Discrete Mathematics: Lecture 24

Degree, Handshaking Theorem, Graph Transform, Graph Isomorphism,

Bipartite Graph, Matching

Xuming He Associate Professor

School of Information Science and Technology ShanghaiTech University

Spring Semester, 2022

Notes by Prof. Liangfeng Zhang

Subgraph

DEFINITION: Let G = (V, E) be a simple graph. H = (W, F) is a subgraph_F \otimes of G if $W \subseteq V$ and $F \subseteq E$.

- proper subgraph_{$A \neq B$}: H is a subgraph of G and $H \neq G$.
- The subgraph induced by $W \subseteq V$ is (W, F), where $F = \{e : e \in E, e \subseteq W\}$. //Notation: G[W]
- The subgraph induced $B \to F \subseteq E$ is (W, F), where $W = \{v : v \in V, v \in e \text{ for some } e \in F\}$. //Notation: G[F]

EXAMPLE: Let G, G', G'' be three graphs as below.

- G', G'' are subgraphs of G; G', G'' are proper subgraphs of G
- G' is a subgraph induced by $W = \{1,2,3,4\}$, i.e., G' = G[W]
- G'' is a subgraph induced by $F = \{\{1,2\}, \{2,3\}, \{3,4\}, \{4,1\}, \{4,5\}\}\$, i.e., G'' = G[F]

Removing An Edge

DEFINITION: Let G = (V, E) be a simple graph and $e \in E$. Define

Adding An Edge

DEFINITION: Let G = (V, E) be a simple graph and $e \notin E$. Define

$$G + e = (V, E \cup \{e\})$$

$$G = (V, E)$$

$$G + e = (V, E \cup \{e\})$$

Edge Contraction

压缩

DEFINITION: Let G = (V, E) be a simple graph and $e = \{u, v\} \in E$.

 $(v, L) \text{ be a simple graph and } v = (u, v) \in L$

Define
$$G/e = (V', E')$$
, where $V' = (V - \{u, v\}) \cup \{w\}$ and

$$E' = \{e' \in E : e' \cap e = \emptyset\} \cup \{\{w, x\} : \{u, x\} \in E \text{ or } \{v, x\} \in E\}$$

Graph trans: define V, E

Removing A Vertex

DEFINITION: Let G = (V, E) be a simple graph and let $v \in V$. Define $G - v = (V - \{v\}, E')$, where $E' = \{e \in E : v \notin e\}$

Complement

VI=V

DEFINITION: Let G = (V, E) be a simple graph of order n. Define the

complement graph \mathbb{R} of G as $\overline{G} = (V, E')$, where

$$E' = \{\{u, v\}: u, v \in V, u \neq v, \{u, v\} \notin E\}$$

Graph Isomorphism

DEFINITION: The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic_{ma} if there is a bijection $\sigma: V_1 \to V_2$ such that $\{u, v\} \in E_1 \Leftrightarrow \{\sigma(u), \sigma(v)\} \in E_2$.

- σ is called an **isomorphism** π
- nonisomorphic: not isomorphic

v_6	v_3	v_4	v_5	v_1
Isomorphism σ				

1	2	3	4	5	6
а	С	e	b	d	f

Isomorphism σ

Graph Invariants

DEFINITION: **Graph invariants** are properties **preserved** by graph

isomorphism. For example,

The number of vertices

The number of edges

The number of vertices of each degree

REAMRKS: The graph invariants can be used to determine if two graphs

The subgraphs induced by the vertices of degree 3 must be isomorphic to each other.

同杨月中爪夏命

Bipartite Graph

• (V_1, V_2) is a **bipartition**= \mathfrak{A} of the vertex set V.

A bipartite graph of order 6

A bipartite graph of order 12

- $V_1 = \{1,2,3,4,5,6\}$
- $V_2 = \{7,8,9,10,11,12\}$

Complete Bipartite Graph

DEFINITION: A complete bipartite graph $K_{m,n} = (V, E)$

with
$$V = \{x_1, \dots, x_m\} \cup \{y_1, \dots, y_n\}$$
 and $E = \{\{x_i, y_j\}: i \in [m], j \in [n]\}$

• Every vertex in V_1 is adjacent to every vertex in V_2

Bipartite Graph

Theorem

A simple graph is bipartite if and only if it is possible to assign one of two different colors to each vertex such that no two adjacent vertices have the same color.

