T S12/5/1-

12/5/1

DIALOG(R) File 347: JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

03043228 **Image available**

OPTICAL RECORDING MEDIUM AND ITS PRODUCTION

PUB. NO.:

02-018728 [JP 2018728 A]

PUBLISHED:

January 23, 1990 (19900123)

INVENTOR(s):

ITO AKITAKE

MORI HISAKO

HATAKEYAMA AKIHITO MIZUIKE MAYUMI TAMURA TORU

APPLICANT(s): MATSUSHITA ELECTRIC IND CO LTD [000582] (A Japanese Company

or Corporation), JP (Japan)

APPL.-NO.:

63-168202 [JP 88168202] July 06, 1988 (19880706)

FILED: INTL CLASS:

[5] G11B-007/24; B41M-005/26; G11B-007/26

JAPIO CLASS:

42.5 (ELECTRONICS -- Equipment); 14.2 (ORGANIC CHEMISTRY --

High Polymer Molecular Compounds); 29.4 (PRECISION

INSTRUMENTS -- Business Machines)

JAPIO KEYWORD: R002 (LASERS); R044 (CHEMISTRY -- Photosensitive Resins);

R102 (APPLIED ELECTRONICS -- Video Disk Recorders, VDR); R125

(CHEMISTRY -- Polycarbonate Resins)

JOURNAL:

Section: P, Section No. 1029, Vol. 14, No. 162, Pq. 82, March

29, 1990 (19900329)

ABSTRACT

PURPOSE: To improve light resistance and reflectivity by forming the recording medium of a recording film which is provided on a transparent substrate having a specific oxygen permeation rate and has absorption in the wavelength region of recording light and consists of an organic dye and a reflecting film which is provided on the recording film and consists of a metal.

CONSTITUTION: This recording medium is formed of the recording film 1 which is provided on the transparent substrate 2 having <=0.01g/m(sup 2) 24hr atom oxygen permeation rate and has the absorption in the wavelength region of the recording light and the reflecting film 5 which consists of the metal provided on the recording film. Fading of the recording film consisting of an organic dye can prevent the progression of a fading reaction when the contact of oxygen with the recording film 1 is The infiltration of the oxygen which is the case for inducing suppressed. fading into the optical recording medium and the contact thereof with the recording film 1 are, therefore, suppressed by using the material having the small oxygen permeation rate to constitute both the surfaces of the recording film 1 consisting of the organic dye. The light resistance is improved in this way.

⑩ 公 開 特 許 公 報(A) 平2-18728

@Int. Cl. 3

識別記号

庁内整理番号

④公開 平成2年(1990)1月23日

G 11 B 7/24 B 41 M 5/26 В 8120-5D

8120-5D

B 41 M 5/26

審査請求 未請求 請求項の数 12 (全5頁)

60発明の名称

光記録媒体およびその製造方法

②特 題 昭63-168202

29出 M 昭63(1988)7月6日

⑫発 明 伊 者

彰 勇 大阪府門真市大字門真1006番地 松下電器産業株式会社内

饱発 明 者 @発 明 者

子 久 仁

大阪府門真市大字門真1006番地 松下電器産業株式会社内

大阪府門真市大字門真1006番地 松下電器産業株式会社内

秋 畠 Ш 水 池 真 由 美

⑫発 明 者

徶

大阪府門真市大字門真1006番地 松下電器産業株式会社内

明 \blacksquare 村 ⑫発 者

大阪府門真市大字門真1006番地 松下電器産業株式会社内

松下電器産業株式会社 勿出 願 人

森

大阪府門真市大字門真1006番地

弁理士 栗野 重孝 個代 理 人

外1名

1、発明の名称

光記録媒体およびその製造方法

- 2、特許請求の範囲
- (I) 酸素透過率が0.01g/㎡・2.4 hr・atm 以 下である透明基板上に設けられた記録光の波長 領域に吸収を有する有機色素からなる記録膜と、 前記記録膜上に設けられた金属からなる反射膜 とからなる光記録媒体。
- (2) 記錄膜と反射膜の間に報街層が設けられたこ とを特徴とする請求項(1)記載の光記録媒体。
- (3) 透明基仮かアクリル樹脂製であることを特徴 とする請求項(1)。(2)のいずれかに記載の光記録
- (4) 透明基板が光学ガラス製であることを特徴と する請求項(1)、(2)のいずれかに記載の光記録媒 体.
- (5) 有機色素がシアニン色素であることを特徴と する請求項(1)、(2)のいずれかに記載の光記録媒 UK.

