Fundamentos de Ingeniería Eléctrica

Tema 7: Régimen sinusoidal permanente

Contenidos

- Señal sinusoidal
- Fasor
- Impedancia y admitancia compleja
- Ley de Ohm
- Leyes de Krichhoff
- Método de mallas
- Método de nudos
- Teorema de superposición
- Teorema de Thevenin/Norton
- Bobinas acopladas
- Diagrama fasorial

La rueda

La primera rueda de la que se tiene constancia fue usada en Ur, Mesopotamia en torno al 3.500 a.C.

El generador de corriente alterna

Los primeros generadores de corriente alterna aparecieron en 1880

El generador de corriente alterna

Corriente continua vs alterna Video 1

Señal sinusoidal

Una señal sinusoidal tiene la siguiente expresión $v(t) = V_m \cos(\omega t + \phi)$

$$V_e = \sqrt{\frac{1}{T} \int_{t_0}^{t_0+T} v^2(t)dt} = \frac{V_m}{\sqrt{2}}$$
 $f = \frac{1}{T}$ $\omega = 2\pi f = \frac{2\pi}{T}$

$$\omega = \frac{1}{T}$$
 $\omega = 2\pi f = 0$

Repaso trigonometría

$$e^{j\phi} = \cos\phi + j\sin\phi$$

$$\tan\phi = \frac{\sin\phi}{\cos\phi}$$

$$\sin^2\phi + \cos^2\phi = 1$$

$$\sin\left(\frac{\pi}{2} - \phi\right) = \cos\phi$$

$$\cos\left(\frac{\pi}{2} - \phi\right) = \sin\phi$$

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

$$\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin\alpha\cos\beta = \frac{1}{2}(\sin(\alpha - \beta) - \cos(\alpha + \beta))$$

Respuesta sinusoidal

El interrumptor ha estado abierto un tiempo suficientemente largo y se cierra en t=0. Determina la $i(t),t\geqslant 0$.

Datos: $v_g(t) = V_m \cos(\omega t + \phi)$

$$v_R(t) = Ri(t)$$
 $v_L(t) = L\frac{di(t)}{dt}$

Aplicando la LKT

$$Ri(t) + L\frac{di(t)}{dt} = V_m \cos(\omega t + \phi)$$

Esto es una ecuación diferencial ordinaria:

- de primer orden
- de coeficientes constantes
- y no homogénea

En primer lugar calculamos la solución homogénea, es decir, la que satisface la ecuación diferencial con el término de la derecha igual a 0

$$Ri(t) + L\frac{di(t)}{dt} = 0 \implies i_H(t) = Ae^{-\frac{R}{L}t}$$

donde A es una constante a determinar. A continuación calculamos la solución particular de la forma $i_P(t) = B\cos(\omega t + C)$, con B y C dos constantes a determinar. Si sustituimos la solución particular en la ecuación diferencial orginal obtenemos:

$$RB\cos(\omega t + C) - BL\omega\sin(\omega t + C) = V_m\cos(\omega t + \phi)$$

Usando trigonometría obtenemos los siguientes valores de $B\ {\it y}\ C$

$$B = \frac{V_m}{\sqrt{R^2 + (L\omega)^2}} \qquad C = \phi - \arctan\frac{L\omega}{R}$$

Por lo tanto, la solución particular queda como

$$i_P(t) = \frac{V_m}{\sqrt{R^2 + (L\omega)^2}} \cos\left(\omega t + \phi - \arctan\frac{L\omega}{R}\right)$$

La solución final es la suma de la homogénea más la particular

$$i(t) = i_H(t) + i_P(t) = Ae^{-\frac{R}{L}t} + \frac{V_m}{\sqrt{R^2 + (L\omega)^2}} \cos\left(\omega t + \phi - \arctan\frac{L\omega}{R}\right)$$

Para calcular el valor de la constante A usamos la condición inicial de

$$i(t=0) = 0 \implies A = -\frac{V_m}{\sqrt{R^2 + (L\omega)^2}} \cos\left(\phi - \arctan\frac{L\omega}{R}\right)$$

La expresión i(t) queda como

$$i(t) = -\frac{V_m}{\sqrt{R^2 + (L\omega)^2}} \cos\left(\phi - \arctan\frac{L\omega}{R}\right) e^{-\frac{R}{L}t} + \frac{V_m}{\sqrt{R^2 + (L\omega)^2}} \cos\left(\omega t + \phi - \arctan\frac{L\omega}{R}\right)$$

Cuando $t \to \infty$ el primer término se va a 0 (término transitorio) Cuando $t \to \infty$ el segundo término no se va a 0 (término permanente)

Pasado un cierto tiempo, la intensidad pasa a ser una función sinusoidal

En régimen permanente, la intensidad es una señal sinusoidal

- de la misma frecuencia que la señal $v_q(t)$
- de distinta amplitud que la señal $v_g(t)$
- de distinta fase que la señal $v_q(t)$

Concepto de fasor

Usa relaciones trigonométricas para calcular $v_g(t)$ y exprésala como una única función sinusoidal

Datos:
$$v_1(t) = 20\cos(\omega t - 30^\circ), v_2(t) = 40\cos(\omega t + 60^\circ)$$

$$\begin{split} v_1(t) &= 20\cos(\omega t - 30^\circ) = 20\cos\omega t \cos 30^\circ + 20\sin\omega t \sin 30^\circ \\ v_2(t) &= 40\cos(\omega t + 60^\circ) = 40\cos\omega t \cos 60^\circ - 40\sin\omega t \sin 60^\circ \\ v_g(t) &= v_1(t) + v_2(t) \\ &= (20\cos 30 + 40\cos 60)\cos\omega t + (20\sin 30 - 40\sin 60)\sin\omega t \\ &= 37{,}32\cos\omega t - 24{,}64\sin\omega t \\ &= 44{,}72\left(\frac{37{,}32}{44{,}72}\cos\omega t - \frac{24{,}64}{44{,}72}\sin\omega t\right) \\ &= 44{,}72(\cos 33{,}43\cos\omega t - \sin 33{,}43\sin\omega t) \\ &= 44{,}72\cos(\omega t + 33{,}43) \end{split}$$

Como se puede observar, usar relaciones trigonométricas para operar con funciones sinusoidales de la misma frecuencias es bastante tedioso

- Un fasor es un número complejo que aporta la información de amplitud y de ángulo de fase de una función sinusoidal
- El concepto de fasor se basa en la identidad de Euler, que relaciona la función exponencial con la trigonométrica $e^{j\phi}=\cos\phi+j\sin\phi$

$$v(t) = V_m \cos(\omega t + \phi) = V_m \operatorname{Re}(e^{j(\omega t + \phi)}) = V_m \operatorname{Re}(e^{j\omega t} \cdot e^{j\phi})$$

La representación como fasor de la función sinusoidal es

$$\overline{\mathcal{V}} = V_e e^{j\phi} = V_e / \phi = V_e (\cos \phi + j \sin \phi)$$

donde

$$V_e e^{j\phi}
ightarrow ext{Forma exponencial}$$
 $V_e/\phi
ightarrow ext{Forma polar}$ $V_e(\cos\phi + j\sin\phi)
ightarrow ext{Forma rectangular}$ $V_e \geqslant 0 \qquad -180^\circ \leqslant \phi \leqslant 180^\circ$

Los fasores siempre con valores eficaces!!

