

LLMao: Retrieval Augmented Generation using Large Language Models for Toxicology

Omkar Chavan, Ashley Fenton, Kenny Lam, Ali Mahmoud, Jhanvi Rana

Introduction

What are LLMs?

- A large language model is a deep learning algorithm that summarizes, translates and generates text to convey ideas and concepts
- Notable examples include OpenAl's GPT-3 and GPT-4

Challenge

Incompetency of LLMs

- LLMs often give inaccurate and made-up responses to scientific questions
- This problem is experienced more heavily in toxicology where ChatGPT does not have access to the Adverse Outcome Pathway (AOP) database

Objective

Bridge the gap between academia and general public

- Build LLM that utilizes AOP database from EPA
- Combine that database with cloud computing platform like Amazon Web Services (AWS)
- Utilize AWS tools like
 Bedrock, EC2 and S3
 which helps in creating a specialized AI expert in toxicology

Adverse Outcome Pathway (AOP)

AOP: biological frameworks that seek to explain how a molecular level interaction with a stressor can lead to large scale adverse effects

General AOP Framework

Our LLM utilizes the AOP database from the EPA (https://aopdb.epa.gov)

AOP Demo from Ilm-ao.com

Retrieval Augmented Generation (RAG)

Implementation of RAG:

LLMao using RAG implementation:

RAG Demo

Conclusion & Future Developments

Completed work this quarter:

Future work if this project was continuing:

Try LLMao here:

