

Lecture 7

Relational Algebra

Query Language for the Relational Model

- o for handling and retrieving the data from a database
- o the Relational Model offers support for simple and powerful query languages
 - o formal and based on logic
 - allow the optimization
- Query Language NOT THE SAME WITH Programming Language
 - o are not used for complex calculus
 - offers a simple and efficient way to access big sets of data
 - not expected to be Turing complete
- 2 query languages with a significant influence on SQL
 - Relational Algebra operational and useful for the execution plan (of the queries)
 - Relational Calculus allows the users to describe what and not how to get what they want (non-operational, declarative)

- used in the DBMSs to represent the query execution plans
- the query is applied to the instance of the relation and the result of the query represent such an instance of the relation
 - the structure of a relation from a query is fixed
 - o the structure of the result that is returned by a query is fixed and determined by the definitions of the structured used in the query language
- each operation returns a relation
- the operators used can be composed
- the result returned by an algebra expression is a relation / table and this relation has a set or records / tuples
- o in the relational algebra for the multisets, the duplicates are not eliminated
- the relational algebra query:
 - is organized by using a collection of operators
 - o describes each step that is performed in computing the result
 - o is evaluated on the input instances of the relations considered
 - return an output instance relation

Conditions that can be used with the Relational Algebra

- o all the conditions that are used for the algebraic operators
- o are similar with the conditions used in the SELECT
 - attribute_name relational_operator value_expression
 - attribute_name IS [NOT] IN column_relation
 - othis condition tests if a value belongs to a set of values
 - o relation IS [NOT] IN | = | <> relation
 - the relations must be compatible
 - condition
 - NOT condition
 - condition1 AND | OR condition2

Operators from Relational Algebra

The SELECT statements can be also specified by using the expressions from relational algebra

Basic operations

- \circ **projection** (π) eliminates all the un-wished attributes from the relation
- \circ *selection* (σ) selects a subset of tuples from the relation
- o cross product (X) allows the combination of two relations
- o **set-difference** (-) selects the tuples that are in a relation and not in the other relation
- o *union* (U) selects the tuples that are in both of the relations

Additional operations – very useful

- intersection
- o join
- division
- o rename

Each operation returns a relation / table, and so, the operations can be composed (algebra is closed)

Projection (π) – eliminates all the un-wished attributes from the relation

- \circ Notation: $\pi_{\alpha}(R)$
- \circ α can have a set of expressions that specify the name of the columns of the relation R considered (also, can be computed)
- R the relation considered
- \circ Result set: a relation with all the attributes that are mentioned in α
 - \circ schema: attributes in α
 - \circ tuples: each record from R that is projected on α
- equivalent with

SELECT DISTINCT α	not (SELECT α FROM R)
FROM R	

The Relational Algebra operates on SETS, so there will NOT BE DUPLICATES

Projection (π) – example:

 $\pi_{StudentId,Grade}(Exam) \Leftrightarrow SELECT$ **DISTINCT** StudentId, Grade FROM Exam

	StudentId	Courseld	Grade	
	4	11	9	
	5	11	10	
	4	21	10	
$\pi_{StudentId}$, Grade $\Big($	4	22	9	
	6	21	7	
	7	22	9	
	7	21	6	
	7	11	10	

	StudentId	Grade
	4	9
	5	10
) =	4	10
)	6	7
	7	9
	7	6
	7	10

Selection (σ) – selects a subset of tuples from the relation, tuples that satisfy a specified condition

- \circ Notation: $\sigma_{\mathcal{C}}(R)$
- \circ C is the condition, called *selective predicate*, that has to be satisfied by the returned tuples from the relation R
- R the relation considered
- \circ Result set: a relation with all the attributes from the relation R that satisfy the condition C
 - o schema: R schema
 - o tuples: the records from R that satisfy condition C
- equivalent with

