

Practical SAT Solving

Lecture 5

Carsten Sinz, Tomáš Balyo | May 21, 2019

INSTITUTE FOR THEORETICAL COMPUTER SCIENCE

Stochastic Local Search (SLS)

SAT as an optimization problem: minimize the number of unsatisfied clauses

Start with a complete random assignment α :

Repeatedly flip (randomly/heuristically chosen) variables to decrease the number of unsatisfied clauses:

SLS Algorithms

- Local search algorithms are incomplete: they cannot show unsatisfiability!
- Many variants of local search algorithms
- Main question: Which variable should be flipped next?
 - select variable from an unsatisfied clause
 - select variable that increases the number of satisfied clauses most
- How to avoid local minima?

GSAT Algorithm [1]


```
Maybe[Assignment] GSAT(ClauseSet S)
  for i = 1 to MAX_TRIES do {
    \alpha = random-assignment to variables in S
    for i = 1 to MAX_FLIPS do {
      if ( \alpha satisfies all clauses in S ) return \alpha
      x = variable that produces least number of
        unsatisfied clauses when flipped
      flip x
  return Nothing // no solution found
```

SLS: Illustration

[Source: Alan Mackworth, UBC, Canada]

DPLL Algorithm

Davis-Putnam

Walksat [2]

- Variant of GSAT
- Try to avoid local minima by introducing "random noise"
 - Select unsatisfied clause C at random
 - If by flipping a variable $x \in C$ no new unsatisfied clauses emerge, flip x
 - Otherwise:
 - With probability p select a variable $x \in C$ at random
 - With probability 1 p select a variable that changes as few as possible clauses from satisfied to unsatisfied when flipped

SLS: Important Notions

- Consider a flip taking α to α'
- **breakcount:** number of clauses satisfied in α , but not in α'
- **makecount:** number of clauses unsatisfied in α , but satisfied in α'
- diffscore: number of unsatisfied clauses in α minus number of clauses unsatisfied in α'
- Typically, breakcount, makecount and diffscore are updated after each flip
- Question: How can we do this efficiently?

GSAT and Walksat Flip Heuristics

- GSAT: select variable with highest diffscore
- Walksat:
 - First randomly select unsatisfied clause C
 - If there is a variable with breakcount 0 in C, select it
 - otherwise with probability p select a random variable from C, and with probability 1 p a variable with minimal **breakcount** from C

Runtime Comparison Walksat vs. GSAT

formula			DP	GSAT+w	WSAT
id	vars	clauses	time	time	time
2bitadd_12	708	1702	*	0.081	0.013
2bitadd_11	649	1562	*	0.058	0.014
3bitadd_32	8704	32316	*	94.1	1.0
3bitadd_31	8432	31310	*	456.6	0.7
2bitcomp_12	300	730	23096	0.009	0.002
2bitcomp_5	125	310	1.4	0.009	0.001

Table 4: Comparing an efficient complete method (DP) with local search strategies on circuit synthesis problems. (Timings in seconds.)

formula			DP	GSAT+w	WSAT
id	vars	clauses	time	time	time
ssa7552-038	1501	3575	7	129	2.3
ssa7552-158	1363	3034	*	90	2
ssa7552-159	1363	3032	*	14	0.8
ssa7552-160	1391	3126	*	18	1.5

Table 5: Comparing DP with local search strategies on circuit diagnosis problems by Larrabee (1989). (Timings in seconds.)

[Source: Selman, Kautz, Cohen Local Search Strategies for Satisfiability Testing, 1993]

DPLL Algorithm

May 21, 2019

Davis-Putnam

Repetition: Resolution/Saturation

Saturation Algorithm

- INPUT: CNF formula F
- OUTPUT: {SAT, UNSAT}

while (true) do

$$R = \text{resolveAll}(F)$$

if
$$(R \cap F \neq R)$$
 then $F = F \cup R$

else break

if $(\bot \in F)$ then return *UNSAT* else return *SAT*

Properties of the saturation algorithm:

- it is sound and complete always terminates and answers correctly
- has exponential time and space complexity

Can we do better?

