第一次提交时数据分析部分出错,电阻率不确定度公式用错了。仅在数据分析处做了修改, 其他的和上次一致。

- 1. 铜棍电阻率的测量:
- (1) 铜棍长度 (两个电压接头之间):

$$\Delta = 0.5$$
mm, $u_{bx} = \Delta/3 = 0.17$ mm

$$l = 41.30 - 3.69 = 376.1$$
mm

 $l = 376.1 \pm 0.17$ mm

(2) 铜棍直径测量:

-							
	测量次数	1	2	3	4	5	平均值
	直径/mm	5.005	5.001	4. 991	4.998	4.996	4. 9982

$$s_{\bar{x}} = \frac{s_{x_i}}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}} = 0.002354$$
mm

$$u_{ax} = t_{(0.683,k)} s_{\bar{x}} = 1.14*0.002354=0.002684$$
mm

$$\varepsilon_x = 0.01$$
mm, $u_{bx} = \varepsilon_x / \sqrt{3} = 0.0058$ mm

$$u_x = \sqrt{u_{ax}^2 + u_{bx}^2} = 0.006391$$
mm

 $d = 4.9982 \pm 0.006$ mm

(3) 调节电桥平衡:

电桥状态	$R_2(=R_2')$	R_{χ}	$\Delta R_2 (= \Delta R_2)$	ΔI	S
数据记录	333.0Ω	$3.33 \times 10^{-4} \Omega$	20 Ω	0. 9nA	14. 985nA

$$S = \frac{\Delta I}{\Delta R_2/R_2} = 14.985 \text{nA}$$

$$R_x = \frac{R_2}{R_1} R_0 = \frac{333.0}{1000} 0.001 = 3.33 \times 10^{-4} \Omega$$

$$\rho_x = \sqrt{(1+k)^2(\rho_1^2 + \rho_2^2) + k^2(\rho_1^{'2} + \rho_2^{'2}) + \rho_0^2 + (0.1/S)^2} = 0.692\%$$

其中:
$$\rho_0 = \rho_1 = \rho_1' = \rho_2 = \rho_2' = 0.1\%$$
, $k = 0.1$

$$u_{R_x} = \rho_x R_x = 0.023 \times 10^{-4} \Omega$$

$$R_x = (3.330 \pm 0.023) \times 10^{-4} \Omega$$

(4) 电阻率:

$$\rho_{Rx} = \frac{R_x S}{L} = \frac{\pi R_x d^2}{4L} = 1.736 \times 10^{-8} \Omega \cdot \text{m},$$

$$u_{\rho} = \rho \sqrt{(u_{R_x}/R)^2 + (2u_d/d)^2 + (u_L/L)^2} = 0.01281 \times 10^{-8} \Omega \cdot \text{m}$$

$$\rho = (1.736 \pm 0.013) \times 10^{-8} \Omega \cdot m$$

2. 铝棍电阻率的测量:

(1) 铝棍长度:

 $\Delta = 0.5$ mm, $u_{bx} = \Delta/3 = 0.17$ mm

$$l = 36.00 - 6.00 = 300.0$$
mm

 $l = 300.0 \pm 0.17$ mm

(2) 铝棍直径测量:

测量次数	1	2	3	4	5	平均值
直径/mm	4. 945	4.947	4. 943	4.952	4. 941	4.9456

$$s_{\bar{x}} = \frac{s_{x_i}}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}} = 0.001887 \text{mm}$$

$$u_{ax} = t_{(0.683,k)} s_x = 1.14*0.001887=0.002151$$
mm

$$\varepsilon_x = 0.01$$
mm, $u_{bx} = \varepsilon_x/\sqrt{3} = 0.0058$ mm

$$u_x = \sqrt{u_{ax}^2 + u_{bx}^2} = 0.006186$$
mm

 $d = 4.9456 \pm 0.006$ mm

(3) 调节电桥平衡:

, , , ,	301 1 24				
电桥状态	$R_2($	R_x	ΔR_2 (ΔI	S
	$=R_2$		$=\Delta R_2$		
数据记录	642. 0 Ω	$6.42 \times 10^{-4} \Omega$	30 Ω	1.1nA	23. 54nA

$$S = \frac{\Delta I}{\Delta R_2 / R_2} = 23.54 \text{nA}$$

$$R_x = \frac{R_2}{R_1} R_0 = \frac{642.0}{1000} 0.001 = 6.42 \times 10^{-4} \Omega$$

$$\rho_x = \sqrt{(1+k)^2(\rho_1^2 + \rho_2^2) + k^2(\rho_1^{'2} + \rho_2^{'2}) + \rho_0^2 + (0.1/S)^2} = 0.464\%$$

其中:
$$\rho_0 = \rho_1 = \rho_1' = \rho_2 = \rho_2' = 0.1\%$$
, $k = 0.1$

$$u_{R_x} = \rho_x R_x = 0.02979 \times 10^{-4} \Omega$$

$$R_x = (6.420 \pm 0.030) \times 10^{-4} \Omega$$

(4) 电阻率:

$$\rho_{Rx} = \frac{R_x S}{I} = \frac{\pi R_x d^2}{4I} = 4.110 \times 10^{-8} \Omega \cdot \text{m},$$

$$u_{\rho} = \rho \sqrt{(u_{R_x}/R)^2 + (2u_d/d)^2 + (u_L/L)^2} = 0.02179 \times 10^{-8} \Omega \cdot \text{m}$$

$$\rho = (4.110 \pm 0.022) \times 10^{-8} \Omega \cdot \text{m}$$

3. 铁棍电阻率的测量

(1) 铁铝棍长度:

$$\Delta = 0.5$$
 mm, $u_{bx} = \Delta/3 = 0.17$ mm

$$l = 36.00 - 6.00 = 300.0$$
mm

 $l = 300.0 \pm 0.17$ mm

(2) 铁棍直径测量:

螺旋测微器零点读数: 0.012mm

测量次数	1	2	3	4	5	平均值
直径/mm	5.003	4. 998	4. 995	5.000	5.002	4. 9996

$$s_{\bar{x}} = \frac{s_{x_i}}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}} = 0.001453$$
mm

$$u_{ax} = t_{(0.683,k)} s_{\bar{x}} = 1.14 \times 0.001453 = 0.001656 \text{mm}$$

$$\varepsilon_x = 0.01$$
mm, $u_{bx} = \varepsilon_x/\sqrt{3} = 0.0058$ mm

$$u_x = \sqrt{u_{ax}^2 + u_{bx}^2} = 0.006032$$
mm

 $d = 5.000 \pm 0.006$ mm

(3) 调节电桥平衡:

电桥状态	$R_2(=R_2)$	R_{χ}	$\Delta R_2 (= \Delta R_2)$	ΔI	S
数据记录	10972Ω	$1.0972\times10^{-2}\Omega$	300 Ω	1.3n	47. 55nA
				A	

$$S = \frac{\Delta I}{\Delta R_2 / R_2} = 47.55 \text{nA}$$

$$R_x = \frac{R_2}{R_1} R_0 = \frac{10972}{1000} 0.001 = 1.0972 \times 10^{-2} \Omega$$

$$\rho_x = \sqrt{(1+k)^2(\rho_1^2 + \rho_2^2) + k^2(\rho_1^{'2} + \rho_2^{'2}) + \rho_0^2 + (0.1/S)^2} = 0.2802\%$$

其中:
$$\rho_0 = \rho_1 = \rho_1' = \rho_2 = \rho_2' = 0.1\%$$
, $k = 0.1$

$$u_{R_x} = \rho_x R_x = 3.0744 \times 10^{-5} \Omega$$
 $R_x = (1097.2 \pm 3.1) \times 10^{-5} \Omega$
 (4) 电阻率:
$$\rho_{Rx} = \frac{R_x S}{L} = \frac{\pi R_x d^2}{4L} = 7.178 \times 10^{-8} \Omega \cdot \text{m},$$

$$u_{\rho} = \rho \sqrt{(u_{R_x}/R)^2 + (2u_d/d)^2 + (u_L/L)^2} = 0.02685 \times 10^{-8} \Omega \cdot \text{m}$$

$$\rho = (7.178 \pm 0.027) \times 10^{-8} \Omega \cdot \text{m}$$