ПАРАМЕТРИЧЕСКИЙ ЭКВАЛАЙЗЕР

М. СТАРОСТЕНКО, г. Миасс Челябинской обл.

В графических эквалайзерах значительное число полос (их может быть 10 и больше) дает возможность лучше скорректировать заметные неравномерности АЧХ громкоговорителей или акустику помещения. Однако этими качествами обладает и параметрический эквалайзер, что позволяет исключить его влияние на сигналы вне полосы коррекции. Вот такой, не сложнее графического, корректор и предлагается вниманию читателей.

Заслуженной популярностью у любителей звукотехники пользуются многополосные регуляторы тембра (эквалайзеры). Они способны в большей степени, чем обычные регуляторы тембра, корректировать несовершенство акустических свойств помещений прослушивания или аппаратуры подбором наиболее приемлемого звучания музыкальных и речевых программ.

В эквалайзерах возможности коррекции повышаются с увеличением числа полос регулирования, что, в свою очередь, связано с увеличением числа активных и пассивных элементов. Это также приводит к необходимости тщательного подбора элементов частотозадающих цепей фильтров либо требует дополнительного усложнения самого устройства. Например, при построении десятиполосного эквалайзера [1] на основе так называемых "высокодобротных" фильтров легкость настройки параметров фильтров была достигнута ценой удвоения количества используемых операционных усилителей*.

Альтернативой многополосным регуляторам тембра с числом полос регулирования 10 и более являются параметрические эквалайзеры, которые (при примерно одинаковом с многополосными регуляторами тембра числе органов регулировки) менее критичны к выбору элементов фильтров.

Параметрический эквалайзер содержит в своем составе фильтры, резонансную частоту и добротность которых можно регулировать независимо друг от друга. Это требование легко реализуется в "биквадратных" универсальных фильтрах. Примером могут служить параметрические эквалайзеры, схемы которых приведены в [2, 3]. Однако, несмотря на то что упомянутые фильтры практически не нуждаются в настройке и не требуют подбора элементов, их существенным недостатком является относительно высокая сложность и большое число используемых ОУ (по четыре ОУ в каждом фильтре). В то же время одним из основных требований, предъявляемых к радиолюбительским конструкциям, предназначенным для массового повторения, является их максимальная простота и легкость настройки в сочетании с широкими функциональными возможностями и высокими техническими характеристиками.

Основные технические характеристики

Функциональная схема устройства представлена на рис. 1.

Основу параметрического эквалайзера составляет усилитель на двух последовательно соединенных ОУ, причем на ОУ DA1 выполнен сумматор спада АЧХ, а на ОУ DA3 — сумматор подъема. Канал частотной обработки сигнала, образующий цепь параллельной обратной связи, состоит из инвертора на DA2, ре-жекторных фильтров Z1—ZN и пассивных сумматоров на резисторах 1R1 — NR2. Переменные резисторы Rp1 — RpN, с помощью которых осуществляется регулировка глубины коррекции, включены между инвертирующими входами ОУ, благодаря чему исключено взаимное влияние между регулировками в различных частотных каналах.

Работу устройства рассмотрим на примере одного частотного канала. На частотах, близких к частоте режекции, коэффициент передачи фильтра Z1 мал, и сигнал на движок переменного резистора регулировки глубины коррекции Rp1 и далее на сумматоры спада и подъема AЧX поступает только через резистор 1R1. Вне полосы режекции коэффициент передачи фильтра близок к единице. Сигналы на резисторах 1R1 и 1R2 примерно равны по амплитуде, но противоположны по фазе, и после суммирования компенсируют друг друга (при равенстве сопротивлений резисторов 1R1 и 1R2). Таким образом на движке переменного резистора Rp1 присутствуют сигналы только с частотой, близкой к частоте режекции фильтра Z1.

В среднем положении движка переменного резистора Rp1 сигнал с сумматора замыкается на общий провод устройства через отвод регулировочного резистора Rp1, в результате чего на выход эквалайзера сигнал проходит без частотной коррекции.

При перемещении движка переменного резистора Rp1 в крайнее левое (по схеме) положение сигнал, прошедший частотную обработку, поступает на ОУ DA1, увеличивая глубину отрицательной обратной связи, в результате чего на выходе устройства происходит ослабление сигнала с частотой, близкой к резонансной частоте фильтра Z1.

