Numbers

- Set: a collection of objects called elements.
- We write $x \in S$ to mean that element x is in set S.
- A set is **nonempty** if it has at least one element.
- The empty set is denoted by Ø
- **Subset:** A subset of S is a set T with the property $x \in T \Rightarrow x \in S$.
- Every element of T is an element of S.
- Trivially, $S \subseteq S$ and $\emptyset \subseteq S$
- The subset symbol is denoted by \subseteq .
- The set of Natural Numbers $\mathbb{N} = \{1, 2, 3, ...\}$ is useful for counting and for ordering.
- The order symbols are <, \leq , \geq , >

Set Algebra

- An **operation** on a set S is a rule for combining elements of S.
- **Binary operations:** combines pairs of elements to prove another.

A binary operation * is **closed** if:

Definition
$$x, y \in S => x * y \in S$$

• Four common operations on numbers are $+,-,\cdot,/$.

Exercise:

Are +, -, \cdot , / closed on \mathbb{N} ? Prove or disprove

+)
$$a_1b \in N \Rightarrow a+b \in N$$
 (Closed)
-) $1, 5 \in N \Rightarrow 1-5 = -4 \notin N$ (Not closed)
·) Closed on N
1) $5,3 \in N \Rightarrow \frac{5}{3} \notin N$ (Not closed)

An element $e \in S$ is called an **identity** if:

Definition
$$x * e = x \text{ AND } e * x = x \forall x \in S$$

Exercise:

Does N have an identity under +? Under ⋅?

t)
$$e+x=x$$
 ($\Lambda x+e=x$)

Let $x=1$, $e=2$
 $1+2\neq 1$ $\Lambda z+1\neq 1$

.: Under + binary aperdians on set of \mathbb{N} , there is $N6$ identity.

e. $x=x$ $\Lambda x\cdot e=x$

Let $e=1$, $x=2$,

 $1\cdot 2=2$ $\Lambda 2\cdot 1=2$.

.: Under • binary operations, $e=1$ is the identity.

If \exists *e* identity of *S*, an element $x \in S$ is called **invertible** when \exists $y \in S \ni$:

Definition
$$x * y = e \text{ AND } y * x = e$$

Then **y** is called the **inverse** of **x**.

Exercise:

What are the invertible elements of \mathbb{N} under +, \cdot ?

A binary operation * on S is **commutative** if:

Definition
$$x * y = y * x \forall x, y \in S$$

It is associative if:

Definition
$$(x * y) * z = x * (y * z) \forall x, y, z \in S$$

• The operations +, · are associative and commutative on \mathbb{N} .

Exercise:

Rock-Paper-Scissors.

Let $M = \{r, p, s\}$ and consider the binary operation that gives the winner of the game.

$$r * p = p * r = p$$

 $S * p = p * S = S$ Communative.
 $r * S = S * r = r$
 $p * p = S * S = r * r = TIE$

Is * associative?

A binary operation * is **distributive** over another \cdot if for all $a, b, c \in S$.

Definition
$$a*(b\cdot c)=(a*b)\cdot (a*c)$$
 AND $(a\cdot b)*c=(a*c)\cdot (b*c)$

For example, multiplication distributes over addition on \mathbb{N} .

Exercise:

Prove that addition does not distribute over multiplication on \mathbb{N} .

$$a+(b\cdot c)=(a+b)\cdot (a+c) \land (a\cdot b)+c=(a+b)\cdot (b+c) \forall a,b,c \in \mathbb{N}$$

Let $a=1,b=2$, $c=3 \in \mathbb{N}$
 $1+(2\cdot 3)=(1+2)\cdot (1+3)$
 $7\neq 6$ \square
:. + loes not distribute over • $\forall a,b,c \in \mathbb{N}$

Exercise:

Let a, b \in N. Simplify the following expression, giving reasons for each step. [8(a + b)] + 2a

=
$$[8a + 8b] + 2a$$
 (distribution)
= $[8a + 2a] + 2b$ (association)
= $[8 + 2]a + 2b$ (distribution)
= $[0a + 2b]$

A set S with order \leq is called **well-ordered** if every nonempty subset T of S has at least one smallest element.

Definition

That is, if $T \subseteq S$, $T \neq \emptyset$, then $\exists s_0 \leq s \forall s \in T$

The set \mathbb{N} with the usual order \leq is well-ordered.

