Universidade Federal De Uberlândia Faculdade de Computação Sistemas De Informação Banco de dados 1 GSI016

EULLER HENRIQUE BANDEIRA OLIVEIRA 11821BSI210

Atividade teórica 01

Uberlândia 2021 3. Discuta as vantagens de um SGBD quando comparado com um sistema de arquivos.

Controle da redundância

Ao utilizar um sistema de arquivos, redundâncias ocorrem quando dois grupos armazenam informações repetidas. Por exemplo, o departamento de RH armazena o CPF, o nome e o telefone, já o departamento de TI armazena o CPF, o email e a senha. Como é possível notar, o CPF será armazenado duas vezes. Tal redundância causa: duplicação de esforço (Toda vez que um departamento inserir, atualizar ou remover algum dado, o outro departamento deve repetir o que foi feito), desperdício de espaço de armazenamento (Ao adicionar um dado no arquivo de um departamento, o outro departamento terá que inserir um novo dado em seu arquivo) e inconsistências (Se um usuário de um departamento cometer um equívoco ao inserir o dado recebido do outro departamento, os arquivos ficarão inconsistentes).

Segurança

Ao utilizar um SGBD, pode-se configurar contas que podem controlar todo o banco de dados, configurar contas que podem controlar somente alguns dados, que podem executar somente alguns comandos (buscar, adicionar, atualizar ou remover).

Restrições de integridade

O SGBD permite que várias restrições de integridade sejam feitas.

Por exemplo:

- Especificar o tipo de um dado
- Especificar que(s) valor(es) um dado pode receber
- Especificar que um registro deve se relacionar a outro registro (Restrição de integridade relacional)
- Especificar que cada registro deve ter um id único (Restrição de chave)

Padronização

O uso do SGBD permite que padrões para o armazenamento de dados sejam criados. Tal padronização facilita bastante o armazenamento e a consulta ao banco de dados para os usuários, projetos e departamentos.

Fonte Bibliográfica

Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 6 ed. São Paulo: Addison Wesley, 2011 https://ufubr.sharepoint.com/sites/GSIBancodeDados1-1S2020-Profa.MariaCamila/Material%20de%20Aula/Slides%20Aulas/GSI016 Aula1 Introducao.pdf

9. Analisando a estrutura de componentes do SGBD dada em aula, explique o que ocorre em cada componente e como é o fluxo de dados/informações entre os componentes. Basear-se nos textos dos livros sugeridos para leitura. OBS: não é para somente copiar dos slides a funcionalidade de cada componente, mas sim para descrever todo o processo ocorrido a partir de cada componente externo ao SGBD.

A maioria das interações com o SGBD ocorre da seguinte maneira:

Ao utilizar a linguagem de manipulação de dados (DML), um programa ou usuário inicializa uma ação. Tal ação pode alterar o conteúdo do banco de dados ao adicionar/remover/atualizar ou pode obter dados ao realizar uma consulta.

Essas ações são processadas por meio de dois subsistemas separados da seguinte maneira:

Processador de consultas

- 1) O compilador de consulta otimiza e analisa a consulta realizada.
- 2) O compilador gera uma sequência de ações que o mecanismo de execução terá que seguir para que a consulta seja respondida.
- 3) O mecanismo de execução executa a sequência de ações que foi gerada pelo compilador.
- 4) O mecanismo de execução solicita ao gerenciador de recursos pequenos pedaços de dados.
- 5) A resposta é enviada ao gerenciador de buffer. (O gerenciador de buffer possui a missão de extrair os dados necessários do disco.)
- 6) O gerenciador de buffer solicita ao gerenciador de armazenamento dados do disco.
- 7) O gerenciador de armazenamento solicita ao controlador de disco os dados.

• Gerenciador de transações

1) Registro

- O gerenciador de log registra todas as alterações no banco de dados no disco
- Garante durabilidade
- Se ocorrer uma falha no sistema, o gerenciador de recuperação examinará os logs registrados e conseguirá retornar o banco de dados a uma versão estável.
- O gerenciador de log registra os logs em buffers
- O gerenciador de buffer garante que os buffers serão gravados no disco (onde pode sobreviver a falhas)

2) Controle de simultaneidade

- O gerenciador de controle de simultaneidade possui a função de garantir que o efeito de que as transações são executadas uma a uma ocorra.
- Tal efeito é garantido por meio de bloqueios em determinadas partes do banco de dados.
- Esses bloqueios fazem com que não seja possível duas transações em execução acessar os mesmos dados.
- Com isso, a segunda transação terá que esperar a primeira ser executada para ser executada.

3) Resolução de deadlock

- Se uma transação precisar de uma informação que será obtida por outra transação, devido aos bloqueios, nenhuma transação conseguiria ser finalizada.
- Para resolver essa problemática, o gerenciador de transações intervém ao cancelar ("roolback" ou "abortar") a transação que está impedindo que as outras sejam executadas para as execuções prosseguirem.

