2019-04-25 Depth First Search / Articulation Points

Thursday, April 25, 2019

9:00 AM

Recall from last lecture

- Articulation points are "weak points" in the graph such that if removed, the graph would become disconnected
- Articulation points are algorithmically identified using a DFS tree

- In order to identify an articulation point, we must track "back edges" in the graph / DFS tree.
- A back edge is simply an edge that wasn't taken in our DFS
- Graphically, back edges are represented in the DFS tree with dotted lines
- Programmatically, they are housed in a separate data structure

Class Exercise: Draw DFS tree w/ back edges starting at C

- To find an articulation point using a DFS tree w/ back edges we must add another piece of information to our tree
 - LOW value: The smallest visit order / ID of the node that is reachable by taking zero or more forward (solid) edges AND up to one back edge.

A vertex is an articulation point

IF it is the root and it has more than one child
OR, not root and it has a direct child whose LOW value is greater than or equal to its ID value

NA I

value is greater than or equal to its ID value

Articulation Point Class Exercise

Articulation Point Algorithm

- 1. Given a DFS tree w/ back edges but without low values
 - 2. Set low value of root to 1
- 3. Assign low values by:
 - Doing at DFS starting at each node, looking for the minimal ID possible by examining all of each node's back edges, all children and their back edges as well
- \not 4. Now, traverse the tree. A node is an articulation point
 - a. IF it is the root with more than one child OR if it has a direct child whose LOW is greater than or equal to its ID value

Alternate algorithm for #3

- 1. Working in reverse sorted order of ID values
 - a. Set LOW = MIN(SELF_ID, CHILDREN_LOW, BACKEDGE_ID)

Building a DFS tree from a graph

