Als nächstes folgen die beiden verschiedenen Modbus Over Serial Line Protocol und Modbus Messaging On TCP/IP Protocol

Beim Modbus Over Serial Line Protocol können die Daten über zwei unterschiedliche Modi übertragen werden, der RTU und ASCII Modus. Näheres Der ASCII Modus ist optional und wird in mod [2006b] detailliert beschrieben. Der RTU Modus wird von allen modbusfähigen Komponenten unterstützt und spezifiziert das folgende Format zur Übertragung der einzelnen Bytes: Jede Byteübertragung beginnt mit einem Startbit, auf das zu übertragende Byte, bsetehend aus acht einzelnen Bits, folgt, bevor die Übertragung optional von einem Paritätsbit und einem Stoppbit beziehungsweise lediglich von zwei Stoppbits abgeschlossen wird. Dabei wird jedes zu übertragende Byte als zwei 4-bit hexadezimales Zeichen übertragen[mod, 2006b, S. 12f.]. Die Paritätsprüfung ist optional und dient der Fehlerüberprüfung des Telegramms, wie bereits in Abschnitt 2.2 erläutert. Der Rahmen eines gesamten Modbus RTU Telegramms besteht aus der Slave Adresse, die für jeden Slave eindeutig ist und zwischen 1 und 247 liegt, und dem Function Code, die jeweils aus einem Byte bestehen. Darauf folgen die eigentlichen Informationen für die 0 bis 252 Bytes vorgesehen sind. Abgeschlossen wird der Rahmen durch ein CRC Feld, dass aus einem CRC Low und einem CRC High byte aufgebaut ist und dazu dient das Telegramm auf Fehler zu überprüfen. Der Ablauf und Vorgang des CRC Checks ist detailliert in mod [2006b] beschrieben. Die Übertragung eines Telegramms erfolgt byteweise, wie zuvor beschrieben. Die Datensicherung findet also durch Parität und CRC auf verschiedenen Ebenen statt. Die genaue Übertragungszeit eines Bytes und einer Nachricht hängt von der Baudrate ab. Um den Beginn und den Abschluss eines RTU Rahmens eindeutig zu definieren, geschieht dies in Abhängigkeit von der Übertragungsgeschwindigkeit. Zwischen einzelnen Bytes innerhalb eines Rahmens folgt ein stilles Intervall, dass je nach Länge angibt ob das Telegramm beendet ist. Auf eine Intervall kleiner gleich der anderthalbfachen Übertragung eines Bytes folgt eine weiteres Byte. Ist das stille Intervall länger als die dreieinhalbfache Byteübertragungszeit markiert dies das Ende eines Telegramms und den Beginn eines nächsten Telegramms [mod, 2006b, S. 13]. Diese Zusammenhänge sind zur Veranschaulichung in Abb. 2.14 zusammengefasst.

Der Implementierungsleitfaden legt auch die Spezifikationen der physikalischen Schicht fest, die nun folgen. Er schlägt vor die EIA 438 Schnittstelle als elektrisches/physikalisches Interface zu verwenden, erlaubt aber auch weiterhin die Implementierung durch die EIA 232 Schnittstelle, beides über ein verdrilltes Leiterpaar. Weiterhin werden die Datenraten von 9.600 und 192.000 bps und eine Even Parität bei der Byteübertragung als Standard festgelegt. Die Standardverdrahtung der Komponenten erfolgt bei beiden elektrischen Standards über ein verdrilltes Leiterpaar und einer gemeinsamen Verbindungsleitung common. Die beiden Leitungen des verdrillten Paares werden mit D1, welche auch als D+ oder A Leitung bezeichnet wird, und D0, welche auch als D- oder B Leitung bezeichnet wird, bezeichnet. Ein Standard Netzwerk besteht aus maximal 32 Teilnehmern, dass durch den Einsatz von Repeatern auch vergrößert werden kann. Außerdem wird die Bus-Struktur als Topologie beschrieben, nach der

Abb. 2.14: Serielle Kommunikation über Modbus RTU nach [mod, 2006b, S. 12f.]

die einzelnen Komponenten im Netzwerk angeordnet werden, unter der Voraussetzung, dass die Busleitung an beiden Enden durch einen Widerstand von 150 Ohm zwischen der D0 und D1 Leitung abgeschlossen werden [mod, 2006b, S. 20ff.]. Die Verbindung der Kabel kann im einfachsten Fall durch Schraubklemmen erfolgen, jedoch können auch genormte mechanische Interfaces, also Standard Steckverbindungen genutzt werden, deren Einsatz und Verkabelung/Anschlüsse in [mod, 2006b, S. 29ff.] detailliert beschrieben sind.

