

Business Statistics

Multinomial Regression

Zhanrui Cai

Assistant Professor in Analytics and Innovation

Review of Logistic Regression

- Used for classification.
- Model the probability that X belongs to each category in C:

Logit
$$p(X) = \log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- Estimate β by MLE.
- e^{β_k} is explained as odds ratio for the variable X_k .
- Hypothesis testing H_0 : $\beta_k = 0$ from R output.

Nominal and Ordinal Responses

Nominal response

- Red, green, blue
- Yes, no
- Sick, healthy

Ordinal response

- Young, middle aged, old
- Dislike very much, dislike, no opinion, like, like very much

Example: Car Preferences

 In a study of motor vehicle safety, 150 men and 150 women were interviewed to rate how important air conditioning and power steering were to them when they were buying a car.

		Response				
\mathbf{Sex}	Age	Unimportant	Import	Very Import		
Women	18-23	26 (58%)	12~(27%)	7 (16%)		
	24-40	9~(20%)	21~(47%)	15~(33%)		
	> 40	5 (8%)	14~(23%)	41~(68%)		
Men	18-23	40~(62%)	17~(26%)	8~(12%)		
	24-40	17 (39%)	15~(34%)	12~(27%)		
	> 40	8~(20%)	15~(37%)	18 (44%)		
Total		105	94	101		

Nominal Logistic Regression

- Choose one category as the reference category, say the 1st category
- Define the logits for the other categories as

$$\operatorname{logit}(\pi_j) \equiv \operatorname{log}(\frac{\pi_j}{\pi_1}) = x^T \beta_j, \quad \text{for } j = 2, \dots, J.$$

The joint density is

$$f(\mathbf{y}|n) = (\pi_1)^{y_1} \dots (\pi_J)^{y_J} \frac{n!}{y_1! \dots y_J!},$$

which leads to the following likelihood function,

$$l(\beta|\mathbf{y},n) \propto \prod_{j=2}^J (\frac{\pi_j}{\pi_1})^{y_j} = \exp(\sum_j y_j x^T \beta_j).$$

Nominal Logistic Regression Estimate

Given MLE, we have

$$\hat{\pi}_j = \hat{\pi}_1 \exp(x^T \hat{\beta}_j), \quad \text{for } j = 2, \dots, J.$$

Since the probabilities add up to 1, we have

$$\hat{\pi}_1 = \frac{1}{1 + \sum_{j=2}^{J} \exp(x^T \hat{\beta}_j)}$$

$$\hat{\pi}_{j} = \frac{\exp(x_{j}^{T}\hat{\beta}_{j})}{1 + \sum_{j=2}^{J} \exp(x^{T}\hat{\beta}_{j})}, \text{ for } j = 2, \dots, J.$$

Changing the reference category won't change the above probabilities.

Example: Car Preference

Define the following three dummy variables,

- x_1 : the indicator of men;
- x_2 : the indicator of age 24-40 years;
- x_3 : the indicator of age > 40 years.

The model is then

$$\log(\frac{\pi_j}{\pi_1}) = \beta_{0j} + \beta_{1j}x_1 + \beta_{2j}x_2 + \beta_{3j}x_3, \quad j = 2, 3.$$

R Command

```
> car <- data.frame(res.unim=c(26, 9, 5, 40, 17, 8),
          res.im=c(12, 21, 14, 17, 15, 15),
          res.veim=c(7, 15, 41, 8, 12, 18),
          sex=c(rep("F", 3), rep("M",3)),
          age=rep(c("18-23", "24-40", ">40"), 2))
> car
 res.unim res.im res.veim sex
                                 age
        26
               12
                            F 18-23
1
2
               21
                        15
                             F 24-40
```

```
> library(nnet) ### special library containing 'multinom'
> options(contrasts=c("contr.treatment", "contr.poly"))
> car.mult <- multinom(cbind(res.unim, res.im, res.veim)~sex+age,
                            data=car)
> summary(car.mult)
Coefficients:
  (Intercept)
                   sexM age24-40 age>40
2 -0.5907992 -0.3881301 1.128268 1.587709
3 -1.0390726 -0.8130202 1.478104 2.916757
Std. Errors:
  (Intercept)
                  sexM age24-40
                                    age>40
   0.2839756 0.3005115 0.3416449 0.4028997
   0.3305014 0.3210382 0.4009256 0.4229276
```

