

Nano Core Interface Description v2 (v2.0.0.1678)

IDD

1002 - Nano Core

Author(s)						
Function:	Software Engineer	Function:	Software Engineer			
Name:	Jos Vos	Name:	Dawid Zalewski			
Date (yyyy-mm-dd)	Signature	Date (yyyy-mm-dd)	Signature			
Document Approval						

Function: Mechatronic System Engineer Function:

Mechatronic System Engineer

Name: Mark-Willem Jansen Name:

Date (yyyy-mm-dd) Signature Signature

Function: Function:

Name: Name:

Date (yyyy-mm-dd)

Signature

Date (yyyy-mm-dd)

Signature

Document Release Document Identification and Filing

Name: Mark-Willem Jansen 1002 1.0 Released

Product:

Version:

Status:

Date (yyyy-mm-dd) Signature Project: Dossier: Doc. ID:

522.08 DHF PRD1002-4-123

Function:

TMPL-2-74 Confidential Page 1 of 27

Change	Change log					
Version	Date (YYYY-MM-DD)	Author	Description of change(s)			
1.0	2017-04-25	SLI	Duplicate of D1129953_IDD Nano Core Communication			
			Protocol_00_11			
1.1	2017-05-18	DZA	First draft Nano Core OEM			
1.2	2017-05-23	DZA	Minor updates to draft			
1.3	2017-05-24	DZA	Changed BeatToBeat OEM messages format			
1.4	2017-05-29	DZA	Minor updates to draft			
1.5	2017-06-12	DZA	Changed Status message, changed BeatToBeat OEM messages			
1.6	2017-06-20	DZA	Draft ready for review			
1.7	2017-06-22	DZA	Processed review comments			
1.8	2017-06-29	DZA	Processed review comments			
1.9	2017-07-07	MJN	Document prepared for review			
1.10	2017-07-07	DZA	Moved bootloader command to separate IDD			
1.11	2017-07-20	BZW	Changed BraCal abort message Error to Warning			
1.12	2017-07-27	BZW	Added extra status in ModelFlow which indicated if a BraCal can be			
			performed.			
1.13	2017-08-03	DZA	Moved the information about whether BraCal is allowed from the			
			status field to a separate bit.			
1.14	2017-08-03	DZA	Changed the Zero HCU command specs to match the implementation			
1.15	2017-09-21	BZW	Added error for driver failure (introduced in software version v1.2.4)			
1.16		BZW				
1.17	2017-11-02	BZW	Restored to version 1.15			
2.1	2017-11-15	MJN	Removed 0xFF response of 'z' command.			
0.1	2017-11-16	BZW	Created new document for v2.0.0.1678 of the firmware.			
0.2	2017-11-16	SLI	Review comments.			
1.0	2017-11-17	BZW	Process review commets.			

Review Status					
Version before review	Review date (YYYY-MM-DD)	Reviewers	Company		
0.1	2017-11-16	SLI	DEMCON		
Result of review	Accepted after processing of	of comments			

Former Profile History

Rev_ver	Date	Author	Description
00_01	10-06-2014	Raymond Otte	Initial version
00_01	2-9-2014	WBO	Change setmode to execute command
00_02	5-11-2014	JVS	Reworked a lot of commands to simplify behavior. Added bandwidth calculations.
00_03	24-02-2015	JVS	Added error and warnings. Reworked versioning
00_04	18-02-2016	RJE	Service-tests: add units of results-values
00_05	11-03-2016	JVS	Added received ID to the bootloader nack.
00_06	11-04-2016	RJE	Fill in review data, replace 'NanoCore' by 'Nano Core', correct some typos
00_07	11-05-2016	RJE	Add physical status to DataTransmission command
00_08	20-05-2016	JVS	Added production tests
00_09	07-06-2016	JVS	Added accelerometer test and some small updates to

Interface Description

Product: **1002 - Nano Core**

			other tests.
00_10	28-11-2016	JVS	Updated behavior of beat to beat packet during specific conditions.
00_11	23-01-2017	JVS	Updated beat to beat packet with additional information

Former review status

Rev_ver before review	Review date	Reviewers		Con	npany
00_05	11-04-2016	RJE		DEN	MCON
Result of review:	Rejected / Accepted after processing of comments / Accepted			oted	
00_11	23-01-2017 M		MJN		DEMCON
Result of review:	Rejected / Accepted after processing of comments / Accepted			oted	

References

Number	Author(s)	Description
[1]		

Abbreviations

Abbreviation	Description
IDD	Interface Design Description

Definitions

Definition	Description
DEMCON	DEMCON Advanced Mechatronics B.V.

