Created by Mr. Francis Hung

Given a triangle with one angle is 120°. If all sides are integers, find all possible solution.

This document was created by Mr. Francis Hung, last updated: July 1, 2023.

$$c^2 = a^2 + b^2 - 2ab \cos 120^\circ$$

$$c^2 = a^2 + b^2 + ab$$

$$c^2 = (a+b)^2 - ab$$

$$ab = (a+b)^2 - c^2$$

$$ab = (a+b+c)(a+b-c)$$

$$\frac{a+b+c}{a} = \frac{b}{a+b-c} = k$$
, where k is a positive constant.

$$a + b + c = ak$$
; $b = (a + b - c)k$

$$\Rightarrow \begin{cases} a(1-k)+b+c=0\cdots\cdots(1)\\ ak+b(k-1)-ck=0\cdots\cdots(2) \end{cases}$$

From (1):
$$c = a(k-1) - b$$
(3)

Sub. (3) into (2):
$$ak + b(k-1) - a(k^2 - k) + bk = 0$$

$$b(2k-1) = a(k^2 - 2k)$$

Let
$$a = (2k-1)p$$
, $b = (k^2-2k)p$, then $c = (k^2-k+1)p$; where p is a positive integer.

$$a:b:c=(2k-1):(k^2-2k):(k^2-k+1)$$

Let
$$a = (2k-1)p$$
, $b = k(k-2)p$, $c = (k^2 - k + 1)p$; where p is a positive integer.

k	p	а	b	С
3	1	5	3	7
4	1	7	8	13
5	1	9	15	21
6	1	11	24	31

Given a triangle with one angle is 60°. If all sides are integers, find all possible solution.

Given the above triangle with $\angle C = 120^{\circ}$, we can construct another triangle ABD with $\angle D = 60^{\circ}$

So, if (a, b, c) is a solution to a 120° triangle, then (a, a+b, c) or (a+b, b, c) is a solution to a 60° Δ .

The general solution are: $((2k-1)p, (k^2-1)p, (k^2-k+1)p)$ or $((k^2-1)p, (k^2-2k)p, (k^2-k+1)p)$

k	р	а	a+b	С	a+b	b	С
2	1	3	3	3			
3	1	5	8	7	8	3	7
4	1	7	15	13	15	8	13
5	1	9	24	21	24	15	21
6	1	11	35	31	35	24	31

"A cyclic quadrilateral with all 4 sides and 2 diagonals are integers."

A cyclic quadrilateral with an equilateral triangle and another triangle. (A) If $\triangle ABC$ is equilateral of side length a, $\triangle BCD$ with $\angle C = 120^{\circ}$, BC = c, CD = b.

By the notes on 120°-triangle,

$$c = (2k-1)p$$
, $b = (k^2 - 2k)p$, $a = (k^2 - k + 1)p$

or
$$b = (2k-1)p$$
, $c = (k^2 - 2k)p$, $a = (k^2 - k + 1)p$

Apply Ptolemy's theorem, $AC \times BD = ab + ac$

$$\Rightarrow AC = b + c = (k^2 - 1)p$$
, which is a positive integer.

Hence, all 4 sides and the 2 diagonals are integers.

e.g.
$$k = 3$$
, $p = 1$, $AB = 7 = AD = BD$, $BC = 5$, $CD = 3$, $AC = 8$

A cyclic quadrilateral with $\angle A = 60^{\circ}$, $\angle C = 120^{\circ}$ (B) By the notes on 60°-triangle,

$$a = (k^2 - k + 1)p$$
, $AB = (2k - 1)p$, $AD = (k^2 - 1)p$
or $a = (k^2 - k + 1)p$, $AB = (k^2 - 1)p$, $AD = (k^2 - 2k)p$

$$\angle ABD = \angle ACD$$
, $\angle ABD = \angle CAD$ (eq. chords eq. \angle s)

$$\Delta ABD \cong \Delta DCA \text{ (AAS)}$$

$$AC = BD$$
 (corr. sides $\cong \Delta s$)

Hence, all 4 sides and the 2 diagonals are integers.

e.g.
$$k = 3$$
, $p = 1$, $AB = 5$, $AD = 8$, $BD = 7 = AC$, $BC = 3$, $CD = 5$.

