Radix Sorts I) Strangs in Java String = sequence of characters C char data type = Typically our 8-bit integer · Supports 7-bit ASCII · can represent only 256 characters Javo duar data type = 16-bit cussomed integer · Supports original 16-bit Unicede · Supports 21-bit (micode 3.0 (awknordly) String data type in Jova · sequence of distracters (immutable) · length - no. of characters · indexing - get the it character · substring extaction = get a contiguous subsequence of characters · string concatenation = append one

character to end of another string. * length (), duar At (), substitus () = in constant time - 0(1) * concat - D(N) Memory = 40 + 2x/ bytes for a virgin skins of length & [Itring Builder] = sequence of diaracters (mutable) * subshing () takes O(XI) * concat () -0 0 (1) * amortized · undurlying implementation = resising chart 7 array and length ! How to efficiently havern a string? => String - = 0 (N2) => Sting Builder - 0 9(N)

Alphabets Agital key = sequence of digits over fixed alphabet Radix = number of digits R in alphabet R -> log_2 R = bytes to represent Key Indexed Counting Lower bound ~ X/g X/ compares required by any our pare-based algorithm * Can we do better? yes! if we don't depend on key compares Assumption: bey's are integers between Dand R-1 => Can use key as an array index Remark: keys may have associated data => can't just count up no. of keys of each volue.

[Goal]: Sort an array a [] of N integers between 0 and R-1 # (bey- indexed counting) uses ~ 11 \$1 + 4R array accesses to sort & items whose keys are integrs between 0 and R-1 * key-indexed counting uses extra space proportional to N+R * We move things in the order that we See them => STABLE LSD Radix Sort Least-Significant-Digit-first string soit LSD string (hadix) sort - consider characters from right to left - stably soit using (of thi) distracter as the key (using key-indexed counting)

* fixed length keys -> LSD runs in O(2WXI) [w = length of keys] small constant (Problem) -> sort one million 32 bit hutegers MSD Rodix Got MSD string (hadix) sort o partition array into R pieces according to first diaracter (use key-index counting) o recursively fort all shings that start with each distracter (key-indexed courts delineate Subarrays to sort) * variable-length shings -> treat shings as if they had an exha drar at the end (smaller those any char) * you have to have a count array with the size of the alphabet

Observation 1/ Huch too slow for small subarrays Observation 2 | Huge no. of small rub arrays because of recursion MSD performance - No. of diaracters examined - Hso examines just enough to sort the keys
- O(N log R L/) I handow MSD/ = accesses memory "randomly" (coche inefficient) - inner loop has a lot of instructions - extra space for countif Quicksort - linearithmic aunuber of shing compares (not imear)

	0	ha	Δ	Ь	he	308	w	. (m	w	y	d	ar	ao	ter	מ	m	k	ey	1		_
W	iA																					_
																						_
			3	-1	Vai	<u> </u>	ra	dj	L	W	uic	٤.	sor	•								_
v	do				_										he	C	1-	K				
					_						نسر)										_
	ar																					_
0	m	dc.		nes	rdi.	Hg	uin	ne	kí (leu	u,										0	_
0	u	nc	'	Gir.	vst-	d	لما	ro.	de	ኢ	4	,	sa):	eti:	h'9	u	m	H	<u>,</u>	egi	leg val	_
												/							94	sea	leg val ter	
	Su	ba	w	a.	~														0			_
									,										_			_
0	re	w	184	reli	1	80	J	של	ιba	ህ ን	ay	B	ره	(d	uO	lin	3	1	W			_
	d	wh	a	τυ	L	fo	L	\sim	uic	dd	lle		su!	ba	rr	ay		•				
						/									<	\checkmark						_
5	Ha	ud	lar	d	(JS)	- (પક્રા	၇	n	. 2	2 X/	10	2 <i>)</i>	'	Şi	kin	ng	Œ.	rup.	
																						_
	3 · —		_	1			ع	•		ИH	cs.			4/V	//	u 1	У	cn	or o	cre	<u>ル</u>	_
C	10m	ipa	du	10	כמ																	_
																						_

Suffix Alrays · Keyword in context search · Suffix sorting · take imput shing and form suffixes · Sort suffixes to bring repeated substrings together * preprocess: Suffix sort the text * guery: binary search for zwry => scare until Mismatch Longest Papeated substring given a string of X diaractors, find the longest repeated substring Brute force: · try all implices i, j for start of possible Match ore fix) for each pair

· form suffixes · sort suffixes to bring superated substrings together · compute longent prefix between adjacent Suffixes Suffix sorting dialkinge Solution: Manber-Hyers MSD alsorithm