- 1. 自由落体运动的位移 d(单位: m) 与时间 t(单位: s) 满足函数关系 $d = \frac{1}{2} g t^2 (g$ 为重力加速度).
 - (1) 分别求 [4,4.1]、[4,4.01]、[4,4.001] 这些时间段内自由落体的平均速度;
 - (2) 求 t=4 时的瞬时速度;
 - (3) 求 t = a(a > 0) 时的瞬时速度;
 - (4) 借助 (3) 的结果, 求 $t = \frac{5}{2}$ 时的瞬时速度.
- 2. 竖直向上发射的火箭熄火时上升速度达到 100 m/s, 此后其位移 H(单位: m) 与时间 t(单位: s) 近似满足函数 关系 $H=100t-5t^2$.
 - (1) 分别求火箭在 [0,2]、[2,4] 这些时间段内的平均速度;
 - (2) 求火箭在 t=2 时的瞬时速度;
 - (3) 熄火后多长时间火箭上升速度为 0?
- 3. 某水管的流水量 y(单位: m^3) 与时间 t(单位: s) 满足函数关系 y = f(t), 其中 f(t) = 3t.
 - (1) 求 f(t) 在 t = a 处的导数 f'(a);
 - (2) f'(a) 的实际意义是什么?
 - (3) 随着 a 的取值变化, f'(a) 是否发生变化? 为什么?
- 4. 将石子投入水中, 水面产生的圆形波纹不断扩散. 计算:
 - (1) 当半径 r 从 a 增加到 a + h(h > 0) 时, 圆面积相对于半径的平均变化率;
 - (2) 当半径 r=a 时, 圆面积相对于半径的瞬时变化率.
- 5. 函数 y = f(x) 的图像如图所示.

- (1) 求割线 PQ 的斜率;
- (2) 当点 Q 沿曲线向点 P 运动时, 割线 PQ 的斜率会变大还是变小?
- 6. 已知 $f(x) = -x^2$, 求曲线 y = f(x) 在下列各点处的切线斜率, 并说明这些斜率的值是如何随着自变量的变化而变化的: (1) x = -2;

- (2) x = -1;
- (3) x = 0;
- (4) x = 1;
- (5) x = 2.
- 7. 借助函数图像, 判断下列导数的正负:
 - (1) $f'(-\frac{\pi}{4})$, 其中 $f(x) = \cos x$;
 - (2) f'(3), 其中 $f(x) = \ln x$.
- 8. 已知车辆启动后的一段时间内, 车轮旋转的角度和时间 (单位: 秒) 的平方成正比, 且车辆启动后车轮转动第一圈需要 1 秒.
 - (1) 求车轮转动前 2 秒的平均角速度;
 - (2) 求车轮在转动开始后第 3 秒的瞬时角速度.
- 9. 根据导数的几何意义, 求函数 $y = \sqrt{4-x^2}$ 在下列各点处的导数:
 - (1) x = -1;
 - (2) x = 0;
 - (3) x = 1.
- 10. 已知函数 y = f(x) 在 x = 1 处的切线方程为 y = 4x 3, 求 f(1) 和 f'(1).
- 11. 如图, 已知直线 l 是曲线 y = f(x) 在 x = 3 处的切线, 求 f'(3).

- 12. 求下列函数 y = f(x) 的导数:
 - $(1) f(x) = \pi;$
 - (2) $f(x) = \sqrt[3]{x^5}$;
 - (3) $f(x) = \frac{1}{x^3}$.

- 13. 求曲线 $y = \cos x$ 在 $x = \pi 2$ 处的切线方程.
- 14. 已知曲线 $y = x^3$ 在原点以外某点 P 处切线的斜率为 a.
 - (1) 求点 P 的坐标;
 - (2) 判断 a 的正负.
- 15. 求曲线 $y = x^3 3x + 5$ 平行于 x 轴的切线及其切点坐标.
- 16. 求曲线 $y=\frac{1}{x}$ 平行于直线 y=-x 的切线及其切点坐标.
- 17. 求下列函数 y = f(x) 的导数:

(1)
$$f(x) = 2x^{e} - e^{2}$$
;

(2)
$$f(x) = e^x \cos x$$
;

(3)
$$f(x) = \frac{x-1}{x-2}$$
;

$$(4) f(x) = \frac{\ln x}{\sin x}.$$

- 18. 用两种方法求函数 y = (x-2)(3-4x) 的导数.
- 19. 已知函数 y = f(x) 与 y = g(x) 满足条件 f(1) = 2, f'(1) = 3, g(1) = 4 与 g'(1) = 5. 对于下列函数 y = h(x), 求 h(1) 和 h'(1):

(1)
$$h(x) = 2g(x) - \frac{1}{3}f(x);$$

(2)
$$h(x) = 2g(x)f(x) - \frac{1}{3}$$
;

(3)
$$h(x) = \frac{2g(x) - 1}{3f(x)}$$
.

