

Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria

prof.

Luca Breveglieri Gerardo Pelosi prof.ssa Donatella Sciuto prof.ssa Cristina Silvano

AXO – Architettura dei Calcolatori e Sistemi Operativi SECONDA PARTE – martedì 12 settembre 2023

Cognome_	Nome
Matricola_	Firma

Istruzioni

- Si scriva solo negli spazi previsti nel testo della prova e non si separino i fogli.
- Per la minuta si utilizzino le pagine bianche inserite in fondo al fascicolo distribuito con il testo della prova. I fogli di minuta se staccati vanno consegnati intestandoli con nome e cognome.
- È vietato portare con sé libri, eserciziari e appunti, nonché cellulari e altri dispositivi mobili di calcolo o comunicazione. Chiunque fosse trovato in possesso di documentazione relativa al corso anche se non strettamente attinente alle domande proposte vedrà annullata la propria prova.
- Non è possibile lasciare l'aula conservando il tema della prova in corso.
- Tempo a disposizione 1 h: 30 m

Valore indicativo di domande ed esercizi, voti parziali e voto finale:

esercizio	1	(4	punti)	
esercizio	2	(5	punti)	
		-	-	
353. 31210	•	,-	Pae.	
voto fina	le: (16	punti)	

esercizio n. 1 - programmazione concorrente

Si consideri il programma C seguente (gli "#include" e le inizializzazioni dei *mutex* sono omessi, come anche il prefisso pthread delle funzioni di libreria NPTL):

```
pthread mutex t door
sem t in, out
int global = 0
void * entry (void * arg) {
   mutex lock (&door)
   sem wait (&in)
   global = 1
                                                    /* statement A */
   mutex unlock (&door)
   mutex lock (&door)
   sem post (&out)
   sem post (&in)
   mutex unlock (&door)
   global = 2
                                                    /* statement B */
   return NULL
} /* end entry */
void * exit (void * arg) {
   mutex lock (&door)
   sem wait (&in)
   mutex unlock (&door)
   sem wait (&out)
   mutex lock (&door)
   qlobal = 4
                                                    /* statement C */
   mutex unlock (&door)
   return (void * 5)
} /* end exit */
void main ( ) {
   pthread t th 1, th 2
   sem init (&in, 0, 1)
   sem init (&out, 0, 0)
   create (&th 2, NULL, exit, NULL)
   create (&th 1, NULL, entry, NULL)
   join (th 2, &global)
                                                    /* statement D */
   join (th 1, NULL)
   return
} /* end main */
```

Si completi la tabella qui sotto **indicando lo stato di esistenza del** *thread* nell'istante di tempo specificato da ciascuna condizione, così: se il *thread* **esiste**, si scriva ESISTE; se **non esiste**, si scriva NON ESISTE; e se può essere **esistente** o **inesistente**, si scriva PUÒ ESISTERE. Ogni casella della tabella va riempita in uno dei tre modi (non va lasciata vuota).

Si badi bene alla colonna "condizione": con "subito dopo statement X" si chiede lo stato che il *thread* assume tra lo statement X e lo statement immediatamente successivo del *thread* indicato.

condizione	thread				
Contaizione	th_1 – entry	th_2 - e <i>xit</i>			
subito dopo stat. A					
subito dopo stat. B					
subito dopo stat. C					
subito dopo stat. D					

Si completi la tabella qui sotto, **indicando i valori delle variabili globali** (sempre esistenti) nell'istante di tempo specificato da ciascuna condizione. Il **valore** della variabile va indicato così:

- intero, carattere, stringa, quando la variabile ha un valore definito; oppure X quando è indefinita
- se la variabile può avere due o più valori, li si riporti tutti quanti
- il semaforo può avere valore positivo o nullo (non valore negativo)
- si supponga che il mutex valga 1 se occupato, e valga 0 se libero

Si badi bene alla colonna "condizione": con "subito dopo statement X" si chiede il valore (o i valori) che la variabile ha tra lo statement X e lo statement immediatamente successivo del *thread* indicato.

