BIL516 - Oyun Teorisi ve Uygulamaları Oyunların Analizi: Nash Dengesi ve Pareto Optimum

Feyza M. Hafızoğlu fmhafizoglu@ticaret.edu.tr

Bilgisayar Mühendisliği Bölümü İstanbul Ticaret Üniversitesi

Ajanda

- Nash Dengesi
- Pareto Optimum

Dominant stratejisiz 2-oyunculu oyun

- Player 2, Player 1'in T seçeceğini bilseydi, L stratejisini seçerdi.
- ullet Player 1, Player 2'in L seçeceğini bilseydi, M stratejisini seçerdi.
- $\bullet\,$ Player 2, Player 1'in M seçeceğini bilseydi, C stratejisini seçerdi.
- $\bullet\,$ Player 1, Player 2'in C seçeceğini bilseydi, T stratejisini seçerdi.
- Player 2, Player 1'in B seçeceğini bilseydi, R stratejisini seçerdi.
- ullet Player 1, Player 2'in R seçeceğini bilseydi, B stratejisini seçerdi.

Saf Strateji Nash Dengesi

Nash Dengesi (Equilibrium)

Bir strateji vektörü, $s^*=s_1^*,\ldots,s_n^*$, bir Nash dengesidir, ancak ve ancak, tüm oyuncu i'ler için $s_i^*\in BR(s_{-i})$ ise.

 Diğer oyuncuların stratejileri göz önüne alındığında, hiçbir oyuncu faydasını artıracak şekilde stratejisini değiştiremez.

Oyunlarda Nash Dengesi: The Prisoner's Dilemma

	Defect	Cooperate
Defect	(1, 1)	(5,0)
Cooperate	(0, 5)	(4,4)

- Tek Nash dengesi (Defect, Defect): her iki oyuncu da itiraf eder
- Kesin domine edilen stratejilerin elenmesiyle aynı sonuç

Nash Dengesi: Coordination Game

• Yolun hangi tarafından gitmelisin?

	Left	Right
Left	(1, 1)	(0,0)
Right	(0,0)	(1,1)

• İki Nash dengesi: (Left, Left), (Right, Right)

Nash Dengesi: The Battle of the Sexes

Woman

(1, 2)

• İki Nash dengesi: (Football, Football), (Concert, Concert)

(0,0)

Concert

Nash Dengesi: The Security Dilemma

- Tercihleri benzer iki oyuncunun koordinasyon oyunu.
- Eylemler: Produce Nuclear Weapons, Don't Produce Nuclear Weapons

		US	
		Produce	Not Produce
USSR	Produce	(2,2)	(3,1)
000.1	Not Produce	(1,3)	(4,4)

• İki Nash dengesi: (Produce, Produce), (Not Produce, Not Produce)

Nash Dengesi: The Matching Pennies

$$Head \quad Tails$$

$$Head \quad (1,-1) \quad (-1,1)$$

$$Tails \quad (-1,1) \quad (1,-1)$$

Nash dengesi yok!

Nash Dengesi: Cournot Duopoly Competition

- Aynı ürünü üreten 2 üretici
- Her bir üretici üreteceği ürün miktarını belirliyor, $s_i \in [0, \infty]$ $(s_1 + s_2 \text{ toplam ürün miktarı})$
- Her bir üreticinin elde edeceği fayda (kâr) satış geliri eksi maliyet:
 - Fiyat fonksiyonu: $p(q) = max(0, 2 s_1 s_2)$
 - Ürün maliyetleri: c_1 ve c_2
 - Faydalar: $u_i(s_1, s_2) = s_i p(s_1 + s_2) c_i s_i$

Nash Dengesi: Cournot Duopoly Competition

- $u_1(s_1, s_2) = s_1(2 s_1 s_2) s_1c_1 = s_1(2 s_1 s_2 c_1)$
- Birinci üreticinin en iyi tepkisi (best response):

$$\frac{\partial u_1}{\partial s_1}(s_1, s_2) = 0$$

$$s_1 = \frac{2 - c_1 - s_2}{2} \tag{1}$$

- $u_2(s_1, s_2) = s_2(2 s_1 s_2) s_2c_2 = s_2(2 s_1 s_2 c_2)$
- İkinci üreticinin en iyi tepkisi (best response):

$$\frac{\partial u_2}{\partial s_2}(s_1, s_2) = 0$$

$$s_2 = \frac{2 - c_2 - s_1}{2} \tag{2}$$

Nash Dengesi: Cournot Duopoly Competition

• Denklem (1) ve (2) çözüldüğünde:

$$s_1^* = \frac{2 - 2c_1 + c_2}{3}$$
$$s_2^* = \frac{2 - 2c_2 + c_1}{3}$$

- Varsayım: $c_1 = c_2 = 1$:
- Tek Nash dengesi:

$$s_1^* = s_2^* = \frac{1}{3}$$

$$u_1(s_1^*, s_2^*) = u_2(s_1^*, s_2^*) = \frac{1}{9}$$

Nash Dengesinin Özellikleri

- İstikrar (stability)
- Kendi kendini gerçekleştiren bir anlaşma
- Denge ve gelişim (evolution)
- Normatif açıdan denge
- Kesin domine edilen stratejilerin elenmesiyle elde edilen sonuç aynı zamanda Nash dengesidir.
- Nash dengesi, oyunların analizinde nihai ve her şeye yeten değildir.
 - Örnek: Birden çok Nash dengesinin olması, hiç denge olmaması, Nash dengesinin iyi bir tavsiye olmaması

