

Dissipative Dynamical Systems

Andrea Brugnoli

28 June 2022

UNIVERSITY OF TWENTE.

Outline

Introduction

Definition and characterization of dissipativity

Stability of dissipative systems

Interconnections of dissipative systems

Conclusions

Outline

Introduction

Definition and characterization of dissipativity

Stability of dissipative systems

Interconnections of dissipative systems

Conclusions

Why dissipative dynamical systems?

All engineering systems exhibit dissipation.

- Electrical networks with resistors;
- Mechanical systems (viscoelastic or Coulomb friction);
- Thermodynamic systems: dissipation leads to an increase in entropy.

The notion of dissipativity establishes a natural link between the properties of input-output and state-space models. Many modern computational tools for the analysis and synthesis of control systems are based on it.

Jan C. Willems. "Dissipative dynamical systems Part I: General theory". In: *Archive for Rational Mechanics and Analysis* 45.5 (1972), pp. 321–351

Jan C. Willems. "Dissipative dynamical systems Part II: Linear systems with quadratic supply rates". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 352–393

Arjan van der Schaft. L2-gain and passivity in nonlinear control. Springer-Verlag, 1999

Some mathematical notation

 $\mathbb{R}_+ = [0, \infty)$ denotes the set of positive reals.

 $\mathbb{R}^2_+:=\{(t_1,t_2)\in\mathbb{R}^2|\ t_2\geq t_1\}$ (causal triangular sector of \mathbb{R}^2).

Let V be a finite dimensional normed liner space with norm $||\cdot||_V$.

(If $V = \mathbb{R}^n$ then the Euclidean norm is denoted by $||x||_2 = \sqrt{x^{ op}x}$)

Definition (Local L_{loc}^p Banach spaces)

For each positive integer $p\in 1,2,\ldots$, the set $L^p_{\mathrm{loc}}(\mathbb{R},V)$ consists of all functions $f:\mathbb{R}\to V$, which are measurable and satisfy

$$\int_{a}^{b} ||f(t)||_{V}^{p} dt < \infty, \qquad \forall a, b \in \mathbb{R}.$$

The case $p=\infty$ consists of all bounded measurable functions on compact intervals, i.e. $\sup_{t\in [a,b]}f(t)<\infty.$

General setting

Consider the state-space system with inputs and outputs

$$\Sigma: \quad \begin{array}{ll} \dot{x} = f(x, u), & u(t) \in U, \\ y = h(x, u), & y(t) \in Y, \end{array}$$

where $x(t) \in \mathcal{X}$. In general \mathcal{X} is a manifold and U, Y vector spaces. For sake simplicity, assume $\mathcal{X} \subseteq \mathbb{R}^n, \ U = \mathbb{R}^m, \ Y = \mathbb{R}^p$.

Theorem

Suppose f,h to be Lipschitz continuous in x and u jointly. Then system Σ has a unique solution $\forall x(t_0) \in \mathcal{X}, \ u(\cdot) \in L^2_{loc}(\mathbb{R}, U)$ with $x(\cdot) \in L^2_{loc}(\mathbb{R}, \mathcal{X}), \ y(\cdot) \in L^2_{loc}(\mathbb{R}, Y)$.

Reachability and controllability

Definition (State transition function)

Given the system Σ , the state transition function ϕ is the map

$$\phi(t_1,t_0,x(t_0),u(\cdot)):\mathbb{R}^2_+\times\mathcal{X}\times L^2_{\mathrm{loc}}(\mathbb{R},U)\to\mathbb{R}^n$$
 such that $x(t_1)=\phi(t_1,t_0,x(t_0),u(\cdot)).$

The state transition function verifies:

- ► Consistency: $x_0 = \phi(t_0, t_0, x_0, u)$, for all $t_0 \in \mathbb{R}$, $x_0 \in \mathcal{X}$, $u \in L^2_{loc}(\mathbb{R}, U)$.
- ▶ Determinism: $\phi(t_1, t_0, x_0, u_1) = \phi(t_1, t_0, x_0, u_2)$, for all $(t_1, t_0) \in \mathbb{R}^2_+$, $x_0 \in \mathcal{X}$ and $u_1, u_2 \in L^2_{loc}(\mathbb{R}, U)$ such that $u_1(t) = u_2(t)$, $t_0 \leq t \leq t_1$.
- ▶ Semi group property: $\phi(t_2, t_0, x_0, u) = \phi(t_2, t_1, \phi(t_1, t_0, x_0, u), u)$, for all $t_0 \le t_1 \le t_2$, $x_0 \in \mathcal{X}$ and $u, \in L^2_{loc}(\mathbb{R}, U)$.
- ► Stationary: $\phi(t_1 + T, t_0 + T, x_0, u_T) = \phi(t_1, t_0, x_0, u)$, for all $(t_1, t_0) \in \mathbb{R}^2_+$, $x_0 \in \mathcal{X}$ and $u, u_T \in L^2_{loc}(\mathbb{R}, U)$ and $u_T(t) = u(t + T)$.

