- (*) Bleaching defined as the **decrease** in zooxanthellae density **regardless of level of whitening**. However [2] stated that most *Montastrea* species start to look tan or white when the densities of the zooxanthellae fall bellow 0.5×10^6 cell/cm²
- (**) There are no measurements of the same coral colony before bleaching, so the reference for unbleached corals is unbleached corals at proximity or in other locations (sometimes measured at different time of the year) or healthy corals. (***) Measurement of temperature prior bleaching: it's sometime annual mean, sometime experimental control. MMMax stands for Mean of Monthly Maximum (which is used as a reference for the conventional way of measuring thermal stress: DHW, DHM), it was not always given in the papers, so unless stated, we provide the value that could be used for this measure (it is chosen within the reported ranges and/or for which zooxanthellae density were measured, the reference symbiont density should be changed accordingly).

Bleached Corals (*) Compared to unbleached Corals

E.g. Symb density Symb density Pre-bl T ("C) Symb density Symb de	bleached Corais (*)		Compared to unbleached			
Visual signs of bleaching 0.26 x 10° (derropora) 0.26 x 10° (derropora) 0.26 x 10° (derropora) 0.17 x 10° (Pocillapora) 0.27 x 10° (Pocillapora) 0.20 x 10° (Acropora) 0.20 x	e.g. Symb density	Bleaching T (°C)	Symb. density	Pre-bl T (°C)	Methods	Reference
10.26 10 (Acropora 0.17 x 10 \(^2\) (Pociliogora) 10 10 10 10 10 10 10 1				(***)		
10.26 10 (Acropora 0.17 x 10 (Acropora 0.	Visual signs of bleaching	308 (monthly mean in	Visual signs of bleaching	28 6 (26 9 29 8)	In situ ecological	[1] (**)
No visual signs of bleaching Signs S					_	
0.7 x 10 ⁶ (Acropora) (cell/cm²) 1.5 x 10 ⁶ (Acropora) (cell/cm²) (1.2 m depth) (1.5 x 10 ⁶ (M. annularis) Around July every year 1.5 x 10 ⁶ (M. annularis) Around July every year 1.5 x 10 ⁶ (M. annularis) Around July every year 1.5 x 10 ⁶ (M. annularis) Around July every year 1.5 x 10 ⁶ (M. annularis) Around July every year 1.5 x 10 ⁶ (M. annularis) Around July every year 1.5 x 10 ⁶ (M. annularis) Around July every year 1.5 x 10 ⁶ (M. annularis) Around July every year) 1.5 x 10 ⁶ (M. annularis) Around July eve						
January 2007 Low densities (Fig. 1) 30 - 31 100 (Acropora C) 30 - 31 (1-2 m depth) 1.5 x 10° (Acropora C) 2.5 x 10° (M. Faveolata) 3.5 x						
Coll Compared to Coll				WIWIMAX ≈ 29.0		
Low densities [Fig. 1] (1-2 m depth) 1.5 x 10° (Karepora P.) 2.5 x 10° (M. Faveolata) 2.5 x 10° (M. Faveolata) 3.5 x 10° (M. annularis) 3.5 x 1						
(1-2 m depth) (5 x 10° (Acropora C) (5 x 10° (M Faveolata) 1.5 x 10° (Acropora C) (5 x 10° (M Faveolata) 1.5 x 10° (M Faveola	7 ,	annual mean)	,		, ,	China Sea
(1-2 m depth) (30 - 32		26 - 27	3-4 years (1995-	[2]
1.5 x 10 ⁶ (Acropora P.) of the form Fig. 0.5 to the mean around 1 x 10 ⁶ (M. Paveolata) 1 x		(1-2 m depth)		(1-2 m depth)	1999) In situ	
0.9 x 106 (Acropora C.) 2.5 x 106 (M. Faveolata) 1.5 x 106 (M. Faveola	1.5 x 10 ⁶ (Acropora P.)	(My estimations from Fig.	3.5 x 10 ⁶ (Acropora P.)	(My estimations from Fig 6,		
2.5 x 10° (M. Faveolata) 1 x 10° (M. annularis) Around July every year Low densities (Fig. 1) (3-4 m depth) 2 x 10° (M. Faveolata) 1 x 10° (M. annularis) Around July every year 30 - 31 (3-4 m depth) 2 x 10° (M. Faveolata) 1 x 10° (M. annularis) Around July every year 30 - 31 (3-4 m depth) (4-4 m depth) (5-5 m depth) (5-5 m depth) (13 m depth) (15 m depth)	0.9 x 10 ⁶ (Acropora C.)		1.5 x 10 ⁶ (Acropora C.)			
