PCT

国 原 事 務 局 特許協力条約に基づいて公開された国際出願

世界知的所有権機關

(51) 国際特許分類6 C07D 405/04, A01N 43/54

A1

(11) 国際公開番号

WO97/29105

(43) 国際公開日

1997年8月14日(14.08.97)

(21) 国際出願番号

PCT/JP97/00320

(22) 国際出願日

1997年2月7日(07.02.97)

(30) 優先権データ 特願平8/48327

1996年2月9日(09.02.96)

(71) 出願人 (米国を除くすべての指定国について) クミアイ化学工業株式会社

(KUMIAI CHEMICAL INDUSTRY CO., LTD.)[JP/JP] イハラケミカル工業株式会社

イハフケミカル工業株式芸在 (IHARA CHEMICAL INDUSTRY CO., LTD.)[JP/JP]

〒110 東京都台東区池之端1丁目4番26号 Tokyo. (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

宮崎雅弘(MIYAZAKI, Masahiro)[JP/JP]

出口武司(DEGUCHI, Takeshi)[JP/JP]

武樋隆芳(TAKEHI, Takayoshi)[JP/JP]

田丸雅敏(TAMARU, Masatoshi)[JP/JP]

〒437-12 静岡県磐田郡福田町塩新田408番地の1

株式会社 ケイ・アイ研究所内 Shizuoka, (JP)

山地充洋(YAMAJI, Yoshihiro)[JP/JP]

〒439 静岡県小笠郡菊川町加茂1809番地 Shizuoka, (JP)

花井 凉(HANAL, Ryo)[JP/JP]

〒439 静岡県小笠郡菊川町西方1198番地の2 Shizuoka (JP)

| 魚津壮太(UOTSU, Souta)[JP/JP]

〒439 静岡県小笠郡菊川町加茂3353番地 Shizuoka, (JP)

佐土原英雄(SADOHARA, Hideo)[JP/JP]

〒352 埼玉県新座市堀之内2丁目9番地の3 Saitama, (JP)

(74) 代理人

弁理士 山本量三,外(YAMAMOTO, Ryozo et al.) 〒101 東京都千代田区神田東松下町38番地

鳥本鋼業ビル Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

(54)Title: BENZOFURAN-7-YLURACIL DERIVATIVES AND HERBICIDES

(54)発明の名称 ベンゾフラン-7-イルウラシル誘導体及び除草剤

(57) Abstract

Benzofuran-7-yluracil derivatives represented by general formula (1) and herbicides containing the same as the active ingredient (1), wherein X and Y represent each hydrogen, halogeno, etc.; R¹ represents hydrogen, alkyl, etc.; R² represents haloalkyl, etc.; R³ represents hydrogen, halogeno, etc.; and R⁴ and R⁵ represent each independently hydrogen, alkyl, haloalkyl, halogeno, cyano, phenyl, benzyl, nitro, etc. These compounds exert excellent herbicidal effects on various upland weeds such as broadleaf weeds, grass weeds and perennial or annual cyperaceous weeds over a wide range of from the pre-sprouting period to the growing period. Also, perennial and annual lowland weeds can be controlled thereby. Moreover, the herbicides are highly safe for crops, in particular, rice, wheat, barley, grain sorghum, corn, soybean, cotton, beet, etc.

(57) 要約

一般式[1]

(式中、X、Yは水素原子、ハロゲン原子等を表し、R¹は水素原子、アルキル基等を表し、R²はハロアルキル基等を表し、R³は水素原子、ハロゲン原子等を表し、R⁴及びR⁵はそれぞれ独立して、水素原子、アルキル基、ハロアルキル基、ハロゲン原子、シアノ基、フェニル基、ベンジル基、ニトロ基等を表す。)で示されるベンソフランー7ーイルウラシル誘導体及びこれを有効成分とする除草剤。

一般式[1]で表される本発明の化合物は、畑地において問題となる種々の広葉 雑草、イネ科雑草、及び多年生若しくは1年生カヤツリグサ科雑草などに、発芽 前から生育期の広い範囲にわたって優れた除草効果を発揮する。また、水田に発 生する一年生雑草及び多年生雑草を防除することもできる。

又、本発明の除草剤は作物に対する安全性も高く、特にイネ、コムギ、オオム ギ、グレインソルガム、トウモロコシ、ダイズ、ワタ、テンサイ等に対して高い 安全性を示す。

明細書

ベンソフランー7ーイルウラシル誘導体及び除草剤

[技術分野]

本発明は新規なベンゾフランー 7 ーイルウラシル誘導体及びそれを有効成分と する除草剤に関するものである。

[背景技術]

特開平5-262765号公報明細書、特開平5-25165号公報明細書にはある種のベンゾフラン誘導体が、特開昭63-156787号公報明細書にはある種のベンゾピラン誘導体及びベンゾフラン誘導体が、さらにヨーロッパ特許626962号公報明細書にはベンゾチオフェン誘導体及びベンゾフラン誘導体が除草剤の有効成分として用いられることが記載されている。

有用作物に対して使用される除草剤は、土壌又は茎葉に施用し、低薬量で十分な除草効果を示し、しかも作物・雑草間の選択性を発揮する薬剤であることが望まれる。しかしながら土壌処理に限らず、除草効果と作物・雑草間の選択性は、土壌の性質に影響され、施用後に作物に薬害を生ずることがある。これらの点で、上記文献中で開示されている化合物は必ずしも満足すべき物とは言い難い。

本発明者らはこの様な状況に鑑み、除草効果と作物・雑草間の選択性を検討した結果、新規なベンゾフラン-7-イルウラシル誘導体が、優れた除草効果と作物・雑草間の選択性を有することを見いだし、本発明を完成した。

[発明の開示]

すなわち本発明は一般式 [1]

[式中、Xは水素原子又はハロゲン原子を表し、Yは水素原子、ハロゲン原子、シアノ基、アルキル基、ハロアルキル基、アルコキシ基又はハロアルコキシ基を表し、R¹は水素原子、アルキル基、アミノ基又はハロアルキル基を表し、R²

はアルキル基又はハロアルキル基を表し、R³は水素原子、ハロゲン原子、アル キル基又はハロアルキル基を表し、R⁴及びR⁵はそれぞれ同一又は相異なり、 水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロ アルキル基、アルコキシ基、ハロアルコキシ基、アルケニルオキシ基、アルキニ ルオキシ基、アルコキシカルボニルアルコキシ基、アルキルチオ基、ハロアルキ ルチオ基、アルケニルチオ基、アルキニルチオ基、アルコキシカルボニルアルキ ルチオ基、アルキルスルホニル基、ハロアルキルスルホニル基、置換されていて もよいフェニルスルホニル基、ハロゲン原子、ヒドロキシイミノアルキル基、ヒ ドロキシイミノハロアルキル基、アルコキシイミノアルキル基、アルコキシイミ ノハロアルキル基、アルキルイミノアルキル基、置換されていてもよいフェニル イミノアルキル基、ヒドラゾノアルキル基、アルキルヒドラゾノアルキル基、置 換されていてもよいフェニルヒドラゾノアルキル基、シアノ基、(窒素原子に、 同一又は相異なる水素原子、アルキル基、アシル基、ハロアルキルカルボニル 基、アルキルスルホニル基、ハロアルキルスルホニル基、もしくは置換されてい てもよいフェニル基が置換した)カルバモイル基、置換されていてもよいフェニ ル基、置換されていてもよいベンジル基、シアノアルキル基、カルバモイルアル キル基、チオシアノアルキル基、ニトロ基、ヒドロキシアミノ基、アルキル基に より置換されていてもよいオキシラニル基、(窒素原子に、同一又は相異なる水 素原子、アルキル基、ハロアルキル基、アルケニル基、アルキニル基、シクロア ルキル基、アルキルスルホニル基、ハロアルキルスルホニル基、置換されていて もよいフェニルスルホニル基、アシル基、ハロアルキルカルボニル基もしくは置 換されていてもよいベンゾイル基が置換した)アミノ基又は一般式

(式中、Zは酸素原子又は硫黄原子を表し、Wは基-SO-Yは基 $-SO_2-$ を表し、 R^6 は水素原子又はアルキル基を表し、 R^7 は水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロアルキル基、アルコキシア

ルキル基又はアルキルチオアルキル基を表し、あるいはR6及びR7は互いに結 合し、これらが結合している炭素原子と一緒になって3~8員(炭素)環を形成 することもできる。R8は水素原子、アルキル基、シクロアルキル基、ハロアル キル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキル基、 モノアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ア シル基、アルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルカル ボニル基、モノアルキルカルバモイル基、モノアルキルチオカルバモイル基、ジ アルキルカルバモイル基、ジアルキルチオカルバモイル基又は置換されていても よいベンゾイル基を表し、R ⁹ は水素原子、アルキル基、シクロアルキル基、ハ ロアルキル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキ ル基、モノアルキルカルバモイルアルキル基又はジアルキルカルバモイルアルキ ル基を表し、R¹⁰は水素原子、アルキル基、アシル基、アルキルスルホニル 基、ハロアルキルスルホニル基又はハロアルキルカルボニル基を表し、Rllは 水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロ アルキル基、アルコキシアルキル基、アルキルチオアルキル基、置換されていて もよいフェニル基、アルコキシ基、ハロアルコキシ基、置換されていてもよいべ ンジルオキシ基、置換されていてもよいフェノキシ基又は水酸基を表す。) で示 される基を表す。〕で示されるベンゾフラン-7-イルウラシル誘導体及びそれ を有効成分とする除草剤である。

なお、本明細書において、アルキル基、アルキルチオ基、アルコキシアルキル基、アルキルチオアルキル基、アルコキシカルボニルアルキルチオ基、アルキルイミノアルキル基、シアノアルキル基、カルバモイルアルキル基、チオシアノアルキル基、アルキル基により置換されていてもよいオキシラニル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキル基、モノアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ビドロキシイミノアルキル基、アルコキシイミノアルキル基、置換されていてもよいフェニルイミノアルキル基、アルコキシイミノアルキル基、置換されていてもよいフェニルイミノアルキル基、ヒドラゾノアルキル基、アルキルヒドラゾノアルキル基、置換されていてもよいフェニルヒドラゾノアルキル基及びアルキルスルホニル基のアルキルとは、炭素数1~6の直鎖又は分岐鎖状のアルキル基を示し、例えばメチル基、

エチル基、n-プロピル基、イソプロビル基、n-プチル基、イソブチル基、sec-プチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、3、3-ジメチルブチル基等を挙げることができる。

ハロアルキル基、ハロアルキルスルホニル基、ハロアルキルカルボニル基、ヒドロキシイミノハロアルキル基及びアルコキシイミノハロアルキル基のハロアルキルとは、ハロゲン原子によって置換された炭素数1~4の直鎖又は分岐鎖状のアルキル基を示し、例えばクロロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基等を挙げることができる。

ハロゲン原子とはフッ素原子、塩素原子、臭素原子、又はヨウ素原子を示す。
アルコキシ基、アルコキシアルキル基、アルコキシカルボニルアルコキシ基、
アルコキシカルボニルアルキルチオ基、アルコキシイミノアルキル基、アルコキ
シイミノハロアルキル基及びアルコキシカルボニルアルキル基のアルコキシと
は、炭素数1~6の直鎖又は分岐鎖状のアルコキシ基を示し、例えばメトキシ
基、エトキシ基、nープロポキシ基、イソプロポキシ基、nープトキシ基、イソプトキシ基、secープトキシ基、tープトキシ基、nーペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、nーヘキシルオキシ基、イソヘキシルオキシ基、3、3ージメチルプトキシ基等を挙げることができる。

ハロアルコキシ基とはハロゲン原子によって置換された炭素数1~4の直鎖又は分岐鎖状のアルコキシ基を示し、例えばクロロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基等を挙げることができる。

アシル基とは、炭素数 1 ~ 6 の直鎖又は分岐鎖状の脂肪族アシル基を示し、例 えばホルミル基、アセチル基、プロピオニル基、ブチリル基、ピバロイル基等を 挙げることができる。

アルケニル基、アルケニルオキシ基及びアルケニルチオ基のアルケニルとは炭素数2~6の直鎖又は分岐鎖状のアルケニル基を示し、例えばビニル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等を挙げることができる。

アルキニル基、アルキニルオキシ基及びアルキニルチオ基のアルキニルとは炭素数2~6の直鎖又は分岐鎖状のアルキニル基を示し、例えばエチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、3,3-ジメチル-1-ブチニル基、4-メチル-1-ペンチニル基等を挙げることができる。

シクロアルキル基とは炭素数3~8のシクロアルキル基を示し、例えばシクロ プロピル基、シクロヘキシル基等を挙げることができる。

置換されていてもよいフェニルスルホニル基、置換されていてもよいフェニルイミノアルキル基、置換されていてもよいフェニルヒドラゾノアルキル基、置換されていてもよいベンジルオキシ基、置換されていてもよいベンジルオキシ基、置換されていてもよいベンゾイル基、置換されていてもよいフェニル基及び置換されていてもよいベンジル基におけるフェニル環は、ハロゲン原子、アルキル基、アルコキシ基、ハロアルキル基、ハロアルコキシ基、ニトロ基、シアノ基等の置換基で置換されたものも含む。

次に、本発明化合物の具体例を表1~表24に記載する。しかしながら、これらの化合物に限定されるものではない。なお、化合物番号は以後の記載において 参照される。 (表1)

化合物	X	Y	Rl	R ²	R3	R ⁴	R ⁵	融点(℃)
番号								屈折率 nD
1	F	Cl	СНЗ	CF ₃	H	н	Н	127-128
2	F	Cl	CH3	CF ₃	H	СН3	Н	196-197
3	F	Cl	СНЗ	CF3	H	С ₂ н ₅	Н	142-143
4	F	Cl	CH3	CF ₃	H	C3H7	H	88-89
5	F	Cl	СН3	CF ₃	H	C3H7-i	H	
6	F	Cl	СH3	CF3	H	C4H9	H	1. 5375
7	F	Cl	СН3	CF3	H	C4H9-i	H	1. 5358
8	F	Cl	CH ₃	CF3	H	CH ₂ Br	H	168-172
9	F	Cl	СН3	CF ₃	H	CHBr ₂	H	126-128
10	F	Cl	СНЗ	CF ₃	. Н	CBr ₃	H	測定不可
11	F	Cl	снз	CF ₃	H	CHF2	H	
12	F	Cl	СНЗ	CF ₃	H	СН ₂ ОН	H	198-199
13	F	Cl	CH3	CF3	H	СН (СН3) ОН	H	154-157
14	F	Cl	CH3	CF3	H	сн ₂ осн ₃	H	1. 5389
15	· F	Cl	CH3	CF ₃	H	СH ₂ OС ₂ H ₅	H	1. 5379
16	F	Cl	CH3	CF ₃	H	СН ₂ ОСОСН3	H	1. 5347
17	F	Cl	СН3	CF3	H	СH ₂ ОСОС ₂ H ₅	H	
18	F	Cl	СН3	CF3	H	CH (CH ₃) 0COCH ₃	H	
19	F	Cl	CH ₃	CF3	H	CH ₂ OCO-	H	160-162
20	F	Cl	CH ₃	CF ₃	H	CH ₂ SCH ₃	H	測定不可
21	F	Cl	СНЗ	CF_3	H	CH ₂ SO ₂ CH ₃	H	209-211
22	F	Cl	CH ₃	CF3	H	CH2SC2H5	H	1. 5629
23	F	Cl	СНЗ	CF ₃	H	CH ₂ SO ₂ C ₂ H ₅	H	212-215
24	F	Cl	СН3	CF3	H	${ m CH_2N}$ (${ m CH_3}$) $_2$	H	
25	F	Cl	сн3	CF ₃	H	CH ₂ N (C ₂ H ₅) ₂	H	1. 5331
26	F	Cl	СНЗ	CF ₃	H	C1	H	180-182
27	F	Cl	CH ₃	CF ₃	H	Br	H	
								

(表2)

化合物	X	Y	Rl	R ²	R3	R ⁴	R5	融点(℃)
番号								屈折率 n _D 20
28	F	Cl	СНЗ	CF ₃	. Н	сосн3	Н	193-194
29	F	Cl	CH ₃	CF3	H	сос ₂ н ₅	H	測定不可
30	F	Cl	CH ₃	CF ₃	Н	COC ₃ H ₇	H	測定不可
31	F	Cl	CH ₃	CF ₃	Н	COC ₃ H ₇ -i	Н	128-129
			3	3	••	C1	••	
32	F	Cl	CH ₃	CF3	H	co - (*)	Н	
33	F	Cl	СН ₃	CF3	Н	СНО	H	180-183
34	F.	C1	CH ₃	CF ₃	H	CH=NOH	H	100 100
35	F	Cl	CH ₃	CF ₃	Н	CH=NOCH3	H	測定不可
36	F	Cl	CH ₃	CF3	Н	C (CH ₃) =NOH	Н	263-266
37	F	Cl	CH ₃	CF ₃	Н	C (CH ₃) =NOCH ₃	H	176-178
38	F	Cl	СН3	CF ₃	H	C (CH ₃) =NOC ₂ H ₅	H	1,0 1.0
39	F	C1	CH ₃	CF ₃	H	C (CH ₃) =NCH ₃	Н	
40	F	C1	СН3	CF ₃	H	C (CH ₃) =NNHCH ₃	Н	
41	F	Cl	CH ₃	CF ₃	H	CN	Н	
42	F	CI	CH ₃	CF3	Н	СООН	Н	267-268(分解)
43	F	Cl	CH ₃	CF ₃	Н	COOCH ₃	н	194-196
44	F	Cl	СН3	CF ₃	H	соос ₂ н ₅	н	1. 5453
45	F	Cl	CH ₃	CF ₃	Н	COOC ₃ H ₇ -i	н	測定不可
46	F	Cl	СН3	CF3	H	C00C5H11	н	
47	F	Cl	CH ₃	CF ₃	H	coo_{\bigs_{\cmr\cancebta}}\bigs_{\bigs_{\bigs_{\bigs_{\bigs_{\bigs_{\bigs_{\cmr\cinceb\cinceb\cinceb\cinceb\cinceb\cinceb\cinceb\cinceb\cinceb\cinceb\cinceb\cinceb\cinceb\cince\cinceb\cince\cinceb\cinceb\cinceb\cinceb\cinceb\cinceb\cince\cinceb\cincbc\cincbc\cincbc\cinceb\cinceb\cinceb\cinceb\cincbc\cincbc\cincbc\cincbc\cincbc\c	н	ļ
48	F	Cl	CH ₃	CF3	Ĥ	COOCH ₂ —	н	
49	F	Cl	СНЗ	CF ₃	Н	CONH ₂	н	
50	F	Cl	CH ₃	CF ₃	Н	CONHCH3	н	
51.	F	Cl	CH3	CF ₃	H	CON (CH ₃) 2	н	ĺ
52	F	Cl	CH ₃	CF ₃	H	CONHC ₂ H ₅	н	
53	F	Cl	CH ₃	CF ₃	H	CONH-	Н	[
54	F	Cl	CH ₃	CF ₃	H	CONH-CS-CH ₃	Н	
55	. F	Cl	CH ₃	CF ₃	H	CONH_C1	Н	j
56	F	Cl	CH ₃	CF ₃	H	CONH OCH 3	Н	
57	F	Cl	CH ₃	CF ₃	H	-()	н	
58	F	Cl	CH_3	CF ₃	H	CH ₂ —	н	
59	F	Cl	CH ₃	CF ₃	H	NO ₂	H	
					·			

(表3)

化合	物X	Y	R ¹	R ²	R3	R ⁴	R5	融点((℃)
番号	.							屈折率	n 20
60	F	Cl	CH3	CF ₃	Н	NH ₂	Н	<u> </u>	
61	F	Cl	CH ₃	CF ₃	H	NHCOCH3	н		
62	F	Cì	CH ₃	CF ₃	Н	NHCOCH ₂	Cl H	1	
63	F	Cl	CH ₃	CF ₃	H	NHCOCF ₃	Н		
64	F	Cl	CH ₃	CF ₃	H	NHCO-	Н		
65	F	C1	СНЗ	CF3	H	NHSO ₂ CH	3 H	İ	
66	F	Cl	CH ₃	CF3	H	NHSO2CF	3 Н		
67	F	C1	сн ₃	CF3	H	NHSO ₂ CH	2 ^{C1} H		
68	F	Cl	СН3	CF ₃	H	NHSO ₂ CH	F ₂ H		
69	F	Cl	CH ₃	CF3	H	nhso ₂ -(Н		
70	F	Cl	CH3	CF ₃	H	CH ₃	СН _З	181-183	
71	F	Cl	CH3	CF ₃	H	СН3	C ₂ H ₅	130-131	
72	F	Cl	снз	CF ₃	H	СНЗ	C3H7	1. 5287	
73	F	Cl	СНЗ	CF3	H	СНЗ	C3H7-i		
74	F	Cl	СНЗ	CF ₃	H	CH ₃	C4H9	1. 5398	
75	F	Cl	СН3	CF ₃	H	СН3	-	195-197	
76	F	Cl	CH3	CF_3	H	СНЗ	SCH ₃	1	
77	F	Cl	СН3	CF ₃	H	СНЗ	Br		}
78	F	Cl	СН3	CF3	H	CH3	Cl	157-160	•
79	F	Cl	СН3	CF3	H	CH3	Сн ₂ он	97-100	l
80	F	Cì	СН3	CF ₃	H	СН3	сн ₂ ососн ₃	168-170	
81	F	Cl	СНЗ	CF_3	H	СН3	сн ₂ осн ₃		
82	F	Cl	СН3	CF3	H	CH3	сн ₂ ос ₂ н ₅		
83	F	Cl	СН3	CF3	H	СНЗ	CH ₂ SCH ₃	157-158	
84 -	F	Cl	CH3	CF ₃	R	CH ₃	СH ₂ SO ₂ CH ₃	209-211	
85	F	Cl	CH3	CF3	H	CH ₃	${ m CH_2N}$ (CH3) $_2$		
86	F	Cl	СНЗ	CF ₃	H	CH ₃	C00H	217-220	}
87	F	Cl	CH ₃	GF_3	H	CH ₃	соосн3	1. 5440	
88	.F	Cl	СН3	CF3	H	CH ₃	соос ₂ н ₅	1. 5489	
89	F	Cl	СН3	CF ₃	H	CH ₃	C00C3H7-i	154-156	1
90	F	Cl	СН3	CF3	H	CH3	соос ₅ н ₁₁	1. 5299	
91	F	Cl	СНЗ	Œ3	H	СНЗ	СНО	148-150	
92	F	Cl	сн3	CF ₃	H	СНЗ	CH=NOH	82-84	

(表4)

化合物	X	Υ	R ¹	R ²	R3	R ⁴	R 5	融点(℃)
番号	Ì					_		屈折率 n _D 20
93	F	Cl	СНЗ	CF ₃	Н	СНЗ	CH=NOCH3	1. 5483
94	F	Cl	CH ₃	CF ₃	H	CH ₃	CN	
95	F	Cl	CH ₃	CF ₃	H	СНЗ	CONH ₂	102-105
96	F	Cl	СH ₃	CF ₃	H	CH ₃	CONHCH3	
97	F	Cl	CH ₃	CF ₃	H	CH ₃	CONHC ₂ H ₅	}
98	F	Cl	СН3	CF ₃	H	СНЗ	CON (CH ₃) 2	90-93
99	F	Cl	СНЗ	CF ₃	Н	СНЗ	CONH-	
100	F	Cl	СН3	CF3	Н	CH ₃	CONH_CO_CI	
101	F	Cl	CH ₃	CF ₃	H	CH ₃	сосна	138-140
102	F	Cl	СН3	CF ₃	H	CH ₃	COC ₂ H ₅	1. 5496
103	F	Cl	CH3	CF3	H	CH ₃	COCH ₂ C1	77-80
104	F	C1	CH3	CF ₃	H	СНЗ	COCF ₃	
105	F	Cl	СНЗ	CF ₃	H	CH ₃	SO ₂ CH ₃	
106	F	Cl	СН3	CF ₃	H	СНЗ	SO ₂ CF ₃	
107	F	Cl	СНЗ	CF ₃	H	СНЗ	SO2CH2C1	
108	F	Cl	CH ₃	CF3	H	CH ₃	SO ₂ CHF ₂	
109	F	Cl	CH ₃	CF ₃	H	СНЗ	СН (СН ₃) ОН	ļ
110	F	Cl	СНЗ	CF_3	H	CH3	C (CH ₃) =NOH	108-111
111	F	Cl	СНЗ	CF_3	H	CH ₃	$C(CH_3) = NOCH_3$	65-67
112	F	Cl	CH3	CF3	H	СНЗ	$C(CH_3) = NOC_2H_5$	1
113	F	Cl	CH ₃	CF_3	H	СНЗ	$C(CH_3) = NCH_3$	
114	F	Cl	СНЗ	CF3	H	CH ₃	$C(CH_3) = NNHCH_3$	187-190
115	F	Cl	CH ₃	\mathtt{CF}_3	H	СНЗ	$C(CH_3) = N - \bigcirc$	
116	F	C1	СНЗ	CF_3	H	СНЗ	C (CH ₃) =NNH	117-120
117	F	Cl	CH3	CF3	H	CH ₃	co-<	192-194
118	F	Cl	CH3	CF_3	H	СНЗ	S0 ₂ —	
119	F	Cl	CH ₃	CF ₃	H	СНЗ	NO ₂	測定不可
120	F	Cl	СНЗ	CF3	H	CH3	NH ₂	
121	. F	Cl	CH3	CF ₃	H	CH3	nhso ₂ ch ₃	
122	F	Cl	СН3	CF ₃	H	CH3 '	NHSO ₂ CF ₃	
123	F	Cl	CH ₃	CF_3	H	CH ₃	NHSO ₂ CH ₂ C1	
124	F	Cl	CH3	CF3	H	СНЗ	NHSO ₂ CHF ₂	
125	F	Cl	СН3	CF3	H	CH3	инсосн ₃	209-211
Li								

(表5)

化合物	X	Y	Rl	R ²	R3	R ⁴	_R 5	融点(℃)
番号			•					屈折率 n _D 20
126	F	Cl	СНЗ	CF ₃	H	CH ₃	NHCOCF3	
127	F	C1	CH ₃	CF ₃	H	CH ₃	NHCOCH ₂ C1	
128	F	Cl	СН3	CF ₃	H	CH ₃	NHCO-	
129	F	Cl	СН3	CF3	H	CH ₃	NHCO-()-CH3	•
130	F	Cl	CH ₃	CF ₃	H	CH ₃	NHCO-()-C1	
131	F	Cl	СНЗ	CF ₃	H	СНЗ	NHCO-OCH3	
132	F	Cl	СНЗ	CF ₃	H	CH ₃	NHSO ₂ -(7)	
133	F	Cl	снз	CF_3	H	CH ₃	NHSO2-CH3	
134	F	C1	CH ₃	CF ₃	H	СНЗ	NHSO ₂ -()-C1	
135	F	Cl	СН3	CF3	H	СНЗ	NHSO2-()-OCH3	
136	F	Cl	CH ₃	CF3	H	C ₂ H ₅	CH ₃	
137	F	Cl	СН3	CF_3	H	C ₂ H ₅	СН ₂ ОН	
138	F	Cl	CH ₃	CF ₃	H	C ₂ H ₅	сн ₂ ососн ₃	
139	F	Cl	СНЗ	CF ₃	H	C ₂ H ₅	сн ₂ осн ₃	
140	F	Cl	CH3	CF ₃	H	C ₂ H ₅	СООН	114-116
141	F	Cl	CH3	CF ₃	H	C ₂ H ₅	СНО	測定不可
142	F	Cl	CH ₃	CF ₃	H	C ₂ H ₅	сооснз	1. 5341
143	F	Cl	СН3	CF_3	H	C ₂ H ₅	СООС3Н7-і	1. 5229
144	F	Cl	CH ₃	\mathtt{CF}_3	H	C ₂ H ₅	CH=NOCH3	
145	F	Cl	СНЗ	CF3	H	C_2H_5	сн=илнсн ₃	ļ
146	F	Cl	CH3	\mathtt{CF}_3	H	C ₂ H ₅	Cl	
147	F	Cl	СНЗ	CF_3	H	C_2H_5	сосн3	1. 5503
148	F	Cl	СН3	CF_3	H	C_2H_5	C (CH3) =NOH	
149	F	Cl	СН3	CF ₃	H	c_2H_5	C (CH ₃) =NOCH ₃	
150	F	Cl	СН3	CF_3	H	C ₂ H ₅	C (CH3) = NNHCH3	
151	F	Cl	сн3	CF ₃	H	C ₂ H ₅	C (CH3) =NNH-	
152	F	Cl	CH3	GF_3	Н	C_2H_5	COC ₂ H ₅	139-140
153	F	Cl	CH3	CF ₃	H	C ₂ H ₅	COC ₃ H ₇ -i	115-117
154	F	Cl	CH ₃	CF ₃	H	C ₂ H ₅	co- ()	
155	F	Cl	CH ₃	CF_3	H	c_2H_5	NO ₂	İ
156	F	Cl	СН3	CF ₃	H	c_2H_5	NH ₂	į
157	F	C1 .	CH ₃	CF ₃	Н	C ₂ H ₅	инсосн3	-
158	F	C1	CH ₃	CF ₃	Н	С ₂ Н ₅	NHSO ₂ CH ₃	

(表6)