Usa fasores para calcular $v_g(t)$ y exprésala como una única función sinusoidal

Datos:
$$v_1(t) = 20\cos(\omega t - 30^\circ), v_2(t) = 40\cos(\omega t + 60^\circ)$$

 $v_1(t) = 20\cos(\omega t - 30^\circ) \implies \overline{\mathcal{V}}_1 = 14,14/-30^\circ$
 $v_2(t) = 40\cos(\omega t + 60^\circ) \implies \overline{\mathcal{V}}_2 = 28,28/60^\circ$
 $\overline{\mathcal{V}}_g = \overline{\mathcal{V}}_1 + \overline{\mathcal{V}}_2 = 14,14/-30^\circ + 28,28/60^\circ = 31,62/33,43^\circ$
 $v_g(t) = 44,72\cos(\omega t + 33,43^\circ)$

El uso de fasores nos facilita enormemente las operaciones de señales sinusoidales de la misma frecuencia!!

Relación entre fasor y señal senoidal

Suma de fasores como vectores giratorios

Repaso números complejos

$$\begin{array}{l} \overline{\mathcal{V}}=V/\underline{\phi} \text{ (forma polar)}\\ \overline{\mathcal{V}}=A+jB \text{ (forma binómica)}\\ De \text{ polar a binómica} \begin{cases} A=V\cos\phi\\ B=V\sin\phi \end{cases}\\ V\sin\phi \end{cases}$$
 De binómica a polar
$$\begin{cases} V=\sqrt{A^2+B^2}\\ \phi=\arctan\frac{B}{A} \end{cases}$$

$$\overline{\mathcal{V}}_1+\overline{\mathcal{V}}_2=(A_1+jB_1)+(A_2+jB_2)=(A_1+A_2)+j(B_1+B_2)\\ \overline{\mathcal{V}}_1-\overline{\mathcal{V}}_2=(A_1+jB_1)-(A_2+jB_2)=(A_1-A_2)+j(B_1-B_2)\\ \overline{\mathcal{V}}_1\cdot\overline{\mathcal{V}}_2=V_1/\underline{\phi}_1\cdot V_2/\underline{\phi}_2=V_1\cdot V_2/\underline{\phi}_1+\underline{\phi}_2\\ \overline{\mathcal{V}}_1=\frac{V_1/\phi_1}{\overline{\mathcal{V}}_2/\underline{\phi}_2}=\frac{V_1}{V_2}/\underline{\phi}_1-\underline{\phi}_2\\ \overline{\mathcal{V}}=A+jB\Longrightarrow \overline{\mathcal{V}}^*=A-jB\\ \overline{\mathcal{V}}=V/\phi\Longrightarrow \overline{\mathcal{V}}^*=V/-\phi \end{cases}$$

Repaso números complejos (cont)

Suma de complejos

Resta de complejos

Ley de Ohm y leyes de Kirchhoff

Ley de Ohm

$$v(t) = Ri(t)$$
 \rightarrow $\overline{\mathcal{V}} = R\overline{\mathcal{I}}$

• Ley de Kirchhoff de la intensidad (LKI)

$$i_1 - i_2 + i_3 - i_4 = 0$$
 \rightarrow $\overline{\mathcal{I}}_1 - \overline{\mathcal{I}}_2 + \overline{\mathcal{I}}_3 - \overline{\mathcal{I}}_4 = 0$

• Ley de Krichhoff de la tensión (LKT)

$$v_1 + v_2 - v_3 + v_4 = 0$$
 \rightarrow $\overline{\mathcal{V}}_1 + \overline{\mathcal{V}}_2 - \overline{\mathcal{V}}_3 + \overline{\mathcal{V}}_4 = 0$

Recuerda que los fasores son números complejos, no te olvides de su fase!!

Ley de Ohm y leyes de Kirchhoff

Ley de Ohm y leyes de Kirchhoff

Ejercicio 7-1

Dado el siguiente circuito determina los módulos de los siguientes fasores:

- a) $|\overline{\mathcal{I}}_2|$ [A] b) $|\overline{\mathcal{I}}_5|$ [A] c) $|\overline{\mathcal{V}}_2|$ [V] d) $|\overline{\mathcal{V}}_3|$ [V] e) $|\overline{\mathcal{V}}_4|$ [V]

$$\begin{array}{l} \mathsf{Datos:} \ \overline{\mathcal{I}}_1 = \alpha / \underline{45^\circ} [\mathsf{A}], \overline{\mathcal{I}}_3 = \alpha / \underline{225^\circ} [\mathsf{A}], \overline{\mathcal{I}}_4 = \gamma / \underline{-30^\circ} [\mathsf{A}], \overline{\mathcal{V}}_1 = \delta / \underline{10 \cdot \beta^\circ} [\mathsf{V}], \overline{\mathcal{V}}_5 = \epsilon / \underline{10 \cdot \eta^\circ} [\mathsf{V}] \end{array}$$

Ejercicio 7-2

La fuente de la figura tiene la siguiente expresión

$$\begin{array}{l} v_g(t)=\sqrt{2}\alpha\cos(1000\cdot\beta t+10\cdot\gamma^\circ) \text{ [V]. Si } i_1(t)=I_1\cos(\omega_1 t+\phi_1),\\ i_2(t)=I_2\sin(\omega_2 t+\phi_2) \text{ y } v_3(t)=V_3\cos(\omega_3 t+\phi_3) \text{ calcula:} \end{array}$$

- a) I_1 [A]
- b) ω_1 [rad/s]
- c) ϕ_1 [°]

- d) I_2 [A]
- e) ω_2 [rad/s]
 - f) ϕ_2 [°]

- g) V_3 [V]
- h) ω_3 [rad/s]
- i) ϕ_3 [°]

Datos: $R_1 = \delta [\Omega], R_2 = \epsilon [\Omega], R_3 = \eta [\Omega]$

Respuesta de una resistencia

$$v_g(t) = V_m \cos(\omega t + \phi)$$
$$i = \frac{v_g(t)}{R} = \frac{V_m}{R} \cos(\omega t + \phi)$$

La intensidad tiene distinta amplitud pero la misma fase

Respuesta de un condensador

$$v_g(t) = V_m \cos(\omega t + \phi)$$

$$i = C \frac{dv_g}{dt} = -V_m C \omega \sin(\omega t + \phi) =$$

$$= V_m C \omega \cos(\omega t + \phi + 90^\circ)$$

La intensidad tiene distinta amplitud y está adelantada 90°

Respuesta de una bobina

$$v_g(t) = V_m \cos(\omega t + \phi)$$

$$i = \frac{1}{L} \int v_g dt = \frac{1}{L\omega} \sin(\omega t + \phi) =$$

$$= V_m \frac{1}{L\omega} \cos(\omega t + \phi - 90^\circ)$$

La intensidad tiene distinta amplitud y está retrasada 90°

Definimos la impedancia como el cociente entre el fasor de la tensión y el fasor de la intensidad

$$\overline{\mathcal{Z}} = \frac{\overline{\mathcal{V}}}{\overline{\mathcal{I}}} \Leftrightarrow \overline{\mathcal{V}} = \overline{\mathcal{Z}}\overline{\mathcal{I}}$$

