On the Identification of Models of Uncertainty, Learning, and Human Capital Acquisition with Sorting

```
Aureo De Paula<sup>1</sup> Cristina Gualdani<sup>2</sup> Elena Pastorino<sup>3</sup> Sergio Salgado<sup>4</sup>

<sup>1</sup>UCL <sup>2</sup>Queen Mary <sup>3</sup>Stanford and Hoover <sup>4</sup>Wharton
```

DSE Conference 2025

- Canonical labor market models interpret worker mobility, wage growth and wage dispersion as driven by
 - ▷ Dynamic matching process between firms and workers

 - ▶ Gradual learning about a worker's true productivity (Jovanovic, 1979)

- Open question whether this workhorse class of models is identified: difficult to establish
 - > since these forces lead to dynamic equilibrium generalized Roy models with selection on unobservables

• Yet answer is key because these models represent classic framework to study sorting in labor market

- Canonical labor market models interpret worker mobility, wage growth and wage dispersion as driven by
 - ▷ Dynamic matching process between firms and workers

 - □ Gradual learning about a worker's true productivity (Jovanovic, 1979)

- Open question whether this workhorse class of models is *identified*: difficult to establish
 - > since these forces lead to dynamic equilibrium generalized Roy models with selection on unobservables

• Yet answer is key because these models represent classic framework to study sorting in labor market

- Canonical labor market models interpret worker mobility, wage growth and wage dispersion as driven by
 - ▷ Dynamic matching process between firms and workers

 - □ Gradual learning about a worker's true productivity (Jovanovic, 1979)

- Open question whether this workhorse class of models is *identified*: difficult to establish
 - > since these forces lead to dynamic equilibrium generalized Roy models with selection on unobservables

• Yet answer is key because these models represent classic framework to study sorting in labor market

- Indeed, wage inequality is typically measured through empirical models predicated on sorting
- But impact of sorting on wage inequality is usually estimated to be low (e.g. AKM, Card & al. (2013))
 - ▶ Raises puzzle: given the large degree of wage inequality (especially in U.S.)
 - ▶ Why is sorting estimated to be *unimportant* if canonical models of inequality are based on it?
- Our answer: dynamic matching models with HK acquisition and learning lead to two confounding forces
 - 1. Naturally give rise to countervailing effects (compensating differential) in the wage equation
 - Compensate worker for lost opportunity of HK acquisition and learning at other competing firms
 - ▷ Attenuate impact of firm/worker types on wages contaminating traditional measures of sorting
 - 2. Feature endogenous matching "frictions": as HK acquisition/learning about ability take place over time

 - So a highly productive worker can be paid a relatively low wage

- Indeed, wage inequality is typically measured through empirical models predicated on sorting
- But impact of sorting on wage inequality is usually estimated to be low (e.g. AKM, Card & al. (2013))

 - ▶ Why is sorting estimated to be *unimportant* if canonical models of inequality are based on it?
- Our answer: dynamic matching models with HK acquisition and learning lead to two confounding forces
 - 1. Naturally give rise to countervailing effects (compensating differential) in the wage equation
 - Compensate worker for lost opportunity of HK acquisition and learning at other competing firms
 - ▶ Attenuate impact of firm/worker types on wages contaminating traditional measures of sorting
 - 2. Feature endogenous matching "frictions": as HK acquisition/learning about ability take place over time

 - So a highly productive worker can be paid a relatively low wage

- Indeed, wage inequality is typically measured through empirical models predicated on sorting
- But impact of sorting on wage inequality is usually estimated to be low (e.g. AKM, Card & al. (2013))

 - ▶ Why is sorting estimated to be *unimportant* if canonical models of inequality are based on it?
- Our answer: dynamic matching models with HK acquisition and learning lead to two confounding forces
 - 1. Naturally give rise to countervailing effects (compensating differential) in the wage equation
 - Compensate worker for lost opportunity of HK acquisition and learning at other competing firms
 - Attenuate impact of firm/worker types on wages contaminating traditional measures of sorting
 - 2. Feature endogenous matching "frictions": as HK acquisition/learning about ability take place over time

 - So a highly productive worker can be paid a relatively low wage

- Indeed, wage inequality is typically measured through empirical models predicated on sorting
- But impact of sorting on wage inequality is usually estimated to be low (e.g. AKM, Card & al. (2013))

 - ▶ Why is sorting estimated to be *unimportant* if canonical models of inequality are based on it?
- Our answer: dynamic matching models with HK acquisition and learning lead to two confounding forces
 - 1. Naturally give rise to countervailing effects (compensating differential) in the wage equation
 - ▷ Compensate worker for lost opportunity of HK acquisition and learning at *other* competing firms
 - ▷ Attenuate impact of firm/worker types on wages contaminating traditional measures of sorting
 - 2. Feature endogenous matching "frictions": as HK acquisition/learning about ability take place over time

 - So a highly productive worker can be paid a relatively low wage

- Indeed, wage inequality is typically measured through empirical models predicated on sorting
- But impact of sorting on wage inequality is usually estimated to be low (e.g. AKM, Card & al. (2013))

 - ▶ Why is sorting estimated to be *unimportant* if canonical models of inequality are based on it?
- Our answer: dynamic matching models with HK acquisition and learning lead to two confounding forces
 - 1. Naturally give rise to countervailing effects (compensating differential) in the wage equation
 - ▷ Compensate worker for lost opportunity of HK acquisition and learning at *other* competing firms
 - ▷ Attenuate impact of firm/worker types on wages contaminating traditional measures of sorting
 - 2. Feature endogenous matching "frictions": as HK acquisition/learning about ability take place over time

 - ▷ So a highly productive worker can be paid a relatively low wage

- Framework we consider features rich dynamic selection on unobservables
- Also, unobservables affect wages in potentially nonmonotonic, nonseparable and nonmultiplicative manner
 - ▷ Compensating differential is difference in v-functions (end. dyn. payoffs) rather than per-period payoffs
- No exclusion restrictions arise from theory to solve selection (unlike in most Roy settings)

Bottom line: not immediate to adapt existing econometric approaches to establish identification

- Framework we consider features rich dynamic selection on unobservables
 - ▶ Wages hence employment depend on time-varying, serially corr. and endogenously evolving unobservables
- Also, unobservables affect wages in potentially nonmonotonic, nonseparable and nonmultiplicative manner
 - ▷ Compensating differential is difference in v-functions (end. dyn. payoffs) rather than per-period payoffs
 - > Thus, interactive fixed effect approach is infeasible
- No exclusion restrictions arise from theory to solve selection (unlike in most Roy settings)

- Framework we consider features rich dynamic selection on unobservables
 - ▶ Wages hence employment depend on time-varying, serially corr. and endogenously evolving unobservables
- Also, unobservables affect wages in potentially nonmonotonic, nonseparable and nonmultiplicative manner
 - ▷ Compensating differential is difference in v-functions (end. dyn. payoffs) rather than per-period payoffs
- No exclusion restrictions arise from theory to solve selection (unlike in most Roy settings)

- Framework we consider features rich dynamic selection on unobservables
 - ▶ Wages hence employment depend on time-varying, serially corr. and endogenously evolving unobservables
- Also, unobservables affect wages in potentially nonmonotonic, nonseparable and nonmultiplicative manner
 - ▷ Compensating differential is difference in v-functions (end. dyn. payoffs) rather than per-period payoffs
 - > Thus, interactive fixed effect approach is infeasible
- No exclusion restrictions arise from theory to solve selection (unlike in most Roy settings)

Bottom line: not immediate to adapt existing econometric approaches to establish identification

- 1. Develop semiparametric identification arguments for matching models with HK acquisition and learning
 - Represent wage distribution as a mixture over unobservables
 - ▷ Establish identification of this wage mixture under nonparametric restrictions
 - \triangleright Recover primitives by integrating mixture-based approach w/quantile methods for standard Roy models
- 2. Use it to reevaluate impact of worker-firm sorting on U.S. earnings inequality using LEHD data
 - ▶ Findings: sorting matters for earnings inequality despite HK acquisition and learning
 - ▷ But conventional measures of sorting typically underestimate its impact on earnings inequality
 - ▷ Because they conflate compensating differential in wages with firm-worker match effects

Today: simulation-based results and direction of LEHD results (under disclosure

- 1. Develop semiparametric identification arguments for matching models with HK acquisition and learning

 - ▷ Establish identification of this wage mixture under nonparametric restrictions
 - \triangleright Recover primitives by integrating mixture-based approach w/quantile methods for standard Roy models
- 2. Use it to reevaluate impact of worker-firm sorting on U.S. earnings inequality using LEHD data
 - ▶ Findings: sorting matters for earnings inequality despite HK acquisition and learning
 - ▷ But conventional measures of sorting typically underestimate its impact on earnings inequality
 - Because they conflate compensating differential in wages with firm-worker match effects

Today: simulation-based results and direction of LEHD results (under disclosure

- 1. Develop semiparametric identification arguments for matching models with HK acquisition and learning

 - ▷ Establish identification of this wage mixture under nonparametric restrictions
 - \triangleright Recover primitives by integrating mixture-based approach w/quantile methods for standard Roy models
- 2. Use it to reevaluate impact of worker-firm sorting on U.S. earnings inequality using LEHD data
 - ▶ Findings: sorting matters for earnings inequality despite HK acquisition and learning
 - ▷ But conventional measures of sorting typically *underestimate* its impact on earnings inequality
 - ▷ Because they conflate compensating differential in wages with firm-worker match effects

- 1. Develop semiparametric identification arguments for matching models with HK acquisition and learning

 - ▷ Establish identification of this wage mixture under nonparametric restrictions
 - \triangleright Recover primitives by integrating mixture-based approach w/quantile methods for standard Roy models
- 2. Use it to reevaluate impact of worker-firm sorting on U.S. earnings inequality using LEHD data
 - > Findings: sorting matters for earnings inequality despite HK acquisition and learning
 - ▷ But conventional measures of sorting typically *underestimate* its impact on earnings inequality
 - ▷ Because they conflate compensating differential in wages with firm-worker match effects

Today: simulation-based results and direction of LEHD results (under disclosure)

A Dynamic Matching Model of the Labor Market

Preliminaries

- Dynamic matching model w/ imperfect firm competition under uncertainty and learning about worker ability
- Firms heterogeneous in their technology of output, HK and information production
- Workers heterogenous in HK (observed) and "ability" (unobserved but learnt over time)
- This general framework *nests many* existing ones: models of
 - wage growth and inequality (Becker, 1975; Mincer 1958, 1974; Ben-Porath, 1967; etc.)

 - ▷ ... with endogenous wages, identical firms, learning (Farber & Gibbons, 1996; Gibbons & Waldman, 1999a,b)

Next: firm-workers-human capital-output-information structure

Preliminaries

- Dynamic matching model w/ imperfect firm competition under uncertainty and learning about worker ability
- Firms heterogeneous in their technology of output, HK and information production
- Workers heterogenous in HK (observed) and "ability" (unobserved but learnt over time)
- This general framework *nests many* existing ones: models of
 - ▶ wage growth and inequality (Becker, 1975; Mincer 1958, 1974; Ben-Porath, 1967; etc.)

 - ▷ ... with endogenous wages, identical firms, learning (Farber & Gibbons, 1996; Gibbons & Waldman, 1999a,b)

Next: firm-workers-human capital-output-information structure

- Finitely many firms produce an homogeneous good sold in perfectly competitive market at price of 1
- Production in each firm $d \in \mathcal{D}$ is governed by CRS technology in workers' labor (described in a few slides)
- Firms Bertrand-compete for workers by offering wages each period for their employment during the period
- Can easily be extended to multi-job firms where offers include both a wage and a job

- Finitely many firms produce an homogeneous good sold in perfectly competitive market at price of 1
- Production in each firm $d \in \mathcal{D}$ is governed by CRS technology in workers' labor (described in a few slides)
- Firms Bertrand-compete for workers by offering wages each period for their employment during the period
- Can easily be extended to multi-job firms where offers include both a wage and a job

- Finitely many firms produce an homogeneous good sold in perfectly competitive market at price of 1
- ullet Production in each firm $d \in \mathcal{D}$ is governed by CRS technology in workers' labor (described in a few slides)
- Firms Bertrand-compete for workers by offering wages each period for their employment during the period
- Can easily be extended to multi-job firms where offers include both a wage and a job

- Finitely many firms produce an homogeneous good sold in perfectly competitive market at price of 1
- Production in each firm $d \in \mathcal{D}$ is governed by CRS technology in workers' labor (described in a few slides)
- Firms Bertrand-compete for workers by offering wages each period for their employment during the period
- Can easily be extended to multi-job firms where offers include both a wage and a job

- $H_{n,1}$: gender, race and initial HK (e.g. education) observed by workers, firms and econometrician
- Other skills, unobserved by the econometrician, present from birth or developed pre-market entry
 - $\triangleright e_n$: efficiency observed by workers and firms
 - $\triangleright \theta_n$: ability gradually and symmetrically learnt by workers and firms over time
- (e_n, θ_n) are general traits that potentially influence performance across all jobs (in given market/occupation)
- In the econometric part, e_n is assumed discrete
- $\theta_n \in \Theta := \{\bar{\theta}, \underline{\theta}\}$: simplifies model description but can be generalized to continuous/multidimensional

- $H_{n,1}$: gender, race and initial HK (e.g. education) observed by workers, firms and econometrician
- Other skills, unobserved by the econometrician, present from birth or developed pre-market entry
 - $\triangleright e_n$: efficiency observed by workers and firms
 - $> heta_n$: ability gradually and symmetrically \emph{learnt} by workers and firms over time
- (e_n, θ_n) are general traits that potentially influence performance across all jobs (in given market/occupation)
- In the econometric part, e_n is assumed discrete
- $\theta_n \in \Theta := \{\bar{\theta}, \underline{\theta}\}$: simplifies model description but can be generalized to continuous/multidimensional

- $H_{n,1}$: gender, race and initial HK (e.g. education) observed by workers, firms and econometrician
- Other skills, unobserved by the econometrician, present from birth or developed pre-market entry
 - $\triangleright e_n$: efficiency observed by workers and firms
 - $\triangleright \theta_n$: ability gradually and symmetrically learnt by workers and firms over time
- (e_n, θ_n) are general traits that potentially influence performance across all jobs (in given market/occupation)
- In the econometric part, e_n is assumed discrete
- $\theta_n \in \Theta := \{\bar{\theta}, \underline{\theta}\}$: simplifies model description but can be generalized to continuous/multidimensional

- $H_{n,1}$: gender, race and initial HK (e.g. education) observed by workers, firms and econometrician
- Other skills, unobserved by the econometrician, present from birth or developed pre-market entry
 - $\triangleright e_n$: efficiency observed by workers and firms
 - $\triangleright \theta_n$: ability gradually and symmetrically learnt by workers and firms over time
- (e_n, θ_n) are general traits that potentially influence performance across all jobs (in given market/occupation)
- In the econometric part, e_n is assumed discrete
- $\theta_n \in \Theta := \{\bar{\theta}, \underline{\theta}\}$: simplifies model description but can be generalized to continuous/multidimensional

- $H_{n,1}$: gender, race and initial HK (e.g. education) observed by workers, firms and econometrician
- Other skills, unobserved by the econometrician, present from birth or developed pre-market entry
 - $\triangleright e_n$: efficiency observed by workers and firms
 - $\triangleright \theta_n$: ability gradually and symmetrically learnt by workers and firms over time
- (e_n, θ_n) are general traits that potentially influence performance across all jobs (in given market/occupation)
- In the econometric part, e_n is assumed discrete
- $\theta_n \in \Theta := \{\bar{\theta}, \underline{\theta}\}$: simplifies model description but can be generalized to continuous/multidimensional

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker *n* with efficiency $e_n = e$ employed at firm *d* in period *t* has HK $H_{n,t}(d,e)$ at *end* of *t*

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} := \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} := \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} \coloneqq \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} \coloneqq \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} \coloneqq \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} := \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_r
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} \coloneqq \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} \coloneqq \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} \coloneqq \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} := \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} \coloneqq \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- Worker n accumulates HK over time depending on initial characteristics $(H_{n,1}, e_n, \theta_n)$ and job history D_n^t
 - \triangleright Notation: $D_{n,t}$ is worker n's job choice at time t and $D_n^t := (D_{n,1}, \ldots, D_{n,t})$ is job history
 - Note (next): we allow entire job history to potentially affect acquired HK
- Worker n with efficiency $e_n = e$ employed at firm d in period t has HK $H_{n,t}(d,e)$ at end of t

$$H_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa(D_n^{t-1})) + \epsilon_{n,t}(d,e)$$

- \triangleright Labor input: match-specific function $\ell_{d,e}(\cdot)$ of $H_{n,1}$, $\kappa_{n,t} \coloneqq \kappa(D_n^{t-1})$ and productivity shock $\epsilon_{n,t}(d,e)$
- \triangleright TFP: match-specific random variable $a_{n,t}(d,e)$ with distribution governed by $d,e,H_{n,1}$ and θ_n
- So unknown ability θ_n influences $H_{n,t}(d,e)$ via distribution of $a_{n,t}(d,e)$
- $a_{n,t}(d,e)$ is a noisy measure of θ_n not a deterministic function (for learning not to be trivial)

- With labor supply normalized to 1, output produced is equal to total HK: $y_{n,t}(d,e) = H_{n,t}(d,e)$
- Worker n with efficiency $e_n = e$ employed at d in period t produces output $y_{n,t}(d,e)$ at end of t

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- Firms differ in their output/HK technology ($\ell_{d,e}$ and distribution of $a_{n,t}(d,e)$ and $\epsilon_{n,t}(d,e)$ depend on d)
- Next: discuss how firms differ in their technology of information generations.

