DATA SCIENCE CLASS 1: INTRODUCTION AND TOOLS

INTRO TO DATA SCIENCE

WELCOME

Instructors: Aaron Schumacher, Kevin Markham, Sinan Ozdemir

gadsdc2.hackpad.com

Course Times: 6:30pm-9:30pm, Mondays and Wednesdays (1776)

Homework / Projects

- O. META-INTRO
- I. WHAT IS DATA SCIENCE?
- II. THE DATA MINING WORKFLOW

LAB:

III. WORKING AT THE UNIX COMMAND LINE

O. META-INTRO

LEARNING IS FOR EVERYONE

LEARNING IS A CONSEQUENCE OF THINKING

WE ARE ALL STUDENTS

WE ARE ALL TEACHERS

COMMUNICATE EARLY AND OFTEN

 A set of tools and techniques used to extract useful information from data.

- A set of tools and techniques used to extract useful information from data.
- An interdisciplinary, problem-solving oriented subject.

- A set of tools and techniques used to extract useful information from data.
- An interdisciplinary, problem-solving oriented subject.
- The application of scientific techniques to practical problems.

- A set of tools and techniques used to extract useful information from data.
- An interdisciplinary, problem-solving oriented subject.
- The application of scientific techniques to practical problems.
- A rapidly growing field.

WHO USES DATA SCIENCE?

- Recommending products on amazon.com
- Identifying fraudulent credit card transactions
- Recommending new musical artists
- Prioritize emergency calls in Seattle
- Many more!
- Collaboration in the open-source arena: The WebKit case

WHO USES DATA SCIENCE?

- Application Presentations!
- https://gadsdc2.hackpad.com/

WHAT MAKES A GOOD DATA SCIENTIST?

- Statistical and machine learning knowledge
- Engineering experience
- Academic curiosity
- Product sense
- Storytelling
- Cleverness

Michael E. Driscoll @medriscoll

Following

Data scientists: better statisticians than most programmers & better programmers than most statisticians bit.ly/NHmRqu @peteskomoroch

THE QUALITIES OF A DATA SCIENTIST

THE QUALITIES OF A DATA SCIENTIST

THE QUALITIES OF A DATA SCIENTIST

What's big data?

The practical viewpoint:

- $O(n^2)$ algorithm feasible: small data
- Pits on one machine: medium data
- Open't fit on one machine: big data

II. THE DATA SCIENCE WORKFLOW

from Jeff Hammerbacher:

- 1. Identify problem
- 2. Instrument data sources
- 3. Collect data
- 4. Prepare data (integrate, transform, clean, impute, filter, aggregate)
- 5. Build model
- 6. Evaluate model
- 7. Communicate results

ALSO:

scale

THE DATA SCIENCE WORKFLOW

III. WORKING ATTHE UNIX COMMAND LINE

EXERCISE — WORKING AT THE UNIX COMMAND LINE

KEY OBJECTIVES

- Navigate the filesystem
- Create, move, copy, and delete files & directories
- View & search files
- Edit & interact with files
- Combine steps
- Learn more

TOOLS

- Is, cd
- cat, touch, mv, cp, mkdir, rm, rmdir
- head, tail, less, cat, grep
- vim, tr, sort, uniq, wc
- pipe (|)
- man, apropos

NOTE

Being comfortable at the command line makes your life much easier!

WORKING AT THE UNIX COMMAND LINE

GIT

LINE-ORIENTED PIPELINES

INTRO TO DATA SCIENCE