В крайнем правом (по схеме) положении движка переменного резистора сигнал после частотной обработки поступает на вход ОУ DA3, в результате чего на выходе устройства он усилен, так как в этом случае канал частотной обработки образует дополнительную цепь передачи сигнала на ОУ DA3.

Таким образом, изменяя положение движка переменного резистора Rp1, можно регулировать коэффициент передачи устройства в частотном диапазоне, определяемом частотой настройки и добротностью фильтра Z1.

Аналогично происходит регулировка коэффициента передачи эквалайзера на частотах настройки фильтров Z2-ZN.

Максимальный подъем AЧX эквалайзера на резонансных частотах фильтров при R1=R2=R5=R6 определяется выражением:

 $K_{MAKC} = 1 + R1/R0$, а максимальный спад - $K_{MUH} = R0/(R1+R0)$, где R0 = NR1 = NR2.

Схема режекторного фильтра представлена на рис. 2. Фильтр состоит из упрощенного двойного Т-моста, образованного конденсаторами C1, C2 и резисторами R1-R4, суммирующего усилителя на OУ DA1 и делителя напряжения на резисторах R7-R9.

Квазирезонансная частота фильтра f_p и добротность Q определяются следующими выражениями:

 $f_D = 1/(2\pi RC)$,

Q = 1/[3(1 - k)], где C = C1 = C2;

R = R1+R3 = R2+R4;

 $k = (\alpha R8 + R9)/(R7 + R8 + R9)$ — коэффициент передачи делителя на резисторах R7 — R9;

a- коэффициент, характеризующий положение движка переменного резистора R8 (a=0...1).

Выражения справедливы в предположении идеальности ОУ и при выполнении условий:

R6/R5 = 2;

(R7+R8+R9)/4 << R.

Последнее условие означает, что для исключения взаимного влияния регулировок частоты настройки фильтра и его добротности максимальное значение выходного сопротивления делителя на резисторах R7 — R9 должно быть значительно меньше минимального суммарного сопротивления частотозадающих резисторов.

Из приведенных выражений следует, что резонансную частоту фильтра можно регулировать с помощью резисторов R3, R4, а добротность — изменением глубины положительной обратной связи переменным резистором R8.

Резисторы R1, R2 ограничивают диапазон перестройки резонансной частоты фильтра, резисторы R7, R9 — диапазон изменения добротности.

Принципиальная схема пятиполосного параметрического эквалайзера приведена на рис. 3 (показан только один частотный канал; схема остальных аналогична и отличается только номиналами частотозадающих конденсаторов).

Для получения максимальной равномерности перестройки частоты фильтра полное сопротивление частотозада-ющих резисторов Т-моста должно изменяться в зависимости от положения движка переменного резистора по закону, близкому к экспоненциальному. Выполнить это требование удалось, применив в регуляторах частоты переменные резисторы с нелинейной зависимостью сопротивления от смещения подвижного контакта (группы Б или В), при этом соединены перемычкой выводы более высокоомного участка. Номиналы частотозадающих резисторов Т-моста подобраны таким образом, что при перемещении движка из центрального положения в одно из крайних частота настройки фильтра возрастает приблизительно в 3 раза, при перемещении в другое крайнее положение — уменьшается во столько же раз, а общий диапазон перестройки резонансной частоты каждого фильтра достигает $f_{\text{макс}}/f_{\text{мин}} = 10$.

Возможности эквалайзера по корректировке АЧХ тракта звуковоспроизведения демонстрируются на рис. 4, где приведены графики частотной зависимости коэффициента передачи устройства при крайних положениях движков переменных резисторов регулировки частоты, добротности и глубины коррекции фильтров низших частот (центральная частота 60 Γ ц) и высших частот (центральная частота 6000 Γ ц). Кривые 1 и 2 соответствуют максимальному (Q = 2,5) и минимальному (Q = 0,5) значениям добротности фильтра низших частот при частоте его настройки 19 Γ ц и максимальном подъеме АЧХ, Кривые 3 и 4 — максимальной и минимальной добротности при частоте настройки 185 Γ ц и максимальном подъеме АЧХ. Кривые 5(6) и 7(8) соответствуют максимальному (минимальному) значению добротности фильтра высших частот при частотах его настройки 1900 и 18500 Γ ц соответственно и максимальном подъеме АЧХ. Параметры кривых 1 — 8 аналогичны параметрам кривых 1 — 8 и соответствуют случаю установки регуляторов глубины коррекции в положение максимального спада АЧХ.

