3 Tips for linearizing, 'non-linear' functions

Take loge to the base e

X | Y | Z = 10gey | Use linear regression

b selve for a, b Use linear regression ā=logea

could use the same method for y= axb logy= a+b logx

Multiply by
$$(2+x)$$

$$(C_2+x) \quad \chi = (2+x)$$

$$(Y) \quad (C_2+x)$$

$$G + X = \frac{G_1}{Y}$$

$$=) \frac{C_2 t}{4} \left(\frac{1}{4}\right) x = \frac{1}{4}$$

(d) Similar method can be used for
$$y = 4 + \frac{6}{x}$$

Nonlinear fitting

Fit the equation y = a e bx						
to	the the	data right	Shown			

$$\bar{a} = \frac{\left(2x_i^2\right)\left(2x_i\right) - \left(2x_i^2\right)\left(2x_i\right)}{\left[\left(2x_i^2\right) - n + 2x_i^2\right]}$$

$$b = \underbrace{\xi x_i^* \xi z_i - h \xi x_i^* \xi_i^*}_{\xi x_i^* - h \xi x_i^*}$$

X	Z	x^2	xz
0.0000	-0.5464	0.0000	-0.0000
0.2000	-0.3281	0.0400	-0.0656
0.4000	-0.4557	0.1600	-0.1823
0.6000	-0.2266	0.3600	-0.1359
0.8000	0.2032	0.6400	0.1625
1.0000	0.4115	1.0000	0.4115
1.2000	0.6639	1.4400	0.7967
1.4000	0.5668	1.9600	0.7935
1.6000	1.0650	2.5600	1.7040
1.8000	0.9710	3.2400	1.7478
2.0000	1.4018	4.0000	2.8036
ZX	2 2	EXL	E X 2

