UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CAMPUS DE JUAZEIRO – BAHIA ENGENHARIA ELÉTRICA

JAMILLE ALVES PINTO DE OLIVEIRA LETÍCIA PEIXOTO DE CASTRO

APROXIMAÇÃO DE DERIVADAS POR DIFERENÇAS FINITAS E CÁLCULO DE INTEGRAIS PELA SOMA DE RIEMANN

JUAZEIRO – BA

JAMILLE ALVES PINTO DE OLIVEIRA LETÍCIA PEIXOTO DE CASTRO

APROXIMAÇÃO DE DERIVADAS POR DIFERENÇAS FINITAS E CÁLCULO DE INTEGRAIS
PELA SOMA DE RIEMMAN

Trabalho apresentado à disciplina de Cálculo Diferencial e Integral I, sob orientação do professor Carlos Antônio Freitas da Silva, como requisito para a obtenção de nota na Universidade Federal do Vale do São Francisco - UNIVASF

JUAZEIRO – BA

Sumário

1. DIFERENÇAS FINITAS
1.1 FUNDAÇÃO TEÓRICA
1.1.1 (DEFINIÇÃO DE DERIVADA)
1.1.2 (PROBLEMAS DA DERIVAÇÃO ANALÍTICA)
1.2 DEFINIÇÃO DAS DIFERENÇAS FINITAS
1.3 TIPOS DE DIFERENÇAS FINITAS
1.3.1 (DIFERENÇA PROGRESSIVA)
1.3.2 (DIFERENÇA REGRESSIVA)
1.3.3 (DIFERENÇA CENTRAL)
1.4 ERRO DE TRUNCAMENTO
1.5 EXEMPLOS DE APLICAÇÃO
1.5.1 (CÁLCULO DA VELOCIDADE PELO MÉTODO DAS DIFERENÇAS FINITAS)
1.5.2 (CÁLCULO DA DEFORMAÇÃO DA BARRA)
2. SOMA DE RIEMMAN
2.1DEFINIÇÃO DE INTEGRAL
2.2 CONCEITO
2.3 TIPOS E FÓRMULAS
2.3.1 (SOMA À ESQUERDA)
2.3.2 (SOMA À DIREITA)
2.3.3 (SOMA PELOS PONTOS MÉDIOS)
2.4 INTERPRETAÇÃO GEOMÉTRICA
2.4.1 (GRÁFICO DA SOMA À ESQUERDA)
2.4.2 (GRÁFICO DA SOMA À DIREITA)
2.4.3 (SOMA PELOS PONTOS MÉDIOS)
2.5 EXEMPLOS PRÁTICOS
2.5.1 (EXEMPLO 1)
2.5.1 (EXEMPLO 2)
3. REFERÊNCIAS

1. Diferenças finitas

Em muitos problemas reais, conhecer exatamente a expressão de uma função é raro, mais comum é termos apenas alguns valores obtidos por experimentos, simulações ou observações. Nessas situações, o cálculo numérico surge como uma ferramenta essencial, permitindo aproximar resultados fundamentais, como as derivadas, a partir de informações discretas. A aproximação da derivada não é apenas um artifício matemático, mas uma necessidade prática em campos como engenharia, física e análise de dados. O tópico 1 tem como objetivo apresentar o método das diferenças finitas, discutir suas bases teóricas comparando-o com a definição clássica de derivada e explorar algumas de suas aplicações práticas, evidenciando sua relevância para problemas que exigem precisão.

1.1 Fundamentação teórica

1.1.1. Definição de derivada

A derivada de uma função em um ponto representa, de modo intuitivo, a taxa de variação instantânea dessa função — ou seja, como ela cresce ou decresce naquele instante. Formalmente, a derivada de uma função f(x) em um ponto x = a é definida pelo limite do quociente incremental:

Esse limite expressa o valor que a razão entre o incremento da função e o incremento da variável

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

independente tende a assumir quando esse incremento se aproxima de zero. É a partir dessa definição que construímos toda a base do cálculo diferencial, analisando variações contínuas.

