## CS 6375 ASSIGNMENT 1

## Names of students in your group: Terisha Kolencherry Prax

### Number of free late days used: None

Note: You are allowed a **total** of 4 free late days for the **entire semester**. You can use at most 2 for each assignment. After that, there will be a penalty of 10% for each late day.

# Please list clearly all the sources/references that you have used in this assignment.

- Dataset: https://archive.ics.uci.edu/dataset/597/productivity+prediction+of+garment+employees
- Gradient Descent Lab from Class: https://colab.research.google.com/drive/1rmblKcJUf0A18GMk7Jx4u6DXnQLf32V6?usp=sharing #scrollTo=QVz-JbxFJXOW
- Gradient Descent in R: (helpful for orienting logic)
- https://oindrilasen.com/2018/02/compute-gradient-descent-of-a-multivariate-linear-regression-model-in-r/#:~:text=Similar%20to%20the%20Gradient%20Descent%20for%20a%20Univariate.%28i
  - r/#:~:text=Similar%20to%20the%20Gradient%20Descent%20for%20a%20Univariate,%28i%29% 29.%20xj%20%28i%29%20where%20j%20%3D%200%2C1%2C2%E2%80%A6n%20%7D
- Alternate Multiple Linear Regression with Gradient Descent (used generating random weights and using the dot product of A^T \* A for squaring the matrix)
- https://www.kaggle.com/code/rakend/multiple-linear-regression-with-gradient-descent
- R-Squared: https://en.wikipedia.org/wiki/Coefficient\_of\_determination
- Reading in Hosted File: <a href="https://stackoverflow.com/questions/32400867/pandas-read-csv-from-url">https://stackoverflow.com/questions/32400867/pandas-read-csv-from-url</a>
- Residuals: https://online.stat.psu.edu/stat462/node/120/

#### Assignment 1 Write Up

| Executive Summary |  | 3 |
|-------------------|--|---|
|-------------------|--|---|

| Part Zero: Pre-Processing                                             | 4  |
|-----------------------------------------------------------------------|----|
| Part One: DIY Gradient Descent                                        | 6  |
| Experimenting with Varying Learning Rates, Iterations, and Thresholds | 6  |
| Scaling Predictors                                                    | 7  |
| Taking out Weak Predictors                                            | 8  |
| Final Model Equation                                                  | 9  |
| Part Two:                                                             | 10 |
| Varying Learning Rates, Iterations, Threshold Values                  | 10 |
| Regression with Fewer Predictors                                      | 11 |
| Final Model Equation                                                  | 11 |
|                                                                       |    |

#### **Executive Summary**

This project took a look at productivity data for garment workers. The response variable was actual productivity score. Initially, five predictors were selected for regression, but the optimal models with and without the library ended up using only one predictor – targeted productivity. The optimal model minimized MSE without seemingly overfitting the data and would be helpful for prediction.

I don't think that either model is the best model possible. A couple of ways I might improve the model given more time would be:

- Focus on what predictors are strongly correlated to targeted productivity. Targeted productivity seems to be a metric that is formulated from other data points so a more robust model might look to the data points that make up that metric.
- Do a log or square root transformation for some of the predictors with larger numbers. Gradient descent can work better when all the data is scaled, but in this case I didn't want to blindly scale all the predictors since it's a mix of qualitative and quantitative data. For example, I assigned numbers to each quarter (1-4). If I had scaled the data, I could have ended up with a quarter value of 1.3 but that number has no significance on its own in this context because the scaling isn't done in relation to what month is assigned to the data.
- It's possible that this data isn't best represented by a linear model.

The final non-library and library gradient descent models are shown below:



#### Part Zero: Pre-Processing

When looking at the data the only column that was missing values was wip, which stands for works in progress (see Table 0.1).

| Name       | Description | Name                  | Description     | Name                | Description       |
|------------|-------------|-----------------------|-----------------|---------------------|-------------------|
| date       | Date in MM- | no_of_workers         | # of workers    | over_time           | Amount of         |
|            | DD-YYYY     |                       | on team         |                     | overtime in       |
|            |             |                       |                 |                     | minutes           |
| day        | Day of the  | no_of_style_change    | # of changes in | incentive           | Amount of         |
|            | Week        |                       | the style of a  |                     | financial         |
|            |             |                       | particular      |                     | incentive         |
|            |             |                       | product         |                     | offered (BDT)     |
| quarter    | Quarter of  | targeted_productivity | Set by the      | idle_time           | Amount of time    |
|            | the Year    |                       | Authority for   |                     | production was    |
|            |             |                       | the team daily  |                     | interrupted       |
| department | Associated  | smv                   | Standard        | idle_men            | Number of         |
|            | Department  |                       | minute value –  |                     | workers idle      |
|            |             |                       | allocated time  |                     | due to            |
|            |             |                       | for each task   |                     | production        |
|            |             |                       |                 |                     | interruption      |
| team_no    | Associated  | wip                   | Number of       | actual_productivity | Actual            |
|            | Team #      |                       | unfinished      |                     | producitivity % - |
|            |             |                       | items for       |                     | ranges from 0     |
|            |             |                       | products        |                     | to 1              |

Table 0.1

In order to assign an appropriate value to the empty cells, I looked to see if there were any rows where there were zero works in progress. Since there were not, I filled all NaN cells with zero.

