Section 1. HW 1

Exercise 1.1 (Section 51 exercise 1) Show that if $h, h': X \to Y$ are homotopic and $k, k': Y \to Z$ are homotopic, then $k \circ h$ and $k' \circ h'$ are homotopic.

Proof) Let $H: X \times I \to Y, K: Y \times I \to Z$ are homotopies between h, h' and k, k', respectively. Define $H': X \times I \to Y$ by H'(x,t) = (H(s,t),t). Since both Hand t are continuous, H' is continuous. Let $F: X \times I \to Z (= K \circ H')$ be given by F(x,t) = K(H(s,t),t). Then

- (a) F is composition of continuous functions:
- (b) F(x,0) = k(h(x));
- (c) F(x,1) = k'(h'(x))

Therefore, F is a homotopy between $k \circ h$ and $k' \circ h'$.

Exercise 1.2 (Section 51 exercise 3) A space X is said to be **contractible** if the identity map $i_X: X \to X$ is nulhomotopic.

- (a) Show that I and \mathbb{R} are contractible.
- (b) Show that a contractible space is path connected.
- (c) Show that if Y is contractible, then for any X, the set [X, Y] has a single element.
- (d) Show that if X is contractible and Y is path connected, then [X,Y] has a single **Proof**) element.

Proof)

- (a) Define $F_X: X \times I \to I$ by $F_X(x,t) = xt$. If X = I, then F_I is continuous, $F_I(x,0)=0$, and $F_I(x,1)=x$, for $x\in I$. If $X=\mathbb{R}$, $F_{\mathbb{R}}$ is continuous, then $F_{\mathbb{R}}(x,0)=0$, and $F_{\mathbb{R}}(x,1)=x$, for $x\in\mathbb{R}$. Therefore, F_I and $F_{\mathbb{R}}$ are homotopies between i_I and 0 and between $i_{\mathbb{R}}$ and 0, respectively.
- (b) Suppose a space X is contractible space. There is a point $p \in X$ such that a contant map e_n and i_X are homotopic. Let $a,b\in X$ be given. We want to show that there exists a curve $c: I \to X$ between a and b. To do this, let $H: X \times I \to X$ be a homotopy between e_p and i_X , where $H(x,0)=i_X(x)=x$, H(x,1)=p. We see that
 - (a) H(a,t): a path from a to p.
 - (b) H(b,t): a path from b to p.

If we define c = H(a, t) * H(b, t), then c is a path from a to b.

- (c) Suppose $i_Y \simeq e_p$ for some $p \in Y$. Then $f = i_Y \circ f \simeq e_p \circ f = e_p \circ g \simeq i_Y \circ g = g$.
- (d) Suppose $i_X \simeq e_p$ for some $p \in X$. Then $f = f \circ i_X \simeq f \circ e_p = e_{f(p)} \simeq e_{g(p)} \simeq e_{g$ $g \circ i_X = g$. The homotopy equivalence between $e_{f(p)}$ and $e_{g(p)}$ is derived from the path-connectness of Y. Define $F: Y \times I \to Y$ by F(s,t) = c(t) where c denote the curve from f(p) to g(p).

Exercise 1.3 (Section 52 exercise 4) Let $A \subset X$; suppose $r: X \to A$ is a continuous map such that r(a) = a for each $a \in A$. (The map r is called a **retraction** of X onto A) If $a_0 \in A$, show that

$$r_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$$

is surjective.

Proof) Define $r': A \to X$ by r'(x) = x. Consider $r \circ r': A \to A$. We easily see that $r \circ r'$ is well-defined and is a identity map. It implies that r' is a right inverse of r, which means r is surjective.

Exercise 1.4 (Section 52 exercise 7) Let G be a topological group with operation \cdot and identity element x_0 . Let $\Omega(G, x_0)$ denote the set of all loops in G based at x_0 . If $f, g \in \Omega(G, x_0)$, let us define a loop $f \otimes g$ by the rule

$$(f \otimes g)(s) = f(s) \cdot g(s).$$

- (a) Show that this operation makes the set $\Omega(G, x_0)$ into a group.
- (b) Show that rhis operation induces a group operation \otimes on $\pi_1(G, x_0)$.
- (c) Show that the two group operation * and \otimes on $\pi_1(G,x_0)$ are the same.[Hint: Compute $(f * e_{x_0}) \otimes (e_{x_0} * g)$]
- (d) Show that $\pi_1(G, x_0)$ is abelian.

