

On a Discontinuous Galerkin discretization for a degenerate diffusion equation

Bachelor's thesis

Tim van Beeck November 10, 2021

Institut für Numerische und Angewandte Mathematik

Contents

Motivation

Model Problem

Analysis

Numerical experiments

Conclusion and Outlook

Motivation

$$\begin{split} \rho(-i\omega + u \cdot \nabla + \Omega \times)^2 \xi - \nabla(\rho c_s^2 \nabla \cdot \xi) + (\nabla \cdot \xi) \nabla \rho - \nabla(\nabla \rho \cdot \xi) \\ + (\mathsf{Hess}(p)\xi - \rho \mathsf{Hess}(\phi))\xi - i\gamma \rho \omega \xi + \rho \nabla \varphi &= s \text{ in } D, \\ - \frac{1}{4\pi G} \Delta \varphi + \nabla \cdot (\rho \xi) &= 0 \text{ in } \mathbb{R}^3. \end{split}$$

$$\begin{split} \rho(-i\omega + u \cdot \nabla + \Omega \times)^2 \xi - \nabla(\rho c_s^2 \nabla \cdot \xi) + (\nabla \cdot \xi) \nabla \rho - \nabla(\nabla \rho \cdot \xi) \\ + (\mathsf{Hess}(\rho)\xi - \rho \mathsf{Hess}(\phi))\xi - i\gamma \rho \omega \xi + \rho \nabla \varphi &= s \text{ in } D, \\ - \frac{1}{4\pi G} \Delta \varphi + \nabla \cdot (\rho \xi) &= 0 \text{ in } \mathbb{R}^3. \end{split}$$

$$-\nabla \cdot (\rho(u \otimes u) \cdot \nabla w) = f \text{ in } D$$

Well, lots of assumptions:

 \bullet Cowling approximation $\varphi=0$

Well, lots of assumptions:

- $\bullet \ \ {\rm Cowling \ approximation} \ \varphi = 0 \\$
- constant pressure

Well, lots of assumptions:

- $\bullet \ \ {\rm Cowling \ approximation} \ \varphi = 0 \\$
- constant pressure
- restrict to \mathbb{R}^d

Well, lots of assumptions:

- Cowling approximation $\varphi = 0$
- constant pressure
- restrict to \mathbb{R}^d
- remove all order zero terms

Well, lots of assumptions:

- Cowling approximation $\varphi = 0$
- constant pressure
- restrict to \mathbb{R}^d
- remove all order zero terms
- There still remains

$$a(\xi,\xi') = \langle \rho c^2 \nabla \cdot \xi, \nabla \cdot \xi \rangle - \langle \rho \partial_u \xi, \partial_u \xi' \rangle, \quad \xi,\xi' \in X$$

4

Well, lots of assumptions:

- Cowling approximation $\varphi = 0$
- constant pressure
- restrict to \mathbb{R}^d
- remove all order zero terms
- There still remains

$$a(\xi,\xi') = \langle \rho c^2 \nabla \cdot \xi, \nabla \cdot \xi \rangle - \langle \rho \partial_u \xi, \partial_u \xi' \rangle, \quad \xi,\xi' \in X$$

• use space decomposition $\xi_h = v_h + w_h$

4

Model Problem

Model problem

For a smooth velocity field u and a density $\rho: D \to \mathbb{R}_{>0}$ that is sufficiently smooth, we consider:

Find $w:D\to\mathbb{R}$ such that

$$\rho w - \nabla \cdot (\rho(u \otimes u) \cdot \nabla w) = f \text{ in } D,$$

$$w = 0 \text{ on } \underbrace{\partial D \cap \{x \in D \mid u \cdot n \neq 0\}}_{=:\partial D^{\text{in}}}.$$

5

Continuous problem

Define

$$W := \left\{ v \in L^{2}(D) \mid \rho \partial_{u} v \in L^{2}(D), v = 0 \text{ on } \partial D^{\text{in}} \right\},$$
$$\| w \|_{W} := \| \rho^{\frac{1}{2}} w \|_{D} + \| \rho^{\frac{1}{2}} \partial_{u} w \|_{D}.$$

Continuous problem

Define

$$W := \{ v \in L^{2}(D) \mid \rho \partial_{u} v \in L^{2}(D), v = 0 \text{ on } \partial D^{\text{in}} \},$$
$$\| w \|_{W} := \| \rho^{\frac{1}{2}} w \|_{D} + \| \rho^{\frac{1}{2}} \partial_{u} w \|_{D}.$$

