Задача 2

Пусть G — связная группа Ли. Пусть

$$p\colon \widetilde{G}\to G$$

её универсальное накрытие. Доказать, что существует структура группы Ли на \widetilde{G} , т. ч.

- 1. $p \colon \widetilde{G} \to G$ гладкая функция,
- 2. $p \colon \widetilde{G} \to G$ является гомоморфизмом групп Ли.

Доказательство. Обозначим умножение на G как

$$\mu: G \times G \to G$$
,

взятие обратного как

inv:
$$G \to G$$
.

Порядок доказательства:

- 1. Введём на \widetilde{G} структуру гладкого многообразия.
- 2. Покажем, что $p \colon \widetilde{G} \to G$ гладкая.
- 3. Введём на \widetilde{G} операции умножения

$$\widetilde{\mu}(x,y) = xy$$

и взятия обратного

$$\widetilde{\text{inv}}(x) = x^{-1}.$$

- 4. Проверим, что $\widetilde{\mu}$ и $\widetilde{\text{inv}}$ гладкие, откуда следует, что на \widetilde{G} получается структура группы Ли.
- 5. Докажем, что $p\colon \widetilde{G}\to G$ является гомоморфизмом групп Ли.

1) Топологические свойства \widetilde{G}

Уже знаем (из построения универсального накрытия на лекциях), что \widetilde{G} — топологическое пространство. Нужно проверить выполнение трёх свойств из определения гладкого многообразия:

- **1.1)** \widetilde{G} хаусдорфово. Рассмотрим две точки $x,y\in\widetilde{G}$. Пусть p(x)=a и p(y)=b в G.
 - Если p(x)=p(y)=a, то существует «хорошая» окрестность U(a) так, что $p|_{V_x}$ гомеоморфизм x, а x и y лежат на разных $V_i,V_j,\,i\neq j$. Это и будут непересекающиеся окрестности.

• Если $p(x)=a\neq b=p(y),$ то существуют непересекающиеся хорошие окрестности U(a) и U(b): $U(a)\cap U(b)=\varnothing$. Тогда можно выбрать окрестности

$$x \in V(x) \subset p^{-1}(U(a)), \quad y \in W(y) \subset p^{-1}(U(b)),$$

которые также будут непересекающимися. В силу того, что $p|_{V(x)}$ и $p|_{W(y)}$ — гомеоморфизмы, мы получаем, что $V(x)\cap W(y)=\varnothing$.

Поскольку G — хаусдорфово, мы можем добиваться непересекаемости окрестностей образов, и при прообразах через p также получаем непересекающиеся окрестности на \widetilde{G} .

1.2) \widetilde{G} имеет счётную базу. Покроем G хорошими окрестностями. Из них можно выбрать счётный набор $\{U_i\}$, так как в G существует счётная база. На лекциях показано, что

$$p^{-1}(U_i) = \bigsqcup_{j} U_{i,j}$$

— счётное дизъюнктное объединение $U_{i,j}\subset \widetilde{G}$. Таким образом, $\{U_{i,j}\}$ — счётная база в \widetilde{G} .

1.3) Построение атласа. Осталось предъявить атлас. Рассмотрим точку $x \in \widetilde{G}, \ p(x) = a$. Знаем, что существует хорошая окрестность U(a) в G, такая, что $p|_{V_x}$ — гомеоморфизм для $V_x = p^{-1}(U(a)) \cap$ (некоторая компонента).

Так как G имеет структуру гладкого многообразия размерности 2n, можно покрыть $U=U_i\cap U_j$ набором карт $\{\varphi_i:U_i\to W_i\subset\mathbb{R}^n\}$. Этому набору соответствует набор

$$V_i = p^{-1}(U_i \cap U),$$

покрывающий V. Тогда определим атлас на \widetilde{G} так:

$$\widetilde{\varphi}_i = \varphi_i \circ p|_{V_i} \colon p^{-1}(U_i \cap U) \to W_i \subset \mathbb{R}^n.$$

Отображение $\widetilde{\varphi}_i$ является композицией гомеоморфизмов, следовательно — это допустимая карта. Чтобы задать атлас $\mathcal{A}_{\widetilde{G}}$, перебираем все x в \widetilde{G} , берём соответствующие хорошие окрестности (их счётное число) и карты из атласа \mathcal{A}_G . Так, очевидно, получаем, что

$$\widetilde{G} = \bigcup_{i} V_{i}.$$

Согласованность $\widetilde{\varphi}_i$ вытекает из согласованности φ_i на G. Итак, \widetilde{G} имеет структуру гладкого многообразия.

