Варианты заданий к курсовой работе по «Основам функционального анализа и вариационному исчислению»

Тема: Применение методов функционального анализа вариационных принципов в моделировании

1. Исследовать на близость нулевого и первого порядка кривые

	• •
1. $y = \frac{\sin nx}{n^{3/2}} \text{ if } y \equiv 0, x \in [0, \pi]$	2. $y = \frac{\cos nx}{n^{1/2}} \text{ if } y \equiv 0, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
3. $y = \frac{\sin n^2 x}{n^{3/2}}$ u $y = 0$, $x \in [0, \pi]$	4. $y = \frac{\operatorname{tg} x/n}{n^{3/2}} \text{ if } y \equiv 0, x \in \left[0, \frac{\pi}{4}\right]$
5. $y = \frac{\operatorname{tg}(x/n^2)}{n^{3/2}} \text{ if } y = 0, x \in \left[0, \frac{\pi}{6}\right]$	6. $y = \frac{\ln^2 nx}{n^{1/2}} \text{ if } y \equiv 0, x \in [e^{-1}, e]$
7. $y = \frac{\ln^3 nx}{n^{1/3}} \text{ if } y \equiv 0, x \in [e^{-1}, e^2]$	8. $y = \frac{\operatorname{ctg} x/n}{n^{1/2}} \text{ if } y \equiv 0, x \in \left[0, \frac{\pi}{3}\right]$
9. $y = \frac{x \sin nx}{n}$ $y = 0$, $x \in [0, \pi]$	10. $y = \frac{x \ln nx}{n^{1/2}}$ u $y = 0$, $x \in [e^{-1}, e]$
11. $y = \frac{\arcsin x/n}{n^{1/2}} \text{ if } y \equiv 0, x \in \left[0, \frac{1}{2}\right]$	12. $y = \frac{x^n}{n}$ u $y = 0$, $x \in [0,1]$
13. $y = \frac{e^{nx}}{n}$ u $y = 0$, $x \in [0,1]$	14. $y = \frac{x \cos nx}{n}$ и $y = 0$, $x \in [0, \pi]$
15. $y = \frac{\arctan x/n}{n^{1/2}}$ и $y = 0$, $x \in [0, +\infty)$	16. $y = \frac{x^2 \cos nx}{n}$ $y = 0, x \in [0, \pi]$
17. $y = \frac{x}{n}$ и $y = \frac{x^2}{n}$, $x \in [0,1]$	18. $y = \frac{x^n}{n}$ и $y = \frac{\sqrt[n]{x}}{n}$, $x \in [0,1]$
19. $y = \ln\left(1 + \frac{x}{n}\right)$ и $y = 0$, $x \in [0,1]$	20. $y = \ln\left(1 + \frac{x}{n}\right) \text{ if } y = \sin\frac{x}{n}, x \in [0,1]$

2. Исследовать на непрерывность функционал I(y) $y(x) \in C^1_{[0,\pi]}$ на кривой $y_0(x)$ в смысле близости нулевого и первого порядков

1.
$$I = \int_{0}^{\pi} \sqrt{1 + y'^2} dx$$
, $y_0(x) \equiv 0$, 2. $I = \int_{0}^{\pi} (1 + 2y'^2) dx$, $y_0(x) \equiv 0$, 3. $I = \int_{0}^{\pi} x^3 \sqrt{1 + y^2} dx$, $y_0(x) = x$, 4. $I = \int_{0}^{\pi} y'^2 dx$, $y_0(x) \equiv 0$, 5. $I = \int_{0}^{\pi} (y + 2y'^2) dx$, $y_0(x) \equiv 0$, 6. $I = \int_{0}^{1} x^2 \sqrt{1 + y^2} dx$, $y_0(x) = x$, 7. $I = \int_{0}^{\pi} (1 + y'^3) dx$, $y_0(x) \equiv 0$, 8. $I = \int_{0}^{1} (y' + y) dx$, $y_0(x) \equiv 0$, 9. $I = \int_{0}^{\pi} \sqrt{1 + y'^4} dx$, $y_0(x) \equiv 0$, 10. $I = \int_{0}^{\pi} y \sqrt{1 + y'^2} dx$, $y_0(x) \equiv 0$, 11. $I = \int_{0}^{\pi} x \sqrt{1 + y'^2} dx$, $y_0(x) \equiv 0$, 12. $I = \int_{0}^{1} x^3 \sqrt{1 + y^2} dx$, $y_0(x) \equiv 0$, 13. $I = \int_{0}^{1} y'^3 \sqrt{1 + y^2} dx$, $y_0(x) \equiv 0$, 14. $I = \int_{0}^{\pi} x \sqrt{1 + y'^4} dx$, $y_0(x) \equiv 0$, 15. $I = \int_{0}^{1} y'^3 dx$, $y_0(x) \equiv 0$, 16. $I = \int_{0}^{1} x^3 \sqrt{1 + y^3} dx$, $y_0(x) \equiv 0$, 17. $I = \int_{0}^{1} y'^4 dx$, $y_0(x) \equiv 0$, 18. $I = \int_{0}^{1} (y' - y) dx$, $y_0(x) \equiv 0$, 19. $I = \int_{0}^{\pi} \sqrt{1 - y'^4} dx$, $y_0(x) \equiv 0$, 20. $I = \int_{0}^{\pi} (1 - y'^3) dx$, $y_0(x) \equiv 0$,

