Example

Theorem 0.1. Let A be an embedded n-manifold with boundary ∂A . Let v be a direction such that $h_v^A:A\to\mathbb{R}$ is a Morse function. Let the interval decomposition of the k-dimensional extended persistent homology of $h_v^{\partial A}:\partial A\to\mathbb{R}$ be

$$\mathrm{XPH}_k\left(\partial A, h_v\right) = \bigoplus_{[b_i, d_i) \in S_X} \mathcal{I}_{[b_i, d_i)}.$$

Let J_A^k be the subset of intervals $[b_i, d_i)$ such that $b_i = (h_v(p), \text{ ord})$ for some $p \in \text{Crit}(h_v^A, (k, +1))$, or $b_i = (h_v(p), \text{ rel })$ for some $p \in \text{Crit}(h_v^A, (n-k-1, -1))$. Then

$$\mathrm{XPH}_{k}\left(A,h_{v}\right) = \bigoplus_{[b_{i},d_{i}) \in J_{A}^{k}} \mathcal{I}_{[b_{i},d_{i})}.$$

For simplicity, we will classify all possible critical points.

Definition 0.1. For a given vertex, we have 3×2 possibilities for critical points.

Figure 1: Index= (0,-)

Figure 2: Index= (0,-)

Figure 3: Index= (0,-)

It is well known that the homology groups of the torus are:

- 1. $H_0(T) = \mathbb{Z}$
- 2. $H_1(T) = \mathbb{Z} \oplus \mathbb{Z}$
- 3. $H_2(T) = \mathbb{Z}$

As for the solid torus:

- 1. $H_0(T) = \mathbb{Z}$
- 2. $H_1(T) = \mathbb{Z}$
- 3. $H_2(T) = 0$

Figure 4: Illustration of multiheaded attention. The two highlighted attention heads have learned to associate "it" with different parts of the sentence.

Example 1. Consider Figure 1. And we will compute XPH_0 . We will also compare what is happening with the critical points with respect to both A and ∂A .

We will start with the boundary ∂A first.

- 1. P_0 is a local minimum. It creates a connected component. It is actually the global minimum.
- 2. P_1 is another local minimum. It creates another class in H_0 .
- 3. P_2 This is a saddle which joins the two connected components. So we pair (P_1, P_2) .
- 4. P_3 This is a saddle which looks like a handle. This forms an essential class in H_1 .
- 5. P_4 adds another handle which forms another class in H_1 .
- 6. P_5 is a local maximum which joins two cycles, so we pair (P_4, P_5) .
- 7. P_6 is a local minimum, which starts a class in H_0 .
- 8. P_7 is a saddle, which joins the component, so we pair (P_6, P_7) .
- 9. P_8 is a saddle, which forms an essential class in H_1 .
- 10. P_9 is a saddle which looks like a handle, which forms a class in H_1 .
- 11. P_{10} is a local maximum, which kills a class in H_1 , so we pair (P_9, P_{10}) .
- 12. P_{11} Is a global maximum, which creates a class in H_2 .

Let us contrast this with the solid torus with boundary A.

- 1. P_0 is a local minimum. It creates a connected component. It is actually the global minimum.
- 2. P_1 is another local minimum. It creates another class in H_0 .
- 3. P_2 This is a saddle which joins the two connected components. So we pair (P_1, P_2) .
- 4. P_3
- 5. P_4

- 6. P_5
- 7. P_6
- 8. P_7
- 9. P_8
- 10. P_9
- 11. P_{10}
- 12. P_{11} Is a global maximum. Homology does not change.

 P_3 is where things start becoming different for the solid donut and for its boundary.

