Question 1 In [2]: import cv2 import numpy as np In [3]: **import** math In [4]: **import** matplotlib.pyplot **as** plt In [5]: xray_img = cv2.imread("xray.png",-1) xray_img.shape (1024, 1024) Out[5]: In [34]: plt.imshow(xray_img) plt.title("Original Image") plt.axis('off') Out[34]: (-0.5, 1023.5, 1023.5, -0.5) Original Image In [56]: noisy_img = cv2.imread("xray_sp.png",-1) plt.imshow(noisy_img,cmap='gray') plt.title("Noisy Image") plt.axis('off') (-0.5, 1023.5, 1023.5, -0.5) Noisy Image #median filter In [182... median_filtered_img = cv2.medianBlur(noisy_img,3) plt.imshow(median_filtered_img,cmap='gray') plt.axis('off') Out[182]: (-0.5, 1023.5, 1023.5, -0.5) In [37]: cv2.imwrite("median_filtered_img.png", median_filtered_img) True Out[37]: In [48]: def rmse(img1,img2): mse = np.square(np.subtract(img1,img2)).mean() rmse = math.sqrt(mse) return rmse In [46]: rmse_median_filter = rmse(xray_img, median_filtered_img) In [50]: print(f"RMSE of Median Filtered Image: {rmse_median_filter}") RMSE of Median Filtered Image: 1.017037216780872 In [49]: def snr(filtered_img,original_img): num = np.square(filtered_img).sum() diff_sq = np.square(filtered_img - original_img) denom = np.sum(diff_sq) snr = num/denomreturn snr In [160... snr_median_filter = snr(median_filtered_img, xray_img) In [161... print(f"SNR of Median Filtered Image: {snr_median_filter}") SNR of Median Filtered Image: 104.28556070845742 In [58]: def zero_padding(img, kernel_size): h,w = img.shapepadding = kernel_size//2 $new_h = h+padding*2$ $new_w = padding*2 + w$ temp = np.zeros((new_h, new_w)) for i in range(h): for j in range(w): temp[i+padding, j+padding] = img[i, j] return temp In [198... def max_filter(img, kernel_size): padded_img = zero_padding(img, kernel_size) padding = kernel_size//2 final = np.ones((padded_img.shape[0]-2*padding,padded_img.shape[1]-2*padding)) for i in range(padding,padded_img.shape[0]-padding): for j in range(padding, padded_img.shape[1]-padding): #i, j is the centre pixel temp = padded_img[i-padding:i+padding+1,j-padding:j+padding+1] $max_{temp} = np.max(temp)$ final[i-padding, j-padding] = max_temp return final max_filtered_img = max_filter(noisy_img,3) In [199... max_filtered_img.shape (1024, 1024) Out[200]: In [201... plt.imshow(max_filtered_img,cmap="gray") plt.axis('off') (-0.5, 1023.5, 1023.5, -0.5) Out[201]: In [202... cv2.imwrite("Max_Filter.png", max_filtered_img) Out[202]: In [203... rmse_max_filter = rmse(xray_img, max_filtered_img) snr_max_filter = snr(max_filtered_img, xray_img) print(f"RMSE of Max Filter: {rmse_max_filter}") In [204... print(f"SNR of Max Filter: {snr_max_filter}") RMSE of Max Filter: 25.95361160474386 SNR of Max Filter: 52.47334541130218 In [205... def min_filter(img, kernel_size): padded_img = zero_padding(img, kernel_size) padding = kernel_size//2 final = np.ones((padded_img.shape[0]-2*padding, padded_img.shape[1]-2*padding)) for i in range(padding, padded_img.shape[0]-padding): for j in range(padding,padded_img.shape[1]-padding): #i,j is the centre pixel temp = padded_img[i-padding:i+padding+1, j-padding:j+padding+1] max_temp = np.min(temp) final[i-padding, j-padding] = max_temp return final In [206... min_filtered_img = min_filter(noisy_img, 3) In [207... plt.imshow(min_filtered_img, cmap="gray") plt.axis('off') Out[207]: (-0.5, 1023.5, 1023.5, -0.5) In [208... cv2.imwrite("Min_Filter.png", min_filtered_img) Out[208]: In [209... rmse_min_filter = rmse(xray_img,min_filtered_img) snr_min_filter = snr(min_filtered_img, xray_img) print(f"RMSE of Min Filter: {rmse_min_filter}") print(f"SNR of Min Filter: {snr_min_filter}") RMSE of Min Filter: 20.75023186795397 SNR of Min Filter: 73.26402189026705 In [218... min_after_max_filter = min_filter(max_filtered_img,5) In [219... plt.imshow(min_after_max_filter,cmap='gray') plt.axis('off') Out[219]: (-0.5, 1023.5, 1023.5, -0.5) In [220... cv2.imwrite("Min Filter on Max Filtered Image.png", min_after_max_filter) Out[220]: Therefore, a combination of max and min filters gives a good result for salt and pepper noise In [222... rmse_min_max_filter = rmse(xray_img,min_after_max_filter) snr_min_max_filter = snr(min_after_max_filter, xray_img) print(f"RMSE of Min Filter: {rmse_min_max_filter}") print(f"SNR of Min Filter: {snr_min_max_filter}") RMSE of Min Filter: 12.904896921531721 SNR of Min Filter: 193.65637872382547 In [54]: def alpha_trim(arr,d): 1 = arr.flatten() 1.sort() p = arr.flatten() temp = []count = 0 for i in range(0, d//2): temp.append(1[count]) temp.append(l[l.shape[0] - count - 1]) count += 1 for i in temp: for j in range(len(p)): **if** i **==** p[j]: p[j] = 0p = p.reshape(arr.shape) **return** p In [59]: def alpha_trimmed_mean_filter(img,d,kernel_size): padded_img = zero_padding(img, kernel_size) padding = kernel_size//2 final = np.ones((padded_img.shape[0]-2*padding,padded_img.shape[1]-2*padding)) for i in range(padding, padded_img.shape[0]-padding): for j in range(padding, padded_img.shape[1]-padding): #i, j is the centre pixel temp = padded_img[i-padding:i+padding+1, j-padding:j+padding+1] alpha_trim_temp = alpha_trim(temp,d) final[i-padding, j-padding] = alpha_trim_temp.sum()/(kernel_size**2 - d) return final In [60]: alpha_trimmed_xray_img = alpha_trimmed_mean_filter(noisy_img,0,3) In [61]: alpha_trimmed_xray_img = cv2.normalize(alpha_trimmed_xray_img, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) In [62]: plt.imshow(alpha_trimmed_xray_img,cmap='gray') plt.axis('off') (-0.5, 1023.5, 1023.5, -0.5) In [63]: cv2.imwrite("Alpha Trimmed Mean Filter.png",alpha_trimmed_xray_img) Out[63]: In [64]: rmse_alpha_filter = rmse(xray_img, alpha_trimmed_xray_img) snr_alpha_filter = snr(alpha_trimmed_xray_img, xray_img) print(f"RMSE of Min Filter: {rmse_alpha_filter}") print(f"SNR of Min Filter: {snr_alpha_filter}") RMSE of Min Filter: 2.9916151809158267 SNR of Min Filter: 11.873326829704924 Question 2 noisy = cv2.imread("xray_g.png", -1) In [10]: noisy_float = np.float64(noisy) xray_fourier = cv2.dft(noisy_float,flags = cv2.DFT_COMPLEX_OUTPUT) In [11]: xray_fourier_shift = np.fft.fftshift(xray_fourier) xray_fourier_shift.shape (1024, 1024, 2) Out[11]: magnitude = 20*np.log(cv2.magnitude(xray_fourier_shift[:,:,0],xray_fourier_shift[:,:,1])) In [13]: magnitude= cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) plt.imshow(magnitude,cmap='gray') In [14]: plt.axis('off') (-0.5, 1023.5, 1023.5, -0.5) Out[14]: #box filter box = np.zeros(xray_fourier_shift.shape) $M,N = xray_img.shape$ In [16]: **for** i **in** range(0, M): for j in range(0,N): z = math.sqrt(((M/2-i)**2 + (N/2-j)**2))**if** z<100: box[i,j] = 1In [17]: box.shape (1024, 1024, 2) Out[17]: In [315... plt.imshow(box,cmap='gray') plt.axis('off') Out[315]: (-0.5, 1023.5, 1023.5, -0.5) In [32]: #gaussian D0 = 100gaussian = np.zeros(xray_fourier_shift.shape) for i in range(0, M): for j in range(0,N): z = math.sqrt(((M/2-i)**2 + (N/2-j)**2))gaussian[i,j] = math.exp($(-z^{**2})/(2^{*}D0^{**2})$) In [358... plt.imshow(gaussian,cmap='gray') plt.axis('off') Out[358]: (-0.5, 1023.5, 1023.5, -0.5) In [43]: #Butterworth LPF D0 = 300n = 3 butter = np.zeros(xray_fourier_shift.shape) for i in range(0, M): for j in range(0,N): z = math.sqrt(((M/2-i)**2 + (N/2-j)**2))butter[i,j] = 1/(1+(math.exp(z/D0))**(2*n))In [364... plt.imshow(butter,cmap='gray') plt.axis('off') Out[364]: (-0.5, 1023.5, 1023.5, -0.5) In [20]: fshift = xray_fourier_shift*box In [21]: f_ishift = np.fft.ifftshift(fshift) In [22]: img_back = cv2.idft(f_ishift) In [23]: img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1]) In [29]: img_back = cv2.normalize(img_back, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) In [30]: plt.imshow(img_back,cmap='gray') plt.axis('off') (-0.5, 1023.5, 1023.5, -0.5) Out[30]: In [31]: cv2.imwrite("Fourier_BOX.png",img_back) Out[31]: True In [34]: fshift_gaussian = xray_fourier_shift*gaussian f_ishift_gaussian = np.fft.ifftshift(fshift_gaussian) img_back_gaussian = cv2.idft(f_ishift_gaussian) img_back_gaussian = cv2.magnitude(img_back_gaussian[:,:,0],img_back_gaussian[:,:,1]) img_back_gaussian = cv2.normalize(img_back_gaussian, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) In [35]: plt.imshow(img_back_gaussian,cmap='gray') plt.axis('off') (-0.5, 1023.5, 1023.5, -0.5) Out[35]: In [36]: cv2.imwrite("Fourier_GAUSSIAN.png",img_back_gaussian) Out[36]: In [44]: | fshift_butter = xray_fourier_shift*butter f_ishift_butter = np.fft.ifftshift(fshift_butter) img_back_butter = cv2.idft(f_ishift_butter) img_back_butter = cv2.magnitude(img_back_butter[:,:,0],img_back_butter[:,:,1])
img_back_butter = cv2.normalize(img_back_butter, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) In [45]: plt.imshow(img_back_butter,cmap='gray') plt.axis('off') (-0.5, 1023.5, 1023.5, -0.5) Out[45]: In [46]: cv2.imwrite("Fourier_BUTTERWORTH.png",img_back_butter) Out[46]: In [51]: #RMSE and SNR values rmse_box = rmse(xray_img,img_back) rmse_gaussian = rmse(xray_img,img_back_gaussian) rmse_butter = rmse(xray_img,img_back_butter) In [52]: snr_box = snr(img_back, xray_img) snr_gaussian = snr(img_back_gaussian,xray_img) snr_butter = snr(img_back_butter,xray_img) print(f"Box Filter: RMSE = {rmse_box} | SNR = {snr_box}") In [53]: print(f"Gaussian Filter: RMSE = {rmse_gaussian} | SNR = {snr_gaussian}") print(f"Butterworth Filter: RMSE = {rmse_butter} | SNR = {snr_butter}") Box Filter: RMSE = 10.242325445042047 | SNR = 1.033821295998412 Gaussian Filter: RMSE = 4.013769292461323 | SNR = 6.5852544142753295 Butterworth Filter: RMSE = 4.275206706978054 | SNR = 5.871659126538234

In [1]:	<pre>import cv2 import numpy as np</pre>
	<pre>import math</pre> import matplotlib.pyplot as plt
In [4]:	<pre>import matplotlib.pyplot as plt xray = cv2.imread('xray.png', -1)</pre>
In [5]:	<pre>def zigzag(matrix): # Get the number of rows and columns in the matrix rows = len(matrix[0]) # Create an empty list to store the zigzag ordering zigzag = [] temp = np.zeros((1,rows*cols)) # Initialize the starting row and column row, col = 0, 0 # Iterate over each diagonal of the matrix for in range(rows + cols - 1): # If the diagonal is even, traverse it from top-right to bottom-left if i % 2 == 0:</pre>
	<pre>if row < 0 and col <= cols - 1: row = 0 if col == cols: row += 2 col -= 1 # If the diagonal is odd, traverse it from bottom-left to top-right else: while col >= 0 and row < rows: zigzag.append(matrix[row][col]) row += 1 col -= 1 if col < 0 and row <= rows - 1: col = 0</pre>
	<pre>if row == rows:</pre>
In [6]: In [7]:	<pre>def reverse_zigzag_for8x8(matrix): for i in range(135): matrix= zigzag(matrix) return matrix def run_length_encode(input_string): # Initialize the encoded string and the counter</pre>
	<pre>encoded_string = '' count = 1 # Iterate over each character in the input string for i in range(1, len(input_string)): if input_string[i] == input_string[i-1]: # If the current character is the same as the previous one, increment the counter count += 1 else: # If the current character is different from the previous one, add the count and the character to the encoded string count_str = str(count) encoded_string += count_str + "," +str(input_string[i-1]) + "." count = 1 # Add the final count and character to the encoded string</pre>
In [8]:	<pre>encoded_string += str(count) +"," + str(input_string[-1]) return encoded_string block_size = 4 #quantization matrix: quantization_matrix8x8 = np.array([[16, 11, 10, 16, 24, 40, 51, 61],</pre>
In [9]:	[49, 64, 78, 87, 103, 121, 120, 101], [72, 92, 95, 98, 112, 100, 103, 99]]) quantization_matrix = np.array([[1,2,4,8],[2,2,4,8],[4,4,4,8],[8,8,8,8]]) #calculation for number of blocks needed h,w = xray.shape height = np.int32(h) width = np.int32(w) h,w = np.float32(h),np.float32(w) nbh = np.int32(math.ceil(h/block_size))
	<pre>nbw = np.int32(math.ceil(w/block_size)) #Height of padded image H = block_size * nbh W = block_size * nbw padded_img = np.zeros((H,W)) padded_img[0:height,0:width] = xray[0:height,0:width] padded_img_minus128 = padded_img - 128 #cv2.imwrite('uncompressed.bmp',np.uint8(padded_img))</pre>
In [10]: Out[10]:	plt.imshow(padded_img_minus128,cmap='gray') plt.axis('off') (-0.5, 1023.5, 1023.5, -0.5)
[n [11]:	<pre>for i in range(nbh): #compute start and end row index of block row_ind_1 = i*block_size row_ind_2 = row_ind_1 + block_size for j in range(nbw): #compute start and end column index of block col_ind_1 = j*block_size col_ind_2 = col_ind_1 + block_size block = padded_img_minus128[row_ind_1 : row_ind_2, col_ind_1:col_ind_2] #applying 2D DCT to block DCT = cv2.dct(block) quantized = np.round(np.divide(DCT, quantization_matrix)) reordered = zigzag(quantized) #reshaped = np.reshape(reordered, (block_size, block_size))</pre>
