Solutions Manual to Pattern Recognition and Machine Learning

Hiromichi Inawashiro June 26, 2024

1 Introduction

1.1

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2.$$
 (1.1)

To minimise it, setting the derivative to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} \left(y(x_n, \mathbf{w}) - t_n \right). \tag{1.2}$$

Substituting

$$y(x_n, \mathbf{w}) = \sum_{j=0}^{M} w_j x_n^j \tag{1.3}$$

gives

$$0 = \sum_{n=1}^{N} x_n^i \left(\sum_{j=0}^{M} w_j x_n^j - t_n \right).$$
 (1.4)

Therefore,

$$\sum_{i=0}^{M} A_{ij} w_j = T_i \tag{1.5}$$

where

$$A_{ij} = \sum_{n=1}^{N} x_n^{i+j},$$

$$T_i = \sum_{n=1}^{N} x_n^{i} t_n.$$
(1.6)

1.2

Let

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2.$$
 (1.7)

To minimise it, setting the derivative to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} (y(x_n, \mathbf{w}) - t_n) + \lambda \mathbf{w}.$$
 (1.8)

Substituting

$$y(x_n, \mathbf{w}) = \sum_{j=0}^{M} w_j x_n^j \tag{1.9}$$

gives

$$0 = \sum_{n=1}^{N} x_n^i \left(\sum_{j=0}^{M} w_j x_n^j - t_n \right) + \lambda w_i.$$
 (1.10)

Therefore,

$$\sum_{j=0}^{M} \tilde{A}_{ij} w_j = T_i \tag{1.11}$$

where

$$\tilde{A}_{ij} = \sum_{n=1}^{N} x_n^{i+j} + \lambda \delta_{ij},$$

$$T_i = \sum_{n=1}^{N} x_n^i t_n.$$
(1.12)

1.3

Let a, o and l be the events where an apple, orange and lime are selected respectively. The probability that an apple is selected is given by

$$p(a) = p(a|r)p(r) + p(a|b)p(b) + p(a|g)p(g).$$
(1.13)

Substituting $p(a|r) = \frac{3}{10}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{1}{2}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives

$$p(a) = \frac{17}{50}. (1.14)$$

If an orange is selected, the probability that it came from the geen box is given by

$$p(g|o) = \frac{p(g,o)}{p(o)}.$$
 (1.15)

Here,

$$p(g, o) = p(o|g)p(g),$$

$$p(o) = p(o|r)p(r) + p(o|b)p(b) + p(o|g)p(g).$$
(1.16)

Substituting $p(o|r) = \frac{2}{5}$, $p(r) = \frac{1}{5}$, $p(o|b) = \frac{1}{2}$, $p(b) = \frac{1}{5}$, $p(o|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives $p(g, o) = \frac{9}{50}$ and $p(o) = \frac{9}{25}$. Therefore,

$$p(g|o) = \frac{1}{2}. (1.17)$$

1.4

Let

$$x = g(y) \tag{1.18}$$

and \hat{x} and \hat{y} be the locations of the maximum of $p_x(x)$ and $p_y(y)$ respectively. Let us assume that there exists $\epsilon > 0$ such that $g'(y) \neq 0$ for $|y - \hat{y}| < \epsilon$. Then, differentiating both sides of the transoformation

$$p_y(y) = p_x(g(y)) |g'(y)|$$
 (1.19)

and substituting $y = \hat{y}$ gives

$$0 = g'(\hat{y})p'_x(g(\hat{y})) + p_x(g(\hat{y}))g''(\hat{y}).$$
(1.20)

Therefore, in general,

$$\hat{x} \neq g\left(\hat{y}\right). \tag{1.21}$$

Here, let us assume that

$$g(y) = ay + b. (1.22)$$

Then, differentiating both sides of the transformation and substituting $y = \hat{y}$ gives

$$0 = p_x'\left(g\left(\hat{y}\right)\right). \tag{1.23}$$

$$\hat{x} = g\left(\hat{y}\right). \tag{1.24}$$

By the definition,

$$var f(x) = E(f(x) - Ef(x))^{2}.$$
 (1.25)

The right hand side can be written as

$$E((f(x))^{2} - 2f(x)Ef(x) + (Ef(x))^{2}) = E(f(x))^{2} - (Ef(x))^{2}.$$
 (1.26)

Therefore,

$$\operatorname{var} f(x) = \operatorname{E} (f(x))^{2} - (\operatorname{E} f(x))^{2}.$$
 (1.27)

1.6

By the definition,

$$cov(x,y) = E((x - Ex)(y - Ey)).$$
(1.28)

The right hand side can be written as

$$Exy - E(xEy) - E(yEx) + E(ExEy) = Exy - ExEy.$$
 (1.29)

The right hand side can be written as

$$\int xyp(x,y)dxdy - \int xp(x)dx \int yp(y)dy.$$
 (1.30)

If x and y are independent, by the definition,

$$f(x,y) = f(x)f(y). \tag{1.31}$$

Then,

$$\int xyp(x,y)dxdy = \int p(x)dx \int p(y)dy.$$
 (1.32)

$$cov(x,y) = 0. (1.33)$$

Let

$$I = \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}x^2\right) dx. \tag{1.34}$$

Then

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}}\left(x^{2} + y^{2}\right)\right) dx dy. \tag{1.35}$$

By the transformation from Cartesian coordinates (x, y) to polar coordinates (r, θ) , the right hand side can be written as

$$\int_0^\infty \int_0^{2\pi} \exp\left(-\frac{1}{2\sigma^2}r^2\right) \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} dr d\theta = 2\pi \int_0^\infty \exp\left(-\frac{1}{2\sigma^2}r^2\right) r dr. \tag{1.36}$$

By the transformation $s = \frac{r}{\sigma}$, the right hand side can be written as

$$2\pi\sigma^2 \int_0^\infty \exp\left(-\frac{1}{2}s^2\right) s ds = 2\pi\sigma^2 \left[-\exp\left(-\frac{1}{2}s^2\right)\right]_0^\infty. \tag{1.37}$$

