nlp201 hw3

Yifei Gan

December 2024

1

This equivalence is due to the monotonicity of the logarithmic function. The logarithm is a strictly increasing function, so maximizing P(t,w) is equivalent to maximizing log(P(t,w)).

2

Define
$$\pi_j(t_j)$$
 as: $\pi_j(t_j) = \max_{t_1,...,t_{j-1}} \sum_{i=1}^j \operatorname{score}(w,i,t_i,t_{i-1}).$

$$\pi_j(t_j) = \max_{t_{j-1}} \left[\pi_{j-1}(t_{j-1}) + \operatorname{score}(w,j,t_j,t_{j-1}) \right],$$

where: $score(w, j, t_j, t_{j-1}) = log(P(w_j \mid t_j)) + log(P(t_j \mid t_{j-1}))$. $\pi_{j-1}(t_{j-1})$ represents the maximum score for the tag sequence ending in t_{j-1} at step j-1.

The current score $score(w, j, t_j, t_{j-1})$ includes the emission probability $log(P(w_j \mid t_j))$ and the transition probability $log(P(t_j \mid t_{j-1}))$.

Thus, $\pi_i(t_i)$ depends only on $\pi_{i-1}(t_{i-1})$ and the scores of the current step.

3

Initialization:

 $\pi_0(\text{START}) = 0$, $\pi_0(t) = -\infty$ for all other tags t.

Recursion:

For each $j=1,\ldots,n$ (word positions) and each tag t_j : $\pi_j(t_j)=\max_{t_{j-1}}\left[\pi_{j-1}(t_{j-1})+\operatorname{score}(w,j,t_j,t_{j-1})\right]$. Store the backpointer: $\operatorname{bp}_j(t_j)=\operatorname{arg}\max_{t_{j-1}}\left[\pi_{j-1}(t_{j-1})+\operatorname{score}(w,j,t_j,t_{j-1})\right]$.

Termination:

Compute the final score including the STOP tag: $\pi_{n+1}(\text{STOP}) = \max_{t_n} \left[\pi_n(t_n) + \text{score}(w, n+1, \text{STOP}, t_n) \right]$. Store the final backpointer: $\text{bp}_{n+1}(\text{STOP}) = \arg\max_{t_n} \left[\pi_n(t_n) + \text{score}(w, n+1, \text{STOP}, t_n) \right]$.

Backtracking:

Recover the best sequence by tracing back from $\mathrm{bp}_{n+1}(\mathrm{STOP})$ to $\mathrm{bp}_0(\mathrm{START}).$

Time Complexity:

At each step j, we compute $\pi_j(t_j)$ for all tags t_j , requiring a maximization over all possible t_{j-1} . Let T denote the number of tags:

Per step: $O(T^2)$, as we evaluate all $T \times T$ pairs of current and previous tags. Total for n words: $O(n \cdot T^2)$.

The time complexity is $O(n \cdot T^2)$.

4

From the definition of $\pi_j(t_j)$: $\pi_j(t_j) = \bigoplus_{t_{j-1}} [\pi_{j-1}(t_{j-1}) \otimes \operatorname{score}(w, j, t_j, t_{j-1})]$. This recursive formulation expresses $\pi_j(t_j)$ in terms of $\pi_{j-1}(t_{j-1})$. Because of the computation using the semiring properties, the recursion relies on the above semiring properties to generalize the computation of $\pi_j(t_j)$.

To adapt the algorithm from question 2 for the semiring version:

- 1. Replace the standard max operation with \oplus , which represents summation in the semiring.
- 2. Replace the addition (+) operation with \otimes , which represents multiplication in the semiring.
- 3. Initialize $\pi_0(\text{START}) = 1_s$ (multiplicative identity) and $\pi_0(t) = 0_s$ (additive identity) for all other tags.
- 4. Use \oplus and \otimes for recursive updates:

$$\pi_j(t_j) = \bigoplus_{t_{j-1}} [\pi_{j-1}(t_{j-1}) \otimes \text{score}(w, j, t_j, t_{j-1})].$$

5. Terminate with:

$$\pi_{n+1}(\text{STOP}) = \bigoplus_{t_n} \left[\pi_n(t_n) \otimes \text{score}(w, n+1, \text{STOP}, t_n) \right].$$

Conclusion

The semiring properties ensure that the algorithm is valid for any semiring $S = \langle A, \oplus, \otimes, 0_s, 1_s \rangle$. The changes to the standard Viterbi algorithm involve replacing max and + with \oplus and \otimes , making the algorithm compatible with a generalized scoring framework.