Cálculo Integral Clase # 32

• Representación de funciones como series de potencias.

Unidad 4: Sucesiones y series

- Series de Taylor
- Algunas aplicaciones

Cálculo Integral

Representación de funciones como series de potencias

Recordemos que una *serie numérica* se denomina serie geométrica si es de la forma

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots + ar^n + \dots$$

 $\sum_{n=1} ar^{n-1} = \frac{a}{1-r}$

donde $a \neq 0$ y r son números reales. Esta serie es *convergente* si |r| < 1 y su suma es $S = \frac{a}{1-r}$, es decir,

Representación de funciones como series de potencias

Entonces, si
$$|r| < 1$$

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \dots + ar^n + \dots = \frac{a}{1-r}$$

Ahora, si $r = x \in \mathbb{R}$ y a = 1 en esta serie numérica, se forma la serie de potencias

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

la cual es convergente si |x| < 1, es decir, su intervalo de convergencia es I = (-1,1) y converge a

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots = \frac{1}{1-x}$$
Serie de potencias función

Representación de funciones como series de potencias

$$\sum_{n=0}^{2} x^n = 1 + x + x^2$$

$$\sum_{n=0}^{3} x^n = 1 + x + x^2 + x^3$$

$$\sum_{n=0}^{4} x^n = 1 + x + x^2 + x^3 + x^4$$

$$\sum_{n=0}^{5} x^n = 1 + x + x^2 + x^3 + x^4 + x^5$$

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots = \frac{1}{1-x}$$

Unidad 4: Sucesiones y series

Cálculo Integral

Serie geométrica de potencias

Si
$$|x| < 1$$
, entonces la serie geométrica de potencias $\sum_{n=0}^{\infty} x^n$ converge absolutamente a la función

 $f(x) = \frac{1}{1-x}$, es decir,

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \qquad x \in (-1,1)$$

Teorema (Operaciones con series de potencias):

Suponga que las series de potencias $\sum_{n=0}^{\infty} a_n x^n$ y $\sum_{n=0}^{\infty} b_n x^n$ convergen absolutamente a las

funciones f(x) y g(x) respectivamente en el intervalo I, entonces

- 1. Suma y diferencia: La serie de potencias $\sum_{n=0}^{\infty} (a_n \pm b_n) x^n converge \ absolutamente \ a \ f(x) \pm g(x) \ en$
- 2. Multiplicación por una potencia: La serie de potencias $x^m \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{n+m}$ converge absolutamente a $x^m f(x)$ en I, siempre que $m \in \mathbb{Z}$ tal que $n+m \geq 0$ para

todos los términos de la serie.

Unidad 4: Sucesiones v series

Cálculo Integral

DE ANTIOQUIA

Teorema (Operaciones con series de potencias):

Composición: Si $h(x) = \underline{cx^m}$, donde $m \in \mathbb{Z}^+$ y $c \in \mathbb{R}$, entonces la serie de potencias

h(x) = 2x

 $h(x) = -x^2$

que $h(x) \in I$.

Johnny A. Perafán A.

 $\sum a_n(h(x))^n$ converge absolutamente a la función compuesta f(h(x)), para toda x tal

 $h(x) = (1-x)^2$ no es permitido.

Unidad 4: Sucesiones v series **Ejemplo:** Expresar la función $f(x) = \frac{x^5}{1-x}$ como una serie de potencias y determinar su intervalo de

convergencia.

Cálculo Integral

multiplicando por x 5 se tiene:

De la seru geométrica de potencias:

 $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad |x| < 1$

 $x^{5} \cdot \frac{1}{1-x} = x^{5} \cdot \sum_{n=0}^{\infty} x^{n} \qquad |x| < 1$

Unidad 4: Sucesiones y series

Cálculo Integral

así,
$$f(x) = \sum_{n=0}^{\infty} x^{n+5}$$
 $I = (-1, 1)$

UNIVERSIDAD DE ANTIOQUIA

Unidad 4: Sucesiones v series

Cálculo Integral

Ejemplo: Expresar la función $f(x) = \frac{1}{1-2x}$ como una serie de potencias y determinar su intervalo de convergencia. De la seru geométrica de potencias:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad |x| < 1$$

Sean
$$g(x) = \frac{1}{1-x}$$
 $y h(x) = 2x$, así
 $(g \circ h)(x) = g(h(x)) = \frac{1}{1-(2x)} = \frac{1}{1-2x}$

Johnny A. Perafán A.

