

UNIVERSITÁ DI TRENTO

Dipartimento di Ingegneria Industriale

Laurea Magistrale in Ingegneria Meccatronica

Valutazione *Real-Time* del Contatto Pneumatico/Strada con Algoritmi Dedicati

Relatore: Candidato:
Prof. Enrico Bertolazzi Davide Stocco

Co-relatore:

Dott. Ing. Matteo Ragni

Anno Accademico 2019 · 2020

Sommario

This dissertation details ...

Indice

1	Intro	oduzion	e		1		
	1.1	Obiett	ivi		1		
	1.2	Il prob	lema		1		
2	La sı	uperficie	estradale		5		
	2.1	Introd	uzione		5		
	2.2	Il form	ato RDF		6		
		2.2.1	Superfici	semplici	6		
		2.2.2	Superfici	complesse	8		
	2.3	Parsific	cazione .		10		
		2.3.1	Introduzi	one	10		
		2.3.2	Parsificaz	zione del formato RDF	10		
3	Lop	neumat	ico		13		
	3.1	Introd	uzione		13		
	3.2	Geome	etria		13		
	3.3	Model	odellizzazione				
		3.3.1	La Magio	: Formula	16		
	3.4	Contat	to con la s	uperficie stradale	17		
		3.4.1	Modello	di pneumatico a disco singolo	18		
			3.4.1.1	Contatto di Rill	18		
			3.4.1.2	Contatto ponderato in base all'area d'intersezione	22		
		3.4.2	Modello	di pneumatico a più dischi	23		
			3.4.2.1	Contatto ponderato in base all'area d'instersezione	24		
			3.4.2.2	Contatto tramite campionamento	25		
4	Algo	oritmi			27		

iv INDICE

	4.1	Bound	ing Volume Hierarchy	27
		4.1.1	Introduzione	27
		4.1.2	Minimum Bounding Box	28
			4.1.2.1 Axis Aligned Bounding Box	28
			4.1.2.2 Arbitrarily Oriented Bounding Box	28
			4.1.2.3 Object Oriented Bounding Box	29
		4.1.3	Intersezione tra alberi AABB	29
	4.2	Algori	tmi geometrici	31
		4.2.1	Introduzione	31
		4.2.2	Intersezione tra entità geometriche	32
			4.2.2.1 Punto-Segmento	32
			4.2.2.2 Punto-Cerchio	32
			4.2.2.3 Segmento-Circonferenza	35
			4.2.2.4 Piano-Piano	36
			4.2.2.5 Piano-Segmento e Piano-Raggio	39
			4.2.2.6 Piano-Triangolo	40
			4.2.2.7 Raggio-Triangolo	41
_	т т	.1 . ,	m: a 1	47
5				47
	5.1	_		47
		5.1.1	I	47
		5.1.2	I	47 40
	۲. ۵	5.1.3	1	49 52
	5.2			53 - 4
		5.2.1		54 - 1
		5.2.2		54
	. .	5.2.3	30	54
	5.3			55 - 2
	5.4	Prestaz	zioni	59
6	Con	clusioni	e Lavoro Futuro	61
A	Con	venzion	i e Notazioni	63
		A.0.1	Sistemi di Riferimento	63
		A.0.2	Matrice di Trasformazione	64

INDICE v

В	Documentazione della Libreria C++			
C	Codi	ice dei T	lests	159
	C.1	Tests C	Geometrici	159
		C.1.1	Geometry-test1.cc	159
		C.1.2	Geometry-test2.cc	160
		C.1.3	Geometry-test3.cc	162
		C.1.4	Geometry-test4.cc	163
	C.2	Tests p	er il Modello a Singolo Disco	164
		C.2.1	MagicFormula-test1.cc	164
		C.2.2	MagicFormula-test2.cc	165
	C.3	Tests p	er il Modello a più Dischi	166
		C.3.1	MultiDisk-test1.cc	166
		C.3.2	MultiDisk-test2.cc	167
Bil	bliogr	afia		171

Elenco delle figure

3.1	Esempio di misure, secondo la notazione ETRTO, riportate sulla spalla	
	dello pneumatico	15
3.2	Forze e coppie generate dal contatto pneumatico/strada	15
3.3	Curve caratteristiche generiche degli pneumatici derivate con il metodo	
	della Magic Formula	17
3.4	Geometria del contatto pneumatico-strada.	19
3.5	Punti campionati nel piano locale della superficie stradale	20
3.6	Punti di contatto P_{PL} e P_{MF} in relazione alla normale $e_{n_{XZ}}$	21
3.7	Disposizione dei dischi	24
3.8	Campionamento della mesh triangolare in corrispondenza del piano in	
	cui giace l' i -esimo disco. I raggi partono dall'asse x_C in direzione z_C	25
4.1	Esempio di albero di tipo AABB	29
4.2	Schema del problema di intersezione punto-segmento	32
4.3	Schemi per l'output dell'intersezione punto-segmento	33
4.4	Schema del codice per l'intersezione punto-segmento	33
4.5	Schema del problema di intersezione punto-cerchio	33
4.6	Schemi per l'output dell'intersezione punto-cerchio	34
4.7	Schemi del codice per l'intersezione punto-cerchio	34
4.8	Schema del problema di intersezione punto-circonferenza	35
4.9	Schemi per l'output dell'intersezione segmento-cerchio	36
4.10	Schema per del codice per l'intersezione segmento-cerchio	37
4.11	Schemi del problema di intersezione piano-piano	38
4.12	Vettori dei piani P_1 , P_2 e della retta L	38
4.13	Schema per del codice per l'intersezione piano-piano	39
4.14	Vettori dei piani P_1 , P_2 e della retta L	40
4.15	Schema per del codice per l'intersezione piano-segmento	41

4.16	Schema per del codice per l'intersezione piano-triangolo	41
4.17	Schema del problema di intersezione raggio-triangolo	42
4.18	Cambiamento di coordinate nell'algoritmo di Möller-Trumbore	43
4.19	Schemi per l'output dell'intersezione punto-cerchio	45
4.20	Schema per del codice per l'intersezione raggio-triangolo con back-face	
	culling	45
A.1	Rappresentazione degli assi del sistema di riferimento della vettura se-	
	condo la convenzione ISO-V	63
A.2	Rappresentazione degli assi del sistema di riferimento dello pneumatico	
	secondo la convenzione ISO-C	64

Elenco delle tabelle

5.1	Attributi della classe BBox2D	48
5.2	Attributi della classe Triangle3D	48
5.3	Attributi della classe TriangleRoad	49
5.4	Attributi della classe MeshSurface	49
5.5	Attributi della classe Disk	50
5.6	Attributi della classe ETRTO	51
5.7	Attributi della classe ReferenceFrame	51
5.8	Attributi della classe Shadow	52
5.9	Attributi della classe SamplingGrid	52
5.10	Attributi della classe Tire	52
5.11	Attributi della classe MagicFormula	53
5 12	Attributi della classe MultiDisk	53

Elenco degli acronimi

AABB Axis Aligned Bounding Box	28
ADAS Advanced Driver-Assistance Systems	2
AOBB Arbitrarily Oriented Bounding Box	28
BB Bounding Box	23
BVH Bounding Volume Hierarchy	27
CAD Computer-Aided Design	31
CAE Computer-Aided Engineering	31
CAGD Computer-Aided Geometric Design	31
CAM Computer-Aided Manufacturing	31
ETRTO European Tyre and Rim Technical Organisation	3
GIS Geographic Information Systems	31
HIL Hardware in the Loop	2
ISO International Organization for Standardization	63
MBB Minimum Bounding Box	28
RDF Road Data File	5

Introduzione 1

1.1 Obiettivi

Il presente lavoro di tesi ha preso avvio dalla collaborazione tra il Dipartimento di Ingegneria Industriale dell'Università degli Studi di Trento e AnteMotion S.r.l., azienda specializzata in realtà virtuale e simulazione *multibody* nel campo *automotive*. In particolare, il modello di veicolo e pneumatico precedentemente studiati da Larcher in [4] saranno integrati nel simulatore di guida in tempo reale di Ante-Motion. Pertanto, lo sviluppo dei modelli è stato finalizzato a minimizzare i tempi di compilazione massimizzando invece l'accuratezza. La necessità di sviluppare un algoritmo che calcoli i parametri dell'interazione tra terreno (rappresentato con una *mesh* triangolare) e pneumatico (rappresentato come uno o più dischi indeformabili) getta le basi per il lavoro svolto.

1.2 Il problema

La simulazione risolve alcuni dei problemi relativi al mondo della progettazione in modo sicuro ed efficiente, senza la necessità di costruire un prototipo dell'oggetto fisico. A differenza della modellazione fisica, che può coinvolgere il sistema reale o una copia in scala di esso, la simulazione è basata sulla tecnologia digitale e utilizza algoritmi ed equazioni per rappresentare il mondo reale al fine di imitare l'esperimento. Ciò comporta diversi vantaggi in termini di tempo, costi e sicurezza.

Infatti, il modello digitale può essere facilmente riconfigurato e analizzato, mentre questo è solitamente impossibile o troppo oneroso del punto di vista di tempi e/o costi da fare con il sistema reale [5].

Al giorno d'oggi esistono numerosi modelli di veicolo e pneumatico. Certamente, più semplice è il modello più veloce è la risoluzione delle equazioni costituenti, quindi, a seconda delle applicazioni, dev'essere scelto il modello con la giusta complessità. Per la maggior parte delle applicazioni di guida autonoma, un modello semplice è adeguato per caratterizzare con un livello di dettaglio sufficiente il comportamento del veicolo, e poiché queste analisi sono molto spesso fatte con l'ausilio di Hardware in the Loop (HIL), il modello dinamico del veicolo dev'essere risolto in tempo reale con tipico passo di tempo di un millisecondo. Il vincolo di esecuzione in tempo reale implica la scelta un modello di veicolo che sia velocemente risolvibile, ciò significa che i modelli semplici con pochi parametri, di solito modelli lineari a due ruote, sono particolarmente adatti per questo tipo di applicazioni. Tuttavia, ci sono alcune situazioni che richiedono modelli più dettagliati, come ad esempio l'azione prodotta da un Advanced Driver-Assistance Systems (ADAS), ovvero una manovra di sicurezza come l'elusione degli ostacoli o una frenata di emergenza, poiché il veicolo è spinto nella maggior parte dei casi al limite delle sue prestazioni [3]. In queste condizioni di guida si devono tenere conto di molti fattori come ad esempio il comportamento degli pneumatici che, spostandosi nella regione non lineare, fa sì che i fenomeni transitori non siano più trascurabili. Questo implica la necessità di utilizzare un modello più dettagliato di quello utilizzato per la guida in condizioni standard.

L'accuratezza dinamica del modello è di grande rilevanza per ricavare previsioni realistiche delle prestazioni del veicolo e del sistema di controllo. È importante notare che modellare in modo esaustivo tutti i sistemi di un'auto sarebbe un compito estremamente arduo e a talvolta anche impossibile. Esistono quindi modelli empirici come il modello della *Magic Formula* di Hans Pacejka, che cerca di imitare il reale comportamento del sistema. Il calcolo dei parametri di questo tipo di modelli richiede l'interpolazione di un insieme di dati di grandi dimensioni, e può quindi essere numericamente inefficiente o comunque troppo oneroso in termini di tempo.

Lo scopo di questo lavoro si collega a quello già svolto da Larcher in [4] in cui, grazie a un modello di veicolo completo con 14 gradi di libertà ha fornito un modello in grado di catturare con un livello di dettaglio appropriato il comportamento del veicolo quando viene spinto alle massime prestazioni. La necessità di calcolare

in tempo reale i parametri di input per il modello di ruota scelto da [4] definisce l'obiettivo di questo lavoro. In particolare lo scopo è quello di implementare una libreria in linguaggio C++ che con alcuni semplici parametri in *input* come la denominazione *European Tyre and Rim Technical Organisation* (ETRTO) e la posizione nello spazio dello pneumatico, calcola i dati relativi all'interazione dello stesso con strada cercando di minimizzare i tempi di compilazione.

2.1 Introduzione

Oltre allo pnumatico, la superfice stradale rappresenta il secondo importante elemento che definisce il contatto. Perchè una superficie stradale possa essere facilmente utilizzata da un calcolatore deve essere prima discretizzata. La discretizzazione in questo caso avviene mediante la rappresentazione della superficie stessa in una mesh triangolare. La mesh, è contenuta in un file formato Road Data File (RDF), che contiene le posizioni (x, y, z) di ogni vertice e i numeri di identificazione per ognuno dei tre vertici del triangolo, per ogni trangolo.

È importante notare che la discretizzazione del manto stradale è un processo molto importante in quando, se campionato troppo grossolanamente potrebbe influire negativamente sui risultati dei calcoli per l'estrazione del piano strada locale. In altre parole, una semplificazione eccessiva, potrebbe causare degli errori tali da incorrere in risultati troppo approssimativi e non rispecchianti la realtà. Al contrario, una *mesh* troppo fitta, aumenta inutilmente i calcoli da eseguire, dilatando quindi i tempi di esecuzione. È bene quindi discretizzare più densamente in maniera oculata e solo dove occore realmente, ovvero in prossimità di cordoli, marciapiedi o qualsiasi tipo di ostacolo che potrebbe influire sulle performance della vettura.

Oltre alla dimensione dei singoli elementi costituenti la *mesh*, è importante notare che piccoli spazi e sovrapposizione tra gli stessi, possono causare situazioni ambigue nel momento in cui vengono analizzati. Anche se esistono metodi per

controllare situazioni di questo tipo, queste due ultime condizioni sono dunque da evitare.

2.2 Il formato RDF

2.2.1 Superfici semplici

Sfortunatamente, non esistono standard universalmente riconosciuti per il formato RDF. In linea di massima le superfici stradali sono definite nei *Road Data File* (*.rdf). Questa tipologia di file è composto da varie sezioni, indicate da parentesi quadre.

```
1 { Comments section }
2
3 [UNITS]
4 LENGTH = 'meter'
5 ANGLE = 'degree'
6
7 [MODEL]
8 ROAD\_TYPE = '...'
9
10 [PARAMETERS]
11 ...
```

Nella sezione [UNITS], vengono impostate le unità di misura utilizzate nel file di dati stradali. La sezione [MODEL] viene invece utilizzata per specificare la morfologia della superfice stradale, del tipo:

- ROAD_TYPE = 'flat': superficie stradale piana.
- ROAD_TYPE = 'plank': singolo scalino o dosso orientato perpendicolarmente o obliquo rispetto all'asse X, con o senza bordi smussati.
- ROAD_TYPE = 'poly_line': altezza della strada è in funzione della distanza percorsa.
- ROAD_TYPE = 'sine': superficie stradale costituita da una o più onde sinusoidali con lunghezza d'onda costante.

La sezione [PARAMETERS] contiene parametri generali e specifici per il tipo di superficie stradale.

I parametri per ogni tipologia di superficie stradale sono elencati di seguito:

· Generali:

 MU: è il fattore di correzione dell'attrito stradale (non il valore dell'attrito stesso), da moltiplicare con i fattori di ridimensionamento LMU del modello di pneumatico.

Impostazione predefinita: MU = 1.0.

- OFFSET: è l'offset verticale del terreno rispetto al sistema di riferimento inerziale.
- ROTATION_ANGLE_XY_PLANE: è l'angolo di rotazione del piano XY attorno all'asse Z della strada, ovvero la definizione dell'asse X positivo della strada rispetto al sistema di riferimento inerziale.

• Strada con scalino:

- HEIGHT: altezza dello scalino.
- START: distanza lungo l'asse X della strada all'inizio dello scalino.
- LENGTH: lunghezza dello scalino (escluso lo smusso) lungo l'asse X della strada.
- BEVEL_EDGE_LENGTH: lunghezza del bordo smussato a 45° dello scalino.
- DIRECTION: rotazione dello scalino attorno all'asse Z, rispetto all'asse Y della strada.

Se lo scalino è posizionato trasversalmente, DIRECTION = 0. Se lo scalino è posto lungo l'asse X, DIRECTION = 90.

• Polilinea:

Il blocco [PARAMETERS] deve avere un sottoblocco chiamato (XZ_DATA) e costituito da tre colonne di dati numerici:

- La colonna 1 è un insieme di valori X in ordine crescente.
- Le colonne 2 e 3 sono insiemi di rispettivi valori Z per la traccia sinistra e destra.

Esempio:

5

```
1 [PARAMETERS]
2 MU = 1.0
3 OFFSET = 0.0
4 ROTATION_ANGLE_XY_PLANE = 0.0
```

```
6 { X_road Z_left Z_right }
7 (XZ_DATA)
8 -1.0e04 0 0
9 0.0500 0 0
10 0.1000 0 0
11 0.1500 0 0
```

• Sinusoide:

La strada a superficie sinusoidale è implementata come:

$$z(x) = \frac{H}{2} \left(1 - \cos \left(\frac{2\pi \cdot (x - x_i)}{L} \right) \right) \tag{2.1}$$

dove

- z: coordinata verticale della strada;
- *H*: altezza;
- x: posizione attuale;
- x_i : inizio dell'onda sinusoidale;
- L: semi-periodo dell'onda sinusoidale.

I parametri sono:

- HEIGHT: altezza dell'onda sinusoidale.
- START: distanza lungo l'asse X della strada all'inizio dell'onda sinusoidale.
- LENGTH: lunghezza dell'onda sinusoidale lungo l'asse X della strada.
- DIRECTION: rotazione dell'onda sinusoidale attorno all'asse Z, rispetto all'asse Y della strada.

Se l'onda sinusoidale è posizionata trasversalmente, DIRECTION = 0. Se l'onda sinusoidale è posta lungo l'asse X, DIRECTION = 90.

2.2.2 Superfici complesse

Sfortunatamente, queste informazioni appena descritte permettono di costruire strade troppo semplicistiche e approssimative, che non rispecchiano la realtà. È quindi necessario inserire i risultati della discretizzazione della superficie stradale sopra citati. Per descrivere una superficie stradale composta da una *mesh* di triangoli si userà la seguente struttura dati.

- [NODES]: presenti nella prima sezione e dove vengono descritti sotto forma di una quartina (id, x, y, z) data dal numero di identificazione e dalle coordinate nello spazio.
- [ELEMENTS]: presenti nella seconda sezione e dove vengono descritti sotto forma di una quartina (n_1, n_2, n_3, μ) data dal numero di identificazione dei tre vertici componenti *i*-esimo triangolo e dal coefficente di attrito presente nella faccia.

Esempio:

```
[NODES]
1
   { id x_coord y_coord z_coord }
2
   0 2.64637 35.8522 -1.59419e-005
   1 4.54089 33.7705 -1.60766e-005
   2 4.52126 35.8761 -1.62482e-005
   3 2.66601 33.7456 -1.57714e-005
   4 0.771484 35.8282 -1.56367e-005
   5 0.791126 33.7206 -1.5465e-005
10
    [ELEMENTS]
11
   { n1 n2 n3 mu }
12
   1 2 3 1.0
13
   2 1 4 1.0
14
   5 4 1 1.0
```

Ulteriori parametri possono essere aggiunti prima della dichiarazaione dei nodi della *mesh*.

- X SCALE: riscala i punti delle coordinate dei nodi lungo l'asse X.
- Y SCALE: riscala i punti delle coordinate dei nodi lungo l'asse Y.
- Z_SCALE: riscala i punti delle coordinate dei nodi lungo l'asse Z.
- ORIGIN: definisce la posizione dell'origine della sistema di riferimento della superficie stradale.

- UP: definisce la direzione positiva dell'asse Z.
- [ORIENTATION]: ruota i punti delle coordinate dei nodi secondo la matrice definita.

Esempio:

- 1 X_SCALE
- 2 1000.0
- 3 Y_SCALE
- 4 1000.0
- 5 Z_SCALE
- 6 1000.0
- 7 ORIGIN
- 8 0 0 0
- 9 UP
- 10 0.0,0.0,1.0
- 11 ORIENTATION
- 12 1.0 0.0 0.0
- 13 0.0 1.0 0.0
- 14 0.0 0.0 1.0

2.3 Parsificazione

2.3.1 Introduzione

La parsificazione o analisi sintattica è un processo che analizza un flusso continuo di dati in ingresso (letti per esempio da un file o una tastiera) in modo da determinare la correttezza della sua struttura grazie ad una data grammatica formale. Un parser è un programma che esegue questo compito. Nella maggior parte dei casi, l'analisi sintattica opera su una sequenza di token in cui l'analizzatore lessicale spezzetta l'input.

2.3.2 Parsificazione del formato RDF

Nel lavoro svolto è stato creato un algoritmo per parsificare i file di tipo RDF che descrivono superfici complesse. Purtroppo, come precedentemente detto, non esiste uno standard universalmente riconosciuto per questo formato. Creare dunque un

parser o definire un generatore di parser è arduo. Si è quindi optato per la creazione di un parser che rilevi solo i nodi ([NODES]), li salvi temporaneamente e, dopo aver immagazzinato anche i dati relativi agli elementi ([ELEMENTS]), instanzi un oggetto mesh, composto dai nodi dichiarati nella sezione elementi. Gli altri parametri non sono stati considerati.

Come verrà richiamato nelle conclusioni, l'importanza di definire uno standard per il formato RDF è di cruciale importanza. In questo modo si potrà creare un generatore di *parser* con una grammatica e un lessico ben definiti, nonché aumentarne l'efficienza e la stabilità.

3.1 Introduzione

Gli pneumatici sono probabilmente i componenti più complessi di un'auto in quanto combinano decine di componenti che devono essere formati, assemblati e combinati assieme. Il successo del prodotto finale dipende dalla loro capacità di fondere tutti i componenti separati in un prodotto dal materiale coeso che soddisfa le esigenze del conducente [10]. Essi sono caratterizzati da un comportamento altamente non lineare con una forte dipendenza da diversi fattori costruttivi e ambientali.

3.2 Geometria

Quando si fa riferimento ai dati puramente geometrici, viene utilizzata una forma abbreviata della notazione completa prevista dall'ente di normazione ETRTO. Assumendo di avere un pneumatico generico la notazione che identificherà la geometria sarà del tipo $a \ / \ b \ R \ c$. Dove:

- a rappresenta larghezza nominale dello pneumatico nel punto più largo;
- b rappresenta percentuale dell'altezza della spalla dello pneumatico in relazione alla larghezza dello stesso;
- c rappresenta il diametro dei cerchi ai quali lo pneumatico si adatta.

Si prenda come esempio la seguente denominazione ETRTO: 195/55R16. La larghezza nominale dello pneumatico è di circa 195 mm nel punto più largo, l'altezza della spalla corrisponde al 55% della larghezza — ovvero 107 mm — e il diametro dei cerchi ai quali lo pneumatico si adatta è di 16 pollici. Con questa notazione è possibile calcolare direttamente il diametro esterno teorico dello pneumatico tramite una delle seguenti formule:

$$\phi_e = \frac{2ab}{25.4} + c \quad [in] \tag{3.1}$$

$$\phi_e = 2ab + 25.4c$$
 [mm] (3.2)

Riprendendo l'esempio usato sopra, il diametro esterno risulterà dunque 24.44 in o 621 mm.

Meno comunemente usato negli USA e in Europa (ma spesso in Giappone) è una notazione che indica l'intero diametro del pneumatico invece delle proporzioni dell'altezza della spalla laterale, quindi non secondo ETRTO. Per fare lo stesso esempio, un cerchio da 16 pollici avrebbe un diametro di 406 mm. L'aggiunta del doppio dell'altezza del pneumatico (2×107 mm) produce un diametro totale di 620 mm. Quindi, un pneumatico 195/55R16 potrebbe in alternativa essere etichettato come 195/620R16. Anche se queste due notazioni sono teoricamente ambigue, in pratica possono essere facilmente distinte perché l'altezza della parete laterale di uno pneumatico automobilistico è in genere molto inferiore alla larghezza. Quindi, quando l'altezza è espressa come percentuale della larghezza, è quasi sempre inferiore al 100% (e certamente meno del 200%). Al contrario, i diametri degli pneumatici del veicolo sono sempre superiori a 200 mm. Pertanto, se il secondo numero è superiore a 200, allora è quasi certo che viene utilizzata la notazione giapponese, se è inferiore a 200 allora viene utilizzata la notazione USA/europea.

3.3 Modellizzazione

Le forze di contatto tra la superficie stradale e lo pneumatico possono essere descritte da un vettore di forza risultante applicato in un punto specifico dell'impronta di contatto e da una coppia risultante, come illustrato nella Figura 3.2.

Come componenti cruciali per la movimentazione dei veicoli e il comportamento di guida, le forze degli pneumatici richiedono particolare attenzione soprattutto

FIGURA 3.1: Esempio di misure, secondo la notazione ETRTO, riportate sulla spalla dello pneumatico.

Figura 3.2: Forze e coppie generate dal contatto pneumatico/strada. Da: Rill, *Road Vehicle Dynamics - Fundamentals and Modeling*.

perché deve essere considerato anche il comportamento non stazionario. Attualmente, è possibile suddividere i modelli di pneumatico in tre gruppi:

- modelli matematici;
- modelli fisici;
- combinazione dei precedenti.

La prima tipologia di modello tenta di rappresentare le caratteristiche fisiche dello pneumatico attraverso una descrizione puramente matematica. Pertanto, questo tipo di modelli parte da un curve caratteristiche ricavate sperimentalmente e cercano di derivare un comportamento approssimativo dall'interpolazione di un grande insieme di dati. Un esempio ben noto di questo approccio è il modello di Pacejka o Magic Formula [8]. Questo tipo di modellazione è adatta per la simulazione di guida in cui il comportamento di interesse è per lo più la guidabilità del veicolo e le frequenze di uscita sono ben al di sotto delle frequenze di risonanza della cintura dello pneumatico. I modelli fisici o i modelli ad alta frequenza, come i modelli agli elementi finiti, sono in grado di rilevare fenomeni di risonanza a frequenza più elevata. Ciò permette di valutare il comfort di guida di un veicolo. Dal punto di vista del calcolo, i modelli fisici complessi richiedono molto tempo al calcolatore per essere risolti, nonché di molti dati, al contrario dei più veloci modelli matematici, che richiedono un'accurata pre-elaborazione dei dati sperimentali. La terza tipologia di modelli consiste in un'estensione dei modelli matematici attraverso le leggi fisiche al fine di coprire una gamma di frequenza più ampia.

Il modello di pneumatico sviluppato nel modello di veicolo e il tipo di interfaccia di pneumatico/strada presentato da Larcher in [4] si basa sulla *Magic Formula* 6.2.

3.3.1 La Magic Formula

Uno dei modelli di pneumatici più utilizzati è il cosiddetto modello *Magic Formula* sviluppato da Egbert Bakker e Pacejka in [1]. Questo modello è stato poi rivisto e l'ultima versione è riportata in [8]. Il modello *Magic Formula* consiste in una pura descrizione matematica del rapporto input-output del contatto pneumatico/strada. Questa formulazione collega le variabili di forza con lo slip rigido del corpo che vengono trattati nelle sezioni successive. La forma generale della funzione di descrizione può essere scritta come:

$$y(x) = D \sin\{C \arctan[B(x+S_h) - E(B(x+S_h) - \arctan(B(x+S_h)))]\} + S_v$$
(3.3)

dove i fattori rappresentano:

- B la rigidezza;
- C la forma;
- D il valore massimo della forza o coppia;
- E la curvatura in corrispondenza del valore massimo;
- S_v lo spostamento in verticale della curva caratteristica;

• S_h lo spostamento in orizzontale della curva caratteristica.

e dove y(x) può rappresentare la forza longitudinale F_x , la forza laterale F_y o la coppia di autoallineamento M_z , mentre x è la componente di slip corrispondente. In Figura 3.3 sono illustrate le curve caratteristiche generiche degli pneumatici derivate con il metodo della $Magic\ Formula$.

Per poter utilizzare la Magic Formula è necessario conoscere:

- la geometria dello pneumatico;
- lo slittamento (o slip);
- la forza verticale applicata allo pneumatico;
- la penetrazione in corrispondenza del punto di contatto e la sua derivata nel tempo;
- l'inclinazione tra piano strada e sistema di riferimento del centro ruota (angolo di camber relativo).

Ed è proprio nell'inclinazione tra piano strada e sistema di riferimento del centro ruota che si porrà una maggiore attenzione in quanto elemento fondamentale per ricavare l'effettivo punto di contatto dell'interazione pneumatico/strada.

Figura 3.3: Curve caratteristiche generiche degli pneumatici derivate con il metodo della *Magic Formula*.

Da: Schramm, Hiller e Bardini, Vehicle Dynamics: Modeling and Simulation.

3.4 Contatto con la superficie stradale

Si analizzaranno ora le quattro metodologie di complessità cresciente per ricavare l'inclinazione del piano locale e i punti di contatto sulla superficie stradale P_{PL} , non-

ché sulla circonferenza del disco indeformabile P_{MF} dove effettivamente agiranno le forze ricavate mediante la *Magic Formula*. Dapprima si utilizzerà un metodo a disco singolo presentato in [9], successivamente si passerà ad un modello a più dischi, così da coprire una superficie stradale maggiore e avere quindi risultati più precisi, soprattutto in prossimità di variazioni repentine del manto stradale.

3.4.1 Modello di pneumatico a disco singolo

3.4.1.1 Contatto di Rill

Piano locale La posizione e l'orientamento della ruota in relazione al sistema fissato a terra sono dati dalla terna di riferimento del vettore ruota RF_{wh} , che viene calcolata istante per istante risolvendo le equazioni dinamiche del sistema ottenuto nel Capitolo 2 in [4]. Supponendo che il profilo stradale sia rappresentato da una funzione arbitraria a due coordinate spaziali del tipo:

$$z = z(x, y) \tag{3.4}$$

su una superficie irregolare, il punto di contatto con il piano locale P_{PL} non può essere calcolato direttamente. Nel metodo a disco singolo presentato in [9] da Rill, come prima approssimazione si identifica un punto di contatto P^* come una semplice traslazione del centro ruota M:

$$P^{\star} = M - R_0 e_{zC} \begin{bmatrix} x^{\star} \\ y^{\star} \\ z^{\star} \end{bmatrix}$$
 (3.5)

dove R_0 è il raggio dello pneumatico indeformato ed e_{zC} è il vettore unitario che definisce l'asse z_C del sistema di riferimento della ruota.

La prima stima del sistema di riferimento del punto di contatto RF_{P^*} è una terna con origine in P^* e la medesima orientazione degli assi del sistema di riferimento della ruota. Si noti dunque che l'origine di RF_{P^*} corrisponde alla proiezione lungo l'asse z_C del sistema di riferimento della ruota.

$$RF_{P^{\star}} = \begin{bmatrix} \begin{bmatrix} R_{RF_{wh}} & x^{\star} \\ y^{\star} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$
 (3.6)

Figura 3.4: Geometria del contatto pneumatico-strada. Da: Rill, *Road Vehicle Dynamics - Fundamentals and Modeling*.

