4.RflySimModel 载具运动建模与仿真

无人系统载具的控制模型搭建、RflySim 平台模型开发流程等。

序号	实验名称	简介	文件地址	版本
1	载具运动建模与仿真 API	载具运动建模与仿真开发所使用的 API 接口文档	<u>API.pdf</u>	nan
	文件			
2	载具运动建模与仿真课件	该文件全面的讲解了基于 RflySim 平台的载具运	PPT.pdf	nan
		动建模与仿真开发的实验以及效果展示。		
3	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的	0.ApiExps\Readme.pdf	免费版
		实验,旨在帮助用户快速熟悉本讲各种接口以便		
		于后续实验开发。		
4	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能	1.BasicExps\Readme.pdf	免费版
		实验,用户可快速上手熟悉一些简单的功能性实		
		验,本讲中包含有最小模板使用介绍、固定翼无		
		人机软硬件在环仿真、阿克曼底盘无人车模型代		
		码生成及软硬件在环仿真等。		
5	进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验,	2.AdvExps\Readme.pdf	个人集合版
		基于 0.ApiExps、1.BasicExps 文件夹中的实验,用		
		户在已经熟悉基于 RflySim 平台开发本章中的实		
		验,该文件夹中的实验均为本讲的进阶例程,如:		
		平台建模模板之最大模板使用介绍、固定翼飞机		
		模型 DLL 生成及 SIL/HIL 实验(含碰撞检测)等等。		

6	定制性实验	本文件夹中的所有实验均为部分项目中的拆解实	3.CustExps\Readme.pdf	完整版
		验,相比其他文件夹中的实验,该文件夹中的实		
		验更加完整、复杂,满足更多的项目或者科研需		
		求。		
7	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的	0.ApiExps\readme.pdf	免费版
		实验,旨在帮助用户快速熟悉本讲各种接口以便		
		于后续实验开发。		
8	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能	1.BasicExps\readme.pdf	免费版
		实验,用户可快速上手熟悉一些简单的功能性实		
		验,本讲中包含有最小模板使用介绍、固定翼无		
		人机软硬件在环仿真、阿克曼底盘无人车模型代		
		码生成及软硬件在环仿真等。		
9	进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验,	2.AdvExps\readme.pdf	个人集合版
		基于 0.ApiExps、1.BasicExps 文件夹中的实验,用		
		户在已经熟悉基于 RflySim 平台开发本章中的实		
		验,该文件夹中的实验均为本讲的进阶例程,如:		
		平台建模模板之最大模板使用介绍、固定翼飞机		
		模型 DLL 生成及 SIL/HIL 实验(含碰撞检测)等等。		
10	进阶接口类实验	本文件夹中的所有实验均为本讲中进阶接口类实	2.AdvExps\e0_AdvApiExps\readme.pdf	个人版
		验, 基于 0.ApiExps、1.BasicExps 文件夹中的实验,		
		本文件夹中均为针对本章的进阶性接口类实验,		
		如:外部通信实验、电机故障注入测试仿真、最大		
		模型 outCopterData 接口验证等实验		
11	定制性实验	本文件夹中的所有实验均为部分项目中的拆解实	3.CustExps\readme.pdf	完整版
		验,相比其他文件夹中的实验,该文件夹中的实		
		验更加完整、复杂,满足更多的项目或者科研需		

		求。		
12	载具运动建模与仿真例程	通过本文件,您可快速了解并掌握本讲全部的例	readme.pdf	nan
	检索文件	程简介和例程文件地址。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	载具运动建模与仿真	无人系统载具的控制模型搭建、	readme.pdf	免费版
		RflySim 平台模型开发流程等。		
2	基础接口类实验	本文件夹中的所有实验均为本	0.ApiExps\readme.pdf	免费版
		讲中接口使用类的实验, 旨在帮		
		助用户快速熟悉本讲各种接口		
		以便于后续实验开发。		
3	基础功能性实验	本文件夹中的所有实验均为本	1.BasicExps\readme.pdf	免费版
		讲中基础性的功能实验, 用户可		
		快速上手熟悉一些简单的功能		
		性实验, 本讲中包含有最小模板		
		使用介绍、固定翼无人机软硬件		
		在环仿真、阿克曼底盘无人车模		
		型代码生成及软硬件在环仿真		
		等。		
4	进阶性实验	本文件夹中的所有实验均为本	2.AdvExps\readme.pdf	个人集
		讲中进阶的实验,基于		合版
		0.ApiExps、1.BasicExps 文件夹中		
		的实验,用户在已经熟悉基于		
		RflySim 平台开发本章中的实		
		验, 该文件夹中的实验均为本讲		
		的进阶例程,如:平台建模模板		