XXXXXXX

Beim Modbus Messaging on TCP/IP Protocol stellt die Möglichkeit zur Verfügung, Geräte, die über ein Ethernet miteinander verbunden sind, über ein Client/Server Modell kommunizieren zu lassen. Des Weiteren erlaubt es dieses Protokoll explizit über Bridges, Gateways oder Router Netzwerke miteinander zu verbinden. Dabei dürfen auch serielle Subnetzwerke zu verbinden und erlaubt auch zwischen diesen Endgeräten die Kommunikation [mod, 2006a, S. 2f.]. Diese Kommunikationsarchitektur ist auf in Abb. 2.15 dargestellt.

Außerdem ist eine leicht verschiedne ADU vorhanden, wie in Abbildung REF ADU TCP zu sehen. Modbus Application Protocol Header MBAP Header ist 7 bytes lang und enthält unit identifier ähnlich slave adress/id, adresse für modbus routing, ein bytecount, der die länge des folgenden Telegramms angibt(inklusive Unit identifier und Daten) auch wenn gesplittet, CRC-32 error check, protocol identifier mit modbus 0, transaction identifier vom client, der nur kopiert wird vom server um transaktionen einander zuzuordnen. Alle Kommunikation erfolgt über TCP Port 502 [mod, 2006a, S. 4f.]

Abb. 2.15: Die Modbus TCP/IP Kommunikationsarchitektur aus [mod, 2006a, S. 4]

Abb. 2.16: Angepasster Rahmen für Telegramme nach dem Modbus TCP/IP Protokoll aus [mod, 2006a, S. 4]

Alle Modbus /TCP ADU werden via TCP zum Modbus rgeistrierten Port 502 geschickt.

Modbus tcp Komponenten können sowohl client als auch server interface haben. [mod, 2006a, S. 7f.]

Der Modbus Client erlaubt den Informationsaustausch indem er eine ADU erstellt Der Modbus Server wartet auf Anfragen über den TCP Port 502

Transmission control protocol TCP und IP ist Internet Protocol. TCP als Transport-schicht verbindungsorientiert: Teilt Daten in Datenblöcke, sogeannte Pakete, zum Transport. IP regelt Netzwerkaufgaben, siehe OSI Modell Netzwerkschicht, und versendet die Daten über Telegrammservice und packt den MBAP Header an jedes Paket dran dran. Der Port erlaubt die parallele Nutzung von Ethernet Netzwerken, da er den Übertragungsprozess eindeutig kennzeichnet. Verbindungsorientiert heisst über ein Socket weren zwei prozesse miteinander verbunden und die empfangenen Telegrammen werden/müssen quittiert [Schnell u. Wiedemann, 2006, S. 16ff.]. Der interessierte Leser findet eine deatillierte Beschreibung des Ethernet TCP/IP Standards in Furrer [2003].

TCP übernimmt Netzwerkmanagement - TCP Management: Hauptaufgabe ist das connection management. Das managen von Verbindungen kann entweder durch ein Modul erfolgen oder durch die Nutzeranwendung selbst durch die Zugriffsüberwachung der sockets. Der Port 502 ist für Modbus Kommunikation reserviert, jedoch können auch andere Ports genutzt werden falls die Modbusgeräte eine Portkonfiguration unterstützen. Weiterhin wird der Datenfluss und der Einsatz der Netzwerkressourcen

überwacht. [mod, 2006a, S. 7ff.]

