# Constraint Satisfaction Problem

#### **Constraint Satisfaction Problem**

- Set of variables {X1, X2, ..., Xn}
- Each variable Xi has a domain Di (also denoted Dxi) of possible values
  - Usually Di is discrete and finite
- Set of constraints {C1, C2, ..., Cp}
  - Each constraint Ck involves a subset of variables, e.g. we may write Ck(Xi, ...,Xj) to indicate the variables involved.
  - and specifies the allowable combinations of values of these variables
- Assign a value to every variable such that all constraints are satisfied

## **Example: 8-Queens Problem**

- ♦ 8 variables Xi, i = 1 to 8
- Domain for each variable {1,2,...,8}
- Constraints are of the forms:
  - $X_i = k \rightarrow X_j \neq k$  for all j = 1 to  $k \neq k$
  - $X_i = k_i$ ,  $X_j = k_j$   $\rightarrow |i-j| \neq |k_i k_j|$ 
    - for all j = 1 to 8,  $j \neq i$

## **Example: Map Coloring**



- 7 variables {WA,NT,SA,Q,NSW,V,T}
- Each variable has the same domain {red, green, blue}
- No two adjacent variables have the same value:

WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW, SA≠V,Q≠NSW, NSW≠V

### **CSP** as a Search Problem

- Initial state: empty assignment
- Successor function: a value is assigned to any unassigned variable, which does not conflict with the currently assigned variables
- Goal test: the assignment is complete

### Remark

- Finite CSP include 3SAT as a special case
- 3SAT is known to be NP-complete
- So, in the worst-case, we cannot expect to solve a finite CSP in less than exponential time

# Backtracking example



# Backtracking example



# Backtracking example



# Backtracking illustration



## **Backtracking Algorithm**

#### CSP-BACKTRACKING(PartialAssignment a)

- If a is complete then return a
- X ← select an unassigned variable
- D ← select an ordering for the domain of X
- For each value v in D do
  - If v is consistent with a then
    - Add (X= v) to a
    - result ← CSP-BACKTRACKING(a)
    - If result ≠ failure then return result
    - Remove (X= v) from a
- Return failure

# Improving backtracking efficiency

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

## Most constrained variable

Most constrained variable: choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV) heuristic

## Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
  - choose the variable involved in largest # of constraints on remaining variables

## Least constraining value

- Given a variable, choose the least constraining value:
  - the one that rules out the fewest values in the remaining variables
- Combining these heuristics makes 1000 queens feasible

## **Forward Checking**

After a variable X is assigned a value v, look at each unassigned variable Y that is connected to X by a constraint and deletes from Y's domain any value that is inconsistent with v



## **Constraint propagation**

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

## **Arc-consistency**

A constraint C(x,y) is said to be arc-consistent w.r.t. x if for each value v of x, there is an allowed value of y.

Similarly, we define that C(x,y) is arc-consistent w.r.t. y.

A binary CSP is arc-consistent iff every constraint C(x,y) is arc-consistent w.r.t. x as well as w.r.t. y.

### Enforcing/Maintaining arc-consistency

#### Enforcing arc-consistency:

When a CSP is not arc-consistent, we can make it arc-consistent using an arc-consistency algorithm.

#### Maintaining arc-consistency:

During backtrack search, arc-consistency is maintained:

- every time when a value is assigned to a variable;
- every time a value is rejected (e.g. empty domain is generated by enforcing arc-consistency);

Of course, we can also perform arc-consistency as a pre-process.

## Example

Consider constraints:

**Domains:** 

$$Dx = Dy = Dz = \{1,2,3\}$$

1 in Dx is removed by enforcing arc consistency, w.r.t. the constraint X < Y.

You can work out the rest. The resulting domains are  $D'x = \{1\}$ ,  $D'y = \{2\}$ ,  $D'z = \{3\}$ 

No search is needed in this case.

## Solving a CSP

- Search:
  - can find solutions, but must examine nonsolutions along the way
- Constraint Propagation:
  - Prune search space by domain reduction.
- Interleave constraint propagation and backtrack search
  - Perform constraint propagation at each search step.

## **Summary**

- Constraint Satisfaction Problems (CSP)
- CSP as a search problem
  - Backtracking algorithm
  - General heuristics
- Forward checking
- Constraint propagation: AC
- Interweaving CP and backtracking