3.5 x 106 (M. annularis) Around July every year Around July every year Around January every year Around July every year Around January every every Around J	2.5 x 10 ⁶ (<i>M. Faveolata</i>)	July every year)	5 x 10 ⁶ (M. Faveolata)	=	_	Florida
Around January every year				,	_	
Low densities (Fig. 1) (3.4 m depth) (3.4 m depth) (3.4 m depth) (3.4 m depth) (5 x 106 (M. Faveolata) (3.4 m depth) (4 x 106 (M. Faveolata) (5 x				MMMax ≈ 29		
Low densities (Fig. 1) (3-4 m depth) (5 x 10 ⁶ (M. Faveolata) 1 x 10 ⁶ (M. annularis) (4 capta) (13 m depth) (15 x 10 ⁶ (M. annularis) (13 m depth) (15 x 10 ⁶ (M. annularis) (13 m depth) (15 x 10 ⁶ (M. annularis) (13 m depth) (15 x 10 ⁶ (M. annularis) (13 m depth) (15 x 10 ⁶ (M. faveolata) (15	Around July every year		Around January every year			Carry
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
(3-4 m depth) (2 x 106 (M. Faveolata) 1 x 106 (M. Annularis) Around July every year Low densities (Fig. 1) (13 m depth) (13 m depth) (2 x 106 (M. Faveolata) 1 x 106 (M. Faveolata) 2 x 106 (M. Faveolata) 3 x 106 (M. Faveolata) 2 x 106 (M. Faveolata) 3 x 106 (M. Faveolata) 4 x 106 (M. Faveolata) 5 x 106 (M. Faveolata) 2 x 106 (M. Faveolata) 3 x 106 (M. Faveolata) 4 x 106 (M. Faveolata) 5 x 106 (M. Faveolata) 4 x 106 (M. Faveolata) 5 x 106 (M. Faveolata) 4 x 106 (M. Faveolata) 5 x 106 (M. Faveolata) 4 x 106 (M. Faveolata) 4 x 106 (M. Faveolata) 5 x 106 (M. Faveolata) 4 x 106 (M. Faveolata) 5 x 106 (M. Faveolata) 6 x 106 (M. Faveolata) 1 x 106 (M. Faveolata) 4 x 106 (M. Faveolata) 5 x 106 (M. Faveolata) 6 x 106 (M. Faveolata) 6 x 106 (M. Faveolata) 7 x 106 (M. Faveolata) 8 x 106 (M. Faveolata) 9 x 106 (M. Faveolata)					same colony)	
2 x 106 (M. Faveolata) 1 x 106 (M. annularis) Around July every year Low densities (Fig. 1) 1 (13 m depth) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (M. annularis) Around July every year Low densities (Fig. 1) 1 (13 m depth) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 2 x 106 (M. Faveolata) 3 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 3 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 3 x 106 (Acropora C.) 3 x 106 (Ac						[2]
1 x 10 ⁶ (M. annularis) Around July every year Low densities (Fig. 1)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		*			
Around July every year Low densities (Fig. 1) (13 m depth) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1.5 x 106 (M. Faveolata) 1.5 x 106 (M. annularis) Around July every year M. annularis [3] 1 100% minus 86% Agaricia lamarcki [3] 100% minus 57% $+ 0.5 - 1.0$ warmer than unbleached corals (inferred from difference in δ^{18} 0) [3] $- 0.394 \times 10^6$ (S. pistillata) 1.31 x 106 (S. pistillata) 1.32 x 106 (S. pistillata) 1.5 x 106 (S. pistillata) 1		6, of the mean around	3 x 10 ⁶ (M. annularis	_		
Low densities (Fig. 1) (13 m depth) 1 x 106 (Acropora C.) 2 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1.5 x 106 (M. Faveolata) 1.5 x 106 (M. annularis) Around July every year M. annularis [3] 1 100% minus 86% Agaricia lamarcki [3] 100% minus 57% Annularis [4] (tab 1) Light 0.2-0.4 x 106 med. 0.6-0.7 x 106 M. annularis [4] (tab 1) Light 0.2-0.4 x 106 med. 0.6-0.7 x 106 M. annularis [4] (s. pistillata) 0.2 x 106 (S. pistillata) 0.2 x 106 (S. pistillata) 0.2 x 106 (S. pistillata) 1.5 x 106 (S. pistillata) 1	Around July every year	July every year)	Around January every year	between 1995-1999)		