Case 2
$$a = (k^2-k+1)p$$
, $AB = (2k-1)p$, $AD = (k^2-1)p$, $c = (2k-1)p$, $b = (k^2-2k)p$
Apply Ptolemy's Theorem,

$$AC(k^2-k+1)p = (2k-1)p \times (k^2-2k)p + (2k-1)p \times (k^2-1)p$$

$$AC = \frac{(2k-1)(2k^2-2k-1)}{k^2-k+1}p$$
, let $p = k^2-k+1$

$$AB = (2k-1)(k^2-k+1) = BC, CD = (k^2-2k)(k^2-k+1),$$

$$AD = (k^2 - 1)(k^2 - k + 1), AC = (2k - 1)(2k^2 - 2k - 1), BD = (k^2 - k + 1)^2$$

all 4 sides and the 2 diagonals are integers.

e.g.
$$k = 3$$
, $AB = 35 = BC$, $AD = 56$, $BD = 49$, $AC = 55$, $CD = 21$.

Case 3 When
$$BD = (k^2 - k + 1)p$$
, $AB = (k^2 - 1)p$, $AD = (k^2 - 2k)p$, $BC = (2k - 1)p$, $CD = (k^2 - 2k)p$
 $AC = \frac{(k^2 - 2k)(k^2 + 2k - 2)}{k^2 - k + 1}p$, let $p = k^2 - k + 1$, then all sides are integers.

e.g.
$$k = 3$$
, $AB = 56$, $BC = 35$, $AD = 21$, $BD = 49$, $AC = 55$, $CD = 21$.

Case 4 When
$$BD = (k^2 - k + 1)p$$
, $AD = (k^2 - 1)p$, $AB = (k^2 - 2k)p$, $BC = (2k - 1)p$, $CD = (k^2 - 2k)p$
 $AC = (k^2 - k + 1)p = BD$ (similar to Case 1), then all sides are integers.
e.g. $k = 3$, $p = 1$, $AB = 3$, $AD = 8$, $BD = 7 = AC$, $BC = 5$, $CD = 3$.

(C) A cyclic quadrilateral ABCD with one pair of equal opposite sides AB = CD and AD is the diameter.

$$\angle ABD = 90^{\circ} (\angle \text{ in semi-circle})$$

Let
$$BC = x$$
, $BD = y = AC$, $AD = \ell$, $BE \perp AD$ (E lies on AD.)

$$\angle BAD = \theta = \angle CDA \text{ (given } AB = CD)$$

case 1 In $\triangle ABE$, $\angle AEB = 90^{\circ}$, it can be proved that [*]

$$BE = 2ab$$
, $AE = a^2 - b^2$, $AB = a^2 + b^2$

 $\triangle ABE \sim \triangle ADB$ (equiangular)

$$y:(a^2+b^2): \ell = 2ab:(a^2-b^2):(a^2+b^2)$$
 (ratio of sides, $\sim \Delta$'s)

$$y = \frac{2ab(a^2 + b^2)}{(a^2 - b^2)}; \ell = \frac{(a^2 + b^2)^2}{(a^2 - b^2)}.$$

$$\ell = AE + EF + FD = x + 2(a^2 - b^2) \Rightarrow x = \ell - 2(a^2 - b^2)$$

$$x = \frac{\left(a^2 + b^2\right)^2}{\left(a^2 - b^2\right)} - 2\left(a^2 - b^2\right) = \frac{\left(a^2 + b^2\right)^2 - 2\left(a^2 - b^2\right)^2}{\left(a^2 - b^2\right)} = \frac{a^4 + 2a^2b^2 + b^4 - 2\left(a^4 - 2a^2b^2 + b^2\right)}{\left(a^2 - b^2\right)} = \frac{6a^2b^2 - a^4 - b^4}{\left(a^2 - b^2\right)}$$

