PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 96/26272		
C12N 15/12, 15/64, C12Q 1/68, C07K 14/435	A1	(43) International Publication Date: 29 August 1996 (29.08.96)		
(21) International Application Number: 'PCT/US96/02424 (22) International Filing Date: 23 February 1996 (23.02.96)		400 East 85th Street, New York, NY 10028 (US). FAIR,		
(30) Priority Data: 08/394,152 08/466,381 08/470,735 24 February 1995 (24.02.95) 2 June 1995 (02.06.95) 2 June 1995 (02.06.95)) [[
(60) Parent Applications or Grants (63) Related by Continuation		(81) Designated States: AU, CA, JP, MX, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).		
US 08/394,1	152 (CI			
Filed on 24 February 1995 (24.02.9	Published		
US 08/466,3				
Filed on 2 June 1995 (
US 08/470,7				
Filed on 2 June 1995 (02.06.9	ů.		
(71) Applicant (for all designated States except US): KETTERING INSTITUTE FOR CANCER RE: [US/US]; 1275 York Avenue, New York, NY 100	SEARC	1 7		
(72) Inventors; and				
(75) Inventors/Applicants (for US only): ISRAELI, [US/US]; 528 Liberty Avenue, Staten Island, N	•			

(54) Title: PROSTATE-SPECIFIC MEMBRANE ANTIGEN AND USES THEREOF

(57) Abstract

This invention provides an isolated mammalian nucleic acid molecule encoding an alternatively spliced prostate-specific membrane (PSM') antigen. This invention provides an isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter. This invention provides a method of detecting hematogenous micrometastic tumor cells of a subject, and determining prostate cancer progression in a subject.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB United Kingdom		MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
СМ	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechosłovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

PROSTATE-SPECIFIC MEMBRANE ANTIGEN AND USES THEREOF

5

10

This application is a continuation-in-part of United States Application Serial Nos. 08/466,381 and 08/470,735, both filed June 2, 1995, which are continuations of U.S. Serial No. 08/394,152, filed February 24, 1995, the contents of which are hereby incorporated by reference.

This invention disclosed herein was made in part with Government support under NIH Grants No. DK47650 and CA58192, CA-39203, CA-29502, CA-08748-29 from the Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

20 BACKGROUND OF THE INVENTION

Throughout this application various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found at the end of each set of Examples in the Experimental Details section.

30

35

25

Prostate cancer is among the most significant medical problems in the United States, as the disease is now the most common malignancy diagnosed in American males. In 1992 there were over 132,000 new cases of prostate cancer detected with over 36,000 deaths attributable to the disease, representing a 17.3% increase over 4 years (2). Five year survival rates for patients with prostate cancer range from 88% for those with localized disease to 29% for those with metastatic disease. The

5

10

15

20

rapid increase in the number of cases appears to result in part from an increase in disease awareness as well as the widespread use of clinical markers such as the secreted proteins prostate-specific antigen (PSA) and prostatic acid phosphatase (PAP) (37).

-2-

The prostate gland is a site of significant pathology affected by conditions such as benign growth (BPH), cancer) and (prostatic neoplasia (prostatitis). Prostate cancer represents the second leading cause of death from cancer in man (1). However prostatic cancer is the leading site for cancer The difference between these two development in men. facts relates to prostatic cancer occurring with increasing frequency as men age, especially in the ages beyond 60 at a time when death from other factors often spectrum of biologic Also, the intervenes. aggressiveness of prostatic cancer is great, so that in some men following detection the tumor remains a latent histologic tumor and does not become clinically significant, whereas in other it progresses rapidly, metastasizes and kills the man in a relatively short 2-5 year period (1, 3).

In prostate cancer cells, two specific proteins that 25 are made in very high concentrations are prostatic acid phosphatase (PAP) and prostate specific antigen (PSA) (4, 5, 6). These proteins have been characterized and have been used to follow response to therapy. With the development of cancer, the normal architecture of the 30 gland becomes altered, including loss of the normal duct structure for the removal of secretions and thus the secretions reach the serum. Indeed measurement of serum PSA is suggested as a potential screening method for prostatic cancer. Indeed, the relative amount of 35 PSA and/or PAP in the cancer reduces as compared to normal or benign tissue.

5

10

35

-3-

PAP was one of the earliest serum markers for detecting metastatic spread (4). PAP hydrolyses tyrosine phosphate and has a broad substrate specificity. Tyrosine phosphorylation is often increased with oncogenic transformation. It has been hypothesized that during neoplastic transformation there is less phosphatase activity available to inactivate proteins that are activated by phosphorylation on tyrosine residues. In some instances, insertion of phosphatases that have tyrosine phosphatase activity has reversed the malignant phenotype.

PSA is a protease and it is not readily appreciated how loss of its activity correlates with cancer development 15 (5, 6). The proteolytic activity of PSA is inhibited Zinc concentrations are high in the normal prostate and reduced in prostatic cancer. Possibly the loss of zinc allows for increased proteolytic activity by PSA. As proteases are involved in metastasis and 20 some proteases stimulate mitotic activity, potentially increased activity of PSA could hypothesized to play a role in the tumors metastases and spread (7).

- Both PSA and PAP are found in prostatic secretions.

 Both appear to be dependent on the presence of androgens for their production and are substantially reduced following androgen deprivation.
- Prostate-specific membrane antigen (PSM) which appears to be localized to the prostatic membrane has been identified. This antigen was identified as the result of generating monoclonal antibodies to a prostatic cancer cell, LNCaP (8).

Dr. Horoszewicz established a cell line designated LNCaP from the lymph node of a hormone refractory,

WO 96/26272

5

10

15

-4-

PCT/US96/02424

heavily pretreated patient (9). This line was found to have an aneuploid human male karyotype. It maintained prostatic differentiation functionality in that it produced both PSA and PAP. It possessed an androgen receptor of high affinity and specificity. Mice were immunized with LNCaP cells and hybridomas were derived A monoclonal antibody was from sensitized animals. derived and was designated 7E11-C5 (8). The antibody staining was consistent with a membrane location and isolated fractions of LNCaP cell membranes exhibited a strongly positive reaction with immunoblotting and ELISA techniques. This antibody did not inhibit or enhance the growth of LNCaP cells in vitro or in vivo. The antibody to this antigen was remarkably specific to prostatic epithelial cells, as no reactivity was observed in any other component. Immunohistochemical staining of cancerous epithelial cells was more intense than that of normal or benign epithelial cells.

Horoszewicz also reported detection of 20 Dr. immunoreactive material using 7Ell-C5 in serum of prostatic cancer patients (8). The immunoreactivity was detectable in nearly 60% of patients with stage D-2 disease and in a slightly lower percentage of patients with earlier stage disease, but the numbers of patients 25 in the latter group are small. Patients with benign prostatic hyperplasia (BPH) were negative. with no apparent disease were negative, but 50-60% of patients in remission yet with active stable disease or progression demonstrated positive 30 with reactivity. Patients with non prostatic tumors did not show immunoreactivity with 7E11-C5.

The 7Ell-C5 monoclonal antibody is currently in clinical trials. The aldehyde groups of the antibody were oxidized and the linker-chelator glycol-tyrosyl-(n, ε-diethylenetriamine-pentacetic acid)-lysine (GYK-

5

10

15

20

-5-

DTPA) was coupled to the reactive aldehydes of the heavy chain (10). The resulting antibody designated CYT-356. Immunohistochemical staining patterns were similar except that the CYT-356 modified antibody stained skeletal muscle. The comparison of CYT-356 with 7E11-C5 monoclonal antibody suggested both had binding to type 2 muscle fibers. The reason for the discrepancy with the earlier study, which reported skeletal muscle to be negative, was suggested to be due to differences in tissue fixation techniques. Still, the most intense and definite reaction was observed with prostatic epithelial cells, especially cancerous Reactivity with mouse skeletal muscle was detected with immunohistochemistry but not in imaging The Indium 111-labeled antibody localized to LNCaP tumors grown in nude mice with an uptake of nearly 30% of the injected dose per gram tumor at four In-vivo, no selective retention of the antibody was observed in antigen negative tumors such as PC-3 and DU-145, or by skeletal muscle. Very little was known about the PSM antigen. An effort at purification and characterization has been described at meetings by Dr. George Wright and colleagues (11, 12).

5

15

-6-

BRIEF DESCRIPTION OF THE FIGURES

- Figure 1: Signal in lane 2 represent the 100kD PSM antigen. The EGFr was used as the positive control and is shown in lane 1. Incubation with rabbit antimouse (RAM) antibody alone served as negative control and is shown in lane 3.
- 10 Figures 2A-2D: Upper two photos show LNCaP cytospins staining positively for PSM antigen.

 Lower left in DU-145 and lower right is PC-3 cytospin, both negative for PSM antigen expression.
- Figures 3A-3D: Upper two panels are human prostate sections (BPH) staining positively for PSM antigen. The lower two panels show invasive prostate carcinoma human sections staining positively for expression of the PSM antigen.
- Figure 4: 100kD PSM antigen following immunoprecipitation of ³⁵S-Methionine labelled LNCaP cells with Cyt-356 antibody.
- Figure 5: 3% agarose gels stained with Ethidium bromide revealing PCR products obtained using the degenerate PSM antigen primers. The arrow points to sample IN-20, which is a 1.1 kb PCR product which was later confirmed to be a partial cDNA coding for the PSM gene.

Figures 6A-6B: 2% agarose gels of plasmid DNA

-7-

resulting from TA cloning of PCR products. Inserts are excised from the PCR II vector (Invitrogen Corp.) by digestion with EcoRI. 1.1 kb PSM gene partial cDNA product is shown in lane 3 of gel 1.

Figure 7:

5

10

15

Autoradiogram showing size of cDNA represented in applicants' LNCaP library using M-MLV reverse transcriptase.

Figure 8:

Restriction analysis of full-length clones of PSM gene obtained after screening cDNA library. Samples have been cut with Not I and Sal I restriction enzymes to liberate the insert.

20 Figure 9:

Plasmid Southern autoradiogram of full length PSM gene clones. Size is approximately 2.7 kb.

Figure 10:

Northern blot revealing PSM expression limited to LNCaP prostate cancer line and H26 Ras-transfected LNCaP cell line. PC-3, DU-145, T-24, SKRC-27, HELA, MCF-7, HL-60, and others were are all negative.

(kb), and 28S and 18S ribosomal RNA

30

35

25

Figure 11: Autoradiogram of Northern analysis revealing expression of 2.8 kb PSM message unique to the LNCaP cell line (lane 1), and absent from the DU-145 (lane 2) and PC-3 cell lines (lane 3). RNA size ladder is shown on the left

-8-

bands are indicated on the right.

Figures 12A-12B:

5

10

15

25

30

35

Results of PCR of human prostate tissues using PSM gene primers. Lanes are numbered from left to right. Lane 1, LNCaP; Lane 2, H26; Lane 3, DU-145; Lane 4, Normal Prostate; Lane 5, BPH; Lane 6, Prostate Cancer; Lane 7, BPH; Lane 8, Normal; Lane 9, BPH; Lane 10, BPH; Lane 11, BPH; Lane 12, Normal; Lane 13, Normal; Lane 14, Cancer; Lane 15, Cancer; Lane 16, Cancer; Lane 17, Normal; Lane 18, Cancer; Lane 19, IN-20 Control; Lane 20, PSM cDNA

Figure 13: Isoelectric point of PSM antigen (non-glycosylated)

20 Figures 14:1-8 Secondary structure of PSM antigen

Figures 15A-15B:

A. Hydrophilicity plot of PSM antigenB. Prediction of membrane spanning segments

Figures 16:1-11

Homology with chicken, rat and human transferrin receptor sequence.

Figures 17A-17C:

Immunohistochemical detection of PSM antigen expression in prostate cell lines. Top panel reveals uniformly high level of expression in LNCaP cells; middle panel and lower panel are DU-145 and PC-3 cells respectively,

-9-

both negative.

Figure 18: Autoradiogram of protein gel revealing products of PSM coupled in-vitro 5 transcription/translation. glycosylated PSM polypeptide is seen at 84 kDa (lane 1) and PSM glycoprotein synthesized following the addition of microsomes is seen at 100 kDa (lane 2). 10 Figure 19: Western Blot analysis detecting PSM expression in transfected expressing PC-3 cells. 100 kDa PSM glycoprotein species is clearly seen in 15 LNCaP membranes (lane 1), LNCaP crude lysate (lane 2), and PSM-transfected PC-3 cells (lane 4). but undetectable in native PC-3 cells (lane 3). 20 Figure 20: Autoradiogram οf ribonuclease protection gel assaying for PSM mRNA expression in normal human tissues. Radiolabeled 1 kb DNA ladder (Gibco-25 BRL) is shown in lane 1. Undigested probe is 400 nucleotides (lane 2), expected protected PSM band is 350 nucleotides, and tRNA control is shown (lane 3). A strong signal is seen in 30 human prostate (lane 11), with very faint, but detectable signals seen in human brain (lane 4) and human salivary gland (lane 12).

35 **Figure 21:** Autoradiogram of ribonuclease protection gel assaying for PSM mRNA expression in LNCaP tumors grown in

mice, and in human prostatic tissues. 32P-labeled 1 kb DNA ladder is shown in lane 1. 298 nucleotide undigested probe is shown (lane 2), and tRNA control is shown (lane 3). mRNA expression is clearly detectable in LNCaP cells (lane 4), orthotopically grown LNCaP tumors in nude mice with and without matrigel (lanes 5 and 6), and subcutaneously implanted and grown LNCaP tumors in nude mice (lane 7). PSM mRNA expression is also seen in normal human prostate (lane 8), and in moderately differentiated prostatic adenocarcinoma (lane 10). Very faint expression is seen in a sample of human prostate tissue with benign hyperplasia (lane 9).

20 **Figure 22:**

Ribonuclease protection assay for PSM expression in LNCaP cells treated with physiologic doses of various steroids for 24 hours. 32P-labeled DNA ladder is shown in lane 1. 298 nucleotide undigested probe is shown (lane 2), and tRNA control is shown (lane 3). mRNA expression is highest in untreated LNCaP cells in charcoal-stripped media (lane 4). Applicant see significantly diminished PSM expression in LNCaP cells treated with DHT (lane 5), Testosterone (lane 6), Estradiol (lane 7), and Progesterone (lane 8), with little response to Dexamethasone (lane 9).

Figure 23: Data illustrating results of PSM DNA

5

10

15

25

30

35

-11-

and RNA presence in transfect Dunning cell lines employing Southern and Northern blotting techniques

5 **Figures 24A-24B:**

10

15

Figure A indicates the power of cytokine transfected cells to teach unmodified cells. Administration was directed to the parental flank or prostate cells. The results indicate the microenvironment considerations.

Figure B indicates actual potency at a particular site. The tumor was implanted in prostate cells and treated with immune cells at two different sites.

Figures 25A-25B:

Relates potency of cytokines in inhibiting growth of primary tumors.

Animals administered un-modified parental tumor cells and administered as a vaccine transfected cells.

Following prostatectomy of rodent tumor results in survival increase.

Figure 26: PCR amplification with nested primers improved the level of detection of prostatic cells from approximately one prostatic cell per 10,000 MCF-7 cells to better than one cell per million MCF-7 cells, using either PSA.

Figure 27: PCR amplification with nested primers improved the level of detection of prostatic cells from approximately one

-12-

prostatic cell per 10,000 MCF-7 cells to better than one cell per million MCF-7 cells, using PSM-derived primers.

5 Figure 28: A representative ethidium stained gel

photograph for PSM-PCR. Samples run in lane A represent PCR products generated from the outer primers and samples in lanes labeled B are products of inner

primer pairs.

Figure 29: PSM Southern blot autoradiograph. The sensitivity of the Southern blot analysis exceeded that of ethidium staining, as can be seen in several samples where the outer product is not visible on figure 3, but is detectable by Southern blotting as shown in figure

4.

Figure 30: Characteristics of the 16 patients analyzed with respect to their clinical stage, treatment, serum PSA and PAP values, and results of assay.

Figures 31A-31D:

15

20

25

30

35.

The DNA sequence of the 3 kb XhoI fragment of p683 which includes 500 bp of DNA from the RNA start site was determined Sequence 683XFRVS starts from the 5' distal end of PSM promoter.

Figure 32: Potential binding sites on the PSM promoter.

Figure 33: Promoter activity of PSM up-stream fragment/CAT gene chimera.

-13-

Figure 34:

Comparison between PSM and PSM' cDNA. Sequence of the 5' end of PSM cDNA (5) is shown. Underlined region denotes nucleotides which are present in PSM cDNA sequence but absent in PSM' cDNA. Boxed region represents the putative transmembrane domain of PSM antigen.

* Asterisk denotes the putative translation initiation site for PSM'.

10

15

5

Figure 35:

Graphical representation of PSM and PSM' cDNA sequences and antisense PSM RNA probe (b). PSM cDNA sequence with complete coding region (5). (a) PSM' cDNA sequence from this study. (c) Cross hatched and open boxes denote sequences identity in PSM and PSM'. Hatched box indicates sequence absent from PSM'. Regions of cDNA sequence complementary to the antisense probe are indicated by dashed lines between the sequences.

20

25

Figure 36:

RNase protection assay with PSM specific probe in primary prostatic tissues. Total cellular RNA was isolated from human prostatic samples: normal prostate, BPH, and CaP. spliced variants are indicated with arrows at right. The left lane is a DNA ladder. Samples from different patients are classified as: lanes 3-6. CaP, carcinoma of prostate; BPH, benign prostatic hypertrophy, lanes normal, normal prostatic tissue, lanes Autoradiograph was exposed for longer period to read lanes 5 and 9.

30

35

	-14-
Figure 37:	Tumor Index, a quantification of the expression of PSM and PSM'. Expression of PSM and PSM' (Fig.3) was quantified by densitometry and expressed as a ratio of PSM/PSM' on the Y-axis. Three samples each were quantitated for primary CaP, BPH and normal prostate tissues. Two samples were quantitated for LNCaP. Normal, normal prostate
10	tissue.
Figure 38:	Characterization of PSM membrane bound and PSM' in the cytosol.
15 Figure 39:	Intron 1F: Forward Sequence. Intron 1 contains a number of trinucleotide

contains a number of trinucleotide repeats which can be area associated with chromosomal instability in tumor cells. LNCaP cells and primary prostate tissue are identical, however in the PC-3 and Du-145 tumors they have substantially altered levels of these trinucleotide repeats which may relate to their lack of expression of PSM.

25

20

Figures 40A-40B:

Intron 1R: Reverse Sequence

Figure 41: Intron 2F: Forward Sequence

30

Figure 42: Intron 2R: Reverse Sequence

Figures 43A-43B:

Intron 3F: Forward Sequence

35 Figures 44A-44B:

Intron 3R: Reverse Sequence

Figures 45A-45B:

-15-

Intron 4F: Forward Sequence

Figures 46A-46B:

Intron 4R: Reverse Sequence

5

Figures 47A-47D:

Sequence of the genomic region upstream of the 5' transcription start site of PSM.

10

15

Figure 48:

Photograph of ethidium bromide stained gel depicting representative negative and positive controls used in the Samples 1-5 were respectively: male with prostatis, a healthy female volunteer, a male with BPH, a control 1:1,000,000 dilution of LNCaP cells, and a patient with renal cell carcinoma. Below each reaction is corresponding control reaction with beta-2-microglobulin performed primers to assure RNA integrity. PCR products were detected for any of these negative controls.

25

30

20

Figure 49:

qel displaying Photograph of representative positive PCR results using PSM primers in selected patients with either localized or disseminated prostate cancer. Sample 1-5 were from. respectively: a patient with clinically localized stage Tl disease, a radical prostatectomy with patient organ confined disease and a negative serum PSA, a radical prostatectomy patient with locally advanced disease and a negative serum PSA, a patient with

35

-16-

treated stage D2 disease, and a patient with treated hormone refractory disease.

- 5 **Figure 50:** Chromosomal location of PSM based on cosmid construction.
- Figure 51: Human monochromosomal somatic cell hybrid blot showing that chromosome 11 contained the PSM genetic sequence by Southern analysis. DNA panel digested with PstI restriction enzyme and probed with PSM cDNA. Lanes M and H refer to mouse and hamster DNAs. The numbers correspond to the human chromosomal DNA in that hybrid.
- Figure 52: Ribonuclease protection assay using PSM radiolabeled RNA probe revels an abundant PSM mRNA expression in AT6.1-11 clone 1, but not in AT6.1-11 clone 2, thereby mapping PSM to 11p11.2-13 region.
- 25 **Figure 53:** Tissue specific expression of PSM RNA by Northern blotting and RNAse protection assay.
- Figure 54: Mapping of the PSM gene to the 11p11.2p13 region of human chromosome 11 by southern blotting and in-situ hybridization.
- Figure 55: Schematic of potential response elements.
 - Figure 56: Genomic organization of PSM gene.

-17-

Figure 57: Schematic of metastatic prostate cell

Figure 58A-58C:

Nucleic acid of PSM genomic DNA is read

5 prime away from the transcription
start site: number on the sequences
indicates nucleotide upstream from the
start site. Therefore, nucleotide #121

10 is actually -121 using conventional
numbering system.

Figure 59:

Representation of NAAG 1, acividin, azotomycin, and 6-diazo-5-oxo-norleucine, DON.

Figure 60:

Preparation of N-acetylaspartylglutamate, NAAG 1.

Figure 61:

Synthesis of N-acetylaspartylglutamate, NAAG 1.

25

20

Figure 62:

Synthesis of N-phosphonoacetylaspartyl-L-glutamate.

30 Figure 63:

Synthesis of 5-diethylphosphonon-2 amino benzylvalerate intermediate.

Figure 64:

35 Synthesis of analog 4 and 5.

Figure 65:

-18-

Representation of DON, analogs 17-20.

5 Figure 66:

Substrates for targeted drug delivery, analog 21 and 22.

Figure 67:

Dynemycin A and its mode of action.

Figure 68:

Synthesis of analog 28.

15 **Figure 69:**

Synthesis for intermediate analog 28.

Figure 70:

Attachment points for PALA.

20

Figure 71:

Mode of action for substrate 21.

Figures 72A-72D:

25 Intron 1F: Forward Sequence.

Figures 73A-73E:

Intron 1R: Reverse Sequence

30 Figures 74A-74C:

Intron 2F: Forward Sequence

Figures 75A-75C:

Intron 2R: Reverse Sequence

35

Figures 76A-76B:

Intron 3F: Forward Sequence

-19-

Figures 77A-77B:

Intron 3R: Reverse Sequence

5 Figures 78A-78C:

Intron 4F: Forward Sequence

Figures 79A-79E:

Intron 4RF: Reverse Sequence

10

Figure 80:

PSM genomic organization of the exons and 19 intron junction sequences. The exon/intron junctions (See Example 15) are as follows:

15

20

25

- Exon /intron 1 at bp 389-390;
- 2. Exon /intron 2 at bp 490-491;
- 3. Exon /intron 3 at bp 681-682;
- 4. Exon /intron 4 at bp 784-785;
- 5. Exon /intron 5 at bp 911-912;
- 6. Exon /intron 6 at bp 1096-1097;
- 7.
- Exon /intron 7 at bp 1190-1191; 8. Exon /intron 8 at bp 1289- 1290;
- 9. Exon /intron 9 at bp 1375-1376;
- 10. Exon /intron 10 at bp 1496-1497;
 - 11. Exon /intron 11 at bp 1579-1580;
 - Exon /intron 12 at bp 1640-1641; 12.
 - 13. Exon /intron 13 at bp 1708-1709;
 - Exon /intron 14 at bp 1803-1804;
 - 15. Exon /intron 15 at bp 1892-1893;
 - 16. Exon /intron 16 at bp 2158-2159;
 - 17. Exon /intron 17 at bp 2240-2241;
 - Exon /intron 18 at bp 2334-2335; 18.
 - 19. Exon /intron 19 at bp 2644-2645.

35

30

SUMMARY OF THE INVENTION

5

This invention provides an isolated mammalian nucleic acid molecule encoding an alternatively spliced prostate-specific membrane (PSM') antigen.

This invention provides an isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter. This invention provides a method of detecting hematogenous micrometastic tumor cells of a subject, and determining prostate cancer progression in a subject.

5

15

20

25

30

35

antigen.

Detailed Description of the Invention

Throughout this application, references to specific nucleotides are to nucleotides present on the coding strand of the nucleic acid. The following standard abbreviations are used throughout the specification to indicate specific nucleotides:

C=cytosine A=adenosine
10 T=thymidine G=guanosine

A "gene" means a nucleic acid molecule, the sequence of which includes all the information required for the normal regulated production of a particular protein, including the structural coding sequence, promoters and enhancers.

This invention provides an isolated mammalian nucleic acid encoding an alternatively spliced prostate-specific membrane (PSM') antigen.

This invention provides an isolated mammalian nucleic acid encoding a mammalian prostate-specific membrane (PSM) antigen.

This invention further provides an isolated mammalian DNA molecule of an isolated mammalian nucleic acid molecule encoding an alternatively spliced prostatespecific membrane antigen. This invention also provides an isolated mammalian cDNA molecule encoding a mammalian alternatively spliced prostate-specific membrane antigen. This invention provides an isolated mammalian molecule RNA encoding a mammalian alternatively spliced prostate-specific

This invention further provides an isolated mammalian

-22-

DNA molecule of an isolated mammalian nucleic acid molecule encoding a mammalian prostate-specific membrane antigen. This invention also provides an isolated mammalian cDNA molecule encoding a mammalian prostate-specific membrane antigen. This invention provides an isolated mammalian RNA molecule encoding a mammalian prostate-specific membrane antigen.

In the preferred embodiment of this invention, the isolated nucleic sequence is cDNA from human as shown in Figures 47A-47D. This human sequence was submitted to GenBank (Los Alamos National Laboratory, Los Alamos, New Mexico) with Accession Number, M99487 and the description as PSM, Homo sapiens, 2653 base-pairs.

15

20

25

30

35

5

10

This invention also encompasses DNAs and cDNAs which encode amino acid sequences which differ from those of PSM or PSM' antigen, but which should not produce phenotypic changes. Alternatively, this invention also encompasses DNAs and cDNAs which hybridize to the DNA and cDNA of the subject invention. Hybridization methods are well known to those of skill in the art.

For example, high stringent hybridization conditions are selected at about 5° C lower than the thermal melting point (Tm) for the specific sequence at a The Tm is the defined ionic strength and pH. temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a stringent Typically, perfectly matched probe. which the in be those conditions will concentration is at least about 0.02 molar at pH 7 and the temperature is at least about 60°C. As other factors may significantly affect the stringency of others, among including, hybridization, composition and size of the complementary strands, the presence of organic solvents, ie. salt or formamide

5

25

30

-23-

concentration, and the extent of base mismatching, the combination of parameters is more important than the absolute measure of any one. For Example high stringency may be attained for example by overnight hybridization at about 68°C in a 6x SSC solution, washing at room temperature with 6x SSC solution, followed by washing at about 68°C in a 6x SSC in a 0.6x SSX solution.

Hybridization with moderate stringency may be attained 10 for example by: 1) filter pre-hybridizing hybridizing with a solution of 3x sodium chloride, sodium citrate (SSC), 50% formamide, 0.1M Tris buffer Ph 7.5, 5x Denhardt's solution; 2.) 15 hybridization at 37°C for 4 hours; 3) hybridization at 37°C with amount of labelled probe equal to 3,000,000 cpm total for 16 hours; 4) wash in 2x SSC and 0.1% SDS solution; 5) wash 4x for 1 minute each at room temperature at 4x at 60°C for 30 minutes each; and 6) 20 dry and expose to film.

The DNA molecules described and claimed herein are useful for the information which they concerning the amino acid sequence of the polypeptide and as products for the large scale synthesis of the polypeptide by a variety of recombinant techniques. The molecule is useful for generating new cloning and expression vectors, transformed and transfected prokaryotic and eukaryotic host cells, and new and useful methods for cultured growth of such host cells capable of expression of the polypeptide and related products.

Moreover, the isolated mammalian nucleic acid molecules encoding a mammalian prostate-specific membrane antigen and the alternatively spliced PSM' are useful for the development of probes to study the tumorigenesis of

- 24 -

prostate cancer.

5

20

25

30

35

This invention also provides an isolated nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleic acid molecule encoding the prostate-specific membrane antigen or the alternatively spliced prostate specific membrane antigen.

This nucleic acid molecule produced can either be DNA or RNA. As used herein, the phrase "specifically hybridizing" means the ability of a nucleic acid molecule to recognize a nucleic acid sequence complementary to its own and to form double-helical segments through hydrogen bonding between complementary base pairs.

This nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleic acid molecule encoding the prostate-specific membrane antigen can be used as a probe. Nucleic acid probe technology is well known to those skilled in the art who will readily appreciate that such probes may vary greatly in length and may be labeled with a detectable label, such as a radioisotope or fluorescent dye, to facilitate detection of the probe. molecules may be produced by insertion of a DNA molecule which encodes PSM antigen into suitable vectors, such as plasmids or bacteriophages, followed by transforming into suitable bacterial host cells, replication in the transformed bacterial host cells and harvesting of the DNA probes, using methods well known Alternatively, probes may be generated in the art. chemically from DNA synthesizers.

RNA probes may be generated by inserting the PSM antigen molecule downstream of a bacteriophage promoter

-25-

such as T3, T7 or SP6. Large amounts of RNA probe may be produced by incubating the labeled nucleotides with the linearized PSM antigen fragment where it contains an upstream promoter in the presence of the appropriate RNA polymerase.

5

10

This invention also provides a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleic acid molecule which is complementary to the mammalian nucleic acid molecule encoding a mammalian prostate-specific membrane antigen. This molecule may either be a DNA or RNA molecule.

15 The current invention further provides a method of detecting the expression of a mammalian PSM or PSM' antigen expression in a cell which comprises obtaining total mRNA from the cell, contacting the mRNA so obtained with a labelled nucleic acid molecule of at 20 least 15 nucleotides capable of specifically hybridizing with a sequence of the nucleic acid molecule encoding a mammalian PSM or PSM' antigen under hybridizing conditions, determining the presence of mRNA hybridized to the molecule and thereby detecting 25 the expression of the mammalian prostate-specific membrane antigen in the cell. The nucleic acid molecules synthesized above may be used to detect expression of a PSM or PSM' antigen by detecting the presence of mRNA coding for the PSM antigen. mRNA from the cell may be isolated by many procedures 30 well known to a person of ordinary skill in the art. The hybridizing conditions of the labelled nucleic acid molecules may be determined by routine experimentation well known in the art. The presence of mRNA hybridized 35 to the probe may be determined by gel electrophoresis or other methods known in the art. By measuring the amount of the hybrid made, the expression of the PSM

-26-

antigen by the cell can be determined. The labeling may be radioactive. For an example, one or more radioactive nucleotides can be incorporated in the nucleic acid when it is made.

5

10

15

In one embodiment of this invention, nucleic acids are extracted by precipitation from lysed cells and the mRNA is isolated from the extract using an oligo-dT column which binds the poly-A tails of the mRNA The mRNA is then exposed to molecules (13). radioactively labelled probe on a nitrocellulose membrane, and the probe hybridizes to and thereby labels complementary mRNA sequences. Binding may be luminescence autoradiography by However, other methods for scintillation counting. performing these steps are well known to those skilled in the art, and the discussion above is merely an example.

This invention further provides another method to 20 detect expression of a PSM or PSM' antigen in tissue sections which comprises contacting the tissue sections with a labelled nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of nucleic acid molecules encoding a mammalian 25 PSM antigen under hybridizing conditions, determining the presence of mRNA hybridized to the molecule and thereby detecting the expression of the mammalian PSM or PSM' antigen in tissue sections. The probes are also useful for in-situ hybridization or in order to 30 locate tissues which express this gene, or for other hybridization assays for the presence of this gene or its mRNA in various biological tissues. The in-situ hybridization using a labelled nucleic acid molecule is well known in the art. Essentially, tissue sections 35 are incubated with the labelled nucleic acid molecule to allow the hybridization to occur. The molecule will

-27-

carry a marker for the detection because it is "labelled", the amount of the hybrid will be determined based on the detection of the amount of the marker and so will the expression of PSM antigen.

5

10

15

20

25

30

35

This invention further provides isolated PSM or PSM' antigen nucleic acid molecule operatively linked to a promoter of RNA transcription. The isolated PSM or PSM' antigen sequence can be linked to vector systems. Various vectors including plasmid vectors, cosmid vectors, bacteriophage vectors and other viruses are well known to ordinary skilled practitioners. This invention further provides a vector which comprises the isolated nucleic acid molecule encoding for the PSM or PSM' antigen.

As an example to obtain these vectors, insert and vector DNA can both be exposed to a restriction enzyme to create complementary ends on both molecules which base pair with each other and are then ligated together with DNA ligase. Alternatively, linkers can be ligated to the insert DNA which correspond to a restriction site in the vector DNA, which is then digested with the restriction enzyme which cuts at that site. Other means are also available and known to an ordinary skilled practitioner.

In an embodiment, the PSM sequence is cloned in the Not I/Sal I site of pSPORT/vector (Gibco® - BRL). plasmid, p55A-PSM, was deposited on August 14, 1992 with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A. under provisions of the Budapest Treaty for International Recognition of the Deposit of Microorganism for the Purposes of Patent Procedure. Plasmid, p55A-PSM, was accorded ATCC Accession Number 75294.

5

10

15

20

25

30

PCT/US96/02424

This invention further provides a host vector system for the production of a polypeptide having the biological activity of the prostate-specific membrane antigen. These vectors may be transformed into a suitable host cell to form a host cell vector system for the production of a polypeptide having the biological activity of PSM antigen.

Regulatory elements required for expression include promoter sequences to bind RNA polymerase sequences for ribosome initiation transcription binding. For example, a bacterial expression vector includes a promoter such as the lac promoter and for transcription initiation the Shine-Dalgarno sequence and the start codon AUG (14). Similarly, a eukaryotic expression vector includes a heterologous or homologous downstream polymerase II, а RNA for promoter polyadenylation signal, the start codon AUG, and a termination codon for detachment of the ribosome. vectors may be obtained commercially or assembled from the sequences described by methods well known in the art, for example the methods described above for constructing vectors in general. Expression vectors are useful to produce cells that express the PSM antigen.

This invention further provides an isolated DNA or cDNA molecule described hereinabove wherein the host cell is selected from the group consisting of bacterial cells (such as <u>E.coli</u>), yeast cells, fungal cells, insect cells and animal cells. Suitable animal cells include, but are not limited to Vero cells, HeLa cells, Cos cells, CV1 cells and various primary mammalian cells.

This invention further provides a method of producing a polypeptide having the biological activity of the prostate-specific membrane antigen which comprising

-29-

growing host cells of a vector system containing the PSM antigen sequence under suitable conditions permitting production of the polypeptide and recovering the polypeptide so produced.

5

This invention provides a mammalian cell comprising a DNA molecule encoding a mammalian PSM or PSM' antigen, such as a mammalian cell comprising a plasmid adapted for expression in a mammalian cell, which comprises a DNA molecule encoding a mammalian PSM antigen and the regulatory elements necessary for expression of the DNA in the mammalian cell so located relative to the DNA encoding the mammalian PSM or PSM' antigen as to permit expression thereof.

15

20

25

30

35

10

Numerous mammalian cells may be used as hosts, including, but not limited to, the mouse fibroblast cell NIH3T3, CHO cells, HeLa cells, Ltk cells, Cos cells, etc. Expression plasmids such as that described supra may be used to transfect mammalian cells by methods well known in the art such as calcium phosphate precipitation, electroporation or DNA encoding the mammalian PSM antigen may be otherwise introduced into mammalian cells, e.g., by microinjection, to obtain mammalian cells which comprise DNA, e.g., cDNA or a plasmid, encoding a mammalian PSM antigen.

This invention provides a method for determining whether a ligand can bind to a mammalian prostate-specific membrane antigen which comprises contacting a mammalian cell comprising an isolated DNA molecule encoding a mammalian prostate-specific membrane antigen with the ligand under conditions permitting binding of ligands to the mammalian prostate-specific membrane antigen, and thereby determining whether the ligand binds to a mammalian prostate-specific membrane antigen.

-30-

This invention further provides ligands bound to the mammalian PSM or PSM' antigen.

This invention also provides a therapeutic agent comprising a ligand identified by the above-described method and a cytotoxic agent conjugated thereto. The cytotoxic agent may either be a radioisotope or a toxin. Examples of radioisotopes or toxins are well known to one of ordinary skill in the art.

10

15

20

25

30

35

5

This invention also provides a method of imaging prostate cancer in human patients which comprises administering to the patients at least one ligand identified by the above-described method, capable of binding to the cell surface of the prostate cancer cell and labelled with an imaging agent under conditions permitting formation of a complex between the ligand and the cell surface PSM or PSM' antigen. invention further provides a composition comprising an effective imaging agent of the PSM OR PSM' antigen ligand and a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known to one of ordinary skill in the art. For an example, such pharmaceutically acceptable carrier can physiological saline.

Also provided by this invention is a purified mammalian As used herein, the term PSM and PSM' antigen. "purified prostate-specific membrane antigen" shall mean isolated naturally-occurring prostate-specific membrane antigen or protein (purified from nature or manufactured such that the primary, secondary and posttranslational conformation, and tertiary modifications are identical to naturally-occurring non-naturally well as as material) polypeptides having a primary structural conformation (i.e. continuous sequence of amino acid residues).

-31-

Such polypeptides include derivatives and analogs.

This invention provides an isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter. In one embodiment the PSM promoter has at least the sequence as in Figures 58A-58C.

This invention provides an isolated nucleic acid molecule encoding an alternatively spliced prostate-specific membrane antigen promoter.

This invention further provides a polypeptide encoded by the isolated mammalian nucleic acid sequence of PSM and PSM' antigen.

15

20

25

30

35

10

5

is believed that there may be natural ligand interacting with the PSM or PSM' antigen. invention provides a method to identify such natural ligand or other ligand which can bind to the PSM or A method to identify the ligand PSM' antigen. comprises a) coupling the purified mammalian PSM or PSM' antigen to a solid matrix, b) incubating the coupled purified mammalian PSM or PSM' protein with the potential ligands under the conditions permitting binding of ligands and the purified PSM or PSM' antigen; c) washing the ligand and coupled purified mammalian PSM or PSM' antigen complex formed in b) to eliminate the nonspecific binding and impurities and finally d) eluting the ligand from the bound purified mammalian PSM or PSM' antigen. The techniques of coupling proteins to a solid matrix are well known in the art. Potential ligands may either be deduced from the structure of mammalian PSM or PSM' by other empirical experiments known by ordinary skilled The conditions for binding may also practitioners. easily be determined and protocols for carrying such experimentation have long been well documented (15).

-32-

The ligand-PSM antigen complex will be washed. Finally, the bound ligand will be eluted and characterized. Standard ligands characterization techniques are well known in the art.

5

10

25

30

35

The above method may also be used to purify ligands from any biological source. For purification of natural ligands in the cell, cell lysates, serum or other biological samples will be used to incubate with the mammalian PSM or PSM' antigen bound on a matrix. Specific natural ligand will then be identified and purified as above described.

With the protein sequence information, antigenic areas may be identified and antibodies directed against these areas may be generated and targeted to the prostate cancer for imaging the cancer or therapies.

This invention provides an antibody directed against the amino acid sequence of a mammalian PSM or PSM' antigen.

This invention provides a method to select specific regions on the PSM or PSM' antigen to generate The protein sequence may be determined antibodies. from the PSM or PSM' DNA sequence. Amino acid sequences may be analyzed by methods well known to those skilled in the art to determine whether they produce hydrophobic or hydrophilic regions in the proteins which they build. In the case of cell membrane proteins, hydrophobic regions are well known to form the part of the protein that is inserted into lipid bilayer of the cell membrane, the hydrophilic regions are located on the cell surface, in Usually, the hydrophilic an aqueous environment. regions will be more immunogenic than the hydrophobic Therefore the hydrophilic amino acid regions.

-33-

sequences may be selected and used to generate antibodies specific to mammalian PSM antigen. For an example, hydrophilic sequences of the human PSM antigen shown in hydrophilicity plot of Figures 16:1-11 may be easily selected. The selected peptides may be prepared using commercially available machines. As an alternative, DNA, such as a cDNA or a fragment thereof, may be cloned and expressed and the resulting polypeptide recovered and used as an immunogen.

10

15

20

5

Polyclonal antibodies against these peptides may be produced by immunizing animals using the selected peptides. Monoclonal antibodies are prepared using hybridoma technology by fusing antibody producing B cells from immunized animals with myeloma cells and selecting the resulting hybridoma cell line producing the desired antibody. Alternatively, monoclonal antibodies may be produced by in vitro techniques known to a person of ordinary skill in the art. These antibodies are useful to detect the expression of mammalian PSM antigen in living animals, in humans, or in biological tissues or fluids isolated from animals or humans.

- In one embodiment, peptides Asp-Glu-Leu-Lys-Ala-Glu (SEQ ID No.), Asn-Glu-Asp-Gly-Asn-Glu (SEQ ID No.) and Lys-Ser-Pro-Asp-Glu-Gly (SEQ ID No.) of human PSM antigen are selected.
- This invention further provides polyclonal and monoclonal antibody(ies) against peptides Asp-Glu-Leu-Lys-Ala-Glu (SEQ ID No.), Asn-Glu-Asp-Gly-Asn-Glu (SEQ ID No.) and Lys-Ser-Pro-Asp-Glu-Gly (SEQ ID No.).

35

This invention provides a therapeutic agent comprising antibodies or ligand(s) directed against PSM antigen

-34-

and a cytotoxic agent conjugated thereto or antibodies linked enzymes which activate prodrug to kill the tumor. The cytotoxic agent may either be a radioisotope or toxin.

5

10

15

20

25

This invention provides a method of imaging prostate cancer in human patients which comprises administering to the patient the monoclonal antibody directed against the peptide of the mammalian PSM or PSM' antigen capable of binding to the cell surface of the prostate cancer cell and labeled with an imaging agent under conditions permitting formation of a complex between the monoclonal antibody and the cell surface prostate-specific membrane antigen. The imaging agent is a radioisotope such as Indium¹¹¹.

This invention further provides a prostate cancer specific imaging agent comprising the antibody directed against PSM or PSM' antigen and a radioisotope conjugated thereto.

This invention also provides a composition comprising an effective imaging amount of the antibody directed against the PSM or PSM' antigen and a pharmaceutically acceptable carrier. The methods to determine effective imaging amounts are well known to a skilled practitioner. One method is by titration using different amounts of the antibody.

This invention further provides an immunoassay for measuring the amount of the prostate-specific membrane antigen in a biological sample comprising steps of a) contacting the biological sample with at least one antibody directed against the PSM or PSM' antigen to form a complex with said antibody and the prostate-specific membrane antigen, and b) measuring the amount of the prostate-specific membrane antigen in said

-35-

biological sample by measuring the amount of said complex. One example of the biological sample is a serum sample.

This invention provides a method to purify mammalian prostate-specific membrane antigen comprising steps of a) coupling the antibody directed against the PSM or PSM' antigen to a solid matrix; b) incubating the coupled antibody of a) with lysate containing prostate-specific membrane antigen under the condition which the antibody and prostate membrane specific can bind; c) washing the solid matrix to eliminate impurities and d) eluting the prostate-specific membrane antigen from the coupled antibody.

15

20

25

30

35

This invention also provides a transgenic nonhuman mammal which comprises the isolated nucleic acid molecule encoding a mammalian PSM or PSM' antigen. This invention further provides a transgenic nonhuman mammal whose genome comprises antisense complementary to DNA encoding a mammalian prostatemembrane antigen so placed as transcribed into antisense mRNA complementary to mRNA encoding the prostate-specific membrane antigen and which hybridizes to mRNA encoding the prostate specific antigen thereby reducing its translation.

Animal model systems which elucidate the physiological and behavioral roles of mammalian PSM or PSM' antigen are produced by creating transgenic animals in which the expression of the PSM or PSM' antigen is either increased or decreased, or the amino acid sequence of the expressed PSM antigen is altered, by a variety of techniques. Examples of these techniques include, but are not limited to: 1) Insertion of normal or mutant versions of DNA encoding a mammalian PSM or PSM' antigen, by microinjection, electroporation, retroviral

-36-

transfection or other means well known to those skilled in the art, into appropriate fertilized embryos in order to produce a transgenic animal (16) or Homologous recombination (17) of mutant or normal, human or animal versions of these genes with the native gene locus in transgenic animals to alter regulation of expression or the structure of these PSM or PSM' antigen sequences. The technique of homologous recombination is well known in the art. It replaces the native gene with the inserted gene and so is useful for producing an animal that cannot express native PSM antigen but does express, for example, an inserted mutant PSM antigen, which has replaced the native PSM antigen in the animal's genome by recombination, resulting in undere xpression of the transporter. Microinjection adds genes to the genome, but does not remove them, and so is useful for producing an animal which expresses its own and added PSM antigens, resulting in over expression of the PSM antigens.

20

25

30

35

15

5

10

One means available for producing a transgenic animal, with a mouse as an example, is as follows: mice are mated, and the resulting fertilized eggs are dissected out of their oviducts. The eggs are stored in an appropriate medium such as Me medium (16). DNA or cDNA encoding a mammalian PSM antigen is purified from a vector by methods well known in the art. Inducible promoters may be fused with the coding region of the DNA to provide an experimental means to regulate expression of the trans-gene. Alternatively or in addition, tissue specific regulatory elements may be fused with the coding region to permit tissue-specific expression of the trans-gene. The DNA, in appropriately buffered solution, put into is microinjection needle (which may be made from capillary tubing using a pipet puller) and the egg to be injected is put in a depression slide. The needle is inserted

-37-

into the pronucleus of the egg, and the DNA solution is injected. The injected egg is then transferred into the oviduct of a pseudopregnant mouse (a mouse stimulated by the appropriate hormones to maintain pregnancy but which is not actually pregnant), where it proceeds to the uterus, implants, and develops to term. As noted above, microinjection is not the only method for inserting DNA into the egg cell, and is used here only for exemplary purposes.

10

15

20

25

30

5

Another use of the PSM antigen sequence is to isolate homologous gene or genes in different mammals. The gene or genes can be isolated by low stringency screening of either cDNA or genomic libraries of different mammals using probes from PSM sequence. The positive clones identified will be further analyzed by DNA sequencing techniques which are well known to an ordinary person skilled in the art. For example, the detection of members of the protein serine kinase family by homology probing.

This invention provides a method of suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells comprising introducing a DNA molecule encoding a prostate specific membrane antigen operatively linked to a 5' regulatory element into a tumor cell of a subject, in a way that expression of the prostate specific membrane antigen is under the control of the regulatory element, thereby suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells. The subject may be a mammal or more specifically a human.

35

In one embodiment, the DNA molecule encoding prostate specific membrane antigen operatively linked to a 5'

WO 96/26272

regulatory element forms part of a transfer vector which is inserted into a cell or organism. In addition the vector is capable or replication and expression of prostate specific membrane antigen. The DNA molecule encoding prostate specific membrane antigen can be integrated into a genome of a eukaryotic or prokaryotic cell or in a host cell containing and/or expressing a prostate specific membrane antigen.

Further, the DNA molecule encoding prostate specific membrane antigen may be introduced by a bacterial, viral, fungal, animal, or liposomal delivery vehicle. Other means are also available and known to an ordinary skilled practitioner.

15

20

25

5

Further, the DNA molecule encoding a prostate specific membrane antigen operatively linked to a promoter or enhancer. A number of viral vectors have been described including those made from various promoters and other regulatory elements derived from virus sources. Promoters consist of short arrays of nucleic acid sequences that interact specifically with cellular proteins involved in transcription. The combination of different recognition sequences and the cellular concentration of the cognate transcription factors determines the efficiency with which a gene is transcribed in a particular cell type.

Examples of suitable promoters include a viral promoter. Viral promoters include: adenovirus promoter, an simian virus 40 (SV40) promoter, a cytomegalovirus (CMV) promoter, a mouse mammary tumor virus (MMTV) promoter, a Malony murine leukemia virus promoter, a murine sarcoma virus promoter, and a Rous sarcoma virus promoter.

Further, another suitable promoter is a heat shock

promoter. Additionally, a suitable promoter is a bacteriophage promoter. Examples of suitable bacteriophage promoters include but not limited to, a T7 promoter, a T3 promoter, an SP6 promoter, a lambda promoter, a baculovirus promoter.

5

20

25

30

35

Also suitable as a promoter is an animal cell promoter such as an interferon promoter, a metallothionein promoter, an immunoglobulin promoter. A fungal promoter is also a suitable promoter. Examples of fungal promoters include but are not limited to, an ADC1 promoter, an ARG promoter, an ADH promoter, a CYC1 promoter, a CUP promoter, an ENO1 promoter, a GAL promoter, a PHO promoter, a PGK promoter, a GAPDH promoter, a mating type factor promoter. Further, plant cell promoters and insect cell promoters are also suitable for the methods described herein.

This invention provides a method of suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells, comprising introducing a DNA molecule encoding a

prostate specific membrane antigen operatively linked to a 5' regulatory element coupled with a therapeutic DNA into a tumor cell of a subject, thereby suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells. The subject may be a mammal or more specifically a human.

