

R-600 四通道 UHF RFID 读写器整机 规格书 V1.0.0

RFID产品研发及解决方案提供商

www.sbrf-id.com

表 1: 产品特性一览表

	特性	描述
1	射频芯片采用 INDY R2000	◆ 射频通道基于 Impinj 性能优异的专用 UHF RFID 芯片。
2	高性能多标签识别算法	◆ 独一无二的 I-Serch 多标签识别算法,提供业内最高识别效率。
3	为读取少量标签优化的算 法	◆ 专为读取少量标签的应用设计的算法。 ◆ 超高的标签反应速度。
4	双 CPU 架构设计	◆ 主 CPU 负责轮询标签,副 CPU 负责数据管理。轮询标签和发送数据并行,互不占用对方的时间。极大的提高了整体性能。◆ 副 CPU 负责产生真正的随机数。副 CPU 负责监控系统的运行状态。
5	快速 4 天线轮询功能	◆ 高速轮询 4 天线。每个天线最短轮询时间约 25mS。 ◆ 可单独配置各天线的轮询时间。
6	两种标签盘存模式	◆ 缓存模式和实时模式。◆ 缓存模式读到标签后先放入缓存并过滤重复数据,数据无冗余。◆ 实时模式读到标签后立即上传,用户可第一时间得到标签数据。
7	硬件死机监测	◆ 硬件监测 CPU 运行状态。24 小时×365 天常年运行不死机。
8	宽输入低电压设计	◆ 输入电压 DC 12-18V。
9	低功耗设计	→ 满功率输出时峰值电流最大 600mA +/-10%(12V DC 输入)。◆ 单标签功耗低至 300mA +/-10%(12V DC 输入)。
10	射频放大器状态监测	◆ 监测射频功率放大器的工作状态。◆ 确保功放不出现饱和状态。保证功放长久稳定工作。
11	实现 18000-6B/C 全协议功能	◆ 实现 18000-6B 协议规定的全部读写功能。 ◆ 可快速在双协议间切换,实现同时读双协议标签。
12	18000-6B 大数据一次性读写	◆ 一次性读 216 字节时间<500mS。◆ 一次性写 216 字节时间 < 3.5 秒。◆ 任意数据长度一次性读写。◆ 读写稳定可靠,成功率接近 100%,完美体现 R2000 的数据传输质量。
13	天线连接状态监测	◆ 判断天线连接状态。可保护接收机,可通过命令关闭。
14	优秀的工业设计	◆ 一次成型超薄铸铝机身,业内公认的经典造型。
15	优质的连接器系统	◆ 全部使用最好的名牌连接器,保证可靠连接。
16	优异的板载电源系统	◆ 板载 8 颗独立的电源。每个部件都由独立的电源供电。 ◆ 所有的电源全部具有软启动功能,确保任何时候电压稳定。
17	多点板载温度传感器	◆ 多点监测,精确的监控系统的运行温度。
18	双备份输出功率校正	◆ 保证射频输出功率精确可控。 ◆ 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。
19	简洁高效的指令系统	◆ 基于串口的指令系统。◆ 简洁,高效,方便,快速集成。
20	杰出的散热设计	◆ 发热器件全部具有导热结构。◆ 大面积的散热片接触面。◆ 热耦合界面采用高热导率的固体材料,高温下不挥发。◆ 一次性铸铝机身散热,长期连续工作不发热。

图 1: 不同的算法对多标签识别性能的影响

说 眀

- 图1是实测的性能对比图(以英频杰动态Q防冲突算法作为比较的标准)。
- ◆ 图1体现的是首轮盘存的性能对比。
- ◆ 在同一硬件平台上更换不同的算法进行的测试。

算法名称	算法说明
	◆ 18000-6C 协议的标准算法。
标准固定Q防冲突算法	◆ 标签数量多的时候性能显著下降。
	◆ 标签数量少的时候效率不高。
	◆ 美国 IMPINJ 公司的算法。
英频杰动态 Q 防冲突算法	◆ 标签数量多或者少的时候都有良好的效率。
	◆ 为了兼容的需要牺牲了一部分性能。
	◆ 基于美国 IMPINJ 公司的动态 Q 算法。
I - Search 动态 Q 防冲突算法 V	1.0 ◆ 经过优化后性能略有提高。
	◆ 固件版本 6.6 及以下均采用此算法。
	◆ 基于美国 IMPINJ 公司的动态 Q 算法。
	◆ 全新的数据模型,性能得到大幅提升。
I - Search 动态 Q 防冲突算法 V	2.0 ◆ 固件版本 6.7 及以上均采用此算法。
	◆ 可明显感受到与传统算法的差异。
	◆ 标签数量多的时候性能差异更明显。

Web: <u>www.sbrf-id.com</u> Tel: 0755-28443967

表 2: 机械及电气参数

尺寸	214mm(L) x 164mm(W) x 30mm(H)
重量	1.8 Kg
机身材料	压铸铝合金
输入电压	DC 12V - 18V
待机状态电流	<70mA
睡眠状态电流	<100uA
最大工作电流	600mA +/-5% @ DC 12V Input
工作温度	- 20 ° C - + 55 ° C
存储温度	- 20 ° C - + 85 ° C
工作湿度	< 95% (+ 25 ° C)
空中接口协议	EPC global UHF Class 1 Gen 2 / ISO 18000-6C
	ISO 18000-6B
工作频谱范围	860Mhz - 960Mhz
工作区域支持	US, Canada and other regions following U.S. FCC
	Europe and other regions following ETSI EN 302 208 with &
	without LBT regulations
	Mainland China
	Japan
	Korea
	Malaysia
	Taiwan
输出功率	0 - 33dBm
输出功率精度	+/- 1dB
输出功率平坦度	+/- 0. 2dB
接收灵敏度	< -85 dBm
盘存标签峰值速度	> 700 张/秒
标签缓存区	1000 张标签 @ 96 bit EPC
标签 RSSI	支持
天线连接保护	支持
环境温度监测	支持
工作模式	单机/密集型
通讯接口	RS-232 或 TCP/IP
GPI0	2路输入光耦合 2路输出光耦合
最高通讯波特率	115200 bps
散热方式	空气冷却

Web: <u>www.sbrf-id.com</u> Tel: 0755-28443967

表 3:接口定义一览表