		之最大模板使用介绍、固定翼飞		
		机模型 DLL 生成及 SIL/HIL 实验		
		(含碰撞检测)等等。		
5	进阶接口类实验	本文件夹中的所有实验均为本	2.AdvExps\e0_AdvApiExps\readme.pdf	个人版
		讲中进阶接口类实验,基于		
		0.ApiExps、1.BasicExps 文件夹中		
		的实验, 本文件夹中均为针对本		
		章的进阶性接口类实验,如:外		
		部通信实验、电机故障注入测试		
		仿真、最大模型 outCopterData		
		接口验证等实验		
6	定制性实验	本文件夹中的所有实验均为部	3.CustExps\readme.pdf	完整版
		分项目中的拆解实验, 相比其他		
		文件夹中的实验, 该文件夹中的		
		实验更加完整、复杂,满足更多		
		的项目或者科研需求。		
7	载具运动建模与仿真	通过本文件, 您可快速了解并掌	<u>readme.pdf</u>	nan
	例程检索文件	握本讲全部的例程简介和例程		
		文件地址。		
8	载具运动建模与仿真	载具运动建模与仿真开发所使	<u>API.pdf</u>	nan
	API 文件	用的 API 接口文档		
9	载具运动建模与仿真	该文件全面的讲解了基于	PPT.pdf	nan
	课件	RflySim 平台的载具运动建模与		
		仿真开发的实验以及效果展示。		
10	基础接口类实验	本文件夹中的所有实验均为本	0.ApiExps\Readme.pdf	免费版
		讲中接口使用类的实验, 旨在帮		

		助用户快速熟悉本讲各种接口		
		以便于后续实验开发。		
11	平台固件生成介绍	通过该例程, 使用户理解如何配	0.ApiExps\1.PX4FirmwareGen\Readme.pdf	免费版
		置平台一键安装脚本、如何使用		
		平台完成底层自主开发控制器		
		固件生成和原生固件生成。		
12	自主生成 C/C++代码	通过该例程对 Simulink 模型如	<pre>0.ApiExps\2.UserDefinedC++\Readme.pdf</pre>	免费版
	实验	何自动代码生成 C/C++文件进		
		行介绍。		
13	基础功能性实验	本文件夹中的所有实验均为本	1.BasicExps\Readme.pdf	免费版
		讲中基础性的功能实验, 用户可		
		快速上手熟悉一些简单的功能		
		性实验, 本讲中包含有最小模板		
		使用介绍、固定翼无人机软硬件		
		在环仿真、阿克曼底盘无人车模		
		型代码生成及软硬件在环仿真		
		等。		
14	平台建模模板之最小	该例程对如何使用平台最小模	1.BasicExps\e1_MinModelTemp\Readme.pdf	免费版
	模板使用介绍	板进行软/硬件在环仿真进行介		
		绍, 其中最小模版为平台满足仿		
		真所需的最简化模型。		
15	平台固定翼无人机软	通过本例程熟悉平台固定翼模	1.BasicExps\e2_FixWingModelCtrl\Readme.pdf	免费版
	硬件在环仿真实验	型的使用。		
16	阿克曼底盘无人车模	在 Matlab 将 Simulink 文件编译	1.BasicExps\e3_CarAckermanModeCtrl\Readme.pdf	免费版
	型代码生成及软硬件	生成阿克曼底盘无人车的 DLL		
	在环仿真	模型文件; 并对生成的阿克曼底		