Unidad 4: Sucesiones y series

 $\frac{1}{1-2x} = \sum_{n=0}^{\infty} 2^n \cdot x^n$

n = 0

ací, $f(x) = \sum_{n=1}^{\infty} 2^n x^n$ $I = \left(-\frac{1}{2}, \frac{1}{2}\right)$

Cálculo Integral

 $|x| < \frac{1}{2}$

DE ANTIOQUIA

 $|\chi| < \frac{1}{2}$

Unidad 4: Sucesiones v series

Cálculo Integral

Ejemplo: Expresar la función $f(x) = \frac{1}{1+x^2}$ como una serie de potencias y determinar su intervalo de convergencia. De la seru geométrica de potencias:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad |x| < 1$$

Sustituyen do (composición)
$$x$$
 por $-x^2$

$$\frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n \qquad |-x^2| < 1$$

 $-1<\chi^2 \wedge \chi^2<1$

 $0 < \chi^2 + 1 \wedge \chi^2 - | < 0$

 $X \in (-1,1)$

Cálculo Integral

1=0

DE ANTIOQUIA

Johnny A. Perafán A.

intervalo I, para el cual el radio de convergencia es R > 0 o ∞ , entonces la función

Teorema 2 (Continuidad de una serie de potencias):

Si la serie de potencias $\sum_{n=0}^{\infty} a_n(x-c)^n$ converge absolutamente a la función f(x) en el

es continua en cada $x \in I$.

Tecremo 2 (Diferenciación de una

Teorema 3 (Diferenciación de una serie de potencias):

Si la serie de potencias $\sum_{n=0}^{+\infty} a_n(x-c)^n$ converge absolutamente a la función f(x) en el intervalo I para el cual el radio de convergencia es R>0 o ∞ , entonces la función $f(x)=\sum_{n=0}^{+\infty}a_n(x-c)^n$

es diferenciable en cada $x \in I$ y el radio de convergencia R de la función

$$f'(x) = \sum_{n=1}^{+\infty} a_n n(x-c)^{n-1}$$

es el mismo que el de la función f(x).

Comentario: Una función f definida por una serie de potencias sobre un intervalo I, posee derivadas de todos los órdenes en el intervalo I.

Unidad 4: Sucesiones v series

Cálculo Integral

Ejemplo: Expresar la función $f(x) = \frac{1}{(1-x)^2}$ como una serie de potencias y determinar su intervalo de convergencia.

De la seru geométrica de potencias:
$$\frac{\omega}{1-x} = \sum_{n=0}^{\infty} x^n \quad |x| < 1$$
 Derivando respecto a x :

$$\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{d}{dx} \sum_{n=0}^{\infty} x^n$$

n = 0

div.

Cálculo Integral

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n x^{n-1}$$

$$\begin{array}{c}
\overline{n=0} \\
d_{1}v \\
x = 1 : \quad \sum_{n=0}^{\infty} n
\end{array}$$

$$\frac{1}{(1-x)^2} =$$

asi,
$$f(x) = \sum_{n=1}^{\infty} n x^{n-1}$$
 $\underline{T} = (-1,1)$.

Teorema 4 (Integración de una serie de potencias):

Si la serie de potencias $\sum_{n=0}^{+\infty} a_n(x-c)^n$ converge absolutamente a la función f(x) en el intervalo I para el cual el radio de convergencia es R>0 o ∞ , entonces la función $f(x)=\sum_{n=0}^{+\infty}a_n(x-c)^n$

es diferenciable en cada $x \in I$ y el radio de convergencia R de la función

$$\int f(x) dx = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x-c)^{n+1} + C$$

es el *mismo* que el de la función f(x).

Unidad 4: Sucesiones v series

Cálculo Integral

Teorema 4 (Integración de una serie de potencias):

Si la serie de potencias $\sum_{n=0}^{+\infty} a_n(x-c)^n$ converge absolutamente a la función f(x) en el intervalo I para el cual el radio de convergencia es R>0 o ∞ , entonces la función $f(x)=\sum_{n=0}^{+\infty}a_n(x-c)^n$

es diferenciable en cada $x \in I$ y el radio de convergencia R de la función

$$\int f(x) dx = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x-c)^{n+1} + C$$

es el *mismo* que el de la función f(x).

