

REPORTING DATABASE Tech Doc

Revision A

Legal Notice:

This document is proprietary & confidential and may only be used by persons who have received it directly from ThetaRay LTD. ("ThetaRay") and may not be transferred to any other party without ThetaRay's express written permission. The document provides preliminary and general information only and is not intended to be comprehensive or to address all the possible issues, applications, exceptions or concerns relating to ThetaRay. All information contained in this document is confidential and shall remain at all times the sole property of ThetaRay. The recipient of this document has no right to disclose any or all of its contents or distribute, transmit, reproduce, publicize or otherwise disseminate this document or copies thereof without the prior written consent of ThetaRay, and shall keep all information contained herein strictly private and confidential. The information is intended to facilitate discussion and is not necessarily meaningful or complete without such supplemental discussion. Please note that the information procedures, practices, policies, and benefits described in this document may be modified or discontinued from time to time by ThetaRay without prior notice. As such, ThetaRay provides the document on an "As-Is" basis and makes no warranties as to the accuracy of the information contained therein. In addition, ThetaRay accepts no responsibility for any consequences whatsoever arising from the use of such information. ThetaRay shall not be required to provide any recipient with access to any additional information or to update this document or to correct any inaccuracies herein which may become apparent.

Confidential Page 2 | 39

Reporting Database

O THETARAY

1. Introduction	4
1.1. Purpose and Audience	4
2. Reporting Database Schema	5
2.1. Schema Tables Details.	6
2.1.1. rp_alerts	6
2.1.2. rp_sla	7
2.1.3. rp_sla_states	8
2.1.4. rp_sla_states_to_sla	8
2.1.5. rp_sla_stages	8
2.1.6. rp_notes	9
2.1.7. rp_triggers	10
2.1.8. rp_primary_keys view	10
2.1.9. rp_alert_fields view	11
2.1.10. rp_grouping_identifiers view	11
2.1.11. rp_queues	12
2.1.12. rp_mappers	12
2.1.13. rp_workflows	13
2.1.14. rp_attachments	14
2.1.15. rp_triggers_data	14
2.2. Accessing Encrypted Data	15
Appendix A - Accessing Reports DB from Power BI Service	16
3.0.1. Enabling RDP Connectivity to Azure from a Local Machine	16
3.0.2. Azure Windows VM Setup	17
Appendix B - Connecting through Microsoft Excel	33
Appendix C - Connecting through PowerBI Desktop	36

O THETARAY

1. Introduction

1.1. Purpose and Audience

The ThetaRay Reporting Database is a dedicated area within ThetaRay's central relational database (Postgres) focused on serving the needs of queries originating from business intelligence and reporting tools.

This guide details the schema of the Reporting Database, including tables, relationships and individual fields.

The default deployment of the ThetaRay system does not expose Postgres to external clients. The last section of the document details the practice that is required post installation in order to expose the database to the outside world in a secure manner.

The appendix addresses the process of enabling connectivity from a Windows host to the Reporting Database when using Azure PowerBI Service - including PowerBI desktop and PowerBI On-Premise Gateway.

Confidential Page 4 | 39

2. Reporting Database Schema

As the 'Reporting Database' is associated with an Investigation Center deployment – each environment may consist of multiple Reporting Database instances, each associated with it's own database name. The database schema for a given Investigation Center is named - <apps_<ic instance name>.

The Entity Relationship Diagram detailed below presents the Reporting Database schema, including tables, fields and logical foreign key relationships (these are not foreign key constraints at database level).

With regard to the above schema, it is worth noting that the connections between each schema block are logical connections, and not foreign key connections.

Confidential Page 5 | 39

O THETARAY

2.1. Schema Tables Details.

2.1.1. rp_alerts

Description: This table lists all alert attributes from all alert tables as reference (historical) data.

The only time changes are made to either historical data rows or new current rows is when changes are made to specific information, such as state, assignee or queue.

