Amendments to the Claims

Amendments are shown with <u>additions</u> and deletions or [[deletions]] as useful for clarity. This listing will replace are prior versions and listings of the claims in the application.

We Claim:

Claim 1. (Withdrawn) A method of controlling ectoparasites on a mammal comprising administering to said mammal a compound of formula I

$$R_{11}$$
 R_{12}
 R_{13}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{7}

wherein

R₁ is hydrogen, halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, $SO_2NR_2R_3$, C_1-C_6 -alkyl, halo- C_1-C_6 -alkyl C_1-C_6 -alkoxy, halo- C_1-C_6 -alkoxy, C_2-C_6 -alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkysulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, NR₂R₃, unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H,SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆alkenylthio, halo- C_2 - C_6 -alkenylthio, C_2 - C_6 -alkenylsulfinyl, halo- C_2 - C_6 -alkenylsulfinyl, C_2 - C_6 alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl and NR₂R₃:

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, formyl, C_1 - C_6 -alkylcarbonyl, halo- C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, halo- C_1 - C_6 -alkoxycarbonyl, C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl or unsubstituted or one-to five-fold substituted benzyl, the substituents selected from the group consisting of halogen cyano, OH, SH NO2, COOH, COOR2, CONH2, CONR2R3, SO3H, SO2NR2R3, C1-C6-alkyl, halo-C1-C6-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆alkylsulfonyl, C₂-C₆-Alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆alkenylsulfinyl, C₂-C₆-alkenylsulfonyl and halo-C₂-C₆-alkenylsulfonyl; R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, cyano, nitro, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁- C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyl, halo- C_2 - C_6 -alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo- C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 -alkylsulfinyl, halo- C_1 -C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₂-C₆-alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆alkenylsulfonyl, C_1 - C_6 -alkylamino, di- C_1 - C_6 -alkylamino, C_1 - C_6 -alkylsulfonylamino, halo- C_1 - C_6 alkylsulfonylamino, C₁-C₆-alkylcarbonyl, halo-C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₁-C₆alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl, or unsubstituted or one-to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyl, halo- C_2 - C_6 -alkenyl, C_2 -C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆alkylsulfonyl, halo- C_1 - C_6 -alkylsulfonyl, C_2 - C_6 -alkenylthio, halo- C_2 - C_6 -alkenylthio, C_2 - C_6 alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl and NR₂R₃;

 X_1 and X_2 , independently of one another, are $C(R_{14})(R_{15})$, NR_{14} , O, S, SO or SO_2 ; and

 R_{14} and R_{15} , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl or halo- C_1 - C_6 -alkylcarbonyl.

Claim 2. (Withdrawn) The method of claim 1, wherein

 R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio, C_1 - C_6 -alkylthio.

Claim 3. (Withdrawn) The method of claim 1, wherein R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy or halo- C_1 - C_6 alkoxy.

Claim 4. (Withdrawn) The method of claim 1, wherein R_1 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy.

Claim 5. (Withdrawn) The method of claim 1, wherein

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkylaminocarbonyl, di- C_1 - C_6 -alkylaminocarbonyl or unsubstituted or one- to five-fold substituted benzyl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 alkenyl, halo- C_2 - C_6 -alkenyl, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio, C_2 - C_6 -alkenyloxy, halo- C_2 - C_6 alkenyloxy, C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyl, halo- C_1 - C_6 -alkylsulfonyl, C_2 - C_6 -alkenylsulfonyl, halo- C_2 - C_6 -alkenylsulfonyl, halo- C_2 - C_6 -alkenylsulfonyl, halo- C_2 - C_6 -alkenylsulfonyl, C_2 - C_6 -alkenylsulfonyl, halo- C_2 - C_6 -alke

Claim 6. (Withdrawn) The method of claim 1, wherein R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl or benzyl.

Claim 7. (Withdrawn) The method of claim 1, wherein R_2 and R_3 independently of one another, signify hydrogen, C_1 - C_2 -alkyl, benzyl or formyl.