condizione	variabili globali					
Condizione	door	in	global			
subito dopo stat. A						
subito dopo stat. B						
subito dopo stat. C						
subito dopo stat. D						

Il sistema può andare in stallo (deadlock), con uno o più thread che si bloccano, in (almeno) due casi diversi. Si chiede di precisare il comportamento dei thread in due casi, indicando gli statement dove avvengono i blocchi e i possibili valori della variabile global:

caso	th_1 - e <i>ntry</i>	th_2 - <i>exit</i>	global
1			
2			
3			

esercizio n. 2 – processi e nucleo

prima parte - gestione dei processi

```
// programma main.c
sem t sem
char s[] = "Hello world!"
                            // nota: strlen(s) == 12
int onw = 0
int back = 12 - 2
void add (void * arg) {
                                    void sub (void * arg)
  if (onw <= back) {
                                       sem wait (&sem)
                                       back = back - onw
    sem post (&sem)
    onw = onw + back
                                       if (onw > back) {
    write (stderr, &s[onw],
                                        write (stderr, &s[back],
  } else {
                                         sem post (&sem)
    sem wait (&sem)
                                         return
  } // end if
                                        // end if
} // end
                                         end
int main ( ) { // codice eseguito da P
   pid t pidP, pidQ
   pthread t TH 1, TH 2
   sem init (&sem, 0,
   pidQ = fork ( )
                                    // codice eseguito da P
   if (pidQ != 0) {
      onw = own + 6
      pthread create (&TH 1, NULL,
                                    sub, NULL)
      pthread create (&TH 2, NULL,
                                    add, NULL)
      write (stdout, &s[onw], 6)
      pthread join (TH 2, NULL)
      pthread join (TH 1, NULL)
      pidP = wait (NULL)
      exit (1)
   } else {
                                    // codice eseguito da Q
      read (stdin, &s[onw],
     // end if pid
 // end main
```

Un processo **P** esegue il programma main.c, tramite cui crea un processo figlio **Q** e i due thread **TH_1** e **TH_2**. Si simuli l'esecuzione dei vari processi completando tutte le righe presenti nella tabella così come risulta dal codice dato, dallo stato iniziale e dagli eventi indicati.

Si completi la tabella seguente riportando:

- (PID, TGID) di ciascun processo (normale o thread) che viene creato
- (evento oppure identificativo del processo-chiamata di sistema / libreria) nella prima colonna, dove necessario e in funzione del codice proposto (le istruzioni da considerare sono evidenziate in grassetto)
- in ciascuna riga, lo stato dei task al termine dell'evento o della chiamata associata alla riga stessa; si noti che la prima riga della tabella potrebbe essere solo parzialmente completata

TABELLA DA COMPILARE

identificativo simbol del processo	ico	idle	Р	Q	TH_1	TH_2
	PID	1	2			
evento oppure processo-chiamata	TGID	1	2			
P – fork	0	pronto	esec	pronto	NE	NE
	1					
	2					
	3					
	4					
	5					
	6					
	7					
	8				esec	
	9					
	10					
interrupt da stdout sei caratteri inviati	11					
	12					
	13					
	14					
	15					
	16					
	17					
P – exit	18					

seconda parte – scheduler CFS

Si consideri uno scheduler CFS con caratterizzato da queste condizioni iniziali (già complete):

CONDIZIONI INIZIALI (già complete)								
	NRT	PER	RQL	CURR	VMIN			
RUNQUEUE	2	6	3	T1	100			
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT	
CURRENT	T1	2	0,67	4	0,5	10	100	
DD	T2	1	0,33	3	1	20	102	
RB								

Durante l'esecuzione dei task si verificano i seguenti eventi:

Events of task t1: WAIT at 1.0; WAKEUP after 2.5

Events of task t2: CLONE at 2.0

Simulare l'evoluzione del sistema per **quattro eventi** riempiendo le seguenti tabelle (per indicare le condizioni di rescheduling e altri calcoli eventualmente richiesti, utilizzare le tabelle finali):

