Soham Chatterjee

Email: sohamc@cmi.ac.in

Course: Parallel Algorithms and Complexity Date: August 25, 2023

Problem 1

Prove that the 6 - Color - Rooted - Tree Algorithm produces a valid 6-coloring of a tree.

Solution: Let L_k denote the number of bits used to represent vertices at k-th iteration. Now for i = 1 we have

$$L_1 = \lceil \log n \rceil + 1 < 2\lceil \log n \rceil$$

Now let for i = k - 1 we have $L_{k-1} \leq 2\lceil \log^{(k-1)} n \rceil$ and $\lceil \log^{(k)} n \rceil \geq 2$. Now

$$L_k = \lceil \log L_{k-1} \rceil + 1 \le \left\lceil \log 2 \left[\log^{(k-1)} n \right] \right\rceil + 1 \le 2 \left\lceil \log^{(k)} n \right\rceil$$

Hence if $\lceil \log^{(k)} n \rceil \ge 2$ we have $L_k \le 2\lceil \log^{(k)} n \rceil$ Therefore the number of bits to represent the vertices decreases with each iteration and after $O(\log^* n)$ many iteration L_k reaches the value of 3 (The limit L of $\lim_{k\to\infty} L_k = \lim_{k\to\infty} \lceil \log L_{k-1} \rceil + 1$ is the solution of $L = \lceil \log L \rceil + 1$). In those 3 bits the i_v takes 3 possible values and the b_v takes 2 possible values for each vertex v. Hence total number of colors is $3 \times 2 = 6$.

Problem 2

- Prove that every weakly connected component of a pseudoforest contains at most one cycle
- Find a 3 Coloring pseudoforest algorithm in $O(\log^* n)$ time

Solution:

• Suppose there are two cycles C₁, C₂ in a weakly connected component. Now C₁ and C₂ has to be disjoint cause other wise there will be a vertex in CC_! ∩ C₂ from which two edges have gone out side one for the next vertex in C₁ and the other one for the next vertex in C₂. This is not possible since in a pseudoforest each vertex has out-degree exactly 1. So C₁ and C₂ are disjoint. Since they remain in same weakly connented component for u ∈ C₁ and v ∈ C₂ there exists a path u → v or v → u. WLOG let the path u → v exists. Let the path is P. Now there exists an edge (x, y) = e ∈ P such that e ∉ C₁ but the tail x of the edge is in C₁. Now since x ∈ C₁ there is an edge going outward from x towards the next vertex in C₁. And also the edge (x, y) is going outwards along P. Hence out-degree of x is at least 2. Which is not possible. Hence every weakly connected component of a pseudoforest has at most one cycle.

Problem 3

Is Maximum Independent Set for bounded degree graph NP - hard?

Solution:

Assignment - 4

Roll: BMC202175