北京市朝阳区九年级综合练习(一)

数学试卷

2018.5

学校	形工会员	世夕	老只	
子仅	1911-910	. 灶石	~ 5 ケ	

考 1. 本试卷共 8 页,共三道大题,28 道小题,满分 100 分。考试时间 120 分钟。

生 2. 在试卷和答题卡上认真填写学校名称、姓名和准考证号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上, 选择题、作图题用 2B 铅笔作答, 其他试题用黑色字迹签字笔作答。

知 5. 考试结束,请将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)

下面 1-8 题均有四个选项, 其中符合题意的选项只有一个

- 1. 如图, 直线 a//b, 则直线 a, b之间距离是
- (A) 线段 AB 的长度
- (B) 线段 CD 的长度
- (C) 线段 EF 的长度
- (D) 线段 GH 的长度

- 2. 若代数式 $\frac{2x}{x-1}$ 有意义,则实数 x 的取值范围是
- (A) x=0
- (B) x=1
- (C) $x\neq 0$
- (D) $x \neq 1$
- 3. 若右图是某几何体的三视图,则这个几何体是
- (A) 球
- (B) 圆柱
- (C) 圆锥
- (D) 三棱柱

- 4. 已知 $l_1//l_2$,一个含有 30°角的三角尺按照如图所示位置摆放,则 $\angle 1+\angle 2$ 的度数为
- (A) 90°
- (B) 120°
- (C) 150°
- (D) 180°

5. 下列图形中,是中心对称图形但不是轴对称图形的是

6. 实数 a, b, c, d 在数轴上的对应点的位置如图所示,

下列结论 ①a < b; ②|b| = |d| ; ③a + c = a; ④ad > 0 中,正确的有

(A) 4个

(B) 3个

(C) 2个

(D) 1个

7. "享受光影文化,感受城市魅力",2018年4月15-22日第八届北京国际电影节顺利举办.

下面的统计图反映了北京国际电影节.电影市场的有关情况.

第六届和第八届北京国际电影节. 电影市场"项目创投"申报类型统计表

申报类型	悬疑惊	剧情	爱情	喜剧	科幻	动作冒险	古装	动画	其他
届	悚犯罪				奇幻	(含战争)	武侠		
第六届	8.70%	25.30%	17.80%	12.20%	13.00%	7.80%	0	3.80%	11.40%
第八届	21.33%	19.94%	18.70%	15.37%	10.66%	7.48%	4.02%	1.39%	1.11%

根据统计图提供的信息,下列推断合理的是

- (A) 两届相比较, 所占比例最稳定的是动作冒险(含战争)类
- (B) 两届相比较, 所占比例增长最多的是剧情类
- (C) 第八届悬疑惊悚犯罪类申报数量比第六届2倍还多
- (D) 在第六届中, 所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类

8. 如图, $\triangle ABC$ 是等腰直角三角形, $\angle A$ =90°,AB=6,点 P 是 AB 边上一动点(点 P 与点 A 不重合),以 AP 为边作正方形 APDE,设 AP=x,正方形 APDE 与 $\triangle ABC$ 重合部分(阴影部分)的面积为 y,则下列能大致反映 y 与 x 的函数关系的图象是

二、填空题(本题共16分,每小题2分)

9. 赋予式子 "ab" 一个实际意义: _____.

10.如果
$$\frac{m}{3} = \frac{n}{2} \neq 0$$
,那么代数式 $\frac{3m-n}{4m^2-n^2} \cdot (2m+n)$ 的值是_____.

11.足球、篮球、排球已经成为北京体育的三张名片,越来越受到广大市民的关注.下表是北京两支篮球队在 2017-2018 赛季 CBA 常规赛的比赛成绩:

队名	比赛场次	胜场	负场	积分
北京首钢	38	25	13	63
北京北控	38	18	20	56

设胜一场积x分,负一场积y分,依题意,可列二元一次方程组为_____.

