Homework Set #2

1. (25 points) Rank the following 3 functions by order of asymptotic growth. That is, find an arrangement $g_1(n)$, $g_2(n)$, $g_3(n)$ of the functions satisfying:

$$g_1(n) \in O(g_2(n)), g_2(n) \in O(g_3(n))$$

Justify your answer mathematically by showing values of c and n_o such that $g_i(n) \le c g_{i+1}(n) \quad \forall n \ge n_0$

Functions:

$$\left(\frac{1}{2}\right)^{n^3} \qquad \qquad 3^{4\log_3 n} \qquad \qquad 5\lg n + n^2 \lg\lg n$$

2. (25 points) Suppose that for 3 (possibly different) functions of n: $f_1(n)$, $f_2(n)$, $f_3(n)$ we know that:

i)
$$f_1(n) \in \Omega((1/2)^n)$$

i)
$$f_1(n) \in \Omega((1/2)^n)$$
 ii) $f_2(n) \in \Theta(n^2 \lg n)$ iii) $f_3(n) \in O(\lg^3 n)$

iii)
$$f_3(n) \in O(\lg^3 n)$$

]

a) If statements (i)-(iii) are true, can we conclude that $f_3(n) \in O(f_2(n))$? Why or why not?

b) If statements (i)-(iii) are true, can we conclude that $f_2(n) \in \Omega(f_1(n))$? Why or why not?

3. True or False (25 points).

a.
$$n \lg^2 n \in O(n^2)$$
 []
b. $n \lg^2 n \in \Omega(n^{1.05})$ []

b.
$$n \lg^2 n \in \Omega(n^{1.05})$$
 [

c.
$$n^3 \in o(n^3)$$
 []

d. The cost of the loop below is in O(n)

e. The cost of the above loop is in $\Omega(\lg n)$ [] **4.** (25 points) Pseudocode Analysis: For the pseudocode below for Mystery (n), find tight upper and lower bounds on its asymptotic worst-case running time f(n). That is, find g(n) such that $f(n) \in \Theta(g(n))$. (Assume that n is a positive integer.) Justify your answer.

Mystery
$$(n)$$
 $c \leftarrow 1$
for $i \leftarrow 1$ to n
do for $j \leftarrow i$ to n
do for $k \leftarrow n$ down to $\left\lfloor \frac{n}{2} \right\rfloor$
do $c \leftarrow c + 1$
print c