Curs 12

Cristian Niculescu

1 Actualizare Bayesiană cu a priori continue

1.1 Scopurile învățării

- 1. Să înțeleagă o familie parametrizată de repartiții ca reprezentând un domeniu continuu de ipoteze pentru datele observate.
- 2. Să poată să enunțe teorema lui Bayes și legea probabilității totale pentru densități continue.
- 3. Să poată să aplice teorema lui Bayes pentru a actualiza o funcție densitate de probabilitate a priori la o pdf a posteriori cunoscând datele și funcția de verosimilitate.
- 4. Să poată interpreta și calcula probabilități predictive a posteriori.

1.2 Introducere

Până acum am făcut actualizare Bayesiană când aveam un număr finit de ipoteze, de pildă exemplul nostru cu zaruri avea 5 ipoteze (4, 6, 8, 12 sau 20 de fețe). Acum vom studia actualizare Bayesiană când există un domeniu continuu de ipoteze. Procesul de actualizare Bayesiană va fi în esență același ca în cazul discret. Ca de obicei când ne mişcăm de la discret la continuu vom avea nevoie să înlocuim funcția masă de probabilitate cu o funcție densitate de probabilitate și sumele cu integrale.

Primele câteva secțiuni ale acestui curs sunt dedicate lucrului cu pdf-uri. În particular, vom cuprinde legea probabilității totale și teorema lui Bayes. Acestea sunt în esență identice cu versiunile discrete. Apoi, vom aplica teorema lui Bayes și legea probabilității totale pentru actualizare Bayesiană.

1.3 Exemple cu domenii continue de ipoteze

Iată 3 exemple standard cu domenii continue de ipoteze.

Exemplul 1. Presupunem că avem un sistem care poate reuși (sau eșua) cu

probabilitatea p. Atunci putem face ipotezele că p este oriunde în domeniul [0,1]. Adică, avem un domeniu continuu de ipoteze. Adesea vom modela acest exemplu cu o monedă cu probabilitatea p a aversului necunoscută.

Exemplul 2. Durata de viață a unui anumit izotop este modelată de o repartiție exponențială $\exp(\lambda)$. În principiu, media duratei de viață $1/\lambda$ poate fi orice număr în $(0, \infty)$.

Exemplul 3. Nu suntem restricționați la un singur parametru. În principiu, parametrii μ și σ ai unei repartiții normale pot fi orice numere reale în $(-\infty,\infty)$, respectiv în $(0,\infty)$. Dacă modelăm durata sarcinii fără gemeni printr-o repartiție normală, atunci din milioane de date știm că μ este aproximativ 40 de săptămâni și σ este aproximativ o săptămână.

În toate aceste exemple am modelat procesele aleatoare dând naștere la date printr-o repartiție cu parametri - numită repartiție parametrizată. Fiecare posibilă alegere a parametrului (parametrilor) este o ipoteză, de pildă putem face ipoteza că probabilitatea succesului în exemplul 1 este p=0.7313. Avem o mulțime continuă de ipoteze deoarece am putea lua orice valoare între 0 și 1.

1.4 Convenții de notație

1.4.1 Modele parametrizate

Ca în exemplele de mai sus ipotezele noastre adesea iau forma un anumit parametru are valoarea θ . Vom utiliza adesea litera θ pentru o ipoteză arbitrară. Aceasta va lăsa simboluri ca p, f și x să ia sensurile lor uzuale de pmf, pdf și date. De asemenea, decât să spunem "ipoteza că parametrul de interes are valoarea θ " vom spune simplu ipoteza θ .

1.4.2 Litere mari şi mici

Avem 2 notații paralele pentru rezultate și probabilități:

- 1. (Litere mari) Evenimentul A, funcția de probabilitate P(A).
- 2. (Litere mici) Valoarea x, pmf p(x), pdf f(x).

Aceste notații sunt legate prin P(X = x) = p(x), unde x este o valoare a variabilei aleatoare discrete X și "X = x" este evenimentul corespunzător.

Ducem aceste notații la probabilitățile folosite în actualizarea Bayesiană.