Reachability and controllability

Definition (State transition function)

Given the system $\Sigma,$ the state transition function ϕ is the map

$$\phi(t_1, t_0, x(t_0), u(\cdot)) : \mathbb{R}^2_+ \times \mathcal{X} \times L^2_{loc}(\mathbb{R}, U) \to \mathbb{R}^n$$

such that $x(t_1) = \phi(t_1, t_0, x(t_0), u(\cdot)).$

Definition (Reachability and controllability)

The state space $\mathcal X$ of system Σ is said to be **reachable** from x_{-1} if

$$\forall x \in \mathcal{X}, \ \exists t_{-1} \leq 0, \ \exists u(\cdot) \in L^2_{\text{loc}}(\mathbb{R}, U) \text{ such that } x = \phi(0, t_{-1}, x_{-1}, u(\cdot)).$$

It is said to be **controllable** to x_1 if

$$\forall x \in \mathcal{X}, \ \exists t_1 > 0, \ \exists u(\cdot) \in L^2_{\mathsf{loc}}(\mathbb{R}, U) \text{ such that } x_1 = \phi(t_1, 0, x, u(\cdot)).$$

Outline

Introduction

Definition and characterization of dissipativity

Stability of dissipative systems

Interconnections of dissipative systems

Conclusions

The mathematical definition of dissipativity

On the combined space $U \times Y$ consider the supply rate function $s: U \times Y \to \mathbb{R}$.

Definition (Dissipative state space system)

A state space system Σ is said to be dissipative w.r.t. the supply rate s if there exists a function $S: \mathcal{X} \to \mathbb{R}_+$ (the storage function), such that $\forall \, x(t_0) \in \mathcal{X}$ at any time t_0 , $\forall \, u(\cdot)$ and $\forall \, t_1 \geq t_0$, the following inequality holds

$$S(x(t_1)) \le S(x(t_0)) + \int_{t_0}^{t_1} s(u(t), y(t)) dt,$$
 Dissipation Inequality. (1)

It equality holds then the system is called conservative (w.r.t. the supply rate s).

Corollary (Convexity of the storage functions set)

Given two storage functions S_1 and S_2 then any convex combination $\alpha S_1 + (1-\alpha)S_2, \ \alpha = [0,1]$ is also a storage function.

Passive systems and L^2 finite gain

Two important class of supply rate functions:

- ightharpoonup passive systems $s(u,y) = u^{\top}y$;
- ▶ finite L^2 gain $s(u,y) = \frac{1}{2}\gamma ||u||_2^2 \frac{1}{2}||y||_2^2, \quad \gamma \ge 0.$

Definition (Passive system)

 Σ with $U=Y=\mathbb{R}^m$ is **passive** if it is dissipative w.r.t.

$$s(u,y) = u^{\top}y.$$

 Σ is **input strictly passive** if $\exists \delta > 0$ such that Σ is dissipative w.r.t.

$$s(u,y) = u^{\mathsf{T}} y - \delta ||u||_2^2.$$

 Σ is **output strictly passive** if $\exists \, \varepsilon > 0$ such that Σ is dissipative w.r.t.

$$s(u,y) = u^{\top} y - \varepsilon ||y||_2^2$$

 Σ is **lossless** if it is conservative with respect to $s(u,y) = u^{\top}y$.