		盘无人车模型在 PX4 官方控制		
		器下进行软硬件在环仿真测试,		
		通过本例程熟悉平台阿克曼底		
		盘无人车模型的使用。		
17	差动无人车模型代码	在 Matlab 将 Simulink 文件编译	1.BasicExps\e4_CarR1DiffModelCtrl\Readme.pdf	免费版
	生成及软硬件在环仿	生成差动无人车的 DLL 模型文		
	真	件; 并对生成的差动无人车模型		
		在 PX4 官方控制器下进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台差动无人车模型的使用。		
18	进阶性实验	本文件夹中的所有实验均为本	2.AdvExps\Readme.pdf	个人集
		讲中进阶的实验,基于		合版
		0.ApiExps、1.BasicExps 文件夹中		
		的实验,用户在已经熟悉基于		
		RflySim 平台开发本章中的实		
		验, 该文件夹中的实验均为本讲		
		的进阶例程,如:平台建模模板		
		之最大模板使用介绍、固定翼飞		
		机模型 DLL 生成及 SIL/HIL 实验		
		(含碰撞检测)等等。		
19	进阶接口类实验	本文件夹中的所有实验均为本	2.AdvExps\e0_AdvApiExps\readme.pdf	个人版
		讲中进阶接口类实验,基于		
		0.ApiExps、1.BasicExps 文件夹中		
		的实验, 本文件夹中均为针对本		
		章的进阶性接口类实验, 如: 外		
		部通信实验、电机故障注入测试		

		仿真、最大模型 outCopterData 接口验证等实验		
20	外部通信实验之读取 状态估计值	在使用 RflySim 平台以 UDP_Full 模式进行软/硬件在环仿真时, 可以通过监听 UDP20101 系列	2.AdvExps\e0_AdvApiExps\1.ExtCtrlAPI-UDP20100\Readme.pdf	个人版
		端口接收 PX4 内部状态估计值。		
21	inSILInts 和 inSILFloats 接口实验	熟悉平台最大系统模型 in SILInts 和 in SILFloats 接口的使用。	2.AdvExps\e0_AdvApiExps\10.InSILInts&Floats\Readme.pdf	个人版
22	外部通信实验之读取 仿真真值数据	在使用平台(UDP/MAVLink 模式皆可)进行软/硬件在环仿真时,可以通过监听 UDP30101 系列端口接收 CopterSim 飞行仿真的真实数据。	2.AdvExps\e0_AdvApiExps\2.ExtCtrlAPI-UDP30100\Readme.pdf	个人版
23	外部通信实验之获取 平台 rfly_px4 uORB 消息	当订阅了 rfly_px4 uORB 消息, 并使用平台最大模板进行硬件 在环仿真时,可以通过监听 UDP40101 系列端口接收 rfly_px4消息。	2.AdvExps\e0_AdvApiExps\3.ExtCtrlAPI-UDP40100\Readme.pdf	个人版
24	ExtToUE4 接口验证实验	该例程可以让用户自定义发送 至最大模型中 ExtToUE4 接口的 数据,方便模型的开发及调试。	2.AdvExps\e0_AdvApiExps\4.ExtToUE4\Readme.pdf	个人版
25	ExtToPX4 接口验证	该例程可以让用户自定义发送 至最大模型 ExtToPX4 接口的数据,该接口为发送给 PX4 的uORB 消息 rfly_ext, 用于传输其他传感器或必要数据给飞控,方	2.AdvExps\e0_AdvApiExps\5.ExtToPX4\Readme.pdf	个人版