Al fine di ottenere una buona approssimazione del piano strada locale in termini di inclinazione longitudinale e laterale, sono stati utilizzati i quattro punti di campionamento $(Q_1^{\star}, Q_2^{\star}, Q_3^{\star}, Q_4^{\star})$, rappresentati graficamente in Figura 3.5. I punti di campionamento sono definiti nel sistema di riferimento temporaneo del punto di contatto $RF_{P^{\star}}$ e lo spostamento longitudinale e laterale sono definiti dall'origine, ovvero dallo stesso P^{\star} . I vettori di spostamento sono definiti come:

$$r_{Q_{1,2}^{\star}} = \pm \Delta x e_{xP^{\star}} = \pm \Delta x e_{xC}$$

$$r_{Q_{3,4}^{\star}} = \pm \Delta y e_{yP^{\star}} = \pm \Delta y e_{yC}$$
(3.7)

e quindi, i quattro punti di campionamento sono:

$$Q_{1,2}^{\star} = P^{\star} \pm r_{Q_{1,2}^{\star}} = P^{\star} \pm \Delta x e_{xC}$$

$$Q_{3,4}^{\star} = P^{\star} \pm r_{Q_{3,4}^{\star}} = P^{\star} \pm \Delta y e_{yC}$$
(3.8)

Al fine di campionare il terreno nel modo più efficace possibile, le distanze di Δx e Δy , dell'equazione precedente, vengono regolate in base al raggio del pneumatico indeformato R_0 e alla larghezza del pneumatico B. I valori di queste due quantità possono essere trovate in [9] e sono $\Delta x = 0.1R_0$ e $\Delta x = 0.3B$. Attraverso questa definizione, si può ottenere un comportamento sufficientemente realistico durante la simulazione.

Figura 3.5: Punti campionati nel piano locale della superficie stradale. Da: Rill, *Road Vehicle Dynamics - Fundamentals and Modeling*.

Ora la componente z in corrispondenza dei quattro punti campione viene valutata attraverso la funzione z(x,y) precedentemente definita. Quindi, aggiornando la terza coordinata dei punti di campionamento Q_i^{\star} , si ottenengono i corrispondenti punti campione Q_i sulla superficie. La linea fissata dai punti Q_1 , Q_2 e Q_3 , Q_4 , può ora essere utilizzata per definire la normale al piano strada locale (Figura 3.6). Pertanto, il vettore normale è definito come:

$$e_n = \frac{r_{Q_1 Q_2} \times r_{Q_4 Q_3}}{|r_{Q_1 Q_2} \times r_{Q_4 Q_3}|} \tag{3.9}$$

Ora, i versori e_x ed e_y , che descrivono l'inclinazione del piano locale nel possono essere ottenuti dalle seguenti equazioni:

$$e_x = \frac{e_{yC} \times e_n}{|e_{yC} \times e_n|}$$
 $e_y = e_n \times e_x$ (3.10)

dove sono $r_{Q_2Q_1}$ e $r_{Q_4Q_3}$ sono i vettori che puntano rispettivamente da Q_1 a Q_2 e da Q_3 a Q_4 . Applicando la (3.10) è ora possibile calcolare i vettori unitari e_x e e_y del piano locale di contatto. Per definire univocamente il piano strada, oltre alla normale calcolata in (3.9), viene utilizzato il punto P_n dato dal valore medio delle tre coordinate spaziali dei quattro punti campione.

$$P_{n} = \frac{1}{4} \begin{bmatrix} \sum_{i=1}^{4} x_{i} \\ \sum_{i=1}^{4} y_{i} \\ \sum_{i=1}^{4} z_{i} \end{bmatrix}$$
(3.11)

Punti di contatto È infine necessario ricondursi alle condizioni tali per cui il modello di Pacejka è valido trovando il punto di contatto sul piano strada locale P_{PL} e il punto di contatto sulla circonferenza del disco indeformabile P_{MF} dove effettivamente agiranno le forze ricavate mediante la Magic Formula. Si troverà dapprima la componente della normale al piano strada $e_{n_{XZ}}$ sul piano in cui giace il singolo disco indeformabile. P_{MF} sarà dunque trovato a partire dal centro ruota M, moltiplicando scalarmente il versore $-e_{n_{XZ}}$ per il raggio del disco indeformabile R_0 , ovvero:

$$P_{MF} = -R_0 e_{n_{YZ}} \tag{3.12}$$

Come illustrato in Figura 3.6, il punto di contatto sul piano strada locale P_{PL} viene invece calcolato sfuttando un algoritmo di intersezione piano-raggio (che si tratterà nel Capitolo 4). P_{PL} giacerà dunque sulla proiezione in direzione $-e_{n_{XZ}}$ del punto M sulla retta individuata dal punto P_n e normale $e_{n_{XZ}}$.

Figura 3.6: Punti di contatto P_{PL} e P_{MF} in relazione alla normale $e_{n_{XZ}}$.

Infine si può mettere assieme tutte le componenti del piano di riferimento del

punto di contatto P_{MF} ottenendo il relativo sistema di riferimento:

$$RF_{MF} = \begin{bmatrix} \begin{bmatrix} \boldsymbol{e}_{x} \end{bmatrix} & \begin{bmatrix} \boldsymbol{e}_{y} \end{bmatrix} & \begin{bmatrix} \boldsymbol{e}_{z} \end{bmatrix} & x_{P_{MF}} \\ y_{P_{MF}} \\ z_{P_{MF}} \end{bmatrix}$$

$$(3.13)$$

Attraverso questo approccio, la normale del piano strada locale e_n insieme al punto di contatto sul piano strada locale P_{PL} e al punto di contatto sulla circonferenza del disco indeformabile P_{MF} , sono in grado di rappresentare l'irregolarità della strada in modo soddisfacente ma comunque approssimativo, infatti, bordi taglienti o discontinuità del manto stradale saranno involontariamente filtrate da questo approccio.

Nel caso specifico di questo lavoro la superficie stradale non è rappresentata da una funzione del tipo z(x,y) ma bensì da una serie di triangoli. Questo comporta l'impossibilità di valutare la terza coordinata dei punti di campionamento Q_i^{\star} . Per sopperire a questo problema si utilizzerà l'algoritmo per l'intersezione tra raggio e triangolo presentato nel Capitolo 4. Si definirano dunque i punti di origine dei raggi direttamente nel sistema di riferimento della ruota RF_{wh} come:

$$Q_{1,2}^{\star} = M \pm r_{Q_{1,2}^{\star}} = P^{\star} \pm \Delta x e_{xC}$$

$$Q_{3,4}^{\star} = M \pm r_{Q_{3,4}^{\star}} = P^{\star} \pm \Delta y e_{yC}$$
(3.14)

dai quali partiranno i raggi con direzione $-z_C$ che intersecheranno la *mesh* nei punti (Q_1,Q_2,Q_3,Q_4) .

3.4.1.2 Contatto ponderato in base all'area d'intersezione

Piano locale Alternativamente a quello appena visto, si può utilizzare un modello di contatto ponderato in base all'area di intersezione. In altre, parole si andrà a valutare triangolo per triangolo l'intersezione con il disco indeformabile. Prima di tutto di intersecherà il triangolo nello spazio con il piano in cui giace il disco trovando dunque un segmento. Successivamente si valuterà l'intersezione di questo segmento con il disco, calcolando l'area tra il segmento stesso e il semicerchio inferiore del disco.

Attraverso questa area si potrà pesare la normale alla faccia del triangolo considerato e quindi effettuare una media ponderata con tutti gli atri triangoli che

insersecano il disco, ovvero:

$$\boldsymbol{e}_n = \sum_{i=0}^{N_T} A_i \boldsymbol{e}_{n_i} \tag{3.15}$$

dove:

- N_T è il numero di triangoli all'interno della *Bounding Box* (BB) rappresentante l'ombra dello pneumatico;
- e_n è il versore normale risultante;
- e_{n_i} è il versore normale dell'*i*-esimo triangolo;
- A_i l'area tra il segmento creato dall'intersezione piano-trangolo e il semicerchio inferiore del disco dell'i-esimo triangolo.

Questo metodo è ovviamente utilizzabile solo nel caso di strada rappresentata tramite *mesh* triangolare. A differenza dal modello di [9], permette di non approssimare la superficie stradale mediante soli quattro punti ma invece di avere una rappresentazione che sfrutta tutti i dati messi a disposizione dalla discretizzazione del manto stradale.

Punti di contatto Per trovare il punto di contatto con la mesh P_{PL} e il punto di contatto sulla circonferenza del disco indeformabile P_{MF} precedentemente definiti, si andrà a ripetere l'operazione in 3.4.1.1 per trovare la componente della normale al piano strada $e_{n_{XZ}}$ sul piano in cui giace il singolo disco indeformabile. A differenza del modello di contatto di Rill, non si ha ora una definizione univoca del piano strada locale. Infatti, l'unica componente ad ora conoscita è il versore risultante normale al terreno e_n . Per ricavare il punto di contatto sulla circonferenza del disco indeformabile P_{MF} si utilizzerà la (3.12), mentre per il punto sulla mesh P_{PL} si andrà ad utilizzare un algoritmo d'intersezione tra raggio e la superficie stradale, dove l'origine del raggio sarà il centro ruota e la direzione $-e_{n_{XZ}}$.

3.4.2 Modello di pneumatico a più dischi

Nel modello a più dischi, lo pneumatico sarà rappresentato da più dischi rigidi indeformabili disposti uniformemente lungo la sezione dello stesso. Essi potranno avere raggio uguale o diverso l'uno dall'altro, in modo da rappresentare una forma specifica dello pneumatico.

FIGURA 3.7: Disposizione dei dischi.

Anche se questo modello di pneumatico è costituito da più dischi, il punto di contatto P_{MF} utilizzato per valutare la formula di Pacejka verrà comunque considerato nel disco fittizio giacente sul piano XZ dello pneumatico. Equivalentemente, anche il punto di contatto con la mesh P_{PL} verrà considerato nel mediesimo piano.

3.4.2.1 Contatto ponderato in base all'area d'instersezione

Piano locale Analogamente al modello di pneumatico a singolo disco, si può effettuare la stessa operazione su ogni disco per trovare il versore normale risultante $e_{n_{D_j}}$ relativo al contatto del j-esimo disco. La (3.15) diventerà dunque:

$$e_{n_{D_j}} = \sum_{i=0}^{N_T} A_i e_{n_i} \tag{3.16}$$

Per combinare assieme i versori normali $e_{n_{D_j}}$ relativi ai dischi si effetturà una nuova media ponderata pesata questa volta sull'area totale all'interno del disco e sotto la superficie della *mesh*. La formula sarà dunque:

$$e_n = \sum_{j=0}^{N_D} A_{D_j} e_{n_{D_j}}$$
 (3.17)

dove:

- N_D è il numero di dischi totali rappresentanti lo pneumatico;
- e_n è il versore normale risultante;
- $e_{n_{D_i}}$ è il versore normale associato al j-esimo disco;
- A_{D_j} l'area d'intersezione all'interno del disco e sotto la superficie della mesh dell'j-esimo disco.

Figura 3.8: Campionamento della *mesh* triangolare in corrispondenza del piano in cui giace l'i-esimo disco. I raggi partono dall'asse x_C in direzione z_C .

Punti di contatto Avendo ora a disposizione il versore normale risultante e_n , si può ora trovare i punti P_{MF} e P_{PL} adottando il medesimo metodo utilizato in 3.4.1.1. Si noti che anche se lo pneumatico è rapprensentato da più dischi, per ricondursi alle condizioni tali per cui il modello di Pacejka è valido, è necessario immaginare che ci sia sempre un disco fittizio giacente sul piano XZ della ruota.

3.4.2.2 Contatto tramite campionamento

Piano locale Nel caso in cui la densità della mesh sia troppo alta, effettuare il calcolo per il modello di contatto ponderato in base all'area d'instersezione precedentemente presentato, può essere molto dispendioso in termini di calcoli, e quindi di tempo. Per sopperire a questo problema, se il numero di triangoli è superiore ad un certo threshold, si andrà a campionare la mesh triangolare in corrispondenza del piano in cui giacciono i dischi. In particolare, per campionare la mesh si sfrutterà l'algoritmo di intersezione tra raggio e triangolo che verrà presentato nel Capitolo 4. Attraverso questo algoritmo, suppenendo che il raggio abbia la stessa direzione dell'asse z_C , si andranno a memorizzare le normali alle faccie dei triangoli campionati. Il versore normale risultante e_n non verrà più calcolato mediante una media ponderata ma bensì attravarso una media semplice tra tutti i punti campionati lungo il disco.

Punti di contatto Avendo ora a disposizione il versore normale risultante e_n , si può ora trovare i punti P_{MF} e P_{PL} adottando il medesimo metodo utilizato in 3.4.1.1,

sempre tenedo conto che ambo i punti giaceranno sul disco fittizio giacente sul piano XZ della ruota.

Algoritmi 4

4.1 Bounding Volume Hierarchy

4.1.1 Introduzione

Una Bounding Volume Hierarchy (BVH) è una struttura ad albero su un insieme di oggetti geometrici. Tutti gli oggetti geometrici sono raccolti in volumi limite che formano i nodi fogliari dell'albero. Questi nodi vengono quindi raggruppati come piccoli insiemi e racchiusi in volumi di delimitazione più grandi. Questi, a loro volta, sono ancora raggruppati e racchiusi in altri volumi di delimitazione più grandi in modo ricorsivo, risultando infine in una struttura ad albero con un singolo volume di delimitazione nella parte superiore dell'albero. Le gerarchie di volumi limitanti vengono utilizzate per supportare in modo efficiente diverse operazioni su insiemi di oggetti geometrici, come ad esempio il rilevamento delle collisioni.

Sebbene il wrapping degli oggetti nei volumi di delimitazione e l'esecuzione di test di collisione su di essi prima del test della geometria dell'oggetto stesso semplifichino i test e possano comportare miglioramenti significativi delle prestazioni, è ancora in corso lo stesso numero di test a coppie tra volumi di delimitazione. Organizzando i volumi di delimitazione in una gerarchia di volumi di delimitazione, la complessità temporale (il numero di test eseguiti) può essere ridotta logaritmicamente nel numero di oggetti. Con una tale gerarchia in atto, durante i test di collisione, i volumi secondari non devono essere esaminati se i loro volumi principali non sono

intersecati.

4.1.2 Minimum Bounding Box

In geometria, il rettangolo minimo o più piccolo (o $Minimum\ Bounding\ Box\ (MBB)$) per racchiudere un insieme di punti S in N dimensioni è l'rettangolo con la misura più piccola (area, volume o ipervolume in dimensioni superiori) all'interno del quale si trovano tutti i punti. Il termine "iper-rettangolo (o più semplicemente box) deriva dal suo utilizzo nel sistema di coordinate cartesiane, dove viene effettivamente visualizzato come un rettangolo (caso bidimensionale), parallelepipedo rettangolare (caso tridimensionale), ecc. Nel caso bidimensionale viene chiamato rettangolo di delimitazione minimo.

4.1.2.1 Axis Aligned Bounding Box

Il MBB allineato agli'assi (Axis Aligned Bounding Box (AABB)) per un determinato set di punti è il rettangolo di delimitazione minimo soggetto al vincolo che i bordi del rettangolo sono paralleli agli assi cartesiani. È il prodotto cartesiano di N intervalli ciascuno dei quali è definito da un valore minimo e un valore massimo della coordinata corrispondente per i punti in S.

I rettangoli di delimitazione minimi allineati all'asse vengono utilizzati per determinare la posizione approssimativa di un oggetto e come descrittore molto semplice della sua forma. Ad esempio, nella geometria computazionale e nelle sue applicazioni quando è necessario trovare intersezioni nel set di oggetti, il controllo iniziale sono le intersezioni tra i loro MBB. Dato che di solito è un'operazione molto meno costosa del controllo dell'intersezione effettiva (perché richiede solo confronti di coordinate), consente di escludere rapidamente i controlli delle coppie che sono molto distanti.

4.1.2.2 Arbitrarily Oriented Bounding Box

Il MBB orientato arbitrariamente (*Arbitrarily Oriented Bounding Box* (AOBB)) è il rettangolo di delimitazione minimo, calcolato senza vincoli per quanto riguarda l'orientamento del risultato. Gli algoritmi del rettangolo di delimitazione minimo basati sul metodo dei calibri rotanti possono essere utilizzati per trovare l'area di delimitazione dell'area minima o del perimetro minimo di un poligono convesso bi-

Figura 4.1: Esempio di albero di tipo AABB.

dimensionale in tempo lineare e di un punto bidimensionale impostato nel tempo impiegato costruire il suo scafo convesso seguito da un calcolo del tempo lineare. Un algoritmo di pinze rotanti tridimensionali può trovare il rettangolo di delimitazione orientato arbitrariamente sul volume minimo di un punto tridimensionale impostato in tempo cubo.

4.1.2.3 Object Oriented Bounding Box

Nel caso in cui un oggetto abbia un proprio sistema di coordinate locale, può essere utile memorizzare un rettangolo di selezione relativo a questi assi, che non richiede alcuna trasformazione quando cambia l'orientazione dell'oggetto stesso.

4.1.3 Intersezione tra alberi AABB

Per il rilevamento delle collisioni tra oggetti in due dimensioni, l'intersezione tra alberi di tipo AABB, è l'algoritmo più veloce per determinare se le due entità di gioco si sovrappongono o meno, e in che parti. Nello specifico, ciò consiste nel controllare le posizioni delle *i*-esime BB nello spazio delle coordinate bidimensionali per vedere se si sovrappongono.

Il vincolo di allineamento dei rettangoli agli assi è presente per motivi di prestazioni, infatti, l'area di sovrapposizione tra due riquadri non ruotati può essere controllata solo con confronti logici. Mentre i riquadri ruotati richiedono ulteriori operazioni trigonometriche, che sono più lente da calcolare. Inoltre, se si hanno entità che possono ruotare, le dimensioni dei rettangoli e/o sotto-rettangoli dovranno modificarsi in modo da avvolgere ancora l'oggetto o si dovrà optare per un altro tipo di geometria di delimitazione, come le sfere (che sono invarianti alla rotazione).

Nel caso specifico, l'ombra dello pneumatico sarà rappresentata da un albero di tipo AABB con una sola foglia. Ovvero si andrà a rappresentare lo pneumatico con una BB avente lati uguali e rappresentanti il massimo ingombro che può avere nello spazio. Si andrà inoltre ad incrementare del 10% ognuno di questi lati in modo da tenere conto dell'angolo di camber, che portrebbe portare i punti di campionamento del terreno fuori dall'ombra. La strada, contrariamente al pneumatico, verrà tenuta come riferimento assoluto. In altre parole, una volta effettuato la parsificazione del file RDF, verrà calcolato l'albero di tipo AABB. Lo pneumatico si muoverà all'interno della *mesh* e la sua ombra verrà ricalcolata e intersecata con l'albero AABB per ottenere tutti i triangoli in corrispondenza della stessa.

Volendo intersecare due semplici BB, quali A = [A.minX, A.maxX; A.minY, A.maxY] e B = [B.minX, B.maxX; B.minY, B.maxY], verrà usata la seguente funzione.

Volendo intersecare un albero di tipo AABB e una semplice BB, basterà ripetere a più step la funzione precedente lungo i rami dell'albero. Una volta arrivati a una o più foglia avremo tutti gli oggetti (o triangoli nel caso specifico) che sono posti in corrispondenza della BB (od ombra dello pneumatico nel caso specifico). Questi triangoli verranno poi usati per determinare il piano strada locale e il punto di contatto virtuale dello pneumatico.

È imporatante notare che il metodo appena visto, presenta numerosi vantaggi.

- Riduzione del numero di comparazioni da effettuare per ottenere l'intersezione BB-albero AABB. Infatti, la *mesh* può contenere decine di migliaia di trangoli, il metodo presentato consente di ridurre logarirmicamente il numero di comparazioni necessarie per ottenere il risultato.
- Riduzione del numero di trangoli da processare per ottenere il piano strada locale e il punto di contatto virtuale dello pneumatico. Infatti, vengono solamente processati quelli posti in corrispondenza del'ombra dello pneumatico.

4.2 Algoritmi geometrici

4.2.1 Introduzione

La geometria computazionale è la branca dell'informatica che studia le strutture dati e gli algoritmi efficienti per la soluzione di problemi di natura geometrica e la loro implementazione al calcolatore. Storicamente, è considerato uno dei campi più antichi del calcolo, anche se la geometria computazionale moderna è uno sviluppo recente. La ragione principale per lo sviluppo della geometria computazionale è stata dovuta ai progressi compiuti nella computer grafica, *Computer-Aided Design* (CAD), *Computer-Aided Manufacturing* (CAM) e nella visualizzazione matematica. Ad oggi, le applicazioni della geometria computazionale si trovano nella robotica, nella progettazione di circuiti integrati, nella visione artificiale, in *Computer-Aided Engineering* (CAE) e nel *Geographic Information Systems* (GIS). I rami principali della geometria computazionale sono:

- Calcolo combinatorio (o geometria algoritmica), che si occupa di oggetti geometrici come entità discrete. Ad esempio, può essere utilizzato per determinare il poliedro o il poligono più piccolo che contiene tutti i punti forniti, o più formalmente, dato un insieme di punti, si deve determinare il più piccolo insieme convesso che li contenga tutti (problema dell'inviluppo convesso).
- Geometria di calcolo numerica (o Computer-Aided Geometric Design (CAGD)), che si occupa principalmente di rappresentare oggetti del mondo reale in forme adatte per i calcoli informatici nei sistemi CAD e CAM. Questo ramo può essere visto come uno sviluppo della geometria descrittiva ed è spesso considerato un ramo della computer grafica o del CAD. Entità importanti di questo ramo sono superfici e curve parametriche, come ad esempio le spline e curve di Bézier.

In questo capitolo tutti gli algoritmi che verranno utilizzati in seguito durante l'analisi geometrica dell'intersezione tra pneumatico e superficie stradale saranno trattati. Questi algoritmi sono la soluzione di alcuni semplici ma molto importanti problemi, che devono essere risolti in modo efficiente. In particolare le intersezioni tra:

- punto e segmento (nel piano);
- punto e cerchio (nel piano);

- segmento e circonferenza (nel piano);
- piano e piano (nello spazio);
- piano e segmento (nello spazio);
- piano e raggio (nello spazio);
- piano e triangolo (nello spazio);
- raggio e triangolo (nello spazio);

saranno esaminati al fine di trovare la massima prestazione in termini di efficienza computazionale.

4.2.2 Intersezione tra entità geometriche

4.2.2.1 Punto-Segmento

Dato un punto $P = (x_p, y_p)$ e un segmento definito da due punti $A = (x_A, y_B)$ e $B = (x_B, y_B)$.

Figura 4.2: Schema del problema di intersezione punto-segmento

Per determinare se il punto P è intermo al segmento si eseguiranno i seguenti step.

- 1. Creazione di un vettore \overrightarrow{AB} e di un vettore \overrightarrow{AP} .
- 2. Calcolo il prodotto vettoriale $\overrightarrow{P_1P_2} \times \overrightarrow{PP_1}$, se il modulo del vettore risultante è nullo allora il punto P appartiene al segmento considerato.
- 3. Calcolo il prodotto scalare tra \overrightarrow{AB} e \overrightarrow{AP} . Se è nullo allora il punto P è coincidente a A, se è pari al modulo di \overrightarrow{AB} allora il punto P è coincidente a B, se è compreso tra 0 il modulo di \overrightarrow{AB} , allora il punto P giace all'interno del segmento considerato.

Il codice che esegue questo tipo di test è riportato in Figura 4.4

4.2.2.2 Punto-Cerchio

Data una circonferenza con centro $C=(x_c,y_c)$ e raggio r, il problema consiste nel trovare se un punto generico $P=(x_p,y_p)$ è locato all'interno, all'esterno o sulla circonferenza. La soluzione al problema è semplice: la distanza tra il centro del

Figura 4.3: Schemi per l'output dell'intersezione punto-segmento.

```
Output di tipo integer
                                         Output di tipo bool
    if (AB.cross(AP) > epsilon )
                                            if ( AB.cross(AP) > epsilon )
      { return 0; }
                                              { return false; }
2
    KAP = AB.dot(AP);
                                           KAP = AB.dot(AP);
    if (KAP < -epsilon)
                                           if (KAP < -epsilon )</pre>
      { return 0; }
                                              { return false; };
5
    if ( abs(KAP) < epsilon )</pre>
                                           if ( abs(KAP) < epsilon )</pre>
6
      { return 1; }
                                        7
                                              { return true; }
    KAB = AB.dot(AB);
                                        8 KAB = AB.dot(AB);
8
    if ( KAP > KAB )
                                           if ( KAP > KAB )
9
      { return 0; }
10
                                       10
                                              { return false; }
11
    if ( abs(KAP-KAB) < epsilon )</pre>
                                       11
                                            if ( abs(KAP-KAB) < epsilon )</pre>
      { return 2; }
                                              { return true; }
12
                                           return true;
    return 3;
```

FIGURA 4.4: Schema del codice per l'intersezione punto-segmento.

Figura 4.5: Schema del problema di intersezione punto-cerchio.

cerchio C e il punto P è data dal teorema di Pitagora. In particolare:

$$d = \sqrt{(x_p - x_c)^2 + (y_p - y_c)^2}$$
 (4.1)

il punto P è dunque interno alla circonferenza se d < r, appartiene alla circonferenza se d = r ed esterno alla circonferenza se d > r. In maniera analoga ma più efficace da punto di vista computazionale si può confrontare d^2 con r^2 . Il punto P è dunque interno alla circonferenza se $d^2 < r^2$, appartiene alla circonferenza se

 $d^2=r^2$ ed esterno alla circonferenza se $d^2>r^2$. Pertanto, il confronto finale sarà tra il numero $(x_p-x_c)^2+(y_p-y_c)^2$ e r^2 .

Gli inputs dell'algoritmo per l'intersezione punto-cerchio sono:

- il centro della circonferenza $C = (x_c, y_c)$;
- il raggio della circonferenza *r*;
- il punto generico da analizzare $P = (x_p, y_p)$.

L'output può essere un intero il cui valore può essere:

- 0 se il punto è esterno;
- 1 se il punto è interno;
- 2 se il punto appartiene alla circonferenza.

Il valore in *output* può essere anche una variabile booleana il cui valore è:

- false se il punto è esterno;
- true se il punto è interno o appartiene alla circonferenza.

FIGURA 4.6: Schemi per l'output dell'intersezione punto-cerchio.

Output di tipo integer

Output di tipo bool

```
d = (x_p-x_c)^2 + (y_p-y_c)^2;
if (d > r^2) { return 0; }
else if (d < r^2) { return 1; }
else { return 2; }

d = (x_p-x_c)^2 + (y_p-y_c)^2;
if (d > r^2) { return true; }
else { return false; }
```

Figura 4.7: Schemi del codice per l'intersezione punto-cerchio.

4.2.2.3 Segmento-Circonferenza

Per l'intersezione di un segmento, avente punto iniziale e finale rispettivamente P_0 e P_1 , con una circonferenza, avente centro $C=(x_c,y_c)$, è necessario prima di tutto riscrivere le equazione di entrambe le entità come:

$$ax + by = c (4.2)$$

per il segemento e:

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$
(4.3)

per la circonferenza. Assumendo che il centro C sia posto sull'origine, la precedente equazione si può semplificare come:

$$x^2 + y^2 = r^2 (4.4)$$

Per trovere i termini a, b e c del segmento è necessario calcolare la direzione del

Figura 4.8: Schema del problema di intersezione punto-circonferenza.

segmento come differenza tra il punto finale e iniziale del segmento:

$$\vec{d} = P_1 - P_0 \tag{4.5}$$

È neccerio anche trovare il vettore tra l'origine e il punto P_1 :

$$\vec{P}_{O1} = P_1 - O (4.6)$$

I termini a, b e c del segmento saranno quini pari a:

$$a = \vec{d} \cdot \vec{d}$$

$$b = 2(\vec{d} \cdot \vec{P}_{O1})$$

$$c = \vec{P}_{O1} \cdot \vec{P}_{O1} - r^{2}$$
(4.7)

Risolvere l'equazione 4.2 per x o y è ora molto semplice. Basta infatti sostituirla nell'equazione 4.4 per ottere le soluzioni (x_1, y_1) e (x_2, y_2) con:

$$x_{1/2} = \frac{ac \pm b\sqrt{r^2(a^2 + b^2) - c^2}}{a^2 + b^2}$$
 (4.8)

oppure:

$$y_{1/2} = \frac{bc \mp a\sqrt{r^2(a^2 + b^2) - c^2}}{a^2 + b^2}$$
 (4.9)

Se $r^2(a^2+b^2)-c^2\geq 0$ vale come una disuguaglianza stretta, esistono due punti di intersezione.

Se invece vale $r^2(a^2+b^2)-c^2=0$, allora esiste solo un punto di intersezione e la linea è tangente alla circonferenza. Se la disuguaglianza debole non regge, la linea non interseca la circonferenza.

Dal punto di vista del codice l'output può essere un intero il cui valore può essere:

- 0 se la linea non interseca la circonferenza;
- 1 se la linea interseca la circonferenza in un solo punto, ovvero è tangente;
- 2 se la linea interseca la circonferenza in due punti.

FIGURA 4.9: Schemi per l'output dell'intersezione segmento-cerchio.

4.2.2.4 Piano-Piano

Nello spazio delle coordinate tridimensionali, due piani P_1 e P_2 o sono paralleli o si intersecano creando una singola retta L. Sia P_i con i=1,2 descritto da un punto V_i e un vettore normale \vec{n}_i . L'equazione implicita del piano sarà dunque:

$$\vec{n}_i \cdot P + d_i = 0 \tag{4.10}$$

dove P=(x,y,z). I piani P_1 e P_2 sono paralleli ogni volta che i loro normali vettori \vec{n}_1 e \vec{n}_2 sono paralleli. Questo equivale alla condizione che $\vec{n}_1 \times \vec{n}_2 = 0$.

```
a = d \cdot d;
1
   b = 2 * (d \cdot P_01);
    c = P_01 \cdot P_01 - r^2;
    discriminant = r^2 * (a^2 + b^2) - c^2;
    if ( a <= epsilon || discriminant < 0.0 ) {</pre>
5
6
      IntPt_1 = (quiteNaN, quiteNaN);
      IntPt_2 = (quiteNaN, quiteNaN);
7
      return 0;
8
    } else if ( abs(discriminant) < epsilon ) {</pre>
9
      t = -b / (2 * a);
10
      IntPt_1 = P_1 + t * d;
11
      IntPt_2 = (quiteNaN, quiteNaN);
12
      return 1;
13
14
    } else {
      t = (-b + sqrt(discriminant)) / (2 * a);
15
      IntPt_1 = P_1 + t * d;
16
      t = (-b - sqrt(discriminant)) / (2 * a);
17
      IntPt_2 = P_1 + t * d;
18
19
      return 2;
    }
20
```

Figura 4.10: Schema per del codice per l'intersezione segmento-cerchio.