1. (Litere mari) Din ipotezele \mathcal{H} și datele \mathcal{D} calculăm câteva probabilități asociate:

$$P(\mathcal{H}), P(\mathcal{D}), P(\mathcal{H}|\mathcal{D}), P(\mathcal{D}|\mathcal{H}).$$

În exemplul cu moneda putem avea $\mathcal{H} =$ "moneda aleasă are probabilitatea aversului 0.6", $\mathcal{D} =$ "aruncarea a fost avers" și $P(\mathcal{D}|\mathcal{H}) = 0.6$.

2. (Litere mici) Valorile ipotezei θ și valorile datelor x au ambele probabilități sau densități de probabilitate:

$$p(\theta), p(x), p(\theta|x), p(x|\theta)$$

 $f(\theta), f(x), f(\theta|x), f(x|\theta)$

În exemplul cu moneda putem avea $\theta = 0.6$ şi x = 1, astfel $p(x|\theta) = 0.6$. Putem de asemenea scrie $p(x = 1|\theta = 0.6)$ pentru a evidenția valorile lui x şi θ , dar niciodată nu vom scrie doar p(1|0.6) deoarece este neclar care valoare este x şi care este θ .

Cu toate că încă vom folosi ambele tipuri de notații, de acum înainte vom folosi mai ales notația cu litere mici implicând pmf-uri și pdf-uri. Ipotezele vor fi de obicei parametri reprezentați de litere grecești $(\theta, \lambda, \mu, \sigma, ...)$ în timp ce valorile datelor vor fi de obicei reprezentate de litere românești $(x, x_i, y, ...)$.

1.5 Recapitulare rapidă a pdf și probabilității

Presupunem că X este o variabilă aleatoare cu pdf f(x). Reamintim că f(x) este o densitate; unitățile ei sunt probabilitate/(unitățile lui x).

Probabilitatea că valoarea lui X este în [c,d] este dată de

$$\int_{c}^{d} f(x)dx.$$

Probabilitatea că X este într-un interval infinitezimal dx în jurul lui x este f(x)dx. De fapt, formula integrală este doar "suma" acestor probabilități infinitezimale. Putem vizualiza aceste probabilități văzând integrala ca aria de sub graficul lui f(x). Pentru a manipula probabilități în loc de densități în cele ce urmează, vom utiliza frecvent noțiunea că f(x)dx este probabilitatea că X este într-un interval infinitezimal în jurul lui x de lungime dx.

1.6 A priori continue, verosimilități discrete

În cadrul Bayesian avem probabilități ale ipotezelor - numite probabilități a priori și a posteriori - și probabilități ale datelor cunoscând o ipoteză - numite verosimilități. În cursurile precedente atât ipotezele cât și datele

aveau domenii discrete de valori. Am văzut în introducere că putem avea un domeniu continuu de ipoteze. Același lucru este valabil și pentru date, dar pentru acum vom presupune că datele noastre pot lua doar o mulțime discretă de valori. În acest caz, verosimilitatea datelor x cunoscând ipoteza θ este scrisă folosind o pmf: $p(x|\theta)$.

Vom utiliza următorul exemplu cu monedă pentru a explica aceste noțiuni. **Exemplul 4.** Presupunem că avem o monedă cu probabilitatea aversurilor necunoscută θ . Valoarea lui θ este aleatoare și poate fi oriunde între 0 și 1. Pentru acest exemplu și pentru următoarele vom presupune că valoarea lui θ are o repartiție cu densitatea de probabilitate a priori continuă

 $f(\theta) = 2\theta$. Avem o verosimilitate discretă deoarece aruncarea monedei are doar 2 rezultate, x = 1 pentru avers și x = 0 pentru revers.

$$p(x = 1|\theta) = \theta, \ p(x = 0|\theta) = 1 - \theta.$$

Gândiţi: Aceasta poate fi dificil de înţeles. Avem o monedă cu o probabilitate necunoscută θ a aversului. Valoarea parametrului θ este ea însăşi aleatoare şi are o pdf a priori $f(\theta)$. Poate ajuta să vedem că exemplele discrete din cursurile anterioare sunt similare. De exemplu, am avut o monedă care putea avea probabilitatea aversului 0.5, 0.6 sau 0.9. Deci, puteam numi ipotezele noastre $H_{0.5}$, $H_{0.6}$, $H_{0.9}$ şi acestea aveau probabilitățile a priori $P(H_{0.5})$, etc. Cu alte cuvinte, aveam o monedă cu o probabilitate necunoscută a aversurilor, aveam ipoteze despre acea probabilitate și fiecare dintre acele ipoteze aveau o probabilitate a priori.

