Programare funcțională

Introducere în programarea funcțională folosind Haskell C09

Ana Iova Denisa Diaconescu

Departamentul de Informatică, FMI, UB

Tipuri parametrizate

Tipuri parametrizate — "cutii"

Idee

Multe tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemple

- Multimea tipurilor opțiune asociază unui tip a, tipul Maybe a
 - cutii goale: Nothing
 - cutii care tin un element x de tip a: Just x
- Multimea tipurilor listă asociază unui tip a, tipul [a]
 - cutii care țin 0, 1, sau mai multe elemente de tip a: [1, 2, 3], [], [5]

Tipuri parametrizate — "cutii"

Idee

Multe tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemplu: tip de date pentru arbori binari

 Un arbore este o "cutie" care poate ține 0, 1, sau mai multe elemente de tip a:

Nod 3 Nil (Nod 4 (Nod 2 Nil Nil), Nil), Nil, Nod 3 Nil Nil

Generalizare: Tipuri parametrizate — "computații"

Idee

Multe tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemple

- Maybe a descrie rezultate de computații deterministe care pot esua
 - computații care eșuează: Nothing
 - computații care produc un element de tipul dat: Just 4
- [Int] descrie liste de rezultate posibile ale unor computații nedeterministe
 - care pot produce oricare dintre rezultatele date: [1, 2, 3], [], [5]

Tipuri parametrizate — "computații"

Idee

Multe tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemple

- Either e a descrie rezultate de tip a ale unor computații deterministe care pot esua cu o eroare de tip e
 - Right 5 :: Either e Int reprezintă rezultatul unei computații reusite
 - Left "OOM":: Either String a reprezintă o excepție de tip String

Tipuri parametrizate — "computații"

Idee

Multe tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemplu: tipul funcțiilor de sursă dată

- t -> a descrie computații care atunci când primesc o intrare de tip t produc un rezultat de tip a
 - (++ "!") :: String -> String este o computație care dat fiind un șir, îi adaugă un semn de exclamare
 - length :: String -> Int este o computație care dat fiind un șir,
 îi produce lungimea acestuia
 - id :: String -> String este o computație care produce șirul dat ca argument

Clase de tipuri pentru cutii și computații?

Întrebare

Care sunt trăsăturile comune ale acestor tipuri parametrizate care pot fi gândite intuitiv ca cutii care conțin elemente / computații care produc rezultate?

Problemă

Putem proiecta clase de tipuri care descriu funcționalități comune tuturor acestor tipuri?

Functori

Problemă

Formulare cu cutii

Dată fiind o funcție f:: $a \rightarrow b$ și o cutie ca care conține elemente de tip a, vreau să obțin o cutie cb care conține elemente de tip b obținute prin transformarea elementele din cutia ca folosind funcția f (și doar atât!)

Problemă

Formulare cu cutii

Dată fiind o funcție f :: a -> b și o cutie *ca* care conține elemente de tip a, vreau să obțin o cutie *cb* care conține elemente de tip b obținute prin transformarea elementele din cutia ca folosind funcția f (și doar atât!)

Exemplu — liste

Dată fiind o funcție f:: $a \rightarrow b$ și o listă la de elemente de tip a, vreau să obțin o lista de elemente de tip b transformând fiecare element din la folosind funcția f (și doar atât!)

8

Problemă

Formulare cu computații

Dată fiind o funcție f :: a -> b și o computație *ca* care produce rezultate de tip a, vreau să obțin o computație *cb* care produce rezultate de tip b obținute prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)

Exemplu — liste

Dată fiind o funcție $f::a \to b$ și o listă la de elemente de tip a, vreau să obțin o lista de elemente de tip b transformând fiecare element din la folosind funcția f (și doar atât!)

