

2023-2024 学年《数学分析-1》期末试卷 (A 卷) 解答

考试时间: 2024.1.4

一、(本题 12分,每小题 6分) 计算下列极限:

1.
$$\lim_{x \to 0} \frac{x - \arctan x}{x(e^{2x} - 1) \tan x} ;$$

解:
$$\lim_{x\to 0} \frac{x - \arctan x}{x(e^{2x} - 1)\tan x} = \lim_{x\to 0} \frac{x - \arctan x}{2x^3} = \lim_{x\to 0} \frac{1 - \frac{1}{1+x^2}}{6x^2} = \frac{1}{6}\lim_{x\to 0} \frac{1}{1+x^2} = \frac{1}{6}$$
.

2.
$$\lim_{x \to 0} \frac{\ln(1-x^2) - 2\cos x + 2}{x^2(1-\cos x)}.$$

解:
$$\lim_{x \to 0} \frac{\ln(1-x^2) - 2\cos x + 2}{x^2(1-\cos x)} = 2\lim_{x \to 0} \frac{\ln(1-x^2) - 2\cos x + 2}{x^4}$$
$$= 2\lim_{x \to 0} \frac{-x^2 - \frac{1}{2}x^4 - 2(1 - \frac{x^2}{2} + \frac{x^4}{24}) + 2 + o(x^4)}{x^4}$$
$$= 2\lim_{x \to 0} \frac{-\frac{7}{12}x^4 + o(x^4)}{x^4} = -\frac{7}{6}.$$

二、(本题 28分, 每小题 7分) 计算下列导数:

解:
$$(\arctan \frac{1+x}{1-x})' = \frac{1}{1+(\frac{1+x}{1-x})^2} \cdot \frac{1-x+(1+x)}{(1-x)^2} = \frac{1}{1+x^2}$$

$$(x^{\sin x})' = (e^{\sin x \ln x})' = x^{\sin x} (\cos x \ln x + \frac{\sin x}{x})$$

故
$$y' = \frac{1}{1+x^2} + x^{\sin x} (\cos x \ln x + \frac{\sin x}{x}).$$

2. 设
$$f(x) = \begin{cases} e^{-x}, & x \ge 0, \\ \frac{1}{1 + e^{x}}, & x < 0. \end{cases}$$
 ,求函数 $f(x)$ 在 $x = 0$ 处的左导数 $f'(0)$ 和右导数 $f'(0)$.

解:
$$f'_{+}(0) = \lim_{x \to 0^{-}} \frac{e^{-x} - 1}{x} = -1.$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}} + 1 - 1}{x} = \lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}}}{x} = \lim_{t \to +\infty} \frac{t}{e^{t}} = \lim_{t \to +\infty} \frac{1}{e^{t}} = 0.$$

3. 求参数方程 $\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}$ 所确定的函数的一阶导数 $\frac{dy}{dx}$ 和二阶导数 $\frac{d^2 y}{dx^2}$.

解:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3a\sin^2 t \cos t}{3a\cos^2 t \cdot (-\sin t)} = -\tan t;$$

$$\frac{d^2y}{dx^2} = \frac{(-\tan t)'}{(a\cos^3 t)'} = \frac{(-\tan t)'}{(a\cos^3 t)'} = \frac{-\sec^2 t}{3a\cos^2 t(-\sin t)} = \frac{1}{3a\cos^4 t\sin t}.$$

4. 求函数 $y = \frac{x}{x^2 - 4} + x^2 e^x$ 在 x = 0 处的 n 阶导数 $y^{(n)}(0)$.

解:
$$y = \frac{1}{2}(\frac{1}{x-2} + \frac{1}{x+2}) + x^2 e^x$$

$$y^{(n)} = \frac{1}{2} \left[\frac{(-1)^n n!}{(x-2)^{n+1}} + \frac{(-1)^n n!}{(x+2)^{n+1}} \right] + x^2 e^x + 2nxe^x + \frac{n(n-1)}{2} \cdot 2e^x$$

故
$$y^{(n)}(0) = \frac{n!}{2^{n+2}}[-1+(-1)^n]+n(n-1).$$

三、(本题 12 分) 讨论函数 $y = xe^{-x}$ 的单调区间,极值,凸 (凹) 性区间,并指出曲线 $y = xe^{-x}$ 的拐点.