- With labor supply normalized to 1, output produced is equal to total HK: $y_{n,t}(d,e) = H_{n,t}(d,e)$
- Worker n with efficiency $e_n = e$ employed at d in period t produces output $y_{n,t}(d,e)$ at end of t

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- Firms differ in their output/HK technology ($\ell_{d,e}$ and distribution of $a_{n,t}(d,e)$ and $\epsilon_{n,t}(d,e)$ depend on d)
- Next: discuss how firms differ in their technology of *information* generation

- With labor supply normalized to 1, output produced is equal to total HK: $y_{n,t}(d,e) = H_{n,t}(d,e)$
- Worker n with efficiency $e_n = e$ employed at d in period t produces output $y_{n,t}(d,e)$ at end of t

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- Firms differ in their output/HK technology ($\ell_{d,e}$ and distribution of $a_{n,t}(d,e)$ and $\epsilon_{n,t}(d,e)$ depend on d)
- Next: discuss how firms differ in their technology of *information* generation

- With labor supply normalized to 1, output produced is equal to total HK: $y_{n,t}(d,e) = H_{n,t}(d,e)$
- Worker n with efficiency $e_n = e$ employed at d in period t produces output $y_{n,t}(d,e)$ at end of t

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- Firms differ in their output/HK technology ($\ell_{d,e}$ and distribution of $a_{n,t}(d,e)$ and $\epsilon_{n,t}(d,e)$ depend on d)
- Next: discuss how firms differ in their technology of *information* generation

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- ullet Beginning of t (before decisions): workers and firms know $\{\ell_{d,e}(H_{n,1},\kappa_{n,t})\}_d$ and observe $\{ar{\epsilon}_{n,t}(d,e)\}_c$
- End of t (after decisions): workers and firms observe $a_{n,t}(d,e)$ at employing firm d
- In particular, workers and firms make decisions based on expectation about $\{a_{n,t}(d,e)\}_{a}$
- ullet Key: distribution of $\{a_{n,t}(d,e)\}_d$ depends on unknown ability $heta_n$
- ullet Therefore, expectation about $\{\,a_{n,t}(\,d,\,e)\,\}_d$ depends on beliefs about $heta_n$

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- Beginning of t (before decisions): workers and firms know $\{\ell_{d,e}(H_{n,1},\kappa_{n,t})\}_d$ and observe $\{\epsilon_{n,t}(d,e)\}_d$
- End of t (after decisions): workers and firms observe $a_{n,t}(d,e)$ at employing firm a
- In particular, workers and firms make decisions based on expectation about $\{a_{n,t}(d,e)\}_c$
- ullet Key: distribution of $\{a_{n,t}(d,e)\}_d$ depends on unknown ability θ_n
- ullet Therefore, expectation about $\{\,a_{n,t}(\,d,\,e)\,\}_d$ depends on beliefs about $heta_n$

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- Beginning of t (before decisions): workers and firms know $\{\ell_{d,e}(H_{n,1},\kappa_{n,t})\}_d$ and observe $\{\epsilon_{n,t}(d,e)\}_d$
- End of t (after decisions): workers and firms observe $a_{n,t}(d,e)$ at employing firm d
- In particular, workers and firms make decisions based on expectation about $\{a_{n,t}(d,e)\}_d$
- Key: distribution of $\{a_{n,t}(d,e)\}_d$ depends on unknown ability θ_n
- ullet Therefore, expectation about $\{\,a_{n,t}(\,d,\,e)\,\}_d$ depends on beliefs about $heta_n$

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- Beginning of t (before decisions): workers and firms know $\{\ell_{d,e}(H_{n,1},\kappa_{n,t})\}_d$ and observe $\{\epsilon_{n,t}(d,e)\}_d$
- End of t (after decisions): workers and firms observe $a_{n,t}(d,e)$ at employing firm d
- ullet In particular, workers and firms make decisions based on expectation about $\{a_{n,t}(d,e)\}_d$
- ullet Key: distribution of $\{a_{n,t}(d,e)\}_d$ depends on unknown ability θ_n
- ullet Therefore, expectation about $\{\,a_{n,t}(\,d,\,e)\,\}_d$ depends on beliefs about $heta_n$

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- Beginning of t (before decisions): workers and firms know $\{\ell_{d,e}(H_{n,1},\kappa_{n,t})\}_d$ and observe $\{\epsilon_{n,t}(d,e)\}_d$
- End of t (after decisions): workers and firms observe $a_{n,t}(d,e)$ at employing firm d
- ullet In particular, workers and firms make decisions based on expectation about $\{a_{n,t}(d,e)\}_d$
- Key: distribution of $\{a_{n,t}(d,e)\}_d$ depends on unknown ability θ_n
- Therefore, expectation about $\{a_{n,t}(d,e)\}_d$ depends on beliefs about θ_n

$$y_{n,t}(d,e) = a_{n,t}(d,e) + \ell_{d,e}(H_{n,1},\kappa_{n,t}) + \epsilon_{n,t}(d,e)$$

- Beginning of t (before decisions): workers and firms know $\{\ell_{d,e}(H_{n,1},\kappa_{n,t})\}_d$ and observe $\{\epsilon_{n,t}(d,e)\}_d$
- End of t (after decisions): workers and firms observe $a_{n,t}(d,e)$ at employing firm d
- ullet In particular, workers and firms make decisions based on expectation about $\{a_{n,t}(d,e)\}_d$
- Key: distribution of $\{a_{n,t}(d,e)\}_d$ depends on unknown ability θ_n
- ullet Therefore, expectation about $\{a_{n,t}(d,e)\}_d$ depends on beliefs about θ_n

- Workers and firms symmetrically learn about θ_n through Bayesian updating process
- This process is based on common observations of $a_{n,t}(d,e)$ at end of period t at employing firm a
- How does it work? Workers and firms have prior belief about $\theta_n = \bar{\theta}$ at beginning of t=1

$$P_{n,1} = p_1(h, e) := \Pr(\theta_n = \bar{\theta} \mid H_{n,1} = h, e_n = e)$$

- At end of $t \ge 1$ they observe $a_{n,t}(d,e)$ and so $y_{n,t}(d,e)$ at employing firm d
- At beginning of t+1 they update beliefs about θ_n using signal $a_{n,t}(d,e)$ and Bayes' rule to obtain $P_{n,t+1}$

- Workers and firms symmetrically learn about θ_n through Bayesian updating process
- This process is based on common observations of $a_{n,t}(d,e)$ at end of period t at employing firm d
- How does it work? Workers and firms have prior belief about $\theta_n = \bar{\theta}$ at beginning of t = 1

$$P_{n,1} = p_1(h, e) := \Pr(\theta_n = \bar{\theta} \mid H_{n,1} = h, e_n = e)$$

- At end of $t \ge 1$ they observe $a_{n,t}(d,e)$ and so $y_{n,t}(d,e)$ at employing firm d
- At beginning of t+1 they update beliefs about θ_n using signal $a_{n,t}(d,e)$ and Bayes' rule to obtain $P_{n,t+1}$

- Workers and firms symmetrically learn about θ_n through Bayesian updating process
- This process is based on common observations of $a_{n,t}(d,e)$ at end of period t at employing firm d
- How does it work? Workers and firms have prior belief about $\theta_n = \bar{\theta}$ at beginning of t=1

$$P_{n,1} = p_1(h, e) := \Pr(\theta_n = \bar{\theta} \mid H_{n,1} = h, e_n = e)$$

- At end of $t \ge 1$ they observe $a_{n,t}(d,e)$ and so $y_{n,t}(d,e)$ at employing firm d
- At beginning of t+1 they update beliefs about θ_n using signal $a_{n,t}(d,e)$ and Bayes' rule to obtain $P_{n,t+1}$

- Workers and firms symmetrically learn about θ_n through Bayesian updating process
- This process is based on common observations of $a_{n,t}(d,e)$ at end of period t at employing firm d
- How does it work? Workers and firms have prior belief about $\theta_n = \bar{\theta}$ at beginning of t=1

$$P_{n,1} = p_1(h, e) := \Pr(\theta_n = \bar{\theta} \mid H_{n,1} = h, e_n = e)$$

- At end of $t \ge 1$ they observe $a_{n,t}(d,e)$ and so $y_{n,t}(d,e)$ at employing firm d
- At beginning of t+1 they update beliefs about θ_n using signal $a_{n,t}(d,e)$ and Bayes' rule to obtain $P_{n,t+1}$

- Workers and firms symmetrically learn about θ_n through Bayesian updating process
- This process is based on common observations of $a_{n,t}(d,e)$ at end of period t at employing firm d
- How does it work? Workers and firms have prior belief about $\theta_n = \bar{\theta}$ at beginning of t = 1

$$P_{n,1} = p_1(h, e) := \Pr(\theta_n = \bar{\theta} \mid H_{n,1} = h, e_n = e)$$

- At end of $t \ge 1$ they observe $a_{n,t}(d,e)$ and so $y_{n,t}(d,e)$ at employing firm d
- ullet At beginning of t+1 they update beliefs about $heta_n$ using signal $a_{n,t}(d,e)$ and Bayes' rule to obtain $P_{n,t+1}$

- ullet Given these beliefs, workers and firms make decisions based on expected output in period t+1
- ullet Expected output of worker n in period t+1 when employed at firm d (before $a_{n,t+1}(d,e)$ is realized)

$$\mathbb{E}(y_{n,t+1}(d,e) \mid P_{n,t+1} = p, e_n = e, H_{n,1} = h, \kappa_{n,t+1} = \kappa, \epsilon_{n,t+1}) = y(d,s) + \epsilon_{n,t+1}(d,e)$$

- ullet Conditional on all that is known by workers and firms at beginning of t+1
- y(s,d) is expected value of $y_{n,t+1}(d,e)$ given $s_{n,t+1} := (P_{n,t+1}, e_n, H_{n,1}, \kappa_{n,t+1})$ w/ realization $s := (p, e, h, \kappa)$
- $\epsilon_{n,t+1} := (\epsilon_{n,t+1}(d,e) : d \in \mathcal{D}, e \in \mathcal{E})$ is vector of shocks
- Beginning-of-period state variables: $(s_{n,t+1}, \epsilon_{n,t+1})$
- y(d,s) is primitive of interest as it captures heterogeneous output/HK technology of firms

- ullet Given these beliefs, workers and firms make decisions based on expected output in period t+1
- Expected output of worker n in period t+1 when employed at firm d (before $a_{n,t+1}(d,e)$ is realized)

$$\mathbb{E}(y_{n,t+1}(d,e) \mid P_{n,t+1} = p, e_n = e, H_{n,1} = h, \kappa_{n,t+1} = \kappa, \epsilon_{n,t+1}) = y(d,s) + \epsilon_{n,t+1}(d,e)$$

- ullet Conditional on all that is known by workers and firms at beginning of t+1
- y(s,d) is expected value of $y_{n,t+1}(d,e)$ given $s_{n,t+1} := (P_{n,t+1}, e_n, H_{n,1}, \kappa_{n,t+1})$ w/ realization $s := (p, e, h, \kappa)$
- $\epsilon_{n,t+1} := (\epsilon_{n,t+1}(d,e) : d \in \mathcal{D}, e \in \mathcal{E})$ is vector of shocks
- Beginning-of-period state variables: $(s_{n,t+1}, \epsilon_{n,t+1})$
- y(d,s) is primitive of interest as it captures heterogeneous output/HK technology of firms

- ullet Given these beliefs, workers and firms make decisions based on expected output in period t+1
- Expected output of worker n in period t+1 when employed at firm d (before $a_{n,t+1}(d,e)$ is realized)

$$\mathbb{E}(y_{n,t+1}(d,e) \mid P_{n,t+1} = p, e_n = e, H_{n,1} = h, \kappa_{n,t+1} = \kappa, \epsilon_{n,t+1}) = y(d,s) + \epsilon_{n,t+1}(d,e)$$

- ullet Conditional on all that is known by workers and firms at beginning of t+1
- y(s,d) is expected value of $y_{n,t+1}(d,e)$ given $s_{n,t+1} := (P_{n,t+1},e_n,H_{n,1},\kappa_{n,t+1})$ w/ realization $s := (p,e,h,\kappa)$
- $\epsilon_{n,t+1} := (\epsilon_{n,t+1}(d,e) : d \in \mathcal{D}, e \in \mathcal{E})$ is vector of shocks
- Beginning-of-period state variables: $(s_{n,t+1}, \epsilon_{n,t+1})$
- y(d,s) is primitive of interest as it captures heterogeneous output/HK technology of firms

- ullet Given these beliefs, workers and firms make decisions based on expected output in period t+1
- Expected output of worker n in period t+1 when employed at firm d (before $a_{n,t+1}(d,e)$ is realized)

$$\mathbb{E}(y_{n,t+1}(d,e) \mid P_{n,t+1} = p, e_n = e, H_{n,1} = h, \kappa_{n,t+1} = \kappa, \epsilon_{n,t+1}) = y(d,s) + \epsilon_{n,t+1}(d,e)$$

- ullet Conditional on all that is known by workers and firms at beginning of t+1
- y(s,d) is expected value of $y_{n,t+1}(d,e)$ given $s_{n,t+1} := (P_{n,t+1}, e_n, H_{n,1}, \kappa_{n,t+1})$ w/ realization $s := (p, e, h, \kappa)$
- $\epsilon_{n,t+1} := (\epsilon_{n,t+1}(d,e) : d \in \mathcal{D}, e \in \mathcal{E})$ is vector of shocks
- Beginning-of-period state variables: $(s_{n,t+1}, \epsilon_{n,t+1})$
- y(d,s) is primitive of interest as it captures heterogeneous output/HK technology of firms

- ullet Given these beliefs, workers and firms make decisions based on expected output in period t+1
- Expected output of worker n in period t+1 when employed at firm d (before $a_{n,t+1}(d,e)$ is realized)

$$\mathbb{E}(y_{n,t+1}(d,e) \mid P_{n,t+1} = p, e_n = e, H_{n,1} = h, \kappa_{n,t+1} = \kappa, \epsilon_{n,t+1}) = y(d,s) + \epsilon_{n,t+1}(d,e)$$

- ullet Conditional on all that is known by workers and firms at beginning of t+1
- y(s,d) is expected value of $y_{n,t+1}(d,e)$ given $s_{n,t+1} := (P_{n,t+1}, e_n, H_{n,1}, \kappa_{n,t+1})$ w/ realization $s := (p, e, h, \kappa)$
- $\epsilon_{n,t+1} := (\epsilon_{n,t+1}(d,e) : d \in \mathcal{D}, e \in \mathcal{E})$ is vector of shocks
- Beginning-of-period state variables: $(s_{n,t+1}, \epsilon_{n,t+1})$
- y(d,s) is primitive of interest as it captures heterogeneous output/HK technology of firms

- ullet Given these beliefs, workers and firms make decisions based on expected output in period t+1
- Expected output of worker n in period t+1 when employed at firm d (before $a_{n,t+1}(d,e)$ is realized)

$$\mathbb{E}(y_{n,t+1}(d,e) \mid P_{n,t+1} = p, e_n = e, H_{n,1} = h, \kappa_{n,t+1} = \kappa, \epsilon_{n,t+1}) = y(d,s) + \epsilon_{n,t+1}(d,e)$$

- ullet Conditional on all that is known by workers and firms at beginning of t+1
- y(s,d) is expected value of $y_{n,t+1}(d,e)$ given $s_{n,t+1} := (P_{n,t+1}, e_n, H_{n,1}, \kappa_{n,t+1})$ w/ realization $s := (p, e, h, \kappa)$
- $\epsilon_{n,t+1} := (\epsilon_{n,t+1}(d,e) : d \in \mathcal{D}, e \in \mathcal{E})$ is vector of shocks
- Beginning-of-period state variables: $(s_{n,t+1}, \epsilon_{n,t+1})$
- y(d, s) is primitive of interest as it captures heterogeneous output/HK technology of firms

- ullet Given these beliefs, workers and firms make decisions based on expected output in period t+1
- Expected output of worker n in period t+1 when employed at firm d (before $a_{n,t+1}(d,e)$ is realized)

$$\mathbb{E}(y_{n,t+1}(d,e) \mid P_{n,t+1} = p, e_n = e, H_{n,1} = h, \kappa_{n,t+1} = \kappa, \epsilon_{n,t+1}) = y(d,s) + \epsilon_{n,t+1}(d,e)$$

- ullet Conditional on all that is known by workers and firms at beginning of t+1
- y(s,d) is expected value of $y_{n,t+1}(d,e)$ given $s_{n,t+1} := (P_{n,t+1}, e_n, H_{n,1}, \kappa_{n,t+1})$ w/ realization $s := (p, e, h, \kappa)$
- $\epsilon_{n,t+1} := (\epsilon_{n,t+1}(d,e) : d \in \mathcal{D}, e \in \mathcal{E})$ is vector of shocks
- Beginning-of-period state variables: $(s_{n,t+1}, \epsilon_{n,t+1})$
- y(d,s) is primitive of interest as it captures heterogeneous output/HK technology of firms

- Given absence of complementarities, we can focus on competition of all firms for one worker at a time
- A robust MPE consists of wage and acceptance strategies together with belief process such that
 - ▶ The worker maximizes the (expected present discounted) value of wages
 - Each firm maximizes the (expected present discounted) value of profits
 - ▷ Beliefs are updated according to Bayes' rule
 - riangle Non-employing firms indifferent between employing and not the worker (guarantees wages are unique)
- So equilibrium exists and is unique (and efficient) (Bergemann & Valimaki, 1996) Refinement)
 - > Can be inefficient in the multi-job case (Pastorino, 2024)

- Given absence of complementarities, we can focus on competition of all firms for one worker at a time
- A robust MPE consists of wage and acceptance strategies together with belief process such that
 - ▷ The worker maximizes the (expected present discounted) value of wages

 - ▷ Beliefs are updated according to Bayes' rule
 - ▶ Non-employing firms indifferent between employing and not the worker (guarantees wages are unique)
- So equilibrium exists and is unique (and efficient) (Bergemann & Valimaki, 1996)
 - > Can be inefficient in the multi-job case (Pastorino, 2024)

- Given absence of complementarities, we can focus on competition of all firms for one worker at a time
- A robust MPE consists of wage and acceptance strategies together with belief process such that
 - ▷ The worker maximizes the (expected present discounted) value of wages

 - ▷ Beliefs are updated according to Bayes' rule
 - Non-employing firms indifferent between employing and not the worker (guarantees wages are unique)
- So equilibrium exists and is unique (and efficient) (Bergemann & Valimaki, 1996)
 - > Can be inefficient in the multi-job case (Pastorino, 2024)

- Given absence of complementarities, we can focus on competition of all firms for one worker at a time
- A robust MPE consists of wage and acceptance strategies together with belief process such that
 - ▷ The worker maximizes the (expected present discounted) value of wages

 - ▷ Beliefs are updated according to Bayes' rule
 - Non-employing firms indifferent between employing and not the worker (guarantees wages are unique)
- So equilibrium exists and is unique (and efficient) (Bergemann & Valimaki, 1996) Refinement)
 - Can be inefficient in the multi-job case (Pastorino, 2024)

- The equilibrium wage of worker employed at firm d is the sum of
 - 1. Expected output at the 2nd-best firm d' (from worker point of view: in terms of EPDV of wages)
 - 2. Compensating differential: wage premium or wage discount over worker n's expected output
- This second component arises as equilibrium leads to second-price auction-like pricing mechanism
- Why? Turn to build intuition starting from static case

- The equilibrium wage of worker employed at firm d is the sum of
 - 1. Expected output at the 2nd-best firm d' (from worker point of view: in terms of EPDV of wages)
 - 2. Compensating differential: wage premium or wage discount over worker n's expected output
- This second component arises as equilibrium leads to second-price auction-like pricing mechanism
- Why? Turn to build intuition starting from static case

- \bullet The equilibrium wage of worker employed at firm d is the sum of
 - 1. Expected output at the 2nd-best firm d' (from worker point of view: in terms of EPDV of wages)
 - 2. Compensating differential: wage premium or wage discount over worker n's expected output
- This second component arises as equilibrium leads to second-price auction-like pricing mechanism
- Why? Turn to build intuition starting from static case

- \bullet The equilibrium wage of worker employed at firm d is the sum of
 - 1. Expected output at the 2nd-best firm d' (from worker point of view: in terms of EPDV of wages)
 - 2. Compensating differential: wage premium or wage discount over worker n's expected output
- This second component arises as equilibrium leads to second-price auction-like pricing mechanism
- Why? Turn to build intuition starting from static case

- \bullet The equilibrium wage of worker employed at firm d is the sum of
 - 1. Expected output at the 2nd-best firm d' (from worker point of view: in terms of EPDV of wages)
 - 2. Compensating differential: wage premium or wage discount over worker n's expected output
- This second component arises as equilibrium leads to second-price auction-like pricing mechanism
- Why? Turn to build intuition starting from static case

Equilibrium Wage: Static Case with Two Firms

- Under static Bertrand competition among differentiated firms selling a common good

 - > The high-productivity (low-cost) firm sells at price equal to cost of the low-productivity (high-cost) firm
- Under static version of our model in which two differentiated firms buy the services of a worker

 - ▶ Worker's wage equals the expected output worker would produce if hired by the low-productivity firm
- Thus, the worker is indifferent between the two firms

Equilibrium Wage: Static Case with Two Firms

- Under static Bertrand competition among differentiated firms selling a common good

 - ▶ The high-productivity (low-cost) firm sells at price equal to cost of the low-productivity (high-cost) firm
- Under static version of our model in which two differentiated firms buy the services of a worker

 - ▶ Worker's wage equals the expected output worker would produce if hired by the low-productivity firm
- Thus, the worker is indifferent between the two firms

Equilibrium Wage: Static Case with Two Firms

- Under static Bertrand competition among differentiated firms selling a common good

 - > The high-productivity (low-cost) firm sells at price equal to cost of the low-productivity (high-cost) firm
- Under static version of our model in which two differentiated firms buy the services of a worker
- Thus, the worker is indifferent between the two firms

- Same intuition holds in the dynamic case (worker indifferent btw EPDV of wages) with two key differences
 - > Firms differ in both output/HK and information technologies
 - > HK and information acquired (or forgone) through employment lead to future higher (or lower) wages
 - Note: any such benefit or cost is capitalized in the paid wage
- Say, firm offering HK or info gains leading to higher future wages can pay lower wage yet still attract worker
- In equilibrium, a worker's wage equals the expected output the worker would produce if hired by competitor
- Plus premium/discount reflecting wage value of future HK/info if competitor's offer had been accepted
- This extra term enters the wage equation as a compensating differential to make the worker indifferent
- \bullet Same intuition with > 2 firms: the two relevant firms are those offering the two highest EPDV of wages

