Structural Equation Modeling with R using lavaan

Alexander M. Schoemann

SPSP 2015

What is SEM?

- AKA:
 - Simultaneous Equations
 - ► Covariance Structure Analysis
 - Path Analysis
 - Confirmatory Factor Analysis (CFA)

SEM in R

- There are (at least) four packages that fit SEM models in R
 - ▶ lavaan, OpenMx, sem, and lava

lavaan

a free open-source, but commercial-quality package for latent variable modeling.

- From lavaan.org
 - lavaan is extensively tested and updated
 - Bugs are quickly reported and corrected
 - To install lavaan:

```
install.packages("lavaan")
```

lavaan

Features

- Full support for mean structures and multiple groups
- Several estimators available (including ML, GLS, WLS...)
- Standard and robust standard errors and test statistics (bootstrapping too!)
- Missing data handling through FIML
- Linear and non-linear inequality constraints
- Support for categorical data (and mixture of binary, ordered and continuous observed variables)

lavaan syntax

- lavaan specifies relationships based on a path diagram
 - Every arrow in the path diagram is a line of syntax in lavaan
- lavaan syntax uses a few different operators to specify relationships between variables
 - ► =~ is used for factor loadings
 - ★ energetic =~ active
 - ~ is used for variance and covariances
 - ★ active ~~ active
 - ► ~ is used for regressions
 - * is used to fix a parameter to a specific value
 - ★ energetic ~~ 1*energetic

lavaan syntax

- Users can also specify models with code from other software and fit them with lavaan
 - mplus2lavaan (in the lavaan package)
 - lisrel2lavaan (in the semTools package)
 - Onyx (graphical user interface)

Two factor CFA based on the msq data (from the psych package)

```
mod <- '
energetic =~ active + vigorous + wakeful + lively
negative =~ jittery + nervous + scared
'
fit <- cfa(mod, data = msq)</pre>
```

By default lavaan uses a marker variable method of scale setting

```
semPaths(fit, "est", nCharNodes = 0)
```



```
fit1 <- cfa(mod, data = msq, std.lv = TRUE)</pre>
```

• The std.lv option will use a fixed factor method of identification

 Model results can be inspected with summary, nested models can be compared with anova

Estimator	ML
Minimum Function Test Statistic	354.351
Degrees of freedom	13
P-value (Chi-square)	0.000

User model versus baseline model:

Comparative Fit Index (CFI)	0.969
Tucker-Lewis Index (TLI)	0.950

Loglikelihood and Information Criteria:

Loglikelihood	user model (HO)		-25561.582
Loglikelihood	${\tt unrestricted}\ {\tt model}$	(H1)	-25384.406

Number of free parameters	15
Akaike (AIC)	51153.164
Bayesian (BIC)	51246.989
Sample-size adjusted Bayesian (BIC)	51199.326

Root Mean Square Error of Approximation:

RMSEA		0.083
90 Percent Confidence Interval	0.075	0.090
P-value RMSEA <= 0.05		0.000

Standardized Root Mean Square Residual:

SRMR 0.076

	Estimate	Std.err	Z-value	P(> z)
Latent variables:				
energetic =~				
active	0.796	0.012	63.720	0.000
vigorous	0.632	0.011	55.166	0.000
wakeful	0.615	0.013	46.630	0.000
lively	0.792	0.012	67.459	0.000
negative =~				
jittery	0.429	0.014	29.904	0.000
nervous	0.571	0.013	42.769	0.000
scared	0.282	0.009	32.220	0.000
Covariances: energetic ~~				
negative	0.181	0.018	9.853	0.000

- Two factor CFA based on the msq data (from the psych package)
 - Compare the msq with the revised msq

```
mod <- '
energetic =~ active + vigorous + wakeful + lively
negative =~ jittery + nervous + scared
'
fitg <- cfa(mod, data = msq, group = "scale")</pre>
```

Parameters can constrained with group.equal option

```
## Chi Square Difference Test

##

## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

## fitg 26 51105 51381 380.75

## fitgW 31 51111 51355 396.41 15.657 5 0.007895 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '*
```

- Or invariance testing can be conducted using the measurementInvariance function
 - ► In the semTools package

```
measurementInvariance(mod, data = msq, group = "scale")
```

```
Model 1: configural invariance:
   chisq
             df
                  pvalue
                           cfi
                                              bic
                                    rmsea
 380.753 26.000 0.000
                            0.968
                                    0.084 51380.620
Model 2: weak invariance (equal loadings):
   chisq
             df
                  pvalue
                           cfi
                                    rmsea
                                             bic
 396.410 31.000 0.000
                           0.967
                                    0.078 51355.002
[Model 1 versus model 2]
 delta.chisq delta.df delta.p.value delta.cfi
     15.657
                  5.000
                             0.008
                                         0.001
Model 3: strong invariance (equal loadings + intercepts):
   chisq
             df
                  pvalue cfi rmsea
                                              bic
 403.573 36.000 0.000 0.967
                                   0.073 51320.889
```

lavaan: Example Categorical Indicators

Two factor CFA based on the ability data (from the psych package)

lavaan: Example Categorical Indicators

lavaan: Extensions

- There are many packages providing additional functionality to lavaan:
 - semPlot Path diagrams for lavaan (used to make the above plots)
 - semTools useful functions for SEM in R
 - \star Includes functions for latent interactions, multiple imputation and more
 - simsem simulation package for SEM
 - lavaan.survey apply survey weights, clustering corrections and other corrections for lavaan models
 - Onyx graphical user interface for SEM (http://onyx.brandmaier.de/)

lavaan: Resources

- The lavaan website is extremely helpful (http://lavaan.org)
 - It include a tutorial in lavaan
 - Links to examples from popular SEM books in lavaan
 - Link to a discussion board about lavaan

Thank you!

- Questions?
- email: schoemanna@ecu.edu
- Slides and code: https://sites.google.com/site/ alexandermschoemann/supplementarymaterials