1.1.2. Problemas na derivação analítica

Embora a derivada analítica seja a forma mais precisa de obter a taxa de variação de uma função, nem sempre ela é viável ou possível. Existem funções para as quais não se conhece uma expressão fechada, ou seja, não podem ser escritas por meio de fórmulas exatas — caso típico de funções definidas por integrais, séries ou algoritmos numéricos. Outro obstáculo ocorre quando lidamos com dados obtidos experimentalmente: nestes casos, temos apenas uma lista de valores discretos, sem qualquer fórmula explícita que permita aplicar regras de derivação. Além disso, em modelagens computacionais complexas, mesmo quando a função é conhecida, o custo ou a impossibilidade de calcular analiticamente sua derivada torna indispensável o uso de métodos aproximativos. Por essas razões, técnicas numéricas como as diferenças finitas se tornam ferramentas fundamentais para a análise e solução de problemas reais.

1.2. Definição das diferenças finitas

O método das diferenças finitas é uma técnica numérica utilizada para aproximar derivadas a partir de valores discretos de uma função. Em vez de considerar um limite com h→0, como na definição formal da derivada, utiliza-se um pequeno incremento fixo h para calcular a variação da função.

1.3. Tipos de diferenças finitas

Existem diferentes tipos de diferenças finitas, cada uma adaptada a situações específicas de cálculo. As principais são a **diferença progressiva**, que utiliza o ponto atual e o seguinte; a **diferença regressiva**, que usa o ponto atual e o anterior; e a **diferença central**, que considera os pontos antes e depois do ponto de interesse. Cada uma dessas fórmulas possui características próprias em relação ao erro e à precisão. A escolha do tipo adequado depende do contexto, da posição dos dados disponíveis e do objetivo da aproximação. Essas variações tornam o método das diferenças finitas bastante flexível e aplicável a diversos problemas práticos.

1.3.1. Diferença Progressiva

$$f'(x) pprox rac{f(x+h) - f(x)}{h}$$

1.3.2. Diferença regressiva

$$f'(x) pprox rac{f(x) - f(x - h)}{h}$$

1.3.3. Diferença Central

$$f'(x) pprox rac{f(x+h) - f(x-h)}{2h}$$

1.4. Erro de truncamento

Ao aproximar uma derivada por diferenças finitas, inevitavelmente introduzimos o chamado erro de truncamento, que representa a diferença entre o valor exato da derivada e a aproximação numérica obtida. Esse erro está diretamente relacionado ao tamanho do incremento (h) utilizado e à fórmula escolhida.

Nas diferenças progressiva e regressiva, o erro de truncamento é proporcional a h, ou seja, quanto menor o h, menor o erro — mas não indefinidamente, por conta de limitações numéricas.

Na diferença central, o erro é proporcional a $(h^2, o que geralmente garante uma aproximação mais precisa para valores pequenos de <math>h$.

Por isso, a escolha de (h) exige cuidado: um valor muito grande compromete a precisão, enquanto um valor muito pequeno pode amplificar erros computacionais, como o erro de arredondamento. Encontrar um equilíbrio adequado é essencial para garantir resultados confiáveis na aproximação de derivadas.

1.5. Exemplos de aplicação

O método das diferenças finitas tem aplicações práticas em diversas áreas do conhecimento. Na engenharia, é usado na análise de tensões e deformações em estruturas, permitindo estimar variações mesmo quando os dados vêm de medições discretas. Na física, auxilia no cálculo de velocidades e acelerações a partir de dados experimentais, como em estudos de movimento ou dinâmica de fluidos. Na computação, serve de base para métodos numéricos e simulações, como em equações diferenciais aplicadas a modelagens físicas ou análises estruturais. Já no campo das finanças,

é uma ferramenta importante na análise da variação de preços de ativos, ajudando a identificar tendências e comportamentos de mercado. Em todas essas áreas, a possibilidade de aproximar derivadas sem depender de fórmulas analíticas torna o método das diferenças finitas indispensável.

1.5.1. Cálculo da Velocidade pelo Método das Diferenças Finitas

Suponha que em um experimento, um objeto tenha sua posição registrada em tempos discretos. Para estimar sua velocidade em determinado instante, pode-se aplicar a fórmula da diferença central sobre os dados coletados. Assim, mesmo sem uma função explícita da posição em relação ao tempo, é possível obter uma boa aproximação da velocidade instantânea, fundamental em análises de movimento.

