

ApuntesExamenFinalSalas.pdf

Cristinasj

Lógica y Métodos Discretos

1º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Estudiar sin publi es posible.

Compra Wuolah Coins y que nada te distraiga durante el estudio

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Estudiar <mark>sin publi</mark> es posible.

Compra Wuolah Coins y que nada te distraiga durante el estudio.

Apuntes examen final LMD

Tema 1: recurrencia

- Ejercicio 1. Ecuacion de recurrencia

Lineal homogénea

$$\sum_{j=0}^{k} a_j x_{n-j} = 0$$

Dada la recurrencia (de orden k) $a_0x_n + a_1x_{n-1} + \ldots + a_kx_{n-k} = 0$

Su ecuación característica es $a_0x^k + a_1x^{k-1} + \dots + a_{k-1}x + a_k = 0$

Se buscan sus raices $\alpha_0, \alpha_1 \dots \alpha_k$

Solucion general: $g_n = A\alpha_0^n + B\alpha_1^n + ... + Z\alpha_k^n$

Para la solución particular usamos las condicioenes iniciales

Caso especial: numeros complejos

Caso especial: multiplicidad de las raíces $x_n = A\alpha^n + Bn\alpha^n + Cn^2\alpha^n...$

Lineal no homogénea

$$\sum_{j=0}^{k} a_j x_{n-j} = f(x)$$

- a_f es el coeficiente de f(x)
- m es el grado de f(x)
- p(x) es el polinomio característico asociado de la recurrencia

La ecuacion caracteristica de su homogénea asociada es:

$$p(x)(x-a_f)^{m+1}$$

Se buscan sus raices $\alpha_0, \alpha_1 \dots \alpha_k$

Solucion general para la homogénea asociada: $g_n = A\alpha_0^n + B\alpha_1^n + ... + (Cn^2 + Dn + C)a_f^n$

Se calcula la particular

Se calcula la solución general de la sucesión:

Tema 2: Bool

-Ejercicio 2: Función booleana

Forma canónica disyuntiva

Suma de conjunciones

- Usamos De Morgan hasta que * afecte solo a las variables
- Usamos propiedad distributiva hasta que quede suma de conjunciones
- Usamos

$$u = u1 = u(x + x*) = ux + ux*$$

para que todas las variables aparezcan en todos los monomios

- Usamos idempotencia para eliminar repeticiones

$$a + a + b = a + b$$

- Lo escribimos en forma de $m_0 + m_2...$

Forma disyuntiva no simplificable

- Ordenamos monomios y variables
 - 1) Eliminar monomio: f = u + R = R cuando uR = u
 - 2) Eliminar literal: f = u + R = u' + R cuando u'f = u'

Petrick

Forma disyuntiva reducida

Toene todos los implicantes primos Karnaugh

Forma canónica conjuntiva Implicantes primos nucleares/esenciales Si se quita, se queda un 1 sin cubrir Quine

Algoritmo de Petrick

Tema 3: Grafos

- Ejercicio 3: Demolicion-reconstruccion

Demolición:

- Se elige el vértice con mayor grado. Se pone a 0 y se disminuyen en 1 tantos vértices como indique su grado.
 - Si se llega a una sucesión de ceros, la sucesión es gráfica
 - Si hay un número mayor que el mumero de elementos no nulos de la sucesión, no es gráfica

Reconstrucción:

- Se dibuja el grafo solo con sus vértices
- Se miran las sucesiones generadas por el algoritmo de demolición para reconstruirlo
- Se mira el vértice usado como pivote en la fila superior con los vértices disminuidos

Teorema de Havel-Hakimi

Dado un grafo, existe otro con la misma sucesión gráfica que cumple que los bértices de mayor grado son adyacentes. Hay grafos distintos que dan lugar a la misma sucesión gráfica.

- Ejercicio 4: Polinomio cromático

G (lado e une vértices u y v) G_e quitamos lado e G'_e unimos u y v

Algoritmo de la suma:

$$p(G_e, x) = p(G, x) + p(G'_e, x)$$

Algoritmo de la resta:

$$p(G,x) = p(G_e,x) - p(G'_e,x)$$

Polinomios cromáticos conocidos de algunos grafos:

Completo: $P(K_n, x) = x^{\underline{n}}$

Camino: $P(P_n, x) = x(x - 1)^{n-1}$

Número cromático: menor exponente descendente

Estudiar sin publi es posible.