		TIME	TYPE	CONTEXT	RESCHED		
EVENT	01						
	NRT	PER	RQL	CURR	VMIN		
RUNQUEUE		6					
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT
CURRENT							
RB							
WAITING							

EVENT	rn 2	TIME	TYPE	CONTEXT	RESCHED		
LVLIVI	0 2						
	NRT	PER	RQL	CURR	VMIN		
RUNQUEUE		6					
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT
CURRENT							
RB							
WAITING							

	10.0	TIME	TYPE	CONTEXT	RESCHED		
EVENT	03						
	NRT	PER	RQL	CURR	VMIN		
RUNQUEUE		6					
TASK	ID	LOAD	LC	Q	VRTC	SUM	VRT
CURRENT							
RB							
WAITING				<u>.</u>	-		
			TVD5	CONTEXT	DECCUED		
EVENT	O 4	TIME	TYPE	CONTEXT	RESCHED		
	NDT	DED	DOL	CHDD	VATN		
RUNQUEUE	NRT	PER	RQL	CURR	VMIN		
TASK	ID	6 LOAD	LC	0	VRTC	SUM	VRT
CURRENT	10	LOAD	LC	Q	VRIC	SUM	VKI
CORREITI							
D.D.							
RB							
WATETNIA							
WAITING							
Valutazione d	della cond	l. di resched	duling alla	WAKEUP	:		
Calcolo del V	RT del ta	sk T1 risve	egliato de	lla WAKEU	P:		
1							

esercizio n. 3 - memoria virtuale e file system

prima parte – memoria virtuale

È dato un sistema di memoria caratterizzato dai seguenti parametri generali:

MAXFREE = 2 MINFREE = 1

situazione iniziale (esistono un processo **P** e un processo **Q**, il processo **P** è in esecuzione)

```
VMA: C 000000400, 2, R,
                                 <X, 0>
                          Ρ, Μ,
        S
          000000600, 2, W,
                           Ρ, Μ,
                                 <X, 2>
          000000602, 2, W,
                           P, A, <-1, 0>
          7FFFFFFC, 3, W, P, A,
                                 <-1, 0>
   PT: <c0 :- -> <c1 :1 R> <s0 :5 R> <s1 :- -> <d0 :3 R> <d1 :- ->
      <p0 :2 R> <p1 :6 W> <p2 :- ->
   process P - NPV of PC and SP: c1, p1
          ***********************
PROCESSO: Q
   VMA : C 000000400, 2,
                       R,
                           P, M, <X, 0>
         000000600, 2, W, P, M,
        S
                                 < X ,
                                     2>
        D 000000602, 2, W, P, A, <-1, 0>
        P 7FFFFFFC, 3, W, P, A, <-1, 0>
   PT: <c0 :- -> <c1 :1 R>
                         <s0 :5 R> <s1 :- -> <d0 :3 R> <d1 :- ->
      <p0 :2 R> <p1 :4 D W> <p2 :- ->
   process Q - NPV of PC and SP: c1, p1
   MEMORIA FISICA (pagine libere: 1)
     00 : <ZP>
                              01 : Pc1 / Qc1 / <X, 1>
     02 : Pp0 / Qp0
                              03 : Pd0 / Qd0
     04 : Qp1 D
                              05 : Ps0 / Qs0 / <X, 2>
     06 : Pp1
                              07 : ----
  STATO del TLB
     Pc1 : 01 - 0: 1:
                               Pp0: 02 - 1: 0:
     Pd0: 03 - 1: 0:
                           \prod
                               Pp1: 06 - 1: 1:
     Ps0: 05 - 0: 1:
                           Ш
SWAP FILE:
          ----, ----, ----, ----, ----
           QS0, QP1, QC1, PS0, PP1, PC1
LRU ACTIVE:
LRU INACTIVE: qd0, qp0, pd0,
                          pp0
```

evento 1: write (Pd0)

PT del processo: P							
d0:	d1:	p0:	p1:				

PT del processo: Q							
d0:	d1:	p0:	p1:				

