Examen de Aprendizaje Automático

ETSINF, Universitat Politècnica de València, 25 de enero de 2017

Apellidos: Nombre: Grupo:

Cuestiones (2 puntos; tiempo estimado: 30 minutos)

Marca cada recuadro con una única opción de entre las dadas. Cada acierto suma 1/2 puntos y cada fallo resta 1/6 puntos.

- 1 | C | Sea S un conjunto de 1000 datos supervisados o etiquetados. En el diseño de un sistema de reconocimiento de formas se utiliza el método de validación cruzada en 10 bloques y se obtienen los errores siguientes: (2,4,2,3,0,7,4,4,4,1). Indicar cual de las siguientes afirmaciones es incorrecta.
 - A) El error estimado es $p_e = 3.1 \%$
 - B) El intervalo de confianza al 95 % es ± 0.9
 - C) El test efectivo es de 100 muestras
 - D) El tamaño de entrenamiento efectivo es de 900 muestras
- En el problema de aprendizaje de modelos probabilísticos con variables observables \boldsymbol{x}_n y latentes \boldsymbol{z}_n

$$L_S(\mathbf{\Theta}) = \sum_{n=1}^N \log \left(\sum_{\mathbf{z}_n} P(\mathbf{x}_n, \mathbf{z}_n \mid \mathbf{\Theta}) \right)$$

se utiliza la técnica esperanza-maximización (EM). Indicar cuál de las siguientes afirmaciones es cierta:

- A) En cada iteración, el paso E consiste en obtener una estimación de todas las variables x_n y z_n , y el paso M, obtener los parámetros óptimos de Θ utilizando la estimación de las variables x_n y z_n obtenidas en el paso E.
- B) En cada iteración, el paso E consiste en obtener los valores de las variables latentes z_n que maximizan la función objetivo $L_S(\Theta)$, y el paso M, obtener los parámetros óptimos de Θ utilizando la estimación de las variables z_n obtenidas en el paso E.
- C) En cada iteración, el paso E consiste en obtener los valores de todas las variables x_n y z_n que maximizan la función $L_S(\Theta)$, y el paso M, obtener los parámetros óptimos de Θ utilizando la estimación de las variables x_n y z_n obtenidas en el paso E.
- D) En cada iteración, el paso E consiste en obtener una estimación de las variables latentes z_n , y el paso M, obtener los parámetros óptimos de Θ utilizando la estimación de las variables z_n obtenidas en el paso E.
- Considerar el aprendizaje mediante máquinas de vectores soportes y márgenes blandos con una muestra de aprendizaje x_1, \ldots, x_N no separable linealmente. Si un multiplicador de Lagrange óptimo α_i^* , asociado a la restricción $c_j (\theta^t x_d + \theta_0) \ge 1 - \zeta_j, 1 \le j \le N$, es cero, entonces la muestra x_j está bien clasificada pero ¿cuál de las siguientes afirmaciones es falsa?:
 - A) $\zeta_j = 0$
 - B) Se produce un error de margen
 - C) No hay error de margen
 - D) La muestra x_i no es un vector soporte
- En la red bayesiana

¿cuál de las relaciones siguientes es verdadera?

- A) P(a,b) = P(a) P(b)
- B) P(a,d) = P(a) P(d)C) $P(a,b \mid d) = P(a \mid d) P(b \mid d)$
- D) P(a, c | b) = P(a | b) P(c | b)

Problema 1 (3 puntos; tiempo estimado: 30 minutos)

La siguiente tabla contine una muestra de entrenamiento linealmente separable en \mathbb{R}^2 y los correspondientes multiplicadores de Lagrange óptimos obtenidos al entrenar una máquina de vectores soporte con esta muestra:

i	1	2	3	4	5	6	7
x_{i1}	1	1	2	1	4	3	6
$ x_{i2} $	6	3	3	1	5	4	2
Clase	+1	+1	+1	+1	-1	-1	-1
α_i^{\star}	0.25	0	1.0	0	0	1.25	0

