SESSION 2012 MPM1002

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 1

Durée : 4 heures

N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le

signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives

qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet est composé de trois exercices et d'un problème, tous indépendants.

EXERCICE 1: NORMES ÉQUIVALENTES

On note E l'espace vectoriel des applications de classe C^1 définies sur l'intervalle [0;1] et à valeurs dans \mathbb{R} .

1. On pose pour $f \in E$:

$$||f|| = |f(0)| + 2 \int_0^1 |f'(t)| dt$$
 et $||f||' = 2 |f(0)| + \int_0^1 |f'(t)| dt$.

- (a) Démontrer que $\| \|$ définit une norme sur E. De même, $\| \|'$ est une norme sur E, il est inutile de le démontrer.
- (b) i. Donner la définition de deux normes équivalentes.
 - ii. Démontrer que les deux normes $\| \|$ et $\| \|'$ sont équivalentes sur E.
- **2.** Toutes les normes sur E sont-elles équivalentes à la norme $\| \cdot \|$?

Exercice 2 : Continuité d'une fonction définie par intégrale

1. Soient I et J deux intervalles de \mathbb{R} et g une application de $I \times J$ dans \mathbb{R} telle que pour tout $x \in I$, la fonction $t \mapsto g(x,t)$ soit intégrable sur J.

On pose, pour tout
$$x \in I$$
, $f(x) = \int_{I} g(x, t) dt$.

Donner toutes les hypothèses du théorème de continuité d'une fonction définie par intégrale dépendant d'un paramètre permettant de conclure que la fonction f est continue sur I.

- **2.** On pose, pour tout $x \in \mathbb{R}$, $f_1(x) = \int_0^{+\infty} \frac{\arctan(xt)}{1+t^2} dt$. Démontrer que la fonction f_1 est continue sur \mathbb{R} .
- 3. On pose, pour tout $x \in [0, +\infty[$, $f_2(x) = \int_{a}^{+\infty} x e^{-xt} dt$.

Calculer $f_2(x)$ pour tout $x \in [0, +\infty[$.

La fonction f_2 est-elle continue sur $[0, +\infty[$?

Que peut-on en conclure concernant l'hypothèse de domination?

Exercice 3: Une intégrale curviligne

Calculer l'intégrale curviligne $\int_{\gamma} \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$ le long du cercle γ de centre 0 et de rayon 1, orienté dans le sens direct.

Problème: Comparaison de convergences

Dans tout le problème, $\sum f_n$ est une série de fonctions définies sur un intervalle I de \mathbb{R} et à valeurs réelles.

Partie I

Une série de fonctions $\sum f_n$ converge absolument sur I lorsque, pour tout $x \in I$, la série $\sum |f_n(x)|$ converge. Dans les deux premières questions on supposera, pour simplifier les démonstrations, que toutes les fonctions f_n sont bornées sur I.

- 1. (a) Rappeler la définition de la convergence normale de la série de fonctions $\sum f_n$ sur I.
 - (b) On suppose que la série de fonctions $\sum f_n$ converge normalement sur I, démontrer que $\sum f_n$ converge absolument sur I.
- 2. On suppose que la série de fonctions $\sum f_n$ converge normalement sur I, démontrer que $\sum f_n$ converge uniformément sur I.

On pourra démontrer que la suite des restes converge uniformément sur I vers la fonction nulle ou utiliser toute autre méthode.

- 3. On pose pour $x \in [0;1]$, $f_n(x) = (-1)^n \left(\frac{x^2 + n}{n^2}\right)$. Démontrer que la série de fonctions $\sum f_n$ converge simplement puis converge uniformément sur [0;1] mais ne converge absolument en aucune valeur de [0;1].
- **4.** Si la série de fonctions $\sum f_n$ converge absolument sur I, a-t-on nécessairement $\sum f_n$ qui converge uniformément sur I?

On attend une réponse détaillée et on pourra utiliser une série entière.

Partie II

Dans toute cette partie, $(\alpha_n)_{n\geq 1}$ est une suite décroissante de réels positifs, I=[0;1[et pour tout $x\in I$, $f_n(x)=\alpha_n\,x^n(1-x)$.

- **5.** Justifier que la suite $(\alpha_n)_{n\geq 1}$ est bornée et que la série de fonctions $\sum_{n\geq 1} f_n$ converge simplement sur I.
- **6.** (a) Calculer pour $n \ge 1$, $||f_n||_{\infty} = \sup_{x \in I} |f_n(x)|$.
 - (b) Démontrer que la série de fonctions $\sum_{n\geq 1} f_n$ converge normalement sur I si et seulement si la série de réels positifs $\sum_{n\geq 1} \frac{\alpha_n}{n}$ converge.

- 7. (a) Calculer pour tout $x \in I$, $\sum_{k=n+1}^{\infty} x^k$.
 - (b) Si on suppose que la suite $(\alpha_n)_{n\geq 1}$ converge vers 0, démontrer que la série de fonctions $\sum\limits_{n\geq 1}f_n$ converge uniformément sur I.

 On pourra observer que pour $k\geq n+1,\ \alpha_k\leq \alpha_{n+1}$.
 - (c) Réciproquement, démontrer que si la série de fonctions $\sum_{n\geq 1} f_n$ converge uniformément sur I, alors la suite $(\alpha_n)_{n\geq 1}$ converge vers 0.
- 8. Dans chacun des cas suivants, donner, en détaillant, un exemple de suite décroissante de réels positifs $(\alpha_n)_{n\geq 1}$ telle que :
 - (a) La série de fonctions $\sum_{n\geq 1} f_n$ converge normalement sur I.
 - (b) La série de fonctions $\sum_{n\geq 1} f_n$ ne converge pas uniformément sur I.
 - (c) La série de fonctions $\sum_{n\geq 1} f_n$ converge uniformément sur I mais ne converge pas normalement sur I.
- 9. Résumer à l'aide d'un schéma toutes les implications possibles, pour une série de fonctions quelconque, entre les convergences : normale, uniforme, absolue et simple sur I.

Fin de l'énoncé