TABLE OF CONTENTS

L.	. INT	RODUCTION	• • • • • • • • • • • • • • • • • • • •	6
2 .	CON	MMUNICATION PROTOCOL		7
		Hardware configuration		
	2.2	Global message layoutSTX, character		7
	2.2.2	Cmd and cmd-data		
	2.2.3	Error-checking		
		Byte ordering		8
		Operating Modes		
		Reused data types		10
	2.5.1	Mode [1 byte]		
	2.5.2	Nack error code [1 byte]		
	2.5.3	Error code [1 byte]		
	2.5.4	Warning code [4 bytes]		
	2.5.5	Status [13 bytes]		
	2.5.6	TimeStamp / SampleNumber [2 byte]	14	
		Commands		14
	2.6.1	Nack message		
	2.6.2	Version Info ('v') [130 bytes]		
	2.6.3	Status ('s') [15 bytes]	17	
	2.6.4	Alive ('a') [1 byte]		
	2.6.5	StatusUpdate ('u') [2/4 bytes]	17	
	2.6.6	DataTransmission ('d' and 'D') [5\9\10 bytes]	17	
	2.6.7	BeatToBeatDataTransmission ('b' and 'B') [10\14\24\28 bytes]	18	
	2.6.8	Mode ('m') [1/2 bytes]	20	
	2.6.9	Execute command	20	
	2.6.10	PatientData ('p') [1/8 bytes]	20	
	2.6.11	1 CuffUsage ('c') [1/2 bytes]	20	
	2.6.12	2 HCU Commands ('z') [1/4 bytes]	21	
	2.6.13	3 PhysioCal ('h') [1/2 bytes]	21	
	2.6.14	4 ModelFlowCalibration ('f')	21	
	2.7	Service commands		22
	2.7.1	ServiceTest ('t') [1/X bytes]	22	
	2.7.2	SteadyPressureTest (Testid = 0x01)	22	
	2.7.3	SquareWaveTest (Testid = 0x02)	23	
	2.7.4	ExhaustValveTest (Testid = 0x03)	23	
	2.7.5	CuffValveTest (Testid = 0x04)	23	
	2.7.6	HBridgeLinearityTest (Testid = 0x05)	24	
	2.7.7	VolumeRatioTest (Testid = 0x06)	24	

Interface Description

1002 - Nano Core

2.7.8	LeakageTest (Testid = 0x07)	24
2.7.9	PumpPerformanceTest (Testid = 0x08)	24
2.7.10	PressurePulseTest (Test = 0x09)	24
2.7.11	Production Pressure Sensor test (Test = 0x0A)	25
2.7.12	Production led controller test (Test = 0x0B)	25
2.7.13	Production plethysmograph test (Test = 0x0C)	25
2.7.14	Production HCU amplifier test (Test = 0x0D)	25
2.7.15	Production temperature Sensor test (Test = 0x0E)	26
2.7.16	Production accelerometer test (Test = 0x0F)	26

1. INTRODUCTION

This document describes the protocol that is implemented on the Finapres Nano Core. This is used to interface display devices to the Nano Core and control the Nano Core operations.

2. COMMUNICATION PROTOCOL

2.1 Hardware configuration

The serial port of the Nano Core is configured as follows:

- 115200 Baud rate
- 1 stop byte
- No flow control

2.2 Global message layout

STX	LEN	LEN	STX	cmd	cmd-data	CRC
1 byte	bytes	1 byte				

2.2.1 STX, character

Detecting and differentiating separate messages is done using the STX, LEN, LEN, STX. Note that LEN is a single byte which is sent 2 times. Maximum length is therefore limited to 255 bytes. Implementation can use the following easy rules:

- STX = 0xD4
 LEN = the total number of bytes of cmd + cmd-data
 receive STX, LEN, LEN, STX → possible start of message.
- Receive LEN byte and check if the CRC over these bytes matches the CRC at the end of the message.

2.2.2 Cmd and cmd-data

Each message has a cmd, followed by cmd-data. The cmd identifies the type of message. The amount and type of cmd-data differs per cmd, and can also be 0. The cmds are defined separately.

All messages sent from the PC (except the get status message) will be acknowledged by the Nano. This is done by sending a message back. With the same cmd to ACK the message, or with (cmd OR 0x80) to NACK the message, right after the NACK-ed cmd there will be an error code. See 2.5.2

Messages sent by the μ C are not ACK by the PC.

2.2.3 Error-checking

Every message has a CRC-check in order to detect transmission failures. The STX and LEN are excluded from the CRC-calculations (if STX or LEN are not received correctly, the message is lost anyway, since we are not able to detect it anyway). We choose an 8-bit CRC with the following polynomial (CRC-8 Dallas/Maxim 1): CRC = $x^8 + x^5 + x^4 + x^0$

If a CRC-check fails, the message is simply discarded. If a message is important, it is indicated in the protocol that the receiver should send a response. If such a response times out at the sender-side, it can be resent. After a multiple or time-outs, the receiver can be indicated as 'connection lost'.

-

¹ See http://www.ross.net/crc/download/crc v3.txt and http://en.wikipedia.org/wiki/Cyclic redundancy check#Commonly used and standardized CRCs

2.3 Byte ordering

Multi-byte values are sent in 'little endian' ordering (standard Intel format), i.e. 'least significant byte' first. So a 4-byte value 0x12345678 is sent as {0x78, 0x56, 0x34, 0x12}.

2.4 Operating Modes

The Finapres Nano protocol can be in the following modes:

Boot self-test

Nano is starting up, doing selftest, etc. After starting up the Nano will automatically go to Idle Mode, if self test found a un recoverable error the Nano will go to Error state.

All commands are readonly in this mode.

Idle

No active measurement or service, measurements can be started and services can be started.

Measure

Active measurement is running.

Error

An error has ocured, this needs to be cleared in order to get back to idle.

Maintainance

Maintainance can be started, starting and stopping diagnostics.

BootLoader

Mode is not shown in the figure below, but is reachable when an enter bootloader command is sent. This command can be sent from Idle and Error

Not all commands are available in all modes, the table below shows which commands are available in each

	Boot self-test	Idle	Measure	Service	Boot loader	Error
Version Info	✓	√	✓	✓	✓	✓
Alive			✓	✓		
Status	✓	✓	✓	✓		✓
StatusUpdate	✓	✓	✓	✓		
DataTransmission			✓	✓		
B2BDataTransmission			✓			
Mode	readonly	✓	✓	✓	read only	✓
PatientData		✓	readonly	readonly		readonly
CuffUsage		✓	readonly	readonly		readonly
ZeroHCU		✓	✓	✓		
PhysioCal			✓			
MaintenanceTest				✓		
FirmwareFlashStart					✓	
FirmwareData					✓	
Hardware Info Erase					✓	
Hardware Info Data					✓	

2.5 Reused data types

2.5.1 Mode [1 byte]

	Mode							
	Main-	mode			Transition			
7	6	5	4	3	0			

Bit 7-4 = Main-mode,

0b0000 = Starting up

0b 0001 = Idle

0b 0011 = Measure

0b 0100 = Service

0b 0111 = Boot loader

0b 1111 = Error

Bit 1-3 = reserved for Sub-mode

Depending on which mode the device is in, the sub-mode is changed.

