Types inductifs

David Delahaye

Faculté des Sciences David.Delahaye@lirmm.fr

Master Informatique M1 2022-2023

Spécifications inductives et preuves par induction

L'induction à la base de la formalisation

- On peut tout formaliser à base de types inductifs;
- Types inductifs pour les types de données;
- Relations inductives pour spécifier des comportements;
- Fonctions récursives pour les programmes;
- Preuves par induction pour l'adéquation prog./spéc.;
- Moyen idiomatique de formalisation de beaucoup d'outils.

Support pour l'induction

- Générer les schémas d'induction automatiquement;
- Pouvoir en générer de nouveaux au besoin;
- Gérer les lemmes d'inversion automatiquement.

Spécifications inductives et preuves par induction

Systèmes formels et outils

- Induction présente en théorie des ensembles;
- Théories des types dédiées :
 - Système T de Gödel, théorie des types de Martin-Löf, calcul des constructions inductives de Coquand-Huet-Paulin.
- Outils dédiés : Coq, Lego, Alfa, etc.

Historiquement

- Formulation explicite de l'induction au 17ème siècle;
- Auparavant : utilisation de l'induction mathématique;
- Pascal : « Traité du triangle arithmétique » ;
- Fermat : descente infinie.

Preuve du théorème de Fermat pour n = 4

Théorème

Il n'existe pas d'entiers non nuls x, y, et z, tels que :

$$x^4 + y^4 = z^4$$

Le théorème se déduit aisément de la preuve du 20ème problème de Diophante : est-ce qu'un triangle rectangle dont les côtés sont mesurés par des entiers peut avoir une surface mesurée par un carré?

Fermat a résolu la question par la négative et il a démontré qu'il n'existe pas d'entiers naturels non nuls tels que :

$$x^2 + y^2 = z^2$$
 et $xy = 2t^2$

Preuve du théorème de Fermat pour n = 4

Principe de la descente infinie

- Preuve par l'absurde : démontrer que résoudre le problème au rang n revient à le résoudre au rang n-1, ce qui n'est pas possible car on est borné par 0;
- La descente infinie résout des propositions $\not\exists x.P(x)$;
- Mais équivalent au principe habituel (contraposée).

Preuve de Fermat chargée d'histoire

- Première utilisation de l'induction;
- Résolution d'un problème de Diophante (250 apr. J.-C.);
- Utilisation des triplets pythagoriciens (Euclide, 300 av. J.-C.; Babyloniens, 1900-1600 av. J.-C.).

D. Delahaye Types inductifs M1 Info. 2022-2023 3 / 20

Définition inductive

On peut définir les entiers naturels comme le plus petit ensemble ${\cal N}$ vérifiant les propriétés suivantes :

- $oldsymbol{0} O \in \mathcal{N}$
- Pour tout $n \in \mathcal{N}$, on a $(S \ n) \in \mathcal{N}$

Éléments de cet ensemble

- Syntaxiquement : $\{O, (S \ O), (S \ (S \ O)), \ldots\}$
- ullet Ensemble isomorphe à ${\mathbb N}$

Questions

- En quoi la définition est-elle inductive?
- Pourquoi « le plus petit ensemble »?

Fonction récursive

On peut définir la fonction d'addition *plus* de type $\mathcal{N} \times \mathcal{N} \to \mathcal{N}$ de la façon suivante :

- Pour tout $n \in \mathcal{N}$, plus(O, n) = n
- Pour tout $p, n \in \mathcal{N}$, plus(S p, n) = S (plus(p, n))

La récursion se fait sur le premier argument.

Exemple d'évaluation

Exemple de preuve

On veut démontrer que : $\forall n \in \mathcal{N}.plus(O, n) = n$.

- ullet On suppose un $n \in \mathcal{N}$
- Puis on part de plus(O, n)
- On utilise le cas de base de *plus* pour dire que plus(O, n) = n

La preuve est directe en utilisant la définition de plus.