(13 m depth) 1 x 106 (Acropora C.) 2 x 106 (M. Faveolata) 1.5 x 106 (M. Gaveolata) 1.5 x 106 (M. Faveolata) 2 x 106 (M. Gaveolata) 2 x 106 (M. Gaveolata) 1.5 x 106 (M. Faveolata) 2 x 106 (M. Gaveolata) 3 x 106 (M. Faveolata) 3 x 106 (M. Gaveolata) 4 x 106 (M. Gave						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						[2]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				the 2 previous rows		
2 x 106 (M. Faveolata) 1.5 x 106 (M. annularis) Around July every year M. annularis [3] 100% minus 86% Agaricia lamarcki [3] 100% minus 57% M. annularis [4] (tab 1) Light 0.2-0.4 x 106 med. 0.6-0.7 x 106 Analysis (Bleached) 0.131 x 106 (S. pistillata) 0.394 x 106 (S. pistillata) 0.46 x 106 (S. pistillata) 0.2 x 106 (S. pistillata) 0.2 x 106 (M. Faveolata) 2 x 106 (M. faveolata) 3 2 1.5 x 106 (S. pistillata) 3 3 3 1.5 x 106 (S. pistillata) 3 1.5 x 106 (S. pistillat		1 0				
1.5 x 106 (M. annularis) Around July every year M. annularis [3] 100% minus 86% Agaricia lamarcki [3] 100% minus 57% M. annularis [4] (tab 1) Light 0.2-0.4 x 106 med. 0.6-0.7 x 106 Analysis (Bleached) 0.131 x 106 (S. pistillata) 0.394 x 106 (S. pistillata) 0.46 x 106 (S. pistillata) 0.40 x 106 (S. pistillata) 0.40 x 106 (S. pistillata) 0.2 x 106 (S. pistillata) 0.2 x 106 (S. pistillata) 1.5 x 106 (Se. hystrix) 1.5 x 106 (Se. hyst	2 x 10 ⁶ (<i>M. Faveolata</i>)		2.5 x 10 ⁶ (<i>M. Faveolata</i>)			
Around July every yearthe 2 previous rowsAround January every yearAround January every yearAnalysis of bleached and unbleached corals (inferred from difference in $\delta^{18}0$) [3]Analysis of bleached and unbleached corals (inferred in $\delta^{18}0$) [3]M. annularis [4] (tab 1) Light 0.2-0.4 x 106 med. 0.6-0.7 x 106Not reportedM. annularis [4] (tab 1) Dark 1 − 1.4 x 106Not reported(12 -15 m depth) (12 -15 m depth) [4] (Documents the recovery 1988 - 1889)Analysis (Bleached) 0.131 x 106 (S. pistillata) 0.394 x 106 (S. pistillata) 0.46 x 106 (S. pistillata) 0.46 x 106 (S. pistillata) 0.2 x 106 (S. pistillata) 1.5 x 106 (S. pistillata) 1.5 x 106 (S. pistillata)Analysis (Normal-looking) 0.446 x 106 (S. pistillata) 0.5 x 106 (S. pistillata) 1.75 x 106 (S. hystrix)Not reportedAnalysis of bleached corals (collected in the field and laboratory experiments (6m depth)(6m depth)1.75 x 106 (S. hystrix)MMMax ≈ 30Island (GBR)	1.5 x 10 ⁶ (<i>M. annularis</i>)		2 x 10 ⁶ (M. annularis)			
M. annularis [3] 100% minus 86% Agaricia lamarcki [3] 100% minus 57% $+ 0.5 - 1.0$ warmer than unbleached corals (inferred from difference in δ^{180}) [3]M. annularis [4] (tab 1) Dark 1 - 1.4 x 106Not reportedNot reportedIndicate of bleached and unbleached corals (6 m depth) [3] (1987 bleaching event)[4] (12 - 15 m depth) [4] (12 - 15 m depth) [4] (12 - 15 m depth) [4] (13 - 15 m depth) [4] (14 - 1.4 x 106)Not reportedNot reportedNot reportedImage: control of bleached orals (CAR)Analysis (Bleached) 0.131 x 106 (s. pistillata) 0.394 x 106 (se. hystrix) Exp. (4 days) 0.46 x 106 (s. pistillata) 0.46 x 106 (s. pistillata) 0.5 x 106 (s. pistillata) 1.5 x 106 (s. pistillata)Not reportedNot reported 1.75 x 106 (s. hystrix) 27 1.75 x 106 (s. hystrix) 27 28 29 20 20 20 20 21 22 23 24 25 26 26 27 28 29 20 	Around July every year	the 2 previous rows	Around January every year			