If mode is Bootloader

0b000 = Bootloader Idle

0b001 = Bootloader Flash Erased

0b010 = Bootloader Board Erased

Bit 0 = indicates if the device is in a mode transition,

0 = No transition going on and mode/sub-mode is current mode,

1 = Transition to mode/sub mode is going on.

2.5.2 Nack error code [1 byte]

Nack error code							
7	6	5	4	3	2	1	0

Error codes:

0x01 Bootloader: out of order packet

0x02 Bootloader: flash not started for some reason

0x07 Current message is not allowed0x08 Parameter-value is out of range0xFC Message data length incorrect

0xFD Not implemented

OxFE Not supported message ID OxFF Unknown message ID

Interface Description

1002 - Nano Core

2.5.3 Error code [1 byte]

Internal		Error code						
7	6	5	4	3	2	1	0	

- Error code (bits 0 6). Error codes need to be cleared individually, after the first error is cleared, more errors can be present, and will also have to be cleared.
- Internal, flag indicating the responsibility ownership for the error:
 0= the error must be cleared by the host

1= internal error; it needs not to be cleared. Nano Core is not in the Error Mode and is performing some other tasks. An attempt to clear the error will be made by Nano Core.

NoError	=	0,
GeneralError	=	1,
LedContr_erro_LowControlVolt	=	2,
LedContr_erro_HighControlVolt	=	3,
LedContr_erro_HighLedCurrent	=	4,
LedContr_erro_TooManyIteratio	=	5,
LedContr_erro_CurrBelowDrift	=	6,
LedContr_erro_CurrAboveDrift	=	7,
LedContr_erro_VoltBelowRange	=	8,
LedContr_erro_VoltAboveRange	=	9,
Plethysm_erro_TooMuchLight	=	10,
PhysScan_erro_SyncBeatTimeOut	=	11,
PhysScan_erro_ScanFailed	=	12,
PhysScan_erro_BeatDownTimeOut	=	13,
PresMoni_erro_IncorrectPress	=	14,
PresMoni_erro_UnstablePress	=	15,
ManoBeDe_erro_PressTooLow	=	16,
SignInMo_erro_MeanPressLow	=	17,
SignInMo_erro_UnacceptableP	=	18,
SignInMo_erro_MeanPressHigh	=	19,
PreContr_erro_CuffPreSensRang	=	20,
PreContr erro VolPreSensRang	=	21,
PreContr_erro_CuffPreExceed	=	22,
PreContr erro CuffPreExceLong		23,
PreContr_erro_VolPreExceed		24,
PreContr_erro_CurrExceedLong		25,
SysIntgr_erro_VoltageSenseFailure	=	26,
SysIntgr_erro_HcuRefSenseFailure		27,
SysIntgr_erro_PletRefSenseFailure		28,
SysIntgr_erro_HouseTempSenseFailure		29,
SysIntgr_erro_cuffPressureSenseFailure		30,
SysIntgr_erro_volumePressureSenseFailur		
SysIntgr erro VoltageOutLimits		32,
SysIntgr_erro_HcuRefOutLimits	=	33,
SysIntgr_erro_PletRefOutLimits		34,
SysIntgr_erro_cuffPressureSignalOffset	=	
SysIntgr_erro_volumePressureSignalOffse	t=	
SysIntgr_erro_pressureSensorTimeout	=	37,
AppContr_erro_PressureToHigh	=	39,
AppContr_erro_caseTemperatureOutLimits	=	40,
AppContr_erro_pcbTemperatureOutLimits		41,
AppContr erro MeasurementToLong		42,
HcuContr_erro_hcuOffsetToBig		43,
HcuContr_erro_NotAllowed		44,
AppContr_erro_KeepAliveNotReceived		45,
Driver_erro_SensorFailed		46

2.5.4 Warning code [4 bytes]

Warning code 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Warning codes: Copied directly from ErrorStatus.h

```
= 0x00
NoWarning
GeneralWarning
                                = 0x01
PhysScan_warn_NewScanWithAHB
                               = 0x01 << 1
PhysAdju_warn_BeatUpTimeOut
                               = 0x01 << 2
PhysAdju_warn_BeatDownTimeOut
                               = 0x01 << 3
ManoBeDe_warn_PulseVeryLow
                                = 0x01 << 4
                                = 0x01 << 5,
ManoBeDe_warn_NoPulse
SignInMo_warn_DecreasePletSp
                               = 0 \times 01 << 6
OsciCont_warn_DecreasePletSp
                               = 0 \times 01 << 7
                                = 0x01 << 8
PreContr_warn_BadStart
PreContr_warn_I2T_Protection
                            = 0 \times 01 << 9,
PreContr_warn_HighCurrent
                                = 0 \times 01 << 10,
PreContr_warn_PlungerPosEnd
                               = 0 \times 01 << 11,
SysIntgr_warn_PressureSensorTrend = 0x01 << 14,
AppContr_warn_MeasurementLong = 0x01 << 15,
ModFlow warn BraCalLong
                               = 0x01 << 16,
ModFlow warn BraCalLongAborted = 0x01 << 17
```