Further, the therapeutic DNA which is coupled to the DNA molecule encoding a prostate specific membrane antigen operatively linked to a 5' regulatory element into a tumor cell may code for a cytokine, viral antigen, or a pro-drug activating enzyme. Other means are also available and known to an ordinary skilled

practitioner.

WO 96/26272

5

15

20

25

30

35

In addition, this invention provides a prostate tumor cell, comprising a DNA molecule isolated from mammalian nucleic acid encoding a mammalian prostate-specific membrane antigen under the control of a prostate specific membrane antigen operatively linked to a 5' regulatory element.

As used herein, DNA molecules include complementary DNA (cDNA), synthetic DNA, and genomic DNA.

This invention provides a therapeutic vaccine for preventing human prostate tumor growth or stimulation of prostate tumor cells in a subject, comprising administering an effective amount to the prostate cell, and a pharmaceutical acceptable carrier, thereby preventing the tumor growth or stimulation of tumor cells in the subject. Other means are also available and known to an ordinary skilled practitioner.

invention provides a method of detecting This hematogenous micrometastic tumor cells of a subject, comprising (A) performing nested polymerase chain reaction (PCR) on blood, bone marrow or lymph node samples of the subject using the prostate specific membrane antigen primers or alternatively spliced prostate specific antigen primers, and (B) verifying sequencing and DNA micrometastases by analysis, thereby detecting hematogenous micrometastic tumor cells of the subject. The subject may be a mammal or more specifically a human.

The micrometastatic tumor cell may be a prostatic cancer and the DNA primers may be derived from prostate specific antigen. Further, the subject may be administered with simultaneously an effective amount of

10

15

20

25

30

35

hormones, so as to increase expression of prostate specific membrane antigen. Further, growth factors or cytokine may be administered in separately or in conjunction with hormones. Cytokines include, but are not limited to: transforming growth factor beta, epidermal growth factor (EGF) family, fibroblast growth factors, hepatocyte growth factor, insulin-like growth factors, B-nerve growth factor, platelet-derived growth factor, vascular endothelial growth factor, interleukin 1, IL-1 receptor antagonist, interleukin 2, interleukin 3, interleukin 4, interleukin 5, interleukin 6, IL-6 soluble receptor, interleukin 7, interleukin interleukin 9, interleukin 10, interleukin 11, interleukin 12, interleukin 13, angiogenin, chemokines, colony stimulating factors, granulocyte-macrophage colony stimulating factors, erythropoietin, interferon, interferon gamma, leukemia inhibitory oncostatin pleiotrophin, Μ, secretory leukocyte protease inhibitor, stem cell factor, tumor necrosis factors, adhesion molecule, and soluble tumor necrosis factor (TNF) receptors.

This invention provides a method of abrogating the mitogenic response due to transferrin, comprising introducing a DNA molecule encoding prostate specific membrane antigen operatively linked to a 5' regulatory element into a tumor cell, the expression of which gene is directly associated with a defined pathological effect within a multicellular organism, thereby abrogating mitogen response due to transferrin. The tumor cell may be a prostate cell.

This invention provides a method of determining prostate cancer progression in a subject which comprises: a) obtaining a suitable prostate tissue sample; b) extracting RNA from the prostate tissue sample; c) performing a RNAse protection assay on the

RNA thereby forming a duplex RNA-RNA hybrid; d) detecting PSM and PSM' amounts in the tissue sample; e) calculating a PSM/PSM' tumor index, thereby determining prostate cancer progression in the subject. In-situ hyribridization may be performed in conjunction with the above detection method.

5

10

15

20

25

30

35

This invention provides a method of detecting prostate cancer in a subject which comprises: (a) obtaining from a subject a prostate tissue sample; (b) treating the tissue sample so as to separately recover nucleic acid molecules present in the prostate tissue sample; (c) contacting the resulting nucleic acid molecules multiple pairs of single-stranded oligonucleotide primers, each such pair being capable of specifically hybridizing to the tissue sample, under hybridizing conditions; (d) amplifying any nucleic acid molecules to which a pair of primers hybridizes so as to obtain a double-stranded amplification product; (e) treating any such double-stranded amplification product so as to obtain single-stranded nucleic acid (f) contacting any resulting molecules therefrom; single-stranded nucleic acid molecules with multiple single-stranded labeled oligonucleotide probes, each such probe containing the same label and being capable of specifically hybridizing with such tissue sample, (g) contacting any under hybridizing conditions; resulting hybrids with an antibody to which a marker is attached and which is capable of specifically forming a complex with the labeled-probe, when the probe is present in such a complex, under complexing conditions; (h) detecting the presence of any resulting complexes, the presence thereof being indicative of prostate cancer in a subject.

This invention provides a method of enhancing antibody based targeting of PSM or PSM' in prostate tissue for

5

10

15

20

25

30

-44-

more hour intervals by a subsequent injection or other administration.

As used herein administration means a method of administering to a subject. Such methods are well known to those skilled in the art and include, but are not limited to, administration topically, parenterally, orally, intravenously, intramuscularly, subcutaneously or by aerosol. Administration of PSM may be effected continuously or intermittently.

The pharmaceutical formulations or compositions of this invention may be in the dosage form of solid, semisolid, or liquid such as, e.g., suspensions, aerosols Preferably the compositions are like. the administered in unit dosage forms suitable for single administration of precise dosage amounts. compositions may also include, depending on the formulation desired, pharmaceutically-acceptable, nontoxic carriers or diluents, which are defined as vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. diluent is selected so as not to affect the biological activity of the combination. Examples of such diluents are distilled water, physiological saline, Ringer's solution, dextrose solution, and Hank's solution. addition, the pharmaceutical composition or formulation may also include other carriers, adjuvants; or nontoxic, nontherapeutic, nonimmunogenic stabilizers Effective amounts of such diluent or and the like. carrier are those amounts which are effective to obtain a pharmaceutically acceptable formulation in terms of solubility of components, or biological activity, etc

This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the

-45-

specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.

-46-

EXPERIMENTAL DETAILS

EXAMPLE 1:

Materials and Methods: The approach for cloning the gene involved purification of the antigen by immunoprecipitation, and microsequencing of several internal peptides for use in synthesizing degenerate oligonucleotide primers for subsequent use in the polymerase chain reaction (19, 20). A partial cDNA was amplified as a PCR product and this was used as a homologous probe to clone the full-length cDNA molecule from a LNCaP (Lymph Node Carcinoma of Prostate) cell line cDNA plasmid library (8).

15

20

25

30

35

Western Analysis of the PSM Antigen: Membrane proteins were isolated from cells by hypotonic lysis followed by centrifugation over a sucrose density gradient (21). $10-20\mu g$ of LNCaP, DU-145, and PC-3 membrane proteins were electrophoresed through a 10% SDS-PAGE resolving gel with a 4% stacking gel at 9-10 milliamps for 16-18 Proteins were electroblotted onto membranes (Millipore® Corp.) in transfer buffer (48mM Tris base, 39mM Glycine, 20% Methanol) at 25 volts overnight at 4°C. Membranes were blocked in TSB (0.15M NaCl, 0.01M Tris base, 5% BSA) for 30 minutes at room temperature followed by incubation with $10-15\mu g/ml$ of CYT-356 monoclonal antibody (Cytogen Corp.) for 2 hours. Membranes were then incubated with $10-15\mu g/ml$ immunoglobulin anti-mouse rabbit of Scientific) for 1 hour at room temperature followed by incubation with $^{125}\text{I-Protein A}$ (Amersham®) at 1×10^6 cpm/ml at room temperature. Membranes were then washed and autoradiographed for 12-24 hours at -70°C (Figure 1).

10

15

20

25

30

35

Immunohistochemical Analysis of PSM Antigen Expression: The avidin-biotin method of immunohistochemical detection was employed to analyze both human tissue sections and cell lines for PSM Antigen expression Cryostat-cut prostate tissue sections (4-6µm thick) were fixed in methanol/acetone for 10 minutes. Cell cytospins were made on glass slides using 50,000 cells/100µl/slide. Samples were treated with 1% hydrogen peroxide in PBS for 10-15 minutes in order to remove any endogenous peroxidase activity. sections were washed several times in PBS, and then incubated with the appropriate suppressor serum for 20 The suppressor serum was drained off and the sections or cells were then incubated with the diluted CYT-356 monoclonal antibody for 1 hour. Samples were then washed with PBS and sequentially incubated with secondary antibodies (horse or goat immunoglobulins, 1:200 dilution for 30 minutes), and with avidin-biotin complexes (1:25 dilution for 30 minutes). DAB was used as a chromogen, followed by hematoxylin counterstaining and mounting. Frozen sections of prostate samples and duplicate cell cytospins were used as controls for each experiment. As a positive control, the anticytokeratin monoclonal antibody CAM 5.2 was used following the same procedure described above. sections are considered by us to express the PSM antigen if at least 5% of the cells demonstrate immunoreactivity. The scoring system is as follows: 1 = <5%; 2 = 5-19%; 3 = 20-75%; and 4 = >75% positive cells. Homogeneity versus heterogeneity was accounted for by evaluating positive and negative cells in 3-5 high power light microscopic fields (400x), recording the percentage of positive cells among 100-500 cells. The intensity of immunostaining is graded on a 1+ to 4+ scale, where 1+ represents mild, 2-3+ represents moderate, and 4+ represents intense immunostaining as compared to positive controls.

10

15

20

25

30

35

Immunoprecipitation of the PSM Antigen: 80%-confluent LNCaP cells in 100mm petri dishes were starved in RPMI media without methionine for 2 hours, after which 35S-Methionine was added at $100\mu\mathrm{Ci/ml}$ and the cells were grown for another 16-18 hours. Cells were then washed and lysed by the addition of 1ml of lysis buffer (1% Triton X-100, 50mM Hepes pH 7.5, 10% glycerol, 150mM MgCl₂, lmM PMSF, and lmM EGTA) with incubation for 20 Lysates were pre-cleared by mixing minutes at 4°C. with Pansorbin® cells (Calbiochem®) for 90 minutes at Cell lysates were then mixed with Protein A Sepharose® CL-4B beads (Pharmacia®) previously bound with CYT-356 antibody (Cytogen Corp.) and RAM antibody (Accurate Scientific) for 3-4 hours at 4°C. antibody was used per 3mg of beads per petri dish. Beads were then washed with HNTG buffer (20mM Hepes pH 7.5, 150mM NaCl, 0.1% Triton X-100, 10% glycerol, and 2mM Sodium Orthovanadate), resuspended in sample loading buffer containing &-mercaptoethanol, denatured at 95°C for 5-10 minutes and run on a 10% SDS-PAGE gel with a 4° stacking gel at 10 milliamps overnight. Gels were stained with Coomassie Blue, destained with acetic acid/methanol, and dried down in a vacuum dryer at 60°C. Gels were then autoradiographed for 16-24 hours at -70°C (Figures 2A-2D).

Immunoprecipitation and Peptide Sequencing:

The procedure described above for immunoprecipitation was repeated with 8 confluent petri dishes containing $6x10^{7}$ LNCaP cells. approximately immunoprecipitation product was pooled and loaded into two lanes of a 10% SDS-PAGE gel and electrophoresed at Proteins were 16 hours. for milliamps electroblotted onto Nitrocellulose BA-85 membranes (Schleicher and Schuell®) for 2 hours at 75 volts at 4°C in transfer buffer. Membranes were stained with Ponceau Red to visualize the proteins and the 100kD

-49-

protein band was excised, solubilized, and digested proteolytically with trypsin. HPLC was then performed on the digested sample on an Applied Biosystems Model 171C and clear dominant peptide peaks were selected and sequenced by modified Edman degradation on a modified post liquid Applied Biosystems Model 477A Protein/Peptide Microsequencer (23). Sequencing data all of the peptides is included within this document. The amino-terminus of the PSM antigen was sequenced by a similar method which involved purifying the antigen by immunoprecipitation and transfer via electro-blotting to a PVDF membrane (Millipore®). Protein was analyzed on an Applied Biosystems Model 477A Protein/Peptide Sequencer and the amino terminus was found to be blocked, and therefore no sequence data could be obtained by this technique.

PSM Antigen Peptide Sequences:

5

10

15

30

35

```
20
      2T17 #5
                SLYES (W) TK (SEQ ID No.
                 (S) YPDGXNLPGG(g) VQR (SEQ ID No. )
      2T22 #9
      2T26 #3
                FYDPMFK (SEQ ID No. )
      2T27 #4
                IYNVIGTL(K) (SEQ ID No.
      2T34 #6
                FLYXXTQIPHLAGTEQNFQLAK (SEQ ID No. )
25
      2T35 #2
                G/PVILYSDPADYFAPD/GVK (SEQ ID No. )
      2T38 #1
                AFIDPLGLPDRPFYR (SEQ ID No.
      2T46 #8
                YAGESFPGIYDALFDIESK (SEQ ID No.
      2T47 #7
                TILFAS(W) DAEEFGXX(q) STE(e) A(E) ... (SEQ ID No.
       )
```

Notes: X means that no residue could be identified at this position. Capital denotes identification but with a lower degree of confidence. (lower case) means residue present but at very low levels. ... indicates sequence continues but has dropped below detection limit.

All of these peptide sequences were verified to be unique after a complete homology search of the translated Genbank computer database.

5'and anti-sense Sense PCR: Degenerate 5 unphosphorylated degenerate oligonucleotide primers 17 to 20 nucleotides in length corresponding to portions of the above peptides were synthesized on an Applied Biosystems Model 394A DNA Synthesizer. These primers have degeneracies from 32 to 144. The primers used are 10 The underlined amino acids in the shown below. peptides represent the residues used in primer design.

Peptide 3: FYDPMFK (SEQ ID No.)

15

PSM Primer "A" TT(C or T) - TA(C or T) - GA(C or T) - CCX - ATG - TT (SEQ ID No.)

PSM Primer "B" AAC - ATX - GG(A or G) - TC(A or G)
TA(A or G) - AA (SEQ ID No.)

Primer A is sense primer and B is anti-sense. Degeneracy is 32-fold.

25 Peptide 4: IYNVIGTL(K) (SEQ ID No. 6)

PSM Primer "C" AT(T or C or A) - TA(T or C) - AA(T or C) - GTX - AT(T or C or A) - GG (SEQ ID No.)

PSM Primer "D" CC(A or T or G) - ATX - AC(G or A) - TT(A or G) - TA(A or G or T) - AT (SEQ ID No.)

Primer C is sense primer and D is anti-sense. Degeneracy is 144-fold.

Peptide 2: G/PVILYSDPADYFAPD/GVK (SEQ ID No.)

30

PSM Primer "E" CCX - GCX - GA(T or C) - TA(T or C) - TT(T or C) - GC (SEQ ID No.)

PSM Primer "F" GC(G or A) - AA(A or G) - TA(A or G)
TXC - GCX - GG (SEQ ID No.)

Primer E is sense primer and F is antisense primer. Degeneracy is 128-fold.

10 Peptide 6: FLYXXTQIPHLAGTEONFOLAK (SEQ ID No.)

PSM Primer "I" ACX - GA(A or G) - CA(A or G) - AA(T or C) - TT(T or C) - CA(A or G) - CT (SEQ ID No.)

PSM Primer "J" AG - (T or C)TG - (A or G)AA - (A or G)TT - (T or C)TG - (T or C)TC - XGT (SEQ ID No.)

PSM Primer "K" GA(A or G) - CA(A or G) - AA(T or C) - TT(T or C) CA(A or G) - CT (SEQ ID No.)

PSM Primer "L" AG - (T or C)TG - (A or G)AA - (A or G)TT - (T or C)TG - (T or C)TC (SEQ ID No. 22)

Primers I and K are sense primers and J and L are antisense. I and J have degeneracies of 128-fold and K and L have 32-fold degeneracy.

Peptide 7: TILFAS(W) DAEEFGXX(q) STE(e) A(E)... (SEQ ID No.)

PSM Primer "M" TGG - GA(T or C) - GCX - GA(A or G) - GA(A or G) - TT(C or T) - GG (SEQ ID No.)

PSM Primer "N" CC - (G or A)AA - (T or C)TC - (T or C)TC - XGC - (A or G)TC - CCA (SEQ ID No.)

PSM Primer "O" TGG - GA(T or C) - GCX - GA(A or G) -

GA(A or G) - TT (SEQ ID No.)

PSM Primer "P" AA - (T or C)TC - (T or C)TC - XGC - (A or G)TC - CCA (SEQ ID No.)

5

Primers M and O are sense primers and N and P are antisense. M and N have degeneracy of 64-fold and O and P are 32-fold degenerate.

- Degenerate PCR was performed using a Perkin-Elmer Model 10 480 DNA thermal cycler. cDNA template for the PCR was prepared from LNCaP mRNA which had been isolated by dTchromatography methods of oligo standard The cDNA synthesis was (Collaborative Research). carried out as follows:
 - LNCaP poly A+ RNA (2µg) 4.5μ l
 - Oligo dT primers $(0.5\mu g)$ 1.0µl
 - <u>4.5µl</u> <u>dH,O</u>

10µl 20

15

Incubate at 68°C x 10 minutes. Quick chill on ice x 5 minutes.

25 Add:

5 x RT Buffer $4\mu l$

0.1M DTT $2\mu l$

10mM dNTPs 1μ l

RNasin (Promega) 30 $0.5\mu l$

> dH,O <u>1.5µl</u>

 19μ l

Incubate for 2 minutes at 37°C.

Add 1µl Superscript® Reverse Transcriptase (Gibco®-BRL) 35 Incubate for 1 hour at 37°C.

Add $30\mu l$ dH_2O . Use $2\mu l$ per PCR reaction.

Degenerate PCR reactions were optimized by varying the annealing temperatures, Mg++ concentrations, primer concentrations, buffer composition, extension times and number of cycles. The optimal thermal cycler profile was: Denaturation at 94°C x 30 seconds, Annealing at 45~55°C for 1 minute (depending on the mean T_m of the primers used), and Extension at 72°C for 2 minutes.

10 x PCR Buffer* $5\mu l$ $5\mu l$. 2.5mM dNTP Mix Primer Mix (containing $0.5-1.0\mu g$ each of 5µ1 15 and anti-sense primers) sense 5µ1 100mM ß-mercaptoethanol $2\mu 1$ LNCaP cDNA template 5µ1 25mM MgCl, (2.5mM final) 21μ l dH,O 20 diluted Tag Polymerase $(0.5U/\mu l)$ $2\mu l$ 50μ l total volume

Tubes were overlaid with $60\mu l$ of light mineral oil and amplified for 30 cycles. PCR products were analyzed by electrophoresing $5\mu l$ of each sample on a 2-3% agarose gel followed by staining with Ethidium bromide and photography.

*10x PCR Buffer

30 166mM NH₄SO₄ 670mM Tris, pH 8.8 2mg/ml BSA

25

Representative photographs displaying PCR products are shown in Figure 5.

Cloning of PCR Products: In order to further analyze

these PCR products, these products were cloned into a suitable plasmid vector using "TA Cloning" (Invitrogen® Corp.). The cloning strategy employed here is to directly ligate PCR products into a plasmid vector possessing overhanging T residues at the insertion site, exploiting the fact that Taq polymerase leaves overhanging A residues at the ends of the PCR products. The ligation mixes are transformed into competent E. coli cells and resulting colonies are grown up, plasmid DNA is isolated by the alkaline lysis method (24), and screened by restriction analysis (Figures 6A-6B).

5

10

DNA Sequencing of PCR Products: TA Clones of PCR products were then sequenced by the dideoxy method (25) using Sequenase (U.S. Biochemical). $3-4\mu g$ of each 15 plasmid DNA was denatured with NaOH and ethanol precipitated. Labeling reactions were carried out as per the manufacturers recommendations using $^{35}\text{S-ATP}$, and the reactions were terminated as per the same protocol. analyzed then were Sequencing products 20 polyacrylamide/7M Urea gels using an IBI sequencing Gels were run at 120 watts for 2 hours. apparatus. Following electrophoresis, the gels were fixed for 15-20 minutes in 10% methanol/10% acetic acid, transferred onto Whatman 3MM paper and dried down in a Biorad $^{\odot}$ 25 vacuum dryer at 80°C for 2 hours. Gels were then autoradiographed at room temperature for 16-24 hours. In order to determine whether the PCR products were the correct clones, the sequences obtained at the 5' and 3' ends of the molecules were analyzed for the correct 30 primer sequences, as well as adjacent sequences which corresponded to portions of the peptides not used in the design of the primers.

IN-20 was confirmed to be correct and represent a partial cDNA for the PSM gene. In this PCR reaction, I and N primers were used. The DNA sequence reading

35

from the I primer was:

ACG GAG CAA AAC TTT CAG CTT GCA AAG (SEQ ID No.

T E O N F O L A K (SEQ ID No.)

The underlined amino acids were the portion of peptide 6 that was used to design this sense primer and the remaining amino acids which agree with those present within the peptide confirm that this end of the

10 molecule represents the correct protein (PSM antigen).

When analyzed the other end of the molecule by reading from the N primer the anti-sense sequence was:

15 CTC TTC GGC ATC CCA GCT TGC AAA CAA AAT TGT TCT (SEQ ID No.)

Sense (complementary) Sequence:

- 20 AGA ACA ATT TTG TTT GCA AGC TGG GAT GCC AAG GAG (SEQ ID No.)
 - R T I L F A S W D A E E (SEQ ID No.)
- The underlined amino acids here represent the portion of peptide 7 used to create primer N. All of the amino acids upstream of this primer are correct in the IN-20 clone, agreeing with the amino acids found in peptide 7. Further DNA sequencing has enabled us to identify the presence of other PSM peptides within the DNA sequence of the positive clone.

The DNA sequence of this partial cDNA was found to be unique when screened on the Genbank computer database.

cDNA Library Construction and Cloning of Full - Length PSM cDNA: A cDNA library from LNCaP mRNA was

PCT/US96/02424

constructed using the Superscript® plasmid system The library was transformed using (BRL®-Gibco). competent DH5- α cells and plated onto 100mm plates containing LB plus $100\mu g/ml$ of Carbenicillin. Plates were grown overnight at 37°C and colonies were 5 transferred to nitrocellulose filters. Filters were processed and screened as per Grunstein and Hogness (26), using the 1.1kb partial cDNA homologous probe which was radiolabelled with 32P-dCTP by random priming Eight positive colonies were obtained which upon 10 DNA restriction and sequencing analysis proved to represent full-length cDNA molecules coding for the PSM antigen. Shown in Figure 7 is an autoradiogram showing the size of the cDNA molecules represented in the library and in Figure 8 restriction analysis of several 15 Figure 9 is a plasmid full-length clones is shown. Southern analysis of the samples in Figure 8, showing that they all hybridize to the 1.1kb partial cDNA probe.

20

Both the cDNA as well as the antigen have been screened through the Genbank Computer database (Human Genome Project) and have been found to be unique.

- Northern Analysis of PSM Gene Expression: Northern analysis (28) of the PSM gene has revealed that expression is limited to the prostate and to prostate carcinoma.
- RNA samples (either 10µg of total RNA or 2µg of poly A+RNA) were denatured and electrophoresed through 1.1% agarose/formaldehyde gels at 60 milliamps for 6-8 hours. RNA was then transferred to Nytran® nylon membranes (Schleicher and Schuell®) by pressure blotting in 10x SSC with a Posi-blotter (Stratagene®). RNA was cross-linked to the membranes using a Stratalinker (Stratagene®) and subsequently baked in a

20

25

30

35

vacuum oven at 80°C for 2 hours. Blots were prehybridized at 65°C for 2 hours in prehybridization solution (BRL®) and subsequently hybridized for 16 hours in hybridization buffer (BRL®) containing 1-2 x 106 cpm/ml of 32 P-labelled random-primed cDNA probe. Membranes were washed twice in 1x SSPE/1% SDS and twice in 0.1x SSPE/1% SDS at 42°C. Membranes were then airdried and autoradiographed for 12-36 hours at -70°C.

PCR Analysis of PSM Gene Expression in Human Prostate
Tissues: PCR was performed on 15 human prostate samples
to determine PSM gene expression. Five samples each
from normal prostate tissue, benign prostatic
hyperplasia, and prostate cancer were used (histology
confirmed by MSKCC Pathology Department).

 $10\mu g$ of total RNA from each sample was reverse transcribed to made cDNA template as previously described in section IV. The primers used corresponded to the 5' and 3' ends of the 1.1kb partial cDNA, IN-20, and therefore the expected size of the amplified band is 1.1kb. Since the T_m of the primers is 64°C. PCR primers were annealed at 60°C. PCR was carried out for 35 cycles using the same conditions previously described in section IV.

LNCaP and H26 - Ras transfected LNCaP (29) were included as a positive control and DU-145 as a negative control. 14/15 samples clearly amplified the 1.1kb band and therefore express the gene.

Experimental Results

The gene which encodes the 100kD PSM antigen has been identified. The complete cDNA sequence is shown in Sequence ID #1. Underneath that nucleic acid sequence is the predicted translated amino acid sequence. The total number of the amino acids is 750, ID #2. The

hydrophilicity of the predicted protein sequence is shown in Figures 16:1-11. Shown in Figures 17A-17C are three peptides with the highest point of hydrophilicity. They are: Asp-Glu-Leu-Lys-Ala-Glu (SEQ ID No.); Asn-Glu-Asp-Gly-Asn-Glu (SEQ ID No. ; and Lys-Ser-Pro-Asp-Glu-Gly (SEQ ID No.).

By the method of Klein, Kanehisa and DeLisi, a specific membrane-spanning domain is identified. The sequence is from the amino acid #19 to amino acid #44: Ala-Gly-Ala-Leu-Val-Leu-Aal-Gly-Gly-Phe-Phe-Leu-Leu-Gly-Phe-Leu-Phe (SEQ ID No.).

This predicted membrane-spanning domain was computed on .

PC Gene (computer software program). This data enables prediction of inner and outer membrane domains of the PSM antigen which aids in designing antibodies for uses in targeting and imaging prostate cancer.

When the PSM antigen sequence with other known sequences of the GeneBank were compared, homology between the PSM antigen sequence and the transferrin receptor sequence were found. The data are shown in Figure 18.

25

35

5

10

Experimental Discussions

Potential Uses for PSM Antigen:

30 1. Tumor detection:

Microscopic:

Unambiguous tumor designation can be accomplished by use of probes for different antigens. For prostatic cancer, the PSM antigen probe may prove beneficial. Thus PSM could be used for diagnostic purposes and this could be accomplished at the microscopic level using in-situ hybridization using sense (control) and

-59-

antisense probes derived from the coding region of the cDNA cloned by the applicants. This could be used in assessment of local extraprostatic extension, involvement of lymph node, bone or other metastatic As bone metastasis presents a major problem in prostatic cancer, early detection of metastatic spread is required especially for staging. In some tumors detection of tumor cells in bone marrow portends a grim prognosis and suggests that interventions aimed at metastasis be tried. Detection of PSM antigen expression in bone marrow aspirates or sections may provide such early information. PCR amplification or in-situ hybridization may be used. Using RT-PCR cells in the circulating can be detected by hematogenous metastasis.

2. Antigenic site identification

The knowledge of the cDNA for the antigen also provides for the identification of areas that would serve as good antigens for the development of antibodies for use against specific amino acid sequences of the antigen. Such sequences may be at different regions such as outside, membrane or inside of the PSM antigen. The development of these specific antibodies would provide for immunohistochemical identification of the antigen. These derived antibodies could then be developed for use, especially ones that work in paraffin fixed sections as well as frozen section as they have the greatest utility for immunodiagnosis.

30

35

25

5

10

15

20

3. Restriction fragment length polymorphism and genomic DNA

Restriction fragment length polymorphisms (RFLPS) have proven to be useful in documenting the progression of genetic damage that occurs during tumor initiation and promotion. It may be that RFLP analysis will demonstrate that changes in PSM sequence restriction

mapping may provide evidence of predisposition to risk or malignant potential or progression of the prostatic tumor.

Depending on the chromosomal location of the PSM antigen, the PSM antigen gene may serve as a useful chromosome location marker for chromosome analysis.

4. Serum

With the development of antigen specific antibodies, if the antigen or selected antigen fragments appear in the serum they may provide for a serum marker for the presence of metastatic disease and be useful individually or in combination with other prostate specific markers.

5. Imaging

20

25

30

As the cDNA sequence implies that the antigen has the characteristics of a membrane spanning protein with the majority of the protein on the exofacial surface, antibodies, especially monoclonal antibodies to the peptide fragments exposed and specific to the tumor may provide for tumor imaging local extension of metastatic tumor or residual tumor following prostatectomy or The knowledge of the coding region irradiation. permits the generation of monoclonal antibodies and these can be used in combination to provide for maximal Because the antigen shares a imaging purposes. similarity with the transferrin receptor based on cDNA analysis (approximately 54%), it may be that there is a specific normal ligand for this antigen and that identification of the ligand(s) would provide another means of imaging.

35 6. Isolation of ligands

The PSM antigen can be used to isolate the normal ligand(s) that bind to it. These ligand(s) depending

on specificity may be used for targeting, or their serum levels may be predictive of disease status. If it is found that the normal ligand for PSM is a carrier molecule then it may be that PSM could be used to bind to that ligand for therapy purposes (like an iron chelating substance) to help remove the ligand from the circulation. If the ligand promotes tumor growth or metastasis then providing soluble PSM antigen would remove the ligand from binding the prostate. Knowledge of PSM antigen structure could lend to generation of small fragment that binds ligand which could serve the same purpose.

7. Therapeutic uses

5

10

15 a) Ligands. The knowledge that the cDNA structure of PSM antigen shares structural homology with the transferrin receptor (54% on the nucleic acid level) implies that there may be an endogenous ligand for the receptor that may or may not be transferrin-like. 20 Transferrin is thought to be a ligand that transports iron into the cell after binding to the transferrin receptor. However, apotransferrin is being reported to be a growth factor for some cells which express the transferrin receptor (30). Whether transferrin is a 25 ligand for this antigen or some other ligand binds to this ligand remains to be determined. If a ligand is identified it may carry a specific substance such as a metal ion (iron or zinc or other) into the tumor and thus serve as a means to deliver toxic substances 30 (radioactive or cytotoxic chemical i.e. toxin like ricin or cytotoxic alkylating agent or cytotoxic prodrug) to the tumor.

The main metastatic site for prostatic tumor is the bone. The bone and bone stroma are rich in transferrin. Recent studies suggest that this microenvironment is what provides the right "soil" for

prostatic metastasis in the bone (31). It may be that this also promotes attachment as well, these factors which reduce this ability may diminish prostatic metastasis to the bone and prostatic metastatic growth in the bone.

It was found that the ligand for the new antigen (thought to be an oncogene and marker of malignant phenotype in breast carcinoma) served to induce differentiation of breast cancer cells and thus could serve as a treatment for rather than promotor of the disease. It may be that ligand binding to the right region of PSM whether with natural ligand or with an antibody may serve a similar function.

15

20

5

10

Antibodies against PSM antigen coupled with a cytotoxic agent will be useful to eliminate prostate cancer cells. Transferrin receptor antibodies with toxin conjugates are cytotoxic to a number of tumor cells as tumor cells tend to express increased levels of transferrin receptor (32). Transferrin receptors take up molecules into the cell by endocytosis. Antibody drug combinations can be toxic. Transferrin linked toxin can be toxic.

25

30

35

b) Antibodies against PSM antigen coupled with a cytotoxic agent will be useful to eliminate prostate cancer cells. The cytotoxic agent may be a radioisotope or toxin as known in ordinary skill of the art. The linkage of the antibody and the toxin or radioisotope can be chemical. Examples of direct linked toxins are doxorubicin, chlorambucil, ricin, pseudomonas exotoxin etc., or a hybrid toxin can be generated ½ with specificity for PSM and the other ½ with specificity for the toxin. Such a bivalent molecule can serve to bind to the tumor and the other ½ to deliver a cytotoxic to the tumor or to bind to and

10

15

20

25

30

35

activate a cytotoxic lymphocyte such as binding to the T, - T receptor complex. Antibodies of required specificity can also be cloned into T cells and by replacing the immunoglobulin domain of the T cell receptor (TcR); cloning in the desired MAb heavy and light chains; splicing the U_h and U_l gene segments with the constant regions of the α and B TCR chains and transfecting these chimeric Ab/TcR genes in patients' T cells, propagating these hybrid cells and infusing them into the patient (33). Specific knowledge of tissue specific antigens for targets and generation of MAb's specific for such targets will help make this a usable approach. Because the PSM antigen coding region provides knowledge of the entire coding it is possible to generate a number of antibodies which could then be used in combination to achieve an additive or synergistic anti-tumor action. The antibodies can be linked to enzymes which can activate non-toxic prodrugs at its site of the tumor Ab-carboxypeptidase such as and 4-(bis(2 chloroethyl)amino)benzoyl-α-glutamic acid and active parent drug in mice (34).

It is possible to produce a toxic genetic chimera such as TP-40 a genetic recombinant that possesses the cDNA from TGF-alpha and the toxic portion of pseudomonas exotoxin so the TGF and portion of the hybrid binds the epidermal growth factor receptor (EGFR) and the pseudomonas portion gets taken up into the cell enzymatically and inactivates the ribosomes ability to perform protein synthesis resulting in cell death.

In addition, once the ligand for the PSM antigen is identified, toxin can be chemically conjugated to the ligands. Such conjugated ligands can be therapeutically useful. Examples of the toxins are daunomycin, chlorambucil, ricin, pseudomonas exotoxin,

-64-

etc. Alternatively, chimeric construct can be created linking the cDNA of the ligand with the cDNA of the toxin. An example of such toxin is $TGF\alpha$ and pseudomonas exotoxin (35).

5

10

15

20

25

8. Others

The PSM antigen may have other uses. It is well known that the prostate is rich in zinc, if the antigen provides function relative to this or other biologic function the PSM antigen may provide for utility in the treatment of other prostatic pathologies such as benign hyperplastic growth and/or prostatitis.

Because purified PSM antigen can be generated, the purified PSM antigen can be linked to beads and use it like a standard "affinity" purification. Serum, urine or other biological samples can be used to incubate with the PSM antigen bound onto beads. The beads may be washed thoroughly and then eluted with salt or pH gradient. The eluted material is SDS gel purified and used as a sample for microsequencing. The sequences will be compared with other known proteins and if unique, the technique of degenerated PCR can be employed for obtaining the ligand. Once known, the affinity of the ligand will be determined by standard protocols (15).

References of Example 1

- Chiaroda, A. (1991) National roundtable of prostate cancer: research directions. Cancer Res. 51: 2498-2505.
 - Coffey, D.S. Prostate Cancer An overview of an increasing dilemma. Cancer Supplement, 71,3: 880-886, 1993.

10

5

- 3. Warner, J.A., et al., (1991) Future developments of non-hormonal systemic therapy for prostatic carcinoma. Urologic Clin. North Amer. 18:25-33.
- 15 4. Nguyen, L., et al., (1990) Prostatic acid phosphatase in the serum of cancer patients with prostatic cancer is a specific phosphotyrosine acid phosphatase. Clin. Chem. 35:1450-1455.
- 5. Henttu, P., et al., (1989) cDNA coding for the entire human prostate specific antigen show high homologies to the human tissue kallikrein genes.

 Bioch. Biophys. Res. Comm. 160:903-908.
- Yong, CY-F., et al., (1991) Hormonal regulation of prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP. Cancer Res. 51:3748-3752.
- 7. Liotta, L.A. (1986) Tumor invasion and metastases: role of the extracellular matrix. Cancer Res. 46:1-7.
- 8. Horoszewicz, J.S., et al. (1987) Monoclonal
 antibodies to a new antigenic marker in epithelial
 prostatic cells and serum of prostatic cancer
 patients. Anticancer Res. 7:927-936.

-66-

- Horoszewicz, J.S., et al. (1983) LNCaP model of human prostatic carcinoma. Cancer Res., 43:1809-1818.
- 5 10. Lopes, D., et al. (1990) Immunohistochemical and pharmacokinetic characterization of the site-specific immunoconjugate CYT-356, derived from anti-prostate monoclonal antibody 7E11-C5. Cancer Res., 50:6423-6429.

10
11. Wright, Jr., et al., (1990) Characterization of a
 new carcinoma associated marker:7Ell-C5. Antibod.
 Immunoconj. Radiopharm.3:(abst#193).

- 15 12. Feng, Q., et al., (1991) Purification and biochemical characterization of the 7E11-C5 prostate carcinoma associated antigen. Proc. Amer. Assoc. Cancer Res. 32:239.
- 20 13. Axelrod, H.R., et al., Preclinical results and human immunohistochemical studies with ⁹⁰Y-CYT-356. A New prostate cancer agent. Abstract 596. AUA 87th Annual Meeting, May 10-14, 1992. Washington, D.C.

25
14. Maniatis, T., et al., (1982) Molecular Cloning;
Cold Spring Harbor Laboratory, pp.197-98 (1982).

- 15. Maniatis, et al., (1982) Molecular Cloning, Cold 30 Spring Harbor Laboratory.
 - 16. Methods in Enzymology vol. 34: 1-810, 1974 (E) B. Jacoby and M. Wilchek Academic Press, New York 1974.
- 17. Hogan B. et al. (1986) Manipulating the Mouse Embryo, A Laboratory Manual, Cold Spring Harbor

-67-

Laboratory.

10

15

20

25

35

- 18. Capecchi M.R. Science (1989) 244:1288-1292; Zimmer, A. and Gruss, P. (1989) Nature 338:150-153.
 - 19. Trowbridge, I.S., (1982) Prospects for the clinical use of cytotoxic monoclonal antibodies conjugates in the treatment of cancer. Cancer Surveys 1:543-556.
 - 20. Hank, S.K. (1987) Homology probing: Identification of cDNA clones encoding members of the protein-serine kinase family. Proc. Natl. Acad. Sci. 84:388-392.
 - 21. Lee, C.C., et al., (1988) Generation of cDNA probes directed by amino acid sequences: cloning of urate oxidase. Science, 239, 1288.
- 22. Girgis, S.I., et al. (1988) Generation of DNA probes for peptides with highly degenerate codons using mixed primer PCR. Nucleic Acids Res. 16:10932.
 - 23. Kartner, N., et al. (1977) Isolation of plasma membranes from human skin fibroblasts. J. Membrane Biology, 36:191-211.
- 30 24. Hsu, S.M., et al. (1981) Comparative study of the immunoperoxidase, anti-peroxidase, and avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am. J. Pathology, 75:734.
 - 25. Tempst, P., et al. (1989) Examination of automated polypeptide sequencing using standard

phenylisothiocyanate reagent and subpicomole high performance liquid chromatography analysis. Analytical Biochem. 183:290-300.

- 5 26. Birnboim, H.C. (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Meth. Enzymol, 100:243-255.
- 27. Sanger, F., et al. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74:5463-5467.
- 28. Grunstein, M., et al. (1975) Colony hybridization as a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA, 72:3961.
- 29. Feinberg, A.P., et al. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem, 132, 6.
- 30. Rave, N., et al. (1979) Identification of procollagen mRNAs transferred to diazobenzylomethyl paper from formaldehyde gels.

 Nucleic Acids Research, 6:3559.
- 31. Voeller, H.J., et al. (1991) v-ras^H expression confers hormone-independent in-vitro growth to LNCaP prostate carcinoma cells. Molec. Endocrinology. Vol. 5. No. 2, 209-216.
- 32. Sirbasku, D.A. (1991) Purification of an equine apotransferrin variant (thyromedin) essential for thyroid hormone dependent growth of GH₁, rat pituitary tumor cells in chemically defined culture. Biochem., 30:295-301.

- 33. Rossi, M.C. (1992) Selective stimulation of prostatic carcinoma cell proliferation by transferrin. Proc. Natl. Acad. Sci. (USA) 89:6197-6201.
- 34. Eshhan, Z. (1990) Chimeric T cell receptor which incorporates the anti-tumor specificity of a monoclonal antibody with the cytolytic activity of T cells: a model system for immunotherapeutic approach. B. J. Cancer 62:27-29.
 - 35. Antonie, P. (1990) Disposition of the prodrug 4- (bis(2 chloroethyl) amino)benzoyl-α-glutamic acid and its active parent in mice. B. J. Cancer 62:905-914.

15

20

- 36. Heimbrook, D.C., et al. (1990) Transforming growth factor alpha-pseudomonas exotoxin fusion protein prolongs survival of nude mice bearing tumor xenografts. Proc. Natl. Acad. Sci. (USA) 87:4697-4701.
- 37. Chiarodo, A. National Cancer Institute roundtable on prostate cancer; future research directions.
 25 Cancer Res., 51: 2498-2505, 1991.
- 38. Abdel-Nabi, H., Wright, G.L., Gulfo, J.V., Petrylak, D.P., Neal, C.E., Texter, J.E., Begun, F.P., Tyson, I., Heal, A., Mitchell, E., Purnell, G., and Harwood, S.J. Monoclonal antibodies and radioimmunoconjugates in the diagnosis and treatment of prostate cancer. Semin. Urol., 10: 45-54, 1992.

EXAMPLE 2:

EXPRESSION OF THE PROSTATE SPECIFIC MEMBRANE ANTIGEN

A 2.65 kb complementary DNA encoding PSM was cloned. 5 Immunohistochemical analysis of the LNCaP, DU-145, and PC-3 prostate cancer cell lines for PSM expression using the 7E11-C5.3 antibody reveals intense staining in the LNCaP cells, with no detectable expression in Coupled in-vitro both the DU-145 and PC-3 cells. 10 transcription/ translation of the 2.65 kb full-length PSM cDNA yields an 84 kDa protein corresponding to the predicted polypeptide molecular weight of PSM. Postthis protein with translational modification of pancreatic canine microsomes yields the expected 100 15 kDa PSM antigen. Following transfection of PC-3 cells with the full-length PSM cDNA in a eukaryotic expression vector applicant's detect expression of the PSM glycoprotein by Western analysis using the 7E11-C5.3 monoclonal antibody. Ribonuclease protection 20 analysis demonstrates that the expression of PSM mRNA is almost entirely prostate-specific in human tissues. PSM expression appears to be highest in hormonedeprived states and is hormonally modulated by steroids, with DHT downregulating PSM expression in the 25 human prostate cancer cell line LNCaP by 8-10 fold, testosterone downregulating PSM by 3-4 fold, corticosteroids showing no significant effect. Normal and malignant prostatic tissues consistently show high PSM expression, whereas heterogeneous, and at times 30 absent, from expression of PSM in benign prostatic hyperplasia. LNCaP tumors implanted and grown both orthotopically and subcutaneously in nude mice, abundantly express PSM providing an excellent in-vivo model system to study the regulation and modulation of 35 PSM expression.

10

15

20

25

30

35

Materials and Methods:

Cells and Reagents: The LNCaP, DU-145, and PC-3 cell lines were obtained from the American Type Culture Collection. Details regarding the establishment and characteristics of these cell lines previously published (5A,7A,8A). Unless specified otherwise, LNCaP cells were grown in RPMI 1640 media supplemented with L-glutamine, nonessential amino acids, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD.) in a CO, incubator at 37C. and PC-3 cells were grown in minimal essential medium supplemented with 10% fetal calf serum. All cell media obtained from the MSKCC Media Preparation Facility. Restriction and modifying enzymes were purchased from Gibco-BRL unless otherwise specified.

Immunohistochemical Detection of PSM: Avidin-biotin method of detection was employed to analyze prostate cancer cell lines for PSM antigen expression (9A). Cell cytospins were made on glass slides using 5x104 cells/100ul per slide. Slides were washed twice with PBS and then incubated with the appropriate suppressor serum for 20 minutes. The suppressor serum was drained off and the cells were incubated with diluted 7E11-C5.3 (5g/ml) monoclonal antibody for 1 hour. Samples were then washed with PBS and sequentially incubated with secondary antibodies for 30 minutes and with avidinbiotin complexes for 30 minutes. Diaminobenzidine served as the chromogen and color development followed by hematoxylin counterstaining and mounting. Duplicate cytospins were used as controls for each a positive control, the experiment. As cytokeratin monoclonal antibody CAM 5.2 was used following the same procedure described above. Human EJ bladder carcinoma cells served as a negative control.

-72-

In-Vitro Transcription/Translation of PSM Antigen: Plasmid 55A containing the full length 2.65 kb PSM cDNA in the plasmid pSPORT 1 (Gibco-BRL) was transcribed invitro using the Promega TNT system (Promega Corp. Madison, WI). T7 RNA polymerase was added to the cDNA in a reaction mixture containing rabbit reticulocyte lysate, an amino acid mixture lacking methionine, buffer, and 35S-Methionine (Amersham) and incubated at 30C for 90 minutes. Post-translational modification of the resulting protein was accomplished by the addition of pancreatic canine microsomes into the reaction mixture (Promega Corp. Madison, WI.). Protein products were analyzed by electrophoresis on 10% SDS-PAGE gels subsequently treated with were autoradiography enhancer (Amersham, Arlington Heights, IL.) according to the manufacturers instructions and dried at 80C in a vacuum dryer. autoradiographed overnight at -70C using Hyperfilm MP (Amersham).

20

25

30

35

15

5

10

Transfection of PSM into PC-3 Cells: The full length PSM cDNA was subcloned into the pREP7 eukaryotic expression vector (Invitrogen, San Diego, Plasmid DNA was purified from transformed DH5-alpha bacteria (Gibco-BRL) using Qiagen maxi-prep plasmid isolation columns (Qiagen Inc., Chatsworth, CA.). Purified plasmid DNA (6-10g) was diluted with 900ul of Optimem media (Gibco-BRL) and mixed with 30ul of which (Gibco-BRL) Lipofectin reagent previously diluted with 900l of Optimem media. mixture was added to T-75 flasks of 40-50% confluent PC-3 cells in Optimem media. After 24-36 hours, cells into 100mm dishes were trypsinized and split containing RPMI 1640 media supplemented with 10% fetal calf serum and 1 mg/ml of Hygromycin B (Calbiochem, La The dose of Hygromycin B used was Jolla, CA.). previously determined by a time course/dose response

-73-

cytotoxicity assay. Cells were maintained in this media for 2-3 weeks with changes of media and Hygromycin B every 4-5 days until discrete colonies appeared. Colonies were isolated using 6mm cloning cylinders and expanded in the same media. As a control, PC-3 cells were also transfected with the pREP7 plasmid alone. RNA was isolated from the transfected cells and PSM mRNA expression was detected by both RNase Protection analysis (described later) and by Northern analysis.

Western Blot Detection of PSM Expression: Crude protein lysates were isolated from LNCaP, PC-3, and PSMtransfected PC-3 cells as previously described (10A). LNCaP cell membranes were also isolated according to 15 published methods (10A). Protein concentrations were quantitated by the Bradford method using the BioRad protein reagent kit (BioRad, Richmond, CA.). Following denaturation, $20\mu g$ of protein was electrophoresed on a 20 10% SDS-PAGE gel at 25 mA for 4 hours. Gels were electroblotted onto Immobilon P membranes (Millipore, Bedford, MA.) overnight at 4C. Membranes were blocked in 0.15M NaCl/0.01M Tris-HCl (TS) plus 5% BSA followed by a 1 hour incubation with 7E11-C5.3 monoclonal 25 antibody (10µg/ml). Blots were washed 4 times with 0.15M NaCl/0.01M Tris-HCl/0.05% Triton-X 100 (TS-X) and incubated for 1 hour with rabbit anti-mouse (Accurate Scientific, Westbury, N.Y.) concentration of $10\mu g/ml$.

30

35

5

10

Blots were then washed 4 times with TS-X and labeled with ¹²⁵I-Protein A (Amersham, Arlington Heights, IL.) at a concentration of 1 million cpm/ml. Blots were then washed 4 times with TS-X and dried on Whatman 3MM paper, followed by overnight autoradiography at -70C using Hyperfilm MP (Amersham).

PCT/US96/02424

-74-

5

10

15

20

25

30

35

Orthotopic and Subcutaneous LNCaP Tumor Growth in Nude Mice: LNCaP cells were harvested from sub-confluent cultures by a one minute exposure to a solution of 0.25% trypsin and 0.02% EDTA. Cells were resuspended in RPMI 1640 media with 5% fetal bovine serum, washed and diluted in either Matrigel (Collaborative Biomedical Products, Bedford, MA.) or calcium and magnesium-free Hank's balanced salt solution (HBSS). Only single cell suspensions with greater than 90% viability by trypan blue exclusion were used for in vivo injection. Male athymic Swiss (nu/nu) nude mice 4-6 weeks of age were obtained from the Memorial Sloan-Kettering Cancer Center Animal Facility. subcutaneous tumor cell injection one million LNCaP cells resuspended in 0.2 mls. of Matrigel were injected into the hindlimb of each mouse using a disposable syringe fitted with a 28 gauge needle. For orthotopic injection, mice were first anesthetized with intraperitoneal injection of Pentobarbital and placed in the supine position. The abdomen was cleansed with Betadine and the prostate was exposed through a midline 2.5 million LNCaP tumor cells in 0.1 ml. were injected directly into either posterior lobe using a 1 ml disposable syringe and a 28 gauge needle. LNCaP cells with and without Matrigel were Abdominal closure was achieved in one layer using Autoclip wound clips (Clay Adams, Parsippany, N.J.). Tumors were harvested in 6-8 weeks, confirmed histologically by faculty of the Memorial Sloan-Kettering Cancer Center Pathology Department, frozen in liquid nitrogen for subsequent RNA isolation.