化合物	7 X	Y	R ¹	R ²	R3	R ⁴	_R 5	融点(℃)
番号								屈折率 n _D 20
159	F	Cl	СНЗ	CF ₃	H	С ₂ Н ₅	NHSO ₂ CF ₃	
160	F	Cl	сн3	CF3	H	C ₂ H ₅	C00-	
161	F	Cl	CH3	CF3	H	C ₂ H ₅	COOCH ₂ —()	
162	F	Cl	СНЗ	CF3	H	C ₂ H ₅	соинсн3	
163	F	Cl	СНЗ	CF3	Н	C ₂ H ₅	CON (CH ₃) 2	
164	F	Cl	CH3	CF ₃	H	С ₃ Н ₇	СН ₃	
165	F	Cl	CH3	CF_3	H	С ₃ н ₇	соснз	1. 5362
166	F	Cl	CH3	CF_3	H	C3H7	соосн3	103-104
167	F	Cl	СН3	CF3	H	C3H7	СН ₂ ОСН ₃	
168	F	Cl	СНЗ	CF ₃	Н	C3H7-i	СН3	
169	F	Cl	СНЗ	CF3	H	C3H7-i	сосн3	
170	F	Cl	СНЗ	CF3	H	C3H7-i	соосн3	
171	F	Cl	СНЗ	CF3	H	C3H7-i	СН ₂ ОСН ₃	
172	F	Cl	H	CF3	H	CH3	н -	172-174
173	F	Cl	С ₂ Н ₅	CF3	H	СНЗ	H	
174	F	Cl	С3Н7	CF ₃	H	СНЗ	н	
175	F	Cl	CH ₂ C1	-	н .	СН3	н	
176	F	Cl	CHF ₂	CF ₃	H	СНЗ	н	
177	F	Cl	H	CF3	СН3	CH ₃	Н	
178	F	Cl	H	CF ₃	CH ₂ C1	CH3	н	
179	F	Cl	H	CF ₃	C1	СНЗ	н	·
180	F	Cl	H	CF3	. Br	CH3	н	
181	F	C1	H	CH3	H	CH ₃	н	
182	F	Cl	CH ₃	CH_3	H	CH ₃	H	
183·	F	Cl	CHF ₂	CH ₃	H	CH3	н	
184	F	Cl	H	CH ₃	Cl	CH ₃	н	
185	F	Cl	H	CH ₂ C1	H	CH3	н	
186	F	Cl	СНЗ	CH ₂ C1	H	CH ₃	н	
187	F	Cl	H	CF ₃	H	С ₂ Н ₅	H	154-155
188	F	Cl	H	CF ₃	CH3	С ₂ н ₅	H	
189	F	Cl	H	CF_3	Cl	С ₂ Н ₅	Н	
190	F	Cl	CH ₂ C1	CF ₃	H	C ₂ H ₅	н	İ
191	F	Cl	CHF ₂	CF3	H	С ₂ н ₅	Н	

(表7)

化合物	χ	Y	Rl	R ²	R3	R ⁴	R5	融点(℃)
番号								屈折率 n _D
192	F	Cl	CHF ₂	CF ₃	Н	C ₂ H ₅	СООСНЗ	
193	F	Cl	CHF ₂	CF ₃	H	С ₂ Н ₅	H	
194	F	Cl	CH ₃	CF ₃	Cl	C ₂ H ₅	H	
195	H	Cl	CH3	CF ₃	Н	Н	Н	142-144
196	H	Cl	СНЗ	CF ₃	H	СН3	H	206-207
197	H	Cl	CH3	CF ₃	Н	C ₂ H ₅	Н	159-160
198	Н	Cl	CH ₃	CF ₃	H	С ₃ Н ₇	Н	159-161
199	H	Cl	СНЗ	CF ₃	H	С ₃ Н ₇ -і	H	
200	H	Cl	CH ₃	CF ₃	H	С ₄ Н ₉	H	101-102
201	H	Cì	CH ₃	CF3	H	C ₄ H ₉ -i	H	129-131
202	H	Cl	CH ₃	CF ₃	H	CH ₂ Br	Н	200-202
203	H	Cl	СНЗ	CF ₃	H	CHBr ₂	H	
204	H	Cl	СНЗ	CF ₃	H	CBr ₃	, H	
205	H	Cl	CH ₃	CF ₃	H	CHF ₂	H	
206	H	Cl	СНЗ	CF3	H	СН ₂ ОН	H	179-181
207	H	Cl	СНЗ	CF3	H	CH (CH ₃) OH	Н	85-86
208	H	Cl	СНЗ	CF ₃	H	СН ₂ ОСН ₃	н	141-143
209	H	Cl	CH ₃	CF3	H	СH ₂ 0С ₂ H ₅	н	93-96
210	H	Cl	СНЗ	CF ₃	H	сн ₂ ососн ₃	н	135-138
211	H	Cl	CH ₃	CF ₃	H	си ₂ осос ₂ и ₅	н	
212	H	C1	CH3	CF3	H	СН (СН ₃) ОСОСН	3 Н	
213	H	Cl	СНЗ	CF_3	H	CH ₂ 0C0-	Н	180-182
214	H	Cl	СНЗ	CF ₃	H	CH ₂ SCH ₃	н	
215	H	Cl	СН3	CF ₃	H	CH ₂ SO ₂ CH ₃	Н	
216 ⁻	H	Cl	CH3	CF ₃	H	CH ₂ SC ₂ H ₅	Н	·
217	H	Cl	СНЗ	CF ₃	H	CH ₂ SO ₂ C ₂ H ₅	Ħ	
218	H	Cl	СНЗ	CF_3	H	CH ^S NHCH ³	В	
219	H	Cl	CH_3	CF3	H	${ m CH_2M}$ (${ m C_2H_5}$) $_{ m 2}$	н	1. 5420
220	- Н	Cl	CH3	CF ₃	H	Cl	н	
221	H	Cl	CH3	GF_3	H	Br	н	
222	H	Cl	CH3	CF_3	H	сосн3	н	181-182
223	H	Cl	CH3	CF_3	H	сос ₂ н ₅	н	
224	H	Cl	СНЗ	CF3	H	COC ₃ H ₇	Н	

(表8)

化合物	X	Y	Rl	R ²	R3	R ⁴	R5	融点(℃)
番号						•		屈折率 n _D
225	Н	Cl	CH ₃	CF ₃	H	COC ₃ H ₇ -i	H	
226	H	Cl	CH ₃	CF ₃	H	co- ()	H	
227	н	. C1	CH ₃	CF ₃	H	сно	H	233-235
228	н	Cl	CH ₃	CF ₃	H	СН (ОСН ₃) ₂	H	1. 5416
229	Н	Cl	CH ₃	CF ₃	H	CH=NOH	H	
230	Н	Cl	СНЗ	CF3	H	сн=nосн ₃	H	179-181
231	Н	Cl	СНЗ	CF3	H	CH=NNHCH3	H	測定不可
232	Н	Cl	CH ₃	CF3	H	C (CH3) =NOH	H	
233	Н	Cl	СНЗ	CF3	H	С (СН ₃) =NOCH ₃	H	172-176
234	H	Cl	СНЗ	CF3	H	$C(CH_3) = NOC_2H_5$	H	
235	Н	CI	CH ₃	CF3	H	C (CH ₃) =NCH ₃	H	
236	H	Cl	CH ₃	CF3	H	C (CH ₃) =NNHCH ₃	H	
237	Ж	Cl	Сн3	CF3	H	CN	H	
238	H	Cl	CH3	CF3	H	СООН	H	270-273
239	H	Cl	CH3	CF3	H	соосн3	H	137-138
240	H	Cl	снз	CF ₃	H	соос ₂ н ₅	Н -	116-117
241	H	Cl	СНЗ	CF ₃	H	COOC ₃ H ₇ -i	H	144-145
242	H	Cl	CH ₃	CF3	H	соос ₅ н ₁₁	H	
243	H	Cl	CH3	CF ₃	H	соо- ()-осн ₃	H	
244	H	C1	СНЗ	CF ₃	H	соосн ₂ — ()	H	
245	H	C1	CH ₃	CF3	H	CONH ₂	H	273-275
246	H	Cl	СНЗ	CF3	H	CONHCH3	H	287-288
247	H	Cl	СНЗ	CF3	H	CON (CH ₃) ₂	H	測定不可
248	H	Cl	CH3	CF3	H	CONHC ₂ H ₅	H	225-226
249	H	Cl	CH3	CF3	H	CONH-	H	289-290
250	H	C1	CH ₃	CF_3	H	CONH_CH3	H	294-296
251	H	Cl	СН3	CF3	H	CONH_C>_C1	H	>300
252	H	Cl	CH ₃	CF3	H	CONH-CD-OCH3	н	254-256
	-					Cl		
253	H	Cl	СНЗ	CF ₃	H .	CONH	Н	177-180
254	H	Cl	CH ₃	CF ₃	H	- €}-C1	н	
255	H	C1	СНЗ	CF ₃	H	CH ₂ —CH ₃	н	
256	H	Cl	CH ₃	CF ₃	H	NO ₂	н	j
L								

(表9)

化合物	X	Y	R ¹	R ²	R3	R ⁴	_R 5	融点(℃)
番号								屈折率 n _D
257	Н	Cl	СНЗ	CF ₃	Н	NH ₂	Н	<u> </u>
258	Н	C1	CH ₃	CF ₃	H	NHCOCH3	H	
259	Н	Cl	CH ₃	CF ₃	H	NHCOCH ₂ C1	H	
260	H	Cl	CH ₃	CF ₃	H	NHCOCF ₃	Н	
261	H	Cl	CH3	CF3	H	NHSO ₂ CH ₃	H	
262	H	C1	СНЗ	CF3	H	NHSO ₂ CF ₃	H	
263	H	Cl	СНЗ	CF3	H	NHSO2CH2C	1 H	
264	Н	Cl	CH ₃	CF ₃	H	NHSO2CHF2	H	
265	H	Cl	СНЗ	CF3	. Н	CH ₃	СНЗ	152-153
266	H	Cl	CH3	cF ₃	H	CH ₃	C ₂ H ₅	141-142
267	H	Cl	CH ₃	CF ₃	H	CH ₃	С ₃ н ₇	1. 5461
268	H	Cl	CH3	CF ₃	H	СНЗ	C3H7-i	
269	H	Cl	CH3	CF ₃	H	CH ₃	C_4H_9	1. 5557
270	H	Cl	СНЗ	CF3	H	СНЗ	-⟨□⟩	測定不可
271	H	Cl	CH ₃	CF ₃	H	СНЗ	SCH ₃	
272	H	Cl	CH3	CF ₃	H	СНЗ	Вг	1. 5632
273	H	. CI	CH3	CF ₃	H	снз	Cl	
274	H	Cl	СНЗ	CF3	H	CH3	СН ₂ ОН	
275	H	Cl	СН3	CF3	H	СНЗ	сн ₂ ососн ₃	
276	H	Cl	CH3	CF3	H	СНЗ	CH ₂ OCH ₃	
277	H	Cl	CH3	CF ₃	H	СН3	$\mathrm{CH}_2\mathrm{OC}_2\mathrm{H}_5$	
278	H	Cl	СН3	CF3	H	СНЗ	CH ₂ SCH ₃	
279	H	Cl	СНЗ	CF ₃	H	CH3	$\text{CH}_2\text{SO}_2\text{CH}_3$	
280	H	Cl	CH ₃	CF3	H	CH ₃	${\rm CH_2N}({\rm CH_3})_2$	
281 -	H	Cl	CH ₃	CF3	Ħ	CH ₃	СООН	
282	H	Cl	CH ₃	CF3	H	CH3	соосн3	
283	H	Cl	CH ₃	CF3	H	СН3	соос ₂ н ₅	
284	H	Cl	CH ₃	CF3	H	СН3	COOC ₃ H ₇ -i	
285	H	Cl	СН3	CF3	H	CH ₃	COOC5H11	
286	H	Cl	СН3	CF3	H	СНЗ	СНО	
287	H	Cl	CH3	cf3	H	СНЗ	CH=NOH	
288	H	Cl	CH3	CF ₃	H	CH3	CH=NOCH3	
289	H	Cl	CH3	CF ₃	H	CH ₃	сосн3	172-174

(表10)

化合物	Х	Y	Rl	R ²	_R 3	R ⁴	R 5	融点(℃)
番号	ļ							 屈折率 n _D
290	Н	Cl	СНЗ	CF3	Н	CH ₃	COC ₂ H ₅	
291	Н	Cl	СН3	CF ₃	H	CH3	COCH ₂ C1	
292	H	Cl	СНЗ	CF3	Н	СНЗ	cocf ₃	
293	Н	Cl	СНЗ	CF3	H	CH ₃	SO ₂ CH ₃	
294	Н	Cl	СНЗ	CF3	H	CH ₃	SO ₂ CF ₃	
295	H	Cl	СНЗ	CF3	H	СНЗ	SO2CH2C1	
296	Н	Cl	СНЗ	CF3	Н	CH3	SO ₂ CHF ₂	
297	н	Cl	СН3	CF3	Н	СН3	СН (СН ₃) ОН	
298	Н	Cl	СН3	CF3	H	СНЗ	C (CH ₃) = NOH	248-250
299	Н	Cl	CH3	CF3	H	CH3	С (СН ₃) = NOCH ₃	167-168
300	H	Cl	CH ₃	CF3	H	CH ₃	$C(CH_3) = NOC_2H_5$	
301	H	Cl	СНЗ	CF3	H	CH ₃	co- (203-205
302	Н	C1	CH3	CF3	H	СНЗ	SO ₂ —(
303	Н	Cl	СНЗ	CF3	H	CH ₃	NO ₂	174-175
304	Н	C1	СНЗ	CF3	H	СНЗ	NH ₂	
305	H	Cì	СНЗ	CF3	H	СНЗ	нони	134-136
306	Н	Cl	CH3	CF_3	H	CH ₃	NHSO ₂ CH ₃	
307	H	Cl	СНЗ	CF ₃	H	СНЗ	NHSO ₂ CF ₃	
308	H	Cl	CH3	CF3	H	CH3	NHSO ₂ CH ₂ C1	
309	Н	C1	CH ₃	CF3	H	CH ₃	NHSO ₂ CHF ₂	
310	H	Cl	СН3	CF_3	H	СНЗ	инсосн3	290-292
311	H	Cl	CH ₃	CF3	H	СН3	NHCOCF3	
312	H	Cl	CH3	CF ₃	H	CH3	NHCOCH ₂ C1	
313	H	Cl	СНЗ	CF3	H	CH_3	инсо-😂	
314	H	Cl	CH3	CF3	H	CH ₃	NHCO-CH3	
315	H	Cl	CH ₃	CF ₃	H	CH ₃	NHCO-(_)-C1	
316	H	Cl	CH3	CF3	H		MHCO-(_)-OCH3	
317	H	Cl	CH3	CF3	H		NHSO ₂	
318	H	Cl	CH ₃	CF ₃	H	•	NHSO ₂ —CH ₃	
319	H	Cl	CH ₃	CF ₃	Н		NHSO ₂ —C1	
320	H	Cl	CH3	CF ₃	H		NHSO ₂ -CD-OCH ₃	
321	H	CI	CH ₃	CF3	H	C ₂ H ₅	CH3	
322	H	Cl	CH3	CF ₃	H	C ₂ H ₅	CH ₂ OH	·

(表11)

化合物	χ	Y	Rl	R ²	R3	R4	R 5	融点(℃)
番号								屈折率 n _D
323	Н	Cl	CH ₃	CF ₃	. н	C ₂ H ₅	СН2ОСОСН3	
324	H	Cl	СНЗ	CF ₃	H	C ₂ H ₅	CH ₂ OCH ₃	
325	H	Cl	СНЗ	CF3	H	C ₂ H ₅	СНО	122-124
326	Н	Cl ·	CH3	CF ₃	H	C ₂ H ₅	СООН	
327	H	Cl	СНЗ	CF ₃	H	C ₂ H ₅	сооснз	
328	H	Cl	СНЗ	CF3	H	С ₂ н ₅	COOC3H7-i	
329	H	Cl	СНЗ	CF ₃	H	C ₂ H ₅	C1	
330	H	Cl	СНЗ	CF3	H	С ₂ н ₅	сосн3	1. 5662
331	H	Cl	СНЗ	CF ₃	H	С ₂ Н ₅	C (CH3) =NOH	102-105
332	H	Cl	СН3	CF ₃	H	C ₂ H ₅	C (CH ₃) =NOCH ₃	1. 5442
333	H	Cl	снз	CF3	H	С ₂ Н ₅	COC ₂ H ₅	
334	H	Cl	CH ₃	CF ₃	H	С ₂ Н ₅	COC ₃ H ₇ -i	測定不可
335	H	Cl	СНЗ	CF3	H	С ₂ н ₅	co- ()	
336	H	Cl	СНЗ	CF3	H	С ₂ Н ₅	CH ₂ SCH ₃	
337	H	C1	СНЗ	CF ₃	H	C ₂ H ₅	сн ₂ ѕо ₂ сн ₃	
338	H	Cl	CH3	CF ₃	H	C ₂ H ₅	соннсн3	
339	H	C1	CH3	CF ₃	H	C_2H_5	CON (CH3) 2	
340	H	C1	СНЗ	CF ₃	H	C ₂ H ₅	CONH—	,
341	H	Cl	СНЗ	CF_3	H	C3H7	CH3	
342	H	C1	СНЗ	CF_3	H	C3H7	сосн3	,
343	H	Cl	CH ₃	CF ₃	H	С3Н7	соосн3	
344	H	Cl	CH3	CF3	H	С3Н7	сн ₂ осн ₃	
345	H	Cl	СНЗ	CF ₃	H	C3H7-i	CH ₃	
346	H	C1	СНЗ	CF ₃	H	C3H7-i		
347	H	Cl	CH3	CF ₃	H	C3H7-i	соосн3	
348	H	Cl	СНЗ	CF ₃	H	C3H7-i	Сн ₂ осн ₃	
349	H	Cl	СН3	CF ₃	H	C ₄ H ₉	сосн3	1. 5449
350	H	Cl	CH ₃	CF_3	H	CH ₂ Br	Br	188-191
351	. H	Cl	H	CF ₃	H	СНЗ	H	
352	H	Cl	C ₂ H ₅	CF3	H	Сн3	Н	
353	H	Cl	C3H7	CF ₃	H	CH ₃	Н	
354	H	Cl	CH ₂ C1	CF ₃	H	CH ₃	н	
355	H	Cl	CHF ₂	CF ₃	H	СНЗ	Н	

(表12)

化合物	Х	γ	R1	R ²	R3	R ⁴	_{R5}	融点(℃)。	_ n
番号			-,					屈折率 n _D	,
356	Н	Cl	Н	CF ₃	СНЗ	CH3	Н		
357	Н	Cl	H	CF ₃	CH ₂ C1	CH3	H		
358	H	C1	H	CF ₃	Cl	СНЗ	H		ı
359	Н	Cl	H	CF ₃	Br	СНЗ	H		
360	Н	Cl	H	СНЗ	H	СНЗ	H		
361	Н	Cl	СНЗ	СНЗ	H	СНЗ	Н		Ì
362	Н	Cl	CHF ₂	СНЗ	H	СНЗ	H		
363	Н	Cl	H	CH3	Cl	СНЗ	H		I
364	H	C1	H	CH ₂ C1	H	СНЗ	H		ı
365	Н	Cl	CH3	CH ₂ C1	H	СН3	H		l
366	Н	Cl	H	CF ₃	H	C ₂ H ₅	Н		l
367	Н	Cl	Н	CF ₃	CH3	С ₂ н ₅	H		l
368	Н	Cl	H	CF ₃	Cl	С ₂ Н ₅	H		١
369	H	Cl	CH ₂ C1	CF3	H	С ₂ Н ₅	H		l
370	Н	Cl	CHF ₂	CF ₃	H	C ₂ H ₅	H		l
371	Н	C1	CHF ₂	CF3	H	C ₂ H ₅	C00CH3		Į
372	H	Cl	CHF ₂	CF ₃	H	C ₂ H ₅	H		l
373	H	Cl	СН3	CF ₃	Cl	С ₂ Н ₅	H		
374	F	F	СН3.	CF3	H	H	H	151-152	l
375	F	F	CH3	CF3	H	сн3	H	176-178	
376	F	F	СНЗ	CF ₃	H	CH ₃	сосн3	測定不可	
377	F	F	СНЗ	CF ₃	H	СНЗ	соосн3		
378	F	F	СНЗ	\mathtt{CF}_3	H	СН3 .	СН ₂ ОН		
379	F	F	CH ₃	CF ₃	H	C ₂ H ₅	H	156-158	
380	F	F	CH3	CF ₃	H	C ₂ H ₅	соснз		
381	F	F	CH ₃	CF ₃	H	C ₂ H ₅	СООСН3		
382	F	F	CH ₃	CF ₃	H	C ₂ H ₅	сн ₂ он		
383	F	F	CH ₃	CF ₃	H	С3Н7	H	137-140	
384	F	F	сн3	CF ₃	H	C3H7-i	H		
385	Cl	H	CH ₃	CF ₃	H	СН3	H		
386	F	H	СН3	CF ₃	H	СНЗ	H		
387	F	CN	CH ₃	CF ₃	H	СН3	H		
388	F	CH_3	CH ₃	CF3	H	СНЗ	H		

(表13)

Γ	化合物	X	Y	Rl	R ²	_R 3	R ⁴	<u>R</u> 5	融点(℃)
	番号						•		屈折率 n _D
	389	F	CF ₃	СНЗ	CF ₃	Н	СНЗ	Н	
	390	F	OCH3	CH ₃	CF ₃	H	CH ₃	Н	Ì
	391	F	OCHF ₂	CH ₃	CF ₃	H	CH ₃	Н	
	392	F	Cl	СНЗ	CF ₃	H	CH ₂ C1	Н	181-182
-	393	F	C1	CH3	CF ₃	H	CH (CH ₃) C1	H	1. 5639
	394	F	Cl	СНЗ	CF ₃	H	CH (CH3) Br	Н	1. 5562
	395	F	C1	CH3	CF3	H	CH (CH ₃) OCH ₃	H	
	396	F	Cl	CH3	CF ₃	H	CH (C2H5) C1	Н	
	397	F	Cl	СНЗ	CF ₃	H	co-<<	H	85-87
	398	F	Cl	CH3	· CF ₃	H	COC ₄ H ₉ -n	Н	95-97
l	399	F	Cl	CH ₃	CF ₃	H	COCH ₂ C1	Н	
	400	F	Cl	СНЗ	CF ₃	H	COCH ₂ Br	H	105-106
	401	F	C1	СНЗ	CF ₃	H	CH (OH) C ₂ H ₅	Н	測定不可
	402	F	Cl	СНЗ	CF ₃	H	CH (OH) C3H7	н	66-67
	403	F	Cl	СНЗ	CF ₃	H	СН (ОН) СЗН7-	i H	Ì
	404	F	Cl	СНЗ	CF ₃	H	$CH(OH)C\equiv CH$	H	143-144
	405	F	Cl	СНЗ	CF ₃	H	CH (OH) CH=CH ₂	, H	87-88
	406	F	Cl	CH ₃	CF ₃	H	CH ₂ SC ₃ H ₇	H ·	1. 5656
	407	F	Cl _	СНЗ	CF ₃	H	$\text{CH}_2\text{SO}_2\text{C}_3\text{H}_7$	H	156-157
	408	F	C1	СНЗ	CF3	H	CH2SC3H7-i	H	
	409	F	C1	CH ₃	CF ₃	H	CH2SO2C3H7-i	Н	125-127
	410	F	Cl	СНЗ	CF ₃	H	CH ₂ SC ₄ H ₉	H	1. 5512
	411	F	Cl	СНЗ	· CF3	H	$\mathrm{CH_2SO_2C_4H_9}$	H	103-104
	412	F	Cl	СНЗ	CF3	H	CH=CH ₂	R	108-109
	413-	F	Cl	CH3	CF3	H	C≡CH	H	
	414	F	C1	CH3	CF_3	H	CH2SO2CH2CF3	Н	
	415	F	Cl	CH3	CF ₃	H	$\neg \triangleleft$	H	
	416	F	Cì	CH ₃	CF_3	H	СН3 00	H ₂ CF ₃	
	417	. F	Cl	СНЗ	CF ₃	H	CH ₃ CO		154-156
	418	F	Cl	CH3	CF ₃	H	СН3 СО	\mapsto	116-117
	419	F	Cl	СНЗ	CF3	H	CH ₃ CO	C3H7	124-126
	420	F	Cl	CH3	CF3	H	сн ₃ со	C3H7-i	1. 5344
	421	F	Cl	CH ₃	CF ₃	H	сн3 со	C4H9	104-105

(表14)

化合物	X	Y	Rl	_R 2	R3	R ⁴	R5	融点(℃)
番号						<u>:</u> _		屈折率 nD
422	F	Cl	СНЗ	CF3	H	СН3	COCH ₂ Br	1. 5650
423	F	Cl	СНЗ	CF ₃	H	СН3	CH ₂ C1	177-179
424	F	Cl	СН3	CF ₃	H	CH3	СН (СН ₃) ОН	1. 5345
425	F	Cl	СН3	CF3	H	СН3	$C(C_3H_7) = NOCH_3$	1. 5397
426	F	C1	СНЗ	CF_3	H	CH3	C (CH ₂ C1) = NOH	107-109
427	F	Cl	СН3	CF3	H	CH3	осн3	57-60
428	F	Cl	CH3	CF3	H	СНЗ	ос ₂ н ₅	
429	F	Cl	СНЗ	CF ₃	H	СНЗ	ос ₃ н ₇	
430	F	Cl	СН3	\mathtt{CF}_3	H	CH ₃	0С ₃ Н ₇ -і	
431	F	Cl	СНЗ	CF ₃	H	CH ₃	CH (CH ₃) OCH ₃	
432	F	Cl	СНЗ	CF3	H	С ₂ Н ₅	соос ₂ н ₅	133-135
433	F	C1	CH ₃	CF_3	H	C_2H_5	C00C3H7	124-125
434	F	C1	CH3	CF ₃	H	С ₂ Н ₅	соос ₄ н ₉	
435	F	C1	СНЗ	CF ₃	H	С2Н5	COC3H7	1. 5420
436	F	Cl	СН3	\mathtt{CF}_3	H	C ₂ H ₅	∞	128-129
437	F	Cl	СНЗ	CF ₃	H	C ₂ H ₅	СН (СН ₃) ОН	
438	F	Cl	CH3	CF3	H	C ₂ H ₅	СН (СН ₃) ОСН ₃	
439	F	Cl	СНЗ	CF3	H	С3Н7	СООН	147-148
440	F	Cl	снз	CF ₃	H	С ₃ н ₇	CONH ₂	187-188
441	F	Cl	СНЗ	CF3	H	C3H7	соинсн ₃	198-200
442	F	Cl	снз	CF ₃	H	С3Н7	CON (CH ₃) ₂	1. 5336
443	F	Cl	СН3	CF ₃	H	C ₃ H ₇	COOC3H7-i	1. 5290
444	F	Cl	СНЗ	CF ₃	H	C3H7	сос ₂ н ₅	1. 5441
445	F	Cl	CH ₃	CF ₃	H	С3Н7	СОС3Н7	1. 5401
446	F	Cl	CH ₃	CF3	H	C3H7	COC3H7-i	測定不可
447	F	C1	снз	CF3	H	C3H7	COCH ₂ C1	129-130
448	F	Cl	СН3	CF3	Н.	С3Н7	COCH ₂ Br	110-111
449	F	Cl	СНЗ	CF_3	H	C ₃ H ₇	сн ₂ он	1. 5255
450	- F	Cl	CH3	CF ₃	H	С ₃ н ₇	СНО	123-124
451	F	Cl	СНЗ	CF ₃	H	C3H7 C(CH3) =NOC3H7-i	1. 5304
452	F	C1	СНЗ	CF ₃	H	C3H7 C	CH ₃) =NOCH ₃	1. 5332
453	F	Cl	СНЗ	CF3	H	сосн3	СНЗ	117-118
454	F	Cl	СНЗ	CF ₃	H	сос ₂ н ₅	СНЗ	119-120

(表15)

化合物	Х	Y	R1	R ²	R3	R ⁴	R ⁵	融点(℃)
番号						•		屈折率 n _D 20
455	F	Cl	СНЗ	CF ₃	Н	COC ₃ H ₇	СНЗ	1. 5498
456	F	Cl	CH3	CF3	H	СН (ОН) СН _З	СНЗ	130-131
457	F	Cl	CH ₃	CF ₃	H	сн (он) с ₂ н ₅	CH ₃	141-142
458	F	Cl	СНЗ	CF3	H	СН (ОН) С _З Н ₇	CH3	1. 5392
459	F	Cl	СНЗ	CF3	H	сосн3	C ₂ H ₅	170-171
460	F	Cl	CH3	CF3	H	coc ₂ H ₅	C ₂ H ₅	測定不可
461	F	C1	СНз	CF ₃	H	COC ₃ H ₇	C ₂ H ₅	116-117
462	F	Cl	CH3	CF ₃	H	СН (ОН) СН _З	C ₂ H ₅	122-123
463	F	C1	CH ₃	CF ₃	H	СН (ОН) С ₂ Н ₅	C ₂ H ₅	測定不可
464	F	Cl	CH3	CF ₃	H	СН (ОН) С _З Н ₇	C ₂ H ₅	測定不可
465	F	F	CH3	CF_3	H	сн3 с (сн	3)=NOCH3	114-116
466	H	Cl	CH3	CF3	Н	С ₂ Н ₅	NHCOCH3	156-158
467	F	Cl	СН3	CF ₃	H	CH (CH ₃) SCH ₃	H	1. 5394
468	F	Cl	СНЗ	CF3	H	CH (CH ₃) SOCH ₃	H	84-86
469	F	Cl	CH ₃	CF3	H	СН (СН ₃) SO ₂ CH ₃	H	182-183
470	F	Cl	CH_3	CF ₃	H	СН (СН ₃) SC ₂ Н ₅	H	1. 5540 `
471	F	Cl	СН3	CF ₃	H	сн (сн ₃) soc ₂ н ₅	Н	53-54
472	F	Cl	$ ext{CH}_3$	CF_3	H	СН (СН3) SO ₂ C ₂ H	5 H	73-75
473	F	C1	CH ₃	CF3	H	СН (СН ₃) SC ₃ H ₇	Н	1. 5325
474	F	Cl	CH ₃	CF ₃	H	СН (СН3) SOC3H7	H	1. 5585
475	F	Cl	СНЗ	CF3	H	СН (СН3) SO ₂ C ₃ H	7 . H	67-68
476	F	Cl	CH ₃	CF_3	H	СН (СН ₃) SC ₃ H ₇ -	i H	1. 5461
477	F	Cl	CH_3	CF ₃	H	CH (CH ₃) SOC ₃ H ₇	-i . H	1. 5470
478	F	Cl	CH3	CF3	H	СН (СН ₃) SO ₂ C ₃ H	7-i H	159-161
479·	F	Cl	CH ₃	CF3	H	CH (CH ₃) SC ₄ H ₉	H	1. 5435
480	F	Cl	CH3	CF ₃	H	CH (CH3) SOC4H9	H	1. 5472
481	F	Cl	CH ₃	CF ₃	H	CH (CH ₃) SO ₂ C ₄ H	9 H	125-126
482	F	Cl	CH_3	CF ₃	H	$CH(C_2H_5)SCH_3$	Н	1. 5540
483	- F	Cl	CH ₃	CF3	H	CH (C2H5) SOCH3	Н	83-85
484	F	Cl	CH3	CF ₃	H	CH (C2H5) SO2CH	з н	83-86
485	F	Cl	CH ₃	CF3	H	$CH\left(C_{2}H_{5}\right)SC_{2}H_{5}$	н	1. 5562
486	F	Cl	CH ₃	CF3	H	CH (C2H5) SOC2H	5 Н	1. 5231
487	F	Cl	СН3	CF ₃	Н	СН (C ₂ H ₅) SO ₂ C ₂	Н ₅ н	178-179

