

Shapley Values: Sobol' versus Hoeffding

Thierry A. Mara

University of Reunion

12th SAMO Summer School June 24-28 2024 University of Parma

Outline

Notations

Hoeffding HDMR

Rosenblatt Transformations

Sobol' HDMR

Shapley Value

Conclusion

Notations & Assumptions

- y = f(x) the scalar Qol
- $ightharpoonup x_i \sim p_i = rac{\mathrm{d} F_i}{\mathrm{d} x_i}$, the marginal pdf (F_i cdf) of x_i
- $ho_{i|j} = \frac{\mathrm{d} F_{i|j}}{\mathrm{d} x_i}$, the conditional pdf (cdf) of x_i over x_j , ...
- $\triangleright \mathcal{D} = \{0, 1, \dots, d\}, \mathcal{D}_{-i} \cap \{i\} = \emptyset, \mathcal{D}_{+i} \cap \{i\} \neq \emptyset$
- lacksquare $oldsymbol{x}=(oldsymbol{x}_{lpha},oldsymbol{x}_{-lpha})$ with $oldsymbol{x}_{lpha}igcap oldsymbol{x}_{-lpha}=\emptyset$
- $f_{\alpha}(\mathbf{x}_{\alpha}) = \mathbb{E}\left[f|\mathbf{x}_{\alpha}\right] = \int_{\mathbb{R}^{d-|\alpha|}} f(\mathbf{x}) p_{-\alpha|\alpha} d\mathbf{x}_{-\alpha}$

Assumption: $\mathbb{E}\left[f^2\right] = \int_{\mathbb{R}^d} f^2(\mathbf{x}) p_{\mathbf{x}} d\mathbf{x} < \infty$

Hoeffding HDMR

Hoeffding's High-Dimensional Model Representation:

$$f(\mathbf{x}) = \sum_{\alpha \in \mathcal{D}} f_{\alpha}^{H}(\mathbf{x}_{\alpha}) \tag{1}$$

with $f_0^H = \mathbb{E}[f(x)]$, and,

$$f_{\alpha}^{H}(\mathbf{x}_{\alpha}) = f_{\alpha}(\mathbf{x}_{\alpha}) - \sum_{\beta \subseteq \alpha} f_{\beta}^{H}(\mathbf{x}_{\beta}) = \sum_{\beta \subseteq \alpha} (-1)^{|\alpha| - |\beta|} f_{\beta}(\mathbf{x}_{\beta})$$
(2)

Hoeffding HDMR

Hoeffding's High-Dimensional Model Representation:

$$f(\mathbf{x}) = \sum_{\alpha \subset \mathcal{D}} f_{\alpha}^{H}(\mathbf{x}_{\alpha}) \tag{1}$$

with $f_0^H = \mathbb{E}[f(x)]$, and,

$$f_{\alpha}^{H}(\mathbf{x}_{\alpha}) = \mathbf{f}_{\alpha}(\mathbf{x}_{\alpha}) - \sum_{\beta \subseteq \alpha} f_{\beta}^{H}(\mathbf{x}_{\beta}) = \sum_{\beta \subseteq \alpha} (-1)^{|\alpha| - |\beta|} \mathbf{f}_{\beta}(\mathbf{x}_{\beta})$$
(2)

As a consequence, Eq.(1) can be rewritten:

$$f(\mathbf{x}) = \sum_{\alpha \subseteq \mathcal{D}} f_{\alpha}^{H}(\mathbf{x}_{\alpha}) = \sum_{\alpha \subseteq \mathcal{D}} \sum_{\beta \subseteq \alpha} (-1)^{|\alpha| - |\beta|} f_{\beta}(\mathbf{x}_{\beta})$$
(3)

Hoeffding HDMR

Hoeffding's High-Dimensional Model Representation:

$$f(\mathbf{x}) = \sum_{\alpha \subset \mathcal{D}} f_{\alpha}^{H}(\mathbf{x}_{\alpha}) \tag{1}$$

with $f_0^H = \mathbb{E}[f(x)]$, and,

$$f_{\alpha}^{H}(\mathbf{x}_{\alpha}) = f_{\alpha}(\mathbf{x}_{\alpha}) - \sum_{\beta \subseteq \alpha} f_{\beta}^{H}(\mathbf{x}_{\beta}) = \sum_{\beta \subseteq \alpha} (-1)^{|\alpha| - |\beta|} f_{\beta}(\mathbf{x}_{\beta})$$
(2)

As a consequence, Eq.(1) can be rewritten:

$$f(\mathbf{x}) = \sum_{\alpha \in \mathcal{D}} f_{\alpha}^{H}(\mathbf{x}_{\alpha}) = \sum_{\alpha \in \mathcal{D}} \sum_{\beta \in \alpha} (-1)^{|\alpha| - |\beta|} f_{\beta}(\mathbf{x}_{\beta})$$
(3)

As a result:

- ▶ Hoeffding's hdmr is unique (even when $p_x \neq \prod_{i=1}^d p_i$)
- ▶ The $f_{\alpha}^{H}(x_{\alpha})$'s are pairwise \perp only if $p_{x} = \prod_{i=1}^{d} p_{i}$

