Simulations at the Nanoscale with NAMD

Lab Molecular Dynamics Simulations

NAMD Overview

Jordi Faraudo

jfaraudo@icmab.es

Free for academics program
NAnoscale Molecular Dynamics- NAMD

J. Comp. Chem., 26:1781-1802, 2005.

NAMD webpage contains examples of use in Nanoscience

http://www.ks.uiuc.edu/Research/Categories/Nano/all.cgi

and useful tutorials for self-learning http://www.ks.uiuc.edu/Training/Tutorials/index -all.html#namd

Examples GitHub

-Starting from experimental structures complemented/modified with VMD: Simulation of 1UBQ protein (complete the structure, add water)

- Starting from structures generated with VMD: Simulation of the flow of water across a carbon nanotube

NAMD Workflow

1.- Atomic coordinates (pdb), and topology (psf)

VMD

2.- Parameters for force field (interactions)
.inp files

 $U_{total} = U_{vdW} + U_{Coulomb} + \cdots$... $U_{bond} + U_{angle} + U_{dihedral}$

Force Field: CHARMM Files: .inp

simulation of the motion of atoms based on Physics

 $F_i = m_i a_i$ $a_i = \frac{dv_i}{dt}$ $v_i = \frac{dr_i}{dt}$ Newton's equations

NAMD Workflow

Input of atomic coordinates for NAMD

ALWAYS PDB format (originally from Protein Data Bank)

Extension: .pdb

```
<record type> <atom ID> <atom name> <residue name> <residue ID>
< x, y, and z coordinates in Angstrom > <ccupancy> <beta factor> < segment name> lin
```

🖹 syste	m.pdb	×											
CRYST1	17.3	194	17	.018		80.000 90.00	90.00	90.00	P 1		1		
ATOM	1	C1	CNT	T	1	4.078	0.000	-6.754	1.00	1.00		TUB	C
MOTA	2	C2	CNT	T	1	3.832	1.395	-6.754	1.00	1.00		TUB	C
ATOM	3	C3	CNT	T	1	3.531	2.039	-5.526	1.00	1.00		TUB	C
ATOM	4	C4	CNT	T	1	2.621	3.124	-5.526	1.00	1.00		TUB	C
ATOM	5	C5	CNT	T	1	2.039	3.531	-6.754	1.00	1.00		TUB	C
ATOM	6	C6	CNT	Т	1	0.708	4.016	-6.754	1.00	1.00		TUB	C
ATOM	7	C7	CNT	T	1	0.000	4.078	-5.526	1.00	1.00		TUB	C
ATOM	8	C8	CNT	T	1	-1.395	3.832	-5.526	1.00	1.00		TUB	C
ATOM	9	C9	CNT	Т	1	-2.039	3.531	-6.754	1.00	1.00		TUB	C
MOTA	10	C10	CNT	T	1	-3.124	2.621	-6.754	1.00	1.00		TUB	C
	102020	COVERNO			nonas	10 20050	50 200000		20022	12 122			
ATOM	1858	OH2	TIP	3W90	96	-5.682	5.688	28.813	1.00	0.00		WT2	C
ATOM	1859	H1	TIP	3W90	96	-6.442	5.905	29.336	1.00	0.00		WT2	H
ATOM	1860	H2	TIP	3W90	96	-5.878	4.824	28.431	1.00	0.00		WT2	H
ATOM	1861	OH2	TIP	3W92	226	-0.019	-7.677	31.770	1.00	0.00		WT2	C
ATOM	1862	H1	TIP	3W92	226	-0.669	-7.979	31.113	1.00	0.00		WT2	Н
ATOM	1863	H2	TIP	3W92	226	-0.034	-6.708	31.754	1.00	0.00		WT2	F
ATOM	1864	OH2	TIP	3W92	241	-1.310	1.663	39.234	1.00	0.00		WT2	C
ATOM	1865	H1	TIP	3W92	241	-1.966	0.964	39.496	1.00	0.00		WT2	H
ATOM	1866	H2	TIP	3W92	241	-0.478	1.160	39.271	1.00	0.00		WT2	H
END													

see

Input of topology data for NAMD

Structure data File

Extension: .psf

A <u>first section</u> with: atom ID, segment name, residue ID, residue name, atom name, type, charge and mass, and an unused field with 0.

Second section with molecular topology: bonds, angles, dihedrals

```
PSF CMAP
      6 !NTITLE
REMARKS original generated structure x-plor psf file
REMARKS 2 patches were applied to the molecule.
REMARKS topology top all27 prot lipid.inp
REMARKS segment U { first NTER; last CTER; auto angles dihedrals }
REMARKS defaultpatch NTER U:1
REMARKS defaultpatch CTER U:76
   1231 !NATOM
      1 U
                   MET N
                             NH3
                                   -0.300000
                                                   14.0070
      2 U
                                    0.330000
                                                    1.0080
                  MET HT1
                            HC
                  MET HT2
                            HC
                                    0.330000
                                                    1.0080
                  MET HT3 HC
                                    0.330000
                                                    1.0080
      5 U
                             CT1
                                    0.210000
                                                   12.0110
                   MET HA
                             HB
                                                    1.0080
      6 U
                                    0.100000
      7 U
                   MET CB
                            CT2
                                   -0.180000
                                                   12.0110
```

see

1237	!NBOND:	bonds					
1	5	2	1	3	1	4	1
5	6	7	5	7	8	7	9
10	7	10	11	10	12	13	10

NAMD Workflow

VMD

 $U_{total} = U_{vdW} + U_{Coulomb} + \cdots$... $U_{bond} + U_{angle} + U_{dihedral}$

