Přednáška 3.10.2023

1 Úvod

Připomenutí: Riemannův, Newtonův integrál, geometrický význam plochy pod grafem.

Ne všechny funkce jsou "integrovatelné", ne všechny množiny "měřitelné". $\mathit{úplnost}$: Na prostoru Riemannovsky integrovatelných funkcí na untervalu I definujme skalární součin vztahem $\langle f,g\rangle:=\int_I f\cdot g$. Indukovaný metrický prostor není úplný.

spočetná aditivita: V teorii pravděpodobnosti potřebujeme, aby pravděpodobnostní míra byla spočetně aditivní, tedy aby pro po dvou disjunktní náhodné jevy A_1, A_2, \ldots platilo $\Pr(\bigcup_i A_i) = \sum_i \Pr(A_i)$. Toto by pro míru definovanou pomocí Riemannova integrálu neplatilo.

Obecná konstrukce: nejprve míra (množinová funkce), z ní je odvozen integrál (aproximace po částech konstantními funkcemi).

Vlastnosti, které chceme po "míře":

- $(1) \ \mu(\emptyset) = 0, \, \mu(A) \ge 0 \ \forall A,$
- (2) $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$ pro po dvou disjunktní množiny A_1, A_2, \dots

Problém - které množiny jsou "měřitelné", neboli $\mathcal{D}\mu = ?$

Věta 1.1. Neexistuje $\mu: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ splňující (1), (2) a

- (3) $\mu(I) = d\acute{e}lka(I)$ pro každý interval I,
- (4) $\mu(A+x) = \mu(A), A \subset \mathbb{R}, x \in \mathbb{R}$.

Důkaz: Předpokládejme pro spor, že takové zobrazení μ existuje. Uvažujme ekvivalenci na $\mathbb R$

$$x \sim y \iff x - y \in \mathbb{Q}.$$

Množina $A \subset [0,1]$ nechť obsahuje právě jeden prvek z každé třídy ekvivalence \sim (používáme axiom výběru!). Buď dále $\mathbb{Q} \cap [-1,1] = \{q_1,q_2,\dots\}$ očíslování racionálních čísel v intervalu [-1,1]. Nyní platí:

- (a) $\bigcup_{i=1}^{\infty}(A+q_i)\supset[0,1]$ (protože pro každý $x\in[0,1]$ existuje $a\in A$ takové, že $x-a\in\mathbb{Q}\cap[-1,1],$ tedy $x-a=q_i$ pro nějaké i,čili $x\in A+q_i),$
- (b) $\bigcup_{i=1}^{\infty} (A + q_i) \subset [-1, 2],$
- (c) množiny $A + q_i$ jsou po dvou disjunktní (i = 1, 2, ...) (kdyby ne, pak by A obsahovala dva ekvivalentní prvky).

Z (2), (4) a (c) plyne, že $\mu(\bigcup_{i=1}^{\infty}(A+q_i))=\infty$ jakmile $\mu(A)>0$, což by bylo v rozporu s (b). Musí tedy být $\mu(A)=0$. Pak ale i $\mu(\bigcup_{i=1}^{\infty}(A+q_i))=0$, což podle (a) a (3) znamená $0>\mu([0,1])=1$, tedy spor.

2 Prostor s mírou

Buď X libovolná neprázdná množina. Symbolem $\mathcal{P}(X)=\{A:A\subset X\}$ značíme potenční množinu množiny X.

Definice 2.1. $A \subset \mathcal{P}(X)$ je σ -algebra na X, jestliže

- (i) $\emptyset, X \in \mathcal{A}$;
- (ii) $A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$;
- (iii) $A_i \in \mathcal{A}, i \in \mathbb{N} \implies \bigcup_i A_i \in \mathcal{A}.$

 $\mathcal{A} \subset \mathcal{P}(X)$ je algebra, splňuje-li (1), (2) a

(iii') $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$.

Pozn.: Algebra je uzavřená na konečné množinové operace (průnik, sjednocení, rozdíl), σ -algebra na spočetné množinové operace.

Příklady:

- $\{\emptyset, X\}$, $\mathcal{P}(X)$ jsou σ -algebry na X.
- $\mathcal{A} = \{\emptyset, \{1\}, \{2,3\}, \{1,2,3\}\}$ je σ -algebra na $X = \{1,2,3\}$.
- $\mathcal{A}=\{A\subset\mathbb{N}:A$ konečná nebo $\mathbb{N}\setminus A$ konečná} je algebra na $\mathbb{N},$ ale není to σ -algebra.

Věta 2.1. Buďte A_{α} : $\alpha \in I$ σ -algebry na množině X, přitom I je libovolná indexová množina. Pak $\bigcap_{\alpha \in I} A_{\alpha}$ je σ -algebra na X.

Důkaz: Plyne jednoduše z definice.

Důsledek 2.2. Pro libovolný množinový systém $S \subset \mathcal{P}(X)$ existuje nejmenší σ -algebra σS obsahující S.

Důkaz: Položme

$$\sigma\mathcal{S}:=\bigcap\{\mathcal{A}\subset\mathcal{P}(X):\,\mathcal{S}\subset\mathcal{A},\,\mathcal{A}\text{ je }\sigma\text{-algebra}\}.$$

Definice 2.2. Buď (X, ρ) metrický prostor a \mathcal{G} systém všech otevřených podmnožin X. Pak $\mathcal{B}(X) := \sigma \mathcal{G}$ nazýváme borelovskou σ -algebrou na X.

Příklad: Následující množinové systémy spadají do borelovské σ -algebry:

- \bullet $\mathcal F$ systém uzavřených množin
- \mathcal{G}_{δ} spočetné průniky otevřených množin
- \bullet \mathcal{F}_{σ} spočetná sjednocení uzavřených množin
- $\mathcal{G}_{\delta\sigma}$ spočetná sjednocení množin z \mathcal{G}_{δ}
- •

Pozn.: Je obtížné popsat třídu borelovských množin konstruktivně (je třeba transfinitní indukce).

Pozn.: Ne všechny množiny jsou borelovské. Platí dokonce

$$\operatorname{card} \mathcal{B}(\mathbb{R}) = \mathfrak{c} < 2^{\mathfrak{c}} = \operatorname{card} \mathcal{P}(\mathbb{R}),$$

tedy neborelovských podmnožin $\mathbb R$ je více než borelovských.

Definice 2.3. (X, \mathcal{A}) je *měřitelný prostor*, jestliže X je neprázdná množina a \mathcal{A} je σ -algebra na X.

 μ je *míra* na (X, \mathcal{A}) , jestliže $\mu : \mathcal{A} \to [0, \infty]$ splňuje

- (a) $\mu(\emptyset) = 0$,
- (b) $A_i \in \mathcal{A}$ po dvou disjunktní $(i \in \mathbb{N}) \implies \mu(\bigcup_i A_i) = \sum_i \mu(A_i)$ (σ -aditivita).

Trojici (X, \mathcal{A}, μ) nazýváme prostor s mírou.

Pozn.: Z vlastnosti (b) a z nezápornosti plyne monotonie míry: $A, B \in \mathcal{A}$, $A \subset B \implies \mu(A) \leq \mu(B)$.

Příklady:

- $\mu(A) = 0 \ \forall A \in \mathcal{P}(X)$ nulová míra $(\mu = 0)$
- $\bullet\,$ pro $x\in X$ pevný položme

$$\delta_x(A) = \begin{cases} 0 & x \notin A, \\ 1 & x \in A. \end{cases}.$$

 δ_x se nazývá $Diracova\ míra$ v bodě x.

• Míra

$$\mu(A) = \begin{cases} \operatorname{card}(A) & A \subset X \text{ konečná,} \\ \infty & A \subset X \text{ nekonečná.} \end{cases}$$

se nazývá $aritmetická \ míra$ na X.

Věta 2.3 (Spojitost míry). Buď (X, A, μ) prostor s mírou, $A_i \in A$, $i \in \mathbb{N}$.

- 1. $A_1 \subset A_2 \subset \cdots \implies \mu(A_i) \nearrow \mu(\bigcup_i A_i),$
- 2. $\mu(A_1) < \infty$, $A_1 \supset A_2 \supset \cdots \implies \mu(A_i) \searrow \mu(\bigcap_i A_i)$.
- **Důkaz:** 1. Nechť $A_i \in \mathcal{A}, A_i \nearrow A$. Pak $A = A_1 \cup (A_2 \setminus A_1) \cup (A_3 \setminus A_2) \cup \ldots$ je disjunktní rozklad na měřitelné množiny, tedy $\mu(A) = \mu(A_1) + \sum_{j=2}^{\infty} \mu(A_j \setminus A_{j-1})$. Zároveň $\mu(A_i) = \mu(A_1) + \sum_{j=2}^{i} \mu(A_j \setminus A_{j-1})$, takže $\mu(A_i) \nearrow \mu(A)$, $i \to \infty$.
- 2. Nechť $A_i \in \mathcal{A}, A_i \searrow A, \mu(A_1) < \infty$. Položme $B_i := A_1 \backslash A_i, i \in \mathbb{N}$. Zřejmě platí $B_i \nearrow B := A_1 \backslash A, \text{ tedy } \mu(A_1) \mu(A_i) = \mu(B_i) \nearrow \mu(B) = \mu(A_1) \mu(A),$ a odečtením výrazu $\mu(A_1) < \infty$ dostaneme $\mu(A_i) \searrow \mu(A)$.

Přednáška 10.10.2023

Definice 2.4. Buď (X, \mathcal{A}, μ) prostor s mírou. Řekneme, že $N \subset X$ je nulová množina, jestliže existuje $A \in \mathcal{A}$ taková, že $\mu(A) = 0$ a $N \subset A$. Symbolem \mathcal{N} značíme systém všech nulových množin. dále značíme

$$\mathcal{A}_0 := \sigma(\mathcal{A} \cup \mathcal{N})$$

zúplněnou σ -algebru \mathcal{A} vzhledem k míře μ .

Pozn: \mathcal{N} je σ -ideál, tedy systém množin uzavřený na podmnožiny a spočetná sjednocení.

Věta 2.4 (Zúplnění míry). *Je dán prostor s mírou* (X, \mathcal{A}, μ) . *Pak platí:*

- 1. $A_0 = \{B \subset X : \exists A \in A, B \triangle A \in \mathcal{N}\}\ (symbolem \triangle značíme symetrickou diferenci množin).$
- 2. Míru μ lze jednoznačně rozšířit na prostor (X, \mathcal{A}_0) (značíme opět μ).
- 3. V prostoru (X, \mathcal{A}_0, μ) jsou všechny nulové množiny měřitelné.
- **Důkaz:** 1. Označme $\overline{\mathcal{A}}_0 := \{B \subset X : \exists A \in \mathcal{A}, B \triangle A \in \mathcal{N}\}$. Ukážeme nejprve, že $\overline{\mathcal{A}}_0$ je σ-algebra. Zřejmě platí $\emptyset, X \in \overline{\mathcal{A}}_0$. Je-li $B \in \overline{\mathcal{A}}_0$, pak $A \triangle B \in \mathcal{N}$ pro nějakou $A \in \mathcal{A}$, a tedy také $X \setminus B \in \overline{\mathcal{A}}_0$, protože $(X \setminus B) \triangle (X \setminus A) = B \triangle A \in \mathcal{N}$ a $X \setminus A \in \mathcal{A}$. Dále, jsou-li $B_i \in \overline{\mathcal{A}}_0$, $i \in \mathbb{N}$, pak $B_i \triangle A_i \in \mathcal{N}$ pro nějaké $A_i \in \mathcal{A}$, a tedy také $\bigcup_i B_i \in \overline{\mathcal{A}}_0$, protože $(\bigcup_i B_i) \triangle (\bigcup_i A_i) \subset \bigcup_i (B_i \triangle A_i) \in \mathcal{N}$. $\overline{\mathcal{A}}_0$ je tedy σ-algebra. Pak ale ze zřejmé inkluze $\mathcal{A} \cup \mathcal{N} \subset \overline{\mathcal{A}}_0$ plyne $\mathcal{A}_0 = \sigma(\mathcal{A} \cup \mathcal{N}) \subset \overline{\mathcal{A}}_0 = \overline{\mathcal{A}}_0$. Opačná inkluze je snadná: je-li $B \in \overline{\mathcal{A}}_0$, pak $B \triangle A \in \mathcal{N}$ pro nějakou $A \in \mathcal{A}$, tedy $B = A \cup (B \setminus A) \setminus (A \setminus B)$, přitom $B \setminus A$ i $A \setminus B$ leží v \mathcal{N} , tedy nutně $B \in \mathcal{A}_0$.
- 2. Je-li $B \in \mathcal{A}_0$ a $A \in \mathcal{A}$ taková, že $B \triangle A \in \mathcal{N}$, položíme $\mu(B) := \mu(A)$. Nejprve musíme ukázat, že toto rozšíření je korektní, tedy že nezávisí na volbě A. Je-li $A' \in \mathcal{A}$ jiná množina s vlastností $B \triangle A' \in \mathcal{N}$, pak z inkluzí $A \setminus A' \subset (A \setminus B) \cup (B \setminus A') \in \mathcal{N}$ a $A' \setminus A \subset (A' \setminus B) \cup (B \setminus A) \in \mathcal{N}$ plyne $\mu(A \setminus A') = \mu(A' \setminus A) = 0$, a tedy $\mu(A) = \mu(A')$. Definice je tedy korektní. Ukážeme, že takto dodefinovaná množinová funkce μ je σ -aditivní. Buď (B_i) posloupnost po dvou disjunktních množin z A_0 , označme $B := \bigcup_{i=1}^{\infty} B_i$, a buď te $A_i \in \mathcal{A}$ takové, že $B_i \triangle A_i \in \mathcal{N}$. Položme $C_1 := A_1, C_i := A_i \setminus (A_1 \cup \cdots \cup A_{i-1}), i = 2, 3 \ldots, C := \bigcup_{i=1}^{\infty} C_i$. Pak (C_i) je posloupnost po dvou disjunktních množin z A, tedy $\mu(C) = \sum_{i=1}^{\infty} \mu(C_i)$. Protože množiny $C_i \triangle B_i$ a $C \triangle B$ jsou nulové, platí $\mu(B_i) = \mu(C_i), i \in \mathbb{N}$, a $\mu(B) = \mu(C)$, a tedy také $\mu(B) = \sum_{i=1}^{\infty} \mu(B_i)$. Tím je dokázáno, že μ je σ -aditivní na A_0 , a je to tedy míra.
- 3. Buď $M \subset X$ nulová v (X, \mathcal{A}_0, μ) . Ukážeme, že $M \in \mathcal{N}$ (tedy že M je nulová i v původním prostoru (X, \mathcal{A}, μ)), a tedy $M \in \mathcal{A}_0$. K množině M existuje $B \in \mathcal{A}_0$, $M \subset B$, $\mu(B) = 0$. Z definice rozšířené míry μ dále existuje $A \in \mathcal{A}$ taková, že $\mu(A) = 0$ a $B \setminus A \in \mathcal{N}$, tedy existuje $N \in \mathcal{A}$ taková, že $\mu(N) = 0$ a $B \setminus A \subset N$. Pak ale $M \subset B \subset A \cup N \in \mathcal{A}$ a $\mu(A \cup N) = 0$, tedy $M \in \mathcal{N}$. \square

Definice 2.5. (i) μ je borelovská míra na metrickém prostoru X, je-li to míra na $(X, \mathcal{B}(X))$.

- (ii) Míra μ na (X, \mathcal{A}) je $konečn\acute{a}$, jestliže $\mu(X) < \infty$.
- (iii) Míra μ na (X, \mathcal{A}) je σ -konečná, jestliže existují $E_n \in \mathcal{A}$ takové, že $X = \bigcup_n E_n$ a $\mu(E_n) < \infty$ pro každé $n \in \mathbb{N}$.

Věta 2.5 (Lebesgueova míra). Existuje právě jedna borelovská míra λ^n na \mathbb{R}^n taková, že pro všechna $-\infty < a_i < b_i < \infty$, i = 1, ..., n, platí

$$\lambda^n([a_1,b_1]\times\cdots\times[a_n,b_n])=(b_1-a_1)\cdot\ldots\cdot(b_n-a_n).$$

Lebesgueova míra je regulrární v následujícím smyslu. Nechť \mathcal{B}_0^n značí zúplněnou borelovskou σ -algebru $\mathcal{B}^n:=\mathcal{B}(\mathbb{R}^n)$. Pak pro každou $E\in\mathcal{B}_0^n$ a pro každé $\varepsilon>0$ existují otevřená množina G a uzavřená množina F takové, že $F\subset E\subset G$ a $\lambda^n(G\setminus F)<\varepsilon$.

[Důkaz bude v navazující přednášce.]

Poznámky:

- 1. Lebesgueova míra je zřejmě σ -konečná.
- 2. Platí $\mathcal{B}^n \subsetneq \mathcal{B}_0^n \subsetneq \mathcal{P}(\mathbb{R}^n)$ (bez důkazu).

3 Měřitelné funkce

Věta 3.1. *Uvažujme zobrazení* $f: X \to Y$.

- (i) Je-li $\mathcal B$ σ -algebra na Y, pak $f^{-1}\mathcal B:=\{f^{-1}(B):B\in\mathcal B\}$ je σ -algebra na X.
- (ii) Pro libovolný množinový systém $S \subset \mathcal{P}(Y)$ platí $\sigma(f^{-1}S) = f^{-1}(\sigma S)$.

Důkaz: (i) se snadno dokáže s využitím faktu, že vzor množiny komutuje s množinovými operacemi. Konkrétně platí $X \setminus f^{-1}(B) = f^{-1}(Y \setminus B)$ a $\bigcup_i f^{-1}(B_i) = f^{-1}(\bigcup_i B_i)$, kdykoliv $B, B_1, B_2, \dots \subset Y$.

