Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

General Finite Volumes Schemes of First Order

Monotone schemes

Consistent Methods
Monotone Schemes
Properties

Godunov Scheme

Monotone schemes

The Godunov scheme

Preliminary consideration

Consider the Riemann problem

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = \mathbf{o}$$
 for $t \ge \mathbf{o}$

and initial value

$$u(x, o) := \begin{cases} u_l & \text{for } x \leq o \\ u_r & \text{for } x > o \end{cases}.$$

Then

- we (often) know the exact solution to this problem (for convex flux: shock or rarefaction wave)
- and we always know that it is of the form

$$u(x,t) = v\left(\frac{x}{t}\right)$$

for some function v.

Preliminary consideration

Consider the Riemann problem

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = \mathbf{o}$$
 for $t \ge \mathbf{t_o}$

and initial value

$$u(x, o) := \begin{cases} u_l & \text{for } x \leq x_o \\ u_r & \text{for } x > x_o \end{cases}.$$

Then

- $\hat{u}(x,t) := u(x-x_0,t-t_0)$ solves a Riemann problem as before.
- ► Hence, we know that *u* is of the form

$$u(x,t) = v\left(\frac{x - x_0}{t - t_0}\right)$$

for some function v and $t > t_0$.

The Godunov Scheme

In the following, we assume

- ▶ the initial value is given by $v_0 \in L^1(\mathbb{R})$,
- the numerical initial condition is selected as

$$Q_j^{\circ} := rac{1}{\Delta x} \int_{x_j}^{x_{j+1}} v_{\mathsf{o}} \qquad \mathsf{for} \, j \in \mathbb{Z}.$$

Assume that $(Q_j^n)_{j\in\mathbb{Z}}$ is available, then the Godunov scheme is given by the following algorithm.

We consider an individual cell

$$(x_{j-1},x_j)\times(t_n,t_{n+1})$$

and determine the exact solution of the Riemann problem

$$\partial_t \mathbf{u} + \partial_{\mathbf{x}} \mathbf{f}(\mathbf{u}) = \mathbf{0}$$

and initial value

$$u(x,t_n) := \begin{cases} Q_{j-1}^n & \text{for } x < x_{j-\frac{1}{2}} \\ Q_j^n & \text{for } x > x_{j-\frac{1}{2}} \end{cases}.$$

Recalling the preliminary considerations, we can write these local solutions as

$$\hat{\mathbf{v}}(\zeta, Q_{j-1}^n, Q_j^n) := \mathbf{u}(\mathbf{x}, t)$$
 where $\zeta = \frac{\mathbf{x} - \mathbf{x}_{j-\frac{1}{2}}}{t - t_n}$ $(t \neq t_n)$.

However: the local solutions must not interact.

Necessary CFL condition:

- Require Δt is chosen small enough, so that the local solutions do not interact.
- ► The shock speed is

$$s = \frac{f(Q_j) - f(Q_{j-1})}{Q_j - Q_{j-1}}.$$

- ► Hence: max-distance that information can travel in time Δt with speed s in x-direction is $d_{\text{max}} := s\Delta t$.
- ▶ Origin of discontinuity is at $x_{j-\frac{1}{2}}$. Distance to left and right cell boundary is $|x_j x_{j-\frac{1}{2}}| = |x_{j-\frac{1}{2}} x_{j-1}| = \Delta x/2$.

Hence, we demand

$$d_{\max} \leq \frac{\Delta x}{2} \quad \Leftrightarrow \quad \frac{s\Delta t}{\Delta x} \leq \frac{1}{2}.$$

The Godunov Scheme - Algorithm Step 2

Necessary CFL condition:

► For shock speed

$$s = \frac{f(Q_j) - f(Q_{j-1})}{Q_j - Q_{j-1}}.$$

we demand

$$\frac{s\Delta t}{\Delta x} \leq \frac{1}{2}$$

ightharpoonup Condition is fulfilled if Δt is such that

$$\frac{|f'(\eta)|}{\Delta x} \le \frac{1}{2}$$
 for all $\eta \in \mathbb{R}$.

