TFT DISPLAY SPECIFICATION

WINSTAR Display Co.,Ltd. 華凌光電股份有限公司

WEB: https://www.winstar.com.tw E-mail: sales@winstar.com.tw

SPECIFICATION

CUSTOMER :	
MODULE NO.:	WF35UTYAIDNNO#
	3
APPROVED BY:	
(FOR CUSTOMER USE ONLY)	
	PCB VERSION: DATA:

SALES BY APPR	OVED BY	CHECKED BY	PREPARED BY
			葉虹蘭
ISSUED DATE: 2018/	05/07		

TFT Display Inspection Specification: https://www.winstar.com.tw/technology/download.html
Precaution in use of TFT module: https://www.winstar.com.tw/technology/download/declaration.html

MODLE NO:

REC	ORDS OF REV	ISION	DOC. FIRST ISSUE
VERSION	DATE	REVISED PAGE NO.	SUMMARY
0	2017/08/03		First issue
A	2018/04/25		Modify AC
l B	2018/05/07		CHARATERISTICS. Add RGB Interface

Contents

- 1. Module Classification Information
- 2.Summary
- 3. General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6.DC Characteristics
- 7.AC Characteristics
- 8. Optical Characteristics
- 9.Interface
- 10.Block Diagram
- 11.Reliability
- 12.Contour Drawing
- 13.Other

1.Module Classification Information

A I N 0 W F 35 U T Y D N # (1) 3 6 7 8 (11) 12 2 4 (5) 10 13)

①	Brand: WINSTAR DISPLAY CORPORATION											
2	Display Type: F→TFT Type, J→Custom TFT											
3	Display Size: 3.5	5" TFT										
4	Model serials no.											A
(5)	Backlight	F→CCFL, W	hite				T-	\rightarrow L	ED, White	e		
	Type:	S→LED, Hig	gh Lig	tht Whi	ite		Z	→N	ichia LED), W	hite	
	LCD Polarize	A→Transmis	ssive,	N.T, IF	PS T	FT	Q	Q→Transmissive, Super W.T, 12:00				
	Type/	C→Transmis	sive,	N. T, 6	:00 ;		R	\rightarrow T	ransmissiv	ve, S	uper W.T,	O-TFT
	Temperature	F→Transmis	sive,	N.T,12	:00;		V	\rightarrow T	ransmissi	ve, S	uper W.T,	VA TFT
6	range/ Gray	I→Transmiss	sive, V	W. T, 6:	00		W	/→]	Γransmissi	ve,	Super W.T,	IPS TFT
	Scale Inversion	K→Transfleo	ctive,	W.T,12	2:00		X	—T	ransmissi	ve, V	V.T, VA TF	T
	Direction	L→Transmis	sive,	W.T,12	:00		Y	\rightarrow T	ransmissi	ve, V	V.T, IPS TI	FT
	Direction	N→Transmis	ssive,	Super '	W.T,	6:00	Z	→Tı	ransmissiv	ve, V	V.T, O-TFT	
	A: TFT LCD										L BOAR	LD.
	B: TFT+SCREV	V HOLES+CO	ONTR	OL BC	OAR	D			FT+ SCR			
7	C: TFT+ SCRE	W HOLES +A	/D B	OARD	C		Ή	: T	FT+D/V	BC	OARD	
	D: TFT+ SCREW	HOLES +A/D B	OARD	+CONT	ROL	BOAR	I	: TF	T+ SCRE	EW I	HOLES +D	V BOARD
	E: TFT+ SCREV	V HOLES +P	OWE	R BC	OAR	Ď	J	: TI	T+POWI	ER E	BD	
	Resolution:				7					1		1
	A 128160 B	320234	32	20240	D	4802	34	Е	480272	F	640480	
8	G 800480 H	1024600	[32	20480	J	2403	20	K	800600	L	240400	
	M 1024768 N	128128 I	12	80800	Q	4808	00	R	640320	S	480128	
	T 800320 U	8001280 V	/ 17	6220	W	12803	98	X	1024250	Y	1920720	
	Z 800200 2	1024324	3 720	01280	4	19201	200	5	1366768	6	1280320	
9	D: Digital L:	LVDS M:M	IIPI									
	Interface:	/									_	
10	N Without co	ntrol board	A	8Bit		В		16E	Bit	Н	HDMI	
	I I2C Interfac	ce	R	RS232	2	S	SPI	Inte	erface	U	USB	
	TS:											
	N Without TS T Resistive touch panel C Capacitive touch panel (G-F-F)											
11)	G Capacitive to	ouch panel (G-	-G)			C1	Ca	pac	itive touch	n par	nel (G-F-F)	+OCA
	C2 Capacitive to	ouch panel (G-	-F-F)-	+OCR		G1	Ca	apac	itive toucl	n pai	nel (G-G)+	OCA
	G2 Capacitive touch panel (G-G)+OCR B CTP+GG+USB											
12	Version: X:Rası	berry pi										
13	Special Code	#:Fit in wi	th RC	HS dir	ectiv	ve regu	latio	ons				
-	1											