Generell, Verbindungsmanagement wichtig, da Modbus/TCP Kommunikation zwischen einem Server und einem Clienten eine Verbindung benötigt. Hinweise gibt der Guide, das die Verbindungen nicht dauernd geöffnet und geshclossen werden und auch mehrere viele Modbus Transaktionen während der Verbindung stattfinden. Außerdem sollte sich auf ein Minimum von Verbindungen beschränkt werden für den gleichen Server. [mod, 2006a, S. 9f.] Das Nutzer TCP Management umfasst folgende Aufgaben, die aktive und passive Herstellung von Verbindungen sowie das schließen dieser und das festlegen von maximalen Verbindungen [mod, 2006a, S. 11ff.]. Verbindungsherstellung über Ethernet IP, also der eindeutigen Adresse, des Geräts und Portnummer und die Socket Nummer. Der Socket ist ein Endpunkt innerhalb eines Rechners, über den die Kommunikation läuft und der einem Port eindeutig zugewiesen ist [mod, 2006a, S. 15f.].

Physikalisch bedient sich der Ethernet Schnitstelle also einem normalen Netzwerkkabel.

Diese Kommunikationstechnologie und die verschiedenen Protokolle finden im Rahmen der Anlage in Kapitel dann Anwendung

2.3 Technische Grundlagen zur Modellbildung

In diesem Kapitel werden die technischen Grundlagen zur Bildung eines mathematischen Modells des Raumes erläutert. Themrodym systeme 1. HS thermo Wärmeübertragung

2.3.1 Thermodynamische Systeme

Im Raummodell müssen Energieströme, genauer betrachtet Wärmeströme, untersucht werden. Um dieses thermodynamischen Vorgänge mit Hilfe von Bilanzierungsgleichungen zu beschreiben, folgt zunächst ein kurze Einführung in die Thermodynamische Systembildung nach [Baehr u. Kabelac, 2012, S. 11ff.].

Thermodynamische Systeme werden durch den zu untersuchenden Raum abgegrenzt. Sie dienen dem Zweck der Bilanzierung von Massen- und Energieströmen und alles was diesen abgegrenzten Raum an den Systemgrenzen umgibt wird als Umgebung bezeichnet. Die begrenzenden Flächen können gedanklicher, physischer oder beider Natur zugleich sein, wichtig ist jedoch das die Systemgrenzen eindeutig festgelegt sind [Baehr u. Kabelac, 2012, S. 11].

Anhand der Eigenschaften von den Systemgrenzen lassen sich die thermodynamischen Systeme weiter differenzieren. Solche Systeme, deren Grenzen undurchlässig für Materie sind, werden als *geschlossene Systeme* bezeichnet und werden durch eine konstante Stoffmenge innerhalb des Systems gekennzeichnet. Die Grenzen eines geschlossenen

Systems sind meistens räumlich anhand eines fixen Volumens definiert, können aber auch beweglich sein, wie z.B. das Volumen einer vorgegebenen Stoffmenge unabhängig von dessen räumlicher Ausdehnung [Baehr u. Kabelac, 2012, S. 12].

Sind die Grenzen von thermodynamischen Systemen für Materie durchlässig, werden diese als offene Systeme bezeichnet. In der Regel werden diese von Stoffströmen durchflossen und durch räumlich festgelegte Grenzen beschrieben. Diese werden in der Literatur auch als Kontrollraum oder Kontrollvolumen bezeichnet [Baehr u. Kabelac, 2012, S. 12].

Ein abgeschlossenes System umfasst in der Regel mehrere Systeme oder ein einzelnes System und dessen Umgebung, so dass es zwischen den Grenzen des abgeschlossenen Systems und seiner Umgebung keine Wechselwirkungen gibt. Die Systemgrenzen werden also so gelegt, dass über sie hinweg keine beziehungsweise keine relevanten³ Flüsse von Materie und Energie [Baehr u. Kabelac, 2012, S. 13].

