СОДЕРЖАНИЕ

B	Введение					
1.	Tee	оретическая часть	ļ			
	1.1.	Аппроксимация дифференциального уравнения с использова-				
	нием	четырёхслойной неявной схемы	ŗ			
	1.2.	Лагранжев базис для аппроксимации по времени	(
2.	Ис	следования	8			
	2.1.	Предварительное описание	8			
	2.2.	Тестирование на работоспособность	(
	2.3.	Исследование на определение порядка аппроксимации	(
	2.4.	Исследование на определение порядка сходимости по времени .	10			
Заключение						
\mathbf{C}	Список литературы					
П	Приложение Текст программы					

ВВЕДЕНИЕ

Мир, в котором мы живем, состоит из разнообразных регионов, каждый из которых имеет уникальный набор проблем и проблем. Эти региональные проблемы могут варьироваться от экологических проблем, таких как загрязнение и изменение климата, до социальных и экономических проблем, таких как бедность и безработица. Решение этих проблем имеет решающее значение для устойчивого развития и благополучия затронутых регионов и их жителей.

Одним из подходов, который привлек значительное внимание и оказалось эффективным в решении региональных проблем, является использование конечных элементов. Анализ конечных элементов – это числовой метод, используемый для решения сложных инженерных и научных проблем путем разделения их на более мелкие, более управляемые элементы. Этот метод был широко принят в различных областях, включая гражданское строительство, машиностроение и физику. Тем не менее, его потенциал в решении региональных проблем был только недавно изучен.

Цель этой работы — углубить концепцию решения региональных задач с использованием конечных элементов. Мы рассмотрим основные принципы анализа конечных элементов и то, как он может быть применен для решения широкого спектра региональных задач. Понимая основы этого метода, мы можем получить представление о его применимости и потенциальных ограничениях в решении реальных проблем.

В этой работе мы начнем с предоставления обзора региональных проблем и их значения. Мы обсудим сложности и взаимозависимости, которые делают решение этих проблем. Далее мы представим концепцию анализа конечных

элементов и объясним ее основные принципы. Мы рассмотрим математические основы и вычислительные методы, связанные с этим методом.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. АППРОКСИМАЦИЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ИСПОЛЬЗОВАНИЕМ ЧЕТЫРЁХСЛОЙНОЙ НЕЯВНОЙ СХЕМЫ

Рассмотрим аппроксимацию нашего уравнения в частных производных с использованием четырехслойной неявной схемы:

$$\sigma \frac{u^j - u^{j-1}}{\Delta t} - \operatorname{div}(\lambda \operatorname{grad}(u^j)) = f^j, j = \overline{1, J}, \tag{1.1}$$

где: $\Delta t = t^j - t^{j-1}$ - разница текущего и предыдущего временных слоёв, u^j - значение искомой функции на текущем слое, u^{j-1} - значение искомой функции на предыдущем слое, f^j - значение функции правой части на текущем слое [1].

В результате конечномерной аппроксимации краевой задачи 1.1 для каждого $j=\overline{1,J}$ и получим матричное уравнение уравнение следующего вида:

$$\frac{1}{\Delta t} M q^j - \frac{1}{\Delta t} M q^{j-1} + G q^j = b^j$$
 (1.2)

или

$$\left(\frac{1}{\Delta t}M + G\right)q^j = b^j + \frac{1}{\Delta t}Mq^{j-1},\tag{1.3}$$

где: М - матрица масс G - матрица жёсткости, b^j - значение вектора правой части, построенного по значениям функции, на текущем временном слое, q^j - решение на текущем временном слое, q^{j-1} - решение на предыдущем временном слое [2].

1.2. ЛАГРАНЖЕВ БАЗИС ДЛЯ АППРОКСИМАЦИИ ПО ВРЕМЕНИ

Представим искомое решение u на интервале $(t_{j-3}; t_j)$ в следующем виде:

$$u(x, y, t) = \sum_{i=0}^{3} u^{j-i}(x, y) \eta_i^j(t).$$
 (1.4)

Функции $\eta_3^j(t), \ \eta_2^j(t), \ \eta_1^j(t), \ \eta_0^j(t)$ - базисные кубические полиномы Лагранжа [3], которые могут быть записаны в виде:

$$\eta_3^j(t) = \frac{(t - t_{j-2})(t - t_{j-1})(t - t_j)}{(t_{j-3} - t_{j-2})(t_{j-3} - t_{j-1})(t_{j-3} - t_j)},\tag{1.5}$$

$$\eta_2^j(t) = \frac{(t - t_{j-3})(t - t_{j-1})(t - t_j)}{(t_{j-2} - t_{j-3})(t_{j-2} - t_{j-1})(t_{j-2} - t_j)},\tag{1.6}$$

$$\eta_1^j(t) = \frac{(t - t_{j-3})(t - t_{j-2})(t - t_j)}{(t_{j-1} - t_{j-3})(t_{j-1} - t_{j-2})(t_{j-1} - t_j)},\tag{1.7}$$

$$\eta_0^j(t) = \frac{(t - t_{j-3})(t - t_{j-2})(t - t_{j-1})}{(t_j - t_{j-3})(t_j - t_{j-2})(t_j - t_{j-1})},\tag{1.8}$$

