Graphs

City of Königsberg, Prussia, 1735.

Gedenkblatt zur sechshundert jährigen Dubelfeier der Königlichen Baupt und Residenz Stadt Königsberg in Breufsen.

City of Königsberg, Prussia, 1735.

Task: Find a path through the city that would cross each bridge once and only once.

City of Königsberg, Prussia, 1735.

Task: Find a path through the city that would cross each bridge once and only once.

Basic definitions

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Paths and Cycles

Def. Graph G = (V, E) is a set of vertices V, with a set of edges E between them.

Def. Each edge has two endpoints.

Def. An edge *joins* its endpoints, two endpoints are *adjacent* if they are joined by an edge.

Def. An edge is said to be *incident* to the vertices it joins.

Basic definitions

$$V = \{A, B, C, D, E, F\}$$
$$E = \{\{A, B\}, \{A, C\}, \{A, D\}, \{C, D\}, \{C, F\}\}$$

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Subgraphs

Definitions

Degree

Bipartite graphs

Graph coloring
Graph

representations
Paths and Cycles

Deleting some vertices or edges from a graph leaves a *subgraph*. Formally:

Def. A *subgraph* of G = (V, E) is a graph G' = (V', E') where V' is a nonempty subset of V and E' is a subset of E.

$$V' = \{A, C, F, E\}$$
$$E' = \{\{A, C\}, \{C, F\}\}$$

Variants: Multigraph

Def. In *simple graphs*, each pair of distinct vertices has at most one edge.

Def. Graphs that may have multiple edges connecting the same vertices are called *multigraphs*

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Variants: Graphs with loops

Some graphs that may include *loops*, and possibly multiple edges connecting the same pair of vertices or a vertex to itself.

Definitions

Degree

Bipartite graphs

Graph coloring
Graph

representations
Paths and Cycles

Directed graphs

Def. In *directed graph* (or digraph) the edges are directed, that is every edge (u, v) is an ordered pair. It starts at u and ends at v.

Definitions

Degree

Bipartite graphs

Graph coloring
Graph

representations

Complete graph

Def. *Complete graph* is a simple graph that has one edge between each pair of vertices.

They are denoted by K_n , where n is the number of vertices.

 K_6 is in the figure above.

Definitions

Degree

Bipartite graphs

Graph coloring Graph

representations

Empty graph

Def. *Empty graph* has empty set of edges.

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Degree in undirected graph

Definitions

Degree

Bipartite graphs

Graph coloring
Graph

representations

Paths and Cycles

Def. The *degree* of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.

The degree of the vertex v is denoted by deg(v).

$$deg(A) = 7$$
, $deg(B) = 2$, $deg(C) = 4$, $deg(D) = 4$, $deg(E) = 0$, $deg(F) = 1$.

The handshaking lemma

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Paths and Cycles

Lemma (The handshaking lemma). Let (V, E) be an undirected graph with m edges. Then

$$\sum_{v \in V} \deg(v) = 2m.$$

Corollary. An undirected graph has an even number of vertices of odd degree.

Social graphs

1. Prove that there is no group of 7 people such that each person in the group has exactly 3 friends in the group.

Friendship is always mutual.

That is, in math-speak, the *friendship relationship is symmetric*.

2. Then, try to prove that in any group of $n \ge 2$ people, there are at least 2 people with the same number of friends in the group.

Definitions

Degree

Bipartite graphs
Graph coloring

Graph representations

Degree in directed graph

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Paths and Cycles

Def. In directed graphs, there are similar notions of *in-degree* and *out-degree*, denoted by $deg^-(v)$ and $deg^+(v)$ respectively

$$deg^{-}(A) = 3$$
, $deg^{+}(A) = 3$, $deg^{-}(B) = 1$, $deg^{+}(B) = 1$,
 $deg^{-}(C) = 1$, $deg^{+}(C) = 3$, $deg^{-}(D) = 2$, $deg^{+}(D) = 1$,
 $deg^{-}(E) = 0$, $deg^{+}(E) = 0$, $deg^{-}(F) = 1$, $deg^{+}(F) = 0$.

Degree in directed graph

Theorem. Let (V, E) be a directed graph. Then

$$\sum_{v \in V} \operatorname{deg}^{-}(v) = \sum_{v \in V} \operatorname{deg}^{+}(v) = |E|.$$

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Bipartite graph

Def. A simple graph is called *bipartite* if its vertex set V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2

Definitions

Degree

Bipartite graphs

Graph coloring
Graph

representations

Matching

Suppose that there are m employees in a group and n different jobs that need to be done, where $m \ge n$.