$$x = \frac{4a^{2}b^{2} - \left(a^{4} - 2a^{2}b^{2} + b^{4}\right)}{\left(a^{2} - b^{2}\right)} = \frac{(2ab)^{2} - \left(a^{2} - b^{2}\right)^{2}}{\left(a^{2} - b^{2}\right)} = \frac{\left(2ab + a^{2} - b^{2}\right)\left(2ab - a^{2} + b^{2}\right)}{\left(a^{2} - b^{2}\right)} = -\frac{\left(a^{2} + 2ab - b^{2}\right)\left(a^{2} - 2ab - b^{2}\right)}{\left(a^{2} - b^{2}\right)}$$

$$x > 0$$
; $a > b$: $-(a^2 + 2ab - b^2)(a^2 - 2ab - b^2) > 0$

$$[(a+b)^2-2b^2][(a-b)^2-2b^2] < 0$$

$$(a+b+\sqrt{2}b)(a+b-\sqrt{2}b)(a-b+\sqrt{2}b)(a-b-\sqrt{2}b) < 0$$

$$(a+b-\sqrt{2}b)(a-b-\sqrt{2}b) < 0 \Rightarrow (\sqrt{2}-1)b < a < (\sqrt{2}+1)b$$

$$a > b \Rightarrow b < a < (\sqrt{2} + 1)b$$
 to order to ensure that $x > 0$

Multiply every side by $(a^2 - b^2)$,

$$AB = a^4 - b^4 = CD$$
, $AD = (a^2 + b^2)^2$, $BC = 6a^2b^2 - a^4 - b^4$, $AC = 2ab(a^2 + b^2) = BD$; then all sides are integers.

e.g.
$$a = 2$$
, $b = 1$, then $1 < 2 < (\sqrt{2} + 1)$; $AB = 15 = CD$, $AD = 25$, $BC = 7$, $AC = 20 = BD$

case 2
$$AE = 2ab$$
, $BE = a^2 - b^2$, $AB = a^2 + b^2$

 $\triangle ABE \sim \triangle ADB$ (equiangular)

$$y:(a^2+b^2): \ell = (a^2-b^2): 2ab:(a^2+b^2)$$
 (ratio of sides, $\sim \Delta$'s)

$$y = \frac{(a^2 - b^2)(a^2 + b^2)}{2ab}; \ell = \frac{(a^2 + b^2)^2}{2ab}.$$

$$\ell = AE + EF + FD = x + 2(2ab) \Rightarrow x = \ell - 4ab$$

$$x = \frac{\left(a^2 + b^2\right)^2}{2ab} - 4ab = \frac{\left(a^2 + b^2\right)^2 - 8a^2b^2}{2ab} = \frac{a^4 + b^4 - 6a^2b^2}{2ab}$$

$$(\sqrt{2} + 1)b < a$$
 to order to ensure that $x > 0$

Multiply every side by 2ab,

$$AB = 2ab(a^2 + b^2) = CD$$
, $AD = (a^2 + b^2)^2$, $BC = a^4 + b^4 - 6a^2b^2$, $AC = a^4 - b^4 = BD$; then all sides are integers.

e.g.
$$a = 4$$
, $b = 1$, then $(\sqrt{2} + 1) < 4$; $AB = 136 = CD$, $AD = 289$, $BC = 161$, $AC = 255 = BD$

[*] http://scicomp.sinaman.com/Number_Theory/Pythagorean_triple.pdf

(D) A cyclic quadrilateral with one pair of adjacent equal sides.