Quando i piani non sono paralleli, $\vec{u} = \vec{n}_1 \times \vec{n}_2$ è il vettore di direzione della linea di intersezione L. Si noti che \vec{u} è perpendicolare sia a \vec{n}_1 che a \vec{n}_2 , e quindi è parallelo a entrambi i piani.

Dopo aver calcolato $\vec{n}_1 \times \vec{n}_2$, per determinare univocamente la linea di intersezione, è necessario trovare un punto di essa. Cioè, un punto $P_0 = (x_0, y_0, z_0)$ che si trova in entrambi i piani. Si può trovare una soluzione comune delle equazioni implicite per P_1 e P_2 . Ma ci sono solo due equazioni nelle tre incognite poiché il punto P_0 può trovarsi ovunque sulla linea monodimensionale L. Quindi è necessario aggiungere un altro vincolo da risolvere per un P_0 specifico. Esistono diversi modi per farlo, il più semplice è attraverso l'aggiunta dei un terzo piano P_3 avente equazione implicita $\vec{n}_3 \cdot P = 0$ dove $\vec{n}_3 = \vec{n}_1 \times \vec{n}_2$ e $d_3 = 0$ (ovvero passa attraverso l'origine). Questo metodo è funzionante poiché:

- L è perpendicolare a P_3 e quindi lo interseca;
- i vettori \vec{n}_1 , \vec{n}_2 e \vec{n}_3 sono linearmente indipendenti.

Pertanto i piani P_1 , P_2 e P_3 si intersecano in un unico punto P_0 che deve trovarsi su L.

Figura 4.11: Schemi del problema di intersezione piano-piano.

Figura 4.12: Vettori dei piani P_1 , P_2 e della retta L.

Nello specifico, la formula per l'intersezione di tre piani è:

$$P_0 = \frac{-d_1(\vec{n}_2 \times \vec{n}_3) - d_2(\vec{n}_3 \times \vec{n}_1) - d_3(\vec{n}_1 \times \vec{n}_2)}{\vec{n}_1 \cdot (\vec{n}_2 \times \vec{n}_3)}$$
(4.11)

e ponendo $d_3 = 0$ per P_3 , si otteniene:

$$P_{0} = \frac{-d_{1}(\vec{n}_{2} \times \vec{n}_{3}) - d_{2}(\vec{n}_{3} \times \vec{n}_{1})}{\vec{n}_{1} \cdot (\vec{n}_{2} \times \vec{n}_{3})} = \frac{(d_{2}\vec{n}_{1} - d_{1}\vec{n}_{2}) \times \vec{n}_{3}}{(\vec{n}_{1} \times \vec{n}_{2}) \cdot \vec{n}_{3}} = \frac{(d_{2}\vec{n}_{1} - d_{1}\vec{n}_{2}) \times \vec{u}}{|\vec{u}|^{2}}$$

$$(4.12)$$

e l'equazione parametrica per la retta L sarà:

$$L(s) = \frac{(d_2\vec{n}_1 - d_1\vec{n}_2) \times \vec{u}}{|\vec{u}|^2} + s\vec{u}$$
 (4.13)

dove $\vec{u} = \vec{n}_1 \times \vec{n}_2$.

```
1    u = n_1 × n_2;
2    if ( u.norm() > epsilon ) {
3         d_1 = - V_1 · n_1;
4         d_2 = - V_2 · n_2;
5         u_1 = d_1 * n_1;
6         u_2 = - d_2 * n_2;
7         P_0 = (u1 + u2) × u / (u · u);
8         return true;
9    } else {
10         return false;
11    }
```

Figura 4.13: Schema per del codice per l'intersezione piano-piano.

4.2.2.5 Piano-Segmento e Piano-Raggio

Nello spazio delle coordinate tridimensionali, una linea L può essere o parallela a un piano P o può intersecarlo in un singolo punto. Sia L data dall'equazione parametrica:

$$P(t) = P_0 + t(P_1 - P_0) = P_0 + t\vec{u}$$
(4.14)

mentre il piano P sia dato da un punto V_0 appartenente ad esso e da un vettore normale $\vec{n}=(a,b,c)$. Per prima cosa è necessario controllare se L è parallelo a P verificando se $\vec{n}\cdot\vec{u}=0$, il che significa che il vettore di direzione della linea \vec{u} è perpendicolare al piano normale \vec{n} . Se questo è vero, allora L e P sono paralleli e non

si intersecano, oppure L giace totalmente nel piano P. Disgiunzione o coincidenza possono essere determinate testando se in P esiste un punto specifico di L, per esempio P_0 , ovvero se soddisfa l'equazione di linea implicita:

$$\vec{n} \cdot (P_0 - V_0) = 0 \tag{4.15}$$

Se la linea e il piano non sono paralleli, allora L e P si intersecano in un unico punto $P(t_I)$. Nel punto di intersezione, il vettore $P(t) - V_0 = \vec{w} + t\vec{u}$ è perpendicolare a \vec{n} , dove $\vec{w} = P_0 - V_0$. Ciò equivale alla condizione del prodotto scalare:

$$\vec{n} \cdot (\vec{w} + t\vec{u}) = 0 \tag{4.16}$$

Risolvendo si ottiene:

$$t_I = -\frac{\vec{n} \cdot \vec{w}}{\vec{n} \cdot \vec{u}} = -\frac{\vec{n} \cdot (V_0 - P_0)}{\vec{n} \cdot (P_1 - P_0)}$$
(4.17)

Se la linea L è un segmento finito da P_0 a P_1 , è sufficiente verificare che $0 \le t_I \le 1$ per verificare che vi sia un'intersezione tra il segmento e il piano. Per raggio, c'è invece un'intersezione con il piano quando $t_I \ge 0$.

Figura 4.14: Vettori dei piani P_1 , P_2 e della retta L.

4.2.2.6 Piano-Triangolo

Per risolvere l'intersezione piano triangolo bastaunsare la soluzione precedentemente trovata per il problame dell'intersezione tra piano e segmento. Nello specifico, basta trattare i lati del triangolo come tre segmenti distinti e per ognuno di esso applicare la funzione per l'intersezione piano-segmento. Vi saranno tre possibili soluzioni:

```
1  u = P_1 - P_0;
2  t = n · (V_0 - P_0) / (u · n);
3  if ( t >= 0 && t <= 1 ) {
4    P_tI = P_0 + u * t;
5    return true;
6  } else {
7    return false;
8  }
```

Figura 4.15: Schema per del codice per l'intersezione piano-segmento.

- il triangolo non viene intersecato dal piano;
- il triangolo viene intersecato dal piano in uno dei suoi tre vertici;
- il triangolo viene intersecato dal piano, formando quindi due punti d'intersezione nel suo perimetro.

```
if ( intersectSegmentPlane( n, V_0, 1, IntPt_1 )
        )

{ IntPts.push_back(IntPt1); }

if ( intersectSegmentPlane( n, V_0, 2, IntPt2 ))

{ IntPts.push_back(IntPt2); }

if ( intersectSegmentPlane( n, V_0, 3, IntPt3 ))

{ IntPts.push_back(IntPt3); }

if ( IntPts.size() == 2 )

{ return true; }

else if ( IntPts.size() == 0 )

{ return false; }

else

{ return false; }
```

FIGURA 4.16: Schema per del codice per l'intersezione piano-triangolo.

4.2.2.7 Raggio-Triangolo

Dato un triangolo avente vertici (A, B, C) e un raggio R con origine R_O e direzione \vec{R}_D , il problema consiste nel capire se il raggio colpisce o meno il triangolo e, in tal caso, trovare il punto di intersezione P. Negli ultimi decenni, sono stati proposti numerosi algoritmi per risolvere questo problema, esistono quindi diverse soluzioni al problema di intersezione raggio-triangolo. Tre degli algoritmi più importanti sono:

FIGURA 4.17: Schema del problema di intersezione raggio-triangolo.

- l'agoritmo di Badouel;
- l'agoritmo di Segura;
- l'agoritmo di Möller e Trumbore.

Come Jiménez, Segura e Feito afferma in [2], l'algoritmo di Möller-Trumbore's è il più veloce quando il piano normale e/o il piano di proiezione non sono stati precedentemente memorizzati, come nel caso specifico di questa tesi.

La teoria alla base di questo algoritmo è spiegata estensivamente in [6]. In particolare, l'algoritmo sfrutta la parametrizzazione di P, il punto di intersezione, in termini delle coordinate baricentriche, ovvero:

$$P = wA + uB + vC \tag{4.18}$$

Dato che w = 1 - u - v, si può quindi scrivere:

$$P = (1 - u - v)A + uB + vC (4.19)$$

e sviluppando si ottiene:

$$P = A - uA - vA + uB + vC = A + u(B - A) + v(C - A)$$
(4.20)

Si noti che (B-A) e (C-A) sono i bordi AB e AC del triangolo ABC. L'intersezione P può anche essere scritta usando l'equazione parametrica del raggio:

$$P = R_O + t\vec{R}_D \tag{4.21}$$

dove t è la distanza dall'origine del raggio all'intersezione P. Sostituendo P nell'equazione 4.20 con l'equazione del raggio si ottiene:

$$R_O + t\vec{R}_D = A + u(B - A) + v(C - A)$$

$$O - A = -tD + u(B - A) + v(C - A)$$
(4.22)

Sul membro a sinistra si hanno le tre incognite (t, u, v) moltiplicate per tre termini noti (B-A, C-A, D). Si può riorganizzare questi termini e presentare l'equazione 4.22 usando la seguente notazione:

$$\begin{bmatrix} -D & (B-A) & (C-A) \end{bmatrix} \begin{bmatrix} t \\ u \\ v \end{bmatrix} = R_O - A \tag{4.23}$$

Si immagini ora di avere un punto P all'interno del triangolo. Se si trasforma il triangolo in qualche modo (ad esempio traslandolo, ruotandolo o scalandolo), le coordinate del punto P espresse nel sistema di coordinate cartesiane tridimensionali (x,y,z) cambieranno. D'altra parte, se si esprime la posizione di P usando le coordinate baricentriche, le trasformazioni applicate al triangolo non influenzeranno le coordinate baricentriche del punto di intersezione. Se il triangolo viene ruotato, ridimensionato, allungato o traslato, le coordinate (u,v) che definiscono la posizione di P rispetto ai vertici (A,B,C) non cambieranno. L'algoritmo di Möller-Trumbore sfrutta proprio questa proprietà. Infatti, ciò che gli autori hanno fatto è definire un nuovo sistema di coordinate in cui le coordinate di P non sono definite in termini di (x,y,z) ma in termini di (u,v). La somma tra le coordinate baricentriche non può essere maggiore di P0, esprimono infatti le coordinate dei punti definiti all'interno di un triangolo unitario. Ovvero un triangolo definito nello spazio P1, dai vertici P2, P3, dai vertici P3, dai vertici P4, P5, dai vertici P6, P7, P8, dai vertici P8, P9, dai vertici P9, P9, dai vertici dai vertici P9, dai vertici dai vertici P9, dai vertici P9, dai vertici dai ver

FIGURA 4.18: Cambiamento di coordinate nell'algoritmo di Möller-Trumbore.

Geometricamente, si è appena chiarito il significato di u e v. Si consideri ora l'elemento t. Esso è il terzo asse del sistema di coordinate u e v appena introdotto. Si sà inoltre che t esprime la distanza dall'origine del raggio a P, il punto di intersezione, si è quindi creato un sistema di coordinate che consentirà di esprimere univocamente la posizione del punto d'intersezione P in termini di coordinate baricentriche e distanza dall'origine del raggio a quel punto sul triangolo.

Möller e Trumbore spiegano che la prima parte dell'equazione 4.23 (il termine O-A) può essere vista come una trasformazione che sposta il triangolo dalla sua posizione spaziale mondiale originale all'origine (il primo vertice del triangolo coincide con l'origine). L'altro lato dell'equazione ha l'effetto di trasformare il punto di intersezione dallo spazio (x,y,z) nello spazio (t,u,v) come spiegato precedentemente.

Per risolvere l'equazione 4.23, Möller e Trumbore hanno usato una tecnica conosciuta in matematica come regola di Cramer. La regola di Cramer fornisce la soluzione a un sistema di equazioni lineari mediante il determinante. La regola afferma che se la moltiplicazione di una matrice M per un vettore colonna X è uguale a un vettore colonna C, allora è possibile trovare X_i (l'i-esimo elemento del vettore colonna X) dividendo il determinante di M_i per il determinante di M. Dove M_i è la matrice formata sostituendo la sua colonna di M con il vettore colonna C. Usando questa regola si ottiene;

$$\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \frac{1}{\begin{vmatrix} -D & E_1 & E_2 \end{vmatrix}} \begin{bmatrix} \begin{vmatrix} T & E_1 & E_2 \\ -D & T & E_2 \\ -D & E_1 & T \end{vmatrix}$$
(4.24)

dove T=O-A, $E_1=B-A$ ed $E_2=C-A$. Il prossimo passo è trovare un valore per questi quattro determinanti. Il determinante (di una matrice 3×3) non è altro che un triplo prodotto scalare, quindi si può riscrivere l'equazione precedente come:

$$\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \frac{1}{(D \times E_2) \cdot E_1} \begin{bmatrix} (T \times E_1) \cdot E_2 \\ (D \times E_2) \cdot T \\ (T \times E_1) \cdot D \end{bmatrix} = \frac{1}{P \cdot E_1} \begin{bmatrix} Q \cdot E_2 \\ P \cdot T \\ Q \cdot D \end{bmatrix}$$
(4.25)

dove $P = (D \times E_2)$ e $Q = (T \times E_1)$. Come si può vedere ora è facile trovare i valori t, u e v.

Figura 4.19: Schemi per l'output dell'intersezione punto-cerchio.

```
E_1 = B - A;
    E_2 = C - A;
    A = R_D \times E_2;
3
    D = A \cdot E_1;
    if ( D > epsilon ) {
       T = R_0 - A;
6
7
       u = A \cdot T;
       if ( u < 0.0 \mid \mid u > D ) return false;
8
9
       B = T \times E_1;
10
       v = B \cdot R_D;
       if (v < 0.0 \mid | u + v > D) return false;
    } else if ( D < -epsilon ) {
12
       T = R_0 - A;
13
       u = A \cdot T;
14
       if (u > 0.0 \mid \mid u < D) return false;
15
       B = T \times E_1;
16
       v = B \cdot R_D;
17
       if (v > 0.0 \mid \mid u + v < D) return false;
18
    } else {
19
       return false;
20
21
    t = (B \cdot E_2) / D;
22
    if (t > 0.0) {
23
       P = Q + D * t;
24
       return true;
25
    } else {
26
       return false;
27
    }
28
```

Figura 4.20: Schema per del codice per l'intersezione raggio-triangolo con back-face culling.

5.1 Organizzazione

La libreria TireGround è stata organizzata in tre parti, definite dagli stessi *name-spaces*. In seguito verranno riportate le informazioni di maggior rilievo per ognuna delle tre parti della libreria.

5.1.1 Namespace TireGround

In questo *namespace* vengono raccolti i tipi dichiarati con typedef comuni ai *name-spaces* RDF e PatchTire

5.1.2 Namespace RDF

In questo *namespace* vengono raccolti alcuni tipi dichiarati con typedef presenti solo nel namespace RDF. Lo spazio dei nomi RDF contiene tutti le classi e la funzioni per gestire la *mesh* a partire dal file in formato RDF.

BBox2D Questa classe contiene tutte le informazioni per definire e manipolare una BB bidimensionale. Consiste nella descrizione geometrica dell'oggetto BB. I metodi più importanti di questa classe sono i seguenti.

• clear — Elimina il dominio della BB settando tutti i quattro valori su quietNaN.

 updateBBox2D — Aggiorna il dominio della BB settando i suoi valori secondo il massimo ingombro dato dai tre vertici nello spazio tridimensionale in *input*.

Tipo	Nome	Getter	Setter	Descrizione
real_type	Xmin	•	•	X_{min} della BB
real_type	Ymin	•	•	Y_{min} della BB
real_type	Xmax	•	•	X_{max} della BB
real_type	Ymax	•	•	Y_{max} della BB

Tabella 5.1: Attributi della classe BBox2D.

Triangle3D Questa classe contiene tutte le informazioni geometriche per definire e manipolare un triangolo con vertici nello spazio tridimensionale. Consiste nella descrizione geometrica dell'oggetto triangolo. I metodi più importanti di questa classe sono i seguenti.

- Normal Calcola la normale alla faccia del triangolo.
- intersectRay Interseca il triangolo con una data semiretta (detta anche raggio), definita da direzione e punto di partenza, e ne calcola il punto di intersezione.
- intersectPlane Interseca il triangolo con un dato piano, definito da normale e punto noto, e ne calcola i punti di intersezione.

Tipo	Nome	Getter	Setter	Descrizione
vec3	Vertices[3]	•	•	Vertici del triangolo
vec3	Normal	•	•	Normale al triangolo
BBox2D	TriangleBBox	•	•	BB del triangolo

TABELLA 5.2: Attributi della classe Triangle3D.

TriangleRoad Questa classe contiene tutte le informazioni geometriche e non geometriche per definire e manipolare un triangolo con vertici nello spazio tridimensionale rappresentante la superficie stradale. È derivato dalla classe Triangle3D e ha inoltre un attributo che permetter di descrivere il coefficiente di attrito nella faccia (detto anche locale). I metodi più importanti sono ereditati dalla classe Triangle3D.

Tipo	Nome	Getter	Setter	Descrizione
real_type	Friction	•	•	Coefficiente di attrito μ

TABELLA 5.3: Attributi della classe TriangleRoad.

MeshSurface Questa classe contiene il vettore di puntatori di tipo std::shared_ptr alle istanze della classe TriangleRoad che vengono create durante la parsificazione del file RDF. Inoltre contiene il vettore di puntatori alle BB di tipo PtrBBox, che è necessario per calcolare l'albero AABB. Quest'ultimo esiste come ulteriore attributo della classe sotto forma di puntatore PtrAABB. I metodi più importanti di questa classe sono i seguenti.

- set Copia la mesh.
- LoadFile Parsifica il file dato come *input* e crea le istanze TriangleRoad che costituiscono la *mesh*.
- updateIntersection Interseca l'albero di tipo AABB della mesh con un altro albero esterno di tipo AABB e ne restituisce il vettore dei puntatori di tipo std::shared_ptr alle istanze della classe TriangleRoad che vengono intersecate.

Tipo	Nome	Getter	Setter	Descrizione
TriangleRoad_list	Friction	•		Vettore dei triangoli
std::vector <ptrbbox></ptrbbox>	PtrBBoxVec	•		Vettore delle BB
PtrAABB	PtrTree	•		Albero di tipo AABB

TABELLA 5.4: Attributi della classe MeshSurface.

5.1.3 Namespace PatchTire

In questo *namespace* vengono raccolti alcuni tipi dichiarati con typedef presenti solo nel namespace PatchTire. Lo spazio dei nomi PatchTire contiene inoltre tutti le classi e la funzioni per gestire l'intersezione tra lo pneumatico e la *mesh* a partire dalla conoscenza di quest'ultima, della geometria e della posizione dello pneumatico.

Disk Questa classe contiene tutte le informazioni geometriche per definire e manipolare un disco nello spazio tridimensionale. Consiste nella descrizione geometrica e nel posizionamento dello spazio delle coordinate tridimensionali dell'oggetto

disco (il disco viene rappresentato nel sistema di riferimento dello pneumatico). I metodi più importanti di questa classe sono i seguenti.

- isPointInside Controlla se un punto generico nello spazio bidimensionale, definito dal piano in cui giace lo stesso disco, si trova all'interno o all'esterno della circonferenza.
- intersectSegment Trova i punti di intersezione tra la circonferenza esterna del disco e un segmento bidimensionale, che dev'essere definito nel piano in cui giace lo stesso disco. L'intero di *output* fornisce il numero di punti di intersezione.
- intersectPlane Interseca il disco con un piano definito da normale e punto noto. In *output* fornisce l'entità geometrica creata dall'intersezione sotto forma di punto noto e direzione della retta.
- contactTriangles Funzione in *overloading* che consente di ottenere il versore normale e cefficiente attrito medi ponderati sull'area, nonchél'area di contatto stessa all'interno del singolo disco a partire da una serie di triangoli.
- contactPlane Funzione in *overloading* che consente di ottenere l'area di contatto all'interno del singolo disco dato un piano.

Tipo	Nome	Getter	Setter	Descrizione
vec2	OriginXZ	•	•	Coordinate XZ del disco
real_type	OffsetY	•	•	Coordinata Y del disco
real_type	Radius	•	•	Raggio del disco

TABELLA 5.5: Attributi della classe Disk.

ETRTO Questa classe contiene tutte le informazioni necessarie per definire geometricamente uno pneumatico secondo la normativa ETRTO. Consiste nella descrizione geometrica dell'oggetto pneumatico in termini di larghezza totale e di diametro esterno indeformato. Come visto nel Capitolo 3 attraverso la nomenclatura ETRTO (e.g. 205/65R16) è infatti possibile risalire a tutte le informazioni geometriche che definiscono, anche se in maniera grossolana, lo pneumatico.

ReferenceFrame Questa classe contiene tutte le informazioni per definire e manipolare una terna di riferimento nello spazio tridimensionale. Consiste nel posizio-

Tipo	Nome	Getter	Setter	Descrizione
real_type	SectionWidth	•	•	Larghezza dello pneumatico
real_type	AspectRatio	•	•	Rapporto percentuale H/W
real_type	RimDiameter	•	•	Diametro del cerchione
real_type	SidewallHeight	•		Altezza della spalla
real_type	TireDiameter	•		Diametro dello pneumatico

Tabella 5.6: Attributi della classe ETRTO.

namento dello spazio del sistema di riferimento. I metodi più importanti di questa classe sono i seguenti.

- setTotalTransformationMatrix Posiziona nello spazio il sistema di riferimento grazie alla matrice di trasformazione 4 × 4 fornita come *input*.
- getEulerAngleX Ottiene l'angolo creato dalla rotazione attorno all'asse Y del sistema di riferimento locale rispetto a quello assoluto (lo stesso della mesh). L'angolo viene ottenuto in seguito alla fattorizzazione $R_z(\Omega)R_x(\gamma)R_y(\theta)$ e utilizzando il metodo di Eulero.
- getEulerAngleY Come il metodo getEulerAngleX, ma usato per il ottenere l'angolo creato dalla rotazione attorno all'asse Y.
- getEulerAngleZ Come il metodo getEulerAngleX, ma usato per il ottenere l'angolo creato dalla rotazione attorno all'asse Z.

Tipo	Nome	Getter	Setter	Descrizione
vec3	Origin	•	•	Origine della terna
mat3	RotationMatrix	•	•	Matrice di rotazione

TABELLA 5.7: Attributi della classe ReferenceFrame.

Shadow Questa classe serve a rappresentare l'ombra dello pneumatico nello spazio bidimensionale. È molto simile alla RDF::BBox2D precedentemente presentata, ma a differenza di quest'ultima permette di calcola l'albero per oggetti di tipo AABB a una sola foglia, relativo alla stessa ombra totale, della parte superiore e della parte inferiore del BB tridimensionale che racchiude lo pneumatico nello spazio. I metodi più importanti di questa classe sono i seguenti.

• clear — Elimina il dominio dell'ombra settando tutti i suoi valori su qui et NaN.

update – Aggiorna il dominio dell'ombra settando tutti i suoi valori secondo il massimo ingombro dato dalla geometria dello pneumatico e dalla sua posizione nello spazio.

Tipo	Nome	Getter	Setter	Descrizione
PtrAABB	PtrTree	•		Albero AABB totale
PtrAABB	PtrTree_U	•		Albero AABB parte superiore
PtrAABB	PtrTree_L	•		Albero AABB parte inferiore

Tabella 5.8: Attributi della classe Shadow.

SamplingGrid Questa classe contiene tutti i parametri che riguardano la precisione dei calcoli che verranno effettuati nel calcolo della normale al terreno, punto e area di contatto.

Tipo	Nome	Getter	Setter	Descrizione
int_type	PointsN	•	•	N° di punti di campionamento
int_type	DisksN	•	•	N° di dischi
int_type	Switch	•	•	Threshold per il tipo contatto

TABELLA 5.9: Attributi della classe SamplingGrid.

Tire Questa classe serve a rappresentare lo pneumatico nelle coordinate dello spazio tridimensionale. Consiste nel punto di giunzione tra la classe ETRTO che definisce la geometria dello pneumatico in condizione di riposo e la classe ReferenceFrame che ne definisce invece la posizione nello spazio. È una classe virtuale in uqanto viene definita con alcuni metodi puri virtuali. Questi metodi verranno poi sostituiti con nelle classi figlie.

Tipo	Nome	Getter	Setter	Descrizione
SamplingGrid	Precision			Precisione dei calcoli
ETRTO	TireGeometry			Geometria
ReferenceFrame	RF	•	•	Posizione
int_type	TirePose	•	•	Flag per la posizione

TABELLA 5.10: Attributi della classe Tire.

MagicFormula e MultiDisk Queste classe calcolano tutti i parametri necessari per valutare il contatto tra pneumatico a disco singolo e terreno attraverso la formula di Pacejka. Il metodo più importante di queste classi è

- setup Consente di riposizionare la ruota all'interno della *mesh*.
- calculateRelativeCamber Calcola il camber relativo.
- getRho Calcola l'affondamento del disco nel piano strada locale.
- gettArea Calcola l'area d'intersezione dei dischi.

Tipo	Nome	Getter	Descrizione
Disk	SingleDisk		Disco rigido
vec3	Normal	•	Versore del piano strada
vec3	MeshPoint	•	Punto di contatto sulla <i>mesh</i>
vec3	MeshPoint	•	Punto di contatto sul disco
real_type	Friction	•	Coefficiente di attrito locale
real_type	Area	•	Area d'intersezione

TABELLA 5.11: Attributi della classe MagicFormula.

Tipo	Nome	Getter	Descrizione
Disk	DiskVec		Vettore dei dischi
vec3	NormalVec	•	Vettore dei versori normali
vec3	MeshPointVec	•	Vettore dei punti di contatto sulla mesh
vec3	MeshPointVec	•	Vettore dei punto di contatto sul disco
real_type	FrictionVec	•	Vettore dei coefficienti di attrito locale
real_type	AreaVec	•	Vettore delle aree d'intersezione
vec3	Normal	•	Versore del piano strada
vec3	MeshPoint	•	Punto di contatto singolo sulla mesh
vec3	MeshPoint	•	Punto di contatto singolo sul disco
real_type	Friction	•	Coefficiente di attrito locale
real_type	Area	•	Area totale d'intersezione

TABELLA 5.12: Attributi della classe MultiDisk.

5.2 Librerie Esterne

Oltre al codice appena descritto sono state utilizzate anche altre due librerie esterne al fine di velocizzare il processo di sviluppo e al contempo di utilizzare una solida base per le operazione più complesse, ovvero le operazioni matriciali e vettoriali, nonché la creazione degli alberi per oggetti di tipo AABB e l'intersezione tra gli stessi.

5.2.1 Eigen3

Eigen3 è una libreria C++ di alto livello di *template headers* per operazioni di algebra lineare, vettoriali, matriciali, trasformazioni geometriche, *solver* numerici e algoritmi correlati.

Questa libreria è implementata usando la tecnica di *template metaprogramming*, che crea degli alberi di espressioni in fase di compilazione e genera un codice personalizzato per valutarli. Utilizzando i modelli di espressione e un modello di costo delle operazioni in virgola mobile, la libreria esegue il proprio srotolamento del loop e vettorializzazione.

5.2.2 Clothoids

Questa libreria nasce per il *fitting* dei polinomi di Hermite di tipo G^1 e G^2 con clotoidi, *spline* di clotoidi, archi circolari e *biarc*. In questo lavoro di tesi la libreria Clothoids è stata usata per sfruttare l'implementazione dell'oggetto albero per oggetti di tipo AABB.

5.2.3 Doxygen

Doxygen è un *software* comunemente utilizzato per generare documentazione direttamente dalle annotazioni nei file C++. Questo *tool* supporta anche altri linguaggi di programmazione popolari come C, Objective-C, C#, PHP, Java, Python, Fortran, VHDL, Tcl e in una certa misura D.

Doxygen può essere utile per i seguenti motivi.

• Può generare una documentazione da utilizzare *online* (in HTML) e/o un manuale di riferimento *offline* (in LaTeX) da una serie di *file* sorgente oppurtunamente annotati. C'è anche il supporto per generare *output* in RTF (MicroSoft Word), PostScript, PDF con *hyperlink* e HTML compresso. La documentazione viene estratta direttamente dalle fonti, il che rende molto più semplice mantenere la documentazione coerente con il codice sorgente.

• È possibile configurare doxygen per estrarre la struttura del codice da *file* sorgente non documentati. Questo è molto utile per analizzare rapidamente ed efficaciemente i *file* sorgente di grandi dimensioni. Doxygen può anche visualizzare le relazioni tra i vari elementi mediante grafici di dipendenza, diagrammi di ereditarietà e diagrammi di collaborazione, tutti generati automaticamente.

Doxygen è sviluppato su Mac OS X e Linux, ma è configurato per essere altamente portabile. Di conseguenza, funziona anche con la maggior parte degli altri sistemi Unix. Inoltre, sono disponibili eseguibili per Windows.

5.3 Utilizzo

La libreria TireGround è stata pensata per essere semplice da utilizzare. Si vedranno ora i vari passi per per utilizzarla in maniera appropriata.

