ثانوية أبي حياهُ التوحيــدي الاستاذ: محمــد حمـــدان

حساب التكامــل 0 سلسلة التماريسن

السنة الدراسية: 2012-2011 الثانية باك علوم رياضية

تمرين 1 . استعمال دالة أصلية لحساب تكامل.

$$\int_{1}^{2} (4x^3 - 5x) \, \mathrm{d}x$$
 أحسب التكاملات التالية:

$$\int_0^{\sqrt{2}} \frac{x^3}{x^4 + 2} \, \mathrm{d}x \quad \bullet \quad \int_{-1}^2 (2x - 1)^3 \, \mathrm{d}x \quad \bullet \quad \int_0^1 e^{-x} \, \mathrm{d}x$$

$$\int_{1}^{8} \frac{x^{4} + 1}{\sqrt[3]{x}} dx \quad \bullet \quad \int_{4}^{5} \frac{1}{x - 3} dx \quad \bullet \quad \int_{1}^{9} x \sqrt{x} dx \quad \bullet$$

$$\int_{1}^{4} \frac{1}{\sqrt{x}(1+x)} \, \mathrm{d}x \quad \bullet \quad \int_{0}^{1} \frac{x}{1+x^{4}} \, \mathrm{d}x \quad \bullet \quad \int_{7}^{0} \frac{\mathrm{d}x}{\sqrt[3]{1+x}}$$

$$\int_0^1 2^{5x} dx \quad \bullet \quad \int_0^{\frac{\pi}{4}} \cos^3(x) dx \quad \bullet \quad \int_0^{\pi} \cos(x) \cos(2x) dx$$

$$\int_0^{\pi} \sin\left(\frac{\pi}{2} - 3x\right) dx \quad \bullet \quad \int_0^1 \sqrt[3]{x} (x + 1) dx \quad \bullet$$

$$\int_{-\frac{\pi}{3}}^{4} \frac{x^2 + x - 2}{x^2 + x - 2} dx$$

$$\int_{\frac{\pi}{3}}^{\pi} \sin\left(\frac{\pi}{3} - 3x\right) dx \qquad \bullet \qquad \int_{0}^{1} \sqrt[3]{x}(x + 1) dx \qquad \bullet$$

$$\int_{3}^{4} \frac{x^{2} + x - 2}{x^{3} - 2x^{2}} dx \qquad \bullet \qquad \int_{1}^{2} \frac{x^{2} - 2x}{\sqrt{3x^{2} - x^{3}}} dx \qquad \bullet$$

$$\int_{-1}^{3} \left|x^{2} - 2x\right| dx \qquad \bullet \qquad \int_{-3}^{-2} \frac{x^{3} + x^{2} - 2}{x + 1} dx$$

$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{2}} |\sin(2x)| \, \mathrm{d}x \bullet \int_{1}^{3} \frac{|x-2|}{(x^2-4x)^2} \, \mathrm{d}x \bullet \int_{-1}^{1} |e^x-1| \, \, \mathrm{d}x$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{|\ln(x)|}{x} dx - \int_{0}^{4} \frac{dx}{\sqrt[3]{x+7}} - \int_{1}^{3} \frac{dx}{x^{2}-x-2}$$

$$\int_{\frac{\pi}{4}}^{e} \frac{dx}{x(1+\ln(x))^{2}} dx - \int_{0}^{\pi} \frac{\sin(x)}{1+\cos^{2}(x)} dx - \int_{1}^{e} \frac{1+\ln(x)}{x} dx - \int_{0}^{1} \frac{e^{x}}{\sqrt{1+e^{x}}} dx - \int_{-1}^{1} \frac{1-e^{-x}}{1+e^{-x}} dx$$

$$\int_{1}^{1} \frac{x(1+\ln(x))^{2}}{x(1+\ln(x))^{2}} dx \qquad \int_{0}^{1} \frac{1+\cos^{2}(x)}{1+\cos^{2}(x)} dx$$

$$= 1 + \ln(x) dx \qquad \int_{0}^{1} \frac{1-e^{-x}}{1+\cos^{2}(x)} dx$$

$$\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} \, \mathrm{d}x$$
 • $\int_{-1}^{0} x e^{x^2+1} \, \mathrm{d}x$ • $\int_{\ln 2}^{1} e^{3x+1} \, \mathrm{d}x$ •

$$\int_{2}^{3} \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x - 1}} \bullet \int_{0}^{1} \frac{\mathrm{d}x}{x^{2} - 2x + 2} \bullet \int_{0}^{1} \frac{x^{4}}{1 + x^{2}} \, \mathrm{d}x$$

تمرين 2 . استعمال تقنية المكاملة بالأجـزاء.

 $\int_{1}^{e} x \ln(x) \, \mathrm{d}x \bullet \int_{1}^{\sqrt{3}} \mathrm{Arctg}(x) \, \mathrm{d}x$ أحسب التكاملات التالية: $\int_0^1 \frac{x+3}{\sqrt{x+1}} \, \mathrm{d}x \quad \bullet \int_0^{\frac{\pi}{2}} x \sin(x) \, \mathrm{d}x \quad \bullet \int_0^1 (x+2) e^x \, \mathrm{d}x$ $\int_{2}^{1} \frac{e^{\frac{1}{x}}}{x^{3}} dx \quad \bullet \int_{0}^{2\pi} \frac{\ln(1+x)}{\sqrt{1+x}} dx \quad \bullet \int_{0}^{\sqrt{3}} \frac{x^{3}}{\sqrt{1+x^{2}}} dx$ $\int_0^1 \ln\left(x + \sqrt{1 + x^2}\right) \, \mathrm{d}x \bullet \int_0^{\frac{\pi}{2}} \cos(x) \ln(1 + \cos(x)) \, \mathrm{d}x$

 $\int_0^1 (x^2 - 2x)e^x \, \mathrm{d}x \bullet \int_0^1 \frac{xe^x}{(x+1)^2} \, \mathrm{d}x \bullet \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x}{\sin^2(x)} \, \mathrm{d}x$

تمرين 3 استعمال تقنية المكاملة بتغيير المتغير. __

ullet $= \sqrt{1+x} \int_{1}^{\sqrt{3}} rac{\mathrm{d}x}{x\sqrt{x+1}}$ أحسب التكاملات التالية:

$$\left(x = \frac{e^t + e^{-t}}{2}\right) \int_1^2 \sqrt{x^2 - 1} \, dt \, \bullet \, \left(t = x^2\right) \int_0^1 \frac{x \, dx}{x^4 + 1}$$

$$\left| \begin{array}{l} \bullet & \left(-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}; x = \sin(t) \right) \int_0^1 x^2 \sqrt{1 - x^2} \, \mathrm{d}t \\ \left(t = e^{-x} \right) \int_0^1 \frac{\mathrm{d}x}{1 + e^x} \bullet \left(x = \tan\left(\frac{t}{2}\right) \right) \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1 + \cos(t)}{1 - \cos(t)} \, \mathrm{d}t \end{array} \right|$$

$\left(t = \sin(x)\right) \int_0^{\frac{\pi}{2}} \frac{\cos(x) \, \mathrm{d}x}{1 + \sin^2(x)} \bullet \left(t = \sqrt{x}\right) \int_1^4 \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x^3}} \bullet$ $.\left(t = \frac{1}{x}\right) \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^{2}}\right) \operatorname{Arctg}(x) \, \mathrm{d}x \bullet$

I-J و I-J ثم استنتج قيمتي I و I+J ثم استنتج π

$$J = \int_0^{\frac{\pi}{3}} \sin(2t) \sin(4t) dt \quad \text{g} \quad I = \int_0^{\frac{\pi}{3}} \cos(2t) \cos(4t) dt \quad \text{d}$$

$$J = \int_0^{\frac{\pi}{4}} \frac{\sin(t)}{\cos(t) + \sin(t)} dt \quad \text{g} \quad I = \int_0^{\frac{\pi}{4}} \frac{\cos(t)}{\cos(t) + \sin(t)} dt \quad \text{d}$$

$$J = \int_0^{\frac{\pi}{4}} \frac{1}{1 - \sin(\theta)} d\theta \quad \text{g} \quad I = \int_0^{\frac{\pi}{4}} \frac{1}{1 + \sin(\theta)} d\theta \quad \text{d}$$

$$J = \int_0^{\pi} e^x \sin^2(x) dx \quad \text{g} \quad I = \int_0^{\pi} e^x \cos^2(x) dx \quad \text{d}$$

$$J = \int_0^{\frac{\pi}{2}} e^{1 - t} \sin(t) dt \quad \text{g} \quad I = \int_0^{\frac{\pi}{2}} e^{1 - t} \cos(t) dt \quad \text{d}$$

 $I=\int_0^1 rac{\mathrm{d}x}{\sqrt{2+x^2}}$ نعتبر التكاملات التائية:

$$J = \int_0^1 \sqrt{2 + x^2} \, dx$$
 $J = \int_0^1 \frac{x^2}{\sqrt{2 + x^2}} \, dx$

.
$$I$$
 نضع $f'(x)$ أحسب $f(x) = \ln\left(x + \sqrt{2 + x^2}\right)$ ثم استنتج $\mathbf{0}$

M. J و $K=\sqrt{3}-I$ بين أن J+2I=K ، استنتج M

$$f(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$$

 $I=\int_{\sqrt{2}}^2rac{\mathrm{d}x}{\sqrt{x^2-1}}$ أحسب f'(x) ثم استنتج قيمة أحسب $oldsymbol{0}$

نعتبر
$$J+I$$
 بدلالة $J=\int_{\sqrt{2}}^2 \sqrt{x^2-1}\,\mathrm{d}x$ بدلالة J و نعتبر J استنتج قيمة J

تمرین 7 . أسئلة هذا التمرین مستقلة فیما بینها. $\mathbf{0}$ حدد العددین الحقیقییی $\mathbf{0}$ و $\mathbf{0}$ بحیث:

 $(\forall x \in \mathbb{R}^*): \frac{1}{e^x - 1} = a + \frac{be^x}{e^x - 1}$

$$e^x-1$$
 e^x-1 e^x-1 استنتج حساب التكامل $\frac{\mathrm{d}x}{e^x-1}$ التكامل $\frac{\mathrm{d}x}{e^x-1}$ عدد العددين الحقيقيين a و a بحيث: $\frac{1}{x^2-3x+2}=\frac{a}{x-2}+\frac{b}{x-1}$

حدد العددين الحقيقيين
$$a$$
 و b بحيث: $\dfrac{1}{a} + \dfrac{b}{a} + \dfrac{b}{a}$

$$I(1;2f): rac{1}{x^2-3x+2} \equiv rac{1}{x-2} + rac{1}{x-1}$$
 . $I=\int_0^0 rac{\mathrm{d}x}{x^2-3x+2}$. $I=\int_0^0 rac{\mathrm{d}x}{x^2-3x+2}$. تنتج حساب التكامل

