Existence of Rosseland equation

ZHANG QiaoFu[†] & CUI JunZhi

 $A cademy \ of \ Mathematics \ and \ Systems \ Science, \ Chinese \ A cademy \ of \ Sciences, \ Beijing \ 100190, \ China \ (email: zhangqf@lsec.cc.ac.cn, cjz@lsec.cc.ac.cn)$

Abstract The global boundness, existence and uniqueness are presented for the kind of Rosseland equation with a small parameter. This problem comes from conduction-radiation coupled heat transfer in the composites; it's with coefficients of high order growth and mixed boundary conditions. A linearized map is constructed by fixing the function variables in the coefficients and the right-hand side. The solution to the linearized problem is uniformly bounded based on De Giorgi iteration; it is bounded in the Hölder space from a Sobolev-Campanato estimate. This linearized map is compact and continuous so that there exists a fixed point. All of these estimates are independent of the small parameter. At the end, the uniqueness of the solution holds if there is a big zero-order term and the solution's gradient is bounded. This existence theorem can be extended to the nonlinear parabolic problem.

Keywords: nonlinear elliptic equation, well-posedness, fixed point, mixed boundary conditions, without growth conditions, Rosseland equation

MSC(2000): 35J60, 47H10

1 Introduction

Our original motivation is the Rosseland equation in the conduction-radiation coupled heat transfer [1,2]. Find $(u_{\varepsilon} - u_b) \in W_0^{1,2}(G)$ (Definition 2.3), such that

$$\int_{C} a_{ij}(u_{\varepsilon}(x), x, \frac{x}{\varepsilon}) \frac{\partial u_{\varepsilon}}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{i}} + \int_{\Gamma} \alpha(u_{\varepsilon} - u_{gas}) \varphi = \int_{C} f(u_{\varepsilon}(x), x, \frac{x}{\varepsilon}) \varphi, \quad \forall \varphi \in W_{0}^{1,2}(G),$$

where $a_{ij} = k_{ij}(x, \frac{x}{\varepsilon}) + 4u_{\varepsilon}^3 b_{ij}(x, \frac{x}{\varepsilon})$; $(k_{ij}), (b_{ij})$ are symmetric positive definite; $k_{ij}(x, y), b_{ij}(x, y)$ are 1-periodic in y. The small parameter ε is the period of the composite structure. Γ is the natural boundary part of ∂G . There may be no ellipticity for $A = (a_{ij})$ without considering physical conditions; uniform estimates independent of ε are also needed. This open problem (the existence theory for the equation with coefficients like $k + 4u^3b$, without ε) was proposed by Laitinen in 2002 (Remark 3.4 [3]).

There are several steps: firstly describe the physical conditions and find a suitable temperature interval by the global boundness in L^{∞} (Lemma 3.1); then construct a linearized map with a fixed point in this interval (Theorem 3.4); the fixed point is unique if there is a big zero-order term and the solution's gradient is bounded (Theorem 4.3).

The novelty is we don't need any growth conditions in [4]: this method can be used for coefficients like $k + 4u^m b$, $\forall m > 0$. More specifically, $\forall C_1, C_2$, $0 < C_1 \le C_2$,

$$A(u_{\varepsilon}(x), x, \frac{x}{\varepsilon}) \in [C_3, C_4], \quad \text{if } u_{\varepsilon} \in [C_1, C_2]; \quad 0 < C_3 = C_3(C_1), C_4 = C_4(C_1, C_2).$$
 (1.1)

 $^{^{\}dagger}$ Corresponding author

Our main tool is the regularity established by Griepentrog and Recke in the Sobolev-Campanato space [5]. Their work asserted that linear elliptic equation of second order with non-smooth data $(L^{\infty}$ -coefficients, Lipschitz domain, regular sets, non-homogeneous mixed boundary conditions) has a unique solution in $C^{\beta}(\overline{\Omega})$; this Hölder norm smoothly depends on the data.

Note that the well-posedness is still valid if the ellipticity is a priori known or only Dirichlet boundary condition is considered (the famous De Giorgi-Nash estimate holds; see Theorem 8.29 [4]). We present a local gradient estimate for a simplified problem (only the righthand side is nonlinear) in Lemma 4.1; it can be used in the error estimate of the homogenization [6]. All of these results can be extended to the nonlinear parabolic equation if we use the regularity in the parabolic Sobolev-Morrey space [7].

