Stochastik

Katrin Strassen, Robert Kummer 2019

Inhaltsverzeichnis

1	Grundbegriffe 1.1 Urbild	1
2	σ -Algebra	1
3	Wahrscheinlichkeitsmaß	1
4	Wahrscheinlichkeitsraum	2
5	Messraum	2
6	messbare Funktion	2
7	Zufallsvariable7.1 Definition	2 3

1 Grundbegriffe

1.1 Urbild

Seien A und B zwei Mengen, $f:A\to B$ eine Funktion und M eine Teilmenge von B. Die Menge

$$f^{-1}(M) := \{ x \in A \mid f(x) \in M \} \tag{1}$$

wird Urbild von M unter f genannt. Das Urbild ist damit ein Wert der Urbildfunktion, die jedem Element M der Potenzmenge $\mathcal{P}(B)$ das Urbild $f^{-1}(M)$ als Element der Potenzmenge $\mathcal{P}(A)$ zuordnet.

In eigenen Worten: Die Funktion f bildet Elemente von A auf Elemente von B ab. Das Urbild von einer Teilmenge $M \subset B$ ist die Teilmenge aller Werte aus A die durch die Funktion auf Werte in M abgebildet werden.

Für das Urbild von einelementigen Teilmengen schreibt man auch:

$$f^{-1}(\{b\}) := f^{-1}(b). \tag{2}$$

Abbildung 1: Beispiel: Das Urbild von $M = \{0\} \subset B$ ist $\{2,3,5\} \subset A$.

2 σ -Algebra

Sei Ω eine nichtleere Menge und $\mathcal{P}(\Omega)$ die Potenzmenge dieser Menge. Eine Menge von Teilmengen $\mathcal{A} \subset \mathcal{P}(\Omega)$ (auch Mengensystem genannt) heißt σ -Algebra auf, oder über Ω , wenn sie die folgenden drei Bedingungen erfüllt:

- 1. \mathcal{A} enthält die Grundmenge, also: $\Omega \in \mathcal{A}$
- 2. \mathcal{A} ist stabil bezüglich der Komplementbildung. Ist also $A \in \mathcal{A}$, dann ist auch $A^{C} \in \mathcal{A}$.
- 3. \mathcal{A} ist stabil bezüglich abzählbarer Vereinigungen. Sind also die Mengen A_1, A_2, A_3, \ldots in \mathcal{A} enthalten, so ist auch $\bigcup_{i=1}^{\infty}$ in \mathcal{A} enthalten.

3 Wahrscheinlichkeitsmaß

Gegeben sei eine Menge Ω , die Ergebnismenge und eine σ -Algebra Σ auf dieser Menge (das Ereignissystem).

Dann heißt eine Abbildung

$$P: \Sigma \to [0,1] \tag{3}$$

Wahrscheinlichkeitsmaß, wenn sie die folgenden Bedinungen erfüllt.

Normiertheit:

$$P(\Omega) = 1 \tag{4}$$

 σ -Additivität: Für jede abzählbare Folge von paarweise disjunkten Mengen A_1, A_2, A_3, \ldots aus Σ gilt

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i). \tag{5}$$

Es gilt also, dass die Wahrscheinlichkeit für die Vereinigung zweier Ereignisse gleich groß ist wie die Summe der Einzelwahrscheinlichkeiten der Ereignisse.

4 Wahrscheinlichkeitsraum

Sei Ω eine beliebige **Ergebnis**menge. Sie umfasst alle möglichen Ergebnisse von einem Zufallsvorgang. Beim Würfeln ergibt sich also beispielsweise $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Nun wird Σ als eine σ -Algebra über Ω definiert. Die Elemente von Σ werden auch Ereignisse genannt.

Als letztes wird ein Wahrscheinlichkeitsmaß $P:\Sigma\to [0,1]$ benötigt. Das Tripel (Ω,Σ,P) ist dann ein Wahrscheinlichkeitsraum.

5 Messraum

Ein Tupel (Ω, Σ) heißt Messraum, wenn Ω eine beliebige Grundmenge ist und Σ eine σ -Algebra über Ω ist. In der Stochastik wird der Messraum auch Ereignisraum genannt und ist einfach ein Wahrscheinlichkeitsraum ohne Wahrscheinlichkeitsmaß.