O processador de consultas e o gerenciador de transações dependem de um subsistema extremamente importante para funcionarem:

• Gerenciador de armazenamento

- Armazena os dados do banco de dados no armazenamento secundário (disco).
- Transfere os dados do banco de dados para a memória principal (RAM) quando um comando é executado.
- A pedido do gerenciador de buffer, o gerenciador de armazenamento localiza os dados no disco.
 - O gerenciador de buffer divide a memória principal em buffers (regiões que possuem a função de armazenar temporariamente os dados advindos da memória principal)
 - Os componentes do SGBD que precisam de informações (Dados, metadados, logs, estatísticas ou índices) da memória principal requisitam a ajuda do gerenciador de buffer.

Fonte Bibliográfica

Garcia-Molina, Hector; Ullman, Jeff; Widom, Jennifer. Database Systems: The Complete Book.

10) Caracterize os diferentes SGBDs de acordo com os seus modelos de dados (principais características, vantagens e indicações de uso).

- Modelo relacional
 - o Principais características:
 - Dados e relacionamentos: Coleções de tabelas
 - Cada tabela: Várias colunas e nome único
 - O Vantagens:
 - Independência de dados
 - Segurança
 - Restrições de integridade
 - Facilidade de desenvolvimento de uma aplicação
 - Facilidade de acesso aos dados
 - Padronização
 - ACID (Atomicidade, Consistência, Isolamento, Durabilidade)
 - Indicações de uso:
 - Os dados são estruturados e imutáveis.
 - É preciso garantir o ACID (Atomicidade, Consistência, Isolamento, Durabilidade) para reduzir anormalidades e proteger a integridade do banco de dados.
- Modelo de rede
 - Principais características:
 - Dados: Coleções de registros
 - Relacionamentos: Ligações vistas como ponteiros
 - Registros: Coleções de gráficos arbitrários
 - o Vantagens:
 - Flexibilidade
 - Relacionamento vários para vários (M:N) eficaz
 - Não há anomalias ao realizar atualizações
 - Indicações de uso:
 - Necessidade da relação entre as entidades ser mais natural
- Modelo hierárquico
 - o Principais características:
 - Dados: Coleções de registros
 - Relacionamentos: Ligações vistas como ponteiros
 - Registros: Coleções de árvores
 - Vantagens:
 - Relacionamento um para vários (1:N) eficaz
 - Performance alta
 - Os links explícitos presentes entre as estruturas da tabela fazem com que os dados sejam facilmente recuperados
 - Integridade referencial (se os dados são atualizados na tabela pai, os dados serão atualizados na tabela filha)
 - Indicações de uso:
 - Utilização de relacionamentos 1:N

- Modelo orientado a objetos
 - Principais características:
 - Dados e relacionamentos: coleções de objetos
 - Objeto: estrutura (propriedades) + operações (métodos)
 - Vantagens:
 - Alta performance em linguagens orientadas a objetos
 - Modelagem mais próxima ao mundo real
 - Criação de estruturas de dados mais avançadas
 - Maior reuso
 - Indicações de uso:
 - Necessidade comercial
 - Alto desempenho
 - Dados complexos.
- Modelo objeto-relacional
 - Principais características:
 - Fundamentado no modelo relacional
 - Estendido com características do modelo orientado a objetos
 - Vantagens:
 - Herança
 - Tipos complexos de dados
 - Extensibilidade
 - Indicações de uso:
 - Necessidade de usar as características do modelo relacional e do modelo orientado a objetos em conjunto.
- NoSQL (not-only SQL)
 - o Principais características:
 - Armazenamento chave-valor
 - Armazenamento baseado em tupla
 - Armazenamento baseado em documento
 - Orientado a coluna
 - Utiliza grafos
 - Vantagens:
 - Escalabilidade
 - Habilidade de lidar com estruturas de dados irregulares
 - Indicações de uso:
 - Tecnologias voltadas para big data e dados não estruturados

Fonte Bibliográfica

https://marquesfernandes.com/tecnologia/banco-de-dados-relacional-sql-e-nao-relacional-nosql-o-que-sao-para-que-servem-e-qual-a-diferenca/

https://www.cin.ufpe.br/~if559/slides/redes

https://en.wikipedia.org/wiki/Network model

https://www.educba.com/hierarchical-database-model/

https://www.tutorialspoint.com/Object-relational-Data-Model

https://www.service-architecture.com/articles/object-oriented-databases/when_an_object_database_should_be_used.

https://pt.stackoverflow.com/questions/113899/quais-s%C3%A3o-as-vantagens-de-utilizar-banco-de-dados-orientado-a-objetos

https://ufubr.sharepoint.com/sites/GSIBancodeDados1-1S2020-Profa.MariaCamila/Material%20de%20Aula/Slides%20Aulas/GSI016 Aula1 Introducao.pdf