SUBJECT	TIME		
CHEMISTRY	02.30 P.M. TO 03.50 P.M.		

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING		
8 (0 L 60 ml is ano)	80 MINUTES	70 MINUTES		

QUESTION BOOKLET DETAILS			
VERSION CODE	SERIAL NUMBER		
A - 1	603480		

DO's:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 02.30 p.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- THE TIMING MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED/SPOILED.
- 2. Until the 3rd Bell is rung at 02.40 p.m.:
 - Do not remove the seal / staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have four different options / choices.
- After the 3rd Bell is rung at 02.40 p.m., remove the seal / staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - · Read each question carefully.
 - Choose the correct answer from out of the four available options / choices given under each question.
 - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the
 question number on the OMR answer sheet.

${\tt CORRECT\,METHOD\,OF\,SHADING\,THE\,CIRCLE\,ON\,THE\,OMR\,SHEET\,IS\,SHOWN\,BELOW:}$

- Please note that even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer sheet for the same.
- 6. After the last bell is rung at 03.50 p.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating and retaining the top sheet (KEA Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of One year.

1.	The ore t	that is concentrated by Froth Float	tation pro	cess is
	(1)		(2)	Malachite
	(3)	Zincite	(4)	Cinnabar
2.	The corre	ect set of four Quantum numbers	for outern	nost electron of Potassium $(Z = 19)$ is
	(1)	$4, 0, 0, \frac{1}{2}$	(2)	$3, 0, 0, \frac{1}{2}$
	(3)	$4, 1, 0, \frac{1}{2}$	(4)	$3, 1, 0, \frac{1}{2}$
3.		of mass x kg is moving with a very $x = 0.05$ m. Hence x is $x = 0.05$ m.		100 ms ⁻¹ . Its de Broglie wavelength is
	(1)	0.15 kg	(2)	0.2 kg
	(3)	0.1 kg	(4)	0.25 kg
4.	The corre	ect order of ionisation energy of C	, N, O, F	is
	(1)	C < N < O < F	(2)	C < O < N < F
	TO PERSON	Panul Service - La Cara - Francis - E	3720	to-remain and the report of the residence of the residenc

- The oxide of an element whose electronic configuration is $1s^2 \ 2s^2 \ 2p^6 \ 3s^1$ is 5.
 - (1) Basic

(2) Acidic

- (3) Neutral
- (4) Amphoteric

6.	The char	acteristic not re	lated to alkal	i metal	is		
	(1)	low melting p	oint				
	(2)	low electroneg	gativity				
	(3)	high ionisation	n energy				
	(4)	their ions are i	soelectronic	with n	oble ga	ses	
7.	Among t	he following, th	e compound	that co	ontains i	ionic, covalent and coordinate linkage	is
	(1)	NaCl			(2)	CaO	
	(3)	NH ₃			(4)	NH ₄ Cl	
8.		nt molecule AF				The number of lone pair and bond p	air
	(1)	3 and 1			(2)	1 and 3	
	(3)	2 and 2			(4)	0 and 4	
9.	After the	completion of	the reaction	n, the cutralise	solutior ed with	of 0.5 M calcium hydroxide solution was evaporated to dryness. The solution 0.1 N Hydrochloric acid. The volume = 40)	lid
	(1)	500 cm ³			(2)	400 cm^3	
	(3)	300 cm^3			(4)	200 cm^3	
			Space	For R	ough W	ork	

10.	A bivaler	nt metal has an equivalent mass of	f 32. The	molecular mass of the metal nitrate i
	(1)	192	(2)	188 Many granicus and the
	(3)	182	(4)	168 CHALLES AND THE STATE OF TH

- 11. The r.m.s. velocity of molecules of a gas of density 4 kg m⁻³ and pressure 1.2×10^5 Nm⁻² is
 - (1) 120 ms⁻¹

(2) 600 ms⁻¹

(3) 300 ms⁻¹

- (4) 900 ms⁻¹
- 12. 0.5 mole of each of H₂, SO₂ and CH₄ are kept in a container. A hole was made in the container. After 3 hours, the order of partial pressures in the container will be
 - (1) $pH_2 > pSO_2 > pCH_4$
- (2) $pH_2 > pCH_4 > pSO_2$
- (3) $pSO_2 > pH_2 > pCH_4$
- (4) $pSO_2 > pCH_4 > pH_2$
- 13. The enthalpy of formation of NH_3 is -46 kJ mol^{-1} . The enthalpy change for the reaction :

$$2NH_3(g) \longrightarrow N_2(g) + 3H_2(g)$$
 is

(1) +92 kJ

(2) +46 kJ

(3) +184 kJ

- (4) +23 kJ
- 14. 5 moles of SO₂ and 5 moles of O₂ are allowed to react. At equilibrium, it was found that 60% of SO₂ is used up. If the partial pressure of the equilibrium mixture is one atmosphere, the partial pressure of O₂ is
 - (1) 0.21 atm

