Seconda verifica AESO 2021-22

L'indirizzo email della persona che ha risposto (**null**) è stato registrato quando hai inviato questo modulo.

Email *
Una memoria "dinamica"
Contrassegna solo un ovale.
E' più veloce di una memoria statica
Richiede hardware aggiuntivo per il rinfresco del contenuto, che altrimenti verrebbe perso in breve lasso di tempo
A parità di capacità è più costosa di una memoria statica
Un dispositivo di memoria "base", nello stesso ciclo di clock: Contrassegna solo un ovale.
Permette di leggere e scrivere una cella di indirizzo dato
Permette di leggere o scrivere una cella di indirizzo dato
Permettel di leggere una cella ad un certo indirizzo e di scrivere una cella ad un altro indirizzo Mo se Mon Tomble porta
In una memoria multiporta:
Contrassegna solo un ovale.
Posso effettuare operazioni su indirizzi diversi nello stesso ciclo di clock
Posso effettuare esclusivamente letture da indirizzi diversi nello stesso ciclo di clock
Posso effettuare esclusivamente scritture su indirizzi diversi nello stesso ciclo di clock 8 possono avvore + indiritti diversi

Seconda	verifica	AFSO	2021	-22
occonida	vermea	Δ LOO	2021	

5.	In quale tipo di memoria è richiesto un numero maggiore di componenti (porte logiche, transistor) per implementare un singolo bit:				
	Contrassegna solo un ovale.				
	RAM dinamica RAM statica ROM ROM ROM ROM ROM ROM ROM RO				
6.	Si consideri una memoria modulare interallacciata che utilizza 4 componenti di memoria standard da 1G parole per implementare una memoria da 4G parole, e si indichi quale delle seguenti affermazioni sono vere:				
	Contrassegna solo un ovale.				
	Due parole di indirizzi consecutivi si trovano nello stesso componente di memoria da 1G				
	Due parole di indirizzi consecutivi si trovano nei componenti di memoria da 1G di indice i e (i+1)%4				
	e' sempre possibile leggere 4 parole consecutive in un singolo ciclo di clock, purchè possa essere bypassato il multiplexer che normalmente sceglie l'unica parola determinata dall'intero indirizzo a 32 bit				
ج ل	ndi Tillo che la hibir o alla fine \xxx\000 lg (#mode				
7.	Un componente PLA (Programmable logic array):				
	Contrassegna solo un ovale.				
	può implementare solo reti combinatorie				
	può implementare solo reti sequenziali				

3. La rete sequenziale in figura (sono evidenziati gli ingressi e le uscite, A e B sono registri con segnale di abilitazione sempre a 1) è

Contrassegna solo un ovale.

Una rete di Moore (l'uscit	a deriva da registri, che sono stato interno)
Una rete di Moore (perch	è l'uscita non dipende da X e Y)
Una rete di Mealy (perche m3)	è l'uscita è calcolata a partire dallo stato interno e dall'ingresso
dagli ingressi X e Y) X e	è il contenuto dei registri, da cui si prende l'uscita) è determinato Y determinato L'antento dei Registri State (5-02)440 t)

9.	Se due reti sequenziali, una di Moore e una di Mealy, risolvono lo stesso problema:					
	Contrassegna solo un ovale.					
	La rete di Moore utilizza un numero di stati maggiore rispetto a quelli utilizzati dalla rete di Mealy					
	La rete di Moore può richiedere un numero di stati maggiore rispetto a quelli utilizzati dalla rete di Mealy					
	La rete di Moore utilizza un numero di stati minore rispetto a quelli utilizzati dalla rete di Mealy					
	La rete di Moore può richiedere un numero di stati minore rispetto a quelli utilizzati dalla rete di Mealy					
	La rete di Moore utilizza un lo stesso numero di stati rispetto a quelli utilizzati dalla rete di Mealy Me pro anche recli derne di pro					
10.	Una modulo PRIMITIVE in Verilog					
	Contrassegna solo un ovale.					
	definsce una rete combinatoria con un numero qualunque di ingressi, ciascuno di un numero di bit qualunque, e una singola uscita, di un numero di bit qualunque					
	definsce una rete combinatoria con un numero qualunque di ingressi, ciascuno di un numero di bit qualunque, e una singola uscita, di un solo bit					
	definisce una rete combinatoria di un ingresso con un numero di bit pari a una potenza di due, e una uscita di un solo bit					
	definisce una rete combinatoria qualunque					

11. Il seguente modulo Verilog

```
module x(output [7:0]z,
         output
         input [7:0] a,
         input [7:0] b,
         input
  assign
        \{c,z\} = (o == 1'b0 ? a+b : a-b);
endmodule
Contrassegna solo un ovale.
```

) implementa una alu che implementa somma e sottrazione di numeri interi a 8 bit

implementa una alu che implementa somma e sottrazione di numeri interi a 8 bit e genera un flag pari a 1 se c'è stato riporto

potrebbe implementare una alu che fa somma e sottrazione di numeri interi a 8 bit, e che genera un flag pari a 1 ma andrebbe scritta una assign separata per il bit c, perchè l'unica assign presente non è corretta

12. 3 bit?

```
module par3(output p, input a, input b, input c);
  wire p1;
  assign
    p1 = (a&&b) || (~a && ~b);
```

endmodule

Contrassegna solo un ovale.

assign p = (p1&&c || \sim p1&& \sim c);

assign p = (p1&&~c || ~p1&&c);

assign p = $(p1&&c || p1&&\sim c);$

il primo ession colcolo la ponta dei premi due bit le parté de l'1 e c=0

(parté de tre hot \(\tau\)

Se p1=1 e c=0

(parté de c=1

(daparé + "1" = pari) 11/2/21, 07:54 13. Quale dei moduli, genera la seguente traccia di uscita:

Contrassegna solo un ovale.

- module p(output z, input a, input b); assign z = a && b; endmodule module p(output z, input a, input b); assign z = a && \sim b; endmodule module p(output z, input a, input b); assign z = a || b; endmodule module p(output z, input a, input b); assign z = a || \sim b; endmodule
- 14. Quanto valgono a e b dopo l'esecuzione del codice seguente?

Contrassegna solo un ovale.

entrambi 1

entrambi 0

a 1 e b 0

a 0 e b 1

il valore di emtrambi è indeterminato

entrambi 1

chi nocretto: portero

unarette

logar sano
e=0 b=0

15. Cosa calcola il modulo c4?

```
module c1(output z, input a, input b);
  assign z = a&&b || ~a&&~b;
endmodule // comp
module c4(output z, input [3:0]a, input [3:0]b);
    wire [3:0] r;
    genvar i;
    generate
       for(i=0; i<4; i=i+1)</pre>
              c1 myC(r[i], a[i], b[i]);
    endgenerate
    assign z = &r;
                            4 moduli C1 colcolous
                            1 lost croscure = "1" see i due
endmodule // c4
                              15+ sour ugudi
Contrassegna solo un ovale.
                               Z= &v colcelo AND (&)
bA c bt => 1 see
  z = 1 se e solo se a > b
   z = 1 se e solo se a = b
   ) z = 1 se e solo se a < b
   ) non è un modulo valido, perchè la sintassi utilizzata per il modulo c1 è sbagliata
```

7 of 8 11/2/21, 07:54

onn è un modulo valido, perchè la sintassi utilizzata per il modulo c4 è sbagliata non è un modulo c4 è sbagliata

16. Si consideri il codice "reg clock; always #1 clock = ~clock; " e la serie di tracce seguenti, e si marchino le affermazioni vere

Questi contenuti non sono creati né avallati da Google.

Google Moduli