

CHAPTER 4

Enhanced Entity-Relationship (EER) Modeling

Chapter Outline

- EER stands for Enhanced ER or Extended ER
- EER Model Concepts
 - Includes all modeling concepts of basic ER
 - Additional concepts:
 - subclasses/superclasses
 - specialization/generalization
 - categories (UNION types)
 - attribute and relationship inheritance
 - Constraints on Specialization/Generalization
- The additional EER concepts are used to model applications more completely and more accurately
 - EER includes some object-oriented concepts, such as inheritance

Subclasses and Superclasses

- subclasses/superclasses
- specialization/generalization
- is-a relationship
- categories (UNION types)
- attribute and relationship inheritance

Subclasses and Superclasses (1)

- An entity type may have additional meaningful subgroupings of its entities
 - Example: EMPLOYEE may be further grouped into:
 - SECRETARY, ENGINEER, TECHNICIAN, ...
 - Based on the EMPLOYEE's Job
 - MANAGER
 - EMPLOYEEs who are managers (the role they play)
 - SALARIED_EMPLOYEE, HOURLY_EMPLOYEE
 - Based on the EMPLOYEE's method of pay
- EER diagrams extend ER diagrams to represent these additional subgroupings, called subclasses or subtypes

Subclasses and Superclasses (2)

- Each of these subgroupings is a subset of EMPLOYEE entities
- Each is called a subclass of EMPLOYEE
- EMPLOYEE is the superclass for each of these subclasses
- These are called superclass/subclass relationships:
 - EMPLOYEE/SECRETARY
 - EMPLOYEE/TECHNICIAN
 - EMPLOYEE/MANAGER

• ...

Subclasses and Superclasses (3)

- These are also called IS-A relationships
 - SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A EMPLOYEE,
- Note: An entity that is member of a subclass represents the same real-world entity as some member of the superclass:
 - The subclass member is the same entity in a distinct specific role
 - An entity cannot exist in the database merely by being a member of a subclass; it must also be a member of the superclass
 - A member of the superclass can be optionally included as a member of any number of its subclasses

Subclasses and Superclasses (4)

Examples:

- A salaried employee who is also an engineer belongs to the two subclasses:
 - ENGINEER, and
 - SALARIED_EMPLOYEE
- A salaried employee who is also an engineering manager belongs to the three subclasses:
 - MANAGER,
 - ENGINEER, and
 - SALARIED_EMPLOYEE
- It is not necessary that every entity in a superclass be a member of some subclass

Representing Specialization in EER Diagrams

Figure 4.4

EER diagram notation for an attribute-defined specialization on Job_type.

Attribute Inheritance in Superclass / Subclass Relationships

- An entity that is member of a subclass inherits
 - All attributes of the entity as a member of the superclass
 - All relationships of the entity as a member of the superclass
- Example:
 - SECRETARY (as well as TECHNICIAN and ENGINEER) inherit the attributes Name, SSN, ..., from EMPLOYEE
 - Every SECRETARY entity will have values for the inherited attributes

Specialization (1)

- Specialization is the process of defining a set of subclasses of a superclass
- The set of subclasses is based upon some distinguishing characteristics of the entities in the superclass
 - Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE based upon job type.
 - Example: MANAGER is a specialization of EMPLOYEE based on the role the employee plays
 - May have several specializations of the same superclass

Specialization (2)

- Attributes of a subclass are called specific or local attributes.
 - For example, the attribute TypingSpeed of SECRETARY
- The subclass can also participate in specific relationship types.
 - For example, a relationship BELONGS_TO of HOURLY_EMPLOYEE

Specialization (3)

Generalization

- Generalization is the reverse of the specialization process
- Several classes with common features are generalized into a superclass;
 - original classes become its subclasses
- Example: CAR, TRUCK generalized into VEHICLE;

Remember:

More than one correct solutions

Generalization (2)

Figure 4.3

Generalization. (a) Two entity types, CAR and TRUCK. (b) Generalizing CAR and TRUCK into the superclass VEHICLE.

Constraints on Specialization and Generalization (2)

- If all subclasses in a specialization have membership condition on same attribute of the superclass, specialization is called an attribute-defined specialization
 - Attribute is called the defining attribute of the specialization
 - Example: JobType is the defining attribute of the specialization {SECRETARY, TECHNICIAN, ENGINEER} of EMPLOYEE

Figure 4.4 Fname Minit Lname EER diagram notation for an attribute-Birth_date Job_type Name Ssn Address defined specialization on Job_type. **EMPLOYEE** Job_type 'Engineer' 'Secretary' Typing speed **Tgrade** Eng_type 'Technician' **SECRETARY TECHNICIAN ENGINEER**

Constraints on Specialization and Generalization (3)

- Two basic constraints can apply to a specialization/generalization:
 - Disjointness Constraint:
 - Completeness Constraint:

Constraints on Specialization and Generalization (4)

- Disjointness Constraint:
 - Specifies that the subclasses of the specialization must be disjoint:
 - an entity can be a member of at most one of the subclasses of the specialization
 - Specified by <u>d</u> in EER diagram
 - If not disjoint, specialization is overlapping:
 - that is the same entity may be a member of more than one subclass of the specialization
 - Specified by <u>o</u> in EER diagram

Generalization of subclasses Disjoint

Constraints on Specialization and Generalization (5)

- Completeness (Exhaustiveness) Constraint:
 - Total specifies that every entity in the superclass must be a member of some subclass in the specialization/generalization
 - Shown in EER diagrams by a <u>double line</u>
 - Partial allows an entity not to belong to any of the subclasses
 - Shown in EER diagrams by a single line

Constraints on Specialization and Generalization (6)

- Hence, we have four types of specialization/generalization:
 - Disjoint, total
 - Disjoint, partial
 - Overlapping, total
 - Overlapping, partial
- Note: Generalization usually is total because the superclass is derived from the subclasses.

Example of disjoint partial Specialization

Figure 4.4

EER diagram notation for an attribute-defined specialization on Job_type.

Example of overlapping total Specialization

Alternative diagrammatic notations

- ER/EER diagrams are a specific notation for displaying the concepts of the model diagrammatically
- DB design tools use many alternative notations for the same or similar concepts
- One popular alternative notation uses *UML class* diagrams
- see next slides for UML class diagrams and other alternative notations

UML Example for Displaying Specialization / Generalization

A UML class diagram corresponding to the EER diagram in Figure 4.7, illustrating UML notation for specialization/generalization.

Summary

- Introduced the EER model concepts
 - Class/subclass relationships
 - Specialization and generalization
 - Inheritance
- Constraints on EER schemas
- These augment the basic ER model concepts introduced in Chapter 3
- EER diagrams and alternative notations were presented
- Knowledge Representation and Ontologies were introduced and compared with Data Modeling