Workshop Series Summer 2023

CAMBAM

Centre for Applied Mathematics in Bioscience and Medicine

June 16th, 2023

Exploring Single Neuron Excitability with Mathematical and Computational Models

By Niklas Brake and Nils Koch

Workshop Schedule

9:00 – **12:00** Morning session

- Introduction to Neurobiological Context
- Experimental Quantification of Neuronal Excitability
- Computer Lab #1
- Theory of Neuronal Excitability

12:00 – 13:30 Lunch Break

13:30 – 17:00 Afternoon session

- Numerical Methods for Simulating Neurons
- Computer Lab #2
- The Process of Model Optimization
- Computer Lab #3

Neurons are the individual units of the nervous system

Santiago Ramón y Cajal Nobel Prize in Physiology (1906)

- Individual neurons communicate with each other through synapses.
- Synapses release neurotransmitters, such as *GABA* and *glutamate*.
- These neurotransmitters cause specific channels to open on the postsynaptic neuron.

- Action potentials are an all-or-none depolarization of a neuron
- Action potential firing causes neurotransmitter to be released onto a neuron's postsynaptic targets

The transformation of synaptic input into action potentials represents the fundamental computation of the nervous system

The fundamental computations of a neuron (simplified)

The fundamental computations of a neuron (less simplified)

