PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07J 41/00, A61K 31/575, C07J 9/00

A1

(11) Internationale Veröffentlichungsnummer: WO 00/24761

(43) Internationales

Veröffentlichungsdatum: 4. Mai 2000 (04.05.00)

PCT/EP99/07828 (81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, (21) Internationales Aktenzeichen: BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, (22) Internationales Anmeldedatum: 15. Oktober 1999 (15.10.99) KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, (30) Prioritätsdaten: UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, DE 198 49 722.9 28. Oktober 1998 (28.10.98) MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,

(71) Anmelder: AVENTIS PHARMA DEUTSCHLAND GMBH [DE/DE]; Brüningstrasse 50, D-65929 Frankfurt am Main (DF)

(72) Erfinder: WEICHERT, Andreas; Leipziger Strasse 21, D-63329 Egelsbach (DE). ENHSEN, Alfons; Birkenweg 4, D-64572 Büttelborn (DE). FALK, Eugen; Völklingerweg 15, D-60529 Frankfurt (DE). JANSEN, Hans-Willi; Distelweg 25, D-65527 Niedernhausen (DE). KRAMER, Werner; Henry-Moisand-Strasse 19, D-55130 Mainz-Laubenheim (DE). SCHWARK, Jan-Robert; Theresenstrasse 40, D-65779 Kelkheim (DE). LANG,

Hans, Jochen; Rüdesheimer Strasse 7, D-65719 Hofheim

Veröffentlicht

Mit internationalem Recherchenbericht.

LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI,

CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(54) Title: BILE-ACID SUBSTITUTED PHENYL ALKENOYL GUANIDINES, METHOD FOR THE PRODUCTION THEREOF, USE THEREOF AS MEDICAMENTS OR DIAGNOSTIC AGENTS AND MEDICAMENTS THAT CONTAIN THEM

(54) Bezeichnung: GALLENSAUER SUBSTITUIERTE PHENYL-ALKENOYLGUANIDINE, VERFAHREN ZU IHRER HERSTEL-LUNG, IHRE VERWENDUNG ALS MEDIKAMENTE ODER DIAGNOSTIKA SOWIE SIE ENTHALTENDES MEDIKAMENT

(57) Abstract

The invention relates to substituted phenyl alkenoyl guanidines, the pharmaceutically acceptable salts thereof, and physiologically functional derivatives. Compounds of formula (I) are disclosed, wherein the radicals have the meanings thus cited. Also disclosed are the physiologically acceptable salts thereof, physiologically functional derivatives and methods for the production thereof. The inventive compounds are, for instance, suitable for use as medicaments for the prophylaxis or treatment of gall stones.

(57) Zusammenfassung

Die Erfindung betrifft substituierte Phenyl-alkenoylguanidine und deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate. Es werden Verbindungen der Formel (I), worin die Reste die angegebenen Bedeutungen haben, sowie deren physiologisch verträgliche Salze, physiologisch funktionelle Derivate und Verfahren zu deren Herstellung beschrieben. Die Verbindungen eignen sich z.B. als Medikamente zur Prophylaxe bzw. Behandlung von Gallensteinen.

BEST AVAILABLE COPY

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich		' Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BB	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL.	Israel	MR	Mauretanien	UG	Uganda .
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko	00	Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO		YU	Jugoslawien
CI	Côte d'Ivoire	KP	-		Norwegen	zw	Zimbabwe
CM	Kamerun	K.P	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimoaowe
		160	Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LĶ	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Beschreibung

GALLENSAUER SUBSTITUIERTE PHENYL-ALKENOYLGUANIDINE, VERFAHREN ZU IHRER HERSTELLUNG, IHRE VERWENDUNG ALS MEDIKAMENTE ODER DIAGNOSTIKA SOWIE SIE ENTHALTENDES MEDIKAMENT

5

20

25

Die Erfindung betrifft substituierte Phenyl-alkenoylguanidine und deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate.

Die Bildung von Gallensteinen wird neben einer Reihe von Faktoren wesentlich

durch die Zusammensetzung der Galle bestimmt, im besonderen durch die

Konzentration und das Verhältnis von Cholesterin, Phospholipiden und

Gallensalzen. Voraussetzung für die Bildung von Cholesteringallesteinen ist das

Vorhandensein einer an Cholesterin übersattigten Galle (Lit. Carey, M. C. and

Small, D.M. (1978) The physical chemistry of cholesterol solubility in bile.

Relationship to gallstone formation and dissolution in man, J. Clin. Invest. 61: 998

Relationship to gallstone formation and dissolution in man, J. Clin. Invest. 61: 998-1026).

Gallensteine werden bislang vorwiegend chirurgisch entfernt, so daß ein großer therapeutischer Bedarf zur medikamentösen Gallensteinauflösung und zur Prävention der Gallensteinbildung besteht.

Der Erfindung lag die Aufgabe zugrunde, Verbindungen zur Verfügung zu stellen, die in der Lage sind, die Bildung von Gallensteinen zu verhindern, indem sie die Übersättigung der Galle mit Cholesterin verhindern, oder indem sie die Bildung von Cholesterinkristallen aus übersättigten Gallen verzögern.

Die Erfindung betrifft daher Verbindungen der Formel I

		-O-(CH ₂) _n -O-, -NR(47)-(CH ₂) _n -O-, -NR(48)-CO-(CH ₂) _n -O-, -CO-NR(48)-(CH ₂) _n -O-, -O-CO-(CH ₂) _n -O-, -SO ₂ -NR(48)-(CH ₂) _n -O-, -NR(48)-CO-CH ₂ -CH ₂ -CO-NR(48)-(CH ₂) _n -O-, -NR(48)-CO-CH=CH-CO-NR(48)-
5		(CH ₂) _n -O-, -NR(48)-SO ₂ -(CH ₂) _n -O-
	R(47)	Wasserstoff, (C ₁ -C ₈)-Alkyl, R(48)-CO-, Phenyl, Benzyl;
	R(48)	Wasserstoff, (C ₁ -C ₈)-Alkyl, Phenyl und Benzyl, wobei der Phenylkem bis zu 3-fach substituiert sein kann mit F, Cl, CF ₃ ,Methyl, Methoxy;
0	n	1 bis 8;
	R(40) bis R	(45) unabhängig voneinander Wasserstoff, -OR(50), -SR(50), NHR(50), -NR(50) ₂ , -O-(CO)-R(50), -S-(CO)-R(50), -NH-(CO)-R(50),-O-PO-
15		(OR(50))-OR(50), -O-(SO ₂)-OR(50), -R(50), eine Bindung zu L; oder
	R(40) und f	R(41), R(42) und R(43), R(44) und R(45) bilden jeweils gemeinsam den Sauerstoff einer Carbonylgruppe;
	wobei imme	er genau einer der Reste R(40) bis R(45) die Bedeutung einer Bindung z
20	L hat;	
	К	-OR(50), -NHR(50), -NR(50) ₂ , -HN-CH ₂ -CH ₂ -CO ₂ H, -HN-CH ₂ -CH ₂ -SO ₃ H, -NH-CH ₂ -COOH, -N(CH ₃)CH ₂ CO ₂ H, -HN-CH(R46)CO ₂ H, -OKa wobei Ka ein Kation bedeutet, wie z.B. ein Alkali- oder Erdalkaliion ode ein quartäres Ammoniumion;
25		6
	R(46)	Wasserstoff, C ₁ -C ₄ -Alkyl, Benzyl, -CH ₂ -OH, H ₃ CSCH ₂ CH ₂ -, HO ₂ CCH ₂ -, HO ₂ CCH ₂ -;
30	R(50)	Wasserstoff, (C ₁ -C ₄)-Alkyl, Phenyl oder Benzyl, wobei der Phenylkern bis zu 3-fach substituiert sein kann mit F, Cl, CF ₃ ,Methyl, Methoxy;
	sowie derei	n pharmazeutisch verträgliche Salze und physiologisch funktionelle

Bevorzugt sind Verbindungen der Formel I

Derivate.