20. 利用 y = f(ax + b) 型复合函数的求导法则, 求下列函数的导数:

(1)
$$y = \sqrt{2x - 5}$$
;

$$(2) y = \cos\frac{x}{2};$$

(3)
$$y = \frac{1}{e^{x+1}}$$
.

- 21. 用两种方法求函数 $y = \frac{2}{x-1}$ 的导数.
- 22. 某种动物的体温犜 (单位: °C) 与太阳落山后经过的时间 t(单位: min) 满足函数关系 $T=\frac{120}{t+5}+15$.
 - (1) 当 t=5 时, 求该动物体温的瞬时变化率;
 - (2) 在哪一时刻该动物体温的瞬时变化率是 -2°C/min? (结果精确到 0.1min)
- 23. 已知某港口一天内潮水的深度 y(单位: m) 与时间 t(单位: h) 近似满足函数关系 $y = 3\sin(\frac{\pi}{12}t + \frac{5\pi}{6}), 0 \le t \le 24$. 分别求上午 6 时与下午 6 时潮水涨 (落) 的速度.

- 24. 已知一列火车从静止开始加速的一段时间内,其行驶速度 v(单位: m/s) 与行驶时间 t(单位: s) 满足函数关系 $V=0.4t+0.6t^2.$
 - (1) 求这段时间内火车行驶的加速度;
 - (2) 火车行驶到哪一时刻, 其加速度为 4m/s²?
- 25. 直线 y = -x + b 是下列函数的切线吗?如果是,请求出 b 的值;如果不是,请说明理由.
 - (1) $y = \ln x$;
 - (2) $y = \frac{1}{x}$.
- 26. 吹一个球形的气球时, 气球半径 r 将随空气容量 V 的增加而增大.
 - (1) 写出气球半径 r 关于气球内空气容量 V 的函数表达式;
 - (2) 求 V=1 时, 气球的瞬时膨胀率 (即气球半径关于气球内空气容量的瞬时变化率).
- 27. 判断下列求导结果是否正确. 如果不正确, 请指出错在哪里, 并予以改正.

$$(1) \left(\frac{\sin x}{x}\right)' = -\frac{1}{x^2} \sin x - \frac{\cos x}{x};$$

(2)
$$(\ln(2-x))' = \frac{1}{2-x}$$
.

- 28. 求过点 (0,-1) 且与曲线 $y = 2x^2$ 相切的直线的方程.
- 29. 已知一罐汽水放入冰箱后的温度 x(单位: °C) 与时间 t(单位: h) 满足函数关系 $x = 4 + 16e^{-2t}$.
 - (1) 求 x'(1), 并解释其实际意义;
 - (2) 已知摄氏度 x 与华氏度 y(单位: °F) 满足函数关系 $x=\frac{5}{9}(y-32)$, 求 y 关于 t 的导数, 并解释其实际意义.
- 30. 求下列函数 y = f(x) 的导数, 其中:

(1)
$$f(x) = x^2 \sin 3x - \frac{2}{\sqrt{x}};$$

(2)
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

31. 利用导数研究下列函数的单调性, 并说明结果与你之前的认识是否一致:

$$(1) y = (\frac{1}{e})^x;$$

$$(2) y = \log_{\frac{1}{2}} x.$$

- 32. 利用导数判断函数 $y = \frac{1}{\cos x}, x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ 的单调性, 并求出极值.
- 33. 某函数图像如图所示, 它在 [a, b] 上哪一点处取得最大值? 它是极大值点吗? 在哪一点处取得最小值? 它是极小值点吗?

34. 求下列函数的单调区间、极值点和极值:

(1)
$$y = x^2 + 2x + 3$$
;

(2)
$$y = x + \frac{1}{x}$$
;

(3)
$$y = 3x - x^3$$
;

(4)
$$y = x^2 e^x$$
.

35. 证明: 函数 $y = x^3 + 4x$ 在 $(-\infty, +\infty)$ 上严格增.

36. 求函数 $y = -x^3 + 12x - 1$ 的单调减区间.

37. 证明: 函数 $y = x - \frac{1}{x}$ 没有极值点.

38. 求函数 $y = -x^3 + 12x - 1$, $x \in [0,3]$ 的值域.