PCT/JP97/00320

(表16)

	化合物	X	Y	Rl	R ²	RS	3 R4	R5	融点(℃)
	番号								屈折率 n _D 20
	488	F	Cl	СНЗ	CF3	Н	CH (C2H5) SC3H7	Н	
	489	F	Cl	CH3	CF3	H	CH (C2H5) SOC3H7	H	
	490	F	Cl	CH3	CF ₃	H	CH (C2H5) SO2C3H7	H	
	491	F	Cl	СНЗ	CF ₃	H	CH (C2H5) SC3H7-i	H	
	492	F	Cl	СНЗ	CF ₃	H	CH (C2H5) SOC3H7-i	H	
	493	F	C1	CH3	CF ₃	H	CH (C2H5) SO2C3H7-i	H	
	494	F	Cl	СНЗ	CF ₃	H	CH (C3H7) SCH3	Н	
	495	F	Cl	СНЗ	CF3	H	СН (С3Н7) SOCH3	H	
	496	F	Cl	CH3	CF3	H	CH (C3H7) SO2CH3	H	
	497	F	Cl	CH ₃	CF3	H	CH (C3H7) SC2H5	Н	
	498	F	Cl	СНЗ	CF3	H.	CH (C3H7) SOC2H5	H	
	499	F	Cl	СНЗ	CF ₃	H	CH (C3H7) SO2C2H5	H	
	500	F	Cl	CH3	CF3	H	CH(C3H7-i)SCH3	H	
	501	F	Cl	СНЗ	CF3	H	CH(C3H7-i)SOCH3	H	1. 5281
	502	F	Cl	СНЗ	CF3	H	CH(C3H7-i)SO2CH3	H	149-150
	503	F	Cl	СНЗ	CF ₃	H	CH(C ₃ H ₇ -i)SC ₂ H ₅	H	
	504	F	Cl	CH ₃	CF ₃	H	$CH(C_3H_7-i)SOC_2H_5$	H	1. 5404
	505	F	Cl	СНЗ	CF ₃	H	$CH(C_3H_7-i)SO_2C_2H_5$	H	1. 5390
	506	F	Cl	СНЗ	CF_3	H	C (CH ₃) ₂ SCH ₃	H	
1	507	F	C1	СНЗ	CF3	H	С (СН ₃) ₂ SOCH ₃	H	
	508	F	Cl	СНЗ	CF3	H	С (СН ₃) ₂ SO ₂ CН ₃	H	227-230
	509	F	Cl	CH3	CF ₃	H	С (СН ₃) (С ₂ Н ₅) SOCH ₃	H	
1	510	F	Cl	CH3	CF ₃	H	$C(CH_3)(C_2H_5)SO_2CH_3$	H	85-87
	511	F	Cl	СНЗ	CF3	H	C (CH3) (C3H7) SO2CH3	H	92-93
	512	F	Cl	СНЗ	CF3	H	C (CH ₃) (CH ₂ OCH ₃) SOCH ₃	H	
	513	F	Cl	CH ₃	CF ₃	H	C(CH ₃) (CH ₂ OCH ₃) SO ₂ CH ₃	H	1. 5365
	514	F	Cl	CH ₃	GF_3	H	$C(CH_3)(CH_2SCH_3)SO_2CH_3$	H	
	515	F	Cl	CH ₃	GF_3	H	CH (CH3) SCF3	H	測定不可
1	516	F	Cl	CH3	CF3	H	CH (CH ₃) SOCF ₃	H	
1	517	F	Cì	CH3	CF ₃	H	CH (CH ₃) SO ₂ CF ₃	Н	
1	518	F	Cl	СНЗ	CF_3	H	CH (CH ₃) SCHF ₂	H	
	519	F	Cl	СНЗ	CF ₃	H	CH (CH3) SOCHF2	Н	
:	520	F	Cl	СНЗ	CF3	H	CH (CH ₃) SO ₂ CHF ₂	H	

(表17)

化合物	Х	Y.	Rl	R ²	R3	R ⁴	R5	融点(℃)
番号								屈折率 n _D 20
521	F	Cl	СНЗ	CF ₃	H	CH2SCH2COOCH3	H	1. 5390
522	F	C1	СНЗ	CF3	H	CH2SOCH2COOCH3	H	
523	F	Cl	СНЗ	CF_3	H	CH2SO2CH2COOCH3	H	
524	F	Cl	СНЗ	CF ₃	H	СН (СН ₃) SCH ₂ COOCH ₃	H	1. 5411
525	F	Cl	CH3	CF3	H	CH (CH3) SC3H6C1	H	
526	F	Cl	СНЗ	CF3	H	CH (CH3) SOC3H6C1	H	
527	F	Cl	СНЗ	CF3	H	CH (CH ₃) SC ₂ H ₄ COOCH ₃	H	
528	F	Cl	CH3	CF ₃	H	CH (CH3) SO2C2H4COOCH3	H	
529	F	Cl	CH ₃	CF3	H	CH (CH ₃) SCH ₂ CONHCH ₃	H	
530	F	Cl	CH3	CF3	H	CH (CH3) SO2CH2CONHCH3	Н	
531	F	Cl	СНЗ	CF3	H	CH (CH $_3$) SCH $_2$ CON (CH $_3$) $_2$	H	
532	F	Cl	СНЗ	CF ₃	H	$CH(CH_3)SO_2CH_2CON(CH_3){}_2$	Н	
533	F	Cl	CH ₃	CF3	H	CH (CH ₃) SCH ₂ COOH	H	:
534	F	Cl	СНЗ	CF_3	H	СН (СН3) SOCH2COOH	Н	
535	F	Cl	СНЗ	CF3	H	СН (СН3) SO ₂ CH ₂ COOH	н	
536	F	Cl	СНЗ	CF ₃	H	CH (CH3) S-<	H	
537	F	Cl	СН3	CF ₃	H	CH (CH3) SO—<	H .	
538	F	Cl	CH3	CF ₃	H	CH (CH ₃) SO ₂ —	H	
539	F	Cl	СНЗ	CF ₃	H	CH ₂ SOCH ₃	Н	127-129
540	F	Cl	СНЗ	CF3	H	CH (CH ₃) SH	H	
541	F	Cl	СНЗ	CF3	H	CH (CH ₃) SCOCH ₃	Н	
542	F	Cl	CH3	CF ₃	H	CH (CH $_3$) SCON (CH $_3$) $_2$	Н	
543	F	Cl	CH ₃	CF ₃	H	CH (CH ₃) SCONTICH ₃	Н	
544	F	Cl	CH ₃	CF3	H	CH (CH $_3$) SCSN (CH $_3$) $_2$	H	
545 ⁻	F	Cl	CH ₃	CF3	H	CH (CH ₃) SCSNHCH ₃	H	
546	F	F	CH ₃	CF3	H	CH (CH3) Br	H	1. 5389
547	F	F	CH3	CF3	H	CH (CH ₃) SCF ₃	Н	1. 5140
548	F	F	CH3	CF ₃	H	CH (CH ₃) SCN	H	1. 5450
549	. F	Cl	CH3	CF3	H	C (CH ₃) ₂ OH	Н.	160-161
550	F	F	CH ₃	CF3	H	СН (СН ₃) SO ₂ CF ₃	н	
551	F	Cl	СН3	CF3	H	CH (CH ₃) NHSO ₂ CF ₃	H	測定不可
552	F	Cl	СНЗ	CF3	H	CH (CH ₂ C1) SCH ₃	н	
553	F	Cl	CH ₃	CF3	H	CH (CH ₂ C1) SOCH ₃	н	

(表18)

化合物	X	Y	Rl	R ²	R3	R ⁴	R5	融点(℃)
番号						<u> </u>		屈折率 n _D 20
554	F	Cl	СНЗ	CF3	H	CH (CH ₂ C1) SO ₂ CH ₃	H	
555	F	Cl	СНЗ	CF ₃	H	CH (CH=CH ₂) SCH ₃	H	
556	F	Cl	СНЗ	CF ₃	H	CH (CH=CH ₂) SOCH ₃	H	
557	F	Cl	СНЗ	CF3	H	CH (CH=CH $_2$) SO_2 CH $_3$	H	
558	F	Cl	СНЗ	CF_3	H	CH (C \equiv CH) SCH ₃	H	
559	F	Cl	СНЗ	CF ₃	H	CH (C≡CH) SOCH ₃	H	
560	·F	Cl	СНЗ	CF3	H	$CH(C \equiv CH)SO_2CH_3$	H	
561	F	Cl	СНЗ	CF3	H	CH (- √) SCH ₃	H	
562	F	Cl	CH3	CF3	H	$CH() SOCH_3$	H	
563	F	Cl	СНЗ	CF3	H	CH (-<<) SO ₂ CH ₃	H	
564	F	Cl	сн3	CF3	H	$ \bigcirc_{\mathrm{SO_2CH_3}}$	H	
565	F	Cl	CH3	CF3	H	CH (CH ₂ OCH ₃) SCH ₃	H	
566	F	Cl	CH ₃	CF ₃	Н	СН (СН ₂ ОСН ₃) SO ₂ CH ₃	H	
567	F	Cl	CH ₃	CF ₃	H	CH (CH ₂ SCH ₃) SCH ₃	Н	
568	F	Cl	CH ₃	CF ₃	H	CH (CF ₃) SCH ₃	Н	
569	F	Cl	CH ₃	CF ₃	H	CH (CF ₃) SOCH ₃	Н	
570	F	Cl	CH ₃	CF ₃	H	CH (CF3) SO2CH3	н	
571	F	Cl	CH ₃	CF ₃	H	CH (CH ₃) NHCH ₃	н	測定不可
572	F	Cl	CH ₃	CF ₃	H	CH (CH3) N (CH3) 2	Н	1. 5341
573	F	Cl	СНЗ	CF ₃	H	CH (CH3) NHSO2CF3	Н	
574	F	Cl	CH3	CF3	H	CH (CH ₃) NHSO ₂ CH ₃	H	
575	F	Cl	СНЗ	CF ₃	H	CH (CH ₃) NHCOCH ₃	н	
576	F	Cl	СНЗ	CF3	H	CH (CH3) NHCOCH2C1	Н	
577	F	Cl	CH3	CF_3	H	CH (CH ₃) SCN	н	60-63
578	F	Cl	CH3	CF ₃	H	CH (← <) OH	н	113-115
579	F	Cl	CH ₃	CF_3	H	CH (CH ₂ C1) OH	н	
580	F	Cl	CH ₃	CF_3	H	CH(CH ₂ Br)OH	н	
581	- F	Cl	CH3	CF ₃	H	CH (CF ₃) OH	н	
582	F	Cl	СНЗ	CF ₃	H	СН (СН ₂ ОСН ₃) ОН	н	
583	F	Cl	СНЗ	CF ₃	H	СН (СН₂SCH₃) ОН	н	
584	F	Cl	СНЗ	CF_3	H	CH (CH ₃) OCH ₃	н	120-121
585	F	Cl	CH ₃	CF3	H	CH (CH ₃) OC ₂ H ₅	н	1. 5080

(表19)

化合物	λ	Y	R ¹	R ²	R3	R ⁴	R ⁵	融点(℃)。
番号								配折率 n _D
586	F	Cl	СН3	CF ₃	H	СН (СН3) ОС3Н7	Н	1. 5241
587	F	Cl	CH ₃	CF ₃	H	CH (CH ₃) OCHF ₂	H	
588	F	Cl	CH ₃	CF ₃	H	CH (CH ₃) OCH ₂ —<	H	
589	F	Cl	CH ₃	CF ₃	H	СН (СН ₃) ОСН ₂ СООСН ₃	Н	ļ
590	F	Cl	CH ₃	CF ₃	H	CH (CH ₃) OCH ₂ CON (CH ₃) ₂	Н	
591	F	Cl	CH ₃	CF ₃	H	СН (СН3) ОСОСН3	Н	1. 5251
592	F	Cl	CH ₃	CF3	H	CH (CH3) OCON (CH3) 2	H	1. 5937
593	F	Cl	СНЗ	CF3	H	CH (CH3) OCSN (CH3) 2	H	
594	F.	Cl	CH ₃	CF ₃	H	CH (CH ₃) OCONHCH ₃	H	
595	F	Cl	СН3	CF ₃	H	CH (CH ₃) OCSNHCH ₃	н	
596	F	Cl	CH3	CF ₃	H	CH (CH ₃) NH ₂	н	
597	F	Cl	CH3	CF3	H	CH (CH ₃) CN	Н	
598	F	Cl	СНЗ	CF_3	H	CH (CH ₃) CONH ₂	н	
599	F	Cl	СНЗ	CF ₃	H	CH (CH ₃) OCH ₂ OCH ₃	н	
600	F	Cl	СНЗ	CF ₃	H	СН (СН ₃) ОСН ₂ SCH ₃	H	
601	F	Cl	CH3	CF ₃	H	COCH=CH ₂	H	
602	F	Cl	СНЗ	CF3	H	COC≡CH	• н	
603	F	Cl	СНЗ	CF ₃	H	COCH ₂ OCH ₃	H	
604	F	Cl	СНЗ	CF ₃	H	COCH ₂ SCH ₃	н	
605	F	Cl	СНЗ	CF ₃	H	C5H11	H	1. 5397
606	F	Cl	СНЗ	CF ₃	H	$\stackrel{\sim}{\sim}$	Н	109-111
607	F	Cl	СНЗ	CF ₃	H	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Н	1. 5389
608	F	Cl	СНЗ	CF ₃	H	CH ₃	H	
609	F	Cl	CH ₃	CF ₃	H	CH ₃ CH ₃	H	
610	- F	Cl	СНЗ	CF ₃	H	сн=снсн3	н	149-151
611	F	Cl	СНЗ	CF ₃	H	$C(CH_3)=CH_2$	H	155-156
612	F	Cl	CH3	CF3	H	$C(CH_3) = CHCH_3$	Н	153-155
613	F	Cl	СНЗ	CF_3	H	$C(C_2H_5)=CH_2$	н [
614	F	Cl	СНЗ	CF ₃	H	$C(C_2H_5) = CHCH_3$	н	

(表20)

化合物	λ X	Υ	Rl	R ²	R ³	. R4	_R 5	融点(°C) ₂₀
番号								屈折率 n _D
615	F	Cl	СНЗ	CF ₃	Н	C (CH3) =C	(СН3)2 Н	<u> </u>
616	F	Cl	СНЗ	CF ₃	H	CH=C (CH ₃)	2 H	
617	F	Cl	CH ₃	CF_3	H	CH ₃	CH ₂ Br	181-183
618	F	Cl	CH3	CF_3	H	СН3	CH ₂ CN	224-226
619	F	Cl	СНЗ	CF_3	H	СН3	CH2CONH2	127-129
620	F	Cl	СНЗ	CF3	H	СНЗ	OCHF ₂	
621	F	Cl	СНЗ	CF3	H	снз	OCH2CH=CH2	
622	F	Cl	CH3	CF3	H	CH3	$OCH_2C \equiv CH$	1. 5331
623	F	Cl	CH3	CF ₃	H	СНЗ	осн ₂ соосн ₃	53-55
624	F	C1	CH3	CF3	H	CH ₃	осн (сн ₃) соосн ₃	71-73
625	F	CI	CH3	CF3	H	CH3	SCHF ₂	
626	F	Cl	CH_3	CF3	H	CH ₃	SCH2CH=CH2	
627	F	Cl	СНЗ	CF3	H	CH3	$SCH_2C \equiv CH$	
628	F	Cl	CH3	CF3	H	СНЗ	SCH2COOC2H5	
629	F	Cl	СНЗ	CF ₃	H	сн3	SCH (CH3) COOCH3	
630	F	Cl	СНЗ	CF3	H	CH ₃	co	1. 5275
631	F	Cl	CH3	CF3	H	СН3	CSCH ₃	1. 5967
632	F	Cl	CH3	CF ₃	H	CH ₃	соосн ₂ —<	1. 5331
633	F	Cl	СНЗ	CF3	H	СНЗ	COOCH2-(_)-OCH3	
634	F	Cl	СНЗ	CF3	H	СН3	COOCH ₂ CH ₂ F	109-110
635	F	Cl	СНЗ	CF ₃	H	CH3	CH=CH ₂	58-60
636	F	CI	CH ₃	CF3	H	СНЗ	сн=снсн ₃	1. 5409
637	F	Cl	СНЗ	CF3	H	СНЗ	\prec_0	
638	F	Cl	CH ₃	CF3	H	CH3	-<0_CH3	169-170
639	F	Cl	CH ₃	CF ₃	H	C ₂ H ₅	COCH ₂ Br	158-159
640	F	Cl.	CH3	CF3	H	C3H7	соос ₂ н ₅	1. 5140
641	- F	Cl	CH ₃	CF ₃	H	C ₃ H ₇	соос ₅ н ₁₁	1. 5209
642	F	Cl	CH ₃	CF3	H	C3H7	COOCH2-	1. 5485
643	F	Cl	CH ₃	CF ₃	H	C4H9	СНО	128-130
644	F	Cl	CH_3	CF ₃	H	C ₄ H ₉	соосн3	1. 5410
645	F	Cl	СНЗ	CF ₃	H	C4H9	СООН	1. 5342

(表21)

化合物	X	Ÿ	R ¹	R ²	R3	R ⁴	Ŗ5	融点(℃) 20
番号								屈折率 ⁿ D
646	F	Cl	СНЗ	CF ₃	H	C4H9-i	СНО	54-55
647	F	Cl	CH ₃	CF3	H	C4H9-i	соосн3	62-63
648	F	Cl	CH ₃	CF ₃	H	C4H9-i	COOH.	208-209
649	F	Cl	СНЗ	CF ₃	H	С ₅ н ₁₁	СНО	測定不可
650	F	Cl	СНЗ	CF3	H	С ₅ н ₁₁	соосн3	1. 5271
651	F	Cl	СНЗ	CF3	H	С ₅ H ₁₁	СООН	1. 5156
652	F	Cl	СНЗ	CF3	H	CH ₂ Br	CH ₂ Br	225-227
653	F	Cl	СНЗ	CF ₃	H	CH ₂ Br	CHBr ₂	146-147
654	F	Cl	СНЗ	CF ₃	H	NO_2	СНЗ	146-148
655	F	Cl	CH3	CF3	H	H	соосн3	95-97
6 56	F	Cl	CH ₃	CF_3	H	COCH3	соосн3	91-93
657	F	Cl	CH3	CF3	H	СН (СН ₃) ОН	соосн3	95-97
658	F	Cl	СНЗ	CF3	H	СН (СН=СН ₂) ОН	COOCH3	142~145
659	F	Cl	CH3	CF ₃	H	CH ₂ Br	COOC ₂ H ₅	1. 5535
660	F	Cl	CH3	CF3	H	CH ₂ SCH ₃	соос ₂ н ₅	103-105
661	F	Cl	СНЗ	CF_3	H	СH ₂ SO ₂ СH ₃	соос ₂ н ₅	73-75
662	F	Cl	CH ₃	CF3	H	С (СН3) 2502СН3	соос ₂ н ₅	182-183
663	F	Cl	СНЗ	CF ₃	H	сн ₂ sc ₂ н ₅	соос ₂ н ₅	1. 5481
664	F	Cl	СНЗ	CF3	H	$\mathrm{CH}_2\mathrm{SO}_2\mathrm{C}_2\mathrm{H}_5$	COOC ₂ H ₅	57-59
665	F	Cl	CH ₃	CF ₃	H	CHB _{r2}	COOC ₂ H ₅	112-114
666	F	Cl	СНЗ	CF3	H	СНО	COOC ₂ H ₅	測定不可
667	F	Cl	CH3	GF_3	H	сн (сн 3) он	COOC ₂ H ₅	1. 5378
668	F	Cl	СНЗ	CF3	H	сосн3	соос ₂ н ₅	1. 5466
669	F	Cl	CH_3	CF ₃	H	CH (CH ₃) Br	COOC ₂ H ₅	1. 5300
670	F	Cl	CH3	CF_3	H	CH (CH3) C1	COOC ₂ H ₅	測定不可
671	F	Cl	CH3	CF3	H	СН (СН ₃) СМ	COOC ₂ H ₅	1. 5348
672	F	Cl	CH3	CF_3	H	H	COOC ₂ H ₅	1. 5468
673	F	Cl	CH3	CF3	H	CH ₂ C1	CH ₂ C1	202-203
674	·F	Cl	СНЗ	CF ₃	H	CH ₂ SCH ₃	-	115-116
675	F	Cl	CH ₃	CF_3	H	CH ₂ SO ₂ CH ₃	СH ₂ SO ₂ CH ₃	169-171
676	F	F	CH ₃	CF3	H	сосн3	H	204-205
677	F	F	СНЗ	CF_3	H	COC ₂ H ₅	H	136-137
678	F	F	CH ₃	CF_3	H	CH (CH ₃) OCH	3 H	1. 5220

(表22)

化合物	X K	<u> </u>	Rl	R ²	R3	R ⁴	_R 5	融点(℃)
番号	1							展折率 n _D
679	F	F	СНЗ	CF ₃	H	CH (CH ₃) OC ₂ H ₅	Н	
680	F	F	СНЗ	CF ₃	H	CH (C ₂ H ₅) OH	Н	137-138
681	F	F	CH ₃	CF ₃	H	СН (СН=СН ₂) ОН	Н	1. 5090
682	F	F	CH ₃	CF ₃	H	СН (СН ₃) SCH ₃	H	1. 5415
683	F	F	СНЗ	CF3	H	СН (СН ₃) SOCH ₃	H	
684	F	F	СНЗ	CF3	H	CH (CH ₃) SO ₂ CH ₃	H	79-80
685	F	F	CH3	CF3	H	C (CH ₃) ₂ SO ₂ CH ₃	H	108-111
686	F	F	СНЗ	CF ₃	H	CH (CH ₃) SC ₂ H ₅	H	1. 5345
687	F	F	СНЗ	CF ₃	H	CH (CH ₃) SOC ₂ H ₅	н -	
688	F	F	CH ₃	CF3	H	СН (СН ₃) SO ₂ C ₂ H ₅	Н	72-73
689	F	F	СНЗ	CF3	H	СН (С ₂ Н ₅) SCН ₃	H	
690	F	F	CH ₃	CF ₃	H	СН (С ₂ Н ₅) SOCН ₃	Н	1. 5251
691	F	F	CH ₃	CF ₃	H,	СН (С ₂ Н ₅) SO ₂ CН ₃	H	1. 5170
692	F	F	CH3	CF3	H	CH (C_2H_5) SC_2H_5	H	1. 5339
693	F	F	СНЗ	CF ₃	H	CH (C ₂ H ₅) SOC ₂ H ₅	Н	1. 5325
694	F	F	СНЗ	CF3	H	СН (C ₂ H ₅) SO ₂ C ₂ H ₅	H	1. 5250
695	F	F	CH ₃	CF ₃	H	CH (CH3) CN	H	
696	F	F	СНЗ	CF ₃	Н,	$\mathrm{CH}(\mathrm{CH}_3)\mathrm{CONH}_2$	Н	
697	F	F	CH3	CF3	H	CH (CH ₃) SH	н	
698	Cl	Cl	CH3	CF_3	H	CH ₃	H ·	136-137
699	Cl	Cl	СНЗ	CF ₃	H	С ₂ Н ₅	H	148-149
700	Cı	C1	CH ₃	CF3	H	C3H7	H	114-115
701	Cl	Cl	CH3	CF3	H	C3H7-i	H	1. 5435
702	Cl	Cl	CH3	CF3	H	CH ₃	соснз	1. 5542
703·	Cl	C1	CH ₃	CF ₃	H	C ₂ H ₅	сосн3	1. 5495
704	Cl	Cl	CH ₃	CF3	H	Сзн7	соснз	1. 5487
705	F	Br	CH ₃	CF3	H	H	H	137-138
706	F	Br	CH3	GF_3	H	CH ₃	Н	182-184
707	. F	Br	СН3	CF3	H	С ₂ Н ₅	н	145-147
708	F	Br	СНЗ	CF ₃	H	C ₃ H ₇	н	1. 5552
709	F	Br .	СНЗ	CF_3	H	сосн3	н	187-189
710	F	Br	СНЗ	CF ₃	H	coc ₂ H ₅	Н	124-125
711	F	Br	СНЗ	CF ₃	H	СН (СН ₃) ОН	Н	144-146

(表23)

化合物	X	Y	Rl	R ²	R ³	R ⁴	R ⁵	融点(℃)
番号								屈折率 ^{n D}
712	F	Br	СНЗ	CF ₃	Н	сн (с ₂ н ₅) он	Н	1. 5420
713	F	Br	СНЗ	CF ₃	H	СН (СН ₃) ОСН ₃	H	1. 5322
714	F	Br	CH3	CF3	H	СН (СН ₃) ОС ₂ Н ₅	Н	
715	F	Br	СНЗ	CF3	H	СН (СН3) SCН3	н	
716	F	Br	СНЗ	CF3	H	СН (СН ₃) SOCH ₃	н	88-90
717	F	Br	СНЗ	CF3	H	СН (СН ₃) SO ₂ СН ₃	H	107-109
718	F	Br	СНЗ	CF ₃	H	СН (СН ₃) SC ₂ Н ₅	Н	
719	F	Br	СНЗ	CF ₃	H	СН (СН ₃) SOC ₂ Н ₅	Н	1. 5561
720	F	Br	CH3	CF3	H	СН (СН ₃) SO ₂ C ₂ H ₅	H	1. 5382
721	F	Br	CH ₃	CF ₃	H	$\mathrm{CH}\left(\mathrm{C}_{2}\mathrm{H}_{5}\right)\mathrm{SCH}_{3}$	н	
722	F	Br	CH3	CF ₃	H	СН (С ₂ Н ₅) SOCН ₃	н	
723	F	Br	CH3	CF ₃	H	СН (С ₂ Н ₅) SO ₂ CH ₃	н	
724	F	Br	CH3	CF ₃	H	CH3	соснз	1. 5500
725	F	Br	СНЗ	CF3	H	С ₂ Н ₅	сосн3	1. 5460
726	F	Br	CH ₃	CF3	H -	C3H7	COCH3	1. 5408
727	F	H	CH ₃	CF3	H	С ₂ Н ₅	H	129-130
728	F	Cl	NH ₂	CF3	H	Н	н	
729	F	Cl	NH ₂	CF3	H	СН3	н	
730	F	Cl	NH_2	CF ₃	H	С ₂ Н ₅	H	145-147
731	F	Cl	NH ₂	CF3	H	С ₃ н ₇	н	
732	F	Cl	NH ₂	CF ₃	H	СН (СН3) ОН	Н	
733	F	Cl	NH ₂	CF ₃	H	СН (СН ₃) SСН ₃	Н	-
734	F	Cl	NH ₂	CF ₃	H	CH (CH ₃) SO ₂ CH ₃	Н	
735	F	C1	NH ₂	CF3	H	${\rm CH}({\rm C}_2{\rm H}_5){\rm SCH}_3$	н	
736	F	C1	NH_2	CF ₃	H .	СН (С₂Н₅) SO₂CН 3	H	
737	F	Cl	NH ₂	CF3	H	СН (СН ₃) ОСН ₃	H	
738	F	Cl	NH ₂	CF3	H	сосн3	H	
739	F	F	NH ₂	· CF ₃	H	H	H	
740	- F	F	NH ₂	CF ₃	H	СН3	H	
741	F	F	NH ₂	CF3	H	С ₂ н ₅	H	
742	F	F	NH ₂	CF3	H	С ₃ н ₇	H	
743	F	F	NH ₂	CF3	H	COCH ₃	Н	
744	F	F	NH ₂	CF3	H	СН (СН3) ОН	H	

(表24)

化合物	х	Y	R ¹	R ²	R3	R4	_R 5	B4 = (9C)
番号	^	•	N-	N-	K-	ĸ-	κo	融点(℃) 屈折率 ⁿ D
745	F	F	NH ₂	CF ₃	Н	CH (CH ₃) SCH ₃	Н	(出)77年: U
746	F	F	NH ₂	CF ₃	H		H	1
747	F	F	NH ₂	_	Н	CH (CH ₃) SO ₂ CH ₃		
748	F	r F	_	CF ₃		CH (C ₂ H ₅) SCH ₃	H 	ļ
	F		NH2	CF ₃	H 	CH (C ₂ H ₅) SO ₂ CH ₃	Н	
749		F	NH ₂	CF ₃	H	СН (СН ₃) ОСН ₃	H	
750	C1	F	СНЗ	CF3	H	С ₂ Н ₅	H	測定不可
751	F	Cl	CH3	CF3	H	СНЗ	НОНИ	107-109
752	F	Cl	СНЗ	CF3	H	CH(CH ₃)SCH ₂ CF ₃	H	1. 5351
753	F	Cl	СНЗ	CF ₃	H	СН (СН ₃) SOCH ₂ CF ₃	H	73-75
754	F	C1	СНЗ	CF3	H	СН (СН ₃) SO ₂ CH ₂ CF ₃	3 H	128-129
755	F	Cl	CH3	CF ₃	, Н	$CH(C_2H_5)SCH_2CF_3$	H	
756	F	Cl	СНЗ	CF3	H	CH (C_2H_5) SOCH $_2CF_3$	H	
757	F	C1	CH_3	CF ₃	H	СН (С ₂ Н ₅) SO ₂ CH ₂ CF ₃	, H	測定不可
758	F	Cl	CH ₃	CF ₃	H	CH (CH=CH2) SCH2CF3	Н	
759	F	Cl	СНЗ	CF3	H	CH (CH=CH2) SOCH2CF3	Н	
760	F	Cl	СНЗ	CF_3	H	CH (CH=CH ₂) SO ₂ CH ₂ CF	з Н	
761	F	Cl	CH ₃	\mathtt{CF}_3	H	CH ($C \equiv CH$) SCH_2CF_3	H	
762	F	Cl	CH3	CF ₃	H	CH (C \equiv CH) SOCH ₂ CF ₃	н	
763	F	Cl	СНЗ	CF ₃	H	CH ($C \equiv CH$) $SO_2CH_2CF_3$	Н	
764	F	Cl	СНЗ	CF ₃	H	СН (С ₂ Н ₅) ОСН ₃	Н	1. 5158
765	F	C1	CH ₃	CF ₃	H	CH (CH ₃) OCH ₂ CF ₃	н	1. 5165
766	F	Cl	CH ₃	CF ₃	H	CH (CH ₃) OCH ₂ CH ₂ F	H	1. 5312
767	. F	Cl	СНЗ	CF ₃	H	CH (CH=CH ₂) OCH ₂ CF ₃	Н	
768	F	Cl	CH ₃	CF ₃	H	CH (C≡CH) OCH ₂ CF ₃	н	
769	F	C1	CH ₃	CF ₃	H	CH (C2H5) OCH2CF3	H	Ì
770	F	Cl	CH ₃	CF ₃	H	CH (CH3) SCSN (C2H5) 2		1. 5537
771	F	F	CH ₃	CF ₃	H	CH (C ₂ H ₅) OCH ₃	н	1. 5216
772	F	Cl	CH ₃	CF ₃	H	CBr ₂ C ₂ H ₅	I	197-199
	<u> </u>							