100% minus 86% Agaricia lamarcki [3] 100% minus 57% difference in δ^{180}) [3]		+ 0.5 – 1.0 warmer			Analysis of	[3]
Agaricia lamarcki [3] 100% minus 57%corals (inferred from difference in $\delta^{18}0$) [3]M. annularis [4] (tab 1) Dark 1 − 1.4 x 106Wot reportedM. annularis [4] (tab 1) Dark 1 − 1.4 x 106Not reported(12 -15 m depth) [4] (Documents the recovery 1988 - 1889)Analysis (Bleached) 0.131 x 106 (S. pistillata) 0.394 x 106 (Se. hystrix) Exp. (4 days) 0.2 x 106 (S. pistillata) 1.5 x 106 (Se. hystrix)Not reportedAnalysis (Normal-looking) 0.446 x 106 (S. pistillata) 0.5 x 106 (Se. hystrix) Exp. (4 days) 0.5 x 106 (Se. hystrix)Not reported Exp. (control) 27 MMMax ≈ 30Analysis of bleached corals collected in the field and laboratory experiments (Gm depth)					bleached and	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					unbleached corals	
M. annularis [4] (tab 1) Light $0.2\text{-}0.4 \times 10^6$ med. $0.6\text{-}0.7 \times 10^6$ Not reported Not reported M. annularis [4] (tab 1) Dark $1-1.4 \times 10^6$ Not reported Not reported Not reported Analysis (Bleached) 0.131 $\times 10^6$ (s. pistillata) 0.394 $\times 10^6$ (s. pistillata) 0.46 $\times 10^6$ (s. pistillata) 0.2 $\times 10^6$ (s. pistillata) 0.2 $\times 10^6$ (s. pistillata) 0.5 $\times 10^6$ (s. pistillata) 1.5 $\times 10^6$ (s. pistillata) 0.2 $\times 10^6$ (s. pistillata) 0.30 Not reported Not reported (12 -15 m depth) [4] (Documents the recovery 1988 - 1889) Analysis (Normal-looking) 0.446 $\times 10^6$ (s. pistillata) 2.107 $\times 10^6$ (s. pistillata) 0.5 $\times 10^6$ (s. pistillata) 0.5 $\times 10^6$ (s. pistillata) 1.5 $\times 10^6$ (s. pistillata) 1.75 $\times 10^6$ (s. pistillata)		-			(6 m depth) [3]	
M. annularis [4] (tab 1) Light 0.2 - 0.4×10^6 med. 0.6 - 0.7×10^6 Not reportedM. annularis [4] (tab 1) Dark 1 – 1.4×10^6 Not reportedNot reported(12 -15 m depth) [4] (Documents the recovery 1988 - 1889)Analysis (Bleached) 0.131×10^6 (s. pistillata) 0.394×10^6 (s. pistillata) 0.46×10^6 (s. pistillata) 0.46×10^6 (s. pistillata) 0.2×10^6 (s. pistillata) 0.2×10^6 (s. pistillata) 1.5×10^6 (s. pistillata) $1.75 \times $	100% IIIIIus 57%	unicience in o o) [b]				(CAR)
M. annularis [4] (tab 1)					_	F43
med. $0.6\text{-}0.7 \times 10^6$ med. $0.6\text{-}0.7 \times 1$		Not woments J				[4]
med. $0.6\text{-}0.7 \times 10^6$		Not reported	Dark 1 – 1.4 x 10 ⁶	Not reported	(12 -15 m depth)	
Analysis (Bleached) 0.131 x 10^6 (S. pistillata) 0.394 x 10^6 (Se. hystrix) Exp. (4 days) 0.46 x 10^6 (S. pistillata) 0.2 x 10^6 (S. pistillata) 1.5 x 10^6 (Se. hystrix) 30 1.5 x 10^6 (Se. hystrix) 30 30 30 30 30 30 30 30 30 30 30 30 30	med. 0.6-0.7 x 10 ⁶					
Analysis (Bleached) 0.131 x 10 ⁶ (S. pistillata) 0.394 x 10 ⁶ (Se. hystrix) Exp. (4 days) 0.46 x 10 ⁶ (S. pistillata) 0.2 x 10 ⁶ (S. pistillata) 1.5 x 10 ⁶ (Se. hystrix) 30 0.2 x 10 ⁶ (Se. hystrix) 30 0.30 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.5						
Analysis (Bleached) 0.131 x 106 (S. pistillata) 0.394 x 106 (Se. hystrix) Exp. (4 days) 0.2 x 106 (S. pistillata) 1.5 x 106 (Se. hystrix)Analysis (Normal-looking) 0.446 x 106 (S. pistillata) Exp. (4 days) 0.5 x 106 (Se. hystrix)Not reported Exp. (4 days) 0.5 x 106 (Se. hystrix)Not reported Exp. (control) 27 MMMax ≈ 30Analysis of bleached corals collected in the field and laboratory experiments (6m depth)1.5 x 106 (Se. hystrix)32 30<					-	