Upon checking the unique values for the *quarter* column, it was noted that there were 5 quarters in the year. In order to understand what the error was, I looked up the rows that had "Quarter 5" as a value and noted that all of them were supposed to be included in Q1, and that replacement was made.

Next, the *department* column was cleaned up. There were two "finishing" values and one "sewing" value. These two different department names were given a numerical value to help view the correlation between *department* and *actual\_productivity*. A similar process was used to transform the days of the week to numerical values.

Once all qualitative predictors had been transformed, the correlation matrix was generated (Figure 0.1).

| actual_productivity   | 1.000000  |  |  |  |
|-----------------------|-----------|--|--|--|
| targeted_productivity | 0.421594  |  |  |  |
| department            | 0.087624  |  |  |  |
| incentive             | 0.076538  |  |  |  |
| wip                   | 0.047389  |  |  |  |
| day                   | -0.005104 |  |  |  |
| over_time             | -0.054206 |  |  |  |
| no_of_workers         | -0.057991 |  |  |  |
| idle_time             | -0.080851 |  |  |  |
| SMV                   | -0.122089 |  |  |  |
| quarter               | -0.123779 |  |  |  |
| team                  | -0.148753 |  |  |  |
| idle_men              | -0.181734 |  |  |  |
| no_of_style_change    | -0.207366 |  |  |  |
| Figure 0.1            |           |  |  |  |

Of interest here is the correlation between the response variable, actual productivity, and the predictors. The strongest correlations were with targeted productivity, number of style changes, idle men, quarter, and team. These predictors and the response variable were put into a slimmed down dataframe that would be used for the majority of the regression evaluation (Figure 0.2)

|       | quarter     | targeted_productivity | no_of_style_change | idle_men    | team        | actual_productivity |
|-------|-------------|-----------------------|--------------------|-------------|-------------|---------------------|
| count | 1197.000000 | 1197.000000           | 1197.000000        | 1197.000000 | 1197.000000 | 1197.000000         |
| mean  | 2.252297    | 0.729632              | 0.150376           | 0.369256    | 6.426901    | 0.735091            |
| std   | 1.130974    | 0.097891              | 0.427848           | 3.268987    | 3.463963    | 0.174488            |
| min   | 1.000000    | 0.070000              | 0.000000           | 0.000000    | 1.000000    | 0.233705            |
| 25%   | 1.000000    | 0.700000              | 0.000000           | 0.000000    | 3.000000    | 0.650307            |
| 50%   | 2.000000    | 0.750000              | 0.000000           | 0.000000    | 6.000000    | 0.773333            |
| 75%   | 3.000000    | 0.800000              | 0.000000           | 0.000000    | 9.000000    | 0.850253            |
| max   | 4.000000    | 0.800000              | 2.000000           | 45.000000   | 12.000000   | 1.120437            |
|       |             |                       |                    |             |             |                     |

Figure 0.2

Finally, before beginning the regression analysis, a scatterplot of all the selected predictors was generated (Figure 0.3). The first takeaway from this plot is the difference in scales for the various predictors, which was further illustrated by Figure 0.2. Later in this report, we will look at scaling options. The second takeaway is that the trend of the data doesn't seem to be strongly linear. The means of the various predictors at different values don't strongly increase of decrease. This conclusion is supported by Figure 0.1.



Part One: DIY Gradient Descent
Experimenting with Varying Learning Rates, Iterations, and Thresholds

For each round, an object was created from a dataframe that specified the response variable column name and the number of predictors. Initially, each regression started with 5 predictors. The different rounds of training used different starting weights, looped through various learning rates, and had different iteration values. In the beginning, the models generated moderate mean squared errors, but there was concern about overfitting because the training error rate was lower than the testing error rate. These were the key takeaways:

- While starting weights were randomly generated, starting weights pulled from a (0,1) distribution had better errors versus starting weights pulled from distributions with higher upper bounds (Figures 1.1 and 1.2)
- For this particular set of data, a higher number of iterations led to smaller errors
- For this particular set of data, a smaller threshold led to smaller errors
- For this model, learning rates seemed to plateau towards the end



Figures 1.1 and 1.2

Once there was what was determined to be a "good enough" model, I looked at the residual plots for the training data (Figure 1.3). One can see the data points have a trumpet shape, which can indicate that there is a need for scaling.



#### **Scaling Predictors**

When looking at the boxplots of the predictors, the first thing that stood out was the number of outliers for the *idle\_men* predictor (Figure 1.4).