- (6) 酸素透過率が0.0 i g / ㎡・2 4 hr・ata 以 下である透明基板上に、記録光の波長領域に吸 収を有する有傚色素からなる記録膜を形成する 第1の工程と、記録光によって記録膜に所望の 情報を記録する第2の工程と、金銭からなる反 射膜を形成する第3の工程とからなる光記録媒 体の製造方法。
- (7) 第1の工程に引き続いて第2の工程を行ない、 **最後に第3の工程を行なうことを特徴とする請** 求項(6)記載の光記録媒体の製造方法。
- (8) 第1の工程に引き続いて第3の工程を行ない、 最後に第2の工程を行なうことを特徴とする請 求項(6)記載の光記録媒体の製造方法。
- (9) 第1の工程と第3の工程の間に、銀街履を形 成する工程を行なうことを特徴とする請求項(8) 記載の光記録媒体の製造方法。
- 咖 透明基板がアクリル樹脂製であることを特徴 とする請求項(6)~(9)のいずれかに記載の光記録 媒体の製造方法。
- 01) 透明基板が光学ガラス製であることを特徴と

する請求項(6)~(9)のいずれかに記載の光記録牒 体の製造方法。

の 有機色素がシアニン色素であることを特徴と する請求項(6)~(9)のいずれかに記載の光記録録 体の製造方法。

3、発明の詳細な説明

産業上の利用分野

本発明は書込み可能な光記録媒体、およびその 製造方法に関するものである。

従来の技術

光記録媒体、中でも光ディスクは近年目覚ましい発展を遂げつつあり、市場の拡大に伴い多種多様な目的、用途に利用されることが予想されている。一般に光ディスクは、再生専用型ディスク(例えばコンパクトディスク、以後CDと称する)と含込み可能のディスクの二種類に大きく分類される。後者の中で、追記型光ディスクは、当初Te 系材料を中心とした様々の無機系記録膜を用いたディスクが開発された実用化された。これに伴い、有機系材料、特に有機色素を記録膜として用いた

および反射率が低いという課題を解決するもので ある。

課題を解決するための手段

酸素透過率が0.01g/m・24hr・ata以下である透明基板上に設けられた記録光の被長領域に吸収を有する有機色素からなる記録膜と、前記記録膜上に設けられた金属からなる反射膜とからなる光記録媒体およびその製造方法により、前記課題を解決することができる。

作用

有機色素からなる記録限が退色するメカニズムはかなり複雑であるが、一重項酸素による光酸化反応によって引き起こされることも大きな要因である。従って、酸素が記録膜に接触することを抑えれば、退色反応の進行を防ぐことができる。本発明は、有機色素からなる記録膜の質面を酸素透過率の小さい物質で構成することによって、退色を引き起こす原因である酸素が光記録媒体内に侵を引き起こす原因である酸素が光記録媒体内に侵入していき、記録膜と接触することを抑えることが可能となができるため、耐光性を良くすることが可能とな

光ディスクの検討も盛んに行なわれており、一部 実用化されている

一般に、有機色素を用いた追記型光ディスクに は、次の様な特徴がある。

①製設法としてスピンコート法が適用でき、真空系にする必要がないため、非常に簡便な設備で済むなど製設工程での大幅な低コスト化が図れる。 ②酸化を受けにくく、腐粧もされにくい。 ③然伝導率が小さく、ピットエッジがシャープである。 ④ 尋性が少ない。

発明が解決しようとする課題

有機色素を記録膜とした光ディスクには、前述したような長所がある反面、金属系記録膜に比較して消取の反射率が低い、製膜時に用いる溶媒によってブラスチック製造板が侵される、明確なしさい値をもたず、再生光あるいは環境光に対して 熱的にあるいは光学的に劣化しやすいという課題があった。

本発明はこれら課題の中で、耐光性が思い (再生光あるいは環境光による腹の劣化) という課題

る.

また、有機色素の溶融あるいは分解。 昇重など によって形成されるピットあるいはパブルの上に、 金属からなる反射膜が設けられた構造となってい るため、ピット部あるいはパブル部での反射率が 金属によって高められる。

実施例

以下本発明の一実施例の光記録媒体およびその 製造方法について、図面を参照しながら説明する。

第1回、第2回は本発明になる光記録媒体の主な製造工程の概要を示す図である。第1図に示すように、第1の工程として、片面にトラッキングサーボのための溝15が形成されている透明基板2の溝15のあるでは上に記録光に対して吸収性のある有機色素層1を形成する。この透明基板2は、酸素透過率が0.018/m・24hr・ata 以下である必要がある。酸素透過率がこの値以上であると、後の具体例で示すように、記録膜が理境光によって劣化してしまい、光記録媒体としての性能を保てなくなる。なお、酸素透過率はASTM 01438