	Resistencia	Condensador	Bobina
Tensión $(\overline{\mathcal{V}})$	V_e / ϕ	$V_e /\!\!\!/ \phi$	$V_e / \!\!\!/ \phi$
Intensidad $(\overline{\mathcal{I}})$	$\frac{V_e}{R}/\phi$	$V_e C \omega / \phi + 90^\circ$	$V_e \frac{1}{L\omega} / \phi - 90^\circ$
Impedancia $(\overline{\mathcal{Z}})$	R	$\frac{1}{C\omega} / -90^{\circ} = \frac{1}{C\omega j}$	$L\omega/90^{\circ} = L\omega j$

- La impedancia no es un fasor, es decir, no representan sinusoides
- La impedancia es un número complejo que escala y desfasa fasores de tensión e intensidad

- Forma binómica: $\overline{\mathcal{Z}} = R + jX \begin{cases} R \to \text{Resistencia (número real)} \\ X \to \text{Reactancia (número real)} \end{cases}$
- $\bullet \ \, \text{Forma polar:} \ \, \overline{\mathcal{Z}} = Z \underline{/\varphi^{\circ}} \begin{cases} Z \to \ \, \text{M\'odulo (n\'umero real)} \\ \varphi \to \ \, \text{\'Angulo (n\'umero real)} \end{cases}$
- El ángulo φ es justamente el desfase entre la tensión en bornes de la impedancia y la intensidad que la atraviesa

$$\begin{split} \overline{\mathcal{I}} &= I / \!\!\!/ \phi^{\circ} \\ \overline{\mathcal{Z}} &= Z / \!\!\!/ \varphi^{\circ} \\ \overline{\mathcal{V}} &= \overline{\mathcal{Z}} \overline{I} = Z I / \!\!\!/ \phi + \varphi^{\circ} \end{split}$$

- Admitancia: $\overline{\mathcal{Y}} = \frac{1}{\overline{Z}} = G + jB \begin{cases} G \rightarrow \text{Conductancia (número real)} \\ B \rightarrow \text{Susceptancia (número real)} \end{cases}$
- Las impedancias se miden en Ohmios $[\Omega]$ y las admitancias en Siemens [S]

Teniendo en cuenta que las unidades de las tensiones, intensidad e impedancias son V, A y Ω , contesta a estas preguntas aquí

- a) Z_1
- b) ϕ_1
- c) V_2

d) ϕ_2

5/10°

e) I_3 f) ϕ_3

3 + 4j V_4/ϕ_4°

g) V_4

- h) ϕ_4
- i) I_5
- i) ϕ_5

k) R_6 I) X_6

$$\overline{\mathcal{Z}} = R + jX_C = R - j\frac{1}{\omega C}$$

Impedancia compleja

$$\overline{Z} = R + jX = Z/\phi$$

Para $v_a(t) = \sqrt{2}\alpha \cos(1000 \cdot \beta t + 10 \cdot \gamma^{\circ})$ [V] y $i_1 = I_1 \cos(1000 \cdot \beta t + \phi_0), v_1 = V_1 \cos(1000 \cdot \beta t + \phi_1),$ $v_2 = V_2 \cos(1000 \cdot \beta t + \phi_2)$ y $v_3 = V_3 \cos(1000 \cdot \beta t + \phi_3)$ calcula:

- a) I_1 [A]
- c) V_1 [V]
 - e) V_2 [V] g) V_3 [V]

b) ϕ_0 [°]

- d) ϕ_1 [°] f) ϕ_2 [°] h) ϕ_3 [°]

Datos: $R = \delta [\Omega], C = \frac{\epsilon}{10} [\text{mF}], L = \eta [\text{mH}]$

Solución 7-3

1) Pasamos las expresiones de las fuentes independientes a fasores

$$v_g(t) = 9\sqrt{2}\cos(5000t + 80^\circ) \to \overline{\mathcal{V}}_g = 9/80^\circ$$

2) Calculamos las impedancias de resistencias, bobinas y condensadores

$$\overline{Z}_R = R = 1 [\Omega]$$

$$\overline{Z}_L = L\omega j = 7 \cdot 10^{-3} \cdot 5000j = 35j [\Omega]$$

$$\overline{Z}_C = \frac{1}{C\omega j} = \frac{1}{0.2 \cdot 10^{-3} \cdot 5000j} = -j [\Omega]$$

3) Dibujamos el circuito en el dominio de la frecuencia compleja

Solución 7-3 (cont)

4) Aplicamos la ley de Ohm para cada uno de los elemenos pasivos

$$\overline{\mathcal{V}}_1 = \overline{\mathcal{Z}}_1 \overline{\mathcal{I}}_1 = 1 \cdot \overline{\mathcal{I}}_1$$

$$\overline{\mathcal{V}}_2 = \overline{\mathcal{Z}}_2 \overline{\mathcal{I}}_1 = 35j \cdot \overline{\mathcal{I}}_1$$

$$\overline{\mathcal{V}}_3 = \overline{\mathcal{Z}}_3 \overline{\mathcal{I}}_1 = -j \cdot \overline{\mathcal{I}}_1$$

5) Aplicamos LKT a la malla usando fasores

$$9/80^{\circ} = \overline{\mathcal{V}}_1 + \overline{\mathcal{V}}_2 + \overline{\mathcal{V}}_3 = 1 \cdot \overline{\mathcal{I}}_1 + 35j \cdot \overline{\mathcal{I}}_1 - j \cdot \overline{\mathcal{I}}_1 = (1 + 35j - j) \cdot \overline{\mathcal{I}}_1$$

6) Despejamos el fasor $\overline{\mathcal{I}}_1$ y resolvemos usando operaciones con complejos

$$\overline{\mathcal{I}}_1 = \frac{9/80^{\circ}}{1+34j} = \frac{9/80^{\circ}}{34,01/88,31^{\circ}} = 0.26/-8.31^{\circ}$$

7) Calculo los fasores de las tensiones

$$\overline{\mathcal{V}}_1 = 1 \cdot 0.26 / -8.81^{\circ} = 0.26 / -8.31^{\circ}
\overline{\mathcal{V}}_2 = 35 / 90^{\circ} \cdot 0.26 / -8.81^{\circ} = 9.1 / 81.69^{\circ}
\overline{\mathcal{V}}_3 = 1 / -90^{\circ} \cdot 0.26 / -8.81^{\circ} = 0.26 / -98.31^{\circ}$$

Solución 7-3 (cont)

8) Pasamos los fasores al dominio del tiempo

$$\begin{split} i_1(t) &= 0.37\cos(5000t - 8.31^\circ) \text{ [A]} \\ v_1(t) &= 0.37\cos(5000t - 8.31^\circ) \text{ [A]} \\ v_2(t) &= 12.87\cos(5000t + 81.69^\circ) \text{ [V]} \\ v_3(t) &= 0.37\cos(5000t - 98.31^\circ) \text{ [V]} \end{split}$$

- 9) Importante:
 - Para pasar a la función sinusoidal hay que multiplicar por $\sqrt{2}$
 - Hemos usado la función coseno porque la señal de entrada era coseno
 - La frecuencia es la misma en todos los casos e igual a la señal de entrada