		便模型的开发及调试。		
26	电机故障注入测试仿 真	该例程通过平台的故障注入接口,给飞行中的飞机注入电机故障,从而实现飞机的故障坠机。	2.AdvExps\e0_AdvApiExps\6.InFaultAPITest\Readme.pdf	个人版
27	最 大 模 型 outCopterData 接口 验证	该例程可以让用户明白如何使用 最大系统模型中的 outCopterData接口,该接口支持自定义记录仿真过程中的32维数据。	2.AdvExps\e0_AdvApiExps\7.OutCopterData\Readme.pdf	个人版
28	FaultInParam 动态修 改参数验证	熟悉平台最大系统模型 FaultInParam 动态修改参数的 原理及过程。	2.AdvExps\e0_AdvApiExps\8.FaultParamsDynMod\Readme.pdf	个人版
29	InFloatsCollision 的物理引擎验证	熟悉平台最大模型 inFloatsCollision碰撞模型端口 的使用。	2.AdvExps\e0_AdvApiExps\9.InFloatsCollision\Readme.pdf	个人版
30	平台建模模板之最大 模板使用介绍	该例程对如何使用平台最大模 板进行软件在环和硬件在环仿 真进行介绍。	2.AdvExps\e1_MaxModelTemp\Readme.pdf	个 人 集 合版
31	多旋翼控制实验	本文件夹中的所有实验均为本讲中进阶功能性实验,如:四旋翼模型DLL生成及SIL/HIL实验、四旋翼综合模型仿真验证实验、六旋翼模型 DLL 生成及 SIL/HIL实验等实验	2.AdvExps\e2_MultiModelCtrl\readme.pdf	集合版
32	四旋翼模型 DLL 生成 及 SIL/HIL 实验	在 Matlab 将 Simulink 文件编译 生成四旋翼的 DLL 模型文件; 并	2.AdvExps\e2_MultiModelCtrl\1.MultiModelCtrl\Readme.pdf	个人集

			-	
		对生成的四旋翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台四旋翼模型的使用。		
33	四旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译	2.AdvExps\e2_MultiModelCtrl\2.MultiModelCtrlColl\Readme.pdf	个人集
	及 SIL/HIL 实验(含碰	生成四旋翼的 DLL 模型文件; 并		合版
	撞检测)	对生成的四旋翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台四旋翼模型的使用。		
34	六旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译	2.AdvExps\e2_MultiModelCtrl\4.HexModelCtrl\Readme.pdf	个人集
	及 SIL/HIL 实验	生成六旋翼的 DLL 模型文件; 并		合版
		对生成的六旋翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台六旋翼模型的使用。		
35	四轴八旋翼模型 DLL	在 Matlab 将 Simulink 文件编译	2.AdvExps\e2_MultiModelCtrl\5.OctoCoxRotor\Readme.pdf	个人集
	生成及 SIL/HIL 实验	生成的四轴八旋翼 DLL 模型文		合版
		件; 并对生成的四轴八旋翼模型		
		进行软硬件在环仿真测试, 通过		
		本例程熟悉平台四轴八旋翼模		
		型的使用。		
36	八旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译	2.AdvExps\e2_MultiModelCtrl\6.OctoX\Readme.pdf	个人集
	及 SIL/HIL 实验	生成的八旋翼 DLL 模型文件; 并		合版
		对生成的八旋翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台八旋翼模型的使用。		
37	四旋翼综合模型仿真	在 Simulink 的 DII 模型基础上,	2.AdvExps\e2_MultiModelCtrl\3.CopterSimSILNoPX4\Readme.pdf	个人集
	验证实验	基于 MATLAB/Simulink 设计四		合版

		旋翼控制器,并将控制器和 DII		
		模型放在同一个 slx 文件中,依		
		据特定的输入输出接口, 形成一		
		个飞机整体仿真闭环, 即综合模		
		型。在得到综合模型后,通过外		
		部控制的方法实现顶层控制。		
38	四旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译	2.AdvExps\e2_MultiModelCtrl\1.MultiModelCtrl\Readme.pdf	个人集
	及 SIL/HIL 实验	生成四旋翼的 DLL 模型文件; 并		合版
		对生成的四旋翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台四旋翼模型的使用。		
39	四旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译	2.AdvExps\e2_MultiModelCtrl\2.MultiModelCtrlColl\Readme.pdf	个人集
	及 SIL/HIL 实验(含碰	生成四旋翼的 DLL 模型文件; 并		合版
	撞检测)	对生成的四旋翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台四旋翼模型的使用。		
40	四旋翼综合模型仿真	在 Simulink 的 DII 模型基础上,	2.AdvExps\e2_MultiModelCtrl\3.CopterSimSILNoPX4\Readme.pdf	个人集
	验证实验	基于 MATLAB/Simulink 设计四		合版
		旋翼控制器,并将控制器和 DII		
		模型放在同一个 slx 文件中,依		
		据特定的输入输出接口, 形成一		
		个飞机整体仿真闭环, 即综合模		
		型。在得到综合模型后,通过外		
		部控制的方法实现顶层控制。		
41	六旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译	2.AdvExps\e2_MultiModelCtrl\4.HexModelCtrl\Readme.pdf	个人集
	及 SIL/HIL 实验	生成六旋翼的 DLL 模型文件; 并		合版