2.Summary

TFT 3.5 is a IPS transmissive type color active matrix TFT liquid crystal display that use amorphous silicon TFT as switching devices. This module is a composed of a TFT_LCD module, It is usually designed for industrial application and this module follows RoHs.

.

3.General Specifications

Item	Dimension	Unit
Size	3.5	inch
Dot Matrix	320 x RGBx 480(TFT)	dots
Module dimension	54.5 (W) x83.0 (H) x 2.46(D)	mm
Active area	48.96 x 73.44	mm
LCD type	TFT, Normally Black, Transmissive	
View Direction	Wide View	•
Aspect Ratio	Portrait	
TFT Driver IC	ILI9488 Or Equal	
TFT Interface	MCU 8/16/18-bit, 3-SPI ,RGB interfa	ace+3-SPI
\Backlight Type	LED,Normally White	
With /Without TP	Without TP	
Surface	Anti-Glare	

^{*}Color tone slight changed by temperature and driving voltage.

4.Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	TOP	-20	_	+70	$^{\circ}\mathbb{C}$
Storage Temperature	TST	-30	_	+80	$^{\circ}\!\mathbb{C}$

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. $\leq\!60^{\circ}\!\!\!\mathrm{C}$, 90% RH MAX. Temp. $>\!60^{\circ}\!\!\mathrm{C}$, Absolute humidity shall be less than 90% RH at $60^{\circ}\!\!\mathrm{C}$

5.Electrical Characteristics

5.1. Operating conditions:

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage for digital	IOVCC	_	_	1.8/2.8	3.3	V
Supply Voltage for analog	VCI	_	_	2.8	3.3	V
Power Supply for Current	ICC	IOVCC=VCI =VCC=3.3V	_	13.6	5-2	mA

5.2. LED driving conditions

Parameter	Symbol	Min	Тур	Max	Unit	Remark
LED current	_	_	160	△ -C	mA	_
LED voltage	LEDA	2.6	3.0	3.4	V	Note 1
LED Life Time	_	_	50000		Hr	Note 2,3

Note 1: There are 1 Groups LED

Note 2 : $Ta = 25^{\circ}C$

(K1~K10 conector to LEDK)

Note 3: Brightness to be decreased to 50% of the initial value

6.DC CHARATERISTICS

Parameter	Symbol		Rating	Unit	Condition		
Tarameter	Symbol	Min	Тур	Max	Cint	Condition	
Low level input voltage	VIL	0	-	0.2VCC	V		
High level input voltage	V _{IH}	0.8VCC	-	VCC	V	A	

7.AC CHARATERISTICS

7.1. DBI Type C Option 1 (3-Line Serial Interface)

The 3-line/9-bit serial bus interface of the ILI9488 can be used by setting external pin IM [2:0] as 101. Figure 1 describes an interface with 8080 MCU system interface.

Figure 1: 3-Line Serial Interface

The available display data formats are:

*8 colors, RGB 1, 1, 1 bits input (set Standard Command 3Ah, DBI [2:0] as 001)

*262K-Colors, RGB 6, 6, 6 bits input data (set Standard Command 3Ah, DBI [2:0] as 110)

7.1.1 SPI Data for 3-bit/pixel (RGB 1-1-1 Bits Input), 8-color

Figure 2: SPI Data for 3 bit/pixel (RGB 1-1-1 Bits Input), 8-color

Notes:

1. One pixel data contains 3-bit color depth information.

7.1.2. SPI Data for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Figure 3: SPI Data for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Notes:

- 1. One pixel data contains 18-bit color depth information.
- 2. The most significant bits are: R x 5, G x 5, and B x 5.
- 3. The least significant bits are: $R \times 0$, $G \times 0$, and $B \times 0$.