12. 如图,
$$AB //CD$$
, $AB = \frac{1}{2} CD$, $S_{\triangle ABO}$: $S_{\triangle CDO} = \underline{\hspace{1cm}}$

13. 如图,点A,B,C在 $\odot O$ 上,四边形OABC是平行四边形, $OD \bot AB$ 于点E,交 $\odot O$ 于点 D,则∠BAD= 度.

第13题图

- 第14题图
- 14. 如图,在平面直角坐标系 xOv中, $\triangle O'A'B'$ 可以看作是 $\triangle OAB$ 经过若干次图形的变化 (平移、轴对称、旋转)得到的,写出一种由 $\triangle OAB$ 得到 $\triangle O'A'B'$ 的过程:
- 15.下列随机事件的概率: ①投掷一枚均匀的骰子, 朝上一面为偶数的概率; ②同时抛掷两 枚质地均匀的硬币,两枚硬币全部正面朝上的概率;③抛一枚图钉,"钉尖向下"的概 率; ④某作物的种子在一定条件下的发芽率. 既可以用列举法求得又可以用频率估计获得的是 (只填写序号).

16. 下面是"经过已知直线外一点作这条直线的垂线"的尺规作图过程。

已知:直线 a 和直线外一点 P.

 P_{ullet}

求作: 直线 a 的垂线, 使它经过 P

作法:如图,

- (1) 在直线 a 上取一点 A, 连接 PA;
- (2) 分别以点A和点P为圆心,大于AP的长为半径作弧,

两弧相交于 B, C 两点, 连接 BC 交 PA 于点 D;

(3) 以点 D 为圆心, DP 为半径作圆, 交直线 a 于 点 E, 作直线 PE.

所以直线 PE 就是所求作的垂线.

请回答: 该尺规作图的依据是_

三、解答题(本题共 68 分, 第 17-24 题, 每小题 5 分, 第 25 题 6 分, 第 26-27 题, 每小题 7 分, 第 28 题 8 分)

17. 计算:
$$2\sin 30^{\circ} + (\frac{1}{3})^{-1} + (4-\pi)^{0} + \sqrt{8}$$
.

18. 解不等式组 :
$$\begin{cases} x-1 > 2(x-3), \\ \frac{6x-1}{2} > 2x. \end{cases}$$

19. 如图,在 $\triangle ACB$ 中,AC=BC,AD 为 $\triangle ACB$ 的高线,CE 为 $\triangle ACB$ 的中线. 求证: $\angle DAB=\angle ACE$.

- 20. 已知关于 x 的一元二次方程 $x^2 + (k+1)x + k = 0$.
 - (1) 求证: 方程总有两个实数根;
 - (2) 若该方程有一个根是正数, 求k的取值范围.
- 21. 如图,在 $\triangle ABC$ 中,D是 AB 边上任意一点,E是 BC 边中点,过点 C作 AB 的平行线,交 DE 的延长线于点 F,连接 BF,CD.

- (1) 求证: 四边形 CDBF 是平行四边形;
- (2) 若 $\angle FDB$ =30°, $\angle ABC$ =45°, BC=4 $\sqrt{2}$, 求 DF 的长.

- 22. 如图,在平面直角坐标系 xOy 中,直线 AB 与 x 轴、y 轴分别交于点 A、B,与反比例函数 $y = \frac{k}{x}$ 的图象在第四象限交于点 C, $CD \perp x$ 轴于点 D, $\tan \angle OAB = 2$,OA = 2,OD = 1.
 - (1) 求该反比例函数的表达式;
 - (2) 点 M 是这个反比例函数图象上的点,过点 M 作 $MN \perp y$ 轴,垂足为点 N,连接 OM、AN,如果 $S_{\triangle ABN} = 2S_{\triangle OMN}$,直接写出点 M 的坐标.

