AULA P1 PROJETO E ANÁLISE DE ALGORITMOS

Conceitos preliminares: Indução matemática Karina Valdivia Delgado

Roteiro

Princípio da indução finita Exemplos

Motivação

A prova por indução é uma técnica comumente utilizada para fazer demonstrações na área de computação.

A indução é um conceito muito relacionado com recursão.

Princípio da indução finita

Deseja-se provar que uma propriedade é verdadeira para todo número natural

Princípio da indução finita

Exemplo 1: Seja S(n) a soma dos n primeiros números naturais, isto é, S(n) = $1 + 2 + \cdots + n$. Deseja-se provar que S(n)= n*(n+1)/2

Princípio da indução finita

Exemplo 1: Seja S(n) a soma dos n primeiros números naturais, isto é, S(n) = $1 + 2 + \cdots + n$. Deseja-se provar que S(n)= n*(n+1)/2

n	S(n)
1	1
2	3
3	6
4	10

Princípio de indução finita

Exemplo 1: Seja S(n) a soma dos n primeiros números naturais, isto é, S(n) = $1 + 2 + \cdots + n$. Deseja-se provar que S(n)= n*(n+1)/2

Isso pode ser provado usando o princípio da indução finita

n	S(n)
1	1
2	3
3	6
4	10

Exemplo que ilustra o princípio de indução finita

Se é verdade que:

i) O primeiro dominó tomba;
 ii) Se um dominó tomba
 então o seguinte tomba;

então pode-se afirmar que todos os dominós caem.

Princípio de indução finita

- Seja P(n) uma propriedade sobre o número natural n≥n₀, sendo n₀ um número natural fixado. Para provar que P(n) é verdadeira para todo n≥n₀ basta provar que:
- i) Passo base: A propriedade é válida para n=n₀.
- ii) Passo indutivo: Para k≥n₀, se a propriedade é válida para n=k, então é válida para n=k+1.

Princípio de indução finita

- Seja P(n) uma propriedade sobre o número natural n≥n₀, sendo n₀ um número natural fixado. Para provar que P(n) é verdadeira para todo n≥n₀ basta provar que:
- i) Passo base: A propriedade é válida para n=n₀.
- ii) Passo indutivo: Para k>n₀, se a propriedade é válida para n=k-1, então é válida para n=k.

Seja S(n) a soma dos n primeiros números naturais, isto é, S(n) = $1 + 2 + \cdots + n$. Deseja-se provar que S(n)= n*(n+1)/2

Seja S(n) a soma dos n primeiros números naturais, isto é, $S(n) = 1 + 2 + \cdots + n$. Deseja-se provar que $S(n) = n^*(n+1)/2$

- i) Passo base: A propriedade é válida para n=1.
- ii) Passo indutivo: Para k>1, se S(n) é válida para n=k-1, então é válida para n=k.

Seja S(n) a soma dos n primeiros números naturais, isto é, S(n) = $1 + 2 + \cdots + n$.

Deseja-se provar que S(n)= n*(n+1)/2

Seja S(n) a soma dos n primeiros números naturais, isto é, S(n) = $1 + 2 + \cdots + n$.

Deseja-se provar que S(n)= n*(n+1)/2

i) Passo base: Para n=1, S(n)=1=1*2/2. OK

Seja S(n) a soma dos n primeiros números naturais, isto é, S(n) = $1 + 2 + \cdots + n$.

Deseja-se provar que $S(n)= n^*(n+1)/2$

- i) Passo base: Para n=1, S(n)=1=1*2/2. OK
- ii) Passo indutivo: Para k>1, pode-se assumir que para n=k-1: S(k-1)=(k-1)*(k-1+1)/2=(k-1)*k/2 é válida.

Seja S(n) a soma dos n primeiros números naturais, isto é, S(n) = $1 + 2 + \cdots + n$.

Deseja-se provar que $S(n)= n^*(n+1)/2$

- i) Passo base: Para n=1, S(n)=1=1*2/2. OK
- ii) Passo indutivo: Para k>1, pode-se assumir que para n=k-1: S(k-1)=(k-1)*(k-1+1)/2=(k-1)*k/2 é válida.

Além disso, sabe-se que:

- S(k)=S(k-1)+k=(k-1)*k/2+k=k*(k+1)/2.
- Assim, provamos que S(n) é válida para n=k.
- Portanto $S(n)=n^*(n+1)/2$ para $n \ge 1$.

Provar que 2ⁿ≥2*n para n≥1

Provar que 2ⁿ≥2*n para n≥1

- i) Passo base: A propriedade é válida para n=1.
- ii) Passo indutivo: Para k>1, se a propriedade é válida para n=k-1, então é verdadeira para n=k.

Provar que 2ⁿ≥2*n para n≥1

i) Passo base: Para n=1, 2¹≥2*1.

Provar que 2ⁿ≥2*n para n≥1

- i) Passo base: Para n=1, 2¹≥2*1. OK
- ii) Passo indutivo: Para k≥2, pode-se assumir que para n=k-1, 2^{k-1}≥2*(k-1) é verdadeiro.

Provar que 2ⁿ≥2*n para n≥1

- i) Passo base: Para n=1, 2¹≥2*1.
- ii) Passo indutivo: Para k≥2, pode-se assumir que para n=k-1, 2^{k-1}≥2*(k-1) é verdadeiro.
- Multiplicando os dois lados da inequação por 2, temos: $2*2^{k-1} \ge 4*(k-1)$, isto é, $2^k \ge 4*k-4=2*k+2*k-4$. Além disso, sabe-se que $2*k \ge 4$, i.e. $2*k-4 \ge 0$. Assim, $2^k \ge 2*k+2*k-4 \ge 2*k$.
- Portanto 2ⁿ≥2*n para n≥1

Princípio de indução finita

- Seja P(n) uma propriedade sobre o número natural n≥n₀, sendo n₀ um número natural fixado. Para provar que P(n) é verdadeira para todo n≥n₀ basta provar que:
- i) Passo base: A propriedade é válida para n=n₀, n=n₁, n=n₂
- ii) Passo indutivo: Para k≥n₂, se a propriedade é válida para n=k, então é válida para n=k+1.

Indução forte

- Seja P(n) uma propriedade sobre o número natural n≥n₀, sendo n₀ um número natural fixado. Para provar que P(n) é verdadeira para todo n≥n₀ basta provar que:
- i) Passo base: A propriedade é válida para n=n₀.
- ii) Passo indutivo: se a propriedade é válida para todo n₀≤n≤k, então é válida para n=k+1.

AULA P1 PROJETO E ANÁLISE DE ALGORITMOS

Conceitos preliminares: Indução matemática Karina Valdivia Delgado