		对生成的六旋翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台六旋翼模型的使用。		
42	四轴八旋翼模型 DLL	在 Matlab 将 Simulink 文件编译	2.AdvExps\e2_MultiModelCtrl\5.OctoCoxRotor\Readme.pdf	个人集
	生成及 SIL/HIL 实验	生成的四轴八旋翼 DLL 模型文		合版
		件; 并对生成的四轴八旋翼模型		
		进行软硬件在环仿真测试, 通过		
		本例程熟悉平台四轴八旋翼模		
		型的使用。		
43	八旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译	2.AdvExps\e2_MultiModelCtrl\6.OctoX\Readme.pdf	个人集
	及 SIL/HIL 实验	生成的八旋翼 DLL 模型文件; 并		合版
		对生成的八旋翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台八旋翼模型的使用。		
44	固定翼控制实验	本文件夹中的所有实验均为本	2.AdvExps\e3_FWingModelCtrl\readme.pdf	集合版
		讲中进阶功能性实验, 如: 固定		
		翼飞机模型 DLL 生成及 SIL/HIL		
		实验(含碰撞检测)、固定翼航点、		
		姿态控制等实验		
45	固定翼飞机模型 DLL	在 Matlab 将 Simulink 文件编译	2.AdvExps\e3_FWingModelCtrl\1.FixWingModelCtrlColl\Readme.pdf	个人集
	生成及 SIL/HIL 实验	生成固定翼的 DLL 模型文件; 并		合版
	(含碰撞检测)	对生成的固定翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台固定翼模型的使用。		
46	固定翼航点控制	该例程通过平台固定翼控制接	2.AdvExps\e3_FWingModelCtrl\2.FWPosCtrlAPI\Readme.pdf	个人集
		口, 在软硬件在环仿真过程中让		合版

		固定翼往期望航点飞行。		
47	固定翼以固定俯仰角 飞行实验	该例程通过平台固定翼控制接口控制固定翼俯仰角,让固定翼以固定 10°的俯仰角前飞。	2.AdvExps\e3_FWingModelCtrl\3.FWAttCtrlAPI\Readme.pdf	个人集合版
48	固定翼速度/高度/偏 航接口验证实验 (Python)	该例程以 Python 的形式,通过平台固定翼接口,实现在软硬件在环仿真过程中固定翼按期望指令飞行。	2.AdvExps\e3_FWingModelCtrl\4.VelAltYawCtrlAPI_Py\Readme.pdf	个 人 集 合版
49	固定翼速度/高度/偏 航接口验证实验 (Simulink)	该例程以 MATLAB/Simulink 的 形式,通过平台固定翼接口,实 现、软硬件在环仿真过程中固定 翼按期望指令飞行。	2.AdvExps\e3_FWingModelCtrl\5.VelAltYawCtrlAPI_Mat\Readme.pdf	个 人 集 合版
50	固定翼飞机模型 DLL 生成及 SIL/HIL 实验 (含碰撞检测)	在 Matlab 将 Simulink 文件编译 生成固定翼的 DLL 模型文件; 并 对生成的固定翼模型进行软硬 件在环仿真测试, 通过本例程熟 悉平台固定翼模型的使用。	2.AdvExps\e3_FWingModelCtrl\1.FixWingModelCtrlColl\Readme.pdf	个人集合版
51	固定翼航点控制	该例程通过平台固定翼控制接口,在软硬件在环仿真过程中让 固定翼往期望航点飞行。	2.AdvExps\e3_FWingModelCtrl\2.FWPosCtrlAPI\Readme.pdf	个 人 集 合版
52	固定翼以固定俯仰角 飞行实验	该例程通过平台固定翼控制接口控制固定翼俯仰角,让固定翼以固定 10°的俯仰角前飞。	2.AdvExps\e3_FWingModelCtrl\3.FWAttCtrlAPI\Readme.pdf	个 人 集 合版
53	固定翼速度/高度/偏 航接口验证实验 (Python)	该例程以 Python 的形式,通过平台固定翼接口,实现在软硬件在环仿真过程中固定翼按期望	2.AdvExps\e3_FWingModelCtrl\4.VelAltYawCtrlAPI_Py\Readme.pdf	个 人 集 合版

