7 - Kappa

Inter-Rater Reliability

- Dialogue Act Classification
 - o can be straightforward, i.e. question, declaration, apology
 - can be subject to interpretation
 - yeah, right agreement or sarcasm?
 - what!? question, exclamation, or reaction?
 - o solution test how well two people agree on given dialogue acts
 - inter-rater reliability
- **inter-rater reliability** degree of agreement between raters where raters work independently of each other
 - o application validation of rating protocols
- · useful when rating protocols are ambiguous
 - applying dialogue act tags
 - codes from thematic analysis
 - o judging the quality of something

Agreement Calculations

- agreement probability that you and your partner selected the same tag for an item on the list $\circ \ agreement = rac{count(item \ rated \ the \ same)}{count(item)}$
- observed vs. expected agreement determine what agreement was likely due to chance
 - \circ **observed agreement** probability that items were rated the same $P(items\ rated\ the\ same)$
 - expected agreement sum over all ratings
 - $P(item\ rated\ by\ both\ as\ X)$
 - ullet = $P(judge\ 1\ rated\ X\cap judge\ 2\ rated\ X)$
 - if judges rated independently
 - $P(judge\ 1\ rated\ X) * P(judge\ 2\ rated\ X)$
- example
 - o rate 20 items good or bad
 - rater 1 rated 1 item bad rest good
 - rater 2 rated 2 items bad rest good
 - all the bad rates, the other rater rated that item as good

- \circ observed agreement = 17 / 20 = 0.85
- expected agreement make table where entry is the count that the rater rated items that
 class out of all items

	Rater 1	Rater 2
Bad	0.05	0.10
Good	0.95	0.90

$$\circ$$
 bad = 0.05 x 0.10 = 0.005

$$\circ$$
 good = 0.95 x 0.90 = 0.855

$$\circ$$
 total = 0.855 + 0.005

Cohen's Kappa

• measures the degree to which two raters' agreement exceeds chance

$$\circ k = rac{O-E}{1-E}$$

- O is observed agreement, E expected agreement
- from previous example

Raw Frequencies

Relative Frequencies

$$\circ$$
 O = 0 + 0.85 = 0.85

$$\circ$$
 E = (0.05 x 0.1) + (0.95 x 0.9) = 0.86

$$\circ$$
 k = (0.85 - 0.86) / (1 - 0.86) = -0.071, poor agreement

- kappa ranges from -1 to 1
 - k > 0 indicates agreement better than chance
 - k = 1 perfect agreement
 - k < 0 indicates agreement worse than chance
 - k = -1 perfect disagreement and 50% expected agreement
 - applicable when data are nominal and unordered

•	Score	Interpretation	
	< 0	noor	

Score	Interpretation		
0 - 0.2	slight		
0.2 - 0.4	fair		
0.41 - 0.6	moderate		
0.61 - 0.8	substantial		
0.81 - 1	almost perfect		

• example

	Rater 2						
		В	G	Meh			
Rater 1	В	5	1	0	6		
	G	1	9	1	11		
	Meh	1	1	1	3		
		7	11	2	100		
		Rater 2					
			Rater 2	2			
		В	Rater 2 G	Meh			
	В				.3		
Rater 1	B G	В	G	Meh	.3 .55		
Rater 1		B .25	G .05	Meh 0			

 \circ O = 0.25 + 0.45 + 0.05 = 0.75

 \circ E = (0.3 x 0.35) + (0.55 x 0.55) + (0.15 x 0.1) = 0.4225

 \circ k = (0.75 - 0.4225) / (1 - 0.4225) = 0.57, moderate agreement

Applications

- dialogue act classification
 - o define a set of dialogue tags and detailed descriptions for each one
 - o train secondary annotators on how to use your tagging scheme
 - o calculate kappa on subset of data (generally around 20%)
 - o if kappa is too low, retrain and repeat

- standard practices for corpus-based research
 - one or more annotators tag entire corpus split across each annotator
 - kappa computed on double-tagged portion of corpus, around 20%
 - kappa of around 0.8 is generally acceptable for dialogue act tags
 - lower kappas are acceptable depending on the task
 - tagging uncertainty, disengagement, etc

Weighted Kappa

- weighted kappa accounts for degree of disagreement
- useful when ratings are ordered
 - i.e. disagreement between good and bad should have more weight than disagreement between good and meh
- consists of 3 matrices
 - observed agreement matrix
 - expected agreement matrix
 - weight matrix
- **observed agreement matrix** same as the contingency matrix = X
- expected agreement matrix probabilities for each pair of ratings = M

$$\circ m_{ij} = rac{(rater~1's~i~ratings) imes (rater~2's~j~ratings)}{total~data~points}$$

- weight matrix each cell in the contingency matrix = W
 - o matrix diagonal is zero, no penalty for agreement
 - other weights determined by distance between ratings
 - good/meh and meh/bad = 1, good/bad = 2 $\sum \sum w_{ij} x_{ij}$

$$ullet$$
 $k=1-rac{\sum\sum w_{ij}x_{ij}}{\sum\sum w_{ij}m_{ij}}$

 sum of products of weight and observed agreement matrices divided by sum of products of weight and expected agreement matrices

Other Inter-Rater Reliability Methods

- Fleiss' kappa multiple raters, ordinal data
 - alternative average pairwise Cohen's kappa
- Pearson's correlation coefficient and Spearman's rank correlation coefficient used for continuous data
- Krippendorff's alpha generalizable to multiple raters and data types
- Cronbach's alpha validating psychometric test items