Set Theory II

Ji, Yong-hyeon

January 22, 2025

We cover the following topics in this note.

- Relations
- Equivalence Relations
- Equivalence Classes
- Partitions

Relation

Definition. Let $A \times B$ be the cartesian product of two sets A and B. A **(binary) relation** on $A \times B$ is a subset \mathcal{R} of $A \times B$. That is,

 \mathcal{R} is a relation on $A \times B \iff \mathcal{R} \subseteq A \times B$.

Remark. \mathcal{R} is a relation on $A \iff \mathcal{R} \subseteq A \times A$.

Note (Notation). Let $(s,t) \in \mathcal{R}$. We use the notation $s \mathcal{R} t$ and we can say "s **is related to** t **by** R". If $(s,t) \notin \mathcal{R}$, we denote as: $s \mathcal{R} t$.

Example. Let $A = \{1, 2\}$ and $B = \{4, 5\}$. Then

$$A \times B = \{(1,4), (1,5), (2,4), (2,5)\}.$$

Here, $\mathcal{R} = \{(1,4), (2,5)\} \subseteq A \times B$ be a relation.

Example. Let *A* and *B* are sets, and let $f : A \rightarrow B$ be a function from *A* to *B*. Then

$$(a,b) \in f \iff a f b \iff b = f(a).$$

★ Equivalence Relation ★

Definition. A binary relation \mathcal{R} on a set S is called an **equivalence relation** if it satisfies the following three properties: for all $a, b, c \in S$,

- (i) (Reflexivity) $(a, a) \in \mathcal{R}$;
- (ii) (Symmetry) $(a, b) \in \mathcal{R} \implies (b, a) \in \mathcal{R}$;
- (iii) (Transitivity) $(a, b) \in \mathcal{R} \land (b, c) \in \mathcal{R} \implies (a, c) \in \mathcal{R}$.

Remark.

Reflexivity (each element is related to itself)

Symmetry (if *a* is related to *b*, then *b* is related to *a*)

Transitivity (if a is related to b and b is related to c, then a is related to c)

Example. Let $A = \{1, 2, 3, 4\}$. Then

$$\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1)\}$$

is an equivalence relation on *A*.

Note. Let A, B, C are sets, and let $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.

• We claim that $g \circ f[A] = g[f[A]]$:

$$(g \circ f)[A] = \big\{ (g \circ f)(a) : a \in A \big\} = \big\{ g(f(a)) : a \in A \big\} = \big\{ g(b) : b = f(a) \in f[A] \big\} = g[f[A]].$$

• We claim that f is surjective \iff Img(f) = f[A] = B:

$$f:A \twoheadrightarrow B \iff \forall b \in B, \ \exists a \in A \text{ s.t. } f(a) = b \iff f[A] = \big\{f(a) \in B: a \in A\big\} = B.$$

Lemma 1. Let A, B and C are sets, and let $f: A \to B$ and $g: B \to C$ are functions.

- (1) If f and g are both one-to-one, then $(g \circ f) : A \to C$ is one-to-one.
- (2) If f and g are both onto, then $(g \circ f) : A \to C$ is onto.
- *Proof.* (1) Let f and g are both one-to-one. We must show that $(g \circ f) : A \to C$ is one-to-one. Suppose that $(g \circ f)(a) = (g \circ f)(a')$. Then

$$(g \circ f)(a) = (g \circ f)(a') \implies g(f(a)) = g(f(a'))$$
 by def. of composition
$$\implies f(a) = f(a') \qquad \qquad \because g \text{ is injective}$$

$$\implies a = a'. \qquad \qquad \because f \text{ is injective}$$

(2) Let f and g are both onto. We must show that $(g \circ f) : A \to C$ is onto, i.e., $(g \circ f)[A] = C$.

$$(g \circ f)[A] = g[f[A]]$$

= $g[B]$ $\therefore f : A \to B$ is surjective, i.e., $f[A] = B$
= C . $\therefore g : B \to C$ is surjective, i.e., $g[B] = C$

Lemma 2. Let A, B and C are sets, and let $f : A \rightarrow B$ and $g : B \rightarrow C$ are functions.

- (1) If $(g \circ f) : A \to C$ is one-to-one, then f is one-to-one.
- (2) If $(g \circ f) : A \to C$ is onto, then g is onto.