Table 1: rp_alerts

Field Attribute	Description	Туре
ID	Row identifier	big integer
ALERT_MAPPER_ IDENTIFIER	Identifier of the mapper	bigint
QUEUE_IDENTIFIER	Identifier of the corresponding queue	varchar (255)
WORKFLOW_ IDENTIFIER	Identifier of the corresponding workflow	varchar (255)
ALERT_ID	Identifier of the alert from the corresponding table	text
ALERT_TYPE	type of the alert, for example (SCREENING, CUSTOMER_ SCREENING,SYSTEM,EXTERNAL,MANUAL)	varchar (30)
ASSIGNEE	Assignee name	text
STATE_ID	Identifier of the current alert state	text
HISTORY_TYPE	Alert History type, for example: (HISTORY /CURRENT). Only one row will have status CURRENT, other one will have a status HISTORY.	varchar (30)
DATA_PERMISSION	Data permission of the corresponding alert mapper	text
PROCESS_ DEFINITION_ID	Identifier of the corresponding process definition	text
PROCESS_ INSTANCE_ID	Identifier of the corresponding process instance	text
RESOLUTION_ CODE	Alert resolution code	text
RECOMMENDED_ RESOLUTION_ CODE	Alert recommended resolution code	text
SEVERITY	Alert severity number as a percentage	int
SUPPRESSION_ COUNT	Number of suppressed alerts	int
IS_CLOSED	Trigger, if alert is closed	boolean

Confidential Page 6 | 39

Table 1: rp_alerts (continued)

Field Attribute	Description	Туре
CREATE_DATE	Date of alert creation	timestamp
UPDATE_DATE	Date of alert last update	timestamp
TOTAL_HITS	Number of total hits	int
MAX_MATCH_ SCORE	Maximum match score of the alert	int
RAW_ CLASSIFICATION	Json representation for classifications in alert	json
RAW_TAGS	Json representation for tags in alert	json

Constraints:

- ID primary key
- ALERT_MAPPER_IDENTIFIER not null
- QUEUE_IDENTIFIER not null
- WORKFLOW_IDENTIFIER not null

Note: CONSOLIDATION_COUNT, IS_CONSOLIDATION - removed from version 6.10

2.1.2. rp_sla

Description: Table contains sla that references alerts by the ALERT_ID column.

Table 2: rp_sla

Field Attribute	Description	Туре	From Version
ID	Sla Identifier	big integer	
ALERT_ID	Alert identifier	text	
NAME	SLA name	text	
IS_ACTIVE	Trigger, if SLA is active	boolean	
TOTAL_EXPECTED_ DURATION	Expected duration of all steps in minutes	time	
MODIFIED_AT	Time when row was updated	timestamp	6.10
TOTAL_ACTUAL_ DURATION	Resulting duration of all steps in minutes	time	

Constraints:

• ID - primary key

Confidential Page 7 | 39

O THETARAY

2.1.3. rp_sla_states

Description: This table lists all SLA states.

Table 3: _sla_states

Field Attribute	Description	Туре
ID	State identifier	bigint
NAME	Name of the sla state	text

• ID - primary key

2.1.4. rp_sla_states_to_sla

Description: This table lists *SLA* to *SLA_STATES* in the many to many mode.

Table 4: rp_sla_states_to_sla

Field Attribute	Description	Туре
ID	Row identifier	bigint
SLA_ID	Identifier of the SLA	bigint
SLA_STATE_ID	Identifier of the SLA state	bigint

Constraints:

• ID - primary key

2.1.5. rp_sla_stages

Description: This table lists SLA stages. Every SLA has a list of stages, all of them are ordered by ORDER column.

Table 5: rp_sla_stages

Field Attribute	Description	Туре	From Version
ID	Row identifier	bigint	
SLA_ID	SLA identifier	bigint,not null	
NAME	SLA stage name	text	
STAGE_ ORDER	Order of the stage in the SLA	int	
EXPECTED_ DURATION	Expected duration of this step in minutes	bigint	6.10
ACTUAL_	Resulting duration of this step in minutes	bigint	6.10

Confidential Page 8 | 39

Table 5: rp_sla_stages (continued)

Field Attribute	Description	Туре	From Version
DURATION			
START_TIME	Starting time of this step	timestamp	
END_TIME	Ending time of this step	timestamp	
MODIFIED_ AT	Time when row was updated	timestamp	6.10

Note: total_actual_duration and total_expected_duration available prior to 6.10 are no longer available and have been replaced by the expected_duration and actual_duration columns.

Constraints:

ID - primary key

2.1.6. rp_notes

Description: This table lists note attributes related to alert notes, these are referenced via the ALERT_ID column. Notes can be deleted by applying the *IS_DELETED* attribute.

