

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Московский государственный технический университет имени Н.Э. Баумана

Факультет: Информатика и системы управления Кафедра: Информационная безопасность

Аппаратные средства вычислительной техники

Лабораторная работа №1

Выполнил: Першаев Н. Н. Группа: ИУ8-63

Проверил: Рафиков А. Г. **Цель работы** — изучение устройства МТ1804; изучение структуры, принципа действия и функций процессорного элемента KI804BCI; программирование и выполнение линейных микропрограмм.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Структурная схема процессора представлена на рис. 2. На схеме можно выделить четыре блока: внутренней памяти, арифметико-логический, регистра Q, управления. Блок внутренней памяти содержит: регистровое запоминающее устройство (РЗУ), имеющее шестнадцать 4-разрядних регистров общего назначения (РОН); сдвигатель данных (СДА), позволяющий записывать в РЗУ информацию без сдвига и со сдвигом вправо или влево на один разряд; два регистра PzA и PzB на выходе блока. Выбор регистров РЗУ как источников информации осуществляется по адресам на входах A и B. Информация из РОНов поступает на регистры PzA, PzB по сигналу логической единицы (I) на тактовом входе T. При сигнале логического нуля (0) эти регистры находятся в режиме хранения. Запись информации в регистр РЗУ возможна только по адресу B и происходит при поступлении сигнала D на вход D.

Рис1. Структурная схема процессора

Данные (F) с выхода АЛУ загружаются в РОН без сдвига или со сдвигом влево или вправо в зависимости от кода управления на входах 18-6.

Арифметико-логический блок содержит арифметико-логическое устройство (АЛУ), выполняющее 8 операций над операндами R и S в зависимости от кода управления на входах 15-3. Арифметические операции в АЛУ выполняются с учётом значения сигнала входного переноса СО в дополнительном коде. На выходах АЛУ формируются 4 флага (признака) результата: перенос из старшего разряда С4, переполнение $OVR = C4 \oplus C3$, знак (или содержимое старшего разряда АЛУ) F3 и признак нулевого результата z=1, если F=0.

Источниками операндов R и S могут быть регистры РЗУ, внешняя шина данных D, выделенный регистр Q и шина "0". Выбор источников по входам R и S проводится с помощью селектора источника данных (СИД), управляемого кодом 12-0. Результат операции (F) из АЛУ поступает на селектор выходных данных (СВД), на сдвигатель СДА и регистр Q. Приемник результата (адресуемый по адресу B регистр общего назначения в РЗУ, регистр Q или выходная шина Y) зависит от кода управления на входах 18-6 (табл. 1).

В устройстве МТ1801 применяются 32-разрядные микрокоманды. Формат микрокоманды показан в табл. 2.

I5-3	АЛУ(F)
000	R+S+CO
001	S-R-1+CO
010	R-S-1+CO
011	R ∨S
100	R∧S
101	R∧S
110	RS
111	RS

Таблица 1.

I2-0	R	S
000	POH(A)	PQ
001	POH(A)	POH(B)
010	0	PQ
011	0	POH(B)
100	0	POH(A)
101	D	POH(A)
110	D	PQ
111	D	0

Таблица 2.

I8-6	Тип загрузки	Выход Ү
000	F->PQ	F
001	Нет загрузки	F
010	F->POH(B)	A
011	F->POH(B)	F
100	F/2->POH(B),Q/2->PQ	F
101	F/2->POH(B)	F
110	2F->POH(B),2Q->PQ	F
111	2F->POH(B)	F

Таблица 5.

Таблица 6.

Номер тетрады	Номер бита	Назначение бита	Функция
0	0	D0	Данные для D-шины
	1	D1	
	2	D2	
	3	D3	
1	4	В0	Адрес РОН на входах В
	5	<i>B</i> 1	
	6	B2	
	7	В3	
2	8	A0	Адрес РОН на входах А
	9	A1	
	10	A2	
	11	A3	
3	12	I3	Функция АЛУ
	13	<i>I</i> 4	
	14	I5	
	15	СО	Значение входного
			переноса в АЛУ
4	16	10	Указатель операндов в
	17	I1	АЛУ
	18	<i>I</i> 2	
	19	М0	Нулевой бит
			управления
			мультиплексорами
			сдвига
5	20	16	Определение
	21	<i>I</i> 7	приемника результата
	22	<i>I</i> 8	операции
	23	M1	Первый бит управления
			мультиплексорами
			сдвига
6	24	CA0	Управление выборкой

	25 26	CA1 CA2	адреса следующей микрокоманды
	27	CA3	
7	28	AR0	Адрес перехода
	29	AR1	
	30	AR2	
	31	AR3	

ПРАКТИЧЕСКАЯ ЧАСТЬ

3. Загрузить в память микропрограмму из табл. 7. Выполнить заданную последовательность МК, адресуя их с переключателей адреса в режиме ЗАГРУЗКА.

