Структура и рабочий цикл процессора

- 1 Базовые структуры процессора (ПР).
 - 1.1 Структура с несколькими устройствами управления.
 - 1.2 Каноническая структура.
- 2 Процессор учебной ЭВМ.
 - 2.1 Архитектура.
 - 2.2 Структура.
 - 2.3 Рабочий цикл.
- 3 Процессор учебной ЭВМ с развитой системой адресации.
 - 3.1 Архитектура.
 - 3.2 Рабочий цикл.
 - 3.3 Микропрограммная реализация.

- Знать: две базовых структуры процессора: с несколькими устройствами управления и каноническую, их особенности достоинства и недостатки. Архитектуры, структуры и рабочие циклы простейших процессоров, выполняющих основные виды операций и использующих наиболее распространенные способы адресации операндов. Два направления реализации процессора: структурную и микропрограммную и их особенности.
- Уметь: для заданной архитектуры разработать структурную схему и микропрограмму командного цикла процессора.
- Помнить: о том, что для архитектуры существует максимально соответствующая ей структура.
- Литература: [1,14].

1 Базовые структуры процессора

1.1 Структура с несколькими устройствами управления

- Процессор (ПР) может состоять из нескольких устройств. В простейшем случае ПР состоит из двух устройств: центрального устройства управления (ЦУУ) и арифметико-логического устройства (АЛУ).
- ЦУУ осуществляет выборку всех команд. Кроме того, ЦУУ исполняет команды, если это команды не арифметико-логических операций. Если считанная команда содержит код арифметико-логической операции (АЛО), то ЦУУ обеспечивает выполнение этой операции в АЛУ.
- АЛУ выполняет АЛО над операндами предварительно помещенными в его внутренние регистры и формирует значения признаков в соответствии с результатами выполняемых операций.

- В соответствии с моделью дискретного преобразователя каждое из устройств (ЦУУ и АЛУ) может быть разделено на операционную часть (ОЧ ЦУУ и ОЧ АЛУ) и управляющую часть (управляющий автомат УА) (УА ЦУУ и УА АЛУ).
- В ОЧ АЛУ могут быть выделены регистры: второго операнда (RX), признаков (RP), аккумулятор (AC),
- В ОЧ ЦУУ могут быть выделены регистры: команд (RC), указателя стека (SP), базы (RB), индекса (RI), а также программный счетчик (PC).
- Процессор имеет следующие внешние шины: адреса (ША), данных (ШД) и управления (ШУ).
- В УА ЦУУ можно выделить специальный триггер пуска-останова (ТПО), установка которого означает запуск, а сброс останов УА ЦУУ.

Структура, ориентированная на использование нескольких устройств

Рабочий цикл ЦУУ

- Рабочему циклу ЦУУ предшествует подготовка (начальные установки установка PS, SP и т.п.).
- Рабочий цикл ЦУУ включает в себя следующие действия.
 - Выборку команды из памяти, формирование адреса следующей команды, дешифрацию КОП.
 - Выполнение операции, заданной в команде, если это не арифметико-логическая операция (АЛО).
 - Выборку операндов АЛО и загрузку их в регистры АЛУ (если это необходимо).
 - Передачу в АЛУ кода АЛО и запуск его на выполнение операции.
 - Запись в память результата АЛО (если это необходимо).
- Микропрограмму командного цикла (КЦ) в процессоре выполняет УА ЦУУ, находящийся на более высоком уровне управления, чем подчиненный ему УА АЛУ.

Микропрограммы работы ЦУУ и АЛУ

Взаимодействие ЦУУ и АЛУ в процессе выполнения команд

Выполнение команд АЛО

Совмещение во времени работы ЦУУ и АЛУ

Наличие в ПР двух устройств с собственными управляющими автоматами дает возможность организовать их параллельную работу и повысить быстродействие процессора.