Therefore,

$$I = \left(2\pi\sigma^2\right)^{\frac{1}{2}}.\tag{1.38}$$

By the definition,

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{1.39}$$

Then

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx. \tag{1.40}$$

By the transformation $t = x - \mu$, the right hand side can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}t^2\right) dt = (2\pi\sigma^2)^{-\frac{1}{2}} I.$$
 (1.41)

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1. \tag{1.42}$$

Let x be a variable under the Gaussian distribution with mean μ and variance σ^2 . Then

$$Ex = \int_{-\infty}^{\infty} x \mathcal{N}\left(x|\mu, \sigma^2\right) dx. \tag{1.43}$$

By the definition, the right hand side can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} x \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx.$$
 (1.44)

By the transformation $y = x - \mu$, it can be written as

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} (y+\mu) \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy. \tag{1.45}$$

Since

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} y \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = 0,$$
 (1.46)

and

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mu \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = \mu \int_{-\infty}^{\infty} \mathcal{N}\left(y|\mu,\sigma^2\right) dy, \tag{1.47}$$

we have

$$\mathbf{E}x = \mu. \tag{1.48}$$

By the definition,

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1 \tag{1.49}$$

can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx = 1.$$
 (1.50)

Differentiating both sides with respect to σ^2 gives

$$(2\pi)^{-\frac{1}{2}} \left(-\frac{1}{2}\right) (\sigma^2)^{-\frac{3}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx + (2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{2} (\sigma^2)^{-2} (x-\mu)^2 \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx = 0.$$
(1.51)

The left hand side can be written as

$$-\frac{1}{2} (\sigma^{2})^{-1} \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^{2}) dx + \frac{1}{2} (\sigma^{2})^{-2} \int_{-\infty}^{\infty} (x - \mu)^{2} \mathcal{N}(x|\mu, \sigma^{2}) dx$$

$$= -\frac{1}{2} (\sigma^{2})^{-1} + \frac{1}{2} (\sigma^{2})^{-2} \text{var}x.$$
(1.52)

Therefore,

$$var x = \sigma^2. (1.53)$$

1.9

Let

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{1.54}$$

Setting its derivative with respect to x to zero gives

$$0 = (2\pi\sigma^2)^{-\frac{1}{2}} \left(-\frac{1}{\sigma^2} (x - \mu) \right) \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2 \right). \tag{1.55}$$

Therefore, the mode is given by μ .

Similarly, let

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right). \tag{1.56}$$

Setting its derivative with respect to \mathbf{x} to zero gives

$$\mathbf{0} = -(2\pi)^{-\frac{D}{2}} |\mathbf{\Sigma}|^{-\frac{1}{2}} \left(\mathbf{\Sigma}^{-1} + \left(\mathbf{\Sigma}^{-1}\right)^{\mathsf{T}}\right) (\mathbf{x} - \boldsymbol{\mu}) \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$$
(1.57)

Therefore, the mode is given by μ .

1.10

By the definition,

$$E(x+y) = \int \int (x+y)p(x,y)dxdy.$$
 (1.58)

The right hand side can be written as

$$\int x \left(\int p(x,y)dy \right) dx + \int y \left(\int p(x,y)dx \right) dy = \int x p(x)dx + \int y p(y)dy.$$
(1.59)

By the definition, the right hand side can be written as

$$\mathbf{E}x + \mathbf{E}y. \tag{1.60}$$

Therefore,

$$E(x+y) = Ex + Ey. (1.61)$$

Similarly, by the definition,

$$var(x+y) = E(x+y - E(x+y))^{2}$$
(1.62)

By the result above and the definition, the right hand side can be written as

$$E(x - Ex)^{2} + 2E((x - Ex)(y - Ey)) + E(y - Ey)^{2}$$

$$= varx + 2cov(x, y) + vary.$$
(1.63)

If x and y are independent, then

$$cov(x,y) = 0, (1.64)$$

by 1.6. Therefore,

$$var(x+y) = var x + var y. (1.65)$$

1.11

Let

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{N}{2}\ln\left(2\pi\sigma^{2}\right) - \frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(x_{n}-\mu)^{2}.$$
 (1.66)

To maximise it with respect to μ and σ^2 , setting the partial derivatives to zero gives

$$0 = \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu),$$

$$0 = -\frac{N}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{n=1}^{N} (x_n - \mu)^2.$$
(1.67)

Therefore,

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n,$$

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2.$$
(1.68)

1.12

Let x_m and x_n be independent variables. Then

$$Ex_m x_n = Ex_m Ex_n. (1.69)$$

If they are samples from the Gaussian distribution with mean μ and variance σ^2 , the right hand side is given by μ^2 . On the other hand, by the definition,

$$Ex_n^2 = var x_n + (Ex_n)^2. (1.70)$$

If x_n is a sample from the Gaussian distribution with mean μ and variance σ^2 , the right hand side is given by $\sigma^2 + \mu^2$. Therefore,

$$Ex_m x_n = \mu^2 + \delta_{mn} \sigma^2. \tag{1.71}$$

Here, since

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n, \tag{1.72}$$

we have

$$E\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} Ex_n.$$
 (1.73)

Therefore,

$$E\mu_{ML} = \mu. (1.74)$$

Similarly, since

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2, \qquad (1.75)$$

we have

$$E\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} E(x_n - \mu_{ML})^2.$$
 (1.76)

The right hand side can be writen as

$$\frac{1}{N} \sum_{n=1}^{N} E\left(x_n^2 - 2\mu_{\text{ML}}x_n + \mu_{\text{ML}}^2\right) = \frac{1}{N} \sum_{n=1}^{N} Ex_n^2 - \frac{2}{N} E\left(\mu_{\text{ML}}\left(\sum_{n=1}^{N} x_n\right)\right) + E\mu_{\text{ML}}^2.$$
(1.77)