5

$$T_1$$
 T_2
 T_2
 T_3
 T_3
 T_4
 T_4
 T_5
 T_7
 T_8

worin bedeuten

T1 und T2 unabhängig voneinander gleich

oder Wasserstoff, wobeiT1 und T2 nicht gleichzeitig Wasserstoff sein können;

L-z

5 R(E)

Wasserstoff, F, Cl, CN, (C_1-C_4) -Alkyl, $-O-(C_1-C_4)$ -Alkyl, wobei die Alkylreste ein oder mehrfach mit F substituiert sein können, (C_3-C_6) -Cycloalkyl, (C_3-C_8) -Alkenyl, $O-(C_3-C_6)$ -Cycloalkyl, O-Phenyl, O-Benzyl, wobei der Phenylkern bis zu dreifach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy, NR(9)R(10);

10

R(9), R(10) unabhängig voneinander Wasserstoff, CH₃, CF₃;

5

- R(1), R(2), R(3) unabhängig voneinander Wasserstoff, F, Cl, CN, -SO₂-(C₁-C₄)-Alkyl, -SO₂-N((C₁-C₄)-Alkyl)₂, -SO₂-NH(C₁-C₄)-Alkyl, -SO₂-NH₂, -SO₂-(C₁-C₄)-Alkyl -(C₁-C₄)-Alkyl, -O-(C₁-C₄)-Alkyl, wobei die Alkylreste ein oder mehrfach mit F substituiert sein können, -O-(C₀-C₄)-Alkylen-phenyl, -(C₀-C₄)-Alkylen-phenyl, wobei die Phenylkerne bis zu 3-fach substituiert sein können mit F, Cl, CF₃, Methyl, Methoxy;
- 10 L -O-, -NR(47)-, -(C₁-C₄)-Alkylen-, -(C₁-C₄)-Alkenylen-, -(C₁-C₄)-Alkinylen-, -COO-, -CO-NR(47)-, -SO₂-NR(47)-, -O-(CH₂)_n-O-, -NR(47)- (CH₂)_n-O-, -NR(48)-CO-(CH₂)_n-O-, -CO-NR(48)-(CH₂)_n-O-, -SO₂-NR(48)-(CH₂)_n-O-;
- 15 R(47) Wasserstoff, (C₁-C₄)-Alkyl, R(48)-CO-, Phenyl, Benzyl;
 - R(48) Wasserstoff, (C₁-C₄)-Alkyl, Phenyl und Benzyl, wobei der Phenylkern bis zu 3-fach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy;
- 20 n 1-4;
 - R(41), R(42), R(45) unabhängig voneinander Wasserstoff, -OR(50), NHR(50), -NR(50)₂, -O-(CO)-R(50), -NH-(CO)-R(50);
- 25 R(50) Wasserstoff, (C₁-C₄)-Alkyl, Phenyl oder Benzyl,wobei der Phenylkern bis zu 3-fach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy;
- K -OR(50), -NHR(50), -NR(50)₂, -HN-CH₂-CH₂-CO₂H, -HN-CH₂-CH₂-SO₃H, -NH-CH₂-COOH, -N(CH₃)CH₂CO₂H, -OKa, wobei Ka ein Kation bedeutet, wie z.B. ein Alkali- oder Erdalkaliion oder ein quartäres

 Ammoniumion;

sowie deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate.

Besonders bevorzugt sind Verbindungen der Formel I-

$$R1$$
 $R2$
 T_1
 T_2
 $R3$

worin bedeuten

T1 und T2 unabhängig voneinander

oder Wasserstoff, wobei T1 und T2 nicht gleichzeitig Wasserstoff sein können,

und L-z

5

R(E) Wasserstoff, F, CI, CN, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkyl, $-O(C_1-C_4)$ -Alkyl, CF_3 , $-OCF_3$;

R(1), R(2) unabhängig voneinander Wasserstoff, F, CI, CN, -SO₂-CH₃, SO₂NH₂-, -(C₁-C₄)-Alkyl, -O-(C₁-C₄)-Alkyl, wobei die Alkylreste ein oder mehrfach mit F substituiert sein können, -O-(C₀-C₄)-Alkylen-phenyl, -

5

(C₀-C₄)-Alkylen-phenyl, wobei die Phenylkerne bis zu 3-fach substituiert sein können mit F, Cl, CF₃, Methyl, Methoxy;

- R(3) Wasserstoff,
- L -O-, -NR(47)-, -CH₂-CH₂-, CH=CH-, -(C \equiv C)-, -COO-, -CO-NR(47)-, -SO₂-NR(47)-, -O-(CH₂)_n-O-, -NR(47)-(CH₂)_n-O-, -NR(48)-CO-(CH₂)_n-O-, -CO-NR(48)-(CH₂)_n-O-, -SO₂-NR(48)-(CH₂)_n-O-,
- 10 R(47) Wasserstoff, (C₁-C₄)-Alkyl, R(48)-CO-, Phenyl, Benzyl;
 - R(48) Wasserstoff, (C₁-C₄)-Alkyl, Phenyl und Benzyl, wobei der Phenylkern bis zu 3-fach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy;
- 15 n 1-4;
 - R(41) Wasserstoff, -OH;
- K -OR(50), -NHR(50), -NR(50)₂, -HN-CH₂-CH₂-CO₂H, -HN-CH₂-CH₂SO₃H, -NH-CH₂-COOH, -N(CH₃)CH₂CO₂H, -OKa, wobei Ka ein Kation bedeutet, wie z.B. ein Alkali- oder Erdalkaliion oder ein quartäres
 Ammoniumion;
- R(50) Wasserstoff, (C₁-C₄)-Alkyl, Phenyl oder Benzyl,wobei der Phenylkern bis zu 3-fach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy;

sowie deren pharmazeutisch verträgliche Salze.

30 Ganz besonders bevorzugt sind Verbindungen der Formel I mit der Struktur la

$$R1$$
 $R2$
 $L-z$

la

worin bedeuten

T1 und T2 unabhängig voneinander

oder Wasserstoff, wobei T1 und T2 nicht gleichzeitig Wasserstoff sein können;

L-z

—с≡с— _{, -NH-СН2}-СН₂-О-:

5

10

- R(E) Wasserstoff, (C₁-C₄)-Alkyl;
- R(1), R(2) unabhängig voneinander Wasserstoff, F, Cl, CN, -SO₂-CH₃, -(C₁-C₄)-Alkyl, -O-(C₁-C₄)-Alkyl, wobei die Alkylreste ein oder mehrfach mit F substituiert sein können;

sowie deren pharmazeutisch verträgliche Salze.

5 "" markiert in in den obigen Formeln den Anknüpfungspunkt von T1 oder T2 an den Phenylring der Formel I.

Enthalten die Verbindungen der Formel I ein oder mehrere Asymmetriezentren, so können diese sowohl S als auch R konfiguriert sein. Die Verbindungen können als optische Isomere, als Diastereomere, als Racemate-oder-als Gemische derselben vorliegen.

Die Doppelbindungsgeometrie der Verbindungen der Formel I kann sowohl E als auch Z sein. Die Verbindungen können als Doppelbindungsisomere im Gemisch vorliegen.

Der Ausdruck "wobei der Alkylrest ein oder mehrfach mit F substituiert sein kann" umfasst auch perfluorierte Alkylreste.

20 Die bezeichneten Alkylreste können sowohl geradkettig wie verzweigt vorliegen.

Pharmazeutisch verträgliche Salze sind aufgrund ihrer höheren Wasserlöslichkeit gegenüber den Ausgangs- bzw. Basisverbindungen besonders geeignet für medizinische Anwendungen. Diese Salze müssen ein pharmazeutisch verträgliches

25

10

15

Anion oder Kation aufweisen. Geeignete pharmazeutisch verträgliche Säureadditionssalze der erfindungsgemäßen Verbindungen sind Salze anorganischer Säuren, wie Salzsäure, Bromwasserstoff-, Phosphor-,Metaphosphor-, Salpeter-, Sulfon- und Schwefelsäure sowie organischer Säuren, wie z.B.

Essigsäure, Benzolsulfon-, Benzoe-, Zitronen-, Ethansulfon-, Fumar-, Glucon-, Glykol-, Isethion-, Milch-, Lactobion-, Malein-, Apfel-, Methansulfon-, Bernstein-, p-Toluolsulfon-, Wein- und Trifluoressigsäure. Für medizinische Zwecke wird in besonders bevorzugter Weise das Chlorsalz verwendet. Geeignete pharmazeutisch

PCT/EP99/07828

WO 00/24761

verträgliche basische Salze sind Ammoniumsalze, Alkalimetallsalze (wie Natriumund Kaliumsalze) und Erdalkalisalze (wie Magnesium- und Calciumsalze).

- Salze mit einem nicht pharmazeutisch verträglichen Anion gehören ebenfalls in den Rahmen der Erfindung als nützliche Zwischenprodukte für die Herstellung oder Reinigung pharmazeutisch verträglicher Salze und/oder für die Verwendung in nichttherapeutischen, zum Beispiel in-vitro-Anwendungen.
- Der hier verwendete Begriff "physiologisch funktionelles Derivat" bezeichnet jedes

 0 physiologisch-verträgliche Derivat einer erfindungsgemäßen Verbindung der Formel

 I, z.B. einen Ester, der bei Verabreichung an einen Säuger, wie z.B. den Menschen,

 in der Lage ist, (direkt oder indirekt) eine Verbindung der Formel I oder einen aktiven

 Metaboliten hiervon zu bilden.
- Zu den physiologisch funktionellen Derivaten z\u00e4hlen auch Prodrugs der erfindungsgem\u00e4\u00dfen Verbindungen. Solche Prodrugs k\u00f6nnen in vivo zu einer erfindungsgem\u00e4\u00dfen Verbindung metabolisiert werden. Diese Prodrugs k\u00f6nnen selbst wirksam sein oder nicht.
- Die erfindungsgemäßen Verbindungen können auch in verschiedenen polymorphen Formen vorliegen, z.B. als amorphe und kristalline polymorphe Formen. Alle polymorphen Formen der erfindungsgemäßen Verbindungen gehören in den Rahmen der Erfindung und sind ein weiterer Aspekt der Erfindung.
- Nachfolgend beziehen sich alle Verweise auf "Verbindung(en) gemäß Formel (I)" auf Verbindung(en) der Formel (I) wie vorstehend beschrieben, sowie ihre Salze, Solvate und physiologisch funktionellen Derivate wie hierin beschrieben.

