

UPPSALA UNIVERSITET

Robust Capon Beamforming

Yi Jiang

Jniversity of Florida

Petre Stoica

Jniversity of Florida Uppsala University

Zhisong Wang

University of Florida

Jian Li

March 11, 2003

ASAP Workshop 2003

Outline

- Standard Capon Beamforming (SCB)
- Norm Constrained Capon Beamforming (NCCB)
- Robust Capon Beamforming (RCB)
- I Coherent RCB (CRCB)
- 1 Simulation Results
- | Conclusions

20040303 255

Standard Capon Beamforming (SCB)

$$\hat{\mathbf{w}}_{SCB} = \underset{\mathbf{w}}{\mathsf{arg min w}} \mathbf{w}^* \mathbf{R} \mathbf{w}$$
 s.t. $\mathbf{w}^* \mathbf{a}_0$

$$\mathbf{w}^*\mathbf{a}_0=1$$

$$\hat{\mathbf{w}}_{SCB} = \frac{\mathbf{R}^{-1}\mathbf{a}_0}{\mathbf{a}_0^*\mathbf{R}^{-1}\mathbf{a}_0}$$

Signal power estimate

$$\hat{\sigma}_0^2 = \mathbf{w}_{SCB}^* \mathbf{R} \mathbf{w}_{SCB} = 1 / \left(\mathbf{a}_0^* \mathbf{R}^{-1} \mathbf{a}_0 \right)$$

Norm Constrained Capon Beamforming (NCCB)

$$\hat{\mathbf{w}}_{NCCB} = \text{arg min } \mathbf{w}^* \mathbf{R} \mathbf{w}$$

$$\mathbf{w}^H \mathbf{a}_0 = 1$$
$$\|\mathbf{w}\|^2 \le \zeta$$

Diagonal loading:

$$\hat{\mathbf{w}}_{NCCB} = \frac{(\mathbf{R} + \lambda \mathbf{I})^{-1} \mathbf{a}_0}{\mathbf{a}_0^* (\mathbf{R} + \lambda \mathbf{I})^{-1} \overline{\mathbf{a}}_0}$$

Loading level λ determined by norm constraint.

Recent Robust Beamformers

Directly Address Steering Vector Uncertainties!

- ☐ Based on original SCB formulation
- o Robust adaptive beamforming based on worst-case performance optimization
 - [Vorobyov, Gershman, Luo, 2001]
- Robust minimum variance beamforming [Lorenz, Boyd, 2001]

Our RCB

Directly Address Steering Vector Uncertainties!

☐ Based on Covariance Fitting

- o Robust Capon Beamforming [Stoica, Wang, Li, 2002]
- o On Robust Capon Beamforming and Diagonal Loading [Li, Stoica, Wang, 2002]

□New features

- o Steering vector within an uncertainty set
- o Incorporate uncertainty set into formulation directly
- o Computationally most efficient
- o Conceptually simple
- o Scaling ambiguity eliminated

Covariance Fitting

$$\max_{\sigma^2} \sigma^2 \quad \text{s.t.} \quad \mathbf{R} - \sigma^2 \mathbf{a}_0 \mathbf{a}_0^* \ge 0$$

$$\mathbf{R} - \sigma^2 \mathbf{a}_0 \mathbf{a}_0^* \ge 0$$

$$\mathbf{R} - \sigma^2 \mathbf{a}_0 \mathbf{a}_0^* \ge 0$$

$$\Leftrightarrow \mathbf{I} - \sigma^2 \mathbf{R}^{-1/2} \mathbf{a}_0 \mathbf{a}_0^* \mathbf{R}^{-1/2} \ge 0$$

$$\Leftrightarrow 1 - \sigma^2 \mathbf{a}_0^* \mathbf{R}^{-1} \mathbf{a}_0 \ge 0$$

$$\Leftrightarrow \sigma^2 \le \frac{1}{\mathbf{a}_0^* \mathbf{R}^{-1} \mathbf{a}_0} = \hat{\sigma}_0^2$$

Same signal power estimate as SCB!

Our Robust Capon Beamformer (RCB)

Incorporate ellipsoidal uncertainty set into covariance fitting

$$\max_{\sigma^2,a}$$
 s.t. $\mathbf{R} - \sigma^2 \mathbf{a} \mathbf{a}^* \ge 0$

$$\forall a \in a = Bu + \overline{a}, ||u|| \le \epsilon$$

 $\mathbf{B} \in \mathcal{C}^{M \times L}, L \leq M$ is of full column rank.

$$\Leftrightarrow \min_{\mathbf{a}} \mathbf{a}^* \mathbf{R}^{-1} \mathbf{a}$$
 s.t. $\mathbf{a} = \mathbf{B} \mathbf{u} + \mathbf{\bar{a}}, \|\mathbf{u}\| \le \epsilon$

Our RCB

o Without loss of generality, consider spherical uncertainty set:

o Solution at boundary of uncertainty set

min
$$\mathbf{a}^*\mathbf{R}^{-1}\mathbf{a}$$
 s.t. $\|\mathbf{a}\|$

$$\|\mathbf{a} - \overline{\mathbf{a}}\|^2 = \epsilon$$

Our RCB

o Use Lagrange multiplier method

$$\hat{\mathbf{a}}_0 = \left(\frac{\mathbf{R}^{-1}}{\lambda} + \mathbf{I}\right)^{-1} \hat{\mathbf{a}}$$

$$= \hat{\mathbf{a}} - (\mathbf{I} + \lambda \mathbf{R})^{-1} \hat{\mathbf{a}}$$

Obtain Lagrange multiplier $\lambda \geq 0$ by solving

$$g(\lambda) \stackrel{\triangle}{=} \| (\mathbf{I} + \lambda \mathbf{R})^{-1} \, \mathbf{a} \|^2 = \epsilon$$

via Newton's method (monotonic polynomial computationally efficient)

Scaling Ambiguity

o Uncertainty in SOI steering vector cause scaling ambiguity

$$(\sigma^2, \mathbf{a})$$
 and $(\sigma^2/\alpha, \alpha^{1/2}\mathbf{a})$ yield same $\sigma^2\mathbf{a}\mathbf{a}^*$

o Add constraint $\|\mathbf{a}_0\|^2 = M$ to eliminate ambiguity

$$\hat{\mathbf{a}}_0 = \frac{M}{\|\hat{\mathbf{a}}_0\|} \hat{\mathbf{a}}_0 \qquad \hat{\hat{\sigma}}_0^2 = \hat{\sigma}$$

$$\hat{\boldsymbol{\sigma}}_0^2 = \hat{\boldsymbol{\sigma}}_0^2 ||\hat{\mathbf{a}}_0||^2 / M$$

Main Steps of Our RCB

$$R = U\Lambda U^*$$

o Step 2: Obtain Lagrange multiplier
$$\lambda$$

$$\hat{\mathbf{a}}_0 = \bar{\mathbf{a}} - \bar{\mathbf{U}} (\mathbf{I} + \lambda \Lambda)^{-1} \mathbf{U}^* \bar{\mathbf{a}}$$

o Step 4:
$$\hat{\sigma}_0^2 =$$

$$\hat{\sigma}_0^2 = \frac{1}{\hat{\mathbf{a}}_0^* \hat{\mathbf{R}}^{-1} \hat{\mathbf{a}}_0} = \frac{1}{\hat{\mathbf{a}}_0^* (\frac{\mathbf{I}}{\lambda} + \hat{\mathbf{R}})^{-1} \hat{\mathbf{a}}}$$

$$\hat{\boldsymbol{\sigma}}_0^2 = \hat{\boldsymbol{\sigma}}_0^2 ||\hat{\mathbf{a}}_0||^2 / M$$

Waveform Estimation

- \Box Obtain weight vector based on $\hat{\mathbf{a}}_0$ or $\hat{\mathbf{a}}_0$
- □Diagonal loading (spherical constraint)!

$$\begin{array}{rcl}
\mathbf{R}^{-1}\hat{\mathbf{a}}_{0} & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

 \beth Waveform estimate $\widehat{s}_0(n) = \widehat{\mathbf{w}}_0^* \mathbf{x}_n$

- Ambiguity elimination obvious for our RCB (not considered by others)
- o Our RCB requires $O(M^3)$ flops Computation

for [Vorobyov, Gershman, Luo, 2001] while $O(M^{3.5})$ flops

More computations needed to determine Lagrange multiplier and polynomial not monotonic for [Lorenz, Boyd, 2001] -- also $O(M^3)$ flops 0

Numerical Examples

- □ M = 10 sensors
- □Uniform linear array with half-wavelength spacing
- ☐ Array calibration error exists (independent complex Gaussian random variables added)

Power Estimate vs. Angle

True powers denoted by circles.