Force Field: CHARMM Files: .inp

Format atomic interaction Force Field

Force Field File

Extension: .inp .rtf

Header with each interaction potential (equation and units)
Atom types and values of parameters of the interaction potential

Sections with intramolecular parameters (bonds, angles, dihedrals) and Lennard-Jones intermolecular forces

Force Field files available from

Format atomic interaction Force Field

Force Field File

Extension: .inp .rtf

Header with each interaction potential (equation and units)
Atom types and values of parameters of the interaction potential

Sections with intramolecular parameters (bonds, angles, dihedrals) and Lennard-Jones intermolecular forces

```
!V(Lennard-Jones) = Eps,i,j[(Rmin,i,j/ri,j)**12 - 2(Rmin,i,j/ri,j)**6]
! atom ignored epsilon Rmin/2
CA 0.000000 -0.070000 1.992400

HBOND CUTHB 0.5
END
```

Force Field files available from

MD practical Workflow

1.- Atomic coordinates (pdb), and topology (psf)

2.- Parameters for force field (interactions) .inp files

VMD

 $U_{total} = U_{vdW} + U_{Coulomb} + \cdots$... $U_{bond} + U_{angle} + U_{dihedral}$

Force Field: CHARMM Files: .inp

Molecular Dynamics:

simulation of the motion of atoms based on Physics

 $F_i = m_i a_i$ $a_i = \frac{dv_i}{dt}$ $v_i = \frac{dr_i}{dt}$ Newton's equations

Format NAMD script

NAMD script

Extension: .namd .conf

Many details including:

- Input/output files
- Time step and details of Integration eqs. of motion
- Thermostats and barostats
- External fields or external forces
- Maintain selection of atoms at fixed positions
- Specification on frequency to save data

LOOK TO THE SAMPLE SCRIPTS PROVIDED AT GitHub

Execute NAMD (Linux)

Check number of processors with Iscpu

```
jfaraudo@pcd31b: ~/Research_local
base) jfaraudo@pcd31b:~/Research_local$ lscpu
rchitecture:
                    x86 64
PU op-mode(s):
                    32-bit, 64-bit
yte Order:
                    Little Endian
PU(s):
n-line CPU(s) list: 0-7
hread(s) per core:
ore(s) per socket:
ocket(s):
UMA node(s):
endor ID:
                    GenuineIntel
PU family:
odel:
                    Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz
odel name:
tepping:
PU MHz:
                    1200,002
PU max MHz:
                    3900,0000
PU min MHz:
                    1200,0000
ogoMIPS:
                    7200.00
irtualisation:
                    VT-x
1d cache:
1i cache:
2 cache:
                    1024K
3 cache:
                    8448K
UMA node0 CPU(s):
                    0-7
                    fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
peigb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx
st tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch o
```

run in background using all of them:

nohup namd2 +p8 myfilename.namd > myfilename.log &

```
jfaraudo@pcd31b: ~/Cursos/Grau_nano/Curs_2023/Lab10_NAMD/protein_simulation/simulation/MD_1ns

File Edit View Search Terminal Help
(base) jfaraudo@pcd31b:~/Cursos/Grau_nano/Curs_2023/Lab10_NAMD/protein_simulation/simulation/MD_1ns$ nohup namd2 +p8 equilibrationNVT.namd > equilibrationNVT.log &
[1] 26194
(base) jfaraudo@pcd31b:~/Cursos/Grau_nano/Curs_2023/Lab10_NAMD/protein_simulation/simulation/MD_1ns$ nohup: ignoring input and redirecting stderr to stdout

(base) jfaraudo@pcd31b:~/Cursos/Grau_nano/Curs_2023/Lab10_NAMD/protein_simulation/simulation/MD_1ns$ top
```

NAMD: Nonequilibrium simulations

The .namd file can be programmed to add external forces over selected atoms (other features such as move at fixed velocity are also possible)

```
EXTRA PARAMETERS
tclForces
                    on
tclForcesScript {
 set cellLengthZ 70.4338967403 ;# The length of the unit
 set LowerBoundary -32.52
 set UpperBoundary 32.52
 set force {0 0 0.4}
 set watIdList {}
 for {set i 277} {$i<1866} {incr i 3} {
   lappend watIdList $i
                                   Apply F over each molecule in a thin region
   addatom $i
 proc calcforces {} {
   global cellLengthZ LowerBoundary UpperBoundary force wa
   loadcoords coorList
   foreach i $watIdList {
     set z [lindex $coorList($i) 2]
     set z [expr $z-round($z/$cellLengthz)*$cellLengthz]
    if {$z>$UpperBoundary || $z<$LowerBoundary} {
      addforce $i $force
```