Inferencia Estadística

Marisol García Peña

Departamento de Matemáticas Pontificia Universidad Javeriana

Bogotá, 2022

Marisol García Peña

1 / 574

Información de Fisher para una muestra aleatoria

Sea X_1, \ldots, X_n una muestra aleatoria con función de densidad o de probabilidad $f(x; \theta)$, la información de Fisher en este caso está dada por

$$I_F(\theta) = E\left\{ \left[\frac{\partial}{\partial \theta} \log f_{\mathbf{x}}(X; \theta) \right]^2 \right\}$$

Se existe $\frac{\partial^2}{\partial \theta^2} \log f_{\mathbf{x}}(X; \theta), \forall \theta$, entonces

$$I_F(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2} \log f_{\mathbf{x}}(X;\theta)\right]$$

Marisol García Peña

Ejemplo

Sea X_1,\ldots,X_n una muestra aleatoria con distribución Poisson con parámetro $\theta>0$. Encuentre la información de Fisher. $P[X=x]=\frac{\theta^x e^{-\theta}}{x!}, \forall x=0,1,\ldots$

Estadística suficente

- Concepto introducido por Fisher 1922.
- Facilitar la búsqueda de un buen estimador.
- Resumir la información dada por los datos sin pérdida de información.
- Encontrar una función de la muestra que proporcione tanta información sobre θ como la misma muestra.
- Esa función ⇒ suficiente para propósitos de estimación ⇒ estadística suficiente.

Estadística suficiente

Sea X_1,\ldots,X_n una muestra aleatoria de una densidad $f(\bullet;\theta)$, donde θ puede ser un vector. La estadística $S(X_1,\ldots,X_n)$ es una estadística suficiente si y sólo si la distribución condicional de X_1,\ldots,X_n dado S=s no depende de θ . Es decir, si

$$f_{x|S}(x|S=s)$$
 no depende de θ

Un estimador de θ que es función de una estadística suficiente para θ es un estimador suficiente de θ .

Ejemplo

Sea X_1, X_2 una muestra aleatoria de una Poisson con parámetro θ , muestre que $S(X_1, X_2) = X_1 + X_2$ es una estadística suficiente para θ .

Ejemplo

Sea X_1, X_2 una muestra aleatoria de una Poisson con parámetro θ , muestre que $S(X_1, X_2) = X_1 + 2X_2$ no es una estadística suficiente para θ .

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria de una Bernoulli con parámetro θ , muestre que $S(X_1, \ldots, X_n) = \sum_{i=1}^n X_i$ es una estadística suficiente para θ .

Estadística suficiente

Sea X_1, \ldots, X_n una muestra aleatoria de una densidad $f(\bullet, \theta)$. Una estadística $S(X_1, \ldots, X_n)$ es estadística suficiente si y sólo si la distribución condicional de T dado S no depende de θ , para cualquier estadística $T(X_1, \ldots, X_n)$.

- Definición equivalente a la anterior.
- Útil para mostrar que una estadística en particular no es suficiente.
- Para mostrar que T' no es suficiente \Longrightarrow encontrar otra estadística T para la cual la distribución condicional de T dado T' depende de θ .

Estadísticas conjuntamente suficientes

Sea X_1,\ldots,X_n una muestra aleatoria de densidad $f(\bullet,\theta)$. Las estadísticas S_1,\ldots,S_r son definidas como conjuntamente suficientes si y sólo si la distribución condicional de X_1,\ldots,X_n dado $S_1=s_1,\ldots,S_r=s_r$ no depende de θ .

 θ puede ser un vector de parámetros.

Teorema

Si $S_1(X_1,...,X_n),...,S_r(X_1,...,X_n)$ es un conjunto de estadísticas conjuntamente suficientes, entonces cualquier conjunto de funciones uno a uno o transformaciones de $S_1,...,S_r$ también es conjuntamente suficiente.

Ejemplo

- Si $\sum X_i$ y $\sum X_i^2$ son conjuntamente suficientes.
- Entonces \overline{X} y $\sum (X_i \overline{X})^2 = \sum X_i^2 n\overline{X}^2$ también son conjuntamente suficientes.

Criterio de factorización (Neyman-Fisher)

Teorema

Sea X_1, \ldots, X_n una muestra aleatoria de tamaño n de una densidad $f(\bullet, \theta)$, donde el parámetro θ puede ser un vector. La estadística $S(X_1, \ldots, X_n)$ es suficiente si y sólo si la densidad conjunta de X_1, \ldots, X_n , $\prod_{i=1}^n f(\bullet, \theta)$, puede factorizarse como

$$f(x_1,\ldots,x_n;\theta)=g(s(x_1,\ldots,x_n),\theta)h(x_1,\ldots,x_n)=g(s,\theta)h(\mathbf{x})$$

donde la función $h(x_1, \ldots, x_n)$ es no negativa y no depende de θ y la función $g(s(x_1, \ldots, x_n), \theta)$ es no negativa y depende de θ y del valor de la estadística s.

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria de una distribución Poisson con parámetro $\theta > 0$. Encuentre una estadística suficiente para θ .

$$X \sim Pois(\theta) \Longrightarrow P[X = x] = \frac{e^{-\theta}\theta^{x}}{x!}$$

$$f_{\mathbf{x}}(\mathbf{x}, \theta) = \prod_{i=1}^{n} P[X_{i} = x_{i}] = \prod_{i=1}^{n} \frac{e^{-\theta}\theta^{x_{i}}}{x_{i}!}$$

$$= \underbrace{e^{-n\theta}\theta^{\sum_{i=1}^{n} x_{i}}}_{g(s,\theta)} \underbrace{\prod_{i=1}^{n} \frac{1}{x_{i}!}}_{h(x)}$$

Entonces $S(\mathbf{X}) = \sum_{i=1}^{n} X_i$ es una estadística suficiente para θ .

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria con función de densidad

$$f(x,\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & \text{e.o.c.} \end{cases}$$

Encuentre una estadística suficiente para θ .

Marisol García Peña

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria con función de densidad

$$f(x,\theta) = \begin{cases} e^{-(x-\theta)}, & \theta < x < \infty \\ 0, & \text{e.o.c.} \end{cases}$$

Encuentre una estadística suficiente para θ .

Marisol García Peña

Ejemplo

Sea Y_1, \ldots, Y_n una muestra aleatoria con $f(y_i, \theta) = \frac{1}{\theta} e^{-\frac{y_i}{\theta}}$, $0 \le y_i \le \infty$, $\theta > 0$. Muestre que \overline{Y} es una estadística suficiente para θ .

209 / 574

Ejemplo

Sea X_1,\ldots,X_n una muestra aleatoria de una población geométrica con parámetro π . Muestre que \overline{X} es una estadística suficiente para π . $P[X_i=x_i]=\pi(1-\pi)^{x-1}$, $x_i\geq 1$

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria de una población $U(0,\theta)$. $f(x_i,\theta) = \frac{1}{\theta}$, $0 < x < \theta, \theta > 0$. Muestre que $X_{(n)} = \max_{1 \le i \le n} X_i$ es una estadística suficiente para θ .