Con
$$v_g(t) = \sqrt{2}\alpha\cos(1000 \cdot \beta t + 10 \cdot \gamma^\circ)$$
 [V], $i_1(t) = I_1\cos(1000 \cdot \beta t + \phi_1)$, $i_2(t) = I_2\cos(1000 \cdot \beta t + \phi_2)$, $v_3(t) = V_3\cos(1000 \cdot \beta t + \phi_3)$ calcula:

- a) I_1 [A]
- b) ϕ_1 [°]

- c) I_2 [A]
- d) ϕ_2 [°]

- e) V_3 [V]
- f) ϕ_3 [°]

Datos:
$$R_1 = \delta \ [\Omega], R_2 = \theta \ [\Omega], C = \frac{\epsilon}{10} \ [\text{mF}], L = \eta \ [\text{mH}]$$

Con
$$i_g(t) = \sqrt{2}\alpha\cos(100000t)$$
 [A], $i_1(t) = I_1\cos(100000t + \phi_1)$, $i_2(t) = I_2\cos(100000t + \phi_2)$, $i_3(t) = I_3\cos(100000t + \phi_3)$ calcula:

a) I_1 [A]

c) I_2 [A]

e) I_3 [A]

o) ϕ_1 [°] d) ϕ_2 [°]

f) ϕ_3 [°]

Datos: $R_1 = \delta \ [\Omega], R_2 = \theta \ [\Omega], C = \epsilon \ [\mu {\rm F}], L = 10 \cdot \eta \ [\mu {\rm H}]$

Impedancias en serie, divisor de tensión

Dos impedancias están en serie si están atravesadas por la misma intensidad

$$\overline{\mathcal{Z}}_{eq} = \overline{\mathcal{Z}}_1 + \overline{\mathcal{Z}}_2$$

$$\overline{\mathcal{V}}_1 = \frac{\overline{\mathcal{Z}}_1}{\overline{\mathcal{Z}}_1 + \overline{\mathcal{Z}}_2} \overline{\mathcal{V}}$$
 $\overline{\mathcal{V}}_2 = \frac{\overline{\mathcal{Z}}_2}{\overline{\mathcal{Z}}_1 + \overline{\mathcal{Z}}_2} \overline{\mathcal{V}}$

Impedancias en paralelo, divisor de intensidad

Dos impedancias están en paralelo si están sometidas a la misma tensión

$$\overline{\mathcal{Z}}_{eq} = \frac{\overline{\mathcal{Z}}_1 \overline{\mathcal{Z}}_2}{\overline{\overline{\mathcal{Z}}}_1 + \overline{\overline{\mathcal{Z}}}_2}$$

$$\overline{\mathcal{I}}_1 = \frac{\overline{\mathcal{Z}}_2}{\overline{\mathcal{Z}}_1 + \overline{\mathcal{Z}}_2} \overline{\mathcal{I}} \qquad \overline{\mathcal{I}}_2 = \frac{\overline{\mathcal{Z}}_1}{\overline{\mathcal{Z}}_1 + \overline{\mathcal{Z}}_2} \overline{\mathcal{I}}$$

$$\overline{\mathcal{I}}_2 = \frac{\mathcal{Z}_1}{\overline{\mathcal{Z}}_1 + \overline{\mathcal{Z}}_2} \overline{\mathcal{I}}$$

Impedancias en paralelo, divisor de intensidad

• Con dos resistencias en paralelo siempre se cumple que $R_1+R_2\neq 0$

• Con dos impedancias en paralelo puede ocurrir que $\overline{\mathcal{Z}}_1+\overline{\mathcal{Z}}_2=0$. Por ejemplo si $\overline{\mathcal{Z}}_1=2j$ y $\overline{\mathcal{Z}}_2=-2j$.

• En ese caso, $\overline{Z}_{eq}=\frac{\overline{Z}_1\overline{Z}_2}{\overline{Z}_1+\overline{Z}_2}=\infty$ ¿Qué significa?

Transformación estrella-triángulo

$$\overline{Z}_{ij} = \overline{Z}_i + \overline{Z}_j + \frac{\overline{Z}_i \overline{Z}_j}{\overline{Z}_k}$$

$$\overline{Z}_{\Delta} = 3\overline{Z}_Y$$

$$\overline{Z}_{j} = rac{\overline{Z}_{ij}\overline{Z}_{jk}}{\overline{Z}_{ij} + \overline{Z}_{jk} + \overline{Z}_{ki}}$$

$$\overline{Z}_{Y} = rac{\overline{Z}_{\Delta}}{3}$$

Sabiendo que $v_g(t)=\sqrt{2}\cdot\kappa\cos t$ [V], determina $v(t=1\mathrm{s})$ usando asociación de impedancias, divisor de tensión y/o intensidad

Datos:
$$L_1=\lambda$$
 [H], $L_2=\alpha$ [H], $R=\beta$ [Ω], $C=\frac{\gamma}{10}$ [F]

Calcula la impedancia equivalente $(\overline{\mathcal{Z}}_{eq})$ entre los terminales A y B

a)
$$\operatorname{Re}(\overline{\mathcal{Z}}_{eq})$$
 [Ω]

b)
$$\operatorname{Im}(\overline{\mathcal{Z}}_{eq})$$
 [Ω]

Datos:
$$R_1=\alpha[\Omega], R_2=\beta[\Omega], L_1=\gamma$$
 [mH], $L_2=\delta$ [mH], $C_1=0,1\cdot\epsilon$ [mF], $C_2=0,1\cdot\eta$ [mF], $f=100\cdot\theta$ [Hz]

Determina el valor de frecuencia ω [rad/s] para el que la impedancia equivalente entre los terminales A y B tenga solo parte real. Si conectamos a los terminales A y B una fuente de tensión sinusoidal de dicha frecuencia, ¿cuál será el desfase ϕ [°] entre la tensión v y la intensidad i?

Datos: $R = \lambda \ [\Omega], C = \kappa \ [\text{mF}], L = \theta \ [\text{mH}]$

Transformación de fuentes reales

$$\boxed{\frac{\overline{\mathcal{V}}_g}{\overline{\mathcal{Z}}_g} = \overline{\mathcal{I}}_g \implies \overline{\mathcal{V}}_g = \overline{\mathcal{Z}}_g \overline{\mathcal{I}}_g}$$

- Translación de fuentes
- Asociación fuentes ideales

Método de mallas (largo)

- 1) Fuentes reales intensidad → fuentes reales tensión
- 2) Asignamos una corriente ficticia a cada malla
- 3) Calculamos la tensión de cada impedancia ($\overline{\mathcal{V}}=\overline{\mathcal{Z}\mathcal{I}}$)
- 4) Aplicamos LKT a cada malla
- 5) Incluimos ecuaciones adicionales
- 6) Resolvemos el sistema de ecuaciones lineales

Método de mallas (corto)

- 1) Fuentes reales intensidad → fuentes reales tensión
- 2) Asignamos una corriente ficticia a cada malla $\overline{\mathcal{I}}_n$ (todas sentido horario)
- 3) Creamos un sistema de ecuaciones lineales con N incógnitas

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{pmatrix} \begin{pmatrix} \overline{\mathcal{I}}_1 \\ \overline{\mathcal{I}}_2 \\ \vdots \\ \overline{\mathcal{I}}_N \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix}$$

