SO(5) Theory of High Tc Superconductivity

Shou-cheng Zhang

Stanford University

Collaborators

- E. Demler, J.P.Hu, H.D.Chen, S. Rabello Stanford University
- W. Hanke, E.Arrigoni, R. Eder. A.Dorneich University of Wuerzberg
- J. Berlinsky, C. Kallin
 McMaster University
- A. Auerbach, E. Altman
 Technion University
- X. Hu, S. Capponi, S. Murakami, N. Nagaosa, D. Arovas, D. Scalapino, H. Kohno, ...

Outline

- Introduction to high Tc superconductivity and SO(5) theory
 - The central question: AF & dSC
- T-J model and the pSO(5) model
 - LG theory not sufficient.
- Comparison with numerical results
 - AF/SC coexistence state, multiplets, phase diagram
- Experimental consequences
 - AF vortex core, phase diagram...
- Conclusions

Microscopic models of high Tc

t-J model of spins and holes

$$H = -t \sum_{\langle i,j \rangle} c_{\sigma}^{+}(i) c_{\sigma}(j) + J \sum_{\langle i,j \rangle} S^{\alpha}(i) S^{\alpha}(j)$$

Fundamental questions

- What is the relationship between AF and SC?
 - How do we understand the phase diagram?
 - Does AF lead to SC pairing?

Phase diagram of the k-bedt salt

SO(5) order parameters

AF order parameter

$$N_i = (N_x, N_y, N_z) = \sum_k c_{Q+k}^+ \sigma_i c_k, \quad Q = (\pi, \pi)$$

SC order parameter

$$\Delta_i = (\operatorname{Re} \Delta, \operatorname{Im} \Delta), \Delta = \sum_k g(k) c_{k\uparrow} c_{-k\downarrow}, g(k) = \cos k_x - \cos k_y$$

SO(5) superspin order parameter

$$n_a = (\text{Re }\Delta, N_x, N_y, N_z, \text{Im }\Delta)$$

SO(5) algebra

The π operators:

$$\pi_i = \sum_k g(k) c_{Q+k} \sigma_i \sigma_y c_{-k}$$

The SO(5) algebra:

$$[L_{ab}, L_{cd}] = i\delta_{ac}L_{bd} + perm.$$

$$L_{ab} = \begin{pmatrix} 0 \\ \operatorname{Re} \pi_x & 0 \\ \operatorname{Re} \pi_y & -S_z & 0 \\ \operatorname{Re} \pi_z & S_y & -S_x & 0 \\ Q & \operatorname{Im} \pi_x & \operatorname{Im} \pi_y & \operatorname{Im} \pi_z & 0 \end{pmatrix}$$

SO(5) effective field theory

Quantum rotor model:

$$H = \frac{1}{2\chi} \sum_{i} L_{ab}^{2}(i) + \frac{\rho}{2} \sum_{\langle i,j \rangle} n_{a}(i) n_{a}(j)$$
$$-g \sum_{i} (n_{2}^{2} + n_{3}^{2} + n_{4}^{2}) - \mu \sum_{i} Q(i)$$

• g term describe the anisotropy in SO(5) space, the chemical potential μ term describe the effect of doping. These two terms compete with each other.

The superspin flop transition

Easy axis AF to easy plane AF transition

· AF to SC transition

Phase diagram of the SO(5) theory

- SO(5) phase diagram predicts
 - SO(5) bicritical point
 - Coexistence of AF and SC as a function of x
 - Pseudogap=preformed SO(5) superspin

Phase separation vs uniform mix state

General form of the free energy:

$$F \propto a\Delta^2 + bN^2 + u(\Delta^2 + N^2)^2 + w\Delta^2N^2$$

- For w>0, (type I) phase separation or stripes. =>LSCO
- For w<0, (type 2) uniform mix phase. =>YBCO
- w=0, (type 1.5) => SO(5)
- Since LSCO and YBCO are not very different, w must be close to zero.
 =>SO(5) symmetric point!