に従って測定する。またこの透明基板 2 は、記録 光および再生光の波長城で吸収のないものが好ま しい。このような特性をもつ基板材料として、光 学ガラスやアクリル樹脂を用いる。

また、トラッキングサーボのための演15を形成させるには光硬化性制脂を用いる方法や、スタンパーを用いて射出成形により形成させるなど通常の方法を用いることができる。

本発明において使用される有数色素値1としては、記録光の波長域で分光吸収特性を有し、集光された記録光によって穿孔ピット列が形成されるような材料を用いることが必要である。 種々の有機色素もしくは色素を透明樹脂に分散させたものが使用できるが、中でも反射率が比較的高いシアニン色素が適している。

有機色素層!を透明基板2上に形成する方法としては、スピンコート法が最適であるが、ディップなどの方法によっても作成できる。なお、色素層塗布の前に透明基板2の耐溶剤性を高めるために基板上に違い保護層を形成しておくことも可能

である.

透明基板2上に有效色素層1を形成させた後、第2の工程として、トラッキングサーボ用溝15を利用してトラッキングサーボをかけながら、記録光を透明基板2を通して有效色素層1上に記録用レンズ系21にて生光させ、所定の位置に外部の情報微からの信号を記録し、ピット11を形成する(第2図)。有機色素層1に情報を記録した後、第3の工程として金属からなる反射限5を形成する。反射限は、アルミニウム、金、扱等の高反射中の金属を真空蒸売あるいはスパッタすることで形成することができる。

ここで第2の工程である情報記録工程と、第3の工程である反射膜の形成工程とは、その実結関序を入れ替えても良い。その場合、有機色素層の上に直接反射限を形成させることも可能であるが、記録時に発生する分解が入等をパブル形成にうまく利用するために、色素層と反射膜の間に緩衝層を設けることが好ましい。緩衝層としては、記録光および再生光に対して透明であればよく、一般

には透明プラスチックが用いられる。

さらに、皮射膜5の保護のためこの暦上に保護 暦を墜布することが好ましい。保護暦としては熱 硬化型制脂や光硬化型樹脂が一般に用いられる。

第3図には、本発明になる光紀録媒体の再生時の様子を示しているが、再生光は、再生用レンズ系21aにより透明基仮2を通して有機色素層1上のピット部に象光され、記録された情報を読みだすことができる。なお、再生光の波長は記録光の波長と同一であってもよいし異なっていてもよい

以下、具体的な一実施例について述べる。 (実施例 1) ^

厚さが1.2 mmで片面に深さ0.0 8 μ、 個0.8 μ のトラッキングサーボ用溝 1 5 が1.6 μ ピッチでスパイラル状に形成されたアクリル樹脂製成形基版 2 を準備し、溝を有する面上に 3 0 mmの膜厚で有機シリコーン樹脂からなる保護層を形成した後、第4図に示す分光特性を有するシアニン色素のクロロホルム溶液を 1 0 0 0 r pmでスピンコート

して有機色素層 1 を形成した。この色素層の腹厚をエリプソノータで測定したところ100 nmであった。またこのアクリル樹脂製造板の酸素過率は0.005g/m・24hr・almであった。次いで、記録用レーザー光として改長が830mmの半減体レーザーを搭載したデッキを用いてワー6mw、線速度1.3m/sの記録条件で有機色単一は号を記録した。次いで有機色素層1上に100mmの厚さにアルミニウムを真空原着し、最外段を関射して保護層を形成し光ディスクを得た。

完成された光ディスクの電気特性を前記デッキにて測定した。再生レーザーパワーは0.4 mMとした。その結果C/N比は55dBであった。また、分光光度計にてこの光ディスクの反射率を測定したところ22%であった。さらに、完成された光ディスクをCDプレーヤSL−P3(松下電器座業料製)にて再生した。通常のCDを再生する場

合よりもRF信号のゲインを大きくした状態に調整すると、在声が再生できた。

この光ディスクにキセノンアークランプを用いて作光し、退色労化を促進する試験を試みたが、500時間を指後においても記録膜は殆ど変化しなかった。初期と同様に電気特性と反射率を測定した結果、C/N比は53dB、反射率は24%であった。また、上記のCDプレーヤにて再生したところ、音声が再生できた。

(実施例2)