次に本発明化合物の一般的製造法について説明する。

製造法1

一般式 [1] で示される化合物中、R 4 がアルキル基、シクロアルキル基又は

置換されていてもよいベンジル基であり、R⁵が水素原子、アルキル基、置換されていてもよいベンジル基又は置換されていてもよいフェニル基である本発明化合物は以下のようにして製造することができる。

(式中、 R^1 、 R^2 、 R^3 、X及びYはそれぞれ前記と同じ意味を表し、Lは脱離基を表し、 R^{12} 及び R^{13} はそれぞれ水素原子、アルキル基又は置換されていてもよいフェニル基を表すか、あるいは R^{12} と R^{13} は互いに連なる炭素環を表し、 R^{14} は水素原子、アルキル基、置換されていてもよいベンジル基又は置換されていてもよいフェニル基を表す。)

化合物(A-1)とプロパルギルアルコール誘導体とをアゾ化合物及びトリフェニルホスフィンの存在下で反応させる公知の方法(シンセシスSynthesis, 1981, 1-28)によるか、又は脱離基を含んだプロパルギル誘導体とを塩基存在下で縮合させる通常の方法により化合物(A-2)を得ることができる。さらに、化合物(A-2)を溶媒中、塩基存在下で環化させることにより化合物(A-3)を製造することができる。

ここで、溶媒としてはトルエン、キシレン、メシチレン等の芳香族炭化水素類、1,4-ジオキサン、テトラヒドロフラン等のエーテル類、N,N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物、キノリン、ピリジン等の芳香族含窒素化合物、N,N-ジエチルアニリン、N,N-ジメチルアニリン等のアニリン誘導体が挙げられる。特に、化合物(A

-2)の閉環反応についてはN、N-ジエチルアニリンが好ましい。さらに、アゾ化合物としてはアゾジカルボン酸ジエチルが好ましい。塩基としてはアルカリ金属又はアルカリ土類金属等の水素化物、水酸化物、炭酸化合物、炭酸水素化合物もしくは有機酸塩、フッ化セシウム、フッ化カリウム等のフッ化金属化合物あるいはトリエチルアミン、1、8-ジアザビシクロ [5.4.0] -7-ウンデセン、ピリジン等の有機塩基が挙げられる。反応温度は氷温から溶媒の還流温度までで実施できる。

製造法2

一般式 [1] で示される化合物中、 R^1 が水素原子である本発明化合物(B-7)及び本発明化合物(C-3)は以下のようにして製造することができる。

(式中、R 2 、R 3 、R 4 、R 5 、R 12 、R 13 、R 14 、X及びYはそれぞれ前記と同じ意味を表し、R 15 はアルキル基、置換されていてもよいフェニル

基又は置換されていてもよいベンジル基を表し、PNはモノもしくはジアシルアミノ基、モノもしくはジハロアルキルカルボニルアミノ基、モノもしくはジアルキルスルホニルアミノ基、モノもしくはジハロアルキルスルホニルアミノ基、テトラヒドロフタルイミノ基又はフタルイミノ基等の保護基を持つアミノ基を表す。)

製造法1に述べた方法と同様にして化合物(B-1)を閉環し、化合物(B-2)を製造することができる。次に、化合物(B-2)を、以後に述べるウラシル誘導体の製造法(製造法5〜製造法35)又は叢書(メソーデン・デル・オルガニッシェン・ケミエ、第E6b1巻、第33頁〜第162頁、1994年)に記載された方法等に準じて化合物(B-3)に変換し、これの保護基を取り除きアニリン化合物(B-4)を製造することができる。アニリン化合物(B-4)を通常の方法によりクロロ炭酸フェニル等と反応させることにより、カーバメート化合物(B-5)とした後、化合物(B-6)と反応させて得られる生成物を酸処理することにより目的の化合物(B-7)を製造することができる。

あるいは、化合物(B-2)の保護基を取り除きアニリン化合物(C-1)を製造することができる。アニリン化合物(C-1)にホスゲン等を反応させて化合物(C-2)とするか、又はクロロ炭酸フェニル等を反応させて化合物(C-4)とした後、これらの化合物をそれぞれ化合物(B-6)と反応させて得られる生成物を酸処理することにより目的の化合物(C-3)を製造することができる。

保護基Pを取り除く方法は、塩基存在下での加水分解によるか、あるいは保護 基がテトラヒドロフタルイミノ基又はフタルイミノ基等の場合にはヒドラジンと 反応させることによっても取り除くことができる。

化合物 (B-5) 又は化合物 (C-4) の製造は通常、溶媒中で塩基の存在下、反応温度 0~120℃、好ましくは20~80℃で0.5~24時間反応させる。反応に供される試剤の量は化合物 (B-4) 又は化合物 (C-1) 1当量に対してクロロ炭酸誘導体は1~2当量、塩基は1~1.5当量である。塩基としては、炭酸カリウム、水素化ナトリウム等の無機塩基、トリエチルアミン、1,8-ジアザビシクロ [5.4.0] -7-ウンデセン、ピリジン等の有機塩

基が挙げられる。溶媒としてはジエチルエーテル、テトラヒドロフラン等のエーテル類、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、N、Nージメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物、ベンゼン、トルエン等の芳香族炭化水素類又はそれらの混合物が挙げられる。

化合物(C-2)の製造は通常、溶媒中、反応温度0~120℃、好ましくは20~100℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(C-1)1当量に対してホスゲンは2~10当量、塩基は1~1.5当量である。溶媒としてはクロロホルム、四塩化炭素等のハロゲン化炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類又はそれらの混合物が挙げられる。

化合物(B-5)から化合物(B-7)の製造又は化合物(C-4)から化合物(C-3)の製造は通常、溶媒中で塩基の存在下、反応温度0~150℃、好ましくは20~120℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(B-5)又は化合物(C-4)1当量に対して化合物(B-6)1~10当量、塩基は1~10当量である。塩基としては、水素化カリウム、水素化ナトリウム等の無機塩基、1.8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基が挙げられる。溶媒としてはジエチルエーテル、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、N,N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の疏黄化合物又はそれらの混合物が挙げられる。

化合物(C-2)から化合物(C-3)の製造は通常、溶媒中で塩基の存在下、反応温度0~60℃、好ましくは5~30℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(C-2)1当量に対して化合物(B-6)1~1.5当量、塩基は1~1.5当量である。塩基としては、水素化カリウム、水素化ナトリウム等の無機塩基等が挙げられる。溶媒としてはジエチルエーテル、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、N.N-ジメチルホル

ムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物又は それらの混合物が挙げられる。

原料化合物(B-1)は以下のようにして製造することができる。

(式中、 R^{12} 、 R^{13} 、 R^{14} 、PN、X及びYはそれぞれ前記と同じ意味を

表し、R 16 はアルキル基又は置換されていてもよいベンジル基を表し、X 1 及びY 1 はそれぞれフッ素原子以外のX及びYを表し、Eは塩素原子、臭素原子、ョウ素原子又はメタンスルホニルオキシ基を表す。)

化合物(D-1)又は化合物(D-2)を対応するアルキニルアルコールと塩基存在下で反応させることにより化合物(D-3)を製造することができる。あるいは、化合物(D-1)又は化合物(D-2)を塩基存在下で加水分解することにより化合物(D-9)を製造した後、製造法1に述べた方法に準じて化合物(D-3)を製造することができる。次に、得られた化合物(D-3)を還元することにより化合物(D-4)を製造した後、窒素原子を保護基で保護することにより化合物(B-1)を製造することができる。

また、化合物(D-1)又は化合物(D-2)を対応するアルコールと塩基存在下で反応させるか、あるいは化合物(D-9)を化合物 $R^{16}-E$ と反応させることにより化合物(D-5)を製造することができる。次に、化合物(D-5)を還元することにより化合物(D-6)を製造した後、窒素原子を保護基で保護することにより化合物(D-7)を製造することができる。さらに、化合物(D-7)から R^{16} を取り除き、化合物(D-8)を製造した後、製造法1に述べた方法に準じて化合物(B-1)を製造することができる。

 R^{16} を取り除く方法は、 R^{16} がアルキル基の場合は三臭化ホウ素等の脱アルキル化剤を用い、 R^{16} が置換されてもよいベンジル基の場合は常圧下で水素添加することにより取り除くことができる。

なお、例えばXがフッ素原子でYが塩素原子又は臭素原子である化合物 [(D-1)に相当]は、例えば2,6-ジフルオロアニリンをN-クロロコハク酸イミド(NCS)又はN-ブロモコハク酸イミド(NBS)等のハロゲン化剤によりフェニル環の4位を塩素化又は臭素化した後、例えばメタクロロ過安息香酸等の酸化剤で酸化することにより製造することができる。

例えば X がフッ素原子で Y がシアノ基である化合物 〔(D-1)に相当〕は、 2,6-ジフルオロー4-シアノアニリンを例えばメタクロロ過安息香酸等の酸 化剤で酸化することにより製造することができる。

製造法3

一般式 [1] で示される化合物の中、 R^1 がアルキル基又はハロアルキル基である本発明化合物(E-2)又は本発明化合物(E-3)は以下のようにして製造することができる。

(式中、R 2 、R 3 、R 4 、R 5 、R 12 、R 13 、R 14 、R 15 、E、X及びYはそれぞれ前記と同じ意味を表し、R 17 はアルキル基又はハロアルキル基を表す。)

前記製造法 1 で製造される化合物(A-3)中、 R^1 が水素原子である本発明化合物(B-7)又は前記製造法 2 で製造される本発明化合物(B-7)を化合物 $R^{17}-E$ と反応させるか、あるいは化合物(B-5)と化合物(E-1)と

を製造法2に示した方法に準じて反応させることによって化合物 (E-2) を製造することができる。

また、化合物(C-2)と化合物(E-1)とを製造法 2 に示した方法に準じて反応させることによって化合物(E-3)を製造することができる。

化合物(B-7)から化合物(E-2)の製造は通常、溶媒中で塩基の存在下、反応温度0~100℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(B-7)1当量に対して化合物R¹⁷-Eは1~10当量、塩基は1~1.5当量である。塩基としては、炭酸カリウム、水素化カリウム、水素化ナトリウム等の無機塩基、ナトリウムエトキシド、ナトリウムメトキシド等のアルカリ金属アルコキシド等が挙げられる。溶媒としてはクロロホルム、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、アセトン、メチルイソブチルケトン等のケトン類、酢酸エチル等のエステル類、N.N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物又はそれらの混合物が挙げられる。

製造法4

一般式 [1] で示される化合物の中、 R^1 がアミノ基である本発明化合物(G-1)は以下のようにして製造することができる。

(式中、 R^2 、 R^3 、 R^4 、 R^5 、X及びYはそれぞれ前記と同じ意味を表し、Gはメタンスルホニルオキシ基、パラトルエンスルホニルオキシ基又は2, 4 - ジニトロフェノキシ基を表す。)

前記製造法 1 で製造される化合物(A-3)中、 R^1 が水素原子である本発明化合物(B-7)又は前記製造法 2 で製造される本発明化合物(B-7)を化合物 $G-NH_2$ と反応させることによって化合物(G-1)を製造することができる。

この反応は通常、溶媒中で塩基の存在下、反応温度 0~100℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(B−7)1当量に対して化合物G−NH2は1~10当量、塩基は1~1.5当量である。塩基としては、炭酸カリウム、水素化カリウム、水素化ナトリウム等の無機塩基、ナトリウムエトキシド、ナトリウムメトキシド等のアルカリ金属アルコキシド等が挙げられる。溶媒としてはクロロホルム、四塩化炭素等のハロゲン化炭化水素類、ジェチルエーテル、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、アセトン、メチルイソブチルケトン等のケトン類、酢酸エチル等のエステル類、N.Nージメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物又はそれらの混合物が挙げられる。

製造法5

一般式 [1] で示される化合物中、R 4 がハロアルキル基である本発明化合物は、一般式

(式中、R²、R³、R¹²、R¹³、X及びYはそれぞれ前記と同じ意味を表し、R¹⁸はアミノ基、アルキル基又はハロアルキル基を表し、R¹⁹は水素原子、アルコキシ基、ハロアルコキシ基、置換されていてもよいフェニルスルホニル基、ハロゲン原子、置換されていてもよいフェニル基、ニトロ基、アルコキシ

カルボニル基又は置換されていてもよいベンジル基を表す。)で表される化合物 (I-1)とハロゲン化剤とを反応させることにより、一般式

$$R^{18}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{19}
 R^{12}
 R^{19}
 (式中、R 1 、R 2 、R 3 、R 1 2、R 1 3、R 1 8、R 1 9、X及びYはそれぞれ前記と同じ意味を表し、Aはハロゲン原子を表す。)で示される化合物の混合物として製造することができる。 [但し、化合物(1 - 3)は化合物(1 - 1)のR 1 3が水素原子である場合のみ製造することができ、また、化合物(1 - 4)は化合物(1 - 1)のR 1 2及びR 1 3が共に水素原子である場合のみ製造することができる。]これらの化合物の混合物を単離精製することにより目的化合物を得ることができる。

本反応は溶媒中、触媒の存在下又は非存在下で、反応温度0~150℃、好ましくは30~100℃で0.5~24時間反応させる。反応に供される試剤の量は化合物(I-1)1当量に対してハロゲン化剤は1~10当量であり、触媒は0.01~0.5当量である。ハロゲン化剤としては臭素、塩素等のハロゲン、N-ブロモコハク酸イミド等のN-ハロコハク酸イミド、過臭化ピリジニウム等のピリジン塩等が挙げられる。溶媒としてはクロロホルム、四塩化炭素等のハロゲン化炭化水素類、ギ酸、酢酸等のカルボン酸類、N,N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物等が挙げられる。触媒としては過酸化ベンゾイル、α,α'-アゾビスイソブチロニトリル又はそれらの混合物が挙げられる。

製造法6

一般式[1] で示される化合物中、R⁴がホルミル基である本発明化合物は、

前記製造法 5 で製造される化合物(I-3)で R^{12} が水素原子である化合物を 常法により加水分解することにより製造することができる。

製造法7

一般式 [1] で示される化合物中、R 4 がカルボキシル基である本発明化合物は、前記製造法 5 で製造される化合物(I-4)を加水分解するか、又は前記製造法 6 で製造されるR 4 がホルミル基である本発明化合物を、例えばジョーンズ試薬(三酸化クロム、硫酸及び水の混合溶液;オルガニック・シンセセズ Organic Syntheses col. vol. 1 参照)等の酸化剤で酸化することにより製造することができる。

製造法8

一般式[I]で示される化合物中、 R^4 が水素原子である本発明化合物は、前記製造法7で製造される R^4 がカルボキシル基である本発明化合物を銅触媒存在下で脱炭酸することにより製造することができる。

製造法9

一般式 [1] で示される化合物中、R 4 が基-COR 2 0 である本発明化合物は、前記製造法 8 で製造されるR 4 が水素原子である化合物と対応する酸無水物 (R 2 0 CO) 2 O又は酸ハライドR 2 0 COL 1 とをルイス酸存在下でフリーデルクラフツ反応させることによって製造することができる。(式中、R 2 0 はアルキル基、シクロアルキル基、ハロアルキル基又は置換されていてもよいフェニル基を表し、L 1 は塩素原子、臭素原子又はヨウ素原子を表す。)

また、R 4 が基 - C O R 1 2 である本発明化合物は、前記製造法 5 で製造される化合物(I - 3)でR 1 2 がアルキル基又は置換されていてもよいフェニル基である化合物を製造法 6 と同様に加水分解することによって製造することができる。

製造法10

一般式[1]で示される化合物中、R⁴がヒドロキシイミノアルキル基、ヒドロキシイミノハロアルキル基、アルコキシイミノアルキル基又はアルコキシイミノハロアルキル基である本発明化合物は、前記製造法6もしくは製造法9で製造されるR⁴がアシル基又はハロアルキルカルボニル基である本発明化合物と一般式NH₂OR²¹(式中、R²¹は水素原子又はアルキル基を表す。)で示される化合物又はその硫酸塩もしくは塩酸塩とを反応させることにより製造することができる。

製造法11

一般式 [1] で示される化合物中、R 4 がヒドラゾノアルキル基、アルキルヒドラゾノアルキル基、置換されていてもよいフェニルヒドラゾノアルキル基、アルキルイミノアルキル基又は置換されていてもよいフェニルイミノアルキル基である本発明化合物は、前記製造法6もしくは製造法9で製造されるR 4 がアシル基である本発明化合物と一般式NH2NR22(R23)(式中、R22及びR23はそれぞれ互いに同一又は相異なり水素原子、アルキル基もしくは置換されていてもよいフェニル基を表す。)で示される化合物又はその硫酸塩もしくは塩酸塩とを反応させることにより製造することができる。

製造法12

一般式[1] で示される化合物中、R⁴がシアノ基である本発明化合物は、前記製造法10で製造されるR⁴がヒドロキシイミノメチル基である本発明化合物を、例えばパラトルエンスルホン酸等の酸触媒存在下で脱水することにより製造することができる。

製造法13

一般式 [1] で示される化合物中、R 4 が基-C(R 6)(R 7)OHである本発明化合物は、前記製造法 6 又は前記製造法 9 で製造される R 4 が基-COR 6 である本発明化合物とグリニヤール試薬 R 7 M g L 1 とを反応させることにより製造することができる。(式中、R 6 、R 7 及び L 1 は前記と同じ意味

を表す。)

製造法14

一般式 [1] で示される化合物中、 R^4 が基 $-COR^7$ である本発明化合物は、前記製造法13で製造される R^4 が基 $-CH(R^7)$ OH である本発明化合物をジョーンズ試薬等で酸化することにより製造することができる。(式中、 R^7 は前記と同じ意味を表す。)

製造法15

一般式 [1] で示される化合物中、R 4 が基-CH(R 7) OHである本発明化合物は、前記製造法 6 、前記製造法 9 又は前記製造法 1 4 で製造される R 4 が基-COR 7 である本発明化合物を、例えばジイソブチルアルミニウムハイドライド等の還元剤を用いて還元することにより製造することができる。(式中、R 7 は前記と同じ意味を表す。)

製造法16

一般式 [1] で示される化合物中、R 4 が基-C (R 6) (R 7) L 1 である本発明化合物は、前記製造法 1 3 で製造される R 4 が基-C (R 6) (R 7) OHである本発明化合物を、例えば [トリフェニルホスフィン/クロラニル (テトラクロロベンゾキノン)] 等のハロゲン化剤を用いてハロゲン化することにより製造することができる。 (式中、R 6、R 7 及び L 1 は前記と同じ意味を表す。)

製造法17-

一般式 [1] で示される化合物中、R 4 が基 $^-$ C(R 6)(R 7) 7 2 R 9 又は基 $^-$ C(R 6)(R 7) N (R 6) R 2 4 である本発明化合物は、前記製造法 5 で製造される化合物(1 2 2)又は前記製造法 1 3 6 で製造される化合物と一般式 R 9 S H、一般式 R 9 O H 又は一般式 R 6 (R 2 4) N H (式中、R 6 、R 7 、R 9 及び 2 2 はそれぞれ前記と同じ意味を表し、R 2 4 4 は水素原子又はアルキル基

を表す。)で示される化合物とを反応させることにより製造することができる。本反応は溶媒中で塩基の存在又は非存在下、反応温度0~100℃、好ましくは20~80℃で0.5~24時間反応させる。本反応に用いられる溶媒としてはジエチルエーテル、テトラヒドロフラン等のエーテル類、N,Nージメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物、ベンゼン、トルエン等の芳香族炭化水素類が挙げられ、塩基としては水素化ナトリウム、水素化カリウム等の金属水素化物、炭酸カリウム、ナトリウムメトキシド等が挙げられる。

製造法18

一般式 $\{1\}$ で示される化合物中、R 4 が基-C(R 6)(R 7)WR 9 である本発明化合物は、前記製造法 1 6 で製造される R 4 が基-C(R 6)(R 7)S R 9 で示される化合物をメタクロロ過安息香酸又は過酸化モノ硫酸カリウム(商品名オキソン)等の酸化剤で酸化することによって製造することができる。(式中、R 6 、R 7 、R 9 及びWはそれぞれ前記と同じ意味を表す。)

製造法19

一般式 [1] で示される化合物中、R 4 が基-COOR 2 5 である本発明化合物は、前記製造法 7 で製造される R 4 がカルボキシル基である化合物と一般式 R 2 5 OHで示される化合物とを酸触媒存在下で反応させるか、あるいは一般式 R 2 6 - L 1 で示される化合物とを塩基存在下で反応させることにより製造することができる。(式中、L 1 は前記と同じ意味を表し、R 2 5 はアルキル基、ハロアルキル基、置換されていてもよいベンジル基又は置換されていてもよいフェニル基を表し、R 2 6 はアルキル基、ハロアルキル基又は置換されていてもよいベンジル基を表す。)

製造法20

一般式 [1] で示される化合物中、R 4 が(窒素原子に、同一又は相異なる水素原子、アルキル基、もしくは置換されていてもよいフェニル基が置換した)カ

ルバモイル基である本発明化合物は、前記製造法でで製造される R^4 がカルボキシル基である本発明化合物と塩化チオニルとを反応させた後、次に、一般式 R^2 (R^2 8) NH (式中、 R^2 7及び R^2 8はそれぞれ互いに同一又は相異なり水素原子、アルキル基もしくは置換されてもよいフェニル基を表す。)で示される化合物とを反応させることにより製造することができる。

製造法21

一般式 [1] で示される化合物中、R 4 が基-C(R 6)(R 7)SHである本発明化合物は、前記製造法 5 で製造される化合物(1 – 2)又は前記製造法 1 6 で製造される化合物のうち、R 4 が基-C(R 6)(R 7)L 1 である本発明化合物を塩基存在下で、硫化ナトリウム又は水硫化ナトリウム等のチオール化剤と反応させた後、酸処理することにより製造することができる。(式中、R 6 、R 7 及びL 1 は前記と同じ意味を表す。)

製造法22

一般式 [1] で示される化合物中、R 4 が基-C(R 6)(R 7) Z R 8 である本発明化合物は、前記製造法 1 5 で製造される R 4 が基-C H(R 7) O H である本発明化合物、前記製造法 1 3 で製造される R 4 が基-C(R 6)(R 7) O H である本発明化合物又は前記製造法 2 1 で製造される R 4 が基-C(R 6)(R 7) S H である本発明化合物を塩基存在下で、一般式 R 2 9 -E で示される化合物又は一般式 R 3 0 N = C = Z で示される化合物と反応させることにより製造することができる。(式中、R 6、R 7、R 8、 Z 及び E は前記と同じ意味を表し、R 2 9 はアルキル基、シクロアルキル基、ハロアルキル基、アルコキシカルボニルアルキル基、ジアルキルカルバモイルアルキル基、アンルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、アンルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、バロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルカルボモイル基又は置換されていてもよいベンゾイル基を表し、R 3 0 はアルキル基を表す。)

製造法23

一般式 [1] で示される化合物中、R 4 が基 $^-$ C(R 6)(R 7)N(R 6) R 3 1 である本発明化合物は、前記製造法 1 7で製造される R 4 が基 $^-$ C (R 6) (R 7)N H (R 6) である本発明化合物を塩基存在下で、一般式 R 3 1 $^-$ E で示される化合物と反応させることにより製造することができる。 (式中、R 6 、R 7 及び E は前記と同じ意味を表し、R 3 1 はアルキル基、アシル基、アルキルスルホニル基、ハロアルキルスルホニル基又はハロアルキルカルボニル基を表す。)

製造法24

一般式 [1] で示される化合物中、R 5 が基 $^-$ C O R 2 0 である本発明化合物は、R 5 が水素原子である本発明化合物と対応する酸ハライドR 2 0 C O L 1 とをルイス酸存在下でフリーデルクラフツ反応をすることによって製造することができる。(式中、R 2 0 及び L 1 は前記と同じ意味を表す。)

製造法25

一般式[1]で示される化合物中、R⁵がホルミル基である本発明化合物は、R⁵が水素原子である本発明化合物とジクロロメチルアルキルエーテルをルイス 酸存在下で反応させる公知の方法[実験化学講座(第4版)、第21巻、第 110頁]等により製造することができる。

前記製造法 1 ないし前記製造法 4 で製造することができる R^5 がアルキル基である本発明化合物又は前記製造法 2 4 もしくは前記製造法 2 5 で製造することができる R^5 がアシル基である本発明化合物を原料として、ここまでに記載した何れか適当な製造法に準じて、 R^4 と同様に種々の R^5 の置換基を持つ本発明化合を製造することができる。

製造法26

一般式 [1] で示される化合物中、 R^4 又は R^5 が基 $-CSR^2$ 0 である本発

明化合物は、前記製造法で製造されるR 4 又はR 5 が基 $^-$ COR 2 0である本発明化合物を五硫化リン、ローソン試薬 [2, 4 $^-$ ビス(4 $^-$ メトキシフェニル) $^-$ 1, 3 $^-$ ジチア $^-$ 2, 4 $^-$ ジホスフェタン $^-$ 2, 4 $^-$ ジスルフィド] 等でチオカルボニル化することにより製造することができる。(式中、R 2 0は前記と同じ意味を表す。)

製造法27

一般式 [1] で示される化合物中、R 4 又はR 5 がハロゲン原子である本発明化合物は、前記製造法で製造されるR 4 又はR 5 が水素原子である本発明化合物を例えば臭素等のハロゲン化剤によりハロゲン化することによって製造することができる。

製造法28

一般式 [1] で示される化合物中、R 4 又はR 5 がニトロ基である本発明化合物は、前記製造法で製造されるR 4 又はR 5 が水素原子である本発明化合物を常法によりニトロ化することによって製造することができる。

製造法29

一般式[1]で示される化合物中、R⁴又はR⁵がシアノアルキル基である本発明化合物は、前記製造法で製造されるR⁴又はR⁵がハロアルキル基である本発明化合物を例えばシアン化カリウム等のシアノ化剤でシアノ化することによって製造することができる。

製造法30 -

一般式[1]で示される化合物中、R⁴又はR⁵がカルバモイルアルキル基である本発明化合物は、前記製造法29で製造されるR⁴又はR⁵がシアノアルキル基である本発明化合物を酸性もしくは塩基性条件下、シアノ基を加水分解することによって製造することができる。

製造法31

一般式[1]で示される化合物中、R 4 又はR 5 がチオシアナトアルキル基である本発明化合物は、前記製造法で製造されるR 4 又はR 5 がハロアルキル基である本発明化合物をチオシアン酸カリウム等のチオシアナト化剤でチオシアナト化することによって製造することができる。

製造法32

一般式 [1] で示される化合物中、R 4 又はR 5 が基-CR 3 2 = CR 3 3 R 3 4 である本発明化合物は、前記製造法で製造されるR 4 又はR 5 がアシル基-COR 3 2 である本発明化合物をホスホニウム試薬 [P h $_3$ P $^+$ CHR 3 3 R 3 4] L 1 と塩基存在下で反応させるウィティッヒ反応によって製造することができる。(L 1 は前記と同じ意味を表し、R 3 2 、R 3 3 及びR 3 4 はそれぞれ同一又は相異なり、水素原子又はアルキル基を表し、P h $_3$ P はトリフェニルホスフィンを表す。)

製造法33

一般式 [1] で示される化合物中、R 4 又はR 5 がアルキル基により置換されていてもよいオキシラニル基である本発明化合物は、前記製造法 3 2 である本発明化合物をメタクロロ過安息香酸等の酸化剤で酸化することによって製造することができる。(R 3 2 、R 3 3 3 4 4 はそれぞれ前記と同じ意味を表す。)

製造法34

一般式[1]で示される化合物中、R⁵がアルコキシ基、ハロアルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アルコキシカルボニルアルコキシ基である本発明化合物は、R⁵が水酸基である化合物と一般式R³⁵-E(式中、Eは前記と同じ意味を表し、R³⁵はアルキル基、アルケニル基、アルキニル基、アルコキシカルボニルアルキル基又はハロアルキル基を表す。)で示される化合物とを塩基存在下で反応させることにより製造することができる。なお、

 R^{5} が水酸基である化合物は、前記製造法で製造される R^{5} がニトロ基である本発明化合物を例えば酢酸触媒存在下で、トルエン-水の混合溶媒中、鉄と反応させることによって製造することができる。

製造法35

一般式[1]で示される化合物中、 R^5 がヒドロキシアミノ基である本発明化合物は、前記製造法で製造される R^5 がニトロ基である本発明化合物を例えば酢酸触媒存在下で、酢酸エチルー水の混合溶媒中、鉄で還元することによって製造することができる。

なお、製造法1の原料である化合物(A-1)は、以下のようにして製造する ことができる。

(式中、 R^1 、 R^2 、 R^3 、 R^{15} 、 R^{16} 、E、G、X及びYはそれぞれ前記 と同じ意味を表し、 R^{17} はアルキル基又はハロアルキル基を表す。)