2.5.5 Status [13 bytes]

	Status Nano Core OEM [13]								
Mode	Error	Warning	Misc	Cuff	Physiocal	BeatsTill	Physiocal	Cuff	Model
1 Byte	1 Byte	4 Bytes	1 Byte	1 Byte	1 Byte	Physiocal	Interval	Control	Flow
,	,	,	,	,		1 Byte	1 Byte	1 Byte	1 Byte

- Mode, see 2.5.1
- Error, see 2.5.2 for error codes. If bit 7 of the error code is set, the error needs not to be cleared by host.
- Warning code, see 2.5.4
- Status misc,

	Misc							
нси			HCU S	ettings	Spare status bits			
7	6	5	4	3	2	1	0	

o HCU

000 = HCU not connected

001 = HCU not zeroed

010 = HCU zeroed

011 = HCU zeroed (uncertain), could happen if HCU is disconnected and connected again, height could be incorrect because we don't know if same HCU is reconnected

100 = HCU is zeroing at the moment

Status Cuff,

	Cuff						
		Current Cuff					
7	7 6 5 4 3 2						0

MinutesTillSwitch,

0x00 = Automatic cuff control is disabled

0x3e = Switching (or enabling) cuff now

otherwise = Minutes until next automatic cuff switch (or retry)

CurrentCuff

01 = Cuff 1 in use,

10 = Cuff 2 in use

Status Physiocal,

	Physiocal							
PhysiocalState Spare status bits				Quality				
7	6	5	4	3	2	1	0	

Quality

0000 = 0, Off

0001 = 1, Uncertain

0010 = 2, Very inadequate

0011 = 3, Inadequate

0100 = 4, Adequate

0101 = 5, Sufficient

0110 = 6, Useful

0111 = 7, Good

1000 = 8, Great

1001 = 9, Excellent

o PhysiocalState

00 = Turned off,

01 = Idle,

10 = Physiocal scan active

11 = Physiocal adjust active

- BeatsTillPhysiocal, Number of beats till physiocal
- PhysiocalInterval, Number of beats between physiocal
- Automatic Cuff Control,

			CuffC	ontrol			
		Retry numbei				Status	
7	6	5	4	3	2	1	0

- Status
 - 000 = 0, Automatic cuff control disabled
 - 001 = 1, Automatic cuff control enabled, normal operation
 - 010 = 2, Automatic cuff control is temporarily suspended by other Nano Core functions
 - 011 = 3, Automatic cuff control is temporarily suspended by other Nano Core functions. A switch will happen as soon as it's resumed
 - 100 = 4, Busy switching cuffs or enabling the cuff at the start of measurement
 - 101 = 5, Switching (or enabling) failed due to internal logic error, time to next retry is transmitted in MinutesTillSwitch of Cuff byte,
 - 110 = 6, Switching (or enabling) failed due to error, time to next retry is transmitted in MinutesTillSwitch of Cuff byte. Error that prevented cuff switching is transmitted in the Error field (it needs not to be cleared), see 2.5.3 for possible error
- Retry number: counter holding the current retry attempt number
 0x1e = at least 30 retries already performed

0x1f = final retry attempt

otherwise = retry attempt number

- Status ModelFlow,

	ModelFlow								
Calibration allowed	Patient	Reserved	Calibrati	on status	М	odelFlow stat	tus		
7	6	5	4	3	2	1	0		

ModelFlow status

000 = 0, Not active, missing input data

001 = 1, Not active, all required input data provided

010 = 2, Active, measuring

011 = 3, Active, performing BraCal

Calibration status

00 = 0, Calibration not applied

01 = 1, Calibration applied, using calibration values obtained through BraCal procedure

10 = 2, Calibration applied, using stored calibration values

- Reserved
- o Patient
 - 0 = Patient data was not set, or received data was out of range,
 - 1 = Patient data was set
- o Calibration allowed
 - 0 = Performing BraCal procedure is not possible
 - 1 = Performing BraCal procedure is allowed

2.5.6 TimeStamp / SampleNumber [2 byte]

Time stamps are specified as counter of samples from the high frequency data.

This way every high frequency sample is consecutively numbered, and missing samples are easy to detect. Once 65.535 is reached the next sample number will be 0. This will happen about every 327 sec at 200Hz (65 seconds on 1kHz)

2.6 Commands

2.6.1 Nack message

	cmd-ID	Nack-code
Nano → PC	Nack-cmd	Nack-code

Nack-cmd:

The command requested OR-ed with 0x80, for example the 'v' command, is nacked with 0xf6.

Nack-code

The reason for not acknowledge. See 2.5.2.

2.6.2 Version Info ('v') [130 bytes]

Structs are returned on request. These structs are direct copies from the firmware information:

	cmd-ID	cmd-data				
PC → Nano	'v'=0x76	info ID				
Nano → PC	'v'=0x76	0x00 Hardware info struct [128 bytes]				
Nano → PC	'v'=0x76	OxOA Application version struct [128 bytes]				
Nano → PC	'v'=0x76	OxOB Bootloader version struct [128 bytes]				
Nano → PC	'v'=0x76	0x0C Unified identification strings [varying length]				
Nano → PC	'v'=0x76	0x0D	Unique device ID [12 bytes]			

The following info can be acquired by info ID:

- 0x00 = Hardware info struct
- 0x0A = Application version struct
- 0x0B = Bootloader version struct

- 0x0C = Unified identification string
- 0x0D = Unique device ID a 96-bit unique processor identifier, set by the processor manufacturer

The hardware info struct:

Register	Size	Offset	Value
Magic ID	0x04	0x00	0x49 0x6E 0x66 0x6F (= "Info")
Struct Length	0x02	0x04	0x00 0x80 (= 128)
Struct Version	0x01	0x06	0x01 (= 1)
Struct Type	0x01	0x07	0x48 = 'H' = Hardware
Hw Version	0x02	0x08	
Hw Model	0x02	0x0A	
Hw Config	0x04	0x0C	(32 bits, t.b.d.)
Reserved	0x0C	0x10	(reserved for future extension, 14 bytes)
Serial Nr	0x64	0x1C	(free definable data, 100 bytes)

Description of the struct-elements:

Magic ID:

This is used to provide a check for a firmware version. If this at the specified location it does not show 0x49 0x6E 0x66 0x6F or "Info" in ASCII, this is not a correctly built, or incompatible firmware image.

