Module 01: Basic Statistics

Contents

- 1. Data Overview & Summary
 - Library Import & Data Loading
 - Head & Tail, Shape
 - Columns & Info
 - Missing Values
 - Class & Type Check
 - Numerical Summary
- 2. Central Tendency, Dispersion & Outliers
 - Measures of Central Tendency
 - Measures of Dispersion
 - Covariance & Correlation
 - Categorical Counts
 - Outlier Detection (IQR Method)
 - Distribution Shape
- 3. Distribution Analysis & Basic Visualizations
 - Correlation Heatmap
 - Categorical Columns Visualization
 - Numerical Columns Visualization
 - Histogram + Density
 - Violin + Boxplots
 - Grouped Visualizations
 - Average Math Score by Gender
 - Reading Score by Lunch Type
 - Pairwise Relationships

Data Overview & Summary

Library Import & Data Loading

In [61]: library(tidyverse)
 library(ggplot2)
 library(ggpubr)
 library(corrplot)
 library(GGally)
 library(moments)

In [62]: file_path <- "/kaggle/input/students-performance-in-exams/StudentsPerformance.cs
data <- read.csv(file_path)</pre>

Head & Tail, Shape

				A data.frar	me: 6 × 8
	gender	race.ethnicity	parental.level.of.education	lunch	test.preparation.course
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
1	female	group B	bachelor's degree	standard	none
2	female	group C	some college	standard	completed
3	female	group B	master's degree	standard	none
4	male	group A	associate's degree	free/reduced	none
5	male	group C	some college	standard	none
6	female	group B	associate's degree	standard	none
4					•

In [12]: tail(data)

A data.frame: 6 × 8

test.preparation.cou	lunch	parental.level.of.education	race.ethnicity	gender	
<ch< th=""><th><chr></chr></th><th><chr></chr></th><th><chr></chr></th><th><chr></chr></th><th></th></ch<>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	
nc	standard	high school	group A	male	995
complet	standard	master's degree	group E	female	996
nc	free/reduced	high school	group C	male	997
complet	free/reduced	high school	group C	female	998
complet	standard	some college	group D	female	999
nc	free/reduced	some college	group D	female	1000
•					4

In [13]: dim(data)

1000 · 8

Columns & Info

In [14]: colnames(data)

 $'gender' \cdot 'race.ethnicity' \cdot 'parental.level.of.education' \cdot 'lunch' \cdot 'test.preparation.course' \cdot 'math.score' \cdot 'reading.score' \cdot 'writing.score'$

In [15]: str(data)

```
'data.frame': 1000 obs. of 8 variables:
                                   : chr "female" "female" "female" "male" ...
        $ gender
                                   : chr "group B" "group C" "group B" "group A" ...
        $ race.ethnicity
        $ parental.level.of.education: chr "bachelor's degree" "some college" "master's
       degree" "associate's degree" ...
                                    : chr "standard" "standard" "free/reduc
        $ lunch
       ed" ...
        $ test.preparation.course : chr "none" "completed" "none" "none" "...
                                  : int 72 69 90 47 76 71 88 40 64 38 ...
        $ math.score
        $ reading.score
                                   : int 72 90 95 57 78 83 95 43 64 60 ...
        $ writing.score
                                   : int 74 88 93 44 75 78 92 39 67 50 ...
In [59]: summary(data)
```

```
parental.level.of.education
  gender
                race.ethnicity
Length:1000
                Length:1000
                                 Length:1000
Class :character Class :character Class :character
Mode :character
                Mode :character
                                 Mode :character
```

lunch	test.preparation.course	math.score	reading.score
Length:1000	Length:1000	Min. : 0.00	Min. : 17.00
Class :character	Class :character	1st Qu.: 57.00	1st Qu.: 59.00
Mode :character	Mode :character	Median : 66.00	Median : 70.00
		Mean : 66.09	Mean : 69.17
		3rd Ou.: 77.00	3rd Ou.: 79.00

Max. :100.00 Max. :100.00

writing.score Min. : 10.00 1st Qu.: 57.75 Median : 69.00 Mean : 68.05 3rd Qu.: 79.00 Max. :100.00

Missing Values

```
In [16]: colSums(is.na(data))
```

gender: 0 race.ethnicity: 0 parental.level.of.education: 0 lunch: 0

test.preparation.course: 0 math.score: 0 reading.score: 0 writing.score: 0

Class & Type Check

```
In [63]: class(data$math.score)
         class(data$reading.score)
         class(data$writing.score)
```

'integer' 'integer' 'integer'