25

Die Menge einer Verbindung gemäß Formel (I), die erforderlich ist, um den gewünschten biologischen Effekt zu erreichen, ist abhängig von einer Reihe von Faktoren, z.B. der gewählten spezifischen Verbindung, der beabsichtigten Verwendung, der Art der Verabreichung und dem klinischen Zustand des Patienten.

Im allgemeinen liegt die Tagesdosis im Bereich von 0,1 mg bis 100 mg (typischerweise von 0,1 mg bis 50 mg) pro Tag pro Kilogramm Körpergewicht, z.B. 0,1-10 mg/kg/Tag. Tabletten oder Kapseln, können beispielsweise von 0,01 bis 100 mg, typischerweise von 0,02 bis 50 mg enthalten. Im Falle pharmazeutisch verträglicher Salze beziehen sich die vorgenannten Gewichtsangaben auf das Gewicht des 5 vom Salz abgeleiteten Aminopropanol-lons. Zur Prophylaxe oder Therapie der oben genannten Zustände können die Verbindungen gemäß Formel (I) selbst als Verbindung verwendet werden, vorzugsweise liegen sie jedoch mit einem verträglichen Träger in Form einer pharmazeutischen Zusammensetzung vor. Der Träger muß natürlich verträglich sein, in dem Sinne, daß er mit den anderen-10 Bestandteilen der Zusammensetzung kompatibel ist und nicht gesundheitsschädlich für den Patienten ist. Der Träger kann ein Feststoff oder eine Flüssigkeit oder beides sein und wird vorzugsweise mit der Verbindung als Einzeldosis formuliert, beispielsweise als Tablette, die von 0,05% bis 95 Gew.-% des Wirkstoffs enthalten kann. Weitere pharmazeutisch aktive Substanzen können ebenfalls vorhanden sein, 15 einschließlich weiterer Verbindungen gemäß Formel (I). Die erfindungsgemäßen pharmazeutischen Zusammensetzungen können nach einer der bekannten pharmazeutischen Methoden hergestellt werden, die im wesentlichen darin bestehen, daß die Bestandteile mit pharmakologisch verträglichen Träger- und/oder 20 Hilfsstoffen gemischt werden.

Erfindungsgemäße pharmazeutische Zusammensetzungen sind solche, die für orale und perorale (z.B. sublinguale) Verabreichung geeignet sind, wenngleich die

geeignetste Verabreichungsweise in jedem Einzelfall von der Art und Schwere des zu behandelnden Zustandes und von der Art der jeweils verwendeten Verbindung gemäß Formel (I) abhängig ist. Auch dragierte Formulierungen und dragierte Retardformulierungen gehören in den Rahmen der Erfindung. Bevorzugt sind säure- und magensaftresistente Formulierungen. Geeignete magensaftresistente
 Beschichtungen umfassen Celluloseacetatphthalat, Polyvinylacetatphthalat, Hydroxypropylmethylcellulosephthalat und anionische Polymere von Methacrylsäure und Methacrylsäuremethylester.

5

10

15

20

30

Geeignete pharmazeutische Verbindungen für die orale Verabreichung können in separaten Einheiten vorliegen, wie zum Beispiel Kapseln, Oblatenkapseln, Lutschtabletten oder Tabletten, die jeweils eine bestimmte Menge der Verbindung gemäß Formel (I) enthalten; als Pulver oder Granulate; als Lösung oder Suspension in einer wäßrigen oder nicht-wäßrigen Flüssigkeit; oder als eine Öl-in-Wasser- oder Wasser-in-Öl-Emulsion. Diese Zusammensetzungen können, wie bereits erwähnt, nach jeder geeigneten pharmazeutischen Methode zubereitet werden, die einen Schritt umfaßt, bei dem der Wirkstoff und der Träger (der aus einem oder mehreren zusätzlichen Bestandteilen bestehen kann) in Kontakt gebracht werden. Im allgemeinen werden die Zusammensetzungen durch gleichmäßiges und homogenes Vermischen des Wirkstoffs mit einem flüssigen und/oder feinverteilten festen Träger hergestellt, wonach das Produkt, falls erforderlich, geformt wird. So kann beispielsweise eine Tablette hergestellt werden, indem ein Pulver oder Granulat der Verbindung verpreßt oder geformt wird, gegebenenfalls mit einem oder mehreren zusätzlichen Bestandteilen. Gepreßte Tabletten können durch Tablettieren der Verbindung in frei fließender Form, wie beispielsweise einem Pulver oder Granulat, gegebenenfalls gemischt mit einem Bindemittel, Gleitmittel, inertem Verdünner und/oder einem (mehreren) oberflächenaktiven/dispergierenden Mittel in einer geeigneten Maschine hergestellt werden. Geformte Tabletten können durch Formen der pulverförmigen, mit einem inerten flüssigen Verdünnungsmittel befeuchteten Verbindung in einer geeigneten Maschine hergestellt werden.

Pharmazeutische Zusammensetzungen, die für eine perorale (sublinguale)
Verabreichung geeignet sind, umfassen Lutschtabletten, die eine Verbindung gemäß
Formel (I) mit einem Geschmacksstoff enthalten, üblicherweise Saccharose und
Gummi arabicum oder Tragant, und Pastillen, die die Verbindung in einer inerten
Basis wie Gelatine und Glycerin oder Saccharose und Gummi arabicum umfassen.

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung einer Verbindung der Formel I, dadurch gekennzeichnet, daß man eine Verbindung der Formel II,

$$R1$$
 $R2$
 T_1
 G
 $+ A-L-z$
 $-GA$
 T_1
 T_2
 $R3$
 $R3$
 $R3$

- wobei T1, T2, R(1), R(2) und R(3) die oben angegebene Bedeutung haben und G für eine durch L-z austauschbare Funktionalität steht, in einer dem Fachmann bekannten Art und Weise mit einer Verbindung A-L-z zur Reaktion bringt, wobei GA abgespalten wird und eine Verbindung der Formel I entsteht.
- Die Funktionalität G der Verbindung mit der Formel II kann beispielsweise die Bedeutung von Brom oder Iod besitzen. Durch Pd(0)-Katalyse kann dann in bekannter Art und Weise die gewünschte C-C-Bindungsknüpfung erzielt werden.

$$R_{1}$$
 R_{2}
 R_{3}
 R_{44}
 R_{43}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{44}
 R_{43}
 R_{43}
 R_{42}
 R_{42}
 R_{43}
 R_{44}

$$R(44)$$
 $R(45)$
 $R(44)$
 $R(45)$
 $R(44)$
 $R(45)$
 $R(44)$
 $R(43)$
 $R(43)$
 $R(42)$

5

Die Acetylen-Gallensäurederivate der Formel III werden aus geeigneten Gallensäureketonen hergestellt. Dazu wird Lithiumacetylid analog zu bekannten Verfahren (US 5,641,767) an Ketogallensäuren addiert.

Die Verbindungen der Formel I und deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate zeichnen sich durch eine günstige Beeinflussung der Gallezusammensetzung und verhindern die Bildung von Gallensteinen, indem sie die Übersättigung der Galle mit Cholesterin verhindern, oder indem sie die Bildung von Cholesterinkristallen aus übersättigten Gallen verzögern. Die Verbindungen können allein oder in Kombination mit lipidsenkenden Wirkstoffen eingesetzt werden. Die Verbindungen eignen sich insbesondere zur Prophylaxe sowie zur Behandlung von Gallensteinen.

10

5

Die erfindungsgemäßen Verbindungen der Formel (I) gelangen in das hepatobiliäre System und wirken daher in diesen Geweben. So wird die Wasserabsorption aus der Gallenblase durch Inhibition des apikalen NHE-Antiports vom Subtyp 3 des Gallenblasenepithels gehemmt, was eine verdünnte Gallenflüssigkeit zur Folge hat.

15

Die biologische Prüfung der erfindungsgemäßen Verbindungen erfolgte durch Ermittlung der Inhibition des Natrium / Protonen-Austauscher Subtyp 3.

