В этом случае при $x \rightarrow x_0$ имеем:

$$\varphi(x) - \psi(x) = 0^* [x - x_0]^{n+1}.$$

2°. Крур кривизны. Окружность

$$(x-\xi)^2+(y-\eta^2)=R^2$$
,

ямеющая с данной кривой y=f(x) касание не ниже 2-го порядка, называется кругом кривизны в соответствующей точке. Раднус этого круга

$$R = \frac{(1 + y'^2)^{3/2}}{|y''|}$$

называется радиусом кривизны, а величина $k = \frac{1}{R} - \kappa pu$ -

3°. Эволюта. Геометрическое место центров (ξ, η) кругов кривизны (центры кривизны)

$$\xi = x - \frac{y'(1+y'^2)}{u''}$$
, $\eta = y + \frac{1+y'^2}{u''}$

называется эволютой данной кривой y = f(x).

1591. Подобрать параметры k и b прямой y = kx + b так, чтобы она имела с кривой $y = x^3 - 3x^2 + 2$ касание порядка выше первого.

1592. При каком выборе коэффициентов a, b и c парабола

$$y = ax^2 + bx + c$$

имеет в точке $x=x_0$ касание 2-го порядка с кривой $u=e^x$?

1593. Какой порядок касания с осью Ox имеют в точке x=0 кривые:

a)
$$y = 1 - \cos x$$
; 6) $y = \lg x - \sin x$;

B)
$$y = e^x - \left(1 + x + \frac{x^2}{2}\right)$$
.

1594. Доказать, что кривая $y = e^{-1/x^2}$ при $x \neq 0$ и y = 0 при x = 0 имеет в точке x = 0 с осью Ox касание бесконечно большого порядка.

1595. Найти радиус и центр кривизны гиперболы xy = 1 в точках: а) M(1, 1); б) N(100; 0,01).

Определить радиусы кривизны следующих кривых: 1596. Параболы $y^2 = 2px$.

1597. Эллипса
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 $(a \ge b > 0)$.