حدد الأعداد الحقيقيية
$$\stackrel{\cdot}{a}$$
 و $\stackrel{\cdot}{a}$ و كر بحيث:

$$I=\int_{-1}^{0} rac{\mathrm{d}x}{\mathrm{d}x}$$
 استنتج حساب التكامل $\frac{\mathrm{d}x}{x^2-3x+2}$ استنتج حساب التكامل $\frac{\mathrm{d}x}{x^2-3x+2}$ ڪدد الأعداد الحقيقيية a و a و a بحيث a حدد الأعداد الحقيقيية a a حدد الأعداد الحقيقيية a حدد الأعداد الحقيقيية a حدد الأعداد الحقيقيية a حدد الأعداد الحقيقية a حدد الأعداد الحقيقية a a التكامل a استنتج قيمة التكامل a

الصفحة 1 من 11

 $J_n = \int_0^{rac{\pi}{2}} e^{-nx} \cos(x) \, \mathrm{d}x$ نضع $I_n = \int_0^{rac{\pi}{2}} e^{-nx} \sin(x) \, \mathrm{d}x$ نضع

$$J_0$$
 أحسب I_0 و J_0 و J_0 أحسب I_0 أحسب I_0 . J_0 احسب I_0 أحسب I_0 أحسب I_0 المثانة I_n المثانة I_n المثانة I_n المثانة I_n أن ال

 $I_n = \int_1^e x \left(\ln(x)
ight)^n \, \mathrm{d}x$: نکل n من $\mathbb N$ نضع

$$I_0$$
 أحسب أ $oldsymbol{0}$. I_0 أحسب أ $oldsymbol{0}$. $(orall n\in\mathbb{N}):2I_{n+1}+(n+1)I_n=e^2$ بين أن المتتالية (I_n) تناقصية. $oldsymbol{0}$

$$0$$
بين أن المتتالية I_n تناقصية. 0 بين أن $I_n \geqslant 0$ بين أن: $0 \geqslant 0$

 $\displaystyle \lim_{n o +\infty} I_n$ استنتج آن: $I_n \leqslant rac{e^2}{n+1}$. ثم حدد $oldsymbol{6}$

 $I_n=\int_0^1 x^n e^x\,\mathrm{d}x$: $n\in\mathbb{N}$: نعتبر التكامل $(orall n\in\mathbb{N}):I_{n+1}=e-(n+1)I_n$... بين أن I_1 ... و I_2 و I_1 أحسب I_1 و I_2 و ...

.
$$\int_0^1 (x^3+2x^2-2x)e^x\,\mathrm{d}x$$
 استنتج قيمة التكامل $oldsymbol{3}$

تمرین 12 . u_n نعتبر المتتالیة العددیة (u_n) المعرفة بـمایلي: $u_n=\int_0^1 t^n\sqrt{1+t}\,\mathrm{d}t$ و $u_o=\int_0^1\sqrt{1+t}\,\mathrm{d}t$

$$u_1=rac{4}{15}(\sqrt{2}+1)$$
 . ثم بین أن u_o ، ثم بین $oldsymbol{0}$

 $(orall t \in [0;1]) \, (orall n \in \mathbb{N}^*): \, t^{n+1}
otin t^n$ بين أن t^n

. (u_n) أدرس رتابة المتتالية $oldsymbol{\Im}$. $(orall t\in[0;1])$ $1\leqslant\sqrt{1+t}\leqslant\sqrt{2}$. $oldsymbol{\Im}$

بین أن: $\sqrt{2} u_n \leqslant \sqrt{2}$ استنتاج ؟ $u_n \leqslant \sqrt{2}$ استنتاج ${\mathfrak G}$

 $I_n = rac{1}{n! 2^{n+1}} \int_0^1 \left(1-x
ight)^n e^{rac{x}{2}} \, \mathrm{d}x$ نظع: \mathbb{N}^* نظع: $\mathbf{0}$

$$n!2^{n+1}$$
 . I_1 أحسب I_1 . I_1 أحسب I_n . I_n

 $I_n = \sqrt{e} - \sum_{k=0}^n rac{1}{k! 2^k}$: استنتج أن $oldsymbol{0}$ استنتج

 $A(\exists M\in\mathbb{R}^+ig) \ (orall n\in\mathbb{N}^*): 0\leqslant I_n\leqslant rac{M}{n!2^n}$ بين أن: $oldsymbol{\Phi}$

 $\lim_{n o +\infty}\sum_{k=0}^nrac{1}{k!2^k}$:استنتج النهاية $oldsymbol{6}$

$$(orall x\in \mathbb{R}ackslash\{-1\}):rac{x}{(x+1)^2}=rac{a}{x+1}+rac{b}{(x+1)^2}$$
ياستعمال المتغير $x=t^4$ أحسب $x=t^4$

تمرين 8 . أسئلة هذا التمرين مستقلة فيما بينها.

t=-x نضع dx نضع dx نضع dx نضع dx نضع المتغیر dx

$$I=rac{\sqrt{2}}{2}$$
 :بین أن: $I=\int_{-rac{\pi}{4}}^{rac{\pi}{4}}rac{e^{2t}\cos(t)}{1+e^{2t}}\,\mathrm{d}t$ بین أن:

$$lpha \in \mathbb{R}^*$$
 يضع: $lpha \in \mathbb{R}^*$ يضع: $lpha \in \mathbb{R}^*$ يضع: $lpha \in \mathbb{R}^*$ يضع: a يكن a يكن a a يكن a a يكن a

a < b لتكن a < b متصلة على a;b جيث $oldsymbol{\mathfrak{G}}$

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^b f(a+b-x) \, \mathrm{d}x$$
 بین آن

 $\int_{rac{\pi}{2}}^{rac{\pi}{2}} \left(\sqrt{\cos(x)} - \sqrt{\sin(x)}
ight) \, \mathrm{d}x$ استنتج قیمة التكامل

ليكن a من $\mathbb{R}^*_+ackslash\{1\}$ بين أنه إذا كانت a داله وجية a

$$\int_{-a}^a rac{f(x)}{1+e^x}\,\mathrm{d}x = \int_0^a f(x)\,\mathrm{d}x$$
 فإن: $[-a;a]$ فإن: $-a;a$ فإن: $-a;a$ فإن: $-a;a$ استنتج قيمة التكامل $-a;a$

بحیث:
$$\mathbb{R}$$
 لتکن f دالة متصلة علی f بحیث: \mathfrak{G} $\exists \lambda \in \mathbb{R} \ (orall x \in \mathbb{R}) : \int_{-x}^{x} f(t) \, \mathrm{d}t = \lambda$

f ليكن f تقابل من \mathbb{R}^+ نحو \mathbb{R}^+ و g تقابله العكسي حيث $oldsymbol{\mathfrak{g}}$

و g متصلتان علی \mathbb{R}^+ . $ig(orall x \in \mathbb{R}^+ig):\int_0^x f(t)\,\mathrm{d}t + \int_0^{f(x)}g(t)\,\mathrm{d}t = xf(x)$ بین آن: $\int_0^{\infty} \operatorname{Arctg}(t) \, \mathrm{d}t$ استنتج قیمة التكامل

a>0 و a>0 و a>0 اعداد حقیقیة بحیث a>0 و a>0 بحیث: a>0 و a>0 التین متصلتین علی a>0 بحیث: $\int_{-a}^a \frac{f(x)}{1+e^{\alpha x}}\,\mathrm{d}x=\int_{-a}^a \frac{g(x)}{1+e^{\beta x}}\,\mathrm{d}x$

 $f(\lambda)=g(\lambda)$:بين أنه يوجد λ من [-a;a] بين أنه

و g دالتان متصلتان على [a;b] بحيث: g غير منعدمة و f $\int_{a}^{b}g(x)\,\mathrm{d}x\geqslant 0$. بین أنa< b و a< b موجبة على

$$\exists a : (\exists c \in [a;b]): \int_a^b f(x)g(x) \, \mathrm{d}x = f(c) \int_a^b g(x) \, \mathrm{d}x$$
 و انن

 $I_{n,m}=\int_0^{rac{\pi}{2}}\sin^n(t)\cos^m(t)\,\mathrm{d}t$ ککل n و m من m نضع: 0

 $I_{n,m}$ و $I_{n,m-2}$ ، ثم بين $I_{n,m}$ و محدد علاقة ترجعية تربط بين $I_{n,m}$ بدلالة $I_{n-2,m}$. استنتج قيمة $I_{n,m}$ بدلالة $I_{n-2,m}$

$$u_n = \sum\limits_{k=1}^n rac{k}{n^2 + k^2}$$
 :أحسب نهاية كل من المتتاليات التالية Φ

•
$$w_n = \sum_{k=1}^n \frac{k^2}{n^3 + nk^2}$$
 • $v_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + 2kn}}$ •

$$b_n = \frac{1}{n} \sum_{k=1}^{n-1} \sin\left(\frac{kx}{n}\right) \ (x > 0)$$
 • $a_n = \frac{1}{n} \sum_{k=0}^{n} e^{\frac{k}{n}\sqrt{2}}$

$$d_n = \sum_{k=1}^n rac{n+k}{n^2+k} ullet c_n = \left(rac{1}{n!}\prod_{k=1}^n (a+k)
ight)^{\overline{n}}; (a>0) ullet$$

حساب التكامــل FTEX

 $F(x) = \int_1^x rac{e^t}{t} \, \mathrm{d}t$ نعتبر F المعرفة على \mathbb{R}_+^* بما يلي: . F أدرس منحى تغيرات الدالة $oldsymbol{0}$

 $.ig(orall x\in\mathbb{R}_+^*ig):\ e\ln(x)\leqslant F(x)\leqslant e^x\ln(x)$:بين أنig

 $\displaystyle\lim_{x o 0^+} F(x)$ استنتج النهايتين $\displaystyle\lim_{x o 0^+} F(x)$ و $\displaystyle\lim_{x o 0^+} F(x)$

$$f(x)=rac{1}{x}\int_0^xrac{\mathrm{d}t}{\sqrt{1+t^2}}\,;\;x
eq0$$
 المعرفة بما يكي: $f(0)=1$

عدد \mathscr{D}_f و بین أن f دالة زوجية.

$$\left(orall x \in \mathbb{R}_+^*
ight) : \; rac{x}{\sqrt{1+x^2}} \leqslant \int_0^x rac{\mathrm{d}t}{\sqrt{1+t^2}} \leqslant x$$
 بین آن: 9

0 بين أن f متصلة و قابلة للأشتقاق على اليمين في $oldsymbol{0}$

$$\lim_{x o \infty} f(x)$$
 استنتج ($orall t \geqslant 1$): $rac{1}{\sqrt{1+t^2}} \leqslant rac{1}{\sqrt{t}}$ تحقق أن: $oldsymbol{\Phi}$

.(\mathscr{C}_f) أدرس تغيرات الدالة f ثم أنشى المنحنى \mathfrak{G}

تمرین 16

$$F(x) = \int_0^x \ln\left(1+e^{-2t}
ight) \,\mathrm{d}t$$
: لكل x من $0;+\infty$ نضع

 \mathbb{R}_+^* أدرس تغيرات الدالة F على أ

 \mathbb{R}_+^* ليكن a عنصرا من $oldsymbol{2}$

.
$$(orall t\in [1;1+a]): rac{1}{1+a}\leqslant rac{1}{t}\leqslant 1$$
 ابین أن: $rac{a}{1+a}\leqslant \ln(1+a)\leqslant a$ بن استنتج أن: $rac{a}{1+a}$

