CSE 250A. Principles of Al

Probabilistic Reasoning and Decision-Making

Lecture 9 – Linear regression and least-squares

Lawrence Saul Department of Computer Science and Engineering University of California, San Diego

Fall 2021

Outline

- Review
- 2 Linear regression
- **3** Numerical optimization
 - Gradient ascent
 - Newton's method

Learning in BNs with discrete nodes

ML estimation for complete data:

$$P_{\mathrm{ML}}(X_i = x | \mathrm{pa}_i = \pi) = \frac{\mathrm{count}(X_i = x, \mathrm{pa}_i = \pi)}{\sum_{x'} \mathrm{count}(X_i = x', \mathrm{pa}_i = \pi)}$$

For nodes with parents:

$$P_{\mathrm{ML}}(X_i = x | \mathrm{pa}_i = \pi) = \frac{\mathrm{count}(X_i = x, \mathrm{pa}_i = \pi)}{\mathrm{count}(\mathrm{pa}_i = \pi)}$$

For root nodes:

$$P_{\mathrm{ML}}(X_i = x|) = \frac{\mathrm{count}(X_i = x)}{T}$$

Markov models for statistical language processing

• *n*-gram models of word sequences:

$$P(w_1, w_2, \dots, w_L) = \prod_{\ell} P(w_{\ell} | \underbrace{w_{\ell-(n-1}, \dots, w_{\ell-1})}_{\text{previous words}})$$

As belief networks:

$$n = 1$$
 unigram w_1 w_2 w_3 \cdots w_{L-1} w_L

$$n = 2 \quad \text{bigram} \qquad w_1 \longrightarrow w_2 \longrightarrow w_3 \cdots \qquad w_{L-1} \longrightarrow w_L$$

$$n = 3 \quad \text{trigram} \qquad w_1 \longrightarrow w_2 \longrightarrow w_3 \cdots \qquad w_{L-1} \longrightarrow w_L$$

Naive Bayes model for document classification

Random variables

Belief network

Naive Bayes assumption

$$P(X_1,\ldots,X_n|Y) = \prod_{i=1}^n P(X_i|Y)$$

Outline

- Review
- 2 Linear regression
- Numerical optimization

Learning with parametric models

If the parent nodes are real-valued, then it is no longer possible to enumerate a conditional probability table.

How to predict Y from real-valued parents $\vec{X} \in \mathbb{R}^d$?

Gaussian conditional distribution

Suppose $Y \in \mathbb{R}$ is a real-valued random variable.

Then we can use a **Gaussian conditional distribution**:

$$P(y|\vec{x}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y - \vec{w} \cdot \vec{x})^2}{2\sigma^2}\right\}$$

How to learn the variance σ^2 and weights $\vec{w} = (w_1, w_2, \dots, w_d)$? This is the problem of **linear regression**.

Learning from complete data

Training examples

$$\{(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_T, y_T)\}$$

T complete pairs of inputs and outputs

Conditional likelihood for IID data

$$P(y_1, y_2, ..., y_T | \vec{x}_1, ..., \vec{x}_T) = \prod_{t=1}^{I} P(y_t | \vec{x}_t)$$

Note: if the parents are always observed, we needn't model $P(\vec{x})$.

Computing the log conditional likelihood

$$\mathcal{L}(\vec{w}, \sigma^2) = \log P(y_1, y_2, \dots, y_T | \vec{x}_1, \dots, \vec{x}_T)$$

$$= \log \prod_{t=1}^T P(y_t | \vec{x}_t) \qquad \boxed{IID}$$

$$= \sum_{t=1}^T \log P(y_t | \vec{x}_t)$$

$$= \sum_{t=1}^T \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{(y_t - \vec{w} \cdot \vec{x}_t)^2}{2\sigma^2} \right\} \right]$$

$$= -\frac{1}{2} \sum_{t=1}^T \left[\log(2\pi\sigma^2) + \frac{(y_t - \vec{w} \cdot \vec{x}_t)^2}{\sigma^2} \right]$$

Interpreting the log conditional likelihood

$$\mathcal{L}(\vec{w}, \sigma^2) = -\frac{1}{2} \sum_{t=1}^{T} \left[\log(2\pi\sigma^2) + \frac{(y_t - \vec{w} \cdot \vec{x_t})^2}{\sigma^2} \right]$$

Consider the weights \vec{w} that maximize $\mathcal{L}(\vec{w}, \sigma^2)$.

The same weights also minimize the mean squared error:

$$\mathcal{E}(\vec{\mathbf{w}}) = \frac{1}{T} \sum_{t} (y_t - \vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_t)^2$$

Maximum likelihood linear regression is simply the least-squares problem for a linear fit.

