Relatório de CT-213

Henrique Fernandes Feitosa Março 2019

1 Introdução

O movimento de uma esfera pode ser modelado pela equação (1)

$$V = V_0 - f \cdot t \tag{1}$$

onde V_0 é a velocidade inicial, V a velocidade num instante de tempo t e f é um coeficiente de fricção.

Nessa prática, objetivou-se descobrir o coeficiente de fricção e a velocidade inicial através de pontos da forma (V,t) coletados na prática. Para isso, utilizou-se quatro métodos diferentes : método dos mínimos quadrados, hill climbing, gradient descent e simulated annealing. Dentre esses métodos, o primeiro, que é um método analítico e fornece a solução ótima, já estava implementado e os demais foram implementados a posteriori e são métodos de otimização.

Para a implementação do gradient descent, basicamente fez-se o ponto, definido inicialmente por um chute, seguir a direção contrária do gradiente, que fornece a direção para um caminho de mínimo. Já para a implementação do hill climbing, eram analizados oito vizinhos do ponto, os quais recebiam certos custos dados por uma função J(x), o algoritmo sempre seguia para os pontos que tinham os menores custos, para efeito de minimização. Na implementação do simulated annealing seleciona-se um vizinho aleatório e analisa seu custo em relação ao anterior, se o custo for maior ele segue para esse vizinho, se for menor ele executa uma heurística para determinar se deve ou não ir para esse vizinho. Por fim, vale ressaltar que a condição de parada desses algoritmos foi baseada em um limite máximo para o número de iterações e um valor mínimo para a função de custo J(x).

2 Resultados

Na tabela (1), seguem os valores de V_0 e f encontrados pelos algoritmos correspondentes.

Table 1: Tabela que contém os valores de V_0 e f obtidos pelos quatro algoritmos

	Coeficiente linear (m/s)	Coeficiente angular (m/s ²)
Least Square Solution	0.43337277	-0.10102096
Gradient Descent Solution	0.4333707	-0.10101849
Hill Climbing Solution	0.43341125	-0.10119596
Simulated Annealing Solution	0.43397655	-0.10134529

Ao analisar a tabela, percebe-se que os valores obtidos pelos três últimos algoritmos se aproxima do valor obtido analiticamente pelo método dos mínimos quadrados, porém não se iguala. Isso se deve a quantidade limitada de iterações, que o impede de alcançar a solução ótima e o deixa suceptível a erros numéricos.

Nas figuras (1),(2) e (3) encontram-se os caminhos seguidos pelos algoritmos gradient descent, hill climbing e simulated annealing.

Figure 1: Mostra o caminho seguido pelo algoritmo gradient descent até encontrar seu ponto de convergência

Figure 2: Mostra o caminho seguido pelo algoritmo hill climbing até encontrar seu ponto de convergência

Figure 3: Mostra o caminho seguido pelo algoritmo simulated annealing até encontrar seu ponto de convergência

A figura (4) mostra uma comparação entre os três caminhos seguidos pelos três algoritmos.

Figure 4: Mostra uma comparação entre o caminho seguido pelos três algoritmos

Já a figura (5) mostra as 4 retas obtidas pelos 4 algoritmos.

Figure 5: Mostra uma comparação entre o caminho seguido pelos três algoritmos