PHẦN I: ĐẠI SỐ

A. KIẾN THỨC CẦN NHỚ.

1. Điều kiên để căn thức có nghĩa.

 \sqrt{A} có nghĩa khi $A \ge 0$

2. Các công thức biến đổi căn thức.

a.
$$\sqrt{A^2} = |A|$$

b.
$$\sqrt{AB} = \sqrt{A} \cdot \sqrt{B}$$
 $(A \ge 0; B \ge 0)$

c.
$$\sqrt{\frac{A}{B}} = \frac{\sqrt{A}}{\sqrt{B}}$$
 $(A \ge 0; B > 0)$ d. $\sqrt{A^2B} = |A|\sqrt{B}$ $(B \ge 0)$

d.
$$\sqrt{A^2B} = |A|\sqrt{B}$$
 $(B \ge 0)$

e.
$$A\sqrt{B} = -\sqrt{A^2B}$$
 $(A < 0; B \ge 0)$

f.
$$\sqrt{\frac{A}{B}} = \frac{1}{|B|} \sqrt{AB}$$
 $(AB \ge 0; B \ne 0)$ g. $\frac{A}{\sqrt{B}} = \frac{A\sqrt{B}}{B}$ $(B > 0)$

g.
$$\frac{A}{\sqrt{B}} = \frac{A\sqrt{B}}{B}$$
 $(B > 0)$

h.
$$\frac{C}{\sqrt{A} \pm B} = \frac{C(\sqrt{A} \mp B)}{A - B^2} \quad (A \ge 0; A \ne B^2)$$

i.
$$\frac{C}{\sqrt{A} \pm \sqrt{B}} = \frac{C(\sqrt{A} \mp \sqrt{B})}{A - B^2} \quad (A \ge 0; B \ge 0; A \ne B)$$

3. Hàm số y = ax + b ($a \neq 0$)

- Tính chất:
- + Hàm số đồng biến trên R khi a > 0.
- + Hàm số nghich biến trên R khi a < 0.
- Đồ thị:

Đồ thị là một đường thẳng đi qua điểm A(0;b); B(-b/a;0).

4. Hàm số $y = ax^2$ ($a \neq 0$)

- Tính chất:
- + Nếu a > 0 hàm số nghich biến khi x < 0 và đồng biến khi x > 0.
- + Nếu a < 0 hàm số đồng biến khi x < 0 và nghịch biến khi x > 0.
- Đồ thi:

Đồ thị là một đường cong Parabol đi qua gốc toạ độ O(0;0).

- + Nếu a > 0 thì đồ thi nằm phía trên truc hoành.
- + Nếu a < 0 thì đồ thị nằm phía dưới trục hoành.

5. Vị trí tương đối của hai đường thắng

Xét đường thẳng y = ax + b (d) và y = a'x + b' (d')

- (d) và (d') cắt nhau \Leftrightarrow a \neq a'
- (d) // (d') \Leftrightarrow a = a' và b \neq b'
- $(d) \equiv (d') \Leftrightarrow a = a' \text{ và } b = b'$

6. Vị trí tương đối của đường thẳng và đường cong.

Xét đường thẳng y = ax + b (d) và $y = ax^2$ (P)

- (d) và (P) cắt nhau tai hai điểm
- (d) tiếp xúc với (P) tai một điểm
- (d) và (P) không có điểm chung

7. Phương trình bậc hai.

Xét phương trình bậc hai $ax^2 + bx + c = 0$ ($a \ne 0$)

Công thức nghiệm	Công thức nghiệm thu gọn
$\Delta = b^2 - 4ac$	$\Delta' = b'^2 - ac \ v\acute{o}i \ b = 2b'$
Nếu $\Delta > 0$: Phương trình có hai nghiệm	- Nếu $\Delta' > 0$: Phương trình có hai nghiệm
phân biệt:	phân biệt:
$x_1 = \frac{-b + \sqrt{\Delta}}{2a} \; ; \; x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ Nếu $\Delta = 0$: Phương trình có nghiệm kép:	$x_1 = \frac{-b' + \sqrt{\Delta}}{a} \; ; \; x_2 = \frac{-b' - \sqrt{\Delta}}{a}$ - Nếu $\Delta' = 0$: Phương trình có nghiệm kép:
$x_1 = x_2 = \frac{-b}{2a}$ Nếu $\Delta < 0$: Phương trình vô nghiệm	$x_1 = x_2 = \frac{-b'}{a}$ - Nếu $\Delta' < 0$: Phương trình vô nghiệm

8. Hệ thức Viet và ứng dụng.

- Hệ thức Viet:

Nếu x_1 , x_2 là nghiệm của phương trình bậc hai $ax^2 + bx + c = 0$ ($a \ne 0$) thì:

$$\begin{cases} S = x_1 + x_2 = \frac{-b}{a} \\ P = x_1 \cdot x_2 = \frac{c}{a} \end{cases}$$

- Một số ứng dụng:

+ Tìm hai số u và v biết u + v = S; u.v = P ta giải phương trình:

$$x^2 - Sx + P = 0$$

(Điều kiện $S^2 - 4P \ge 0$)

+ Nhẩm nghiệm của phương trình bậc hai $ax^2 + bx + c = 0$ ($a \ne 0$)

Nếu a + b + c = 0 thì phương trình có hai nghiệm:

$$x_1 = 1$$
; $x_2 = \frac{c}{a}$

Nếu a - b + c = 0 thì phương trình có hai nghiệm:

$$x_1 = -1$$
; $x_2 = -\frac{c}{a}$

9. Giải bài toán bằng cách lập phương trình, hệ phương trình

Bước 1: Lập phương trình hoặc hệ phương trình

Bước 2: Giải phương trình hoặc hệ phương trình

Bước 3: Kiểm tra các nghiệm của phương trình hoặc hệ phương trình nghiệm nào thích hợp với bài toán và kết luận

B. CÁC DẠNG BÀI

Dạng 1: Rút gọn biểu thức

Bài toán: Rút gọn biểu thức A

- Để rút gọn biểu thức A ta thực hiện các bước sau:
- Quy đồng mẫu thức (nếu có)
- Đưa bót thừa số ra ngoài căn thức (nếu có)
- Trục căn thức ở mẫu (nếu có)
- Thực hiện các phép tính: luỹ thừa, khai căn, nhân chia....
- Cộng trừ các số hạng đồng dạng.

