SESA3029 Aerothermodynamics

Lecture 5.1
Conduction heat transfer

Figure: NASA Artist's impression

SESA3029: Lecture structure and background reading for heat transfer

Lecture	Topic	Bergman et al., 7th ed. Incropera et al., 8th ed.	Anderson, Comput. Fluid Dynamics, 1995	Online tests
5.1	Conduction heat transfer	1.2.1, 2.1, 3.1		
5.2	Convective heat transfer	1.2.2, 6.1		
5.3	Turbulent flow, Reynolds' analogy	6.3, 6.5, 7.2		
5.4	Radiation heat transfer	1.2.3, 12.1, 12.2		
5.5	Heat diffusion eq., 1D finite differences	2.3, 2.4, 4.4	4.2	
5.6	Transient 1D finite differences	5.3, 5.10	4.3, 4.4	#4 - 12/12/23
5.7	2D finite differences	4.4, 4.5		5.1 - 5.6
5.8	Heat exchangers -log-mean method	11.2, 11.3		
5.9	Heat exchangers -NTU method	11.4		
Tutorial	Test#4 Q&A, heat exchanger examples	11.5, 8.6		
Revision 3	12/1/24, Exam problems for 5		#5 - 9/1/24, 5.7 - 5.9 #6 - 11/1/24, 5.8 - 5.9	

Textbooks:

Bergman, Lavine, Incropera, Dewitt. Fundamentals of heat and mass transfer. 7th edition. Wiley & Sons, 2011. Incropera, Dewitt, Bergman, Lavine. Principles of heat and mass transfer. 8th edition. Wiley & Sons, 2017. Anderson. Computational Fluid Dynamics. McGraw-Hill, 1995.

Convective heat transfer

Heat transfer rate were come to the second s

$$\dot{Q}$$
 (W=J/s) $\dot{q} = \frac{\dot{Q}}{A}$ (W/m²)

The heat transfer rate is driven by temperature differences:

- conduction heat transfer is the transfer of energy through a stationary medium e.g. in solids the vibration of molecules and in fluids additionally by molecular motions and collisions
- radiation heat transfer is the transfer of energy by disorganised photon emission

We also talk about **convective heat transfer** (really the convection of internal energy in a fluid) as the method by which the surface temperature (or heat transfer rate) under a moving fluid is obtained

and region in

graphical error Q Conduction rate in a solid

Should be zero for equal temperatures and a reasonable model is that it is proportional to T_A - T_B

Also expected to be proportional to A, inversely proportional to rod length L and dependent on properties of the rod, so simplest model is:

Finally yell $\dot{Q} = \frac{kA}{L}(T_A - T_B)$

$$\dot{Q} = \frac{\kappa A}{L} (T_A - T_B)$$

$$\dot{Q} = \frac{kA}{L} (T_A - T_B)$$

By shrinking the bar and the size of the temperature, difference we can also write a differential form

$$\dot{q} = -k \frac{\mathrm{d}T}{\mathrm{d}x}$$

This is **Fourier's law** of heat conduction

k is called the thermal conductivity, with units W/(mK)

3D vector/tensor generalisation
$$\dot{\mathbf{q}} = -k\nabla T$$
 $\dot{q}_i = -k\frac{\partial T}{\partial x_i}$

TA STO negotive gudiant

Electrical resistance analogy

$$\dot{Q} = \frac{kA}{L} (T_A - T_B) \qquad I = \frac{V}{R}$$

$$\uparrow \qquad \uparrow \qquad \lor$$

Heat transfer rate ~ current temperature ~ voltage

$$I = \frac{V}{R}$$

$$R = \frac{L}{kA}$$

$$R = \frac{L}{kA}$$

$$R = \frac{L}{kA}$$

$$R = \frac{L}{kA}$$

 $-R_1+R_2$ $-R_1+R_2$ R_1 R_1 series

Example: insulated plane block

C

3cm

7-14

В

10 cm

$$\dot{Q}$$

$$T_{1} = 150 \,^{\circ}C$$

$$T_{4} = 10 \,^{\circ}C$$

$$k_{A} = k_{C} = 0.048 \,\text{W/(mK)}$$

$$k_{B} = 0.69 \,\text{W/(mK)}$$

$$R_{12} = R_{34} = \frac{\kappa_{12}}{\kappa_{12}A}$$

$$R_{14} = 2R_{12} + R_{23}$$

$$\dot{Q}$$

Find:
$$\dot{q} = \frac{Q}{\Lambda}$$
, T_2 and T_3
$$i^{14} = A \left(\frac{2 \times 1}{k_A A} + \frac{2 \times 3}{k_B A} \right) \left(T_1 - T_4 \right)$$

Also, compare with the heat transfer rate for the hock along (with a 1.2)

block alone (without A and C)
$$\Delta T_{12} = \Delta T_{34} = 100.76\% + 2 = 87C$$

$$T_{3} = 72C$$
Then T_{1} and T_{4} can be fear.