前記製造法2に準じて化合物(D-6)から化合物(J-1)又は化合物(J-2)を製造した後、それぞれを化合物(B-6)と反応させることにより化合物(J-3)を製造することができる。さらに、R¹がアルキル基又はハロアルキル基の場合は、前記製造法3に準じて化合物(J-3)と塩基存在下で一般式R¹⁷-Eで示される化合物とを反応させることにより化合物(J-4)を製造するか、あるいはR¹がアミノ基の場合は、前記製造法4に準じて化合物(J-3)と塩基存在下で一般式G-NH₂で示される化合物とを反応させることにより化合物(J-4)をR¹⁶がアルキル基の場合は三臭化ホウ素等の脱アルキル化剤と反応させるか、又はR¹⁶が置換されてもよいベンジル基の場合は常圧下で水素添加することにより化合物(A-1)を製造することができる。

[発明を実施するための最良の形態]

以下に具体的製造例を示す。

製造例1

3- (4-クロロー6-フルオロー2-メチルベンゾフランー7-イル) -1-メチル-6-トリフルオロメチルウラシル(化合物番号2)の合成

3-(4-クロロー2-フルオロー6-プロパルギルオキシフェニル)-1-メチルー6-トリフルオロメチルウラシル5.2g(14mmol)及びフッ化セシウム6.4g(42mmol)にN,N-ジエチルアニリン100mlを加え、180~190℃で3時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を10%塩酸水溶液、水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色粉末の目的物1.4g(収率26.9%)を得た。融点196~197℃

製造例2

3- (4-クロロ-2-メチルベンゾフラン-7-イル) -1-メチル-6-ト リフルオロメチルウラシル (化合物番号196) の合成 3-(4-クロロー2ープロパルギルオキシフェニル)-1-メチルー6ートリフルオロメチルウラシル20.0g(55.8mmol)及びフッ化セシウム17.0g(112mmol)にN,Nージエチルアニリン200mlを加え、180~190℃で2時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を10%塩酸水溶液、水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物7.0g(収率35.0%)を得た。融点206~207℃

製造例3

3-(4-クロロ-2, 3-ジメチルベンゾフラン-7-イル)-1-メチルー 6-トリフルオロメチルウラシル (化合物番号265) の合成

3-(4-クロロー2-ヒドロキシフェニル)-1-メチルー6-トリフルオロメチルウラシル2.0g(6.2mmol)及びアゾジカルボン酸ジエチル1.3g(7.5mmol)をテトラヒドロフラン30mlに溶解し、氷冷下これにトリフェニルホスフィン2.0g(7.6mmol)及び2-ブチン-1-オール0.52g(9.3mmol)の20mlテトラヒドロフラン溶液を滴下した。滴下終了後、室温で30分間撹拌し、エーテル化合物を得た。次に、精製したエーテル化合物及びフッ化セシウム0.94g(6.2mmol)にN.Nージエチルアニリン20mlを加え、190℃で15時間加熱した。反応終了後、反応混合物をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.52g(収率22.4%)を得た。融点152~153℃

製造例4

3 - (4, 6 - ジフルオロー 2 - メチルベンゾフランー 7 - イル) - 1 - メチル - 6 - トリフルオロメチルウラシル(化合物番号 3 7 5)の合成

3-(2,4-ジフルオロ-6-プロパルギルオキシフェニル)-1-メチル-6-トリフルオロメチルウラシル4.7g(13mmol)及びフッ化セシウム5.9g(39mmol)にN,N-ジエチルアニリン<math>100mlを加え、

180~190℃で3時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出し、有機層を10%塩酸水溶液、水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色粉末の目的物1.0g(収率21.3%)を得た。融点176~178℃

製造例5

3- (4-クロロ-2-エチルベンゾフラン-7-イル) -1-メチル-6-ト リフルオロメチルウラシル (化合物番号197) の合成

製造例6

3- (4-クロロー2-エチルー6-フルオロベンゾフランー7-イル) -6-トリフルオロメチルウラシル (化合物番号187) の合成

3-アミノー4, 4, 4-トリフルオロクロトン酸エチル5. 8g(32mmo1)及び1, 8-ジアザビシクロ[5. 4. 0]-7-ウンデセン6. 6g(43mmo1)にN, N-ジメチルホルムアミド80mlを加え、室温で4-クロロー2-エチルー6-フルオロー7-フェノキシカルボニルアミノベンソフラン9. 6g(29mmol)を徐々に加えた。60℃で8時間撹拌後、反応液を10%塩酸水にあけ、酸性とした後、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物4.8g(収率44%)を得た。融点154~155℃

製造例7

3- (4-クロロー2-エチルー6-フルオロベンソフラン-7-イル) -1-メチルー6-トリフルオロメチルウラシル(化合物番号3)の合成

3-(1-クロロー2-エチルー6-フルオロベンゾフラン-7-イル)-6
-トリフルオロメチルウラシル0.50 g(1.3mmol)及び炭酸カリウム0.30g(2.3mmol)をN,N-ジメチルホルムアミド20mlに懸濁し、氷冷下これにヨウ化メチル0.23g(1.6mmol)を滴下した。室温で3時間撹拌後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.48g(収率92%)を得た。融点142~143℃

製造例8

3- (4-クロロ-2-エチル-6-フルオロベンゾフラン-7-イル)-1-アミノ-6-トリフルオロメチルウラシル (化合物番号730) の合成

3-(4-クロロ-2-エチル-6-フルオロベンゾフラン-7-イル)-6
ートリフルオロメチルウラシル3.4g(9.0mmol)、2,4-ジニトロフェノキシアミン2.7g(14mmol)及び炭酸カリウム5.0g(36mmol)にN,N-ジメチルホルムアミド80mlを加え、60~70℃で1時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物2.0g(収率58%)を得た。融点145~147℃

製造例9

3-(2-プロモメチル-4-クロロ-6-フルオロベンゾフラン-7-イル) -1-メチル-6-トリフルオロメチルウラシル(A, 化合物番号8)、3-

(4-クロロー2-ジブロモメチルー6-フルオロベンゾフランー7-イル) -1-メチルー6-トリフルオロメチルウラシル(B, 化合物番号9)及び3-(4-2-1)-1-メチル-6-トリフルオロメチルウラシル (C. 化合物番号10) の合成 -メチル-6 - トリフルオロメチルウラシル20.0g(53.1mmol)、 N-プロモコハク酸イミド56.8g(319.1mmol)、過酸化ベンゾイ μ 0. 2g(1.4mmol)及び α , α -アゾビスイソプチロニトリル0. 2g(1.2mmol)に四塩化炭素400mlを加え、加熱還流下24時間撹 拌した。反応終了後、反応液を冷却後、析出した結晶をろ別し、ろ液を、亜硫酸 水素ナトリウム水溶液、水及び飽和食塩水の順で洗浄した。無水硫酸マグネシウ ムで乾燥後、溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフ ィーにて分離し、白色結晶の (A) 5.0g (収率 20.6%) 融点 168~ 172℃、白色結晶の(B) 12.0g(収率42.3%)融点126~128 ℃及び濃褐色粘稠液体の(C)0.6g(収率1.8%)屈折率:測定不可をそ れぞれ得た。化合物番号10の 1 H - NMR(溶媒、CDC $_{13}$):3.61 (3H, bs), 6. 42 (1H, s), 7. 26 (1H, d) ppm

製造例10

3-(4-クロロー6-フルオロー2-ホルミルベンゾフランー7-イル)-1
-メチルー6-トリフルオロメチルウラシル(化合物番号33)の合成
3-(4-クロロー2-ジブロモメチルー6-フルオロベンゾフランー7ーイル)-1-メチルー6-トリフルオロメチルウラシル12.0g(22.5mmol)に濃硫酸60mlを加え、50℃で1時間撹拌した。反応終了後、反応液を氷水にあけ、酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液、水及び飽和食塩水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をイソプロピルエーテルで結晶化させ、淡黄色結晶の目的物7.6g(収率88.4%)を得た。融点180~183℃

製造例11

3-(2-カルボキシ-4-クロロー6-フルオロベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号42)の合成3-(4-クロロー6-フルオロー2-トリプロモメチルベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラシル0.6g(0.98mmol)に濃硫酸10mlを加え、45℃で3時間撹拌した。反応終了後、反応液を氷水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.21g(収率53.7%)を得た。融点267~268℃(分解)

製造例12

3-(2-カルボキシ-4-クロロー6-フルオロベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号42)の合成3-(4-クロロー6-フルオロー2-ホルミルベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラシル1.5g(3.84mmol)をアセトン20mlに溶解し、5℃でジョーンズ試薬を橙色が消えなくなるまで滴下した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物1.2g(収率76.9%)を得た。融点267~268℃(分解)

製造例13

- 3- (4-クロロー6-フルオロベンゾフラン-7-イル) -1-メチル-6-トリフルオロメチルウラシル (化合物番号1) の合成
 - 3-(2-カルボキシー4-クロロー6-フルオロベンゾフラン-7-イル)
- -1-メチル-6-トリフルオロメチルウラシル7.0g(17mmol)及び

銅粉5. 0g(79mmol)をキノリン50mlに懸濁し、200℃で1時間 撹拌した。反応終了後、反応液をろ過し、ろ液を酢酸エチルで抽出した。有機層 を10%塩酸水溶液及び水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。 減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し白色結晶の目的物3.5g(収率56%)を得た。融点127~ 128℃

製造例14

3-(4-クロロ-2-プロピオニルー6-フルオロベンゾフランー7-イル)
-1-メチルー6-トリフルオロメチルウラシル(化合物番号29)の合成
3-(4-クロロー6-フルオロベンゾフランー7-イル)-1-メチルー6
-トリフルオロメチルウラシル1.3g(1.4mmol)及び塩化アルミニウム1.9g(1.4mmol)をニトロメタン20mlに溶解し、氷冷下これに塩化プロピオニル0.5g(1.4mmol)を滴下した。滴下終了後、室温で12時間撹拌した。反応終了後、反応液を希塩酸と氷の混合物にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄色ガラス状物質の目的物0.33g(収率56%)を得た。屈折率:測定不可、1H-NMR(溶媒、CDCl3):1.20(3H,m)、2.91(2H,q)、3.56(3H,s)、6.38(1H,s)、7.28(1H,d)、7.58(1H,s)ppm

製造例15

3- [4-クロロー6-フルオロー2-(1-メトキシイミノエチル) ベンゾフラン-7-イル] -1-メチルー6-トリフルオロメチルウラシル (化合物番号37) の合成

3- (2-アセチル-4-クロロ-6-フルオロベンゾフラン-7-イル) -1-メチル-6-トリフルオロメチルウラシル0. 4g(1mmol)、酢酸カリウム0. 4g(4mmol)及びメトキシアミン塩酸塩0. 33g (4 mmol) にメタノール20mlを加え、室温で12時間撹拌した。反応終了後、減圧下で溶媒を留去し、得られた残渣を直接シリカゲルカラムクロマトグラフィーにて精製し、白色粉末の目的物0.28g(収率64.6%)を得た。 融点176~178℃

製造例16

3- (4-クロロ-2-メチルヒドラゾノメチルベンゾフラン-7-イル)-1
-メチル-6-トリフルオロメチルウラシル(化合物番号231)の合成
3- (4-クロロ-2-ホルミルベンゾフラン-7-イル)-1-メチルー6
-トリフルオロメチルウラシル0.4g(1.0mmol)をテトラヒドロフラン5mlに溶解し、氷冷下これにモノメチルヒドラジン0.1g(21.7mmol)を加え、室温で3時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色ガラス状物質の目的物0.2g(収率47.6%)を得た。屈折率:測定不可、1H-NMR(溶媒、CDC13):2.90(3H,s)、3.52(3H,s)、6.18(1H,bs)、6.40(1H,s)、6.85(1H,s)、7.05(1H,d)、7.25(1H,s)、7.29(1H,d)ppm

製造例17

3- [4-クロロー6-フルオロー2-(1-ヒドロキシエチル) ベンソフラン -7-イル] -1-メチルー6-トリフルオロメチルウラシル (化合物番号 13) の合成

3-(4-クロロ-6-フルオロ-2-ホルミルベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル4.0g(10.2mmol)をテトラヒドロフラン20mlに溶解し、-65℃でこれにメチルマグネシウムプロミド(1.0Mテトラヒドロフラン溶液)12.3mlを滴下した。室温で1時間撹拌後、反応液を水にあけ、酢酸エチルで抽出した。有機屬を水及び飽和食

塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色結晶の目的物2.3g(収率55.3%)を得た。融点154~157℃

製造例18

3-(2-アセチル-4-クロロー6-フルオロベンゾフラン-7-イル)-1
-メチルー6-トリフルオロメチルウラシル(化合物番号28)の合成
3-[4-クロロー6-フルオロー2-(1-ヒドロキシエチル)ベンゾフラン-7-イル]-1-メチルー6-トリフルオロメチルウラシル1.5g(3.7mmol)をアセトン20mlに溶解し、5℃でジョーンズ試薬を橙色が消えなくなるまで滴下した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡橙色結晶の目的物を定量的に得た。融点193~194℃

製造例19

3-(4-クロロー6-フルオロー2-ヒドロキシメチルベンソフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号12)の合成3-(4-クロロー6-フルオロー2-ホルミルベンソフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル1.5g(3.8mmol)をテトラヒドロフラン10mlに溶解し、窒素気流下5℃でこれにジイソブチルアルミニウムハイドライド(0.94Mへキサン溶液)4.5mlを滴下した。室温で1時間撹拌後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色結晶の目的物1.4g(収率90.7%)を得た。融点198~199℃

製造例20

3- [4-クロロ-2-(1-クロロエチル)-6-フルオロベンゾフラン-7-イル]-1-メチル-6-トリフルオロメチルウラシル (化合物番号393)の合成

3- [4-クロロー2-(1-ヒドロキシエチル) -6-フルオロベンゾフランー7-イル] -1-メチルー6-トリフルオロメチルウラシル0.50g(1.2mmol)及びトリフェニルホスフィン0.64g(2.5mmol)をアセトニトリル20mlに溶解し、室温でこれにクロラニル0.60g(2.5mmol)を加えた。室温で2時間撹拌した後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び5%炭酸カリウム水溶液の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡褐色ガラス状物質の目的物0.50g(収率96.2%)を得た。屈折率1.5639(20℃)

製造例21

3-(4-クロロー6-フルオロー2-メトキシメチルベンソフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号14)の合成3-(2-プロモメチルー4-クロロー6-フルオロベンソフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル1.5g(3.3mmo1)をテトラヒドロフラン30mlに溶解し、氷冷下これにナトリウムメトキシド(28%メタノール溶液)0.7g(3.6mmol)を滴下した。室温で5分間撹拌した後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄褐色ガラス状物質の目的物0.75g(収率56.0%)を得た。屈折率1.5389(20℃)

製造例22

3-(4-クロロ-2-エチルチオメチル-6-フルオロベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル(化合物番号22)の合成

3-(2-プロモメチルー4-クロロー6-フルオロベンソフランー7-イル) -1-メチルー6-トリフルオロメチルウラシル1.5g(3.3mmol)及び炭酸カリウム0.7g(5.1mmol)をN,N-ジメチルホルムアミド20mlに懸濁し、室温でこれにエチルメルカプタン0.21g(3.4mmol)を加え、さらに室温で1時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄褐色ガラス状物質の目的物1.2g(収率83.4%)を得た。屈折率1.5629(20℃)

製造例23

3- (4-クロロー6-フルオロー2-メチルスルホニルメチルベンゾフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号21)の合成

3-(4-クロロー6-フルオロー2-メチルチオメチルベンゾフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル0.5g(1.2mmol)及びメタクロロ過安息香酸0.6g(3.5mmol)をクロロホルムに懸濁し、室温で1時間撹拌した。反応終了後、反応液に酢酸エチルを加え、水及び10%亜硫酸水素ナトリウム水溶液の順で洗浄した後、有機層を無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.5g(収率92.9%)を得た。融点209~211℃

製造例24

3- (4-クロロー6-フルオロー2-メトキシカルボニルベンゾフラン-7-イル) -1-メチルー6-トリフルオロメチルウラシル (化合物番号43) の合成

3-(2-カルボキシ-4-クロロ-6-フルオロベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル0.21g(0.5mmol) 及び炭酸カリウム 0. 16g (1.1mmol)をN, N-ジメチルホルムアミド10mlに懸濁し、室温でこれにヨウ化メチル 0.15g (1.1mmol)を加え、室温で3時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄土色結晶の目的物 0.21g (収率 96.8%)を得た。融点 194~196℃

製造例25

3-(4-クロロー2-エチルカルバモイルベンゾフラン-7-イル)-1-メ チルー6-トリフルオロメチルウラシル (化合物番号248) の合成

3-(2-カルボキシー4-クロロベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラシル0.37g(0.96mmol)に塩化チオニル10mlを加え、加熱還流下3時間撹拌した。反応終了後、減圧下で塩化チオニルを留去し、得られた残渣をテトラヒドロフラン20mlに溶解した。この溶液に氷冷下、エチルアミン(70%水溶液)0.24g(3.84mmol)を加え、さらに室温で10分間撹拌した。反応終了後、反応液を水にあけ、析出した結晶をろ過し、白色結晶の目的物0.31g(収率78.3%)を得た。融点225~226℃

製造例 2.6

3-(2-アセトキシメチル-4-クロロベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル (化合物番号210) の合成

3-(4-クロロー2-ヒドロキシメチルベンゾフランー7-イル) -1-メ チルー6-トリフルオロメチルウラシル0.4g(1.1mmol)及びトリエ チルアミン0.13g(1.2mmol)をテトラヒドロフラン20mlに溶解 し、氷冷下これに塩化アセチル0.1g(1.2mmol)を滴下した。反応終 了後、反応液を水にあけ、酢酸エチルで洗浄した。有機層を10%塩酸水溶液、 水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下 で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色固体の目的物 0.2 g (収率 4 5.5%)を得た。融点 1 3 5 ~ 1 3 8 ℃

製造例27

3- [4-クロロー6-フルオロー2-(1-ジメチルアミノエチル) ベンゾフラン-7-イル] -1-メチルー6-トリフルオロメチルウラシル (化合物番号572) の合成

3- [4-クロロー6-フルオロー2-(1-メチルアミノエチル) ベンゾフラン-7-イル] -1-メチルー6-トリフルオロメチルウラシル0.5 g (1.2 mmo1) 及び炭酸カリウム0.40 g (2.9 mmo1)をN, N-ジメチルホルムアミド50 m1に懸濁し、これにヨウ化メチル1.0 g (7.0 mmo1)を加え、60℃で2時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、紫色ガラス状物質の目的物0.35 g (収率68%)を得た。屈折率1.5341 (20℃)

製造例28

3-(3-アセチル-4-クロロ-6-フルオロ-2-メチルベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル(化合物番号101)の合成

3-(4-クロロー6-フルオロー2-メチルベンゾフランー7-イル)-1
-メチルー6-トリフルオロメチルウラシル1.6g(4.2mmol)をニトロメタン50mlに溶解し、室温でこれに塩化アルミニウム5.6g(4.2mmol)を加え、さらに塩化アセチル3.3g(42mmol)を滴下した。滴下終了後、加熱還流下5時間撹拌した。反応終了後、反応液を希塩酸と氷の混合物にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られ

た残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色結晶の目的物 1.2g(収率66.7%)を得た。融点138~140℃

製造例29

3- (4-クロロー6-フルオロー3-ホルミルー2-メチルベンゾフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号91)の合成

3-(4-クロロー6-フルオロー2-メチルベンゾフランー7-イル)-1
-メチルー6-トリフルオロメチルウラシル2.0g(53mmol)及びジクロロメチルメチルエーテル36.5g(0.32mol)をジクロロメタン100mlに溶解し、0℃でこれに四塩化スズ(1Mジクロロメタン溶液)200ml(0.20mol)を滴下した。滴下終了後、室温で2時間撹拌した。反応終了後、反応液を希塩酸と氷の混合物にあけ、ジクロロメタンで抽出した。有機層を水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物19.5g(収率90.7%)を得た。融点148~150℃

製造例30

3- [4-クロロー6-フルオロー3-(1-メトキシイミノエチル) -2-メ チルベンゾフラン-7-イル] -1-メチルー6-トリフルオロメチルウラシル (化合物番号111) の合成

3-(3-アセチル-4-クロロー6-フルオロー2-メチルベンゾフランー7-イル)-1-メチルー6ートリフルオロメチルウラシル0.4g (1mmol)、酢酸カリウム0.5g (5mmol)及びメトキシアミン塩酸塩0.5g (6mmol)にメタノール50mlを加え、室温で12時間、さらに加熱還流下8時間撹拌した。反応終了後、減圧下でメタノールを留去した後、得られた残渣に酢酸エチルを加え、水及び飽和食塩水の順で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧下で溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色結晶の目的物0.4g (収率

100%)を得た。融点65~67℃、¹H-NMR(溶媒、CDCl₃):
1.54(1H, s)、2.21(3H, s)、2.35(3H, s)、3.
59(3H, s)、3.91(3H, s)、6.41(1H, s)、7.16
(1H, d) ppm

製造例31

3- (4-クロロー6-フルオロー2-メチルー3-チオアセチルベンゾフラン -7-イル)-1-メチルー6-トリフルオロメチルウラシル(化合物番号 631)の合成

3-(3-アセチル-4-クロロ-6-フルオロ-2-メチルベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル0.50 g(1.2mmol)及び五硫化リン1.5g(6.7mmol)にトルエン100mlを加え、加熱還流下2時間撹拌した。反応終了後、反応液にさらにトルエン100mlを加え、有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、橙色ガラス状物質の目的物47mg(収率9%)を得た。屈折率1.5967(20℃)

製造例32

3- (3-プロモー4-クロロー2-メチルベンゾフラン-7-イル) -1-メ チルー6-トリフルオロメチルウラシル (化合物番号272) の合成

3-(4-クロロー2-メチルベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラシル1.0g(2.8mmol)を酢酸30mlに溶解し、室温でこれに臭素0.9g(5.6mmol)を滴下した。滴下終了後、40℃で6時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。水及び10%アンモニア水の順で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、淡黄色のガラス状物質0.6g(収率50.0%)を得た。屈折率1.5632(20℃)

製造例33

3- (4-クロロー2-メチルー3-ニトロベンゾフランー7-イル) -1-メ チルー6-トリフルオロメチルウラシル(化合物番号303)の合成

3-(4-クロロー2-メチルベンゾフラン-7-イル)-1-メチルー6-トリフルオロメチルウラシル0.5g(1.4mmol)を濃硫酸10mlに溶解し、-20℃でこれに60%硝酸0.1g(1.1mmol)を滴下した。-20℃で10分間撹拌後、反応液を氷水にあけ、クロロホルム50mlで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し淡黄色結晶の目的物0.3g(収率53.3%)を得た。融点174~175℃

製造例34

3- [4-クロロー2-(1-シアノエチル)-3-エトキシカルボニル-6-フルオロベンゾフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル(化合物番号671)の合成

3-[4-クロロ-2-(1-クロロエチル)-3-エトキシカルボニル-6-フルオロベンソフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル0.8g(1.6mmol)、シアン化カリウム0.16g(2.5mmol)及び炭酸カリウム0.40g(2.9mmol)にN,N-ジメチルホルムアミド20mlを加え、室温で3時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄色ガラス状物質の目的物0.58g(収率74%)を得た。屈折率1.5348(20℃)

製造例35

3-(3-カルバモイルメチルー4-クロロー6-フルオロー2-メチルベンゾ

フラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル (化合物番号619) の合成

3-(4-クロロ-3-シアノメチル-6-フルオロ-2-メチルベンソフラン-7-イル)-1-メチル-6-トリフルオロメチルウラシル0.50g(1.2mmol)を50%硫酸30mlに溶解し、60℃で2時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物0.39g(収率75%)を得た。融点127~129℃

製造例36

3- [4-クロロー6-フルオロー2-(1-チオシアナトエチル) ベンソフランー7-イル] -1-メチルー6-トリフルオロメチルウラシル (化合物番号577) の合成

3-[2-(1-ブロモエチル)-4-クロロ-6-フルオロベンソフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル2.3g(4.9mmol)及びチオシアン酸カリウム1.5g(2.3mmol)にエタノール30mlを加え、60℃で2時間撹拌した。反応終了後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄色結晶の目的物1.1g(収率50%)を得た。融点60~63℃、1H-NMR(溶媒、CDC13):1.93(3H,d)、3.59(3H,s)、4.56(1H,q)、6.40(1H,d)、6.87(1H,s)、7.25(1H,s)ppm

製造例37

3- (4-クロロー6-フルオロー2-ビニルベンゾフランー7-イル)-1-メチル-6-トリフルオロメチルウラシル(化合物番号412)の合成

1-メチルー6-トリフルオロメチルウラシル1.0g(2.6mmol)、メチルトリフェニルホスホニウムプロミド0.94g(2.6mmol)及び炭酸カリウム0.43g(3.1mmol)にジオキサン50ml、水0.5mlを加えた。加熱還流下2時間撹拌した。反応終了後、反応液を水にあけ、クエン酸水溶液でpH3に調整した後、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、黄色結晶の目的物0.51g(収率51%)を得た。融点108~109℃

製造例38

3- [4-クロロー2-(2-オキシラニル)-6-フルオロベンゾフランー7-イル]-1-メチルー6-トリフルオロメチルウラシル(化合物番号606)の合成

3-(4-クロロー6-フルオロー2-ビニルベンゾフランー7-イル)-1
ーメチルー6-トリフルオロメチルウラシル0.4g(1.0mmol)にクロロホルム50mlを加え、室温でこれに80%メタクロロ過安息香酸0.21g(1.0mmol)のクロロホルム10ml溶液を滴下した。室温で12時間撹拌後、反応液を水にあけ、クロロホルムで抽出した。有機層を水、10%亜硫酸水素ナトリウム水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、白色結晶の目的物85mg(収率21%)を得た。融点109~111℃

製造例39

3- (4-クロロー6-フルオロー3-メトキシー2-メチルベンゾフランー7-イル)-1-メチルー6-トリフルオロメチルウラシル (化合物番号427)の合成

 WO 97/29105 PCT/JP97/00320 68

(1. 3mmol) 及びフッ化セシウム2. 0g(1. 3mmol) をN, N-ジメチルホルムアミド10m1に懸濁し、これにヨウ化メチル0.3g(2. 1 mmol)を加え、70℃で1時間撹拌した。反応終了後、反応液に酢酸エチー ルを加え、有機層を水で洗浄した後、無水硫酸ナトリウムで乾燥した。減圧下で 溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィーにて精 製し、白色結晶の目的物0.19g(収率35%)を得た。融点57~60℃

製造例40

3-(4-クロロー3-ヒドロキシアミノー2-メチルベンゾフラン-7-イ ル) - 1 - メチル - 6 - トリフルオロメチルウラシル(化合物番号 3 0 5) の合 成

メチルー6-トリフルオロメチルウラシル2.3g(5.7mmol)及び鉄粉 6 g (28 mmol) に酢酸5 ml、酢酸エチル200ml及び水 100mlを加え、加熱還流下2時間撹拌した。反応終了後、不溶物をろ過し、 有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥し た。減圧下で溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラ フィーにて精製し、淡黄色結晶の目的物1.2g(収率54%)を得た。融点 134~136℃

参考例1

3-(4-クロロー2-フルオロー6-ヒドロキシフェニル) -1-メチルー6 ートリフルオロメチルウラシルの合成

ートリフルオロメチルウラシル5. 7g(16mmol)をジクロロメタン 100mlに溶解し、0℃で三臭化ホウ素(3.0Mジクロロメタン溶液) 27ml (80mmol)を滴下した。室温で3時間撹拌後、反応液を氷水にあ け、炭酸水素ナトリウムで中和した。ジクロロメタンで抽出し、有機層を水及び 飽和食塩水の願で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒 を留去した後、得られた租結晶をイソプロピルエーテルで洗浄し、白色結晶の目的物 5.4g(収率 98.2%)を得た。融点 143~144℃

参考例2

3 - (4 - クロロー 2 - フルオロー 6 - プロパルギルオキシフェニル) - 1 - メ チルー 6 - トリフルオロメチルウラシルの合成

3-(4-クロロー2-フルオロー6-ヒドロキシフェニル)-1-メチルー6-トリフルオロメチルウラシル5. 4g(16mmol)及び炭酸カリウム3.3g(24mmol)をN,Nージメチルホルムアミド50mlに懸濁し、室温で臭化プロパルギル2.7g(22mmol)を滴下した。60~70℃で5時間撹拌した後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた粗結晶をイソプロピルエーテルで洗浄し、白色結晶の目的物5.2g(収率86.7%)を得た。融点150~152℃

参考例3

3- (4-クロロ-2-ヒドロキシフェニル) -1-メチル-6-トリフルオロ メチルウラシルの合成

3-(4-クロロー2-メトキシフェニル)-1-メチルー6-トリフルオロメチルウラシル41.0g(122.5mmol)をジクロロメタン1000mlに溶解し、-10℃~-5℃で三臭化ホウ素(1.0Mジクロロメタン溶液)470ml(470.8mmol)を満下した。室温で3時間撹拌後、反応液を氷水にあけ、炭酸水素ナトリウムで中和した。ジクロロメタンで抽出し、有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた粗結晶をイソプロピルエーテルで洗浄し、白色結晶の目的物27.6g(収率70.3%)を得た。融点198~202℃

参考例4

3 - (4 - クロロー2 - プロパルギルオキシフェニル) - 1 - メチルー6 - トリフルオロメチルウラシルの合成

3-(4-クロロー2-ヒドロキシフェニルー1-メチルー6-トリフルオロメチルウラシル22.6g(70.5mmol)及び炭酸カリウム14.5g(105.1mmol)をN,Nージメチルホルムアミド150mlに懸濁し、室温で臭化プロパルギル11.2g(94.1mmol)を滴下した。70℃で2時間撹拌した後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた粗結晶をイソプロピルエーテルで洗浄し淡茶色粉末の目的物22.5g(収率89.0%)を得た。融点147~148℃