Proof. (1) Let $g \circ f$ is one-to-one. We must show that f is one-to-one. Suppose that f(a) = f(a'). Then

$$f(a) = f(a') \implies g(f(a)) = g(f(a'))$$
 g is a function g is a function g is a function g and g is a function g is a function g and g is a function g and g is a function g is a function g and g and g is a function g and g and g is a function g and g and g and g are g and g and g and

- (2) Let $g \circ f$ is onto, i.e., $(g \circ f)[A] = C$. We must show that g is onto, i.e., g[B] = C:
 - $(\subseteq) \ g[B] = \{g(b) \in C : b \in B\} \subseteq C;$
 - $(\supseteq) \ C = (g \circ f)[A] = g[f[A]] = \big\{g(b) \in C : b \in f[A]\big\} \subseteq g[B].$

Equivalence Relation on 2^A Based on Bijection

Proposition 3. Let A be a set, and 2^A be its power set. Define a relation \mathcal{R} on 2^A as follows:

$$X \sim_{\mathcal{R}} Y \iff \exists f \in Y^X \text{ such that } f \text{ is bijective,}$$

for $X, Y \in 2^A$. In other words,

$$\mathcal{R} := \left\{ (X, Y) \in 2^A \times 2^A : \exists \ a \ bijection \ f \in Y^X \right\}.$$

Then \mathcal{R} is an equivalence relation on 2^A .

Proof. Let $X, Y, Z \in 2^A$. We must show that \mathcal{R} is reflexive, symmetric and transitive:

(i) (Reflexivity) We NTS¹ that $X \sim_{\mathcal{R}} X$. In other words, we need to find a bijection from X it self.

Consider the identity function

$$id_X : X \longrightarrow X$$

 $x \longmapsto x = id_X(x)$

for all $x \in X$. Clearly, id_X is a bijection. Thus, $X \sim_{\mathcal{R}} X$.

^{1&#}x27;NTS' means that "need to show".

(ii) (Symmetry) We NTS that $X \sim_{\mathcal{R}} Y \implies Y \sim_{\mathcal{R}} X$. In other words, if there exists a bijection $f: X \to Y$, then there must exists a bijection $g: Y \to X$.

Suppose that $f: X \to Y$ is a bijection. Then it has an inverse function $f^{-1}: Y \to X$, which satisfies:

$$\forall x \in X : f^{-1}(f(x)) = x = id_X(x) \text{ and } \forall y \in X : f(f^{-1}(y)) = y = id_Y(y).$$

That is, $f^{-1} \circ f = \mathrm{id}_X$ and $f \circ f^{-1} = \mathrm{id}_Y$. By **Lemma 2**, f^{-1} must be a bijection since f, id_X and id_Y are bijections. Thus, there is a bijection $g = f^{-1}$.

(iii) We NTS that $X \sim_{\mathcal{R}} Y \wedge Y \sim_{\mathcal{R}} Z \implies X \sim_{\mathcal{R}} Z$. In other words, if there exists two bijection $f: X \to Y$ and $g: Y \to Z$, then there must exists a bijection $h: X \to Z$.

Suppose that $f: X \to Y$ and $g: Y \to Z$ both are bijective. Define the function

$$h: X \longrightarrow Z$$

 $x \longmapsto (g \circ f)(x) = h(x)$

for all $x \in X$. By **Lemma 1**, $h = g \circ f$ must be a bijection since f and g are both bijective.

Hence it is proved.

Indexed Family

Definition. Let I and S are sets. Consider a function $A: I \to S$ defined by $i \mapsto A(i) =: A_i$. The image Img(A) is called an **indexed family of elements in** S **indexed by** I. We write this indexed family as: $\langle A_i \rangle_{i \in I}$. Note that

$$Img(A) = \{A(i) : i \in I\} = \{A_i : i \in I\} = \langle A_i \rangle_{i \in I}.$$

Example (Sequence). Let $I = \mathbb{N}$ be an indexing set. Then

$$S := \{A_1, A_2, A_3, A_4, \dots\} = \{A_i : i \in \mathbb{N}\} = \langle A_i \rangle_{i \in \mathbb{N}}$$

is an indexed family of elements in S indexed by \mathbb{N} .

Union and Intersection of an Indexed Family

Definition. Let *I* and *S* are sets, and let $\langle A_i \rangle_{i \in I}$ be an indexed family in *S*.

• The **union of** $\langle A_i \rangle_{i \in I}$ is defined by $\bigcup_{i \in I} A_i := \{x \in S : \exists i \in I \text{ such that } x \in A_i\}$.

• The intersection of
$$\langle A_i \rangle_{i \in I}$$
 is defined by $\bigcap_{i \in I} A_i := \{x \in S : \forall i \in I, x \in A_i\}$

Remark. Let $I = \{1, \ldots, n\}$. Then

$$\bullet \bigcup_{i \in I} S_i = \bigcup_{i=1}^n S_i = S_1 \cup S_2 \cup \cdots \cup S_n.$$

$$\bullet \bigcap_{i \in I} S_i = \bigcap_{i=1}^n S_i = S_1 \cap S_2 \cap \cdots \cap S_n.$$

* Partitions *

Definition. Let S be a set, and let the function $A: I \to 2^S$ as $i \mapsto A_i := A(i) \subseteq S$, for all $i \in I$. Consider a family of subsets $\langle A_i \rangle_{i \in I}$, where $A_i \subseteq S$ for every index $i \in I$. The family $\langle A_i \rangle_{i \in I}$ is called a **partition** of S if the following conditions are satisfied:

- (i) (Non-empty Subsets) Each subset A_i is non-empty, i.e., $\forall i \in I, A_i \neq \emptyset$
- (ii) (**Pairwise disjoint**) For all distinct $i, j \in I$, the subsets A_i and A_j are disjoint, i.e.,

$$\forall i, j \in I, i \neq j \implies A_i \cap A_j = \emptyset$$
.