Analysis (Bleached) 0.131 x 106 (S. pistillata) 0.394 x 106 (Se. hystrix) Exp. (4 days) 0.2 x 106 (S. pistillata)Not reportedAnalysis (Normal-looking) 0.446 x 106 (S. pistillata) Exp. (4 days) 0.5 x 106 (S. pistillata) 1.5 x 106 (Se. hystrix)Not reportedAnalysis of bleached corals collected in the field and laboratory experiments (6m depth)Exp. (100 - continuous) 0.2 x 106 (S. pistillata) 1.5 x 106 (Se. hystrix)Exp. (control) 27Exp. (control) 27Island experiments (6m depth)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Analysis (Bleached)		Analysis (Normal-looking)			[5] (**)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Not reported		Not reported	5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Not reported		Not reported		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
0.2 x 10^6 (S. pistillata) 32						
1.5 x 10^6 (Se. hystrix) 30 (6m depth)						(GBR)
1.5 x 10° (se. nystrix)			1.75 x 10 ⁶ (Se. hystrix)	MMMax ≈ 30		
0.4 x 10 ⁶ (Se. hystrix) 32					(om depun)	
	0.4 x 10 ⁶ (Se. hystrix)	32				

Exp. (15 days) A. millepora 0.75 (DR), 0.9 (NKI) 0.40 (DR), 0.2 (NKI) 0 (DR), 0 (NKI), 0.5 (MI)	Exp. (computer controlled) 30 31 32 (I do not consider the transplants)	Initial/Before exp. (x 10 ⁶ cell/cm ²) 1.2 (DR) 1.4 (NKI) 1.8 (MI) Exp. (control) 0.9 (DR), 1.5 (NKI & MI)	Mean summer (Dec-Feb) at location 28.3 ± 0.5 (at DR) 27 ± 0.5 (at NKI) 29.2 ± 0.45 (at MI) Exp. (control) 27.5 MMMax ≈ upper limit of summer	Transplantation from NKI and DR to MI and experimental manipulation	[6] <u>Site:</u> GBR
Exp. (3 days) Goniastrea aspera 100% minus 35% = 75% of zooxanthellae is remaining in the coral	33.03 – 33.81 (Range for the elevated temperature)		28.51 – 29.77 (Range for median ambient temperature) MMMax ≈ 29.77	Experiment on Goniastrea aspera (Andaman Sea) (SEA)	[7] Site: South east tip of Ko Phuket, Thailand,
Bleached Corals (*)		Compared to unble	ached Corals		
e.g. Symb density	Bleaching T (°C)	Symb. density	No Bl. T (°C)	Methods	Reference
Acropora formosa 100% minus (65 – 66%) with visual signs 100% minus (44 - 48%) no visual signs	34 (reef flat) 32 (reef slope) (+2°C of daily average over 1 week)	Compared to zooxanthellae measured in December 1994 (considered "normal" level)	30 (reef slope) (Daily average 1993- 1994) MMMax ≈ 30	Analysis of bleached and unbleached corals (bleaching event January 1994) Acropora formosa (5-6 m depth)	[8] <u>Site:</u> Magnetic Island (GBR)
Exp. (7 days) 0.8 x 10 ⁶ cell/cm ² 0.7 x 10 ⁶ cell/cm ² 0.3 x 10 ⁶ cell/cm ²	Exp. (non-continuous) 24 28 30	Initial 1.2 x 10 ⁶ cell/cm ²	Initial conditioning 24 MMMax ≈ 28	Experiment on Galaxea fascicularis (1-1.5 m depth)	[9] Site: Okinawa, Japan
<0.1 x 10 ⁶ cell/cm ² (Bleaching: Oct-Dec 1993) Low densities (Fig. 2A) 0.7-1.5 x 10 ⁶ cell/cm ² (Spring-summer October-April)	The author stated that the variation in zoox density is better explained by season than by temperature or solar radiation. Maximum exceeding 30°C in Summer 30.8°C in April 1994, so we could estimate a summer mean of (30+30.8)/2 = 30.4	High densities (Fig. 2A) 2-3 x 10 ⁶ cell/cm ² (Autumn-winter May-September)	The author stated that the variation in zoox density is better explained by season than by temperature or solar radiation. Minimum was 22.8°C in August 1993, so we could estimate an annual mean of (30.8+22.8)/2 = 26.8 MMMax ≈ 30	6-years field study August 1991 – March 1997. Weekly data collection Acropora formosa (1-2 m depth)	[10] Site: Mauritius