参考例5

3 - (2, 4 - ジフルオロー 6 - ヒドロキシフェニル) - 1 - メチルー 6 - トリフルオロメチルウラシルの合成

3-(2,4-ジフルオロ-6-メトキシフェニル)-1-メチル-6-トリフルオロメチルウラシル13.6g(40mmol)をジクロロメタン150mlに溶解し、0℃で三臭化ホウ素(3.0Mジクロロメタン溶液)66.7ml(200mmol)を滴下した。室温で3時間撹拌後、反応液を氷水にあけ、炭酸水素ナトリウムで中和した。ジクロロメタンで抽出し、有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた粗結晶をイソプロピルエーテルで洗浄し、白色結晶の目的物9.8g(収率75.4%)を得た。融点195~196℃

参考例6

3-(2,4-ジフルオロー6-プロパルギルオキシフェニル)-1-メチルー 6-トリフルオロメチルウラシルの合成

3-(2,4-ジフルオロー6-ヒドロキシフェニル)-1-メチルー6-ト リフルオロメチルウラシル4.8g(15mmol)及び炭酸カリウム3.2g (23mmol)をN,N-ジメチルホルムアミド50mlに懸濁し、室温で臭 化プロパルギル2.5g(21mmol)を滴下した。 $60\sim70$ ℃で5時間撹拌した後、反応液を水にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、得られた粗結晶をイソプロピルエーテルで洗浄し、黄土色粉末の目的物5.0g(収率92.63%)を得た。融点159 \sim 162 $^{\circ}$

参考例7

3- [4-クロロ-2-(1-メチル-2-プロピニルオキシ) フェニル] -1 -メチル-6-トリフルオロメチルウラシルの合成

 $3-(4-\rho - 2-\epsilon -$

次に、本発明化合物のいくつかについて IH-NMR データを以下に示す。

(表25)

化合物 番号	¹ H-NMR δ値(ppm) 溶媒 CDC1 ₃
10	3. 61 (3H, bs) 6. 42 (1H, s) 7. 26 (1H, d)
20	2. 11 (3H, s) 3. 59 (3H, s) 3. 73 (2H, s) 6. 40 (1H, s) 6. 70 (1H, s) 7. 19 (1H, d)
29	1. 20 (3H, m) 2. 91 (2H, q) 3. 56 (3H, s) 6. 38 (1H, s) 7. 28 (1H, d) 7. 58 (1H, s)
30	1. 01 (3H, t) 1. 78 (2H, m) 2. 87 (2H, t) 3. 59 (3H, s) 6. 41 (1H, s) 7. 36 (1H, d) 7. 57 (1H, s)
35	3. 60 (3H, s) 4. 02 (3H, s) 6. 42 (1H, s) 7. 07 (1H, s) 7. 24 (1H, d) 8. 00 (1H, s)
45	1. 37 (6H, d) 3. 57 (3H, s) 5. 26 (1H, m) 6. 39 (1H, s) 7. 29 (1H, d) 7. 56 (1H, s)
79	2. 29 (1H, bs) 2. 40 (3H, s) 3. 57 (3H, s) 4. 78 (1H, s) 6. 38 (1H, s) 7. 17 (1H, d)
80	2. 05 (3H, s) 2. 43 (3H, s) 3. 57 (3H, s) 5. 27 (2H, s) 6. 35 (1H, s) 7. 15 (1H, d)
86	2. 69 (3H, s) 3. 60 (3H, s) 6. 43 (1H, s) 7. 29 (1H, d) 8. 00 (1H, bs)
89	1. 38 (6H, d) 2. 58 (3H, s) 3. 55 (3H, s) 5. 26 (1H, m) 6. 35 (1H, s) 7. 20 (1H, d)
111	1. 54 (1H, s) 2. 21 (3H, s) 2. 35 (3H, s) 3. 59 (3H, s) 3. 91 (3H, s) 6. 41 (1H, s) 7. 16 (1H, d)
119	2. 73 (3H, s) 3. 57 (3H, s) 6. 37 (1H, s) 7. 32 (1H, d)
141	1. 30 (3H, s) 3. 16 (2H, q) 3. 61 (3H, s) 6. 42 (1H, s) 7. 31 (1H, d) 10. 73 (1H, s)
207	1. 60 (3H, d) 2. 59 (1H, m) 3. 57 (3H, s) 4. 97 (1H, m) 6. 40 (1H, s) 6. 78 (1H, s) 7. 09 (1H, d) 7. 32 (1H, d)

(表26)

化合物 番号	lH-NMR δ値(ppm) 溶媒 CDC13
231	2. 90 (3H, s) 3. 52 (3H, s) 6. 18 (1H, bs) 6. 40 (1H, s) 6. 85 (1H, s) 7. 05 (1H, d) 7. 25 (1H, s) 7. 29 (1H, d)
247	3. 17 (6H, dd) 3. 57 (3H, s) 6. 39 (1H, s) 7. 25 (1H, d) 7. 39 (1H, d)
270	2. 33 (3H, s) 3. 60 (3H, bs) 6. 40 (1H, s) 7. 0~7. 5 (7H, m)
334	1. 23 (6H, d) 3. 43 (1H, m) 3. 57 (3H, s) 6. 37 (1H, s) 7. 18 (1H, d)
376	2. 67 (3H, s) 3. 60 (3H, s) 6. 36 (1H, s) 7. 21 (1H, d) 7. 38 (1H, d)
401	0. 97 (3H, m) 1. 92 (2H, m) 2. 34 (1H, m) 3. 57 (3H, s) 4. 66 (1H, m) 6. 37 (1H, s) 6. 72 (1H, s) 7. 19 (1H, d)
446	0. 99 (3H, t) 1. 20 (3H, d) 1. 68 (2H, m) 2. 67 (2H, t) 3. 31 (1H, m) 3. 60 (3H, s) 6. 41 (1H, s) 7. 22 (1H, d)
460	1. 16 (3H, t) 1. 30 (3H, t) 2. 89 (2H, q) 3. 29 (2H, q) 3. 61 (3H, s) 6. 42 (1H, s) 7. 24 (1H, d)
463	0. 88 (3H, m) 1. 24 (3H, t) 1. 93 (2H, m) 2. 57, 2. 73 (1H, d) 2. 81 (2H, m) 3. 52, 3. 55 (3H, s) 4. 67 (1H, m) 6. 30, 6. 36 (1H, s) 7. 15 (1H, d)
464	0. 94 (3H, t) 1. 27 (3H, t) 1. 0~2. 0 (4H, m) 2. 17 (1H, m) 2. 86 (2H, m) 3. 54, 3. 57 (3H, s) 4. 79 (1H, m) 6. 35, 6. 38 (1H, s) 7. 15 (1H, d)
471	1. 33 (3H, t) 1. 74~1. 78 (3H, m) 2. 48~2. 74 (2H, m) 3. 60 (3H, s) 3. 99~4. 13 (1H, m) 6. 40 (1H, d) 6. 82 (1H, s) 7. 24 (1H, dd)
472	1. 30 (3H, t) 1. 80 (3H, d) 3. 0 (2H, m) 3. 55 (3H, s) 4. 40 (1H, q) 6. 45 (1H, d) 7. 00 (1H, s) 7. 24 (1H, d)

(表27)

化合物 番号	¹ H-NMR δ値(ppm) 溶媒 CDC1 ₃
475	1. 03(3H, t) 1. 86(5H, m) 2. 87(2H, m) 3. 60(3H, m) 4. 36(1H, q) 6. 39(1H, d) 7. 00(1H, s) 7. 27(1H, d)
483	1. 10 (3H, t) 2. 20 (1H, m) 2. 50 (1H, m) 2. 80 (3H, s) 3. 60 (3H, s) 4. 20 (1H, m) 6. 45 (1H, d) 7. 05 (1H, s) 7. 20 (1H, d)
484	1. 10(3H, t) 2. 20(1H, m) 2. 50(1H, m) 2. 70(3H, s) 3. 60(3H, s) 4. 10(1H, m) 6. 20(1H, d) 7. 0(1H, s) 7. 20(1H, d)
485	1. 09 (3H, m) 1. 19 (3H, t) 1. 96 (2H, m) 2. 45 (2H, m) 3. 58 (3H, s) 3. 82 (1H, t) 6. 40 (1H, d) 6. 68 (1H, d) 7. 17 (1H, d)
486	1. 05 (3H, t) 1. 30 (3H, t) 2. 56 (4H, m) 3. 59 (3H, s) 3. 81 (1H, m) 6. 46 (1H, d) 6. 82 (1H, d) 7. 22 (1H, d)
505	1. 15 (6H, m) 1. 28 (3H, m) 2. 81 (3H, m) 3. 59 (3H, s) 4. 16 (1H, m) 6. 40 (1H, d) 7. 09 (1H, d) 7. 26 (1H, d)
510	0. 86 (3H, t) 1. 71 (3H, s) 2. 10 (1H, m) 2. 35 (1H, m) 2. 66 (3H, d) 3. 51 (3H, s) 6. 31 (1H, s) 6. 92 (1H, s) 7. 18 (1H, d)
511	0. 97 (3H, t) 1. 17 (1H, m) 1. 43 (1H, m) 1. 80 (3H, s) 2. 09 (1H, m) 2. 32 (1H, m) 2. 73 (3H, d) 3. 59 (3H, s) 6. 39 (1H, d) 6. 97 (1H, s) 7. 24 (1H, d)
515	1. 80 (3H. d) 3. 60 (3H, s) 4. 60 (1H, m) 6. 40 (1H, s) 6. 80 (1H, s) 7. 20 (1H. d)
549	1. 59 (6H, s) 2. 91 (1H, bs) 3. 55 (3H, s) 6. 33 (1H, s) 6. 65 (1H, s) 7. 17 (1H, d)
551	1. 42 (3H, d) 3. 58 (3H, s) 5. 35 (1H, m) 6. 39, 6. 43 (1H, s) 6. 75 (1H, s) 6. 80 (1H, bs) 7. 25 (1H, d)
	·

(表28)

	_
化合物	
番号	lH-NMR δ値(ppm) 溶媒 CDC13
571	1. 45 (3H, d) 2. 40 (3H, s) 3. 10 (1H, s) 3. 60 (3H, s) 3. 90 (1H, q) 6. 40 (1H, s)
	6. 70 (1H, s) 7. 15 (1H, d)
577	1. 93 (3H, d) 3. 59 (3H, s) 4. 56 (1H, q) 6. 40 (1H, d) 6. 87 (1H, s) 7. 25 (1H, s)
505	0.00(2)(4) 1.54(2)(4) 2.45(2)(-) 2.50(2)(-) 4.52(3)(-) 2.00(3)(3)
585	0.90(3H, t) 1.54(3H, d) 3.45(2H, m) 3.58(3H, s) 4.52(1H, m) 6.38(1H, d)
	6. 73(1H, s) 7. 20(1H, d)
586	0. 88(3H, t) 1.5~1.6(6H, m) 3.38(2H, m) 3.56(3H, s) 4.55(1H, m)
360	6. 39 (1H, d) 6. 73 (1H, s) 7. 18 (1H, d)
	0. 55(111, d) 0. 15(111, 5) 1. 16(111, d)
623	2. 44 (3H, s) 3. 58 (3H, s) 3. 80 (3H, s) 4. 64 (2H, s) 6. 40 (1H, s) 7. 15 (1H, d)
020	2. 44 (on, 5) 0. 00 (on, 5) 0. 00 (on, 5) 4. 04 (an, 5) 0. 40 (in, 5) 1. 10 (in, u)
624	1. 62 (3H, d) 2. 41 (3H, s) 3. 59 (3H, s) 3. 75 (3H, s) 4. 73 (1H, q) 6. 40 (1H, s)
	7. 15 (1H, d)
635	2. 44 (3H, s) 3. 54 (3H, s) 5. 32~5. 50 (2H, dd) 6. 36 (1H, s)
	7. 00~7. 15 (2H, m)
646	0. 96 (6H, d) 2. 14 (1H, m) 3. 03 (2H, m) 3. 59 (3H, s) 6. 41 (1H, s) 7. 31 (1H, d)
	10. 7 (1H, s)
647	0. 94 (6H, d) 2. 07 (1H, m) 2. 84 (2H, d) 3. 59 (3H, s) 3. 93 (3H, s) 6. 40 (1H, s)
	7. 25 (1H. d)
649	0. 91 (3H, m) 1. 33~1. 38 (4H, m) 1. 66~1. 73 (2H, m) 3. 12 (2H, m) 3. 60 (1H, s)
	6. 41 (1H, s) 7. 30 (1H, d)
CEE	2.50(2)(-), 2.02(2)(-), 6.40(1)(-), 7.21(1)(1)(-), 2.02(1)(1)(-)
655	3. 59 (3H, s) 3. 92 (3H, s) 6. 40 (1H, s) 7. 31 (1H, d) 8. 20 (1H, s)
656	2. 56 (3H, s) 3. 56 (3H, s) 4. 03 (3H, s) 6. 41 (1H, s) 7. 32 (1H, d)
030	6. 30 (3n, 5) 3. 30 (3n, 5) 4. 03 (3n, 5) 0. 41 (1n, 5) 1. 36 (1n, 0)
1	

(表29)

1 _{H-NMR}			
	る値(nnm)	溶媒	CDC13
	- im (huu)		
(3H, d) 3.57 (4H, m)	3. 96 (3H, s)	5. 18 (1H. 1	m) 6. 37 (1H, d) 7. 28 (1H, d)
	3. 58 (3H, s)	4. 46 (2H,	q) 4.73 (2H, s) 6.39 (1H, s)
(1H, d)			
	3. 08 (2H, q)	3. 58 (ЗН,	s) 4. 45 (2H, q) 4. 71 (2H, s)
(3H. t) 3.58(3H. s)	4. 53 (2H, q)	6. 40 (1H, s	s) 7.39(1H, d) 10.04(1H, s)
	3. 60 (3H, s)	4. 45 (2H, c	q) 5.62(1H, q) 6.41(1H, s)
:	3. 60 (3H, s)	4. 40 (1H. n	n) 6. 40 (1H, d) 6. 80 (1H, s)
3H, dd) 2, 75 (3H, s)	3. 80 (3H, s)	4. 20 (1H. c	a) 6, 20(1H, d) 7, 00(2H, m)
) 2. 90 (2H, m)	3. 60 (3H,	d) 4. 40(1H, q) 6. 40(1H, d)
			•
		3. 53 (3H, s	s) 4. 13 (1H, q) 6. 35 (1H, d)
(1n, 0) 0. or (1n, 00)	l		
(3H, t) 1: 31 (3H, t)	2. 17 (1H, m)	2. 45 (1H, a	n) 2.87 (2H, m) 3.58 (3H, s)
(1H, m) 6. 39 (1H, d)	6. 96 (1H, dd)	7. 03 (1H,	d)
	2. 60 (1H, bs)	3. 50 (3H.	s) 3.60(1H, q) 6.30(1H, s)
(ih, s) 7. 40 (ih, d)			
	(3H, t) 2. 96 (3H, s) (1H, d) (3H, t) 1. 43 (3H, t) (1H, s) 7. 34 (1H, d) (3H, t) 3. 58 (3H, s) (3H, t) 1. 88 (3H, d) (1H, d) (3H, d) 3. 30 (3H, d) (1H, dd) (3H, dd) 2. 75 (3H, s) (3H, t) 1. 80 (3H, dd) (2H, m) 7. 20 (1H, s) (3H, m) 1. 84 (2H, m) (1H, d) 6. 87 (1H, dd) (3H, t) 1. 31 (3H, t) (1H, m) 6. 39 (1H, d)	(3H, t) 2. 96 (3H, s) 3. 58 (3H, s) (1H, d) (3H, t) 1. 43 (3H, t) 3. 08 (2H, q) (1H, s) 7. 34 (1H, d) (3H, t) 3. 58 (3H, s) 4. 53 (2H, q) (3H, t) 1. 88 (3H, d) 3. 60 (3H, s) (1H, d) (3H, d) 3. 30 (3H, d) 3. 60 (3H, s) (1H, dd) (3H, d) 2. 75 (3H, s) 3. 80 (3H, s) (1H, dd) (3H, t) 1. 80 (3H, dd) 2. 90 (2H, m) (2H, m) 7. 20 (1H, s) (3H, m) 1. 84 (2H, m) 3. 27 (3H, s) (1H, d) 6. 87 (1H, dd) (3H, t) 1. 31 (3H, t) 2. 17 (1H, m) (1H, m) 6. 39 (1H, d) 6. 96 (1H, dd) (2H, t) 1. 90 (2H, m) 2. 60 (1H, bs)	(3H, t) 1. 43 (3H, t) 3. 08 (2H, q) 3. 58 (3H, (1H, s) 7. 34 (1H, d) (3H, t) 3. 58 (3H, s) 4. 53 (2H, q) 6. 40 (1H, s) (3H, t) 1. 88 (3H, d) 3. 60 (3H, s) 4. 45 (2H, s) (1H, d) (3H, d) 3. 30 (3H, d) 3. 60 (3H, s) 4. 40 (1H, s) (1H, dd) (3H, d) 2. 75 (3H, s) 3. 80 (3H, s) 4. 20 (1H, s) (3H, t) 1. 80 (3H, dd) 2. 90 (2H, m) 3. 60 (3H, s) (2H, m) 7. 20 (1H, s) (3H, t) 1. 84 (2H, m) 3. 27 (3H, s) 3. 53 (3H, s) (1H, d) 6. 87 (1H, dd) (3H, t) 1. 31 (3H, t) 2. 17 (1H, m) 2. 45 (1H, m) (1H, m) 6. 39 (1H, d) 6. 96 (1H, dd) 7. 03 (1H, m) (2H, t) 1. 90 (2H, m) 2. 60 (1H, bs) 3. 50 (3H, m)

(表30)

化合物	
番号	lH-NMR δ値(ppm) 溶媒 CDCl3
713	1.53(3H, d) 3.31(3H, d) 3.58(3H, s) 4.45(1H, m) 6.39(1H, d) 6.70(1H, s)
ļ	7. 35 (1H, d)
717	1. 82 (3H, dd) 2. 82 (3H, s) 3. 57 (3H, s) 4. 37 (1H, q) 6. 39 (1H, d) 6. 96 (1H, s)
	7. 41 (1H, d)
720	1. 35 (3H, m) 1. 83 (3H, dd) 2. 92 (2H, m) 3. 59 (3H, s) 4. 39 (1H, q) 6. 39 (1H, d)
	6. 95 (1H, s) 7. 40 (1H, d)
750	1. 33 (3H, t) 2. 80 (2H, q) 3. 70 (3H, s) 6. 35 (1H, s) 6. 47 (1H, s) 7. 23 (1H, d)
752	1.63(3H, d) 3.07(2H, m) 3.56(3H, d) 4.27(1H, q) 6.37(1H, d) 6.71(1H, d)
	7. 19(1H, d)
757	1. 11 (3H, m) 2. 20 (1H, m) 2. 54 (1H, m) 3. 53~3. 62 (4H, m) 3. 86 (1H, m)
] '0'	4. 36 (1H, m) 6. 38 (1H, d) 7. 05 (1H, s) 6. 26 (1H, d)
764	0. 85 (3H, m) 1. 82 (2H, m) 3. 24 (3H, s) 3. 51 (3H, s) 4. 11 (1H, q) 6. 32 (1H, d)
	6. 98 (1H, d) 7. 12 (1H, d).
765	1. 61 (3H, d) 3. 73 (3H, s) 3. 79 (2H, m) 4. 73 (1H, m) 6. 38 (1H, s) 6. 81 (1H, s)
	7. 23 (1H, d)
766 ·	1. 54 (3H, d) 3. 58 (3H, s) 3. 71 (2H, m) 4. 45 (1H, m) 4. 64 (2H, m) 6. 39 (1H, s)
	6. 78 (1H, s) 7. 19 (1H, d)
770	1. 22~1. 28 (6H, m) 1. 79 (3H, dd) 3. 59 (3H, s) 3. 66~4. 07 (4H, dd)
·	5. 47 (1H, m) 6. 39 (1H, d) 6. 79 (1H, s) 7. 16 (1H, d)
771	0. 93 (3H, m) 1. 84 (2H, m) 3. 31 (3H, s) 3. 57 (3H, s) 4. 17 (1H, q) 6. 38 (1H, q)
	6. 75 (1H, d) 6. 90 (1H, dd)
	,

本発明の除草剤は、一般式[1]で示されるベンゾフラン-7-イルウラシル

誘導体を有効成分としてなる。

本発明化合物を除草剤として使用するには本発明化合物それ自体で用いてもよいが、製剤化に一般的に用いられる担体、界面活性剤、分散剤または補助剤等を配合して、粉剤、水和剤、乳剤、微粒剤または粒剤等に製剤して使用することもできる。

製剤化に際して用いられる担体としては、例えばタルク、ベントナイト、クレー、カオリン、珪藻土、ホワイトカーボン、バーミキュライト、炭酸カルシウム、消石灰、珪砂、硫安、尿素等の固体担体、イソプロピルアルコール、キシレン、シクロヘキサン、メチルナフタレン等の液体担体等があげられる。

界面活性剤及び分散剤としては、例えばアルキルベンゼンスルホン酸金属塩、ジナフチルメタンジスルホン酸金属塩、アルコール硫酸エステル塩、アルキルアリールスルホン酸塩、リグニンスルホン酸塩、ポリオキシエチレングリコールエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタンモノアルキレート等があげられる。補助剤としては、例えばカルボキシメチルセルロース、ポリエチレングリコール、アラビアゴム等があげられる。使用に際しては適当な濃度に希釈して散布するかまたは直接施用する。

本発明の除草剤は茎葉散布、土壌施用または水面施用等により使用することができる。有効成分の配合割合については必要に応じて適宜選ばれるが、粉剤または粒剤とする場合は0.01~10%(重量)、好ましくは0.05~5%(重量)の範囲から適宜選ぶのがよい。また、乳剤及び水和剤とする場合は1~50%(重量)、好ましくは5~30%(重量)の範囲から適宜選ぶのがよい。

本発明の除草剤の施用量は使用される化合物の種類、対象雑草、発生傾向、環境条件ならびに使用する剤型等によってかわるが、粉剤及び粒剤のようにそのまま使用する場合は、有効成分として10アール当り0.1g~5kg、好ましくは1g~1kgの範囲から適宜選ぶのがよい。また、乳剤及び水和剤とする場合のように液状で使用する場合は、0.1~50,000ppm、好ましくは10~10,000ppmの範囲から適宜選ぶのがよい。

また、本発明の化合物は必要に応じて殺虫剤、殺菌剤、他の除草剤、植物生長 調節剤、肥料等と混用してもよい。 次に代表的な製剤例をあげて製剤方法を具体的に説明する。化合物、添加剤の種類及び配合比率は、これのみに限定されることなく広い範囲で変更可能である。以下の説明において「部」は重量部を意味する。

〈製剤例1〉 水和剤

化合物(4)の10部にポリオキシエチレンオクチルフェニルエーテルの0. 5部、βーナフタレンスルホン酸ホルマリン縮合物ナトリウム塩の0.5部、珪 藻土の20部、クレーの69部を混合粉砕し、水和剤を得る。

〈製剤例2〉 水和剤

化合物 (78) の10部にポリオキシエチレンオクチルフェニルエーテルの 0.5部、βーナフタレンスルホン酸ホルマリン縮合物ナトリウム塩の0.5 部、珪藻土の20部、ホワイトカーボンの5部、クレーの64部を混合粉砕し、水和剤を得る。

〈製剤例3〉 水和剤

化合物 (201) の10部にポリオキシエチレンオクチルフェニルエーテルの 0.5部、βーナフタレンスルホン酸ホルマリン縮合物ナトリウム塩の0.5 部、珪藻土の20部、ホワイトカーボンの5部、炭酸カルシウムの64部を混合 粉砕し、水和剤を得る。

〈製剤例4〉 乳剤

化合物(8)の30部にキシレンとイソホロンの等量混合物60部、界面活性 剤ポリオキシエチレンソルビタンアルキレート、ポリオキシエチレンアルキルア リールポリマー及びアルキルアリールスルホネートの混合物の10部を加え、こ れらをよくかきまぜることによって乳剤を得る。

〈製剤例5〉 粒剤

化合物(44)の10部、タルクとベントナイトを1:3の割合の混合した増量剤の80部、ホワイトカーボンの5部、界面活性剤ポリオキシエチレンソルビタンアルキレート、ポリオキシエチレンアルキルアリールポリマー及びアルキルアリールスルホネートの混合物の5部に水10部を加え、よく練ってペースト状としたものを直径0.7mmのふるい穴から押し出して乾燥した後に0.5~1mmの長さに切断し、粒剤を得る。

次に試験例をあげて本発明化合物の奏する効果を説明する。尚、比較剤として、次に示した化合物を用いた。

〈試験例1〉 水田土壌処理による除草効果試験

100cm²のプラスチックポットに水田土壌を充填し、代掻後、タイヌビエ(Ec)、コナギ(Mo)及びホタルイ(Sc)の各種子を播種し、水深3cmに湛水した。翌日、製剤例1に準じて調製した水和剤を水で希釈し、水面滴下した。施用量は、有効成分を10アール当り100gとした。その後、温室内で育成し、処理後21日目に表31の基準に従って除草効果を調査した。結果を表32~表40に示す。

(表31)

除草効果(生育抑制程度)及び薬害
90%以上の抑制の除草効果、薬害
70%以上90%未満の除草効果、薬害
50%以上70%未満の除草効果、薬害
30%以上50%未満の除草効果、薬害
10%以上30%未満の除草効果、薬害
0%以上10%未満の除草効果、薬害

(表32)

化合物	除	草効	果
番号	Ес	Мо	S c
1	5	5	5
2	5	5	5
3	5	5	5
. 4	5	5	5
6	5	5 .	5
7	- 5	5	5
8	5	5	5
9	5	5	5
10	5	5	5
1 2	5	5	5
1 3	5	5	5
1 4	5	5	5
15	5	5	5
1 6	5	5	5
19	5	5	5
2 0	5	5	5
2 1	5	5	5
2 2	5	5	5
2 3	5	5	5
2 8	5	5	5
2 9	5	5	5
3.0	5	` 5	5
3 1	5	5	5
3 3	5	5	5
3 5	5	5	5
37	5	5	5
4 2	5	5	5
4 3	5	5	5
4 4	5	5	5

(表33)

化合物	除	草効	 果
番号	Еc	Мо	Sc
4 5	5	5	5
7 0	5	5	5.
7 1	5	5	5
7 2	5	5	5
7 5	5	5	5
7 8	5	5	5
8 3	5	5	5
8 4	5	5	. 5
9 5	5	5	5
98	5	5	5
101	5	5	5
111	5	5	5
140	5	5	5
141	5	5	5
142	5	5	5
143	5	5	5
147	5	5	5
152	5.	5	5
153	5	5	5
165	5	5	5
166	5	5	5
187	5	5	4
195	5	5	5
196	5	5	5
197	5	5	5
198	5	5	5
200	5	5	5
201	5	5	5 ·
202	5	5	5

(表34)

化合物	除	草効	果
番号	Еc	Мо	Sc
207	5	5	5
208	5	5	5
209	5	5	5
210	5	5	5
2 1 3	5	5	5
2 2 2	5	5	5
228	5	5	5
2 3 3	5	5	5
230	5	5	5
239	5	5	5
245	5	5	5
265	5	5	5
266	5	5	5
272	5	5	5
289	5	5	5
299	5	5	5
3.03	5	5	5
3 5 0	5	5	5
374	5	5	5
3 7 5	5	5	5
379	5	5	5
383	5	5	5
3 9 2	5	5	5
3 9 3	5	5	5
394	5	5	5
397 -	5	5	5
398	5	5	5
400	5	5	5
401	5	5	5

(表35)

化合物	除	草効	果
番号	Ес	Мо	Sc
	 		
402	5	5	5
404	5	5	5
405	5	5	5
406	5	5	5
407	5	5	5
409	5	5	5
410	5	5	5
411	5	5	5
412	5	5	5
417	5	5	5
418	5	5	5
421	5	5	5
423	5	5	5
424	5	5	5
427	5	5	5
432	5	5	- 5
4 3 3	5	5	5
4 3 5	5	5	5
4 3 6	5	5	5
4 3 9	5	5	5
440	5	5	5
441	5	5	5
442	5	5	5
443	5	5	5
444	5	5	5
4 4 5	5	5	5
446	5	5	5
447	5	5	5
448	5	5	5

(表36)

化合物	除	草効	果
番号	Еc	Мо	Sc
			•
4 4 9	5	5	5
450	5	5	5
451	5	• 5	5
452	5	5	5
453	5	5	5
454	5	5	5
455	5	5	5
456	5	5	5
457	5	5	5
458	5	5	5
459	5	5	5
460	5	5	5
461	5	. 5	5
462	5	5	5
463	5	5	5
464	5	5	5
4 6 6	5	5	4
467	5	5	5
4 6 8	5	5	5
4 6 9	5	5	5
470	5	5	5
471	5	5	5
472	5	5	5
473	5	5	5
476	5	5	5
479	5	5	5
482	5	5	5
483	5	5	5
484	5 ′	5	5

(表37)

化合物	除	草効	果
番号	Ес	Мо	Sc
508	5.	5	5
510	5	5	5
511	5	5	5
513	5	5	5
515	5	5	5
5 2 1	5	5	5
5 2 4	5	5	5
5 3 9	5	5	5
571	5	5	5
572	5	5	5
577	5.	5	5
• 5 7 8	5	5	5
584	5	5	5
591	5	5	5
5 9 2	5	5	5
605	5	5	5
6.0 6	5	5	5
607	5 .	5	5
610	5	5	5
612	5	5	5
617	5	5	5
618	5	5	5
619	5	5	5
6 2 2	5	5	5
623	5	5	5
624	5	5	5
630	5	5	5
631	5	5	5
634	5	5	5

(表38)

化合物	除	草効	果
番号	Еc	Мо	Sc
	 		·
6 3 5	5	5	5
636	5	5	5
639	5	5	5
640	5	5	5
641	5	5	5
642	5	5	4
6 4 3	5	5	5
6 4 4	5	5	5
6 4 5	5	, 5	5
646	5	5	5
647	5	5	5
648	5	5	5
6 4 9	5	5	5
650	5	5	5
651	5	5	5
653	5	5	4
655	5	5	5
6 5 6	5	5	5
657	5	5	5
658	5	5	5
659	5	5	5
660	5	5	5
661	5	5	5
662	5	5	5
663	5	5	5
664	5	5	5
665	5	5	5
666	5	5	5
667	5	5	5

(表39)

