

DIGITAL LOGIC

Extra Practice Session

By- CHANDAN SIR

Recap of Sequential Circuit

Pw

Toggle Mode of FF:-

```
JKFF SRFF A-FF
```

COUTERS

Maximum no. of states = 21

Counter

Synchronous counter

-Sast

all counting

Ring
Johnson.

Asynchronous counter Slow

1

Ripple counter.

Asynchronous counter:

Pw

CLK	Qc QB QA	Pr= Qcan an
0	0 0 0	0
1	001	O
2.	010	O
3.	011	0
4	100	0
5	ROY	10
6.	000	0
7	001	O

Mod- 6

TCLK > n. TPdff

 $\frac{1}{1}$

n-no. of FF's

TPdff Propagation delay of FF:

Synchronous counter

1) Ring counter

n bit Ring counter—> Mod=n

2) Johnson counter:

Mod= 2n

$$\left\{
 \begin{array}{c}
 0 & 1 & 0 \\
 1 & 0 & 1
 \end{array}
 \right.$$

$$\begin{array}{c}
 1 & 0 & 1 \\
 1 & 0 & 1
 \end{array}$$

Synchronous counter design 3->

Pw

 In the circuit shown below, initially all flip-flops are reset. The output Q₂ Q₁ Q₀ after four clock pulses is

Consider a sequential circuit using three J-K flip-2. flops and one AND gate shown in figure. Output of the circuit becomes '1' after every N-clock cycles. The value of N is

QA 9n CIK 0 3. If we are designing the counter by using DFF which count $0 \rightarrow 1 \rightarrow 2$ $\rightarrow 4 \rightarrow 0 \rightarrow ...$. The unused state must go to zero (000) on the next clock pulse, if output is considered as $Q_3Q_2Q_1$ then expression for D_1 will be -

9,0201	ast ast at	
0 0 0	00.	
0 0 1	0 1 0	
0 1 0	L 0 0	
0	0 0 6	
7 1	Action Control of the	Street Street Street
100	0 0 0	
101	0 0 0	
116	000	
111	000	

DI=91= 020291

What function is implemented by the circuit shown below? Assume the signal w is driven by a square wave signal.

A. Modulo-3 counter

B. Modulo-4 counter

C. Modulo-5 counter

D. Modulo-6 counter

Output is considered as Q3Q2Q1 and initially all the 6. FF's are in rest condition. MSQ.

Which is/are correct for the given circuit?

- A. MOD 4
- B. It has lock out problem.
- C. It will count $0 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 0$
- D. It will count $0 \rightarrow 4 \rightarrow 3 \rightarrow 6 \rightarrow 0$

7. A 4-bit shift register circuit configured for right-shift operation (D_{in} -> A, A-> B, B-> C, C-> D), is shown. If the present state of the shift register is ABCD = 1101, the number of clock cycles required to reach the state ABCD = 0100 is

B. 7

C. 4

D. 5

 If 5 toggle mode FF are used to design asynchronous counter, starting 2 FF having propagation delay 2 ns and last 3 FF having propagation delay 3ns, then maximum clock frequency for reliable operation will be ______.

9. Three binary ripple counters, modulo-A, modulo-B and modulo-C respectively, are connected in cascade. For counting modulo-500, which of the following are correct solutions?

$$A. A = 10, B = 10, C = 5$$

C.
$$A = 25$$
, $B = 2$, $C = 10$

D.
$$A = 10$$
, $B = 20$, $C = 25$