Dạng 2: Bài toán tính toán

Bài toán 1: Tính giá trị của biểu thức A.

Tính A mà không có điều kiện kèm theo đồng nghĩa với bài toán *Rút gọn biểu thức A*

<u>Bài toán 2:</u> Tính giá trị của biểu thức A(x) biết x = a

- Cách giải:
- Rút gọn biểu thức A(x).
- Thay x = a vào biểu thức rút gọn.

Dạng 3: Chứng minh đẳng thức

<u>Bài toán:</u> Chứng minh đẳng thức A = B

- Một số phương pháp chứng minh:
- Phương pháp 1: Dựa vào định nghĩa.

$$A = B \Leftrightarrow A - B = 0$$

- Phương pháp 2: Biến đổi trực tiếp.

$$A = A_1 = A_2 = ... = B$$

- Phương pháp 3: Phương pháp so sánh.

$$A = A_1 = A_2 = ... = C$$

 $B = B_1 = B_2 = ... = C$ $A = B$

- Phương pháp 4: Phương pháp tương đương.

$$A = B \Leftrightarrow A' = B' \Leftrightarrow A'' = B'' \Leftrightarrow \Leftrightarrow (*)$$
 (*) đúng do đó $A = B$

- Phương pháp 5: Phương pháp sử dụng giả thiết.
- Phương pháp 6: Phương pháp quy nạp.
- Phương pháp 7: Phương pháp dùng biểu thức phụ.

Dạng 4: Chứng minh bất đẳng thức

Bài toán: Chứng minh bất đẳng thức A > B

- Thột số bất đẳng thức quan trọng:
- Bất đẳng thức Cosi:

$$\frac{a_1 + a_2 + a_3 + ... + a_n}{n} \ge \sqrt[n]{a_1.a_2.a_3...a_n} \quad (v\acute{ot} \ a_1.a_2.a_3...a_n \ge 0)$$

Dấu "=" xảy ra khi và chỉ khi: $a_1 = a_2 = a_3 = ... = a_n$

- Bất đẳng thức Bunhia Côpxki:

Với mọi số
$$a_1$$
; a_2 ; a_3 ;...; a_1 ; b_1 ; b_2 ; b_3 ;...bn

$$(a_1b_1 + a_2b_2 + a_3b_3 + \dots + a_nb_n)^2 \le (a_1^2 + a_2^2 + a_3^2 + \dots + a_n^2)(b_1^2 + b_2^2 + b_3^2 + \dots + b_n^2)$$

Dấu "=" xảy ra khi và chỉ khi:
$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \dots = \frac{a_n}{b_n}$$

Thột số phương pháp chứng minh:

- Phương pháp 1: Dựa vào định nghĩa

$$A > B \Leftrightarrow A - B > 0$$

- Phương pháp 2: Biến đổi trực tiếp

$$A = A_1 = A_2 = ... = B + M^2 > B \text{ n\'eu } M \neq 0$$

- Phương pháp 3: Phương pháp tương đương

$$A > B \Leftrightarrow A' > B' \Leftrightarrow A'' > B'' \Leftrightarrow \dots \Leftrightarrow (*)$$

(*) đúng do đó A > B

- Phương pháp 4: Phương pháp dùng tính chất bắc cầu

$$A > C$$
 và $C > B \rightarrow A > B$

- Phương pháp 5: Phương pháp phản chứng

Để chứng minh A > B ta giả sử B > A và dùng các phép biến đổi tương đương để dẫn đến điều vô lí khi đó ta kết luận A > B.

- Phương pháp 6: Phương pháp sử dụng giả thiết.
- Phương pháp 7: Phương pháp quy nạp.
- Phương pháp 8: Phương pháp dùng biểu thức phụ.

Dạng 5: Bài toán liên quan tới phương trình bậc hai

Bài toán 1: Giải phương trình bâc hai $ax^2 + bx + c = 0$ ($a \ne 0$)

Các phương pháp giải:

- Phương pháp 1: Phân tích đưa về phương trình tích.
- Phương pháp 2: Dùng kiến thức về căn bậc hai

$$x^2 = a \rightarrow x = \pm \sqrt{a}$$

- Phương pháp 3: Dùng công thức nghiệm

Ta có
$$\Delta = b^2 - 4ac$$

+ Nếu $\Delta > 0$: Phương trình có hai nghiệm phân biệt:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
; $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

+ Nếu $\Delta = 0$: Phương trình có nghiệm kép

$$x_1 = x_2 = \frac{-b}{2a}$$

- + Nếu Δ < 0 : Phương trình vô nghiệm
- Phương pháp 4: Dùng công thức nghiệm thu gọn

Ta có
$$\Delta' = b'^2$$
 - ac với $b = 2b'$

+ Nếu $\Delta' > 0$: Phương trình có hai nghiệm phân biệt:

$$x_1 = \frac{-b' + \sqrt{\Delta'}}{a}$$
; $x_2 = \frac{-b' - \sqrt{\Delta'}}{a}$

+ Nếu $\Delta'=0$: Phương trình có nghiệm kép

$$x_1 = x_2 = \frac{-b'}{a}$$

- + Nếu Δ' < 0 : Phương trình vô nghiệm
- Phương pháp 5: Nhẫm nghiệm nhờ định lí Vi-et.

