CH-231-A Algorithms and Data Structures ADS

Lecture 17

Dr. Kinga Lipskoch

Spring 2022

Comparison Sorts

- ► All sorting algorithms we have seen so far are comparison sorts.
- ► A comparison sort only uses comparisons to determine the relative order of elements.
- ▶ The best worst-case running time we encountered for comparison sorting was $O(n \lg n)$.
- ▶ Is $O(n \lg n)$ the best we can do?

Decision Tree (1)

- ► Sort $< a_1, a_2, ..., a_n >$
- ▶ Each internal node is labeled i : j for $i, j \in \{1, 2, ..., n\}$.
- ▶ Left subtree shows subsequent comparisons if $a_i \le a_j$.
- ▶ Right subtree shows subsequent comparisons if $a_i \ge a_j$.

Decision Tree (2)

Example:

Each leaf contains a permutation $<\pi(1),\pi(2),...,\pi(n)>$ indicating the order $a_{\pi(1)} \le a_{\pi(2)} \le ... \le a_{\pi(n)}.$

Decision Tree Model

A decision tree can model the execution of any comparison sort:

- ▶ One tree for each input size *n*.
- View the algorithm as splitting whenever it compares two elements.
- ► The tree contains the comparisons along all possible instruction traces.
- ► The running time of the algorithm = the length of the path taken.
- ▶ Worst-case running time = height of tree.

Decision Tree Sorting

Theorem:

Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof:

The tree must contain $\geq n!$ leaves, since there are n! possible permutations.

A height-h binary tree has $< 2^h$ leaves.

Thus,
$$n! < 2^h$$
.

Then,
$$h \ge \lg(n!)$$

$$\geq \lg((n/e)^n)$$

$$= n \lg n - n \lg e$$

$$=\Omega(n \lg n).$$

Used Stirling's formula: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ when $n \to \infty$.

Lower Bound for Comparison Sorting

- ▶ The lower bound for comparison sorting $\Omega(n \lg n)$.
- ► Heap Sort and Merge Sort are asymptotically optimal comparison sorting algorithms.

Non-Comparison Sorting?

- ▶ Is it possible to avoid comparisons between elements?
- ▶ Yes, if we can make assumptions on the input data.
- ► E.g., trivial case:
 - ▶ Input: A[1...n], where $A[j] \in \{1, 2, ..., n\}$, and $A[i] \neq A[j]$ for all $i \neq j$
 - ▶ Output: *B*[1...*n*]

Counting Sort: Problem Statement

- ▶ Input: A[1...n], where $A[j] \in \{1, 2, ..., k\}$.
- ▶ Output: B[1...n], which is a sorted version of A[1...n].
- Auxiliary storage: C[1...k].

Counting Sort

```
1 for i := 1 to k do
2   C[i] := 0
3 for j := 1 to n do
4   C[A[j]] := C[A[j]] + 1
5   // C[i] = |{key = i}|
6 for i := 2 to k do
7   C[i] := C[i] + C[i - 1]
8   // C[i] = |{key <= i }|
9 for j := n downto 1 do
10   B[C[A[j]]] = A[j]
11   C[A[i]] = C[A[i]] - 1</pre>
```

Counting Sort

Counting Sort: Example (1) Loop 1:

3

for
$$i \leftarrow 1$$
 to k
do $C[i] \leftarrow 0$

Counting Sort: Example (2)

for $j \leftarrow 1$ to n

Loop 2:

B:

do
$$C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{ \text{key} = i \}|$$

Counting Sort

Counting Sort: Example (3)

Loop 3:

B:

for
$$i \leftarrow 2$$
 to k

do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{ \text{key } \le i \}|$

Counting Sort: Example (4) Loop 4:

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Counting Sort: Asymptotic Analysis (1)

```
\Theta(k) { for i := 1 to k do C[i] := 0
     \Theta(n) \quad \begin{cases} \text{for } j := 1 \text{ to } n \\ \text{do } C[A[j]] := C[A[j]] + 1 \end{cases}
     \Theta(k) \begin{cases} \text{for } i := 2 \text{ to } k \\ \text{do } C[i] := C[i] + C[i-1] \end{cases}
     \Theta(n) \begin{cases} \text{for } j := n \text{ downto } 1 \\ \text{do } B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}
\Theta(n+k)
```

Counting Sort: Asymptotic Analysis (2)

Lower Bounds for Sorting

- ▶ If k = O(n), then Counting Sort takes $\Theta(n)$ time.
- ▶ Comparison sorting takes $\Omega(n \lg n)$ time.
- Counting Sort is not a comparison sort, not a single comparison between elements occurs.

Stable Sorting

- ► Definition:
 - Stable sorting algorithms maintain the relative order of records with equal keys (i.e., values).
- ▶ Thus, a sorting algorithm is stable, if whenever there are two records *R* and *S* with the same key and with *R* appearing before *S* in the original list, *R* will appear before *S* in the sorted list.
- Is Counting Sort stable?