39. 判断下列函数在 $(-\infty, +\infty)$ 上是否存在驻点, 是否存在极值点, 并说明理由:

- (1) $y = x^n, n$ 为正奇数;
- (2) $y = x^n, n$ 为正偶数.
- 40. 已知函数 $y = x^3 + 2mx^2 nx + m$ 在 x = 1 处有极值 0, 求 m + n 的值.
- 41. 用长为 18m 的钢条制作一个如图所示的长方体框架. 已知长方体的长宽比为 2:1,问:该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

42. 某分公司经销一品牌产品,每件产品的成本为 4 元,且每件产品需向总公司交 3 元的管理费,预计当每件产品的售价为 x 元 $(8 \le x \le 11)$ 时,一年的销售量为 $(12-x)^2$ 万件。问:当每件产品的售价为多少元时,该分公司一年的利润犔最大?(结果精确到 1 元)

- 43. 4 名学生分别报名参加学校的足球队、篮球队和棒球队,每人限报其中的一支.问:有多少种不同的报名方法?
- 44. 某服装厂为学校设计了 4 种样式的上衣、3 种样式的裤子. 若取其中的一件上衣和一条裤子配成校服,则可以配出多少种不同样式的校服?
- 45. 在一种编码方式中,每个编码都是两位字符,规定第一位用数字 0 至 9 中之一,第二位用 26 个小写英文字母中之一. 这种编码方式共可以产生多少个不同的编码?
- 46. 设集合 $A = \{(x,y) | x \in \mathbb{Z}, y \in \mathbb{Z}, \mathbb{E} | x | \le 6, |y| \le 7 \}$, 则集合 A 中有多少个元素?
- 47. 从 a、b、c、d、e 这 5 个元素中取出 4 个, 放在 4 个不同的格子中, 且元素 b 不能放在第二个格子里. 问: 一 共有多少种不同的放法?
- 48. $A \times B \times C \times D \times E$ 五人站成一排, 如果 B 必须站在 A 的右边 $(A \times B)$ 可以不相邻), 那么有多少种不同的排法?
- 49. 乘积 $(a_1 + a_2)(b_1 + b_2 + b_3)(c_1 + c_2 + c_3 + c_4)$ 的展开式中有多少项?
- 50. 如图, 要接通从 A 到 B 的电路, 不同的接通方法有多少种?

- 51. 用 1、2、3、4、5、6 组成没有重复数字的六位数, 要求所有相邻两个数字的奇偶性都不同, 且 1 和 2 相邻. 问: 有多少个这样的六位数?
- 52. 已知 p_1 、 p_2 、 p_3 是互不相同的素数, α 、 β 、 γ 是正整数, $n=p_1^{\alpha}p_2^{\beta}p_3^{\gamma}$. 问: n 有多少个不同的正约数?
- 53. 用 1、2、3、4 可以组成多少个没有重复数字的四位正整数? 其中有多少个偶数?
- 54. 从 1、2、3、4、5 这 5 个数字中, 任取 2 个不同的数字作为一个点的坐标, 一共可以组成多少个不同的点?
- 55. 在方程 ax + by = 0 中, 设系数 a、b 是集合 $\{0,1,2,3,5,7\}$ 中两个不同的元素. 求这些方程所表示的不同直线的条数.
- 56. 将 5 个人排成一排, 若甲和乙必须排在一起, 则有多少种不同的排法?
- 57. 从 7 名运动员中选 4 名组成接力队参加 4×100 米接力赛. 问: 甲、乙两人都不跑中间两棒的排法有多少种?

- 58. 从7名男生和5名女生中选取3人依次进行面试.
 - (1) 若参加面试的人全是女生,则有多少种不同的面试方法? (2) 若参加面试的人中,恰好有 1 名女生,则有多少种不同的面试方法?
- 59. 若 m 为正整数, 且 m < 27, 则 $(27 m)(28 m) \cdots (34 m)$ 等于 ().