1. Testbeschreibung

20

Zur Bestimmung der IC₅₀-Werte für die Hemmung von humanem NHE-3 Protein (exprimiert in LAP1-Zellinie) wurde die Erholung des intrazellulären pHs (pH_i) nach einer Ansäuerung ermittelt, die bei funktionsfähigem NHE auch unter bicarbonatfreien Bedingungen einsetzt. Dazu wurde der pH_i mit dem pH-sensitiven
 Fluoreszenzfarbstoff BCECF (Calbiochem, eingesetzt wird die Vorstufe BCECF-AM) bestimmt. Die Zellen wurden zunächst mit BCECF beladen. Die BCECF-Fluoreszenz wurde in einem "Ratio Fluorescence Spectrometer" (Photon Technology International, South Brunswick, N.J., USA) bei Anregungswellenlängen von 505 und 440 nm und einer Emissionswellenlänge von 535 nm bestimmt und mittels
 Kalibrierungskurven in den pH_i umgerechnet. Die Zellen wurden bereits bei der BCECF-Beladung in NH₄CI-Puffer (pH 7,4) inkubiert (NH₄CI-Puffer: 115 mM NaCI, 20 mM NH₄CI, 5 mM KCI, 1 mM CaCI₂, 1 mM MgSO₄, 20 mM Hepes, 5 mM Glucose, 1 mg/ml BSA; mit 1 M NaOH wird ein pH von 7,4 eingestellt). Die

intrazelluläre Ansäuerung wurde durch Zugabe von 975 µl eines NH₄CI-freien Puffers zu 25 µl Aliquots der in NH₄Cl-Puffer inkubierten Zellen induziert. Die nachfolgende Geschwindigkeit der pH-Erholung wurde 3 Minuten registriert. Für die Berechnung der inhibitorischen Potenz der getesteten Substanzen wurden die Zellen zunächst in Puffern untersucht, bei denen eine vollständige bzw. überhaupt keine pH-Erholung stattfand. Zur vollständigen pH-Erholung (100%) wurden die Zellen in Na*-haltigem Puffer inkubiert (133,8 mM NaCl, 4,7 mM KCl, 1,25 mM CaCl₂, 1,25 mM MgCl₂, 0,97 mM Na₂HPO₄, 0,23 mM NaH₂PO₄, 5 mM Hepes, 5 mM Glucose, mit 1 M NaOH wird ein pH von 7,0 eingestellt). Für die Bestimmung des 0%-Wertes wurden die Zellen in einem Nat-freien-Puffer inkubiert-(133,8-mM-Cholinchlorid, 4,7mM KCI, 1,25 mM CaCl₂, 1,25 mM MgCl₂, 0,97 mM K₂HPO₄, 0,23 mM KH₂PO₄, 5 mM Hepes, 5 mM Glucose, mit 1 M NaOH wird ein pH von 7,0 eingestellt). Die zu testenden Substanzen wurden in dem Na⁺-haltigem Puffer angesetzt. Die Erholung des intrazellulären pHs bei jeder getesteten Konzentration einer Substanz wurde in Prozent der maximalen Erholung ausgedrückt. Aus den Prozentwerten der pH-Erholung wurde mittels des Programms SigmaPlot (Version 3.0, Jandel Scientific, USA) der IC₅₀-Wert der jeweiligen Substanz berechnet.

Ergebnisse:

20

25

5

10

15

Beispiel 1:

 $IC_{50} = 1.7 \, \mu M / 1$

Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung, ohne dieselbe auf in den Beispielen beschriebene Produkte und Ausführungsformen einzuschränken.

Liste der Abkürzungen:

	MeOH	Methanol
30	LAH	Lithiumaluminiumhydrid
	DMF	N,N-Dimethylformamid
	El	electron impact
	CI	Chemical Ionisation
	RT	Raumtemperatur
35	EE	Ethylacetat (EtOAc)

mp Schmelzpunkt
HEP n-Heptan

DME Dimethoxyethan

ES Elektronenspray

5 FAB Fast Atom Bombardment

CH₂Cl₂ Dichlormethan

THF Tetrahydrofuran

eq. Äquivalent

15

20

10 Allgemeines Verfahren zur Kopplung von Arylhalogeniden und substituierten,
terminalen Acetylenen:

Das Arylhalogenid (1 eq) wird zusammen mit einer Hilfsbase (4 eq) wie z.B. Triethylamin und einem Pd-Katalysator wie z.B. Palladium-bis-triphenylphosphino-dichlorid (3 mol%) in DMF vorgelegt. Innerhalb von 0.5-3h wird das Acetylenderivat langsam zugegeben und falls nötig nochmals obige Menge an Katalysator zugesetzt. Die Reaktionstemperatur kann dabei RT überschreiten und annähernd 100°C erreichen, typischerweise liegt sie bei 60°C. Durch Zusatz von Essigester läßt sich das Rohprodukt präzipitieren und filtrieren. Eine sich anschließende Salzbildung wird durch Säurezugabe in Aceton erreicht.

Beispiel 1:

4-{3β-[3,4-Bis-(3-guanidino-2-methyl-3-oxo-propenyl)-phenylethynyl]-3α,7α,12α-trihydroxy-10β,13β-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl}-pentansäure-diacetat, gelblicher Feststoff, Smp. 250°C (Zers.), MS: M*+H (FAB)=880.

10

20

Darstellung der Zwischenprodukte 1 und 2:

Zwischenprodukt 1: 3ß-Acetylen-cholsäure

15 Syntheseweg:

a) 3,7,12-Triacetylcholsäuremethylester
 90 g Cholsäuremethylester und 3.0 g Dimethylaminopyridin wurden in 500 ml Pyridin gelöst, mit 500 ml Acetanhydrid versetzt und über Nacht bei Zimmertemperatur gerührt. Es wurde auf Eiswasser gegossen und mit Ethylacetat

(3x) extrahiert. Trocknen (MgSO₄) und Eindampfen der organischen Phase ergaben 92 g 3,7,12-Triacetylcholsäuremethylester, MS: M⁺+Li (FAB)=555.

- b) 7,12-Diacetyl-cholsäuremethylester
 Bei 5°C wurden 150 ml Acetanhydrid langsam in 1.5 l Methanol zugetropft. Nach 15
 Minuten wurden 92 g 3,7,12-Triacetylcholsäuremethylester zugegeben und 1 h bei Zimmertemperatur gerührt. Es wurde auf Eiswasser gegossen und mit Ethylacetat (3x) extrahiert. Die organische Phase wurde mit 1N Na₂CO₃-Lösung gewaschen, mit
 MgSO₄ getrocknet und eingedampft. Es wurden 85 g Rohprodukt-erhalten, MS:-M⁺+Li (FAB)=513.
- c) 3-Keto-7,12-diacetyl-cholsäuremethylester
 85 g (168 mmol) 7,12-Diacetylcholsäuremethylester, 183.7 g Pyridiniumchlorochromat und 175 g Molekularsieb wurden in 2.5 l Dichlormethan 2 h bei
 Zimmertemperatur gerührt. Es wurde auf 7 l Diethylether gegossen, die Feststoffe
 abfiltriert. Das Lösungsmittel wurde eingedampft und der Rückstand in Ethylacetat
 gelöst. Nach Chromatographie über eine Florisil-Säule wurden 59.6 g Produkt
 erhalten, MS: M*+Li (FAB)=511.
- d) 3β-Acetylen-7,12-diacetyl-cholsäuremethylester
 In 750 ml abs. Tetrahydrofuran wurde bei –55°C unter Argon 25 min Acetylen eingeleitet. Zu dieser Lösung wurden 145 ml 15% n-Butyllithium in Hexan zugetropft und 10 min nachgerührt. Anschließend wurden 45 g (89 mmol) 3-Keto-7,12-diacetylcholsäuremethylester zugegeben und 1.5 h bei –40°C gerührt. Zur Aufarbeitung wurden 500 ml gesättigte wäßrige Ammoniumchloridlösung zugegeben und mit Ethylacetat (3x) extrahiert, die organische Phase über MgSO₄ getrocknet und eingedampft. Der Rückstand wurde über Kieselgel chromatographiert (n-Heptan/ Ethylacetat 1:1). Es wurden 35.3 g Produkt erhalten, MS: M*+Li (FAB)=537.
- e) 3β-Acetylen-cholsäure
 35.2 g (66 mmol) des Produkts aus d) wurden in 1 l Methanol gelöst, mit 300 ml 2N
 Natriumhydroxidlösung versetzt und 25 h unter Rückfluß erhitzt. Das Lösungsmittel wurde eingedampft, der Rückstand in Wasser gelöst und mit 2N Salzsäure bis pH 2 angesäuert. Der Niederschlag wurde abfiltriert und mit Wasser neutral gewaschen. Trocknung des Rückstandes ergab 14.6 g Produkt, MS: M*+Li (FAB)=439.

Zwischenprodukt 2: 1,2-Bis-[3-(E-2-methyl-propensäureguanidid)]-4-brom-benzol-dihydrochlorid

$$\begin{array}{c|c} & NH_2 \\ N & NH_2 \\ \hline O \\ Br & & \\ O & NH_2 \\ \hline O & NH_2 \\ \end{array}$$

5 Syntheseweg:

20

- a) 4-Brom-1,2-phthaldialkohol aus 4-Brom-phthalsäuredimethylester gemäß Standardmethoden (z.B. Reduktion mit LAH), farbloses ÖI; MS (CI): M*+H=217.
- b) 4-Brom-1,2-phthaldialdehyd aus 2a) durch z.B. Swern Oxidation unter Standardbedingungen, amorpher Feststoff, MS (CI): M⁺+H=213.
- c) 4-Brom-1,2-di-[3-(E-2-methyl-propensäureethylester)]-benzol durch Deprotonierung von 1 eq 2-Phosphonopropionsäuretriethylester mit 1 eq. n-Butyllithium in Hexan bei 0°C und anschließender Reaktion bei RT mit 0.5 eq. 4-Brom-1,2-phthaldialdehyd 2b). Nach vollständiger Abreaktion des Dialdehyds wurde mit Wasser aufgearbeitet und dreimal mit Toluol ausgeschüttelt. Nach Trocknen der vereinigten organischen Phasen über Magnesiumsulfat wurde das Lösungsmittel im Vakuum entfernt und das verbleibende Rohprodukt chromatographisch an Kieselgel mit EE/HEP-Gemischen als Eluent getrennt, farbloses Öl; MS (CI): M*+H=381.
 - d) 4-Brom-1,2-di-[3-(E-2-methyl-propensäure)]-benzol aus 2c) durch Verseifung gemäß einer Standardmethode (Natriumhydroxid in Methanol), farbloser amorpher Feststoff, MS (ES): M*+H=325.
 - e) 1,2-Bis-[3-(E-2-methyl-propensäureguanidid)]-4-brom-benzol-dihydrochlorid aus 2d) gemäß allg. Variante, farbloser Feststoff; mp 240°C; MS (FAB): M*+H=407.
- f) 4-{3β-[3,4-Bis-(3-guanidino-2-methyl-3-oxo-propenyl)-phenylethynyl]-3α,7α,12α-trihydroxy-10β,13β-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl}-pentansäure-diacetat aus 2e) und 3β-Acetylencholsäure mittels Pd(0)-Kopplung nach allg. Verfahren in DMF bei 60°C innerhalb 2h.