: ليكن x عنصرا من \mathbb{R}^*_+ باستعمال السؤال x بين أن \mathbb{R}^*_+ باستعمال السؤال \mathbb{R}^*_+ باستعمال السؤال $\int_0^x \frac{e^{-2t}}{1+e^{-2t}}\,\mathrm{d}t\leqslant F(x)\leqslant \int_0^x e^{-2t}\,\mathrm{d}t$ و أن: $\frac{\ln(2)-\ln{(1+e^{-2t})}}{2}\leqslant F(x)\leqslant \frac{1}{2}\left(1-e^{-2t}\right)$

$$\ell\in\mathbb{R}$$
 نقبل أن: $F(x)=\ell$ حيث $rac{1}{2}\ln2\leqslant\ell\leqslantrac{1}{2}$ بين أن: $f(x)=\ell$

$$u_n = \int_n^{n+1} \ln \left(1 + e^{-2t}
ight) \, \mathrm{d}t$$
: لكل n من $\mathbb N$ نكل $\mathfrak S$

$$(orall n\in \mathbb{N}):\ 0\leqslant u_n\leqslant \ln\left(1+e^{-2n}
ight)$$
 بین آن: (آ

ب) استنتج أن (u_n) متقاربة محددا نهايتها.

$$.S_n = \sum_{k=0}^n u_k$$
 : نكل n من $\mathbb N$ نضع \circ

n عبر عن S_n بدلالة F و f

ب) بين أن المتتالية (S_n) متقاربة و حدد نهايتها.

نعتبر الدالة f المعرفة على \mathbb{R}^+ بما يلي:

$$\begin{cases} f(x) = \frac{1}{x - \ln(x)}; \ x > 0 \\ f(0) = 0 \end{cases}$$

 $\displaystyle \lim_{x o +\infty} f(x)$ بین أن f متصلة علی یمین 0. ثم أحسب 0

.0 أدرس قابلية اشتقاق f على اليمين في $oldsymbol{arphi}$

 $[0;+\infty[$ أدرس تغيرات f على المجال $oldsymbol{\$}$

 $(O; \overrightarrow{i}; \overrightarrow{j})$ أنشئ منحنى الدالة f في م م م $oldsymbol{0}$

 \mathbb{R}^+ بين أن الدالة f تقبل دالة أصلية على $oldsymbol{\mathfrak{G}}$

 $F(x) = \int_x^{2x} f(t) \, \mathrm{d}t$:دالة معرفة على \mathbb{R}_+^* بما يلي F (II

 $\lim_{x \to 0^+} F(x)$ أحسب النهاية $\mathbf{0}$

 $I(orall x\geqslant 1):\; I(x)=\int_{0}^{2x}rac{f(t)}{t}\,\mathrm{d}t:$ نضع $oldsymbol{arphi}$

 $(orall x \geqslant 1): rac{\ln(2)}{2x-\ln(2x)} \leqslant I(x) \leqslant rac{\ln(2)}{x-\ln(x)}$ ا بين أن: $\lim_{x o +\infty}I(x)$ النهاية I(x)

 $(orall x \geqslant 1): F(x) - I(x) = \ln\left(1 + rac{x - \ln(2)}{x - \ln(x)}
ight)$ بين أن: $\left(rac{1}{x} + \frac{x - \ln(2)}{x - \ln(x)}
ight)$ $\lim_{x o +\infty} F(x)$ ثم استنتج النهاية

لتكن $\mathcal{A}(lpha)$ مساحة الحيز الهندسي المحصور بين $oldsymbol{\mathfrak{g}}$ منحنى الدالة f و المستقيمات المعرفة على التوالى x=0 و x=2lpha و x=lphaحدد قيمة العدد lpha بحيث تكون المساحة $\mathcal{A}(lpha)$ قصوية.

$$\lim_{x o 0} rac{e^x - 1 - x}{\ln(x+1)}$$
 و استنتج $\lim_{x o 0} rac{e^x - 1 - x}{x}$ (I

 $I(x) = \int_0^x rac{(x-t)^2}{2} e^t \, \mathrm{d}t$: لكل عبد حقيقي x نكل عبد حقيقي x نكل عبد حقيقي x

 $I(x): 0 \leqslant I(x) \leqslant rac{x^3}{6}e^x$ (۱) بدون حساب (۱x

 $|I(x)| < \frac{|x|^3}{6}$ و أن:

 $I(x)=e^x-1$ بين أن: $\left(-rac{x^2}{2}
ight)$

 $\lim_{x \to 0} rac{e^x - 1 - x}{x^2} = rac{1}{2}$ باستعمال ما سبق بین أن: $\frac{e^x - 1 - x}{1 - x} = rac{1}{2}$ ثم استنتج أن $\frac{e^x - 1 - x}{x \ln(x + 1)} = rac{1}{2}$ ثم استنتج أن

 $m{\mathfrak{g}}$ نعتبر الدالة f المعرفة على $m{\mathfrak{g}}$ بما يلي: $f(x)=e^x\ln(1+x)-x$ $ig(orall x\in\mathbb{R}^+ig):\ f(x)\geqslant 0$ و استنتج أن

نعتبر الدالة F المعرفة على \mathbb{R}^+ بما يلي:

$$\left\{egin{array}{l} F(x) = \int_{1+x}^{e^x} \left(rac{\mathrm{d}t}{\ln(t)}
ight) \; ; \; x>0 \ F(0) = 0 \end{array}
ight.$$

- $(orall x>0): rac{e^x-1-x}{x} \leqslant F(x) \leqslant rac{e^x-1-x}{\ln(1+x)}$ بين أن: $oldsymbol{0}$
 - $oldsymbol{0}$ بين أن F قابلة للاشتقاق على اليمين في $oldsymbol{0}$
- $0;+\infty[$ بين أن F قابلة للاشتقاق على $0;+\infty[$ و أن: $(orall x>0):\ F'(x)=rac{f(x)}{x\ln(1+x)}$
 - F أحسب ا $\sum_{x o +\infty} \lim_{x o +\infty} F(x)$ و أعط جدو ل تغيرات Φ
 - (\mathscr{C}_F) أدرس المفرع اللانهائي لـ (\mathscr{C}_F) . ثم أنشئ \mathfrak{G}

 $[-1;+\infty[$ لكل n من \mathbb{N}^* نعتبر الدالة f_n المعرفة على n لكل الكل من n منحناها في م م م $f_x(x)$ بما يلي $(\mathscr{C}_n) = f_n(x) = f_n(x)$ بما يلي (\mathscr{C}_n) منحناها في م م $||ec{i}|| = 2cm$ حيث $\left(O; \, \overrightarrow{i}; \overrightarrow{j}
ight)$

- f_2 أعط جدول تغير أن كل من الدالتين أ f_1 و $oldsymbol{0}$ (I
- ادرس الوضع النسبي للمنحنيين (\mathscr{C}_1) و حدد الفروع اللانهائية لكل من (\mathscr{C}_1) و (\mathscr{C}_2) . ثم أنشئهما .
- أحسب مساحة حيز المستوى المحصور بين $\mathscr{C}_1)$ وx=0 و المستقيمين اللذين معادلتاهما x=0 و x=0
 - n-1 عبد $lpha_n$ عبد $lpha_n$ أثبت أن الدالة أمير تقبل قيمة دنوية $lpha_n$
- بين أن: $(\forall x\geqslant 0):\ f_{n+1}(x)\leqslant f_n(x)$. و استنتج أن $\lim_{n o +\infty}lpha_n$ المتتالية $(lpha_n)$ تناقصية ، ثم أحسب النهاية
 - igwedgeنعتبر الدالة F المعرفة على $\left[rac{1}{e};+\infty
 ight[$ بما يلي: $\left[ext{II}
 ight]$

$$F(x) = \int_0^{\ln x} f_2(t) \, \mathrm{d}t$$

 $\frac{1}{e};1$ ليكن x من المجال $\frac{1}{e};1$ ليكن المجال مكاملة بالاجزاء ، بين أن (أ)

$$F(x) = \left(1 - \frac{x}{1 + \ln(x)}\right) + \int_0^{\ln x} \frac{e^t}{1 + t} dt$$

و استنتج أن $\int_0^{\ln x} rac{e^t}{1+t}\,\mathrm{d}t\leqslant x-1$ و استنتج أن . $\lim_{x o(rac{1}{e})^+}F(x)$ ثم أحسب النهاية $F(x)\leqslantrac{x\ln(x)}{1+\ln(x)}$

:ا بین أنه لکل x من $\left[rac{1}{e};+\infty
ight[$ لدینا $\left[rac{1}{e};+\infty
ight]$ لدینا

$$F(x) = rac{x}{\left(1 + \ln(x)
ight)^2} - 1 + 2 \int_0^{\ln x} f_3(t) \, \mathrm{d}t$$

 $(orall x \geqslant 1): F(x) \geqslant rac{x}{\left(1+\ln(x)
ight)^2} - 1:$ رب) استنتج أن $\lim_{x o +\infty} F(x)$ أحسب

 \mathbb{R} بين أن F تقابل من $\left[rac{1}{e};+\infty
ight[$ نحو $oldsymbol{\$}$

 $I_n = \int_0^1 f_n(t) \, \mathrm{d}t$ نضع: \mathbb{N}^* نصن (III) لكل n من

- أثبت أن المتتالية (I_n) تناقصية و استنتج أنها متقاربة. الدينا: $\mathbb{N}\setminus\{0;1\}$ بين لكل n لدينا: $oldsymbol{arphi}$
 - $rac{1}{n-1}\left(1-rac{1}{2^{n-1}}
 ight)\leqslant I_n\leqslant rac{e}{n-1}\left(1-rac{1}{2^{n-1}}
 ight)$
- $(orall t>-1):f_n'(t)=f_n(t)-nf_{n+1}(t)$ تحقق أن: I_n و I_{n+1} ثم بين أن: $\lim_{n o +\infty}nI_{n+1}=1$

 $\lim_{n o +\infty}I_n$ ثم حدد

المعرفة على \mathbb{R}^+ بما يلي: \mathbb{N}^* بما يلي: \mathbb{N}^* بما يلي: و ليكن (\mathscr{C}_n) منحناها في م $\left\{egin{array}{l} f_n(x)=x\left(\ln x
ight)^n \; ; \; x>0 \ f_n(0)=0 \end{array}
ight.$ $||\vec{i}||=2cm$ م م $\left(0;\vec{i};\vec{j}
ight)$ حيث