In [12]: Out[12]:	[4., -7., 1.,, -2., 1., 0.],
	[2., -1., 1.,, -1., -0., 0.],, [-25., -29., 5.,, -29., 8., -4.], [11., 5., -3.,, 7., 1., 3.], [1., -0., -1.,, -1., 0.]]) encoded image
īn [13]·	
TII [TO].	<pre>arranged = final.flatten()</pre>
In [14]: Out[14]:	arranged.shape (1048576,)
In [14]: Out[14]: In [15]: In [16]:	<pre>arranged.shape (1048576,) bitstream = run_length_encode(arranged) #bitstream bitstream2 = str(padded_img.shape[0]) + " " + str(padded_img.shape[1]) + " " + bitstream + ";" file1 = open('test2.txt','w')</pre>
In [14]: Out[14]: In [15]: In [16]: In [17]:	<pre>arranged.shape (1048576,) bitstream = run_length_encode(arranged) #bitstream bitstream2 = str(padded_img.shape[0]) + " " + str(padded_img.shape[1]) + " " + bitstream + ";" file1 = open('test2.txt','w') file1.write(bitstream2) file1.close()</pre>
In [14]: Out[14]: In [15]: In [16]: In [17]: Out[19]:	<pre>arranged.shape (1048576.) bitstream = run_length_encode(arranged)</pre>
In [14]: Out[14]: In [15]: In [16]: In [17]: Out[19]: Out[20]:	Arranged shape (1948576,) bitstream = rum_length_encode(arranged) #bitstream = str(padded_ing.shape[0]) + " " + str(padded_ing.shape[1]) + " " + bitstream + ";" file1. open('test2.tx','w') file1.close() def rl_decode(g.shape):
In [14]: Out[14]: In [15]: In [16]: In [17]: In [19]: Out[19]: Out[20]: Out[21]: Out[21]:	Castaff,
In [14]: Out[14]: In [15]: In [16]: In [17]: In [18]: Out[19]: Out[20]: In [21]: Out[21]: Out[21]:	A
In [14]: Out[14]: In [15]: In [16]: In [17]: In [18]: Out[19]: Out[20]: In [21]: Out[21]: Out[21]:	A
In [14]: Out [14]: In [15]: In [16]: In [17]: In [19]: Out [19]: Out [20]: Out [21]: Out [21]: Out [23]:	
In [14]: Out [14]: In [15]: In [16]: In [17]: In [19]: In [20]: In [20]: In [21]: In [21]: In [24]: In [24]: In [24]:	Compared
In [14]: Dut[14]: In [15]: In [16]: In [17]: In [19]: In [20]: In [21]: In [21]: In [21]: In [24]: In [24]:	Testing Test
In [14]: Out [14]: In [15]: In [16]: In [17]: In [19]: Out [19]: Out [20]: In [21]: Out [21]: Out [23]: In [24]: In [24]:	Part
In [14]: Out [14]: In [15]: In [16]: In [17]: In [18]: Out [19]: Out [20]: Out [21]: Out [23]: Out [23]: Out [23]: Out [24]: Out [27]: Out [27]:	Marie Mari
In [14]: Out [14]: In [15]: In [16]: In [17]: In [19]: Out [29]: Out [29]: Out [21]: Out [21]: Out [23]: Out [23]: Out [27]: Out [27]: Out [27]:	Marticle
In [14]: Out [14]: In [15]: In [16]: In [17]: In [18]: In [19]: Out [20]: Out [20]: Out [21]: Out [21]: Out [22]: In [23]: Out [23]: Out [23]: Out [23]: Out [24]: In [24]: In [24]: In [27]: Out [27]:	MANAGEMENT OF THE PROPERTY OF

In [2]: In [18]: In [3]:	<pre>import matplotlib.pyplot as plt def walk_through_dir(dir_path):</pre>		
	<pre>Returns: A print out of: number of subdirectories in dir_path number of images (files) in each subdirectory name of each subdirectory for dirpath, dirnames, filenames in os.walk(dir_path): print(f"There are {len(dirnames)} directories and {len(filenames)} image</pre>	es in {dirpath}")	
In [4]: In [27]: In [6]:	<pre>import zipfile from pathlib import Path data_path = Path("data/X_ray_image_and_mask_for_U_net_training") image_path = data_path / "CXR_png" masks_path = data_path / "masks"</pre>	ning\CXR png	
In [7]: Out[7]:	There are 0 directories and 200 images in data\X_ray_image_and_mask_for_U_net_tr There are 0 directories and 600 images in data\X_ray_image_and_mask_for_U_net_tr 7]: #setup train and testing paths train_dir = image_path / "train" test_dir = image_path / "test" train_dir, test_dir (WindowsPath('data(X, ray image_and mask_for_U_net_training(GYP_neg(train')))	aining\CXR_png\test	
In [10]: In [60]:	<pre>import random from PIL import Image #set seed random.seed(42) #Get all image paths (* means 'any combination') image_path_list = list(image_path.glob("*/*.png"))</pre>		
	<pre>#Get random image path random_image_path = random.choice(image_path_list) #Get image class from path name (name of directory) image_class = random_image_path.parent.stem #Open image img = Image.open(random_image_path) #Print metadata print(f"Random Image Path: {random_image_path}") print(f"Image_place_fimage_place_fimage_path)</pre>		
	<pre>print(f"Image class: {image_class}") print(f"Image height: {img.height}") print(f"Image width: {img.width}") IndexError</pre>		
	<pre>11 image_class = random_image_path.parent.stem File C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.11_3.11.1008</pre>	.0_x64qbz5n2kfra8p0\Lib\random.py:373, in Random.choice(self, seq)	
In [16]: In [124	<pre>import torch from torch.utils.data import DataLoader from torchvision import datasets, transforms data_transform = transforms.Compose([transforms.ToPILImage(), #Resize the images to 572x572 transforms.Resize(size = (128,128)), #turn the imahe into torch.Tensor</pre>		
In [22]:	<pre>transforms.ToTensor() #this also converts all pixel values from 0 to 255 to be between 0.0 and 1.0]) In [22]: def plot_transformed_images(image_paths, transform, n=3, seed=42): """Plots a series of random images from image_paths. Will open n image from image_paths, transform them with transform and plot them side by side Args: image_path (list): List of target image paths.</pre>		
<pre>transform (PyTorch Transforms): Transforms to apply to images. n (int,optional): Number of images to plot. Defaults to 3. seed (int, optional): Random seed for the random generator. Defaults to """ random.seed(seed) random_image_paths = random.sample(image_paths, k=n) for image_path in random_image_paths: with Image.open(image_path) as f: fig, ax = plt.subplots(1,2) ax[0].imshow(f) ax[0].set_title(f"Original \nSize: {f.size}")</pre>		42	
	<pre>ax[0].axis('off') #transform and plot the image #note: permute changes shape of image to suit matplotlib #Pytorch default is [C,H,W] but Matplotlib is [H,W,C] transformed_image = transform(f).permute(1,2,0) ax[1].imshow(transformed_image) ax[1].set_title(f"Transformed \nSize: {transformed_image.shape}") ax[1].axis('off') fig.suptitle(f'Class: {image_path.parent.stem}' , fontsize = 16)</pre>		
	Class: train Original Size: (2986, 2960) Size: train Original Size: (2986, 2960) Original Size: torch.Size([572, 572, 1])		
	Class: test Original Size: (4020, 4892) Transformed Size: torch.Size([572, 572, 1])		
	PRICE		
	Class: test Original Transformed		
	Size: (2356, 2506) Size: torch.Size([572, 572, 1])		