Caricare la mesh Per caricare la superficie stradale, rappresentata dalla mesh triangolare contenuta nel file RDF, è sufficiente stfruttare il costruttore della classe MeshSurface che prende in *input* l'indirizzo al file.

```
1 RDF::MeshSurface Road("./file.rdf");
```

Creare lo pneumatico Per creare lo pneumatico a singolo disco è suffieciente utilizzare il costruttore di *default* della classe MagicFormula.

```
PatchTire::Tire* SampleTire = new PatchTire::MagicFormula(
SectionWidth, // Sezione laterale dello pneumatico [mm]

AspectRatio, // Aspect ratio percentuale dello pneumatico

RimDiameter, // Diametro del cerchio [in]

Threshold // Threshold per passare dal modello di contatto ponderato in base all'area di intersezione a quello di Rill

);
```

Nel caso invece si voglia creare unoo pneumatico a più dischi si utilizzerà uno dei costruttori della classe MultiDisk. Per il caso di pneumatico a più dischi con raggio uniforme si avrà:

```
PatchTire::Tire* SampleTire = new PatchTire::MultiDisk(
     SectionWidth, // Sezione laterale dello pneumatico [mm]
2
     AspectRatio, // Aspect ratio percentuale dello pneumatico
3
     RimDiameter, // Diametro del cerchio [in]
4
     PointsNumber, // Numero di punti di campionamento per ogni disco
5
     DisksNumber, // Numero di dischi totale
6
     Threshold
                   // Threshold per passare dal modello di contatto
7
         ponderato in base all'area di intersezione a quello di Rill
     ):
 Nel caso di pneumatico a più dischi con raggio di raccordo sulla spalla si avrà invece:
   PatchTire::Tire* SampleTire = new PatchTire::MultiDisk(
     SectionWidth, // Sezione laterale dello pneumatico [mm]
2
3
     AspectRatio, // Aspect ratio percentuale dello pneumatico
     RimDiameter, // Diametro del cerchio [in]
4
     SideRadius,
                   // Raggio di raccordo sulla spalla [mm]
5
     PointsNumber, // Numero di punti di campionamento per ogni disco
6
     DisksNumber, // Numero di dischi totale
7
     Threshold
                   // Threshold per passare dal modello di contatto
         ponderato in base all'area di intersezione a quello di Rill
     );
 Infine, nel caso si voglia creare uno pneumatico a più dischi con forma personaliz-
 zata:
   PatchTire::Tire* SampleTire = new PatchTire::MultiDisk(
1
     SectionWidth, // Sezione laterale dello pneumatico [mm]
2
     AspectRatio, // Aspect ratio percentuale dello pneumatico
3
     RimDiameter, // Diametro del cerchio [in]
                   // Vettore dei raggi dei dischi [m]
5
     RadiusVec.
     PointsNumber, // Numero di punti di campionamento per ogni disco
6
                   // Threshold per passare dal modello di contatto
7
     Threshold
        ponderato in base all'area di intersezione a quello di Rill
```

Orientazione dello pneumatico e valutazione del contatto Per orientare lo pneumatico e valutarne il contatto con il manto stradale si utilizzerà il metodo setup

);

della classe Tire.

```
1 bool Out = TireMD->setup(
2 Road,    // Superficie stradale
3 TransfMat // Matrice di trasformazione 4x4 per orientare lo pneumatico
4 );
```

Per estrarre i risultati si andranno dapprima a inizializzazione delle variabili reali o vettoriali come segue.

```
// Inizializzazione delle variabili
   PatchTire::vec3 N;
   PatchTire::vec3 P;
  PatchTire::real_type Friction;
  PatchTire::real_type Rho;
   PatchTire::real_type RhoDot;
   PatchTire::real_type RelativeCamber;
   PatchTire::real_type Friction;
   PatchTire::real_type Area;
   PatchTire::real_type Volume;
   PatchTire::real_type RelativeCamber;
11
12
   // Estrazione della dimensione appropriata della struttura dati
13
   PatchTire::int_type size = TireSD->getDisksNumber();
14
15
   // Inizializzazione dei vettori con dimensione appropriata
16
   PatchTire::row_vec3 NVec(size);
17
   PatchTire::row_vec3 PVec(size);
18
   PatchTire::row_vecN FrictionVec(size);
19
   PatchTire::row_vecN RhoVec(size);
   PatchTire::row_vecN RhoDotVec(size);
   PatchTire::row_vecN RelativeCamberVec(size);
   PatchTire::row_vecN FrictionVec(size);
   PatchTire::row_vecN AreaVec(size);
   PatchTire::row_vecN VolumeVec(size);
    PatchTire::row_vecN RelativeCamberVec(size);
```

Successivamente verranno modificate dai metodi della classe Tire come:

^{1 //} Estrazione dei dati

```
SampleTire->getNormal(N);
   SampleTire->getPoint(P);
3
   SampleTire->getFriction(Friction);
   SampleTire->getRho(Rho);
5
   SampleTire->getRhoDot(PreviousRho, TimeStep, RhoDot);
   SampleTire->getRelativeCamber(RelativeCamber);
7
   SampleTire->getArea(Area);
8
    SampleTire->getVolume(Volume);
   SampleTire->getRelativeCamber(RelativeCamber)
10
11
   // Estrazione dei dati in vettori
12
   SampleTire->getNormal(NVec);
13
   SampleTire->getPoint(PVec);
14
   SampleTire->getFriction(FrictionVec);
15
   SampleTire->getRho(RhoVec);
16
   SampleTire->getRhoDot(PreviousRho,TimeStep,RhoDotVec);
17
   SampleTire->getRelativeCamber(RelativeCamberVec);
18
    SampleTire->getArea(AreaVec);
19
20
   SampleTire->getVolume(VolumeVec);
    SampleTire->getRelativeCamber(RelativeCamberVec)
21
```

Casi particolari Nel caso in cui la variabile booleana in *output* dal metodo setup precedentemente chiamato sia falsa, si prospettano due casi.

Pneumatico fuori *mesh* Se, oltre alla condizione sulla variabile booleana in *output*, la lista di triangoli intersecati dall'ombra dello pneumatico è vuota. Per effettuare questo test si può intersecare l'albero della *mesh* con l'albero a una foglia di dell'ombra dello pneumatico.

```
bool List = Road.intersectAABBtree(SampleTire.getAABBtree());
```

Se la variabile booleana in *output* dal metodo intersectAABBtree è falsa allora la lista è vuota e lo pneumatico sarà quindi considerato fuori dalla superficie stradale descritta nel file RDF.

Pneumatico in volo Se, oltre alla condizione sulla variabile booleana in *output*, la lista di triangoli intersecati dall'ombra dello pneumatico non è vuota. Per effettuare

questo test si può intersecare l'albero della *mesh* con l'albero a una foglia di dell'ombra dello pneumatico. I parametri d'intersezione vanno settati dall'esterno della libreria TireGround a seconda della morfologia del terreno fuori dalla *mesh*.

bool List = Road.intersectAABBtree(SampleTire.getAABBtree());

Se la variabile booleana in *output* dal metodo intersectAABBtree è vera allora la lista non è vuota e lo pneumatico sarà quindi considerato in volo sopra la superficie stradale descritta nel file RDF. In questo caso i parametri d'intersezione vanno settati come intersezione nulla.

5.4 Prestazioni

A.0.1 Sistemi di Riferimento

La convenzione utilizzata per definire gli assi del sistema di riferimento della vettura è la *International Organization for Standardization* (ISO) 8855.

Figura A.1: Rappresentazione degli assi del sistema di riferimento della vettura secondo la convenzione ISO-V.

Da: Normalización (Ginebra), Road Vehicles, Vehicle Dynamics and Road-holdin Ability: Vocabulary.

Il sistema di riferimento della ruota è conforme alla convenzione ISO-V, la cui disposizione degli assi è illustrata nella Figura A.2. L'origine del sistema di riferimento del vettore ruota è posta in corrispondenza del centro della ruota mentre posizione e orientamento relativi rispetto al sistema di riferimento del telaio sono definiti attraverso il modello della sospensione descritto in [4].

Figura A.2: Rappresentazione degli assi del sistema di riferimento dello pneumatico secondo la convenzione ISO-C.

Da: Documentazione MFeval.

A.0.2 Matrice di Trasformazione

Per descrivere sia l'orientamento che la posizione di un sistema di assi nello spazio, viene introdotta la matrice roto-traslazione, chiamata anche matrice di trasformazione. Questa notazione permette di impiegare le operazioni matrice-vettore per l'analisi di posizione, velocità e accelerazione. La forma generale di una matrice di trasformazione è del tipo:

$$T_{m} = \begin{bmatrix} \begin{bmatrix} R_{m} \end{bmatrix} & O_{mx} \\ O_{my} \\ O_{mz} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$
(A.1)

dove R_m è la matrice di rotazione 3×3 del sistema di riferimento in movimento e O_{mx} , O_{my} e O_{mz} sono le coordinate della sua origine nel sistema di riferimento assoluto o nativo.

L'introduzione dell'elemento fittizio 1 nel vettore della posizione di origine e la successiva spaziatura interna zero della matrice rende possibili le moltiplicazioni matrice-vettore, rendendo la matrice di trasformazione una notazione compatta e conveniente per la descrizione dei sistemi di riferimento. Si noti che per i vettori, le informazioni traslazionali vengono trascurate imponendo l'elemento fittizio pari a 0.

 ${\bf Tire Ground}$

Generated by Doxygen 1.8.13

Contents

1	Tire	Grou	ıd										1
2	Nar	nespac	e Index										5
	2.1	Name	space List				 	 	 	 	 		 5
3	Hie	rarchio	al Index										7
	3.1	Class	Hierarchy				 	 	 	 	 		 7
4	Clas	ss Inde	ex										9
	4.1	Class	List				 	 	 	 	 		 9
5	Nan	nespac	e Docun	nentation									11
	5.1	Patch'	Tire Name	espace Refer	ence .		 	 	 	 	 		 11
		5.1.1	Detailed	Description			 	 	 	 	 		 11
	5.2	Patch'	Tire::algor	ithms Name	space R	teferen ce	 	 	 	 	 		 11
		5.2.1	Detailed	Description			 	 	 	 	 		 12
		5.2.2	Function	Documenta	tion		 	 	 	 	 		 12
			5.2.2.1	intersectPoi	intSegm	ent().	 	 	 	 	 		 12
			5.2.2.2	intersect Ra	yPlane()	 	 	 	 	 		 12
			5.2.2.3	minmax X	Y() [1/	2]	 	 	 	 	 		 13
			5.2.2.4	minmax_X	Y() [2/	2]	 	 	 	 	 		 13
			5.2.2.5	trapezoidA	rea() .		 	 	 	 	 		 13
			5.2.2.6	weightedMe	ean() [1.	/2]	 	 	 	 	 		 14
			5.2.2.7	weightedMe	ean() [2.	/2]	 	 	 	 	 		 14
	5.3	RDF	Namespac	e Reference			 	 	 	 	 		 14
		5.3.1	Detailed	Description			 	 	 	 	 		 15
	5.4	RDF::	algorithm	s Namespace	Refere	nce	 	 	 	 	 		 15
		5.4.1	Detailed	Description			 	 	 	 	 		 15
		5.4.2	Function	Documenta	tion		 	 	 	 	 		 15
			5.4.2.1	first Token()			 	 	 	 	 		 15
			5.4.2.2	getElement	()		 	 	 	 	 		 16
			5.4.2.3	split()			 	 	 	 	 		 16
			5.4.2.4	tail()			 	 	 	 	 		 16
	5.5	TireG	round Na	nespace Ref									16
				D 1.41									1.77

ii CONTENTS

6	Clas	ss Dog	umontat	on.	19				
U	6.1								
	0.1								
		6.1.1		tor & Destructor Documentation	19 20				
		0.1.2	6.1.2.1	BBox2D()	20				
		6.1.3		V ·	20				
		0.1.3		Function Documentation					
			6.1.3.1	print()	20				
			6.1.3.2	updateBBox2D()	20				
	6.2			Class Reference	20				
		6.2.1		Description	21				
		6.2.2		tor & Destructor Documentation	21				
			6.2.2.1	$\mathrm{Disk}()\ \dots$	21				
		6.2.3		Function Documentation	21				
			6.2.3.1	$contactPlane() \ \dots $	22				
			6.2.3.2	$contact Triangles() \hspace{0.1in} \ldots $	22				
			6.2.3.3	$\operatorname{set}() \ \ldots \ $	22				
			6.2.3.4	$\operatorname{setOriginXZ}() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	23				
	6.3	Patch'	Tire::ETR	TO Class Reference	23				
		6.3.1	Detailed	Description	23				
		6.3.2	Construc	tor & Destructor Documentation	23				
			6.3.2.1	ETRTO()	23				
		6.3.3	Member	Function Documentation	24				
			6.3.3.1	print()	24				
	6.4	Patch'	Tire::Magi	cFormula Class Reference	24				
		6.4.1	Detailed	Description	27				
		6.4.2	Construc	tor & Destructor Documentation	27				
			6.4.2.1	MagicFormula()	27				
		6.4.3	Member	Function Documentation	27				
			6.4.3.1	evaluateContact()	27				
			6.4.3.2	fourPointsSampling()	28				
			6.4.3.3	getArea() [1/2]	28				
			6.4.3.4	getArea() [2/2]	28				
			6.4.3.5	getEulerAngleX()	28				
			6.4.3.6	getEulerAngleY()	28				
			6.4.3.7	getEulerAngleZ()	29				
			6.4.3.8	getFriction() [1/2]	29				
			6.4.3.9	getFriction() [2/2]	29				
				getMFpoint() [1/2]	29				
			6.4.3.11	getMFpoint() [2/2]	29				
			6.4.3.11 $6.4.3.12$	getMFpointRF() [1/2]	30				
				getMFpointRF() [2/2]	30				
				getNormal() [2/2]	30 30				
				· · · · · · · · · · · · · · · · · · ·					
				getNormal() [2/2]	30				
			6.4.3.16	getRelativeCamber()	31				

ONTENTS	:::
UNIEDNIS	111

		6.4.3.17	getRho() [1/2]	31
		6.4.3.18	getRho() [2/2]	31
		6.4.3.19	getRhoDot() [1/2]	31
		6.4.3.20	getRhoDot() [2/2]	32
		6.4.3.21	getVolume() [1/2]	32
		6.4.3.22	getVolume() [2/2]	32
		6.4.3.23	pointSampling()	33
		6.4.3.24	print()	33
		6.4.3.25	printETRTOGeometry()	33
		6.4.3.26	setOrigin()	34
		6.4.3.27	set ReferenceFrame()	34
		6.4.3.28	$\operatorname{set} \operatorname{RotationMatrix}()$	34
		6.4.3.29	$set Total Transformation Matrix () \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	34
		6.4.3.30	setup()	35
6.5	RDF::	:MeshSurf	ace Class Reference	35
	6.5.1	Detailed	Description	36
	6.5.2	Constru	ctor & Destructor Documentation	36
		6.5.2.1	MeshSurface() [1/2]	36
		6.5.2.2	MeshSurface() [2/2]	36
	6.5.3	Member	Function Documentation	36
		6.5.3.1	intersectAABBtree()	36
		6.5.3.2	intersectBBox()	36
		6.5.3.3	LoadFile()	37
		6.5.3.4	printData()	37
		6.5.3.5	set()	37
6.6	Patch'	Tire::Mult	iiDisk Class Reference	37
	6.6.1	Detailed	Description	40
	6.6.2	Constru	ctor & Destructor Documentation	40
		6.6.2.1	MultiDisk() [1/3]	40
		6.6.2.2	MultiDisk() [2/3]	41
		6.6.2.3	MultiDisk() [3/3]	41
	6.6.3	Member	Function Documentation	42
		6.6.3.1	getArea() [1/2]	42
		6.6.3.2	getArea() [2/2]	42
		6.6.3.3	getDiskFriction()	42
		6.6.3.4	getDiskMFpoint()	43
		6.6.3.5	getDiskMFpointRF()	43
		6.6.3.6	getDiskNormal()	43
		6.6.3.7	getDiskOriginXYZ() [1/2]	43
		6.6.3.8	getDiskOriginXYZ() [2/2]	44
		6.6.3.9	getDiskRho()	44
		6.6.3.10	getDiskRhoDot()	44
		6.6.3.11	getEulerAngleX()	44
		6.6.3.12	getEulerAngleY()	45

iv CONTENTS

		6.6.3.13	$\mathbf{getEulerAngleZ}() \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$	45
		6.6.3.14	getFriction() [1/2]	45
		6.6.3.15	getFriction() [2/2]	45
		6.6.3.16	getMFpoint() [1/2]	45
		6.6.3.17	getMFpoint() [2/2]	46
		6.6.3.18	getMFpointRF() [1/2]	46
		6.6.3.19	getMFpointRF() [2/2]	46
		6.6.3.20	getNormal() [1/2]	46
		6.6.3.21	getNormal() [2/2]	47
		6.6.3.22	$getRelativeCamber() \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	47
		6.6.3.23	getRho() [1/2]	47
		6.6.3.24	getRho() [2/2]	47
		6.6.3.25	getRhoDot() [1/2]	48
		6.6.3.26	$getRhoDot() \ \ [2/2] \ \ldots \ \ldots \ \ldots$	48
		6.6.3.27	getVolume() [1/2]	48
		6.6.3.28	getVolume() [2/2]	48
		6.6.3.29	$pointSampling() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	50
		6.6.3.30	$\operatorname{print}() \dots $	50
		6.6.3.31	$printETRTOGeometry()\qquad \dots \qquad \dots \qquad \dots \qquad \dots$	50
		6.6.3.32	setDiskOriginXZ() [1/2]	51
		6.6.3.33	setDiskOriginXZ() [2/2]	51
		6.6.3.34	$\operatorname{setOrigin}() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	51
		6.6.3.35	${\rm set}{\rm ReferenceFrame}()\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	51
		6.6.3.36	${\rm set} {\rm RotationMatrix}() \ \dots $	52
		6.6.3.37	$set Total Transformation Matrix () \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	52
		6.6.3.38	$\operatorname{setup}() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	52
6.7	Patch	Tire::Refe	renceFrame Class Reference	52
	6.7.1	Detailed	Description	53
	6.7.2	Constru	ctor & Destructor Documentation	53
		6.7.2.1	${\bf ReferenceFrame}() \qquad \dots \qquad \dots \\$	53
	6.7.3	Member	Function Documentation	54
		6.7.3.1	${\tt getEulerAngleX}() \qquad \ldots \qquad \ldots \qquad \ldots \qquad \ldots$	54
		6.7.3.2	${\tt getEulerAngleY()} \qquad \dots \qquad \dots \\$	54
		6.7.3.3	${\tt getEulerAngleZ()} \qquad \dots \qquad \dots \\$	54
		6.7.3.4	set()	54
		6.7.3.5	$\operatorname{setOrigin}() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	54
		6.7.3.6	${\rm set} \\ {\rm RotationMatrix}() \ \dots $	54
		6.7.3.7	$set Total Transformation Matrix () \\ \ \ldots \\ \ \ldots \\ \ \ldots \\ \ \ldots$	55
6.8	Patch	Tire::Sam	plingGrid Class Reference	55
	6.8.1	Detailed	Description	55
	6.8.2	Constru	ctor & Destructor Documentation	56
		6.8.2.1	SamplingGrid() [1/2]	56
		6.8.2.2	SamplingGrid() [2/2]	56
	6.8.3	Member	Function Documentation	56

CONTENTS

		6.8.3.1 set() [1/2]
		6.8.3.2 set() [2/2]
		6.8.3.3 setSwitchNumber()
6.9	Patch	Fire::Shadow Class Reference
	6.9.1	Detailed Description
	6.9.2	Constructor & Destructor Documentation
		6.9.2.1 Shadow()
	6.9.3	Member Function Documentation
		6.9.3.1 update()
6.10	TicTo	c Class Reference
6.11	Patch	Fire::Tire Class Reference
	6.11.1	Detailed Description
	6.11.2	Constructor & Destructor Documentation 61
		6.11.2.1 Tire()
	6.11.3	Member Function Documentation
		6.11.3.1 evaluateContact()
		6.11.3.2 getArea() [1/2]
		6.11.3.3 getArea() [2/2]
		6.11.3.4 getEulerAngleX()
		6.11.3.5 getEulerAngleY()
		6.11.3.6 getEulerAngleZ()
		6.11.3.7 getFriction() [1/2]
		6.11.3.8 getFriction() [2/2]
		6.11.3.9 getMFpoint() [1/2] 63
		6.11.3.10 getMFpoint() [2/2]
		6.11.3.11 getMFpointRF() [1/2]
		6.11.3.12 getMFpointRF() [2/2]
		6.11.3.13 getNormal() [1/2]
		6.11.3.14 getNormal() [2/2]
		6.11.3.15 getRelativeCamber()
		6.11.3.16 getRho() [1/2]
		6.11.3.17 getRho() [2/2]
		6.11.3.18 getRhoDot() [1/2]
		6.11.3.19 getRhoDot() [2/2]
		6.11.3.20 getVolume() [1/2]
		6.11.3.21 getVolume() [2/2]
		6.11.3.22 pointSampling()
		6.11.3.23 print()
		6.11.3.24 printETRTOGeometry()
		6.11.3.25 setOrigin()
		6.11.3.26 setReferenceFrame()
		6.11.3.27 setRotationMatrix()
		$6.11.3.28 \ set Total Transformation Matrix () \qquad . \qquad $
		6.11.3.29 setup() 68

CONTENTATE
CONTENTS

Index				79
		6.13.3.7	setVertices() [2/2]	. 77
		6.13.3.6	setVertices() [1/2]	. 77
		6.13.3.5	$\operatorname{setFriction}() \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $. 77
		6.13.3.4	$\mathbf{print}() \dots $. 76
		6.13.3.3	$intersectRay() \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 76
		6.13.3.2	$intersectPlane() \\ \ \ldots \\ \ \ldots$. 76
		6.13.3.1	$intersectEdgePlane()\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$. 75
	6.13.3	Member	Function Documentation	. 75
		6.13.2.1	TriangleRoad()	. 75
	6.13.2	Construc	tor & Destructor Documentation	. 75
		_	Description	
6.13	RDF::		oad Class Reference	
			setVertices() [2/2]	
			setVertices() [1/2]	
			print()	
			intersect Ray()	
			intersectPlane()	
	0.12.0		intersectEdgePlane()	
	6 19 9		Function Documentation	
	0.12.2		tor & Destructor Documentation	
			Description	
6.12			D Class Reference	
0.10	DDE	T. 1 01		00

TireGround

A repository for the code developed by Davide Stocco for his thesis.

Department of Industrial Engineering

Master Degree in Mechatronics Engineering

 $EN: \textbf{Real-Time Computation of Tire/Road Contact using Tailored Algorithms} \ IT: \textbf{Valutazione Real-Time del Contacto Pneumatico/Strada con Algoritmi Dedicati$

Academic Year $2019 \cdot 2020$

Author: Davide Stocco

Supervisor & Co-supervisor: Prof. Enrico Bertolazzi & Dr.Eng. Matteo Ragni

MagicFormula tire model usage

1. Load .rdf file.

```
RDF::MeshSurface Road(
   "./file.rdf" // Path to the *.rdf file
);
```

 $2. \ \, {\rm Initialize \ the \ Magic Formula \ tire \ model}.$

```
PatchTire::Tire* TireSD = new PatchTire::MagicFormula(
SectionWidth, // [mm]
AspectRatio, // [%]
RimDiameter, // [in]
SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling));
```

3. Contact evaluation.

4. Data extraction.

```
// Variable initialization (for real numbers)
PatchTire::vec3 N;
PatchTire::vec3 P;
PatchTire::real_type Friction;
PatchTire::real_type Rho;
PatchTire::real_type Rhobot;
PatchTire::real_type RelativeCamber;
PatchTire::real_type Friction;
PatchTire::real_type Friction;
PatchTire::real_type Area;
PatchTire::real_type Volume;
PatchTire::real_type RelativeCamber;

// Data extraction (for real numbers)
TireSD->getNormal(N);
TireSD->getPoint(P);
```

2 TireGround

```
TireSD->getFriction(Friction);
TireSD->getRho(Rho);
TireSD->getRhoDot(PreviousRho, TimeStep, RhoDot);
TireSD->getRelativeCamber(RelativeCamber);
TireSD->getRelativeCamber(RelativeCamber);
TireSD->getRelativeCamber(RelativeCamber)

// Extract data stucture size
PatchTire::int_type size = TireSD->getDisksNumber();

// Variable initialization (for vectors)
PatchTire::row_vec3 NVec(size);
PatchTire::row_vec3 FrictionVec(size);
PatchTire::row_vecN FrictionVec(size);
PatchTire::row_vecN RhoDotVec(size);
PatchTire::row_vecN RelativeCamberVec(size);

// Data extraction (for vectors)
TireSD->getFortion(PrictionVec);
TireSD->getFriction(PrictionVec);
TireSD->getRondral(Nvec);
TireSD->getRolativeCamber(RelativeCamberVec);
TireSD->getRolativeCamber(RelativeCamberVec);
TireSD->getAtea(AreaVec);
TireSD->getAtea(AreaVec);
TireSD->getVolume(VolumeVec);
TireSD->getRelativeCamber(RelativeCambeVec)
```

MultiDisk tire model usage

1. Load .rdf file.

```
RDF::MeshSurface Road(
  "./file.rdf" // Path to the *.rdf file
);
```

- 2. Initialize the MultiDisk tire model:
 - (a) MultiDisk tire without sidewall radius (uniform cylinder).

```
PatchTire::Tire* TireMD = new PatchTire::MultiDisk(
    SectionWidth, // [mm]
    AspectRatio, // [%]
    RimDiameter, // [in]
    PointsNumber, // Sampling points for each disk
    DisksNumber, // Disks number
    SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling)
);
```

(b) MultiDisk tire with sidewall radius (uniform cylinder with filleted sidewall edge).

```
PatchTire::Tire* TireMD = new PatchTire::MultiDisk(
    SectionWidth, // [mm]
    AspectRatio, // [%]
    RimDiameter, // [in]
    SideRadius, // Sidewall radius [mm]
    PointsNumber, // Sampling points for each disk
    DisksNumber, // Disks number
    SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling)
);
```

(c) MultiDisk tire with custom disks radius.

```
PatchTire::Tire* TireMD = new PatchTire::MultiDisk(
    SectionWidth, // [mm]
    AspectRatio, // [%]
    RimDiameter, // [in]
    RadiusVec, // Disks radius vector [m]
    PointsNumber, // Sampling points for each disk
    SwitchNumber // Maximum RoadTriangles in the Tire Shadow (switch to sampling)
);
```

3. Contact evaluation.

4. Data extraction for contact point (s).

```
// Variable initialization (for real numbers)
PatchTire::vec3 N;
PatchTire::vec3 P;
PatchTire::real_type Friction;
PatchTire::real_type Rho;
PatchTire::real_type Rhobot;
PatchTire::real_type RelativeCamber;
PatchTire::real_type RelativeCamber;
PatchTire::real_type Priction;
PatchTire::real_type Priction;
PatchTire::real_type Area;
PatchTire::real_type Volume;
PatchTire::real_type RelativeCamber;

// Data extraction (for real numbers)
TireMD-3petNormal(N);
TireMD-3petPriction(Friction);
TireMD-3petFriction(Friction);
TireMD-3petRho(Rho);
TireMD-3petRho(Rho);
TireMD-3petRelativeCamber(RelativeCamber);
TireMD-3petRelativeCamber(RelativeCamber)

// Extract data stucture size
PatchTire::row_vec1 Nvec(size);
PatchTire::row_vec3 Pvec(size);
PatchTire::row_vec3 Nvec(size);
PatchTire::row_vec1 RelativeCamber(size);
PatchTire::row_vec1 RelativeCamber(size);
PatchTire::row_vec1 RelativeCamber(size);
PatchTire::row_vec1 RelativeCamber(size);
PatchTire::row_vec1 RelativeCamberVec(size);
PatchTire::row_vec1 RelativeCamberVec(size);
PatchTire::row_vec1 NelativeCamberVec(size);
PatchTire::row_vec1 NelativeCamberVec(size);
PatchTire::row_vec1 RelativeCamberVec(size);
PatchTire::row_vec1 RelativeCamberVec(size);
PatchTire::row_vec1 RelativeCamberVec(size);
TireMD-3petFortion (FrictionVec);
TireMD-3petFortion (FrictionVec);
TireMD-3petRhobot (PreviousRho, TimeStep, RhoDotVec);
TireMD-3petRelativeCamber (RelativeCamberVec);
TireMD-3petRelativeCamber (RelativeCamberVec);
TireMD-3petRelativeCamber (RelativeCamberVec);
TireMD-3petRelativeCamber (RelativeCambeVec)
```

4 TireGround

Namespace Index

2.1 Namespace List

Here is a list of all documented names paces with brief descriptions: $% \left(1\right) =\left(1\right) \left(1\right) =\left(1\right) \left(1\right) \left($

1 attil The
Tire computations routines
Patch Tire::algorithms
Algorithms for tire computations routine
RDF
RDF mesh computations routines
RDF::algorithms
Algorithms for RDF mesh computations routine
TireGround
Type defs for tire computations routine

Hierarchical Index

3.1 Class Hierarchy

his inheritance list is sorted roughly, but not completely, alphabetically:	
RDF::BBox2D	19
Patch Tire::Disk	20
Patch Tire::ETRTO	23
RDF::MeshSurface	35
Patch Tire::ReferenceFrame	52
Patch Tire::Sampling Grid	55
Patch Tire::Shadow	57
TicToc	58
Patch Tire::Tire	58
Patch Tire::MagicFormula	24
Patch Tire::MultiDisk	37
RDF::Triangle3D	69
DDF. III. 1 D. 1	70

8 Hierarchical Index

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions: RDF::BBox2D Patch Tire::Disk ${\bf Tire} \ {\bf disk}$ Patch Tire::ETRTO Patch Tire::MagicFormula RDF::MeshSurface Mesh surface Patch Tire::MultiDisk Patch Tire::Reference Frame Reference frame Patch Tire::Sampling Grid Patch evaluation precision Patch Tire::Shadow TicToc Patch Tire::Tire Base class for Tire models RDF::Triangle3D 3D triangle (pure geometrical description) RDF::TriangleRoad 10 Class Index

Namespace Documentation

5.1 PatchTire Namespace Reference

Tire computations routines.

Namespaces

• algorithms

 $Algorithms\ for\ tire\ computations\ routine.$

Classes

• class Disk

Tire disk.

 $\bullet \ \ {\rm class} \ {\bf ETRTO}$

Tire ETR TO denomination.

 $\bullet \ \ class \ Magic Formula$

Pacejka MagicFormula contact model.

 $\bullet \ \, {\rm class} \,\, {\rm Multi\, Di\, sk}$

Multi-disk tire contact model.

 $\bullet \ \ class \ Reference Frame$

 $Reference\ frame.$

 $\bullet \ \ class \ {\bf Sampling Grid} \\$

 $Patch\ evaluation\ precision.$

 \bullet class Shadow

2D shadow (2D bounding box enhacement)

• class Tire

Base class for Tire models.

5.1.1 Detailed Description

Tire computations routines.

 $file \colon \mathbf{PatchTire.hh}$

5.2 PatchTire::algorithms Namespace Reference

Algorithms for tire computations routine.

