

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Operating systems

IMPLEMENTATION OF SJF ALGORITHM

LAB MANUAL 10

A Partie	MODERN OPERATING SYSTEMS
	w. 4 2000
H	Ma Augustan

Date:		
Name:		
Reg#:	Group:	
Marks:	Signature:	

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Operating systems

Lab Objective

Write a C program to implement the various process scheduling mechanisms such as SJF Scheduling.

Algorithm for SJF

- Step 1: Start the process
- Step 2: Accept the number of processes in the ready Queue
- Step 3: For each process in the ready Q, assign the process id and accept the CPU burst time
- Step 4: Start the Ready Q according the shortest Burst time by sorting according to lowest to highest burst time.
- Step 5: Set the waiting time of the first process as '0' and its turnaround time as its burst time.
- Step 6: For each process in the ready queue, calculate
 - (a) Waiting time for process(n)= waiting time of process (n-1) + Burst time of process(n-1)
 - (b) Turn around time for Process(n)= waiting time of Process(n)+ Burst time for process(n)
 - (a) Average waiting time = Total waiting Time / Number of process
- (b) Average Turnaround time = Total Turnaround Time / Number of process Step 7: Stop the process

/* S.IF SCHEDULING ALGORITHM */

```
#include<stdio.h>
void main()
{
  int i,j,k,n,sum,wt[10],tt[10],twt,ttat;
  int t[10],p[10];
  float awt,atat;
  clrscr();

printf("Enter number of process\n");
  scanf("%d",&n);

for(i=0;i<n;i++)</pre>
```


FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Operating systems

```
printf("\n Enter the Burst Time of Process %d",i);
 scanf("\n %d",&t[i]);
for(i=0;i< n;i++)
 p[i]=i;
 for(i=0;i< n;i++)
  for(k=i+1;k< n;k++)
   if(t[i]>t[k])
         int temp;
         temp=t[i];
         t[i]=t[k];
         t[k]=temp;
         temp=p[i];
         p[i]=p[k];
         p[k]=temp;
   }
  printf("\n\n SHORTEST JOB FIRST SCHEDULING ALGORITHM");
  printf("\n PROCESS ID \t BURST TIME \t WAITING TIME \t TURNAROUND TIME \n\n");
  wt[0]=0;
  for(i=0;i< n;i++)
   sum=0;
   for(k=0;k<i;k++)
       wt[i]=sum+t[k];
       sum=wt[i];
   }
  for(i=0;i< n;i++)
   tt[i]=t[i]+wt[i];
  for(i=0;i< n;i++)
   printf("%5d \t\t5%d \t\t %5d \n\n",p[i],t[i],wt[i],tt[i]);
  twt=0;
  ttat=t[0];
  for(i=1;i< n;i++)
       twt=twt+wt[i];
```


FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Operating systems

```
ttat=ttat+tt[i];
}
awt=(float)twt/n;
atat=(float)ttat/n;

printf("\n AVERAGE WAITING TIME %4.2f",awt);
printf("\n AVERAGE TURN AROUND TIME
%4.2f",atat); getch();
}
}
```

OUTPUT:

Enter number of process

Enter the Burst Time of Process 04

Enter the Burst Time of Process 13

Enter the Burst Time of Process 25

SHORTEST JOB FIRST SCHEDULING ALGORITHM

GHORTEOT SODT INOT GOHEDOLING ALGORITHM					
PROC	ESS ID	BURST TIME	WAITING TIME	TURNAROUND TIME	
1	3	0	3		

0 4 3 7 2 5 7 12

AVERAGE WAITING TIME 3.33 AVERAGE TURN AROUND TIME 7.33