SELECT DISTINCT *
FROM R
WHERE C

- o condition C has the form: Term Operator Term, where Term is an attribute or a constant, and Operator is a logical operator (<, <=, >, >=, =, !=, ...)
- \circ C1 \wedge C2, C1 \vee C2, \neg C1 are conditions that contain the operators \wedge (AND), \vee (OR), \neg (NOT), and C1, C2 are also conditions

Selection (σ)– example:

 $\sigma_{Grade>7}(Exam) \Leftrightarrow SELECT\ DISTINCT*FROM\ Exam\ WHERE\ Grade>7$

	StudentId	Courseld	Grade
	4	11	9
	5	11	10
(4	21	10
$\sigma_{Grade>7}$	4	22	9
	6	21	7
	7	22	9
	7	21	6
	7	11	10

StudentId	Courseld	Grade
4	11	9
5	11	10
4	21	10
4	22	9
7	22	9
7	11	10

Projection (π) and **Selection** (σ)

Projection $-\pi_{attribute1,attribute2,...}(Relation)$

SELECT DISTINCT attribute1, attribute2, ...

FROM Relation

WHERE Condition

Selection - $\sigma_{Condition}(Relation)$

Projection (π) and **Selection** (σ) - composition

 $\pi_{StudentId,Grade}(\sigma_{Grade>7}(Exam))$

⇔ SELECT DISTINCT StudentId, Grade FROM Exam WHERE Grade > 7

	StudentId	Courseld	Grade			
	4	11	9		StudentId	Grade
	5	11	10		4	9
π	4	21	10) _	5	10
$\pi_{StudentId,Grade}(\sigma_{Grade}>7$	4	22	9) –	4	10
	6	21	7		7	9
	7	22	9		7	10
	7	21	6			
	7	11	10			

What about $\sigma_{Grade>7}(\pi_{StudentId,\,Grade}(Exam))$? Are equivalent? Is important the order of π and σ ? σ before π only when it is a subquery

Cross product (X) – allows the combination of two relations

- \circ Notation: $R_1 \times R_2$
- 2 relations are combined
- $\circ R_1$, R_2 the relations considered
- \circ Result set: a relation with all the attributes that are in R_1 and R_2 , combined
 - \circ schema: the attributes from R_1 followed by the attributes from R_2
 - o tuples: every tuple $r_1 \in R_1$ is concatenated with every tuple $r_2 \in R_2$
- equivalent with

SELECT *
FROM R_1 CROSS JOIN R_2

or

SELECT * FROM R_1 , R_2

Cross product (X) example: Student[StudentId, Age] and Course[CourseId, NoOfCredits] $Student \times Course \Leftrightarrow SELECT\ DISTINCT * FROM\ Student\ CROSS\ JOIN\ Course$

Student

StudentId	Age
4	19
5	19
6	21
7	20

Course

Courseld	NoOfCredits
11	6
12	5

$Student \times Course$

StudentId	Age	Courseld	NoOfCredits
4	19	11	6
4	19	12	5
5	19	11	6
5	19	12	5
6	21	11	6
6	21	12	5
7	20	11	6
7	20	12	5

Union, Intersection, Set-Difference

- Notation: $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$
- $\circ R_1$ and R_2 must be union-compatible
 - o same number of columns
 - o compatible = the columns has to correspond from left to right and have compatible data types / domain
- equivalent with

$R_1 \cup R_2$	$R_1 \cap R_2$	$R_1 - R_2$
SELECT DISTINCT *	SELECT DISTINCT *	SELECT DISTINCT *
FROM R_1	FROM R_1	FROM R_1
UNION	INTERSECT	EXCEPT
SELECT DISTINCT *	SELECT DISTINCT *	SELECT DISTINCT *
FROM R_2	FROM R_2	FROM R_2

