

Evolutionary Algorithms

TCTI-VKAAI-17: Applied Artificial Intelligence

Huib Aldewereld

Leerdoelen

- Na deze les kan de student:
 - Concepten van evolutionaire algoritmen, bijv. crossover, mutation, selection, uitleggen en toepassen.
 - Een selectie van machine learning technieken toepassen en beperkingen daarvan uitleggen.

Inhoudsopgave

- Wat zijn EA's?
 - What's in a name
- Optimalisatie
- Genetic algorithms
 - Encoding
 - Evaluation
 - Recombination
 - Selection
- Limitations

3

Wat zijn EA's?

- Optimalisatie
- Gebaseerd op natuurlijke selectie (Darwin)
- Onderdeel van Evolutionary Computing
- Doel
 - Vinden, genereren of selecteren van een heuristiek die voldoende goed blijkt voor een gegeven probleem

Wat zijn EA's?

- Operaties geïnspireerd op biologische evolutie
- Basis hypothese:
 - Eigenschappen verschillen per individu (phenotype variation)
 - Verschillende eigenschappen kunnen verschil maken in overlevings- en reproductiekansen (differential fitness)

 Eigenschappen kunnen worden doorgegeven naar volgende generaties (heritability of fitness)

- Operaties
 - Reproduction, recombination, selection, fitness

Evolution cycle

- Generation of an initial population of individuals (at random);
- Evaluation of the fitness of each individual in that population;
- Repetition of the following re-generational steps until termination;
 - a) Select the best-fit individuals for reproduction;
 - Breed new individuals through crossover and mutation to give birth to offspring;
 - c) Evaluate the individual fitness of new individuals;
 - d) Replace least-fit population with new individuals.

What's in a name

- Soortgelijke technieken:
 - Genetic algorithms: zie rest slides
 - Genetic programming: evolutie van (structuur) computer programma's
 - Evolutionary programming: evolutie van programma parameters
 - Gene expression programming: vergelijkbaar met GP en EP, maar maakt gebruik van genotype-phenotype verandering
 - Evolutionary strategy: GA, maar met alleen maar mutatie
 - Neuro-evolutie: GP, maar dan op een neuraal netwerk (zie volgend college).

7

Inhoudsopgave

- Wat zijn EA's?
 - What's in a name
- Optimalisatie
- Genetic algorithms
 - Encoding
 - Evaluation
 - Recombination
 - Selection
- Limitations

Optimalisatie

- Specifieke tak van informatica
- Zoeken naar de beste oplossing voor een gegeven probleem
 - Bijv. gate toewijzingen op vliegvelden
 - Of diverse planningsproblemen
 - Maar ook: beste parameters voor je programma
 - Of de optimale vorm van je antenne →
- Zoekruimte vaak erg groot dat doorrekenen niet de beste oplossing is

Hill climbing

Als gradient descend, maar dan andersom

Op zoek naar (lokaal) maximum

Door stapjes te nemen met de hoogste pay-off (sterkst stijgend)

 Nadeel van deze technieken is dat ze vast kunnen komen te zitten in lokale optima/minima

Hill climbing, vervolg

- Algoritme:
 - Genereer (of selecteer) een random start punt s_0 initialiseer tijd t=0.
 - Herhaal tot convergentie:
 - Creëer s_{new} door s_t te veranderen (neem een stap);
 - Als de fitness van s_{new} groter is dan s_t , dan wordt $s_{t+1} = s_{new}$
 - Anders wordt $s_{t+1} = s_t$ (we blijven op onze plek);
 - 4. t = t + 1

Inhoudsopgave

- Wat zijn EA's?
 - What's in a name
- Optimalisatie
- Genetic algorithms
 - Encoding
 - Evaluation
 - Recombination
 - Selection
- Limitations

Encoding

- Voor het oplossen van een probleem is een correcte representatie benodigd
 - Oplossingen zijn individuen of phenotype
 - Representatie individu is genotype (encodering)
- Juiste codering nodig om probleem op te lossen
 - Bijv. binaire string