In [24]:	<pre>from torchvision import datasets train_data = datasets.ImageFolder(root = train_dir,</pre>		
	<pre>target_transform = None) test_data = datasets.ImageFolder(root = test_dir,</pre>	tialias=warn)	
	ToTensor()) Test data: Dataset ImageFolder Number of datapoints: 200 Root location: data\X_ray_image_and_mask_for_U_net_training\CXR_png\test StandardTransform Transform: Compose(Resize(size=(572, 572), interpolation=bilinear, max_size=None, an ToTensor()		
In [25]: train_data.classes Out[25]: ['xray'] In [26]: train_data.class_to_idx Out[26]: {'xray': 0} In [115 #defining U-Net parameters			
111 [220	NUM_CHANNELS = 1 NUM_CLASSES = 1 NUM_LEVELS = 3 #initialize learning rate, number of epochs to train for and batch size INIT_LR = 0.001 NUM_EPOCHS = 40 BATCH_SIZE = 64 #define the input image dimensions INPUT_IMAGE_WIDTH = 128		
	<pre>INPUT_IMAGE_HEIGHT = 128 #threshold to filter weak predictions THRESHOLD = 0.5 #define path to the base output directory BASE_OUTPUT = "output" MODEL_PATH = os.path.join(BASE_OUTPUT, "unet_xray.pth") PLOT_PATH = os.path.sep.join([BASE_OUTPUT, "plot.png"]) TEST_PATHS = os.path.sep.join([BASE_OUTPUT, "test_paths.txt"])</pre>		
In [116	<pre>from torch.utils.data import Dataset class SegmentationDataset(Dataset): definit(self,imagePaths,maskPaths,transforms): self.imagePaths = imagePaths self.maskPaths = maskPaths self.transforms = transforms deflen(self): return len(self.imagePaths) defgetitem(self,idx):</pre>		
	<pre>imagePath = self.imagePaths[idx] image = cv2.imread(imagePath) image = cv2.cvtColor(image,cv2.CoLoR_BGR2RGB) mask = cv2.imread(self.maskPaths[idx],0) if self.transforms is not None: image = self.transforms(image) mask = self.transforms(mask)</pre> return (image,mask)		
In [33]:	<pre>from torch.nn import Conv2d from torch.nn import MaxPool2d from torch.nn import Module from torch.nn import ModuleList from torch.nn import ReLU from torchvision.transforms import CenterCrop from torch.nn import functional as F</pre>		
In [58]:	<pre>import cv2 class Block(Module): definit(self,inChannels,outChannels): super()init() self.conv1 = Conv2d(inChannels,outChannels,3) self.relu = ReLU() self.conv2 = Conv2d(outChannels,outChannels,3) def forward(self,x):</pre>		
In [118	<pre>return self.conv2(self.relu(self.conv1(x))) In [118 class Encoder(Module): definit(self, channels = (3,16,32,64)): super()init() self.encBlocks = ModuleList([Block(</pre>		
In [119			
	<pre>self.upconvs = ModuleList([ConvTranspose2d(channels[i], channels self.dec_blocks = ModuleList([Block(channels[i], channels[i + 1]) def forward(self, x, encFeatures): # loop through the number of channels for i in range(len(self.channels) - 1):</pre>		
	<pre># decoder block encFeat = self.crop(encFeatures[i], x) x = torch.cat([x, encFeat], dim=1) x = self.dec_blocks[i](x) # return the final decoder output return x def crop(self, encFeatures, x): # grab the dimensions of the inputs, and crop the encoder # features to match the dimensions (_, _, H, W) = x.shape</pre>		
In [90]:	<pre>encFeatures = CenterCrop([H, W])(encFeatures) # return the cropped features return encFeatures class UNet(Module): definit(self,encChannels = (3,16,32,64), decChannels = (64,32,16), nbClasses =1,retainDim = True, outSize = (INPUT_IMAGE_HEIGHT,INPUT_IMAGE_WIDTH)): super()init() self.encoder = Encoder(encChannels) self.decoder = Decoder(decChannels)</pre>		
	<pre>self.head = Conv2d(decChannels[-1], nbClasses, 1) self.retainDim = retainDim self.outSize = outSize def forward(self, x): encFeatures = self.encoder(x) decFeatures = self.decoder(encFeatures[::-1][0],</pre>		
In [84]:	<pre>from torch.optim import Adam from torch.utils.data import DataLoader from sklearn.model_selection import train_test_split from torchvision import transforms from imutils import paths</pre>		
In [120	<pre>from tqdm import tqdm import matplotlib.pyplot as plt import torch import time import os from torch import nn</pre>		
In [125	<pre>(trainImages, testImages) = split[:2] (trainMasks, testMasks) = split[2:] print("[INFO] saving testing image paths") f = open(test_dir, "w") f.write("\n".join(testImages)) f.close() [INFO] saving testing image paths trainDS = SegmentationDataset(imagePaths = trainImages,</pre>		
In [126	trainDS = SegmentationDataset(imagePaths = trainImages,		
Out[126] In [127 Out[127] In [130	trainDS[0][0].size() torch.Size([3, 128, 128]) trainDS		
In [132	<pre>optimizer = Adam(unet.parameters(), lr = INIT_LR) trainSteps = len(trainDS) // BATCH_SIZE testSteps = len(testDS) // BATCH_SIZE H = {"train_loss" :[], "test_loss" :[]} startTime = time.time() for e in tqdm(range(NUM_EPOCHS)): unet.train() totalTrainLoss = 0</pre>		
	<pre>totalTestLoss = 0 for (i,(x,y)) in enumerate(trainLoader): pred = unet(x) loss = lossfn(pred,y) optimizer.zero_grad() loss.backward() optimizer.step() totalTrainLoss += loss</pre>		
	<pre>with torch.inference_mode(): unet.eval() for(x,y) in testLoader: pred = unet(x) totalTestLoss += lossfn(pred,y) avgTrainLoss = totalTrainLoss / trainSteps avgTestLoss = totalTestLoss / testSteps</pre>		
	<pre>H["train_loss"].append(avgTrainLoss.detach().numpy()) H["test_loss"].append(avgTestLoss.detach().numpy()) print("EPOCH: {}/{}".format(e+1,NUM_EPOCHS)) print("Train loss: {:,.6f},Test loss: {:.4f}".format(avgTrainLoss,avgTestLosendTime = time.time() print("[INFO] total time taken to train the model : {:.2f}s").format(endTime - section = se</pre>		
	EPOCH: 1/40 Train loss: 0.671428, Test loss: 0.7142 5% EPOCH: 2/40 Train loss: 0.601234, Test loss: 0.7036 8% EPOCH: 3/40 Train loss: 0.593643, Test loss: 0.6966 10% EPOCH: 4/40	2/40 [10:51<3:25:51, 325.04s/it] 3/40 [16:12<3:19:12, 323.05s/it] 4/40 [21:29<3:12:29, 320.82s/it]	
	Train loss: 0.583479, Test loss: 0.6827 12%	5/40 [26:50<3:07:12, 320.93s/it] 6/40 [32:08<3:01:16, 319.89s/it] 7/40 [37:24<2:55:10, 318.50s/it]	
	20% 8/40 Train loss: 0.541780, Test loss: 0.6306 22% 8/40 Train loss: 0.537232, Test loss: 0.6201 25% 8/40 Train loss: 0.521046, Test loss: 0.5967 28% 8/40	8/40 [42:40<2:49:30, 317.84s/it] 9/40 [47:58<2:44:13, 317.84s/it] 10/40 [53:16<2:38:55, 317.86s/it] 11/40 [58:33<2:33:32, 317.69s/it]	
	EPOCH: 11/40 Train loss: 0.507345, Test loss: 0.5665 30%	12/40 [1:03:52<2:28:18, 317.80s/it] 13/40 [1:09:09<2:23:00, 317.81s/it] 14/40 [1:14:26<2:17:35, 317.54s/it]	
	Train loss: 0.437583, Test loss: 0.5305 38%	15/40 [1:19:43<2:12:13, 317.35s/it] 16/40 [1:25:02<2:07:09, 317.88s/it] 17/40 [1:30:22<2:02:01, 318.33s/it]	
