

CSCI 104 Graph Representation and Traversals

Mark Redekopp
David Kempe
Sandra Batista

GRAPH REPRESENTATIONS

Graph Notation

 A graph is a collection of vertices (or nodes) and edges that

connect vertices

- Let V be the set of vertices
- Let E be the set of edges
- Let |V| or n refer to the number of vertices
- Let |E| or m refer to the number of edges

Graphs in the Real World

- Social networks
- Computer networks / Internet
- Path planning
- Interaction diagrams
- Bioinformatics

Basic Graph Representation

- Can simply store edges in list/array
 - Unsorted
 - Sorted

Graph ADT

- What operations would you want to perform on a graph?
- addVertex(): Vertex
- addEdge(v1, v2)
- getAdjacencies(v1) : List<Vertices>
 - Returns any vertex with an edge from v1 to itself
- removeVertex(v)
- removeEdge(v1, v2)
- edgeExists(v1, v2) : bool

```
#include<iostream>
using namespace std;
template <typename V, typename E>
class Graph{

Perfect for templating the data associated
  with a vertex and edge as V and E
```


More Common Graph Representations

- Graphs are really just a list of lists
 - List of vertices each having their own list of adjacent vertices
- Alternatively, sometimes graphs are also represented with an adjacency matrix
 - Entry at (i,j) = 1 if there is an edge between vertex i and j, 0 otherwise

	а	c,e
es	b	c,h
List of Vertices	C	a,b,d,e,g
Ve	d	c,f
of	e	a,c,f
_ist	f	d,e,g
	g	c,f,h
	h	b,g

	а	b	C	d	е	f	g	h
а	0	0	1	0	1	0	0	0
b	0	0	1	0	0	0	0	1
С	1	1	0	1	1	0	1	0
d	0	0	1	0	0	1	0	0
e	1	0	1	0	0	1	0	0
f	0	0	0	1	1	0	1	0
g	0	0	1	0	0	1	0	1
h	0	1	0	0	0	0	1	0

Graph Representations

- Let |V| = n = # of vertices and
 |E| = m = # of edges
- Adjacency List Representation
 - O(______) memory storage
 - Existence of an edge requires searching adjacency list
- Adjacency Matrix Representation
 - O(______) storage
 - Existence of an edge requires O(_____) lookup

	a	c,e
es	b	c,h
List of Vertices	С	a,b,d,e,g
Ve	d	c,f
t of	е	a,c,f
Lis	f	d,e,g
	g	c,f,h
	h	b,g

	a	b	C	d	е	f	g	h
а	0	0	1	0	1	0	0	0
b	0	0	1	0	0	0	0	1
С	1	1	0	1	1	0	1	0
d	0	0	1	0	0	1	0	0
е	1	0	1	0	0	1	0	0
f	0	0	0	1	1	0	1	0
g	0	0	1	0	0	1	0	1
h	0	1	0	0	0	0	1	0

Graph Representations

- Let |V| = n = # of vertices and |E| = m = # of edges
- Adjacency List Representation
 - O(|V| + |E|) memory storage
 - Existence of an edge requires searching adjacency list
 - Define degree to be the number of edges incident on a vertex (deg(a) = 2, deg(c) = 5, etc.

- O(|V|²) storage
- Existence of an edge requires O(1) lookup (e.g. matrix[i][j] == 1)

	а	b	C	d	е	f	g	h
а	0	0	1	0	1	0	0	0
b	0	0	1	0	0	0	0	1
С	1	1	0	1	1	0	1	0
d	0	0	1	0	0	1	0	0
е	1	0	1	0	0	1	0	0
f	0	0	0	1	1	0	1	0
g	0	0	1	0	0	1	0	1
h	0	1	0	0	0	0	1	0

Graph Representations

- Can 'a' get to 'b' in two hops?
- Adjacency List
 - For each neighbor of a...
 - Search that neighbor's list for b
- Adjacency Matrix
 - Take the dot product of row a & column b

	a	c,e
es	b	c,h
List of Vertices	С	a,b,d,e,g
Ve	d	c,f
t of	е	a,c,f
List	f	d,e,g
	g	c,f,h
	h	b,g