Comentario: Como la función $f(x) = \sum a_n(x-c)^n$ es continua en el intervalo I, su integral definida existe y está dada por $\int_a^b f(x) dx = \sum_{n=0}^{+\infty} a_n \int_a^b (x-c)^n dx \text{ para cualquier } a, b \in I.$

DE ANTIOQUIA

Unidad 4: Sucesiones v series

Ejemplo: Expresar la función $f(x) = \ln(1-x)$ como una serie de potencias y determinar su intervalo

Cálculo Integral

de convergencia. De la seru geométrica de potencias:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad |x| < 1$$
Integrando respecto a x :

$$\int \frac{1}{1-x} dx = \sum_{n=0}^{\infty} \int x^n dx$$

Cálculo Integral

$$-\ln(1-x) = \sum_{n=0}^{\infty} \frac{\chi^{n+1}}{n+1}$$

$$\begin{array}{c}
x = -1 \cdot \underline{/} \\
n = 0 \\
\end{array}$$
C. Serie alterna

C. Serie alterna
$$\lim_{n\to\infty} \frac{1}{n+1} = 0$$

$$\ln (1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$
así,
$$f(x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$

$$I = [-1, 1]$$

 $\int \frac{1}{1-x} dx = \sum_{n=0}^{\infty} \int x^n dx$

Johnny A. Perafán A.

 $\chi = 1$ DIV. **DE ANTIQUIA**

Unidad 4: Sucesiones v series

De la seru geométrica de potencias:

Cálculo Integral

Ejemplo: Expresar la función $f(x) = \tan^{-1} x$ como una serie de potencias y determinar su intervalo de convergencia.

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad |x| < 1$$

de un ejemplo anterior:

$$\frac{1}{1+\chi^2} = \sum_{n=0}^{\infty} (-1)^n \cdot \chi^{2n}$$

Cálculo Integral

$$\int \frac{1}{1+\chi^2} d\chi = \sum_{n=0}^{\infty} (-1)^n \int \chi^{2n} d\chi$$

$$tan^{-1}x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$

 $= \sum_{n=0}^{\infty} (-1)^n \frac{-1}{2n+1}$

Conv.

Cálculo Integral

1 < 3 (2)

criterio de la seru alterna:

$$\lim_{n\to\infty} \frac{1}{2n+1} = 0$$

$$0$$

$$0$$

 $\alpha_{n+1} < \alpha_n \iff \frac{1}{2n+3} < \frac{1}{2n+1}$

Unidad 4: Sucesiones y series

n = 0

Cálculo Integral

asi,
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
 $I = [-1, 1]$

2n+1

Cálculo Integral

Ejemplo (clase anterior): Determinar si la serie $\sum_{n=0}^{\infty} (-1)^n \frac{\left(\frac{1}{\sqrt{3}}\right)^{2n+1}}{2n+1}$ converge o diverge

Criterio del cociente:

$$\left| \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} \right| = \lim_{n \to \infty} \frac{|a_n|}{|a_n|}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{1}{\sqrt{3}}\right)^{2(n+1)+1}}{2(n+1)+1} \frac{2n+1}{\left(\frac{1}{\sqrt{2}}\right)^{2n+1}} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{1}{\sqrt{3}}\right)^{2n+3}}{2n+3} \frac{2n+1}{\left(\frac{1}{\sqrt{2}}\right)^{2n+1}} \right|$$

$$\begin{bmatrix} 2(n+1)+1 \\ 1 \end{bmatrix}$$

$$= \lim_{n \to \infty} \left| \frac{\left(\frac{1}{\sqrt{3}}\right)^2 (2n+1)}{2n+3} \right| = \frac{1}{3} < 1$$
 La serie converge:

$$\sum_{n=1}^{\infty} (-1)^n \frac{\left(\frac{1}{\sqrt{3}}\right)^{2n+1}}{2n+1} = S = \frac{\pi}{6}$$

Cálculo Integral

$$ton^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
 $I = [-1, 1]$

Como
$$x = \frac{1}{\sqrt{3}} \in [-1, 1]$$
, enfonces:
 $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \sum_{n=0}^{\infty} (-1)^n \frac{\left(\frac{1}{\sqrt{3}}\right)^{2n+1}}{\left(\frac{1}{\sqrt{3}}\right)^n}$

$$\sqrt{\frac{1}{\sqrt{3}}}$$

$$n=0 \qquad 2n+1$$

$$\frac{\pi}{6} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \frac{\left(\frac{1}{\sqrt{3}}\right)^{2n+1}}{2n+1}$$

DE ANTIOOUIA

Unidad 4: Sucesiones y series

S

 $\frac{x}{1+x} \rightarrow \int \frac{1}{1+x}$

Cálculo Integral

Johnny A. Perafán A.

$$\frac{1}{1+\chi^2}$$

$$\ln(1-\chi)$$

senx

Teorema 5 (Forma general de una serie de potencias):

Si una función f tiene una representación en series de potencias de la forma $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ sobre un intervalo I, entonces los coeficientes a_n son de la forma $a_n = \frac{f^{(n)}(c)}{n!}$.