Um objeto tem suas posições registradas a cada segundo:

$$t_0 = 0 \, s, \, x_0 = 0 \, m$$

$$t_1 = 1\,s$$
, $x_1 = 2\,m$

$$t_2 = 2 \, s, \, x_2 = 5 \, m$$

Queremos a velocidade em t=1s usando a diferença central(pois precisamos de um resultado mais preciso:

$$v(1)pprox rac{x_2-x_0}{2h} = rac{5-0}{2 imes 1} = rac{5}{2} = 2{,}5\,m/s$$

1.5.2. Cálculo da Deformação em uma Barra

Em projetos de engenharia civil ou mecânica, sensores podem medir deslocamentos em pontos específicos de uma estrutura. Com esses valores discretos, o método das diferenças finitas permite calcular a derivada da deformação (ou tensão) em relação ao comprimento, essencial para avaliar a segurança e o comportamento estrutural sem a necessidade de expressões matemáticas exatas.

Uma barra sofre alongamento medido em pontos discretos ao longo de seu comprimento:

```
x=0\,cm, deformação \Delta L_0=0\,mm
```

 $x=5\,cm$, deformação $\Delta L_1=1,\!2\,mm$

 $x=10\,cm$, deformação $\Delta L_2=2,4\,mm$

Queremos a taxa de deformação em x=5 cm usando a diferença central:

$$\left. rac{d\Delta L}{dx}
ight|_{x=5} pprox rac{\Delta L_2 - \Delta L_0}{2h} = rac{2,4-0}{2 imes 5} = rac{2,4}{10} = 0,\!24\,mm/cm$$

2. Soma de Riemman

Ao longo da história, a integral se consolidou como uma das ferramentas mais importantes da Matemática, essencial para o cálculo de áreas, volumes, trabalho de forças e muitas outras aplicações práticas. Porém, nem sempre é possível determinar a primitiva de uma função de forma exata — seja por sua complexidade ou porque a função sequer possui uma expressão fechada. Nessas situações, torna-se necessário recorrer a métodos aproximativos. O tópico 2 tem como objetivo apresentar o conceito de Soma de Riemann, explicar como essa soma permite aproximar o valor de uma integral definida e discutir sua interpretação geométrica. Além disso, serão exploradas aplicações desse conceito em problemas reais, destacando sua relevância na matemática aplicada e na ciência.

2.1 definição de integral

A integral definida de uma função real f(x) em um intervalo [a,b] representa, geometricamente, a área sob a curva f(x)entre a e b, levando em conta o sinal da função.

Sua definição formal é dada como o limite da soma de Riemann quando a quantidade de subdivisões do intervalo tende ao infinito

$$\int_a^b f(x)\,dx = \lim_{n o\infty} \sum_{i=1}^n f(c_i)\cdot \Delta x$$

onde:

O intervalo [a,b] é dividido em **n s**ub-intervalo**s** de comprimento $\Delta x = rac{b-a}{n}$

Ci é um ponto escolhido dentro do i-ésimo sub-intervalo;

A soma $\sum_{i=1}^n f(c_i) \cdot \Delta x$ representa a soma das áreas dos retângulos associados a cada subintervalo.

À medida que nnn cresce, os retângulos ficam mais estreitos e a soma se aproxima do valor exato da integral.

2.2. Soma de Riemann: Conceito

Após a definição formal da integral definida como limite de somas, a **Soma de Riemann** aparece como uma ferramenta prática para aproximar esse valor quando não é possível — ou não é viável — calcular a integral exata.

A ideia central consiste em dividir o intervalo de integração [a,b] em **n sub-intervalos** de mesma $\Delta x = \frac{b-a}{n}.$ Em cada sub-intervalo, escolhe-se um ponto Ci e calcula-se o produto $f(c_i)\cdot \Delta x, \text{ que representa a área de um retângulo de base } \Delta x \text{ e altura f(Ci)}. A soma de todos esses produtos fornece a Soma de Riemann:}$

$$S = \sum_{i=1}^n f(c_i) \cdot \Delta x$$

Quando nnn tende ao infinito, essa soma se aproxima do valor real da integral.

2.3 Soma de Riemann: Tipos e Fórmulas

A Soma de Riemann pode ser calculada de diferentes maneiras, dependendo da escolha dos pontos Ci dentro de cada sub-intervalo. Essa escolha influencia diretamente a precisão da aproximação. Os principais tipos são:

2.3.1 Soma à Esquerda

usa-se o extremo esquerdo de cada sub-intervalo como ponto de avaliação;

$$S = \sum_{i=0}^{n-1} f(x_i) \cdot \Delta x$$

Essa soma tende a subestimar ou super-estimar a área, dependendo do comportamento da função.