- .0 أدر س اتصال و قابلية اشتقاق f_n على يمين $oldsymbol{0}$
- $f_n'(x)$ بين أن f_n قابلة للاشتقاق على \mathbb{R}_{+^*} ثم أحسب $oldsymbol{arTheta}$
 - n أعط جدول تغيرات الدالة f_n حسب زوجية n
- بين أن جميع المنحنيات (\mathscr{C}_n) تمر من ثلاث نقط ثابتة $\mathbf{0}$ و A و A و O
- أدرس الوضع النسبي للمنحنيين (\mathscr{C}_1) و (\mathscr{C}_2) . ثم أنشئهما في نفس المعلم.
- و (\mathscr{C}_1) أحسب مساحة حيز المستوى المحصور بين x=e و x=1 المنافع اللذين معادلتاهما (\mathscr{C}_2)
- $.F_n(a) = \int_a^1 f_n(x) \, \mathrm{d}x$ نضع $a \in]0;1[$ و $n \in \mathbb{N}^*$ لکل (II
- بدون حساب $F_n(a)$ ؛ بین أن $F_n(a)$ تقبل نهایة 0^+ منتهیة u_n عندما یؤول a إلی u_n
 - $u_1=-rac{1}{4}$ (ب) (حسب $F_1(a)$ ، ثم استنتج أن (
 - ادينا: \mathbb{N}^* من n من n ادينا: [0;1] لدينا: $.F_{n+1}(a) = -\frac{a^2}{2} (\ln a)^{n+1} \frac{n+1}{2} F_n(a)$
 - $u_n: (orall n \in \mathbb{N}^*): u_{n+1} = rac{n+1}{2} u_n$ (ب $u_n: (v_n)$
- و لتكن A_n مساحة حيز المستوى المحصور بين A_n و x=1 محور الأفاصيل و المستقيمين x=1 و x=0 محور الأفاصيل و المستقيمين x=1 (i) بين أن: $A_n=1$ و أن: $A_n=1$
- $\lim_{n + \infty} \mathcal{A}_n$ (ب $\overline{orall} n \geqslant 3$) : $\mathcal{A}_{n+1} \geqslant 2 \mathcal{A}_n$: ثم استنتج(ullet)
 - $G(x) = \int_{1}^{e^{x}} t \ln(t) \, \mathrm{d}t$ نضع \mathbb{R} نکل x اt = 1
 - . $\mathbb R$ بين أن G قابلة للاشتقاق على G(x) بين أن
 - G أحسب G'(x) ثم أدر س تغيرات الدالة G'(x)
 - G(x) بدلالة x. ثم أعط جدول تغيرات G(x)

ثانوية أبي حياه التوحيدي الاستاذ: محمــد حمـــدان

حساب التكامل ② سلسلة التماريسن

السنة الدراسية: 2012-2011 الثانية باك علوم رياضيــة

تمرين 21 . أسئلة هذا التمرين مستقلة فيما بينها.

نعتبر الدالة: $f(x) = \sqrt{1 - e^{-2x}}$ عدد \mathscr{D}_f ثعتبر الدالة:

$$(orall x \in \mathscr{D}_f ackslash \left\{0
ight\}): f(x) + f'(x) = rac{f'(x)}{2ig(1+f(x)ig)} + rac{f'(x)}{2ig(1-f(x)ig)}$$

 $\int_0^{\ln 2}f(x)\,\mathrm{d}x$ أحسب التكامل $f(x)=e^{-2x}\sin(3x)$. $f(x)=e^{-2x}\sin(3x)$ ك نعتبر الدالة: $(orall x\in\mathbb{R}):f''(x)+4f'(x)+13f(x)=0$ تحقق أن:

 $-\int_{rac{\pi}{3}}^{rac{2n}{3}}f(x)\,\mathrm{d}x$ ثم أحسب التكامل

 $(\forall x \in [0;1]): \sin ax + \cos bx \neq 0$ و d من \mathbb{R} و d من d و

 $f_n(x) = \sum\limits_{}^{} (-1)^{k+1} C_n^k x^{k-1}$: باعتبار دالة أصلية للدالة $oldsymbol{0}$

 $(orall n\in\mathbb{N}^*):\sum_{k=1}^n(-1)^{k+1}rac{C_n^k}{k}=\sum_{k=1}^nrac{1}{k}:$ على \mathbb{R} بين أن: $\sum_{k=1}^n(-1)^{k+1}rac{C_n^k}{k}=\sum_{k=1}^nrac{1}{k}:$ ا \mathbb{R} بين أن: $\mathbb{R$

 $\int_0^{rac{1}{2}} rac{e^{-x}}{1-x} \, \mathrm{d}x$ بدلالة n ثم حدد n أحسب a_n بدلالة n ثم حدد n أحسب n بين بالترجع أن: لكل n من n أحسب التكاملات التالية n أحسب التكاملات الت

 $\int_{-1}^{0} \frac{t+1}{t^2+t+1} dt \quad \bullet \quad \int_{0}^{1} \frac{dt}{(t+2)(t^2+2t+5)} \quad \bullet$ $\int_{1}^{2} \frac{t-1}{t^{2}(t-3)^{2}} dt \bullet \int_{2}^{3} \frac{2t^{3}+t^{2}+2t-1}{t^{4}-1} dt$

دالة متصلة على $\mathbb R$ بحيث: $\mathbb R$ دالة متصلة على f $\mathfrak S$. f(2012) . أحسب $f(x):\int_x^{x+2}f(t)\,\mathrm dt=f(0)=5$ دالة متصلة على $\mathbb R$ بحيث:

$$(orall x \in \mathbb{R}): \int_0^x f(t) \, \mathrm{d}t = rac{x}{2} (1 + f(x))$$

 \mathbb{R} أحسب f(0) ثم حدد تعبير أمين f(x) لكل من

 $f(x) = \int_0^{\ln x} rac{1}{t - \ln 5} \mathrm{d}t$ حدد مجموعة تعريف الدوال: 0

 $h(x) = \int_{x}^{3x} \frac{1}{\ln t} dt \quad \bullet \quad g(x) = \int_{\frac{1}{x}}^{\ln x} \frac{1}{t-1} dt \quad \bullet$

تمرین 22 . أسئلة هذا التمرین مستقلة فیما بینها f دالة متصلة علی f بحیث:

 $(\forall x \in [-2; 2]) : f(x) + f(-x) = x^2$

 $I=\int_{-2}^2rac{f(x)}{x^6+64}\,\mathrm{d}x$ أحسب التكامل . \mathbb{N}^* من n ليكن n و m من m

 $\int_0^1 x^m (1-x)^n \,\mathrm{d}x = \int_0^1 x^n (1-x)^m \,\mathrm{d}x$ بین آن: ullet

$$\sum_{k=0}^m rac{(-1)^k C_m^k}{n+k+1} = \sum_{k=0}^n rac{(-1)^k C_n^k}{m+k+1}$$
 استنتج أن: $ullet$

 $\sum_{k=0}^{m} rac{(-1)^k C_m^k}{n+k+1} = \sum_{k=0}^{n} rac{(-1)^k C_n^k}{m+k+1}$:نتج آن: $J = \int_0^1 rac{\mathrm{d}x}{x^3+1}$ و $I = \int_0^1 rac{1}{x^2-x+1} \, \mathrm{d}x$ و احسب $I = \int_0^1 rac{1}{x^3+1} \, \mathrm{d}x$

استعمل . $K = \int_0^1 x \sqrt{x} \mathrm{Arctg}(x \sqrt{x}) \, \mathrm{d}x$ أحسب التكامل $K = \int_0^1 x \sqrt{x} \mathrm{Arctg}(x \sqrt{x}) \, \mathrm{d}x$

مكاملة بالأجزاء) $]0;+\infty[$ و b من]-1;0[أحسب a ليكن a ليكن a من $A=\int_0^1 \ln\left(1+bx^2\right)\,\mathrm{d}x$

• $\int_0^{\frac{\pi}{4}} x^2 \cos 2x \, \mathrm{d}x$: باستعمال مكاملة بالأجزاء أحسب Θ $\int_0^1 x \left(\operatorname{Arctg}(x)\right)^2 dx \bullet \int_1^e x \left(\ln x\right)^2 dx \bullet \int_0^1 x^2 e^{-\frac{x}{2}} dx$

 $\int_{1}^{e^{x}} \sin^{2}(\ln x) dx \bullet \int_{1}^{e^{x}} \cos(\ln x) dx \bullet$

 $(orall x>0):f_n(x)=\int_1^xrac{\ln(t)}{t^{n+1}}\,\mathrm{d}t:$ ککل n من n نعتبر $f_o(x):$ أحسب $f_o(x):$ ثم حدد $f_o(x):$ أحسب $f_o(x):$ ثم حدد $f_n(x):$ أحسب $f_n(x):$

 $\int_0^{\frac{1}{2}} \frac{e^{-x}}{1-x} \, \mathrm{d}x = \int_0^{\frac{1}{2}} (1+x)e^{-x} \, \mathrm{d}x + \int_0^{\frac{1}{2}} \frac{x^2e^{-x}}{1-x} \, \mathrm{d}x :$ بین آن \bullet $rac{1}{24}\leqslant\int_0^{rac{1}{2}}rac{x^2e^{-x}}{1-x}\,\mathrm{d}x\leqslantrac{1}{12\sqrt{e}}$: بین آن

 $e^{-a} = \sum_{k=0}^{n} \frac{(-1)^k a^k}{k!} + (-1)^{n+1} \int_0^a \frac{(a-t)^n}{n!} e^{-t} dt$

 $-\left(orall x\in\mathbb{R}^+
ight):rac{x^2}{2}-rac{x^3}{6}\leqslant e^{-x}-1+x\leqslantrac{x^2}{2}$ استنتی آن ullet0 < a < b دالة متصلة على [a;b] بحيث f $oldsymbol{9}$ و $(orall x \in [a;b]): f(x) \geqslant 0$ و

 $(\exists c \in [a;b]): b \int_a^c f(x) \, \mathrm{d}x = a \int_c^b f(x) \, \mathrm{d}x$ بين أن:

 $u_n = \int_0^1 rac{f(x)}{1+nx} \, \mathrm{d}x$: نعتبر $f \ m{0}$ دالة متصلة على $f \ m{0}$

 $(\exists M\in\mathbb{R}^+)$ ($orall n\in\mathbb{N}^*$) : $|oldsymbol{u_n}|\leqslant Mrac{\ln(1+n)}{n}$ بين أن: $(oldsymbol{u_n})_{n\geqslant 1}$ استنتج نهاية المتتالية $(oldsymbol{u_n})_{n\geqslant 1}$

تمرين 23 . أسئلة هذا التمرين مستقلة فيما بينها.