Claim 8. (Withdrawn) The method of claim 1, wherein

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, cyano, nitro, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkylthio or unsubstituted or one- to five-fold substituted aryl or unsubsstituted or substituted hetaryl, the substitutents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_2 - C_6 -alkenyl, halo- C_2 - C_6 -alkenyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylthio, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, halo- C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_2 - C_6 -alkenylsulfinyl, halo- C_3 - C_6 -alkenylsulfinyl, halo- C_4 - C_6 -alkenylsulfinyl, halo- C_5 - C_6 -alkenylsulfinyl, halo- C_7 - C_6 -alkenylsulfinyl, halo-

Claim 9. (Withdrawn) The method of claim 1, wherein R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_4 -alkyl, halo- C_1 - C_4 -alkoxy or halo- C_1 - C_4 -alkoxy.

Claim 10. (Withdrawn) The method of claim 1, wherein R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_2 -alkyl or halo- C_1 - C_2 -alkyl.

Claim 11. (Withdrawn) The method of claim 1, wherein R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro or CF_3 .

Claim 12. (Withdrawn) The method of claim 1, wherein X_1 and X_2 , independently of one another, are NR_{14} , O or S.

Claim 13. (Withdrawn) The method of claim 1, wherein X_1 and X_2 , independently of one another, are NH, O or S.

Claim 14. (Withdrawn) The method of claim 1, wherein X_1 and X_2 are O.

Claim 15. (Withdrawn) The method of claim 1, wherein R₁₄ and R₁₅, independently of one another, signify hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄-alkylcarbonyl.

Claim 16. (Withdrawn) The method of claim 1, wherein R₁₄ and R₁₅, independently of one another, signify hydrogen or C₁-C₄-alkyl.

Claim 17. (Withdrawn) The method of claim 1, wherein R_{14} and R_{15} signify hydrogen.

Claim 18. (Withdrawn) The method of claim 1, wherein

 R_1 is hydrogen, halogen, NO₂, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio, C_1 - C_6 -alkylthio;

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkylaminocarbonyl, di- C_1 - C_6 -alkylaminocarbonyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, cyano, nitro, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 alkoxy, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkylthio or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyl, halo- C_2 - C_6 -alkenyl, C_2 - C_6 -alkenyloxy, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, halo- C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyl, halo- C_1 - C_6 -alkylsulfonyl, C_2 - C_6 -alkylsulfonyl, halo- C_1 - C_6 -alkylsulfonyl, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alkylsulfonyl, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alkylsulfonyl, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alkenylthio, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alkenylthio, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alkenylthio, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alkenylthio, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alkenylthio, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alkenylthio, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alkenylthio, C_2 - C_6 -alkenylthio, halo- C_1 - C_6 -alk

alkenylsulfinyl, halo- C_2 - C_6 -alkenylsulfinyl, C_2 - C_6 -alkenylsulfonyl, halo- C_2 - C_6 -alkenylsulfonyl and NR_2R_3 ;

 X_1 and X_2 , independently of one another, are NR₁₄, O or S; and R₁₄ signifies hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄-alkylcarbonyl.

Claim 19. (Withdrawn) The method of claim 1, wherein

 R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy or halo- C_1 - C_6 -alkoxy; R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_4 -alkyl, halo- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or halo- C_1 - C_4 -alkoxy; and X_1 and X_2 , independently of one another, are NH, O or S.

Claim 20. (Withdrawn) The method of claim 1, wherein

R₁ is hydrogen, C₁-C₆-alkyl or C₁-C₆-alkoxy;

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - C_2 -alkyl, formyl or benzyl; R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, nitro, C_1 - C_2 -alkyl or halo- C_1 - C_2 -alky; and X_1 and X_2 are O.

Claim 21. (Withdrawn) The method of claim 1, wherein

 R_1 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₂-alkyl, formyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} independently of one another, are hydrogen, halogen, nitro or CF_3 ; and

X₁ and X₂ are O.

Claim 22. (Currently amended) An ectoparasiticidal composition <u>for administration to a non-human animal</u> comprising a compound of formula I

$$R_{11}$$

$$R_{12}$$

$$R_{13}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{1}$$

$$R_{3}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{1}$$

wherein

R₁ is hydrogen, halogen, cyano, OH, SH, No₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, $SO_2NR_2R_3$, C_1-C_6 -alkyl, halo- C_1-C_6 -alkyl, C_1-C_6 -alkoxy; halo- C_1-C_6 -alkoxy, C_2 - C_6 -alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆cycloalkyl, C₃-C₆-cycloalkyloxy, halo- C_3 - C_6 -cycloalkyloxy, C_3 C $_6$ -cycloalkylthio, C_2 - C_6 -alkenyloxy, halo- C_2 - C_6 -alkenyloxy, C_1 - C_6 alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁C₆-alkylsulfonyloxy, C₁-C₆alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfinyl, alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl, NR₂R₃, unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxyl, halo-C₁-C₆-alkoxyl, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, C₂- C_6 -alkinyl, C_3 - C_6 ,-cycloalkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio, C_2 -C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆alkylthio, halo- C₁-C₆-alkylthio, C₁-C₆-alkylthio, alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl and NR_2R_3 ;