2) Гладкость отображения $p\colon \widetilde{G} \to G$

Покажем, что $p \colon \widetilde{G} \to G$ — гладкая. Это значит, что каждый локальный представитель p в картах является гладким. Пусть

$$\varphi_i \circ p \circ (\widetilde{\varphi}_i)^{-1} \colon W_i \to W_i$$

— это композиция гладких отображений (так как $\widetilde{\varphi}_i, \varphi_j$ согласованные карты), откуда p гладкое.

3) Введение операций $\widetilde{\mu}$ и $\widetilde{\text{inv}}$

Определим

$$\widetilde{\mu} \colon \widetilde{G} \times \widetilde{G} \to \widetilde{G}, \quad \widetilde{\mu}([\alpha(t)], [\beta(t)]) = [\alpha(t) \cdot \beta(t)],$$

где $[\alpha(t)]$ — класс гомотопной петли в G. Проверим корректность: если

$$\alpha \sim \alpha', \quad \beta \sim \beta',$$

ТО

$$\alpha(t) \cdot \beta(t) \sim \alpha'(t) \cdot \beta'(t)$$
.

Отсюда корректность операции $\widetilde{\mu}$.

Аналогично вводим

$$\widetilde{\text{inv}} : \widetilde{G} \to \widetilde{G}, \quad \widetilde{\text{inv}}([\alpha(t)]) = [\alpha(t)]^{-1} = [\alpha(t)^{-1}].$$

Здесь $[\alpha(t)]^{-1}$ — путь в G, равный в каждой точке обратному элементу $\alpha(t)$. Так на \widetilde{G} получаем структуру группы: нейтральным элементом служит

$$[e_c(t)],$$

где $e_c(t)$ — тривиальный (константный) путь в нейтральном элементе G. Умножение есть

$$[\alpha(t)] \cdot [e_c(t)] = [\alpha(t) \cdot e_c(t)] = [\alpha(t)].$$

4) Гладкость $\widetilde{\mu}$ и $\widetilde{\text{inv}}$

Чтобы \widetilde{G} стало группой Ли, нужно показать, что умножение $\widetilde{\mu}$ и обращение $\widetilde{\mathrm{inv}}$ являются гладкими отображениями.

4.1) Гладкость $\widetilde{\mu}$. Пусть $\mu\colon G\times G\to G$ гладкое многообразие. Аналогичные карты задаются и для $\widetilde{G}\times \widetilde{G}$. С учётом того, что

$$\mu = p \circ \widetilde{\mu} \circ (p^{-1} \times p^{-1}),$$

мы можем проверить локально: в картах $\widetilde{\varphi}_i$ и $\widetilde{\varphi}_j$ композиция с μ остаётся гладкой, так как само μ гладко на $G \times G$.

4.2) Гладкость inv. Аналогично,

$$inv = p \circ \widetilde{inv} \circ p^{-1},$$

а inv гладко на G. Локально это сводится к композиции диффеоморфизмов в картах, значит, inv гладко.

Таким образом, на \widetilde{G} построена структура группы Ли.

5) Гомоморфизм групп Ли

Осталось показать, что $p \colon \widetilde{G} \to G$ является гомоморфизмом групп Ли. Мы уже знаем, что p гладкое (пункт 2). Проверим гомоморфизм:

$$p([\alpha(t)] \cdot [\beta(t)]) = p([\alpha(t) \beta(t)]) = (\alpha(1) \cdot \beta(1)) = p([\alpha(t)]) \cdot p([\beta(t)]).$$

Таким образом, p — гомоморфизм групп Ли.

Задача 2 (альтернативная формулировка доказательства)

Пусть G — связная группа Ли, а

$$p \colon \widetilde{G} \to G$$

есть её универсальное накрытие. Требуется показать, что на \widetilde{G} можно ввести структуру группы Ли, причём:

- 1. отображение $p \colon \widetilde{G} \to G$ является гладким;
- 2. то же самое p даёт гомоморфизм групп Ли.

 Π лан решения. Пусть умножение в G задаётся отображением

$$\mu \colon G \times G \to G$$

и обращение —

inv:
$$G \to G$$
.

Тогда докажем следующее:

- 1. Снабдим \widetilde{G} структурой гладкого многообразия.
- 2. Убедимся, что $p \colon \widetilde{G} \to G$ является гладкой функцией.
- 3. Определим на \widetilde{G} операции умножения

$$\widetilde{\mu}(x,y) = xy$$

и взятия обратного

$$\widetilde{\text{inv}}(x) = x^{-1}$$
.

- 4. Покажем, что данные операции гладкие, откуда \widetilde{G} становится группой пи
- 5. Наконец, проверим, что $p\colon \widetilde{G}\to G$ есть гомоморфизм групп Ли.

