

Erwan FLOCH
Nicolas LOUIS
Vincent MARTINEZ

Thomas RIVIERE Chloé YOUNES

Sommaire

- Contexte
- **Architecture proposée**
- Modélisation et remplissage de la base de données
- Performances de la modélisation et budget
- Conclusion
- Démo

24/01/2029

Contexte

- Architecture proposée
- Modélisation et remplissage de la base de données
- Performances de la modélisation et budget
- Conclusion
- Démo

L'objectif du projet est de concevoir un système qui permet d'analyser le jeu de données GDELT et ses sources de données sur l'année 2019.

- Contexte
- **Architecture proposée**
- Modélisation et remplissage de la base de données

Modèle de préserojetion Selécom Paris Tech

- Performances de la modélisation et budget
- Conclusion
- Démo

Détail de l'architecture

Pourquoi Cassandra?

Source: Laurenço et al. Journal of Big Data

- Contexte
- Architecture proposée
- Modélisation et remplissage de la base de données
- Performances de la modélisation et budget
- Conclusion
- Démo

Requête 1

■ TABLE Requête 1 obtenue avec un JOIN entre EVENT et MENTIONS

jour DATE pays TEXT langue TEXT count INT PRIMARY KEY ((jour), pays, langue))

Requête 2 - Backward propagation

- 2 TABLES : 1 table des données et 1 table de mapping
- TABLE Requête 2 obtenue à partir d'un COUNT sur MENTIONS suivi d'un JOIN avec EVENT

TABLE Requête 2		
year INT monthyear INT day INT country TEXT count INT	eventid TEXT	
PRIMARY KEY ((country), year, monthyear, day,		
eventid)		

TABLE Requête 2 mapping	
day INT act country TEXT act sumtone INT act	tor1countrycode TEXT tor2countrycode TEXT tor1lat TEXT tor2lat TEXT tor1long TEXT tor2long TEXT
PRIMARY KEY (eventid)	

Projet NoSQL

Ordonnée selon les années DESC, mois ASC, jour ASC et eventid **DESC**

DAG de la requête 2

Requête 3

- 3 TABLES: 1 pour les thèmes, 1 pour les personnes et 1 pour les lieux
- TABLE Requête 3 obtenue à partir de GKG
- **Exemple TABLE 3 THEME:**

TABLE 3 THEME	
year INT month INT day INT source TEXT	theme TEXT tone DOUBLE
count INT PRIMARY KEY ((source), year, month, day, count)	

Ordonnée selon les années DESC, mois ASC, jour ASC et count **DESC**

Requête 4

- Pour cette table, les tables de la requête 2 sont réutilisées. Elles ont été optimisées en ce sens dès la requête 2.
- table de mapping permet d'incrémenter les champs nécessaires pour répondre spécifiquement à la requête 4.

TABLE 4		
year INT monthyear INT day INT pays1 TEXT pays2 TEXT	averagetone FLOAT numberofarticle INT	
PRIMARY KEY ((pays1), year, monthyear, day, pays2)		

Ordonnée selon les années DESC, mois DESC et jour DESC

Métriques

Remplissage de la base de données rapide :

- Tables fonctionnalité 1 + 2 (1 jour) : 3 min 15 sec
- Table fonctionnalité 3 (1 jour) : 3 min
- Table fonctionnalité 4 (1 jour) : 2,5 sec

Projet NoSQL

24/01/2029

- Contexte
- Architecture proposée
- Modélisation et remplissage de la base de données
- Performances de la modélisation et budget
- Conclusion
- Démo

Performances

Volumétrie des tables Cassandra:

- Table 1 (1 AN): 5 Mo
- Table 2 (1 AN): 530 Mo + 3,2 Go
- Table 3 (1 AN): 1,34 Go
- Table 4 (1 AN): 9 Mo
- TOTAL: ~5go

Temps de réponse de requêtage:

- Table 1: ~ instantané
- Table 2: ~ entre 0" et 6" (si requête sur l'année)
- Table 3: ~ instantané
- Table 4: ~ instantané

Problèmes rencontrés / solutions retenues

- Déséquilibre entre les clusters Spark EMR et Cassandra:
 - <u>Problème</u>: sous dimensionnement du cluster Cassandra / EMR
 = Cassandra saturé.
 - Solution : Augmentation du cluster Cassandra de 3 noeuds à 5 noeuds, sans perte des données déjà stockées.
- Temps de chargement sur Cassandra trop long même après redimensionnement :
 - Problème : hors délai pour la présentation
 - Solution : optimisation de la requête (facteur d'accélération x3)
- Schéma des tables :
 - <u>Problème</u>: multiplication des tables et temps de chargement trop important
 - Solution : post-processing

Budget

- Contexte
- Architecture proposée
- Remplissage de la base de données
- Performances de la modélisation et budget
- Conclusion
- Démo

Conclusion

- Techno vue en cours utilisée: Cassandra + Spark
- Réponses aux requêtes : quasi instantané
- Chargement d'une année de données pour les 7 tables
- Résilience à la perte d'un noeud : OK
- Clusters (production & pré-production + backup) déployés sur AWS

24/01/2029

- Contexte
- Architecture proposée
- Remplissage de la base de données
- Performances de la modélisation et budget
- Conclusion
- Démo

24/01/2020