Nếu x_1 , x_2 là nghiệm của phương trình bậc hai $ax^2 + bx + c = 0$ ($a \ne 0$) thì:

$$\begin{cases} x_1 + x_2 = \frac{-b}{a} \\ x_1 \cdot x_2 = \frac{c}{a} \end{cases}$$

<u>**Chú ý:**</u> Nếu a, c trái dấu tức là a.c < 0 thì phương trình luôn có hai nghiệm phân biệt.

Bài toán 2: Biện luận theo m sự có 1

 $\mathbf{ax}^2 + \mathbf{bx} + \mathbf{c} = \mathbf{0}$ (trong đó a, b, c phụ thuộc tham số m).

- Xét hệ số a: Có thể có 2 khả năng
- a. Trường hợp a = 0 với vài giá trị nào đó của m.

Giả sử $a = 0 \Leftrightarrow m = m_0$ ta có:

- (*) trở thành phương trình bậc nhất ax + c = 0 (**)
- + Nếu $b \neq 0$ với $m = m_0$: (**) có một nghiệm x = -c/b
- + Nếu b = 0 và c = 0 với m = m_0 : (**) vô định \Leftrightarrow (*) vô định
- + Nếu b = 0 và $c \neq 0$ với m = m_0 : (**) vô nghiệm \Leftrightarrow (*) vô nghiệm
- b. Trường hợp a \neq 0: Tính Δ hoặc Δ '
- + Tính $\Delta = b^2$ 4ac

Nếu $\Delta > 0$: Phương trình có hai nghiệm phân biệt:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
; $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

Nếu $\Delta = 0$: Phương trình có nghiệm kép : $x_1 = x_2 = \frac{-b}{2a}$

Nếu Δ < 0 : Phương trình vô nghiệm

+ Tính $\Delta' = b'^2$ - ac với b = 2b'

Nếu $\Delta' > 0$: Phương trình có hai nghiệm phân biệt:

$$x_1 = \frac{-b' + \sqrt{\Delta'}}{a}$$
; $x_2 = \frac{-b' - \sqrt{\Delta'}}{a}$

Nếu $\Delta' = 0$: Phương trình có nghiệm kép: $x_1 = x_2 = \frac{-b'}{a}$

Nếu $\Delta' < 0$: Phương trình vô nghiệm

- Ghi tóm tắt phần biện luận trên.

Bài toán 3: Tìm điều kiện của tham số m để phương trình bậc hai

 $ax^2 + bx + c = 0$ (trong đó a, b, c phụ thuộc tham số m) có nghiệm.

- Có hai khả năng để phương trình bậc hai $ax^2 + bx + c = 0$ có nghiệm:
 - 1. Hoặc a = 0, $b \neq 0$
 - 2. Hoặc $a \neq 0$, $\Delta \geq 0$ hoặc $\Delta' \geq 0$

Tập hợp các giá trị m là toàn bộ các giá trị m thoả mãn điều kiện 1 hoặc điều kiện 2.

<u>Bài toán 4:</u> Tìm điều kiện của tham số m để phương trình bậc hai $ax^2 + bx + c = 0$ (a, b, c phụ thuộc tham số m) có 2 nghiệm phân biệt.

Thiều kiện có hai nghiệm phân biệt $\begin{cases} a \neq 0 \\ \Delta > 0 \end{cases}$ hoặc $\begin{cases} a \neq 0 \\ \Delta > 0 \end{cases}$

<u>Bài toán 5:</u> Tìm điều kiện của tham số m để phương trình bậc hai $ax^2 + bx + c = 0$ (trong đó a, b, c phụ thuộc tham số m) có 1 nghiệm.

Diều kiện có một nghiệm:

$$\begin{cases} a = 0 \\ b \neq 0 \end{cases} \text{hoặc} \begin{cases} a \neq 0 \\ \Delta = 0 \end{cases} \text{hoặc} \begin{cases} a \neq 0 \\ \Delta = 0 \end{cases}$$

<u>Bài toán 6:</u> Tìm điều kiện của tham số $ax^2 + bx + c = 0$ (trong đó a, b, c phụ thuộc tham số m) có nghiệm kép.

Thiều kiện có nghiệm kép: $\begin{cases} a \neq 0 \\ \Delta = 0 \end{cases}$ hoặc $\begin{cases} a \neq 0 \\ \Delta' = 0 \end{cases}$

Bài toán 7: Tìm điều kiện của tham số m để phương trình bậc hai $\frac{\overline{ax^2 + bx + c}}{ax^2 + bx + c} = 0$ (trong đó a, b, c phụ thuộc tham số m) vô nghiệm.

T Điều kiện có một nghiệm: $\begin{cases} a \neq 0 \\ \Delta < 0 \end{cases} \text{hoặc } \begin{cases} a \neq 0 \\ \Delta < 0 \end{cases}$

Bài toán 8: Tìm điều kiện của tham số m để phương trình bậc hai $\frac{\mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} = \mathbf{0}}{\mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}}$ (trong đó a, b, c phụ thuộc tham số m) có 1 nghiệm.