UNION ALL – does not eliminate the duplicates

Union, Intersection, Set-Difference example: Student[StudentId, Age] and Course[CourseId, NoOfCredits] $Student \cup Course \Leftrightarrow SELECT DISTINCT * FROM Student UNION SELECT DISTINCT * FROM Course$ $Student \cap Course \Leftrightarrow SELECT\ DISTINCT * FROM\ Student\ INTERSECR\ SELECT\ DISTINCT * FROM\ Course$ $Student - Course \Leftrightarrow SELECT\ DISTINCT * FROM\ Student\ EXCEPT\ SELECT\ DISTINCT * FROM\ Course$

Student

StudentId	Age
4	19
5	19
6	21
7	20

Course

Courseld	NoOfCredits
11	6
12	5

StudentId	Age
4	19
5	19
6	21
7	20
11	6
12	5

Student \cup Course Student \cap Course Student - Course

StudentId	Age

StudentId	Age
4	19
5	19
6	21
7	20

Union, Intersection, Set-Difference

Indentify the tuples from R_1 that are not in R_2

Identify the tuples from R_1 OR R_2

Join Operator (\otimes_{θ}) – or θ (theta) join

- \circ Notation: $R_1 \otimes_{\theta} R_2$
- \circ 2 relations are combined with respect to condition θ
- $\circ R_1$, R_2 the relations considered
- \circ Result set: the records from the cross-product of R_1 and R_2 that satisfy the condition θ
- $\circ R_1 \otimes_{\theta} R_2 = \sigma_{\theta}(R_1 \times R_2)$
- o equivalent with

SELECT DISTINCT * FROM R_1 INNER JOIN R_2 ON heta

Example: Student $\otimes_{Student.StudentId=Exam.StudentId} Exam \Leftrightarrow$

SELECT DISTINCT *

FROM Student, Exam

WHERE Student.StudentId = Exam.StudentId

SELECT DISTINCT *

FROM Student INNER JOIN Exam

ON Student.StudentId = Exam.StudentId

Equi Join ($\otimes_{E(\theta)}$)

- \circ Notation: $R_1 \otimes_{E(\theta)} R_2$
- \circ 2 relations are combined with respect to the composed condition $\mathrm{E}(\theta)$
- $\circ R_1$, R_2 the relations considered
- \circ Result set: the records from R_1 and R_2 that satisfy the composed condition $E(\theta)$: only equalities between the attributes that are in R_1 and R_2 and project only one of the redundant attributes (because are equal)

Equi Join (\otimes_{E(\theta)}) – example

Student $\bigotimes_{E(Student.StudentId = Exam.StudentId)} Exam$

Student

StudentId	Age
4	19
5	19
6	21
7	20

Exam

StudentId	Courseld	Grade
4	11	9
5	11	10
4	21	10
4	22	9
6	21	7
7	22	9
7	21	6
7	11	10

Student $\bigotimes_{E(Student.StudentId = Exam.StudentId)} Exam$

StudentId	Age	Courseld	Grade
4	19	11	9
5	19	11	10
4	19	21	10
4	19	22	9
6	21	21	7
7	20	22	9
7	20	21	6
7	20	11	10

Natural Join (*)

- \circ Notation: $R_1 * R_2$
- 2 relations are combined with respect to the attributes that have the same name and display just one of the redundant attributes
- \circ Result set: a relation with all the attributes that are in R_1 and R_2 , combined
 - \circ schema: the union of the attributes of the two relations: attributes with the same name in R_1 and R_2 that appear just once in the result set
 - o tuples: obtained from the tuples (r_1, r_2) , where $r_1 \in R_1$ and $r_2 \in R_2$ and r_1, r_2 agree on the common attributes of R_1 and R_2
- o Let $R_1[\alpha], R_2[\beta], \alpha \cap \beta = \{A_1, A_2, \dots, A_n\}$. Then $R_1 * R_2 = \pi_{\alpha \cup \beta}(R_1 \bigotimes_{R_1.A_1 = R_2.A_1 \ AND \ \dots \ AND \ R_1.A_n = R_2.A_n} R_2)$
- \circ equivalent with SELECT DISTINCT * FROM R_1 NATURAL JOIN R_2

