Pattern Recognition & Deep Learning

模式识别与深度学习

实验2: PCA降维与分类实验

天津大学 智能与计算学部

PCA 原理回顾

主分量分析(又称为K-L变换)的思想是通过变化最大化样本的方差,其可转化为特征问题求解:

$$\Sigma W = \lambda W$$

其中 Σ 为 $X-\bar{X}$ 协方差矩阵, \bar{X} 输入数据的均值。

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$

PCA 原理回顾

- PCA算法
 - ▶计算均值
 - ▶计算协方差矩阵
 - ▶ 计算特征值 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ 和特征向量 $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_d\}$
 - ▶ 计算低维表示 $\mathbf{y} = \mathbf{U}^T \mathbf{x}$ $\mathbf{U} = \begin{vmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_d \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_d \end{vmatrix}$

□实验目的

PCA 降维模型 主成分向量

PCA重建模型

□数据介绍

Ifw 人脸数据集:

http://vis-www.cs.umass.edu/lfw/lfw.tgz

5749 people 13233 images 1680 people with two or more images

Aaron Eckhart 0001.jpg

01.jpg

Aaron Patterso n 0001.jpg

Aaron Peirsol 0 001.jpg

Aaron Peirsol 0 002.jpg

Aaron Peirsol 0 003.jpg

Aaron Peirsol 0 004.jpg

Aaron Pena 00 01.jpg

Aaron Sorkin 0 001.jpg

Aaron Sorkin 0 002.jpg

Abba Eban 000 1.jpg

Abbas Kiarosta mi 0001.jpg

□ 调用包

□ 数据读取

Ifw-100_ori →

Aaron_Eckhart	2022/9/21 16:26	文件夹
Aaron_Guiel	2022/9/21 16:26	文件夹
Aaron_Patterson	2022/9/21 16:26	文件夹
Aaron_Peirsol	2022/9/21 16:26	文件夹
Aaron_Pena	2022/9/21 16:26	文件夹
Aaron_Sorkin	2022/9/21 16:26	文件夹
Aaron_Tippin	2022/9/21 16:26	文件夹
Abba_Eban	2022/9/21 16:26	文件夹
Abbas_Kiarostami	2022/9/21 16:26	文件夹
Abdel_Aziz_Al-Hakim	2022/9/21 16:26	文件夹
Abdel_Madi_Shabneh	2022/9/21 16:26	文件夹
Abdel_Nasser_Assidi	2022/ 9/21 16:26	文件夹
Abdoulaye_Wade	2022/9/21 16:26	文件夹
Abdul_Majeed_Shobokshi	2022/9/21 16:26	文件夹
Abdul_Rahman	2022/9/21 16:26	文件夹
Abdulaziz_Kamilov	2022/9/21 16:26	文件夹
Abdullah	2022/9/21 16:26	文件夹
Abdullah_Ahmad_Badawi	2022/9/21 16:26	文件夹
Abdullah_al-Attiyah	2022/9/21 16:26	文件夹

- 🔳 Abdoulaye Wade 0001.jpg
- Abdoulaye Wade 0002.jpg
- 🖹 Abdoulaye Wade 0003.jpg
- 🔳 Abdoulaye Wade 0004.jpg

一级目录 path 二级目录 face_path 三级目录 Image_path

□数据读取

```
def dataload(path):
    all_image = []_# list, 存储所有图像
    re_path = [] # list, 存储图像路径
    for face_path_name in os.listdir(path):
        face_path = os.path.join(path,face_path_name)
        for image_path_name in os.listdir(face_path):
            image_path = os.path.join(face_path, image_path_name)
            re_path.append(os.path.join(path.split('_')[0]+'_recon',face_path_name,image_path_name))
            if not os.path.exists(os.path.join(path.split('_')[0]+'_recon',face_path_name)):
                os.makedirs(os.path.join(path.split('_')[0]+'_recon',face_path_name))
            img_gray = Image.open(image_path).convert('L')
            img_np = np.array(img_gray)
            all_image.append(img_np)
    all_image \( \pm \) np.array(all_image) \( \pm (98, 250, 250) \)
    all_image_flatten = all_image.reshape((all_image.shape[0], -1)) # (98, 62500)
    return all_image_flatten, re_path
                                                                                            2022/9/22
  img_gray.save(os.path.join(os.path.join(path.split('_')[0]+'_recon',face_path_name,image_path_name)))
```

