COMP 2711 Discrete Mathematical Tools for Computer Science 2020 Spring Semester – Final Exam (Part 1)

Note 1: For all non-proof questions, showing your steps is not necessary unless required otherwise. However, in case your answer is wrong, showing your steps may earn you some partial credits.

Note 2: You can express your answers using binomial coefficients, factorials, and D_n (derangement number). However, you should not have summation \sum in your final answers. For example, $\binom{10}{3}D_9+4!$ and 1!+2!+3!+4! are valid, but $\sum_{i=0}^n \binom{n}{i}$ or $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}$ is not. The latter has to be simplified to 2^n .

- Question 1: (10 pts) Let G be a simple undirected graph with a set of vertices V. Let V_1 and V_2 be subsets of V so that $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$. Let E(x, y) be the predicate representing that there is an edge from x to y. Note that the graph being undirected means that $\forall u \in V \ \forall v \in V(E(u, v) \Leftrightarrow E(v, u))$.
 - (a) (6 pts) Express each of the following properties in predicate logic. Your can only use $V, V_1, V_2, E(\cdot, \cdot)$, logical and mathematical operators.
 - (i) "Every vertex in the graph has degree exactly 1".
 - (ii) "Every edge connects a vertex in V_1 and a vertex in V_2 ".
 - (iii) "For every vertex in V_1 , there are edges that connect it with all vertices in V_2 ".
 - (b) (2 pts) If (a)(ii) is true, is G necessarily a bipartite graph? Your answer should be either "Yes" or "No". Justification is not necessary.
 - (c) (2 pts) If (a)(iii) is true, is G necessarily a complete bipartite graph? Your answer should be either "Yes" or "No". Justification is not necessary.

Solution:

- (a) (i) $\forall u \in V(\exists v \in V(E(u, v) \land \forall w \in V(E(u, w) \to v = w))).$
 - (ii) $(\forall u \in V_1 \forall v \in V_1(\neg E(u, v))) \land (\forall u \in V_2 \forall v \in V_2(\neg E(u, v))).$
 - (iii) $\forall u \in V_1 \forall v \in V_2(E(u, v)).$
- (b) Yes.
- (c) No.
- Question 2: (8 pts) Prove that for any $n \in \mathbb{N}$, there exists an n-digit number A_n such that all its digits are either 1 or 2, and $2^n \mid A_n$. [Hint: Use induction.]
 - **Solution:** We use induction on n.

Base case: n = 1. We can set $A_1 = 2$, $2^1 \mid A_1$.

Induction hypothesis: Assume it is correct for n = k, which means that there exists A_k such that $2^k \mid A_k$.

Now consider n=k+1: As $2^k \mid A_k$, there are two possibilities for the remainder of A_k dividing 2^{k+1} . $A_k=2^k \cdot l$, where l is even, which means $A_k \equiv 0 \pmod{2^{k+1}}$, or $A_k=2^k \cdot (1+l')$, where l' is even, which means $A_k \equiv 2^k \pmod{2^{k+1}}$

- 1. $A_k \equiv 0 \pmod{2^{k+1}}$. In this scenario we add the digit 2 to the left side of A_k . So $A_{k+1} = \overline{2A_k}$. We show that $2^{k+1} \mid A_{k+1}$. $A_{k+1} = 2 \cdot 10^k + A_k = 2 \cdot 2^k \cdot 5^k + A_k = 2^{k+1} \cdot 5^k + A_k$. And we know that $2^{k+1} \cdot 5^k \equiv 0 \pmod{2^{k+1}}$ and $A_k \equiv 0 \pmod{2^{k+1}}$. So $A_{k+1} \equiv 0 \pmod{2^{k+1}}$.
- 2. $A_k \equiv 2^k \pmod{2^{k+1}}$. In this scenario we add the digit 1 to the left side of A_k . So $A_{k+1} = \overline{1A_k}$. We show that $2^{k+1} \mid A_{k+1}$. $A_{k+1} = 1 \cdot 10^k + A_k = 2^k \cdot 5^k + A_k$. And we know that $A_k \equiv 2^k \pmod{2^{k+1}}$. So $A_{k+1} \equiv 2^k + 2^k \cdot 5^k \equiv 2^k \cdot (1+5^k) \pmod{2^{k+1}}$. $1+5^k$ is an even number so $A_{k+1} \equiv 0 \pmod{2^{k+1}}$.