Compra Wuolah Coins y que nada te distraiga durante el estudio.

- Ejercicio 5: Prim o Kruskal

Kruskal:

BUILDING-UP/CONSTRUCTIVO

- Se ordenan los n vértices de menor a mayor
- Se eligen n 1 lados de forma que no se formen ciclos

CUTTING-DOWN/DESTRUCTIVA

- Se ordenan los vértices de mayor a menor
- Se descartan l (n 1) = l n + 1 lados de forma que se rompan ciclos

Prim:

$$T = \{v\}$$

$$E = \{\}$$

Se añade u a T y e a E:

- u no esté en T
- u sea adyacente a alguno de T
- e no forme ciclo con E
- e sea de peso mínimo
- se eligen n 1 lados

- Ejercicio 6: Recorrido de árboles

Preorden:

Se empieza por la raiz y se recorre cada subárbol hijo como si fuera otro árbol, de izquierda a derecha

Postorden:

Se recorren los subarboles hijos en postorden de izquierda a derecha y la raiz después

Inorden:

Se recorre el subarbol hijo en inorden, después la raiz y el resto de subárboles hijos

Top-down:

De arriba a abajo y de izquierda a derecha

·Bottom-up:

Se eliminan las hojas de arriba a abajo y de izquierda a derecha

- Ejercicio 7: Árboles etiquetados

Código Prüfer:

Se añade al código la etiqueta del adyacente a la hoja con menor etiqueta y se suprime la hoja hasta que queden dos vértices

Generación de árbol:

- El código tiene n 2 números. Se escribe el grafo de n vértices vacío.
- Se crea la lista del código y el conjunto de vértices
- Se une el primer elemento del código y el vértice con menor etiqueta que no está en el código. Se tacha el elemento del código y del conjunto de vértices.
 - Cuando el código sea vacío y el conjunto de vértices tenga dos, se unen.

Tema 4: Lógica proposicional

- Ejercicio 8: Turulandia

Polinomios de Gegalkine:

- $-a\bigoplus b=a+b$
- $-a \lor b = a + b + ab$
- $a \wedge b = ab$
- $a \rightarrow b = 1 + a + ab$
- $a \leftrightarrow b = 1 + a + b$
- $\neg a = 1 + a$

Estudiar sin publi es posible.

Compra Wuolah Coins y que nada te distraiga durante el estudio.

- Ejercicio 9: Davis Putnam

Forma clausulada:

1)
$$\alpha \leftrightarrow \beta = (\alpha \to \beta) \land (\beta \to \alpha)$$

2)
$$\alpha \to \beta = \neg \alpha \lor \beta$$

- 3) De Morgan para interiorizar la negación
- 4) Se busca la multiplicación de sumas

-
$$\alpha \vee (\beta_1 \wedge \beta_2) = (\alpha \vee \beta_1) \wedge (\alpha \vee \beta_2)$$

- $(\alpha_1 \vee \alpha_2) \wedge \beta = (\alpha_1 \vee \beta) \wedge (\alpha_2 \vee \beta)$

- 5) Eliminación de redundancias
- Idempotencia:

$$\alpha \vee \alpha = \alpha$$
 y $\alpha \wedge \alpha = \alpha$

- Absorción:

$$(\alpha \vee \beta) \wedge \alpha = \alpha \vee \beta$$

Implicación semántica:

Lo transformamos en un problema de insatisfacibilidad.

$$T \models \alpha \ y \ T \cup \{\neg \alpha\}$$

Algoritmo:

- Buscamos los literales que están solos y hacemos que valgan 1
- Buscamos los literales sin opuesto y hacemos que se vayan
- Si no hay, ramificamos haciendo que cualquier liretal valga tanto $0\ \mathrm{como}\ 1$

Si se llega a:

- Conjunto vacío \rightarrow conjunto satisfacible (Demostración falsa, hipótesis verdaderas)
- Contiene clausula vacía \rightarrow conjunto insatisfacible (La demostración es cierta)

- Ejercicio 10: Resolución

Un conjunto de cláusulas es insatisfacible si hay una deducción por resolución de la cláusula vacía

Saturación:

Vamos calculando todas las resolventes posibles en el conjunto. Las nuevas con las anteriores y entre sí.