Eine Menge S wird messbare Menge genannt, wenn $S \in \Sigma$ gilt.

6 messbare Funktion

Seien (Ω_1, Σ_1) und (Ω_2, Σ_2) zwei Messräume. Eine Funktion $f: \Omega_1 \to \Omega_2$ wird Σ_1 - Σ_2 -messbar genannt, wenn für alle $S_2 \in \Sigma_2$ gilt, dass das Urbild von S_2 unter f ein Element aus Σ_1 ist:

$$f^{-1}(S_2) \in \Sigma_1. \tag{6}$$

In eigenen Worten: Aus Wahrscheinlichkeitssicht: Die Funktion f bildet Ereignisse aus Ω_1 auf Ereignisse in Ω_2 ab. Wenn ich mir ein Ereignis S_2 aus Σ_2 nehme, also eine Teilmenge von Ω_2 , müssen alle Ergebnisse aus Ω_1 , die durch die Funktion f auf Ergebnisse von S_2 abgebildet werden, zusammen ein Element von Σ_1 sein. Das muss für alle $S \in \Sigma_2$ gelten. Egal, welches Ereignis S aus S_2 betrachtet wird, das Urbild von S unter f muss ein Element von S_1 sein. Zu jedem Element S der S_2 muss es ein Element von S_3 geben, das das Urbild von S unter S_3 unter S_4 is uniter S_4 in Element von S_4 geben, das das Urbild von S_4 unter S_4 is uniter S_4 in Element von S_4 geben, das

7 Zufallsvariable

7.1 Definition

Eine Zufallsvariable (ZV) ist eine messbare Funktion von einem Wahrscheinlichkeitsraum in einen Messraum. Seien also (Ω, Σ, P) ein Wahrscheinlichkeitsraum und (Ω', Σ') ein Messraum. Eine Σ - Σ' -messbare Funktion $X: \Omega \to \Omega'$ heißt dann eine Ω' -Zufallsvariable auf Ω .

Beispiel: Es soll das Experiment des zweimaligen Würfelns mit einem fairen Würfel betrachtet werden. Der dazugehörige Warscheinlichkeitsraum (Ω, Σ, P) sieht wie folgt aus:

- $\Omega = \{(1,1),(1,2),\ldots,(6,5),(6,6)\}$ ist die Ergebnismenge aller möglichen Ergebnisse
- $\Sigma = \mathcal{P}(\Omega)$ ist die Potenzmenge von Ω
- P ist das Wahrscheinlichkeitsmaß. Da die Würfe unabhängig sein sollen, sollen alle 36 möglichen Ergebnisse gleichwahrscheinlich sein. Daher gilt: $P(\{n_1, n_2\}) = \frac{1}{36}$ für $n_1, n_2 \in \{1, 2, 3, 4, 5, 6\}$

Es sollen nun zwei Zufallsvariablen definiert werden. Die ZV X_1 für das Würfelergebnis des ersten Würfels und eine andere X_2 für die Summe der beiden Augenzahlen.

- $X_1: \Omega \to \mathbb{R}; \qquad (n_1, n_2) \mapsto n_1$
- $X_2: \Omega \to \mathbb{R}; \qquad (n_1, n_2) \mapsto n_1 + n_2$

Dabei wurde für Σ' die borelsche σ -Algebra auf den reellen Zahlen gewählt.

7.2 Verteilung einer Zufallsvariablen

Sei X wieder eine ZV von (Ω, Σ, P) in den Ereignisraum (Ω', Σ') . Dann heißt die durch

$$P_X(A') := P(X^{-1}(A')) \qquad \text{für alle } A' \in \Sigma'$$
 (7)

definierte Abbildung $P_X : \Sigma' \to [0,1]$ die Verteilung der Zufallsvariablen X unter P. Hierbei bezeichnet $X^{-1}(A')$ das Urbild von A' unter X, also das Ereignis $\{\omega \in \Omega \mid X(\omega) \in A'\} \in \Sigma$.

In eigenen Worten: Die Wahrscheinlichkeit für ein Eregnis S' aus Σ' ist also die Wahrscheinlichkeit für das Ereignis $S = X^{-1}(S')$, das durch die ZVX auf S' abgebildet wird. Dazu braucht man auch die messbare Funktion X, da so die Urbilder für alle Ereignisse in Σ' immer in Σ liegen.