PUNE INSTITUTE OF COMPUTER TECHNOLOGY

DHANKAWADI, PUNE –43

LIST OF LAB ASSIGNMENTS

ACADEMIC YEAR: 2020-2021

Department: Computer Engineering. Date: 09/07/2020

Class: B.E Semester: I

Subject: Laboratory Practice I (410246) Examination scheme:

TW-50, PR-50

Croup	Group A: 410241:High Performance Computing				
Four as	Four assignments individually and any one mini-project with group of 2-3 students.				
Sr.No.	Assign	Problem Statement			
	. No.				
1	A1	a) Implement Parallel Reduction using Min, Max, Sum and Average operations.			
		b) Write a CUDA program that, given an N-element vector, find-			
		The maximum element in the vector			
		The minimum element in the vector			
		The arithmetic mean of the vector			
		The standard deviation of the values in the vector			
		Test for input N and generate a randomized vector V of length N (N should be			
		large). The program should generate output as the two computed maximum			
		values as well as the time taken to find each value.			
2	A2	Vector and Matrix Operations-			
		Design parallel algorithm to			
		1. Add two large vectors			
		2. Multiply Vector and Matrix			
		3. Multiply two N \times N arrays using n^2 processors			
3	A3	Parallel Sorting Algorithms-			
		For Bubble Sort and Merger Sort, based on existing sequential algorithms,			

		design and implement parallel algorithm utilizing all resources available.
4	A4	Parallel Search Algorithm-
		Design and implement parallel algorithm utilizing all resources available. for
		1. Binary Search for Sorted Array
		2. Best-First Search that (traversal of graph to reach a target in the shortest
		possible path)
		Group A: Sample Mini Projects
1		Compression Module (Image /Video)
		Large amount of bandwidth is required for transmission or storage of images.
		This has driven the research area of image compression to develop parallel
		algorithms that compress images.
		OR
		For video: RGB To YUV Transform concurrently on many core GPU
2		Generic Compression:Run length encoding concurrently on many core GPU
3		Encoding: Huffman encoding concurrently on many core GPU
Four	assignme	242: Artificial Intelligence & Robotics ents individually and any one mini-project with group of 2-3 students.
5	B1	Solve 8-puzzle problem using A* algorithm. Assume any initial configuration
		and define goal configuration clearly.
		OR
		Solve following 6-tiles problem stepwise using A* algorithm,
		Initial Configuration
		B W B W B W
		Final configuration:
		B B B W W W
		Constraint: Tiles can be shifted left or right 1 or 2 positions with cost 1 and 2

		respectively.
	B2	Implement any one of the following Expert System:
6		1. Medical Diagnosis of 10 diseases based on adequate symptoms
		2. Identifying birds of India based on characteristics
		OR
		Develop elementary chatbot for suggesting investment as per the customers
		need.
7	B3	Implement goal stack planning for the following configurations from the blocks
		world,
		B
		Start Goal
		OR
		Implement syntax analysis for the assertive English statements. The stages to be
		executed are,
		Sentence segmentation
		Word tokenization
		Part-of-speech/morpho syntactic tagging
		Syntactic parsing (Use any of the parser like Stanford)
0	D4	Constraint Catinfaction Dualilance
8	B4	Constraint Satisfaction Problem:
		Implement crypt-arithmetic problem or n-queens or graph coloring problem
		(Branch and Bound and Backtracking)
		OR
		Use Heuristic Search Techniques to Implement Hill-Climbing Algorithm.
Grou	ıр С: 4102	243-Data Analytics
Four	assignme	ents individually and any one mini-project with group of 2-3 students.
	C1	Download the Iris flower dataset or any other dataset into a DataFrame. (eg
9		https://archive.ics.uci.edu/ml/datasets/Iris) Use Python/R and Perform following

		 How many features are there and what are their types (e.g., numeric, nominal)? Compute and display summary statistics for each feature available in the
		dataset. (eg. minimum value, maximum value, mean, range, standard
		deviation, variance and percentiles
		Data Visualization-Create a histogram for each feature in the dataset to
		illustrate the feature distributions. Plot each histogram.
		Create a boxplot for each feature in the dataset. All of the boxplots
		should be combined into a single plot. Compare distributions and identify
		outliers.
	C2	Download Pima Indians Diabetes dataset. Use Naive Bayes" Algorithm for
10		classification Load the data from CSV file and split it into training and test
		datasets. Summarize the properties in the training dataset so that we can
		calculate probabilities and make predictions. Classify samples from a test dataset
		and a summarized training dataset.
11	C3	Bigmart Sales Analysis: For data comprising of transaction records of a sales
		store. The data has 8523 rows of 12 variables. Predict the sales of a store.
		Sample Test data set available here https://datahack.analyticsvidhya.com/contest/
12	C4	practice-problem-big-mart-sales-iii/ Twitter Data Analysis: Use Twitter data for sentiment analysis. The dataset is
12	04	3MB in size and has 31,962 tweets. Identify the tweets which are hate tweets
		and which are not. Sample Test data set available here
		https://datahack.analyticsvidhya.com/contest/practice-problem-twitter-
		sentiment-analysis/
		SCHUMENT UNITYSISI
		Group C: Sample Miniprojects
	1	Use Movies Dataset. Write the map and reduce methods to determine the
		average ratings of movies. The input consists of a series of lines, each containing
		a movie number, user number, rating, and a timestamp: The map should emit
		movie number and list of rating, and reduce should return for each movie

	number a list of average rating.
2	Time Series Analysis: Use time series and forecast traffic on a mode of
	transportation. Use at least two methods.
	Sample Test data set available here https://datahack.analyticsvidhya.com/contest/
	practice-problem-time-series-2/
3	Trip History Analysis: Use trip history dataset that is from a bike sharing service
	in the United States. The data is provided quarter-wise from 2010 (Q4) onwards.
	Each file has 7 columns. Predict the class of user.
	Make use of at least two classification algorithms and provide comparative
	analysis.
	Sample Test data set available here https://www.capitalbikeshare.com/trip-
	history-data

Subject Coordinator (Hemlata P. Channe)

Head, Dept. of Computer Engg. (Prof.M.S.Takalikar)