Un autre exemple de preuve

Et si on veut démontrer que : $\forall n \in \mathcal{N}.plus(n, O) = n$?

Il nous faut faire une preuve par induction.

Exemple de preuve

On veut démontrer que : $\forall n \in \mathcal{N}.plus(O, n) = n$.

- ullet On suppose un $n \in \mathcal{N}$
- Puis on part de plus(O, n)
- On utilise le cas de base de plus pour dire que plus(O, n) = n

La preuve est directe en utilisant la définition de plus.

Un autre exemple de preuve

Et si on veut démontrer que : $\forall n \in \mathcal{N}.plus(n, O) = n$?

Il nous faut faire une preuve par induction.

Exemple de preuve

On veut démontrer que : $\forall n \in \mathcal{N}.plus(O, n) = n$.

- ullet On suppose un $n \in \mathcal{N}$
- Puis on part de plus(O, n)
- On utilise le cas de base de plus pour dire que plus(O, n) = n

La preuve est directe en utilisant la définition de plus.

Un autre exemple de preuve

Et si on veut démontrer que : $\forall n \in \mathcal{N}.plus(n, O) = n$? Il nous faut faire une preuve par induction.

Exemple de preuve

On veut démontrer que : $\forall n \in \mathcal{N}.plus(O, n) = n$.

- ullet On suppose un $n \in \mathcal{N}$
- Puis on part de plus(O, n)
- On utilise le cas de base de plus pour dire que plus(O, n) = n

La preuve est directe en utilisant la définition de plus.

Un autre exemple de preuve

Et si on veut démontrer que : $\forall n \in \mathcal{N}.plus(n, O) = n$?

Il nous faut faire une preuve par induction.

Schéma d'induction

Pour \mathcal{N} , on peut se donner le schéma d'induction structurelle suivant :

- $\forall P \in \mathcal{N} \rightarrow Prop.P(O) \Rightarrow (\forall n \in \mathcal{N}.P(n) \Rightarrow P(S \mid n)) \Rightarrow \forall n \in \mathcal{N}.P(n)$ où Prop est l'ensemble des propositions (ou formules)
- Ce schéma est d'ordre 2 (non exprimable au premier ordre)

Autres schémas d'induction

- Le schéma précédent suit strictement la syntaxe de la définition de \mathcal{N} , d'où le nom de schéma d'induction structurelle
- Il existe d'autres schémas, plus généraux ou plus appropriés pour certaines démonstrations (nous les verrons plus tard)

D. Delahaye M1 Info. 2022-2023

Retour sur l'autre exemple de preuve

Preuve de : $\forall n \in \mathcal{N}.plus(n, O) = n$.

On fait une preuve par induction avec P(n) = (plus(n, O) = n):

- Cas de base : plus(O, O) = ODémontré en utilisant le cas de base de la fonction plus
- Cas inductif : plus(S n, O) = S nSachant que : plus(n, O) = n (hypothèse d'induction) plus(S n, O) = S (plus(n, O)) (cas inductif de la fonction plus) = S n (hypothèse d'induction)

D. Delahaye M1 Info. 2022-2023

Définition inductive

On se donne un ensemble \mathcal{A} (éléments de la liste).

On peut définir les listes d'éléments de ${\cal A}$ comme le plus petit ensemble ${\cal L}$ vérifiant les propriétés suivantes :

- ullet $nil \in \mathcal{L}$
- Pour tout $e \in \mathcal{A}$ et $l \in \mathcal{L}$, on a $e :: l \in \mathcal{L}$

Cette définition est polymorphe en ce sens qu'elle ne dépend pas de la structure des éléments de A.

