Using the pareto package

Philip J. Erickson

March 4, 2012

1 Introduction

The pareto package includes three primary functions: dpareto, ppareto, and qpareto, with corresponding functions p.dpareto, p.ppareto, and p.qpareto to allow for parallel processing. These three compute the Pareto density, distribution, and quantile function, respectively, defined as follows:

Table 1: pareto functions

Density Distribution Quantile
$$f(x;\alpha,\beta) = \frac{\beta\alpha^{\beta}}{x^{\beta+1}} \mid F(x;\alpha,\beta) = 1 - \left(\frac{\alpha}{x}\right)^{\beta} \mid Q(p;\alpha,\beta) = \alpha(1-p)^{-\frac{1}{\beta}}$$

2 Usage

The following are simple examples of their usages:

- > dpareto(3, 1, 2)
- [1] 0.07407407
- > ppareto(1:3, 1, 2)
- [1] 0.0000000 0.7500000 0.8888889
- > qpareto(0.5, 1:3, 2)
- [1] 1.414214 2.828427 4.242641

	q	p = ppareto(q)	qpareto(p)
1	3.00	-0.41	$\frac{1}{3.00}$
$\frac{1}{2}$	4.00	-0.69	4.00
3	5.00	-0.92	5.00
	0.00	0.0_	
4	6.00	-1.10	6.00
5	7.00	-1.25	7.00

Table 2: Results for ppareto and qpareto.

The quantile function is the inverse of the distribution function. Table 2 displays this fact by using the upper tail and log specification of the ppareto and qpareto functions with scale and shape parameters $\alpha = 2$ and $\beta = 1$, applying first the distribution function and then the quantile function to get the original input.

Figure 1 shows the Pareto density for fixed scale and varying shape parameters and Figure 2 shows the corresponding distribution:

Figure 1: Pareto density, $\alpha = 1$.

Figure 2: Pareto CDF, $\alpha=1.$