Find $w:D\to\mathbb{R}$ such that

$$\mathcal{B}(w, w') = \langle f, w' \rangle_D \quad \forall w' \in W,$$

where

$$\mathcal{B}(w,w') := \langle \rho w, w' \rangle_D + \langle \rho \partial_u w, \partial_u w' \rangle_D.$$

Discrete problem I

Find $w_h \in W_h = V_h^{k,d}$ such that

$$\mathcal{B}_h(w_h,w_h') = \langle f,w_h' \rangle_D \qquad \forall w_h' \in W_h,$$

where

$$\mathcal{B}_h(w_h, w_h') = \sum_{T \in \mathcal{T}_h} \langle \rho w_h, w_h' \rangle_T + b_h(w_h, w_h').$$

Derivation I

• Multiply with test function $w_h' \in W_h$ and integrate over the domain

Derivation I

- Multiply with test function $w_h' \in W_h$ and integrate over the domain
- partial integration and using $a(b \cdot c) = (a \otimes b) \cdot c$:

$$\sum_{T \in \mathcal{T}_h} \int_T \rho \partial_u w_h \partial_u w_h' \ \mathrm{d}x + \int_{\partial T} (-\rho \partial_u w_h \cdot u) w_h' \cdot \nu \ \mathrm{d}s.$$

Derivation I

- Multiply with test function $w_h' \in W_h$ and integrate over the domain
- partial integration and using $a(b \cdot c) = (a \otimes b) \cdot c$:

$$\sum_{T \in \mathcal{T}_h} \int_T \rho \partial_u w_h \partial_u w_h' \, dx + \int_{\partial T} (-\rho \partial_u w_h \cdot u) w_h' \cdot \nu \, ds.$$

• Rewrite as sum over all facets, write $u_{\nu} = u \cdot \nu$:

$$\sum_{T \in \mathcal{T}_h} \int_{\partial T} (-\rho \partial_u w_h \cdot u) w_h' \cdot \nu \ \mathrm{d}s = \sum_{F \in \mathcal{F}_h} \int_F u_\nu \llbracket -\rho \partial_u w_h w_h' \rrbracket \ \mathrm{d}s.$$

8

Derivation II

• DG magic formula:

$$\sum_{F \in \mathcal{F}_h} \int_F u_\nu \big(\big\{ \! \big\{ -\rho \partial_u w_h \big\} \! \big\} \big[\! \big[w_h' \big] \! \big] + \big\{ \! \big\{ w_h' \big\} \! \big\} \big[\! \big[-\rho \partial_u w_h \big] \! \big] \big) \ \mathrm{d}s.$$

Derivation II

• DG magic formula:

$$\sum_{F\in\mathcal{F}_h}\int_F u_\nu\big(\big\{\!\!\big\{-\rho\partial_u w_h\big\}\!\!\big\}\big[\![w_h']\!]+\big\{\!\!\big\{w_h'\big\}\!\!\big\}\big[\![-\rho\partial_u w_h]\!]\big)~\mathrm{d}s.$$

can drop the second term due to consistency

Derivation II

• DG magic formula:

$$\sum_{F \in \mathcal{F}_h} \int_F u_\nu \big(\big\{\!\!\big\{ - \rho \partial_u w_h \big\}\!\!\big\} \big[\!\!\big[w_h' \big]\!\!\big] + \big\{\!\!\big\{ w_h' \big\}\!\!\big\} \big[\!\!\big[- \rho \partial_u w_h \big]\!\!\big] \big) \ \mathrm{d} s.$$

- can drop the second term due to consistency
- add term for symmetry

$$\sum_{F\in\mathcal{F}_h}\langle u_\nu\{\!\!\{-\rho\partial_uw_h'\}\!\!\},[\![w_h]\!]\rangle_F.$$

Derivation III

 \bullet Add stabilization term $\sum_{F\in\mathcal{F}_h}\langle\frac{\rho\lambda}{h}|u_\nu|^2[\![w_h]\!],[\![w_h'\!]\!]\rangle_F$

