Notes 2025-02-24

Carrie Hashimoto

Table of contents

Goals this week - SMAP-HB	1
Fix spatial ref issue	1
Split up static and temporal data into zarr files	1
Split up temporal data	2
Software setup	2
UNet prep	2
Goals this week - WRF-Hydro	2
Set up ArcMap with WRF-Hydro GIS toolkit	2
Video content	3
Process geogrid - basic version	3
More details for routing stack	3
Possible sources of error with lakes/forecast points processing	3
Examine outputs	3
Alternative: WRF-Hydro Pytho GIS tools	4
To do this week	4
Notes	4

Goals this week - SMAP-HB

- Fix spatial ref issue solved
- Split up static and temporal data into zarr tiles split up into nc tiles instead; done
- Train UNet with static data not complete

Fix spatial ref issue

- Solved by letting reproject_match set the ref without using .write_crs
- Still create empty spatial_ref var when using rio.write_crs have these leftover in tiles

Split up static and temporal data into zarr files

- Saved all temporal data in dynamic_predictors.zarr and target.zarr; originally tried saving 10 km and 30 m together, but kept getting dimensions from one dataset bleeding into the others
- When trying to convert static data to zarr, get warning that objects don't fit into zarr hierarchy couldn't solve and didn't find much help online, so saved as nc instead

Split up temporal data

- Worked fine with just SMAP 30 m and 10 km
- Attempted solution: reproject_match IMERG to SMAP
- Realized IMERG has nv band and is missing spatial ref, so recropped and dropped time_bnds and added spatial
 refs
- Issue: having trouble avoiding getting extra 10 x 10 dimensions for 30 m resolution data

Software setup

- Have NVIDIA GeForce RTX 4060, which should be CUDA-compatible
- After first installation attempt, couldn't open NVIDIA app need to investigate
- Try to install CUDA 12.8.0
- Pretty involved recent issue with Visual Studio version not being compatible with CUDA; followed this tutorial to get Pytorch and Tensorflow
- Need visual studio: current version causes issue with CUDA installation, so custom download older version
- Tutorial pytorch installation recommedation didn't work bc only have versions 2+ and he used 1, so used from Pytorch website, below
- pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 -extra-index-url https://download.pytorch.org/whl/c
- pip install tensorflow==2.10.1
- · Had to downgrade numpy

UNet prep

• Started data loader script

Goals this week - WRF-Hydro

- Finish training video done
- Finish Jupyter Notebooks tutorial need to fix ogr issue
- Set up ArcMap with WRF-Hydro GIS toolkit done (using Pro)

Set up ArcMap with WRF-Hydro GIS toolkit

- issue: Rice only has Pro, not ArcMap
- Try with Pro
- They also have an open-source GIS tools beta version since ArcGIS is proprietary
- GEOGRID checking tool has issues but some other components work

Video content

- · Create boundary shapefile
- Get variable from geogrid (export grid from geogrid file)
 - Using topography as an example
- · Create routing stack: most basic input needed for gridded routing

Process geogrid - basic version

- skip forecast points;
- Input elevation raster;
- regridding need to nest hydro (NWM 250 m) into LSM (1000 m): factor of 4
- Number of routing grid cells to define stream: control density of stream network, use something close to NHD+ density (?) - 2 km2 -> 32 grid cells
- $-2 \text{ sq. km per pixel * } (250 \text{ m})^2 = 32 \text{ grid cells}$
 - Naming: NED 30m rf4 th32.zip for output (routing factor, threshold)
 - This is supposed to create the basic routing stack: Fulldom_hires, GEOGRID_LDASOUT_Spatial_Metadata, GW-BASINS.nc, GWBUCKPARM.nc

More details for routing stack

- · Process geogrid, adding .csv file with forecast points
- Option to create lake parameter file
- Then need to add reservoir shapefile/feature class need lake shapefile
- · Output will have same as before, but also LAKEPARM.nc, with record for each lake feature
- Failed, but log doesn't show any errors haven't resolved this yet

Possible sources of error with lakes/forecast points processing

- · Log file stops earlier than messages in ArcGIS, which say that the process completed successfully
- · Maybe a saving issue, then

Examine outputs

- · Examine outputs script makes a bunch of rasters
- · Check flow accumulation it worked! Even though the geogrid variable check script doesn't
- Check channel grid output is different because I'm using the basic outputs and the tutorial uses the one
 including lakes... still looks alright though
- Check forecast points same here; not included in basic output

- · Stream order also worked
- Lake grid also not relevant with basic outputs
- Topography also looks good:) based on input elevation raster, but converted to floating points and resampled to routing resolution

Alternative: WRF-Hydro Pytho GIS tools

- Try using the open-source GIS Python tools instead of ArcGIS toolbox? In beta, so might also fail python Build_Routing_Stack.py -i geo_em.d01.nc -d NED_30m_Croton.tif -R 4 -t 20 -o croton_test.zip
 - Create new conda env based on their instructions
 - Ran without problems, but need to check documentation on how to include lakes/forecast points

To do this week

- · Put combined tiles in RAPID
- Work on UNet development meet with Adnan?
- Solve ogr thing and complete Docker tutorial
- Try example case pre-processing with current software?

Some small data things:

- Fix DEM naming currently "band_data"
- Drop spatial_ref since it's empty

Notes

- when you save the zarr, put the spatial ref into attributes, as argument in .to_zarr
- Run WRF-Hydro with inputs generated from GIS pre-processing