(2) 0.41 atm

(3) 0.82 atm

(4) 0.52 atm

15.	2HI(g)		H ₂ (g) +	I ₂ (g
	12000				012-73-51

The equilibrium constant of the above reaction is 6.4 at 300 K. If 0.25 mole each of $\rm H_2$ and $\rm I_2$ are added to the system, the equilibrium constant will be

(1) 3.2

(2) 1.6

(3) 6.4

(4) 0.8

16. Rate of physical adsorption increases with

- (1) decrease in pressure
- (2) increase in temperature

a third for what has been safe and in

- (3) decrease in surface area
- (4) decrease in temperature

17. IUPAC name of (CH₃)₃CCl

- (1) 2 chloro 2 methyl propane
- (2) t-butyl chloride

- (3) n-butyl chloride
- (4) 3-chloro butane

18. Lucas test is associated with

(1) Carboxylic acid

(2) Alcohols

(3) Aldehydes

(4) Phenols

19. An organic compound on heating with CuO produces CO₂ but no water. The organic compound may be

(1) Methane

- (2) Ethyl iodide
- (3) Carbon tetrachloride
- (4) Chloroform

The condensation polymer among the following i	20.	The	condensation	pol	ymer	among	the	followi	ng	is
--	-----	-----	--------------	-----	------	-------	-----	---------	----	----

(1) PVC

(2) Polyethene

(3) Rubber

(4) Protein

21. The order of stability of metal oxides is

- (1) $\text{Fe}_2\text{O}_3 < \text{Cr}_2\text{O}_3 < \text{A}l_2\text{O}_3 < \text{MgO}$
- (2) $Fe_2O_3 < Al_2O_3 < Cr_2O_3 < MgO$
- (3) $Al_2O_3 < MgO < Fe_2O_3 < Cr_2O_3$
- (4) $Cr_2O_3 < MgO < Al_2O_3 < Fe_2O_3$

22. The temperature of the slag zone in the metallurgy of Iron using blast furnace is

- (1) 400 700 °C
- (2) 800 1000 °C
- (3) 1200 1500 °C
- (4) 1500 1600 °C

23. The function of Fe(OH)3 in the contact process is

- (1) to remove moisture
- (2) to remove dust particles
- (3) to remove arsenic impurity
- (4) to detect colloidal impurity

	-	Space For Rough Work
	(3)	3 (4) 4
	(1)	1 (2) 2
27.		metic moment of a transition metal ion is $\sqrt{15}$ B.M. Therefore the number of electrons present in it is
	(4)	formation of lead chromate
	(3)	formation of red vapours
	(2)	liberation of Chlorine
	(1)	formation of Chromyl chloride
26.	The inco	rrect statement in respect of Chromyl chloride test is
	(4)	to obtain low temperature
	(3)	in filling airships
	(2)	in radiotherapy for treatment of cancer
	(1)	in high temperature welding
25.	Argon is	used
	L L	The second of the second three second of the
	(4)	Nessler's reagent
	(3)	Tollen's reagent
	(2)	Group reagent for the analysis of III group basic radical.
	(1)	Group reagent for the analysis of IV group basic radical.

28. The IUPAC name of [Co(NH₃)₅ ONO]²⁺ ion is

- Penta ammine nitro cobalt (III) ion
- Penta ammine nitro cobalt (IV) ion
- Penta ammine nitrito cobalt (IV) ion
- (4) Penta ammine nitrito cobalt (III) ion

29. The oxidation state of Fe in the brown ring complex: [Fe(H₂O)₅ NO]SO₄ is

(1) +2

(2) +1 (4) 0

(3) +3

30. The correct statement with regard to H_2^+ and H_2^- is

- (1) H_2^- is more stable than H_2^+
- (2) H_2^+ is more stable than H_2^-
- (3) Both H_2^+ and H_2^- are equally stable
- (4) Both H_2^+ and H_2^- do not exist

