1.

1.1.

1.2.

« La solution (B) ainsi obtenue est très basique, son pH est supérieur à 12. » la forme prédominante est donc T^{2-} .

1.3.

« Une solution aqueuse (B) obtenue lors du mélange d'une solution d'acide tartrique $H_2T(aq)$ et d'une solution aqueuse d'hydroxyde de sodium »

$${\rm H_2T_{(aq)}} + 2{\rm HO_{(aq)}^-} \rightarrow {\rm T_{(aq)}^{2-}} + 2{\rm H_2O_{(l)}}$$

1.4.

« Lors du mélange des solutions (A) et (B), les ions $Cu^{2+}_{(aq)}$ réagissent avec les ions tartrate $T^{2-}_{(aq)}$ pour former des ions de formule $CuT^{2-}_{2(aq)}$, seuls responsables de la coloration bleue de la liqueur de Fehling. » $Cu^{2+}_{(aq)} + 2T^{2-}_{(aq)} \rightarrow CuT^{2-}_{2(aq)}$

Figure 1. Spectre d'absorption de la liqueur de Fehling

Figure 2. Cercle chromatique

 $\lambda_{\text{max}} = 660 \text{ nm}$

Sa couleur est la couleur complémentaire : Bleu-vert.

2.

2.1.

Un réducteur est une espèce chimique capable de céder un ou plusieurs électrons.

$$\begin{split} & \text{glucose} : \text{C}_5\text{H}_{11}\text{O}_5 - \text{CHO}_{\text{(aq)}} \\ & \text{ion gluconate} : \text{C}_5\text{H}_{11}\text{O}_5 - \text{CO}_{2\text{(aq)}}^- \\ & \text{C}_5\text{H}_{11}\text{O}_5 - \text{CHO}_{\text{(aq)}}^- + \text{H}_2\text{O}_{\text{(l)}} \rightarrow \text{C}_5\text{H}_{11}\text{O}_5 - \text{CO}_{2\text{(aq)}}^- + 3\text{H}^+ + 2\text{e}^- \end{split}$$

Le glucose est donc un réducteur.

2.2.

- « $CuT_{2(aq)}^{2-}$, seuls responsables de la coloration bleue de la liqueur de Fehling. »
- « À l'issue de la réaction entre une solution étalon de glucose et la solution de liqueur de Fehling, le filtrat est de couleur bleue. »

Le $CuT_{2(aq)}^{2-}$ est en excès, le réactif limitant est donc le glucose.

2.3.

$$\lambda_{max} = 660 \text{ nm}$$

2.4.

$$A = -0.39 \times C_{\rm m} + 0.88$$

Le coefficient directeur est négatif : lorsque Cm augmente, A diminue.

Physiquement : lorsqu'on ajoute du glucose, la concentration en $CuT_{2(aq)}^{2-}$ diminue. Or c'est le $CuT_{2(aq)}^{2-}$ qui est responsable de la couleur et donc de l'absorbance de la solution. Ainsi, lorsque la concentration en glucose augmente, l'absorbance diminue.

$$A = 0.59$$

$$A = -0.39 \times C_{m} + 0.88$$

$$-0.39 \times C_{m} + 0.88 = A$$

$$-0.39 \times C_{m} = A - 0.88$$

$$C_{m} = \frac{A - 0.88}{-0.39}$$

$$C_{m} = \frac{0.59 - 0.88}{-0.39}$$

$$C_{m} = 0.74 \text{ g. L}^{-1}$$

Or « la solution (S1) est ensuite diluée d'un facteur 10 pour obtenir la solution (S2) »

$$C_{m1} = 10 \times C_{m}$$

$$C_{m1} = 10 \times 0.74$$

$$C_{m1} = 7.4 \text{ g. L}^{-1}$$

$$C_{m1} = \frac{m}{V}$$

$$C_{m1} = \frac{m}{V}$$

 $m = C_{m1} \times V$
 $m = 7.4 \times 500. 10^{-3}$
 $m = 3.7 g$

composition d'un médicament permettant la réhydratation commercialisée en pharmacie :

Espèces chimiques	Analyse moyenne pour un sachet
Glucose (C ₆ H ₁₂ O ₆)	4 g
Saccharose (C ₁₂ H ₂₂ O ₁₁)	4 g
Sodium (Na ⁺)	0,226 g
Potassium (K ⁺)	0,199 g
Chlorure (CI ⁻)	0,181 g
Bicarbonate (HCO ₃ ⁻)	0,289 g
Gluconate (C ₆ H ₁₁ O ₇ ⁻)	0,995 g

La valeur est proche de la valeur indiquée.