ME731 - Métodos em Análise Multivariada - Análise de Correspondência I -

Prof. Carlos Trucíos ctrucios@unicamp.br ctruciosm.github.io

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas

Aula 17

- Introdução
- 2 Motivação
- 3 Análise de Correspondência
- 4 Implementação
- 5 Interpretação

• Até agora vimos ACP e AF, que lidam apenas com variáveis **quantitativas**.

- Até agora vimos ACP e AF, que lidam apenas com variáveis quantitativas.
- E se o interesse estiver em variáveis qualitativas?

- Até agora vimos ACP e AF, que lidam apenas com variáveis **quantitativas**.
- E se o interesse estiver em variáveis qualitativas?
- Na aula de hoje apresentaremos Análise de Correspondência, uma técnica multivariada que nos permite lidar com variáveis categóricas.

- Até agora vimos ACP e AF, que lidam apenas com variáveis quantitativas.
- E se o interesse estiver em variáveis qualitativas?
- Na aula de hoje apresentaremos Análise de Correspondência, uma técnica multivariada que nos permite lidar com variáveis categóricas.
- Para muitos, análise de correspondência é uma caixa preta.

Existe associação entre as variáveis?

Tabela 1: Exemplo 1

sex	Adelie	Chinstrap	Gentoc
female	73	34	58
male	73	34	61

Existe associação entre as variáveis?

Tabela 1: Exemplo 1

sex	Adelie	Chinstrap	Gentoc
female	73	34	58
male	73	34	61

```
##
    Pearson's Chi-squared test
##
##
## data:
## X-squared = 0.048607, df = 2, p-value = 0.976
```

Existe associação entre as variáveis?

Tabela 2: Exemplo 2

Profession	Single	Married	Widower	Divorcee	Remarried
Unskilled worker	242	347	108	72	23
Manual labourer	242	660	84	104	71
Technician	109	218	10	44	20
Foreman	144	424	61	70	36
Management	215	623	58	92	64
Employee	603	1247	263	312	127
Other	54	112	17	18	11

```
hobbies %>%
  drop_na() %>%
  select(`Marital status`, Profession) %>%
  table() %>%
  chisq.test()
```

```
##
##
    Pearson's Chi-squared test
##
## data:
## X-squared = 158.01, df = 24, p-value < 2.2e-16
```

• Qual categoria da variável Marital status está associada com qual categoria da variável Profession?

- Qual categoria da variável Marital status está associada com qual categoria da variável Profession?
- E se a Tabela de continguência tivesse mais do que apenas duas entradas? $(4 \times 3 \times 5, por exemplo?)$

- Qual categoria da variável Marital status está associada com qual categoria da variável Profession?
- E se a Tabela de continguência tivesse mais do que apenas duas entradas? $(4 \times 3 \times 5, \text{ por exemplo?})$

Nesses casos utilizamos análise de correspondência!.

O principal objetivo da Análise de Correpondência é obter índices que permitam mostrar a relação entre as categorias das linhas e colunas de uma tabela de contingência.

Introdução

O principal objetivo da Análise de Correpondência é obter índices que permitam mostrar a relação entre as categorias das linhas e colunas de uma tabela de contingência.

• Isto é feito de uma forma semelhante ao estudado em ACP.

O principal objetivo da Análise de Correpondência é obter índices que permitam mostrar a relação entre as categorias das linhas e colunas de uma tabela de contingência.

- Isto é feito de uma forma semelhante ao estudado em ACP.
- Contudo, desta vez, a decomposição será feita sob uma medida de associação (geralmente o valor χ^2 utilizado no teste de independência).

Seja n_{ii} o número de elementos que pertencem à categoria i da variável 1 e à categoria i da variável 2. Então,

		Variável 2					
		Cat 1	Cat 2	Cat 3	• • •	Cat q	Total
Variável 1	Cat 1	n ₁₁	n ₁₂	n ₁₃		n_{1q}	$n_{1.}$
	Cat 2	n_{21}	n_{22}	n_{23}	• • •	n_{2q}	$n_{2.}$
	:						
	Cat p	n_{p1}	n_{p2}	n_{p3}	• • •	n_{pq}	n_{p}
Tota	ıl	n _{.1}	n _{.2}	n _{.3}		n _{.q}	$n_{\cdot \cdot} = n$

Introdução

A forma tradicional de avaliar se existe alguma relação entre ambas as variáveis é através do teste de independência cuja estatística de teste é dada por

$$\chi^2 = \sum_{i=1}^p \sum_{j=1}^q \frac{(n_{ij} - E_{ij})^2}{E_{ij}},$$

em que
$$E_{ij} = \frac{n_{i.} n_{.j}}{n}$$
.

