K 11/5

ЕМКОСТЬ И ИНДУКТИВНОСТЬ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

1 Активное сопротивление

$$u = U_{\scriptscriptstyle \mathcal{M}} \cdot \cos \omega t$$

$$i=rac{U}{R}=rac{U_{\scriptscriptstyle M}\cdot\cos\omega t}{R}$$

$$R =
ho rac{l}{S}$$

$$i = I_{\scriptscriptstyle \mathcal{M}} \cdot \cos \omega t$$

i и u совпадают по фазе

2 Емкостное сопротивление

- TOK: I = 0 \sim TOK: $I \neq 0$

→ Периодич. зарядка и разрядка конденсатора под действием ~U

$$u=U_{\scriptscriptstyle \mathcal{M}}\cdot\cos\omega t$$
 (1)

$$q = C \cdot U = C \cdot U_{\scriptscriptstyle \mathcal{M}} \cdot \cos \omega t$$

$$i=q'=-\omega C U_{\scriptscriptstyle M}\cdot\sin\omega t=I_{\scriptscriptstyle M}\cdot\cos\Bigl(\omega t+rac{\pi}{2}\Bigr)$$
 (2)

(1) и (2): i опережает u на $\dfrac{\pi}{2}$

$$I_{\scriptscriptstyle\mathcal{M}}=\omega c U_{\scriptscriptstyle\mathcal{M}}$$

$$x_c = rac{1}{\omega c}$$

$$I=rac{U}{x_c}$$

3 Индуктивное сопротивление

Если
$$R=0$$
, то $U=-e_c=-L\cdot I_{\scriptscriptstyle M}\cdot\omega\cdot\sin\omega t=U_{\scriptscriptstyle M}\cdot\cos\left(\omega t+rac{\pi}{2}
ight)$ (2) $(iR=U+e_c)$

(1) и (2): u опережает i на $\dfrac{\pi}{2}$

 $U_{\scriptscriptstyle \mathcal{M}} = L \cdot I_{\scriptscriptstyle \mathcal{M}} \cdot \omega$

$$I_{\scriptscriptstyle \mathcal{M}} = rac{U_{\scriptscriptstyle \mathcal{M}}}{\omega L}$$

$$x_L=\omega L$$

$$I=rac{U}{x_L}$$

(4) Закон Ома для ~ тока

$$U
eq U_R + U_L + U_C \ Z
eq R + X_L + X_C$$
 $I=rac{U}{\sqrt{R_A^2 + (X_L - X_C)^2}}$

$$I=rac{U}{\sqrt{R_A^2+\left(\omega L-rac{1}{\omega c}
ight)^2}}$$

5 Электрический резонанс

примечание

• -----

примечание

• -----