criterion performance measurements

overview

want to understand this report?

OLS regression 222 μs 246 μs 264 μs R² goodness-of-fit 0.944 0.959 0.976 Mean execution time 220 μs 231 μs 247 μs Standard deviation 37.6 μs 44.5 μs 51.1 μs

Outlying measurements have severe (93.6%) effect on estimated standard deviation.

days/02

 OLS regression
 $234 \, \mu s$ $256 \, \mu s$ $290 \, \mu s$
 R^2 goodness-of-fit
 0.895 0.918 0.945

 Mean execution time
 $245 \, \mu s$ $266 \, \mu s$ $287 \, \mu s$

 Standard deviation
 $61.6 \, \mu s$ $68.3 \, \mu s$ $76.3 \, \mu s$

Outlying measurements have severe (96.7%) effect on estimated standard deviation.

days/03

 R^2 goodness-of-fit 0.974 0.982 0.989 Mean execution time 3.80 μs 3.94 μs 4.12 μs Standard deviation 387 ns 479 ns 566 ns

Outlying measurements have severe (91.3%) effect on estimated standard deviation.

313 μs 406 μs Outlying measurements have moderate (41.3%) effect on estimated standard deviation.

days/05

Standard deviation 249 µs

R² goodness-of-fit 84.1 ms 84.3 ms Mean execution time 84.0 ms Standard deviation 50.9 µs 163 μs 265 μs

Outlying measurements have slight (9.0%) effect on estimated standard deviation.

days/06

OLS regression 19.6 ms 19.7 ms 19.4 ms R² goodness-of-fit 1.000 1.000 1.000 Mean execution time 19.6 ms 19.6 ms 19.7 ms Standard deviation 99.4 µs $166 \, \mu s$ $266 \, \mu s$

60

2/6/2018 criterion report

Outlying measurements have slight (4.3%) effect on estimated standard deviation.

days/07

Outlying measurements have slight (8.3%) effect on estimated standard deviation.

433 μs 647 μs

days/08

Standard deviation

141 μs

OLS regression 5.28 ms 5.40 ms 5.48 ms R^2 goodness-of-fit 0.997 0.998 0.999 Mean execution time 5.19 ms 5.23 ms 5.30 ms Standard deviation 120 μ s 161 μ s 246 μ s

Outlying measurements have moderate (14.1%) effect on estimated standard deviation.

 OLS regression
 3.98 ms
 4.04 ms
 4.11 ms

 R² goodness-of-fit
 0.996
 0.998
 0.999

 Mean execution time
 3.92 ms
 3.97 ms
 4.02 ms

 Standard deviation
 125 µs
 155 µs
 196 µs

Outlying measurements have moderate (21.1%) effect on estimated standard deviation.

days/10

 OLS regression
 113 μ s
 115 μ s
 117 μ s

 R² goodness-of-fit
 0.997
 0.998
 0.999

 Mean execution time
 113 μ s
 115 μ s
 117 μ s

 Standard deviation
 4.41 μ s
 5.69 μ s
 7.84 μ s

Outlying measurements have severe (51.1%) effect on estimated standard deviation.

days/11

OLS regression 8.28 ms 8.46 ms 8.67 ms R^2 goodness-of-fit 0.997 0.998 0.999 Mean execution time 8.39 ms 8.45 ms 8.53 ms Standard deviation 151 μ s 206 μ s 280 μ s

Outlying measurements have slight (8.4%) effect on estimated standard deviation.

OLS regression 7.61 ms 7.94 ms 8.25 ms R^2 goodness-of-fit 0.946 0.979 0.996 Mean execution time 7.97 ms 8.18 ms 8.60 ms Standard deviation 359 μ s 780 μ s 1.33 ms

Outlying measurements have severe (53.0%) effect on estimated standard deviation.

days/13

Outlying measurements have moderate (15.3%) effect on estimated standard deviation.

Outlying measurements have severe (73.3%) effect on estimated standard deviation.

days/15

Outlying measurements have moderate (18.7%) effect on estimated standard deviation.

days/16

Outlying measurements have moderate (13.9%) effect on estimated standard deviation.

Outlying measurements have severe (58.3%) effect on estimated standard deviation.

days/18

OLS regression 103 ms 106 ms 108 ms R^2 goodness-of-fit 0.998 0.999 1.000 Mean execution time 104 ms 104 ms 106 ms Standard deviation 302 μ s 1.16 ms 1.87 ms

Outlying measurements have slight (9.9%) effect on estimated standard deviation.

days/19

Mean execution time 16.1 ms 16.4 ms 16.8 ms Standard deviation $611 \mu \text{s}$ $800 \mu \text{s}$ 1.14 ms

Outlying measurements have moderate (16.5%) effect on estimated standard deviation.

days/20

Outlying measurements have slight (7.1%) effect on estimated standard deviation.

1.37 ms 1.80 ms

days/21

Standard deviation 1.07 ms

Outlying measurements have moderate (18.7%) effect on estimated standard deviation.

7.34	7.34	7.34	7.35	7.35	7.35	7.35	0 s	0.5 iters	1	2	2	3	3	4	4
		lower bound	estimate	upper bound											
OLS regress	ion	7.33 s	7.35 s	7.37 s											
R ² goodness	-of-fit	1.000	1.000	1.000											
Mean execution time		7.34 s	7.35 s	7.35 s											
Standard dev	iation	0 s	5.17 ms	5.97 ms											

Outlying measurements have moderate (18.8%) effect on estimated standard deviation.

days/23

R² goodness-of-fit Mean execution time 1.93 ms Standard deviation 463 µs 740 μs 1.26 ms

Outlying measurements have severe (98.0%) effect on estimated standard deviation.

days/24

R² goodness-of-fit Mean execution time 1.77 s 1.82 s 1.86 s Standard deviation 47.0 ms 54.0 ms

Outlying measurements have moderate (18.8%) effect on estimated standard deviation.

Outlying measurements have moderate (22.9%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

- *OLS regression* indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the *mean* estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
- R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

colophon

This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.