## MATH 571, Homework 4

## Colin Roberts

February 16, 2018

## Solutions

**Problem 1.** Do Exercise 12 on page 80 of Hatcher: "Let a and b be the generators of  $\pi_1(S^1 \vee S^1)$  corresponding to the two  $S^1$  summands. Draw a picture of the covering space of  $S^1 \vee S^1$  corresponding to the normal subgroup generated by  $a^2$ ,  $b^2$ , and  $(ab)^4$ , and prove that this covering space is indeed the correct one."

Remark: Let N be the normal subgroup in  $\langle a,b \rangle$  generated by  $a^2$ ,  $b^2$ , and  $(ab)^4$ ; note that N is larger than the group  $\langle a^2,b^2,(ab)^4 \rangle$ . To prove that your covering space  $\tilde{X}$  is correct, you need to show that  $p_*(\pi_1(\tilde{X},\tilde{x}_0)) = N$ . Showing  $(\supseteq)$  doesn't require too much paper. To get  $(\subseteq)$ , it suffices to show that  $p_*(\pi_1(\tilde{X},\tilde{x}_0))$  is generated by conjugates of  $a^2$ ,  $b^2$ , and  $(ab)^4$ .

*Proof.* We'll draw the covering space below:

Now, to see that  $H := p_*(\pi_1(\tilde{X}, \tilde{x_0})) \supseteq N$  we note that N is the smallest normal subgroup generated by the elements  $a^2$ ,  $b^2$ , and  $(ab)^4$ . Since  $\tilde{X}$  is a normal covering space, H is normal and thus  $H \supseteq N$ . We note that  $\tilde{X}$  is normal since any deck transformation is just a rotation of this very symmetric space. To see that  $H \subseteq N$ , we note that  $\pi_1(\tilde{X}, \tilde{x_0})$  is generated by 9 elements created by conjugating  $a^2$ ,  $b^2$ , and  $(ab)^4$  with each other. Since  $H \cong \pi_1(\tilde{X}, \tilde{x_0})$ , we have that H is generated by these 9 elements which must be elements of N since N is a normal subgroup generated by  $a^2$ ,  $b^2$ , and  $(ab)^4$  and N thus

**Problem 2.** Let  $\tilde{X}$  be the 6-fold cover of  $S^1 \vee S^1$  drawn below.

contains these 9 conjugates. So  $H \subseteq N$  as well and so H = N.



- (a) Use Proposition 1.32 and Proposition 1.39 to deduce the size of the group  $G(\tilde{X})$  of deck transformations. Use the symmetries of  $\tilde{X}$  to identify the group  $G(\tilde{X})$ .
- (b) Alter  $\tilde{X}$  by reversing the direction of the three  $\alpha$  arrows on the inner circle only. What is the size of the group  $G(\tilde{X})$  of deck transformations? What is the group  $G(\tilde{X})$ ?

:

*Proof.* By proposition 1.32 we have that the index of  $p_*(\pi_1(\tilde{X}, \tilde{x_0}))$  in  $\pi_1(X, x_0)$  is 6. Note that the only two groups of order 6 up to isomorphism are  $D_3 \cong S_3$  and  $\mathbb{Z}_6$ . Let's take a look at our 6 fold cover:

We see that this has the presentation  $H \cong \langle \alpha^3, \beta^2, (\alpha\beta)^2, \beta\alpha^3\beta, \alpha^2\beta^2\alpha, \alpha\beta^2\alpha^2, \alpha\beta^2\alpha^2, (\beta\alpha)^2 \rangle$ . It's not hard to see that  $N(H) \cong \pi_1(X, x_0)$  since we have  $\alpha H \alpha^{-1} = H$  and  $\beta H \beta^{-1}$  by searching a bit for elements of H that commute with  $\alpha$  and  $\beta$ . We then have

$$G(\tilde{X}) \cong N(H)/H \cong \langle \alpha, \beta \rangle / H$$
  
 $\cong \langle \alpha, \beta \mid \alpha^3, \beta^2, \alpha \beta \alpha \beta \rangle$   
 $\cong D_3 \cong S_3.$ 

Next, when we switch the arrows we get the following 6 fold cover:

We see that this has the presentation  $H \cong \langle \alpha^3, \beta^2, \alpha\beta\alpha^{-1}\beta^{-1}, \beta\alpha^3\beta, alpha^2\beta^2\alpha, \alpha\beta^2\alpha^2, \beta\alpha\beta\alpha^2 \rangle$ . Again,

we find that  $N(H) \cong \pi_1(X, x_0)$ . With that, we get

$$G(\tilde{X}) \cong N(H)/H \cong \langle \alpha, \beta \rangle / H$$
  

$$\cong \alpha^{3}, \beta^{2}, \alpha \beta \alpha^{-1} \beta^{-1} \rangle$$
  

$$\cong \mathbb{Z}_{6}.$$