

Machine Learning La Régression logistique

Présenté par:

AYMANE MAGHOUTI (Étudiant en Ingénierie des Données (ID2))

Outline:

- 1- Introduction à la classification
- 2- Regression vs Classification
- 3- Les types de classification
- 4- L'algorithme de régression logistique
- 5- Evaluation d'un modèle de classification:
 - Matrice de confusion
 - Exactitude (Accuracy)

6- Mini - Project:

- Préparation des données
- Entraînement du modèle (Régression logistique)
- Evaluation de modèle
- Déploiement du modèle
- Faire des test

Introduction à la classification

➤ Variable discrète : La variable à prédire peut prendre une valeur d'un ensemble fini et non ordonné L (qu'on appelle des classes ou catégories), tel que :

couleur des yeux∈ {marron, bleu, vert}

email∈ {spam, ham}

➤ Dans l'apprentissage supervisé, quand la variable à prédire prend une valeur discrète, on parle d'un problème de classification.

Regression vs Classification

Les types de classification

Single-Label: Binary Classification

Classification binaire fait référence aux tâches de classification qui ont deux classes.

➤ Exemple:

Single-Label: Multi-Class Classification

- La classification multi-classes est un problème de classification des instances dans l'une des trois classes ou plus.
- ➤ Elle suppose que le choix est entre plus de deux classes, mais l'instance d'entrée doit être affectée à une et une seule étiquette de classe.

➤ Exemple:

Multi-Label Classification

- La classification multi-étiquettes consiste à prédire zéro ou plusieurs étiquettes de classes.
- ➤ Le nombre d'étiquettes par instance n'est pas fixe.
- ➤ Exemple:

La Régression logistique

- Le Modèle de régression linéaire $h_{\theta}(x)=\theta^{T}x$.
- >Le modèle de régression logistique : $0 \le h_{\theta}(x) \le 1$, où $h_{\theta}(x) = g(\theta^{T}x)$.
- \succ g(.) est la fonction logistique, (fonction sigmoïde) $z= heta^T x$; $g(z)=rac{1}{1+e^{-z}}$

➤Pour prédire une valeur discrète 0 ou 1, la sortie de la fonction d'hypothèse est traduite comme suit :

$$h_{ heta}(x) \geq 0.5
ightarrow y = 1 \ h_{ heta}(x) < 0.5
ightarrow y = 0$$

 \triangleright Si notre entrée à g est $\theta^T x$, alors cela signifie :

La fonction de coût pour la régression logistique:

$$J(heta) = rac{1}{m} \sum_{i=1}^m \mathrm{Cost}(h_{ heta}(x^{(i)}), y^{(i)}) \ = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \log(h_{ heta}(x^{(i)})) + (1-y^{(i)}) \log(1-h_{ heta}(x^{(i)}))]$$

Avec:
$$\operatorname{Cost}(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

Minimisation du fonction de coût :

$$J(heta) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \log(1-h_ heta(x^{(i)}))]$$

Descente du gradient Répéter { $\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial} J(\theta) \text{ (mettre à jour les } \theta_j \text{ simultanément)}$ }

Descente du gradient $\text{(mettre à jour les } \theta_{\text{j}} \text{ simultanément)}$ $\theta_{\text{j}} \coloneqq \theta_{\text{j}} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \big(x^{(i)} \big) - y^{(i)} \big) x_{\text{j}}^{(i)}$ }

Evaluation d'un modèle de classification:

Confusion Matrix

Reality

Prediction	Confusion matrix	Negative : 0	Positive : 1
	Negative : 0	True Negative : TN	False Negative : FN
	Positive : 1	False Positive : FP	True Positive : TP

Accuracy (exactitude)

$$Accuracy = \frac{TP + TN}{total}$$

Exemple:

Accuracy =
$$(45+30) / 100 = 0.75$$

Project: Loan Credit Classification

Architecture

> Web app pour l'estimation du crédit

By Aymane-MG

Merci pour votre attention!

