Olimpiada Naţională de Matematică Etapa Naţională, Satu Mare, 4 aprilie 2018

CLASA a VIII-a - Soluții și barem

Problema 1. Demonstrați că există o infinitate de mulțimi formate din patru numere naturale nenule care au proprietatea că suma oricăror trei elemente ale mulțimii este pătrat perfect.

Solutie:

Dacă $a+b+c=x^2, a+b+d=y^2, a+c+d=z^2, b+c+d=t^2, \text{ cu } x,y,z,t\in\mathbb{N}, \text{ atunci prin adunare obținem } 3(a+b+c+d)=x^2+y^2+z^2+t^2, \text{ de unde } a=\frac{x^2+y^2+z^2+t^2}{3}-t^2,$

$$b = \frac{x^2 + y^2 + z^2 + t^2}{3} - z^2, \ c = \frac{x^2 + y^2 + z^2 + t^2}{3} - y^2, \ d = \frac{x^2 + y^2 + z^2 + t^2}{3} - x^2. \dots 2\mathbf{p}$$

Notă: Găsirea unei mulțimi cu proprietatea dorită, chiar și fără a indica modul de găsire a ei va fi punctată cu **6p**.

Problema 2. Fie a,b,c,d numere naturale astfel încât a+b+c+d=2018. Aflați valoarea minimă a expresiei

$$E = (a-b)^{2} + 2(a-c)^{2} + 3(a-d)^{2} + 4(b-c)^{2} + 5(b-d)^{2} + 6(c-d)^{2}.$$

Soluţie:

Arătăm că minimul căutat este 14.

Această valoare într-adevăr atinsă, de exemplu dacă a = b = 505 și c = d = 504. **1p** Deoarece 2018 nu este divizibil cu 4, numerele a, b, c, d nu pot fi toate egale.

 Problema 3. Fie $a, b, c \ge 0$ astfel încât ab + bc + ca = 3. Demonstrați că

$$\frac{a}{a^2+7} + \frac{b}{b^2+7} + \frac{c}{c^2+7} \leq \frac{3}{8}.$$
 Soluţie: Scriem $\frac{a}{a^2+7} = \frac{a}{a^2+ab+bc+ca+4} = \frac{a}{(a+b)(a+c)+4}.$ 2p Din inegalitatea mediilor, $(a+b)(a+c)+4 \geq 2\sqrt{(a+b)(a+c)+4} = 4\sqrt{(a+b)(a+c)}.$ 2p Deoarece $a+b>0$, $a+c>0$ $(a+b=0)$ ar implica $a=b=0$ și ar contrazice $ab+bc+ca=3$), putem scrie $\frac{a}{a^2+7} \leq \frac{1}{4} \cdot \frac{a}{\sqrt{(a+b)(a+c)}} = \frac{1}{4} \cdot \sqrt{\frac{a}{a+b} \cdot \frac{a}{a+c}}.$ Aplicând din nou inegalitatea mediilor obţinem $\frac{a}{a^2+7} \leq \frac{1}{8} \left(\frac{a}{a+b} + \frac{a}{a+c}\right).$ Analog se obţin relaţiile $\frac{b}{b^2+7} \leq \frac{1}{8} \left(\frac{b}{b+c} + \frac{b}{b+a}\right)$ şi $\frac{c}{c^2+7} \leq \frac{1}{8} \left(\frac{c}{c+a} + \frac{c}{c+b}\right).$ 2p Prin adunarea acestor trei inegalităţi se obţine inegalitatea din enunţ. 1p (Egalitatea are loc dacă şi numai dacă $a=b=c=1$.)

Problema 4. În paralelipipedul dreptunghic ABCDA'B'C'D' notăm cu M centrul feței ABB'A'. Notăm cu M_1 și M_2 proiecțiile lui M pe dreptele B'C și respectiv AD'. Demonstrați că:

- a) $[MM_1] \equiv [MM_2];$
- **b)** dacă $(MM_1M_2) \cap (ABC) = d$, atunci $d \parallel AD$;
- c) $m(\angle((MM_1M_2), (ABC))) = 45^\circ \Leftrightarrow \frac{BC}{AB} = \frac{BB'}{BC} + \frac{BC}{BB'}$. Soluție:

c) Fie $MM_1 \cap AC = \{L\}$ şi $MM_2 \cap (ABC) = \{S\}$. Atunci $AS \parallel BD \parallel B'D'$ deoarece $B'D' \subset (AB'D')$, $B'D' \parallel BD$ şi $BD \subset (ABC)$. Deci d = LS. Fie $AV \perp LM_1$. Atunci triunghiurile AVM şi $B'M_1M$ sunt congruente (I.U.), deci $AV = B'M_1 = AM_2$. Din $AV \parallel B'C$ rezultă că $\angle LAV \equiv \angle ACB' \equiv \angle AD'B' \equiv \angle SAM_2$ (alterne interne deoarece $AS \parallel B'D'$). Atunci triunghiurile AVL şi AM_2S sunt congruente (C.U.), deci AL = AS. Dacă U este mijlocul lui [LS], cum $AU \perp LS$ şi $AB \perp LS$ rezultă A, B, U coliniare. Planul (MAB) este planul mediator al lui [LS], deci $MU \perp LS$ şi $AU \perp LS$. Cum $MU \subset (MM_1M_2)$ şi $AU \subset (ABC)$, deducem că $m(\angle ((MM_1M_2), (ABC))) = m(\angle MUA)$. Atunci $m(\angle MUA) = 45^{\circ} \Leftrightarrow \frac{BB'}{2} = \frac{AB}{2} + AU \Leftrightarrow BB' - AB = 2AU$. Dacă $BI \perp B'C$, $I \in B'C$, din teorema celor trei perpendiculare rezultă $AI \perp B'C$. În triunghiul $AI \subseteq BI$ at $AI \subseteq BI$ current $AI \subseteq BI$ current