- (a) Let I(=[0,1]) be the domain of loops in $\Omega(G,x_0)$. Let $f,g\in\Omega(G,x_0)$. Since, for each $s \in I$, both f(s) and g(s) are in G, $(f \otimes g)(s) \in G$. Thus the operation is closed in $\Omega(G,x_0)$. If $f,g,h\in\Omega(G,x_0)$, then $((f\otimes g)\otimes h)(s)=(f(s)\cdot g(s))\cdot h(s)=$ $f(s) \cdot (g(s) \cdot h(s)) = (f \otimes (g \otimes h))(s)$, for all $s \in I$, by the associativity of group operation. Furthermore, e_{x_0} is clearly the identity of \otimes . Suppose $f \in \Omega(G, x_0)$. Define $g:G\to G$ by $g(x)=x^{-1}$. By the definition of topological group, g is continuous, so is $g \circ f$. Then, $(g \circ f) \otimes f = f \otimes (g \circ f) = e_{x_0}$, which means that $(g \circ f)$ is the inverse element for f of \otimes .
- (b) Given $[f], [g] \in \pi_1(G, x_0)$, define $[f] \otimes [g]$ by $[f \otimes g]$. We have to check whether the operation is well-defined. Suppose $h, h', k, k' \in \Omega(G, x_0), h \simeq h'$, and $k \simeq k'$. Let H, K be the homotopy between f, f' and between g, g', respectively. Define $HK: I \times I \to G$ by $HK(s,t) = H(s,t) \cdot K(s,t)$. By the definition of topological group, HK is continuous. On top of that, $HK(s,0) = h(s) \cdot k(s)$, $HK(s,1) = h'(s) \cdot k'(s)$. Therefore, it is a homotopy between $h \otimes k$ and $h' \otimes k'$. Suppose $[f], [g], [h] \in \pi_1(G, x_0)$. Then $([f] \otimes [g]) \otimes [h] = [f] \otimes ([g] \otimes [h]) =$ $[f \otimes g] \times [h] = [(f \otimes g) \otimes h] = [f \otimes (g \otimes h)] = [f] \otimes [g \otimes h] = [f] \otimes ([g] \otimes [h]).$ The identity and inverse are followed by (a).
- (c) Note that for each $f, g \in \Omega_1(G, x_0)$,

$$(f*e_{x_0})\otimes (e_{x_0}*g) = \begin{cases} f(s)\cdot e_{x_0}(s) & \text{for } 0 \leq s \leq \frac{1}{2} \\ e_{x_0}(s)\cdot g(s) & \text{for } \frac{1}{2} \leq s \leq 1 \end{cases} = f*g.$$

Theremore, $[f] \otimes [g] = [f * e_{x_0}] \otimes [e_{x_0} * g] = [f * g] = [f] * [g].$

each $[f], [g] \in \pi_1(G, x_0)$.

Exercise 1.5 (Section 53 exercise 3) Let $p: E \to B$ be a covering map; let B be connected. Show that if $p^{-1}(b_0)$ has k elements for some $b_0 \in B$, then $p^{-1}(b)$ has kelements for every $b \in B$. In such a case, E is called a **k-fold covering** of B.

Let $B_0 := \{b \in B \mid |p^{-1}(b)| = k\}$. $B_1 := \{b \in B \mid |p^{-1}(b) \neq b\}$. By hypothesis, $|B_0| \neq 0$. Suppose, for contradiction, $|B_1| \neq 0$. Since p is a covering map, for each element of B_0 , there exists a open subset U_α of B evenly covered by p. Likewise, for $b \in B_1$, there exists $V_{\beta} \subset B$ evenly covered by p, for some integer $n \neq k$. Let $U = \bigcup \{U_{\alpha}\}, V = \bigcup \{V_{\beta}\}.$ Then

- (a) Since U, V are union of open sets, they are open.
- (b) Clearly $(U \cap B) \cup (V \cap B) = B$.
- (c) $U \cap V = \emptyset$. Suppose $x \in U \cap V$, then $|p^{-1}(x)| = k = n$, leading to a contradiction.

That is, U, V seperate B, leading a contradiction. Thus, B_1 is an empty set.

Exercise 1.6 (Section 53 exercise 6) Let $p: E \to B$ be a covering map.

- (a) If B is Hausdorff, regular, completely regular, or locally compact Hausdorff, then so is E. [Hint: If $\{V_{\alpha}\}$ is a partition of $p^{-1}(U)$ into slices, and C is a closed set of B such that $C \subset U$, then $p^{-1}(C) \cap V_{\alpha}$ is a closed set of E.]
- (b) If B is compact and $p^{-1}(b)$ is finite for each $b \in B$, then E is compact.