- 23. 如图,在 \odot O中,C,D分别为半径 OB,弦 AB 的中点,连接 CD 并延长,交过点 A 的 切线于点 E.
 - (1) 求证: AE⊥CE.
 - (2) 若 $AE=\sqrt{2}$, $\sin \angle ADE=\frac{1}{3}$, 求 $\odot O$ 半径的长.

- 24. 水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚.对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.
 - 收集数据 从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:

甲	26 41	32	40	51	44	74	44	63	73	74	81	54	62
Z	27	35	46	55	48	36	47	68	82	48	57	66	75
	27	36	57	57	66	58	61	71	38	47	46	71	

整理、描述数据 按如下分组整理、描述这两组样本数据

株数 个数 x 大棚	25≤x<35	35≤x<45	45≤ <i>x</i> <55	55≤x<65	65≤x<75	75≤x<85
甲	5	5	5	5	4	1
Z	2	4	6			2

(说明: 45 个以下为产量不合格, 45 个及以上为产量合格, 其中 45~65 个为产量良好, 65~85 个为产量优秀)

分析数据 两组样本数据的平均数、众数和方差如下表所示:

大棚	平均数	众数	方差
甲	53	54	3047
Z	53	57	3022

得出结论 a. 估计乙大棚产量优秀的秧苗数为______ 株;

b. 可以推断出_____大棚的小西红柿秧苗品种更适应市场需求,理由为____.(至少从两个不同的角度说明推断的合理性)

25.如图,AB 是 $\odot O$ 的直径,AB=4cm,C 为 AB 上一动点,过点 C 的直线交 $\odot O$ 于 D、E 两点,且 $\angle ACD$ =60°,DF $\bot AB$ 于点 F,EG $\bot AB$ 于点 G,当点 C 在 AB 上运动时,设 AF=x cm,DE=y cm(当x 的值为 0 或 3 时,y 的值为 2),探究函数y 随自变量x 的变化而变化的规律.

(1) 通过取点、画图、测量,得到了x与y的几组对应值,如下表:

x/cm	0	0.40	0.55	1.00	1.80	2.29	2.61	3
y/cm	2	3. 68	3.84		3.65	3.13	2.70	2

(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的 图象:

- (3)结合画出的函数图象,解决问题:点F与点O重合时,DE长度约为_____cm (结果保留一位小数).
- 26. 在平面直角坐标系 xOy 中,抛物线 $y = ax^2 4ax 4(a \neq 0)$ 与 y 轴交于点 A,其对称轴与 x 轴交于点 B.
 - (1) 求点 A, B 的坐标;
 - (2) 若方程 $ax^2 4ax 4 = 0$ ($a \neq 0$) 有两个不相等的实数根,且两根都在 1, 3 之间 (包括 1, 3), 结合函数的图象,求 a 的取值范围.

- 27. 如图,在菱形 ABCD 中, $\angle DAB=60^\circ$,点 E 为 AB 边上一动点(与点 A ,B 不重合),连接 CE,将 $\angle ACE$ 的两边所在射线 CE,CA 以点 C 为中心,顺时针旋转 120° ,分别交射线 AD 于点 F,G.
 - (1) 依题意补全图形;
 - (2) 若 $\angle ACE = \alpha$, 求 $\angle AFC$ 的大小 (用含 α 的式子表示);
 - (3) 用等式表示线段 AE、AF 与 CG 之间的数量关系,并证明.

- 28. 对于平面直角坐标系 xOy 中的点 P 和线段 AB,其中 A(t, 0)、B(t+2, 0)两点,给出如下定义:若在线段 AB 上存在一点 Q,使得 P,Q 两点间的距离小于或等于 1,则称 P 为线段 AB 的伴随点.
 - (1) 当t=-3时,
 - ①在点 P_1 (1, 1), P_2 (0, 0), P_3 (-2, -1) 中, 线段 AB 的伴随点是_____;
 - ②在直线 y=2x+b 上存在线段 AB 的伴随点 $M \setminus N$,且 $MN=\sqrt{5}$,求 b 的取值范围;
 - (2) 线段 AB 的中点关于点(2,0)的对称点是 C,将射线 CO 以点 C 为中心,顺时针旋转 30° 得到射线 l,若射线 l 上存在线段 AB 的伴随点,直接写出 t 的取值范围.

