Artificial Intelligence

Neural Networks

Lesson 4: Artificial Neural Networks

Vincenzo Piuri

Università degli Studi di Milano

Contents

- Artificial neural networks
- Examples of neural networks
- Training neural networks
- Preprocessing

Artificial Neural Networks (1)

General definition of a neural network:

An (artificial) neural network is a (directed) graph G = (U, C), whose vertices $u \in U$ are called neurons or units and whose edges $c \in C$ are called connections.

The set U of vertices is partitioned into

- the set U_{in} of input neurons,
- \bullet the set U_{out} of output neurons, and
- the set U_{hidden} of hidden neurons.

Artificial Neural Networks (2)

Each connection $(v,u) \in C$ possesses a weight w_{uv} Each neuron $u \in U$ possesses three (real-valued) state variables:

- the network input net_u
- the activation act_n
- the output out_u

Artificial Neural Networks (3)

Each input neuron $u \in U_{in}$ also possesses a fourth (real-valued) state variable

ullet the external input ext_u

Artificial Neural Networks (4)

Each neuron $u \in U$ possesses three functions, used to compute the values of the state variables:

- the network input function $f_{net}^{(u)}$
- the activation function $f_{act}^{(u)}$
- the output function $f_{out}^{(u)}$

Artificial Neural Networks (5)

Types of (artificial) neural networks:

- if the graph of a neural network is acyclic, it is called a **feed-forward network**.
- if the graph of a neural network contains cycles (backward connections), it is called a recurrent network.

Artificial Neural Networks (6)

Operation of (artificial) neural networks:

- Input phase: external inputs are acquired by input neurons.
- Work phase: external inputs are switched off while new outputs are computed by each neuron.
 - Recomputation of a neuron output occurs if any of its inputs changes.
 - Temporal order of recomputation depends on the type of artificial neural network.
 - Work phase continues until the external outputs are steady, or a maximum number of recomputation iterations is reached.

Examples of Neural Networks (1)

Feed-forward neural network

- Computation proceeds from input neurons progressively toward output neurons by following the topological order of the neuron in the network
- External inputs are frozen
- Input neuron compute their outputs which are maintained steady and forwarded to the connected neurons
- Neurons connected to preceeding neurons with steady outputs generate their respective outputs and propagated forward to the subsequent neurons, until the external outputs are generated.

Examples of Neural Networks (2)

A simple *recurrent neural network*

• Order in which the neurons are updated:

$$u_3, u_1, u_2, u_3, u_1, u_2, u_3, \dots$$

Examples of Neural Networks (3)

A simple recurrent neural network

- Input phase: initial activations/outputs
- Work phase: activations/outputs of the next neuron to update (bold) are computed from the outputs of the other neurons and the weights/threshold.
- Stable state: a unique output is reached.

Examples of Neural Networks (4)

A simple recurrent neural network

• Order in which the neurons are updated:

$$u_3, u_2, u_1, u_3, u_2, u_1, u_3, \dots$$

No stable state is reached (oscillation of output).

Training Neural Networks (1)

Learning updates the connection weights and possible other parameters (e.g., thresholds) to optimize an objective criterion.

- Fixed learning task
- Free learning task

Training Neural Networks (2)

A **fixed learning task** L_{fixed} for a neural network with

- n input neurons $U_{in} = \{u_1, \dots u_n\}$
- m output neurons $U_{out} = \{v_1, \dots v_m\}$

is a set of training patterns $l=(\overrightarrow{i^{(l)}},\overrightarrow{o^{(l)}})$, each consisting of

- an input vector $\overrightarrow{i^{(l)}} = (ext_{u_1}^{(l)}, ..., ext_{u_n}^{(l)})$
- an output vector $\overrightarrow{o^{(l)}} = (o_{v_1}^{(l)}, \dots, o_{v_m}^{(l)})$.

Supervised learning

Training Neural Networks (3)

A fixed learning task is solved, if for all training patterns $l \in L_{fixed}$ the neural network computes, from the external inputs contained in the input vector $\overrightarrow{i^{(l)}}$ of a training pattern l, the outputs contained in the corresponding output vector $\overrightarrow{o^{(l)}}$.

Training Neural Networks (4)

Error of a fixed learning task:

- How well a neural network solves a given fixed learning task.
- Differences between desired and actual outputs.
 - Do not sum differences directly in order to avoid errors canceling each other.
 - Square has favorable properties for deriving the adaptation rules.

$$e = \sum_{l \in L_{\text{fixed}}} e^{(l)} = \sum_{v \in U_{\text{out}}} e_v = \sum_{l \in L_{\text{fixed}}} \sum_{v \in U_{\text{out}}} e_v^{(l)},$$

where
$$e_v^{(l)} = \left(o_v^{(l)} - \operatorname{out}_v^{(l)}\right)^2$$

Training Neural Networks (5)

A free learning task L_{free} for a neural network with

• n input neurons $U_{in} = \{u_1, \dots u_n\}$

is a set of training patterns $l = (\overrightarrow{i^{(l)}})$ each consisting of

• an input vector $\overrightarrow{i^{(l)}} = (ext_{u_1}^{(l)}, ..., ext_{u_n}^{(l)})$.

Unsupervised learning

Training Neural Networks (6)

- There is no desired output for the training patterns.
- Outputs can be chosen freely by the training method.
- Solution: similar inputs should lead to similar outputs.
 - Learning should lead to clustering of similar input vectors so that the same output is produced for all vectors in the same cluster.

Preprocessing

Normalization of the input vectors (e.g., z-score normalization)

 Expected value and (corrected) standard deviation for each input

$$\mu_k = \frac{1}{|L|} \sum_{l \in L} \operatorname{ext}_{u_k}^{(l)} \quad \text{and} \quad \sigma_k = \sqrt{\frac{1}{|L| - 1}} \sum_{l \in L} \left(\operatorname{ext}_{u_k}^{(l)} - \mu_k \right)^2,$$

 Normalize the input vectors to expected value (arithmetic mean) equal to 0 and standard deviation equal to 1

$$\operatorname{ext}_{u_k}^{(l)(\text{new})} = \frac{\operatorname{ext}_{u_k}^{(l)(\text{old})} - \mu_k}{\sigma_k}$$

Data Representation

- Numeric data:
 - Real numbers
 - Integer numbers
- Non-numeric (symbolic) data:
 - Symbols
 - 1-in-N encoding