(ii). Zřejmě $f^{-1}S \subset f^{-1}(\sigma S)$, a tedy $\sigma(f^{-1}S) \subset \sigma(f^{-1}(\sigma S)) = f^{-1}(\sigma S)$, protože $f^{-1}(\sigma S)$ je σ -algebra podle části (i). Pro důkaz opačné inkluze označme množinový systém

$$\mathcal{A} := \{ B \subset Y : f^{-1}(B) \in \sigma(f^{-1}\mathcal{S}) \}.$$

Je snadné ověřit, že \mathcal{A} je σ -algebra. Dále zřejmě $\mathcal{S} \subset \mathcal{A}$, a tedy také $\sigma \mathcal{S} \subset \mathcal{A}$, tudíž $f^{-1}(\sigma \mathcal{S}) \subset f^{-1}\mathcal{A} \subset \sigma(f^{-1}\mathcal{S})$, kde poslední inkluze plyne přímo z definice systému \mathcal{A} .

Definice 3.1. Buď te (X, \mathcal{A}) a (Y, \mathcal{B}) měřitelné prostory. Zobrazení $f: X \to Y$ je *měřitelné* (vzhledem k \mathcal{A}, \mathcal{B}), jestliže $f^{-1}\mathcal{B} \subset \mathcal{A}$. Píšeme pak $f: (X, \mathcal{A}) \to (Y, \mathcal{B})$. Je-li některý z prostorů X, Y metrickým prostorem, pak za příslušnou σ -algebru bereme borelovskou σ -algebru. Měřitelné zobrazení mezi dvěma metrickými prostory nazýváme *borelovsky měřitelné* nebo stručně *borelovské*.

Pozn.:

- 1. Složení dvou měřitelných zobrazení je zřejmě měřitelné.
- 2. Jsou-li (X, \mathcal{A}) a (Y, \mathcal{B}) měřitelné prostory a $\mathcal{S} \subset \mathcal{B}$ libovolný generátor σ -algebry \mathcal{B} (tzn. platí-li $\sigma \mathcal{S} = \mathcal{B}$), pak $f: X \to Y$ je měřitelné právě tehdy, když $f^{-1}\mathcal{S} \subset \mathcal{A}$. (Plyne z Věty 3.1.)
- 3. Je-li (X, \mathcal{A}) měřitelný prostor a Y metrický prostor, pak zobrazení $f: X \to Y$ je měřitelné právě tehdy, když $f^{-1}(G) \in \mathcal{A}$ pro každou otevřenou množinu $G \subset Y$.

Tvrzení 3.2. Každé spojité zobrazení mezi dvěma metrickými prostory je borelovsky měřitelné.

Důkaz: Plyne přímo z předchozí poznámky a z faktu, že f je spojité právě tehdy, když vzory otevřených množin jsou otevřené.

Věta 3.3. Borelovská σ -algebra $\mathcal{B}^n := \mathcal{B}(\mathbb{R}^n)$ je generovaná

- 1. otevřenými kvádry (tj. množinami $(a_1,b_1) \times \cdots \times (a_n,b_n), -\infty < a_i < b_i < \infty, i = 1,\ldots,n;$
- 2. systémem $S = \{(-\infty, a_1) \times \ldots \times (-\infty, a_n) : a_1, \ldots, a_n \in \mathbb{R}\}.$

Speciálně, $\mathcal{B}^1 = \sigma\{(-\infty, a) : a \in \mathbb{R}\}.$

Důkaz: 1. Plyne přímo z faktu, že každou otevřenou množinu $G \subset \mathbb{R}^n$ lze vyjádřit jako spočetné sjednocení otevřených kvádrů. Skutečně, označíme-li symbolem $\mathcal Q$ systém všech otevřených kvádrů v \mathbb{R}^n s racionálními krajními body, pak lze psát

$$G = \bigcup \{ I \in \mathcal{Q} : I \subset G \}.$$

K ověření vlastnosti 2. stačí ukázat, že každý otevřený kvádr leží v σS . Ověříme tuto vlastnost v \mathbb{R}^2 (případ obecné dimenze je zcela analogický). Pro otevřený kvádr $I = (a_1, b_1) \times (a_2, b_2)$ můžeme psát

$$I = ((-\infty, b_1) \times (-\infty, b_2)) \setminus ((-\infty, a_1] \times (-\infty, b_2)) \setminus ((-\infty, b_1) \times (-\infty, a_2]),$$

přitom

$$(-\infty, a_1] \times (-\infty, b_2) = \bigcap_{i=1}^{\infty} (-\infty, a_1 + i^{-1}) \times (-\infty, b_2) \in \sigma \mathcal{S},$$

a analogicky pro $(-\infty, b_1) \times (-\infty, a_2]$.

Pozn.: Jako generátor \mathcal{B}^n lze vzít rovněž uzavřené či polouzavřené kvádry. Navíc stačí vzít pouze kvádry s racionálními koncovými body.

Důsledek 3.4. Funkce $f:(X,\mathcal{A})\to\mathbb{R}$ je měřitelná právě tehdy, když množina $\{f< a\}:=\{x\in X: f(x)< a\}\in\mathcal{A}$ pro všechna $a\in\mathbb{R}$ (případně stačí pro všechna $a\in\mathbb{Q}$).

- **Věta 3.5.** 1. Jsou-li $f:(X,\mathcal{A})\to\mathbb{R}^n$ a $g:(X,\mathcal{A})\to\mathbb{R}^m$ měřitelná zobrazení, pak i $(f,g):(X,\mathcal{A})\to\mathbb{R}^{n+m}$ je měřitelné.
 - 2. Jsou-li $f,g:(X,\mathcal{A})\to\mathbb{R}^n$ měřitelná, jsou i f+g a f-g měřitelná.
 - 3. Jsou-li $f,g:(X,\mathcal{A})\to\mathbb{R}$ měřitelné funkce, jsou i $f\cdot g$, $\max\{f,g\}$ a $\min\{f,g\}$ měřitelné.

Důkaz: 1. Každý otevřený kvádr $I\subset\mathbb{R}^{n+m}$ je tvaru $I=U\times V$, kde $U\subset\mathbb{R}^n$, $V\subset\mathbb{R}^m$ jsou otevřené kvádry. Pak platí

$$(f,g)^{-1}(U \times V) = f^{-1}(U) \cap g^{-1}(V) \in \mathcal{A},$$

a tedy (f,g) je měřitelné podle Věty 3.3.

2. Měřitelnost f+g plyne z toho, že součet funkcí můžeme psát jako složení

$$f + g = + \circ (f, g),$$

kde $+: (x,y) \mapsto x+y$ je operace sčítání v \mathbb{R}^n a (f,g)(x) = (f(x),g(x)) je spojení zobrazení z prvního tvrzení. Měřitelnost složení pak plyne z měřitelnosti obou komponent. Měřitelnost zbývajících zobrazení (funkcí) se ukáže analogicky. \square

Přednáška 17.10.2023

Důsledek 3.6. Jsou-li $f, g: (X, A) \to \mathbb{R}$ měřitelné funkce, pak leží množiny $\{f \leq g\}, \{f < g\}$ a $\{f = g\}$ v σ -algebře A.

Budeme značit $\mathbb{R}^* := \mathbb{R} \cup \{-\infty, \infty\}, \ \mathcal{B}^* := \sigma(\mathcal{B}^1 \cup \{\{-\infty\}, \{\infty\}\}). \ \mathcal{B}^*$ je rovněž generována intervaly, např.

$$\mathcal{B}^* = \sigma\{[-\infty, b] : b \in \mathbb{R}^*\},\$$

a předchozí tvrzení pro reálné měřitelné funkce platí i pro "numerické" měřitelné funkce s hodnotami v $\mathbb{R}^*.$

Věta 3.7. Buď te $f_n: (X, \mathcal{A}) \to \mathbb{R}^*$ měřitelné, $n \in \mathbb{N}$. Pak jsou funkce $\sup_n f_n$, $\inf_n f_n$, $\lim \sup_{n \to \infty} f_n$ a $\lim \inf_{n \to \infty} f_n$ rovněž měřitelné.

Důkaz: Označme $g:=\sup_n f_n$. Pak pro libovolné $b\in\mathbb{R}^*$ platí

$$g^{-1}([-\infty, b]) = \bigcap_{n=1}^{\infty} \{f_n \le b\} \in \mathcal{A},$$

tedy g je měřitelná, neboť intervaly $[-\infty, b]$: $b \in \mathbb{R}^*$ generují \mathcal{B}^* . Dále označme $h := \limsup_{n \to \infty} f_n$. Pak pro libovolné $b \in \mathbb{R}^*$ platí

$$h^{-1}([-\infty, b]) = \{x \in X : (\forall \varepsilon > 0)(\exists n_0)(\forall n \ge n_0) : f_n(x) \le b + \varepsilon\}$$
$$= \bigcap_{k=1}^{\infty} \bigcup_{n_0=1}^{\infty} \bigcap_{n=n_0}^{\infty} \{f_n \le b + \frac{1}{k}\} \in \mathcal{A},$$

tedy i h je měřitelná. Případ infima a liminf je analogický.

Pozn.: Z předchozí věty plyne, že limita měřitelných funkcí je měřitelná, pokud existuje.

Definice 3.2. Funkce $s:X\to [0,\infty)$ je $jednoduch\emph{a}\!,$ jestliže s(X) je konečná množina.

Věta 3.8. Je-li $f:(X,\mathcal{A}) \to [0,\infty]$ měřitelná, existují funkce $s_n:(X,\mathcal{A}) \to [0,\infty)$ jednoduché měřitelné takové, že $s_n \nearrow f$ $(n \to \infty)$.

Důkaz: Položme

$$s_n(x) := \max \left\{ \frac{k}{2^n} : \frac{k}{2^n} \le f(x), k = 0, 1, \dots, n2^n \right\}, \quad x \in X.$$

Funkce s_n jsou zřejmě nezáporné a nabývají jen konečně mnoha hodnot. Ověříme měřitelnost. Z definice platí

$$\{s_n < a\} = \{f < \frac{k}{2^n}\} \in \mathcal{A}$$

kdykoliv $\frac{k-1}{2^n} < a \leq \frac{k}{2^n}, \ 1 \leq k \leq n2^n, \ n \in \mathbb{N}, \ a \ \{s_n < a\} = \emptyset$ pro $a \leq 0$ a $\{s_n < a\} = X$ proa > n. Tedy s_n jsou měřitelné.

Není těžké ověřit, že s_n tvoří neklesající posloupnost a že $s_n \nearrow f$.

4 Abstraktní Lebesgueův integrál

Pro podmnožinu $E\subset X$ značíme symbolem χ_E indikátorovou funkci množiny E, tedy

$$\chi_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \notin E. \end{cases}.$$

 $\mathbf{Pozn.:}\;\;$ Každá jednoduchá funkce má jednoznačné vyjádření v tzv. $kanonick\acute{e}m$ $tvaru:\;$

$$s = \sum_{j=1}^{k} \alpha_j \chi_{E_j},$$

kde $\{\alpha_1, \ldots, \alpha_k\}$ jsou všechny různé hodnoty funkce s; pak $X = E_1 \cup \cdots \cup E_k$ je rozklad prostoru X. Je-li s měřitelná, jsou $E_i \in \mathcal{A}$.

Definice 4.1. Bud' (X, \mathcal{A}, μ) prostor s mírou.

(a) Je-li $s:(X,\mathcal{A})\to [0,\infty)$ jednoduchá měřitelná v kanonickém tvaru $s=\sum_{j=1}^k\alpha_j\chi_{E_j},$ klademe

$$\int_X s \, d\mu = \int_X s(x) \, d\mu(x) := \sum_{j=1}^k \alpha_j \mu(E_j).$$

(Je-li některé $\alpha_j=0,$ klademe $\alpha_j\mu(E_j)=0,$ tedy používáme konvenci $0\cdot\infty=0.)$

(b) Je-li $f:(X,\mathcal{A})\to [0,\infty]$ měřitelná, klademe

$$\int_X f \, d\mu := \sup \left\{ \int_X s \, d\mu : \, 0 \le s \le f, \, s \text{ jedn. měř.} \right\}.$$

(c) Je-li $f:(X,\mathcal{A})\to\mathbb{R}^*$ měřitelná, klademe

$$\int_X f \, d\mu := \int_X f^+ \, d\mu - \int_X f^- \, d\mu,$$

má-li rozdíl smysl. (Zde f^+, f^- značí kladnou, resp. zápornou část funkce f.)

Pozn.:

1. Je-li f měřitelná a $E \in \mathcal{A}$, značíme

$$\int_E f \, d\mu := \int_X (f \cdot \chi_E) \, d\mu.$$

Místo $\int_X f d\mu$ píšeme také pouze $\int f d\mu$.

2. Je-li f měřitelná taková, že $\int f^+ d\mu = \int f^- d\mu = \infty$, pak $\int f d\mu$ není definován. Říkáme proto, že (abstraktní) Lebesgueův integrál je absolutně konvergentní (na rozdíl od Newtonova integrálu).

Cvičení: Je-li $s=\sum_{j=1}^l\beta_j\chi_{F_j}$ nějaké (ne nutně kanonické) vyjádření jednoduché měřitelné funkce s, pak také platí

$$\int_X s \, d\mu = \sum_{j=1}^l \beta_j \mu(F_j).$$

Tvrzení 4.1 (Monotonie integrálu). Pro $f,g:(X,\mathcal{A})\to\mathbb{R}^*$ měřitelné s vlastností $0\leq f\leq g$ platí $0\leq \int_X f\,d\mu\leq \int_X g\,d\mu$.

Věta 4.2 (Leviho věta). *Isou-li* f_n nezáporné měřitelné funkce na X takové, že $f_n \nearrow f$, platí $\int_X f_n d\mu \nearrow \int f d\mu \ (n \to \infty)$.

Důkaz: Označme $a_n := \int f_n d\mu \in [0, \infty], a := \lim_{n \to \infty} a_n$ (posloupnost (a_n) je neklesající podle předchozího tvrzení). Zřejmě platí nerovnost $a \leq \int f d\mu$. Ukážeme, že také $a \geq \int f d\mu$.

Je-li $a=\infty$, nerovnost zřejmě platí. Předpokládejme tedy dále, že $a<\infty$. Ukážeme, že $a\geq \int s\,d\mu$ pro každou jednoduchou měřitelnou funkci $s\leq f$. Pak bude i $a\geq \int f\,d\mu$ podle definice integrálu.

Buď teďy $0 \leq s \leq f$ jednoduchá měřitelná funkce. Zvolme $0 < \tau < 1$ a označme

$$E_n := \{ x \in X : f_n(x) \ge \tau s(x) \}.$$

Zřejmě $E_n \in \mathcal{A}$, $E_n \subset E_{n+1}$, $n \in \mathbb{N}$, a $\bigcup_n E_n = X$. Podle věty o spojitosti míry platí

$$\mu(A \cap E_n) \nearrow \mu(A), \quad A \in \mathcal{A}.$$

Zapišme s ve tvaru $s=\sum_{j=1}^k\alpha_j\chi_{A_j}$, kde $X=A_1\cup\cdots\cup A_k$ je rozklad prostoru X. Pak platí

$$\int_{X} f_{n} d\mu \geq \int_{E_{n}} f_{n} d\mu \geq \int_{E_{n}} (\tau s) d\mu = \int (\tau s \chi_{E_{n}}) d\mu$$

$$= \tau \sum_{j=1}^{k} \alpha_{j} \mu(A_{j} \cap E_{n}) \to \tau \sum_{j=1}^{k} \alpha_{j} \mu(A_{j}) = \tau \int s d\mu, \quad n \to \infty,$$

a tedy

$$a = \lim_{n \to \infty} \int f_n \, d\mu \ge \tau \int s \, d\mu.$$

Protože nerovnost platí pro libovolné $\tau \in (0,1)$, platí i $a \geq \int s \, d\mu$, a důkaz je hotov.

Věta 4.3 (Fatouovo lemma). Pro funkce f_n nezáporné měřitelné na X platí

$$\int_{Y} \left(\liminf_{n \to \infty} f_n \right) d\mu \le \liminf_{n \to \infty} \int_{Y} f_n d\mu.$$

Důkaz: Označme $g_n(x) := \inf\{f_k(x) : k \geq n\}, x \in X$. Funkce g_n jsou měřitelné (Věta 3.7) a platí $g_n \nearrow g := \liminf_{n \to \infty} f_n$ (z definice \liminf). Podle Leviho věty platí $\int g_n \, d\mu \nearrow \int g \, d\mu$. Dále zřejmě $g_n \leq f_n$, a tedy $\int g_n \, d\mu \leq \int f_n \, d\mu$, $n \in \mathbb{N}$, a limitním přechodem dostaneme $\int g \, d\mu \leq \liminf_{n \to \infty} \int f_n \, d\mu$.

Přednáška 24.10.2023

Definice 4.2. Buď (X, \mathcal{A}, μ) prostor s mírou. Řekneme, že vlastnost V(x) mají $(\mu$ -)skoro vsechny body $x \in X$ (zkráceně s.v.), jestliže $\{x \in X : \neg V(x)\}$ je $(\mu$ -)nulová množina.

