ToF LIDAR Module

DEVICE SPECIFICATION

洲岛

본 모듈은 기구 등에 고정되어 ToF 센서를 이용 점에 대한 거리를 측정하며, Pitch와 Yaw를 제어하는 두 개의 모터를 바탕으로 바라보는 방향에 대해 시야각을 지정 깊이와 위치 정보를 송신한다.

이 때 데이터의 송신은 TCP/IP 통신을 바탕으로 이루어지며, 사용자 응용 프로그램에서는 이렇게 연결된 TCP 소켓을 바탕으로 수신한 위치와 깊이 정보를 재구성해 버퍼 등에 깊이 맵을 만들 수 있다.

Figure 1. System layout

Hardware Specification

표 1. 핵심 부품

부품명	모델명	수량	기능	비고
MCU	STM32F401VC	1	컨트롤러	
ToF 깊이 센서	AFBR-S50MV85G	1	깊이 인식	
스탭 모터	미정	2	각각 Pitch, Yaw 좌표 지정	
근접 센서	미정	2	각각 Pitch, Yaw 모터 초기화	
TCP/IP 이더넷 인터	Wiznet W5500	1	유선 랜 통신	
페이스	Ethernet Module			

표 2. 부수 부품

카테고리	부품명	모델명	수량	기능	비고
깊이 센서 바이어스	-	-	1	컨트롤러	
스탭 모터 바이어스	_	_			

Port assignments

@todo.

System Layout

깊이 센서의 구동에는 제조사인 Broadcom 사(社)가 제공하는 API를 이용하며, MCU와는 SPI 인터페이스를 통해 연결한다.

이더넷 모듈의 구동에는 Wiznet 사가 제공하는 API가 사용되며, 역시 SPI로 연결된다.

프로그램은 몇 개의 모듈로 이루어져 있으며, 이에 대한 설명은 위의 그림과 같다.

Figure 2. System Layout (2)

동작 - 통신 인터페이스

본 모듈은 고정적으로 포트 15999 번을 사용하며, 항상 로컬 호스트에 클라이언트로서 연결을 시도한다.

Startup(리셋 등) 시점에 외부 스위치의 값을 읽어, UDP 를 사용할지 TCP/IP 를 사용할지 결정할 수 있다. (예정)

기본적으로 TCP Stream connection 을 가정하므로, 아래와 같은 별도의 데이터 프로토콜을 사용하게 된다. (바이트 단위)

모든 통신의 첫 4바이트는 식별자로서 반드시 0x1E3F5CD9가 되어야 하며, 만약 패킷의 첫 4바이트가이 값이 아닌 경우 마이크로칩은 abort 를, PC 는 Disconnection 을 발생시킨다.

	헤더					데이터	
0		3	4		5	6	
0x1E3F5CD9			OpCode			Data	

16비트 OpCode는 아래와 같이 구성된다. 각각의 OpCode마다 Data 영역이 서로 다른 구조체로 해석되며, 이는 차후 C++로 작성된 Host Interface Library에서 추상화한다.

모듈 기준 방향	Op Code	Name	Data align [in bytes] 데이터 영역의 바이트 정렬	Description
In/Out	0x0000	Test	[01] Data Length [2] Data	Test packet
In	0x0001	Set Resolution	[01] Vertical Resolution [23] Horizontal -	Set resolution. Unit is Capture-per- degree. Core factor of capturing speed.
In	0x0002	Set FOV: Vertical	[01] FOV in integer	Set vertical FOV
In	0x0003	Set FOV: Horizontal	[01] FOV in integer	Set horizontal FOV
In	0x0004	Stop	_	Reset head location to init point. Stop capturing
In	0x0005	Start	-	Start capture
In	0x0006	Pause	-	Pause capture
In	0x0007	Report		Request report
Out	0x0001	Status	[01] Head Pitch Coord [23] Head Yaw Coord [4x] Reserved	Output report
Out	0x0002	Log	[01] Error code [23] String Length [45] String	Send log
Out	0x0003	Row Data	[01] Row Index [23] Column Count [44*n] Floats	Module stores single row data into internal data buffer, and transmits data when capturing for each row is done.
Out	0x0004	Frame done	-	Every single frame capture.

소켓에 대한 입출력은 바이너리를 낮은 주소부터 그대로 byte stream 에 r/w 하므로, little endian 을 사용한다.

일단 모듈을 Start 명령을 통해 가동하면 시작 위치에서 수평으로 LIDAR 를 수행하게 되며, 한 행을 완성할 때마다 수직으로 지정된 해상도에 따라 일정 각도만큼 내려가며 캡쳐를 진행한다. 이 때, 열과 행은 끝에 다다를 때마다 방향을 바꿔 지그재그로 화면을 스캔, Idling 타임을 최소화한다.