RNA Isolation: Total cellular RNA was isolated from cells and tissues by standard techniques (11,12) as well as by using RNAzol B (Cinna/Biotecx, Houston, TX.). RNA concentrations and quality were assessed by UV spectroscopy on a Beckman DU 640 spectrophotometer

and by gel analysis. Human tissue total RNA samples were purchased from Clontech Laboratories, Inc., Palo Alto, CA.

Ribonuclease Protection Assays: A portion of the PSM 5 cDNA was subcloned into the plasmid vector pSPORT 1 (Gibco-BRL) and the orientation of the cDNA insert relative to the flanking T7 and SP6 RNA polymerase promoters was verified by restriction analysis. Linearization of this plasmid upstream of the PSM 10 followed by transcription with SP6 RNA polymerase yields a 400 nucleotide antisense RNA probe, of which 350 nucleotides should be protected from RNase digestion by PSM RNA. This probe was used in Figure Plasmid IN-20, containing a 1 kb partial PSM cDNA 15 in the plasmid pCR II (Invitrogen) was also used for riboprobe synthesis. IN-20 linearized with Xmn I (Gibco-BRL) yields a 298 nucleotide anti-sense RNA probe when transcribed using SP6 RNA polymerase, of 20 which 260 nucleotides should be protected from RNase digestion by PSM mRNA. This probe was used in Figures 21 and 22. Probes were synthesized using SP6 RNA polymerase (Gibco-BRL), rNTPs (Gibco-BRL), (Promega), and ^{32}P -rCTP (NEN, Wilmington, DE.) according to published protocols (13). Probes were purified over 25 NENSORB 20 purification columns (NEN) and approximately 1 million cpm of purified, radiolabeled PSM probe was mixed with 10μ of each RNA and hybridized overnight at 45C using buffers and reagents from the RPA II kit 30 (Ambion, Austin, TX). Samples were processed as per manufacturer's instructions and analyzed polyacrilamide/7M urea denaturing gels using Seq ACRYL reagents (ISS, Natick, MA.). Gels were pre-heated to 55C and run for approximately 1-2 hours at 25 watts. 35 Gels were then fixed for 30 minutes in 10% methanol/10% acetic acid, dried onto Whatman 3MM paper at 80C in a BioRad vacuum dryer and autoradiographed overnight with

-76-

Hyperfilm MP (Amersham). Quantitation of PSM expression was determined by using a scanning laser densitometer (LKB, Piscataway, NJ.).

Steroid Modulation Experiment: LNCaP cells (2 million) 5 were plated onto T-75 flasks in RPMI 1640 media supplemented with 5% fetal calf serum and grown 24 hours until approximately 30-40% confluent. were then washed several times with phophate-buffered saline and RPMI medium supplemented with 5% charcoal-10 extracted serum was added. Cells were then grown for another 24 hours, at which time dihydrotesterone, estradiol, progesterone, testosterone, dexamethasone (Steraloids Inc., Wilton, NH.) were added at a final concentration of 2 nM. Cells were grown for 15 another 24 hours and RNA was then harvested as previously described and PSM expression analyzed by ribonuclease protection analysis.

20

25

Experimental Results

Immunohistochemical Detection of PSM: Using the 7E11-C5.3 anti-PSM monoclonal antibody, PSM expression is clearly detectable in the LNCaP prostate cancer cell line, but not in the PC-3 and DU-145 cell lines (Figures 17A-17C). All normal and malignant prostatic tissues analyzed stained positively for PSM expression.

30 In-Vitro Transcription/Translation of PSM Antigen: As shown in Figure 18, coupled in-vitro transcription/ translation of the 2.65 kb full-length PSM cDNA yields an 84 kDa protein species in agreement with the expected protein product from the 750 amino acid PSM open reading frame. Following post-translational modification using pancreatic canine microsomes were obtained a 100 kDa glycosylated protein species

consistent with the mature, native PSM antigen.

5

10

15

20

25

30

35

Detection of PSM Antigen in LNCaP Cell Membranes and Transfected PC-3 Cells: PC-3 cells transfected with the full length PSM cDNA in the pREP7 expression vector were assayed for expression of SM mRNA by Northern analysis. A clone with high PSM mRNA expression was selected for PSM antigen analysis by Western blotting using the 7E11-C5.3 antibody. In Figure 19, the 100 kDa PSM antigen is well expressed in LNCaP cell lysate and membrane fractions, as well as in PSM-transfected PC-3 cells but not in native PC-3 cells. This detectable expression in the transfected PC-3 cells proves that the previously cloned 2.65 kb PSM cDNA encodes the antigen recognized by the 7E11-C5.3 antiprostate monoclonal antibody.

PSM mRNA Expression: Expression of PSM mRNA in normal human tissues was analyzed using ribonuclease protection assays. Tissue expression of PSM appears predominantly within the prostate, with very low levels of expression detectable in human brain and salivary gland (Figure 20). No detectable PSM mRNA expression evident in non-prostatic human tissues when analyzed by Northern analysis. On occasion it is noted that detectable PSM expression in normal human small intestine tissue, however this mRNA expression is variable depending upon the specific riboprobe used. samples of normal human prostate and human prostatic adenocarcinoma assayed have revealed clearly detectable PSM expression, whereas generally decreased or absent expression of PSM in tissues exhibiting benign hyperplasia (Figure 21). In human LNCaP tumors grown both orthotopically and subcutaneously in nude mice abundant PSM expression with or without the use of matrigel, which is required for the growth of subcutaneously implanted LNCaP cells was detected

PSM mRNA expression is distinctly (Figure 21). modulated by the presence of steroids in physiologic doses (Figure 22). DHT downregulated expression by 8-10 fold after 24 hours and testosterone diminished PSM expression by 3-4 fold. Estradiol and progesterone also downregulated PSM expression in LNCaP cells, perhaps as a result of binding to the mutated androgen receptor known to exist in the LNCaP cell. Overall, PSM expression is highest in the untreated LNCaP cells grown in steroid-depleted media, a situation that simulates the hormone-deprived (castrate) state invivo. This experiment was repeated at steroid dosages ranging from 2-200 nM and at time points from 6 hours to 7 days with similar results; maximal downregulation of PSM mRNA was seen with DHT at 24 hours at doses of 2-20 nM.

Experimental Discussion

5

10

15

Previous research has provided two valuable prostatic 20 bio-markers, PAP and PSA, both of which have had a significant impact on the diagnosis, treatment, and management of prostate malignancies. The present work describing the preliminary characterization of the prostate-specific membrane antigen (PSM) reveals it to 25 be a gene with many interesting features. almost entirely prostate-specific as are PAP and PSA, and as such may enable further delineation of the unique functions and behavior of the prostate. predicted sequence of the PSM protein (3) and its 30 presence in the LNCaP cell membrane as determined by Western blotting and immunohistochemistry, that it is an integral membrane protein. Thus, PSM provides an attractive cell surface epitope for antibody-directed diagnostic imaging and cytotoxic 35 targeting modalities (14). The ability to synthesize PSM antigen in-vitro and to produce tumor

-79-

xenografts maintaining high levels of PSM expression provides us with a convenient and attractive model system to further study and characterize the regulation and modulation of PSM expression. Also, the high level of PSM expression in the LNCaP cells provides an excellent in-vitro model system. Since PSM expression is hormonally-responsive to steroids and may be highly expressed in hormone-refractory disease (15). detection of PSM mRNA expression in minute quantities in brain, salivary gland, and small intestine warrants further investigation, although these tissues were negative for expression of PSM antigen immunohistochemistry using the 7E11-C5.3 antibody (16). In all of these tissues, particularly small intestine, mRNA expression using a probe corresponding to a region of the PSM cDNA near the 3' end, whereas expression when using a 5' end PSM probe was not detected. results may indicate that the PSM mRNA transcript undergoes alternative splicing in different tissues.

20

25

30

35

15

5

10

Applicants approach is based on prostate tissue specific promotor: enzyme or cytokine chimeras. Promotor specific activation of prodrugs such as non toxic gancyclovir which is converted to a toxic metabolite by herpes simplex thymidine kinase or the prodrug 4-(bis(2chloroethyl)amino)benzoyl-1-glutamic acid to the benzoic acid mustard alkylating agent by the pseudomonas carboxy peptidase G2 was examined. these drugs are activated by the enzyme (chimera) specifically in the tumor the active drug is released only locally in the tumor environment, destroying the surrounding tumor cells. Promotor specific activation of cytokines such as IL-12, IL-2 or GM-CSF for activation and specific antitumor vaccination examined. Lastly the tissue specific promotor activation of cellular death genes may also prove to be useful in this area.

-80-

Gene Therapy Chimeras: The establishment of "chimeric DNA" for gene therapy requires the joining of different segments of DNA together to make a new DNA that has characteristics of both precursor DNA species involved in the linkage. In this proposal the two pieces being linked involve different functional aspects of DNA, the promotor region which allows for the reading of the DNA for the formation of mRNA will provide specificity and the DNA sequence coding for the mRNA will provide for therapeutic functional DNA.

5

10

15

20

25

30

35

DNA-Specified Enzyme or Cytokine mRNA: When effective, antitumor drugs can cause the regression of very large amounts of tumor. The main requirements for antitumor drug activity is the requirement to achieve both a long enough time (t) and high enough concentration (c) (cxt) of exposure of the tumor to the toxic drug to assure sufficient cell damage for cell death to occur. drug also must be "active" and the toxicity for the tumor greater than for the hosts normal cells (22). The availability of the drug to the tumor depends on tumor blood flow and the drugs diffusion ability. Blood flow to the tumor does not provide selectivity as blood flow to many normal tissues is often as great or greater than that to the tumor. The majority of chemotherapeutic cytotoxic drugs are often as toxic to normal tissue as to tumor tissue. Dividing cells are often more sensitive than non-dividing normal cells, but in many slow growing solid tumors such as prostatic cancer this does not provide for antitumor specificity (22).

Previously a means to increase tumor specificity of antitumor drugs was to utilize tumor associated enzymes to activate nontoxic prodrugs to cytotoxic agents (19). A problem with this approach was that most of the enzymes found in tumors were not totally specific in

-81-

their activity and similar substrate active enzymes or the same enzyme at only slightly lower amounts was found in other tissue and thus normal tissues were still at risk for damage.

5

10

15

20

25

35

To provide absolute specificity and unique activity, viral, bacterial and fungal enzymes which have unique specificity for selected prodrugs were found which were not present in human or other animal cells. to utilize enzymes such as herpes simplex thymidine kinase, bacterial cytosine deaminase carboxypeptidase G-2 were linked to antibody targeting systems with modest success (19). Unfortunately, antibody targeted enzymes limit the number of enzymes available per cell. Also, most antibodies do not have a high tumor target to normal tissue ratio thus normal tissues are still exposed reducing the specificity of these unique enzymes. Antibodies are large molecules that have poor diffusion properties and the addition of the enzymes molecular weight further reduces the antibodies diffusion.

Gene therapy could produce the best desired result if it could achieve the specific expression of a protein in the tumor and not normal tissue in order that a high local concentration of the enzyme be available for the production in the tumor environment of active drug (21).

30 Cytokines:

Results demonstrated that tumors such as the bladder and prostate were not immunogenic, that is the administration of irradiated tumor cells to the animal prior to subsequent administration of non-irradiated tumor cells did not result in a reduction of either the number of tumor cells to produce a tumor nor did it reduce the growth rate of the tumor. But if the tumor

was transfected with a retrovirus and secreted large concentrations of cytokines such as Il-2 then this could act as an antitumor vaccine and could also reduce the growth potential of an already established and growing tumor, IL-2 was the best, GM-CSF also had activity whereas a number of other cytokines were much less active. In clinical studies just using IL-2 for immunostimulation, very large concentrations had to be given which proved to be toxic. The key to the success of the cytokine gene modified tumor cell is that the cytokine is produced at the tumor site locally and is not toxic and that it stimulates immune recognition of the tumor and allows specific and non toxic recognition and destruction of the tumor. The exact mechanisms of how IL-2 production by the tumor cell activates immune fully understood, but is not recognition explanation is that it bypasses the need for cytokine production by helper T cells and directly stimulates cytotoxic activated CD8 antigen Activation of antigen presenting cells may also occur.

Tissue Promotor-Specific Chimera DNA Activation

Non-Prostatic Tumor Systems:

5

10

15

20

It has been observed in non-prostatic tumors that the 25 use of promotor specific activation can selectively lead to tissue specific gene expression of In melanoma the use of the transfected gene. tyrosinase promotor which codes for the responsible for melanin expression produced over a 50 30 fold greater expression of the promotor driven reporter gene expression in melanoma cells and not non melanoma Similar specific activation was seen in the melanoma cells transfected when they were growing in mice. In that experiment no non-melanoma or melanocyte 35 cell expressed the tyrosinase drive reporter gene The research group at Welcome Laboratories product.

5

10

15

have cloned and sequenced the promoter region of the gene coding for carcinoembryonic antigen (CEA). CEA is expressed on colon and colon carcinoma cells but specifically on metastatic. A gene chimera generated which cytosine deaminase. Cytosine deaminase which converts 5 flurorocytosine into 5 fluorouracil and observed a large increase in the ability to selectively kill CEA promotor driven colon tumor cells but not normal liver cells. In vivo they observed that bystander tumor cells which were not transfected with the cytosine deaminase gene were also killed, and that there was no toxicity to the host animal as the large tumors were regressing following treatment. simplex virus, (HSV), thymidine kinase similarly activates the prodrug gancyclovir to be toxic towards dividing cancer cells and HSV thymidine kinase has been shown to be specifically activatable by tissue specific promoters.

20 Prostatic Tumor Systems: The therapeutic key to effective cancer therapy is to achieve specificity and spare the patient toxicity. Gene therapy may provide a key part to specificity in that non-essential tissues such as the prostate and prostatic tumors produce tissue specific proteins, such as acid phosphatase 25 (PAP), prostate specific antigen (PSA), and a gene which was cloned, prostate-specific membrane antigen Tissues such as the prostate contain selected tissue specific transcription factors which are 30 responsible for binding to the promoter region of the DNA of these tissue specific mRNA. The promoter for PSA has been cloned. Usually patients who are being treated for metastatic prostatic cancer have been put on androgen deprivation therapy which dramatically 35 reduces the expression of mRNA for PSA. PSM on the other hand increases in expression with hormone deprivation which-means it would be even more intensely

-84-

expressed on patients being treated with hormone therapy.

-85-

References of Example 2

- Coffey, D.S. Prostate Cancer An overview of an increasing dilemma. Cancer Supplement, 71,3: 880-886, 1993.
 - Chiarodo, A. National Cancer Institute roundtable on prostate cancer; future research directions. Cancer Res., 51: 2498-2505, 1991.

10

15

20

25

5

- 3. Israeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D.W. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res., 53: 227-230, 1993.
- 4. Horoszewicz, J.S., Kawinski, E., and Murphy, G.P. Monoclonal antibodies to a new antigenic marker in epithelial cells and serum of prostatic cancer patients. Anticancer Res., 7: 927-936, 1987.
 - 5. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P. LNCaP model of human prostatic carcinoma. Cancer Res., 43: 1809-1818, 1983.
- 6. Abdel-Nabi, H., Wright, G.L., Gulfo, J.V., Petrylak, D.P., Neal, C.E., Texter, J.E., Begun, F.P., Tyson, I., Heal, A., Mitchell, E., Purnell, G., and Harwood, S.J. Monoclonal antibodies and radioimmunoconjugates in the diagnosis and treatment of prostate cancer. Semin. Urol., 10: 45-54, 1992.

35

7. Stone, K.R., Mickey, D.D., Wunderli, H., Mickey, G.H., and Paulson, D.F. Isolation of a human

-86-

prostate carcinoma cell line (DU-145). Int. J. Cancer, 21: 274-281, 1978.

- 8. Kaign, M.E., Narayan, K.S., Ohnuki, Y., and
 Lechner, J.F. Establishment and characterization
 of a human prostatic carcinoma cell line (PC-3).
 Invest. Urol., 17: 16-23, 1979.
- 9. Hsu, S.M., Raine, L., and Fanger, H. Review of present methods of immunohistochemical detection.

 Am. J. Clin. Path. 75: 734-738, 1981.
- 10. Harlow, E., and Lane, D. Antibodies: A Laboratory Manual. New York: Cold Spring Harbor Laboratory, p. 449, 1988.
- 11. Glisin, V., Crkvenjakov, R., and Byus, C.
 Ribonucleic acid isolated by cesium chloride
 centrifugation. Biochemistry, 13: 2633-2637,
 1974.
- 12. Aviv, H., and Leder, P. Purification of biologically active globin messenger RNA by chromotography on oligo-thymidylic acid cellulose. Proc. Natl. Acad. Sci. USA, 69: 1408-1412, 1972.
- 13. Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T.A., Zinn, K., and Careen, M.R.

 Efficient in-vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucl. Acids. Res. 12: 7035-7056, 1984.
- 35 14.

-87-

15. Axelrod, H.R., Gilman, S.C., D'Aleo, C.J., Petrylak, D., Reuter, V., Gulfo, J.V., Saad, A., Cordon-Cardo, C., and Scher, H.I. Preclinical results and human immunohistochemical studies with 90Y-CYT-356; a new prostatic cancer therapeutic agent. AUA Proceedings, Abstract 596, 1992.

5

25

- Lopes, A.D., Davis, W.L., Rosenstraus, M.J., 16. 10 Uveqes, A.J., and Gilman, S.C. Immunohistochemical and pharmacokinetic characterization of the site-specific immunoconjugate CYT-356 derived from antiprostate monoclonal antibody 7E11-C5. Cancer Res., 50: 15 6423-6429, 1990.
- 17. Troyer, J.K., Qi, F., Beckett, M.L., Morningstar, M.M., and Wright, G.L. Molecular characterization of the 7E11-C5 prostate tumorassociated antigen. AUA Proceedings. Abstract 482, 1993.
 - 18. Roemer, K., Friedmann, T. Concepts and strategies for human gene therapy. FEBS. 223:212-225.
- 19. Antonie, P. Springer, C.J., Bagshawe, F., Searle, F., Melton, R.G., Rogers, G.T., Burke, P.J., Sherwood, R.F. Disposition of the prodrug 4-bis(2chloroethyl) amino) benzoyl-1-glutamic acid and its active parent drug in mice. Br.J.Cancer 62:909-914, 1990.
- 20. Connor, J. Bannerji, R., Saito, S., Heston, W.D.W., Fair, W.R., Gilboa, E. Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells. J.Exp.Med. 177:1127-1134, 1993. (appendix)

-88-

- 21. Vile R., Hart, I.R. In vitro and in vivo targeting of gene expression to melanoma cells.

 Cancer Res. 53:962-967, 1993.
- 5 22. Warner, J.A., Heston, W.D.W. Future developments of nonhormonal systemic therapy for prostatic carcinoma. Urologic Clinics of North America 18:25-33, 1991.
- 10 23. Vile, R.G., Hart, I.R. Use of tissue specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53:3860-3864, 1993.

-89-

EXAMPLE 3:

5

10

15

20

25

30

35

Sensitive Detection of Prostatic Hematogenous Micrometastases Using PSA and PSM-Derived Primers in the Polymerase Chain Reaction

A PCR-based assay was developed enabling sensitive detection of hematogenous micrometastases in patients with prostate cancer. "Nested PCR", was performed by amplifying mRNA sequences unique to prostate-specific antigen and to the prostate-specific membrane antigen, and compared their respective results. Micrometastases were detected in 2/30 patients (6.7%) by PCR with PSA-derived primers, while PSM-derived primers detected tumor cells in 19/16 patients (63.3%). All 8 negative controls were negative with both PSA and PSM PCR. Assays were repeated to confirm results, and PCR products were verified by DNA sequencing and Southern analysis. Patients harboring circulating prostatic tumor cells as detected by PSM, and not by PSA-PCR included 4 patients previously treated with radical prostatectomy and with non-measurable serum PSA levels at the time of this assay. The significance of these findings with respect to future recurrence and progression will be investigated.

Improvement in the overall survival of patients with prostate cancer will depend upon earlier diagnosis. Localized disease, without evidence of extra-prostatic spread, is successfully treated with either radical prostatectomy or external beam radiation, with excellent long-term results (2,3). The major problem is that approximately two-thirds of men diagnosed with prostate cancer already have evidence of advanced extra-prostatic spread at the time of diagnosis, for which there is at present no cure (4). The use of clinical serum markers such as prostate-specific

5

10

15

20

25

30

35

-90-

antigen (PSA) and prostatic acid phosphatase (PAP) have enabled clinicians to detect prostatic carcinomas earlier and provide useful parameters to follow responses to therapy (5). Yet, despite the advent of sensitive serum PSA assays, radionuclide bone scans, CT scans and other imaging modalities, results have not detected the presence of micrometastatic cells prior to their establishment of solid metastases. Previous work has been done utilizing the polymerase chain reaction to amplify mRNA sequences unique to breast, leukemia, and other malignant cells in the circulation and enable early detection of micrometastases (6,7). Recently, a PCR-based approach utilizing primers derived from the PSA DNA sequence was published (8). In this study 3/12 patients with advanced, stage D prostate cancer had detectable hematogenous micrometastases.

PSM appears to be an integral membrane glycoprotein which is very highly expressed in prostatic tumors and metastases and is almost entirely prostate-specific (10). Many anaplastic tumors and bone metastases have variable and at times no detectable expression of PSA, whereas these lesions appear to consistently express Prostatic tumor cells that escape high levels of PSM. from the prostate gland and enter the circulation are likely to have the potential to form metastases and are possibly the more aggressive and possibly anaplastic cells, a population of cells that may not express high levels of PSA, but may retain high expression of PSM. DNA primers derived from the sequences of both PSA and PSM in a PCR assay were used to detect micrometastatic cells in the peripheral circulation. Despite the high level of amplification and sensitivity of conventional RNA PCR, "Nested" PCR approach in which a amplified target sequence was employed, and subsequently use this PCR product as the template for another round of PCR amplification with a new set of primers totally

-91-

contained within the sequence of the previous product. This approach has enabled us to increase the level of detection from one prostatic tumor cell per 10,000 cells to better than one cell per ten million cells.

5

10

15

20

25

30

35

Materials and Methods

Cells and Reagents: LNCaP and MCF-7 cells were obtained from the American Type Culture Collection (Rockville, MD.). Details regarding the establishment characteristics of these cell lines have been previously published (11,12). Cells were grown in RPMI 1640 media supplemented with L-glutamine, nonessential amino acids, obtained from the MSKCC Media Preparation Facility, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD.) in a CO, incubator at 37C. All cell media was obtained from the MSKCC Media Preparation Facility. Routine chemical reagents were of the highest grade possible and were obtained from Sigma Chemical Company, St. Louis, MO.

Patient Blood Specimens: All blood specimens used in this study were from patients seen in the outpatient offices of urologists on staff at MSKCC. Two anticoagulated (purple top) tubes per patient were obtained at the time of their regularly scheduled blood draws. Specimen procurement was conducted as per the approval of the MSKCC Institutional Review Board. Samples were promptly brought to the laboratory for immediate Serum PSA and PAP determinations were processing. performed by standard techniques by the MSKCC Clinical Laboratory. PSA determinations performed using the Tandem PSA assay (Hybritech, San The eight blood specimens used as Diego, CA.). negative controls were from 2 males with normal serum PSA values and biopsy-proven BPH, one healthy female, 3 healthy males, one patient with bladder cancer, and

-92-

one patient with acute promyelocytic leukemia.

5

10

15

20

25

30

35

Blood Sample Processing/RNA Extraction: 4 ml of whole anticoagulated venous blood was mixed with 3 ml of ice cold phosphate buffered saline and then carefully layered atop 8 ml of Ficoll (Pharmacia, Uppsala, Sweden) in a 15-ml polystyrene tube. Tubes were centrifuged at 200 x g for 30 min. at 4C. sterile pasteur pipette, the buffy coat layer (approx. 1 ml.) was carefully removed and rediluted up to 50 ml with ice cold phosphate buffered saline in a 50 ml polypropylene tube. This tube was then centrifuged at for 30 min at 4C. The supernatant was carefully decanted and the pellet was allowed to drip dry. One ml of RNazol B was then added to the pellet and total RNA was isolated as per manufacturers directions (Cinna/Biotecx, Houston, TX.). RNA concentrations and purity were determined by UV spectroscopy on a Beckman DU 640 spectrophotometer and by gel analysis.

Determination of PCR Sensitivity: RNA was isolated from LNCaP cells and from mixtures of LNCaP and MCF-7 cells at fixed ratios (i.e. 1:100, 1:1000, etc.) using RNAzol B. Nested PCR was then performed as described below with both PSA and PSM primers in order to determine the limit of detection for the assay. LNCaP:MCF-7 (1:100,000) cDNA was diluted with distilled water to obtain concentrations of 1:1,000,000 and 1:10,000,000. MCF-7 cells were chosen because they have been previously tested and shown not to express PSM by PCR.

Polymerase Chain Reaction: The PSA outer primers used span portions of exons 4 and 5 to yield a 486 bp PCR product and enable differentiation between cDNA and possible contaminating genomic DNA amplification. The upstream primer sequence beginning at nucleotide 494 in

5

10

15

20

25

PSA cDNA sequence is 5'-TACCCACTGCATCAGGAACA-3' (SEQ. ID. No.) and the downstream primer at nucleotide 960 is 5'-CCTTGAAGCACCACTTACA-3' (SEO. ID. No.) . PSA inner upstream primer (beginning at nucleotide 559) 5'-ACACAGGCCAGGTATTTCAG-3' (SEQ. ID. No.) and the downstream primer nucleotide 894) 5′-(at GTCCAGCGTCCAGCACAG-3' (SEQ. ID. No.) yield a 355 bp PCR product. All primers were synthesized by the MSKCC Microchemistry Core Facility. $5\mu q$ of total RNA was reverse-transcribed into cDNA in a total volume of 20µl using Superscript reverse transcriptase (Gibco-BRL) according to the manufacturers recommendations. this cDNA served as the starting template for the outer primer PCR reaction. The 20µl PCR mix included: 0.5U Taq polymerase (Promega Corp., Madison, WI.), Promega reaction buffer, 1.5mM MgCl₂, 200mM dNTPs, and 1.0 μ M of each primer. This mix was then transferred to a Perkin Elmer 9600 DNA thermal cycler and incubated for 25 PCR profile was as follows: 94C x 15 The sec., $60C \times 15$ sec., and 72C for 45 sec. After 25 cycles, samples were placed on ice, and 1µl of this reaction mix served as the template for another round of PCR using the inner primers. The first set of tubes were returned to the thermal cycler for 25 additional cycles. PSM-PCR required the selection of primer pairs that also spanned an intron in order to be certain that cDNA and not genomic DNA were being amplified.

The PSM outer primers yield a 946 bp product and the 30 inner primers a 434 bp product. The PSM outer upstream primer used was 5'-ATGGGTGTTTGGTGGTATTGACC-3' (SEQ. ID. No.) (beginning at nucleotide 1401) and the downstream primer (at nucleotide 2348) was TGCTTGGAGCATAGATGACATGC-3' (SEQ. ID. No.) 35 inner upstream primer (at nucleotide 1581) was 5'-ACTCCTTCAAGAGCGTGGCG-3' (SEQ. ID. No.) and the downstream primer (at nucleotide 2015) was 5'-

5

10

15

20

25

-94-

PCT/US96/02424

AACACCATCCCTCGAACC-3'(SEQ. ID. No.). cDNA used was the same as for the PSA assay. The 501 PCR mix included: 1U Taq Polymerase (Promega), 250M dNTPs, 10mM -mercaptoethanol, 2mM MgCl,, and 5l of a 10x buffer mix containing: 166mM NH,SO,, 670mM Tris pH 8.8, and 2 mg/ml PCR was carried out in a Perkin of acetylated BSA. Elmer 480 DNA thermal cycler with the following parameters: 94C x 4 minutes for 1 cycle, 94C x 30 sec., 58C x 1 minute, and 72C x 1 minute for 25 cycles, followed by 72C x 10 minutes. Samples were then iced and 21 of this reaction mix was used as the template another 25 cycles with a new reaction mix containing the inner PSM primers. cDNA quality was verified by performing control reactions using primers derived from -actin yielding a 446 bp PCR product. upstream primer used was 5'-AGGCCAACCGCGAGAAGATGA-3' (SEQ. ID. No.) (exon 3) and the downstream primer was 5'-ATGTCACACTGGGGAAGC-3' (SEQ. ID. No.) (exon 4). The entire PSA mix and 101 of each PSM reaction mix were run on 1.5-2% agarose gels, stained with ethidium bromide and photographed in an Eagle Eye Video Imaging System (Stratagene, Torrey Pines, CA.). Assays were repeated at least 3 times to verify results.

Cloning and Sequencing of PCR Products: PCR products were cloned into the pCR II plasmid vector using the TA cloning system (Invitrogen). These plasmids were transformed into competent E. coli cells using standard methods (13) and plasmid DNA was isolated using Magic and screened by restriction 30 Minipreps (Promega) analysis. TA clones were then sequenced by the dideoxy method (14) using Sequenase (U.S. Biochemical). of each plasmid was denatured with NaOH and ethanol Labeling reactions were carried out precipitated. according to the manufacturers recommendations using 35 35S-dATP (NEN), and the reactions were terminated as discussed in the same protocol. Sequencing products

-95-

were then analyzed on 6% polyacrilamide/7M urea gels run at 120 watts for 2 hours. Gels were fixed for 20 minutes in 10% methanol/10% acetic acid, transferred to Whatman 3MM paper and dried down in a vacuum dryer for 2 hours at 80C. Gels were then autoradiographed at room temperature for 18 hours.

Southern Analysis: Ethidium-stained agarose gels of PCR products were soaked for 15 minutes in 0.2N HCl, 10 followed by 30 minutes each in 0.5N NaOH/1.5M NaCl and Tris pH 7.5/1.5M NaCl. Gels were equilibrated for 10 minutes in 10x SSC (1.5M NaCl/0.15M Sodium Citrate. DNA was transferred onto Nytran nylon membranes (Schleicher and Schuell) by pressure blotting in 10x SSC with a Posi-blotter (Stratagene). 15 DNA was cross-linked to the membrane using a UV Stratalinker (Stratagene). Blots were pre-hybridized at 65C for 2 hourthes and subsequently hybridized with denatured 32P-labeled, random-primed cDNA probes (either PSM or PSA) (9,15). Blots were washed twice in 1x SSPE/0.5% SDS at 42C and twice in 0.1x SSPE/0.5% SDS at 50C for 20 minutes each. Membranes were air-dried and autoradiographed for 30 minutes to 1 hour at -70C with Kodak X-Omat film.

25

30

35

20

5

Experimental Results

PCR amplification with nested primers improved the level of detection of prostatic cells from approximately one prostatic cell per 10,000 MCF-7 cells to better than one cell per million MCF-7 cells, using either PSA or PSM-derived primers (Figures 26 and 27). This represents a substantial improvement in the ability to detect minimal disease. Characteristics of the 16 patients analyzed with respect to their clinical stage, treatment, serum PSA and PAP values, and results of the assay are shown. In total, PSA-PCR detected

tumor cells in 2/30 patients (6.7%), whereas PSM-PCR detected cells in 19/30 patients (63.3%). There were no patients positive for tumor cells by PSA and not by while PSM provided 8 positive patients not detected by PSA. Patients 10 and 11 in table 1, both with very advanced hormone-refractory disease were detected by both PSA and PSM. Both of these patients have died since the time these samples were obtained. Patients 4, 7, and 12, all of whom were treated with radical prostatectomies for clinically localized disease, and all of whom have non-measurable serum PSA values 1-2 years postoperatively were positive for circulating prostatic tumor cells by PSM-PCR, but negative by PSA-PCR. A representative ethidium stained gel photograph for PSM-PCR is shown in Figure 28. Samples run in lane A represent PCR products generated from the outer primers and samples in lanes labeled B The corresponding are products of inner primer pairs. PSM Southern blot autoradiograph is shown in Figure 29. The sensitivity of the Southern blot analysis exceeded that of ethidium staining, as can be seen in several samples where the outer product is not visible on Figure 28, but is detectable by Southern blotting as shown in Figure 29. In addition, sample 3 on Figures 28 and 29 (patient 6 in Figure 30) appears to contain both outer and inner bands that are smaller than the corresponding bands in the other patients. sequencing has confirmed that the nucleotide sequence of these bands matches that of PSM, with the exception This may represent either an of a small deletion. artifact of PCR, alternative splicing of PSM mRNA in this patient, or a PSM mutation. All samples sequenced and analyzed by Southern analysis have been confirmed as true positives for PSA and PSM.

35

5

10

15

20

25

30

Experimental Details

The ability to accurately stage patients with prostate

5

10

15

20

25

30

35

-97-

cancer at the time of diagnosis is clearly of paramount importance in selecting appropriate therapy and in predicting long-term response to treatment, potential cure. Pre-surgical staging presently consists of physical examination, serum PSA and PAP determinations, and numerous imaging modalities including transrectal ultrasonography, CT scanning, radionuclide bone scans, and even MRI scanning. present modality, however, addresses the issue of hematogenous micrometastatic disease and the potential negative impact on prognosis that this may produce. Previous work has shown that only a fractional percentage of circulating tumor cells will inevitably go on to form a solid metastasis (16), however, the detection of and potential quantification circulating tumor cell burden may prove valuable in more accurately staging disease. The long-term impact of hematogenous micrometastatic disease must be studied by comparing the clinical courses of patients found to have these cells in their circulation with patients of similar stage and treatment who test negatively.

The significantly higher level of detection of tumor cells with PSM as compared to PSA is not surprising to us, since more consistent expression of PSM in prostate carcinomas of all stages and grades as compared to variable expression of PSA in more differentiated and anaplastic prostate cancers The detection of tumor cells in the three patients that had undergone radical prostatectomies with subsequent undetectable amounts of serum PSA was suprising. These patients would be considered to be surgical "cures" by standard criteria, yet they apparently continue to harbor prostatic tumor cells. It will be interesting to follow the clinical course of these patients as compared to others without PCR evidence of residual disease.

References of Example 3

20

35

- Boring, C.C., Squires, T.S., and Tong, T.: Cancer Statistics, 1993. CA Cancer J. Clin., 43:7-26, 1993.
- Lepor, H., and Walsh, P.C.: Long-term results of radical prostatectomy in clinically localized prostate cancer: Experience at the Johns Hopkins Hospital. NCI Monogr., 7:117-122, 1988.
 - 3. Bagshaw, M.A., Cox, R.S., and Ray, G.R.: Status of radiation treatment of prostate cancer at Stanford University. NCI Monogr., 7:47-60, 1988.
- 15
 4. Thompson, I.M., Rounder, J.B., Teague, J.L., et al.: Impact of routine screening for adenocarcinoma of the prostate on stage distribution. J. Urol., 137:424-426, 1987.
- 5. Chiarodo, A.: A National Cancer Institute roundtable on prostate cancer; future research directions. Cancer Res., 51:2498-2505, 1991.
- Detection of micrometastasis in breast cancer by the polymerase chain reaction. Lab. Invest., 62:109A, 1990.
- 7. Fey, M.F., Kulozik, A.E., and Hansen-Hagge, T.E.:
 The polymerase chain reaction: A new tool for the
 detection of minimal residual disease in
 hematological malignancies. Eur. J. Cancer,
 27:89-94, 1991.
 - 8. Moreno, J.G., Croce, C.M., Fischer, R., Monne, M., Vihko, P., Mulholland, S.G., and Gomella,

25

- L.G.: Detection of hematogenous micrometastasis in patients with prostate cancer. Cancer Res., 52:6110-6112, 1992.
- 9. Israeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D.W.: Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res., 53:227-230, 1993.
- 10. Israeli, R.S., Powell, C.T., Corr, J.G., Fair, W.R., and Heston, W.D.W.: Expression of the prostate-specific membrane antigen (PSM).: Submitted to Cancer Research.
- 15 11. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P.: LNCaP model of human prostatic carcinoma. Cancer Res., 43:1809-1818, 1983.
- 20
 12. Soule, H.D., Vazquez, J., Long, A., Albert, S.,
 and Brennan, M.: A human cell line from a pleural
 effusion derived from a breast carcinoma. J.
 Natl. Can. Inst., 51:1409-1416, 1973.
- 13. Hanahan, D.: Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., 166:557-580, 1983.
- 30 14. Sanger, F., Nicklen, S., and Coulson, A.R.: DNA sequencing with chain-terminating inhibitors.

 Proc. Natl. Acad. Sci. USA, 74:5463-5467, 1977.
- Lundwall, A., and Lilja, H.: Molecular cloning of a human prostate specific antigen cDNA. FEBS Letters, 214:317, 1987.

5

-100-

16. Liotta, L.A., Kleinerman, J., and Saidel, G.M.:
Quantitative relationships of intravascular tumor
cells, tumor vessels, and pulmonary metastases
following tumor implantation. Cancer Res.,
34:997-1003, 1974.

5

20

25

30

35

EXAMPLE 4:

EXPRESSION OF THE PROSTATE SPECIFIC MEMBRANE ANTIGEN DIMINISHES THE MITOGENIC STIMULATION OF **AGGRESSIVE** HUMAN PROSTATIC CARCINOMA CELLS BY TRANSFERRIN

An association between transferrin and human prostate cancer has been suggested by several investigators. 10 has been shown that the expressed prostatic secretions of patients with prostate cancer are enriched with respect to their content of transferrin and that prostate cancer cells are rich in transferrin receptors (J. Urol. 143, 381, 1990). Transferrin derived from bone marrow has been shown to selectively stimulate the 15 growth of aggressive prostate cancer cells (PNAS 89, 6197, 1992). DNA sequence analysis has revealed that a portion of the coding region, from nucleotide 1250 to 1700 possesses a 54% homology to the human transferrin receptor. PC-3 cells do not express PSM mRNA or protein and exhibit increased cell growth in response to transferrin, whereas, LNCaP prostate cancer cells which highly express PSM have a very weak response to transferrin. To determine whether PSM expression by prostatic cancer cells impacts upon their mitogenic response to transferrin the full-length PSM cDNA was transfected into the PC-3 prostate cancer cells. Clones highly expressing PSM mRNA were identified by Northern analysis and expression of PSM protein was verified by Western analysis using the anti-PSM monoclonal antibody 7E11-C5.3.

2x10⁴ PC-3 or PSM-transfected PC-3 cells per well ere plated in RPMI medium supplemented with 10% fetal bovine serum and at 24 hrs. added 1 μ g per ml. of holotransferrin to the cells. Cells were counted at 1 day to be highly mitogenic to the PC-3 cells. Cells

PCT/US96/02424 WO 96/26272

-102-

were counted at 1 day to determine plating efficiency and at 5 days to determine the effect of the transferrin. Experiments were repeated to verify the results.

5

10

15

20

PC-3 cells experienced an average increase of 275% over controls, whereas the LNCaP cells were only stimulated 43%. Growth kinetics revealed that the PSM-transfected PC-3 cells grew 30% slower than native PC-3 cells. This data suggests that PSM expression in aggressive, metastatic human prostate cancer cells significantly abrogates their mitogenic response to transferrin.

The use of therapeutic vaccines consisting of cytokinesecreting tumor cell preparations for the treatment of established prostate cancer was investigated in the Dunning R3327-MatLyLu rat prostatic adenocarcinoma Only IL-2 secreting, irradiated tumor cell preparations were capable of curing animals from subcutaneously established tumors, and engendered immunological memory that protected the animals from Immunotherapy was less another tumor challenge. effective when tumors were induced orthotopically, but nevertheless led to improved outcome, significantly delaying, and occasionally preventing recurrence of 25 tumors after resection of the cancerous prostate. Induction of a potent immune response in tumor bearing animals against the nonimmunogenic MatLyLu tumor supports the view that active immunotherapy of prostate cancer may have therapeutic benefits. 30

35

EXAMPLE 5:

CLONING AND CHARACTERIZATION OF THE PROSTATE SPECIFIC MEMBRANE ANTIGEN (PSM) PROMOTER.

5

10

15

The expression and regulation of the PSM gene is By immunostaining, PSM antigen was found to be expressed brilliantly in metastasized tumor, and in organ confined tumor, less so in normal prostatic tissue and more heterogenous in BPH. PSM is strongly expressed in both anaplastic and hormone refractory PSM mRNA has been shown to be down regulated by androgen. Expression of PSM RNA is also modulated by a host of cytokines and growth factors. Knowledge of the regulation of PSM expression should aid in such diagnostic and therapeutic strategies as imunoscintigraphic imaging of prostate cancer and protate-specific promoter-driven gene therapy.

20

25

- Sequencing of a 3 kb genomic DNA clone that contained 2.5 kb upstream of the transcription start site revealed that two stretches of about 300 b.p. (-260 to -600; and -1325 to -1625) have substantial homology (79-87%) to known genes. The promoter lacks a GC rich region, nor does it have a consensus TATA box. However, it contains a TA-rich region from position -35 to -65.
- Several consensus recognition sites for general transcription factors such as AP1, AP2, NFkB, GRE and E2-RE were identified. Chimeric constructs containing fragments of the upstream region of the PSM gene fused to a promoterless chloramphenical acetyl transferase gene were transfected into, and transiently expressed in LNCaP, PC-3, and SW620 (a colonic cell line). With an additional SV40 enhancer, sequence from -565 to +76

-104-

exhibited promoter activity in LNCaP but not in PC-3 nor in SW620.

Materials and Methods

5

10

15

20

Cell Lines. LNCaP and PC-3 prostatic carcinoma cell lines (American Type Culture Collection) were cultured in RPMI and MEM respectively, supplemented with 5% fetal calf serum at 37°C and 5% CO₂. SW620, a colonic cell line, is a gift from Melisa.

Polymerase Chain Reaction. The reaction was performed in a 50 μl volume with a final concentration of the following reagents: 16.6 mM NH₄SO₄, 67 mM Tris-HCl pH 8.8, acetylated BSA 0.2 mg/ml, 2mM MgCl₂, 250μM dNTPs, 10 mM β-mercaptoethanol, and 1 U of rth 111 Taq polymerase (Boehringer Mannhiem, CA). A total of 25 cycles were completed with the following profile: cycle 1, 94°C 4 min.; cycle 2 through 25, 94°C 1 min, 60°C 1 min, 72°C 1 min. The final reaction was extended for 10 min at 72°C. Aliquots of the reaction were electrophoresed on 1 % agarose gels in 1X Tris-acetate-EDTA buffer.

25

30

35

Cloning of PSM promoter. A bacteriophage P1 library of human fibroblast genomic DNA (Genomic Sysytems, Inc., St. Louis, MI), was screened using a PCR method of Pierce et al. Primers located at the 5' end of PSM used:5'-CTCAAAAGGGGCCGGATTTCC-3' and were CDNA 5'CTCTCAATCTCACTAATGCCTC-3'. A positive clone, p683, was digested with Xhol restriction enzyme. analysis of the restricted fragments using a DNA probe from the extreme 5' to the Ava-1 site of PSM cDNA confirmed that a 3Kb fragment contains the 5' regulatory sequence of the PSM gene. The 3 kb Xho1 fragment was subcloned into pKSBluescrpt vectors and

-105-

sequenced using the dideoxy method.

Functional Assay of PSM Promoter. Chloramphenicol Acetyl Transferase, (CAT) gene plasmids constructed from the Smal-HindIII fragments or subfragements (using either restriction subfragments or PCR) by insertion into promoterless pCAT basic or pCAT-enhancer vectors (Promega). constructs were cotransfected with pSVBgal plasmid (5 μ g of each plasmid) into cell lines in duplicates, using а calcium phosphate method (Gibco-BRL, Gaithersburg, MD). The transfected cells were harvested 72 hours later and assayed (15 μ g of lysate) for CAT activity using the LSC method and for ßgal activity (Promega). CAT activities were standardized by comparision to that of the figal activities.

Results

5

10

15

25

30

35

Sequence of the 5' end of the PSM gene.

The DNA sequence of the 3 kb XhoI fragment of p683 which includes 500 bp of DNA from the RNA start site was determined (Figures 31A-31D) Sequence 683XFRVS starts from the 5' distal end of PSM promoter, it overlaps with the published PSM putative promoter at nt 2485, i.e. the putative transcription start site is at nt 2485; sequence 683XF107 is the reverse, complement of 683XFRVS). The sequence from the XhoI fragment displayed a remarkable arrays of elements and motifs which are characteristic of eukaryotic promoters and regulatory regions found in other genes (Figure 32).

Functional Analysis of upstream PSM genomic elements for promoter activity.

Various pCAT-PSM promoter constructs were tested for promoter activities in two prostatic cell lines:

-106-

LNCaP, PC-3 and a colonic SW620 (Figure 33). Induction of CAT activity was neither observed in p1070-CAT which contained a 1070 bp PSM 5' promoter fragment, nor in p676-CAT which contained a 641 bp PSM 5' promoter fragment. However, with an additional SV-40 enhancer, sequence from -565 to +76 (p676-CATE) exhibited promoter activity in LNCaP but not in PC-3 nor in SW620.

Therefore, a LNCaP specific promoter fragment from -565 to +76 has been isolated which can be used in PSM promoter-driven gene therapy.

EXAMPLE 6:

15

25

30

35

5

ALTERNATIVELY SPLICED VARIANTS OF PROSTATE SPECIFIC MEMBRANE ANTIGEN RNA: RATIO OF EXPRESSION AS A POTENTIAL MEASUREMENT OF PROGRESSION

20 MATERIALS AND METHODS

Cell Lines. LNCaP and PC-3 prostatic carcinoma cell lines were cultured in RPMI and MEM respectively, supplemented with 5% fetal calf serum at 37°C and 5% CO₂.

Primary tissues. Primary prostatic tissues were obtained from MSKCC's in-house tumor procurement service. Gross specimen were pathologically staged by MSKCC's pathology service.

RNA Isolation. Total RNA was isolated by a modified guanidinium thiocynate/phenol/chloroform method using a RNAzol B kit (Tel-Test, Friendswood, TX). RNA was stored in diethyl pyrocarbonate-treated water at -80°C. RNA was quantified using spectrophometric absorption at 260nm.

5

35

cDNA synthesis. Two different batches of normal prostate mRNAs obtained from trauma-dead males (Clontech, Palo Alto, CA) were denatured at 70°C for 10 min., then reverse transcribed into cDNA using random hexamers and Superscript II reverse transcriptase (GIBCO-BRL, Gaithersburg, MD) at 50°C for 30 min. followed by a 94°C incubation for 5 min.

Polymerase Chain Reaction. Oligonucleotide 10 primers(5'-CTCAAAAGGGGCCGGATTTCC-3' AGGCTACTTCACTCAAAG-3'), specific for the 5' and 3' ends of PSM cDNA were designed to span the cDNA sequence. The reaction was performed in a 50 μ l volume with a final concentration of the following reagents: 16.6 mM NH,SO,, 67 mM Tris-HCl pH 8.8, acetylated BSA 0.2 mg/ml, 15 2mM MgCl,, 250 μ M dNTPs, 10 mM ß-mercaptoethanol, and 1 U of rTth polymerase (Perkin Elmer, Norwalk, CT). A total of 25 cycles were completed with the following profile: cycle 1, 94°C 4 min.; cycle 2 through 25, 94°C 20 1 min, 60°C 1 min, 72°C 1 min. The final reaction was extended for 10 min at 72°C. Aliquots of the reaction were electrophoresed on 1 % agarose gels in 1X Trisacetate-EDTA buffer.

- Cloning of PCR products. PCR products were cloned by the TA cloning method into pCRII vector using a kit from Invitrogen (San Diego, CA). Ligation mixture were transformed into competent Escherichia coli Inv5α.
- Sequencing. Sequencing was done by the dideoxy method using a sequenase kit from US Biochemical (Cleveland, OH). Sequencing products were electrophoresed on a 5% polyacrylamide/7M urea gel at 52°C.
 - RNase Protection Assays. Full length PSM cDNA clone was digested with NgoM 1 and Nhe1. A 350 b.p. fragment

-108-

was isolated and subcloned into pSPORT1 vector (GIBCO-BRL, Gaithersburg, MD). The resultant plasmid, pSP350, was linearized, and the insert was transcribed by SP6 RNA polymerase to yield antisense probe of 395 nucleotide long, of which 355 nucleotides and/or 210 nucleotides should be protected from RNAse digestion by PSM or PSM' RNA respectively (Fig.2). Total celluar RNA (20 μ g) from different tissues were hybridized to the aforementioned antisense RNA probe. Assays were performed as described (7). tRNA was used as negative control. RPAs for LNCaP and PC-3 were repeated.