Natural Join ()* – example

Student

StudentId	Age
4	19
5	19
6	21
7	20

Exam

StudentId	Courseld	Grade
4	11	9
5	11	10
4	21	10
4	22	9
6	21	7
7	22	9
7	21	6
7	11	10

Student * Exam

StudentId	Age	Courseld	Grade
4	19	11	9
5	19	11	10
4	19	21	10
4	19	22	9
6	21	21	7
7	20	22	9
7	20	21	6
7	20	11	10

Left Outer Join (\ltimes_C)

- \circ Notation: $R_1 \ltimes_C R_2$
- \circ 2 relations are combined with respect to the attributes that have the *same name* and display just one of the redundant attributes + the attributes from R_1 that have no correspondent in R_2 (*null* value)
- Result set:
 - \circ schema: a relation with the attributes from R_1 followed by the attributes from R_2
 - \circ tuples: tuples from the condition join $R_1 \otimes_C R_2$ + tuples from R_1 that are not used in $R_1 \otimes_C R_2$ combined with the *null* value for the attributes of R_2
- o equivalent with

SELECT DISTINCT * FROM R_1 LEFT OUTER JOIN R_2 ON C

Relational Algebra Left Outer Join – example

Student

StudentId	Age
4	19
5	19
6	21
7	20
8	21

Exam

StudentId	Courseld	Grade
4	11	9
5	11	10
4	21	10
4	22	9
6	21	7
7	22	9
7	21	6
7	11	10

Student ⋉_{Student.StudentId=Exam.StudentId} Exam

StudentId	Age	Courseld	Grade
4	19	11	9
5	19	11	10
4	19	21	10
4	19	22	9
6	21	21	7
7	20	22	9
7	20	21	6
7	20	11	10
8	21	NULL	NULL

Right Outer Join (\bowtie_C)

- \circ Notation: $R_1 \rtimes_C R_2$
- 2 relations are combined with respect to the attributes that have the same name and display just one of the redundant attributes + the attributes from R_2 that have no correspondent in R_1 (null value)
- o Result set:
 - \circ schema: a relation with the attributes from R_1 followed by the attributes from R_2
 - \circ tuples: tuples from the condition join $R_1 \otimes_C R_2$ + tuples from R_2 that are not used in $R_1 \otimes_C R_2$ combined with the *null* value for the attributes of R_1

o equivalent with SELECT DISTINCT * FROM R_1 RIGHT OUTER JOIN R_2 ON C

Relational Algebra *Right Outer Join* – example

Exam

StudentId	Courseld	Grade
4	11	9
5	11	10
4	21	10
4	22	9
6	21	7
7	22	9
7	21	6
7	11	10

Course

Courseld	NoOfCredits
11	5
21	6
22	5
23	4

$Exam \bowtie_{Exam.CourseId=Course.CourseId}$ Course

StudentId	Courseld	Grade	NoOfCredits
4	11	9	5
5	11	10	5
4	21	10	6
4	22	9	5
6	21	7	6
7	22	9	5
7	21	6	6
7	11	10	5
NULL	23	NULL	4

Full Outer Join (\bowtie_C)

- \circ Notation: $R_1 \bowtie_{\mathcal{C}} R_2$
- \circ 2 relations are combined with respect to the attributes that have the *same name* and display just one of the redundant attributes + the attributes from R_1 that have no correspondent in R_2 (*null* value) + the attributes from R_2 that have no correspondent in R_1 (*null* value)
- Result set:
 - \circ schema: a relation with the attributes from R_1 followed by the attributes from R_2
 - o tuples: tuples from the condition join $R_1 \otimes_C R_2$ + tuples from R_1 that are not used in $R_1 \otimes_C R_2$ combined with the *null* value for the attributes of R_2 + tuples from R_2 that are not used in $R_1 \otimes_C R_2$ combined with the *null* value for the attributes of R_1
- equivalent with

