ALU3000

What is ALU3000?

-ALU3000 (Arithmetic Logic Unit 3000) is a well designed modern combinational digital electronic that performs arithmetic and logic operations. Construction of ALU3000 is shown below.

ALU (image 1.1)

-What components does ALU3000 have?

ALU3000 is a combinational circuit which consists of PIPO registers, arithmetic unit, logic unit and multiplexer.

What operations can ALU perform?

- It depends on how ALU is designed. ALU3000 can perform 4 Arithmetic and 4 Logic operations which are shown in table.

Operation lis	st tab	ole(tat	ole 1.1)
•			70

Sel	Operation	Type	
000	A + B		
001	A - B	Arithmetic Unit	
010	A + 1		
011	max(A,B)		
100	A AND B		
101	A OR B	Logic Unit	
110	NOT A		
111	A XOR B		

^{*}Magnitude comparison part will be examined in page 6.

D-LATCH

What is D-Latch?

- D-Latch is electronic circuit that can be used to store 1 bit data.

RTL

Test Bench Result

D	En	Q	Qn
0	0	X	X
1	0	X	X
0	1	0	0
1	1	1	0

D-Latch truth table (table2.1)

PIPO REGISTER

PIPO Register (Parallel Input Parallel Output Register) is data storage device that perform data loading in parallel mode.

RTL

Test Bench Graph

- Pipo register loads when load bit is '1'.

ARITHMETIC UNIT

Arithmetic Unit consists of 3 binary adder subtractor, a 4 to 1 Mux and a magnitude comparator.

<u>RTL</u>

Binary Adder Subtractor

- Binary adder subtractor gets 3 input and give 1 output.
- 2 inputs for data and 1 input for selection bit.
- Selection bit allows adder subtractor to perform allow/subtract operation.

Magnitude Comparator

- Magnitude comparator gets 2 inputs and gives 1 output.
- The size of the output is 3 and it is in order of "GEL"
- Which means;

Test Bench Result

LOGIC UNIT

Logic Unit is the unit which process logic functions, such as AND, OR, XOR, NOT.RTL

Test Bench Result

4x1 MUX

-4x1 mux allows us to choose which operation to perform in logical unit and arithmetic unit by Sel(1:0) "last 2 bit of Selection signal"

<u>RTL</u>

MUX (2 TO 1)

This MUX takes the output of Arithmetic Unit and Logic Unit as input and msb of 'sel' as a selection bit. If msb of 'sel' is 1 it gives to corresponded output of Logic Unit, else it gives Arithmetic Unit's output.

RTL

mux2to1:1

- -2x1 multiplexer gets 3 inputs. M is *msb* of selection signal, X is output of arithmetic unit and Y is output of logic unit.
- -It allows us to choose whether perform arithmetic or logic operation by the msb of selection input.

Test Bench Resul

*msb = Most significant bit

<u>ALU</u>

<u>Rt1</u>

-This is the top module of project.

Test Bench Result

^{*}We can see that it follows the order of table 1.1

<u>Summary</u>

- ALU is logical components which perform logical and arithmetical operations.
- ALU may consists of different components and it varies by the design of it.
- For ALU3000, magnitude comparator, binary adder subtractor, sr-latch, d-latch, PIPO register etc. used.

Further Improvements

- To improve to ALU 3000 there are three steps that I can take
 - 1- Expanding the operation list
 - Shifting, rotating etc. can be add
 - 2- Optimizing the system
 - For me, only way to that is decreasing the total transistor amount.

External Links

- https://www.youtube.com/watch?v=mOVOS9AjgFs *youtube video by Ben Eater about ALU
- https://www.allaboutcircuits.com/projects/how-to-build-your-own-discrete-4-bit-alu/ similar project by Robin Mitchell. August 18,2016.
- https://www.allaboutcircuits.com/projects/how-to-build-your-own-discrete-4-bit-alu/ useful resource by Gojko Babic

Source Code can be found in

https://github.com/itsjustaplant/ALU3000 (by me of course)