Functions

- $\bullet \ \ real_type \ weighted Mean \ (row_vecN \ const \ \&Values, row_vecN \ const \ \&Weights)$
 - Calculate arithmetic weighted mean for real numbers.
- $\bullet \ \ vec 3 \ weighted Mean \ (row_vec 3 \ const \ \&Values, \ row_vec N \ const \ \&Weights) \\$

 $Calculate\ arithmetic\ weighted\ mean\ for\ 3D\ vectors.$

- bool intersectPointSegment (vec2 const &Point1, vec2 const &Point2, vec2 const &PointQ)
- \bullet bool intersect RayPlane (vec3 const &
planeN, vec3 const &
planeP, vec3 const &
RayPoint, vec3 const &
RayDirection, vec3 &
IntersectionPt)

Check if a segment hits a plane and find the intersection point.

 $\bullet \ \ {\rm void} \ minmax_XY \ ({\rm row_vec3} \ {\rm const} \ \& Points, vec2} \ \& XYmin, vec2 \ \& XYmax) \\$

Calculate minumum and maximum in XY plane for 3D vectors.

• void minmax_XY (row_vec2 const &Points, vec2 &XYmin, vec2 &XYmax)

Calculate minumum and maximum in XY plane for 2D vectors.

• real_type trapezoidArea (real_type const Base_A, real_type const Base_B, real_type const Height)

Calculate area of a trapeziod [m^2].

5.2.1 Detailed Description

Algorithms for tire computations routine.

5.2.2 Function Documentation

5.2.2.1 intersect PointSegment()

```
bool PatchTire::algorithms::intersectPointSegment (
    vec2 const & Point1,
    vec2 const & Point2,
    vec2 const & PointQ )
```

Check if a point lays inside or outside a line segment

Warning: The point query point must be on the same rect of the line segment!

Parameters

Point1	Line segment point 1
Point2	Line segment point 2
PointQ	Query point

5.2.2.2 intersect Ray Plane()

```
bool PatchTire::algorithms::intersectRayPlane (
    vec3 const & planeN,
    vec3 const & planeP,
    vec3 const & RayPoint,
    vec3 const & RayDirection,
    vec3 & IntersectionPt )
```

Check if a segment hits a plane and find the intersection point.

Parameters

planeN	Plane normal vector
planeP	Plane known point
RayPoint	Ray point
Ray Direction	Ray direction
IntersectionPt	Intersection point

5.2.2.3 minmax_XY() [1/2]

```
void PatchTire::algorithms::minmax_XY (
    row_vec3 const & Points,
    vec2 & XYmin,
    vec2 & XYmax )
```

Calculate minumum and maximum in XY plane for 3D vectors.

Parameters

Points	3D points vector
XYmin	Minimum (X, Y) values
XYmax	Maximum (X, Y) values

5.2.2.4 minmax_XY() [2/2]

```
void PatchTire::algorithms::minmax_XY (
    row_vec2 const & Points,
    vec2 & XYmin,
    vec2 & XYmax )
```

Calculate minumum and maximum in XY plane for 2D vectors.

Parameters

Points	2D points vector
XYmin	Minimum (X, Y) values
XYmax	Maximum (X, Y) values

5.2.2.5 trapezoidArea()

```
real_type PatchTire::algorithms::trapezoidArea (
    real_type const Base_A,
    real_type const Base_B,
    real_type const Height ) [inline]
```

Calculate area of a trapeziod [m^2].

Parameters

$Base \leftarrow$	Base 1
_ A	
$Base \leftarrow$	Base 2
-B	
Height	Heigth

5.2.2.6 weightedMean() [1/2]

```
real_type PatchTire::algorithms::weightedMean (
    row_vecN const & Values,
    row_vecN const & Weights )
```

Calculate arithmetic weighted mean for real numbers.

Parameters

Values	Values (real numbers)
Weights	Weights (real numbers)

5.2.2.7 weightedMean() [2/2]

```
vec3 PatchTire::algorithms::weightedMean (
    row_vec3 const & Values,
    row_vecN const & Weights )
```

Calculate arithmetic weighted mean for 3D vectors.

Parameters

Values	Values (3D vectors)
Weights	Weights (real numbers)

5.3 RDF Namespace Reference

RDF mesh computations routines.

Namespaces

• algorithms

 $Algorithms\ for\ RDF\ mesh\ computations\ routine.$

${\bf Classes}$

- \bullet class BBox 2D
 - 2D Bounding Box class
- class MeshSurface

```
Mesh\ surface.
```

• class Triangle3D

3D triangle (pure geometrical description)

 $\bullet \ \ class \ Triangle Road \\$

 $3D\ triangles\ for\ road\ representation$

Typedefs

- typedef std::shared_ptr< TriangleRoad > TriangleRoad_ptr Shared pointer to TriangleRoad object.

5.3.1 Detailed Description

RDF mesh computations routines.

5.4 RDF::algorithms Namespace Reference

Algorithms for RDF mesh computations routine.

Functions

- void split (std::string const &in, std::vector< std::string > &out, std::string const &token)

 Split a string into a string array at a given token.
- std::string tail (std::string const &in)

Get tail of string after first token and possibly following spaces.

 $\bullet \;\; \mathrm{std::string} \;\; \mathrm{firstToken} \;\; (\mathrm{std::string} \;\; \mathrm{const} \;\; \&\mathrm{in})$

Get first token of string.

• template<typename T >

T const & getElement (std::vector< T > const & elements, std::string const & index)

Get element at given index position.

${\bf 5.4.1}\quad {\bf Detailed}\ {\bf Description}$

Algorithms for ${\bf RDF}$ mesh computations routine.

5.4.2 Function Documentation

${\bf 5.4.2.1} \quad {\bf firstToken()}$

```
std::string RDF::algorithms::firstToken ( {\tt std::string\ const\ \&\ in\ )} Get first token of string.
```

in Input string

5.4.2.2 getElement()

Get element at given index position.

Parameters

elements	Elements vector
index	Index position

5.4.2.3 sp lit ()

```
void RDF::algorithms::split (
    std::string const & in,
    std::vector< std::string > & out,
    std::string const & token )
```

Split a string into a string array at a given token.

Parameters

in	Input string
out	Output string vector
token	Token

5.4.2.4 tail()

Get tail of string after first token and possibly following spaces.

${\bf Parameters}$

```
in Input string
```

5.5 TireGround Namespace Reference

Typedefs for tire computations routine.

${\bf Typedefs}$

• typedef double real_type

*Real number type.

- typedef int int_type
 Integer number type.
 typedef Eigen::Vector2i vec2_int
 2D vector type of real integer type
 typedef Eigen::Vector2d vec2
 - 2D vector type of real number type
- typedef Eigen::Vector3d vec3

 3D vector type of real number type
- typedef Eigen::Vector4d vec4
 4D vector type of real number type
- typedef Eigen::Matrix3d mat3

 3x3 matrix type of real number type
- typedef Eigen::Matrix4d mat4

 4x4 matrix type of real number type
- typedef Eigen::Matrix< real_type, 1, Eigen::Dynamic > row_vecN
 Row vector type real number type.
- typedef Eigen::Matrix< real_type, Eigen::Dynamic, 1 > col_vecN

 Column vector type real number type.
- typedef Eigen::Matrix < real_type, Eigen::Dynamic, Eigen::Dynamic > matN

 Matrix type of real number type.
- typedef Eigen::Matrix< vec2, 1, Eigen::Dynamic > row_vec2

 Row vector type of 2D vector.
- typedef Eigen::Matrix< vec2, Eigen::Dynamic, 1 > col_vec2

 Column vector type of 2D vector.
- typedef Eigen::Matrix < vec2, Eigen::Dynamic, Eigen::Dynamic > mat_vec2

 Matrix type of 2D vector.
- typedef Eigen::Matrix < vec3, 1, Eigen::Dynamic > row_vec3

 Row vector type of 3D vector.
- typedef Eigen::Matrix< vec3, Eigen::Dynamic, 1 > col_vec3

 Column vector type of 3D vector.
- typedef Eigen::Matrix < vec3, Eigen::Dynamic, Eigen::Dynamic > $matN_vec3$ $Matrix\ type\ of\ 3D\ vector.$
- typedef Eigen::Matrix< mat4, 1, Eigen::Dynamic > row_mat4

 Matrix type of 4x4 matrix.
- $\begin{tabular}{ll} \bullet & type def std::basic_ostream < char > ostream_type \\ & \it{Output stream type}. \end{tabular}$

Variables

real_type const epsilon = std::numeric_limits<real_type>::epsilon()
 Epsilon type.

5.5.1 Detailed Description

Type defs for tire computations routine.

file: TireGround.hh

Class Documentation

RDF::BBox2D Class Reference

```
2 \mathrm{D} Bounding Box class
#include <RoadRDF.hh>
```

Public Member Functions

- BBox2D ()
 - $Default\ constructor.$
- BBox2D (vec3 const Vertices[3])
 - Variable set constructor.
- $\bullet \quad {\rm void} \ {\rm setXmin} \ ({\rm real_type} \ {\rm const} \ _{\rm Xmin})$
 - Set X_{min} shadow domain.
- $\bullet \quad {\rm void} \ {\rm setYmin} \ ({\rm real_type} \ {\rm const} \ _{\rm Ymin})$
 - Set Y_{min} shadow domain.
- $\bullet \quad {\rm void} \ {\rm setXm} \, {\rm ax} \ ({\rm real_type} \ {\rm const} \ _{\rm Xm} \, {\rm ax})$
- Set X_{max} shadow domain. • void setYmax (real_type const _Ymax)
- Set Y_{max} shadow domain.
- real_type getXmin (void) const
 - Get X_{min} shadow domain.
- $\bullet \quad {\rm real_type~getYmin~(void)~const}$
 - Get Ymin shadow domain.
- \bullet real_type getXmax (void) const
 - Get X_{max} shadow domain.
- $\bullet \quad {\rm real_type~getYmax~(void)~const}$
 - Get Y_{max} shadow domain.
- void clear (void)
 - $Clear\ the\ bounding\ box\ domain.$
- void print (ostream_type &stream) const
 - Print bounding box domain.
- void updateBBox2D (vec3 const Vertices[3])

Update the bounding box domain with three input vertices.

6.1.1 Detailed Description

2D Bounding Box class

6.1.2 Constructor & Destructor Documentation

6.1.2.1 BBox2D()

6.1.3 Member Function Documentation

6.1.3.1 print()

6.1.3.2 up dateBBox2D()

Update the bounding box domain with three input vertices.

Parameters

Vertices | Vertices reference vector

The documentation for this class was generated from the following file:

 $\bullet \ include/RoadRDF.hh \\$

6.2 PatchTire::Disk Class Reference

```
Tire disk.
#include <PatchTire.hh>
```

Public Member Functions

• Disk (Disk &&)=default

```
Enable && operator.
```

• Disk ()

 $Default\ constructor.$

Variable set constructor.

• void set (Disk const &in)

 $Copy\ the\ {\color{red} Disk}\ object.$

 $\bullet \ \operatorname{void} \ \operatorname{setOriginXZ} \ (\operatorname{vec2} \ \operatorname{const} \ \& _\operatorname{OriginXZ})$

Set origin on XZ plane.

 $\bullet \quad \text{vec2 const \& getOriginXZ (void) const} \\$

Get origin vector XZ-axes coordinates.

• vec3 getOriginXYZ (void) const

Get origin vector XYZ-axes coordinates.

 $\bullet \quad {\rm real_type~getOffsetY~(void)~const}$

 $Get\ origin\ Y\mbox{-}axis\ coordinate.$

 \bullet real_type getRadius (void) const

 $Get\ {\it Disk}\ radius.$

- void contactTriangles (RDF::TriangleRoad_list const &TriList, ReferenceFrame const &RF, vec3 &Normal, real_type &Friction, real_type &Area) const
- void contact Plane (vec3 const &Normal, vec3 const &Point, Reference Frame const &RF, real_type &Area) const
- void pointOnDisk (vec3 const &Normal, ReferenceFrame const &RF, vec3 &DiskPoint, vec3 &NormalOnDisk) const

Get the points on Disk the circumference and on a given plane.

6.2.1 Detailed Description

Tire disk.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 Disk()

Variable set constructor.

Parameters

$Origin XZ \mid (X_0, Z_0)$ origin coordinate	
_ OffsetY	Y_0 origin coordinate (offset from center)
_ Radius	Radius

6.2.3 Member Function Documentation

6.2.3.1 contactPlane()

```
void PatchTire::Disk::contactPlane (
    vec3 const & Normal,
    vec3 const & Point,
    ReferenceFrame const & RF,
    real_type & Area ) const
```

Get the contact area [m^2] inside the single Disk given a plane in absolute reference frame

Parameters

Normal	Plane normal in absolute reference frame	
Point	Plane point in absolute reference frame	
RF	Tire ReferenceFrame	
Area	Contact area $[m^2]$	

6.2.3.2 contactTriangles()

```
void PatchTire::Disk::contactTriangles (
    RDF::TriangleRoad_list const & TriList,
    ReferenceFrame const & RF,
    vec3 & Normal,
    real_type & Friction,
    real_type & Area ) const
```

Get area weighted mean road normal versor, area weighted mean friction and contact area [m^2] inside the single Disk of segments described by the intersection of triangles on XZ-plane

Parameters

TriList	Shadow / MeshSurface intersected triangles
RF	Tire ReferenceFrame
Normal	Area weighted mean road normal versor
Friction	Area weighted mean contact friction
Area	Contact area [m ²]

6.2.3.3 set()

${\bf Parameters}$

in Disk object to be copied

6.2.3.4 setOriginXZ()

OriginXZ New origin on XZ plane

The documentation for this class was generated from the following file:

 \bullet include/PatchTire.hh

6.3 PatchTire::ETRTO Class Reference

```
Tire ETRTO denomination.
#include <PatchTire.hh>
```

Public Member Functions

- ETRTO ()
 - $Default\ constructor.$
- $\begin{tabular}{ll} \bullet & ETRTO & (real_type_SectionWidth, real_type_AspectRatio, real_type_RimDiameter) \\ & Variable set\ constructor. \\ \end{tabular}$
- $\bullet \quad {\rm real_type~getSidewallHeight~(void)~const}$
 - $Get\ sidewall\ height\ [\ m].$
- $\bullet \quad {\rm real_type~getTireDiameter~(void)~const}$
 - Get external tire diameter [m].
- $\bullet \quad {\rm real_type~getTireRadius~(void)~const}$
 - Get external tire radius [m].
- \bullet real_type getSectionWidth (void) const
 - Get section width [m].
- void print (ostream_type &stream) const Display tire data.

6.3.1 Detailed Description

Tire ETRTO denomination.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 ETRTO()

Generated by Doxygen

Variable set constructor.

Parameters

$_SectionWidth$	Tire section width [mm]
$_AspectRatio$	Tire aspect ratio [%]
$_RimDiameter$	Rim diameter $[in]$

6.3.3 Member Function Documentation

6.3.3.1 print()

The documentation for this class was generated from the following file:

 $\bullet \ include/PatchTire.hh \\$

6.4 PatchTire::MagicFormula Class Reference

Pacejka MagicFormula contact model.

```
#include <PatchTire.hh>
```

Inheritance diagram for PatchTire::MagicFormula:

Collaboration diagram for PatchTire::MagicFormula:

Public Member Functions

• ~MagicFormula ()

Default destructor.

 MagicFormula (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, int_type const SwitchN)

Variable set constructor.

• void getNormal (vec3 & Normal) const override

Get contact normal versor.

 $\bullet \ \ {\rm void} \ {\rm getNormal} \ ({\rm row_vec3} \ \&_{\rm Normal}) \ {\rm const} \ {\rm override}$

 $Get\ contact\ normal\ versors\ vector.$

 $\bullet\,$ void getMFpoint (vec
3 &_DiskPoint) const override

Get Magic Formula contact point.

 $\bullet \ \ {\rm void} \ {\rm getMFpoint} \ ({\rm row_vec3} \ \&_{\rm DiskPoint}) \ {\rm const} \ {\rm override} \\$

Get Magic Formula contact point vector.

 $Get\ contact\ point\ friction.$

 $\bullet\,$ void get Friction (row_vecN &_Friction) const override

Get contact point friction vector.

• void getMFpointRF (mat4 &PointRF) const override

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

- $\bullet\,$ void get Rho (real_type &Rho) const override
- void getRho (row_vecN &Rho) const override
- void getRhoDot (real_type const &Rho, real_type const &Time, real_type &RhoDot) const over-ride

Get contact depth time derivative [m/s].

• void getRhoDot (row_vecN const &Rho, real_type const &Time, row_vecN &RhoDot) const override

Get contact depth time derivative vector [m/s].

 $\bullet\,$ void getArea (real_type &_Area) const override

Get approximated contact area on Disk plane [m2].

 $\bullet\,$ void getArea (row_vecN &_Area) const override

Get approximated contact area vector on Disk plane [m²].

26 Class Documentation

• void getVolume (real_type &_Volume) const override

Get approximated contact volume [m3].

• void getVolume (row_vecN &Volume) const override

Get approximated contact volume vector [m^3].

• bool setup (RDF::MeshSurface &Mesh, mat4 const &TM) override

Update current tire position and find contact parameters.

• void print (ostream_type &stream) const override

Print contact parameters.

 $\bullet \ \ void \ printETRTOGeometry \ (ostream_type \ \&stream) \ const$

Display Tire ETRTO geometry data.

- void setReferenceFrame (ReferenceFrame const & _RF)
- $\bullet \quad \text{ReferenceFrame const \& getReferenceFrame (void) const} \\$

 $Get\ tire\ Reference Frame\ object.$

• void setOrigin (vec3 const &Origin)

Set a new tire origin.

- void setRotationMatrix (mat3 const &RotationMatrix)
- void setTotalTransformationMatrix (mat4 const &TM)
- real_type getEulerAngleX (void) const
- real_type getEulerAngleY (void) const
- $\bullet \ \ real_type\ getEulerAngleZ\ (void)\ const$
- $\bullet \ \ {\rm void} \ \ {\rm getRelativeCamber} \ \ ({\rm real_type} \ \ \& {\rm RelativeCamber}) \ \ {\rm const}$

Get relative camber angle [rad].

 $\bullet \quad int_type \ getDisksNumber \ (void) \ const$

Dimension of the contact points data structure (disks number)

Protected Member Functions

• MagicFormula (MagicFormula const &)=delete

 $Deleted\ copy\ constructor.$

 $\bullet \quad \mathbf{MagicFormula\ const\ \&\ operator} = (\mathbf{MagicFormula\ const\ \&}) {=} \mathbf{delete}$

Deleted copy operator.

 $\bullet \ \ {\bf void} \ \ {\bf evaluateContact} \ \ ({\bf RDF} :: {\bf TriangleRoad_list} \ \ {\bf const} \ \ \& {\bf TriList}) \ \ {\bf override}$

 $Evaluate\ contact\ with\ Road\ Triangles.$

 $\bullet \ \ void \ four Points Sampling \ (RDF:: Triangle Road_list \ const \ \& TriList, vec 3 \ \& P_star)$

Perform triangles sampling on 4 points at $\pm 0.1*R$ along X and $\pm 0.3*W$ along Y.

• bool pointSampling (RDF::TriangleRoad_list const &TriList, vec3 const &RayOrigin, vec3 const &RayOrigin, vec3 const &RayOrigin, vec3 const &RayOrigin, vec3 &TriNormal=vec3 ← NaN) const

 $Perform\ one\ point\ sampling\ (ray\text{-}triangle\ intersection)$

Protected Attributes

 $\bullet \quad {\rm Disk} \,\, {\rm Single} \, {\rm Disk} \,\,$

Single Disk.

 ${
m vec}3\ {
m Normal}$

Contact normal versor.

• vec3 MeshPoint

Contact point on Mesh (not for Magic Formula)

 ${
m vec 3~DiskPoint}$

Contact point on undeformed Disk circumference (for Magic Formula)

 $\bullet \quad {\rm real_type\ Friction}$

```
Contact friction.
```

 $\bullet \quad {\rm real_type\ Area}$

Contact area [m2].

 $\bullet \quad {\bf Sampling Grid\ Precision}$

Contacth patch evaluating precision.

 $\bullet \quad {\bf ETRTO \ Tire Geometry}$

 ${\it Tire}\,\,{\it ETR}\,{\it TO}\,\,{\it denomination}.$

 $\bullet \quad {\rm ReferenceFrame} \ {\rm RF}$

Reference Frame.

6.4.1 Detailed Description

Pacejka MagicFormula contact model.

6.4.2 Constructor & Destructor Documentation

6.4.2.1 MagicFormula()

```
PatchTire::MagicFormula::MagicFormula (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Parameters

Section Widt	Tire section width [mm]	
AspectRatio	Tire aspect ratio [%]	
RimDiamete	Rim diameter [in]	
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)	

6.4.3 Member Function Documentation

$\mathbf{6.4.3.1} \quad evaluateContact()$

 ${\bf Evaluate~contact~with~RoadTriangles}.$

Parameters

TriList | Shadow/MeshSurface intersected triangles

 $Implements\ Patch\ Tire:: Tire.$

6.4.3.2 four PointsSampling()

Perform triangles sampling on 4 points at $\pm 0.1*R$ along X and $\pm 0.3*W$ along Y.

Parameters

TriList | Shadow/MeshSurface intersected triangles

6.4.3.3 getArea() [1/2]

Parameters

 $Implements\ {\bf Patch\ Tire:: Tire.}$

6.4.3.4 getArea() [2/2]

Get approximated contact area vector on Disk plane [m^2].

Parameters

```
\_Area | Contact area vector [ m^2]
```

 $Implements\ Patch\ Tire:: Tire.$

$\bf 6.4.3.5 \quad getEulerAngleX()$

```
\begin{tabular}{ll} {\bf real\_type} & {\tt PatchTire::Tire::getEulerAngleX} & ( & {\tt void} & ) & {\tt const} & {\tt [inline]}, & {\tt [inherited]} \\ {\tt Get} & {\tt current} & {\tt Euler} & {\tt angles} & {\tt |} & {\tt rad|} & {\tt for} & {\tt X-axis} \\ {\tt Warning:} & {\tt Factor} & {\tt as} & {\tt [} & {\tt R_z} & {\tt ]} & {\tt [} & {\tt R_y} & {\tt ]} & {\tt |} \\ {\tt warning:} & {\tt Factor} & {\tt as} & {\tt [} & {\tt R_z} & {\tt ]} & {\tt [} & {\tt R_y} & {\tt ]} & {\tt |} \\ {\tt void} & {\tt onst} & {\tt |} & {\tt onst} \\ {\tt onst} & {\tt ons
```

$6.4.3.6 \quad {\bf getEulerAngleY()}$

Get current Euler angles [rad] for Y-axis Warning: Factor as $[R_z][R_x][R_y]!$

6.4.3.7 getEulerAngleZ()

```
\begin{tabular}{ll} {\bf real\_type} & {\tt PatchTire::Tire::getEulerAngleZ} & ( & {\tt void} & ) & {\tt const} & [{\tt inline}], & [{\tt inherited}] \\ {\tt Get} & {\tt current} & {\tt Euler} & {\tt angles} & [rad] & {\tt for} & Z{\tt -axis} \\ {\tt Warning:} & {\tt Factor} & {\tt as} & [R_z][R_y]! \\ \end{tabular}
```

6.4.3.8 getFriction() [1/2]

Get contact point friction.

Parameters

_ Friction | Contact point friction

 $Implements\ {\bf Patch\ Tire:: Tire.}$

6.4.3.9 getFriction() [2/2]

```
\label{lem:control_problem} $$ \begin{tabular}{ll} void PatchTire::MagicFormula::getFriction ( & $row\_vecN \& \_Friction )$ const [inline], [override], [virtual] \\ Get contact point friction vector. \\ \end{tabular}
```

Parameters

_ Friction | Contact point friction vector

 ${\bf Implements\ Patch\ Tire::Tire.}$

$6.4.3.10 \quad \mathbf{getMFp} \mathbf{oint} () \ \texttt{[1/2]}$

```
void PatchTire::MagicFormula::getMFpoint (
    vec3 & _DiskPoint ) const [inline], [override], [virtual]
```

Get Magic Formula contact point.

Parameters

_DiskPoint | Magic Formula contact point

 $Implements\ Patch Tire:: Tire.$

$6.4.3.11 \quad \text{getMFpoint()}$ [2/2]

```
void PatchTire::MagicFormula::getMFpoint (
    row_vec3 & _DiskPoint ) const [inline], [override], [virtual]
```

Get Magic Formula contact point vector.

${\bf Parameters}$

 $Implements\ Patch\ Tire:: Tire.$

6.4.3.12 getMFpointRF() [1/2]

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

PointRF Magic Formula contact point reference frame

Implements Patch Tire::Tire.

6.4.3.13 getMFpointRF() [2/2]

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

${\bf Parameters}$

```
_MFpointRF | Magic Formula ontact point reference frames vector
```

 $Implements\ Patch\ Tire:: Tire.$

6.4.3.14 getNormal() [1/2]

```
void PatchTire::MagicFormula::getNormal (
    vec3 & _Normal ) const [inline], [override], [virtual]
```

Get contact normal versor.

 ${\bf Parameters}$

```
_Normal | Contact point normal versor
```

 $Implements\ {\bf Patch\ Tire:: Tire.}$

6.4.3.15 getNormal() [2/2]

```
void PatchTire::MagicFormula::getNormal (
    row_vec3 & _Normal ) const [inline], [override], [virtual]
```

Get contact normal versors vector.

 ${\bf Parameters}$

_ Normal | Contact point normal direction vector

 $Implements\ Patch\ Tire:: Tire.$

$\mathbf{6.4.3.16}\quad \mathbf{getRelativeCamber()}$

```
void PatchTire::Tire::getRelativeCamber (
    real_type & RelativeCamber ) const [inherited]
```

Get relative camber angle [rad].

Parameters

Relative Camber | Relative camber angle

6.4.3.17 getRho() [1/2]

```
void PatchTire::MagicFormula::getRho (
    real_type & Rho ) const [inline], [override], [virtual]
```

Get contact depth at center point [m]

Warning: (if negative the tire does not touch the ground)!

 ${\bf Parameters}$

Rho Depth at center point

 $Implements\ {\bf Patch\ Tire:: Tire.}$

6.4.3.18 getRho() [2/2]

```
void PatchTire::MagicFormula::getRho (
    row_vecN & Rho ) const [inline], [override], [virtual]
```

Get contact depth matrix [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

Rho Depth matrix

 $Implements\ {\bf Patch\ Tire::Tire.}$

6.4.3.19 getRhoDot() [1/2]

Generated by Doxygen

```
real_type const & Time,
real_type & RhoDot ) const [inline], [override], [virtual]
```

Get contact depth time derivative [m/s].

Parameters

	Rho	Previous time step Rho [m]
ĺ	Time	Time step $[s]$
ĺ	RhoDot	Penetration derivative [m/s]

 ${\bf Implements\ Patch\ Tire::} {\bf Tire.}$

6.4.3.20 getRhoDot() [2/2]

```
void PatchTire::MagicFormula::getRhoDot (
    row_vecN const & Rho,
    real_type const & Time,
    row_vecN & RhoDot ) const [inline], [override], [virtual]
```

Get contact depth time derivative vector [m/s].

Parameters

Rho	Previous time step Rho [m]
Time	Time step $[s]$
RhoDot	Penetration derivative $[m/s]$

 ${\bf Implements\ Patch\ Tire::Tire.}$

6.4.3.21 getVolume() [1/2]

Parameters

 $Implements\ Patch\ Tire:: Tire.$

6.4.3.22 getVolume() [2/2]

Get approximated contact volume vector [m^3].

Parameters

	Volume	Contact	volume	vector	$[m^3]$	1
--	--------	---------	--------	--------	---------	---

Implements Patch Tire::Tire.

6.4.3.23 pointSampling()

Perform one point sampling (ray-triangle intersection)

Parameters

TriList	Shadow/MeshSurface intersected triangles
RayOrigin	Ray origin
RayDirection	Ray direction
SampledPt	Intersection point
TriFriction	Intersected triangle friction
TriNormal	Intersected triangle normal

6.4.3.24 print()

Parameters

stream | Output stream type

 $Implements\ {\bf Patch\ Tire:: Tire.}$

$\bf 6.4.3.25 \quad printETRTOGeometry()$

Parameters

stream | Output stream type

Generated by Doxygen

6.4.3.26 setOrigin()

```
void PatchTire::Tire::setOrigin (
    vec3 const & Origin ) [inline], [inherited]
Set a new tire origin.
```

${\bf Parameters}$

Origin | Tire origin

$\bf 6.4.3.27 \quad set\,ReferenceFrame()$

Copy the tire ReferenceFrame object

Warning: Rotation matrix must be orthonormal!

Parameters

_RF | ReferenceFrame object to be copied

6.4.3.28 setRotationMatrix()

Set a new 3x3 rotation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

RotationMatrix | Rotation matrix

$\bf 6.4.3.29 \quad set \, Total \, Transfor \, mation Matrix ()$

Set 4x4 total transformation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

TM 4x4 total transformation matrix

6.4.3.30 set up()

```
bool PatchTire::MagicFormula::setup (
            RDF::MeshSurface & Mesh,
            mat4 const & TM ) [override], [virtual]
```

Update current tire position and find contact parameters.

Parameters

Mesh	MeshSurface object (road)	
TM	4x4 total transformation matrix	

Implements Patch Tire::Tire.

The documentation for this class was generated from the following file:

 \bullet include/PatchTire.hh

6.5RDF::MeshSurface Class Reference

Mesh surface.

