Chapitre 4:Circuits combinatoires

Présenter par: Mme AMGHAR D

Circuits combinatoires

- 1. Introduction
- 2. Addition binaire
- 3. Soustraction
- 4. Comparaison
- 5. Multiplexage

Introduction

- Les circuits logiques sont élaborés à partir de composants électroniques transistors.
- Types de circuits logiques:
 - Combinatoires
 - Séquentiels

Introduction

Circuits logiques séquentiels : c'est des circuits dont les valeurs de sortie dépendent d'entrée appliquées ultérieurement.

Circuits logiques combinatoires : c'est des circuits dont les valeurs de sortie ne dépendent que de ses valeurs d'entrée.

Circuit combinatoire

Un circuit combinatoire est constitué d'éléments logiques élémentaires appelés portes logiques (logic gates), elle reçoivent des signaux appliqués en entrée et produisent des signaux en sortie.

Circuit combinatoire

L'étude des circuits combinatoires se résume en deux questions :

- Synthèse: réaliser le circuit combinatoire à partir de l'énoncé décrivant les fonctions ou le rôle du circuit, en question.
- Analyse: déterminer le rôle du circuit combinatoire à partir de son logigramme.

Circuit combinatoire

les étapes à suivre pour réaliser la synthèse d'un circuit logique combinatoire :

- 1. Établir la table de vérité de chacune des fonctions impliquées dans le problème à traiter
- 2. Établir les équations logiques.
- 3. Simplifier les équations de chacune des fonctions logiques.
- 4. Établir le logigramme du circuit logique.

Circuits combinatoires

Un circuit combinatoire est un circuit numérique dont les sorties dépendent uniquement des entrées.

$$S_i = F(E_i)$$

$$S_i = F(E_1, E_2, \dots, E_n)$$

$$E_1 \longrightarrow S_i$$

$$E_2 \longrightarrow S_j$$

Circuits combinatoires

Parmi les principaux circuits combinatoires, on distingue:

- les circuits d'opérations arithmétiques (addition, soustraction)
- Les circuits logiques (décodage, multiplexage, comparaison).

Remarque: Il est possible d'utiliser des circuits combinatoires pour réaliser d'autres circuits plus complexes.

- Additionneurs:
- Demi additionneur : 2 entrées sur 1 bit,
 - 2 sorties sur 1 bits.
- Additionneur complet : 3 entrées sur 1 bit,
 - 2 sorties sur 1 bits.
- Additionneur sur n bits.

Demi-additionneur (half adder)::

- On commence par l'addition de 2 bits **a** et **b** en entrée ,avec en sortie la **somme S** et une retenue **R**.
- On l'appelle demi additionneur, parce qu'il ne tient pas compte de la retenue qui peut provenir des calculs précédents.

Entrées	Sorties		
A B	Somme (S) Retenue (R_{sor})		
0 + 0	0	0	
0 + 1	1	0	
I + O	1	0	
1 + 1	0	I	

Demi-additionneur (half adder)::

Entrées	Sorties			
A B	Somme(S)	Retenue (R_{sor})		
0 + 0	0	0		
0 + 1	1	0		
1+0	1	0		
I + I	0	I		

Demi additionneur (half adder):

Expressions logiques:

$$S = A \oplus B$$

 $R_{SOT} = A.B$.

Logigramme :

Demi-Additionneur

L'additionneur complet (full adder):

- il faut tenir compte de la retenue provenant des bits de poids inférieurs
- donc l'additionneur complet :
- 3 entrées :a, b et r
- 2 sorties S et R

additionneur Complet (full adder) (AC):

Symbole logique d'un AC

L'additionneur complet(full adder):

TV de l'additionneur complet :

a	b	r	R	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$R = \bar{a}.b.r + a.\bar{b}.r + a.b.\bar{r} + a.b.r$$

$$R = a.b + r(a \oplus b)$$
 (après simplification)

$$S = \bar{a}.\bar{b}.r + \bar{a}.b.\bar{r} + a.\bar{b}.\bar{r} + a.b.r$$

$$S=\,(a\oplus b)\oplus r$$

Additionneur complet (full adder)::

Expressions logiques:

$$\begin{split} S &= (A \oplus B) \oplus R_{en} \\ R_{zor} &= A.B + (A \oplus B).R_{en} \end{split}.$$

Logigramme :

Additionneur complet(full adder):

Logigramme avec 2 demi-additionneurs :

DA
$$S = a \oplus b$$
 $R_{sor} = a.b$

$$S = (a \oplus b) \oplus r$$
CA $R = a.b + r(a \oplus b).$

Additionneur parallèle:

- Pour additionner 2 nombres
- Il consiste à mettre des additionneurs 1 bit en série, avec la retenue sortante de l'un qui devient entrante du suivant, ce qui correspond à la propagation de retenue.