Thiều kiện có một nghiệm: $\begin{cases} a = 0 \\ b \neq 0 \end{cases}$ hoặc $\begin{cases} a \neq 0 \\ \Delta = 0 \end{cases}$ hoặc $\begin{cases} a \neq 0 \\ \Delta = 0 \end{cases}$

Bài toán 9: Tìm điều kiện của tham số m để phương trình bậc hai $\frac{-ax^2 + bx + c}{ax^2 + bx + c} = 0$ (a, b, c phụ thuộc tham số m) có hai nghiệm cùng dấu.

Thiều kiện có hai nghiệm cùng dấu: $\begin{cases} \Delta \ge 0 \\ P = \frac{c}{a} > 0 \end{cases} \text{ hoặc } \begin{cases} \Delta' \ge 0 \\ P = \frac{c}{a} > 0 \end{cases}$

Bài toán 10: Tìm điều kiện của tham số m để phương trình bậc hai $\overline{ax^2 + bx + c} = 0$ (a, b, c phụ thuộc tham số m) có 2 nghiệm dương.

 $\begin{cases} \Delta \ge 0 \\ P = \frac{c}{a} > 0 \quad \text{hoặc} \end{cases} \begin{cases} \Delta \ge 0 \\ P = \frac{c}{a} > 0 \end{cases}$ $S = -\frac{b}{a} > 0 \qquad S = -\frac{b}{a} > 0$ ൌ Điều kiện có hai nghiệm dương:

Bài toán 11: Tìm điều kiện của tham số m để phương trình bậc hai $ax^2 + bx + c = 0$ (trong đó a, b, c phụ thuộc tham số m) có 2 nghiệm âm. Điều kiên có hai nghiêm âm:

$$\begin{cases} \Delta \ge 0 \\ P = \frac{c}{a} > 0 \quad \text{hoặc} \end{cases} \begin{cases} \Delta' \ge 0 \\ P = \frac{c}{a} > 0 \\ S = -\frac{b}{a} < 0 \end{cases}$$

Bài toán 12: Tìm điều kiện của tham số m để phương trình bậc hai $ax^2 + bx + c = 0$ (a, b, c phụ thuộc tham số m) có 2 nghiệm trái dấu. Điều kiên có hai nghiêm trái dấu:

P < 0 hoặc a và c trái dâu.

Bài toán 13: Tìm điều kiện của tham số m để phương trình bậc hai $ax^2 + bx + c = 0$ (*) (a, b, c phụ thuộc tham số m) có một nghiệm $x = x_1$. Cách giải:

- Thay $x = x_1$ vào phương trình (*) ta có: $ax_1^2 + bx_1 + c = 0 \rightarrow m$
- Thay giá trị của m vào $(*) \rightarrow x_1, x_2$
- Hoặc tính $x_2 = S x_1$ hoặc $x_2 = \frac{P}{r}$

Bài toán 14 : Tìm điều kiện của tham :

 $\overline{ax^2 + bx + c} = 0$ (a, b, c phụ thuộc tham số m) có 2 nghiệm x_1, x_2 thoả mãn các điều kiện:

a.
$$\alpha x_1 + \beta x_2 = \gamma$$
 b. $x_1^2 + x_2^2 = k$

b.
$$x_1^2 + x_2^2 = k$$

c.
$$\frac{1}{x_1} + \frac{1}{x_2} = n$$
 d. $x_1^2 + x_2^2 \ge h$ e. $x_1^3 + x_2^3 = t$

d.
$$x_1^2 + x_2^2 \ge h$$

$$e. \ x_1^3 + x_2^3 = t$$

Thiều kiện chung: $\Delta \ge 0$ hoặc $\Delta' \ge 0$ (*)

Theo định lí Viet ta có:

$$\begin{cases} x_1 + x_2 = \frac{-b}{a} = S \ (1) \\ x_1 \cdot x_2 = \frac{c}{a} = P$$
 (2)

a. Trường hợp: $\alpha x_1 + \beta x_2 = \gamma$

Giải hệ
$$\begin{cases} x_1 + x_2 = \frac{-b}{a} \\ \alpha x_1 + \beta x_2 = \gamma \end{cases} \longrightarrow x_1, x_2$$

Thay x_1, x_2 vào $(2) \rightarrow m$ Chọn các giá trị của m thoả mãn (*)

b. Trường hợp: $x_1^2 + x_2^2 = k \leftrightarrow (x_1 + x_2)^2 - 2x_1x_2 = k$

Thay
$$x_1 + x_2 = S = \frac{-b}{a}$$
 và $x_1.x_2 = P = \frac{c}{a}$ vào ta có:
 $S^2 - 2P = k \rightarrow T \text{im được giá trị của m thoả mãn (*)}$

c. Trường hợp:
$$\frac{1}{x_1} + \frac{1}{x_2} = n \leftrightarrow x_1 + x_2 = nx_1 . x_2 \leftrightarrow -b = nc$$

Giải phương trình - b = nc tìm được m thoả mãn (*)

d. Trường hợp: $x_1^2 + x_2^2 \ge h \leftrightarrow S^2 - 2P - h \ge 0$

Giải bất phương trình S^2 - 2P - $h \ge 0$ chọn m thoả mãn (*)

e. Trường hợp: $x_1^3 + x_2^3 = t \iff S^3 - 3PS = t$

Giải phương trình $S^3 - 3PS = t$ chọn m thoả mãn (*)

Bài toán 15: Tìm hai số u và v biết tổng u + v = S và tích $u \cdot v = P$ của chúng

Ta có u và v là nghiệm của phương trình:

$$x^2 - Sx + P = 0$$
 (*)
(Điều kiên $S^2 - 4P \ge 0$)

Giải phương trình (*) ta tìm được hai số u và v cần tìm.