Table 6: rp_notes

Field Attribute	Description	Туре	From Version
ID	Note identifier	bigint	
NOTE_ID	Note identifier for the corresponding alert	text	
ALERT_ID	Alert identifier	text	
AUTHOR	The name of the note author	text	
ADDED_AT	Timestamp, when note was added	timestamp	
MODIFY_DATE	Timestamp, when note was created (modified)	timestamp	
CATEGORY_ TYPE	Note category type	text	
BODY	Note text body	text	
IS_DELETED	Trigger, if note is deleted	boolean	
MODIFIED_AT	Time when row was updated	timestamp	6.10

Constraints:

Confidential Page 9 | 39

• *ID* - primary key

2.1.7. rp_triggers

Description: This triggers table is connected to the alerts table by applying the ALERT_ID attribute. Triggers can be deleted by applying the *IS_DELETED* attribute.

Table 7: rp_triggers

Field Attribute	Description	Туре
ID	Trigger identifier	bigint
TRIGGER_ID	Corresponding trigger id of alert	text
ALERT_ID	Identifier of alert	not-null bigint
IS_MAIN	Boolean if this trigger is main in the alert	boolean
RISK_ID	Risk identifier	text
RISK_NAME	The risk name	text
RISK_CATEGORY	The risk category	text
RISK_SEVERITY	Risk severity, as a percentage	text
RISK_DESCRIPTION	Description of the risk	text
RAW_PRIMARY_KEYS_RAW	Json of the Primary keys	text
RAW_ALERT_FIELDS_RAW	Json of the Alert fields	text
RAW_GROUPING_IDENTIFIERS_RAW	Json of the grouping identifiers	text
CREATED_BY	Trigger author name	text
CREATED_DATE	Date of trigger creation	timestamp
UPDATED_DATE	Date of the triggers last update	timestamp
SOLUTION_ID	Solution identifier	text
OCCURRED_ON_DATE	Date when trigger is occurred	timestamp
OCCURRED_ON_FIELD	Field on which trigger is occurred	text
EVALUATION_FLOW_ID	Evaluation flow identifier	text
RISK_SUPPRESSION_WINDOW_SIZE	Depricated - no longer in use	int
SUBTYPE	A subtype of trigger(system/manual)	varchar(10)

Constraints:

ID - primary key

2.1.8. rp_primary_keys view

Description: A view providing a fielded representation of the primary key fields that are part of an alert trigger.

Confidential Page 10 | 39

Note: Each investigated entity field from mappers will be represented in that view, as a different column.

Table 8: rp_primary_keys view

Field Attributes	Description	Туре
RP_TRIGGER_ID	Corresponding trigger identifier	text
RP_ALERT_ID	lidentifier of alert	text
PRIMARY_KEY_ NAME	Field per primary key defined within the Investigation Center	text

Constraints:

ID - primary key

2.1.9. rp_alert_fields view

Description: A view providing a fielded representation of the primary key fields that are part of an alert trigger.

Note: Each alert field from mappers, will be represented in that view by a different column.

Table 9: rp_alert_fields view

Field Attributes	Description	Text
RP_TRIGGER_ID	Corresponding trigger identifier	text
RP_ALERT_ID	Identifier of alert	text
PRIMARY_KEY_NAME	Field per primary key defined within the Investigation Center	text

Constraints:

• *ID*: primary key

2.1.10. rp_grouping_identifiers view

Description: A view providing a fielded representation of the 'group identifiers' fields used as part of the Entity Resolution functionality

Confidential Page 11 | 39

Table 10: rp_grouping_identifiers view

Field Attributes	Description	Туре
RP_TRIGGER_ID	Corresponding trigger identifier	text
RP_ALERT_ID	Identifier of alert	text
GROUPING_IDENTIFIER_NAME	Name of the primary key	text

Constraints:

• *ID*: primary key

2.1.11. rp_queues

Description: Table consisting of queue details

Table 11: rp_queues

Field Attributes	Description	Туре	From Version
ID	Row identifier	bigint	
NAME	Queue name	text	
TYPE	Queue request	Varchar(15)	
QUEUE_QUERY	Queue list of orders	text	
ORIGIN_TYPE_ORDERS	Queue list of orders	text	
DATA_PERMISSON	Queue DPV	text	
TEAMS	Queue teams list	text	
IDENTIFIER	Queue identifier	text	
DISTRIBUTION_CRITERIA	Criteria object	text	
WORKFLOW_ID	Id of the corresponding workflow	text	
VIEW_IDENTIFIER	Corresponding view identifier	text	
MODIFIED_AT	Time when row was updated	timestamp	6.10