(iii) (Union covers the entire set) The union of all subsets A_i covers the whole set S, i.e.,

$$\bigcup_{i\in I} A_i = S.$$

Example. Let \mathbb{Z} be a set of integers. We define an indexed family $\langle A_i \rangle_{i \in \{0,1,2\}}$ of subsets of \mathbb{Z} as follows:

$$A_0 = \{ n \in \mathbb{Z} : n \equiv 0 \pmod{3} \} = \{ n \in \mathbb{Z} : n = 3k + 0 \text{ for some } k \in \mathbb{Z} \} =: [0],$$

$$A_1 = \{ n \in \mathbb{Z} : n \equiv 1 \pmod{3} \} = \{ n \in \mathbb{Z} : n = 3k + 1 \text{ for some } k \in \mathbb{Z} \} =: [1],$$

$$A_2 = \{ n \in \mathbb{Z} : n \equiv 2 \pmod{3} \} = \{ n \in \mathbb{Z} : n = 3k + 2 \text{ for some } k \in \mathbb{Z} \} =: [2].$$

Then

(i)
$$[0] \neq \emptyset$$
, $[1] \neq \emptyset$ and $[2] \neq \emptyset$.

(ii)

$$[0] \cap [1] = \emptyset$$

$$[1] \cap [2] = \emptyset$$

$$[2] \cap [0] = \emptyset.$$

(iii)
$$[0] \cup [1] \cup [2] = \mathbb{Z}$$
.

Thus,

$$\{A_1,A_2,A_3\}=\big\{[0],[1],[2]\big\}$$

is a partition of \mathbb{Z} .

★ Equivalence Class ★

Definition. Let $\mathcal{R} \subseteq S \times S$ be an equivalence relation on S. The **equivalence class of** $x \in S$ **under** \mathcal{R} is the set

$$[x]_{\mathcal{R}} = \left\{ y \in S : x \; \mathcal{R} \; y \right\}.$$

Note. Note that $\alpha \mathcal{R} x \iff \alpha \in [x]_{\mathcal{R}} \iff x \mathcal{R} \alpha$.

Equivalence class of *x*

Lemma 4. Let \mathcal{R} be an equivalence relation on a set S. For any $x, y \in S$, let [x] and [y] represent the equivalence classes of x and y, respectively, under \mathcal{R} .

- (1) $\forall x \in S, x \in [x].$
- (2) $x \mathcal{R} y \iff [x] = [y].$
- $(3) \ x \, \mathcal{R} \, y \iff [x] \cap [y] = \varnothing.$

Proof. (1) Let $x \in S$. Since \mathcal{R} is reflexive, we have $x \mathcal{R}$ x, i.e., $x \in [x]$.

- (2) (\Rightarrow) Let $x \mathcal{R} y$. We NTS that [x] = [y]:
 - (\subseteq) Let $\alpha \in [x]$, i.e., $\alpha \mathcal{R} x$. Then

 $\alpha \mathcal{R} x \implies \alpha \mathcal{R} y$:: $x \mathcal{R} y$ and \mathcal{R} is transitive $\implies \alpha \in [y]$.

(⊇) Let $\beta \in [y]$, i.e., $y \mathcal{R} \beta$. Then

$$y \mathcal{R} \beta \implies x \mathcal{R} \beta$$
 :: $x \mathcal{R} y$ and \mathcal{R} is transitive $\implies \beta \in [x]$.

 (\Leftarrow) Let [x] = [y]. Then

$$x \in S \stackrel{\text{by (1)}}{\Longrightarrow} x \in [x] = [y] \implies x \in [y] \implies x \,\mathcal{R} \,y.$$

(3) (\Rightarrow) Let $x \mathcal{R} y$. Suppose that $[x] \cap [y] \neq \emptyset$ then $\exists y \in S$ such that $y \in [x] \cap [y]$. Then

$$\gamma \in [x] \cap [y] \implies \gamma \in [x] \land \gamma \in [y] \implies x \, \mathcal{R} \, \gamma \land \gamma \, \mathcal{R} \, y \implies x \, \mathcal{R} \, y \, \not \neg.$$

 (\Leftarrow) Let $[x] \cap [y] = \emptyset$. Suppose that $x \mathcal{R} y$. By (1) and (2), we have $x \in [x] = [y] \not a$.