```
#include <RoadRDF.hh>
```

Public Member Functions

• MeshSurface ()

Default set constructor.

• MeshSurface (TriangleRoad_list const &_PtrTriangleVec)

Variable set constructor.

• MeshSurface (std::string const &Path)

Variable set constructor.

• TriangleRoad_list const & getTrianglesList (void) const

 $Get\ all\ triangles\ inside\ the\ mesh\ as\ a\ vector.$

• TriangleRoad_ptr const getTriangle (unsigned i) const

Get i-th TriangleRoad.

 $\bullet \quad G2lib::AABBtree::PtrAABB\ const\ getAABBPtr\ (void)\ const$ Get AABBtree object.

• void printData (std::string const &FileName) const

Print data in file.

• std::vector< G2lib::BBox::PtrBBox > const & getPtrBBoxList () const

Get the mesh G2lib bounding boxes pointers vector.

• void set (MeshSurface const &in)

Copy the MeshSurface object.

• bool LoadFile (std::string const &Path)

Load the RDF model and print information on a file.

 $\bullet \ bool \ intersectAABBtree \ (G2lib::AABBtree::PtrAABB \ const \ \&AABBTreePtr, \ RDF::Triangle \leftarrow (G2lib::AABBtree \ (G2lib::AABBtree)) \ AABBTreePtr \ (G2lib::AABBtree \ (G2lib::AABBtree)) \ AABBTreePtr \ (G2lib::AABBtree \ (G2lib::AABBtree)) \ AABBTreePtr \ (G2lib::AABBtree) \ AABBTreePtr \ (G2lib::AABBtree) \ AABBTreePtr \ (G2lib::AABBtree) \ AABBTreePtr \ (G2lib::AABBtree) \ AABBTreePtr \ (G2lib::AABBTreePtr \ (G2lib::AABBTreePtr)) \ AABBTreePtr \ (G2lib::AABBTreePtr) \ AABBTREEPtr \ (G2lib::AABBTREEPtr \ (G2lib::AABBTREEPtr \ (G2lib::AABBTREEPtr \ (G2lib::AABBTREEPtr \ (G2lib::AABBTREEPtr \ (G2lib::AABBTREEPtr \ (G2lib::AABB$ ${\bf Road_list~\&TrianglesList)~const}$

 $Update\ the\ local\ intersected\ {\it TriangleRoad}\ vector\ {\it list}.$

• bool intersectBBox (std::vector< G2lib::BBox::PtrBBox > const &BBoxPtr, RDF::TriangleRoad↔ _list &TrianglesList) const

 $Up \ date \ the \ mesh \ AABB tree \ with \ an \ external \ G2 lib::BBox \ object \ pointer \ vector.$

6.5.1 Detailed Description

 ${\bf Mesh\ surface}\,.$

6.5.2 Constructor & Destructor Documentation

6.5.2.1 MeshSurface() [1/2]

```
\label{eq:rotation} $$ $$ RDF::MeshSurface::MeshSurface ($$ $$ TriangleRoad_list const & $_PtrTriangleVec $$) $$ [inline] $$ Variable set constructor.
```

Parameters

_PtrTriangleVec | Road triangles pointer vector list

6.5.2.2 MeshSurface() [2/2]

Variable set constructor.

Parameters

Path | Path to the RDF file

6.5.3 Member Function Documentation

6.5.3.1 intersect AABBtree()

Update the local intersected TriangleRoad vector list.

Parameters

AABBTreePtr	External AABBtree object pointer
TrianglesList	Intersected TriangleRoad vector list

6.5.3.2 intersect BBox()

Update the mesh AABBtree with an external G2lib::BBox object pointer vector.

${\bf Parameters}$

BBoxPtr	External G2lib::BBox object pointer vector
TrianglesList	Intersected TriangleRoad vector list

6.5.3.3 LoadFile()

Load the $\ensuremath{\mathsf{RDF}}$ model and print information on a file.

${\bf Parameters}$

Path | Path to the RDF file

6.5.3.4 print Data()

Print data in file.

Parameters

FileName | File name in which print data

$6.5.3.5 \quad set()$

Copy the MeshSurface object.

Parameters

in MeshSurface object to be copied

The documentation for this class was generated from the following file:

 \bullet include/RoadRDF.hh

6.6 PatchTire::MultiDisk Class Reference

Multi-disk tire contact model.

#include <PatchTire.hh>

Generated by Doxygen

Inheritance diagram for PatchTire::MultiDisk:

 ${\bf Collaboration~diagram~for~PatchTire::MultiDisk:}$

Public Member Functions

- $\bullet \quad {\sim} \mathrm{Multi\, Disk} \ ()$
 - $Default\ destructor.$
- MultiDisk (real_type const SectionWidth, real_type const AspectRatio, real_type const Rim

 Diameter, int_type const PointsN, int_type const DisksN, int_type const SwitchN)

Variable set constructor.

- MultiDisk (real_type const SectionWidth, real_type const AspectRatio, real_type const Rim

 Diameter, real_type const SideRadius, int_type const PointsN, int_type const DisksN, int_type const SwitchN)
 - Variable set constructor.
- MultiDisk (real_type const SectionWidth, real_type const AspectRatio, real_type const Rim

 Diameter, row_vecN const DisksRadius, int_type const PointsN, int_type const SwitchN)
 - Variable set constructor.
- $\bullet \quad {\rm real_type~getPointstep~(void)~const}$
 - Get grid step on X-axis between sampling points [m].
- $\bullet \quad {\rm real_type~getDiskStep~(void)~const}$
 - Get step on Y-axis between disks [m].
- $\bullet\,$ void getNormal (vec
3 &_Normal) const override
 - Get contact normal mean versor.
- $\bullet \ \ void \ getDiskOriginXYZ \ (row_vec3 \ \&Origin) \ \ const \\$

```
Get disks origin (X, Y, Z).
• void getDiskOriginXYZ (int type const i, vec3 &Origin) const
      Get i-th Disk origin (X, Y, Z).
\bullet \ {\rm void \ setDiskOriginXZ} \ ({\rm row\_vec2} \ \& {\rm Origin}) \ {\rm const}
     Set disks origin (X, Y, Z).
• void setDiskOriginXZ (int_type const i, vec2 &Origin) const
      Set i-th Disk origin (X, Y, Z).
 \bullet \ \ void \ \underline{getNormal} \ \ (\underline{row\_vec3} \ \&\_NormalVec) \ \ const \ \ override 
      Get contact normal versors vector.
• void getDiskNormal (int type const i, vec3 & Normal) const
      Get i-th Disk contact normal versor.
• void getMFpoint (vec3 & DiskPoint) const override
      Get Magic Formula contact point.
\bullet \ \ {\rm void} \ {\rm getMFpoint} \ ({\rm row\_vec3} \ \&\_{\rm DiskPointVec}) \ \ {\rm const} \ \ {\rm override}
      Get Magic Formula contact points vector.
\bullet\,void getDiskMFpoint (int_type const i, vec3 &_DiskPoint) const
      Get i-th Disk Magic Formula contact point.
• void getFriction (real_type &_Friction) const override
      Get area weighted mean contact friction.
\bullet void getFriction (row_vecN &_Friction) const override
      Get contact frictions vector.
• void getDiskFriction (int_type const i, real_type &_Friction) const
      Get i-th Disk contact friction.
• void getMFpointRF (mat4 &PointRF) const override
      Get Magic Formula contact point reference frame with 4x4 transformation matrix.
• void getMFpointRF (row mat4 &PointRF) const override
      Get Magic Formula contact point reference frames vector with 4x4 transformation matrix.
• void getDiskMFpointRF (int_type const i, mat4 &PointRF) const
      Get Disk Magic Formula contact point reference frame with 4x4 transformation matrix.
\bullet\,void get
Rho (real_type &Rho) const override
• void getRho (row_vecN &Rho) const override
 • void getDiskRho (int_type const i, real_type &Rho) const
• void getRhoDot (real_type const &Rho, real_type const &Time, real_type &RhoDot) const over-
      Get contact depth time derivative [m/s].
• void getRhoDot (row vecN const &Rho, real type const &Time, row vecN &RhoDot) const
  override
      Get contact depths derivative vector [m/s].
\bullet \ \ void \ getDiskRhoDot \ (int\_type \ const \ i, real\_type \ const \ \&Rho, real\_type \ const \ \&Time, real\_type
  &RhoDot) const
      Get i-th Disk contact depth derivative [m/s].
\bullet\,void get
Area (real_type &_Area) const override
      Get\ approximated\ mean\ contact\ area\ on\ {\it Disk}\ plane\ [\ m^2].
\bullet\,void getArea (row_vecN &_AreaVec) const override
      Get approximated contact areas vector on Disk plane [m2].
• void getVolume (real type &Volume) const override
      Get approximated contact volume [ m3].
\bullet\,void get
Volume (row_vecN &
Volume) const over<br/>ride
      Get approximated contact volumes vector [ m3 ].
• bool setup (RDF::MeshSurface &Mesh, mat4 const &TM) override
```

Update current tire position and find contact parameters.

Class Documentation

```
• void print (ostream_type &stream) const override
```

Print contact parameters.

 $\bullet \ \ {\rm void \ printETRTOGeometry} \ ({\rm ostream_type} \ \& {\rm stream}) \ {\rm const}$

Display Tire ETRTO geometry data.

- $\bullet \ \, {\rm void \ setReferenceFrame} \, \left({\rm ReferenceFrame \ const} \, \, \& \, _{\rm RF} \right) \\$
- ReferenceFrame const & getReferenceFrame (void) const

 $Get\ tire\ Reference Frame\ object.$

• void setOrigin (vec3 const &Origin)

Set a new tire origin.

- void setRotationMatrix (mat3 const &RotationMatrix)
- void setTotalTransformationMatrix (mat4 const &TM)
- $\bullet \ \ real_type\ getEulerAngleX\ (void)\ const$
- real_type getEulerAngleY (void) const
- real type getEulerAngleZ (void) const
- void getRelativeCamber (real_type &RelativeCamber) const

Get relative camber angle [rad].

• int_type getDisksNumber (void) const

Dimension of the contact points data structure (disks number)

Protected Member Functions

• bool pointSampling (RDF::TriangleRoad_list const &TriList, vec3 const &RayOrigin, vec3 const &RayOrigin, vec3 const &RayOrigin, vec3 &TriNormal=vec3_← NaN) const

Perform one point sampling (ray-triangle intersection)

Protected Attributes

SamplingGrid Precision

Contacth patch evaluating precision.

• ETRTO TireGeometry

Tire ETR TO denomination.

• ReferenceFrame RF ReferenceFrame

6.6.1 Detailed Description

Multi-disk tire contact model.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 MultiDisk() [1/3]

```
PatchTire::MultiDisk::MultiDisk (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    int_type const PointsN,
    int_type const DisksN,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Parameters

Section Width	Tire section width [mm]
AspectRatio	Tire aspect ratio [%]
RimDiameter	Rim diameter [in]
PointsN	Sampling points for each Disk (divisions on X -axis)
DisksN	Number of Disks (divisions on Y -axis -1)
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.6.2.2 MultiDisk() [2/3]

```
PatchTire::MultiDisk::MultiDisk (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    real_type const SideRadius,
    int_type const PointsN,
    int_type const DisksN,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Parameters

Section Width	Tire section width [mm]
AspectRatio	Tire aspect ratio [%]
RimDiameter	Rim diameter [in]
SideRadius	Sidewall radius [mm]
PointsN	Sampling points for each Disk (divisions on X-axis)
DisksN	Number of Disks (divisions on Y -axis -1)
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.6.2.3 MultiDisk() [3/3]

```
PatchTire::MultiDisk::MultiDisk (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    row_vecN const DisksRadius,
    int_type const PointsN,
    int_type const SwitchN ) [inline]
```

Variable set constructor.

Parameters

Section Width	Tire section width [mm]
AspectRatio	Tire aspect ratio [%]
Rim Diameter	Rim diameter [in]

Generated by Doxygen

Parameters

DisksRadius	Disks radius vector $[m]$
PointsN	Sampling points for each Disk (divisions on X-axis)
SwitchN	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.6.3 Member Function Documentation

6.6.3.1 getArea() [1/2]

Get approximated mean contact area on Disk plane [m^2].

${\bf Parameters}$

Implements Patch Tire::Tire.

6.6.3.2 getArea() [2/2]

Get approximated contact areas vector on Disk plane $[m^2]$.

Parameters

_ A rea Vec	Contact areas vector [m^2]
-------------	--------------------------------

 ${\bf Implements\ Patch\ Tire::} {\bf Tire.}$

6.6.3.3 getDiskFriction()

```
void PatchTire::MultiDisk::getDiskFriction (
    int_type const i,
    real_type & _Friction ) const [inline]
```

Get i-th Disk contact friction.

${\bf Parameters}$

i	<i>i</i> -th Disk
_ Friction	Disk contact friction

6.6.3.4 getDiskMFpoint()

```
void PatchTire::MultiDisk::getDiskMFpoint (
    int_type const i,
    vec3 & _DiskPoint ) const [inline]
```

Get i-th Disk Magic Formula contact point.

Parameters

i	i-th Disk
_ DiskPoint	Disk Magic Formula contact point

$\bf 6.6.3.5 \quad getDiskMFpointRF()$

Get Disk Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

i	i-th Disk	
PointRF	Magic Formula contact point reference frame	

6.6.3.6 getDiskNormal()

```
void PatchTire::MultiDisk::getDiskNormal (
    int_type const i,
    vec3 & _Normal ) const [inline]
```

Get i-th Disk contact normal versor.

${\bf Parameters}$

i	i-th Disk
_ Normal	Contact normal versor

6.6.3.7 getDiskOriginXYZ() [1/2]

Get disks origin (X, Y, Z).

Parameters

Origin Disks origin

6.6.3.8 getDiskOriginXYZ() [2/2]

```
\label{eq:const} \begin{tabular}{lll} void PatchTire::MultiDisk::getDiskOriginXYZ ( & int_type const i, & vec3 & Origin ) const [inline] \\ \hline Get $i$-th Disk origin $(X,Y,Z)$. \\ \end{tabular}
```

Parameters

i	i-th Disk
Origin	Disks origin

6.6.3.9 getDiskRho()

```
void PatchTire::MultiDisk::getDiskRho (
    int_type const i,
    real_type & Rho ) const [inline]
```

Get i-th Disk contact depth [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

i	<i>i</i> -th Disk
Rho	Disk contact depth

$\bf 6.6.3.10 \quad getDiskRhoDot()$

```
void PatchTire::MultiDisk::getDiskRhoDot (
    int_type const i,
    real_type const & Rho,
    real_type const & Time,
    real_type & RhoDot ) const [inline]
```

Get i-th Disk contact depth derivative [m/s].

Parameters

i	i-th Disk
Rho	Previous time step Rho [m]
Time	Time step $[s]$
RhoDot	Disk contact depth derivative $[m/s]$

6.6.3.11 getEulerAngleX()

Get current Euler angles [rad] for X-axis Warning: Factor as $[R_z][R_y][R_y]!$

6.6.3.12 getEulerAngleY()

```
\begin{tabular}{ll} {\bf real\_type} & {\tt PatchTire::Tire::getEulerAngleY} & ( & {\tt void} & ) & {\tt const} & [{\tt inline}], & [{\tt inherited}] \\ {\tt Get} & {\tt current} & {\tt Euler} & {\tt angles} & [rad] & {\tt for} & Y{\tt -axis} \\ {\tt Warning:} & {\tt Factor} & {\tt as} & [R_z][R_y]! \\ \end{tabular}
```

6.6.3.13 getEulerAngleZ()

6.6.3.14 getFriction() [1/2]

Warning: Factor as $[R_z][R_x][R_y]!$

```
void PatchTire::MultiDisk::getFriction (
    real_type & _Friction ) const [inline], [override], [virtual]
```

Get area weighted mean contact friction.

Parameters

Implements Patch Tire::Tire.

6.6.3.15 getFriction() [2/2]

```
void PatchTire::MultiDisk::getFriction (
    row_vecN & _Friction ) const [inline], [override], [virtual]
```

Get contact frictions vector.

 ${\bf Parameters}$

```
_Friction | Contact frictions vector
```

Implements PatchTire::Tire.

$6.6.3.16 \quad \text{getMFpoint()}$ [1/2]

Get Magic Formula contact point.

Parameters

DiskPoint	Magic Formula contact point	

 $Implements\ {\bf Patch\ Tire:: Tire.}$

6.6.3.17 getMFpoint() [2/2]

Get Magic Formula contact points vector.

Parameters

_ DiskPointVec | Magic Formula contact points vector

 ${\bf Implements\ Patch\ Tire::} {\bf Tire.}$

6.6.3.18 getMFpointRF() [1/2]

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

Parameters

PointRF | Magic Formula contact point reference frame

 ${\bf Implements\ Patch\ Tire::} {\bf Tire.}$

6.6.3.19 getMFpointRF() [2/2]

Get Magic Formula contact point reference frames vector with 4x4 transformation matrix.

Parameters

 ${\bf Implements\ Patch\ Tire::} {\bf Tire.}$

$6.6.3.20 \quad \mathbf{getNormal()} \ \mathtt{[1/2]}$

```
void PatchTire::MultiDisk::getNormal (
    vec3 & _Normal ) const [inline], [override], [virtual]
```

Get contact normal mean versor.

Parameters

_Normal | Contact normal mean versor

 ${\bf Implements\ Patch\ Tire::} {\bf Tire.}$

6.6.3.21 getNormal() [2/2]

```
void PatchTire::MultiDisk::getNormal (
    row_vec3 & _NormalVec ) const [inline], [override], [virtual]
```

Get contact normal versors vector.

 ${\bf Parameters}$

_NormalVec | Contact normal versors vector

 $Implements\ {\bf Patch\ Tire::} Tire.$

$\mathbf{6.6.3.22}\quad \mathbf{getRelativeCamber()}$

Get relative camber angle [rad].

Parameters

Relative Camber | Relative camber angle

6.6.3.23 getRho() [1/2]

Get contact depth at center point [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

Rho Depth at center point

 ${\bf Implements\ Patch\ Tire::} {\bf Tire.}$

6.6.3.24 getRho() [2/2]

```
void PatchTire::MultiDisk::getRho (
    row_vecN & Rho ) const [inline], [override], [virtual]
```

Get contact depths vector [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

Rho | Contact depths vector

 $Implements\ {\bf Patch\ Tire:: Tire.}$

6.6.3.25 getRhoDot() [1/2]

```
void PatchTire::MultiDisk::getRhoDot (
    real_type const & Rho,
    real_type const & Time,
    real_type & RhoDot ) const [inline], [override], [virtual]
```

Get contact depth time derivative [m/s].

Parameters

Rho	Previous time step Rho [m]	
Time	Time step $[s]$	
RhoDot	Contact depth derivative $[m/s]$	

Implements Patch Tire::Tire.

6.6.3.26 getRhoDot() [2/2]

```
void PatchTire::MultiDisk::getRhoDot (
    row_vecN const & Rho,
    real_type const & Time,
    row_vecN & RhoDot ) const [inline], [override], [virtual]
```

Get contact depths derivative vector [m/s].

Parameters

Rho Previous time step Rho [m]		Previous time step Rho [m]
	Time	Time step $[s]$
	RhoDot	Contact depths derivative vector $[m/s]$

 ${\bf Implements\ Patch\ Tire::} {\bf Tire.}$

6.6.3.27 getVolume() [1/2]

```
\label{eq:continuity} \begin{tabular}{lll} \begin{tabular}{lll} void PatchTire::MultiDisk::getVolume ( & volume ( & vol
```

Parameters

Volume	Contact volume	$[m^3]$

 $Implements\ {\bf Patch\ Tire:: Tire.}$

6.6.3.28 getVolume() [2/2]

49

Parameters

	Volume	Contact	volumes	vector	$[m^3]$
--	--------	---------	---------	--------	---------

Implements Patch Tire::Tire.

6.6.3.29 pointSampling()

Perform one point sampling (ray-triangle intersection)

Parameters

TriList	Shadow/MeshSurface intersected triangles
RayOrigin	Ray origin
RayDirection	Ray direction
SampledPt	Intersection point
TriFriction	Intersected triangle friction
TriNormal	Intersected triangle normal

6.6.3.30 print()

Print contact parameters.

Parameters

stream Output stream type

 $Implements\ Patch\ Tire:: Tire.$

$\bf 6.6.3.31 \quad printETRTOGeometry()$

Parameters

stream | Output stream type

6.6.3.32 set Disk Origin XZ() [1/2]

```
\label{eq:condition} $$\operatorname{PatchTire}::MultiDisk::setDiskOriginXZ ($$\operatorname{row\_vec2 \& Origin} )$$ const [inline]$$ Set disks origin $(X,Y,Z)$.
```

Parameters

Origin | New Disks origin vector

6.6.3.33 set Disk Origin XZ() [2/2]

```
\label{eq:const_int} \begin{split} \text{void PatchTire::MultiDisk::setDiskOriginXZ (} \\ & \quad \text{int\_type const } i, \\ & \quad \text{vec2 & Origin ) const [inline]} \end{split} \\ \text{Set } i\text{-th Disk origin } (X,Y,Z). \end{split}
```

Parameters

i	i-th Disk
Origin	New Disks origin vector

6.6.3.34 setOrigin()

Set a new tire origin. $\,$

Parameters

```
Origin Tire origin
```

6.6.3.35 setReferenceFrame()

Copy the tire ReferenceFrame object

Warning: Rotation matrix must be orthonormal!

Parameters

_RF | ReferenceFrame object to be copied

6.6.3.36 setRotationMatrix()

Set a new 3x3 rotation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

RotationMatrix | Rotation matrix

$6.6.3.37 \quad set Total Transformation Matrix () \\$

Set 4x4 total transformation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

TM 4x4 total transformation matrix

6.6.3.38 set up()

```
bool PatchTire::MultiDisk::setup (
    RDF::MeshSurface & Mesh,
    mat4 const & TM ) [override], [virtual]
```

Update current tire position and find contact parameters.

Parameters

Mesh	MeshSurface object (road)
TM	4x4 total transformation matrix

 ${\bf Implements\ Patch\ Tire:: Tire.}$

The documentation for this class was generated from the following file:

 $\bullet \ \ include/PatchTire.hh$

6.7 PatchTire::ReferenceFrame Class Reference

Reference frame.

#include <PatchTire.hh>

Public Member Functions

• ReferenceFrame ()

Default constructor.

• ReferenceFrame (vec3 const &_Origin, mat3 const &_RotationMatrix)

Variable set constructor.

• bool isEmpty (void)

 $Check\ if\ \textit{ReferenceFrame}\ object\ is\ empty.$

• mat3 const & getRotationMatrix (void) const

Get current 3x3 rotation matrix.

 $\bullet \quad \text{mat3 getRotationMatrixInverse (void) const}$

 $Get\ current\ 3x3\ rotation\ matrix\ inverse.$

• vec3 getX (void) const

Get current X-axis versor.

• vec3 getY (void) const

Get current Y-axis versor.

• vec3 getZ (void) const

Get current Z-axis versor.

 $\bullet \quad {\rm vec3~const~\&~getOrigin~(void)~const}$

 $Get\ origin\ position.$

 $\bullet \ \operatorname{void} \ \operatorname{setOrigin} \ (\operatorname{vec3} \ \operatorname{const} \ \& _\operatorname{Origin})$

 $Set\ origin\ position.$

• void setRotationMatrix (mat3 const &_RotationMatrix)

Set 3x3 rotation matrix.

• void setTotalTransformationMatrix (mat4 const &TM)

Set 4x4 total transformation matrix.

 $\bullet \quad mat4 \ getTotalTransformationMatrix \ (void)$

Get 4x4 total transformation matrix.

- void set (ReferenceFrame const &in)
- real_type getEulerAngleX (void) const
- $\bullet \ \ real_type\ getEulerAngleY\ (void)\ const$
- $\bullet \ \ real_type\ getEulerAngleZ\ (void)\ const$

6.7.1 Detailed Description

Reference frame.

6.7.2 Constructor & Destructor Documentation

$\bf 6.7.2.1 \quad Reference Frame ()$

Variable set constructor.

Parameters

_ Origin	Origin position
_ RotationMatrix	3x3 rotation matrix

6.7.3 Member Function Documentation

```
6.7.3.1 \quad getEulerAngleX()
real_type PatchTire::ReferenceFrame::getEulerAngleX (
             void ) const
Get current Euler angles [ rad] for X-axis
Warning: Factor as [R_z][R_x][R_y]!
\bf 6.7.3.2 \quad getEulerAngleY()
real_type PatchTire::ReferenceFrame::getEulerAngleY (
Get current Euler angles [ rad] for Y-axis
Warning: Factor as [R_z][R_x][R_y]!
6.7.3.3 getEulerAngleZ()
real_type PatchTire::ReferenceFrame::getEulerAngleZ (
             void ) const
Get current Euler angles [ rad] for Z-axis
Warning: Factor as [R_z][R_x][R_y]!
6.7.3.4 set()
void PatchTire::ReferenceFrame::set (
             ReferenceFrame const & in ) [inline]
Copy the tire ReferenceFrame object
Warning: Rotation matrix must be orthonormal!
Parameters
in ReferenceFrame object to be copied
6.7.3.5 set Origin()
void PatchTire::ReferenceFrame::setOrigin (
            vec3 const & _Origin ) [inline]
Set origin position.
Parameters
  Origin | Origin position
```

6.7.3.6 setRotationMatrix()

void PatchTire::ReferenceFrame::setRotationMatrix (

```
\label{eq:mat3} \mbox{mat3 const \& $\_RotationMatrix )} \quad \mbox{[inline]} \\ Set \ 3x3 \ rotation \ matrix.
```

Parameters

__RotationMatrix | 3x3 rotation matrix

$\bf 6.7.3.7 \quad set Total Transformation Matrix()$

```
void PatchTire::ReferenceFrame::setTotalTransformationMatrix ( mat4 \ const \ \& \ \textit{TM} \ ) \quad [inline]
```

Set 4x4 total transformation matrix.

Parameters

TM 4x4 total transformation matrix

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.8 PatchTire::SamplingGrid Class Reference

Patch evaluation precision.

#include <PatchTire.hh>

Public Member Functions

```
• SamplingGrid ()
```

 $Default\ constructor.$

 $\bullet \ \ SamplingGrid\ (int_type\ _PointsN,\,int_type\ _DisksN)$

Variable set constructor.

 $\bullet \ \ SamplingGrid\ (int_type\ _PointsN, int_type\ _DisksN, int_type\ _Switch)$

 $Variable\ set\ constructor.$

 $\bullet \quad int_type\ getPointsNumber\ (void)\ const$

Get number of sampling points for each Disk (divisions on X-axis)

 $\bullet \quad int_type\ getDisksNumber\ (void)\ const$

Get number of Disks (divisions on Y-axis -1)

 $\bullet \quad unsigned \ \underline{getSwitchNumber} \ (void) \ const$

Get number of maximum RoadTriangles in the Tire Shadow (switch to sampling)

 $\bullet \ \ void \ setSwitchNumber \ (int_type \ const \ _Switch)$

Set number of maximum RoadTriangles in the Tire Shadow (switch to sampling)

 $\bullet \ \ void \ set \ (int_type \ _PointsN, int_type \ _DisksN, int_type \ _Switch)$

Set number of divisions.

 $\bullet \ \ {\rm void \ set} \ ({\rm SamplingGrid \ const} \ \&{\rm in})$

 $Copy\ the\ {\it Sampling Grid}\ object.$

6.8.1 Detailed Description

Patch evaluation precision.

6.8.2 Constructor & Destructor Documentation

6.8.2.1 SamplingGrid() [1/2]

Variable set constructor.

${\bf Parameters}$

_ PointsN	Sampling points for each Disk (divisions on X-axis)
_ DisksN	Number of Disks (divisions on Y -axis -1)

6.8.2.2 SamplingGrid() [2/2]

```
PatchTire::SamplingGrid::SamplingGrid (
    int_type _PointsN,
    int_type _DisksN,
    int_type _Switch ) [inline]
```

Variable set constructor.

Parameters

_ PointsN Sampling points for each Disk (divisions on X-axis)		Sampling points for each Disk (divisions on X -axis)
	$_{-}$ $DisksN$	Number of Disks (divisions on Y -axis -1)
	$_Switch$	Maximum RoadTriangles in the Tire Shadow (switch to sampling)

6.8.3 Member Function Documentation

6.8.3.1 set() [1/2]

```
void PatchTire::SamplingGrid::set (
    int_type _PointsN,
    int_type _DisksN,
    int_type _Switch ) [inline]
```

Set number of divisions.

Parameters

	$_PointsN$	Sampling points for each Disk (divisions on X -axis)	
	$_DisksN$	Number of Disks (divisions on Y -axis -1)	
Ī	$_Switch$	Maximum RoadTriangles in the Tire Shadow (switch to sampling)	

6.8.3.2 set() [2/2]

Parameters

in SamplingGrid object to be copied

6.8.3.3 setSwitchNumber()

Set number of maximum RoadTriangles in the Tire Shadow (switch to sampling)

Parameters

_Switch | New switch number

The documentation for this class was generated from the following file:

 $\bullet \ \ include/PatchTire.hh$

6.9 PatchTire::Shadow Class Reference

```
2D shadow (2D bounding box enhacement) #include <PatchTire.hh>
```

Public Member Functions

- Shadow ()
 - $Default\ constructor.$
- $\bullet \ \, {\rm Shadow} \,\, ({\rm ETRTO} \,\, {\rm const} \,\, \& {\rm TireGeometry}, \, {\rm ReferenceFrame} \,\, {\rm const} \,\, \& {\rm RF}) \\$
- $\bullet \ \ {\rm void} \ \ {\rm update} \ \ ({\rm ETRTO} \ \ {\rm const} \ \ \&{\rm TireGeometry}, \ \ {\rm ReferenceFrame} \ \ {\rm const} \ \ \&{\rm RF})$
- G2lib::AABBtree::PtrAABB const getAABBtree (void) const Get total Tire G2Lib::AABBtree (3D projection on ground)
- G2lib::AABBtree::PtrAABB const getUpperSideAABBtree (void) const
 Get upper side Tire G2Lib:AABBtree (3D projection on ground)
- G2lib::AABBtree::PtrAABB const getLowerSideAABBtree (void) const
 Get lower side Tire G2Lib:AABBtree (3D projection on ground)

${\bf 6.9.1}\quad {\bf Detailed}\ {\bf Description}$

 $2D \ {\rm shadow} \ (2D \ {\rm bounding} \ {\rm box} \ {\rm enhacement})$

6.9.2 Constructor & Destructor Documentation

6.9.2.1 Shadow()