Passive systems and L^2 finite gain

Two important class of supply rate functions:

- ightharpoonup passive systems $s(u,y) = u^{\top}y$;
- ▶ finite L^2 gain $s(u,y) = \frac{1}{2}\gamma ||u||_2^2 \frac{1}{2}||y||_2^2, \quad \gamma \ge 0.$

Definition (L^2 finite gain)

A system Σ with $U=\mathbb{R}^m,\ Y=\mathbb{R}^p$ has L^2 -gain $\leq \gamma\ (\gamma\geq 0)$ if it is dissipative w.r.t.

$$s(u,y) = \frac{1}{2}\gamma||u||_2^2 - \frac{1}{2}||y||_2^2.$$

The L^2 -gain of Σ is defined as

$$\gamma(\Sigma):=\inf\{\gamma|\ \Sigma \ \mathsf{has}\ L^2\mathsf{-gain}\le\gamma\}.$$

 $\Sigma \text{ is said to have } L^2\text{-gain} < \gamma \text{ if } \exists \, \tilde{\gamma} \leq \gamma \text{ such that } \Sigma \text{ has } L^2\text{-gain} \leq \tilde{\gamma}.$

 Σ is called inner if it is conservative with respect to $s(u,y) = \frac{1}{2}||u||_2^2 - \frac{1}{2}||y||_2^2$.

How to establish dissipativity? The available storage

Theorem (Necessary and sufficient conditions for dissipativity)

Consider system Σ and supply rate s(u,y). Σ is dissipative with respect to s iff

$$S_a(x) := \sup_{\substack{u(\cdot)\\T \ge 0}} -\int_0^T s(u(t), y(t)) \, dt, \qquad x(0) = x,$$
 (2)

is finite $\forall x \in \mathcal{X}$.

Furthermore, if S_a is finite $\forall x \in \mathcal{X}$ then S_a is a storage function, called the **available** storage, and all other possible storage functions S satisfy

$$S_a(x) \le S(x) - \inf_x S(x), \quad \forall x \in \mathcal{X}$$

Moreover $\inf_x S_a(x) = 0$.

The available storage is the minimal storage function.

Proof

▶ (If) Suppose S_a is finite. Then $S_a \geq 0$ (sup of a set that contains 0). Compare $S(x(t_0))$ and $S(x(t_1)) - \int_{t_0}^{t_1} s(u(t), y(t)) \, \mathrm{d}t$ with s(u, y) evaluated on a trajectory generated by $u: [t_0, t_1] \to \mathbb{R}^m$ that drives $x(t_0)$ at t_0 to $x(t_1)$ at t_1 . Since S_a is the supremum over all $u(\cdot)$ it follows

$$S_a(x(t_0)) \geq S_a(x(t_1)) - \int_{t_0}^{t_1} s(u(t), y(t)) dt \implies S_a$$
 is a storage function.

▶ (Only if) Suppose Σ dissipative. Then $\exists S \geq 0$ such that $\forall u(\cdot)$

$$S(x(t)) + \int_0^T s(u(t), y(t)) dt \ge S(x(T)) \ge 0.$$

This implies that

$$S(x(0)) \ge \sup_{\substack{u(\cdot) \\ T>0}} -\int_0^T s(u(t), y(t)) dt = S_a(x(0)) \implies S_a(x(0)) < \infty$$

Then $S' = S - \inf_x S(x)$ satisfy the dissipation inequality so $S'(x) \ge S_a(x), \forall x$ and $\inf_x S'(x) = 0$ so $\inf_x S_a(x) = 0$.

Reachability and Storage functions

If the system is reachable from x^* , the finiteness of S_a needs to be checked only in x^*

Theorem

Assume that Σ is reachable from $x^* \in \mathcal{X}$. Then Σ is dissipative iff $S_a(x^*) < \infty$.

Proof

(If) Suppose there exists $x \in \mathcal{X}$ such that $S_a(x) = \infty$. Since by reachability x can be reached from x^* in finite time, this would imply (by time invariance) that also $S_a(x^*) = \infty$.

The maximal storage: the required supply

If Σ is reachable from x^* , there exists another canonically defined storage function.

Theorem

Assume that Σ is reachable from $x^* \in \mathcal{X}$.

Define the required supply (from x^*) $S_r: \mathcal{X} \to \mathbb{R} \cup \{-\infty\}$ as

$$S_r(x) := \inf_{\substack{u(\cdot) \\ T \ge 0}} \int_{-T}^0 s(u(t), y(t)) \, \mathrm{d}t, \qquad x(-T) = x^*, \quad x(0) = x.$$
 (3)

Then the following holds:

- 1. S_r satisfies the dissipation inequality.
- 2. Σ is dissipative iff $\exists K > -\infty$ such that $S_r(x) \geq K, \ \forall x \in \mathcal{X}$.
- 3. If S is a storage function for Σ , then

$$S(x) \le S_r(x) + S(x^*), \qquad x \in \mathcal{X},$$

and $S_r(x) + S(x^*)$ is itself a storage function (and in particular $S_r(x) + S_a(x^*)$).

