Exploring Weather Trends

By: Md Rahamat Ullah

Extracting datasets from the database

Following **SQL query** were used to get the data. Datasets were downloaded manually by pressing download command.

```
SELECT * FROM city_data;
```

SELECT * FROM global data;

SELECT * FROM city_list;

Data analysis process was done with Python.

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plot
import seaborn as sb
%matplotlib inline
```

```
In [2]: #Data Importing from Local drive
    df_city_data = pd.read_csv("city_data.csv")
    df_global_data = pd.read_csv("global_data.csv")
    df_city_list = pd.read_csv("city_list.csv")
```

```
In [3]: #Assessing Data visually for Messy data, Dirty Data
    df_city_data.head(2)
```

Out[3]:

	year	city	country	avg_temp
0	1849	Abidjan	Côte D'Ivoire	25.58
1	1850	Abidjan	Côte D'Ivoire	25.52

```
In [4]:
        df global data.head(2)
Out[4]:
            year avg_temp
           1750
                      8.72
         1 1751
                      7.98
In [5]:
        df_city_list.head(2)
Out[5]:
                 city
                               country
         0
              Abidjan
                            Côte D'Ivoire
         1 Abu Dhabi United Arab Emirates
In [6]:
        #Deteccting issue Programmatically
         df_city_data.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 71311 entries, 0 to 71310
        Data columns (total 4 columns):
        year
                     71311 non-null int64
         city
                     71311 non-null object
                     71311 non-null object
         country
         avg_temp
                     68764 non-null float64
         dtypes: float64(1), int64(1), object(2)
        memory usage: 2.2+ MB
In [7]: | df_global_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 266 entries, 0 to 265
        Data columns (total 2 columns):
        year
                     266 non-null int64
         avg_temp
                     266 non-null float64
         dtypes: float64(1), int64(1)
        memory usage: 4.2 KB
In [8]:
        df_city_list.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 345 entries, 0 to 344
        Data columns (total 2 columns):
                    345 non-null object
        city
         country
                    345 non-null object
        dtypes: object(2)
        memory usage: 5.5+ KB
```

Data Cleaning:

Issues:

· Missing 'avg temp' Data in 'df city data'

```
In [9]: | df_city_data_null = df_city_data[df_city_data['avg_temp'].isnull()] #Create a
          dataframe 'df city data null' with null 'avg temp'
         df city data clean = df city data.dropna(subset=['avg temp'])
                                                                               #Create a
          datafame 'df city data clean' with no null 'avg temp'
In [10]: df city data clean[df city data clean['avg temp'].isnull()]
                                                                               #Testing
           'df city data clean' contains no null value
Out[10]:
            year city country avg_temp
In [11]: #Calculating mean of 'avg_temp' corresponding to 'city'
         nan_data = df_city_data.groupby('city').avg_temp.mean()
         #Testing
         nan data.sample(2)
Out[11]: city
         Alexandria
                       15.704376
         Tijuana
                       16.126364
         Name: avg temp, dtype: float64
In [12]: #Making an empty list 'a' and append value of city data (mean temp) according
          to the index position of the city in 'df city data null'
         a = []
         for idx, city name in enumerate(df city data null.city):
            a.append(nan data[city name])
In [13]:
         avg temp = pd.DataFrame(a)
         df city data null = df city data null .drop('avg temp', axis =1)
         df city data null['avg temp'] = a
         df city data null.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 2547 entries, 3 to 71145
         Data columns (total 4 columns):
                     2547 non-null int64
         year
                     2547 non-null object
         city
         city 2547 non-null object country 2547 non-null object
         avg_temp
                     2547 non-null float64
         dtypes: float64(1), int64(1), object(2)
         memory usage: 99.5+ KB
```

df city data no longer contains missing values.

Moving averages

Moving averages calculation for average temperature: This moving average was calculated by using **rolling()** function that was adding average temperatures over a 8 years period and **mean()** function was dividing the sum by the total number of periods.

```
In [16]: My_city['moving avg_temp_new_york'] = My_city.avg_temp.rolling(8).mean()
My_city = My_city.drop('avg_temp', axis = 1)
My_city.head()
```

Out[16]:

	year	moving avg_temp_new_york	
46344	1746	NaN	
46345	1747	NaN	
46346	1748	NaN	
46347	1749	NaN	
46378	1780	NaN	

```
In [17]: df_global_data['moving avg_temp_global'] = df_global_data.avg_temp.rolling(8).
    mean()
    df_global_data = df_global_data.drop('avg_temp', axis = 1)
    df_global_data.head(12)
```

Out[17]:

year	moving avg_temp_global
1750	NaN
1751	NaN
1752	NaN
1753	NaN
1754	NaN
1755	NaN
1756	NaN
1757	8.19625
1758	7.94875
1759	7.95000
1760	8.12625
1761	8.17375
	1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

In [18]: #Merging all in a dataframe for easy visual and easy plotting.
Line_chart = pd.merge(My_city,df_global_data, on = ['year'], how = 'left')
Line_chart['moving avg_temp_diff'] = Line_chart['moving avg_temp_new_york'] Line_chart['moving avg_temp_global']
Line_chart.head(20)

Out[18]:

	year	moving avg_temp_new_york	moving avg_temp_global	moving avg_temp_diff
0	1746	NaN	NaN	NaN
1	1747	NaN	NaN	NaN
2	1748	NaN	NaN	NaN
3	1749	NaN	NaN	NaN
4	1780	NaN	8.71000	NaN
5	1743	NaN	NaN	NaN
6	1744	NaN	NaN	NaN
7	1745	7.906391	NaN	NaN
8	1750	7.985113	NaN	NaN
9	1751	8.153835	NaN	NaN
10	1752	7.325056	NaN	NaN
11	1753	7.335028	NaN	NaN
12	1754	7.390000	NaN	NaN
13	1755	7.808750	NaN	NaN
14	1756	7.593750	NaN	NaN
15	1757	8.563750	8.19625	0.36750
16	1758	8.323750	7.94875	0.37500
17	1759	8.101250	7.95000	0.15125
18	1760	8.716250	8.12625	0.59000
19	1761	8.798750	8.17375	0.62500

Observation_1:

Is your city hotter or cooler on average compared to the global average? Yes, in fig 1, From the line chart, New york city was hotter compared to global trend except around 1750 and 1775-1790.

```
In [20]: Line_chart.plot.line(x = 'year', y =['moving avg_temp_diff'] , title="Fig 2: m
    oving avg_temp_diff",linewidth=1.0);
    plot.ylabel('Temp Difference between New York & Global')
    plot.show(block=True);
```


Observation_2:

Has the difference been consistent over time? From fig 2 we can se that, different was always positive most of the time. Difference was fairly consistant between positive 1.0 and 1.5 most of the time except some outlier.

Observation 3:

How do the changes in your city's temperatures over time compare to the changes in the global average? Answer: in fig 1, From the line chart, we can see that both new york city and global average are showing upward trends in temperature.

Observation_4:

What does the overall trend look like? Answer: From the overall trend, it looks like both New York & Global temperature is in upward direction. Its is consistently increasing and thus pose a risk to global warming.

Observation_5:

Is the world getting hotter or cooler? Answer: The world is getting hotter consistently. From the moving average line plot we can see several peaks, but the most alarming observation is in resent years the peak is the highest and there were no downward curve in the last 50 years in global temperature.

Observation_6:

Has the trend been consistent over the last few hundred years? Answer: Temperature was reducing after 1810 but after that Global temperature is rising steadily after 1850. Same applies for New York temperature.