- a) Obtener la función discriminante lineal correspondiente
- b) Calcular el margen óptimo
- b) Obtener la ecuación de la frontera de separación entre clases y representarla gráficamente, junto con los datos de entrenamiento.
- c) Clasificar la muestra $(2,6)^t$.
 - a) Función discriminante lineal (FDL):
 - Vector de pesos:

$$\begin{array}{lll} \theta_1^{\star} &=& +1\cdot 0.25\cdot 1 & +1\cdot 1.0\cdot 2 & -1\cdot 1.25\cdot 3 = -1.5 \\ \theta_2^{\star} &=& +1\cdot 0.25\cdot 6 & +1\cdot 1.0\cdot 3 & -1\cdot 1.25\cdot 4 = -0.5 \end{array}$$

- Peso umbral (con el primer vector de entrenamiento): $\theta_0^* = (+1) (-1.5 \cdot 1 0.5 \cdot 6) = 5.5$
- FDL: $\phi(\mathbf{x}) = -1.5 \ x_1 0.5 \ x_2 + 5.5$
- c) Margen óptimo:

$$\frac{2}{\|\boldsymbol{\theta}^{\star}\|} = \frac{2}{\sqrt{(-1.5)^2 + (-0.5)^2}} = 1.265$$

Alternativamente:

$$2\left(\sum_{n\in\mathcal{V}}\alpha_n^{\star}\right)^{-1/2} = \frac{2}{\sqrt{0.25 + 1.0 + 1.25}} = 1.265$$

b) Ecuación de la frontera de decisión:

$$-1.5 x_1 - 0.5 x_2 + 5.5 = 0 \implies x_2 = -3x_1 + 11$$

Representación gráfica:

d) Clasificación de la muestra (2,6): $\phi(2,6)=-1.5\cdot 2-0.5\cdot 6+5.5=-0.5$ <0 \Rightarrow clase =-1

Problema 2 (3 puntos; tiempo estimado: 30 minutos)

La red hacia adelante ("feedforward") de la figura se utiliza para resolver un problema de regresión, con función de activación de los nodos de la capa de salida y de la capa oculta de tipo tangente hiperbólica, y factor de aprendizaje $\rho = 1.0$.

Dados unos pesos iniciales $\theta_{10}^{10}=\theta_{11}^{10}=\theta_{12}^{20}=\theta_{11}^{21}=\theta_{11}^{21}=1.0$, un vector de entrada $\boldsymbol{x}^{t}=(1,1)$ y su valor deseado de salida t = +1, Calcular:

- a) las salidas de todas las unidades
- b) los correspondientes errores en el nodo de la capa de salida y en el de la capa oculta.
- c) Los nuevos valores de los pesos de las conexiones
- a) Las salidas de todas las unidades

$$\phi_1^1 = \theta_{10}^{10} + \theta_{11}^{10} \ x_1 = 2.0$$

$$\phi_1^2 = \theta_{10}^{21} + \theta_{12}^{20} \ x_2 + \theta_{11}^{21} \ s_1^1 = 2.96402$$

$$s_1^1 = \frac{\exp(\phi_1^1) - \exp(-\phi_1^1)}{\exp(\phi_1^1) + \exp(-\phi_1^1)} = 0.96402$$
$$s_1^2 = \frac{\exp(\phi_1^2) - \exp(-\phi_1^2)}{\exp(\phi_1^2) + \exp(-\phi_1^2)} = 0.99469$$

$$s_1^2 = \frac{\exp(\phi_1^2) - \exp(-\phi_1^2)}{\exp(\phi_1^2) + \exp(-\phi_1^2)} = 0.99469$$

b) El error en la capa de salida es:

$$\delta_1^2 = (t_1 - s_1^2) (1 - (s_1^2)^2) = 0.0000562$$

El error en la capa de oculta es:

$$\delta_1^1 = (\delta_1^2 \ \theta_{11}^{21}) \ (1 - (s_1^1)^2) = 0.000004$$

c) Los nuevos pesos son:

$$\theta_{10}^{21} = \theta_{10}^{21} + \rho \ \delta_1^2 \ (+1) = 1.0 + 1.0 * 0.0000562 * 1.0 = 1.0000562$$