1.2 Каноническая структура

- Каноническая структура процессора может быть получена из структуры, содержащей несколько устройств с собственными УА путем функциональной интеграции (ФИ).
- При ФИ происходит совмещение не используемых одновременно регистров в операционных частях всех устройств. Примерами совмещаемых регистров могут служить регистр второго операнда в АЛУ и регистр команд в ЦУУ.
- В результате ФИ управляющих автоматов получается единый управляющий автомат процессора обеспечивающий выполнение всех команд в едином операционном устройстве.

Структура с одним управляющим автоматом

Микропрограмма работы УА ПР

Достоинства канонической структуры

- Функциональная интеграция позволяет сократить объем аппаратуры ПР.
- При достаточном числе унифицированных регистров в ОУ и достаточном объёме памяти микропрограмм в УУ с программируемой логикой в такой структуре микропрограммно может быть реализована любая архитектура процессора.
- Использование данной структуры позволяет создавать процессоры с динамичной архитектурой, которые в процессе работы могут изменять свою архитектуру путём перезагрузки ОЗУ микропрограмм.

2 Процессор учебной **ЭВМ** 2.1 Архитектура

- <u>Форматы данных</u>. Данные представляются 16разрядным двоичным кодом, старший разряд которого определяет знак числа.
- Программистская структура.

	AC		Акку	
PS	RP	PZ	Реги	
	PC		Про	

Аккумулятор
Регистр признаков
Программный счетчик

• Система команд. Команда состоит содержит два поля: код операции К и адреса А (см. таблицу).

Наименование	Мнемо-	Описание	Признаки		
	ника		PZ	PS	
ВЫЧИТАНИЕ	SUB A	AC:=AC-M[A], PC:=PC+1	+	+	
ОЧИСТКА	CLM A	M[A]:=000, PC:=PC+1	_	_	
ЗАПИСЬ ЕДИНИЦ	MVC A	M[A]:=111, PC:=PC+1	_	_	
ЗАПИСЬ АС	MOV A	M[A]:=AC, PC:=PC+1	_	_	
ИНКРЕМЕНТ	INC A	M[A]:=M[A]+1, PC:=PC+1	_	_	
ЗАГРУЗКА АС	LDA A	AC:=M[A], PC:=PC+1	+	+	
НЕТ ОПЕРАЦИИ	NOP	PC:=PC+1	_	_	
ПЕРЕХОД	BR A	PC:=A	_	_	
ПЕРЕХОД, ЕСЛИ НУЛЬ	BEQ A	Если PZ=1, то PC:=A, иначе PC:=PC+1	_	_	
ПЕРЕХОД, ЕСЛИ МИНУС	BMI A	Если PS=1, то PC:=A, иначе PC:=PC+1	_	_	
ОСТАНОВ	HLT A	РС:=А, останов	_	_	

+ - установка, - - сохранение признака

2.2 Структура

- ПР, кроме программно-доступных регистров АС, РС, RP, содержит программно недоступные регистры. Это, например, регистр команд (RK) и регистры операндов (RY, RB), используемые для временного хранения команд и операндов в процессе работы ПР.
- Связи между регистрами ЭВМ и схемы преобразования данных определяются требуемыми пересылками и преобразованиями данных и команд.
- Структурная схема ЭВМ приведена ниже, где FS, FZ флаги соответственно "знака" и "нуля"; V1,V2,...,VN управляющие сигналы, вырабатываемые УУ при выполнении команды.
- Разряды PZ, PS регистра RP, устанавливаются после выполнения определенных команд, а состояния флагов FZ, FS изменяются после выполнения каждой МК в зависимости от результата операции в АЛУ.

