

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoja 58 de 85	

Práctica No. 7

LABORATORIO DE MECATRÓNICA

Ingeniería Mecatrónica

No.	Nombre de la Unidad de	Nombre de la Práctica	Duración
Práctica	Aprendizaje		(horas)
7	Análisis de circuitos en CA	Circuitos de primer orden RC y RL	2

Alumno (nombre y firma):	
Docente (nombre y firma):	
Fecha de la práctica:	
Calificación:	

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoia 59 de 85	

No.	Nombre de la Unidad de	Nombre de la Práctica	Duración
Práctica	Aprendizaje		(horas)
7 Análisis de circuitos en CA		Circuitos de primer orden RC y RL	2

I.- INTRODUCCIÓN

En esta práctica consideramos la respuesta de los circuitos RL (circuito con inductor) y RC (circuito con condensador) a cambios abruptos. El cambio abrupto puede ser una modificación en el circuito, como cuando se abre o se cierra un interruptor. De manera alternativa, el cambio abrupto puede ser una modificación a la entrada al circuito, como cuando el voltaje de una fuente de voltaje es una función discontinua de tiempo. Los circuitos RL y RC se llaman circuitos de primer orden.

Los circuitos que contienen solamente un inductor pero no condensadores, o bien solamente un condensador pero no inductores, se pueden representar con una ecuación diferencial de primer orden. Estos circuitos se denominan circuitos de primer orden.

Como tema de vocabulario, la parte transitoria de la respuesta suele abreviarse a respuesta transitoria y la parte de estado estable de la respuesta se abrevia respuesta de estado transitoria, y la suma de ambas se llama respuesta total.

2 OBJETIVO (Competencia Específica a Desarrollar)	RESULTADOS DEL APRENDIZAJE
Desarrollar, construir y modelar parámetros de corriente y voltaje en circuitos RC y RL. Además de observar su respuesta.	Aprender el modelado y la respuesta de los circuitos RC y RL para el modelado y simulación de circuitos eléctricos

3.- CONOCIMIENTOS PREVIOS (Competencias previas)

El alumno deberá contar previamente con un conocimiento sobre circuitos RC y RL, mediciones e implementaciones.

4.- ACTIVIDADES DE ENSEÑANZA (Docente)

Explicar al alumno las principales herramientas para el llevar a cabo el modelado de circuitos RC y RL, además de aprender para medir parámetros.

5.- ACTIVIDADES DE APRENDIZAJE (Alumno)

Realiza la implementación de diversos circuitos, la medición de parámetros y comparar mediante cálculos, simulación y mediciones reales los datos obtenidos durante la práctica correspondiente mediante el software y validar dichos resultados mediante cálculos matemáticos.

6.- DESCRIPCIÓN DEL PROCEDIMIENTO

Código:	MP-IM-01	
No. de Revisión:	0	
Fecha de Emisión:	Noviembre, 2019	
Hoja 60 de 85		

6.1 Equipo necesario y material de apoyo

- Software especializado para simular circuitos
- Computadora
- Osciloscopio
- Generador de funciones.
- Hojas para tomar notas

6.2 Desarrollo de la práctica

- I.- Leer la práctica
- 2.- Realizar la implementación, simulación y cálculos correspondientes de los circuitos eléctricos presentados.
- 3.- Realizar mediciones con el osciloscopio de Multisim.
- 4.- Realizar la comparación entre los datos simulados y calculados (si es el caso).

Nota: realizar solamente la parte de simulación.

Práctica

Circuito RC

E) Salida en el capacitor

Implemente el circuito RC de la Figura I, los elementos son: una fuente de corriente alterna de 2V de pico y con una frecuencia de 10 kHz, una resistencia de 10kohms, y un capacitor de 100nF.

Además, modele matemáticamente (obtenga la ecuación que describe el circuito) el circuito como un sistema de primer orden.

Figura No. I Circuito RC.

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoja 61 de 85	

Circuito RL

F) Salida en el inductor

Implemente el circuito RL de la Figura 2, los elementos son: una fuente de corriente alterna del tipo cuadrada de 2V de pico y con una frecuencia de 10 kHz.

Además, modele matemáticamente (obtenga la ecuación que describe el circuito) el circuito como un sistema de primer orden.

Figura No. 2 Circuito RL.

G) Encuentre el voltaje en el capacitor ante una entrada constante

Si después de que se abra el interruptor en el circuito ¿Cuál es el valor del voltaje en el capacitor de 50ms después de que se abre el interruptor? (Respuesta $v(t) = 8 - 6e^{-t/20}V$ para 50ms se tiene que es $v(t) = 8 - 6e^{-50/20}V = 7.51V$) (Intente modelar el circuito en Multisim y obtener la Figura 4).

Figura No. 3 Circuito RC ante entrada constante.

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoja 62 de 85	

Figura No. 4 Respuesta en el capacitor del circuito RC ante entrada constante.

6.3 Cálculos (si aplica)

Agregue los cálculos necesarios.

4.- INFORME DE RESULTADOS

Los resultados de la práctica se presentarán en la "Tabla para registro de resultados" que compare los datos simulados, los datos calculados y los datos reales, si es el caso.

5.- CONCLUSIONES

Cada alumno de manera individual deberá presentar sus conclusiones con relación a la práctica desarrollada independientemente de que haya trabajado en equipo.

6.- ANEXOS

En caso de ser necesario o usted considere.

Anexo I. Manejo y uso del software.

Anexo 2. Dibujo del circuito

Código:	MP-IM-01
No. de Revisión:	0
Fecha de Emisión:	Noviembre, 2019
Hoja 63 de 85	

Anexo 2. Circuito construido

7.- EVALUACIÓN DEL DESEMPEÑO

No.	No. Concepto a evaluar en el alumno		Cumple	
Guía de Observación		Si	No	
I	Asiste puntualmente al laboratorio			
2	Respeta el reglamento del laboratorio			
3	3 Atiende las recomendaciones del docente			
4 Participa activamente en la práctica				
5 Guarda o entrega el material y equipo utilizado				
Lista de Cotejo				
6 Entrega puntualmente el reporte de la práctica				
7 El contenido del reporte está completo				
8 Los resultados del reporte son correctos				
9 Entrega resuelto el cuestionario de la práctica				
10 Las conclusiones están relacionadas con el tema				

Cada concepto evaluado como Si, equivale a 10 puntos de la calificación de la práctica.

Calificación: 100

7.- REFERENCIAS

Robert L. Boylestad, Introducción al análisis de circuitos, Pearson Prentice Hall, Décima edición, 2004, México. Richard C. Dorf - James A. Svoboda, Circuitos eléctricos: introducción al análisis y diseño, sexta edición, 2000.