	<u>Lec - 28</u>
Rocall	: Joint paf., Bord subsets of R2.
	Proporties of joint density
	If fisthe joint pdf of random vector (x, y) then P(-a< x < a, -a< Y < a)
	$= P(S = N S) = 1$ But by defin, we have $ \omega_0 \propto \infty$ $P(-\alpha < x < \alpha, -\alpha < x < \alpha) = \int_{-\alpha - \omega}^{\alpha} f(n, y) dnd$
Hen	ce joint polf integrate to 1 on the entire plane
Thm:	(characterization of joint pdf) Let $f: \mathbb{R}^2 \xrightarrow{frith} \mathbb{R}$ be each that
	(a) $f(n,y) = 0$ $f(n,y) \in \mathbb{R}^2$ (b) $f(n,y) dn dy = 1$
and t;	Then I a probability space (I, F, P) La grandom lector (X,Y) defined on it sumthous the joint pdf of (X,Y).

Example: Let $f(x,y) = ce^{\frac{2^{n}-ny}{2}+hy^{n}}$ the value of c s.t. f is a joint pdf. som: If t is a joint pot then I f (t,s) dt ds = 1 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dx}{2} dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dx}{2} dx dy$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x \cdot y}{2} \cdot \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x}{4} + 4y^{2} - \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4}$ $= c \int_{-\infty}^{\infty} \frac{x^{2} - 2 \cdot x}{4} + 4y^{2} - \frac{y^{2}}{4} + 4y^{2} - \frac{y^{2}}{4$ $= c \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{150^{2}}{2} \right)^{2} dx dy$ $= c \int_{0}^{\pi} \left(\int_{0}^{\pi} e^{-\frac{(x-x)^{2}}{2}} dx \right) dy$ u= n-y 2 $= c \int_{e}^{-1} \int_{e}^{y^{2}} \left(\int_{e}^{y^{2}} \int_{e}^{y^{$ $= c\sqrt{2\pi} \left(\frac{-15}{e} y^{2} \left(\frac{-15}{2\pi} du \right) dy \right)$ $= c \sqrt{2\pi}$ $= \sqrt{2\pi}$ =

Prosposition: If f is the joint pdf of X and Y, then $f_{X}(x) = \int_{-\infty}^{\infty} f(x,y) dy, \quad f_{Y}(y) = \int_{-\infty}^{\infty} f(x,y) dx$ Proof: PSX < 23 = PSX < 23, Y < x} $= \int_{-\alpha}^{\alpha} f(x,y) dy dx$ $= \int_{-\alpha}^{\alpha} q(n) dx$ $= \int_{-\alpha}^{\alpha} f(x,y) dy$ Hence $f_{x}(n) = g(n) = \int_{-\infty}^{\infty} f(n,y) dy$ fx(y) = ? (HW) Example: The joint pdf of (X,Y) is given as: $\frac{1}{2}(\pi,y) = \frac{1}{2}(1-x), \quad 0 < y < 2, \quad 0 < x < 1$ Then $f_{\chi}(x) = ?$ I $f_{\gamma}(y) = ?$ (Sm: Density of T. We have fyly) = f(x,y)dr.
- & HyflR

Red-X fy/y)= J6(1-2)da Green - Y $= 6 \left(2 - \frac{2}{2} \right)$ $= 3(y-1)^{2}$ Hence, $f_{y}(y) = 53(y-1)^{2}$, 0 < y < 10 0.00. Denoty of x: $f_{x}(x) = \int f(x,y) dy$ $= \int_{y=0}^{\infty} 6(1-x) dy = 6(y-2y) = 6(2-n^{2})$ $\frac{1}{2} \left(x \right) = \begin{cases} 6(1-x^{2}), & 0 < x < 1 \\ 0 & 0 \cdot w \end{cases}$ Joint Distribution Function (Joint CDF)

(It can be defined for any kind of random vector: disorete or continuens or nixed).