Constraints

• ID -primary key

2.1.12. rp_mappers

Description: Investigation Center Mappers definitions

Confidential Page 12 | 39

Table 12: rp_mappers

Field Attributes	Description	Туре	From Version
ID	Primary key identifier	bigint	
NAME	Queue name	text	
DATA_PERMISSON	Queue DPV (text)	text	
IDENTIFIER	Mapper text identifier (text)	text	
SOLUTION_EVALUATION_ FLOW_UNIT	Evaluation flow reference	text	
ALERT_TABLE_NAME	Queue list of orders (text)	text	
SHORT_NAME	Short name of mapper (text)	text	
TEMPLATE_ID	Id of the corresponding template (text)	bgint	
TEMPLATE_VERSION	Corresponding template version (int)	int	
IS_DELETED	If it is a deleted mapper (boolean)	boolean	
MODIFIED_BY	Author's name	text	
MODIFIED_AT	Timestamp when mapper was updated	timestamp	6.10

Constraints:

• *ID*: primary key

• *identifier* - not null

2.1.13. rp_workflows

Description: Workflow identifiers

Table 13: rp_workflows

Field Attribute	Description	Туре
ID	Primary key identifier	bigint
NAME	Workflow name	text
IDENTIFIER	Workflow text identifier	text
DESCRIPTION	Workflow description	text
TYPE	Workflow type	varchar(10)
IS_DEFAULT	If it's a default workflow	boolean
IS_DELETED	If its a deleted workflow	timestamp

Constraints:

Confidential Page 13 | 39

• *ID*: Primary key

2.1.14. rp_attachments

Description attachment metadata

Table 14: rp_attachments

Field Attribute	Description	Туре	From Version
ATTACHMENT_ID	Primary key identifier	Varchar(50)	6.10
ALERT_ID	Alert id	Varchar(50)	6.10
ADDED_BY	User that added attachment	Varchar(100)	6.10
ADDED_ON	Time when attachment was added	timestamp	6.10
CATEGORY	Category of attachment	Varchar(100)	6.10
DESCRIPTION	Description of attachment	text	6.10
STATE	State of attachment	Varchar(100)	6.10
LINK	Path of document in minio	varchar	6.10
SIZE	Size of attachment	bigint	6.10
FILENAME	Filename of attachment in minio	varchar	6.10
MODIFIED_AT	Timestamp when row was updated	timestamp	6.10

Constraints:

• Attachment_id: Primary key

2.1.15. rp_triggers_data

Description triggers data

Table 15: rp_triggers_data

Field Attribute	Description	Туре	From Version
ID	Primary key	bigint	6.10
ALERT_ID	Alert id	text	6.10
TRIGGER_ID	Id of trigger	text	6.10
DATA_HASH	technical column for internal usage	integer	6.10
TRIGGER_DATA	Contains trigger data	JSON	6.10
MODIFIED_AT	Timestamp when row was updated	timestamp	6.11

Constraints:

• ID: Primary key

Confidential Page 14 | 39

2.2. Accessing Encrypted Data

When the Data at Rest Encryption functionality is enabled on the ThetaRay environment, selected alert fields and notes text will appear in encrypted form in the database. The data is encrypted by using the AES algorithm in ECB mode to encrypt the data, base64 encoding the result and prefixing it with an 'ed@@' string to clearly indicate that the content of the data element is encrypted.

Decryption of the data using SQL queries can be performed using the Postgres standard 'pgcrypto' extension, but requires access to the Data Encryption Key (DEK) which should not be publicly exposed and embedded into queries.

To allow access to the DEK, a Postgres stored function named 'get_dek' is automatically registered within the 'encryption' schema of the 'cdd' database in Postgres. Users granted access to this schema (for Postgres users created on behalf of Jupyter end users, these are users which are assigned the DirectSensitiveDataAccess role in Keycloak) may use this function to obtain a DEK and decrypt through SQL in the following manner (this queri is provided as a specific example) -

```
SELECT encode(
    decrypt(
        decode(substring(account_id FROM 5), 'base64'), # The data to decrypt
        decode(encryption.get_dek(), 'base64'), # The data encryption
key
        'aes-ecb/pad:pkcs'
    ),
        'escape'
) AS account_id
FROM solution_test.transactions
```

Note: It should be noted that granting access to the encryption schema for the 'report_user' or to custom database users provisioned on the environment is not an automated process and should be manually performed by a database administrator.