The first term of the right hand side can be written as

$$\frac{1}{N} \sum_{n=1}^{N} (\mu^2 + \sigma^2) = \mu^2 + \sigma^2, \tag{1.78}$$

while the second and third terms can be writen as

$$-2E\mu_{\rm ML}^2 + E\mu_{\rm ML}^2 = -E\mu_{\rm ML}^2. \tag{1.79}$$

Here,

$$E\mu_{\rm ML}^2 = E\left(\frac{1}{N}\sum_{n=1}^N x_n\right)^2.$$
 (1.80)

The right hand side can be written as

$$\frac{1}{N^2} \sum_{n=1}^{N} Ex_n^2 + \frac{2}{N^2} \sum_{1 \le m \le n \le N} Ex_m x_n = \frac{1}{N} (\mu^2 + \sigma^2) + \frac{N-1}{N} \mu^2.$$
 (1.81)

Therefore,

$$E\mu_{\rm ML}^2 = \mu^2 + \frac{1}{N}\sigma^2. \tag{1.82}$$

Thus,

$$E\sigma_{\rm ML}^2 = \frac{N-1}{N}\sigma^2. \tag{1.83}$$

1.13

Let $\{x_n\}$ be a set of variables whose mean is μ and variance is σ^2 . Then

$$E\left(\frac{1}{N}\sum_{n=1}^{N}(x_n-\mu)^2\right) = \frac{1}{N}\sum_{n=1}^{N}E(x_n-\mu)^2.$$
 (1.84)

The right hand side can be writen as

$$\frac{1}{N} \sum_{n=1}^{N} E\left(x_n^2 - 2\mu x_n + \mu^2\right) = \frac{1}{N} \sum_{n=1}^{N} Ex_n^2 - \frac{2\mu}{N} \sum_{n=1}^{N} Ex_n + \mu^2.$$
 (1.85)

The first term of the right hand side can be written as

$$\frac{1}{N} \sum_{n=1}^{N} (\mu^2 + \sigma^2) = \mu^2 + \sigma^2, \tag{1.86}$$

while the second term can be writen as

$$-\frac{2\mu}{N}\sum_{n=1}^{N}\mu = -2\mu^2. \tag{1.87}$$

Therefore,

$$E\left(\frac{1}{N}\sum_{n=1}^{N}(x_{n}-\mu)^{2}\right) = \sigma^{2}.$$
(1.88)

1.14

Let

$$w_{ij}^{S} = \frac{1}{2}(w_{ij} + w_{ji}),$$

$$w_{ij}^{A} = \frac{1}{2}(w_{ij} - w_{ji}).$$
(1.89)

Then

$$w_{ij} = w_{ij}^{S} + w_{ij}^{A},$$

 $w_{ij}^{S} = w_{ji}^{S},$
 $w_{ij}^{A} = -w_{ji}^{A}.$ (1.90)

Here,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{A} x_i x_j = \frac{1}{2} \sum_{i=1}^{D} \sum_{j=1}^{D} (w_{ij} - w_{ji}) x_i x_j.$$
 (1.91)

The right hand side can be written as

$$\frac{1}{2} \left(\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j - \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ji} x_i x_j \right) = 0.$$
 (1.92)

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{A} x_i x_j = 0. {(1.93)}$$

Additionally,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} \left(w_{ij}^{S} + w_{ij}^{A} \right) x_i x_j.$$
 (1.94)

The right hand side can be written as

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{A} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j,$$
 (1.95)

where the result above is used. Therefore,

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j.$$
 (1.96)

Finally, since the matrix $w^{\rm S}_{ij}$ is $D\times D$ symmetric matrix, its number of independent parameters is $\frac{D(D+1)}{2}$.

1.17

Let

$$\Gamma(x) = \int_0^\infty u^{x-1} \exp(-u) du. \tag{1.97}$$

Then

$$\Gamma(x+1) = \int_0^\infty u^x \exp(-u) du. \tag{1.98}$$

The right hand side can be written as

$$[-u^x \exp(-u)]_{u=0}^{u=\infty} + \int_0^\infty x u^{x-1} \exp(-u) du = x\Gamma(x).$$
 (1.99)

Therefore,

$$\Gamma(x+1) = x\Gamma(x). \tag{1.100}$$

Since

$$\Gamma(1) = \int_0^1 \exp(-u)du,$$
 (1.101)

and the right hand side can be written as 1,

$$\Gamma(1) = 0!. \tag{1.102}$$

For a positive integer x, let us assume that

$$\Gamma(x) = (x - 1)!. \tag{1.103}$$

Then,

$$\Gamma(x+1) = x\Gamma(x),\tag{1.104}$$

where the right hand side can be written as

$$x(x-1)! = x!. (1.105)$$

Therefore,

$$\Gamma(x+1) = x!. \tag{1.106}$$

Thus, the assumption is proved by induction on x.

1.18

Let us consider the transformation from Cartesian to polar coordinates

$$\prod_{i=1}^{D} \int_{-\infty}^{\infty} \exp(-x_i^2) dx_i = S_D \int_{0}^{\infty} \exp(-r^2) r^{D-1} dr,$$
 (1.107)

where S_D is the surface area of a sphere of unit raidus in D dimensions. By 1.7, the left hand side can be written as $\pi^{\frac{D}{2}}$. By the transformation $s = r^2$, the right hand side can be written as

$$\frac{S_D}{2} \int_0^\infty \exp(-s) s^{\frac{D-1}{2}} s^{-\frac{1}{2}} ds = \frac{S_D}{2} \Gamma\left(\frac{D}{2}\right). \tag{1.108}$$

Therefore,

$$S_D = \frac{2\pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}\right)}. (1.109)$$

Additionally, the volume of the sphere can can be written as

$$V_D = S_D \int_0^1 r^{D-1} dr. (1.110)$$

The right hand side can be written as

$$S_D \left[\frac{r^D}{D} \right]_{r=0}^{r=1} = \frac{S_D}{D}. \tag{1.111}$$

Therefore,

$$V_D = \frac{S_D}{D}. ag{1.112}$$

Finally, the results above reduce to

$$S_2 = \frac{2\pi}{\Gamma(1)},$$
 (1.113) $V_2 = \frac{S_2}{2}.$

Therefore,

$$S_2 = 2\pi,$$

 $V_2 = \pi.$ (1.114)