$$\theta_{11}^{21} = \theta_{11}^{21} + \rho \ \delta_1^2 \ s_1^2 = 1.0 + 1.0 * 0.0000562 * 0.96402 = 1.0000542$$

$$\theta_{12}^{20} = \theta_{12}^{20} + \rho \ \delta_1^2 \ x_2 = 1.0 + 1.0 * 0.0000562 * 1.0 = 1.0000562$$

$$\theta_{10}^{10} = \theta_{10}^{10} + \rho \ \delta_1^1 \ (+1) = 1.0 + 1.0 * 0.000004 * 1.0 = 1.0000040$$

$$\theta_{11}^{10} = \theta_{11}^{10} + \rho \ \delta_1^1 \ x_1 = 1.0 + 1.0 * 0.000004 * 1.0 = 1.0000040$$

Problema 3 (2 puntos; tiempo estimado: 20 minutos)

Considerar la red bayesiana \mathcal{R} definida como $P(W, X, Y, Z) = P(X) P(Y \mid X) P(Z \mid X) P(W \mid Y, Z)$, cuyas variables aleatorias, W, X, Y, Z, toman valores en en el conjunto $\{a,b\}$. Las distribuciones de probabilidad asociadas son como sigue:

- P(X) es uniforme: P(X = a) = P(X = b),
- $P(W \mid Y, Z)$, $P(Y \mid X)$ y $P(Z \mid X)$ vienen dadas en las siguientes tablas:

P(w)	y,z)	w: a	b						
		1/2		$P(y \mid x)$	<i>y</i> : a	b	$P(z \mid x)$	z: a	b
\mathbf{a}	b	1/4	3/4		1/3		x: a	1/3	-2/3
b	\mathbf{a}	1/5	4/5	b	1/4	3/4	b	1/4	3/4
b	b	3/5	2/5				,		

- a) Representar gráficamente la red
- b) Obtener una expresión simplificada de $P(W,Y,Z\mid X)$ en función de las distribuciones que definen \mathcal{R} y calcular $P(W=b,\ Y=b,\ Z=b\mid X=b)$
- c) Obtener una expresión simplificada de $P(X \mid W, Y, Z)$, y calcular $P(X = b \mid W = b, Y = b, Z = b)$
- a) Representación gráfica de la red:

b) Expresión simplificada de $P(W, Y, Z \mid X)$:

$$P(W,Y,Z \mid X) = \frac{P(W,X,Y,Z)}{P(X)} = \underbrace{P(X) P(Y \mid X) P(Z \mid X) P(W \mid Y,Z)}_{P(X)}$$
$$= P(Y \mid X) P(Z \mid X) P(W \mid Y,Z)$$

$$P(W = b, Y = b, Z = b \mid X = b) = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{2}{5} = \frac{9}{40} = 0.225$$

c) Expresión simplificada de $P(X \mid W, Y, Z)$:

$$\begin{split} P(X \mid W, Y, Z) &= \frac{P(W, X, Y, Z)}{P(W, Y, Z)} = \frac{P(X) \; P(Y \mid X) \; P(Z \mid X) \; P(W \mid Y, Z)}{\sum_{x \in \{\text{a,b}\}} P(X = x) P(Y \mid X = x) P(Z \mid X = x) \; P(W \mid Y, Z)} \\ &= \frac{(1/2) P(Y \mid X) P(Z \mid X)}{(1/2) \sum_{x \in \{\text{a,b}\}} P(Y \mid X = x) P(Z \mid X = x)} = \frac{P(Y \mid X) P(Z \mid X)}{\sum_{x \in \{\text{a,b}\}} P(Y \mid X = x) P(Z \mid X = x)} \end{split}$$

$$P(X = b \mid W = b, Y = b, Z = b) = \frac{P(Y = b \mid X = b)P(Z = b \mid X = b)}{\sum_{x \in \{a,b\}} P(Y = b \mid X = x)P(Z = b \mid X = x)} = \frac{3/4 \cdot 3/4}{3/4 \cdot 3/4 + 2/3 \cdot 2/3} = 0.5586$$