- Same intuition holds in the dynamic case (worker indifferent btw EPDV of wages) with two key differences
 - > Firms differ in both output/HK and information technologies

 - Note: any such benefit or cost is capitalized in the paid wage
- Say, firm offering HK or info gains leading to higher future wages can pay lower wage yet still attract worker
- In equilibrium, a worker's wage equals the expected output the worker would produce if hired by competitor
- Plus premium/discount reflecting wage value of future HK/info if competitor's offer had been accepted
- This extra term enters the wage equation as a compensating differential to make the worker indifferent
- \bullet Same intuition with > 2 firms: the two relevant firms are those offering the two highest EPDV of wages

- Same intuition holds in the dynamic case (worker indifferent btw EPDV of wages) with two key differences

 - Note: any such benefit or cost is capitalized in the paid wage
- Say, firm offering HK or info gains leading to higher future wages can pay lower wage yet still attract worker
- In equilibrium, a worker's wage equals the expected output the worker would produce if hired by competitor
- Plus premium/discount reflecting wage value of future HK/info if competitor's offer had been accepted
- This extra term enters the wage equation as a *compensating differential* to make the worker indifferent
- \bullet Same intuition with > 2 firms: the two relevant firms are those offering the two highest EPDV of wages

- Same intuition holds in the dynamic case (worker indifferent btw EPDV of wages) with two key differences
 - > Firms differ in both output/HK and information technologies
 - ▶ HK and information acquired (or forgone) through employment lead to future higher (or lower) wages
 - Note: any such benefit or cost is capitalized in the paid wage
- Say, firm offering HK or info gains leading to higher future wages can pay lower wage yet still attract worker
- In equilibrium, a worker's wage equals the expected output the worker would produce if hired by competitor
- Plus premium/discount reflecting wage value of future HK/info if competitor's offer had been accepted
- This extra term enters the wage equation as a *compensating differential* to make the worker indifferent
- \bullet Same intuition with > 2 firms: the two relevant firms are those offering the two highest EPDV of wages

- Same intuition holds in the dynamic case (worker indifferent btw EPDV of wages) with two key differences
 - > Firms differ in both output/HK and information technologies
 - ▶ HK and information acquired (or forgone) through employment lead to future higher (or lower) wages
 - Note: any such benefit or cost is capitalized in the paid wage
- Say, firm offering HK or info gains leading to higher future wages can pay lower wage yet still attract worker
- In equilibrium, a worker's wage equals the expected output the worker would produce if hired by competitor
- Plus premium/discount reflecting wage value of future HK/info if competitor's offer had been accepted
- This extra term enters the wage equation as a *compensating differential* to make the worker indifferent
- \bullet Same intuition with > 2 firms: the two relevant firms are those offering the two highest EPDV of wages

- \bullet Consider equilibrium ranking of firms based on EPDV of wages offered to worker n in period t
- Between the two firms ranked highest, 1st-best is employing firm d, 2nd-best is non-employing firm d'
- Equilibrium wage of worker n with efficiency $e_n = e$ at time t

$$w_{n,t}(d,d',e) = \underbrace{y(d',s_{n,t}(e)) + \epsilon_{n,t}(d',e)}_{\text{expected output at 2nd-best firm } d'} + \underbrace{\Psi(d,d',s_{n,t}(e))}_{\text{compensating differential}}$$

• The compensating differential $\Psi(d,d',s_{n,t}(e))$ is difference between two value functions

$$\Psi(d, d', s_{n,t}(e)) := \delta[1 - \eta(d', \kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e), \epsilon_{n,t+1}(e) | s_{n,t}(e); d') dG_e$$

$$- \delta[1 - \eta(d, \kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e), \epsilon_{n,t+1}(e) | s_{n,t}(e); d) dG_e$$

- \bullet Consider equilibrium ranking of firms based on EPDV of wages offered to worker n in period t
- Between the two firms ranked highest, 1st-best is employing firm d, 2nd-best is non-employing firm d'
- Equilibrium wage of worker n with efficiency $e_n = e$ at time t

$$w_{n,t}(d,d',e) = \underbrace{y(d',s_{n,t}(e)) + \epsilon_{n,t}(d',e)}_{\text{expected output at 2nd-best firm } d'} + \underbrace{\Psi(d,d',s_{n,t}(e))}_{\text{compensating differential}}$$

• The compensating differential $\Psi(d, d', s_{n,t}(e))$ is difference between two value functions

$$\Psi(d,d',s_{n,t}(e)) := \delta[1-\eta(\mathbf{d}',\kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}') dG_e$$

$$-\delta[1-\eta(\mathbf{d},\kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}') dG_e$$

- \bullet Consider equilibrium ranking of firms based on EPDV of wages offered to worker n in period t
- Between the two firms ranked highest, 1st-best is employing firm d, 2nd-best is non-employing firm d'
- Equilibrium wage of worker n with efficiency $e_n = e$ at time t

$$w_{n,t}(d,d',e) = \underbrace{y(d',s_{n,t}(e)) + \epsilon_{n,t}(d',e)}_{\text{expected output at 2nd-best firm } d'} + \underbrace{\Psi(d,d',s_{n,t}(e))}_{\text{compensating differential}}$$

• The compensating differential $\Psi(d, d', s_{n,t}(e))$ is difference between two value functions

$$\Psi(d,d',s_{n,t}(e)) \coloneqq \delta[1-\eta(\mathbf{d}',\kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}') dG_e$$

$$-\delta[1-\eta(\mathbf{d},\kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}) dG_e$$

$$= \sum_{\text{EPDV of match surplus of } \{d',n\} \text{ when } d \text{ employs } n \text{ in } t$$

- \bullet Consider equilibrium ranking of firms based on EPDV of wages offered to worker n in period t
- Between the two firms ranked highest, 1st-best is employing firm d, 2nd-best is non-employing firm d'
- Equilibrium wage of worker n with efficiency $e_n = e$ at time t

$$w_{n,t}(d,d',e) = \underbrace{y(d',s_{n,t}(e)) + \epsilon_{n,t}(d',e)}_{\text{expected output at 2nd-best firm } d'} + \underbrace{\Psi(d,d',s_{n,t}(e))}_{\text{compensating differential}}$$

• The compensating differential $\Psi(d, d', s_{n,t}(e))$ is difference between two value functions

EPDV of match surplus of $\{d', n\}$ had d' employed n in t (counterfactual)

$$\begin{split} \Psi(d,d',s_{n,t}(e)) \coloneqq & \delta[1-\eta(\mathbf{d}',\kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}') dG_e \\ & - \delta[1-\eta(\mathbf{d},\kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}) dG_e \end{split}$$
 EPDV of match surplus of $\{d',n\}$ when d employs n in t

- \bullet Consider equilibrium ranking of firms based on EPDV of wages offered to worker n in period t
- Between the two firms ranked highest, 1st-best is employing firm d, 2nd-best is non-employing firm d'
- Equilibrium wage of worker n with efficiency $e_n = e$ at time t

$$w_{n,t}(d,d',e) = \underbrace{y(d',s_{n,t}(e)) + \epsilon_{n,t}(d',e)}_{\text{expected output at 2nd-best firm } d'} + \underbrace{\Psi(d,d',s_{n,t}(e))}_{\text{compensating differential}}$$

• The compensating differential $\Psi(d, d', s_{n,t}(e))$ is difference between two value functions

$$\Psi(d,d',s_{n,t}(e)) \coloneqq \delta[1-\eta(\mathbf{d}',\kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}') dG_e$$

$$-\delta[1-\eta(\mathbf{d},\kappa_{n,t})] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}) dG_e$$

$$= \sum_{e=0}^{n} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}) dG_e$$

$$= \sum_{e=0}^{n} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}) dG_e$$

$$= \sum_{e=0}^{n} \mathbb{E} V_{d'}(s_{n,t+1}(e),\epsilon_{n,t+1}(e)|s_{n,t}(e);\mathbf{d}) dG_e$$

Econometric Framework

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\left\{\underbrace{D_{n,t} = d, D'_{n,t} = d'}_{\text{selection}}, e_n = e\right\} \left[\underbrace{y(d', s_{n,t}(e)) + \Psi(d, d', s_{n,t}(e)) + \epsilon_{n,t}(d', e)}_{\text{potential equilibrium wage } w_{n,t}(d, d', e)}\right]$$

- Given panel of data on wages, employment choices, initial attributes: $(w_{n,t}, D_{n,t}, H_{n,1})$ for t = 1, ..., T
- Minimal data requirements: no proxies for beliefs or direct information on performance signals
- Even as we allow $D_{n,t}$ and $D'_{n,t}$ to be function of all variables affecting potential wages
- Including unobservables $P_{n,t}$, e_n and $\epsilon_{n,t}$
 - So dynamic selection on unobservables naturally arises
 - \triangleright Based on time-varying $(P_{n,t}, \epsilon_{n,t})$ and endogenously evolving $P_{n,t}$

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\{\underbrace{D_{n,t} = d, D'_{n,t} = d'}_{\text{selection}}, e_n = e\} \left[\underbrace{y(d', s_{n,t}(e)) + \Psi(d, d', s_{n,t}(e)) + \varepsilon_{n,t}(d', e)}_{\text{potential equilibrium wage } w_{n,t}(d, d', e)}\right]$$

- Given panel of data on wages, employment choices, initial attributes: $(w_{n,t}, D_{n,t}, H_{n,1})$ for t = 1, ..., T
- Minimal data requirements: no proxies for beliefs or direct information on performance signals
- Even as we allow $D_{n,t}$ and $D'_{n,t}$ to be function of all variables affecting potential wages
- Including unobservables $P_{n,t}$, e_n and $\epsilon_{n,t}$
 - So dynamic selection on unobservables naturally arises
 - \triangleright Based on time-varying $(P_{n,t}, \epsilon_{n,t})$ and endogenously evolving $P_{n,t}$

$$\mathbf{w}_{n,t} = \sum_{d,d'} \mathbb{1}\left\{\underbrace{D_{n,t} = d, D'_{n,t} = d'}_{\text{selection}}, e_n = e\right\} \left[\underbrace{y(d', s_{n,t}(e)) + \Psi(d, d', s_{n,t}(e)) + \varepsilon_{n,t}(d', e)}_{\text{potential equilibrium wage } w_{n,t}(d, d', e)}\right]$$

- Given panel of data on wages, employment choices, initial attributes: $(w_{n,t}, D_{n,t}, H_{n,1})$ for t = 1, ..., T
- Minimal data requirements: no proxies for beliefs or direct information on performance signals
- Even as we allow $D_{n,t}$ and $D'_{n,t}$ to be function of all variables affecting potential wages
- Including unobservables $P_{n,t}$, e_n and $\epsilon_{n,t}$
 - ▷ So dynamic selection on unobservables naturally arises
 - \triangleright Based on time-varying $(P_{n,t}, \epsilon_{n,t})$ and endogenously evolving $P_{n,t}$

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\left\{\underbrace{D_{n,t} = d, D'_{n,t} = d'}_{\text{selection}}, e_n = e\right\} \left[\underbrace{y(d', s_{n,t}(e)) + \Psi(d, d', s_{n,t}(e)) + \varepsilon_{n,t}(d', e)}_{\text{potential equilibrium wage } w_{n,t}(d, d', e)}\right]$$

- Given panel of data on wages, employment choices, initial attributes: $(w_{n,t}, D_{n,t}, H_{n,1})$ for t = 1, ..., T
- Minimal data requirements: no proxies for beliefs or direct information on performance signals
- Even as we allow $D_{n,t}$ and $D'_{n,t}$ to be function of all variables affecting potential wages
- Including unobservables $P_{n,t}$, e_n and $\epsilon_{n,t}$
 - So dynamic selection on unobservables naturally arises
 - \triangleright Based on time-varying $(P_{n,t}, \epsilon_{n,t})$ and endogenously evolving $P_{n,t}$

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\left\{\underbrace{D_{n,t} = d, D'_{n,t} = d'}_{\text{selection}}, e_n = e\right\} \left[\underbrace{y(d', s_{n,t}(e)) + \Psi(d, d', s_{n,t}(e)) + \varepsilon_{n,t}(d', e)}_{\text{potential equilibrium wage } w_{n,t}(d, d', e)}\right]$$

- Given panel of data on wages, employment choices, initial attributes: $(w_{n,t}, D_{n,t}, H_{n,1})$ for t = 1, ..., T
- Minimal data requirements: no proxies for beliefs or direct information on performance signals
- Even as we allow $D_{n,t}$ and $D'_{n,t}$ to be function of all variables affecting potential wages
- Including unobservables $P_{n,t}$, e_n and $\epsilon_{n,t}$
 - So dynamic selection on unobservables naturally arises
 - \triangleright Based on time-varying $(P_{n,t}, \epsilon_{n,t})$ and endogenously evolving $P_{n,t}$

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\{\underbrace{D_{n,t} = d, D'_{n,t} = d'}_{\text{selection}}, e_n = e\} \left[\underbrace{y(d', s_{n,t}(e)) + \Psi(d, d', s_{n,t}(e)) + \varepsilon_{n,t}(d', e)}_{\text{potential equilibrium wage } w_{n,t}(d, d', e)}\right]$$

- Given panel of data on wages, employment choices, initial attributes: $(w_{n,t}, D_{n,t}, H_{n,1})$ for t = 1, ..., T
- Minimal data requirements: no proxies for beliefs or direct information on performance signals
- Even as we allow $D_{n,t}$ and $D'_{n,t}$ to be function of all variables affecting potential wages
- Including unobservables $P_{n,t}$, e_n and $\epsilon_{n,t}$
 - So dynamic selection on unobservables naturally arises
 - \triangleright Based on time-varying $(P_{n,t}, \epsilon_{n,t})$ and endogenously evolving $P_{n,t}$

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\{\underbrace{D_{n,t} = d, D'_{n,t} = d'}_{\text{selection}}, e_n = e\} \left[\underbrace{y(d', s_{n,t}(e)) + \Psi(d, d', s_{n,t}(e)) + \varepsilon_{n,t}(d', e)}_{\text{potential equilibrium wage } w_{n,t}(d, d', e)}\right]$$

- Given panel of data on wages, employment choices, initial attributes: $(w_{n,t}, D_{n,t}, H_{n,1})$ for t = 1, ..., T
- Minimal data requirements: no proxies for beliefs or direct information on performance signals
- Even as we allow $D_{n,t}$ and $D'_{n,t}$ to be function of all variables affecting potential wages
- Including unobservables $P_{n,t}$, e_n and $\epsilon_{n,t}$
 - So dynamic selection on unobservables naturally arises
 - \triangleright Based on time-varying $(P_{n,t}, \epsilon_{n,t})$ and endogenously evolving $P_{n,t}$

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\left\{\underbrace{D_{n,t} = d, D'_{n,t} = d'}_{\text{selection}}, e_n = e\right\} \left[\underbrace{y(d', s_{n,t}(e)) + \Psi(d, d', s_{n,t}(e)) + \varepsilon_{n,t}(d', e)}_{\text{potential equilibrium wage } w_{n,t}(d, d', e)}\right]$$

- Given panel of data on wages, employment choices, initial attributes: $(w_{n,t}, D_{n,t}, H_{n,1})$ for t = 1, ..., T
- Minimal data requirements: no proxies for beliefs or direct information on performance signals
- Even as we allow $D_{n,t}$ and $D'_{n,t}$ to be function of all variables affecting potential wages
- Including unobservables $P_{n,t}$, e_n and $\epsilon_{n,t}$
 - So dynamic selection on unobservables naturally arises
 - \triangleright Based on time-varying $(P_{n,t}, \epsilon_{n,t})$ and endogenously evolving $P_{n,t}$

Primitives to Identify

- To study the impact of firm-worker sorting on earnings inequality, we identify
 - $hd \$ "Deterministic" wage component $\varphi(\cdot)\coloneqq y(\cdot)+\Psi(\cdot)$
 - riangle Output/HK technology as captured by $y(\cdot)$ and compensating differential $\Psi(\cdot)$
 - ▶ Information technology described by prior and signal distribution
 - \triangleright Distribution of $\epsilon_{n,t}$
- We identify other important primitives of dynamic models namely
 - hd Law of motion of the state $s_{n,t}(e)$

Primitives to Identify

- To study the impact of firm-worker sorting on earnings inequality, we identify
 - hickspace "Deterministic" wage component $\varphi(\cdot)\coloneqq y(\cdot)+\Psi(\cdot)$
 - riangle Output/HK technology as captured by $y(\cdot)$ and compensating differential $\Psi(\cdot)$
 - ▷ Information technology described by prior and signal distribution
 - \triangleright Distribution of $\epsilon_{n,t}$
- We identify other important primitives of dynamic models namely
 - \triangleright Law of motion of the state $s_{n,t}(e)$

Identification

• Dynamic generalized equilibrium Roy model

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\{D_{n,t} = d, D'_{n,t} = d', e_n = e\} \left[\underbrace{\varphi(d,d',s_{n,t}(e))}_{y(\cdot) + \Psi(\cdot)} + \varepsilon_{n,t}(d',e)\right]$$

$$\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)] = \varphi(d, d', s_{n,t}(e)) + \underbrace{\mathbb{E}(\varepsilon_{n,t}(d', e) \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e))}_{V(d, d', e)}$$

- Additional challenge: $D'_{n,t}$ and $s_{n,t}(e)$ are unobserved so $\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)]$ is unknown
- ullet For now, set aside challenges due to the non-observability of 2nd-best firm D_n'
 - \triangleright Assume D'_{n+} is known
 - \triangleright Identification argument immediately extends to the case when $D'_{n,t}$ is unknown

Dynamic generalized equilibrium Roy model

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\{D_{n,t} = d, D'_{n,t} = d', e_n = e\} \left[\underbrace{\varphi(d, d', s_{n,t}(e))}_{y(\cdot) + \Psi(\cdot)} + \epsilon_{n,t}(d', e)\right]$$

$$\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)] = \varphi(d, d', s_{n,t}(e)) + \underbrace{\mathbb{E}(\epsilon_{n,t}(d',e) \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e))}_{\lambda(d, d', s_{n,t}(e)): \text{ selection bias}}$$

- Additional challenge: $D'_{n,t}$ and $s_{n,t}(e)$ are unobserved so $\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)]$ is unknown
- For now, set aside challenges due to the non-observability of 2nd-best firm $D'_{n,t}$
 - \triangleright Assume $D'_{n,t}$ is known
 - \triangleright Identification argument immediately extends to the case when $D'_{n,t}$ is unknown

Dynamic generalized equilibrium Roy model

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\{D_{n,t} = d, D'_{n,t} = d', e_n = e\} \left[\underbrace{\varphi(d,d',s_{n,t}(e))}_{y(\cdot) + \Psi(\cdot)} + \varepsilon_{n,t}(d',e)\right]$$

$$\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)] = \varphi(d, d', s_{n,t}(e)) + \underbrace{\mathbb{E}(\varepsilon_{n,t}(d', e) \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e))}_{\lambda(d, d', s_{n,t}(e)): \text{ selection bias}}$$

- Additional challenge: $D'_{n,t}$ and $s_{n,t}(e)$ are unobserved so $\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)]$ is unknown
- For now, set aside challenges due to the non-observability of 2nd-best firm $D'_{n,t}$
 - \triangleright Assume $D'_{n,t}$ is known
 - \triangleright Identification argument immediately extends to the case when $D'_{n,t}$ is unknown

• Dynamic generalized equilibrium Roy model

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\{D_{n,t} = d, D'_{n,t} = d', e_n = e\} \left[\underbrace{\varphi(d, d', s_{n,t}(e))}_{y(\cdot) + \Psi(\cdot)} + \epsilon_{n,t}(d', e)\right]$$

$$\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)] = \varphi(d, d', s_{n,t}(e)) + \underbrace{\mathbb{E}(\epsilon_{n,t}(d', e) \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e))}_{\lambda(d, d', s_{n,t}(e)): \text{ selection bias}}$$