Структурная схема процессора

2.3 Рабочий цикл

- Алгоритм работы ЭВМ представлен на рисунке ниже в виде укрупненной граф-схемы микропрограммы командного цикла, содержащей подмикропрограмму выборки команды (ВК) и подмикропрограммы заданных операций.
- Подготовка к циклу включает состояние ожидания сигнала пуска (установки специального флага: TST=1) и загрузку начального адреса программы (SA) в программный счетчик. В рассматриваемом примере командный цикл включает три этапа: выборку команды, дешифрацию кода операции и выполнение заданной операции.
- Выход из командного цикла производится при выполнении команды HLT.
- Граф-схемы подмикропрограмм, выделенных в микропрограмме командного цикла, приведены на рисунках далее, где PZS подмикропрограмма установки признаков PZ и PS в регистре признаков RP.

МП выборки команды и МП операций

Микропрограммы операций

МП установки признаков и МП операций условных переходов

PZS

3 Процессор учебной ЭВМ с развитой системой адресации 3.1 Архитектура

- <u>Форматы данных.</u> Данные представляются 16разрядным двоичным кодом, старший разряд которого определяет знак числа.
- <u>Программно-доступные регистры</u>. ЭВМ имеет девять программно-доступных регистров: шесть регистров общего назначения (r0-r5), программный счетчик PC (r6), регистр признаков RP (r7), содержащий разряды двух признаков: нуля (PZ) и знака (PS), а также регистр указателя стека rSP (r8).

Программистская структура

	15		0	
r0:				
r1:				
r2:				Регистры
r3:				назначения
r4:				
r5:				
r6:		PC		Программный счетчик
r7:	PS	RP	PZ	Регистр признаков
r8:		rSP		Регистр указателя стека

- <u>Система команд.</u> Разработка системы команд предполагает определение набора операций, способов адресаций, модификаций и форматов команд.
- Для рассматриваемого примера система команд ЭВМ приведена ниже в таблице. В таблице использованы следующие обозначения:
 - $-r,r^* \in \{r0,r1,...,r8\}$ программно-доступные регистры:
 - регистр r* является источником данных, а регистр r приемником результата, но может также служить источником второго операнда;
 - M[A] ячейка памяти с адресом A;
 - знак "+" в описании признаков означает, что устанавливается новое значение признака по результату выполнения команды, а знак "-" свидетельствует о сохранении старого значения признака.

Арифметические команды и команды пересылки

Наименование	Мнемоника	Описание	Приз	наки
			PZ	PS
СУММИРОВАНИЕ	ADD r r*	r:= r+r*, PC:=PC+1	+	+
ВЫЧИТАНИЕ	SUB r r*	r:= r-r*, PC:=PC+1	+	+
ДОБАВЛЕНИЕ С	AD r C	r:= r+C, PC:=PC+1	+	+
вычитание с	SB r C	r:= r-C, PC:=PC+1	+	+
ЧТЕНИЕ В РЕГИСТР	LD r A	r:= M[A], PC:=PC+1	_	_
ЗАПИСЬ РЕГИСТРА	MV r A	M[A]:= r, PC:=PC+1	_	
ЧТЕНИЕ В РЕГИСТР с индексацией	LDI r (r*)+	r:= M[r*], r*:= r*+1; PC:=PC+1	+	+

Команды управления и работы со стеком

Наименование	Мнемоника	Описание	PZ	PS
ЗАПИСЬ В СТЕК	PUSH r (rSP)-	M[rSP]:=r; rSP:=rSP-1, PC:=PC+1	_	_
ЧТЕНИЕ ИЗ СТЕКА	POP r (rSP)+	rSP:=rSP+1; r:=M[rSP], PC:=PC+1	_	
ПЕРЕХОД	BR A	PC:=A	_	
ПЕРЕХОД, ЕСЛИ НУЛЬ	BEQ A	Если PZ=1, то PC:=A, иначе PC:=PC+1	_	
ПЕРЕХОД, ЕСЛИ МИНУС	BMI A	Если PS=1, то PC:=A, иначе PC:=PC+1	_	
ОБРАЩЕНИЕ К ПОДПРОГРАММЕ	CALL (rSP)- A	M[rSP]:=PC; rSP:=rSP-1, PC:=A	_	_
ОСТАНОВ	HLT A	РС:=А, останов	_	_

