

Class 8: Static Embeddings

Theme: Text

Computational Analysis of Text, Audio, and Images, Fall 2023

Aarhus University

Mathias Rask (mathiasrask@ps.au.dk)

Aarhus University

Beyond BoW

1

Beyond BoW

Embeddings

Beyond BoW

Embeddings

Word2Vec

1

Beyond BoW

Embeddings

Word2Vec

Lab

Table of Contents

Beyond BoW

Embeddings

Word2Vec

Lab

Recap:

Recap:

1. What's the main reason we need to vectorize text when using machine learning?

Recap:

- 1. What's the main reason we need to vectorize text when using machine learning?
- 2. Explain the fundamentals of BoW vectorization. How does it work, what's the assumption?

Recap:

- 1. What's the main reason we need to vectorize text when using machine learning?
- 2. Explain the fundamentals of BoW vectorization. How does it work, what's the assumption?

Example:

	jeg	elsker	slik	chokolade	er	min	favorit
	0	1	2	3	4	5	6
$\overline{\mathcal{D}_1}$	1	1	1	0	0	0	0
\mathcal{D}_2	0	0	0	1	1	1	1

Recap:

- 1. What's the main reason we need to vectorize text when using machine learning?
- 2. Explain the fundamentals of BoW vectorization. How does it work, what's the assumption?

Example:

	jeg	elsker	slik	chokolade	er	min	favorit
	0	1	2	3	4	5	6
\mathcal{D}_1	1	1	1	0	0	0	0
\mathcal{D}_2	0	0	0	1	1	1	1

Two drawbacks:

Recap:

- 1. What's the main reason we need to vectorize text when using machine learning?
- 2. Explain the fundamentals of BoW vectorization. How does it work, what's the assumption?

Example:

	jeg	elsker	slik	chokolade	er	min	favorit
	0	1	2	3	4	5	6
$\overline{\mathcal{D}_1}$	1	1	1	0	0	0	0
\mathcal{D}_2	0	0	0	1	1	1	1

Two drawbacks:

→ Sparse and inefficient representation

Recap:

- 1. What's the main reason we need to vectorize text when using machine learning?
- 2. Explain the fundamentals of BoW vectorization. How does it work, what's the assumption?

Example:

	jeg	elsker	slik	chokolade	er	min	favorit
	0	1	2	3	4	5	6
$\overline{\mathcal{D}_1}$	1	1	1	0	0	0	0
\mathcal{D}_2	0	0	0	1	1	1	1

Two drawbacks:

- → Sparse and inefficient representation
- → Similar words have orthogonal representations

We want a representation of words that are short and dense which capture meaning and relations

We want a representation of words that are short and dense which capture meaning and relations

How can we obtain that?

We want a representation of words that are short and dense which capture meaning and relations

How can we obtain that?

 From vectorization of documents to vectorization of words: word embeddings

4

We want a representation of words that are short and dense which capture meaning and relations

How can we obtain that?

 From vectorization of documents to vectorization of words: word embeddings

Word embeddings are widely used in political science nowadays:

We want a representation of words that are short and dense which capture meaning and relations

How can we obtain that?

→ From vectorization of documents to vectorization of words: word embeddings

Word embeddings are widely used in political science nowadays:

1. Learning representations for 'downstream' tasks (e.g. classification)

и

We want a representation of words that are short and dense which capture meaning and relations

How can we obtain that?

→ From vectorization of documents to vectorization of words: word embeddings

Word embeddings are widely used in political science nowadays:

- 1. Learning representations for 'downstream' tasks (e.g. classification)
- 2. Learning word usage and meaning (semantics) directly

и

Table of Contents

Beyond BoW

Embeddings

Word2Vec

Lab

"Embeddings" are designed to represent words in a short and dense format while still maintaining meaning and relations:

"Embeddings" are designed to represent words in a short and dense format while still maintaining meaning and relations:

• General term that refers to representing discrete features (e.g. word, document, actors) as a real-valued vector with d-dimensions: $X \in \mathbb{R}^d$