Maximizing the log conditional likelihood

$$\mathcal{L}(\vec{\mathbf{w}}, \sigma^2) = -\frac{1}{2} \sum_{t=1}^{T} \left[\log(2\pi\sigma^2) + \frac{(y_t - \vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_t)^2}{\sigma^2} \right]$$

• Computing the partial derivatives:

$$\frac{\partial \mathcal{L}}{\partial w_{\alpha}} = \sum_{t} -\frac{1}{2\sigma^{2}} \cdot 2 \cdot (y - \vec{w} \cdot \vec{x}_{t}) (-x_{\alpha t}) \quad \boxed{\text{chain rule}}$$
$$= \frac{1}{\sigma^{2}} \sum_{t} (y - \vec{w} \cdot \vec{x}_{t}) x_{\alpha t}$$

Solving for where they vanish:

$$\sum_{t} y_{t} x_{\alpha t} = \sum_{t} (\vec{w} \cdot \vec{x_{t}}) x_{\alpha t} \quad \begin{cases} d \text{ equations } (\alpha = 1, 2, \dots d) \\ d \text{ unknowns } (w_{1}, w_{2}, \dots, w_{d}) \end{cases}$$

Maximizing the log conditional likelihood (con't)

System of linear equations:

$$\sum_{t=1}^{T} y_{t} x_{\alpha t} = \sum_{t=1}^{T} (\vec{w} \cdot \vec{x}_{t}) x_{\alpha t}$$

$$= \sum_{t=1}^{T} \left(\sum_{\beta=1}^{d} w_{\beta} x_{\beta t} \right) x_{\alpha t} \quad \text{dot product}$$

$$= \sum_{\beta=1}^{d} \left(\sum_{t=1}^{T} x_{\alpha t} x_{\beta t} \right) w_{\beta} \quad \text{reorder sums}$$

• Matrix-vector notation:

$$A_{\alpha\beta} = \sum_{t} x_{\alpha t} x_{\beta t}$$
 $d \times d \text{ matrix}$ $A = \sum_{t} \vec{x}_{t} \vec{x}_{t}^{\top}$
 $b_{\alpha} = \sum_{t} y_{t} x_{\alpha t}$ $d \times 1 \text{ vector}$ $\vec{b} = \sum_{t} y_{t} \vec{x}_{t}$

Maximizing the log conditional likelihood (con't)

Solving the system of linear equations:

Note that \mathbf{A} and \vec{b} can be computed in one pass through the training data.

• Ill-conditioned problems:

This solution assumes that the matrix \mathbf{A} is invertible. This is true as long as the inputs $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_T\}$ span \mathbb{R}^d .

Failure modes:

The input dimensionality d exceeds the number of examples T. The inputs lie in (or very near) a proper subspace of \mathbb{R}^d .

More on ill-conditioned problems

Log conditional likelihood

When the system of linear equations is ill-conditioned, there remains a (unique) **minimum norm** solution:

Minimize
$$\|\vec{w}\|$$
 such that $\frac{\partial \mathcal{L}}{\partial \vec{w}} = \mathbf{0}$.

Application

Time series prediction

Let $\{x_1, x_2, \dots, x_T\}$ be a time series with $x_t \in \mathbb{R}$. How well can we predict the future from the past?

Linear predictive model

Discrete vs continuous

discrete	HW 4.3	<i>n</i> -gram models of word sequences
continuous	HW 4.4	linear prediction of stock prices

Test your understanding

Q: If x_t is a linear combination of (say) x_{t-1} and x_{t-2} , is x_t a linear function of the time t?

A: No! As a counterexample, consider $x_t = \sin(\omega t)$.

A little trigonometry shows that this can be **perfectly** predicted by a linear model:

$$x_t = (2\cos\omega)x_{t-1} - x_{t-2}$$

Outline

- Review
- 2 Linear regression
- **3** Numerical optimization

Optimization

How to maximize (or minimize) a multivariable function $f(\vec{\theta})$ over $\vec{\theta} = (\theta_1, \theta_2, \dots, \theta_d) \in \mathbb{R}^d$?

Analytically

Compute the gradient and solve for where it vanishes:

$$\nabla f = \left(\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial \theta_2}, \dots, \frac{\partial f}{\partial \theta_d}\right) = (0, 0, \dots, 0)$$

This is easy for quadratic functions but hard in general.

Numerically (or algorithmically)

Hillclimbing methods

Hillclimbing methods are based on iterative local search for a local or global maximum of $f(\vec{\theta})$.

Given some estimate $\vec{\theta}_n$ at the $n^{\rm th}$ iteration, can you derive an improved estimate $\vec{\theta}_{n+1}$ with $f(\vec{\theta}_{n+1}) > f(\vec{\theta}_n)$?

Hillclimbing methods

What we'll cover today:

- Gradient ascent (or descent)
- Newton's method

What we'll cover later:

Auxiliary function methods

These updates are specialized for monotonic convergence.

