Inhaltsverzeichnis der Vorlesung

Einführung in die Experimentalphysik I für Studierende des Fachs Biologie und Sport

Kinematik/Mechanik/Materialeigenschaften/Schwingungen&Wellen WS 2017/18

0. Erkenntnisprozess in der Naturwissenschaft

1. Grundlegendes

- 1.1 Basiseinheiten
- 1.2 Dimension einer Größe
- 1.3 Messfehler

(systematischer & statistischer Fehler, Gaussverteilung, Zentraler Grenzwertsatz, Fehler der Messreihe

2. Kinematik

2.1 a) Gleichförmige Eindimensionale Bewegung

Differenzenquotiont, Ableitung

b) Nichtgleichförmige 1D Bewegung

Beschleunigung und 2. zeitliche Ableitung des Ortes

2.2 Bewegung in 2 und 3 Dimensionen

Vektoren, Multiplikation mit einem Skalar, Skalarprodukt, Kreuzprodukt, gerader Wurf, schräger Wurf, Wurfparabel

2.3 Kreisförmige Bewegung

Rotation, Winkelbeschleunigung, Zentralbeschleunigung

3. Mechanik einzelner Massepunkte

3.1 Newtonsche Axiome

1. Axiom, 2. Axiom, Äquivalenzprinzip: schwere Masse = träge Masse Kräfte als Vektoren, 3. Newtonsches Axiom

3.2 Gravitationskraft

- 3.3 Der Impuls
 - 3.3.1. Impulserhaltung
 - 3.3.2. Kraftstoß

3.4 Mechanische Arbeit und Energie

- 3.4.1. Potentielle Energie
- 3.4.2. Kinetische Energie
- 3.4.3. Energieerhaltung
- 3.4.4. Leistung
- 3.4.5. Wirkung

3.5 Reibung

- 3.5.1. Haftreibung
- 3.5.2. Gleitreibung, Dissipation(senergie)

3.6 Rotationsbewegung und Drehimpuls

- 3.6.1. Drehmoment und Trägheitsmoment
- 3.6.2. Drehimpulserhaltung
- 3.6.3. Rotationsenergie

3.7 Beschleunigte Bezugssysteme und Scheinkräfte

3.7.1. Corioliskraft

4. Deformierbare Körper

4.1.1. Aufbau der Materie

(Moleküle und Atome, Atomkerne und Elektronen, Quarks)

(Anordnung der Moleküle, Symmetrien von Flüssigkeiten und Festkörpern)

4.1.2. Kristallstrukturen (14 Bravais-Gitter)

4.2 Verformung von Festkörpern (Hooksches Gesetz)

- 4.2.1. Stauchung (Volumen und Formänderung)
- 4.2.2. Kompression (reine Volumenänderung)
- 4.2.3. Scherung (reine Formänderung)
- 4.2.4. Verdrillung

4.3 Gasgesetze

4.3.1. Gesetz von Boyle-Mariotte

(Magdeburger Kugeln, Barometrische Höhenformel)

- 4.3.2. Gesetz von Gay-Lussac
- 4.3.3. Gesetz von Amontons
- 4.3.4. Gesetz der Gleichförmigkeit
- 4.3.5. Ideales Gasgesetz

4.4 Ruhende Flüssigkeiten

- 4.4.1. Hydrostatischer Druck (hydrostatisches Paradoxon, hydraulische Presse)
- 4.4.2. Auftrieb (Verdrängung, Gewichtsstabilität und Formstabilität bei Booten)
- 4.4.3. Oberflächenspannung (Seifenblasen / Lungenbläschen)
- 4.4.4. Kapillarität und Benetzung

(Kohäsion und Adhäsion, Benetzungswinkel, hydrophil/hydrophob)

4.5 Strömende Flüssigkeiten ohne Reibung

(Stromlinien, Kontinuitätsgleichung, Druck in Röhren oder an Tragflächen, Gesetz von Bernoulli)

4.6 Strömende Flüssigkeiten mit Reibung

(laminare und trubulente Strömung)

4.6.1. Zähigkeit von Flüssigkeiten

(Viskosität, Strömungsrpofil in einem Rohr, Gesetz von Hagen-Poiseuille)

4.6.2. Reynoldszahl

5. Schwingung und Wellen

5.1 Harmonische Schwingung

5.2 Ungedämpfte harmonische Schwingung

(mathematisches Pendel, physikalisches Pendel, Mathe-Einschub: Taylorreihen)

5.3 Gedämpfte harmonische Schwingung

(auch Differentialgleichung lösen, schwache Dämpfung – gedämpfte Schwingung, starke Dämfpung – Kriechfall, dazw. aperiodischer Grenzfall)

5.4 Erzwungene Schwingung

(Amplitude und Phasenverschiebung, Resonanzkatastrophe)

5.5 Gekoppelte Schwingungen

(Eigen/Normalmoden, Superpositionsprinzip, Schwebung)

5.6 Wellen

(longitudinale und transversale Wellen, Polarisation, Reflexion von Wellen)

5.6.1. Überlagerung von Wellen

(Wellengleichung, Phasen- & Gruppengeschwindigkeit, Wellenpaket)

5.6.2. Überlagerung von Wellen II

(Schwebung, Interferenz (konstruktiv u. destruktiv), Fourie-Spektrum, Signalgeschwindigkeit, Dipsersion eines Wellenpaketes, Dopplereffekt, deziBel)