6

"Embeddings" are designed to represent words in a short and dense format while still maintaining meaning and relations:

- General term that refers to representing discrete features (e.g. word, document, actors) as a real-valued vector with d-dimensions: $X \in \mathbb{R}^d$
- ullet From fixed-length vectors of length- $|\mathcal{V}|$ to fixed-length vectors of d-length

"Embeddings" are designed to represent words in a short and dense format while still maintaining meaning and relations:

- General term that refers to representing discrete features (e.g. word, document, actors) as a real-valued vector with d-dimensions: $X \in \mathbb{R}^d$
- ullet From fixed-length vectors of length- $|\mathcal{V}|$ to fixed-length vectors of d-length

Collection of movies

7

Collection of movies

Let's say we want to embed movies using d = 5 embeddings:

Collection of movies

Let's say we want to embed movies using d = 5 embeddings:

- 1. crime
- 2. comedy
- 3. drama
- 4. horror
- 5. romance

7

Collection of movies

Let's say we want to embed movies using d = 5 embeddings:

- 1. crime
- 2. comedy
- 3. drama
- 4. horror
- 5. romance
- ➤ The Godfather (1972): [0.80, 0.20, 0.90, 0.30, 0.20]

7

Collection of movies

Let's say we want to embed movies using d = 5 embeddings:

- 1. crime
- 2. comedy
- 3. drama
- 4. horror
- 5. romance
- ► The Godfather (1972): [0.80, 0.20, 0.90, 0.30, 0.20]
- Dumb and Dumber (1994): [0.20, 0.90, 0.30, 0.01, 0.40]

Collection of movies

Let's say we want to embed movies using d = 5 embeddings:

- 1. crime
- 2. comedy
- 3. drama
- 4. horror
- 5. romance
- ➤ The Godfather (1972): [0.80, 0.20, 0.90, 0.30, 0.20]
- Dumb and Dumber (1994): [0.20, 0.90, 0.30, 0.01, 0.40]
- ▶ Not a probability distribution!

Collection of people

Collection of people

Person characteristics

Collection of people

Person characteristics

- 1. Age
- 2. Height (cm)
- 3. Weight (kg)
- 4. Skin color
- 5. Hair-color

Collection of people

Person characteristics

- 1. Age
- 2. Height (cm)
- 3. Weight (kg)
- 4. Skin color
- 5. Hair-color
- ▷ Embedding: [28, 184, 79, 0.1, 2]

The core idea about embeddings is that we want to represent words such that semantically related words are closer to each other

→ The distributional hypothesis:

- → The distributional hypothesis:
 - Words that occur in similar contexts tend to have similar meaning

- → The distributional hypothesis:
 - Words that occur in similar contexts tend to have similar meaning
 - → "We know a word by the company it keeps" (Firth, 1957)

- → The distributional hypothesis:
 - Words that occur in similar contexts tend to have similar meaning
 - → "We know a word by the company it keeps" (Firth, 1957)
 - Formalizes the very intuitive idea that contexts give meaning to words

- → The distributional hypothesis:
 - Words that occur in similar contexts tend to have similar meaning
 - → "We know a word by the company it keeps" (Firth, 1957)
 - Formalizes the very intuitive idea that contexts give meaning to words
 - → Context ≠ co-occurrence

The semantic similarity conveyed by embeddings is a *powerful* and *flexible* tool:

• Semantic changes

- Semantic changes
- Semantic differences

- Semantic changes
- Semantic differences
- → The core idea is that the similarity between embeddings is informative about the semantic similarity of the concept we want to measure

- Semantic changes
- Semantic differences
- → The core idea is that the similarity between embeddings is informative about the semantic similarity of the concept we want to measure
- → How can we define similarity?

- · Semantic changes
- Semantic differences
- → The core idea is that the similarity between embeddings is informative about the semantic similarity of the concept we want to measure
- → How can we define similarity?
 - ▶ Cosine similarity!