Follow the same steps in (C), $\angle ADB = 90^{\circ} - \theta$ (\angle sum of Δ)

$$\angle BDC = \angle ADB - \angle BDC = \theta - (90^{\circ} - \theta) = 2\theta - 90^{\circ}$$

Let G be a point on the circle so that $BD \perp GD$

$$\angle AGD = 90^{\circ} (\angle \text{ in semi-circle})$$

ABDG is a rectangle (there are 3 right angles)

$$BG = AD = \ell$$
 (diagonal of the rectangle)

$$\angle BGD = \angle BAD = \theta$$
 (\angle s in the same segment)

$$\angle CDG = \angle BCD + \angle BDG = 2\theta - 90^{\circ} + 90^{\circ} = 2\theta$$

$$GD = AB = a^2 + b^2$$
 (opp. sides of rectangle)

 $\triangle CDG$ is isosceles

$$CG = 2 \ CD \sin \frac{1}{2} \angle CDG = 2(a^2 + b^2) \sin \theta = 2(a^2 + b^2) \cdot \frac{2ab}{a^2 + b^2} = 4ab \text{ (note that in } \triangle ABE, \sin \theta = \frac{2ab}{a^2 + b^2})$$

 $a^{2} +$

2ab

Multiply every side by $(a^2 - b^2)$, then

$$CD = (a^2 + b^2)(a^2 - b^2) = DG, BC = 6a^2b^2 - a^4 - b^4,$$

$$BG = (a^2 + b^2)^2$$
, $BD = 2ab(a^2 + b)$, $CG = 4ab(a^2 - b^2)$.

All sides are positive integers.

e.g.
$$a = 2$$
, $b = 1$, $CD = 15 = DG$, $BC = 7$, $BG = 25$, $BD = 20$, $CG = 24$

(E) A cyclic quadrilateral ABCD with AD = BC.

$$\angle ACD = \theta = \angle BAC$$
 (eq. chords eq. \angle s)

$$AB // DC$$
 (alt. \angle s eq.)

Let
$$DE \perp AB$$
, $CF \perp AB$, $CD = x = EF$, $AC = y = BD$.

case 1 Use the method in (C),
$$DE = CF = 2ab$$
, $AE = a^2 - b^2$, $AD = a^2 + b^2 = BC$
 $AB = x + 2(a^2 - b^2)$

Apply cosine rule on
$$\triangle ABC$$
 and $\triangle ACD$.

$$\cos \theta = \frac{\left[x + 2(a^2 - b^2)\right]^2 + y^2 - (a^2 + b^2)^2}{2\left[x + 2(a^2 - b^2)\right]y} = \frac{x^2 + y^2 - (a^2 + b^2)^2}{2xy}$$

$$x[x^{2} + 4(a^{2} - b^{2})x + 4(a^{2} - b^{2})^{2}] + xy^{2} - (a^{2} + b^{2})^{2}x = x^{2}[x + 2(a^{2} - b^{2})] + y^{2}[x + 2(a^{2} - b^{2})] - (a^{2} + b^{2})^{2}[x + 2(a^{2} - b^{2})]$$

$$x^{3} + 4(a^{2} - b^{2})x^{2} + 4(a^{2} - b^{2})^{2}x - (a^{2} + b^{2})^{2}x = x^{3} + 2(a^{2} - b^{2})x^{2} + 2(a^{2} - b^{2})y^{2} - (a^{2} + b^{2})^{2}x - 2(a^{2} + b^{2})^{2}(a^{2} - b^{2})$$

$$2(a^{2} - b^{2})x^{2} + 4(a^{2} - b^{2})^{2}x + 2(a^{2} + b^{2})^{2}(a^{2} - b^{2}) = 2(a^{2} - b^{2})y^{2}$$

$$x^{2} + 2(a^{2} - b^{2})x + (a^{2} + b^{2})^{2} = y^{2}$$

$$[r + (a^2 - b^2)]^2 + (a^2 + b^2)^2 - (a^2 - b^2)^2 = v^2$$

$$[x + (a^2 - b^2)]^2 + (a^2 + b^2)^2 - (a^2 - b^2)^2 = y^2$$

$$[x + (a^2 - b^2)]^2 = y^2 - 4a^2b^2 = (y + 2ab)(y - 2ab)$$

 $y^2 = (2ab)^2 + m^2$, where m is an integer. 2ab, m, y forms a Pythagorean Triple, by the notes [*]

