

CHIMIE NIVEAU SUPÉRIEUR ÉPREUVE 1

Mercredi 14 mai 2003 (après-midi)

1 heure

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.

223-155 15 pages

Le tableau de la classification périodique des éléments

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
7		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
က		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	Numéro atomique Élément	Masse atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Numéro Élés	Masse a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
				22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	-i	* *
7		Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. Quelle est la quantité de dioxygène, O_2 , (en moles) qui contient 1.8×10^{22} molécules ?
 - A. 0,0030
 - B. 0,030
 - C. 0,30
 - D. 3,0
- 2. 3,0 dm³ de dioxyde de soufre réagissent avec 2,0 dm³ de dioxygène selon l'équation :

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$

Quel volume de trioxyde de soufre (en dm³) obtient-on ? (On suppose que la réaction est complète et que le volume de tous les gaz est mesuré à la même température et sous la même pression).

- A. 5,0
- B. 4,0
- C. 3,0
- D. 2,0
- 3. Quel volume (en dm³) d'une solution de NaCl de concentration 0,30 mol dm⁻³ peut-on préparer avec 0,060 mol de soluté ?
 - A. 0,018
 - B. 0,20
 - C. 0,50
 - D. 5,0

4. Le tableau suivant donne la constitution des espèces W, X, Y et Z. Quelle espèce est un anion?

Espèce	Nombre de protons	Nombre de neutrons	Nombre d'électrons
W	9	10	10
X	11	12	11
Y	12	12	12
Z	13	14	10

- A. W
- B. X
- C. Y
- D. Z
- 5. Quelle est la configuration électronique d'un atome pour lequel Z = 22?
 - A. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$
 - B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^2$
 - C. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4p^2$
 - $D. \quad 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$
- **6.** Lorsqu'on considère les éléments situés entre les métaux alcalins et les halogènes, quelle caractéristique est en relation avec le nombre d'électrons occupant le niveau d'énergie principal le plus externe ?
 - I. Le numéro du groupe
 - II. Le numéro de la période
 - A. Uniquement I
 - B. Uniquement II
 - C. À la fois I et II
 - D. Ni I, ni II

7. Parmi les sels suivants, quels sont ceux qui forment des solutions colorées lorsqu'ils sont dissous dans l'e	rees forsqu'ils sont dissous dans i eau ?
---	---

- I. ScCl₃
- II. FeCl₃
- III. NiCl₂
- IV. ZnCl₂
- A. Uniquement I et II
- B. Uniquement II et III
- C. Uniquement III et IV
- D. I, II, III et IV

8. Les composés Na₂O, Al₂O₃ et SO₂ sont respectivement

- A. acide, amphotère et basique.
- B. amphotère, basique et acide.
- C. basique, acide et amphotère.
- D. basique, amphotère et acide.
- 9. Quelle est la formule du composé formé par le calcium et l'azote ?
 - A. CaN
 - B. Ca₂N
 - C. Ca₂N₃
 - D. Ca₃N₂
- 10. Quelle est la meilleure description de la longueur des liaisons carbone-oxygène dans CO_3^{2-} ?
 - A. Une liaison courte et deux liaisons longues
 - B. Une liaison longue et deux liaisons courtes
 - C. Trois liaisons de même longueur
 - D. Trois liaisons de longueurs différentes

11. Laquelle des propositions suivantes est vraie pour CO₂?

	Liaison C=O	Molécule CO ₂
A.	polaire	non polaire
B.	non polaire	polaire
C.	polaire	polaire
D.	non polaire	non polaire

12. Les masses molaires de C₂H₆, de CH₃OH et de CH₃F sont très voisines. Dans quel ordre se succèdent leurs températures d'ébullition ?

-6-

- A. $C_2H_6 < CH_3OH < CH_3F$
- B. $CH_3F < CH_3OH < C_2H_6$
- C. $CH_3OH < CH_3F < C_2H_6$
- D. $C_2H_6 < CH_3F < CH_3OH$
- 13. Comment sont disposés les paires électroniques et les atomes dans l'ion triiodure I_3^- ?

	Disposition des paires électroniques	Disposition des atomes
A.	tétraèdre	coudée
B.	carré plan	linéaire
C.	bipyramide trigonale	linéaire
D.	bipyramide trigonale	coudée

14. Quel est le nombre de liaisons sigma (σ) et de liaisons pi (π) et quel est le type d'hybridation de l'atome de carbone dans

	Nombre de liaisons sigma	Nombre de liaisons pi	Hybridation du carbone
A.	4	1	sp^2
B.	4	1	sp ³
C.	3	2	sp ³
D.	3	1	sp ²