* * * Fundamental Theorem on Equivalence Relations * * *

Theorem 5. Let S be a set and let R be an equivalence relation on S. Define the set of equivalence classes

$$\mathcal{P} := \{ [x]_{\mathcal{R}} : x \in S \} \text{ , where } [x]_{\mathcal{R}} = \{ y \in S : x \mathcal{R} y \} \text{ .}$$

Then \mathcal{P} *forms a partition of* S.

 $S = \{x, y, z, a, b, c, d, e, f\}$

 $\mathcal{P} = \{[x]_{\mathcal{R}}, [y]_{\mathcal{R}}, [z]_{\mathcal{R}}\}$

Proof. We must show that the set of equivalence classes $\{[x]_{\mathcal{R}} : x \in S\}$ satisfies the three conditions of a partition:

- (i) (Equivalence Class is not Empty) By (1) of $\boldsymbol{Lemma~4}$, it is proved.
- (ii) (Equivalence Classes are Disjoint) By (2) and (3) of Lemma 4, it is proved.
- (iii) (Union of Equivalence Classes is Whole Set) We NTS that $\bigcup \{[x]_{\mathcal{R}} : x \in S\} = S$:
 - (⊆) Since $[x]_R$ ⊆ S, we have

$$\bigcup \left\{ [x]_{\mathcal{R}} : x \in S \right\} = \bigcup_{x \in S} [x]_{\mathcal{R}} \subseteq S.$$

(⊇) Let $\alpha \in S$. We want to show that $\alpha \in \bigcup_{x \in S} [x]_{\mathcal{R}}$, i.e.,

 $\exists x \in S \text{ such that } \alpha \in [x].$

By (1) of **Lemma 4**, we obtain $\alpha \in [\alpha]$. Thus, for every $\alpha \in S$, $\alpha \in \bigcup_{x \in S} [x]_{\mathcal{R}}$.

★ Relation Induced by Partition is Equivalence **★**

Theorem 6. Let S be a set and $\mathcal{P} = \langle P_i \rangle_{i \in I}$ be a partition of S. We define a relation \mathcal{R} on S:

$$x \sim_{\mathcal{R}} y \iff \exists i \in I \text{ such that } x, y \in P_i$$

for all $x, y \in S$. That is, x is related to y under R if and only if x and y belong to the same subset P_i in the partition. Then R is the equivalence relation induced by a partition P.

Proof. Let $\langle P_i \rangle_{i \in I}$ be a partition of *S*. That is,

(a)
$$P_i \neq \emptyset$$
 for all $i \in I$; (b) $P_i \cap P_j = \emptyset$ for $i \neq j$; (c) $\bigcup_{i \in I} P_i = S$.

Let $x, y \in S$. Note that

$$\mathcal{R} := \left\{ (x, y) \in S \times S : \exists i \in I \text{ s.t. } x \in P_i \land y \in P_i \right\}.$$

We NTS that \mathcal{R} is reflexive, symmetric and transitive:

(i) (Reflexivity) We NTS that $x \sim_{\mathcal{R}} x$:

$$x \in S \xrightarrow{\text{by (c)}} x \in \bigcup_{i \in I} P_i \implies \exists i \in I \text{ s.t. } x \in P_i \implies \exists i \in I \text{ s.t. } x \in P_i \land x \in P_i \implies x \sim_{\mathcal{R}} x.$$

(ii) (Symmetry) We NTS that $x \sim_{\mathcal{R}} y \implies y \sim_{\mathcal{R}} x$:

$$x \sim_{\mathcal{R}} y \implies \exists i \in I \text{ s.t. } x \in P_i \land y \in P_i \implies \exists i \in I \text{ s.t. } y \in P_i \land x \in P_i \implies y \sim_{\mathcal{R}} x.$$

(iii) (Transitivity) We NTS that $x \sim_{\mathcal{R}} y \wedge y \sim_{\mathcal{R}} z \implies x \sim_{\mathcal{R}} z$:

$$\begin{cases} x \sim_{\mathcal{R}} y \\ y \sim_{\mathcal{R}} z \end{cases} \Longrightarrow \begin{cases} \exists i \in I \text{ s.t. } x \in P_i \land y \in P_i \text{ by (b), } i = j \\ \exists j \in I \text{ s.t. } y \in P_j \land z \in P_j \end{cases} \exists i = j \in I \text{ s.t. } x \in P_i \land z \in P_{j=i} \implies x \sim_{\mathcal{R}} z.$$

References

[1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 3. 집합론 기초 (c)." YouTube Video, 35:04. Published September 07, 2019. URL: https://www.youtube.com/watch? v=2gM-Vh8CY8I&t=1607s.