

AI ML DS Data Science Data Analysis Data Visualization Machine Learning Deep Learning NLP Compute

Time Series Analysis in R

Last Updated: 11 Mar, 2024

Time Series Analysis in R is used to see how an object behaves over some time. In R Programming Language, it can be easily done by the ts() function with some parameters. Time series takes the data vector and each data is connected with a timestamp value as given by the user. in R time series analysis this function is mostly used to learn and forecast the behavior of an asset in business for a while. For example, sales analysis of a company, inventory analysis, price analysis of a particular stock or market, population analysis, etc.

Syntax: objectName <- ts(data, start, end, frequency) where.

- data represents the data vector
- **start** represents the first observation in time series
- end represents the last observation in time series
- **frequency** represents number of observations per unit time. For example, frequency=1 for monthly data.

Note: To know about more optional parameters, use the following command in the R console:

Ad: (0:10)

SKIP

help("ts")

Time Series Analysis

Let's take the example of the COVID-19 pandemic situation. Taking the total number of positive cases of COVID-19 cases weekly from 22 January 2020 to 15 April 2020 the world in data vector.

R

```
# Weekly data of COVID-19 positive cases from
# 22 January, 2020 to 15 April, 2020
x <- c(580, 7813, 28266, 59287, 75700,
        87820, 95314, 126214, 218843, 471497,
        936851, 1508725, 2072113)
# library required for decimal_date() function
library(lubridate)</pre>
```

Output:

Time Series Analysis in R

From here we get our saved files and when we click on it so we get our plot that have we saved.

The R code creates a vector x representing weekly COVID-19 positive cases. The <code>lubridate</code> library is loaded for date functions. A PNG file named "timeSeries.png" is set up for output. A time series object <code>mts</code> is created from the data, starting on January 22, 2020. The code plots the time series graph with labels and a title. The resulting plot is saved as "timeSeries.png."

Multivariate Time Series Analysis

Multivariate Time Series is creating multiple time series in a single chart. Taking data of total positive cases and total deaths from COVID-19 weekly from 22 January 2020 to 15 April 2020 in a data vector.

R

```
# Weekly data of COVID-19 positive cases and
# weekly deaths from 22 January, 2020 to
# 15 April, 2020
positiveCases <- c(580, 7813, 28266, 59287,
                75700, 87820, 95314, 126214,
                218843, 471497, 936851,
                1508725, 2072113)
deaths <- c(17, 270, 565, 1261, 2126, 2800,
            3285, 4628, 8951, 21283, 47210,
            88480, 138475)
# library required for decimal_date() function
library(lubridate)
# output to be created as png file
png(file="multivariateTimeSeries.png")
# creating multivariate time series object
# from date 22 January, 2020
mts <- ts(cbind(positiveCases, deaths),</pre>
start = decimal_date(ymd("2020-01-22")),
                    frequency = 365.25 / 7)
# plotting the graph
plot(mts, xlab ="Weekly Data",
    main ="COVID-19 Cases",
    col.main ="darkgreen")
```

```
# saving the file
dev.off()
```

Output:

COVID-19 Cases

Multivariate Time Series Analysis using R

Time Series Forecasting

Forecasting can be done on time series using some models present in R. In this example, Arima automated model is used. To know about more parameters of arima() function, use the below command.

```
help("arima")
```

In the below code, forecasting is done using the forecast library and so, installation of the forecast library is necessary.

R

```
# Weekly data of COVID-19 cases from
# 22 January, 2020 to 15 April, 2020
```

```
x \leftarrow c(580, 7813, 28266, 59287, 75700,
    87820, 95314, 126214, 218843,
    471497, 936851, 1508725, 2072113)
# library required for decimal_date() function
library(lubridate)
# library required for forecasting
library(forecast)
# output to be created as png file
png(file ="forecastTimeSeries.png")
# creating time series object
# from date 22 January, 2020
mts \leftarrow ts(x, start = decimal_date(ymd("2020-01-22")),
                             frequency = 365.25 / 7)
# forecasting model using arima model
fit <- auto.arima(mts)</pre>
# Next 5 forecasted values
forecast(fit, 5)
# plotting the graph with next
# 5 weekly forecasted values
plot(forecast(fit, 5), xlab ="Weekly Data",
ylab ="Total Positive Cases",
main ="COVID-19 Pandemic", col.main ="darkgreen")
# saving the file
dev.off()
```

Output:

	Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
2020.307		2547989	2491957	2604020	2462296	2633682
2020.326		2915130	2721277	3108983	2618657	3211603
2020.345		3202354	2783402	3621307	2561622	3843087
2020.364		3462692	2748533	4176851	2370480	4554904
2020.383		3745054	2692884	4797225	2135898	5354210

Below graph plots estimated forecasted values of COVID-19 if it continues to be widespread for the next 5 weeks.

COVID-19 Pandemic

Time Series Forecasting using R

The R code initializes a vector x with weekly COVID-19 case data from January 22, 2020, to April 15, 2020.

- 1. The lubridate library is loaded for date manipulation, and the forecast library is loaded for time series forecasting.
- 2. A PNG file named "forecastTimeSeries.png" is set as the output file for the upcoming plot.
- 3. A time series object mts is created with the COVID-19 case data, starting on January 22, 2020, using the ts() function.
- 4. The code utilizes the auto.arima() function to build an ARIMA forecasting model (fit) for the time series.
- 5. The next 5 forecasted values are obtained using the forecast() function applied to the fitted model.
- 6. The code plots the original time series along with the next 5 weekly forecasted values, and the resulting graph is saved as "forecastTimeSeries.png."