1.7 Legea probabilității totale

Legea probabilității totale pentru repartiții de probabilitate continue este în esență aceeași ca pentru repartiții discrete. Înlocuim pmf a priori cu o pdf a priori și suma cu o integrală. Începem prin a recapitula legea pentru cazul discret.

Reamintim că pentru o mulțime discretă de ipoteze $\{\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_n\}$ legea probabilității totale spune

$$P(\mathcal{D}) = \sum_{i=1}^{n} P(\mathcal{D}|\mathcal{H}_i) P(\mathcal{H}_i). \tag{1}$$

Aceasta este probabilitatea a priori totală a lui \mathcal{D} deoarece am folosit probabilitățile a priori $P(\mathcal{H}_i)$.

În notațiile cu litere mici cu $\theta_1, \theta_2, ..., \theta_n$ pentru ipoteze și x pentru date, legea

probabilității totale este scrisă

$$p(x) = \sum_{i=1}^{n} p(x|\theta_i)P(\theta_i).$$
 (2)

De asemenea am numit aceasta probabilitatea predictivă a priori a rezultatului x pentru a o distinge de probabilitatea a priori a ipotezei θ .

Analog, este o lege a probabilității totale pentru pdf contiunue. O formulăm ca o teoremă folosind notația cu litere mici.

Teoremă. Legea probabilității totale. Presupunem că avem un parametru continuu θ în domeniul [a,b] și datele discrete aleatoare x. Presupunem că θ este el însuși aleator cu densitatea $f(\theta)$ și că x și θ au verosimiliatea $p(x|\theta)$. În acest caz, probabilitatea totală a lui x este dată de formula

$$p(x) = \int_{a}^{b} p(x|\theta)f(\theta)d\theta. \tag{3}$$

Demonstrație. Demonstrația noastră va fi analoagă versiunii discrete: termenul de probabilitate $p(x|\theta)f(\theta)d\theta$ este perfect analog termenului $p(x|\theta_i)p(\theta_i)$ din relația 2 (sau termenului $P(\mathcal{D}|\mathcal{H}_i)P(\mathcal{H}_i)$ din relația 1). Continuând analogia: suma din relația 2 devine integrala din relația 3.

Ca în cazul discret, când gândim θ ca o ipoteză care explică probabilitatea datelor, numim p(x) probabilitatea predictivă a priori pentru x.

Exemplul 5. Continuarea exemplului 4. Avem o monedă cu probabilitatea θ a aversului. Valoarea lui θ este aleatoare cu pdf a priori $f(\theta) = 2\theta$ pe [0,1]. Presupunem că aruncăm moneda o dată. Care este probabilitatea totală a aversului?

Răspuns: În exemplul 4 am observat că verosimilitățile sunt $p(x=1|\theta) = \theta$ și $p(x=0|\theta) = 1 - \theta$. Probabilitatea totală a lui x=1 este

$$p(x=1) = \int_0^1 p(x=1|\theta) f(\theta) d\theta = \int_0^1 \theta \cdot 2\theta d\theta = \int_0^1 2\theta^2 d\theta = \left. \frac{2\theta^3}{3} \right|_0^1 = \frac{2}{3}.$$

1.8 Teorema lui Bayes pentru densități de probabilitate continue

Enunțul teoremei lui Bayes pentru pdf-uri continue este în esență identic cu cel pentru pmf-uri. O enunțăm incluzând $d\theta$ pentru a avea probabilități autentice:

Teoremă. Teorema lui Bayes. Folosim aceleași presupuneri ca în legea probabilității totale, i.e., θ este un parametru continuu cu pdf $f(\theta)$ și domeniul

[a, b]; x sunt datele discrete aleatoare; împreună au verosimilitatea $p(x|\theta)$. Cu aceste presupuneri:

$$f(\theta|x)d\theta = \frac{p(x|\theta)f(\theta)d\theta}{p(x)} = \frac{p(x|\theta)f(\theta)d\theta}{\int_a^b p(x|\theta)f(\theta)d\theta}.$$
 (4)

Demonstrație. Fie Θ variabila aleatoare care produce valoarea θ . Considerăm evenimentele

 $H = "\Theta$ este într-un interval de lungime $d\theta$ în jurul valorii θ "

şi

$$D =$$
 "valoarea datelor este x".