A forma tradicional de avaliar se existe alguma relação entre ambas as variáveis é através do teste de independência cuja estatística de teste é dada por

$$\chi^2 = \sum_{i=1}^p \sum_{j=1}^q \frac{(n_{ij} - E_{ij})^2}{E_{ij}},$$

em que
$$E_{ij} = \frac{n_{i.}n_{.j}}{n_{..}}$$
.

Obs: E_{ii} é o número de casos esperados sob H_0 , se não existir associação entre as variáveis, as frequências observadas (n_{ii}) e as esperadas (E_{ii}) estarão próximas.

Alternativamente, se utilizarmos frequência relativas ($f_{ii} = n_{ii}/n$):

		Variável 2					
		Cat 1	Cat 2	Cat 3	• • •	Cat q	Total
Variável 1	Cat 1	f_{11}	f_{12}	f_{13}		f_{1q}	$f_{1.}$
	Cat 2	f_{21}	f_{22}	f_{23}		f_{2q}	f _{2.}
	:						
	Cat p	f_{p1}	f_{p2}	f_{p3}		f_{pq}	f_{p}
Tota	ıl	f _{.1}	f _{.2}	f _{.3}		f _{.q}	$f_{} = 1$

$$\chi^2 = \sum_{i=1}^p \sum_{j=1}^q \frac{(n_{ij} - E_{ij})^2}{E_{ij}} = \sum_{i=1}^p \sum_{j=1}^q \frac{(nf_{ij} - nf_{i,}f_{,j})^2}{nf_{i,}f_{,j}} = n \sum_{i=1}^p \sum_{j=1}^q \frac{(f_{ij} - f_{i,}f_{,j})^2}{f_{i,}f_{,j}}$$

E se tivermos uma forma de fazer uma decomposição dessa estatística de teste?

E se tivermos uma forma de fazer uma decomposição dessa estatística de teste? AC fará uma decomposição dessa estatística de teste.

Seja $c_{ij} = \frac{n_{ij} - E_{ij}}{\sqrt{E_{ii}}}$, então faremos uma decomposição SVD da matriz

$$\mathbf{C} = \left(egin{array}{cccc} c_{11} & c_{12} & \cdots & c_{1q} \ c_{21} & c_{22} & \cdots & c_{2q} \ dots & dots & \ddots & dots \ c_{p1} & c_{p2} & \cdots & c_{pq} \end{array}
ight).$$

Seja $c_{ij} = \frac{n_{ij} - E_{ij}}{\sqrt{E_{ij}}}$, então faremos uma decomposição SVD da matriz

$$\mathbf{C} = \left(egin{array}{cccc} c_{11} & c_{12} & \cdots & c_{1q} \ c_{21} & c_{22} & \cdots & c_{2q} \ dots & dots & \ddots & dots \ c_{p1} & c_{p2} & \cdots & c_{pq} \end{array}
ight).$$

Note que, se não existir associação entre as variáveis, as frequências observadas (n_{ij}) estarão perto das esperadas (E_{ij}) e, consequentemente, c_{ij} será pequeno.

Definição SVD

Qualquer matriz $\mathbf{M}_{m \times n}$ de posto r pode ser decomposta como:

$$M = UDV^t$$

em que $\mathbf{U}_{m\times r}$, $\mathbf{V}_{n\times r}$ e $\mathbf{D}_{r\times r} = Diag\{\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_r}\}$. $\lambda_1, \cdots, \lambda_r$ são os autovalores (em ordem decrescente) de \mathbf{MM}' .

