Álgebra Universal e Categorias

Exame de recurso (23 de junho de 2017) — duração: 2h30 _____

1. (a) Considere a álgebra $\mathcal{A}=(A;+^{\mathcal{A}})$ de tipo (2), onde $A=\{0,1,2,3,4,5\}$ e $+^{\mathcal{A}}$ é a operação binária definida por

 $a +^{\mathcal{A}} b = \text{resto de } a + b \text{ na divisão inteira por } 6$, para quaisquer $a, b \in A$.

Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: Para quaisquer subonjuntos S_1 e S_2 de A, se S_1 e S_2 são subuniversos de A, então $S_1 \cup S_2$ é um subuniverso de A.

- (b) Seja $\mathcal{B}=(B;F)$ uma álgebra. Mostre que se S_1 e S_2 são subuniversos de \mathcal{B} , então $S_1\cap S_2$ é um subuniverso de \mathcal{B} .
- 2. Sejam $\mathcal{A}=(A;F)$ e $\mathcal{B}=(B;G)$ álgebras do mesmo tipo. Seja $\alpha:A\times B\to A$ a aplicação definida por $\alpha((a,b))=a$, para todo $(a,b)\in A\times B$.
 - (a) Mostre que α é um homomorfismo sobrejetivo de $\mathcal{A} \times \mathcal{B}$ em \mathcal{A} . Justifique que $(\mathcal{A} \times \mathcal{B})/\ker \alpha \cong A$.
 - (b) Mostre que α é um monomorfismo se e só se \mathcal{B} é uma álgebra trivial.
- 3. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1) tal que $A=\{a,b,c,d\}$ e $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são as operações definidas por

- (a) Considere as congruências $\theta_1 = \triangle_A \cup \{(a,c),(c,a),(b,d),(d,b)\}$ e $\theta_2 = \theta(c,d)$. Mostre que (θ_1,θ_2) é um par de congruências fator.
- (b) Diga, justificando, se existem álgebras não triviais \mathcal{B} e \mathcal{C} tais que $\mathcal{A} = \mathcal{B} \times \mathcal{C}$.
- (c) A álgebra \mathcal{A} é sudiretamente irredutível? Justifique a sua resposta.
- 4. Seja C a categoria definida pelo diagrama seguinte

Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

- (a) Todo o morfismo de ${\bf C}$ que é um bimorfismo também é um isomorfismo.
- (b) O par (R, i) é um coignalizador de u e v.
- 5. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$. Mostre que se $g\circ f$ é invertível à esquerda e f é invertível à direita, então f é um bimorfismo.
- 6. Sejam ${\bf C}$ uma categoria e A, B e P objetos de ${\bf C}$ tais que $\hom(A,B) \neq \emptyset$ e $f:P \to A$ e $g:P \to B$ são morfismos de ${\bf C}$. Mostre que se (P;(f,g)) é um produto de A e B, então f é invertível à direita.

7. Numa categoria C, considere o seguinte diagrama

Mostre que se o diagrama anterior é comutativo, h é um monomorfismo e $(A,(f_1,f_2))$ é um produto fibrado de (g_1,g_2) , então $(A,(f_1,f_2))$ é um produto fibrado de (h_1,h_2) .

8. Sejam ${f C}$ e ${f D}$ categorias. Diz-se que um funtor $F:{f C} o {f D}$ reflete objetos iniciais se, para todo $I \in {
m Obj}({f C})$,

F(I) é objeto inicial de $\mathbf{D} \Rightarrow I$ é objeto inicial de $\mathbf{C}.$

Mostre que se ${\cal F}$ é um funtor fiel e pleno, então ${\cal F}$ reflete objetos iniciais.