Nach der Abgrenzung folgt die Beschreibung von thermodynamischen Systemen und dessen Eigenschaften. Diese erfolgt durch Variablen und physikalische Größen die ein System kennzeichnen. Falls die Variablen feste Werte annehmen werden diese als Zustandsgrößen bezeichnet, da sie den Zustand eines Systems bestimmen [Baehr u. Kabelac, 2012, S. 13]. Im Rahmen der Modellbildung in Kapitel 4 ist es ausreichend die Vorgänge und Effekte auf systemischer Ebene zu betrachten, wodurch sich Modelle mit wenigen Variablen und physikalischen Größen beschreiben lassen.

Die Variablen lassen sich in äußere Größen, welche den mechanischen Zustand eines Systems beschreiben⁴, und innere Größen gliedern, welche den thermodynamischen Zustand, also die Eigenschaften der Materie innerhalb der Systemgrenzen, beschreiben[Baehr u. Kabelac, 2012, S.13 f.].

Innerhalb der Grenzen eines thermodynamischen Systems, und damit implizit auch für das Raummodell⁵ wird *Homogenität* angenommen. Dies bedeutet, dass die physikalischen Eigenschaften, wie zum Beispiel Temperatur und Druck, sowie die chemische Zusammensetzung an jeder Stelle innerhalb des Systems homogen ist, also die gleiche Ausprägung besitzt [Baehr u. Kabelac, 2012, S.15].

Da wir im Rahmen der Modellbildung Zustände betrachten müssen auch deren Änderungen genauer untersucht werden. Die Zustandsänderungen eines Systems werden durch Änderungen von Energie oder Materie über dessen Grenzen hinweg bedingt und finden meist im Austausch der Umgebung statt. Während einer solchen Änderung des Systemzustands wird ein Prozess durchlaufen, der eine zeitliche Abfolge von Ereignissen ist. Eine Änderung des Zustands eines Systems mit der gleichen Wirkung kann also durch verschiedene Prozesse bewirkt werden. Daher beschreibt ein Prozess nicht nur die Veränderung des Zustands sondern viel mehr die Beziehungen zwischen einem System und seiner Umgebung [Baehr u. Kabelac, 2012, S.21 f.].

³ Relevant im Sinne von kaum messbarer Fluss und nicht messbare Auswirkung auf das System.

 $^{^4}$ Zum Beispiel die Koordinaten im Raum oder die relative Geschwindigkeit zum Beobachter)

⁵ Diese Annahme wird im Kapitel 5 noch überprüft und kritisch hinterfragt werden müssen

Ein Prozess kann aber auch innerhalb eines Systems stattfinden, dass heißt ohne äußere Einwirkungen. Dies geschieht zum durch das Aufheben innerer Hemmungen oder dem Wegfall Zwängen von Außen. Diese Prozesse laufen in abgeschlossenen Systemen meist von selbst ab und streben als Ziel einen ausgeglichenen, also homogenen, Endzustand an. Ausgleichsprozesse dienen somit dazu, einen Gleichgewichtszustand zu erreichen und repräsentieren Wechselwirkungen zwischen verschiedenen Teilen eines abgeschlossenen Systems. Dabei gleichen sich die Zustandsgrößen von einzelnen Subsystemen wie zum Beispiel der Druck oder die Temperatur einander an. Der Gleichgewichtszustand wird also durch die Zustände in den einzelnen Subsystemen bestimmt und ist dadurch charakterisiert, dass ein System diesen Zustand nicht von sich aus sondern nur durch äußere Eingriffe verlässt, zum Beispiel durch eine Veränderungen in der Umgebung. Die Erfahrung lehrt, dass ein System einem Gleichgewichtszustand entgegen strebt, wenn es sich selbst überlassen wird [Baehr u. Kabelac, 2012, S.22 f.]. Im Rahmen der Modellbildung in Kapitel 4 nehmen diese Ausgleichsprozesse eine zentrale Rolle ein, weil der Großteil an Änderungen von einzelnen Zustandsgrößen innerhalb des Raumes darauf zurückgeführt werden können.

2.3.2 Erster Hauptsatz der Thermodynamik

Der erste Hauptsatz der Thermodynamik wird im Folgenden als allgemeiner Energieerhaltungssatz formuliert und anschließend angewendet um eine Energiebilanzgleichung für geschlossene thermodynamische Systeme zu erhalten.