They exploit inequalities (such as $KL(q, p) \ge 0$).

Gradient ascent (or descent)

Local search direction

Recall that the gradient $\nabla f = \partial f/\partial \vec{\theta}$ points in the direction of fastest increase in $f(\vec{\theta})$.

Iterative update

$$\vec{\theta} \leftarrow \vec{\theta} \pm \frac{\eta_t}{\eta_t} \left(\frac{\partial f}{\partial \vec{\theta}} \right) \qquad \left(\begin{array}{c} + \text{ to ascend} \\ - \text{ to descend} \end{array} \right)$$

The parameter $\eta_t > 0$ is called the **step size** or **learning rate**. Often it must be tuned for convergence.

Visualization

And so on, until reaching a local maximum.

Pros and cons of gradient ascent

Pros

- simple and universal hillclimbing procedure for any once-differentiable function
- asymptotic convergence to some local optimum (but only for a sufficiently small learning rate)

Cons

- sometimes tricky in practice to tune the learning rate
- no guarantee of monotonic convergence
- no guarantee of global optimality

Newton's method versus gradient ascent

In a nutshell:

• Gradient ascent is based on the linear approximation

$$f(\vec{\theta}) \approx f(\vec{\theta}_0) + \frac{\partial f}{\partial \vec{\theta}} \cdot (\vec{\theta} - \vec{\theta}_0)$$

Newton's method is based on the quadratic approximation

$$f(\vec{\theta}) \approx f(\vec{\theta}_0) + \frac{\partial f}{\partial \vec{\theta}} \cdot (\vec{\theta} - \vec{\theta}_0) + \frac{1}{2} (\vec{\theta} - \vec{\theta}_0)^{\top} \left(\frac{\partial^2 f}{\partial \vec{\theta} \partial \vec{\theta}^{\top}} \right) (\vec{\theta} - \vec{\theta}_0)$$

Newton's method in one dimension — maximizing $f(\theta)$

Repeat until convergence:

- Fit a parabola with matching 1st and 2nd derivatives.
- Move to the **maximum** of the parabola.

Newton's method in one dimension — minimizing $f(\theta)$

Repeat until convergence:

- Fit a parabola with matching 1st and 2nd derivatives.
- Move to the **minimum** of the parabola.

Update rule in one dimension

• Quadratic fit from Taylor series:

$$f(\theta) \approx f(\theta_0) + f'(\theta_0)(\theta - \theta_0) + \frac{1}{2}f''(\theta_0)(\theta - \theta_0)^2$$

Optimizing the right hand side:

$$0 = \frac{d}{d\theta} \left[f(\theta_0) + f'(\theta_0)(\theta - \theta_0) + \frac{1}{2} f''(\theta_0)(\theta - \theta_0)^2 \right]$$
$$= f'(\theta_0) + f''(\theta_0) \cdot (\theta - \theta_0)$$

Update rule:

$$\theta_1 = \theta_0 - \frac{f'(\theta_0)}{f''(\theta_0)}$$

or
$$\theta \leftarrow \theta - \frac{f'(\theta)}{f''(\theta)}$$

Update rule in d dimensions

SCALAR

MULTIVARIABLE

$$f(\theta)$$

$$f(\theta_1, \theta_2, \ldots, \theta_d)$$

$$f'(\theta) = \frac{df}{d\theta}$$
$$f''(\theta) = \frac{d^2f}{d\theta^2}$$

$$\nabla f = \left(\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial \theta_2}, \dots, \frac{\partial f}{\partial \theta_d}\right)$$

$$H_{\alpha\beta} = \frac{\partial^2 f}{\partial \theta_{\alpha} \partial \theta_{\beta}}$$

$$\theta \leftarrow \theta - \frac{f'(\theta)}{f''(\theta)}$$

$$\vec{\theta} \leftarrow \vec{\theta} - \mathbf{H}^{-1} \nabla f$$

gradient

Hessian

update

In the general update:

- The gradient ∇f is a *d*-dimensional vector.
- The Hessian **H** is a symmetric $d \times d$ matrix.
- H^{-1} denotes the matrix inverse.
- $\mathbf{H}^{-1}\nabla f$ denotes matrix-vector multiplication.

Pros and cons of Newton's method

Pros

- simple and universal hillclimbing procedure for any twice-differentiable function
- rapid convergence (when it converges)
- no learning rate to tune

Cons

- expensive to compute Hessian matrix $O(d^2)$
- expensive to perform update $O(d^2)$
- no guarantee of global optimality
- unpredictable and/or unstable when initial estimate is poor

Newton's method can be unstable

The method often goes awry when the initial estimate is poor.

Next lecture

Logistic regression

Learning from incomplete data

Auxiliary functions

Lots of good stuff to come ...