Semantic Changes (Hamilton et al., 2016)

Figure 1: Two-dimensional visualization of semantic change in English using SGNS vectors.² a, The word gay shifted from meaning "cheerful" or "frolicsome" to referring to homosexuality. b, In the early 20th century broadcast referred to "casting out seeds"; with the rise of television and radio its meaning shifted to "transmitting signals". c, Awful underwent a process of pejoration, as it shifted from meaning "full of awe" to meaning "terrible or appalling" (Simpson et al., 1989).

"Equality" - "Social" Cosine Similarity (Rodman, 2020)

Partisan Differences in Word Choice (Rodriguez and Spirling, 2022)

Cultural Dimensions of Word Embeddings (Kozlowski et al., 2019)

Ideology and Word Embeddings (Rheault and Cochrane, 2020)

Ideology and Word Embeddings (Rheault and Cochrane, 2020)

Exercise

Discuss with your neighbors how word embeddings can be combined with dictionaries.

Unlike other text representations, word embeddings are capable of solving analogies:

Unlike other text representations, word embeddings are capable of solving analogies:

• Son is to father as daughter is to X

Unlike other text representations, word embeddings are capable of solving analogies:

- Son is to father as daughter is to X
- Copenhagen is to Denmark what London is to X

Unlike other text representations, word embeddings are capable of solving analogies:

- Son is to father as daughter is to X
- Copenhagen is to Denmark what London is to X
- Denmark is to Copenhagen what England is to X

Unlike other text representations, word embeddings are capable of solving analogies:

- Son is to father as daughter is to X
- Copenhagen is to Denmark what London is to X
- Denmark is to Copenhagen what England is to X

Textbook example:

Unlike other text representations, word embeddings are capable of solving analogies:

- Son is to father as daughter is to X
- Copenhagen is to Denmark what London is to X
- Denmark is to Copenhagen what England is to X

Textbook example:

$$king + woman - man = queen$$

Unlike other text representations, word embeddings are capable of solving analogies:

- Son is to father as daughter is to X
- Copenhagen is to Denmark what London is to X
- Denmark is to Copenhagen what England is to X

Textbook example:

$$king + woman - man = queen$$

What's the intuition behind this logic?

Unlike other text representations, word embeddings are capable of solving analogies:

- Son is to father as daughter is to X
- Copenhagen is to Denmark what London is to X
- Denmark is to Copenhagen what England is to X

Textbook example:

$$king + woman - man = queen$$

What's the intuition behind this logic?

• The operation (woman – man) captures a gender dimension

Unlike other text representations, word embeddings are capable of solving analogies:

- Son is to father as daughter is to X
- Copenhagen is to Denmark what London is to X
- Denmark is to Copenhagen what England is to X

Textbook example:

$$king + woman - man = queen$$

What's the intuition behind this logic?

- The operation (woman man) captures a gender dimension
- Starting at king means we are "walking" one step in the vector space along the gender dimension

Analogies

Unlike other text representations, word embeddings are capable of solving analogies:

- Son is to father as daughter is to X
- Copenhagen is to Denmark what London is to X
- Denmark is to Copenhagen what England is to X

Textbook example:

$$king + woman - man = queen$$

What's the intuition behind this logic?

- The operation (woman man) captures a gender dimension
- Starting at king means we are "walking" one step in the vector space along the gender dimension
- This means we can consider directions and not only distances

Discuss with your neighbor how we can construct neural networks that use the distributional hypothesis to generate embeddings:

1. What's the input?

- 1. What's the input?
- 2. What's the output?

- 1. What's the input?
- 2. What's the output?
- 3. How do we specify *d* when we implement the net? (recall that *d* is the dimension of the embeddings)

- 1. What's the input?
- 2. What's the output?
- 3. How do we specify *d* when we implement the net? (recall that *d* is the dimension of the embeddings)
- 4. How do we get annotated data? I.e. how can we train a network in a supervised manner?