Notation

- On utilisera la notation [] pour nil
- Et si $a, b, c \in A$, on utilisera la notation [a; b; c] pour a :: b :: c :: nil

Fonction récursive

On peut définir la fonction de concaténation app de type $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$ de la façon suivante :

- Pour tout $l \in \mathcal{L}$, app(nil, l) = l
- Pour tout $e \in \mathcal{A}$ et $l_1, l_2 \in \mathcal{L}$, $app(a :: l_1, l_2) = a :: (app(l_1, l_2))$

La récursion se fait sur le premier argument.

Exemple d'évaluation

• app([1; 2], [3; 4; 5]) = 1 :: app([2], [3; 4; 5]) = 1 :: 2 :: app([], [3; 4; 5]) = 1 :: 2 :: [3; 4; 5] = [1; 2; 3; 4; 5]

D. Delahaye Types inductifs M1 Info. 2022-2023 10 / 20

Exemple de preuve

On veut démontrer que : $\forall I \in \mathcal{L}.app(nil, I) = I$.

- ullet On suppose un $I\in\mathcal{L}$
- Puis on part de app(nil, I)
- On utilise le cas de base de app pour dire que app(nil, l) = l

La preuve est directe en utilisant la définition de app.

```
Un autre exemple de preuve
```

Et si on veut démontrer que : $\forall I \in \mathcal{L}.plus(I, niI) = I$?

Il nous faut faire une preuve par induction.

Mais quel est le schéma d'induction?

Exemple de preuve

On veut démontrer que : $\forall I \in \mathcal{L}.app(nil, I) = I$.

- ullet On suppose un $I\in\mathcal{L}$
- Puis on part de app(nil, l)
- On utilise le cas de base de app pour dire que app(nil, l) = l

La preuve est directe en utilisant la définition de app.

Un autre exemple de preuve

Et si on veut démontrer que : $\forall I \in \mathcal{L}.plus(I, niI) = I$?

Il nous faut faire une preuve par induction.

Mais quel est le schéma d'induction?

Exemple de preuve

On veut démontrer que : $\forall I \in \mathcal{L}.app(nil, I) = I$.

- ullet On suppose un $I\in\mathcal{L}$
- Puis on part de app(nil, l)
- On utilise le cas de base de app pour dire que app(nil, l) = l

La preuve est directe en utilisant la définition de app.

Un autre exemple de preuve

Et si on veut démontrer que : $\forall I \in \mathcal{L}.plus(I, niI) = I$?

Il nous faut faire une preuve par induction.

Mais quel est le schéma d'induction?

Exemple de preuve

On veut démontrer que : $\forall I \in \mathcal{L}.app(nil, I) = I$.

- ullet On suppose un $I\in\mathcal{L}$
- Puis on part de app(nil, l)
- On utilise le cas de base de app pour dire que app(nil, l) = l

La preuve est directe en utilisant la définition de app.

Un autre exemple de preuve

Et si on veut démontrer que : $\forall I \in \mathcal{L}.plus(I, niI) = I$?

Il nous faut faire une preuve par induction.

Mais quel est le schéma d'induction?

Schéma d'induction

Pour \mathcal{L} , on peut se donner le schéma d'induction structurelle suivant :

• $\forall P \in \mathcal{L} \rightarrow Prop.P(nil) \Rightarrow (\forall e \in \mathcal{A}. \forall l \in \mathcal{L}.P(l) \Rightarrow P(e :: l)) \Rightarrow \forall l \in \mathcal{L}.P(l)$

Autres schémas d'induction

• Comme précédemment, il s'agit là du schéma d'induction structurelle (il existe d'autres schémas)

Retour sur l'autre exemple de preuve

```
Preuve de : \forall I \in \mathcal{L}.app(I, nil) = I.
```

On fait une preuve par induction avec P(I) = (app(I, nil) = I):

- Cas de base : app(nil, nil) = nilDémontré en utilisant le cas de base de la fonction app
- Cas inductif: app(e :: I, nil) = e :: ISachant que : app(I, nil) = I (hypothèse d'induction) app(e :: I, nil) = e :: (app(I, nil)) (cas inductif de la fonction app) = e :: / (hypothèse d'induction)

M1 Info. 2022-2023 13 / 20

Somme des *n* premiers entiers naturels

On peut définir cette fonction comme la relation inductive is_sum de type $\mathcal{N} \times \mathcal{N} \to Prop$ de la façon suivante :

- On a : is_sum(O, O);
- Pour $n, s \in \mathcal{N}$, si $is_sum(n, s)$, alors on a : $is_sum(S \ n, s + (S \ n))$.