3. Найти первую и вторую вариации функционала

1. $I = \int_{0}^{\pi} y \sqrt{1 + y'^4} dx$	2. $I = \int_{0}^{\pi} (x^2 + xy' + y'^2) dx$
3. $I = \int_{0}^{\pi} (x^2 + y'') dx$	4. $I = \int_{0}^{\pi} (xy + y'z)dx, y = y(x), z = z(x)$
5. $I = \iint_D (xy + z_y^2 + z_x) dxdy, z = z(x, y)$	6. $I = \int_{0}^{\pi} y' \sqrt{1 + x^4} dx$
7. $I = \int_{0}^{\pi} (y + y' + y'') dx$	8. $I = \iint_D (xyz + z_x + z_y) dxdy, \ z = z(x, y)$
9. $I = \int_{0}^{\pi} (y^2 + xyy'^2) dx$	10. $I = \int_{0}^{\pi} (y + y''^2) dx$
11. $I = \int_{0}^{\pi} (y + y'' + y^{(4)}) dx$	12. $I = \iint_D (z + z_x^2 + z_y) dxdy, \ z = z(x, y)$
13. $I = \int_{0}^{\pi} y' \sqrt{1 + y'} dx$	14. $I = \int_{0}^{\pi} (y + y'z + z'w) dx,$ $y = y(x), z = z(x), w = w(x)$
15. $I = \int_{0}^{\pi} y' \sqrt{1 + {y'}^2} dx$	16. $I = \iint_D (z + z_x^2 + z_y^2) dxdy, \ z = z(x, y)$
17. $I = \int_{0}^{\pi} (y + y'' + y''') dx$	18. $I = \int_{0}^{\pi} (y^2 - y''^2) dx$
19. $I = \int_{0}^{\pi} y'' \sqrt{1 + x^4} dx$	20. $I = \iint_D (z^2 - z_x^2 - z_y^2) dxdy$, $z = z(x, y)$

4. Найти экстремали функционалов:

1. $\int_{0}^{3} (3x - y) y' dx, y(0) = 1, y(3) = 4,5$	2. $\int_{0}^{2\pi} (y'^{2} - y^{2}) dx, y(0) = 1, \ y(2\pi) = 1$
3. $\int_{-1}^{0} (12xy - y'^2) dx, y(-1) = 1, y(0) = 0$	4. $\int_{0}^{\pi} (4y\cos x - y^{2} + y'^{2}) dx,$ $y(0) = 0, y(\pi) = 0$
5. $\int_{0}^{1} y'''^{2} dx, y(0) = y'(0) = y''(0) = 0,$ $y(1) = 1, \ y'(1) = 4, \ y''(1) = 12$	6. $\int_{0}^{\pi} (y'''^{2} - y''^{2}) dx, y(0) = y'(0) = y''(0) = 0,$ $y(\pi) = \pi, y'(\pi) = 2, y''(\pi) = 0$
7. $\int_{0}^{1} (y'^{2} - y - y^{2}) e^{2x} dx, y(0) = 0, y(1) = e^{-1}$	8. $\int_{-1}^{1} (y'^2 - 2xy) dx, y(-1) = -1, y(1) = 1$
9. $\int_{-1}^{0} (y'^2 + 2xy) dx, y(-1) = 0, \ y(0) = 2$	10. $\int_{0}^{1} (x + y'^{2}) dx, y(0) = 1, \ y(1) = 2$
11. $\int_{0}^{1} (y_{1}^{\prime 2} y_{2}^{\prime 2} - 2y_{1}y_{2}) dx, y_{1}(0) = y_{2}(0) = 0,$ $y_{1}(\frac{\pi}{2}) = y_{2}(\frac{\pi}{2}) = 1$	12. $\int_{0}^{1} \sqrt{1 + y_{1}'^{2} + y_{2}'^{2}} dx, y_{1}(0) = 1, y_{2}(0) = 2,$ $y_{1}(1) = 2, y_{2}(1) = 1$
13. $\int_{0}^{1} (y'^{2} + y^{2}) dx, y(0) = 0, y(1) = 1$	14. $\int_{0}^{1} (e^{x}y' - y'^{2}) dx, y(0) = 1, y(1) = e$
15. $\int_{0}^{2} y''^{2} dx, y(0) = y'(0) = 0,$ $y(2) = 1, \ y'(2) = 2$	16. $\int_{0}^{1} y \sqrt{1 + y'^{2}} dx, y(0) = 0, y(1) = 2$
17. $\int_{0}^{1} yy'^{2} dx, y(0) = 1, \ y(1) = \sqrt[3]{4}$	18. $\int_{1}^{e} (xy'^{2} + yy') dx, y(1) = 0, y(e) = 1$
19. $\int_{0}^{\pi/4} \left(y'^2 - y^2 \right) dx, y(0) = 1, \ y\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$	20. $\int_{1}^{2} (y'^{2} + 2yy' + y^{2}) dx, y(1) = 1, y(2) = 0$