 $\epsilon_0 = 1.0$ $\epsilon = 1.0$ $\beta = 6.0$ $\zeta = \frac{\beta}{M}$

March 11, 2003

ASAP Workshop 2003

Making NCCB Have Same Diagonal Loading Level As RCB

March 11, 2003

18

Coherent RCB (CRCB)

■ Motivation - GPS applications etc.

From **Multipath Mitigation Performance of Planar GPS Adaptive Antenna Arrays for Precision Landing Ground Stations** by J.H. Williams, et al, the MITRE Corporation

- Coherent multipaths exist
- DOAs of multipaths known relative to DOA of SOI

CRCB

 Robust against coherent multipaths as well as steering vector errors.

Steering vector: a + Vb

a : Steering vector of SOI

V: Steering vectors of coherent multipaths

o Covariance fitting

$$\mathbf{R} - \sigma^2(\mathbf{a} + \mathbf{Vb})(\mathbf{a} + \mathbf{Vb})^* \ge 0$$

$$a = Bu + \bar{a}, \|u\|^2 \le \epsilon$$

Steps of CRCB

o Following similar steps in RCB

$$\Leftrightarrow \min(\mathbf{a} + \mathbf{Vb})^* \mathbf{R}^{-1}(\mathbf{a} + \mathbf{Vb})$$

s.t. $a = Bu + \bar{a}, \|u\|^2 \le \epsilon$

o Concentrating out b

⇔ min a*Γa

s.t. $a = Bu + \bar{a}, \|u\|^2 \le \epsilon$

with $\Gamma = \mathbf{R}^{-1/2}\mathbf{P}_{\mathbf{R}^{-1/2}\mathbf{V}}^{\perp}\mathbf{R}^{-1/2}$

Insight of CRCB

Let
$$\mathcal{R}(G) = \mathcal{N}(V^*)$$

 $\Leftrightarrow \min_{\mathbf{a}} \mathbf{a}^* \mathbf{G} (\mathbf{G}^* \mathbf{R} \mathbf{G})^{-1} \mathbf{G}^* \mathbf{a}$

s.t. $a = Bu + \bar{a}$, $||u||^2 \le \epsilon$

Project data to orthogonal subspace of V

Apply RCB to projected data

Choice of Multipath Subspace

o Error of V causes error of SOI steering vector

If $\mathbf{G}^*\mathbf{a}_I \neq 0$, it is combined with $\mathbf{G}^*\mathbf{a}_0$

- o More columns in V means
- o Better multipath elimination
- o Loss of DOF for interference suppression.
- Doubly RCB is robust against error of V
- o Columns in V should be as independent as possible

Numerical Examples

- M = 10 sensors, 40 snapshots
- □Uniform linear array with half-wavelength spacing
- □100 Monte-Carlo trials for average output SINR

25

ASAP Workshop 2003

March 11, 2003

Output SINR vs. E

SOI (-20 deg, 30 dB)

Coherent multipath (19 deg, 27 dB) Non-coherent signal (-40 deg, 40 dB)

1-D null space: assume $m~V = [a(- heta_0)]$

2-D null space: $V = [a(- heta_0 - 0.5^\circ), a(- heta_0 + 0.5^\circ)]$

March 11, 2003

ASAP Workshop 2003

Summary

- □ Our RCB robust against steering vector errors.
- o Much more accurate SOI power estimate
- o Directly related to uncertainty of steering vector
- o Belongs to (extended) class of diagonal loading approaches
- Much better resolution and interference rejection capability than data-independent beamformers.
- □ Computationally efficient.
- □ Can be made robust against coherent interferences (CRCB).

THANK YOU

ASAP Workshop 2003

March 11, 2003

Array Calibration Errors

For small calibration errors

$$(1+\delta_n)e^{j\phi_n}\simeq (1+\delta_n)(1+j\phi_n)\simeq 1+\delta_n+j\phi_n$$

Random amplitude error $\delta_n\sim \mathcal{N}(0,\sigma_\delta^2)$

Random phase error

$$\phi_n \sim \mathcal{N}(0, \sigma_\phi^2)$$

Array steering vector with calibration errors

$$\tilde{\mathbf{a}}(\theta) = (\mathbf{I} + \mathbf{P})\mathbf{a}(\theta)$$

where $\mathbf{P} = \text{diag}\{\delta_1 + j\phi_1, \delta_2 + j\phi_2, \dots, \delta_N + j\phi_N\}$

$$E\{\epsilon_0\} = E\{\|\tilde{\mathbf{a}}(\theta) - \mathbf{a}(\theta)\|^2\} = M(\sigma_{\delta}^2 + \sigma_{\phi}^2)$$