- Additional challenge: $D'_{n,t}$ and $s_{n,t}(e)$ are unobserved so $\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)]$ is unknown
- For now, set aside challenges due to the non-observability of 2nd-best firm $D'_{n,t}$
 - \triangleright Assume $D'_{n,t}$ is known
 - \triangleright Identification argument immediately extends to the case when $D'_{n,t}$ is unknown

Dynamic generalized equilibrium Roy model

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\{D_{n,t} = d, D'_{n,t} = d', e_n = e\} \left[\underbrace{\varphi(d, d', s_{n,t}(e))}_{y(\cdot) + \Psi(\cdot)} + \epsilon_{n,t}(d', e)\right]$$

$$\mathbb{E}[\mathbf{w}_{n,t} \mid D_{n,t} = \mathbf{d}, D'_{n,t} = \mathbf{d'}, s_{n,t}(\mathbf{e})] = \varphi(\mathbf{d}, \mathbf{d'}, s_{n,t}(\mathbf{e})) + \underbrace{\mathbb{E}(\epsilon_{n,t}(\mathbf{d'}, \mathbf{e}) \mid D_{n,t} = \mathbf{d}, D'_{n,t} = \mathbf{d'}, s_{n,t}(\mathbf{e}))}_{\lambda(\mathbf{d}, \mathbf{d'}, s_{n,t}(\mathbf{e})): \text{ selection bias}}$$

- Additional challenge: $D'_{n,t}$ and $s_{n,t}(e)$ are unobserved so $\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)]$ is unknown
- For now, set aside challenges due to the non-observability of 2nd-best firm $D'_{n,t}$
 - \triangleright Assume $D'_{n,t}$ is known
 - \triangleright Identification argument immediately extends to the case when $D'_{n,t}$ is unknown

Dynamic generalized equilibrium Roy model

$$w_{n,t} = \sum_{d,d'} \mathbb{1}\{D_{n,t} = d, D'_{n,t} = d', e_n = e\} \left[\underbrace{\varphi(d,d',s_{n,t}(e))}_{y(\cdot) + \Psi(\cdot)} + \epsilon_{n,t}(d',e)\right]$$

$$\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)] = \varphi(d, d', s_{n,t}(e)) + \underbrace{\mathbb{E}(\varepsilon_{n,t}(d', e) \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e))}_{\lambda(d, d', s_{n,t}(e)): \text{ selection bias}}$$

- Additional challenge: $D'_{n,t}$ and $s_{n,t}(e)$ are unobserved so $\mathbb{E}[w_{n,t} \mid D_{n,t} = d, D'_{n,t} = d', s_{n,t}(e)]$ is unknown
- For now, set aside challenges due to the non-observability of 2nd-best firm $D'_{n,t}$
 - \triangleright Assume $D'_{n,t}$ is known
 - \triangleright Identification argument immediately extends to the case when $D'_{n,t}$ is unknown \bullet

Intuition for Our Approach and Its Novelty

- We show identification through *mixture-based approach* building on arguments for static Roy models
- We solely rely on information on job choices and wages
- Our identification arguments do not require restrictions on
 - Endogenous variables (e.g. monotonicity restrictions)
 - ➤ The dynamics of states, choices or outcomes (e.g. "sufficient" job mobility as in AKM)
- Rather, our identification arguments rely on conditions that
 - ▷ Impose minimal data requirements
 - Allow for arbitrary patterns of selection based on endogenously time-varying unobservables
 - Are easy to verify
 - Lead to constructive estimators of primitives

Intuition for Our Approach and Its Novelty

- We show identification through *mixture-based approach* building on arguments for static Roy models
- We solely rely on information on job choices and wages
- Our identification arguments do not require restrictions on

 - ➤ The dynamics of states, choices or outcomes (e.g. "sufficient" job mobility as in AKM)
- Rather, our identification arguments rely on conditions that
 - ▷ Impose minimal data requirements
 - Allow for arbitrary patterns of selection based on endogenously time-varying unobservables
 - Are easy to verify
 - ▶ Lead to constructive estimators of primitives

Intuition for Our Approach and Its Novelty

- We show identification through *mixture-based approach* building on arguments for static Roy models
- We solely rely on information on job choices and wages
- Our identification arguments do not require restrictions on

 - ➤ The dynamics of states, choices or outcomes (e.g. "sufficient" job mobility as in AKM)
- Rather, our identification arguments rely on conditions that

 - > Allow for arbitrary patterns of selection based on endogenously time-varying unobservables
 - ▷ Are easy to verify

An Overview of Our Identification Approach

- 1. Identify distribution of wages as nonparametric wage mixture (Aragam & al. 2020) by
 - \triangleright Representing observed distribution of paid wages $w_{n,t}$ for each job history D_n^t as a mixture over (e_n, a_n^{t-1})
 - > Showing identification of mixture weights and components under nonparametric restrictions
- 2. Concatenate mixture weights across periods to identify the distribution of $(P_{n,t},e_n)$ and $s_{n,t}(P_{n,t+1},e_n,H_{n,1},\kappa_{n,t+1})$
 - \triangleright How? Recall $P_{n,t}$ is essentially a function of $(e_n, D_n^{t-1}, a_n^{t-1})$
 - \triangleright Hence, by combining mixture weights across periods, we identify the distribution of $P_{n,t}$
- 3. Combine 2. and mixture components to identify the distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$
- 4. Adapt extremal quantile regression arguments to identify deterministic wage $\varphi(\cdot) \coloneqq y(\cdot) + \Psi(\cdot)$
 - Chernozhukov, 2005; D'Haultfœuille-Maurel, 2013
- 5. Combine $\varphi(\cdot)$ with knowledge of wage mixture to identify distribution of $\epsilon_{n,t}$
- 6. Once mixture weights are concatenated across periods, also identify law of motion of the state and CCPs
- 7. Exploit dynamic discrete choice logic to identify $y(\cdot)$ and, in turn, separate $\Psi(\cdot)$ from $\varphi(\cdot)$ (e.g. Magnac-Thesmar, 2002)

An Overview of Our Identification Approach

- 1. Identify distribution of wages as nonparametric wage mixture (Aragam & al. 2020) by
 - \triangleright Representing observed distribution of paid wages $w_{n,t}$ for each job history D_n^t as a mixture over (e_n, a_n^{t-1})
 - ▷ Showing identification of mixture weights and components under nonparametric restrictions
- 2. Concatenate mixture weights across periods to identify the distribution of $(P_{n,t},e_n)$ and $s_{n,t}(P_{n,t+1},e_n,H_{n,1},\kappa_{n,t+1})$
 - \triangleright How? Recall $P_{n,t}$ is essentially a function of $(e_n, D_n^{t-1}, a_n^{t-1})$
 - \triangleright Hence, by combining mixture weights across periods, we identify the distribution of $P_{n,t}$
- 3. Combine 2. and mixture components to identify the distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$
- 4. Adapt extremal quantile regression arguments to identify deterministic wage $\varphi(\cdot) \coloneqq y(\cdot) + \Psi(\cdot)$
 - Chernozhukov, 2005; D'Haultfœuille-Maurel, 2013
- 5. Combine $\varphi(\cdot)$ with knowledge of wage mixture to identify distribution of $\epsilon_{n,t}$
- 6. Once mixture weights are concatenated across periods, also identify law of motion of the state and CCPs
- 7. Exploit dynamic discrete choice logic to identify $y(\cdot)$ and, in turn, separate $\Psi(\cdot)$ from $\varphi(\cdot)$ (e.g. Magnac-Thesmar, 2002)

An Overview of Our Identification Approach

- 1. Identify distribution of wages as nonparametric wage mixture (Aragam & al. 2020) by
 - \triangleright Representing observed distribution of paid wages $w_{n,t}$ for each job history D_n^t as a mixture over (e_n, a_n^{t-1})
 - ▷ Showing identification of mixture weights and components under nonparametric restrictions
- 2. Concatenate mixture weights across periods to identify the distribution of $(P_{n,t},e_n)$ and $s_{n,t}(P_{n,t+1},e_n,H_{n,1},\kappa_{n,t+1})$
 - \triangleright How? Recall $P_{n,t}$ is essentially a function of $(e_n, D_n^{t-1}, a_n^{t-1})$
 - \triangleright Hence, by combining mixture weights across periods, we identify the distribution of $P_{n,t}$
- 3. Combine 2. and mixture components to identify the distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$
- 4. Adapt extremal quantile regression arguments to identify deterministic wage $\varphi(\cdot) \coloneqq y(\cdot) + \Psi(\cdot)$
 - Chernozhukov, 2005; D'Haultfœuille-Maurel, 2013
- 5. Combine $\varphi(\cdot)$ with knowledge of wage mixture to identify distribution of $\epsilon_{n,t}$
- 6. Once mixture weights are concatenated across periods, also identify law of motion of the state and CCPs
- 7. Exploit dynamic discrete choice logic to identify $y(\cdot)$ and, in turn, separate $\Psi(\cdot)$ from $\varphi(\cdot)$ (e.g. Magnac-Thesmar, 2002)

Empirical Exercise

- Reevaluate impact of sorting of high-wage workers into high-paying firms on U.S. earnings inequality
- Influential framework used to analyze earnings inequality in several countries is AKM
 - ▶ Impact of sorting on inequality estimated as fraction of variance explained by firm-worker effects covariance
- These estimates often imply small impact of sorting as suggested by weak firm-worker effects correlations
 - \triangleright Except for Bonhomme & al. (2023): bias correction methods increase importance of sorting
- In our framework: compensating differential and endogenous matching frictions reduce measured sorting
- Two approaches: simulation-based and estimation with LEHD (U.S. matched employer-employee) data

- Reevaluate impact of sorting of high-wage workers into high-paying firms on U.S. earnings inequality
- Influential framework used to analyze earnings inequality in several countries is AKM
 - ▷ Impact of sorting on inequality estimated as fraction of variance explained by firm-worker effects covariance
- These estimates often imply small impact of sorting as suggested by weak firm-worker effects correlations
 - ▶ Except for Bonhomme & al. (2023): bias correction methods increase importance of sorting
- In our framework: compensating differential and endogenous matching frictions reduce measured sorting
- Two approaches: simulation-based and estimation with LEHD (U.S. matched employer-employee) data

- Reevaluate impact of sorting of high-wage workers into high-paying firms on U.S. earnings inequality
- Influential framework used to analyze earnings inequality in several countries is AKM
 - ▷ Impact of sorting on inequality estimated as fraction of variance explained by firm-worker effects covariance
- These estimates often imply small impact of sorting as suggested by weak firm-worker effects correlations
 - ▶ Except for Bonhomme & al. (2023): bias correction methods increase importance of sorting
- In our framework: compensating differential and endogenous matching frictions reduce measured sorting
- Two approaches: simulation-based and estimation with LEHD (U.S. matched employer-employee) data

- Reevaluate impact of sorting of high-wage workers into high-paying firms on U.S. earnings inequality
- Influential framework used to analyze earnings inequality in several countries is AKM
 - ▶ Impact of sorting on inequality estimated as fraction of variance explained by firm-worker effects covariance
- These estimates often imply *small* impact of sorting as suggested by weak firm-worker effects correlations
 - ⊳ Except for Bonhomme & al. (2023): bias correction methods increase importance of sorting
- In our framework: compensating differential and endogenous matching frictions reduce measured sorting
- Two approaches: simulation-based and estimation with LEHD (U.S. matched employer-employee) data

- Reevaluate impact of sorting of high-wage workers into high-paying firms on U.S. earnings inequality
- Influential framework used to analyze earnings inequality in several countries is AKM
 - ▷ Impact of sorting on inequality estimated as fraction of variance explained by firm-worker effects covariance
- These estimates often imply *small* impact of sorting as suggested by weak firm-worker effects correlations
 - ⊳ Except for Bonhomme & al. (2023): bias correction methods increase importance of sorting
- In our framework: compensating differential and endogenous matching frictions reduce measured sorting
- Two approaches: simulation-based and estimation with LEHD (U.S. matched employer-employee) data

- Reevaluate impact of sorting of high-wage workers into high-paying firms on U.S. earnings inequality
- Influential framework used to analyze earnings inequality in several countries is AKM
 - ▷ Impact of sorting on inequality estimated as fraction of variance explained by firm-worker effects covariance
- These estimates often imply *small* impact of sorting as suggested by weak firm-worker effects correlations
 - ⊳ Except for Bonhomme & al. (2023): bias correction methods increase importance of sorting
- In our framework: compensating differential and endogenous matching frictions reduce measured sorting
- Two approaches: simulation-based and estimation with LEHD (U.S. matched employer-employee) data

Preview of Results: Simulation-Based Evidence

- Simulate simplified version of our model that replicates key features of U.S. data
 - ▷ Its parameters set to match U.S. earnings moments (PSID) and AKM-type moments (Song & al. 2019)

- When $\Psi(\cdot)$ is negative/positive, AKM variance decomposition dampens/amplify estimated sorting
 - \triangleright Relative to the case when $\Psi(\cdot) = 0$

- ullet Because AKM omits compensating differential $\Psi(\cdot)$ and conflates it with $\epsilon_{n,t}$
 - ▶ Leading to a form of "omitted variable bias"

Preview of Results: Empirical Evidence

• Estimate our wage equation using U.S. Census data (LEHD)

ullet Finding: we estimate $\Psi(\cdot)$ to be *negative*

ullet Implies that AKM decomposition *under*-estimates impact of sorting because it omits $\Psi(\cdot)$

• Corroborate these findings with alternative measure of impact of sorting based on random worker reallocation

- Simulate an economy replicating key features of U.S. data
- ullet With a few simplifications to facilitate comparison with the AKM framework (still show $\Psi(\cdot)$ key)

 - \triangleright Assume away Roy selection on shocks $\epsilon_{n,t}$
 - Description No. 1 > As in Bonhomme & al. (2019), consider finite number of worker and firm types
- Workers earn our (parameterized) equilibrium wage

$$\begin{split} w_{n,t} &= \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\} \\ &\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,e,H_{n,1},\kappa_{n,t},P_{n,t}) + \epsilon_{n,t}(d,e) \right] \end{split}$$

- $\triangleright y(\cdot)$ containing $e + \beta_0(d)$ (á la AKM) and first-order terms of $H_{n,1}, \kappa_{n,t}$ and $P_{n,t}$
- $>\Psi(\cdot)$ approx. by truncated Taylor series (higher powers and interaction terms of $H_{n,1},\kappa_{n,t}$ and $P_{n,t})$

- Simulate an economy replicating key features of U.S. data
- ullet With a few simplifications to facilitate comparison with the AKM framework (still show $\Psi(\cdot)$ key)

 - \triangleright Assume away Roy selection on shocks $\epsilon_{n,t}$
 - Description No. 1 > As in Bonhomme & al. (2019), consider finite number of worker and firm types
- Workers earn our (parameterized) equilibrium wage

$$w_{n,t} = \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\}$$

$$\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,e,H_{n,1},\kappa_{n,t},P_{n,t}) + \varepsilon_{n,t}(d,e)\right]$$

- $\triangleright y(\cdot)$ containing $e + \beta_0(d)$ (á la AKM) and first-order terms of $H_{n,1}, \kappa_{n,t}$ and $P_{n,t}$
- $\triangleright \Psi(\cdot)$ approx. by truncated Taylor series (higher powers and interaction terms of $H_{n,1}$, $\kappa_{n,t}$ and $P_{n,t}$)

- Simulate an economy replicating key features of U.S. data
- ullet With a few simplifications to facilitate comparison with the AKM framework (still show $\Psi(\cdot)$ key)

 - \triangleright Assume away Roy selection on shocks $\epsilon_{n,t}$
 - Description No. 1 > As in Bonhomme & al. (2019), consider finite number of worker and firm types
- Workers earn our (parameterized) equilibrium wage

$$w_{n,t} = \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\}$$

$$\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,e,H_{n,1},\kappa_{n,t},P_{n,t}) + \varepsilon_{n,t}(d,e)\right]$$

- $\triangleright y(\cdot)$ containing $e + \beta_0(d)$ (á la AKM) and first-order terms of $H_{n,1}, \kappa_{n,t}$ and $P_{n,t}$
- $\triangleright \Psi(\cdot)$ approx. by truncated Taylor series (higher powers and interaction terms of $H_{n,1}$, $\kappa_{n,t}$ and $P_{n,t}$)

- Simulate an economy replicating key features of U.S. data
- ullet With a few simplifications to facilitate comparison with the AKM framework (still show $\Psi(\cdot)$ key)

 - \triangleright Assume away Roy selection on shocks $\epsilon_{n,t}$
 - Description No. 1 > As in Bonhomme & al. (2019), consider finite number of worker and firm types
- Workers earn our (parameterized) equilibrium wage

$$w_{n,t} = \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\}$$

$$\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,e,H_{n,1},\kappa_{n,t},P_{n,t}) + \varepsilon_{n,t}(d,e) \right]$$

- $\triangleright y(\cdot)$ containing $e + \beta_0(d)$ (á la AKM) and first-order terms of $H_{n,1}, \kappa_{n,t}$ and $P_{n,t}$
- $\triangleright \Psi(\cdot)$ approx. by truncated Taylor series (higher powers and interaction terms of $H_{n,1}$, $\kappa_{n,t}$ and $P_{n,t}$)

- Simulate an economy replicating key features of U.S. data
- ullet With a few simplifications to facilitate comparison with the AKM framework (still show $\Psi(\cdot)$ key)

 - \triangleright Assume away Roy selection on shocks $\epsilon_{n,t}$
 - Description No. 1 > As in Bonhomme & al. (2019), consider finite number of worker and firm types
- Workers earn our (parameterized) equilibrium wage

$$w_{n,t} = \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\}$$

$$\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,e,H_{n,1},\kappa_{n,t},P_{n,t}) + \varepsilon_{n,t}(d,e)\right]$$

- $\triangleright y(\cdot)$ containing $e + \beta_0(d)$ (á la AKM) and first-order terms of $H_{n,1}, \kappa_{n,t}$ and $P_{n,t}$
- $\triangleright \Psi(\cdot)$ approx. by truncated Taylor series (higher powers and interaction terms of $H_{n,1}$, $\kappa_{n,t}$ and $P_{n,t}$)

- Simulate an economy replicating key features of U.S. data
- ullet With a few simplifications to facilitate comparison with the AKM framework (still show $\Psi(\cdot)$ key)

 - \triangleright Assume away Roy selection on shocks $\epsilon_{n,t}$
 - Description No. 1 > As in Bonhomme & al. (2019), consider finite number of worker and firm types
- Workers earn our (parameterized) equilibrium wage

$$w_{n,t} = \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\}$$

$$\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,e,H_{n,1},\kappa_{n,t},P_{n,t}) + \varepsilon_{n,t}(d,e)\right]$$

- $\triangleright y(\cdot)$ containing $e + \beta_0(d)$ (á la AKM) and first-order terms of $H_{n,1}$, $\kappa_{n,t}$ and $P_{n,t}$
- $\triangleright \Psi(\cdot)$ approx. by truncated Taylor series (higher powers and interaction terms of $H_{n,1}$, $\kappa_{n,t}$ and $P_{n,t}$)

- Set the wage and simulation parameters to match earnings moments from U.S. PSID
 - Panel Study of Income Dynamics (PSID): representative survey of U.S. households since 1968
 - ▷ Includes info on wages, employment status and other observables
 - ▷ Consider wage moments: growth, life-cycle first and higher moments, inequality and concentration, etc.

• We also include as targets AKM-type moments from Song & al. (2019) based on U.S. SSA

- Set the wage and simulation parameters to match earnings moments from U.S. PSID
 - ▷ Panel Study of Income Dynamics (PSID): representative survey of U.S. households since 1968
 - ▷ Includes info on wages, employment status and other observables
 - ▷ Consider wage moments: growth, life-cycle first and higher moments, inequality and concentration, etc.