Nội dung 6.

Giải phương trình bằng phương pháp đặt ẩn số phụ **Bài toán 1:** Giải phương trình trùng phương $ax^4 + bx^2 + c = 0$

The equation $\mathbf{E} = \mathbf{E}^2$ $\mathbf{E} = \mathbf{E}^2$ Giải phương trình bậc hai ẩn t sau đó thay vào tìm ẩn x

Dang tom tat	Bảng	tóm	tắt
--------------	------	-----	-----

Dang tom tat		
$at^2 + bt + c = 0$	$ax^4 + bx^2 + c = 0$	
vô nghiệm	vô nghiệm	
2 nghiệm âm	vô nghiệm	
nghiệm kép âm	vô nghiệm	
1 nghiệm dương	2 nghiệm đối nhau	
2 nahiôm dương	4 nghiệm	
2 nghiệm dương	2 cặp nghiệm đối nhau	

<u>Bài toán 2:</u> Giải phương trình $A(x^2 + \frac{1}{x^2}) + B(x + \frac{1}{x}) + C = 0$

$$\Rightarrow$$
 Đặt $x + \frac{1}{x} = t \Leftrightarrow x^2 - tx + 1 = 0$

Suy ra
$$t^2 = (x + \frac{1}{x})^2 = x^2 + \frac{1}{x^2} + 2 \iff x^2 + \frac{1}{x^2} = t^2 - 2$$

Thay vào phương trình ta có:
$$A(t^2-2)+Bt+C=0 \ \Leftrightarrow \ At^2+Bt+C-2A=0$$

Giải phương trình ẩn t sau đó thế vào $x + \frac{1}{x} = t$ giải tìm x.

<u>Bài toán 3:</u> Giải phương trình $A(x^2 + \frac{1}{r^2}) + B(x - \frac{1}{r}) + C = 0$

Suy ra
$$t^2 = (x - \frac{1}{x})^2 = x^2 + \frac{1}{x^2} - 2 \iff x^2 + \frac{1}{x^2} = t^2 + 2$$

Thay vào phương trình ta có:

$$A(t^2 + 2) + Bt + C = 0 \iff At^2 + Bt + C + 2A = 0$$

Giải phương trình ẩn t sau đó thế vào $x - \frac{1}{x} = t$ giải tìm x.

Bài toán 4: Giải phương trình bậc cao

- Dùng các phép biến đổi đưa phương trình bậc cao về dạng:
 - + Phương trình tích
 - + Phương trình bậc hai.

Nội dung 7:

Giải hệ phương trình

<u>Bài toán:</u> Giải hệ phương trình $\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$

- Các phương pháp giải:
 - + Phương pháp đồ thị
 - + Phương pháp cộng
 - + Phương pháp thế
 - + Phương pháp đặt ẩn phụ

Nội dung 7:

Giải phương trình vô tỉ

<u>Bài toán 1:</u> Giải phương trình dạng $\sqrt{f(x)} = g(x)$ (1)

Ta có
$$\sqrt{f(x)} = g(x) \Leftrightarrow \begin{cases} g(x) \ge 0 & (2) \\ f(x) = [g(x)]^2 & (3) \end{cases}$$

Giải (3) đối chiếu điều kiện (2) chọn nghiệm thích hợp → nghiệm của (1)

<u>Bài toán 2:</u> Giải phương trình dạng $\sqrt{f(x)} + \sqrt{h(x)} = g(x)$

🕶 Điều kiện có nghĩa của phương trình

$$\begin{cases} f(x) \ge 0 \\ h(x) \ge 0 \\ g(x) \ge 0 \end{cases}$$

Với điều kiện trên thoả mãn ta bình phương hai vế để giải tìm x.

Nội dung 8:

Giải phương trình chứa giá trị tuyệt đối

<u>Bài toán:</u> Giải phương trình dạng |f(x)| = g(x)

Phương pháp 1:
$$|f(x)| = g(x) \Leftrightarrow \begin{cases} g(x) \ge 0 \\ [f(x)]^2 = [g(x)]^2 \end{cases}$$

Phương pháp 2:
$$X \text{ \'et } f(x) \ge 0 \rightarrow f(x) = g(x)$$
 $X \text{ \'et } f(x) < 0 \rightarrow -f(x) = g(x)$

Phương pháp 3: Với $g(x) \ge 0$ ta có $f(x) = \pm g(x)$

Nội dung 9:

Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức

Bài toán: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)

Phương pháp 1: Dựa vào luỹ thừa bậc chẵn.

- Biến đổi hàm số y = f(x) sao cho:

$$y = M - [g(x)]^{2n}$$
, $n \in Z \rightarrow y \le M$

Do đó ymax = M khi g(x) = 0

- Biến đổi hàm số
$$y = f(x)$$
 sao cho:

$$y = m + [h(x)]^{2k} \quad k \in Z \rightarrow y \ge m$$

Do đó ymin = m khi
$$h(x) = 0$$

- Phương pháp 2: Dựa vào tập giá trị hàm.
- **Phương pháp 3:** Dựa vào đẳng thức.

Nội dung 10:

Các bài toán liên quan đến hàm số

* Điểm thuộc đường - đường đi qua một điểm

<u>Bài toán:</u> Cho (C) là đồ thị của hàm số y = f(x) và một điểm $A(x_A; y_A)$. Hỏi (C) có đi qua A không?