 $\int_0^\pi f(x)\,\mathrm{d}x=0$: بحيث f ودالة متصلة على f ودالة متصلة على أ $.(
ot \exists c \in [0;\pi]): f(c) = \cos(c)$ بين أن:

 $\int_0^1 f(x) \, \mathrm{d}x = rac{1}{2}$: بحيث f والله متصله على f على f بحيث 2 . $(\exists lpha \in [0;1]): f(lpha) = lpha$:بين أن

 $\int_0^1 f(x) \, \mathrm{d}x = rac{\pi}{4}$: بحيث f والله متصله على f بحيث f $\int_0^1 rac{\mathrm{d}x}{1+x^2}$ أحسب التكامل: ullet

 $A(\exists \delta \in [0;1]): rac{1}{1+\delta} \leqslant f(\delta) \leqslant rac{1}{1+\delta^3}$:ن أن ullet

 $F(x) = \int_{x}^{4x} rac{\ln(t)}{2t-1} \, \mathrm{d}t$: نعتبر الدالة F المعرفة بما يلي

$$\mathscr{D}_F = \left]0; rac{1}{8}
ight[\ \cup \]rac{1}{2}; +\infty
ight[\ \ \ : oldsymbol{0}
ight]$$
بین آن:

F'(x) بين أن F قابلة للأشَّتْقاقُ على \mathscr{D}_F ثم أحسب \mathscr{D}_F

 $[1;+\infty[$ نیکن x عنصرِ ا من $\infty[1;+\infty]$

$$\lim_{x \to +\infty} F(x) = +\infty$$
 بین أن $\left(\frac{1}{x} \right)$

$$\left]0;rac{1}{16}
ight[$$
لیکن x عنصرا من $oldsymbol{0}$

 $\lim_{x o 0^+} F(x)$ بین أن: $|F(x)| \leqslant \int_x^{4x} -2\ln(t)\,\mathrm{d}t$. ثم استنتج

تمرین $rac{25}{1}$. $rac{25}{1}$ لتكن f دالة معرفة و قابلة للإشتقاق على $rac{1}{2}$ و تحقق ما يلي $rac{1}{2}$ $(orall x \in \mathbb{R}): f'(x) - f(x) = 2$ و $f(t) \, \mathrm{d} t$ و f(0) = f'(0) = 1

- بين أن f قابلة للاشتقاق مر تين على $\mathbb R$. (E):y''-y'-2y=0: بين أن f حل للمعادلة التفاضلية g
- $f(x)=rac{1}{3}\left(2e^{2x}+e^{-x}
 ight)$: حل المعادلة (E) و استنتج أن $oldsymbol{\Theta}$

[a;b] يكن a و a من a (a < b) و a دالة متصلة على a

$$\Big((orall x \in [a;b]): f(x)>0\Big) \Longrightarrow \int_a^b f(x)\,\mathrm{d}x>0$$

❷ هل الاستلزام

$$\int_a^b f(x)\,\mathrm{d}x=0\Longrightarrow \Big((orall x\in[a;b]):f(x)=0\Big)$$
محیح $(orall x\in[a;b]):f(x)\geqslant0$ نفتر ض آن: $oldsymbol{0}$

 $\int_a^b f(x) \, \mathrm{d}x = 0 \Longrightarrow \Big((orall x \in [a;b]) : f(x) = 0 \Big)$ بين أن:

$$\left|\int_a^b f(x)\,\mathrm{d}x
ight|=\int_a^b |f(x)|\,\mathrm{d}x$$
 :نفتر ض أن f لها إشارة ثابتة على $[a;b]$

[a;b] لتكن f و g دالتين متصلتين على مجال $oldsymbol{0}$ بين أن لكل $oldsymbol{\lambda}$ من $oldsymbol{\mathbb{R}}$ لدينا:

$$oxed{\lambda^2 \int_a^b f^2(x) \, \mathrm{d}x + 2\lambda \int_a^b f(x) \mathrm{g}(x) \, \mathrm{d}x + \int_a^b \mathrm{g}^2(x) \, \mathrm{d} \geqslant 0}$$

(Cauchy – Schwartz متفاوتة (متفاو $oldsymbol{arphi}$ استنتج أن

$$\left(\int_a^b f(x) \mathrm{g}(x) \, \mathrm{d}x
ight)^2 \leqslant \left(\int_a^b f^2(x) \, \mathrm{d}x
ight) \left(\int_a^b \mathrm{g}^2(x) \, \mathrm{d}x
ight)$$

$$\int_{rac{\pi}{4}}^{rac{\pi}{2}}rac{\sin x}{x}\,\mathrm{d}x\leqslant\sqrt{rac{\pi+2}{4\pi}}$$
 و $\int_{0}^{1}\sqrt{1+x^{2}}\,\mathrm{d}x\leqslantrac{2}{\sqrt{3}}$ بين أن

$$\left\{egin{array}{l} f(x)=rac{\sin(2n+1)x}{2\sin(x)}\;;\;x
eq0 \ f(0)=rac{2n+1}{2} \end{array}
ight.$$
ئيكن n من n^* نعتبر:

 $\left|0;rac{\pi}{2}
ight|$ عدد \mathscr{D}_f عدد f أن أن f تقبل دالة أصلية على g $.(orall x\in \mathscr{D}_f):f(x)=rac{1}{2}+\sum_{k=1}^n\cos(2kx)$:بین آن $oldsymbol{\mathcal{Q}}$ $\int_0^{rac{\pi}{2}} f(x) \, \mathrm{d}x = rac{\pi}{4}$:بین آن

$$J=\int_{rac{\pi}{2}}^{\pi}rac{\sin(x)}{x}\,\mathrm{d}x$$
 نضع:

$$\left(\forall x \in \left[0; \frac{1}{2}\right]\right) : \int_0^x \frac{\sin(\pi t)}{1 - t} \, \mathrm{d}t = \int_{\pi(1 - x)}^\pi \frac{\sin(t)}{t} \, \mathrm{d}t$$

$$J = \int_0^{rac{1}{2}} rac{\sin(\pi t)}{1-t} \, \mathrm{d}t$$
 نب) بین أن:

$$u_n = \int_0^{rac{1}{2}} t^n \sin(\pi t) \, \mathrm{d}t$$
 :بحیث (u_n) نعتبر المتتالیة (u_n) بین أن (أ)

$$(orall n \in \mathbb{N}^*): J = u_o + \dots + u_{n-1} + \int_0^{rac12} rac{t^n \sin(\pi t)}{1-t} \,\mathrm{d}t$$

$$(\forall n \in \mathbb{N}^*) \left(orall t \in \left[0; rac{1}{2}
ight]
ight) : rac{t^n \sin(\pi t)}{1-t} \leqslant 2t^n$$
 : $(0, 0)$: $(0,$

$$J=\lim_{n
ightarrow+\infty}(u_o+u_1+\cdots+u_{n-1})$$
 نین آن: (ع)

$$(orall n \in \mathbb{N}^*ackslash \left\{1
ight\}): u_n = rac{1}{\pi^2}\left(rac{n}{2^{n-1}} - n(n-1)u_{n-2}
ight)$$

 $I_n = \int_0^{rac{\pi}{2}} \sin^n(x) \, \mathrm{d}x$ لکل n من $\mathbb N$ نظع

$$I_{n}=\int_{0}^{rac{\pi}{2}}\cos^{n}(x)\,\mathrm{d}x$$
 بین آن: $\mathbf{0}$ بین آن: $\mathbf{0}$

 $(orall n\in \mathbb{N}): (n+2)I_{n+2}\equiv (n+1)I_n$ بين أن: n من n لينا n

$$I_{2n} = rac{\pi(2n!)}{2^{2n+1}(n!)^2}$$
 g $I_{2n+1} = rac{2^{2n}(n!)^2}{(2n+1)!}$

بين أن المتتالية
$$(I_n)_{n\geqslant o}$$
 تناقصية . I_{2n-1}

$$(I_n)_{n\geqslant o}$$
 بین آی المثنائیه $(I_n)_{n\geqslant o}$ کا بین آی المثنائیه \mathbf{G} استنتج آن \mathbf{G} استنتج آن \mathbf{G} استنتج آن \mathbf{G}

$$\lim_{n o+\infty}rac{2^{4n}(n!)^4}{n\left((2n)!
ight)^2}=\pi$$
 ثم أن: $\lim_{n o+\infty}rac{I_{2n}}{I_{2n+1}}=1$ و أن: $\lim_{n o+\infty}rac{I_{2n}}{I_{2n+1}}=1$ كك n نكل n نضع: $\lim_{n o \infty}K_n=(n+1)I_nI_{n+1}$ بين أن ∞ كك n كك n نضع: \mathbb{N}

$$\lim_{n o +\infty} I_n \sqrt{rac{2n}{\pi}} = 1$$
 متتالية ثابتة و استنتج أن π

$$I_{2n}=rac{\pi}{2.4^n}\sum_{k=0}^n\left(C_n^k
ight)^2$$
 :باستعمال السؤال $oldsymbol{\Theta}$ بين أن $oldsymbol{O}$

. 31 تمرین

 $f(x)=rac{1}{1+e^x}$: دالة معرفة بما يلي f دالة معرفة بما يلي F على F بحيث $\mathbf{0}$ حدد الدالة الأصلية F للدالة f على $F(0)=-\ln 2$

 $u_n = \int_{rac{1}{2}}^{1+rac{1}{n}} f(x) \, \mathrm{d}x$ نكل n من \mathbb{N}^* نضع \mathfrak{D}^*

 $\displaystyle \lim_{
ightarrow +\infty} u_n$ أحسب u_n بدلالة n ، ثم حدد

 $\stackrel{n o +\infty}{\mathbb{N}^*}$ بين أن لكل k من \mathbb{N} و لكل n من \mathbb{S} لدينا:

$$\int_{rac{k}{n}}^{rac{k+1}{n}} f(x) \, \mathrm{d}x \leqslant rac{1}{n} f\left(rac{k}{n}
ight) \leqslant \int_{rac{k-1}{n}}^{rac{k}{n}} f(x) \, \mathrm{d}x$$

$$S_n = rac{1}{n} \sum_{k=1}^n f\left(rac{k}{n}
ight)$$
 لكل n من \mathbb{N}^* نكل Φ

 (\dagger) بين أن: $u_n \leqslant S_n \leqslant I$ (\dagger) بين أن: $u_n \leqslant S_n \leqslant I$. (\dagger) متقاربة و حدد نهايتها . (\dagger) استنتج أن المتتالية $(S_n)_{n\geqslant 1}$

. 32 تمرين $f:[0;1] \to \mathbb{R}^+$ دالة غير ثابتة ، قابلة للاشتقاق بحيث: f(0)=0 نعتبر الدالة g المعرفة على f(0)=0

$$g(x) = (1-x)\int_0^x f(t)\,\mathrm{d}t$$

- g'(lpha)=0 : بین أنه یوجد lpha من [0;1[بحیث $oldsymbol{0}$
- این h دالة معرفة علی [0;lpha] بما يلي: h لتكن h دالة معرفة $h(x)=(1-x)f(x)-\int_0^x f(t)\,\mathrm{d}t$ $(\exists x_o \in]0;1[):f'(x_o)>2f(x_o)$ رول بین آن

 $f(x) = e^{-x^2} \int_0^x e^{t^2} \, \mathrm{d}t$: لكل x من $\mathbb R$ نعتبر الدالة

- $\mathbb R$ أدرس زوجية f ، ثم بين أنها قابلة للاشتقاق على $oldsymbol{\mathbb Q}$
- . y'+2xy=1 بين أن f هي حل للمعادلة التفاضلية g
 - $\lim_{x o +\infty} 2xf(x) = 1$ بین أن $oldsymbol{0}$
- $g(x)=rac{e^{x^2}}{2x}f'(x)$ نعتبر الدالة $g(x)=rac{e^{x^2}}{2x}$ نعتبر الدالة g تناقصية قطعا على g(x)=0. و استنتج أن المعادلة g(x)=0 تقبل حلا وحيدا $x_o\in\mathbb{R}^{+*}$ و أن $x_o\in\mathbb{R}^{+*}$. f غط جدول تغيرات الدالة f