Der erste Hauptsatz der Thermodynamik erweitert den mechanischen Energieerhaltungssatz um die Energieformen Wärme und innere Energie. Er handelt ganz allgemein vom Prinzip der Energieerhaltung und dient er der Bilanzierung von Systemen [Baehr u. Kabelac, 2012, S. 43].

Die Gesamtenergie eines Systems E setzt sich zusammen aus der potenziellen E_{pot} und kinetischen Energie E_{kin} wie in der Mechanik und wird durch die innere Energie U ergänzt [Baehr u. Kabelac, 2012, S. 49]:

$$E := E_{pot} + E_{kin} + U \tag{Gl. 1}$$

Im weiteren Verlauf der Arbeit werden nur ortsfeste Systeme betrachtet die sich dadurch auszeichnen, dass deren potenzielle Energie E_{pot} in etwa konstant ist. Weiterhin erfahren sie im betrachteten Intertialsystem Erde auch nur sehr kleine Änderungen in ihrer Geschwindigkeit, weshalb auch die kinetische Energie E_{kin} in etwa konstant ist. Da die Änderungen der mechanischen Energien in Bezug auf die Änderung der inneren Energie sehr klein sind werden im Folgenden nicht weiter betrachtet und die Gesamtenergie eines Systems E vereinfacht und lediglich aus der inneren Energie bestehend angenommen.

Die innere Energie hängt von der spezifischen Wärmekapazität c_p , der Masse eines

Systems m_{sys} und der Temperatur t beziehungsweise T ab [Baehr u. Kabelac, 2012, S. 54]:

$$U := m * c_p * T = m * c_p * t + u_0, mit t = T - T_0$$
 (Gl. 2)

Nach dem Prinzip der Energieerhaltung, kann die Energie eines Systems also weder erzeugt noch vernichtet werden sondern lediglich durch den Energietransport über dessen Grenzen hinweg verändert werden. Daraus ergeben sich folgende qualitative Formen des Energietransports [Baehr u. Kabelac, 2012, S. 48f.]:

- Die Arbeit W, die entweder von oder an einem System verrichtet wird, in differentieller Form die Leistung P.
- Die Wärme Q, die entweder in das System hinein- oder herausfließt, in differentieller Form der Wärmestrom \dot{Q} .
- Der Transport von Materie, also das Einbringen oder Wegnehmen von Masse m eines System, in differentieller Form die Materialflüsse \dot{m} .

Mit der zuvor getroffenen Annahme, dass die innere Energie der des Systems entspricht, und unter Beachtung der Vorzeichenkonvention, welche besagt dass zugeführte Energie positiv und abgeführte Energie negativ zu bewerten ist, lassen sich die Änderungen der Energie eines Systems mit der folgenden Gleichung quantitativ beschreiben [Baehr u. Kabelac, 2012, S. 54]:

$$\Delta U = Q + W + m_{in} * c_p * T_{in} - m_{out} * c_p * T_{out}$$
beziehungsweise in differentieller Form
$$\frac{dU}{dt} = \dot{U} = \dot{Q} + P + \sum \dot{m}_{in} * c_p * T_{in} - \sum \dot{m}_{out} * c_p * T_{out}$$
(Gl. 3)

2.3.3 Wärmeübertragung

Wärmeströme spielen bei der Modellbildung in Kapitel 4 eine wichtige Rolle, daher ist eine genauere Betrachtung dieser unumgänglich und im Folgenden werden die Grundlagen dazu erläutert.

Die Definition von Wärmeübertragung ist nach [Böckh u. Wetzel, 2014, S. 1] "[...] der Transfer der Energieform Wärme aufgrund einer Temperaturdifferenz. "Die Definition umfasst also einen zuvor beschriebenen Ausgleichsprozess und eine Änderung der inneren Energie eines thermodynamischen Systems. Die Wärmeübertragung kann nach $Nu\beta elt^6$ grundsätzlich durch zwei verschiedene Arten stattfinden [Böckh u. Wetzel, 2014, S. 3f.]:

Durch Strahlung, bei der die Übertragung von Wärme ohne stofflichen Träger

 $^{^6}$ Beschrieben in seinem Aufsatz "Das Grundgesetz des Wärmeüberganges", 1915.

durch elektromagnetische Wellen zwischen Oberflächen erfolgt. Weil diese Art der Wärmeübertragung keine Relevanz für die weiteren Betrachtungen hat wird er interessierte Leser an dieser auf Böckh u. Wetzel [2014] verwiesen der diese Thematik detailliert ausführt.