Estimation Results

The estimated coefficients are

$$\hat{\beta}_{02} = -0.591, \hat{\beta}_{12} = -0.388, \hat{\beta}_{22} = 1.128, \hat{\beta}_{32} = 1.588,$$

$$\hat{\beta}_{03} = -1.039, \hat{\beta}_{13} = -0.813, \hat{\beta}_{23} = 1.478, \hat{\beta}_{33} = 2.917.$$

To estimate the probabilities, consider the preferences of women $(x_1 = 0)$ aged 18-23 $(x_2 = x_3 = 0)$. For this group,

$$\log(\frac{\hat{\pi}_2}{\hat{\pi}_1}) = -0.591, \frac{\hat{\pi}_2}{\hat{\pi}_1} = 0.5539,$$

$$\log(\frac{\hat{\pi}_3}{\hat{\pi}_1}) = -1.039, \frac{\hat{\pi}_3}{\hat{\pi}_1} = 0.3538,$$

$$\hat{\pi}_1 = 1/(1 + 0.5539 + 0.3538) = 0.524,$$

$$\hat{\pi}_2 = 0.290, \hat{\pi}_3 = 0.186.$$

Hierarchical or Nested Responses

Data on live births with deformations of the central nervous system in south Wales.

•	
•	Cne
_	CIID

	Area	NoCNS	${\tt An}$	Sp	Other	Water	Work
1	Cardiff	4091	5	9	5	110	NonManual
2	Newport	1515	1	7	0	100	${\tt NonManual}$
3	Swansea	2394	9	5	0	95	${\tt NonManual}$
4	${\tt GlamorganE}$	3163	9	14	3	42	${\tt NonManual}$
5	${\tt GlamorganW}$	1979	5	10	1	39	${\tt NonManual}$
6	${\tt GlamorganC}$	4838	11	12	2	161	${\tt NonManual}$
7	${\tt MonmouthV}$	2362	6	8	4	83	${\tt NonManual}$
8	${\tt MonmouthOther}$	1604	3	6	0	122	NonManual
9	Cardiff	9424	31	33	14	110	Manual
10	Newport	4610	3	15	6	100	Manual
11	Swansea	5526	19	30	4	95	Manual
12	${\tt GlamorganE}$	13217	55	71	19	42	Manual
13	${\tt GlamorganW}$	8195	30	44	10	39	Manual
14	${\tt GlamorganC}$	7803	25	28	12	161	Manual
15	${\tt MonmouthV}$	9962	36	37	13	83	Manual
16	${\tt MonmouthOther}$	3172	8	13	3	122	Manual

CNS: Variables

- NoCNS: no central nervous system (CNS) malformation.
- An, Sp and Other: three categories of various malformation.
- Water: water hardness
- Work: the type of work performed by the parents.

Hierarchical Response Model

- We can consider a multinomial logit model with four response categories.
- However, the category NoCNS dominates the result.
- Better to perform a hierarchical response model.
 - A binomial model of CNS vs. NoCNS: whether a malfunction has occurred
 - A multinomial model of the three CNS categories: given a malfunction has occurred, what type of malfunction?

CNS: Conclusion

Binomial model

 Both Water and Work have significant effect on the probability of having a malformation.

Multinomial model with three CNS categories

Both have no effect of distinguishing the three malformations.

Multinomial model with NoCNS included

 Both are significant, but this is misleading as mainly driven by the large NoCNS category.