Pocillopora verucosa: 0.3 x 10 ⁶ cell/cm ² Acropora samoensis: 0.15 x 10 ⁶ cell/cm ² Acropora subulata: 0.4 x 10 ⁶ cell/cm ²	29.5 - 30	Healthy corals 1 - 5 x 10 ⁶ cell/cm ² (Drew 1972)	27.5 (My estimation of the mean between 1991-1994 Fig. 2) MMMax ≈ 28.5	Reports of mass- bleaching in April 1994 (5-16 m depth)	[11] (**) Site: Moorea French Polynesia
Exp. (Fig. 3 day 0) Porites divaricata: 0.5 x 10 ⁶ cell/cm ² Porites astreoides: 1 x 10 ⁶ cell/cm ² Orbicella faveolata: 0.35 x 10 ⁶ cell/cm ²	Exp. (bleached) 31.48 ± 0.20	Exp. (Fig. 3 day 0) Porites divaricata 1.1 x 10 ⁶ cell/cm ² Porites astreoides 2.3 x 10 ⁶ cell/cm ² Orbicella faveolata 1.2 x 10 ⁶ cell/cm ²	Exp. (control/non-bleached) 30.66 ± 0.24 MMMax ≈ 30.5 (Although the author reported 29°C it's better to use this value to have a more precise zoox density)	Experiment on corals collected at 3-8 m depth 15 days experiement + up to 11 months recovery on reef	[12] Site: Caribbean (CAR)
Exp. (Fig. 2 & 4) Respectively at Montastrea annularis: 0.5, death (use 0.1) Montastrea cavernosa: Not significant Agaricia lamarcki: 0.5, death (use 0.1) Agaricia agaricites: 0.5, death (use 0.1) x 106 cell/cm²	Respectively at 32, 34 (Some corals did not survive during the whole experiment, I report at the end of experiment and indicate coral death)	Exp. (Fig. 2 & 4) Resp. at control & MMMax Montastrea annularis 1.6, 2 Montastrea cavernosa 0.3, 0.5 Agaricia lamarcki 0.95, 0.75 Agaricia agaricites 1.1, 0.8 x 106 cell/cm ²	Exp. (control) 26 ± 1 (also ambient seawater temperature) MMMax ≈ 30 (also considered in experiment)	Experiment on Corals collected at 14-16 m depth 52 - 60 hour experiment	[13] <u>Site:</u> Caribbean (CAR)

Bleached Corals (*) Compared to unbleached Corals

Bleached Corals (*)	Compared to unbleached Corals					
e.g. Symb density	Bleaching T (°C)	Symb. density	No Bl. T (°C)	Methods	Reference	
Exp. (Fig. 2) (4, 8 weeks)	Respectively	Ambient (Fig. 2)	<u>Ambient</u>	10 weeks	[14]	
Gulf of Panama	Gulf of Panama	Gulf of Panama	Gulf of Panama	experiment on	Site:	
$\exp(1.6)$, $\exp(1.3) = 4.31$	28.44 (± 0.04)	$\exp(1.6)$, $\exp(1.5) = 4.71$	27.87 (± 0.04)	Pocillopora	Gulf of	
$\exp(1)$, $\exp(-0.2) = 1.77$	29.61 (± 0.03)		MMMax ≈ 28.44	damicornis from 2-	Panama/	
$\exp(-2)$, death = 0.135	31.68(± 0.04)	<u>Gulf of Chiriqui</u>	Gulf of Chiriqui	5 m depth (major	Chiriqui	
Gulf of Chiriqui	Gulf of Chiriqui	$\exp(2.4)$, $\exp(2.2) = 10.02$	26.21 (± 0.07)	reef-building coral	(~ CAR)	
$\exp(2.1), \exp(2) = 7.77$	27.89 (± 0.08)		MMMax ≈ 27.89	in the tropical		
$\exp(1.8)$, $\exp(1.2) = 4.68$	$30.37(\pm 0.07)$			eastern Pacific) I report average at 4		
106 116 0				& 8 weeks (if corals		
x 10 ⁶ cell/cm ²				survived)		
From fig 5 (25, 50 days)	Heated for 50 days at	From fig 5	Ambient sea	Experiment on	[15]	
Pocillopora damicornis:	(30-31°C)	Pocillopora damicornis:	temperature	corals collected	Site:	
mean(5, 1) = 4	(I report average	8	(27-29°C)	from 4-6m depth,	Gulf of	
Pocillopora elegans	symbiont density after	Pocillopora elegans	(I report average	heated for 50 days	Panama	
mean(8, 3) = 5.5	25 and 50 days heating,	16	symbiont density after	at (30-31°C) then returned to	(~ CAR)	
Porites lobata	approximately averaged within	Porites lobata	25 and 50 days ambient, approximately averaged	ambient sea		