(b) Let an open cover $\{U_{\alpha}\}$ of E be given. For every $b \in B$, there exists Proof) V_b evenly covered by p. Each V_b has the covering space of finite disjoint open set W_{b_β} . Consider the intersection of each U_α and W_{b_β} . Since p is surjective and the set $\{V_b\}$ is an open cover of B, the union of every $U_\alpha \cap W_{b_\beta}$ contains E. It implies that the union of every $p(U_{\alpha} \cap W_{b_{\alpha}})$ contains B. Therefore, there is a finite subcover $\{p(U_{\alpha_n} \cap W_{b_{\beta_m}})\}$ containing B. The preimage of each $p(U_{\alpha_n} \cap W_{b_{\beta_m}})$ is a finite-fold covering of $p(U_{\alpha_n} \cap W_{b_{\beta_m}})$, thus the number of every disjoint open set of preimage of $p(U_{\alpha_n} \cap W_{b_{\beta_n}})$ is also finite, and union of them contains E. Since $(U_{\alpha_n} \cap W_{b_{\beta_m}}) \subset U_{\alpha_n}$, E is contains in the union of $\{U_{\alpha_n}\}$. It is a finite subcover of E.

(d) $[f]*[g]=[f*g]=[f*e_{x_0}]\otimes [e_{x_0}*g]=[e_{x_0}*f]\otimes [g*e_{x_0}]=[g*f]=[g]*[f],$ for **Exercise 1.7** (Section 54 exercise 5) Consider the covering map $p\times p:\mathbb{R}\times\mathbb{R}\to \mathbb{R}$ $S^1 \times S^1$ of Example 4 of setction 53. Consider the path $f(t) = (\cos 2\pi t, \sin 2\pi t) \times (\sin 2\pi t)$ $(\cos 4\pi t, \sin 4\pi t)$ in $S^1 \times S^1$. Sketch what f looks like when $S^1 \times S^1$ is identified with the doughnut surface D. Find a lifting \overline{f} of f to $\mathbb{R} \times \mathbb{R}$, and sketch it.

> Proof) Define $\tilde{f}:I\to\mathbb{R}\times\mathbb{R}$ by

$$\tilde{f}(s) = (s, 2s).$$

Then $p \circ \tilde{f} = f$. To visualize this, let $q: S^1 \times S^1 \to \mathbb{R}^3$ given by

$$g((x_1, y_1) \times (x_2, y_2)) = ((1 + \frac{1}{3}x_1)x_2, (1 + \frac{1}{3}x_1)y_2, \frac{1}{3}y_1).$$

Then

$$(g \circ p)(u, v) = g((\cos 2\pi u, \sin 2\pi u) \times (\cos 2\pi v, \sin 2\pi v))$$

= $((1 + \frac{1}{3}\cos 2\pi u)\cos 2\pi v, (1 + \frac{1}{3}\cos 2\pi u)\sin 2\pi v, \frac{1}{3}\sin 2\pi u)$

$$(g \circ f)(s) = g((\cos 2\pi s, \sin 2\pi s) \times (\cos 4\pi s, \sin 4\pi s)) \tag{1}$$

$$= ((1 + \frac{1}{3}\cos 2\pi s)\cos 4\pi s, (1 + \frac{1}{3}\cos 2\pi s)\sin 4\pi s, \sin 2\pi s)$$
 (2)

If we render this using a graphics tool, the result looks like the following image.

Figure 1: The path f on the torus p

Exercise 1.8 (Section 54 exersice 6) Consider the maps $g,h:S^1\to S^1$ given $g(z)=z^n$ and $h(z)=1/z^n$. (Here we represent S^1 as the set of complex numbers z of absolute value 1.) Compute the induced homomorphism g_*,h_* of the infinite cyclic group $\pi_1(S^1,b_0)$ into itself. [Hint: Recall the equation $(\cos\theta+i\sin\theta)^n=\cos n\theta+\sin n\theta$.]

Proof) Since S^1 is path-connected, $\pi_1(S^1,b_0)\cong\pi_1(S^1,(1,0))$. We may assume $b_0=(1,0)$. Let $f:I\to S^1$ given by $f(t)=(\cos 2\pi t,\sin 2\pi t)=e^{2\pi it}$. Then f(0)=f(1)=(1,0), and the equivalence class $[f]\in\pi_1(S^1,(1,0))\cong\mathbb{Z}$ corresponds to $1\in\mathbb{Z}$, so it is a gererater of $\pi_1(S^1,(1,0))$. Define a isomorphism $\phi:\pi_1(S^1,(1,0))\to\mathbb{Z}$ by $\phi([e^{2\pi nt}])=n$. Then $(\phi\circ g_*)([f])=\phi([g\circ f])=\phi([e^{2\pi nt}])=n$. Since [f] is a generator of $\pi_1(S^1,(1,0)), n$ is a generator of $(\phi\circ g_*)(\pi_1(S^1,(1,0)), n\mathbb{Z}$. Consequently, $g_*(\pi_1(S^1,(1,0)))\cong(\phi\circ g_*)(\pi_1(S^1,(1,0)))=n\mathbb{Z}$. Similarly, $h_*(\pi_1(S^1,(1,0)))\cong(\phi\circ h_*)(\pi_1(S^1,(1,0)))=-n\mathbb{Z}$.