Thị (C) đi qua $A(x_A; y_A)$ khi và chỉ khi toạ độ của A nghiệm đúng phương trình của (C) $A \in (C) \Leftrightarrow y_A = f(x_A)$

Dó đó tính $f(x_A)$

Nếu $f(x_A) = y_A thì (C)$ đi qua A.

Nếu $f(x_A) \neq y_A$ thì (C) không đi qua A.

* Sự tương giao của hai đồ thị

Bài toán: Cho (C) và (L) theo thứ tự là độ thị hàm số

$$y = f(x) v \dot{a} y = g(x)$$

Hãy khảo sát sự tương giao của hai đồ thị

- Toạ độ điểm chung của (C) và (L) là nghiệm của phương trình hoành độ giao điểm: f(x) = g(x) (*)
- Nếu (*) vô nghiệm thì (C) và (L) không có điểm chung.
- Nếu (*) có nghiệm kép thì (C) và (L) tiếp xúc nhau.
- Nếu (*) có 1 nghiệm thì (C) và (L) có 1 điểm chung.
- Nếu (*) có 2 nghiệm thì (C) và (L) có 2 điểm chung.
- * Lập phương trình đường thẳng

<u>Bài toán 1:</u> Lập phương trình của đường thẳng (D) đi qua điểm $A(x_A; y_A)$ và có hệ số góc bằng k.

- Phương trình tổng quát của đường thẳng (D) là : y = ax + b (*)
- Xác định a: ta có a = k
- Xác định b: (D) đi qua A(xA;yA) nên ta có $yA = kxA + b \rightarrow b = yA kxA$
- Thay a = k; b = yA kxA vào (*) ta có phương trình của (D)

Bài toán 2: Lập phương trình của đường thẳng (D) đi qua hai điểm $A(x_A;y_A); B(x_B;y_B)$

Phương trình tổng quát của đường thẳng (D) là : y = ax + b

(D) đi qua A và B nên ta có:
$$\begin{cases} y_A = ax_A + b \\ y_B = ax_B + b \end{cases}$$

Giải hệ ta tìm được a và b suy ra phương trình của (D)

Bài toán 3: Lập phương trình của đường thẳng (D) có hệ số góc k và tiếp xúc với đường cong (C): y = f(x)

Phương trình tổng quát của đường thẳng (D) là : y = kx + b

Phương trình hoành độ điểm chung của (D) và (P) là: f(x) = kx + b (*)

Vì (D) tiếp xúc với (P) nên (*) có nghiệm kép.

Từ điều kiện này ta tìm được b và suy ra phương trình của (D)

<u>Bài toán 3:</u> Lập phương trình của đường thẳng (D) đi qua điểm $A(x_A;y_A)$ và tiếp xúc với đường cong (C): y = f(x)

Phương trình tổng quát của đường thẳng (D) là : y = kx + b

Phương trình hoành độ giao điểm của (D) và (P) là: f(x) = kx + b (*)

Vì (D) tiếp xúc với (P) nên (*) có nghiệm kép.

Từ điều kiện này ta tìm được hệ thức liên hệ giữa a và b (**)

Mặt khác: (D) qua $A(x_A; y_A)$ do đó ta có $yA = ax_A + b$ (***)

 $T\mathring{u}$ (**) $v\grave{a}$ (***) \rightarrow a $v\grave{a}$ b \rightarrow Phương trình đường thẳng (D).

PHÀN II: HÌNH HỌC

A. KIẾN THỰC CẦN NHỚ

1. Hệ thức lượng trong tam giác vuông. $b^2 = ab'$ $c^2 = ac'$

$$b^{2} = ab' c^{2} = ac'$$

$$h^{2} = b'c'$$

$$ah = bc$$

$$a^{2} = b^{2} + c^{2}$$

$$\frac{1}{h^{2}} = \frac{1}{h^{2}} + \frac{1}{c^{2}}$$

2. Tỉ số lượng giác của góc nhọn.

$$0 < \sin\alpha < 1 \qquad 0 < \cos\alpha < 1$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha} \qquad \cot g\alpha = \frac{\cos\alpha}{\sin\alpha} \qquad \sin^2\alpha + \cos^2\alpha = 1$$

$$tg\alpha.\cot g\alpha = 1 \qquad 1 + tg^2\alpha = \frac{1}{\cos^2\alpha} \qquad 1 + \cot g^2\alpha = \frac{1}{\sin^2\alpha}$$

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$1 + \cot g^2 \alpha = \frac{1}{\sin^2 \alpha}$$

3. Hệ thức về cạnh và góc trong tam giác vuông.

4. Đường tròn.

- Cách xác định: Qua ba điểm không thẳng hàng ta vẽ được một và chỉ một đường tròn.
- Tâm đối xứng, trục đối xứng: Đường tròn có một tâm đối xứng; có vô số trục đôi xứng.
 - Quan hệ vuông góc giữa đường kính và dây.

Trong một đường tròn

- + Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy
- + Đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.

- Liên hệ giữa dây và khoảng cách từ

Trong một đường tròn:

- + Hai dây bằng nhau thì cách đều tâ
- + Hai dây cách đều tâm thì bằng nhau
- + Dây nào lớn hơn thì dây đó gần tâm hơn
- + Dây nào gần tâm hơn thì dây đó lớn hơn

- Liên hệ giữa cung và dây:

Trong một đường tròn hay trong hai đường tròn bằng nhau:

- + Hai cung bằng nhau căng hai dây bằng nhau
- + Hai dây bằng nhau căng hai cung bằng nhau
- + Cung lớn hơn căng dây lớn hơn
- + Dây lớn hơn căng cung lớn hơn.

