Poisson dist

Binomial Distributions

- The total number of observations *n* is fixed in advance.
- The outcomes of all *n* observations are statistically **independent**.
- Each observation falls into just one of 2 categories:
 success and failure.
- Same probability of success for each trial

We did not cover calculating Binomial probabilities

Normal Distribution

- 68 95 99.7 rule
- Standardized observations
- Normal distribution calculations:
 - Find areas Forward Calculations
 - Find a value when given an area Backward Calculations

Calculate probabilities for the Normal distribution:

- pnorm(x, mean, standard_dev) finds areas to the left of x
- qnorm(probability, mean, standard_dev) finds the value with the specified probability to the left
- Use hist and qqnorm to check if data is normal
- For calculations about the sample mean, \bar{x} , use $\frac{s}{\sqrt{n}}$ for standard_dev

Normal approximation for the Binomial

If $np \ge$ 10 and $n(1-p) \ge$ 10 the Binomial distribution is approximately Normal with

$$\mu = np$$

$$\sigma = \sqrt{np(1-p)}$$

We did not cover Uniform or Exponential distributions

Sampling

- Populations
 Parameters describe populations
- Samples
 Statistics describe samples
- We hope that sample data is representative of the population
- Sampling variability sample to sample differences (also called sampling error)
- Non-sampling errors due to voluntary response, non-response, poorly worded questions, etc.

Big Ideas

- Sample Examine a Part of the whole
- Randomize to avoid bias
- The Sample Size is what matters

Possible causes of Bias

- Voluntary response samples
- Under coverage
- Non-response
- Behavior or appearance of interviewer
- Poorly worded questions
- Interviewer fabrications

Sampling Distribution of \hat{p}

The mean of the sampling distribution is p. The standard deviation is $\sqrt{\frac{p(1-p)}{n}}$.

Since p is unknown, we use the standard error instead which is $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Sampling Distribution of \bar{x}

- If x_i has mean μ and standard deviation σ , $\bar{x} = \sum \frac{x_1 + \dots + x_n}{n}$ has mean μ
- If the x_i s are independent, the standard deviation = $\frac{\sigma}{\sqrt{n}}$
- Since σ is typically unknown, it will be estimated with the sample standard deviation, s
- The standard error is $\frac{s}{\sqrt{n}}$

Statistical Inference

- Methods for drawing conclusions about a population from sample data are called statistical inference
- Methods
 - Confidence Intervals estimating a value of a population parameter
 - 2 Tests of significance assess evidence for a claim about a population

Checklist for Inference

Independence:

The sampled values must be independent of each other.

Randomization:

The sample is a simple random sample from the relevant population.

• 10% condition:

Sample size is less than 10% of the population size.

Sample size condition:

Success\failure condition for proportions
Nearly normal condition for means

Specific sample size conditions:

- Confidence Interval for proportion: Both $n\hat{p}$ and $n(1 - \hat{p})$ are at least 10.
- Hypothesis test for proportion: Both np_0 and $n(1 - p_0)$ are at least 10.
- CI and Tests for means:
 n is greater than both 10(skewness)² and 10|kurtosis-3|

library(moments)
skewness, kurtosis

Confidence Intervals

A confidence interval has the form:

Estimate \pm Margin of Error

Estimate
$$\pm (z^* \text{ or } t^*) \times \text{Standard Error (SE)}$$

Confidence Intervals

- The confidence level *C*, shows how confident we are that the procedure will catch the true population parameter.
- The procedures give confidence intervals that C% of the time will include the true population parameter
- Type of Problems
 - Proportions
 - Means
 - Matched pairs (Same as means if you calculate the difference for each pair)
 - Two Independent Samples

Confidence Intervals for: Population Proportion, p

- Estimate: $\hat{p} = \frac{X}{n} = \frac{\text{Number of successes}}{\text{number of trials}}$
- Standard Error: $SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- Critical Value: z*
- Margin of Error: $z^* SE = z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Finding $\pm z^*$ for 95% confidence

qnorm(0.025) and qnorm(0.975)