- Question: Can we do better than saturation-based resolution?
 - Avoid exponential space complexity
 - Improve average-case complexity (for important problem classes)

11/48

Davis-Putnam Algorithm [3]

- Presented in 1960 as a procedure for first-order (predicate) logic
- Procedure to check satisfiability of a formula F in CNF
- Three (deduction) rules:
 - **1 Unit propagation:** if there is a unit clause $C = \{I\}$ in F, simplify all other clauses containing I
 - Pure literal elimination: If a literal / never occurs negated in F, add the clause {/} to F
 - **3** Case splitting: Assume that F is put in the form $(A \lor I) \land (B \lor \overline{I}) \land R$, where A, B, and B are free of I. Replace F by the clausification of $(A \lor B) \land R$
- Apply deduction rules (giving priority to rules 1 and 2) until no further rule is applicable

From Davis' and Putnam's Paper

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using the present method in 30 minutes.

DPLL Algorithm: Outline

- DPLL: Davis-Putnam-Logemann-Loveland [4]
- Algorithmic improvements over DP algorithm
- Basic idea: case splitting and simplification

DPLL Algorithm

- Simplification: unit propagation and pure literal deletion
- Unit propagation: 1-clauses (unit clauses) fix variable values: if $\{x\} \in S$, in order to satisfy S, variable x must be set to 1.
- Pure literal deletion: If variable x occurs only positively (or only negatively) in S, it may be fixed, i.e. set to 1 (or 0).

May 21, 2019

Davis-Putnam

Pure Literal Deletion: Example

- Let $F_0 = \{\{x, y\}, \{\neg x, y, \neg z\}, \{\neg x, z, u\}, \{x, \neg u\}\}.$
- All clauses containing y may be deleted, as y occurs only positively in F. This yields:

$$F_1 = \{\{\neg x, z, u\}, \{x, \neg u\}\}\$$

- Each solution α_1 of F_1 can be extended to a solution α_0 of F_0 by setting $\alpha_0(y) = 1$.
- Moreover, if F_1 does not possess a solution, then so does F_0 .
- Repeating yields $F_2 = \{\{x, \neg u\}\}$ and $F_3 = \emptyset$, thus F_0 is satisfiable.

DPLL Algorithm


```
boolean DPLL(ClauseSet S)
  while ( S contains a unit clause \{L\} ) {
    delete from S clauses containing L; // unit-subsumption
    delete \neg L from all clauses in S; // unit-resolution
  if ( \bot \in S ) return false:
                                            // empty clause?
  while (S contains a pure literal L)
    delete from S all clauses containing L;
  if (S = \emptyset) return true;
                                           // no clauses?
  choose a literal L occurring in S; // case-splitting
  if ( DPLL(S \cup \{\{L\}\} ) return true; // first branch
  else if ( DPLL(S \cup \{\{\neg L\}\} ) return true; // second branch
  else return false;
```

DPLL: Implementation Issues

- How can we implement unit propagation efficiently?
- Which literal L to use for case splitting?
- How can we efficiently implement the case splitting step?

"Modern" DPLL Algorithm with "Trail"


```
boolean mDPLL(ClauseSet S, PartialAssignment \alpha)
  while ((S, \alpha) contains a unit clause \{L\}) {
    add \{L=1\} to \alpha
  if (a literal is assigned both 0 and 1 in \alpha ) return false;
  if (all literals assigned) return true;
  choose a literal L not assigned in \alpha occurring in S;
  if (mDPLL(S, \alpha \cup \{L=1\}) return true;
  else if ( mDPLL(S, \alpha \cup \{L=0\} ) return true;
  else return false;
(S, \alpha): clause set S as "seen" under partial assignment \alpha
```

DPLL: Implementation Issues

- How can we implement unit propagation efficiently?
- (How can we implement pure literal elimination efficiently?)
- Which literal L to use for case splitting?
- How can we efficiently implement the case splitting step?

Properties of a good decision heuristic

Properties of a good decision heuristic

- Fast to compute
- Yields efficient sub-problems
 - More short clauses?
 - Less variables?
 - Partitioned problem?