– Struct Length:

In this version of the software, the struct is 128 bytes in total length.

– Struct Version:

This is version 1 of the struct.

– Struct Type:

This defines the information contained in the struct, fixed as 'H'. This way, it has the same layout as the version info struct.

- Hw Version:

This describes the version of the complete Nano Core hardware from a software compatibility point of view. It is used by the programming-sw to determine the proper firmware version that can be flashed into this Nano Core hardware (hardware-firmware mapping logic). The firmware itself can also check whether it is allowed to run on this hardware.

The HwVersion must match the 'hardware'-nr of the firmware.

Hw Model:

The HwModel can be used for different product/application-types. The following products types are defined:

0x00 = Undefined (shall be handled as Nano Core Nova)

0x01 = Nano Core Nova

0x02 = Nano Core OEM

Hw Config:

Each of the 32 bits indicate that a hardware-option is available. The available hardware-options are t.b.d. Hardware options can refer to both electrical and mechanical options (or versions of options). With these bits, the application-software can properly act upon certain options, or use a specific parameter-set. It exists apart from the HwVersion in order to isolate 'options' from 'compatibility'.

- Reserved:

These bytes are reserved for future extensions.

Serial Nr:

A set of 100 bytes to store the serial number of the Nano Core in a free manner. This will most likely be a (null-terminated) string.

Application and Bootloader version struct:

Register	Size	Offset	Value
Magic ID	0x04	0x00	0x49 0x6E 0x66 0x6F (= "Info")
Struct Length	0x02	0x04	0x00 0x80 (= 128)
Struct Version	0x01	0x06	0x01 (= 1)
Struct Type	0x01	0x07	0x42 = 'B' = <u>B</u> ootloader
			0x4E = 'N' = Nano Core
			0x49 = 'I' = Integration
Hardware	0x02	0x08	
Major	0x01	0x0A	
Minor	0x01	0x0B	
Patch	0x02	0x0C	
Revision (SVN)	0x02	0x0E	
Protocol Version	0x01	0x10	2
Build Information	0x6F	0x11	111 bytes

Description of the struct-elements:

- MagicID:

This is used to provide a check for a firmware version. If it does not show 0x6f66 6e49 or "Info" in ascii at the specified location, this is not a correctly built, or incompatible firmware image.

– StructLength:

In this version of the software, the struct is 128 bytes in total length.

– StructVersion:

This is version 1 of the struct.

- Major, Minor, Patch, Revision, Hardware:

Version information is stored in these values. The hardware-nr must match the HwVersion of the board-info struct. In order to keep the bootloader as simple and unaware as possible, it will not check hardware compatibility. But the firmware itself must perform the check at startup. The hardware-nr is essentially part of the full firmware version numbering-scheme:

Protocol Version:

Describes which communication protocol is used by the software.

Build Information:

0x70 bytes build information which can be filled with whatever value. For example: Bootloader_Debug.V0.0.00906.00000.0.bin

Unified identification strings, comma-separated, ASCII-encoded, null-terminated unified identifier, formatted as:

 $\\ {\it wmodel_id}, {\it whardware}, {\it wserial_number}, {\it wapplication_INFO}, {\it whore}; \\ {\it where}:$

- model-id: model id, as defined in hardware info struct → hw model
- APPLICATION_INFO, BOOTLOADER_INFO: application/bootloader identifiers in format: «app-string»_«app-char»_«major».«minor».«patch»_«revision»_«protocol», with:
 - app-string: human readable application type ("Bootloader", "Nano Core", "Integration")
 - app-char: machine readable application type ('B', 'N', 'l')
 - major, minor, patch, revision, hardware: as defined in application/bootloader version struct
 - protocol: communication protocol version

Valid example:

3,2,0123456789ABCDEF,Nano Core_N_1.2.3_4567_2,Bootloader_B_3.2.1_0123_1

2.6.3 Status ('s') [15 bytes]

	cmd-ID	cmd-data			
PC → Nano	's'=0x73	-			
Nano → PC	's'=0x73	TimeStamp[2]	Status[13]		

- TimeStamp, 2 bytes, see 2.5.6
- Status, 13 bytes, see 2.5.5

2.6.4 Alive ('a') [1 byte]

	cmd-ID	cmd-data
PC → Nano	'a'=0x61	-
Nano → PC	'a'=0x61	

During measurement alive has to be sent at 1 Hz. This will ensure that communication between the Nano Core and the host is still active. If the Alive command has not been received for some time, the Nano Core will stop measuring and enter idle mode.