Rosenblatt Transformations

Transforms $\mathbf{x} \sim p_{x}$ into $\mathbf{u} \sim \mathcal{U}(0,1)^{d}$

$$\begin{cases}
 u_{i_1} = F_{i_1}(x_{i_1}) \\
 u_{i_2} = F_{i_2|i_1}(x_{i_2}|x_{i_1}) \\
 \vdots \\
 u_{i_d} = F_{i_d|i_1,...,i_d}(x_{i_d}|\mathbf{x}_{-i_d})
\end{cases} (4)$$

- ▶ the *u*-variables are independent of each other by definition
- ▶ RT is unique only if $p_x = \prod_{i=1}^d p_i$
- ▶ RT requires the knowledge of the conditional cdf's

Sobol' HDMR

RT turn $\mathbf{x} \sim p_{\mathbf{x}}$ into $\mathbf{u} \sim \mathcal{U}(0,1)^d$ (i.e. $p_u = 1$). As a consequence it also turns $f(\mathbf{x})$ into $g(\mathbf{u})$. Sobol' hdmr is as follows,

$$g(\mathbf{u}) = \sum_{\alpha \in \mathcal{D}} g_{\alpha}(\mathbf{u}_{\alpha}) \tag{5}$$

with $g_0 = \mathbb{E}[g(\boldsymbol{u})]$, and, $\int_0^1 g_{\alpha}(\boldsymbol{u}_{\alpha}) \mathrm{d}u_k = 0, \forall k \in \alpha$

Sobol' HDMR

RT turn $\mathbf{x} \sim p_{x}$ into $\mathbf{u} \sim \mathcal{U}(0,1)^{d}$ (i.e. $p_{u}=1$). As a consequence it also turns $f(\mathbf{x})$ into $g(\mathbf{u})$. Sobol' hdmr is as follows,

$$g(\mathbf{u}) = \sum_{\alpha \subset \mathcal{D}} g_{\alpha}(\mathbf{u}_{\alpha}) \tag{5}$$

with $g_0 = \mathbb{E}\left[g(\boldsymbol{u})\right]$, and, $\int_0^1 g_{\alpha}(\boldsymbol{u}_{\alpha}) \mathrm{d}u_k = 0, \forall k \in \alpha$

As a result:

- Sobol's hdmr is not unique as the RTs are not unique (unless $p_x = \prod_{i=1}^d p_i$)
- ▶ The g_{α} 's are pairwise \bot

Sobol' HDMR

RT turn $\mathbf{x} \sim p_x$ into $\mathbf{u} \sim \mathcal{U}(0,1)^d$ (i.e. $p_u = 1$). As a consequence it also turns $f(\mathbf{x})$ into $g(\mathbf{u})$. Sobol' hdmr is as follows,

$$g(\mathbf{u}) = \sum_{\alpha \in \mathcal{D}} g_{\alpha}(\mathbf{u}_{\alpha}) \tag{5}$$

with $g_0 = \mathbb{E}[g(\boldsymbol{u})]$, and, $\int_0^1 g_\alpha(\boldsymbol{u}_\alpha) du_k = 0, \forall k \in \alpha$

As a result:

- Sobol's hdmr is not unique as the RTs are not unique (unless $p_x = \prod_{i=1}^d p_i$)
- ► The g_{α} 's are pairwise \bot

Turning back to the original variables, we can write,

$$f(\mathbf{x}) = \sum f_{\alpha}^{S}(\mathbf{x}_{\alpha}) \tag{6}$$

It is shown that $f_{\alpha}^S = f_{\alpha}^H, \forall \alpha \subseteq \mathcal{D}$ if and only if $p_X = \prod_{i=1}^d p_i$

Shapley Value

Shapley values have several fomulations among which,

$$f(x) = f_0^H + \sum_{i=1}^d \Phi_i(x)$$
 (7)

with

$$\Phi_{i}(\mathbf{x}) = \sum_{\alpha \subseteq \mathcal{D}_{+i}} \sum_{\beta \subseteq \alpha} (-1)^{|\alpha| - |\beta|} \frac{f_{\beta}(\mathbf{x}_{\beta})}{|\alpha|}$$
(8)

Shapley Value

Shapley values have several fomulations among which,

$$f(x) = f_0^H + \sum_{i=1}^d \Phi_i(x)$$
 (7)

with

$$\Phi_{i}(\mathbf{x}) = \sum_{\alpha \subseteq \mathcal{D}_{+i}} \sum_{\beta \subseteq \alpha} (-1)^{|\alpha| - |\beta|} \frac{\frac{f_{\beta}(\mathbf{x}_{\beta})}{|\alpha|}}{|\alpha|}$$
(8)

Let x^* be a given draw, $f(x^*)$ the associated response:

The Shapley value $\Phi_i(\mathbf{x}^*)$ is the fair contribution of x_i to $f(\mathbf{x}^*)$. Fair = the mutual contributions (correlations+interactions) are fairly shared among the input variables.