Oyunların Analizi

- Oyunları dışarıdan bir gözle inceleyelim
- Dışarıdan bir gözlemcinin bakış açısından, bir oyunun bazı sonuçları diğerlerinden daha iyi olabilir mi?
 - Bir oyuncunun çıkarlarının diğerininkinden daha önemli olduğunu söyleyemeyiz
 - Mesela, her bir oyuncunun faydasını ifade etmek için hangi birimin kullanıldığını bilmediğinizde kazanımı en üst düzeye çıkaran sonucu bulmaya çalıştığınızı düşünün
- Hâlâ bir sonucu diğerine tercih edebileceğimiz durumlar var mı?

Oyunların Analizi

- Fikir: Bazen bir o sonucu her oyuncu için en az başka bir o' sonucu kadar iyidir ve o sonucunu o' sonucuna kesin olarak tercih eden bir oyuncu vardır.
 - Bu durumda, o sonucunun o' sonucundan daha iyi olduğunu söylemek mantıklıdır.
 - *o* sonucu, *o'* sonucunu Pareto-domine eder.

Pareto-optimum

Bir o^* sonucu Pareto-optimumdur, ancak ve ancak, o^* 'ı Pareto-domine eden başka bir sonuç yoksa.

- Bir oyunun birden fazla Pareto-optimum sonucu olabilir mi?
- Her oyunun en az bir Pareto-optimum sonucu var mı?

Oyunlarda Pareto Optimum Sonuçlar

	D	C
D	(1,1)	(5,0)
C	(0,5)	(4,4)

	Left	Right
Left	(1, 1)	(0,0)
Right	(0,0)	(1,1)

The Prisoner's Dilemma

	F	C
F	(2,1)	(0,0)
C	(0,0)	(1,2)

Coordination Game

	Head	Tails
Head	(1, -1)	(-1, 1)
Tails	(-1,1)	(1, -1)

Battle of the Sexes

The Matching Pennies

The Prisoner's Dilemma paradoksu: Nash dengesi,
 Pareto-optimum olmayan tek sonuçtur!

Örnek

	L	M	R
U	(3,8)	(2,0)	(1, 2)
D	(0,0)	(1,7)	(8,2)

- Dominant strateji dengesi?
- Nash dengesi?

Örnek

	L	M	R
U	(6,6)	(10, 7)	(3,9)
M	(7, 10)	(8, 11)	(1, 10)
D	(9,3)	(7,1)	(0,0)

- Nash dengesi?
- Pareto optimum?

Örnek

	α	β	γ
A	(-1, 8)	(5, 12)	(6, 6)
В	(0, -6)	(8,0)	(8, -3)
C	(2, 2)	(5, -1)	(9,1)

- Nash dengesi?
- Pareto optimum?

Yıpratma Savaşı

- İki oyuncu arasında bir nesne ile ilgili anlaşmazlık söz konusudur.
- i oyuncusu, $i \in \{1,2\}$, için nesnenin değeri $v_i > 0$ 'dır.
- Zaman, 0'dan başlayan ve sonsuza kadar çalışan sürekli bir değişken olarak modellenir.
- Herbir oyuncu, nesneyi diğer oyuncuya ne zaman teslim edeceğini seçer: t_1 ve t_2
 - t zamanında vermeyi kabul eden ilk oyuncu bunu yaparsa, diğer oyuncu o anda nesneyi alır (Daha erken teslim zamanı seçen oyuncu, nesneyi diğer oyuncuya teslim etmiş olur ve oyun sonlanır).
 - Her iki oyuncu da aynı anda kabul ederse, nesne aralarında eşit olarak bölünür: oyuncu i, $v_i/2$ 'lik bir fayda elde eder.
 - Zaman değerlidir: ilk kabul edilene kadar her oyuncu zaman birimi başına bir birim kazanç kaybeder.
- 1. Yıpratma savaşı oyununu stratejik formda (oyuncular, eylemler, fayda fonksiyonları) belirtiniz.
- 2. Nash dengelerini (varsa) bulunuz.

Yıpratma Savaşı Çözüm

- $N = \{1, 2\}$
- Her oyuncu, nesneyi diğer oyuncuya teslime etme zamanını seçer: t_1 , t_2
- Fayda fonksiyonu:

$$u_i(t_1, t_2) = \begin{cases} -t_i & \text{eger } t_i < t_j \\ v_i/2 - t_i & \text{eger } t_i = t_j \\ v_i - t_j & \text{eger } t_i > t_j \end{cases}$$

- İki Nash dengesi mevcut:
 - 1. $0 = t_1 < t_2 \text{ ve } t_2 > v_1$
 - 2. $0 = t_2 < t_1 \text{ ve } t_1 > v_2$