		指令飞行。		
54	固定翼速度/高度/偏	该例程以 MATLAB/Simulink 的	2.AdvExps\e3_FWingModelCtrl\5.VelAltYawCtrlAPI_Mat\Readme.pdf	个人集
	航接口验证实验	形式,通过平台固定翼接口,实		合版
	(Simulink)	现、软硬件在环仿真过程中固定		
		翼按期望指令飞行。		
55	垂直起降飞机控制实	本文件夹中的所有实验均为本	2.AdvExps\e4_VTOLModelCtrl\readme.pdf	集合版
	验	讲中进阶功能性实验, 如: 高精		
		度垂直起降飞机 DLL 生成及		
		SIL/HIL 实验、四旋翼尾座式垂起		
		无人机软硬件在环仿真等实验		
56	高精度垂直起降飞机	在 Matlab 将 Simulink 文件编译	2.AdvExps\e4_VTOLModelCtrl\1.VTOLModelCtrl\Readme.pdf	个人集
	DLL 生成及 SIL/HIL 实	生成垂直起降飞机的 DLL 模型		合版
	验	文件; 并对生成的垂直起降飞机		
		模型进行软硬件在环仿真测试,		
		通过本例程熟悉垂直起降飞机		
		的建模与使用。		
57	四旋翼尾座式垂起无	该例程介绍了如何使用平台四	2.AdvExps\e4_VTOLModelCtrl\2.TailsitterModelCtrl\Readme.pdf	个人集
	人机软硬件在环仿真	旋翼尾座式垂起无人机进行软		合版
		硬件在环仿真。		
58	高精度垂直起降飞机	在 Matlab 将 Simulink 文件编译	2.AdvExps\e4_VTOLModelCtrl\1.VTOLModelCtrl\Readme.pdf	个人集
	DLL 生成及 SIL/HIL 实	生成垂直起降飞机的 DLL 模型		合版
	验	文件;并对生成的垂直起降飞机		
		模型进行软硬件在环仿真测试,		
		通过本例程熟悉垂直起降飞机		
		的建模与使用。		
59	四旋翼尾座式垂起无	该例程介绍了如何使用平台四	2.AdvExps\e4_VTOLModelCtrl\2.TailsitterModelCtrl\Readme.pdf	个人集

	人机软硬件在环仿真	旋翼尾座式垂起无人机进行软 硬件在环仿真。		合版
60	阿克曼底盘无人车控 制实验	本文件夹中的所有实验均为本 讲中进阶功能性实验,包括阿克 曼底盘无人车速度和位置控制 实验	2.AdvExps\e5_CarAckermanCtrl\readme.pdf	集合版
61	Python 控制阿克曼底盘无人车位置软/硬件在环仿真	软硬件在环仿真模式下,以	2.AdvExps\e5_CarAckermanCtrl\1.CarAckermanPosCtrl_Py\Readme.pdf	个 人 集合版
62	Matlab 控制阿克曼底 盘无人车位置软/硬 件在环仿真	Matlab 运行多辆无人车的位置 控制的软硬件在环仿真。	2.AdvExps\e5_CarAckermanCtrl\2.CarAckermanPosCtrl_Mat\Readme.pdf	个 人 集 合版
63	Python 控制阿克曼底 盘无人车速度软硬件 在环仿真		2.AdvExps\e5_CarAckermanCtrl\3.CarAckermanVelCtrl_Py\Readme.pdf	个人集合版
64	Matlab 控制阿克曼底 盘无人车速度软硬件 在环仿真	Matlab 运行多辆无人车的速度 控制的软硬件在环仿真。	2.AdvExps\e5_CarAckermanCtrl\4.CarAckermanVelCtrl_Mat\Readme.pdf	个 人 集 合版
65	Python 控制阿克曼底 盘无人车位置软/硬件在环仿真		2.AdvExps\e5_CarAckermanCtrl\1.CarAckermanPosCtrl_Py\Readme.pdf	个人集合版
66	Matlab 控制阿克曼底 盘无人车位置软/硬	Matlab 运行多辆无人车的位置 控制的软硬件在环仿真。	2.AdvExps\e5_CarAckermanCtrl\2.CarAckermanPosCtrl_Mat\Readme.pdf	个人集 合版