Tvrzení 4.4. Nechť f, g jsou měřitelné funkce na X takové, že f = g s.v. Pak platí

 $\int f\,d\mu = \int g\,d\mu,\ \text{m\'a-li jedna strana smysl.}$

Důkaz: Předpokládejme nejprve, že f i g jsou nezáporné funkce. Je-li $s \leq f$ libovolná měřitelná jednoduchá funkce, pak $s' := s\chi_{\{f=g\}}$ je rovněž jednoduchá měřitelná a splňuje $s' \leq g$ a $\int s \, d\mu = \int s' \, d\mu$. Musí tedy být $\int f \, d\mu \leq \int g \, d\mu$. Obrácená nerovnost plyne ze symetrie. Bez předpokladu nezápornosti ukážeme rovnost integrálu z kladných a záporných částí (platí totiž zřejmě také $f^+ = g^+$ s.v. a $f^- = g^-$ s.v.).

Pozn.: Pro účely integrálu stačí, aby funkce byla definována skoro všude.

Cvičení:

- 1. Nechť je prostor (X, \mathcal{A}, μ) úplný. Pak z rovnosti f = g s.v. plyne f je měřitelná $\iff g$ je měřitelná.
- Při zúplnění prostoru s mírou se integrály definované v původním prostoru nemění.

Definice 4.3. Označme

$$\begin{split} \mathcal{L}^*(\mu) &:= &\left\{f: (X, \mathcal{A}) \to \mathbb{R}^* \text{ měř.} : \int f \, d\mu \text{ je definován} \right\}, \\ \mathcal{L}^1(\mu) &:= &\left\{f \in \mathcal{L}^*(\mu) : \int |f| \, d\mu < \infty \right\}. \end{split}$$

Věta 4.5 (Linearita integrálu). *Jsou-li funkce* $f, g \in \mathcal{L}^*(\mu)$ a $\alpha \in \mathbb{R}$, pak platí

$$\int \alpha f \, d\mu = \alpha \int f \, d\mu, \quad \int (f+g) \, d\mu = \int f \, d\mu + \int g \, d\mu,$$

má-li pravá strana smysl.

Pozn.: Z předpokladu existence $\int f \, d\mu + \int g \, d\mu$ plyne, že nemůže nastat, aby jedna z funkcí nabývala hodnoty ∞ a druhá hodnoty $-\infty$ na množině kladné míry. Součet f+g je tedy definovám skoro všude.

Důsledek 4.6. Zobecněný Lebesgueův integrál je tedy lineární funkcionál na vektorovém prostoru $\mathcal{L}^1(\mu)$.

Důkaz: (i) Je-li $f \in \mathcal{L}^*(\mu)$ a $\alpha \in \mathbb{R}$ pak i $\alpha f \in \mathcal{L}^*(\mu)$ a $\int (\alpha f) d\mu = \alpha \int f d\mu$ (cvičení).

(ii) Buďte f,g nezáporné jednoduché měřitelné, v kanonickém vyjádření $f=\sum_{i=1}^k \alpha_i \chi_{E_i},\ g=\sum_{j=1}^l \beta_j \chi_{F_j}$. Pak jejich součet můžeme zapsat jako

$$f + g = \sum_{i=1}^{k} \sum_{j=1}^{l} (\alpha_i + \beta_j) \chi_{E_i \cap F_j},$$

což je zřejmě opět jednoduchá měřitelná funkce. Její vyjádření výše nemusí být kanonický tvar, ale sloučíme-li dvojice indexů (i,j), pro něž je $\alpha_i + \beta_j$ stejné, dostaneme kanonický tvar, a zřejmě podle definice je tedy

$$\int (f+g) d\mu = \sum_{i=1}^k \sum_{j=1}^l (\alpha_i + \beta_j) \mu(E_i \cap F_j).$$

Z aditivity míry dostaneme $\mu(E_i) = \sum_{j=1}^l \mu(E_i \cap F_j), i = 1, ..., k$, a podobně $\mu(F_j) = \sum_{i=1}^k \mu(E_i \cap F_j), j = 1, ..., l$, a proto také podle definice

$$\int f \, d\mu + \int g \, d\mu = \sum_{i=1}^{k} \sum_{j=1}^{l} (\alpha_i + \beta_j) \mu(E_i \cap F_j) = \int (f+g) \, d\mu.$$

(iii) Jsou li f,g nezáporné měřitelné, pak podle Věty 3.8 existují jednoduché měřitelné funkce s_n, t_n takové, že $s_n \nearrow f$ a $t_n \nearrow g$, tedy $\int s_n d\mu \nearrow \int f d\mu$ a $\int t_n d\mu \nearrow \int g d\mu$ podle Leviho věty. Ze stejného důvodu platí i $\int (s_n + t_n) d\mu \nearrow \int (f+g) d\mu$. Víme již, že $\int (s_n + t_n) d\mu = \int s_n d\mu + \int t_n d\mu$, a limitním přechodem $(n \to \infty)$ dostaneme požadovanou rovnost.

(iv) Buď te nyní $f, g \in \mathcal{L}^*(\mu)$ libovolné. Platí

$$f + g = (f + g)^{+} - (f + g)^{-} = (f^{+} - f^{-}) + (g^{+} - g^{-}),$$

tedy $(f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+$. Všechny zde vystupující funkce jsou nezáporné, tudíž platí

$$\int (f+g)^+ d\mu + \int f^- d\mu + \int g^- d\mu = \int (f+g)^- d\mu + \int f^+ d\mu + \int g^+ d\mu.$$

Aby měl součet integrálů $\int f \, d\mu + \int g \, d\mu$ smysl, musí být buď $\int f^+ \, d\mu < \infty$ a $\int g^+ \, d\mu < \infty$, nebo $\int f^- \, d\mu < \infty$ a $\int g^- \, d\mu < \infty$. Uvažujme druhou z uvedených variant. Pak z nerovnosti $(f+g)^- \leq f^- + g^-$ plyne $\int (f^- + g^-) \, d\mu < \infty$ a odečtením všech integrálů ze záporných části ve výše uvedené rovnosti dostaneme požadovaný vztah $\int (f+g) \, d\mu = \int f \, d\mu + \int g \, d\mu$. V případě platnosti první varianty odečteme naopak integrály z kladných částí.

Důsledek 4.7. Pro nezáporné měřitelné funkce f_n na X platí

$$\int \left(\sum_{n=1}^{\infty} f_n\right) d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

Důkaz: Podle předchozí věty platí

$$\int \left(\sum_{k=1}^{n} f_n\right) d\mu = \sum_{k=1}^{n} \int f_k d\mu, \quad n \in \mathbb{N}.$$

Limitním přechodem a s využitím Leviho věty dostaneme tvrzení.

Tvrzení 4.8. $f \in \mathcal{L}^1(\mu) \implies \left| \int f \, d\mu \right| \leq \int |f| \, d\mu$.

Důkaz: Podle trojúhelníkové nerovnosti a definice integrálu platí

$$\left| \int f \, d\mu \right| = \left| \int f^+ \, d\mu - \int f^- \, d\mu \right| \le \int f^+ \, d\mu + \int f^- \, d\mu = \int |f| \, d\mu.$$

Cvičení:

- 1. $f, g \in \mathcal{L}^1(\mu) \implies \max\{f, g\}, \min\{f, g\} \in \mathcal{L}^1(\mu)$.
- 2. Je-li funkce f měřitelná a $|f| \leq g$ pro nějakou funkci $g \in \mathcal{L}^1(\mu)$, pak i $f \in \mathcal{L}^1(\mu)$.

Věta 4.9 (Zobecněná Leviho věta). Buď te funkce f_n měřitelné na X $(n \in \mathbb{N})$ takové, že $f_n \nearrow f$ a $\int f_1 d\mu > -\infty$. Pak $\int f_n d\mu \nearrow \int f d\mu$.

Důkaz: Je-li $\int f_1 d\mu = \infty$, tvrzení zřejmě platí. Nechť tedy $\int f_1 d\mu \in \mathbb{R}$. Protože $0 \leq f_n - f_1 \nearrow f - f_1$, podle Leviho věty platí $\int (f_n - f_1) d\mu \nearrow \int (f - f_1) d\mu$, a z aditivity integrálu dostaneme $\int f_n d\mu \nearrow \int f d\mu$.

Důsledek 4.10. Jsou-li funkce f_n měřitelné, $f_n \searrow f$ a $\int f_1 d\mu < \infty$, pak $\int f_n d\mu \searrow \int f d\mu$.

 $D\mathring{u}kaz$. Použijte zobecněnou Leviho větu pro funkce $-f_n \nearrow -f$.

Věta 4.11 (Lebesgueova; o konvergentní majorantě). Buď (X, \mathcal{A}, μ) prostor s mírou a f_n , f měřitelné funkce takové, že $f_n \to f$ s.v. Nechť dále existuje funkce $g \in \mathcal{L}^1(\mu)$ taková, že $|f_n| \leq g$ s.v. pro všechna $n \in \mathbb{N}$. Pak $f \in \mathcal{L}^1(\mu)$ a $\int f_n d\mu \to \int f d\mu$.

 $D\mathring{u}kaz$. Předefinujeme-li funkce f_n, f na množině

$${x: f_n(x) \not\to f(x)} \cup \bigcup_{n=1}^{\infty} {x: |f_n(x)| > g(x)}$$

nulové míry, budou předpoklady věty platit pro všechna $x \in X$. Označme

$$g_n := \inf\{f_n, f_{n+1}, \dots\}, \quad h_n := \sup\{f_n, f_{n+1}, \dots\}, \quad n \in \mathbb{N}.$$

Zřejmě platí

$$-g \le g_n \le f_n \le h_n \le g, \quad n \in \mathbb{N},$$

tedy $f \in \mathcal{L}^1(\mu)$, a $g_n \nearrow f$, $h_n \searrow f$, $n \to \infty$, tedy podle zobecněné Leviho věty platí $\int g_n \, d\mu \to \int f \, d\mu$ a $\int h_n \, d\mu \to \int f \, d\mu$. Protože $\int g_n \, d\mu \le \int f_n \, d\mu \le \int h_n \, d\mu$, platí také $\int f_n \, d\mu \to \int f \, d\mu$ podle věty o dvou strážnících.

Důsledek 4.12. Jsou-li f_i měřitelné, $\sum_{i=1}^{\infty} f_i$ konverguje s.v., $a \ g \in \mathcal{L}^1(\mu)$ taková, že $|\sum_{i=1}^n f_i| \leq g$ s.v. pro všechna n, pak $\sum_{i=1}^{\infty} f_i \in \mathcal{L}^1(\mu)$ a

$$\int \left(\sum_{i=1}^{\infty} f_i\right) d\mu = \sum_{i=1}^{\infty} \int f_i d\mu.$$

Přednáška 31.10.2023

5 Integrály závislé na parametru

V následujícím textu budeme pracovat s funkcemi $f: T \times X \to \mathbb{R}$. Symbolem $f(\cdot, x)$ a $f(t, \cdot)$ budeme rozumět vždy funkci jedné proměnné (znázorněné tečkou) při pevné hodnotě (parametru) druhé proměnné.

Věta 5.1 (Lebesgueova; o spojité závislosti integrálu na parametru). Buďte (X, \mathcal{A}, μ) prostor s mírou, T metrický prostor a $f: T \times X \to \mathbb{R}$ funkce. Nechť dále

- (i) $f(t,\cdot)$ je měřitelná pro každé $t\in T$,
- (ii) $f(\cdot, x)$ je spojitá na T pro s.v. $x \in X$,
- (iii) existuje $g \in \mathcal{L}^1(\mu)$ taková, že $|f(t,\cdot)| \leq g$ s.v. pro všechna $t \in T$.

 $Pak \ f(t,\cdot) \in \mathcal{L}^1(\mu) \ pro \ v\check{s}echna \ t \in T \ a \ funkce$

$$F: t \mapsto \int f(t, x) \, d\mu(x)$$

je spojitá na T.

 $D\mathring{u}kaz$. Z předpokladu $|f(t,\cdot)| \leq g$ s.v. zřejmě plyne $f(t,\cdot) \in \mathcal{L}^1(\mu)$, $t \in T$. Označme $N \subset X$ množinu nulové míry takovou, že $f(\cdot,x)$ je spojitá na T pro všechna $x \in X \setminus N$. Zvolíme-li libovolnou posloupnost $t_j \to t$ v T a libovolný $x \in X \setminus N$, platí podle Heineho věty $\lim_{j\to\infty} f(t_j,x) = f(t,x)$. Podle Lebesgueovy věty (o konvergentní majorantě) platí $\lim_{j\to\infty} F(t_j) = F(t)$. Toto platí pro každou posloupnost $t_j \to t \in T$, a tedy F je spojitá na T, opět podle Heineho věty.

Věta 5.2 (Záměna integrálu a derivace). Buďte (X, \mathcal{A}, μ) prostor s mírou, $I \subset \mathbb{R}$ otevřený interval a $f: I \times X \to \mathbb{R}$ funkce. Nechť dále

- (i) $f(t,\cdot)$ je měřitelná pro každé $t \in I$,
- (ii) existuje $N \in \mathcal{A}$, $\mu(N) = 0$, taková, že pro všechna $x \in X \setminus N$ a pro všechna $t \in I$ existuje vlastní derivace $\frac{d}{dt}f(t,x)$,
- (iii) existuje $g \in \mathcal{L}^1(\mu)$ taková, že pro všechna $t \in I$, $\left| \frac{d}{dt} f(t, x) \right| \leq g(x)$ pro s.v. $x \in X$,
- (iv) existuje $t_0 \in I$ takové, že $f(t_0, \cdot) \in \mathcal{L}^1(\mu)$.

 $Pak \ f(t,\cdot) \in \mathcal{L}^1(\mu) \ pro \ v\check{s}echna \ t \in I, \ funkce$

$$F: t \mapsto \int f(t, x) \, d\mu(x)$$

je diferencovatelná na I a platí

$$F'(t) = \int \frac{d}{dt} f(t, x) \, d\mu(x), \quad t \in I.$$

 $D\mathring{u}kaz$. Pro libovolné $a,b\in I,\ a< b,\ a\ x\in X\setminus N$ existuje podle Lagrangeovy věty o střední hodnotě $c_x\in (a,b)$ takové, že

$$\frac{f(b,x) - f(a,x)}{b - a} = \frac{d}{dt}f(c_x, x).$$

Z předpokladu (iii) plyne, že funkce $x \mapsto \frac{d}{dt} f(c_x, x)$ leží v prostoru $\mathcal{L}^1(\mu)$. Zvolíme-li za jeden z bodů a, b bod t_0 , dostaneme $f(t, \cdot) \in \mathcal{L}^1(\mu)$ pro všechna $t \in I$. Uvažujme nyní libovolnou posloupnost $t_j \to t \in I$, $I \ni t_j \neq t$. Platí

$$\lim_{j\to\infty}\frac{F(t_j)-F(t)}{t_j-t}=\lim_{j\to\infty}\int\frac{f(t_j,x)-f(t,x)}{t_j-t}\,d\mu(x)=\int\frac{d}{dt}f(t,x)\,d\mu(x);$$

poslední rovnost plyne z Lebesgueovy věty o konvergentní majorantě a z definice derivace. Protože uvedená rovnost platí pro libovolnou posloupnost $t_j \to t \in I$, $t_j \neq t$, dostáváme $F'(t) = \int \frac{d}{dt} f(t,x) \, d\mu(x), \, t \in I$.

6 Lebesgueova míra na přímce

Věta 6.1. Je-li $f \geq 0$ měřitelná funkce na prostoru s mírou (X, \mathcal{A}, μ) a platí-li $\int f d\mu = 0$, je f = 0 s.v.

Důkaz. Označme $A_n:=\{x\in X:\ f(x)\geq \frac{1}{n}\}$. Zřejmě $A_n\in\mathcal{A},\ \chi_{A_n}\leq nf,\ a$ tedy $\mu(A_n)=\int\chi_{A_n}d\mu\leq n\int f\,d\mu=0,\ n\in\mathbb{N}.$ Protože $\{f>0\}=\bigcup_{n=1}^\infty A_n,$ platí $\mu(\{f>0\})\leq\sum_{n=1}^\infty\mu(A_n)=0.$

Důsledek: Jsou-li $f, g \in \mathcal{L}^1(\mu), f \leq g$ a $\int f d\mu = \int g d\mu$, pak f = g s.v.

Důsledek 6.2. Nechť pro funkci $f \in \mathcal{L}^1(\mu)$ platí $\int_E f \, d\mu = 0$ pro každou množinu $E \in \mathcal{A}$. Pak f = 0 s.v.

 $D\mathring{u}kaz.$ Zvolme nejprve $E_+:=\{f>0\}.$ Pak podle předpokladu platí $\int f^+\,d\mu=\int_{E_+}f\,d\mu=0$, a protože $f^+\geq 0$, je $f^+=0$ s.v. podle Věty 6.1. Podobně volbou $E_-:=\{f<0\}$ odvodíme, že $f^-=0$ s.v. Pak ale musí být f=0 s.v. $\hfill\Box$

Značení: Budeme uvažovat restrikci (zúplněné) Lebesgueovy míry λ^1 na omezený otevřený interval (a,b). Budeme značit $\mathcal{L}^1(a,b)$ příslušný prostor integrovatelných funkcí a $\int_a^b f \, d\lambda^1$ Lebesgueův integrál z funkce $f \in \mathcal{L}^1(a,b)$. Dále symbolem $\mathcal{R}[a,b]$ značíme množinu všech omezených funkcí na [a,b], pro něž existuje Riemannův integrál (R) $\int_a^b f$.

Věta 6.3 (Vztah Lebesgueova a Riemannova integrálu). *Je-li* $f \in \mathcal{R}[a,b]$, pak $f \in \mathcal{L}^1(a,b)$ a (R) $\int_a^b f = \int_a^b f \, d\lambda^1$.

