Worksheet 9

To accompany Chapter 4.1 Trigonometric Fourier Series

Colophon

This worksheet can be downloaded as a <u>PDF file (https://cpjobling.github.io/eg-247-textbook/worksheets/worksheet9.pdf)</u>. We will step through this worksheet in class.

An annotatable copy of the notes for this presentation will be distributed before the second class meeting as **Worksheet 9** in the **Week 5: Classroom Activities** section of the Canvas site. I will also distribute a copy to your personal **Worksheets** section of the **OneNote Class Notebook** so that you can add your own notes using OneNote.

You are expected to have at least watched the video presentation of <u>Chapter 4.1</u> (https://cpjobling.github.io/eg-247-textbook/fourier_series/1/trig_fseries) of the notes (https://cpjobling.github.io/eg-247-textbook) before coming to class. If you haven't watch it afterwards!

After class, the lecture recording and the annotated version of the worksheets will be made available through Canvas.

Motivating Example

In the class I will demonstrate the Fourier Series demo (see Notes (trig fs)).

The Trigonometric Fourier Series

Any periodic waveform f(t) can be represented as

$$f(t) = \frac{1}{2}a_0 + a_1 \cos \Omega_0 t + a_2 \cos 2\Omega_0 t + a_3 \cos 3\Omega_0 t + \dots + a_n \cos n\Omega_0 t + \dots + a_n \sin \Omega_0 t + b_2 \sin 2\Omega_0 t + b_3 \sin 3\Omega_0 t + \dots + b_n \sin n\Omega_0 t + \dots$$

or equivalently (if more confusingly)

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos n\Omega_0 t + b_n \sin n\Omega_0 t)$$

where Ω_0 rad/s is the fundamental frequency.

Evaluation of the Fourier series coefficients

The coefficients are obtained from the following expressions (valid for any periodic waveform with fundamental frequency Ω_0 so long as we integrate over one period $0 \to T_0$ where $T_0 = 2\pi/\Omega_0$), and $\theta = \Omega_0 t$:

$$\frac{1}{2}a_0 = \frac{1}{T_0} \int_0^{T_0} f(t)dt = \frac{1}{\pi} \int_0^{2\pi} f(\theta)d\theta$$

$$a_n = \frac{1}{T_0} \int_0^{T_0} f(t)\cos n\Omega_0 t \, dt = \frac{1}{2\pi} \int_0^{2\pi} f(\theta)\cos n\theta \, d\theta$$

$$b_n = \frac{1}{T_0} \int_0^{T_0} f(t)\sin n\Omega_0 t \, dt = \frac{1}{2\pi} \int_0^{2\pi} f(\theta)\cos n\theta \, d\theta$$

Odd, Even and Half-wave Symmetry

Odd- and even symmetry

- An *odd* function is one for which f(t) = -f(-t). The function $\sin t$ is an *odd* function.
- An *even* function is one for which f(t) = f(-t). The function $\cos t$ is an *even* function.

Half-wave symmetry

- A periodic function with period T is a function for which f(t) = f(t+T)
- A periodic function with period T, has half-wave symmetry if f(t) = -f(t+T/2)

Symmetry in Trigonometric Fourier Series

There are simplifications we can make if the original periodic properties has certain properties:

- If f(t) is odd, $a_0 = 0$ and there will be no cosine terms so $a_n = 0 \ \forall n > 0$
- If f(t) is even, there will be no sine terms and $b_n = 0 \ \forall n > 0$. The DC may or may not be zero.
- If f(t) has half-wave symmetry only the odd harmonics will be present. That is a_n and b_n is zero for all even values of n (0, 2, 4, ...)

Symmetry in Common Waveforms

To reproduce the following waveforms (without annotation) publish the script waves.m (waves.m).

Squarewave

- Average value over period T is ...?
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Shifted Squarewave

- ullet Average value over period T is
- It is an odd/even function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Sawtooth

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Triangle

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Symmetry in fundamental, Second and Third Harmonics

In the following, T/2 is taken to be the half-period of the fundamental sinewave.

Fundamental

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Second Harmonic

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Third Harmonic

- ullet Average value over period T is
- It is an **odd/even** function?
- It has/has not half-wave symmetry f(t) = -f(t + T/2)?

Some simplifications that result from symmetry

- The limits of the integrals used to compute the coefficients a_n and b_n of the Fourier series are given as $0 \to 2\pi$ which is one period T
- We could also choose to integrate from $-\pi o \pi$
- If the function is *odd*, or *even* or has *half-wave symmetry* we can compute a_n and b_n by integrating from $0 \to \pi$ and multiplying by 2.
- If we have half-wave symmetry we can compute a_n and b_n by integrating from $0 \to \pi/2$ and multiplying by 4.

(For more details see page 7-10 of the textbook)

Computing coefficients of Trig. Fourier Series in Matlab

As an example let's take a square wave with amplitude $\pm A$ and period T.

Solution

Solution: See square ftrig.mlx (square ftrig.mlx). Script confirms that:

- $a_0 = 0$
- $a_i = 0$: function is odd
- $b_i = 0$: for i even half-wave symmetry

```
(4*A*sin(t))/pi + (4*A*sin(3*t))/(3*pi) + (4*A*sin(5*t))/(5*pi) + (4*A*sin(7*t))/(7*pi) + (4*A*sin(9*t))/(9*pi) + (4*A*sin(11*t))/(11*pi)
```

Note that the coefficients match those given in the textbook (Section 7.4.1).

$$f(t) = \frac{4A}{\pi} \left(\sin \Omega_0 t + \frac{1}{3} \sin 3\Omega_0 t + \frac{1}{5} \sin 5\Omega_0 t + \cdots \right) = \frac{4A}{\pi} \sum_{n = \text{odd}} \frac{1}{n} \sin n\Omega_0 t$$

Using symmetry - computing the Fourier series coefficients of the shifted square wave

Shifted square waveform

- As before $a_0 = 0$
- ullet We observe that this function is even, so all b_k coefficents will be zero
- The waveform has half-wave symmetry, so only odd indexed coeeficents will be present.
- Further more, because it has half-wave symmetry we can just integrate from $0 \to \pi/2$ and multiply the result by 4.

See shifted sq ftrig.mlx (shifted sq ftrig.mlx).

Note that the coefficients match those given in the textbook (Section 7.4.2).

$$f(t) = \frac{4A}{\pi} \left(\cos \Omega_0 t - \frac{1}{3} \cos 3\Omega_0 t + \frac{1}{5} \cos 5\Omega_0 t - \dots \right) = \frac{4A}{\pi} \sum_{n=1}^{\infty} (-1)^{\frac{n-1}{2}} \frac{1}{n} c$$