 Durch Wärmeleitung, die sich wiederum in die Wärmeübertragung zwischen ruhenden Stoffen, und die Konvektion, die eine Wärmeübertragung zwischen einem ruhenden und einem strömenden Fluid beschreibt, aufteilen lässt.

Die übertragene Wärmemenge ist bei der reinen Wärmeleitung lediglich von den Stoffeigenschaften und der Temperaturdifferenz abhängig, bei der Konvektion hingegen, unabhängig davon ob erzwungen oder frei, hängt sie von der Strömung der Fluide ab. Die Konvektion ist ein Effekt zusätzlich zur reinen Wärmeleitung auftritt und ist im weiteren Verlauf der Arbeit nicht relevant und wird deshalb nicht detaillierter ausgeführt [Böckh u. Wetzel, 2014, S. 3f.]. Erfolgt der Wärmetransport stationär, dass heißt er ist von äußeren Anregungen bedingt und unabhängig von der Zeit, lässt er sich qualitativ einfach als konstanter Wärmestrom \dot{Q} beschreiben und gibt an wie viel Wärme pro Sekunde übertragen wird [Böckh u. Wetzel, 2014, S. 5ff.]. Der Wärmestrom ist wie zuvor bereits erwähnt von den Stoffeigenschaften abhängig, welche von der Wärmedurchgangszahl $U-Wert^7$ und der Austauschoberfläche $A_{exchange}$, an der der Wärmeaustausch stattfindet. Typische U-Werte für verschiedene Materialien und Komponenten finden in der einschlägigen Literatur und beziehen sich bei der Übertragung durch eine Wand im europäischen Raum auf die Außenfläche [Böckh u. Wetzel, 2014, S. 28]. Damit lässt sich der Wärmestrom unter Berücksichtigung der Abhängigkeiten durch die kinetische Kopplungsgleichung quantifizieren [Böckh u. Wetzel, 2014, S. 6f.]:

$$\dot{Q} := u * A * (t_1 - t_2) \tag{Gl. 4}$$

Unterschiedliche geometrische Ausprägungen, wie zum Beispiel ein Wärmeaustausch durch eine Wand oder ein Rohr hindurch, finden damit implizit bei der Austauschoberfläche Berücksichtigung.

2.4 Technische Grundlagen zur Solar- und Gebäudetechnik

2.4.1 Außenklima und Komponenten

Der Begriff Außenklima wird häufig im Zusammenhang mit dem Thema Umwelt und deren Einflüsse auf Gebäude gebraucht. Der allgemeine Begriff des Klimas wird von [Peter Häupl, 2013, S. 295] definiert als:

⁷ Der U-Wert wurde bis zu der Umstellung auf die europäischen Prüfnormen 2003 als k-Wert bezeichnet und ist unter dieser Bezeichnung noch häufig in der Literatur zu finden [Sack, 2004, S.1 f.]

"die Summe aller Umweltfaktoren, die unmittelbar oder mittelbar Einfluss nehmen auf die Gesundheit und das Befinden von Menschen und Tieren, auf die Entwicklung von Pflanzen sowie auf den Zustand von Lagergütern, Produktionsverfahren, Maschinen, Apparaten und Bauwerken."