 $D\mathring{u}kaz$. Protože $f \in \mathcal{R}[a,b]$, existuje posloupnost (\mathcal{D}_n) zjemňujících se dělení intervalu [a,b] taková, že

$$\mathfrak{s}(f,\mathcal{D}_n) \nearrow (\mathbf{R}) \int_a^b f \swarrow \mathscr{S}(f,\mathcal{D}_n), \quad n \to \infty$$

 $(\mathfrak{s}(f,\mathcal{D}_n)$ a $\mathscr{S}(f,\mathcal{D}_n)$ značí dolní a horní Riemannův součet f přes dělení \mathcal{D}_n). Je-li $\mathcal{D}_n = \{a = x_0^{(n)} < x_1^{(n)} < \cdots < x_{k_n}^{(n)} = b\}$, zaveďme funkce s_n, S_n předpisem

$$s_n(x) = \inf_{[x_{i-1}^{(n)}, x_i^{(n)}]} f, \quad S_n(x) = \sup_{[x_{i-1}^{(n)}, x_i^{(n)}]} f, \quad x \in (x_{i-1}^{(n)}, x_i^{(n)}], \ i = 1, \dots, k_n,$$

a $s_n(x) = S_n(x) = 0$ pro ostatní hodnoty $x \in \mathbb{R}$. Pak zřejmě platí

$$\mathfrak{s}(f,\mathcal{D}_n) = \int_a^b s_n \, d\lambda^1, \quad \mathscr{S}(f,\mathcal{D}_n) = \int_a^b S_n \, d\lambda^1.$$

Funkce f je dle předpokladu omezená, tedy $|f| \leq M$ pro nějaké $M \in \mathbb{R}$. Platí

$$-M \le s_1 \le s_2 \le \dots \le f \le \dots \le S_2 \le S_1 \le M.$$

Označme $f_1 := \lim_{n \to \infty} s_n$, $f_2 := \lim_{n \to \infty} S_n$ (monotónní omezená posloupnost vždy konverguje). Pak platí

$$-M \le s_n \nearrow f_1 \le f \le f_2 \swarrow S_n \le M.$$

a podle zobecněné Leviho věty tedy

$$\int_a^b s_n \, d\lambda^1 \to \int_a^b f_1 \, d\lambda^1, \quad \int_a^b S_n \, d\lambda^1 \to \int_a^b f_2 \, d\lambda^1.$$

Podle předpokladu ale také

$$\int_{a}^{b} s_{n} d\lambda^{1} = \mathfrak{s}(f, \mathcal{D}_{n}) \nearrow (\mathbf{R}) \int_{a}^{b} f \swarrow \mathscr{S}(f, \mathcal{D}_{n}) = \int_{a}^{b} S_{n} d\lambda^{1},$$

takže $\int_a^b f_1 d\lambda^1 = \int_a^b f_2 d\lambda^1 = (R) \int_a^b f$. Podle důsledku Věty 6.1 je $f_1 = f_2$ s.v., a zřejmě tedy také $f = f_1$ s.v. (neboť $f_1 \leq f \leq f_2$), a tedy také $\int_a^b f d\lambda^1 = (R) \int_a^b f$. Měřitelnost f plyne z měřitelnosti $f_1 = \lim s_n$ a z úplnosti prostoru s mírou.

Věta 6.4. $Bud' f : [a, b] \to \mathbb{R}$ omezená. Pak

$$f \in \mathcal{R}[a,b] \iff f \text{ je spojitá } \lambda^1\text{-s.v. na } [a,b].$$

Bez důkazu; bude v navazující přednášce

Uvažujme nyní obecný otevřený podinterval $(a,b) \subset \mathbb{R}$. Je-li $f:(a,b) \to \mathbb{R}$, symbolem (N) $\int_a^b f$ značíme *Newtonův* integrál z funkce f (pokud konverguje, tedy existuje konečný):

(N)
$$\int_{a}^{b} f = F(b_{-}) - F(a_{+})$$

Věta 6.5 (Vztah Lebesgueova a Newtonova integrálu). Nechť f je nezáporná spojitá funkce na intervalu (a,b). Potom (N) $\int_a^b f$ konverguje právě tehdy, když $\int_a^b f d\lambda^1$ konverguje.

 $D\mathring{u}kaz$. Uvažujme monotónní posloupnosti $a_i \searrow a, b_i \nearrow b, i \to \infty, a < a_i < b_i < b$. Nechť F je primitivní funkce k funkci f na intervalu (a,b). Pak pro každé $i \in \mathbb{N}$,

(N)
$$\int_{a_i}^{b_i} f = F(b_i) - F(a_i) = (R) \int_{a_i}^{b_i} f = \int_{a_i}^{b_i} f d\lambda^1$$

podle definice Newtonova integrálu, rovnosti Riemannova a Newtonova integrálu a Věty 6.3. Podle Leviho věty platí

$$\lim_{i \to \infty} \int_{a_i}^{b_i} f \, d\lambda^1 = \lim_{i \to \infty} \int_{a}^{b} (f \cdot \chi_{(a_i, b_i)}) \, d\lambda^1 = \int_{a}^{b} f \, d\lambda^1.$$

Zároveň z definice Newtonova integrálu je

$$\lim_{i\to\infty} (\mathbf{N}) \int_{a_i}^{b_i} f = (\mathbf{N}) \int_a^b f,$$

právě tehdy, když posledně uvedený Newtonův integrál konverguje. Tím je ekvivalence i rovnost dokázána.

Důsledek 6.6. Buď f spojitá funkce na intervalu (a, b).

- 1. Jestliže konverguje $\int_a^b f d\lambda^1$, konverguje i (N) $\int_a^b f$, a to absolutně.
- 2. Jestliže (N) $\int_a^b f$ konverguje absolutně, pak konverguje i $\int_a^b f \, d\lambda^1$.
- 3. Jestliže (N) $\int_a^b f$ konverguje neabsolutně, pak $\int_a^b f \, d\lambda^1$ nemá smysl.

Přednáška 7.11.2023

7 Věta o jednoznačnosti míry

Definice 7.1. Řekneme, že $\mathcal{D} \subset \mathcal{P}(X)$ je *Dynkinův systém*, jestliže

- (i) $X \in \mathcal{D}$,
- (ii) $D \in \mathcal{D} \implies X \setminus D \in \mathcal{D}$,
- (iii) $D_n \in \mathcal{D}$, D_n po dvou disjunktní $\Longrightarrow \bigcup_n D_n \in \mathcal{D}$.

Pozn.:

- 1. Dynkinův systém je uzavřen i na vlastní množinové rozdíly: Jsou-li $A, B \in \mathcal{D}, A \subset B$, pak i $B \setminus A \in \mathcal{D}$.
- 2. Každá σ -algebra je zřejmě Dynkinův systém, ale ne naopak.

Tvrzení 7.1. (a) Průnik libovolného systému Dynkinových systémů je opět Dynkinův systém.

(b) Pro každý množinový systém $S \subset \mathcal{P}(X)$ existuje nejmenší Dynkinův systém, obsahující S:

$$\delta \mathcal{S} := \bigcap \{ \mathcal{D} \subset \mathcal{P}(X) \ \text{Dynkinův syst.}, \mathcal{S} \subset \mathcal{D} \}.$$

Věta 7.2. Nechť je množinový systém $S \subset \mathcal{P}(X)$ uzavřen na konečné průniky. Pak $\delta S = \sigma S$.

Důkaz: Ukážeme, že δS je uzavřen na konečné průniky. Z toho již vyplyne, že δS je σ -algebra, a tedy $\delta S = \sigma S$. (Skutečně, není těžké ověřit, že každý Dynkinův systém, který je uzavřený na konečné průniky, již je σ -algebrou.) Položme

$$\mathcal{D} := \{ D \in \delta \mathcal{S} : D \cap S \in \delta \mathcal{S} \text{ pro každou } S \in \mathcal{S} \}.$$

Z předpokladu věty víme, že $\mathcal{S}\subset\mathcal{D}$. Ukážeme, že \mathcal{D} je Dynkinův systém. (i) Zřejmě $X\in\mathcal{D}$. (ii) Je-li $D\in\mathcal{D}$ a $S\in\mathcal{S}$, pak

$$(X \setminus D) \cap S = S \setminus (S \cap D) \in \delta S$$
,

tedy $X \setminus D \in \mathcal{D}$. (iii) Jsou-li $D_n \in \mathcal{D}$ po dvou disjunktní a $S \in \mathcal{S}$, pak

$$(\bigcup_{n} D_n) \cap S = \bigcup_{n} (D_n \cap S) \in \delta S,$$

tedy $\bigcup_n D_n \in \mathcal{D}$. \mathcal{D} je tedy Dynkinův systém a musí se tudíž shodovat se $\delta \mathcal{S}$.

Dále položme

$$\mathcal{E} := \{ E \in \delta \mathcal{S} : E \cap D \in \delta \mathcal{S} \text{ pro každou } D \in \delta \mathcal{S} \}.$$

Z dokázané rovnosti $\mathcal{D} = \delta \mathcal{S}$ plyne $\mathcal{S} \subset \mathcal{E}$. \mathcal{E} je rovněž Dynkinův systém (to se dokáže stejně, jako pro systém \mathcal{D}). Platí tedy také $\mathcal{E} = \delta \mathcal{S}$, což znamená, že $\delta \mathcal{S}$ je uzavřen na konečné průniky, a důkaz je hotov.

Věta 7.3 (Věta o jednoznačnosti míry). Nechť je množinový systém $S \subset \mathcal{P}(X)$ uzavřen na konečné průniky a μ, ν nechť jsou dvě míry na σS takové, že $\mu(S) = \nu(S)$ pro každou $S \in S$. Nechť dále existují množiny $A_n \in S$ $(n \in \mathbb{N})$ takové, že $A_n \nearrow X$ a $\mu(A_n) < \infty$, $n \in \mathbb{N}$. Pak $\mu = \nu$ na σS .

Důkaz: (1) Předpokládejme, nejprve, že μ je konečná. Množina

$$\mathcal{D} := \{ A \in \sigma \mathcal{S} : \mu(A) = \nu(A) \}$$

je Dynkinův systém (vlastnost (i) plyne z $\mu(X) = \lim_n \mu(A_n) = \lim_n \nu(A_n) = \nu(X)$, vlastnosti (ii) a (iii) pak ze (spočetné) aditivity míry). Protože $\mathcal{S} \subset \mathcal{D}$ podle předpokladu, musí být $\mathcal{D} = \delta \mathcal{S}$. Podle Věty 7.2 je ovšem $\delta \mathcal{S} = \sigma \mathcal{S}$, a tedy μ a ν se shodují na $\sigma \mathcal{S}$.

(2) Je-li μ nekonečná, položíme

$$\mathcal{D}_n := \{ A \in \sigma \mathcal{S} : \mu(A \cap A_n) = \nu(A \cap A_n) \}, \quad n \in \mathbb{N}.$$

Stejně jako v části (1) se ověří, že \mathcal{D}_n je Dynkinův systém obsahující \mathcal{S} , a tedy $\mathcal{D}_n = \sigma \mathcal{S}$, $n \in \mathbb{N}$. Ze spojitosti míry pak pro libovolnou $A \in \sigma \mathcal{S}$ dostaneme

$$\mu(A) = \lim_{n} \mu(A \cap A_n) = \lim_{n} \nu(A \cap A_n) = \nu(A),$$

čímž je důkaz ukončen.

Příklad: Je-li μ míra na $(\mathbb{R}^1, \mathcal{B}^1)$ taková, že $\mu(I) = \text{délka}(I)$ pro každý omezený interval I, pak nutně $\mu = \lambda^1$.

8 Součin měr a Fubiniova věta

Mějme dva prostory (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) se σ -konečnými měrami.

Definice 8.1. *Měřitelným obdélníkem* rozumíme množinu $A \times B \subset X \times Y$, kde $A \in \mathcal{A}$ a $B \in \mathcal{B}$. σ -algebru

$$\mathcal{A} \otimes \mathcal{B} := \sigma \{ A \times B : A \in \mathcal{A}, B \in \mathcal{B} \}$$

nazýváme součinovou σ -algebrou na prostoru $X \times Y$.

Pro množinu $E \in \mathcal{A} \otimes \mathcal{B}$ značíme

$$E_x := \{ y \in Y : (x, y) \in E \}, x \in X,$$

 $E^y := \{ x \in X : (x, y) \in E \}, y \in Y$

řezy množiny E.

Tvrzení 8.1. Nechť $E \in \mathcal{A} \otimes \mathcal{B}$. Pak

- 1. $E_x \in \mathcal{B}$ pro všechna $x \in X$,
- 2. funkce $x \mapsto \nu(E_x)$ je měřitelná na (X, A).

Důkaz: 1. Pro libovolné $x \in X$ je $\{E \in \mathcal{A} \otimes \mathcal{B} : E_x \in \mathcal{B}\}$ zřejmě σ -algebra obsahující všechny měřitelné obdélníky, tedy musí splývat se součinovou σ -algebrou.

2. Zvolme pevně libovolnou množinu $B_0 \in \mathcal{B}$ s mírou $\nu(B_0) < \infty$. Označme

$$\mathcal{D} := \{ E \in \mathcal{A} \otimes \mathcal{B} : x \mapsto \nu(E_x \cap B_0) \text{ je měřitelná} \}.$$

Zřejmě \mathcal{D} obsahuje všechny měřitelné obdélníky, a snadno se ověří, že \mathcal{D} je Dynkinův systém. \mathcal{D} tedy obsahuje δ -obal všech měřitelných obdélníků, a protože měřitelné obdélníky jsou uzavřené na konečné průniky, jejich δ -obal je totožný se σ -obalem, a tedy $\mathcal{D} = \mathcal{A} \otimes \mathcal{B}$. Protože ν je σ -konečná, existují množiny $B_n \in \mathcal{B}, \ \nu(B_n) < \infty, \ B_n \nearrow Y, \ n \to \infty$. Pak pro libovolnou $E \in \mathcal{A} \otimes \mathcal{B}$ platí $\nu(E_x) = \lim_{n \to \infty} \nu(E_x \cap B_n)$, a tedy funkce $x \mapsto \nu(E_x)$ je měřitelná (jako limita měřitelných funkcí).

Věta 8.2 (Existence a jednoznačnost součinové míry). *Existuje právě jedna míra* $\mu \otimes \nu$ na $(X \times Y, \mathcal{A} \otimes \mathcal{B})$ s vlastností

$$(\mu \otimes \nu)(A \times B) = \mu(A) \cdot \nu(B), \quad A \in \mathcal{A}, B \in \mathcal{B}$$

(klademe $0 \cdot \infty = 0$).

Důkaz: Pro $E \in \mathcal{A} \otimes \mathcal{B}$ položme

$$(\mu \otimes \nu)(E) := \int \nu(E_x) \, d\mu(x). \tag{1}$$

Nejprve ukážeme, že $\mu \otimes \nu$ je míra na $(X \times Y, \mathcal{A} \otimes \mathcal{B})$. Zřejmě $(\mu \otimes \nu)(\emptyset) = 0$. Jsou-li $E_n \in \mathcal{A} \otimes \mathcal{B}$ po dvou disjunktní, platí

$$(\mu \otimes \nu)(\bigcup_{n} E_{n}) = \int \nu((\bigcup_{n} E_{n})_{x}) d\mu(x) = \int \nu(\bigcup_{n} (E_{n})_{x}) d\mu(x)$$
$$= \int \sum_{n} \nu((E_{n})_{x}) d\mu(x) = \sum_{n} (\mu \otimes \nu)(E_{n})$$

(využili jsme faktu, že řezy disjunktních množin jsou opět disjunktní). Tedy $\mu\otimes\nu$ je míra.

Z definice je zřejmé, že pro měřitelný obdélník $A\times B$ je $(\mu\otimes\nu)(A\times B)=\mu(A)\nu(B).$

Zbývá ukázat jednoznačnost. Použijeme Větu 7.3. Systém všech měřitelných obdélníků je uzavřen na konečné průniky a součinová míra je na měřitelných obdélnících jednoznačně určena. Protože μ a ν jsou σ -konečné míry, existují množiny $A_n \in \mathcal{A}, \ \mu(A_n) < \infty, \ A_n \nearrow X, \ a \ B_n \in \mathcal{B}, \ \nu(B_n) < \infty, \ B_n \nearrow Y, \ n \to \infty$. Měřitelné obdélníky $C_n := A_n \times B_n$ pak splňují $(\mu \otimes \nu)(C_n) < \infty$ a $C_n \nearrow X \times Y$, předpoklady Věty 7.3 jsou tedy splněny.

Definice 8.2 (Obraz míry). Buď $\varphi:(E,\mathcal{E})\to(F,\mathcal{F})$ měřitelné zobrazení a μ míra na (E,\mathcal{E}) . Pak množinová funkce

$$\mu \varphi^{-1} : B \mapsto \mu(\varphi^{-1}(B)), \quad B \in \mathcal{F},$$

je míra na (F, \mathcal{F}) a nazýváme ji obrazem míry μ při zobrazení φ .

Přednáška 14.11.2023

Tvrzení 8.3 (Symetrie součinové míry). Platí $\nu \otimes \mu = (\mu \otimes \nu)\tau^{-1}$, kde $\tau : X \times Y \to Y \times X$ je záměna souřadnic, tedy $\tau : (x,y) \mapsto (y,x)$.

 $D\mathring{u}kaz$. Nejprve ověříme, že $\tau^{-1}(\mathcal{B}\otimes\mathcal{A})=\mathcal{A}\otimes\mathcal{B}$. Toto snadno plyne z Věty 3.1 (ii), neboť $\tau^{-1}(\sigma\mathcal{S})=\sigma(\tau^{-1}\mathcal{S})$, kde \mathcal{S} značí systém všech měřitelných obdélníků v $Y\times X$.

Míry $\nu\otimes\mu$ a $(\mu\otimes\nu)\tau^{-1}$ se shodují na měřitelných obdélnících, tedy se rovnají podle předchozí věty.