Additionneur parallèle:

Exemple : additionneur parallèle à 4 bits. Soit à additionner les nombres binaires :

$$A = a_0 a_1 a_2 a_3$$

$$B = b_0 b_1 b_2 b_3$$

Additionneur 4 bits:

Demi soustracteur: 2 entrées sur 1 bit

2 sorties sur 1 bits.

Soustracteur complet : 3 entrées sur 1 bit

2 sorties sur 1 bits.

Soustracteur sur n bits.

- Demi soustracteur (half substractor):
- C'est un circuit qui fait la soustraction de deux bits b0 et b1 de même poids,
- Le demi-soustracteur est un soustracteur binaire qui ne tient pas compte de la retenue provenant des bits de poids inférieurs.
- D représente le résultat de la différence (A-B) et R le report.

Demi soustracteur (half substractor):

TV

ьо	b1	D	R
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$D = \overline{b}_0.b_1 + b_0.\overline{b}_1$$

$$D = b_0 \oplus b_1$$

$$R = \overline{b}_0.b_1$$

- Demi soustracteur (half substractor):
- Expressions logiques: $D = b_0 \oplus b_1$ $R = \bar{b}_0.b_1$
- Logigramme :

Soustracteurs

Soustracteur complet (full substractor):

c'est un circuit qui fait la soustraction de deux bits b0 et b1 de même poids plus le report de l'étape précédente R0

Soustracteur complet (full substractor):

$$D = \bar{A}\bar{B}R_e + \bar{A}B\overline{R_e} + A\bar{B}\overline{R_e} + ABR_e$$

$$D = R_e(\bar{A}\bar{B} + AB) + \overline{R_e}(\bar{A}B + A\bar{B})$$

$$D = R_e \oplus (A \oplus B)$$

$$R_{s} = \bar{A}\bar{B}R_{e} + \bar{A}B\overline{R_{e}} + \bar{A}BR_{e} + ABR_{e}$$

$$R_S = R_e(\bar{A}\bar{B} + AB) + \bar{A}B(\overline{R_e} + R_e)$$

$$R_S = \bar{A}B + R_e(\overline{A \oplus B})$$

- Soustracteur complet (full substractor):
- Logigramme :

 $D = R_e \oplus (A \oplus B)$

Soustracteur complet (full substractor):

- Soustracteur sur n bits :
- **Exemple :** additionneur parallèle à 4 bits. Soit à additionner les nombres binaires : A= A0 A1 A2 A3 et B = B0 B1 B2 B3

Remarque:

En binaire les nombres négatifs sont représentés en complément à 2 or sur n bits $2^n = 0$. $\Rightarrow -A = \bar{A} + 1$

Ce qui veut dire que l'on peut transformer la soustraction en addition:

$$A - B = A + \bar{B} + 1$$

On utilise un additionneur au lieu d'un soustracteur.

Exercice 1:

Exercice :

Concevoir un circuit qui permet de faire l'addition ou la soustraction (additionneur/soustracteur) de deux nombres binaires A et B de 1 bit.

On rappelle que dans la représentation en complément à 2,

$$A - B = A + \bar{B} + 1$$

- Cet additionneur/soustracteur possèdera une entrée de commande C qui sera utilisée comme suit :
- C=0 fonctionnement en addition.
- ► C=1 fonctionnement en soustraction.

Exercice :

- C=0 fonctionnement en addition.
- C=1 fonctionnement en soustraction

$$B_{in} = /B$$

В	C	Bin
0	0	0
0	1	1
1	0	1
1	0	0

3

Circuits combinatoires

Comparateur:

Il s'agit de comparer 2 nombres A et B de n bits chacun, avec comme résultat 3 sorties correspondant à SO(A = B), S1(A < B) et S2(A > B).