2.6.5 StatusUpdate ('u') [2/4 bytes]

	cmd-ID	cmd-data				
PC → Nano	'u'=0x75	Update mode	[TimeMs[2]]			
Nano → PC	'u'=0x75	Update mode	[TimeMs[2]]			

- Update mode, bit flags
 - \circ Bit 0, 0 = No time based updates.
 - 1 = Time based update, update every 'TimeMs'
- TimeMs(Optional), 2 bytes, Update time in ms, only needed if time base update mode flag is set

2.6.6 DataTransmission ('d' and 'D') [5\9\10 bytes]

	cmd-ID	cmd-data					
Nano → PC	'd'=0x64	TimeStamp[2]	mp[2] BP[2] HGT[2] PLET[2] PHYSIOCAL[1]				
Nano → PC	'D'=0x44	'p'=0x62	TimeStamp	o_hcFAP[2]	hcF <i>A</i>	AP[2]	
Nano → PC	'D'=0x44	'b'=0x62	TimeStamp	o_reBAP[2]	reBA	AP[2]	

DataTransmission commands don't need confirmation. Capitalized cmd-ID ('D' instead of 'd') indicates that there is a subcommand field ('b' or 'a') present.

- TimeStamp, 2 bytes, see 2.5.6.
- BP, 2 bytes, Finger blood pressure in 1/10 mmHg, signed 16 bit value
- HGT, 2 bytes, Height correction in 1/10 mmHg, signed 16 bit value
- PLET, 2 bytes, Plethysmograph signal, unsigned 16 bit value
- PHYSIOCAL, 1 byte, physiocal state, see 2.5.5.
- TimeStamp_hcFAP, 2 bytes, see 2.5.6.
- hcFAP, 2 bytes, Height-corrected finger arterial pressure in 1/10 mmHg, signed 16 bit value (only Nano Core OEM)
- TimeStamp_reBAP, 2 bytes, see 2.5.6.
- reBAP, 2 bytes, Brachial arterial pressure in 1/10 mmHg, signed 16 bit value (only Nano Core OEM)

2.6.7 BeatToBeatDataTransmission ('b' and 'B') [10\14\24\28 bytes]

	cmd-ID	cmd-data						
Nano → PC	'b'=0x62	Tin	neStamp	B2Bnr	Finger pressure data			
		2 Bytes		1 Byte	11 Bytes			
Nano → PC	'B'=0x42	'd'=0x64	TimeStamp	B2Bnr	OEM Derived data			
			Derived	Derived	10			
			2 Bytes	1 Byte				
Nano → PC	'B'=0x42	'r'=0x72	TimeStamp	B2Bnr	OEM Reconstructed data			
			Reconstructed	Reconstructed	6 bytes			
			2 Bytes	1 Byte				

BeatToBeatDataTransmission commands don't need confirmation. Capitalized cmd-ID ('B' instead of 'b') indicates that there is a subcommand field ('d' or 'r') present.

- TimeStamp, TimeStampDerived and TimeStampReconstructed, 2 bytes, see 2.5.6
- B2Bnr, B2BnrDerived and B2bnr Reconstructed 1 byte, B2B sample counters, unsigned 8 bit value

Finger pressure data [11]							
Sys[2]	Dia[2]	Map[2]	HR[2]	IBI[2]	Artefact[1]		

- Finger pressure data, 11 bytes
 - O Sys, 2 bytes, Systolic blood pressure in 1/10 mmHg, unsigned 16 bit value
 - o Map, 2 bytes, Mean arterial in 1/10 mmHg, unsigned 16 bit value
 - O Dia, 2 bytes, Diastolic blood pressure in 1/10 mmHg, unsigned 16 bit value
 - O HR, 2 bytes, Heart rate in 1/10 beats per minute, unsigned 16 bit value
 - o IBI, 2 bytes, Inter beat interval in milliseconds, unsigned 16 bit value
 - Artefact, 1 byte, If and which artefact has occurred during the beat.

Artefact bits, copied from source code:

timeOut	1	<<	0
physiocalBeat	1	<<	1
spiked	1	<<	2
imperfect	1	<<	3
oscill	1	<<	4
damped	1	<<	5
sampleMissing	1	<<	6
pressureControl	1	<<	7

Note: This packet can be sent where all fields contain zeroes. This is done when no pulsation is found.

OEM Derived Data [10]
DerivedBasic
10 bytes

OEM Derived Data, 10 bytes

Product: **1002 - Nano Core**

DerivedBasic [10]						
fiSys[2]	fiDia[2]	fiMap[2]	HR[2]	IBI[2]		

- O DerivedBasic, 10 bytes, derived pressure variables
 - fiSys, 2 bytes, Systolic finger blood pressure in 1/10 mmHg, unsigned 16 bit value
 - fiMap, 2 bytes, Mean finger arterial pressure in 1/10 mmHg, unsigned 16 bit value
 - fiDia, 2 bytes, Diastolic finger blood pressure in 1/10 mmHg, unsigned 16 bit value
 - HR, 2 bytes, Heart rate in 1/10 beats per minute, unsigned 16 bit value
 - IBI, 2 bytes, Inter beat interval in milliseconds, unsigned 16 bit value

Reconstructed [6]				
reSys[2]	reDia[2]	reMap[2]		

- OEM Reconstructed Data, 6 bytes, reconstructed pressure variables
 - o reSys, 2 bytes, Systolic brachial pressure in 1/10 mmHg, unsigned 16 bit value
 - o reDia, 2 bytes, Diastolic brachial pressure in 1/10 mmHg, unsigned 16 bit value
 - o reMap, 2 bytes, Mean arterial pressure of the brachial pressure in 1/10 mmHg, unsigned 16 bit value

2.6.8 Mode ('m') [1/2 bytes]

	cmd-ID	cmd-data
PC → Nano	'm'=0x6D	-
Nano → PC	'm'=0x6D	Mode

- No data is given, the current mode is returned.
- PC can check the returned mode.
- Mode , 1 byte see, 2.5.1, The current mode

2.6.9 Execute command

	cmd-ID	cmd-data
PC → Nano	'e'	Command[1]

- Command

0x01 = Start measurement (only allowed from idle, also clears all errors)

0x02 = Stop measurement (only allowed from measure)

0x03 = Enter service mode (only allowed from idle)

0x04 = Exit service (only allowed from service)

0x05 = Enter bootloader (only allowed from idle)

0x06 = Clear first error, can be used to clear and clear all the errors individually.

