Data Structures and Algorithms

Conf. dr. ing. Guillaume Ducoffe

guillaume.ducoffe@fmi.unibuc.ro

About myself...

- Professor at the Univ. of Bucharest, Faculty of Mathematics and Computer Science.
- Research Scientist at the National Institute of Research and Development in Informatics (ICI).
- PhD in Nice-Sophia Antipolis, France.
- Various visits/internships in the US, Chile, Germany,...

Research in Graph Algorithms and Data Structures

Come to see me if...

• You want to learn more about the class! =)

Some useful links:

- https://arxiv.org/list/cs.DS/recent
- https://www.siam.org/conferences/cm/conference/soda22
- You need help for your Bachelor/Master thesis
 - Prototypal Example: implementations of some algorithms and XP on some real benchmarks.
- You want to discuss about internship/PhD/job opportunities...

Practical Information

- All materials (slides + documents) to be put on Teams + Moodle.
- My website with contact information

https://sites.google.com/view/guillaume-ducoffes-homepage/home

Additional documents can be put on it – upon request

- Attendance is NOT mandatory. But...
 - Seminars/Labs are not registered
 - Bonus for attendance + participation during the labs (max. 1p)

Your grades

- Written test ("Proba scrisa"): 60 %
 - Either pseudo code or C++/Python-like code
 - A significant part of the grade devoted to algorithm analysis (justify correctness, complexity, etc.)
- Practical exam ("Colocviu"): 40 %
 - In C++ or Python.
 - Two sets of problems to be solved.

Final grade: $\min\{10, .6* \text{Written Test } + .4* \text{Practical Exam } + \text{Bonus}\}$ There shall be NO "punct din oficiu".

Discussion: Terminology used in this class

We rarely mention "real" problems in this class (e.g., database indexing).

We rather use a specific formal/abstract terminology (e.g., B-trees).

Some reasons for that are:

- **Historical**. Study of these problems started before CS even exists (Euclid, Antic Greece!)
- **Avoiding ill-defined problems**. For instance, what is a "best" road to travel? *Cost? Time? Kilometers? Carbon footprint?*
- **Reusability**. For instance, there are conceptually few differences between a road to travel and routing on the Internet...

Storing the grades?

 $\bullet \ \underline{\mathsf{Model}} \colon \mathbf{Random} \ \mathbf{A}\mathsf{ccess} \ \mathbf{M}\mathsf{emory} \colon \mathsf{Instruction} \ \mathsf{Read}/ \mathtt{Write} \ + \ \mathsf{Address}$

Storing the grades?

• <u>Model</u>: Random Access Memory: Instruction Read/Write + Address

Copy 1 Student 1	Copy 1 Student 2	Copy 1 Student 3	Copy 1 Student 4	Copy 1 Student 5		

Storing the grades?

Model: Random Access Memory: Instruction Read/Write + Address

Copy 1 Student 1	Copy 1 Student 2	Copy 1 Student 3	Copy 1 Student 4	Copy 1 Student 5	Copy 2 Student 1	Copy 2 Student 3	Copy 2 Student 4
Copy 2 Student 2	Copy 2 Student 5						

Storing the grades?

Model: Random Access Memory: Instruction Read/Write + Address

How to find all the grades of Student 2?

Copy 1 Student 1	Copy 1 Student 2	Copy 1 Student 3	Copy 1 Student 4	Copy 1 Student 5	Copy 2 Student 1	Copy 2 Student 3	Copy 2 Student 4
Copy 2 Student 2	Copy 2 Student 5						

Storing the grades?

Model: Random Access Memory: Instruction Read/Write + Address

How to find all the grades of Student 2? Sorting? \longrightarrow method?

Copy 1 Student 1	Copy 1 Student 2	Copy 1 Student 3	Copy 1 Student 4	Copy 1 Student 5	Copy 2 Student 1	Copy 2 Student 2	Copy 2 Student 3
Copy 2 Student 4	Copy 2 Student 5						

Storing the grades?

Model: Random Access Memory: Instruction Read/Write + Address

How to find all the grades of Student 2? Sorting? \longrightarrow method?

Copy 1 Student 1	Copy 1 Student 2	Copy 1 Student 3	Copy 1 Student 4	Copy 1 Student 5	Copy 2 Student 1	Copy 2 Student 2	Copy 2 Student 3
Copy 2 Student 4	Copy 2 Student 5						

What if...a new student comes? one misses a session?

Lessons learned

• Naive storage is not robust against some natural types of events

Addition/Deletion

• Robustness can be improved through the help of auxiliary operations

E.g., Sorting

 \implies Algorithm

Question: is there a "better way" to store the data?

⇒ Data Structure

Definitions Data Structures

Data + Structure

• The Data: an arbitrary collection of objects/values

for all this class (unless stated otherwise): $\underline{Data = Integers}$

• The data is stored in a Structured manner so as to answer, as efficiently as possible, to some set of **queries**.

a **query** = an operation to modify and/or access to some information about the data under some requirements (e.g., complexity)

typical queries: insert/delete some elements with a specified property (max., min., etc.)

a data structure is defined by its set of queries.

Definitions

Algorithms

a **problem** = obtaining from some **input** data a specified **output** (*e.g.*, information, transformed data)

Definition (Algorithm)

succession of elementary operations to go from the input to the output

- elementary operations: arithmetic operations, comparisons, if-else, for-while, . . .
- Data Structures allow us to define new sets of (non elementary) operations

Objectives for this semester

- Design and Analysis of Data Structures
- Design and Analysis of Algorithms

Design:

- Review of basic data structures
 & their characteristics
- Programming techniques

Analysis:

- Correctness of a program
- Complexity

A tentative list of the data structures considered

- Arrays/Vectors
- Stacks
- Tree Data Structures
 - Cartesian trees
 - Link-cut trees
- Heaps
 - Binary Heaps
 - Binomial Heaps
 - Fibonacci Heaps

- Lists
- Queues
- Search trees
 - AVL
 - 2 3 4 trees
 - B-trees
- Hashing tables
- Union Find
- Partition Refinement

Classification of Data Structures

- Static vs Dynamic
- Data Access (FIFO vs LIFO vs ...)

- Operations available and their costs
- Space requirements, etc.

• Not covered here: persistence, eager/lazy evaluation, . . .

A tentative list of the main problems considered

- Searching
 - Binary search in sorted and "almost sorted" arrays
 - Median and Order statistics
- Sorting
 - "The classics"
 - Cycle sort, Block sort, Tim sort, etc.

Almost all data structures considered have been invented in order to optimize these two fundamental problems!

A tentative list of the techniques considered

Disclaimer: these paradigms are also discussed in more advanced classes

• Divide and Conquer

Ex.: tree decompositions (Heavy-Path, Centroid, Rake-compress)

Dynamic programming

Ex.: Mo's algorithm and its variations

Backtracking

Applications to Search trees

Questions

