

Arquitetura e Organização de Computadores

Centro Universitário 7 Setembro - Uni7 **Sistemas de Informação**

Aula 4

Prof. MSc Manoel Ribeiro

manoel@opencare.com.br

Funções e portas lógicas

- Computador digital é formado por por pequenos circuitos digitais capazes de manipular grandezas discretas binárias
- As operações básicas com grandezas binárias são executados por circuitos digitais denominados porta digitais
- A composição de portas digitais formam um circuito digital

Algebra booleana

- O projeto de circuitos digitais e a análise de seu comportamento em um computador podem ser realizados por meio da aplicação de conceitos e regras definidas pela álgebra booleana
- Semelhante à álgebra tradicional, torna-se necessário definir símbolos matemáticos e gráficos para representar as operações lógicas e seus operadores

Tabela verdade

- Uma operação lógica qualquer sempre irá resultar em dois valores possíveis: 0 (falso) ou 1 (verdadeiro). Assim, pode-se pré-definir todos os possíveis resultados de uma operação lógica, de acordo com os possíveis valores de entrada
- Para representar tais possibilidades, utiliza-se de uma forma de organizá-las chamada Tabela Verdade.

TABELA-VERDADE DAS PROPOSIÇÕES COMPOSTAS BÁSICAS

р	q	p ^ q	p v q	p⊻q	p → q	$p \leftrightarrow q$
V	V	V	V	F	V	V
V	F	F	V	V	F	F
F	V	F	V	V	V	F
F	F	F	F	F	V	V

Porta AND

- Trata-se de uma operação de conjunção lógica que aceita dois operandos ou duas entradas (A e B).
- Os operandos são binários simples (0 e 1).
- Esta operação resulta uma única saída
- Pode-se dizer que a operação AND simula uma multiplicação binária

Tabela 3.1: Tabela verdade da porta lógica AND				
Entrada		Saída		
A B		X = A.B		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

Fonte: Adaptada de Monteiro (2007)

Exemplo de aplicação da Porta AND (Cópia de Bit)

- Um exemplo de aplicação de uma porta AND seria na composição de um circuito para a transferência de bits de dados de um local para outro (ex.: da memória para a CPU).
- Nesse caso, a finalidade seria a de garantir que um bit de origem seja o mesmo bit de destino

Porta OR

- Trata-se de uma operação de disjunção lógica
- Esta operação resulta uma única saída
- Pode-se dizer que a operação OR simula uma soma binária

	Tabela 3.2: Tabela vero	dade da porta lógica OR
1	ALC: 17 (12)	561 V. (b)

Entrada		Saída	
Α	В	X = A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Fonte: Adaptada de Monteiro (2007)

Porta NOT

• A porta NOT representa um inversor

Porta XOR (exclusive OR)

- Variante da porta OR
- A porta Lógica OU-exclusivo de duas entradas apresenta saída com nível lógico 1, apenas quando suas entradas diferirem

Symbol	Truth Table		
A O = 1 O S 2-input Ex-OR Gate	В	А	S
	0	0	0
	0	1	1
	1	0	1
	1	1	0

Porta XOR aplicações

 A porta XOR possui inúmeras aplicações, sendo um elemento lógico bastante versátil, permitindo, por exemplo, a fabricação de um testador de igualdade entre valores, para testar, de modo rápido, se duas palavras de dados são iguais

Porta XOR aplicações

 Com uma combinação das portas XOR e AND pode-se facilmente construir um circuito de soma de binários.

Symbol	Truth Table			
	В	А	SUM	CARRY
A	0	0	0	0
	0	1	1	0
& Carry	1	0	1	0
	1	1	0	1

Resumo

Função Lógica Básica	Símbolo Gráfico da Porta	Equação Booleana
AND	А	Y = A.B
OR	А В	Y = A + B
XOR	A	$Y = A \oplus B$
NOT	А — У	$Y = \overline{A}$
NAND	В	$Y = \overline{A.B}$
NOR	A	$Y = \overline{A + B}$

Desafio I

 Dado a tabela verdade abaixo, utilizando porta lógicas desenhe um circuito digital que a resolva.

Α	В	R
1	1	1
1	0	0
0	1	1
0	0	1

Desafio II

 Dado a tabela verdade abaixo, utilizando porta lógicas desenhe um circuito digital que a resolva.

а	b	с	
Т	Т	Т	F
Т	Т	F	T
Т	F	Т	F
Т	F	F	T
F	Т	Т	F
F	Т	F	T
F	F	Т	T
F	F	F	F

Desafio II

 Dado a tabela verdade abaixo, utilizando porta lógicas desenhe um circuito digital que a resolva.

а	b	с	
Т	Т	Т	F
Т	Т	F	T
Т	F	Т	F
Т	F	F	T
F	Т	Т	F
F	Т	F	T
F	F	Т	T
F	F	F	F

Calculadora de circuitos digitais

• Dada uma expressão lógica, gera um circuito digital e tabela verdade

http://calculator.tutorvista.com/truth-table-generator.html