Особенности системы команд

- Чтение данных в регистр возможно из ячейки памяти, адрес которой содержится в регистре (LDI r (r*)+), при этом номера регистров источника и приемника задаются в команде, а адрес после выполнения операции увеличивается на единицу.
- В командах чтения из стека (POP r (rSP)+) и записи в стек (PUSH r (rSP)-) содержимого регистра r в качестве накопителя стека используются область памяти, а указатель стека размещается в специальном регистре rSP.
- В систему команд включена команда обращения к подпрограмме (CALL (rSP)- A). Эта команда сохраняет содержимое программного счетчика в стеке и обеспечивает переход на начальный адрес подпрограммы (A). Функция команды возврата из подпрограммы может быть выполнена командой чтения из стека в программный счетчик.

Способы адресации

- — Прямая (абсолютная) в адресной части команды указан адрес ячейки памяти, к которой происходит обращение при выполнении команды. Применяется в командах: LD r A, MV r A (по второму адресу).
- — Непосредственная в адресной части команды содержится операнд, используемый при выполнении команды. Применяется в командах AD r C, SB r C (по второму адресу), а также в командах BR A, BEQ A, BMI A, HLT A, CALL (rSP)- A (по второму адресу), где в качестве операнда выступает адрес перехода A, над которым выполняется операция пересылки в регистр PC.
- — *Регистровая неявная* номер регистра в команде не указывается, а определяется кодом операции: BEQ A, BMI A, CALL (rSP)-, HLT A регистр PC.

Способы адресации (продолжение)

- Регистровая прямая в адресной части команды содержатся номера регистров: ADD r r*, SUB r r* (первый и второй адрес), AD r C, SB r C, LD r A, LDI r (r*)+, PUSH r (rSP)-, POP r (rSP)+, MV r A (первый адрес).
- — Регистровая косвенная автоинкрементная в адресной части команды указан номер регистра, содержащего адрес ячейки памяти, после обращения к которой в процессе выполнения команды содержимое регистра увеличивается на единицу (LDI r (r*)+, POP r (rSP)+ (второй адрес)).
- — Регистровая косвенная автодекрементная в адресной части команды указан номер регистра, содержащего адрес ячейки памяти, до обращения к которой в процессе выполнения команды содержимое регистра уменьшается на единицу (PUSH r (rSP)- (второй адрес), CALL (rSP)- А (первый адрес)).

Форматы команд

Φ

15 14...12 11...8 7...4 3...0

0 K1 r r*

ADD, SUB, LDI, PUSH, POP

0 K2 A

BR, BEQ, BMI, HLT

1 K3 r C AD, SB

1 K4 r A LD, MV, CALL

 Φ — поле признака формата команды; К1, К2, К3, К4 — поля кода операции; r, r* - номера регистров; А — адрес; С — непосредственный операнд.

3.2 Рабочий цикл

- Алгоритм работы ЭВМ представлен на рисунке ниже в виде укрупненной граф-схемы микропрограммы командного цикла, содержащие подмикропрограммы: выборки команды (ВК), анализа признака формата (Ф), дешифрации кода операции (для команд первого формата (Ф=0), заданных операций; дешифрации и выполнения команд (КФ1) второго формата (Ф=1),
- Подготовка к циклу включает состояние ожидания сигнала пуска (установки специального флага TST=1) и загрузку начального адреса программы (SA) в программный счетчик.
- Командный цикл для команд первого формата (Ф=0) включает три этапа: выборку команды, дешифрацию кода операции и выполнение заданной операции.
- Команды второго формата выполняются за четыре этапа, так как добавляется еще этап распаковки команд (подмикропрограмма РК).
- Выход из командного цикла производится при выполнении команды HLT.

Микропрограмма командного цикла

Микропрограмма дешифрации и выполнения команд формата 1

РК – распаковка команд.

