zacharylaborde.com

Zachary Laborde

Highly motivated research scientist with expertise in neuronal development and learning, seeking to leverage knowledge of brain development and learning mechanisms to advance the field of machine learning and contribute to innovative solutions for complex problems.

Skills

Machine Learning Information Theory Quasistatic Approximation Neural Networks Simulated Annealing
Particle Swarm Optimization Boids Ant Colony Optimization Hebbian Learning Evolutionary Algorithms
Backpropagation Gradient Descent K-means++ Theta Sparse Grouping
Hierarchical Agglomerative Clustering Autoencoders Gene Regulatory Networks Stoichiometry
Bifurcation Diagrams Bayesian Networks Markov Chains Hidden Markov Models Graph Theory
Graph Embedding Graph Clustering Graph Neural Networks Dynamical System Analysis
Simulated Robotics Cellular Automata Cellular Differentiation fMRI Analysis Connectomics
Izhikevich Spiking Models Continuous-Time Recurrent Neural Networks
Software
PyTorch TensorFlow NetworkX NumPy SciPy Hadoop Spark Matplotlib Plotly Git
Python Mathematica R C++ Java JavaScript MATLAB Groovy Ruby Scikit-learn
Pandas Jupyter LATEX HTML CSS SQL MongoDB Docker Kubernetes Tellurium
nanoHub

Publications & Conferences

Laborde, Z., & Izquierdo, E. J. (2023). Spatial embedding of edges in a synaptic generative model of C. elegans. ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference(26). https://doi.org/10.1162/isal_a_00611

Severino, G. J., Laborde, Z., & Barwich, A.-S. (2023). The degeneracy of control architectures in cell lineages: Implications for tissue homeostasis. ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference(23). https://doi.org/10.1162/isal_a_00608

Laborde, Z., & Cohen, J. (2016). Nostalgia and the perception of time. *XULAnEXUS*, *14*(1). https://digitalcommons.xula.edu/xulanexus/vol14/iss1/1

Education

Indiana University Bloomington
Neuroscience & Cognitive Science

Aug. 2021 - Present Ph.D.*

Xavier University of Louisiana Psychology Computer Science (minor) Aug. 2013 - May 2017 Bachelor of Science

Research Experience

Indiana University Bloomington

Aug 2021 - Present

Dr. Eduardo Izquierdo & Dr. Justin Wood

- Pioneered the evolution of optimal sensorimotor configurations in simulated agents utilizing Continuous Time Recurrent Neural Network (CTRNN) controllers achieving neural networks that were simultaneously smaller and more performant
- Modeled development of a C. elegans connectome leading to improved accuracy versus existing models and new perspectives on its structure
- Discovered a new biologically-realistic dynamic control system for cellular lineages with potential applications in synthetic biology and regenerative medicine
- Developed and launched an online application for the dynamical analysis of cellular differentiation in multi-compartment systems integrating multiple control mechanisms (see https://nanohub.org/resources/dynsysregen)
- Conceived and implemented a novel level set approximation algorithm for high-dimensional manifolds significantly reducing computational complexity and resource usage by 90%.

Work Experience

IBM

July 2017 - Aug 2021

Software Engineer

- Developed features to automate event analytics analysis and prediction for operation engineers using machine learning
- Developed two internationally-used mobile apps for both Android and iOS
- Automated entire team saving IBM approximately \$1 000 000/year

^{*} coursework complete