Le premier paramètre est l'entier n dont on souhaite calculer la somme des n premiers entiers. Le deuxième paramètre est le somme calculée.

On peut voir cette relation comme une spécification mais elle est très calculatoire. En fait, c'est comme cela qu'on l'écrirait en Prolog.

Un exemple de preuve

- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(S (S O), S (S (S O)))
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is sum(S O, S O)
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(O, O)
- Démontré en utilisant le cas de base de is sum

D. Delahaye Types inductifs M1 Info. 2022-2023 15 / 20

Un exemple de preuve

- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(S (S O), S (S (S O)))
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is sum(S O, S O)
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(O, O)
- Démontré en utilisant le cas de base de is sum

Un exemple de preuve

- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(S (S O), S (S (S O)))
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is sum(S O, S O)
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(O, O)
- Démontré en utilisant le cas de base de is sum

Un exemple de preuve

- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(S (S O), S (S (S O)))
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is sum(S O, S O)
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(O, O)
- Démontré en utilisant le cas de base de is sum

Un exemple de preuve

- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(S (S O), S (S (S O)))
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is sum(S O, S O)
- On utilise le cas inductif de is_sum et on se retrouve à démontrer que : is_sum(O, O)
- Démontré en utilisant le cas de base de is sum

Parité des entiers naturels

On peut définir cette fonction comme la relation inductive is_even de type $\mathcal{N} \to Prop$ de la façon suivante :

- On a : is_even(O);
- Pour $n \in \mathcal{N}$, si $is_even(n)$, alors on a : $is_even(S(S n))$.

La récursion se fait ici avec une profondeur de 2.

Un exemple de preuve

On veut démontrer que : $is_{even}(S(S(S(S(S)))))$.

- On utilise le cas inductif de is_even et on se retrouve à démontrer que : is_even(S (S O))
- On utilise le cas inductif de is_even et on se retrouve à démontrer que : is_even(O)
- Démontré en utilisant le cas de base de is even

Un exemple de preuve

On veut démontrer que : $is_even(S(S(S(S(S)))))$.

- On utilise le cas inductif de is_even et on se retrouve à démontrer que : is_even(S (S O))
- On utilise le cas inductif de is_even et on se retrouve à démontrer que : is_even(O)
- Démontré en utilisant le cas de base de is even

Un exemple de preuve

On veut démontrer que : $is_even(S(S(S(S(S)))))$.

- On utilise le cas inductif de is_even et on se retrouve à démontrer que : is_even(S (S O))
- On utilise le cas inductif de is_even et on se retrouve à démontrer que : is_even(O)
- Démontré en utilisant le cas de base de is even

Un exemple de preuve

On veut démontrer que : $is_even(S(S(S(S(S)))))$.

- On utilise le cas inductif de is_even et on se retrouve à démontrer que : is even(S (S O))
- On utilise le cas inductif de is_even et on se retrouve à démontrer que : is even(O)
- Démontré en utilisant le cas de base de is even

Listes d'entiers naturels pairs

On veut définir la relation qui dit si une liste d'entiers naturels est uniquement constituées d'entiers pairs.

Pour ce faire, on utilise les listes \mathcal{L} avec $\mathcal{A} = \mathcal{N}$.

