SPRAWOZDANIE

Metody numeryczne w inżynierii

Informatyka 4i1 niestacjonarne

Semestr letni 2022

Bartłomiej Błaszczyk

236382

Patryk Balcerowski

228680

Rafał Paliwoda

228825

Spis treści

Wpisz tytuł rozdziału (poziom 1)	
Wpisz tytuł rozdziału (poziom 2)	2
	_
Wpisz tytuł rozdziału (poziom 3)	3
Wpisz tytuł rozdziału (poziom 1)	4
(F (F	
Wpisz tytuł rozdziału (poziom 2)	5
Wpisz tytuł rozdziału (poziom 3)	6

Wstęp

Przedmiotem sprawozdania jest badanie modelu elektromagnesu w programie Finite Element Method Magnetic (FEMM) i analiza pola magnetycznego za pomocą metody tensora Maxwella.

Rysunek 1. Model układu elektromagnesu

Etapy

- 1. W etapie pierwszym zadaniem jest przeskalowanie rozmiaru modelu.
- 2. Etap drugi rozłożyliśmy na dwie części.
 - 2.1. W pierwszym kroku założyliśmy, że należy przeprowadzić pomiary dla ośmiu pozycji górnej części elektromagnesu, tak, aby przestrzeń między elementami zwiększała się.
 - 2.2. Drugim krokiem drugiego etapu było przeprowadzanie pomiarów dla trzech różnych natężeń prądu płynącego przez zwoje elektromagnesu przy zachowaniu pierwotnego ułożenia górnej i dolnej części elektromagnesu.
- 3. Etapem trzecim była dokumentacja obrazowanego rozkładu natężenia przy zmieniających się odległościach między górną i dolną częścią elektromagnesu z etapu 2.1.
- 4. Etap czwarty to decyzja o doborze gęstości siatki punktów obliczeniowych wykorzystywanych do obliczenia rozkładu pola magnetycznego.

Przebieg badania

Etap 1

Etap pierwszy był trywialny i nie mamy dokumentacji. Należało odpowiednio użyć funkcji programu, aby dopasować predefiniowane ośrodki do konturów modelu.

Etap 2.1

Zarejestrowane przez nas zmiany tensora Maxwell'a, przy odsuwaniu górnej części elektromagnesu.

x-component, N	y-component, N	Przesunięcie, mm
-2,73E-05	-1,96E-03	0
-2,27E-05	-1,12E-03	2
-1,76E-05	-7,47E-04	4
-1,31E-05	-5,43E-04	6
-1,07E-05	-4,14E-04	8
-8,01E-06	-3,27E-04	10
-6,28E-06	-2,64E-04	12
-4,05E-06	-2,15E-04	14

Tabela 1 - pomiary składowych tensora Maxwell'a

Wykres 1 - siła oddziaływująca na górny element

Zaobserwowaliśmy zmiany w sile z jaką oddziałują na siebie górna i dolna część elektromagnesu w pionowej płaszczyźnie, "y". Oznacza to, że siła oddziaływania magnetycznego obu części spada wraz z odległością, a spadek tej siły jest najbardziej zauważany na osi "y", ponieważ wektor działania siły jest prostopadły do linii pola magnetycznego, które tworzy się wraz z przepływem prądu w układzie.

Etap 2.2

Górny element				
x-component	y-component	Wartość natężenia [A]		
-1,91E-07	-1,60E-05	1,00E+01		
-4,78E-08	-4,01E-06	5,00E+00		
2,74E-09	-2,62E-04	0,00E+00		

Dolny element				
x-component	y-component	Wartość natężenia [A]		
5,53E-07	4,60E-05	-1,00E+01		
1,38E-07	1,15E-05	-5,00E+00		
-2,59E-08	2,88E-04	-8,00E+00		

Etap 3

Na tym etapie porównywaliśmy wizualnie zmiany w rozkładaniu się pola magnetycznego wraz ze zmianą położenia elementów elektromagnesu oraz jednoczesną modyfikacją natężenia prądu płynącego przez uzwojenie elektromagnesu.

Wartości natężenia prądu na zwojach elektromagnesu:

$$2a = 5 A, 2b = -5 A,$$

$$3a = 0 A, 3b = -8 A$$

*a – zwoje górne, b – zwoje dolne

^{**}odsunięcie