

FPS

Learning to Sample

Oren Dovrat*, Itai Lang*, Shai Avidan

Code is Available!

*Equal contribution

A task-specific data-driven sampling approach for point clouds

Motivation Too many points... How to sample?

Problem Statement

Given:

Complete Input

Point set $P = \{p_i \in \mathbb{R}^3\}_{i=1}^n$

Sample size k, $k \leq n$

Task network T

Task objective f

Find:

Subset $S^* \subseteq P$ of k points:

$$S^* = \arg\min_{S} f(T(S))$$

Challenge: Sampling is non-differentiable and can not be trained directly

Learned Sampling

S-NET

Learns to sample a pre-defined number of points

Input points
Generated points
Sampled points

ProgressiveNet

Learns to order the points by importance to the task, so any sample size can be chosen at inference time

Retrieval

Classification

Overall Accuracy

S-NET is equal or better for all sampling ratios

S-NET vs. ProgressiveNet

S-NET is better at trained sampling ratios ProgressiveNet is almost monotonic in # of points

90% time reduction with only 5% increase in space!

Reconstruction 4.0 + FPS **FPS** ProgressiveNet Input ProgressiveNet 2048 S-NET Sampling ratio (log₂ scale)

