Vorlesung Kognition 1: 5. Lernen

Klaus Oberauer

Lernziele heute

- Erklären können, was klassisches und operantes Konditionieren ist
- Lernregeln für konnektionistische Netzwerke kennen
- Die Rescorla-Wagner-Regel und ihren Zusammenhang mit der Delta-Regel erklären können
- Die Hebb-Regel erklären können

Lernen

- Klassische Konditionierung
 - Verhalten assoziiert mit neuem auslösendem Stimulus
- Operante Konditionierung
 - Verhalten assoziiert mit Belohnung/Bestrafung
- Konnektionismus
 - Lernregeln für Assoziationen in neuronalen Netzen

1. Klassische Konditionierung

Ivan Pavlov (erster Vortrag 1903)

3 Phasen der klassischen Konditionierung

Nochmal ohne Bilder

- UCS (Futter) → UCR (Speichelfluss)
 NS (Ton) → kein UCR
- 2) UCS (Futter) + NS (Ton) → UCR
- 3) CS (Ton) allein → CR (Speichelfluss) = ex-NS = ex-UCR

Löschung

- Wenn der CS nicht mehr vom UCS begleitet wird
 - allmählicher Rückgang der CR
- Löschung ist kein Vergessen:
 - Verstreichen von Zeit ohne CS: keine Löschung
 - Nach Löschung: Spontanerholung nach längerer Pause ohne CS

Erweiterungen

- Generalisierung
 - auch Stimuli, die dem CS ähnlich sind, lösen die CR aus

Erweiterungen

- Generalisierung
 - auch Stimuli, die dem CS ähnlich sind, lösen die CR aus
- Diskriminierung
 - S1 gepaart mit UCS
 - S2 nicht gepaart mit UCS
 - → nur S1 löst CR aus

Sekundäre Konditionierung

1) NS1 mit UCS → löst UCR aus

2) NS1 wird zum CS1 → löst CR aus

3) CS1 gepaart mit NS2 → CR

4) NS2 = CS2 allein → CR

Blockierung

1) NS1 mit UCS → löst UCR aus

2) NS2 gepaart mit NS1 und UCS → UCR

3) NS2 allein \rightarrow ?

Erklärung fur Blockierung?

- CS dient dem Organismus dazu, UCS vorherzusagen
- Lernen findet statt, wenn die Vorhersage noch nicht optimal ist ("surprise")
- Nach Konditionierung mit NS1 (→CS1) ist UCS in Gegenwart von CS1 vollständig erwartbar.
 NS2 hat keinen zusatzlichen Informationsgehalt
 - → keine Assoziation von NS2 mit UCS

Erklärung fur Blockierung?

 Rescorla-Wagner-Regel (Rescorla & Wagner, 1972)

Erklärung fur Blockierung?

 Rescorla-Wagner-Regel (Rescorla & Wagner, 1972)

Klassisches Konditionieren als Informationssuche

- Traditionell: Mechanische Übertragung von Reaktionen von UCS auf CS, wenn beide in "zeitlicher Kontiguität" auftreten
- Heute: CS als Information, die UCS erwartbar macht
 - → es kommt nicht auf zeitliche Kontiguität an, sondern auf Informationsgehalt
 - → Reaktion ist nicht festgelegt

Informationsgehalt statt Kontiguität

(Rescorla, 1988)

Kontiguitätsschema A

P(UCS|NS) = 1 P(UCS| \neg NS) = 0 Δ P = 1

Kontiguitätsschema B

P(UCS|NS) = 1 P(UCS|¬NS) \approx 1 $\Delta P \approx 0$

Zusammenfassung: Klassische Konditionierung

- Lernen optimiert die Vorhersage des UCS anhand aller verfügbarer Information
- Wenn NS im Kontext anderer Stimuli informativ ist, wird NS (→ CS) mit Erwartung des UCS verknüpft
- Erwartung des UCS löst antizipatorische Reaktion (CR) aus.