SELECT DISTINCT *
FROM R_1 FULL OUTER JOIN R_2 ON C

Relational Algebra *Full Outer Join* – example

Student

Exam

 $\mathsf{Student} \bowtie_{\mathsf{StudentId} = \mathsf{Exam}.\mathsf{StudentId}} \mathsf{Exam} \bowtie_{\mathit{Exam}.\mathit{CourseId} = \mathit{Course}.\mathit{CourseId}} \mathsf{Course}$

StudentId	Age
4	19
5	19
6	21
7	20
8	21

StudentId	Courseld	Grade
4	11	9
5	11	10
4	21	10
4	22	9
6	21	7
7	22	9
7	21	6
7	11	10

Course

Courseld	NoOfCredits
11	5
21	6
22	5
23	4

StudentId	Age	Courseld	Grade
4	19	11	9
5	19	11	10
4	19	21	10
4	19	22	9
6	21	21	7
7	20	22	9
7	20	21	6
7	20	11	10
8	21	NULL	NULL
NULL	NULL	23	NULL

Left Semi Join (▷)

- Notation: $R_1 \triangleright R_2$
- \circ 2 relations are combined with respect to the attributes that have the *same name* and display just the attributes from R_1 that have no correspondent in R_2 (*null* value)
- O Result set:
 - \circ schema: a relation with the attributes from R_1
 - o tuples: tuples from R_1 that are not used in the condition join $R_1 \otimes_C R_2$ (R_1 combined with the null value for the attributes of R_2)

Student

StudentId	Age
4	19
5	19
6	21
7	20
8	21

StudentId	Courseld	Grade
4	11	9
5	11	10
4	21	10
4	22	9
6	21	7
7	22	9
7	21	6
7	11	10

Student ⊳ Exam

StudentId	Age	Courseld	Grade
8	21	NULL	NULL

Exam

Right Semi Join (⊲)

- Notation: $R_1 \triangleleft R_2$
- \circ 2 relations are combined with respect to the attributes that have the *same name* and display just the attributes from R_2 that have no correspondent in R_1 (*null* value)
- O Result set:
 - \circ schema: a relation with the attributes from R_2
 - \circ tuples: tuples from R_2 that are not used in the condition join $R_1 \otimes_C R_2$ (R_2 combined with the null value for the attributes of R_1)

Exam

StudentId	Courseld	Grade
4	11	9
5	11	10
4	21	10
4	22	9
6	21	7
7	22	9
7	21	6
7	11	10

Courseld	NoOfCredits
11	5
21	6
22	5
23	4

Course

Exam

Course

StudentId	Courseld	Grade	NoOfCredits
NULL	23	NULL	4

Division (÷)

- Notation: $R_1 \div R_2$
- It is not a base operator, but it can be useful, because can simplify the query
- 2 relations are combined
- $\circ R_1$, R_2 the relations considered
- $\circ R_1[\alpha]$, $R_2[\beta]$, $\beta \subset \alpha$, where α , β are attributes of R_1 and β is an attribute of R_2
- o $R_1 \div R_2 = \{\alpha \mid \exists (\alpha, \beta) \in R_1 \ \forall \beta \in R_2\}$, i.e. $R_1 \div R_2$ contains all the tuples α such that for each tuple $\beta \in R_2$, exists a $\alpha\beta$ tuple from R_1 (or, if the set of β values associated with a value α from R_1 contains all the values $\beta \in R_2$ then α will be returned as a result for $R_1 \div R_2$)
- \circ Result set: a relation with the attributes that are in $R_1 \div R_2$ combined
 - \circ schema: $\alpha \beta$
 - \circ tuples: a record $r \in R_1 \div R_2$ if $\forall r_2 \in R_2$, $\exists r_1 \in R_1$ such that
 - $\circ \ \pi_{\alpha-\beta}(r_1)=r$
 - $\circ \ \pi_{\beta}(r_1) = r_2$
 - \circ i.e. a record r belongs to the result if in R_1 r is concatenated with every record in R_2