• We also include as targets AKM-type moments from Song & al. (2019) based on U.S. SSA

ullet As in AKM, we measure impact of sorting on inequality based on firm/worker complementarities in $y(\cdot)$

$$\rho := \mathsf{Cov}(e_n, \beta_0(D_{n,t})) / \mathsf{Var}(w_{n,t})$$

ullet Estimate it from wage regression with $\Psi(\cdot)=0$ and coeffs. on covariates independent of $(\,d\,,e)$ as in AKM

$$\begin{split} w_{n,t} &= \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\} \\ &\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,H_{n,1},\kappa_{n,t},P_{n,t},e) + \epsilon_{n,t}(d,e) \right] \end{split}$$

ullet As in AKM, we measure impact of sorting on inequality based on firm/worker complementarities in $y(\cdot)$

$$\rho \coloneqq \mathsf{Cov}(e_n, \beta_0(D_{n,t})) / \mathsf{Var}(w_{n,t})$$

ullet Estimate it from wage regression with $\Psi(\cdot)=0$ and coeffs. on covariates independent of (d,e) as in AKM

$$w_{n,t} = \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\}$$

$$\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,H_{n,1},\kappa_{n,t},P_{n,t},e) + \epsilon_{n,t}(d,e)\right]$$

- $\Psi(\cdot)$ < 0: workers match with firms offering *higher* HK/info gains than competitors
 - $\triangleright \Psi(\cdot) < 0$ dampens AKM estimate $\hat{\rho}_{AKM}$ ($< \rho$)
 - \triangleright As attenuates firm/worker compl. in output $y(\cdot)$
- $\Psi(\cdot) > 0$: workers match with firms offering *lower* HK/info gains than competitors
 - $hd \Psi(\cdot) >$ 0 *amplifies* AKM estimate $\hat{
 ho}_{AKM}(>
 ho)$
 - riangle As enhances firm/worker compl. in output $y(\cdot)$
- Next: empirical implementation using LEHD data

- $\Psi(\cdot)$ < 0: workers match with firms offering *higher* HK/info gains than competitors
 - $\triangleright \Psi(\cdot) < 0$ dampens AKM estimate $\hat{\rho}_{AKM}$ ($< \rho$)
 - \triangleright As attenuates firm/worker compl. in output $y(\cdot)$
- $\Psi(\cdot) > 0$: workers match with firms offering *lower* HK/info gains than competitors
 - $\triangleright \Psi(\cdot) > 0$ amplifies AKM estimate $\hat{\rho}_{AKM}(> \rho)$
 - \triangleright As enhances firm/worker compl. in output $y(\cdot)$
- Next: empirical implementation using LEHD data

- $\Psi(\cdot)$ < 0: workers match with firms offering *higher* HK/info gains than competitors
 - $\triangleright \Psi(\cdot) < 0$ dampens AKM estimate $\hat{\rho}_{AKM}$ ($< \rho$)
 - \triangleright As attenuates firm/worker compl. in output $y(\cdot)$
- $\Psi(\cdot) > 0$: workers match with firms offering *lower* HK/info gains than competitors
 - $\triangleright \Psi(\cdot) > 0$ amplifies AKM estimate $\hat{\rho}_{AKM}(> \rho)$
 - \triangleright As enhances firm/worker compl. in output $y(\cdot)$
- Next: empirical implementation using LEHD data

Empirics: Wage Equation

• Consider equilibrium wage equation parameterized as in the simulations

$$w_{n,t} = \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\}$$

$$\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,H_{n,1},\kappa_{n,t},P_{n,t},e) + \epsilon_{n,t}(d,e)\right]$$

• $y(\cdot)$ containing $e + \beta_0(d)$ (á la AKM) and first-order terms of $H_{n,1}$, $\kappa_{n,t}$, $P_{n,t}$

• $\Psi(\cdot)$ approx. with truncated Taylor series (higher powers and interaction terms of $H_{n,1}$, $\kappa_{n,t}$ and $P_{n,t}$)

• Suppress dependence on 2nd-best firm as in AKM but allow for selection on $\epsilon_{n,t}$ as in our class of models

Empirics: Data

- Estimate wage equation using U.S. LEHD data
 - > LEHD provides administrative data on quarterly labor earnings for all workers across all their jobs
 - Dataset has info for 21 states (include CA, FL, PA) from 1994 to 2022
 - Dobservables: age, gender, education, firm identifier, job location and industry
 - $\triangleright w_{n,t}, D_{n,t}, H_{n,1}$ and $\kappa_{n,t}$ are observed in the data
- As for beliefs: simply recover $\{P_{n,t}\}$ process by inferring performance from variable pay in pre-step
- Approach: $P_{n,t}$ is estimated for each (n,t) by extracting performance signals from variable pay (vp)
 - ▶ Why? Do not want to rely on independent measures of performance (often unavailable)
 - ▷ Idea: quantiles of vp distribution identify performance signals if vp is monotone with performance
 - ▷ So if worker is in top quantile of vp distribution, we infer worker received high performance signal

Empirics: Data

- Estimate wage equation using U.S. LEHD data
 - ► LEHD provides administrative data on quarterly labor earnings for all workers across all their jobs
 - Dataset has info for 21 states (include CA, FL, PA) from 1994 to 2022
 - Dobservables: age, gender, education, firm identifier, job location and industry
 - $\triangleright w_{n,t}, D_{n,t}, H_{n,1}$ and $\kappa_{n,t}$ are observed in the data
- As for beliefs: simply recover $\{P_{n,t}\}$ process by inferring performance from variable pay in pre-step
- Approach: $P_{n,t}$ is estimated for each (n,t) by extracting performance signals from variable pay (vp)
 - ▶ Why? Do not want to rely on independent measures of performance (often unavailable)
 - ▶ Idea: *quantiles of vp distribution identify performance signals* if vp is monotone with performance
 - So if worker is in top quantile of vp distribution, we infer worker received high performance signal

Empirics: Data

- Estimate wage equation using U.S. LEHD data
 - ▶ LEHD provides administrative data on quarterly labor earnings for all workers across all their jobs
 - Dataset has info for 21 states (include CA, FL, PA) from 1994 to 2022
 - Description Descr
 - $\triangleright w_{n,t}, D_{n,t}, H_{n,1}$ and $\kappa_{n,t}$ are observed in the data
- As for beliefs: simply recover $\{P_{n,t}\}$ process by inferring performance from variable pay in pre-step
- Approach: $P_{n,t}$ is estimated for each (n,t) by extracting performance signals from variable pay (vp)

 - ▷ Idea: *quantiles of vp distribution identify performance signals* if vp is monotone with performance
 - ▷ So if worker is in top quantile of vp distribution, we infer worker received high performance signal

Empirics: Estimation Method

Wage equation

$$w_{n,t} = \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\}$$

$$\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,H_{n,1},\kappa_{n,t},P_{n,t},e) + \epsilon_{n,t}(d,e)\right]$$

- ullet Finite Gaussian mixture in latent worker efficiency types e_n
- To address selection on $\epsilon_{n,t}$, build on extremal quantile reg. of D'Haultfœuille-Maurel-Zhang (2018)
- Therefore, nest extremal quantile regression within Gaussian mixture estimation
- Implemented via feasible estimator in the spirit of Stata's fmm+eqregsel
- Critical: can estimate key constant term by normalizing error at suitable extremal quantile

Empirics: Estimation Method

Wage equation

$$w_{n,t} = \sum_{d,e} \mathbb{1}\{D_{n,t} = d, e_n = e\}$$

$$\times \left[e + \beta_0(d) + \beta_1(d,e)H_{n,1} + \beta_2(d,e)\kappa_{n,t} + \beta_3(d,e)P_{n,t} + \Psi(d,H_{n,1},\kappa_{n,t},P_{n,t},e) + \epsilon_{n,t}(d,e)\right]$$

- \bullet Finite Gaussian mixture in latent worker efficiency types e_n
- To address selection on $\epsilon_{n,t}$, build on extremal quantile reg. of D'Haultfœuille-Maurel-Zhang (2018)
- Therefore, nest extremal quantile regression within Gaussian mixture estimation
- Implemented via feasible estimator in the spirit of Stata's fmm+eqregsel
- Critical: can estimate key constant term by normalizing error at suitable extremal quantile

Empirics: Estimation Results

- AKM decomposition *under*-estimates impact of sorting: $\hat{
 ho}_{\mathsf{AKM}} < \hat{
 ho}_{\mathsf{OURS}}$
- Because the estimated $\Psi(\cdot)$ is on average *negative*
- As workers tend to match mostly with firms offering HK/info with high future wage returns
- Hence, we have gone some way at *solving* the puzzle of low sorting
- Next: corroborate this key finding with exercise capturing global notion of sorting in our class of model

Empirics: Estimation Results

- AKM decomposition *under*-estimates impact of sorting: $\hat{
 ho}_{\mathsf{AKM}} < \hat{
 ho}_{\mathsf{OURS}}$
- Because the estimated $\Psi(\cdot)$ is on average *negative*
- As workers tend to match mostly with firms offering HK/info with *high* future wage returns
- Hence, we have gone some way at solving the puzzle of low sorting
- Next: corroborate this key finding with exercise capturing global notion of sorting in our class of model

Empirics: Estimation Results

- AKM decomposition *under*-estimates impact of sorting: $\hat{\rho}_{\mathsf{AKM}} < \hat{\rho}_{\mathsf{OURS}}$
- Because the estimated $\Psi(\cdot)$ is on average *negative*
- As workers tend to match mostly with firms offering HK/info with high future wage returns
- Hence, we have gone some way at *solving* the puzzle of low sorting
- Next: corroborate this key finding with exercise capturing global notion of sorting in our class of model

Role of Sorting: Random-Matching Counterfactual

- Note that ρ (AKM measure of sorting) captures worker sorting solely by efficiency e_n
- But workers also sort by beliefs about ability θ_n and accumulated HK (endogenous matching "frictions")
- We capture additional sorting dimensions by comparing earnings moments to random-matching benchmark
- Intuition: if sorting matters for inequality then std. of earnings must decrease under random matching
- Similarly, if sorting matters for inequality then top earnings share must decrease under random matching
- We find evidence of *both* mechanisms
- We confirm that sorting matters for inequality addressing the puzzle that measured sorting is low

Role of Sorting: Random-Matching Counterfactual

- Note that ρ (AKM measure of sorting) captures worker sorting solely by efficiency e_n
- But workers also sort by beliefs about ability θ_n and accumulated HK (endogenous matching "frictions")
- We capture additional sorting dimensions by comparing earnings moments to random-matching benchmark
- Intuition: if sorting matters for inequality then std. of earnings must decrease under random matching
- Similarly, if sorting matters for inequality then top earnings share must decrease under random matching
- We find evidence of *both* mechanisms
- We confirm that sorting matters for inequality addressing the puzzle that measured sorting is low

Role of Sorting: Random-Matching Counterfactual

- Note that ρ (AKM measure of sorting) captures worker sorting solely by efficiency e_n
- But workers also sort by beliefs about ability θ_n and accumulated HK (endogenous matching "frictions")
- We capture additional sorting dimensions by comparing earnings moments to random-matching benchmark
- Intuition: if sorting matters for inequality then std. of earnings must decrease under random matching
- Similarly, if sorting matters for inequality then top earnings share must decrease under random matching
- We find evidence of *both* mechanisms
- We confirm that sorting matters for inequality addressing the puzzle that measured sorting is low

Conclusion

We provide two sets of results:

- 1. Develop semiparametric identification arguments for matching models with HK acquisition and learning
 - > Represent wage distribution as a mixture over unobservables
 - ▷ Show identification of wage mixture under mild restrictions
 - ▷ Recover primitives by combining mixture-based approach w/quantile methods for generalized Roy
- 2. Use it to reevaluate impact of worker sorting into firms on U.S. earnings inequality using LEHD data
 - ▶ Findings: sorting matters but conventional measures of it typically underestimate its impact
 - ▷ Because they conflate compensating differential in wages with firm/worker/match effects

Conclusion

We provide two sets of results:

- 1. Develop semiparametric identification arguments for matching models with HK acquisition and learning
 - > Represent wage distribution as a mixture over unobservables
 - ▷ Show identification of wage mixture under mild restrictions
 - ▷ Recover primitives by combining mixture-based approach w/quantile methods for generalized Roy
- 2. Use it to reevaluate impact of worker sorting into firms on U.S. earnings inequality using LEHD data
 - ▷ Findings: sorting matters but conventional measures of it typically *underestimate* its impact
 - ▷ Because they conflate compensating differential in wages with firm/worker/match effects

Appendix

Simplified static version of our wage equation

$$w_n = \sum_{d \in \{0,1\}} \mathbb{1}\{D_n = d\} w_n(d) \sum_{d \in \{0,1\}} \mathbb{1}\{D_n = d\} [y(d, X_n) + \epsilon_n(d)]$$

- No 2nd-best firm, state variables replaced by observed covariates
- \triangleright No subscript t, no compensating differential
- Selection on $\epsilon_n := (\epsilon_n(1), \epsilon_n(0))$ complicates identification of deterministic wage $y(\cdot)$

$$\mathbb{E}(w_n \mid D_n = d, X_n) = \mathbb{E}(y(d, X_n) + \epsilon_n(d) \mid D_n = d, X_n) = y(d, X_n) + \underbrace{\mathbb{E}(\epsilon_n(d) \mid D_n = d, X_n)}_{\lambda(d, X_n): \text{ selection bias}}$$

Simplified static version of our wage equation

$$w_n = \sum_{d \in \{0,1\}} \mathbb{1}\{D_n = d\} w_n(d) \sum_{d \in \{0,1\}} \mathbb{1}\{D_n = d\} [y(d, X_n) + \epsilon_n(d)]$$

- No 2nd-best firm, state variables replaced by observed covariates
- \triangleright No subscript t, no compensating differential
- Selection on $\epsilon_n := (\epsilon_n(1), \epsilon_n(0))$ complicates identification of deterministic wage $y(\cdot)$

$$\mathbb{E}(w_n \mid D_n = d, X_n) = \mathbb{E}(y(d, X_n) + \epsilon_n(d) \mid D_n = d, X_n) = y(d, X_n) + \underbrace{\mathbb{E}(\epsilon_n(d) \mid D_n = d, X_n)}_{\lambda(d, X_n): \text{ selection bias}}$$

• Simplified static version of our wage equation

$$w_n = \sum_{d \in \{0,1\}} \mathbb{1}\{D_n = d\} w_n(d) \sum_{d \in \{0,1\}} \mathbb{1}\{D_n = d\} [y(d, X_n) + \epsilon_n(d)]$$

- No 2nd-best firm, state variables replaced by observed covariates
- \triangleright No subscript t, no compensating differential
- Selection on $\epsilon_n := (\epsilon_n(1), \epsilon_n(0))$ complicates identification of deterministic wage $y(\cdot)$

$$\mathbb{E}(w_n \mid D_n = d, X_n) = \mathbb{E}(y(d, X_n) + \epsilon_n(d) \mid D_n = d, X_n) = y(d, X_n) + \underbrace{\mathbb{E}(\epsilon_n(d) \mid D_n = d, X_n)}_{\lambda(d, X_n): \text{ selection bias}}$$

• Simplified static version of our wage equation

$$w_n = \sum_{d \in \{0,1\}} \mathbb{1}\{D_n = d\} w_n(d) \sum_{d \in \{0,1\}} \mathbb{1}\{D_n = d\} [y(d, X_n) + \epsilon_n(d)]$$

- No 2nd-best firm, state variables replaced by observed covariates
- \triangleright No subscript t, no compensating differential
- Selection on $\epsilon_n := (\epsilon_n(1), \epsilon_n(0))$ complicates identification of deterministic wage $y(\cdot)$

$$\mathbb{E}(w_n \mid D_n = d, X_n) = \mathbb{E}(y(d, X_n) + \epsilon_n(d) \mid D_n = d, X_n) = y(d, X_n) + \underbrace{\mathbb{E}(\epsilon_n(d) \mid D_n = d, X_n)}_{\lambda(d, X_n): \text{ selection bias}}$$

- Identification with worker-specific excluded covariates affecting job choices and not wages or vice versa
 - ▷ Ahn & Powell (1993), Newey (2009), Das, Newey, & Vella (2003)
- Identification "at infinity" with worker-job-specific covariates affecting wage in one job only
 - Chamberlain (1986), Heckman (1990)
- Not applicable to our class of models which lacks any type of exclusion restrictions by construction
- All the state variables affect both job choices and wages
- There are no worker-job-specific excluded state variables
 - \triangleright Belief? Ability θ_n is allowed to be general trait and so belief $P_{n,t}$ about θ_n is not job-specific
 - ▶ Job tenure? HK can depend on entire employment history and so job tenure impacts wages across all jobs

- Identification with worker-specific excluded covariates affecting job choices and not wages or vice versa
 - ▷ Ahn & Powell (1993), Newey (2009), Das, Newey, & Vella (2003)
- Identification "at infinity" with worker-job-specific covariates affecting wage in one job only
 - Chamberlain (1986), Heckman (1990)
- Not applicable to our class of models which lacks any type of exclusion restrictions by construction
- All the state variables affect both job choices and wages
- There are no worker-job-specific excluded state variables
 - \triangleright Belief? Ability θ_n is allowed to be general trait and so belief $P_{n,t}$ about θ_n is not job-specific
 - ▶ Job tenure? HK can depend on entire employment history and so job tenure impacts wages across all jobs

- Identification with worker-specific excluded covariates affecting job choices and not wages or vice versa
 - ▷ Ahn & Powell (1993), Newey (2009), Das, Newey, & Vella (2003)
- Identification "at infinity" with worker-job-specific covariates affecting wage in one job only
 - Chamberlain (1986), Heckman (1990)
- Not applicable to our class of models which lacks any type of exclusion restrictions by construction
- All the state variables affect both job choices and wages
- There are no worker-job-specific excluded state variables
 - \triangleright Belief? Ability θ_n is allowed to be general trait and so belief $P_{n,t}$ about θ_n is not job-specific
 - ▶ Job tenure? HK can depend on entire employment history and so job tenure impacts wages across all jobs

- Identification with worker-specific excluded covariates affecting job choices and not wages or vice versa
 ▷ Ahn & Powell (1993), Newey (2009), Das, Newey, & Vella (2003)
- Identification "at infinity" with worker-job-specific covariates affecting wage in one job only

 ▷ Chamberlain (1986), Heckman (1990)
- Not applicable to our class of models which lacks any type of exclusion restrictions by construction
- All the state variables affect both job choices and wages
- There are no worker-job-specific excluded state variables
 - \triangleright Belief? Ability θ_n is allowed to be general trait and so belief $P_{n,t}$ about θ_n is not job-specific
 - Dob tenure? HK can depend on entire employment history and so job tenure impacts wages across all jobs

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n = 1, w_n(1) \ge w \, | \, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \, | \, X_n = x)$$
 as $w \to +\infty$

- Solves lack of exclusion restrictions but not directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism
 - ▶ Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n=1,w_n(1)\geq w\,|\,X_n=x)\sim \ell_1\Pr(w_n(1)\geq w\,|\,X_n=x)$$
 as $w\to +\infty$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism ●
 - Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x, w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n=1,w_n(1)\geq w\,|\,X_n=x)\sim \ell_1\Pr(w_n(1)\geq w\,|\,X_n=x)$$
 as $w\to +\infty$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism
 - > Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n=1,w_n(1)\geq w\,|\,X_n=x)\sim \ell_1\Pr(w_n(1)\geq w\,|\,X_n=x)$$
 as $w\to +\infty$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism (
 - ▶ Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n = 1, w_n(1) \ge w \,|\, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \,|\, X_n = x)$$
 as $w \to +\infty$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism
 - ▷ Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n = 1, w_n(1) \ge w \,|\, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \,|\, X_n = x)$$
 as $w \to +\infty$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism ■
 - > Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \mid X_n = x)$$
 as $w \to +\infty$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism ●
 - > Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n = 1, w_n(1) \ge w \, | \, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \, | \, X_n = x) \quad \text{as } w \to +\infty$$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism
 - ▷ Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n = 1, w_n(1) \ge w \,|\, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \,|\, X_n = x)$$
 as $w \to +\infty$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism (
 - Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n = 1, w_n(1) \ge w \,|\, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \,|\, X_n = x)$$
 as $w \to +\infty$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism
 - Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n = 1, w_n(1) \ge w \, | \, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \, | \, X_n = x) \quad \text{as } w \to +\infty$$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism Provided in the pricing mechanism P
 - > Next slides: how we address these two issues and incorporate DM's approach into our framework