20/48

Bohm's Heuristic

- Best heuristic in 1992 for random SAT (in the SAT competition)
- Select the variable x with the maximal vector $(H_1(x), H_2(x), \dots)$

$$H_i(x) = \alpha \max(h_i(x), h_i(\overline{x})) + \beta \min(h_i(x), h_i(\overline{x}))$$

- where $h_i(x)$ is the number of not yet satisfied clauses with i literals that contain the literal x.
- lacktriangle lpha and eta are chosen heuristically (lpha=1 and eta=2).
- Goal: satisfy or reduce size of many preferably short clauses

MOMS Heuristic

- Maximum Occurrences in clauses of Minimum Size
- Popular in the mid 90s
- Choose the variable x with a maximum S(x).

$$S(x) = (f^*(x) + f^*(\overline{x})) \times 2^k + (f^*(x) \times f^*(\overline{x}))$$

- where $f^*(x)$ is the number of occurrences of x in the smallest not yet satisfied clauses, k is a parameter
- Goal: assign variables with high occurrence in short clauses

Jeroslow-Wang Heuristic

- Considers all the clauses, shorter clauses are more important
- Choose the literal x with a maximum J(x).

$$J(x) = \sum_{x \in c, c \in F} 2^{-|c|}$$

- Two-sided variant: choose variable x with maximum $J(x) + J(\overline{x})$
- Goal: assign variables with high occurrence in short clauses
- Much better experimental results than Bohm and MOMS
- One-sided version works better

(R)DLCS and (R)DLIS Heuristics

- (Randomized) Dynamic Largest (Combined | Individual) Sum
- Dynamic = Takes the current partial assignment in account
- Let C_P (C_N) be the number of positive (negative) occurrences
- lacktriangle DLCS selects the variable with maximal C_P+C_N
- **DLIS** selects the variable with maximal $\max(C_P, C_N)$
- RDLCS and RDLIS does a random selection among the best
 - Decrease greediness by randomization
- Used in the famous SAT solver GRASP in 2000

LEFV Heuristic

- Last Encountered Free Variable
- During unit propagation save the last unassigned variable you see, if the variable is still unassigned at decision time use it otherwise choose a random
- Very fast computation: constant memory and time overhead
 - Requires 1 int variable (to store the last seen unassigned variable)
- Maintains search locality
- Works well for pigeon hole and similar formulas

How to Implement Unit Propagation

The Task

Given a partial truth assignment ϕ and a set of clauses F identify all the unit clauses, extend the partial truth assignment, repeat until fix-point.

Simple Solution

- Check all the clauses
- Too slow
- Unit propagation cannot be efficiently parallelized (is P-complete)

How to Implement Unit Propagation

The Task

Given a partial truth assignment ϕ and a set of clauses F identify all the unit clauses, extend the partial truth assignment, repeat until fix-point.

Simple Solution

- Check all the clauses
- Too slow
- Unit propagation cannot be efficiently parallelized (is P-complete)

In the context of DPLL the task is actually a bit different

- The partial truth assignment is created incrementally by adding (decision) and removing (backtracking) variable value pairs
- Using this information we will avoid looking at all the clauses

How to Implement Unit Propagation

The Real Task

We need a data structure for storing the clauses and a partial assignment ϕ that can efficiently support the following operations

- detect new unit clauses when ϕ is extended by $x_i = v$
- update itself by adding $x_i = v$ to ϕ
- update itself by removing $x_i = v$ from ϕ
- support restarts, i.e., un-assign all variables at once

Observation

• We only need to check clauses containing x_i

Occurrences List and Literals Counting

The Data Structure

- For each clause remember the number unassigned literals in it
- For each literal remember all the clauses that contain it

Operations

- If $x_i = T$ is the new assignment look at all the clauses in the occurrence of of $\overline{x_i}$. We found a unit if the clause is not SAT and counter=2
- When $x_i = v$ is added or removed from ϕ update the counters

"Traditional" Approach

Crawford, Auton (1993)

29/48

$$F = \{\{x, \neg y, z\}, \{\neg z\}\}$$

$$F = \{\{x, \neg y, z\}, \{\neg z\}\}\$$
 unit propagation: set $z = 0$

$$F = \{\{x, \neg y, z\}, \{\neg z\}\}\$$
 unit propagation: set $z = 0$

$$F = \{\{x, \neg y, z\}, \{\neg z\}\}\$$
 unit propagation: set $z = 0$

Head/Tail Lists

Zhang, Stickel (1996)