Relational Algebra *Division (÷)*

- \circ Generalization: α and β can represent any set of attributes; β is the set of attributes from R_1 and $\alpha \cup \beta$ represent the attributes of R_1
- Division operator is not essential; it is just a shortcut (like join, that is used more often)
- \circ For $R_1 \div R_2$ will be determined the α values that are not connected with some β values from R_2 (the α value is not connected if attaching to it a β value from R_2 is obtained a tuple $\alpha\beta$ that is not in R_1) not connected α values: $R_1 \div R_2 = \pi_{\alpha}(R_1)$

 R_1 β

Rename

- \circ Notation: $\rho(R'(A_1 \to A_1', A_2 \to A_2'), R)$ or $\rho_{R'(A_1', A_2')}(R)$
- \circ The new relation R' has the same instance as R, and it's structure contains the attribute A'_i instead of the attribute A_i
- Used when the attributes and relations have the same name (e.g. join between 1 table, join for 2 tables on the same attributes); one must be renamed

Example: $\rho(Student2(StudentId \rightarrow SId, StudentName \rightarrow SName), Student) \iff SELECT StudentId as SId, StudentName as SName FROM Student, Student2$

Student Student2

StudentId	StudentName	Age
4	Maria	19
5	Dan	19
6	Florin	21
7	Lara	20

SId	SName	Age
4	Maria	19
5	Dan	19
6	Florin	21
7	Lara	20

Assignment (←)

- Notation: $Temporary_variable \leftarrow \pi_X(R_1 \times R_2)$ or R[list]:=expression
- Offers a simple way in which the complex queries can be treat it
- The result is saved in a temporary variable
- The result of the expression from the right side of ← is assigned to the attribute that is in the left side of the operator ←
- \circ The variables can be used, after, in other expressions (e.g. result \leftarrow Temporary_variable R_2)

Complex expressions

Example: Display the name of the students that have grades on the course 11.

Solution 1

$$\pi_{StudentName}\left(\left(\sigma_{CourseId=11}(Exam)\right)*Student\right)$$

Solution 2

$$\rho(Temp1, \sigma_{CourseId=11}(Exam))$$

$$\rho(Temp2, Temp1 * Student)$$

$$\pi_{StudentName}(Temp2)$$

Solution 3

$$\pi_{StudentName}(\sigma_{CourseId=11}(Exam * Student))$$

Example: Display the name of the students that have grades on the courses with 6 credits.

- o the number of credits is in the table *Course*, so, a natural join will be added.
- Solution 1

$$\pi_{StudentName}\left(\left(\sigma_{NoOfCredits=6}(Course)\right)*Exam*Student\right)$$

Solution 2

$$\pi_{StudentName} \left(\pi_{StudentId} \left(\pi_{CourseId} \left(\sigma_{NoOfCredits=6}(Course) \right) * Exam \right) * Students \right)$$

- Solution 2 is more efficient than Solution 1
- The query optimization model allows the transformation of the Solution 1 in Solution 2

Example: Display the name of the students that have grades on the courses with 5 or 6 credits.

- Are identified the courses with 5 or 6 credits and then are displayed the students that have grades on these courses.
- Solution

```
\rho \left( \textit{TempCourse}, \left( \sigma_{NoOfCredits=5} \vee_{NoOfCredits=6} (Course) \right) \right) \\ \pi_{StudentName} \left( \textit{TempCourse} * \textit{Exam} * \textit{Student} \right)
```

TempCourse can be defined also as a union.

Example: Display the name of the students that have grades on the courses with 5 AND 6 credits.

