Network Security Virtualization NETSECVISOR

Mrudula Borkar

AISSMS College of Engineering Department of Computer Engineering

Guided by: Prof. J.S. Chinchole

Outline

Introduction

Literature Survey

Proposed System

Algorithm

Experimental Study

Evaluation

Conclusion

Future Scope

References

END

Social Issue:

To make proper use of resources in order to avoid e-waste.

Problem Statement:

To develop a system which can effectively use the available resources for securing a network and other network related to issues in order to avoid idleness of resources.

Objective:

- ► To minimize the need of security devices.
- To maximize the utilization of resources.
- To maintain security flow in the network whenever necessary.

Motivation:

Utilization of existing resources
Abstraction of security resources is necessary to provide simple interface
Provide dynamic, flexible and on-demand security services to the users

Need

- Complicated network architectures.
- Complex network management
- Scalability and Cost issues.
- ▶ Inefficient use of resources and middle-boxes.
- Need of simple User Interface.

New System

- Maximize utilization of resources.
- Redirection of network flow.
- ► Dynamically enabling security response function.
- Providing flow policies on demand.

- Leveraging pre-installed security devices.
- Basic security response functions are enabled such as network isolation.
- ► Things included:
 - ► User Interface.
 - ► Routing Algorithms.
 - ► Response Strategies.

Literature Survey

Previous Research Approaches

Sr.No	Paper Name	Technique Used	Merits	Demerits
1	"New opportunities for load	NIDS	Traffic Replication, In	Not dynamic
	balancing in network-wide		depth analysis of routing	implementation.
	IDS"		algorithms.	
2	"Making Middleboxes	APLOMB	Network Redirection.	Relatively complex.
	Someone Else's			
	Problem:Network Processing			
	as a Cloud Service"			
3	"ETSI. Network function	Network	Converts middle-boxes	Overhead of
	virtualization. [Online].	Function	into virtual machine and	relocation.
	Available:	Virtualization	relocation to centralized	
	http://portal.etsi.org/NFV/"		place.	

Proposed System Architecture

Figure 1: Overall Architecture[1]

Working

- Register security devices.
- Security requests are submitted.
- Parse request and write security policy.
- Routing path and corresponding flow rules are created.
- Flow rules to each security device.
- On detection, corresponding security response function is enabled.

Registeration Of Security Devices

- Simple script language.
- ► Device ID, Type, Location etc.
- Example:

Device ID-1

Device Name-IDS

Data Path-121

Device Mode-Passive

Function- Protect network from DNS attacks.

Script

[1,IDS,121,passive,detect DNS attack]

Creating Security Policies

- ► Tenants define security requests.
- NETSECVISOR describes it with script.
- Request is translated in security policy.
- Functions are mapped.

Routing Path

- ► Network flow w.r.t. security policy.
- ► Optimized routing path.
- ► Two modes
 - Passive
 - ► Inline
- New algorithms are proposed with the help of SDN.

Enable Security Response Function

- ► After detection, action to be taken.
- On detected packets or infected host.

Algorithm

Overview

- ► Different types of network .
- Combination of inline and passive.
- SDN technologies such as OpenFlow.
- ► Terms:
 - ► Start node
 - ► End node
 - ► Security node
 - ► Security link

Algorithm

Layout

Figure 2: Layout[1]

Algorithm

Shortest Path

Figure 3: Shortest Path[1]

Algorithm

A1:Multipath-Naive

Figure 4: A1:Multipath-Naive[1]

Algorithm

A2:Shortest Through

Figure 5: A2:Shortest Through[1]

Algorithm

A3:Multipath Shortest

Figure 6: A3:Multipath Shortest[1]

Algorithm

A4:Shortest Inline

Figure 7: A4:Shortest Inline[1]

Algorithm

Comparison

Algorithm	Pros	Cons	When to Use
A1:Multipath-Naïve	Simple and fast	Redundant flows	Enough network capacity, delay is
			important
A2:Shortest-Through	No redundant path	Computation overhead,	Not enough network capacity, delay
		when multiple devices	is not so important
A3:Multipath-Shortest	Efficient routing path	Computation overhead,	Not many hops(e.g.,communication
		when multiple devices	between inside Vms)
A4:Shortest-Inline	Guarrantee passing through a	Computation overhead,	For an inline security
	specific link	when multiple devices	device(e.g.,IPS)

Figure 8: Comparison between algorithms[1]

Experimental Study

Estimation of performance.

- ► Generation Time.
- ► Network Cost.
- ► CPU and Memory Overhead.
- ► Response Time.

Compared with Dijkstra's Algorithm.

Experimental Study Generation Time

Figure 9: Flow Rule Generation Time Measurement(a)16 routers (b)64 routers [1]

Experimental Study Network Cost

Figure 10: Network cost measurement (a)12 routers (b)64 routers [1]

Experimental Study CPU and Memory Overhead

Figure 11: CPU and Memory Overhead[1]

Experimental Study Response Time

Figure 12: Response Time[1]

Evaluation

Advantages

- ► Easy, flexible and efficient.
- Proper utilization
- ► Abstraction of security resources.
- On demand, flexible and dynamic security service.

Evaluation

Disadvantages

- May not generate routing paths in some cases
- May suffer from mistakes of tenants.

Conclusion

This approach builds secure, extensible and dynamic network environment by virtualizing pre-installed resources and providing response function whenever necessary.

Future Scope

- ▶ Overcome failure in path generation.
- ► Identify misconfigured policies.
- ► Large scale environment.

References

- [1]Seungwon Shin, Haopei Wang and Guofei Gu, "A First Step Toward Network Security Virtualization: From Concept To Prototype", in IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 10, OCTOBER 2015.
- [2]Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, Guofei Gu, "A Security Enforcement Kernel for OpenFlow Networks", in HotSDN'12, August 13, 2012, Helsinki, Finland.
- [3]Sayed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, Jerey C. Mogul, "FlowTags:Enforcing Nework-Wide Policies in the presence of Dynamic Middlebox Action", in HotSDN'13, August 16,2013, Hong Kong, China.
- [4]Zafar Ayyub Qazi, Cheng Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, Minlan Yu, "SIMPLE-fying Middlebox Policy Enforcemenr using SDN", in SIGCOMM'13 August 12-16,2013, Hong Kong, China.
- [5]OpenFlow." Open Networking Foundation. [online].
 Available:https://www.opennetworking.org/sdnresources/open flow"

References

- [7]J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V.Sekar, Making middleboxes someone elses problem: Network processing as a cloud service, in Proc. ACM SIGCOMM, 2012, pp. 1324
- [8] N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L. Meola, and D. Walker, Frenetic: A high-level language for OpenFlow networks, in Proc. ACM Workshop Program. Routers Extensible Services Tomorrow (PRESTO), 2010, Art. ID 6.
- [9]ETSI. Network Function virtualization. [Online]. Available: http://portal.etsi.org/NFV/, accessed Mar. 10, 2016.

Thank You!

Questions