# Sistemi compatibili

(Il metodo di Fourier-Motzkin)

Claudio Arbib

Università degli Studi di L'Aquila





### Sommario

- Poliedri
- Poliedri compatibili
- Diseguaglianze implicate
- Proiezione di un poliedro
  - Definizione
  - Esempi
- Teorema di Fourier
- Algoritmo di Fourier-Motzkin
- Applicazioni

### Poliedri

#### Definizione:

Siano  $\mathbf{a} \in \mathbb{R}^n$ ,  $b \in \mathbb{R}$ . L'insieme

$$H = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}\mathbf{x} = b \} \subseteq \mathbb{R}^n$$

si dice iperpiano. L'insieme

$$S = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}\mathbf{x} \le b \} \subseteq \mathbb{R}^n$$

si dice semispazio chiuso.

#### Definizione:

Un poliedro è l'intersezione di un numero finito m di semispazi chiusi di  $\mathbb{R}^n$ .

Quindi  $\forall \mathbf{A} \in \mathbb{I}\mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{I}\mathbb{R}^m$  l'insieme

$$P(\mathbf{A}, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq \mathbf{b} \} \subseteq \mathbb{R}^n$$

definisce un poliedro. In particolare,  $\emptyset$ , H, S,  $IR^n$  sono poliedri.

# Diseguaglianze implicate

#### Definizione:

 $\mathbf{b}\mathbf{x} \cdot \mathbf{f} g$ è una diseguaglianza implicata dal sistema  $\mathbf{A}\mathbf{x} \cdot \mathbf{f} \mathbf{b}$  se ogni  $\mathbf{x}$  che soddisfa  $\mathbf{A}\mathbf{x} \cdot \mathbf{f} \mathbf{b}$  soddisfa anche  $\mathbf{b}\mathbf{x} \cdot \mathbf{f} g$ 



$$x_{1} \qquad \geq 0$$

$$x_{2} \qquad \geq 0$$

$$x_{1} + 2x_{2} \qquad \leq 1$$

$$3x_{1} + x_{2} \qquad \leq 2$$

# Diseguaglianze implicate

#### **Definizione:**

Un sistema di diseguaglianze è minimale se non contiene diseguaglianze implicate.

#### Definizione:

 $\mathbf{b}\mathbf{x} \leq \gamma$  è combinazione conica delle diseguaglianze  $\mathbf{A}\mathbf{x} \in \mathbf{b}$  o  $\{\mathbf{a}_i\mathbf{x} \leq b_i, i = 1, ..., m\}$  se e solo se

(b, 
$$\gamma$$
) =  $\sum I_i(\mathbf{a}_i, b_i)$   $I_i \ge 0$ 

#### Teorema:

Ogni diseguaglianza ottenuta come combinazione conica di  $\mathbf{A}\mathbf{x} \cdot \mathbf{b}$  è una diseguaglianza implicata.

### Diseguaglianze implicate

### **Esempio**:



$$0 (-1, 0, 0) +$$

$$0 (0, -1, 0) +$$

$$0.5 (3, 1, 2) = (2.5, 2.5, 1.5)$$

$$1 = (1, 0.5, 0, 0)$$

# Poliedri compatibili

#### Definizione:

Un poliedro si dice compatibile (incompatibile) se (non) ammette soluzione.

#### Problema:

Stabilire se un dato poliedro  $P(\mathbf{A}, \mathbf{b})$  è o no compatibile

### Principio:

Ciò che esiste, fa ombra

(Corollario: i vampiri non esistono)

<u>Definizione</u>: Sia  $P(\mathbf{A}, \mathbf{b}) \subseteq \mathbb{R}^n$  un poliedro. Allora il poliedro  $P(\mathbf{A}', \mathbf{b}') \subseteq \mathbb{R}^{n-1}$  si dice proiezione di  $P(\mathbf{A}, \mathbf{b})$  se  $\forall \mathbf{x} \in P(\mathbf{A}', \mathbf{b}') \exists z \in \mathbb{R}$  tale che  $(\mathbf{x}, z) \in P(\mathbf{A}, \mathbf{b})$ .

#### Esempio:

$$P: \quad x_1 \ge 0, \quad x_2 \ge 0, \quad 3x_1 + 2x_2 \le 6$$

$$P': \quad 0 \le x_1 \le 2$$

$$poniamo \ z = (6 - 3x_1)/2 \ \ge 0 \qquad \forall x_1 \in P'$$

$$evidentemente \ (x_1, (6 - 3x_1)/2) \in P \qquad \forall x_1 \in P'$$

### **Esempio**:

 $x_1 \ge 0 \qquad \qquad x_2 \ge 0$ 

$$3x_1 + 2x_2 \le 6$$

P':  $0 \le x_1 \le 2$ 



 $\forall x_1 \in P', \exists z: (x_1, z) \in P$ 

 $\Rightarrow$  P'è proiezione di P

### **Esempio**:

 $P: x_1 \ge 0 \qquad x_2 \ge 1$ 

$$3x_1 + 2x_2 \le 6$$

*P*':  $0 \le x_1 \le 2$ 



 $\not\exists \mathbf{x} \in P \text{ tale che } x_1 = 2$ 

 $\Rightarrow$  P' non è proiezione di P

### **Esempio**:

 $P: x_1 \ge 0 \qquad x_2 \ge 1 \qquad 3x_1 + 2x_2 \le 6$ 

 $P': 0 \le x_1 \le 4/3$ 



*P*' è proiezione di *P*?