 R_2 and R_3 , independently of one another, signify hydrogen, $C_1\text{-}C_6\text{-}alkyl$, halo- $C_1\text{-}C_6\text{-}alkyl$, formyl, $C_1\text{-}C_6\text{-}alkyl$ carbonyl, halo- $C_1\text{-}C_6\text{-}alkyl$ carbonyl, $C_1\text{-}C_6\text{-}alk$ oxycarbonyl, halo- $C_1\text{-}C_6\text{-}alk$ oxycarbonyl, $C_1\text{-}C_6\text{-}alk$ ylaminocarbonyl or unsubstituted or one-to five-fold substituted benzyl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, $C_1\text{-}C_6\text{-}alkyl$, halo- $C_1\text{-}C_6\text{-}alkyl$, $C_1\text{-}C_6\text{-}alk$ oxy, halo- $C_1\text{-}C_6\text{-}alk$ oxy, $C_2\text{-}C_6\text{-}alk$ enyl, halo- $C_2\text{-}C_6\text{-}alk$ enyl, $C_2\text{-}C_6\text{-}alk$ enyl, $C_3\text{-}C_6\text{-}c$ ycloalkyl, halo- $C_3\text{-}C_6\text{-}c$ ycloalkyl, $C_3\text{-}C_6\text{-}c$ ycloalkyloxy, $C_3\text{-}C_6\text{-}c$ ycloalkylthio, $C_1\text{-}C_6\text{-}alk$ ylsulfonyloxy, halo- $C_1\text{-}C_6\text{-}alk$ ylsulfonyl, halo- $C_1\text{-}C_6\text{-}alk$ ylsulfonyl

alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆alkenylsulfinyl, C₂-C₆-alkenylsulfonyl and halo-C₂-C₆-alkenylsulfonyl; R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, cyano, nitro, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C₁-C₆-alkyl, halo-C₁-C₆-alkyl, C₁-C₆-alkoxy, halo-C₁-C₆-alkoxy, C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, c₁-C₆-alkenyl, halo-C₂-C₆-alkenyl, halo-C₂-C₆-alkenyl, halo-C₁-C₆-alkenyl, halo-C₁-C₆-alkenyl, halo-C₂-C₆-alkenyl, halo-C₂-C₆ C₆-alkinyl, C₃-C₆-cycloalkyl, C₂-C₆-alkenyloxy, halo-c₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆alkylthio, C_1 - C_6 -alkylsulfonyloxy, halo- C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-C₆-alkenylthio, halo-C₂-C₆alkenylthio, C₂-C₆-alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆alkenylsulfonyl, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, C₁-C₆-alkylsulfonylamino, halo-C₁-C₆alkylsulfonylamino, C_1 - C_6 -alkylcarbonyl, halo- C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 alkylaminocarbonyl, di-C₁-C₆-alkylaminocarbonyl, or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, $SO_2NR_2R_3$, C_1-C_6 -alkyl, halo- C_1-C_6 -alkyl, C_1-C_6 -alkoxy, halo- C_1-C_6 -alkoxy, C_2-C_6 -alkenyl, halo-C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₆-cycloalkyl, halo-C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆cycloalkythio, C₂-C₆-alkenyloxy, halo-C₂-C₆-alkenyloxy, C₁-C₆-alkylthio, halo-C₁-C₆-alkylthio, C₁-C₆-alkylsulfonyloxy, halo-C₁-C₆-alkylsulfonyloxy, C₁-C₆-alkylsulfinyl, halo-C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, halo-C₁-C₆-alkylsulfonyl, C₂-X₆-alkenylthio, halo-C₂-C₆-alkenylthio, C₂-C₆alkenylsulfinyl, halo-C₂-C₆-alkenylsulfinyl, C₂-C₆-alkenylsulfonyl, halo-C₂-C₆-alkenylsulfonyl and NR₂R₃;

 X_1 and X_2 , independently of one another, are $C(R_{14})(R_{15})$, NR_{14} , O, S, SO or SO_2 ; and R_{14} and R_{15} , independently of one another, signify hydrogen, C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl;

and at least one of a physiologically acceptable carrier or dispersant.