Beispiel 2:

4-{3β-[3,4-Bis-(3-guanidino-2-methyl-3-oxo-propenyl)-phenylethynyl]-3α,7α,12αtrihydroxy-10β,13β-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl}pentansäure-benzylester, gelblicher Feststoff, Smp. 155°C, MS: M*+H (ES)=849.

$$\begin{array}{c|c} H_2N \\ \hline \\ H_2N \\ O \\ \hline \\ H_2N \\ H_2N \\ O \\ \end{array}$$

Synthese analog Beispiel 1 unter Verwendung von 3β -Acetylen-cholsäurebenzylester.

Beispiel 3:

5

4-{3β-[4-(3-Guanidino-3-oxo-propenyl)-phenylethynyl]- 3α , 7α , 12α -trihydroxy- 10β , 13β -dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl}-pentansäure-benzylester,

gelblicher Feststoff, Smp. 189°C, MS: M*+H (FAB)=710.

Synthese analog allg. Verfahren unter Verwendung von 4-Brom-zimtsäureguanidid und 3β-Acetylen-cholsäurebenzylester.

Beispiel 4:

4-{3β-[4-(3-Guanidino-3-oxo-propenyl)-phenylethynyl]-3α,7α,12α-trihydroxy-10β,13β-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl}-pentansäure-methylester, gelblicher Feststoff, Smp. 60°C, MS: M*+H (FAB)=718.

MS (FAB): 518 (M+H)+

Synthese analog allg. Verfahren durch Reaktion von 4-Brom-zimtsäureguanidid und 3ß-Acetylen-cholsäurebenzylester.

Beispiel 5:

5

(4-{3β-{3,4-Bis-(3-guanidino-2-methyl-3-oxo-propenyl)-phenylethynyl]-3α,7α,12α-trihydroxy- 10β,13β-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl}-pentanoylamino)-essigsäure.

10

a) [4-(3 β -Ethynyl-3 α ,7 α ,12 α -trihydroxy-10 β ,13 β -dimethyl-hexadecahydrocyclopenta[a]phenanthren-17-yl)-pentanoylamino]-essigsäure-methylester

530 mg 3β-Acetylen-cholsäure (Zwischenprodukt 1e) sowie 510 μl Triethylamin
 werden in 30 ml THF gelöst und bei 0°C 175 μl Chlorameisensäureethylester zugetropft. 15 Minuten wird bei 0°C nachgerührt, anschließend eine Lösung von 340 mg Glycinmethylester-Hydrochlorid in 10 ml DMF zugetropft und 4 h bei RT gerührt. Mit 200 ml EE wird verdünnt und 2 mal mit je 50 ml einer 5% wäßrigen NaHSO₄-Lösung gewaschen. Über MgSO₄ wird getrocknet und das Solvens im Vakuum entfernt. Der Rückstand wurde in 100 ml EE ausgenommen und 3 mal mit je 50 ml einer gesättigten wäßrigen Na₂CO₃-Lösung gewaschen. Über MgSO₄ wird getrocknet und das Solvens im Vakuum entfernt. Chromatographie an Kieselgel mit EE/MeOH 10:1 und anschließend ein zweites Mal mit EE liefert 280 mg eines

25 $R_f(EE) = 0.37$

farblosen Schaumes.

a) 3-(4-Brom-3-fluor-phenyl)-2-methyl-acrylsäure-butylester

2 g 1-Brom-2-fluor-4-iod-benzol und 1,1 ml Diisopropylethylamin werden in 20 ml Dimethylacetamid (wasserfrei) gelöst und 5 Minuten lang ein leichter Argonstrom durch die Lösung geleitet. Anschließend werden 1,4 ml Acrylsäurebutylester und 10 mg 2,6-Di-t-butyl-4-methylphenol zugegeben und auf 100°C erwärmt. Schließlich werden weitere 4 ml Dimethylacetamid mittels eines Argonstroms entgast und 80 mg Trans-bis(□-acetato)bis[o-(di-o-tolylphosphino)benzyl]dipalladium (Tetrahedron Lett. 1996, 37(36), 6535-6538) darin suspendiert. Diese Suspension wird zur Mischung der übrigen Reaktionspartner addiert und 90 Minuten bei 140°C gerührt. Das Gemisch wird anschleißend mit 200 ml EE verdünnt, 2 mal mit je 100 ml Wasser und 1 mal mit 100 ml einer gesättigten wäßrigen NaCl-Lösung gewaschen. Über MgSO4 wird getrocknet und das Solvens im Vakuum entfernt. Chromatographie an Kieselgel liefert 230 mg eines farblosen Öls.

 $R_f(EE/HEP) = 0.27$ MS (DCI): 315 (M+H)⁺

20 b) 3-{4-[17-(3-Carboxy-1-methyl-propyl)-3,7,12-trihydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-3-ylethinyl]-3-fluor-phenyl}-2-methyl-acrylsäure-butylester

64 mg Bis-(triphenylphosphin)-palladium(II)-chlorid, 17 mg Cul, 0,5 ml Triethylamin sowie 230 mg 3-(4-Brom-3-fluor-phenyl)-2-methyl-acrylsäure-butylester werden in 10 ml wasserfreiem DMF gelöst und bei 60°C innerhalb einer Stunde eine Lösung von 395 mg 3□-Acetylen-cholsäure in 10 ml wasserfreiem DMF zugetropft. Eine Stunde wird bei 60°C gerührt und dann erneut eine Lösung von 395 mg 3□-Acetylen-

5

cholsäure in 10 ml wasserfreiem DMF bei 60 °C langsam zugetropft. Weitere 2 Stunden wird bei 60°C gerührt, anschließend nochmals 64 mg Bis-(triphenylphosphin)-palladium(II)-chlorid und 17 mg Cul zugegeben und erneut 2 Stunden bei 60°C gerührt. Schließlich werden weitere 80 mg 3□-Acetylen-cholsäure und 2 Stunden bei 60°C gerührt. Das Solvens wird im Vakuum entfernt, der Rückstand in 100 ml einer 5% wäßrigen NaHSO₄-Lösung aufgenommen und 3 mal mit je 100 ml EE extrahiert. Über Na₂SO₄ wird getrocknet und das Solvens im Vakuum entfernt. Chromatographie an Kieselgel mit EE/MeOH 5:1 liefert 90 mg einer wachsähnlichen Substanz.

10----R_f(EE/MeOH-5:1) = 0.56-----

____MS-(FAB) : 667_(M+H)⁺...

c) 4-{3-[2-Fluor-4-(3-guanidino-2-methyl-3-oxo-propenyl)-phenylethinyl]3,7,12-trihydroxy- 10,13-dimethyl-hexadecahydrocyclopenta[a]phenanthren-17-yl}-pentansäure

73 mg Guanidin-Hydrochlorid und 71 mg Kalium-*t*-butylat werden in 2 ml wasserfreiem DMF gelöst und 30 Minuten bei RT gerührt. Diese Suspension wird zu 85 mg 3-{4-[17-(3-Carboxy-1-methyl-propyl)-3,7,12-trihydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-3-ylethinyl]-3-fluor-phenyl}-2-methyl-acrylsäure-butylester gespritzt und 5 Stunden bei 100°C gerührt. Nach Abkühlung werden 10 ml Wasser zugegeben, mit wäßriger HCl-Lösung auf pH=4 gestellt und 3 mal mit je 10 ml EE extrahiert. Über MgSO₄ wird getrocknet und das Solvens im Vakuum entfernt. Chromatographie an Kieselgel mit Aceton/Wasser 10:1 liefert 15,5 mg eines amorphen Feststoffs.

