Laboratorul 3 - Ecuatii neliniare

1. Metoda înjumătățirii intervalului

Cea mai simplă metodă de rezolvare a ecuațiilor neliniare este metoda înjumătățirii intervalului. Această metodă se aplică dacă pe intervalul dat există în mod sigur o singură rădăcină. Dacă [a,b] este intervalul pe care se studiază problema, atunci condiția de mai sus se poate scrie: $f(a) \cdot f(b) < 0$. Se calculează punctul c de la mijlocul intervalului și se determină în care din cele două jumătăți se află rădăcina. Astfel, dacă $f(a) \cdot f(c) < 0$, rădăcina se află în intervalul [a,c], iar în caz contrar în intervalul [b,c]. Se aplică același procedeu pentru noul interval de mai multe ori până când se obține un interval în jurul rădăcinii mai mic decât o eroare admisă ϵ .

Algoritmul descris mai sus se poate scrie astfel:

- 1. Se declară funcția f(x).
- 2. Se declară marginile intervalului a si b si eroarea ε.
- 3. Dacă $f(a) \cdot f(b) > 0$ atunci intervalul este ales greșit. STOP.
- 4. Se calculează c = (a + b)/2.
- 5. Dacă f(c) = 0 atunci rădăcina exactă este c. Se scrie c. STOP.
- 6. Dacă $f(a) \cdot f(c) > 0$ atunci a = c altfel b = c.
- 7. Dacă (b a) $< \varepsilon$ atunci se scrie rădăcina aproximativă c = (a + b) / 2 și se opresc calculele, altfel se reia întreg procesul de la pasul 4.

2. Metoda coardei variabile

In cadrul acestei metode algoritmul de rezolvare este oarecum similar, deosebirea fiind aceea că se folosește o altă formulă pentru împărțirea intervalelor. Ea se obține din intersecția coardei care unește punctele de la capetele curbei cu axa Ox.

Punctul c se află la intersecția coardei care unește punctele (a, f(a)) și (b, f(b)) cu axa Ox. Acest punct se determină rezolvând sistemul:

$$\begin{cases} \frac{y - f(a)}{x - a} = \frac{f(b) - f(a)}{b - a} \\ y = 0 \end{cases}$$

soluția fiind bineînțeles x = c. După determinarea punctului c se determină în care subinterval se află soluția și se face substituția a = c, sau b = c, și se repetă acest algoritm până când se obține $|f(c)| < \epsilon$.

Algoritmul este identic cu cel prezentat mai sus, singurele deosebiri fiind la punctul 4 unde se schimbă formula de calcul pentru c și la testul final.

Aplicație:

Să se rezolve ecuațiile:

- 1. ln(x) + x = 0 pe intervalul [0.05,2].
- 2. $\sin(x) \ln(x) = 0$ pe intervalul $[1,\pi]$. 3. $\ln(x) e^{-x} = 0$ pe intervalul [1,4].