MEMS tunable polarization rotator for optical communication

SANDIPAN DAS

Master's Degree Project in Micro and Nanosystems Second level, 30 HEC Stockholm, Sweden June 2016

MEMS tunable polarization rotator for optical communication

Sandipan Das

Stockholm, January 22, 2016

Abstract

Describe briefly about the system

Contents

1	Intro	oduction	1
	1.1	Motivation	1
	1.2	Objectives	1
	1.3	MEMS and silicon photonics	1
	1.4	Importance of these systems	1
	1.5	Outline of this thesis	1
2	State of the art		
	2.1	Optical waveguides	2
	2.2	Polarization in optical waveguides	2
	2.3	Polarization rotator	2
		2.3.1 Passive polarization rotator	2
		2.3.2 Active polarization rotator	2
3	Desi	ign and simulation	3
	3.1	Approach	3
	3.2	Choice of simulation	3
	3.3	Designing the experiment	3
		3.3.1 Use case: Passive polarization rotator	3
		3.3.2 Use case: Active polarization rotator	3
4	Fabi	rication	4
5	Results		
	5.1	Experimental setup for measurement	5
	5.2	Results	5
	5.3	Analysis	5
6	Con	clusions	6
7	Limi	itations and future work	7
8	Acknowledgments		
•	8.1	Sample	8
Bi	Bibliography		

Introduction

- 1.1 Motivation
- 1.2 Objectives
- 1.3 MEMS and silicon photonics
- 1.4 Importance of these systems
- 1.5 Outline of this thesis

2 State of the art

- 2.1 Optical waveguides
- 2.2 Polarization in optical waveguides
- 2.3 Polarization rotator
- 2.3.1 Passive polarization rotator
- 2.3.2 Active polarization rotator

3 Design and simulation

- 3.1 Approach
- 3.2 Choice of simulation
- 3.3 Designing the experiment
- 3.3.1 Use case: Passive polarization rotator
- 3.3.2 Use case: Active polarization rotator

Fabrication

5 Results

- 5.1 Experimental setup for measurement
- 5.2 Results
- 5.3 Analysis

6 Conclusions

Chapter 7 Limitations and future work

Acknowledgments

8.1 Sample

Here I have cited the [1] and [2] just for fun.

Bibliography

- [1] Analog Systems, ""ADXL335 Datasheet. http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL335.pdf," 2010.
- [2] D. Kiburz, R. Jacobs, F. Reckling, and J. Mason, "Bicycle accidents and injuries among adult cyclists," *The American journal of sports medicine*, vol. 14, no. 5, pp. 416–419, 1986.