This Mathcad sheet will calculate the longitudinal (surge) force, lateral (sway) force and turning moment (yaw), based on Wang's paper. Below please input the ship particulars as required:

Length of Moored vessel (LBP), in feet: L = 658

Midship cross-sectional area of moored ship, in ft^2 : A1 = 3936.299

Length of passing vessel (LBP), in feet: $L_2 = 902.2$

Midship cross-sectional area of passing ship, in ft^2 : $A2 \equiv 7099.888$

Water density, in slug/ft³: $\rho \equiv 1.9905$

Passing ship velocity (incl. current), in knots: $U \equiv 5$

Separation distance (from centerline to centerline), in feet: $SEP_DIST = 221.8$

Stagger distance (negative when passing ship behing moored ship), in feet: $STA_DIST \equiv 0$

Water depth, in feet D = 47

SEP_DIST = 221.8 Results:

SurgeForce = 8.01×10^{-12} in lbf SwayForce = 4.803×10^4 in lbf YawMoment = 2.574×10^{-9} in ft-lbf Sectional area curves as functions of length, for both moored and passing ship (from Wang's paper):

$$S_{1}(x1) \equiv \left(1 - \frac{4 \cdot x1^{2}}{L^{2}}\right) \cdot A1 \qquad dS_{1}(x1) \equiv \frac{d}{dx1}S_{1}(x1) \qquad S_{2}(x2) \equiv \left(1 - \frac{4 \cdot x2^{2}}{L_{2}^{2}}\right) \cdot A2 \ dS_{2}(x2) \equiv \frac{d}{dx2}S_{2}(x2)$$

$$F(x1,\xi,\eta) \equiv \begin{cases} \frac{L_2}{2} & \frac{dS_2(x2) \cdot (x2 - x1 + \xi)}{3} dx2 \\ -\frac{L_2}{2} & \left[(x2 - x1 + \xi)^2 + \eta^2 \right]^2 \end{cases}$$

$$G(x1, \xi, \eta) = \int_{-\frac{L_2}{2}}^{\frac{L_2}{2}} \frac{dS_2(x2)}{\left[(x2 - x1 + \xi)^2 + \eta^2 \right]^2} dx2$$

$$Wang_Surge(\xi,\eta) \equiv \frac{\rho \cdot U^2}{2 \cdot \pi} \cdot \int_{-\frac{L}{2}}^{\frac{L}{2}} dS_1(x1) \cdot F(x1,\xi,\eta) \, dx1 \qquad \text{surge force formulation for infinite depth}$$

$$Wang_Sway(\xi,\eta) \equiv \frac{\rho \cdot U^2 \cdot \eta}{\pi} \cdot \int_{-\frac{L}{2}}^{\frac{L}{2}} dS_1(x1) \cdot G(x1,\xi,\eta) \, dx1 \qquad \text{sway force formulation for infinite depth}$$

$$Wang_Yaw(\xi,\eta) \equiv \frac{\rho \cdot U^2 \cdot \eta}{\pi} \cdot \int_{-\frac{L}{2}}^{\frac{L}{2}} \left[\left(dS_1(x1) \cdot x1 + S_1(x1) \right) \cdot G(x1,\xi,\eta) \right] dx1 \qquad \text{yaw moment formulation for infinite depth}$$

$$eta(\eta, h, n) \equiv \sqrt{\eta^2 + 4 \cdot n^2 \cdot h^2}$$
 separation distance parameter as a function of finite depth

Wang_Surge_Depth(
$$\xi, \eta, h$$
) = $\sum_{n = -10}^{10}$ Wang_Surge($\xi, \text{eta}(\eta, h, n)$)

surge force as a function of finite depth

$$Wang_Sway_Depth(\xi, \eta, h) \equiv \eta \cdot \sum_{n = -10}^{10} \frac{Wang_Sway(\xi, eta(\eta, h, n))}{eta(\eta, h, n)}$$

sway force as a function of finite depth

$$Wang_Yaw_Depth(\xi, \eta, h) \equiv \eta \cdot \sum_{n = -10}^{10} \frac{Wang_Yaw(\xi, eta(\eta, h, n))}{eta(\eta, h, n)}$$

yaw moment as a function of finite depth

Plots of Surge, Sway and Yaw forces and moments for separation distance of 0.25xL for infinite water depth:

$$x := -10 \cdot L, -9.9 \cdot L.. \ 10 \cdot L$$

$$\frac{\text{Wang_Sway}(0,0.25 \cdot L)}{\rho \cdot \text{U}^2 \cdot \text{L}^{-2} \cdot \text{A1} \cdot \text{A2}} = 5.272$$

SurgeForce = Wang Surge Depth(STA DIST,SEP DIST,D)

SwayForce = Wang_Sway_Depth(STA_DIST, SEP_DIST, D)

Yaw Moment = Wang_Yaw_Depth(STA_DIST,SEP_DIST,D)

 $Wang_Sway_Depth(x,SI$

Wang_Surge_D	epth(x, SEP_DIST, I
3.814	
3.969	
4.131	
4.301	
4.48	
4.669	
4.867	
5.076	
5.297	
5.529	
5.775	
6.034	
6.308	
6.597	
6.903	
	•

Wang Sway De

w ang_	_Sway_D
	-0.524
	-0.551
	-0.579
	-0.609
	-0.642
	-0.676
	-0.713
	-0.751
	-0.793
	-0.837
	-0.885
	-0.935
	-0.989
	-1.047
	-1.109

$$286.85m = 941.109 \cdot ft$$

 $50\text{m} \cdot 15.85\text{m} \cdot 0.95 = 8103.879 \cdot \text{ft}^2$

 $286.85m = 941.109 \cdot ft$

 $50m \cdot 15.85m \cdot 0.95 = 8103.879 \cdot \text{ft}^2$

 $\frac{50m}{2} + 200\text{ft} + \frac{50m}{2} = 364.042 \cdot \text{ft}$

16.764m = $55 \cdot$ ft

moored length

moored cross section

passing length

passing cross section

Sep distance

water depth

pth(x, SEP_DIST, D) =

Wang_Yaw_Depth(x, SEP_DIST, D)

8.552
9.08
9.647
10.256
10.909
11.612
12.368
13.182
14.059
15.005
16.026
17.128
18.321
19.611
21.008

