

VE215 Final RC Part 2

Yu Jiayi 2024/12/13

Overview

AC Power Analysis

Instantaneous and Average Power

Maximum Average Power Transfer

Effective or RMS Value

Complex Power

Power Factor Correction

Instantaneous Power

Definition:

$$p(t) = v(t) \cdot i(t)$$

Both v(t) and i(t) here are instantaneous values, not rms values.

Instantaneous Power for sinusoids:

$$p(t) = V_m I_m cos(\omega t + \theta_v) cos(\omega t + \theta_i)$$

$$= \frac{1}{2} V_m I_m cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m cos(2\omega t + \theta_v + \theta_i)$$

Average Power

Definition:

$$P = \frac{1}{T} \int_0^T p(t) dt$$

For sinusoids:

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Expressed in Phasor:

$$P = \frac{1}{2} Re(\tilde{V}\tilde{I}^*) \qquad e^{\frac{1}{2}\theta} = \cos\theta + j\sin\theta$$

Average Power

When $\theta_v = \theta_i$, we have a purely resistive load R:

$$P = \frac{1}{2}V_mI_m = \frac{1}{2}I_m^2R = \frac{1}{2}\frac{V_m^2}{R}$$
 Only valid in this case

When $\theta_v - \theta_i = \pm 90^\circ$, we have a purely reactive load *X*:

$$P = \frac{1}{2}V_m I_m \cos(\pm 90^\circ) = 0$$

We can conclude that only R absorbs average power. X absorbs no average power.

General Case:

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{1}{2} Re(\tilde{V}\tilde{I}^*) = \frac{1}{2} Re((\tilde{I}Z)\tilde{I}^*)$$

$$= \frac{1}{2} Re(\tilde{I}(R + jX)\tilde{I}^*) = \boxed{\frac{1}{2} I_m^2 R}$$

Maximum Average Power Transfer

Figure 11.7 Finding the maximum average power transfer (a) circuit with a load, (b) the Thevenin equivalent.

If there is no restriction on Z_L ,

$$R_L = R_{Th} \quad X_L = -X_{Th} \quad P_{max} = \frac{|V_{Th}^2|}{8R_{Th}}$$

If Z_L is purely resistive,

$$X_{L} = \sqrt{R_{Th}^{2} + X_{Th}^{2}} \quad P_{max} = \frac{|V_{Th}^{2}|}{4(R_{Th} + \sqrt{R_{Th}^{2} + X_{Th}^{2}})}$$

Effective or RMS Value

Definition: The effective value of an ac current i is the dc current I_{eff} that delivers the same average power to a resistor as the ac current.

$$I_{eff}^2 R = \frac{R}{T} \int_0^T i^2 dt$$

Effective value = Root mean square (RMS) value:

$$I_{rms} = \sqrt{\frac{1}{T} \int_0^T i^2 dt} = I_{eff}$$

$$V_{rms} = \sqrt{\frac{1}{T}} \int_0^T v^2 dt = V_{eff}$$

Effective or RMS Value

Avg power absorbed by a circuit element (General Case):

$$P = I_{rms}^{2} R = V_{rms}^{2} \frac{R}{R^{2} + X^{2}}$$

$$P = \frac{1}{2} \text{Re}(\tilde{V}\tilde{I}^{*}) = \text{Re}(\tilde{V}_{rms}\tilde{I}_{rms}^{*}) = \frac{1}{2} I_{m}^{2} R = I_{rms}^{2} R = \frac{1}{2} V_{m}^{2} \text{Re}(\frac{1}{Z^{*}}) = V_{rms}^{2} \frac{R}{R^{2} + X^{2}}$$

For sinusoids:

$$I_{rms} = \frac{I_m}{\sqrt{2}} \quad V_{rms} = \frac{V_m}{\sqrt{2}}$$

Avg power absorbed by an element in a sinusoidal circuit:

$$P = V_{rms}I_{rms}\cos(\theta_v - \theta_i)$$

$$P = V_{rms}I_{rms}\cos(\theta_v - \theta_i)$$

$$P = V_{rms}I_{rms}\cos(\theta_v - \theta_i)$$

Effective or RMS Value

Caution: from now on, unless specified, all values will be assumed to be RMS values.