Proof

1. To steer the system from x^* at -T to $x(t_1)$ consider $u(\cdot):[-T,t_1]\to U$ which first take x^* to $x(t_0)$ at time $t_0\le t_1$, and then equal to a given input $u(\cdot):[t_0,t_1]\to U$ transferring $x(t_0)$ to $x(t_1)$. This is a suboptimal policy, so

$$S_r(x(t_0)) + \int_{t_0}^{t_1} s(u(t), y(t)) dt \ge S_r(x(t_1)).$$

2. For the second claim, by definition of S_a and S_r

$$S_a(x^*) = \sup_x -S_r(x),$$

then Σ is dissipative iff $\exists K > -\infty$ such that $S_r(x) \geq -K, \ \forall x.$

3. Let S satisfy the dissipation inequality. Then for any $u(\cdot): [-T,0] \to U$ such that $x(-T)=x^*$ to x(0)=x it holds

$$S(x) - S(x^*) \le \int_{-T}^{0} s(u(t), y(t)) dt.$$

Taking the infimum on the right-hand side over all $u(\cdot)$ proves the claim. If $S \ge 0$, then $S_r + S(x^*) \ge 0$ is a storage function.

The a priori bounds

The available storage

It is the amount of internal storage which may be recovered from the system.

The required supply

It is the amount of supply which has to be delivered to the system in order to transfer it from a state of minimum storage to a given state.

Alternative definition of dissipativity

if Σ is dissipative with a storage function S for which $x^* = \arg\min_x S(x)$, then also $S - S(x^*)$ is a storage function, which is zero at x^* . Then it holds

$$\int_{0}^{T} s(u(t), y(t)) \ge 0, \qquad x(0) = x^{*}, \quad \forall T \ge 0.$$
 (4)

Definition (Dissipativity from x^*)

A system Σ with supply rate s is called dissipative from x^* if (4) holds.

Proposition

Let Σ be dissipative with storage function S satisfying $S(x^*)=0$. Then the system is also dissipative from x^* . Conversely, if the system is dissipative from x^* then $S_a(x^*)=0$. If additionally the system is reachable from x^* then the system is dissipative and its required supply satisfies $S_r(x^*)=0$.

Proof (\iff) Assume Σ is dissipative from x^* . Then by definition of S_a if follows $S_a(x^*)=0$. It follows that the system is dissipative, and $S_r(x^*)=0$.

Theorem

Let Σ be dissipative and dissipative from x^* . Suppose that s is such that

$$\exists u(x) \text{ such that } s(u(x), h(x, u(x))) \le 0, \qquad x \in \mathcal{X}.$$
 (5)

for which x^* is a globally asymptotically equilibrium for the closed-loop system $\dot{x}=f(x,u(x))$. Then any storage function S attains its minimum at x^* and

$$S_a(x) \le S(x) - S(x^*), \quad \forall x \in \mathcal{X}.$$

Proof Consider the dissipation inequality for any S, rewritten as

$$-\int_{0}^{T} s(u(t), y(t)) dt \le S(x) - S(x(T)), \qquad x(0) = x.$$

Extend $u(\cdot):[0,T]\to U$ to the infinite time interval $[0,\infty)$ by considering on (T,∞) a feedback u(x) verifying (5) such that x^* is a globally asymptotical equilibrium. Since $s(u(x),h(x,u(x)))\leq 0$ and convergence of x(t) to x^* for $t\to\infty$ that

$$-\int_{0}^{T} s(u(t), y(t)) dt \le S(x) - S(x^{*})$$

Taking the supremum at the left-hand side for $u(\cdot):[0,T]\to \text{ and }T\geq 0$ concludes.

Corollary

Consider a system Σ that is dissipative and reachable from x^* , and for which s verifies (5), such that x^* is a global asymptotical equilibrium for $\dot{x}=f(x,u(x))$. Then any storage function S attains its minimum at x^* and the storage function $S'(x):=S(x)-S(x^*)$ satisfies

$$S_a(x) \le S'(x) \le S_r(x), \quad \forall x \in \mathcal{X},$$

where
$$S_a(x^*) = S_r(x^*) = 0$$
.