1

Example: Encoding

Doel: creëren van lijst van N getallen die samen optellen tot X

```
def individual(length, min, max):
    """
    Creates an individual for a population

:param length: the number of values in the list
:param min: the minimum value in the list of values
:param max: the maximal value in the list of values
:return:
    """
    return [randint(min, max) for x in range(length)]

def population(count, length, min, max):
    """
    Create a number of individuals (i.e., a population).

:param count: the number of individuals in the population
:param length: the number of values per individual
:param min: the minimum value in the individual's list of values
:param max: the maximal value in the individual's list of values
"""
    return [individual(length, min, max) for x in range(count)]
```

Evaluation

- Iteratief proces; elke stap is een generatie
- Alleen de besten mogen door,...
 - ... maar wat zijn de besten?

- Evaluatie functie (fitness function) om waarde van individuen te kunnen bepalen
- Kan gekoppeld worden aan werkelijke wereld
 - Bijv. voor bepalen fitness van een navigatie algoritme in robots
 - Laat robot met algoritme rijden, en kijk hoe vaak hij botst...

15

Example: Evaluation

 In ons voorbeeld is de fitness eenvoudig te bepalen als de afstand tussen de som van het individu en het doel X

```
def fitness(individual, target):
    """
    Determine the fitness of an individual. Lower is better.

    :param individual: the individual to evaluate
    :param target: the sum of the numbers that we are aiming for (X)
    """
    sum = reduce(add, individual, 0)
    return abs(target-sum)
```

Recombination

- Behoud de sterke eigenschappen van de populatie door
 - Enkel recombinatie toe te staan op de sterkste individuen
 - Hypothese: kinderen erven eigenschappen van ouders, en dus (hopelijk) de sterkste eigenschappen van vader en moeder

Recombinatie - Mutatie

- Genetische operator die een genotype lichtjes verandert
- Te sterke verandering leidt tot drastische gevolgen (voor de performance van het GA)
- Mutatie is belangrijk om voldoende spreiding te creëren (exploratie)
 - Helpt je om uit lokale minima te komen
- Denk erom:
 - Pas tenminste 1 mutatie operator toe
 - Mutatie niet te groot
 - Mutatie moet tot valide chromosomen leiden

Recombinatie - Mutatie

0 0

- Bitstrings
- Integers:
 - Uniform mutation: pas elke gene aan met een kleine verandering
 - Non-uniform mutation: als uniform mutation, maar minder waarschijnlijk in latere generaties

waardes met een waarde die waarschijnlijk klein is

19

Recombinatie - Mutatie

Inversion:

Displacement:

Insertion:

Scramble:

Recombinatie - Crossover

- Mutatie verandert individuen; geen echte recombinatie
- Recombinatie (papa + mama = kindje) door crossover
- Analoog aan biologische crossover
- Er kunnen meerdere kindjes tegelijk geproduceerd worden
- Bedoelt om de sterke eigenschappen van pappa te combineren met de sterke eigenschappen van mamma
 - Of dat werkelijk zo is, wordt pas in de volgende iteratie bepaald!
- Goede crossover is zich bewust van de encoding

21

Recombinatie - Crossover

Single-point crossover:

Kies 1 enkel punt, en verwissel de genes ervoor van ouder 1 met de genes erachter van ouder 2

Recombinatie - Crossover

- Varianten
 - Two-point crossover

Uniform crossover

■ En diverse positie-gerelateerd varianten (zie reader).