Similarly,

$$S_3 = \frac{2\pi^{\frac{3}{2}}}{\Gamma(\frac{3}{2})},$$
 (1.115) $V_3 = \frac{S_3}{3}.$

Therefore,

$$S_3 = 4\pi,$$

$$V_3 = \frac{4}{3}\pi.$$
(1.116)

1.19

The volume of a cube of side 2 in D dimensions is 2^D . Therefore, the ratio of the volume of the cocentric sphere of radius 1 divided by the volume of the cube is given by

$$\frac{V_D}{2^D} = \frac{\pi^{\frac{D}{2}}}{D2^{D-1}\Gamma(\frac{D}{2})},\tag{1.117}$$

by 1.18.

Additionally, by Stering's formula

$$\Gamma(x+1) \simeq (2\pi)^{\frac{1}{2}} \exp(-x)x^{\frac{x+1}{2}},$$
 (1.118)

the ratio can be approximated as

$$\frac{V_D}{2^D} \simeq \frac{\pi^{\frac{D}{2}}}{D2^{D-1}(2\pi)^{\frac{1}{2}} \exp\left(1 - \frac{D}{2}\right) \left(\frac{D}{2} - 1\right)^{\frac{D}{4}}}.$$
 (1.119)

The right hand side can be written as

$$\frac{1}{2e(2\pi)^{\frac{1}{2}}} \frac{1}{D} \left(\frac{e^2 \pi^2}{8D - 16} \right)^{\frac{D}{4}}.$$
 (1.120)

Therefore, the ratio goes to zero as $D \to \infty$.

Finally, the ratio of the distance from the center of the cube to one of the corners divided by the perpendicular distance to one of the sides is given by

$$\frac{\sqrt{\sum_{i=1}^{D} 1^2}}{1} = \sqrt{D}.\tag{1.121}$$

Therefore, the ration goes to ∞ as $D \to \infty$.

1.20

For a vector \mathbf{x} in D dimensions, let

$$p(\mathbf{x}) = (2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{\|\mathbf{x}\|^2}{2\sigma^2}\right). \tag{1.122}$$

Integrating both sides from $\|\mathbf{x}\| = r$ to $\|\mathbf{x}\| = r + \epsilon$ gives

$$\int_{r<\|\mathbf{x}\|< r+\epsilon} p(\mathbf{x}) d\mathbf{x} = \int_{r}^{r+\epsilon} \int (2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{r'^2}{2\sigma^2}\right) J dr' d\phi, \qquad (1.123)$$

where ϕ is the vector of the angular components of the polar coordinate and J is the Jacobian of the transformation from the Cartesian to polar coordinate. For a sufficiently small ϵ , the right hand side can be approximated as

$$(2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{r^2}{2\sigma^2}\right) \int_r^{r+\epsilon} \int J dr' d\phi$$

$$= (2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{r^2}{2\sigma^2}\right) \int_{r<\|\mathbf{x}\| \le r+\epsilon} d\mathbf{x}.$$
(1.124)

$$\int_{r \le ||\mathbf{x}|| \le r + \epsilon} p(\mathbf{x}) d\mathbf{x} \simeq p(r) \epsilon, \qquad (1.125)$$

where

$$p(r) = (2\pi\sigma^2)^{-\frac{D}{2}} S_D r^{D-1} \exp\left(-\frac{r^2}{2\sigma^2}\right),$$
 (1.126)

and S_D is the surface area of a unit sphere in D dimensions.

Secondly, to maximise p(r), setting the derivative to zero gives

$$0 = (2\pi\sigma^2)^{-\frac{D}{2}} S_D \left((D-1)r^{D-2} - \frac{r^D}{\sigma^2} \right) \exp\left(-\frac{r^2}{2\sigma^2} \right).$$
 (1.127)

Therefore, p(r) is maximised at a sigle stationary point

$$\hat{r} = \sqrt{D - 1}\sigma. \tag{1.128}$$

Thirdly, by the expression of p(r) above,

$$\frac{p(\hat{r}+\epsilon)}{p(\hat{r})} = \left(\frac{\hat{r}+\epsilon}{\hat{r}}\right)^{D-1} \exp\left(-\frac{2\hat{r}\epsilon+\epsilon^2}{2\sigma^2}\right). \tag{1.129}$$

Using the expression of \hat{r} above, the right hand side can be written as

$$\exp\left((D-1)\ln\left(1+\frac{\epsilon}{\hat{r}}\right) - \frac{2\hat{r}\epsilon + \epsilon^2}{2\sigma^2}\right)$$

$$= \exp\left(\frac{\hat{r}^2}{\sigma^2}\ln\left(1+\frac{\epsilon}{\hat{r}}\right) - \frac{2\hat{r}\epsilon + \epsilon^2}{2\sigma^2}\right). \tag{1.130}$$

By the Taylor series

$$\ln(1+x) = x - \frac{1}{2}x^2 + o(x^3), \qquad (1.131)$$

the right hand side can be approximated as

$$\exp\left(\frac{\hat{r}^2}{\sigma^2}\left(\frac{\epsilon}{\hat{r}} - \frac{\epsilon^2}{2\hat{r}^2}\right) - \frac{2\hat{r}\epsilon + \epsilon^2}{2\sigma^2}\right) = \exp\left(-\frac{\epsilon^2}{\sigma^2}\right). \tag{1.132}$$

Therefore,

$$p(\hat{r} + \epsilon) \simeq p(\hat{r}) \exp\left(-\frac{\epsilon^2}{\sigma^2}\right).$$
 (1.133)

Finally, let a vector of length \hat{r} be $\hat{\mathbf{r}}$. Then, by the definition of $p(\mathbf{x})$,

$$\frac{p(\mathbf{0})}{p(\hat{\mathbf{r}})} = \exp\left(\frac{\hat{r}^2}{2\sigma^2}\right). \tag{1.134}$$