Atunci $P(H) = f(\theta)d\theta$, P(D) = p(x) şi $P(D|H) = p(x|\theta)$. Din forma uzuală a teoremei lui Bayes avem

$$f(\theta|x)d\theta = P(H|D) = \frac{P(D|H)P(H)}{P(D)} = \frac{p(x|\theta)f(\theta)d\theta}{p(x)}$$
, q.e.d.

Păstrarea factorului $d\theta$ în enunțul teoremei lui Bayes este mai propice pentru a gândi în termeni de probabilități. Dar deoarece apare în toți membrii relației 4 se poate simplifica și putem scrie teorema lui Bayes în termeni de densități astfel:

$$f(\theta|x) = \frac{p(x|\theta)f(\theta)}{p(x)} = \frac{p(x|\theta)f(\theta)}{\int_a^b p(x|\theta)f(\theta)d\theta}.$$

1.9 Actualizare Bayesiană cu a priori continue

Caracteristici ale tabelului de actualizare Bayesiană pentru a priori continue:

- 1. Tabelul pentru a priori continue este foarte simplu: deoarece nu putem avea o linie pentru fiecare dintr-un număr infinit de ipoteze, vom avea doar o linie care folosește o variabilă pentru toate ipotezele θ .
- 2. Incluzând $d\theta$, toate aparițiile din tabel sunt probabilități și se aplică toate regulile de probabilități obișnuite.

Exemplul 6. (Actualizare Bayesiană.) Continuarea exemplelor 4 și 5. Avem o monedă cu probabilitate necunoscută θ a aversului. Valoarea lui θ este aleatoare cu pdf a priori $f(\theta) = 2\theta$. Presupunem că aruncăm moneda o dată și obținem avers. Calculați pdf a posteriori pentru θ .

Răspuns: Facem un tabel de actualizare cu coloanele obișnuite. Deoarece acesta este primul nostru exemplu, prima linie este versiunea abstractă a actualizării Bayesiene în general și a 2-a linie este actualizarea Bayesiană

pentru acest exemplu particular. "hypothesis" = "ipoteză", "prior" = "a priori", "likelihood" = "verosimilitate", "Bayes numerator" = "numărător Bayes", "posterior" = "a posteriori".

hypothesis	prior	likelihood	Bayes numerator	posterior
θ	$f(\theta) d\theta$	$p(x=1 \theta)$	$p(x=1 \theta)f(\theta)d\theta$	$f(\theta x=1)d\theta$
θ	$2\theta d\theta$	θ	$2\theta^2 d\theta$	$3\theta^2 d\theta$
total	$\int_{a}^{b} f(\theta) d\theta = 1$		$p(x=1) = \int_0^1 2\theta^2 d\theta = 2/3$	1

De aceea pdf a posteriori (după vederea unui avers) este $f(\theta|x) = 3\theta^2$. Comentarii:

1. Deoarece am folosit probabilitatea a priori $f(\theta)d\theta$, ipoteza ar fi trebuit să fie:

"parametrul necunoscut este într-un interval de lungime $d\theta$ în jurul lui θ ". Chiar dacă este prea mult de scris pentru noi, asta trebuie să gândim de fiecare dată când scriem că ipoteza este θ .

2. Pdf a posteriori pentru θ se află înlăturând $d\theta$ din probabilitatea a posteriori din tabel.

$$f(\theta|x) = 3\theta^2.$$

- 3. i) p(x) este probabilitatea totală. Deoarece avem o repartiție continuă, în loc de o sumă calculăm o integrală.
- ii) Incluzând $d\theta$ în tabel, este clar ce integrală avem nevoie să calculăm pentru a afla probabilitatea totală p(x).
- 4. Tabelul organizează versiunea continuă a teoremei lui Bayes. Anume, pdf a posteriori este legată de pdf a priori și verosimilitate prin

$$f(\theta|x)d\theta = \frac{p(x|\theta)f(\theta)d\theta}{\int_a^b p(x|\theta)f(\theta)d\theta} = \frac{p(x|\theta)f(\theta)d\theta}{p(x)}.$$

Împărțind la $d\theta$ avem enunțul în termeni de densități.