RESULTS

5

10

15

20

25

30

35

RT-PCR of mRNA from normal prostatic tissue. Two independent RT-PCR of mRNA from normal prostates were performed as described in Materials and Methods. Subsequent cloning and sequencing of the PCR products revealed the presence of an alternatively spliced PSM' has a shorter cDNA (2387 PSM'. variant. nucleotides) than PSM (2653 nucleotides). The results of the sequence analysis are shown in Figure 34. cDNAs are identical except for a 266 nucleotide region near the 5' end of PSM cDNA (nucleotide 114 to 380) cDNA. Two independent that is absent in PSM' repetitions of RT-PCR of different mRNA samples yielded identical results.

RNase Protection Assays. An RNA probe complementary to PSM RNA and spanning the 3' splice junction of PSM' RNA was used to measure relative expression of PSM and PSM' mRNAs (Figure 35). With this probe, both PSM and PSM' RNAs in LNCaP cells was detected and the predominant form was PSM. Neither PSM nor PSM' RNA was detected in PC-3 cells, in agreement with previous Northern and Western blot data (5,6). Figure 36 showed the presence of both splice variants in human primary prostatic tissues. In primary prostatic tumor, PSM is

-109-

the dominant form. In contrast, normal prostate expressed more PSM' than PSM. BPH samples showed about equal expression of both variants.

Tumor Index. The relative expression of PSM and PSM' (Figure 36) was quantified by densitometry and expressed as a tumor index (Figure 37). LNCaP has an index ranging from 9-11; CaP from 3-6; BPH from 0.75 to 1.6; normal prostate has values from 0.075 to 0.45.

10

15

DISCUSSION

Sequencing data of PCR products derived from human normal prostatic mRNA with 5' and 3' end PSM oligonucleotide primers revealed a second splice variant, PSM', in addition to the previously described PSM cDNA.

PSM is a 750 a.a. protein with a calculated molecular weight of 84,330. PSM was hypothesized to be a type II integral membrane protein (5). A classic type II membrane protein is the transferrin receptor and indeed PSM has a region that has modest homology with the transferrin receptor (5). Analysis of the PSM amino acid sequence by either the methods of Rao and Argos (7) or Eisenburg et. al. (8) strongly predicted one transmembrane helix in the region from a.a.#20 to #43. Both programs found other regions that could be membrane associated but were not considered likely candidates for being transmembrane regions.

30

35

PSM' antigen, on the other hand, is a 693 a.a. protein as deduced from its mRNA sequence with a molecular weight of 78,000. PSM' antigen lacks the first 57 amino acids present in PSM antigen (Figure 34). It is likely that PSM' antigen is cytosolic.

The function of PSM and PSM' are probably different.

5

10

15

20

25

30

35

-110-

The cellular location of PSM antigen suggests that it may interact with either extra- or intra- cellular ligand(s) or both; while that of PSM' implies that PSM' can only react with cytosolic ligand(s). Furthermore, PSM antigen has 3 potential phosphorylation sites on its cytosolic domain. These sites are absent in PSM' On the other hand, PSM' antigen has 25 antigen. potential phosphorylation sites, 10 N-myristoylation sites and 9 N-glycosylation sites. For PSM antigen, all of these potential sites would be The modifications of these extracellular surface. sites for these homologous proteins would be different depending on their cellular locations. Consequently, the function(s) of each form would depend on how they are modified.

The relative differences in expression of PSM and PSM' by RNase protection assays was analyzed. Results of expression of PSM and PSM' in primary prostatic tissues strongly suggested a relationship between the relative expression of these variants and the status of the cell: either normal or cancerous. While it is noted here that the sample size of the study is small (Figures 36 and 37), the consistency of the trend is evident. The samples used were gross specimens from patients. The results may have been even more dramatic if specimens that were pure in content of CaP, BPH or Nevertheless, in these normal had been used. specimens, it is clear that there is a relative increase of PSM over PSM' mRNA in the change from normal to CaP. The Tumor Index (Figure 37) could be useful in measuring the pathologic state of a given It is also possible that the change in expression of PSM over PSM' may be a reason for tumor progression. A more differentiated tumor state may be restored by PSM' either by transfection or by the use of differentiation agents.

5

25

30

References of Example 6

- Murphy, G.P. Report on the American Urologic Association/American Cancer Society Scientific Seminar on the Detection and treatment of Early-Stage Prostate Cancer. CA Cancer J. Clin. 44:91-95,1994.
- Israeli, R.S., Miller Jr., W.H., Su, S.L., 2. 10 Powell, C.T., Fair, W.R., Samadi, D.S., Huryk, R.F., DelBlasio, A., Edwards, E.T, and Heston, W.D.W. Sensitive Nested Reverse Transcription Polymerase Chain Reaction Detection of Circulating Prostatic Tumor 15 Cells: Comparision of Prostate-specific Membrane Antigen and Prostate-specific Antigen-based Assays. Cancer Res., 54: 6325-6329,1994.
- 3. Horoszewicz, J.S., Kawinski, E., and Murphy, G.P. Monoclonal antibodies to a new antigenic marker in epithelial cells and serum of prostatic cancer patients.

 Anticancer Res., 7:927-936,1987.
 - 4. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A. and Murphy, G.P. LNCaP model of human prostatic Carcinoma. Cancer Res., 43:1809-1818,1983.
- 5. Israeli, R.S., Powell, C.T., Fair, W.R. and Heston, W.D.W. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res.,53:227-230,1993.

-112-

6. Israeli, R.S., Powell, C.T., Corr, J.G., Fair, W.R. and Heston, W.D.W. Expression of the prostate-specific membrane antigen. Cancer Res., 54:1807-1811,1994.

5

10

- Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K. and Green, M.R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res., 12:7035-7056, 1984.
- 8. Rao, M.J.K. and Argos, P. A conformational preference parameter to predict helices in integral membrane proteins. Biochim. Biophys. Acta, 869:197-214,1986.
- 9. Eisenburg, D., Schwarz, E., Komaromy, M. and Wall, R. Analysis of membrane and surface protein sequences with the hydrophbic moment plot, J. Mol. Biol. 179:125-142,1984.
- 25 10. Troyer, J.K. and Wright Jr.,G.L.
 Biochemical characterization and mapping of
 7E-11 C-5.3. Epitope of the prostate
 specific membrane antigen (PSMA). American
 Association for Cancer Research Special
 Conference: Basic and Clinical Aspect of
 Prostate Cancer. Abstract C-38, 1994.

5

EXAMPLE 7:

ENHANCED DETECTION OF PROSTATIC HEMATOGENOUS MICRO-METASTASES WITH PSM PRIMERS AS COMPARED TO PSA PRIMERS USING A SENSITIVE NESTED REVERSE TRANSCRIPTASE-PCR ASSAY.

randomly selected samples were analyzed from 10 patients with prostate cancer and reveals that PSM and PSA primers detected circulating prostate cells in 48 (62.3%) and 7 (9.1%) patients, respectively. treated stage D disease patients, PSM primers detected cells in 16 of 24 (66.7%), while PSA primers detected 15 cells in 6 of 24 patients (25%). In hormone-refractory prostate cancer (stage D3), 6 of 7 patients were positive with both PSA and PSM primers. All six of these patients died within 2-6 months of their assay, despite aggressive cytotoxic chemotherapy, in contrast 20 to the single patient that tested negatively in this group and is alive 15 months after his assay, suggesting that PSA-PCR positivity may serve as a predictor of early mortality. In post-radical prostatectomy patients with negative serum PSA values, 25 PSM primers detected metastases in 21 of 31 patients (67.7%), while PSA primers detected cells in only 1 of 33 (3.0%), indicating that micrometastatic spread may be a relatively early event in prostate cancer. analysis of 40 individuals without known prostate 30 cancer provides evidence that this assay is highly specific and suggests that PSM expression may predict development of cancer in patients without clinically apparent prostate cancer. Using primers, micrometastases were detected in 4 of 40 35 controls, two of whom had known BPH by prostate biopsy and were later found to have previously undetected prostate cancer following repeat prostate biopsy

-114-

performed for a rising serum PSA value. These results show the clinical significance of detection of hematogenous micrometastatic prostate cells using PSM primers and potential applications of this molecular assay.

EXAMPLE 8:

5

10

15

20

25

30

35

MODULATION OF PROSTATE SPECIFIC MEMBRANE ANTIGEN (PSM) EXPRESSION IN VITRO BY CYTOKINES AND GROWTH FACTORS.

The effectiveness of CYT-356 imaging is enhanced by manipulating expression of PSM. PSM mRNA expression is downregulated by steroids. This is consistent with the clinical observations that PSM is strongly expressed in both anaplastic and hormone refractory lesions. In contrast, PSA expression is decreased following hormone withdrawal. In hormone refractory disease, believed that tumor cells may produce both growth factors and receptors, thus establishing an autocrine loop that permits the cells to overcome normal growth Many prostate tumor epithelial cells constraints. express both $TGF\alpha$ and its receptor, epidermal growth factor receptor. Results indicate that the effects of $TGF\alpha$ and other selected growth factors and cytokines on the expression of PSM in-vitro, in the human prostatic carcinoma cell line LNCaP.

2x10⁶ LNCaP cells growing in androgen-depleted media were treated for 24 to 72 hours with EGF, TGFα, TNFß or TNFα in concentrations ranging from 0.1 ng/ml to 100 ng/ml. Total RNA was extracted from the cells and PSM mRNA expression was quantitated by Northern blot analysis and laser densitometry. Both b-FGF and TGFα yielded a dose-dependent 10-fold upregulation of PSM expression, and EGF a 5-fold upregulation, compared to untreated LNCaP. In contrast, other groups have shown

-115-

a marked downregulation in PSA expression induced by these growth factors in this same in-vitro model. $TNF\alpha$, which is cytotoxic to LNCaP cells, and $TNF\beta$ downregulated PSM expression 8-fold in androgen depleted LNCaP cells.

TGF α is mitogenic for aggressive prostate cancer cells. There are multiple forms of PSM and only the membrane form is found in association with tumor progression. The ability to manipulate PSM expression by treatment with cytokines and growth factors may enhance the efficacy of Cytogen 356 imaging, and therapeutic targeting of prostatic metastases.

15 **EXAMPLE 9:**

5

10

20

25

30

35

NEOADJUVANT ANDROGEN-DEPRIVATION THERAPY (ADT) PRIOR TO RADICAL PROSTATECTOMY RESULTS IN A SIGNIFICANTLY DECREASED INCIDENCE OF RESIDUAL MICROMETASTATIC DISEASE AS DETECTED BY NESTED RT-PCT WITH PRIMERS.

Radical prostatectomy for clinically localized prostate cancer is considered by many the "gold standard" treatment. Advances over the past decade have served to decrease morbidity dramatically. Improvements intended to assist clinicians in better patients preoperatively have been developed, however the incidence of extra-prostatic spread still exceeds 50%, as reported in numerous studies. A phase III prospective randomized clinical study designed to compare the effects of ADT for 3 months in patients undergoing radical prostatectomy with similarly matched controls receiving surgery alone was conducted. previously completed phase II study revealed a 10% margin positive rate in the ADT group (N=69) compared to a 33% positive rate (N=72) in the surgery alone group.

-116-

Patients who have completed the phase III study were analyzed to determine if there are any differences between the two groups with respect to residual micrometastatic disease. A positive PCR result in a post-prostatectomy patient identifies viable metastatic cells in the circulation.

Nested RT-PCR was performed with PSM primers on 12 patients from the ADT group and on 10 patients from the control group. Micrometastatic cells were detected in 9/10 patients (90%) in the control group, as compared to only 2/12 (16.7%) in the ADT group. In the ADT group, 1 of 7 patients with organ-confined disease tested positively, as compared to 3 of 3 patients in the control group. In patients with extra-prostatic disease, 1 of 5 were positive in the ADT group, as compared to 6 of 7 in the control group. These results indicate that a significantly higher number of patients may be rendered tumor-free, and potentially "cured" by the use of neoadjuvant ADT.

EXAMPLE 10:

5

10

15

20

30

35

SENSITIVE NESTED RT-PCR DETECTION OF CIRCULATION 25 PROSTATIC TUMOR CELLS - COMPARISON OF PSM AND PSA-BASED ASSAYS

Despite the improved and expanded arsenal of modalities available to clinician today, including sensitive serum PSA assays, CT scan, transrectal ultrasonography, endorectal co.I MRI, etc., many patients are still found to have metastatic disease at the time of pelvic lymph node dissection and radical prostatectomy. A highly sensitive reverse transcription PCR assay capable of detecting occult hematogenous micrometastatic prostatic cells that would otherwise go undetected by presently available staging modalities

-117-

was developed. This assay is a modification of similar PCR assays performed in patients with prostate cancer and other malignancies^{2,3,4,5}. The assay employs PCR primers derived from the cDNA sequences of prostate-specific antigen⁶ and the prostate-specific membrane antigen recently cloned and sequenced.

Materials and Methods

5

25

30

35

Cells and Reagents. 10 LNCaP and MCF-7 cells were obtained from the American Type Culture Collection (Rockville, MD.). Details regarding the establishment and characteristics of these cell lines have been previously published^{8,9}. Cells grown in RPMI 1640 15 medium and supplemented with L-glutamine, nonessential amino acids, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD.) In a 5% CO, incubator at 37°C. media was obtained from the MSKCC Media Preparation Facility. Routine chemical reagents were 20 of the highest grade possible and were obtained from Sigma Chemical Company (St. Louis, MO).

Patient Blood Specimens. All blood specimens used in this study were from patients seen in the outpatient offices of urologists on staff at MSKCC. Two anticoagulated tubes per patient were obtained at the time of their regularly scheduled blood draws. Specimens were obtained with informed consent of each patient , as per a protocol approved by the MSKCC Institutional Review Board. Samples were promptly brought to the laboratory for immediate processing. Seventy-seven specimens from patients with prostate cancer were randomly selected and delivered to the laboratory "blinded" along with samples from negative controls for processing. These included 24 patients with stage D disease (3 with D_0 , 3 with D^1 , 11 with D^2 , and 7 with D^3), 31 patients who had previously undergone radical

5

10

15

20

25

30

35

-118-

prostatectomy and had undetectable postoperative serum PSA levels (18 with pT2 lesions, 11 with pT3, and 2 pT4), 2 patients with locally recurrent disease following radical prostatectomy, 4 patients who had received either external beam radiation therapy or interstitial 1125 implants, 10 patients with untreated clinical stage T1-T2 disease, and 6 patients with clinical stage T3 disease on anti-androgen therapy. The forty blood specimens used as negative controls were from 10 health males, 9 males with biopsy-proven BPH and elevated serum PSA levels, 7 healthy females, 4 male patients with renal cell carcinoma, 2 patients with prostatic intraepithelial neoplasia (PIN), patients with transitional cell carcinoma of the bladder and a pathologically normal prostate, 1 patient acute prostatitis, 1 patient with promyelocytic leukemia, 1 patient with testicular cancer, 1 female patient with renal cell carcinoma, 1 patient with lung cancer, and 1 patient with a cyst of the testicle.

Blood Sample Processing/RNA Extraction. 4 ml of whole anticoagulated venous blood was mixed with 3 ml of ice cold PBS and then carefully layered atop 8 ml of Ficoll (Pharmacia, Uppsala, Sweden) in a 14-ml polystyrene tube. Tubes were centrifuged at 200 x g for 30 min. at The buffy coat layer (approx. 1 ml.) was 4°C. carefully removed and rediluted to 50 ml with ice cold PBS in a 50 ml polypropylene tube. This tube was then centrifuged at 2000 x g for 30 min. at 4°C. supernatant was carefully decanted and the pellet was allowed to drip dry. One ml of RNazol B was then added to the pellet and total RNA was isolated as per manufacturers directions (Cinna/Biotecx, Houston, TX.) RNA concentrations and purity were determined by UV spectroscopy on a Beckman DU 640 spectrophotometer and by gel analysis.

5

10

25

Determination of PCR Sensitivity. RNA was isolated from LNCaP cells and from mixtures of LNCaP and MCF-7 cells at fixed ratios (i.e. 1:100, 1:1,000, etc.) using RNAzol B. Nested PCR was then performed as described below with both PSA and PSM primers in order to determine the limit of detection for the assay. LNCaP:MCF-7 (1:100,000) cDNA was diluted with distilled water to obtain concentrations of 1:1,000,000. The human breast cancer cell line MCF-7 was chosen because they had previously been tested by us and shown not to express either PSM nor PSA by both immunohistochemistry and conventional and nested PCR.

Polymerase Chain Reaction. The PSA outer primer sequences are nucleotides 494-513 (sense) in exon 4 and nucleotides 960-979 (anti-sense) in exon 5 of the PSA cDNA. These primers yield a 486 bp PCR product from PSA CDNA that can be distinguished from a product synthesized from possible contaminating genomic DNA.

PSA-494 5'-TAC CCA CTG CAT CAG GAA CA-3' PSA-960 5'-CCT TGA AGC ACA CCA TTA CA-3'

The PSA inner upstream primer begins at nucleotide 559 and the downstream primer at nucleotide 894 to yield a 355 bp PCR product.

PSA-559 5'-ACA CAG GCC AGG TAT TTC AG-3' PSA-894 5'-GTC CAG CGT CCA GCA CAC AG-3'

All primers were synthesized by the Microchemistry Core Facility. $5\mu g$ of total RNA was 30 reverse-transcribed into cDNA using random hexamer primers (Gibco-BRL) and Superscript ΙI reverse transcriptase (Gibco-BRL) according to manufacturers recommendations. $1\mu l$ of this CDNA served as the starting template for the outer primer PCR 35 reaction. The $20\mu l$ PCR mix included: 0.5U Tag polymerase (Promega) Promega reaction buffer, 1.5mM MgCl₂, 200 μ M dNTPs, and 1.0 μ M of each primer. This mix

5

10

-120-

was then transferred to a Perkin Elmer 9600 DNA thermal cycler and incubated for 25 cycles. The PCR profile was as follows: 94°C x 15 sec., 60°C x 15 sec., and 72°C for 45 sec. After 25 cycles, samples were placed on ice, and 1µl of this reaction mix served as the template for another 25 cycles using the inner primers. The first set of tubes were returned to the thermal cycler for 25 additional cycles. The PSM outer upstream primer sequences are nucleotides 1368-1390 and the downstream primers are nucleotides 1995-2015, yielding a 67 bp PCR product.

PSM-1368 5'-CAG ATA TGT CAT TCT GGG AGG TC-3' PSM-2015 5'-AAC ACC ATC CCT CCA ACC-3'

The PSM inner upstream primer span nucleotides 1689-1713 and the downstream primer span nucleotides 1899-1923, yielding a 234 bp PCR product.

> PSM-1689 5'-CCT AAC AAA AGA GCT GAA AAG CCC-3' PSM-1923 5'-ACT GTG ATA CAG TGG ATA GCC GCT-3'

 $2\mu l$ of cDNA was used as the starting DNA template in 20 the PCR assay. The $50\mu l$ PCR mix included: 1U Taq polymerase (Boehringer Mannheim), 250 µM cNTPs, 10mM ßmercaptoethanol, $2mM \, MgCl_2$, and $5\mu l \, of \, a \, 10x \, buffer \, mix$ containing: 166mM NH,SO,, 670mM Tris pH 8.8, and 2mg/ml of acetylated BSA. PCR was carried out in a Perkin 25 Elmer 480 DNA thermal cycler with the following parameters: 94°C x 4 minutes for 1 cycle, 94°C x 30 sec., 58°C x 1 minute, and 72°C x 1 minute for 25 cycles, followed by 72°C x 10 minutes. Samples were then iced and $2.5\mu l$ of this reaction mix was used as 30 the template for another 25 cycles with a new reaction mix containing the inner PSM primers. cDNA quality was verified by performing control reactions using primers derived from the ß-2-microglobulin gene sequence 10 a ubiquitous housekeeping gene. These primers span exons 35 2-4 and generate a 620 bp PCR product. The sequences for these primers are:

-121-

ß-2 (exon 2) 5'-AGC AGA GAA TGG AAA GTC AAA-3' ß-2 (exon 4) 5'-TGT TGA TGT TGG ATA AGA GAA-3' The entire PSA mix and 7-10 μ l of each PSM reaction mix were run on 1.5-2% agarose gels, stained with ethidium bromide and photographed in an Eage Eye Video Imaging System (Statagene, Torrey Pines, CA.). Assays were

Cloning and Sequencing of PCR Products. PCR products were cloned into the pCR II plasmid vector using the TA 10 cloning system (Invitrogen). These plasmids were transformed into competent E. coli cells using standard methods 11 and plasmid DNA was isolated using Magic Minipreps (Promega) and screened by restriction 15 analysis. Double-stranded TA clones were sequenced by the dideoxy method 12 using 35S-cCTP (NEN) and Sequenase (U.S. Biochemical). Sequencing products were then analyzed on 6% polyacrilamide/7M urea gels, which were fixed, dried, and autoradiographed as 20 described.

repeated at least twice to verify results.

Southern Analysis. PCR products were transferred from ethidium-stained agarose gels to Nytran nylon membranes (Schletcher and Schuell) by pressure blotting with a Posi-blotter (Stratagene) according to the manufacturer's instructions. DNA was cross-linked to the membrane using a UV Stratalinker (Stratagene). Blots were pre-hybridized at 65°C for 2 hours and subsequently hybridized with denatured 32P-labeled, random-primed 13 cDNA probes (either PSA or $^{
m PSM}$). Blots were washed twice in 1x SSC/0.5% SDS at 42°C and twice in 0.1x SSC/0.1% SDS at 50°C for 20 minutes each. Membranes were air-dried and autoradiographed for 1-3 hours at room temperature with Hyperfilm MP (Amersham).

30

25

5

-122-

Results

5

10

15

20

25

30

35

PSA and PSM Nested PCR Assays: The application of nested PCR increased the level of detection from an average of 1:10,000 using outer primers alone, to better than 1:1,000,000. Dilution curves demonstrating this added sensitivity are shown for PSA and PSM-PCR in Figures 1 and 2 respectively. Figure 1 shows that the 486 bp product of the PSA outer primer set is clearly staining detectable with ethidium to dilutions, whereas the PSA inner primer 355 bp product is clearly detectable in all dilutions shown. Figure 2 the PSM outer primer 647 bp product is also clearly detectable in dilutions to only 1:10,000 with conventional PCR, in contrast to the PSM inner nested PCR 234 bp product which is detected in dilutions as low as 1:1,000,000. Southern blotting was performed on all controls and most of the patient samples in order Southern blots of to confirm specificity. respective dilution curves confirmed the specificities but did not reveal any significantly increased sensitivity.

performed on 40 samples from patients and volunteers as described in the methods and materials section. Figure 48 reveals results from 4 representative negative control specimens, in addition to a positive control. Each specimen in the study was also assayed with the ß-2-microglobulin control, as shown in the figure, in order to verify RNA integrity. Negative results were obtained on 39 of these samples using the PSA primers, however PSM nested PCR yielded 4 positive results. Two of these "false positives" represented patients with elevated serum PSA values and an enlarged prostate who underwent a transrectal prostate biopsy revealing stromal and fibromuscular hyperplasia. In both of

5

10

15

-123-

these patients the serum PSA level continued to rise and a repeat prostate biopsy performed at a later date revealed prostate cancer. One patient who presented to the clinic with a testicular cyst was noted to have a positive PSM nested PCR result which has been unable to Unfortunately, this patient never returned for follow up, and thus have not been able to obtain another blood sample to repeat this assay. result were obtained with both PSA and PSM primers in a 61 year old male patient with renal cell carcinoma. This patient has a normal serum PSA level and a normal digital rectal examination. Overall, if the two patients were excluded in whom a positive PCR, but no other clinical test, accurately predicted the presence of prostate cancer, 36/38 (94.7%) of the negative controls were negative with PSM primers, and 39/40 (97.5%) were negative using PSA primers.

Patient Samples: In a "blinded" fashion, in which the laboratory staff were unaware of the nature of each 20 specimen, 117 samples from 77 patients mixed randomly with 40 negative controls were assayed. The patient samples represented a diverse and heterogeneous group as described earlier. Several representative patient samples are displayed in Figure 49, corresponding to 25 positive results from patients with both localized and disseminated disease. Patients 4 and 5, both with stage D prostate cancer exhibit positive results with both the outer and inner primer pairs, indicating a 30 large circulating tumor cell burden, as compared to the other samples. Although the PSM and PSA primers yielded similar sensitivities in LNCaP dilution curves previously shown, PSM primers micrometastases in 62.3% of the patient samples, 35 whereas PSA primers only detected 9.1%. In patients with documented metastatic prostate cancer (stages $\mathbf{D_0}$ - D_3) receiving anti-androgen treatment, PSM primers

5

10

25

30

-124-

detected micrometastases in 16/24 (66.7%), whereas PSA primers detected circulating cells in only 6/24 (25%). In the study 6/7 patients with hormone-refractory prostate cancer (stage D₃) were positive. In the study, PSA primers revealed micrometastatic cells in only 1/15 (6.7%) patients with either pT3 or pT4 (locally-advanced) prostate cancer following radical prostatectomy. PSM primers detected circulating cells in 9/15 (60%) of these patients. Interestingly, circulating cells 13/18 (72.2%) patients with pT2 (organ-confined) prostate cancer following radical prostatectomy using PSM primers was detected. None of these patient samples were positive by PSA-PCR.

Improved and more sensitive method for the detection of minimal, occult micrometastic disease have been reported for a number of malignancies by use of immunohistochemical methods (14), as well as the polymerase chain reaction (3, 4, 5). The application of PCR to detect occult hematogenous micrometastases in prostate cancer was first described by Moreno, et al. (2) using conventional PCR with PSA-derived primers.

When human prostate tumors and prostate cancer cells in-vitro were studied by immunohistochemistry and mRNA analysis, PSM appeared to be highly expressed in anaplastic cells, hormone-refractory cells, and bony metastases (22, 23, 24), in contrast to PSA. If cells capable of hematogenous micrometastasis represent the more aggressive and poorly-differentiated cells, they may express a higher level of PSM per cell as compared to PSA, enhancing their detectibility by RT-PCR.

Nested RT-PCR assays are both sensitive and specific.

Results have been reliably reproduced on repeated occasions. Long term testing of both cDNA and RNA stability is presently underway. Both assays are

capable of detecting one prostatic cell in at least one million non-prostatic cells of similar size. confirms the validity of the comparison of PSM vs. PSA Similar levels of PSM expression in both human prostatic cancer cells in-vivo and LNCaP cells in-vitro resulted. The specificity of the PSM-PCR assay was supported by the finding that two "negative control" patients with positive PSM-PCR results were both subsequently found to have prostate cancer. suggests an exciting potential application for this technique for use in cancer screening. In contrast to recently published data (18), significant ability for PSA primers to accurately detect micrometastatic cells in patients with pathologically with pathologically organ-confined prostate cancer, despite the sensitivity of the assay failed to result. Rather a surprisingly high percentage of patients with localized prostate cancer that harbor occult circulating prostate cells following "curative" radical prostatectomy results which suggests that micrometastasis is an early event in prostate cancer.

The application of this powerful new modality to potentially stage and/or follow the response to therapy in patients with prostate cancer certainly merits further investigation. In comparison to molecular detection of occult tumor cells, present clinical modalities for the detection of prostate cancer spread appear inadequate.

5

10

15

20

25

-126-

References for Example 10

- Boring, C.C., Squires, T.S., Tong, T., and Montgomery, S. Cancer Statistics, 1994. CA., 44:
 7-26, 1994.
- Moreno, J.G., Croce, C.M., Fischer, R., Monne, M., Vihko, P., Mulholland, S.G., and Gomella, L.G., Detection of hematogenous micrometastasis in patients with prostate cancer. Cancer Res., 52:6110-6112, 1992.
- 3. Wu, A., Ben-Ezra, J., and Colombero, A.:
 Detection of micrometastasis in breast cancer by
 the polymerase chain reaction. Lab. Ivest., 62:
 109A, 1990.
- 4. Fey, M.F., Kulozik, A.E., and Hansen-Hagge, T.E.:
 The polymerase chain reactipn: A new tool for
 the detection of minimal residual disease in
 hematological malignacies. Eur. J. Cancer, 27:
 89-94, 1991.
- Miller, W.H., Jr., Levine, K., DeBlasio, A.,
 Frankel, S.R., Dmitrovsky, E., and Warrell, R.P.,
 Jr. Detection of mininal residual disease in Acute Promyelocytic Leukemia by a reverse transciption polymerase chain reaction assay for th PML/RAR-α fusion mRNA. Blood, 82: 1689-1694,
 1993.
 - 6. Lundwall, A., and Lilja, H: Molecular cloning of a human prostate specific antigen cDNA. FEBS Letters, 214: 317, 1987.
 - 7. Isaeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D.W.: Molecular cloning of a

35

20

complementary DNA encoding a prostate-specific membran antigen. Cancer Res., 53: 227-230, 1993.

- 8. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P.: LNCaP model of human prostactic carcinoma. Cancer Res., 43: 1809-1818, 1983.
- 9. Soule, H.D., Vazquez, J., Long, A., Albert, S., and Brennan, M.: A human cell line from a pleural effusion derived from a breast carcinoma.

 J. Natl. Can. Inst., 51: 1409-1416, 1973.
- 10. Gussow, D., Rein, R., Ginjaar, I., Hochstenbach, F., Seemann, G., Kottman, A., Ploegh, H.L. The human ß-2-Microglobulin gene. Primary structure and definition of the transcriptional unit. J. of Immunol. 139:3132-3138, 1987.

11. Hanahan, D.: Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., 166:557-580, 1983.

- 25 12. Sanger, F., Nicklen, S., and Coulson, A.R.: DNA sequncing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74:5463-5467, 1977.
- 13. Feinberg, A.P., and Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem., 132:6-13, 1983.
- 14. Oberneder, R., Riesenberg, R., Kriegmair, M.,

 Bitzer, U., Klammert, R., Schneede, P.,

 Hofstetter, A., Riethmuller, G., and Pantel, K.

 Immunocytochemcical detection and phenytypic

characterization of micrometastatic tumour cells in bone marrow of patients with prostate cancer. Urol. Res. 22:3-8, 1994.

PCT/US96/02424

- Israeli, R.S., Miller, W.H., Jr., Su, S.L., Samadi, D.S., Powell, C.T., Heston, W.D.W., Wise, G.J., and Fair, W.R. Sensitive detection of prostatic hematogenous micrometastases using prostate-specific antigen (PSA) and prostate-specific membran antigen (PSM) derived primers in the polymerase chain reaction. J. Urol. 151:373A, 1994.
- 16. Israeli, R.S., Miller, W.H., Jr., Su, S.L, Samadi, D.S., Powell, C.T. Heston, W.D.W., Wise, G.J., and Fair, W.S. Sensitive detection of prostatic hematogenous micrometastases using PsA and PSM-derived primers in the polymerase chain reaction. In press J. Urology.
- 17. Vessella, R., Stray, J., Arman, E., Ellis, W., and Lange, P. Reverse transcription polymerase chain reaction (RT-PCR) detects metastatic prostate cancer cells in lymph nodes, blood and potentially bone marrow using PSA-mRNA as template, J. Urol. 151:412A, 1994.
- 18. Katz, A.E., Olsson, C.A., Raffo, A.J., Cama, C., Perlman, H., Seaman, E., O'Toole, K.M., McMahon, D., Benson, M., and Buttyan, R., Molecular staging of prostate cancer with the use of an enhanced reverse transcriptase-PCR assay. Urology 43:765-775, 1994.
- 35 19. Wood, D.P., Jr., Banks, E.R., Humphries, S., McRoberts, J.W., and Rangenkar, V.M. Identification of micrometastases in paitents

WO 96/26272

30

35

with prostate cancer. J. Urol. 151:303A, 1994.

- 20. Deguchi, T., Doi, T., Ehara, H., S., Takahashi, Y., Nishino, Y., Fujihiro, S., 5 Kawamura, T., Komeda, H., Horie, M., Kaji, H., Shimokawa, K., T., and Kawada, Tanaka, Detection of micrometastic prostate cancer cells lymph nodes reverse-transcriptase by polymerase chain reaction. Cancer Res. 53:5350-10 4, 1993.
- Ghossein, R., Scher, H., Gerald, W., Hoffman, A., Kelley, W., Curely, T., Libertz, C., and Rosai, J. Detection of cirulating tumor cells in peripheral blood of patients with advanced prostatic carcinoma. Proc. Amer. Soc. of Clin. Oncol., 13:237, 1994.
- 22. Israeli, R.S., Powel, C.T., Corr, J.G., Fair,
 20 W.R., and Heston, W.D.W.: Expression of the
 prostate-specific membrane antigen. Cancer Res.,
 54:1807-1811, 1994.
- 23. Axelrod, H.R., Gilman, S.C., D'Aleo, C.H.
 Petrylak, D., Reuter, V., Gulfo, J.V., Saad A.,
 Cordon-Cardo, C., and Scher, H.I. Preclinical
 results and human immunohistochemical strudies
 with 90Y-CYT-356: a new prostatic cancer
 therapeutic agent. J.Urol., 147:361A, 1992.
 - 24. Wright, G.L., Jr., Haley, C., Beckett, M.L., and Schellhammer, P.F. Expression of the prostate biomaker 7E11-C5 in primary and metastic prostate carcinoma. Proc. Amer. Ass. for Can. Res. 35:233, 1994.
 - 25. Liotta, L.A., Kleinerman, J., and Saidel, G.M.:

-130-

Quantitative relationships of intravascular tumor cells, tumors vessels, and pulmonary metastases following tumore implantation. Cancer Res., 34:997-1003, 1974.

5

EXAMPLE 11:

CHROMOSOMAL LOCALIZATION OF COSMID CLONES 194 AND 683 BY FLUORESCENCE IN-SITU HYBRIDIZATION:

PSM was initially mapped as being located on chromosome 11pl1.2-pl3 (Figures 51-54). Further information from cDNA in-situ hybridizations experiments demonstrated as much hybridization on the q as p arms. Much larger fragments of genomic DNA was obtained as cosmids and two of these of about 60 kilobases each one going 3' and the other 5' both demonstrated binding to chromosome 11 p and q under low stringency. under higher stringency conditions only the binding at 11q14-q21 remained. This result suggests that there is another gene on 11p that is very similar to PSM because it is so strongly binding to nearly 120 kilobases of genomic DNA (Figure 50).

20

25

30

35

5

10

15

Purified DNA from cosmid clones 194 and 683 was labelled with biotin dUTP by nick translation. Labelled probes were combined with sheared human DNA and independently hybridized to normal metaphase chromosomes derived from PHA stimulated peripheral lymphocytes in a solution containing formamide, 10% dectran sulfate, and 2XSSC. hybridization signals were detected by incubating the hybridized slides in fluoresein conjugated avidin. Following signal detection the slides were counterstained with propidium iodide and analyzed. These first experiments resulted in the specific labelling of a group C chromosome on both the long and short arms. This chromosome was believed to be chromosome 11 on the basis of its size and morphology. A second set of experiments were performed in which a chromosome 11 centromere specific probe was

cohybridized with the cosmid clones. These experiments were carried out in 60% formamide in an attempt to eliminate the cross reactive signal which was observed when low stringency hybridizations were done. These experiments resulted in the specific labelling of the centromere and the long arm of chromosome 11. Measurements of 10 specifically labelled chromosomes 11 demonstrated that the cosmid clones are located at a position which is 44% of the distance from the centromere to the telomere of chromosome arm 11q, an area that corresponds to band 14q. A total of 160 metaphase cells were examined with 153 cells exhibiting specific labelling.

Cloning of the 5' upstream and 3' downstream regions of the PSM genomic DNA. A bacteriophage Pl library of human fibroblast genomic DNA (Genomic Systems, St. Louis, MI) was screened using the PCR method of Pierce et. al. Primer pairs located at either the 5' or 3' termini of PSM cDNA were used. Positive cosmid clones were digested with restriction enzymes and confirmed by Southern analysis using probes which were constructed from either the 5' or 3' ends of PSM cDNA. Positive clone p683 contains the 5' region of PSM cDNA and about 60 kb upstream region. Clone -194 contains the 3' terminal of the PSM cDNA and about 60 kb downstream.

EXAMPLE 12:

5

10

35

30 PEPTIDASE ENZYMATIC ACTIVITY

PSM is a type two membrane protein. Most type two membrane proteins are binding proteins, transport proteins or peptidases. PSM appears to have peptidase activity. When examining LNCaP cells with a substrate N-acetyl-aspartyl-14C-glutamic acid, NAAG, glutamic acid was released, thus acting as a carboxypeptidase. In

vitro translated PSM message also had this peptidase activity..

The result is that seminal plasma is rich in its 5 content of glutamic acid, and are able to design inhibitors to enhance the activity of the non degraded normal substrate if its increased level will have a biologic desired activity. Also biologic activity can be measured to see how it correlates wit the level of message. Tissue may be examined for activity directly 10 rather than indirectly using in-situ analysis or immunohistochemical probes. Because there is another gene highly similar on the other arm of chromosome 11 when isolated the expressed cloned genes can be used to determine what are the substrate differences and use 15 those substrates for identification of PSM related activity, say in circulating cells when looking for metastases.

20 **EXAMPLE 13:**

IONOTROPICGLUTAMATE RECEPTOR DISTRIBUTION IN PROSTATE TISSUE

25 Introduction:

Excitatory neurotransmission in the central nervous system (CNS) is mediated predominantly by glutamate receptors. Two types of glutamate receptors have been identified in human CNS: metabotropic receptors, which are coupled to second-messenger systems, and ionotropic receptors, which serve as ligand-gated ion channels. The presence of ionotropic glutamate receptors in human prostate tissue was investigated.

35 Methods:

30

Detection of glutamate receptor expression was performed using anti-GluR2/3 and anti-biotin

-134-

immunohistochemical technique in paraffin-embedded prostate tissues. PSM antigen is human neurocarboxypeptidase that acts to release glutamate. In the CNS glutamate acts as a neurotransmitter by acting on glutaminergic ion channels and increases the flow of ions like calcium ions. One way the glutamate signal is transduced into cell activity is the activation of nitric oxide synthase, and nitric oxide synthase has recently been found to be present in human prostatic tissue. NO is a major signalling mechanism and is involved in control of cell growth and death, in response to inflammation, in smooth muscle cell contraction, etc,. In the prostate much of the stroma is smooth muscle. It was discovered that the prostate is rich in glutaminergic receptors and have begun to define this relationship. Stromal abnormalities are of BPH. Stromal epithelial kev feature interactions are of importance in bothe BPH and CaP. The other glutaminergic receptors through G proteins to change the metabolism of the cell.

Results:

5

10

15

20

25

30

35

Anti-GluR2/3 immunoreactivity was unique to prostatic stroma and was absent in the prostatic epithelial compartment. Strong anti-GluR4 immunoreactivity was observed in basal cells of prostatic acini.

Discussion:

The differential distribution of ionotropic glutamate receptor subtypes between the stromal and epithelial compartments of the prostate has not been previously described. Prostate-specific membrane antigen (PSMA) has an analogous prostatic distribution, with expression restricted to the epithelial compartment.

PSM antigen is a neurocarboxypeptidase that acts to

5

10

15

20

25

30

35

release glutamate from NAAG 1, also a potential nerotransmitter. In the CNS glutamate acts as a neurotransmitter by acting on glutaminergic channels and increases the flow of ions like calcium One way the glutamate signal is transduced into cell activity is the activation of nitric oxide synthase, and nitric oxide synthase has recently been found to be present in human prostatic tissue. a major signaling mechanism and is involved in control of cell growth and death, in response to inflammation, in smooth muscle cell contraction, etc,. prostate much of the stroma is smooth muscle. The prostate is rich in glutaminergic receptors. Stromal abnormalities are the key feature of BPH. Stromal epithelial interactions are of importance in both BPH and CaP. The other glutaminergic receptors through G proteins to change the metabolism of the Glutamate can be produced in the cerebral cortex through the carboxypeptidase activity of the prostatespecific membrane antigen (PSMA). In this location, PSMA cleaves glutamate from acetyl-aspartyl-glutamate. Taken together, these observations suggest a function for PSMA in the human prostate; glutamate may be an autocrine and/or paracrine signalling molecule, possibly mediating epithelial-stromal interactions. Ionotropic glutamate receptors display compartmental distribution in the human prostate.

The carboxypeptidase like activity and one substrate is the dipeptide N-acetyl-aspartyl glutamic acid, NAAG which is one of the best substrates found to date to act as a neurotransmitter in the central nervous system and its abnormal function may be associated with neurotoxic disorder such as epilepsy, ALS, alzheimers etc. PSM carboxypeptidase may serve to process neuropeptide transmitters in the prostate. Neuropeptide transmitters are associated with the

-136-

neuroendocrine cells of the prostate and neuroendocrine cells and are thought to play a role in prostatic tumor progression. Interestingly PSM antigen's expression is upregulated in cancer. Peptides known to act as prostatic growth factors such as TGF-a and bFGF, up regulate the expression of the antigen. TNF on the other hand downregulate PSM. TGF and FGF act through the mitogen activated signaling pathway, while TNF acts through the stress activated protein kinase pathway. Thus modulation of PSM expression is useful for enhancing therapy.

EXAMPLE 14:

5

10

20

25

30

35

15 IDENTIFICATION OF A MEMBRANE-BOUND PTEROYLPOLYGAMMA-GLUTAMYL CARBOXYPEPTIDASE (FOLATE HYDROLASE) THAT IS EXPRESSED IN HUMAN PROSTATIC CARCINOMA

PSM may have activities both as a folate hydrolase and For the cytotoxic drug a carboxyneuropeptidase. methotrexate to be a tumor toxin it has to get into the cell and be polygammaglutamated which to be active, because polyglutamated forms serve as the enzyme substrates and because polyglutamated forms or toxins are also retained by the cell. Folate hydrolase is a competing reaction and deglutamates methotrexate which then can diffuse back out of the cell. Cells that overexpose folate hydrolase activity are resistant to Prostate cancer has always been methotrexate. absolutely refractory to methotrexate therapy and this may explain why, since the prostate and prostate cancer has a lot of folate hydolase activity. However, based on this activity, prodrugs may be generated which would be activate at the site of the tumor such as Nphosphonoacetyl-l-aspartate-glutamate. PALglu is an inhibitor of the enzyme activity with NAAG as a substrate.

-137-

Prostate specific membrane antigen was immuno precipitated from the prostate cancer cell line LNCaP and demonstrated it to be rich in folate hydolase activity, with gammaglutamated folate or polyglutamated methotrexate being much more potent inhibitors of the neuropeptidase activity than was quisqualate, which was the most potent inhibitor reported up to this time and consistent with the notion that polyglutamated folates may be the preferred substrate.

10

15

20

25

30

35

5

Penta-gammaglutamyl-folate is a very potent inhibitor of activity (inhibition of the activity of the enzyme is with 0.5um Ki.) As penta-gammaglutamyl-folate may also be a substrate and as folates have to be depolygammaglutamated in order to be transported into the cell, this suggest that this enzyme may also play a role in folate metabolism. Folate is necessary for the support of cell function and growth and thus this enzyme may serve to modulate folate access to the prostate and prostate tumor. The other area where PSM is expressed is in the small intestine. It turns out that a key enzyme of the small intestine that involved in folate uptake acts as а carboxypeptidase in sequentially proteolytically removing the terminal gammaglutaminyl group from In the bone there is a high level of unusual gammaglutamate modified proteins in which the gamma glutamyl group is further carboxylated to produce gammacarboxyglutamate, or GLA. One such protein is osteonectin.

Using capillary electrophoresisis pteroyl poly-gammaglutamate carboxypeptidase (hydrolase) activity was investigated in membrane preparations from androgensensitive human prostatic carcinoma cells (LNCaP). The enzyme immunologically cross-reacts with a derivative of an anti-prostate monoclonal antibody (7E11-C5) that

-138-

recognizes prostate specific membrane (PSM) antigen. The PSM enzyme hydrolyzes gamma-glutamyl linkages and is an exopeptidase as it liberates progressively glutamates from methotrexate triuglutamate (MTXGlu,) and folate pentaglutamate (Pte Glu,) with accumulation of MTX and Pte Glu respectively. The semi-purified membrane-bound enzyme has a broad activity from pH 2 to 10 and is maximally active at pH4.0. Enzymatic activity was weakly inhibited by dithfothreitol (≥0.2 mM) but not by reduced glutathione, homocysteine, or hydroxymercuribenzoate (0.05-0.5 mM). By contrast to LNCaP cell membranes, membranes isolated from androgeninsensitive human prostate (TSU-Prl, Duke-145, PC-3) and estrogen-sensitive mammary adenocarcinoma (MCF-7) cells do not exhibit comparable hydrolase activity nor do they react with 7E11-C5. Thus, a folate hydrolase identified in LNCap cells that exopeptidase activity and is strongly expressed by these cells.

20

25

30

35

5

10

15

PALA-Glutamate 3 was tested for efficacy of the prodrug strategy by preparing N-acetylaspartylglutamate, NAAG 1(Figure 59). NAAG was synthesized from commercially available gamma-benzylaspartate which was acetylated with acetic anhydride in pyridine to afford N-acetylgamma-benzyl aspartate in nearly quantitative yield. The latter was activated as its pentafluorophenyl ester by treatment with pentafluorophenyltrifluoroacetate in pyridine at 0 deg.C for an hour. This activated ester constitutes the central piece in the preparation of compounds 1 and 4 (Figure 60). When 6 is reacted with epsilon-benzyl-L-glutamate in the presence of HOAT(1-THF-DMF hydroxy-7-azabenzotriazole) in (tetrahydrofuran, N,N- dimethylformamide) at reflux for an overnight period and after removal of the benzyl protecting groups by hydrogenolysis (H2, 30 psi, 10% Pd/C in ethylacetate) gave a product which was

-139~

identical in all respects to commercially available NAAG (Sigma).

PALA-Glutamate 3 and analog 5, was synthesized in a similar manner with the addition to the introduction of a protected phosphonoacetate moiety instead of a simple acetate. It is compatible with the function of diethylphosphonoacetic acid which allows the removal of the ethyl groups under relatively mild conditions.

10

15

20

25

30

35

5

Commercially available diethylphosphonoacetic acid was treated with perfluorophenyl acetate in pyridine at 0 deg.C to room temperature for an hour to afford the pentafluorophenyl corresponding ester in nearly quantitative yield after short path column chromatography. This was then reacted with gammabenzylaspartate and HOAT in tetrahydrofuran for half an hour at reflux temperature to give protected PALA 7 (Nphosphonoacetylaspartate) in 90% yield after flash column chromatography. The free acid was then activated as its pentafluorophenyl ester 8, then it was reacted with delta-benzyl-L-glutamate and HOAT in a mixture of THF-DMF (9:1, v/v) for 12 hours at reflux to give fully protected PALA-Glutamate 9 in 66% yield after column chromatography. Sequential removal of the groups followed by the debenzylation accomplished for a one step deprotection of both the benzyl and ethyl groups. Hence protected PALA-Glutamate was heated up to reflux in neat trimethylsilylchloride for an overnight period. resulting bistrimethylsilylphosphonate ester 10 was submitted without purification to hydrogenolysis (H_2 30 psi, 10% Pd/C, ethylacetate). The desired material 3 was isolated after purification by reverse phase column chromatography and ion exchange resin.

Analogs 4 and 5 were synthesized by preparation of

-140-

phosphonoglutamate 14 from the alpha-carboxyl-protected glutamate.

Commercially available alpha-benzyl-N-Boc-L-glutamate treated refluxing THF with at afford complex to the boranedimethylsulfide in 90% yield. corresponding alcohol This was transformed into bromide 12 by the usual procedure (Pph, CBr).

10

5

The Michaelis-Arbuzov reaction using triethylphosphite to give the corresponding diethylphosphonate 13 which deprotected the nitrogen at would be trifluoroacetic acid to give free amine 14. The latter separately with condensed be pentafluorophenylesters 6 or 8 to give 16 and 15 under conditions similar to those respectively, described for 3. 15 and 16 would be deprotected in the same manner as for 3 to yield desired analogs 4 and 5.

20

15

An inhibitor of the metabolism of purines and pyrimidine like DON (6-diazo-5-oxo-norleucine) or its aspartate-like 17, and glutamate-like 18 analogs would be added to the series of substrates.

25

30

35

Analog 20 is transformed into compound 17 by treatment with oxalyl chloride followed by diazomethane and deprotection under known conditions to afford the desired analogs. In addition, azotomycin is active only after in vivo conversion to DON which will be released after action of PSM on analogs 17, 18, and 19.

In addition, most if not all chemotherapies rely on one hypothesis; fast growing cells possess a far higher appetite for nutrients than normal cells. Hence, they uptake most of the chemotherapeutic drugs in their proximity. This is why chemotherapy is associated with

-141-

serious secondary effects (weakening of the immune system, loss of hair, ...) that sometimes put the patient's life in danger. A selective and effective drug that cures where it should without damaging what it shouldn't damage is embodied in representative structures 21 and 22.

Representative compounds, 21 and 22, were designed based on some of the specific effects and properties of PSM, and the unique features of some newly discovered 10 cytotoxic molecules with now known mode of action. latter, referred to commonly as enedignes, dynemycin A 23 and or its active analogs. The recent isolation of new natural products like Dynemycin A 23, 15 has generated a tremendous and rapidly growing interest in the medical and chemical sciences. They have displayed cytotoxicities to many cancer cell lines at the sub-nanomolar level. One problem is they are very toxic, unstable, and non-selective. Although they have been demonstrated, in vitro, to exert their activity 20 through DNA damage by a radical mechanism as described below, their high level of toxicity might imply that they should be able to equally damage anything in their path, from proteins to enzymes, ...etc.