Substituting the expression of \hat{r} above, the right hand side can be written as $\exp\left(\frac{D-1}{2}\right)$. Therefore,

$$\frac{p(\mathbf{0})}{p(\hat{\mathbf{r}})} = \exp\left(\frac{D-1}{2}\right). \tag{1.135}$$

If $0 \le a \le b$, then

$$0 \le a(b-a). \tag{1.136}$$

Therefore,

$$a \le (ab)^{\frac{1}{2}}. (1.137)$$

For a two-class classification problem of \mathbf{x} , let the classes be \mathcal{C}_1 and \mathcal{C}_2 and let the decision regions be \mathcal{R}_1 and \mathcal{R}_2 . Let us choose the decision regions to minimise the probability of misclassification. Then,

$$p(\mathbf{x}, \mathcal{C}_1) > p(\mathbf{x}, \mathcal{C}_2) \Rightarrow \mathbf{x} \in \mathcal{C}_1,$$
 (1.138)

and

$$p(\mathbf{x}, \mathcal{C}_2) > p(\mathbf{x}, \mathcal{C}_1) \Rightarrow \mathbf{x} \in \mathcal{C}_2.$$
 (1.139)

Then, using the inequality above,

$$\int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} \le \int_{\mathcal{R}_1} (p(\mathbf{x}, \mathcal{C}_1) p(\mathbf{x}, \mathcal{C}_2))^{\frac{1}{2}} d\mathbf{x}, \qquad (1.140)$$

and

$$\int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x} \le \int_{\mathcal{R}_2} \left(p(\mathbf{x}, \mathcal{C}_1) p(\mathbf{x}, \mathcal{C}_2) \right)^{\frac{1}{2}} d\mathbf{x}. \tag{1.141}$$

Therefore,

$$\int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x} \le \int \left(p(\mathbf{x}, \mathcal{C}_1) p(\mathbf{x}, \mathcal{C}_2) \right)^{\frac{1}{2}} d\mathbf{x}. \tag{1.142}$$

1.22

Let

$$EL = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}.$$
 (1.143)

If

$$L_{kj} = 1 - \delta_{kj}, \tag{1.144}$$

then the right hand side can be written as

$$\sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} \left(p(\mathbf{x}, \mathcal{C}_{k}) - p(\mathbf{x}, \mathcal{C}_{j}) \right) d\mathbf{x} = \sum_{j} \int_{\mathcal{R}_{j}} \left(\sum_{k} p(\mathbf{x}, \mathcal{C}_{k}) - p(\mathbf{x}, \mathcal{C}_{j}) \right) d\mathbf{x}.$$
(1.145)

The right hand side can be written as

$$\sum_{j} \int_{\mathcal{R}_{j}} (p(\mathbf{x}) - p(\mathbf{x}, \mathcal{C}_{j})) d\mathbf{x} = 1 - \sum_{j} \int_{\mathcal{R}_{j}} p(\mathbf{x}, \mathcal{C}_{j}) d\mathbf{x}.$$
 (1.146)

Therefore,

$$EL = 1 - \sum_{j} \int_{\mathcal{R}_{j}} p(\mathcal{C}_{j}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$
 (1.147)

Thus, minimising EL reduces to choosing the criterion to maximise the posterior probatility $p(C_i|\mathbf{x})$.

1.23

Let

$$EL = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}.$$
 (1.148)

The right hand side can be written as

$$\sum_{j} \int_{\mathcal{R}_{j}} \sum_{k} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x} = \sum_{j} \int_{\mathcal{R}_{j}} \left(\sum_{k} L_{kj} p(\mathcal{C}_{k} | \mathbf{x}) \right) p(\mathbf{x}) d\mathbf{x}.$$
 (1.149)

Therefore,

$$EL = \sum_{j} \int_{\mathcal{R}_{j}} \left(\sum_{k} L_{kj} p(\mathcal{C}_{k} | \mathbf{x}) \right) p(\mathbf{x}) d\mathbf{x}.$$
 (1.150)

Thus, mimising EL reduces to choosing to minimise $\sum_k L_{kj} p(\mathcal{C}_k | \mathbf{x})$

1.25

Let

$$EL(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \int \int ||\mathbf{y}(\mathbf{x}) - \mathbf{t}||^2 p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}.$$
 (1.151)

Then

$$\frac{\delta EL(\mathbf{t}, \mathbf{y}(\mathbf{x}))}{\delta \mathbf{y}(\mathbf{x})} = 2 \int (\mathbf{y}(\mathbf{x}) - \mathbf{t}) p(\mathbf{x}, \mathbf{t}) d\mathbf{t}.$$
 (1.152)

To minimise $EL(\mathbf{t}, \mathbf{y}(\mathbf{x}))$, setting the left hand side to zero gives

$$\mathbf{0} = \int (\mathbf{y}(\mathbf{x}) - \mathbf{t}) p(\mathbf{t}|\mathbf{x}) d\mathbf{t}.$$
 (1.153)

The right hand side can be written as

$$\mathbf{y}(\mathbf{x}) \int p(\mathbf{t}|\mathbf{x})d\mathbf{t} - \int \mathbf{t}p(\mathbf{t}|\mathbf{x})d\mathbf{t} = \mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}).$$
 (1.154)

Thus,

$$\mathbf{y}(\mathbf{x}) = \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}). \tag{1.155}$$

Finally, for a single target variable t, it reduces to

$$\mathbf{y}(\mathbf{x}) = \mathbf{E}_t(t|\mathbf{x}). \tag{1.156}$$

1.26

Let

$$EL(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \int \int ||\mathbf{y}(\mathbf{x}) - \mathbf{t}||^2 p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}.$$
 (1.157)

The right hand side can be written as

$$\int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) + \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}\|^{2} p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}
= \int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}
+ 2 \int \int (\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}))^{\mathsf{T}} (\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}) p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}
+ \int \int \|\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}\|^{2} p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}.$$
(1.158)