Figure 1: Penalization effect

Discrete Problem II

Find $w_h \in W_h = V_h^{k,d}$ such that

$$\mathcal{B}_h(w_h, w_h') = \langle f, w_h' \rangle_D \qquad \forall w_h' \in W_h,$$

where

$$\mathcal{B}_{h}(w_{h}, w'_{h}) = \sum_{T \in \mathcal{T}_{h}} \langle \rho w_{h}, w'_{h} \rangle_{T} + \langle \rho \partial_{u} w_{h}, \partial_{u} w'_{h} \rangle_{T}$$

$$+ \sum_{F \in \mathcal{F}_{h}} \Big\{ \langle u_{\nu} \{ -\rho \partial_{u} w_{h} \} , [w'_{h}] \rangle_{F}$$

$$+ \langle u_{\nu} \{ -\rho \partial_{u} w'_{h} \} , [w_{h}] \rangle_{F}$$

$$+ \langle \frac{\rho \lambda}{h} | u_{\nu} |^{2} [w_{h}] , [w'_{h}] \rangle_{F} \Big\}.$$

Analysis

Coercivity

Coercivity ↓
Continuity

Coercivity

Continuity

Well-posedness

Coercivity

Continuity

Well-posedness

Ceá-type error estimate

Discrete norms

For all $w_h \in W_h$ we define:

$$\|w_h\|_{\rho}^2 := \sum_{T \in \mathcal{T}_h} \left\{ \|\rho^{\frac{1}{2}} w_h\|_T^2 + \|\rho^{\frac{1}{2}} \partial_u w_h\|_T^2 + h^{-1} |u_{\nu}|^2 \|\rho^{\frac{1}{2}} [w_h] \|_{\partial T}^2 \right\},\,$$

Discrete norms

For all $w_h \in W_h$ we define:

$$\begin{split} \|w_h\|_{\rho}^2 &:= \sum_{T \in \mathcal{T}_h} \Big\{ \|\rho^{\frac{1}{2}} w_h\|_T^2 + \|\rho^{\frac{1}{2}} \partial_u w_h\|_T^2 + h^{-1} |u_\nu|^2 \|\rho^{\frac{1}{2}} [w_h]] \|_{\partial T}^2 \Big\}, \\ \|w_h\|_{\rho,*}^2 &:= \|w_h\|_{\rho}^2 + \sum_{T \in \mathcal{T}_h} h \|\rho^{\frac{1}{2}} \partial_u w_h\|_{\partial T}^2. \end{split}$$

Inverse Inequality

Lemma

For any $w_h \in \mathcal{P}^k(T)$ there holds

$$h\|\rho^{\frac{1}{2}}\partial_u w_h \cdot \nu\|_{\partial T}^2 \leq c_{tr}^2\|\rho^{\frac{1}{2}}\partial_u w_h\|_T^2,$$

where c_{tr} depends on the shape regularity, the polynomial degree k and on the density ρ .

Coercivity and Continuity

Theorem

For all $w_h \in W_h$ and $\lambda \ge 1 + 4c_{tr}^2$ there holds

$$\mathcal{B}_h(w_h, w_h) \geq \frac{1}{2} \|w_h\|_{\rho}^2 \geq \alpha_{\mathcal{B}_h} \|w_h\|_{\rho,*}^2.$$

For all $w, w' \in W_* := W + W_h$ holds

$$\mathcal{B}_h(w, w') \leq \beta_{\mathcal{B}_h} ||w||_{\rho,*} ||w'||_{\rho,*}.$$

The constants $\alpha_{\mathcal{B}_h}$ and $\beta_{\mathcal{B}_h}$ are independent of h.

Error estimate

Theorem

There holds the following Ceá-type estimate

$$\|w - w_h\|_{\rho} \le \|w - w_h\|_{\rho,*} \lesssim \inf_{v_h \in W_h} \|w - v_h\|_{\rho,*}.$$

Furthermore, if $w \in W \cap H^{I}(D)$ for $2 \le l \le k+1$ there holds

$$\inf_{v_h \in W_h} \|w - v_h\|_{\rho,*} \lesssim \bar{\rho}^{\frac{1}{2}} h^{l-1} \|w\|_{H^l(D)}.$$

*L*²-error estimates

• With Poincaré-inequality:

$$\|w-w_h\|_D \leq \|w-w_h\|_{\rho,*} \lesssim \bar{\rho}^{\frac{1}{2}} h^k \|w\|_{H^{k+1}(D)}.$$

L²-error estimates

• With Poincaré-inequality:

$$\|w-w_h\|_D \leq \|w-w_h\|_{\rho,*} \lesssim \bar{\rho}^{\frac{1}{2}} h^k \|w\|_{H^{k+1}(D)}.$$

- Usually, we use an Aubin-Nitsche trick to get order k+1
 - → Needs L^2 - H^2 -regularity!