Comentario: Si una función f(x) tiene una representación en serie de potencias de la forma

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f''(c)}{3!}(x - c)^3 \dots = \sum_{n=0}^{\infty} \frac{f^n(c)}{n!}(x - c)^n$$

se denomina serie de Taylor de la función f centrada en c ($c \neq 0$). La serie de Taylor centrada en c = 0 es de la forma

la forma
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f''(0)}{3!}x^3 \dots = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!}x^n$$

y se denomina serie de Maclaurin de la función f.

Cálculo Integral

 $f^{(0)}(x) = \frac{1}{1-x} = (1-x)^{-1}$

C = 0

$$f^{(n)}(0) = \frac{n!}{(1-0)^{n+1}} = \frac{n!}{n!} = n!$$

DE ANTIOQUIA

$$f^{(2)}(x) = \frac{2}{(1-x)^3}$$

$$f^{(4)}(x) = \frac{24}{(1-x)^5}$$

Johnny A. Perafán A.

 $\int_{-1}^{1} (x) = \frac{1}{(1-x)^2}$

convergencia.

Cálculo Integral

$$\int (x) = \sum_{n=0}^{\infty} \alpha_n (x-0)^n$$

$$f(x) = \sum_{n=0}^{\infty} 1 \cdot (x)^n$$

$$f(x) = \sum_{n=0}^{\infty} x^n$$

Unidad 4: Sucesiones v series Para el intervalo de convergencia:

$$\frac{\infty}{\sum} x^n \iff \frac{\infty}{1(x-0)^n}$$

Cálculo Integral

$$\begin{vmatrix} \lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \left| \frac{1}{1} \right| = 1$$

$$\chi = -1: \sum_{n \to \infty} (-1)^n \text{ div}.$$

n=o an

$$\frac{1}{\omega} \left| \frac{1}{1} \right| = \underline{1}$$

$$d_{1}v$$

$$\mathcal{I} = (-1, 1)$$

$$\chi = 1: \sum_{n=0}^{n=0} (1)^n d_{iv}.$$
Johnny A. Perafán A.

Cálculo Integral

c = 0

 $\int_{0}^{(n)}(x) = e^{x}$

 $a_n = \frac{\int_{n_i}^{(n)}(0)}{n_i} = \frac{1}{n_i}$

 $e^{x} = \sum_{n} \frac{1}{n!} x^{n}$

 $e^{x} = \sum_{n_{1}}^{\infty} \frac{x^{n}}{n_{1}} \qquad I = (-\infty, +\infty)$

 $\int_{-\infty}^{\infty} (\infty) = e^{\infty}$

 $f^{(1)}(x) = e^{x}$

 $f^{(2)}(x) = e^{x}$

Unidad 4: Sucesiones v series

 $I = (-\infty, +\infty)$

DE ANTIQUIA

Cálculo Integral

Unidad 4: Sucesiones v series **Ejemplo:** Determinar la serie de Maclaurin de la función $f(x) = xe^{x^2}$ y hallar su intervalo de

x por x²

Cálculo Integral

convergencia. $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

sustituyendo (composición)

 $\ell^{\chi^2} = \sum_{n=0}^{\infty} \frac{(\chi^2)^n}{n!}$

multiplicando por x: $\chi e^{\chi^2} = \chi \sum_{n=0}^{\infty} \frac{\chi^{2n}}{n!} \iff \chi e^{\chi^2} = \sum_{n=0}^{\infty} \frac{\chi^{2n+1}}{n!}$

DE ANTIOOUIA

Johnny A. Perafán A.

Ejemplo: Determinar la serie de Maclaurin de la función $f(x) = \operatorname{sen} x$ y hallar su intervalo de

Cálculo Integral

$$f^{(0)}(x) \equiv \operatorname{sen} x \longrightarrow f^{(0)}(0) \equiv 0$$

$$f^{(1)}(x) \equiv \operatorname{cos} x \longrightarrow f^{(1)}(0) \equiv 1$$

$$f^{(1)}(x) \equiv -\operatorname{sen} x \longrightarrow f^{(2)}(0) \equiv 0$$

$$f^{(3)}(x) \equiv -\operatorname{cos} x \longrightarrow f^{(3)}(0) \equiv -1$$

$$f^{(4)}(x) \equiv \operatorname{sen} x \longrightarrow f^{(4)}(0) \equiv 0$$

convergencia.