実施例 1 においてアクリル樹脂製成形基板の代りに、光硬化性樹脂によってトラッキングサーボ用消を形成した光学ガラス製造明基板を用いた他は全く同一の材料、工程によって光ディスクを得た。光学ガラス製造明基板の放業透過率は0であった。完成された光ディスクについて実施例 1 と同様に、初期での特性値を測定した結果、反射率は24%、C/N 比は56 dBであり、実施例 1 のCDプレーヤで再生したところ、音声が再生できた。また、実施例 1 と同様に、キセノンアークラ

(実施例4)

ンプを用いて移光し、退色劣化を促進する試験を はみたが、500時間発酵後においても記録散は 殆ど変化しなかった。初期と同様に運気特性と反 財事を固定した結果、C/N比は56dB、反射率 は26%であった。また、上記のCDプレーヤに て再生したところ、各声が再生できた。

(事務別(3)

色常層として下記構造式で示される色素を用いる他は実施例1と同一の方法、工程で光ディスクを得た。完成された光ディスクについて実施例1と同様に、初期での特性値を測定した結果、反射率は19%、C/N比は53dBであり、実施例1のCDプレーヤで再生したところ、音声が再生できた。また、実施例1と同様に、キセノンアークランプを用いて看光し、退色劣化を促進する試験と試みたが、500時間暴露後においても記録酸は殆ど変化しなかった。初期と同様に電気特性と反射率を測定した結果、C/N比は52dB、反射率は20%であった。また、上記のCDプレーヤにて再生したところ、音声が再生できた。

ィスクを得た。

記録用レーザー光として波長が830nmの半導体レーザーを搭載したデッキを用いてトラッキングサーボをかけながら、レーザーパワー12mW、 接速度1.3m/sの記録条件で有機色素層1に 500kkの単一信号を記録した。

完成された光ディスクについて実施例1と同様に、初期での特性値を測定した結果、反射率は22%、C/N比は54dBであった。また、実施例1と同様に、キセノンアークランプを用いて露光し、退色劣化を促進する試験を試みたが、500時間暴露後においても記録膜は殆ど変化しなかった。初期と同様に電気特性と反射率を測定した結果、C/N比は52dB、反射率は23%であった。(比較例1)

実施例1においてアクリル樹脂製成形基板の代 りに、ポリカーボネート樹脂製成形基板を用いた 他は全く同一の材料、工程によって光ディスクを 待た、ポリカーボネート樹脂製成形基板の酸素透 過率は0.1g/m・24hr・ata であった。完成さ れた光ディスクについて実施例!と同様に、初期での特性値を選定した結果、反射率は23%、C/N比は54d8であり、実施例!のCDブレーヤで再生したところ、音声が再生できた。しかし、実施例!と同様に、キセノンアークランブを用いて構光し、退色劣化を促進する試験を試みたところ、30時間暴露後において記様限は殆ど退色してしまい、電気特性を測定しようとしたが、トラッキングがかからず、またRF信号の変調度はほぼのになった。上記のCDブレーヤにて再生を試みたが全く再生できなかった。

(比較例2)

実施例1において反射版であるアルミニウムを 形成しない他は全く同一の材料、工程によって光 ディスクを得た。完成された光ディスクについて 実施例1と同様に、初期での特性値を例定した結 果、反射率は13%、C/N比は5068であった。 しかし、実施例1と同様に、キセノンアークラン プを用いて落光し、退色劣化を促進する試験を試 みたところ、20時間暴露後において記録際は殆 ど退色してしまい、電気特性を測定しようとしたが、トラッキングがかからず、またRF信号の袋 調度はほぼ 0 になった。

発明の効果

本発明によれば、有機色素からなる記録膜の両面を酸素透過率の小さい物質で構成することによって、色素の退色を抑えることができ、耐光性の優れた光記録媒体を提供できる効果がある。 さらに、金属からなる反射膜を設けることで、反射率のより高い光記録媒体を提供できる効果もある...

4、図面の簡単な説明

第1 図、第2 図は本発明になる光記録媒体の主な製造工程の模型を示す前面図、第3 図は本発明になる光記録媒体の再生時の様子を示す断面図、第4 図はシアニン色素の分光透過率を表わすグラフである。

1 ……有機色素層、2 ……透明基板、5 ……反射膜、1 1 ……ビット、1 5 ……トラッキングサーボ用溝、2 1 ……記録用レンズ系、2 1 a ……再生用レンズ系。

/ --- 有機色素層 2 ·-- 透明基板

/5… トラッキングサーボ用溝

第 1 図

第 2 图

第 3 ⊠

第 4 図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.