化合物	除	草効	果
番号	Ес	Мо	Sc
668	5	5	5
669	5	5	5
6 7. 0	5	5	5
671	5	5	5
672	5	5	5
674	5	5	5
676	5	5	5
677	5	5	5
680	5	5	5
6 8 1	5	5	5
682	5	5	5
684	5	5	5
685	5	5	5
686	5	5	5
688	5	5	5
698	5	5	5
699	5	5	5
700	5	5	5
701	5	5	5
702	5	5	5
703	5	5	5
704	5	5	4
705	5	5	5
706	5	5	5
707	5	5	5
708	5	5	5
709	5	5	5
7 1 0	5	5	5
7 1 1	5	5	5

(表40)

化合物	除	草効	果
番号	Еc	Мо	Sc
7 1 2	5	5	5
7 2 4	5	5 .	5
7 2 5	5	5	5
7 2 6	5	5	5
727	5	5	5

〈試験例2〉 畑地土壌処理による除草効果試験

120cm²プラスチックポットに砂を充填し、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、コゴメガヤツリ(Ci)の各種子を播種して覆土した。製剤例1に準じて調製した水和剤を水で希釈し、10アール当り有効成分が100gになる様に、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理21日目に表31の基準に従って、除草効果を調査した。その結果を表41~表49に示す。なお、一は未試験を表す。

(表41)

化合物	1	涂 草	効	果
番号	Ро	Am	Ch	Ci
1	5	5	5	5
2	5	5	5	5
3	5	5	5	5
4	5	5	5	5
6	5	5	5	5
7	5	5	5	5
8	5	5	5	5
9	5	5	5	5
10	5	5	5	5
1 2	5	5	5	5
1 3	5	5	5	. 5
1 4	5	5 [.]	5	5
15	5	5	5	5
1 6	5	5	5	5
1 9	5	5	5	5
2 0	5	5	5	5
2 1	5	5	5	5
2 2	5	5	5	5
2 3	5	5	5	5
2 5	5	5	5	5
2 8	5	5	5	5
2 9	5	5	5	5
3 0	5	5	5	5
3 1	5	5	5	5
3 3	5	5	5	5
3 5	5	5	5	5
3 7	5	5	5	5
4 2	5	5	5	5
4 3	5	5	5	5

(表42)

化合物		除草	効	果
番号	Ро	A m	Cr	n C i
<u> </u>	<u> </u>			
4 4	5	5	5	5
4 5	5	5	5	5
7 0	5	5	5	5
7 1	5	5	5	5
7 2	5	5	5	5
7 4	5	5	5 .	5
7 5	5	5	5	5
7 8	5	5	5	5
8 3	5	5	5	5
8 4	5	5	5	5
9 5	5	5	5	5
98	5	5	5	5
101	5	5	5	5
111	5	5	5	5
117	5	5	5	5
140	5	5	5	5
141	5	5	5	5
142	5	5	5	5
1 4 3	5	5	5	5
147	5	5	5	5
152	5	5	5	5
153	5	5	5	5
165	5	5	5	5
166	5	5	5	5
195	5	5	5	5
196	5	5	5	5
197	5	5	5	5
198	5	5	5	5
200	5	5	5	5

(表43)

化合物	ß	余 草	効!	———— 果
番号	Ро	A m	Ch	Ci
	<u></u>			
201	5	5	5	5
202	5	5	5	5
206	5	5	5	5
207	5	5	5	5
208	5	5	5	5
209	5	5	5	5
210	5	5	5	5
2 1 3	5	5	5	5
219	5	5	5	5
222	5	5	5	5
227	5	5	5	5
228	5	5	5	5
230	5	5	5	5
2 3 1	5	5	5	5
2 3 3	5	5	5	5
2 3 8	5	5	5	5
2 3 9	5	5	5	5
240	5	5	5	5
241	5	5	5	5
2 4 5	5	5	5	5
246	5	5	5	5
247	5	5	5	5
248	5	5	5	5
265	5	5	5	5
266	5	5	5	5
267 -	5	5	5	5
269	5	5	5	5
270	5	5	5	5
272	5	5	5	5

(表44)

化合物		除 草	効	果
番号	Po	A m	C h	Ci
289	5	5	5	5
299	5	5	5	5
3 0 1	5	5	5	5
303	5	5	5	5
3 0 5	5	5	5	5
3 4 9	5	5	5	5
3 5 0	5	5	5	5
374	5	5	5 .	5
3 7 5	5	5	5	5
3 7 9	5	5	5	5
383	5	5	5	5
392	5	5	5	5
393	5	5	5	5
394	5	5	5	5
397	5	5	5	5
398	5	5	5	5
400	5	5	ຸ5	5
401	5	5	5	5
402	5	5	5	5
404	5	5	5	5
405	5	5	5	5
406	5	5	5	5
407	5	5	5	5
409	5	5	5	5
4 1 0	5	5	5	5
411 -	5	5	5	5
4 1 2	5	5	5	5
417	5	5	5	5
4 1 8	5	5	5	5

(表45)

化合物	Ţ	除草	効	 果
番号	Po	A m	Ch	Ci
4 2 1	5	5	5	5
423	5	5	5	5
424	5	5	5	5
427	5	5	5	5
432	5	5	5	5
433	5	5	5	5
435	5	5	5	5
436	5	5	5	5
439	5	5	5	-
440	5	5	5	5
441	5	5	5	-
442	5	5	5	5
443	5	5	5	5
444	5	5	5	5
4 4 5	5	5	5	5
446	5	5	5	5
447	5	5	5	5
4 4 8	5	5	5	5
449	5	5	5	5
450	5	5	5	5
452	5	5	5	-
453	5	5	5	5
454	5	5	5	5
455	5	5	5	5
456	5	5	5	5
457	5	5	5	5
4 5 8.	5	5	5	5
459	5	5	5	5
460	5	5	5	5

(表46)

化合物	Γ	 除草	効:	 果
	Po	陈 字 Am	C h	* C i
番号	Po	Am	C n	C I
4 6 1	5	5	5	5
462	5	5	5	5
463	5	5	5	5
464	5	5	5	5 ,
466	5	5	5	5
467	5	5	5	5
468	5	5	5	5
469	5	5	5	5
470	5	5	5	-
471	5	5	5	5
472	5	5	5	-
473	5	5	5	5
482	5	5	5	5
483	5	5	5	5
484	5	5	5	5
508	5	5	5	5
510	5	5	5	5
5 1 1	5	5	5	5
5 1 3	5	5	5	5
515	5	5	5	5
5 2 1	5	5	5	5
5 2 4	5	5	5	5
5 3 9	5	5	5	5
571	5	5	5	5
572	5	5	5	5
577 -	5 .	5	5	5
578	5	5	5	5
584	5	5	- 5	5
591	5	5	5	5

(表47)

化合物		除草	効	果
番号	Po	A m	Ch	Ci
5 9 2	5		5	5
605	5	5	5	5
606	5	5	5	5
607	5	. 5	5	5
610	5	5	5	5
612	5	5	5	5
617	5	5	5	5
618	5	5	5	5
619	- 5	5	5	5
622	5	5	5	5
623	5	5	5	5
624	5	5	5	5
630	5	5	5	5
631	5	5	5	5
632	5	5	5	5
634	- 5	5	5	5
6 3 5	5	5	5	5
636	- 5	5	5	5
639	5	5	5	5
640	5	5	5	5
643	5	5	5	5
644	4	5	5	5
645	5	5	5	5
646	5	5	5	5
647	5	5	5	5
648.	5	5	5	5
649	5	5	5	5
651	5	5	5	5
652	5	5	5	5

(表48)

化合物		除草	効	果
番号	Ро	Am	C h	Ci
653	5	5	5	5
655	5	5	5	5
656	5	5	5	5 5
657	5	5	5	5
658	5	5	5	5
659	5	5	5	_
660	5	5	5	5
661	5	5	5	5
662	5	5	5	5
663	5	5	5	5
664	5	5	5	5
665	5	5	5	5
666	5	5	5	5
667	5	5	5	5
668	5	5	5	5
669	5	5	5	5
670	5	5	5	5
671	5	5	5	5
672	5	5	5	5
673	5	, 5	5	5
674	5	5	5	5
675	5	5	5	5
676	5	5	5	5
677	5	5	5	5
680	5	5	5	5
681	5	5	5	5
682	5	5	5	5
684	5	5	5	5
685	5	5	5	5

(表49)

化合物	F	余 草	効!	 果
番号	Ро	A m	Сh	Ci
686	5	5	5	5
688	5	5	5	5
698	5	5	5	-
699	5	5	5	_
700	5	5	5	_
701	5	5	5	5
702	5	5	5	
703	5	5	5	_
704	5	5	5	-
705	5	5	5	5
706	5	5	5	5
707	5	5	5	5
708	5	5	5	5
709	5	5	5	5
710	5	5	5	5
7 1 1	5	5	5	5
712	5	5	5	5
724	5	5	5	5
725	5	5	5	5
726	5	5	5	5
7 2 7	5	5	5	5
730	5	5	5	5

(試験例3) 畑地茎葉処理による除草効果試験

120cm²プラスチックポットに砂を充填し、オオイヌタデ(Po)、アオビュ(Am)、シロザ(Ch)、コゴメガヤツリ(Ci)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤を水に希釈し、10アール当り有効成分が100gになる様に、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果を調査した。その結果を表50~表58に示す。

(表50)

	除	草	効果	
化合物番号	Ро	Am	Ch	Ci
1	5	5	5	5
2	5	5	5	5
3	5	5	5	5
4	5	5	5	5
6	5	5	5	5
7	5	5	5	5
8	5	5	5	5
9	5	5	5	5
10	5	5	5	5
1 2	5	5	5	5
1 3	5	5	5	5
14	5	5	5	5
1 5	5	5	5	5
16	5	5	5	5
1 9	5	5	- 5	5
2 0	5	5	5	5
2 1	5	5	5	5
2 2	5	5	5	5
2 3	5	5	5	5
2 5	5	5	5	5
2 8	5	5	5	5
2 9	5	5	5	5
3 0	5	5	5	5
3-1	5	5	5	5
3 3	5	5	5	5
3 5	5	5	5	5
3 7	5	5	5	5
4 2	5	5	5	5
4 3	5	5	5	5

(表51)

	除	草_	効 果	
化合物番号	Ро	A m	Ch	Ci
4 4	5	5	5	5
4 5	5	5	5	5
7 0	5	5	5	5
7 1	5	5	5	5
7 2	5	5	5	5
7.4	5	5	5	5
7 5	5	5	5	5
7 8	5	5	5	5
8 3	5	5	5	5 .
8 4	5	5	5	5
9 5	- 5	5	5	5
98	5	5	5	5
101	5	5	5	5
111	5	5	5	5
116	5	5	5	5
140	5	5	5 '	5
141	5	5	5	5
142	5	5	5	5
143	5	5	5	5
147	5	5	5	5
152	5	5	5	5
153	5	5	5	5
165	5	5	5	5
166	5	5	5	5
195	5	5	5	5
196	5	5	5	5
197	5	5	5	5
198	5	5	5	5
200	5	5	5	5

(表52)

	除	草:	効 果	
化合物番号	Ро	Am	Ch	Ci
201	5	5	5	5
202	5	5	5	5
206	5	5	5	5
207	5	5	5	5
208	5	5	5	5
209	5	5	5	5
210	5	5	5	5
2 1 3	5	5	5	5
219	5	5	5	5
222	5	5	5	5
227	5	5	5	5
228	5	5	5	5
2 3 0	5	5	5	5
231	5	5	5	5
2 3 3	. 5	5	5	5
2 3 8	5	5	5	5
2 3 9	5	5 ,	5	5
240	5	5	5	5
241	5	5	5	5
245	5	5	5	5
246	5	5	5	5
247	5	5	5	5
248	5	5	5	5
265	5	5	5	5
266	5	5	5	5
267	5	5	5	5
269	5	5	5	5
272	5	5	5	5
289	5	5	5	5

(表53)

	除	草	効 果	
化合物番号	P o	Am	C h	Ci
299	5	5	5	5
301	5	5	5	5
303	5	5	5	5
305	5	5	5	5
3 4 9	5	5	5	5
350	5	5	5	5
374	5	5	5	5
3 7 5	5	5	5	5
379	5	5	5	5
383	5	5	5	5
392	5	5	5	5
3 9 3	5	5	5	5
394	5	5	5	5
397	5	5	5	5
398	5	5	5	5
400	5	5	5	5
401	5	5	5	5
402	5	5	5 ·	5
404	5	5	5	5
405	5	5	5	5
406	5	5	5	5
407	5	5	5	5
409	5	5	5	5
410	5	5	5	5
411	5	5	5	5
412	5	5	5	5
417	5	5	5	5
418	5	5	5	5
421	5	5	5	5

(表54)

	除	草,	め 果	-
化合物番号	Ро	Am	C h	Ci
423	5	5	5	5
424	5	5	5	5
427	5	5	5	5
4 3 2	5	5	5	5
4 3 3	5	5	5	5
4 3 5	5	5	5	5
4 3 6	5	5	5	5
439	5	5	5	5
440	5	5	5	5
441	5	5	5	5
4 4 2	5	5	5	5
443	5	5	5	5
444	5	5	5	5
4 4 5	5	5	5	5
446	5	5	5	5
447	5	5	5	5
448	5	5	5	5
449	5	5	5	5
450	5	5	5	5
451	5 -	5	5	5
452	5	5	5	5
453	5	5	5	5
454	5	5	5	5
455	5	5	5	5
456	5	5	5	5
457	5	5	5	5
458	5	5	5	5
459	5	5	5	5
460	5	5	5	5

(表55)

	除	草	効 果	
化合物番号	Ро	Am	C h	Ci
4 6 1	5	5	5	5
462	5	5	5	5
463	5	5	5	5
464	5	5	5	5
466	5	5	5	5
467	5	5	5	5
468	5	5	5	5
469	5	5	5 -	5
470	5	5	5	5
471	5	5	5	5
472	5	- 5	5	5
473	5	5	5	5
476	5	5	5	5
479	5	5	5	5
482	5	5	5	5
483	5	5	5	5
484	5	5	5	5
508	5	5	5	5
510	5	5	5	5
511	5	5	5	5
513	5	5	5	5
515	5	5	5	5
521	5	5	5	5
524	5	5	5	5
5 3 9	5	5	5	5
571.	5	5	5	5
572	5	5	5	5
577	5	5	5	5
578	5	5	5	5

(表56)

	除	草	効 果	
化合物番号	Ро	A m	Ch	Ci
584	5	5	5	5
5 9 1	5	5	5	5
592	5	5	5	5
605	5	5	5	5
606	5	5	5	5
607	5	5	5	5
610	5	5	5	5
612	5	5	5	5
617	5	5	5	5
618	5	5	5	5
619	5	5	5	5
622	5	5	5	5
623	5	5	5	5
624	5	5	5	5
630	5	5	5	5
6 3 1	5	5	5	5
632	5	5	5	5
634	5	5	5	5
635	5	5	5	5
636	5	5	5	5
639	5	5	5	5
640	5	5	5	5
641	5	5	5	5
643	5	5	5	5
644	5	5	5	5
645-	5	5	5	5
646	5	5	5	5
647	5	5	5	5
648	5	5	5	5

5 (表57)

	除	草	効 果	
化合物番号	Ро	A m	C h	Ci
6 4 9	5	5	5	5
6 5 1	5	5	5	5
653	5	5	5	5
655	5	5	5	5
656	5	5	5	5
657	5	5	5	5
658	5	5	5	5
659	5	5	5	5
660	5	5	5	5
661	5	5	5	5
662	5	5	5	5
663	5	5	5	5
664	5	5	5	5
665	5	5	5	5
666	5	5	5	5
667	5	5	5	5
668	5	5	5	5
669	5	5	5	5
670	5	5	5	5
671	5	5	5	5
672	5	5	5	5
674	5	5	5	5
676	5	5	5	5
677	5	5	5	5
680	5	5	5	5
681	5	5	5	5
682	5	5	5	5
684	5	5	5	5
685	5	5	5	5

(表58)

	除	草丸	功 果	
化合物番号	Ро	Am	Ch	Ci
686	5	5	5	5
688	5	5	5	5
698	5	5	5	5
699	5	5	5	5
701	5	5	5	5
702	5	5	5	5
703	5	5	5	5
704	5	5	5	5
705	5	5	5	5
706	5	5	5	5
707	5	5	5	5 .
708	5	5	5	5
709	5	5	5	5
710	5	5	5	5
711	5	5	5	5
712	5	5	5	5
724	5	5	5	5
725	5	5	5	5
7 2 6	5	5	5	5
727	5	5	5	5
730	5	5	5	5

(試験例4) 畑地土壌処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、コムギ(Tr)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種して覆土した。翌日、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理後21日目に表31の基準に従って除草効果及び薬害を調査した。試験結果を表59~表62に示す。なお、一は未試験を表す。

(表59)

番号	化合物	薬 量	ß	余 草	効!	果	薬害
3 1.6 5 5 5 5 0 6 1.6 5 5 5 5 1 8 1.6 5 5 5 5 1 13 1.6 5 5 5 5 0 15 1.6 5 5 5 5 0 22 1.6 5 5 5 5 1 31 1.6 5 5 5 5 1 31 1.6 5 5 5 5 1 31 1.6 5 5 5 5 1 33 1.6 5 5 5 5 1 70 1.6 5 5 5 5 1 72 1.6 5 5 5 5 1 78 1.6 5 5 5 5 1 95 1.6 5 5 5 5 1 142 6 3		ai, g					
6 1. 6 5 5 5 5 1 8 1. 6 5 5 5 5 5 1 13 1. 6 5 5 5 5 5 0 15 1. 6 5 5 5 5 0 22 1. 6 5 5 5 5 0 23 1. 6 5 5 5 5 1 31 1. 6 5 5 5 5 1 31 1. 6 5 5 5 5 1 70 1. 6 5 5 5 5 1 71 1. 6 5 5 5 5 1 72 1. 6 5 5 5 5 1 84 6. 3 5 5 5 1 98 6. 3 5 5 5 1 142 6. 3 5 5 5 5 1 142 6. 3	番号	/10a	Ро	Am	Ch	A b	Tr
8 1. 6 5 5 5 5 0 13 1. 6 5 5 5 5 0 15 1. 6 5 5 5 5 0 22 1. 6 5 5 5 5 0 23 1. 6 5 5 5 5 1 31 1. 6 5 5 5 5 1 31 1. 6 5 5 5 5 1 70 1. 6 5 5 5 5 1 71 1. 6 5 5 5 5 1 72 1. 6 5 5 5 5 1 78 1. 6 5 5 5 5 1 95 1. 6 5 5 5 1 98 6. 3 5 5 5 1 142 6. 3 5 5 5 5 1 152 1. 6 5 5 <td>3</td> <td>1. 6</td> <td>5</td> <td>5</td> <td>5</td> <td>5</td> <td>0</td>	3	1. 6	5	5	5	5	0
13 1.6 5 5 5 5 0 15 1.6 5 5 5 5 0 22 1.6 5 5 5 5 0 23 1.6 5 5 5 1 31 1.6 5 5 5 1 31 1.6 5 5 5 1 70 1.6 5 5 5 1 71 1.6 5 5 5 5 72 1.6 5 5 5 5 78 1.6 5 5 5 5 84 6.3 5 5 5 1 98 6.3 5 5 5 1 142 6.3 5 5 5 1 152 1.6 5 5 5 1 153 6.3 5 5 5 5 1 1200 1.6 5 5 5	6	1.6	5	5	5	5	1
15 1.6 5 5 5 5 0 22 1.6 5 5 5 5 5 1 23 1.6 5 5 5 5 1 31 1.6 5 5 5 5 1 33 1.6 5 5 5 5 1 70 1.6 5 5 5 5 1 71 1.6 5 5 5 5 1 72 1.6 5 5 5 5 1 72 1.6 5 5 5 5 1 84 6.3 5 5 5 5 1 95 1.6 5 5 5 1 1 98 6.3 5 5 5 1 1 1 1 6 3 5 5 5 1 1 1 1 6 3 5 5 5 1 1 1 1<	8	1. 6	5	5	5	5	1
2 2 1. 6 5 5 5 5 5 1 2 3 1. 6 5 5 5 5 5 1 3 1 1. 6 5 5 5 5 1 3 1 1. 6 5 5 5 5 1 7 0 1. 6 5 5 5 5 1 7 1 1. 6 5 5 5 5 1 7 2 1. 6 5 5 5 5 1 7 2 1. 6 5 5 5 5 1 8 4 6. 3 5 5 5 5 1 9 5 1. 6 5 5 5 5 1 9 8 6. 3 5 5 5 5 1 1 4 2 6. 3 5 5 5 1 1 4 2 6. 3 5 5 5 1 1 5 2 1. 6 5 5 5 5 1 1 6 3 </td <td>1 3</td> <td>1.6</td> <td>5</td> <td>5</td> <td>5</td> <td>5</td> <td>0</td>	1 3	1.6	5	5	5	5	0
23 1.6 5 5 5 5 1 31 1.6 5 5 5 5 1 33 1.6 5 5 5 5 1 70 1.6 5 5 5 1 71 1.6 5 5 5 5 1 72 1.6 5 5 5 5 1 78 1.6 5 5 5 5 1 84 6.3 5 5 5 1 95 1.6 5 5 5 1 98 6.3 5 5 5 1 11 1.6 5 5 5 1 142 6.3 5 5 5 1 152 1.6 5 5 5 1 153 6.3 5 5 5 5 1 200 1.6 5 5 5 5 1 222	15	1. 6	5	5	5	5	0
31 1. 6 5 5 5 5 1 33 1. 6 5 5 5 5 1 70 1. 6 5 5 5 5 1 71 1. 6 5 5 5 5 1 72 1. 6 5 5 5 5 0 78 1. 6 5 5 5 5 1 84 6. 3 5 5 5 5 1 95 1. 6 5 5 5 5 1 98 6. 3 5 5 5 1 11 1. 6 5 5 5 1 142 6. 3 5 5 5 1 152 1. 6 5 5 5 1 153 6. 3 5 5 5 5 1 200 1. 6 5 5 5 5 1 222 1. 6 5 5 5 5	2 2	1. 6	5	5	5	5	0
3 3 1. 6 5 5 5 5 1 7 0 1. 6 5 5 5 5 1 7 1 1. 6 5 5 5 5 1 7 2 1. 6 5 5 5 5 0 7 8 1. 6 5 5 5 5 1 8 4 6. 3 5 5 5 5 1 9 5 1. 6 5 5 5 5 1 9 8 6. 3 5 5 5 1 1 1 1. 6 5 5 5 1 1 4 2 6. 3 5 5 5 1 1 5 2 1. 6 5 5 5 1 1 5 3 6. 3 5 5 5 5 1 1 6 5 1. 6 5 5 5 5 1 2 2 2 1. 6 5 5 5 5 5 1 2 4 5 6. 3 5	2 3	1.6	5	5	5	5	1
70 1.6 5 5 5 5 1 71 1.6 5 5 5 5 5 1 72 1.6 5 5 5 5 0 78 1.6 5 5 5 5 1 84 6.3 5 5 5 1 95 1.6 5 5 5 1 98 6.3 5 5 5 1 11 1.6 5 5 5 1 142 6.3 5 5 5 1 142 6.3 5 5 5 1 152 1.6 5 5 5 1 153 6.3 5 5 5 1 200 1.6 5 5 5 1 222 1.6 5 5 5 5 233 1.6 5 5 5 5 0 245 6.3 5	3 1	1.6	5	5	5	5	1
71 1. 6 5 5 5 5 0 72 1. 6 5 5 5 5 0 78 1. 6 5 5 5 5 1 84 6. 3 5 5 5 1 95 1. 6 5 5 5 1 98 6. 3 5 5 5 1 11 1. 6 5 5 5 5 1 142 6. 3 5 5 5 5 1 152 1. 6 5 5 5 5 1 153 6. 3 5 5 5 5 1 165 1. 6 5 5 5 5 1 200 1. 6 5 5 5 5 1 222 1. 6 5 5 5 5 1 245 6. 3 5 5 5 5 0 245 6. 3 5 5 <t< td=""><td>3 3</td><td>1.6</td><td>5</td><td>5</td><td>5</td><td>5</td><td>1</td></t<>	3 3	1.6	5	5	5	5	1
72 1. 6 5 5 5 5 0 78 1. 6 5 5 5 5 1 84 6. 3 5 5 5 5 1 95 1. 6 5 5 5 1 98 6. 3 5 5 5 1 111 1. 6 5 5 5 1 142 6. 3 5 5 5 5 1 152 1. 6 5 5 5 5 1 153 6. 3 5 5 5 5 1 165 1. 6 5 5 5 5 1 200 1. 6 5 5 5 5 1 222 1. 6 5 5 5 5 1 245 6. 3 5 5 5 5 0 245 6. 3 5 5 5 5 0 246 6. 3 5 5	7 0	1. 6	5	5	5	5	1
78 1.6 5 5 5 5 1 84 6.3 5 5 5 5 1 95 1.6 5 5 5 5 1 98 6.3 5 5 5 1 111 1.6 5 5 5 1 142 6.3 5 5 5 1 152 1.6 5 5 5 1 153 6.3 5 5 5 1 165 1.6 5 5 5 1 200 1.6 5 5 5 1 222 1.6 5 5 5 1 222 1.6 5 5 5 0 233 1.6 5 5 5 0 245 6.3 5 5 5 0 246 1.6 5 5 5 0 247 6.3 5 5 5 5 <td>7 1</td> <td>1. 6</td> <td>5</td> <td>5</td> <td>5</td> <td>5</td> <td>1</td>	7 1	1. 6	5	5	5	5	1
84 6.3 5 5 5 5 1 95 1.6 5 5 5 5 1 98 6.3 5 5 5 1 111 1.6 5 5 5 1 142 6.3 5 5 5 1 152 1.6 5 5 5 1 153 6.3 5 5 5 1 165 1.6 5 5 5 1 200 1.6 5 5 5 1 222 1.6 5 5 5 0 233 1.6 5 5 5 0 245 6.3 5 5 5 0 246 1.6 5 5 5 0 247 6.3 5 5 5 0 266 6.3 5 5 5 5 0	7 2	1. 6	5	5	5	5	0
95 1.6 5 5 5 5 1 98 6.3 5 5 5 5 1 111 1.6 5 5 5 1 142 6.3 5 5 5 1 152 1.6 5 5 5 1 153 6.3 5 5 5 1 165 1.6 5 5 5 1 200 1.6 5 5 5 1 222 1.6 5 5 5 1 222 1.6 5 5 5 0 233 1.6 5 5 5 0 245 6.3 5 5 5 0 246 1.6 5 5 5 0 247 6.3 5 5 5 0 266 6.3 5 5 5 1	7 8	1. 6	5	5	5	5	1
98 6.3 5 5 5 5 1 111 1.6 5 5 5 5 1 142 6.3 5 5 5 5 1 152 1.6 5 5 5 1 153 6.3 5 5 5 1 165 1.6 5 5 5 1 200 1.6 5 5 5 1 222 1.6 5 5 5 0 233 1.6 5 5 5 0 245 6.3 5 5 5 0 246 1.6 5 5 5 0 247 6.3 5 5 5 0 266 6.3 5 5 5 1	8 4	6. 3	5	5	5	5	1
1 1 1 1 . 6 5 5 5 5 5 1 1 4 2 6 . 3 5 5 5 5 1 1 1 5 2 1 . 6 5 5 4 5 0 1 5 3 6 . 3 5 5 5 5 1 1 6 5 1 . 6 5 5 5 5 1 2 0 0 1 . 6 5 5 5 5 1 2 2 2 1 . 6 5 5 5 5 0 2 3 3 1 . 6 5 5 5 5 1 2 4 5 6 . 3 5 5 5 5 0 2 4 6 1 . 6 5 5 5 5 0 2 4 7 6 . 3 5 5 5 5 0 2 6 6 6 . 3 5 5 5 5 1	9 5	1.6	5	5	5	5	1
1 4 2 6. 3 5 5 5 5 1 1 5 2 1. 6 5 5 4 5 0 1 5 3 6. 3 5 5 5 5 1 1 6 5 1. 6 5 5 5 5 1 2 0 0 1. 6 5 5 5 5 1 2 2 2 1. 6 5 5 5 0 2 3 3 1. 6 5 5 5 0 2 4 5 6. 3 5 5 5 0 2 4 6 1. 6 5 5 5 0 2 4 7 6. 3 5 5 5 0 2 6 6 6. 3 5 5 5 1	98	6.3	5	5	5	5	1
152 1.6 5 5 4 5 0 153 6.3 5 5 5 5 1 165 1.6 5 5 5 1 200 1.6 5 5 5 1 222 1.6 5 5 5 0 233 1.6 5 5 5 1 245 6.3 5 5 5 0 246 1.6 5 5 5 0 247 6.3 5 5 5 0 266 6.3 5 5 5 1	111	1.6	5	5	5	5	1
153 6.3 5 5 5 5 1 165 1.6 5 5 5 5 1 200 1.6 5 5 5 5 1 222 1.6 5 5 5 5 0 233 1.6 5 5 5 5 1 245 6.3 5 5 5 0 246 1.6 5 5 5 0 247 6.3 5 5 5 0 266 6.3 5 5 5 1	142	6. 3	5	5	5	5	1
1 6 5 1. 6 5 5 5 5 1 2 0 0 1. 6 5 5 5 5 5 1 2 2 2 1. 6 5 5 5 5 0 2 3 3 1. 6 5 5 5 5 1 2 4 5 6. 3 5 5 5 5 0 2 4 6 1. 6 5 5 5 5 0 2 4 7 6. 3 5 5 5 5 0 2 6 6 6. 3 5 5 5 5 1	152	1.6	5	.5	4	5 .	0
200 1.6 5 5 5 5 5 222 1.6 5 5 5 5 0 233 1.6 5 5 5 5 1 245 6.3 5 5 5 0 246 1.6 5 5 5 0 247 6.3 5 5 5 0 266 6.3 5 5 5 1	153	6. 3	5	5	5 .	5	1
2 2 2 1. 6 5 5 5 5 0 2 3 3 1. 6 5 5 5 5 5 1 2 4 5 6. 3 5 5 5 5 0 2 4 6 1. 6 5 5 5 5 0 2 4 7 6. 3 5 5 5 5 0 2 6 6 6. 3 5 5 5 5 1	165	1.6	5	5	5	5	1
233 1.6 5 5 5 5 1 245 6.3 5 5 5 5 0 246 1.6 5 5 5 5 0 247 6.3 5 5 5 0 266 6.3 5 5 5 1	200	1. 6	5	5	5	5	1
2 4 5 6. 3 5 5 5 5 0 2 4 6 1. 6 5 5 5 5 0 2 4 7 6. 3 5 5 5 5 0 2 6 6 6. 3 5 5 5 5 1	222	1.6	5	5	5	5	0
2 4 5 6. 3 5 5 5 5 0 2 4 6 1. 6 5 5 5 5 0 2 4 7 6. 3 5 5 5 5 0 2 6 6 6. 3 5 5 5 5 1	233	1. 6	5	5	5	5	1
247 6.3 5 5 5 5 266 6.3 5 5 5 5	2 4 5	6.3	5	5	5		0
266 6.3 5 5 5 1	246	1.6	5	5	5	5	0
i i i	247	6.3	5	5	5	5	0
289 1.6 5 5 5 5 1	266	6.3	5	5	5	5	1
, , , , , , , , , , , , , , , , , , , ,	289	1.6	5	5	5	5	1

