Indian Institute of Space Science and Technology

Thiruvananthapuram

Department of Mathematics

MA 221 - Integral Transforms, PDE and Calculus of Variations

Tutorial I - PDE

1. (a) Show that the family of right circular cones whose axes coincide with the z-axis

$$x^2 + y^2 = (z - c)^2 \tan^2 \alpha$$

satisfies the first-order, partial differential equation

$$yp - xq = 0.$$

(b) Show that the surfaces of revolution, $z = f(x^2 + y^2)$ with the z-axis as the axis of symmetry, where f is an arbitrary function, satisfy the partial differential equation

$$yp - xq = 0.$$

(c) Show that the two-parameter family of curves u - ax - by - ab = 0 satisfies the nonlinear equation

$$xp + yq + pq = u.$$

2. Find the partial differential equation arising from each of the following surfaces:

(a)
$$z = x + y + f(xy)$$
, (b) $z = f(x - y)$

(b)
$$z = f(x - y)$$

(c)
$$z = xy + f(x^2 + y^2)$$
, (d) $2z = (\alpha x + y)^2 + \beta$

(d)
$$2z = (\alpha x + y)^2 + 6$$

3. Find the general solution of each of the following equations:

(a)
$$u_{-} + uu_{-} = 0$$

(b)
$$(y + y)y + yy = x - y$$

(a)
$$u_x + yu_y = 0$$
,
(b) $(y+u)u_x + yu_y = x - y$,
(c) $y^2u_x - xyu_y = x(u-2y)$,
(d) $yu_y - xu_x = 1$,

(d)
$$yu_y - xu_x = 1$$
,

(e)
$$y^2up + u^2xq = -xy^2$$

4. Find the solution of the following Cauchy problems:

(a)
$$yu_x + xu_y = 0$$
, with $u(0, y) = \exp(-y^2)$,

(b)
$$xu_x + yu_y = 2xy$$
, with $u = 2$ on $y = x^2$,

(c)
$$u_x + xu_y = 0$$
, with $u(0, y) = \sin y$,

(d)
$$yu_x + xu_y = xy, x \ge 0, y \ge 0$$
, with $u(0, y) = \exp(-y^2)$ for $y > 0$, and $u(x, 0) = \exp(-x^2)$ for $x > 0$,

5. Find the solution of the Cauchy problem

$$2xyu_x + (x^2 + y^2)u_y = 0$$
, with $u = \exp\left(\frac{x}{x - y}\right)$ on $x + y = 1$.

6. Solve the equation

$$u_x + xu_y = y$$

with the Cauchy data

(a)
$$u(0,y) = y^2$$
, (b) $u(1,y) = 2y$.

1

7. Show that $u_1 = e^x$ and $u_2 = e^{-y}$ are solutions of the nonlinear equation

$$(u_x + u_y)^2 - u^2 = 0$$

but that their sum $(e^x + e^{-y})$ is not a solution of the equation.

- 8. Solve the Cauchy problem $(y+u)u_x + yu_y = (x-y)$, with u=1+x on y=1.
- 9. Show that the solution of the equation

$$yu_x - xu_y = 0$$

containing the curve $x^2 + y^2 = a^2$, u = y, does not exist.

10. Find the solution surface of the equation

$$(u^2 - y^2)u_x + xyu_y + xu = 0$$
, with $u = y = x$, $x > 0$.

a

- 11. Solve the following equations:
 - (a) $(y+u)u_x + (x+u)u_y = x+y$,
 - (b) $xu(u^2 + xy)u_x yu(u^2 + xy)u_y = x^4$,
 - (c) $yu_x + xu_y = xy(x^2 y^2)$,
- 12. Obtain the family of curves which represent the general solution of the partial differential equation

$$(2x - 4y + 3u)u_x + (x - 2y - 3u)u_y = -3(x - 2y).$$

13. Find the solution of the equation

$$yu_x - 2xyuy = 2xu$$

with the condition $u(0,y) = y^3$.

14. Obtain the general solution of the equation

$$(x+y+5z)p+4zq+(x+y+z)=0$$
 $(p=z_x, q=z_y),$

and find the particular solution which passes through the circle

$$z = 0$$
, $x^2 + y^2 = a^2$.

15. Obtain the general solution of the equation

$$(z^2 - 2yz - y^2)p + x(y+z)q = x(y-z)$$
 $(p = z_x, q = z_y)$.

Find the integral surfaces of this equation passing through (a) the x-axis, (b) the y-axis, and (c) the z-axis.

16. Solve the Cauchy problem

$$(x+y)u_x + (x-y)u_y = 1$$
, $u(1,y) = \frac{1}{\sqrt{2}}$

17. Show that the PDEs

$$xp = yq$$
 and $z(xp + yq) = 2xy$

are compatible and hence find its solution.

18. Show that the equations

$$p^2 + q^2 = 1$$
 and $(p^2 + q^2)x = pz$

are compatible and hence find its solution.

19. Find a complete integral of the equation

$$p^2 + q^2)x = pz$$

where $p = \partial z/\partial x$, $q = \partial z/\partial y$.

20. Find a complete integral of the equations

(a)
$$px^5 - 4q^3x^2 + 6x^2z - 2 = 0$$

- (b) $2(z + xp + yq) = yp^2$.
- 21. Find a complete integral of the equation

$$p + q = pq$$

22. Find a complete integral of the following equations:

(a)
$$zpq = p + q$$

(b)
$$p^2q^2 + x^2y^2 = x^2q^2(x^2 + y^2)$$

23. Find a complete integral of the PDE

$$z = px + qy - \sin(pq)$$

24. Find a complete integral of the following PDEs:

(a)
$$xp^3q^2 + yp^2q^3 + (p^3 + q^3) - zp^2q^2 = 0$$

(b)
$$pqz = p^2(xq + p^2) + q^2(yp + q^2)$$
.

25. Find a complete integral of the equation

$$(p^2 + q^2)x = pz$$

where
$$p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$$

END