Heuristics

$$F = \{\{x, \neg y, z\}, \{\neg z\}\}\$$

$$F = \{\{x, \neg y, z\}, \{\neg z\}\}\$$
 detected unit clause: $\{\neg z\}$

$$F = \{\{x, \neg y, z\}, \{\neg z\}\}\$$
 unit propagation: set $z = 0$

$$F = \{\{x, \neg y, z\}, \{\neg z\}\}\$$
 unit propagation: set $z = 0$

$$F = \{\{x, \neg y, z\}, \{\neg z\}\}\$$
 unit propagation: set $z = 0$

2 watched literals

The Data Structure

- In each non-satisfied clause "watch" two non-false literals
- For each literal remember all the clauses where it is watched

Maintain the invariant: two watched non-false literals in non-sat clauses

- If a literal becomes false find another one to watch
- If that is not possible the clause is unit

Advantages

2 watched literals

The Data Structure

- In each non-satisfied clause "watch" two non-false literals
- For each literal remember all the clauses where it is watched

Maintain the invariant: two watched non-false literals in non-sat clauses

- If a literal becomes false find another one to watch
- If that is not possible the clause is unit

Advantages

- visit fewer clauses: when $x_i = T$ is added only visit clauses where $\overline{x_i}$ is watched
- no need to do anything at backtracking and restarts
 - watched literals cannot become false

2 Watched Literals: Data Structures

2 Watched Literals: Example

zChaff

Literals

43/48

Limmat

Good for parallel SAT solvers with shared clause database

DPLL Algorithm

Davis-Putnam

MiniSat

invariant: first two literals are watched

Davis-Putnam

PicoSat

invariant: first two literals are watched

Lingeling

- often the other watched literal satisfies the clause
- for binary clauses no need to store the clause

MiniSAT propagate()-Function


```
CRef Solver::propagate()
 CRef confl = CRef_Undef;
       num_props = 0;
 while (qhead < trail.size()){
 Lit p = trail[qhead++]; // propagate 'p'.
 vec < Watcher > & ws = watches.lookup(p);
 Watcher *i, *j, *end;
 num_props++;
 for (i = i = (Watcher*)ws. end = i + ws.size():
   i != end:){
                                                               confl = cr:
   // Try to avoid inspecting the clause:
   Lit blocker = i->blocker:
   if (value(blocker) == 1_True){
                                                               while (i < end)
   *i++ = *i++; continue; }
                                                                 *i++ = *i++:
   // Make sure the false literal is data[1]:
   CRef cr = i->cref:
   Clause& c = ca[cr]:
                                                           NextClause::
   Lit false_lit = ~p;
   if (c[0] == false lit)
                                                           ws.shrink(i - j);
   c[0] = c[1], c[1] = false lit:
   assert(c[1] == false lit):
   i++:
   // If 0th watch is true, clause is satisfied.
                                                         return confl:
   Lit first = c[0]:
   Watcher w = Watcher(cr, first);
   if (first != blocker && value(first) == 1_True){
   *i++ = w: continue: }
```

```
// Look for new watch:
   for (int k = 2; k < c.size(); k++)
      if (value(c[k]) != 1 False){
        c[1] = c[k]; c[k] = false_lit;
        watches [~c[1]].push(w);
        goto NextClause: }
    // Did not find watch -- clause is unit
    if (value(first) == 1_False){
      qhead = trail.size();
      // Copy the remaining watches:
      uncheckedEnqueue(first, cr):
propagations += num_props;
simpDB_props -= num_props;
```

References I

B. Selman, H. Levesque, D. Mitchell, A new method for solving hard satisfiability problems, in: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI'92, AAAI Press, 1992, pp. 440–446.

URL http://dl.acm.org/citation.cfm?id=1867135.1867203

- D. J. Johnson, M. A. Trick (Eds.), Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993, American Mathematical Society, Boston, MA, USA, 1996.
- M. Davis, H. Putnam, A computing procedure for quantification theory, J. ACM 7 (3) (1960) 201–215.
 doi:10.1145/321033.321034.
 URL http://doi.acm.org/10.1145/321033.321034

4 D > 4 B > 4 E > 4 E > E = 4940

References II

M. Davis, G. Logemann, D. Loveland, A machine program for theorem-proving, Commun. ACM 5 (7) (1962) 394–397.

doi:10.1145/368273.368557.

URL http://doi.acm.org/10.1145/368273.368557