A. P_{27-m}^8

- B. P_{34-m}^{27-m}
- C. P_{34-m}^7
- D. P_{34-m}^8

- 60. 求满足等式 $P_{2n}^3 = 28P_n^2$ 的正整数 n 的值.
- 61. 解关于正整数 x 的不等式 $P_8^x < 6P_8^{x-2}$.
- 62. 有 4 张分别标有数字 1、2、3、4 的红色卡片和 4 张分别标有数字 1、2、3、4 的蓝色卡片, 从这 8 张卡片中取出 4 张排成一行. 如果所取出的 4 张卡片所标数字之和等于 10, 那么不同的排法共有多少种?
- 63. 有 6 张连号的电影票, 分给 3 名教师和 3 名学生, 要求师生相间而坐. 求不同分法的种数.
- 64. 在一张节目单中原有 6 个节目已排好顺序, 现要插入 3 个节目, 并要求不改变原有 6 个节目前后相对顺序. 问: 一共有多少种不同的插法?
- 65. 2 名男生和 4 名女生排成一排. 问: 男生既不相邻也不排两端的不同排法共有多少种?
- 66. 在一次电影展中, 某影院要在两天内放映 12 部参赛影片, 每天只有 6 个时间段放映 6 部参赛影片, 每个时间 段放映 1 部, 其中甲、乙两部电影不能在同一天放映. 问: 有多少种不同的排片方案?
- 67. 从 6 人中选取 4 人分别去 *A、B、C、D* 四个城市游览,要求每个城市有一人游览,而每人只游览一个城市, 且这 6 人中,甲、乙两人都不去 *A* 地游览.问:不同的选择方案共有多少种?
- 68. 平面上有 10 个点, 其中有 4 个点在同一条直线上, 除此以外, 不再有三点共线. 问: 由这些点可以确定多少条直线?
- 69. (1) 从 10 男 8 女中任选 5 人, 共有多少种不同的选法? (2) 从 10 男 8 女中任选 5 人 (男女都有) 担任 5 项不同的工作, 共有多少种不同的分配方法?
- 70. 从 5 名男生和 3 名女生中各任选 2 名参加一个歌唱小组, 有多少种不同的选择方案?
- 71. 某批次 200 件产品中有 5 件次品, 现从该批次中任取 4 件产品.
 - (1) 若 4 件产品都不是次品,则这样的取法有多少种?
 - (2) 若 4 件产品中至少有 1 件次品,则这样的取法有多少种?
 - (3) 若 4 件产品不都是次品,则这样的取法有多少种?

- 72. 从 5 名外语系大学生中任选 4 名参加翻译、交通、礼仪三项义工活动,要求翻译有 2 人参加,交通和礼仪各有 1 人参加. 问: 不同的分配方法共有多少种?
- 73. 某小组共有 10 名学生, 其中女生 3 名. 现任选 2 名代表, 则至少有 1 名女生当选的选法有多少种?
- 74. 设 n 为正整数, 求值:
 - (1) $C_{2n-3}^{n-1} + C_{n+1}^{2n-3}$;
 - (2) $C_{13+n}^{3n} + C_{12+n}^{3n-1} + C_{11+n}^{3n-2} + \cdots + C_{2n}^{17-n}$.
- 75. 求满足等式 $C_{18}^k = C_{18}^{2k-3}$ 的所有正整数 k.
- 76. 证明: $C_n^m = \frac{m+1}{n+1} C_{n+1}^{m+1}$, 其中 m 是自然数, n 是正整数, 且 $m \le n$.
- 77. 把 4 本不同的书全部分给 3 名学生, 每人至少 1 本, 有多少种不同的分法?
- 78. 袋中装有 m 个红球和 n 个白球, 且 $m \ge n \ge 2$. 这些红球和白球的大小及质地都相同. 从袋中同时任取 2 个球, 若 2 个球都是红球的取法总数是 2 个球颜色不同的取法总数的整数倍, 求证: m 必为奇数.
- 79. 如图, 在 $\angle AOB$ 的两边 OA、OB 上分别有 5 个点和 6 个点 (都不同于点 O), 这连同点 O 在内的 12 个点可以确定多少个不同的三角形?

- 80. 有 12 名翻译人员, 其中 3 人只能翻译英语, 4 人只能翻译法语, 其余 5 人既能翻译英语, 也能翻译法语. 从这 12 名翻译人员中任选 6 人, 其中 3 人翻译英语, 3 人翻译法语, 有多少种不同的分配方法?
- 81. 利用组合数的性质化简: $C_3^3 + C_4^3 + C_5^3 + \cdots + C_n^3$.
- 82. 将两颗质地均匀的骰子同时抛掷一次, 求向上的点数之和为 5 的概率.
- 83. 用 1、2、3、4、5 组成没有重复数字的三位数, 从中随机地取一个, 求取到的数为奇数的概率.
- 84. 从甲、乙、丙、丁、戊五人中任选两人参加一项活动, 求甲、乙两人中至少有一人被选中的概率.
- 85. 在 10 件产品中有 8 件一等品、2 件二等品, 从中随机抽取 2 件产品. 求取到的产品中至多有 1 件二等品的概率.

