Lecture 12: The Effects of Social Security in a Life-cycle Model with non-zero population growth

ECON30009/90080 Macroeconomics

Semester 2, 2025

Announcements

- ☐ Next week: there are no tutorial assignments posted
- ☐ Your tutors will instead use the tutorial sessions as their consultation hours. If your tutorial falls on Thursday 11 Sep, you may attend any of the other tutorials.
- ☐ MST on Thursday 11 Sep:
 - ECON30009: in-class. Bring your student ID.
 - ECON90080: Rm 315, FBE Bldg. Bring your student ID.

PAYG social security with population growth

We showed a Fully-Funded social security policy is budget neutral. This conclusion will still hold with population growth.
Intuitively because fully-funded social security implies that the government is just saving on the household's behalf
Now we will instead focus on the effects of a PAYG policy with population growt
When PAYG was first introduced in many OECD countries, many of those economies were experiencing fast growth in their working age populations.

Adding population growth

☐ Assume population grows at a constant rate, such that:

$$N_{t+1} = (1+n)N_t$$

- ☐ Before adding social security to the model, let's see what the social planner would choose when population growth is not zero
- \square Apart from population growing at rate n, we will make the same assumptions as the example we have typically used in class

Too much or too little savings?

 \square The market economy without government and with population growing at rate n observed the following transition equation (See Tutorial 3 Q2!):

$$k_{t+1} = \frac{1}{1+n} \frac{\beta}{1+\beta} (1-\alpha) z k_t^{\alpha}$$

☐ which in steady state means that the market economy observes:

$$\bar{k}^M = \left[\frac{1}{1+n} \frac{\beta}{1+\beta} (1-\alpha)z \right]^{1/(1-\alpha)}$$

and the associated rate of return on capital $\bar{R}^M=MPk$ in steady state is:

$$\bar{R}^{M} = \alpha z (\bar{k}^{M})^{-(1-\alpha)}$$
$$= \frac{\alpha (1+\beta)}{\beta (1-\alpha)} (1+n)$$

Too much or too little savings?

- ☐ We want to know if the market economy without government is saving too much or too little relative to what a social planner would choose in steady state
- ☐ Two ways to do this:
 - \circ Compare $ar{k}^M$ vs. $ar{k}^{SP}$
 - $\circ~$ Compare \bar{R}^{M} to MPk^{SP} in social planner's solution.

- ☐ Social planner wants to make households happy (maximize lifetime utility)
- ☐ Subject to a resource constraint:

$$N_t c_t^y + N_t c_t^o + K_{t+1} = z K_t^{\alpha} N_t^{1-\alpha}$$

- ☐ Social planner wants to make households happy (maximize lifetime utility)
- ☐ Subject to a resource constraint:

$$N_t c_t^y + N_t c_t^o + K_{t+1} = z K_t^{\alpha} N_t^{1-\alpha}$$

 \square Dividing by N_t :

$$c_t^y + c_t^o + \frac{K_{t+1}}{N_{t+1}} \frac{N_{t+1}}{N_t} = zk_t^{\alpha}$$

- ☐ Social planner wants to make households happy (maximize lifetime utility)
- ☐ Subject to a resource constraint:

$$N_t c_t^y + N_t c_t^o + K_{t+1} = z K_t^{\alpha} N_t^{1-\alpha}$$

 \square Dividing by N_t :

$$c_t^y + c_t^o + \frac{K_{t+1}}{N_{t+1}} \frac{N_{t+1}}{N_t} = zk_t^{\alpha}$$

which is same as:

$$c_t^y + c_t^o + k_{t+1}(1+n) = zk_t^\alpha$$

- ☐ Social planner wants to make households happy (maximize lifetime utility)
- ☐ Subject to a resource constraint:

$$N_t c_t^y + N_t c_t^o + K_{t+1} = z K_t^{\alpha} N_t^{1-\alpha}$$

 \square Dividing by N_t :

$$c_t^y + c_t^o + \frac{K_{t+1}}{N_{t+1}} \frac{N_{t+1}}{N_t} = zk_t^{\alpha}$$

which is same as:

$$c_t^y + c_t^o + k_{t+1}(1+n) = zk_t^\alpha$$

☐ In steady state:

$$\bar{c}^y + \bar{c}^o + \bar{k}(1+n) = z\bar{k}^\alpha$$

- ☐ We want to find the long-run equilibrium the planner would choose
- ☐ This means solving the following problem:

$$\mathcal{L} = \max \ln \bar{c}^y + \beta \ln \bar{c}^o + \lambda \left[z\bar{k}^\alpha - \bar{c}^y - \bar{c}^o - \bar{k}(1+n) \right]$$

$$\mathcal{L} = \max \ln \bar{c}^y + \beta \ln \bar{c}^o + \lambda \left[z \bar{k}^\alpha - \bar{c}^y - \bar{c}^o - \bar{k}(1+n) \right]$$

- ☐ Planner's optimality conditions:
 - Optimal LR allocations across generations:

$$\frac{1}{\bar{c}^y} = \frac{\beta}{\bar{c}^o}$$

Optimal gross investment:

$$\alpha z k^{\bar{S}P^{\alpha-1}} = (1+n)$$

Allocations are feasible (resource constraint)

$$z\bar{k}^{\alpha} = \bar{c}^y + \bar{c}^o + \bar{k}(1+n)$$

$$\mathcal{L} = \max \ln \bar{c}^y + \beta \ln \bar{c}^o + \lambda \left[z\bar{k}^\alpha - \bar{c}^y - \bar{c}^o - \bar{k}(1+n) \right]$$

☐ Optimal gross investment:

$$\underbrace{\alpha z \bar{k}^{\alpha - 1}}_{MPk^{SP}} = (1 + n)$$

 \square which in turn implies that in an economy with constant population growth $n \neq 0$, pareto-optimal \bar{k} is:

$$\bar{k}^{SP} = \left[\frac{\alpha z}{1+n}\right]^{1-\alpha}$$

Market economy MPk vs. Social planner's MPk

☐ In the market economy without government, we observed that in steady state

$$\bar{R}^M = \frac{\alpha(1+\beta)}{\beta(1-\alpha)}(1+n)$$

and we know that the rental rate of capital is equal to MPK in equilibrium in the market economy.

☐ From the social planner's problem we have:

$$\underbrace{\alpha z \bar{k}^{\alpha - 1}}_{MPk^{SP}} = (1 + n)$$

Market economy MPk vs. Social planner's MPk

- \Box If $\bar{R}^M < MPk^{SP}$: there is overaccumulation of capital.
- ☐ The economy is saving too much and this causes the rate of return on capital in the market economy to be lower than the socially optimal level of MPk.
- ☐ In the simple model we wrote down, this occurs when:

$$\bar{R}^M = \frac{\alpha(1+\beta)}{\beta(1-\alpha)}(1+n) < 1+n \quad \text{if} \quad \frac{\alpha(1+\beta)}{\beta(1-\alpha)} < 1$$

Market economy MPk vs. Social planner's MPk

- \square If $\bar{R}^M > MPk^{SP}$: there is underaccumulation of capital.
- ☐ The economy is saving too little and this causes the rate of return on capital in the market economy to be higher than the socially optimal level of MPk.
- ☐ In the simple model we wrote down, this occurs when:

$$\bar{R}^M = \frac{\alpha(1+\beta)}{\beta(1-\alpha)}(1+n) > 1+n \quad \text{if} \quad \frac{\alpha(1+\beta)}{\beta(1-\alpha)} > 1$$

PAYG SOCIAL SECURITY UNDER POPULATION GROWTH

- \square At any point t, the ratio of young to old is given by $N_t/N_{t-1}=1+n$
- \square Government levies tax s on each young household
- \square And gives each old household (1+n)s
- ☐ Government's budget is balanced as total tax revenue equals total transfers:

$$N_t s = N_{t-1}(1+n)s$$

Household constraints

☐ Budget constraint of young

$$c_t^y + a_{t+1} + s = w_t + \pi_t$$

Budget constraint of old:

$$c_{t+1}^o = (1 + r_{t+1})a_{t+1} + (1+n)s$$

LBC

$$c_t^y + \frac{c_{t+1}^o}{1 + r_{t+1}} = w_t + \pi_t - s + \frac{1+n}{1 + r_{t+1}}s$$

