Introduction to Data Mining

Lab 2: Evaluation

Name: Phạm Đức Đạt ID Student: ITITIU20184

2.1. Be a classifier

In the second class, we are going to learn how to use datasets to evaluate data mining algorithms in Weka. (See the lecture of class 2 by Ian H. Witten, [1]¹)

Interactive decision tree construction

- → Follow the instruction in [1] to see how decision trees are created for different combinations of attributes in a dataset. Firstly, a dataset and a training set are selected. Secondly, we choose and start running UserClassifier to see a decision tree in the Tree Visualizer. In the Data Visualizer, thirdly, the attributes to use for X and Y are selected, we then select instances in a region in the graph and submit. At this point, the Tree Visualizer shows the tree.
- → Examine segment-challenge dataset to draw a decision tree for the following pair of attributes by selecting and submitting classes one by one, then remark how many instances are predicted correctly.

¹ http://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/

1

Build a tree, what strategy do you use? → bottom-up covering strategy

Can you build a "perfect" tree?

This tree has got 79.5062% correctly.

2.2. Training and testing

The lecture of evaluation (see [1]-2.2)

Follow the instructions in [1]-2.3: use **J48** to analyze *segment* dataset, and write down how accuracy it can achieve with different seeds. (If a random number seed is provided, the dataset will be shuffled before the subset is extracted.)

Random number	Percent accuracy (x)	Random number	Percent accuracy (x)
seeds		seeds	
1	96.6667%	6	96.6667%
2	94%	7	92%
3	94%	8	94%
4	96.6667%	9	93.3333%
5	95.3333%	10	94.6667%
Evaluation	Sample Mean	94.73334%	
	Standard deviation	1.	62

Note:

Sample mean
$$\overline{x} = \frac{\sum x_i}{n}$$

Variance
$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n-1}$$

Standard deviation σ

Remark? - The real performance of J48 on the segment-challenge dataset is approximately 95% accuracy, plus or minus approximately 2%.

So, we can say that performance of J48 on the segment-challenge dataset is between 93-97% accuracy.

2.3. Baseline accuracy

Follow the instructions in [1]-2.4 to run some classifiers for *diabetes* dataset:

Classifier	Accuracy
J48	76.2452%
NaiveBayes	77.0115%
IBk	72.7969%
PART	74.3295%
ZeroR	65.1042 %

What is Baseline accuracy? – It is approximately 65%.

For *supermarket* dataset

Classifier	Accuracy	
ZeroR	63.713%	
J48	62.6828%	

NaiveBayes	62.6828%
IBk	38.2708%
PART	62.6828%

Why do the classifiers achive lower accuracy? – Because for supermarket dataset, the attributes are not really informative.

2.4. Cross-validation

The *holdout* procedure: a certain amount is held over for testing and the remainder used for training.

Stratification: each class is properly represented in both training and test sets.

The *repeated holdout* method of error rate estimation: In each iteration a certain proportion, say two-thirds, of the data is randomly selected for training (using different random-number seeds), possibly with *stratification*, and the remainder is used for testing. The error rates on the different iterations are averaged to yield an overall error rate.

The lecture of cross validation, 10-fold cross-validation, stratified cross-validation (see [1]-2.5).

In *cross-validation*, you decide on a fixed number of folds, or partitions, of the data. Suppose we use three. Then the data is split into three approximately equal partitions; each in turn is used for testing and the remainder is used for training. That is, use two-thirds of the data for training and one-third for testing, and repeat the procedure three times so that in the end, every instance has been used exactly once for testing. This is called *three-fold cross-validation*, and if stratification is adopted as well—which it often is—it is *stratified three-fold cross-validation*.

Weka does stratified cross-validation by default.

Follow the instructions in [1]-2.5, and examine **J48** on *Diabetes* dataset.

Holdout (10%)	Percent accuracy (x)	10-fold cross- validation	Percent accuracy (x)
Random seed: 1	75.3	Random seed: 1	73.8
2	77.9	2	75.0
3	80.5	3	75.5
4	74.0	4	75.5
5	71.4	5	74.4
6	70.1	6	75.6
7	79.2	7	73.6
8	71.4	8	74.0
9	80.5	9	74.5
10	67.5	10	73.0
Sample Mean	74.8	Sample Mean	74.5
Standard deviation	4.6	Standard deviation	0.9

Examine **PART** on *Diabetes* dataset:

Holdout (10%)	Percent accuracy (x)	10-fold cross- validation	Percent accuracy (x)
Random seed: 1	75.3	Random seed: 1	75.3
2	75.3	2	73.0
3	71.4	3	72.8
4	72.7	4	74.9
5	77.9	5	74.2
6	71.4	6	73.0
7	74.0	7	73.4
8	68.8	8	71.9
9	75.3	9	74.6
10	66.2	10	71.4
Sample Mean	72.8	Sample Mean	67.0
Standard deviation	3.5	Standard deviation	7.0

Examine NaiveBayes on Diabetes dataset:

Holdout (10%)	Percent accuracy (x)	10-fold cross- validation	Percent accuracy (x)
Random seed: 1	77.9	Random seed: 1	76.3
2	75.3	2	75.3
3	72.7	3	76.2
4	68.8	4	75.5
5	80.5	5	75.1
6	76.6	6	75.8
7	76.6	7	76.2
8	74.0	8	75.3
9	76.6	9	76.0
10	71.4	10	75.9
Sample Mean	75.0	Sample Mean	75.8
Standard deviation	3.4	Standard deviation	0.4