SPATIAL MODELLING DAVID ORME

SPATIAL MODELLING TOOLS

- The examples presented here use R
- Another excellent program with a nice GUI interface:
 - Spatial Analysis in Macroecology
 - http://www.ecoevol.ufg.br/sam/

OVERVIEW

- Example data: Afrotropical bird diversity
- Naive models
- Describing spatial autocorrelation
- Accounting for spatial autocorrelation

AFROTROPICAL BIRD SPECIES RICHNESS

EXPLANATORY VARIABLES

A SIMPLE LINEAR MODEL

Richness ~ AET + Temperature + Elevation

	Est	SE	t	p
(Intercept)	189.45	21.33	8.88	< 0.001
MeanAET	0.18	0.00	37.34	< 0.001
MeanAnnTemp	-4.18	0.72	-5.79	< 0.001
MeanElev	0.08	0.01	13.85	< 0.001

A SIMPLE GAM

Richness ~ s(AET) +s(Temperature) + s(Elevation)

MODEL PREDICTIONS

Rooks move All cells within one step:

- vertically or
- horizontally

Queens move All cells within one step:

- vertically,
- horizontally or
- diagonally

Distance based All cells within:

• 2.4 units

k nearest
The closest *k* cells

SPATIAL AUTOCORRELATION

Global Moran's I

- | = 0.922
- p << 0.001

Global Geary's C

- C = 0.070
- p << 0.001

SPATIAL AUTOCORRELATION

Global Moran's I

- | = 0.008
- p = 0.211

Global Geary's C

- C = 0.994
- p = 0.262

LOCAL AUTOCORRELATION

Local indicators of spatial autocorrelation (LISA)

EFFECTS OF SPATIAL AUTOCORRELATION

- Data points not independent
- Degrees of freedom reduced:
 - standard errors and significance testing affected
- Not equally weighted:
 - parameter estimation affected

DEALING WITH SPATIAL AUTOCORRELATION

- Modify the degrees of freedom in significance testing
- Account for autocorrelation in models:
 - Simultaneous autoregressive models
 - Generalised least squares
 - Eigenvector filtering
 - Geographically weighted regression

DEGREES OF FREEDOM CORRECTION

DEGREES OF FREEDOM CORRECTION

SPATIAL AUTOREGRESSION

Solve for \$b\$:

		\$bx_1 + \frac{1} {2}bx_2\$
		\$\frac{1}{2}bx_1 + bx_2 + \frac{1} {2}bx_3\$
		\$\frac{1}{2}bx_2 + bx_3 + \frac{1}{} {2}bx_4\$

\$\frac{1}{2}bx_3 + \frac{1}{2}bx_4\$

\$x_1\$ \$x_1\$ \$x_3\$ \$x_4\$

SPATIAL AUTOREGRESSSION

CORRELOGRAM

VARIOGRAM

GENERALISED LEAST SQUARES

- Model correlation as a function of distance
- Generate a correlation matrix

GENERALISED LEAST SQUARES

- Different shapes:
 - Exponential
 - Spherical
 - Linear
- Parameters

GENERALISED LEAST SQUARES

```
Generalized least squares fit by REML
 Model: Rich ~ MeanAETScaled + MeanAnnTempScaled + MeanElevScaled
  Data: figDat
      AIC BIC logLik
 24676.89 24705.97 -12333.44
Correlation Structure: Gaussian spatial correlation
Formula: ~e centre behr + n centre behr
 Parameter estimate(s):
 range nugget
 650.0 0.1
Coefficients:
                   Value Std.Error t-value p-value
               199.67323 16.755430 11.916927 0.0000
(Intercept)
MeanAETScaled 17.65050 3.038337 5.809265 0.0000
MeanAnnTempScaled -27.53775 5.663121 -4.862645 0.0000
MeanElevScaled 3.59893 4.321932 0.832712 0.4051
 Correlation:
                (Intr) MnAETS MnAnTS
MeanAETScaled
                0.048
MeanAnnTempScaled 0.141 0.047
MeanElevScaled 0.156 0.079 0.936
Standardized residuals:
       Min O1
                           Med
                                         Q3
                                                   Max
-2.35080108 0.09376345 0.73813223 1.30659392 4.48588628
Residual standard error: 97.85917
Degrees of freedom: 2484 total; 2480 residual
```

STATIONARITY AND ISOTROPY

Is the same process happening in:

- different locations (stationarity)?
- different directions (isotropy)?

Is the problem in:

- the spatial structure of autocorrelation?
- differences in the actual relationship?

- Take the eigendecomposition of a spatial weights model
- Use the eigenvectors as variables in the model
- Use a selection process to identify and include only important eigenvectors

Im(Rich ~ MeanAET + MeanAnnTemp + MeanElev

	Est	SE	t	p
(Intercept)	189.45	21.33	8.88	< 0.001
MeanAET	0.18	0.00	37.34	< 0.001
MeanAnnTemp	-4.18	0.72	-5.79	< 0.001
MeanElev	0.08	0.01	13.85	< 0.001

Im(Rich ~ MeanAET + MeanAnnTemp +
MeanElev + Re(spEV1) + Re(spEV2) + Re(spEV3)
+ Re(spEV4)

	Est	SE	t	р
(Intercept)	80.23	33.00	2.43	1.5e-02
MeanAET	0.18	0.01	31.43	< 0.001
MeanAnnTemp	0.10	1.14	0.09	9.3e-01
MeanElev	0.08	0.01	12.70	< 0.001
Re(spEV1)	-1617.63	77.64	-20.83	< 0.001
Re(spEV2)	963.97	129.21	7.46	< 0.001
Re(spEV3)	-813.56	95.87	-8.49	< 0.001
Re(spEV4)	-150.38	100.28	-1.50	1.3e-01

Im(Rich ~ MeanAET + MeanAnnTemp +
MeanElev + Re(spEV1) + Re(spEV2) + Re(spEV3)

	Est	SE	t	p
(Intercept)	58.39	29.62	1.97	4.9e-02
MeanAET	0.19	0.00	43.68	< 0.001
MeanAnnTemp	0.75	1.06	0.71	4.8e-01
MeanElev	0.08	0.01	13.78	< 0.001
Re(spEV1)	-1610.75	77.53	-20.78	< 0.001
Re(spEV2)	1031.60	121.11	8.52	< 0.001
Re(spEV3)	-848.19	93.07	-9.11	< 0.001

GEOGRAPHICALLY WEIGHTED REGRESSION

Fit a model for every cell:

- Define a local region size and a weighting function
- Fit a weighted regression for each cell using the weights
- Look at how coefficients vary in space
- Possibly serious statistical issues!

GEOGRAPHICALLY WEIGHTED REGRESSION

GEOGRAPHICALLY WEIGHTED REGRESSION

PROBLEMS

- Profusion of packages: sf, sp, spdep, mgcv, ncf, gstat, nlme, spgwr
- Different data structures
- Sometimes poor documentation
- Speed of calculation (= size of dataset)
- Memory hungry
- Too many options