CycleMLP

A MLP-like Architecture for Dense Prediction

Marco Benelli

University of Florence

February 14, 2022

Outline

- Introduction
- 2 Method
 - Cycle Fully-Connected Layer
 - Overall Architecture
- 3 Experiments
 - CIFAR10 Classification
 - STL10 Classification
- 4 Conclusion

Paradigm Shifts

Recent paradigm shifts:

2012 AlexNet

2020 ViT

2021 MLP-Mixer

MLP-Mixer

Mixer Layer

$$\mathbf{U}_{*,i} = \mathbf{X}_{*,i} + \mathbf{W}_2 \sigma(\mathbf{W}_1 \operatorname{LayerNorm}(\mathbf{X})_{*,i}), \quad \text{for } i = 1 \dots C$$

$$\mathbf{Y}_{j,*} = \mathbf{U}_{j,*} + \mathbf{W}_4 \sigma(\mathbf{W}_3 \operatorname{LayerNorm}(\mathbf{U})_{j,*}), \quad \text{for } j = 1 \dots S$$

Challenges

MLP-like models are facing these challenges:

- non-hierarchical architectures
- flexible input scales
- quadratic costs

MLP-Mixer v. CycleMLP

Cycle FC

Experimental Setup

- optimizer AdamW
- $\lambda = 5 \times 10^{-2}$
- cosine annealing learning rate schedule
- $\eta_{\text{max}} = 1 \times 10^{-3}$
- $T_{\text{max}} = 100$
- batch size = 256

Experiments

Model	STL10	CIFAR10	ImageNet-1K
ResNet	64.9%	77.1%	
RegNet	51.5%	60.6%	
ViT	44.4%		
MLP-Mixer	51.4%		
CycleMLP	49.8%	66.5%	

Loss Plot

Accuracy Plot

Loss Plot

Accuracy Plot

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.