	件在环仿真			
67	Python 控制阿克曼底 盘无人车速度软硬件 在环仿真	软硬件在环仿真模式下,以 Python 的方式通过平台速度控 制接口实现单辆/多辆无人车速 度控制。	2.AdvExps\e5_CarAckermanCtrl\3.CarAckermanVelCtrl_Py\Readme.pdf	个 人 集合版
68	Matlab 控制阿克曼底 盘无人车速度软硬件 在环仿真	Matlab 运行多辆无人车的速度 控制的软硬件在环仿真。	2.AdvExps\e5_CarAckermanCtrl\4.CarAckermanVelCtrl_Mat\Readme.pdf	个 人 集 合版
69	差动无人车控制实验	本文件夹中的所有实验均为本 讲中进阶功能性实验, 包括差动 无人车速度和位置控制实验	2.AdvExps\e6_CarR1DiffCtrl\readme.pdf	集合版
70	Python 控制差动无人 车位置软硬件在环仿 真	软硬件在环仿真模式下,以 Python 的方式通过平台位置控 制接口实现单辆/多辆无人车位 置控制。	2.AdvExps\e6_CarR1DiffCtrl\1.CarR1DiffPosCtrl_Py\Readme.pdf	个人集 合版
71	Matlab 控制差动无人 车位置软硬件在环仿 真	Matlab 运行多辆无人车的位置 控制的软硬件在环仿真。	2.AdvExps\e6_CarR1DiffCtrl\2.CarR1DiffPosCtrl_Mat\Readme.pdf	个 人 集 合版
72	Python 控制差动无人 车速度软硬件在环仿 真	软硬件在环仿真模式下,以 Python 的方式通过平台速度控 制接口实现单辆/多辆无人车速 度控制。	2.AdvExps\e6_CarR1DiffCtrl\3.CarR1DiffVelCtrl_Py\Readme.pdf	个 人 集 合版
73	Matlab 控制差动无人 车速度软/硬件在环 仿真	Matlab 运行多辆无人车的速度 控制的软硬件在环仿真。	2.AdvExps\e6_CarR1DiffCtrl\4.CarR1DiffVelCtrl_Mat\Readme.pdf	个 人 集 合版
74	Python 控制差动无人	软硬件在环仿真模式下,以	2.AdvExps\e6_CarR1DiffCtrl\1.CarR1DiffPosCtrl_Py\Readme.pdf	个人集

	车位置软硬件在环仿	Python 的方式通过平台位置控		合版
	真	制接口实现单辆/多辆无人车位		
		置控制。		
75	Matlab 控制差动无人	Matlab 运行多辆无人车的位置	2.AdvExps\e6_CarR1DiffCtrl\2.CarR1DiffPosCtrl_Mat\Readme.pdf	个人集
	车位置软硬件在环仿	控制的软硬件在环仿真。		合版
	真			
76	Python 控制差动无人	软硬件在环仿真模式下, 以	2.AdvExps\e6_CarR1DiffCtrl\3.CarR1DiffVelCtrl_Py\Readme.pdf	个人集
	车速度软硬件在环仿	Python 的方式通过平台速度控		合版
	真	制接口实现单辆/多辆无人车速		
		度控制。		
77	Matlab 控制差动无人	Matlab 运行多辆无人车的速度	2.AdvExps\e6_CarR1DiffCtrl\4.CarR1DiffVelCtrl_Mat\Readme.pdf	个人集
	车速度软/硬件在环	控制的软硬件在环仿真。		合版
	仿真			
78	精细化无人车控制实	本文件夹中的所有实验均为本	2.AdvExps\e7_TrailerModelCtrl\readme.pdf	集合版
	验	讲中进阶功能性实验, 包括精细		
		化无人车模型代码生成及软硬		
		件在环仿真和无人车综合模型		
		仿真验证		
79	精细化无人车模型代	在 Matlab 将 Simulink 文件编译	2.AdvExps\e7_TrailerModelCtrl\1.TrailerModelCtrl\Readme.pdf	个人集
	码生成及软硬件在环	生成精细化无人车的 DLL 模型		合版
	仿真	文件; 并对生成的精细化无人车		
		模型进行软硬件在环仿真测试,		
		通过本例程熟悉平台精细化无		
		人车模型的使用。		
80	无人车综合模型仿真	在 Simulink 的 DII 模型基础上,	2.AdvExps\e7_TrailerModelCtrl\2.TrailerNoPX4\Readme.pdf	个人集
	验证	基于 MATLAB/Simulink 设计无		合版