9

Definiție

```
class Functor f where fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b
```

Dată fiind o funcție f :: a -> b și ca :: f a, fmap produce cb :: f b obținută prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)

Instanță pentru liste

```
instance Functor [] where
fmap = map
```

```
class Functor f where fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b
```

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

```
class Functor f where
fmap :: (a -> b) -> f a -> f b

Instanță pentru tipul optiune
fmap :: (a -> b) -> Maybe a -> Maybe b

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)
```

```
class Functor f where
fmap :: (a -> b) -> f a -> f b

Instanță pentru tipul eroare
fmap :: (a -> b) -> Either e a -> Either e b
```

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b

Instanță pentru tipul eroare
fmap :: (a -> b) -> Either e a -> Either e b

instance Functor (Either e) where
  fmap _ (Left x) = Left x
  fmap f (Right y) = Right (f y)
```

```
class Functor f where
fmap :: (a -> b) -> f a -> f b

Instanță pentru tipul arbore
fmap :: (a -> b) -> Arbore a -> Arbore b
```

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b

Instanță pentru tipul arbore
fmap :: (a -> b) -> Arbore a -> Arbore b

instance Functor Arbore where
  fmap f Nil = Nil
  fmap f (Nod x | r) = Nod (f x) (fmap f l) (fmap f r)
```

```
class Functor f where fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b
```

Instanță pentru tipul funcție fmap ::
$$(a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)$$

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b

Instanță pentru tipul funcție
fmap :: (a -> b) -> (t -> a) -> (t -> b)

instance Functor (->) a where
  fmap f g = f . g -- sau, mai simplu, fmap = (.)
```

Exemple

```
Prelude> fmap (*2) [1..3]
[2,4,6]
Prelude > fmap (*2) (Just 200)
Just 400
Prelude > fmap (*2) Nothing
Nothing
Prelude> fmap (*2) (+100) 4
208
Prelude > fmap (*2) (Right 6)
Right 12
Prelude> fmap (*2) (Left 135)
Left 135
Prelude > (fmap . fmap) (+1) [Just 1, Just 2, Just 3]
[Just 2, Just 3, Just 4]
```

Proprietăți ale functorilor

- Argumentul f al lui Functor f definește o transformare de tipuri
 - f a este tipul a transformat prin functorul f
- fmap definește transformarea corespunzătoare a funcțiilor
 - fmap :: (a -> b) -> (f a -> f b)

Proprietăți ale functorilor

- Argumentul f al lui Functor f definește o transformare de tipuri
 - f a este tipul a transformat prin functorul f
- fmap definește transformarea corespunzătoare a funcțiilor
 - fmap :: (a -> b) -> (f a -> f b)

Contractul lui fmap

- fmap f ca e obținută prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)
- Abstractizat prin două legi:

```
identitate fmap id == id compunere fmap (g . h) == fmap g . fmap h
```

Invalidarea contractului - identitate

Instanta a clasei Functor care invalideaza conditia de conservare a identitatii:

```
instance Functor WhoCares where
  fmap _ ItDoesnt = WhatThisIsCalled
  fmap f WhatThisIsCalled = ItDoesnt
  fmap f (Matter a) = Matter (f a)
```

Prelude> fmap id ItDoesnt
WhatThisIsCalled
Prelude> id ItDoesnt
ItDoesnt

Validarea contractului - identitate

Instanta a clasei Functor care valideaza conditia de conservare a identitatii:

```
instance Functor WhoCares where
fmap _ ItDoesnt = ItDoesnt
fmap _ WhatThisIsCalled = WhatThisIsCalled
fmap f (Matter a) = Matter (f a)
```

```
Prelude> fmap id ItDoesnt
ItDoesnt
Prelude> id ItDoesnt
ItDoesnt
```

Invalidarea contractului - compunere

```
data CountingBad a =
  Heisenberg Int a
  deriving (Eq, Show)
```

Instanta a clasei Functor care invalideaza conditia de conservare a compunerii:

```
instance Functor CountingBad where

fmap f (Heisenberg n a) = Heisenberg (n+1) (f a)
```

```
Prelude> oneWhoKnocks = Heisenberg 0 "Uncle"
Prelude> f = (++" Jesse")
Prelude> g = (++" Iol")
Prelude> fmap (f . g) oneWhoKnocks
Heisenberg 1 "Uncle Iol Jesse"
Prelude> fmap f . fmap g $ oneWhoKnocks
Heisenberg 2 "Uncle Iol Jesse"
```

Validarea contractului - compunere

```
data CountingBad a =
   Heisenberg Int a
   deriving (Eq, Show)
```

Instanta a clasei Functor care valideaza conditia de conservare a compunerii:

```
instance Functor CountingBad where
fmap f (Heisenberg n a) = Heisenberg n (f a)
```

```
Prelude> oneWhoKnocks = Heisenberg 0 "Uncle"
Prelude> f = (++" Jesse")
Prelude> g = (++" Iol")
Prelude> fmap (f . g) oneWhoKnocks
Heisenberg 0 "Uncle Iol Jesse"
Prelude> fmap f . fmap g $ oneWhoKnocks
Heisenberg 0 "Uncle Iol Jesse"
```

Quiz time!

Seria 23: https://www.questionpro.com/t/AT4qgZqOwD

Seria 24: https://www.questionpro.com/t/AT4NiZqN7a

Seria 25: https://www.questionpro.com/t/AT4qgZqOwu

Categorii și Functori

- A category is an embarrassingly simple concept.
 Bartosz Milewski, Category Theory for Programmers
- Categorie = obiecte + sageti

- A category is an embarrassingly simple concept.
 Bartosz Milewski, Category Theory for Programmers
- Categorie = obiecte + sageti
- Ingredient cheie: compunerea de sageti

credits: Bartosz Milewski

O categorie C consta in

- Obiecte:
- Sageti:

• Compunere:

O categorie C consta in

• Objecte: notate A, B, C, ...

Sageti:

• Compunere:

O categorie C consta in

- Objecte: notate A, B, C, ...
- Sageti: pentru orice obiecte A si B, exista o multime de sageti
 C(A, B)
 - notam $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
- Compunere:

- Objecte: notate A, B, C, ...
- Sageti: pentru orice obiecte A si B, exista o multime de sageti
 C(A, B)
 - notam $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
- Compunere: pentru orice sageti f : A → B si g : B → C exista o sageata g ∘ f : A → C

- Objecte: notate A, B, C, ...
- Sageti: pentru orice obiecte A si B, exista o multime de sageti
 C(A, B)
 - notam $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
- Compunere: pentru orice sageti $f: A \to B$ si $g: B \to C$ exista o sageata $g \circ f: A \to C$ $A \xrightarrow{f} B$

- Objecte: notate A, B, C, ...
- Sageti: pentru orice obiecte A si B, exista o multime de sageti
 C(A, B)
 - notam $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
- Compunere: pentru orice sageti $f:A \to B$ si $g:B \to C$ exista o sageata $g \circ f:A \to C$ $A \xrightarrow{f} B$
- Identitate: pentru orice obiect A exista o sageata $id_A: A \rightarrow A$

- Objecte: notate A, B, C, ...
- Sageti: pentru orice obiecte A si B, exista o multime de sageti
 C(A, B)
 - notam $f \in \mathbf{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
- Compunere: pentru orice sageti f: A → B si g: B → C exista o sageata g ∘ f: A → C
 A f B
- gof de C
- Identitate: pentru orice obiect A exista o sageata $id_A: A \rightarrow A$
- Axiome: pentru orice sageti f: A → B, g: B → C, si
 h: C → D
 h ∘ (g ∘ f) = (h ∘ g) ∘ f
 f ∘ id_A = f = id_B ∘ f

Exemplu - categoria de multimi

Categoria Set are

- Obiecte: multimi
- Sageti: functii
- Compunere: compunerea de functii
- Identitate: pentru orice multime A, functia identitate
 id_A: A → A, id_A(a) = a
- Axiome: √

Monoizi

Un monoid **M** este o structura $\langle M, +, e \rangle$ astfel incat

- M este o multime
- $+: M \times M \rightarrow M$ este asociativa (aka (a+b)+c=a+(b+c) pentru orice $a,b,c\in M$)
- $e \in M$ este identitate pentru + (aka e + a = a + e = a pentru orice $a \in M$)

Monoizi

Un monoid **M** este o structura $\langle M, +, e \rangle$ astfel incat

- M este o multime
- $+: M \times M \rightarrow M$ este asociativa (aka (a+b)+c=a+(b+c) pentru orice $a,b,c\in M$)
- e ∈ M este identitate pentru +
 (aka e + a = a + e = a pentru orice a ∈ M)

Monoizii sunt un concept extrem de putenic:

- Stau in spatele aritmeticii de baza
 - si adunarea, si inmultirea formeaza un monoid
- Sunt prezenti peste tot in programare
 - siruri de caractere, liste ...

Exemplu - categoria de monoizi

Categoria Mon are

- Obiecte: monoizi
- Sageti: morfisme de monoizi
 (aka functii care nu "strica" operatia de monoid)
- Compunerea: compunerea de morfisme de monoizi
- Identitatea: pentru orice obiect M, $id_M : M \to M$, $id_M(m) = m$
- Axiome: √

Orice monoid $\mathbf{M} = \langle M, +, e \rangle$ este o categorie cu

Obiecte: un singur obiect □

- Obiecte: un singur obiect □
- Sageti: elementele multimii M (i.e, $\mathbf{M}(\square, \square) = M$)

- Obiecte: un singur obiect □
- Sageti: elementele multimii M (i.e, $\mathbf{M}(\square, \square) = M$)
- Compunerea: operatia de monoid +

- Obiecte: un singur obiect □
- Sageti: elementele multimii M (i.e, $\mathbf{M}(\square, \square) = M$)
- Compunerea: operatia de monoid +
- Identitatea: identitatea monoidului e

- Obiecte: un singur obiect □
- Sageti: elementele multimii M (i.e, $\mathbf{M}(\square, \square) = M$)
- Compunerea: operatia de monoid +
- Identitatea: identitatea monoidului e
- Axiome:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 $f \circ id_A = f = id_B \circ f$
 $a + (b + c) = (a + b) + c$ $a + e = a = e + a$

Exemplu - Categoria ⊞ask

- Obiectele: tipuri
- Săgețiile: funcții între tipuri

Identități: funcția polimorfică id

• Compunere: funcția polimorfică (.)