- 86. 某校高一年级举行演讲比赛, 共有 10 名学生参赛, 其中一班有 3 名, 二班有 2 名, 其他班有 5 名. 若采用抽签的方式确定他们的演讲顺序, 求一班的 3 名学生恰好被排在一起 (指演讲序号相连) 的概率.
- 87. 求 $(2x^2 \frac{1}{x})^6$ 的二项展开式中的中间项.
- 88. 求 $(x+\frac{1}{x})^{10}$ 的二项展开式中的常数项.
- 89. 在 $(\sqrt{x} + \frac{1}{\sqrt[3]{x}})^{24}$ 的二项展开式中, x 的幂指数是负数的项一共有多少个?
- 90. 求 $(x+\frac{1}{2})^8$ 的二项展开式中系数最大的项.
- 91. 已知 x > 0, 且 $(x + \frac{1}{x^3})^9$ 的二项展开式中,第二项不大于第三项. 求实数 x 的取值范围.
- 92. 已知 $(1+x)^{10} = a_0 + a_1(1-x) + a_2(1-x)^2 + \dots + a_{10}(1-x)^{10}$, 求 a_8 的值.
- 93. 求 $(3-2x)^9$ 的二项展开式中系数最大的项.
- 94. 设 $f(x) = (1+x)^m + (1+x)^n (m \cdot n$ 为正整数). 若二项展开式中关于 x 的一次项系数之和为 11, 则当 $m \cdot n$ 为何值时, 含 x^2 项的系数取得最小值?
- 95. 在 $(1+x)^n$ 的二项展开式中, 设奇数项之和为 A, 偶数项之和为 B. 求证: $A^2 B^2 = (1-x^2)^n$.
- 96. 掷一颗骰子所得的样本空间为 $\Omega = \{1, 2, 3, 4, 5, 6\}$. 令事件 $A = \{2, 3, 5\}$, $B = \{1, 2, 4, 5, 6\}$. 求 P(B|A).
- 97. 将一枚质地均匀的硬币抛掷 2 次, 设事件 A 为 "第一次出现正面", 事件 B 为 "第二次出现正面". 求 P(A|B) 与 P(B|A).
- 98. 某工厂有四条流水线生产同一产品,已知这四条流水线的产量分别占总产量的 15%、20%、30% 和 35%,又 知这四条流水线的产品不合格率依次为 0.05、0.04、0.03 和 0.02. 从该厂的这一产品中任取一件,抽到不合格品的概率是多少?
- 99. 假设有两箱同种零件,第一箱内装有 50 件,其中 10 件为一等品;第二箱内装有 30 件,其中 18 件为一等品 (两箱外观相同). 现从两箱中随意挑出一箱,然后从该箱中先后随机地取出两个零件 (取出的零件不放回). 求 先取出的零件是一等品的概率.
- 100. 设某种动物活到 20 岁的概率为 0.8, 活到 25 岁的概率为 0.4. 现有一只 20 岁的该种动物, 它活到 25 岁的概率是多少?
- 101. 袋中装有编号为 1 到 N 的 N 个球. 先从袋中任取一个球, 若该球不是 1 号球, 则放回袋中; 若是 1 号球, 则不放回, 然后再摸一次. 求第二次摸到 2 号球的概率.

- 102. 一袋中装有 6 个大小与质地相同的白球, 编号为 1、2、3、4、5、6. 从该袋内随机取出 3 个球, 记被取出球的最大号码数为 X. 写出随机变量 X 的分布.
- 103. 掷两颗骰子, 用 X 表示较大的点数 (在点数相同时, X 表示共同的点数). 求 X 的分布与期望.
- 104. 设某射手打靶环数 X 的分布为 $\begin{pmatrix} 7 & 8 & 9 & 10 \\ & & & \\ a & 0.1 & 0.3 & b \end{pmatrix}$,已知期望 E[X]=8.9. 求 a、b 的值.
- 105. 一袋中装有大小与质地相同的 2 个白球和 3 个黑球.
 - (1) 从中有放回地依次摸出 2 个球, 求 2 球颜色不同的概率;
 - (2) 从中不放回地依次摸出 2 个球, 记 2 球中白球的个数为 X. 求 X 的期望和方差.
- 106. 编号为 1、2、3、4 的四名学生随机入座编号为 1、2、3、4 的座位,每个座位坐一人. 座位编号和学生编号一样时称为一个配对. 用 X 表示配对数,求 E[X].
- 107. 已知一个随机变量 X 的分布为 $\begin{pmatrix} -1 & 0 & 1 \\ a & b & c \end{pmatrix}$. 若 a+c=2b, 且 $E[X]=\frac{1}{3},$ 求 D[X] 的值.
- 108. 一袋中装有编号为 1、2、3、4、5 的五个大小与质地相同的球. 依次摸两个球, 用 X_1 、 X_2 分别表示第一个及第二个球的编号. 在以下两种情况下分别求 X_1 、 X_2 以及两编号之和 X_1+X_2 的分布, 再分别验证等式 $E[X_1+X_2]=E[X_1]+E[X_2]$ 与 $D[X_1+X_2]=D[X_1]+D[X_2]$ 是否成立.
 - (1) 放回;
 - (2) 不放回.
- 109. 先掷一颗骰子, 记朝上的点数为 X. 再抛掷 X 枚硬币, 记 Y 为正面朝上的硬币数. 求 Y 的分布、期望与方差.
- 110. 一名学生每天骑车上学,从家到学校的途中经过 6 个路口. 假设他在各个路口遇到红灯的事件是相互独立的,并且概率都是 $\frac{1}{2}$.
 - (1) 用 X 表示这名学生在途中遇到红灯的次数, 求 X 的分布;
 - (2) 求这名学生在途中至少遇到一次红灯的概率.
- 111. 从有 7 名男生的 15 名学生中任意选择 10 名, 用 X 表示其中的男生人数. 求 P(X=4) 的值.
- 112. 某学生参加一次考试, 已知在备选的 10 道试题中, 能答对其中的 6 道题. 规定每次考试都从备选题中随机抽出 3 道题进行测试, 求该生答对试题数 X 的分布.
- 113. 从一副去掉大小王牌的 52 张扑克牌中任取 5 张牌, 用 X 表示其中黑桃的张数. 求 X 的分布、期望与方差.

