Nanye (Willis) Ma <u>Email</u> <u>Website</u> <u>In Linkedin</u> <u>Github</u>

Education

New York University

New York, NY

Honors B.A. in Mathematics; B.A. in Computer Science; 3.9/4.0 GPA

September 2020 - Expected May 2024

- Selected Coursework:
 - * Graduate Level: Machine Learning, Computer Vision, Probability Theory I, Portfolio and Risk Management, Programming Language.
 - * Undergrad Level: Honors Analysis, Honors Algebra, Honors Theory of Probability, Honors Numerical Analysis. Operating System, Basic Algorithm, Applied Internet Technology.

Publications / Preprints

• N. Ma, M. Goldstein, M. S. Albergo, N. M. Boffi, E. Vanden-Eijnden, S. Xie. SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers. *In submission to CVPR 2024*.

Research Experiences

SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers May 2023 - Present

- Proposed Scalable Interpolant Transformers (SiT), a novel family of generative models built on dynamical transport, effectively merging Flow and Diffusion-based models.
- Conducted a comprehensive study of the SiT design space, focusing on the three critical components: model prediction and objectives (velocity vs. score), interpolant parameters (choices of α_t and σ_t), and sampling methods (ODE vs. SDE).
- Employed a methodical approach by independently analyzing each above component within the design space while holding the others invariant, and undertook a detailed analysis of the performance characteristics among different component combinations.
- Innovated a novel backward SDE construction that incorporates a customized diffusion coefficient, enhancing both flexibility and efficacy in the diffusion sampling process.
- Demonstrated that SiT equipped with certain combination of components (velocity + linear interpolant + SDE with linear diffusion coefficient) significantly surpasses the performance of baseline DiT model, achieving twice the converging speed across various scales.
- With ODE sampler, the largest SiT-XL model attained a comparable **2.15** FID score with **50** number of function evaluations (NFE), surpassing DiT in both sampling speed and quality.
- With SDE sampler, SiT-XL attained a competitive **2.06** FID score under same NFE as DiT, pushing the performance even further.
- Submit a paper (as 1st author) to CVPR2024.

Text-to-Image Scalable Diffusion Models with Transformers

Feb 2023 - May 2023

- Integrated a pre-trained DistilBERT encoder with Diffusion Transformers (DiT) to enable rapid and high-quality text embedding.
- Achieved a 78% reduction in memory consumption by optimizing training through gradient checkpointing and pre-extracted VAE image features, enhancing training speed to 0.32 steps/sec on a single A100 GPU.
- Fine-tuned text-to-image DiT from pre-trained class-conditional DiT checkpoint by unfreezing Embedders and inject randomly initialized weights to adaLN modules.
- Benchmarking on MS-COCO, the fine-tuned model attained a competitive FID score of 15.49 with the LDM-KL-8-G model with only 200K training steps.

Deep Marching Tetrahedra on Non-Watertight Models

Oct 2022 - Dec 2022

- Re-engineered Deep Marching Tetrahedra (DMTet) network for high-resolution 3D shape synthesis and optimized its training process for non-watertight 3D meshes.
- Replaced the PVCNN Encoder with a fine-tuned Inverse Distance Weighted KD Tree, enabling more detailed and precise spatial encoding of non-watertight models' point cloud.
- Enhanced the Surface Subdivision module with a learnable Signed Distance Field threshold to self-optimize with respect to different surface topologies, extracting more refined surfaces.
- The optimized model significantly outperformed the baseline DMTet on Non-Watertight Models in both L1 and L2 Chamfer Distance on non-watertight meshes, attaining best scores of 5.46 and 3.89, respectively.

- Built the Predicted GDP model using the Cobb-Douglas function, incorporating policy rewards based on carbon neutrality and sustainability.
- Devised a Green GDP model by integrating the Predicted GDP model output with a fine-tuned decaying factor.
- Optimized Green GDP using Euler-Lagrangian conditions, and determined the optimized policy rewards by constructing a convex optimization problem with affine constraints in carbon emission and sustainability factors.
- The optimized model outperformed traditional GDP model, improving the growth rate by 7.1% and reducing global CO2 emission by 14.9% over a ten-year period.

Optimization for Road Cycling Power Distribution

Mar 2022 - Apr 2022

- Constructed a non-linear model based on existing data from top cyclists and achieved a deviation of less than 3.6% compared to the average podium finish times in each time trial.
- Implemented Genetic Algorithm with Scikit-learn to find the optimal power distribution curve over all time trial courses, enabled the predicted finish time to decrease by an average of 9.3%.

Projects

Dream Diffusion, Full Stack Development Project

Jan 2023 - May 2023

- Orchestrated the development of a full stack application using Next.js, designed specifically for recording dreams and writing dream journals with DallE backbone.
- Engineered session management from scratch to handle authentication and authorization, utilizing Redis as session store for efficient information retrieval.
- Designed robust authentication middleware using Passport.js and JWT-based strategies to bolster application security and safeguard user privacy.
- Optimized Serverless API architecture to support large-size (1024×1024) images transfers between frontend and backend, maintaining a low latency of up to 120ms for seamless user experience.

HyperEX, Full Stack Development Project

May 2022 - Jan 2023

- Played a pivotal role in the development team of HyperEx, an innovative online immersive social platform supporting hundreds of users in a shared virtual space.
- Designed a Finite State Machine library and Inverse Kinematics algorithms in JavaScript, enhancing the player's motion system, rag-doll system, and inventory system.
- Developed RESTful API endpoints using Express and Socket.io to facilitate communications between game engine and the application, resulting in seamless interactions between user interfaces and game renderings with a low latency of up to 50ms.
- Engineered a performance optimization module with Draco to ensure the platform's performance on outdated devices, and further increases the game's frame rate by over 300

Weensy OS, Operating System Development Project

Sep 2021 - Nov 2021

• Implemented a small OS with 2 MB physical and 3MB virtual memory, including one basic shell command ls, multithreaded kernel and userspace, paging and address allocation, and a FUSE file system.

Technical Skills

Coding Languages: Python, JavaScript, C++, Java, C, Standard ML, Scheme, Prolog, Assembly, Julia Tools/Frameworks: Github, Linux / JAX, Flax, Optax, PyTorch, Numpy, Scipy, Pandas, Node.js, React, Express, MongoDB, Next.js

Honors

Summer Undergraduate Research Experience (SURE) Fund Dean's Undergraduate Research Fund Dean's List for Academic Year 2020-2021, 2021-2022, 2022-2023 MCM Success Award 2022, 2023