Discuss with your neighbor how we can construct neural networks that use the distributional hypothesis to generate embeddings:

- 1. What's the input?
- 2. What's the output?
- 3. How do we specify *d* when we implement the net? (recall that *d* is the dimension of the embeddings)
- 4. How do we get annotated data? I.e. how can we train a network in a supervised manner?

See tutorial for a hands-on example using PyTorch

Table of Contents

Beyond BoW

Embeddings

Word2Vec

Lab

Word2Vec is one of the possible embedding algorithms that exist: learns *dense* representations that capture word *relations and meaning*

 Revolutionized NLP – 40,736 citations – when introduced 10 years ago (Mikolov et al., 2013)

- Revolutionized NLP 40,736 citations when introduced 10 years ago (Mikolov et al., 2013)
- Learned word vectors/embeddings are typically around 50-1000 with $d\in\mathbb{Z}$ with values $X\in\mathbb{R}^d$

- Revolutionized NLP 40,736 citations when introduced 10 years ago (Mikolov et al., 2013)
- Learned word vectors/embeddings are typically around 50 1000 with $d \in \mathbb{Z}$ with values $X \in \mathbb{R}^d$
- Individual values can not be interpreted → but related words should have vectors closer to each other in the *d*-dimensional space

- Revolutionized NLP 40,736 citations when introduced 10 years ago (Mikolov et al., 2013)
- Learned word vectors/embeddings are typically around 50 1000 with $d \in \mathbb{Z}$ with values $X \in \mathbb{R}^d$
- Individual values can not be interpreted → but related words should have vectors closer to each other in the *d*-dimensional space

CBOW

CBOW

• Objective:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log(p(w_t \mid w_{t+j}))$$

CBOW

Skip-gram

• Objective:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log(p(w_t \mid w_{t+j}))$$

CBOW

· Objective:

$$rac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j
eq 0} \log(p(w_t \,|\, w_{t+j}))$$

Skip-gram

· Objective:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log(p(w_t \mid w_{t+j})) \qquad \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log(p(w_{t+j} \mid w_t))$$

CBOW

• Objective:

• Objective:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log(p(w_t \mid w_{t+j})) \qquad \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log(p(w_{t+j} \mid w_t))$$

- T total number of words
- w_t target word
- c window size
- j is an index within the context window, ranging from -c to c, excluding j=0

CBOW

Objective:

Skip-gram

• Objective:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log(p(w_t \mid w_{t+j})) \qquad \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log(p(w_{t+j} \mid w_t))$$

- T total number of words
- w_t target word
- c window size
- j is an index within the context window, ranging from -c to c, excluding j=0
- p(a|b) is the conditional probability of observing a given b

CBOW

• Objective:

Objective:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, \ j \ne 0} \log(p(w_t \mid w_{t+j})) \qquad \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, \ j \ne 0} \log(p(w_{t+j} \mid w_t))$$

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log(p(w_{t+j} \mid w_t))$$

- T total number of words
- w_t target word
- c window size
- i is an index within the context window, ranging from -c to c, excluding i = 0
- $p(a \mid b)$ is the conditional probability of observing a given b
 - $p(w_t \mid w_{t+i})$: conditional probability of target word given context words

CBOW

Objective:

Objective:

$$\frac{1}{T} \sum_{t=1}^{I} \sum_{-c < j < c, j \neq 0} \log(p(w_t \mid w_{t+j})) \qquad \frac{1}{T} \sum_{t=1}^{I} \sum_{-c < j < c, j \neq 0} \log(p(w_{t+j} \mid w_t))$$

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log(p(w_{t+j} \mid w_t))$$

- T total number of words
- w_t target word
- c window size
- i is an index within the context window, ranging from -c to c, excluding i = 0
- p(a|b) is the conditional probability of observing a given b
 - $p(w_t \mid w_{t+i})$: conditional probability of target word given context words
 - $p(w_{t+i} | w_t)$: conditional probability context words given target word

CBOW

CBOW

Skip-Gram

Skip-Gram

Sentence: "I A mener vi altså ikke at skattelettelser og velfærd er

modsætninger"

Window size: 2

Sentence: "I A mener vi altså ikke at skattelettelser og velfærd er modsætninger"

Window size: 2

t-1 target

altså ikke skattelettelser og velfærd er modsætninger.