5. Putem exprima teorema lui Bayes în forma:

$$f(\theta|x) \propto p(x|\theta) \cdot f(\theta)$$

a posteriori \propto verosimilitatea \times a priori.

1.9.1 A priori plate

O a priori plată sau uniformă presupune că fiecare ipoteză este egal probabilă. De exemplu, dacă θ are domeniul [0,1], atunci $f(\theta) = 1$ este o a priori plată.

Exemplul 7. (A priori plate.) Avem o monedă cu probabilitatea necunoscută θ a aversului. Presupunem că o aruncăm o dată și obținem revers. Presupunând o a priori plată, aflați probabilitatea a posteriori pentru θ .

Răspuns: Procedăm ca la exemplul 6, cu a priori și verosimilitatea modificate

hypothesis θ	$f(\theta) d\theta$	$\begin{array}{c} \text{likelihood} \\ p(x=0 \theta) \end{array}$	Bayes numerator	posterior $f(\theta x=0) d\theta$
θ	$1 \cdot d\theta$	$1-\theta$	$(1-\theta) d\theta$	$2(1-\theta) d\theta$
total	$\int_a^b f(\theta) d\theta = 1$		$p(x=0) = \int_0^1 (1-\theta) d\theta = 1/2$	1

1.9.2 Folosirea pdf a posteriori

Exemplul 8. În exemplul anterior probabilitatea a priori a fost plată. Întâi arătați că aceasta înseamnă că a priori moneda este egal părtinitoare spre avers sau revers. Apoi, după observarea unui avers, care este probabilitatea (a posteriori) ca moneda să fie părtinitoare spre avers?

Răspuns. Deoarece parametrul θ este probabilitatea aversului, întâi ni se cere să arătăm că $P(\theta > 0.5) = 0.5$, apoi ni se cere să calculăm $P(\theta > 0.5|x = 1)$. Acestea se calculează din pdf-urile a priori, respectiv a posteriori.

Probabilitatea a priori ca moneda să fie părtinitoare spre avers este

$$P(\theta > 0.5) = \int_{0.5}^{1} f(\theta) d\theta = \int_{0.5}^{1} 1 d\theta = \theta|_{0.5}^{1} = \frac{1}{2}.$$

Probabilitatea de 1/2 înseamnă că moneda este egal părtinitoare spre avers sau revers

Ca în exemplul 7 se calculează că $f(\theta|x=1)=2\theta$.

Probabilitatea a posteriori că moneda este părtinitoare spre avers este

$$P(\theta > 0.5|x = 1) = \int_{0.5}^{1} f(\theta|x = 1)d\theta = \int_{0.5}^{1} 2\theta d\theta = \theta^{2}|_{0.5}^{1} = \frac{3}{4}.$$

Vedem că observarea unui avers a crescut probabilitatea ca moneda să fie părtinitoare spre avers de la 1/2 la 3/4.

1.10 Probabilități predictive

La fel ca în cazul discret, suntem de asemenea interesați să folosim probabilitățile a posteriori ale ipotezelor pentru a face predicții pentru ce se va

întâmpla mai departe.

Exemplul 9. (Predicție a priori și a posteriori.) Continuarea exemplelor 4, 5, 6: avem o monedă cu probabilitate necunoscută θ a aversului și valoarea lui θ are pdf a priori $f(\theta) = 2\theta$. Aflați probabilitatea predictivă a priori a aversului. Apoi presupunând că prima aruncare a fost avers, aflați probabilitățile predictive a posteriori atât pentru avers cât și pentru revers la a 2-a aruncare.

Răspuns: Fie x_1 rezultatul primei aruncări şi x_2 al celei de-a 2-a. Probabilitatea predictivă a priori este exact probabilitatea totală calculată în exemplele 5 şi 6.

$$p(x=1) = \int_0^1 p(x=1|\theta)f(\theta)d\theta = \int_0^1 \theta \cdot 2\theta d\theta = \int_0^1 2\theta^2 d\theta = \frac{2\theta^3}{3} \Big|_0^1 = \frac{2}{3}.$$