解:
$$y' = e^{-x} - xe^{-x} = (1-x)e^{-x}$$
, $y'' = -(1-x)e^{-x} - e^{-x} = (x-2)e^{-x}$.

当x < 1时,y' > 0;当x > 1时,y' < 0.

因此,函数 $y = xe^{-x}$ 的单调增加区间是 $(-\infty,1)$,单调减少区间是 $(1,+\infty)$.

函数 $y = xe^{-x}$ 在 x = 1 处取得极大值,极大值为 $y(1) = e^{-1}$.

当x < 2时,y'' < 0;当x > 2时,y'' > 0.

因此,函数 $y = xe^{-x}$ 在 $(-\infty, 2)$ 是凹函数,在 $(2, +\infty)$ 处是凸函数.

曲线 $y = xe^{-x}$ 的拐点坐标为 $(2, 2e^{-2})$.

四、(本题 16分,每小题 8分)证明不等式:

1.
$$x - \frac{x^3}{3} < \arctan x < \frac{\pi}{2} - \frac{x}{1+x^2}, x \in (0, +\infty);$$

当
$$x \in (0,+\infty)$$
 时, $f'(x) = 1 - x^2 - \frac{1}{1+x^2} = -\frac{x^4}{1+x^2} < 0$.

因此,函数 f(x) 在 $[0,+\infty)$ 上严格单调减少.

于是, 当 $x \in (0, +\infty)$ 时, f(x) < f(0) = 0, 即 $x - \frac{x^3}{3} < \arctan x$.

$$\Leftrightarrow g(x) = \arctan x - \frac{\pi}{2} + \frac{x}{1 + x^2}.$$

当
$$x \in (0,+\infty)$$
 时, $g'(x) = \frac{1}{1+x^2} + \frac{1+x^2-2x^2}{(1+x^2)^2} = \frac{2}{(1+x^2)^2} > 0$.

因此, 函数 g(x) 在 $[0,+\infty)$ 上严格单调增加

因为
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (\arctan x - \frac{\pi}{2} + \frac{x}{1 + x^2}) = 0$$
,

故当 $x \in (0, +\infty)$ 时,g(x) < 0,即 $\arctan x < \frac{\pi}{2} - \frac{x}{1+x^2}$.

2. 设
$$p > 1$$
, 证明: 当 $0 \le x \le 1$ 时, $\frac{1}{2^{p-1}} \le x^p + (1-x)^p \le 1$.

证明: 因为 p > 1, $x^p + (1-x)^p \le x + (1-x) = 1$.

令
$$f'(x) = p[x^{p-1} - (1-x)^{p-1}] = 0$$
,得 $x = \frac{1}{2}$.

当
$$0 \le x < \frac{1}{2}$$
时, $f'(x) < 0$;当 $\frac{1}{2} < x \le 1$ 时, $f'(x) > 0$.

因此, f(x) 在 $x = \frac{1}{2}$ 处取得极小值 $\frac{1}{2^{p-1}}$.

故当
$$0 \le x \le 1$$
时, $\frac{1}{2^{p-1}} \le x^p + (1-x)^p \le 1$.

五、(本题 10 分)设 f(x) 在[-1,1]上二阶可导,若有 f(-1)=f(0)=0,f(1)=1,证明:存在 $\xi\in (-1,1)$,

使得 $f''(\xi) = 1$.