Confidence Intervals for: Population Mean

- Estimate: \bar{x} (mean)
- Standard Error: $SE = \frac{s}{\sqrt{n}}$ where $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$ (sd)
- Degrees of freedom: k = n 1
- Critical Value: t^* for a distribution t(k)
- Margin of Error: $t^* SE = t^* \frac{S}{\sqrt{n}}$

Finding $\pm t^*$ for 95% confidence and df = n - 1

qt(0.025, df) and qt(0.975, df)

Hypothesis Tests

Hypotheses State claims, H_0 and H_a , about a population in terms of the population parameter

Model Are the Independence, Randomness, 10% Condition, and Sample Size Conditions satisfied?

Mechanics Calculate the test statistic and *P*-value

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \qquad t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

Conclusion Compare the *P*-value and the significance level, α If the *P*-value $\leq \alpha$, reject H_0 . Say the results are statistically significant.

P-value for Proportions

One-tailed tests

•
$$H_A$$
: $p > p_0$
1-pnorm($\hat{p}, p_0, \sqrt{\frac{p_0(1-p_0)}{n}}$)

•
$$H_A$$
: $p < p_0$
pnorm(\hat{p} , p_0 , $\sqrt{\frac{p_0(1-p_0)}{n}}$)

Two-tailed test

• H_A : $p \neq p_0$ Double one of the above

P-value for Means

One-tailed tests

• H_A : $\mu > \mu_0$ Use 1—pt(t,deg_freedom)

• H_A : $\mu < \mu_0$

Use pt(t,deg_freedom,1)

Two-tailed test

• H_A : $\mu \neq \mu_0$ Use 2*pt (-abs(t),deg_freedom)

Errors in Hypothesis Tests

```
Type I - we reject H_0 (accept H_a) when in fact H_0 is true
```

Type II - we do not reject H_0 (accept H_a) when in fact H_0 is not true

```
\alpha = P(Type I error)
```

- = P(reject H_0 when H_0 is true)
- = significance level

$$\beta$$
 = P(Type II error)

= P(do not reject H_0 when H_a is true) depends on the true value of p

```
Power = 1 - \beta
```

Comparing Two Means

- Matched Pairs
 Find the differences and treat as One-sample
- Two Independent Samples Groups must be independent

$$SE_{\bar{X_1}-\bar{X_2}}=\sqrt{rac{{S_1}^2}{n_1}+rac{{S_2}^2}{n_2}}$$

R functions

ci.prop for confidence interval for poroportion

ztest.p for tests for proportions

t.test for inference for means

(ci.prop, ztest.p, and datasets will be given in an .RData file)

Examining Relationships

- Explanatory and response variables
 Independent and dependent variables
- Scatterplots plot
 - Positive or negative association
 - Outliers
 - Linear patterns
- Correlation cor
 - Measures strength and direction of a linear relationship

 - $r = \pm 1$ only for perfect linear relationships
 - Correlation does not imply a cause and effect relationship

Regression

- Simple and multiple regression
- Least squares regressionlm and summary
- Regression coefficients and their interpretation (In multiple regression we interpret the coefficient for one independent variable with the others held constant)
- Standard error of the estimate
- Percentage of variation explained: R²

Inference for Regression

- Confidence intervals for regression coefficients confint (model, level=0.95)
- Hypothesis Tests for Regression Coefficients
- F Test for the overall Fit

Prepare for Final Test 1 material Test 2 Material <mark>New Materi</mark>a

Assumptions for Inference

- Linear relationship
 Residual plot should not have a curve
 Tilt in the residual plot indicates influential observations
 plot(x, residuals(model)) and
 plot(predict(model), residuals(model))
- Normal errors
 Use a histogram or Normal quantile plot of the residuals
 Use skewness and kurtosis for the residuals
 qqnorm
- Constant standard deviation
 Residual plot should not show increasing scatter
- Independence Satisfied for randomly selected cross-sectional data