On peut définir cette relation comme la relation inductive is_even_list de type $\mathcal{L} \to Prop$ de la façon suivante :

- On a : is_even_list(nil);
- Pour $n \in \mathcal{N}$ et $l \in \mathcal{L}$, si $is_even(n)$ et $is_even_list(l)$, alors on a : $is_even_list(n :: l)$.

Un exemple de preuve

```
is\_even\_list([O;(S(SO));(S(S(SO))))]).
```

- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
 - is_even(O) (cas de base de is_even)
 - $is_{even_list}([(S(SO)); (S(S(S(SO))))])$
- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
 - is _even(S (S O)) (cas inductif + cas de base de is _even)
 - is_even_list([(S (S (S (S O))))]]
- On utilise le cas inductif de *is_even_list* et on se retrouve à démontrer que :
 - is even(S(S(S(S(S))))) (2 × cas inductif + cas de base de is even(S(S(S(S(S)))))
 - is_even_list(nil)
- On utilise le cas de base de is even list

Un exemple de preuve

```
is\_even\_list([O; (S (S O)); (S (S (S O))))]).
```

- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
 - is_even(O) (cas de base de is_even)
 - ▶ is_even_list([(S (S O)); (S (S (S O))))])
- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
 - $is_{even}(S(S(S(S(S)))))$ (2 × cas inductif + cas de base de $is_{even}(S(S(S(S(S(S))))))$
 - is_even_list(nil)
- On utilise le cas de base de is _even_list

Un exemple de preuve

```
is\_even\_list([O;(S(SO));(S(S(SO))))]).
```

- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
 - is_even(O) (cas de base de is_even)
 - ▶ is_even_list([(S (S O)); (S (S (S (S O))))])
- On utilise le cas inductif de *is_even_list* et on se retrouve à démontrer que :

 - ▶ is_even_list([(S (S (S (S O))))])
- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
 - $is_even(S(S(S(S(S(S))))))$ (2 × cas inductif + cas de base de is_even)
 - is_even_list(nil)
- On utilise le cas de base de is _even_list

Un exemple de preuve

```
is\_even\_list([O; (S (S O)); (S (S (S O))))]).
```

- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
 - is_even(O) (cas de base de is_even)
 - \rightarrow is_even_list([(S (S O)); (S (S (S (S O))))])
- On utilise le cas inductif de *is_even_list* et on se retrouve à démontrer que :

 - ▶ is_even_list([(S (S (S (S O))))])
- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
 - $is_even(S(S(S(S(S)))))$ (2 × cas inductif + cas de base de is_even)
 - is_even_list(nil)
- On utilise le cas de base de is even list

Un exemple de preuve

```
is\_even\_list([O;(S(SO));(S(S(S(SO))))]).
```

- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :
 - is_even(O) (cas de base de is_even)
 - \rightarrow is_even_list([(S (S O)); (S (S (S (S O))))])
- On utilise le cas inductif de is _even_list et on se retrouve à démontrer que :

 - ▶ is_even_list([(S (S (S (S O))))])
- On utilise le cas inductif de *is_even_list* et on se retrouve à démontrer que :
 - $is_even(S(S(S(S(S)))))$ (2 × cas inductif + cas de base de is_even)
 - ▶ is even list(nil)
- On utilise le cas de base de is even list

Exercices

Types de données inductifs

- Définir le type des formules en logique propositionnelle
- Écrire la fonction sub, qui, étant donnée une formule F, rend l'ensemble des sous-formules de F
- Écrire la fonction nbc, qui, étant donnée une formule F, rend l'ensemble des connecteurs de F
- Écrire le schéma d'induction structurelle des formules
- Démontrer que : $|sub(F)| \le 2 \times nbc(F) + 1$, pour toute formule F

Relations inductives

- Spécifier la relation « être une permutation de » pour deux listes
- Démontrer que la liste [1; 2; 3] est une permutation de [3; 2; 1]
- Spécifier la relation « être triée » pour une liste
- Démontrer que la liste [1; 2; 3] est triée