Confidential Page 15 | 39

Appendix A - Accessing Reports DB from Power BI Service

Microsoft Power BI Service is a SaaS service that provides business intelligence services. To allow access to the Reporting Database by the PowerBI Service without requiring the database to be exposed to the global internet, Microsoft provides the 'On-premises Data Gateway', a component that can be deployed on a Windows host and enables PowerBI to access data servers located in (virtual) networks that are not exposed to the internet, but have outbound access to the PowerBI service.

The following sections provides instructions on how to set up the On-Prem DataGateway on a Windows based virtual machine running on Microsoft Azure, enabling connectivity from PowerBI to the Reporting Database.

3.0.1. Enabling RDP Connectivity to Azure from a Local Machine

Your local machine can be any platform capable of running RDP. The method of starting RDP platform dependent. For a Windows system, type **mstsc** on a command line or in **Start>Run**.

Tip:The RDP connect program is located in **C:\Windows\System32\ mstsc.exe**. For repeated use, create a shortcut on the desktop or the taskbar.

Running the program results in the following window:

Enter the computer name. For this guide we use the VMs IP address, 13.93.93.223. The IP address should be supplied by the creator of the VM. (You may also need a username and password.)

Confidential Page 16 | 39

3.0.2. Azure Windows VM Setup

Note: PowerBI On-Prem Gateway and Power BI Desktop run on Windows based virtual machines in Azure. Instructions on how to deploy such VMs on Azure are beyond the scope of this document. The following sections detail the extra steps to be performed on the Windows VMs to enable connectivity to Postgres running on OpenShift.

3.0.2.1. Installing a Trusted Root Certificate

Communication to ThetaRay's Postgres database is secured through TLS. The connection uses a dynamically generated certificate / key signed by a self-signed CA that is part of the ThetaRay environment. Clients running on Windows machines are required to trust ThetaRay's CA to obtain connectivity.

The root CA used by ThetaRay is set as a deployment parameter and can be obtained from the **shared-secrets.yaml.gotmpl** file which is part of the ThetaRay's deployment kit.

You will need to import the received certificate. In our example, it is a small file with a name like **Cert.p12**. To copy it from your local machine to the VM, you can use regular copy/paste.

From this point, the import method is based on Import Certificate:

>> To import the certificate:

 Right click Widows start and choose Run. Enter mmc. The Console window opens:

Confidential Page 17 | 39

Open File>Add/Remove Snap-in...:

3. The Add or Remove Snap-ins window opens:

4. Go to Certificates:

Confidential Page 18 | 39

5. Click Add:

6. Check **Computer account** (as shown above) and click **Next**.

7. Ensure that **Local computer** is checked and click **Finish**. In the **Add or Remove Snap-ins** window, the **Certificates** item has been added:

Confidential Page 19 | 39

8. Click **OK**. You are returned to the Console window with some additions. Open **Certificates**:

9. Open Certificates>All Tasks>Import.

10. The **Certificate Import Wizard** opens:

Confidential Page 20 | 39

11. Click **Next**. You are asked for a file to import:

12. Use the Browse button to locate your certificate file. Notice that it allows specific file types:

Confidential Page 21 | 39

13. Select your file type: In our example we use a .p12 file type.

14. Click **Next**. You are required to enter the certificate password:

15. Click **Next**. Chose where to store the certificate:

Confidential Page 22 | 39

16. Click **Next**. The Wizard confirms your import details:

Confidential Page 23 | 39

This completes the certificate import procedure

3.0.2.2. Configuring Windows Machines to Resolve the Postgres Host Name

ThetaRay requires Postgres to be accessed using the internal host name associated with the OpenShift service used to access the database from within the cluster, **postgres.<namespace>.svc.cluster.local**. This requires setting up the windows hosts file to resolve Postgres's host name to the internal load balancer IP address.

For example:

Item	Value Used in this Guide
Internal host name	postgres.dmitryvi-shared-master-1682850588-2015.svc.cluster.local
IP address	80.8.28.39

3.0.2.3. Setting Up a Postgres Load Balancer

A postgress Load balancer has to be installed on a shared environment where postgress db runs, The installation will be provided by customer support team .

