Dexiong Chen †,1,2 Bowen Fan †,1,2 Carlos Oliver 1,2 Karsten Borgwardt 1,2

ution 1 Department of Biosystems Science and Engineering, ETH Zürich, Switzerland 2

²SIB Swiss Institute of Bioinformatics, Switzerland

Problem and contribution

- Input: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{X}$ and $\mathbf{x}'_1, \dots, \mathbf{x}'_{n'} \in \mathcal{X}'$.
- Output: correspondence $\mathbf{P} \in \mathbb{R}^{n \times n'}$ and embeddings $\mathbf{z}_i, \mathbf{z}'_{i'} \in \mathbb{R}^d$.

Domain 1 RNA-seq AlphaFold Network 1 ATAC-seq Experimental Network 2

Contribution

- We formulate the above problem as an optimization problem, jointly optimizing the correspondence matrix and the embeddings.
- We propose an alternating optimization strategy, by alternatingly solving a multidimensional scaling (MDS) and a Wasserstein Procrustes problem.
- Our algorithm, named Joint MDS, can effectively benefit from the optimization techniques for solving each individual sub-problem.
- We demonstrate the effectiveness of joint MDS in several machine learning applications.

Existing methods

Method	Input	Output	Limitations
Multidimensional scaling			
Discrete OT	$\mathcal{X}=\mathcal{X}'$	$\mathbf{P} \in \mathbb{R}^{n \times n'}$	same metric space
Gromov-Wasserstein	$[d_{ij}],[d_{i'j'}']$	$\mathbf{P} \in \mathbb{R}^{n \times n'}$	only correspondence

Joint MDS: overall algorithm

- Initialization: Solve $\mathbf{Z} = \text{MDS}(\mathbf{D}, \mathbf{W})$ and $\mathbf{Z}' = \text{MDS}(\mathbf{D}', \mathbf{W}')$ using SMACOF.
- Alignment: Solve Wasserstein Procrustes P, O = WP(Z, Z').
- Update $\hat{\mathbf{Z}}$, $\hat{\mathbf{D}}$, and $\hat{\mathbf{W}}$ using $\hat{\mathbf{Z}}$, $\hat{\mathbf{Z}}'$, $\hat{\mathbf{P}}$, and $\hat{\mathbf{O}}$.
- Embedding: Solve $\mathbf{Z}, \mathbf{Z}' = \mathrm{MDS}(\tilde{\mathbf{D}}, \tilde{\mathbf{W}})$ using SMACOF with \tilde{Z} as intialization.
- Repeat step Alignment and Embedding until convergence.

Overview of the Joint MDS problem

- Input: intra-dataset pairwise dissimilarities $\mathbf{D} \in \mathbb{R}^{n \times n}$ and $\mathbf{D}' \in \mathbb{R}^{n' \times n'}$.
- Output: correspondence $\mathbf{P} \in \mathbb{R}^{n \times n'}$ and embeddings $\mathbf{z}_i, \mathbf{z}'_{i'} \in \mathbb{R}^d$.

Optimization problem and solution

 $\min_{\substack{\mathbf{Z} \in \mathbb{R}^{n \times d}, \mathbf{Z}' \in \mathbb{R}^{n' \times d} \\ \mathbf{P} \in \Pi(\mathbf{a}, \mathbf{b}), \mathbf{O} \in \mathcal{O}_d}} \operatorname{stress}(\mathbf{Z}, \mathbf{D}, \mathbf{W}) + \operatorname{stress}(\mathbf{Z}', \mathbf{D}', \mathbf{W}') + 2\lambda \langle \mathbf{P}, d^2(\mathbf{ZO}, \mathbf{Z}') \rangle_F.$

• When P, O fixed, it amounts to minimizing $stress(\tilde{\mathbf{Z}}, \tilde{\mathbf{D}}, \tilde{\mathbf{W}})$ where

$$\tilde{\mathbf{Z}} := \begin{bmatrix} \mathbf{Z} \\ \mathbf{Z}' \end{bmatrix}, \quad \tilde{\mathbf{D}} := \begin{bmatrix} \mathbf{D} & 0 \\ 0 & \mathbf{D}' \end{bmatrix}, \quad \tilde{\mathbf{W}} := \begin{bmatrix} \mathbf{W} & \lambda \mathbf{P} \\ \lambda \mathbf{P}^{\top} & \mathbf{W}' \end{bmatrix}.$$

• When \mathbf{Z}, \mathbf{Z}' fixed, one recovers the Wasserstein Procrustes problem.

Weighted MDS [2]

$$MDS(\mathbf{D}, \mathbf{W}) := \min_{\mathbf{Z} \in \mathbb{R}^{n \times d}} stress(\mathbf{Z}, \mathbf{D}, \mathbf{W}) := \sum_{i,j=1}^{n} w_{ij} (d_{ij} - d(\mathbf{z}_i, \mathbf{z}_j))^2,$$

- Input: pairwise distance D and weight matrix W.
- Output: embeddings $\mathbf{z}_1, \dots, \mathbf{z}_n \in \mathbb{R}^d$.
- Algorithm: iterative majorization method SMACOF.

Wasserstein Procrustes [1]

$$WP(\mathbf{Z}, \mathbf{Z'}) := \min_{\mathbf{P} \in \Pi(\mathbf{a}, \mathbf{b})} \min_{f \in \mathcal{F}} \langle \mathbf{P}, d^2(f(\mathbf{Z}), \mathbf{Z'}) \rangle_F$$

- \mathcal{F} is a pre-defined invariance class.
- In particular if $\mathcal{F}=\mathcal{O}_d$, one recovers the Wasserstein Procrustes problem.
- Input: $\mathbf{Z} \in \mathbb{R}^{n \times d}, \mathbf{Z}' \in \mathbb{R}^{n' \times d}$. Output: $\mathbf{P} \in \mathbb{R}^{n \times n'}, \mathbf{O} \in \mathcal{O}_d$.
- Algorithm: Sinkhorn-Knopp (for OT) + SVD (for orthogonal Procrustes).

Joint visualization of two datasets

Unsupervised heterogeneous domain adaption

Method	Bifurcation	Swiss roll	Circular frustum	SNAREseq	scGEM	MNIST-USPS
SCOT	93.7	97.7	95.7	98.2	57.6	26.7
EGW	95.7	99.3	94.7	93.8	62.7	43.1
Joint MDS (d=2)	96.0	99.3	94.0	85.5	64.4	15.0
Joint MDS (d=16)	96.7	99.3	94.7	94.7	72.9	60.2

Human body pose alignment

Graph matching

Method	PPI 5%	PPI 15%	PPI 25%	MIMIC top 3	MIMIC top 5
MAGNA++	50.00	35.16	12.85	_	
HubAlign	46.06	32.47	27.39	_	_
GWL	84.31	74.35	67.42	27.98	42.14
Joint MDS	86.44±0.33	72.31 ± 0.62	55.3 ± 0.78	30.24±1.66	46.28 ± 1.51

Protein structure alignment

References

- [1] David Alvarez-Melis, Stefanie Jegelka, and Tommi S Jaakkola. Towards optimal transport with global invariances. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
- [2] Warren S Torgerson. Multidimensional scaling of similarity. *Psychometrika*, 30(4):379–393, 1965.