Figure 1.4

I looked at what the data would look like if I dropped those outliers and settled on a cutoff of 20. That cutoff would still include about 90% of the data. However, looking at the correlation coefficients before vs after there wasn't a significant difference so I decided to look at taking out weak predictors (Figure 1.5).

```
Correlations Before Removing Outliers in idle_men Predictor Correlations After Removing Outliers in idle_men Predictor
                         -0.123779
 quarter
                                                              quarter
                                                                                        -0.125209
targeted_productivity
                        0.421594
                                                             targeted_productivity
                                                                                       0.421826
{\tt no\_of\_style\_change}
                        -0.207366
                                                             no_of_style_change
                                                                                      -0.191510
idle_men
                        -0.181734
                                                             idle_men
                                                                                      -0.073213
team
                        -0.148753
                                                             team
                                                                                      -0.148362
                        1.000000
actual productivity
                                                             actual_productivity
                                                                                       1.000000
Name: actual_productivity, dtype: float64
                                                             Name: actual_productivity, dtype: float64
```

Figure 1.5

#### **Taking out Weak Predictors**

I looked at how strongly the predictors correlated with each other to see if there were any strong correlations that might lead to double-counting a predictor's influence. There was a decent positive correlation between the number of style changes, quarter, and targeted productivity (Figure 1.6). Since targeted productivity had a larger correlation, I dropped the other two predictors and re-ran my optimal model for five predictors.

|                       | quarter   | targeted_productivity | no_of_style_change | idle_men  | team      | actual_productivity |
|-----------------------|-----------|-----------------------|--------------------|-----------|-----------|---------------------|
| quarter               | 1.000000  | -0.105497             | 0.249836           | -0.010972 | 0.022426  | -0.123779           |
| targeted_productivity | -0.105497 | 1.000000              | -0.209294          | -0.053818 | 0.030274  | 0.421594            |
| no_of_style_change    | 0.249836  | -0.209294             | 1.000000           | 0.133632  | -0.011194 | -0.207366           |
| idle_men              | -0.010972 | -0.053818             | 0.133632           | 1.000000  | 0.026974  | -0.181734           |
| team                  | 0.022426  | 0.030274              | -0.011194          | 0.026974  | 1.000000  | -0.148753           |

Figure 1.6

There wasn't a significant decrease in minimum MSE, but the residual plot did look more random, which is a good sign (Figure 1.7). I went ahead and dropped all predictors except for targeted productivity and re-ran the regression. The was a small .01 increase in MSE, but the residual plot

looks less trumpet-like (Figure 1.8). Since the residual plot looks better and the MSE isn't very different from the five-predictor model, I went with the simpler model.



Figures 1.7 (left) and 1.8 (right)

#### Final Model

 $\hat{y} = 0.158 + 0.790 * x_1$ 

\*\*\*\*MODEL PARAMETERS\*\*\*\*

Weights

w\_ 0 : 0.3745401188473625 -----> 0.15751497340626586
w\_ 1 : 0.9507143064099162 ----> 0.7902068560712477

Iterations: 100000 Threshold: 1e-05 Number of Predictors: 1

Minimum Test MSE 0.02295117327268457 for Learning Rate = 1.70000000000000007e-06



#### Part Two:

#### Varying Learning Rates, Iterations, Threshold Values

Similar to Part One, I varied the learning rates, the number of iterations, and threshold values. The takeaways are similar here – higher number of iterations, and lower threshold values help decrease MSE (Figures 2.1 and 2.2)



Figure 2.1 (left) and 2.2 (right)

#### Changing Learning Rate Schedule

The SGDRegressor function has an option for the learning rate schedule (Table 2.1) and I tried all four.

| Schedule   | Formula                                                                                |
|------------|----------------------------------------------------------------------------------------|
| constant   | eta = eta0                                                                             |
| optimal    | eta = 1.0 / (alpha * (t+t0))                                                           |
| invscaling | eta = eta0 / pow(t, power_t)                                                           |
| adaptive   | eta = eta0 as long as the training keeps decreasing. If consecutive epochs fail to     |
|            | decrease the training loss by the tolerance, the current learning rate is divided by 5 |

Table 2.1

Both the constant and optimal settings seemed to lead to overfitting with test MSEs above training MSEs (Figures 2.3 and 2.4), but the invscaling schedule resulted in the lowest MSE without overfitting.



Figures 2.3 (left) and 2.4 (right

#### Regression with Fewer Predictors

Similar to Part One, I re-ran my optimal 5-predictor regression parameters but with fewer predictors. Test MSEs were similar, but for one predictor the test seemed to be better with a much higher threshold.

#### Final Model Equation

$$\hat{y} = 0.257 + 0.193 * x_1$$

WEIGHT ESTIMATION

w\_ 0 : 0.25724519382555755 w\_ 1 : 0.1926233020022272

Minimum Test MSE 0.03270972545195711 for Learning Rate = 6.8000000000000005e-06