Central Tendency, Dispersion & Outliers

Measures of Dispersion

```
In [65]: mean(data$math.score)
    median(data$reading.score)
    Mode <- function(x) {
        ux <- unique(x)
            ux[which.max(tabulate(match(x, ux)))]
      }
      Mode(data$writing.score)</pre>
66.089
70
74
```

Measures of Dispersion

```
In [64]: sd(data$writing.score)
    var(data$reading.score)
    range_val <- max(data$math.score) - min(data$math.score)
    range_val
    quantile(data$math.score, 0.25)
    quantile(data$reading.score, 0.50)
    quantile(data$writing.score, 0.75)

15.1956570108697
213.165604604605
100
25%: 57
50%: 70
75%: 79</pre>
```

Covariance & Correlation

```
In [66]: numeric_cols <- data %>% select(`math.score`, `reading.score`, `writing.score`)
    cor(numeric_cols)
    cov(numeric_cols)
```

	A matrix: 3	× 3 of type dbl	
	math.score	reading.score	writing.score
math.score	1.0000000	0.8175797	0.8026420
reading.score	0.8175797	1.0000000	0.9545981
writing.score	0.8026420	0.9545981	1.0000000
	A matrix: 3	× 3 of type dbl	
	math.score	reading.score	writing.score
math.score	229.9190	180.9990	184.9391
reading.score	180.9990	213.1656	211.7867
writing.score	184.9391	211.7867	230.9080

Categorical Counts

```
In [67]: table(data$gender)
        female
                 male
                  482
           518
In [69]: table(data$`race.ethnicity`)
        group A group B group C group D group E
                    190
                            319
                                    262
                                             140
In [70]: table(data$'parental.level.of.education')
                                                                     master's degree
        associate's degree bachelor's degree
                                                      high school
                       222
                                                              196
                                                                                   59
              some college
                             some high school
                       226
                                           179
In [71]: table(data$'lunch')
        free/reduced
                         standard
                              645
In [72]: table(data$'test.preparation.course')
        completed
                       none
              358
                        642
```

Outlier Detection (IQR Method)

```
In [37]: Q1 <- apply(numeric_cols, 2, quantile, 0.25)
  Q3 <- apply(numeric_cols, 2, quantile, 0.75)
  IQR <- Q3 - Q1

lower_bound <- Q1 - 1.5*IQR
  upper_bound <- Q3 + 1.5*IQR

for(col in colnames(numeric_cols)) {
    outlier_count <- sum(numeric_cols[[col]] < lower_bound[col] | numeric_cols[[col]] < lower_bound[col] < lower_bound[col] < lower_bound[col] < lower_bound[col] < lower_bound[col] < low
```

Distribution Shape

```
In [39]: skewness(data$`math.score`)
   kurtosis(data$`reading.score`)
   -0.278516571914075
   2.92608138521669
```

Distribution Analysis & Basic Visualizations

Correlation Heatmap

```
In [40]: corr_mat <- cor(numeric_cols)
    corrplot(corr_mat, method="color", addCoef.col="black", tl.col="black", number.c</pre>
```


Categorical Columns Visualization

```
important_cat <- c("gender", "race.ethnicity", "lunch", "test.preparation.course
par(mfrow=c(2,2))
for(col in important_cat){
    counts <- table(data[[col]])
    barplot(counts, main=paste("Countplot of", col), col="steelblue", las=2)
}</pre>
```


Numerical Columns Visualization

Histogram + Density

Violin + Boxplots

```
In [58]: for(col in numeric_cols) {
    p <- ggplot(data, aes(x = "", y = .data[[col]])) +
        geom_violin(fill = "lightblue", alpha = 0.5) +
        geom_boxplot(width = 0.2, fill = "lightgreen") +
        ggtitle(paste(col, "Distribution")) +
        ylab(col) +
        xlab("")

    print(p)
}</pre>
```



```
In [55]: ggplot(data, aes(x = gender, y = math.score, fill = gender)) +
    geom_violin(alpha = 0.5) +
    geom_boxplot(width = 0.2, color="black") +
    ggtitle("Math Score Distribution by Gender")
```


Grouped Visualizations

Average Math Score by Gender

```
In [50]: ggplot(data, aes(x=gender, y=`math.score`, fill=gender)) +
    stat_summary(fun="mean", geom="bar") +
    ggtitle("Average Math Score by Gender") +
    theme_minimal()
```

Average Math Score by Gender

Reading Score by Lunch Type

```
In [51]: ggplot(data, aes(x=lunch, y=`reading.score`, fill=lunch)) +
    geom_boxplot() +
    ggtitle("Reading Score by Lunch Type") +
    theme_minimal()
```


Pairwise Relationships

