

TALLER LOW POWER DESIGN CON ESP32

Instructor: Juan David Rosadio Vega

ESP32-WROOM-32 Specifications

Categories	Items	Specifications	
		SD card, UART, SPI, SDIO, I ² C, LED PWM, Motor PWM,	
	Module interfaces	I ² S, IR, pulse counter, GPIO, capacitive touch sensor, ADC,	
	Woddie interfaces	DAC, Two-Wire Automotive Interface (TWAI®, compatible	
		with ISO11898-1)	
	On-chip sensor	Hall sensor	
	Integrated crystal	40 MHz crystal	
Hardware	Integrated SPI flash	4 MB	
	Operating voltage/Power supply	3.0 V ~ 3.6 V	
	Operating current	Average: 80 mA	
	Minimum current delivered by	500 mA	
	power supply	JOO IIIA	
	Recommended operating tem-	-40 °C ~ +85 °C	
	perature range	40 0 - 100 0	
	Package size	(18.00±0.10) mm × (25.50±0.10) mm × (3.10±0.10) mm	
	Moisture sensitivity level (MSL)	Level 3	

Las Reglas del Diseño de bajo consumo

USO DE LOS MODOS STANDBY

Modem-sleep mode:

Activo: CPU

Inactivo: Wifi, Bluetooth, Radio.

Funcionamiento: Automatico (gestionado por la CPU)

El consumo típico en este modo es de 15mA.

Light-sleep modo:

Activo: RTC memory, RTC peripherals, Coprocesador ULP

Pausado: CPU

Inactivo: Wifi, Bluetooth, Radio.

El consumo típico pasa a ser de unos 0,5 mA.

Deep-sleep mode:

Activo: RTC memory, RTC peripherals, Coprocesador ULP

Inactivo: CPU, Wifi, Bluetooth, Radio, Peripherals.

El consumo típico pasa a ser de unos 10 uA.

Hibernation Mode:

Activo: RTC peripherals

Inactivo: CPU, Coprocesador ULP, Oscillator internal 8-MHz,

RTC memory, Wifi, Bluetooth, Radio, Peripherals.

El consumo típico pasa a ser de unos 5 uA.

//Función en Arduino esp_deep_sleep_start();


```
2 #define LED 2
 4 void setup() {
    // Set pin mode
    pinMode(LED, OUTPUT);
 8 }
10 void loop() {
11
12
    for(int i=0; i<5;i++){
13
      digitalWrite(LED, HIGH);
14
      delay(500);
15
      digitalWrite(LED, LOW);
16
      delay(500);
17
18
    //Despertar por temporizador
19
20
    esp sleep enable timer wakeup (3*1000000); //En us
21
    //Inicia el modo Light-Sleep
23
    //esp_light_sleep_start();
24
25
    //Inicia el modo Deep-Sleep
26
    //esp deep sleep start();
27 }
```


FRECUENCIA DE FUNCIONAMIENTO

La reducción de la frecuencia de reloj del sistema a la mínima disponible reducirá la corriente de funcionamiento del dispositivo.

Power mode	Description		Power consumption	
	Wi-Fi Tx packet			Please refer to Table 15 for details.
Active (RF working)	Wi-Fi/BT Tx packet			
	Wi-Fi/BT Rx and listening			
	The CPU is powered on.	240 MHz	Dual-core chip(s)	30 mA ~ 68 mA
			Single-core chip(s)	N/A
Modem-sleep		160 MHz *	Dual-core chip(s)	27 mA ~ 44 mA
Wiodem-sieep			Single-core chip(s)	27 mA ~ 34 mA
		Normal speed: 80 MHz	Dual-core chip(s)	20 mA ~ 31 mA
			Single-core chip(s)	20 mA ~ 25 mA
Light-sleep	-		0.8 mA	
	The ULP co-processor is powered on.			150 μA
Deep-sleep	ULP sensor-monitored pattern			100 μA @1% duty
	RTC timer + RTC memory			10 μΑ
Hibernation	RTC timer only			5 μΑ
Power off	CHIP_PU is set to low level, the chip is powered off.			1 μΑ

OPERACIÓN DE LOS PERIFERICOS

Los periféricos que no se utilicen deben estar apagados para evitar desperdiciar energía. Pero se debe tener en cuenta:

- El apagado debe planificarse con cuidado ya que deshabilitar algunos periféricos puede restablecer sus ajustes de configuración.
- Cualquier función "analógica" consumirá más energía que la mayoría de las funciones digitales, ya que éstas incluyen estática (resistencias, referencias, etc.)

//Función en Arduino esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);

CONFIGURACION DE LOS PINES I/O

- Evitar usar salidas digitales en accionamientos de baja impedancia.
- Evitar dejar pines flotantes cuando se configura los pines como entrada digital
- Evitar las resistencias de pull up o pull down (internas o externas), pero si se requiere su uso, usar valores de resistencias altos.
- Cualquier pin de I/O **no utilizado** puede ser configurado como una "salida", ya que esto siempre establecerá un nivel definido ayudando con la inmunidad al ruido del mundo exterior.

CORRECTA ELECCCION DE LA FUENTE DE ALIMENTACION

ESP32 Board	Voltage Regulator	Maximum Voltage Dropout	Quiescent Current
ESP32 – DevKitC	AMS1117	1.1V @ 800mA	5mA
Ai-Thinker NodeMCU-32S	AMS1117	1.1V @ 800mA	5mA
Adafruit HUZZAH32	AP2112-3.3	0.4V @ 600mA	80μΑ
Sparkfun ESP32 Thing	AP2112-3.3	0.4V @ 600mA	80μΑ
FireBeetle ESP32	RT9080-33GJ5	0.31V @ 600mA	4μΑ

REFERENCIAS

https://www.espressif.com/sites/default/files/documentation/esp32 datasheet en.pdf

ESP32 WROOM32

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32 datasheet en.pdf

ESPRESSIF Programming Guide – Sleep Modes

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html#

APRENDE EN UNAKER