Question 3: (5 pts) You are staying on point A and you are allowed to walk either up or to the right. Answer these questions:

- Α
- (a) (2 pts) In how many ways you can go to point B?
- (b) (3 pts) In how many ways you can go to point B without passing through point C?

Solution: (a) $\binom{11}{5}$

(b)
$$\binom{11}{5} - \binom{6}{3} \cdot \binom{5}{3}$$

Question 4: (14 pts) How many integers $0 \le n < 1000$ are there such that

- (a) (3 pts) n is divisible by 2, 3 or 5?
- (b) (4 pts) $n \equiv 1 \pmod{2}$, $n \equiv 2 \pmod{3}$, and $n \equiv 3 \pmod{5}$?
- (c) (7 pts) n is divisible by 9 but it has no digit 9?

Solution:

- (a) Let f(k) be the number of integers $0 \le n < 1000$ that are divided by k, then f(k) = 1 + |999/k|. We have f(2) = 500, f(3) = 334, f(5) = 200, f(6) = 167, f(10) = 100, f(15) = 67 and f(30) = 34. By inclusion-exclusion principle, the answer is f(2) + f(3) + f(5) - f(6) - f(6)f(10) - f(15) + f(30) = 734.
- (b) By Chinese remainder theorem, we know that $n \equiv 1 \pmod{2}$, $n \equiv 2$ (mod 3), and $n \equiv 3 \pmod{5}$ is equivalent to n = 23 + 30k for an integer k. Since $0 \le n < 1000$, we have $0 \le k \le 32$. Therefore the answer is 33.
- (c) Let $n = 100x_1 + 10x_2 + x_3$, i.e. n is represented by 3 digits $x_1\bar{x_2}x_3$. Then $x_i \in \{0, 1, \dots, 8\}$ for i = 0, 1, 2, and $9|100x_1 + 10x_2 + x_3$, or equivalently $9|x_1+x_2+x_3$. Since $0 \le x_1+x_2+x_3 \le 24$, we have $x_1 + x_2 + x_3 = 0,9 \text{ or } 18.$
 - (1) $x_1 + x_2 + x_3 = 0$. There is only one solution: $x_1 = x_2 = x_3 = 0$.
 - (2) $x_1 + x_2 + x_3 = 9$. By the combinations with repetition theorem, there are $\binom{9+3-1}{3-1} = 55$ non-negative solutions to this equation. However we need to exclude three solutions (9,0,0), (0,9,0) and (0,0,9). Therefore the number of solutions is 52.
 - (3) $x_1 + x_2 + x_3 = 18$. First note that there is no solution when $x_3 = 0$ or 1. Suppose $x_3 = i$ where $i \in \{2, 3, \dots, 8\}$, the solutions to the equation $x_1 + x_2 = 18 - i$ are (j, 18 - i - j) where $j \in \{10 - i, 11 - i\}$ $i, \dots, 8$, i.e. there are i-1 solutions to this equation. Therefore the number of solutions to $x_1 + x_2 + x_3 = 18$ is $\sum_{i=2}^{8} (i-1) = 28$.

Therefore we conclude that the answer is 1 + 52 + 28 = 81.

Alternative Solution: We also find the number of solutions to $9|x_1+x_2+x_3|$ where $x_i \in \{0, 1, \dots, 8\}$ for i = 1, 2, 3. For any x_1 and x_2 , $9|x_1 + x_2 + x_3$ is equivalent to $x_3 \equiv 9 - x_1 - x_2 \pmod{9}$, which has exactly one solution in $\{0,1,\cdots,8\}$. Therefore the number of solutions is $9\times 9=81$.

