Unit I - Vector Calculus

Formula List

1. The vector differential operator ,
$$\nabla \equiv \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}$$

2. Gradient of a scalar point function ,
$$\nabla \phi = \vec{i} \frac{\partial \phi}{\partial x} + \vec{j} \frac{\partial \phi}{\partial y} + \vec{k} \frac{\partial \phi}{\partial z}$$

3. Directional Derivative of
$$\phi$$
 in the direction of \vec{a} is $\overset{\nabla \phi.\vec{a}}{\overset{\rightarrow}{|a|}}$

4. Maximum Directional Derivative of
$$\phi$$
 is $\mid \nabla \phi \mid$

5. Unit normal vector
$$\hat{n} = \frac{\nabla \phi}{|\nabla \phi|}$$

6. Angle between two surfaces is
$$\theta = \cos^{-1} \left(\frac{\nabla \phi_1 \cdot \nabla \phi_2}{|\nabla \phi_1| |\nabla \phi_2|} \right)$$

7. Two surfaces are cut orthogonal then
$$\nabla \phi_1$$
. $\nabla \phi_2 = 0$

8. Divergence of
$$\overrightarrow{F} = \nabla$$
. $\overrightarrow{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$ where $\overrightarrow{F} = F_1 \overrightarrow{i} + F_2 \overrightarrow{j} + F_3 \overrightarrow{k}$

9. Curl of
$$\vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$
 where $\vec{F} = F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k}$

10. If
$$\nabla$$
. \overrightarrow{F} =0 then \overrightarrow{F} is said to be Solenoidal Vector

11. If
$$\nabla x \stackrel{\rightarrow}{F} = \stackrel{\rightarrow}{0}$$
 then $\stackrel{\rightarrow}{F}$ is said to be Irrotational Vector

12. If
$$\nabla \times \stackrel{\rightarrow}{F} = \stackrel{\rightarrow}{0}$$
 then there exists a scalar point function (Scalar Potential) s.t $\stackrel{\rightarrow}{F} = \nabla \phi$

13. Laplacian operator
$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

14. Green's Theorem

If P, Q, $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$ are continuous and single valued functions of x, y in a closed region R enclosed by a curve C, then $\int_C (Pdx + Qdy) = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$

15. Stoke's Theorem

The surface integral of the normal component of the curl of a vector function \overrightarrow{F} over an open surface S is equal to the line integral of the tangential component of \overrightarrow{F} around the closed curve C bounding S. (i.e.) $\int_C \overrightarrow{F} . dr = \int_S curl \overrightarrow{F} . \hat{n} dS$

16. Gauss Divergence Theorem

The surface integral of the normal component of a vector function \overrightarrow{F} over a closed surface S enclosing a volume V is equal to the volume integral of the divergence of \overrightarrow{F} taken throughout the volume V. (i.e.) $\iint_S \overrightarrow{F} \cdot \overset{\circ}{n} ds = \iiint_V div \ \overrightarrow{F} \ dV \ , \text{ where } \overset{\circ}{n} \text{ is the unit outward normal to the surface S}.$