Let us look at each term of the right hand side. The first term can be written as

$$\int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} \left(\int p(\mathbf{x}, \mathbf{t}) d\mathbf{t} \right) d\mathbf{x} = \int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} p(\mathbf{x}) d\mathbf{x}.$$
(1.159)

The second term can be written as

$$2\int (\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}))^{\mathsf{T}} \left(\int (\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}) p(\mathbf{t}|\mathbf{x}) d\mathbf{t} \right) p(\mathbf{x}) d\mathbf{x}. \tag{1.160}$$

Since

$$\int E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})p(\mathbf{t}|\mathbf{x})d\mathbf{t} = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\frac{\int p(\mathbf{x},\mathbf{t})d\mathbf{t}}{p(\mathbf{x})},$$

$$\int \mathbf{t}p(\mathbf{t}|\mathbf{x})d\mathbf{t} = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x}),$$
(1.161)

the second term is zero. The third term can be written as

$$\int \left(\int \|\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}\|^2 p(\mathbf{t}|\mathbf{x}) d\mathbf{t} \right) p(\mathbf{x}) d\mathbf{x} = \int \operatorname{var}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$
 (1.162)

Therefore,

$$EL(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \int ||\mathbf{y}(\mathbf{x}) - E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})||^{2} p(\mathbf{x}) d\mathbf{x} + \int var_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}. \quad (1.163)$$

Thus, $\mathrm{E}L\left(\mathbf{t},\mathbf{y}(\mathbf{x})\right)$ is mimimised if

$$\mathbf{y}(\mathbf{x}) = \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}). \tag{1.164}$$

1.27

Let

$$EL_q = \int \int |y(\mathbf{x}) - t|^q p(\mathbf{x}, t) d\mathbf{x} dt.$$
 (1.165)

Then

$$\frac{\delta E L_q}{\delta y(\mathbf{x})} = \int q|y(\mathbf{x}) - t|^{q-1} \operatorname{sign}(y(\mathbf{x}) - t)p(\mathbf{x}, t)dt.$$
 (1.166)

To minimise EL_q , setting the left hand side to zero gives

$$0 = \int |y(\mathbf{x}) - t|^{q-1} \operatorname{sign}(y(\mathbf{x}) - t) p(t|\mathbf{x}) dt.$$
 (1.167)

This is the condition that $y(\mathbf{x})$ must satisfy in order to minimise $\mathrm{E}L_q$. If q=1, the condition can be written as

$$0 = \int_{y(\mathbf{x})}^{\infty} p(t|\mathbf{x})dt - \int_{-\infty}^{y(\mathbf{x})} p(t|\mathbf{x})dt.$$
 (1.168)

Therefore, $y(\mathbf{x})$ is given by the conditional median.

1.28

Let us assume that

$$p(x,y) = p(x)p(y) \Rightarrow h(x,y) = h(x) + h(y).$$
 (1.169)

Let h(p) be a function to relate h and p. Then

$$h(p^2) = h(p) + h(p).$$
 (1.170)

Therefore,

$$h\left(p^2\right) = 2h(p). \tag{1.171}$$

Let us assume that, for a positive integer n,

$$h\left(p^{n}\right) = nh(p). \tag{1.172}$$

Then, by the first assumption,

$$h(p^{n+1}) = h(p^n) + h(p).$$
 (1.173)

Therefore,

$$h(p^{n+1}) = (n+1)h(p).$$
 (1.174)

Thus, the second assumption is proved by induction on n.

Additionally, for positive integers m and n,

$$h\left(p^{n}\right) = h\left(p^{\frac{n}{m}m}\right). \tag{1.175}$$

By the second assumption, the left hand side can be written as nh(p). By the first assumption, the right hand side can be written as $mh(p^{\frac{n}{m}})$. Therefore,

$$h\left(p^{\frac{n}{m}}\right) = \frac{n}{m}h(p). \tag{1.176}$$

Finally, by the continuity, for a positive real number a,

$$h\left(p^{a}\right) = ah(p). \tag{1.177}$$

Differentiating both sides with respect to a and substituting a = 1 gives

$$(p \ln p)h'(p) = h(p).$$
 (1.178)

Therefore,

$$\int \frac{h'(p)}{h(p)} dp = \int \frac{1}{p \ln p} dp + C, \qquad (1.179)$$

where C is a constant. Ignorting the constants, the left hand side can be written as $\ln h(p)$ and the right hand side can be written as $\ln (\ln p)$. Thus,

$$h(p) \propto \ln p. \tag{1.180}$$

Let x be an M-state discrete random variable. Then, by the definition,

$$H(x) = -\sum_{i=1}^{M} p(x_i) \ln p(x_i), \qquad (1.181)$$

where

$$\sum_{i=1}^{M} p(x_i) = 1. (1.182)$$

By Jensen's inequality,

$$\sum_{i=1}^{M} p(x_i) \ln \frac{1}{p(x_i)} \le \ln \left(\sum_{i=1}^{M} 1 \right).$$
 (1.183)

Therefore,

$$H(x) \le \ln M. \tag{1.184}$$

1.30

Let

$$p(x) = \mathcal{N}(x|\mu, \sigma^2),$$

$$q(x) = \mathcal{N}(x|m, s^2).$$
(1.185)

Then, by the definition,

$$KL(p||q) = -\int p(x) \ln \frac{q(x)}{p(x)} dx. \qquad (1.186)$$

The right hand side can be written as

$$-\int_{-\infty}^{\infty} p(x) \ln \frac{(2\pi s^2)^{-\frac{1}{2}} \exp\left(-\frac{(x-m)^2}{2s^2}\right)}{(2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)} dx$$

$$= -\int_{-\infty}^{\infty} p(x) \left(-\frac{1}{2} \ln \frac{s^2}{\sigma^2} - \frac{(x-m)^2}{2s^2} + \frac{(x-\mu)^2}{2\sigma^2}\right) dx.$$
(1.187)