► This condition is the general CFL condition with CFL number $\frac{1}{2}$. (after Courant-Friedrichs-Levy)

We define

$$Q(x,t) := \begin{cases} \hat{\mathbf{v}}(\frac{x - x_{j-\frac{1}{2}}}{t - t_n}, Q_{j-1}^n, Q_j^n) & \text{for } x_{j-\frac{1}{2}} \le x < x_j \\ \hat{\mathbf{v}}(\frac{x - x_{j+\frac{1}{2}}}{t - t_n}, Q_j^n, Q_{j+1}^n) & \text{for } x_j \le x < x_{j+\frac{1}{2}}. \end{cases}$$

Then Q_i^{n+1} is defined as the average:

$$Q_j^{n+1} := \frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \frac{Q}{Q}(x, t_{n+1}) dx.$$

The Godunov Scheme - Algorithm Step 3

The Godunov Scheme - Algorithm Step 4

Goal: Simplify Godunov scheme to an acceptable numerical scheme in conservation form.

From the conservation for the exact solution we have:

$$\int_{x_{j-\frac{1}{2}}}^{x_{j}} \frac{u(x, t_{n+1}, Q_{j-1}^{n}, Q_{j}^{n}) - u(x, t_{n}, Q_{j-1}^{n}, Q_{j}^{n}) dx$$

$$= \int_{t_{n}}^{t_{n+1}} f(u(x_{j-\frac{1}{2}}, t, Q_{j-1}^{n}, Q_{j}^{n})) - f(u(x_{j}, t, Q_{j-1}^{n}, Q_{j}^{n})) dt$$

and

$$\int_{x_{j}}^{x_{j+\frac{1}{2}}} \mathbf{u}(x, t_{n+1}, Q_{j}^{n}, Q_{j+1}^{n}) - \mathbf{u}(x, t_{n}, Q_{j}^{n}, Q_{j+1}^{n}) dx$$

$$= \int_{t}^{t_{n+1}} f(\mathbf{u}(x_{j}, t, Q_{j}^{n}, Q_{j+1}^{n})) - f(\mathbf{u}(x_{j+\frac{1}{2}}, t, Q_{j}^{n}, Q_{j+1}^{n})) dt$$

Using the definition of Q(x, t) yields

$$\int_{x_{j-\frac{1}{2}}}^{x_j} \mathbf{Q}(x,t_{n+1}) - \mathbf{Q}(x,t_n) dx = \int_{t_n}^{t_{n+1}} f(\mathbf{Q}(x_{j-\frac{1}{2}},t)) - f(\mathbf{Q}(x_j,t)) dt$$

and

$$\int_{x_j}^{x_{j+\frac{1}{2}}} \frac{Q(x,t_{n+1}) - Q(x,t_n) dx = \int_{t_n}^{t_{n+1}} f(Q(x_j,t)) - f(Q(x_{j+\frac{1}{2}},t)) dt$$

Hence

$$\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \frac{Q(x,t_{n+1}) - Q(x,t_n) dx}{Q(x,t_n) dx} = \int_{t_n}^{t_{n+1}} f(Q(x_{j+\frac{1}{2}},t)) - f(Q(x_{j+\frac{1}{2}},t)) dt$$

Godunov Scheme

∢ □ ▶ ∢ 🗗

We obtained

$$\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \frac{Q(x,t_{n+1}) - Q(x,t_n) dx = \int_{t_n}^{t_{n+1}} f(Q(x_{j-\frac{1}{2}},t)) - f(Q(x_{j+\frac{1}{2}},t)) dt$$