- 4) $a_{nn} = \text{suma de impedancias de la malla } n$
- 5) $a_{nm}=-1 imes$ suma de las impedancias comunes a las dos mallas
- 6) $b_n = \text{suma de tensiones de fuentes en malla } n \ (+ \text{ si } \overline{\mathcal{I}}_n \text{ sale por terminal positivo}, \text{ si } \overline{\mathcal{I}}_n \text{ entra por terminal positivo})$
- 7) Añadir ecuaciones adicionales si son necesarias
- 8) Resolvemos el sistema de ecuaciones lineales

Resuelve por el método de mallas y calcula

a)
$$|\overline{\mathcal{I}}_1|$$
 [A]

b)
$$|\overline{\mathcal{I}}_2|$$
 [A]

c)
$$|\overline{\mathcal{I}}_3|$$
 [A]

Datos:
$$\overline{\mathcal{V}}_g = 100 + 10 \cdot \lambda \underline{/0^{\circ}} \ [\text{V}], \overline{\mathcal{Z}}_{R_1} = \kappa \ [\Omega], \overline{\mathcal{Z}}_{R_2} = \theta \ [\Omega], \overline{\mathcal{Z}}_{R_3} = \eta \ [\Omega], \overline{\mathcal{Z}}_{L_1} = j\epsilon \ [\Omega], \overline{\mathcal{Z}}_{L_2} = j\gamma \ [\Omega], \overline{\mathcal{Z}}_{C} = -j\delta \ [\Omega]$$

Solución 7-9

Resolvemos el sistema de ecuaciones y obtenemos

$$\overline{\mathcal{I}}_1 = 13,67 - 3,53j \rightarrow |\overline{\mathcal{I}}_1| = 14,12 \text{ [A]}$$
 $\overline{\mathcal{I}}_2 = -0,35 - 3,65j \rightarrow |\overline{\mathcal{I}}_2| = 3,67 \text{ [A]}$
 $\overline{\mathcal{I}}_3 = 14,02 + 0,12j \rightarrow |\overline{\mathcal{I}}_3| = 14,02 \text{ [A]}$

Resuelve el circuito de la figura usando el método de mallas y calcula la intensidad eficaz $\overline{\mathcal{I}}$ [A]

Datos:
$$\overline{\mathcal{V}}_g = 100 + 10 \cdot \lambda / \underline{0}^{\circ}$$
 [V], $\overline{\mathcal{Z}}_{R_1} = \delta$ [Ω], $\overline{\mathcal{Z}}_{R_2} = \theta$ [Ω], $\overline{\mathcal{Z}}_{R_3} = \epsilon$ [Ω], $\overline{\mathcal{Z}}_L = j\epsilon$ [Ω], $\overline{\mathcal{Z}}_C = -j\beta$ [Ω]

Método de nudos (largo)

- 1) Fuentes reales tensión → fuentes reales intensidad
- 2) Arbitrariamente elegimos un nudo de referencia y asignamos $\overline{\mathcal{V}}_0 = 0\mathsf{V}$
- 3) La tensión en el resto de nudos será con respecto al nudo de referencia
- 4) Calculamos la intensidad por las ramas sin fuentes (Ley Ohm)
- 5) Aplicamos LKI a todos los nudos excepto el de referencia
- 6) Incluimos ecuaciones adicionales
- 7) Resolvemos el sistema de ecuaciones lineales

Método de nudos (corto)

- 1) Fuentes reales tensión → fuentes reales intensidad
- 2) Arbitrariamente elegimos un nudo de referencia y asignamos $\overline{\mathcal{V}}_0 = 0\mathsf{V}$
- 3) La tensión en el resto de nudos será con respecto al nudo de referencia
- 4) Creamos un sistema de ecuaciones lineales con N incógnitas

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{pmatrix} \begin{pmatrix} \overline{\mathcal{V}}_1 \\ \overline{\mathcal{V}}_2 \\ \vdots \\ \overline{\mathcal{V}}_N \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{pmatrix}$$

- 5) $a_{nn} = \text{suma de admitancias que concurren en el nudo } n$ (excepto aquellas en serie con una fuente de intensidad)
- 6) $a_{nm}=-1\times$ suma de las admitancias comunes a las dos nudos (excepto aquellas en serie con una fuente de intensidad)
- 7) $b_n = \text{suma de intensidades de fuentes que entran al nudo } n$
- 8) Añadir ecuaciones adicionales si son necesarias
- 9) Resolvemos el sistema de ecuaciones lineales

Usa el método de nudos y calcula el valor eficaz de la intensidad $\overline{\mathcal{I}}$ [A]

Datos:
$$\overline{\mathcal{I}}_g = 10 + \lambda \underline{/0^{\circ}} \ [\mathrm{V}], \overline{\mathcal{Z}}_{R_1} = 10 \cdot \delta \ [\Omega], \overline{\mathcal{Z}}_{R_2} = \delta \ [\Omega], \overline{\mathcal{Z}}_{R_3} = \beta \ [\Omega], \overline{\mathcal{Z}}_L = j\epsilon \ [\Omega], \overline{\mathcal{Z}}_C = -j\beta \ [\Omega]$$

Solución 7-11

Resolvemos el sistema de ecuaciones y obtenemos

$$\overline{\mathcal{V}}_A = 103,24 - 25,36j \to |\overline{\mathcal{V}}_A| = 106,31 \text{ [V]}$$
 $\overline{\mathcal{V}}_B = 102,64 - 39,25j \to |\overline{\mathcal{V}}_B| = 109,89 \text{ [V]}$
 $\overline{\mathcal{I}} = 5,68 + 2,34j \to |\overline{\mathcal{I}}| = 6,22 \text{ [A]}$

Utiliza el método de nudos para calcular la tensión eficaz $\overline{\mathcal{V}}$ [V]

Datos:
$$\overline{\mathcal{I}}_g = 10 \cdot \kappa / 45^{\circ}$$
 [A], $\overline{\mathcal{Z}}_L = j\epsilon$ [Ω], $\overline{\mathcal{Z}}_C = -j\eta$ [Ω], $\overline{\mathcal{Z}}_R = \theta$ [Ω]

Teorema superposición

Si un circuito se energiza mediante N fuentes independientes, las tensiones o corrientes del mismo pueden obtenerse como la suma de las correspondientes tensiones o corrientes de cada uno de los circuitos que se obtienen desactivando N-1 fuentes independientes en el circuito original

$$\overline{\mathcal{I}} = \overline{\mathcal{I}}_1 + \overline{\mathcal{I}}_2$$

$$\overline{\mathcal{V}} = \overline{\mathcal{V}}_1 + \overline{\mathcal{V}}_2$$

Teorema superposición (cont)

- El teorema de superposición también se cumple en alterna
- Al igual que en continua, las fuentes dependientes se consideran como elementos activos
- El teorema de superposición es aplicable para el cálculo de tensiones y corrientes, pero no para calcular potencia
- El teorema de superposición es especialmente útil en circuitos con fuentes de continua y alterna, o fuentes de alterna con diferentes frecuencias
- Recuerda que nunca puedes sumar fasores de distinta frecuencia!!