تمرین 34

نعتبر الدالة ψ المعرفة بما يلي:

$$\psi(x) = \ln\left(x - 1 + \sqrt{x^2 - 2x + 2}\right)$$

و ليكن (\mathscr{C}_ψ) منحناها في م م م $(i;\vec{j})$. \mathcal{C}_ψ منحناها في م م \mathcal{C}_ψ مركز تماثل المنحنى \mathscr{D}_ψ . \mathcal{C}_ψ

- .(\mathscr{C}_{ψ}) أدرس تغيرات ψ ثم حدد الفروع اللانهائية لـ (
 - $.ig(O; \overrightarrow{i}; \overrightarrow{j}ig)$ أنشئ المنحنى (\mathscr{C}_{ψ}) في المعلم ig

- أحسب ${\cal A}$ مساحة حيز المستوى المحصور بين (\mathscr{C}_{ψ}) و المستقيمات y=0 و x=1

:نعتبر الدالة
$$F$$
 المعرفة بـما يلي (II $f(t)=\sqrt{t^2-2t+2}$ حيث $F(x)=\int_x^{x+2}f(t)\,\mathrm{d}t$

- بين أن: $\mathscr{D}_f=\mathbb{R}$ و أن F قابلة للاشتقاق على $oldsymbol{0}$ احسب F'(x) ؛ ثم تحقق أن F' فردية و أن F زوجية.
 - $(orall t > 1): t-1 < f(t) < t-1 + rac{1}{t}$ بين أن: $oldsymbol{arphi}$
 - ❸ استنتج أن:

$$(\forall x>1): 2x < F(x) < 2x + \ln\left(1+\frac{2}{x}\right)$$

- $\lim_{x o +\infty} F(x)$ أحسب النهاية: $oldsymbol{0}$
- $\mathcal{I} = \int_0^2 rac{(t-1)^2}{f(t)} \, \mathrm{d}t$: نعتبر التكامل $oldsymbol{\mathfrak{G}}$
 - $.F(0)-\mathcal{I}$ أحسب أ(i)
- (μ) أحسب $F(0)+\mathcal{I}$ أحسب أحسب أحسب أبدى أبدى الماملة أحسب أحسب أبدى الماملة أبدى أبدى أبدى أبدى الماملة أبدى الماملة
 - F(0) استنتج قیمه $\left(oldsymbol{arphi}
 ight)$
 - (\mathscr{C}_F) أدرس الفروع اللانهائية لـ (\mathscr{C}_F) . ثم أنشئ (\mathscr{C}_F)

 $F(x) = \int_1^x rac{e^t}{t} \, \mathrm{d}t$: بما یلي \mathbb{R}_+^* بما دالة معرفة علی F

- . F أدر س تغيرات الدالة $oldsymbol{0}$
- $(orall x\in]0;1[):\int_1^xrac{e^t-1}{t}\,\mathrm{d}t\leqslant 0$ يين أن: 2 $oldsymbol{arphi}$
 - $\lim_{x o 0^+} F(x)$ استنتج النهاية: $oldsymbol{\mathfrak{G}}$
- F أحسب الدالة أ $\lim_{x o +\infty} F(x)$ ثم ضع جدول تغيرات الدالة $\mathbf{0}$
- $g(x) = \int_0^x rac{2}{\sqrt{1+4t^2}} \, \mathrm{d}t$: لتكن g دالله معرفة بما يلي (II
- $\,$ بين أن $\,g$ معرفة و قابلة للاشتقاق على $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ ثم احسب $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$
 - g بين أن g دالة فردية ثم أدرس تغيرات الدالة g
 - - . $\lim_{x o -\infty} g(x)$ استنتج النهايتين: $\lim_{x o +\infty} g(x)$ واستنتج النهايتين النهايتين ${f 0}$
 - \mathbb{R} بین أن g تقابل من \mathbb{R} نحو \mathfrak{g}
 - g لتكن f الدالة العكسية للدالة g
- $(orall x \in \mathbb{R}): f'(x) = rac{1}{2}\sqrt{1+4f^2(x)}$ (۱) بین آن:
 - \mathbb{R} استنتج أن f قابلة للاشتقاق مرتين على (ب) $.(orall x \in \mathbb{R}): f''(x) - f(x) = 0$: و أن
- f(x) أحسب g(x) و f(x) ؛ ثم استنتج f(x) و و f(0) بدلالة g(x)

$$\left\{egin{array}{l} f(x)=rac{x}{x^2-\ln(x)}\;;\;x>0\ f(0)=0 \end{array}
ight.$$
نعتبر الدالة f بحيث:

.
$$(orall x \in]0; +\infty[): x^2 - \ln(x) > 0$$
 پین ان 0

$$oldsymbol{\emptyset}$$
 أدر س اتصال و قابلية اشتقاق f على يمين $oldsymbol{\emptyset}$

$$(\mathscr{C}_f)$$
 أحسب اللهائي لـ السراء اللهائي الـ ال $f(x)$

أدرس تغيرات الدالة
$$f$$
 ثم أنشئ المنحنى (\mathscr{C}_f) .

نعتبر الدالة
$$f_n$$
 نعتبر الدالة $n\in\mathbb{N}^*\setminus\{1\}$ بحيث:
$$\begin{cases} f_n(x)=\frac{x}{x^n-\ln(x)}\;;\;x>0\\ f_n(0)=0 \end{cases}$$

.
$$(orall x \in]0;+\infty[):x^n-\ln(x)>0$$
 بین آن: $oldsymbol{0}$

ادرس اتصال و قابلية اشتقاق
$$f_n$$
 على يمين $oldsymbol{0}$

$$g_n(x)=1+(1-n)x^n-\ln(x)$$
 لتكن $oldsymbol{\mathfrak{G}}$

$$(1)$$
 بين أن g_n تناقصية قطعا على المجال (1)

$$g_n(x)=0$$
 باستنتج أن المعادلة $g_n(x)=0$ تقبل حلا وحيدا $lpha_n<0$

$$(orall n\geqslant 2):rac{1}{n-1}\leqslant lpha_n^n\leqslant 1$$
 . حدد $(orall n\geqslant 2):rac{1}{n-1}$

$$[0;+\infty[$$
 ككل x من المجال $g_n(x)$ عدد إشارة (2)

$$(orall x\in]0;+\infty[):f_n'(x)=rac{g_n(x)}{(x^n-\ln x)^2}$$
 : (i) بين أن f_n بين أن فيرات الدالة f_n بين أن غيرات الدالة

: لتكن
$$F$$
 دالة معرفة على f 0; $+\infty$ لتكن F دالة معرفة الماري $F(x)=e^{-x}\int_x^{x+1}rac{e^t}{t}\,\mathrm{d}t$

.
$$(orall x\in]0;+\infty[):F(x)=\int_0^1rac{e^t}{t+x}\,\mathrm{d}t$$
 :بين أن $oldsymbol{0}$

$$]0;+\infty[$$
 استنتج أن F تناقصية قطعا على المجال ${m artheta}$

$$(orall x\in]0;+\infty[):F(x)\geqslant \int_0^1rac{\mathrm{d}t}{t+x}$$
 :بين أن $oldsymbol{artheta}$

$$\lim_{x o 0^+} F(x)$$
 استنتج النهاية: $oldsymbol{\Phi}$

$$(orall x\in]0;+\infty[):rac{e-1}{x+1}\leqslant F(x)\leqslant rac{e-1}{x}$$
 :بين أن

$$\lim_{x o +\infty} F(x)$$
 استنتج النهاية: $oldsymbol{6}$

$$F'(x)$$
بين أن F قابلة للاشتقاق على $+\infty$ [ثم أحسب G لكل x من $+\infty$ من $+\infty$ من $+\infty$

$$F(x)=\int_0^x e^{-t^2}\,\mathrm{d}t$$
: نعتبر الدالة F المعرفة على $\mathbb R$ بما يلي F المعرفة المعرفة على F أدرس تغيرات F ، ثم بين أن F دالة فردية.

و استنتج .
$$(orall t\geqslant 2):\ e^{-t^2}\leqslant e^{-2t}$$
 . و استنتج . $(rac{1}{2}):\ F(x)\leqslant rac{1-e^{4-2x}}{2e^4}+\int_0^2 e^{-t^2}\,\mathrm{d}t$. $(rac{1}{2}):\ F(x)\leqslant rac{1-e^{4-2x}}{2e^4}$

$$(orall x\geqslant 2):\; F(x)\leqslant rac{1}{2e^4}+\int_0^2 e^{-t^2}\,\mathrm{d}t$$
 نبين أن: $\left(arphi
ight)$

$$\ell$$
 بین أن F مکبورة علی $\mathbb R$ و أن F تقبل نهایة منتهیة $+\infty$ عند $+\infty$. (غیر مطلوب تحدید ℓ

:التكن
$$f$$
 دالة معرفة على \mathbb{R} بما يلي $f(x)=\int_0^{rac{\pi}{4}}e^{rac{-x}{\cos^2(t)}}\,\mathrm{d}t$

$$\lim_{x o \infty} f(x)$$
 أحسب $(orall x \geqslant 0): \ 0 \leqslant f(x) \leqslant e^{-x}$ بين أن $oldsymbol{0}$

:نضع
$$\left]-rac{\pi}{2}:rac{\pi}{2}
ight[$$
 نضع \mathbb{R} نضع $g(t)=F\left(x an(t)
ight)$

ين أن
$$g$$
 قابلة للاشتقاق على $\left[-\frac{\pi}{2}:\frac{\pi}{2}\right]$ و أن:
$$g'(x)=\frac{x}{\cos^2(t)}e^{-x^2\tan^2(t)}$$

: لدينا
$$\mathbb{R}$$
 من x لدينا $(+)$ استنتج أن لكل $f(x)=x\int_0^{rac{\pi}{4}}rac{e^{-x^2 an^2(t)}}{\cos^2(t)}\,\mathrm{d}t$

$$\left] -rac{\pi}{2} : rac{\pi}{2}
ight[$$
 فتبه أن f قابلة للاشتقاق على f

و آن:
$$f'(x)=-\int_0^{\frac{\pi}{4}} \frac{e^{\frac{-x}{\cos^2(t)}}}{\cos^2(t)}\,\mathrm{d}t$$
 بین آن: . $(orall x\in\mathbb{R}):\,\left(f\left(x^2
ight)
ight)'=-2e^{-x^2}F(x)$

$$h(x) = f\left(x^2
ight) + \left(F(x)
ight)^2$$
ککل x من x نکل x من x نکل x ککل x

(۱) بين أن
$$h$$
 دالة ثابتة ، ثم حدد قيمتها.