Důsledek 8.4. Platí

$$(\mu \otimes \nu)(E) = \int \mu(E^y) \, d\nu(y), \quad E \in \mathcal{A} \otimes \mathcal{B}.$$

Důkaz. Platí

$$(\mu \otimes \nu)(E) = (\nu \otimes \mu)(\tau E) = \int \mu((\tau E)_y) \, d\nu(y) = \int \mu(E^y) \, d\nu(y),$$

využili jsme předchozího tvrzení a vztahu (1).

Věta 8.5 (Fubiniova věta). *Pro každou funkci* $f \in \mathcal{L}^*(\mu \otimes \nu)$ platí:

$$\int f \, d(\mu \otimes \nu) = \int \left(\int f(x,y) \, d\nu(y) \right) d\mu(x) = \int \left(\int f(x,y) \, d\mu(x) \right) d\nu(y).$$

 $D\mathring{u}kaz$. 1. Je-li fcharakteristickou funkcí množiny ze součinové $\sigma\text{-algebry},$ plyne rovnost z (1) a Důsledku 8.4.

2. Pro jednoduchou měřitelnou funkci $s = \sum_{i=1}^k \alpha_i \chi_{E_i}$ máme

$$\int s \, d(\mu \otimes \nu) = \sum_{i=1}^k \alpha_i \int \nu((E_i)_x) \, d\mu(x)$$
$$= \int \sum_{i=1}^k \alpha_i \nu((E_i)_x) \, d\mu(x)$$
$$= \int (\int s(x, y) \, d\nu(y)) \, d\mu(x).$$

Z uvedeného výpočtu rovněž plyne, že funkce $x\mapsto \int s(x,y)\,d\nu(y)$ je měřitelná. Druhá rovnost se odvodí analogicky.

3. Buď $f \geq 0$ měřitelná a $s_n \nearrow f$ jednoduché měřitelné funkce. Pak podle Leviho věty

$$\int s_n(x,y) \, d\nu(y) \nearrow \int f(x,y) \, d\nu(y), \quad x \in X.$$

Protože integrály na levé straně jsou měřitelnými funkcemi proměnné x, i integrál na pravé straně je měřitelnou funkcí v x a opětovným použitím Leviho věty dostaneme

$$\int \int s_n(x,y) \, d\nu(y) \, d\mu(x) \nearrow \int \int f(x,y) \, d\nu(y) \, d\mu(x).$$

Podle již dokázané části 2 se integrál na levé straně shoduje s

$$\int s_n d(\mu \otimes \nu) \nearrow \int f d(\mu \otimes \nu),$$

čímž dostáváme první z obou dokazovaných rovností (a druhá opět plyne analogicky).

4. Je-li $f = f^+ - f^- \in \mathcal{L}^*(\mu \otimes \nu)$, ověříme rovnost snadno pomocí příslušných rovností pro f^+ a f^- .

Příklad: Uvažujme $X=Y=\mathbb{Z},\,\mathcal{A}=\mathcal{B}=\mathcal{P}(\mathbb{Z}),\,\mu=\nu$ je aritmetická míra. Definujme funkci $f:\mathbb{Z}\times\mathbb{Z}\to\mathbb{R}$ následovně:

$$f(z_1, z_2) = \begin{cases} 1 & \text{pokud } z_2 = z_1 \ge 0 \text{ nebo } z_2 = z_1 - 1 \le -1, \\ -1 & \text{pokud } z_2 = z_1 < 0 \text{ nebo } z_2 = z_1 - 1 > -1, \\ 0 & \text{jinak.} \end{cases}$$

Platí

$$\int \int f(z_1, z_2) d\mu(z_1) d\mu(z_2) = \sum_{z_2} \sum_{z_1} f(z_1, z_2) = 0,$$

ale

$$\int \int f(z_1, z_2) d\mu(z_2) d\mu(z_1) = \sum_{z_1} \sum_{z_2} f(z_1, z_2) = 2,$$

přitom ovšem $f \notin \mathcal{L}^*(\mu \otimes \mu)$.

Pozn.: Prostor se součinovou mírou $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \otimes \nu)$ nemusí být úplný, ani když prostory (X, \mathcal{A}, μ) a (Y, \mathcal{B}, ν) jsou úplné. Zúplněný prostor se součinovou mírou značíme $(X \times Y, \mathcal{A} \hat{\otimes} \mathcal{B}, \mu \hat{\otimes} \nu)$.

Příklad: Uvažujme prostor se zúplněnou Lebesgueovou mírou $(\mathbb{R}, \mathcal{B}_0, \lambda)$. Jeli $A \subset \mathbb{R}$ neměřitelná množina (viz úvodní přednáška), pak $A \times \{0\}$ neleží v $\mathcal{B}_0 \otimes \mathcal{B}_0$, ale je nulová, protože $A \times \{0\} \subset \mathbb{R} \times \{0\}$ a $(\lambda \otimes \lambda)(\mathbb{R} \times \{0\}) = 0$.

Důsledek 8.6 (Fubiniova věta pro zúplněnou součinovou míru). Buď te (X, \mathcal{A}, μ) a (Y, \mathcal{B}, ν) dva úplné prostory se σ -konečnými měrami. Pak pro každou funkci $f \in \mathcal{L}^*(\mu \hat{\otimes} \nu)$ platí:

$$\int f d(\mu \hat{\otimes} \nu) = \int \left(\int f(x, y) d\nu(y) \right) d\mu(x) = \int \left(\int f(x, y) d\mu(x) \right) d\nu(y).$$

 $D\mathring{u}kaz$. Rovnost nejprve dokážeme pro případ $f = \chi_E$, kde $E \in \mathcal{A} \hat{\otimes} \mathcal{B}$. Podle Věty 2.4 existuje $F \in \mathcal{A} \otimes \mathcal{B}$ taková, že $E \triangle F$ je nulová, tedy

$$\int f d(\mu \hat{\otimes} \nu) = (\mu \hat{\otimes} \nu)(E) = (\mu \otimes \nu)(F).$$

Podle Fubiniovy věty platí $(\mu \otimes \nu)(F) = \int \nu(F_x) \, d\mu(x)$. Ukážeme-li, že

$$\int \nu(E_x) \, d\mu(x) = \int \nu(F_x) \, d\mu(x),$$

dokážeme tím první z dvou dokazovaných rovností věty pro případ $f = \chi_E$ (druhá rovnost plyne analogicky.) K tomu stačí ukázat, že $\nu(E_x) = \nu(F_x)$ μ -s.v. Z definice nulové množiny víme, že existuje $N \in \mathcal{A} \otimes \mathcal{B}$ taková, že $E \triangle F \subset N$ a $(\mu \otimes \nu)(N) = 0$. Ze vztahu (1) plyne $\nu(N_x) = 0$ μ -s.v. Dále zřejmě platí

$$E_x \triangle F_x = (E \triangle F)_x \subset N_x$$

tedy také $\nu(E_x \triangle F_x) = 0$ μ -s.v., a tudíž $\nu(E_x) = \nu(F_x)$ μ -s.v.

Dále lze postupně ukázat platnost rovnosti pro jednoduché měřitelné funkce, nezáporné měřitelné funkce a funkce z $\mathcal{L}^*(\mu \hat{\otimes} \nu)$, stejně jako v důkazu Věty 8.5.

Věta 8.7 (Součin Lebesgueových měr). *Pro* $p, q \in \mathbb{N}$ platí:

- (i) $\mathcal{B}^{p+q} = \mathcal{B}^p \otimes \mathcal{B}^q$,
- (ii) $\lambda^{p+q} = \lambda^p \otimes \lambda^q$.

 $D\mathring{u}kaz$. (i). Každý otevřený (p+q)-kvádr je kartézským součinem otevřeného p-kvádru a otevřeného q-kvádru. Nechť \mathcal{Q}^k značí systém všech otevřených k-kvádrů. Pak platí

$$\mathcal{B}^{p+q} = \sigma\{U \times V : U \in \mathcal{Q}^p, V \in \mathcal{Q}^q\} \subset \sigma\{A \times B : A \in \mathcal{B}^p, B \in \mathcal{B}^q\} = \mathcal{B}^p \otimes \mathcal{B}^q.$$

Pro druhou inkluzi stačí ukázat, že $A\times B\in\mathcal{B}^{p+q}$ kdykoliv $A\in\mathcal{B}^p$ a $B\in\mathcal{B}^q.$ Označme

$$\mathcal{D}_1 := \{ A \in \mathcal{B}^p : A \times V \in \mathcal{B}^{p+q} \text{ kdykoliv } V \in \mathcal{Q}^q \}.$$

Zřejmě $Q^p \subset \mathcal{D}_1$ a snadno lze ukázat, že \mathcal{D}_1 je σ -algebra. Platí tedy $\mathcal{D}_1 = \mathcal{B}^p$. Dále označme

$$\mathcal{D}_2 := \{ B \in \mathcal{B}^q : A \times B \in \mathcal{B}^{p+q} \text{ kdykoliv } A \in \mathcal{B}^p \}.$$

Platí $\mathcal{Q}_q \subset \mathcal{D}_2$ (protože $\mathcal{D}_1 = \mathcal{B}^p$) a \mathcal{D}_2 je opět σ -algebra, tudíž $\mathcal{D}_2 = \mathcal{B}^q$. σ -algebra \mathcal{B}^{p+q} tedy obsahuje všechny měřitelné obdélníky v $\mathbb{R}^p \times \mathbb{R}^q$, a musí tedy obsahovat i $\mathcal{B}^p \otimes \mathcal{B}^q$.

(ii). Míry λ^{p+q} a $\lambda^p \otimes \lambda^q$ se shodují na otevřených kvádrech z \mathcal{Q}^{p+q} . Systém \mathcal{Q}^{p+q} je uzavřen na konečné průniky, generuje \mathcal{B}^{p+q} a existuje posloupnost otevřených kvádrů $Q_i \nearrow \mathbb{R}^{p+q}$ konečné míry, tedy λ^{p+q} a $\lambda^p \otimes \lambda^q$ se shodují i na \mathcal{B}^{p+q} podle Věty 7.3.

V dalším budeme symbolem $\mathcal{L}^*(\mathbb{R}^k)$ zkráceně značit prostor $\mathcal{L}^*(\mathbb{R}^k, \mathcal{B}_0^k, \lambda^k)$.

Důsledek 8.8 (Fubiniova věta v \mathbb{R}^{p+q}). Pro každou funkci $f \in \mathcal{L}^*(\mathbb{R}^{p+q})$ platí

$$\int f(x,y) d(x,y) = \int \left(\int f(x,y) dy \right) dx = \int \left(\int f(x,y) dx \right) dy,$$

 $kde\ píšeme\ stručně\ dx:=d\lambda^p(x),\ dy:=d\lambda^q(y),\ d(x,y):=d\lambda^{p+q}(x,y).$

Důsledek 8.9. Pro množinu $A \in \mathcal{B}^{p+q}$ platí

$$\lambda^{p+q}(A) = \int_{\pi_1 A} \lambda^q(A_x) \, dx = \int_{\pi_2 A} \lambda^p(A^y) \, dy,$$

 $kde \ \pi_1: (x,y) \mapsto x \ a \ \pi_2: (x,y) \mapsto y \ \textit{jsou projekce}.$

Důsledek 8.10. Pro funkci $f \in \mathcal{L}^*(\mathbb{R}^{p+q})$ a množinu $A \in \mathcal{B}^{p+q}$ platí

$$\int_A f(x,y) d(x,y) = \int_{\pi_1 A} \left(\int_{A_x} f(x,y) dy \right) dx = \int_{\pi_2 A} \left(\int_{A^y} f(x,y) dx \right) dy.$$

Příklad: Pro jednotkovou kouli $B_1=\{x^2+y^2+z^2\leq 1\}$ v \mathbb{R}^3 dostáváme podle Důsledku 8.9

$$\lambda^3(B_1) = \int_{-1}^1 \pi(1 - z^2) \, dz = \frac{4}{3}\pi.$$

Přednáška 21.11.2023

9 Věta o substituci

Připomenutí: Pro funkci $f:(\alpha,\beta)\to\mathbb{R}$ a diferencovatelnou surjektivní monotónní funkci $\varphi:(a,b)\to(\alpha,\beta)$ platí

$$\int_{a}^{b} f(\varphi(x))|\varphi'(x)| dx = \int_{\alpha}^{\beta} f(y) dy,$$

má-li jedna strana smysl jako Newtonův integrál.

Tvrzení 9.1 (Lebesgueova míra je translačně invariantní). *Pro každou B* $\in \mathcal{B}^n$ a $z \in \mathbb{R}^n$ platí

$$\lambda^n(B+z) = \lambda^n(B).$$

 $D\mathring{u}kaz$. Plyne z věty o jednoznačnosti míry, neboť λ^n a míra $\mu(B) := \lambda^n(B+z)$, $B \in \mathcal{B}^n$, se shodují na otevřených kvádrech.

Věta 9.2. Bud' $L: \mathbb{R}^n \to \mathbb{R}^n$ regulární lineární zobrazení a $A \in \mathcal{B}^n$. Pak $L(A) \in \mathcal{B}^n$ a platí $\lambda^n(L(A)) = |\det L|\lambda^n(A)$.

 $D\mathring{u}kaz$. Každé lineární zobrazení mezi konečněrozměrnými prostory je spojité. Protože L je regulární, existuje (spojité) inverzní zobrazení L^{-1} , a tedy $L(A) = (L^{-1})^{-1}(A) \in \mathcal{B}^n$.

Podle známé věty z lineární algebry lze každé regulární lineární zobrazení $L: \mathbb{R}^n \to \mathbb{R}^n$ vyjádřit jako složení konečně mnoha "elementárních" lineárních zobrazení jednoho ze tří typů:

- (i) $L_1:(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)\mapsto (x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)$ (tedy L_1 prohazuje *i*-tou a *j*-tou souřadnici vektoru);
- (ii) $L_2:(x_1,\ldots,x_n)\mapsto (x_1,\ldots,x_{n-1},x_n+bx_1)$ $(b\in\mathbb{R})$ $(L_2$ přičte k n-té souřadnici b-násobek první souřadnice);
- (iii) $L_3:(x_1,\dots,x_n)\mapsto (x_1,\dots,x_{n-1},ax_n)$ $(a\neq 0)$ $(L_3$ vynásobí n-tou souřadnici nenulovým faktorem a).

Protože složené lineární zobrazení odpovídá součinu příslušných matic, a determinant součinu je součinem determinantu jednotlivých matic, stačí dokazovanou identitu ukázat pro případy $L=L_1,L_2$ a L_3 .

Míry $\lambda^n L_1$ a λ^n se shodují na systému otevřených kvádrů. Podle věty o jednoznačnosti míry se tedy shodují i na borelovské σ -algebře, a máme tedy $\lambda^n(L_1(A)) = \lambda^n(A) = |\det L_1|\lambda^n(A), A \in \mathcal{B}^n$.

Podle Fubiniovy věty platí

$$\lambda^{n}(L_{2}(A)) = \int_{\pi_{n-1}(L_{2}(A))} \lambda^{1}\left((L_{2}(A))_{(x_{1},\dots,x_{n-1})}\right) d(x_{1},\dots,x_{n-1}),$$

kde $\pi_{n-1}:(x_1,\ldots,x_n)\mapsto (x_1,\ldots,x_{n-1}).$ Pro řez množiny $L_2(A)$ pak z tvaru L_2 dostáváme

$$(L_2(A))_{(x_1,\ldots,x_{n-1})} = A_{(x_1,\ldots,x_{n-1})} + bx_1,$$

a protože λ^1 je translačně invariantní a $\pi_{n-1}(L_2(A)) = \pi_{n-1}(A)$, máme

$$\lambda^{n}(L_{2}(A)) = \int_{\pi_{n-1}(A)} \lambda^{1} \left(A_{(x_{1}, \dots, x_{n-1})} \right) d(x_{1}, \dots, x_{n-1}) = \lambda^{n}(A).$$

Jelikož $|\det L_2| = 1$, ověřili jsme tím rovnost pro L_2 .

Míry λ^n a $\mu(A) := |a|^{-1} \lambda^n(L_3(A))$ se shodují na systému otevřených kvádrů, proto se shodují podle věty o jednoznačnosti i na borelovských množinách. Platí tedy $\lambda^n(L_3(A)) = |a|\lambda^n(A) = |\det L_3|\lambda^n(A)$. Tím je důkaz ukončen.

Důsledek 9.3 (Lebesgueova míra je izometricky invariantní). *Je-li* $S : \mathbb{R}^n \to \mathbb{R}^n$ izometrie (tzn. ||S(x) - S(y)|| = ||x - y||, $x, y \in \mathbb{R}^n$), pak $\lambda^n(S(A)) = \lambda^n(A)$, $A \in \mathcal{B}^n$.

 $D\mathring{u}kaz$. Podle věty z Geometrie 1 lze každou izometrii v \mathbb{R}^n zapsat ve tvaru

$$S: x \mapsto b + R(x), \quad x \in \mathbb{R}^n,$$

kde $b \in \mathbb{R}^n$ ("posunutí") a R je ortogonální lineární zobrazení (tzn. $R^TR = I$). Protože $|\det R| = 1$ a λ^n je translačně invariantní, dostáváme $\lambda^n(S(A)) = \lambda^n(A)$ z Tvrzení 9.2.