Household optimality

☐ Euler:

$$c_{t+1}^{o} = \beta (1 + r_{t+1}) c_{t}^{y}$$

□ LBC

$$c_t^y + \frac{c_{t+1}^o}{1 + r_{t+1}} = w_t + \pi_t - s + \frac{1+n}{1 + r_{t+1}}s$$

☐ Plug Euler into LBC:

$$c_t^y = \frac{1}{(1+\beta)} \left[w_t + \pi_t - s + \frac{1+n}{1+r_{t+1}} s \right]$$

Equilibrium

Capital market clearing:

$$K_{t+1} = N_t a_{t+1}$$

□ In eqm:

$$k_{t+1} = \frac{1}{1+n} \left\{ \frac{\beta}{1+\beta} (1-\alpha) z k_t^{\alpha} - \frac{1}{1+\beta} \left[\beta + \frac{1+n}{1+r_{t+1}} \right] s \right\}$$

 □ As before, introduction of PAYG social security shifts transition curve down (can show this numerically)

Welfare

- ☐ Welfare can actually be higher if population is growing fast enough.
- \square In particular, if $1 + n > 1 + r_{t+1}$, welfare is higher
- \square From LBC, if $1 + n > 1 + r_{t+1}$, then lifetime income is higher

$$c_t^y + \frac{c_{t+1}^o}{1 + r_{t+1}} = w_t + \pi_t + \left[\frac{1+n}{1+r_{t+1}} - 1\right]s$$

 \square Higher lifetime income means more resources to consume from: $c_t^y, c_{t+1}^o \uparrow$

Welfare

 \square Why can households be better off with PAYG social security when $1+n>1+r_{t+1}$?

- \square Why can households be better off with PAYG social security when $1+n>1+r_{t+1}$?
- \square Growth path of k_t is lower with PAYG yet welfare can be higher.

- $\ \square$ Why can households be better off with PAYG social security when $1+n>1+r_{t+1}$?
- \square Growth path of k_t is lower with PAYG yet welfare can be higher.
- ☐ Let's look at budget constraint of old again:

$$c_{t+1}^o = (1 + r_{t+1})a_{t+1} + (1 + n)s$$

Welfare

- \square Why can households be better off with PAYG social security when $1+n>1+r_{t+1}$?
- \square Growth path of k_t is lower with PAYG yet welfare can be higher.
- ☐ Let's look at budget constraint of old again:

$$c_{t+1}^o = (1 + r_{t+1})a_{t+1} + (1+n)s$$

□ Note that in the market economy with no govt, individuals' only source of income was private savings.

- Why can households be better off with PAYG social security when $1 + n > 1 + r_{t+1}$?
- \square Growth path of k_t is lower with PAYG yet welfare can be higher.
- ☐ Let's look at budget constraint of old again:

$$c_{t+1}^o = (1 + r_{t+1})a_{t+1} + (1+n)s$$

- Note that in the market economy with no govt, individuals' only source of income was private savings.
- □ With PAYG, old also get income from the transfer, and this s transfer yields a higher return than private savings if $1 + n > 1 + r_{t+1}$

- \square When $1+n>1+r_{t+1}$, individuals when old get a bigger "return" from s than from private savings.
- \square PAYG in this case helps to resolve a missing "market" problem. Savings decision of t-1 generation affects K_t (and its MP) which t generation have to work with
 - How?: Government provides insurance in old age: individuals don't need to save as much
- Saving less and consuming more led market economy closer to social planner's solution

- □ What if $1 + n < 1 + r_{t+1}$?
- □ Note this is the case where the market economy without social security was already under-accumulating capital in steady state
- What will the introduction of PAYG do in this case? Make households better off or worse off?

- □ What if $1 + n < 1 + r_{t+1}$?
- □ Note this is the case where the market economy without social security was already under-accumulating capital in steady state
- What will the introduction of PAYG do in this case? Make households better off or worse off?