```
PatchTire::Shadow::Shadow (

ETRTO const & TireGeometry,

ReferenceFrame const & RF ) [inline]
```

Variable set constructor

Warning: Rotation matrix must be orthonormal!

Parameters

Tire Geometry	Tire ETRTO denomination
RF	Tire ReferenceFrame

6.9.3 Member Function Documentation

$\mathbf{6.9.3.1} \quad \mathbf{up}\,\mathbf{dat}\,\mathbf{e}()$

Update the 2D tire shadow domain

Warning: Rotation matrix must be orthonormal!

Parameters

Tire Geometry	Tire ETRTO denomination
RF	Tire ReferenceFrame

The documentation for this class was generated from the following file:

• include/PatchTire.hh

6.10 TicToc Class Reference

Public Member Functions

- void tic ()
- void **toc** ()
- ullet real_type elapsed_s () const
- real_type **elapsed**_**ms** () const

The documentation for this class was generated from the following file:

 \bullet include/TicToc.hh

6.11 PatchTire::Tire Class Reference

Base class for Tire models. #include <PatchTire.hh> Inheritance diagram for PatchTire::Tire:

 ${\bf Collaboration~diagram~for~Patch\,Tire::} \\ {\bf Tire:}$

Public Member Functions

- ~Tire ()
 - $Default\ destructor.$
- Tire (real_type const SectionWidth, real_type const AspectRatio, real_type const RimDiameter, int_type const PointsN, int_type const DisksN)

Variable set constructor.

- $\bullet \ \ {\rm void \ printETRTOGeometry} \ ({\rm ostream_type} \ \& {\rm stream}) \ {\rm const}$
 - $Display \ \ Tire \ \ ETRTO \ geometry \ \ data.$
- $\bullet \ \, \mathrm{void} \,\, \mathrm{setReferenceFrame} \,\, (\mathrm{ReferenceFrame} \,\, \mathrm{const} \,\, \& \, \underline{} \mathrm{RF}) \\$
- ReferenceFrame const & getReferenceFrame (void) const

Get tire ReferenceFrame object.

• void setOrigin (vec3 const &Origin)

Set a new tire origin.

- void setRotationMatrix (mat3 const &RotationMatrix)
- $\bullet \ \ void \ setTotalTransformationMatrix \ (m \ at 4 \ const \ \&TM) \\$
- real_type getEulerAngleX (void) const
- $\bullet \ \ real_type\ getEulerAngleY\ (void)\ const$
- $\bullet \ \ real_type\ getEulerAngleZ\ (void)\ const$
- $\bullet \ \ {\rm void} \ \ {\rm getRelativeCamber} \ \ ({\rm real_type} \ \ \& {\rm RelativeCamber}) \ \ {\rm const}$

 $Get\ relative\ camber\ angle\ [\ rad].$

- $\bullet \quad \text{int_type getDisksNumber (void) const} \\$
 - Dimension of the contact points data structure (disks number)
- virtual void getRho (real_type &Rho) const =0

60 Class Documentation

```
• virtual void getRho (row_vecN &Rho) const =0
 \bullet \  \, {\rm virtual \ void \ getRhoDot \ (real\_type \ const \ \&Rho, \ real\_type \ const \ \&Time, \ real\_type \ \&RhoDot) } 
  const = 0
     Get contact depth time derivative [ m/s].
• virtual void getRhoDot (row_vecN const &Rho, real_type const &Time, row_vecN &RhoDot)
  const = 0
     Get contact depth time derivative vector [m/s].
• virtual void getNormal (vec3 &Normal) const =0
     Get contact normal versor.
• virtual void getNormal (row_vec3 &Normal) const =0
     Get contact normal versors vector.
• virtual void getMFpoint (vec3 &Point) const =0
     Get Magic Formula contact point.
Get Magic Formula contact point vector.
• virtual void getFriction (real_type &Friction) const =0
     Get contact point friction.
• virtual void getFriction (row_vecN &Friction) const =0
     Get contact frictions vector.
• virtual void getMFpointRF (mat4 &PointRF) const =0
     Get Magic Formula contact point reference frame with 4x4 transformation matrix.
 \bullet \  \, virtual \ void \ getMFpointRF \  \, (row\_mat4 \ \& PointRF) \  \, const = 0 \\
     Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.
• virtual void getArea (real_type &_Area) const =0
     Get approximated contact area on Disk plane [ m2 ].
• virtual void getArea (row_vecN &Area) const = 0
     Get approximated contact areas vector on Disk plane [m2].
Get approximated contact volume [ m3].
• virtual void getVolume (row vecN & Volume) const =0
     Get approximated contact volume [m^3].
• virtual void evaluateContact (RDF::TriangleRoad_list const &TriList)=0
     Evaluate contact with RoadTriangles.
• virtual bool setup (RDF::MeshSurface &Mesh, mat4 const &TM)=0
     Update current tire position and find contact parameters.
 \bullet \ virtual \ void \ print \ (ostream\_type \ \&stream) \ const \ = 0 
     Print contact parameters.
```

Protected Member Functions

 $\bullet \quad {\bf Tire} \ ({\bf Tire} \ {\bf const} \ \&) {\bf = delete}$

Deleted copy constructor.

 $\bullet \quad {\bf Tire} \ {\bf const} \ \& \ {\bf operator} = ({\bf Tire} \ {\bf const} \ \&) {\bf =} {\bf delete}$

Deleted copy operator

• bool point Sampling (RDF::TriangleRoad_list const &TriList, vec3 const &RayOrigin, vec3 const &RayOrigin, vec3 const &RayOrigin, vec3 &TriNormal=vec3_ \leftarrow NaN) const

Perform one point sampling (ray-triangle intersection)

Protected Attributes

- SamplingGrid Precision
 - $Contacth\ patch\ evaluating\ precision.$
- ETRTO TireGeometry

Tire ETR TO denomination.

 $\bullet \quad {\rm ReferenceFrame} \ {\rm RF}$

Reference Frame.

6.11.1 Detailed Description

Base class for Tire models.

6.11.2 Constructor & Destructor Documentation

6.11.2.1 Tire()

```
PatchTire::Tire::Tire (
    real_type const SectionWidth,
    real_type const AspectRatio,
    real_type const RimDiameter,
    int_type const PointsN,
    int_type const DisksN) [inline]
```

Variable set constructor.

 ${\bf Parameters}$

Section Width	Tire section width $[mm]$
AspectRatio	Tire aspect ratio [%]
RimDiameter	Rim diameter $[in]$
PointsN	Sampling points for each Disk (divisions on X -axis)
DisksN	Number of Disks (divisions on Y -axis -1)

6.11.3 Member Function Documentation

6.11.3.1 evaluateContact()

 ${\bf Evaluate~contact~with~RoadTriangles}.$

Parameters

TriList | Shadow/MeshSurface intersected triangles

Implemented in PatchTire::MagicFormula.

6.11.3.2 getArea() [1/2]

Get approximated contact area on Disk plane [$m^2]\,.$

Parameters

```
_ Area | Contact area [ m<sup>2</sup>]
```

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

6.11.3.3 get Area() [2/2]

Get approximated contact areas vector on Disk plane $[m^2]$.

Parameters

Area Contact areas vector $[m^2]$

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

$\mathbf{6.11.3.4}\quad \mathbf{getEulerAngleX()}$

Get current Euler angles [rad] for X-axis Warning: Factor as $[R_z][R_x][R_y]!$

6.11.3.5 getEulerAngleY()

Get current Euler angles [rad] for Y-axis Warning: Factor as $[R_z][R_x][R_y]!$

$\bf 6.11.3.6 \quad getEulerAngleZ()$

Get current Euler angles [rad] for Z-axis Warning: Factor as $[R_z][R_x][R_y]!$

6.11.3.7 getFriction() [1/2]

Get contact point friction.

Parameters

Friction | Contact point friction

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

6.11.3.8 getFriction() [2/2]

Get contact frictions vector.

Parameters

Friction | Contact frictions vector

Implemented in PatchTire::MultiDisk, and PatchTire::MagicFormula.

6.11.3.9 getMFpoint() [1/2]

Get Magic Formula contact point.

 ${\bf Parameters}$

Point | Magic Formula contact point

 $Implemented \ in \ Patch Tire:: Multi Disk, \ and \ Patch Tire:: Magic Formula.$

6.11.3.10 get MFp oint () [2/2]

 ${\bf Get\ Magic\ Formula\ contact\ point\ vector}.$

Parameters

Point | Magic Formula Contact point vector

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

6.11.3.11 get MFp oint RF() [1/2]

Get Magic Formula contact point reference frame with 4x4 transformation matrix.

${\bf Parameters}$

PointRF	Magic Formula	contact	point	reference	frame
1 Otherser	wiagic roimaio	COHUACU	Pome	reference	II amic

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

6.11.3.12 get MFp oint RF() [2/2]

Get Magic Formula contact point reference frame vector with 4x4 transformation matrix.

Parameters

PointRF	Magic Formula ontact point reference frames vector
---------	--

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

6.11.3.13 getNormal() [1/2]

```
virtual void PatchTire::Tire::getNormal (
    vec3 & Normal ) const [pure virtual]
```

Get contact normal versor.

Parameters

	Normal	Contact point normal direction	Contact point	
ı	11 01 11tu t	Contact point normal direction	Contact point	

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

$6.11.3.14 \quad \mathbf{get} \, \mathbf{Normal()} \,\, {\tt [2/2]}$

Get contact normal versors vector.

Parameters

Normal	Contact	point normal	direction	vector

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

6.11.3.15 getRelativeCamber()

```
void PatchTire::Tire::getRelativeCamber ( {\tt real\_type~\&~RelativeCamber~)~const} Get relative camber angle [ rad].
```

Parameters

Relative Camber | Relative camber angle

6.11.3.16 getRho() [1/2]

Get contact depth at center point [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

6.11.3.17 getRho() [2/2]

Get contact depth vector [m]

Warning: (if negative the tire does not touch the ground)!

Parameters

 $Implemented \ in \ Patch Tire:: Multi Disk, \ and \ Patch Tire:: Magic Formula.$

6.11.3.18 getRhoDot() [1/2]

```
virtual void PatchTire::Tire::getRhoDot (
    real_type const & Rho,
    real_type const & Time,
    real_type & RhoDot ) const [pure virtual]
```

Get contact depth time derivative [m/s].

Parameters

Rho	Previous time step Rho $[m]$
Time	Time step $[s]$
RhoDot	Penetration derivative $[m/s]$

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

6.11.3.19 getRhoDot() [2/2]

```
virtual void PatchTire::Tire::getRhoDot (
    row_vecN const & Rho,
    real_type const & Time,
    row_vecN & RhoDot ) const [pure virtual]
```

Get contact depth time derivative vector [m/s].

Parameters

RI	io	Previous time step Rho $[m]$
Ti	me	Time step $[s]$
RI	noDot	Penetration derivative $[m/s]$

Implemented in PatchTire::MultiDisk, and PatchTire::MagicFormula.

6.11.3.20 getVolume() [1/2]

Parameters

Volume	Contact volume	m^3

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

6.11.3.21 getVolume() [2/2]

```
virtual void PatchTire::Tire::getVolume ( {\tt row\_vecN~\&~$L^{Volume}~)} \ \ {\tt const~[pure~virtual]} Get approximated contact volume [ m^3].
```

Get approximated contact volume [

Parameters

 $Implemented\ in\ PatchTire::MultiDisk,\ and\ PatchTire::MagicFormula.$

$6.11.3.22 \quad pointSampling()$

```
bool PatchTire::Tire::pointSampling (

RDF::TriangleRoad_list const & TriList,

vec3 const & RayOrigin,

vec3 const & RayDirection,

vec3 & SampledPt,

real_type & TriFriction = quietNaN,

vec3 & TriNormal = vec3_NaN ) const [protected]
```

Perform one point sampling (ray-triangle intersection)

 ${\bf Parameters}$

TriList	$Shadow/Mesh Surface\ intersected\ triangles$
RayOrigin	Ray origin
RayDirection	Ray direction
SampledPt	Intersection point
TriFriction	Intersected triangle friction
TriNormal	Intersected triangle normal

6.11.3.23 print()

 ${\bf Print\ contact\ parameters.}$

Parameters

stream	Output stream type
--------	--------------------

 $Implemented \ in \ Patch Tire:: Multi Disk, \ and \ Patch Tire:: Magic Formula.$

6.11.3.24 printETRTOGeometry()

Display $\overline{\text{Tire ETRTO}}$ geometry data.

Parameters

```
stream | Output stream type
```

$6.11.3.25 \quad setOrigin()$

Set a new tire origin.

Parameters

Origin Tire origin

6.11.3.26 setReferenceFrame()

Copy the tire ReferenceFrame object

Warning: Rotation matrix must be orthonormal!

Parameters

_RF | ReferenceFrame object to be copied

6.11.3.27 setRotationMatrix()

Set a new 3x3 rotation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

RotationMatrix | Rotation matrix

6.11.3.28 setTotalTransformationMatrix()

Set 4x4 total transformation matrix

Warning: Rotation matrix must be orthonormal!

Parameters

TM 4x4 total transformation matrix

6.11.3.29 setup()

```
virtual bool PatchTire::Tire::setup (
    RDF::MeshSurface & Mesh,
    mat4 const & TM ) [pure virtual]
```

Update current tire position and find contact parameters.

Parameters

Mesh	MeshSurface object (road)
TM	4x4 total transformation matrix

Implemented in PatchTire::MultiDisk, and PatchTire::MagicFormula.

The documentation for this class was generated from the following file:

 \bullet include/PatchTire.hh

6.12 RDF::Triangle3D Class Reference

3D triangle (pure geometrical description) #include <RoadRDF.hh>
Inheritance diagram for RDF::Triangle3D:

Collaboration diagram for RDF::Triangle3D:

Public Member Functions

- Triangle3D ()
 - $Variable\ set\ constructor.$
- $\bullet \ \, {\rm Triangle3D} \ ({\rm vec3} \ {\rm const} \ _{\rm Vertices[3]}) \\$
 - Variable set constructor.
- $\bullet \ \ \mathrm{void} \ \mathbf{setVertices} \ (\mathbf{vec3} \ \mathbf{const} \ \ _\mathbf{Vertices}[3])$
 - Set new vertices and update bounding box domain.
- $\bullet \ \ \mathrm{void} \ \mathrm{setVertices} \ (\mathrm{vec3} \ \mathrm{const} \ \&\mathrm{Vertex0}, \ \mathrm{vec3} \ \mathrm{const} \ \&\mathrm{Vertex2})$
 - Set new vertices then update bounding box domain and normal versor.
- $\bullet \quad \mathbf{vec3} \ \mathbf{const} \ \& \ \mathbf{getNormal} \ (\mathbf{void}) \ \mathbf{const}$
 - $Get\ normal\ versor.$
- ullet vec3 const & getVertex (unsigned i) const

Class Documentation

Get i-th vertex.

- $\bullet \quad BBox2D \ const \ \& \ getBBox \ (void) \ const$
 - Get Triangle3D bonding box BBox2D.
- $\bullet\,$ void print (ostream_type &stream) const

Print vertices data.

- $\bullet \ \ bool\ intersectRay\ (vec 3\ const\ \& RayOrigin,\ vec 3\ const\ \& RayDirection,\ vec 3\ \& IntPt)\ const$
- int_type intersect EdgePlane (vec3 const &PlaneN, vec3 const &PlaneP, int_type const Edge, vec3 &IntPt1, vec3 &IntPt2) const
- $\bullet \ \ bool\ intersect Plane\ (vec 3\ const\ \& Plane P,\ std::vector < vec 3 > \& Int Pts)\ const$

Protected Member Functions

- $\bullet \quad {\bf Triangle 3D} \ ({\bf Triangle 3D} \ {\bf const} \ \&) {\bf = } {\bf delete}$
 - Deleted copy constructor.
- $\bullet \quad \mbox{Triangle3D \& operator= (Triangle3D const \&)=delete} \\ \mbox{$Deleted \ copy \ operator.}$

Protected Attributes

- vec3 Vertices [3]
 - Vertices reference vector.
- vec3 Normal
 - Triangle normal versor.
- $\bullet \quad BBox 2D \; Triangle BBox$

 ${\it Triangle~2D~bounding~box~(~XY~plane)}$

6.12.1 Detailed Description

3D triangle (pure geometrical description)

6.12.2 Constructor & Destructor Documentation

6.12.2.1 Triangle3D()

Variable set constructor.

Parameters

_ Vertices | Vertices reference vector

6.12.3 Member Function Documentation

$\bf 6.12.3.1 \quad intersect Edge Plane ()$

```
int_type RDF::Triangle3D::intersectEdgePlane (
    vec3 const & PlaneN,
```

```
vec3 const & PlaneP,
int_type const Edge,
vec3 & IntPt1,
vec3 & IntPt2 ) const
```

Check if an edge of the Triangle3D object hits a and find the intersection point

Parameters

PlaneN	Plane normal vector
PlaneP	Plane known point
Edge	Triangle edge number (0:2)
IntPt1	Intersection point 1
IntPt2	Intersection point 2

$\bf 6.12.3.2 \quad intersect Plane()$

```
bool RDF::Triangle3D::intersectPlane (
    vec3 const & PlaneN,
    vec3 const & PlaneP,
    std::vector< vec3 > & IntPts ) const
```

Check if a plane intersects a Triangle3D object and find the intersection points

Parameters

PlaneN	Plane normal vector
PlaneP	Plane known point
IntPts	Intersection points

6.12.3.3 intersect Ray()

Check if a ray hits a Triangle3D object through Möller-Trumbore intersection algorithm

Parameters

RayOrigin	Ray origin position
RayDirection	Ray direction vector
IntPt	Intersection point

6.12.3.4 print()

Generated by Doxygen

Print vertices data.

Parameters

stream | Output stream type

6.12.3.5 setVertices() [1/2]

```
void RDF::Triangle3D::setVertices (
    vec3 const _Vertices[3] ) [inline]
```

Set new vertices and update bounding box domain.

${\bf Parameters}$

_ Vertices Vertices reference vector
--

6.12.3.6 setVertices() [2/2]

Set new vertices then update bounding box domain and normal versor.

Parameters

Vertex0	Vertex 1
Vertex1	Vertex 2
Vertex2	Vertex 3

The documentation for this class was generated from the following file:

 $\bullet \ include/RoadRDF.hh \\$

6.13 RDF::TriangleRoad Class Reference

3D triangles for road representation

#include <RoadRDF.hh>

Generated by Doxygen

Inheritance diagram for RDF::TriangleRoad:

 ${\bf Collaboration~diagram~for~RDF:: Triangle Road:}$

Public Member Functions

- TriangleRoad ()
 - $Default\ set\ constructor.$
- $\bullet \ \, TriangleRoad \ (vec3 \ const \ _Vertices[3], \ real _type \ _Friction)$
 - Variable set constructor.
- $\bullet \ \ {\rm void} \ \ {\rm setFriction} \ \ ({\rm real_type} \ \ _{\rm Friction})$
 - Set friction coefficient.
- $\bullet \quad {\rm real_type~getFriction~(void)~const}$
 - Get friction coefficent on the face.
- void setVertices (vec3 const _Vertices[3])
 - Set new vertices and update bounding box domain.
- void setVertices (vec3 const &Vertex0, vec3 const &Vertex1, vec3 const &Vertex2)
 - $Set\ new\ vertices\ then\ update\ bounding\ box\ domain\ and\ normal\ versor.$
- vec3 const & getNormal (void) const
 - Get normal versor.

- $\bullet \quad \mathbf{vec3} \ \mathbf{const} \ \& \ \mathbf{getVertex} \ (\mathbf{unsigned} \ \mathbf{i}) \ \mathbf{const}$
 - Get i-th vertex.
- $\bullet \quad BBox2D \ const \ \& \ getBBox \ (void) \ const$

Get Triangle3D bonding box BBox2D.

- $\bullet\,$ void print (ostream_type &stream) const
 - Print vertices data.
- $\bullet \ \ bool\ intersectRay\ (vec 3\ const\ \& RayOrigin,\ vec 3\ const\ \& RayDirection,\ vec 3\ \& IntPt)\ const$
- int_type intersectEdgePlane (vec3 const &PlaneN, vec3 const &PlaneP, int_type const Edge, vec3 &IntPt1, vec3 &IntPt2) const
- bool intersectPlane (vec3 const &PlaneN, vec3 const &PlaneP, std::vector< vec3 > &IntPts) const

Protected Attributes

• vec3 Vertices [3]

Vertices reference vector.

vec3 Normal

Triangle normal versor.

 $\bullet \quad BBox 2D \; Triangle BBox$

Triangle 2D bounding box (XY plane)

6.13.1 Detailed Description

3D triangles for road representation

6.13.2 Constructor & Destructor Documentation

6.13.2.1 TriangleRoad()

Variable set constructor.

Parameters

_ Vertices	Vertices reference vector
_ Friction	Friction coefficient

6.13.3 Member Function Documentation

$\bf 6.13.3.1 \quad intersect Edge Plane()$

```
int_type RDF::Triangle3D::intersectEdgePlane (
    vec3 const & PlaneN,
    vec3 const & PlaneP,
    int_type const Edge,
    vec3 & IntPt1,
    vec3 & IntPt2 ) const [inherited]
```

Generated by Doxygen

Check if an edge of the Triangle3D object hits a and find the intersection point

${\bf Parameters}$

PlaneN	Plane normal vector
PlaneP	Plane known point
Edge	Triangle edge number (0:2)
IntPt1	Intersection point 1
IntPt2	Intersection point 2

6.13.3.2 intersectPlane()

```
bool RDF::Triangle3D::intersectPlane (
    vec3 const & PlaneN,
    vec3 const & PlaneP,
    std::vector< vec3 > & IntPts ) const [inherited]
```

Check if a plane intersects a $\overline{\text{Triangle3D}}$ object and find the intersection points

Parameters

PlaneN	Plane normal vector
PlaneP	Plane known point
IntPts	Intersection points

6.13.3.3 intersect Ray()

```
bool RDF::Triangle3D::intersectRay (
    vec3 const & RayOrigin,
    vec3 const & RayDirection,
    vec3 & IntPt ) const [inherited]
```

 $Check\ if\ a\ ray\ hits\ a\ Triangle 3D\ object\ through\ M\"{o}ller-Trumbore\ intersection\ algorithm$

Parameters

RayOrigin	Ray origin position
Ray Direction	Ray direction vector
IntPt	Intersection point

6.13.3.4 print()

Print vertices data.

${\bf Parameters}$

stream Output stre	eam type
--------------------	----------

6.13.3.5 setFriction()

Set friction coefficient.

${\bf Parameters}$

_Friction | New friction coefficient

6.13.3.6 setVertices() [1/2]

Set new vertices and update bounding box domain.

${\bf Parameters}$

Vertices	Vertices reference vector

$6.13.3.7\quad {\rm setVertices()~[2/2]}$

```
void RDF::Triangle3D::setVertices (
    vec3 const & Vertex0,
    vec3 const & Vertex1,
    vec3 const & Vertex2 ) [inline], [inherited]
```

Set new vertices then update bounding box domain and normal versor.

Parameters

Vertex0	Vertex 1
Vertex1	Vertex 2
Vertex2	Vertex 3

The documentation for this class was generated from the following file:

 $\bullet \ \ include/RoadRDF.hh$

Index

BBox2D	Patch Tire::Reference Frame, 54
RDF::BBox2D, 20	Patch Tire::Tire, 62
	$\operatorname{getEulerAngleZ}$
contactPlane	Patch Tire::Magic Formula, 28
PatchTire::Disk, 21	Patch Tire::MultiDisk, 45
contact Triangles	Patch Tire::Reference Frame, 54
PatchTire::Disk, 22	Patch Tire::Tire, 62
	getFriction
Disk	Patch Tire::MagicFormula, 29
PatchTire::Disk, 21	PatchTire::MultiDisk, 45
	Patch Tire::Tire, 62, 63
ETRTO	$\operatorname{get}\operatorname{MFp}\operatorname{oint}$
PatchTire::ETRTO, 23	Patch Tire::MagicFormula, 29
evaluateContact	PatchTire::MultiDisk, 45
PatchTire::MagicFormula, 27	Patch Tire::Tire, 63
PatchTire::Tire, 61	$\operatorname{getMFpointRF}$
	Patch Tire::MagicFormula, 30
firstToken	PatchTire::MultiDisk, 46
RDF::algorithms, 15	Patch Tire::Tire, 63, 64
fourPointsSampling	getNormal
PatchTire::MagicFormula, 27	Patch Tire::MagicFormula, 30
	PatchTire::MultiDisk, 46
getArea	Patch Tire::Tire, 64
PatchTire::MagicFormula, 28	get Relative Camber
PatchTire::MultiDisk, 42	Patch Tire::MagicFormula, 31
PatchTire::Tire, 61, 62	Patch Tire::MultiDisk, 47
getDiskFriction	Patch Tire::Tire, 64
PatchTire::MultiDisk, 42	$\operatorname{get} olimits \operatorname{Rho} olimits$
getDiskMFpoint	Patch Tire::MagicFormula, 31
PatchTire::MultiDisk, 42	PatchTire::MultiDisk, 47
getDiskMFpointRF	Patch Tire::Tire, 65
PatchTire::MultiDisk, 43	getRhoDot
get Disk Norm al	Patch Tire::MagicFormula, 31, 32
PatchTire::MultiDisk, 43	PatchTire::MultiDisk, 47, 48
getDiskOriginXYZ	Patch Tire::Tire, 65
PatchTire::MultiDisk, 43	getVolume
getDiskRho	Patch Tire::MagicFormula, 32
PatchTire::MultiDisk, 44	PatchTire::MultiDisk, 48
$\operatorname{get}\operatorname{Disk}\operatorname{Rho}\operatorname{Dot}$	Patch Tire::Tire, 66
PatchTire::MultiDisk, 44	
getElement	${\rm intersect AABB tree}$
RDF::algorithms, 16	RDF::MeshSurface, 36
getEulerAngleX	intersectBBox
PatchTire::MagicFormula, 28	RDF::MeshSurface, 36
PatchTire::MultiDisk, 44	intersectEdgePlane
PatchTire::ReferenceFrame, 54	RDF::Triangle3D, 70
PatchTire::Tire, 62	$ ext{RDF}:: ext{TriangleRoad}, 75$
getEulerAngleY	intersectPlane
PatchTire::MagicFormula, 28	RDF::Triangle3D, 71
PatchTire::MultiDisk, 44	RDF::TriangleRoad, 76

80 INDEX

intersectPointSegment	getDiskNormal, 43
PatchTire::algorithms, 12	getDiskOriginXYZ, 43
intersectRay	getDiskRho, 44
RDF::Triangle3D, 71	getDiskRhoDot, 44
RDF::TriangleRoad, 76	getEulerAngleX, 44
intersect RayPlane	getEuler AngleY, 44
PatchTire::algorithms, 12	getEuler AngleZ, 45
,	getFriction, 45
LoadFile	getMFpoint, 45
RDF::MeshSurface, 37	getMFpointRF, 46
	getNormal, 46
MagicFormula	getRelativeCamber, 47
PatchTire::MagicFormula, 27	getRho, 47
MeshSurface	getRhoDot, 47, 48
RDF::MeshSurface, 36	getVolume, 48
minmax XY	,
PatchTire::algorithms, 13	MultiDisk, 40, 41
MultiDisk	pointSampling, 50
PatchTire::MultiDisk, 40, 41	print, 50
, ,	printETRTOGeometry, 50
PatchTire, 11	$\operatorname{setDiskOriginXZ}$, 51
Patch Tire::Disk, 20	setOrigin, 51
contactPlane, 21	setReferenceFrame, 51
contact Triangles, 22	setRotationMatrix, 51
Disk, 21	set Total Transformation Matrix, 52
set, 22	setup, 52
setOriginXZ, 22	PatchTire::ReferenceFrame, 52
Patch Tire::ETRTO, 23	getEulerAngleX, 54
ETRTO, 23	getEuler AngleY, 54
print, 24	getEuler AngleZ, 54
Patch Tire::Magic Formula, 24	Reference Frame, 53
evaluateContact, 27	set, 54
,	setOrigin, 54
fourPointsSampling, 27	setRotation Matrix, 54
get Area, 28	setTotalTransformationMatrix, 55
getEuler AngleX, 28	PatchTire::SamplingGrid, 55
getEuler Angle Y, 28	Sampling Grid, 56
getEuler Angle Z, 28	set, 56
getFriction, 29	
getMFpoint, 29	setSwitchNumber, 57
getMFpointRF, 30	PatchTire::Shadow, 57
getNormal, 30	Shadow, 57
getRelativeCamber, 31	update, 58
getRho, 31	PatchTire::Tire, 58
getRhoDot, 31, 32	evaluateContact, 61
getVolume, 32	getArea, 61, 62
MagicFormula, 27	getEulerAngleX, 62
pointSampling, 33	getEulerAngleY, 62
print, 33	getEulerAngleZ, 62
printETRTOGeometry, 33	getFriction, 62, 63
setOrigin, 34	getMFpoint, 63
setReferenceFrame, 34	getMFpointRF, 63, 64
setRotationMatrix, 34	getNormal, 64
setTotalTransformationMatrix, 34	getRelativeCamber, 64
setup, 34	getRho, 65
Patch Tire::Multi Disk, 37	getRhoDot, 65
get Area, 42	getVolume, 66
get Disk Friction, 42	pointSampling, 66
get Disk MFpoint, 42	print, 67
get Disk MFpoint RF, 43	printETRTOGeometry, 67
0 Pointer, 10	primate trans a dominary, or

INDEX 81

setOrigin, 67	getElement, 16
setReferenceFrame, 67	split, 16
setRotationMatrix, 68	tail, 16
setTotalTransformationMatrix, 68	RDF, 14
setup, 68	ReferenceFrame
Tire, 61	Patch Tire::Reference Frame, 53
PatchTire::algorithms, 11	SliC-i d
intersectPointSegment, 12	SamplingGrid
intersectRayPlane, 12	Patch Tire::Sampling Grid, 56
minmax_XY, 13	set
trapezoidArea, 13	Patch Tire::Disk, 22
weightedMean, 14	Patch Tire::Reference Frame, 54
pointSampling	Patch Tire::Sampling Grid, 56
PatchTire::MagicFormula, 33	RDF::MeshSurface, 37
PatchTire::MultiDisk, 50	setDiskOriginXZ
PatchTire::Tire, 66	Patch Tire::MultiDisk, 51
print	setFriction
PatchTire::ETRTO, 24	RDF::TriangleRoad, 77
PatchTire::MagicFormula, 33	setOrigin
PatchTire::MultiDisk, 50	Patch Tire::Magic Formula, 34
PatchTire::Tire, 67	Patch Tire::MultiDisk, 51
$RDF::BBox2D, \frac{20}{}$	Patch Tire::Reference Frame, 54
RDF::Triangle3D, 71	Patch Tire::Tire, 67
RDF::TriangleRoad, 76	setOriginXZ
printData	Patch Tire::Disk, 22
RDF::MeshSurface, 37	setReferenceFrame
printETRTOGeometry	Patch Tire::MagicFormula, 34
PatchTire::MagicFormula, 33	Patch Tire::MultiDisk, 51
PatchTire::MultiDisk, 50	Patch Tire::Tire, 67
PatchTire::Tire, 67	$\operatorname{setRotationMatrix}$
DDE DD 0D 10	Patch Tire::MagicFormula, 34
RDF::BBox2D, 19	PatchTire::MultiDisk, 51
BBox2D, 20	Patch Tire::Reference Frame, 54
print, 20	Patch Tire::Tire, 68
$\operatorname{up} \operatorname{dateBBox2D}, 20$	$\operatorname{setSwitchNumber}$
RDF::MeshSurface, 35	Patch Tire::Sampling Grid, 57
intersectAABBtree, 36	$\operatorname{set} \operatorname{Total} \operatorname{Transformation} \operatorname{Matrix}$
intersectBBox, 36	Patch Tire::Magic Formula, 34
LoadFile, 37	Patch Tire::MultiDisk, 52
MeshSurface, 36	Patch Tire::Reference Frame, 55
printData, 37	Patch Tire::Tire, 68
set, 37	setVertices
RDF::Triangle3D, 69	RDF::Triangle3D, 73
intersectEdgePlane, 70	RDF::TriangleRoad, 77
intersectPlane, 71	setup
intersectRay, 71	Patch Tire::MagicFormula, 34
print, 71	Patch Tire::MultiDisk, 52
setVertices, 73	Patch Tire::Tire, 68
Triangle3D, 70	Shadow
RDF::TriangleRoad, 73	Patch Tire::Shadow, 57
intersectEdgePlane, 75	split
intersectPlane, 76	RDF::algorithms, 16
intersectRay, 76	
print, 76	tail
setFriction, 77	RDF::algorithms, 16
setVertices, 77	TicToc, 58
TriangleRoad, 75	Tire
RDF::algorithms, 15	Patch Tire::Tire, 61
firstToken, 15	TireGround, 16

82 INDEX