Adjacency Lists

	а	b	С	d	е	f	g	h
а	0	0	1	0	1	0	0	0
b	0	0	1	0	0	0	0	1
С	1	1	0	1	1	0	1	0
d	0	0	1	0	0	1	0	0
е	1	0	1	0	0	1	0	0
f	0	0	0	1	1	0	1	0
g	0	0	1	0	0	1	0	1
h	0	1	0	0	0	0	1	0

Adjacency Matrix Representation

Graph Representations

- Can 'a' get to 'b' in two hops?
- Adjacency List
 - For each neighbor of a...
 - Search that neighbor's list for b
- Adjacency Matrix
 - Take the dot product of row a & column b

	а	c,e
es	b	c,h
List of Vertices	С	a,b,d,e,g
Ve	d	c,f
of	е	a,c,f
_ist	f	d,e,g
	g	c,f,h
	h	b,g

	а	b	С	d	е	f	g	h
а	0	0	1	0	1	0	0	0
b	0	0	1	0	0	0	0	1
С	1	1	0	1	1	0	1	0
d	0	0	1	0	0	1	0	0
е	1	0	1	0	0	1	0	0
f	0	0	0	1	1	0	1	0
g	0	0	1	0	0	1	0	1
h	0	1	0	0	0	0	1	0

Directed vs. Undirected Graphs

- In the previous graphs, edges were <u>undirected</u> (meaning edges are 'bidirectional' or 'reflexive')
 - An edge (u,v) implies (v,u)
- In <u>directed</u> graphs, links are unidirectional
 - An edge (u,v) does not imply (v,u)
 - For Edge (u,v): the **source** is u, **target** is v
- For adjacency list form, you may need 2 lists per vertex for both predecessors and successors

Target

	a	c,e
es	b	c,h
List of Vertices	С	a,b,d,e,g
Ve	d	c,f
t of	е	a,c,f
Lis	f	d,e,g
	g	c,f,h
	h	b,g

Adjacency Lists

		a	b	С	d	е	f	g	h
	а	0	0	1	0	1	0	0	0
	b	0	0	0	0	0	0	0	1
4)	С	0	1	0	1	1	0	1	0
onrce	d	0	0	0	0	0	1	0	0
SOL	е	0	0	0	0	0	1	0	0
	f	0	0	0	0	0	0	0	0
	g	0	0	0	0	0	1	0	0
	h	0	0	0	0	0	0	1	0

Adjacency Matrix Representation

h

g

Directed vs. Undirected Graphs

- In directed graph with edge (u,v) we define
 - Successor(u) = v
 - Predecessor(v) = u

c,e

 Using an adjacency list representation may warrant two lists predecessors and successors

es	b	h	С
· Vertices	С	b,d,e,g	а
\ \ \	d	f	С
ist of	е	f	a,c
List	f		d, e, g
	a	f	c,h

Succs

b

Preds

	а	0	0	1	0	1	0	0	0
	b	0	0	0	0	0	0	0	1
4)	С	0	1	0	1	1	0	1	0
onrce	d	0	0	0	0	0	1	0	0
SOL	e	0	0	0	0	0	1	0	0
	f	0	0	0	0	0	0	0	0
	g	0	0	0	0	0	1	0	0
	h	0	0	0	0	0	0	1	0

b

C

а

Adjacency Matrix Representation

Graph Runtime, |V| = n, |E| =m

Operation vs Implementation for Edges	Add edge	Delete Edge	Test Edge	Enumerate edges for single vertex
Unsorted array or Linked List				
Sorted array				
Adjacency List				
Adjacency Matrix				

