CS174A Lecture 7

Announcements & Reminders

- Project #2 due on Sunday 10/20/19 midnight
- Midterm: Oct 29

Last Lecture Recap

Examples of Transformations:

- Rotation about a random point
- Rotation about a random axis/vector

Spaces:

- Model space
- Object/world space
- Eye/camera space
- Screen space

Next Up

- Spaces:
 - Model space
 - Object/world space
 - Eye/camera space
 - Screen space
- Projections: parallel and perspective
- Lighting
- Flat and Smooth Shading

SIGGRAPH trailers from 2013

Going backwards,

https://www.youtube.com/watch?v=FUGVF_eMeo4

And

https://www.youtube.com/watch?v=JAFhkdGtHck

Composite 3D Rotation About the Origin

$$R(\theta_1, \theta_2, \theta_3) = R_z(\theta_3)R_y(\theta_2)R_x(\theta_1)$$

- This is known as the "Euler angle" representation of 3D rotations
- The order of the rotation matrices is important !!
- Note: The Euler angle representation suffers from singularities

Gimbal Lock

$$\mathbf{R}(\theta_1, \theta_2, \theta_3) = \mathbf{R}_z(\theta_3) \mathbf{R}_y(\theta_2) \mathbf{R}_x(\theta_1)$$

$$= \begin{bmatrix} \cos \theta_3 & -\sin \theta_3 & 0 & 0 \\ \sin \theta_3 & \cos \theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_2 & 0 & \sin \theta_2 & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta_2 & 0 & \cos \theta_2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta_1 & -\sin \theta_1 & \cos \theta_1 \\ 0 & \sin \theta_1 & \cos \theta_1 & 0 & 0 \end{bmatrix}$$

What happens when the middle angle is 90°?

$$\begin{split} \mathbf{R}(\theta_1, 90^{\circ}, \theta_3) &= \mathbf{R}_z(\theta_3) \mathbf{R}_y(90^{\circ}) \mathbf{R}_x(\theta_1) \\ &= \begin{bmatrix} \cos\theta_3 & -\sin\theta_3 & 0 & 0 \\ \sin\theta_3 & \cos\theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_1 & -\sin\theta_1 & 0 \\ 0 & \sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \cos\theta_3 & -\sin\theta_3 & 0 & 0 \\ \sin\theta_3 & \cos\theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & \sin\theta_1 & \cos\theta_1 & 0 \\ 0 & \cos\theta_1 & -\sin\theta_1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 0 & \cos\theta_3 \sin\theta_1 - \sin\theta_3 \cos\theta_1 & \cos\theta_3 \cos\theta_1 + \sin\theta_3 \sin\theta_1 & 0 \\ 0 & \cos\theta_3 \cos\theta_1 + \sin\theta_3 \sin\theta_1 & -\cos\theta_3 \sin\theta_1 + \sin\theta_3 \cos\theta_1 & 0 \end{bmatrix} \end{split}$$

Loss of a Rotational Degree of Freedom

$$\mathbf{R}(\theta_1, 90^{\circ}, \theta_3) = \begin{bmatrix} 0 & \cos\theta_3 \sin\theta_1 - \sin\theta_3 \cos\theta_1 & \cos\theta_3 \cos\theta_1 + \sin\theta_3 \sin\theta_1 & 0 \\ 0 & \cos\theta_3 \cos\theta_1 + \sin\theta_3 \sin\theta_1 & -\cos\theta_3 \sin\theta_1 + \sin\theta_3 \cos\theta_1 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \sin(\theta_1 - \theta_3) & \cos(\theta_1 - \theta_3) & 0 \\ 0 & \cos(\theta_1 - \theta_3) & -\sin(\theta_1 - \theta_3) & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \sin\theta & \cos\theta & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{R}(\theta),$$

where $\theta = \theta_1 - \theta_3$

Thus, the two remaining rotational degrees of freedom, θ_1 and θ_3 , have collapsed into a single rotational degree of freedom θ , which is the difference of the two rotational angles

There are Alternatives

It is often convenient to use other representations of 3D rotations that do not suffer from Gimbal Lock

- Advanced concepts
 - Quaternions
 - Exponential Maps

"LookAt" Matrices

Defining M_{cam}

Given:

Eye point P_{eye} Reference point P_{ref} Up vector \mathbf{v}_{up}

 $(\mathbf{v}_{\mathsf{up}})$ is not necessarily orthogonal to \mathbf{z}

To build \mathbf{M}_{cam} we need to define a camera coordinate system [i j k O]

Camera Coordinate System

$$\mathbf{k} = \frac{P_{\text{eye}} - P_{\text{ref}}}{|P_{\text{eye}} - P_{\text{ref}}|}$$

$$\mathbf{i} = \frac{\mathbf{v}_{\mathsf{up}} \times \mathbf{k}}{|\mathbf{v}_{\mathsf{up}} \times \mathbf{k}|}$$

$$j = k \times i$$

Reminder: Change of Basis

$$P_{C_1} = \mathbf{M} P_{C_2}$$

$$P_{C_1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \mathbf{M} P_{C_2}$$

Building M_{cam}

Change of basis

Our reference system is WCS, we know the camera parameters with respect to the world