```
trapezoidArea
PatchTire::algorithms, 13
Triangle3D
RDF::Triangle3D, 70
TriangleRoad
RDF::TriangleRoad, 75

update
PatchTire::Shadow, 58
updateBBox2D
RDF::BBox2D, 20

weightedMean
PatchTire::algorithms, 14
```

C.1 Tests Geometrici

C.1.1 Geometry-test1.cc

```
1 // GEOMETRY TEST 1 - RAY/TRIANGLE INTERSECTION ON TRIANGLE EDGE
3 #include <fstream> // fStream - STD File I/O Library
4 #include <iostream> // Iostream - STD I/O Library
5 #include <string> // String - STD String Library
 7 #include "PatchTire.hh" // Tire Data Processing 8 #include "RoadRDF.hh" // Tire Data Processing
10 // Main function
11 \; {\tt int}
12 main() {
13 std::cout
       << " GEOMETRY TEST 1 - RAY/TRIANGLE INTERSECTION ON TRIANGLE EDGE\n"</pre>
        << "Angle\tIntersections\n";</pre>
16
17
     RDF::vec3 V1[3];
18 V1[0] = RDF::vec3(1.0, 0.0, 0.0);
     V1[1] = RDF::vec3(0.0, 1.0, 0.0);
V1[2] = RDF::vec3(-1.0, 0.0, 0.0);
19
20
     RDF::vec3 V2[3];
     V2[0] = RDF::vec3(-1.0, 0.0, 0.0);
     V2[1] = RDF::vec3(0.0, -1.0, 0.0);
25
     V2[2] = RDF::vec3(1.0, 0.0, 0.0);
27
     // Initialize generic Triangle3D
     RDF::TriangleRoad Triangle1(V1, 0.0);
     RDF::TriangleRoad Triangle2(V2, 0.0);
     // Initialize rotation matrix
32
     RDF::mat3 Rot_X;
```

```
// Initialize intersection point
35
    RDF::vec3 IntersectionPointTri1, IntersectionPointTri2;
    bool IntersectionBoolTri1, IntersectionBoolTri2;
37
38
    // Initialize Rav
39
    RDF::vec3 RayOrigin
                            = RDF::vec3(0.0, 0.0, 0.0);
    RDF::vec3 RayDirection = RDF::vec3(0.0, 0.0, -1.0);
41
42
     // Perform intersection at 0.5° step
43
    for ( RDF::real_type angle = 0;
44
           angle < G2lib::m_pi;</pre>
45
           angle += G2lib::m_pi / 360.0 ) {
46
47
       Rot_X << 1,
                             Ο,
                0, cos(angle), -sin(angle),
0, sin(angle), cos(angle);
48
49
50
51
       // Initialize vertices
52
       RDF::vec3 VerticesTri1[3], VerticesTri2[3];
53
54
       VerticesTri1[0] = Rot_X * V1[0];
       VerticesTri1[1] = Rot_X * V1[1];
55
       VerticesTri1[2] = Rot_X * V1[2];
57
58
       VerticesTri2[0] = Rot_X * V2[0];
       VerticesTri2[1] = Rot_X * V2[1];
60
       VerticesTri2[2] = Rot_X * V2[2];
61
62
       Triangle1.setVertices(VerticesTri1);
63
       Triangle2.setVertices(VerticesTri2);
65
       IntersectionBoolTri1 = Triangle1.intersectRay(
66
         RayOrigin, RayDirection, IntersectionPointTri1
67
68
       IntersectionBoolTri2 = Triangle2.intersectRay(
69
        RayOrigin, RayDirection, IntersectionPointTri2
70
71
       std::cout
73
         << angle * 180.0 / G2lib::m_pi << "°\t"
         << "T1 -> " << IntersectionBoolTri1 << ", T2 -> "
74
75
         << IntersectionBoolTri2 << std::endl;</pre>
76
77
       // ERROR if no one of the two triangles is hit
78
       if ( !IntersectionBoolTri1 && !IntersectionBoolTri2 ) {
79
         std::cout << "GEOMETRY TEST 1: Failed\n";</pre>
80
         break;
81
      }
82
    }
    // Print triangle normal vector
84
85  RDF::vec3 N1 = Triangle1.getNormal();
86
    RDF::vec3 N2 = Triangle2.getNormal();
87
    std::cout
     << "\nTriangle 1 face normal = [" << N1[0] << ", " << N1[1] << ", " << N1[2] << "]"
<< "\nTriangle 2 face normal = [" << N2[0] << ", " << N2[1] << ", " << N2[2] << "]"</pre>
89
90
      << "\n\n\nGEOMETRY TEST 1: Completed\n";</pre>
92
   // Exit the program
93
    return 0;
```

C.1.2 Geometry-test2.cc

```
1 // GEOMETRY TEST 2 - SEGMENT CIRCLE INTERSECTION
 3 #include <fstream> // fStream - STD File I/O Library
 4 #include <iostream> // Iostream - STD I/O Library
 5 #include <string> // String - STD String Library
 7 #include "PatchTire.hh" // Tire Data Processing
 8 #include "RoadRDF.hh" // Tire Data Processing
10 // Main function
11 int
12 main() {
13 // Initialize disk
14 PatchTire::Disk NewDisk(RDF::vec2(0.0, 0.0), 0.0, 1.0);
15
    // Initialize segments points
16
17
    RDF::vec2 SegIn1PtA = RDF::vec2(0.0, 0.0);
    RDF::vec2 SegIn1PtB = RDF::vec2(0.0, 1.0);
18
19
    RDF::vec2 SegIn2PtA = RDF::vec2(-2.0, 0.0);
21
    RDF::vec2 SegIn2PtB = RDF::vec2(2.0, 0.0);
22
     RDF::vec2 SegOutPtA = RDF::vec2(1.0, 2.0);
     RDF::vec2 SegOutPtB = RDF::vec2(-1.0, 2.0);
24
25
     RDF::vec2 SegTangPtA = RDF::vec2(1.0, 1.0);
26
27
     RDF::vec2 SegTangPtB = RDF::vec2(-1.0, 1.0);
28
29
     // Initialize intersection points and output types
30
     RDF::vec2 IntSegIn1_1, IntSegIn1_2, IntSegIn2_1, IntSegIn2_2, IntSegOut_1,
31
         IntSegOut_2, IntSegTang_1, IntSegTang_2;
32
     RDF::int_type PtIn1, PtIn2, PtOut, PtTang;
33
34
     // Calculate intersections
35
    PtIn1 = NewDisk.intersectSegment(
36
      SegIn1PtA, SegIn1PtB, IntSegIn1_1, IntSegIn1_2
37
     ):
38
    PtIn2 = NewDisk.intersectSegment(
39
     SegIn2PtA, SegIn2PtB, IntSegIn2_1, IntSegIn2_2
40
    );
41
     PtOut = NewDisk.intersectSegment(
42
      SegOutPtA, SegOutPtB, IntSegOut_1, IntSegOut_2
43
44
     PtTang = NewDisk.intersectSegment(
45
     SegTangPtA, SegTangPtB, IntSegTang_1, IntSegTang_2
46
47
     // Diplay results
48
49
50
       << "GEOMETRY TEST 2 - SEGMENT DISK INTERSECTION\n\n"</pre>
51
       << "Radius = " << NewDisk.getRadius() << std::endl
52
       << "Origin = [" << NewDisk.getOriginXZ().x() << ", " << NewDisk.getOriginXZ().y() << "]\n"</pre>
53
       << std::endl
       << "Segment 1 with two intersections -> " << PtIn1 << " intersections found\n"
54
       << "Segment Point A\t= [" << SegIn1PtA.x() << ", " << SegIn1PtA.y() << "]\n" << "Segment Point B\t= [" << SegIn1PtB.x() << ", " << SegIn1PtB.y() << "]\n"
56
57
       << "Intersection Point 1\t= [" << IntSegIn1_1.x() << ", " << IntSegIn1_1.y() << "]\n"</pre>
       << "Intersection Point 2\t= [" << IntSegIn1_2.x() << ", " << IntSegIn1_2.y() << "]\n"</pre>
59
       << std::endl
60
       << "Segment 2 with two intersections -> " << PtIn2 << " intersections found\n"
       << "Segment Point A\t= [" << SegIn2PtA.x() << ", " << SegIn2PtA.y() << "]\n" 
<< "Segment Point B\t= [" << SegIn2PtB.x() << ", " << SegIn2PtB.y() << "]\n"</pre>
61
       << "Intersection Point 1\t= [" << IntSegIn2_1.x() << ", " << IntSegIn2_1.y() << "]\n"
<< "Intersection Point 2\t= [" << IntSegIn2_2.x() << ", " << IntSegIn2_2.y() << "]\n"</pre>
64
65
       << std::endl
```

```
<< "Segment with no intersections \mbox{->} " << PtOut << " intersections found\n"
         << "Segment Point A\t= [" << SegOutPtA.x() << ", " << SegOutPtA.y() << "]\n" << "Segment Point B\t= [" << SegOutPtB.x() << ", " << SegOutPtB.y() << "]\n"
67
68
         << "Intersection Point 1\t = [" << IntSegOut_1.x() << ", " << IntSegOut_1.y() << "]\n" << "Intersection Point <math>2\t = [" << IntSegOut_2.x() << ", " << IntSegOut_2.y() << "]\n" << IntSegOut_2.y() << "]</pre>
70
71
         << std::endl
         << "Segment with one intersection -> " << PtTang << " intersection found\n"
         << "Segment Point A\t= [" << SegTangPtA.x() << ", " << SegTangPtA.y() << "]\n"
73
         << "Segment Point B\t= [" << SegTangPtB.x() << ", " << SegTangPtB.y() << "]\n"</pre>
        << "Intersection Point 1\t= [" << IntSegTang_1.x() << ", " << IntSegTang_1.y() << "]\n"
<< "Intersection Point 2\t= [" << IntSegTang_2.x() << ", " << IntSegTang_2.y() << "]\n"</pre>
75
76
         << "\nCheck the results...\n"
         << "\nGEOMETRY TEST 2: Completed\n";</pre>
    // Exit the program
81 return 0;
82 }
```

C.1.3 Geometry-test3.cc

```
1 // GEOMETRY TEST 3 - POINT INSIDE CIRCLE
3 #include <fstream> // fStream - STD File I/O Library
 4 #include <iostream> // Iostream - STD I/O Library
5 #include <string> // String - STD String Library
7 #include "PatchTire.hh" // Tire Data Processing
8 #include "RoadRDF.hh" // Tire Data Processing
10 // Main function
11 int
12 main() {
13 // Initialize disk
14 PatchTire::Disk NewDisk(RDF::vec2(0.0, 0.0), 0.0, 1.0);
15
16 // Query points and intersection bools
17 RDF::vec2 PointIn
                          = RDF::vec2(0.0, 0.0);
18 RDF::vec2 PointOut
                         = RDF::vec2(2.0, 0.0);
19  RDF::vec2 PointBorder = RDF::vec2(1.0, 0.0);
20
21 bool PtInBool, PtOutBool, PtBordBool;
22
23 // Calculate intersection
24 PtInBool = NewDisk.isPointInside( PointIn );
25 PtOutBool = NewDisk.isPointInside( PointOut );
   PtBordBool = NewDisk.isPointInside( PointBorder );
27
28
    << "GEOMETRY TEST 3 - POINT INSIDE DISK\n\n"
30
     << "Radius = " << NewDisk.getRadius() << std::endl</pre>
     << "Origin = [" << NewDisk.getOriginXZ().x() << ", " << NewDisk.getOriginXZ().y() << "]\n";</pre>
31
32
33
    // Show results
    if ( PtInBool && !PtOutBool && PtBordBool ) {
35
     std::cout
36
        << "Point inside\t= ["
        << PointIn.x() << ", " << PointIn.y() << "] -> Bool = " << PtInBool << std::endl</pre>
37
38
        << "Point outside\t= ["
39
        << PointOut.x() << ", " << PointOut.y() << "] -> Bool = " << PtOutBool << std::endl</pre>
40
        << "Point on border\t= ["
        << PointBorder.x() << ", " << PointBorder.y() << "] -> Bool = "<< PtBordBool</pre>
41
42.
43 } else {
      std::cout << "GEOMETRY TEST 3: Failed";</pre>
```

```
45 }
46
47 std::cout << "\nGEOMETRY TEST 3: Completed\n";
48
49 // Exit the program
50 return 0;
51 }
```

C.1.4 Geometry-test4.cc

```
1 // GEOMETRY TEST 4 - POINT ON SEGMENT
 3 #include <fstream> // fStream - STD File I/O Library
 4 #include <iostream> // Iostream - STD I/O Library
 5 #include <string> // String - STD String Library
 7 #include "PatchTire.hh" // Tire Data Processing
 8 #include "RoadRDF.hh" // Tire Data Processing
10 \, / / Main function
11 int
12 main() {
13 // Initialize segment points
14 RDF::vec2 PointA = RDF::vec2(0.0, 0.0);
15
    RDF::vec2 PointB = RDF::vec2(1.0, 1.0);
17
    // Query points and intersection bools
18
    RDF::vec2 PointIn
                        = RDF::vec2(0.5, 0.5);
                          = RDF::vec2(-1.0, -1.0);
    RDF::vec2 PointOut
    RDF::vec2 PointBorder = RDF::vec2(1.0, 1.0);
20
21
    // Calculate intersection
    bool PtInBool = PatchTire::algorithms::intersectPointSegment(PointA, PointIn);
    bool PtOutBool = PatchTire::algorithms::intersectPointSegment(PointA, PointB, PointOut);
25
    bool PtBordBool = PatchTire::algorithms::intersectPointSegment(PointA, PointB, PointBorder);
27
    std::cout
     << "GEOMETRY TEST 4 - POINT ON SEGMENT\n\n"
28
29
      << "Point A = [" << PointA[0] << ", " << PointA[1] << "]\n"</pre>
30
      << "Point B = [" << PointB[0] << ", " << PointB[1] << "]\n\n";</pre>
31
    // Show results
    if ( PtInBool && !PtOutBool && PtBordBool ) {
33
34
        << "Point inside\t= ["
        << PointIn[0] << ", " << PointIn[1] << "] -> Bool = " << PtInBool</pre>
36
37
        << "\nPoint outside\t= ["
        << PointOut[0] << ", " << PointOut[1] << "] -> Bool = " << PtOutBool</pre>
38
39
        << "\nPoint on border\t= ["
40
        << PointBorder[0] << ", " << PointBorder[1] << "] -> Bool = " << PtBordBool</pre>
41
        << std::endl:
42
    } else {
43
      std::cout << "GEOMETRY TEST 4: Failed";</pre>
44
45
    std::cout << "\nGEOMETRY TEST 4: Completed\n";</pre>
48 // Exit the program
49
   return 0:
50 }
```

C.2 Tests per il Modello a Singolo Disco

C.2.1 MagicFormula-test1.cc

```
1 // PATCH EVALUATION TEST 1 - LOAD THE DATA FROM THE RDF FILE THEN PRINT IT INTO
 2 // A FILE Out.txt. THEN CHARGE THE TIRE DATA AND ASSOCIATE THE CURRENT MESH TO
                      // chrono - STD Time Measurement Library
 5 #include <chrono>
 6 #include <fstream> // fStream - STD File I/O Library
 7 #include <iostream> // Iostream - STD I/O Library
9 #include "PatchTire.hh" // Tire Data Processing
10 #include "RoadRDF.hh" // Tire Data Processing
11 #include "TicToc.hh"
                           // Processing Time Library
13 // Main function
14 int
15 main() {
16
17
    try {
18
19
      // Instantiate a TicToc object
20
      TicToc tictoc;
21
22
      std::cout
23
        << "MAGIC FORMULA TIRE TEST 1 - CHECK INTERSECTION ON UNKNOWN MESH.\n\n";</pre>
24
      // Load .rdf File
      RDF::MeshSurface Road("./RDF_files/Eight.rdf");
26
27
28
      // Print OutMesh.txt file
29
      // Road.printData("OutMesh.txt");
30
31
      // Initialize the Magic Formula Tire
32
      PatchTire::Tire* TireSD = new PatchTire::MagicFormula(205, 60, 15, 10);
33
34
      \ensuremath{//} Orient the tire in the space
35
      RDF::real_type Yaw = 0*G2lib::m_pi;
      RDF::real_type Camber = 0*G2lib::m_pi;
36
37
38
      // Transformation matrix for {\tt X} and {\tt Z}{\tt -}{\tt axis} rotation
39
      TireGround::mat3 Rot_Z;
40
      Rot_Z \ll cos(Yaw), -sin(Yaw), 0,
41
               sin(Yaw), cos(Yaw), 0,
42
                      0.
                                 0, 1;
43
      TireGround::mat3 Rot_X;
      Rot_X << 1,
                        0,
45
               0, cos(Camber), -sin(Camber),
46
                0, sin(Camber), cos(Camber);
47
      // Update Rotation Matrix
48
      TireGround::mat3 RotMat = Rot_Z * Rot_X;
49
50
      TireGround::vec3 Origin(1.8, 19.0, 0.26); //0.8, 19.0, 0.26
51
      PatchTire::ReferenceFrame Pose(Origin, RotMat);
52
53
      // Start chronometer
54
      tictoc.tic();
55
56
      // Set an orientation and calculate parameters (true = print results)
57
      bool Out = TireSD->setup( Road, Pose.getTotalTransformationMatrix() );
58
      // Stop chronometer
```

```
tictoc.toc();
61
62
      // Display current tire data on command line
      if (Out) TireSD->print(std::cout);
64
65
      // This constructs a duration object using milliseconds
66
        << "Execution time = " << tictoc.elapsed_ms() << " ms\n"</pre>
67
         << "\nCheck the results...\n"
         << "\nMAGIC FORMULA TIRE TEST 1: Completed\n\n";</pre>
69
70
71
    } catch ( std::exception const & exc ) {
72.
      std::cerr << exc.what() << '\n';
73
    catch (...) {
75
      std::cerr << "Unknown error\n";</pre>
76 }
77 }
```

C.2.2 MagicFormula-test2.cc

```
1 // PATCH EVALUATION TEST 2 - CHECK MF_Pacejka_SCP INTERSECTION
 3 #include <fstream> // fStream - STD File I/O Library
 4 #include <iostream> // Iostream - STD I/O Library
 5 #include <string> // String - STD String Library
 7 #include "PatchTire.hh" // Tire Data Processing
8 #include "RoadRDF.hh" // Tire Data Processing 9 #include "TicToc.hh" // Processing Time Library
10
11 // Main function
12 int
13 main() {
14
15
    try {
16
17
       // Instantiate a TicToc object
18
      TicToc tictoc;
19
20
      std::cout
21
        << "MAGIC FORMULA TIRE TEST 2 - CHECK INTERSECTION ON KNOWN MESH.\n\n";</pre>
22
23
      // Initialize a quite big triangle
24
      RDF::vec3 Vertices[3];
25
      Vertices[0] = RDF::vec3(100.0, 0.0, 1.0);
26
      Vertices[1] = RDF::vec3(0.0, 100.0, 0.0);
27
      Vertices[2] = RDF::vec3(0.0, -100.0, 0.0);
28
      RDF::TriangleRoad_list PtrTriangleVec;
29
      PtrTriangleVec.push_back( RDF::TriangleRoad_ptr( new RDF::TriangleRoad(Vertices, 0.0) ) );
30
31
      // Build the mesh
32
      RDF::MeshSurface Road(PtrTriangleVec);
33
34
      // Initialize the Magic Formula Tire
35
      PatchTire::Tire* TireSD = new PatchTire::MagicFormula(205, 60, 15, 0);
36
37
      \ensuremath{//} Orient the tire in the space
38
      RDF::real_type Yaw = 0*G2lib::m_pi;
39
      RDF::real_type Camber = 0*G2lib::m_pi;
40
41
       // Transformation matrix for X and Z-axis rotation
42
      TireGround::mat3 Rot Z:
43
      Rot_Z << cos(Yaw), -sin(Yaw), 0,</pre>
```

```
44
                sin(Yaw), cos(Yaw), 0,
45
                      0.
46
      TireGround::mat3 Rot_X;
47
      Rot_X << 1,
48
               0, cos(Camber), -sin(Camber),
49
               0, sin(Camber), cos(Camber);
      // Update Rotation Matrix
51
      TireGround::mat3 RotMat = Rot_Z * Rot_X;
52
53
      TireGround::vec3 Origin( 50.0, 10.0, 0.26+0.5 );
54
      PatchTire::ReferenceFrame Pose(Origin, RotMat);
55
56
      // Start chronometer
57
      tictoc.tic();
58
59
      // Set an orientation and calculate parameters (true = print results)
60
      bool Out = TireSD->setup( Road, Pose.getTotalTransformationMatrix() );
61
62
      // Stop chronometer
63
      tictoc.toc();
64
65
      // Display current tire data on command line
      if (Out) TireSD->print(std::cout);
66
67
68
      // This constructs a duration object using milliseconds
69
        << "Execution time = " << tictoc.elapsed_ms() << " ms\n"</pre>
70
71
        << "\nCheck the results...\n"
        << "\nMAGIC FORMULA TIRE TEST 2: Completed\n";</pre>
72
73
    } catch ( std::exception const & exc ) {
75
      std::cerr << exc.what() << '\n';</pre>
76
    catch (...) {
      std::cerr << "Unknown error\n";
79
80 }
```

C.3 Tests per il Modello a più Dischi

C.3.1 MultiDisk-test1.cc

```
1 // PATCH EVALUATION TEST 1 - LOAD THE DATA FROM THE RDF FILE THEN PRINT IT INTO
 2 // A FILE Out.txt. THEN CHARGE THE TIRE DATA AND ASSOCIATE THE CURRENT MESH TO
 3 // IT.
 5 #include <chrono> // chrono - STD Time Measurement Library
 6 #include <fstream> // fStream - STD File I/O Library 7 #include <iostream> // Iostream - STD I/O Library
9 #include "PatchTire.hh" // Tire Data Processing
10 #include "RoadRDF.hh" // Tire Data Processing
11 #include "TicToc.hh" // Processing Time Library
12
13 // Main function
14 int
15 main() {
16
17
     try {
18
19
       // Instantiate a TicToc object
20
       TicToc tictoc;
```

```
21
22
      std::cout
23
         << "MULTIDISK TIRE TEST 1 - CHECK INTERSECTION ON UNKNOWN MESH.\n\n";</pre>
24
25
       // Load .rdf File
26
      RDF::MeshSurface Road("./RDF_files/Eight.rdf");
27
28
      // Print OutMesh.txt file
29
      // Road.printData("OutMesh.txt");
30
31
      // Initialize the MultiDisk Tire
32
      PatchTire::Tire* TireMD = new PatchTire::MultiDisk(205, 60, 16, 10, 20, 10);
33
34
       // Orient the tire in the space
35
      RDF::real_type Yaw = 0*G2lib::m_pi;
36
      RDF::real_type Camber = 0*G2lib::m_pi;
37
38
       // Transformation matrix for X and Z-axis rotation
39
      TireGround::mat3 Rot_Z;
40
      Rot_Z << cos(Yaw), -sin(Yaw), 0,</pre>
41
               sin(Yaw), cos(Yaw), 0,
42
                        0,
                                   0, 1;
43
      TireGround::mat3 Rot_X;
                             0,
44
      Rot_X << 1,
                0, cos(Camber), -sin(Camber),
0, sin(Camber), cos(Camber);
45
46
47
       // Update Rotation Matrix
48
      TireGround::mat3 RotMat = Rot_Z * Rot_X;
49
50
      TireGround::vec3 Origin(1.8, 19.0, 0.28); //0.8, 19.0, 0.26
51
      PatchTire::ReferenceFrame Pose(Origin, RotMat);
52
53
      // Start chronometer
54
      tictoc.tic();
55
56
      // Set an orientation and calculate parameters (true = print results)
57
      bool Out = TireMD->setup( Road, Pose.getTotalTransformationMatrix() );
58
59
      // Stop chronometer
60
      tictoc.toc();
61
62
      // Display current tire data on command line
63
      if (Out) TireMD->print(std::cout);
64
      \ensuremath{//} This constructs a duration object using milliseconds
65
66
      std::cout
67
        << "Execution time = " << tictoc.elapsed_ms() << " ms\n"</pre>
         << "\nCheck the results...\n"
68
69
         << "\nMULTIDISK TIRE TEST 1: Completed\n\n";</pre>
70
71
    } catch ( std::exception const & exc ) {
72
      std::cerr << exc.what() << '\n';</pre>
73
74
    catch (...) {
75
      std::cerr << "Unknown error\n";</pre>
76
77 }
```

C.3.2 MultiDisk-test2.cc

```
1 // PATCH EVALUATION TEST 2 - CHECK MF_Pacejka_SCP INTERSECTION 2
3 #include <fstream> // fStream - STD File I/O Library
4 #include <iostream> // Iostream - STD I/O Library
```

```
5 #include <string>
                       // String - STD String Library
 6
7 #include "PatchTire.hh" // Tire Data Processing
8 \; \texttt{\#include} \; \texttt{"RoadRDF.hh"} \; \; \; \; // \; \texttt{Tire Data Processing}
9 #include "TicToc.hh"
                           // Processing Time Library
10
11 // Main function
12 int
13 main() {
14
15
   try {
16
17
      // Instantiate a TicToc object
18
      TicToc tictoc;
19
20
      std::cout
21
        << "MULTIDISK TIRE TEST 2 - CHECK INTERSECTION ON KNOWN MESH.\n\n";</pre>
22
23
      // Initialize a quite big triangle
24
      RDF::vec3 Vertices[3];
25
      Vertices[0] = RDF::vec3(100.0, 0.0, 1.0);
      Vertices[1] = RDF::vec3(0.0, 100.0, 0.0);
26
27
      Vertices[2] = RDF::vec3(0.0, -100.0, 0.0);
28
      RDF::TriangleRoad_list PtrTriangleVec;
29
      PtrTriangleVec.push_back( RDF::TriangleRoad_ptr( new RDF::TriangleRoad(Vertices, 1.0) ) );
30
31
      // Build the mesh
32
      RDF::MeshSurface Road(PtrTriangleVec);
33
34
      // Initialize the Magic Formula Tire
35
      PatchTire::Tire* TireMD = new PatchTire::MultiDisk(205, 60, 15, 5, 5, 10);
36
37
       // Orient the tire in the space
38
      RDF::real_type Yaw = 0*G2lib::m_pi;
39
      RDF::real_type Camber = 0*G2lib::m_pi;
40
41
      // Transformation matrix for X and Z-axis rotation
42
      TireGround::mat3 Rot_Z;
43
      Rot_Z << cos(Yaw), -sin(Yaw), 0,</pre>
44
               sin(Yaw), cos(Yaw), 0,
45
                       Ο,
                                  0, 1;
      TireGround::mat3 Rot_X;
46
47
      Rot_X << 1,
                         0,
48
                0, cos(Camber), -sin(Camber),
                0, sin(Camber), cos(Camber);
49
50
      // Update Rotation Matrix
51
      TireGround::mat3 RotMat = Rot_Z * Rot_X;
52
53
      TireGround::vec3 Origin( 50.0, 10.0, 0.26+0.5 );
54
      PatchTire::ReferenceFrame Pose(Origin, RotMat);
55
56
      // Start chronometer
57
      tictoc.tic();
58
59
      // Set an orientation and calculate parameters (true = print results)
60
      bool Out = TireMD->setup( Road, Pose.getTotalTransformationMatrix() );
61
62
      // Stop chronometer
63
      tictoc.toc();
64
65
      // Display current tire data on command line
66
      if (Out) TireMD->print(std::cout);
67
68
      // This constructs a duration object using milliseconds
69
      std::cout
```

Bibliografia

- [1] Lars Nyborg Egbert Bakker e Hans B. Pacejka. "Tyre Modelling for Use in Vehicle Dynamics Studies". In: *SAE Transactions* 96 (1987), pp. 190–204. ISSN: 0096736X.
- [2] Juan J. Jiménez, Rafael J. Segura e Francisco R. Feito. "A Robust Segment/-Triangle Intersection Algorithm for Interference Tests. Efficiency Study". In: Comput. Geom. Theory Appl. 43.5 (lug. 2010), pp. 474–492. ISSN: 0925-7721.

 DOI: 10.1016/j.comgeo.2009.10.001. URL: http://dx.doi.org/10.1016/j.comgeo.2009.10.001.
- [3] Dick De Waard Karel A. Brookhuis e Wiel H. Janssen. "Behavioural impacts of advanced driver assistance systems—an overview". In: *European Journal of Transport and Infrastructure Research* 1.3 (2019).
- [4] Matteo Larcher. "Development of a 14 Degrees of Freedom Vehicle Model for Realtime Simulations in 3D Environment". Master Thesis. University of Trento.
- [5] Anu Maria. "Introduction to modeling and simulation". In: *Winter simulation conference* 29 (gen. 1997), pp. 7–13.
- [6] Tomas Möller e Ben Trumbore. "Fast, Minimum Storage Ray-triangle Intersection". In: J. Graph. Tools 2.1 (ott. 1997), pp. 21–28. ISSN: 1086-7651. DOI: 10.1080/10867651.1997.10487468. URL: http://dx.doi.org/10.1080/10867651.1997.10487468.
- [7] Organización Internacional de Normalización (Ginebra). Road Vehicles, Vehicle Dynamics and Road-holdin Ability: Vocabulary. ISO, 1991. ISBN 9781439838983.
- [8] Hans Pacejka. Tire and vehicle dynamics, 3rd Edition. 2012.

- [9] Georg Rill. Road Vehicle Dynamics Fundamentals and Modeling. Set. 2011. ISBN: ISBN 9781439838983.
- [10] Georg Rill. Road vehicle dynamics: fundamentals and modeling. 2011.
- [11] Dieter Schramm, Manfred Hiller e Roberto Bardini. *Vehicle Dynamics: Modeling and Simulation*. Springer Publishing Company, Incorporated, 2014. ISBN: 3540360441.