<u> Part 1</u>

MLFNN

The MNIST dataset is a dataset of handwritten digits, comprising 60 000 training examples and 10 000 test examples.

- 1. loadMNISTImages is a function which returns a 28x28x[number of MNIST images] matrix containing the raw MNIST images.
- 2. It then reshape to Number of pixels x No of examples.
- 3. Then Convert to double and rescale to [0,1].

Format of Confusion Matrix

Confusion Matrix is 10X10 matrix where each row represents the true label of a test sample and the columns represents the predicted labels of NN classifiers.

RESULTS

Standard Deviation for Eta = 0.5 is 61.566 Standard Deviation for Eta = 0.6 72.978

For 1 iteration

octave:3> accuracy(Wkj ,Wji) Accuracy is 92.210000 ConfusionMatrix =

957	0	2		0	2	4	2	10	0
0	1108	4	3	0	1	4	3	11	1
11	0	932	17	14	3	8	15	31	. 1
3	1	21	902	0	31	3	10	34	5
2	0	5	1	945	0	6	4	6	13
14	3	3	33	7	772	13	4	33	10
17	3	6	1	19	16	851	. 0	45	0
3	7	23	6	7	0	1	964	3	14
4	1	4	11	7	6	6	12	920	3
6	5	0	14	72	1	1	20	20	870

(for each iterations)

Recall for 1 is 0.976531

Recall for 2 is 0.976211

Recall for 3 is 0.903101

Recall for 4 is 0.893069

Recall for 5 is 0.962322

Recall for 6 is 0.865471

Recall for 7 is 0.888309 Recall for 8 is 0.937743 Recall for 9 is 0.944559 Recall for 10 is 0.862240 Specificity for 1 is 0.993348 Specificity for 2 is 0.997744 Specificity for 3 is 0.992417 Specificity for 4 is 0.990100 Specificity for 5 is 0.986028 Specificity for 6 is 0.993412 Specificity for 7 is 0.994913 Specificity for 8 is 0.992198 Specificity for 9 is 0.978617 Specificity for 10 is 0.994773 Precision for 1 is 0.941003 Precision for 2 is 0.982270 Precision for 3 is 0.932000 Precision for 4 is 0.910192 Precision for 5 is 0.882353 Precision for 6 is 0.927885 Precision for 7 is 0.948718 Precision for 8 is 0.932302 Precision for 9 is 0.826595 Precision for 10 is 0.948746

	0	1	2	3	4	5	6	7	8	9
Recall	0.976	0.976	0.903	0.893	0.962	0.865	0.888	0.937	0.944	0.862
	531	211	101	069	322	471	309	743	559	240
Speci	0.993	0.997	0.992	0.990	0.986	0.993	0.994	0.992	0.978	0.994
ficity	348	744	417	100	028	412	913	198	617	773
Precis	0.941	0.982	0.932	0.910	0.882	0.927	0.948	0.932	0.826	0.948
ion	003	270	000	192	353	885	718	302	595	746

Performance metrics for First iteration

Fig. Error rate vs number of epochs

Part 2

Knn results(K=1)

Knn shows better results than MLFNN for K=1. It has more accuracy compared to MLFNN.

octave:9> knnWrapper Accuracy is 96.910000 ConfusionMatrix =

```
973
       1
            1
                 0
                      0
                           1
                                 3
                                      1
                                           0
                                                0
             3
    1129
                  0
                       1
                            1
                                 1
                                      0
                                           0
                                                0
 0
 7
      6
          992
                 5
                                 2
                                     16
                                           3
                                                0
                      1
                           0
 0
      1
           2
               970
                      1
                           19
                                 0
                                      7
                                           7
                                                3
 0
      7
           0
                0
                    944
                           0
                                 3
                                      5
                                           1
                                               22
 1
      1
               12
                                      1
           0
                      2
                          860
                                 5
                                           6
                                                4
 4
      2
           0
                0
                     3
                          5
                              944
                                      0
                                           0
                                                0
 0
     14
           6
                2
                      4
                           0
                                0
                                    992
                                           0
                                                10
 6
      1
           3
               14
                      5
                          13
                                3
                                      4
                                          920
                                                 5
 2
      5
           1
                6
                     10
                           5
                                1
                                    11
                                           1
                                              967
```

```
Recall for 1 is 0.992857
Recall for 2 is 0.994714
Recall for 3 is 0.961240
Recall for 4 is 0.960396
Recall for 5 is 0.961303
Recall for 6 is 0.964126
Recall for 7 is 0.985386
Recall for 8 is 0.964981
Recall for 9 is 0.944559
Recall for 10 is 0.958375
Specificity for 1 is 0.997783
Specificity for 2 is 0.995713
Specificity for 3 is 0.998216
Specificity for 4 is 0.995662
Specificity for 5 is 0.997006
Specificity for 6 is 0.995169
Specificity for 7 is 0.998009
Specificity for 8 is 0.994984
Specificity for 9 is 0.998006
Specificity for 10 is 0.995106
Precision for 1 is 0.979859
```

Precision for 2 is 0.967438

Precision for 3 is 0.984127
Precision for 4 is 0.961348
Precision for 5 is 0.961348
Precision for 6 is 0.951327
Precision for 7 is 0.981289
Precision for 8 is 0.956606
Precision for 9 is 0.980810
Precision for 10 is 0.956479

Accuracy is 96.910000

	0	1	2	3	4	5	6	7	8	9
Recall	0.	0.	0.	0.	0.	0.8654	0.	0.	0.	0.
	9928	9947	9612	9603	9613	71	9641	9649	9445	9583
	57	14	40	96	03		26	81	59	75
Specifi	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
city	9977	9957	9982	9956	9613	99516	9980	9949	9980	9951
	83	13	16	62	03	9	09	84	06	06
Precisi	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
on	9798	9674	9841	9613	9613	95132	9812	9566	9808	9564
	59	38	27	48	48	7	89	06	10	79

