COMP/ENGN 4528/6528: Computer Vision

Question 1

3D SFM and Image formation

- 1. (a) Given two calibrated cameras, C_1 and C_2 , C_1 has a focal length of 500 in x and 375 in y, (in pixel unit) the camera has resolution 512×512 , and the camera centre projected to the image is at (249, 249), with no skew. Suppose C_2 has the same image resolution and focal length as C_1 , but the camera centre projected to the image is at (251, 252). Write down the calibration matrix K_1 and K_2 for C_1 and C_2 respectively.
 - (b) Suppose that a 3D world coordinate system ((X, Y, Z)) coordinates as in Figure 1) is defined as aligned with the camera coordinate system of C_1 . More specifically, the world origin is at the camera centre of C_1 , the Z axis is aligned with the optical (principal) axis and the X and Y world coordinate systems are aligned parallel with the x and y axes of the image of C_1 . Write down the matrices K[R|t] which define the projection of a point in the world coordinate system to the image of C_1 .

Figure 1: 3D coordinate systems

- (c) Suppose that the scene has a point, P_1 , that in the world coordinate system defined above that lies at (39, 35, 100). Note that the points in the world coordinate system are measured in centimetres. What location (to the nearest pixel) will that world point (P_1) map to in the image of C_1 ?
- (d) Suppose that with respect to the world coordinate system that is aligned with camera C_1 , camera C_2 begins being aligned to C_1 and is then rotated by 45° about its vertical axis (Y axis) (as shown in Figure 2), and subsequently, the centre of C_2 is translated by 0.2 metre to the left of C_1 (along the X axis of C_1), then moved forward by 0.2 metre parallel to the optical axis of C_1 . Write down the matrices K[R|t], which define the projection of points in the world system (i.e, the same coordinate system of C_1) to the image of C_2 .
- (e) Define the term "epipole".
- (f) For camera C_1 , there is an epipole (or epipolar point) that relates to camera C_2 . For the two-camera setup for predicting structure from motion, what is the position of the epipole in camera C_1 of camera C_2 ? (Hint: It is a point in the image coordinates of Camera C1).

Question 2

Epipolar geometry

Figure 2: Visualisation of camera relative positions

1. Describe an algorithm to recover a fundamental matrix between two cameras given a set of 50 putative matching points between the cameras (that may contain errors).

Question 3

Camera Calibration

1. Complete the coding questions in COMP4528_lab6_code.ipynb.