2.6.10 PatientData ('p') [1/8 bytes]

	cmd-ID	cmd-data			
PC → Nano	'p'=0x70			-	
PC → Nano	'p'=0x70	Age[2]	Weight[2]	Lenght[2]	Gender
Nano → PC	'p'=0x70	Age[2]	Weight[2]	Lenght[2]	Gender

If on request no data is specified the Nano responses with the current settings.

- Age, 2 bytes, Age in month, unsigned 16 bit value
- Weight, 2 bytes, Weight in kg, unsigned 16 bit value
- Length, 2 bytes, Length in cm, unsigned 16 bit value
- Gender, 1 byte, 0x01 = Male, 0x02 = Female

2.6.11 CuffUsage ('c') [1/2 bytes]

	cmd-ID	cmd-data
PC → Nano	'c'=0x63	
PC → Nano	'c'=0x63	CuffInterval[1]
Nano → PC	'c'=0x63	CuffInterval[1]

If on request no data is specified the Nano responses with the current settings.

CuffInterval							
	Interval Command					mand	
7	7 6 5 4 3 2						0

- o CuffInterval, 1 byte:
 - Command:

0x00 = set interval (uses data transmitted in bits 2-7),

0x01 = use cuff 1,

0x02 = use cuff 2,

0x03 = do cuff switch now (only if automatic cuff control is enabled)

• Interval, automatic cuff switching interval, unsigned 6 bit value:

0x00 = disable automatic cuff control

0x3f = restart cuff control scheduler timer

0x3e = reserved

0x3d = reserved

otherwise = cuff switching interval in minutes

Note: In Nano \rightarrow PC data transmission Command is always either 0x01 or 0x02, other values are only used in PC \rightarrow Nano messages.

2.6.12 HCU Commands ('z') [1/4 bytes]

	cmd-ID	cmd-data
PC → Nano	'z'=0x7A	-
Nano → PC	'z'=0x7A	Result

Tries to zero the HCU if no command data is given, then it returns the result shown below

- Result, Zeroing result,

0x00 = HCU not connected, Correction is NaN (0xFFFF)

0x04 = HCU connected, started zeroing procedure

2.6.13 PhysioCal ('h') [1/2 bytes]

	cmd-ID	cmd-data
PC → Nano	'h'=0x68	[On/Off]
Nano → PC	'h'=0x68	On/Off

- If on request no data is specified the Nano responses with the current settings.
- On/Off, 1 byte, 0x00 = PhysioCall off, 0x01 = PhysioCall on, (0xFF in response indicates that setting PhysioCal is not allowed)

2.6.14 ModelFlowCalibration ('f')

	cmd-ID	cmd-data			
PC → Nano	'f'=0x66	'r'=0x72 (Results)			
PC → Nano	'f'=0x66	's'=0x73 (Start) / 'a'=0x61 (Abort)			
PC → Nano	'f'=0x66	'c'=0x63	calSys[2]	calDia[2]	
Nano → PC	'f'=0x66	'c'=0x63	calSys[2]	calDia[2]	
Nano → PC	'f'=0x66	'r'=0x72	calStatus[1]	dSYSreBAP[2]	

- Results, 1 byte, 'r'=0x72, request calibration results for the current cuff
- Start/Abort, 1 byte, 's'=0x73 = BraCal procedure started, 'f'=0x66 = BraCal procedure aborted.
- calSys and calDia, 2 bytes each, systolic and diastolic brachial pressure for calibration in 1/10 mmHg, signed 16 bit integer. Sending this message finishes the BraCal procedure. If data is accepted by Nano Core it responds with the same values, otherwise an error is communicated.
- BraCal procedure results for the current cuff:
 - o calStatus, 1 byte, status of the BraCal calibration:
 - 0x00 = calibration has not been performed yet,
 - 0x01 = calibration performed, using calibration values obtained during the last BraCal run,

- 0x02 = calibration performed, using saved calibration values,
- 0x03 = BraCal procedure is running
- dSysreBAP, 2 bytes, difference between the systolic pressure values before and after calibration in 1/10 mmHg, signed 16 bit value. This value is meaningless if calStat indicates no calibration has been perofmed or BraCal is running

2.7 Service commands

These commands are only accepted if the system is in service mode.

2.7.1 ServiceTest ('t') [1/X bytes]

	cmd-ID	Sub-cmd	cmd-data	
PC → Nano	't'=0x74	0x00	-	
Nano → PC	't'=0x74	0x00	Stat	us
	cmd-ID	Sub-cmd	cmd-data	
PC → Nano	't'=0x74	0x01	TestId	Settings
Nano → PC	't'=0x74	0x01	TestId	Status
	cmd-ID	Sub-cmd	cmd-data	
PC → Nano	't'=0x74	0x02	-	
Nano → PC	't'=0x74	0x02	-	
	cmd-ID	Sub-cmd	cmd-data	
PC → Nano	't'=0x74	0x03	TestId	
Nano → PC	't'=0x74	0x03	Test Id Results	

Subcmd, 1 byte, manipulate state of the system

0x00 = get status

0x01 = start test / update test

0x02 = stop test

0x03 = get results of test

- TestId, 1 byte, the test to perform. Described in the following sections.
- Settings, 12 bytes test specific parameters, divided in 3x uint32, described in the following sections
- Status, 1 byte, Status of the test

0x00 = Test idle

0x01 = Test running

0xFF = Test not allowed

Results 12 bytes test specific results divided in 3x int32, described in the following sections.