	EPOCH: 18/40 Train loss: 0.399354, Test loss: 0.4504 48% EPOCH: 19/40 Train loss: 0.391811, Test loss: 0.4307 50% EPOCH: 20/40 Train loss: 0.380109, Test loss: 0.4199	18/40 [1:35:38<1:56:31, 317.81s/it] 19/40 [1:40:55<1:51:05, 317.40s/it] 20/40 [1:46:11<1:45:44, 317.20s/it] 21/40 [1:51:28<1:40:21, 316.92s/it]	
	EPOCH: 21/40 Train loss: 0.375834, Test loss: 0.4169 55% EPOCH: 22/40 Train loss: 0.370778, Test loss: 0.4156 57% EPOCH: 23/40 Train loss: 0.369232, Test loss: 0.4171 60% EPOCH: 24/40 Train loss: 0.364043 Test loss: 0.3961	21/40 [1:51:28<1:40:21, 316.92s/it] 22/40 [1:56:44<1:34:59, 316.65s/it] 23/40 [2:01:59<1:29:38, 316.39s/it] 24/40 [2:07:15<1:24:16, 316.06s/it]	
	Train loss: 0.364043, Test loss: 0.3961 62%	25/40 [2:12:29<1:18:53, 315.59s/it] 26/40 [2:17:43<1:13:30, 315.04s/it] 27/40 [2:22:59<1:08:19, 315.36s/it]	
	Train loss: 0.353119, Test loss: 0.3881 72%	28/40 [2:28:16<1:03:11, 315.95s/it] 29/40 [2:33:34<57:59, 316.28s/it] 30/40 [2:38:52<52:50, 317.08s/it] 31/40 [2:44:09<47:31, 316.84s/it]	
	EPOCH: 31/40 Train loss: 0.343797, Test loss: 0.3794 80% EPOCH: 32/40 Train loss: 0.343222, Test loss: 0.3775 82% EPOCH: 33/40 Train loss: 0.338577, Test loss: 0.3712 85% EPOCH: 34/40	31/40 [2:44:09<47:31, 316.84s/it] 32/40 [2:49:26<42:16, 317.00s/it] 33/40 [2:54:44<37:00, 317.23s/it] 34/40 [3:00:02<31:45, 317.60s/it]	
	Train loss: 0.339075, Test loss: 0.3691 88% EPOCH: 35/40 Train loss: 0.334711, Test loss: 0.3680 90% EPOCH: 36/40 Train loss: 0.332943, Test loss: 0.3726 92% EPOCH: 37/40 Train loss: 0.329948, Test loss: 0.3661	35/40 [3:05:22<26:31, 318.30s/it] 36/40 [3:10:44<21:16, 319.21s/it] 37/40 [3:15:56<15:51, 317.20s/it] 38/40 [3:21:12<10:33, 316.68s/it]	
	95% EPOCH: 38/40 Train loss: 0.332785, Test loss: 0.3686 98% EPOCH: 39/40 Train loss: 0.336052, Test loss: 0.3757 100% EPOCH: 40/40 Train loss: 0.336181, Test loss: 0.3589 [INFO] total time taken to train the model : {:.2f}s	38/40 [3:21:12<10:33, 316.68s/it] 39/40 [3:26:29<05:16, 316.75s/it] 40/40 [3:31:44<00:00, 317.62s/it]	
In [135	AttributeError Traceback (most recent call last) Cell In[132], line 35 32 print("Train loss: {:,.6f}, Test loss: {:.4f}".format(avgTrainLoss, av 34 endTime = time.time()> 35 print("[INFO] total time taken to train the model : {:.2f}s").format(end AttributeError: 'NoneType' object has no attribute 'format' (endTime - startTime)/60 #minutes taken to train the model 211 74007232023037		
	plt.style.use("ggplot") plt.figure() plt.plot(H["train_loss"],label="train_loss") plt.plot(H["test_loss"],label = "test_loss") plt.title("Training Loss on Dataset") plt.xlabel("Epoch #") plt.ylabel("Loss") plt.legend(loc="lower left")		
Out[136]	<pre>compare the second state of the second st</pre>		
	0.60 - 0.55 - 0.50 - 0.45 - 0.40 -		
In [138	0.35 - train_loss 0 5 10 15 20 25 30 35 40 Epoch #		
In [147 In [156	<pre>def prepare_plot(origImage, predMask): figure, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (10,10)) ax[0].imshow(origImage) #ax[1].imshow(origMask)</pre>		
In [157	<pre>ax[1].imshow(predMask,cmap='gray') ax[0].set_title("Image") #ax[1].set_title("Original Mask") ax[1].set_title("Predicted Mask") figure.tight_layout() figure.show() unet.eval() with torch.inference_mode():</pre>		
	<pre>image = cv2.imread("data/X_ray_image_and_mask_for_U_net_training/CXR_png/CHN image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = image.astype("float32")/255.0 image = cv2.resize(image, (128, 128)) orig = image.copy() # filename = imagePath.split(os.path.sep)[-1] #groundTruthPath = os.path.join(masks_path, filename) #gtMask = cv2.imread(groundTruthPath, 0)</pre>	iuxκ_⊌⊌35_0.png")	
	<pre>#gtMask = Cv2.imread(groundTrutnPath,0) #gtMask = cv2.resize(gtMask,(INPUT_IMAGE_HEIGHT,INPUT_IMAGE_WIDTH)) image = np.transpose(image,(2,0,1)) #to get it to [C,H,W] format image = np.expand_dims(image,0) #model inputs 4 dimensional tensor image = torch.tensor(image) predMask = unet(image).squeeze() #to remove extra dimension predMask = torch.sigmoid(predMask) predMask = predMask.numpy() predMask = (predMask>THRESHOLD) *255 predMask = predMask.astype(np.uint8)</pre>		
	<pre>predMask = predMask.astype(np.uint8) prepare_plot(orig,predMask)</pre>	Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, Predicted Mask	
	20 -		
	60 -		
	60 - 80 - 100 - 120 -		

```
In [1]: # Importing necessary libraries
        import os
        import random
        import shutil
        import numpy as np
        import matplotlib.pyplot as plt
        from keras.preprocessing.image import ImageDataGenerator
        from keras.applications import VGG16, VGG19, ResNet50, InceptionV3, Xception
        from keras.models import Model
        from keras.layers import Dense, GlobalAveragePooling2D
        from keras.optimizers import Adam
        from keras.callbacks import ModelCheckpoint
        from sklearn.metrics import classification_report, confusion_matrix
        # Setting random seed for reproducibility
        np.random.seed(42)
        random.seed(42)
        # Define constants
        NUM_CLASSES = 2
        IMG_SIZE = (224, 224)
        BATCH_SIZE = 32
        TRAIN_DIR = 'train'
        VAL_DIR = 'val'
        TEST_DIR = 'test'
        TRAIN\_SPLIT = 0.7
        VAL_SPLIT = 0.1
        TEST_SPLIT = 0.2
        test_samples = 280
In [2]: # Define the base directory where the image data is located
        BASE_DIR = r"C:\Users\mohit\Downloads\DIP Assignment 2\Data"
In [3]: # Set the paths for training, validation, and test data
        TRAIN_DIR = os.path.join(BASE_DIR, 'train')
        VAL_DIR = os.path.join(BASE_DIR, 'val')
        TEST_DIR = os.path.join(BASE_DIR, 'test')
In [4]: # Load and preprocess the data
        train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
        val_datagen = ImageDataGenerator(rescale=1./255)
        test_datagen = ImageDataGenerator(rescale=1./255)
       train_generator = train_datagen.flow_from_directory(TRAIN_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical')
        val_generator = val_datagen.flow_from_directory(VAL_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical')
        test_generator = test_datagen.flow_from_directory(TEST_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical', shuffle=False)
        Found 980 images belonging to 2 classes.
