第2节选解析式与选图象(★★)

内容提要

本节归纳选解析式与选图象的有关考题,这类题考查的是函数的性质,用排除法选答案是通法,一般可以 从以下的一些角度考虑:①奇偶性;②特殊点(或某区间)的函数值;③单调性;④图象变化趋势(极限 情况)等.

典型例题

类型 I: 给解析式选图象

【例 1】(2022・全国甲卷)函数 $y = (3^x - 3^{-x})\cos x$ 在区间 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 的大致图象为()

解析: A、C为奇函数, B、D为偶函数, 所以先从奇偶性排除两个选项,

记 $f(x) = (3^x - 3^{-x})\cos x$,则 $f(-x) = (3^{-x} - 3^x)\cos(-x) = (3^{-x} - 3^x)\cos x = -f(x) \Rightarrow f(x)$ 是奇函数,排除 B、D;

选项 A、C 的差异为函数值的正负,当 $0 < x < \frac{\pi}{2}$ 时, $3^x - 3^{-x} > 0$, cos x > 0, 故 f(x) > 0,排除 C,选 A. 答案: A

【例 2】函数 $f(x) = \frac{\sin 3x}{1 + \cos x} (-\pi < x < \pi)$ 的大致图象为(

解析: 选项 A 关于 y 轴对称, 其余关于原点对称, 所以可先判断奇偶性,

$$f(-x) = \frac{\sin 3(-x)}{1 + \cos(-x)} = -\frac{\sin 3x}{1 + \cos x} = -f(x) \Rightarrow f(x)$$
为奇函数,排除 A;

B和C、D在y轴右侧附近函数值正负不同,所以计算y轴右侧附近某处的函数值,

例如,
$$f(0.1) = \frac{\sin 0.3}{1 + \cos 0.1} > 0$$
, 从而可排除 B;

选项 C、D 怎么看呢?它们的明显差异是 $(0,\pi)$ 上的零点个数不同,所以可分析零点个数来排除,

 $f(x) = 0 \Leftrightarrow \sin 3x = 0 \Leftrightarrow 3x = k\pi \Leftrightarrow x = \frac{k\pi}{3} (k \in \mathbb{Z})$,所以 f(x) 在 $(0,\pi)$ 上有零点 $\frac{\pi}{3}$ 和 $\frac{2\pi}{3}$,排除 C,选 D. 答案: D

【例 3】函数
$$f(x) = \frac{|x|x^2 - \ln|x|}{x^2}$$
 的大致图象为 ()

解析: 所给图象中有关于原点对称的, 有关于y轴对称的, 所以先判断奇偶性,

$$f(-x) = \frac{\left| -x \right| (-x)^2 - \ln \left| -x \right|}{(-x)^2} = \frac{\left| x \right| x^2 - \ln \left| x \right|}{x^2} = f(x) \Rightarrow f(x) \text{ 为偶函数,排除 A、C;}$$

选项 B、D 在 $x \to +\infty$ 时趋势不同,可分析极限来排除选项,当 $x \to +\infty$ 时, $f(x) = \frac{|x|x^2 - \ln|x|}{x^2} = x - \frac{\ln x}{x^2}$,

注意到 $\frac{\ln x}{x^2}$ 这个部分,尽管分子分母都趋于 $+\infty$,但我们知道 $\ln x$ 趋于 $+\infty$ 的速率比 x^2 慢,

所以这部分极限为 0,从而 $f(x)=x-\frac{\ln x}{r^2}\to +\infty$,排除 B,选 D.

答案: D

【**反思**】 $y = a^x(a > 1)$, $y = \log_b x(b > 1)$, $y = x^m(m > 0)$ 这三类函数,当 $x \to +\infty$ 时,函数值 y 都趋于 $+\infty$,但从增长速率来看, $y = a^x$ 最快, $y = x^m$ 其次, $y = \log_b x$ 最慢.

类型 II: 给图象选解析式

【例 4】(2021 • 浙江卷)已知函数 $f(x) = x^2 + \frac{1}{4}$, $g(x) = \sin x$,则图象为右图的函数可能是()

(A)
$$y = f(x) + g(x) - \frac{1}{4}$$
 (B) $y = f(x) - g(x) - \frac{1}{4}$ (C) $y = f(x)g(x)$ (D) $y = \frac{g(x)}{f(x)}$

解析:这道题是给了图象,反过来让选解析式,我们应挖掘所给图象的性质,并用它们来验证选项是否与

之吻合,这里图象反映的信息有奇偶性、 $(0,\frac{\pi}{4})$ 上的单调性等方面,

A 项, $y = f(x) + g(x) - \frac{1}{4} = x^2 + \sin x$ 为非奇非偶函数,与图象不符,故 A 项错误;

B 项, $y = f(x) - g(x) - \frac{1}{4} = x^2 - \sin x$ 为非奇非偶函数,与图象不符,故 B 项错误;

C 项, 令 h(x) = f(x)g(x), 则 $h(x) = (x^2 + \frac{1}{4})\sin x$, 所以 $h'(x) = 2x\sin x + (x^2 + \frac{1}{4})\cos x$,

从而 $h'(\frac{\pi}{4}) = \frac{\sqrt{2}\pi}{4} + (\frac{\pi^2}{16} + \frac{1}{4}) \times \frac{\sqrt{2}}{2} > 0$,即 h(x)在 $x = \frac{\pi}{4}$ 处的切线斜率为正,与图象不符,排除 C,选 D.

也可直接分析选项 C 的函数在 $(0,\frac{\pi}{4})$ 上的单调性,当 $x \in (0,\frac{\pi}{4})$ 时,f(x)和 g(x)均 \nearrow ,且 f(x) > 0,g(x) > 0,

所以 y = f(x)g(x) 在 $(0, \frac{\pi}{4})$ 上为增函数,与图象不符,从而得出 C 项错误.

答案: D

强化训练

1. (2020 • 浙江卷 • ★) 函数 $y = x \cos x + \sin x$ 在区间 $[-\pi, \pi]$ 上的图象可能是 ()

2. (2022 • 湖北月考 • ★) 函数 $f(x) = \frac{x^3}{3^x + 3^{-x}}$ 的部分图象大致为()

3. (2022 • 衢州期末 • ★★) 函数 $f(x) = \frac{2^x - 2^{-x}}{2^{|x|}}$ 的部分图象大致为()

4. (2022 • 浙江期中 • ★★★) 已知函数 $f(x) = e^{|x|} - 2x^2$,则 f(x) 的图象可能是()

5. (2022 •全国乙卷 •★★★) 右图是下列四个函数中的某个函数在[-3,3] 的大致图象,则该函数是()

(A)
$$y = \frac{-x^3 + 3x}{x^2 + 1}$$
 (B) $y = \frac{x^3 - x}{x^2 + 1}$ (C) $y = \frac{2x \cos x}{x^2 + 1}$ (D) $y = \frac{2\sin x}{x^2 + 1}$