5. Найти кратчайшее расстояние между кривыми

$1. y = 4 - x \text{ if } y = \sqrt{-x}$	2. $1=x^2+\frac{y^2}{4}$ u $1=(x-3)^2+(y-3)^2$
$3. 1 = x^2 + y^2 \text{ и } y = \frac{4}{x}$	4. $1=x^2+y^2$ и $1=(x-3)^2+\frac{(y-3)^2}{4}$
5. $1 = \frac{(x-3)^2}{4} + (y-3)^2 \text{ M}$ $1 = (x+3)^2 + \frac{(y+3)^2}{4}$	6. $y = x^2 + 1$ и $y = \sqrt{x-1}$
$7. 1 = x^2 - y^2 \text{ if } y = \frac{3}{2}x$	$8. 1 = \frac{x^2}{4} - y^2 \text{if} y = x$
9. $1 = \frac{x^2}{4} - y^2$ и $1 = \frac{y^2}{4} - x^2$	10. $1=x^2+y^2$ и $36=(x-3)^2+(y-3)^2$
11. $y = x^2$ и $y = -(x-1)^2$	12. $1=x^2-y^2$ и $1=(x-3)^2+y^2$
13. $1=x^2+\frac{y^2}{4}$ и $y=16-2x$	14. $1=(x-3)^2+(y-3)^2$ и $y=-x$
15. $4 = x^2 + y^2$ и $y = \frac{6}{x^2}$	16. $y = x^2 + 1$ и $y = 1 - x^2$
17. $y = 2x - 1$ и $y = 4x^2 - 5$	18. $y = x + 1$ и $y = 6x^2 - 7$
19. $1 = \frac{x^2}{4} + \frac{y^2}{9}$ и $y = 16 - 2x$	20. $1 = \frac{x^2}{9} + \frac{y^2}{4}$ и $1 = (x-6)^2 + (y-6)^2$

6. Исследовать на экстремум функционалы:

1. $\int_{0}^{1} (y'^{2} + y^{2}) dx, y(0) = -1, y$	v(1)=1 2.	$\int_{0}^{a} \left(1 - e^{-y^{2}}\right) dx, y(0) = 0, \ y(a) = b, \ a > 0$
3. $\int_{2}^{3} \frac{x^{3}}{y'^{2}} dx, y(2) = 4, \ y(3) = 9$		$\int_{1}^{2} (xy'^{4} - 2yy'^{3}) dx, y(1) = 0, \ y(2) = 1$
5. $\int_{0}^{1} (y_{1}^{\prime 2} + y_{2}^{\prime 2}) dx, y_{1}(0) = y_{2}(0)$ $y_{1}(1) = y_{2}(1) = 2$	0)=0, 6.	$\int_{0}^{1} (y_1'^2 + y_2'^2 + 4y_2) dx, y_1(0) = y_2(0) = 0,$ $y_1(1) = 1, y_2(1) = 0$
7. $\int_{-1}^{1} (y'^2 + y'^3) dx, y(-1) = -1.$		$\int_{-1}^{2} (x^{2}y'+1)y'dx, y(-1)=1, y(2)=4$
9. $\int_{0}^{1} \sqrt{1 + y_{1}^{\prime 2} + y_{2}^{\prime 2}} dx, y_{1}(0) = y$ $y_{1}(1) = 2, y_{2}(1) = 4$	$y_2(0) = 0,$ 10.	$\int_{0}^{1} (y_1'^2 + y_2'^2 - y_2 y_1') dx, y_1(0) = 2, y_2(0) = 1,$ $y_1(1) = e, y_2(1) = 0$
11. $\int_{0}^{a} \frac{x}{y'} dx$, $y(0) = 0$, $y(a) = b$,	<i>a,b</i> > 0 12.	$\int_{1}^{2} \frac{x^{2}}{y'^{3}} dx, y(1) = 1, \ y(2) = 4$
13. $\int_{0}^{1} e^{y} y'^{2} dx$, $y(0) = 0$, $y(1) = 1$	n4 14.	$\int_{0}^{1} e^{y} \left(\frac{y'^{2}}{2} + y^{2} \right) dx, y(0) = 1, \ y(1) = e$
15. $\int_{0}^{\ln 2} (y'^{2} + 3y^{2})e^{2x}dx,$ $y(0) = 0, y(\ln 2) = \frac{15}{8}.$	16.	$\int_{1}^{2} x^{2} y'^{2} dx, y(1) = 1, y(2) = 2.$
17. $\int_{1}^{3} (y'^{2} + 12xy') dx, y(1) = 0,$	y(3)=26 18.	$\int_{0}^{a} \frac{x}{y'^{2}} dx, y(0) = 0, \ y(a) = b, a, b > 0$
19. $\int_{0}^{\pi/2} (y^2 - y'^2) dx, y(0) = 1, y$	$\left(\frac{\pi}{2}\right) = 1$ 20.	$\int_{0}^{1} (1+x) y'^{2} dx, y(0) = 0, \ y(1) = 1$