Performance metrics for KNN(K=1)

Part 3

Adding Noise

octave:3> accuracy Accuracy is 96.290000 ConfusionMatrix =

```
968
       0
            1
                  0
                       0
                            0
                                 4
                                       4
                                            3
                                                 0
             2
                  2
                                            2
 0
    1124
                       1
                             1
                                  2
                                       1
                                                 0
10
       3
           984
                  5
                       6
                             1
                                                 0
                                  6
                                       9
                                            8
 2
      3
           11
                955
                       2
                            10
                                  0
                                       10
                                             11
                                                   6
 1
      0
                0
                                            2
           1
                    943
                            0
                                 8
                                       2
                                                25
 5
      2
           1
                15
                      2
                          840
                                 13
                                        1
                                             6
                                                  7
 8
      3
           1
                1
                      4
                           2
                              933
                                       0
                                            6
                                                 0
 0
      7
           7
                6
                      1
                           0
                                1
                                    995
                                            0
                                                11
 3
      5
           3
                           2
                6
                      6
                                6
                                     6
                                         931
                                                 6
 7
      6
           1
                9
                     15
                           3
                                 1
                                      8
                                           3
                                               956
```

```
Recall for 1 is 0.987755
Recall for 2 is 0.990308
Recall for 3 is 0.953488
Recall for 4 is 0.945545
Recall for 5 is 0.960285
Recall for 6 is 0.941704
Recall for 7 is 0.973904
Recall for 8 is 0.967899
Recall for 9 is 0.955852
Recall for 10 is 0.947473
Specificity for 1 is 0.996009
Specificity for 2 is 0.996729
Specificity for 3 is 0.996878
Specificity for 4 is 0.995106
Specificity for 5 is 0.995897
Specificity for 6 is 0.997914
Specificity for 7 is 0.995466
Specificity for 8 is 0.995430
Specificity for 9 is 0.995458
Specificity for 10 is 0.993883
Precision for 1 is 0.964143
Precision for 2 is 0.974848
Precision for 3 is 0.972332
Precision for 4 is 0.955956
```

Precision for 5 is 0.962245

Precision for 6 is 0.977881 Precision for 7 is 0.957906 Precision for 8 is 0.960425 Precision for 9 is 0.957819 Precision for 10 is 0.945598

	0	1	2	3	4	5	6	7	8	9
Recall	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	9877	9903	9534	9455	9602	9417	9739	9678	9558	9474
	55	80	88	45	85	04	04	99	52	73
Specifi	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
city	9960	9967	9968	9951	9958	9979	9954	9954	9954	9938
	09	29	78	06	97	14	66	30	58	83
Precisio	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
n	9641	9748	9723	9559	9622	9778	9579	9604	9578	9455
	43	48	32	56	45	81	06	25	19	98

Performance metrics for Noise addition

Weight Decay

octave:23> accuracy Accuracy is 49.730000 ConfusionMatrix =

972	4	0	0	0	0	4	0	0	0
1	1132	0	1	0	0	1	0	0	0
271	664	0	1	7	0	84	5	0	0
264	276	0	446	0	12	: 3	8	1	0
40	147	0	0	720	0	73	1	1	0
613	179	0	2	0	57	32	8	1	0
70	41	0	0	2	0 8	845	0	0	0
47	174	0	0	4	0	2	801	0	0
273	659	0	0	2	0	34	6	0	0
192	373	0	0	313	2	5	110	1	4 0

Recall for 1 is 0.991837 Recall for 2 is 0.997357 Recall for 3 is 0.000000 Recall for 4 is 0.441584 Recall for 5 is 0.733198 Recall for 6 is 0.063901 Recall for 7 is 0.882046

Recall for 8 is 0.779183

Recall for 9 is 0.000000 Recall for 10 is 0.000000 Specificity for 1 is 0.803659 Specificity for 2 is 0.716074 Specificity for 3 is 1.000000 Specificity for 4 is 0.999555 Specificity for 5 is 0.963628 Specificity for 6 is 0.998463 Specificity for 7 is 0.973678 Specificity for 8 is 0.984619 Specificity for 9 is 0.998117 Specificity for 10 is 1.000000 Precision for 1 is 0.354357 Precision for 2 is 0.310222 warning: division by zero Precision for 3 is NaN Precision for 4 is 0.991111 Precision for 5 is 0.687023 Precision for 6 is 0.802817 Precision for 7 is 0.780240 Precision for 8 is 0.853035 Precision for 9 is 0.000000 warning: division by zero Precision for 10 is NaN

	0	1	2	3	4	5	6	7	8	9
Recall	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
	9918	9973	0000	4415	7331	0639	8820	7791	0000	0000
	37	57	00	84	98	01	46	83	00	00
Specifi	0.	0.	1.	0.	0.	0.	0.	0.	0.	1.
city	8036	7160	0000	9995	9636	9984	9736	9846	9981	0000
	59	74	00	55	28	63	78	19	17	00
Precisio	0.	0.	NaN	0.	0.	0.	0.	0.	0.	NaN
n	3543	3102		9911	6870	8028	7802	8530	0000	
	57	22		11	23	17	40	35	00	

Performance metrics for weight decay

Analysis

- 1. Training the data by adding noise increases the accuracy
- 2. By weight decay accuracy is reduced as it is converging faster

References

- 1. Data http://yann.lecun.com/exdb/mnist/
- 2. Image Extraction -

 $\underline{http://ufldl.stanford.edu/wiki/index.php/Using_the_MNIST_Dataset}$