Ejercicio 7-13*

La fuente de corriente continua i_g vale β [A] y $v_g(t) = 10 \cdot \gamma \cos(100t + 10 \cdot \delta^\circ)$. Aplicando el teorema de superposición, determina la tensión del condensador en función del tiempo $v(t) = V_0 + V_m \cos(100t + \phi)$.

a) V_0 [V]

b) V_m [V]

c) ϕ [°]

Datos: $R_1 = \alpha \ [\Omega], R_2 = \eta \ [\Omega], L = \theta \ [\text{mH}], C = \kappa \ [\text{mF}]$

En el circuito de la figura, calcula la intensidad i(t = 1s).

Datos:
$$v_g = (10 + \alpha)\cos 100 \cdot \beta t$$
 [V], $i_g = (20 + \gamma)\sin 100 \cdot \delta t$ [A], $R = \epsilon$ [Ω], $L = \epsilon$ [mH], $C = 100 \cdot \eta$ [μ F]

Teorema Thevenin

Todo circuito lineal conectado al exterior a través de una puerta es equivalente a un circuito compuesto simplemente por una fuente ideal de tensión en serie con una impedancia

Teorema Thevenin (cont)

- ¿Cómo se calcula la tensión Thevenin $\overline{\mathcal{V}}_{th}$?
 - $\overline{\mathcal{V}}_{th}$ es igual a la diferencia de tensión entre los terminales A y B con el circuito original. También se conoce como tensión a circuito abierto.
 - Cuidado con el signo de la tensión!!
- ¿Cómo se calcula la impedancia Thevenin $\overline{\mathcal{Z}}_{th}$?
 - Si solo hay fuentes independientes y no hay bobinas acopladas
 - 1) Se desactivan las fuentes independientes
 - 2) Se calcula la impedancia equivalente entre A y B (serie, paralelo,...)
 - En cualquier caso
 - 1) Se desactivan las fuentes independientes
 - 2) Se dejan en el circuito las fuentes dependientes
 - 3) Se coloca una tensión de prueba $\overline{\mathcal{V}}_0$ entre los terminales A y B
 - 4) Se calcula la intensidad suministrada por la fuente de prueba \mathcal{I}_0 (mallas, nudos, superposición,...)
 - 5) Se calcula la impedancia Thevenin como $\overline{\mathcal{Z}}_{th} = \frac{\overline{\mathcal{V}}_0}{\overline{\mathcal{I}}_0}$

Teorema Norton

Todo circuito lineal conectado al exterior a través de una puerta es equivalente a un circuito compuesto simplemente por una fuente ideal de intensidad en paralelo con una impedancia

Teorema Norton (cont)

- ¿Cómo se calcula la intensidad Norton $\overline{\mathcal{I}}_{nt}$?
 - $\overline{\mathcal{I}}_{nt}$ es igual a la intensidad que circularía entre los terminales A y B si estos son conectados con un cable de resistencia nula. También se conoce como corriente de cortocircuito.
 - Cuidado con el signo de la intensidad!!
- ullet ¿Cómo se calcula la impedancia Norton $\overline{\mathcal{Z}}_{nt}$?
 - Si solo hay fuentes independientes y no hay bobinas acopladas
 - 1) Se desactivan las fuentes independientes
 - 2) Se calcula la impedancia equivalente entre A y B (serie, paralelo,...)
 - En cualquier caso
 - 1) Se desactivan las fuentes independientes
 - 2) Se dejan en el circuito las fuentes dependientes
 - 3) Se coloca una tensión de prueba $\overline{\mathcal{V}}_0$ entre los terminales A y B
 - 4) Se calcula la intensidad suministrada por la fuente de prueba $\overline{\mathcal{I}}_0$ (mallas, nudos, superposición,...)
 - 5) Se calcula la impedancia Thevenin como $\overline{\mathcal{Z}}_{th}=rac{\overline{\mathcal{V}}_0}{\overline{\mathcal{I}}_0}$
- Siempre se cumple que $\overline{\mathcal{Z}}_{th}=\overline{\mathcal{Z}}_{nt}$ y que $\overline{\mathcal{V}}_{th}=\overline{\mathcal{Z}}_{th}\overline{\mathcal{I}}_{nt}$

Determina el equivalente Thevenin entre los terminales A y B

a) $\operatorname{Re}(\overline{\mathcal{Z}}_{th})$ $[\Omega]$ b) $\operatorname{Im}(\overline{\mathcal{Z}}_{th})$ $[\Omega]$ c) $\operatorname{Re}(\overline{\mathcal{V}}_{th})$ [V] d) $\operatorname{Im}(\overline{\mathcal{V}}_{th})$ [V]

Datos:

 $i_g(t) = \delta \cos 500t$ [A], $R_1 = \epsilon$ [Ω], $R_2 = \eta$ [Ω], $L = \theta$ [mH], $C = \kappa$ [mF]

Determina el equivalente Thevenin entre los terminales A y B

a) $\operatorname{Re}(\overline{\mathcal{Z}}_{th})$ $[\Omega]$ b) $\operatorname{Im}(\overline{\mathcal{Z}}_{th})$ $[\Omega]$ c) $\operatorname{Re}(\overline{\mathcal{V}}_{th})$ [V] d) $\operatorname{Im}(\overline{\mathcal{V}}_{th})$ [V]

Datos:
$$v_g = (100 + 10 \cdot \beta) / 0^{\circ} [V], \overline{Z}_{R_1} = 10 + \gamma [\Omega], \overline{Z}_{R_2} = 10 \cdot \delta [\Omega], \overline{Z}_C = -j10 \cdot \epsilon [\Omega], \overline{Z}_{R_3} = 100 + 10 \cdot \eta [\Omega]$$

Bobinas acopladas

Una única bobina

$$v = L \frac{di}{dt} \longrightarrow \overline{V} = L\omega j\overline{\mathcal{I}}$$

Dos bobinas acopladas

$$v_{1} = L_{1} \frac{di_{1}}{dt} + M \frac{di_{2}}{dt} \longrightarrow \overline{V}_{1} = L_{1} \omega j \overline{\mathcal{I}}_{1} + M \omega j \overline{\mathcal{I}}_{2}$$

$$v_{2} = M \frac{di_{1}}{dt} + L_{2} \frac{di_{2}}{dt} \longrightarrow \overline{V}_{2} = M \omega j \overline{\mathcal{I}}_{1} + L_{2} \omega j \overline{\mathcal{I}}_{2}$$

Reducción de impedancia del secundario al primario

$$\overline{\mathcal{V}}_{g} \stackrel{+}{\longleftarrow} \overline{\mathcal{V}}_{1} \stackrel{\overline{\mathcal{I}}_{1}}{\longleftarrow} a: 1 \stackrel{\overline{\mathcal{I}}_{2}}{\longleftarrow} \overline{\mathcal{V}}_{1} = a \overline{\mathcal{V}}_{2}$$

$$N_{1}: N_{2} \stackrel{\overline{\mathcal{I}}_{2}}{\longleftarrow} \overline{\mathcal{I}}_{2} = \frac{\overline{\mathcal{I}}_{2}}{\overline{\mathcal{I}}_{1}} = \frac{\overline{\mathcal{I}}_{2}}{\overline{a}}$$