(表60)

化合物	薬 量		涂 草	効	果	薬害
	ai, g					
番号	/10a	Ро	Am	C h	Αb	Tr
3 7 4	1. 6	5	5	5	5	1
379	1. 6	5	5	5	5	1
3 8 3	1. 6	5	5	5	5	1
392	1. 6	5	5	4	5	1
394	1. 6	5	5	5	5	1
397	1. 6	5	5	5	5	1
398	1. 6	5	5	5	4	1
402	6. 3	5	5	5	5	1
406	1. 6	5	5	5	5	1
407	1.6	5	5	5	5	1
409	1. 6	5	5	5	5	1
410	1. 6	5	5	5	5	1
4 1 1	1. 6	5	5	5	5	1
417	1. 6	5	5	5	5	1
421	1.6	5	5	5	5	1
4 2 3	1. 6	5	5	5	5	1
4 3 2	1. 6	5	5	5	5	1
4 3 5	6. 3	5	5	5	5	1
4 3 6	1. 6	5	5	5	5	1
4 3 9	1. 6	5	5	5	5	1
440	1. 6	5	5	5	5	1
441	1.6	5	5	5	5	1
444	6.3	5	5	5	5	1
447	6.3	5	5	5	5	1
448	6. 3	5	5	5	5	1
454	1.6	5	5	5	5	1
458	1. 6	5	5	5	5	0
459	1.6	5	5	5	5	1
462	1. 6	5	5	5	5	1
i i	- 1				1	

(表61)

化合物	薬 量	ß	余 草	効!	R	薬害
	ai, g					
番号	/10a	Po	A m	Сh	Αb	Tr
467	1. 6	5	5	5	5	1
468	6.3	5	5	5	5	1
471	1.6	5	5	5	5	1
482	1. 6	5	5	5	_	1
5 1 5	1. 6	5	5	5	5	1
5 2 4	1. 6	5	5	5	5	1
5 3 9	1. 6	5	5	5	5	1
578	1. 6	5	5.	5	5	0
617	1. 6	5	5	5	5	1
619	1. 6	5	5	5	5	1
630	6. 3	4	5	5	5	1
639	1. 6	5	5	5	5	0
648	1. 6	5	5	5	5	1
656	1. 6	5	5	5	5	1
658	1. 6	5	5	5	5	0
661	1. 6	5	5	5	5	1 /
662	1.6	5	5	5	5	1
665	1. 6	5	4	5	4	1
667	1. 6	5	5	5	5	1
668	1.6	5	5	5	5	1
669	1. 6	5	5	5	5	1
672	6. 3	5	5	5	5	1
677	6. 3	5	5	_	5	1
682	1. 6	5	5	5	5	1
699	6. 3	5	5	5	4	1
702	6. 3	5	5	5	5	1
705	1. 6	5	5	_	5	1
708	1.6	5	5	5	5	0
724	1.6	5	5	5	5	l
	,					L

(表62)

化合物	薬 量	除草効果	薬害
	ai, g		
番号	/10a	Po Am Ch Ab	Tr
比較 1	1. 6	5 5 5 5	5
比較 2	1. 6	5 5 5 5	5

〈試験例5〉 畑地土壌処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、ダイズ(G1)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種して覆土した。翌日、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理後21日目に表31の基準に従って除草効果及び薬害を調査した。試験結果を表63~表64に示す。なお、一は未試験を表す。

(表63)

化合物	楽 量	В	余 草	効り	R	薬害
	ai, g					
番号	/10a	Ро	Am	Ch	A b	Gl
4	1. 6	5	5	5	5	1
6	1. 6	5	5	5	5	1
7	1. 6	5	5	5	4	0
3 1	1. 6	5	5	5	5	1
7 0	1. 6	5	5	5	5	0
7 1	1. 6	5	5	5	5	1
7 2	1. 6	. 5	5	5	5	0
152	1. 6	5	5	4	5	1
201	6.3	5	5 .	5	5	0
207	1.6	5	5	5	5	1
2 3 3	6.3	5	5	5	5	1
239	6. 3	5	5	5	5	1
266	6. 3	5	5	5	5	0
3 9 7	1. 6	5	5	5	5	1
398	1. 6	5	5 .	5	4	1
421	1.6	5	5	5	5	1
4 3 5	6.3	5	5	5	5	1
4 3 6	1. 6	5 ·	5	5 .	5	1
439	1. 6	5	5	5	5	1
441	1.6	5	5	5	5	1
447	6. 3	5	5	5	5	1
450	6. 3	5	5	5	5	1
458	1. 6	5	5	5	5	0
459	1. 6	5	5	5	5	1
463	6. 3	5	5	5	5	1
618	1.6	5	5	5	5	0
630	6.3	4	5	5	5	1
639	1.6	5	5	5	5	1
655	6. 3	5	5	5	5	1

(表64)

化合物	楽 量	ß.	余 草	効!	R	薬害
	ai, g					
番号	/10a	Ро	Am	Сh	A b	G I
656	1. 6	5	5	5	5	0
658	1. 6	5	5	5	5	0
661	1. 6	5	5	5	5	1
662	1. 6	5	5	5	5	1
665	1. 6	5	4	5	4	0
667	1. 6	5	5	5	5	1
668	1. 6	5	5	5	5	1
669	1. 6	5	5	5	5	0
680	1. 6	5	5	-	4	1
702	6.3	5	5	5	5	1
707	1. 6	5	5	5	5	1
708	1. 6	5	5	5	5	0
724	1. 6	5	5	5	5	1
比較 1	6. 3	5	5	5	5	5
	1.6	5	5	5	5	5
比較 2	6.3	5	5	5	5	5
	1.6	5	5	5	5	5

〈試験例6〉 畑地土壌処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、トウモロコシ(Ze)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種して覆土した。翌日、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理後21日目に表31の基準に従って除草効果及び薬害を調査した。試験結果を表65~表66に示す。なお、一は未試験を表す。

(表65)

化合物	薬 量	P	余 草	効!	果	薬害
	ai, g					
番号	/10a	Ро	Am	Сh	Αb	Z e
3	1. 6	5	5	5	5	0
6	1. 6	5	5	5	5	0
7	1. 6	5	5	5	4	0
4 3	1.6	5	5	5	5	0
70	1. 6	5	5	5	5	0
7 2	1. 6	5	5	5	5	0
152	1. 6	5	5	4	5	1
2 3 9	6.3	5	5	5	5	1
246	1.6	5	5	5	5	0
266	6.3	5	5	5	5	0
374	1. 6	5	5	5	5	1
397	1. 6	5	5	5	5	1
406	1. 6	5	5	5	5	1
432	1.6	5	5	5	5	1
441	1. 6	. 5	5	5	5	1
454	1.6	5	5	5	5	1
4 5 8	1.6	5	5	5	5	1
515	1. 6	5	5	5	5	1
5.24	1.6	5	5	5	5	1
618	1.6	5	5	5	5	1
630	6.3	4	5	5	5	1
658	1.6	5	5	5	5	1
661	1. 6	5	5	5	5	1
665	1.6	5	4	5	4	1
699	6. 3	5	5	5	4	1
705	1.6	5	5	-	5	1
708	1.6	5	5	5	5	0
比較 1	6. 3	5	5	5	5	5
	1. 6	5	5	5	5	5

(表66)

化合物	薬 量	除草効果	楽害
番号	ai, g /10a	Po Am Ch Ab	Z e
比較 2	6. 3 1. 6	5 5 5 5 5 5 5 5	5 5

〈試験例7〉 畑地土壌処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、ワタ(Go)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種して覆土した。翌日、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理後21日目に表31の基準に従って除草効果及び薬害を調査した。試験結果を表67~表69に示す。なお、一は未試験を表す。

(表67)

化合物	薬 量	ß	全草 草	効・見	R	薬害
l	ai, g					
番号	/10a	Ро	Am	Сh	Αb	Go
3	1. 6	5	5	5	5	0
7	1.6	5	5	5	4	0
10	1. 6	5	5	5	5	1
15	1. 6	5	5	5	5	1
3 0	1.6	5	5	5	5	0
3 1	1. 6	5	5	5	5	0
3 3	1. 6	5	5	5	5	1
4 3	1.6	5	5	5	5	1
70.	1. 6	5	5	5	5	0
7 1	1.6	5	5	5	5	0
7 2	1. 6	5	5	5	5	1
111	1. 6	5	5	5	5	1
147	1.6	5	5	5	5	1
152	1.6	5	5	4	5	0
153	6.3	5	5 .	5 .	5	0
166	6.3	5	5	5	5	1
197	1.6	5	5	5	5	0
201	1.6	5 .	5	5	4	0
2 3 3	1.6	5	5	5	5	1
2 3 7	6.3	5	5	5	5	1
266	6.3	5	5	5	5	1
272	6.3	5	5	5	5	1
299	1. 6	5	5	5	5	1
374	1. 6	5	5	5	5	1
383	1. 6	5	5	5	5	1
397	1.6	5	5	5	5	0
398	1. 6	5	5	5	4	1
405	1. 6	5	5	5	5	1
406	1. 6	5	5	5	5	1
t	I	l .				ī

(表68)

化合物	薬 量	β	涂 草	効!	果	薬害
	ai, g					
番号	/10a	Po	A m	Ch	Αb	Go
4 1 0	1. 6	5	5	5	5	1
411	1. 6	5	5	5	5	0
417	1. 6	5	5	5	5	0
418	1. 6	5	5	5	5	1
421	1. 6	5	5	5	5	1
424	1. 6	5	_	5	5	1
432	1. 6	5	5	5	5	0
4 3 5	6. 3	5	5	5	5	1
436	1. 6	5	5	5	5	0
442	6.3	5	5	5	5	1
444	6.3	5	5	5	5	1
448	6. 3	5	5	5	5	1
454	1. 6	5	5	5	5	1
458	1. 6	5	5	5	5	0
459	1.6	5	5	5	5	1
463	6.3	5	5	5	5	0
468	6. 3	5	5	5	5	1
471	1. 6	5	5	5	5	1
5 1 5	1.6	5	5	5	5	1
571	6. 3	4	5	5	5	1
577	1. 6	5	4	5	5	1
5 7 8	1. 6	5	5	5	5	1
618	1.6	5	5	5	5	0
630	6. 3	4	5	5	5	1
631	6. 3	5	5	5	5	1
639	1.6	5	5	5	5	0
655	6. 3	5	5	5	5	0
656	1.6	5	5	5	5	0
658	1.6	5	5	5	5	0

(表69)

化合物	薬 量	ß:	全 草	効!	₽ R	薬害
	ai, g					
番号	/10a	Po	Am	Ch	Αb	Go
661	1. 6	5	5	5	5	0
665	1.6	5	4	5	4	0
666	1.6	5	5	5	5	1
667	1. 6	5	5	5	5	1
668	1.6	5	5	5	5	0
669	1.6	5	5	5	5	1
672	6. 3	5	5	5	5	1
680	1.6	5	5	<u> </u>	4	1
699	6.3	5	5	5	4	1
702	6.3	5	5	5	5	1
705	1. 6	5	5	_	5	1
706	1. 6	5	5	5	5	1
707	1. 6	5	5	5	5	1
708	1. 6	5	5	5	5	0
724.	1.6	5	5	5	5	1
比較 1	6. 3	5	5	5	5	5
	1. 6	5	5	5	5	5
比較 2	6.3	5	5	5	5	5
	1. 6	5	5	5	5	5

〈試験例8〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、イネ(Or)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果及び薬害を調査した。その結果を表70に示す。

(表70)

化合物	薬 量	ß	余 草	効!		薬害
	ai, g]				
番号	/10a	Ро	Am	C h	A b	Or
6	1. 6	5	5	5	5	1
10	1.6	5	5	5	5	1
1 2	0.4	5	5	5	5	1
3 3	1. 6	5	5	5	5	1
44	0.4	4	5	- 5	5	0
7 2	1.6	5	5	5	5	1
7 8	0.4	5	5	5	5	1
111	0.4	5	5	5	5	1
207	0.4	5	5	5	5	1
228	1. 6	5	5	5	5	1
比較 1	1.6	5	5	5	5	5
	0.4	5	5	5	5	3
比較 2	1. 6	5	5	.5	5	5
	0. 4	5	5	5	5	4

〈試験例9〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、コムギ(Tr)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果及び薬害を調査した。その結果を表71~表73に示す。

(表71)

化合物	薬 量	F.	余 草	効・		薬害
	ai, g					
番号	/10a	Ро	Am	Ch	Аb	Tr
1	0.4	5	5	5	5	1
3	0.4	5	5	5	5	1
4	1.6	5	5	5	5	1
10	1.6	5	5	5	5	1
12	0.4	5	5	5	5	0
14	0.4	5	5	5	5	1
2 2	0.4	5	5	5	5 ·	0
3 0	1. 6	5	5	5	5	1
3 3	1. 6	5	5	5	5	1
3 5	1.6	5	5	5	5	0
4 3	1.6	5	5	5	5	0
4 5	1.6	5	5	5	5	. 1
7 0	1.6	5	5	5	5	- 1
74	1.6	5	5	5	5	1
8 3	1. 6	4	5	5	4	1
9 5	1.6	5	5	5	5	1
98	0.4	4	5	5	5	1
101	0.4	5	5	5	5	1 1
111	0.4	.5	5	5	5	1
143	0.4	5	5	.5	5	1
152	0.4	5	5	5	5	0
153	0.4	5	5	5	5	1
207	0.4	5	5	5	5	1
2 2 2	0.4	5	5	5	5	1
272	1.6	5	5	5	5	1
394	0.4	5	5	5	5	0
402	0.4	4	5	5	5	1
405	0.4	5	5	5	5	1
411	1. 6	4	5	5	5	1

(表72)

化合物	薬 量	Å	余 草	効!	果 ————	薬害
	ai, g				-	
番号	/10a	Ро	Am	Сh	Αb	Tr
4 2 3	1. 6	5	5	5	5	1
424	1. 6	5	5	5	5	1
4 3 2	0.4	5	5	5	5	1
4 3 6	1. 6	5	5	5	5	1
4 3 9	0.4	5	5	4	5	1
447	1. 6	5	5	4	5	1
458	0.4	5	5	5	5	1
460	1. 6	4	5	4	5	1
462	0.4	5	5	5	5	1
463	0.4	5	5	5	4	1
464	0.4	5	5	5	5	1
467	1. 6	5	5	5	5	1
468	0.4	4	5	5	4	1
469	0.4	5	5	5	5	1
482	0.4	5	5	5	5	1
515	0.4	5	5	. 4	5	1
571	0.4	4	5	5	5	1
572	1. 6	5	5	5 ,	5	1
584	0.4	5	5	5	5	1
591	0.4	5	5	5	5	1
592	0.4	5	5	5	5	1
605	1. 6	4 ·	5 .	5	5	1
606	0.4	5	5	4	5	1
607	0.4	5	5	4	5	1
630	1.6	5	5	5	5	1
634 -	0.4	· 5	5	5	5	1
6 3 5	1. 6	5	5	5	5	1
6 4 3	1. 6	5	5	5	4	1
658	1. 6	5	5	5	5	1

(表73)

化合物	薬 量	, B	余 草	効・	Į.	薬害
	ai, g	-				
番号	/10a	Ро	A m	Сh	Αb	Tr
669	1. 6	4	5	5	5	1
670	1. 6	5	5	5	5	1
671	1.6	5	5	5	5	1
688	0.4	4	5	5	5	1
706	1. 6	4	5	5	5	1
707	0.4	5	5	5	5	0
7.08	0.4	5	5	5	5	1
712	0.4	5	5	5	5	1
比較 1	1. 6	5	5 .	5	5	5
	0.4	5	5	5	5	3
比較 2	1. 6	5	5	5	5	5
	0.4	5	5	5	5	3

〈試験例10〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、トウモロコシ(Ze)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果及び薬害を調査した。その結果を表74~表75に示す。

(表74)

化合物	薬 量		除 草	効:	果	薬害
	ai, g					
番号	/10a	Ро	A m	Ch	Аъ	Ze
4	0.4	5	5	5	4	1
6	1. 6	5	5	5	5	1
7	1. 6	5	5	5	5	1
2 2	0.4	5	5	5	5	0
7 0	1. 6	5	5	5	5	1
7 2	1. 6	5	5	5	5	1
74	1. 6	5	5	5 ·	5	0
7 8	0.4	5	5	5	5	0
8 3	1. 6	4	5	5	4	1
9 5	1. 6	5	5	5	5	1
101	0.4	5	5	5	5	1
111	0.4	5	5	5	5	1
140	1. 6	5	5	5	5	1
142	0.4	5	5	5	5	1
152	0.4	5	5	5	5 .	1
195	1. 6	4	5	5	5	1
207	0.4	5	5	5	5] 1
222	0.4	5	5	5	5	0
228	1. 6	5	5	5	5	0
265	1. 6	5	5	5	5	1
272	1. 6	5	5	5	5	0
394	0.4	5	5	5	5	1
411	1.6	4	5	5	5	1
423	1.6	5	5	5	5	1
4 3 5	0.4	5	5	5	5	1
463	0.4	5	5	5	4	1
464	0.4	5	5	5	5	1
468	0.4	4	5	5	4 .	1
482	0.4	5	5	5	5	1

(表75)

化合物	薬 量	B	余草	効!	——— 果	薬害
	ai, g					
番号	/10a	Ро	A m	Сh	Αb	· Ze
515	0.4	5	5	4	5	1
577	0.4	5	5	4	5	1
578	0.4	5	5	5	4	1
584	0.4	5	5	5	5	1
606	0.4	5	5	4	5	1
607	0.4	5	5	4	5	1
617	1. 6	5	5	5	5	1
623	0.4	5	5	5	5	1
634	0.4	5	5 .	5	5	1
635	1. 6	5	5	5	5	1
647	0.4	5	5	5	5	1
662	0.4	5	5	5	5	1
663	0.4	5	5	5	5	1
666	1. 6	5	5	5	5	1
669	1. 6	4	5	5	5	1
671	1. 6	5	5	5	5	1
682	1. 6	5	5	5	5	1
688	0.4	4	5	5	5	. 1
706	1.6	4	5	5	5	1
707	0.4	5	5	5	5	1
708	0.4	5	5	5	5	1
712	0.4	5	5	5	5	1
724	1.6	5	5	5	5	1
725	1. 6	5	5	5	5	1
比較 1	1.6	5	5	5	5	5
	0.4	5	5	5	5	4
比較 2	1.6	5	5	5	5	5
	0.4	5	5	5	5	3

〈試験例11〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、ダイズ(G1)、アオビュ (Am)、イチビ (Ab)の各種子を播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤の所定有効成分量(ai,g/10a)を水で希釈し、10アール当り1001を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成し、処理14日目に表31の基準に従って、除草効果及び薬害を調査した。その結果を表76に示す。

(表76)

化合物	薬 量	除	草効果	薬害
	ai, g	í		
番号	/10a	Am	A b	G I
7	1. 6	5	5	1
8	1. 6	5	5	1
7 4	1. 6	5	5	0
4 6 3	0.4	5	4	1
464	0.4	5	5	1
468	0.4	5	4	1
6 3 5	0.4	5	5	1
669	0.4	4	5	1
686	0.4	5	5	1
701	1.6	5	4	1
726	0.4	5	5	1
比較 1	1.6	5	5	5
	0.4	5	5	5
比較 2	1.6	5	5	5
	0.4	5	5	5

〈試験例12〉 畑地茎葉処理による作物選択性試験

600cm²プラスチックポットに砂を充填し、ワタ(Go)、オオイヌタデ(Po)、アオビユ(Am)、シロザ(Ch)、イチビ(Ab)の各種子を播種して覆土した。翌日、製剤例1に準じて調製した水和剤の所定有効成分量(ai、g/10a)を水で希釈し、10アール当り1001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理後21日目に表31の

基準に従って除草効果及び薬害を調査した。試験結果を表77に示す。 (表77)

化合物	薬 量	除草効果	薬害
	ai, g		
番号	/10a	Po Am Ch Ab	Go
666	1. 6	5 5 5 5	1
比較 1	1. 6	5 5 5 5	5
比較 2	1. 6	5 5 5 5	5

請求の範囲

1. 一般式[1]

[式中、Xは水素原子又はハロゲン原子を表し、Yは水素原子、ハロゲン原子、 シアノ基、アルキル基、ハロアルキル基、アルコキシ基又はハロアルコキシ基を 表し、 R^{1} は水素原子、アルキル基、アミノ基又はハロアルキル基を表し、 R^{2} はアルキル基又はハロアルキル基を表し、R³は水素原子、ハロゲン原子、アル キル基又はハロアルキル基を表し、R⁴及びR⁵はそれぞれ同一又は相異なり、 水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロ アルキル基、アルコキシ基、ハロアルコキシ基、アルケニルオキシ基、アルキニ ルオキシ基、アルコキシカルボニルアルコキシ基、アルキルチオ基、ハロアルキ ルチオ基、アルケニルチオ基、アルキニルチオ基、アルコキシカルボニルアルキ ルチオ基、アルキルスルホニル基、ハロアルキルスルホニル基、置換されていて もよいフェニルスルホニル基、ハロゲン原子、ヒドロキシイミノアルキル基、ヒ ドロキシイミノハロアルキル基、アルコキシイミノアルキル基、アルコキシイミ ノハロアルキル基、アルキルイミノアルキル基、置換されていてもよいフェニル イミノアルキル基、ヒドラゾノアルキル基、アルキルヒドラゾノアルキル基、置 換されていてもよいフェニルヒドラゾノアルキル基、シアノ基、(窒素原子に、 同一又は相異なる水素原子、アルキル基、アシル基、ハロアルキルカルボニル 基、アルキルスルホニル基、ハロアルキルスルホニル基、もしくは置換されてい でもよいフェニル基が置換した)カルバモイル基、置換されていてもよいフェニ ル基、置換されていてもよいベンジル基、シアノアルキル基、カルバモイルアル キル基、チオシアノアルキル基、ニトロ基、ヒドロキシアミノ基、アルキル基に より置換されていてもよいオキシラニル基、(窒素原子に、同一又は相異なる水 素原子、アルキル基、ハロアルキル基、アルケニル基、アルキニル基、シクロア

ルキル基、アルキルスルホニル基、ハロアルキルスルホニル基、置換されていて もよいフェニルスルホニル基、アシル基、ハロアルキルカルボニル基もしくは置 換されていてもよいベンゾイル基が置換した)アミノ基又は一般式

(式中、 2 は酸素原子又は硫黄原子を表し、Wは基-SO-又は基-SOゥーを 表し、R 6 は水素原子又はアルキル基を表し、R 7 は水素原子、アルキル基、シ クロアルキル基、アルケニル基、アルキニル基、ハロアルキル基、アルコキシア ルキル基又はアルキルチオアルキル基を表し、あるいはR 6 及びR 7 は互いに結 合し、これらが結合している炭素原子と一緒になって3~8員(炭素)環を形成 することもできる。R⁸は水素原子、アルキル基、シクロアルキル基、ハロアル キル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキル基、 モノアルキルカルバモイルアルキル基、ジアルキルカルバモイルアルキル基、ア シル基、アルキルスルホニル基、ハロアルキルスルホニル基、ハロアルキルカル ボニル基、モノアルキルカルバモイル基、モノアルキルチオカルバモイル基、ジ アルキルカルバモイル基、ジアルキルチオカルバモイル基又は置換されていても よいベンゾイル基を表し、R9は水素原子、アルキル基、シクロアルキル基、ハ ロアルキル基、アルコキシカルボニルアルキル基、ヒドロキシカルボニルアルキ ル基、モノアルキルカルバモイルアルキル基又はジアルキルカルバモイルアルキ ル基を表し、R¹⁰は水素原子、アルキル基、アシル基、アルキルスルホニル 基、ハロアルキルスルホニル基又はハロアルキルカルボニル基を表し、Rllは 水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、ハロ アルキル基、アルコキシアルキル基、アルキルチオアルキル基、置換されていて もよいフェニル基、アルコキシ基、ハロアルコキシ基、置換されていてもよいべ ンジルオキシ基、置換されていてもよいフェノキシ基又は水酸基を表す。)で示 される基を表す。] で示されるベンゾフラン-7-イルウラシル誘導体。

2. 請求項1に記載のベンゾフラン-7-イルウラシル誘導体を有効成分とし

て含有する除草剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00320

1	ASSIFICATION OF SUBJECT MATTER	
Int	. C1 ⁶ C07D405/04, A01N43/54	
According	to International Patent Classification (IPC) or to both national classification and IPC	
	LDS SEARCHED	· · · · · · · · · · · · · · · · · · ·
Minimum d	ocumentation searched (classification system followed by classification symbols)	
Int	. Cl ⁶ C07D405/00-405/14, A01N43/48-43/62	
	ion searched other than minimum documentation to the extent that such documents are included i	
	ata base consulted during the international search (name of data base and, where practicable, sear ONLINE	ch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO, 95/05079, A (FMC Corp.), February 23, 1995 (23. 02. 95), Claim & AU, 9474806, A	1 - 2
A,P	US, 5521147, A (FMC Corp.), May 28, 1996 (28. 05. 96), Claim (Family: none)	1 - 2
A	JP, 5-25165, A (Sumitomo Chemical Co., Ltd.), February 2, 1993 (02. 02. 93), Claim & US, 5169431, A & EP, 476697, A1 & CA, 2051942, A	1 - 2
A	JP, 6-321941, A (Sumitomo Chemical Co., Ltd.), November 22, 1994 (22. 11. 94), Claim & US, 5411935, A & EP, 617033, A1 & CA, 2119047, A	1 - 2
Further	documents are listed in the continuation of Box C. See patent family annex.	
"A" document to be of p	ategories of cited documents: If defining the general state of the art which is not considered particular relevance. To later document published after the industry and the principle or theory underlying to	be invention
"L" document cited to	document but published on or after the international filing date it which may throw doubts on priority chaim(s) or which is setablish the publication date of another citation or other security of the document is taken all security of the document is taken as setablish precision.	pidered to involve an inventive
	referring to an oral disclosure, use, exhibition or other considered to involve an inventive considered to involve an inventive considered to involve an inventive constitution or other accordance with one or more other such as a constitution of the constitution of t	e clen when the damman '- I
To documen the priori	t published prior to the international filing date but later than ty date claimed "&" document member of the same pate	the art
Date of the ac	ctual completion of the international search Date of mailing of the international se	arch report
Apri	1 24, 1997 (24. 04. 97) May 7, 1997 (07.	-
Name and ma	iling address of the ISA/ Authorized officer	
Japa	nese Patent Office	
acsimile No.		
m PCT/ISA	/210 (second sheet) (July 1992)	

A. 発明の	属する分野の分類(国際特許分類(IPC))			
Int.C	1° C07D405/04, A01N43/	54		
B. 調査を	テった分野			
調査を行った	B小限資料(国際特許分類(IPC))			
Int.C	1° C07D405/00-405/14,	A 0 1	N43/48-43/62	
最小限資料以外	トの資料で調査を行った分野に含まれるもの			
国際調査で使	用した電子データベース (データベースの名称	、調査に	 -使用した用語)	
CAS	ONLINE			
C. 関連する				
引用文献の				関連する
カテゴリー* A	引用文献名 及び一部の箇所が関連する。 WO, 95/05079, A (FMC Corporati	ときは、 ion)		請求の範囲の番号
	23, 2月, 1995 (23.02.9 & AU, 9474806, A		· ·	
A, P	US, 5521147, A (FMC Corporation 28, 5月, 1996 (28. 05. 9)	a),特 6)	許請求の範囲, (ファミリーなし)	1-2
A	JP, 5-25165, A (住友化学工業株) 2, 2月, 1993 (02. 02. 93))	•	1-2
	& US, 5169431, A & E & CA, 2051942, A	P, 47	6697, A1	·
X C欄の続き	たも文献が列挙されている。		パテントファミリーに関する別	紙を参照。
60	Oカテゴリー Mのある文献ではなく、一般的技術水準を示す Mではあるが、国際出願日以後に公表されたも	۱Ţ۱	の日の後に公表された文献 国際出願日又は優先日後に公表さ て出願と矛盾するものではなく、	
Ø		ſXJ	論の理解のために引用するもの 特に関連のある文献であって、≧	当該文献のみで発明
	E限に接続を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する。		の新規性又は進歩性がないと考え 特に関連のある文献であって、当	えられるもの
文献 (3	性由を付す)		上の文献との、当業者にとって自	目明である組合せに
	てる開示、使用、展示等に言及する文献 毎日前で、かつ優先権の主張の基礎となる出願	رجها	よって進歩性がないと考えられる 同一パテントファミリー文献	5 to
国際調査を完了	「した日 24.04.97	国際資	査報告の発送日 07.05.9	97
日本国)名称及びあて先 日特許庁 (ISA/JP) B便番号100	特許庁	審査官(権限のある職員) / 等 高原 慎太郎 - 日	4C 9053
	3千代田区霞が関三丁目 4 番 3 号	電話番	号 03-3581-1101	内線 3453

国際開査報告

国際出願番号 PCT/JP97/00320

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 6-321941, A (住友化学工業株式会社), 特許請求の範囲, 22, 11月, 1994 (22. 11. 94) & US, 5411935, A & EP, 617033, A1 & CA, 2119047, A	1-2
-		