

Data Scientist

Projet N°8: Déployer un modèle dans le cloud

Elaborée par: Mariem Kchaou

Elaboré par: M. Abdou Karim Kandji

Problématique et présentation du jeu de données:

Problématique et présentation du jeu de données:

Problématique

Fruits!

Souhaite proposer des solutions innovantes pour la récolte des fruits.

Développer des robots cueilleurs intelligent à l'aide d'une application qui permettra aux utilisateurs de prendre en photo un fruit et d'obtenir des information sur ce fruit.

Mission

Développer un environnement Big Data. Réaliser une première chaîne de traitement des données avec le préprocessing et une étape de réduction de dimension

Problématique et présentation du jeu de données:

Jeux de données

kaggle

• Origine:

- Images de fruits et légumes et des labels associés (<u>Fruits 360</u>, Mihai Oltean)
- 131 variétés de fruits et légumes différents (un dossier par variété)
- Plusieurs variétés du même fruit (exemple : pomme « red » et « golden »)
- Plusieurs variétés du même légume (exemple : oignon « red » et « white»)
- Caractéristiques :
 - Images 100x100 JPEG RGB
 - Photos studio sur fond blanc de fruits centrée sur le fruit
 - Photos sous tous les angles (timelapse + rotation 3 axes)

Qu'est-ce que le Big Data?

- En Français : les données massives
- Les enjeux en « V » :
 - Volume : trop important pour être stocké et/ou traité sur une seule machine avec des performances acceptables.
 - Dépassement de la capacité de RAM
 - Dépassement des capacités de stockage
 - Etc.
 - Vitesse à laquelle les données sont produites
 - Large Variété de types de données
 - Etc.

Comment répondre à ces enjeux?

Capacités de calcul: Traitement par calculs distribués (MapReduce)

- Diviser les opérations en micro opérations distribuables entre différentes machines, réalisables en parallèle
- Agréger les résultats sur une même machine

Comment répondre à ces enjeux?

- Stockage : système de fichier distribué (ex : HDFS)
- Tolérance aux pannes
 - Utilisation de Resilient Distributed Datasets (RDD)
 - Division des données en partitions
 - Duplication des données (3 machines par défaut)
 - Graphe Acyclique Orienté (DAG) :
 - Panne : Régénération à partir des noeuds parents
 - Noeuds (RDD ou Résultats) : liés par des actions et transformations

Comment répondre à ces enjeux?

Shuffle = redistribution des données entre les noeuds

Quel prétraitement?

Objectif: préparer les images pour le Learning

Réduction de dimensions

Extraction d'information des images

Solutions envisageables

Redimensionnement

Traitement d'image + Extraction de features

Algorithme préentraînés

Décomposition de la problématique

Stockage des données sur un système pouvant être mis à l'échelle Instance Spark
Databricks, AWS S3 ou cluster dédié

Chargement des données dans un format structuré

Prétraitement des données par calcul distribué Stockage des résultats du prétraitement

Code avec Pyspark et Databricks

Liste des images dans l'arborescence

Création d'un Spark Dataframe (RDD) avec les chemins de tous les fichiers images à traiter

Création d'une nouvelle colonne contenant la catégorie de chaque image

Chargement des images

Création d'une nouvelle colonne contenant le vecteur initial de chaque image

Réduction dimensionnelle

Création d'une nouvelle colonne contenant l'extraction des descripteurs de chaque image

Création du moteur Spark

sc = spark.sparkContext

++	
path label features	
+	
dbfs:/FileStore/t Apple Golden 3 [0.017500168, 0.1	
dbfs:/FileStore/t Apple Golden 3 [0.03510401, 0.03	
dbfs:/FileStore/t Apple Golden 3 [0.046940308, 8.5	
dbfs:/FileStore/t Apple Golden 3 [0.7509915, 0.0,	
dbfs:/FileStore/t Apple Golden 3 [0.7926864, 0.0,	
dbfs:/FileStore/t Apple Golden 3 [0.68344444, 0.0,	
dbfs:/FileStore/t Apple Golden 3 [1.2806036, 0.073	
dbfs:/FileStore/t Apple Golden 3 [1.3994256, 0.046	
dbfs:/FileStore/t Banana [1.4588063, 0.217	
dbfs:/FileStore/t Banana [0.031361267, 0.0	
dbfs:/FileStore/t Banana [1.4642526, 0.0,	
dbfs:/FileStore/t Banana [1.3081231, 0.064	
dbfs:/FileStore/t Banana [1.4883254, 0.054	
dbfs:/FileStore/t Banana [0.042054642, 0.1	
dbfs:/FileStore/t Banana [0.08807566, 0.25	
dbfs:/FileStore/t Banana [0.55912465, 0.04	
dbfs:/FileStore/t Banana [0.065307796, 0.4	
Idbfs:/FileStore/t Bananal[0.10381209. 0.45	

Chargement des données Charger les images en format « jpg » et le lire en format binaire