Daraus lässt sich ableiten, dass das Außenklima ein Aspekt des Klimas ist und den meteorologischen Umweltzustand außerhalb von Gebäuden, an einem bestimmten, lokalen Ort meint. Abhängig vom Außenklima stellt sich innerhalb von Gebäuden ein Innenklima ein, welches direkten Einfluss auf das Wohlbefinden von Menschen hat und wodurch der mittelbare Einfluss des Außenklimas gegeben ist. Um den Zustand zu beschreiben werden viele Zustandsgrößen herangezogen. Um einen Überblick zu bekommen, lassen sich diese in verschiedene Bereiche gliedern [Peter Häupl, 2013, S. 295f.]: Schall Licht Temperatur und Feuchte

Im Hinblick auf die Modellbildung in Kapitel 4 sind lediglich die Größen zur Beschreibung der Temperatur und des Lichts von Interesse, eine detaillierte Ausführung in die Bereiche Schall und Feuchte und deren Zustandsgrößen ist in Peter Häupl [2013] gegeben.

Je nach Größe des Gebietes wird von einem Regional- bwziehungsweise Makroklima, das große Gebiete umfasst, oder von einem Lokal- beziehungsweise Mikroklima gesprochen, dass kleine Gebiete wie eine Straße oder einen Park umfasst und von deren Besonderheiten abhängig ist. So kann z.B. die Außentemperatur je nach Verschattungsgrad einer Straße lokal erhöht oder erniedrigt sein. Das Klima folgt in verschiedenen Regionen der Erde bestimmten Charakteristiken, welche sich in Klimazonen zusammenfassen lassen. Die Erde besteht aus vierzehn verschiedenen Klimazonen und in Europa wird von einem Übergangsklima gesprochen [Peter Häupl, 2013, S. 296f.].

Eine Übersicht der Außenklimakomponenten, die einen Einfluss auf die Gebäudetechnik und damit auch auf die Raumtemperatur haben ist in Abb. 2.17 gegeben. Für die Modellbildung ist weiterhin eine Quantifizierung der relevanten Größen des Außenklimas in den Bereichen Licht und Temperatur erforderlich. Wie bereits im vorherigen Abschnitt erwähnt, werden Wärmeströme durch Temperaturdifferenzen bedingt, weshalb die Außenlufttemperatur HierSymbol einen großen Einfluss auf die Raumtemperatur hat und durch Messung quantifiziert werden muss. Des Weiteren werden die lichttechnischen Größen der kurzwelligen direkten und diffusen Strahlung durch die beiden Strahlungsintensitäten G_{dif} und G_{dir} beschrieben, da sie Energie durch einen Wärmestrom in ein System einbringen und damit auch einen Einfluss ausüben.

2.4.1.1 Die Außenlufttemperatur

Eine Übersicht über die Außenlufttemperatur

Abb. 2.17: Komponenten des Außenklimas aus [Peter Häupl, 2013, S. 298]

2.4.1.2 Sonnenstrahlung

Nicolai [2013] [Quaschning, 2011, S. 63ff.] [Kaltschmitt, 2013, S. 61ff.] [Peter Häupl, 2013, S. 315ff.] Bild

Algorithmus nach Reda [2008]

Nutzung Berechnung/Implementierung von pys

2.4.2 Gebäudetechnik Glas und Wärmedurchgangskoeffizienten

Auf gehts

Glas nach [Peter Häupl, 2013, S. 61ff.] Durchlassgrad nach [Peter Häupl, 2013, S. 604ff.] Transmissionsgrad

3 Anlagendesign 32

"Design is the appropriate combination of materials in order to solve a problem. " - Charles Eames

3 Anlagendesign

Ziel dieses Kapitel ist es, eine Anlage zur Raumtemperaturregelung für den Betrieb mit Modellprädiktiver Regelung zu konzipieren, zu konkretisieren und im letzten Schritt umzusetzen. Dazu werden zunächst die Anforderungen an die Anlage analysiert und weiterhin die Vorgaben und Rahmenbedingungen zur Anlage von Seiten der Hochschule Karlsruhe spezifiziert und ausgeführt. Daraus wird eine Idee abgeleitet, die anschließend zu einem Konzept weiterentwickelt und in ein konkretes Anlagendesign umgesetzt wird. Dabei werden die einzelnen Anlagenteile und deren Funktionsweisen näher beschrieben und auf die realen Einsatzbedingungen ausgelegt. Abschließend wird die Installation und dabei aufgetretenen Besonderheiten der Anlage beschrieben.

