▶ CAN 통신 등장 배경 및 특징

▶ CAN 통신 등장 배경 및 특징

▶ CAN 통신 등장 배경 및 특징

CAN통신은 버스형 토폴로지

가운데 공통으로 두고 다 같이 쓰는 선을 "버스" 라고 부른다. 그래서 버스형 토폴로지 라고 부른다

모든 메시지는 브로드캐스트 방식으로 송신

Made by 존버매니아

CAN 7 4 F

CAN통신은 버스형 토폴로지

이번 강의 요약

2가닥의 wire를 사용한다 CAN High, CAN Low

D-Sub 9 pin connector를 이용한다 2번 pin – CAN Low 7번 pin – CAN High

120옴 저항

-> 반사파에 의한 신호왜곡 방지

빨간선 : CAN High

녹색선 : CAN Low

120옴 저항 커넥터

CAN High, CAN Low 신호

Data 0을 표현 = Dominant Data 1을 표현 = Recessive

※ Dominant가 Recessive보다 우선순위가 높다

- CAN 에서는 CAN High, CAN Low 간의 전압 차를 이용하여 데이터를 표현한다.
- CAN High CAN Low 값이 0.9~5 볼투우 0을 표현
- CAN High CAN Low 값이 -0.1~0.5 볼트 = 1을 표현

CAN High, CAN Low 신호

전압 차를 이용한 방법의 장점 : Noise에 강하다!

이번 강의 요약

캔 버스 양 끝단에 120옴의 저항이 필요하다. 혹시 통신이 정상적으로 안된다면 체크해보자.

캔에서는 데이터를 표현할 때 CAN High, CAN Low 의 전압차를 이용하여 표현한다. 캔에서는 데이터 0을 Dominant, 데이터 1을 Recessive라고 표현한다. 캔에서는 Dominant가 Recessive보다 우선순위가 높다.

CAN Tranceiver (Transmitter + Receiver) ` 그리고 CAN Controller

peripheral

그림출처: 위키피디아

Bus

CAN High, CAN Low 신호

Data 0을 표현 = Dominant Data 1을 표현 = Recessive

※ Dominant가 Recessive보다 우선순위가 높다

- CAN 에서는 CAN High, CAN Low 간의 전압 차를 이용하여 데이터를 표현한다.
- CAN High CAN Low 값이 0.9~5 볼투우 0을 표현
- CAN High CAN Low 값이 -0.1~0.5 볼트 = 1을 표현

이번 강의 요약

각각의 제어기 안에는 일종의 작은 컴퓨터인 MCU 가 있다.

MCU 내부에는 각종 peripheral들이 있고, 그 중에 CAN 통신과 관련된 역할을 하는 CAN Controller 라는 periphera이 있다.

CAN Controller가 송신하는 데이터는 CAN TX 핀을 통해서 캔 트랜시버에게 전달된다. CAN Tranceiver는 캔 컨트롤러로부터 정보를 받아서 CAN High, CAN Low 핀으로 실제 '전압' 을 출력하는 역할을 한다.

반대로 다른 제어기가 메세지를 전송하면 CAN High, CAN Low의 전압값을 읽어서 비트로 해석하여 캔 컨트롤러에게 전달해준다. (CAN RX 핀)

캔 컨트롤러 : 메세지에 담기는 값과 관련 (Data Link Layer라고 함) 트랜시버 : 실제로 전선에 출력되는 전압과 관련 (Physical Layer라고 함)

실제 CAN 트랜시버 데이터시트 살펴보기!

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Table 6. Fill description		
Symbol	Rin	Description
TXD	1	transmit data input
GND[1]	2	ground supply
V _{cc}	3	transceiver supply voltage
RXD	4	receive data output; reads out data from the bus lines
V _{IO}	5	supply voltage for I/O level adaptor
EN	6	enable control input
INH	7	inhibit output for switching external voltage regulators
ERR_N	8	error and power-on indication output (active LOW)
WAKE	9	local wake-up input
V _{BAT}	10	battery supply voltage
SPLIT	11	common-mode stabilization output
CANL	12	LOW-level CAN bus line
CANH	13	HIGH-level CAN bus line
STB_N	14	standby control input (active LOW)

Diagram (실제로는 회로도 봐야함)

12.1 Application diagram

통신속도 Baud Rate

Made by Ethilli

- Baud Rate : 통신속도

- 단위 : bps (bit per second)

- 버스에 참여하고 있는 제어기들은 모두 같은 baud Rate으로 통신해야 한다.