Test commands influence the statemachine of the test system directly. Tests can only be started if the status is idle and the system is in service mode.

2.7.2 SteadyPressureTest (Testid = 0x01)

Steady pressure test is used to apply a steady pressure to the specified output. Cuffs can be selected by setting the cuff setting, and the pressure is selected by writing the pressure. This test returns no results, however, errors can be thrown by the pressure controller and then the test will be stopped.

Settings1	Settings2	Settings3
Cuff	Pressure	0x0000 0000

- Cuff (Uint32)

If bit 0 is 1, cuff 1 valve is actuated

If bit 1 is 1, cuff 2 valve is actuated

- Pressure (Uint32)

Pressure is specified in mmHg with a maximum of 350 mmHg.

Results of the test

Results1	Results2	Results3
0x0000 0000	0x0000 0000	0x0000 0000

2.7.3 SquareWaveTest (Testid = 0x02)

Pressure is generated in a squarewave pattern, the amplitude is fixed to 100mmHg, the mean pressure and frequency can be selected by the user. Results are not returned in this test. However, the pressure controller can throw errors, which will stop the test and set the Nano Core in Error mode.

Settings1	Settings2	Settings3
Cuff	Mean Pressure	Period

- Cuff (Uint32)

If bit 0 is 1, cuff 1 valve is actuated

If bit 1 is 1, cuff 2 valve is actuated

- Pressure (Uint32)

Pressure is specified in mmHg with a maximum of 350 mmHg.

- Period (Uint32)

Period is specified in ms, with a minimum of 10 ms and a maximum of 1000 ms.

Results of the test

Results1	Results2	Results3
0x0000 0000	0x0000 0000	0x0000 0000

2.7.4 ExhaustValveTest (Testid = 0x03)

Test to determine if the exhaust valve is functional.

The settings are described below, settings are all 0

	<u> </u>	
Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
Time [ms]	0x0000 0000	0x0000 0000

- Time (ms)

The time it takes to deflate the volume.

2.7.5 CuffValveTest (Testid = 0x04)

Test to determine if the cuff valves are functional.

The settings are described below, settings are all 0

	3	
Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Resu	ılts1	Results2	Results3
Cuff1 deflate [ms]	Cuff2 deflate [ms]	Deflate time [ms] from 40kPa to	Deflate time [ms] from
(16 upper bits)	(16 lower bits)	20kPa	13.3kPa to 6.6kPa

All time in ms

2.7.6 HBridgeLinearityTest (Testid = 0x05)

Test to find the performance of the H-Bridge, including linearity and coil impedance.

The settings are described below, settings are all 0

	3	
Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
Impedance [mOhm]	Remaining Current [mA]	0x0000 0000

2.7.7 VolumeRatioTest (Testid = 0x06)

Test to determine the ratio between the both volumes and the current pressure ratio

The settings are described below, settings are all 0

Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
Pressure / Current [Pa/A]	1000 * BellowPressure /	0x0000 0000
	VolumePressure [-]	

2.7.8 LeakageTest (Testid = 0x07)

Determines the leakage of the system

The settings are described below, settings are all 0

	3	
Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3	
1000 * Ratio [-]	0x0000 0000	0x0000 0000	

2.7.9 PumpPerformanceTest (Testid = 0x08)

Measures important characteristics of the pump

The settings are described below, settings are all 0

Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
Flow in first pulse [ml/min]	Flow at 40 kPa [ml/min]	Restart pressure [Pa]

2.7.10 PressurePulseTest (Test = 0x09)

Generates a pressure pulse, can be used to check if pressure generation is sufficient.

The settings are described below, settings are all 0

Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
First Pressure Pulse [Pa]	Maximum Pulse [Pa]	0x0000 0000

2.7.11 Production Pressure Sensor test (Test = 0x0A)

Opens a cuff valve, and determines the mean and std of both sensors.

Settings are all 0.

Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
Bellows Sensor Mean	Volume Sensor Mean	Bellows std [Pa << 16] + volume
[Pa * 1000]	[Pa * 1000]	std [Pa]

2.7.12 Production led controller test (Test = 0x0B)

Sets the ledcontroller voltage to a certain value, and measures the current through the led. The mean and std are returned.

Settings are all 0.

Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
Led Current mean	Led current std	0x0000 0000
[A * 1000000]	[A * 1000000]	

2.7.13 Production plethysmograph test (Test = 0x0C)

Checks if the frontend gain switch is functional.

Settings are all 0.

Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
Plet mean with gain off	Plet mean with gain on	Plet std with gain on
[nA]	[nA]	[nA * 1000]

2.7.14 Production HCU amplifier test (Test = 0x0D)

Output mean and std of the raw HCU signal, of which half the range is subtracted.

Settings are all 0.

Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
HCU mean value	HCU std value	0x0000 0000
[mmHg * 1000 + 1000000]	[mmHg * 1000]	

2.7.15 Production temperature Sensor test (Test = 0x0E)

Gives mean and std of the temperature sensor.

Settings are all 0.

Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
Temperature mean	Temperature std	0x0000 0000
[C * 1000]	[C * 1000]	

2.7.16 Production accelerometer test (Test = 0x0F)

Gives mean and std of the accelerometer sensor on the X axis which runs in the same direction as the plunger actuator.

Settings are all 0.

Settings1	Settings2	Settings3
0x0000 0000	0x0000 0000	0x0000 0000

Results of the test

Results1	Results2	Results3
Accelerometer x mean	Accelerometer x std	0x0000 0000
$[m/s^2 * 1000 + 1000000]$	[m/s ² * 1000]	

Product: 1002 - Nano Core