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Matching

Suppose that there are m employees in a group and n different jobs that need to be done, where $m \ge n$.

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Matching

Definitions

Degree

Bipartite graphs

Graph coloring
Graph

representations
Paths and Cycles

Def. A *matching* M in a simple graph (V, E) is a subset of E such that no two edges from M are incident with the same vertex.

Def. We say that a matching M in a bipartite graph G = (V, E) with bipartition (V_1, V_2) is a *complete matching* from V_1 to V_2 if every vertex in V_1 is the endpoint of an edge in the matching, or equivalently, if $|M| = |V_1|$.

So, every job is assigned to some employee, and no employee is assigned to more than one job.

Neighborhood of a set of vertices

Given a set of vertices S, define N(S) to be the set of all neighbors of S; that is, all vertices that are adjacent to a vertex in S, but not actually in S.

4 D C C 2 B A

$$N(\{1,2\}) = \{A,B,C\}$$

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Neighborhood of a set of vertices

Given a set of vertices S, define N(S) to be the set of all neighbors of S; that is, all vertices that are adjacent to a vertex in S, but not actually in S.

$$N({2,3,4}) = {C,D}$$

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Hall's theorem

Theorem (Hall's Marriage Theorem). The bipartite graph (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if

$$|N(A)| \ge |A|$$

for all subsets $A \subseteq V_1$.

Question: Is there a complete matching from $V_1 = \{1, 2, 3, 4\}$ to $V_2 = \{A, B, C, D\}$?

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Graph coloring and bipartite graphs

Graph coloring is a task to assign colors to each vertex of the graph so that no two adjacent vertices are assigned the same color.

Def. A graph G is k-colorable if each vertex can be assigned one of k colors so that adjacent vertices get different colors.

Theorem. A simple graph is *bipartite* if and only if it is *2-colorable*.

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Graph coloring

Def. The *chromatic number* of a graph is the least number of colors needed for a coloring of this graph. It's denoted by $\chi(G)$.

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Paths and Cycles

The following theorem helps to estimate the chromatic number.

Theorem. A graph G with maximum degree at most k is (k + 1)-colorable:

$$\max_{v \in V} (\deg(v)) \le k \rightarrow G \text{ is } (k+1)\text{-colorable.}$$

Graph coloring

$$\max_{v \in V} (\deg(v)) \le k \quad \to \quad G \text{ is } (k+1)\text{-colorable.}$$

Proof. The theorem can be proved by induction.

The base case. A graph with |V| = 1 does not have edges, so the maximum degree is 0, and the graph is 1-colorable.

Inductive step. Assume that a graph with n-1 vertices and maximum degree at most k is (k+1) colorable.

Now, prove that a graph with n vertices and maximum degree at most k is (k + 1) colorable . . .

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Representing graphs

n vertices and *m* edges.

How to represent a graph in a computer program?

Definitions

Degree

Graph

Bipartite graphs

Graph coloring

representations

Representing graphs

n vertices and *m* edges.

Adjacency Matrix

2-D array $n \times n$.

a[i, j] = 1 if there is an edge between i and j.

	0					5
0	1 1 1	1	1		1	
1	1		1	1		
2	1	1			1	
3		1			1	
4	1		1	1		
5						

Takes $O(n^2)$ space.

Definitions

Degree

Graph

Bipartite graphs

Graph coloring

representations
Paths and Cycles

Representing graphs

n vertices and m edges.

Adjacency List

$$adj(0) = [1,2,4]$$

$$adj(1) = [0,2,3]$$

$$adj(2) = [0,1,4]$$

$$adj(3) = [1,4]$$

$$adj(4) = [0,2,3]$$

$$adj(5) = []$$

Takes O(nm) space.

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Path

Definitions

Degree

Bipartite graphs
Graph coloring

Graph representations

Paths and Cycles

Def. A *path* from *s* to *t* is a sequence of edges

$$\{x_0, x_1\}, \{x_1, x_2\}, \dots \{x_{n-1}, x_n\},\$$

where $x_0 = s$, and $x_n = t$.

Def. The *length* of a path is the number of edges in it.

$$\{E,A\}$$
 $\{A,B\}$ $\{B,D\}$ $\{D,A\}$ $\{A,B\}$ $\{B,C\}$ $\{C,F\}$

Simple path. Cycle

Definitions

Degree

Bipartite graphs

Graph coloring

Graph representations

Paths and Cycles

Def. A *simple path* is a path that does not contain the same edge more than once.

Def. A path is called a *cycle* (or *circuit*) if its first and last vertices are the same, and its length is greater than 0.

Def. A *simple sycle* is a cycle that does not contain the same edge more than once.