상용차 바디편의제어 개발

D-10

2022-08-08 09:00 ~ 2022-08-21 23:59

[조직소개

우리 조직은 상용차에 들어가는 바디편의제어기를 개발/설계/양산적용하고 있습니다. 자율주행을 포함하여 차량제어 역량 및 차량개발 주도권 확보 등 중장기적인 전략을 고려하여 바디편의제어기의 미래를 준비합니다.

[함께하고 싶은 사람]

- 차량제어기 사양검토/개발, 아키텍처 설계 및 직접개발/양산 경험 보유자, 차량제어기 전체 프로세스 유경험자
- 긍정적이고 동료들과 잘 어울리며 협업을 수행할 수 있는 분

- ·상용 바디편의제어기(BCM/스마트키/디지털키) 요구사양 개발 및 아키텍처 설계
- ·상용 바디편의제어기(BCM/스마트키/디지털키) S/W 개발 및 검증
- · MATLAB/SIMULINK 활용, 바디편의제어기 모델개발/통합 및 검증

[바디편의제어기 모델개발/검증]

- 바디편의제어기 사양서 기반, 매트랩코딩/시뮬링크모델링 및 단위모델 검증

[바디편의제어기 사양개발]

- 바디편의제어기 요구사항 상세분석, 스펙관리, 기능사양서 작성

[바디편의제어기 사양 검토/배포]

- 차량인터페이스/EOL(End Of Line)/진단/SWP(SW-Platform)/CAN-DB/SCR(Specification Change Request) 발행

모빌리티 샤시시스템 통합제어

D-10

2-08-08 09:00 🛪 2022-08-21 23:59

[] 조직소개

미래 모델리티(PBV, 자율배송 모빌리티, 마이크로 모빌리티 등)에 적용되는 샤시 시스템을 선행 개발하고 이를 제어하는 시스템과 알고리즘을 개발합니다. 또한 다양한 신기술을 통합한 모빌리티 컨셉과 패키지를 기획하고 구체화하여 개발 검증합니다.

[함께하고 싶은 사람]

- 긍정적이며, 진취적(오픈 마인드)으로 일하는 사람
- 제동, 조향, 현가, 구동 제어 알고리즘 개발 경력이 있고 해당 업무에 대한 이해도가 높은 사람
- 스스로 일을 찾아서 과제를 구성하여 수행할 수 있고 통합 제어 엔지니어로서 시스템 엔지니어/외부 업체와 협업하여 이슈를 조율하고 문제를 해결할 수 있는 역량을 가진 사람

□ 직무상세

- · 모빌리티 컨셉 기획 및 추진 : PBV, 도심형 자율 배송 모빌리티, 마이크로 모빌리티, 서비스 모빌리티 등 신 모빌리티 컨셉 기획 추진
- \cdot Simulink를 이용하여 샤시 부품 및 샤시/구동 통합 시스템의 제어 알고리즘을 개발하고, 개발한 제어 알고리즘의 검증 (MILS/SILS/HILS/VILS/실차평가)을 통해 성능을 평가함
- : 모빌리티의 샤시/구동의 통합 제어 알고리즘 개발 및 시스템 요소 제어 기술의 선행 개발

[모빌리티 컨셉 기획]

- 당사 내부 모빌리티 비즈니스 모델. 디바이스 계획 및 외부 모빌리티 트렌드에 걸맞는 미래 신기숨 개발을 위한 모빌리티 컨셉 기획
- 모빌리티 제작 개발안 수립 및 추진

[모빌리티 통합제어 알고리즘 개발]

- Simulink를 이용한 샤시(제동,조향,현가 등) 및 구동모터의 통합 제어를 통한 차량 거동 구현 알고리즘 개발
- 다축 독립조향 시스템의 차량 동역학 기반 조향 알고리즘 개발
- 구동 및 제동 제어를 이용한 토크 벡터링 알고리즘 개발
- 통합 제어 CAN 통신 사양 개발

