Date:*_*_ Page:
a) Both person meet at same place after n steps.
For both meeting at same places, they both should more left and right equal no. of times (but in arbitrary order)
Let i be the number of times they more left is moving left and right are equally postable
$P(x) = \frac{1}{2} x = -1$ $\frac{1}{2} x = -1$ 0other wise
Let Probability both meeting at same place be profer i left steps. P: 2 (nCi (1) (1) (1) (1) (2) (2) (2) first gerson second person
P_{i}^{z} $\begin{pmatrix} n \\ C_{i} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2n \end{pmatrix}$
Total probability = $\sum_{i=0}^{n} p_i z $ $\sum_{i=0}^{i=n} (n_i)^2$
Using Vandermondes Identity i.e. E. G. = 2n Ch

+ nENUgoz else zero b) For a person to reach at origin after steps, he she must cover equal no.
of steps in left and right direction. Case-1 n is odd. then person can never reach zero therefore p=0 Case-2 nis even. n left steps + n right steps 80 $P = {n \choose 2} {n \choose 2}^{n/2} \left(\frac{1}{2}\right)^{n/2}$ and niseven P(x=0|n)zO , otherwise

Page:____

c) Mean displacement of a person Let d; be random valiable denotedent the passelse ith step to be taken. dies $x_i = \begin{cases} +1, & \text{right} \\ -1, & \text{left} \end{cases}$ $x_i = 1$ & $x_i = -1$ are equally probable $E[Z_i]_z = \frac{1}{2}(1) + \frac{1}{2}(-1) = 0$ & E[x] = E[[xi] = E [xi] E[X] = 0 -> mean displacement equals zero.

independent of h d) Mean square displacement Now we need to calculate E[Y] where $Y = (\xi \chi_i)^2$ $E[z_i^2] = \frac{1}{2}(1)^2 + \frac{1}{2}(-1)^2 = 1$ and we know that

ith step and jth independent. Ethers
as long as itj

Page:
So $E[x;x;] = E[x;] E[x;]$
(Due to independence)
E[xixi] = 0 ;; E[xi] = 0 +i
Now
$Y = (\Sigma xi)^2 = \Sigma xi^2 + \Sigma xixi$
i ≠ j
Using above results.
$E[Y] = E[\Sigma x_i^2] + E[\Sigma x_i x_j]$
$E[Y] = \sum_{i=1}^{n} E[x_i^2] = n$
E[Y] = N me an navale displaceme
mean square displaceme

Plot of mean displacement

Plot of mean square displacement

Bell curve for mean displacement

Plot for probability of meeting

Plot for probability of meeting at origin

Plot for probability of meeting at origin at even points