Graph Runtime, |V| = n, |E| =m

Operation vs Implementation for Edges	Add edge	Delete Edge	Test Edge	Enumerate edges for single vertex
Unsorted array or Linked List	Θ(1)	Θ(m)	Θ(m)	Θ(m)
Sorted array	Θ(m)	Θ(m)	Θ(log m) [if binary search used]	Θ(log m)+Θ(deg(v)) [if binary search used]
Adjacency List	Time to find List for a given vertex + Θ(1)	Time to find List for a given vertex + $\Theta(\deg(v))$	Time to find List for a given vertex + $\Theta(\deg(v))$	Time to find List for a given vertex + Θ(deg(v))
Adjacency Matrix	Θ(1)	Θ(1)	Θ(1)	Θ(deg(v))

Graph Memory Requirements

- For an adjacency list:
- For adjacency matrix:
- We call a graph sparse if |E| is O(n)
- We call a graph dense if |E| is Big_Omega(n^2)

- What representation is better for a sparse graph?
- What representation is better for a dense graph?

BREADTH-FIRST SEARCH

School of 1

Breadth-First Search

- Given a graph with vertices, V, and edges, E, and a starting vertex that we'll call u
- BFS starts at u ('a' in the diagram to the left) visits nearest neighbors, then to their neighbors and so on
- Goal: Find shortest paths from the start vertex to every other vertex

Depth 0: a

Breadth-First Search

- Given a graph with vertices, V, and edges, E, and a starting vertex, u
- BFS starts at u ('a' in the diagram to the left) visits nearest neighbors, then to their neighbors and so on
- Goal: Find shortest paths from the start vertex to every other vertex

Depth 0: a Depth 1: c,e

Breadth-First Search

- Given a graph with vertices, V, and edges, E, and a starting vertex, u
- BFS starts at u ('a' in the diagram to the left) visits nearest neighbors, then to their neighbors and so on
- Goal: Find shortest paths from the start vertex to every other vertex

Depth 0: a
Depth 1: c,e
Depth 2: b,d,f,g

Breadth-First Search

- Given a graph with vertices, V, and edges, E, and a starting vertex, u
- BFS starts at u ('a' in the diagram to the left) visits nearest neighbors, then to their neighbors and so on
- Goal: Find shortest paths from the start vertex to every other vertex

Depth 0: a
Depth 1: c,e
Depth 2: b,d,f,g
Depth 3: h

Developing the Algorithm

- Key idea: Must explore all nearer neighbors before exploring furtheraway neighbors
- From 'a' we find 'e' and 'c'
 - Must explore all vertices at depth i before any vertices at depth i+1
 - What data structure may help us?

Depth 0: a

Depth 1: c,e

Depth 2: b,d,f,g

Depth 3: h

- Exploring all vertices in the order they are found implies we will explore all vertices at shallower depth before greater depth
 - Keep a first-in / first-out queue (FIFO) of neighbors found
- Put newly found vertices in the back and pull out a vertex from the front to explore next
- We don't want to put a vertex in the queue more than once...
 - 'mark' a vertex the first time we encounter it
 - only allow unmarked vertices to be put in the queue
- May also keep a 'predecessor' array: Allows us to find a shortest-path back to the start vertex

Algorithm:

```
BFS(G,u)

1 for each vertex v

2  pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6  v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8  if pred[w] == nil // w not found

9  Q.enqueue(w)

10  pred[w] = v, d[w] = d[v] + 1
```


Q:

а

Algorithm:

```
BFS(G,u)

1 for each vertex v

2  pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6  v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8  if pred[w] == nil // w not found

9  Q.enqueue(w)

10  pred[w] = v, d[w] = d[v] + 1
```


Algorithm:

```
BFS(G,u)

1 for each vertex v

2  pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6  v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8  if pred[w] == nil // w not found

9  Q.enqueue(w)

10  pred[w] = v, d[w] = d[v] + 1
```


Algorithm:

```
BFS(G,u)
  for each vertex v
    pred[v] = nil, d[v] = inf.
  Q = new Queue
  Q.enqueue(u), d[u]=0
  while Q is not empty
    v = Q.front(); Q.dequeue()
    foreach neighbor, w, of v:
      if pred[w] == nil // w not found
         Q.enqueue(w)
         pred[w] = v, d[w] = d[v] + 1
10
```