Shapley Value & Hoeffding

Shapley values have several fomulations among which,

$$f(\mathbf{x}) = f_0^H + \sum_{i=1}^d \Phi_i(\mathbf{x}) \tag{9}$$

with

$$\Phi_{i}(\mathbf{x}) = \sum_{\alpha \subseteq \mathcal{D}_{+i}} \sum_{\beta \subset \alpha} (-1)^{|\alpha| - |\beta|} \frac{f_{\beta}(\mathbf{x}_{\beta})}{|\alpha|}$$
(10)

By comparing, Eq.(10) to Eq.(3), that is,

$$f(\mathbf{x}) = \sum_{\alpha \in \mathcal{D}} f_{\alpha}^{H}(\mathbf{x}_{\alpha}) = \sum_{\alpha \in \mathcal{D}} \sum_{\beta \in \alpha} (-1)^{|\alpha| - |\beta|} f_{\beta}(\mathbf{x}_{\beta})$$

We can infer that

$$\Phi_i(\mathbf{x}) = \sum_{\alpha \in \mathcal{D}_{i+1}} \frac{f_{\alpha}^H(\mathbf{x}_{\alpha})}{|\alpha|} \tag{11}$$

We see that Hoeffding's hdmr is the key for interpreting Machine Learning outcomes.

Shapley Value: Computational Issue

Shapley values,

$$f(\mathbf{x}) = f_0^H + \sum_{i=1}^d \Phi_i(\mathbf{x})$$

with

$$\Phi_i(\mathbf{x}) = \sum_{\alpha \subseteq \mathcal{D}_{+i}} \frac{f_\alpha^H(\mathbf{x}_\alpha)}{|\alpha|}$$

Computing the Shapley Values requires the computation of the 2^d $f_{\alpha}(\mathbf{x}_{\alpha})$ functions from which one can infer the $f_{\alpha}^H(\mathbf{x}_{\alpha})$'s. $f_{\alpha}(\mathbf{x}_{\alpha}) = \mathbb{E}\left[f(\mathbf{x})|\mathbf{x}_{\alpha}\right]$ can be estimated with any regression technique (that avoids over/under fitting)

Shapley Value: Computational Issue

Suppose that Sobol's hdmr has been obtained for the following ordering (i_1, \ldots, i_d) , it has been shown that (Mara & Tarantola 2012):

- $f_{i_1}(x_{i_1}) = \mathbb{E}\left[g(\mathbf{u})|u_1\right] = g_0 + g_1(u_1)$
- $f_{i_1,i_2}(x_{i_1},x_{i_2}) = \mathbb{E}\left[g(\boldsymbol{u})|u_1,u_2\right] = g_0 + g_1(u_1) + g_2(u_2) + g_{1,2}(u_1,u_2)$

d of the $f_{\alpha}(\mathbf{x}_{\alpha})$ functions can be deduced from one single Sobol' hdmr

The remainder can be obtained with the Sobol's hdmr for a different ordering of the indexes $(1, \ldots, d)$

Shapley Value: Computational Issue

Suppose that Sobol's hdmr has been obtained for the following ordering (i_1, \ldots, i_d) , it has been shown that (Mara & Tarantola 2012):

- $f_{i_1}(x_{i_1}) = \mathbb{E}[g(\mathbf{u})|u_1] = g_0 + g_1(u_1)$
- $\qquad \qquad f_{i_1,i_2}(x_{i_1},x_{i_2}) = \mathbb{E}\left[g(\boldsymbol{u})|u_1,u_2\right] = g_0 + g_1(u_1) + g_2(u_2) + g_{1,2}(u_1,u_2)$

d of the $f_{\alpha}(\mathbf{x}_{\alpha})$ functions can be deduced from one single Sobol' hdmr

The remainder can be obtained with the Sobol's hdmr for a different ordering of the indexes $(1, \ldots, d)$

Pros: BSPCE is known to provide efficiently the Sobol's hdmr

Cost: The cost to estimate the overall $f_{\alpha}(\mathbf{x}_{\alpha})$'s is $\frac{d!}{\left(\frac{d}{2}!\right)^2}$

Con: RTs require the knowledge of the overall conditional and marginal cdfs.

Conclusion

Assumption: $p_{x} = \prod_{i=1}^{d} p_{i}$

	Hoeffding	Sobol'
Conditional cdfs knowledge	No	No
Uniqueness	Yes	Yes
Orthogonality	Yes	Yes
Shapley Values Estimate	Yes	Yes
Cost	1	1

Conclusion

Assumption: $p_x = \prod_{i=1}^d p_i$

	Hoeffding	Sobol'
Conditional cdfs knowledge	No	No
Uniqueness	Yes	Yes
Orthogonality	Yes	Yes
Shapley Values Estimate	Yes	Yes
Cost	1	1

Assumption: $p_x \neq \prod_{i=1}^d p_i$

	Hoeffding	Sobol'
Conditional cdfs knowledge	No	Yes
Uniqueness	Yes	No
Orthogonality	No	Yes
Shapley Values Estimate	Yes	Yes
Cost	2 ^d	$d!/(\frac{d}{2}!)^2$