R_d(Aceton/Wasser 10:1) = 0.19

MS (ES): 652 (M+H)*

Beispiel 7:

4-(3-{2-[2,6-Difluoro-4-(3-guanidino-2-methyl-3-oxo-propenyl)- phenylamino]-ethoxy}-7,12-dihydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl)-pentansäure

4-(7,12-Dihydroxy-3-methanesulfonyloxy-10,13-dimethyl-hexadecahydroa) cyclopenta[a]phenanthren-17-yl)-pentansäure

5

100 g Cholsäure werden in 500 ml Pyridin gelöst und bei 0°C 23,1 ml Mesylchlorid über einen Zeitraum von 30 Minuten zugetropft. 3 Stunden lang wird bei RT gerührt, anschließend bei 0°C auf eine Lösung von 400 ml H₂SO4 in 3 l Wasser gegossen und 4 mal mit je 750 ml EE extrahiert. Über Na₂SO₄ wird getrocknet und das Solvens im Vakuum entfernt. Der Rückstand wird mit Diisopropylether zur Kristallisation gebracht und man erhält 117,1 g; mp 121°C (unter Zersetzung). MS (FAB): 487 R_f(EE/HEP/Essigsäure 5:5:1) = 0.31 $(M+H)^{+}$

15

10

4-[7,12-Dihydroxy-3-(2-hydroxy-ethoxy)-10,13-dimethyl-hexadecahydrob) cyclopenta[a]phenanthren-17-yl]-pentansäure-methylester

20

25

116 g 4-(7,12-Dihydroxy-3-methanesulfonyloxy-10,13-dimethyl-hexadecahydrocyclopenta[a]phenanthren-17-yl)-pentansäure sowie 130 ml Triethylamin werden in 650 ml Glycol gelöst und 3 Stunden bei 100°C sowie 7,5 Stunden bei 115°C gerührt. Das Reaktionsgemisch wird bei 0°C auf eine Lösung von 400 ml H₂SO₄ in 3 l Wasser gegossen und 7 mal mit je 750 ml EE extrahiert. Über Na₂SO₄ wird getrocknet und das Solvens im Vakuum entfernt. Man erhält das Zwischenprodukt ZWP.

Bei 0°C werden 130 ml Acetylchlorid zu 900 ml Methanol getropft. Dann wird eine Lösung von ZWP in 400 ml zugegeben und 6 Stunden bei RT gerührt. 60 Stunden wird bei RT stehen gelassen, dann auf 2.6 l Wasser gegossen und 8 mal mit je 500 ml Diisopropylether (DIP) extrahiert. Die organische Phase wird anschließend noch 6 mal mit je 600 ml einer halbgesättigten wäßrigen einer NaHCO₃-Lösung gewaschen. Über Na₂SO₄ wird getrocknet und das Solvens im Vakuum entfernt.

Chromatographie an Kieselgel mit EE liefert 32 g eines harzähnlichen Feststoffs.

R_f(EE) = 0.19

MS (FAB): 467 (M+H)⁺

10-

5

c) 4-{3-[2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-ethoxy]-7,12-dihydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl}-pentansäure-methylester

15

20

1.5 g 4-[7,12-Dihydroxy-3-(2-hydroxy-ethoxy)-10,13-dimethyl-hexadecahydrocyclopenta[a]phenanthren-17-yl]-pentansäure-methylester, 950 mg
Triphenylphosphin und 550 mg Phthalimid werden in 26 ml THF auf 45 °C erwärmt und bei dieser Temperatur 1,14 ml Azodicarbonsäurediethylester zugetropft. 2
Stunden wird bei 45°C gerührt, anschließend das Reaktionsgemisch in 200 ml einer halbkonzentrierten wäßrigen NaHCO₃-Lösung gegossen und 3 mal mit je 200 ml EE extrahiert. Über Na₂SO₄ wird getrocknet und das Solvens im Vakuum entfernt. Chromatographie an Kieselgel mit *t*-Butylmethylether (MTB) liefert 1.76 g eines zähen Öls.

25 $R_f(EE) = 0.60$

MS (FAB): 602 (M+Li)*

d) 4-[3-(2-Amino-ethoxy)-7,12-dihydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl]-pentansäure-methylester

30

1.7 g 4-{3-[2-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-ethoxy]-7,12-dihydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl}-pentansäure-methylester sowie 0.52 ml Hydrazinhydrat (80%) werden in 14 ml Methanol gelöst und 3 Stunden unter Rückfluß gekocht. Anschließend wird auf 40°C abgekühlt und das

Reaktionsgemisch mit 8.7 ml einer 2N wäßrigen HCI-Lösung versetzt. 30 Minuten wird bei 40°C nachgerührt, anschließend die flüchtigen Bestandteile im Vakuum entfernt. Chromatographie an Kieselgel mit Aceton/Wasser 10:1 liefert 540 mg harzähnlichen Feststoffs.

5 $R_f(AcetonWasser 10:1) = 0.06$

MS (FAB): 466 (M+H)*

e) 4-[3-(2-Amino-ethoxy)-7,12-dihydroxy-10,13-dimethyl-hexadecahydrocyclopenta[a]phenanthren-17-yl]-pentansäure

10

15

3 g 4-[3-(2-Amino-ethoxy)-7,12-dihydroxy-10,13-dimethyl-hexadecahydrocyclopenta[a]phenanthren-17-yl]-pentansäure-methylester und 310 mg NaOH werden in 5 ml Wasser sowie 30 ml Methanol 24 Stunden bei RT gerührt. Die Solventien werden im Vakuum entfernt, mit 200 ml Wasser aufgenommen und mit wäßriger HCl-Lösung auf pH = 7-7.5 gestellt. 1 Stunde wird nachgerührt und anschließend das Produkt abfiltriert. Man erhält 1.6 g eines blaßgelbe kristallinen Feststoffs. mp 185-195°C.

R_f(CH₂CI₂/MeOH/Essigsäure/Wasser 32:8:1:1) = 0.18

MS (ES): 452 (M+H)*

MS (DCI): 245 (M+H)+

20

f) 2-Methyl-3-(3,4,5-trifluoro-phenyl)-acrylsäure-ethylester

4.3 ml 2-Phosphonopropionsäure-triethylester werden in 30 ml wasserfreiem THF gelöst und bei 0°C 12.5 ml einer 1.6 N Lösung von n-Butyllithium in Hexan zugetropft.15 Minuten wird bei RT gerührt und anschließend eine Lösung von 3.2 g 3,4,5-Trifluorbenzaldehyd in 8 ml wasserfreiem THF zugetropft. Eine Stunde wird bei RT gerührt und 16 Stunden bei RT stehen gelassen. Das Reaktionsgemisch wird mit 300 ml Wasser verdünnt, 30 ml einer gesättigten wäßrigen Na₂CO₃-Lösung zugegeben und 3 mal mit je 100 ml EE extrahiert. Über Na₂SO₄ wird getrocknet und das Solvens im Vakuum entfernt. Chromatographie an Kieselgel mit EE/HEP 1:8 liefert 3.8 g farbloser Kristalle; mp 54°C.

 $R_{\rm f}(EE/HEP~1:8) = 0.35$

- g) 3-(4-{2-[17-(3-Carboxy-1-methyl-propyl)-7,12-dihydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-3-yloxy]-ethylamino}-3,5-difluoro-phenyl)-2-methyl-acrylsäure-ethylester
- 600 mg 4-[3-(2-Amino-ethoxy)-7,12-dihydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl]-pentansäure, 390 mg 2-Methyl-3-(3,4,5-trifluoro-phenyl)-acrylsäure-ethylester und 828 mg K₂CO₃ werden in 10 ml Dimethylacetamid 2.5 Stunden lang bei 130°C gerührt. Das Reaktionsgemisch wird nach dem Abkühlen mit 400 ml CH₂Cl₂ verdünnt und mit 400 ml einer 5% wäßrigen NaHSO₄-Lösung gewaschen. Über MgSO₄ wird getrocknet und das Solvens im Vakuum entfernt. Chromatographie an Kieselgel mit CH₂Cl₂/MeOH 10:1 liefert 155 mg eines

 $R_1(CH_2CI_2/MeOH\ 10:1) = 0.27$

farbiosen Öls.

MS (ES): 676 (M+H)+

15

- i) 4-(3-{2-[2,6-Difluoro-4-(3-guanidino-2-methyl-3-oxo-propenyl)-phenylamino]ethoxy}-7,12-dihydroxy-10,13-dimethyl-hexadecahydrocyclopenta[a]phenanthren-17-yl)-pentansäure
- 130 mg Guanidin-Hydrochlorid und 125 mg Kalium-t-Butylat werden in 1 ml wasserfreiem DMF 30 Minuten bei RT gerührt. Anschließend wird eine Lösung von 150 mg 3-(4-{2-[17-(3-Carboxy-1-methyl-propyl)-7,12-dihydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-3-yloxy]-ethylamino}-3,5-difluoro-phenyl)-2-methyl-acrylsäure-ethylester in 1 ml wasserfreiem DMF addiert und 6 Stunden bei 110- 115°C gerührt. Das Reaktionsgemisch wird dann auf 100 ml Wasser gegossen, mit wäßriger HCl-Lösung auf pH = 6 gestellt und das Produkt abfiltriert. Im Feinvakuum wird getrocknet und man erhält 8.0 mg eines amorphen Feststoffs. Rf(CH₂Cl₂/MeOH/Essigsäure/Wasser 32:8:1:1) = 0.21 MS (ES): 689 (M+H)⁺

 $\dot{N}H_2$

Patentansprüche:

1. Verbindungen der Formel I

$$T_1$$
 T_2
 R_3
 R_2
 R_3

worin bedeuten

T1 und T2

oder Wasserstoff, wobei T1 und T2 nicht gleichzeitig Wasserstoff sein können;

Ŕ(C)

Z

Ř(A)

