坐标系与矩阵(5): Denavit-Hartenberg Algorithm

上一篇我介绍了坐标系与矩阵的应用之一: ECEF 与 ENU 坐标转换的相关的概念。本篇介绍坐标系在动力学中的应用场景,这里则涉及到 Denavit-Hartenberg(DH) Algorithm。

在动力学中,比如人的胳膊就有好几个关节,且不同的关节有不同的旋转轴,如果是路飞的话,关节之间的长度还是不固定的。这里,每一个关节都存在一个自身坐标系,其中旋转可以是绕三个轴,平移则是沿着三个轴,每个坐标系存在6个自由度。问题就有点复杂了,每个人对每个关节可能会定义不同的坐标系方向,这会直接决定求解该问题的难度。DH 算法则提供了一个一般性理论,且每一个关节只需要4个自由度。

DH 满足四个规则:

- 每一个关节 z 轴和关键轴的方向相同
- x 轴和当前关节的 z^n 和上一关节 z^{n-1} 垂直,如果不唯一,则方向从 z^{n-1} 到 z^n
- y 轴由右手坐标系确定
- x^n 轴必须和 z^{n-1} 相交

根据该规则,以上图为例,来确定每一个关节的坐标系。

(0)由左向右,确定第一个关节的 z^0 ,这里 x^0 有多个选择,你选择一个正常的就可以,然后根据右手坐标系确定 y^0

(1)确定第二个关节的 z^1 , x^1 有两个选择,这里选择向右,根据右手坐标系确定 y^1

(2)同理,依次确定第三个关节的 z^2 、 x^2 和 y^2 ,第四个关节的的 z^3 、 x^3 和 y^3

(3)第四个关节的特殊点在于它有两个旋转轴,因此,我们需要在对其建立另一个坐标系,确定对应的 z^4 、 x^4 和 y^4

根据上图确定最后一个关节的坐标轴

(3)最后的终端称为 tool,我们定义对应的 approach vector r^3 , sliding vector r^2 ,另一个轴则是 normal vector r^1 ,确定对应的 z^5 、 y^5 和 x^5

如上,我们确定了每一个节点的坐标系,但这还不够,我们需要确定相邻坐标系之间的旋转和 平移参数。参数计算规则如下:

- 1. 确定辅助点 b^k 位置,是轴 x_k 和轴 z_{k-1} ,如果没有相交,则是轴 x_k 和轴 z_{k-1} 的法线与轴 x_k 的交点
- 2. 计算 θ_k , 是绕轴 z_{k-1} 从 x_{k-1} 到 x_k 的角度
- 3. 计算 d_k ,是从坐标系 L_{k-1} 的原点沿着轴 z_{k-1} 到 b^k 的距离
- 4. 计算 a_k ,是从 b^k 沿着 x_k 到坐标系 L_k 的原点的距离
- 5. 计算 α_k , 是绕轴 x_k 从 z_{k-1} 到 z_k 的角度

上图是从 L_0 到 L_1 的转换步骤(1-5): $(\theta,d,a,lpha)^{\,1}\!=\!\left(heta_1,d_1,0\,,-rac{\pi}{2}
ight)$

从 L_1 到 L_2 : $(\theta,d,a,\alpha)^2 = (\theta_2,0,a_2,0)$

从 L_2 到 L_3 : $(\theta,d,a,lpha)^3 = (heta_3,0,a_3,0)$

从
$$L_3$$
到 L_4 : $(heta,d,a,lpha)$ 4 $=$ $\left(heta_4,0,0,-rac{\pi}{2}
ight)$

从
$$L_4$$
到 L_5 : $(\theta,d,a,\alpha)^5 = (\theta_5,d_5,0,0)$

如上,我们首先确定了每个关节的坐标系,进而确定关节的四个参数,对应其四个自由度,这样,我们按照如下规则计算两个相邻关节之间的转换矩阵,该矩阵将 L_k 上的点 p_k 转为 L_{k-1} 上对应的点 p_{k-1} :

$$egin{aligned} ^{k-1}T_k(heta_k,d_k,a_k,lpha_k) = \ &R_3(heta_k)\cdot Tran_3(d_k)\cdot Tran_1(a_k)\cdot R_1(lpha_k) \end{aligned}$$

我们把从 L_0 到 L_5 中相邻坐标系,可以建立一个参数表:

	θ	d	a	α
L_0 到 L_1	$ heta_1$	d_1	0	$-\frac{\pi}{2}$
L_1 到 L_2	$ heta_2$	0	a_2	0
L_2 到 L_3	θ_3	0	a_3	0

L_3 到 L_4	$ heta_4$	0	0	$-\frac{\pi}{2}$
L_4 到 L_5	$ heta_5$	d_5	0	0

当我们需要将 L_k 上的点 p_k 转到 L_0 坐标系下的点 p_0 ,对应的 转换矩阵为:

$${}^{0}T_{5} = {}^{0}T_{1} \cdot {}^{1}T_{2} \cdot {}^{2}T_{3} \cdot {}^{3}T_{4} \cdot {}^{4}T_{5}$$

例子 1

对上图建立每个关节的坐标系

例子 2

对上图建立每个关节的坐标系

答案:

DH 算法的介绍到此结束。下一篇是 OpenGL 中基础的模型视图投影矩阵。

参考资料: Motion and Manipulation https://www.cs.uu.nl/docs/vakken/moma/2019.html