Таблица с командами для выполнения операций:

Адрес	Номер тетрады							
памяти	7-6	5	4	3	2	1	0	Операции
	AR-CA	M1.I8-6	M0.I2-0	C0.I5-3	A	В	D	
0	0000	0010	0111	0011	0000	0000	0101	Загрузка РОН 0 POH(B)=F=D{RvS}0
1	0000	0001	0111	0011	0000	0000	0000	Чтение РОН 0 Y=F=D{RvS}0
2	0000	0000	0111	0011	0000	0000	1010	Загрузка PQ PQ=F= D{RvS}0
3	0000	0001	0011	0011	0000	0000	0000	Чтение PQ Y = F =D{RvS} 0
4	0000	0000	0100	0100	0000	0000	0000	Установка 0 в PQ PQ= F= D{R*S}0
5	0000	0101	0111	0011	0000	0000	0000	Сдвиг РОН 0 вправо POH(B)=F/2 = D{RvS}0
6	0000	0111	0111	0011	0000	0000	0000	Сдвиг РОН 0 влево POH(B)=F*2 = D{RvS}0
7	0000	1110	0111	0011	0000	0000	0000	Двойной сдвиг влево POH(B)=F*2, PQ=PQ*2=D {RvS}0
8	0000	1100	0111	0011	0000	0000	0000	Двойной сдвиг вправо РОН (B) = F/2, PQ=PQ/2=D {RvS} 0
9	0000	1100	0111	0011	0000	0000	0000	POH $0+1 \rightarrow POH 0$ POH (B) = F = D {R+S+CO} 0
10	0000	0010	0111	0011	0000	0000	0000	$POH 0-1 \rightarrow POH 0$ POH (B) = F = D {S-R-1+CO} 0
11	0000	0101	0111	0011	0000	0000	0000	Сложение со сдвигом вправо $POH(B) = F = D \{RvS\} 0$
12	0000	0111	0111	0011	0000	0000	0000	Сложение со сдвигом влево $POH(B) = F = D \{RvS\} 0$

Пуск по			Флаги				
адресу	Вых. Ү	C4	OVR	F3	Z		
0	0101	1	0	0	0		
1	0101	1	1	0	0		
2	0101	1	1	0	0		
3	0101	1	1	0	0		
4	0101	1	1	0	0		
5	0000	0	0	0	1		
6	0101	1	1	0	0		
7	0101	1	1	0	1		
8	0101	1	1 1		1		
9	0101	0	0	0	0		
10	0101	0	0	0	0		
11	0101	0	0	1	0		
12	0101	0	0	0	0		
13	0101	0	0	0	0		
14	0000	0	0	0	1		
15	0000	0	0	0	1		

5. Разработать и выполнить микропрограммы следующих операций: **а) очистка регистра РОН**_і:

Адрес			Номер					
памяти	7-6	5	4	3	2	1	0	Операции
	AR-CA	M1.I8-6	M0.I2-0	C0.I5-3	A	В	D	
0	0000	0011	0111	0011	0000	0000	0101	Загрузка РОН 0
								$POH(B)=F=D\{RvS\}0$
1	0000	0011	0011	0100	0000	0000	0000	Очистка РОН 0
								$POH(B)=F=0\{R*S\}POH(B)$

Пуск по	Вых. У		Фл	аги	
адресу	22	C4	OVR	F3	Z
0	0101	1	1	0	0
1	0000	0	0	0	1

б) обмен данными регистров РОН_і и РОН_ј(PQ):

Адрес	с Номер тетрады							
памяти	7-6	5	4	3	2	1	0	Операции
	AR-CA	M1.I8-6	M0.I2-0	C0.I5-3	Α	В	D	
0	0000	0011	0111	0011	0000	0000	0101	Загрузка РОН 0 POH(B)=F=D{RvS}0
1	0000	0011	0111	0011	0000	0001	1010	Загрузка РОН 1 POH(B)=F=D{RvS}0
2	0000	0000	0011	0011	0000	0000	0000	Загрузка PQ PQ=F= 0 {RvS} POH(B)
3	0000	0011	0100	0011	0001	0000	0000	Загрузка в РОН 0 из РОН 1 POH(B)=F=0{RvS}POH(A)
4	0000	0011	0010	0011	0000	0001	0000	Загрузка в POH 1 из PQ POH(B)=F=0{RvS}PQ