- Os elementos D_{ii} são chamdos de valores singulares da matriz \mathbf{M} .
- As colunas de U são os r autovetores (normalizados) associados a MM'.
- As colunas de V são os r autovetores (normalizados) associados a M'M.

Esta decomposição é chamada de SVD (Singular Value Decomposition).

Implementação

Análise de Correspondência

Seja $r = rank(\mathbf{C}_{n \times n})$, então pela SVD:

$$\mathbf{C} = \Gamma \Lambda \Delta' = \begin{pmatrix} \gamma_{11} & \cdots & \gamma_{1r} \\ \vdots & \ddots & \vdots \\ \gamma_{p1} & \cdots & \gamma_{pr} \end{pmatrix} \begin{pmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_r} \end{pmatrix} \begin{pmatrix} \delta_{11} & \cdots & \delta_{q1} \\ \vdots & \ddots & \vdots \\ \delta_{1r} & \cdots & \delta_{qr} \end{pmatrix}$$

Seja $r = rank(\mathbf{C}_{p \times q})$, então pela SVD:

$$\mathbf{C} = \Gamma \Lambda \Delta' = \begin{pmatrix} \gamma_{11} & \cdots & \gamma_{1r} \\ \vdots & \ddots & \vdots \\ \gamma_{p1} & \cdots & \gamma_{pr} \end{pmatrix} \begin{pmatrix} \sqrt{\lambda_1} & & & \\ & \ddots & & \\ & & \sqrt{\lambda_r} \end{pmatrix} \begin{pmatrix} \delta_{11} & \cdots & \delta_{q1} \\ \vdots & \ddots & \vdots \\ \delta_{1r} & \cdots & \delta_{qr} \end{pmatrix}$$

Então.

$$c_{ij} = \sum_{k=1}^{r} \sqrt{\lambda_k} \gamma_{ik} \delta_{jk} \tag{1}$$

Implementação

Introdução

Então, utilizando a definição de traço de uma matriz temos que:

$$\sum_{k=1}^{r} \lambda_k = Tr(\mathbf{CC'}) = \sum_{i=1}^{p} \sum_{j=1}^{q} c_{ij}^2 = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{(n_{ij} - E_{ij})^2}{E_{ij}} = \chi^2$$

Introdução

Então, utilizando a definição de traço de uma matriz temos que:

$$\sum_{k=1}^{r} \lambda_k = Tr(\mathbf{CC'}) = \sum_{i=1}^{p} \sum_{j=1}^{q} c_{ij}^2 = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{(n_{ij} - E_{ij})^2}{E_{ij}} = \chi^2$$

Aplicar SVD em **C** decompoe a estatística de teste χ^2 .

Por outro lado, as projecões das linhas e colunas de C nos hiperplanos com vetor direção dados pelas colunas de **U** e **V** são dadas por

$$\mathbf{C}\gamma_k$$
 e $\mathbf{C}'\delta_k$.

Análise de Correspondência

Por outro lado, as projecões das linhas e colunas de C nos hiperplanos com vetor direção dados pelas colunas de **U** e **V** são dadas por

$$\mathbf{C}\gamma_k$$
 e $\mathbf{C}'\delta_k$.

Existe um Teorema que nos ajudará a relacionar ambas as projecões

Por outro lado, as projeções das linhas e colunas de ${\bf C}$ nos hiperplanos com vetor direção dados pelas colunas de ${\bf U}$ e ${\bf V}$ são dadas por

$$\mathbf{C}\gamma_k$$
 e $\mathbf{C}'\delta_k$.

Existe um Teorema que nos ajudará a relacionar ambas as projeções

Teorema: Relações de Dualidade

Seja r o posto de \mathbf{M} . Para $k \leq r$, os autovalores λ_k de $\mathbf{M}'\mathbf{M}$ e $\mathbf{M}\mathbf{M}'$ são os mesmos e os autovetores u_k e v_k tem a seguinte relação

$$u_k = rac{1}{\sqrt{\lambda_k}} \mathbf{M}' v_k \quad \mathrm{e} \quad v_k = rac{1}{\sqrt{\lambda_k}} \mathbf{M} u_k.$$