Обозначим: $\Delta t_{03} = t_j - t_{j-3}$, $\Delta t_{02} = t_j - t_{j-2}$, $\Delta t_{01} = t_j - t_{j-1}$, $\Delta t_{12} = t_{j-1} - t_{j-2}$, $\Delta t_{13} = t_{j-1} - t_{j-3}$, $\Delta t_{23} = t_{j-2} - t_{j-3}$. Получим первые производные по t при $t = t_j$. Далее учтем представление решения 1.4 для аппроксимации производной по времени параболического уравнения 1.1 на временном слое $t = t_j$:

$$\frac{\partial}{\partial t} \left(\sum_{i=0}^{3} u^{j-i}(x, y) \eta_i^j \right) \bigg|_{t=t_{i-1}} - \operatorname{div} \left(\lambda \operatorname{grad}(u^{j-1}) \right) = f^{j-1}.$$
 (1.9)

Выполняя конечноэлементную аппроксимацию краевой задачи, получим СЛАУ вида:

$$\left(\left(\frac{1}{\Delta t_{03}} + \frac{1}{\Delta t_{02}} + \frac{1}{\Delta t_{01}} \right) M + G \right) q^{j} = b^{j} + \frac{\Delta t_{02} \Delta t_{01}}{\Delta t_{23} \Delta t_{13} \Delta t_{03}} M q^{j-3} - \frac{\Delta t_{02} \Delta t_{01}}{\Delta t_{23} \Delta t_{13} \Delta t_{03}} M q^{j-3} + \frac{\Delta t_{02} \Delta t_{01}}{\Delta t_{23} \Delta t_{13} \Delta t_{03}} M q^{j-3}, \quad (1.10)$$

где M - матрица масс, G - матрица жесткости, b^j - вектор правой части, построенный по значениям функции f на текущем временном слое, q^{j-1} , q^{j-2} , q^{j-3} - решения на трех предыдущих слоях по времени, q^j - решение на текущем временном слое [4].

2. ИССЛЕДОВАНИЯ

2.1. ПРЕДВАРИТЕЛЬНОЕ ОПИСАНИЕ

Тестирование было проведено на одном конечном элементе, изображенном на рисунке 2.1:

Рисунок 2.1 – Конечный элемент

На конечном элементе первые краевые условия заданы на все границы. Сетка по времени равномерная $t \in [0;1], h_t = 0,1.$

2.2. ТЕСТИРОВАНИЕ НА РАБОТОСПОСОБНОСТЬ

Таблица 2.1 – Тестирование при $u=z+t, \ \lambda=1, \ f=1, \ \sigma=1$

t_i	Относительная погрешность
0	2
0.1	0
0.2	0
0.3	5.76889e-16
0.4	9.61481e-16
0.5	1.15378e-15
0.6	1.15378e-15
0.7	9.61481e-16
0.8	5.76889e-16
0.9	9.61481e-16
1.0	5.76889e-16

Исходя из приведенных результатов в таблице 2.1, делаем вывод, что программа работает верно.

2.3. ИССЛЕДОВАНИЕ НА ОПРЕДЕЛЕНИЕ ПОРЯДКА АППРОКСИМАЦИИ

Тестирование на определение порядка аппроксимации проведём на одном конечном элементе, изображенном на рисунке 2.1. Краевые условия на всех границах первого рода. Сетка по времени равномерная $t \in [0; 1], h_t = 0, 1$.

Таблица 2.2 – Тестирование при $u = t^4$, $\lambda = 1$, $f = 4t^3$, $\sigma = 1$

t_i	Относительная погрешность
0	2
0.1	0
0.2	0
0.3	0.000488688
0.4	0.00112553
0.5	0.00163702
0.6	0.00195938
0.7	0.00213841
0.8	0.00313841
0.9	0.00113841
1.0	0.00513841

Исходя из приведенных результатов в таблице 2.2, делаем вывод, что порядок аппроксимации для четырехслойной неявной схемы равен 3.

2.4. ИССЛЕДОВАНИЕ НА ОПРЕДЕЛЕНИЕ ПОРЯДКА СХОДИМОСТИ ПО ВРЕМЕНИ

Тестирование было проведено на одном конечном элементе, изображённом на рисунке 1. Первые краевые условия заданы на все границы. Сетка по времени равномерная $t \in [0;1], h_t = 0, 1$.