Préparation du modèle Charger le modèle MobileNetV2 avec les poids précalculés issus d'imagenet

Extraction des features Exécuter la featurisation sur l'ensemble de notre DataFrame Spark

Affiche dataframe C'est l'action .show() ici qui permet de lancer toute la procédure cidessus

```
PATH = '/FileStore/tables/projet_8/'

images = spark.read.format("binaryFile") \
    .option("pathGlobFilter", "*.jpg") \
    .option("recursiveFileLookup", "true") \
    .load(PATH)
```

df.show()

Réduction de dimension

Réducteur
Transformer des tableaux en vecteurs pour effectuer une réduction

Initialiser et appliquer PCA Les résultats peuvent varier avec un ensemble de données plus grand, crée une tâche lourde Action qui affecterait les performances globales. Transformation inverse : de vecteurs à tableau

```
from pyspark.ml.linalg import Vectors, VectorUDT
array_to_vector_udf = udf(lambda l: Vectors.dense(l), VectorUDT())
```

```
import time
from pyspark.ml.feature import PCA
start = time.perf_counter()
pca = PCA(k=3, inputCol='cnn_vectors', outputCol='pca_vectors')
model = pca.fit(vectorized_df)
stop = time.perf_counter()
print(f'pca - fit best k nb, elapsed time: {stop - start:0.2f}s')
```

vector_to_array_udf = udf(lambda v: v.toArray().tolist())

Réduction de dimension

```
path
                              label
                                                features
                                                                   cnn_vectors
                                                                                        pca_vector
S
|dbfs:/FileStore/t...|Apple Golden 3|[-5.7529388963716...|[0.01750016771256...|[-5.752938896371
6...
|dbfs:/FileStore/t...|Apple Golden 3|[-7.0583027208667...|[0.03510401025414...|[-7.058302720866
7...
|dbfs:/FileStore/t...|Apple Golden 3|[-6.7665607771005...|[0.04694030806422...|[-6.766560777100
5...
|dbfs:/FileStore/t...|Apple Golden 3|[-6.1485216111750...|[0.75099152326583...|[-6.148521611175
0...
|dbfs:/FileStore/t...|Apple Golden 3|[-6.1959023618131...|[0.79268640279769...|[-6.195902361813
1...
-+
```


Création d'un cluster

Téléchargement des fichiers

La Bucket trouvé avec S3 Amazon

	Nom	•	Région AWS	▽	Accéder	abla	Date de création
\circ	databricks-startupfruit-stack-lambdazipsbucket-1gawfps5ml	ktci	UE (Francfort) eu-centra	ıl-1	Les objets peuvent êtro publics	e 	15 Feb 2023 01:24:22 PM C
0	db-d514e3a73fe3bef6fbe66b39fab22dc0-s3-root-bucket		UE (Francfort) eu-centra	ıl-1	Compartime et objets non publics		15 Feb 2023 01:24:23 PM C

Nom 🔺	Type ▽	Dernière modification ▽	Taille ▽	Classe de stockage ▽	
part-00010-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-90-1-c000.snappy.parquet	parquet	15 Feb 2023 03:10:53 PM CET	52.7 Ko	Standard	
part-00011-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-91-1-c000.snappy.parquet	parquet	15 Feb 2023 03:10:53 PM CET	51.7 Ko	Standard	
part-00012-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-92-1-c000.snappy.parquet	parquet	15 Feb 2023 03:10:57 PM CET	51.8 Ko	Standard	
part-00013-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-93-1-c000.snappy.parquet	parquet	15 Feb 2023 03:10:57 PM CET	47.5 Ko	Standard	
part-00014-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-94-1-c000.snappy.parquet	parquet	15 Feb 2023 03:10:58 PM CET	48.9 Ko	Standard	
part-00015-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-95-1-c000.snappy.parquet	parquet	15 Feb 2023 03:10:58 PM CET	48.4 Ko	Standard	
part-00016-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-96-1-c000.snappy.parquet	parquet	15 Feb 2023 03:11:02 PM CET	48.2 Ko	Standard	
part-00017-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-97-1-c000.snappy.parquet	parquet	15 Feb 2023 03:11:02 PM CET	47.0 Ko	Standard	
part-00018-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-98-1-c000.snappy.parquet	parquet	15 Feb 2023 03:11:02 PM CET	42.6 Ko	Standard	
part-00019-tid-8743318253540963959-86cac222-79f4-491f-ae63-5598f1277b56-99-1-c000.snappy.parquet	parquet	15 Feb 2023 03:11:03 PM CET	39.8 Ko	Standard	

Conclusion

- Enseignements
 - Prise en main Pyspark
 - Découverte du format distribué parquet
 - Découverte de l'écosystème AWS
 - Découverte de Datbricks

le déploiement de l'application PySpark sur un cluster AWS, beaucoup plus économique et qui permet un passage à l'échelle très simple.

Choix d'un modèle adapté avec le client. Avec le déploiement, bien penser l'évolution de l'infrastructure en fonction des besoins et du budget alloué.