Para $k = 1, \dots, r$, pelo Teorema de relações de dualidade,

$$\gamma_k = \frac{1}{\sqrt{\lambda_k}} \mathbf{C}' \delta_k \quad e \quad \delta_k = \frac{1}{\sqrt{\lambda_k}} \mathbf{C} \gamma_k$$

Introdução

Análise de Correspondência

Para $k = 1, \dots, r$, pelo Teorema de relações de dualidade.

$$\gamma_k = rac{1}{\sqrt{\lambda_k}} \mathbf{C}' \delta_k \quad e \quad \delta_k = rac{1}{\sqrt{\lambda_k}} \mathbf{C} \gamma_k$$

Então, as projeções

$$\mathbf{C}\gamma_k$$
 e $\mathbf{C}'\delta_k$

podem (utilizando o Teorema de relações de dualidade) ser escritas como

$$\mathbf{C}\gamma_k = \sqrt{\lambda_k}\delta_k \quad e \quad \mathbf{C}'\delta_k = \sqrt{\lambda_k}\gamma_k$$
 (2)

Agora suponha que λ_1 é muito maior do que os outros autovalores, então

$$c_{ij} = \sum_{k=1}^{r} \sqrt{\lambda_k} \gamma_{ik} \delta_{jk} \approx \sqrt{\lambda_1} \gamma_{i1} \delta_{j1}$$

Agora suponha que λ_1 é muito maior do que os outros autovalores, então

$$c_{ij} = \sum_{k=1}^{r} \sqrt{\lambda_k} \gamma_{ik} \delta_{jk} \approx \sqrt{\lambda_1} \gamma_{i1} \delta_{j1}$$

- Se γ_{i1} e δ_{j1} tiverem o mesmo sinal e forem grandes, então c_{ij} também será grande e positivo, indicando uma associação positiva entre a i-éssima linha e j-éssima coluna da Tabela de contingência.
- Se γ_{i1} e δ_{j1} tiverem diferente sinal e forem grandes, então c_{ij} também será grande e negativo, indicando uma associação negativa entre a i-éssima linha e j-éssima coluna da Tabela de contingência.

Análise de Correspondência

Na maioria dos casos, λ_1 e λ_2 são suficientes para obtermos uma boa aproximação para c_{ij}

- Assim, (2) e os autovetores (γ_1, γ_2) podem ser utilizados para obter uma boa representação gráfica das linhas da Tabela de contigência.
- Equivalentemente, (2) e os autovetores (δ_1, δ_2) podem ser utilizados para obter uma boa representação gráfica das colunas da Tabela de contigência.

Na maioria dos casos, λ_1 e λ_2 são suficientes para obtermos uma boa aproximação para c_{ij}

- Assim, (2) e os autovetores (γ_1, γ_2) podem ser utilizados para obter uma boa representação gráfica das linhas da Tabela de contigência.
- Equivalentemente, (2) e os autovetores (δ_1, δ_2) podem ser utilizados para obter uma boa representação gráfica das colunas da Tabela de contigência.

A proximidade dos pontos representando as linhas e colunas devem ser interpretados como categorias relacionadas entre si.

Introdução

Em análise de correspondência projetamos as linhas e colunas de C mas ponderadas. Assim. se fizermos

$$\mathbf{A} = \left(egin{array}{cccc} n_{1.} & 0 & \cdots & 0 \\ 0 & n_{2.} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_{p.} \end{array}
ight) \quad e \quad \mathbf{B} = \left(egin{array}{cccc} n_{.1} & 0 & \cdots & 0 \\ 0 & n_{.2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_{.q} \end{array}
ight)$$

Em análise de correspondência projetamos as linhas e colunas de **C** mas ponderadas. Assim, se fizermos

$$\mathbf{A} = \begin{pmatrix} n_{1.} & 0 & \cdots & 0 \\ 0 & n_{2.} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_{p.} \end{pmatrix} \quad e \quad \mathbf{B} = \begin{pmatrix} n_{.1} & 0 & \cdots & 0 \\ 0 & n_{.2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_{.q} \end{pmatrix}$$

As projeções serão:

$$r_k = \mathbf{A}^{-1/2} \mathbf{C} \delta_k = \sqrt{\lambda_k} \mathbf{A}^{-1/2} \gamma_k$$
 e $s_k = \mathbf{B}^{-1/2} \mathbf{C} \gamma_k = \sqrt{\lambda_k} \mathbf{B}^{-1/2} \delta_k$.

