CS 171 F24 Final Exam Reference Sheet

Created by Steven He, 2024

Uninformed Search

A state represents particular configuration of environment. Nodes in search tree can encode details like state, parent, action, path cost, depth, etc.

Tree Search doesn't remember visited nodes: slow search, low memory Graph Search remembers visited nodes: fast search, high memory

Basic search scheme maintains explored and frontier nodes. Process the frontier in some order based on some policy/search strategy, marking as visited if graph search, then expanding node.

Strategies evaluted by:

- · completeness does it guarantee a solution if one exists
- · optimality does it guarantee min-cost solution
- · time/space complexity # of nodes generated / max # of nodes in memory. In terms of max branching factor b, depth of min-cost solution d, maximum depth of state space m.

Uninformed search strategies:

- · Breadth-first Search Frontier is FIFO queue. Goal test node before push. Always complete; only optimal if cost is non-decreasing function of depth.
- · Uniform-cost Search Frontier is priority queue, ordered by total path cost g(n). Goal test after popping from queue. Complete if b is finite; optimal if all step costs $\geq \epsilon > 0$ (non-zero).
- if all step costs $\geq \epsilon > 0$ (non-zero). • Depth-first Search - Frontier is LIFO stack. Defined as Depth-limited search with limit $l=\infty$. Goal test after pop from stack. Incomplete if depth of states is infinite; not optimal.
- · Iterative Deepening Search Perform Depth-limited search, while iteratively increasing depth limit. Memory advantage of DFS, completeness & optimality conditions of BFS.

Heuristic Search

A heuristic estimates best possible cost left to the solution, denoted as h(n).

g(n): known path cost so far to state n

h(n): estimate of optimal cost to goal from n

f(n) = g(n) + h(n): estimate of total cost to goal through n

A heuristic is **admissible** iff $\forall n, h(n) \leq h^*(n)$, where $h^*(n)$ is true optimal cost to goal. Admissible heuristics never overestimate cost to the goal. A heuristic is **consistent** iff $\forall n, f(n') \geq f(n)$ where n' is any successor of n. f(n) is non-decreasing along any path.

 $consistent \implies admissible$

 \neg admissible $\Longrightarrow \neg$ consistent

admissible \implies consistent

Heuristic search strategies:

- · Greedy Best-first Search Frontier is priority queue, ordered by heuristic h(n). Only graph version complete in finite spaces; not optimal even with perfect heuristic $h=h^*$.
- · A^* Search Frontier is priority queue, ordered by heuristic + path cost f(n). Complete unless infinite nodes with f < f(G). Optimal with tree search if h is admissible; graph search if h is consistent. No other algorithm with the same consistent heuristic is guaranteed to expand fewer nodes.

Game Search

todo

Constraint Satisfaction

todo

Logic todo

Probability & Uncertainty, Bayesian Networks

todo

Intro to ML, Linear Regression, kNN

todo

Decision Trees and Neural Networks

todo

Reinforcement Learning

Markov Property - Future is independent of past given present:

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1,\ldots,S_t]$$
 where S_t is state at time t

We use matrix \mathcal{P} to define transition property from state s to s', denoted as probability in row s, column s'.

$$\mathcal{P} = \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \vdots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}, \mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

Markov Process/Chain - Sequence of states S_1, S_2, \ldots satisfying Markov property. Formally defined as tuple $\langle \mathcal{S}, \mathcal{P} \rangle$ i.e. (set of states, prob matrix)

Episode - Some sequence of traveresed states in a MP Markov Reward Process - Give states in MP some reward. We "gain" reward R_{t+1} when transitioning from states $S_t \to S_{t+1}$ placeholder intermediary stuff goes here

	Evaluate Policy, π	Find Best Policy, π^*
MDP Known	Policy Evaluation	Policy/Value Iteration
(Planning probs)	_	- /
MDP Unknown	MC and TD Learning	Q-Learning