(a) 50th percentile

Duration of Individual
Relativistic Electron
Microbursts: A Probe Into
Their Scattering
Mechanism

Mike Shumko, Lauren Blum, and Alex Crew

$$f(t|\mathbf{p}) = Ae^{-\frac{(t-t_0)^2}{2\sigma^2}} + (c_0+c_1t)$$

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

Distribution of > 1 MeV Microburst Duration SAMPEX/HILT

Distribution of SAMPEX microburst durations in L-MLT

Strong MLT dependence---median microburst duration doubles from 80 to 160 ms

Distribution of SAMPEX microburst durations in L and MLT

The chorus rising tone element duration follows a similar pattern.

Duration of microbursts and chorus double between the nightside and dayside. But the absolute microburst duration is 3-4x shorter

Chorus

Shue et al., 2019

Microbursts

Nightside = 21-3 MLT Dayside = 9-15 MLT

Teng et al., 2017 found that chorus rising tone elements also shortened with increasing AE.

(a) 50th percentile

Question to consider:

The chorus-microburst durations follow a similar MLT trend, but why are chorus wave durations 3x longer?