P= Vrm, Irm, Cos(Ov-Oi) [3] Pf

Complex Power

Complex Power =
$$\tilde{S} = \tilde{V}_{rms} \tilde{I}_{rms}^* = |I_{rms}| |V_{rms}| \angle (\theta_v - \theta_i)$$

= $|S| \angle (\theta_v - \theta_i)$ (polar form)
= $P + jQ$ (rectangular form)

Value	Name	Meaning	Unit
5	Apparent power	Magnitude of $ ilde{\mathcal{S}}$	VA
$\cos(\theta_{v}-\theta_{i})$	Power factor	Cosine of angle of \tilde{S}	/
P	Real power	Real part of $\tilde{\mathcal{S}}$	W
Q	Reactive power	Imaginary part of $ ilde{\mathcal{S}}$	VAR

Complex power:

$$\widetilde{S} = \widetilde{V}_{rms} \, \widetilde{I}_{rms}^* = |I_{rms}| |V_{rms}| \angle (\theta_v - \theta_i) = |S| \angle (\theta_v - \theta_i) = P + jQ$$

$$= |I_{rms}|^2 Z = \frac{|V_{rms}|^2}{Z^*}$$

Apparent power:

$$|S| = |V_{rms}||I_{rms}| = |I_{rms}|^2|Z| = \sqrt{P^2 + Q^2}$$

Real power:

$$P = Re(\tilde{S}) = |S|\cos(\theta_v - \theta_i) = |I_{rms}|^2 R$$

Reactive power:

$$Q = Im(\tilde{S}) = |S| \sin(\theta_v - \theta_i) = |I_{rms}|^2 X$$

Power factor (pf or $cos\theta$):

$$pf = \frac{P}{|S|} = \cos(\theta_v - \theta_i)$$

Power factor:

$$pf = cos(\theta_v - \theta_i)$$

 $\theta_v - \theta_i < 0$: leading pf

 $\theta_{v} - \theta_{i} > 0$: lagging pf

Since $\cos(\theta_v - \theta_i) = \cos(\theta_i - \theta_v)$, the pf value only tells part of the story. Every time you are asked for a power factor, you must declare whether it is leading or lagging.

We can use the sign of pf angle or Q to identify the property of the circuit and the loads:

	(1)	(2)	(3)
pf Angle	$\theta_{v} - \theta_{i} = 0$	$\theta_{v} - \theta_{i} < 0$	$\theta_{v} - \theta_{i} > 0$
Sign of Q	Q = 0	Q < 0	Q > 0
	Unity pf	Leading pf	Lagging pf
Properties	I, V in phase	I leads V	I lags V
	X = 0	X < 0	X > 0
	Resistive loads	Capacitive loads	Inductive loads

And observe that the power factor angle is equal to the angle of the impedance of that part of the circuit.

Power Factor Correction

Goal: increase the pf of a load \rightarrow make it less inductive \rightarrow reduce energy loss

Solution: add a capacitor in parallel to the load

Power Factor Correction

Goal: increase the pf from $\cos \theta_1$ to $\cos \theta_2$.

Initial:

$$P = |S_1| cos\theta_1$$

$$Q = |Q_1| sin \theta_1 = Ptan\theta_1$$

Expected outcome:

$$P = |S_2| cos\theta_2$$

$$Q = |Q_2| sin \theta_2 = Ptan\theta_2$$

Since $Q_c = Q_1 - Q_2 = \frac{V_{rms}^2}{X_c}$, then the value of the required capacitance C is:

$$C = \frac{Q_C}{\omega V_{rms}^2} = \frac{Q_2 - Q_1}{\omega V_{rms}^2} = \frac{P(tan\theta_1 - tan\theta_2)}{\omega V_{rms}^2}$$

Conservation of AC Power

The Principle of Conservation of AC Power:

The complex, real, and reactive powers of the source equal the respective sums of the complex, real, and reactive powers of the individual loads.

$$\frac{\partial_2 P_2}{|S_1|} = 0.8$$

$$\frac{\partial_2 P_2}{|S_2|} = 0.8$$

$$\frac{\partial_2 P_2}{|S_2|} = 0.8$$

$$\frac{\partial_2 P_2}{|S_2|} = 0.8$$

Three loads are connected in parallel across a 300 V(rms) line, as shown in the figure. Load 1 absorbs 3 kW at unity power factor; Load 2 absorbs 5 kVA at 0.8 leading; Load 3 absorbs 5 kW and delivers 6 kvars. a) Find the impedance that is equivalent to the three parallel loads. b) Find the power factor of the equivalent load as seen from the line's input terminals.