2ab = 2rs, $m = r^2 - s^2$, $y = r^2 + s^2$; r > s > 0 are integers.

$$\frac{a}{r} = \frac{s}{b} = k$$
, $a = kr$, $b = \frac{s}{k}$

$$x = -(a^2 - b^2) \pm \sqrt{(y + 2ab)(y - 2ab)}, \ \because x > 0, \ \therefore x = -(a^2 - b^2) + \sqrt{(y + 2ab)(y - 2ab)}$$

$$x = -(a^2 - b^2) + (r^2 - s^2) = (r^2 - a^2) + (b^2 - s^2) = (r^2 - k^2 r^2) + \left(\frac{s^2}{k^2} - s^2\right) = \left(1 - k^2 \left(r^2 + \frac{s^2}{k^2}\right) > 0 \Rightarrow 0 < k < 1$$

s < b < a < r; ab = rs; $AD = a^2 + b^2 = BC$, $AB = (r^2 - s^2) + (a^2 - b^2)$, $CD = (r^2 - a^2) + (b^2 - s^2)$, $AC = r^2 + s^2 = BD$

e.g.
$$a = 3$$
, $b = 2$, $s = 1$, $r = 6$, $AD = 13 = BC$, $CD = 30$, $AB = 40$, $AC = 37 = BD$

e.g.
$$a = 4$$
, $b = 3$, $s = 2$, $r = 6$, $AD = 25 = BC$, $CD = 25$, $AB = 39$, $AC = 40 = BD$

e.g.
$$a = 4$$
, $b = 2$, $s = 1$, $r = 8$, $AD = 20 = BC$, $CD = 51$, $AB = 75$, $AC = 65 = BD$

case 2
$$DE = a^2 - b^2 = CF$$
, $AE = 2ab = BF$, $AD = a^2 + b^2 = BC$
 $CD = x = EF$, $AC = y = BD$, $AB = x + 4ab$

Apply cosine rule on $\triangle ABC$ and $\triangle ACD$.

$$\cos \theta = \frac{(x+4ab)^2 + y^2 - (a^2 + b^2)^2}{2(x+4ab)y} = \frac{x^2 + y^2 - (a^2 + b^2)^2}{2xy}$$

 $x^3 + 8abx^2 + 16a^2b^2x + xy^2 - (a^2+b^2)^2x = x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + 4abx^2 + xy^2 + 4aby^2 - (a^2+b^2)^2x - x^3 + aby^2 - (a^2+b^2)^2x - aby^2 - aby$ $4ab(a^2+b^2)^2$

 $4abx^2 + 16a^2b^2x + 4ab(a^2 + b^2)^2 = 4abv^2$

$$x^2 + 4abx + (a^2 + b^2)^2 = v^2$$

 $(x+2ab)^2 = y^2 - (a^2 - b^2)^2 = m^2$, where m is an integer.

by the notes $[*]: y = r^2 + s^2$, $a^2 - b^2 = r^2 - s^2$, m = 2rs, where r > s > 0 are integers

$$(a+b)(a-b) = (r+s)(r-s)$$

$$\frac{a+b}{r+s} = \frac{r-s}{a-b} = k$$

$$a + b = k(r + s)$$
.....(1), $a - b = \frac{1}{k}(r - s)$(2)

$$((1)+(2))\div 2: a = \frac{1}{2k} [(k^2+1)r + (k^2-1)s]; ((1)-(2))\div 2: b = \frac{1}{2k} [(k^2-1)r + (k^2+1)s]$$