Outline

Introduction

Definition and characterization of dissipativity

Stability of dissipative systems

Interconnections of dissipative systems

Conclusions

Reminder on Lyapunov stability

Consider $\dot{x}=f(x),\ x\in\mathcal{X}$ with f locally Lipschitz continuous. Denote $x(t;x_0)$ the solution for $x(0)=x_0$ with $t\in[0,T(x_0))$ and $T(x_0)>0$ maximal.

Definition (Stability)

Let x^* be an equilibrium $f(x^*)=0$, and thus $x(t;x^*)=x^*,\ \forall t.$ The equilibrium x^* is

1. stable, if for each $\varepsilon > 0, \ \exists \delta(\varepsilon) > 0$ such that

$$||x_0 - x^*|| \le \delta(\varepsilon) \implies ||x(t; x_0) - x^*|| < \varepsilon, \qquad \forall t \ge 0.$$

2. asymptotically stable, if it is stable and additionally there exists $\widehat{\delta}$ such that

$$||x_0 - x^*|| \le \widehat{\delta} \implies \lim_{t \to \infty} x(t; x_0) = x^*$$

3. globally asymptotically stable, if it is stable and

$$\lim_{t \to \infty} x(t; x_0) = x^*, \qquad \forall x_0 \in \mathcal{X}.$$

4. unstable, if it is not stable.

Reminder on Lyapunov stability

Definition (Lyapunov Functions)

Let x^* be an equilibrium of $\dot{x} = f(x)$. A C^1 function $V: \mathcal{X} \to \mathbb{R}_+$ satisfying

$$V(x^*) = 0, \quad V(x) > 0, \quad x \neq x^*,$$

that is V is positive definite at x^* , and

$$\dot{V}(x) := \nabla V(x) f(x) \le 0, \qquad x \in \mathcal{X},$$

is called a Lyapunov function for the equilibrium x^*

Theorem

Let x^* be an equilibrium. If there exists a Lyapunov function V for the equilibrium x^* , then x^* is a stable equilibrium. If moreover

$$\dot{V}(x) < 0, \quad \forall x \in \mathcal{X}, \quad x \neq x^*,$$

then x^* is an asymptotically stable equilibrium, which is globally asymptotically stable if V is proper (that is, the sets $\{x \in \mathcal{X} | 0 \le V(x) \le c\}$ are compact for every $c \in \mathbb{R}_+$, equivalent to V is radially unbounded if $\mathcal{X} = \mathbb{R}^n$).

First stability result

Assume $S(x) \in C^1(\mathcal{X}, \mathbb{R}_+)$. Then it holds

$$\nabla S(x)f(x,u) \le s(u,h(x,u)), \quad \forall x,u.$$

Proposition

Let s(u,y) be a supply rate, and $S: \mathcal{X} \to R_+$ be a C^1 storage function for Σ . Assume that s satisfies

$$s(0,y) \le 0, \quad \forall y \in Y,$$

Assume furthermore that $x^* \in \mathcal{X}$ is a strict local minimum for S. Then x^* is a stable equilibrium of the unforced system x = f(x,0) with Lyapunov function $V(x) := S(x) - S(x^*)$ for x around x^* , while $s(0,h(x^*,0)) = 0$. If additionally, $\dot{S}(x) < 0, \ \forall x \neq x^*$, then x^* is an asymptotically stable equilibrium

Proof Since $\nabla S(x)f(x,0) \leq s(0,h(x,0)) \leq 0$, S is nonincreasing along solutions of $\dot{x}=f(x,0)$. Since S has a strict minimum at x^* this implies $f(x^*,0)=0$, and thus $s(0,h(x^*,0))=0$. The rest follows from Lyapunov stability theorem.

Refinement via LaSalle

The condition $\dot{S} < 0$ can be relaxed by using the LaSalle invariance principle.

Definition (Invariant set)

A set $\mathcal{N} \subset \mathcal{X}$ is invariant for $\dot{x} = f(x)$ if $x(t; x_0) \in \mathcal{X}, \ \forall x_0 \in \mathcal{N}, \ \forall t \in \mathbb{R}$, and is positively invariant if this holds $\forall t \geq 0$

Theorem (LaSalle's invariance principle)

Let $V: X \to \mathbb{R}$ be a C^1 function for which $\dot{V}(x) := \nabla V(x) f(x) \leq 0, \ \forall \, x \in \mathcal{X}.$ Suppose there exists a compact set \mathcal{C} which is positively invariant for $\dot{x} = f(x)$. Then for any $x_0 \in C$ the solution $x(t;x_0)$ converges for $t \to \infty$ to the largest subset of $\{x \in \mathcal{X} | \ \dot{V}(x) = 0\} \cap \mathcal{C}$ that is invariant for $\dot{x} = f(x)$