Doping dependence of ground state energy

Microscopic evidence of SO(5)

Himeda and Ogata 1999

$$|\Psi\rangle = P_d P_N |\Delta_{dSC}, \Delta_{AF}, \mu\rangle$$

From the t-J model to the SO(5) model

Zhang et al, Altman and Auerbach

one step real space RG

States on a plaquette

$$(Cos\theta + Sin\theta t_{\alpha}^{+}) | \Omega \rangle$$

$$(Cos\theta + Sin\theta(Cos\alpha t_{\alpha}^{+} + Sin\alpha t_{h}^{+})) |\Omega\rangle$$

Represents hole density

$$t_{\alpha}^{^{+}} |\Omega\rangle$$

$$t_h^+ |\Omega\rangle$$

Projected SO(5) model

$$H = \Delta_{s} \sum_{x} t_{\alpha}^{+} t_{\alpha} + (\Delta_{c} - \mu) \sum_{x} t_{h}^{+} t_{h} + J_{s} \sum_{xy} n_{\alpha}(x) n_{\alpha}(y)$$

$$+ J_{c} \sum_{xy} t_{h}^{+}(x) t_{h}(y) + c.c + V_{1} \sum_{xy} \rho(x) \rho(y) + V_{2} \sum_{xy'} \rho(x) \rho(y')$$

- Each site on the SO(5) model represents a 2x2 square in the real lattice.
- Competition: Magnon and hole pair kinetic energies J_s and J_c favor uniform phases. Coulomb interactions V₁ and V₂ favor checkerboard charge ordering.
- If we ignore the magnetic degree of freedom, this reduces to a hardcore boson model, with well-understood phase diagram.

Phase diagram of the pSO(5) model: Charge sector

SF = Superfluid CB = Checkerboard

Superlattice and Quarter Filling

v = 3/4

 $\nu = 1$

v = 1/2

 $\nu = 1/2$

Combine n=1/2 CB State

Global Phase diagram

Different Types of Behavior of High Tc

SO(5) prediction of the AF vortex state

- Rotation of the superspin as the center of the vortex core is approached
 - Field induced AF moment is proportional to the applied B field.
 - We can tune a new nob, the magnetic field, to study Mott insulator to SC transition.
 - Theoretical prediction first confirmed by the numerical calculations on the t-J model.

Experimental evidence of the AF vortex state

- Neutron scattering in LSCO
 - Field induced moment is proportional to the field
- μSR in underdoped YBCO
 - Staggered magnetic field of 18 Gauss from the vortex core centers
- NMR in optimally doped YBCO and TIBCO, under high magnetic field
 - Increases in I/T_I rate inside the vortex core
- STM measurement of the four unit cell checkerboard pattern around the vortex core

Exp. observation of the AF vortex core

- Recent experiments by Lake, Aeppli et al observed slow AF fluctuations in the vortex core, in optimally doped LaSrCuO.
- Static AF moments in underdoped LaSrCuO.

Neutron scattering on AF vortex core

 Significant increase of the static AF moment in the vortex state is observed in the underdoped LaSrCuO with x=0.10.

O NMR on optimally doped YBCO

µsR on underdoped YBCO

Tl NMR on optimally doped TlBaCuO

The checkerboard pattern

- 4ax4a charge unit cell
- Charge modulation is exponentially localized near the vortex core, with a decay length of 35A.
- x and y directions are roughly symmetric.

Wigner crystal of holes in AF background?

- At or near x=1/8, holes would form a $\sqrt{8}a \times \sqrt{8}a$ superlattice, inconsistent with the 4ax4a pattern observed in the experiment.
- In the 2k_F fermi surface nesting explanation, the modulation vector depends on energy and doping.

Cooper (or pair) crystal state at x=1/8

- Inside the vortex core, SC is destroyed, but the Cooper pairs are simply localized!
- Alternating d-wave hole pairs in an antiferromagnetic background, forming 4ax4a charge unit cell.
- Spin order can be incommensurate stripe or commensurate checkerboard order, depending on details

Charge distribution around a vortex

Order parameter distribution around a vortex

$$\langle L_{ab}\rangle\langle n_c\rangle + \langle L_{bc}\rangle\langle n_a\rangle + \langle L_{ca}\rangle\langle n_b\rangle = 0$$

Quasi-particle interference vs 2nd order parameter

- Friedel oscillation is a precursor of the CDW or SDW formation.
- Case for order parameter competition can only be established when both ordered states can be reached.
- Go above Hc2!
 - A new insulating state with AF order, and a crystal of Cooper pairs.
 - Charge and heat insulator, $\kappa = a T + b T^3$, a = 0

Conclusions:

- A new symmetry principle unifying DLRO (AF) and ODLRO (SC)
- AF and SC both corporate and compete.
 - Corporation: condensation energy
 - Competition: AF vortex core
- Precise relationship between microscopic t-J model and the pSO(5) model.
 - Global phase diagram
- Experimental predictions
 - SO(5) bicritical point and AF/SC coexistence
 - AF vortex state
 - T and B dependence of the π resonance
 - Quantitative relations on the condensation energy

