Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе $\mathbb{N}4$

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«Свободные затухающие колебания в параллельном LC-контуре»

Исходные данные.

$$U(t) = U_m e^{-\beta t} \sin(\omega t + \alpha) \tag{1}$$

$$T = 2\pi\sqrt{LC} \tag{2}$$

$$\beta = \frac{R}{2L} \tag{3}$$

$$\omega = \sqrt{\omega_0^2 - \beta^2} \tag{4}$$

$$\lambda = \frac{U(t)}{U(t+T)} = \beta T \tag{5}$$

$$Q \approx \frac{1}{R} \sqrt{\frac{L}{C}} \tag{6}$$

Результаты прямых измерений.

Контур №1		Конт	Контур №2		yp № 3	Конт	Контур №4			
$ m L=5.7~{ m m}\Gamma m H$		L=5	$ m L=5.7~m\Gamma$ н		, 7 м Γ н	L=5	${ m L}=5,7$ м Γ н			
C = 9	7,9 нФ	C = 9	7,9 нФ	C = 1	1 мкФ	C =	1 мкФ			
$R=16,65~\mathrm{Om}$		R = 8	$ m R=5.3~O_{M}$		5,3 Ом	$ m R=16{,}65~O{_M}$				
$\mathrm{time/div} = 0,\!1$ мс		$_{ m time/div}$	$\mathrm{time/div} = 0.1$ мс		$= 0.5 \; { m mc}$	$\mathrm{time/div}=0.5$ мс				
volts/div = 0,1 B		volts/di	volts/div = 0.1 B		v = 0.1 B	$\mathrm{volts/div} = 0.1~\mathrm{B}$				
t, div	U, div	t, div	U, div	t, div	U, div	t, div	U, div			
0.6	3.1	0.5	3.2	0.4	3.8	0.4	4.0			
1.2	-2.9	1.0	-3.0	0.6	-3.4	0.6	-3.0			
2.2	2.3	2.1	2.6	1.4	3.0	1.4	2.2			
2.8	-2.2	2.6	-2.6	1.6	-2.8	1.6	-1.6			
3.8	1.8	3.6	2.2	2.4	2.5	2.3	1.2			
4.3	-1.7	4.2	-2.2	2.6	-2.3	2.7	-0.9			
5.3	1.4	5.2	2.0	3.4	2.0	3.2	0.6			
5.8	-1.4	5.8	-2.0	3.6	-2.0	3.7	-0.5			
	'	6.8	1.8	4.4	1.7	4.3	0.4			
		7.4	-1.6	4.6	-1.6	4.7	-0.3			
		8.4	1.6	5.3	1.4	5.2	0.2			
				5.6	-1.3	5.8	-0.2			
				6.3	1.2					
				6.7	-1.1					
				7.4	1.0					
				7.7	-0.9					
				8.4	0.9					

8.8

-0.7

Обработка результатов и расчёт косвенных величин.

\bullet Период колебаний T

Для 1-го и 2-го контура по формуле (2) $T_{12}=0,158$ мс. Из опыта $T_{12}=0,155$ мс Для 3-го и 4-го контура по формуле (2) $T_{34}=0,474$ мс. Из опыта $T_{34}=0,506$ мс

\bullet Коэффициент затухания β

 $\beta_1 = 1461 \ c^{-1}$

 $\beta_2 = 465 \ c^{-1}$

 $\beta_3 = 465 \; c^{-1}$

 $\beta_4 = 1461 \ c^{-1}$

\bullet Логарифмический декремент λ

 $\lambda_1 = 0,226$

 $\lambda_2 = 0,074$

 $\lambda_3 = 0,235$

 $\lambda_4 = 0,730$

• Время затухания $\tau = \frac{1}{\beta}$

 $au_1=0,684$ мс

 $au_2=2,150$ мс

 $au_3=2,150$ мс

 $\tau_4=0,684$ мс

\bullet Добротность Q

 $Q_1 = 14,49$

 $Q_2=45,53$

 $Q_3 = 14, 24$ $Q_4 = 4, 53$

Выводы.

Мы провели измерения свободных затухающих колебаний напряжения в LC-контурах с разными параметрами. На основе полученных данных были найдены следующие величины: период колебаний T, коэффициент затухания β , логарифмический декремент λ , время затухания τ , добротность Q.

В опыте было обнаружено необычное поведение затухающих колебаний: их полупериоды (время, за которое заряды на обкладках конденсатора меняют знак) не равны, что противоречит уравнению колебаний $U(t) = U_m e^{-\beta t} \sin(\omega t + \alpha)$, так как данная функция обладает симметрией. Приведём значения полупериодов всех 4-ёх контуров:

hT_1 , div	0.6	1	0.6	1	0.5	1	0.5								
hT_2 , div	0.5	1.1	0.5	1.0	0.6	1	0.6	1	0.6	1					
hT_3 , div	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.7	0.3	0.7	0.4	0.7	0.3
hT_4 , div	0.2	0.8	0.2	0.7	0.4	0.5	0.5	0.6	0.4	0.5	0.6				

Различия очень хорошо видны в 3 контуре:

Таким образом, перетекание заряда в одном направление происходит быстрее чем в другом. Объяснения данному явлению мы не знаем, но можно предположить, что, так как период однозначно

определяют L и C, то в осцилляторе либо индуктивность, либо ёмкость конденсатора зависит от направления тока.