证明:因为f(x)在[-1,1]上二阶可导,则由麦克劳林公式,有

$$f(-1) = f(0) + f'(0)(-1) + \frac{1}{2!}f''(\xi_1), -1 < \xi_1 < 0,$$

$$f(1) = f(0) + f'(0) + \frac{1}{2!}f''(\xi_2), \quad 0 < \xi_2 < 1.$$

两式相加,得 $f(1) + f(-1) = 2f(0) + \frac{1}{2} [f''(\xi_1) + f''(\xi_2)].$

将 f(-1) = f(0) = 0, f(1) = 1 代入,得 $\frac{1}{2} [f''(\xi_1) + f''(\xi_2)] = 1$.

因为 $\min\{f''(\xi_1), f''(\xi_2)\} \le \frac{1}{2}[f''(\xi_1) + f''(\xi_2)] \le \max\{f''(\xi_1), f''(\xi_2)\},$

由导数的介值定理,存在 $\xi \in [\xi_1, \xi_2]$,使得 $f''(\xi) = \frac{1}{2} [f''(\xi_1) + f''(\xi_2)] = 1$.

六、(本题 12 分)设函数 f(x) 在区间[0,1] 上连续,在(0,1) 内可微,f(0)=f(1)=0,且 $f(\frac{1}{2})=1$. 证明:

- (1) 存在 $\xi \in (\frac{1}{2}, 1)$, 使得 $f(\xi) = \xi$;
- (2) 存在 $\eta \in (0, \xi)$, 使得 $f'(\eta) = f(\eta) \eta + 1$.

证明: (1) 作辅助函数F(x) = f(x) - x.

因为函数 f(x) 在区间[0,1]上连续,则函数 F(x) 在区间[0,1]上连续,且

$$F(\frac{1}{2})F(1) = [f(\frac{1}{2}) - \frac{1}{2}][f(1) - 1] = -\frac{1}{2} < 0.$$

由零点定理,存在 $\xi \in (\frac{1}{2},1)$,使得 $F(\xi) = 0$,即 $f(\xi) = \xi$.

(2) 作辅助函数 $G(x) = e^{-x}[f(x) - x]$.

由已知条件知 G(x) 在区间 [0,1] 上连续,在 (0,1) 内可微,且 $G(0) = G(\xi) = 0$.

由罗尔定理知,存在 $\eta \in (0,\xi)$,使得

$$G'(\eta) = -e^{-\eta} [f(\eta) - \eta] + e^{-\eta} [f'(\eta) - 1] = 0,$$

即 $f'(\eta) = f(\eta) - \eta + 1$.

七、(本题 10 分) 设 f(x) 为 [a,b] 上减函数,其值域为 [f(b),f(a)]. 证明: f(x) 在 [a,b] 上一致连续.

证明:用反证法.假如 f(x) 在[a,b]上不连续,则 f(x) 有间断点 $x_0 \in (a,b)$,不妨设 $a < x_0 < b$.

因为 f(x) 为 [a,b] 上减函数,所以, $\lim_{x \to x_0^+} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 都存在.

设 $m_1 = \lim_{x \to x_0^-} f(x), \quad m_2 = \lim_{x \to x_0^+} f(x).$

因为当 $x < x_0$ 时, $f(x) \ge f(x_0)$,由函数极限的保不等式得 $m_1 \ge f(x_0)$. 同理有 $f(x_0) \ge m_2$.

因为 x_0 为f(x)的间断点,所以, $m_1 > m_2$. 于是或者 $m_1 > f(x_0)$ 或者 $f(x_0) > m_2$.

假设 $m_1 > f(x_0)$,则不存在 ξ 使得 $m_1 > f(\xi) > f(x_0)$.

这是因为,当 $a \le \xi < x_0$ 时, $f(\xi) \ge \lim_{x \to x_0^+} f(x) = m_1$,当 $x_0 < \xi \le b$ 时, $f(\xi) \le \lim_{x \to x_0^+} f(x) = m_2 \le f(x_0)$.

而 $(f(x_0),m_1)$ \subset [f(b),f(a)],这与f(x)的值域为[f(b),f(a)]矛盾.

同理, $f(x_0) > m_2$ 也将产生矛盾.

因此,f(x)在[a,b]上连续,从而f(x)在[a,b]上一致连续.