□ PCA 模型搭建

```
model = PCA(n_components=components_value);
```

可调节参数:n_components

1. n_components: int, float, None or str

意义:代表返回的主成分的个数,也就是你想把数据降到几维

n_components=2 代表返回前2个主成分

0 < n_components < 1代表满足最低的主成分方差累计贡献率

n_components=0.98,指返回满足主成分方差累计贡献率达到98%的主成分

n_components=None,返回所有主成分

n_components='mle',将自动选取主成分个数n,使得满足所要求的方差百分比

□ PCA 降维

```
components = model.fit_transform(all_image_flatten)
```

□ PCA 重建样本以及重建样本保存

```
face_recon = model.inverse_transform(components)
for i in range(face_recon.shape[0]):
    each_face_recon = face_recon[i]
    each_face_recon = Image.fromarray(each_face_recon.reshape((250,250)))
    each_face_recon = each_face_recon.convert('L')
    each_face_recon.save(re_path[i].split('.jpg')[0]+'-recon-'+str(components_value)+'.jpg')
```

□ 重建展示

Aaron_Peirsol_0001-gray.jpg

Abdel_Nasser_Assidi_0001-recon-1

Aaron_Peirsol_0001-recon-5.jpg

Aaron_Peirsol_0001-recon-10.jpg

Abdel_Nasser_Assidi_0001-gray.jp

Abdel_Nasser_Assidi_0001-recon-5

Abdel_Nasser_Assidi_0001-recon-1

Abdel_Nasser_Assidi_0001-recon-3 0.jpg

Abdel_Nasser_Assidi_0001-recon-5

Abdel_Nasser_Assidi_0001-recon-7

Abdel Nasser Assidi 0001-recon-1 00.jpg

Abner Martinez_0001-gray.jpg

Abner_Martinez_0001-recon-1.jpg

Abner_Martinez_0001-recon-5.jpg

Abner_Martinez_0001-recon-10.jp

Abner_Martinez_0001-recon-30.jp

Abner Martinez_0001-recon-50.jp

Abner Martinez 0001-recon-70.jp

Ai Sugiyama 0001-gray.jpg

Ai_Sugiyama_0001-recon-5.jpg

Ai_Sugiyama_0001-recon-100.jpg

PCA+SVM 实验作业

□ 实验目的

PCA 模型 主成分向量 SVM 模型

51个类别

0	lihaoyu		
1	chenjun		
2	duchunhong		

PCA+SVM 实验作业

□数据介绍

- 原始数据 (51) -> rgb图转灰度图->resize (250,250)
- 每位同学的人脸数据进行了20倍数据增广。包括随机旋转,上下 左右翻转,加噪声,随机剪裁
- 划分了训练集和测试集,每位同学对应的训练集包含14个样本, 测试集包含7个样本

PCA+SVM 实验作业

□ 数据展示

train

lihaoyu.jpg-1.jp

lihaoyu.jpg-2.jp

lihaoyu.jpg-3.jp

lihaoyu.jpg-4.jp

lihaoyu.jpg-5.jp

lihaoyu.jpg-6.jp

lihaoyu.jpg-7.jp

lihaoyu.jpg-8.jp

lihaoyu.jpg-9.jp

lihaoyu.jpg-10.j pg

lihaoyu.jpg-11.j pg

lihaoyu.jpg-12.j pg

lihaoyu.jpg-13.j

lihaoyu.jpg-14.j pg

test

lihaoyu.jpg-15.j pg

lihaoyu.jpg-16.j pg

lihaoyu.jpg-17.j pg

lihaoyu.jpg-18.j pg

lihaoyu.jpg-19.j pg

lihaoyu.jpg-20.j pg

智能与计异子部

2022/9/22

PCA+SVM 实验要求

□ 数据获取

PCA 降维重建实验相关文件(实验数据以及实验代码)以及 PCA降维SVM分类实验相关文件(实验数据以及待补全实验代码)已上传至智慧树作业《实验2-PCA降维+SVM分类》中的 pca_recon以及pca_svm文件夹中

□ 结果分析

调节PCA以及SVM参数,得到分类准确率,结果采用表格表示

PCA	SVM		results		
n_components	С	kernel	decision_function_shape	Train acc	Test acc

PCA+SVM 实验要求

□ 实验要求

- ▶ 实验时间:09.22-10.07,不得晚于10月07号23.00点
- ▶ 提交文件:代码和实验报告,打包为"**实验2-学号-姓名**.zip"
 - ,其中实验报告的命名是"**实验2-实验报告-学号-姓名**.docx"
 - (实验报告模板以及实验指导书已上传至智慧树作业《实验2-
 - PCA降维+SVM分类》中)
- ➤ 提交方式: zip文件通过智慧树作业页面进行提交