1) Топология на \widetilde{G}

Из построения универсального накрытия известно, что \widetilde{G} — топологическое пространство. Нужно лишь подтвердить три условия для гладкого многообразия:

- **1.1) Хаусдорфовость.** Возьмём произвольные точки $x,y\in \widetilde{G}$. Пусть p(x)=a и p(y)=b в G.
 - Если a=b, то берём в G «хорошую» окрестность U(a), на которой p является гомеоморфизмом на соответствующих компонентах прообраза. Точки x и y попадают в разные компоненты, которые можно выбрать как непересекающиеся.
 - Если $a \neq b$, то в G найдутся непересекающиеся «хорошие» окрестности U(a) и U(b), а в \widetilde{G} их прообразы, которые тоже непересекаются благодаря тому, что p локально является гомеоморфизмом.

Поскольку G — хаусдорфово, то и в \widetilde{G} строятся непересекающиеся окрестности соответствующих точек.

1.2) Счётная база. Выберем в G счётный набор «хороших» окрестностей $\{U_i\}$, который возможен благодаря тому, что G имеет счётную базу. Тогда прообраз каждой U_i под p раскладывается в дизъюнктное объединение $U_{i,j}$:

$$p^{-1}(U_i) = \bigsqcup_j U_{i,j}.$$

Все такие $U_{i,j}$ вместе образуют счётную базу на \widetilde{G} .

1.3) Атлас на \widetilde{G} . Пусть $x \in \widetilde{G}$ и p(x) = a. Так как a имеет «хорошую» окрестность U(a) в G и p при этом локальный гомеоморфизм, рассмотрим соответствующий кусок $V_x \subset \widetilde{G}$, который отображается гомеоморфно на U(a).

В G уже есть гладкая структура с атласом $\{\varphi_i\}$. Тогда на каждом V_x зададим карты

$$\widetilde{\varphi}_i = \varphi_i \circ p\big|_{V_x}.$$

Композиция гомеоморфизма и гладкой карты даёт гладкую карту. Собирая такие карты по всем «хорошим» окрестностям и их прообразам, получаем полный атлас на \widetilde{G} . Согласованность новых карт получается из согласованности исходных φ_i .

2) Гладкость $p\colon \widetilde{G} \to G$

Чтобы проверить гладкость p, достаточно проверить гладкость его локальных версий в координатных картах. Но локально p — композиция уже гладких (или гомеоморфных) отображений, следовательно, гладкое.

3) Групповая операция и обращение

На \widetilde{G} определяется умножение

$$\widetilde{\mu}([\alpha(t)], [\beta(t)]) = [\alpha(t) \beta(t)],$$

где $[\alpha(t)]$ и $[\beta(t)]$ — классы петель в G. Корректность: гомотопные петли при умножении дают гомотопные результаты. Нейтральным элементом выступает класс $[e_c(t)]$, где $e_c(t)$ — постоянный путь в нейтральном элементе G. Обращение петли $[\alpha(t)]$ задаётся путём

$$[\alpha(t)]^{-1} = [\alpha(t)^{-1}].$$

- 4) Гладкость $\widetilde{\mu}$ и $\widetilde{\text{inv}}$
- **4.1) Гладкость** $\widetilde{\mu}$. Умножение на G есть гладкое отображение $\mu\colon G\times G\to G$. На $\widetilde{G}\times \widetilde{G}$ по определению

$$\mu = p \circ \widetilde{\mu} \circ (p^{-1} \times p^{-1}),$$

и поскольку локально все карты согласованы с картами в $G \times G$, операция $\widetilde{\mu}$ получается гладкой.

4.2) Гладкость $\widetilde{\text{inv}}$. Аналогично, $\text{inv}: G \to G$ гладко. Тогда

inv =
$$p \circ \widetilde{\text{inv}} \circ p^{-1}$$
.

В локальных координатах эта композиция диффеоморфизмов также гладкая, значит, и inv гладко.

Таким образом, на \widetilde{G} формируется структура группы Ли.

5) Гомоморфизм групп Ли

Наконец, покажем, что $p\colon \widetilde{G}\to G$ — гомоморфизм групп Ли. Мы уже доказали его гладкость. Для свойств гомоморфизма надо лишь проверить согласованность умножений:

$$p\Big([\alpha(t)] \cdot [\beta(t)]\Big) \; = \; p\Big([\alpha(t) \, \beta(t)]\Big) \; = \; \alpha(1) \, \beta(1) \; = \; p([\alpha(t)]) \, \cdot \, p([\beta(t)]).$$

Значит, p действительно переводит произведение в произведение, то есть является гомоморфизмом групп Ли.