Sentence: "I A mener vi altså ikke at skattelettelser og velfærd er modsætninger"

Window size: 2 altså ikke skattelettelser og velfærd er modsætninger. mener vi t-1 target t+1, t+2I A mener vi altså og velfærd ikke at er modsætninger. t-2, t-1target

t+1, t+2

Sentence: "I A mener vi altså ikke at skattelettelser og velfærd er modsætninger"

Sentence: "I A mener vi altså ikke at skattelettelser og velfærd er modsætninger"

Negative Sampling

Negative Sampling

Positive Samples

Positive Samples

- (ikke, skattelettelser)
- (at, skattelettelser)
- (og, skattelettelser)
- (velfærd, skattelettelser)

Positive Samples

- (ikke, skattelettelser)
- (at, skattelettelser)
- (og, skattelettelser)
- (velfærd, skattelettelser)

Negative Samples

(???, skattelettelser)

Positive Samples

- (ikke, skattelettelser)
- (at, skattelettelser)
- (og, skattelettelser)
- (velfærd, skattelettelser)

Negative Samples

- (???, skattelettelser)
- (kørekort, skattelettelser)
- (fodbold, skattelettelser)
- (zoo, skattelettelser)

Positive Samples

- (ikke, skattelettelser)
- (at, skattelettelser)
- (og, skattelettelser)
- (velfærd, skattelettelser)

Negative Samples

- (???, skattelettelser)
- (kørekort, skattelettelser)
- (fodbold, skattelettelser)
- (zoo, skattelettelser)

The positive and negative samples constitute the training set – no labeling required! --> self-supervision

Working with embeddings in practice involves choosing between four "hyperparameters" (Rodriguez and Spirling, 2022):

1. Window size (depends on the length of input text)

- 1. Window size (depends on the length of input text)
- 2. Dimensionality size (d)

- 1. Window size (depends on the length of input text)
- 2. Dimensionality size (d)
- 3. Locally vs. pretrained (fixed or fine-tuned) embeddings

- 1. Window size (depends on the length of input text)
- 2. Dimensionality size (d)
- 3. Locally vs. pretrained (fixed or fine-tuned) embeddings
- 4. Preprocessing (huge debate!)

- 1. Window size (depends on the length of input text)
- 2. Dimensionality size (d)
- 3. Locally vs. pretrained (fixed or fine-tuned) embeddings
- 4. Preprocessing (huge debate!)

Table of Contents

Beyond BoW

Embeddings

Word2Ved

Lab

See you next week!

Theme: Text

Computational Analysis of Text, Audio, and Images, Fall 2023 Aarhus University

References i

- [1] W. L. Hamilton, J. Leskovec, and D. Jurafsky, "Diachronic word embeddings reveal statistical laws of semantic change," *arXiv* preprint arXiv:1605.09096, 2016.
- [2] E. Rodman, "A timely intervention: Tracking the changing meanings of political concepts with word vectors," *Political Analysis*, vol. 28, no. 1, pp. 87–111, 2020.
- [3] P. L. Rodriguez and A. Spirling, "Word embeddings: What works, what doesn't, and how to tell the difference for applied research," *The Journal of Politics*, vol. 84, no. 1, pp. 101–115, 2022.
- [4] A. C. Kozlowski, M. Taddy, and J. A. Evans, "The geometry of culture: Analyzing the meanings of class through word embeddings," *American Sociological Review*, vol. 84, no. 5, pp. 905–949, 2019.

References ii

- [5] L. Rheault and C. Cochrane, "Word embeddings for the analysis of ideological placement in parliamentary corpora," *Political Analysis*, vol. 28, no. 1, pp. 112–133, 2020.
- [6] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality," *Advances in neural information processing systems*, vol. 26, 2013.