1 igure 4. 3-Eine of 1 Mode Nead Date

Note: "-" = void

7.2. 8-bit Parallel MCU Interface

The DBI TYPE B 8-bit parallel bus interface of the ILI9488 is used by setting the external pin IM [2:0] as 011. Figure 5 shows this system interface.

Figure 5: 8-bit Parallel MCU Interface

The available display data formats are:

7.2.1. 8-bit Data Bus for 16-bit/pixel (RGB 5-6-5 Bits Input), 65K-color

Figure 6: 8-bit Data Bus for 16-bit/pixel (RGB 6-5-6 Bits Input), 65K-color

^{*65}K-Colors, RGB 5, 6, 5 bits input data (set Standard Command 3Ah, DBI [2:0] as 101)

^{*262}K-Colors, RGB 6, 6, 6 bits input data (set Standard Command 3Ah, DBI [2:0] as 110)

Notes:

- 1. The data order is as follows: MSB = DB7, LSB = DB0, and picture data is MSB = Bit 5, LSB = Bit 0 for Green data, and MSB = Bit 4, LSB = Bit 0 for Red and Blue data.
- 2. 2-times transfer is used to transmit 1 pixel data to the 16-bit color depth information.

7.2.2. 8-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Figure 7: 8-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Notes:

- 1. The data order is as follows: MSB = DB7, LSB = DB0, and picture data is MSB = Bit 5, LSB = Bit 0 for Green, Red and Blue data.
- 2. 3-times transfer is used to transmit 1 pixel data to the 18-bit color depth information.

7.3. 16-bit Parallel MCU Interface

The 8080-system 16-bit parallel bus interface of the ILI9488 can be used by setting external pin IM [2:0] as 010.

Figure 8 shows this system interface.

Figure 8: 16-bit Parallel MCU Interface

The available display data formats are:

65K-Colors, RGB 5, 6, 5 bits input data (set Standard Command 3Ah, DBI [2:0] as 101) 262K-Colors, RGB 6, 6, 6 bits input data (set Standard Command 3Ah, DBI [2:0] as 110)

7.3.1 16-bit Data Bus for 16-bit/pixel (RGB 5-6-5 Bits Input), 65K-color

Figure 9: 16-bit Data Bus for 16-bit/pixel (RGB 5-6-5 Bits Input), 65K-color

- 1. The data order is as follows: MSB = DB15, LSB = DB0, and picture data is MSB = Bit 5, LSB = Bit 0 for Green data, and MSB = Bit 4, LSB = Bit0 for Red and Blue data.
- 2. 1-time transfer is used to transmit 1 pixel data to the 16-bit color depth information.

Notes:

"0" CSX RESX "1" D/CX "1" "0" WRX "1" RDX "0" DB23~DB16 DB15 B1, Bit5 Bit15 G2, Bit5 1, Bitt DB14 B1, Bit4 Bit14 G2, Bit4 DB13 Bit13 B1, Bit3 G2, Bit3 DB12 Bit12 B1, Bit2 32, Bit2 DB11 Bit11 B1, Bit1 G2, Bit1 DB10 Bit10 B1, Bit0 G2, Bit0 R1, Bitt DB9 Bit9 DB8 Bit8 Bit7 DB7 B2, Bit5 DB6 Bit6 G1, Bit4 B2, Bit4 DB5 Bit5 G1, Bit3 B2, Bit3 DB4 Bit4 G1, Bit2 B2, Bit2 DB3 Bit3 G1, Bit1 B2, Bit1 DB2 Bit2 G1, Bit0 B2, Bit0 DB1 Bit1 DB0 Bit0 Pixel n Pixel n+1 18bit,

Frame

Memoy

Notes:

7.3.2 16-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Figure 10: 16-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

B 2

- 1. The data order is as follows: MSB = DB15, LSB = DB0, and picture data is MSB = Bit 5, LSB = Bit 0 for Green, Red and Blue data.
- 2. 3-times transfer is used to transmit 2 pixel data to the 18-bit color depth information.

7.4. 18-bit Parallel MCU Interface

The 8080-system 18-bit parallel bus interface of the ILI9488 can be used by setting external pin IM [2:0] as 000.

Figure 11 shows this system interface.