Proposition

Let $S: \mathcal{X} \to R_+$ be a C^1 storage function for Σ . Assume that s satisfies

$$s(0,y) \le 0, \quad \forall y \in Y$$

Assume that $x^* \in \mathcal{X}$ is a strict local minimum for S. Assume also that no solution of $\dot{x} = f(x,0)$ other than $x(t) \equiv x^*$ remains in $\{x \in \mathcal{X} | s(0,h(x,0)) = 0\}$, $\forall t$. Then x^* is an asymptotically stable equilibrium of $\dot{x} = f(x,0)$, which is globally asymptotically stable if $V(x) := S(x) - S(x^*) \geq 0$ is proper.

Proof $\dot{S}(x)=0 \implies s(0,h(x,0))=0.$ The statement now directly follows from LaSalle's Invariance principle.

Outline

Introduction

Definition and characterization of dissipativity

Stability of dissipative systems

Interconnections of dissipative systems

Conclusions

The open character of dissipativity theory

Consider k systems Σ_i with input, state, and output spaces U_i , X_i , Y_i , i = 1, ..., k. Suppose Σ_i are dissipative with respect to the supply rates

$$s_i(u_i, y_i), \quad u_i \in U_i, \ y_i \in Y_i, \ i = 1, \dots, k,$$

and storage functions $S_i(x_i)$, i = 1, ..., k.

Now consider an interconnection of Σ_i , $i = 1, \ldots, k$, defined through

$$I \subset U_1 \times Y_1 \times \cdots \times U_k \times Y_k \times U_e \times Y_e$$
,

where U_e, Y_e are spaces of external input and output.

Proposition

Suppose the supply rates s_1, \ldots, s_k and the interconnection subset I are such that $\exists s_2 : U_2 \times Y_2 \to \mathbb{R}$ for which

$$s_1(u_1, y_1) + \dots + s_k(u_k, y_k) \le s_e(u_e, y_e),$$

 $\forall ((u_1, y_1), \dots, (u_k, y_k), (u_e, y_e)) \in I.$

Then the interconnected system Σ_I is dissipative with respect to the supply rate s_e , with storage function $S(x_1, \ldots, x_k) := S_1(x_1) + \cdots + S_k(x_k)$

The Lyapunov function of interconnectd systems

For simplicity the spaces of external inputs and outputs are removed.

Proposition

Suppose the supply rates s_1, \ldots, s_k and the interconnection subset I are such that there exist positive constants $\alpha_1, \ldots, \alpha_k$ for which

$$\alpha_1 s_1(u_1, y_1) + \dots + \alpha_k s_k(u_k, y_k) \le 0, \forall ((u_1, y_1), \dots, (u_k, y_k)) \in I.$$
 (6)

Then the function

$$S_{\alpha}(x_1,\ldots,x_k) := \alpha_1 S_1(x_1) + \cdots + \alpha^k S_k(x_k)$$

satisfies $\dot{S}_{\alpha} \leq 0$ along all solutions of the interconnected system Σ_{I} .

Proof It suffices to multiply each dissipation inequality by α_1 , add them and use the inequality (6).

Outline

Introduction

Definition and characterization of dissipativity

Stability of dissipative systems

Interconnections of dissipative systems

Conclusions

Conclusions

Some important considerations:

- ► The definition of a dissipative dynamical system postulates the existence of a storage function. The dynamical equations are insufficient to specify the storage function uniquely.
- ▶ The storage function satisfies an a priori bound. It is bounded from below by the available storage and from above by the required supply. These bounds possess a variational characterization.
- ▶ In dissipative systems states for which the storage function attains a local minimum are locally stable and the storage function is a suitable Lyapunov function.
- ▶ Immeadiate extension to interconnected systems: the sum of the storage functions of the individual subsystems is a storage function for the interconnected system.

Bibliography

Schaft, Arjan van der. L2-gain and passivity in nonlinear control. Springer-Verlag, 1999.

Willems, Jan C. "Dissipative dynamical systems Part I: General theory". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 321–351.

- "Dissipative dynamical systems Part II: Linear systems with quadratic supply rates". In: Archive for Rational Mechanics and Analysis 45.5 (1972), pp. 352–393.