

MAT 2051 TD 3

Exercice 1.

On considère $E = \mathbf{R}_2[X] = vect(\{1, X, X^2\})$ l'ensemble des polynômes P à coefficients réels tel que $\deg(P) \le 2$, muni du produit scalaire $<\cdot|\cdot|>$ défini par :

Pour
$$(P,Q) \in E^2$$
, $\langle P \mid Q \rangle = \frac{1}{2} \int_{-1}^{1} P(t)Q(t) dt$

Calculer
$$< P \mid X > \text{pour } P \in \{1, X, X^2\}$$

Exercice 2.

Soit E un \mathbf{R} - espace vectoriel muni d'un produit scalaire noté $<\cdot\mid\cdot>$.

Pour
$$u \in E$$
, on pose $||u|| = \sqrt{\langle u \mid u \rangle}$

Montrer que si $u \in E$ et $u \neq 0_E$ alors le vecteur $v = \frac{u}{\|u\|}$ vérifie $\|v\| = 1$

Exercice 3.

On considère l'application φ définie sur ${f R}^2 imes {f R}^2$ par :

$$\forall (u, v) \in \mathbb{R}^2 \times \mathbb{R}^2$$
, si $u = (x, y)$ et $v = (x', y')$ on a : $\varphi(u, v) = 4xx' - xy' - x'y + 2yy'$

- 1) On note $u_1 = (1,2)$ et $u_2 = (3,-2)$ calculer $\varphi(u_1,u_2)$
- 2) Soit $(a,b) \in \mathbf{R}^2$, posons u = (a,b) calculer $\varphi(u,u)$
- 3) Montrer que $\, \varphi \,$ est un produit scalaire sur $\, {f R}^{\, 2} \,$
- 4) Prouver que $B = \{u_1; u_2\}$ est une base orthogonale de \mathbf{R}^2 pour le produit scalaire φ ; c'est-à-dire B est une base de \mathbf{R}^2 et $\varphi(u_1, u_2) = 0$.
- 5) Déterminer une base orthonormée $B' = \{v_1; v_2\}$ de \mathbf{R}^2 pour le produit scalaire φ ; c'est-à-dire B 'est une base orthogonale de \mathbf{R}^2 et $\|v_1\| = \|v_2\| = 1$ où $\forall u \in \mathbf{R}^2, \|u\| = \sqrt{\varphi(u,u)}$.

Exercice 4.

On considère l'application arphi définie sur ${f R}^2 imes {f R}^2$ par :

$$\forall (u,v) \in \mathbf{R}^2 \times \mathbf{R}^2$$
, si $u = (x,y)$ et $v = (x',y')$ on a : $\varphi(u,v) = 2xx' - 2yy' + xy' + x'y$ φ est-elle un produit scalaire sur \mathbf{R}^2 ?

Exercice 5.

Soient E un ${\bf R}$ - espace vectoriel muni d'un produit scalaire noté $<\cdot\mid\cdot>$ et $(u,v,w)\in E^3$

- 1) Montrer que $\,\,\forall\,u\in E\,$, $\,<\,0_{_E}\,\,\,\big|\,\,\,u\,\,>\,=0\,\,$ où $\,0_{_E}\,\,$ désigne le vecteur nul de $\,E\,$.
- 2) Calculer $< u + v \mid u + v >$
- 3) Montrer le théorème de Pythagore : si u et v sont orthogonaux alors $\|u+v\|^2 = \|u\|^2 + \|v\|^2$
- 4) Montrer que si v-w est orthogonal à u et v est orthogonal à w-u . alors w est orthogonal à u-v

Exercice 6.

On considère \mathbf{R}^3 muni du produit scalaire usuel.

Soient a = (-1,1,-1), b = (2,2,0) et c = (-1,1,2) des vecteurs de \mathbb{R}^3 .

Montrer que $vect(\{c\}) = (vect(\{a,b\}))^{\perp}$

Exercice 7.

On considère \mathbf{R}^4 muni du produit scalaire usuel.

Déterminez l'orthogonal du sous espace F de \mathbf{R}^4 d'équations :

$$\begin{cases} -x_1 + x_2 + x_3 - 2x_4 = 0 \\ x_1 + 2x_2 + x_4 = 0 \end{cases}$$

Exercice 8.

Dans l'espace euclidien \mathbb{R}^3 usuel, on note E le plan d'équation cartésienne x - y = 0

- 1) Déterminer la projection orthogonale de u = (1,1,1) sur E.
- 2) Déterminer la projection orthogonale de v = (-2, 2, 0) sur E.
- 3) Déterminer la projection orthogonale de w = (1,0,1) sur E (de deux manières différentes)

Exercice 9.

Soit E un \mathbf{R} - espace vectoriel muni d'un produit scalaire noté $<\cdot\mid\cdot>$.

On note $B = \{a_1, a_2, a_3\}$ une famille de E formée de vecteurs non nuls deux à deux orthogonaux c'est-à-dire $\forall i \in \{1,2,3\}, \forall j \in \{1,2,3\}, i \neq j, < a_i | a_i > = 0$.

Montrer que la famille $B = \{a_1, a_2, a_3\}$ est libre.

Exercice 10.

Dans l'espace euclidien \mathbb{R}^3 usuel, on note F le plan d'équation cartésienne x-y+z=0.

- 1) Donner sans justifier une base orthogonale $\{v_1, v_2\}$ du plan F.
- 2) Donner un vecteur v_3 tel que $\{v_1, v_2, v_3\}$ soit une base orthogonale de ${\bf R}^3$.
- 3) Donner la matrice, par rapport à la base $\{v_1, v_2, v_3\}$, de la projection orthogonale p sur le plan F

Exercice 11.

Soit $n \in \mathbb{N}$, $n \ge 3$.

On considère $E = \mathbf{R}_n[X]$ l'ensemble des polynômes P à coefficients réels tel que $\deg(P) \le n$, muni du produit scalaire $<\cdot|\cdot|>$ défini par :

Pour
$$(P,Q) \in E^2$$
, $P \mid Q > = \int_{-1}^{1} P(t)Q(t) dt$

1) Soit
$$F = vect(\{1, X, X^3\})$$

Construire par le procédé de Gram-Schmidt une base orthonormée $\{Q_1,Q_2,Q_3\}$ de F .

2) Exprimer dans la base $\left\{ \mathcal{Q}_{_{\! 1}},\mathcal{Q}_{_{\! 2}},\mathcal{Q}_{_{\! 3}} \right\}$ la projection orthogonale de X^2 sur F