L²-error estimates

• With Poincaré-inequality:

$$\|w-w_h\|_D \leq \|w-w_h\|_{\rho,*} \lesssim \bar{\rho}^{\frac{1}{2}} h^k \|w\|_{H^{k+1}(D)}.$$

- ullet Usually, we use an Aubin-Nitsche trick to get order k+1
 - \rightarrow Needs L^2 - H^2 -regularity!
- we cannot apply this → no smoothing orthogonal to the velocity field!

Numerical experiments

Example problem

•
$$D = [-1,1]^2 \subset \mathbb{R}^2$$

Example problem

- $D = [-1, 1]^2 \subset \mathbb{R}^2$
- exact solution:

$$w := \exp(-6((x+0.5)^2 + y^2)) - \exp(-6((x-0.5)^2 + y^2))$$

Example problem

- $D = [-1,1]^2 \subset \mathbb{R}^2$
- exact solution:

$$w := \exp(-6((x+0.5)^2 + y^2)) - \exp(-6((x-0.5)^2 + y^2))$$

velocity fields

$$u_1 = (1, 1),$$

 $u_2 = (-0.75y, 0.75x)$
 $u_3 = (2y(1 - x^2), -2x(1 - y^2))$

Exact Solution

Figure 2: Exact solution w

Velocity field u_1

Figure 3: Constant velocity field u_1

Velocity field u₂

Figure 4: Rotation velocity field u_2

Velocity field *u*₃

Figure 5: Vortex velocity field u_3

Structured vs. Unstructured Meshes

mesh size of 1

23

Structured vs. Unstructured Meshes

mesh size of 0.7

Mesh				
refinements	e_{L^2}	(eoc)	e_W	(eoc)
k = 1				
1	$5.43 \cdot 10^{-1}$		$2.99 \cdot 10^{0}$	
2	$2.63\cdot 10^{-1}$	(1.05)	$1.43 \cdot 10^{0}$	(1.07)
3	$1.64\cdot 10^{-1}$	(0.68)	$9.72 \cdot 10^{-1}$	(0.55)
4	$7.22 \cdot 10^{-2}$	(1.18)	$5.30\cdot10^{-1}$	(0.88)
5	$2.50\cdot10^{-2}$	(1.53)	$2.69 \cdot 10^{-1}$	(0.98)
6	$7.16 \cdot 10^{-3}$	(1.8)	$1.32\cdot 10^{-1}$	(1.03)
7	$1.87\cdot10^{-3}$	(1.94)	$6.47 \cdot 10^{-2}$	(1.03)
8	$4.74 \cdot 10^{-4}$	(1.98)	$3.19 \cdot 10^{-2}$	(1.02)

Table 1: Rates of converges for u_1 with an structured mesh

Mesh				
refinements	e_{L^2}	(eoc)	e_W	(eoc)
k = 1				
1	$1.21\cdot 10^{-1}$		$1.18 \cdot 10^{0}$	
2	$4.11\cdot 10^{-2}$	(1.56)	$6.06 \cdot 10^{-1}$	(0.96)
3	$1.24\cdot 10^{-2}$	(1.73)	$3.03\cdot 10^{-1}$	(1.0)
4	$3.59 \cdot 10^{-3}$	(1.78)	$1.50\cdot 10^{-1}$	(1.01)
5	$1.11\cdot 10^{-3}$	(1.7)	$7.47 \cdot 10^{-2}$	(1.01)
6	$4.03\cdot10^{-4}$	(1.46)	$3.73 \cdot 10^{-2}$	(1.0)
7	$1.75\cdot10^{-4}$	(1.2)	$1.86 \cdot 10^{-2}$	(1.0)
8	$8.35 \cdot 10^{-5}$	(1.07)	$9.31 \cdot 10^{-3}$	(1.0)

