Accepted —. Received —; in original form —

ABSTRACT

Kev words:

1 INTRODUCTION

2 THE MAIN SYSTEM OF EQUATIONS

The crucial part of all the dynamic equations is the non-linear term $(\mathbf{v}\nabla)\mathbf{v}$, containing all the inertial terms. In spherical coordinates:

$$(\mathbf{v}\nabla)\mathbf{v} = \left(v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\varphi}{r \sin \theta} \frac{\partial v_r}{\partial \varphi} - \frac{v_\theta^2 + v_\varphi^2}{r}\right) \mathbf{e}^r + \left(v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_\varphi}{r \sin \theta} \frac{\partial v_\theta}{\partial \varphi} + \frac{v_\theta v_r}{r} - \frac{v_\varphi^2}{r} \cot \theta\right) \mathbf{e}^\theta + \left(v_r \frac{\partial v_\varphi}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\varphi}{\partial \theta} + \frac{v_\varphi}{r \sin \theta} \frac{\partial v_\varphi}{\partial \varphi} + \frac{v_\varphi v_r}{r} + \frac{v_\varphi v_\theta}{r} \cot \theta\right) \mathbf{e}^\varphi,$$

$$(1)$$

where e are unit vectors along different coordinate directions, r is radius, θ is polar angle, φ is azimuthal angle. Directly, this expression will be used for the vertical structure equations. On the sphere, the velocities may be converted to vorticity and divergence:

$$\omega = [\nabla \times \mathbf{v}], \tag{2}$$

$$\delta = (\nabla \cdot \mathbf{v}) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 v_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta v_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial v_\varphi}{\partial \varphi}. \tag{3}$$

Taking curl of Euler equation allows to directly derive the equation for vorticity

$$\frac{\partial \left[\nabla \mathbf{v}\right]}{\partial t} + (\mathbf{v}\nabla)\left[\nabla \mathbf{v}\right] = (\omega \cdot \nabla)\mathbf{v} - \omega(\nabla \cdot \mathbf{v}) + \frac{1}{\rho^2}\left[\nabla p \times \nabla \rho\right]. \tag{4}$$

The right-hand-side term is important if motion is baroclinic. Baroclinic term allows to generate vorticity from non-axisymmetric perturbations of density and temperature, hence it is important for any realistic calculations. We will neglect the radial velocities and consider only the radial component of ω that means all the motions are restricted to the surface of the sphere and the vertical relaxation timescale is much smaller than the global dynamical scales. Setting $\omega = \mathbf{e}_r \omega$ and substituting it to equation (4) gives

$$\frac{\partial \omega}{\partial t} + \nabla \cdot (\omega \mathbf{v}) = \frac{1}{\rho^2} \left[\nabla p \times \nabla \rho \right]. \tag{5}$$

Additional kinetic terms disappear because of the two-dimensional nature of the flow, not due to incompressibility assumption that also zeros these terms. Current version of the code adopts a fixed equation of state hence $\nabla p \propto \nabla \rho$, and the right-hand side is zero. Note that integration in vertical coordinate is not required in this case.

Another equation comes from taking divergence of Euler equation. It is rather non-trivial to expand the advection term, $(\nabla \cdot ((\mathbf{v}\nabla)\mathbf{v}))$, therefore first let us show that

$$(\nabla \cdot [\mathbf{v}\omega]) = \nabla^2 \frac{v^2}{2} - \nabla \cdot ((\mathbf{v}\nabla)\mathbf{v}). \tag{6}$$

The last term here is identical to the advective left-hand-side term in Euler equation derivative, hence

$$\frac{\partial \delta}{\partial t} = (\nabla \cdot [\mathbf{v}\omega]) - \nabla^2 B. \tag{7}$$

where

$$B = \frac{v^2}{2} + \Phi + h \tag{8}$$

is Bernoulli integral, and $h = \int \frac{1}{\rho} dp$ is enthalpy. For the isothermal case we start with, $p = \rho c_{\rm s}^2$, where the speed of sound $c_{\rm s}^2$ is constant, and $h = c_{\rm s}^2 \ln \rho$. Integration with height does not change the overall structure of the equation, as the vertical scalehight is always identical for density and pressure.