Figure 11: 18-bit Parallel MCU Interface

The available display data formats is: 262K-Colors, RGB 6, 6, 6 bits input data (set Standard Command 3Ah, DBI [2:0] as 110)

7.4.1 18-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Figure 12: 18-bit Data Bus for 18-bit/pixel (RGB 6-6-6 Bits Input), 262K-color

Notes:

- 1. The data order is as follows: MSB = DB17, LSB = DB0, and picture data is MSB = Bit 5, LSB = Bit 0 for Green, Red and Blue data.
- 2. 1-times transfer is used to transmit 1 pixel data to the 18-bit color depth information.

7.5. DPI (RGB Interface)

The DPI can display moving pictures by two ways: rewrite into the GRAM and transmit directly to the shift register. The selection is set by the register BPGRAM (bypass GRAM) and RM bit. The RM bit selects an interface for the access operation of the Frame Memory. For the DPI, RM should be set as 1.

BPGRAM	Display Data Path			
1	Direct to shift register			
0	Write into Memory			
RM	Interface for RAM access			
0	System interface			
1	RGB interface			

The DM bit selects the clock operation mode. It allows switching between display operat ionsin synchronization with the internal oscillation clock. If DM=1, the external DOTCLK cannot be stopped unless it enters the Sleep-In mode.

DM	RGB Interface Operating Clock Selection					
0	Internal system clock					
1	RGB interface (DOTCLK)					

7.5.1 RGB Interface Selection

The DPI can be selected by the RCM bit. When the RCM is set to 0, the DE mode is selected by VSYNC, HSYNC, DOTCLK, ENABLE, and DB[17:0] (or DB[15:0]) pins.

When RCM is set to 1,the SYNC mode is selected by VSYNC, HSYNC,DOTCLK, and DB[17:0] (or DB[15:0]) pins. It supports several pixel formats that can be selected by DPI[2:0] bits in Pixel Format Set (R3Ah) command. The selection of a given interface is done by DPI[2:0],as shown in Table 1 and Figure 13.

Table 1: DPI Interface Selection

RCM	DPI [2:0] RGB Interface Mode		DPI [2:0]			RGB Mode	Used Pins
0	1	1	0	18-bit RGB interface (262K colors)	DE Mode Valid data is determined by the	VSYNC, HSYNC, ENABLE, DOTCLK, DB [17:0]	
0	1	0	1	16-bit RGB interface (65K colors)	ENABLE signal.	VSYNC, HSYNC, ENABLE, DOTCLK, DB [15:0]	
1	1	1	0	18-bit RGB interface (262K colors)	SYNC Mode In the SYNC mode, ENABLE	VSYNC, HSYNC, DOTCLK, DB [17:0]	
1	1	0	1	16-bit RGB interface (65K colors)	signal is ignored; blanking porch is determined by B5h command.	VSYNC, HSYNC, DOTCLK, DB [15:0]	

18-bit DPI interface connection (DB [17:0] is used): set pixel format DPI [2:0] as 110

16-bit DPI interface connection (DB [15:0] is used): set pixel format DPI [2:0] as 101

Figure 13: RGB Interface 18/16 Pixel Format Selection

The Pixel clock (DOTCLK) runs all the time without stop. It is used to enter VSYNC, HSYNC, ENABLE and DB[17:0] (or DB[15:0]) states when there is a rising edge of the DOTCLK. The DOTCLK cannot be used as the internal clock for other functions of the display module.

Vertical synchronization (VSYNC) is used to indicate when a new frame of the display is received. This is low enable and its state is read to the display module by a rising edge of the DOT CLK signal.

Horizontal synchronization (HSYNC)is used to indicate when a new line of the frame is received. This is low enable and its state is read to the display module by a rising edge of the DOT CLK signal.

Data Enable(ENABLE)is used to indicate when the RGB information that should be transferred in the display is received. This is a high enable, and its state is read to the display module by a rising edge of the DOTCLK signal. DB[17:0] (or DB[15:0]) is used to indicate what is the information of the image that is transferred on the display(when ENABLE = 0 (low)and there is a rising edge of DOTCLK). DB[17:0] (or DB[15:0]) can be 0(low) or 1(high). These lines are read by a rising edge of the DOT CLK signal. In RGB interface modes, the input display data is written to GRAM first then outputs the corresponding source voltage according to the gray data from GRAM.