Throughout this paper, C, C_i denote positive constants independent of the solution and the small parameter ε . The unit cell $Y = (0,1)^n$. B(x,r) is the open ball of radius r centered at x. $\varphi \in [C_0, C_1]$ means that $\varphi \in L^{\infty}$ in the relevant domain if without confusion and $C_0 \leqslant \varphi \leqslant C_1$. For a real symmetric matrix $A = (a_{ij}(u(x), x, y)), A \in [C_0, C_1]$ implies

$$a_{ij}(u(x),x,y)\xi_i\xi_j\geqslant C_0|\xi|^2,\quad \sum |a_{ij}(u(x),x,y)|^2\leqslant C_1^2,\quad \forall (x,y)\in\Omega\times Y\,,\xi\in\mathbb{R}^n.$$

 $\|\varphi\|_q$ is an abbreviation of the norm in the relevant L^q space. T_{min}, T_{max} are positive physical constants (the range of the environmental temperature); $0 < T_{min} \le T_{max}$.

2 Regular sets, Campanato space and model problem

5 Conclusions

The well-posedness is given for the Rosseland equation with a small parameter ε . The physical conditions are included in (A1)-(A5). Based on the boundness in L^{∞} , we construct a closed convex set $[T_{min}, T_*]$. Then, we prove the linearized map is compact and continuous from the Sobolev-Campanato estimate established by Griepentrog and Recke. So there exists a fixed point; the solution to the original nonlinear problems has almost the same estimates as the linear one. These estimates are independent of the small parameter. So there is a subsequence which converges in $C^0(\overline{\Omega})$ (or $H^1(\Omega)$), if $\varepsilon \to 0$. A local gradient estimate of the solution is given for a simplified problem; it can be used to the error estimate of the same type of equation's homogenization. The uniqueness is also based on a linearized map; see (??). Similar results on the nonlinear parabolic problem based on the same method and Sobolev-Morrey estimate [7] will appear elsewhere.

Acknowledgements This work is supported by National Natural Science Foundation of China (Grant No. 90916027). The authors thank the referees for their careful reading and helpful comments.

References

1 Zhang Q. F., Cui J. Z., Multi-scale analysis method for combined conduction-radiation heat transfer of

- periodic composites, Advances in Heterogeneous Material Mechanics(eds. Fan J. H., Zhang J. Q., Chen H. B., et al), Lancaster: DEStech Publications, 2011, 461-464
- 2 Modest M. F., Radiative heat transfer, 2nd, San Diego: McGraw-Hill, 2003
- 3 Laitinen M. T., Asymptotic analysis of conductive-radiative heat transfer, Asymptotic Analysis, 2002, 29(3): 323-342
- 4 Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Berlin: Springer, 2001
- 5 Griepentrog J.A., Recke L., Linear elliptic boundary value problems with non-smooth data: normal solvability on Sobolev-Campanato spaces, Math Nachr, 2001, 225(1): 39-74
- 6 Zhang Q. F., Cui J. Z., Regularity of the correctors and local gradient estimate of the homogenization for the elliptic equation: linear periodic case, 2011, arXiv:1109.1107v1 [math.AP]
- 7 Griepentrog J.A., Sobolev-Morrey spaces associated with evolution equations, Adv Differential Equations, 2007, 12: 781-840
- 8 Gröger K, A $W^{1,p}$ -estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math Ann, 1989, 283(4): 679-687
- 9 Brezis H., Vázquez J. L., Blow-up solutions of some nonlinear elliptic problems, Rev Mat Univ Complut Madrid, 1997, 10(2): 443-469
- 10 Wu Z. Q., Yin J. X. and Wang C. P., Elliptic and Parabolic Equations, Singapore: World Scientific, 2006
- 11 Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, Amsterdam: North-Holland, 1978
- 12 Avellaneda M., Lin F. H., Compactness method in the theory of homogenization, Comm Pure Appl Math, 1987, 40(6): 803-847
- 13 Kenig C. E., Lin F. H. and Shen Z. W., Homogenization of elliptic systems with Neumann boundary conditions, 2010, arXiv: 1010.6114v1 [math.AP]