```
Prelude> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
```

Subcategorii ale lui Hask date de tipuri parametrizate

- Obiecte: o clasă restânsă de tipuri din |Hask|
 - Exemplu: tipuri de forma [a]
- Săgeți: toate funcțiile din Hask între tipurile obiecte
 - Exemple: concat :: [[a]] -> [a], words :: [Char] -> [String],
 reverse :: [a] -> [a]

Exemple

Liste obiecte: tipuri de forma [a]

Optiuni obiecte: tipuri de forma Maybe a

Arbori obiecte: tipuri de forma Arbore a

Funcții de sursă t obiecte: tipuri de forma t -> a

De ce categorii?

(Des)compunerea este esența programării

- Am de rezolvat problema P
- O descompun în subproblemele P₁,...P_n
- Rezolv problemele $P_1, \dots P_n$ cu programele $p_1, \dots p_n$
 - Eventual aplicând recursiv procedura de față
- Compun rezolvările p₁,...p_n într-o rezolvare p pentru problema inițială

Categoriile rezolvă problema compunerii

- Ne forțează să abstractizăm datele
- Se poate acționa asupra datelor doar prin săgeți (metode?)
- Forțează un stil de compunere independent de structura obiectelor

Date fiind două categorii $\mathbb C$ și $\mathbb D$, un functor $F:\mathbb C\to\mathbb D$ este dat de

Date fiind două categorii $\mathbb C$ și $\mathbb D$, un functor $F:\mathbb C\to\mathbb D$ este dat de

• O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}

Date fiind două categorii \mathbb{C} și \mathbb{D} , un functor $F:\mathbb{C}\to\mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$

Date fiind două categorii \mathbb{C} și \mathbb{D} , un functor $F : \mathbb{C} \to \mathbb{D}$ este dat de

- O functie $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C$, $h = g \circ f$

Bartosz Milewski — Functors

Functori în Haskell

În Haskell o instantă Functor f este dată de

- Un tip f a pentru orice tip a (deci f trebuie sa fie tip parametrizat)
- Pentru orice două tipuri a și b, o funcție

$$fmap :: (a -> b) -> (f a -> f b)$$

Compatibilă cu identitățile și cu compunerea

```
fmap id == id
fmap (g \cdot h) == fmap g \cdot fmap h
pentru orice h :: a \rightarrow b \neq ig :: b \rightarrow c
```

Pe săptămâna viitoare!