Practice Problem 2.4 (solution page 180)

Without converting the numbers to decimal or binary, try to solve the following arithmetic problems, giving the answers in hexadecimal. *Hint:* Just modify the methods you use for performing decimal addition and subtraction to use base 16.

- A. 0x605c + 0x5 = 0x606lB. 0x605c - 0x20 = 0x603CC. 0x605c + 32 = 0x603C
- D. 0x60fa 0x605c = 0x96

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	A	В	C	D	E	F
Decimal value	8	9	10	11	12	13	14	15
	1000	1001	1010	1011	1100	1101	1110	1111

Figure 2.2 Hexadecimal notation. Each hex digit encodes one of 16 values.

A.
$$0 \times 60 \le C$$
 $\frac{f}{0 \times 60 \cdot 61}$
 $C + S = 12 + S = 17 = 16 + 1$

B. $0 \times 60 \le C$
 $\frac{-0 \times 20}{0 \times 60 \cdot 3}$

C. $0 \times 60 \le C$
 $\frac{f}{0 \times 20}$
 $0 \times 60 \cdot 7C$
 $\frac{f}{0 \times 60 \cdot 7}$

D.
$$0 \times 60 = A$$

 $-0 \times 60 = C$
 $0 \times 9 = C$
 $(F-1)-5=(F-5=9)$