Recalling that $Q_j^n := \frac{1}{\Delta x} \int_{X_{j-\frac{1}{2}}}^{X_{j+\frac{1}{2}}} Q(x, t_n) dx$ we obtain

$$Q_{j}^{n+1} = Q_{j}^{n} + \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} f(Q(x_{j-\frac{1}{2}}, t)) - f(Q(x_{j+\frac{1}{2}}, t)) dt$$

$$= \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} f(\hat{\mathbf{v}}(\frac{X_{j-\frac{1}{2}} - X_{j-\frac{1}{2}}}{t - t_{n}}, Q_{j-1}^{n}, Q_{j}^{n})) - f(\hat{\mathbf{v}}(\frac{X_{j+\frac{1}{2}} - X_{j+\frac{1}{2}}}{t - t_{n}}, Q_{j}^{n}, Q_{j+1}^{n})) dt$$

$$= \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} f(\hat{\mathbf{v}}(0, Q_{j-1}^{n}, Q_{j}^{n})) - f(\hat{\mathbf{v}}(0, Q_{j}^{n}, Q_{j+1}^{n})) dt$$

$$= \frac{\Delta t}{\Delta x} \left(f(\hat{\mathbf{v}}(0, Q_{j-1}^{n}, Q_{j}^{n})) - f(\hat{\mathbf{v}}(0, Q_{j}^{n}, Q_{j+1}^{n})) \right).$$

Godunov Scheme

We obtained

$$Q_j^{n+1} = \frac{\Delta t}{\Delta x} \left(f(\hat{\mathbf{v}}(0, Q_{j-1}^n, Q_j^n)) - f(\hat{\mathbf{v}}(0, Q_j^n, Q_{j+1}^n)) \right).$$

With

$$g(v,w) := f(\hat{\mathbf{v}}(o,v,w))$$

we obtain

$$Q_{j}^{n+1} = Q_{j}^{n} - \frac{\Delta t}{\Delta x} \left(g(Q_{j}^{n}, Q_{j+1}^{n}) - g(Q_{j-1}^{n}, Q_{j}^{n}) \right).$$

Hence, the scheme is in conservation form and with a consistent numerical flux.

Godunov Scheme ◀ □ ▶ ◀ 🗗

Additional simplifications for convex flux f. For f'' > o it holds:

ightharpoonup Case 1. w > v "Shock"

$$\Rightarrow \qquad \hat{\mathbf{v}}(0, w, v) = \begin{cases} w & \text{if } 0 \leq \mathbf{s} \iff f(w) \geq f(v) \\ v & \text{if } \mathbf{s} < 0 \iff f(w) < f(v) \end{cases}.$$

► Case 2: w < v "Rarefaction wave"

$$\Rightarrow \qquad \hat{\mathbf{v}}(\mathsf{o}, \mathsf{w}, \mathsf{v}) = \begin{cases} \mathsf{w} & \text{if } \mathsf{o} < f'(\mathsf{w}) \\ (f')^{-1}(\mathsf{o}) & \text{else} \\ \mathsf{v} & \text{if } f'(\mathsf{v}) < \mathsf{o} \end{cases}.$$

Combining this, we have with $g(v, w) := f(\hat{v}(o, v, w))$ that

$$g(w,v) = \begin{cases} f(w) & \text{if } w \ge v \text{ and } f(w) \ge f(v) \\ f(v) & \text{if } w \ge v \text{ and } f(w) < f(v) \\ f((f')^{-1}(o)) & \text{else} \\ f(w) & \text{if } w < v \text{ and } f'(w) > o \\ f(v) & \text{if } w < v \text{ and } f'(v) < o \end{cases}$$

The Godunov Scheme

Summary of properties of the Godunov scheme:

- ▶ it is a scheme in conservation form,
- ▶ g(u, u) = f(u) "consistency",
- ▶ *g* is Lipschitz-continuous, if *f* is Lipschitz-continuous,
- g is monotone, i.e. $\partial_1 g \geq 0$, $\partial_2 g \leq 0$.

Godunov Scheme

Montone schemes

General remark on montone schemes:

- monotone schemes converge to the entropy solution,
- the consistency order of monotone schemes is at most 1
- ▶ the convergence of monotone schemes can be generalized to non-uniform meshes (in space and time),
- On uniform meshes, it is possible to prove a priori error estimates of the form

$$\|\mathbf{u}(\cdot,t)-Q_{\Delta x,\Delta t}(\cdot,t)\|\leq C\Delta x^{\frac{1}{2}}.$$

Question: What can we do to construct higher order methods? (as monotone schemes can only be first order schemes)