EECS 112 & CSE 132, FALL 2017

Homework 1

Due date: October, 16, 2017

Student ID: 7 7 7 9 7 0 3 8	Name: Michael Choi
-----------------------------	--------------------

256.

1) Represent the given numbers in the requested bases:

2) Find the binary representation of the following numbers in the correspondent system.

n = 8 bits -37→77 = (00100101)₂

Number	Sign Magnitude	1'S Complement	2's Complement
-37	10100101	11011010	11011011
-16	10010000	1110111	11110000

3) Find the correspondent decimal number of the following binary representations.

Binary representation (8 bit)	Sign Magnitude	1's Complement	2's Complement
10011011 27	-27	-100	-101
11010100 84	-84	-43	-44

- 4) Suppose we are implementing an ALU which afways takes two inputs. The first input comes from *source1*, but the second input might come from either *source2* or *source3* based on some selection line *sel*.
 - a) Draw a black box for the ALU and add the required logic to support both *source2* and *source3* based on *sel*.

b) Inside the ALU, we have the opt on to choose between *Input1* and *NOT(Input1)* based on a control line *c1*, and *between Input2* and *NOT(Input2)* based on a control line *c2*. Draw the required logic.

c) Finally, our ALU has two different instructions named XOR and NAND. Draw the required logic, assuming that the operation selection line is named *op*.

5) Design a 16-to-1 multiplexer using only 4-to-1 multiplexers.

Hint: A 16-to-1 multiplexer needs 4 select lines named $(X_3X_2X_1X_0)$. X_3 as the MSB and X_0 as the LSB.

Good Luck