Project 6 Solutions

Kevin Choe

Collaborators: N/A

TA help: Hilda Ibriga and Katie Brinkers guided with problems 1-5, explained new concepts

Online resources used: Stat 190 Example Book (All problems)

Question 1

```
dat <- read.csv("/class/datamine/data/fars/7581.csv")

#Calculates mean number of motorists
tapply(dat$PERSON, dat$DRUNK_DR, mean)

0 1 2 3 4 6
2.615540 2.474079 3.660711 5.197917 5.250000 6.000000

# Read in data that maps state codes to state names
state_names <- read.csv("/class/datamine/data/fars/states.csv")

# Create a vector of state names called v
v <- state_names$state

# Set the names of the new vector to the codes
names(v) <- state_names$code

# Create a new column in the dat dataframe with the actual names of the states
dat$mystates <- v[as.character(dat$STATE)]
```

I prefer to use the tapply function because it is easier and simpler to write.

Question 2

```
#Sorts states by highest average number of drunk drivers per accident tapply(dat$DRUNK_DR, dat$mystates, mean)
```

Alabama	Alaska	Arizona
0.2136050	0.5223022	0.4126347
Arkansas	California	Colorado
0.2650494	0.4863834	0.5326633
Connecticut	Delaware	District of Columbia
0.4621138	0.5642023	0.3153409
Florida	Georgia	Hawaii
0.2898366	0.3309584	0.4952652
Idaho	Illinois	Indiana
0.4049811	0.3366005	0.2717200

Iowa	Kansas	Kentucky
0.3609572	0.3133971	0.3637387
Louisiana	Maine	Maryland
0.3241348	0.4916084	0.3422666
Massachusetts	Michigan	Minnesota
0.3308242	0.4713560	0.4492386
Mississippi	Missouri	Montana
0.1688661	0.2078921	0.5269231
Nebraska	Nevada	New Hampshire
0.4146229	0.5127907	0.6094050
New Jersey	New Mexico	New York
0.4286125	0.3184573	0.1983089
North Carolina	North Dakota	Ohio
0.2678010	0.2887538	0.3161686
Oklahoma	Oregon	Pennsylvania
0.3484964	0.4692250	0.3793978
Rhode Island	South Carolina	South Dakota
0.4188830	0.3052830	0.5132450
Tennessee	Texas	Utah
0.4159967	0.1852601	0.3385707
Vermont	Virginia	Washington
0.5126263	0.3426975	0.5498288
West Virginia	Wisconsin	Wyoming
0.1672332	0.5350330	0.4110644

sort(tapply(dat\$DRUNK_DR, dat\$mystates, mean), decreasing = TRUE)

Now Homoshire	Delaware	Washington
New Hampshire		Washington
0.6094050	0.5642023	0.5498288
Wisconsin	Colorado	Montana
0.5350330	0.5326633	0.5269231
Alaska	South Dakota	Nevada
0.5223022	0.5132450	0.5127907
Vermont	Hawaii	Maine
0.5126263	0.4952652	0.4916084
California	Michigan	Oregon
0.4863834	0.4713560	0.4692250
Connecticut	Minnesota	New Jersey
0.4621138	0.4492386	0.4286125
Rhode Island	Tennessee	Nebraska
0.4188830	0.4159967	0.4146229
Arizona	Wyoming	Idaho
0.4126347	0.4110644	0.4049811
Pennsylvania	Kentucky	Iowa
0.3793978	0.3637387	0.3609572
Oklahoma	Virginia	Maryland
0.3484964	0.3426975	0.3422666
Utah	Illinois	Georgia
0.3385707	0.3366005	0.3309584
Massachusetts	Louisiana	New Mexico
0.3308242	0.3241348	0.3184573
Ohio	District of Columbia	Kansas
0.3161686	0.3153409	0.3133971
South Carolina	Florida	North Dakota
0.3052830	0.2898366	0.2887538

Indiana	North Carolina	Arkansas
0.2717200	0.2678010	0.2650494
Alabama	Missouri	New York
0.2136050	0.2078921	0.1983089
Texas	Mississippi	West Virginia
0.1852601	0.1688661	0.1672332

New Hampshire has the highest average number of drunk drivers per accident.

Question 3

The numbers are suprising to me because Sundays, Saturdays, and Fridays have the highest number of fatalities compared to other days.

I was expecting a smaller proportion for the days with higher number of fatalities. I was expecting a high proportion on day 5.

Question 4

```
#Sorts average number of crashes involving drunk drivers that occur on straight, curvy, and unknown roasort(tapply(dat$DRUNK_DR, dat$ALIGNMNT, mean), decreasing = TRUE)

2 1 9
```

0.4729582 0.3143146 0.2764798

The average for straight roads is 0.31 and the average for curvy roads is 0.47

Question 5

```
#Finds the total number of fatalities in time interval

tapply ( dat$FATALS, cut(dat$HOUR, breaks=c(0,6,12,18,24,99), include.lowest=T), sum )

[0,6] (6,12] (12,18] (18,24] (24,99]
93151 49764 96375 98715 1737

#Finds the average number of fatalities in time interval

tapply ( dat$FATALS, cut(dat$HOUR, breaks=c(0,6,12,18,24,99), include.lowest=T), mean)

[0,6] (6,12] (12,18] (18,24] (24,99]
```

Pledge

By submitting this work I hereby pledge that this is my own, personal work. I've acknowledged in the designated place at the top of this file all sources that I used to complete said work, including but not limited to: online resources, books, and electronic communications. I've noted all collaboration with fellow students and/or TA's. I did not copy or plagiarize another's work.

As a Boilermaker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.