Table 2: Rates of converges for u_1 with an unstructured mesh

Figure 7: Structured mesh with flipped triangles

Mesh				
refinements	e_{L^2}	(eoc)	ew	(eoc)
k = 1				
1	$4.83 \cdot 10^{-1}$		$2.67 \cdot 10^{0}$	
2	$1.52\cdot10^{-1}$	(1.66)	$1.47\cdot 10^0$	(0.86)
3	$6.44 \cdot 10^{-2}$	(1.24)	$8.60 \cdot 10^{-1}$	(0.77)
4	$2.55 \cdot 10^{-2}$	(1.34)	$4.33 \cdot 10^{-1}$	(0.99)
5	$1.17\cdot 10^{-2}$	(1.12)	$2.17 \cdot 10^{-1}$	(1.0)
6	$5.72\cdot10^{-3}$	(1.03)	$1.08 \cdot 10^{-1}$	(1.0)
7	$2.84\cdot10^{-3}$	(1.01)	$5.42 \cdot 10^{-2}$	(1.0)
8	$1.42 \cdot 10^{-3}$	(1.0)	$2.71 \cdot 10^{-2}$	(1.0)

Table 3: Rates of converges for u_1 with an structured mesh with flipped triangles

Figure 8: u_1 on a structured mesh with flipped triangles

Figure 9: u_1 on an unstructured mesh with initial mesh size 0.7

Code Example

Convergence studies I

Figure 10: Numerical errors for u_1 .

Convergence studies II

Figure 11: Numerical errors for u_2 .

Convergence studies III

Figure 12: Numerical errors for u_3 .

Convergence studies IV

ullet optimal convergence in the $W ext{-norm}$

Convergence studies IV

- optimal convergence in the W-norm
- L²-rates are close to optimal
 - → on a structured Mesh!
 - → depend on the velocity field!

Condition numbers

velocity field	u ₁	1
λ	$\kappa(\mathbb{B})$	$\kappa(J\mathbb{B})$
1	(-1.96)	(-1.01)
2	(-5.91)	(-4.43)
4	8218.48	8601.06
8	12291.3	12798.07
16	18322.75	17842.76
32	25880.81	22168.92
64	32346.54	24467.45
128	36733.82	31598.81
256	43054.67	34331.81
512	74125.53	41153.27
1024	117410.63	70580.26

Table 4: Condition numbers with different λ for k=1

Diffusion only I

Consider the problem without the volume term: Find $w_h \in W_h$ such that

$$-\nabla \cdot (\rho(u \otimes u) \cdot \nabla w_h) = f \text{ in } D.$$

Diffusion only II

Figure 13: Numerical errors in the W-norm.

Non-constant density I

Consider a circle geometry $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

Figure 14: Circle geometry triangulated with an unstructured mesh.

Non-constant density II

Define
$$\rho_n(x, y) = (1.75 - (x^2 + y^2))^n, n \in \mathbb{N}$$
.

n	$\max \rho_n$	$\min \rho_n$
2	3.0625	0.5625
4	9.3789	0.3164
8	87.9639	0.1001
12	825.005	0.0317
16	7737.6446	0.01

Code Example

Non-constant density III

Optimal convergence in the W-norm:

Non-constant density IV

Convergence rates in the L^2 -norm for u_1 :

Non-constant density V

Convergence rates in the L^2 -norm for u_3 :

Conclusion and Outlook

developed a DG discretization for a degenerate diffusion equation

- developed a DG discretization for a degenerate diffusion equation
- proved well-posedness of the continuous and discrete problem

- developed a DG discretization for a degenerate diffusion equation
- proved well-posedness of the continuous and discrete problem
- theoretical error analysis

- developed a DG discretization for a degenerate diffusion equation
- proved well-posedness of the continuous and discrete problem
- theoretical error analysis
- numerical experiments confirmed theoretical results

• we only considered scalar functions w and Dirichlet boundary conditions

- we only considered scalar functions w and Dirichlet boundary conditions
- Preconditioning might be helpful for different model problems

- we only considered scalar functions w and Dirichlet boundary conditions
- Preconditioning might be helpful for different model problems
- alternative stabilization mechanisms, e.g. Bassi-Rebay

- we only considered scalar functions w and Dirichlet boundary conditions
- Preconditioning might be helpful for different model problems
- alternative stabilization mechanisms, e.g. Bassi-Rebay
- modifications, e.g. HDG

Thank you for your attention!