Project Design Phase-IProposedSolutionTemplate

Date	30october2022
Team ID	PNT2022TMID25599
ProjectName	EmergingMethodsForEarlyDetectionOf ForestFire
MaximumMarks	2 Marks

${\bf Proposed Solution Template:}$

Project teams hall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to besolved)	It is difficult to predict and detect Forest Fire ina sparsely populated forest area and it is moredifficult if the prediction is done using ground-based methods like Camera or Video-Basedapproach. Satellites can be an important sourceofdatapriortoandalsoduringthe Fire dueto itsreliabilityandefficiency.
2.	Idea/Solutiondescription	The simplest of these solutions is theestablishment of a network of observationposts - both cheap and easy to accomplish, butalso time-consuming for the involved people. The constant evolution of the information and communication technologies has led to the introduction of a new generation of solutions for early detection and even prevention offorest fires. ICT-based networks of cameras and sensors and even satellite-based solutions were developed and used in the last decades. These solutions have greatly decreased the directinvolvement of humans in the forest firedetection process, but have also provento be expensive and hardtomaintain.
3.	Novelty/Uniqueness	Optical/thermal cameras deployed on theobservation towers together with the othersensors such as smoke, temperature, andhumidity sensors might detect the hazards inthe closed environment rather than in the openenvironment as these sensors need vicinity tothe fire or smoke. The information obtainedthroughthesesensorsis not appropriate. Distance covered by these methods could belimited, and to cover a large area, more sensorshave to be deployed that might incur expenses. Through the deployment of UAV, large areascould be covered, and the images with highspatial and temporal resolutions could becapturedproperly. Theoperational costisvery lowwhen comparedwith the othermethods.

1	Social mast / Customor Satisfaction	Same of those events include heat
4.	SocialImpact/ CustomerSatisfaction	Some of these events include heat
		waves,droughts, dust storms, floods,
		hurricanes, andwildfires. Wildfires have
		extreme consequenceson local and global
		ecosystems and causeserious damages to
		infrastructure, injuries, andlosses in human
		lives; therefore, fire detectionand the accurate
		monitoring of the disturbancetype, size, and
		impact over large areas isbecoming increasingly
		important. To this end, strong efforts have been
		made to avoid ormitigate such consequences by
		early firedetection or fire risk mapping.
		Traditionally,forest fires were mainly detected
		by humanobservation from fire lookout towers
		andinvolved only primitive tools, such as
		theOsborne fire Finder; however, this approach
		isinefficient, as it is prone to human error
		andfatigue. On the other hand,
		conventionalsensors for the detection of heat,
		smoke, flame, and gas typically take time for the
		particles toreach the point of sensors and
		activate them. Inaddition, the range of such
		sensors is relativelysmall,hence, alarge
		numberofsensorsneedto
		be installedtocoverlargeareas
5.	BusinessModel(RevenueModel)	This strives many researchers to pay attentionin
٥.	Businessiviouei(Nevenueiviouei)	many domains where they work in
		theprocessing of surveillance video streams so
		thatabnormal or unusual actions could be
		detected.The usage of UAVs is recommended in
		thedetection of forest fire due to the high
		mobilityandensuresthe coverageareas atvarious
		altitudes andlocations atalowcost.
	Cooledith of the Columbia	
6.	Scalabilityofthe Solution	Hence, an efficient and scalable UAV is used
		fordetection. This work aims in developing the
		3Dmodel for the captured scene. YOLOv4
		tinynetwork is deployed to detect the fire.
		Theaccuracyofthedetectionrateachievedthroug
		h this model is 91%. The proposed
		modeloutperforms the other existing
		techniques interms of detecting in the early
		stage. However,this model is sensitive to the
		forest with densefogs and clouds. This is
		because smoke appearsas the same as fog, and
		the model maymisclassify the fog as smoke. As
		our futureworks, focus to meet practical
		detection andmeet the necessity of early
		detection
		includingthegenerationofthemixedrealitymodel
		ofthe forest fire area that gives more
		information, and prevention analysis will be
		made easy.
		The3Dmodellingtechniquespresentedin this
		paper can also be extended to various
		naturaldisaster predictionmodels.
<u> </u>	1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2