

Pengantar Data Mining #4: Praproses Data [2]

Isnan Mulia, S.Komp, M.Kom

Data Reduction

Reduksi jumlah data

- Mengganti data asli dengan representasi data yang berukuran lebih kecil
- Bisa berupa teknik parametrik atau nonparametrik

Kompresi data

- Data dipadatkan/dikompres
- Bisa bersifat *lossless* atau *lossy*

Histogram:

- Menggunakan binning untuk memperkirakan distribusi data
- Data dibagi menjadi *n* buah ember/ bin menggunakan ketentuan:
 - ✓ Equal-width: lebar/rentang setiap ember/bin seragam
 - ✓ Equal-frequencyl equal-depth: frekuensi data dari setiap ember/bin sama
- Efektif dalam memperkirakan data yang jarang maupun padat, juga data yang sangat miring/skewed dan seragam
- Histogram multidimensional dapat menangkap dependensi di antara atribut

Histogram:

Contoh data:

1, 1, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30, 30, 30.

← Histogram menggunakan *bucket* tunggal

Sampling.

- Merepresentasikan sebuah dataset besar berukuran N dalam bentuk data sampel acak yang berukuran s, dengan s < N
- Umum digunakan untuk reduksi data
- Strategi:
 - Simple random sample without replacement (SRSWOR): setiap tuple dapat terambil sebagai sampel dengan peluang yang sama
 - Simple random sample with replacement (SRSWR): setiap tuple yang terambil sebagai sampel dapat terpilih kembali
 - Cluster sample: data dikelompokkan menjadi beberapa cluster
 - *Stratified sample*: data dikelompokkan berdasarkan atribut tertentu menjadi *strata*

Sampling.

Startified sample (according to age)

T38	youth
T256	youth
T307	youth
T391	youth
T96	middle_aged
T117	middle_aged
T138	middle_aged
T263	middle_aged
T290	middle_aged
T308	middle_aged
T326	middle_aged
T387	middle_aged
T69	senior
T284	senior

T38	youth
T391	youth
T117	middle_aged
T138	middle_aged
T290	middle_aged
T326	middle_aged
T69	senior

Data Cube Aggregation:

- Mengumpulkan data & menyatakannya dalam satuan yang lebih besar
- Umum digunakan pada *data warehouse*

- Mengubah data menjadi bentuk tertentu, sehingga proses *mining* dapat berjalan lebih efisien
- Strategi:
 - Smoothing
 - Attribute construction
 - Agregasi
 - Normalisasi
 - Diskretisasi
 - Generalisasi

Attribute/Feature Construction:

- Memunculkan sebuah atribut baru sebagai hasil kombinasi dari beberapa atribut lain yang sudah tersedia
- Dapat menemukan informasi mengenai hubungan antara beberapa atribut
- Contoh:
 - Atribut panjang & lebar → atribut luas = panjang × lebar

Normalisasi/standarisasi:

- · Mengubah nilai atribut menjadi nilai yang lain pada rentang tertentu
- Tujuan: memberikan bobot yang seimbang terhadap semua atribut
- Variasi:
 - Normalisasi min-max

•
$$v_i' = \frac{v_i - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$
 $min_A = \text{nilai terkecil atribut semula}$
 $max_A = \text{nilai terbesar atribut semula}$
 $new_min_A = \text{nilai terkecil atribut setelah normalisasi}$
 $new_max_A = \text{nilai terbesar atribut setelah normalisasi}$

•
$$Min = \$12.000, max = \$98.000, v = \$73.600$$

$$\Rightarrow v' = \frac{73.600 - 12.000}{98.000 - 12.000} (1 - 0) + 0 = \frac{61.600}{86.000} = 0,716$$

Normalisasi/standarisasi:

- Normalisasi *z-score* → nilai standar; untuk melihat seberapa jauh penyimpangan nilai atribut terhadap rataan
 - $v_i' = \frac{v_i \bar{A}}{\sigma_A}$ \bar{A} = rata-rata atribut, σ_A = simpangan baku atribut
 - Rata-rata = \$54.000, simpangan baku = \$16.000, ν = 73.600

$$\rightarrow v = \frac{73.600 - 54.000}{16.000} = \frac{19.600}{16.000} = 1,225$$

- Normalisasi penskalaan desimal
 - $v'_i = \frac{v_i}{10^j}$ j = bilangan bulat terkecil sedemikian sehingga $\max(|v'_i|) < 1$
 - Sebuah atribut dengan rentang nilai -562 s.d. 875 → dibagi 1000

Diskretisasi:

- · Mengubah nilai variabel yang cukup besar menjadi nilai yang lebih kecil
- Mengubah nilai variabel yang kontinu menjadi interval data yang terbatas
- Jenis:
 - *Supervised*: diskretisasi dilakukan berdasarkan suatu kelas data yang telah diketahui
 - *Unsupervised*: diskretisasi dilakukan tanpa menggunakan informasi yang telah diketahui
- Teknik:
 - Binning
 - Analisis histogram
 - Analisis cluster

Diskretisasi:

Data usia: 1, 5, 9, 4, 7, 11, 14, 17, 13, 18, 19, 31, 33, 36, 42, 44, 46, 70, 74, 78, 77

Nilai Data	1, 5, 4, 9, 7	11, 14, 17, 13, 18, 19	31, 33, 36, 42, 44, 46	70, 74, 78, 77
Label	Anak-anak	Remaja	Dewasa	Lansia

Hasil diskretisasi:

Anak-anak, Anak-anak, Anak-anak, Anak-anak, Remaja, Remaja, Remaja, Remaja, Remaja, Remaja, Dewasa, Dewasa, Dewasa, Dewasa, Lansia, Lansia, Lansia

Diskretisasi:

Contoh data:

1, 1, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30, 30, 30.

Hasil diskretisasi:

Generalisasi/pembangkitan hirarki konsep:

- Mendefinisikan nilai suatu atribut pada konsep dengan hirarki yang lebih tinggi
- Dapat diterapkan pada data yang mengandung informasi:
 - Kewilayahan (geografis): data alamat → data kota
 - Waktu: data per hari → data per bulan

No	Tanggal_Daftar	Bulan
1	03-09-2021	September 2021
2	01-10-2021	Oktober 2021
3	20-09-2021	September 2021
4	31-10-2021	Oktober 2021
5	15-10-2021	Oktober 2021
6	09-09-2021	September 2021
7	30-09-2021	September 2021

Soal Latihan

No	Panjang (cm)	Lebar (cm)
1	40	10
2	43	12
3	47	14
4	42	12
5	47	У
6	43	12
7	48	15
8	46	14
9	49	16
10	X	12

Diketahui data hasil pengukuran panjang & lebar dari 10 objek

- Isilah variabel x & y menggunakan ratarata dari masing-masing atribut
- 2. Lakukan praproses terhadap data yang sudah lengkap menggunakan metode:
 - a) Normalisasi *min-max* dalam range 0-1
 - b) *Equal-frequency binning*, dengan frekuensi 5

Recap

- Data reduction
- Data transformation

Next: apa tujuan melakukan klasifikasi data?