Zusammenfassung: Klassische Konditionierung

2. Operantes Konditionieren

Edward L. Thorndike (1898)

"Law of effect"

Verhalten mit angenehmem Ergebnis

- →erhöhte Auftretenshäufigkeit
- Verhalten mit unangenehmem Ergebnis
- → verringerte Auftretenshäufigkeit

2. Operantes Konditionieren

Burrhus F. Skinner (1938)

"Skinner box":

- Hungriges Tier (Ratte, Taube) in Box
- Hebel oder Pick-Scheibe
 - → Futter (Verstärker)

Unabhängige Variablen: Art der Verstärkung Verstärkerplan

Abhängige Variablen:
Häufigkeit des Verhaltens
Löschungsresistenz

Moderne Skinner-Box

Art der Verstärker

	Positiv: Darbietung	Negativ: Entzug
Belohnung	Futter	Schock hört auf
Bestrafung	Schock	Futterentzug

Belohnung -> Wahrscheinlichkeit des Verhaltens steigt

Bestrafung -> Wahrscheinlichkeit des Verhaltens sinkt: Unterdrückung, nicht Vergessen

Verstärkerpläne

- Verhältnis von Verhalten und Verstärker
- Kontinuierlich: nach jedem Verhalten
 - →rasches Lernen, geringe Löschresistenz
- Intermittierend
 - fixe Quoten: nach jedem x-ten Verhalten
 - fixe Intervalle: erstes Verhalten nach konstantem Zeitintervall
 - variable Quoten: im Mittel nach jedem x-ten
 Verhalten
 - variable Intervalle: im Mittel nach einem gegebenen Zeitintervall

Verstärkerpläne

Lernen ohne Verstärkung

- Latentes Lernen
- Ratten in Labyrinth (Tolman & Honzik, 1930)
- 3 Gruppen:
 - Belohnung von Anfang an
 - Keine Belohnung
 - Belohnung ab Tag 11

Lernen ohne Verstärkung

Latentes Lernen

3. Lernen in neuronalen Netzwerken: Konnektionismus

 Netzwerk aus Einheiten = stark vereinfachte Nervenzellen

Nicht-lineare Transformation

Architektur eines typischen Netzwerks

Lernen in konnektionistischen Netzwerken

- Modifikation der Verbindungsstärken: w_{ij}
- Nicht-überwachtes Lernen
 - Ohne Fehler-Rückmeldung
 - Lernt Korrelationen zwischen Stimuli
- Überwachtes Lernen
 - Mit Fehler-Rückmeldung
 - Lernt Optimierung von Vorhersage und Verhalten

Lernregeln im Konnektionismus

- Nicht überwachtes Lernen: Hebb-Regel
 - Wenn 2 Neuronen gleichzeitig feuern, wird ihre Verbindung gestärkt

Long-term potentiation (LTP)

Starker ("tetanischer")
Impuls an Synapse

Depolarisierung des postsynaptischen Neurons

Aktionspotenziale auf beiden Seiten

Synaptische Stärkung (Stunden, bis zu Jahren)

Lernregeln im Konnektionismus

- Überwachtes Lernen (= Lernen mit Fehlersignal): Delta-Regel
 - Änderung der Verbindungsstärke minimiert
 Fehler

$$\Delta w_{ij} = \mathcal{E}(t_j - o_j) s_i$$
Output Input Zielwert

Gemeinsamkeiten

Rescorla-Wagner-Regel

The other side

Boy, have I got this guy conditioned! Every time I press the bar he drops in a piece of food.

This cartoon from the Columbia *Jester* was reproduced by Skinner in 1961.

Literatur

- Empfohlene Literatur zur Vertiefung:
 - Spada, H. (Hrsg.) (2006). Allgemeine Psychologie.
 Heidelberg: Spektrum Kapitel "Lernen"
 - Müsseler, J. & Prinz, W. (Hrsg.) (2002). Allgemeine Psychologie. Heidelberg: Spektrum. – Kapitel 3a.
 - Kiesel, A. & Koch, I. (2012). Lernen. Grundlagen der Lernpsychologie. VS Verlag für Sozialwissenschaften.
 - Rescorla, R. A. (1988). Pavlovian conditioning: It's not what you think it is. *American Psychologist*, 43, 151-160.

Zitierte Literatur

- Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64-99). New York: Appleton-Century-Crofts.
- Skinner, B. F. (1938). *The behavior of organisms. An experimental analysis*. New York: Appelton-Century.
- Thorndike, E. L. (1898). Animal intelligence. Psychological Review Monographs Supplement, 2(4).
- Thorndike, E. L. (1898). Some experiments on animal intelligence. *Science*, 7, 818-824.