25

30

35

5

These molecules possess unusual structural features that provide them with exceptional reactivities. Dynemycin A 23 is relatively stable until anthraquinone moiety is bioreduced hydroanthraquinone 24. This triggers a chain of events by which a diradical species 25 is generated as a result of a Bergman cycloaromatization. species 25 is the ultimate damaging edge of dynemycin It subtracts 2(two) protons from any neighboring molecule or molecules(ie. DNA) producing radicals therein. These radicals in turn combine with molecular oxygen to give hydroperoxide intermediates that, in the

5

20

30

35

PCT/US96/02424

case of DNA, lead to single and double strand incision, and consequent cell death. Another interesting feature was provided by the extensive work of many organic chemists who not only achieved the total synthesis of (+)-dynemycin A 23 and other enedignes, but also designed and efficiently prepared simpler yet as active analogs like 26.

Enediyne 26 is also triggerable and acts by virtue of the same mechanism as for 23. This aspect is very relevant to the present proposed study in that 27 (a very close analog of 26) is connected to NAAG such that the NAAG-27 molecule, 21, would be inert anywhere in the body (blood, organs, normal prostate cells, ...etc.) except in the vicinity of prostate cancer, and metastatic cells. In this connection NAAG plays a multiple role:

- Solubilization and transport: analogs of 26type are hydrophobic and insoluble in aqueous media, but with a water soluble dipeptide that is indigenous to the body, substrate 21 should follow the ways by which NAAG is transported and stored in the body.
- Recognition, guidance, and selectivity:

 Homologs of PSM are located in the small intestines and in the brain.

In the latter, a compound like 27 when attached to a multiply charged dipeptide like NAAG, has no chance of crossing the blood brain barrier. In the former case, PSM homolog concentration in the small intestines is very low compared to that of PSM in prostrate cancer cells. In addition, one could enhance the selectivity of delivery of the prodrug by local injection in the prostate. Another image of this strategy could be formulated as follows. If prostate cancer were a war

-143-

in which one needed a "smart bomb" to minimize the damage within the peaceful surroundings of the war zone, then 21 would be that "smart bomb". NAAG would be its guidance system, PSM would be the trigger, and 27 would be the warhead.

26 and its analogs are established active molecules that portray the activity of dynemycin A. syntheses are described in the literature. The total synthesis of optically active 27 has been described. The synthetic scheme that for the preparation of 28 is almost the same as that of 27. However, they differ only at the position of the methoxy group which is meta to the nitrogen in the case of 28. This requires an intermediate of type 29, and this is going to be prepared by modification of the Myers' Compound 28 is perhaps the closest optically active analog that resembles very much 26, and since the activity of the latter is known and very high.

20

25

5

10

15

Since NAAG is optically pure, its combination with racemic material sometimes complicates purification of intermediates. In addition, to be able to modify the components of this system one at a time, optically pure intermediates of the type 21 and 22 are prepared. 27 was prepared in 17 steps starting fro commercially available material. Another interesting feature of 27 is as demonstrates in a very close analog 26, it possesses two(2) triggers as shown by the arrows.

30

35

The oxygen and the nitrogen can both engender the Bergman cycloaromatization and hence the desired damage. The simple protection deprotection manipulation of either functionality should permit the selective positioning of NAAG at the nitrogen or at the oxygen centers. PSM should recognize the NAAG portion of 21 or 22, then it would remove the glutamic acid

WO 96/26272 PCT/US96/02424

5

10

-144-

moiety. This leaves 27 attached to N-acetylaspartate.

Intramolecular assisted hydrolysis of systems like N-acetylaspartyle is well documented in the literature. The aminoacid portion should facilitate the hydrolysis of such a linkage. In the event this would not work when NAAG is placed on the nitrogen, an alternative would be to attach NAAG to the oxygen giving rise to phenolic ester 22 which is per se labile and removable under milder conditions. PSM specific substrates can be designed that could activate pro-drugs at the site of prostatic tumor cells to kill those cells. PSM specific substrates may be used in treatment of benign prostatic hyperplasia.

5

-145-

EXAMPLE 15:

GENOMIC ORGANIZATION OF PSM EXON/INTRON JUNCTION SEQUENCES

EXON 1 Intron 1

1F. strand

CGGCTTCCTCTTCGG

10 cggcttcctcttcgg taggggggcgcctcgcggag...tatttttca

1R. strand

...ataaaaagtCCCACCAAA

15 Exon 2 Intron 2

2F. strand

ACATCAAGAAGTTCT

acatcaagaagttct caagtaagtccatactcgaag...

20 2R. strand ...caagtggtcATTAAAATG

Exon 3 Intron 3

3F. strand

25 GAAGATGGAAATGAG

gaagatggaaatgag gtaaaatataaataaataa...

Exon 4 Intron 4

30 4F. strand

AAGGAATGCCAGAGG

aaggaatgccagagg taaaaacacagtgcaacaaa...

4R. strand ...agagttgTCCCGCTAGAT

35

-146-

Exon 5 Intron 5 5F. strand

cagaggaaataaggt aggtaaaaattatctcttttt...

5 ...gtgttttctAGGTTAAAAATG

5R. strand ...cacttttgaTCCAATTT

10 Exon 6 Intron 6

6F. strand

GTTACCCAGCAAATG

CAGAGGAAATAAGGT

gttacccagcaatg gtgaatgatcaatccttgaat...

6R. strand ...aaaaaaagtCTTATACGAATA

Exon 7 Intron 7

7F. strand

20 ACAGAAGCTCCTAGA

acagaagctcctaga gtaagtttgtaagaaaccargg...

7R. strand ...aaacacaggttatcTTTTACCCA

25 Exon 8 Intron 8

8F. strand

AAACTTTTCTACACA

aaacttttctacaca gttaagagactatataaatttta...

30 8R. strandaaacgtaatcaTTTTCAGTTCTAC

Exon 9 Intron 9

9F. strand

AGCAGTGGAACCAG

agcagtggaaccag gtaaaggaatcgtttgctagca...
...tttctagatAGATATGTCATTC

WO 96/26272 PCT/US96/02424

-147-

9R. strand

...aaagaTCTGTCTATACAGTAA

Exon 10

Intron 10

10F. Strand

5 CTGAAAAAGGAAGG

ctgaaaaaggaagg taatacaaacaaatagcaagaa...

Exon 11

Intron 11

10 11F. Strand

TGAGTGGGCAGAGG

agagg ttagttggtaatttgctataatata...

15

Exon 13 Intron 12

12R. strand

GAGTGTAGTTTCCT

gtagtttcct

gaaaaataagaaaagaatagat...

20

Exon 14 Intron 13

13R. strand

AGGGCTTTTCAGCT

agggcttttcagct acacaaattaaaagaaaaaag...

25

Exon 14 Intron 14

14F. strand

GTGGCATGCCCAGG

30

gtggcatgcccagg taaataaatgaatgaagtttcca...

Exon 16

Intron 15

15R. strand

AATTTGTTTGTTTCC

35

aatttgtttgtttcc tacagaaaaaacaacaacaaca...

WO 96/26272 PCT/US96/02424

-148-

Exon 16 Intron 16 16F. strand

CAGTGTATCATTTG

cagtgtatcatttg gtatgttacccttcctttttcaaatt...

5 ...tttcagATTCACTTTTTT

16R. strand ...aaagtcTAAGTGAAAA

10 Exon 17 Intron 17

17F. strand

TTTGACAAAAGCAA

tttgacaaaagcaa gtatgttctacatatatgtgcatat...

15 17R. strand ...aaagagtcGGGTTA

Exon 18 Intron 18

18F. strand

20 GGCCTTTTTATAGG

ggcctttttatagg taaganaagaaaatatgactcct...

18R. strand ...aatagttgTGTAAACCC

25

Exon 19 Intron 19

19F. strand

GAATATTATATATA

gaatattatata gttatgtgagtgtttatatatgtgtgt...

30

Notes: F: Forward strand

R: Reverse strand

5

10

20

What is claimed is:

- An isolated nucleic acid molecule encoding an alternatively spliced prostate-specific membrane (PSM') antigen.
 - 2. An isolated mammalian DNA molecule of claim 1.
 - 3. An isolated mammalian cDNA molecule of claim 2.
 - 4. An isolated mammalian RNA molecule derived from claim 1.
- 5. An isolated nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of the isolated nucleic acid molecule of claim 1.
 - 6. A DNA molecule of claim 5.
- 7. A RNA molecule of claim 5.
- 8. method of detecting expression alternatively spliced prostate-specific membrane 25 (PSM') antigen in a cell which comprises obtaining total mRNA from the cell, contacting the mRNA so obtained with a labelled nucleic acid molecule of claim 5 under hybridizing conditions, determining the presence of mRNA hybridized to 30 the molecule, and thereby detecting expression of the alternatively spliced prostatespecific membrane (PSM') antigen in the cell.
- 9. An isolated nucleic acid molecule of claim 2 operatively linked to a promoter of RNA transcription.

WO 96/26272 PCT/US96/02424

-150-

- 10. A vector which comprises the isolated nucleic acid molecule of claim 1.
- 11. A host vector system for the production of a polypeptide having the biological activity of the alternatively spliced prostate-specific membrane (PSM') antigen which comprises the vector of claim 10 and a suitable host.
- 10 12. A host vector system of claim 11, wherein the suitable host is a bacterial cell, insect cell, or mammalian cell.
- 13. A method of producing a polypeptide having the biological activity of the prostate-specific membrane antigen which comprises growing the host cells of the host vector system of claim 12 under suitable conditions permitting production of the polypeptide and recovering the polypeptide so produced.
 - 14. An isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter.
- 25 15. A polypeptide encoded by the isolated nucleic acid molecule of claim 1.
- A method of detecting hematogenous micrometastic 16. subject, comprising tumor cells of a performing nested polymerase chain reaction (PCR) 30 on blood, bone marrow or lymph node samples of the subject using the prostate specific membrane (B) verifying and primers, antigen micrometastases by DNA sequencing and Southern hematogenous detecting thereby analysis, 35 micrometastic tumor cells of the subject.

WO 96/26272

- 17. The method of claim 16, wherein the primers are derived from prostate specific antigen.
- The method of claim 16, wherein the subjects is administered hormones, epidermal growth factor, b-fibroblast growth factors, or tumor necrosis factor.
- 19. method of determining prostate cancer progression in a subject which comprises: a) 10 obtaining a suitable prostate tissue sample; b) extracting RNA from the prostate tissue sample; c) performing a RNAse protection assay on the RNA, thereby forming a duplex RNA-RNA hybrid; d) detecting PSM and PSM' amounts in the tissue 15 sample; e) calculating a PSM/PSM' tumor index, thereby determining prostate cancer progression in the subject.
- 20 20. The method of claim 19, further comprising performing in-situ hyribridization.

FIGURE 1

1 - anti- EGFr PoAB RK-2

2 - Cyt-356 MoAB/RAM

3 - RAM

2/130

SUBSTITUTE SHEET (RULE 26)

3/130

SUBSTITUTE SHEET (RULE 26)

FIGURE 4

100.5

72.0

43.0

28.5

FIGURE 5

FIGURE 7

FIGURE 8

FIGURE 9

4 —

3 -

2-

16-

FIGURE 10

FIGURE 11

1 2 3

9.5__

7.5___

4.4___

2.4 ___

1.4 ___

13/130 FIGURE 13

II

II

I I

10

10

(L)

回

E

E

H

H

E

H

H

FIGURE 14-1

sednence. 750. on the complete of residues is: Done on sequence PMSANTIGEN. done Total number Analysis

41.2% . 48 35.2\$ **^**| \ II î **^**| ¥ ¥ X A 309 92 264 101 CNAT CNAT CNAT CNAT -75 -88 0 II 11 11 11 20 <u>[</u> [conformation conformation conformation conformation (H) (E) Extended Helical Turn Co11 In In In

Sequence shown with conformation codes

14/130

are given conformation Ø ţn or more residues ល Consecutive stretch of overlined.

IEI II H II H IX 田 II 1 II 1 二 I 10 II 10 161 1= E IX 10 161 II 旧 二 H H 10 H 10 ഠ 10 H 臼 10 10 II II 10 II IX II II IH 二 IX II IH IX II IX II II IX II IX II II 田田 I IH H IX IX IM IX IX 回 IX IH 回 IX IX 田 II 31 61

II

II

IX II

10

10

10

10

10

国

团

H

E

H

H

田

回

ы

FIGURE 14-1

on the complete sequence. 750. Total number of residues is: on sequence PMSANTIGEN. Analysis done Done

4% 10.1% 35.2\$ 41.24 **^**|| **^**| \ II **^**| Z ¥ Z A 264 309 9/ 101 CNAT CNAT CNAT CNAT -75 -88 00 11 11 n 11 20]) [DC conformation conformation conformation conformation (H) (E) Extended Helical Turn Co11 In In In

Sequence shown with conformation codes

14/130

are given conformation Ø ţu or more residues Ŋ Consecutive stretch of overlined.

161 II 1 II |E II 田 II 161 II 161 IX IE II 161 1= 15 IX 1 IX 回 II H H 10 H 10 10 Ш M 10 IH 10 II 10 IX II II II IX II II 二二 II II IX II II H II 二 IX 工 II IM II H E II IX IM II IX 回 IX IX IEI IX II H II 31 61

FIGURE 14-3

Ξ	IM	H	II	IX	लि	E	lE1	ບ	II
H	न	υ	II	IX	नि	ाल	IП	Ö	I
H	नि	ল	II	IΞ	E	ाध	E	ĮΞ	II
H	लि	E	II	Ħ	田	ပ	E	II	II
X	E	E	I	IEI	田	ပ	धि	IX	IX
Ξ	H	ध	II	नि	IEI	£		IΞ	IX
Ħ	10	E	II	IEI	नि	H	ভ	II	Œ
X	10	E	IX	नि	IX	H	H	IX	II
田	10	ပ	E	E	IH	IX	ပ	IΞ	II
FI	10	υ	II	ध	IX	IX	ပ	II	II
回	IJ	Ö	II	II	H	IX	ပ	IX	IX
E	H	F	H	II	IH	IX	H	团	IΞ
ഥ	H	II	II	IΞ	Ö	II	H	田	II
ы	H	I	H	İΞ	U	II	E	H	ि
ध	II	II	回	IX	X	II	回	国	E
ন	王	IΞ	le1	IE	EI	IX	II	ভি	国
딘	IX	IX	लि	IEI	E	II	II	E	iei
团	II	E	लि	E	IEI	IX	H	E	回
ы	I	Ħ	E	ाध	E	IX	IX	E	लि
FI	IX	田	lei	IEI	लि	IX	IX	मि	IEI
ы	H	IO	ក្រា	IM	IX	II	IX	Ħ	E
	H	10	ाध	lΠ	IX	II	I	Ö	II
H	II	10	ပ	lΠ	II	I	I	Ö	I
E	IX	S)	IE	IEI	I	IX	IX	Ö	IH
M	II	U	I	I	IX	H	IX	ပ	II
ပ	II	लि	H	F	H	IX	II	H	I
ပ	I	回	IH	IX	IX	I	I	回	IX
田	ပ	लि	IF	II	II	IX	回	回	IX
Ħ	ပ	लि	E	IX	II	IX	iei	IM	IX
Ħ	II	धि	H	ΙX	IX	IX	IEI	回	ပ
101	181	119	541	571	501	531	199	169	21

FIGURE 14-4

Semi-graphical output.

Symbols used in the semi-graphical representation:

Extended conformation: conformation: Coll conformation: conformation: Helical Turn

50 **MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEAT** 20

X<******XXXXX-----X<********** ----< XXXXXXXXXXXXX----

90 80

100

nitprhnmkåfldelkaenikkflynftqiphlagteqnfqlakqiqsqw

FIGURE 14-5

DMKINCSGKI	RTEDFFKLER	EGDLVYVNYA	SAFSPQGMPI	YENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINCSGKI
200	190	180	170	160
\\####\\	X**<*		(XXXXXXXX)	<pre><>*****</pre>
 TSLFEPPPPG	INEDGNEIFN	 NKTHPNYISI	HYDVLLSYPI	KEFGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPG
150	140	130	120	110
**************************************	-*********	< <xx< td=""><td>CXXXXXXXXX</td><td>*X-XXXXXXXXXX*****<<xxxxxxxxxx< td=""></xxxxxxxxxx<></td></xx<>	CXXXXXXXXX	*X-XXXXXXXXXX*****< <xxxxxxxxxx< td=""></xxxxxxxxxx<>

XX>>>	250 OGWNLPG	**-\\\- **-\\\-	300 	 	350 HIHSTN	* * * * *	400 VHEIVR
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	240 YFAPGVKSYPI	^	290 EAVGLPSIPV	***	340 GNFSTQKVKM	-*XXXXXX-*	390 GIDPQSGAAV
XXXX	230 SVILYSDPAD	***************************************	280 NEYAYRGIA	XX	330 VPYNVGPGFT		380 GGHRDSWVFG
	220 VKNAQLAGAKO	>***XXXXXX***<	270 NGDPLTPGYPA		320 PDSSWRGSLK	<	370 AVEPDRYVILA
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	210 220 230 240 250 	** < <	260 270 280 290 300 GGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYY	* < <	310 320 330 340 350 DAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTN	XXXXXXX->>>+++	360 370 380 390 400 EVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGAAVVHEIVR
^ ^	VI		99	4 4	DAC	XXX	EVT

20/130

88	0 — H	1 1	o-x	4 4	0-0		
KX	450 RGVAYI		500 ESWTKK	XX>>>	550 	* ^ ^	600
>***>***>->-	440 EWAEENSRLIQE	-*XXXXXXXX*******XXXXXXXX-	490 PDEGFEGKSLY	-XXXXXXXXX**XXXXXXXXXXXXXXXXXX-	540 Rarytknwetni	***************************************	590
FIGURE 14-7	430 AEEFGLLGSTE	XXXXXX****>	480 - LVHNLTKELKS	<pre>KXXXXXXX** KXXXXXXX**</pre>	530 FFQRLGIASG	XXXXX>+++-	580
	420 RTILFASWD	XX*	470 VDCTPLMYSI	(520 KLGSGNDFEV		570
	410 420 430 440 450 SFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYI	XXX***>>>****>-	460 470 480 490 500 NADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKK		510 520 530 540 550 		960

750

FIGURE 14-8

30 640 FDSLFSAVKNFTEIASK	LYHSYXELIELVEKFYUPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	QVRGGMVFEX 630 SFDSLFSAVXXXXXXXXXXXXXXXXXXXXXXXXXXX	VFELANSIVLPFDCRDY XXXXXXXXX XXXXX 640 650 SAVKNFTEIASKFSERL KXXXXXXXXXXXXX KXXXXXXXXXXX KXXXXXXX	* * * * * * * * * * * * * * * * * * *
VVVV	· · · · · · · · · · · · · · · · · · ·	QVRGGMVFE X	LANSIVLPFDCR XXXX>X XXXX>X	× ××
	XXXXX*+XXXXXXX	XXXXXX)	KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	××
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	660 670 (OKSNPIVLRMMNDQLMCLERAFIDI	680 PLGLPDRPFY	690 70 RHVIYAPSSHNE	0->
X**XXXX X**XXXX 670 68	1 1		****	A A

21/130

XXXXXXXXXXXXXXXXXX+++XXXXXXXXX<	XXXXXXXXXXXXXXXXXX****XXXXXXX<
(X+++XXXXXXXX<	XX+++XXXXXXXXX<

AGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAETLSEVA

730

22/130 FIGURE 15A

FIGURE 15B

Done on sequence PMSANTIGEN. Total number of residues is: 750. Analysis done on the complete sequence.

-> This is the value recommended by the authors The averaging group length is: 6 amino acids. The method used is that of Hopp and Woods

highest points of hydrophilicity are: The three

Asp-Glu-Leu-Lys-Ala-Glu Asn-Glu-Asp-Gly-Asn-Glu Lys-Ser-Pro-Asp-Glu-Gly 487 68 137 to t to 63 132 482 From From From 1.55 1.57 1.62 Ah-325

Ah stands for: Average hydrophilicity.

a known antigenic group. The second and third points control proteins, only the highest point was in 100% gave a proportion of 33% of incorrect predictions of the cases assigned to Note that, on a group of

FIGURE 16-1

24/1	30
------	----

initn initl opt 203 120 321 164 164 311 cd 145 145 266	203 120 321	1070 CTCACACCAGGTTA :::::::: TACACCCCAGGCTT 0	1130 TGGTCTTCCAAGTAT :: :: :: :: AGGACTACCCCACAT 1090 1100	1190 AAAATGGGTGGCTC :::::::
t scores are: G.gallus mRNA for transferrin receptor Rat transferrin receptor mRNA, 3' end. Human transferrin receptor mRNA, complete	<pre>SR G.gallus mRNA for transferrin receptor)</pre>	1020 1030 1040 1050 1060 1070 TGTCCAGCGTGGAATATCCTAAATCTGAATGGTGCAGGAGACCCTCTCACACACCAGGTTA ::::::::::::::::::::::::::::::::	1080 1090 1100 1110 1120 CCCAGCAAATGAATAGCTTATAGGCGTGGAATTGCAGAGGCTGT :::::::::::::::::::::::::::::::::	TCCTGTTCATCCAATTGGATACTATGATGCACAGAAGCTCCTAGAA : :::::::::::::::::::::::::::::::::
The best CHKTFER RATTRFR HUMTFRR	CHKTFER 51.9\$	pmsgen CHKTFE	pmsgen CHKTFE	pmsgen

1380

pmsgen CATTCTGGGAGGTCACCGGGACTCATGGGTGTTTGGTGGTATTGACCCTCAGAGTGGAGC

1410

1400

1390

1380

CHKTFE TGTGATTGGAGCCCAGAGACTCCTGGGGCCCCAGGAGTGGCTAAAGCTGGCACTGGAAC

1360

pmsgen AGCACCACCAC :: : : : : : : : : : : : : : : : : : :	GCACCACC	CAGATAGCA	GATAGCAGCTGGAGAGGGAAGTCTCAAAGTGCCCTACAATGTTGGACCTGG	AAGTCTCAAAG	TGCCCTACA	ATCTTCCACCTCC
CHKTFE CA						>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
CHKTFE C	••	•••	•••••••••••••••••	••	••	•••
	ACATGCTC	TGA-AG	GTTGGAAAGGT	rgcgatcca	-TTCCTGTA	CHKTFE CACATGCTCTGA-AGGTTGGAAAGGTGCGATCCATTCCTGTAAGGTGACAA
	1170	0	1180	1190	1200	1210
7.7	1260	1270	1280	1290	1300	1310
pmsgen Cl	TTTACTGG	AAACTTTT	CTACACAAAA	GTCAAGATGC	ACATCCACTO	CTTTACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATCCACTCTACCAATGAAGT
••	••		•••	••••••••••••••••	•••	•••
CHKTFE CAAAGCAGGAG	NAAGCAGG,	AGAG(CCAGA-TAATG	GTGAAACTAG	ATGTGAACAA	AGCCAGA-TAATGGTGAAACTAGATGTGAACAATTCCATGAAAGA
	1220		1230	1240	1250	1260
13	1320	1330	1340	1350	1360	1370
pmsgen GA	CAAGAAT	LTACAATG1	GATAGGTACT	CTCAGAGGAG	CAGTGGAACC	GACAAGAATTTACAATGTGATAGGTACTCTCAGAGGAGCAGTGGAACCAGACAGA
••	•••		•••	•••	•••	
CHKTFE CA	GGAAGATT	<i>PCTGAACAT</i>	CTTCGGTGCT	ATCCAGGGAT	TTGAAGAACC	CAGGAAGATTCTGAACATCTTCGGTGCTATCCAGGGATTTGAAGAACCTGATCGGTATGT
1	1270	1280	1290	1300	1310	1320

		/130	
1440 1450 1460 1470 1480 1490 an AGCTGTTGTTCATGAAATTGTGAGGAGCTTTGGAACACTGAAAAAGGAAGGGTGGAG ::::::::::::::::::::	1500 1510 1520 1530 1540 1550 pmsgen ACCTAGAACAATTTTGTTTTGCAAGCTGGGATGCAGAAGAATTTTGGTCTTCTTGGTTTC :::::::::::::::::::	1560 1570 1580 1590 1600 1610 TACTGAGTGGCCAGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTTATATTAA ::::::::::::::::::::::::::::	1620 1630 1640 1650 1660 1670 n TGC-TGACTCATCTATAGAAGGAAACTA-CACTCTGAGAGTTGATTGTACACCGCTGATG ::::::::::::::::::::::::::::::::::
pmsgen CHKTFE	pmsgen CHKTFE	pmsgen CHKTFE	pmsgen

164	
164	
-	
end	
37	
mRNA, 3'	
receptor	t overlap
in	560 nt
ransf	y in
Rat tr	identity
RATTRFR	55.5\$

		2	28/	130					
1250	pmsqen ccaccagatagcagctggagagagaagtctcaaagtgccctacaatgttggacctggctt-		RATTRF TGCAGAAAAGCTATTCAAAAACATGGAAGGAAACTGTCCTCCTAGTTGGAATATAGATTC	099	1310	CTACACAAAAAGTCAAGATGCACATC-CACTCT-ACCAATG	••	RATTRF CTCATGTAAGCTGGAACTTTCACAGAATCAAAATGTGAAGCTCACTGTGAACAATGTACT	720
1240	FGCCCTACAAT	••	rgrccrccrag	650	1300	SCACATC-CAC		GTGAAGCTCAC	710
1230	AGTCTCAAAG	••	GGAAGGAAAC	640	1290	NAAGTCAAGAT	••	GAATCAAAAT	700
1220	GCTGGAGAGGA		<i>TTCAAAAACAT</i>	630	1280	TTCTACACAAA		GAACTTTCACA	069
1210	CCAGATAGCA		AGAAAAGCTA	620	1270	pmsgen -TACTGGAAACTTTTC	•••	CATGTAAGCTG	680
	pmsden CCA	•	RATTRF TGC	610	1260	pmsgen -TA	••	RATTRF CTC	670

FIGURE 16-6

pmsgen	1320 AAGTGACA	20 CAAGAATT	1330 TACAATGTG	1340 ATAGGTACTO	1350 TCAGAGGAG	pmsgenAAGTGACAAGAATTTACAATGTGATAGGTACTCTCAGAGGAGGAGCAGTGGAACCAGACAG	1370 ACAG
RATTRF	RATTRF GAAAGAAACAAG	:::::: ACAAGAATA(740	:: : CTTAACATC 750	: :: TTTGGCGTTA 760	: :: TTAAAGGCT, 770	::::::::::::::::::::::::::::::::::::::	SCCG
pmsgen RATTRF	1380 pmsgen ATATGTCATTCT : : : : RATTRF CTACATTGTAGT 790	1380 CATTCTGGGAG : :::: TGTAGTAGGAG 800	1390 GGTCACCGG : :: : GCCCAGAGA	390 1400 1410 14 GTCACCGGGACTCATGGGTGTTTTGGTGTAT :: :::: :::: ::: CCCAGAGAGGCTTGGGGCCCTGGT-GTTG 810 820 830	1410 TGTTTGGTG :::: GCCCTGGT-	20 TGACCCTC ::::: CGAAGTCC 840	1430 AGAG ::::
pmsgen RATTRF	1440 T-GGAGCAGCT :::::::	1440 AGCTGTTGTT ::::::: AGGTCTT-CT 860	1450 FCATGAAATTG : ::::: FGTTGAAACTT	1460 TGTGAGGAGC : :: TTGCCCAAGT	1470 SAGCTTTGGAACA :: :: :: AAGTATTCTCAGA' 30 890	1440 1450 1460 1470 1480 pmsgen T-GGAGCTGTTGTTGAAATTGTGAGGAGCTTTTGGAACA-CTGAAAAAGGAA : :::::::::::::::::::::::::::::	GAA :: Gat
pmsgen RATTRF	1490 GGGTGGAGI :::X:S GGATTTAGI	1500 ACCTAGAAG :::::::	1510 SAACAATTT : ::: SGAGTATTA	TGTTTGCAAG	CTGGGATGCA CTGGGATGCA CTGGACTGCA	1490 1500 1510 1520 1530 1540 pmsgen GGGTGGAGACTAGAACAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTTGTTT ::::::::::::::::::::::::	CTT

RATTRF CCCCCTATTATACACTTATGGGGAAGATAATGCAGGA--CGTAAAGCATCCGA--CGTAAAGCATCCGA--1090 1100 1120 1120

FIGURE 16-7

	1550	1560	1570	1580	1590	1600
Disagen		ACTGAGTGGG	CAGAGGAGAA-	TTCAAGACT	CTTGGTTCTACTGAGTGGGCAGAGAGATTCAAGACTCCTTCAAGAGCGTGGCGTG	GTGGCGTG
•		•••	×	••	· · · · · · · · · · · · · · · · · · ·	••
RATTRE	GTTGGTCCG,	ACTGAGTGGC	FGGAGGGGTAC	CTTTCATCTTT	RATTRF GTTGGTCCGACTGAGTGGCTGGAGGGGTACCTTTCATCTTTGCATCTAAAGGCTTTC	GCTTTC
	970	086	066	1000 1010	10	1020
	1610	1620	1630	1640	1650	1660
pasgen	GCTTATATTA	ATGCTGACTC	ATCTATAGAAG	GAAACTA-CA	passen gcttatattatctcatctatatagaaggaaacta-cactctgagattgtac	GATTGTAC
	•••	••	••	•••	•••	••
RATTRF	RATTRF ACTTACATTAA	AT-CTGGATA	AAGTCGTCCTG	GGTACTAGCA	T-CTGGATAAAGTCGTCCTGGGTACTAGCAACTTCAAGGTTTCTGCCAG	TCTGCCAG
	1030	1040	1050	1060	1070	1080
DMsden	1670 Dmsden ACCGCTGATGTA	1680 TACAGCTTGG	1690 TACACAACCTA	1700 Acaaaagage	1680 1690 1700 1710 1720 ACAGCTTGGTACAAACAAAAGAAAGCTGAAAAG	1720
)) 1)) 1 1 1));;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		TOUT COME

FIGURE 16-8

	1730	1740		1750	1760	1770
pmsgen	pmsgen GCTTTGAAGGCAAATCTCTTTAT-GAAAGTTGGACTAAAAAAAGTCCTTCCCCAG	:AAATCTCTTT	AT-GAA	-AGTTGGACT	NAAAAAAGTCC	TTCCCCAG
	•••	•••	•••	•••	•••	
RATTRF	TTGATGGAAAATATCTATATCGAAACAGTAATTGGATTAGCAAAATTGAGGAACTTT	AAATATCTAT	ATCGAAACAG	TAATTGGATTA	GCAAAATTGA	GGAACTTT
	1140	1150	1160	1170	1180	1190
	1780	1790	1800	1810	1820	1830
pmsgen	pmsgen AGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGGAAATGATTTTGAGGTGTTCT	ATGCCCAGGA	PAAGCAAATT	GGGATCTGGA	ATGATTTTG	GGTGTTCT
RATTRF	RATTRF CCTTGGACAATGCTGCATTCCCTTTTGCATATTCAGGAATCCCAGCAGTTTCTTTC	GCTGCATTCC	CTTTTCTTGC.	GCTGCATTCCCTTTTCTTGCATATTCAGGAATCCCAGCAGTTTCTTTC	VTCCCAGCAG1	TTCTTTCT

1440

1430

pmsgen CCGGGACTCATGGGTGTTTGGTGTATTGACCCTCAGAGT-GGAGCAGCTGTTGTTCATG

1420

1400

HUMTFR GAGAGATGCATGGGGCCCTGGAGCTGCAAAATC-CGGTGTAGGCACAGCTCTCTTGA

1330

FIGURE 16-9

266	
145	
145	
complete cd	
Ţ	464 nt
Human trans	identity in
HUMTFRR	54.3\$

)) })))) i			
pmsgen	AGGA	AGTCTCAA	pmsgen AGGAAGTCTCAAAGTGCCCTACAATGTTGGACCTGGCTTTAC-TGGAAACTTTTCTACAC	ATGTTGGACCT	GGCTTTAC-1	IGGAAACTTT	TCTACAC
				••	•••	••	••
HUMTFR	TATG(HUMTFR TATGGAAGGAGA	CTGTCCCTCTGACTGGAAAACAGACTCTACATGTAGGATGGTAACCTC	ACTGGAAAACA	GACTCTACAT	PGTAGGATGG	TAACCTC
7	1140	1150	1160	1170	1180	1190	
1280	80	1290	1300	1310		1320	1330
pmsgen	AAAA	AGTCAAGAT	pmsgen AAAAAGTCAAGATGCACATC-CACTCT-ACCAATG-	CTCT-ACCAAT	1	AAGTGACAAGAATTTACAA	TTTACAA
	••	••	•••	•••••••••••••••••••••••••••••••••••••••		•••	••
HUMTFR	AGAA	AGCAAGAA 1	HUMTFR AGAAAGCAAGAATGTGAAGCTCACTGTGAGCAATGTGCTGAAAGAGAGATAAAAATTCTTAA	CTGTGAGCAAT	GTGCTGAAAC	SAGATAAAAA	LTCTTAA
ਜ	1200	1210	1220	1230	1240	1250	
		1340	1350	1360	1370	1380	1390
pmsgen	TGTG	ATAGGTACT	pmsgen TGTGATAGGTACTCTCAGAGGAGCAGTGGAACCAGACAGA	CAGTGGAACCA	GACAGATATO	STCATTCTGG	GAGGTCA
	••	•••	•••		•••	•••	•••
HUMTFR	CATC	PTTGGAGT	HUMTFR CATCITTGGAGTTATTAAAGGCTTTGTAGAACCAGATCACTATGTTGTAGTTGGGGGCCCA	LTGTAGAACCA	SATCACTATE	TTGTAGTTG	SGGCCCA
ਜ	1260	1270	1280	1290	1300	1310	

FIGURE 16-10

pmsgen HUMTFR		1460 TGAGGAGC : : : : CCCAGATGTTC 1390	1470 TTTGGAACACT: : : : : TCAGATATGGT	1480 1490 CTGAAAAGGAAGGGTG : :: : X::: STCTTAAAAGATGGGTT 1410 1420	pmsgen AAATTGTGAGGAGCTTTGGAACACTGAAAAAGGAAGGGTGGAGACCTAGAAGAACAA :::::::::::::::::::::::::::::	AAGAACAA SAAGAACAA SCAGAAGCA
msgen JMTFR	pmsgen TTTTGTTTGCAA :::::::: HUMTFR TTATCTTTGCCA	1520 TGCAAGCTGG :::::::: TGCCAGTTGG/	1530 1540 CTGGGATGCAGAAGAATTTGGTG ::: :::::::: TTGGAGTGCTGGAGACTTTGGA1	1540 ATTTGGTCTT ::::: CTTTGGATCG	pmsgen TTTTGTTTGCAAGCTGGGATGCAGAATTTGGTCTTTTTGGTTCTACTGAGTGGCAG ::::::::::::::::::::::::::::::::::	GTGGGCAG ::::::
ısgen JMTFR	1570 A-GGAGAA : :::: AGGGATAC 1500	1580 ATTCAAGACTC : : : : : : : : : : : : : : : : : : :	0 1590 GACTCCTTCAAGAGCC : ::::: GTC-CCTGCATTTAAA	1600 STGGCGTGGC : : : \GGCTTTCAC	1570 1580 1590 1600 1610 1620 pmsgen A-GGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAATGCTGACTCATCT : :: :: : : : : : : : : : : : : : : :	1620 TGACTCATCT :::::
nsgen	1630 ATAGAAG	1640 Gaaactacact	1650 CCTGAGAGTTGA	1660 NTTGTACACC	1630 1630 1640 1650 1660 1670 1680 pmsgen ATAGAAGGAAACTACACTCTGAGAGTTGATTGTACACCGCTGATGTACA-GCTTGGT-AC	1680 CTTGGT-AC

FIGURE 16-11

WO 96/26272

35/130 FIGURE 17A

FIGURE 17B

FIGURE 17C

SUBSTITUTE SHEET (RULE 25)

FIGURE 18

1 2

100 –

68 –

43 –

FIGURE 19

1 2 3 4

200 kDa — PSM
69 kDa —

FIGURE 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

400

350

FIGURE 21

1 2 3 4 5 6 7 8 9 10

FIGURE 22 1 2 3 4 5 6 7 8 9

41/130 FIGURE 23

CELL LINE/TYPE	11p11.2-13 REGION	METASTATIC	PSM RNA DETECTED	PSM DNA DETECTED
LNCap			++	ND
HUMAN PROSTATE			++	ND
A9 (FIBROSARCOMA)	NO	NO	-	-
A9(11) (A9+HUM. 11)	YES	NO	-	REPEAT
AT6.1 (RAT PROSTATE)	NO	YES	-	-
AT6.1-11-c11	YES	NO	+	++
AT6.1-11-c12	NO	YES	-	-
R1564 (RAT MAMMARY)	NO	YES	-	-
R1564-11-c14	YES	YES	-	+
R1564-11-c15	YES	YES	-	REPEAT
R1564-11-c16	YES	YES	-	ND
R1564-11-c12	YES	YES	ND	+

42/130 FIGURE 24A 80-SURVIVAL (%)

TIME (DAYS)

WO 96/26272

PCT/US96/02424

45/130

48/130

FIGURE 30

		FIGURE	30			
Patient	Stage	Treatment	PSA	PAP	PSA-PCR	PSM-PCR
1	T2NxMo	None	8.9	0.7	-	+
2	T2NoMo	RRP 7/93	6.1	_	_	+
3	T2CNoMo	PLND 5/93	4.5	0.1	-	+
4	T2BNoMo	RRP 3/92	NMA	0.4	_	+
5	ТЗЛхМо	Proscar + Flutamide	51.3	1.0	_	+
6	Recur T3	I-125 1986	54.7	1.4	-	+
7	T3ANoMo	RRP 10/92	NMA	0.3	-	+
8	T3NxMo	XRT 1987	7.5	0.1	-	-
9	T3NxMo	Proscar + Flutamide	35.4	0.7	_	-
10	D2	S/P XRT Flutamide + Emcyt	311	4.5	+	+
11	D2	RRP 4/91 Lupron 10/92 Velban + Emcyt 12/92	1534	1.4	+	+
12	T2NoMo	RRP 8/91	NMA	0.5	-	+
13	ТЗМоМо	RRP 1/88 Lupron + Flutamide 5/92	0.1	0.3	_	
14	D1	PLND 1989 XRT 1989	1.6	0.4	-	-
15	D1	Proscar + Flutamide	20.8	0.5	-	-
16	T2CNoMo	RRP 4/92	0.1	0.3	-	-

FIGURE 31A

	10	20	3 0	40	50	. 60
:	AAGGGTGCTC	CTTAGGCTGA	ATGCTTGCAG	ACAGGATGCT	TGGTTACAGA	TGGGCTGTGA
	TTCCCACGAG	GAATCCGACT	TACGAACGTC	TGTCCTACGA	ACCAATGTCT	ACCCGACACT
61	CTCGAGTGGA	GTTTTATAAG	GGTGCTCCTT	AGGCTGAATG	CTTGCAGACA	GGATGCTTGG
	GAGCTCACCT	CAAAATATTC	CCACGAGGAA	TCCGACTTAC	GAACGTCTGT	CCTACGAACC
121	TTACAGATGG	GCTGTGAGCT	GGGTGCTTGT	AAGAGGATGC	TTGGGTGCTA	AGTGAGCCAT
	AATGTCTACC	CGACACTCGA	CCCACGAACA	TTCTCCTACG	AACCCACGAT	TCACTCGGTA
181	TTGCAGTTGA	CCCTATTCTT	GGAACATTCA	TTCCCCTCTA	CCCTGTTTC	TGTTCCTGCC
	AACGTCAACT	GGGATAAGAA	CCTTGTAAGT	AAGGGGAGAT	GGGGACAAAG	ACAAGGACGG
241	AGCTAAGCCC	ATTTTTCATT	TTTCTTTTAA	CTCCTTAGCG	CTCCGCAAAA	CTTAATCAAT
	TCGATTCGGG	TAAAAAGTAA	AAAGAAAATT	GAGGAATCGC	GAGGCGTTTT	GAATTAGTTA
301	TTCTTTAAAC	CTCAGTTTTC	TTATCTGTAA	AAGGTAAATA	ATAATACAGG	GTGCAACAGA
	AAGAAATTTG	GAGTCAAAAG	AATAGACATT	TTCCATTTAT	TATTATGTCC	CACGTTGTCT
361	AAAATCTAGT	GTGGTTTACA	TAATCACCTG	TTAGAGATTT	TAAATTATTT	CAGGATAAGT
	TTTTAGATCA	CACCAAATGT	ATTAGTGGAC	AATCTCTAAA	ATTTAATAAA	GTCCTATTCA
421	CATGATAATT	AAATGAAATA	ATGCACATAA	AGCACATAGT	GTGGTGTCCT	CCATATAGAA
	GTACTATTAA	TTTACTTTAT	TACGTGTATT	TCGTGTATCA	CACCACAGGA	GGTATATCTT
481	AATGCTCAGT	ATATTGGTTA	TTAACTACTT	GTTGAAGGTT	TATCTTCTCC	ACTANACTGT
	TTACGAGTCA	TATAACCAAT	AATTGATGAA	CAACTTCCAA	ATAGAAGAGG	TGATTTGACA
541	AAGTTCCACA	AGCCTTACAA	TATGTGACAG	ATATTCATTC	ATTGTCTGAA	TTCTTCAAAT
	TTCAAGGTGT	TCGGAATGTT	ATACACTGTC	TATAAGTAAG	TAACAGACTT	AAGAAGTTTA
601	ACATCCTCTT	CACCATAGCG	TCTTATTAAT	TGAATTATTA	ATTGAATAAA	TTCTATTGTT
	TGTAGGAGAA	GTGGTATCGC	AGAATAATTA	ACTTAATAAT	TAACTTATTT	AAGATAACAA
661	CAAAATCAC GTTTTTAGTG	TTTTATATTT	AACTGAAATT TTGACTTTAA	TGCTTACTTA ACGAATGAAT	TAATCACATC ATTAGTGTAG	TAACCTTCAA ATTGGAAGTT
721	AGAAAACACA	TTAACCAACT	GTACTGGGTA	ATGTTACTGG	GTGATCCCAC	GTTTTACAAA
	TCTTTTGTGT	AATTGGTTGA	CATGACCCAT	TACAATGACC	CACTAGGGTG	CAAAATGTTT

FIGURE 31B

1561	AAAGTACTCC	TAGCAAATGC	ACGGCCTCTC	TCACGGATTA	TAAGAACACA	GTTTATTTTA
1501	ATCTCCACTG	GGTCAAATCC	TACCTGTACC	TTATGGTTCT	GTTAAAAGCA	GTGCTTCCAT
	TAGAGGTGAC	CCAGTTTAGG	ATGGACATGG	AATACCAAGA	CAATTTTCGT	CACGAAGGTA
		TTTCTGCCTT AAAGACGGAA	ACGGATGAGT	CGACCGGGTA	CCGGGGATTA	CAAAGAAGAG
		ATACTGTGCT TATGACACGA	GAGGGAAAGA	GTTTCGTTTG	ACAAACGATA	AGGAACTTAT
1321	CTTTGCTCAG	AAAGTCTACA	TCGAAGCACC	CAAGACTGTA	CAATCTAGTC	CATCTTTTTC
	GAAACGAGTC	TTTCAGATGT	AGCTTCGTGG	GTTCTGACAT	GTTAGATCAG	GTAGAAAAAG
1261	TAGGTCATCT	AGGAGTTGTC	ATGGTTCATT	GTTGACAAAT	TAATTTTCCC	AAATTTTTCA
	ATCCASTAGA	TCCTCAACAG	TACCAAGTAA	CAACTGTTTA	ATTAAAAGGG	TTTAAAAAGT
1201	GATATAGTAC	ATTCAGGATT	TTGTTAGAAA	GAGATGAAGA	AATTCCCTTC	CTTCCTGCCC
	CTATATCATO	TAAGTCCTAA	AACAATCTTT	CTCTACTTCT	TTAAGGGAAG	GAAGGACGGG
1141	AATATTAGTO TTATAATCAO	C ACTATTATTA G TGATAATAAT	GCCATCTCTC CGGTAGAGAC	ATTAGATTTG TAATCTAAAC	ACAATAGGAA TGTTATCCTT	CATTAGGAAA GTAATCCTTT
108]	CAATGGTGAT	T TAAATGAGGT	GATGTACATA	A CATGCATCA	CTCATAATAA	GTGCTCTTTA
	GTTACCACT	A ATTTACTCCA	CTACATGTAT	TGTACGTAGT	GAGTATTATT	CACGAGAAAT
102	AAATTTCAG TTTAAAGTC	T TTTACCATG1 A AAATGGTACA	GTAAATCAGG	AAGAGTAATA TTCTCATTAT	GAACAAACCT CTTGTTTGGA	TGAAGGGTCC ACTTCCCAGG
96	1 AAGACAGAC TTCTGTCTG	A TTATATTAAC T AATAATTC	G TCTTAGCTT C AGAATCGAA	T GTGACTTCGI A CACTGAAGCT	ATGACTTACC TACTGAATGG	TAATCTAGCT
90	1 CACAAGCAA	A CTCCATAAA	G GTATCCTGT	G CTGAATAGAC	S ACTGTAGAG1	GGTACAAAG
	GTGTTCGTT	T GAGGTATTT	C CATAGGACA	C GACTTATCTC	C TGACATCTCA	CCATGTTTC
84	1 GACCAGGTC	C AAAGACTGT	T AAGAGTCTT	C TGACTCCAA	A CTCAGTGCT(CCTCCAGTG
	CTGGTCCAG	G TITCTGACA	A TTCTCAGAA	G ACTGAGGTT	I GAGTCACGAC	GGAGGTCAC
78	ACTCTTCT	TATTCTGGT ATAAGACCA	A AGTTGAATA T TCAACTTAT	C TTAGCACCC G AATCGTGGG	A GGGGTAATC	A GCTTGGACA I CGAACCTGT

FIGURE 31C

TTTCATGAGG ATCGTTTACG TGCCGGAGAG AGTGCCTAAT ATTCTTGTGT CAAATAAAAT 1621 TAAAGCATGT AGCTATTCTC TCCCTCGAAA TACGATTATT ATTATTAAGA ATTTATAGCA ATTTCGTACA TCGATAAGAG AGGGAGCTTT ATGCTAATAA TAATAATTCT TAAATATCGT 1681 GGGATATAAT TTTGTATGAT GATTCTTCTG GTTAATCCAA CCAAGATTGA TTTTATATCT CCCTATATTA AAACATACTA CTAAGAAGAC CAATTAGGTT GGTTCTAACT AAAATATAGA 1741 ATTACGTAAG ACAGTAGCCA GACATAGCCG GGATATGAAA ATAAAGTCTC TGCCTTCAAC TAATGCATTC TGTCATCGGT CTGTATCGGC CCTATACTTT TATTTCAGAG ACGGAAGTTG 1861 CCCTTTCCTT TCTTTCTTGA GGGAGTCTCA CTCTGTCACC AGGCTCCAGT GGGAAAGGGA AGGGAAGGAA AGAAAGAACT CCCTCAGAGT GAGACAGTGG TCCGAGGTCA 1921 GCAGTGGCGC TATCTTGGCT GACTGCAACC TCCGCCTCCC CGGTTCAAGC GATTCTCCTG CGTCACCGCG ATAGAACCGA CTGACGTTGG AGGCGGAGGG GCCAAGTTCG CTAAGAGGAC 1981 CCTCAGCCTC CTGAGTAGCT GGGACTACAG GAGCCCGCCA CCACGCCCAG CTAATTTTTG GGAGTCGGAG GACTCATCGA CCCTGATGTC CTCGGGCGGT GGTGCGGGTC GATTAAAAAC 2041 TATTTTTAGT AGAGATGGGG TTTCACCATG TTGGCCAGGA TGGTCTCGAT TTCTCGACTT ATAAAAATCA TCTCTACCCC AAAGTGGTAC AACCGGTCCT ACCAGAGCTA AAGAGCTGAA 2101 CGTGATCCGC CTGTCTGGGC CTCCCAAAGT GCTGGGATTA CAGGCGTGAG CCACCACGCC GCACTAGGCG GACAGACCCG GAGGGTTTCA CGACCCTAAT GTCCGCACTC GGTGGTGCGG 2161 CGGCTTTAAA AAATGGTTTT GTAATGTAAG TGGAGGATAA TACCCTACAT GTTTATTAAT GCCGAAATTT TTTACCAAAA CATTACATTC ACCTCCTATT ATGGGATGTA CAAATAATTA 2221 AACAATAATA TTCTTTAGGA AAAAGGGCGC GGTGGTGATT TACACTGATG ACAAGCATTC TTGTTATTAT AAGAAATCCT TTTTCCCGCG CCACCACTAA ATGTGACTAC TGTTCGTAAG 2281 CCGACTATGG AAAAAAAGCG CAGCTTTTTC TGCTCTGCTT TTATTCAGTA GAGTATTGTA GGCTGATACC TTTTTTTCGC GTCGAAAAAG ACGAGACGAA AATAAGTCAT CTCATAACAT 2341 GAGATTGTAT AGAATTTCAG AGTTGAATAA AAGTTCCTCA TAATTATAGG AGTGGAGAGA CTCTAACATA TCTTAAAGTC TCAACTTATT TTCAAGGAGT ATTAATATCC TCACCTCTCT

52/130

FIGURE 31D

240	1 GGAGAGTCT	C TTTCTTCCTT	TCATTTTTAT	ATTTAAGCAA	GAGCTGGACA	TTTTCCAAGA
	CCTCTCAGA	G AAAGAAGGAA	AGTAAAAATA	TAAATTCGTT	CTCGACCTGT	AAAAGGTTC
246	1 AAGTTTTTT TTCAAAAAA	T TTTTTAAGGC	GCCTCTCAAA CGGAGAGTTT	AGGGGCCGGA TCCCCGGCCT	TTTCCTTCTC AAAGGAAGAG	CTGGAGGCAC GACCTCCGTC
2521	ATGTTGCCT(C TCTCTCTCGC	TCGGATTGGT	TCAGTGCACT	CTAGAAACAC	TGCTGTGGTG
	TACAACGGA	G AGAGAGAGCG	AGCCTAACCA	AGTCACGTGA	GATCTTTGTG	ACGACACCAC
2581	GAGAAACTGC	ACCCCAGGTC	TGGAGCGAAT	TCCAGCCTGC	AGGGCTGATA	AGCGAGGCAT
	CTCTTTGACC	TGGGGTCCAG	ACCTCGCTTA	AGGTCGGACG	TCCCGACTAT	TCGCTCCGTA
2641	TAGTGAGATT	GAGAGAGACT	TTACCCCGCC	GTGGTGGTTG	GAGGGCGCGC	AGTAGAGCAG
	ATCACTCTAA	CTCTCTCTGA	AATGGGGCGG	CACCACCAAC	CTCCCGCGCG	TCATCTCGTC
2701	CAGCACAGGC	GCGGGTCCCG	GGAGGCCGGC	TCTGCTCGCG	CCGAGATGTG	GAATCTCCTT
	GTCGTGTCCG	GCCCAGGGC	CCTCCGGCCG	AGACGAGCGC	GGCTCTACAC	CTTAGAGGAA
2761	CACGAAACCG	ACTCGGCTGT	GGCCACCGCG	CGCCGCCCGC	GCTGGCTGTG	CGCTGGGGCG
	GTGCTTTGGC	TGAGCCGACA	CCGGTGGCGC	GCGGCGGCG	CGACCGACAC	GCGACCCCGC
2821	CTGGTGCTGG	CGGGTGGCTT	CTTTCTCCTC	GGCTTCCTCT	TCGGTAGGGG	GGCGCCTCGC
	GACCACGACC	GCCCACCGAA	GAAAGAGGAG	CCGAAGGAGA	AGCCATCCCC	CCGCGGAGCG
2881	GGAGCAAACC	TCGGAGTCTT	CCCCGTGGTG	CCGCGGTGCT	GGGACTCGCG	GGTCAGCTGC
	CCTCGTTTGG	AGCCTCAGAA	GGGGCACCAC	GGCGCCACGA	CCCTGAGCGC	CCAGTCGACG
2941	CGAGTGGGAT	CCTGTTGCTG	GTCTTCCCCA	GGGGCGGCGA	TTAGGGTCGG	GGTAATGTGG
	GCTCACCCTA	GGACAACGAC	CAGAAGGGGT	CCCCGCCGCT	AATCCCAGCC	CCATTACACC
3001	GGTGAGCACC CCACTCGTGG					

FIGURE 32

Potential binding sites on the PSM promoter*

Site	Seq	**Locatio	n #nt matched
AP1	TKAGTCA	1145	7/7
E2-RS	ACCNNNNNNGG	T 1940 1951	12/12 12/12
GHF	NNNTAAATNNN	580 753 1340 1882 1930 1979 2001 2334 2374 2591 2620 2686	11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11
JVC repeat	GGGNGGRR	1165 1175 1180 1185 1190	8/8 8/8 8/8 8/8 8/8
NFkB	GGGRHTYYHC	961	10/10
uteroglobi	RYYWSGTG	250 921 1104	8/8 8/8 8/8
IFN AAW	AANGAAAGGR590	13/13	Cell 41:509 (1985)

^{*} the PSM promoter sequence 683XFRVS (Fig. 1) starts from the 5' end of the promoter fragment. The 3' region overlapps the previously published PSM cDNA at nt#2485,i.e. the putatative transcription start site is at nt#2485 on sequence 683XFRVS. **The number referred to in this table is in reference to sequence 683XF107 which is the complement and inverse of 683XFRVS.