Algorithm:

```
BFS(G,u)

1 for each vertex v

2  pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6  v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8  if pred[w] == nil // w not found

9  Q.enqueue(w)

10  pred[w] = v, d[w] = d[v] + 1
```


Algorithm:

```
BFS(G,u)

1 for each vertex v

2  pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6  v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8  if pred[w] == nil // w not found

9  Q.enqueue(w)

10  pred[w] = v, d[w] = d[v] + 1
```


Algorithm:

```
BFS(G,u)
  for each vertex v
    pred[v] = nil, d[v] = inf.
  Q = new Queue
  Q.enqueue(u), d[u]=0
  while Q is not empty
    v = Q.front(); Q.dequeue()
    foreach neighbor, w, of v:
      if pred[w] == nil // w not found
         Q.enqueue(w)
         pred[w] = v, d[w] = d[v] + 1
10
```


Algorithm:

```
BFS(G,u)

1 for each vertex v

2  pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6  v = Q.front(); Q.dequeue()

7  foreach neighbor, w, of v:

8  if pred[w] == nil // w not found

9  Q.enqueue(w)

10  pred[w] = v, d[w] = d[v] + 1
```


Q:

h

Algorithm:

```
BFS(G,u)
  for each vertex v
    pred[v] = nil, d[v] = inf.
  Q = new Queue
  Q.enqueue(u), d[u]=0
  while Q is not empty
    v = Q.front(); Q.dequeue()
    foreach neighbor, w, of v:
      if pred[w] == nil // w not found
         Q.enqueue(w)
         pred[w] = v, d[w] = d[v] + 1
10
```


- Shortest paths can be found be walking predecessor value from any node backward
- Example:
 - Shortest path from a to h
 - Start at h
 - Pred[h] = b (so walk back to b)
 - Pred[b] = c (so walk back to c)
 - Pred[c] = a (so walk back to a)
 - Pred[a] = nil ... no predecessor,
 Done!!

Breadth-First Search Trees

- BFS (and later DFS) will induce a tree subgraph (i.e. acyclic, one parent each) from the original graph
 - BFS is tree of shortest paths from the source to all other vertices (in connected component)

Correctness

- Define
 - dist(s,v) = correct shortest distance
 - d[v] = BFS computed distance
 - p[v] = predecessor of v
- Loop invariant
 - What can we say about the nodes in the queue, their d[v] values, relationship between d[v] and dist[v], etc.?


```
BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1
```

Correctness

- Define
 - dist(s,v) = correct shortest distance
 - d[v] = BFS computed distance
 - p[v] = predecessor of v
- Loop invariant
 - All vertices with p[v] != nil (i.e. already in the queue or popped from queue) have d[v] = dist(s,v)
 - The distance of the nodes in the queue are sorted
 - If Q = {v₁, v₂, ..., v_r} then d[v₁] <= d[v₂] <= ... <= d[v_r]
 - The nodes in the queue are from 2 adjacent layers/levels
 - i.e. $d[v_k] \le d[v_1] + 1$
 - Suppose there is a node from a 3rd level (d[v₁] + 2), it must have been found by some, vi, where d[v_i] = d[v₁]+1


```
BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1
```

Breadth-First Search

- Analyze the run time of BFS for a graph with n vertices and m edges
 - Find T(n,m)
- How many times does loop on line 5 iterate?

 How many times loop on line 7 iterate?


```
BFS(G,u)
1 for each vertex v
2  pred[v] = nil, d[v] = inf.
3 Q = new Queue
4 Q.enqueue(u), d[u]=0
5 while Q is not empty
6  v = Q.front(); Q.dequeue()
7 foreach neighbor, w, of v:
8  if pred[w] == nil // w not found
9  Q.enqueue(w)
10  pred[w] = v, d[w] = d[v] + 1
```