بين أن
$$h$$
 دالة ثابتة ، ثم حدد قيمتها. $\lim_{x o +\infty} F(x) = rac{\sqrt{\pi}}{2}$ استنتج أن: (\cdot)

$$(\mathscr{C}_F)$$
 أعط جدول تغيرات F ثم أنشئ المنحنى (ج)

:نضع
$$\mathbb{R}^+$$
 نضع u من u من u نضع v نضع $v_n = \lim_{x o +\infty} U_n(x)$ و $u_n(x) = \int_0^x t^n e^{-t^2} \, \mathrm{d}t$

.
$$V_o=rac{\sqrt{\pi}}{2}$$
 :تحقق أن

$$.(orall n\geqslant 2):V_n=rac{n-1}{2}V_{n-2}$$
 :بين أن

$$.V_n.V_{n+1}=rac{n!\sqrt{\pi}}{2^{n+2}}$$
 :استنتج آن $oldsymbol{3}$

.
$$(V_n)$$
 أحسب الحدود V_3 و V_4 للمتتالية $oldsymbol{0}$

. $\frac{38}{$ تمرین f المعرفة علی [0;1] بما یلي:

$$\begin{cases} f(x) = \frac{x-1}{\ln(x)}; \ 0 < x < 1 \\ f(0) = 0; \ f(1) = 1 \end{cases}$$

و ليكن (\mathscr{C}_f) منحناها في م م م $(i;ec{i};ec{j})$. الهدف من هذه $I = \int_0^1 f(t) \, \mathrm{d}t$ المسألة هو دراسة الدالة f و حساب التكامل f الجزء الأول: دراسة الدالة

- بين أن f متصلة على يمين 0 و يسار 1.
- f'(x) بين أن f قابلة للاشتقاق على f f و أحسب f (i) (i) (i) استنتج أن إشارة f'(x) هي إشارة الدالة (y)على [0;1[أدرس تغيرات $arphi(x)=\ln(x)-1+rac{1}{x}$ $\overset{"}{arphi}$ و استنتج إشارتها، ثم استنتج تغيرات f على [0;1].
 - $oldsymbol{\emptyset}$ أدرس قابلة اشتقاق f على يمين 0 . التأويل الهندسي.

$$\left(orall u\in\left[0;rac{1}{2}
ight]
ight):0\leqslantrac{1}{1-u}-(1+u)\leqslant2u^2$$
 بين أن: $oldsymbol{0}$ (II

استنتج أن لكل u من $\left[0;rac{1}{2}
ight]$ لدينا: $oldsymbol{artheta}$

$$0\leqslant -\ln(1-u)-\left(u+rac{u^2}{2}
ight)\leqslant rac{2u^3}{3}$$

- بعرفه علی [0;1] بما یلی: $g(x)=rac{1}{f(x)}$ بین أن لکل t من $g(x)=rac{1}{f(x)}$ لینا: $rac{t}{c}<rac{2t^2}{c}$ [0;1] دالة معرفة على g دالة معرفة و استنتج أن g قابلة $0\leqslant g(1+t)-g(1)+rac{t}{2}\leqslant rac{2t^2}{3}$ $g_g^\prime(1)$ للأشتقاق على يسار 1 و حدد
- استنتج أن f قابلة للاشتقاق على يسار f و أن f
 - $||\overrightarrow{i}||=10cm$ أنشئ المنحنى (\mathscr{C}_f) . نأخذ $oldsymbol{\mathfrak{G}}$

الجزء الثاني: حساب التكامل I.

 $J(x)=\int_x^1rac{f(t)}{t}\,\mathrm{d}t$ لكل x من]0;1] نضع:]0;1] نضع: [0;1] نضع: [0;1] نضع فة على [0;1] بما يلي:

$$\psi(x) = J(x^2) - J(x)$$

-]0;1]بين أن ψ قابلة للاشتقاق على $oldsymbol{0}$. $\psi'(x)=rac{1}{x}\left[f(x)-2f(x^2)
 ight]$ و أن
- $.(orall x \in]0;1]):f(x)-2f(x^2)=-xf(x)$ بین آن@
- $\mathbb{O}\left(orall x\in]0;1]
 ight):I(x)=\int_{x^2}^xrac{t-1}{t\ln(t)}\,\mathrm{d}t$ استنتج آن $\mathbf{\Theta}$
 - $(orall (orall x \in]0;1]): \int_{x^2}^x rac{-1}{t \ln(t)} \, \mathrm{d}t = \ln(2)$ بین آن: $oldsymbol{0}$
- $(orall x\in]0;1[)\ (orall t\in]0;x[):0\leqslantrac{-1}{\ln(t)}\leqslantrac{-1}{\ln(x)}$ بين أن: $oldsymbol{6}$

- $(orall x\in]0;1[):0\leqslant\left|\int_{x^2}^xrac{\mathrm{d}t}{\ln(t)}
 ight|\leqslantrac{-x}{\ln x}$ استنتج أن $(rac{d}{d}t)$
 - . $\lim_{x \to 0^+} I(x)$ باستعمال ${\mathbb Q}$ و ${\mathbb Q}$ أحسب ${\mathcal Q}$
- $.(orall x\in]0;1]):I-I(x)=\int_0^xf(t)\,\mathrm{d}t$ بين أن: $I=\ln(2)$ بين أن: $(orall x\in]0;1]):0\leqslant I-I(x)\leqslant x$. و أن $(orall x\in]0;1]$

نعتبر الدالة f المعرفة على \mathbb{R}^+ بما يلي: $rac{x^ne^{-x}}{n!}$ و $||\overrightarrow{i}||=2cm$ لیکن $\left(0;\overrightarrow{i};\overrightarrow{j}
ight)$ منحناها في م م م $||\vec{j}|| = 10cm$

- $\lim_{x o +\infty} x^n e^{-x} = 0$: الجزء الأول $\mathbf{0}$: بين أن $\mathbf{0}$ بين أن
- $f_n'(x)=rac{x^{n-1}}{n!}(n-x)e^{-x}$ ان تحقق ان: $oldsymbol{0}$ n عط جدول تغيرات الدالة f_n حسب زوجية (ب)
- (\mathscr{C}_{n+1}) و (\mathscr{C}_n) أدر س الوضع النسبي للمنحنيين (\mathscr{C}_{n+1})
- $A\left(\mathscr{C}_{n-1}
 ight)$ تحقق أن النقطة $A\left(n;f_{n}(n)
 ight)$ تنتمي إلى $oldsymbol{0}$
- (\mathscr{C}_2) أنشئ في نفس المعلم المنحنيات (\mathscr{C}_0) و (\mathscr{C}_1) و (\mathscr{C}_2)
 - $\mathscr{U}_n = f_n(n)$:نعتبر المتتالية $(\mathscr{U}_n)_{n\geqslant 1}$ المعرفة ب
- استنتج مما سبق أن المتتالية $_{n\geqslant 1}$ تناقصية قطعا. $oldsymbol{0}$
 - بين أن المتتالية $(\mathscr{U}_n)_{n\geqslant 1}$ متقاربة.
 - $(orall t \in [0;1]): \ln(1+t) \leqslant t rac{t^2}{4}$:نين أن ${f 3}$
 - $(orall n\in \mathbb{N}^*): \left(1+rac{1}{n}
 ight)^n\leqslant e^{1-rac{1}{4n}}$ استنتج آن: $oldsymbol{0}$
 - $.(orall n\in \mathbb{N}^*):rac{\mathscr{U}_{n+1}}{\mathscr{U}_n}\leqslant e^{-rac{1}{4n}}$ بين آن \mathfrak{S}
 - $.(orall n\geqslant 2):\mathscr{U}_n\leqslant e^{1-rac{1}{4}\left(1+rac{1}{2}+\cdots+rac{1}{n-1}
 ight)}:$ استنتج أن $\mathfrak G$
- $(orall k \in \mathbb{N}^*): rac{1}{1+k} \leqslant \ln \left(rac{1+k}{k}
 ight)$ باستعمال $ext{TAF}$ بین آن: $extbf{7}$
 - $.(orall n\in \mathbb{N}^*): \ln(n)\leqslant \sum_{k=1}^{n-1}rac{1}{k}$ استنتج أن: $oldsymbol{\Im}$
 - $\lim_{+\infty} \mathscr{U}_n$ کم حدد $(orall n\geqslant 2):\mathscr{U}_n\leqslant rac{1}{e\sqrt[4]{n}}$ استنتج أن Θ

الصفحة 9 من 11

- $I_n(a) = \int_0^a rac{t^n e^{-t}}{n!} \, \mathrm{d}t$: نضع $a \in \mathbb{R}^{+*}$ و $n \in \mathbb{N}^*$ نضع (I
- (orall t>0) $(orall n\in \mathbb{N}^*):0\leqslant f_n(t)\leqslant rac{t^n}{n!}$:بين أن $I_1(a)$ أحسب $oldsymbol{0}$
 - $0.0\leqslant I_n(a)\leqslant rac{a^{n+1}}{(n+1)!}$:ن استنتج أن $oldsymbol{2}$
- $(orall n\in \mathbb{N}^*):rac{1}{n!}\leqslant \left(rac{e}{n}
 ight)^n$ باستعمال رتابة (\mathscr{U}_n) بين أن $oldsymbol{\Theta}$

 $\lim_{n+\infty}I_n(a)$ عدد $0\leqslant I_n(a)\leqslant \left(rac{ae}{n+1}
ight)^{n+1}$:حدد $oldsymbol{0}$ استنتج آن $I_n(a)=-rac{a^n}{n!}e^{-a}+I_{n-1}(a)$ عننتج آن $oldsymbol{0}$ استنتج آن $oldsymbol{0}$

$$I_n(orall n\geqslant 2):I_n(a)=-rac{a^n}{n!}e^{-a}+I_{n-1}(a)$$
 بين أن: $oldsymbol{0}$

$$(orall n\geqslant 2):I_n(a)=1-e^{-a}\left(1+rac{a}{1!}+rac{a^2}{2!}+\cdots+rac{a^n}{n!}
ight)$$

$$\lim_{n o +\infty}\left(1+rac{a}{1!}+rac{a^2}{2!}+\cdots+rac{a^n}{n!}
ight)$$
 استنتج النهاید: $m{0}$

$$(t>0): 1-t+rac{t^2}{2}-rac{t^3}{6}\leqslant e^{-t}\leqslant 1-t+rac{t^2}{2}:$$
بين أن $oldsymbol{0}$ ($oldsymbol{1}$

$$\lim_{t o 0} rac{e^{-t} + t - 1}{t^2}$$
استنتج النهاية (2

 $h(x)=(1+x)e^{-x}$ نعتبر الدالة h المعرفة بـ: \mathfrak{G} نعتبر الدالة h عند محدات \mathfrak{G} ثم أدر س تغيرات الدالة h

التكن f دالة معرفة على $\mathbb R$ بما يلي:

$$\begin{cases} f(x) = \frac{e^{-2x} - e^{-3x}}{x} ; x \neq 0 \\ f(0) = 1 \end{cases}$$

- . \mathscr{D}_f حدد نهایات f عند محدات $oldsymbol{0}$
- $oldsymbol{arphi}$ أدر س اتصال و قابلية اشتقاق f عند 0 .

$$(orall x\in \mathbb{R}^*): f'(x)=rac{h(3x)-h(2x)}{x^2}$$
 :تحقق أن f . f أعط جدو ل تغير ات الدالة