Sustituyo la bobina secundaria por otra con las mismas vueltas $N_2^\prime=N_1$

$$\overline{\mathcal{Z}}_{1} \qquad \overline{\mathcal{I}}_{1} \qquad \overline{\mathcal{I}}_{2} \qquad \overline{\mathcal{I}}_{2} \qquad \overline{\mathcal{I}}_{2} \qquad \overline{\mathcal{I}}_{2} \qquad \overline{\mathcal{I}}_{2} = \overline{\mathcal{I}}_{1} = \overline{\mathcal{I}}_{1} \qquad \overline{\mathcal{I}}_{2} = \overline{\mathcal{I}}_{1} = \overline{\mathcal{I}_{1} = \overline{\mathcal{I}}_{1} = \overline{\mathcal{I}}_{1} = \overline{\mathcal{I}}_{1} = \overline{\mathcal{I}}_{1} = \overline$$

$$\overline{Z}_2' = \frac{\overline{\mathcal{V}}_2'}{\overline{\mathcal{I}}_2'} = \frac{\overline{\mathcal{V}}_1}{\overline{\mathcal{I}}_1} = \frac{a\overline{\mathcal{V}}_2}{\overline{\mathcal{I}}_2/a} = a^2 \frac{\overline{\mathcal{V}}_2}{\overline{\mathcal{I}}_2} = a^2 \overline{\mathcal{Z}}_2 \implies \left[\overline{Z}_2' = a^2 \overline{\mathcal{Z}}_2 \right]$$

Reducción de impedancia del secundario al primario (cont)

Como $\overline{\mathcal{V}}_2'=\overline{\mathcal{V}}_1$ y $\overline{\mathcal{I}}_2'=\overline{\mathcal{I}}_1$ obtengo el siguiente circuito equivalente

Para el circuito de la figura determina los valores eficaces de i_1 e i_2

a)
$$|\overline{\mathcal{I}}_1|$$
 [A] b) $|\overline{\mathcal{I}}_2|$ [A]
$$v_g \overset{t_1}{\longleftarrow} \underbrace{L_1}_{L_2} \overset{L_1}{\rightleftharpoons} R_2$$

Datos: $v_g=10\cdot\lambda\cos100\kappa t$ [V], $R_1=\theta$ [Ω], $R_2=\eta$ [Ω], $L_1=\epsilon$ [mH], $L_2=\delta$ [mH], k=0.85

Solución 7-17

Calculamos las impedancias complejas y resolvemos usando LKT

$$42,43\underline{/0^{\circ}} \stackrel{+}{\underbrace{-}} \underbrace{\overline{\mathcal{T}}_{0}}_{\overline{\mathcal{T}}_{2}} \underbrace{\overline{\mathcal{T}}_{0}}_{0,4j} \underbrace{\overline{\mathcal{T}}_{b}}_{0,4j} \underbrace{\overline{\mathcal{T}}_{b}}_{7}$$

$$\overline{\mathcal{V}}_{1} = 0.8j\overline{\mathcal{I}}_{1} - 0.48j\overline{\mathcal{I}}_{2} = 0.8j\overline{\mathcal{I}}_{b} - 0.48j(\overline{\mathcal{I}}_{a} - \overline{\mathcal{I}}_{b})$$

$$\overline{\mathcal{V}}_{2} = -0.48j\overline{\mathcal{I}}_{1} + 0.4j\overline{\mathcal{I}}_{2} = -0.48j\overline{\mathcal{I}}_{b} + 0.4j(\overline{\mathcal{I}}_{a} - \overline{\mathcal{I}}_{b})$$

$$42.43\underline{\mathbf{0}}^{\circ} = 3\overline{\mathcal{I}}_{a} + \overline{\mathcal{V}}_{2}$$

$$\overline{\mathcal{V}}_{2} = \overline{\mathcal{V}}_{1} + 7\overline{\mathcal{I}}_{b}$$

Sustituyendo obtenemos

$$\begin{pmatrix} 3+0.4j & -0.88j \\ -0.88j & 7+2.16j \end{pmatrix} \begin{pmatrix} \overline{\mathcal{I}}_a \\ \overline{\mathcal{I}}_b \end{pmatrix} = \begin{pmatrix} 42.43 \\ 0 \end{pmatrix} \implies \begin{pmatrix} \overline{\mathcal{I}}_a \\ \overline{\mathcal{I}}_b \end{pmatrix} = \begin{pmatrix} 13.59/-6.76^{\circ} \\ 1.63/66.07^{\circ} \\ \frac{76}{76} \end{pmatrix}$$

Calcula los siguientes valores eficaces

a) $|\overline{\mathcal{I}}_1|$ [A]

b) $|\overline{\mathcal{I}}_2|$ [A]

c) $|\overline{\mathcal{I}}_3|$ [A]

Datos:
$$\overline{\mathcal{V}}_{\underline{g}} = 10\alpha\underline{/0^{\circ}} \ [\mathbf{V}], \overline{\mathcal{Z}}_{R_1} = \beta \ [\Omega], \overline{\mathcal{Z}}_{R_2} = \gamma \ [\Omega], \overline{\mathcal{Z}}_{R_3} = \delta \ [\Omega], \overline{\mathcal{Z}}_{C} = -\epsilon j \ [\Omega], \overline{\mathcal{Z}}_{L1} = \eta j \ [\Omega], \overline{\mathcal{Z}}_{L2} = \theta j \ [\Omega], k = 0.8$$

Calcula $\overline{\mathcal{V}}_{th}$ y $\overline{\mathcal{Z}}_{th}$ entre los terminales A y B

a) $\operatorname{Re}(\overline{\mathcal{V}}_{th})$ [V] b) $\operatorname{Im}(\overline{\mathcal{V}}_{th})$ [V] c) $\operatorname{Re}(\overline{\mathcal{Z}}_{th})$ [Ω] d) $\operatorname{Im}(\overline{\mathcal{Z}}_{th})$ [Ω]

Datos:
$$\overline{\mathcal{V}}_g = \lambda j$$
 [V], $\overline{\mathcal{I}}_g = \kappa / 10 \cdot \theta^{\circ}$ [A], $\overline{\mathcal{Z}}_{R_1} = \eta$ [Ω], $\overline{\mathcal{Z}}_{R_2} = \epsilon$ [Ω], $\overline{\mathcal{Z}}_{L1} = \delta j$ [Ω], $\overline{\mathcal{Z}}_{L2} = \gamma j$ [Ω], $\overline{\mathcal{Z}}_{L3} = \beta j$ [Ω], $\overline{\mathcal{Z}}_{C1} = -\alpha j$ [Ω], $\overline{\mathcal{Z}}_{C2} = -\lambda j$ [Ω], $k_{12} = 0.85$

Teniendo en cuenta que las bobinas acopladas forman un transformador perfecto, calcula las siguientes intensidades eficaces

Datos:
$$i_g = \beta \cos 1000t$$
, $R_g = \gamma [\Omega]$, $R_1 = \delta [\Omega]$, $R_2 = \epsilon [\Omega]$, $R_3 = \eta [\Omega]$, $L_1 = \kappa [\text{mH}]$, $L_3 = \lambda [\text{mH}]$

Calcula el equivalente Thevenin entre los terminales A y B

a) $\operatorname{Re}(\overline{\mathcal{V}}th)$ [V] b) $\operatorname{Im}(\overline{\mathcal{V}}th)$ [V] c) $\operatorname{Re}(\overline{\mathcal{Z}}th)$ [Ω] d) $\operatorname{Im}(\overline{\mathcal{Z}}th)$ [Ω]

