Zadanie (referát)

MRAC vstupno-výstupný

Referát, nominálne 15 bodov.

O výsledku práce je potrebné referovať písomne formou krátkej správy (referátu). Referát/dokument sa odovzdáva do AIS. Pre termín odovzdania pozri príslušné miesto odovzdania v AIS.

Hlavná úloha

Navrhnite adaptívny riadiaci systém pre riadenie kurzu nákladnej lode. Pri návrhu využite prístup, ktorého základom je Lyapunovova teória stability.

Opis riadeného systému a cieľov riadenia

Dynamiku uhlu natočenia lode opisuje diferenciálna rovnica v tvare [1]¹

$$\ddot{\varphi}(t) + \left(\frac{\tau_1 + \tau_2}{\tau_1 \tau_2}\right) \ddot{\varphi}(t) + \left(\frac{1}{\tau_1 \tau_2}\right) \dot{\varphi}(t) = \frac{K}{\tau_1 \tau_2} \left(\tau_3 \dot{\delta}(t) + \delta(t)\right) \tag{1}$$

kde $\varphi(t)$ [rad] je uhol natočenia lode (azimut, kurz lode) a táto veličina je výstupnou veličinou uvažovaného riadeného systému. Vstupom je uhol vychýlenia kormidla $\delta(t)$ [rad].

Parametre v rovnici (1) sú definované nasledovne

$$K = K_0 \frac{v}{L} \tag{2}$$

$$\tau_i = \tau_{i0} \frac{L}{v} \qquad i = 1, 2, 3 \tag{3}$$

kde K_0 a τ_{i0} sú bezrozmerné konštanty závislé na mnohých faktoroch (typ lode atp.) a ich hodnoty pre tento prípad sú nasledovné:

$$K_0 = -3,86$$

 $\tau_{10} = 5,66$
 $\tau_{20} = 0,38$
 $\tau_{30} = 0,89$

Predmetná rovnica (1) tiež predpokladá istý interval pre možnú rýchlosť lode v smere danom uhlom $\varphi(t)$. Rýchlosť v pre tento prípad nech je z intervalu $18\pm1,8$ [km/h]. Parameter L [km] je dĺžka lode a vzhľadom na uvažované jednoky rýchlosti v je potrebné uvažovať hodnotu danú v kilometroch. V tomto prípade sa uvažuje 161 metrov dlhá loď a teda L=0,161 [km].

Požiadavky na dynamiku uhla natočenia lode je možné stanoviť charakteristickým polynómom v tvare

$$P(s) = \left(s + \frac{1}{T_m}\right)^2 \tag{4}$$

pričom T_m je časová konštanta z intervalu 20 ± 2 sekundy. Vzhľadom na uvedené jednotky v (1) je potrebné uvážiť, že napríklad 20 [s] = 0,005556 [h].

Ďalšou požiadavkou je nulové preregulovanie. Referenčný model pre URO je preto možné uvažovať v tvare

$$W_m(s) = \frac{\frac{1}{T_m^2}}{\left(s + \frac{1}{T_m}\right)^2} \tag{5}$$

Predmetný model (1) predpokladá relatívne malé hodnoty uhla natočenia $\varphi(t)$. Z hľadiska referenčného signálu (vstupnej veličiny referenčného modelu) sa preto odporúča tento ohraničiť na interval 0 ± 5 [°].

¹http://www2.ece.ohio-state.edu/~passino/FCbook.pdf

Odporúčané sprievodné úlohy

• Stanovte prenosovú funkciu riadeného systému v tvare

$$\frac{y(s)}{u(s)} = k_p \frac{Z_p(s)}{R_p(s)} \tag{6}$$

• Stanovte prenosovú funkciu referenčného modelu v tvare

$$W_m(s) = k_m \frac{Z_m(s)}{R_m(s)} \tag{7}$$

- Určte zákon riadenia pre uvažovaný konkrétny prípad.
- Ukážte, že $W_m(s)$ nie je SPR prenosová funkcia.
- Nájdite polynóm L(s), tak aby prenosová funkcia $W_m(s)L(s)$ bola SPR.
- Určte zákon adaptácie pre uvažovaný konkrétny prípad.
- Stanovte maticu Γ a začiatočné hodnoty adaptovaných parametrov.
- Zostavte simulačný experiment pre demonštráciu adaptívneho riadiaceho systému.

Bonusová úloha (5 bodov extra)

Pre uvažovaný konkrétny príklad vyriešte MRC problém.

Literatúra

 K. M. Passino and S. Yurkovich. Fuzzy Control. Addison Wesley Longman, Inc., 1998.