Claim 23. (Previously presented) The ectoparasitical composition according to claim 22 wherein said composition is in a pour-on or spot-on formulation.

Claim 24. (Previously withdrawn; Currently amended) A method of controlling ectoparasites comprising administering an effective amount of at least one compound of formula I a composition according to claim [[1]] 22 to the habitat of the parasites.

Claims 25-26. (Cancelled)

Claim 27. (Currently amended) An ectoparasitical composition for administration to a non-human animal comprising a compound of formula I

$$R_{11}$$
 R_{12}
 R_{13}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{11}
 R_{12}
 R_{13}
 R_{2}
 R_{3}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{7}

wherein R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio, C_1 - C_6 -alkylthio;

 R_2 and R_3 , independently of one another, signify hydrogen, C_1 - X_6 -alkyl, formyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkylaminocarbonyl, di- C_1 - C_6 -alkylaminocarbonyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen, halogen, cyano, nitro, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkylthio, halo- C_1 - C_6 -alkylthio or unsubstituted or one- to five-fold substituted aryl or unsubstituted or substituted hetaryl, the substituents selected from the group consisting of halogen, cyano, OH, SH, NO₂, COOH, COOR₂, CONH₂, CONR₂R₃, SO₃H, SO₂NR₂R₃, C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkoxy, halo- C_2 - C_6 -alkenyl, C_3 - C_6 -cycloalkyl, halo- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyl, halo- C_2 - C_6 -alkenyloxy, halo- C_2 - C_6 -alkenyloxy, C_1 - C_6 -alkylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_2 - C_6 -alkenylsulfinyl, halo- C_1 - C_6 -alkylsulfinyl, C_2 - C_6 -alkenylsulfinyl, halo- C_3 - C_6 -alkenylsul

 X_1 and X_2 , independently of one another, are NR₁₄, O or S;

 R_{14} signifies hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl; and at lest one of a physiologically acceptable carrier or dispersant.

Claim 28. (Previously presented) The composition of claim 27, wherein

 R_1 is hydrogen, halogen, NO_2 , C_1 - C_6 -alkyl, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy or halo- C_1 - C_6 -alkoxy; R_1 and R_3 , independently of one another, signify hydrogen, C_1 - C_4 -alkyl, formyl, C_1 - C_4 -alkylcarbonyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen halogen, nitro, C_1 - C_4 -alkyl, halo- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or halo- C_1 - C_4 -alkoxy; and X_1 and X_2 , independently of one another, are NH, O or S.

Claim 29. (Previously presented) The composition of claim 27, wherein

 R_1 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₂-alkyl, formyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen halogen, nitro, C_1 - C_2 -alkyl or halo- C_1 - C_2 -alkyl; and

 X_1 and X_2 are O.

Claim 30. (Previously presented) The composition of claim 27, wherein

 R_1 is hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

R₂ and R₃, independently of one another, signify hydrogen, C₁-C₂-alkyl, formyl or benzyl;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are hydrogen,

halogen, nitro or CF₃; and

 X_1 and X_2 are O.

Claim 31. (New) The composition of claim 27, wherein

 R_1 is hydrogen, C_1 - C_6 -alkyl, or C_1 - C_6 -alkoxy;

each of R₂ and R₃, independently of one another, signify hydrogen, C₁-C₂-alkyl, or formyl;

each of R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} , independently of one another, are

hydrogen, fluorine, or CF₃; and

each of X_1 and X_2 are O.

Claim 32. (New) The composition of claim 31, wherein R₂ and R₃ each signify hydrogen.

Claim 33. (New) The composition of claim 32, wherein R₁ is hydrogen.

US Application Serial Number 10/591,624 Attorney Docket Number 33596-US-PCT Reply February 24, 2009

Claim 34. (New) The composition of claim 27, wherein the compound is 4,6-bis-(4-fluoro-3-(trifluoromethyl)phenoxy)-pyrimidin-5-ylamine.

Claim 35. (New) The composition of claim 27, wherein the endoparasites are ticks and the non-human mammal is a warm-blooded animal.

Claim 36. (New) The composition of claim 27, wherein the composition is formulated as a pouron or spot-on formulation, wherein said formulation is applied locally on a small area of the nonhuman animal but gives protection or treatment to almost any part of said non-human animal.