O que, de fato, estamos fazendo ao projetar $\mathbf{A}^{-1/2}\mathbf{C}$ e $\mathbf{B}^{-1/2}\mathbf{C}$?

Análise de Correspondência

O que, de fato, estamos fazendo ao projetar $\mathbf{A}^{-1/2}\mathbf{C}$ e $\mathbf{B}^{-1/2}\mathbf{C}$?

 Estamos interessados em representar as frequências relativas por linhas (colunas) em um espaço de dimensão pequena que permita apreciar as distâncias relativas entre os pontos (linhas/colunas).

Introdução

O que, de fato, estamos fazendo ao projetar $A^{-1/2}C$ e $B^{-1/2}C$?

- Estamos interessados em representar as frequências relativas por linhas (colunas) em um espaço de dimensão pequena que permita apreciar as distâncias relativas entre os pontos (linhas/colunas).
- A frequenca relativa de cada linha(coluna) é diferente. Ou seja, as linhas (colunas) não tem o mesmo peso, pois algumas contém mais dados do que outras. Quando representarmos cada uma das linhas (colunas) devemos levar isto em consideração.

Análise de Correspondência

O que, de fato, estamos fazendo ao projetar $A^{-1/2}C$ e $B^{-1/2}C$?

- Estamos interessados em representar as frequências relativas por linhas (colunas) em um espaço de dimensão pequena que permita apreciar as distâncias relativas entre os pontos (linhas/colunas).
- A frequenca relativa de cada linha(coluna) é diferente. Ou seja, as linhas (colunas) não tem o mesmo peso, pois algumas contém mais dados do que outras. Quando representarmos cada uma das linhas (colunas) devemos levar isto em consideração.
- Para saber quão próximas são as linhas (colunas), precisamos de uma medida de distância entre elas.

Pense na seguinta Tabela de frequências relativas

Zona A 0.03 0.06 0.15 0.06 ## Zona B 0.07 0.14 0.35 0.14

Análise de Correspondência

Pense na seguinta Tabela de frequências relativas

```
##
## Zona A 0.03 0.06 0.15 0.06
## Zona B 0.07 0.14 0.35 0.14
```

Se calcularmos a distância euclideana entre ambas as linhas, parecerá que as frequências relativas são muito distintas. Contudo, basta condicionarmos por linha para perceber que as frequências não são distintas.

Análise de Correspondência

Pense na seguinta Tabela de frequências relativas

Se calcularmos a distância euclideana entre ambas as linhas, parecerá que as frequências relativas são muito distintas. Contudo, basta condicionarmos por linha para perceber que as frequências não são distintas.

```
##
## Zona A 0.1 0.2 0.5 0.2
## Zona B 0.1 0.2 0.5 0.2
```

Ou seja, em lugar de olhar para a matriz de frequências relativas **F**, podemos olhar para $\mathbf{R} = \mathbf{D}_f^{-1} \mathbf{F} (\mathbf{D}_f = Diag\{f_1, \cdot, f_n\}).$

Mas isso não é suficiente para podermos comparar as linhas apropriadamente. Pense no seguinte caso:

Mas isso não é suficiente para podermos comparar as linhas apropriadamente. Pense no seguinte caso:

```
## Loiro Ruivo Marrom C Marrom O Preto
## Verdes 0.435 0.073 0.369 0.119 0.0030
## Azuis 0.454 0.053 0.336 0.153 0.0040
## Marrons 0.193 0.047 0.512 0.232 0.0150
## Preto 0.075 0.037 0.307 0.518 0.0065
```

Os loiros tem uma diferença entre cor de olhos azul e verdes de 0.454-0.435=0.019. Por outro lado, pessoas de cabelo preto tem ma diferença entre cor de olhos Marrons e Azuis de 0.015-0.004=0.011.

A simples vista, diriamos que diferença do primeiro é maior do que do segundo. Contudo, no segundo caso 0.015 é \approx 4 \times 0.004.

Precisamos levar em consideração a frequência relativa da categoria que estudamos.