31. Arrange the following in the increasing order of their bond order:

 O_2, O_2^+, O_2^- and O_2^{--}

(1) O_2^+, O_2, O_2^-, O_2^-

(2) O_2, O_2^+, O_2^-, O_2^-

(3) $O_2^{--}, O_2^{-}, O_2, O_2^{+}$

(4) $O_2^{--}, O_2^{-}, O_2^{+}, O_2$

32.	2 gm of a radioactive sample having half life of 15 days was synthesised on 1st Jan 2009.
	The amount of the sample left behind on 1st March, 2009 (including both the days)

(1) 1 gm

(2) 0.5 gm

(3) 0 gm

(4) 0.125 gm

33. For a chemical reaction $A \to B$, the rate of the reaction is 2×10^{-3} mol dm⁻³ s⁻¹, when the initial concentration is 0.05 mol dm⁻³. The rate of the same reaction is 1.6×10^{-2} mol dm⁻³ s⁻¹ when the initial concentration is 0.1 mol dm⁻³. The order of the reaction is

(1) 3

(2)

(3) 2

(4) 0

34. For the decomposition of a compound AB at 600 K, the following data were obtained:

[AB] mol dm ⁻³	Rate of decomposition of AB in mol dm ⁻³ s ⁻¹
0.20	2.75 × 10 ⁻⁸
0.40	11.0×10 ⁻⁸
0.60	24.75 × 10 ⁻⁸

The order for the decomposition of AB is

(1) 1

(2) 2

(3) 1.5

(4) 0

35. The rate equation for a reaction : $A \to B$ is $r = K[A]^{\circ}$. If the initial concentration of the reactant is a mol dm⁻³, the half life period of the reaction is

(1) $\frac{a}{K}$

(2) $\frac{2a}{K}$

 $(3) \quad \frac{a}{2K}$

(4) $\frac{K}{a}$

36. 30 cc of $\frac{M}{3}$ HCl, 20 cc of $\frac{M}{2}$ HNO₃ and 40 cc of $\frac{M}{4}$ NaOH solutions are mixed and the volume was made up to 1 dm³. The pH of the resulting solution is

(1) 1

(2) 3

(3) 8

(4) 2

37. An aqueous solution containing 6.5 gm of NaCl of 90% purity was subjected to electrolysis. After the complete electrolysis, the solution was evaporated to get solid NaOH. The volume of 1 M acetic acid required to neutralise NaOH obtained above is

(1) 100 cm^3

(2) 200 cm³

 $(3) 1000 \text{ cm}^3$

(4) 2000 cm³

38. The standard electrode potential for the half cell reactions are :

 $Zn^{++} + 2e^{-} \longrightarrow Zn \quad E^{\circ} = -0.76 \text{ V}$

 $Fe^{++} + 2e^{-} \longrightarrow Fe \quad E^{\circ} = -0.44 \text{ V}$

The E.M.F. of the cell reaction:

 $Fe^{++} + Zn \longrightarrow Zn^{++} + Fe$ is

(1) +1.20 V

(2) +0.32 V

(3) -0.32 V

(4) -1.20 V

39.	10 ° M P	NaOH is diluted 100 times. The pH of the o	inuted base is
	(1)	between 6 and 7 (2)	between 10 and 11
	(3)	between 7 and 8 (4)	between 5 and 6
40.		ectrolysis of acidulated water, it is desired Γ .P. condition. The current to be passed is	
	(1)	19.3 Amp (2)	0.965 Amp
	(3)	1.93 Amp (4)	9.65 Amp
41.	The one	which decreases with dilution is	
	(1)	Specific conductance (2)	Equivalent conductance
	(3)	Molar conductance (4)	
		a boungment and to the	
42.	which m	oressure of pure 'A' is 70 mm of Hg at 25 ole fraction of A is 0.8. If the vapour pre vapour pressure of pure 'B' at 25 °C is	
	(1)	70 mm (2)	140 mm
	(3)	28 mm (4)	56 mm
43.	A 6% sol	ution of urea is isotonic with me and the	
	(1)	6% solution of Glucose (2)	25% solution of Glucose
	(3)	1 M solution of Glucose (4)	0.05 M solution of Glucose