- 15. Sous une pression très basse et au voisinage de 0 °C, l'eau est présente sous les trois états : solide, liquide et gazeux. Dans ces conditions, comment peut-on caractériser les distances intermoléculaires dans ces trois états ?
 - A. Les distances intermoléculaires sont identiques dans les trois états.
 - B. Les distances sont similaires dans le solide et dans le liquide, mais elles sont plus petites que dans le gaz.
 - C. Les distances sont les plus petites dans le solide, mais similaires dans le liquide et dans le gaz.
 - D. Les distances sont les plus petites dans le liquide, mais similaires dans le solide et dans le gaz.
- 16. Dans quel échantillon de gaz les molécules possèdent-elles l'énergie cinétique moyenne la plus élevée ?
 - $A. \qquad H_2 \ \, \grave{a} \ \, 100 \ \, K$
 - B. CH₄ à 273 K
 - C. H₂O à 373 K
 - D. CH₃OH à 353 K

- 17. Quelles sont les variations d'énergie accompagnant la formation et la rupture de liaisons chimiques ?
 - A. Il y a absorption d'énergie lorsque des liaisons sont formées ou rompues.
 - B. Il y a libération d'énergie lorsque des liaisons sont formées ou rompues.
 - C. Il y a absorption d'énergie lorsque des liaisons sont formées et libération d'énergie lorsqu'elles sont rompues.
 - D. Il y a libération d'énergie lorsque des liaisons sont formées et absorption d'énergie lorsqu'elles sont rompues.
- **18.** Quelle combinaison de la charge ionique et du rayon ionique confère à un composé ionique l'énergie de réseau la plus élevée ?

	Charge ionique	Rayon ionique
A.	élevée	grand
B.	élevée	petit
C.	faible	petit
D.	faible	grand

19. À quelles conditions une réaction est-elle spontanée quelle que soit la température ?

	ΔH^{Θ}	ΔS [⊕]
A.	+	+
B.	+	_
C.	-	_
D.	_	+

20. Que vaut, exprimée en kJ, ΔH de la réaction ci-dessous ?

$$CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$$

 $[\Delta H_f/kJ \text{ mol}^{-1}: CS_2(g) 110, CO_2(g) - 390, SO_2(g) - 290]$

- A. -570
- B. -790
- C. -860
- D. -1080
- 21. Quel(s) facteur(s) est (sont) important(s) pour déterminer si une réaction se produit ?
 - I. L'énergie des molécules
 - II. L'orientation des molécules

Ordre par rapport à NO2

premier ordre

premier ordre

second ordre

second ordre

- A. Uniquement I
- B. Uniquement II
- C. À la fois I et II
- D. Ni I, ni II
- 22. Au cours d'une expérience portant sur la vitesse de la réaction entre NO_2 et F_2 , les valeurs suivantes ont été mesurées à une certaine température. Quel est l'ordre de la réaction par rapport à NO_2 et par rapport à F_2 ?

$[\mathrm{NO_2}]/\mathrm{moldm^{-3}}$	$[F_2]/mol\ dm^{-3}$	Vitesse/mol dm ⁻³ min ⁻¹
0,1	0,2	0,1
0,2	0,2	0,4
0,1	0,4	0,2

- A.
- B.
- C.
- D.

Ordre par rapport à F₂

premier ordre

second ordre

premier ordre

second ordre

- 23. Dans une réaction procédant par étapes, quelle est l'étape déterminante ?
 - A. La première étape
 - B. La dernière étape
 - C. L'étape présentant l'énergie d'activation la plus basse
 - D. L'étape présentant l'énergie d'activation la plus élevée
- **24.** Soit la réaction

$$I_2(g) + 3Cl_2(g) \rightleftharpoons 2ICl_3(g)$$

Quelle est l'expression de sa constante d'équilibre ?

A.
$$K_c = \frac{[ICl_3]}{[I_2][Cl_2]}$$

B.
$$K_{c} = \frac{2[ICl_{3}]}{3[I_{2}][Cl_{2}]}$$

C.
$$K_c = \frac{2[ICl_3]}{[I_2] + 3[Cl_2]}$$

D.
$$K_c = \frac{[ICl_3]^2}{[I_2][Cl_2]^3}$$

- **25.** Parmi les facteurs mentionnés ci-dessous, le(s)quel(s) influence(nt) la tension de vapeur d'un liquide contenu dans un récipient ?
 - I. La température
 - II. L'aire de la surface libre du liquide
 - III. Le volume du récipient
 - A. Uniquement I
 - B. Uniquement I et II
 - C. Uniquement II et III
 - D. I, II et III

- **26.** Comparée à la $[H^+]$ d'une solution aqueuse à pH = 2, la $[H^+]$ d'une solution aqueuse à pH = 4 vaut
 - A. le double.
 - B. la moitié.
 - C. $\frac{1}{10}$.
 - D. $\frac{1}{100}$.
- 27. Des deux mélanges suivants, quel est celui qui constitue une solution tampon?
 - I. $0.01 \text{ mol dm}^{-3} \text{ HCl}, 0.01 \text{ mol dm}^{-3} \text{ NaCl}$
 - II. 0,01 mol dm⁻³ CH₃COOH, 0,01 mol dm⁻³ CH₃COONa
 - A. Uniquement I
 - B. Uniquement II
 - C. À la fois I et II
 - D. Ni I, ni II
- **28.** Parmi les espèces suivantes, quelle est **celle** qui peut jouer à la fois le rôle d'acide et de base de Brønsted-Lowry en solutions aqueuse ?
 - A. CH₃COOH
 - $B. \qquad NO_3^-$
 - C_{\cdot} $H_2PO_4^-$
 - D. OH-