- First are identified the students that have grades in a 5 credit course; then are identified the students that have grades in a 6 credits course; then are intersected (StudentId is used)
- Solution

$$\rho$$
 (Temp5, $(\sigma_{NoOfCredits=5} (Course) * Exam)$)
 ρ (Temp6, $(\sigma_{NoOfCredits=6} (Course) * Exam)$)
 $\pi_{StudentName}((Temp5 \cap Temp6) * Student)$

Example: Display the name of the students that have grades on all the courses

- The division is used; must be prepared the relation structures before use the division operator
- Solution

$$\rho \left(TempStudentId, \pi_{StudentId, CourseId}(Exam) \right) \div \pi_{CourseId}(Course)$$

$$\pi_{StudentName}(TempStudentId * Student)$$

Other notations and operations: let R be a relation

- \circ Eliminating duplicates from a relation: $\delta(R)$
- \circ Sorting records in a relation: $S_{\{list_attributes\}}$ (R)
- \circ Grouping: $\gamma_{\{list1_attributes\}\ GROUP\ BY\ \{list2_attributes\}\ (R)$
 - o *list1_attributes* (can contain aggregate functions) is evaluated for each group of records
 - the records from R are grouped by the columns in list2_attributes

Example: Consider the following relations

Group [GroupId, Year, Specialization]

Student [StudentId, StudentName, Age, SGroup]

Professor [ProfessorId, ProfessorName, Dob]

Program [Class, Day, StartHour, EndHour, ProgramType, ProfessorId, SGroup]

Display the name of the students from the group 821.

$$R := \pi_{StudentName} \left(\sigma_{SGroup=821}(Student) \right)$$

equivalent with

SELECT StudentName FROM Student WHERE SGroup = 821

Example: Consider the following relations

Group [GroupId, Year, Specialization]

Student [StudentId, StudentName, Age, SGroup]

Professor [ProfessorId, ProfessorName, Dob]

Program [Class, Day, StartHour, EndHour, ProgramType, ProfessorId, SGroup]

Display for each student group from Computer Science, the students alphabetically.

$$A := \pi_{GroupId} \left(\sigma_{Specialization='Computer\ Science'}(Group) \right)$$

$$R := S_{SGroup,\ StudentName} \left(\sigma_{SGroup\ IN\ A}(Student) \right)$$

equivalent with

SELECT * FROM Student WHERE SGroup IN (SELECT GroupId FROM Group WHERE Specialization = 'Computer Science') ORDER BY SGroup, StundentName

Example: Consider the following relations

Group [GroupId, Year, Specialization]

Student [StudentId, StudentName, Age, SGroup]

Professor [ProfessorId, ProfessorName, Dob]

Program [Class, Day, StartHour, EndHour, ProgramType, ProfessorId, SGroup]

o Display the number of students from every group for the specialization Computer Science.

$$A \coloneqq \sigma_{SGroup \, IN \left(\pi_{GroupId}\left(\sigma_{Specialization='Computer \, Science'}(Group)\right)\right)}(Student)$$

$$R \coloneqq \gamma_{\{SGroup, \, COUNT(*)\} \, GROUP \, BY \, \{SGroup\}}(A)$$

equivalent with

SELECT SGroup, COUNT(*) FROM

(SELECT * FROM Student WHERE SGroup IN

(SELECT GroupId FROM Group

WHERE Specialization =' Computer Science')) B

GROUP BY SGroup

Example: Consider the following relations

Group [GroupId, Year, Specialization]

Student [StudentId, StudentName, Age, SGroup]

Professor [ProfessorId, ProfessorName, Dob]

Program [Class, Day, StartHour, EndHour, ProgramType, ProfessorId, SGroup]

Display the program for the student *Popescu*.

$$R := \sigma_{SGroup IN \left(\pi_{GroupId}(\sigma_{StudentName='Popescu'}(Student)\right))}(Program)$$

equivalent with

SELECT * FROM Program WHERE SGroup IN (SELECT GroupId FROM Student WHERE StudentName =' Popescu')

Example: Consider the following relations
Group [GroupId, Year, Specialization]
Student [StudentId, StudentName, Age, SGroup]
Professor [ProfessorId, ProfessorName, Dob]
Program [Class, Day, StartHour, EndHour, ProgramType, ProfessorId, SGroup]