2.1 Vertical balance

3 SPECTRAL CODE

4 DISSIPATION

To stabilize the algorithm, we use a hyperdiffusion method selective for the highest harmonics. Dissipation operator for both quantities, vorticity and divergence, equals

$$D = \frac{1}{t_D} \left(\nabla^4 - \frac{4}{R^4} \right),\tag{9}$$

where the second, correction, term serves to ensure conservation of the total angular momentum and mass (see ?). In the spectral domain, this corresponds to

$$\tilde{D} = \frac{1}{t_D} \left(ik^4 - \frac{4}{R^4} \right) \simeq e \tag{10}$$

5 INERTIAL MODES AND SONIC HORIZONS

5.1 Derivation of the dispersion equation

Using WKB method (?), one can linearize the set of dynamic equations and come up with a dispersion relation for short-wavelength waves on a sphere in presence of differential rotation. Density variations $\rho = \rho_0 + \delta \rho(\theta, \varphi, t)$, azimuthal velocity $v_{\varphi} = \Omega(\theta) \sin \theta + \delta v_{\varphi}(\theta, \varphi, t)$, and latitudinal velocity $v_{\theta} = \delta v_{\theta}(\theta, \varphi, t)$. Latitudinal velocity has the same (first) order as the azimuthal velocity perturbation. All the perturbations will be expressed in exponential form $\propto \exp(\mathrm{i}(\omega t - k_{\theta}\theta - k_{\varphi}\varphi))$. Will spherical harmonics be better? Wavenumbers would be expressed in the units of inverse sphere radius.

Continuity equation perturbation, written in WKB assumptions, becomes

$$(\omega - k_{\varphi}\Omega)\frac{\delta\rho}{\rho} = k_{\theta}v_{\theta} + \frac{1}{\sin\theta}k_{\varphi}\delta v_{\varphi}. \tag{11}$$

The two tangential Euler equations may be in general form written, ignoring second-order terms, as

$$\frac{\partial v_{\theta}}{\partial t} + \frac{v_{\varphi}}{\sin \theta} \frac{\partial v_{\theta}}{\partial \varphi} - v_{\varphi}^{2} \cot \theta = -c_{s}^{2} \frac{\partial \ln \rho}{\partial \theta}$$
(12)

and

$$\frac{\partial v_{\phi}}{\partial t} + v_{\theta} \frac{\partial v_{\varphi}}{\partial \theta} + \frac{v_{\varphi}}{\sin \theta} \frac{\partial v_{\varphi}}{\partial \varphi} + v_{\varphi} v_{\theta} \cot \theta = -\frac{c_{\rm s}^2}{\sin \theta} \frac{\partial \ln \rho}{\partial \varphi}.$$
 (13)

In WKB approach, and after substitution the expression for the variations of ρ from (11), the equations become, respectively,

$$\left(\tilde{\omega}^2 - c_{\rm s}^2 k_{\theta}^2\right) v_{\theta} = \left(c_{\rm s}^2 \frac{k_{\theta} k_{\varphi}}{\sin \theta} - 2i\Omega \tilde{\omega} \cos \theta\right) \delta v_{\varphi},\tag{14}$$

and

$$\left(\tilde{\omega}\left(\tilde{\omega} - k_{\varphi}\Omega\right) - \frac{c_{s}^{2}k_{\varphi}^{2}}{\sin^{2}\theta}\right)\delta v_{\varphi} = \left(c_{s}^{2}k_{\theta}k_{\varphi} + i\tilde{\omega}\frac{\partial\Omega\sin^{2}\theta}{\partial\theta}\right)\frac{v_{\theta}}{\sin\theta},\tag{15}$$

where $\tilde{\omega} = \omega - k_{\varphi}\Omega$. Excluding the velocity components yields a dispersion equation

$$\left(\tilde{\omega}^2 - c_{\rm s}^2 k_{\theta}^2\right) \left(\tilde{\omega} - k_{\varphi} \Omega\right) - \frac{c_{\rm s}^2 k_{\varphi}^2}{\sin^2 \theta} \tilde{\omega} = i c_{\rm s}^2 k_{\varphi} k_{\theta} \sin \theta \frac{\partial \Omega}{\partial \theta} + 2\Omega \tilde{\omega} \cot \theta \frac{\partial}{\partial \theta} \left(\Omega \sin^2 \theta\right). \tag{16}$$

Two important specific cases may be reproduced when $\Omega \to 0$ (sonic waves) and $c_s \to 0$ (inertial waves):

$$\omega_{\text{sonic}} = c_{\text{s}}^2 \left(k_{\theta}^2 + \frac{k_{\varphi}^2}{\sin^2 \theta} \right), \tag{17}$$

$$\omega_{\text{inertial}} = \frac{3}{2} k_{\varphi} \Omega \pm \frac{1}{2} \sqrt{(k_{\varphi} \Omega)^2 + 4\varkappa^2},\tag{18}$$

where

$$\varkappa^{2} = 2\Omega \cot \theta \frac{\partial}{\partial \theta} \left(\Omega \sin^{2} \theta \right) \tag{19}$$

is the latitudinal epicyclic frequency. In the case of k_{θ} and $\Omega = const$, $\omega = \varkappa = 2\Omega \cos \theta$ reproduces the Coriolis oscillation regime. Isomomentum rotation, on the other hand, reproduces $\varkappa = 0$ and does not have oscillating purely latitudinal modes.