STOR 455 STATISTICAL METHODS I

Jan Hannig

Multivariate Regression

- $Y=X \beta + \epsilon$
 - \mathbf{X} is a regression matrix, β is a vector of parameters and ϵ are independent $N(0,\sigma)$
- Estimated parameters b=(X'X)⁻¹X'Y
- Predicted responses Ŷ=H Y, H=X (X'X)-1X'
- Residuals e=(I-H)Y
- Estimated regression variance s²=e'e/(n-p)

Inference for b (Section 4.6+4.7)

- b ~ N(β , $\sigma^2(X'X)^{-1}$)
 - Estimate $Var(b_i)$ by $s^2(b_i) = MSE^*(X'X)^{-1}_{i,i}$
- CI: $b_i \pm t^* s(b_i)$
 - proc reg, option /clb
- Significance test for H_{0i} : β_i , = 0 uses the test statistic $t = b_i/s(b_i)$, df = dfE = n-p, and the P-value computed from the t(n-p) distribution
 - Automatically part of SAS output

```
proc reg data=studios;
  model y=x1 	ext{ } x2/clb 	ext{ } clm 	ext{ } cli 	ext{ } alpha=0.01
                  xpx i covb corrb;
/*clb CI for b;
clm CI for mean;
cli CI for prediction;
xpx gives the X'X matrix
i gives the inverse of the X'X matrix
covb gives the variance covariance matrix of
 h
corrb gives the correlation matrix of b*/
run;
```

ANOVA (Section 4.8)

- Sources of variation are
 - Model or Regression (SSM or SSR)
 - Error or Residual (SSE)
 - Total (SSTO)
- SS and df add
 - SSM + SSE =SSTO
 - -dfM + dfE = dfT

Sum of Squares

$$egin{aligned} ext{SSM} &= \Sigma_{i=1}^n (\hat{Y}_i - ar{Y})^2 \ ext{SSE} &= \Sigma_{i=1}^n (Y_i - \hat{Y}_i)^2 \ ext{SST} &= \Sigma_{i=1}^n (Y_i - ar{Y})^2 \end{aligned}$$

Degree of Freedom and Mean Squares

$$df_{M}=p-1$$

 $df_{E}=n-p$
 $df_{T}=n-1$

$$MSM=SSM/df_{M}$$
 $MSE=SSE/df_{E}$
 $MST=SST/df_{T}$

ANOVA Table

```
Source SS df MS F

Model SSM dfM MSM MSM/MSE

Error SSE dfE MSE

Total SST dfT (MST)
```

ANOVA F test

- H_0 : $\beta_1 = \beta_2 = ... \beta_{p-1} = 0$
- H_a : β_k neq 0, for at least one k=1, ..., p-1
- Under H₀, F ~ F(p-1,n-p)
- Reject H₀ if F is large, use P value
- Studios example: see SAS output

Interpret F-test

- The p-value for the F significance test tells us one of the following:
 - p-value large: there is no evidence to conclude that any of our explanatory variables can help us to model the response variable using this kind of model
 - P-value small: one or more of the explanatory variables in our model is potentially useful for predicting the response variable in a linear model

Difference between F and T tests

- In SLR the T test for β_1 =0 is the same as the F test (same p-value, the statistics T²=F)
- In MLR this is not true
 - The T tests test whether each β_i =0 individually
 - The F test tests whether all $\beta_1 = ... = \beta_{p-1} = 0$

				The REG	Procedu	re					
•	Model: MODEL1										
•	Dependent Variable: revenue										
•				f Observat:							
•			Number o	f Observat:	ions Use	d 21					
•				Analysis	of Vari	ance					
•				Sı	um of	Mean					
•		Source	DF	Squ	uares	Square	F Value	Pr > F			
•		Model	2		24015	12008	99.10	<.0001			
•		Error	18			121.16263					
•		Corrected	Total 20	2	26196						
•			Root MSE	11.(00739	R-Square	0.9167				
			Dependent Mean		90476	Adj R-Sq	0.9075				
•			Coeff Var		05118	5					
•				Paramete	r Estima	tes					
•			Parameter	Standard							
•	Variable	DF	Estimate	Error	t Val	ue Pr > t	95%	Confidence	Limits		
•	Intercept	1	-68.85707	60.01695	_1	15 0.2663	3 _10/	94801	57.23387		
	=		9.36550	4.06396		30 0.200		82744	17.90356		
	disp_income proportion	1	1.45456	0.21178	6.			82744 00962	1.89950		
-	Propor croll	T	T.40400	0.211/0	0.	·····	1.	00702	1.09930		