Align WCS with VCS

$$\mathbf{M}_{\mathsf{Cam}} = \begin{bmatrix} 1 & 0 & 0 & P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{\text{WCS}} = \mathbf{M}_{\text{cam}} P_{\text{VCS}}$$

Building M_{cam} Inverse

Invert the smart way

$$\mathbf{M}_{\mathsf{cam}}^{-1} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 & P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 & P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

Building M_{cam} Inverse

Invert the smart way

$$\mathbf{M}_{\mathsf{cam}}^{-1} = \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 & P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} i_x & i_y & i_z & 0 \\ j_x & j_y & j_z & 0 \\ k_x & k_y & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & -P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & -P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Negate

 $P_{\text{VCS}} = \mathbf{M}_{\text{cam}}^{-1} P_{\text{WCS}}$

How to call look_at()

```
// Pass in eye position, at
// position, and up vector.

Mat4.look_at( Vec.of( 0,0,0 ), Vec.of( 0,0,1 ), Vec.of( 0,1,0 ) ) );

// Or:

Mat4.look_at( ...Vec.cast( [0,0,0], [0,0,1], [0,1,0] ) );
```

Positioning camera without look_at()

- Not as easy to point directly at things, but valid.
- Generate it using

```
mult()/rotation()/translation()/scale()
instead of look at()
```

- Remember inverse() concepts apply to cameras
 - Any incremental modifications you make will encounter properties of inverted products (reverse the order <u>and</u> invert each part)

Summary of the Modelview Transformation

- 1. An affine transformation composed of elementary affine transformations
- 2. The camera transformation is a change of basis
- 3. The modelview transformation preserves:
 - lines and planes
 - parallelism of lines and planes
 - affine combinations of points and relative ratios

Normals in Graphics

Normals

- Mathematics:
 - A vector that is perpendicular to the surface at a given point
 - Point "outward" or "away" from the object
- True realism:
 - Would require calculation of normal/derivative at every point along a continuous shape
 - Not feasible
- Graphics:
 - We're only interested in vertex normals
 - Discrete "approximations" of the normal sampled at points on the imaginary surface

Transforming Normals

Normal vectors are transformed along with vertices and polygons.

- How do you transform a normal ?
- What about unit magnitude ?

Consider the shear matrix:
$$M = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$
 $M^{-T} = \begin{bmatrix} 1 & 0 \\ -a & 1 \end{bmatrix}$

The good thing is, this problem does not happen with tangent vectors!!!

Mathematical Reason for Inverse Transpose:

All we know about the transformed normal is that the dot product with tangent (V) must equal zero:

$$N^{T}V = 0$$

$$N^{T}M^{-1}MV = 0$$

$$(M^{-T}N)^{T}(MV) = 0$$

$$N'^{T}MV = 0$$

Polygon Attributes

Per vertex

- Position
- Texture coordinates

Per vertex or per face (if flat shading)

- Color
- Normal

Reminder: What are normals for?

- Lighting!
- The direction of the normal determines how the light will bounce off each surface when modeling light rays.

Our shapes so far have easy normal vectors.

- "Z axis" vector is perpendicular to Triangle and Square
- For a cube, normals would also just be axis-aligned
- For a sphere, we know analytically that the vector pointing away from the center (perpendicular to the formula's surface) will be the normal.
 - Just assign normal = position coord.

What do you do when the normals aren't known?

• Hint: Think per-triangle.

Plane Equation

Normal / point form

$$F(x, y, z) = ax + by + cz + d = \mathbf{n} \cdot P + d$$

For points on plane, $F(x, y, z) = 0$

Observation: Let's take an arbitrary vector \mathbf{u} that lies on the plane which can be defined by two points; e.g., P_1 , P_2 on the plane.

$$\mathbf{u} = P_2 - P_1$$

$$\mathbf{n} \bullet P_1 + d = 0$$

$$\mathbf{n} \bullet P_2 + d = 0$$

$$\Rightarrow \mathbf{n} \bullet (P_2 - P_1) = 0 \Rightarrow \mathbf{n} \bullet \mathbf{u} = 0 \Rightarrow \mathbf{n} \perp \mathbf{u}$$

Computing Normal / Point Form From 3 Points

$$F(x, y, z) = ax + by + cz + d = \mathbf{n} \cdot P + d$$

Points on Plane $F(x, y, z) = 0$

First way (4 equations in unknowns a, b, c, d):

$$\mathbf{n} \bullet P_0 + d = 0$$

$$\mathbf{n} \bullet P_1 + d = 0$$

$$\mathbf{n} \bullet P_2 + d = 0$$

$$|\mathbf{n}| = 1$$
 (arbitrary choice)

n is normal to the plane

Let's find a normal vector:

$$\mathbf{n} = (P_1 - P_0) \times (P_2 - P_0) = \mathbf{v}_1 \times \mathbf{v}_2$$

Compute *d*:

$$d = -\mathbf{n} \bullet P_0$$

When the normals aren't known:

- Using the indices, collect the positions of the three points of the triangle.
- Create two vectors out of the triangle.
- Use a cross product.

Cross Product Normals

- The result might point inside the shape instead of out!
 - -(AxB = -BxA)
 - Hard to know which edges to make "A" and "B"
- How to detect an inward vector? Assume shape is convex and centered at the origin.