EE309(S2): Microprocessors

Spring 2025

[Week#7 Slides]

Instructor: Shalabh Gupta

Interrupt Priority

IP: INTERRUPT PRIORITY REGISTER. BIT ADDRESSABLE

If the bit is 0, the corresponding interrupt has a lower priority and if the bit is 1 the corresponding interrupt has a higher priority.

_	_	_	PS	PT1	PX1	PT0	F
-	IP.7	Not implemented, reserved for future use.*					
_	IP.6	Not	implement	ed, reserve	ed for future	e use.*	Tal
-	IP.5	IP.5 Not implemented, reserved for future use.*					
PS	IP.4	Defines the Serial Port interrupt priority level. Defines the Timer 1 interrupt priority level. Defines External Interrupt 1 priority level.					
PT1	IP.3						
PX1	IP.2						
PT0	IP.1	Defines the Timer 0 interrupt priority level					
PX0	IP.0	Defines the External Interrupt 0 priority level.					

Table 2-27. Interrupt Priority Level

	Source	Priority Within Level			
1	IE0	(highest)			
2	TF0				
3	IE1				
4	TF1				
5	RI + TI				
6	TF2 + EXF2	(lowest)			
2	· ·	·			

^{*} User software should not write 1s to reserved bits. These bits may be used in future 80C51 products to invoke new features.

Computer Architecture

Computer Architecture

Computer Organization

Deals with microprocessors from the end user / programmers perspective

Computer Architecture

Deals with microprocessors from the circuit designers perspective

Both perspectives important for improving performance of computing systems and using them efficiently

Reference Book:

Computer Architecture: A Quantitative Approach, 4th Edition by David A. Patterson and John L. Hennessy (2006)

Computer Architecture: Topics

- Performance evaluation
- Instruction Set Architecture
 - ALU design: ALU components
- Processor design
 - How the processor can be designed to execute different instructions
 - Hardware architecture
- Performance Improvement
 - Pipelining
 - Cache and Virtual Memory
 - Parallelism

Microprocessor Architecture

Instruction Set Architecture

- -RISC (Reduced Instruction Set Computer)
- -CISC (Complex Instruction Set Computer)

Micro-architecture

- -How different modules are organized
- -How data flows

Performance Evaluation

Performance measurement in terms of time only

Execution Time

- Throughput or (No. of tasks)/(unit time)
- Important for signal processing

–Latency (Delay)

- Response time
- Important for data movement tasks such as data base queries or servicing interrupts
- Important for systems involving feedback

Different performance benchmarks are based on different tasks (or programs) such as gaming, video encoding/ decoding. compiler operation, Al training / parameter handling

Performance at What Cost

Cost of the microprocessor

- Chip area
- -Technology used
- –Design effort

Power Consumption => Cost

- -Data Centers or battery powered devices
- -ASP (average selling price) of the product

Power or Energy consumed

- –Energy consumed per unit task
- -Power consumed for a given throughput

Reducing Power <> Energy (Tradeoff)

Energy-Delay trade-off as voltage can be scaled

Less Execution Time (or Delay) => More Energy required for the task)

Energy-Delay tradeoff can be broken using more hardware

- -Parallel architectures
- -Pipelining

Dynamic voltage scaling possible using some processors, operating systems

Other discussions

- Multi-processor communication example
- Dynamic voltage scaling for performance vs power tradeoff
- Parallelism for more throughput or power saving along with voltage scaling - example.