Рубежный контроль №2 по курсу "Методы машинного обучения"

Вариант: 11

Выполнил: Саврасов П.А. группа ИУ5-24М

Задание

Heooходимо решить задачу классификации текстов на основе любого выбранного Вами датасета. Классификация может быть бинарной или многоклассовой. Целевой признак из выбранного Вами датасета может иметь любой физический смысл, примером является задача анализа тональности текста.

Необходимо сформировать два варианта векторизации признаков - на основе CountVectorizer и на основе TfidfVectorizer. В качестве классификаторов необходимо использовать два классификатора по варианту для Вашей группы: Классификатор №1: KNeighborsClassifier Классификатор №2: Complement Naive Bayes (CNB)

Для каждого метода необходимо оценить качество классификации. Сделайте вывод о том, какой вариант векторизации признаков в паре с каким классификатором показал лучшее качество.

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import ComplementNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
```

```
data = pd.read_csv('Youtube04.csv', sep = ',')
data.head()
```

CLASS	CONTENT	DATE	AUTHOR	COMMENT_ID	
1	+447935454150 lovely girl talk to me xxx	NaN	Lisa Wellas	z12rwfnyyrbsefonb232i5ehdxzkjzjs2	0
0	I always end up coming back to this song br />	2015-05-29T02:26:10.652000	jason graham	z130wpnwwnyuetxcn23xf5k5ynmkdpjrj04	1
1	my sister just received over 6,500 new <a rel="</th"><th>NaN</th><th>Ajkal Khan</th><th>z13vsfqirtavjvu0t22ezrgzyorwxhpf3</th><th>2</th>	NaN	Ajkal Khan	z13vsfqirtavjvu0t22ezrgzyorwxhpf3	2
0	Cool	2015-05-29T02:13:07.810000	Dakota Taylor	z12wjzc4eprnvja4304cgbbizuved35wxcs	3
1	Hello I'am from Palastine	NaN	Jihad Naser	z13xjfr42z3uxdz2223gx5rrzs3dt5hna	4

```
msgContent = data['CONTENT']
msgClass = data['CLASS']
```

```
TrainX,TestX,TrainY,TestY = train_test_split(msgContent, msgClass, test_size=0.3, random_state = 1)
report = []
```

```
def ModelPredictReport(vectoriser, classifier, modelName, vectName):
    model = Pipeline(
        [("vectorizer", vectoriser),
            ("classifier", classifier)])
    model.fit(TrainX, TrainY)
    prediction = model.predict(TestX)
    report = [modelName, vectName]
    report.append(accuracy_score(TestY, prediction))
    report.append(recall_score(TestY, prediction))
    report.append(f1_score(TestY, prediction))
    return report
```

```
report.append(ModelPredictReport(CountVectorizer(), KNeighborsClassifier(), 'KNN', 'CountVectorizer'))
report.append(ModelPredictReport(TfidfVectorizer(), KNeighborsClassifier(), 'KNN', 'TfidfVectorizer'))
```

```
report.append(ModelPredictReport(CountVectorizer(), ComplementNB(), 'CNB', 'CountVectorizer'))
report.append(ModelPredictReport(TfidfVectorizer(), ComplementNB(), 'CNB', 'TfidfVectorizer'))
```

```
pd.DataFrame(report, columns = ['Model','Vectorizer','Accuracy','Recall','F1'])
```

Recall

			-		
0	KNN	CountVectorizer	0.859259	0.724638	0.840336
1	KNN	TfidfVectorizer	0.585185	0.188406	0.317073
2	CNB	CountVectorizer	0.866667	0.927536	0.876712
3	CNB	TfidfVectorizer	0.851852	0.927536	0.864865

Vectorizer Accuracy

Model