Examen d'Estadística Enginyeria Edificació. Juny 2010

Problema 1 La següent taula mostra les dades de consum de ciment (en tones) i de nombre d'aturats a les Illes Balears entre els mesos de gener i desembre de l'any 2008.

Ciment	88218	94935	77395	96706	76975	75862	62318	41726	50628	60192	50970	36850
Aturats	50518	48335	45184	41233	36439	36929	39927	43540	46807	56982	70144	73298

Es demana calcular, amb dues xifres decimals de precissió en els càlculs:

- a) Mediana, primer i tercer quartils i percentil 90 de la variable "nombre d'aturats".
- b) Mitjana i desviació típica de la variable "nombre d'aturats".
- c) Mitjana i desviació típica de la variable "consum de ciment".
- d) Covariància i coeficient de correlació entre les variables "nombre d'aturats" i "consum de ciment", donant una interpretació del valor trobat.

Variables aleatòries usuals

V.A. (X)	$f_X(x)$		E(X)	Var(X)	Altres propietats
Binomial $B(n, p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	$si \ x \in \Omega_X$	np	np(1-p)	
$\Omega_X = \{0, 1, \cdots, n\}$	0	si $x \notin \Omega_X$			
Poisson $Po(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	$si x \in \Omega_X$	λ	λ	
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			
Uniforme $\mathcal{U}(a,b)$	$\frac{1}{b-a}$	si $x \in [a, b]$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$F_X(x) = \begin{cases} \frac{x-a}{b-a} & x \in [a,b] \\ 0 & x < a \\ 1 & x > b \end{cases}$
$\Omega_X = [a, b]$	0	si $x \notin [a, b]$,
Gaussiana $X(\mu, \sigma^2)$			μ	σ^2	$Z \sim N(0,1)$ normal estándar
$\Omega_X = \mathbb{R}$					$F_Z(-z) = 1 - F_Z(z)$
					$F_X(x) = F_Z(\frac{x-\mu}{\sigma})$

Estadístics més usuals

Paràmetre mostral (estadístic)	Esperança	Variància	Distribució de probabilitat	
\bar{X}	$E(\bar{X}) = \mu$	$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$	$\begin{split} \bar{X} &\sim N(\mu, \frac{\sigma^2}{n}) \\ \frac{\bar{X} - \mu}{\hat{s}_X / \sqrt{n}} &\sim t_{n-1} \\ \bar{X} &\sim N(\mu, \frac{\hat{s}_X^2}{n}) \end{split}$	població normal, σ conegut població normal, σ desconegut, $n \leq 30$ σ desconegut, $n > 30$
\hat{s}_X^2	$E(\hat{s}_X^2) = \sigma^2$	$\operatorname{Var}(\hat{s}_X^2) = \frac{2\sigma^4}{n-1}$	$\frac{n-1}{\sigma^2}\hat{s}_X^2 \sim \chi_{n-1}^2$	població normal
\hat{p}_X	$E(\hat{p}_X) = p$	$\operatorname{Var}(\hat{p}_X) = \frac{p(1-p)}{n}$	$\begin{vmatrix} \hat{p}_X \sim N(p, \frac{p(1-p)}{n}) \\ \hat{p}_X \sim t_{n-1} \end{vmatrix}$	$n > 30$ població normal, $n \le 30$

Intervals de confiança més usuals

Paràmetre mostral	Interval de confiança					
Mitjana	$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$	població normal, σ conegut				
	$\bar{X} \pm t_{n-1,\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$	població normal, σ desconegut i $n \leq 30$				
	$\bar{X} \pm z_{\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$	si $n > 30$				
Variància	$\left[\frac{n-1}{\chi_{n-1,1-\alpha/2}^2} \hat{s}_X^2, \frac{n-1}{\chi_{n-1,\alpha/2}^2} \hat{s}_X^2 \right]$	si la població segueix una llei normal				
Proporció	$\hat{p}_X \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_X (1 - \hat{p}_X)}{n}}$	si $n > 30$				