Ordinal Logistic Regression

- Ordinal responses are common in marketing research, opinion polls, and so on where soft measures are common.
- Cumulative logit model

$$\log \frac{\pi_1 + \dots + \pi_j}{\pi_{j+1} + \dots + \pi_J} = x^T \beta_j.$$

Special case: Proportional odds model

$$\log \frac{\pi_1 + \dots + \pi_j}{\pi_{j+1} + \dots + \pi_J} = \beta_{0j} + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}.$$

Example: Car Preference

The following proportional odds model was fitted to the data:

$$\log(\frac{\pi_1}{\pi_2 + \pi_3}) = \beta_{01} + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3,$$

$$\log(\frac{\pi_1 + \pi_2}{\pi_3}) = \beta_{02} + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3,$$

which leads to the estimates below,

$$\beta_{01} = 0.044, \beta_{02} = 1.655, \beta_1 = 0.576,$$

$$\beta_2 = -1.147, \beta_3 = -2.232.$$

Question: Calculate probabilities for women aged 18-23.

R Command

```
Coefficients:
> library(MASS)
                                                                              sexM
                                                                                     age24-40
                                                                                                   age>40
> freq <- c(car$res.unim, car$res.im, car$res.veim)</pre>
                                                                        -0.5762219 1.1470976 2.2324560
> res <- c(rep(c("unim", "im", "veim"), c(6,6,6)))</pre>
> res <- factor(res, levels=c("unim", "im", "veim"), ordered=T)</pre>
> car.ord <- data.frame(res=res, sex=rep(car$sex, 3),</pre>
                                                                        Intercepts:
                                                                           unimlim
                                                                                       imlveim
                               age=rep(car$age, 3), freq=freq)
> car.polr <- polr(res~sex+age, data=car.ord, weights=freq)</pre>
                                                                        0.04353746 1.65497620
                                                                        Residual Deviance: 581.2956
```

> car.polr

AIC: 591.2956

Case Study: Data Analytics at Chow Tai Fook

 Chow Tai Fook (CTF) is one of the world's largest jewellers, with a retail network of over 3,100 points of sale (POS) globally.

Case Study: Data Analytics at Chow Tai Fook

CTF offered products in four major categories, including

- gem-set jewellery,
- gold products,
- platinum/karat gold products,
- watches.

Revenue Breakdown - Products (HK\$ m)

(Excluding Jewellery Trading and Service Income from Franchisees)

% of revenue	1H2O18	2H2018	1H2019	2H2019
Gem-set jewellery	24.2%	23.4 %	23.4%	22.2%
Gold products	57.8%	60.5%	60.5%	61.5%
Platinum / Karat gold products	11.3%	10.6%	10.5%	10.7%
Watches	6.7%	5.4%	5.6%	5.5%

Case Study: Data Analytics at Chow Tai Fook

- Unlike fast-moving consumer goods, the high value of inventory and slow turnover of individual SKUs in the jewellery industry made good inventory management the key to healthy profitability.
- Our goal: predict consumers' choice of products, to help with inventory management.

Inventory Analysis

¹⁹

Predicting Customers' Choice

- Data were sourced from 2 channels:
 - The basic information on each SKU, such as price and weight (e.g. categorical variables r_info1, r_info3, common_info1).
 - POS data on the location and timing of each purchase, as well as the daily traffic captured in retail stores (e.g. branch indicator and customer arrival count).
- We looked at purchases of 35 products from 3 CTF branches.
- Given features a customer wants, which of the 35 products the customer is more likely to buy?
 - Use multinomial regression model?
 - Nominal or ordinal?

R Command

- Training data: 20050112 20061103
- Testing data: 20061104 20070103

```
# Training/Testing set split
training <- my_data %>% filter(baseDate < "2006-11-04")</pre>
nrow(training)
## [1] 7980
testing <- my data %>% filter(baseDate >= "2006-11-04")
nrow(testing)
## [1] 3080
training selected <- training[training$mode == TRUE,]</pre>
training_multinom <- training</pre>
training multinom$purchaseID <- rep(training selected$productID, each=35)
fit.multinom <- multinom(purchaseID ~ r info1 11 + r info1 111 126 +
                                                                                      r_{info3_1} + r_{info3_2} + r_{info3_4} + r_{info3_4} + r_{info3_5} + 
                                                                                       ct + branchID 16 + branchID 26, data=training multinom)
```