전자제어랩

모집단	위 수행직무	자격요건	근무지
BDC 시스템	. 차량 바디전자제어기(BDC) 시스템 개발 - 바디전자제어 시스템 사양 설계 및 제품 연 개발 (시스템 개발) - 요구사양 분석 및 SW 사양 개발 - 프로젝트 관리 및 이슈 분석 . 바디제어분야 신기술 사양 개발 - UWB/BLE 통신 핸드폰 위치 측위 로직 7	. Matlab Simulink Tool 사용 능력 보유자 [우대] . 차량 바디전자제어제품 시스템 개발 경험자	
CU 스템설계 Gentral ommunication nit)	. 고속 차량용 네트웍 게이트웨이 제품 개발 - CAN/Ethernet 기반 네트웍 제품 개발 - 고객 요구사항 기반 시스템 요구사항 분석 - 시스템 아키텍처 가이드 및 설계 - 개발 프로젝트 및 이슈 관리 - SW 배포 관리	[필수] . 전자공학/컴퓨터/산업공학 전공자 . 기본적인 HW/SW 설계 능력 보유자 [우대] . 차량용 제품 개발 프로세스 경험자 . 상업용 제품 Project 및 FAE 경험자	경기용인
	. IVI 제품 자동화 평가 환경 개별 . 시뮬레이터 및 테스트 어플리카 . 웹기반 통합 툴 개발		자

IVI 자동화평가 . 웹기반 통합 툴 개발

. 개발/양산 평가 분석 및 자동화 개선

. IVI 제품 자동화 평가

[우대]

. SW 개발 및 C, C++, Python 개발 경험자

. Test App 개발 경험자

. 딥러닝 기반 이미지/영상 인식 경험자

. 차량 네트워크(CAN,차량이더넷) 기술 경험자 경기 용인 - Baud Rate : 통신속도

- 단위 : bps (bit per second)

- 버스에 참여하고 있는 제어기들은 모두 같은 baudRate으로 통신해야 한다.

프로토콜	최대 속도
Low-Speed CAN (Fault-Tolerant)	~125kbps
High-Speed CAN	~1Mbps
CAN FD (CAN with Fast Data-Rate)	~8Mbps

- Baud Rate : 통신속도

- 단위 : bps (bit per second)

- 버스에 참여하고 있는 제어기들은 모두 같은 baudRate으로 통신해야 한다.

프로토콜	최대 길이
1Mbps	40m
500kbps	100m
125Kbps	500m

Sampling Point & Synchronization

Sample Point : 하나의 비트 값이 0인지 1인지 판단하는 지점을 의미 . 단위는 % 이다.

- 이것도 OEM 에서 Spec으로 정해준다.
- Sampling Point에 따라서 똑같은 Baud rate이라도
 Can Controller SW 구현 할때 셋팅하는 값이 달라진다.
- CAN Simulation 장비 사용할 때 Baud Rate과 함께 Sampling Point도 셋팅해서 사용해야 함

Sampling Point & Synchronization

Sample Point : 하나의 비트 값이 0인지 1인지 판단하는 지점을 의미. 단위는 % 이다.

CAN Controller로 제공되는 클락속도에 따라 Time qunta 라는 것이 계산된다. time qunta : 1 / CAN Clock

CAN에서는 1 bit를 아래 그림처럼 Sync, TSEG_1,TSEG2 3개의 구간으로 분류한다.

TSEG1, TSEG2 의 길이를 세는 단위는 Time Qunta이다.

CAN Clock의 속도를 얼마로 할 건지 까지도 OEM에서 정해주기도 한다.

Sampling Point & Synchronization

TSEG1, TSEG2의 역할 설몇 및 SJW 에 대하여 **X** SJW : Synchronization Jump Width. Nominal Bit Time Phase 1 previous bit Prop Phase 2 next bit (Sync Sample Point Time Quanta

An example CAN bit timing with 10 time quanta per bit.

Tseg1. 클락 속도가 빠를 때

Tseg2. 클락 속도가 느릴 때

이번 강의 요약

CAN 통신 속도를 Baud Rate이라고 한다. 단위는 bps이다.

해당 네트워크에 참여하는 모든 제어기들은 모드 통일된 Baud Rate을 사용해야한다.

Baud Rate을 얼마로 할 건지는 OEM(완성차회사)에서 지정하여 CAN DB에 나타낸다.

캔 프로토콜은 크게 Low—Speed CAN, High Speed CAN, CAN FD 3가지 종류로 나뉘며 각 프로토콜 별로 최대속도의 차이가 있다.

물리적인 버스(전선)의 최대길이에 따라 최대속도에 한계가 있다.

Sampling Point 라는 것이 있다. 단위는 % 이다. 이것도 OEM에서 몇 %로 해야하는지 정해준다.

하나의 bit는 Sync, Tseg1,Tseg2 라는 것으로 나뉘고 이것들은 모두 여러 개의 time qunta로 구성됨 Tseg1, Tseg2의 값을 적절하게 정함으로써 샘플링 포인트 값을 조절할 수 있음. Tseg1, Tseg2 얼마로 할지도 제조사에서 정해주기도 함