# **Unit 3: Introduction to Big Data**

**Marco Puts & Piet Daas** 



#### **Overview**

- What is Big Data?
- Properties of Big Data
- Diversity of Big Data
- Statistical uses and examples
- General remarks
  - Questions



## What is Big Data?

- In our modern world, more and more electronic devices are being used that continuously produce data which remains to be stored.
- This results in a data 'deluge', hence the term Big Data
- This data may have very interesting potential (statistical) uses!



## What is Big Data? (2)

#### Definitions

- IT-view (Wikipedia)
  - Big data is a term for data sets that are so large or complex that traditional data processing applications are inadequate to deal with them.
- Gartner (~UNECE/official statistics)
  - Big data is high volume, high velocity, and/or high variety information assets that require new forms of processing to enable enhanced decision making, insight discovery and process optimization.
- A statistician
  - Big data is neither a survey nor an administrative data source, its something different



# From primary to secondary data

- Not collected for NSI purposes
- Structured data using survey techniques

Admin

Sample survey

Big Data

- Not created for NSI purposes
- 'Found' data

collectionPre-determined indicators

Targeted data

Census



## **Properties of Big Data**

- Big Data is a source of data that is:
  - Rapidly available
  - Usually available in large amounts
  - Often generated by an unknown population
  - May have poor quality metadata
  - Usually has low information content
  - May contains lot's of noise
  - Requires processing prior to use
  - Unknown design
- The V's and Big Data
  - Volume, Velocity, Veracity, Variety, Value, Variability, ....

## **Signal and Noise**

- Big Data has a lot of data, but often:
  - Most of the data are 'noise', only a limited part is 'signal'
  - Signal is that part of the data the researcher is interested in
  - Goal is finding the signal
  - However: one man's signal is another man's noise



#### **Information content**

- Compared to the other data sources
  - Big Data has a low information content



Sources (bits)

Large amounts of data are required to extract information from Big Data



## Paradigm shift: Different mindset

Need for change in the way statisticians look at data



## Mindset: Small (survey) vs. Big





Development of the average value of 1,000 subsequent single dice throws for six different runs. The dotted line represents the expected value (3.5)



## **Diversity of Big Data**

- There are many types of Big Data
  - Human generated, Machine generated, Admin data like, Image containing, Text containing, ...
- There are many potential uses of Big Data
  - To produce rapidly available indicators ('real-time'/day/week)
  - For new phenomenon (never measured)
  - As a supplemental data source for an already produced statistic (more detail, faster, cheaper, reduce admin burden, ...)
  - ...
- Big Data can be used to:
  - Measure a phenomenon *Directly* or *Indirectly*.



# Overview of Big Data based statistics

| <u>Nr</u>                                                                  | Name                                    | Status, country                   | Sources used .              |  |  |
|----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------|--|--|
| 1                                                                          | Consumer Price Index                    | in production, multiple countries | Scanner data & web prices   |  |  |
| 2                                                                          | Traffic intensities                     | in production, NL                 | Road sensors                |  |  |
| 3                                                                          | Online job vacancies                    | towards implementation, ESSnet BD | Web portals & company       |  |  |
| 4                                                                          | Enterprise characteristics              | towards implementation, ESSnet BD | Company websites            |  |  |
| 5                                                                          | Electricity/energy consumption          | towards implementation, ESSnet BD | Smart meter data            |  |  |
| 6                                                                          | Maritime and Inland waterway statistics | towards implementation, ESSnet BD | AIS data                    |  |  |
| 7                                                                          | Financial transaction based statistics  | exploratory, ESSnet BD, NO        | Bank transaction data       |  |  |
| 8                                                                          | Earth observation derived statistics    | towards implementation, ESSnet BD | Satellite / aerial pictures |  |  |
| 9                                                                          | Mobile network derived statistics       | towards implementation, ESSnet BD | MNO data                    |  |  |
| 10                                                                         | Innovative tourism statistics           | exploratory, ESSnet BD            | Various data sources        |  |  |
| 11 Innovative company websites towards implementation, NL Company websites |                                         |                                   |                             |  |  |
|                                                                            | Social mood on economy index            | published experimental, IT        | Social media (Twitter)      |  |  |
|                                                                            | Mobile phone derived outbound tourism   | • •                               | MNO data                    |  |  |



## Road sensors use: show steps involved



#### 1. Consumer Price Index

- Traditionally collected by 'interviewers' visiting shops
  - Sample of shops
  - Sample of products (10-100 per shop)
- More and more offices use alternative data sources
  - Scanner data (mainly retailers)
  - Web scraped prices (usually for specific products/services)
- Start of Big Data Methodology