- 114. 从装有大小与质地相同的 a 个白球、b 个黑球的袋子中不放回地随机取 n 个球,n 不能超过总个数 a+b. 用 X 表示其中的白球个数. 这可以想象成依次取球,用 X_k 表示第 k 次取球的结果: 如果是白球, $X_k=1$; 如果 是黑球, $X_k=0(k=1,2,\cdots,n)$. 并设 $X=X_1+X_2+\cdots+X_n$,表示取出的白球的总数. 设 n=2. 求:
 - (1) $E[X_1X_2]$;
 - (2) $E[X^2] = D[X]$.
- 115. 已知随机变量 X 服从正态分布 $N(3, \sigma^2)$, 且 $P(1 \le X \le 5) = 0.6$. 求 P(X > 5) 的值.
- 116. 通过随机抽样, 我们获得某种商品每千克价格 (单位: 百元) 与该商品消费者年需求量 (单位: 千克) 的一组调查数据, 如下表所示.

每千克价格/百元	4.0	4.0	4.6	5.0	5.2	5.6	6.0	6.6	7.0	10.0
年需求量/千克	3.5	3.0	2.7	2.4	2.5	2.0	1.5	1.2	1.2	1.0

计算商品每千克价格与年需求量之间的相关系数.

117. A 校 66 名高一年级学生身高 (单位: cm) 与体重 (单位: cm) 的数据, 见下表.

性别	身高/cm	体重/kg	性别	身高/cm	体重/kg	性别	身高/cm	体重/kg
女	152	46	女	164	52	男	172	92
女	153	47	男	165	54	男	172	64
女	154	63	男	165	60	女	172	69
女	155	50	男	165	48	男	173	75
女	156	48	女	165	51	男	173	72
女	156	50	女	165	55	男	174	55
女	156	51	女	165	58	男	174	56
女	157	51	女	165	63	男	174	63
女	157	50	男	166	64	男	174	74
女	159	49	男	167	54	男	175	53
女	159	51	男	167	52	男	176	64
女	160	47	男	167	53	男	176	60
女	160	62	女	167	69	男	177	63
女	160	50	女	167	61	男	177	75

性别	身高/cm	体重/kg	性别	身高/cm	体重/kg	性别	身高/cm	体重/kg
女	160	63	男	168	97	男	178	62
女	161	53	女	168	60	男	178	60
女	162	84	女	168	44	男	178	73
女	163	66	男	170	53	男	178	68
女	163	53	男	170	54	男	179	78
女	164	63	男	170	57	男	181	80
女	164	68	男	170	47	男	182	92
女	164	52	男	170	69	男	184	78

试计算它们的相关系数.

118. 某公司为研究工人操作熟练程度对产品合格率的影响, 随机抽取 15 名工人进行调查, 得到如下数据:

工人编号	1	2	3	4	5	6	7	8
操作熟练程度/%	7.6	15.2	37.9	45.5	7.6	0.0	15.2	75.8
产品合格率/%	50	55	68	75	52	30	55	90
工人编号	9	10	11	12	13	14	15	/
操作熟练程度/%	90.9	60.6	7.6	15.2	37.9	45.5	98.5	/
产品合格率/%	92	80	58	60	70	80	95	/

试计算工人操作熟练程度与产品合格率的相关系数.