Pozn.:

- 1. Je-li $W\subset \mathbb{R}^n$ afinní podprostor dimenze menší než n, platí $\lambda^n(W)=0.$ (Plyne snadno z Fubiniovy věty.)
- 2. Vzorec z Věty 9.2 platí i bez předpokladu regularity zobrazení ${\cal L}.$

Důsledek 9.4 (Homogenita Lebesgueovy míry).

$$\lambda^n(rA) = |r|^n \lambda^n(A), \quad r \in \mathbb{R}, \ A \in \mathcal{B}^n.$$

Definice 9.1. Nechť $U \subset \mathbb{R}^n$ je otevřená a $f: U \to \mathbb{R}^n$ zobrazení třídy C^1 . Pak $\mathcal{J}f(x) := \det Df(x)$ je Jakobián funkce f v bodě $x, x \in U$.

Definice 9.2. Nechť $U \subset \mathbb{R}^n$ je otevřená. Zobrazení $f: U \to \mathbb{R}^n$ je difeomorfismus, je-li prosté, třídy C^1 a platí-li $\mathcal{J}f(x) \neq 0, x \in U$.

Pozn.: Z věty o inverzním zobrazení plyne, že je-li $f:U\to\mathbb{R}^n$ difeomorfismus, je obraz f(U) otevřená množina a f^{-1} je třídy C^1 na f(U).

Věta 9.5 (Věta o substituci). Buď $U \subset \mathbb{R}^n$ otevřená, $\varphi : U \to \mathbb{R}^n$ difeomorfismus a $f : \varphi(U) \to \mathbb{R}$ Lebesgueovsky měřitelná funkce. Pak

$$\int_{U} f(\varphi(x)) |\mathcal{J}\varphi(x)| dx = \int_{\varphi(U)} f(y) dy,$$

má-li jedna strana smysl.

Důkaz bude v navazující přednášce.

Důsledek 9.6. Je-li navíc $B \subset \varphi(U)$ Lebesgueovsky měřitelná množina, platí

$$\int_{\varphi^{-1}(B)} f(\varphi(x)) |\mathcal{J}\varphi(x)| dx = \int_B f(y) dy,$$

má-li jedna strana smysl.

Příklady:

1. Zobrazení $\varphi:(r,t)\mapsto (r\cos t,r\sin t)$ je difeomorfismus na $U=(0,\infty)\times (-\pi,\pi),\,\mathcal{J}\varphi(r,t)=r$ a platí $\lambda^2(\mathbb{R}^2\setminus\varphi(U))=0,$ proto

$$\lambda^2(B) = \int_{\varphi^{-1}(B)} r \, d(r,t), \quad B \in \mathcal{B}_0^2.$$

2. Zobrazení $\psi:(r,s,t)\mapsto (r\cos s\cos t,r\sin s\cos t,r\sin t)$ je difeomorfismus na $U=(0,\infty)\times (-\pi,\pi)\times (-\frac{\pi}{2},\frac{\pi}{2}),\, \mathcal{J}\psi(r,s,t)=r^2\cos t$ a platí $\lambda^3(\mathbb{R}^3\setminus\psi(U))=0$, proto

$$\lambda^{3}(B) = \int_{\psi^{-1}(B)} r^{2} \cos t \, d(r, s, t), \quad B \in \mathcal{B}_{0}^{3}.$$

Přednáška 28.11.2023

10 Prostory L^p

Definice 10.1. Buď (X, \mathcal{A}, μ) prostor s mírou a funkce $f: (X, \mathcal{A}) \to \mathbb{R}^*$ měřitelná. Definujeme

$$\begin{split} \|f\|_p &:= \left(\int |f|^p \, d\mu\right)^{\frac{1}{p}}, \quad 1 \le p < \infty, \\ \|f\|_\infty &:= \inf\{\alpha \ge 0 : \, \mu\{x \in X : \, |f(x) > \alpha\} = 0\}\}, \\ \mathcal{L}^p(X, \mathcal{A}, \mu) &:= \{f : (X, \mathcal{A}) \to (\mathbb{R}^*, \mathcal{B}^*) : \|f\|_p < \infty\}, \quad 1 \le p \le \infty. \end{split}$$

(Často budeme psát stručně pouze $\mathcal{L}^p(\mu)$ nebo $\mathcal{L}^p(X)$.)

Cvičení: V případě konečné množiny X ukažte, že

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

Pozn.: Platí $|f| \leq ||f||_{\infty} \mu$ -skoro všude.

Tvrzení 10.1 (Hölderova nerovnost). Nechť $f \in \mathcal{L}^p(\mu), g \in \mathcal{L}^q(\mu), 1 \leq p, q \leq \infty, \frac{1}{p} + \frac{1}{q} = 1$. Pak $f \cdot g \in \mathcal{L}^1(\mu)$ a platí

$$||f \cdot g||_1 \le ||f||_p ||g||_q$$
.

 $D\mathring{u}kaz.$ Uvažujme nejprve případ $p=1,\,q=\infty.$ Pak

$$||fg||_1 = \int |f(x)g(x)| d\mu(x) \le ||g||_{\infty} \int |f(x)| d\mu(x) = ||f||_1 ||g||_{\infty}.$$

Dále předpokládejme, že 1 < $p,g<\infty.$ K důkazu nerovnosti použijeme pomocné lemma:

Lemma 10.2 (Youngovo lemma). Je-li $a,b\geq 0$ a p,q>1 takové, že $\frac{1}{p}+\frac{1}{q}=1,$ pak

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

 $D\mathring{u}kaz.$ Nechť ab>0jinak je nerovnost zřejmá). Protože logaritmus je konkávní funkce, platí

$$\log\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \ge \frac{1}{p}\log a^p + \frac{1}{q}\log b^q = \log a + \log b = \log(ab).$$

Z toho již plyne dokazovaná rovnost, neboť logaritmus je rostoucí funkce. \Box

Dokončení důkazu Hölderovy nerovnosti. Je-li $||f||_p = 0$ nebo $||g||_q = 0$, musí být $f \cdot g = 0$ s.v. a nerovnost zřejmě platí. Nechť dále $||f||_p > 0$ a $||g||_q > 0$. Podle Youngovy nerovnosti platí

$$\frac{|f(x)|}{\|f\|_p} \cdot \frac{|g(x)|}{\|g\|_q} \leq \frac{|f(x)|^p}{p\|f\|_p^p} + \frac{|g(x)|^q}{q\|g\|_q^q}, \quad x \in X,$$

a zintegrováním dostaneme

$$\frac{\int |f \cdot g| \, d\mu}{\|f\|_p \|g\|_q} \leq \frac{\|f\|_p^p}{p\|f\|_p^p} + \frac{\|g\|_q^q}{q\|g\|_q^q} = 1,$$

což je Hölderova nerovnost.

Věta 10.3 (Minkowského nerovnost). *Jsou-li* $1 \le p \le \infty$ a $f, g \in \mathcal{L}^p(\mu)$, pak $tak\acute{e} f + g \in \mathcal{L}^p(\mu) \ a \ plat\acute{i}$

$$||f + g||_p \le ||f||_p + ||g||_p.$$

 $D\mathring{u}kaz$. Je-li p=1, nerovnost snadno plyne z trojúhelníkové nerovnosti $|f+g| \leq$ |f|+|g| zintegrováním. Je-li $p=\infty$, platí podle definice $|f|\leq \|f\|_{\infty}$ s.v. a $|g| \le ||g||_{\infty}$ s.v., tedy

$$|f+g| \le |f| + |g| \le ||f||_{\infty} + ||g||_{\infty} \text{ s.v.},$$

z čehož plyne $\|f+g\|_\infty \le \|f\|_\infty + \|g\|_\infty$. Nechť nyní $1 . Funkce <math>x \mapsto x^p$ je konvexní na $(0,\infty)$, tudíž

$$\left|\frac{f+g}{2}\right|^p \le \left(\frac{|f|+|g|}{2}\right)^p \le \frac{|f|^p+|g|^p}{2},$$

z čehož zintegrováním dostaneme

$$||f+g||_p^p \le 2^{p-1}(||f||_p^p + ||g||_p^p) < \infty.$$

Tedy $f + g \in \mathcal{L}^p(\mu)$.

Položme $q:=\frac{p}{p-1}$ (platí tedy $\frac{1}{p}+\frac{1}{q}=1$). Funkce $|f+g|^{p-1}$ leží v $\mathcal{L}^q(\mu)$ a podle Hölderovy nerovnosti platí

$$\int (|f| \cdot |f + g|^{p-1}) \, d\mu \le ||f||_p ||f + g|^{p-1}||_q,$$

$$\int (|g| \cdot |f + g|^{p-1}) \, d\mu \le ||g||_p ||f + g|^{p-1}||_q.$$

Sečtením obou nerovností a s využitím identity

$$|||f+g|^{p-1}||_q = ||f+g||_p^{p-1}$$

dostaneme

$$\int |f+g|^p d\mu \le \int (|f|+|g|)|f+g|^{p-1} d\mu \le (\|f\|_p + \|g\|_p)\|f+g\|_p^{p-1},$$

což je Minkowského nerovnost.

Pozn.: $\mathcal{L}^p(\mu)$ je tedy vektorový prostor a $\|\cdot\|_p$ je seminorma (tedy splňuje vlastnosti normy, s tou výjimkou, že z $\|f\|_p = 0$ neplyne f = 0).

Definice 10.2. Nechť $1 \le p \le \infty$. Na množině $\mathcal{L}^p(\mu)$ definujeme ekvivalenci

$$f \sim g \iff f = g \ \mu - \text{skoro všude}.$$

Dále klademe

$$L^p(\mu) := \mathcal{L}^p(\mu) \mid_{\sim}$$

(faktorprostor, formálně množina tříd ekvivalence \sim).

Tvrzení 10.4. Pro $1 \le p \le \infty$ a $f, g \in \mathcal{L}^p(\mu)$ platí

$$||f - g||_p = 0 \iff f \sim g.$$

Důkaz: Plyne z Věty 6.1.

Důsledek: $(L^p(\mu), \|\cdot\|_p)$ je normovaný lineární prostor.

Věta 10.5. Prostor $L^p(\mu)$ je úplný.

[Důkaz: přednáška MA3]

11 Konvergence posloupností funkcí

Pro reálné funkce f_n, f definované na neprázdné množině X značíme symbolem $f_n \to f$ bodovou konvergenci f_n k f (tedy pro každé $x \in X$ platí $f_n(x) \to f(x)$).

Definice 11.1. Řekneme, že funkce f_n konvergují stejnoměrně k funkci f na množině X (značíme $f_n \Rightarrow f$), jestliže

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(\forall x \in X) : |f_n(x) - f(x)| < \varepsilon.$$

Pozn.: Stejnoměrná konvergence implikuje bodovou konvergenci, ale ne naopak. Například funkce x^n konvergují k nule bodově na (0,1), ale ne stejnoměrně.

Je-li speciálně (X, \mathcal{A}, μ) prostor s mírou, máme navíc konvergenci *skoro všude* $(f_n \to f \text{ s.v.})$ a L^p -konvergenci $(f_n \stackrel{L_p}{\to} f \iff \|f_n - f\|_p \to 0), \ 1 \le p \le \infty.$

Definice 11.2. Bud' (X, \mathcal{A}, μ) prostor s mírou a $f_n, f: (X, \mathcal{A}) \to \mathbb{R}$ měřitelné funkce, $n \in \mathbb{N}$. Řekneme, že $funkce \ f_n \ konvergují \ k funkci \ f \ podle míry \mu$ (píšeme $f_n \xrightarrow{\mu} f$), jestliže

$$\forall \varepsilon > 0: \quad \lim_{n \to \infty} \mu\{x \in X: |f_n(x) - f(x)| \ge \varepsilon\} = 0.$$

Věta 11.1. Pro $1 \le p \le \infty$ a $f_n, f \in L^p(\mu)$ platí:

$$f_n \stackrel{L^p}{\to} f \implies f_n \stackrel{\mu}{\to} f.$$

Tvrzení 11.2 (Čebyševova nerovnost). Nechť $1 \le p < \infty, \ f \in L^p(\mu) \ a \ c > 0.$

$$\mu\{x \in X : |f(x)| \ge c\} \le \frac{\|f\|_p^p}{c^p}.$$

Důkaz. Platí

$$\mu\{|f| \geq c\} = \int_{\{|f| \geq c\}} 1 \, d\mu \leq \int_{\{|f| \geq c\}} \left(\frac{|f|}{c}\right)^p \, d\mu \leq \int \left(\frac{|f|}{c}\right)^p \, d\mu = \frac{\|f\|_p^p}{c^p}.$$

 $D\mathring{u}kaz\ V\check{e}ty\ 11.1.\ \mathrm{Je\text{-li}}\ p=\infty\ \mathrm{a}\ \varepsilon>0,$ pak existuje n_0 takové, že $\|f_n-f\|_\infty<\varepsilon,$ a tedy $\mu\{|f_n-f|\geq\varepsilon\}=0,$ pro $n>n_0$.

Je-li $p < \infty$, plyne tvrzení přímo z Čebyševovy nerovnosti.

Přednáška 5.12.2023

Věta 11.3 (Jegorov). Nechť $\mu(X) < \infty$, f_n , f jsou reálné měřitelné funkce na X, $f_n \to f$ μ -s.v., $a \in > 0$. Pak existuje $E \in \mathcal{A}$ taková, že $\mu(E) < \varepsilon$ a $f_n \rightrightarrows f$ na $X \setminus E$.

 $D\mathring{u}kaz.$ Existuje množina Nnulové míry taková, že $f_n(x)\to f(x),\,x\in X\setminus N.$ Položme

$$A_{m,k} := \{x \in X : |f_n(x) - f(x)| < \frac{1}{k} \text{ pro každé } n \ge m\}, \quad m, k \in \mathbb{N}.$$

Pak pro každé k platí $A_{1,k}\subset A_{2,k}\subset \dots$ a z definice konvergence platí

$$\bigcap_{m} (X \setminus A_{m,k}) \subset N.$$

Podle věty o spojitosti míry a díky konečnosti μ tedy existuje m(k) takové, že $\mu(X \setminus A_{m(k),k}) < \varepsilon 2^{-k}$. Položme $E := \bigcup_{k=1}^{\infty} (X \setminus A_{m(k),k})$. Zřejmě $\mu(E) < \varepsilon$. Nechť $x \in X \setminus E$. Pak $x \in A_{m(k),k}$ pro všechna k, a tedy $|f_n(x) - f(x)| < \frac{1}{k}$ kdykoliv $n \geq m(k)$. Tím je dokázána stejnoměrná konvergence f_n k f na $X \setminus E$.

Důsledek 11.4. Jestliže $\mu(X) < \infty$ a f_n , f jsou reálné měřitelné funkce na X takové, že $f_n \to f$ μ -s.v., pak $f_n \stackrel{\mu}{\to} f$.

 $D\mathring{u}kaz$. Pro $\varepsilon, \delta > 0$ platí

$$\mu\{|f_n - f| \ge \delta\} = \mu(\{|f_n - f| \ge \delta\} \cap E) + \mu(\{|f_n - f| \ge \delta\} \setminus E),$$

kde E je množina z Jegorovovy věty. První sčítanec je pak menší než ε a druhý je roven nule pro dostatečně velká n.

Pozn.: Funkce $f_n = \chi_{[n,\infty)}$ konvergují bodově k nule, ale nikoliv podle míry λ^1 . Předpoklad konečnosti míry je tedy v Jegorovově větě nutný.

Cvičení: Jestliže $f_n \stackrel{\mu}{\to} f$ na prostoru s konečnou mírou μ , pak existuje vybraná podposloupnost (f_{n_i}) taková, že $f_{n_i} \to f$ μ -s.v.

Věta 11.5. Nechť $\mu(X) < \infty$ a $1 \le p < q \le \infty$. Pak $L^q(\mu) \subset L^p(\mu)$ a pro $f_n, f \in L^q(\mu)$ platí:

$$f_n \stackrel{L^q}{\to} f \implies f_n \stackrel{L^p}{\to} f.$$

 $D\mathring{u}kaz$. Je-li $f \in L^q$, platí

$$\int |f|^p = \int_{|f| \le 1} |f|^p + \int_{|f| > 1} |f|^p \le \mu(X) + \int |f|^q < \infty,$$

tedy $f \in L^p$. Nechť dále $f_n \stackrel{L^q}{\to} f$ a $\varepsilon > 0$. Pro $\delta > 0$ je

$$\int |f_n - f|^p = \int_{|f_n - f| \le \delta} |f_n - f|^p + \int_{|f_n - f| > \delta} |f_n - f|^p \le \delta^p \mu(X) + \delta^{p-q} \int |f_n - f|^q.$$

Zvolme $\delta > 0$ tak malé, aby $\delta^p \mu(X) < \frac{\varepsilon}{2}$. K tomuto δ pak existuje n_0 takové, že $\delta^{p-q} \int |f_n - f|^q < \frac{\varepsilon}{2}$ pro všechna $n \geq n_0$. Pak je $\int |f_n - f|^p < \varepsilon$ pro $n \geq n_0$, a tím je $f_n \stackrel{L^p}{\longrightarrow} f$ dokázáno.

Příklad: $f(x) = x^{-\frac{1}{2}}$ leží v $L^1(0,1)$, ale nikoliv v $L^2(0,1)$. Funkce $f(x) = x^{-1}$ leží v $L^2(1,\infty)$, ale nikoliv v $L^1(1,\infty)$.

12 Radon-Nikodymova věta

Tvrzení 12.1. Buď (X, \mathcal{A}, μ) prostor s mírou a $f \geq 0$ měřitelná funkce na X. Pak předpis

$$\nu: A \mapsto \int_A f \, d\mu, \quad A \in \mathcal{A},$$

definuje míru na (X, A) a pro každou měřitelnou funkci g na X platí

$$\int g \, d\nu = \int g \cdot f \, d\mu,$$

má-li jedna strana smysl.