				\
A	В	So	S ₁	S ₂
0	0	1	0	0
0	1	0	0	1
1	0	0	1	0
1	1	1	0	0

Circuits combinatoires

Comparateur:

TV d'un comparateur 1 bit:

$$S_0(A = B)$$
, $S_1(A < B)$ et $S_2(A > B)$.

A	В	So	S 1	S ₂
0	0	1	0	0
0	1	0	0	1
1	0	0	1	0
1	1	1	0	0

On déduit:

$$S0 = \bar{a}.\bar{b} + a.b = \bar{a} \oplus b$$

S1=
$$a. \bar{b}$$

S2=
$$\bar{a}$$
. b

$$S0 = \overline{S1 + S2}$$

Comparateur:

$$S1= a. \overline{b}$$

$$S2= \overline{a}. b$$

$$S0= \overline{S1} + \overline{S2}$$

- Exemple : Comparateur à 2 bits
 - Etablir la TV du circuit;
 - Générer les équations de sortie: S0,S1,S2
 - Réaliser le même circuit à l'aide de circuits comparateurs 1 bit et des portes.

On dit que:

```
A = B(S0=1) Si A1 = B1, et A0 = B0;
```

A > B (S1=1) Si A1 > B1 ou A1 = B1 et A0 > B0;

A < B (S2=1) Si A1 < B1 ou A1 = B1 et A0 < B0.

Le comparateur de 2 bits

 S_0 vaut 1 si (a₁=b₁ et a₀=b₀) $S_0 = S_0'. S_0''$

Et S₁ vaut 1 si a₁>b₁ ou si (a₁=b₁ et a₀>b₀) $S_1 = S_1'' + S_0'' S_1'$

Et S₂ vaut 1 si a₁<b₁ ou si (a₁=b₁ et a₀<b₀) $S_2 = S_2'' + S_0'' S_2'$

Multiplexage/Démultiplexage:

 C'est un dispositif qui permet de transmettre sur une seule ligne des informations en provenance de plusieurs sources possibles à destination de plusieurs cibles

a) Multiplexeur:

C'est un circuit qui met en relation 1 entrée parmi n, avec la sortie, d'où la nécessité de sa sélection.

MUX 2:1, MUX 4:1, MUX 8:1, MUX 16:1.........

Exemple de Mux 2 vers 1 :

Soient 2 entrées(E1,E2) d'information et 1 sortie (S)

donc: 1 commande (CO) pour sélectionner l'une des 2 entrées.

Table de vérité

CO	S	
0	E0	$S = E0. \overline{C}0$
1	E1	S = E1.C0

Sélection

des données

Equation

$$S = E0.\overline{C0} + E1.C0$$

Multiplexeur 4 à 1 (MUX 4 :1)

Soient 4 entrées d'information et 1 sortie,

donc: 2 commande pour sélectionner l'une des 4 entrées

CO	C1	S
0	0	E0
0	1	E1
1	0	E2
1	1	E3

 $S = \overline{C1.C0.}(E0) + \overline{C1.C0.}(E1) + C1.\overline{C0.}(E2) + C1.C0.(E3)$

Architecture des ordinateurs 1C

Exemple: TV

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

Si la fonction(5 variable): MUX 2^5:1(MUX 32:1)

- Multiplexeur 4 à 1 (MUX 4:1):
- Exemple: En utilisant un MUX 4 :1 et des portes logiques, réaliser la fonction suivante :

45

Α	В	F
0	0	$\bar{C}D$
0	1	$\bar{C} + D$
1	0	$\bar{C}D$
1	1	Ē

Exemple: MUX(4:1) de la fonction f(A,B,C)

Α	В	F
0	0	$ar{\mathcal{C}}$
0	1	0
1	0	1
1	1	С

$$f = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}0 + A\bar{B}1 + ABC$$

$$f = \bar{A}\bar{B}\bar{C} + A\bar{B} + ABC$$

- Half adder(demi additionneur)
- En utilisant un MUX 4 1 et des portes logiques:

Α	В	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half adder(demi additionneur)

Exercice:

En utilisant un MUX 4 1 et des portes logiques, réaliser les fonctions suivantes :

1)
$$f1(a,b,c) = \sum m(0,1,2,7)$$
 2) $f2(x,y,z) = \prod M(0,1,4,5,7)$