Datos:
$$\overline{\mathcal{I}}_g = \eta \underline{/0^{\circ}}, \overline{\mathcal{Z}}_{R_1} = \epsilon \ [\Omega], \overline{\mathcal{Z}}_{R_2} = \delta \ [\Omega], \overline{\mathcal{Z}}_C = -\gamma j \ [\Omega]$$

- Un diagrama fasorial es un dibujo en el plano complejo que incluye los fasores de tensiones e intensidades de un circuito
- Algunos problemas son muy fáciles de resolver usando el diagrama fasorial (suele entrar en examen)

 Los voltímetros y amperímetros miden valores eficaces de tensión e intensidad, respectivamente

- Elige un buen origen de fases
 - Si hay varios elementos en paralelo, escoge como origen de fases la tensión en bornes de dichos elementos.
 - Si hay varios elementos en serie, escoge como origen de fases la intensidad que atraviesa dichos elementos.
- Recuerda el desfase entre tensiones e intensidades de elementos básicos
 - Resistencia: tensión e intensidad en fase
 - \bullet Bobina: tensión adelantada 90° con respecto a la intensidad
 - \bullet Condensador: intensidad adelantada 90° con respecto a la tensión
 - Impedancia general: desfase tensión e intensidad entre -90° y 90°

- Busca un triángulo!!
 - La suma de tres intensidades de un nudo da lugar a un triángulo
 - La suma de tres tensiones de una malla da lugar a un triángulo
 - Si conoces 3 magnitudes (tres lados, dos lados y un ángulo, un lado y dos ángulos) aplica el teorema del seno/coseno y calcula las otras magnitudes

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$
$$c^2 = a^2 + b^2 - 2ab \cos \gamma$$

• Recuerda el concepto de arco capaz: lugar geométrico de los puntos desde los que un segmento AB se "ve" con el mismo ángulo. Una semicircunferencia es un arco capaz de 90°

Dibuja el fasor $\overline{\mathcal{I}}$

Dibuja el fasor $\overline{\mathcal{I}}$

Dibuja los fasores $\overline{\mathcal{I}}$ y $\overline{\mathcal{V}}_g$

Dibuja los fasores $\overline{\mathcal{I}}_2$ y $\overline{\mathcal{V}}_g$

Encuentra el valor de R $[\Omega]$ para que $\overline{\mathcal{I}}_R$ esté retrasada $5\cdot\alpha$ $[^\circ]$ con respecto a $\overline{\mathcal{I}}_q$

Datos:
$$\overline{\mathcal{Y}}_L = -\delta j[S], \overline{\mathcal{Y}}_C = 2 \cdot \delta j[S]$$

Solución 7-22

- 1) Como hay varios elementos en paralelo, tomo como origen $\overline{\mathcal{V}}$
- 2) Calculo los fasores de las intensidades

$$\overline{\mathcal{I}}_R = \frac{\overline{\mathcal{V}}}{R}$$
 $\overline{\mathcal{I}}_L = -j\overline{\mathcal{V}}$ $\overline{\mathcal{I}}_C = 2j\overline{\mathcal{V}}$

3) Dibujo los fasores de $\overline{\mathcal{I}}_R, \overline{\mathcal{I}}_L, \overline{\mathcal{I}}_C$

Para que $\overline{\mathcal{I}}_g$ y $\overline{\mathcal{I}}_R$ formen 45° se tiene que cumplir que el módulo de $\overline{\mathcal{I}}_C + \overline{\mathcal{I}}_L$ sea igual al módulo de $\overline{\mathcal{I}}_R$

$$\begin{aligned} |\overline{\mathcal{I}}_C + \overline{\mathcal{I}}_L| &= |\overline{\mathcal{I}}_R| \implies |2j\overline{\mathcal{V}} - j\overline{\mathcal{V}}| = \left|\frac{\overline{\mathcal{V}}}{R}\right| \\ |2j - j||\overline{\mathcal{V}}| &= \left|\frac{1}{R}\right||\overline{\mathcal{V}}| \implies R = \frac{1}{1} = 1\Omega \end{aligned}$$

La fuente de tensión de la figura es sinusoidal. Sabiendo que los voltímetros miden valores eficaces, calcula R_2 y L usando un diagrama fasoriale

Datos:
$$V_0 = (1.45 + 0.05 \cdot \beta) \cdot \alpha$$
 [V], $V_1 = \alpha$ [V], $V_2 = \alpha$ [V], $R_1 = 100 + 10 \cdot \gamma$ [Ω], $f = 1$ [kHz]

Calcula la medida del voltímetro V_1 [V] usando un diagrama fasorial

Datos: $v_g = 100 \cdot \alpha \cos 1000 \cdot \beta t$

Nota: No falta ningún dato

Usa un diagrama fasorial para determinar

a) A_4 [A]

b) L [mH]

c) C [mF]

Datos: $A_1=\alpha$ [A], $A_2=\beta$ [A], $A_3=\gamma$ [A], $R=\delta$ [Ω], f=50 [Hz] Explica si la impedancia equivalente es inductiva o capacitiva basándote únicamente en el diagrama fasorial

Ejercicio 7-26*

En el circuito de corriente alterna se sabe que para una pulsación de $\omega=1$ [krad/s], la tensión eficaz en la resistencia es de $100 \cdot \kappa$ [V]. Calcula la admitancia total de la carga (Y_{eq}) , el valor del condensador (C) así como los valores eficaces de las intensidades i_C y i_L

a) $\operatorname{Re}(Y_{eq})$ [S] b) $\operatorname{Im}(Y_{eq})$ [S] c) C [mF] d) $|\overline{\mathcal{I}}_C|$ [A] e) $|\overline{\mathcal{I}}_L|$ [A]

Datos: $i_g = 10\sqrt{2}\cos(\omega t)$ [A], $R = 10 \cdot \kappa$ [Ω], $L = \delta$ [mH]

Ejercicio 7-27*

Usa un diagrama fasorial para calcular la medida de V_1 [V] sabiendo que $\overline{\mathcal{I}}_2$ y $\overline{\mathcal{V}}_2$ van están en fase.

Datos:
$$V_2 = 200 + 10 \cdot \lambda$$
 [V], $A_1 = 10 + \kappa$ [A], $A_2 = \theta$ [A], $\overline{\mathcal{Z}} = \eta + \epsilon j$ $[\Omega]$, $\overline{\mathcal{Z}}_R = \gamma$ $[\Omega]$

Nota: No falta ningún dato

Para el circuito de la figura calcula:

Datos: $V = 100 + 10 \cdot \alpha$ [V], $A_1 = \beta$ [A], $A_2 = A_3 = \beta + 1$ [A], $L_1 = 10 + \gamma$ [mH], $L_2 = 10 + \delta$ [mH], k = 0.8, f = 50 [Hz]

Ejercicio 7-29*

La fuente del circuito es sinusoidal. Calcule la lectura del voltímetro 2 y el valor de ${\cal R}$

Datos: $A=20\cdot\beta$ [A], $V_1=10\cdot\beta$ [V], $\overline{\mathcal{Z}}_2=-j$ [Ω], $\overline{\mathcal{Z}}_3=j\delta$ [Ω] Nota: No falta ningún dato