MEMORIA FISICA					
00: <zp></zp>	01: Pc1 / Qc1 / <x, 1=""></x,>				
02:	03:				
04:	05:				
06:	07:				

s0:			s1:			
s2:			s3:			
LRU ACTIVE:						-
LRU INACIIVE.		1	1			
evento 2: read	(Pc1) – 4 <i>ksw</i>	apd				
LRU ACTIVE:						
LRU INACTIVE:						_
evento 3: read	(Ps1) – write	(Pd1)				
		PT del pr	rocesso: P			
s0:	s1:					
d0:	d1:	p0:		p1:		
		MEMORI	A FISICA	1		
00: <zp></zp>			01: Pc	1 / Qc1 / <x< th=""><th>, 1></th><th></th></x<>	, 1>	
02:			03:			
04:			05:			
06:			07:			
			•			
		SWAI	PFILE			
s0:			s1:			
s2:			s3:			
LRU ACTIVE:						
						,
LRU INACTIVE:						

SWAP FILE

seconda parte - file system

È dato un sistema di memoria caratterizzato dai seguenti parametri generali:

MAXFREE = 2 MINFREE = 1

Si consideri la seguente situazione iniziale.

```
***************
PROCESSO: P
                                  <X, 0>
   VMA : C 000000400, 1, R, P, M,
          000000600, 2, W, P, M,
        S
                                  <X,
                                      1>
          000000602, 2, W, P, A,
                                  <-1, 0>
          7FFFFFFC, 3, W, P, A, <-1, 0>
   PT: <c0 :1 R> <s0 :- -> <s1 :- -> <d0 :- -> <d1 :- -> <p0 :3 W>
      <p1 :- -> <p2 :- ->
   process P - NPV of PC and SP: c0, p0
VMA : C 000000400,
                     1, R, P, M,
                                  <X, 0>
                    2, W, P, M,
        S
          000000600,
                                  <X,
          000000602, 2, W, P, A,
                                  <-1, 0>
          7FFFFFFC, 3, W, P, A, <-1, 0>
   PT: <c0 :1 R> <s0 :- -> <s1 :- -> <d0 :- -> <d1 :- -> <p0 :2 D W>
      <p1 :- -> <p2 :- ->
   process Q - NPV of PC and SP: c0, p0
   MEMORIA FISICA____(pagine libere: 2)
     00 : <ZP>
                                 01 : Pc0 / Qc0 / \langle X, 0 \rangle
     02 : Qp0 D
                                 03 : Pp0
                                                           | |
                             Ш
     04 : <F, 0> D
                                 05 : <F, 1> D
                                 07 : ----
     06: ----
   STATO del TLB
                                  Pp0: 03 - 1: 1:
     Pc0 : 01 - 0: 1:
                             Ш
                                                           Ш
                                                           \prod
                             Ш
          ----
                                       _ _ _ _ _
SWAP FILE:
LRU ACTIVE:
           QP0, QC0, PP0, PC0
LRU INACTIVE:
```

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte
PQ	F	5500	2	2	0

ATTENZIONE: nella colonna "processo" va specificato il nome/i del/i processo/i a cui si riferiscono le informazioni "f_pos" e "f_count" (campi di struct file) relative al file indicato.

ATTENZIONE: il numero di pagine lette o scritte di un file è cumulativo, ossia è la somma delle pagine lette o scritte su quel file da tutti gli eventi precedenti oltre a quello considerato. Si ricorda inoltre che la primitiva *close* scrive le pagine dirty di un file solo se f_{count} diventa = 0.

ATTENZIONE: A <u>ulteriore chiarimento della situazione iniziale</u>, si precisa che il processo **P** è in esecuzione e che lo stato iniziale riportato deriva dalla seguente successione di chiamate di sistema eseguite da **P**:

- apertura del file F con fd1 = open (F)
- creazione del processo figlio Q tramite fork
- accesso in scrittura al file F tramite write (fd1, 5500)

Per ciascuno degli eventi seguenti, compilare le tabelle richieste con i dati relativi al contenuto della memoria fisica, delle variabili del FS relative ai file aperti e al numero di accessi a disco effettuati in lettura e scrittura.

evento 1: fd2 = open(G) - write(fd2, 1000)