- Vị trí tương đối của đường thẳng và đường tròn:

Vị trí tương đối	Số điểm chung	Hệ thức liên hệ giữa d và R
- Đường thẳng và đường tròn cắt nhau		
	2	d < R
- Đường thẳng và đường tròn tiếp xúc nhau		
	1	d = R
- Đường thẳng và đường tròn không giao nhau		
	0	d > R

- Vị trí tương đối của đường thẳng

Vị trí tương đối	Số điểm chung	Hệ thức liên hệ giữa d và R
- Hai đường tròn cắt nhau	2	R - r < OO' < R + r
- Hai đường tròn tiếp xúc nhau + Tiếp xúc ngoài	1	OO' = R + r
+ Tiếp xúc trong		OO' = R - r
- Hai đường tròn không giao nhau + (O) và (O') ở ngoài nhau		OO' > R + r
+ (O) đựng (O')	0	OO' < R - r
+ (O) và (O') đồng tâm		OO' = 0

5. Tiếp tuyến của đường tròn

- Tính chất của tiếp tuyến: Tiếp tuyến vuông góc với bán kính đi qua tiếp điểm.
- Dấu hiệu nhận biết tiếp tuyến:
- + Đường thẳng và đường tròn chỉ có một điểm chung
- + Khoảng cách từ tâm của đường tròn đến đường thẳng bằng bán kính
- + Đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó.

- Tính chất của 2 tiếp tuyến cắt nhau

MA, MB là hai tiếp tuyến cắt nhau thì:

- + MA = MB
- + MO là phân giác của góc AMB
- + OM là phân giác của góc AOB

- Tiếp tuyến chung của hai đường tròn. đường tròn đó:

unong non uo.	
Tiếp tuyến chung ngoài	Tiếp tuyến chung trong
d 0'	0 0

Loại góc	Hình vẽ	Công thức tính số đo
1. Góc ở tâm	B O	$\widehat{AOB} = sd\widehat{AB}$
2. Góc nội tiếp	B O M	$\widehat{AMB} = \frac{1}{2} sd\widehat{AB}$
3. Góc tạo bởi tia tiếp tuyến và dây cung.	B O	$\widehat{xBA} = \frac{1}{2} sd \widehat{AB}$
4. Góc có đỉnh ở bên trong đường tròn	C M O D	$\widehat{AMB} = \frac{1}{2} (sd\widehat{AB} + sd\widehat{CD})$
 Góc có đỉnh ở bên ngoài đường tròn 	A O B	$\widehat{AMB} = \frac{1}{2} (sd\widehat{AB} - sd\widehat{CD})$

Trong một đường tròn

- Các góc nội tiếp bằng nhau chắn các cung bằng nhau
- Các góc nội tiếp cùng chắn một cung thì bằng nhau
- Các góc nội tiếp chắn các cung bằng nhau thì bằng nhau
- Góc nội tiếp nhỏ hơn hoặc bằng 90° có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
- Góc nội tiếp chắn nửa đường tròn là góc vuông và ngược lại góc vuông nội tiếp thì chắn nửa đường tròn.
- Góc tạo bởi tia tiếp tuyển và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.

7. Độ dài đường tròn - Độ dài cung tròn.

- Độ dài đường tròn bán kính R: $C = 2\pi R = \pi d$
- Độ dài cung tròn n⁰ bán kính R : $l = \frac{\pi Rn}{180}$

8. Diện tích hình tròn - Diện tích hình quạt tròn

- Diện tích hình tròn: $S = \pi R^2$
- Diện tích hình quạt tròn bán kính R, cong n⁰: $S = \frac{\pi R^2 n}{360} = \frac{lR}{2}$

9. Các loại đường tròn

Đường tròn ngoại tiếp tam giác	Đường tròn nội tiếp tam giác	Đường tròn bàng tiếp tam giác
A O . C	A O O C	Tâm của đường tròn bàng tiếp trong góc A là giao điểm của hai đường phân giác các góc ngoài tại B hoặc C hoặc là giao điểm của đường phân giác góc A và đường phân giác ngoài tại B (hoặc C)
Tâm đường tròn là giao của ba đường trung trực của tam giác	Tâm đường tròn là giao của ba đường phân giác trong của tam giác	

10. Các loại hình không gian.

a. Hình trụ.

- Diện tích xung quanh: $Sxq = 2\pi rh$
- Diện tích toàn phần: Stp = $2\pi rh + \pi r^2$
- Thể tích hình trụ: $V = Sh = \pi r^2 h$

Trong $\mathbf{\tilde{d}}$ ó $\left\{ \begin{array}{l} \text{r: bán kính} \\ \text{h: chiều cao} \end{array} \right.$

b. Hình nón:

- Diện tích xung quanh: $Sxq = 2\pi rl$
- Diện tích toàn phần: Stp = $2\pi rl + \pi r^2$
- Thể tích hình trụ: $V = \frac{1}{3} \pi r^2 h$

c. Hình nón cụt:

- Diện tích xung quanh: $Sxq = \pi(r_1 + r_2)l$

- Thể tích:
$$V = \frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1 r_2)$$

d. Hình cầu.

- Diện tích mặt cầu: $S = 4\pi R^2 = \pi d$

- Thể tích hình cầu:
$$V = \frac{4}{3}\pi R^3$$

Trong đó: $\begin{cases} R \text{: bán kính} \\ d \text{: đường kính} \end{cases}$

11. Tứ giác nội tiếp:

Dấu hiệu nhận biết tứ giác nội tiếp:

- Tứ giác có tổng hai góc đối bằng 180^{0}

- Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện

- Tứ giác có 4 đỉnh cách đều một điểm.

 Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α.

B. CÁC DẠNG BÀI '

Dạng 1: Chứng minh hai góc bằng nhau.

• Cách chứng minh:

- Chứng minh hai góc cùng bằng góc thứ ba
- Chứng minh hai góc bằng với hai góc bằng nhau khác
- Hai góc bằng tổng hoặc hiệu của hai góc theo thứ tự đôi một bằng nhau
- Hai góc cùng phụ (hoặc cùng bù) với góc thứ ba
- Hai góc cùng nhọn hoặc cùng tù có các cạnh đôi một song song hoặc v.góc
- Hai góc ó le trong, so le ngoài hoặc đồng vị
- Hai góc ở vị trí đối đỉnh
- Hai góc của cùng mộ tam giác cân hoặc đều
- Hai góc tương ứng của hai tam giác bằng nhau hoặc đồng dạng
- Hai góc nội tiếp cùng chắn một cung hoặc chắn hai cung bằng nhau.

Dạng 2: Chứng minh hai đoạn thẳng bằng nhau

Cách chứng minh:

- Chứng minh hai đoạn thẳng cùng bằng đoạn thứ ba
- Hai cạnh của mmột tam giác cân hoặc tam giác đều
- Hai cạnh tương ứng của hai tam giác bằng nhau
- Hai cạnh đối của hình bình hành (chữ nhật, hình thoi, hình vuông)
- Hai cạnh bên của hình thang cân
- Hai dây trương hai cung bằng nhau trong một đường tròn hoặc hai đường bằng nhau.

Dạng 3: Chứng minh hai đường thẳng song song

Tách chứng minh:

- Chứng minh hai đường thẳng cùng song với đường thẳng thứ ba
- Chứng minh hai đường thẳng cùng vuông góc với đường thẳng thứ ba
- Chứng minh chúng cùng tạo với một cát tuyến hai góc bằng nhau:
 - + ở vị trí so le trong
 - + ở vị trí so le ngoài
 - + ở vị trí đồng vị.
- Là hai dây chắn giữa chúng hai cung bằng nhau trong một đường tròn
- Chúng là hai cạnh đối của một hình bình hành

Dạng 4: Chứng minh hai đường thẳng vuông góc

Tách chứng minh:

- Chúng song song song với hai đường thẳng vuông góc khác.
- Chứng minh chúng là chân đường cao trong một tam giác.
- Đường kính đi qua trung điểm dây và dây.
- Chúng là phân giác của hai góc kề bù nhau.

Dạng 5: Chứng minh ba đường thẳng

* Cách chứng minh:

- Chứng minh chúng là ba đường cao, ba trung tuyến, ba trung trực, ba phân giác trong (hoặc một phân giác trong và phân giác ngoài của hai góc kia)
 - Vận dụng định lí đảo của định lí Talet.

Dạng 6: Chứng minh hai tam giác bằng nhau

* Cách chứng minh:

- * Hai tam giác thường:
- Trường hợp góc cạnh góc (g-c-g)
- Trường hợp cạnh góc cạnh (c-g-c)
- Trường hợp cạnh cạnh (c-c-c)
- * Hai tam giác vuông:
- Có cạnh huyền và một góc nhọn bằng nhau
- Có cạnh huyền bằng nhau và một cạnh góc vuông bằng nhau
- Cạnh góc vuông đôi một bằng nhau

Dạng 7: Chứng minh hai tam giác đồng dạng

Tách chứng minh:

- * Hai tam giác thường:
- Có hai góc bằng nhau đôi một
- Có một góc bằng nhau xen giữa hai cạnh tương ứng tỷ lệ
- Có ba cạnh tương ứng tỷ lệ
- * Hai tam giác vuông:
- Có một góc nhọn bằng nhau
- Có hai cạnh góc vuông tương ứng tỷ lệ

Dạng 8: Chứng minh đẳng thức hình học

• Cách chứng minh:

Giả sử phải chứng minh đẳng thức: MA.MB = MC.MD (*)

- Chứng minh: $\Delta MAC \sim \Delta MDB$ hoặc $\Delta MAD \sim \Delta MCB$
- Nếu 5 điểm M, A, B, C, D cúng nằm trên một đường thẳng thì phải chứng minh các tích trên cùng bằng tích thứ ba:

MA.MB = ME.MF

MC.MD = ME.MF

Tức là ta chứng minh: $\Delta MAE \sim \Delta MFB$

 Δ MCE ~ Δ MFD

 \rightarrow MA.MB = MC.MD

* Trường hợp đặc biệt: $MT^2 = MA.MB$ ta chứng minh $\Delta MTA \sim \Delta MBT$

Dạng 9: Chứng minh tứ giác nội tiếp

Tách chứng minh:

Dấu hiệu nhận biết tứ giác nội tiếp:

- Tứ giác có tổng hai góc đối bằng 180°
- Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện
- Tứ giác có 4 đỉnh cách đều một điểm.
- Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α .

Dạng 10: Chứng minh MT là tiếp tuyến của đường tròn (O;R)

* Cách chứng minh:

- Chứng minh $OT \perp MT$ tại $T \in (O;R)$
- Chứng minh khoảng cách từ tâm O đến đường thẳng MT bằng bán kính
- Dùng góc nội tiếp.

Dạng 10: Các bài toán tính toán độ dài cạnh, độ lớn góc

Cách tính:

- Dựa vào hệ thức lượng trong tam giác vuông.
- Dựa vào tỷ số lượng giác
- Dựa vào hệ thức giữa cạnh và góc trong tam giác vuông
- Dưa vào công thức tính đô dài, diên tích, thể tích...