7.5.2 RGB Interface Timing

DPI Parameters Setting(BYPASS bit = 0)

Parameters	Symbols	Min.	Тур.	Max.	Units
Horizontal Synchronization	H_Low	3	-	H_Low < HBP	DOTCLK
Horizontal Back Porch	HBP	3	-	192	DOTCLK
Horizontal Front Porch	HFP	3	-	255	DOTCLK
Horizontal Address	HACT	•	320	-	DOTCLK
Horizontal Frequency		•	-	33	KHz
Vertical Synchronization	V_Low	1	-	V_Low < VBP	Line
Vertical Back Porch	VBP	2	-		Line
Vertical Front Porch	VFP	2	-	V_Low+VBP+VFP < 32	Line
Vertical Address	VACT	-	480	-	Line
Vertical Frequency		60	-	70	Hz
DOTCLK cycle		100	-	50	ns
DOTCLK Frequency		10	-	20	MHz

DPI Parameters Setting(BYPASS bit = 1)

Parameters	Symbols	Min.	Тур.	Max.	Units
Horizontal Synchronization	H_Low	3	-	H_Low < HBP	DOTCLK
Horizontal Back Porch	HBP	20	-	192	DOTCLK
Horizontal Front Porch	HFP	70	-	255	DOTCLK
Horizontal Address	HACT	-	320	-	DOTCLK
Horizontal Frequency		-	-	33	KHz
Vertical Synchronization	V_Low	1	-	V_Low < VBP	Line
Vertical Back Porch	VBP	2	-	V_Low+VBP+VFP < 32	Line
Vertical Front Porch	VFP	2	-		Line
Vertical Address	VACT	-	480	-	Line
Vertical Frequency		60	-	70	Hz
DOTCLK cycle		83.3	-	50	ns
DOTCLK Frequency		12	-	20	MHz

Figure 14: RGB Interface Timing Diagram

7.6. Other command, display data format...,Please reference the ILI9488 Spec

8.Optical Characteristics

Item		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark
Response time		Tr Tf	$\theta = 0^{\circ} \cdot \Phi = 0^{\circ}$	-	30	-	.ms	Note 3,5
Contrast ratio		CR	At optimized viewing angle	-	700	-	-	Note 4,5
Colon Chnomoticity	White	Wx	$\theta = 0^{\circ} \cdot \Phi = 0$	0.26	0.31	0.36		Note 2.6.7
Color Chromaticity	White	Wy		0.28	0.33	0.38		Note 2,6,7
	Hom	⊖R	CR≥10	-	80	-		X V
Viewing angle	Hor.	θL		-	80	-	Deg.	Note 1
Viewing angle	Ver.	ΦТ		-	80	-		Note 1
		ΦВ		-	80	-		
Brightness		-	-	500	600	~ (cd/m2	Center of display

 $Ta=25\pm2^{\circ}C$ (ILED=160mA)

Note 1: Definition of viewing angle range

Fig. 8.1. Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

Fig. 8.2. Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Note 5: White $Vi = Vi50 \pm 1.5V$

Black $Vi = Vi50 \pm 2.0V$

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6: Definition of color chromaticity (CIE 1931)

Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

[&]quot;±" means that the analog input signal swings in phase with VCOM signal.

[&]quot;±" means that the analog input signal swings out of phase with VCOM signal.

9.Interface LCM PIN Definition

NO	Symbol	Function	I/O
1	LEDK	Cathode of LED backlight	Р
2	LEDA	Anode of LED backlight.	
3	IM0	Note 1	I
4	IM1	Note 1	I
5	IM2	Note 1	
6	RESET	System reset pin.	_
7	NC(VS)	No Connection (Vrtical Sync signal) Note 2)	I
8	NC(HS)	No Connection (Horizontal Sync signal; Note 2)	I
9	NC(DCLK)	No Connection (Pixel clock signal; Note 2)	I
10	NC(DE)	No Connection (Data Enable; Note 2)	I
11-16	DB17-12	Data bus (R5~R0; RGB-18bit Pixel; Note 2)	I
17-22	DB11-6	Data bus (G5~G0; RGB-18bit Pixel; Note 2)	I
23-28	DB5-0	Data bus (R5~G0; RGB-18bit Pixel; Note 2)	I
29	NC (SDA)	Connection (serial data input/output pin)	I
30	RD	Read strobe signal. Read out data when RDX is Low.	I
31	WR (SCL)	Write data when WRX is Low.(serial clock input pin)	I
32	D/C	register select	I
33	CS (NCS)	Chip select signal (serial chip select input pin)	I
34	IOVCC	Power supply (TYP:1.8V/2.8V).	Р
35	VCI	Power supply(TYP:2.8V).	Р
36	GND	Ground	Р
37	NC	No connection	
38	NC	No connection	
39	NC	No connection	
40	NC	No connection	

