

SIR PRATEEK JAIN

- . Founder @ Physicsaholics
- . Top Physics Faculty on Unacademy (IIT JEE & NEET)
- . 8+ years of teaching experience in top institutes like FIITJEE (Delhi, Indore), CP (KOTA) etc.
- . Produced multiple Top ranks.
- . Research work with HC Verma sir at IIT Kanpur
- . Interviewed by International media.

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

Video Solution on YouTube:-

https://youtu.be/rTg2MIwPV6g

Physics DPP

DPP-2 NLM: Constraint Relation By Physicsaholics Team

Q) If the velocity of block B in the given arrangement is 300 mm/sec towards right.

Find the velocity of A:

- (b) 200 mm/sec
- (c) 300 mm/sec
- (d) 400 mm/sec

Join Unacademy PLUS Referral Code:

Ans. b

Q) Find the velocity of block B when ring A is moving downward with velocity v:

(b)
$$\frac{v}{2} \sin \theta$$

(c) $v \cos \theta$

(d)
$$\frac{v}{2} \cos \theta$$

Join Unacademy PLUS Referral Code:

Ans. c

(90°=0 X TVB = D = NACOC = V (0)0

Q) If block A is moving horizontally with velocity V_A , then find the velocity of block B at the instant as shown in fig:

Join Unacademy PLUS Referral Code:

Ans. c

Q) A cart is being pulled up the incline, using a motor M and an ideal pulley and ideal rope arrangement as shown in figure. Then the speed of point P' of the string with which it moves so that the car moves up the inclined plane with a constant speed of $V_{cart} = 2 \, m/s$ is (Incline is at rest):

(b) 3 m/s

(c) 5 m/s

d) 6 m/s

Join Unacademy PLUS Referral Code:

Ans. d

52m/s Vc (90°= 0 3 x 2

Q) In Fig. a ball of mass m_1 and a block of mass m_2 are joined together with an inextensible string. The ball can slide on a smooth horizontal surface.

If V_1 and V_2 are the respective speeds of the ball and the block, then determine the

constraint relation between velocities of the two.

Join Unacademy PLUS Referral Code:

Ans. a

Q) Find $V_B = ?$

- (a) 10 m/s
- (c) 14 m/s

(b) 8 m/s

(d) 6 m/s

Join Unacademy PLUS Referral Code:

Ans. a

Q) Determine the speed with which block *B* rises in Fig. if the end of the cord at *A* is pulled down with a speed of 2 m/s.

(a) 4 m/s

(b) 3 m/s

 $(c) \frac{3}{2} \text{ m/s}$

 $(d) \frac{1}{2} m/s$

Join Unacademy PLUS Referral Code:

Ans. d

Q) Two rings each of mass M = 100~gm are constrained to move along a fixed horizontal rod An ideal string is connected with rings and block of mass $M_o = 200~gm$ is connected to the mid point of string At a certain moment the mass m is moving downward with velocity $\sqrt{3}$ m/s. Find the speed of ring of M at the

moment:

(c) 2 m/s

(b) 3 m/s

d) 1 m/s

Join Unacademy PLUS Referral Code:

Ans. d

Q) In the given figure, find the speed of pulley P -

Join Unacademy PLUS Referral Code:

Ans. c

Q) Figure shows a rod of length I resting on a wall and the floor. Its lower end A is pulled towards left with a constant velocity u. As a result of this, end A starts moving down along the wall. Find the velocity of the other end B downward when

the rod makes an angle θ with the horizontal:

(a) $u \tan \theta$ (b) $u \cot \theta$ (c) $u \sin \theta$ (d) $u \cos \theta$

Join Unacademy PLUS Referral Code:

Ans. b

No + A5 = 75 2ndm +27d2 =0 21 VA + 2/(NB) =0 (-VB) = - 7 VA Vo = MVA = COto VA VB = VA COTO = U COTO

Q) The velocities of A and B are marked in the figure. Find the velocity of block C (assume that the pulleys are ideal and string inextensible)

Join Unacademy PLUS Referral Code:

Ans. c

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

Video Solution on YouTube:-

https://youtu.be/rTg2MIwPV6g

CUSIS NIKIS