Question 5:

- (10 pts) Consider the following series of functions defined recursively: $f_0(x) =$ x^{-1} ; for $n \ge 0$, $f_{n+1}(x) = f'_n(x)$ (recall that $(ax^b)' = abx^{b-1}$).
 - (a) (5 pts) Find the general formula of $f_n(x)$ and use induction to prove its correctness.
 - (b) (5 pts) Let $a_n = \log(-f_n(-1))$. Which one of the following functions is the tight asymptotic bound (i.e., Θ) of a_n ? Justify your answer.

 $n, n \log \log n, n \log n, n \log^2 n, n^2$

Solution:

(a) $f_n(x) = (-1)^n n! \cdot x^{-(n+1)}$. We can prove this by induction. First $f_0(x) = (-1)^0 \cdot 0! \cdot x^{-1} = x^{-1}$. Suppose for some $k \ge 0$, $f_k(x) = (-1)^k k! \cdot x^{-(k+1)}$, then

$$f_{k+1}(x) = f'_k(x) = (-1)^k k! \cdot [-(k+1)] \cdot x^{-(k+2)} = (-1)^{k+1} (k+1)! \cdot x^{-(k+2)}$$

(b) $a_n = \log n! = \sum_{i=1}^n \log i$. On the one hand, $a_n < \sum_{i=1}^n \log n = n \log n$, so $a_n = O(n \log n)$. On the other hand, $a_n > \sum_{i=n/2+1}^n \log(n/2) = \frac{n}{2} \log \frac{n}{2}$, so $a_n = \Omega(n \log n)$. Therefore we conclude $a_n = \Theta(n \log n)$, and the tightest asymptotic upper bound is $n \log n$.

Question 6: (6 pts) Read the following algorithms and answer the questions.

```
Algorithm 1: MultiplyTwoPolys(p(x), q(x))
```

```
Input: A polynomial p(x) with degree m and a polynomial q(x) with
           degree n
Output: The polynomial r(x) = p(x) \cdot q(x)
for i \leftarrow 0 to m do
a_i \leftarrow \text{the coefficient of } x^i \text{ in } p(x);
end
for i \leftarrow 0 to n do
b_i \leftarrow \text{the coefficient of } x^i \text{ in } q(x);
end
for i \leftarrow 0 to m + n do
  c_i \leftarrow 0;
end
for i \leftarrow 0 to m do
    for j \leftarrow 0 to n do
     c_{i+j} \leftarrow c_{i+j} + a_i b_j;
    end
end
r(x) \leftarrow \sum_{i=0}^{m+n} c_i x^i;
return r(x);
```

Algorithm 2: MultiplyManyPolys($p_1(x), p_2(x), \dots, p_n(x)$)

```
Input: Polynomials p_1(x), p_2(x), \dots, p_n(x)

Output: The polynomial r(x) = p_1(x)p_2(x) \dots p_n(x)

if n = 1 then

\mid return p_1(x);

end

r_1(x) \leftarrow \text{MultiplyManyPolys}(p_1(x), p_2(x), \dots, p_{n-1}(x));

r(x) \leftarrow \text{MultiplyTwoPolys}(r_1(x), p_n(x));

return r(x);
```

- (a) (2 pts) Algorithm 1 computes the multiplication of two polynomials with degree m and n respectively. What is its time complexity? Write your answer in the best big-O notation with respect to m and n.
- (b) (4 pts) Let $\{p_n(x)\}$ be a sequence of polynomials, all having degree 1. What is the time complexity of computing $p_1(x)p_2(x)\cdots p_n(x)$ using Algorithm 2? Write your answer in the best big-O notation with respect to n. Justify your answer.

Solution: (a) The time complexity of algorithm 1 is O(mn).

(b) Let C_n be the time complexity of computing $p_1(x)p_2(x)\cdots p_n(x)$ using Algorithm 2, then $C_1=0$ and $C_n=C_{n-1}+n-1$. Therefore $C_n=\sum_{i=1}^n (i-1)=O(n^2)$.