Note 1:

IM2	IM1	IMO	MPU Interface	GRAM
0	0	0	8080 MCU 18-bit bus	D[17:0]
0	1	0	8080 MCU 16-bit bus	D[15:0]
0	1	1	8080 MCU 8-bit bus	D[7:0]
1	0	1	3-Line SPI	SDA,SCL,NCS
1	0	1	RGB interface+3-SPI	D[17:0] (RGB-18bit/Pixel) D[15:0] (RGB-16bit/Pixel)

Note 2:

This module suggests function is for 8080 MCU mode, if this module wants change to use RGB Interface mode, please setting external pin IM [2:0] as 101 (3-SPI Initial code setting RGB-18bit/Pixel or RGB-16bit/Pixel), and reference the **7.5. RGB Interface Selection**

10.Block Diagram

11.Reliability

Environmental Test							
Test Item	Content of Test	Test Condition	Note				
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80℃ 96hrs	2				
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C 96hrs	1,2				
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70℃ 96hrs					
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°ℂ 96hrs	1				
High Temperature/ Humidity Operation	The module should be allowed to stand at 40°C,90%RH max	40℃,90%RH 96hrs	1,2				
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20℃/70℃ 10 cycles					
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude: 1.5mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3				
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=±600V(contact) ,±800v(air), RS=330Ω CS=150pF 10 times					

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

12.Contour Drawing

LCM Sample Estimate Feedback Sheet

Module	Number :		Pa	age: 1
1 · <u>P</u>	anel Specification:			
1.	Panel Type:	□ Pass	□ NG ,	
2.	View Direction:	□ Pass	□ NG ,	
3.	Numbers of Dots:	□ Pass	□ NG ,	
4.	View Area:	□ Pass	□ NG ,	
5.	Active Area:	□ Pass	□ NG ,	
6.	Operating	□ Pass	□ NG ,	<u> </u>
7.	Storage Temperature :	□ Pass	□ NG ,	1
8.	Others:		<u> </u>	
2 · <u>N</u>	<u>lechanical</u>		~ ()	
1.	PCB Size :	□ Pass	□ NG ,	
2.	Frame Size :	□ Pass	□ NG ,	
3.	Material of Frame:	□ Pass	□ NG ,	
4.	Connector Position:	□ Pass	□ NG ,	
5.	Fix Hole Position:	□ Pass	□ NG ,	
6.	Backlight Position:	□ Pass	□ NG ,	
7.	Thickness of PCB:	□ Pass	□ NG ,	
8.	Height of Frame to	□ Pass	_ NG ,	
9.	Height of Module:	□ Pass	□ NG ,	
10	Others:	□ Pass	□ NG ,	
3 ⋅ <u>R</u>	Relative Hole Size :			
1.	Pitch of Connector:	□ Pass	□ NG ,	
2.	Hole size of Connector:	□ Pass	□ NG ,	
3.	Mounting Hole size:	□ Pass	□ NG ,	
4.	Mounting Hole Type:	□ Pass	□ NG ,	
5.	Others:	□ Pass	□ NG ,	
4 <u>⋅ B</u>	acklight Specification :			
1.	B/L Type:	□ Pass	□ NG ,	
2.	B/L Color:	□ Pass	□ NG ,	
3.	B/L Driving Voltage (Refer		□ Pass □ NG ,	
4.	B/L Driving Current:	□ Pass	□ NG ,	
5.	Brightness of B/L:		□ NG ,	
6.	B/L Solder Method:		□ NG ,	
7.	Others:	□ Pass	□ NG ,	

>> Go to page 2 <<

Ninst	ar Module Number: _		Page: 2
5 、	Electronic Characteristics	of Module:	
1.	Input Voltage:	□ Pass	□ NG ,
2.	Supply Current:	□ Pass	□ NG ,
3.	Driving Voltage for LCD:	□ Pass	□ NG ,
4.	Contrast for LCD:	□ Pass	□ NG ,
5.	B/L Driving Method:	□ Pass	□ NG ,
6.	Negative Voltage Output:	□ Pass	□ NG ,
7.	Interface Function:	□ Pass	□ NG ,
8.	LCD Uniformity:	□ Pass	□ NG ,
9.	ESD test:	□ Pass	□ NG ,
10.	Others:	□ Pass	□ NG ,
6 .	Summary :	4	
	signature:	— <u>(</u>)	Date: / /