23

Recombinatie - Crossover

- Hoewel mutatie altijd moet worden uitgevoerd, kan ervoor worden gekozen om geen crossover operatie uit te voeren
- Crossover benut de sterke eigenschappen om sneller te convergeren (exploitation)
- Kan geen nieuwe eigenschappen toevoegen, zoekt alleen naar de beste combinatie van eigenschappen in de populatie
- Genetische algoritmen zonder crossover heten evolutionary strategy

Selection

- Bepalen van de sterkste individuen als ouders
- Selectie zet druk op de performance van de individuen
- Wegens genetische diversiteit niet verstandig om alleen de besten te laten paren
 - De besten, op dit moment, zouden immers allemaal rond een lokaal optimum kunnen liggen
 - Zorg voor voldoende spreiding zodat je lokale optima kan ontwijken
- Diverse selectie strategieën

25

Selection - Fitness proportional

- Fitness proportional selection of roulette-wheel selection
- Kans dat individu ouder mag zijn proportioneel van zijn fitness (t.o.v. de populatie)

26

Selection – Fitness proportional

- Nadelen fitness proportional selection
 - Kleine kans dat beste individuen niet geselecteerd worden
 - Gevaar op pre-mature convergentie; sterke individuen overheersen het roulette wiel
 - Als convergentie te vroeg inzet, gaat de selection pressure omlaag (ongeveer even goed zijn betekent dat je een redelijke kans hebt om te mogen reproduceren)

27

Selection - Truncate

- Truncate selection of rank-based selection
 - Selecteert top X individuen
 - Risico op convergence als laag presterende individuen niet een kleine kans hebben om te overleven (door naar de volgende generatie)
 - Verkleint te snel de genetische diversiteit

Selection – Tournament

- Tournament selection
 - Speel toernooien met random geselecteerde individuen uit de populatie
 - Winnaar wordt geselecteerd voor reproductie
- Beste genetische diversiteit
 - Laag scorende individuen hebben nog steeds een kans (als ze in een toernooi uit moeten komen tegen andere laag scorende individuen)
- Kan selectie druk opvoeren door toernooien te spelen met meer individuen

29

Replacement strategieën

- Zijn ouders onderdeel van de volgende generatie?
 - Komt in biologie niet voor (hoewel generaties anders mengen)
 - Individuen in generatie worden geëlimineerd/vervangen door nieuwe individuen (offspring)
- Kan nuttig zijn om de beste individuen niet kwijt te raken
 - Elitist strategy
 - Beste individuen komen sowieso ook in de volgende generatie (ongeacht reproductie en selectie)
 - Gebruik niet te veel elitists, want dan presteert het GA minder optimaal

Example, vervolg

- Selection
 - Elitist strategy
 - Rank-based selection
 - Met random re-insertion van laag scorende individuen

```
graded = [ (fitness(x, target), x) for x in population ]
graded = [ x[1] for x in sorted(graded) ]
retain_length = int(len(graded)*retain)
parents = graded[:retain_length]

# randomly add other individuals to promote genetic diversity
for individual in graded[retain_length:]:
    if random_select > random():
        parents.append(individual)
```

31

Example, vervolg

- Simpele one-point crossover (halverwege)
- Alleen op geselecteerd parents

```
# crossover parents to create offspring
desired_length = len(population) - len(parents)
children = []
while len(children) < desired_length:
    male = randint(0, len(parents)-1)
    female = randint(0, len(parents)-1)
    if male != female:
        male = parents[male]
        female = parents[female]
        half = int(len(male) / 2)
        child = male[:half] + female[half:]
        children.append(child)</pre>
```

Example, vervolg

Mutatie op toegevoegde kinderen

33

Inhoudsopgave

- Wat zijn EA's?
 - What's in a name
- Optimalisatie
- Genetic algorithms
 - Encoding
 - Evaluation
 - Recombination
 - Selection
- Limitations

Limitations

- GA's werken goed (beter dan traditionele oplossingen), mits:
 - Zoekruimte groot
 - Zoekruimte bekend en niet unimodaal/glad (vertoont meerdere pieken)
 - Zoekruimte is niet geheel begrepen
 - Fitness functie niet exact (noisy)
 - 'Bijna goed' is goed genoeg, snelheid is belangrijker