

$\begin{array}{c} {\it Transcription \ musicale \ automatique \ en \ python} \\ {\it D\'etail \ du \ projet \ et \ plan \ de \ travail} \end{array}$

Antoine Veillette

Dans le cadre du cours: GPH-3001

1. Introduction

Un aspect important de la musique consiste à communiquer efficacement l'idée musicale du compositeur à l'interprète. De la partition à l'oreille, et inversement, de l'oreille à la partition. Le second étant beaucoup plus difficile que le premier malgré que des génies comme Mozart étaient autrefois capables de transcrire un concerto complet après une seule et unique écoute.[1]

Ce projet tentera d'utiliser les techniques de transcription musicale automatique modernes pour recréer les prouesses exécutées par le jeune Mozart, 254 ans plus tôt.

2. Description du projet et objectifs

Ce projet vise à extraire et transcrire les informations musicales contenues dans un fichier audio d'une interprétation musicale, transformant ainsi un enregistrement sonore en partitions musicales précises et lisibles au format PDF. Les principaux objectifs sont les suivants :

- 1. Extraction des Informations Musicales : Identifier et extraire les informations rythmiques et fréquentielles présentes dans un fichier audio. Cela comprend la détection des hauteurs des notes, des durées, des attaques et des dynamiques de chaque note jouée. On inclut aussi les effets comme les *vibratos* et les *bend* à la guitare.
- 2. Transcription pour un Instrument Unique Monophonique : Développer et perfectionner un système de transcription automatique capable de traiter l'audio d'un seul instrument. Ce système doit être capable de produire une partition musicale fidèle à l'interprétation originale.
- 3. Transcription Polyphonique : Étendre le système pour qu'il puisse gérer des échantillons musicaux polyphoniques.
- 4. Transcription à Plusieurs Instruments Polyphonique : Cela implique la capacité de différencier et transcrire les performances de plusieurs instruments jouant simultanément, en produisant des partitions distinctes pour chaque instrument de l'ensemble.
- 5. Génération de Partitions au Format PDF : Convertir les transcriptions musicales obtenues en fichiers PDF.

Pour atteindre ces objectifs, le projet sera réalisé en plusieurs étapes clés, comprenant l'analyse du signal audio, la modélisation des séquences musicales, et l'utilisation de bibliothèques spécialisées pour la génération des partitions. Nous utiliserons des outils comme **Librosa** pour l'extraction des caractéristiques audios, des modèles de Markov à états cachés et/ou des réseaux neuronaux pour l'identification des accords polyphonique et la séparation des instruments, ainsi que **abjad** pour la génération de partition qui seront ensuite enregistrés en PDF.

3. Cahier de charge (ou information similaire tel que les spécifications à atteindre)

Cahier des charges

Critère à évaluer	Condition générale à respecter	Poids %
Reconnaissance des rythmes	Le bon rythme au moins 80% du temps	15
Reconnaissance des notes	La bonne note au moins 80% du temps	15
Identifier le bon tempo	Identifie le bon tempo à 2% de précision	10
Transcription des dynamiques	Les variations de volume et d'intensité bien capturées	10
Reconnaissance des articulations	Capturer les accents, staccatos, et autres articulations au moins 70% du temps	10
Précision de la transcription polyphonique et reconnaissance d'accord	Identifier correctement les notes jouées simultanément dans un ensemble polyphonique ¹ au moins 70% du temps	10
Séparation des instruments	Séparer les instruments présent dans l'é- chantillon audio	10
Exportation au format PDF	Exporter la partition transcrite en un format PDF lisible et correct	10
Interface utilisateur	Facilité d'utilisation et clarté de l'inter- face utilisateur pour charger des fichiers audios et visualiser les résultats	10

 $^{^{1}\}mathrm{Plusieurs}$ notes à la fois e.g. un accord.

4. Plan de travail:

4.1. Listes des tâches

4.1.1. Recherche et Planification

• Étude du sujet : Revue de la littérature actuelle en transcription musicale et recherche d'information musicale. Notamment [2] et [3].

4.1.2. Développement Monophonie

- Implémentation de l'Extraction Audio : Développement des modules d'extraction des caractéristiques audio.
- Transcription Monophonique : Développement et test du module de transcription pour un seul instrument jouant une note à la fois.

4.1.3. Développement polyphonie

• Transcription Polyphonique : Extension du système pour gérer les ensembles polyphoniques à un instrument.

4.1.4. Séparation des instruments

- Séparer les instruments : Développement de la fonctionnalité pour séparer les différents instruments présents dans l'échantillon audio.
- **Génération de Partitions** : Développement des fonctionnalités de génération de fichiers PDF.

4.1.5. Tests et Validation

- Tests Unitaires et Intégration : Validation des modules individuellement et en intégration.
- Évaluation de la Précision : Tests sur des ensembles de données réelles pour évaluer la précision.

4.2. échéancier

Date	Action
6-mai \rightarrow 30-mai	Développement Monophonie
1-juin \rightarrow 29-juin	Développement polyphonie
30-juin \rightarrow 20-juillet	Séparation des instruments
20-juillet \rightarrow 18-août	Tests et Validation

4.3. jalons

Jalon	Description	Date Cible
Jalon 1	Développement initial, tests de base et production d'une partition pour un instrument monophonique	18 juin
Jalon 2	Amélioration de la reconnaissance pour un instrument en polyphonie	10 juillet
Jalon 3	Amélioration pour plusieurs instruments en polyphonie	7 août
Jalon 4	Finalisation et tests de performance	18 août

Bibliographie

- [1] « Wolfgang Amadeus Mozart : 10 petites choses que vous ne savez (peut-être) pas sur le compositeur ».. https://www.radiofrance.fr/francemusique/wolfgang-amadeus-mozart-10-petites-choses-que-vous-ne-savez-peut-etre-pas-sur-le-compositeur-1324414
- [2] Müller, M., « Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications », Springer International Publishing, 2016.
- [3] Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., et Klapuri, A., « Automatic music transcription: challenges and future directions », *Journal of Intelligent Information Systems*, Vol. 41, 2013, p. 407-434.. https://api.semanticscholar.org/CorpusID:207169189