Effizienz der gerechten Aufteilung von beliebig teilbaren Gütern

Alina Elterman

November 24, 2010

Inhaltsverzeichnis

- Einleitung
- ② Grundbegriffe
 - Der Kuchen und die Bewertung
- 3 Der Preis der Gerechtigkeit
 - Preis der Proportionalität und Neidfreiheit für n=2
 - Zusammenfassung
- Vorschau und offene Fragen
- Quellenverzeichnis

Kuchen - Metapher für ein beliebig oft teilbares Gut

Die Präferenzen auf bestimmte Stücke können sich unterscheiden!

Grundbegriffe

- $P_n = \{p_1, ..., p_n\}$ Menge von n Spieler
- Intervall X = [0,1] einziges, heterogenes, beliebig teilbares Gut (Kuchen)
- $v_i: \{X'|X'\subseteq X\} \mapsto [0,1]$ Bewertungsfunktion des Spielers p_i mit bestimmten Eigenschaften
- X_i ist das Stück vom Spieler p_i bei oder nach der Aufteilung und $v_i(X_i)$ seine Bewertung oder sein Nutzwert

Gerechtigkeitskriterien

Proportionalität

Eine Aufteilung ist proportional, falls $v_i(X_i) \ge 1/n$ für jeden Spieler $p_i \in P_N$ gilt.

Neidfreiheit

Eine Aufteilung ist <u>neidfrei</u>, falls $v_i(X_i) \ge v_i(X_j)$ für jedes Paar von Spielern $p_i, p_i \in P_N$.

Exaktheit

Eine Aufteilung ist exakt, falls $v_i(X_i) = v_j(X_j)$ für jedes Paar von Spielern $p_i, p_j \in P_N$.

Effizienz

Üblicherweise:

Eine Aufteilung ist effizient (Pareto optimal), falls keine andere Aufteilung existiert, die einem Spieler ein von ihm besser bewertetes Stück einbringt, ohne die Situation eines anderen Spielers zu verschlechtern.

Effizienz

Üblicherweise:

Eine Aufteilung ist effizient (Pareto optimal), falls keine andere Aufteilung existiert, die einem Spieler ein von ihm besser bewertetes Stück einbringt, ohne die Situation eines anderen Spielers zu verschlechtern.

Hier: **Effizienz** = Grad der Zufriedenheit aller Spieler = $\sum_{i=1}^{n} v_i(X_i)$.

Soziales Wohl

Eine Aufteilung ist optimal, falls sie die Summe der Nutzwerte von allen Spielern maximiert.

Übersicht über Cake-Cutting

- Entwicklung und Analyse von gerechten Protokollen
- Existenzbeweise von gerechten Aufteilungen
- Approximationsalgorithmen der gerechten Aufteilung

Übersicht über Cake-Cutting

Was wurde noch nicht erforscht?

Übersicht über Cake-Cutting

Was wurde noch nicht erforscht?

Effizienz bei Protokollen!

Der Preis der Gerechtigkeit

Der Preis der Gerechtigkeit

Wie viel Effizienz muss aufgegeben werden für die Gerechtigkeit?

Verhältnis : Grösste mögliche Nutzwert

Nutzwert im besten gerechtesten Fall

Sei \mathcal{O} eine optimale Aufteilung und \mathcal{E} die effizienteste proportionale Aufteilung. Sei A, B, C und D eine Partitionierung des Kuchens mit folgenden Eigenschaften:

Sei \mathcal{O} eine optimale Aufteilung und \mathcal{E} die effizienteste proportionale Aufteilung. Sei A,B,C und D eine Partitionierung des Kuchens mit folgenden Eigenschaften:

- A wird in \mathcal{O} und \mathcal{E} Spieler p_1 zugeordnet
- B wird in $\mathcal O$ und $\mathcal E$ Spieler p_2 zugeordnet
- C wird in \mathcal{O} Spieler p_1 und in \mathcal{E} Spieler p_2 zugeordnet
- D wird in $\mathcal O$ Spieler p_2 und in $\mathcal E$ Spieler p_1 zugeordnet

Sei \mathcal{O} eine optimale Aufteilung und \mathcal{E} die effizienteste proportionale Aufteilung. Sei A,B,C und D eine Partitionierung des Kuchens mit folgenden Eigenschaften:

- A wird in \mathcal{O} und \mathcal{E} Spieler p_1 zugeordnet
- B wird in $\mathcal O$ und $\mathcal E$ Spieler p_2 zugeordnet
- C wird in \mathcal{O} Spieler p_1 und in \mathcal{E} Spieler p_2 zugeordnet
- D wird in $\mathcal O$ Spieler p_2 und in $\mathcal E$ Spieler p_1 zugeordnet

Es gilt $v_1(A) \ge v_2(A)$, $v_1(B) \le v_2(B)$, $v_1(C) \ge v_2(C)$ und $v_1(D) \le v_2(D)$.

