Hashing

- goal: O(1) time per operation & O(N) space

- u = # keys over all possible items

- n = # keys/items currently in table

- m = # slots in table

- hashing with chaining

achieves O(1+\alpha) time per op.

Cload factor n/m

Assuming simple uniform hashing: what you'd expect if totally uniform

- requires assuming input keys are vandom.

- only works in average case

(like Basic Quicksort)

We will remove this unreasonable assumption.

Etymology:

English hash' (1650s) = cut into small pieces

French 'hacher' = chop up

Old French 'hache' = axe

(cf. English 'hatchet')

Vulcan 'la'ash' = axe

Universal hashing:

- choose a random hash function h from H
- require It to be a universal hash family:

Pr { h(k)=h(k')} { } { } m for all k ≠ k' **

here - now just assuming h is random - no assumption about input keys (like Randomized Quicksort) Theorem: for n arbitrary distinct keys & for random he H. & H universal

E[# keys colliding in a slot] < 1+x

Proof: - consider keys $k_1, k_2, ..., k_n$ [INDICATOR - let $I_{i,j} = \S 1$ if $h(k_i) = h(k_j)$ [RANDOM VARIABLE]

Eff keys hashing to same slot as kil = E[新] = E E [Ii.j] - linearity of expectation = z E[[i,j] + E[Ii,i] = Pr {Ii,j=1} < indicator random/var. =Pr {h(k;)=h(k;)} < def. of Iiij <1/m \(\text{universality} \) $\leq \frac{N}{m} + 1$

>> Insert, Deleter Search cost O(1+a) expected.

Theorem: dot-product hash family It is universal

Proof: take any two keys k + k' ⇒ differ in some digita say ka ≠ Ka - let not d = {0,1,...,r-13, {d}} Pr { ha(k) = ha(k')} = $\Pr_{a} \left\{ \sum_{i=0}^{k} a_i \cdot k_i = \sum_{i=0}^{k} a_i \cdot k_i \pmod{m} \right\}$ = Pr { \sum ai ki + aa ka = \sum ai ki + aa ka (mod m)} = Pr { = ai(ki-ki) + ad(kd-ka)=0 (mod m)} = $\Pr \left\{ a_d = -\left(k_d - k_d \right)^{-1} \underset{i \neq d}{\not=} a_i \left(k_i - k_i \right) \pmod{m} \right\}$ $prime \Rightarrow \mathbb{Z}_m \text{ has multiplicative}$ $rac{1}{n} prime \Rightarrow \mathbb{Z}_m \text{ has multiplicative}$ = E Pr{ad = f(k,k,anota)} (because ad is independent (= = Pr{anot d=x} Pr{ad=f(k,k',x)} from anotal = E [1/m] $= \frac{1}{m}$

Another universal hash family: [CLRS]

- choose prime $P \ge u$ (once)

- hab(k) = [(a·k+b) mod p] mod m

- $PA = \frac{1}{2}hab \mid a \cdot b \in \frac{1}{2}O_1 \cdot 1_1 \cdot \dots \cdot u - 1\frac{1}{2}\frac{1}{2}$

Static dictionary problem: given n keys to store in table, support Search(k) > no collisions Perfect hashing: [Fredman, Konlós, Szemerédi 1984] - polynomial build time w.h.p. (nearly linear) - O(1) time for Search, in worst case have -O(n) space in worst case Idea: 2-level hashing 1) pick h1: {0,1, --, u-1} -> {0,1, --, m-1} from a universal hash family for m= O(n) (e.g. nearby prime) - hash all items with chaining using he (2) for each slot $j \in \{0,1,...,m-1\}$: - let $l_j = \#$ items in slot $j = \{\{i,j\}, h(k_i) = j\}$ - pick hanj: {0,1, ..., u-1} -> {0,1, ..., m, } from a universal hash family for list mis O(list) (e.g. nearby prime) - replace chain in 1) slot; with hashing-with- $\frac{\text{Space}}{\text{Space}} = O(n + \frac{n^{-1}}{50}l_{3}^{2})$ chaining using hari - to guarantee space = O(n): (1.5) if \(\frac{1}{2} \) \rightarrow Cn then redo step (1)

Search time = O(1) for first table (h1)
Search time = $O(1)$ for first table (h1) + $O(\max \text{ chain size in second table})$ - to guarantee = $O(1)$:
(2.5) while hanj(ki) = hanj(ki) for any i ≠ i'n j: repick hanj & rehash those lj items
> no collisions at second level!
Build time: (1) & Q are O(n). (1.5) & Q.5)?
(2.5): $\Pr \{ h_{a,j}(k_i) = h_{a,j}(k_{i'}) \text{ for some } i \neq i' \} $ $\leq \sum_{i \neq i'} \Pr \{ h_{a,j}(k_i) = h_{a,j}(k_{i'}) \} \text{Union Bound} $ $\leq \langle \ell_i \rangle \cdot \frac{1}{\ell_i^2} \rangle \cdot \frac{1}{\ell_i^2} \langle \ell_i \rangle \cdot \frac{1}{\ell_i$
< (2) · 1/2 < by universality
\(\frac{1}{2} \) \(\text{(Birthday Paradox)} \) \(\text{Pach trial is like a coin flip, tails } \) \(\text{OK} \) \(\text{El# trials] \leq 2 \) \(\text{Htrials} = \text{O(lg n)} \) \(\text{Wh.p.} \) \(\text{by Lecture 7} \)
- Chernoff bound \Rightarrow lj = O(lg n) w.h.p. \Rightarrow each trial $O(lg n)$ time (also obviously $O(n)$). - must do this for each j \Rightarrow $O(n lg^2 n)$ time w.h.p. (or obviously $O(n^2 lg n)$)

(15): E[\$\frac{1}{2} \text{l}] = E[\$\frac{1}{2} \frac{1}{2} \text{Lini'}] indicator rand. var. = {1 if h1(ki)=h1(ki)} = 2 & E[Iiii] = linearity of expectation = 盖田门门+ 2美, 田门门 $\leq n + \lambda(n) \cdot 1/m \leq universality$ = O(n) because m = O(n)Pr { = li > c·n} = E[= la] } Markov inequality < 1/2 for suff large constac ⇒ E[# trials] ≤ 2 & #trials = O(lg n) w.h.p. ⇒ 12.15 take O(n g n) w.h.p.