        Found 140 images belonging to 2 classes.
        Found 280 images belonging to 2 classes.
In [6]: # Define function for creating transfer learning models
        def create_transfer_model(base_model, num_classes):
           x = base_model.output
           x = GlobalAveragePooling2D()(x)
           x = Dense(1024, activation='relu')(x)
           predictions = Dense(num_classes, activation='softmax')(x)
           model = Model(inputs=base_model.input, outputs=predictions)
           return model
        # Define VGG16 model
        vgg16_base = VGG16(include_top=False, weights='imagenet', input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))
        vgg16_model = create_transfer_model(vgg16_base, NUM_CLASSES)
        # Define VGG19 model
        vgg19_base = VGG19(include_top=False, weights='imagenet', input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))
        vgg19_model = create_transfer_model(vgg19_base, NUM_CLASSES)
 In [7]: # Compile the models
        optimizer = Adam(learning_rate=0.0001)
        vgg16_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
        vgg19_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
In [8]: # Define checkpoint callback to save the best model during training
        checkpoint = ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)
In [9]: # Train the models
        vgg16_history = vgg16_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validation_steps
        vgg19_history = vgg19_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validation_steps
        C:\Users\mohit\AppData\Local\Temp\ipykernel_25572\2039408895.py:2: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`,
        which supports generators.
         vgg16_history = vgg16_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validation_st
        eps=val_generator.n // val_generator.batch_size, callbacks=[checkpoint])
        Epoch 1/5
        Epoch 2/5
        Epoch 3/5
        Epoch 4/5
        Epoch 5/5
        C:\Users\mohit\AppData\Local\Temp\ipykernel_25572\2039408895.py:3: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`,
        which supports generators.
         vgg19_history = vgg19_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validation_st
        eps=val_generator.n // val_generator.batch_size, callbacks=[checkpoint])
        Epoch 2/5
        Epoch 3/5
        Epoch 4/5
        Epoch 5/5
        In [10]: # Evaluate the models on test data
        vgg16_scores = vgg16_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
        print("VGG16 Test Loss:", vgg16_scores[0])
        print("VGG16 Test Accuracy:", vgg16_scores[1])
        vgg19_scores = vgg19_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
        print("VGG19 Test Loss:", vgg19_scores[0])
        print("VGG19 Test Accuracy:", vgg19_scores[1])
        C:\Users\mohit\AppData\Local\Temp\ipykernel_25572\1392354301.py:2: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.
        evaluate`, which supports generators.
         vgg16_scores = vgg16_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
        VGG16 Test Loss: 0.07796119153499603
        VGG16 Test Accuracy: 0.97265625
        C:\Users\mohit\AppData\Local\Temp\ipykernel_25572\1392354301.py:6: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.
        evaluate`, which supports generators.
         vgg19_scores = vgg19_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
        VGG19 Test Loss: 0.14393511414527893
        VGG19 Test Accuracy: 0.94140625
In [15]: # Get the number of test samples
        num_test_samples = test_generator.n
        # Calculate the number of steps for prediction
        num_prediction_steps = num_test_samples // test_generator.batch_size + 1
        # Generate predictions for all test samples
        vgg16_predictions = vgg16_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
        # Convert predictions to class labels
        vgg16_predicted_labels = np.argmax(vgg16_predictions, axis=1)
        C:\Users\mohit\AppData\Local\Temp\ipykernel_25572\2218791254.py:8: UserWarning: `Model.predict_generator` is deprecated and will be removed in a future version. Please use `Model.p
        redict`, which supports generators.
         vgg16_predictions = vgg16_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
        9/9 [======== ] - 23s 3s/step
In [16]: # Get the number of test samples
        num_test_samples = test_generator.n
        # Calculate the number of steps for prediction
        num_prediction_steps = num_test_samples // test_generator.batch_size + 1
        # Generate predictions for all test samples
        vgg19_predictions = vgg19_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
        # Convert predictions to class labels
        vgg19_predicted_labels = np.argmax(vgg19_predictions, axis=1)
        C:\Users\mohit\AppData\Local\Temp\ipykernel_25572\903632277.py:8: UserWarning: `Model.predict_generator` is deprecated and will be removed in a future version. Please use `Model.pr
        edict`, which supports generators.
         vgg19_predictions = vgg19_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
        9/9 [=======] - 30s 3s/step
       # Get true class labels
In [17]:
        true_labels = test_generator.classes
In [18]: # Calculate classification report
        vgg16_report = classification_report(true_labels, vgg16_predicted_labels)
In [19]: # Calculate classification report
        from sklearn.metrics import classification_report
        # Get the ground truth labels
        ground_truth_labels = test_generator.classes
        # Get the predicted labels
        vgg19_predicted_labels = np.argmax(vgg19_predictions, axis=1)
        # Calculate classification report
        classification_report_vgg19 = classification_report(ground_truth_labels, vgg19_predicted_labels, zero_division=1)
In [20]: print("vgg16 Classification Report:")
        print(vgg16_report)
        print("vgg19 Classification Report:")
        print(classification_report_vgg19)
        vgg16 Classification Report:
                    precision
                              recall f1-score support
                 0
                                 0.99
                                         0.97
                                                   140
                        0.95
                 1
                        0.99
                                 0.94
                                         0.96
                                                   140
                                         0.96
                                                   280
           accuracy
                        0.97
                                 0.96
                                         0.96
                                                   280
          macro avg
        weighted avg
                        0.97
                                 0.96
                                         0.96
                                                   280
        vgg19 Classification Report:
                    precision
                               recall f1-score
                                               support
                 0
                        0.87
                                 0.99
                                         0.93
                                                   140
                 1
                        0.98
                                 0.86
                                         0.92
                                                   140
                                                   280
           accuracy
                                         0.92
          macro avg
                        0.93
                                 0.92
                                         0.92
                                                   280
        weighted avg
                        0.93
                                 0.92
                                         0.92
                                                   280
```

In [

```
In [5]: # Importing necessary libraries
        import os
        import random
        import shutil
        import numpy as np
        import matplotlib.pyplot as plt
        from keras.preprocessing.image import ImageDataGenerator
        from keras.applications import VGG16, VGG19, ResNet50, InceptionV3, Xception
        from keras.models import Model
        from keras.layers import Dense, GlobalAveragePooling2D
        from keras.optimizers import Adam
        from keras.callbacks import ModelCheckpoint
        from sklearn.metrics import classification_report, confusion_matrix
        # Setting random seed for reproducibility
        np.random.seed(42)
        random.seed(42)
        # Define constants
        NUM CLASSES = 2
        IMG_SIZE = (224, 224)
        BATCH_SIZE = 32
        TRAIN_DIR = 'train'
        VAL_DIR = 'val'
        TEST_DIR = 'test'
        TRAIN_SPLIT = 0.7
        VAL_SPLIT = 0.1
        TEST_SPLIT = 0.2
        test_samples = 280
        # Define the base directory where the image data is located
        BASE_DIR = r"C:\Users\mohit\Downloads\DIP Assignment 2\Data"
        # Set the paths for training, validation, and test data
        TRAIN_DIR = os.path.join(BASE_DIR, 'train')
        VAL_DIR = os.path.join(BASE_DIR, 'val')
        TEST_DIR = os.path.join(BASE_DIR, 'test')
        # Load and preprocess the data
        train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
        val_datagen = ImageDataGenerator(rescale=1./255)
        test_datagen = ImageDataGenerator(rescale=1./255)
        train_generator = train_datagen.flow_from_directory(TRAIN_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical')
        val_generator = val_datagen.flow_from_directory(VAL_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical')
        test_generator = test_datagen.flow_from_directory(TEST_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical', shuffle=False)
        # Define function for creating transfer learning models
        def create_transfer_model(base_model, num_classes):
            x = base_model.output
            x = GlobalAveragePooling2D()(x)
            x = Dense(1024, activation='relu')(x)
            predictions = Dense(num_classes, activation='softmax')(x)
             model = Model(inputs=base_model.input, outputs=predictions)
            return model
        # Define Xception model
        xception_base = Xception(include_top=False, weights='imagenet', input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))
        xception_model = create_transfer_model(xception_base, NUM_CLASSES)
        # Compile the models
        optimizer = Adam(learning_rate=0.0001)
        xception_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
        # Define checkpoint callback to save the best model during training
        checkpoint = ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)
        xception_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
        xception_history = xception_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validation
        xception_scores = xception_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
        print("Xception Test Loss:", xception_scores[0])
        print("Xception Test Accuracy:", xception_scores[1])
        # Get the number of test samples
        num_test_samples = test_generator.n
        # Calculate the number of steps for prediction
        num prediction steps = num test samples // test generator.batch size + 1
        # Generate predictions for all test samples
        xception_predictions = xception_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
        # Convert predictions to class labels
        xception_predicted_labels = np.argmax(xception_predictions, axis=1)
        # Get true class labels
        true_labels = test_generator.classes
        # Calculate classification report
        xception_report = classification_report(true_labels, xception_predicted_labels)
        print("Xception Classification Report:")
        print(xception_report)
        Found 980 images belonging to 2 classes.