- Em categorias raras, pequenas diferenças absolutas podem ser grandes diferenças relativas.
- Em categorias com frequências maiores, a mesma diferença absoluta será menos importante.

Precisamos levar em consideração a frequência relativa da categoria que estudamos.

- Em categorias raras, pequenas diferencas absolutas podem ser grandes diferencas relativas.
- Em categorias com frequências maiores, a mesma diferenca absoluta será menos importante.

Uma forma de se fazer isto é ponderar as diferências de forma inversamente proporcional à categoria de interesse. Assim, em lugar de fazermos $(f_{ii}/f_{i.}-f_{ki}/f_{k.})^2$, faremos $(f_{ii}/f_{i.}-f_{ki}/f_{k.})^2/f_{ii}$

Assim como comparamos 2 linhas (colunas), podemos também comparar cada linha (coluna) w.r.t valores médios. Isto é exatamente o que $\mathbf{A}^{-1/2}\mathbf{C}$ e $\mathbf{B}^{-1/2}\mathbf{C}$ fazem!

Introdução

Assim como comparamos 2 linhas (colunas), podemos também comparar cada linha (coluna) w.r.t valores médios. Isto é exatamente o que $\mathbf{A}^{-1/2}\mathbf{C}$ e $\mathbf{B}^{-1/2}\mathbf{C}$ fazem!

Note que os elementos de $A^{-1/2}C$ e $B^{-1/2}C$ são, respectivamente:

$$\frac{n_{ij} - \frac{n_{i,}n_{,j}}{n}}{\sqrt{n_{i.}}\sqrt{\frac{n_{i.}n_{,j}}{n}}} = \frac{\frac{n_{ij}}{n_{i.}} - \frac{n_{,j}}{n}}{\sqrt{\frac{n_{,j}}{n}}} = \frac{f_{ij}/f_{i.} - f_{,j}}{\sqrt{f_{,j}}} \quad e \quad \frac{f_{ij}/f_{,j} - f_{i.}}{\sqrt{f_{i.}}}$$

```
N <- hobbies %>% drop na() %>%
  select(`Marital status`, Profession) %>%
  table() %>% as.matrix() %>% t()
N
```

##	I	Marital	status			
##	Profession	Single	${\tt Married}$	Widower	Divorcee	${\tt Remarried}$
##	Unskilled worker	242	347	108	72	23
##	Manual labourer	242	660	84	104	71
##	Technician	109	218	10	44	20
##	Foreman	144	424	61	70	36
##	Management	215	623	58	92	64
##	Employee	603	1247	263	312	127
##	Other	54	112	17	18	11

```
tot linha <- rowSums(N)
tot coluna <- colSums(N)
E <- tot linha %o% tot coluna / sum(N) # outer multiplication
round(E, 4)
##
                      Single
                               Married
                                        Widower Divorcee Remarrie
                              416.4739
## Unskilled worker
                    184.5515
                                        68.9344
                                                81.6660
                                                            40.37
## Manual labourer
                    270.5357
                              610.5128 101.0516 119.7150
                                                            59.18
                              210.8662
                                                            20.44
## Technician
                     93.4408
                                        34.9024 41.3486
                              386.5004
                                                            37.46
## Foreman
                    171,2694
                                        63.9732 75.7886
## Management
                    245.1366
                              553.1951
                                        91.5644 108.4756
                                                            53.62
## Employee
                    594.6659 1341.9713 222.1219 263.1461
                                                           130.09
```

Other

111.4804

18.4521

49.4001

21.8601

10.80

Interpretação

Implementação

```
C \leftarrow (N - E) / sqrt(E)
svd decomposition <- svd(C)</pre>
Gama <- svd_decomposition$u
Lambda <- diag(svd decomposition$d)
Delta <- svd decomposition$v
iA <- solve(diag(tot linha))</pre>
iB <- solve(diag(tot_coluna))</pre>
r 1 <- Lambda[1,1] * sqrtm(iA) %*% matrix(Gama[,1], ncol = 1)
r 2 <- Lambda[2,2] * sqrtm(iA) %*% matrix(Gama[,2], ncol = 1)
s_1 <- Lambda[1,1] * sqrtm(iB) %*% matrix(Delta[,1], ncol = 1)
s 2 <- Lambda[2,2] * sgrtm(iB) %*% matrix(Delta[,2], ncol = 1)
```