R^2

- The squared multiple regression correlation (R²)
 gives the proportion of variation in the
 response variable explained by the explanatory
 variables included in the model
- It is usually expressed as a percent
- It is sometimes called the coefficient of multiple determination

R² (continue)

- R² = SSM/SSTO, the proportion of variation explained
- R² = 1 (SSE/SSTO), 1 the proportion of variation not explained
- H_0 : $\beta_1 = \beta_2 = ...$ $\beta_{p-1} = 0$ is equivalent to H_0 : the population R^2 is zero
- $F = [(R^2)/(p-1)]/[(1-R^2)/(n-p)]$

Estimation of $E(Y_h)$

- X_h is now a vector
- $(1, X_{h1}, X_{h2}, ..., X_{h(p-1)})'$
- We want an point estimate and a confidence interval for the subpopulation mean corresponding to X_h
- SAS option /clm

Theory for $E(Y_h)$

$$egin{align} E(Y_h) &= X_h'eta \ E(\widehat{Y}_h) &= X_h'b \ \sigma^2(E(\widehat{Y}_h)) &= \sigma^2 X_h'(X'X)^{-1}X_h \ s^2(E(\widehat{Y}_h)) &= (ext{MSE}) \ X_h'(X'X)^{-1}X_h \ \end{cases}$$

Prediction of Y_h

- X_h is now a vector
- $(1, X_{h1}, X_{h2}, ..., X_{h(p-1)})'$
- We want a prediction for Y_h with an interval that expresses the uncertainty in our prediction
- SAS option /cli

Theory for Y_h

$$Y_h = X_h' eta + arepsilon_h \ \widehat{Y_h} = X_h' b \ \sigma^2(\widehat{Y_h}) = \sigma^2(1 + X_h'(X'X)^{-1} X_h) \ s^2(\widehat{Y_h}) = ext{ (MSE) } (1 + X_h'(X'X)^{-1} X_h)$$

```
* estimate mean response,
                           proc reg data = stoPred;
  predict new obs;
                             model y = x1 x2 / clm
data stoPred;
                             cli;
  input x1 x2 y;
                             output
cards;
                             OutputStatistics=temp;
  68.5 16.7 174.4
                           run;
  45.2 16.8 164.4
                           quit;
  91.3 18.2 244.2
                           proc print data = temp;
  82.7 19.1 224.1
  52.3 16.0 166.5
                             where Observation >=
                             22;
  65.4 17.6
  53.1 17.7 .
                           run;
run;
```

			StdErr				
			Predic	cted Mea	n		
Obs	Model	Dependent	Observation	DepVar	Value	Predict	
22	MODEL1	٧	22 .	191.1039	2.7668		
	MODEL1	,	23 .				
23	MODELI	У	23 .	174.1494	4.5986		
	Lower	Upper					
Obs	CLMea		n LowerCL	UpperCL	Residual		
22	185.2911	196.9168	167.2589	214.9490			
23	164 4881	183 8107	149 0867	199 2121			

SAT Example

- School spending and academic performance are often thought to be positively correlated
- Some argue that they are statistically unrelated
- Data collected from 50 states in 1995 to address this question

Data

- Y: Average total score on the SAT for each state in US, 1994-95
- X₁: Current expenditure per pupil 1994-95 (in thousands of dollars)
- X₂: Percentage of all eligible students taking the SAT, 1994-95
- Ch6.sat.sas : SAS code for analyzing this data

```
*Inputting the SAT data;
data sat;
  infile 'satexp.dat';
  input x1 x2 y;
  x1x2=x1*x2;
  label x1='Expenditure'
        x2='Percent'
    y='SATscore';
run;
* Making scatter plot
  using macro;
%include "C:\Macro
  \scatter.sas";
%scatter(data = sat, var
  = y x1 x2);
```