        Found 140 images belonging to 2 classes.
        Found 280 images belonging to 2 classes.
        C:\Users\mohit\AppData\Local\Temp\ipykernel_33056\3483214989.py:72: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit_generator` is deprecated and will be removed in a future version.
         , which supports generators.
          xception_history = xception_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=5, validation_data=val_generator, validat
        ion_steps=val_generator.n // val_generator.batch_size, callbacks=[checkpoint])
        Epoch 1/5
        Epoch 2/5
        Epoch 3/5
        Epoch 4/5
        Epoch 5/5
        C:\Users\mohit\AppData\Local\Temp\ipykernel_33056\3483214989.py:74: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.evaluate_generator` is deprecated and will be removed in a future version.
        1.evaluate`, which supports generators.
          xception_scores = xception_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
        Xception Test Loss: 0.012623521499335766
        Xception Test Accuracy: 0.9921875
        C:\Users\mohit\AppData\Local\Temp\ipykernel_33056\3483214989.py:85: UserWarning: `Model.predict_generator` is deprecated and will be removed in a future version. Please use `Model.
        predict`, which supports generators.
          xception_predictions = xception_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
        Xception Classification Report:
                                    recall f1-score support
                       precision
                                                0.99
                   0
                            0.99
                                      1.00
                                                            140
                                                            140
                   1
                            1.00
                                      0.99
                                                0.99
            accuracy
                                                 0.99
                                                            280
            macro avg
                            0.99
                                      0.99
                                                0.99
                                                            280
        weighted avg
                            0.99
                                      0.99
                                                0.99
                                                            280
```

```
In [1]: # Importing necessary libraries
       import os
       import random
       import shutil
       import numpy as np
       import matplotlib.pyplot as plt
       from keras.preprocessing.image import ImageDataGenerator
       from keras.applications import VGG16, VGG19, ResNet50, InceptionV3, Xception
       from keras.models import Model
       from keras.layers import Dense, GlobalAveragePooling2D
       from keras.optimizers import Adam
       from keras.callbacks import ModelCheckpoint
       from sklearn.metrics import classification_report, confusion_matrix
       # Setting random seed for reproducibility
       np.random.seed(42)
       random.seed(42)
       # Define constants
       NUM CLASSES = 2
       IMG_SIZE = (224, 224)
       BATCH_SIZE = 32
       TRAIN_DIR = 'train'
       VAL_DIR = 'val'
       TEST_DIR = 'test'
       TRAIN\_SPLIT = 0.7
       VAL_SPLIT = 0.1
       TEST_SPLIT = 0.2
       test_samples = 280
In [2]: # Define the base directory where the image data is located
       BASE_DIR = r"C:\Users\mohit\Downloads\DIP Assignment 2\Data"
In [3]: # Set the paths for training, validation, and test data
       TRAIN_DIR = os.path.join(BASE_DIR, 'train')
       VAL_DIR = os.path.join(BASE_DIR, 'val')
       TEST_DIR = os.path.join(BASE_DIR, 'test')
In [4]: # Load and preprocess the data
       train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
       val_datagen = ImageDataGenerator(rescale=1./255)
       test_datagen = ImageDataGenerator(rescale=1./255)
       train_generator = train_datagen.flow_from_directory(TRAIN_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical')
       val_generator = val_datagen.flow_from_directory(VAL_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical')
       test_generator = test_datagen.flow_from_directory(TEST_DIR,target_size=IMG_SIZE,batch_size=BATCH_SIZE,class_mode='categorical',shuffle=False)
       Found 980 images belonging to 2 classes.
       Found 140 images belonging to 2 classes.
       Found 280 images belonging to 2 classes.
In [6]: # Define function for creating transfer learning models
       def create_transfer_model(base_model, num_classes):
          x = base_model.output
          x = GlobalAveragePooling2D()(x)
          x = Dense(1024, activation='relu')(x)
          predictions = Dense(num_classes, activation='softmax')(x)
          model = Model(inputs=base_model.input, outputs=predictions)
          return model
In [7]: # Define InceptionV3 model
       inceptionv3_base = Inceptionv3(include_top=False, weights='imagenet', input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))
       inceptionv3_model = create_transfer_model(inceptionv3_base, NUM_CLASSES)
In [8]: # Compile the models
       optimizer = Adam(learning_rate=0.0001)
       inceptionv3_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
In [9]: | # Define checkpoint callback to save the best model during training
       checkpoint = ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)
In [10]: # Train the models
       inceptionv3_history = inceptionv3_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=10, validation_data=val_generator, val
       C:\Users\mohit\AppData\Local\Temp\ipykernel_34676\918017655.py:2: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`,
       which supports generators.
         inceptionv3 history = inceptionv3 model.fit generator(train generator, steps per epoch=train generator.n // train generator.batch size, epochs=10, validation data=val generator,
       validation_steps=val_generator.n // val_generator.batch_size, callbacks=[checkpoint])
       Epoch 2/10
       Epoch 3/10
       Epoch 4/10
       Epoch 5/10
       Epoch 6/10
       Epoch 7/10
       Epoch 8/10
       Epoch 9/10
       Epoch 10/10
       In [11]: inceptionv3_scores = inceptionv3_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
       print("inceptionv3 Test Loss:", inceptionv3_scores[0])
       print("inceptionv3 Test Accuracy:", inceptionv3_scores[1])
       C:\Users\mohit\AppData\Local\Temp\ipykernel_34676\1195483549.py:1: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.
       evaluate`, which supports generators.