이 때, 역방향으로 Row 스캔을 할 때에도 내부 버퍼는 정방향으로 정렬하여, 수신자가 보기에는 항상 정렬된 것처럼 보이게끔 하는 것이 중요하다.

	Circuit
@todo.	
	Artwork
@todo.	

Milestone

아래는 모듈의 개발 마일스톤이다.

Sequence	Category	Name	Description	
1	ARM 프로세서	개발 환경 구성	STM32F4xx 칩을 컴파일하고 프로그램하기 위한 개발 환경을 구성한다.	
		기능 파악	STM32F4xx 가 지원하는 기능을 대강 파악한다.	
		인터럽트 연구	STM32F4xx 에서 인터럽트 핸들러를 작성하는 방법을 파악한다.	
		타이머 작성법	STM32F4xx 에서 타이머를 사용하는 방법을 파악한다.	
2		SPI - 기본	SPI 의 기본적인 사용법과 개념을 파악한다.	
_		SPI - 심화	다수의 Slave 를 컨트롤하는 방법을 파악한다.	
	네트워크	장비 구성	W5500 모듈과 STM32F401VCD 키트를 연결한다.	
		라이브러리 임포트	W5500 라이브러리의 기능을 파악하고, SPI 통신을 구성한다.	
	SPI	멀티-슬레이브 큐	프로그램 내 다수의 모듈이 SPI 통신의 마스터로 동 작하게끔 소프트웨어 버스를 작성한다. Example: struct SPITransmitQueue { uint16_t head; uint16_t tail; char buff[BUFFER_MAX]; } SPITransmitQueue; enum SPISLAVE { SPISLAVE_SENS, SDISLAVE_STU	
			<pre>SPISLAVE_ETH, SPISLAVE_MAX }; SPITransmitQueue QUEUE[SPISLAVE_MAX];</pre>	
	네트워크	에코 프로그램	PC에서 간단한 로컬호스트 서버 프로그램을 작성, W5500이 연결된 STM32F401VCD 키트에서 받은 데 이터를 표시한다.	
		프로토콜 디코더 작성	예의 프로토콜을 바탕으로, PC와 모듈에서 프로토콜 파서를 작성한다.	
		Logging 구성	용이한 개발을 위해, STM32의 _write함수를 네트워 크로 redirect, 표준 출력을 PC에서 받게끔 한다.	

3	깊이 센서	연결	SPI로 MCU와 연결. 프로그램 내부적으로는, W5500과 더불어 두 개의 슬레이브를 사용해야 하므로, 내부 SPI 버스에서 센서 API를 감싸는 래퍼를 작성한다.
		테스트	지속적으로 센서에서 값을 읽어 이를 로그로 보고하는 테스트 프로그램을 작성한다. 이후 이 값을 평가 보드와 대조, 거리를 Meter 단위로 변환하는 로직을 작성한다.
	모터	스태핑 모터 연결	스태핑 모터를 연결하여, 간단한 구동 테스트를 한다. 특히, 고정밀을 요하므로 타이머와 마이크로스태핑을 도 입, 일정 주기마다 일정 거리만큼 이동해 한 번씩 깊이를 캡쳐할 수 있게끔 인터페이스를 구성한다.
		센서 연결	스태핑 모터의 초기화가 가능하게끔, Pitch와 Yaw를 담당하는 두 개의 모터에 각각 근접 센서를 하나씩 연결하고, 초기화 시 정상적으로 모터가 영점에 도달하는지 확인한다. 이 때, 모터의 영점은 좌상단, (0, 0)으로 한다.
		센서 결합	센서와 두 개의 모터를 각각 결합한다.(하드웨어) 모터가 정지하는 시점과 센서가 계측하는 시점이 조밀 하게 접하도록 Calibration을 수행한다.
4	시스템	코어	네트워크를 통해 전송받은 명령어를 바탕으로, 모터와 센서를 조작하는 코어 클래스를 작성한다.
		펌웨어 완성	위의 프로토콜과 명령어 세트를 모두 구현한다.
		호스트 라이브러리	호스트에서 사용할 수 있는 라이브러리를 작성한다. CMake를 이용하여 프로젝트를 구성, 크로스 플랫폼에 대비하고, 일단 Win32용 바이너리만을 빌드한다.
		호스트 어플리케이션	C++ MFC를 이용, 모듈로부터 깊이 데이터를 전달받아 화면에 그리는 간단한 어플리케이션을 작성한다.
5	하드웨어	회로도 작성	위의 개발 정보를 바탕으로 회로도를 작성한다. OrCAD 이용.
		Artwork 작성	위의 회로도를 바탕으로 아트웍을 작성한다. Allegro 이 용.
		디버깅	PCB 기판에 부품을 실장하고, 모터 등의 하드웨어를 연결한다. 이후 개발 키트와 동일하게 작동하는지 검증한 다.

기본적으로 Sequence 는 1+ Week 이다.