Sistemas Digitales

Mapas de Karnaugh

Dos variables

Para una función f(A, B), su mapa de Karnaugh es

donde cada espacio tiene un 1 si f se evalúa a 1 con los valores de \emph{A} y \emph{B} que representa.

Sea $y = \bar{B}A + BA$.

Sea $y = \bar{B}\bar{A} + B\bar{A} + BA$.

Tres variables

Es importante tomar en cuenta que el mapa de tres variables se comporta como un anillo; las columnas en ambos extremos horizontales se pueden asociar, en este caso como \bar{b} .

ACE	3 00	01	11	10
0				
1				

 $\mathsf{Sea}\, f(C,B,A) = \bar{C}\bar{B}\bar{A} + \bar{C}B\bar{A} + \bar{C}BA + C\bar{B}\bar{A} + C\bar{B}A + CBA.$

$$\therefore y = \bar{C}\bar{A} + BA + C\bar{B}$$

Multiplexers

2 x 1

8 x 1

Mapa → multiplexer

Mapeo de variables

$$f(D, C, B, A) \rightarrow f(D(C, B, A), C, B, A)$$

\gtrsim^B	^A 00	01	11	10
0	D	D	D	D
1	D	D	D	D