Figure 5: Handle

Theorem 0.2. Let $A \subset \mathbb{R}^2$ be a 2-dimensional piecewise linear manifold with boundary $X = \partial$. Fix $v \in S^1$. The 0-dimensional persistent homology of $h_v^X : X \to \mathbb{R}$ can be written as

$$\mathrm{PH}_{0}\left(X,h_{v}^{X}\right)=\oplus_{i=1}^{m}\mathcal{I}_{\left[h_{v}\left(y_{j_{i}}\right),d_{i}\right)}$$

where $y_{j_1}, \dots y_{j_m}$ are the set of vertex representatives, and $d_1, \dots d_m \in \mathbb{R} \cup \infty$. Here we have only included intervals with positive length.

Let J^{ord} be the subset of $\{1, 2, \dots m\}$ such that d_i is finite and y_{j_i} is (+) critical for h_v^A . Then

$$\operatorname{Ord}_{0}\left(A, h_{v}^{A}\right) = \bigoplus_{i \in J^{\operatorname{ord}}} \mathcal{I}_{\left[\left(h_{v}\left(y_{j_{i}}\right), \operatorname{ord}\right), \left(d_{i}, \operatorname{ord}\right)\right)}$$

Now let J^{rel} be the subset of $\{1, 2, \dots m\}$ such that d_i is finite but y_i is not (+)-critical for $h_{\cdot \cdot \cdot}^A$.

$$\operatorname{Rel}_{1}\left(A, h_{v}^{A}\right) = \bigoplus_{i \in Jrel} \mathcal{I}_{\left[\left(d_{i}, \operatorname{rel}\right), \left(h_{v}\left(y_{j_{i}}\right), \operatorname{rel}\right)\right)}$$

Theorem 0.3. Let $A \subset \mathbb{R}^3$ be a 3-dimensional piecewise linear manifold with boundary ∂A . Fix $v \in S^1$. The 0-dimensional persistent homology of $h_v^X : X \to \mathbb{R}$ can be written as

$$\mathrm{PH}_{0}\left(X,h_{v}^{X}\right)=\oplus_{i=1}^{m}\mathcal{I}_{\left[h_{v}\left(y_{j_{i}}\right),d_{i}\right)}$$

where $y_{j_1}, \dots y_{j_m}$ are the set of vertex representatives, and $d_1, \dots d_m \in \mathbb{R} \cup \infty$. Here we have only included intervals with positive length.

Let J^{ord} be the subset of $\{1, 2, \dots m\}$ such that d_i is finite and y_{j_i} is (+)critical for h_v^A . Then

$$\operatorname{Ord}_{0}\left(A, h_{v}^{A}\right) = \bigoplus_{i \in J^{\operatorname{ord}}} \mathcal{I}_{\left[\left(h_{v}\left(y_{j_{i}}\right), \operatorname{ord}\right), \left(d_{i}, \operatorname{ord}\right)\right)}$$

Now let J^{rel} be the subset of $\{1, 2, \dots m\}$ such that d_i is finite but y_i is not (+)-critical for h_n^A .

$$\operatorname{Rel}_{1}\left(A, h_{v}^{A}\right) = \bigoplus_{i \in Jrel} \mathcal{I}_{\left[\left(d_{i}, rel\right), \left(h_{v}\left(y_{j_{i}}\right), \ rel\ \right)\right)}$$

Theorem 0.4. Proposition 4.20. Let $A \subset \mathbb{R}^n$ be an n-manifold with boundary $X = \partial A$. Let v be a direction such that $h_v^A : A \to \mathbb{R}$ is a Morse function. Let $\{X_1, \dots X_k\}$ be the interior boundary components of X and $\{Y_1, \dots Y_l\}$ be the exterior boundary components of X. Then

$$\operatorname{Ess}_{0}(A, h_{v}) = \sum_{j=1}^{l} \mathcal{I}_{[(\min\{h_{v}(Y_{j})\}, \operatorname{ord}), (\max\{h_{v}(Y_{j})\}, \operatorname{rel}))}$$

and

$$\operatorname{Ess}_{n-1}(A, h_v) = \sum_{i=1}^{k} \mathcal{I}_{[(\max\{h_v(X_i)\}, \operatorname{ord}), (\min\{h_v(X_i)\}, \operatorname{rel}))}$$