北京市朝阳区九年级综合练习(一)

数学试卷答案及评分参考

2018.5

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
答案	В	D	С	A	В	В	A	C

- 二、填空题 (本题共 16 分,每小题 2 分)
- 9. 答案不惟一,如:边长分别为 a, b 的矩形面积

10.
$$\frac{7}{4}$$
 11. $\begin{cases} 25x + 13y = 63, \\ 18x + 20y = 56. \end{cases}$ 12. 1:4 13.15

- 14. 答案不唯一,如:以x轴为对称轴,作 $\triangle OAB$ 的轴对称图形,再将得到三角形沿向右平移 4 个单位长度
- 15. (1)(2)
- 16. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;直径所对的圆周角是直角
- 三、解答题(本题共 68 分, 第 17-24 题, 每小题 5 分, 第 25 题 6 分, 第 26-27 题, 每小题 7 分,

第28题8分)

18. 解: 原不等式组为 $\left\{ \frac{x-1 > 2(x-3)}{6x-1} > 2x. \right\}$

解 不 等 式 ① , 得
$$x < 5$$
.

角	裈	不	等		式		2	,		得
$x > \frac{1}{2} \cdots$		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	·····4 <i>5</i>	分		
		原						解	集	为
$\frac{1}{2} < x < 5$		•••••	••••••	••••••	• • • • • • • • • •		5 分			
19. 证明:	AC = BC	C,CE 为△ ∠ (ACB的 CAB		_	F	2		CE	ı
<i>AB</i>		•••••	•••••	•••••	• • • • • • • • • •	2	分			_
90° . ••••	<i>∴</i>		CA		+	•••••	∠ ·3 分	ACE		=
	<i>∵AD</i> 为∠ ∴∠ <i>D</i> =9	<i>∖ACB</i> 的高。 90°.	线,							
90°	•••		<i>D</i>	<i>AB</i>	+		∠ 4 \	В		=
	\therefore				DAB),	=		_
ACE. ··	•	•••••	••••••	••••••	70)	3	分		
20. (1) j	正明: 依题意	意,得∆=($(k+1)^2$	-4k		•••••	•••••	••••••	•••••	••••
1分					Y					
$=(k-1)^2$					•••••		··2 分			
	:,	$(k-1)^2 \ge 0$),							
	<u>,</u> ::	方	程	总			两	个	实	数
根	ДЛ Д. Г. НД	/\ -\			••••••					
4分	群: 田水欣	公式,得 <i>x</i> ₁	=-1,	$x_2 = -\kappa$.	•••••	•••••	• • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••
		程有一个 $k > 0$.	是正数	,						
	:.									
<i>k</i> < 0 .····	••••••	••••••	•	•	••••••	••••••	•••••	······5 5	}	
21. (1) ù	E明: <i>∵CF</i> ∴∠ <i>I</i>	$E//AB$, $ECF = \angle EB$	PD.							
		是 BC 中点,								
	∵∠($C = BE$. $C = EF = \angle BE$								
	$\therefore \triangle ($	$CEF \cong \triangle BE$	ZD.							

九年级数学试卷 第11页(共8页)

- $\therefore CF = BD.$
- ∴四边形 CDBF 是平行四边形. ·····

2分

- (2) 解:如图,作*EM*⊥*DB* 于点*M*,
 - ∵四边形 *CDBF* 是平行四边形, $BC = 4\sqrt{2}$,

在 Rt $\triangle EMB$ 中, $EM = BE \cdot \sin \angle ABC = 2$

分

 \therefore DF =

- 22. 解: (1) *∵AO*=2, *OD*=1,
 - $\therefore \qquad AD \qquad = \qquad AO+ \qquad OD \qquad = \qquad$
- - $:: CD \perp x$ 轴于点 D,
 - $\therefore \angle ADC = 90^{\circ}$.

