Started on	Sunday, 15 October 2023, 12:30 PM
State	Finished
Completed on	Sunday, 15 October 2023, 12:54 PM
Time taken	24 mins
Grade	10.00 out of 10.00 (100 %)
Question 1	

Question 1

Correct

Mark 1.00 out of 1.00

In the context of estimation, the probability density function (PDF) of the observations, viewed as a function of the unknown parameter h is termed as the

Select one:

- Objective Function
- Cost Function
- Estimation Function
- Likelihood Function

Your answer is correct.

The correct answer is: Likelihood Function

Question **2**

Correct

Mark 1.00 out of 1.00

Flag question

Consider the wireless sensor network (WSN) estimation scenario described in lectures with each observation y(k) = h + v(k), for $1 \le k \le N$, i.e. number of observations is N and i.i.d. real Gaussian noise samples of variance σ^2 . The likelihood $p(\bar{\mathbf{y}};h)$ of the parameter h, where $\bar{\mathbf{y}} = [y(1) \quad y(2) \quad \dots \quad y(N)]^T$ is

Select one:

$$\bigcirc \quad \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{1}{2\sigma^2}\sum_{k=1}^{N}(y(k)-h)}$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{1}{2\sigma^2}\sum_{k=1}^N |y(k)-h|}$$

$$\bigcirc \ \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{1}{2\sigma^2}\left(\sum_{k=1}^Ny(k)-h\right)^2}$$

Your answer is correct.

The correct answer is:
$$\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{1}{2\sigma^2}\sum_{k=1}^N(y(k)-h)^2}$$

Question **3**

Correct

Mark 1.00 out of 1.00

Consider the wireless sensor network (WSN) estimation scenario described in lectures with each observation y(k) = h + v(k), for $1 \le k \le N$, i.e. number of observations is N and i.i.d. real Gaussian noise samples of variance σ^2 . As the number of samples N increases, the spread of estimate around the true parameter

Select one:

_ <u>1</u>

Decreases

Increases
Remains constant
Cannot be determined
Your answer is correct.
The correct answer is: Decreases
The correct ariswer is. Decreases
Question 4
Correct
Mark 1.00 out of 1.00
Flag question
Consider the wireless sensor network (WSN) estimation scenario described in lectures
with each observation $y(k) = h + v(k)$, for $1 \le k \le 4$, with the observations given as $y(1) = -2$, $y(2) = 1$, $y(3) = -1$, $y(4) = -2$. What is the maximum likelihood
estimate \hat{h} of the unknown parameter h ?
Select one:
$-\frac{1}{4}$
4
<u>-</u> 4
□ -1 ✓
Your answer is correct.
The correct answer is: -1
Question 5
Correct
Mark 1.00 out of 1.00
Consider the wireless sensor network (WSN) estimation scenario described in lectures
with each observation $y(k) = h + v(k)$, for $1 \le k \le 4$, i.e. number of observations
$N=4$ and IID Gaussian noise samples of variance $\sigma^2=1$. What is the variance of the maximum likelihood estimate \hat{h} of the unknown parameter h ?
the maximum fixenhood estimate n of the diknown parameter n:
Select one:

The correct answer is: $\frac{1}{4}$
Question 6
Correct
Mark 1.00 out of 1.00
▼ Flag question
Let $\bar{\mathbf{x}} = [-1 \ 1 \ 1 \ -1]^T$ denote the vector of transmitted pilot symbols and $\bar{\mathbf{y}} = [-1 \ -1 \ 2 \ 3]^T$ denote the corresponding received symbol vector. The maximum likelihood estimate of the channel coefficient h is,
Select one:
\bigcirc $-\frac{1}{4}$
\bigcirc $-\frac{1}{}$
3
$\bigcirc -\frac{3}{4}$
$\bigcirc \frac{1}{8}$
Your answer is correct.
The correct answer is: $-\frac{1}{4}$
Question 7
Correct
Mark 1.00 out of 1.00
∀ Flag question
Consider the fading channel estimation problem with i.i.d. Gaussian noise of zeromean and variance $\sigma^2 = 1$ and pilot vector $\bar{\mathbf{x}} = [-1 \ 1 \ 1 \ -1]^T$. The variance of the ML estimate \hat{h} is,
Select one:
O 2
\circ 1
\bigcirc $\frac{1}{4}$
$\bigcirc \frac{1}{2}$
2
Your answer is correct.
The correct answer is: $\frac{1}{4}$
Question 8
Correct
Mark 1.00 out of 1.00
Flag question
Consider the fading channel estimation problem where $\bar{\mathbf{x}}$ denotes the complex vector of transmitted pilot symbols. Let $v(k)$ be i.i.d. symmetric complex Gaussian noise with zero-mean and variance σ^2 . The variance of the maximum likelihood estimate \hat{h}

Your answer is correct.

Select one:

$$\sigma^2 \frac{\bar{\mathbf{x}}^T \mathbf{y}}{\bar{\mathbf{x}}^T \mathbf{y}}$$

Your answer is correct.

The correct answer is: $\frac{\sigma^2}{\bar{x}^H\bar{x}}$

Question **9**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

Consider the fading channel estimation problem with $\bar{\mathbf{x}} = [1+j \quad -1+j \quad -1-j \quad -1+j]^T$ and $\bar{\mathbf{y}} = [-j \quad 1 \quad -j \quad 1]^T$. The maximum likelihood estimate of the channel coefficient h is,

Select one:

$$\bigcirc \quad \frac{1}{4} + \frac{1}{4}j$$

$$\frac{1}{4}$$

$$-\frac{1}{2}$$

Your answer is correct.

The correct answer is: $-\frac{1}{4} - \frac{1}{4}j$

Question 10

Correct

Mark 1.00 out of 1.00

The Fisher information I(h) for estimation of a parameter h given the likelihood $p(\bar{\mathbf{y}};h)$ is

Select one:

$$\frac{1}{E\left\{\left(\frac{\partial}{\partial h}\ln p(\bar{y};h)\right)^{2}\right\}}$$

$$\bigcirc E\left\{\frac{\partial}{\partial h}p(\bar{\mathbf{y}};h)\right\}$$

$$\bigcirc \quad E\left\{\left(\frac{\partial}{\partial h}p\left(\overline{\mathbf{y}};h\right)\right)^{2}\right\}$$

Your answer is correct.

The correct answer is:
$$E\left\{\left(\frac{\partial}{\partial h}\ln p(\overline{\mathbf{y}};h)\right)^2\right\}$$

Finish review