MEMORIA FISICA						
00: <zp></zp>	01: Pc0 / Qc0 / <x, 0=""></x,>					
02: Qp0 D	03: Pp0					
04:	05:					
06:	07:					

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte

evento 2: context switch (Q)

MEMORIA FISICA							
00: <zp< td=""><td>></td><td></td><td></td><td>01: Pc</td><td>0 / Qc0 /</td><td><x, 0=""></x,></td><td></td></zp<>	>			01: Pc	0 / Qc0 /	<x, 0=""></x,>	
02: Qp0	D			03:			
04:				05:			
06:				07:			
			TL	.В			
NPV	NPF	D	Α	NPV	NPF	D	Α
				· · · · · · · · · · · · · · · · · · ·			

evento 3: fd3 = open(H) - write(fd3, 1000)

MEMORIA FISICA					
00: <zp></zp>	01: Pc0 / Qc0 / <x, 0=""></x,>				
02: Qp0 D	03:				
04:	05:				
06:	07:				

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte
P	G	1000	1	1	0

evento 4: write (fd1, 2000)

MEMORIA FISICA					
00: <zp></zp>	01: Pc0 / Qc0 / <x, 0=""></x,>				
02: Qp0 D	03:				
04:	05:				
06:	07:				

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte
P	G	1000	1	1	0

evento 5: close (fd1) - close (fd3)

MEMORIA FISICA					
00: <zp></zp>	01: Pc0 / Qc0 / <x, 0=""></x,>				
02: Qp0 D	03:				
04:	05:				
06:	07:				

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte
P	G	1000	1	1	0

evento 6: context switch (P) - read (fd1, 1000)

MEMORIA FISICA					
00: <zp></zp>	01: Pc0 / Qc0 / <x, 0=""></x,>				
02: Qp0 D	03:				
04:	05:				
06:	07:				

processo/i	file	f_pos	f_count	numero pag. lette	numero pag. scritte
P	F				
P	G	1000	1	1	0

PAGINA DI ALLINEAMENTO – spazio libero per continuazione o brutta copia					

esercizio n. 4 - domande su argomenti vari

tabella delle pagine

Date le VMA di un processo P sotto riportate, definire:

- 1. la scomposizione degli indirizzi virtuali dell'NPV iniziale di ogni area secondo la notazione **PGD:PUD:PMD:PT**
- 2. il numero di pagine necessarie in ogni livello della gerarchia e il numero totale di pagine necessarie a rappresentare la Tabella delle Pagine (TP) del processo
- 3. il numero di pagine virtuali occupate dal processo
- 4. il rapporto tra l'occupazione della TP e la dimensione virtuale del processo in pagine
- 5. la dimensione virtuale massima del processo in pagine, senza dovere modificare la dimensione della TP

VMA del processo P								
AREA	NPV iniziale	dimensione	R/W	P/S	M/A	nome file	offset	
С	0000 0040 0	2	R	Р	М	FF	0	
K	0000 0060 0	3	R	Р	М	FF	2	
S	0000 0060 3	4	M	Р	М	FF	5	
D	0000 0060 7	128	W	Р	А	-1	0	
M1	0001 3000 0	2	W	S	М	AA	2	
M2	0001 3000 F	3	M	Р	М	BB	0	
Р	7FFF FFFF 2	13	W	Р	А	-1	0	

1. Scomposizione degli indirizzi virtuali

		PGD :	PUD :	PMD :	PT
С	0000 0040 0				
K	0000 0060 0				
S	0000 0060 3				
D	0000 0060 7				
M1	0001 3000 0				
M2	0001 3000 F				
Р	7FFF FFFF 2				

_				
2.	Numero	đ١	pagine	necessarie

pag PGD: # pag PUD:

pag PMD: # pag PT:

pag totali:

- 3. Numero di pagine virtuali occupate dal processo:
- 4. Rapporto di occupazione:
- 5. Dimensione massima del processo in pagine virtuali:

spazio libero per brutta	copia o continuazio	ne	

spazio libero per l	orutta copia o contii	nuazione	