10/14/10

```
* Check correlation;
proc corr data = sat;
run;
*SLR with each variable,
  note sign of b1;
symbol1 v=dot h=.8
  c=blue;
proc reg data = sat;
  model y=x1;
run;
proc reg data = sat;
  model y=x2;
run;
```

```
* multivariate reg.;
proc reg data = sat;

* ask for covariance
  matrix of b and CI;
  model y = x1 x2/covb
  clb;
  plot rstudent. * (x1 x2
  p.);
  plot r. * nqq.;
run;
```

The CORR Procedure

4 Variables: x1 x2 y x1x2

Simple Statistics

Variable	N	l Mean	Std Dev	Sum	Minimum	Maximun	n Label
x1 x2		5.90526 35.24000					Expenditure Percent
y	50	965.92000	74.82056	48296	844.00000	1107	SATscore
x1x2	50	229.28338	206.17969	9 1146	4 14.6240	0 /14.1//	'00

Pearson Correlation Coefficients, N = 50 Prob > |r| under H0: Rho=0

	x1	x2	y x1x2	
x1	1.00000	0.59263	-0.38054	0.77503
Expenditu	re	<.0001	0.0064	<.0001
x2	0.59263	1.00000	-0.88712	0.95115
Percent	<.0001		<.0001	<.0001
y	-0.38054	-0.88712	1.00000	-0.77923
SATscore	0.0064	<.0001	1	<.0001
x1x2	0.77503 <.0001	0.95115 <.0001	-0.77923 <.0001	1.00000

Analysis of Variance

Sum of Mean DF Square F Value Pr > F Squares Source Model 1 39722 39722 8.13 0.0064 Error 48 234586 4887.20043 274308 Corrected Total 49

Root MSE 69.90851 R-Square 0.1448
Dependent Mean 965.92000 Adj R-Sq 0.1270
Coeff Var 7.23751

Parameter Estimates

Standard Parameter Estimate Error t Value Pr > |t| Variable Label DF Intercept Intercept 1089.29372 44.38995 24.54 <.0001 Expenditure -20.89217 7.32821 -2.85 0.0064 x1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 215875 215875 177.33 <.0001

Error 48 58433 1217.35723

Corrected Total 49 274308

Root MSE 34.89065 R-Square 0.7870 Dependent Mean 965.92000 Adj R-Sq 0.7825 Coeff Var 3.61217

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 1053.32036 8.21121 128.28 <.0001
x2 Percent 1 -2.48015 0.18625 -13.32 <.0001

Analysis of Variance

	Su	ım of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	224788	112394	106.67	<.0001
Error	47	49520	1053.61828		
Corrected Total	49	27430	08		

Root MSE 32.45949 R-Square 0.8195 Dependent Mean 965.92000 Adj R-Sq 0.8118 Coeff Var 3.36047

Parameter Estimates

		Para	meter Sta	ndard		
Variable	Label	DF	Estimate	Error	t Value	Pr > ItI
						1-1
Intercept	Intercept	1	993.83166	21.8332	3 45.52	2 <.0001
x1	Expenditure	1	12.28652	4.22432	2.91	0.0055
x2	Percent	1	-2.85093	0.21511	-13.25	<.0001

Parameter Estimates

Variable	Label	DF	95% Confi	dence Limits
Intercept	Intercept Expenditure	1 1	949.90886 3.78829	1037.75446 20.78475
x2	_ ' .	1	-3.28368	-2.41818

Covariance of Estimates

Variable	Label	Intercept	x1 >	(2
Intercept	Intercept	476.69008596	-86.40093833	1.5494405413
x1	Expenditure	-86.40093833	17.844845216	-0.538521916
x2	Percent	1.5494405413	-0.538521916	0.0462733084

10/14/10

Notes:

- The relationship between a response variable and an explanatory variable depends on what other explanatory variables are in the model
- Regression coefficients, standard errors and the results of significance tests can change dramatically when different explanatory variables are included in the model

SENIC Data

- Info about 113 hospitals between 1975 and 1976
- Variables: id, length of stay, age, infection risk, routine culturing ratio, routine chest X-ray ratio, number of beds, medical school affiliation, region (1=NE, 2=NC, 3=S, 4=W), average daily census, number of nurses, available facilities
- File AppendixC01.txt in the extra data sets

SENIC Data

- Compare different models using R²
- Same model for different subset