3.3 Микропрограммная реализация ЭВМ *Структура ЭВМ*

- ЭВМ может быть реализована микропрограммно с использованием аппаратных средств микропрограммируемого микропроцессора. Структура необходимых аппаратных средств показана ниже на рисунке.
- Микропрограммная реализация ЭВМ включает:
 - распределение внутренних регистров микропроцессора,
 - разработку и кодирование подмикропрограмм командного цикла,
 - распределение памяти микропрограмм.

Регистры ЭВМ

- Распределение внутренних регистров микропроцессора показано далее на рисунке.
- Кроме девяти программно-доступных регистров r0r8 в состав ЭВМ входят пять программнонедоступных регистров (два для команды, и по одному для константы, счетчика адреса ЗУ, операнда Y).
- Программно-доступные регистры отображаются на регистры (R0-R8), а программно-недоступным регистрам соответствуют регистры R13-R15 и RQ операционного устройства микропроцессора.
- Кроме того, дополнительными программнонедоступными регистрами являются регистр адреса ЗУ (RA) и регистр команд (RK).

Распределение внутренних регистров

		Р3У	(R0-R7))	_	РЗУ (R8-R15)
0:	r0				8:	r8 (SP)
1:	r1				9:	
2:	r2				10:	
3:	r3				11:	
4:	r4				12:	
5:	r5				13:	Буферный регистр команд
6:	r6 (F	PC)			14:	Регистр константы
7:	PS	r7 ((RP)	PZ	15:	Счетчик адреса ЗУ
RA:	Адр	ес ЗУ			RQ:	Регистр Ү
RK:	Реги	істр кол	манд			

Дешифрация кода операции

Мнемоника	Код операции	Адрес первой МК
ADD	01	1F
SUB	02	1E
AD	9	20
SB	A	21
LD	В	1A
MV	С	1C
LDI	10	22
PUSH	03	26
POP	04	2B
BR	05	32
BEQ	06	31
BMI	07	33
CALL	8	36
HLT	00	35

Принятая настройка схемы выбора адреса (СВА)

MS1 (управляю щий вход СВА)	А (адресный вход РЗУ)	(уг. щі	IS2 правляю ий вход CBA)	В (адресный вход РЗУ)
0	PMK[A]		0	PMK[B]
1	PK[3:0]		1	PK[7:4]

Вкладка "Настройки"

Фрагмент микропрограммы КЦ

N₂	МИ	P 3	y	Упј	p. A.	ЛУ	Упр. ОЗУ Ш		Шина	МИ	Упр. усл.		сл.	Упр. УУ		y	Упр. РК		РК	
M	I8-0	A	В	C0		S				D11-0	I3-0	A	U	ŌE	C0		ŌE	M	L	ŌE
К						C														
00	571	E	E	0	0	00	1	1	1	006	C	000	0	0	1	1	0	00	1	1
RE:=	RE:=0111111111111; РА/СЦ:=6																			
01	533	0	E	0	0	00	1	1	1	001	9	000	0	0	1	1	0	00	1	1
RE –	сдвиг	впр	аво	; PA /(СЦ:=	=PA/C	СЦ-1													
02	143	0	6	0	0	00	1	1	0	000	E	000	0	0	1	1	0	00	1	1
RA:=	=0								-											
03	337	0	6	0	1	00	0	1	0	000	E	000	0	0	1	1	0	00	1	1
R6: =	SA (PO	C:=S	SA)																	
04	203	6	6	1	0	00	1	1	0	000	E	000	0	0	1	1	0	00	1	1
RA:=	R6; R6	5:=R	26 +1	1 (RA	:=P(C; PC	:=PC-	+1)												
05	337	0	C	0	1	00	0	1	1	007	3	001	1	0	1	1	0	00	0	1
RK:=	RK:=K; RC:=K																			
06	345	E	F	0	1	00	1	1	1	000	2	000	0	0	1	1	0	00	1	0
RF:=	K[A]	П	epe	ход п	о КС	ЭΠ														