2.3.2 Soma à Direita

Utiliza-se o extremo direito de cada subintervalo:

$$S = \sum_{i=1}^n f(x_i) \cdot \Delta x$$

Assim como a soma à esquerda, a precisão depende da variação da função no intervalo.

2.3.3 Soma pelos Pontos Médios

Aqui, o ponto escolhido é o ponto médio de cada subintervalo:

$$S = \sum_{i=0}^{n-1} f\left(rac{x_i + x_{i+1}}{2}
ight) \cdot \Delta x$$

Essa aproximação costuma ser melhor porque compensa parcialmente os erros cometidos ao longo dos subintervalos.

2.4. interpretação Geométrica da Soma de Riemann

A Soma de Riemann possui uma interpretação geométrica simples e intuitiva: cada termo da soma representa a área de um retângulo construído em um sub-intervalo do domínio da função. A base do retângulo é o comprimento Δx , e a altura é determinada pelo valor da função no ponto escolhido (esquerda, direita ou ponto médio).

Os exemplos seguintes irão utilizar: para a função f(x)=x2 no intervalo [0,2], dividido em 4 sub-intervalos:

2.4.1 Na soma à esquerda, os retângulos se ajustam pela altura do lado esquerdo de cada subintervalo.

2.4.2 Na soma à direita, a altura é dada pelo lado direito do sub-intervalo.

2.4.3 Na soma pelos pontos médios, os retângulos usam a altura correspondente ao ponto central do sub-intervalo, o que geralmente resulta em uma aproximação mais equilibrada.

2.5 Exemplos prático

Na física e engenharia, o trabalho realizado por uma força variável pode ser calculado pela área sob o gráfico da força em função da distância. Como o trabalho é uma integral, a soma de Riemann serve para estimar esse valor, facilitando o cálculo em sistemas complexos.

2.5.1 **problema 1**

Uma força varia ao longo de um deslocamento de 0 a 4 metros segundo a função:

$$F(x) = 3x + 2$$
 (em Newtons)

Calcule uma aproximação do trabalho realizado pela força ao mover o objeto de 0 a 4 m usando a soma de Riemann com 4 subintervalos (diferença finita à esquerda).

Passo 1: Dividir o intervalo [0,4][0,4][0,4] em 4 partes iguais:

$$\Delta x = \frac{4-0}{4} = 1 \text{ metro}$$

Os pontos são: x0=0, x1=1, x2=2, x3=3, x4=4.

Passo 2: Calcular a força nos pontos à esquerda dos sub-intervalos:

$$F(x_0) = F(0) = 3 \cdot 0 + 2 = 2$$

$$F(x_1) = F(1) = 3 \cdot 1 + 2 = 5$$

$$F(x_2) = F(2) = 3 \cdot 2 + 2 = 8$$

$$F(x_3) = F(3) = 3 \cdot 3 + 2 = 11$$

Passo 3: Calcular a soma de Riemann à esquerda:

$$Wpprox \sum_{i=0}^{3}F(x_{i})\Delta x=(2+5+8+11) imes 1=26 ext{ Joules}$$

Passo 4: Conferir com a integral exata:

$$W = \int_0^4 (3x+2) \, dx = \left[rac{3x^2}{2} + 2x
ight]_0^4 = rac{3 imes 16}{2} + 8 = 24 + 8 = 32 ext{ Joules}$$

Graficamente:

3. REFERÊNCIAS

PALIGA, Aline. *Somas de Riemann e integração numérica*. Pelotas: Universidade Federal de Pelotas, 2012. Disponível em: https://wp.ufpel.edu.br/nucleomatceng/files/2012/07/Somas-de-Riemann-e-integra%C3%A7%C3%A3o-num%C3%A9rica_.pdf. Acesso em: 18 jul. 2025.

FONTANA, Marcelo Roberto. *Apostila de Métodos Numéricos II*. Florianópolis: Universidade Federal de Santa Catarina, 2019. Disponível em: https://fontana.paginas.ufsc.br/files/2017/02/apostila_metII_20191.pdf. Acesso em: 18 jul. 2025.

SILVA, Rafael da; MACHADO, Denise; SANTOS, Rogério. Repositório de Exercícios e Aplicações de Matemática — Cálculo Numérico com Python. Porto Alegre: Universidade Federal do Rio Grande do Sul, 2019. Disponível em: https://www.ufrgs.br/reamat/CalculoNumerico/livro-py/livro-py.pdf. Acesso em: 18 jul. 2025.