<u>Imp</u>lementação

```
correspondencia <- FactoMineR::CA(N, ncp = 2, graph = FALSE)
cbind(correspondencia$col$coord, s_1, s_2)
```

```
##
                   Dim 1
                                 Dim 2
  Single
              0.11229699 -0.085297255 -0.11229699 -0.085297255
## Married
             -0.09579981
                          0.006535596
                                        0.09579981
                                                    0.006535596
## Widower
              0.30009996
                          0.103029272 - 0.30009996
                                                    0.103029272
              0.06169403
                          0.046876693 - 0.06169403
                                                    0.046876693
  Divorcee
## Remarried -0.16228113
                          0.051749256 0.16228113
                                                    0.051749256
```

<u>Imp</u>lementação

```
round(cbind(correspondencia$row$coord, r 1, r 2), 4)
```

```
##
                             Dim 2
                     Dim 1
  Unskilled worker
                    0.2594 - 0.0618 - 0.2594 - 0.0618
## Manual labourer -0.1043
                            0.0138 0.1043
                                            0.0138
## Technician
                    -0.1169 -0.1704 0.1169 -0.1704
## Foreman
                   -0.0792
                            0.0476 0.0792 0.0476
                    -0.1649 -0.0116 0.1649 -0.0116
  Management
  Emplovee
                    0.0768
                            0.0358 - 0.0768
                                            0.0358
## Other
                    -0.0085 -0.0611
                                    0.0085 - 0.0611
```

Implementação: Gráfico de correspondência

plot(correspondencia)

Interpretac ao do Gráfico de correspondência:

- Pontos linha (ou seja, aquela obtidos dos (r_1, r_2)) que estão próximos, indicam que essas linhas da tabela de contingência tem perfis¹ semelhantes.
- Pontos coluna (ou seja, aquela obtidos dos (s_1, s_2)) que estão próximos, indicam que essas colunas da tabela de contingência tem perfis² semelhantes.
- Pontos linha e pontos coluna que estão próximos entre si (mas afastados da origem) indicam que essas categorias estão associadas.
- Como a origem é o centro dos fatores, pontos projetados perto da origem indicam perfis próximos do perfil médio

¹Perfis linha são obtidos pelo cociente $n_{i,i}/n_i$.

²Perfis coluna são obtidos pelo cociente $n_{i,i}/n_{,i}$

Interpretação

Pode-se provar que:

•
$$\bar{r}_k = 0$$
 e $\bar{s}_k = 0$

•
$$\overline{r}_k = 0$$
 e $\overline{s}_k = 0$
• $Var(r_k) = \frac{\lambda_k}{n}$ e $Var(s_k) = \frac{\lambda_k}{n}$

Análise de Correspondência

Interpretação

Pode-se provar que:

•
$$\overline{r}_k = 0$$
 e $\overline{s}_k = 0$

•
$$Var(r_k) = \frac{\lambda_k}{n}$$
 e $Var(s_k) = \frac{\lambda_k}{n}$

Isto implica que.

$$Var(r_k)/Var(r_1+\cdots+r_r)=rac{\lambda_k}{\lambda_1+\cdots+\lambda_r}=Var(s_k)/Var(s_1+\cdots+s_r)$$

- Esta quantidade pode ser interpretado como a proporção de variância explicada pelo k-éssimo fator.
- Note que essa quantidade também nos diz quanto da estatística χ^2 foi recuperada pelo k-éssimo fator.

Introdução

Referências

- Härdle, W. K., & Simar, L. (2019). Applied Multivariate Statistical Analysis. Fifth Editon. Springer Nature. Capítulo 15.
- Jhonson, R. & Wichern, D. (2007). Applied Multivariate Statistical Analysis. Sixth Edition. Person. Capítulo 12.7
- Mingoti, S. (2007). Análise de Dados Através de Métodos de Estatística Multivariada: Uma abordagem aplicada. Editora UFMG. Capítulo 8.

Interpretação