- D'Haultfœuille & Maurel (2013): identification "at infinity" without worker-job-specific excluded covariates
- If $\epsilon_n(1)$ and $\epsilon_n(0)$ "moderately" dependent, then $\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x,w_n(1)=w)=\ell_1>0 \ \forall x$ \triangleright Intuition: if selection is truly endogenous, the covariates must be irrelevant in the limit
- It implies no impact of selection on right extreme tail of wage distribution and y(1,x) is identified

$$\Pr(D_n = 1, w_n(1) \ge w \,|\, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \,|\, X_n = x)$$
 as $w \to +\infty$

- Solves lack of exclusion restrictions but *not* directly applicable to our class of models
 - \triangleright Relies on knowledge of distribution of $(D_{n,t}, w_{n,t})$ conditional on $s_{n,t}$ but $s_{n,t}$ partially observed
 - ▶ Requires rethinking about which limit to take given second-price auction-like pricing mechanism Provided in the second-
 - Next slides: how we address these two issues and incorporate DM's approach into our framework

Longitudinal vs. Cross-Sectional Dimension

- Longitudinal dimension to identify learning, state law of motion, CCPs, distribution of (D_{nt}, w_{nt}) given s_{nt} \triangleright By concatenating wage mixture weights across periods
- Based on knowledge of (D_{nt}, w_{nt}) given s_{nt} , cross-sectional dimension to identify deterministic wage $\varphi(\cdot)$
 - ▷ Apply DM in each period
 - \triangleright Why? $\varphi(\cdot)$ is function of $s_{n,t}$ whose support varies across periods due to $\kappa_{n,t}$
 - $hd \varphi(\cdot)$ is effectively a time-varying function
 - \triangleright Empirics: $\varphi(\cdot)$ is parameterized, longitudinal dimension helps avoid DM's location normalization
- ullet Longitudinal dimension to identify output technology $y(\cdot)$ and compensating differential $\Psi(\cdot)$

Longitudinal vs. Cross-Sectional Dimension

- Longitudinal dimension to identify learning, state law of motion, CCPs, distribution of (D_{nt}, w_{nt}) given s_{nt} \triangleright By concatenating wage mixture weights across periods
- Based on knowledge of (D_{nt}, w_{nt}) given s_{nt} , cross-sectional dimension to identify deterministic wage $\varphi(\cdot)$
 - ▷ Apply DM in each period
 - \triangleright Why? $\varphi(\cdot)$ is function of $s_{n,t}$ whose support varies across periods due to $\kappa_{n,t}$
 - $hd \varphi(\cdot)$ is effectively a time-varying function
 - \triangleright Empirics: $\varphi(\cdot)$ is parameterized, longitudinal dimension helps avoid DM's location normalization
- Longitudinal dimension to identify output technology $y(\cdot)$ and compensating differential $\Psi(\cdot)$

Longitudinal vs. Cross-Sectional Dimension

- Longitudinal dimension to identify learning, state law of motion, CCPs, distribution of (D_{nt}, w_{nt}) given s_{nt} \triangleright By concatenating wage mixture weights across periods
- Based on knowledge of (D_{nt}, w_{nt}) given s_{nt} , cross-sectional dimension to identify deterministic wage $\varphi(\cdot)$
 - ▷ Apply DM in each period
 - \triangleright Why? $\varphi(\cdot)$ is function of $s_{n,t}$ whose support varies across periods due to $\kappa_{n,t}$
 - $\triangleright \varphi(\cdot)$ is effectively a time-varying function
 - \triangleright Empirics: $\varphi(\cdot)$ is parameterized, longitudinal dimension helps avoid DM's location normalization
- ullet Longitudinal dimension to identify output technology $y(\cdot)$ and compensating differential $\Psi(\cdot)$

- Strength of our approach: limited reliance on job mobility
- Some variation in job choices (akin to job mobility) helps identify $y(\cdot)$ and $\Psi(\cdot)$
- Variation in job choices for a given state aids in identifying $y(\cdot)$
- ullet Having workers rank firm d as 1st-best and others as 2nd-best, for the same state, aids in identifying $\Psi(\cdot)$
- Identifying firm's information technology requires observing workers employed at that firm for some periods

- Strength of our approach: limited reliance on job mobility
- ullet Some variation in job choices (akin to job mobility) helps identify $y(\cdot)$ and $\Psi(\cdot)$
- Variation in job choices for a given state aids in identifying $y(\cdot)$
- ullet Having workers rank firm d as 1st-best and others as 2nd-best, for the same state, aids in identifying $\Psi(\cdot)$
- Identifying firm's information technology requires observing workers employed at that firm for some periods

- Strength of our approach: limited reliance on job mobility
- ullet Some variation in job choices (akin to job mobility) helps identify $y(\cdot)$ and $\Psi(\cdot)$
- Variation in job choices for a given state aids in identifying $y(\cdot)$
- ullet Having workers rank firm d as 1st-best and others as 2nd-best, for the same state, aids in identifying $\Psi(\cdot)$
- Identifying firm's information technology requires observing workers employed at that firm for some periods

- Strength of our approach: limited reliance on job mobility
- Some variation in job choices (akin to job mobility) helps identify $y(\cdot)$ and $\Psi(\cdot)$
- ullet Variation in job choices for a given state aids in identifying $y(\cdot)$
- ullet Having workers rank firm d as 1st-best and others as 2nd-best, for the same state, aids in identifying $\Psi(\cdot)$
- Identifying firm's information technology requires observing workers employed at that firm for some periods

- Assume that two firms make wage offers to worker n in each period whose identities depend on $s_{n,t}$ only
- Aligns with practical reality: workers typically receive wage offers from a limited number of firms
- Similar to search models which typically assume "incumbent" and "competitor"
- Key econometric implication: when conditioning on $(D_{n,t}, s_{n,t})$ $D'_{n,t}$ is degenerate at one point
- Most of our results do not require to know (degenerate) support of $D'_{n,t}$ conditional on $(D_{n,t},s_{n,t})$
 - ▷ If unknown: identify deterministic wage, output/HK/information technology, CCPs, state law of motion
 - ▶ If known: identify compensating differential

- Assume that two firms make wage offers to worker n in each period whose identities depend on $s_{n,t}$ only
- Aligns with practical reality: workers typically receive wage offers from a limited number of firms
- Similar to search models which typically assume "incumbent" and "competitor"
- Key econometric implication: when conditioning on $(D_{n,t}, s_{n,t})$ $D'_{n,t}$ is degenerate at one point
- Most of our results do not require to know (degenerate) support of $D'_{n,t}$ conditional on $(D_{n,t},s_{n,t})$
 - ▷ If unknown: identify deterministic wage, output/HK/information technology, CCPs, state law of motion
 - ▷ If known: identify compensating differential

- Assume that two firms make wage offers to worker n in each period whose identities depend on $s_{n,t}$ only
- Aligns with practical reality: workers typically receive wage offers from a limited number of firms
- Similar to search models which typically assume "incumbent" and "competitor"
- Key econometric implication: when conditioning on $(D_{n,t}, s_{n,t})$ $D'_{n,t}$ is degenerate at one point
- Most of our results do not require to know (degenerate) support of $D'_{n,t}$ conditional on $(D_{n,t},s_{n,t})$
 - ▷ If unknown: identify deterministic wage, output/HK/information technology, CCPs, state law of motion
 - ▷ If known: identify compensating differential

- Assume that two firms make wage offers to worker n in each period whose identities depend on $s_{n,t}$ only
- Aligns with practical reality: workers typically receive wage offers from a limited number of firms
- Similar to search models which typically assume "incumbent" and "competitor"
- Key econometric implication: when conditioning on $(D_{n,t}, s_{n,t})$ $D'_{n,t}$ is degenerate at one point
- Most of our results do not require to know (degenerate) support of $D'_{n,t}$ conditional on $(D_{n,t},s_{n,t})$
 - ▷ If unknown: identify deterministic wage, output/HK/information technology, CCPs, state law of motion
 - ▷ If known: identify compensating differential

- Can dispense with the assumption above and allow offers from all firms
- Nonparametrically identify workers' acceptance strategy which in turn pinpoints identity of 2nd-best firm
- Operationalized based on workers' observed transition patterns
- Take worker n employed by d at time t with $D_n^t = d^t$
- Consider group of workers sharing same observed characteristics as worker *n*
- And transiting across the same jobs as d^t , following same sequence but potentially different lengths
- Examine jobs prior to reaching d and rank them based on average worker retention
- The highest-ranked pair is 2nd-best job for worker *n*

- Can dispense with the assumption above and allow offers from all firms
- Nonparametrically identify workers' acceptance strategy which in turn pinpoints identity of 2nd-best firm
- Operationalized based on workers' observed transition patterns
- Take worker n employed by d at time t with $D_n^t = d^t$
- Consider group of workers sharing same observed characteristics as worker n
- \bullet And transiting across the same jobs as d^t , following same sequence but potentially different lengths
- Examine jobs prior to reaching d and rank them based on average worker retention
- The highest-ranked pair is 2nd-best job for worker n

DM: From Imperfect Competition to Search

- DM applicability goes beyond our class of imperfectly competitive models
- Consider a standard wage equation of search models inspired by output technology of Bagger & al. (2014)

$$w_{n,t}(d) = \omega \gamma_t(d)^{\alpha} H_{n,1}{}^{\beta} \varepsilon_{n,t}(d) + (1-\omega)(1-\delta) U(H_{n,1})$$

- $\triangleright H_{n,1}$ is HK (known and time-invariant for simplicity)
- $\triangleright \omega$ is workers' bargaining weight (known)
- $\triangleright \gamma_t(d)$ is firm/job productivity (unknown time-varying firm effect)
- $\triangleright \alpha$ and β are parameters (firm-invariant for simplicity)
- $\triangleright U(H_{n,1}) = z + \delta \mathbb{E}(f(S(\cdot); \omega, \alpha, \beta), f_{\epsilon})$ is value of unemployment with $S(\cdot)$ match surplus function

- DM applicability goes beyond our class of imperfectly competitive models
- Consider a standard wage equation of search models inspired by output technology of Bagger & al. (2014)

$$w_{n,t}(d) = \omega \gamma_t(d)^{\alpha} H_{n,1}{}^{\beta} \varepsilon_{n,t}(d) + (1 - \omega)(1 - \delta) U(H_{n,1})$$

- $\triangleright H_{n,1}$ is HK (known and time-invariant for simplicity)
- $\triangleright \omega$ is workers' bargaining weight (known)
- $\triangleright \gamma_t(d)$ is firm/job productivity (unknown time-varying firm effect)
- $\triangleright \alpha$ and β are parameters (firm-invariant for simplicity)
- $\triangleright U(H_{n,1}) = z + \delta \mathbb{E}(f(S(\cdot); \omega, \alpha, \beta), f_{\epsilon})$ is value of unemployment with $S(\cdot)$ match surplus function

- DM applicability goes beyond our class of imperfectly competitive models
- Consider a standard wage equation of search models inspired by output technology of Bagger & al. (2014)

$$w_{n,t}(d) = \omega \gamma_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1 - \omega)(1 - \delta) U(H_{n,1})$$

- $\triangleright H_{n,1}$ is HK (known and time-invariant for simplicity)
- $\triangleright \omega$ is workers' bargaining weight (known)
- $\triangleright \gamma_t(d)$ is firm/job productivity (unknown time-varying firm effect)
- $\triangleright \alpha$ and β are parameters (firm-invariant for simplicity)
- $\triangleright U(H_{n,1}) = z + \delta \mathbb{E}(f(S(\cdot); \omega, \alpha, \beta), f_{\epsilon})$ is value of unemployment with $S(\cdot)$ match surplus function

- DM applicability goes beyond our class of imperfectly competitive models
- Consider a standard wage equation of search models inspired by output technology of Bagger & al. (2014)

$$w_{n,t}(d) = \omega \gamma_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1 - \omega)(1 - \delta) U(H_{n,1})$$

- $\triangleright H_{n,1}$ is HK (known and time-invariant for simplicity)
- $\triangleright \omega$ is workers' bargaining weight (known)
- $\triangleright \gamma_t(d)$ is firm/job productivity (unknown time-varying firm effect)
- $\triangleright \alpha$ and β are parameters (firm-invariant for simplicity)
- $\triangleright U(H_{n,1}) = z + \delta \mathbb{E}(f(S(\cdot); \omega, \alpha, \beta), f_{\epsilon})$ is value of unemployment with $S(\cdot)$ match surplus function

- DM applicability goes beyond our class of imperfectly competitive models
- Consider a standard wage equation of search models inspired by output technology of Bagger & al. (2014)

$$w_{n,t}(d) = \omega \gamma_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1-\omega)(1-\delta) U(H_{n,1})$$

- $\triangleright H_{n,1}$ is HK (known and time-invariant for simplicity)
- $\triangleright \omega$ is workers' bargaining weight (known)
- $\triangleright \gamma_t(d)$ is firm/job productivity (unknown time-varying firm effect)
- $\triangleright \alpha$ and β are parameters (firm-invariant for simplicity)
- $\triangleright U(H_{n,1}) = z + \delta \mathbb{E}(f(S(\cdot); \omega, \alpha, \beta), f_{\epsilon})$ is value of unemployment with $S(\cdot)$ match surplus function

- DM applicability goes beyond our class of imperfectly competitive models
- Consider a standard wage equation of search models inspired by output technology of Bagger & al. (2014)

$$w_{n,t}(d) = \omega \gamma_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1 - \omega)(1 - \delta) U(H_{n,1})$$

- $\triangleright H_{n,1}$ is HK (known and time-invariant for simplicity)
- $\triangleright \omega$ is workers' bargaining weight (known)
- $\triangleright \gamma_t(d)$ is firm/job productivity (unknown time-varying firm effect)
- $\triangleright \alpha$ and β are parameters (firm-invariant for simplicity)
- $\triangleright U(H_{n,1}) = z + \delta \mathbb{E}(f(S(\cdot); \omega, \alpha, \beta), f_{\epsilon})$ is value of unemployment with $S(\cdot)$ match surplus function

- DM applicability goes beyond our class of imperfectly competitive models
- Consider a standard wage equation of search models inspired by output technology of Bagger & al. (2014)

$$w_{n,t}(d) = \omega \gamma_t(d)^{\alpha} H_{n,1}{}^{\beta} \varepsilon_{n,t}(d) + (1 - \omega)(1 - \delta) U(H_{n,1})$$

- $\triangleright H_{n,1}$ is HK (known and time-invariant for simplicity)
- $\triangleright \omega$ is workers' bargaining weight (known)
- $\triangleright \gamma_t(d)$ is firm/job productivity (unknown time-varying firm effect)
- $\triangleright \alpha$ and β are parameters (firm-invariant for simplicity)
- $\triangleright U(H_{n,1}) = z + \delta \mathbb{E}(f(S(\cdot); \omega, \alpha, \beta), f_{\epsilon})$ is value of unemployment with $S(\cdot)$ match surplus function

- DM applicability goes beyond our class of imperfectly competitive models
- Consider a standard wage equation of search models inspired by output technology of Bagger & al. (2014)

$$w_{n,t}(d) = \omega \gamma_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1-\omega)(1-\delta) U(H_{n,1})$$

- $\triangleright H_{n,1}$ is HK (known and time-invariant for simplicity)
- $\triangleright \omega$ is workers' bargaining weight (known)
- $\triangleright \gamma_t(d)$ is firm/job productivity (unknown time-varying firm effect)
- $\triangleright \alpha$ and β are parameters (firm-invariant for simplicity)
- $\triangleright U(H_{n,1}) = z + \delta \mathbb{E}(f(S(\cdot); \omega, \alpha, \beta), f_{\epsilon})$ is value of unemployment with $S(\cdot)$ match surplus function

$$w_{n,t}(d) = \omega L_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1 - \omega)(1 - \delta) U(H_{n,1})$$

- Intuition: this is a scale/location model, hence can be identified using DM
- Assume w/o loss that $H_{n,1}$ can take value one
- Consider period t and firm d; assume $\gamma_{d,t}^{\alpha} = c$ with $c \neq 1$ known
- Then, $\omega \gamma_{d,t}^{\alpha} H_{n,1}^{\beta}$ known at $H_{n,1} = 1$ (DM scale normalisation)
- Assume $(1-\omega)(1-\delta)U(H_{n,1})$ known at $H_{n,1}=1$ (DM location normalisation)
- Using DM, we identify α , β , $\gamma_{d,t}$, and $U(H_{n,1})$
- Compare largest wage of workers with same $H_{n,1}$ employed by d,d' and identify $\gamma_{d',t}^{\alpha}$, and thus $\gamma_{d',t}$
- Move to period $\tau \neq t$ and assume $\gamma_{d,\tau} = r$ with r known for some d
- Compare largest wage of workers w/ same $H_{n,1}$ employed by d,d' and identify $\gamma_{d',\tau}^{\alpha}$, and thus $\gamma_{d',\tau}$

$$w_{n,t}(d) = \omega L_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1-\omega)(1-\delta)U(H_{n,1})$$

- Intuition: this is a scale/location model, hence can be identified using DM
- Assume w/o loss that $H_{n,1}$ can take value one
- Consider period t and firm d; assume $\gamma_{d,t}^{\alpha} = c$ with $c \neq 1$ known
- Then, $\omega \gamma_{d,t}^{\alpha} H_{n,1}^{\beta}$ known at $H_{n,1} = 1$ (DM scale normalisation)
- Assume $(1-\omega)(1-\delta)U(H_{n,1})$ known at $H_{n,1}=1$ (DM location normalisation)
- Using DM, we identify α , β , $\gamma_{d,t}$, and $U(H_{n,1})$
- Compare largest wage of workers with same $H_{n,1}$ employed by d,d' and identify $\gamma_{d',t}^{\alpha}$, and thus $\gamma_{d',t}$
- Move to period $\tau \neq t$ and assume $\gamma_{d,\tau} = r$ with r known for some d
- Compare largest wage of workers w/ same $H_{n,1}$ employed by d,d' and identify $\gamma_{d',\tau}^{\alpha}$, and thus $\gamma_{d',\tau}$

$$w_{n,t}(d) = \omega L_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1 - \omega)(1 - \delta) U(H_{n,1})$$

- Intuition: this is a scale/location model, hence can be identified using DM
- Assume w/o loss that $H_{n,1}$ can take value one
- Consider period t and firm d; assume $\gamma_{d,t}^{\alpha} = c$ with $c \neq 1$ known
- Then, $\omega \gamma_{d,t}^{\alpha} H_{n,1}^{\beta}$ known at $H_{n,1} = 1$ (DM scale normalisation)
- Assume $(1 \omega)(1 \delta)U(H_{n,1})$ known at $H_{n,1} = 1$ (DM location normalisation)
- Using DM, we identify α , β , $\gamma_{d,t}$, and $U(H_{n,1})$
- Compare largest wage of workers with same $H_{n,1}$ employed by d,d' and identify $\gamma_{d',t}^{\alpha}$, and thus $\gamma_{d',t}$
- Move to period $\tau \neq t$ and assume $\gamma_{d,\tau} = r$ with r known for some d
- Compare largest wage of workers w/ same $H_{n,1}$ employed by d,d' and identify $\gamma_{d',\tau}^{\alpha}$, and thus $\gamma_{d',\tau}$

$$w_{n,t}(d) = \omega L_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1 - \omega)(1 - \delta) U(H_{n,1})$$