119. 为判断能不能用气温推测海水表层温度, 收集了某沿海地区的气温和海水表层温度 (单位: °C) 的统计数据, 如下表所示.

气温/°C	海水表层温度/°C	气温/°C	海水表层温度/°C
13.9	9.4	31.1	28.3
15.0	10.6	31.1	26.7
18.3	13.3	28.9	25.0
23.9	18.9	23.9	22.2

气温/°C	海水表层温度/°C	气温/°C	海水表层温度/°C
27.2	21.7	20.0	15.6
30.0	25.6	15.0	10.0

试计算气温与海水表层温度的相关系数.

- 120. 如果两种证券在一段时间内收益数据的相关系数为正数, 那么表明 ().
 - A. 两种证券的收益之间存在完全同向的联动关系, 即同时涨或同时跌
 - B. 两种证券的收益之间存在完全反向的联动关系, 即涨或跌是相反的
 - C. 两种证券的收益有同向变动的倾向
 - D. 两种证券的收益有反向变动的倾向
- 121. 据说职工迟到的频率与其居住地离上班地点的远近有关. 为验证这个说法, 一位社会学家随机抽取 10 名职工进行了调查, 其调查数据如下表所示.

职工编号	年迟到次数/次	住地远近/km	职工编号	年迟到次数/次	住地远近/km
1	8	1.1	6	3	10.1
2	5	2.9	7	5	12.0
3	8	4.0	8	2	14.3
4	7	5.9	9	4	14.1
5	6	8.2	10	2	7.8

试计算职工年迟到次数与住地远近之间的相关系数.

122. 下表是某国家由 18 支足球队参加的职业联赛 (比赛采用双循环制,得分计算方法为:每场赛事胜方得 3 分,负方得 0 分,平局双方各得 1 分)的各队积分和射门次数,求这 18 支球队的积分与射门次数的相关系数.

足球队	A	В	C	D	E	F	G	H	I
积分	51	64	62	53	47	43	44	42	46
射门次数	418	509	485	425	452	425	393	350	375
足球队	J	K	L	M	N	0	P	Q	R
积分	43	50	35	40	40	32	41	26	32
射门次数	428	415	363	372	377	271	395	306	357

123. 下表中是某家庭 2009 年至 2018 年电费开支的情况, 设年电费开支为 y(单位: 元), 试建立年份 x 与 y 的回归方程.

年份 x	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
电费 y/元	1323	1552	1679	1852	1975	2129	2327	2494	2667	2791

124. 随机抽取 8 对成年母女的身高数据 (单位: cm), 试据此建立母亲身高与女儿身高的回归方程.

母亲身高 x/cm	154	157	158	159	160	161	162	163
女儿身高 y/cm	155	156	159	162	161	164	165	166

125. 某生物学家对白鲸游泳速度与其摆尾频率之间的关系进行了研究. 研究的样本为 19 头白鲸, 测量其游泳速度和摆尾频率. 白鲸游泳速度的测量单位为每秒向前移动的身长数 (1.0 代表每秒向前移动一个身长), 而摆尾频率的测量单位是赫兹 (1.0 代表每秒摆尾 1 个来回). 测量数据如下表所示.

白鲸编号	游泳速度/(L/s)	摆尾频率/Hz	白鲸编号	游泳速度/(L/s)	摆尾频率/Hz
1	0.37	0.62	2	0.50	0.68
3	0.35	0.68	4	0.34	0.71
5	0.46	0.80	6	0.44	0.88
7	0.51	0.88	8	0.68	0.92
9	0.51	1.08	10	0.67	1.14
11	0.68	1.20	12	0.86	1.38
13	0.68	1.41	14	0.73	1.44
15	0.95	1.49	16	0.79	1.50
17	0.84	1.50	18	1.06	1.56
19	1.04	1.67	/	/	/

生物学家聚焦的研究问题是"白鲸的摆尾频率依赖于其游泳速度吗", 这里的因变量 y 是摆尾频率, 自变量 x 是游泳速度.

- (1) 绘制数据散点图;
- (2) 建立 x 与 y 的回归方程.

126. 某公司购进一新型设备,为了分配合适的工人操作该设备,进行了操作该设备的工人工龄(单位:年)与劳动生产率(单位:件/时)之间的相关分析,下表是 12 名 5 – 10 年工龄的工人操作新设备的劳动生产率的试验记录.

工人编号	1	2	3	4	5	6	7	8	9	10	11	12
工龄 x/年	5	5	6	6	6	7	7	8	8	9	10	10
劳动生产率 y/(件/时)	7.1	7.2	7.5	7.5	7.7	8.3	8.6	9.2	9.2	10.0	9.7	10.0

试建立工人操作新设备的劳动生产率 y 与工龄 x 的回归方程.