Proof:

- If G = (V, E) is bipartite, $V = V_1 \cup V_2$. Assign color c_1 to vertices of V_1 and color c_2 to vertices of V_2 .
- Reversely, suppose we can assign colors c₁ and c₂ to the vertices such that no two adjacent have the same. Let Vᵢ be the set of vertices of color cᵢ, for i = 1, 2. Then V = V₁ ∪ V₂. By assumption there are no edges connecting two vertices of V₁ or two vertices of V₂, so each edge connects one vertex of V₁ with one vertex of V₂.

Bipartite Graph*

THEOREM: A simple graph G = (V, E) is a bipartite graph iff there is a map $f: V \to \{1,2\}$ such that " $\{x,y\} \in E \Rightarrow f(x) \neq f(y)$ "

- Only if: $G = (V_1 \cup V_2, E)$, where $V_1 \cap V_2 = \emptyset$.
 - Define $f: V \to \{1,2\}$ such that $f(x) = \begin{cases} 1 & \text{if } x \in V_1 \\ 2 & \text{if } x \in V_2 \end{cases}$
 - $\{x,y\} \in E \Rightarrow x \in V_1, y \in V_2 \text{ or } x \in V_2, y \in V_1$
 - $f(x) \neq f(y)$
- If: $f: V \to \{1,2\}$ is a map such that " $\{x,y\} \in E \Rightarrow f(x) \neq f(y)$ "
 - Let $V_1 = f^{-1}(1), V_2 = f^{-1}(2)$
 - $V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$
 - $\{V_1, V_2\}$ is a bipartition of V
 - $\{x,y\} \in E \Rightarrow f(x) \neq f(y) \Rightarrow x \in V_1, y \in V_2 \text{ or } x \in V_2, y \in V_1$
 - *G* is a bipartite graph.

Bipartite Graph

Example: Is the graph *G* bipartite?

Bipartite Graph

Example: Is the graph *G* bipartite?

Motivation: Job Assignment

Suppose there are m employees and n different jobs to be done, with $m \ge n$.

Motivation: Job Assignment

Suppose there are m employees and n different jobs to be done, with m > n.

Linda

Possible solution for situation 1

— 本子/シ Matching

DEFINITION: Let G = (V, E) be a simple graph. $M \subseteq E$ is a matching $max \in E$

if $e \cap e' = \emptyset$ for every $e, e' \in M$. A vertex $v \in V$ is matched in M if

 $\exists e \in M$ such that $v \in e$, otherwise, v is **not matched.**

- maximum matching最大匹配: a matching with largest number of edges.
- In a bipartite graph $G=(A\cup B\ ,E),\ M\subseteq E$ is a **complete matching** \Re

- $M = \{au, bv\}$ is a matching
 - a, b, u, v are matched in M
 - c, d, x, y are not matched in M
 - *M* is not a maximum matching
- $M' = \{aw, bv, cu, dy\}$ is a maximum matching
 - M' is a complete matching from V_1 to V_2

- $V_1 = \{a, b, c, d\};$
- $V_2 = \{u, v, w, x, y\}$
- $E = \{au, aw, bv, bx, cu, cv, dw, dy\}$

Matching

DEFINITION: Let G = (V, E) be a simple graph. $M \subseteq E$ is a matching if $e \cap e' = \emptyset$ for every $e, e' \in M$. A vertex $v \in V$ is matched in M if $\exists e \in M$ such that $v \in e$, otherwise, v is not matched.

- maximum matching最大匹配: a matching with largest number of edges.
- In a bipartite graph $G=(A\cup B\ ,E),\ M\subseteq E$ is a **complete matching** $_{\Re \oplus \mathbb{Z}}$ from A to B if every $u\in A$ is matched.

Example: Marriages. Suppose there are m men and n women on an island. Each person has a list of people of the opposite gender acceptable as a spouse \Rightarrow bipartite graph.