Probabilitățile predictive a posteriori sunt probabilitățile totale calculate folosind pdf a posteriori. Din exemplul 6 știm că pdf a posteriori este $f(\theta|x_1=1)=3\theta^2$. Probabilitățile predictive a posteriori sunt

$$\begin{aligned} p(x_2 = 1 | x_1 = 1) &= \int_0^1 p(x_2 = 1 | \theta, x_1 = 1) f(\theta | x_1 = 1) d\theta = \int_0^1 \theta \cdot 3\theta^2 d\theta \\ &= \frac{3\theta^4}{4} \Big|_0^1 = \frac{3}{4}, \\ p(x_2 = 0 | x_1 = 1) &= \int_0^1 p(x_2 = 0 | \theta, x_1 = 1) f(\theta | x_1 = 1) d\theta = \int_0^1 (1 - \theta) \cdot 3\theta^2 d\theta \\ &= \left(\theta^3 - \frac{3\theta^4}{4}\right) \Big|_0^1 = \frac{1}{4}. \end{aligned}$$

(Mai simplu, puteam calcula

$$p(x_2 = 0|x_1 = 1) = 1 - p(x_2 = 1|x_1 = 1) = 1 - 3/4 = 1/4.$$

1.11 De la actualizarea Bayesiană discretă la actualizarea Bayesiană continuă

Pentru a dezvolta intuiția pentru tranziția de la actualizarea Bayesiană discretă la actualizarea Bayesiană continuă, vom:

- i) aproxima domeniul continuu de ipoteze printr-un număr finit de ipoteze;
- ii) crea tabelul de actualizare discretă pentru numărul finit de ipoteze;
- iii) considera cum se schimbă tabelul când numărul de ipoteze tinde la infinit. În acest fel, vom vedea că pmf-urile a priori şi a posteriori converg la pdf-urile a priori şi a posteriori.

Exemplul 10. Pentru a păstra lucrurile concrete, vom lucra cu moneda cu o a priori plată $f(\theta) = 1$ din exemplul 7. Scopul nostru este să mergem de la discret la continuu crescând numărul de ipoteze.

4 ipoteze. Împărțim [0,1] în 4 intervale egale: [0,1/4], [1/4,1/2] [1/2,3/4], [3/4,1]. Fiecare interval are lungimea $\Delta\theta = 1/4$. Punem cele 4 ipoteze ale noastre θ_i în centrele celor 4 intervale:

$$\theta_1$$
: " $\theta = 1/8$ ", θ_2 : " $\theta = 3/8$, θ_3 : " $\theta = 5/8$ ", θ_4 : " $\theta = 7/8$ ".

A priori plată dă fiecărei ipoteze o probabilitate de $1/4 = 1 \cdot \Delta \theta$. Avem tabelul:

hypothesis	prior	likelihood	Bayes num.	posterior
$\theta=1/8$	1/4	1/8	$(1/4) \times (1/8)$	1/16
$\theta = 3/8$	1/4	3/8	$(1/4) \times (3/8)$	3/16
$\theta = 5/8$	1/4	5/8	$(1/4) \times (5/8)$	5/16
$\theta = 7/8$	1/4	7/8	$(1/4) \times (7/8)$	7/16
Total	1	-	$\sum_{i=1}^{n} \theta_i \Delta \theta$	1

Iată histogramele de densitate ale pmf-urilor a priori și a posteriori. Pdf-urile a priori și a posteriori din exemplul 7 sunt trasate pe histograme cu roșu.

8 ipoteze. Acum împărțim [0,1] în 8 intervale, fiecare cu lungimea $\Delta \theta = 1/8$ și punem cele 8 ipoteze ale noastre θ_i în centrele celor 4 intervale:

$$\theta_1 : "\theta = 1/16", \ \theta_2 : "\theta = 3/16, \ \theta_3 : "\theta = 5/16", \ \theta_4 : "\theta = 7/16", \ \theta_5 : "\theta = 9/16", \ \theta_6 : "\theta = 11/16, \ \theta_7 : "\theta = 13/16", \ \theta_8 : "\theta = 15/16".$$