Breadth-First Search

- Analyze the run time of BFS for a graph with n vertices and m edges
 - Find T(n)
- How many times does loop on line 5 iterate?
 - N times (one iteration per vertex)
- How many times loop on line 7 iterate?
 - For each vertex, v, the loop executes deg(v) times
 - $= \sum_{v \in V} \theta [1 + \deg(v)]$
 - $= \theta(\sum_{v} 1) + \theta(\sum_{v} \deg(v))$
 - $= \Theta(n) + \Theta(m)$
- Total = Θ(n+m)


```
BFS(G,u)

1 for each vertex v

2 pred[v] = nil, d[v] = inf.

3 Q = new Queue

4 Q.enqueue(u), d[u]=0

5 while Q is not empty

6 v = Q.front(); Q.dequeue()

7 foreach neighbor, w, of v:

8 if pred[w] == nil // w not found

9 Q.enqueue(w)

10 pred[w] = v, d[w] = d[v] + 1
```

DFS Algorithm

- DFS visits and completes all children before completing (and going on to a sibling)
- Process:
 - Visit a node
 - Mark as visited (started)
 - For each visited neighbor, visit it and perform DFS on all of their children
 - Only then, mark as finished
- Let's trace recursive DFS!
- If cycles in the graph, mark nodes so we know to stop examining them:
 - White = unvisited,
 - Gray = visited but not finished
 - Black = finished

DFS-All (G) 1 for each vertex u 2 u.color = WHITE 3 finish_list = empty_list 4 for each vertex u do 5 if u.color == WHITE then 6 DFS-Visit (G, u, finish_list) 7 return finish_list

```
DFS-Visit (G, u, I)

1  u.color = GRAY

2  for each vertex v in Adj(u) do

3  if v.color = WHITE then

4  DFS-Visit (G, v)

5  u.color = BLACK

6  l.append(u)
```

DFS-All (G) for each vertex u u.color = WHITE finish_list = empty_list for each vertex u do if u.color == WHITE then DFS-Visit (G, u, finish_list) return finish_list

DFS-All (G) 1 for each vertex u 2 u.color = WHITE 3 finish_list = empty_list 4 for each vertex u do 5 if u.color == WHITE then 6 DFS-Visit (G, u, finish_list) 7 return finish_list

DFS-All (G) 1 for each vertex u 2 u.color = WHITE 3 finish_list = empty_list 4 for each vertex u do 5 if u.color == WHITE then 6 DFS-Visit (G, u, finish_list) 7 return finish_list

DFS-Visit(G,d,l):

DFS-Visit(G,a,l):

Depth First-Search

DFS-All (G) 1 for each vertex u 2 u.color = WHITE 3 finish_list = empty_list 4 for each vertex u do 5 if u.color == WHITE then 6 DFS-Visit (G, u, finish_list) 7 return finish_list

DFS-Visit(G,f,I):

DFS-Visit(G,d,I):

DFS-All (G) 1 for each vertex u 2 u.color = WHITE 3 finish_list = empty_list 4 for each vertex u do 5 if u.color == WHITE then 6 DFS-Visit (G, u, finish_list) 7 return finish_list

DFS-Visit(G,h,l):
DFS-Visit(G,f,l):
DFS-Visit(G,d,l):

DFS-All (G)

- for each vertex u
- u.color = WHITE
- finish_list = empty_list
- for each vertex u do
- if u.color == WHITE then
- DFS-Visit (G, u, finish_list)
- return finish_list

DFS-Visit (G, u, I)

- u.color = GRAY
- for each vertex v in Adj(u) do
- if v.color = WHITE then
- DFS-Visit (G, v)
- u.color = BLACK
- l.append(u)

Finish list:

h

DFS-Visit(G,h,I):

DFS-Visit(G,f,I):

DFS-Visit(G,d,I):

DFS-All (G)

- for each vertex u
- u.color = WHITE
- finish_list = empty_list
- for each vertex u do
- if u.color == WHITE then
- DFS-Visit (G, u, finish_list)
- return finish_list

DFS-Visit (G, u, I)

- u.color = GRAY
- for each vertex v in Adj(u) do
- if v.color = WHITE then
- DFS-Visit (G, v)
- u.color = BLACK
- l.append(u)

