{detourr}

Interactive and performant tour visuals for the web

Casper Hart

2022-06-28

Background on tours

A tour is sequence of projections of data displayed as an animation

- 1. Choose a sequence of projections and interpolate between them; The tour path ${f A}_1 \dots {f A}_t$
- 2. Display the projected data $\mathbf{Y}_i = \mathbf{X}\mathbf{A}_i$ as an animation; The display method

Example {tourr}:

Motivation

Interactivity (2)

Performance 😕

Portability... 💗

How do we get around these limitations?

AHEAD

Introducing {detourr}

Interactivity ©

- Orbit Controls
- Selection and Brushing
- Timeline
- Labels

Portability ••

{detourr} visuals are written in TypeScript / JavaScript, using **{HTMLWidgets}** to work with R. It runs well with:

- Any browser
- RStudio
- VScode
- Knitr (with html output)
- Shiny
- {xaringan} slides

Performance 69

Linked selection with {crosstalk}

Linked selection with {crosstalk} ©

Compatible with:

- plotly/plotly.R
- rstudio/leaflet
- rstudio/DT
- glin/reactable
- jbkunst/highcharter

User API

Data and aesthetics

{detourr} has a declarative API for building a tour visual. Instantiate a detour object with detour():

install.packages("detourr") # -orremotes::install_github("casperhart/detourr")

detour(
 penguins,
 tour_aes(projection = bill_length_mm:body_mass_g, colour = species)
)

Tour path 🚴

R Code

Output

```
detour(
  penguins,
  tour_aes(projection = bill_length_mm:body_mass_g, colour = species)
) |> tour_path(grand_tour(3))
```

Display

R Code Output

```
detour(
  penguins,
  tour_aes(projection = bill_length_mm:body_mass_g, colour = species)
) |>
  tour_path(grand_tour(3)) |>
  show_scatter()
```

data |> tour path |> display method

detour() |> tour_path() |> show_*()

Display methods

show_scatter()

show_scatter() *

show_sage() **

show_slice() ==

Ç

(

show_slice() ==

show_slice() ==

Performance

Scripting 4

Javascript is... pretty quick!

Chrome's V8 Bench score over the years

Matrix operations 🚑

(detourr) uses **TensorFlow.js** with the **Webassembly** backend for linear algebra operations. This uses the Google XNNPACK library, leveraging **SIMD** and **Threads**.

• SVG is good at rendering large objects, but is slow when rendering many objects.

Alternative:

• # HTML5 Canvas + WebGL (GPU)

Implemented with Three.js

Contributions welcome (?)

More visuals!

- density plot
- histogram
- Andrew's plot
- PCP

More features!

- facetting
- legends
- point symbols
- antialiasing

More performance!

Emojis required

Sage display:

Laa, Ursula, Dianne Cook, and Stuart Lee. 2021. "Burning Sage: Reversing the Curse of Dimensionality in the Visualization of High-Dimensional Data." Journal of Computational and Graphical Statistics, 1–10.

Slice display:

Laa, Ursula, Dianne Cook, and German Valencia. 2020. "A Slice Tour for Finding Hollowness in High-Dimensional Data." Journal of Computational and Graphical Statistics 29 (3): 681–87.

{tourr}:

Wickham, Hadley, Dianne Cook, Heike Hofmann, and Andreas Buja. 2011. "Tourr: An r Package for Exploring Multivariate Data with Projections." Journal of Statistical Software 40: 1–18.

Slides:

github.com/casperhart/paper-detourr

Package website:

casperhart.github.io/detourr

