

Introduction to complex networks

Networks are everywhere!!!

Social Networks:

- Facebook
- LinkedIn
- Instagram...

Transportation Networks:

- Metro
- Roads
- Planes...

Power Networks:

- Electricity Roads
- Planes...

Ecological Networks

The internet!

How can we generally describe this objects?

In general we can define a network as "a set of nodes connected by a set of links"

Basic definitions:

- Node
 - Type
- Link
 - Weight
 - Direction

- Node
 - Type
- Link
 - Weight
 - Direction

Basic definitions:

- Node
 - Туре
- Link
 - Weight
 - Direction

Basic definitions:

- Node
 - о Туре
- Link
 - Weight
 - Direction

- Node
 - Type
- Link
 - Weight
 - Direction

Vulnerability due to interconnectivity

Image 1.1
2003 North American Blackout

• Friendship recommendation in social networks

See also: Leaking privacy and shadow profiles in social networks

Political polarization and echo chambers

• Explaining the <u>small world effect</u>

• To play the <u>Bacon Game</u>:)

Link to the game

Representing a network:

- Adjacency Matrix (also edge lists)

b)		0	1	2	3	4	5	6	7	8
		Р	Q	R	S	T	W	Χ	Υ	Z
0	Р	0	0	1	0	0	1	0	0	0
1	Q	0	0	0	0	0	0	1	0	0
2	R	0	0	0	0	0	0	1	0	0
3	S	0	0	0	0	1	0	0	0	0
4	Т	0	0	0	0	0	1	0	0	0
5	W	0	0	0	1	0	0	0	1	0
6	X	0	0	0	0	0	0	0	0	0
7	Υ	0	0	1	0	0	0	0	0	1
8	Z	0	0	0	0	0	0	0	0	0

 Exercise: Write the adjacency matrix for the following networks:

Tomorrow we will explore some networks using Networkx