Exercise 1.2.6: Use the *triangle inequality* to establish the following inequalities:

(a) $|a - b| \le |a| + |b|$

Proof: (Direct) Suppose $a, b \in \mathbb{R}$. Note that,

$$|a - b| = |a + (-b)|.$$

By the triangle inequality we know that,

$$|a + (-b)| \le |a| + |(-b)|$$
.

Note,

$$|a| + |(-b)| = |a| + |b|$$
.

Therefore by substitution we arrive at,

$$|a-b| \le |a| + |b|$$

(b) $||a| - |b|| \le |a - b|$.

Proof: (Direct) Suppose $a, b \in \mathbb{R}$. Note that,

$$a = (a - b) + b.$$

Therefore,

$$|a| = |(a-b) + b|.$$

Thus by triangle inequality we know that,

$$|a - b + b| \le |(a - b)| + |b|,$$

 $|a| \le |(a - b)| + |b|,$
 $|a| - |b| \le |a - b|.$

Now consider,

$$b = (b - a) + a.$$

Therefore we can surmise,

$$|b| = |(b-a) + a|.$$

Thus by triangle inequality we know that,

$$|b - a + a| \le |(b - a)| + |a|,$$

 $|b| \le |(b - a)| + |a|,$
 $|b| - |a| \le |b - a|,$

Therefore it follows that,

$$||a| - |b|| \le |a - b|.$$

Exercise 1.2.7(b), (d): Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; that is, $f(a) = \{f(x) : x \in A\}$.

(b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.

Proof: (Direct) Suppose $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$. Let $A = \mathbb{R}_{\leq 0}$ and $B = \mathbb{R}_{\geq 0}$. Note.

$$f(A \cap B) = \{0\}$$

and,

$$f(A) \cap f(B) = \mathbb{R}_{>0}$$

Thus $f(A \cap B) \neq f(A) \cap f(B)$.

(d) Form and prove a conjecture concerning $f(A \cup B)$ and $f(A) \cup f(B)$.

Conjecture: Let $f: \mathbb{R} \to \mathbb{R}$, if $A, B \subset \mathbb{R}$ then $f(A \cup B) \subset f(A) \cup f(B)$

Proof: (Direct) Suppose $f: \mathbb{R} \to \mathbb{R}$, $A, B \subset \mathbb{R}$, and $y \in f(A \cup B)$. By the definition of the set $f(A \cup B)$ we know that there exists some $x \in A \cup B$ such that y = f(x). Note that $x \in A, B$ and it therefore must follow that $y \in f(A)$, f(B). Thus $y \in f(A) \cup f(B)$ and $f(A \cup B) \subset f(A) \cup f(B)$.

Exercise 1.2.11: Form the logical negation of each claim. Do not use the easy way out: "It is not the case that..." is not permitted

- (a) For all real numbers satisfying a < b, there exists $n \in \mathbb{N}$ such that a + (1/n) < b.
- (b) There exist a real number x > 0 such that x < 1/n for all $n \in \mathbb{N}$.
- (c) Between every two distinct real numbers there is a rational number.

Solution:

- (a) There exists $a, b \in \mathbb{R}$ where a < b and for all $n \in \mathbb{N}$, a + (1/n) < b.
- (b) For all real numbers x > 0, there exists $n \in \mathbb{N}$ such that $x < \frac{1}{n}$
- (c) If $x \in \mathbb{R}$ then there exists $a, b \in \mathbb{R}$ such that a < b and x < a and x > b

Exercise [1.2 Supplement]: Show that the sequence $(x_1, x_2, x_3, ...)$ defined in Example 1.2.7 is bounded above by 2. That is, show that for every $i \in \mathbb{N}$, $x_i \le 2$.

Proof. (Induction):

Base Case: Let n = 1,

$$x_n = 1$$
.

By definition, and obviously $1 \le 2$.

Induction Hypothesis: Suppose that for some $n \in \mathbb{N}$,

$$x_n \leq 2$$

By definition we know that,

$$x_{n+1} = \frac{1}{2}x_n + 1,$$

$$2(x_{n+1} - 1) = x_n.$$

By our Induction hypothesis we know that,

$$2(x_{n+1} - 1) \le 2,$$

$$(x_{n+1} - 1) \le 1,$$

$$x_{n+1} \le 2.$$

Thus by Induction we have shown that for every $i \in \mathbb{N}$, $x_i \leq 2$.

Exercise 1.3.5: As in Example 1.3.7, let $A \subseteq \mathbb{R}$ be nonempty and bounded above, and let $c \in \mathbb{R}$. This time define the set $cA = \{ca : a \in \mathbb{R}\}$

- (a) If $c \ge 0$, show that $\sup(cA) = c \sup(A)$.
- (b) Postulate a similar statement for $\sup(cA)$ when c < 0.

Proof (a). Suppose some $s \in \mathbb{R}$ such that s = sup(A). By the definition of supremum we know that for all $a \in A$, $a \le s$. Multiplying by $c \in \mathbb{R}$ on both sides we get, $ca \le cs$, by the definition of upper bound and the set cA whe know that csup(A) is an upper bound for cA.

Case 1: c = 0 Note if c is c = 0 then $cA = \{0\}$ and subsequently, $\sup(cA) = c \sup(A)$.

Case 2: c > 0

Let b be an arbitrary upper bound for the set cA. Note by definition,

$$ca \leq b$$

$$a \leq \frac{b}{c}$$

Since s is the least upper bound for the set A we can surmise that, therefore we know that $\frac{b}{a}$ is an upper bound for the set A and,

$$s \le \frac{b}{c}$$

and therefore,

$$sc \leq b$$
.

Thus sc is the least upper bound for the set cA, and

$$\sup(cA) = c\sup(A).$$

[Postulate] If c < A and A is a bounded set, then

$$sup(cA) = cinf(A)$$

Exercise 1.3.7: Prove that if a is an upper bound for A and if a is also an element of A, then $a = \sup A$.

Proof. (Contradiction): Suppose that a is an upper bound for A and a is also an element of A, and $a \neq sup(A)$. Let b = sup(A), note that by definition b < a and $b \geq c$ for all $c \in A$. Also note that $a \in A$ and recall b < a. Thus b = sub(A) and $b \neq sub(A)$.

Exercise 1.3.8: Compute, without proof, the suprema and infima of the following sets.

(a) $\{m/n : m, n \in \mathbb{N} \text{ with } m < n\}$.

- (b) $\{(-1)^m/n : n, m \in \mathbb{N}\}.$
- (c) $\{n/(3n+1) : n \in \mathbb{N}\}.$
- (d) $\{m/(m+n) : m, n \in \mathbb{N}\}.$

Solution:

(a) Infimum: 0

Supremum: 1

(b) Infimum: -1

Supremum: 1

(c) Infimum: $\frac{1}{4}$

Supremum: $\frac{1}{3}$

(d) Infimum: 0

Supremum: 1