

Moving Optics

- Velocity selector
- Disk Chopper
- Fermi Chopper

Not optics that move... but

...optics with moving parts

Moving Optics

I.e. we can't do:

So what can we do?

Moving Optics

I.e. we can't do:

```
COMPONENT something = Sometype(
          par1=value1, par2=value2, ....)
AT( f_x(t), f_y(t), f_z(t) )RELATIVE someother
```

So what can we do?

Instead, we operate internally in the component on the neutron state, e.g. "rotate" the neutron etc.

DISK CHOPPER

Define time structure of the beam

Time Of Flight (TOF) measurements

HighNess McStas 2021 **HighNESS** Virtual **McStas** School

Disk Chopper

Disk Chopper

Input parameters

Parameters in **boldface** are required; the others are optional.

Name	Unit	Description	Default
theta_0	deg Angular width of the slits.		0
radius	m	Radius of the disc	0.5
yheight	m	Slit height (if = 0, equal to radius). Auto centering of beam at half height.	
nu	algebraic sign defines the direction of rotation	[Hz] Frequency of the Chopper, omega=2*PI*nu	
nslit	1	Number of slits, regularly arranged around the disk	3
jitter	s	Jitter in the time phase	0
delay	s	Time 'delay'	0
isfirst	it then spreads the neutron time distribution	[0/1] Set it to 1 for the first chopper position in a cw source	0
n_pulse	Only if isfirst	[1] Number of pulses	1
abs_out	0/1	Absorb neutrons hitting outside of chopper radius?	1
phase	overrides delay	[deg] Angular 'delay'	0
xwidth	m	Horizontal slit width opening at beam center	0
verbose	1	Set to 1 to display Disk chopper configuration	0

HighNess McStas DTU 9 2021 **HighNESS** Virtual **McStas** School

Disk Chopper

Disk Chopper

Let's do an exercise on this – head on over to github and find it there:

https://github.com/McStasMcXtrace/Schools/blob/master/ISIS_April_2021/Tuesday_April_13th/4_Choppers_and_other_rotating_optics/README.md

HighNess McStas 2021 **HighNESS** Virtual **McStas** School

Fermi Chopper

_

Select the neutron energy you want

HighNess McStas 2021 **HighNESS** Virtual **McStas** School

Velocity Selectors

'broad' monochromatization $\delta \lambda/\lambda$ ≈ 10 %

2021 HighNESS McStas school

Velocity Selector

Input parameters

Parameters in **boldface** are required; the others are optional.

Name	Unit	Description		Default
xwidth	m	Width of entry aperture		0.03
yheight	m	Height of entry aperture	ー housing	0.05
zdepth	m	Distance between apertures, for housing containing the rotor		0.30
radius	m	Height from aperture centre to rotation axis		0.12
alpha	deg	Twist angle along the cylinder		48.298
length	less than zdepth	th [m] Length of cylinder/rotor		
d	m	Thickness of blades		0.0004
nu	Hz	Cylinder rotation speed, counter-clockwise, which is ideally 3956*alpha*DEG2RAD/2/PI/lambda/length		300
nslit	1	Number of Soller blades		72

Velocity Selectors

Let's do an exercise on this also:

Go to the same place on github you were before and do the second Task:

https://github.com/McStasMcXtrace/Schools/blob/master/ISIS_April_2021/Tuesday_April_13th/4_Choppers_and_other_rotating_optics/README.md