54/130

SUBSTITUTE SHEET (RULE 26)

TCT TUBABBCABATBTTBCCTCTCTCTCBCTCBBATTBBTTCABTBCACTCTABAAACACTBCTBTBBABAAACA BOACCCC ADDICTUBABCOAATICCA UCCTOCAUBBCTOAIAABCOABBCATIABTOABAATIOABACTITACCC

FIGURE 34

CTCAAAAGGGGGCGGATTTCCT

Trp Leu ATO TOO AAT CTC CTT CAC DAA ACC DAC TCO OCT OTO OCC ACC OCO COC COC CCO COC TOO CTO Pro Arg Arg Arg Val Ala Ala Ala Ser Als Met Trp Aen Leu Leu His Glu Thr Asp TOC OCT GOG GCG CTG GTG GCG GGT GUCTIC TIT CTC CTC GGC TTC CTC TTC GGA TGG TTT Trp Gly Phe Phe Leu Leu Gly Phe Leu Phe Gly Leu Val Leu Ala Gly -۵ly Cys Als ATA AAA TCC TCC AAT BAA UCT ACT AAC ATT ACT CCA AAB CAT AAT ATB AAA GCA TTT TTB BAT BAA 30 Lye life Aen Met Lye Ale Phe Leu Aep Ser Aen Glu Ale Thr Aen He Thr Pro 110 Lys Ser TOO AAA BET BAB AAC ATC AAB AAU TTE TTA TAT AAT TTT ACA CAU ATA CCA CAT TTA BCA BBA Aim Glu Aen lie Lys Lys Phe Leu Tyr Aen Phe Thr Gin lie Pro lils Leu Aim Cly Leu Lye

56/130

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

58/130

59/130

60/130

1	0 20	3 (4		60
1 TTTGCAGAC AAACGTCTG	T TGACCAACTTA	TCTAAGAAAA AGATTCTTTI	GCAGAACCA	 ACAGGCAAGG TGTCCGTTCG	I TCAGACTCTT AGTCTGAGAA
61 TTATTAAAT AAT AATT TA	r ccagtttiga A ggtcaaaact	CTTTGCCACT	TCTTAGTGGG	CTTGAACAAG GAACTTGTTG	TTACCGAGTC
121 CTCTCAGCGT		· ATTTTTAATCA	TC	1 1000 none	
181 GTATAGTAAA	TATATAGCAT	GTAAATCTCC	TACCACACTA	070000	
	NININICGIA	CATTIAGAGG	ATCGTCTCAT	GACCCTAAAG	CGGTGAAATA
241 TTCTTCTTTA AAGAAGAAAT	CCAAGATACT GGTTCTATGA	CCTATTGGAC GGATAACCTG	TTAATACACA AATTATGTGT	GGACTAGTCT CCTGATCAGA	AAGGTATCAC TTCCATAGTG
301 CAGGTAGTCC GTCCATCAGG	ACTCCTGCTC TGAGGACGAG	GGAATCTGAC CCTTAGACTG	CCGGGATTAG GGCCCTAATC	AGTAGGGCAT TCATCCCGTA	GGACCAGATG COTGGTCTAC
361 GGTTTAAACA CCAAATTTGT	AATTCAATAT TTAAGTTATA	CTTCCACTAG GAAGGTGATC	CTTCACCTTG GAAGTGGAAC	GGGTTGTAAA CCCAACATTT	AGTTTTTGAA TCAAAAACTT
421 DIACACACTG DETETGTGAC	TGCTCATAAC ACGAGTATTG	AATCTTCATC TTAGAAGTAG	TCTTAAAAGG AGAATTTTCC	ATTTTATTCT TAAAATAAGA	TCCTGGTATC AGGACCATAG
481 CTCACTCTCA GAGTGAGAGT	TCCCTTGTAT AGGGAACATA	TCCGTGCTCA AGGCACGAGT	GTGGCTGACA CACCGACTGT	CAGAAGAGTT GTCTTCTCAA	CTTTATNNNN GAAATANNNN
541 NANNNANNAN		ATTTTTCAGA	TCTCACTTCA	ACC) Tomocom	
601 GTGTTNNCTG		CTAATCCAAG '	Transport of the state of the s	777. 77C C. C. C. C.	
661 TATTTCCGTT ATAAAGGCAA	TGCGNNCCAA '	TCN11TWCT1	Terra a manage) mcm; m;	
721 TTGTATGCTA AACATACGAT	NGCGATTAAG I	MCTAGAATA :	1 TOT 1 1 TO 1 TOT	CCA I COCON A	•••

61/130

FIGURE 40A

		10	20	30	40	. 5	0 6
	1 TGAAAAAT	1		!			
	1 TGAAAAATI ACTTTTAT	TO TACTORION	TA GGCATGAG	AT ACG	GCCTAT	AGATAGGAC	TATTTTTA
		G TAGTTTTT	AT CCGTACTO	TA TGCT	CCGGATA	TCTATCCTG	ATAAAAAAT
•	TATTGTTGT ATAACAACA	A TGTATTATT	T GTAAAACA	CA AAT**	****	1001000	_
	ATAACAACA	T ACATAATAA	VA CATTTTGT	GT TTA	TACTTA	TARTACCTCTC	ACATTAGGTO
					TUGITA	IMMIGGAGAC	TGTAATCCAC
14	AGATATTCT TCTATAAGA	G AATTTTAAT	T TCTCTTGC	CT ACTI	TCACTG	AAAAAGAGTO	`
	ICIATAAGA	C TTAAAATTA	A AGAGAACG	GA TGAA	AGTGAC	TTTTTCTCAG	TACETTECTE
18	1 ATTTTTAAG	T TGCAAACCA) TTC				
	1 ATTTTTAAG TAAAAATTC	A ACGTTTGGT	T AACCTOON	TA TITT	TTTATC	CAACTTCAAT	GATAGGTATT
			I MACGITIT	AT AAAA	AAATAG	GTTGAAGTTA	CTATCCATAA
24	1 GCTGTTAAT CGACAATTA	T CTAAGATAT	G CATTAATT	GT TTCA	A ~T A A T	CCTTCTCLLL	
	CGACAATTA	A GATTCTATA	C GTAATTAA	CA AAGT	TGATTA	CCACACTA	CGAGATGTTC
						CCCNCNGIII	GCTCTACAAG
3.0	1 TC3333mc1		_				
30	1 TGAAAATGAI ACTTTTACT	R GGCAAAAAG	G AGATOCACO	T TOTA:	CTTTCA	TAXAGITTCT	ATOTTOCTO
	ACTITIACT	CCGTTTTTC	C TCTAGGTG	SA AGATO	GAAAGT	ATTTCAAAGA	TAGAAGGAGA
36	GCTGACTCAA	ATAAGCATT	T ALTACATES	ማተ አጥአአረ	C 1 1 77		
	CGACTGAGTT	TATTOSTAAJ	E TTATOTALA	יא אות איני איני או	COMMI.	AA MATGAAT	ATATTTCAAA
				o. IAIIC	JC.:AA	· · · · · · · · · · · · · · · · · · ·	TATAAAGTTT
4.3.							
423	TAAATAAAT AATTTATTA	ATTTCCAAGT	r gitgaasga	A ATTCA	GACTT	CTAATTTGCT	د ماده المساحد الم
	AT INIA INIA A	TAAAGGTTCA	CAACTTCCT	T TAAGT	CTGAA	GATTAAACGA	GACTAAGACT
481	AACTAAAACA TTGATTTTGT	AATGCTCTCT					
	TTGATTTTGT	TTACGAGACA	CTCTCAAAC	C GPTTC	CAGTG	MASTAGCGTG	AGAAATCCAA
			· ererende	3 CAAAG	GICAC	MICATOGOAC	TCTTTAGGTT
5 4 5							
541	GTCAGACAGC CAGTCTGTCG	TACATGAAAC	TACATTTAE	2 AGCTC	TCTGC (7472040646	TCCLCCLTL
	CAGTCTGTCG	ATGTACTTTG	ATGTAAATG	G TCGAG	AGACG C	STOTOTOGTO	ACCTCCT: TC
							MCG1GC1M1C
601	CCCACAACAT	CD1 CCD1 C1 C					
•••	CGCAGAACAT GCGTCTTGTA	CATCCATCT	CTCAGTCAT	A GCTNN	ו מממממ	NAKKKKKKI	AGACCTTGCA
	GCGTCTTGTA	CAICGAICIA	GAGTCAGTA!	r cgann	א אאאאא	מממממממממ	TCTGGAACGT
661	GTTGGCTTTT CAACCGAAAA	AACCTGAAGG	AGATAAGGC	A CATT			
	CAACCGAAAA	TTGGACTTCC	TCTATTCCG	TCTAN	GETEC C	AAATARITAG	AGAAATTACA
							ICTITAATGT
721	GGATCTCCC	181118					
	GGATCTGGGA CCTAGACCCT	ATAAAGTAGT	TACAAAATTA	GTCCC	CAACC A	GCTTTCATG	GAGCTTTCAA
	CCTAGACCCT	INTITICATCA	ATGTTTTAAT	CAGGG	STTGG T	CGAAAGTAC	CTCGAAAGTY

62/130

FIGURE 40B

, 0.		A TICHAGITCE	TAATCGCATC	CATACAATGC	ACATACATAT	ATACATOCA
	AATAATTAA	AAGATCAAGA	ATTAGCGTAC	GTATGTTACG	TGTATGTATA	TATGTACGT
841	ATTAAAATA	ATGATTGGAC	GCAAACGGAA	ATAAGATTCC	A COTTO CA M	*****
	TAATTTTATO	TACTAACCTG	CGTTTGCCTT	TATTCTAAGG	TGGACACGTA	TTTTGTCTT
901	GACTTGGTTA	GAGTGAGGGA	TCAGGAAACA	CCACACTCAC	C) 00101may	
	CTGAACCAAT	CTCACTCCCT	AGTCCTTTGT	GGTGTGACTC	CTGCTCTACN	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
961	NTAGTGGGTG	GGGGGGGGAC	ATCAATAAAG	AACTCTTCTC	TGTCAGGGAG	TC1 CC1 CCC
	NATCACCCAC	ccccccccc	TAGITATITC	TTGAGAAGAC	ACASTCGGTG	ACTOGTGCCT
1021	ATAAAGGGAT	GAGAGTGAGG	GCAANTACCA	GAAGAATAAA	YICCIMMIY Y	CACATCAACA
	TATTTCCCTA	CTCTCACTCC	CGTTNATGGT	CTTCTTATTT	TAGGAAAATT	CICTACTTCT
1081	TTGTTATGAG	CACAGTGTGT	GGNTTCAAAA	ATCTTTTAAC	AACCCCAAGG	TGAACCTACT
	AACAATACTC	GTGTCACACA	CCNAAGTTTT	TAGAAAATTG	TIGGGGTTCC	ACTTCGATCA
1141	TGGAAGATAT	TIGAATTIGT	TTAAACCCAT	CTGGTCCTAG	CCCTATTCTT	TGAATCCGA2
	ACCIPICIATA	AACTTAAACA	AATTTGGGTA	GACCAGGATC	GGGATAAGAA	ACTTAGGCTT
1201	GAGGTCAAGA	ATTCCGAGCA	GAGTGGACTA	CCTGTGATAC	CTTAGACTAG	TCCTGTGTAT
	CICCAGTTCT	TAAGGCTCGT	CTCACCTGAT	GGACACTATG	GAATCTGATC	AGGACACATA
1261	TCAAGTCCAA	TGAGAGTATC	TGTAAGAGAA	TAAGTGCGAA	ATCCAGATCT	
	AG I'I CAGGTT	ACTOTOATAG	ACATTCTCTT	ATTCACGCTT	TAGGTCTAGA	

63/130

	10	20	30	40	50	60
1	GGATTCTGTT	GAGCCCTAGC	TCATTATGAT	GTCCTGTTGT	CCTACCCAAA	TAAGACTCAT
	CCTAAGACAA	CTCGGGATCG	AGTAATACTA	CAGGACAACA	GGATGGGTTT	ATTCTGAGTA
61	CCCAACTACA	TCTCAATAAT	TAATGAAGAT	GGAAATGAGG	TAAAAAATAA	ATAAATAAAT
	GGGTTGATGT	AGAGTTATTA	ATTACTTCTA	CCTTTACTCC	ATTTTTTATT	TATTATTA
121	AAAAGAAACA	TTCCCCCCA	TTTATTATTT	TTTCAAATAC	CTTCTATGAA	ATAATGTTCT
	TTTTCTTTGT	AAGGGGGGGT	AAATAATAAA	AAAGTTTATG	GAAGATACTT	TATTACAAGA
181	ATCCCTCTCT	AAATATTAAT	AGAAATCAAT	ATTATTGGAA	CTGTGAATAC	CTTTAATATC
	TAGGGAGAGA	TTTATAATTA	TCTTTAGTTA	TAATAACCTT	GACACTTATG	GAAATTATAG
241	TOATTATOOG	GTGTCAACTA	CTTTCCTATG	ATGTTGAGTT	ACTGGGTTTA	GAAGTCGGGA
	ASTAATAGGO	CACAGTTGAT	GAAAGGATAC	TACAACTCAA	TGACCCAAAT	CTTCAGCCCT
301	AATAATGCTG	ТАААИИИИИИ	AGTTAGTCTA	CACACCAATA	TCAAATATGA	TATACTTGTA
	TTATTATGAC	АТТТИИИИИИ	TCAATCAGAT	GTGTGGTTAT	AGTTTATACT	ATATGAACAT
361	AACCTCCAAG	CATAAAAAGA	GATACTTTAT	AAAAGAGGTT	CTTTTTTTCT	TTTTTTTTT
	TTGGAGGTTC	GTATTTTTCT	CTATGAAATA	TTTTCTCCAA	GAAAAAAAGA	AAAAAAAA
411	TOCAGATOGA	GTTT DACTOC	TGTCAGGCAG	GCNGAGTGCA	GTGGTGCCAT	CTCGGCTCAC
	AGGICTACCT	CAAAGTGAGG	ACAGTCCGTC	CGNCTCACGT	CACCACGGTA	GAGCCGAGTG
461	TGCAACCTCC	ACCTCCCATG	TT TAAGGGAT	TCTCCTTCCT	CAGTCTCCTG	AGTAGCTGGG
	ACGTTGGAGG	TGGAGGGTAC	AAGTTCCCTA	AGAGGAAGGA	GTCAGAGGAC	TCATCGACCC
541	ATTACAGGTG	TGCACCACCA	CACCCAGCTA	ATTTTTGTAT	TTTTAATAGA	GACAGGGTTT
	TAATGTCCAC	ACGTGGTGGT	GTGGGTCGAT	TAAAAACATA	AAAATTATCT	CTGTCCCAAA
601	CGATCGATGT	TGGCCAGGCT	AGTCTCGAAC	TCCTGACCTC	TAGGTGATCC	ACCCGCTCAG
	GCTAGCTAGA	ACCGGTCCGA	TCAGAGCTTG	AGGACTGGAG	ATCCACTAGG	TGGGCGAGTC
661	CTCCCAAAGT	TGTAGAATTA	CACGTGTGAG	GCACTGCGCC	TTGCCAGGAG	ATACATTTTT
	GAGGGTTTCA	ACATCTTAAT	GTGCACACTC	CGTGACGCGG	AACGGTCCTC	TATGTAAAA
721	GATAGGTTTA	ATTTATAAAG	ACACTGCACA	GATTTGAGTT	GCTGGGAAAT	GCACGGATTC
	CTATCCAAAT	TAAATATTTC	TGTGACGTGT	CTAAACTCAA	CGACCCTTTA	CGTGCCTAAG
781	CAGTATGCA GTCATACGT					

AATCAAAATA AAACAGTTAA AGTTTGATTA CTATAATGAA ACACAAAAAA AATGAATATT TTAGTTTTAT TTTGTGAATT TCAAAGTAAT GATATTAGTT TGTGTTTTT TTAGTTATAA 50 5

FIGURE 42

GTATCAGATA CATAGTCTAT ATCTTTTATG TCAGTAGAGG GEGAATGAAT CCTTCAGGAT TTEGATGATA TAGAAAATAC AGTCATCTCC CAGTERAGAATTA GGAAGTCCTA AAACTACTAT 61 ATCTTTTATG

AATAAATCAC AGATTCTGTC TTATTAGTG TCTAAGACAG TGCTIAGAAGT TGTIGAAGAAT TCAGGAGATG ACGATCTTCA AGACTTCTTA AGTGCTGTAC CCCAGCACTA GGGTCGTGAT 121

AACCCCACCA ATAACTAAAA TATTGATTTT TTGGGGTGGT CTCAAAATGG TTAGATCTAT TCAGGAAACA AAGCTAAAAA GAGTTTTACC AATCTAGATA AGTCCTTTGT TTCGATTTTT 181

ATAAGTAAGT ACCTATAGAA AGAAAAGCTC TGAAAAACAA CAATCATAAA TAGTTGGTTT ACTTTTTGTT GTTAGTATTT ATCAACCAAA 241

TGGATATCTT TCTTTTCGAG

TATTCATTCA

AGAGGAGGTA AAAAGAATCT CCTTAAAAGG AATACTATAT ACTGTAAAAC TGTGACTGAT TCTCCTCCAT TTTTCTTAGA GGAATTTTCC TTATGATATA TGACATTTTG ACACTGACTA 301

AGAAGGAA TCTTCCTT 190

65/130

FIGURE 43A

	10	20	30	40	50	60
2	TATGGGAAAS ATACCCTTTC	TTTTCAGAGĠ AAAAGTCTCC	AAATAAGGTA TTTATTCCAT	AGGGAAAAGT TCCCTTTTCA	TATCTCTTTT ATAGAGAAAA	TTTCTCTCCC AAAGAGAGGG
61	CCAATGTAAA	AAGTTATAGT	GGGTTTTACA	TGTGTAGAAT	CATTTTCTTA	AAACTTTATG
	GGTTACATTT	TTCAATATCA	CCCAAAATGT	ACACATCTTA	GTAAAAGAAT	TTTGAAATAC
121	AATACCATTA	TTTTCTTGTA	TTCTGTGACA	TGCCACCTTA	CAGAGAGGAC	ACATTTACTA
	TTATGGTAAT	AAAAGAACAT	AAGACACTGT	ACGGTGGAAT	GTCTCTCCTG	TGTAAATGAT
181	GGTTATATCC	CGGGGTTAAA	TTCGAGCATT	GGAATTTGGC	CAGTGTAGAT	GTTTAGAGTG
	CCAATATAGG	GCCCCAATTT	AAGCTCGTAA	CCTTAAACCG	GTCACATCTA	CAAATCTCAC
241	AACAGAACAA	TTTTTCTGTG	CTTACAGGTT	ATGGCTGTGG	CGTATAAGAA	GCATGCACTG
	TIGTCTTGTT	AAAAAGACAC	GAATGTCCAA	TACCGACACC	GCATGTTCTT	CGTACGTGAC
301	GGTTTATTAT	TAACTTTCAG	TATCTTTGTT	TTAAATATTT	TOTACAAAAA	TGTTTACTAA
	CCAAATAATA	ATTGAAAGTC	ATAGAAACAA	AATTTATAAA	AGATGTTTTT	ACAAATGATT
361	ATTAAATTGT	AGTATGAATT	GTTATAAATA	ATGAGGGAAA	CATTTACACA	TAGCAAATTT
	TAATTTAACA	TCATACTTAA	CAATATITAT	TACTCCCTTT	GTAAATGTGT	ATCGTTTAAA
421	AAAAATTACT	GTCATTTGAT	TTGTTAATAT	ATTTTTCTCT	TTAGTGGGAA	ATTAAATTAA
	TTTTTAATGA	CAGTAAACTA	AA IAATTATA	TAAAAAGAGA	AATCACCCTT	TAATTTAATT
481	AAAATTCCTT	TOGACTOTCA	GACAATAGGA	TTGCTGTGGT	CTACTIGCTT	ATTATATTTG
	TTTTAAGGAA	AGCTGACAST	CTGTTATCCT	AACGACACCA	GATGAACGAA	TAATATAAAC
541	TAGAGTCTAG	AATGCAATCT	CACTACACTA	TAGACATOTO	ANNCTAACGT	AGGACAATTC
	ATCTCAGATC	TTACGTTAGA	GTGATGTGAT	ATOTGTAGAG	TNNGATTGCA	TCCTGTTAAG
601	TGAGAAACTA	TTCCAGACCT	CCTTATGGGC	TTAGCCAAGG	NTATECTTEA	GCTGGCATTG
	ACTCTTTGAT	AAGGTCTGGA	GGAATACCCG	AATCGGTTCC	NATAGGAAGT	CGACCGTAAC
661	CAGGGTGACT	TCTNCCTCNN	AATCCAGCTC	TCTNTCACAG	ATGTGATCCA	AGAGACACTC
	GTCCCACTGA	AGANGGAGNN	TTAGGTCGAG	AGANAGTGTC	TACACTAGGT	TCTCTGTGAG
721	ACAATTAATC	AACTAGCATT	CTAAATTTCA	ATTCCAGATC	TATTACCTTA	ATATGGTAGC
	TGTTAATTAG	TTGATCGTAA	GATTTAAAGT	TAAGGTCTAG	ATAATGGAAT	TATACCATCG

FIGURE 43B

- 781 TGAAGCTTTN NTCACTGTCA ATTCTGATCA GATATATGAC AATTTTAAAT TATTTGCAGT ACTTCGAAAN NAGIGACAGT TAAGACTAGT CTATATACTG TTAAAATTTA ATAAACGTCA
- 841 GTGTAAGAAA CGCTTCAGGT AGTTTAAATT TAAGGCT CACATTCTTT GCJAAGTCCA TCAAATTTAA ATTCCGA

67/130

FIGURE 44A

1 CTCCTTTGGG CCCTGCCAGC TGGGCATTT TAACCTAGTT TACACAGTGT CTTTTTTCC GAGGAAACCG GGGACGGTCG ACCCGTAANA ATTGGATCAA TACACAGTGT CTTTTTTCC GAAAAAAAGG ACCCGTAANA ATTGGATCACA AATTACACA TACACAATTA CACTTAAATG AATAAAATTT AACCAACAAG GTCTAAGCCA TTATAGTTAA AAATTATATA CACTTAAATG CACTTAAATG AATAAAATTT AACCAACAAG GTCTAAGCCA TTATAGTTAA AAATTATAAT GTGAATTTAC CTGTAAGACCA TTATAGTTAA AAATTATAAT GTGAATTTAC CTGTAAGACC TACACATAG GACATCCGG ATGTTGTATC CTGTAAGACC TACACATAG CACTAGAGCC TACACATAG CACTAGAGCC TACACATTC CTGTAAGACC ATCACAATTA TACCTTAAAG GAAAAGAAAA		10	20	30	4 o	50	60
61 TTATTTTAAA TTGGTTGTTC CAGATTCGGT AATATCAATT TTTAATATTA CACTTAAATG AATAAAATTT AACCAACAAG GTCTAAGCCA TTATAGTTAA AAATTATAAT GTGAATTTAC 121 AGTACCAGAA CTTTATCTTC AACCTTTTC TCATTAGGCC TACAACATAG GACATCTCGG TCATGGTCTT GAAATAGAAG TTGGAAAAAG AGTAATCCGG ATGTTGTATC CTGTAGAGCC 181 ATAGAATTTC CTTTTCTTTT TGGTACTATA AGCTGCTAAA ATCCTCAGAA CATCAGATTT TATCTTAAAG GAAAAGAAAA	1	I CTCCTTTGGC GAGGAAACCG	CCCTGCCAGC	TGGGCATTTT	TAACCTAGTT	TACACAGTGT	CITTITTTCC
AATAAAATTI AACCAACAAG GTCTAAGCCA TTATAGTTAA AAATTATAAT GTGAATTTAC 121 AGTACCAGAA CTTTATCTTC AACCTTTTC TCATTAGGCC TACAACATAG GACATCTCGG TCATGGTCTT GAAATAGAAG TTGGAAAAAG AGTAATCCGG ATGTTGTATC CTGTAGAGCC 181 ATAGAATTTC CTTTTCTTTT TGCTACTATA AGCTGCTAAA ATCCTCAGAA CATCAGATTT TATCTTAAAG GAAAAGAAAA		ONGONDACCO	334AC331C3	XCCCQ1XXXX	ATTGGATCAA	ATGIGICACA	GAAAAAAAGG
121 AGTACCAGAA CTTTATCTTC AACCTTTTC TCATTAGGCC TACAACATAG GACATCTCGG TCATGGTCTT GAAATAGAAG TTGGAAAAAG AGTAATCCGG ATGTTGTATC CTGTAGAGCC 181 ATAGAATTTC CTTTTCTTTT TGCTACTATA AGCTGCTAAA ATCCTCAGAA CATCAGATTT TATCTTAAAG GAAAAGAAAA	61	TTATTTTAAA	TTGSTTGTTC	CAGATTCGGT	AATATCAATT	TTTAATATTA	CACTTAAATG
181 ATAGAATTC CTTTTCTTT TGCTACTATA AGCTGCTAAA ATCCTCAGAA CATCAGATTT TATCTTAAAG GAAAAGAAAA		AATAAAATT	AACCAACAAG	GTCTAAGCCA	TTATAGTTAA	AAATTATAAT	GTGAATTTAC
181 ATAGAATTIC CITTICITIT IGCTACTATA AGCIGCIAAA ATCCTCAGAA CATCAGATTI TATCTIAAAG GAAAAGAAAA ACGAIGATAT TCGACGATTI TAGGAGTCIT GIAGTCIAAAA 241 AGAAATGITC TIAITAGIGG TAGIGAGCAT TIGCTATTIC CIACCACTAG CITACAAATA TCTTTACAAG AATAATCACC ATCACTCGIA AACGAIAAAG GAIGGIGATC GAATGITTAT 301 TAATAAGCAA GIAGACCCCA CAGGICAAAT TCCTATTIGI TCTACAGICG AAAGGGAATI ATTATTCGIT CATCTGGGGI GICCGGITTA AGGATAAACA AGATGICAGC TITCCCTTAA 361 TITTAAAAIT TAAITICCAC TAAAGAGAAA AATATATTAA CAATCAAATTI GACAGICGAI AAAATTITAA AITAAAGGI ATTTCTCTITI TIAITATAATI GITTAGITTAA CIGCGGGTA CIGCGATAAAATTIAAA AAAATAAAGGA TACAAATTAA CAAAAAGGGAA TACAAATTAA AAAATTAACGA TACACAATTAA CAAAAAGGGAA TAAAAAAAAA TIGTTAAAGTAI GATGITAAAT 431 ATTTAGIAAA CATTITIGIA GACGATATTI AAAACAAAGA TACTGAAAGT TAAATATATG 441 TIAGIGAAA CATTITIGIA GACGATATTI AAAACAAAGA TACTGAAAGT TAAATATATTG 451 ATTTAGIAAA CATTITIGIA GACGAATATTI AAAACAAAGA TACTGAAAAT ATTTATTTG 451 TIAGIGAAA CATTITIGIA GCCAACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG GIGAACAATT GIAGAGAACA CATTATATATTG 461 TIACTCTAAA CATCTAGAT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTI GIAGAGTTT GIAGATATTG TAAAATATTG TAAAATATT GIAGAGATTI GIAGAGATTI GIAGAGATTA CAATGAGAAC CCCTATATTG 661 TIACTCTAAA CATCTAGAT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GIAGAGTTT GIAGAGTTT GIAGAGATT GIAGAGAACA CAATCAATGG	121	AGTACCAGAA	CTTTATCTTC	AACCTTTTTC	TCATTAGGCC	TACAACATAG	GACATCTCGG
AGAAATGTTC TTATTAGTGG TAGTGAGCAT TTGCTATTTC CTACCACTAG CTTACAAATA TCTTTACAAG AATAATCACC ATCACTGTA AACGATAAAG GATGGTGATC GAATGTTTAT 301 TAATAAGCAA GTAGACCCCA CAGGCCAAAT TCCTATTTGT TCTACAGTCG AAAGGGAATT ATTATTCGTT CATCTGGGGT AACGATAAACA AGATGTCAGC TTTCCCTTAA AGGATAAACA AGATGTCAGC TTTCCCTTAA AACAATTTAA CAATCAAATT GACAGTCGAT AAAAATTTTAA ATTAAAAGGG ATTTCCCTTT TTATATAAATT GACAGTCGAT AAAATTTTAA ATTAAAAGGG ATTTCCCTTT TTATATAAATT GTTAGTTTAA CTGCAGCTA 401 TTTAAATGGT ATGTGTAATT GTTTTCCCTC ATTATTATA ACAATTCATA CTACAATTTA AAAATTAAACGA TACAAATTTA CAATCAAAT TGTTAAGTAT GATGTTAAAT 401 ATTTAGTAAA CATTTTGTA GACCATATTT AAAACAAAGA TACTGAAAGT TAATATAAAC TAAAATCATTT GTAAAAACAA TTTTGTTTCT ATGACTTTCA ATTATTTTG 401 TAGGTGAAA CATTTTGTA GACCATATAT AAAACAAAGA TACTGAAAAT TAATATTTG 401 TAGGTGAAA CATCTGGAG GCCACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG GGCAAATTC CAATGCTGTAA CATCTATTT TAAACAAGAC 601 TACCTCTAAA CATCTATATT GGCCAAATTC CAATGCTGAA ATTTAACCCC GGGATATAAC AATGAGATTT GTAGATTTT TAAACAAGAC CCCCTATATTG 661 CTAGTAAAATG TGTCCTCTCT GTCCAAGGGG GCATGTCACA GAATACAGAA CAATCAATGG		ICAIGGICTT	GAAATAGAAG	TTGGAAAAAG	AGTAATCCGG	ATGTTGTATC	CTGTAGAGCC
241 AGAAATGTTC TTATTAGTGG TAGTGAGCAT TTGCTATTTC CTACCACTAG CTTACAAATA TCTTTACAAG AATAATCACC ATCACTGTA AACGATAAAG GATGGTGATC GAATGTTTAT 301 TAATAAGCAA GTAGACCCCA CAGGCCAAAT TCCTATTTGT TCTACAGTCG AAAGGGAATT ATTATTCGTT CATCTGGGGT STCCGGTTTA AGGATAAACA AGATGCAGC TTTCCCTTAA 361 TITTAAAATT TAATTTCCAC TAAAGAGAAA AATATATTAA CAATCAAATT GACAGTCGAT AAAATTTTAA ATTAAAGGGG ATTCCCTTT TTATATATAT GTTAGTTTAA CTGCAGCTA 401 TITTAATTGGT ATGTGTAATT GTTTTCCCTC ATTATTTATA ACAATTCATA CTACAATTTA AAATTAACGA TACACATTAA CAATATTAA CAATCAAAT TGTTAAGTAT GATGTTAAAT 481 ATTTAGTAAA CATTTTGTA GACAATATT AAAACAAAGA TACTGAAAGT TAATATAAAC TAAAATCATTT GTAAAAAAAAT CTGGTATAAA TTTTGTTCTC ATGACTTTCA ATTATATTTG 541 TAGGTGAAA CATCTGTAG GCCACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG 33TCACGTAC GAGAGACATC CGGTTTAAG TAACCTGTAA CCTGTCTTTT TAAACAAGGC 601 TTACTCTAAA CATCTATATT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTAGATGTGA CCCGGTTTAAG GTTACGAGCT TAAATTGGGG CCCTATATTG 661 CTAGTAAATG TGTCCTCTCT GTCAAGGTGG GCATGTCACA GAATACAGAA CAATCAATGG	181	ATAGAATTTC	CITTICITI	TGCTACTATA	AGCTGCTAAA	ATCCTCAGAA	CATCAGATTT
TOTTTACAAG AATAATCACC ATCACTCGTA AACGATAAAG GATGGTGATC SAATGTTAT 301 TAATAAGCAA GTAGACCCCA CAGGCCAAAT TCCTATTTGT TCTACAGTCG AAAGGGAATT ATTATTCGTT CATCTGGGGT GTCCGGTTTA AGGATAAACA AGATGTCAGC TTTCCCTTAA 361 TTTTAAAATT TAATTTCCAC TAAAGAGAAA AATATATTAA CAATCAAATT GACAGTCGAT AAAATTTTAA ATTAAAGGTG ATTTCTCTTT TTATATAATT GTTAGTTTAA CTACAATTTA AAAATTAACGA TACACATTAA CAAAAGGGAAG TAATAAAATAT TGTTAAGTAT GATGTTAAAT 401 ATTTAGTAAA CATTTTTGTA GACAATATT AAAACAAAGA TACTGAAAGT TAATATAAAC TAAATCATTT GTAAAAAAATAT CTGGTATAAA TTTTGTTTCT ATGACTTTCA ATTATATTTG 401 TAGTGGAAT CTCTCTGTAG GCCACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG GGGTATAAA CATCTACATT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC 601 TTACTCTAAA CATCTACATT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTAGATTTGA CCGGTTTAAG GTTACGAGCT TAAATTGGGG CCCTATATTG 661 CTAGTAAAT TGTCCTCTCT GTCAAGGTGG GCATGTCACA GAATACAGAA CAATCAATGG		TATCTTAAAG	GAAAAGAAAA	ACGATGATAT	TCGACGATTT	TAGGAGTCTT	GTAGTCTAAA
TAATAAGCAA GTAGACCCCA CAGGCCAAAT TCCTATTTGT TCTACAGTCG AAAGGGAATT ATTATTCGTT CATCTGGGT GTCCGGTTTA AGGATAACA AGATGTCAGC TTTCCCTTAA 361 TITTAAAATT TAATTTCCAC TAAAGAGAAA AATATATTAA CAATCAAATT GACAGTCGAT AAAATTTAAA ATTAAAAGGTG ATTTCTCTTT TTATATAATT GTTAGTTTAA CTGTCAGCTA 401 TITAATTGGT ATGTGTAATT GTTTTCCCTC ATTATTTATA ACAATTCATA CTACAATTTA AAATTAACGA TACACATTAA CAATCAAAT GATGTTAAATT 481 ATTTAGTAAA CATTTTTGTA GACCATATTT AAAACAAAGA TACTGAAAGT TAATATAAAC TAAATCATTT GTAAAAAAAAATAT TGTTAAGTTCA ATTATATTTG 541 CCAGTGCAC GAGAGACATC CGGTTAAAA TTTTGTTTCTT ATGACTTTCA ATTATATTTG 642 TTACTCTAAA CATCTAGATT GGCCACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG GGTACAGTAC GAGAGACATC CGGTTTTAAAT CGTGTCTTTT TAAACAAGAC 663 TTACTCTAAA CATCTAGATT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTAGATTTGA CCGGTTTAAG GTTACGAGCT TAAATTGGGG CCCTATATTG	241	AGAAATGTTC	TTATTAGTGG	TAGTGAGCAT	TTGCTATTTC	CTACCACTAG	CTTACAAATA
ATTATTCGTT CATCTGSSST STCCSGTTTA AGGATAAACA AGATGTCAGC TTTCCCTTAA 361 TITTAAAATT TAATTTCCAC TAAAGAGAAA AATATATTAA CAATCAAATT GACAGTCGAT AAAATTTAA ATTAAASSTG ATTTCTCTTT TTATATAAATT GTTAGTTTAA CTGCAGCTA 401 TITAATTSCT ATGTSTAATT GTTTTCCCTC ATTATTTATA ACAATTCATA CTACAATTTA AAAATAACSA TACAACAATAA CAATCAAAT TGTTAAGTAT GATGTTAAAT 481 ATTTAGTAAA CATTTTTSTA GACCATATTT AAAACAAAGA TACTGAAAGT TAATATAAAC TAAATCATTT GTAAAAACAA CATTTTTTTG 481 CAGTSCAAA CATTTTTSTA GCCACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG GTCAAGACAT CGGTTTTTTT TAAACAAGAC 601 CAGTSCAAC GAGAGACATC CGSTSTCGGT ATTGGACATT CGTGTCTTTT TAAACAAGAC 601 TTACTCTAAA CATCTACACT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTASATCTGA CCCGTTTTAAG CCCCTATATTG		TCTTTACAAG	AATAATCACC	ATCACTCGTA	AACGAT AAAG	GATGGTGATC	GAATGTTTAT
361 TITTAAAATT TAATTICCAC TAAAGAGAAA AATATATTAA CAATCAAATT GACAGTCGAT AAAATTITAA ATTAAAGGTG ATTTCTCTTT TIATATAATT GTTAGTTTAA CTGCAGCTA 421 TITTAATTIGOT ATGTGTAATT GTTTCCCCTC ATTATTTATA ACAATTCATA CTACAATTTA AAATTAACGA TACAATTTAA CAATTAAAATAT TGTTAAGTAT GATGTTAAAT 481 ATTTAGTAAA CATTTTTGTA GACGATATTT AAAACAAAGA TACTGAAAGT TAATATATAC TAAATCATTT GTAAAAAAATT CTGGTATAAA TTTTGTTTCT ATGACTTTCA ATTATATTTG 541 DIAGTGCAG GAGAGACATC CGGTGTATAAA TTTTGTTCTC GGGCAAATT CGGTGTCTTT TAAACAAGAC 601 TTACTCTAAA CATCTATATT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTAGATTTGA CCGGTTTAAG GTTACGAGCT TAAATTGGGG CCCTATATTG	301	TAATAAGCAA	GTAGACCCCA	CAGGCCAAAT	TCCTATTTGT	TCTACAGTCG	AAAGGGAATT
AAAATTTAA ATTAAASSTG ATTTCTCTT TTATATAATT GTTAGTTTAA CTGTCAGCTA 421 TTTAATTSCT ATSTSTAATT GTTTTCCCTC ATTATTTATA ACAATTCATA CTACAATTTA AAATTAACSA TACACATTAA CAAAAAGSSAS TAATAAATAT TGTTAAGTAT GATGTTAAAT 481 ATTTAGTAAA CATTTTTSTA GACCATATTT AAAACAAAGA TACTGAAAGT TAATATAAAC TAAATCATTT GTAAAAACAT CTGGTATAAA TTTTGTTCTC ATGACTTTCA ATTATATTTG 541 CCAGTSCATG CTCTCTGTAG GCCACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG GSTCACGTAC GAGAGACATC CGSTSTCGGT ATTGGACATT CGTGTCTTT TAAACAAGAC 601 TTACTCTAAA CATCTACATT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTASATSTGA CCGGTTTAAG GTTACGAGCT TAAATTGGGG CCCTATATTG 661 CTASTAAATG TGTCCTCTCT GTCAAGGTGG GCATGTCACA GAATACAGAA CAATCAATGG		ATTATICGT	CAICIGGGS	GICCGGITTA	AGGATAAACA	AGATGTCAGC	TTTCCCTTAA
TTTAATTSOT ATSTSTAATT GTTTTCCCTC ATTATTTATA ACAATTCATA CTACAATTTA AAATTAACSA TACACATTTA CAAAAGSGAS TAATAAATAT TGTTAAGTAT GATGTTAAAT 481 ATTTAGTAAA CATTTTTSTA GACCATATTT AAAACAAAGA TACTGAAAGT TAATATAAAC TAAATCATTT GTAAAAACAT CTGGTATAAA TTTTGTTCTC ATGACTTTCA ATTATATTTG 541 CCAGTGCATG CTCTCTGTAG GCCACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG GGCCACAGCCA TATGGACATT CGTGTCTTT TAAACAAGAC 601 TTACTCTAAA CATCTACACT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTAGATETGA CCGGTTTAAG GTTACGAGCT TAAATTGGGG CCCTATATTG 661 CTAGTAAATG TGTCCTCTCT GTCAAGGTGG GCATGTCACA GAATACAGAA CAATCAATGG	361	TITAAAATT	TAATTTCCAC	TAAAGAGAAA	AATATATTAA	CAATCAAATT	GACAGTCGAT
AAATTAACSA TASACATTAA CAAAAGSSAS TAATAAATAT IGTTAAGTAT GATGTTAAAT 481 ATTTAGTAAA CATTTTISTA GACGATATTT AAAACAAAGA TACTGAAAGT TAATATAAAC TAAATCATTT GTAAAAAATAT CTGGTATAAA TTTTGTTCTC ATGACTTTCA ATTATATTTG 541 STAGTSIATS CTCTCTGTAG GCCACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG 33TCACGTAC GAGAGACATC CGSTSICGGT ATTGGACATT CGTGTCTTTT TAAACAAGAC 601 TTACTCTAAA CATCTASACT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTAGATSTGA CCGGTTTAAG GTTASGAGCT TAAATTGGGG CCCTATATTG 661 STASTAAATG TGTCCTCTCT GTCAAGGTGG GCATGTCACA GAATACAGAA CAATCAATGG							
ATTTAGTARA CATTTTISTA GACIATATT AAAACAAAGA TACTGAAAGT TAATATAAAC TAAATCATTT GTAAAAAAAAAA	421	TTTAATTGOT	ATSTSTAATT	GTTTTCCCTC	ATTATTTATA	ACAATTCATA	CTACAATTTA
TARATCATTT GIARARATAT CTGGTATARA TTTTGTTCT ATGACTTCA ATTATATTG 141 STAGTGIATS CTCTCTGTAG GCCACAGCCA TARCCTGTAR GCACAGARAR ATTTGTTCTG 33TCACGTAC GAGAGACATC CGGTGTCGGT ATTGGACATT CGTGTCTTT TARACARGAC 601 TTACTCTARA CATCTAGATT GGCCARATTC CARTGCTCGA ATTTRACCCC GGGATATARC AATGAGATTT GTAGATGTGA CCGGTTTARG GTTAGGAGCT TARATTGGGG CCCTATATTG 661 STAGTARATG TGTCCTCTCT GTCARGGTGG GCATGTCACA GRATACAGAR CRATCRATGG		~~	- C - C - C - C - C - C - C - C - C - C	CAMARGUSAS	TAATAAATAT	IGTTAAGTAT	GATGTTAAAT
141 STAGTGIATS CTCTCTGTAG GCCACAGCCA TAACCTGTAA GCACAGAAAA ATTTGTTCTG 33TCACGTAC GAGAGACATC CGGTGTCGGT ATTGGACATT CGTGTCTTT TAAACAAGAC 601 TTACTCTAAA CATCTACACT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTAGATETGA CCGGTTTAAG GTTACGAGCT TAAATTGGGG CCCTATATTG 661 STAGTAAATG TGTCCTCTCT GTCAAGGTGG GCATGTCACA GAATACAGAA CAATCAATGG	481	ATTTAGTALA	CATTTTTGTA	GACCATATTT	AAAACAAAGA	TACTGAAAGT	TAATATAAAC
601 TTACTCTARA CATCTACATT GGCCARATTC CARTGCTCGA ATTTRACCCC GGGATATRAC ARTGAGATTT GTAGATTGA CCGGTTTAAG GTTAGAGCT TARATTGGGG CCCTATATTG		innichi	GIAAAAA.CA.	CIGGIAIAAA	TPPTGTTTCT	ATGACTTTCA	ATTATATTTG
601 TTACTCTAAA CATCTACATT GGCCAAATTC CAATGCTCGA ATTTAACCCC GGGATATAAC AATGAGATTT GTAGATETGA CCGGTTTAAG GTTACGAGCT TAAATTGGGG CCCTATATTG	541	COAGTGCATG	CTCTCTGTAG	GCCACAGCCA	TAACCTGTAA	GCACAGAAAA	ATTTGTTCTG
AATGAGATTT GTAGATETGA CCGGTTTAAG GTTAEGAGCT TAAATTGGGG CCCTATATTG 661 STAGTAAATG TGTCCTCTCT GTCAAGGTGG GCATGTCACA GAATACAGAA CAATCAATGG		JJ.CACG.AC	GAGAGACA.C	CGG131CGGT	ATTGGACATT	CGTGTCTTT	TAAACAAGAC
661 STAGTAAATG TGTCCTCTCT GTCAAGGTGG GCATGTCACA GAATACAGAA CAATCAATGG	601	TTACTCTAAA	CATCTACACT	GGCCAAATTC	CAATGCTCGA	ATTTAACCCC	GGGATATAAC
661 CTAGTAAATG TGTCCTCTCT GTCAAGGTGG GCATGTCACA GAATACAGAA CAATCAATGG GATCATTTAG ACAGGAGAGA CAGTTCCACC CGTACAGTGT CTTATGTCTT GTTAGTTACC		AMIGAGATIT	GIASATETSA	CCGGTTTAAG	GTTACGAGCT	TAAATTGGGG	CCCTATATTG
SALEATIAL ACAGGAGAGA CAGITCCACC CGTACAGTGT CITATGTCTT GTTAGTTACC	661	CTAGTAAATG	TGTCCTCTCT	GTCAAGGTGG	GCATGTCACA	GAATACAGAA	CAATCAATGG
721 TATTCATAAA GTTTTAAGAA AATGATTCTA CACATGTAAA ACCCACTATA ACTTTTTACA ATAAGTATTT CAAAAATTCTT TTACTAAGAT GTGTACATTT TGGGTGATAT TGAAAAATGT	721	TATTCATAAA ATAAGTATTT	GTTTTAAGAA CAAAATTCTT	AATGATTCTA TTACTAAGAT	CACATGTAAA GTGTACATTT	ACCCACTATA TGGGTGATAT	ACTTTTTACA

