Contributeurs

Notation

S Les coûts d'un portefeuille.

 $\rho(S)$ Une mesure de risque.

1 Mesures de risque

Capital économique Allocation de surplus de la compagnie;

$$CE(S) = \rho(S) - E[S]$$

Marge de risque associée à une prime P(X);

$$MR(X) = \rho(X) - E[X]$$

 ρ introduit une marge de risque :

positive lorsque $\rho(X) \ge E[X]$ pour une v.a. X avec $E[X] < \infty$;

justifiée lorsque $\rho(X) = \rho(a) = a$ pour une v.a. X avec $\Pr(X = a) = 1, \alpha > 0$;

non-excessive lorsque $\rho(X) \le a_{\text{max}}$ pour une v.a. X s'il existe $a_{\text{max}} < \infty$

tel que $Pr(X \le a_{max}) = 1$;

1.1 Propriétés désirables d'une mesure de risque

■ Homogénéité

Soit une v.a. X et un scalaire c>0, la mesure de risque ρ est dite homogène si $\rho(cX)=c\rho(X)$.

■ Invariance à la translation

Soit une v.a. X et un scalaire $c \in \mathbb{R}$, la mesure de risque ρ satisfait la propriété d'invariance à la translation si $\rho(X+c) = \rho(X) + c$.

Ajouter un montant positif à un risque ajoute un montant équivalent à la mesure de risque.

■ Monotonicité

Soit les v.a. X_1 et X_2 tel que $\Pr(X \leq X_2) = 1$, la mesure de risque ρ satisfait la propriété de monotonicité si $\rho(X_1) \leq \rho(X_2)$ ou si $\forall u \in (0,1)$, $F_{X_1}^{-1}(u) \leq F_{X_2}^{-1}(u)$.

≡ Sous-additivité

Soit les v.a. X_1 et X_2 , la mesure de risque ρ satisfait la propriété de sous-additivité si $\rho(X_1+X_2) \leq \rho(X_1) + \rho(X_2)$.

≡ Convexité

Soit les v.a. X_1 et X_2 , la mesure de risque ρ satisfait la propriété de convexité si $\rho(\alpha X_1 + (1-\alpha)X_2) \leq \alpha \rho(X_1) + (1-\alpha)\rho(X_2)$.

1.2 TVaR et VaR

- > La **Value-at-Risk** correspond au $100\alpha^e$ pourcentile;
- > Si X représente les gains, on s'intéresse à l'extrémité inférieure de la distribution des gains et $TVaR_{\alpha}(X) = \mathbb{E}\left[X|X \leq \alpha\right] = \frac{1}{\alpha} \int_{-\infty}^{VaR_{\alpha}} x f_X(x) dx$;
- > Si X représente les pertes, on s'intéresse à l'extrémité supérieure de la distribution des gains et $TVaR_{\alpha}(X) = \mathbb{E}\left[X|X>\alpha\right] = \frac{1}{1-\alpha}\int_{VaR_{\alpha}}^{\infty}xf_{X}(x)dx$;

2 Modèles de risques non-vie

Notation

M Variable aléatoire du nombre de sinistres pour un risque;

 B_k Variable aléatoire du montant du k^e sinistre.

Modèle fréquence-sinistre

On défini la v.a. X comme étant les coûts (pertes) pour un risque tel que $\forall M > 0$:

$$X = \sum_{k=1}^{M} B_k$$

$$\begin{split} E\left[X\right] &= E_{M}\left[E_{B}[X|M]\right] \\ &= E[M] \times E[B] \\ Var(X) &= \underbrace{Var_{M}(E_{B}[X|M])}_{variabilit\'{e} \ du \ \textit{nombre} \ de \ sinistres} + \underbrace{E_{M}\left[Var_{B}(X|M)\right]}_{variabilit\'{e} \ du \ \textit{coût} \ par \ sinistre} \\ &= E[M]Var(B) + E^{2}[B]Var(M) \end{split}$$

$$F_X(x) = \Pr(M = 0) + \sum_{k=1}^{\infty} \Pr(M = k) F_{B_1 + \dots + B_k}(x)$$

Par exemple, pour $B_k \sim \Gamma(\alpha, \beta)$:

$$F_X(x) = \Pr(M = 0) + \sum_{k=1}^{\infty} \Pr(M = k) H(x; \alpha k, \beta)$$

$$\mathcal{L}_X(t) = P_M\left(\mathcal{L}_B(t)\right), \quad t>0$$

$$\mathrm{E}\left[X\times\mathbf{1}_{\{X>b\}}\right] = \sum_{k=1}^{\infty} \Pr(M=k)E\left[\left(B_1+\dots+B_k\right)\times\mathbf{1}_{\{B_1+\dots+B_k>b\}}\right]$$
 Par exemple, pour $B_k\sim\Gamma(\alpha,\beta)$:

$$E\left[X \times \mathbf{1}_{\{X > b\}}\right] = \sum_{k=1}^{\infty} \Pr(M = k) \frac{k\alpha}{\beta} \overline{H}(b; \alpha k + 1, \beta)$$