### Teorema di Fourier

Sia dato il poliedro *P* 

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \leq b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m$$

Dividiamo l'insieme delle righe *R* in 3 sottoinsiemi:

$$R_0 = \{i \in R: a_{i1} = 0\}, R^+ = \{i \in R: a_{i1} > 0\}, R^- = \{i \in R: a_{i1} < 0\}$$

Costruiamo un nuovo poliedro *P*' contenente:

- 1) tutte le diseguaglianze di  $R_0$
- 2) una diseguaglianza per ogni elemento in  $R^+ \times R^-$

### Teorema di Fourier

• Una diseguaglianza del tipo (2) è associata a una riga  $h \in R^+$  e una riga  $k \in R^-$ 

- La diseguaglianza di *P*' si ottiene per combinazione conica delle due
  - dividendo la prima per  $a_{h1}$
  - dividendo la seconda per  $|a_{k1}|$
  - sommandole insieme

$$\left(\frac{a_{h1}}{a_{k1}} \middle| \frac{a_{k1}}{|a_{k1}|}\right) x_1 + \left(\frac{a_{h2}}{a_{h1}} + \frac{a_{k2}}{|a_{k1}|}\right) x_2 + \ldots + \left(\frac{a_{hn}}{a_{h1}} + \frac{a_{kn}}{|a_{k1}|}\right) x_n \le \left(\frac{b_h}{a_{h1}} + \frac{b_k}{|a_{k1}|}\right)$$

### Teorema di Fourier

• Il nuovo sistema di diseguaglianze P' non contiene la variabile  $x_1$ 

<u>Teorema</u> (Fourier) P'è una proiezione di P nello spazio delle variabili  $x_2, ..., x_n$ .

#### **Dimostrazione**

- Sia  $\mathbf{w} = (w_2, ..., w_n) \in P'$ . Dobbiamo mostrare che esiste uno scalare z tale che  $(z, w_2, ..., w_n) \in P$ .
- Per ogni  $i \in R_0$  si ha  $a_{i2}w_2 + ... + a_{in}w_n \le b_i$
- Per ogni  $h \in R^+$ ,  $k \in R^-$  si ha inoltre

$$\left(\frac{a_{h2}}{a_{h1}} + \frac{a_{k2}}{|a_{k1}|}\right) w_2 + \dots + \left(\frac{a_{hn}}{a_{h1}} + \frac{a_{kn}}{|a_{k1}|}\right) w_n \le \left(\frac{b_h}{a_{h1}} + \frac{b_k}{|a_{k1}|}\right)$$

### Teorema di Fourier (seguito)

• Riscriviamo l'ultima condizione

$$\frac{a_{k2}w_2}{|a_{k1}|} + \ldots + \frac{a_{kn}w_n}{|a_{k1}|} - \frac{b_k}{|a_{k1}|} \le \frac{b_h}{a_{h1}} - \frac{a_{h2}w_2}{a_{h1}} - \frac{a_{hn}w_n}{a_{h1}}$$

- Al variare di k in  $R^-$  (di h in  $R^+$ ) il primo (secondo) membro descrive una classe C (una classe D) di numeri reali, e tutti gli elementi di C risultano  $\leq$  degli elementi di D
- Dunque esiste un elemento di separazione z tale che:

$$\frac{a_{k2}w_2}{|a_{k1}|} + \dots + \frac{a_{kn}w_n}{|a_{k1}|} - \frac{b_k}{|a_{k1}|} \le z \qquad \forall k \in R^-$$

$$\forall h \in R^+ \qquad z \le \frac{b_h}{a_{h1}} - \frac{a_{h2}w_2}{a_{h1}} - \frac{a_{hn}w_n}{a_{h1}}$$

### Teorema di Fourier (seguito)

• Le ultime due diseguaglianze si possono riscrivere:

$$a_{k1}z + a_{k2}w_2 + \dots + a_{kn}w_n \le b_k$$
  $\forall k \in R^ a_{h1}z + a_{h2}w_2 + \dots + a_{hn}w_n \le b_h$   $\forall h \in R^+$ 

• Inoltre,  $\forall i \in R_0$  si ha

$$0z + a_{i2}w_2 + \dots a_{in}w_n \le b_i$$

• Ne segue che  $(z, w_2, ..., w_n) \in P$ 

Fine della dimostrazione

# Algoritmo di Fourier-Motzkin

- Il Teorema di Fourier permette di ridurre il problema di decidere se un poliedro è o meno vuoto a quello di decidere se è o meno vuota una sua proiezione
- Poiché la proiezione di un poliedro è ancora un poliedro, il teorema può essere ripetutamente applicato, fino a pervenire a un poliedro del quale sia semplice decidere
- Ad esempio, si può applicare il teorema n-1 volte: in questo caso il poliedro risultante  $P^{(n-1)}$  sarà un intervallo dell'asse reale, eventualmente vuoto o illimitato
- Ovvero, si può applicare il teorema per n volte: in questo caso il poliedro risultante  $P^{(n)}$  avrà la forma  $\mathbf{0} \cdot \mathbf{x} \leq \mathbf{t}$ . Si danno allora 2 casi:
  - se  $\mathbf{t} \ge 0$ ,  $P^{(n)}$  è banalmente compatibile, in quanto descrive l'intero IR<sup>n</sup>, e quindi anche P è compatibile;
  - se esiste un indice i tale che  $t_i < 0$ , allora  $P^{(n)}$  è banalmente incompatibile, e così P.

# Applicazioni

Il metodo di eliminazione di Fourier-Motzkin si può applicare per

- Decidere se un poliedro è vuoto oppure no
- Costruire la rappresentazione implicita di conv(S) per un insieme finito  $S \subset \mathbb{R}^n$
- Risolvere un problema di Programmazione Lineare