Irms - 40+ 230A

$$Z = \frac{V_{\text{rms}}}{J_{\text{rms}}} = 4.8 - j3.60 = 62 - 36.87^{\circ} \Omega$$

[b] pf = $\cos(-36.87^{\circ}) = 0.8$ leading

[a]
$$S_1 = 3 + j0 \,\text{kVA}$$
; $S_2 = 4 - j3 \,\text{kVA}$; $S_3 = 5 - j6 \,\text{kVA}$
 $S_T = S_1 + S_2 + S_3 = 12 - j9 \,\text{kVA}$
 $300 \mathbf{I}^* = (12 - j9) \times 10^3$; $\therefore \mathbf{I} = 40 + j30 \,\text{A}$
 $Z = \frac{300}{40 + j30} = 4.8 - j3.6 \,\Omega = 6 / - 36.87^{\circ} \,\Omega$

- Determine the load impedance for the circuit shown in the figure that will result in maximum average power being transferred to the load if $\omega = 8 \, krad/s$.
- Determine the maximum average power delivered to the load from part (a) if

$$v_g = 10 \cos 8000t \text{ V}.$$

[a]
$$Z_{\text{Th}} = j4000 + \frac{(4000)(-j4000)}{4000 - j4000} = 2000 + j2000 \Omega$$

$$Z_{\rm L} = Z_{\rm Th}^* = 2000 - j2000 \,\Omega$$

[b]
$$\mathbf{V}_{\text{Th}} = \frac{10/0^{\circ}(4000)}{4000 - j4000} = 5 + j5 = 5\sqrt{2/45^{\circ}} \,\text{V}$$

$$\mathbf{I} = \frac{5\sqrt{2/45^{\circ}}}{4000} = 1.25\sqrt{2/45^{\circ}} \,\mathrm{mA}$$

$$|\mathbf{I}_{\rm rms}| = 1.25 \,\mathrm{mA}$$

$$P_{\text{load}} = (0.00125)^2 (2000) = 3.125 \,\text{mW}$$

When connected to a 120-V (rms), 60-Hz power line, a load absorbs 4 kW at a lagging power factor of 0.8. Find the value of capacitance necessary to raise the pf to 0.95.

Solution:

If the pf = 0.8, then

$$\cos \theta_1 = 0.8 \quad \Rightarrow \quad \theta_1 = 36.87^{\circ}$$

where θ_1 is the phase difference between voltage and current. obtain the apparent power from the real power and the pf as

$$S_1 = \frac{P}{\cos \theta_1} = \frac{4000}{0.8} = 5000 \text{ VA}$$

The reactive power is

$$Q_1 = S_1 \sin \theta = 5000 \sin 36.87 = 3000 \text{ VAR}$$

When the pf is raised to 0.95,

$$\cos \theta_2 = 0.95 \quad \Rightarrow \quad \theta_2 = 18.19^{\circ}$$

The real power P has not changed. But the apparent power has changed; its new value is

$$S_2 = \frac{P}{\cos \theta_2} = \frac{4000}{0.95} = 4210.5 \text{ VA}$$

The new reactive power is

$$Q_2 = S_2 \sin \theta_2 = 1314.4 \text{ VAR}$$

The difference between the new and old reactive powers is due to the parallel addition of the capacitor to the load. The reactive power due to the capacitor is

$$Q_C = Q_1 - Q_2 = 3000 - 1314.4 = 1685.6 \text{ VAR}$$

and

$$C = \frac{Q_C}{\omega V_{\text{rms}}^2} = \frac{1685.6}{2\pi \times 60 \times 120^2} = 310.5 \,\mu\text{F}$$

References

- 1. 2023 Fall VE215 slides, Sung-Liang Chen
- 2. 2023 Fall RC5, Shunyao Huang
- 3. Fundamentals of Electric Circuits, 5th e, Sadiku, Matthew

Good luck for your exam!