 $D\mathring{u}kaz$. Zřejmě $\nu(\emptyset)=0$ a $\nu\geq 0$. Ukážeme σ -aditivitu. Jsou-li $A_n\in\mathcal{A}$ po dvou disjunktní, je

$$\nu(\bigcup_n A_n) = \int (f \cdot \chi_{\bigcup_n A_n}) \, d\mu = \int \sum_n (f \cdot \chi_{A_n}) \, d\mu = \sum_n \int_{A_n} f \, d\mu = \sum_n \nu(A_n).$$

Rovnost $\int g \, d\nu = \int g \cdot f \, d\mu$ platí z definice, pokud g je charakteristickou funkcí měřitelné množiny. Standardním způsobem platnost rovnosti rozšíříme postupně pro jednoduché měřitelné funkce, nezáporné měřitelné a nakonec pro měřitelné, pro něž integrál existuje.

Pozn.: Zřejmě platí: $\mu(A) = 0 \implies \nu(A) = 0, A \in \mathcal{A}$.

Definice 12.1. Buď te μ, ν dvě míry na (X, \mathcal{A}) . Řekneme, že míra ν je absolutně spojitá vzhledem k míře μ (píšeme $\nu \ll \mu$), jestliže

$$\mu(A) = 0 \implies \nu(A) = 0, \quad A \in \mathcal{A}.$$

Věta 12.2 (Radon-Nikodym). Buď te μ, ν dvě σ -konečné míry na (X, \mathcal{A}) takové, že $\nu \ll \mu$. Pak existuje nezáporná měřitelná funkce f na X taková, že

$$\nu(A) = \int_{A} f \, d\mu, \quad A \in \mathcal{A}.$$

Definice 12.2. Funkci f z předchozí věty nazýváme (Radon-Nikodymovou) hustotou míry ν vyhledem k μ a píšeme

$$f(x) = \frac{d\nu}{d\mu}(x), \quad x \in X.$$

Věta 12.3 (Radon-Nikodym, speciální případ). Buďte μ, ν dvě konečné míry na (X, \mathcal{A}) takové, že $\nu(A) \leq \mu(A)$, $A \in \mathcal{A}$. Pak existuje měřitelná funkce f na X splňující $0 \leq f \leq 1$ μ -s.v. a

$$\nu(A) = \int_{A} f \, d\mu, \quad A \in \mathcal{A}.$$

Důkaz. Označme funkcionál

$$\mathcal{J}g := \int g^2 d\mu - 2 \int g d\nu, \quad g \in L^2(\mu).$$

(Funkcionál je dobře definován, protože $L^2(\mu) \subset L^1(\mu) \subset L^1(\nu)$.) Dále označme $c := \inf\{\mathcal{J}g: g \in L^2(\mu)\}$. Platí

$$\mathcal{J}g \ge \int g^2 d\mu - 2 \int |g| d\mu = \int (|g| - 1)^2 d\mu - \mu(X) \ge -\mu(X),$$

tedy $c \ge -\mu(X) > -\infty$. Buď $(f_n) \subset L^2(\mu)$ posloupnost taková, že $\mathcal{J}f_n \to c$. Ukážeme, že (f_n) je cauchyovská v $L^2(\mu)$.

Pro libovolné $g, h \in L^2(\mu)$ platí

$$\mathcal{J}g + \mathcal{J}h = \int (g^2 + h^2) \, d\mu - 2 \int (g + h) \, d\nu,$$
$$-2\mathcal{J}(\frac{g+h}{2}) = -\int \frac{(g+h)^2}{2} \, d\mu + 2 \int (g+h) \, d\nu,$$

sečtením pak dostaneme

$$\mathcal{J}g + \mathcal{J}h - 2\mathcal{J}(\frac{g+h}{2}) = \frac{1}{2} \int (g-h)^2 d\mu = \frac{1}{2} \|g-h\|_2^2.$$

Z toho plyne, že

$$||f_m - f_n||_2^2 = 2\left(\mathcal{J}f_m + \mathcal{J}f_n - 2\mathcal{J}(\frac{f_m + f_n}{2})\right)$$

$$\leq 2\left(\mathcal{J}f_m + \mathcal{J}f_n - 2c\right) \to 0, \quad m, n \to \infty,$$

tedy (f_n) je cauchy
ovská v $L^2(\mu).$

Dále platí $\int f_n^2 d\mu \to \int f^2 d\mu$ (protože norma je vždy spojitá), a

$$\left| \int f_n \, d\nu - \int f \, d\nu \right| \le \int |f_n - f| \, d\nu \le \int |f_n - f| \, d\mu \to 0,$$

protože $f_n \to f$ i v $L^1(\mu)$. Platí tedy $\mathcal{J}f_n \to f$, takže $\mathcal{J}f = c$.

Buď te nyní $A \in \mathcal{A}$ a $t \in \mathbb{R}$ libovolné. Protože $\mathcal{J}f \leq \mathcal{J}(f+t\chi_A)$, platí

$$0 \leq \mathcal{J}(f + t\chi_{A}) - \mathcal{J}f = \int ((f + t\chi_{A})^{2} - f^{2}) d\mu - 2 \int t\chi_{A} d\nu$$
$$= \int f \cdot 2t\chi_{A} d\mu + t^{2}\mu(A) - 2t\nu(A)$$
$$= 2t \left(\int_{A} f d\mu - \nu(A) \right) + t^{2}\mu(A).$$

V posledním řádku je kvadratický polynom v t, který nabývá minima v t=0, tedy jeho lineární člen musí být roven nule, neboli

$$\nu(A) = \int_A f \, d\mu.$$

fje tedy hustotou $\frac{d\nu}{d\mu}.$ Zbývá ukázat, že $0 \leq f \leq 1~\mu\text{-s.v.}$ Platí

$$0 \le \int (f-1)^+ d\mu = \int_{\{f>1\}} (f-1) d\mu = \int_{\{f>1\}} f d\mu - \int_{\{f>1\}} 1 d\mu$$
$$= \nu(\{f>1\}) - \mu(\{f>1\}) \le 0,$$

tedy $(f-1)^+=0$ $\mu\text{-s.v.},$ neboli $f\leq 1$ $\mu\text{-s.v.}$ Podobně platí

$$0 \le \int f^- \, d\mu = - \int_{\{f < 0\}} f \, d\mu = - \nu(\{f < 0\}) \le 0,$$

tedy $f^-=0$ $\mu\text{-s.v.},$ což znamená, že $f\geq 0$ $\mu\text{-s.v.}$

Přednáška 12.12.2023

Důkaz Radon-Nikodymovy věty. Nechť nejprve μ, ν jsou konečné míry na (X, \mathcal{A}) , $\nu \ll \mu$. Použijeme Větu 12.3 pro míry $\nu \leq \mu + \nu$. Existuje tedy měřitelná funkce $h, 0 \leq h \leq 1$, taková, že

$$\nu(A) = \int_A h \, d(\mu + \nu) = \int_A h \, d\mu + \int_A h \, d\nu, \quad A \in \mathcal{A},$$

a tedy

$$\int_{A} (1 - h) d\nu = \int_{A} h d\mu, \quad A \in \mathcal{A}.$$

Standardním postupem snadno odvodíme, že pro každou nezápornou měřitelnou funkci g platí

$$\int g(1-h) \, d\nu = \int gh \, d\mu.$$

Specielně dostaneme

$$\nu\{h=1\} = \int_{\{h=1\}} h \, d(\mu + \nu) = \mu\{h=1\} + \nu\{h=1\},$$

tedy $\mu\{h=1\}=0,$ a protože $\nu\ll\mu,$ také $\nu\{h=1\}=0.$ Platí tedy h<1 $(\mu+\nu)\text{-s.v.}$

Voľbou $g := \frac{1}{1-h} \chi_A$ ve výše uvedené rovnosti dostaneme

$$\nu(A) = \int_A \frac{h}{1-h} d\mu, \quad A \in \mathcal{A},$$

tedy $f=\frac{h}{1-h}$ je hledaná hustota $\frac{d\nu}{d\mu}.$

Jsou-li μ, ν σ -konečné, existuje rozklad $X = \bigcup_i E_i$ na měřitelné množiny s $\mu(E_i) < \infty, \ \nu(E_i) < \infty, \ i \in \mathbb{N}$. Pro konečné restrikce $\nu|E_i \ll \mu|E_i$ najdeme hustoty f_i na E_i , a výslednou hustotu sestrojíme jako

$$f(x) := f_i(x), \quad x \in E_i, \quad i = 1, 2, \dots$$

Pozn.: Hustota $f=\frac{d\nu}{d\mu}$ je určena jednoznačně modulo ekvivalence ~ (viz Důsledek 6.2).

Definice 12.3. Řekneme, že dvě míry μ, ν na témže měřitelném prostoru (X, \mathcal{A}) jsou $vz\acute{ajemně}$ $singul\acute{a}rn\acute{\iota}$, nebo také $ortogon\acute{a}ln\acute{\iota}$ (píšeme $\mu \perp \nu$), jestliže existuje množina $S \in \mathcal{A}$ taková, že $\mu(S) = 0$ a $\nu(X \setminus S) = 0$.

Příklady:

- 1. Je-li $x \neq y$, pak pro Diracovy míry platí $\delta_x \perp \delta_y$.
- 2. $\lambda^1 \perp \delta_x$ pro každý $x \in \mathbb{R}$.
- 3. $\lambda^1 \perp \mu$, kde μ je aritmetická míra na množině celých čísel.

Věta 12.4 (Rozklad míry na absolutně spojitou a singulární část). *Buďte* μ, ν dvě σ -konečné míry na témže měřitelném prostoru. Pak existuje rozklad $\nu = \nu_a + \nu_s$ na míry ν_a, ν_s takový, že $\nu_a \ll \mu$ a $\nu_s \perp \mu$. Míry ν_a a ν_s jsou jednoznačně určeny.

Pozn.: Míra ν_a se nazývá absolutně spojitá část a míra ν_s singulární část míry ν vzhledem k μ .

 $D\mathring{u}kaz.$ Buď $f_\mu:=\frac{d\mu}{d(\mu+\nu)}$ Radon-Nikodýmova hustota. Označme $A:=\{f_\mu>0\}$ a $B:=\{f_\mu=0\};$ zřejmě $X=A\cup B$ je rozklad. Dále položme

$$\nu_a(\cdot) := \nu(\cdot \cap A), \qquad \nu_s(\cdot) := \nu(\cdot \cap B).$$

Zřejmě $\nu = \nu_a + \nu_s$. Dále platí $\nu_s(A) = 0$ a $\mu(B) = 0$, tedy $\nu_s \perp \mu$. A pokud $\mu(E) = 0$ pro nějakou měřitelnou množinu E, pak

$$0 = \mu(E) = \int_{E} f_{\mu} d(\mu + \nu),$$

tedy $f_\mu=0$ ν -s.v. na E, což znamená, $\nu(E\cap A)=0$ (podle definice A), tedy $\nu_a(E)=0$. Je tedy $\nu_a\ll\mu$.

Ukážeme ještě jednoznačnost rozkladu. Nechť $\nu=\nu_a'+\nu_s'$ je jiný rozklad takový, že $\nu_a'\ll\mu$ a $\nu_s'\perp\mu$. Ukážeme, že

$$\nu_s'(A) = 0 = \nu_a'(B). \tag{2}$$

Z toho pak plyne pro každou $E \in \mathcal{A}$

$$\nu'_{s}(E) = \nu'_{s}(E \cap B) = \nu'_{s}(E \cap B) + \nu'_{a}(E \cap B) = \nu(E \cap B) = \nu_{s}(E),$$

$$\nu'_{a}(E) = \nu'_{a}(E \cap A) = \nu'_{a}(E \cap A) + \nu'_{s}(E \cap A) = \nu(E \cap A) = \nu_{a}(E).$$

Stačí tedy ověřit (2). Protože $\nu_s' \perp \mu$, existuje měřitelná množina S taková, že $\mu(S)=0$ a $\nu_s'(X\setminus S)=0$. Pak

$$0 = \mu(S \cap A) = \int_{S \cap A} f_{\mu} d(\mu + \nu).$$

Protože $f_{\mu}>0$ na A, musí být $(\mu+\nu)(S\cap A)=0$, tedy i $\nu(S\cap A)=0$ a $\nu_s'(S\cap A)=0$, tudíž $\nu_s'(A)=\nu_s'(A\cap S)+\nu_s'(A\setminus S)=0$. Dále (z definice B) platí $\mu(B)=0$ a $\nu_a'\ll\mu$, tedy i $\nu_a'(B)=0$. Tím je (2) ověřeno a důkaz ukončen. \square

13 Věta o rozšíření míry

Definice 13.1. Nezáporná množinová funkce $\mu: \mathcal{A} \to [0, \infty]$ definovaná na algebře množin $\mathcal{A} \subset \mathcal{P}(X)$ je konečně aditivní, jestliže $\mu(A \cup B) = \mu(A) + \mu(B)$, kdykoliv $A, B \in \mathcal{A}$ a $A \cap B = \emptyset$.

Pozn.: Konečně aditivní množinová funkce je zřejmě monotónní (tedy $A \subset B \implies \mu(A) \leq \mu(B)$).

Příklad: Množinová funkce

$$\mu(A):=\begin{cases} 0, & A\subset\mathbb{N} \text{ konečn\'a},\\ \infty, & A\subset\mathbb{N} \text{ nekonečn\'a} \end{cases}$$

je konečně aditivní množinová funkce na $\mathcal{P}(\mathbb{N})$, která není σ -aditivní.

Definice 13.2. Nechť $X \neq \emptyset$ a \mathcal{A} je algebra podmnožin X. Řekneme, že funkce $\tilde{\mu}: \mathcal{A} \rightarrow [0, \infty]$ je pramíra, jestliže

- (i) $\tilde{\mu}(\emptyset) = 0$,
- (ii) pro libovolné množiny $A_i \in \mathcal{A}$ po dvou disjunktní a takové, že i $\bigcup_{i=1}^\infty A_i \in \mathcal{A}$, platí

$$\tilde{\mu}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \tilde{\mu}(A_i).$$

Pozn.: Vlastnost (ii) budeme nazývat σ -aditivitou, stejně jako u míry. Rozdíl je v tom, že na algebře musíme navíc předpokládat, že i spočetné sjednocení množin leží v algebře.

Věta 13.1 (Hahn-Kolmogorovova věta o rozšíření míry). Buď $\tilde{\mu}$ pramíra na algebře \mathcal{A} podmnožin množiny X. Pak existuje míra μ na $\sigma\mathcal{A}$ taková, že $\tilde{\mu} = \mu$ na \mathcal{A} . Je-li $\tilde{\mu}$ σ -konečná, je μ jednoznačně určena.

[Bez důkazu (bude v navazující přednášce)]

Tvrzení 13.2. Buď $\tilde{\mu}: \mathcal{A} \to [0, \infty)$ konečná, konečně aditivní funkce na algebře \mathcal{A} splňující $\tilde{\mu}(\emptyset) = 0$. Pak $\tilde{\mu}$ je σ -aditivní právě tehdy, když

$$A_i \in \mathcal{A}, A_i \searrow \emptyset \implies \tilde{\mu}(A_i) \to 0.$$
 (3)

Pozn: Vlastnosti (3) se říká spojitost $\tilde{\mu}$ v prázdné množině.

 $D\mathring{u}kaz. \implies$: Nechť $\tilde{\mu}$ je σ -aditivní a $A_i \in \mathcal{A}, A_i \searrow \emptyset$. Pak $A_1 = \bigcup_{i=1}^{\infty} (A_i \backslash A_{i+1})$ a množiny $A_i \backslash A_{i+1}$ jsou po dvou disjunktní, tedy

$$\tilde{\mu}(A_1) = \sum_{i=1}^{\infty} \tilde{\mu}(A_i \setminus A_{i+1}) < \infty.$$

Rovněž platí $A_n = \bigcup_{i=n}^{\infty} (A_i \setminus A_{i+1})$, tedy

$$\tilde{\mu}(A_n) = \sum_{i=n}^{\infty} \tilde{\mu}(A_i \setminus A_{i+1}) \to 0, \quad n \to \infty.$$

 \Leftarrow : Nechť nyní platí (3), $B_i \in \mathcal{A}$ jsou po dvou disjunktní a $A := \bigcup_{i=1}^{\infty} B_i \in \mathcal{A}$. Pro množiny $A_n := A \setminus (B_1 \cup \cdots \cup B_n)$ platí $A_n \setminus \emptyset$, tedy $\tilde{\mu}(A_n) \to 0$. Z konečné aditivity $\tilde{\mu}$ máme

$$\tilde{\mu}(A) - \tilde{\mu}(A_n) = \tilde{\mu}(A \setminus A_n) = \sum_{i=1}^n \tilde{\mu}(B_i),$$

a limitním přechodem $n \to \infty$ dostaneme $\tilde{\mu}(A) = \sum_{i=1}^{\infty} \tilde{\mu}(B_i)$.

Přednáška 19.12.2023

Příklad:

- 1. Označme symbolem \mathcal{A}_0 systém podmnožin \mathbb{R} obsahující prázdnou množinu a všechna konečná sjednocení intervalů typu (a,b] a (a,∞) , $a \in [-\infty,\infty)$, $b \in \mathbb{R}$. Lze snadno nahlédnout, že \mathcal{A}_0 je algebra, a definujme množinovou funkci $\tilde{\lambda}$ na \mathcal{A}_0 jako součet délek příslušných (disjunktních) intervalů. Lze ukázat, že $\tilde{\lambda}$ je σ -aditivní množinová funkce, tedy pramíra, a jejím rozšířením na $\sigma \mathcal{A}_0 = \mathcal{B}(\mathbb{R})$ je Lebesgueova míra λ^1 .
- 2. Na algebře \mathcal{A}_0 z předchozího příkladu uvažujme množinovou funkci

$$\tilde{\mu}(A) := \begin{cases} 0, & A = \emptyset, \\ \infty, & A \neq \emptyset. \end{cases}$$

 $\tilde{\mu}$ je zřejmě pramíra, nemá ale jednoznačné rozšíření na $\sigma \mathcal{A}_0$. Jedním možným rozšířením je míra definovaná steným předpisem jako $\tilde{\mu}$ (tedy 0 pro prázdnou množinu a ∞ pro všechny neprázdné množiny), jiným rozšířením je aritmetická míra, nebo její libovolný kladný násobek.