Gegalkine:

Multiplicar las premisas por la negación de la conclusión debe dar 0

Tema 5: Formas normales

- Ejercicio 11: FNP FNS FC

Forma normal prenexa:

$$C_1x_1...C_nx_n\Phi$$

- $\forall xa \rightarrow b \equiv \exists (a \rightarrow b)$ si x no está libre en b
- $-\exists xa \to b \equiv \forall x(a \to b)$
- Y el resto de equivalencias de la chuleta oficial

Forma normal de Skolem:

$$\forall_1 x_1 ... \forall_n x_n \Phi$$

- Si el \exists está fuera, se cambia la variable por una constante
- Si está detrás de uno o varios ∀ se cambia por una función de esos

Forma clausulada:

- Se deja la formula sin cuantificadores de forma clausular
- Se distribuyen los cuantificadores

Si ves algún error, mi telegram es @cristinasj

Algunas equivalencias lógicas.

Lógica proposicional.

- 1. $\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- 2. $\varphi \to \psi \equiv \neg \varphi \lor \psi$
- 3. $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
- 4. $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$
- 5. $\neg \neg \varphi \equiv \varphi$
- 6. $\varphi \lor \psi \equiv \psi \lor \varphi$
- 7. $\varphi \wedge \psi \equiv \psi \wedge \varphi$
- 8. $\varphi \lor (\psi \lor \chi) \equiv (\varphi \lor \psi) \lor \chi$
- 9. $\varphi \wedge (\psi \wedge \chi) \equiv (\varphi \wedge \psi) \wedge \chi$
- 10. $\varphi \wedge (\psi \vee \chi) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$
- 11. $\varphi \lor (\psi \land \chi) \equiv (\varphi \lor \psi) \land (\varphi \lor \chi)$

Lógica de predicados.

- 1. $\forall x \varphi \equiv \varphi \text{ si } x \text{ no está libre en } \varphi.$
- 2. $\exists x \varphi \equiv \varphi$ si x no está libre en φ .
- 3. $\neg \forall x \varphi \equiv \exists x \neg \varphi$.
- 4. $\neg \exists x \varphi \equiv \forall x \neg \varphi$.
- 5. $\forall x \varphi \equiv \forall y \varphi(x|y)$ si y ni ningún cuantificador de y aparecen en φ .
- 6. $\exists x \varphi \equiv \exists y \varphi(x|y)$ si y ni ningún cuantificador de y aparecen en φ .
- 7. $\forall x \varphi \to \psi \equiv \exists x (\varphi \to \psi)$ si x no está libre en ψ .
- 8. $\exists x \varphi \to \psi \equiv \forall x (\varphi \to \psi)$ si x no está libre en ψ .
- 9. $\varphi \to \forall x \psi \equiv \forall x (\varphi \to \psi)$ si x no está libre en φ .
- 10. $\varphi \to \exists x \psi \equiv \exists x (\varphi \to \psi)$ si x no está libre en φ .
- 11. $\forall x \varphi \lor \psi \equiv \forall x (\varphi \lor \psi)$ si x no está libre en ψ .
- 12. $\forall x\varphi \wedge \psi \equiv \forall x(\varphi \wedge \psi)$ si x no está libre en ψ .
- 13. $\exists x \varphi \lor \psi \equiv \exists x (\varphi \lor \psi)$ si x no está libre en ψ .
- 14. $\exists x \varphi \land \psi \equiv \exists x (\varphi \land \psi)$ si x no está libre en ψ .
- 15. $\forall x\varphi \to \exists x\psi \equiv \exists x(\varphi \to \psi).$
- 16. $\forall x \varphi \land \forall x \psi \equiv \forall x (\varphi \land \psi)$.
- 17. $\exists x \varphi \lor \exists x \psi \equiv \exists x (\varphi \lor \psi).$