3.1 Analyse der Anforderungen

3.1.1 Einsatzziele und Rahmenbedingungen

Um die Anforderungen an eine Anlage zu bestimmen, die sich sich für die Anwendung mit Modellprädiktiver Regelung eignet, wird zunächst der Zweck und die Einsatzziele der Anlage untersucht und definiert. In Kapitel 1.1 wurde bereits darauf hingewiesen, dass es die Vorgabe von Seiten der Hochschule ist, die Einsatzziele in Einklang mit der großen Anlgae zu bringen und komplementär zu wählen. Daher wurden im Dialog mit den Projektverantwortlichen⁸ für die Forschung im Bereich solarer Anwendungen an der Hochschule Karlsruhe gemeinsam konkrete Einsatzziele der Anlage erarbeitet. Als Ergebnis wurden die folgenden, konkreten Ziele vereinbart:

- Die Einarbeitung in die Thematiken Modellbildung, Kommunikation von technischen Systemen und Modellprädiktive Regelung soll durch eine praktisches Anwendung unterstützt werden.
- Es soll Know-how im Bereich der Kommunikation von technischen Systemen aufgebaut werden, insbesondere im Umgang mit der Software, der Hardware und zahlreichen Schnittstellen.
- Die Anlage soll eine hohe Funktionalität, also möglichst wartungsarm, und eine hohe Robustheit gegenüber Fehlern und Beschädigungen besitzen, da bei der Einarbeitung eine erhöhte Wahrscheinlichkeit der Fehlbedienung besteht und Schäden dadurch vermieden werden sollen.
- Es soll ein Vergleich verschiedener Regelungsmethodiken beim Einsatz von

⁸ In Person von Herrn Adrian Bürger und Markus Bohlayer

3 Anlagendesign 33

Modellprädiktiver Regelung ermöglicht werden.

 Außerdem soll ein Vergleich von Ergebnissen bei der Variation von Steuerungsparametern sowie beim Einsatz verschiedener Steuerungs- und Regelungsalgorithmen ermöglicht werden.

- Des Weiteren soll die Anlage möglichst flexibel ansteuerbar und erweiterbar sein, damit der Grad der Komplexität anpassbar ist und die Anlage um weitere Funktionen oder Features ergänzt werden kann.
- Der temperaturerhöhende Effekt der Sonneneinstrahlung auf die Raumtemperatur soll untersucht werden können.
- Im Rahmen der Anwendungsforschung soll der Raum zur Temperaturregelung möglichst nahe an der Realität sein, also Störgrößen beinhalten und nicht ungenutzt beziehungsweise leerstehend sein.

Zusammenfassend wurde festgehalten, dass die Anlage als Forschungsumgebung für Entwicklungs-, Test- und Anwendungszwecke von verschiedenen Steuerungen und Regelungen dienen soll.

Weiterhin wurden von Seiten der Hochschule Karlsruhe⁹ Rahmenbedingungen definiert, die im Folgenden zusammengefasst sind:

- Der Raum K004a im K Gebäude der Hochschule Karlsruhe wird zur Installation der Anlage und Einrichtung der Forschungsumgebung zur Verfügung gestellt.
- Die Installation der Anlage muss mit minimalem baulichem und finanziellem Aufwand zu realisieren sein.
- Für die Kommunikation innerhalb der Anlage soll die Modbus Kommunikationstechnologie mit mindestens zwei verschiedenen übertragungsprotokollen genutzt werden.
- Die Modellprädiktive Regelung soll mit Hilfe der Plattform JModelica.org erfolgen.

3.1.2 Definition der Anforderungen

Diese Einsatzziele und Rahmenbedingungen definieren implizit Anforderungen an eine Anlage, welche im Nachfolgenden explizit ausgeführt werden und aus Gründen der übersichtlichkeit die wichtigsten in Tabelle Tab. 3.1 zusammengefasst sind.

⁹ In Person von Frau Professor Angelika Altmann-Dieses, Herrn Professor Marco Braun und Herrn Adrian Bürger