		Space For	Rough W	ork			
	(4)	decreases electron density at m	eta positio	on walls to the last of the la			
	(3)	decreases electron density at or	rtho and pa	ara positions			
	(2)	increases electron density at or	tho and pa	ra positions			
	(1)	increases electron density at mo	eta positio	n			
47.	In electro	phillic aromatic substitution rea-	ction, the	nitro group is meta directing because it			
	(3)	AB ₂	(4)	A ₃ B			
	(1)	AB	(2)	AB ₃			
46.	lattice po		The 'B' ato	attice in which the 'A' atoms occupy the oms occupy the centre of each face of the ound is			
	(3)	$\Delta H = 0$	(4)	$\Delta E = 0$			
	(1)	$\Delta H = T\Delta S$	(2)	$\Delta H = \Delta E$			
45.	For the re	eaction $H_2O(l) \rightleftharpoons H_2O(g)$ at 3	373 K and	one atmospheric pressure			
	(4)	to minimise the snow fall.					
	(3)						
	(2)	(2) to minimise the accumulation of dust on the road					
	(1)	to minimise pollution					
44.	In countries nearer to polar region, the roads are sprinkled with $CaCl_2$. This is						

48.	CH ₃ COO	$0H \xrightarrow{\text{LiA}/\text{H}_4} X \xrightarrow{\text{C}} 300$	$\frac{u}{0 \text{ °C}} Y \frac{\text{dilute}}{\text{NaO}}$	e H Z		
	In the above reaction Z is					
	(1)	Ketol		(2)	Acetal	
	(3)	Butanol		(4)	Aldol	
49.	The best method for the conversion of an alcohol into an alkyl chloride is by treating the alcohol with					
	(1)	SOCl ₂ in presence of	of pyridine			
	(2) Dry HCl in the presence of anhydrous ZnCl ₂					
	(3)	PCl ₃				
	(4)	PCl ₅				
50.	The electrophile involved in the sulphonation of Benzene is					
	(1)	H ₃ O		(2)	SO ₃	
	(3)	SO ₃		(4)	SO ₃ -	
51.	The carb	on-carbon bond lengt	h in Benzene	is		
	(1)	in between C2H6 an	d C ₂ H ₂	(2)	in between	C ₂ H ₄ and C ₂ H ₂
	(3)	in between C ₂ H ₆ an	d C ₂ H ₄	(4)	same as in	C_2H_4
52.	The compound which is not formed during the dry distillation of a mixture of calcium formate and calcium acetate is					
	(1)	Propanone		(2)	Ethanal	
	(3)	Methanal		(4)	Propanal	

53.	An organic compound X is oxidised by using acidified K2Cr2O7. The product obtained
	reacts with Phenyl hydrazine but does not answer silver mirror test. The possible structure of X is

(2) CH₃CHO

(4) $CH_3 - C - CH_3$

54. The reaction involved in the oil of Winter Green test is Salicylic acid. $\xrightarrow{\Delta}$ Conc. H_2SO_4 product. The product is treated with Na_2CO_3 solution. The missing reagent in the above reaction is

(1) Ethanol

(2) Methanol

(3) Phenol

(4) NaOH

55. The compound which forms acetaldehyde when heated with dilute NaOH is

(1) 1 Chloro ethane

(2) 1, 2 Dichloro ethane

(3) 1, 1 Dichloro ethane

(4) 1, 1, 1 Trichloro ethane

56. Arrange the following in the increasing order of their basic strengths:
CH₃NH₂, (CH₃)₂NH, (CH₃)₃N, NH₃

(1) $(CH_3)_3N < NH_3 < CH_3NH_2 < (CH_3)_2 NH$

(2) $CH_3NH_2 < (CH_3)_2NH < (CH_3)_3N < NH_3$

(3) $NH_3 < (CH_3)_3N < (CH_3)_2NH < CH_3NH_2$

 $(4) \quad \mathrm{NH_3} < (\mathrm{CH_3})_3 \mathrm{N} < \mathrm{CH_3} \mathrm{NH_2} < (\mathrm{CH_3})_2 \mathrm{NH}$

	(1)	Ghee	(2)	Groundnut oil		
	(3)	Sunflower oil	(4)	Ginger oil		
58.	A diabet	ic person carries a pocket of Gluc	cose with	him always, because		
	(1)	Glucose reduces the blood sugar	ar level.			
	(2)	Glucose increases the blood sugar level almost instantaneously.				
	(3)	Glucose reduces the blood sugar level slowly.				
	(4)	Glucose increases the blood sug	gar level s	slowly.		
59.	There are 20 naturally occurring amino acids. The maximum number of tripeptides that can be obtained is					
	(1)	7465	(2)	5360		
	(3)	8000	(4)	6470		
60.	Cooking	is fast in a pressure cooker, beca	use			
	(1)	food is cooked at constant volume.				
	(2)	loss of heat due to radiation is r	ninimum.			
	(3)	food particles are effectively sn	nashed.			
	(4)	(4) water boils at higher temperature inside the pressure cooker.				
		Auto province according				
		Space For	Rough W	ork		

57. The one which has least Iodine value is