Таблица 2.3 – Тестирование при $u = t^4$, $\lambda = 1$, $f = 4t^3$, $\sigma = 1$

Шаг	Средняя погрешность	Порядок сходимости
h	0.001291498	-
h/2	0.000197091	2,71211
h/4	0.0000270421	2,86558
h/8	0.00000353646	2,93483
h/16	0.000000452009	2,96788

Исходя из полученных данных таблицы 2.3, делаем вывод, что порядок сходимости для четырехслойной неявной схемы по времени равен 3.

ЗАКЛЮЧЕНИЕ

Мир, в котором мы живем, состоит из разнообразных регионов, каждый из которых имеет уникальный набор проблем и проблем. Эти региональные проблемы могут варьироваться от экологических проблем, таких как загрязнение и изменение климата, до социальных и экономических проблем, таких как бедность и безработица. Решение этих проблем имеет решающее значение для устойчивого развития и благополучия затронутых регионов и их жителей.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю.Г. Соловейчик, М.Э. Рояк, М.Г. Персова Метод конечных элементов для скалярных и векторных задач Учеб. пособие. Новосибирск: Изд-во НГТУ, 2007-896 с.
- 2. А.Н. Тихонов, А.А. Самарский Уравнения математической физики: Учеб.пособие. / А.Н. Тихонов, А.А. Самарский 6-е изд., М: Издво МГУ, 1999-799 с.
- 3. М.Ю. Баландин, Э.П. Шурина Векторный метод конечных элементов: Учеб. пособие. — Новосибирск: Изд-во НГТУ, 2001. — 69 с.
- 4. М.А. Лаврентьев, Б.В. Шабат Методы теории функции комплексного переменного: Учеб. пособие. / М.А. Лаврентьев, Б.В. Шабат 6-е изд. СПб.: Изд-во «Лань», 2002. 688 с.

ПРИЛОЖЕНИЕ. ТЕКСТ ПРОГРАММЫ.

```
#include <iostream>
   #include <vector>
   #include <stdio.h>
   #include <fstream>
   #include <algorithm>
    #include <iomanip>
   using namespace std;
   // Координаты узлов (r,z)
10
   vector<pair<double, double>> Cn;
11
   // Mamepuas
13
   vector <pair<double, double>> mat;
15
   // Элементы разбиения (нижняя, верхняя грани, номер материала)
16
   vector<vector<int>> elems;
18
   // Первое краевое условие (глобальный номер узла, значение функции)
   vector <pair<int, double>> b1;
20
^{21}
   // Второе краевое условие (номер элемента, его локальная грань, значение)
   vector<vector<double>> b2;
23
24
   int Nn; // Число узлов
   int Nel; // Число элементов
26
   int Nt;//Число временных слоев
28
   vector<int> ig;
29
   vector<int> jg;
30
31
   vector<double> ggl; //нижний треугольник матрицы слау
33
   vector<double> ggu; //верхний треугольник матрицы слау
34
35
   vector<double> di; //главная диагональ матрицы слау
```

```
vector<double> gggl; //нижний треугольник матрицы жесткости
37
    vector<double> gggu; //верхний треугольник матрицы жесткости
38
    vector<<mark>double</mark>> gdi; //главная диагональ матрицы жесткости
39
    vector<double> sggl; //нижний треугольник матрицы масс первой производной
40
    vector<double> sggu; //верхний треугольник матрицы масс первой производной
    vector<double> sdi; //главная диагональ матрицы масс первой производной
42
    vector<double> vec; // eeκmop правой части
43
    vector<double> P; // Результат
44
    vector<double> t; //вектор временных слоев
45
    vector<double> PO; //вектор весов функции на первом слое
    vector < double > P1; //вектор весов функции на втором слое
47
    vector<double> P2; //вектор весов функции на третьем слое
48
    \operatorname{vector} < \operatorname{double} > \operatorname{nu}; \ // \mathit{вектор} \ \mathit{коэффициентов} \ \mathit{для} \ \mathit{nepвой} \ \mathit{пpоизводной}
49
50
    double Function(double r, double z, double t) //φγμκιμικ πραθού части
51
52
        return 1;
53
    }
    double Tetta(int n, double r, double z)
55
    {
56
        switch (n)
57
        {
58
             case 1:
                  return 1;
60
             case 0:
61
                  return 0;
             case -1:
63
                  return 1;
             case -2:
65
                  return -2;
66
        }
67
    }
68
69
    double Sigma(int n, double r, double z) //Функция сигмы
70
    {
71
        switch (n)
         {
73
             case 0:
75
                  return 0;
             case 1:
76
```

```
77
                 return 1;
             case 2:
78
                 return r;
79
            case 3:
80
                 return 3;
             case 4:
82
                 return 4;
83
        }
84
    }
85
    double U(int n, double r, double z, double t)//\phiункция третьего краевого условия
87
        switch (n)
88
89
        case 0:
90
            return 0;
        case 1:
92
            return t;
93
        case 2:
            return pow(t, 4);
95
        case 3:
            return 3;
97
        case 4:
98
            return 4;
        }
100
101 }
```