- Intuition: this is a scale/location model, hence can be identified using DM
- Assume w/o loss that $H_{n,1}$ can take value one
- Consider period t and firm d; assume $\gamma_{d,t}^{\alpha} = c$ with $c \neq 1$ known
- Then, $\omega \gamma_{d,t}^{\alpha} H_{n,1}^{\beta}$ known at $H_{n,1} = 1$ (DM scale normalisation)
- Assume $(1-\omega)(1-\delta)U(H_{n,1})$ known at $H_{n,1}=1$ (DM location normalisation)
- Using DM, we identify α , β , $\gamma_{d,t}$, and $U(H_{n,1})$
- Compare largest wage of workers with same $H_{n,1}$ employed by d,d' and identify $\gamma_{d',t}^{\alpha}$, and thus $\gamma_{d',t}$
- Move to period $\tau \neq t$ and assume $\gamma_{d,\tau} = r$ with r known for some d
- Compare largest wage of workers w/ same $H_{n,1}$ employed by d,d' and identify $\gamma_{d',\tau}^{\alpha}$, and thus $\gamma_{d',\tau}$

$$w_{n,t}(d) = \omega L_t(d)^{\alpha} H_{n,1}^{\beta} \varepsilon_{n,t}(d) + (1 - \omega)(1 - \delta) U(H_{n,1})$$

- Intuition: this is a scale/location model, hence can be identified using DM
- Assume w/o loss that $H_{n,1}$ can take value one
- Consider period t and firm d; assume $\gamma_{d,t}^{\alpha} = c$ with $c \neq 1$ known
- Then, $\omega \gamma_{d,t}^{\alpha} H_{n,1}^{\beta}$ known at $H_{n,1} = 1$ (DM scale normalisation)
- Assume $(1-\omega)(1-\delta)U(H_{n,1})$ known at $H_{n,1}=1$ (DM location normalisation)
- Using DM, we identify α , β , $\gamma_{d,t}$, and $U(H_{n,1})$
- Compare largest wage of workers with same $H_{n,1}$ employed by d,d' and identify $\gamma_{d',t}^{\alpha}$, and thus $\gamma_{d',t}$
- ullet Move to period au
 eq t and assume $\gamma_{d, au} = r$ with r known for some d
- Compare largest wage of workers w/ same $H_{n,1}$ employed by d, d' and identify $\gamma_{d',\tau}^{\alpha}$, and thus $\gamma_{d',\tau}$

Normalizations

- ullet Location normalization to identify deterministic wage $\varphi\colon \varphi(\cdot)$ known for each firm at one state
- Empirics: we do not need this normalization
 - $hd arphi(\cdot)$ is parameterized with time-invariant parameters
 - ho Normalization would correspond to imposing intercept $e+eta_0(d)=0$
 - ▷ By exploiting longitudinal dimension, we can identify intercept
 - \triangleright Moreover, we can separately identify e and $\beta_0(d)$ by exploiting job mobility as in the AKM
- ullet Location normalization to identify output technology $y(\cdot)\colon y(\cdot)$ known for each firm at one state
- ullet Empirics: do not need this normalization by parameterizing $\varphi(\cdot)$ with time-invariant parameters

Normalizations

- ullet Location normalization to identify deterministic wage $\varphi\colon \varphi(\cdot)$ known for each firm at one state
- Empirics: we do not need this normalization
 - $ho \ arphi(\cdot)$ is parameterized with time-invariant parameters
 - ho Normalization would correspond to imposing intercept $e+eta_0(d)=0$
 - ▷ By exploiting longitudinal dimension, we can identify intercept
 - ho Moreover, we can separately identify e and $eta_0(d)$ by exploiting job mobility as in the AKM
- ullet Location normalization to identify output technology $y(\cdot)$: $y(\cdot)$ known for each firm at one state
- ullet Empirics: do not need this normalization by parameterizing $\varphi(\cdot)$ with time-invariant parameters

Continuous Efficiency Types e_n

- ullet Finite ${\mathcal E}$ with known cardinality ensures identification of wage mixture
- ullet Readily extends to known upper bound E^* on $|\mathcal{E}|$ since Bruni and Koch (1985) accommodate zero weights
- \bullet e_n is continuous/multidim.: wage mixture is *continuous* mixture of continuous Gaussian mixtures
 - \triangleright Simplify model by removing selection on $\epsilon_{n,t}$: $\epsilon_{n,t}$ conditional on $D_{n,t}$ is distributed as $\epsilon_{n,t}$, e.g. Norma

Continuous Efficiency Types e_n

- ullet Finite ${\mathcal E}$ with known cardinality ensures identification of wage mixture
- ullet Readily extends to known upper bound E^* on $|\mathcal{E}|$ since Bruni and Koch (1985) accommodate zero weights
- \bullet e_n is continuous/multidim.: wage mixture is *continuous* mixture of continuous Gaussian mixtures
 - \triangleright Simplify model by removing selection on $\epsilon_{n,t}$: $\epsilon_{n,t}$ conditional on $D_{n,t}$ is distributed as $\epsilon_{n,t}$, e.g. Normal

Continuous Signals $a_{n,t}$

- ullet As for ${\mathcal E}$, wage mixture identification can be readily adapted to known upper bound A^* on $|{\mathcal A}|$
- Also covers continuous/multidimensional $a_{n,t}$ with no selection on $\epsilon_{n,t}$
- |A| = 2 simplifies identification of learning process
 - riangle Signal distribution is $\emph{binomial}$ mixture over $heta_n$ identified by Blischke (1964; 1978)
- Extends to other cardinalities or continuous/multidim. $a_{n,t}$ if signal mixture over θ_n remains identifiable
 - \triangleright E.g. if $a_{n,t}$ is continuous/multivariate Gaussian mixture conditional on θ_n
 - ▷ Signal is finite mixture of continuous/multiv. Gaussian mixtures, identified by Bruni and Koch (1985)

Continuous Signals $a_{n,t}$

- ullet As for ${\mathcal E}$, wage mixture identification can be readily adapted to known upper bound A^* on $|{\mathcal A}|$
- Also covers continuous/multidimensional $a_{n,t}$ with no selection on $\epsilon_{n,t}$
- |A| = 2 simplifies identification of learning process
 - \triangleright Signal distribution is *binomial* mixture over θ_n identified by Blischke (1964; 1978)
- Extends to other cardinalities or continuous/multidim. $a_{n,t}$ if signal mixture over θ_n remains identifiable
 - \triangleright E.g. if $a_{n,t}$ is continuous/multivariate Gaussian mixture conditional on θ_n
 - ▷ Signal is finite mixture of continuous/multiv. Gaussian mixtures, identified by Bruni and Koch (1985)

Continuous Signals $a_{n,t}$

- ullet As for ${\mathcal E}$, wage mixture identification can be readily adapted to known upper bound A^* on $|{\mathcal A}|$
- Also covers continuous/multidimensional $a_{n,t}$ with no selection on $\epsilon_{n,t}$
- |A| = 2 simplifies identification of learning process
 - \triangleright Signal distribution is *binomial* mixture over θ_n identified by Blischke (1964; 1978)
- Extends to other cardinalities or continuous/multidim. $a_{n,t}$ if signal mixture over θ_n remains identifiable
 - \triangleright E.g. if $a_{n,t}$ is continuous/multivariate Gaussian mixture conditional on θ_n
 - ▷ Signal is finite mixture of continuous/multiv. Gaussian mixtures, identified by Bruni and Koch (1985)

Continuous Ability θ_n

- $|\Theta| = 2$ simplifies identification of learning process
 - \triangleright Signal distribution is binomial mixture over θ_n with two components
 - ▷ Identified by Blischke (1964; 1978) if workers stay in a job for at least three periods
- Extends to other finite cardinalities provided that we increase the required length of job retention
- Extends to continuous/multidimensional θ_n if signal mixture over θ_n remains identifiable
 - \triangleright E.g. if $a_{n,t}$ is continuous/multivariate Normal conditional on θ_n
 - riangle Signal is continuous mixture of multivariate Normals, identified by Bruni and Koch (1985) 🚥

Continuous Ability θ_n

- $|\Theta| = 2$ simplifies identification of learning process
 - \triangleright Signal distribution is binomial mixture over θ_n with two components
 - ▷ Identified by Blischke (1964; 1978) if workers stay in a job for at least three periods
- Extends to other finite cardinalities provided that we increase the required length of job retention
- Extends to continuous/multidimensional θ_n if signal mixture over θ_n remains identifiable
 - \triangleright E.g. if $a_{n,t}$ is continuous/multivariate Normal conditional on θ_n
 - ▷ Signal is continuous mixture of multivariate Normals, identified by Bruni and Koch (1985)

Continuous Ability θ_n

- $|\Theta| = 2$ simplifies identification of learning process
 - \triangleright Signal distribution is binomial mixture over θ_n with two components
 - ▷ Identified by Blischke (1964; 1978) if workers stay in a job for at least three periods
- Extends to other finite cardinalities provided that we increase the required length of job retention
- Extends to continuous/multidimensional θ_n if signal mixture over θ_n remains identifiable
 - \triangleright E.g. if $a_{n,t}$ is continuous/multivariate Normal conditional on θ_n
 - ▷ Signal is continuous mixture of multivariate Normals, identified by Bruni and Koch (1985)

Which Tail of the Wage Distribution?

- Wage of job d is 2nd-best firm output $y(d', s_{n,t}(e)) + \epsilon_{n,t}(d', e)$ plus comp differential $\Psi(d, d', s_{n,t}(e))$
- Thus, by letting the wage of firm d go to $+\infty$, while the state variables $s_{n,t}(e)$ remain fixed
- We effectively push productivity shock of 2nd-best firm $\epsilon_{n,t}(d',e)$ to $+\infty$
- We potentially displace firm d from being the top choice for worker n
- We make the probability of choosing firm d going to zero
- ullet We solve the issue and preserve firm ranking by sending wages to $-\infty$ (left tail of wage distribution)

Which Tail of the Wage Distribution?

- Wage of job d is 2nd-best firm output $y(d', s_{n,t}(e)) + \epsilon_{n,t}(d', e)$ plus comp differential $\Psi(d, d', s_{n,t}(e))$
- Thus, by letting the wage of firm d go to $+\infty$, while the state variables $s_{n,t}(e)$ remain fixed
- We effectively push productivity shock of 2nd-best firm $\epsilon_{n,t}(d',e)$ to $+\infty$
- We potentially displace firm d from being the top choice for worker n
- We make the probability of choosing firm d going to zero
- We solve the issue and preserve firm ranking by sending wages to $-\infty$ (left tail of wage distribution)

Which Tail of the Wage Distribution?

- Wage of job d is 2nd-best firm output $y(d', s_{n,t}(e)) + \epsilon_{n,t}(d', e)$ plus comp differential $\Psi(d, d', s_{n,t}(e))$
- Thus, by letting the wage of firm d go to $+\infty$, while the state variables $s_{n,t}(e)$ remain fixed
- We effectively push productivity shock of 2nd-best firm $\epsilon_{n,t}(d',e)$ to $+\infty$
- We potentially displace firm d from being the top choice for worker n
- We make the probability of choosing firm d going to zero
- We solve the issue and preserve firm ranking by sending wages to $-\infty$ (left tail of wage distribution)

$$p_1(H_{n,1}, e_n)$$
 and $Pr(a_{n,t-1} | H_{n,1}, D_{n,t-1}, e_n, \theta_n)$

- How? In four steps
 - \triangleright Identify $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ from wage mixture weights at t and t+1 w/o further assumptions
 - \triangleright Represent $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ as a mixture over θ_r
 - ▷ Show identification of signal mixture under various sets of conditions
 - \circ E.g. $\mathcal{A} := \{\underline{a}, \overline{a}\}$ and $\Theta := \{\underline{\theta}, \overline{\theta}\}$: binomial mixture with 2 components (Blischke, 1964; 1978)
 - Can generalise to continuous mixtures, e.g. using Bruni and Koch (1985)
 - \triangleright Identify $p_1(H_{n,1},e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1},D_{n,t-1},e_n,\theta_n)$ from signal mixture weights and components
- By combining $p_1(H_{n,1}, e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1}, D_{n,t-1}, e_n, \theta_n)$, we compute $P_{n,t}$ and its distribution

$$p_1(H_{n,1}, e_n)$$
 and $Pr(a_{n,t-1} | H_{n,1}, D_{n,t-1}, e_n, \theta_n)$

- How? In four steps
 - \triangleright Identify $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ from wage mixture weights at t and t+1 w/o further assumptions
 - \triangleright Represent $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ as a mixture over θ_r
 - ▷ Show identification of signal mixture under various sets of conditions
 - \circ E.g. $\mathcal{A} := \{\underline{a}, \overline{a}\}$ and $\Theta := \{\underline{\theta}, \overline{\theta}\}$: binomial mixture with 2 components (Blischke, 1964; 1978)
 - \circ Can generalise to continuous mixtures, e.g. using Bruni and Koch (1985)
 - \triangleright Identify $p_1(H_{n,1},e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1},D_{n,t-1},e_n,\theta_n)$ from signal mixture weights and components
- By combining $p_1(H_{n,1}, e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1}, D_{n,t-1}, e_n, \theta_n)$, we compute $P_{n,t}$ and its distribution

$$p_1(H_{n,1}, e_n)$$
 and $Pr(a_{n,t-1} | H_{n,1}, D_{n,t-1}, e_n, \theta_n)$

- How? In four steps
 - \triangleright Identify $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ from wage mixture weights at t and t+1 w/o further assumptions
 - \triangleright Represent $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ as a mixture over θ_r
 - ▷ Show identification of signal mixture under various sets of conditions
 - \circ E.g. $\mathcal{A} := \{\underline{a}, \overline{a}\}$ and $\Theta := \{\underline{\theta}, \overline{\theta}\}$: binomial mixture with 2 components (Blischke, 1964; 1978)
 - \circ Can generalise to continuous mixtures, e.g. using Bruni and Koch (1985)
 - \triangleright Identify $p_1(H_{n,1},e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1},D_{n,t-1},e_n,\theta_n)$ from signal mixture weights and components
- By combining $p_1(H_{n,1}, e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1}, D_{n,t-1}, e_n, \theta_n)$, we compute $P_{n,t}$ and its distribution

$$p_1(H_{n,1}, e_n)$$
 and $Pr(a_{n,t-1} | H_{n,1}, D_{n,t-1}, e_n, \theta_n)$

- How? In four steps
 - \triangleright Identify $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ from wage mixture weights at t and t+1 w/o further assumptions
 - \triangleright Represent $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ as a mixture over θ_n
 - ▷ Show identification of signal mixture under various sets of conditions
 - \circ E.g. $\mathcal{A} := \{\underline{a}, \overline{a}\}$ and $\Theta := \{\underline{\theta}, \overline{\theta}\}$: binomial mixture with 2 components (Blischke, 1964; 1978)
 - Can generalise to continuous mixtures, e.g. using Bruni and Koch (1985)
 - \triangleright Identify $p_1(H_{n,1},e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1},D_{n,t-1},e_n,\theta_n)$ from signal mixture weights and components
- By combining $p_1(H_{n,1}, e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1}, D_{n,t-1}, e_n, \theta_n)$, we compute $P_{n,t}$ and its distribution

$$p_1(H_{n,1}, e_n)$$
 and $Pr(a_{n,t-1} | H_{n,1}, D_{n,t-1}, e_n, \theta_n)$

- How? In four steps
 - \triangleright Identify $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ from wage mixture weights at t and t+1 w/o further assumptions
 - \triangleright Represent $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ as a mixture over θ_n
 - > Show identification of signal mixture under various sets of conditions
 - \circ E.g. $\mathcal{A} := \{\underline{a}, \overline{a}\}$ and $\Theta := \{\underline{\theta}, \overline{\theta}\}$: binomial mixture with 2 components (Blischke, 1964; 1978)
 - Can generalise to continuous mixtures, e.g. using Bruni and Koch (1985)
 - \triangleright Identify $p_1(H_{n,1},e_n)$ and $\Pr(a_{n,t-1}\mid H_{n,1},D_{n,t-1},e_n,\theta_n)$ from signal mixture weights and components
- By combining $p_1(H_{n,1},e_n)$ and $\Pr(a_{n,t-1}\mid H_{n,1},D_{n,t-1},e_n,\theta_n)$, we compute $P_{n,t}$ and its distribution

$$p_1(H_{n,1}, e_n)$$
 and $Pr(a_{n,t-1} | H_{n,1}, D_{n,t-1}, e_n, \theta_n)$

- How? In four steps
 - \triangleright Identify $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ from wage mixture weights at t and t+1 w/o further assumptions
 - \triangleright Represent $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ as a mixture over θ_n
 - > Show identification of signal mixture under various sets of conditions
 - \circ E.g. $\mathcal{A} := \{\underline{a}, \overline{a}\}$ and $\Theta := \{\underline{\theta}, \overline{\theta}\}$: binomial mixture with 2 components (Blischke, 1964; 1978)
 - Can generalise to continuous mixtures, e.g. using Bruni and Koch (1985)
 - \triangleright Identify $p_1(H_{n,1}, e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1}, D_{n,t-1}, e_n, \theta_n)$ from signal mixture weights and components
- By combining $p_1(H_{n,1}, e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1}, D_{n,t-1}, e_n, \theta_n)$, we compute $P_{n,t}$ and its distribution

$$p_1(H_{n,1}, e_n)$$
 and $Pr(a_{n,t-1} | H_{n,1}, D_{n,t-1}, e_n, \theta_n)$

- How? In four steps
 - \triangleright Identify $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ from wage mixture weights at t and t+1 w/o further assumptions
 - \triangleright Represent $\Pr(a_n^t \mid H_{n,1}, D_n^t, e_n)$ as a mixture over θ_n
 - > Show identification of signal mixture under various sets of conditions
 - \circ E.g. $\mathcal{A} \coloneqq \{\underline{a}, \overline{a}\}$ and $\Theta \coloneqq \{\underline{\theta}, \overline{\theta}\}$: binomial mixture with 2 components (Blischke, 1964; 1978)
 - Can generalise to continuous mixtures, e.g. using Bruni and Koch (1985)
 - \triangleright Identify $p_1(H_{n,1}, e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1}, D_{n,t-1}, e_n, \theta_n)$ from signal mixture weights and components
- By combining $p_1(H_{n,1}, e_n)$ and $\Pr(a_{n,t-1} \mid H_{n,1}, D_{n,t-1}, e_n, \theta_n)$, we compute $P_{n,t}$ and its distribution •Back)

- Having identified distribution of $(D_{n,t}, w_{n,t})$ given $s_{n,t}$, we use DM to identify $\varphi(\cdot) \coloneqq y(\cdot) + \Psi(\cdot)$
- However, due to second-price auction-like mechanism, we must send wages to $-\infty$ rather than $+\infty$
- Wage of job d is 2nd-best firm output $y(d', s_{n,t}(e)) + \epsilon_{n,t}(d', e)$ plus comp differential $\Psi(d, d', s_{n,t}(e))$
- Thus, by letting the wage of job d go to $+\infty$, while the state variables $s_{n,t}(e)$ remain fixed
- We effectively push productivity shock of 2nd-best firm $\epsilon_{n,t}(d',e)$ to $+\infty$
- We potentially displace job *d* from being the top choice for worker *n*
- We make the probability of choosing job d going to zero
- Solve this by sending wages to $-\infty$ (left tail of the wage distribution)

- ullet Having identified distribution of $(D_{n,t},w_{n,t})$ given $s_{n,t}$, we use DM to identify $\varphi(\cdot)\coloneqq y(\cdot)+\Psi(\cdot)$
- ullet However, due to second-price auction-like mechanism, we must send wages to $-\infty$ rather than $+\infty$
- Wage of job d is 2nd-best firm output $y(d', s_{n,t}(e)) + \epsilon_{n,t}(d', e)$ plus comp differential $\Psi(d, d', s_{n,t}(e))$
- Thus, by letting the wage of job d go to $+\infty$, while the state variables $s_{n,t}(e)$ remain fixed
- We effectively push productivity shock of 2nd-best firm $\epsilon_{n,t}(d',e)$ to $+\infty$
- We potentially displace job *d* from being the top choice for worker *n*
- We make the probability of choosing job d going to zero
- Solve this by sending wages to $-\infty$ (left tail of the wage distribution)