Фильтр	Конденсаторы NC1, NC2, пФ		
Z1	220.103	60	19185
Z2	68.103	190	62600
Z3	22.103	600	1901850
Z4	6800	1900	6206000
Z5	2200	6000	19018 500

Настройку эквалайзера проводят в следующей последовательности. Движки резисторов регулировки глубины коррекции R7 — R11 отключают от элементов схемы эквалайзера. Регистрирующий прибор (осциллограф или милливольтметр переменного тока) подключают к выходу ОУ DA2.2, движок резистора настройки частоты фильтра A1 устанавливают в левое (по схеме) положение, соответствующее максимальной резонансной частоте, движок резистора регулировки добротности — в верхнее (по схеме) положение, соответствующее максимальной добротности. Включают питание эквалайзера и на его вход подают сигнал с генератора звуковой частоты амплитудой 500— 1000 мВ. Перестраивая генератор, определяют резонансную частоту фильтра A1 по минимуму сигнала на выходе ОУ DA2.2, а затем, зафиксировав частоту генератора в этом положении, подстройкой резистора 1R5 добиваются минимальных показаний регистрирующего прибора. Изменив частоту генератора не менее чем в 10 — 20 раз от резонансной частоты режекторного фильтра, подключают регистрирующий прибор к точке соединения резисторов 1R13, 1R14 и подстройкой резистора 1R7 опять добиваются минимальных показаний прибора. После этого восстанавливают соединение движка резистора регулировки глубины коррекции и проверяют отсутствие самовозбуждения при перестройке частоты фильтра. Повторяют описанную операцию настройки и для остальных фильтров.

В эквалайзере можно применять конденсаторы КМ-5, КМ-6, К10-17 или другие малогабаритные (желательно с небольшим ТКЕ), постоянные резисторы МЛТ-0,125, МЛТ-0,25, подстроенные — СП5-2, СП5-3, СП3-1, СП3-27.

Переменные резисторы регулировки резонансной частоты фильтров NR6.1-NR6.2- сдвоенные, типа CП3-23, с функциональной характеристикой B, резисторы регулировки добротности NR11- любого типа C характеристикой A (линейной), резисторы регулировки глубины коррекции CR7- CR11- одинарные, также C характеристикой CR7- CR11- одинарные, также C характеристикой CR7- CR11- от средней точки. При некотором ухудшении плавности регулировки глубины коррекции номинал резисторов CR7- CR11- можно выбрать CR11- CR1

и конденсаторы с допуском не более 10%. Замена ОУ 157УД2 на менее мощные не рекомендуется вследствие высокой нагрузочной способности ОУ данного типа и относительно низких шумов.

Учитывая широкие возможности эквалайзера по корректировке АЧХ звуковоспроизводящего тракта, число каналов частотной обработки может быть уменьшено, например, до трех.

В процессе проектирования работа узлов устройства моделировалась на ПЭВМ с использованием программы "Electronics Workbench".

* Нужно иметь в виду, что нынешние цены на микросхемы, содержащие два или четыре ОУ, позволяют часто предпочесть некоторое схемотехническое усложнение в целях улучшения параметров аппаратуры при упрощении ее регулировки и исключении дорогих или прецизионных элементов.

ЛИТЕРАТУРА

- 1. Козлова. Графический эквалайзер. Радио, 1988, $\stackrel{\perp}{=}$ 2, с. 42 45.
- 2. Параметрический эквалайзер. Радио, 1983, \pm 11, с. 58. 3. Параметрический эквалайзер. Радио, 1996, \pm 12, с.53.

Вернуться к содержанию журнала "Радио" 6 номер 1998 год

АЛЕКСЕЙ пишет...

это графический,а не парометрический

14/04/2019 14:46:32