AGEING POPULATIONS?

Non-constant n

 \square A note: not attractive to have n < 0 forever in our model. Why? This would mean there's no one in the economy at some point (asymptotically the economy approaches zero population). \square We can consider variations in population growth n_t \square We can ask what happens if n_t persistently < 0 but not permanently < 0. \square We can ask how the aggregate outcomes of this economy at date t is affected when $n_t > 0$ or $n_t < 0$

- \square At any point t, the ratio of young to old is given by $N_t/N_{t-1}=1+n_t$
- \square Government levies tax s on each young household
- \square And gives each old household $(1 + n_t)s$
- \square Note if $n_t < 0$, we are implicitly assuming that in that period t, the government gives a smaller transfer to old households to balance the budget

$$N_t s = N_{t-1}(1 + n_t)s$$

If you have a shrinking population: either you have to reduce the benefit to the old OR raise the amount that you tax from the young.

Household constraints

☐ Budget constraint of young

$$c_t^y + a_{t+1} + s = w_t + \pi_t$$

Budget constraint of old:

$$c_{t+1}^o = (1 + r_{t+1})a_{t+1} + (1 + n_t)s$$

LBC

$$c_t^y + \frac{c_{t+1}^o}{1 + r_{t+1}} = w_t + \pi_t - s + \frac{1 + n_t}{1 + r_{t+1}}s$$

 \square Note $-s + \frac{1+n_t}{1+r_{t+1}}s$ becomes more negative as n_t gets smaller: lifetime income is smaller, holding all else constant

Rest of problem is similar (follows same steps).

Equilibrium

☐ Capital market clearing:

$$K_{t+1} = N_t a_{t+1} \implies \frac{K_{t+1}}{N_{t+1}} \frac{N_{t+1}}{N_t} = a_{t+1} \implies k_{t+1} (1 + n_{t+1}) = a_{t+1}$$

□ In eqm:

$$k_{t+1} = \frac{1}{1 + n_{t+1}} \left\{ \frac{\beta}{1 + \beta} (1 - \alpha) z k_t^{\alpha} - \frac{1}{1 + \beta} \left[\beta + \frac{1 + n_{t+1}}{1 + r_{t+1}} \right] s \right\}$$

 \square As before, we need to solve this numerically. Let's ask given a k_t , what happens to k_{t+1} if $n_t = n_{t+1} > 0$ vs. $n_t = n_{t+1} < 0$

k_{t+1} under shrinking and growing population

Suppose $\beta = 0.95, s = 0.1, \alpha = 0.2, z = 1$

 \circ For given k_t , why is k_{t+1} higher if $n_t = n_{t+1} < 0$ relative to $n_t = n_{t+1} > 0$?

k_{t+1}, c_t^y, c_t^o under shrinking and growing population

Suppose economy currently at $k_t = 0.15$, what are the outcomes if $n_t = n_{t+1} = 0.02$ vs. $n_t = n_{t+1} = -0.02$?

Note that changes in k_{t+1} affect $R_{t+1} = (1 + r_{t+1})$ which affects c_t^y

$$c_t^y = \frac{1}{(1+\beta)} \left[w_t + \pi_t - s + \frac{1+n_t}{1+r_{t+1}} s \right]$$

k_{t+1}, c_t^y, c_t^o under shrinking and growing population

Suppose economy currently at $k_t=0.15$, what are the outcomes if $n_t=n_{t+1}=0.02$ vs. $n_t=n_{t+1}=-0.02$?

	k_{t+1}	·	c_t^o
$n_{t+1} = 0.02$	0.156	0.289	0.239
$n_{t+1} = 0.02$ $n_{t+1} = -0.02$	0.162	0.288	0.235

We already saw that if $n_t < 0$, old household gets smaller transfer.

Wrapping up

- ☐ We have seen how fiscal policies can be incorporated into the model:
 - □ looked at spending and tax policies
 - looked at transfers
- ☐ After MST: we will start thinking about short-run fluctuations in the economy.