				·
		人车控制器,并将控制器和 DII		
		模型放在同一个 slx 文件中,依		
		据特定的输入输出接口, 形成一		
		个无人车整体仿真闭环, 即综合		
		模型。在得到综合模型后,通过		
		外部控制的方法实现顶层控制。		
81	精细化无人车模型代	在 Matlab 将 Simulink 文件编译	2.AdvExps\e7_TrailerModelCtrl\1.TrailerModelCtrl\Readme.pdf	个人集
	码生成及软硬件在环	生成精细化无人车的 DLL 模型		合版
	仿真	文件; 并对生成的精细化无人车		
		模型进行软硬件在环仿真测试,		
		通过本例程熟悉平台精细化无		
		人车模型的使用。		
82	无人车综合模型仿真	在 Simulink 的 DII 模型基础上,	2.AdvExps\e7_TrailerModelCtrl\2.TrailerNoPX4\Readme.pdf	个人集
	验证	基于 MATLAB/Simulink 设计无		合版
		人车控制器,并将控制器和 DII		
		模型放在同一个 slx 文件中,依		
		据特定的输入输出接口, 形成一		
		个无人车整体仿真闭环, 即综合		
		模型。在得到综合模型后,通过		
		外部控制的方法实现顶层控制。		
83	定制性实验	本文件夹中的所有实验均为部	3.CustExps\Readme.pdf	完整版
		分项目中的拆解实验, 相比其他		
		文件夹中的实验, 该文件夹中的		
		实验更加完整、复杂,满足更多		
		的项目或者科研需求。		
84	直升机模型软硬件在	通过该实验熟悉直升机模型软	3.CustExps\e1_Helicopter\Readme.pdf	完整版

	环仿真实验	硬件在环仿真操作步骤。		
85	UUV 模型硬件在环仿	在 Matlab 将 Simulink 文件编译	3.CustExps\e2_UUV\Readme.pdf	完整版
	真实验	生成四旋翼的 UUV 模型文件;		
		并对生成的 UUV 模型通过遥控		
		器进行硬件在环仿真测试, 通过		
		本例程熟悉平台 UUV 模型的使		
		用。		
86	双旋翼垂尾模型代码	通过该例程熟悉双旋翼垂尾模	3.CustExps\e3_Tailsitter_Duo\Readme.pdf	完整版
	生成及软硬件在环仿	型的使用以及软硬件在环仿真		
	真	步骤。		
87	四轴八旋翼模型 DLL	在 Matlab 将 Simulink 文件编译	SourceCode\e2_MultiModelCtrlNew\5.OctoCoxRotor\Readme.pdf	个人集
	生成及 SIL/HIL 实验	生成的四轴八旋翼 DLL 模型文		合版
		件; 并对生成的四轴八旋翼模型		
		进行软硬件在环仿真测试, 通过		
		本例程熟悉平台四轴八旋翼模		
		型的使用。		
88	八旋翼模型 DLL 生成	在 Matlab 将 Simulink 文件编译	SourceCode\e2_MultiModelCtrlNew\6.OctoX\Readme.pdf	个人集
	及 SIL/HIL 实验	生成的八旋翼 DLL 模型文件; 并		合版
		对生成的八旋翼模型进行软硬		
		件在环仿真测试, 通过本例程熟		
		悉平台八旋翼模型的使用。		

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。