Příklad. Položme $X:=\{0,1\}^{\mathbb{N}}$ (posloupnosti 0-1) a pro $n\in\mathbb{N}$ označme $\Pi_n:X\to\{0,1\}^n$ projekci do prvních n souřadnic. Dále označme

$$\mathcal{A} := \bigcup_{n=1}^{\infty} \Pi_n^{-1}(\mathcal{P}\{0,1\}^n).$$

Systém \mathcal{A} tvoří algebru a definujeme na ní množinovou funkci předpisem: Je-li $A \in \mathcal{A}$, pak $A = \Pi_n^{-1}(B)$ pro nějaké $n \in \mathbb{N}$ a $B \subset \{0,1\}^n$; klademe

$$\tilde{\mu}(A) := \frac{\operatorname{card} B}{2^n}.$$

 $\tilde{\mu}$ je korektně definovaná konečně aditivní množinová funkce.

Na množině X zavedeme metriku

$$d(x,y) := \sum_{i=1}^{\infty} \frac{|x_i - y_i|}{2^i}, \quad x, y \in X.$$

Potřebujeme tyto znalosti z matematické analýzy (cvičení):

- 1. Konvergence posloupnosti v(X,d)je ekvivalentní konvergenci posloupností všech souřadnic.
- 2. (X, d) je kompaktní metrický prostor.
- 3. Každá množina $A \in \mathcal{A}$ je otevřená i uzavřená v (X,d).

Jsou-li $A_n \in \mathcal{A}$ takové, že $A_n \searrow \emptyset$, pak z kompaktnosti A_n plyne, že existuje n_0 takové, že $A_n = \emptyset$ pro $n > n_0$. Pak ale jistě $\tilde{\mu}(A_n) \to 0$, je tedy splněna podmínka (3) a tudíž $\tilde{\mu}$ je pramíra. Podle Hahn-Kolmogorovovy věty tedy existuje její jednoznačné rozšíření na míru μ na $\mathcal{B} := \sigma \mathcal{A}$. Míra μ je pravděpodobnostní míra a má význam rozložení pravděpodobnosti pro posloupnost nezávislých opakování pokusu hodu mincí.

14 Distribuční funkce

Definice 14.1. Buď μ konečná borelovská míra na \mathbb{R} . Pak

$$F_{\mu}(x) := \mu((-\infty, x]), \quad x \in \mathbb{R}$$

je distribuční funkce míry μ .

Tvrzení 14.1. (1) F_{μ} je neklesající,

- (2) $F(-\infty) := \lim_{x \to -\infty} F_{\mu}(x) = 0, \ F(\infty) := \lim_{x \to \infty} F_{\mu}(x) < \infty,$
- (3) F_{μ} je zprava spojitá.

Důkaz: Tvrzení snadno plyne z monotonie a spojitosti míry.

Věta 14.2. Nechť funkce $F : \mathbb{R} \to \mathbb{R}$ má vlastnosti (1), (2) a (3). Pak existuje právě jedna konečná borelovská míra μ na \mathbb{R} taková, že $F_{\mu} = F$.

Důkaz: Buď \mathcal{A}_0 algebra generovaná intervaly $(a, b], (a, \infty), a \in [-\infty, \infty),$ $b \in \mathbb{R}$. Každou množinu $A \in \mathcal{A}_0$ můžeme vyjádřit jako disjunktní konečné sjednocení $A = \bigcup_{i=1}^k (a_i, b_i]$ a definujeme množinovou funkci na \mathcal{A}_0 předpisem

$$\tilde{\mu}(A) := \sum_{i=1}^{k} (F(b_i) - F(a_i)).$$

Snadno lze ověřit, že $\tilde{\mu}$ je korektně definovaná a konečně aditivní na \mathcal{A}_0 . Ukážeme, že $\tilde{\mu}$ je pramíra. K tomu stačí ukázat spojitost v prázdné množině. Nechť tedy $A_n \in \mathcal{A}_0, \, A_n \searrow \emptyset$, a buď $\varepsilon > 0$ dáno. Protože F má konečné limity v $-\infty$ a ∞ , existuje M > 0 takové, že

$$F(-M) + (F(\infty) - F(M)) < \frac{\varepsilon}{2},$$

a tedy omezené množiny $B_n := A_n \cap (-M, M] \in \mathcal{A}_0$ splňují

$$\tilde{\mu}(B_n) \ge \tilde{\mu}(A_n) - \frac{\varepsilon}{2}.$$

Vyjádřeme B_n ve tvaru disjunktního sjednocení $B_n := \bigcup_{i=1}^{k_n} (a_i^n, b_i^n]$ (zde $a_i^n, b_i^n \in \mathbb{R}$). Protože F je zprava spojitá, existuje $\delta_n > 0$ takové, že pro množinu $C_n := \bigcup_{i=1}^{k_n} (a_i^n + \delta_n, b_i^n]$ platí

$$\tilde{\mu}(B_n \setminus C_n) < \frac{\varepsilon}{2^{n+1}}.$$

Množiny $K_n := \overline{C_1} \cap \cdots \cap \overline{C_n}$ jsou kompaktní a splňují

$$K_n \searrow \bigcap_{i=1}^{\infty} \overline{C_i} \subset \bigcap_{i=1}^{\infty} A_i = \emptyset,$$

tedy existuje n, pro něž je $K_n=\emptyset$, a tedy i $C_1\cap\cdots\cap C_n=\emptyset$. Pak platí

$$\tilde{\mu}(B_n) = \tilde{\mu}\left(B_n \setminus \bigcap_{i=1}^n C_i\right)$$

$$= \tilde{\mu}\left(\bigcup_{i=1}^n (B_n \setminus C_i)\right)$$

$$\leq \tilde{\mu}\left(\bigcup_{i=1}^n (B_i \setminus C_i)\right)$$

$$\leq \sum_{i=1}^n \tilde{\mu}(B_i \setminus C_i) < \sum_{i=1}^n \frac{\varepsilon}{2^{i+1}} < \frac{\varepsilon}{2}.$$

Celkem tedy máme $\tilde{\mu}(A_n) < \varepsilon$, a protože ε bylo zvoleno libovolně malé, dokázali jsme, že $\tilde{\mu}(A_n) \searrow 0$. $\tilde{\mu}$ je tedy konečná pramíra na \mathcal{A}_0 a podle Hahn-Kolmogorovovy věty existuje právě jedno rozšíření na míru μ na $\sigma \mathcal{A}_0 = \mathcal{B}(\mathbb{R})$.

Příklady:

- 1. $F(x) = \begin{cases} 0, & x < a, \\ 1, & x \ge a, \end{cases}$ je distribuční funkce Diracovy míry δ_a .
- 2. Jsou-li $-\infty < a_1 < a_2 < \dots < a_k < \infty$ a $t_1, \dots, t_k > 0,$ pak

$$F(x) = \begin{cases} 0, & x < a_1, \\ t_1 + \dots + t_i, & x \in [a_i, a_{i+1}), i = 1, \dots, k-1, \\ t_1 + \dots + t_k, & x \ge a_k, \end{cases}$$

je distribuční funkce míry $\mu = t_1 \delta_{a_1} + \cdots + t_k \delta_{a_k}$.

3. Je-li $f \in L^1(\lambda)$, $f \ge 0$, pak

$$F(x) = \int_{-\infty}^{x} f(t) dt, \quad x \in \mathbb{R},$$

je distribuční funkce míry $\mu(B) = \int_B f(t) dt$, $B \in \mathcal{B}(\mathbb{R})$.

Definice 14.2. Konečná borelovská míry μ na $\mathbb R$ je

- diskrétní, jestliže existuje spočetná množina $S \subset \mathbb{R}$ taková, že $\mu(\mathbb{R} \backslash S) = 0$;
- neatomická, jestliže $\mu(\{x\}) = 0$ pro každý $x \in \mathbb{R}$.

Cvičení:

- 1. Je-li μ zároveň diskrétní a neatomická, je nulová.
- 2. Každá diskrétní míra je tvaru $\mu=\sum_{i=1}^\infty t_i\delta_{a_i}$ pro nějaké $t_i\geq 0$ a $a_i\in\mathbb{R},$ $\sum_i t_i<\infty.$
- 3. μ je neatomická $\iff F$ je spojitá.

Přednáška 9.1.2024

Příklad: Cantorova funkce Položme $C_0 = [0, 1]$ a indukcí definujme množiny

$$C_n = \frac{1}{3}C_{n-1} \cup \left(\frac{2}{3} + \frac{1}{3}C_{n-1}\right), \quad n = 1, 2, \dots$$

(platí $C_0\supset C_1\supset C_2\supset \ldots$ a C_n jsou neprázdné kompaktní). Množina

$$C = \bigcap_{n=1}^{\infty} C_n$$

se nazývá Cantorovo diskontinuum. Platí:

- $\bullet \ \lambda^1(C) = 0,$
- Číslo $x\in[0,1]$ patří do C právě tehdy, když je lze vyjádřit ve trojkovém rozvoji $x=\sum_{j=1}^\infty\frac{x_j}{3^j}$ s pomocí číslic $x_j\in\{0,2\},\ j=1,2,\ldots$

Buď $C \subset [0,1]$ Cantorovo diskontinuum. Cantorovu funkci F_C definujeme následovně. Klademe $F_C(x)=0$ pro $x\leq 0$ a $F_C(x)=1$ pro $x\geq 1$. Dále $x\in (0,1)$ vyjádříme v trojkovém rozvoji

$$x = \sum_{j=1}^{\infty} \frac{x_j}{3^j} \quad (x_j \in \{0, 1, 2\}),$$

označíme $n(x) := \inf\{j \in \mathbb{N} : x_j = 1\}$ a klademe

$$F_C(x) := \sum_{j=1}^{n(x)} \frac{\min\{x_j, 1\}}{2^j}, \quad x \in (0, 1).$$

(Je třeba ověřit, že hodnota $F_C(x)$ je korektně, tedy jednoznačně určená, i když x nemá jednoznačný rozvoj v trojkové soustavě!)

Funkce F_C je spojitá, neklesající a je distribuční funkcí $Cantorovy~m\acute{i}ry~\mu_C$, která je neatomická, ale přitom je singulární vzhledem k Lebesgueově míře.

Ukažme nejprve monotonii F_C . Buď te $0 \le x < y \le 1$, $x = \sum_{j=1}^{\infty} x_j 3^{-j}$, $y = \sum_{j=1}^{\infty} y_j 3^{-j}$, a nechť $x_j = y_j$ pro $1 \le j < j_0$ a $x_{j_0} < y_{j_0}$. Pokud $x_j = y_j = 1$ pro některé $j < j_0$, pak zřejmě $F_C(x) = F_C(y)$. Nechť naopak $n(x), n(y) \ge j_0$, a označme $q := \sum_{j=1}^{j_0-1} 2^{-j} \min\{1, x_j\}$. Je-li $x_{j_0} = 0$, a tedy $y_{j_0} = 1$ nebo 2, pak $F_C(x) \le q + \sum_{j=j_0+1}^{\infty} 2^{-j} = q + 2^{-j_0} \le F_C(y)$. Pokud $x_{j_0} = 1$ a $y_{j_0} = 2$, pak $F_C(x) = q + 2^{-j_0} \le F_C(y)$. Tím je ověřeno, že F_C je neklesající.

Nyní ukážeme spojitost F_C . Pokud $x,y\in[0,1]$ náleží témuž triadickému intervalu $[k3^{-j},(k+1)3^{-j}]$, pak $|F_C(y)-F_C(x)|\leq 2^{-j}$. Platí-li $|x-y|\leq 3^{-j}$ pak x,y patří do téhož nebo do dvou sousedních triadických intervalů délky 3^{-j} , a tedy $|F_C(y)-F_C(x)|\leq 2^{-j+1}$. Tedy F je (stejnoměrně) spojitá.

Konečně ukážeme, že $\mu_C([0,1]\setminus C=0.$ Množinu $[0,1]\setminus C$ lze zapsat jako spočetné sjednocení otevřených triadických intervalů, které lze popsat v triadickém rozvoji jako množina posloupností, které mají (nutně) na daném j-tém místě jedničku, a předtím pouze nuly a dvojky. Na takových intervalech je ale funkce F_C z definice konstantní, tedy míra F_C těchto intervalů, i jejich sjednocení, je nulová.

Pozn.: Každou konečnou borelovskou míru μ na $\mathbb R$ lze rozložit na součet

$$\mu = \mu_a + \mu_c + \mu_d,$$

kde $\mu_a \ll \lambda$, μ_d je diskrétní a μ_c neatomická s vlastností $\mu_c \perp \lambda$.

Tvrzení 14.3. Nechť distribuční funkce F konečné míry μ má všude vlastní derivaci F' =: f. Pak $\mu \ll \lambda$ a $f = \frac{d\mu}{d\lambda}$.

Důkaz: Označme $\mathcal{D}:=\{B\in\mathcal{B}^1:\,\mu(B)=\int_Bf(x)\,dx\}.$ Z vlastnosti

$$\mu((a,b]) = F(b) - F(a) = \int_a^b f(x) dx$$

plyne, že \mathcal{D} obsahuje všechny intervaly typu (a,b]. Protože systém těchto intervalů je uzavřen na konečné průniky a generuje borelovskou σ -algebru, a protože \mathcal{D} je Dynkinův systém, je $\mathcal{D} = \mathcal{B}^1$, a tedy f je Radon-Nikodymova hustota μ vzhledem k λ^1 .

Pozn.:

1. Podmínka existence derivace distribuční funkce všude není nutná pro absolutní spojitost (vzhledem k λ). Např.

$$F(x) = \begin{cases} 0 & x \le 0 \\ x & 0 \le x \le 1 \\ 1 & x \ge 1 \end{cases}$$

je distribuční funkcí absolutně spojité míry $\mu(\cdot) = \lambda(\cdot \cap (0,1))$.

- 2. Každá monotónní funkce, a tedy i každá distribuční funkce, má derivaci v $\lambda\text{-skoro}$ všech bodech.
- 3. Lze ukázat, že nutnou a postačující podmínkou pro absolutní spojitost $\mu \ll \lambda$ je absolutní spojitost distribuční funkce F: pro každé $\varepsilon > 0$ existuje $\delta > 0$ takové, že pro všechna $n \in \mathbb{N}$ a $x_1 < y_1 < \cdots < x_n < y_n$ platí

$$\sum_{i=1}^{n} (y_i - x_i) < \delta \implies \sum_{i=1}^{n} |F(y_i) - F(x_i)| < \varepsilon.$$

Definice 14.3 (Lebesgue-Stieltjesův integrál). Je-li F distribuční funkce konečné míry μ a $f \in L^1(\mu)$, píšeme

$$\int f(x) dF(x) := \int f(x) d\mu(x).$$

Je-li navíc a < b, značíme

$$\int_{a}^{b} f(x) dF(x) := \int_{(a,b]} f(x) d\mu(x).$$

Věta 14.4 (Per partes pro Lebesgue-Stieltjesův integrál). *Jsou-li F, G dvě distribuční funkce a a < b, platí*

$$F(b)G(b) - F(a)G(a) = \int_{a}^{b} F(x_{-}) dG(x) + \int_{a}^{b} G(x) dF(x),$$

 $kde\ F(x_{-}) := \lim_{y \to x_{-}} F(y).$

Důkaz: S využitím Fubiniho věty dostaneme

$$(F(b) - F(a))(G(b) - G(a)) = \int_{(a,b]^2} d(\mu_F \otimes \mu_G)$$

$$= \int_a^b \int_a^b \chi_{\{x < y\}} dF(x) dG(y) + \int_a^b \int_a^b \chi_{\{x \ge y\}} dG(y) dF(x)$$

$$= \int_a^b \int_{(a,y)} dF(x) dG(y) + \int_a^b \int_a^x dG(y) dF(x)$$

$$= \int_a^b (F(y_-) - F(a)) dG(y) + \int_a^b (G(x) - G(a)) dF(x)$$

$$= \int_a^b F(x_-) dG(x) + \int_a^b G(x) dF(x) - F(a)(G(b) - G(a)) - G(a)(F(b) - F(a)),$$

a odečtením dostaneme dokazovanou rovnost.

Příklady:

1. Mají-liFi Gderivaci na $\mathbb R,$ dostaneme z věty 14.4 a tvrzení 14.3

$$[FG]_a^b = \int_a^b F(x)G'(x) dx + \int_a^b F'(x)G(x) dx,$$

což je klasický vzorec per partes.

2. Pro Cantorovu funkci F_C platí symetrie $F_C(1-x)=1-F_C(x), x\in(0,1),$ z čehož snadno dostaneme $\int_0^1 F_C(x)\,dx=\frac{1}{2}$. Použitím vzorce per partes pak dostaneme

$$1 = \int_0^1 x \, dF_C(x) + \int_0^1 F_C(x) \, dx,$$

tedy $\int_0^1 x \, dF_C(x) = \frac{1}{2}$.

Pozn.: Lebesgue-Stieltjesův integrál lze definovat i podle rozdílu dvou distribučních funkcí, což jsou zprava spojité $funkce\ s\ konečnou\ variací$.