mean(8, 4) = 6	2months)	14	within 2months)	temperature (27-		
Pavona clavus	Ziliolitiisj	Pavona clavus	MMMax ≈ 29	29°C) for 25 days		
mean(9,5) = 7		15	Minimax ~ 29	(simulating El Niño		
Pavona gigantea		Pavona gigantea 11		effect)		
mean(8, 5) = 6.5						
x 10 ⁶ cell/cm ²		x 10 ⁶ cell/cm ²		Observation of	[17]	
Fig 9 & text	July Oat 1007 (Ein F	Fig 9 & text	1007 2000 (U)	Observation of	[16]	
<u>October 1997 (Uva)</u>	<u>July-Oct 1997 (Fig. 5</u>	<u>October 1997 (Uva)</u>	1997-2000 (Uva)	bleaching and	Site:	
Pavona clavus, P.	<u>Uva and text</u>)	Pavona clavus: 1; P.	(Fig 6- SST 2m depth)	mortality of	Panama & Ecuador	
elegans, P. damicornis:	30-31	elegans: 10; P.	annual 27.5-28.5	zooxanthellate	(Uva,	
0.01 x 10 ⁶ cell/cm ²		damicornis: 10	MMMax ≈ 29	corals during the	Jicarón)	
M 1 4000 (W)	M 1 1 1 4000	x 10 ⁶ cell/cm ²		1997-98 El Niño	(~ CAR)	
March 1998 (Uva)	March-July 1998	March 1998 (Uva)		(I report the		
P. damicornis:	(Fig. 5 Uva and text)	P. damicornis:		symbiont density of bleached corals		
0.5 x 10 ⁶ cell/cm ²	29-31	10 x 10 ⁶ cell/cm ²		and of normal		
P.elegans:		P.elegans:		looking corals only		
0.8 x 10 ⁶ cell/cm ²		10 x 10 ⁶ cell/cm ²		for Uva Island		
Porites lobata:		Porites lobata:		because SST		
0.7 x 10 ⁶ cell/cm ²		5 x 10 ⁶ cell/cm ²		measurement was		
				not clear for		
				Jicarón)		
Fig. 6 mean of pale &	Fig 1a + text	Fig. 6 Pigmented sample	Fig 1a	Analysis of coral	[17]	
<u>fully bleached</u>	(Corals begin to		28.5	collected in the	Ko	
Goniastera aspera:	bleach in May	Goniastera aspera:	MMMax ≈ 29.5	field (1991 Bleaching	Phuket	
3 x 10 ⁶ cell/cm ²	30-30.5	10 x 10 ⁶ cell/cm ²		event)	Thailand	
G. retiformis:		G. retiformis:		eventj	(SEA)	
6 x 10 ⁶ cell/cm ²		11 x 10 ⁶ cell/cm ²				
Favites abdita:		Favites abdita:				
1.5 x 10 ⁶ cell/cm ²		9x 10 ⁶ cell/cm ²				
Coeloseris mayeri:		Coeloseris mayeri:				
4 x 106 cell/cm ²		18 x 10 ⁶ cell/cm ²				
Go. pandoraensis:		Go. pandoraensis:				
1 x 10 ⁶ cell/cm ²		18 x 10 ⁶ cell/cm ²				
Galaxea fascicularis:		G. fascicularis (control):				
8 x 10 ⁶ cell/cm ²		12 x 10 ⁶ cell/cm ²				
Fig 4a + text	Fig 1 + text	Fig 4a + text	Fig 1 + text	Analysis of coral	[18]	
Goniastera aspera:	28.81	Goniastera aspera:	28.18	collected in the	Ko	
5.52 x 10 ⁶ cell/cm ²		7.4 x 10 ⁶ cell/cm ²	MMMax ≈ cannot	field	Phuket	
			estimate		Thailand	
					(SEA)	
	i	i e	1	1	Ī	

Bleached Corals (*)

Compared to unbleached Corals

e.g. Symb density	Bleaching T (°C)	Symb. density	No Bl. T (°C)	Methods	Reference
<u>In text</u>	Summer July-October	<u>In text</u>	Winter (December-	Analysis of	[19]
			<u>February)</u>	corals <i>Orbicella</i>	Puerto
2.7 x 10 ⁶ cell/cm ²	Not reported	5.2 x 10 ⁶ cell/cm ²	Not reported	faveolata	Morelos,
		Pre-bleaching density		collected from 2-	Mexico
		(May 2008) 3.2 x 10 ⁶		4 depth	(~CAR)
		cell/cm ²		(Documenting	
		Post-bleaching density		recovery from	
		(May 2010) 8.3 x 10 ⁶		October 2009	
		cell/cm ²		bleaching)	

- [1] Shu et al. 2011. Assessment of coral bleaching using symbiotic zooxanthellae density and satellite remote sensing data in the Nansha Islands, South China Sea. Chinese Science Bulleting (It was recently renamed Science Bulletin and is part of Springer)
 - **NOTE:** I think this article is well written. However, they suggested that corals showing no visual signs of bleaching were in the initial stage of bleaching.