The set of integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ can be constructed from \mathbb{N} :

- It is the set of differences $\{m-n\} \forall m, n \in \mathbb{N}$.
- The order \leq on \mathbb{N} extends to \mathbb{Z} .

Exercise:

- a) Are +, -, \cdot , / closed on \mathbb{Z} ?
- b) Does \mathbb{Z} has identities under +, \cdot ?
- c) What are the invertible elements of \mathbb{Z} under +, \cdot ?

- On \mathbb{Z} , + and · are commutative and associative.
- On \mathbb{Z} , and / are **not** commutative and associative.
- However, if we define a b = a + (-b) and $a/b = a \cdot 1/b$, then we have commutativity and associativity.

$$a - b \neq b - a$$
, $BUT a + (-b) = -b + a$ (associativity)
 $\frac{a}{b} \neq \frac{b}{a}$, $BUT a \cdot \frac{1}{b} = \frac{1}{b} \cdot a$ (distribution)

• Multiplication distributes over addition and subtraction on \mathbb{Z} :

$$a \cdot (b \pm c) = (a \cdot b) \pm (a \cdot c)$$

 $(a \pm b) \cdot c = (a \cdot c) \pm (b \cdot c)$

Exercise:

Is ℤ well-ordered?

Well Ordered: if
$$T \in S$$
, $T \neq \emptyset$, then $\exists S_0 \in S \forall S \in T$
Given $T = \{X \in T \ni I - X\}$
 $= \{Z^T\}$

Some Common Rules

An integer $m \in \mathbb{Z}$ is **even** if m = 2k for some $k \in \mathbb{Z}$.

An integer $m \in \mathbb{Z}$ is **odd** if m = 2k + 1 for some $k \in \mathbb{Z}$

An integer m > 1 is **prime** if whenever m = rs for $r, s \in \mathbb{N}$, either r = 1 or s = 1

An integer m > 1 is **composite** if it is not prime (i.e. m = ab with a, b > 1 *AND* $a, b < m, a, b \in \mathbb{N}$)

- The set of Rationals $\mathbb Q$ is the set of numbers q that can be written $q=\frac{a}{b}$, $a,b\in\mathbb Z$, $b\neq 0$
- \mathbb{Q} can be constructed from \mathbb{Z} .

Dedekind Cuts

- To construct the Real Numbers \mathbb{R} , we can use \mathbb{Q} and the Dedekind Cuts.
- A Dedekind Cut of \mathbb{Q} is a pair of subsets (A, B) of \mathbb{Q} that satisfy the following:
 - A and B are nonempty
 - $A \cup B = \mathbb{Q}$
 - A is closed downwards: If $q \in A$ and r < q, then $r \in A$
 - *B* is closed upwards: if $q \in B$ and r > q, then $r \in B$
 - A contains no greatest element: $\forall q \in A \exists r \in A \ni q < r$
- Given $q \in Q$, we can form a Dedekind Cut (A,B) where:

$$A = \{x \in Q : x < q\} \text{ AND } B = \{x \in Q : x \ge q\}$$

- That is the Dedekind-Cut identification of all rational numbers $q \in \mathbb{Q}$
- But we can make such cuts at non-rational numbers as well.
- An irrational number is one that cannot be written as $\frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$.
 - An example is $\sqrt{2}$

Exercise:

Prove that $\sqrt{2} \notin \mathbb{Q}$

• The following Dedekind Cut defines $\sqrt{2}$:

$$A = \{x: x < 0 \ OR \ x^2 < 2\}, B = \{x: x > 0 \ AND \ x^2 \ge 2\}$$

- The numbers defined by <u>ALL</u> Dedekind Cuts of \mathbb{Q} make up the set of Real Numbers \mathbb{R} .
- The usual order \leq on \mathbb{R} is inherited from \mathbb{N} .

Exercise:

- a) Which of +, -, \cdot , / are closed on \mathbb{R} ?
- b) Does \mathbb{R} have identities under +, \cdot ?
- c) What are the invertible elements of \mathbb{R} under +, \cdot ?
- a) * is closed on S if ta, b ∈ S, a * b ∈ S +,-, are closed on IR / is not closed on IR e.g. 1,0 ∈ IR, 7 ≠ IR b) Under +, IR has the identity e=0 Under •, IR has the identity e=1 c) Under +, all values are invertible in IR Under •, all values except 0 are invertible.
 - As in \mathbb{Q} , the operations +, \cdot are commutative and associative.
 - In \mathbb{R} , –, / are not commutative and associative, unless you define them as we did in \mathbb{Q} .