Transfinite Surface Library

ShapEx

July 9, 2015

1 Conventional Geometry

Conventional geometric entities are provided by a shared library, and are accessed through the header file <code>geometry.hh</code>. The main classes defined there are as follows:

- Vector2D, Vector3D: 2- and 3-dimensional vectors, with the usual operators
- Point2D, Point3D: Aliases for Vector2D and Vector3D.
- DoubleVector, Vector2DVector, Point2DVector, etc.: Aliases for STL vectors containing the respective objects.
- BSCurve: A (non-rational) B-spline curve.
- BSSurface: A (non-rational) B-spline surface, with or without trimming. This is a dummy class only for data transfer.
- TriMesh: A triangle mesh, capable of writing Wavefront .obj files via writeOBJ(filename).
- IGES: An IGES file writer, exporting the function writeSurface(surface).

2 Transfinite Surfaces

The general interface for handling transfinite interpolation surfaces is in the header file surface.hh. It defines the abstract class Transfinite::Surface, which provides several functions (detailed below). For actual use, one has to use a child class—presently there are four options: SurfaceSideBased, SurfaceCornerBased, SurfaceGeneralizedCoons, SurfaceCompositeRibbon, corresponding to the patch types SB, CB, GC and CR in [1], respectively. One-and two-sided surfaces are not supported.

2.1 Surface Creation

After creating a surface object of the desired type, the following steps finalize the surface:

- 1. Set the boundary curves using setCurves(curves). Alternatively curves can be set one by one, using setCurve(i, curve) to set the i-th curve.
- 2. Call setupLoop() to normalize the curves and fill in adjacency information. This function has to be called every time a new curve is assigned to the surface.
- 3. Call update() to generate ribbons and clear the cache. This function has to be called every time the curves have been changed. If only the *i*-th curve has changed, it is sufficient to call update(*i*).
- 4. Use of the γ function [1] can be turned off by setGamma(false). It is on by default.

2.2 Evaluation

A point p in the 2D domain can be evaluated by calling eval(p). For convenience, there is an overloaded function that evaluates the surface using a given resolution, thereby creating a triangle mesh: eval(resolution).

2.3 Fitting

There are two options for fitting quadrilateral B-spline surfaces.

Central Split

This method splits the *n*-sided transfintie surface into *n* quadrilaterals, and fits a B-spline surface on each of them. (Except in the 4-sided case, where only one B-spline surface is used.) The function for this is fitCentralSplit(ftol, ktol, density). The parameters are:

- *ftol* is the main fitting tolerance to be achieved.
- *ktol* is the knot snapping tolerance, which is the smallest allowed difference between two knot values. As very close knots can cause artefacts, we recommend setting this value to at least 0.01 (curves are normalized to the interval [0,1]).
- density is the sampling density for the subdividing curves, the default is set to 30.

Trimming

This method fits a larger B-spline surface on the *n*-sided patch, and trims the sides with the original boundary curves. The function for this is fitTrimmed(*ftol*, resolution, maxu, maxv, wcurv, wosc). The parameters are:

- ftol is the main fitting tolerance to be achieved.
- resolution is the surface's sampling resolution, as in eval. Defaults to 15.
- maxu and maxv are the maximum number of control points in the u and v directions, respectively. These are needed because of the idiosyncrasies of the fitting algorithm. The default is 12 in both directions.
- wcurv and wosc are the curvature and oscilliation minimization weights, respectively. The default is 1e-6 for both.

References

[1] P. Salvi, T. Várady, A. Rockwood, *Ribbon-based Transfinite Surfaces*. Computer Aided Geometric Design, Vol. 31(9), pp. 613–630, 2014.