Finish list:

h

DFS-Visit(G,f,I):

DFS-Visit(G,d,I):

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b b

DFS-Visit (G, u,l)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish_list:

h

DFS-Visit(G,g,I):

DFS-Visit(G,f,I):

DFS-Visit(G,d,I):

Depth First-Search

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish_list:

h, g

DFS-Visit(G,g,I):

DFS-Visit(G,f,I):

DFS-Visit(G,d,I):

Depth First-Search

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b b

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish list:

h, g, f

DFS-Visit(G,f,I):

DFS-Visit(G,d,I):

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b b c c

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish list:

h, g,

f,

DFS-Visit(G,d,I):

Depth First-Search

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b b c a u

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish_list:

h, g, f,

Depth First-Search

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b b c a

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish list:

h, g, f,

DFS-Visit(G,c,l):

Depth First-Search

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b b c a

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish list:

h, g, f,

d

DFS-Visit(G,e,I):

DFS-Visit(G,c,l):

Depth First-Search

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b b c a

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish list:

h,

g, f,

d. e

DFS-Visit(G,e,I):

DFS-Visit(G,c,l):

Depth First-Search

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b b a

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish list:

h,

g, f,

d.

e, c

DFS-Visit(G,c,l):

Depth First-Search

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b b a a u

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish list:

h, g,

f,

d.

e,

C,

а

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

May iterate through many complete vertices before finding b to launch a new search from

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish_list:

h,

g, f,

d.

e,

C,

а

DFS-All (G)

- 1 for each vertex u
- 2 u.color = WHITE
- 3 finish_list = empty_list
- 4 for each vertex u do
- 5 if u.color == WHITE then
- 6 DFS-Visit (G, u, finish_list)
- 7 return finish_list

g b u a

DFS-Visit (G, u, I)

- 1 u.color = GRAY
- 2 for each vertex v in Adj(u) do
- 3 if v.color = WHITE then
- 4 DFS-Visit (G, v)
- 5 u.color = BLACK
- 6 l.append(u)

Finish list:

h, g,

f,

d. e,

C,

a,

b,

DFS-Visit(G,b,l):

Depth First-Search

DFS-All (G) for each vertex u u.color = WHITE finish_list = empty_list for each vertex u do if u.color == WHITE then DFS-Visit (G, u, finish_list) return finish_list

DFS-Visit (G, u, I) u.color = GRAYfor each vertex v in Adj(u) do if v.color = WHITE then DFS-Visit (G, v) u.color = BLACKl.append(u)

ITERATIVE VERSION

st:

```
DFS (G,s)
   for each vertex u
    u.color = WHITE
   st = new Stack
   st.push back(s)
   while st not empty
6
     u = st.back()
     if u.color == WHITE then
8
      u.color = GRAY
9
      foreach vertex v in Adj(u) do
10
        if v.color == WHITE
11
          st.push_back(v)
12
     else if u.color != WHITE
13
      u.color = BLACK
14
      st.pop_back()
```


BFS vs. DFS Algorithm

- BFS and DFS are more similar than you think
 - Do we use a FIFO/Queue (BFS) or LIFO/Stack (DFS) to store vertices as we find them

```
BFS-Visit (G, start_node)

1 for each vertex u

2 u.color = WHITE

3 u.pred = nil

4 bfsq = new Queue

5 bfsq.push_back(start_node)

6 while bfsq not empty

7 u = bfsq.pop_front()

8 if u.color == WHITE

9 u.color = GRAY

10 foreach vertex v in Adj(u) do

11 bfsq.push_back(v)
```

```
DFS-Visit (G, start_node)

1 for each vertex u

2 u.color = WHITE

3 u.pred = nil

4 st = new Stack

5 st.push_back(start_node)

6 while st not empty

7 u = st.top(); st.pop()

8 if u.color == WHITE

9 u.color = GRAY

10 foreach vertex v in Adj(u) do

11 st.push_back(v)
```