However, When the service is run, it provides an external IP address, for example:

Item	Value Used in this Guide
Server URL	<pre><postgres.dmitryvi-shared-master-1682850588-2015.svc.cluster.local></postgres.dmitryvi-shared-master-1682850588-2015.svc.cluster.local></pre>
IP address	<80.8.28.39>

These must be added to the hosts file, located here:

c:\Windows\System32\drivers\etc\hosts

Here is an extract:

localhost name resolution is handled within DNS itself.

Confidential Page 24 | 39


```
# 127.0.0.1 localhost
# ::1 localhost
80.8.28.39 postgres.dmitryvi-shared-master-1682850588-
2015.svc.cluster.local
```

Installing Npgssql

Npgsql is the .NET data provider for PostgreSQL.

>> To install Npgsql:

- 1. Go to https://github.com/npgsql/npgsql. On the right side of the page, click **Releases**. The most recent 4.0.x release with a Windows msi installer is 4.0.13.
- 2. Enter it in the top right Find a release search bar or just scroll down to find it. Click Assets:

- 3. Click the Npgsql-4.0.13.msi link to download the installer.
- 4. Run **Npgsql.exe**. It is a standard Windows installer and we only point out special details.
- 5. In the **Custom Setup** window, ensure that **Npgsql GAC Installation** is selected as follows:

Confidential Page 25 | 39

6. Complete the installation in the usual way.

3.0.2.4. Installing GatewayInstall

GatewayInstall acts as a bridge. It provides quick and secure data transfer between on-premises data (data that is **not** in the cloud), and several Microsoft cloud services such as Power BI Pro.

Note: GatewayInstall is only needed for virtual machines accessing the database using the browser (web) interface.

>> To use GatewayInstall:

- Go to the Microsoft Download Center, look for and download Gatewayinstall.exe.
- 2. Run Gatewayinstall.exe.

Confidential Page 26 | 39

- 3. Accept the terms of use and click **Install**.
- 4. You will be required to sign in with an email address to be used with this gateway:

The email to enter here is that used for the Power BI Pro license.

You will be redirected to a sign-in to MS Azure.

5. Register the gateway:

Confidential Page 27 | 39

Click **Next**.

6. Provide on-premises gateway details:

Confidential Page 28 | 39

Click Configure.

The installation completes with a confirmatory window:

Confidential Page 29 | 39

- 7. Have a look at the right-hand menu settings:
 - a. Note first item in Service Settings:

Confidential Page 30 | 39

b. In **Connectors** there is an issue:

Confidential Page 31 | 39

You may ignore this issue for now.

TIP: A desktop icon is not generated but the program is placed in the system Startup Menu programs. If that is not suitable, go to the application in **C:\Program Files\On-premises data gateway**, and create a desktop shortcut for **Microsoft.PowerBI.EnterpriseGateway.exe.**

Confidential Page 32 | 39

Appendix B - Connecting through Microsoft Excel

Access to the ThetaRay Reporting Database from Microsoft Excel running on a Windows machine, is enabled through the Postgres ODBC Driver. The following steps are required to configure ODBC connectivity to the reporting database:

- 1. Download and install the latest Postgres ODBC driver from https://www.postgresql.org/ftp/odbc/versions/msi/
- 2. Configure an ODBC connection to the reporting database.
- 3. Launch the ODBC Data Sources Administrator application.

4. Configure a connection using the PostgreSQL Unicode driver.

Confidential Page 33 | 39

O THETARAY

5. Click **Add**, and configure a connection based on the hostname and user credentials provided by ThetaRay.

6. From Microsoft Excel, click Data -> Get Data -> From Other Sources -> From ODBC and select the previously configured ODBC data source.

Confidential Page 34 | 39

7. Excel will provide you the ability to populate an Excel sheet, with data queried from the reporting database (custom SQL or visual transformations can be applied through Excel as needed).

Confidential Page 35 | 39

O THETARAY

Appendix C - Connecting through PowerBI Desktop

PowerBI Desktop is a Windows desktop application enabling authoring and execution of PowerBI reports in a single user environment.

- >> To connect PowerBI Desktop to the ThetaRay Reporting Database, the following steps should be applied:
 - 1. Select Get Data -> More from the Toolbar.

2. Select PostgreSQL within the dialog.

Confidential Page 36 | 39

3. Provide the databases connection details and select whether to use the Import or Direct Query mode of PowerBI.

Confidential Page 37 | 39

O THETARAY

4. Select the relevant Reporting Database tables to be included in the PowerBI report.

5. Continue with the report design with the loaded data.

Confidential Page 38 | 39

O THETARAY

Confidential Page 39 | 39