$$x = m - 2ab = 2rs - 2ab = 2\left\{rs - \frac{1}{2k}\left[\left(k^2 + 1\right)r + \left(k^2 - 1\right)s\right] + \left(k^2 - 1\right)r + \left(k^2 + 1\right)s\right\}$$

$$x = 2\left\{rs - \frac{1}{4k^2}\left[k^2(r+s) + (r-s)\right]k^2(r+s) - (r-s)\right]\right\} = \frac{2}{4k^2}\left\{4k^2rs - \left[k^4(r+s)^2 - (r-s)^2\right]\right\}$$

$$x = -\frac{1}{2k^2} \left[k^4 (r+s)^2 - 4k^2 rs - (r-s)^2 \right] = -\frac{1}{2k^2} \left[k^2 (r+s)^2 + (r-s)^2 \right] \left(k^2 - 1 \right) > 0 \implies 0 < k < 1$$

$$0 < \frac{a+b}{r+s} = \frac{r-s}{a-b} = k < 1 \implies a+b < r+s, r-s < a-b, r > s, a > b \text{ and } (a+b)(a-b) = (r+s)(r-s)$$

$$CD = 2(rs - ab), AD = a^2 + b^2 = BC, AC = r^2 + s^2 = BD, AB = 2(ab + rs)$$

e.g.
$$a = 7$$
, $b = 1$, $s = 4$, $r = 8$, $AD = 50 = BC$, $CD = 50$, $AB = 78$, $AC = 80 = BD$

Example 1 Given ABCD is a quadrilateral such that AB = 7, BC = CD = 15,

DA = 25. Find the maximum area of the quadrilateral.

By cosine law, $AC^2 = 7^2 + 15^2 - 2 \cdot 7 \cdot 15 \cos D = 25^2 + 15^2 - 2 \cdot 25 \cdot 15 \cos B$

$$576 = 2(125\cos B - 105\cos D)$$

$$288 = 375 \cos B - 105 \cos D \dots (1)$$

Let
$$K = \text{area of } ABCD = \text{area of } \Delta ABC + \text{area of } \Delta ACD$$

$$= \frac{1}{2} 25 \cdot 15 \sin B + \frac{1}{2} 7 \cdot 15 \sin D$$

$$4K^2 = (375 \sin B + 105 \sin D)^2 \dots (2)$$

$$(1)^2 + (2)$$
: $4K^2 + 288^2 = 375^2 + 105^2 - 2 \times 375 \times 105(\cos B \cos D - \sin B \sin D)$

$$4K^2 = 68706 - 78750\cos(B+D)$$

K is a maximum when cos(B + D) is a minimum

$$-1 \le \cos(B+D) \le 1$$
, maximum area $=\frac{1}{2}\sqrt{68706+78750} = 192$

Example 2 Given ABCD is a quadrilateral such that AB = 7, BC = CD = 15,

$$DA = 25$$
, $AC = 20$. Find BD .

$$AC^2 + BC^2 = 20^2 + 15^2 = 25^2 = AB^2$$
, $\angle ACB = 90^\circ$ (converse, Pyth. Thm)

In
$$\triangle ACD$$
, $\cos \angle ACD = \frac{15^2 + 20^2 - 7^2}{2 \cdot 15 \cdot 20} = \frac{24}{25}$
In $\triangle BCD$, $BD^2 = 15^2 + 15^2 - 2 \times 15 \times 15 \cos(90^\circ + \angle ACD)$

In
$$\triangle BCD$$
, $BD^2 = 15^2 + 15^2 - 2 \times 15 \times 15 \cos(90^\circ + \angle ACD)$

$$BD^2 = 450 + 450 \sin \angle ACD = 450 \cdot \left[1 + \sqrt{1 - \left(\frac{24}{25}\right)^2} \right] = 450 \cdot \left(1 + \frac{7}{25} \right) = 576$$

$$BD = 24$$