         inceptionv3_scores = inceptionv3_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
       inceptionv3 Test Loss: 0.0008152585942298174
       inceptionv3 Test Accuracy: 1.0
In [12]: # Get the number of test samples
       num_test_samples = test_generator.n
       # Calculate the number of steps for prediction
       num_prediction_steps = num_test_samples // test_generator.batch_size + 1
       # Generate predictions for all test samples
       inceptionv3_predictions = inceptionv3_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
       # Convert predictions to class labels
       inceptionv3_predicted_labels = np.argmax(inceptionv3_predictions, axis=1)
       C:\Users\mohit\AppData\Local\Temp\ipykernel_34676\2714831293.py:8: UserWarning: `Model.predict_generator` is deprecated and will be removed in a future version. Please use `Model.p
       redict`, which supports generators.
         inceptionv3_predictions = inceptionv3_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
       In [13]: # Get true class labels
       true_labels = test_generator.classes
In [14]: # Calculate classification report
       inceptionv3_report = classification_report(true_labels, inceptionv3_predicted_labels)
       print("inception Classification Report:")
In [15]:
       print(inceptionv3_report)
       inception Classification Report:
                   precision
                            recall f1-score support
                       1.00
                               1.00
                                       1.00
                0
                                                 140
                1
                       1.00
                               1.00
                                       1.00
                                                 140
          accuracy
                                       1.00
                                                 280
          macro avg
                       1.00
                               1.00
                                       1.00
                                                 280
       weighted avg
                       1.00
                               1.00
                                       1.00
                                                 280
       inceptionv3_scores = inceptionv3_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
       print("inceptionv3 Test Loss:", inceptionv3 scores[0])
       print("inceptionv3 Test Accuracy:", inceptionv3 scores[1])
       C:\Users\mohit\AppData\Local\Temp\ipykernel_34676\1195483549.py:1: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.evaluate_generator` is deprecated and will be removed in a future version.
       evaluate`, which supports generators.
         inceptionv3_scores = inceptionv3_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
       inceptionv3 Test Loss: 0.0008152585942298174
```

In []:

inceptionv3 Test Accuracy: 1.0

```
In [1]: # Importing necessary libraries
       import os
       import random
       import shutil
       import numpy as np
       import matplotlib.pyplot as plt
       from keras.preprocessing.image import ImageDataGenerator
       from keras.applications import VGG16, VGG19, ResNet50, InceptionV3, Xception
       from keras.models import Model
       from keras.layers import Dense, GlobalAveragePooling2D
       from keras.optimizers import Adam
       from keras.callbacks import ModelCheckpoint
       from sklearn.metrics import classification_report, confusion_matrix
       # Setting random seed for reproducibility
       np.random.seed(42)
       random.seed(42)
       # Define constants
       NUM_CLASSES = 2
       IMG_SIZE = (224, 224)
       BATCH_SIZE = 32
       TRAIN_DIR = 'train'
       VAL_DIR = 'val'
       TEST_DIR = 'test'
       TRAIN\_SPLIT = 0.7
       VAL_SPLIT = 0.1
       TEST_SPLIT = 0.2
       test_samples = 280
In [2]: # Define the base directory where the image data is located
       BASE_DIR = r"C:\Users\mohit\Downloads\DIP Assignment 2\Data"
In [3]: # Set the paths for training, validation, and test data
       TRAIN_DIR = os.path.join(BASE_DIR, 'train')
       VAL_DIR = os.path.join(BASE_DIR, 'val')
       TEST_DIR = os.path.join(BASE_DIR, 'test')
In [4]: # Load and preprocess the data
       train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
       val_datagen = ImageDataGenerator(rescale=1./255)
       test_datagen = ImageDataGenerator(rescale=1./255)
       train_generator = train_datagen.flow_from_directory(TRAIN_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical')
       val_generator = val_datagen.flow_from_directory(VAL_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical')
       test_generator = test_datagen.flow_from_directory(TEST_DIR, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical', shuffle=False)
       Found 980 images belonging to 2 classes.
       Found 140 images belonging to 2 classes.
       Found 280 images belonging to 2 classes.
In [6]: # Define function for creating transfer learning models
       def create_transfer_model(base_model, num_classes):
          x = base_model.output
          x = GlobalAveragePooling2D()(x)
          x = Dense(1024, activation='relu')(x)
          predictions = Dense(num_classes, activation='softmax')(x)
          model = Model(inputs=base_model.input, outputs=predictions)
          return model
       # Define ResNet50 model
       resnet50_base = ResNet50(include_top=False, weights='imagenet', input_shape=(IMG_SIZE[0], IMG_SIZE[1], 3))
       resnet50_model = create_transfer_model(resnet50_base, NUM_CLASSES)
In [7]: # Compile the models
       optimizer = Adam(learning_rate=0.0001)
       resnet50_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
      # Define checkpoint callback to save the best model during training
       checkpoint = ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)
In [9]: # Train the models
       resnet50_history = resnet50_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=10, validation_data=val_generator, validation_
       C:\Users\mohit\AppData\Local\Temp\ipykernel_33032\951620722.py:2: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`,
       which supports generators.
         resnet50_history = resnet50_model.fit_generator(train_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, epochs=10, validation_data=val_generator, validation_data=val_generator.pdf
       tion_steps=val_generator.n // val_generator.batch_size, callbacks=[checkpoint])
       Epoch 1/10
       Epoch 2/10
       Epoch 3/10
       Epoch 4/10
       Epoch 5/10
       Epoch 6/10
       Epoch 7/10
       Epoch 8/10
       Epoch 9/10
       Epoch 10/10
       In [10]: # Evaluate the models on test data
       resnet50_scores = resnet50_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
       print("ResNet50 Test Loss:", resnet50_scores[0])
       print("ResNet50 Test Accuracy:", resnet50_scores[1])
       C:\Users\mohit\AppData\Local\Temp\ipykernel_33032\556035509.py:2: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.e
       valuate`, which supports generators.
         resnet50_scores = resnet50_model.evaluate_generator(test_generator, steps=test_samples // BATCH_SIZE)
       ResNet50 Test Loss: 18.02694320678711
       ResNet50 Test Accuracy: 0.546875
In [11]: # Get the number of test samples
       num_test_samples = test_generator.n
       # Calculate the number of steps for prediction
       num_prediction_steps = num_test_samples // test_generator.batch_size + 1
       # Generate predictions for all test samples
       resnet50_predictions = resnet50_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
       # Convert predictions to class labels
       resnet50_predicted_labels = np.argmax(resnet50_predictions, axis=1)
       C:\Users\mohit\AppData\Local\Temp\ipykernel_33032\2677680890.py:8: UserWarning: `Model.predict_generator` is deprecated and will be removed in a future version. Please use `Model.p
       redict`, which supports generators.
         resnet50_predictions = resnet50_model.predict_generator(test_generator, steps=num_prediction_steps, verbose=1)
       9/9 [=======] - 25s 3s/step
In [12]: # Get true class labels
       true_labels = test_generator.classes
In [13]: # Calculate classification report
       from sklearn.metrics import classification_report
       # Get the ground truth labels
       ground_truth_labels = test_generator.classes
       # Get the predicted labels
       resnet50_predicted_labels = np.argmax(resnet50_predictions, axis=1)
       # Calculate classification report
       classification_report_resnet50 = classification_report(ground_truth_labels, resnet50_predicted_labels, zero_division=1)
In [15]: print("ResNet50 Classification Report:")
       print(classification_report_resnet50)
       ResNet50 Classification Report:
                             recall f1-score
                                            support
                   precision
                0
                       0.50
                               1.00
                                       0.67
                                                140
                1
                       1.00
                               0.00
                                       0.00
                                                140
                                       0.50
          accuracy
                                                280
          macro avg
                       0.75
                               0.50
                                       0.33
                                                280
       weighted avg
                       0.75
                                       0.33
                                                280
                               0.50
```