- [2] Fitt et al. 2000. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnology and Oceanography.
 - **NOTE:** "On the basis of results of this study, we hypothesize that all reef corals worldwide exhibit similar seasonal cycles"
- [3] Porter et al. 1989. Bleaching in Reef corals: Physiological and stable isotopic response.
- [4] Fitt et al. 1993. Recovery of the coral *Montastrea annularis* in the Florida Keys after the 1987 "bleaching event".
- **[5] Hoegh-Guldberg, Ove and Smith, G. Jason. 1989.** The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals *Stylophora pistillata* Esper and *Seriatopora hystrix* Dana. **Journal of Experimental Marine Biology and Ecology.**

NOTE: This study highlighted the difference between the 2 definitions of "bleaching": "Originally, coral bleaching referred to the loss of brown pigment by corals (Yonge & Nichols, 1931b). More recently, bleaching has been taken to be synonymous to the loss of zooxanthellae by corals (Refs) despite the fact that bleaching (by the original definition) has been reported to occur when zooxanthellae lose photosynthetic pigment rather than leave corals photo-adapting to high light conditions (Porter et al, 1984)". Particularly, this study (and other studies they compare their work with) shows that high light exposure causes loss of zooxanthellae pigments and high temperature causes lose of zooxanthellae density.

Therefore we can justify our use of zooxanthellae expulsion in our model of bleaching by stating that we are only dealing with temperature induced bleaching.

- [6] Berkelmans, Ray and van Oppen, Madeleine J. H. 2006. The role of zooxanthellae in the thermal tolerance of corals: a 'Nugget of hope' for coral reefs in an era of climate change. Proceedings of the royal society B

 NOTE: MI refers to Magnetic Island, NKI refers to North Keppel Island and DR refers to Davies Reef
- [7] Brown, B. E. and Dunne, R. P. 2008. Solar radiation modulates bleaching and damage protection in a shallow water coral. Marine Ecology Progress Series.
- [8] Jones, Ross J. 1997. Changes in zooxanthellar densities and chlorophyll concentrations in corals during and after a bleaching event. Marine Ecology Progress Series.
- **[9] Bhagooli, R and Hidaka, M. 2002.** Physiological responses of the coral *Galaxea Fascicularis* and its algal symbiont to elevated temperatures. **Japanese Coral Reef Society.**
- [10] Fagoonee, I. et al. 1999. The dynamics of Zooxanthellae populations: A long-term study in the field. Science. NOTE: similar to conclusions of [2], "These bleaching events are likely to be part of a constant variability of zooxanthellae density caused by environmental fluctuations superimposed on a strong seasonal cycle abundance"... "The time series of zooxanthellae density over the study period is shown Fig. 1. The mean density was 1.7 x 10⁶ cell/cm² (SD = 2.4 x 10⁶ cell/cm²), comparable to densities of 1 x 10⁶ to 2 x 10⁶ previously reported (10, 11)".
- **[11] Hoegh-Guldberg, Ove and Salvat, B. 1995.** Periodic mass-bleaching and elevated sea temperatures: bleaching of outer reef slope communities in Moorea, French Polynesia. **Marine Ecology Progress Series.**
- [12] Levas, Stephen et al. 2018. Long-term recovery of Caribbean corals from bleaching. Journal of Experimental Marine Biology and Ecology.
- [13] Fitt, W. k. and Warner, M. E. 1995. Bleaching Patterns of Four Species of Caribbean Reef Corals. The Biological Bulletin.
- [14] Glynn, P. W. and D'Croz, L. 1990. Experimental evidence for high temperature stress as the cause of El Niñocoincident coral mortality. Coral Reefs.
- **[15] Hueerkamp, C. et al. 2001.** Bleaching and recovery of five eastern pacific corals in an El Niño-related temperature experiment. **Bulletin of Marine Science.**
- **[16] Glynn, P. W. et al 2001.** Coral Bleaching and Mortality in Panama and Ecuador during the 1997-1998 El Niño-Southern oscillation event: Spatial/temporal Patterns and comparisons with the 1982-1983 event. **Bulletin of Marine Science.**

- [17] Brown et al. 1995. Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event. Marine Biology.
- **[18] Brown et al. 1999.** Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species. **Marine Ecology Progress Series.**
- **[19] Kemp et al. 2014**. Community dynamics and physiology of *Symbiodinium* spp. Before, during and after a coral bleaching event. **Limnology and Oceanography**.