Performance of Multinomial Regression

Accuracy of the predicted top 3 choices

= percentage that 3 products with the highest predicted probability / logit contains the true choice

- Training Accuracy = 43.4%
- Testing Accuracy = 27.3%
- Much better than random guess accuracy = 1/35 = 2.9%

Multinomial Logistic Regression Summary

- Extension of logistic regression to more than two categories
 - Include logistic regression as special case when only two categories
- Nominal or ordinal
- Estimate β by MLE
- e^{β_k} is explained as odds ratio for the variable X_k
 - Between which two categories

Model Selection in Logistic Regression

Model Selection in Logistic Regression

Previous techniques can be applied.

Build models: best subset regression, stepwise regression, Lasso, ridge.

Select variables/ tunning parameters: AIC, BIC, Cross-validation.

MLE

Recall the likelihood:

$$l(\beta) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

where

$$p(x) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}.$$

Lasso + Ridge

Lasso:

$$-2\log(l(\beta)) + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\max_{\beta_0,\beta} \left\{ \sum_{i=1}^{N} \left[y_i (\beta_0 + \beta^T x_i) - \log(1 + e^{\beta_0 + \beta^T x_i}) \right] - \lambda \sum_{j=1}^{p} |\beta_j| \right\}.$$

Ridge:

$$-2\log(l(\beta)) + \lambda \sum_{j=1}^{p} \beta_j^2$$

Use R function glmnet to fit, change family to be binomial.

Linear Discriminant Analysis

Suppose that we model each class density as multivariate Gaussian.

• For data x in class k, we assume its density to be

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}_k|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \mathbf{\Sigma}_k^{-1}(x-\mu_k)}.$$

Linear Discriminant Analysis

 Linear discriminant analysis (LDA) assumes that when comparing two classes k and l,

$$\log \frac{\Pr(G = k | X = x)}{\Pr(G = \ell | X = x)} = \log \frac{f_k(x)}{f_{\ell}(x)} + \log \frac{\pi_k}{\pi_{\ell}}$$

$$= \log \frac{\pi_k}{\pi_{\ell}} - \frac{1}{2} (\mu_k + \mu_{\ell})^T \mathbf{\Sigma}^{-1} (\mu_k - \mu_{\ell})$$

$$+ x^T \mathbf{\Sigma}^{-1} (\mu_k - \mu_{\ell}),$$

which is a linear function in x.

Estimation

- In practice we do not know the parameters of the Gaussian distributions, and will need to estimate them using our training data:
 - $\hat{\pi}_k = N_k/N$, where N_k is the number of class-k observations;
 - $\bullet \hat{\mu}_k = \sum_{g_i = k} x_i / N_k;$
 - $\hat{\Sigma} = \sum_{k=1}^{K} \sum_{q_i=k} (x_i \hat{\mu}_k)(x_i \hat{\mu}_k)^T / (N K).$

Estimation

The LDA rule classifies to class 2 if

$$x^{T}\hat{\boldsymbol{\Sigma}}^{-1}(\hat{\mu}_{2} - \hat{\mu}_{1}) > \frac{1}{2}\hat{\mu}_{2}^{T}\hat{\boldsymbol{\Sigma}}^{-1}\hat{\mu}_{2} - \frac{1}{2}\hat{\mu}_{1}^{T}\hat{\boldsymbol{\Sigma}}^{-1}\hat{\mu}_{1} + \log(N_{1}/N) - \log(N_{2}/N)$$

Logistic Regression or LDA?

It seems that the models (for log odds) are the same.

The difference lies in the way the linear coefficients are estimated.

• The logistic regression model is more general, in that it makes less assumptions.

Logistic Regression or LDA?

- The logistic regression model leaves the marginal density of X as an arbitrary density function P(X), and fits the parameters of P(G|X) by maximizing the likelihood.
- For LDA, we fit the parameters by maximizing the full log-likelihood.

• In practice these assumptions are never correct, and often some of the components of X are qualitative. It is generally felt that logistic regression is a safer, more robust bet than the LDA.