5

10

R(A), R(B), R(C), R(D) unabhängig voneinander Wasserstoff, F, Cl, Br, I, CN, OH, NH₂, -(C₁-C₈)-Alkyl, -O-(C₁-C₈)-Alkyl, wobei die Alkylreste ein oder mehrfach mit F substituiert sein können, (C₃-C₈)-Cycloalkyl, Phenyl, Benzyl, NHR(7), NR(7)R(8), O-(C₃-C₆)-Alkenyl, O-(C₃-C₈)-

Cycloalkyl, O-Phenyl, O-Benzyl, wobei der Phenylkern bis zu dreifach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy, NR(9)R(10);

- R(7), R(8) unabhängig voneinander Wasserstoff, -(C₁-C₈)-Alkyl, wobei der

 Alkylrest ein oder mehrfach mit F substituiert sein kann,

 (C₃-C₈)-Cycloalkyl, (C₃-C₆)-Alkenyl, (C₃-C₈)-Cycloalkyl, Phenyl,

 Benzyl, wobei der Phenylkern bis zu dreifach substituiert sein kann mit

 F, CI, CF₃, Methyl, Methoxy, NR(9)R(10); oder
- 10 R(7), R(8) <u>bilden gemeinsam eine Kette von 4 oder 5 Methylengruppen, von</u>
 denen eine CH₂-Gruppe durch Sauerstoff, Schwefel, NH, N-CH₃ oder
 N-Benzyl ersetzt sein kann;
 - R(9), R(10) unabhängig voneinander Wasserstoff, (C₁-C₄)-Alkyl, (C₁-C₄)-Perfluoralkyl;

15 x Nuil, 1 oder 2;

30

y Null, 1 oder 2;

- 20 R(E), R(F) unabhängig voneinander Wasserstoff, F, Cl, Br, I, CN, (C₁-C₈)-Alkyl, O-(C₁-C₈)-Alkyl, wobei der Alkylrest ein oder mehrfach mit F substituiert sein kann, (C₃-C₈)-Cycloalkyl, O-(C₃-C₆)-Alkenyl, O-(C₃-C₈)-Cycloalkyl, O-Phenyl, O-Benzyl, wobei der Phenylkern bis zu dreifach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy, NR(9)R(10);
 - R(1), R(2), R(3) unabhängig voneinander Wasserstoff, F, CI, Br, I, CN, -(C₁-C₈)-Alkyl, -O-(C₁-C₈)-Alkyl, wobei die Alkylreste ein oder mehrfach mit F substituiert sein können, -(C=O)-N=C(NH₂)₂, -(SO₀₋₂)-(C₁-C₈)-Alkyl, -(SO₂)-NR(7)R(8), -O-(C₀-C₈)-Alkylen-phenyl, -(C₀-C₈)-Alkylen-phenyl, wobei die

Phenylkerne bis zu 3-fach substituiert sein können mit F, Cl, CF₃, Methyl, Methoxy, -(C₀-C₈)-Alkylen-NR(9)R(10);

L -O-, -NR(47)-, -(C₁-C₈)-Alkylen-, -(C₁-C₈)-Alkenylen-, -(C₁-C₈)
Alkinylen-, -COO-, -CO-NR(47)-, -SO₂-NR(47)-,

-O-(CH₂)_n-O-, -NR(47)-(CH₂)_n-O-, -NR(48)-CO-(CH₂)_n-O-, -CO-NR(48)
(CH₂)_n-O-, -O-CO-(CH₂)_n-O-, -SO₂-NR(48)-(CH₂)_n-O-, -NR(48)-CO
CH₂-CH₂-CO-NR(48)-(CH₂)_n-O-, -, -NR(48)-CO-CH=CH-CO-NR(48)
(CH₂)_n-O-, -NR(48)-SO₂-(CH₂)_n-O-

10

R(47) Wasserstoff, (C₁-C₈)-Alkyl, R(48)-CO-, Phenyl, Benzyl;

R(48) Wasserstoff, (C₁-C₈)-Alkyl, Phenyl und Benzyl, wobei der Phenylkern bis zu 3-fach substituiert sein kann mit F, Cl, CF₃,Methyl, Methoxy;

15

n 1 bis 8;

R(40) bis R(45) unabhängig voneinander Wasserstoff, -OR(50), -SR(50), NHR(50), -NR(50)₂, -O-(CO)-R(50), -S-(CO)-R(50), -NH-(CO)-R(50), -O-PO-(OR(50))-OR(50), -O-(SO₂)-OR(50), -R(50), eine Bindung zu L; oder R(40) und R(41), R(42) und R(43), R(44) und R(45) bilden jeweils gemeinsam der Sauerstoff einer Carbonylgruppe;

wobei immer genau einer der Reste R(40) bis R(45) die Bedeutung einer Bindung zu L hat;

25

20

COR(50), -NHR(50), -NR(50)₂, -HN-CH₂-CH₂-CO₂H, -HN-CH₂-CH₂-SO₃H, -NH-CH₂-COOH, -N(CH₃)CH₂CO₂H, -HN-CH(R46)CO₂H, -OKa, wobei Ka ein Kation bedeutet, wie z.B. ein Alkali- oder Erdalkaliion oder ein quartäres Ammoniumion;

30

R(46) Wasserstoff C₁-C₄-Alkyl, Benzyl, -CH₂-OH, H₃CSCH₂CH₂-, HO₂CCH₂-, HO₂CCH₂-;

R(50) Wasserstoff, (C₁-C₄)-Alkyl, Phenyl oder Benzyl, wobei der Phenylkern bis zu 3-fach substituiert sein kann mit F, Cl, CF₃,Methyl, Methoxy;

sowie deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate.

2. Verbindungen der Formel I, gemäß Anspruch 1, dadurch gekennzeichnet, daß darin bedeuten

T1 und T2 unabhängig voneinander

oder Wasserstoff, wobeiT1 und T2 nicht gleichzeitig Wasserstoff sein können;

L-z

10

15

R(E) Wasserstoff, F, CI, CN, (C₁-C₄)-Alkyl, , -O-(C₁-C₄)-Alkyl, wobei die Alkylreste ein oder mehrfach mit F substituiert sein können, (C₃-C₆)-Cycloalkyl, (C₃-C₈)-Alkenyl, O-(C₃-C₆)-Cycloalkyl, O-Phenyl, O-Benzyl, wobei der Phenylkern bis zu dreifach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy, NR(9)R(10);

R(9) R(10)	unabhängig voneinar	nder Wasserstoff,	CH ₃ , CF ₃ ;
M31. IN 101	at labitality and		

R(1), R(2), R(3) unabhängig voneinander Wasserstoff, F, Cl, CN, -SO₂-(C₁-C₄)-Alkyl, -SO₂-N((C₁-C₄)-Alkyl)₂, -SO₂-NH(C₁-C₄)-Alkyl, -SO₂-NH₂, -SO₂-(C₁-C₄)-Alkyl -(C₁-C₄)-Alkyl, -O-(C₁-C₄)-Alkyl, wobei die Alkylreste ein oder mehrfach mit F substituiert sein können, -O-(C₀-C₄)-Alkylen-phenyl, -(C₀-C₄)-Alkylen-phenyl, wobei die Phenylkerne bis zu 3-fach substituiert sein können mit F, Cl, CF₃, Methyl, Methoxy;

10

L

5

-O-, -NR(47)-, -(C₁-C₄)-Alkylen-, -(C₁-C₄)-Alkenylen-, -(C₁-C₄)-Alkinylen-, -COO-, -CO-NR(47)-, -SO₂-NR(47)-, -O-(CH₂)_n-O-, -NR(47)- (CH₂)_n-O-, -NR(48)-CO-(CH₂)_n-O-, -CO-NR(48)-(CH₂)_n-O-, -SO₂-NR(48)-(CH₂)_n-O-;

15

- R(47) Wasserstoff, (C₁-C₄)-Alkyl, R(48)-CO-, Phenyl, Benzyl;
- R(48) Wasserstoff, (C₁-C₄)-Alkyl, Phenyl und Benzyl, wobei der Phenylkern bis zu 3-fach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy;

20

n 1-4;

R(41), R(42), R(45) unabhängig voneinander Wasserstoff, -OR(50), NHR(50), -NR(50)₂, -O-(CO)-R(50), -NH-(CO)-R(50);

25

- R(50) Wasserstoff, (C₁-C₄)-Alkyl, Phenyl oder Benzyl, wobei der Phenylkern bis zu 3-fach substituiert sein kann mit F, Cl, CF₃, Methyl, Methoxy;
- SO₃H, -NH-CH₂-COOH, -N(CH₃)CH₂CO₂H, -OKa, wobei Ka ein Kation bedeutet, wie z.B. ein Alkali- oder Erdalkaliion oder ein quartäres

 Ammoniumion;

sowie deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate.

