ATHARVA DESHPANDE

deshpana@oregonstate.ed

HINDS

1.

a) For n=16, we need to choose smallest it such
that total number of columns with odd weigh

Now, it we sum up any 3 columns from H:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1$$
.

so that means minimum distance is 4 and

single errors and detecting double errors.

3. a) K=8 Z5= {01234} WE know n = p -1 > k. 5 > 8 . 4+1 ... r >3 . Above is satisfied when r=3. Now in systematic form: H = [0 0 0 0 1 1 1 1 1 0 0 00000000 1234 b) Generator matrix G= 10000000 0 0 0 0 0 1 0 0 0 0 0 0 0 1 c) Information word = 12041123 · Corresponding codeword = 12041123 x G = [12041123333] d) single error in 4th into digit which changed from so received codeword will be 12021123333 [12021123333]·HT = [032] = [0 1 4] (-2) mod 5 This means that the 4th column has an error of magnitude -2.

4. Consider a Z channel where errors 1 to 0, but not vice verse 1-P Here a graph accordingly is $G_2 = (X_2, E_2)$ where xz = {0,13° and Ez={(x,y): x,y \ 20,13° x > y , wH(x) = WH(y) +13. Bz r(x) = {y \in \xi o, 13 : x > y, \wh(x) - \wh(y) < r } and deg z , r(x) = (& W H; (x) Corresponding hypergraph is H(Gz, r) = (xz, r Ez, r). : A generalized sphere packing bound becomes The Generalized sphere perchanges $\mathcal{L}_{\chi} = \mathcal{L}_{\chi} = \mathcal{L}_{\chi}$ Average size of ball with radius r is $\tilde{\Delta}_{Z,\Gamma} : \sum_{n=1}^{\infty} \sum_{n=0}^{\infty} (\omega_{H,\Gamma}(n)) = \sum_{n=0}^{\infty} (\omega_{L}) \sum_{n=0}^{\infty} (\omega_{L})$ $=\frac{\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}\left(\widehat{\omega}\right)^{\frac{3}{2}}}{2^{2}}$ $\Delta_{z} r = \frac{1}{120} \left(\frac{z}{1} \right) 2^{n-1} = \frac{z}{120} \left(\frac{z}{1} \right)$ (considering Average sphere packing value $(G_z, r) = 2^{n} = 2^{n}$ $A_{z,r} = 2^{n}$... A verage sphere packing value $(G_2,1) = 2 = 2^{n}$ $\frac{1}{5}(1)/2^{1}$ 1+ n/2

Adding all values

total = 03

Error is in 1 column as if we take inverse							
order mad 5, we get or which is 1st column							
in H.							
6. Multiplicative inverse of 21 mod 101.							
a) i	(,,	9:	1		21 MOG 101	•	
-1	101	_	1	0	S; = S; _2 =	· a · 5 · _ ·	
0	21	-	0		t; = t;-2		
`	17	4	.\	-4		2, 2, 2,	
2	4		-\	5			
3	(4	5	- 24			
5 * 101 - 24 * 21 = 1							
124 *21 = 1 mod 101							
	: 77 *21 = 1 mod 101.						
(77) is multiplicative inverse of 21 mad 101.							
b) Multiplicative inverse of (x+x+x2+x+1) mod x8							
over GF(2).							
i \	r',			9:	s.,	Ł.,	
-1	8 ×			-	\	0	
0	x + x + x + x + 1				0	1	
(3+2+1		x -	+1	\	x + 1	
2	2 X		3 ×	+1	x3 + 1	5 3 2 x + x + x	
3	*+1		×	<u>.</u>	* + * + 1	6 + 3 2 x+x+x+x+1	
4	١		× .	+1	5 4 3 2 2 + x + x + x +1	7 6 3 2+2+1	
x +x +x +x +1 is multiplicative inverse of							
(x+x+x+x+1) mod x over GF(2).							
Answer.							

For this of
$$x^{3^{1}} - x$$
 over $(5F(3))$.

 $x^{3^{1}} - x = x () x^{3^{1}} - 1)$
 $x^{3^{1}} = x^{30}$

Divisors of $x^{3^{1}} = x^{30}$

Order of element elements min polynomial polynomial $x^{3} = x^{3} = x^{$