POP

Projekt: Sieć optyczna 1 Dokumentacja wstępna

Bartosz Latosek

Szymon Skarzyński

Grudzień 2022

1 Wstępny opis problemu

Celem zadania jest minimalizacja kosztu realizacji sieci optycznej za pomocą algorytmu ewolucyjnego przy spełnieniu wszystkich zapotrzebowań, jednocześnie nie przekraczając pojemności włókna światłowodowego.

Sieć optyczna rozumiana jest w tym przypadku jako zbiór węzłów (miast) pomiędzy którymi zdefiniowane są ścieżki o ustalonej przepustowości. Zapotrzebowanie jest wyrażone w GB/s i określa minimalny przepływ, który musi zostać zapewniony między dwoma miastami. Dla n miast mamy n(n-1)/2 zapotrzebowań. Zapotrzebowanie pomiędzy miastem A i B jest równe zapotrzebowaniu między miastem B i A (graf jest nieskierowany).

W rzeczywistości krawędzie między miastami to światłowód o określonej liczbie par włókien - w rzeczywistości jedno z włókien w parze jest odpowiedzialne za nadawanie, a drugie za odbiór. Każda taka para włókien to nic innego jak po prostu szkło - medium transmisyjne, w którym przesyłane jest światło.

W rozpatrywanym problemie miasta połączone są za pomocą światłowodów o jednej parze włókien (odbiór i nadawanie), w każdym takim włóknie możemy wydzielić do 96 'slotów' komunikacyjnych odpowiadających różnym długościom fali świetlnej. Wynika z tego, że, pojedyncza krawędź grafu może realizować maksymalnie 96 zapotrzebowań.

W celu obsługi przesyłania i odbierania danych musimy na początku i na końcu wybranej ścieżki zainstalować kartę transpondera o ustalonej pojemności (100 GB/s, 200 GB/s lub 400 GB/s), przy czym każda para kart zajmuje nam jeden 'slot' (długość fali). Załóżmy, że zapotrzebowanie pomiędzy miastem A i B wynosi 400 GB/s. W takim wypadku możemy je zaspokoić instalując na końcach ścieżki 4 najtańsze karty - 100 GB/s, zajmując przy tym 4 sloty, 2 karty - 200 GB/s, zajmując 2 sloty albo jedną, najdroższą kartę - 400 GB/s zajmując przy tym tylko jeden slot.

Problem optymalizacji sprowadza się do takiego doboru kart na końcach ścieżek, aby każde zapotrzebowanie zostało spełnione, przy minimalnym koszcie i nie przekraczając przy tym maksymalnej pojemności pojedynczego włókna - 96 długości fali (λ).

W rzeczywistości, jeżeli zapotrzebowanie dotyczy oddalonych od siebie miast, to może być konieczne umieszczenie dodatkowych transponderów na ścieżce w celu wzmocnienia sygnału, ale na potrzeby zadania zakładamy, że sygnał nie musi być wzmacniany.

Schemat amerykańskiej sieci światłowodowej Źródło: DOI:10.3390/app10196840

2 Sformułowanie sposobu rozwiązania

W naszym modelu zostaną przyjęte następujące zbiory:

- $\bullet\,$ N Zbiór węzłów sieci (Każdy węzeł utożsamiany jest z jednym miastem)
- E Zbiór krawędzi (połączeń światłowodowych pomiędzy miastami)
- T Zbiór rodzajów kart transponderów (Pojemności: 100, 200 i 400)

Zadnie polega na dobraniu ilości każdej z kart ze zbioru T dla każdego węzła osobno tak, aby każde zapotrzebowanie w sieci zostało spełnione przy minimalnym koszcie. Koszt w tym przypadku zdefiniowany jest jako suma pojemności użytych kart transponderów.

2.1 Zarys algorytmu ewolucyjnego

Na sam początek należy zastanowić się, czym będzie pojedynczy osobnik populacji. Doszliśmy do wniosku, że osobnikiem będzie zbiór par z których każda składa się z dwóch wektorów:

- reprezentującego dobrane karty transponderów
- reprezentującego ścieżkę (zbiór krawędzi)

Każda taka para, częściowo lub w pełni realizuje jedno zapotrzebowanie.

I tak np. dla powyższego rysunku poglądowego - interesuje nas zapotrzebowanie pomiędzy węzłem A i B. Załóżmy, że wynosi ono 500G (oznaczenie G utożsamiamy z GB/s). I tak, realizacja zapotrzebowania może nastąpić w całości po ścieżce $[a_1,a_2]$, lub częściowo po ścieżce $[a_1,a_2]$ i częściowo po ścieżce $[a_1,a_4,a_3]$. Dla pierwszego wariantu PRZYKŁADOWY osobnik będzie postaci:

$$T = [1, 0, 1], E = [a1, a2]$$

, gdzie T oznacza zbiór użytych kart transponderów dla odpowiadającej ścieżki. Taki zapis oznacza, że całe zapotrzebowanie będzie realizowane przez ścieżkę $[a_1,a_2]$ i zostaną do tego użyte karty transponderów: 1 x 100G, 0 x 200G i 1 x 400G, co w sumie daje 500G. To samo zapotrzebowanie może zostać zrealizowane w postaci:

$$T_1 = [1, 1, 0], E_1 = [a1, a2]$$

$$T_2 = [2, 0, 0], E_2 = [a1, a4, a3]$$

Powyższe oznacza, że 1 x 100G + 2 x 200G = 300G zapotrzebowania będzie przesyłane ścieżką $[a_1,a_2]$, a pozostałe 2 x 100G = 200G, ścieżką $[a_1,a_4,a_3]$. Osobnikiem populacji będzie n takich zbiorów realizacji zapotrzebowania, gdzie n oznacza ilość ścieżek zapotrzebowań. Mutacja osobnika będzie polegała na zmianie użytej liczby transponderów danego typu oraz sposobu realizacji zapotrzebowania - ścieżek. Minimalizowany będzie koszt zużytych kart transponderów wraz. Poprawność osobnika będzie sprawdzana za pomocą wyodrębnionej funkcji walidacyjnej. W fazie selekcji algorytmu, wykorzystamy selekcję turniejową, chociaż nie wykluczamy testowania też innych metod.

3 Technologie

Użyjemy języka Python. Na ten moment nie planujemy używać dodatkowych zewnętrznych bibliotek, lecz może to ulec zmianie w późniejszej fazie realizacji projektu. Jako, że zadanie dotyczy stricte optymalizacji kosztów, rezygnujemy też z jakiejkolwiek formy graficznej przedstawienia rozwiązania.