68/130

FIGURE 44B

641 CATATOTEGO AATTAIGATT ITOOCAGAGO AATTGATTTT CATETOCCET TCC GTATAGACCG TTAATGTTAA AAGGGTITIE TTAACTAAAA GTACAGGGCA AGG

FIGURE 45A

	1	0 20	30	4 (50	6:
;	GATGCTATT	T GGGCAATTTO A CCCGTTAAA	TTATTGACAG	TTTTGAAAT	TTAGGCTTTT	ATCTCCATT
6.	AAATCATGA	T AAATTTT CCA A TTTAAA AGGT	ACATGGGTGT TGTACCCACA	TGCTTGTTAT ACGAACAATA	TTTATCAGTA AAATAGTCAT	TAAAATAGAA ATTTTATCTT
121	GAGTGGTTC CTCACCAAG	I GTTCTGGAAT A CAAGACCTTA	TTAGTATATA AATCATATAT	CATGAGTATO GTACTCATAC	TAGTGTATGT ATCACATACA	CAGCCATGAA GTCGGTACTT
181	AATGAACCT TTACTTGGAI	TCAGATGTTT	AACTTCAGGG TTGAAGTCCC	AACCTAATTO	AGTCATTGCT	CCAGACATTG
241						
- 12	AACGAAACT	GCCACTATAT GGGTGATATA	ANNUNUNUNA	GCCCGTTACT	CTCAGTGTGG GAGTCACACC	CAAGGATACT GITCCTATGA
301	ACTGCAGGCC TGACGTCCGC	TGTTTCTGGA ACAAAGACCT	AGGCACTGGA TCCGTGACCT	STOCTOTGAT SASSAGACTA	GCAAACTTTG CGTTTGAAAC	GCCAGGGACT CGGTCCCTGA
361	CCTTGATAGO GGAACTATCG	TCTTAAATAG AGAATTTATO	ATGCTGCACC TACGACGTGG	AACACTCTCT TTGTGAGAGA	TTCTTTTCTC AAGAAAAGAG	TCTTTTTCTT AGAAAAAGAA
421	TATTCAATAT ATAAGTTATA	TAGACTACAA ATCTGATGTT	GCATTITAAT CGTCAGATTI	GASTTOTCAG STGAAGAGTO	GGTTTCTAGC CCAAAJATCG	TCTCTCTCAT AGAGAGAGTA
481	TTCACACATG AAGTGTGTAC	CTTTCCTAGT GAAAGGATCA	AATCTCTACT TTAGAGATGA	CATATATCTT GTATATAGAA	ACTGCTACGC TGAGGATGCG	TGGGGCCAGA ACCCCGGTCT
541	ТААСИНИНИИ АТТGИИИИИИ	CTTCCATTTT GAAGGTAAAA	GTTTTTATCT CAAAAATAGA	CTATTCTTCT GATAAGAAGA	TCCCCTTCTG AGGGGAAGAC	CTTTCATTAT GAAAGTAATA
601	TGAAACTTTC ACTTTGAAAG	TGCTTTCATT ACGAAAGTAA	ATTGAAACTT TAACTTTGAA	TCCCAGATTT AGGGTCTAAA	GTTCTGCTTA CAAGACGAAT	ACCTGGCATT TGGACCGTAA
661	GGAACTGTTT CCTTGACAAA	CCTCTTCCCT GGAGAAGGGA	GTGCTGCTTT (CACGACGAAA (CTCCCATTGC GAGGGTAACG	CATGTCCTTT GTACAGGAAA	TTTTTTTTT AAAAAAAA
721	TTTTTTTTT ******	TGAGACAGTG ACTCTGTCAC	TCACTCTGTT (AGTGAGACAA (GCCCAGGCTG CGGGTCCGAC	GAGTGCAATG (CTCACGTTAC (GTGCAATCTT CACGTTAGAA

70/130

FIGURE 45B

781	GGCCACTGCA					
	CCGGTGACGT	TGGGGCTGAG	GCCCAAGTTC	ACTAAGAGAT	GGACGGAGTC	GGAGGACTCA
841	AGCTGGGATT TCGACCCTAA	ACAGGTGCCA TGTCCACGGT				
901	TCACATGCAG AGTGTAGGTC	ATCAGCTGTT TAGTCGACAA				
961	GCCAAAGTGC CGGTTTCACG	TAGGCTTAGA ATCCGAATCT				
1:::	GCCTCAAGAA CGGAGTTCTT	TGTNNNTATG ACAMMMATAC				
1681	TATAGATGTA ATATOTAGAT	TCCTAGTATG AGGATCATAC	•			

FIGURE 46A

	10	20	30	40	50	60
:	CACAAAAAA GTGTTTTTT	GATTATTAGC CTAATAATCG	CACAAAAAA GTGTTTTTT	CCTTGAAGTA GGAACTTCAT	ACGCATTAAA TGCGTAATTT	ATGTTAATGG TACAATTACC
61	ATTCACTTTA TAAGTGAAAT	TTGAGCATCT AACTCGTAGA	GCTCATAATA CGAGTATTAT	CTTTAATGAG GAAATTACTC	TGCAAAGTGC ACGTTTCACG	TTTGAATATA AAACTTATAT
121	. ATACGTCATT	' TAAACCTTAC	CATAATTCTG	AGGAATTGCT	ACCTCCACTT	CACAGATGG
		ATTTGGAATG				
	CGTGTCCTCC	GAATCTATTG	TACGGGTTTC	AGTACGAAGA	TCATTTACCT	ATATTAATTC
241	ATTIAAATTA TAAGTTTAAT	TTGATAAGAA AACTATTCTT	TTTGATCTGC AAACTAGACG	STTASSAGTA GAATGGTSAT	TCTAGTAGTA AGATCATCAT	AATCTAAAAG TTAGATTTTC
301	CGCTTTCCAG GCGAAAGGTC	AGCATGTGCT TCGTACACGA	GTTGATAGAS CAACTATCTC	CTTGATGTCT GAACTACAGA	AACTCTCTGA TTGAGAGACT	AATTTTCCAT TTAAAAGGTA
361	TCTTATTTGT AGAATAAACA	CTCACTGGTA GAGTGACCAT	TATAGTTATT ATATCAATAA	TTTTACTACT AAAATGATGA	TTCATACACC AAGTATGTGG	TACTAAGAAG ATGATTCTTC
421	ACAGGAGGAT TGTCCTCCTA	CAAAGATAGG GTTTCTATCC	ATTTCATTTA TAAAGTAAAT	GAATGOOTAA OTTA GGGATT	AGCTTCACGT TCGAAGTGCA	ATTTTAATTC TAAAATTAAG
481	AGAATAAGAT TOTTATTOTA	TCAGGCAGAC AGTCCGTCTG	CACCAGTATA GTGGTCATAT	TECCATEGTC ACGGTACCAG	CCTGGTTATC GGACCAATAG	TTTCAGCAGG AAAGTCGTCC
541	TGACCGAGAA	AGAAAACATG TCTTTTGTAC	GTAATGTTTA	TGAAATGGTG	GGTTCTTGTA	GTTTCACTTC
601	AACATATCTG	CCTTTACTGT	ATTAAGATGA	TGGATTAACT	TATTCTTGAT	ATGGGCATGT
661	AAAACAATAT	GGAAATGACA ACTTTTACTA	AACAGCTACA	GAGAGACAAA	TGTGTTTCCA	GACAAACTTA
	TTTTGTTATA	TGAAAATGAT	TTGTCGATGT	CTCTCTGTTT	ACACAAAGGT	CTGTTTGAAT
/41	TCTCTGACTC	TGTTCAAACT ACAAGTTTGA	GAATAATCTC CTTATTAGAG	GACCTTAATT CTGGAATTAA	GTAACTATAT CATTGATATA	TTTATGAAAT AAATACTTTA

72/130

FIGURE 46B

- 781 CCAGCTGTAA GGCAAAACAG ACTCTTGGCT ACACGGCATT TGTCTGTTAA TGATACTCAA GGTCGACATT CCGTTTTGTC TGAGAACCGA TGTGCCGTAA ACAGACAATT ACTATGAGTT
- 841 COTTAACCGT CACTTAATAA TGCTGAATAA TGTCATTAAT CTGAGATGTT AGTATGATCA GGAATTGCCA GTGAATTATT ACGACTTATT ACAGTAATTA GACTCTACAA TCATACTAGT
- 911 ATGGGAATGA CTGCTGAGCT CTCGAAGCCC TACCCTTAGT GACGACTCGA GAGCTTCGGG

-239 -120 -1	3 9	180	270	360	430 130	540
E83	53	84	ËĒ	85	617 C17	ð:
553	84	₹\$	Aen Aen	TAC	8 g	TAT
888 888	23	A TO	35	8.3	7:0	₹.
882	25	A41	61 6	112	Pro Pro	115
AATT	2 3	CAT	A F	CTG Leu	S C	IAI
ADGA AGGGA	8-1	AAG Ly•	917	71. V•1	₹7 01°	210
261 CTCAAAAGGGGGGGATTTCCTT CTGGAGGGAATTCCAGCCTGCAGGGCTA XGGGAAGGCGGCTCTGCTGGGGGGAAA	87	7 ° L	AL.	CAT	11 P.	CI
ACCI	84	ACT.	11A Leu	TAT	117	GAT
7000	25	ATT 11.	CAT N1.	CAT BI.	JCA Ser	8
TOCA	223	Y C	۶ <u>د</u>	A14	ACA The	0 Y C
AAAC (XCAC	25	ACT The	ATA 11.	CTA	A T	٠ ا
G:A:S	¥8	AL.	.; č	GAG	TTC Pie	ATG
1001 GAOC	OCC Pro	₹ 2 0 C	ACA The	CTT Vel	14	₹ ?
200 E	CCCC	AAT A.n	ËĒ	TCT Sec	GAG AT	≯ 5
1300C	THE OUT GIG CATE ALC UND CONT CATE OFF THE CIG ALC GOT OFF GOT CIG GIG CTO CONT SEE ALC VAL ALC THE ALC ALG ALG ALC ALC TEP LOU CYC ALC GLY ALC LOU VAL LOU ALC GLY HILLON	TCC Ser	AIC ANG ANG TIC IIA TAI AAT TII ACA CA: AIA CCA CAI IIA OCA GGA ACA GAA CAA AAC III II. Lye Lye lye lie Leu Tyr Aşin Pie Thr Glin II. Pro Bie Leu Ale Giy Thr Glu Gla Aen Phe	TOG AAA GAA III GOC CIG GAI ICI GII GAG CIA GCA CAI IAI GAI GIC CIG IIG IOC IAC CCA Irp Lys Glu fie Gly Leu Aep Ser Val Glu Leu Als Bie Tyr Asp Vel Leu Leu Ser Tyr Pro	ATA ATI AAI GAA GAI GGA AAI GAG ATT IIC AAC ACA ICA IIA III GAA CCA CCI CCI CCA CGA Ile Ile Aen Glu Aep Gly Aen Glullie Phe Agy The Ser Leu Phe Glu Pro Pro Pro Gly	CCI ITC AGI GCI ITC ICI CCI CAA GGA ATG CCA GAG GGC GAI CIA GTG IAI GIT AAC IAI GCA Pro Phe Ser Ale Phe Ser Pro Cia Gie Met Pro Gie Gie Gie Ann 1500 Wat Pro Cia Cie
₹	MI.	100 100	TAT Tyr	CTG L•4	CCA G1y	TOT
101	M. T.	AAA Lye	117 Leu	61.7 61.4	A. P.	TTC
747.A	AL.	Y =	TTC 170	11.	61°	S.
7.2401 SGT C	T CTC	Es	AAG Ly•	GAA GLu	AAT	AGT
Maria Scott	ALA TE	5 E	AG Ly∎	₹\$ **	ATT 11.	110
XXAT.	3.E	35	A10 11•	100 1rp	ATA 11.	122
XIX	A P	T E	¥ ¥	S 10	TCA Ser	
TCTO AGAG	ACC	22.3	0 V 0	TCC Ser	ATC 11.	GTA V
TCT: TGAG	₹5 5	EE	A14	₹5	TAC	ATT 11.
AGA1	35	82	₹5	ATT 11.	A A C	GAT
67.70 AGTC	11.	53	23	₹ 5	85	100 50 F
AGAT	23	53	₹ 3	MG Ly•	CAT B1.	CTT
261 CTCAAAAAAAAAAATITOCTTCTCTCTCTCTCTCTCTTTTCAGTTXTTCTAGTATATACTCTAGAAAAAAAACACTTTCCTTTGAAAAAAAA	ATO TOO AAI CTC CTI CAC GAA ACC GAC	ORC THE THE TOE CHE CHE THE CHE THE GOOD THE THE ANA THE THE GAS GUT ALE AND ALL AND THE THE LOW GLY THE LOW GAY THE	. ITG GAT GAA ITG AAA CCI GAG AAC	CAG CTT OCA AAG CAA ATT CAA TCC CAG	AAT AAG ACT CAT CCC AAC TAC ATC TCA Agn Lye The Bie Pro Aen Tyr Ile Ser	TAT GAA AAT GTI TCG GAT ATT GTA CCA
7100 7400	150	EÆ	23	F3	Ly	33
63	FF.	89	E	250	14 & 24 &	TAT TY

FIGURE 47A

FIGURE 478

630	720	8 10	900	990	1080
Ac.	AAG Lye	7 ° 1	TAT	\$ 6 6 1,4	50
7.E	Grc Vel	A F	TAC	G11 V•1	GTG ATA OCT
GIT V•1	600 C1y	5.3	5 t	¥ 4	510
L y.	oct Fro	Ωr.	11.	37	7
617	Al.	CAC	CCA	3 2	IAC
TAT Tyr	E E	SCA GLY	CAT B1s	CTG V•1	ATT
AGA Ar R	TAC Tyr	V . ∨ .	G1T V•1	₹5	ACA AGA ATT TAC AAT
8 * 8	GAC A . p	65r 61y	CCT Pro	CTC	ACA
GIA AIT Val Ile	AI.	₩	ATT 11.	AGT Ser	GTG
GTA Val	cct Pro	CTG L•11	AGT Ser	6.17	۲ کا د د
11	GAC Asp	AAT	ž Š	۸:۵ ۸:۵	AAT
AAA Lys	100 5• r	CIA Len	CII	15.5	S E
35	17.	ATC 11.	ucct eny	% 8.€	CAC ATC CAL TOT ALC AAT GAA GTG
ATC AAT TOC TOT TIO Ago Cyn Son		AAT	CTT VA1	X 20	. Y .
1.30 Cy*	VAL 114	8.2 4.2	Al.	CAT A.p	ATC
۸۸۲ ۸۲۳	1 4 A	CGT Ara		Fro	3 =
A10.	\$ 5	('AG	٠. ۲. ۲.	CCA Pro	ATC
₹ .	* * *	GTC V=1	ATT 11.	A1.	
A16.	8 4 8	Q ::	\$5. \$1.	TCA 3.c	010 V•1
۲ - ۱ - ۱ - ۱ - ۱ - ۱ - ۱ - ۱ - ۱ - ۱ -	500	GCT G13	Arg	CGT CCC GLy GLy	₹,
: T	AZA ALe	SCA GLY	ACS:		35
₹ 3	CAG CTG Glu Leo	CIT CCI	TAT	ATG Het	A F
223	CAN	Leu	A1.	₹.;	TCT Ser
₹.	9 V CC	A .	TAT	C C	E.E
E .	A 4	100 1rp	GAA Glu	CTA	V AAC
Asp Phe Phe	₹	7 001 0 017	A A B D	200	4 0CA
\$ ₹ • • • • • • • • • • • • • • • • • • •	2 CT	A CAT	A OCA	AAG LY•	r Act
The old	t AAG	S 2 S 2	25°	S C C	E.E
ŲĒ	A AAT	IAI 17t	1 1AC	A A Le	1 000
8 7	85	S. S.	95T	SAT AP	85

FIGURE 47C

		7	5/130)		
1170	1260	1350	1440	1530	1620 540	1710
AGT Ser	AOC Ser	ATT 11•	GAG GLu	85	AAT Aeb	EÆ
CAG Gln	8 =	TAT	₩	ATG	Ly.	ATG Fe t
Pro	## ##	A1.	A F	965	ACT	Pro Pro
A G	23	CTQ V•1	CTA Lea	AGI	IAI	TAT GAT CCA
ATT 11.	ATT 110	85.5	¥° ¥¢	F.	Are 88	TAT
617	ð ř	Ar G	# CK	GAO Glu	A 14	E &
06T GLY	AGA Are	CAG	GTA Vel	Pro Pro	AGA Are	AAG Lye
Ħ.	ACA Are	₹ 5	213	TCC Ser	913	35
616 V•1	\$ £	CTT	AGC Ser	oct Pro	Ser Ser	CTC Vel
15 g	AGA Ars	CTC CTT Leu Leu	175	AGT Ser	A1.	71G Leu
S CA	100	AGA	ATG Het	AAA Lys	ATT II.	350
GAC	\$ 15 6 23	Ser	CTG	}	GEA CLY	TAT Tyr
COC Are	Clu	AAT	85.5	A T	£3.	ð ř
CAC File	AAG L.y.	250	ACA The	St.	03.A Ar	CAA G12
act GLy	₹.	CAG GLu	5.5	AGT Ser	35	TAT
65A 0.1y	:.TG 	TOU GUA	A 64	8 6	11C	STC \$1
CTG	A.A.	12.5	C117 V•1	TAT Tyr	E E	ACT Ser
114	V:05	0 P. C.	AGA Ar R	CTT	GTC Val	3 =
CTC V•1	11 14	T.A.	C1G	ICT Ser	375	CTG TAT
1A1 171	ACC Ser	101	ACT The	¥¥.	E &	CTC
AGA Arg	ACG At 8	100	1AC 17r	82	GAT A.P	Pr.
GAC A.p.	51 0	E	A GAA OGA AAC	6k 6k	COCA AAT	TAT Tyr
8 c.	CAT GAA ATT Hie Glu IIe	15.3	C CA	E £	55.5	617
ئ ئ ئ	S. C.F.	25.5	8 8	000	28	AOC Ser
OCA GTG GAA CCA GAC Ale Vel Glu Pro Asp	¥ 5	Eé	ATA 1	CAT GAA	TTG GGA	II E
	4. 4.11	35	S	25.4	TT 1	₹.
017 017	25.	200	Sei S	Pro	¥.₹	A A
CTC AGA	OCA OCT O	Asp Ale Glu Glu Phe Gly Leu Len Sly	OCT GAC TCA TCT ATA	AAA AGC C	ATA ACC AAA Ile Ser Lys	GAA ACA AAC AAA IIC AOC OOC IAI Glu The Aeu Lye The Ser Gly Tyr
r CT		V V V V V V V V V V		Ly:		35
54	85	5°F	44	63	F B	5 t

FIGURE 47D

r 1800 r 600	T 1890	1980 1 660	2070	C 2160 P 720	C 2250	A 2368
1 TY	7. A.	A GTA	7 070	CAC L Asp	A 800	TATT
GGA GASS AND THE GAG CIA GAT, AAT TIC AIA GIG CIC CCT IIT GAT TOT CGA GAT TAT GLY GIV Het was the Glu Leu Ala Aan Ser Ile Val Leu Pro Phe Aap Cys Arg Aap Tyr	E &	A ATA o 11•	G CAT	A CTO .	A CTA	GAGGATTCTTTAGAGA TCCGTATTGAATTTGTGT(XTTAT/CTCA/AA/AAA/AATCGTAATTCAAAATTTTAAAATTCGTATATTTCAAAGTGTTAAAA
8 3	A TCA	3 %	T ACC	r Ly.	1 GM	₩ et
25	T GTA	AAC A	T IAT	A AQC	G AGT	MIA
3 3	TAC AGT Tyr Ser	A AOC	E.E.	4 GE	ACT TTG The Lea	TTCA
ËĚ	17.	. Ly.	001 Pro	ATT 4	βĘ	ATAT
	ACA Thr	\$ \$	AGG AE	A. P.	CAG Glu	7001
	ATG AAG Het Lye	E E	OCA GAC	EE	AL AL	WATI
22 >	ATA L	CAC A P	82	CTG	V V V	111
11	C 1.0	00 c	11 V	A A Le	A16	MAT.
100	25.5	0.00	933	TAT.	CTG CAG Vel Glb	NYY.
¥ ₹	Z S	ACA Ara	11A	TAT	CTC V•1	ITATI
24	CAT	GAG G14	8 2	ATT 110	A P	901
ניין	K.	1.4 1.4 1.4	Anp	\$ 5 C 3	ΕĒ	MATC
250	ATG Met	11C	ATT	Pro Pro	¥ 8	7557
==	TCT Ser	AAG 1. y =	Εž	11C	8.4	٧:٧٧
7	114 - 1.	0 ± 0	4.5 • 1 •	1.14 1.04 1.04	\$.	۷:۷
7 I	ATC TAL AGT	CX.T A1.	AGA Ars	e Pro	CAG ATT TAT GTT GIn Ile Tyr Vel	A.Tr
35	1%. 1%.	GAA ATT	CTG GAA	0CA 00X A1 6 G1y	11. 11.	17:70
5 t		6 L	CTG Leu	8. 1.		ATEX
3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	₹. 	A.Y.	E£	TAT	ACA Are	CTCI
5.	CAC A • p	## #	ATG Het	AAG Ly•	AAK; Ly•	ATTT
35	A1.	AAT Agu	213	AAC Aan	613 V•1	TTCA
3 =	TAT Tyr	AAG Ly	₹ 5	CAC B1.	₹5 5	CCTA
V-1 A1-	AAG Ly•	4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 5 6	25	AOC Ser	25.	M TO
3 4	AGA Are	84	₩.	Ser J	55	AGAG
	£3	17. 1.	ATC Fet	82	84	E
3 =	£2	Eė	A To	84 4	AAG Ly•	ELYS
7.	41°	E	AG AG	77.	2:	
£.5	A 44	D.	43	11.	B.	3:

FIGURE 48

79/130

FIGURE 51

<u>δ 9 M H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y</u>

FIGURE 52

. -	•					clone 1	clone 2				clone 4	clone 6
Markers	Uncut	t RNA	LnCap	PC3	AT6.1	AT6.1-11	AT6.1-11	6V	(11) 6V	R1564	R1564-11	R1564-11

FIGURE 53

PSM DNA PENIKNA	+	1 · ·	+			***	+	+	:		•
CANCIRCELL 1P	7.7.	RALPROSEATIC	ADI NOCARCINOMA	:	RAT MAMMARY ADENOCARCINOMA	:	=	:	:	MOUSE	FIBROSARCOMA
TISSUEZ CELL LINE	HUMAN PROSLATE	Arienala da Ariena	AT6.1-11-CL1	AT6.1-11-CL2	R1564	R1564-11-C1.2	R1564-11-C1.4	R1564-11-C1.5	R1564-11-C1.6	68	

83/130

84/130

Prostate Specific Promoter:
Cytosine Deaminase Chimera

FIGURE 58A

	10	20	30	40	50	60
:	GCGCCTTAAA	AAAAAAAAA	TTTCTTGGAA	AATGTCCAGC	TCTTGCTTAA	TAAAAATATA
	CGCGGAATTT	TTTTTTTTT	AAASAACCTT	TTACAGGTCG	AGAACGAATT	ATTTTTATAT
€1	GAAAGGAAGA	AAGAGACTCT	CCTCTCTCCA	CTCCTATAAT	TATGAGGAAC	TTTTATTCAA
	CTTTCCTTCT	TTCTCTGAGA	GGAGAGAGGT	GAGGATATTA	ATACTCCTTG	AAAATAAGTT
121	CTCTGAAATT	CTATACAATC	TCTACAATAC	TOTACTGAAT	AAAAGCAGAG	CASAAAAGC
	GAGACTTTAA	GATATGTTAG	AGATGTTATG	AGATGACTTA	TTTTCGTCTC	GTCTTTTTCG
181	TGCGCTTTTT	TTCCATAGTC	GGGAATICTT	GTCATCAGTG	TAAATCACCA	COGCGCCCTT
	ACGCCGAAAA	AAGGTATCAG	CCCTTACGAA	CAGTAGTCAC	ATTTAGTGGT	GGCGCGGGAA
241	TTTCCTAAAG	AATATTATTG	TTATTAATAA	ACATGTAGGG	TATTATCCTC	CACTTACATT
	AAAGGATTTO	TTATAATAAC	AATAATTATT	TGTACATCCC	ATAATAGGAG	GTGAATGTAA
301	ACAAAACCAT	TTTTTAAAGC	CGGGCGTGGT	GBOTCACGOC	TGTAATCCCA	GCACTTTGGG
	TOTTTTGGTA	AAAAATTTCG	GCCCGCACCA	DBBGTGCGG	ACATTAGGGT	CGTGAAACCC
361	AGGCCCAGAC	AGGCGGATCA	CBAASTOGAG	AAATCGAGAC	CATCCTGGCC	AACATGGTGA
	TEESGGTCTG	TCCGCCTAGT	GCTTCAGCTC	TTTAGCTCTG	GTAGGACCGG	TTGTACCACT
421	AACCCCATCT	CTACTAAAAA	TA CARABATT	ABSTEGGOST	GGTGGCGGGC	TCCTGTAGTC
	TTGGGGTAGA	GATGATTTTT	ATGTTTTTAR	TSGACCCGCA	CCACCGCCCG	AGGACATCAG
461	CCASCTACTC	AGGAGGCTGA	000A00A0AA	TOGOTTGAAC	CGGGGAGGCG	GAGGTTGCAG
	GGTCGATIAS	TCCTCCGACT	00000000	AGCGAACTTG	GCCCCTCCGC	CTCCAACGTC
541	TCAGCCAAGA	TAGCGCCAST	SCACTGGAGC	CTGGTGACAG	AGTGAGACTC	CCTCAAGAAA
	AGTCGGTTCT	ATCGCGGTGA	CSTGACCTCG	GACCACTGTC	TCACTCTGAG	GGAGTTCTTT
601	GAAASTAAGG CTTTCCTTCC	GAAGGGAAAG CTTCCCTTTC	SGAAGGAAGG CCTTCCTTCC	GGAGGGGAAG CCTCCCCTTC	GGAGGGGAGG	GGAGGGGAGG CCTCCCCTCC
661	AAAGAAAAGA	ATACTGGAAC	TTGTTGAAGG	CAGAGACTTT	ATTTTCATAT	CCCGGCTATG
	TTTCTTTTCT	TATGACCTTG	AACAACTTCC	GTCTCTGAAA	TAAAAGTATA	GGGCCGATAC
721	TCTGGCTACT	GTCTTACGTA	ATAGATATA	AATCAATCTT	GGTTGGATTA	ACCAGAAGAA
	AGACCGATGA	CAGAATGCAT	TATCTATAT	TTAGTTAGA	CCAACCTAAT	TGGTCTTCTT

WO 96/26272

88/130

FIGURE 58B

781		TATTCTGGTA ATAAGACCAT				
841		AAAGACTGTT TTTCTGACAA				
901		CTCCATAAAG GAGGTATTTC				
961		TTATATTAAG AATATAATTC				
1021		TTTACCATGT AAATGGTACA				
1081		TAXATGAGGT ATTTACTCCA				
1141		ACTATTATTA IGATAATAAI				
1201		ATTCAGGATT TAAGTCCTAA				
1261		AGGAGTTGTC TCCTCAACAG				
1321		AAAGTCTACA TTTCAGATGT				
1361		ATACTUTGET TATGACACGA				
1441		TTTCTGCCTT AAAGACGGAA				
1501		GGTCAAATCC CCAGTTTAGG				
1561		TAGCAAATGC				
	TTTCATGAGG	ATCGTTTACG	TSCCSGAGAG	AGTGCCTAAT	ATTCTTGTGT	CAAATAAAAT
1621	TAXAGCATGT ATTTCGTACA	AGCTATTCTC TCGATAAGAG	TCCCTCGAAA AGGGAGCTTT	TACGATTATT ATGCTAATAA	ATTATTAAGA TAATAATTCT	atttatagea Taaatategt
1681	GGGATATAAT CCCTATATTA	TITGTATGAT AAACATACTA	GATTCTTCTG CTAAGAAGAC	GTTAATCCAA CAATTAGGTT	CCAAGATTGA GGTTCTAACT	TTTTATATCT AAAATATAGA
1741	ATTACGTAAG TAATGCATTC	ACAGTAGECA TOTCATEGGT	GACATAGOCG CTGTATOGGC	GGATATGAAA CCTATACTTT	ATAMASTOTO TATTTCAGAG	TOCCTTCAAC ACOGAAGTTG
1801	AAGTTCCAGT TTCAAGGTCA	ATTOTTTCT TANGALANGA	TICCTCCCCT	CCCCCCCCC	CCCTTCCCCT GGGAAGGGGA	CCCCTTCCTT
1861	COCTTTCCCT	TCCCTTCCTT AGGGAAGGAA	TCTTTCTTGA AGAAAGAACT	GGGAGTCTCA CCCTCAGAGT	CTCTGTCACC GAGACAGTGG	AGGETECAGT TECGAGGTEA

89/130

FIGURE 58C

192	1 GCAGTGGCG CGTCACCGC	C TATCTTGGCT G ATAGAACCGJ	CTGACGTTGG	TCCGCCTCCC	CGGTTCAAGC GCCAAGTTCG	GATTCTCCTG CTAAGAGGAC
198	CCTCAGCCTC GGAGTCGGA	C CTGAGTAGCT G GACTCATCGA	GGGACTACAG	GAGCCCGCCA CTCGGGCGGT	CCACGCCCAG GGTGCGGGTC	CTAATTITIC GATTAAAAAC
204	TATTTTTAG ATAAAATC	T AGAGATGGGG	TTTCACCATG	TTGGCCAGGA AACCGGTCCT	TGGTCTCGAT ACCAGAGCTA	TTCTCGACTT AAGAGCTGAA
210	GCACTAGGC	CTGTCTOGGG G GACAGACCOG	CTCCCAAAGT GAGGGTTTCA	GCTGGGATTA CGACCCTAAT	CAGGCGTGAG GTCCGCACTC	CCACCACGC GGTGGTGCGG
2161	GCCGAAATT	A ALATGGTTTT TTTACCAAAA	GTANTGTANG CATTACATIO	TGGAGGATAA ACCTCCTATT	TACCCTACAT ATGGGATGTA	GTTTATTAAT CAAATAATTA
222	AACAATAATA TTGTTATTAT	TTCTTTAGGA	MAAAGGGCGC TTTTCCCGCG	GGTGGTGATT CCACCACTAA	TACACTGATG ATGTGACTAC	ACAAGCATTC TGTTCGTAAG
2281	CCGACTATGO	S AAAAAAGCG TTTTTTTCGC	CAGCTTTTTC GTCGAAAAAG	TGCTCTGCTT ACGAGACGAA	TTATTCAGTA AATAAGTCAT	GAGTATTGTA CTCATAACAT
2341	GAGATTGTAT CTCTAACATA	AGAATTTCAG TCTTAAAGTC	AGTIGAATAA TCAACTTATT	AAGTTCCTCA TTCAAGGAGT	TAATTATAGG ATTAATATCC	AGTGGAGAGA TCACCTCTCT
340	GGAGAGTCTC CCTCTCAGAG	TTTCTTCCTT	TCATTTTTAT AGTAAAAATA	ATTTAAGCAA TAAATTCOTT	GAGCTGGACA CTCGACCTOT	TTTTCCAAGA AAAAGGTTCT
246:	AAGTTTTTT TTCAAAAAA	TTTTTAAGGC AAAAATTCCG	GCCTCTCAAA CGGAGAGTTT	AGGGGCCGGA TCCCCGGCCT	TTTCCTTCTC ALAGGAAGAG	CTGGAGGCAG GACCTCCGTC
2521	ATGTTGCCTC TACAACGGAG	TCTCTCTCGC AGAGAGAGCG	TCGGATTGGT AGCCTAACCA	TCAGTGCACT ASTCACGTGA	CTAGAAACAC GATCTTTGTG	TGCTGTGGTG ACGACACCAC
2581	GAGAAACTGG CTCTTTGACC	ACCCCAGGTC TGGGGTCCAG	TGGAGCGAAT ACCTCGCTTA	TCCAGCCTGC AGGTCGGACG	AGGGCTGATA TCCCGACTAT	Agegaggeat Tegeteegta
2641	TAGTGAGATT ATCACTCTAA	GAGAGAGACT CTCTCTCA	TTACCCCCCC AATGGGGGGGG	CTGGTGGTTG CACCACCAAC	GAGGGCGCGC CTCCCCCCCCCC	AGTAGAGCAG TCATCTCGTC
2701	CASCACAGGC GTCGTGTCCG	CCCCAGGC	CCTCCGGCCGG	TCTGCTCGCG AGACGAGCGC	CCOAGATGTO GGCTCTACAC	GAATCTCCTT CTTAGAGGAA
2761	CACGRAACCG GTGCTTTGGC	ACTCGGCTGT TGAGCCGACA	GGCCACCGCC CCGGTGGCGC	decessaces cecesseces	GCTGGCTGTG CGACCGACAC	CCCTGGGGGC GCGACCCCGC
2821	CTGGTGCTGG GACCACGACC	GCCCACCOAA	CTTTCTCCTC GAAAGAGGAG	GGCTTCCTCT CCGAAGGAGA	TCGGTAGGGG AGCCATCCCC	cceccerece geoeccitosc
2881	GGAGCAAACC	TCGGAGTCTT AGCCTCAGAA	CCCCGTGGTG GGGGCACCAC	COGCOGTOCT GGCGCCACGA	GGGACTOSCO CCCTGAGCGC	GGTCAGCTGC CCAGTCGACG
2941	CGADTGGGAT GCTCACCCTA	CCTGTTGCTG	OTCTTCCCCA CAGAAGGGGT	OCCOOCCOCT	TTAGGGTCGG AATCCCAGCC	GGTAATOTGG CCATTACACC
3001	GOTGAGCACC CCACTCOTGG	CCTCGAG GGAGCTC				

FIG. 59

$$\begin{array}{c|c}
O & \alpha\text{-linked} \\
\downarrow & \downarrow & \downarrow \\
HO_2C & \vdots & \downarrow \\
O & CO_2H \\
O & CO_2H
\end{array}$$

NAAG 1 N-acetylaspartyl-L-glutamate

Azotomycin, becomes active by in vivo conversion to DON

6-diazo-5-oxo-norleucine, DON

94/130

97/130

FIG. 67

101/130

"THE WARHEAD"

102/130

Q 72A

									•	
	GIGCIGGGAC CACGACCCIG	GGCGATTAGO	GGAACGGTGC CCTTGCCACG	GTAGAACTGA CATCTTGACT	GACAGAGGAA CTGTCTCCTT	TGTTTGTTTG	GCTTGGGAAC CGAACCCTTG	GCTGTTTTTC CGACAAAAAG	Acacaggaa TgTgTccgtT	GCCTTGAACA
05	TGGTGCCGCG ACCACGGCGC	CCCCAGGGGC	AGGGTAGCTG TCCCATCGAC	CAGGTTGAGG GTCCAACTCC	AGCCCTGCAA TCGGGACGTT	TTGTTTTGTT AACAAAACAA	ACAGAGGCAA TGTCTCCGTT	CGGGTCTTTT	AAGCAGAACC TTCGTCTTGG	CTTCTTAGTG GAAGAATCAC
\$ 0-	GICTICCCCC	TGCTGGTCTT	agttaggagg Tcaatcctcc	GACAGTCACT CTGTCAGTGA	CAAGTGCTGG GTTCACGACC	TTGTTTTGTT AACAAAACAA	CTTGGAAGTA GAACCTTCAT	TCTTTACCAG AGAAATGGTC	tetctaagaa aagatecte	GACTITGCCA CTGAAACGGT
3.9	AAACCTCGGA	GGGATCCTGT CCCTAGGACA	GCACCCCTCG	CTGCTGGTAG	AGGAAGGITC TCCTTCCAAG	TTGTTTTGTT AACAAAACAA	TTCTTTCTTC AAGAAAGAAG	TCTGGACAGG AGACCTGTCC	ttgatccaac Aactaggttg	TTCCAGTTTT AAGGTCAAAA
20	CCTCGCGGAG	GCTGCCGAGT	TGTGGGGTGA ACACCCCACT	TCTCGACAAG Agagctgttc	AACTGGGCGT TTGACCCGCA	TGCTTTTGTT ACGAAAACAA	TCTCTGTGCA AGAGACACGT	AGGTCAGCAA	atteggagac Taaacgiceg	TTTTATTAA AAATAATTT
10	TAGGGGGGGG	TCGCGGGTCA AGCGCCCAGT	GTCGGGGTAA CAGCCCCATT	AGGGCTGAGT TCCCGACTCA	GAGAACCTGA CTCTTGGACT	GTTTTTTT CAAAAAAAA	TTTTTTACC AAAAAATGG	TGTGTGAACC AGGTCAGCAA ACACACTTGG TCCAGTCGTT	CTGGGTACTG GACCCATGAC	GCTCAGACTC
	ન	19	121	181	241	301	361	421	481	541

103/130

FIG. 72B

ATATTATCTG TATAATAGAC GATGAGGATA CTACTCCTAT CCTATTTTAT GGATAAAATA TCCCTCTCAG CGTTAGTTAC AGGGAGAGC CCAATCAATG 601 AGTTACCGAC TCAATGGCTC

TACTCCCATT ATGACCCTAA CCTAGCACAG GGATCGTGTC TACATTTAGA ATGTAAATCT ATATATAGC TATTATATCG GTAATAGTAA CAAATTATTO GTTTAATAAC 661

TACACAGGAC ATGTGTCCTG TGGACTTTAA TACTCCTCAT TTTACCAAGA TATTTCTTCT **TTCGCCACTT**AAGCGGTGAA 721

TCTTTCGGGA AGAAAGCCCT TTCTTGACCC AAGAACTGGG CTGCTCGGAA TAGTCCACTC ATCAGGTGAG TATCACCAGG TAGTCTAAGG 781

AGGTGATCGA TCCACTAGGT TTCAATATCT TTTAAACAAA' ACCAGATOGG TGGTCTACCC TAGGGCATGG TTTAGAAGAA AAATCTTCTT 841

AATCTTCATC TTAGAAGTAG TGCTCATAAC ACGAGTATTG CCACACACTG GGTGTGTGAC GATITITIGAA CIAAAAACTI GTTGTTAAAA TCACCTTGGG AGTGGAACCC 901

ATTCCGTGCT TAAGGCACGA GCCCTCACTC TCATCCCTGT CGGGAGTGAG AGTAGGGACA TCCTGGTATT AGGACCATAA ATTTTATTCT TAAAATAAGA TCTTAAAAGG AGAATTTTCC 961

1021	CAGTGGCTGA GTCACCGACT	CACAGAAGAG GTGTCTTCTC	TTCTTTATTG AGGAAATAAC	ATGTCCGCCC TACAGGCGGG	CCCACCCACT	AGGATICICI TCCTAAGAGA
1081	GCTCTCCCCT	CCCCCTACAG GGGGGATGTC	GCCTCCATCC	TCTTCATCCT	GTTCATTTTT CAAGTAAAAA	CAGATCTCAG GTCTAGAGTC
1141	TTCAAGCATC AAGTTCGTAG	TCGTCCTCAG AGCAGGAGTC	TGTGGTGTTT ACACCACAAA	CCTGATCCCT	CACTCTAATC GTGAGATTAG	Caagtettte Gttcagaaag
1201	TGTTTTATGC ACAAAATACG	ACAGGTGGAA TGTCCACCTT	TCTTATTTCC AGAATAAAGG	GITTGCGTCC	AATCATGTAT TTAGTACATA	TTTAATATGC AAATTATACG
1261	ATGTATATAT TACATATATA	GTATCTGCAT CATACACGTA	TTGTATGCAT AACATACGTA	GCGATTAAGA CGCTAATTCT	ACTAGAATAA TGATCTTATT	TTAATAATTG AATTATTAAC
1321	GAAAGCTCCA CTTTCGAGGT	TGAAAGCTGG ACTITCGACC	TTGGGGACTA AACCCCTGAT	attitgtaac Taaaacatig	TACTTTATTC ATGAAATAAG	CCAGATCCTG GGTCTAGGAC
1381	TAAITTCTCT ATTAAAGAGA	AAATAAACCC Ittatitiggg	TGGAATCTTG ACCTTAGAAC	CCTTATCTCC GGAATAGAGG	TTCAGGTTAA AAGTCCAATT	AAGCCAACTG
1441	CAAGGTCTAA GTTCCAGATT	TGACTGCAGG ACTGACGTCC	ATCTAGCTAT TAGATCGATA	CCATTGITIC IGGCCGCCTA GGIAACAAAG ACCGGCGGAI	TGGCCGCCTA	TGCGTGCACT ACGCACGTGA
1501	GGGTGTCTGG	CAGAGAGGCT GTCTCTCCGA	GGGTAAATTG CCCATTTAAC	TAGTTTCATT	GTAGCTGTCT CATCGACAGA	Gacteggate Cegaacceaa
1561	TCTCACGCCT AGAGTGCGGA	ACTTCACTOG TGAAGTGACC	AAACGCAAAC TTTGCGTTTG	TCTCACAGCA AGAGTGTCGT	TTTTGTTTTA AAACAAAT	GTTTCAGAAT
1621	CAGAGCAAAT GTCTCGTTTA	TAGAAGTCTG ATCTTCAGAC	AATTTCCTTC TTAAAGGAAG	AACACTTGGA TTGTGAACCT	aataatttat Ttattaaata	TTATTTGAAA AATAAACTTT
1681	TATATTCATA	ATTAATTCGT	ATTAATTCGT TATAAAATG	TATAAAATG TATTAAATGC TTATTTGAGT CAGCAGAGGA ATATTTTAC ATAATTTAGG AATAAACTGA GTGGTGTCCT	TTATTTGAGT	CAGCAGAGGA GTCGTCTCCT

FIG. 72D

1/41	TCTATCTTTG	1/41 AGATAGAAAC TITATGAAAG TAGAAGGIGG ATCICCITTT TGCCTTCATT TTCAGAACAT TCTATCTTTG AAATACTTTC ATCTTCCACC TAGAGGAAAA ACGGAAGTAA AAGTCTTGTA	TAGAAGGTGG	TAGAGGAAAA	TGCCTTCATT ACGGAAGTAA	AAGTCTTGTA
1801	CTCGTTTACA GAGCAAATGT	1801 CTCGTTTACA CCCATTAGIT GAAACATTAA IGTCATTITA TITTCGTCCT GAITAICICA GAGCAAAIGI GGGTAATCAA CTITGTAATT ACAGTAAAT AAAAGCAGGA CTAATAGAGI	GAAACATTAA CTTTGTAATT	TGTCATTTTA	TTTTCGTCCT AAAAGCAGGA	Gattatctca Ctaatagagt
1861	TAAAACATTT	1861 TAAAACATTI CTTAGAATAA CAGCAATACC TATCATTGAA GTTGGATAAG AAATATTTTG	CAGCAATACC	Tatcattgaa	GTTGGATAAG	aaatatttig
	ATTTTGTAAA	ATTTTGTAAA GAATCTTAIT GTCGTTATGG ATAGTAACT'S CAACCTATTC TTATAAAAC	GTCGTTATGG	Atagtaacte	CAACCTATTC	Tetataaaac
1921	CAATTGGTTT	1921 CAATTGGTTT GCAACTTAAA AATCTGTTTG CATGACTCTT TTTCAGTGAA AGTAGGCAAG	AATCTGTTTG	CATGACTCTT	TTTCAGTGAA	AGTAGGCAAG
	GTTAACCAAA	GTTAACCAAA CGTTGAATTT TTAGACAAAC GTACTGAGAA AAAGTCACTT TCATCCGTTC	TTAGACAAAC	GTACTGAGAA	Alagtcactt	TCATCCGTTC
1981	AGAAATTAAA	1981 AGAAATTAAA ATTCAGAAAT ATCTCACCTA ATGTCAGAGG TAATATTGAT AAFTTGTGTT	ATCTCACCTA	atgtcagagg	TAATATTGAT	aatttgtgtt
	TCTTTAATTT	TCTTTAATTT TAAGTCTTTA TAGAGTGGAT TACAGTCTCC ATTATAACTA TTAAACACAA	TAGAGTGGAT	Tacagtctcc	ATTATAACTA	Ttaaacacaa

2101 TGCCTATTTT TGGATGTATT TTTCA ACGGATAAAA ACCTACATAA AAAGT

2041 TTACAAATAA TACATACAAC AATAATGAAA AATAAGTCCT ATCTATAGGC TGGTATCTCA AATGTTTATT ATGTATGTTG TTATTACTTT TTATTCAGGA TAGATATCCG AGCATAGAGT

FIG. 73A

TATTTTAT

ATAAAAATA

AGATAGGACT TCTATCCTGA TGCTCGGATA ACGAGCCTAT GGCATGAGAT CCGTACTCTA

TAGTTTTAT

ATCANANATA

TGANAAATAC ACTITITIATG

~

TATTGTTGTA

61

121

ACATTAGGTG TGTAATCCAC ATTACCTCTG TAATGGAGAC AATTATCAAT TTAATAGTTA GTAAAACACA TGTATTATT ACATAATAAA

ATGCAAACAG TACGTTTGTC ACTITICACIG AAAAAGAGIC IGAAAGIGAC ITITITICICAG AATTITAATT TCTCTTGCCT TTAAAATTAA AGAGGAACGGA AGATATTCTG TCTATAAGAC

CAACTICAAT GATAGGTATT GITGAAGTTA CTATCCATAA TITITITATC AAAAAATAG TTGCAAAATA AACGTTTTAT TGCAAACCAA ACGTTTGGTT ATTTTAAGT 181

CCACATGITC GGGTGTCAAA TTCAACTAAT AAGTTGATTA CATTAATTGT GTAATTAACA CTAAGATATG GATTCTATAC GCTGTTAATT 241

ATCTTCCTCT TAGAAGGAGA AGAICCACCT TCTACTTTCA TAAAGTTTCT TCTAGGTGGA AGAIGAAAGT ATTTCAAAGA GGCAAAAAGG TGAAAATGAA ACTTTTACTT 301

ATATTTCANA TATANAGITT ATAACGAATT AATTATGAAT TATTGCTTAA TTAATACTTA AATACATTTT TTATGTAAAA GCTGACTCAA ATAAGCATTT TATTCGTAAA CCACTGAGTT 361

CTGATTCTGA GATTAAACGA CTAATTIGCT GTTGAAGGAA ATTCAGACTT TAAGTCTGAA CAACTTCCTT ATTTCCAAGT TAAAGGTTCA ATTTATTAA TAAATAATT 421

107/130

FIG. 73B

GAGAGITIGO GITICOAGIG AAGIAGOGIG AGAATOCAA CICICAAAGGICAC ITCAICGCAC ICITIAGGIT AATGCTCTGT TTACGAGACA AACTAAAACA TTGATTTTGT 481

CAGACACCAG TGCACGATAG GTCTGTGGTC ACGTGCTATC GTCAGACAGC TACATGAAAC TACATTTACC AGCTCTCTGC CAGTCTGTCG ATGTACTTTG ATGTAAATGG TCGAGAGACG

541

601

GTAGCTAGAT CTCAGTCATA GCTNNNNNN NNNNNNNN AGACCTTGCA CATCGATCTA GAGTCAGTAT CGANNNNNNN NNNNNNNNN TCTGGAACGT CGCAGAACAT GITTATTTAG AGAAATTACA CAAATAAATC TCTTTAATGT ADATAAGGCA AGATTCCAGG TCTATTCCGT TCTAAGGTCC AACCTGAAGG GTTGGCTTTT CAACCGAAAA 661

GGATCTGGGA ATAAAGTAGT TACAAAATTA GTCCCCAACC AGGTTTCATG GAGCTTTCAA CCTAGACCCT TATTTCATCA ATGTTTTAAT CAGGGGTTGG TCGAAAGTAC CTCGAAAGTT 721