Display the number of hours per week for each group.

```
A(Number, SGroup) := \pi_{EndHour-StartHour, SGroup}(Program) \\ R(SGroup, NoOfHours) \coloneqq \gamma_{\{SGroup, SUM(Number)\} GROUP \ BY \{SGroup\}}(A) \\ \text{equivalent with} \\ SELECT \ SGroup, \quad SUM(EndHour-StartHour) \\ FROM \ Program
```

GROUP BY SGroup

Example: Consider the following relations

Group [GroupId, Year, Specialization]

Student [StudentId, StudentName, Age, SGroup]

Professor [ProfessorId, ProfessorName, Dob]

Program [Class, Day, StartHour, EndHour, ProgramType, ProfessorId, SGroup]

o Display the name of the professors that have been teach the student with the name *Popescu*.

$$A := (\sigma_{StudentName='Popescu'}(Student)) \otimes_{Student.SGroup=Program.SGroup} Program$$

$$B \coloneqq \pi_{ProfessorId}(A)$$

$$C \coloneqq Professor \otimes_{Professor.ProfessorId=B.ProfessorId} B$$

$$R \coloneqq \pi_{ProfessorName}(A)$$

equivalent with SELECT Student. StudentName

FROM Student INNER JOIN Program ON Student. SGroup = Program. SGroup INNER JOIN Professor ON Professor. ProfessorId = Program. ProfessorId $WHERE\ Student. StudentName = 'Popescu'$

Example: Consider the following relations

Group [GroupId, Year, Specialization]

Student [StudentId, StudentName, Age, SGroup]

Professor [ProfessorId, ProfessorName, Dob]

Program [Class, Day, StartHour, EndHour, ProgramType, ProfessorId, SGroup]

Display the name of the professors that have not teach (with no program).

$$R \coloneqq \pi_{ProfesssorName}(Professor) -$$

 $-\pi_{ProfessorName}(Professor \otimes_{Professor.ProfessorId=Program.ProfessorId} Program)$

equivalent with

SELECT P1. ProfessorName FROM Professor P1 EXCEPT SELECT P2. ProfessorName

 $FROM\ Professor\ P2\ INNER\ JOIN\ Program\ P\ ON\ P2.Professorid = P.ProfessorId$

○ Is it ok if there are professors with the same name? (ProfessorId, ProfessorName)

Example: Consider the following relations

Group [GroupId, Year, Specialization]

Student [StudentId, StudentName, Age, SGroup]

Professor [ProfessorId, ProfessorName, Dob]

Program [Class, Day, StartHour, EndHour, ProgramType, ProfessorId, SGroup]

 Display the students that have program in every day of the week (all the days in which are programs).

$$A \coloneqq \delta\left(\pi_{Day}(Program)\right)$$

$$B \coloneqq Student \otimes_{Student.SGroup = Program.SGroup} Program$$

$$C \coloneqq \delta\left(\pi_{StudentName,Day}(B)\right)$$

o Is it ok if there are students with the same name? (StudentId, StudentName, Day)

References:

- C.J. Date, An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003.
- H. Garcia-Molina, J. Ullman, J. Widom, *Database Systems: The Complete Book, Prentice Hall Press*, 2008.
- G. Hansen, J. Hansen, Database Management And Design (2nd Edition), Prentice Hall, 1996.
- R. Ramakrishnan, J. Gehrke, Database Management Systems, McGraw-Hill, 2007. http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- R. Ramakrishnan, J. Gehrke, Database Management Systems (2nd Edition), McGraw-Hill, 2000.
- A. Silberschatz, H. Korth, S. Sudarshan, *Database System Concepts*, McGraw-Hill, 2010. http://codex.cs.yale.edu/avi/db-book/
- L. Țâmbulea, Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014.
- J. Ullman, J. Widom, A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html