NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Цель NeRF: Визуализировать 3D-сцену

Процесс обучения

$$\mathbf{x}=(x,y,z)$$
— точка в 3D-пространстве (r,g,b) — цвет в точке $\mathbf{x}=(\theta,\phi)$ — направление взгляда (viewing direction) σ — плотность в точке (volume density)

Архитектура сети

MLP, никаких свёрток

rully-connected neural network 9 layers, 256 channels

Архитектура сети

MLP, никаких свёрток

Fully-connected neural network 9 layers, 256 channels Направление взгляда влияет только на цвет. Плотность строится для точки пространства вне зависимости от угла осмотра!

Визуализация архитектуры

Viewing direction

На практике вместо двух углов (θ,ϕ) используется вектор ${f d}$ в декартовой системе координат с r=1

$$\overline{x} = r \sin \theta \cos \phi
\overline{y} = r \sin \theta \sin \phi
\overline{z} = r \cos \theta$$

$$\mathbf{d} = (\overline{x}, \overline{y}, \overline{z})$$

Луч $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$

Shooting rays from all the pixels of an image in 3D

Volume Rendering

Луч $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$ Предсказанный цвет, величина для Плотность в точке минимизации функции потерь $C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$ Цвет в точке r(t) с позиции d

Вероятность того, что луч пройдет из tn в t, не задев другие частицы

Приближение интеграла

Quadrature rule in volume rendering review by Max, N[1]:

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

 $\delta_i \, = \, t_{i+1} \, - \, t_i$ – расстояние между соседними семплами на луче

$$t_i \sim \mathcal{U}\left[t_n + \frac{i-1}{N}(t_f - t_n), \ t_n + \frac{i}{N}(t_f - t_n)\right]$$

1. Max, N.: Local and Global Illumination in the Volume Rendering Integral

$$t_i \sim \mathcal{U}\left[t_n + \frac{i-1}{N}(t_f - t_n), \ t_n + \frac{i}{N}(t_f - t_n)\right]$$

Однако базового подхода недостаточно

Positional encoding

Проблема: сеть, работающая только с входными хуzθφ координатами слабо визуализирует высокочастотные изменения цвета и геометрии.

Это согласуется с недавней работой Rahaman et al. [1], где показывается, что глубокие сети предвзяты в сторону низкочастотных функций.

1. Rahaman et al. On the spectral bias of neural networks. In: ICML (2018)

Positional encoding

Используем дополнительное преобразование :

$$F_{\Theta} = F'_{\Theta} \circ \gamma$$

$$\gamma(p) = \left(\sin(2^{0}\pi p), \cos(2^{0}\pi p), \cdots, \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p)\right)$$

$$L = 10 \text{ for } \gamma(\mathbf{x}) \text{ and } L = 4 \text{ for } \gamma(\mathbf{d})$$

 $\gamma(\cdot)$ применяется отдельно ко всем координатам \mathbf{x} , нормализованным до [-1, 1]. И отдельно к трём координатам вектора \mathbf{d} , лежащим в [-1, 1] по построению.

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains

Hierarchical volume sampling

Проблема: оценивать цвет по N точкам, взятым на луче, может быть неэффективно, так как попадают свободные пространства, закрытые области – не влияющие на визуализацию.

Hierarchical volume sampling

Hierarchical volume sampling

Будут строиться два типа предсказаний: coarse и fine.

Coarse считается как и раньше для N_c позиций на луче.

$$\hat{C}_c(\mathbf{r}) = \sum_{i=1}^{N_c} w_i c_i, \quad w_i = T_i (1 - \exp(-\sigma_i \delta_i))$$

Нормализуя веса $\hat{w}_i = w_i/\sum_{j=1}^{N_c} w_j$, получаем кусочно-заданную функцию плотности.

Затем семплируется ещё N_f точек из этого распределения.

Теперь оцениваем цвет для $N_c + N_f$ позиций, и предсказываем цвет $\hat{C}_f(\mathbf{r})$

Loss function

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{P}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

 ${\mathcal R}$ — набор лучей в батче

 $C_c({f r})$ — цвет, предсказанный coarse

 $\hat{C}_f(\mathbf{r})$ — цвет, предсказанный fine

 $C({f r})$ — настоящий цвет

Визуализация архитектуры

Гиперпараметры

Размер батча: 4096 лучей, для каждого $\frac{N_f=128}{N_c=64}$ семплов для coarse volume и fine volume.

В качестве оптимизатора используется Adam (с дефолтными гиперпараметрами), learning rate от 5 × 10-4, экпоненциально меняющийся до 5 × 10-5.

Для одной сцены требуется 100–300k итераций до сходимости на NVIDIA V100 GPU (около 1–2 дней).

Эксперименты

	Input	$\#\mathrm{Im}$.	L	(N_c, N_f)	PSNR↑	$SSIM\uparrow$	LPIPS↓
1) No PE, VD, H	xyz	100	_	(256, -)	26.67	0.906	0.136
2) No Pos. Encoding	$xyz\theta\phi$	100	-	(64, 128)	28.77	0.924	0.108
3) No View Dependence	xyz	100	10	(64, 128)	27.66	0.925	0.117
4) No Hierarchical	$xyz\theta\phi$	100	10	(256, -)	30.06	0.938	0.109
5) Far Fewer Images	$xyz\theta\phi$	25	10	(64, 128)	27.78	0.925	0.107
6) Fewer Images	$xyz\theta\phi$	50	10	(64, 128)	29.79	0.940	0.096
7) Fewer Frequencies	$xyz\theta\phi$	100	5	(64, 128)	30.59	0.944	0.088
8) More Frequencies	$xyz\theta\phi$	100	15	(64, 128)	30.81	0.946	0.096
9) Complete Model	$xyz\theta\phi$	100	10	(64, 128)	31.01	0.947	0.081

Сравнение с другими методами

	Diffuse Synthetic 360° [41]			Realisti	c Synthe	etic 360°	Real Forward-Facing [28]		
Method	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
SRN [42]	33.20	0.963	0.073	22.26	0.846	0.170	22.84	0.668	0.378
NV [24]	29.62	0.929	0.099	26.05	0.893	0.160	-	-	_
LLFF [28]	34.38	0.985	0.048	24.88	0.911	0.114	24.13	0.798	0.212
Ours	40.15	0.991	0.023	31.01	0.947	0.081	26.50	0.811	0.250

Методы: Scene Representation Networks (SRN), Neural Volumes (NV), Local Light Field Fusion (LLFF)

Метрики: PSNR (Peak Signal to Noise Ratio), SSIM (structural similarity index), LPIPS (Learned Perceptual Image Patch Similarity)

Более новые работы

Zhang et al. NeRF++: Analyzing and Improving Neural Radiance Fields. 2020
 https://arxiv.org/abs/2010.07492

Рассматривает проблемы оригинального NeRF. Улучшает его на визуализацию неограниченных 3D сцен.

Более новые работы

2. Barron et al. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. 2021 – https://arxiv.org/abs/2103.13415

Меняют идею запускать лучи, используют усечённые конусы. Улучшают качество и делают NeRF в разы быстрее.

Более новые работы

3. InstantNeRF от NVIDIA. 2022 – https://github.com/NVlabs/instant-ngp

Статья: MÜLLER et al. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. 2022 – https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf

Источники

- NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis – https://arxiv.org/abs/2003.08934
- 2. Больше примеров картинок и код https://www.matthewtancik.com/nerf
- 3. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains https://arxiv.org/abs/2006.10739
- 4. 3D volumetric rendering with NeRF https://keras.io/examples/vision/nerf/