The right hand side can be written as

$$\ln \frac{s}{\sigma} \int_{-\infty}^{\infty} p(x)dx + \frac{1}{2s^2} \int_{-\infty}^{\infty} (x-m)^2 p(x)dx - \frac{1}{2\sigma^2} \int_{-\infty}^{\infty} (x-\mu)^2 p(x)dx. \quad (1.188)$$

The first term can be written as $\ln \frac{s}{\sigma}$. The second term can be written as

$$\frac{1}{2s^2} \int_{-\infty}^{\infty} (x - \mu + \mu - m)^2 p(x) dx = \frac{\sigma^2 + (\mu - m)^2}{2s^2}.$$
 (1.189)

The third term can be written as $-\frac{1}{2}$. Therefore,

$$KL(p||q) = \ln \frac{s}{\sigma} + \frac{\sigma^2 + (\mu - m)^2}{2s^2} - \frac{1}{2}.$$
 (1.190)

1.31

Let \mathbf{x} and \mathbf{y} be two variables. Then, by the definition,

$$H(\mathbf{x}) = -\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x},$$

$$H(\mathbf{y}) = -\int p(\mathbf{y}) \ln p(\mathbf{y}) d\mathbf{y},$$

$$H(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}.$$
(1.191)

Note that

$$H(\mathbf{x}) = -\int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}\right) \ln p(\mathbf{x}) d\mathbf{x},$$

$$H(\mathbf{y}) = -\int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{x}\right) \ln p(\mathbf{y}) d\mathbf{y}.$$
(1.192)

Therefore,

$$H(\mathbf{x}) + H(\mathbf{y}) - H(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} d\mathbf{x} d\mathbf{y}.$$
 (1.193)

Since

$$\int \int p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = 1, \tag{1.194}$$

Jensen's inequality can be used to write that

$$-\int \int p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} d\mathbf{x} d\mathbf{y} \ge -\ln \left(\int \int p(\mathbf{x})p(\mathbf{y}) d\mathbf{x} d\mathbf{y} \right). \quad (1.195)$$

The right hand side can be written as

$$-\ln\left(\int p(\mathbf{x})d\mathbf{x}\int p(\mathbf{y})d\mathbf{y}\right) = 0. \tag{1.196}$$

Thus,

$$H(\mathbf{x}, \mathbf{y}) \le H(\mathbf{x}) + H(\mathbf{y}). \tag{1.197}$$

Let \mathbf{x} be a vector of continuous variables and

$$\mathbf{y} = \mathbf{A}\mathbf{x},\tag{1.198}$$

where \mathbf{A} is a nonsingular matrix. By the definition,

$$H(\mathbf{y}) = -\int p_y(\mathbf{y}) \ln p_y(\mathbf{y}) d\mathbf{y}. \tag{1.199}$$

By the transformation

$$p_y(\mathbf{y}) = p_x(\mathbf{A}\mathbf{x}) |\det \mathbf{A}^{-1}|, \qquad (1.200)$$

the right hand side can be written as

$$-\int p_x(\mathbf{A}\mathbf{x})\ln p_x(\mathbf{A}\mathbf{x})|\det \mathbf{A}|d\mathbf{x} - \ln \left|\det \mathbf{A}^{-1}\right| \int p_y(\mathbf{y})d\mathbf{y}. \tag{1.201}$$

By the transformation

$$\mathbf{x}' = \mathbf{A}\mathbf{x},\tag{1.202}$$

the first term can be written as

$$-\int p_x(\mathbf{x}') \ln p_x(\mathbf{x}') d\mathbf{x}' = \mathbf{H}(\mathbf{x}), \qquad (1.203)$$

and the second term can be written as

$$-\ln\left|\det\mathbf{A}^{-1}\right| = \ln\left|\det\mathbf{A}\right|. \tag{1.204}$$

Therefore,

$$H(\mathbf{y}) = H(\mathbf{x}) + \ln|\det \mathbf{A}|. \tag{1.205}$$

1.33

Let x and y be two discrete random variables. By the definition,

$$H(y|x) = -\sum_{i} \sum_{j} p(x_i, y_j) \ln p(y_j|x_i).$$
 (1.206)

If H(y|x) is zero, then

$$0 = -\sum_{i} p(x_i) \sum_{j} p(y_j | x_i) \ln p(y_j | x_i).$$
 (1.207)

Since

$$p(x_i) \ge 0,$$

 $p(y_j|x_i) \ln p(y_j|x_i) \le 0.$ (1.208)

for all i and j, the equation reduces to

$$p(y_i|x_i) \ln p(y_i|x_i) = 0. (1.209)$$

Therefore, $p(y_j|x_i)$ is zero or one. Thus, since

$$\sum_{j} p(y_j|x_i) = 1, \tag{1.210}$$

it can be written that

$$p(y_j|x_i) = \delta_{jj'(i)}, \tag{1.211}$$

where j'(i) is unique for each i.

1.34

Let

$$L(p(x)) = -\int_{-\infty}^{\infty} p(x) \ln p(x) dx + \lambda_1 \left(\int_{-\infty}^{\infty} p(x) dx - 1 \right) + \lambda_2 \left(\int_{-\infty}^{\infty} x p(x) dx - \mu \right) + \lambda_3 \left(\int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx - \sigma^2 \right).$$

$$(1.212)$$

Then

$$\frac{\delta L(p(x))}{\delta p(x)} = \int_{-\infty}^{\infty} \left(-\ln p(x) - 1 + \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2 \right) dx.$$
 (1.213)

Setting the left hand side to zero gives

$$p(x) = \exp(-1 + \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2).$$
 (1.214)

Therefore,

$$p(x) = \exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3} + \lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right). \tag{1.215}$$

Substituting it to

$$\int_{-\infty}^{\infty} p(x)dx = 1,$$

$$\int_{-\infty}^{\infty} xp(x)dx = \mu,$$

$$\int_{-\infty}^{\infty} (x - \mu)^2 p(x)dx = \sigma^2,$$
(1.216)

gives

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \int_{-\infty}^{\infty} \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right) dx = 1,$$