## **Sources for CPI**

| Data dimension     | Traditional (survey) | Scanner data                  | Web scraping     |
|--------------------|----------------------|-------------------------------|------------------|
| Data collection    | Manually             | Automatised                   | Automatised      |
| Completeness/scope | Samples              | All transactions              | Bulk or sample   |
| Metadata           | Item<br>description  | Item description + attributes | Any website info |
| Price data         | Offer prices         | Transaction prices            | Offer prices     |
| Quantity data      | None                 | Quantities sold               | None             |



## **Elementary Aggregate**



## **Elementary Aggregate**



#### Impact of product definition on index: TV's

#### Pick the 'right' index ...



## Finding the right Index on micro level

Index is made up of:

- Quantity
- Price

2002-2009: Laspeyeres index:

Price compared to t<sub>0</sub> but with current quantities

2010-2017: Jevons Index

Only comparison of prices

2018- : Geary-Khamis Index (QU method)

An index based on both prices and quantities



## QU-GK vs Jevons: Price index for sugar

The difference is mainly caused by the weighting (composition of the 'basket' changed)



## **New CPI Methodology**

Paradigm shift:

It took until 2018 before a method, appreciating all aspects of transaction data was used!

## **Consumer Price Index**

- PriceStats produces worldwide daily CPI's based on web scraping alone
  - Every day retailers web sites are scraped worldwide to obtain the price of thousands of online products





#### 2. Web based statistics

- Direct use
  - Statistics based on prices and company characteristics
  - "The data is what the data is"
- Indirect use
  - Statistics based on models extracting 'information' from a Big Data source
    - Detecting innovation from text on web page
    - Deriving job vacancies from online job portals



## Detecting innovative companies

- Web pages of companies provide information
  - Can this be used to substitute the information collected by the Community Innovation Survey?
  - A survey on Innovation send very other year to a sample of 10.000 companies (WP >= 10)
- In the study we looked at:
  - The potential of web pages to provide information on the innovative character of a company
  - For both *large* (WP >= 10) and *small* (WP < 10) companies
  - The CIS survey data of 2016 was used for model development (as ground truth)

## Detecting innovative companies (2)

- Relation Company website
  - Used URLfinder, lists of companies url's, did rigorous manual checking
- Examples of Innovative and Non-Innovative companies
  - The CIS survey of 2016 detected 3,340 innovative companies. Used a similar sized sample of non-innovative companies
- Web scraper
  - Written our own program in Python
- Using Text as data
  - Different area of expertise, experimented a lot.
  - For large documents there are a number of standard processing steps
- Classification method/algoritm
  - Tried everything included in scikit-learn (Python library)
- Be critical
  - Checked a lot of the findings manually (essential).



## Detecting innovative companies (3)

#### The data

- The main page of the web site of the companies included in the CIS survey were scraped (Innovative and non-innovative).
- The text on that page was extracted, processed and used in model development
- Supervised learning
  - Various classification algorithms were tried and findings compared.
  - Logistic regression (L1-norm) won, Accuracy of 88%
  - Logical relation between the most important positive and negative words in the model (incl. manual checking).
- Model validation
  - Model could be used to detect both large and small innovative companies (such as startups)
  - Approach can be applied in NL and Germany (Kinne and Lenz 2019)
  - New method is able to reproduce the CIS-survey results
    - Survey 19.916 ± 680, Web based 19.276 ± 190 innovative large companies
  - Correct for model bias (FP), websites with words < 10, and innovative companies without a website (0.1%)</li>







## **Detecting Innovative companies (5)**





Innovative companies (WP >= 2) at zip code level for Amsterdam

#### 3. Social media based indicators



Popularity varies per country

For Europe:

| 1) Facebook | (70%) |
|-------------|-------|
|-------------|-------|



Getting the data can be challenging (relation with GDPR)

- Cooperate with the owner of the platform
- Use public access (API's or scraping) or buy access
- There are commercial companies that scrape it for you!