- **29.** Le K_a d'un acide vaut 1.0×10^{-2} . Que vaut le K_b de sa base conjuguée ?
 - A. $1,0 \times 10^{-2}$
 - B. $1,0 \times 10^{-6}$
 - C. $1,0 \times 10^{-10}$
 - D. $1,0 \times 10^{-12}$
- **30.** 20,0 cm³ d'une solution d'un acide faible et 20,0 cm³ d'une solution d'un acide fort de la même concentration sont titrés séparément à l'aide d'une solution de NaOH. Quelle(s) valeur(s) ces deux titrages auront-ils en commun ?
 - I. Le pH initial
 - II. Le pH au point d'équivalence
 - III. Le volume de NaOH nécessaire pour atteindre le point d'équivalence
 - A. Uniquement I
 - B. Uniquement III
 - C. Uniquement I et II
 - D. Uniquement II et III
- 31. En considérant les deux réactions spontanées ci-dessous, quel est l'agent réducteur le plus puissant ?

$$2Cr(s) + 3Fe^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Fe(s)$$

 $Fe(s) + Pb^{2+}(aq) \rightarrow Fe^{2+}(aq) + Pb(s)$

- A. Cr(s)
- B. $Cr^{3+}(aq)$
- C. $Pb^{2+}(aq)$
- D. Pb(s)

32. Que se passe-t-il dans une pile électrochimique siège de la réaction :

$$Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$$
?

	Dans le circuit extérieur	Mouvement des ions dans la solution
A.	Les électrons se déplacent de Ni vers Pb	Les ions Pb ²⁺ (aq) s'éloignent de Pb(s)
B.	Les électrons se déplacent de Ni vers Pb	Les ions Pb ²⁺ (aq) se dirigent vers Pb(s)
C.	Les électrons se déplacent de Pb vers Ni	Les ions Ni ²⁺ (aq) s'éloignent de Ni(s)
D.	Les électrons se déplacent de Pb vers Ni	Les ions Ni ²⁺ (aq) se dirigent vers Ni(s)

33. Soit l'équation d'oxydoréduction suivante :

$$Ag\left(s\right) + NO_{3}^{-}(aq) + H^{+}(aq) \rightarrow Ag^{+}(aq) + NO\left(g\right) + H_{2}O\left(l\right)$$

Une fois cette équation pondérée (équilibrée), le coefficient de H⁺(aq) est

- A. 1
- B. 2
- C. 3
- D. 4
- **34.** On réalise l'électrolyse de solutions de AgNO₃, de Cu(NO₃)₂ et de Cr(NO₃)₃ en consommant la même quantité d'électricité pour chaque solution. Que peut-on dire du nombre de moles de métal formé ?
 - A. Ag = Cu = Cr
 - $B. \qquad Ag > Cu > Cr$
 - C. Ag < Cu < Cr
 - D. Cu > Ag > Cr

- 35. Parmi les composés suivants, quel est le moins soluble dans l'eau?
 - A. CH₂OHCHOHCH₂OH
 - О || В. СН₃ССН₃
 - O || C. CH₃CH₂COH
 - D. CH₃COCH₃
- **36.** Quel produit obtient-on lorsqu'on fait réagir $CH_2 = CH_2$ avec Br_2 ?
 - A. CHBrCHBr
 - B. CH₂CHBr
 - C. CH₃CH₂Br
 - D. CH₂BrCH₂Br
- 37. Combien de tripeptides différents peut-on préparer à partir de trois acides aminés ? (Chaque acide aminé n'est représenté qu'une seule fois dans un tripeptide donné.)
 - A. 1
 - B. 3
 - C. 6
 - D. 9

- **38.** La réaction de C_6H_6 avec Br_2 en présence d'un transporteur d'halogène conduit à la formation de
 - A. C_6H_6Br
 - B_{\cdot} $C_6H_6Br_2$
 - C. $C_6H_4Br_2 + H_2$
 - D. $C_6H_5Br + HBr$
- 39. Parmi les composés suivants, celui qui réagit le plus rapidement avec l'eau est :
 - A. $(CH_3)_3CBr$
 - B. $(CH_3)_3CC1$
 - C. CH₃CH₂CH₂CH₂Br
 - D. CH₃CH₂CH₂CH₂Cl
- **40.** Des trois composés suivants, le(s)quel(s) présente(nt) trois pics dans son (leurs) spectre(s) RMN ¹H?
 - I. CH₃CH₂OCH₃
 - II. (CH₃), CCl
 - III. CH₃CH₂COOH
 - A. Uniquement I
 - B. Uniquement II
 - C. Uniquement I et III
 - D. I, II et III