Serie (intro sulle Successioni)

• Definizione di Successione

Una successione è una sequenza ordinata di infiniti numeri detti "termini della successione". Una successione di numeri reali è una funzione $a: \mathbb{N} \to \mathbb{R}$

Notazione: Per esplicitare che si sta trattando una successione, invece che usare la solita notazione a(n) delle funzioni, si usa a_n per indicare l'n-esimo valore della successione, e $\{a_n\}$ per indicare l'insieme di valori della successione.

Dato che la successione ha come dominio N, può essere calcolata solo per alcuni valori. Il suo grafico è quindi rappresentato da un insieme di punti, e non da una linea continua.

Esempio di grafico:

Successione $a_n = 2n - 3$

• Successione Limitata

Una successione $\{a_n\}$ si dice ____

Limitata inferiormente	Se esiste $m \in \mathbb{R}$ tale che $a_n \geq m$, $\forall n \in \mathbb{N}$ Ovvero se è possibile trovare un qualsiasi valore m più piccolo di qualsiasi a_n . Ovvero se la successione non si estende a $-\infty$	
Limitata superiormente	Se esiste $M \in \mathbb{R}$ tale che $a_n \leq M, \forall n \in \mathbb{N}$ Ovvero se è possibile trovare un qualsiasi valore M più grande di qualsiasi a_n . Ovvero se la successione non si estende a $+\infty$	
Limitata	Se esistono $m, M \in \mathbb{R}$ tale che $m \le a_n \le M, \forall n \in \mathbb{N}$ Ovvero se $\{a_n\}$ è sia limita inferiormente, sia limitata superiormente.	

Esempio 1: La successione $\left\{\frac{1}{n+1}\right\}$ è sia limitata inferiormente sia limitata superiormente.

$$\text{Infatti}\left\{\frac{1}{n+1}\right\} = \left\{\frac{1}{1}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots\right\}. \text{ Quindi: } 0 \le a_n \le 1, \forall n \in \mathbb{N}$$

Esempio 2: La successione {n} è limitata inferiormente, ma non superiormente.

Infatti $\{n\} = \{0, 1, 2, 3, ...\}$. Quindi: $0 \le a_n, \forall n \in \mathbb{N}$

Successione Monotona

Una successione $\{a_n\}$ si dice ____

Monotona crescente: Se $a_n \leq a_{n+1}$, $\forall \ n \in \mathbb{N}$	Monotona strettamente crescente: Se $a_n < a_{n+1}$, $\forall \ n \in \mathbb{N}$	
Monotona decrescente: Se $a_n \leq a_{n+1}$, $\forall \ n \in \mathbb{N}$	Monotona strettamente decrescente: Se $a_n < a_{n+1}$, $\forall \ n \in \mathbb{N}$	

• Successioni – Proprietà

Si dice che una successione $\{a_n\}$ "possiede" DEFINITIVAMENTE una proprietà P: se $\exists N \in \mathbb{N}$ tale che a_n soddisfa $P \forall n \geq N$.

Ovvero se, da un certo punto in poi, la proprietà P diventa sempre valida.

Errore comune: $\{a_n\}$ è DEFINITIVAMENTE "P" non vuol dire che è SEMPRE "P", ma che lo è sempre da un punto in poi.

Esempio 1: $\{2n-3\} \rightarrow -3, -1, +1, +3, +5, \dots \rightarrow \{2n-3\}$ è DEFINITIVAMENTE positiva.

Esempio 2: $\left\{\frac{1}{n+1}\right\} \rightarrow 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \rightarrow \left\{\frac{1}{n+1}\right\}$ è DEFINITIVAMENTE minore di $\frac{1}{3}$ (ovvero: da un punto in poi, è sempre $a_n < \frac{1}{3}$).

• Limiti di Successioni

Notazione: Si può trovare scritto sia $\lim_{n\to +\infty}(a_n)$, sia semplicemente $\lim(a_n)$. In quanto l'unico limite che ha senso controllare nelle successioni è per $n\to +\infty$.

Casi:

Caso 1a) a_n converge ad ℓ , con ℓ numero finito	Se $\exists \ \ell \in \mathbb{R}, \exists \ \varepsilon \in \mathbb{R}, \varepsilon \to 0$, tali che $ a_n - \ell < \varepsilon$ definitivamente, si dice che la successione converge ad ℓ , ovvero $\lim(a_n) = \ell$, ovvero $a_n \to \ell$		
Caso 1b) a_n converge ad $\ell=0$	È un caso particolare di quando $a_n \to \ell$. La successione in tal caso si dice "infinitesima". Sono successioni le cui corrispondenti serie numeriche (argomento successivo) potrebbero avere la somma finita.		
Caso 2) a_n diverge $a + \infty$	Se $\forall M \in \mathbb{R} \exists n_0 \in \mathbb{N}$ tale che $a_{n_0} > M$ definitivamente, si dice che la successione diverge $a + \infty$, ovvero $\lim(a_n) = +\infty$, ovvero $a_n \to +\infty$. Ovvero se, fissato un qualsiasi numero $M \in \mathbb{R}$ (anche enorme), $a_n > M$ definitivamente, ovvero da un certo valore di a_n in poi.		
Caso 3) a_n diverge a $-\infty$	Se $\forall m \in \mathbb{R} \exists n_0 \in \mathbb{N}$ tale che $a_{n_0} < m$ definitivamente, si dice che la successione diverge $a - \infty$, ovvero $\lim(a_n) = -\infty$, ovvero $a_n \to -\infty$. Ovvero se, fissato un qualsiasi numero $m \in \mathbb{R}$ (anche "Molto negativo"), $a_n < m$ definitivamente, ovvero da un certo valore di a_n in poi.		
Caso 4) a_n è indeterminata	Se $\lim(a_n)$ non esiste.		

Esempi:

Caso 1)
$$\lim_{n \to +\infty} \left(\frac{1}{n+1}\right) = \frac{1}{+\infty} = 0$$
 ; $\left\{\frac{1}{n+1}\right\}$ converge a 0
Caso 2) $\lim_{n \to +\infty} (n^3) = +\infty$; $\left\{n^3\right\} \to +\infty$
Caso 3) $\lim_{n \to +\infty} (-n^3) = -\infty$; $\left\{-n^3\right\} \to -\infty$
Caso 4) $\lim_{n \to +\infty} (-1)^n = non \ esiste$; $Infatti: \{(-1)^n\} \to -1, +1, -1 + 1, -1, +1, \dots$

Per risolvere i limiti di successioni si possono usare tutte le classiche tecniche già viste nei limiti di funzioni.