 (\mathscr{C}_f) أدرس الفروع اللانهائية لـ (\mathscr{C}_f) ، ثم أنشئ (\mathscr{C}_f) .

$$F(x) = \int_1^x f(t) \, \mathrm{d}t$$
 بـ: \mathbb{R}^{+*} بـن (III) لتكن F دالة معرفة على

 $(\forall x > 0) \ (\forall m > 0) : \int_1^x \frac{e^{-mt}}{t} \, \mathrm{d}t = \int_m^{mx} \frac{e^{-s}}{s} \, \mathrm{d}s$

. $(orall x>0):F(x)=\int_2^3rac{e^{-t}}{t}\,\mathrm{d}t-\int_{2x}^{3x}rac{e^{-t}}{t}\,\mathrm{d}t$

 $\lim_{x o +\infty} \int_{2x}^{3x} rac{e^{-t}}{t} \, \mathrm{d}t = 0$: باستعمال مبر هنة المتوسط بين أن ${f \Theta}$

 $\lim_{x o +\infty} F(x)$ استنتج النهاية: $oldsymbol{0}$

 $(orall x>0):e^{-3x}\ln\left(rac{3}{2}
ight)\leqslant\int_{2x}^{3x}rac{e^{-t}}{t}\,\mathrm{d}t\leqslant e^{-2x}\ln\left(rac{3}{2}
ight)$

 $\lim_{x o 0^+}F(x)=\int_2^3rac{e^{-t}}{t}\,\mathrm{d}t-\ln\left(rac{3}{2}
ight)$: استنتج أن

ليكن $0 > \lambda > 0$ و $\mathcal{A}(\lambda)$ مساحة الحيز المحدد بالمنحنى $x = \lambda$ و محور الأفاصيل و المستقيمين $x = \lambda$ و x = 0 . أحسب أحسب الم $x = \lambda$

 f_n ليكن n عدد صحيح طبيعي غير منعدم. نعتبر الدالة $f_n(x)=rac{1}{n!}.rac{\left(\ln x
ight)^n}{x^2}$: المعرفة على المجال $0;+\infty$ المعرفة على المجال و ليكن $(G;\overrightarrow{i};\overrightarrow{j})$ منحناها في م م م (\mathscr{C}_n) منحناها في م م م الم منحناها في م م م و ليكن $\mathbf{0}$. (G_n) بين أن $\mathbf{0}$ (G_n) بين أن (G_n) بين أن (G_n) بين أن (G_n) بين أن أول مبيانيا النتائج المحصلة.

- . (n قيم حسب قيم) . f_n الدالة الدالة الدالة g $e^{rac{n}{2}}$ بین أن f_n تقبل قیمة قصوی نسبیة عند. f_n (ب) بین أن f_n تقبل قیمة f_n (ب) بین أن: $f_n\left(e^{rac{n}{2}}\right)=rac{1}{n!}\cdot\left(rac{n}{2e}
 ight)^n$ (ج)
- ادر س إشارة $f_{n+1}(x)-f_n(x)$ و استنتج الوضع النسبي $oldsymbol{0}$ المنحنيين (\mathscr{C}_n) و (\mathscr{C}_n) تبعا لقيم n
 - 1 حدد معادلة المماس لـ (\mathscr{C}_n) في النقطة ذات الأفصول $oldsymbol{0}$
- (\mathscr{C}_2) و (\mathscr{C}_1) أنشئ في نفس المعلم المنحنيين \mathfrak{G} $(rac{1}{c}pprox0,4$ و $\sqrt{e}pprox1,65$ و ناخذ $||\overrightarrow{i}||=2cm$ و زاخذ
 - $.a_{n}=f_{n}\left(e^{rac{n}{2}}
 ight)$ نضع: \mathbb{N}^{st} نضع (II

$$rac{f_{n+1}(lpha)}{f_n(lpha)}$$
 بين أن: $(orall lpha \in]1;+\infty[):f_n(lpha)>0$ و أحسب $oldsymbol{0}$

$$a_{n+1}=rac{1}{2}f_n\left(e^{rac{n+1}{2}}
ight)$$
 :نين أن Q

$$(orall n\in \mathbb{N}^*): a_{n+1}<rac{1}{2}a_n$$
 بين أن: $(a_n)_{n\geqslant 1}$ أن أنتج أن $(a_n)_{n\geqslant 1}$ متقاربة و حدد نهايتها.

$$I_n(x) = \int_1^x f_n(t) \, \mathrm{d}t$$
 نضع: \mathbb{R}_+^* نضع n ککل (II

 \mathbb{R}^{+*} من x

$$I_k(x):I_{k+1}(x)-I_k(x)=rac{-1}{(k+1)!}rac{(\ln x)^{k+1}}{(\ln x)!}$$
ان:

$$I_n(\forall n \in \mathbb{N}^*): I_n(x) = 1 - \frac{1}{x} - \sum_{k=1}^n \frac{(\ln x)^k}{x(k!)}$$

$$(orall n\in \mathbb{N}^*): 0 < I_n(lpha) < (lpha-1)a_n$$
 (i) بين أن: $(I_n(lpha))_{n\geqslant 1}$ استنتج نهاية المتالية .

$$w_n(lpha)=\sum_{k=0}^nrac{(\lnlpha)^k}{k!}$$
 نضع: \mathbb{N}^* نضع: \mathbb{N}^* نضع: $w_n(lpha)$ اکتب $w_n(lpha)$ بدلالة $u_n(lpha)$ و استنتج نهایة $w_n(lpha)$. $w_n(lpha)$ حدد نهایة المتتالیة $w_n(lpha)$

$$(w_n(lpha))_{n\geqslant 1}$$
 بدلالة $I_n(lpha)$ و استنتج نهاية $w_n(lpha)$

$$u_n = \sum\limits_{k=0}^n rac{1}{k!}$$
 (د) حدد نهاية المتتالية)

المعرفتين على
$$\mathbb{R}^+$$
 بما يلي: $oldsymbol{0}$ أدرس الدالتين U و V المعرفتين على $oldsymbol{0}$

$$V(x) = x - rac{x^3}{3} - ext{Arctg}(x)$$
 و $U(x) = x - ext{Arctg}(x)$

ثم استنتج أن:
$$rac{x^3}{3} = (orall x > 0): 0 \leqslant x - \operatorname{Arctg}(x) \leqslant rac{x^3}{3}$$
 ثم استنتج أن الدالة g المعرفة بما يلي $oldsymbol{arphi}$

$$\left(O; \, \overrightarrow{i}; \overrightarrow{j}
ight)$$
 ليكن (\mathscr{C}_F) منحناها في م م

بين أن F دالة زوجية.

$$.ig(orall x\in\mathbb{R}^+ig): F(0)e^{-x}\leqslant F(x)\leqslant F(0)e^x$$
 بين أن: $ig(rac{1}{2}$ متصلة على اليمين في $ig(e^x + e^x +$

$$(orall x\in \mathbb{R}_+^*):F(x)\geqslant rac{e^x-e^{-x}}{x}$$
 :بين أن $(rac{1}{2})$ بين أن $(rac{1}{2})$ بين أن استنتج طبيعة المفرع اللانهائي لـ (\mathscr{C}_F) بجوار

باستعمال المتغير
$$u=t+\sqrt{1+t^2}$$
 أحسب التكامل: $F(0)$ ثم استنتج قيمة أما $\int_{-1}^1 \frac{\mathrm{d}t}{\sqrt{1+t^2}}$

$$[-1;1]$$
 ليكن x_o عنصرا من \mathbb{R} و x_o عنصرا من $x \neq x_o$ ينصع $x \neq x_o$ $g(x) = \dfrac{e^{xt} - e^{-x_o t}}{x - x_o}$ ينصع $(\forall \varepsilon > 0) \ (\exists \eta > 0) : (\forall x \in \mathbb{R}) \ ,$ $0 < |x - x_o| < \eta \Rightarrow \left| g(x) - te^{x_o t} \right| < \dfrac{\varepsilon}{F(0)}$ بين أن: $(t \in \mathbb{R})$ قابلة للاشتقاق في x_o و أن: $(t \in \mathbb{R})$ شم حدد $(t \in \mathbb{R})$ شم حدد $(t \in \mathbb{R})$

$$(orall x\in\mathbb{R}):F'(x)=\int_0^1 t\left(e^{xt}-e^{-xt}
ight)\sqrt{1+t^2}\,\mathrm{d}t$$
بین آن: $oldsymbol{0}$

$$(\mathscr{C}_F)$$
 متنتج أن F تزايدية على \mathbb{R}^+ ، ثم أنشئ المنحنى F

$$\mathbb{R}^+$$
 متصلة على $egin{aligned} g(x) = rac{ ext{Arctg}(x)}{x}~;~x>0\ g(0)=1 \end{aligned}$ نتكن f الدالة المعرفة على \mathbb{R}^+ بما يلي (II

$$f(0) = 1$$
 $g(x) = \frac{1}{x} \int_0^x g(t) \, \mathrm{d}t \; ; \; x > 0$

$$.(orall x>0): 1-f(x)=rac{1}{x}\int_0^x (1-g(t))\,\mathrm{d}t$$
 بین آن: $oldsymbol{0}$

$$.(orall x>0):0\leqslant 1-f(x)\leqslantrac{x^2}{9}$$
بين أن بين أن $f_d'(0)=0$ بين أن $f_d'(0)=0$ أن أن $f_d'(0)=0$ استثنج أن $f_d'(0)=0$

$$f_d^\prime(0)=0$$
 استنتج أن f متصلة على اليمين في 0 و أن f

$$(orall x\geqslant 1):0\leqslant \int_1^x g(t)\,\mathrm{d}t\leqslant rac{\pi}{2}\ln(x)$$
 :بین آن

$$f(x)=rac{1}{x}\int_0^1g(t)\,\mathrm{d}t+rac{1}{x}\int_1^xg(t)\,\mathrm{d}t$$
 باستعمال الكتابة بين أن: $f(x)=rac{1}{x+\infty}$

III) **0** تحقق أن:

نحقق آن:
$$(\forall x>0): x^2f'(x) = \int_0^x g(t)\,\mathrm{d}t + \mathrm{Arctg}(x)$$

$$h(x)=x^2f'(x)$$
 نكل x من \mathbb{R}^{+*} نضع: \mathbb{R}^{+*} كك $xh'(x)=-\mathrm{Arctg}(x)+rac{x}{x^2+1}$ تحقق أن:

$$\mathbb{R}^{+*}$$
 أدرس تغيرات الدالة ϕ المعرفة على \mathbb{R}^{+*} بما يلي: $\phi(x)=xh'(x)$

 \mathbb{R}^{+*} استنتج إشارة h'(x) ثم إشارة f'(x) لكل x من $oldsymbol{\Phi}$

$$oldsymbol{(0;ec{i};ec{j})}$$
 أنشئ (\mathscr{C}_f) المنحنى الممثل للدالة f في م م م (VI

وا
$$F(x)=\int_{-1}^{1}e^{xt}\sqrt{1+t^2}\,\mathrm{d}t$$
 دالة معرفة على F