- ullet Having identified distribution of $(D_{n,t},w_{n,t})$ given $s_{n,t}$, we use DM to identify $\varphi(\cdot)\coloneqq y(\cdot)+\Psi(\cdot)$
- However, due to second-price auction-like mechanism, we must send wages to $-\infty$ rather than $+\infty$
- Wage of job d is 2nd-best firm output $y(d', s_{n,t}(e)) + \epsilon_{n,t}(d', e)$ plus comp differential $\Psi(d, d', s_{n,t}(e))$
- Thus, by letting the wage of job d go to $+\infty$, while the state variables $s_{n,t}(e)$ remain fixed
- We effectively push productivity shock of 2nd-best firm $\epsilon_{n,t}(d',e)$ to $+\infty$
- We potentially displace job *d* from being the top choice for worker *n*
- We make the probability of choosing job d going to zero
- Solve this by sending wages to $-\infty$ (left tail of the wage distribution)

- ullet Having identified distribution of $(D_{n,t},w_{n,t})$ given $s_{n,t}$, we use DM to identify $\varphi(\cdot)\coloneqq y(\cdot)+\Psi(\cdot)$
- However, due to second-price auction-like mechanism, we must send wages to $-\infty$ rather than $+\infty$
- Wage of job d is 2nd-best firm output $y(d', s_{n,t}(e)) + \epsilon_{n,t}(d', e)$ plus comp differential $\Psi(d, d', s_{n,t}(e))$
- Thus, by letting the wage of job d go to $+\infty$, while the state variables $s_{n,t}(e)$ remain fixed
- We effectively push productivity shock of 2nd-best firm $\epsilon_{n,t}(d',e)$ to $+\infty$
- We potentially displace job d from being the top choice for worker n
- We make the probability of choosing job d going to zero
- Solve this by sending wages to $-\infty$ (left tail of the wage distribution)

Identification of Deterministic Wage

- ullet Having identified distribution of $(D_{n,t},w_{n,t})$ given $s_{n,t}$, we use DM to identify $\varphi(\cdot)\coloneqq y(\cdot)+\Psi(\cdot)$
- However, due to second-price auction-like mechanism, we must send wages to $-\infty$ rather than $+\infty$
- Wage of job d is 2nd-best firm output $y(d', s_{n,t}(e)) + \epsilon_{n,t}(d', e)$ plus comp differential $\Psi(d, d', s_{n,t}(e))$
- Thus, by letting the wage of job d go to $+\infty$, while the state variables $s_{n,t}(e)$ remain fixed
- We effectively push productivity shock of 2nd-best firm $\epsilon_{n,t}(d',e)$ to $+\infty$
- We potentially displace job d from being the top choice for worker n
- We make the probability of choosing job d going to zero
- Solve this by sending wages to $-\infty$ (left tail of the wage distribution)

Identification of Output and HK Technology

- Equilibrium is efficient
- Market-wide equilibrium allocation problem reduces to single-agent (planner) dynamic decision problem
- We have identified CCPs and distribution of productivity shocks
- Therefore, $y(\cdot)$ can be identified following Magnac & Thesmar (2002)
- Under usual normalisations: $y(\cdot)$ is known at one firm for each state
- Can be extended to multi-job case where equilibrium is typically inefficient
 - ▶ Market-wide equilibrium allocation solves pseudo-planning
 - Namely, problem of maximising match surplus for each firm ■BECL

Identification of Output and HK Technology

- Equilibrium is efficient
- Market-wide equilibrium allocation problem reduces to single-agent (planner) dynamic decision problem
- We have identified CCPs and distribution of productivity shocks
- Therefore, $y(\cdot)$ can be identified following Magnac & Thesmar (2002)
- ullet Under usual normalisations: $y(\cdot)$ is known at one firm for each state
- Can be extended to multi-job case where equilibrium is typically inefficient
 - ▶ Market-wide equilibrium allocation solves pseudo-planning
 - Namely, problem of maximising match surplus for each firm ■Back

Identification of Output and HK Technology

- Equilibrium is efficient
- Market-wide equilibrium allocation problem reduces to single-agent (planner) dynamic decision problem
- We have identified CCPs and distribution of productivity shocks
- Therefore, $y(\cdot)$ can be identified following Magnac & Thesmar (2002)
- ullet Under usual normalisations: $y(\cdot)$ is known at one firm for each state
- Can be extended to multi-job case where equilibrium is typically inefficient

 - Namely, problem of maximising match surplus for each firm ► ■■■

Identification of CCPs

- Recall that wage mixture weights essentially determine distribution of $(H_{n,1}, D_n^{t-1}, e_n, a_n^{t-1})$ in each period
- This, in turn, governs distribution of state variables $s_{n,t}$ and subsequently occupation choices
- Therefore, by appropriately combining weights across periods, we recover CCPs
- Unlike common approaches, here CCPs are identified from the continuous part (wage distribution)

Identification of CCPs

- Recall that wage mixture weights essentially determine distribution of $(H_{n,1}, D_n^{t-1}, e_n, a_n^{t-1})$ in each period
- This, in turn, governs distribution of state variables $s_{n,t}$ and subsequently occupation choices
- Therefore, by appropriately combining weights across periods, we recover CCPs
- Unlike common approaches, here CCPs are identified from the continuous part (wage distribution)

Identification of CCPs

- Recall that wage mixture weights essentially determine distribution of $(H_{n,1}, D_n^{t-1}, e_n, a_n^{t-1})$ in each period
- This, in turn, governs distribution of state variables $s_{n,t}$ and subsequently occupation choices
- Therefore, by appropriately combining weights across periods, we recover CCPs
- Unlike common approaches, here CCPs are identified from the continuous part (wage distribution)

- Refinement condition: non-employing firms indifferent between not employing and employing the worker
- Without refinement condition: multiplicity of qualitatively similar MPE (same on-path outcomes)
 - > Same ranking of firms in terms of the EPDV of offered wages
 - Differ in terms of the wages offered by the non-employing firms
 - Non-employing firms can offer any wage up to indifference
- Refinement solves this trivial multiplicity of equilibria and selects one equilibrium
- In a way that is standard in the literature on trembling-hand perfect equilibrium (Selten, 1975)

- Refinement condition: non-employing firms indifferent between not employing and employing the worker
- Without refinement condition: multiplicity of qualitatively similar MPE (same on-path outcomes)
 - Same ranking of firms in terms of the EPDV of offered wages
 - Differ in terms of the wages offered by the non-employing firms
 - Non-employing firms can offer any wage up to indifference
- Refinement solves this trivial multiplicity of equilibria and selects one equilibrium
- In a way that is standard in the literature on trembling-hand perfect equilibrium (Selten, 1975)

- Refinement condition: non-employing firms indifferent between not employing and employing the worker
- Without refinement condition: multiplicity of qualitatively similar MPE (same on-path outcomes)
 - Same ranking of firms in terms of the EPDV of offered wages
 - ▷ Differ in terms of the wages offered by the non-employing firms
 - Non-employing firms can offer any wage up to indifference
- Refinement solves this trivial multiplicity of equilibria and selects one equilibrium
- In a way that is standard in the literature on trembling-hand perfect equilibrium (Selten, 1975)

- Refinement condition: non-employing firms indifferent between not employing and employing the worker
- Without refinement condition: multiplicity of qualitatively similar MPE (same on-path outcomes)
 - Same ranking of firms in terms of the EPDV of offered wages
 - Differ in terms of the wages offered by the non-employing firms
 - Non-employing firms can offer any wage up to indifference
- Refinement solves this trivial multiplicity of equilibria and selects one equilibrium
- In a way that is standard in the literature on trembling-hand perfect equilibrium (Selten, 1975)

Equilibrium: Worker Bellman Equation

$$\begin{split} \tilde{W}(s_{n,t}(e), \epsilon_{n,t}(e), \{w_{d,n,t}(e)\}_{d \in \mathcal{D}}) &= \max_{\{l_{d,n,t}(e)\}_{d \in \mathcal{D}}} \sum_{d \in \mathcal{D}} l_{d,n,t}(e) \times \left[w_{d,n,t}(e) + \delta[1 - \eta(\kappa_{n,t}, d)] \int_{\epsilon_{n,t+1}(e)} \mathbb{E}\left(\tilde{W}(s_{n,t+1}(e), \epsilon_{n,t+1}(e), \{w_{d,n,t+1}(e)\}_{d \in \mathcal{D}}) \mid s_{n,t}(e), d\right) dG_e \right] \end{split}$$

Equilibrium: Firm Bellman Equation

$$\begin{split} &\Pi_{d}(s_{n,t}(e), \epsilon_{n,t}(e)) = \max_{w_{d,n,t}(e)} \left(I_{d,n,t}(e) \times \left[y(d, s_{n,t}(e)) + \epsilon_{n,t}(d, e) - w_{d,n,t}(e) \right. \right. \\ &+ \left. \delta [1 - \eta(\kappa_{n,t}, d)] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} \left(\Pi_{d}(s_{n,t+1}(e), \epsilon_{n,t+1}(e)) \mid s_{n,t}(e), d \right) dG_{e} \right] \\ &+ \sum_{d' \in \mathcal{D} \setminus \{d\}} I_{d',n,t}(e) \times \left\{ \delta [1 - \eta(\kappa_{n,t}, d')] \int_{\epsilon_{n,t+1}(e)} \mathbb{E} \left(\Pi_{d}(s_{n,t+1}(e), \epsilon_{n,t+1}(e)) \mid s_{n,t}(e), d' \right) dG_{e} \right\} \right) \end{split}$$

Equilibrium: Refinement

- ullet To ensure uniqueness, suppose firm d' employs worker n at state $(s_{n,t}(e), \epsilon_{n,t}(e))$
- Then the offer by each non-employing firm $d \neq d'$ must make d indifferent between
 - \triangleright Not employing n (LHS)
 - \triangleright Employing n (RHS)

$$\begin{split} &\delta[1-\eta(\kappa_{n,t},d')]\int_{\epsilon_{n,t+1}(e)}\mathbb{E}\Pi_d(\cdot|s_{n,t}(e),d')dG_e \\ &= \max_{w_{d,n,t}(e)} \Big\{y(d,s_{n,t}(e)) + \epsilon_{n,t}(d,e) - w_{d,n,t}(e) + \delta[1-\eta(\kappa_{n,t},d)]\int_{\epsilon_{n,t+1}(e)}\mathbb{E}\Pi_d(\cdot|s_{n,t}(e),d)dG_e \Big\} \end{split}$$

Mixture: Technical Condition for Identification

• The wage mixture f satisfies the clusterability condition if

$$\inf_{i\neq j}
ho(\gamma_i,\gamma_j) > (4+\xi_\Lambda)\eta(\Lambda) \quad ext{ for some } \xi_\Lambda > 0$$

- γ_i, γ_j : mixture components
- ρ : metric, e.g. Hellinger and total variation
- Γ : mixing measure of f, i.e., function mapping mixture components to weights
- $\eta(\Gamma)$: measure of asymptotic diameter of approximating mixture measures
- As $L \to \infty$, γ_k must be separated by gap proportional to diameter of approximating mixture measures Back)

Wage Mixture Identification: Gaussian Case

- Continuous r.v. W with PDF $f_W(\cdot)$; D is compact subset of $\mathbb{R} \times \mathbb{R}^+$; $g(\cdot; \mu, \sigma^2)$ is Normal pdf
- Claim: if D large enough, there exists probability measure $\pi(\cdot)$ on D such that

$$f_W(w) \approx \int_D g(w; \mu, \sigma^2) d\pi(\mu, \sigma^2)$$
 for each $w \in \mathbb{R}$

Proof.

Let $\mathbb{P}_W(\cdot)$ be probability measure associated with $f_W(\cdot)$. Any $f_W(\cdot)$ can be approximated by convolution of $f_W(\cdot)$ with centered Normal PDF $g(\cdot;0,s^2)$ for small s^2

$$f_W(w) \approx \int_{\mathbb{R}} g(w - \mu; 0, s^2) d\mathbb{P}_W(\mu) = \int_{\mathbb{R}} g(w; \mu, s^2) d\mathbb{P}_W(\mu)$$

Let D be large enough to contain $\mathcal{A}_{\tau} \times (0, \eta)$, where $\eta \in (0, \infty)$, τ is small strictly positive number, and $\mathbb{P}_{W}(\mathcal{A}_{\tau}) > 1 - \tau$. Then, for small $s^{2} \in (0, \eta)$

$$f_W(w) \approx \int_{\mathbb{R}} g(w; \mu, s^2) d\mathbb{P}_W(\mu) \approx \int_{\mathcal{A}_{\tau}} g(w; \mu, s^2) d\mathbb{P}_W(\mu) = \int_{D} g(w; \mu, \sigma^2) d\mathbb{P}_W(\mu) \times \mathbb{1}\{\mu \in \mathcal{A}_{\tau}, \sigma^2 = s^2\}$$

By setting $\pi(\mu, \sigma^2) \equiv \mathbb{P}_W(\mu) \times \mathbb{1}\{\mu \in \mathcal{A}_\tau, \sigma^2 = s^2\}$, we obtain result

$$\lim_{w\to +\infty} \Pr(D_n = 1 \mid X_n = x, w_n(1) = w) = \ell_1 > 0 \quad \forall x$$

- It implies $\Pr(D_n = 1, w_n(1) \ge w \, | \, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \, | \, X_n = x)$
- Using survival function $\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \ell_1 S(w v(1, x))$
- Moreover, if $y(1,\bar{x}) = 0$, $\Pr(D_n = 1, w_n(1) y(1,x) \ge w \mid X_n = \bar{x}) \sim \ell_1 S(w y(1,x))$
- Therefore, y(1,x) is identified if

$$\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \Pr(D_n = 1, w_n(1) + u \ge w \mid X_n = x) \Rightarrow u = -y(1, x)$$

- If wage tails are not excessively thick, $S(w) \sim S(w + u + y(1,x))$ is possible only if u + y(1,x) = 0

$$\lim_{w\to+\infty} \Pr(D_n=1\mid X_n=x, w_n(1)=w)=\ell_1>0 \quad \forall x$$

- It implies $\Pr(D_n = 1, w_n(1) \ge w \, | \, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \, | \, X_n = x)$
- Using survival function $\Pr(D_n = 1, w_n(1) \ge w \,|\, X_n = x) \sim \ell_1 S(w y(1, x))$
- Moreover, if $y(1,\bar{x}) = 0$, $\Pr(D_n = 1, w_n(1) y(1,x) \ge w \mid X_n = \bar{x}) \sim \ell_1 S(w y(1,x))$
- Therefore, y(1,x) is identified if

$$\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \Pr(D_n = 1, w_n(1) + u \ge w \mid X_n = x) \Rightarrow u = -y(1, x)$$

- If wage tails are not excessively thick, $S(w) \sim S(w + u + y(1,x))$ is possible only if u + y(1,x) = 0

$$\lim_{w\to+\infty} \Pr(D_n=1\mid X_n=x, w_n(1)=w)=\ell_1>0 \quad \forall x$$

- It implies $\Pr(D_n = 1, w_n(1) \ge w \, | \, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \, | \, X_n = x)$
- Using survival function $\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \ell_1 S(w y(1, x))$
- Moreover, if $y(1,\bar{x}) = 0$, $\Pr(D_n = 1, w_n(1) y(1,x) \ge w \mid X_n = \bar{x}) \sim \ell_1 S(w y(1,x))$
- Therefore, y(1,x) is identified if

$$\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \Pr(D_n = 1, w_n(1) + u \ge w \mid X_n = x) \Rightarrow u = -y(1, x)$$

- Through simple manipulations, the LHS implies $S(w) \sim S(w + u + y(1,x))$
- If wage tails are not excessively thick, $S(w) \sim S(w+u+y(1,x))$ is possible only if u+y(1,x)=0 $\triangleright \mathbb{E}(\exp(\beta \epsilon_n(1))) < +\infty$ for some $\beta > 0$: tails heavier than normal, e.g. Laplace and logistic

$$\lim_{w\to+\infty} \Pr(D_n=1\mid X_n=x, w_n(1)=w)=\ell_1>0 \quad \forall x$$

- It implies $\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \mid X_n = x)$
- Using survival function $\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \ell_1 S(w v(1, x))$
- Moreover, if $y(1,\bar{x}) = 0$, $\Pr(D_n = 1, w_n(1) y(1,x) \ge w \mid X_n = \bar{x}) \sim \ell_1 S(w y(1,x))$
- Therefore, y(1,x) is identified if

$$\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \Pr(D_n = 1, w_n(1) + u \ge w \mid X_n = x) \Rightarrow u = -y(1, x)$$

- Through simple manipulations, the LHS implies $S(w) \sim S(w + u + y(1,x))$
- If wage tails are not excessively thick, $S(w) \sim S(w + u + y(1,x))$ is possible only if u + y(1,x) = 0

$$\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x, w_n(1)=w)=\ell_1>0 \quad \forall x$$

- It implies $\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \mid X_n = x)$
- Using survival function $\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \ell_1 S(w v(1, x))$
- Moreover, if $y(1,\bar{x}) = 0$, $\Pr(D_n = 1, w_n(1) y(1,x) \ge w \mid X_n = \bar{x}) \sim \ell_1 S(w y(1,x))$
- Therefore, y(1,x) is identified if

$$\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \Pr(D_n = 1, w_n(1) + u \ge w \mid X_n = x) \Rightarrow u = -y(1, x)$$

- Through simple manipulations, the LHS implies $S(w) \sim S(w + u + y(1,x))$
- If wage tails are not excessively thick, $S(w) \sim S(w + u + y(1,x))$ is possible only if u + y(1,x) = 0

$$\lim_{w\to +\infty} \Pr(D_n=1\mid X_n=x, w_n(1)=w)=\ell_1>0 \quad \forall x$$

- It implies $\Pr(D_n = 1, w_n(1) \ge w \, | \, X_n = x) \sim \ell_1 \Pr(w_n(1) \ge w \, | \, X_n = x)$
- Using survival function $\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \ell_1 S(w y(1, x))$
- Moreover, if $y(1,\bar{x}) = 0$, $\Pr(D_n = 1, w_n(1) y(1,x) \ge w \mid X_n = \bar{x}) \sim \ell_1 S(w y(1,x))$
- Therefore, y(1,x) is identified if

$$\Pr(D_n = 1, w_n(1) \ge w \mid X_n = x) \sim \Pr(D_n = 1, w_n(1) + u \ge w \mid X_n = x) \Rightarrow u = -y(1, x)$$

- ullet Through simple manipulations, the LHS implies $S(w) \sim S(w+u+y(1,x))$
- If wage tails are not excessively thick, $S(w) \sim S(w+u+y(1,x))$ is possible only if u+y(1,x)=0 $\Rightarrow \mathbb{E}(\exp(\beta \epsilon_n(1))) < +\infty$ for some $\beta > 0$: tails heavier than normal, e.g. Laplace and logistic

- Let S be survival function of r.v. Y with full support
- Assume $\mathbb{E}(\max\{0,Y\}^p) < +\infty$ for some p > 0
- Let h be a function such that $h(y) \sim y$ and assume $S(y) \sim S(\kappa h(y))$ for some $\kappa > 0$
- Claim: $\kappa = 1$

Proof.

- By contradiction: suppose $\kappa \neq 1$
- If $\kappa \neq 1$, then S(y) cannot vanish exactly like y^{-p}
 - ▶ By contradiction: suppose $S(y) \sim y^{-p}$
 - ► Then, since $h(y) \sim y$, we also have $S(\kappa h(y)) \sim (\kappa h(y))^{-p} = \kappa^{-p} y^{-p}$
 - ▶ But, by assumption, $S(y) \sim S(\kappa h(y))$
 - ► Hence, $y^{-p} \sim S(y) \sim S(\kappa h(y)) \sim \kappa^{-p} y^{-p}$
 - Only way to avoid contradiction here is if $\kappa^{-p} = 1$, meaning $\kappa = 1$
- If S(y) decays either more slowly or more quickly than y^{-p} , then $\mathbb{E}(\max\{0,Y\}^p)$ must be infinite
 - ▶ If slower, the integral $\int_0^\infty p \, y^{p-1} S(y) \, dy$ diverges, which implies $\mathbb{E} \left(\max\{0,Y\}^p \right) = +\infty$ ▶ If faster, the integral $\int_0^\infty p \, y^{p-1} S(y) \, dy$ diverges as well because $S(y) \sim S(\kappa y)$ by assumption
- Therefore, $\kappa = 1$