Пуск по	Вых. Ү	Флаги			
адресу	DBIA: 1	C4	OVR	F3	Z
0	0101	1	1	0	0
1	1010	1	1	1	0
2	0101	1	1	0	0
3	1010	1	1	1	0
4	0101	1	1	0	0

в) сложение/вычитание в дополнительном коде:

Λ	, <u>.</u>		11					T
Адрес		•	номер	тетрады				
памяти	7-6	5	4	3	2	1	0	Операции
	AR-CA	M1.I8-6	M0.I2-0	C0.I5-3	A	В	D	
0	0000	0000	0111	0011	0000	0000	0111	Загрузка PQ
								PQ=F=D{RvS}0
1	0000	0011	0111	0011	0000	0000	1010	Загрузка РОН 0
								$POH(B)=F=D\{RvS\}0$
2	0000	0000	0011	0011	0000	0001	0101	Загрузка РОН 1
								$POH(B)=F=D\{RvS\}0$
3	0000	0011	0100	0111	0000	0000	0000	Инверсия РОН 0
								$POH(B)=F=D\{!R+S\}POH(A)$
4	0000	0011	0100	0111	0001	0001	0000	Инверсия РОН 1
								$POH(B)=F=D\{!R+S\}POH(A)$
5	0000	0011	0101	0000	0000	0000	0001	POH 0 + 1
								$POH(B) = F = D\{R + S + C0\}POH(B)$
6	0000	0011	0101	0000	0001	0001	0001	POH 1 + 1
								$POH(B) = F = D\{R + S + C0\}POH(B)$
7	0000	0000	0000	0000	0000	0000	0000	POH 0 + PQ
								$PQ = F = POH(B)\{R + S + C0\}PQ$
8	0000	0000	0000	1001	0001	0000	0000	PQ – POH 1
								$PQ = F = POH(B)\{S - R - 1 + C0\}PQ$

Пуск по	Вых. Ү	Флаги				
адресу		C4	OVR	F3	Z	
0	0111	1	1	0	0	
1	1010	1	1	1	0	
2	0101	1	1	0	0	
3	0101	1	1	0	0	
4	1010	0	1	0	0	
5	0110	0	0	0	0	
6	1011	0	1	1	0	

7	1101	0	1	1	0
8	0010	1	0	0	0

г) изменение знака числа:

Адрес	Номер тетрады								
памяти	7-6	5	4	3	2	1	0	Операции	
	AR-CA	M1.I8-6	M0.I2-0	C0.I5-3	A	В	D		
0	0000	0011	0111	0011	0000	0000	0100	Загрузка РОН 0 POH(B)=F=D{RvS}0	
1	0000	0011	0100	1010	0000	0001	0000	Изменение знака РОН 0	
								POH(B)=F=0{R-S-	
								1+C0}POH(A)	

Пуск по	Вых. Ү	Флаги				
адресу		C4	OVR	F3	Z	
0	0100	1	1	0	0	
1	1100	0	0	1	0	

Изучение схемы МТ1804

Для расчета быстродействия схемы необходимо рассчитать максимальное время задержки по всем возможным контурам, соединяющим тактируемые элементы схемы:

1. АЛУ
$$\rightarrow$$
 DD30 \rightarrow АЛУ = 95 + 41 + 69 = 205 мкС;

2. DD32
$$\to$$
 DD38 \to DD23 \to DD27 \to DD22 = 21 + 41 + 65 + 41 + 50 = 212 мкС;

3. DD22
$$\rightarrow$$
 DD3 \rightarrow DD11 = 102 + 105 + 21 = 228 мкС;

4. DD11
$$\to$$
 DD32.2 \to DD38 \to DD23 \to DD27 \to DD22=21+ 22 +41 + 65+ 41+50= 240мкС.

5. DD22
$$\rightarrow$$
 DD8 \rightarrow DD22 = 102 + 105+ 50 = 257 мкС;

6. DD11
$$\rightarrow$$
 DD30 \rightarrow АЛУ \rightarrow DD35 = 27 + 41 + 60 + 41 = 172 мкС

Время задержки для 5-го контура наибольшее, поэтому быстродействие схемы определяется им.

Измерение тактовой частоты с помощью осциллографа

Тактовая частота работы устройства МТ1804 составляет примерно 871,3кГц

Вывод

В данной лабораторной работе был изучен принцип действия процессорного элемента К1804ВС1; были разработаны и выполнены микропрограммы операций, указанных в задании.