Assignments: Chapter two (P20-24)

Part I Theoretical problems

- 2.7 Suppose that $\{Y_t\}$ is stationary with autocovariance function γ_k .
 - (a) Show that $W_t = \nabla Y_t = Y_t Y_{t-1}$ is stationary by finding the mean and autocovariance function for $\{W_t\}$.
 - (b) Show that $U_t = \nabla^2 Y_t = \nabla [Y_t Y_{t-1}] = Y_t 2Y_{t-1} + Y_{t-2}$ is stationary. (You need not find the mean and autocovariance function for $\{U_t\}$.)
- Suppose $Y_t = \beta_0 + \beta_1 t + X_t$, where $\{X_t\}$ is a zero-mean stationary series with auto-covariance function γ_k and β_0 and β_1 are constants.
 - (a) Show that $\{Y_t\}$ is not stationary but that $W_t = \nabla Y_t = Y_t Y_{t-1}$ is stationary.
 - (b) In general, show that if $Y_t = \mu_t + X_t$, where $\{X_t\}$ is a zero-mean stationary series and μ_t is a polynomial in t of degree d, then $\nabla^m Y_t = \nabla(\nabla^{m-1} Y_t)$ is stationary for $m \ge d$ and nonstationary for $0 \le m < d$.
- **2.13** Let $Y_t = e_t \theta(e_{t-1})^2$. For this exercise, assume that the white noise series is normally distributed.
 - (a) Find the autocorrelation function for {Y_t}.
 - **(b)** Is $\{Y_t\}$ stationary?
 - **2.20** Consider the standard random walk model where $Y_t = Y_{t-1} + e_t$ with $Y_1 = e_1$.
 - (a) Use the representation of Y_t above to show that $\mu_t = \mu_{t-1}$ for t > 1 with initial condition $\mu_1 = E(e_1) = 0$. Hence show that $\mu_t = 0$ for all t.
 - **(b)** Similarly, show that $Var(Y_t) = Var(Y_{t-1}) + \sigma_e^2$ for t > 1 with $Var(Y_1) = \sigma_e^2$ and hence $Var(Y_t) = t\sigma_e^2$.
 - (c) For $0 \le t \le s$, use $Y_s = Y_t + e_{t+1} + e_{t+2} + \cdots + e_s$ to show that $Cov(Y_t, Y_s) = Var(Y_t)$ and, hence, that $Cov(Y_t, Y_s) = \min(t, s) \sigma_e^2$.

Part II Computation problems by R coding

§ 2.4 Estimation of Correlation/相关性估计(reading materials)

Assuming that the time series $\{x_t\}$, t = 1, ..., n is stationary

Definition 1: the sample autocovariance is defined by

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(x_t - \bar{x}). \tag{1.1}$$

•
$$\hat{\gamma}(h) = \hat{\gamma}(-h)$$
 for $h = 0, 1, ..., n-1$.

 Definition 2: the sample autocorrelation function is defined as

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$
 (1.2)

•
$$\hat{\rho}(h) = \hat{\rho}(-h)$$
 for $h = 0, 1, ..., n-1$.

Exercise 4. To give an example of the procedure for calculating numerically the autocovariance functions, we consider a artificial set of data generated by tossing a fair coin, letting $x_t = 1$ when a head is obtained and $x_t = -1$ when a tail is obtained. Construct y_t as

$$y_t = 5 + X_t - 0.7X_{t-1} (1.3)$$

with $x_0 = -1$. We obtain the following table

Table 1.1. Sample Realization of the Contrived Series y_t										
t	1	2	3	4	5	6	7	8	9	10
Coin	Н	Н	T	Н	Т	T	Т	Н	T	Н
x_t	1	1	-1	1	-1	-1	-1	1	-1	1
y_t	6.7	5.3	3.3	6.7	3.3	4.7	4.7	6.7	3.3	6.7
$y_t - \bar{y}$	1.56	.16	-1.84	1.56	-1.84	44	44	1.56	-1.84	1.56

with $\bar{y}_t = 5.14$.

The sample autocorrelation for the series y_t can be calculated using (1.1) and (1.2) for h = 0, 1, 2, ... For example, when h = 3, the autocorrelation becomes the ratio of

$$\widehat{\gamma}_y(3) = \frac{1}{10} \sum_{t=1}^7 (y_{t+3} - \overline{y})(y_t - \overline{y})$$

$$= \frac{1}{10} \Big[(1.56)(1.56) + (-1.84)(.16) + (-.44)(-1.84) + (-.44)(1.56) + (1.56)(-1.84) + (-1.84)(-.44) + (1.56)(-.44) \Big] = -.048$$
to
$$\widehat{\gamma}_y(0) = \frac{1}{10} \Big[(1.56)^2 + (.16)^2 + \dots + (1.56)^2 \Big] = 2.030$$
so that
$$\widehat{\rho}_y(3) = \frac{-.048}{2.030} = -.024.$$

The theoretical ACF can be obtained from the model

$$y_t = 5 + X_t - 0.7X_{t-1} (1.4)$$

with $x_0 = -1$ using the fact that the mean of x_t is zero and the variance of x_t is one. It can be shown that

$$\rho_y(1) = \frac{-0.7}{1 + (0.7)^2} = -0.47$$

and $\rho_y(h) = 0$ for |h| > 1. Table 1.2 compares the theoretical ACF with sample ACFs for a realization where n = 10 and another realization where n = 100.

Table 1.2. Theoretical and Sample ACFs for n = 10 and n = 100

		n = 10	n = 100	
h	$\rho_y(h)$	$\widehat{\rho}_y(h)$	$\widehat{\rho}_y(h)$	
0	1.00	1.00	1.00	
1	47	55	45	
2	.00	.17	12	
3	.00	02	.14	
4	.00	.15	.01	
5	.00	46	01	

Assignment 2.21 (Computational problem):

- a) Please write your R codes to realize the above computation of $\hat{\rho}_y(h)$ for n=10, n=100, n=1000 in Exercise 4 and report your results using a table similar to Table 1.2, where h=1, 2, 3, 4, 5, 6, 7, 8.
- b) Compare the results you obtain with the results by running R function: acf(y, lag.max=8).

Notes: R function acf(y, lag.max=8) will return the acfs at different lags up to lag.max.

Submission deadline: Tuesday (00:00, 14, Sep)