	Chapter-7 Chapter-7 10-tetional Matin
	systems of particle and Rotational Motion
#	Pareticle: - an object whose size is negligible and whose intern
	structure can be neglected is called particle.
6	xample: - Proton, electron
	System: - an arrangement of particles which mutually interact
	Example :
#	Internal force: - The forces exerted by the particles
	a system when they mutually interact
	Marine K.E. J (0)
#	External force: The force exerted by particles,
acr.	objects or system when they on a
	system is called external force.
++	Isolated system: A system on which there is no
	-external force is called isolated system
	VIX SOOF O

70m = m, r, + m, r, + m, r, + m, r, M. => M 30 = m, x, + m, x, + m, x, + m, x, + m, x, difforenciating both the side with respect to time $= \frac{M d \overrightarrow{r_{em}}}{dt} = \frac{m_1 d_2 \overrightarrow{x_1}}{dt} + \frac{m_2 d \overrightarrow{x_2}}{dt} + \cdots + \frac{m_n d \overrightarrow{x_n}}{dt}$ $\Rightarrow \overline{V_{cm}} = m_1 \overline{V_1} + m_2 \overline{V_2} + \cdots + m_n \overline{V_n}$ TINDSOUT FOLD : where, Vem = velocity of centre of mass To truborg rotion by turbong realons to the district -> from egn D, (A-7 - 1 - 2 => MV = m_1V + m_2V + \dots + m_nV differenciating both side with respect to time $= m_1 \frac{d\vec{v_1}}{dt} + m_2 \frac{d\vec{v_2}}{dt} + \dots \cdot m_n \frac{\vec{v_n}}{dt}$ m, at + m2 a2 + 0 - 0 + mn an [: dv = acceleration]

a.	Write the 1qw of conservation of Angular
	momentum.
Aus.	T = dL
	dt
	If T=0
=7	o = dL
	dt
=======================================	o)dt = dL
=>	o = dL
7=>	dL = 0
=7	$\Delta L = 0$
=7	$\Delta L = constant$
1	