3. Verbindungen der Formel I, gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß darin bedeuten

T1 und T2 unabhängig voneinander

oder Wasserstoff, wobei T1 und T2 nicht gleichzeitig Wasserstoff sein können,

und L-z

10

5

- R(E) Wasserstoff, F, CI, CN, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkyl, $-O(C_1-C_4)$ -Alkyl, CF_3 , $-OCF_3$.
- R(1), R(2) unabhängig voneinander Wasserstoff, F, Cl, CN, -SO₂-CH₃, -(C₁-C₄)
 Alkyl, -O-(C₁-C₄)-Alkyl, wobei die Alkylreste ein oder mehrfach mit F

 substituiert sein können, -O-(C₀-C₄)-Alkylen-phenyl, -(C₀-C₄)-Alkylen-

phenyl, wobei die Phenylkerne bis zu 3-fach substituiert sein können mit F, CI, CF₃, Methyl, Methoxy;

Wasserstoff, R(3)

5

- -O-, -NR(47)-, -CH₂-CH₂-, CH=CH-, -(C≡C)-, -COO-, -CO-NR(47)-, L -SO₂-NR(47)-, -O-(CH₂)_n-O-, -NR(47)-(CH₂)_n-O-, -NR(48)-CO-(CH₂)_n-O-, -CO-NR(48)-(CH₂)_n-O-, -SO₂-NR(48)-(CH₂)_n-O-;
- Wasserstoff, (C₁-C₄)-Alkyl, R(48)-CO-, Phenyl, Benzyl; 10 R(47)
 - Wasserstoff, (C₁-C₄)-Alkyl, Phenyl und Benzyl, wobei der Phenylkern R(48) bis zu 3-fach substituiert sein kann mit F, Cl, CF3, Methyl, Methoxy;
- 1-4; 15 n
 - Wasserstoff, -OH; R(41)
- -OR(50), -NHR(50), -NR(50)₂, -HN-CH₂-CH₂-CO₂H, -HN-CH₂-CH₂-K SO₃H, -NH-CH₂-COOH, -N(CH₃)CH₂CO₂H, -OKa, wobei Ka ein Kation 20 bedeutet, wie z.B. ein Alkali- oder Erdalkaliion oder ein quartäres Ammoniumion;
- Wasserstoff, (C1-C4)-Alkyl, Phenyl oder Benzyl, wobei der Phenylkern R(50) bis zu 3-fach substituiert sein kann mit F, Cl, CF3, Methyl, Methoxy; 25

sowie deren pharmazeutisch verträgliche Salze.

- Verbindungen der Formel I, gemäß einem oder mehreren der Ansprüche 1 bis 4.
- 3, dadurch gekennzeichnet, daß Formel I die Struktur la aufweist 30

worin bedeuten

T1 und T2 unabhängig voneinander

oder Wasserstoff, wobei T1 und T2 nicht gleichzeitig Wasserstoff sein können;

L-z

__c≡c___,-NH-CH₂-CH₂-O-:

5

10

- R(E) Wasserstoff, (C₁-C₄)-Alkyl;
- R(1), R(2) unabhängig voneinander Wasserstoff, F, Cl, CN, -SO₂-CH₃, -(C₁-C₄)-Alkyl, vobei die Alkylreste ein oder mehrfach mit F substituiert sein können;

sowie deren pharmazeutisch verträgliche Salze.

- 5. Arzneimittel enthaltend eine oder mehrere der Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 4.
 - 6. Arzneimittel enthaltend eine oder mehrere der Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 4 und ein oder mehrere lipidsenkende Wirkstoffe.

10

20

5

- 7. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 4 zur Anwendung als Medikament zur Prophylaxe oder Behandlung von Gallensteinen.
- Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 4 in
 Kombination mit mindestens einem weiteren lipidsenkenden Wirkstoff als
 Medikament zur Behandlung von Gallensteinen.
 - 9. Verfahren zur Herstellung eines Arzneimittels enthaltend eine oder mehrere der Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Wirkstoff mit einem pharmazeutisch geeigneten Träger vermischt wird und diese Mischung in eine für die Verabreichung geeignete Form gebracht wird.
- 10. Verwendung der Verbindungen gemäß einem oder mehreren der Ansprüche
 25 1 bis 4 zur Herstellung eines Medikaments zur Prophylaxe oder Behandlung von Gallensteinen.

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/EP 99/07828

A. CLASS IPC 7	SIFICATION OF SUBJECT MATTER C07J41/00 A61K31/575 C07J9/	00	
	· A		·
	to International Patent Classification (IPC) or to both national class	ification and IPC	
	S SEARCHED		
IPC 7	ocumentation searched (classification system followed by classifi CO7J A61K	cation symbols)	
Documenta	ation searched other than minimum documentation to the extent th	at such documents are included in the fields so	earched
Electronic o	data base consulted during the international search (name of data	base and, where practical, search terms used	
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
-		•	
A	EP 0 624 594 A (HOECHST AG) 17 November 1994 (1994-11-17) page 5, line 29 - line 38; exam	ples 26,27	1-10
 			·
		•	
		•	
			·
	· · ·	·	
		•	
	w.		·
	·	•	
			*
L Fun	her documents are listed in the continuation of box C.	Patent family members are listed	in annex.
* Special ca	ategories of cited documents :	"T" later document published after the inte	
	ent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or th invention	
	document but published on or after the international	"X" document of particular relevance; the	
"L" docume which	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered novel or canno involve an inventive step when the do "Y" document of particular relevance; the	ocument is taken alone
	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	cannot be considered to involve an in document is combined with one or m	iventive step when the
other i	means ent published prior to the international filling date but	ments, such combination being obvious in the art.	
later th	han the priority date claimed	"&" document member of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the international se	arch report
1	3 January 2000	24/01/2000	
Name and n	mailing address of the ISA European Patent Office, P.B, 5818 Patentlaan 2	Authorized officer	
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040. Tx. 31 651 epo nl. Fax: (+31–70) 340–3016	Watchorn, P	

INTERNATIONAL SEARCH REPORT

inte onal Application No PCT/EP 99/07828

			.1	
Patent document cited in search report	Publication date	Patent fami member(s		Publication date
EP 0624594 A	17-11-1994	AU 673 AU 6194 CA 2123 CZ 9401 DE 59408		15-08-1999 07-11-1996 10-11-1994 09-11-1994 16-11-1994 16-09-1999
		HU 67 IL 109 JP 7002 NO 941 NZ 260	077 A 574 A 580 A 891 A 680 A 471 A	09-11-1994 28-04-1995 12-03-1999 06-01-1995 09-11-1994 27-04-1995 11-03-1997

INTERNATIONALER RECHERCHENBERICHT

PCT/EP 99/07828

			
A. KLASS IPK 7	FIFIZIERUNG DES ANMELDUNGSGEGENSTANDES C07J41/00 A61K31/575 C07J9/0	0	
Noch der II	stanationalan Dalantidassilikation (IDV) adaz mash dar sationalan VI	ingelikation und das 1714	*
	nternationalen Palentklassifikation (IPK) oder nach der nationalen Kla	ssilikation und der IPK	
	RCHIERTE GEBIETE orter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymb	ole)	
IPK 7	CO7J A61K	. ·	
Recherchie	nte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s	oweit diese unter die recherchierten Gebiete	fallen
Während d	er internationalen Recherche konsultierte elektronische Datenbank (I	Name der Datenbank und evtl. verwendete	Suchbegriffe)
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	oe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Α	EP 0 624 594 A (HOECHST AG) 17. November 1994 (1994-11-17)		1-10
	Seite 5, Zeile 29 - Zeile 38; Be 26,27	ispiele	
	·		
			•
	·		
		•	
		·	
	·		
	*		
	·		
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie	
"A" Veröffe	Kategorien von angegebenen Veröffentlichungen : ntlichung, die den allgemeinen Stand der Technik definiert. icht als besonders bedeutsam anzusehen ist	T* Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlicht Anmeldung nicht kollidien, sondern nu Erfindung zugrundellegenden Prinzips	worden ist und mit der zum Verständnis des der
	Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist	Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeu	
echain	itlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer	kann allein aufgrund dieser Veröffentlik	thung nicht als neu oder auf
andere	nn im Recherchenbericht genannten Veröffentlichung belegt werden er die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von besonderer Bedeu	tung; die beanspruchte Erfindung
ausgel		kann nicht als auf erfindenscher Tätigk werden, wenn die Veröffentlichung mit Veröffentlichungen dieser Kategorie in	einer oder mehreren anderen
eine B	anutzung, eine Ausstellung oder andere Maßnahmen bezieht illichung, die vor dem internationalen Anmeldedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	diese Verbindung für einen Fachmann "&" Veröffeitlichung, die Mitglied derselben	naheliegend ist
	Abschlusses der internationalen Recherche	Absendedatum des internationalen Re	
13	3. Januar 2000	24/01/2000	·
Name und P	ostanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter	
	Europäisches Patentamt. P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Watchorn, P	•

INTERNATIONALER RECHERCHENBERICHT

Inte males Aktenzeichen
PCT/EP 99/07828

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		itglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0624594 A	17-11-1994	AT	183191 T	15-08-1999
		AU	673419 B	07-11-1996
	,	AU	6194994 A	10-11-1994
		CA	2123052 A	09-11-1994
		CZ	9401137 A	16-11-1994
		DE	59408602 D	16-09-1999
		FI	942077 A	09-11-1994
		HU	67574 A	28-04-1995
		IL	109580 A	12-03-1999
		JP	7002891 A	06-01-1995
		NO	941680 A	09-11-1994
		NZ	260471 A	27-04-1995
		US	5610151 A	11-03-1997

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.