FIG. 73C

ATACATGCAT	A TATGTACGTA
ACATACATAT	TCTATGTATA
CATACALATGC	GTATGTTACG
TAXTCCCATG	ATTAGCGTAC
TICIAGITOL	AAGATCAAGA
781 TTATTANITA TICTAGIICI TAATCGCAIG CATACAAIGC ACAIACAIAT A	AATAATTAAT AAGATCAAGA ATTAGCGTAC GTATGTTACG TGTATGTATA T
781	

AAACAGAAA	TTTTGTCTTT
ACCIDION	TCCACACGTA
ALANGAL ICC	TATTCTAAGG
GCARACGGRA	CGITTGCCIT
ATGATTGGAC	TACTAACCTG
841 ATTAAAATAC ATGATTGGAC GCAAACGGAA ATAAGATTCC ACCTGTGCAF AAAACAGAAA	TAATTITATG TACTAACCTG CGITTGCCTT TATTCTAAGG TGGACACGTA TITTGTCTTT
841	

NNNNNNNNN	NNNNNNNNN
GACGAGATGN	CTCCTCTACN
CCACACTGAG	GGTGTGACTC
TCAGGAAACA	AGTCCTTTGT
GAGTGAGGGA	ITGAACCAAT CTCACTCCCT AGICCITIGI GGIGIGACIC CIGCICIACN NNNNNNN
901 GACTIGGITA GAGIGAGGGA TCAGGAAACA CCACACTGAG GACGAGATGN NNNNNNNNNNN	CTGAACCAAT
901	

961 NTAGTGGGTG GGGGCGGAC ATCAATAAAG AACTCTTCTG TGTCAGCCAC TGAGCACGGA	natcacccac ccccccctg tagttattte ttgagaagac acagtcgg tg actcgtgcct
IG TGTCAGC	AC ACAGTCO
AACTCTTC	TTGAGAAG
ATCAATAAAG	TAGITATITC
GGGGGGGGAC	CCCCCCCTG
NTAGTGGGTG	NATCACCCAC
196	

FTAN GAGATGAAGA	IT CTCTACTTCT
1021 ataaagggat gagaggagg gcaantacca gaagaataaa atcctittaa gagatgaagi	TAGGAAATT
GAAGNATAAA	CIICITAITI
GCANTACCA	CGTTNATGGT
GAGAGTGAGG	CTCTCACTCC
ATAAAGGGAT	TATITICCCIA CICICACICC CGIINAIGGI CIICITATII TAGGAAAII
1021	

TOAAGCTAGT	ACTTCGATCA
AACCCCAAGG	TIGGGGTTCC
ATCTTTTAAC	TAGAAAATTG
GONTICAANA	CCNAAGITTT
CACAGTGTGT	GTGTCACACA
1081 TIGITAIGAG CACAGIGIGI GGNTICAAAA ATCTITIAAC AACCCCAAGG TOAAGCIAGI	AACAATACTC GIGICACACA CCNAAGITIT TAGAAAATIG ITGGGGITCC ACITCGAICA
1081	

¹¹⁴¹ IGGAAGATAT TTGAATTIGT TTAAACCCAT CTGGTCCTAG CCCTATTCTT TGAATCCCGA ACCTTCTATA AACTTAAACA AATTIGGGTA GACCAGGATC GGGATAAGAA ACTTAGGGCT

	1
7	2
1	•
_	•
C)
ū	

ACTAGICCIG	TGATCAGGAC
GATACCTTAG	CTATCGAATC
ACTACCTGGT	TGATGGACCA
GCAGGAGTGG	CATCCTCACC
AGAATTCCCA	TTCTCCCAGT TCTTAAGGCT CGTCCTCACC TGATGGACCA CTATGGAATC TGATGAGGAC
1201 AAGAGGGTCA AGAATTCCCA GCAGGAGTGG ACTACCTGGT GATACCTTAG ACTAGTCCTG	TTCTCCCAGT
1201	

G TCCAATGAGG AGTATCTTGG TAAAATAATA AATAAAGTCC CGAAAATCCC	G GCTTTTAGG
ANTANAGICO	TTATTTCAGG
TAAATAATA	ATTTTTAT
AGTATCTTGG	TCATAGAACC
TCCAATGAGG	AGGITACICC
1261 TGTATTAXAG	ACATAATTIC AGGITACICC ICAIAGAACC AITITAITAI TIAITICAGG
1261	

T AATTTGCAGA	Tradacotor
THUNNINNAT A	AHNNNNNNN
A TIATITACTA	T ANTARATGAT A
ACATGCTATA	GTACGATA
C TAGGAGATTI ACATGCTAT	CACG ATCCTCTAAA T
AGTACTGTGC	TCATGACACG
1321	

1381 TAATATTATC CTCATCATAA AATAGGGTAA CTAACGCTGA GAGGGACTCG GTAACTTGTT	NITATAATAG GAGTAGTATT TTATCCCATT GATIGCGACT CTCCCTGAGC CATIGAACAA
CAGGG	CICCC
CTAACGCTGA	GATTGCGACT
AATAGGGTAA	TTATCCCATT
CTCATCATAA	GAGTAGTATT
TAATATTATC	ATTATAATAG
1381	

TCTAGCTTGC	AGATCGAACG
IT AATAAAAGAG	A TTATTTTCTC AGATCG
C AAAGTCAAAA CTGGAATTTT AATI	GACCITAAN
AAAGTCAAAA	TITICACITIT
CACT AAGAAGTGGC	TTCTTCACCG
CAAGGCCACT	GTTCCGGTQA TTCTTCACCG TTTCAGTTTT GACCTTAAAA T1
1441	

	_
CCCAGGANAA	GGGTCCTITI
CANATCAGTA	GTHTAGTCAT
GANNAAGTCT	CINNTICAGA
TAGAAAGTTG	ATCTITICAAC
CTGCTTTTCT	dacacacaa gacgaaaaga atctttcaac ctnnttcaga gtrtagtcat gggtcctttt
1501 CIGIGIGGII CIGCITITICI TAQAAAGITG GANNAAGICI CANAICAGIA CCCAGGAAAA	DACACACCNA
1501	

1551 ACAGCAAAAG ACCCGCTGGT AAAGACCTGT CCAGATTGCT GACCTGGTTC ACACANITTCC

FIG. 73E

TGTCGTTTTC TGGGCGACCA TTICTGGACA GGTCTAACGA CTGGACCAAG TGTGTNNAGG

GAGAGGTAAA AAAACAAACA CTCTCCATTT TTTTGTTTGT CAASGAAGAA AGAATGCACA GTICCTICIT ICITACGIGI CTGTTACTTC 1621 AAGCITGCCT TTCGAACGGA

AAACTTCCTC TTTGAAGGAG AAGCAAAAAA TTCGTTTTTT AACAAAACAA AACAAAACAA TIGITTIGIT IIGITIGIT 1681 AACCAAACAA AACAAAACAA TTGGTTTGTT TTGTTTTGTT

CTIGGAACCT ICCTACGICC TANITICAGG ITCICICAGI GAACCTIGGA AGGAIGCAGG AINAAAGICC AAGAGAGICA TGTCTTGCAG GGCTCCAGCA ACAGAACGTC CCGAGGTCGT

1741

GCCCTGCACC CTGTCCTACC AGCAGCTTGT CGAGAACTCA GACAGGATGG TCGTCGAACA GCTCTTGAGT 1801 TCTACCCTCA ACCTGAGTGA AGATGGGAGT TGGACTCACT

1861 GTTCCCAGCT ACCCTCCTCC TAACTCGAGG GGTGCT CAAGGTCGA TGGGAGGAGG ATTGAGCTCC CCACGA

FIG. 74A

9-

50

6-

90

20

10

ATANATANT TATTTATTTA TCTCAATAAT TAATGAAGAT GGAAATGAGG TAAAAATAA AGAGTTATTA ATTACTTCTA CCTTTACTCC ATTITITATT CCCAACTACA 61

ATANTGTTCT CTTCTATGAA TTTCAAATAC AAAGTTTATG AAAAGAACA TTCCCCCCA TTTATTATTT TTTTTCTTTGT AAGGGGGGT AAATAATAA 121

CTGTGAATAC CTTTAATATC GACACTTATG GAAATTATAG ANATATTANT AGANATCANT ATTAITIGGAN THIATANTAN TCITTAGITA TANIAACCTT ATCCCTCTCT TAGGGAGAGA 181

GIGICAACIA CITICCIAIO AIGIIGAGIT ACIGGGITIA GAAGICGGGA CACAGIIGAI GAAAGGATAC IACAACICAA IGACCCAAAI CITCAGCCT TCATTATCCG AGTAATAGGC 241

TCAAATATGA TATACTTGTA AGTITATACT ATATGAACAT CACACCAATA AGTTAGTCTA TCAATCAGAT TAAANNNNN ATTINNNNN MINIGCEG 301

CITITITICI INTITITITI GAAAAAGA AAAAAAAAA CATACTTTAT AAAAGAGGTT CTATGAAATA TTTTCTCCAA AACCTCCAAG CATAAAAAAA TTGGAGGTTC GTATTTTTTCT 361

FIG. 74E

421 TCCAGAIGGA GTITCACTCC TGTCAGGCAG GCNGAGTGCA GTGGTGCCAT CTCGGCTCAC	AGGICTACCI CAAAGICAGG ACAGICCGIC CGNCICACGI CACCACGGIA GAGCCGAGIG
GTGGTGCCAT	CACCACGGTA
GCNDAGTGCA	CGNCTCACGT
TGTCAGGCAG	ACAGTCCGTC
Gritchcicc	CANAGTGAGG
TCCAGATGGA	AGGTCTACCT
421	

481 TGCAACCICC ACCICCAIG TICAAGGAT TCTCCTTCCT CAGICTCCTG AGTAGCTGGG	ACGITGGAGG TGGAGGGTAC AAGITCCCIA AGAGGAAGGA GICAGAGGAC TCAICGACCC
CAGTCTCCT	GTCAGAGGA
TCTCCTTCCT	AGAGGAAGGA
TTCAAGGGAT	AAGITCCCIA
ACCICCCATG	TGGAGGGTAC
TGCAACCTCC	ACCTTGGAGG
481	

541 ATTACAGGIG IGCACCACCA CACCCAGCIA AITITIGIAT ITITIAATADA GACAGGGITT	TAATGTCCAC ACGTGGTGGT GTGGGTCGAT TAAAAACATA AAAATTATCT CTGTCCCAAA
TTTTAATAGA	A.AATTATCT
AITITITGIAL	TAMMACATA
CACCCAGCT'A	GTGGGTCGAT
TGCACCACCA	Acardaragr
ATTACAGGTG	TAATGTCCAC
541	

A CCCGCCTCAG	r dadcodAGTC
AGGIGATCC	TCCACTAGG
CCTGACCTCT	GGACTGGAGA
GTCTCOAACT	CAGAGCTTGA
GGCCAGGCTA	CCGGTCCGAT
601 CATCGATGIT GGCCAGGCIA GICTCGAACT CCIGACCICT AGGIGATCCA CCCGCCTCA	GTAGCTACAA CCGGTCCGAT CAGAGCTTGA GGACTGGAGA TCCACTAGGT GGGCGGAGTC

こしていていていていていていていていていていていていていていていていていていてい
▼▼▼▼ 1 1 1 1 1 1 1 1 1
インにンにソフィフィ
)

⁷²¹ GATAGGTTTA ATTTATAAA ACACTGCACA GATTTGGAGT TGCTGGGAAA TCACGATCCA CTATCCAAAT TAAATATTTC TGTGACGTGT CTAAACCTCA ACGACCCTTT AGTGCTAGGT

ATTGATCAGG TAACTAGICC TTATATCTCA AATATAGT TTTTTATTGG TACITAATGA AAAAATAACC ATGAATTACT GACCCAGCAA CTGGGTCGTT GTATGCATTT CATACGTANA 781

FIG. 74C

CTCCGTTCCA GAGGCAAGGT **QGACAGTTTG** CCTQTCAAAC TGCGAAGAAT TTGTGTGTGG ACATTTGAGA ACGCTTCTTA AACACACAC TGTAAACTCT AACTTGAGAC TTGAACTCTG 841

ACTGAGAAA3 TGACTCTTTC TGGGGCATAT GTTTGCAAGT CAAACGTTCA TTTGAATCTT AAACTTAGAA ATTIMAGAN TAATITCIT AT TITAGTAG TAAAATCATC 106

ATGITCAAIA TGAAAGAICA TACAAGITAI ACTITCIAGI ATTATGATGT TAATACTACA GCAGATAAAT TGATATATT CGTCTATTTA ACTATATAAA AGAGACAT 196

ACCGTATGTA CATACCTCAG ITITAGAGCT GTATGGAGTC AAAATCTCGA CATACATINNA TCTTACTTAA GTATGTANNT AGAATGAATT CAAAATATAA GTTTTATATT 1021

GCACTCTTAA TTATTACTED AATAATGACC TITAGICCTT AAATCAGGAA GGTAAGTTCC TTTCTA LTTA AAAGA TAAAT GAAGAGTCCA 1081

ATGTGATTAR TACACTAATT CTTGAAATAT GICCAGITIG AGCAGIGAAC IGAAAAIGTC GAACTITATA CAGGICAAAC TCGICACITG ACITITAAAG TTACATGTAG AATGTACATC 1141

CTAATGAATC AATITITIT CATAGIAGGI CAATAACCIC CITITATIGA TTAAAAAAA GIAICAICCA GITAIIGGAG GAAAAIAACT GTACATATAT CATGTATATA 1201

1261 ACTICICIAN TGATTATACG TCANGAGATT ACTANTAGC

9-	TAT
	AATGAAT
90	ACACAAAAA TGTGTTTTTT
4.0	AATCAAAATA AAACAGTTAA AGTTTGATTA CTATAATCAA ACACAAAAA AATGAATATT TTAGTTTTAT TTTGTCAATT TCAAACTAAT GATATTAGTT TGTGTTTTTT TTACTTATAA
0 -	AGTTTGATTA TCAAACTAAT
2	AAACAGTTAA TTTGTCAATT
о —	1 AATCAAAATA AAACAGTTAA AGTTTGATTA CTATAATCAA ACACAAAAA AATGAATATT TTAGTTTTAT TTTGTCAATT TCAAACTAAT GATATTAGTT TGTGTTTTTTT TTACTTATAA

FIG. 75A

GTATCAGATA CATAGTCTAT TTTGATGATA AAACTACTAT CCTTCAGGAT GTGAATGAAT CACTTACTTA ATCTITTATG TCAGTAGAGG TAGAMATAC AGTCATCTCC 19

AATAAATCAC AGATTCTGTC TTATTTAGTG TCTAAGACAG CCCAGCACTA TGCTAGAAGT TGTGAAGAAT TCACGAGATG GGGTCGTGAT ACGATCTTCA ACACTTCTTA AGTGCTCTAC 121

AACCCCACCA ATAACTAAAA TIGGGGIGGI TAITGAITIT TTAGATCTAT TCAGGAAACA AAGCTAAAAA AATCTAGATA AGTCCTTTGT TTCGATTTTT CTCAAAATGG 181

ACCTATAGAA AGAAAAGCTC TGGATATCTT TCTTTTCGAG CAATCATAAA ATAAGTAAGT GTTAGTATTT TATTCATTCA ATCAACCAAA TGAAAAACAA TAGTTGGTTT ACTTTTTGTT 241

CTGTGTACTG GACACATGAC AAAAGATAAC TCTTCCAAAA GGAATACTAT ATACTGTAAA TITTCTATTG AGAAGGTTTT CCTTATGATA TATGACATTT AGAGGAGGTA TCTCCTCCAT 301

NNNNNNNTG TAAGTGGCAT ACATACTAAG CTAGTGAAA NNNNNNNAC ATTCACCGTA TGTATGATTC GATCACACTT GAATTAGAAA CTTAATCTTT ATAGAAGGAA TATCTTCCTT 361

CLCALCAL	G GAGTACTTAA
STANT TANCE	CATITAAIIG
AA5611554A	TICCARTCIT
SECTIONS DESCRIPTION 1	IAT TTATACATCA ACGAAGTGTC TTCCAATCTT
104101414	TTATACATCA
C11175C1C1 144	GTGTTCGGAT
1	

541 AAAAAGTACC TTTGTTTGGT AATCTCAATC ATTATAATAG TGCTTAGATA ATACCTAGGA	TATGGATCCT
TGCTTAGATA	ACGAATCTAT
ATTATAATAG	TITITICATOG AAACAAACCA TIAGAGITAG TAATATTATC ACGAATCIAT IATGGATCCT
AATCTCAATC	TTAGAGTTAG
TTTGTTTGGT	AAACAAACCA
AAAAAGTACC	TTTTTCATGG
541	

601 ACAAATTAAA TATTAAATTT ACTTTAAAA AAAGTACATG ATTGGGGAAT CACAACTGGC	GTGTTGACCG
ATTGGGGAAT	TOTITAATIT ATAATITAAA TGAAATITIT TITCATGIAC TAACCCCTIA GIGITGACCG
ALAGTACATG	TTTCATGTAC
ACTITIAAAA	TGAAATTTTT
TATTAATTT	ATAATTTAAA
ACANATIMA	TOTTAATTT
601	

AACCAAATAT	TTGGTTTATA
661 CTTACTAGAT TCTCTNNNN NATATGCACT GAAAAGAATG AAAAACACTG AACCAAATA	CAATGATCTA AGAGANNNN NTATACGTGA CITITCTTAC ITTITIGIGAC ITGGITTATA
GAAAAGAATG	CITITCTTAC
NATATGCACT	NTATACGIGA
TCTCTNNNN	AGAGANNNN
CTTACTAGAT	CAATGATCTA
661	

721 NICITITIT AAGITTAAAA TIAAATIGGA AAAAAATAGT AAGGAATAIC AGAAGCAAAA NACAAAAAAA TICAAATITI AAITITAACCI TITITIATCA TICCITAIAG ICITICGITIT

CTTAGATGGA
TTTGGCTTTG AAACCGAAAG
TAGCACGAAA ATCGTGCTTT
TCCTCAGAGG AGGAGTCTCC
AAAGCAAGAA TTTCGTTCTT
781 AAATAAAATG AAAGCAAGAA TCCTCAGAGG TAGCACGAAA TTTGGCTTTG CTTAGATGGA TTTATTTAC TTTCGTTCTT AGGAGTCTCC ATCGTGCTTT AAACCGAAAC GAATCTACCT
781

FIG. 75C

GGTTCACATA GTTTANAGCT CTATGGCCCA TGAAAAGGAT TCAGGAGTTA GATACCGGGT ACTITICCTA AGTCCTCAAT TCTATCARAG 841

TCCTGACCAG ACCACATA GTGGTCTAAG CACCAGATTC GTGCATAAAG GCACAACACT ATGGAATCTA TACCTTAGAT 106

GATCACGAGG AAGGTGGGTG GTGAGGGGC TCACNCTNAA TNCCAGCACT TTGGGAGCCC CACTCCCCCG AGTGNGANTT ANGGTCGTGA AACCCTCGGG GIGAGGGGC TCACNCINAA 196

CCTCTCTACT AAAAATAGAA GCAGAGATGA TTTTTATCTT GGTGAAACCG DAGACCAGC TOACCAACAT CTCTGGTCGG ACTGGTTGTA TCAGGAGTTT 1021

CAGGAGACTG AGACAGGAGA GTCCTCTGAC TCTGTCCTCT CAGCTGAACT CTTCTAATCC NGCCTACGTG NCGGATGCAC AAATTAGCCG TTTAATCGGC 1081

AGGGTGCANA ACTCCAGCCT AGGGTGCAAA TGAGGTCGGA TCCCACGTTT NNGCCACTGC NNCGGTGACG AAGCTTNNNN GGGTCGTACG TTCGAANNNN CCCAGCATGC ATCACTTGAA TAGTGAACTT 1141

1201 AAAAAAAA ANGACACATT ACTCAGGTAA GGTAATCAAT AA TTTTTTTTTT TNCTGTGTAA TGAGTCCATT CCATTAGTTA TT

FIG. 76A

_			1111		ĦĦ				Ш			lagti agti		_
-	ĪШ		1111		Ш	1111				$\Pi\Pi$			CATT	-
-	1111		1111		$\Pi\Pi$	1111				1111		eacai Eacai	TTAC TTAC	-
-	1111	\mathbf{H}	$\Pi\Pi$	111	$\Pi\Pi$	III	1111					CAGI	CTAG	-
-	1111	111	$\Pi\Pi$		HH	1111	1111				1111	TATO TATO	GCTG GCTG	-
-	1111			111	1111	1111	1111	1111				GTAT GTAT		-
<u>-</u>	1111	111				$\Pi\Pi$	IIII				$\Pi\Pi$		ATGA ATGA	-
-	HIII	HI		$\Pi\Pi$		1111						TTTA TTTA	444A 444A	-
-												GAAA GAAA		-
_	3 11-107	W 2 2 .				~ ~~`	~~~					maca	-m-m	

FIG. 76B

-	ATTTT		TTCCCT	TTCGA	TGTAG	AACAAA:	PAGGAA!	TTGGC	 TGT -
-	GGGGTC GGGGTC	TACTT	GCTTAT	TATAT? TATAT?	PTGTAA PTGTAA	GCTAGT(GCTAGT(ectaggi 	LAATAGO LAATAGO	2222 - 2222 -
-	TGCTC! TGCTC!	CTACC CTACC	actaat 	AAGAAC AAGAAC	ATTTC ATTTC	TARATC: TARATC:	rgatgti rgatgti	CTGAGO CTGAGO	ATT -
-			111111	111111			PTCTATO 		III
-	CITIG			HHI					111
-	100000	otgta GTGTA	ATATTG ATATTG	AAAAT AAAAT	rgatat 	iaccga 	atctgga 	ACAACO ACAACO	PART -
	TTAAN TTAAN		11111	111111			• ***	-	

421 TATTTATAAC AATTCATACT ACAATTTAAT TTAGTAAACA TTTTTGTAGA AAATATTTAA ATTAATTT ATAAATATTG TTAAGTATGA TGTTAAATTA AATCATTTGT AAAAACATCT TTTATAAATT

120/130

	10	50	00	40	05	9-
H	AGAAAACACA	GTGTCTTTCT	TTCCTTATTT	TAAATTGGTT	GTTCCAGAT T	CGGTAATATC
	TCTTTTGTGT	CACAGAAAGA	AAGGAATAAA	ATTTAACCAA	CAAGGTCTAA	GCCATTATAG
61	AATTTTCAAT	ATTACACTTA	aatgagtacc	AGAACTTTAT	CTTCAACCTT	TTCTCATTAG
	TTAAAAGTTA	TAATGTGAAT	Ttactcatgg	TCTTGAAATA	GAAGTTGGAA	AAGAGTAATC
121	GCCTACAACA	AAGGACATCT	CGGATAGAAT	TTCCCTTTTC	TTTTTGCTAC	TATAAGCTCT
	CGGATGTTGT	TTCCTGTAGA	GCCTATCTTA	AAGGGAAAAG	AAAAACGATG	ATATTCGAGA
181	AAAAATCCTC	AGAACATCAG	atttagaaat	GTTCTTATTA	GTGGTAGTGA	GCATTTGCTA
	TTTTTAGGAG	TCTTGTAGTC	Taaatcttta	CAAGAATAAT	CACCATCACT	CGTAAACGAT
241	TTTCCTACCA	CTAGCTTACA	AATATAATAA	GCAAGTAGAC	CCCACAGGCC AAATTCCTAT	AAATTCCTAT
	AAAGGATGGT	GATCGAATGT	TIATATTATT	CGTTCATCTG	GGGTGTCCGG TTTAAGGATA	TTTAAGGATA
301	ttgttctaca	gtcgaaaggg	aatttttaa	AATTTAATTT	CCCACTAAAG AGAAAAATAT	agaaaaatat
	Aacaagatgt	cagctitece	Ttaaaaast	TTAAATTAAA	GGGTGATTTC TCTTTTTATA	Totttttata
361	ATTAACAAAT	CAAATGACAG TAATTTTTAA	Taatttttaa	atttgctatg	TGTAAATTGT	TTTCCCTCAT
	TAATTGTTTA	GTTTAGTGTC ATTAAAAATT	Attaaaaatt	Taaacgatac	ACATTTAACA	AAAGGGAGTA

FIG. 77B

ATAINAAACC CAGTGCATGC TTCTTGTAGG CCACAGCCAT CTGAAAGTTA Z AACAAAGATA TTGTTTCTAT 481

TITGITCTGT IACTCTAAAC ATCTACACTG GCCAAATTCC AAACAAGACA AIGAGAITTG IAGATGTGAC CGGTTTAAGG CACAGAMAA TTGGACATTC GIGTCTTTTT AACCTGTAAG 541

TTTAACCCCG GGATATAACC TAGTAAATGT GTCCTCTCTG TAAGGTGGGC AAATTGGGG CCTATATTGG ATCATTTACA CAGGAGAGA ATTCCACCGG AATGCTCGAA TTACGAGCTT

601

TTAAGAAAT GATTCTACAC AATTCTTTTA CTAAGATGTG ATAATGGTAT TCATAAAGTT TATTACCATA AGTATTTCAA ATACAAGAAA TATGTTCTTT ATGTCACAGA TACAGTGTCT 661

ATGTAAAACC CACTATAACT TTTTACATTG GGGAGAGAA AAAAAGAGAT AATTTTTACC TACATTTTGG GTGATATTGA AAAATGIAAC CCCCTCTCTT TTTTTCTCTA TTAAAAATGG 721

781 TT AA

•	₫
(X
(
i	Ī

0.9	GATGCTATTT GGGCAATTTC TTATTGACAG TTTTGAAATG TTAGGCTTTT ATCTCCATTT CTACGATAAA CCCGTTAAAG AATAACTGTC AAAACTTTAC AATCGAAAA TAGAGGTAAA	61 TITAGTACTT AAATTITCCA ACATGGGTGT TGCTTGTTAT TTTATCAGTA TAAAATAGAA AAATCATGAA TITAAAAGGT TGTACCCACA ACGAACAATA AAATAGTCAT ATTITATGTT
80	TTAGGCTTTT AATCCGAAAA	TTTATCAGTA AAATAGTCAT
4	TTTTGAAATG AAAACTTTAC	TCCTTCTTAT ACGAACAATA
0 -	TTATTGACAG AATAACTGTC	ACATGGGTGT TGTACCCACA
20	GGGCAATTTC CCCGTTAAAG	AAATTTTCCA TTTAAAAGGT
10	GATGCTATTT GOGCAATTTC TTATTGACAG TTTTGAAATG TTAGGCTTTT ATCTCCATTT CTACGATAAA CCCGTTAAAG AATAACTGTC AAAACTTTAC AATCCGAAAA TAGAGGTAAA	TTTAGTACTT AAATCATGAA
	-4	61

121 GAGIGGTICT GITCIGGAAT ITAGIATATA CATGAGTATC TAGIGIATGT CAGCCATGAA	CTCACCAAGA CAAGACCITA AATCATATAT GIACTCATAG ATCACATACA GTCGGTACTT
TAGTGTATGT	ATCACATACA
CATGAGTATC	GTACTCATAG
TTAGEATATA	ATCATATAT
GTTCTCGAAT	CAAGACCITA
GAGTGGTTCT	CTCACCAAGA
121	

AATGAACCTT TCAGATGTTT AACTTCAGGG AACCTAATTG AGTCATTGCT CCAGACATTG TTACTTGGAA AGTCTACAAA TTGAAGTCCC TTGGATTAAC TCAGTAACGA GGTCTGTAAC 181

CAAGGATACT CTCAGTGTGG GAGTCACACC 241 TIGCTITGAA CCCACTATAT TNNNNNNCT CGGGCAATGA AACGAAACTT GGGTGATATA ANNNNNNGA GCCCGTTACT

CTCCTCTGAI GCAAACTTTG GCCAGGGACT GAGGAGACTA CGTTTGAAAC CGGTCCCTGA 301 ACTGCAGGCC TGTTTCTGGA AGGCACTGGA TGACGTCCGG ACAAAGACCT TCCGTGACCT

361

∞
~
•
C
\equiv
ш
_

CTCTCTCAT	GAGAGAGTA
421 TATTCAATAT TAGACTACAA GCAGTCTAAG GACTTCTCAG GGTTTCTAGC TCTCTCAT	ATAAGTTATA ATCTGATGTT CGTCAGATTC CTGAAGAGTC CCAAAGATCG AGAGAGAT
GACTTCTCAG	CTSAAGAGTC
GCAGTCTAAG	CGTCAGATTC
TAGACTACAA	ATCTGATGTT
TATTCAATAT	ATAAGTTATA
421	

481 TTCACACATG CTTTCCTAGT AAICTCTACT CAIATATCTT ACTGCTACGC TGGGGCCAGA	ACCCCGGTCT
ACTOCTACGC	TGACGATGCG
CAIATAICT	GTATATAGAA
AATCTCTACT	TTAGAGATGA
CTTTCCTAGT	GAAAGGATCA
TTCACACATG	AAGTGTGTAC GAAAGGATCA TTAGAGATGA GTATATAGAA TGACGATGCG ACCCCGGTCT
481	

CTTTCATTAT Gaaagtaata
TCCCCTTCTG AGGGGAAGAC
CTATTCTTCT GATAAGAAGA
GTTTTTATCT CAAAAATAGA
CTTCCATTTT GAAGGTAAAA
541 TAACNNNNNN CTTCCATTTT GTTTTTATCT CTATTCTTCT TCCCCTTCTG CTTTCATTAT ATTGNNNNNN GAAGGTAAAA CAAAAATAGA GATAAGAAGA AGGGGAAGAC GAAAGTAATA
541

TT TCCCAGATTT GTTCTGCTTA ACCTGGCATT AA AGGGTCTAAA CAAGACGAAT TGGACCGTAA
T GTTCTGCTTA A CAAGACGAAT
TCCCAGATTT AGGGTCTAAA
ATTGAAACTT TAACTTTGAA
C TGCITTCAIT ATTGAAACTT G ACGAAAGTAA TAACTITGAA
601 TGAAACTITC TGCTTTCATT ATTGAAACTT TCCCAGATTT GTTCTGCTTA ACCTGGC ACTTTGAAAG ACGAAAGTAA TAACTTTGAA AGGGTCTAAA CAAGACGAAT TGGACCG
601

TTTTTTTT	AAAAAAAA
CATGTCCTTT	GTACAGGAAA
CICCCATTGC	GAGGGTAACG
GIGCIGCITI	CACGACGANA
cerentecer	GGAGAAGGGA
661 GGAACTGTTT CCTCTTCCCT GTGCTGCTTT CTCCCATTGC CATGTCCTTT TTTTTTTTT	CCTTGACAAA GGAGAAGGGA CACGACGAAA GAGGGTAACG GTACAGGAAA AAAAAAAAA

721 ITITITITI TOAGACAGIG TCACTCIGIT GCCCAGGCTG GAGTGCAATG GTGCAATCIT AAAAAAAAA ACTCTGTCAC AGTGAGACAA CGGGTCCGAC CTCACGTTAC CACGTTAGAA

181 GGCCACTGCA ACCCCCGCCT CCCGGGTTCA AGTGATTCTC CTGCCTCAGC CTCCTGAGTA	CCGGTGACGT TCGCGGCCGA GGGCCCAAGT TCACTAAGAG GACGGAGTCG GAGGACTCAT
CIGCCICAGC	GACGGAGTCG
AGTGATTCTC	TCACTAAGAG
CCCGGGTTCA	GGGCCCAAGT
Accedent	TCGCGGCGGA
GGCCACTGCA	CCGCTGACGT
781	

841 GCTGGGATTA CAGGTGCCCA CCACTATGCC CGGCTGATTT TTGTATTTT AGTAGAGATN	CGACCCIAAT GICCACGGGI GGIGAIACGG GCCGACTAAA AACATAAAAA TCAICTCIAN
TTGTATTT	AACATAAA
CGGCTGALTI	GCCGACTAAA
CCACTATGCC	GGTGATACGG
CAGGTGCCCA	GTCCACGGGT
GCTGGGATTA	CGACCCTAAT
841	

	GTGANTCCGC	CACTNAGGCG	
	CCTGACCGCA	GGACTGGCGT	
	901 NNNNNNTTT CACCATNGCT GATCAGGCTG GTCTCGAACT CCTGACCGCA GTGANTCCGC	nnnnnaaa gtggtancga ctagtccgac cagagcttga ggactggcgt cactnaggcg	
_	GATCAGGCTG	CTAGICCGAC	-
	CACCATNGCT	GTGGTANCGA	
	TTTNNNNNNN	NNNNNNAAA	
	901		

つつくうくうてっく	TATCTCTCC	
211444211	ACTITAAAC	
1021 IVIICECIVO VOCICAGRAS ACACIGACIC TICIVACARA TICARATITA NIRARGACA	ATAAGAGATO TOCACTOTOT TOTGACOGAG AAGATTGTTO AACTTTAAAC TATOTOTGG	
ソインラフィンダング	TGTGACCGAG	
せってってってって	TCCACTCTCT	
TATTCIAG	ATAGAGATC	
1021		

961 CCTCCTTGGC CTCCCAAAGT GCTGACATTA CAGGCATGAG TCACTGCGNC CAGCCACCAT GGAGGAACCG GAGGGTTTCA CGACTCTAAT GTCCGTACTC AGTGACGCNG GTCGGTGGTA

79A	
ത	
~	
E G	
冚	

60

9	Atgttaatgg	TTTGAATATA	CACAGATGGG
	Tacaattacc	AAACTTATAT	GTGTCTACCC
in -	ACGCATTAAA	TGCAAAGTGC	ACCTCCACTT
	TGCGTAATTT	Acgtttcacg	TGGAGGTGAA
4-0-	CACAAAAAA GATTATTAGC CACAAAAAA CCTTGAAGTA ACGCATTAAA ATGTTAATGG	ATTCACTTTA TTGAGCATCT GCTCATANTA CTTTAATGAG TGCAAAGTGC TTTGAATATA	ATACGTCATT TAAACCTTAC CATAATTCTG AGGAATTGCT ACCTCCACTT CACAGATGGG
	GTGTTTTTTT CTAATAATCG GTGTTTTTT GGAACTTCAT TGCGTAATTT TACAATTACC	TAAGTGAAAT AACTCGTAGA CGAGTATTAT GAAATTACTC ACGTTTCACG AAACTTATAT	TATGCAGTAA ATTTGGAATG GTATTAAGAC TCCTTAACGA TGGAGGTGAA GTGTCTACCC
30	CACAAAAAAAGTGTGTTTTTTTTTTTTTTTTTTTTTTTT	GCTCATANTA	CATAAT I'C'I'G GTATTAAGAC
20	GATTATTAGC	TTGAGCATCT	TAAACCTTAC
	CTAATAATCG	AACTCGTAGA	ATTTGGAATG
10	1 cacaaaaaaaa gattattage cacaaaaaaa ccttgaagta acgeattaaa atgttaatge	61 ATTCACTTTA TIGAGCATCT GCTCATANTA CTTTAATGAG TGCAAAGTGC TTTGAATATA	121 ATACGTCATT TAAACCTTAC CATAATTCTG AGGAATTGCT ACCTCCACTT CACAGATGGG
	gtgtttttit ctaataateg gtgtttttt ggaacticat tgegtaattt tacaattaec	TAAGTGAAAT AACTCGTAGA CGAGTATTAT GAAATTACTC ACGTTTCACG AAACTTATAT	TATGCAGTAA ATTTGGAATG GTATTAAGAC TCCTTAACGA TGGAGGTGAA GTGTCTACCC
	-	1	121

GCACAGGAGG CTTAGATAAC ATGCCCAAAG TCATGCTTCT AGTAAATGGA TATAATTAAG CGTGTCCTCC GAATCTATTG TACGGGTTTC AGTACGAAGA TCATTTACCT ATATTAATTC

181

AATTTTCCAT	GCGAAAGGIC ICGIACACGA CAACIKICIC GAACIACAGA TIGAGAGACT ITAAAAGGIA
AACTCTCTGA	TEGAGAGACT
CTTGATGICT	GAACTACAGA
GTTGATAGAG	CAACTATCTC
AGCATGTGCT	TCGTACACGA
301 CGCTTTCCAG AGCATGTGCT GTTGATAGAG CTTGATGTCT AACTCTCTGA AATTTTCCAT	GCGAAAGGTC
301	

CTCACTGGTA TATAGITATT TITITACTACT TICATACACC TACTAAGAAG GAGIGACCAT ATATCAATAA AAAATGATGA AAGTATGTGG ATGATTCTTC 361 TCTTATTTGT AGAATAAACA

FIG. 79B

AGCTTCACGT ATTITAATTC TCGAAGTGCA TAAAATTAAG GAATGCCTAA ATTTCATTTA TAAAGTAAAT CAAAGATAGG GITTCTATCC ACAGGAGGAT TGTCCTCCTA 421

CCTGGTTATC TITCAGCAGG TGCCATGGTC ACGGTACCAG CACCAGTATA AGAATAAGAT TCAGGCAGAC TCTTAITCTA AGICCGTCTG 481

GTTTCACTTC CAAAGTGAAG GGTICTTGTA TGAAATGGTG ACTTTACCAC GTANTGTIT'A CATTACAAAT AGANACATG TCTTTTGTAC TOACCOAGAA 541

TATICITIDAT AIGGGCAIGI AIAAGAACIA TACCCGIACA TOGATTAACT CCTTTACIGL ATTANGATGA GGALATGACA TAATTCTACT AACATATCTG 601

GACANACITA TGTGTTTCCA GAGAGACAAA ACTITTACTA AACAGCTACA TGAAAATGAT TTGTCGATGT AAACAATAT TTTTSTTATA 661

GIAACTATAT TITATGAAAT CATTGATATA AAATACTITA GAATAATCTC GACCTTAATT CTTATTAGAG CTGGAATTAA AGAGACIGAG TGTTCAAACT TCTCTGACTC ACAAGTTTGA 721

CCAGCTGTAA GGCAAAACA GACTTCTTTG GGCCTACCAC GGGCATTTTG TTCCTGTTAN GGTCGACATT CCGTTTTTGT CTGAAGAAAC CCGGATGGTG CCCGTAAAAC AAGGACAATN
C CCCTANAC TICCICITA
GGCCTACCAC
GACTTCTTTG CTGAAGAAAC
GCCAAAACA CCGTTTTTGT
781 CCAGCTGTAA GGCAAAAACA GACTTCTTTG GGCCTACCAC GGGCATTTTG TTCCTGTT GGTCGACATT CCGTTTTTGT CTGAAGAAAC CCGGATGGTG CCCGTAAAAC AAGGACAA
7 8

FIG. 79C

GCCTGGAAAT AAATGTCATT CGGACCTTTA TTTACAGTAA AACCITAAAC CCACGICCAC TIAAAIAIG TIGGAATIIG GGIGCAGGIG AAITTIAITAC NNNATGAGGT NNNTACTCCA 841

TCAATCTGTC GEGGAGAATE ATACTGAGAT GITTAGTTAT GANATCAAAA TATGACTCTA CAAAICAATA CITTAGTTIT ATCTGATATT 106

GCAGCATGCT GCTGTGCGGT CTGTAAGCTT TCTCTGCGGT CACGACCCTC ATGCACTCAG GACATTCGAA AGAGACGCCA GTGCTGGGAG TACGTGAGTC 196

CCTGTTTGAG Trectereta Argeacagat CCCACCAAC TGCCTGTACA CTGTCATGTC TGTTTTCTTC GACAGTACAG ACAAAAGAAG 1021

ACAATCAGTA TGTTAGTCAT CAATAAGGAA GTTATTCCTT TACGINNNN NCTAGAATCT ACTGCACATG ATGCANNNN NGATCTTAGA TGACGTGTAC CTTTATACTT GAAATATGAA 1081

ATGCTCTATC TACGAGATAG AATTAACATC TCGTTTTAAA TTAATTGTAG AGCAAATTT AATTCATTAG AGAATCACITI TCTCGTGGAA TCTTAGTGAA AGAGCACCTT AGAATCACTT 1141

FIG. 79D

1561 CTAACAAAA GCAGCCTGAA AAATCGAGCT GCAAACATAG ATTAGCAATC GGCTGAAAGT

128/130

1201	1201 AAAGTGTAAA TAATTCCTCT CTCTTTTCCC TTTTTCACTA AGGAGTTTGT ATATTAACA	Taattcctct	CTCTTTTCCC	aaagtgtaaa taatteetet etetttteee tititeaeta aggagtigt atattaarea	AGGAGTTTGT	atattaaca
	TTTCACATTT ATTAAGGAGA GAGAAAAGGG AAAAAGTGAT TCCTCAAACA TATAATTTGT	Attaaggaga	GAGAAAAGGG	Titeaeatti altaaggaga gagaaaggg aaaaagtgat teeteaaaea tataatitgt	TCCTCAAACA	Tataatttgt
1261	1261 GAATFICAAG TAATGTATTA	GAATTTCAAG TAATGTATTA	TAAATTTATT	TAAATTTATT TAANNTATTT ACAATAAAAT GCCAOGTATA	ACAATAAAAT GCCACGTATA	GCCACGTATA
	CTTAAAGTTC ATTACATAAT	CTTAAAGTTC ATTACATAAT	ATTTAAATAA	ATTTAAATAA ATTNNATAAA TOTTATTTTA CGGTGCATAT	TGTTATTTTA CGCTGCATAT	CGGTGCATAT
1321	1321 AGCATCAAGC AACATGANNN	AACATGANNN	NNNCATTGGT	NNNCATTGGT AGAAAGCACA ATACATAGTC AAAACAGCAG	ATACATAGTC	AAAACAGCAG
	TCGTAGTTCG TTGTACTNNN	TTGTACTNNN	NNNGTAACCA	NNNGTAACCA TCTTTCGTGT TATGTATCAG TTTTGTCGTC	TATGTATCAG	TTTTGTCGTC
1381	1381 AGTATTAAAT AAACAGAAAA	AAACAGAAAA	TITGCAAAAG	TITIGCARAAG GCAAGTAAAG AATATACATA TACTTAATTA	aatatacata	TACTTAATTA
	TCATAATTTA TTTGTCTTTT	TITGICTITI	AAACGIIIIC	AAACGITITC CSTICATITC TIATATGTAT ATGAATTAAT	Ttatatgeat	ATGAATTAAT
1441	TACATAAAAT	TACATAAAAT ATTGATACAG GAGGTAGAAA GAAATTTAGT	GAGGTAGAAA	GAAATTTAGT	AAGCAGATAA TGGGGGCAAC	TGGGGGCAAC
	ATGTATTTTA	ATGTATTTTA TAACTATGTC CTCCATCTTT CTTTAAATCA	CTCCATCTTT	CTTTAAATCA	TTCGTCTATT ACCCCGTTG	AcccccGTTG
1501	AGAGTCCTCA TCTCAGGAGT	GCAGAGCTTC	CCTTCTAACA GGAAGATTGT	AGAGICCICA GCASAGCTIC CCTTCTAACA AAAAGCAGCC CAATAAATTA TTTTTTTTTT	CAATAAATTA GTTATYTAAT	TITITITITI AAAAAAAAA

	1	_	
(1)

CCGACTTTCA	
TAATCGTTAG	
CGTTTGTATC	
TTTAGCTCGA	
r cercesacrr	
GATTOTTTT	

0000000000	CGCCCTCTTA CGACCGTCGA CACGGTTATC ATTTCCCGAT GGACCTCGGC CCGCGCACCG
CCTGGAGCCG	GGACCTCGGC
TARAGGGCLA	ATTTCCCGAT
GIGCCAATAG	CACGGTTATC
1921 GCGGGGGGT GCTGGCGGCT GTGCCAATAG TAAAGGGCTA CCTGGAGCCG GGCGCGTGGC	CGACCGTCGA
こととうとううううう	CGCCCTCTTA
7797	

_	_
GAGGTCGGGA	CTCAGCCCT
CGGATCACCT	GCCTAGTGGA
CGAGGCAACG	GCTCCGTTGC
TTTGGGAGGG	AACCCICCC
ATCCCAGCAC	TAGGGTCGTG
1681 TCACGCTGTA ATCCCAGCAC TITGGGAGGG CGAGGCAACG CGGATCACCT GAGGTCGGGA	AGIGCGACAT TAGGGTCGIG AAACCCICCC GCTCCGTTGC GCCTAGTGGA CTCCAGCCCT
1681	

AAAAAAAAA	مالديال بالديال مالديال مالديال مالديال
TACTAMAMA	ATGATMETTAL
ACCCCGTCTC	TGGGGCAGAG
ACATGGAGAA	TGTACCTCTT
AGCCCGACCA	TCGGGCTGGT
1741 GTTTGAGATC AGCCCGACCA ACATGGAGAA ACCCCGTCTC TACTAAAAAA AAAAAAAAA	CARACTOTAG TOGGGOTGGT TGTACOTOTT TGGGGCAGAG ATGATTTTTT THENYMINET
1741	

CTGAGGCAGG
TG CACATCCCAG CTO
ACATGCCTTG
G GCATGGTGGC ACATGCCTT(C CGTACCACCG TGTACGGAA)
AA AATGAGCCGG GCATGGTGGC ACATGCCTTG CACATCCCAG CTGAGGCACG IT TTACTCGGCC CGTACCACCG TGTACGGAAC GTGTAGGGTC GACTCCGTCC
1801 AAAGGCAAAA TTTCCGTTTT
1801

CATTGCACT	GTAACGTGA
GAGATCACG T	CTCTAGTGC A
1861 AGAATTCACT TGAACCTGGG AGGTAGAGAT TGCGGTGAAG CGAGATCACG TCATTGCACT	TCTTAAGTGA ACTTGGACCC TCCATCTCTA ACGCCACTTC GCTCTAGTGC AGTAACGTGA
AGGTAGAGAT	TCCATCTCTA 1
TGAACCTGGG	ACTIGGACCC
AGAATTCACT	TCTTAAGTGA
1861	

CCAGCCTGGG CAAAAAGAGC AAAACTTAGT CTCAAAAAAA AAAANNCAAA GAAAAAA GGACGGACCC GTTTTTCTCG TTTTGAATCA GAGTTTTTTT TTTTNGTTT CTTTTTT 1921

FIG. 80

130/130

`

-

INTERNATIONAL SEARCH REPORT

International application No. FCT/US96/02424

A. CLASSIFICATION OF SUBJECT MATTER	•			
IPC(6) :C12N 15/12, 15/64; C12Q 1/68; C07K 14/435 US CL :536/23.5; 435/6, 7.1, 320.1, 252.3, 69.3; 530/350				
ccording to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system follower	d by classification symbols)			
U.S. : 536/23.5; 435/6, 7.1, 320.1, 252.3, 69.3; 530/350				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)				
INPADOC, CA search terms: prostate specific membrane antigen				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where as	ppropriate, of the relevant passages	Relevant to claim No.		
X WO, A, 94/09820 (SLOAN-KET CANCER RESEARCH) 11 May 199		1-20		
Further documents are listed in the continuation of Box C	See patent family annex.			
Special categories of cited documents:	'T' later document published after the inte	emational filing date or priority		
"A" document defining the general state of the art which is not considered	date and not in conflict with the application principle or theory underlying the inv			
E earlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.			
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	when the document is taken alone	•		
special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other sue being obvious to a person skilled in the constant of the cons	step when the document is high documents, such combination		
P document published prior to the international filing date but later than	*&* document member of the same patent			
the priority date claimed Date of the actual completion of the international search	Date of mailing of the international sea	arch report		
29 APRIL 1996	14 MAY 1996			
Name and mailing address of the ISA/US	Authorized officer			
Commissioner of Patents and Trademarks Box PCT Westigned D. C. 2021	ANTHONY C. CAPUTA A	m+1-		
Washington, D.C. 20231 Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196	111		

A DOCPHOENIX

INCOMING

iiiooiiiiiio
ACPA
Continuing Prosecution Application
AP.B
• •
C680
Request for Corrected Notice/Allowance
C.AD
Change of Address
CFILE
Request for Corrected Filling Receipt
COCIN
Papers filed re Certificate of Corrections
CRFD
Computer Readable Form Defective
•
CRFE
Computer Readable Form 'ENTERED'
EABN
Request for Express Abandonment
ELC
Response to Election/Restriction
IFEE
Issue Fee Transmittal PTOL 85 B
IRFND
Refund Request
L RIN
Any Incoming to L&R
N417
Copy of EFS Receipt Acknowledgement
N/AP
Notice of Appeal
PA
Change in Power of Attorney
PC/I
Power to Make Copies or to Inspect
PEF.
Pre-Exam Formalities Response
•
PEFRREISS
Pre-Exam Formalities Reissue Response
PEFRSEQ
Pre-Exam Formalities Sequence Reply

INCOMING

APPENDIX

Appendix

APPL PARTS ARTIFACT Artifact CLM Claim **COMPUTER** Computer Program Listing **CRFL** CRF Transfer Request **CRFS** Computer Readable Form Statement DIST Terminal Disclaimer Filed DRW Drawings FOR Foreign Reference FRPR Foreign Priority Papers IDS IDS Including 1449 **NPL** Non-Patent Literature OATH Oath or Declaration PET. Petition RUSH **OPUBS Printer Query** SEQLIST Sequence Listing SPEC Specification

SPEC NO _ Specification Not in English