PROBABILITY STATISTICS

Part-2

/ramakrushnamohapatra in

Correlation

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$$

Explanation: Correlation normalizes covariance to a scale of [-1, 1], quantifying the strength and direction of a linear relationship between two variables.

Example: If
$$Cov(X, Y) = 0.25$$
, $\sigma(X) = 0.5$, and $\sigma(Y) = 1.0$, then $\rho(X, Y) = \frac{0.25}{0.5 \cdot 1.0} = 0.5$.

Probability Mass Function (PMF)

$$P(X = x) = \begin{cases} p_i, & \text{if } x = x_i \\ 0, & \text{otherwise} \end{cases}$$

Explanation: The PMF defines the probabilities of discrete outcomes of a random variable. It is a foundational concept in probability theory.

Example: If $X = \{1, 2, 3\}$ with P(X = 1) = 0.2, P(X = 2) = 0.5, and P(X = 3) = 0.3, the PMF is defined for these values.

$$X = [1, 2, 3]$$
 $P_X = [0.2, 0.5, 0.3]$
 $def pmf(x):$
 $return P_X[X.index(x)] if x in X else 0$

Output:

Probability Density Function (PDF)

$$f_X(x) \ge 0, \quad \int_{-\infty}^{\infty} f_X(x) dx = 1$$

Explanation: The PDF defines the relative likelihood of a continuous random variable at a specific value. It is used in probability and statistics for modeling continuous distributions.

Example: For a standard normal distribution, the PDF is $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$.

Implementation:

import numpy as np
from scipy.stats import norm
x = 0 # example point

pdf_value = norm.pdf(x)

Output:
0.3

Joint Probability

$$P(A \cap B) = P(A \mid B)P(B)$$

Explanation: Joint probability quantifies the likelihood of two events occurring together. It is essential in probabilistic modeling and understanding relationships between variables.

Example: If $P(A \mid B) = 0.4$ and P(B) = 0.5, then $P(A \cap B) = 0.4 \cdot 0.5 = 0.2$.

$$P_A_given_B = 0.4$$

$$P_B = 0.5$$

$$P_A_and_B = P_A_given_B * P_B$$
Output:
0.2

CDF (Cumulative Distribution Function)

$$F_X(x) = P(X \le x)$$

Explanation: The CDF of a random variable gives the probability that the variable takes a value less than or equal to x. It is used to describe the distribution function for both discrete and continuous variables.

Example: For a uniform distribution $X \sim U(0,1), F_X(0.5) = 0.5.$

Implementation:

from scipy.stats import uniform x = 0.5 Output: $cdf_value = uniform.cdf(x, loc=0, scale=1)$

Entropy (discrete)

$$H(X) = -\sum_{i} P(X = x_i) \log_2 P(X = x_i)$$

Explanation: Entropy measures the uncertainty of a discrete random variable. It is a fundamental concept in information theory and ML, particularly in decision trees and loss functions.

Example: If $P(X) = \{0.5, 0.5\}$, then $H(X) = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$.

Conditional Expectation

$$\mathbb{E}[X \mid Y] = \sum_{x} x P(X = x \mid Y)$$

Explanation: Conditional expectation is the expected value of a random variable X given that another variable Y is known. It is critical in Bayesian inference and probabilistic modeling.

Example: If $X = \{1, 2\}$ with $P(X = 1 \mid Y) = 0.7$ and $P(X = 2 \mid Y) = 0.3$, then $\mathbb{E}[X \mid Y] = 1 \cdot 0.7 + 2 \cdot 0.3 = 1.3$.

Implementation:

Output:

1.3

conditional_expectation = $sum(x * p for x, p in zip(X, P_X_given_Y))$

:::: Subscribe to My Newsletter ::::

Growtechie Newsletter

:::: Book a 1-1 Session with me ::::

Topmate Session

:::: Book a Long Time Mentorship ::::

Propeers