在 Rt $\triangle ADC$ 中, $CD = AD \cdot \tan \angle OAB = 6$..

 $\therefore C(1, -6)$.

2分

- 23. (1) 证明: 连接 OA,
 - :OA 是⊙O 的切线,

 - : C, D 分别为半径 OB, 弦 AB 的中点,
 - $\therefore CD$ 为 $\triangle AOB$ 的中位线.
 - $\therefore CD // OA$.
 - $\therefore \angle E = 90^{\circ}$.
 - ∴AE⊥CE.2 ½

(2)解:连接 OD,

5分

即 $\odot O$ 的半径长为 $\frac{9}{2}$

24. 解:整理、描述数据 按如下分组整理、描述这两组样本数据

株数 x个数 大棚	25≤x<35	35≤x<45	45≤ <i>x</i> <55	55≤x<65	65≤x<75	75≤x<85
甲	5	5	5	5	4	1
Z	2	4	6	6	5	2

)	
分	••••••	2
	得出结论	a. 估计乙大棚产量优秀的秧苗数为 <u>84</u> 株; ······3
分		
		b. 答案不唯一,理由须支撑推断的合理性. ······5
		分

25. 解:本题答案不唯一,如:

(1)

x/cm	0	0.40	0.55	1.00	1.80	2.29	2.61	3
y/cm	2	3.68	3.84	4.00	3.65	3.13	2.70	2

.....1

分

(2)

(3) 3.5.

26.#\(\text{if}\) $y = ax^2 - 4ax - 4 = a(x-2)^2 - 4a - 4$.

$$A (0, -4), B (2, 0).$$
2

分

分

分

分

当抛物线经过点 (2, 0) 时, a = -16

分 结合函数图象可知,a的取值范围为 $-\frac{4}{3} \le a < 1$7

九年级数学试卷 第14页(共8页)

27. (1) 补全的图形如图所示.

分

- (2)解:由题意可知, ∠ECF=∠ACG=120°.
 - $\therefore \angle FCG = \angle ACE = \alpha$.
 - ∵四边形 ABCD 是菱形, ∠DAB=60°,

分

- ∴ ∠*AGC*=30°.
- $\angle AFC = \alpha + 30^{\circ}$3

分

(3) 用等式表示线段 AE、AF 与 CG 之间的数量关系为 $AE + AF = \sqrt{3}CG$.

证明:作 $CH \perp AG$ 于点H.

由(2)可知 \(\angle BAC = \angle DAC = \angle AGC = 30^\circ.

$$\therefore HG = \frac{1}{2}AG.$$

 \therefore $\angle ACE = \angle GCF$, $\angle CAE = \angle CGF$,

 $\therefore \triangle ACE \cong \triangle GCF$.

6分

 $\therefore AE = FG$.

在 Rt $\triangle HCG$ 中, $HG = CG \cdot \cos \angle CGH = \frac{\sqrt{3}}{2}CG$.

 $\therefore \qquad \qquad AG \qquad \qquad = \qquad \qquad \sqrt{3}$

 $\mathbb{P} AF + AE = \sqrt{3} CG.$

28. 解: (1) ①线段 AB 的伴随点是: P₂, P₃.2

分

②如图 1, 当直线 *y*=2*x*+*b* 经过点 (-3, -1) 时, *b*=5, 此时 *b* 取得最大值.

分

如图 2, 当直线 *y*=2*x*+*b* 经过点 (-1, 1) 时, *b*=3, 此时 *b* 取得最小值.

分

. *b* 的取值范围是 3≤*b*≤5. ·······6

分

(2) t 的取值范围是 $-\frac{1}{2} \le t \le 2$. ·····8