- matching ⇔ marriages
- maximum matching ⇔ largest possible number of marriages
- complete matching from women to men ⇔ marriages such that every women is married but possibly not all men.

N: neigh

Hall's Theorem

EXAMPLE: Marriage on an Island

- There are m boys $X = \{x_1, ..., x_m\}$ and n girls $Y = \{y_1, ..., y_n\}$
- G = (X ∪ Y, E = {{x_i, y_j}: x_i and y_j are willing to get married})
 What is the largest number of couples that can be formed?

THEOREM (Hall 1935): A bipartitie graph $G = (X \cup Y, E)$ has a complete matching from X to Y iff $|N(A)| \ge |A|$ for any $A \subseteq X$.

- \Rightarrow : Let $\{\{x_1, y_1\}, \dots, \{x_m, y_m\}\}\$ be a complete matching from X to Y
 - For any $A = \{x_{i_1}, ..., x_{i_s}\} \subseteq X, N(A) \supseteq \{y_{i_1}, ..., y_{i_s}\}$
 - $|N(A)| \ge s = |A|$
- \Leftarrow : suppose that $|N(A)| \ge |A|$ for any $A \subseteq X$. Find a complete matching M.
 - By induction on |X|
 - |X| = 1: Let $X = \{x\}$.
 - $|N(X)| \ge 1$
 - $\exists y \in Y \text{ such that } e = \{x, y\} \in E$.
 - $M = \{e\}$ is a complete matching from X to Y

Hall's Theorem

- **Induction hypothesis**: " $\forall A \subseteq X, |N(A)| \ge |A| \Rightarrow \exists$ complete matching" is true when $|X| \leq k$
- Prove that " $\forall A \subseteq X$, $|N(A)| \ge |A| \Rightarrow \exists$ complete matching" when |X| = k + 1
 - Let $X = \{x_1, \dots, x_k, x_{k+1}\}.$
 - Case 1: $\forall A \subseteq X \text{ with } 1 \leq |A| \leq k, |N_G(A)| \geq |A| + 1$
 - $N_G(A)$: A's neighborhood in G

 - Say $y_{k+1} \in N_G(\{x_{k+1}\})$. • Let $V' = (X \setminus \{x_{k+1}\}) \cup (Y \setminus \{y_{k+1}\}); E' = \{e \in E : e \subseteq V' \times V'\}$
 - Let $G' = (V', E') = G \{x_{k+1}\} \{y_{k+1}\}.$
 - $\forall A \subseteq \{x_1, ..., x_k\}, |N_{G'}(A)| \ge |N_G(A)| |\{y_{k+1}\}| \ge |A| + 1 1 = |A|$
 - \exists a complete matching M' from $X \{x_{k+1}\}$ to $Y \{y_{k+1}\}$ in G' (IH)
 - $M = M' \cup \{\{x_{k+1}, y_{k+1}\}\}\$ is a complete matching from X to Y in G

Separate Hall's Theorem

into 2

exactly

- Case 2: $\exists A \subseteq X$, $1 \le |A| \le k$ such that $|N_G(A)| = |A|$
 - Say $A = \{x_1, ..., x_i\}$ and $N_G(A) = \{y_1, ..., y_i\}$, where $1 \le j \le k$
 - Let $V' = A \cup N_G(A)$, $E' = \{e \in E : e \subseteq V' \times V'\}$ and G' = (V', E')
 - $\forall A' \subseteq A, |N_{G'}(A')| = |N_G(A')| \ge |A'|$
 - There is a complete matching M' from A to $N_G(A)$ in G' (IH)
 - Let $V'' = (X \setminus A) \cup (Y \setminus N_G(A)), E'' = \{e \in E : e \subseteq V'' \times V''\},$
 - Let $G'' = (V'', E'') = G A N_G(A)$
 - Then $\forall A'' \subseteq X \setminus A, |N_{G''}(A'')| \ge |A''|$.
 - Otherwise, $|N_G(A'' \cup A)| = |N_{G''}(A'')| + |N_G(A)| < |A''| + |A|$
 - \exists a complete matching M'' from $X \setminus A$ to $Y \setminus N_G(A)$ (IH)
 - $M = M' \cup M''$ is a complete matching from X to Y

complete t complete