A priori plată dă fiecărei ipoteze o probabilitate de $1/8 = 1 \cdot \Delta \theta$. Iată tabelul şi histogramele de densitate:

hypothesis	prior	likelihood	Bayes num.	posterior
$\theta = 1/16$	1/8	1/16	$(1/8) \times (1/16)$	1/64
$\theta = 3/16$	1/8	3/16	$(1/8) \times (3/16)$	3/64
$\theta = 5/16$	1/8	5/16	$(1/8) \times (5/16)$	5/64
$\theta = 7/16$	1/8	7/16	$(1/8) \times (7/16)$	7/64
$\theta = 9/16$	1/8	9/16	$(1/8) \times (9/16)$	9/64
$\theta=11/16$	1/8	11/16	$(1/8) \times (11/16)$	11/64
$\theta=13/16$	1/8	13/16	$(1/8) \times (13/16)$	13/64
$\theta=15/16$	1/8	15/16	$(1/8) \times (15/16)$	15/64
Total	1	-	$\sum_{i=1}^{n} \theta_{i} \Delta \theta$	1

20 ipoteze. Acum împărțim [0,1] în 20 de intervale. Tabelul se face analog ca în cele 2 cazuri anterioare. Sărim direct la histogramele de densitate.

Privind la reprezentări, vedem cum histogramele de densitate a priori şi a posteriori converg la funcțiile densitate de probabilitate a priori şi a posteriori.

2 Convenții de notație

2.1 Scopul învățării

Să poată lucra cu notațiile și termenii pe care îi folosim pentru a descrie probabilitățile și verosimilitatea.

2.2 Introducere

Am introdus un număr de notații diferite pentru probabilitate, ipoteze și date. Le adunăm aici, pentru a le avea într-un singur loc.

2.3 Notații și terminologie pentru date și ipoteze

Când am început cursul am vorbit despre rezultate (sau cazuri), de exemplu avers sau revers. Apoi, când am introdus variabilele aleatoare am dat rezultatelor valori numerice, de exemplu 1 pentru avers și 0 pentru revers. Aceasta ne-a permis să facem lucruri precum calculul mediilor și dispersiilor. Reamintim convențiile noastre de notație:

Evenimentele sunt notate cu majuscule, de exemplu A, B, C.

O variabilă aleatoare este majuscula X și ia valorile x.

Legătura dintre valori și evenimente: "X=x" este evenimentul că X ia valoarea x.

Probabilitatea unui eveniment este majuscula P(A).

O variabilă aleatoare discretă are funcția masă de probabilitate p(x). Legătura dintre P și p este că P(X = x) = p(x).

O variabilă aleatoare continuă are funcția densitate de probabilitate f(x). Legătura dintre P și f este că $P(a \le X \le b) = \int_a^b f(x) dx$.

Pentru o variabilă aleatoare continuă X, probabilitatea că x este într-un interval infinitezimal de lungime dx în jurul lui x este f(x)dx.

În contextul actualizării Bayesiene avem convenții similare.

Folosim litere mari caligrafice (de mână), în special \mathcal{H} , pentru a indica o ipoteză, de exemplu $\mathcal{H} =$ "moneda este corectă".

Folosim litere mici grecești, în special θ , pentru a indica valoarea ipotetică a unui parametru al modelului, de exemplu probabilitatea ca moneda să aterizeze avers este $\theta=0.5$.

Folosim litere mari caligrafice (de mână), în special \mathcal{D} , când vorbim despre date ca evenimente. De exemplu, \mathcal{D} = "secvenţa de aruncări a fost HTH". Folosim litere mici, în special x, când vorbim despre date ca valori. De e-

xemplu, secvența de date a fost $x_1, x_2, x_3 = 1, 0, 1$.

Când mulțimea de ipoteze este discretă, putem folosi probabilitatea ipotezelor individuale, de exemplu $p(\theta)$. Când mulțimea este continuă, trebuie să folosim probabilitatea pentru un domeniu infinitezimal de ipoteze, de exemplu $f(\theta)d\theta$.

Următorul tabel rezumă aceasta pentru θ discretă şi θ continuă. În ambele cazuri presupunem o mulțime discretă de rezultate posibile (date) x.

	eternitis in the second	111.50	Bayes		
	hypothesis	prior	likelihood	numerator	posterior
	\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$
Discrete θ :	θ	$p(\theta)$	$p(x \theta)$	$p(x \theta)p(\theta)$	$p(\theta x)$
Continuous θ :	θ	$f(\theta) d\theta$	$p(x \theta)$	$p(x \theta)f(\theta)d\theta$	$f(\theta x) d\theta$

Reamintim că ipoteza continuă θ este în realitate o prescurtare pentru "parametrul θ este într-un interval de lungime $d\theta$ în jurul lui θ ".