Mean Feld Therry

- a, h, a. Hantree - Fock Mathods

Reduce the many - body groblem to the groblem & a single gentricle moving in an effective mean field generated by all of the Filer gentricles.

Fundamental operapienation in condensed metter and nuclaw physics.

We will consider nomeletivistic men fuld methods.

- Petieles interest through an instantaneous getential;

 $V(\vec{x} - \vec{x}') = \sum_{\vec{q}} e^{i\vec{q}\cdot(\vec{x} - \vec{x}')} \tilde{V}(\vec{q})$

In the language of Second Quantization,

H = H + V

In The MEAN FIELD APPROXIMATION, the correction to the ground state energy is found by taking the vacuum (i.e., ground state) expectation value of v:

E → E + <01 \$\hat{V} 10> How to we calculate (01 V10)? Wick's Theorem tells us how: <01 ct at a 10) All of the terms left with a normal ordering of specition will not contribute to the VEV. At me left with a region of to replacing gain of

Digramatic Analysis Remember om original diegeen for V= = を V(す) む む む む む む む で 2 - 1 k+2 The diagrams that consumed to VEV have no external lines -For the Hantier term we contract (at a) and (at a) and Dugiamentuly this conegorale to the grigh "TANPOLE" DIAGRAM For the Fock turn, we control (a a) and (a a).

1-1-12 7-12 " OYSTER" DIAGRAM

The Hother- Frele Ground thate Energy of a Metal < 1 | H | 4 > = < 4 | H | 4 > + < F | V | F > < + | H | T > = < + | E & a a | + > The sum wer to will of my to the Farmi momentum: $N = Z V_{(\overline{Z_1})^3} 4 \pi \int_{k}^{k_{\mp}} k^2 dk = \frac{1}{\pi^2} \frac{1}{3} k^3$ 2) (II) 3 E = KF $E = E/N = \frac{3}{5} \frac{R_E^2}{Z_{max}} = \frac{3}{5} \frac{E}{E}$ (Ψ | Η | Ψ) = <Ψ | Σεα α | Ψ) = ε <Ψ | Σα α | Ψ) N3= < 7 | N | 7 > 3 = 1 1 L.

$$\Delta E^{(F)} = 2 \frac{1}{2} \left\{ \frac{e^2}{\pi} \left(\frac{e^2}{4\pi\epsilon_0} \right) F\left(\frac{e^2}{8\pi} \right) \right\}$$

$$\frac{-3 \text{ MyF}}{2 \text{ T}} \left(\frac{e^{2}}{4 \text{ T}} \right) \int dx \, x^{2} \, F(x)$$
with $x = 5$

$$\frac{\Delta E(F)}{D} = \frac{-38F(\frac{e}{4\pi E})}{4\pi E} = \frac{-0.916}{R} \frac{Rydberge}{election}$$

Fmilly

N = (2.2 - 0.916) Rydburge