127. 某工厂生产某种产品的月产量 (单位: 千件) 与单位成本 (单位: 元/件) 的数据如下:

月份	产量 x/千件	单位成本 y/(元/件)	月份	产量 x/千件	单位成本 y/(元/件)
1	2	73	2	3	72
3	4	71	4	3	73
5	4	69	6	5	68

- (1) 计算产量与单位成本的相关系数;
- (2) 建立产量与单位成本的回归方程;
- (3) 若该工厂计划7月份生产7千件该产品,则单位成本预计是多少?
- 128. 为了解大学校园附近餐馆的月营业收入(单位:千元)和该店周围的大学生人数(单位:千人)之间的关系,抽取了 10 所大学附近餐馆的有关数据,如下表所示.

学生人数 $x/千人$	2	6	8	8	12	16	20	20	22	26
月营业收入 y/千元	58	105	88	118	117	137	157	169	149	202

- (1) 根据以上数据,建立月营业收入 y 与该店周围的大学生人数 x 的回归方程; (2) 已知某餐馆周围的大学生人数为 10000 人,试对该店月营业收入作出预测.
- 129. 某运动生理学家在一项健身活动中选择了 19 位参与者,以他们的皮下脂肪厚度来估计身体的脂肪含量,其中脂肪含量以占体重(单位: kg)的百分比表示. 得到脂肪含量和体重的数据如下表所示. 其中,参与者 1 10 为男性, 11 19 为女性.

参与者编号	体重 x/kg	脂肪含量 $y/\%$	参与者编号	体重 x/kg	脂肪含量 y/%
1	89	28	2	88	27
3	66	24	4	59	23
5	93	29	6	73	25
7	82	29	8	77	25
9	100	30	10	67	23
11	57	29	12	68	32
13	69	35	14	59	31
15	62	29	16	59	26
17	56	28	18	66	33
19	72	33	/	/	/

- (1) 分别建立男性和女性体重与脂肪含量的回归方程;
- (2) 男性和女性合在一起所构成的样本的回归方程为 y = 0.021x + 26.88, 其斜率与 (1) 中所计算的斜率有差异吗? 能否对这种差异进行解释? (3) 计算下列情况下体重与脂肪含量的相关系数: ① 男性; ② 女性; ③ 男女合计. 这些值与 (2) 中所反映的信息是否一致?
- 130. 我国 1999 年至 2018 年国内游客数量与年份关系如下表:

年份 (Y)	1999	2000	2001	2002	2003	2004	2005
N	71900	74400	78400	87800	87000	110200	121200
$\ln N$	11.18	11.22	11.27	11.38	11.37	11.61	11.71
年份 (Y)	2006	2007	2008	2009	2010	2011	2012
N	139400	161000	171200	190200	210300	264100	295700
$\ln N$	11.85	11.99	12.05	12.16	12.26	12.48	12.60
年份 (Y)	2013	2014	2015	2016	2017	2018	/
N	326200	361100	400000	444000	500000	553900	/
$\ln N$	12.70	12.80	12.90	13.00	13.12	13.22	/

- (1) 完成回归模型, 并据此模型预测 2021 年我国国内的游客数量;
- (2) 查阅 2021 年我国国内实际游客数量, 与上述模型预测数据进行比较, 并讨论数据出现偏差的原因.
- 131. 某校为考察高中生数学成绩与语文成绩的关系, 抽取 55 名学生进行了一次测试, 并按照测试成绩优秀 (进入

年级前 30%) 和不优秀 (没有进入年级前 30%) 统计人数, 得到如下列联表:

	优秀	不优秀	总计
数学成绩	21	34	55
语文成绩	13	42	55
总计	34	76	110

根据表中的数据回答: 该校高中生的数学成绩与语文成绩之间是否有关系?

132. 慢性气管炎是一种常见的呼吸道疾病. 医药研究人员对甲、乙两种中草药治疗慢性气管炎的效果进行了对比, 所得数据如下表所示.

	有效	无效	总计
甲药	184	61	245
乙药	91	9	100
总计	275	70	345

根据表中的数据回答: 甲、乙两种中草药的疗效有无显著差异?

133. 某工人在操作方法改进前后生产某种零件的情况如下表所示.

	合格	不合格	总计
改进前	2422	439	2861
改进后	2892	447	3339
总计	5314	886	6200

根据表中的数据回答: 改进操作方法能否显著降低不合格率?

134. 证明本节中的公式:
$$\chi^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
.