#### Corona indicators: sentiment indicator

- Creating a Corona-based sentiment indicator
  - What is the sentiment of the Dutch towards Corona?
- Select Corona containing messages
  - 'Corona', 'Coronavirus', 'COVID-19', 'COVID19', 'COROVID19', SARS-COV-2' and 'pandemic'
  - Predominantly on Twitter and Facebook
- Determine sentiment of these messages
  - (#pos #neg) / #total
  - Development over time



## Raw daily signal





## Raw daily signal + filter (moving average)





## Filtered signal: Corona sentiment





### **Findings**

- Starts positive
  - Mainly because everybody hopes Corona stays in China
- Becomes negative on Jan 20th
  - Corona spreads from China to Japan and South-Korea
- Lowest value on Feb 27-28th
  - Date that first Corona patient was detected in NL
- Stays negative after Jan 20th
  - Moves up and down. Is affected by lockdown rules, politicians, remarks of famous Dutch people etc.



#### Corona indicators: infection indicator

- Creating a Corona infection indicator using social media
  - Are there messages that report corona related symptoms?
  - Develop a model to derive the number of infected persons
  - Study the development over time



## Concepts and operationalizations





## Concepts and operationalizations





#### **Selection of Features**

- Three symptoms for COVID-19 (preselected using Coosto):
  - Soar throat
  - Cough
  - Fever
- Over a period of 2 years, 1700 messages where collected mentioning these symptoms
- Annotated by hand
- Logistic regression

## **Training/test set**

| Symptoom                  | # Messages | % symptoms in dataset | accuracy |
|---------------------------|------------|-----------------------|----------|
| Hoesten<br>(cough)        | 500        | 36 %                  | 0.92     |
| Keelpijn<br>(sour throat) | 700        | 78 %                  | 0.94     |
| Koorts<br>(fever)         | 500        | 29 %                  | 0.83     |
| Totaal                    | 1700       |                       |          |

### **Tweets**





## **Bayesian Approach**





## **Bayesian Approach**



### **Bayesian Model**

Random Walk: 
$$log \lambda_t = log \lambda_{t-1} + \epsilon_t$$
, where  $\epsilon_t \sim N(0, \sigma^2)$ 

Observations: 
$$n_{s,t} \sim NB(\phi_s \lambda_t + \beta_s, \alpha_s)$$
 Semi Poisson Process

Priors: 
$$\frac{1}{\sigma^2} \sim Gamma(a_{\tau}, b_{\tau})$$

$$\phi \sim Dirichlet(a_{\phi})$$

$$\alpha \sim Gamma(a_{\alpha}, b_{\alpha})$$

$$\beta_s \sim Gamma(a_{\beta}, b_{\beta})$$

- Implemented in pyMC3
- No U-Turn Sampler (Hamiltonian Monte Carlo)
- Burn in: 4000 iterations
- Sample size: 200 samples



## Applying the model





## Comparison with national data





### 4. Mobile Network Operator (MNO) data

 To provide optimal use of mobile phones, mobile phone operators must have a well operating infrastructure of phone masts and base stations that cover the country

well



### Mobile Network Operator (MNO) data

 To enable proper use, the Base station to which a mobile phone is connected must be known, at each point in time

This enables tracking of a mobile phone.
Hence its location can be obtained

- Very interesting applications

- Privacy considerations



#### **Inbound tourism: Estonia**



 Coherence between overnight stays and same-day visits of inbound tourists from mobile positioning statistics (estimation based on the data of two MNOs), and official accommodation statistics (Statistics Estonia 2014)



# Inbound tourism: Estonia (2)



# **Mobility in France**



 $https://www.youtube.com/watch?v=qsUDH_5dUnvY\\$ 

Deville, Pierre, et al. "Dynamic population mapping using mobile phone data." Proceedings of the National Academy of Sciences 111.45 (2014): 15888-15893.



#### **General remarks**

- We have seen many examples of Big data based studies
- These are very divers (both in data and methods used)
- Using Big Data brings new challenges for statistics
- Each data source has its own methods
- Data needs to be selected, cleaned, and interpreted
- Data generating process is important for lowering the volatility of the results
  - Models are used
    - Language models, Stochastic models etc.
  - Need to process large amounts of data



### Need for knowledge on

- Extracting information from Big Data
  - Dealing with large amounts of data
  - Dealing with new sources of data: text and images
  - Dealing with errors in Big Data
- IT aspects of Big Data
  - How to efficiently process large amounts of data?
- Big Data methodology
  - What are the steps needed to correctly use Big Data?
  - What is signal, what is noise?
  - Advantages of using visualizations



#### Question 1

- What sources do you consider Big Data?
  - Social media messages
  - Product prices on web sites
  - Satellite pictures
  - Sensor data of cows
  - Persons register of China
  - Activity tracker data of 8 persons



### Question 2

- What are the risks when using:
  - Scanner data
  - Social media messages
  - Web sites
  - MNO ('mobile phone') data
  - Select two sources and write down what you think is important!