Betrachte $v_1(C) > v_2(C)$ und $v_1(D) = v_2(D) = 0$:

Betrachte $v_1(C) > v_2(C)$ und $v_1(D) = v_2(D) = 0$: Es gibt ein $X_c \subseteq C$ mit $v_1(X_c) = x$ und $v_2(X_c) = x * v_2(C)/v_1(C)$ und damit $v_1(X_c) \ge v_2(X_c)$! Analog für D und X_d .

proportional, hat aber einen grösseren Nutzwert als \mathcal{E} .

Betrachte $v_1(C) > v_2(C)$ und $v_1(D) = v_2(D) = 0$: Es gibt ein $X_c \subseteq C$ mit $v_1(X_c) = x$ und $v_2(X_c) = x * v_2(C)/v_1(C)$ und damit $v_1(X_c) \ge v_2(X_c)$! Analog für D und X_d . Damit bleibt die Aufteilung $v_1(A + X_c + D - X_d)$ und $v_2(B + X_d + C - X_c)$

Es gilt: $v_2(A) = 1/2$ und $v_2(A)/v_1(A) < v_2(C)/v_1(C)$.

Betrachte $v_1(C) > v_2(C)$ und $v_1(D) = v_2(D) = 0$: Es gibt ein $X_c \subseteq C$ mit $v_1(X_c) = x$ und $v_2(X_c) = x * v_2(C)/v_1(C)$ und damit $v_1(X_c) \ge v_2(X_c)$! Analog für D und X_d . Damit bleibt die Aufteilung $v_1(A + X_c + D - X_d)$ und $v_2(B + X_d + C - X_c)$ proportional, hat aber einen grösseren Nutzwert als \mathcal{E} .

Betrachte $v_1(C) > v_2(C)$ und $v_1(D) = v_2(D) = 0$:

Es gibt ein $X_c \subseteq C$ mit $v_1(X_c) = x$ und $v_2(X_c) = x * v_2(C)/v_1(C)$ und damit $v_1(X_c) > v_2(X_c)!$ Analog für D und X_d .

Damit bleibt die Aufteilung $v_1(A + X_c + D - X_d)$ und $v_2(B + X_d + C - X_c)$ proportional, hat aber einen grösseren Nutzwert als \mathcal{E} .

Es gilt: $v_2(A) = 1/2$ und $v_2(A)/v_1(A) \le v_2(C)/v_1(C)$.

Damit folgt die Abschätzung:

$$\frac{v_1(A) + v_2(B) + v_1(C)}{v_1(A) + v_2(B) + v_2(C)} \le \frac{v_1(A) + 1/2 + (1 - v_1(A))(1 - 1/2v_1(A))}{v_1(A) + 1/2}$$

Das Maximum ist $8 - 4\sqrt{3}$ für $v_1(A) = \frac{1+\sqrt{3}}{4}$.

Betrachte $v_1(C) > v_2(C)$ und $v_1(D) = v_2(D) = 0$:

Es gibt ein $X_c \subseteq C$ mit $v_1(X_c) = x$ und $v_2(X_c) = x * v_2(C)/v_1(C)$ und damit $v_1(X_c) > v_2(X_c)!$ Analog für D und X_d .

Damit bleibt die Aufteilung $v_1(A + X_c + D - X_d)$ und $v_2(B + X_d + C - X_c)$ proportional, hat aber einen grösseren Nutzwert als \mathcal{E} .

Es gilt: $v_2(A) = 1/2$ und $v_2(A)/v_1(A) \le v_2(C)/v_1(C)$.

Damit folgt die Abschätzung:

$$\frac{v_1(A) + v_2(B) + v_1(C)}{v_1(A) + v_2(B) + v_2(C)} \le \frac{v_1(A) + 1/2 + (1 - v_1(A))(1 - 1/2v_1(A))}{v_1(A) + 1/2}$$

Das Maximum ist $8 - 4\sqrt{3}$ für $v_1(A) = \frac{1+\sqrt{3}}{4}$.

Bsp:
$$v_1(A) = 1$$
, $v_1(B) = 0$, $v_2(A) = \sqrt{3} - 1$ und $v_2(B) = 2 - \sqrt{3}$.

Resultate von I. Caragiannis, C. Kaklamanis, P. Kanellopoulos und M. Kyropoulou

	Untere Schranke	Obere Schranke	n = 2
Preis der			
Proportionalität	$\Omega(\sqrt{n})$	$\mathcal{O}(\sqrt{n})$	$8 - 4\sqrt{3}$
Neidfreiheit	$\Omega(\sqrt{n})$	n - 1/2	$8 - 4\sqrt{3}$
Exaktheit	$(n+1)^2/4n$	n	9/8

Nächstes Mal:

- Utilitarismus und Egalitarismus
- Preis der Effizienz (Rückrichtung)
- Zusammenhängende Stücke

Fragen:

- Gibt es immer eine effiziente Aufteilung?
- Lässt sich Gerechtigkeit und Effizienz immer vereinigen?
- Wie sehen effiziente Protokolle aus?

Für die Aufmerksamkeit!

Quelle:

[CKKK09] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos und M. Kyropoulou: The Efficiency of Fair Division. *WINE '09 Proceedings of the 5th International Workshop on Internet and Network Economics*, 475 - 482, 2009.