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \int_{-\infty}^{\infty} x \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right) dx = \mu,$$

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \int_{-\infty}^{\infty} (x - \mu)^2 \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right) dx = \sigma^2.$$

$$(1.217)$$

By the transformation

$$y = \sqrt{-\lambda_3} \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3} \right) \right), \tag{1.218}$$

they can be written as

$$\exp\left(-1 + \lambda_{1} - \frac{\lambda_{2}^{2}}{4\lambda_{3}}\right) \int_{-\infty}^{\infty} \exp\left(-y^{2}\right) (-\lambda_{3})^{-\frac{1}{2}} dy = 1,$$

$$\exp\left(-1 + \lambda_{1} - \frac{\lambda_{2}^{2}}{4\lambda_{3}}\right) \int_{-\infty}^{\infty} \left((-\lambda_{3})^{-\frac{1}{2}} y + \mu - \frac{\lambda_{2}}{2\lambda_{3}}\right) \exp\left(-y^{2}\right) (-\lambda_{3})^{-\frac{1}{2}} dy = \mu,$$

$$\exp\left(-1 + \lambda_{1} - \frac{\lambda_{2}^{2}}{4\lambda_{3}}\right) \int_{-\infty}^{\infty} \left((-\lambda_{3})^{-\frac{1}{2}} y - \frac{\lambda_{2}}{2\lambda_{3}}\right)^{2} \exp\left(-y^{2}\right) (-\lambda_{3})^{-\frac{1}{2}} dy = \sigma^{2}.$$

$$(1.219)$$

Since

$$\int_{-\infty}^{\infty} \exp(-y^2) dy = \Gamma\left(\frac{1}{2}\right),$$

$$\int_{-\infty}^{\infty} x \exp(-y^2) dy = 0,$$

$$\int_{-\infty}^{\infty} x^2 \exp(-y^2) dy = \Gamma\left(\frac{3}{2}\right),$$
(1.220)

they can be written as

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) (-\lambda_3)^{-\frac{1}{2}} \Gamma\left(\frac{1}{2}\right) = 1,$$

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \left(\mu - \frac{\lambda_2}{2\lambda_3}\right) (-\lambda_3)^{-\frac{1}{2}} \Gamma\left(\frac{1}{2}\right) = \mu,$$

$$\exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right) \left((-\lambda_3)^{-\frac{3}{2}} \Gamma\left(\frac{3}{2}\right) + (-\lambda_3)^{-\frac{1}{2}} \frac{\lambda_2^2}{4\lambda_3^2} \Gamma\left(\frac{1}{2}\right)\right) = \sigma^2.$$

$$(1.221)$$

Thus,

$$\lambda_1 = 1 - \frac{1}{2} \ln \left(2\pi \sigma^2 \right),$$

$$\lambda_2 = 0,$$

$$\lambda_3 = -\frac{1}{2\sigma^2},$$
(1.222)

so that

$$p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$
 (1.223)

1.35

Let x be a variable under the Gaussian distribution with mean μ and variance σ^2 . Then, by the definition,

$$H(x) = -\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu, \sigma^2\right) \ln \mathcal{N}\left(x|\mu, \sigma^2\right) dx, \qquad (1.224)$$

where

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{1.225}$$

Therefore,

$$H(x) = -\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) \left(-\frac{1}{2}\ln\left(2\pi\sigma^2\right) - \frac{1}{2\sigma^2}(x-\mu)^2\right) dx. \quad (1.226)$$

The right hand side can be written as

$$\frac{1}{2}\ln\left(2\pi\sigma^2\right)\int_{-\infty}^{\infty}\mathcal{N}\left(x|\mu,\sigma^2\right)dx + \frac{1}{2\sigma^2}\int_{-\infty}^{\infty}(x-\mu)^2\mathcal{N}\left(x|\mu,\sigma^2\right)dx. \quad (1.227)$$

Thus,

$$H(x) = \frac{1}{2} (1 + \ln(2\pi\sigma^2)).$$
 (1.228)

1.36

Let f be a strictly convex function. By the definition,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b), \tag{1.229}$$

where $a \leq b$ and $0 \leq \lambda \leq 1$. Let

$$x = \lambda a + (1 - \lambda)b. \tag{1.230}$$

Then, the inequality can be written as

$$f(x) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b).$$
 (1.231)

Let

$$g(x) = \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b) - f(x). \tag{1.232}$$

Then,

$$g(x) \ge 0. \tag{1.233}$$

Additionally, for x > a,

$$g(x) = (x - a) \left(\frac{f(b) - f(a)}{b - a} - \frac{f(x) - f(a)}{x - a} \right).$$
 (1.234)

By the mean value theorem, there exists c and y such that $a \leq c \leq b$, $a \leq y \leq x$ and

$$f'(c) = \frac{f(b) - f(a)}{b - a},$$

$$f'(y) = \frac{f(x) - f(a)}{x - a}.$$
(1.235)

Then, for x > a, the inequality reduces to

$$f'(y) \le f'(c). \tag{1.236}$$

Let \mathbf{x} and \mathbf{y} be two variables. Then, by the definition,

$$H(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}.$$
 (1.237)

The right hand side can be written as

$$-\int \int p(\mathbf{x}, \mathbf{y}) \left(\ln p(\mathbf{y}|\mathbf{x}) + \ln p(\mathbf{x}) \right) d\mathbf{x} d\mathbf{y}$$

$$= -\int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{y}|\mathbf{x}) d\mathbf{x} d\mathbf{y} - \int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right) \ln p(\mathbf{x}) d\mathbf{x}.$$
(1.238)

The right hand side can be written as

$$H(\mathbf{y}|\mathbf{x}) + H(\mathbf{x}). \tag{1.239}$$

$$H(\mathbf{x}, \mathbf{y}) = H(\mathbf{y}|\mathbf{x}) + H(\mathbf{x}). \tag{1.240}$$