Unidad 4: Sucesiones y series

Cálculo Integral

$$sen x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

$$\frac{1}{2} \propto^{\circ} + \frac{1}{(\circ)} \times^{1}$$

$$Sen x = \frac{\int_{0}^{(0)} (0)}{0!} x^{0} + \frac{\int_{0}^{(1)} (0)}{1!} x^{1} + \frac{\int_{0}^{(2)} (0)}{2!} x^{2} + \frac{\int_{0}^{(3)} (0)}{3!} x^{3} + \frac{\int_{0}^{(4)} (0)}{4!} x^{4} + \dots$$

$$\sum_{n=0}$$

$$\begin{array}{lll}
\operatorname{Sen} x &=& \frac{1}{1!} x' + \frac{-1}{3!} x^3 + \cdots & \Rightarrow & \operatorname{Sen} x &=& \sum_{n=0}^{\infty} (-1)^n \frac{\chi^{2n+1}}{(2n+1)!} \\
\operatorname{Lohnny} A & \operatorname{Perafán} A
\end{array}$$
UNIVERSIDAD

Johnny A. Perafán A.

Unidad 4: Sucesiones y series **Ejercicio:** Comprobar que la serie de Maclaurin de la función $f(x) = \cos x$ es $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$

 $1 - \frac{\chi^2}{2!} + \frac{\chi^4}{4!} - \frac{\chi^6}{6!} + \cdots$

Cálculo Integral

DE ANTIOQUIA

Algunas aplicaciones

Con la serie Taylor se puede determinar la representación en series de potencias para muchas funciones comunes en el cálculo. El objetivo es ilustrar técnicas adicionales asociadas a las series de potencias. Con las series de potencias se cubre todo el panorama del cálculo de límites, derivadas e integrales y la aproximación al valor de una integral definida.

Unidad 4: Sucesiones y series **Ejemplo:** Demostrar que $\frac{d}{dx}(\sin x) = \cos x$

Cálculo Integral

$$Sen x = \sum_{n=0}^{\infty} (-1)^n \frac{\chi^{2n+1}}{(2n+1)!}$$

$$-\frac{x^3}{3!}+\frac{x}{5!}$$

$$sen x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$n(x) = \frac{1}{2!} - \frac{3x^2}{3!} + \frac{x^4}{5!} - \frac{x^4}{7!} + \cdots$$

$$\frac{d}{dx} (senx) = \frac{1}{1!} - \frac{3/x^2}{3!} + \frac{5/x^4}{5!} - \frac{7/x^6}{7!} + \cdots$$

$$= \frac{1}{1!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots = \cos x$$

Unidad 4: Sucesiones y series Ejemplo: Hallar $\int \frac{\operatorname{sen}(x)}{x} dx$

Cálculo Integral

$$Sen x = \sum_{n=0}^{\infty} (-1)^n \frac{\chi^{2n+1}}{(2n+1)!}$$

$$\frac{\sin x}{x} = \frac{1}{1!} - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots$$

Sen
$$x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x}{7!} + \cdots$$

$$\frac{x \neq 0}{x} = \frac{1}{1!} - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots$$

DE ANTIOQUIA

Johnny A. Perafán A.

DE ANTIOQUIA

Cálculo Integral

$$\frac{\operatorname{Sen} x}{x} = \frac{1}{1!} - \frac{\chi^2}{3!} + \frac{\chi^4}{5!} - \frac{\chi^6}{7!} + \cdots$$

 $= \sum_{n=0}^{\infty} (-1)^n \chi^{2n+1} + C_n$

Ejemplo: Aproximar el valor de la integral definida $\int_{0}^{1} e^{-x^2} dx$

Unidad 4: Sucesiones y series

definida
$$\int_0^\infty e^{-x^2} dx$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$e^{-\chi^2} = \sum_{n=0}^{\infty} \frac{(-1)^n \chi^{2n}}{n!}$$

$$e^{-x^{2}} = \frac{1}{0!} - \frac{x^{2}}{1!} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \cdots$$

Cálculo Integral

$$e^{-x^{2}} = \frac{1}{0!} - \frac{x^{2}}{1!} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \cdots$$

$$\int_{0}^{1} e^{-x^{2}} dx = \frac{x}{0!} - \frac{x^{3}}{3 \cdot 1!} + \frac{x^{5}}{5 \cdot 2!} - \frac{x^{7}}{7 \cdot 3!} + \cdots \Big|_{0}^{1}$$

$$\frac{\chi^3}{3\cdot 1!}$$
 +

$$= \left(\frac{1}{0!} - \frac{1}{3 \cdot 1!} + \frac{1}{5 \cdot 2!} - \frac{1}{7 \cdot 3!} + \cdots \right) - (\circ)$$

Cálculo Integral

Johnny A. Perafán A.