

离散数学(2023)作业17-子群与群的分解

杨辰 221900328

2023 年 4 月 27 日

1 Problem 1

解:

A: 不是。当且仅当 H \subseteq K 或 K \subseteq H 时 H \cup K 是 G 的子群。若 H \nsubseteq K 且 K \nsubseteq K, 那么存在 h,k 使得 $h \in H \lor h \notin K, k \in k \lor K \notin H$, 所以 hk \notin H. 若不然,则 $h^{-1} \in H$, 所以 $k = h^{-1}(hk) \in K$, 与假设矛盾,同理可证 $hk \nsubseteq K$, 从而 $hk \notin H \cup K$, 这与 $H \cup K$ 是 G 的子群矛盾。

B: 是。由 $e \in H \cap K$ 知 $H \cap K$ 非空。任取 $a, b \in H \cap K$,则 $a \in H, a \in K, b \in H, b \in K$,所以 $b^{-1} \in H$,所以 $ab^{-1} \in H$,同理 $ab^{-1} \in K$,所以 $ab^{-1} \in H \cap K$,所以 $H \cap K$ 是 G 的子群。

C: 不是。因为 $e \in H, e \in K$, 所以 $e \in H \cap K, e \notin K - H$, 所以 K - H 无单位元,不构成 G 的子群。

D: 不是。同 C

2 Problem 2

证明: 任取 $x,y \in N(a)$, 则有 xa = ax, ya = ay, 所以 (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy), 所以 $xy \in N(a)$, 又 $a \in G$, $x \in G$, 所以 $x = axa^{-1}$, 所以 $x^{-1}a = (a^{-1}x)^{-1} = (a^{-1}axa^{-1})^{-1} = (xa^{-1})^{-1} = ax^{-1}$, 所以 $x^{-1} \in N(a)$, 所以 N(a) 为 G 的子群。

3 Problem 3

证明: 任取 $h_1, h_2 \in H$, 又 H 是 G 的子群,所以 h_1, h_2 均有逆元且 $h_1h_2^{-1} \in H$ 。又 $x \in G, xh_1x^{-1}, xh_2x^{-1} \in xHx^{-1}$,所以 $(xh_1x^{-1})(xh_2x^{-1})^{-1} = (xh_1x^{-1})(xh_2^{-1}x^{-1}) = xh_1h_2^{-1}x^{-1} = x(h_1h_2^{-1})x^{-1} \in xHx^{-1}$,所以 xHx^{-1} 是 G 的子群。

4 Problem 4

证明: 先证 $H \cap K \leq H$, 任取 $h_1, h_2 \in H \cap K$, 则 $h_1, h_2 \in H$, 所以 $h_2^{-1} \in H$, 所以 $h_1 h_2^{-1} \in H$, 则 $H \cap K \leq H$, 同理可证 $H \cap K \leq K$, 所以 $|H \cap K|$ 为 r 和 s 的公因子,又 r 与 s 互素,所以 $|H \cap K| = 1$, 所以 $H \cap K = \{e\}$ 。

5 Problem 5

证明: 设该二阶元为 a, 则 $a^2 = e$, 设 $\forall x \in G$, 又 $(xax^{-1})(xax^{-1}) = xaax^{-1} = xx^{-1} = e$, 而 G 中的二阶元只有一个, 所以 $a = xax^{-1}$, 右乘 x 得 ax = xa, 所以该二阶元与 G 中元素均可交换。

6 Problem 6

证明: 设 |g| = m, |h| = n, |gh| = r,则 $(gh)^r = e,$ 因为 gh = hg, 所以 $(gh)^{mn} = g^{mn}h^{mn} = (g^m)^n(h^n)^m = e,$ 所以 r|mn, 且 $r \leq mn,$ 又 $e = (gh)^{rm} = g^{rm}h^{rm} = h^{rm},$ 所以 n|rm, 又 gcd(m,n) = 1, 所以 n|r, 同理 m|r, 所以 mn|r, 则 $mn \leq r,$ 所以 mm = r, 即 |gh| = |g||h|。

7 Problem 7

证明: 对 $\forall g \in G$ 有 $ghg^{-1} \in H$, 任取 $x \in gH$, $\exists h \in H, s.t$ x = gh, 且 $xg^{-1} = ghg^{-1} \in H$, 所以 $\exists h' \in H, s.t$ $xg^{-1} = h'$, 所以 $x = h' \in Hg$, 所以 $gH \subseteq Hg$ 。 另一方面,对 Hg 中任一元素 x, $\exists h \in H, s.t$ x = hg,且 $g^{-1}x = g^{-1}hg = g^{-1}h(g^{-1})^{-1} \in H$,即 $\exists h' \in H, s.t$ $g^{-1}x = h'$,所以 $x = gh' \in gH$

8 Problem 8