MCSP is Hard for Read-Once Nondeterministic Branching Programs

Ludmila Glinskih

Artur Riazanov

Boston University

EPFL

LATIN 2022 Guanajuato, Mexico, November 8

Outline

- Minimum Circuit Size Problem
- Branching Programs
- Our result: every 1-NBP computing MCSP has superpolynomial size
- Technique

Minimum Circuit Size Problem

Input:

Minimum Circuit Size Problem

Input:

- 1 0 0 1 0 1 1 0 ... 1
- truth table of a Boolean function $f: \{0, 1\}^n \to \{0, 1\}$ Truth table of f of length $N = 2^n$
- size parameter s

Minimum Circuit Size Problem

Input:

- truth table of a Boolean function $f: \{0, 1\}^n \to \{0, 1\}$
- Truth table of f of length $N = 2^n$

• size parameter s

Output:

yes, if f can be computed by a circuit of size at most s

• MCSP is in NP
Guess a circuit and check, whether it computes f or not

- MCSP is in NP
 Guess a circuit and check, whether it computes f or not
- MCSP $\in P \Rightarrow$ no strong PRGs [Razborov, Rudich, 1994]

- MCSP is in NP
 Guess a circuit and check, whether it computes f or not
- MCSP $\in P \Rightarrow$ no strong PRGs [Razborov, Rudich, 1994]
- MCSP is NP-complete $\Rightarrow EXP \neq ZPP$ [Murray, Williams, 2015]

- MCSP is in NP Guess a circuit and check, whether it computes f or not
- MCSP $\in P \Rightarrow$ no strong PRGs [Razborov, Rudich, 1994]
- MCSP is NP-complete $\Rightarrow EXP \neq ZPP$ [Murray, Williams, 2015]
- Complexity of MCSP in restricted classes is important too: If MCSP cannot be computed by
 - a branching program of size N^{2.01}
 formula of size N^{3.01}

 - circuit of size $N^{1.01}$

Then NP $\not\subset C$ -SIZE[n^k] for all k [Chen, Jin, Williams, 2019]

In multiple computational models MCSP was shown to be hard

In multiple computational models MCSP was shown to be hard

• $AC^0(MCSP) = 2^{\Omega(N^{\frac{1}{d}})}$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

In multiple computational models MCSP was shown to be hard

• $AC^0(MCSP) = 2^{\Omega(N^{\frac{1}{d}})}$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

• AC^0 [mod p](MCSP)= $2^{\Omega(N^{\frac{0.49}{d}})}$ [Golovnev, Ilango, Impagliazzo, Kabanets, Kolokolova, Tal, 2019]

In multiple computational models MCSP was shown to be hard

- $AC^0(MCSP) = 2^{\Omega(N^{\frac{1}{d}})}$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
- AC^0 [mod p](MCSP)= $2^{\Omega(N^{\frac{0.49}{d}})}$ [Golovnev, Ilango, Impagliazzo, Kabanets, Kolokolova, Tal, 2019]
- 1-coNBP(MCSP)= $2^{\Omega(N)}$ [Cheraghchi, Hirahara, Myrisiotis, Yoshida, 2019]

- BP is a way to represent Boolean function:
 - directed graph without cycles
 - one source
 - two sinks: labeled with 0 and 1
 - all other vertices labeled with variables
 - values of variables on edges
- Size of a BP is a number of vertices

- BP is a way to represent Boolean function:
 - directed graph without cycles
 - one source
 - two sinks: labeled with 0 and 1
 - all other vertices labeled with variables
 - values of variables on edges
- Size of a BP is a number of vertices

- BP is a way to represent Boolean function:
 - directed graph without cycles
 - one source
 - two sinks: labeled with 0 and 1
 - all other vertices labeled with variables
 - values of variables on edges
- Size of a BP is a number of vertices

- BP is a way to represent Boolean function:
 - directed graph without cycles
 - one source
 - two sinks: labeled with 0 and 1
 - all other vertices labeled with variables
 - values of variables on edges
- Size of a BP is a number of vertices

- BP is a way to represent Boolean function:
 - directed graph without cycles
 - one source
 - two sinks: labeled with 0 and 1
 - all other vertices labeled with variables
 - values of variables on edges
- Size of a BP is a number of vertices

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals $1 \Leftrightarrow \text{exists a path to } 1\text{-sink}$

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals $1 \Leftrightarrow \text{exists a path to } 1\text{-sink}$

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals $1 \Leftrightarrow \text{exists a path to } 1\text{-sink}$

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals $1 \Leftrightarrow \text{exists a path to } 1\text{-sink}$

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals $1 \Leftrightarrow \text{exists a path to } 1\text{-sink}$

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals $1 \Leftrightarrow \text{exists a path to } 1\text{-sink}$

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals $1 \Leftrightarrow \text{exists a path to } 1\text{-sink}$

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals $1 \Leftrightarrow \text{exists a path to } 1\text{-sink}$

Complexity class with logarithmic space

• $BP(f)=poly \Leftrightarrow f \text{ is in L/poly}$

Complexity class with logarithmic space

• BP(f)=poly \Leftrightarrow f is in L/poly

BP(f) is a BP complexity of f

Complexity class with logarithmic space

• $BP(f)=poly \Leftrightarrow f \text{ is in L/poly}$

BP(f) is a BP complexity of f

• NBP corresponds to NL/poly

Best lower bounds for branching programs

• At least a $1 - \frac{1}{2^n}$ fraction of functions require BP size $\frac{2^n}{4n}$

Best lower bounds for branching programs

• At least a $1 - \frac{1}{2^n}$ fraction of functions require BP size $\frac{2^n}{4n}$

• The best lower bound: BP(ED)= $\Omega\left(\frac{n^2}{\log^2 n}\right)$ [Nechiporuk, 1966]

Best lower bounds for branching programs

• At least a $1 - \frac{1}{2^n}$ fraction of functions require BP size $\frac{2^n}{4n}$

• The best lower bound: BP(ED)= $\Omega\left(\frac{n^2}{\log^2 n}\right)$ [Nechiporuk, 1966]

- Recent results:
 - BP(MCSP)= $\widetilde{\Omega}(N^2)$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
 - Barrier on proving better than $\widetilde{\Omega}(N^2)$ for MCSP [Chen, Jin, Williams, 2019]

Read-once branching programs

1-BP (1-NBP) if for every path every variable occurs no more than 1 time

Read-once branching programs

1-BP (1-NBP) if for every path every variable occurs no more than 1 time

Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE_ONLY) = $2^{\Omega(\sqrt{n})}$ [Borodin, Razborov, Smolensky, 1993]

Known lower bounds for 1-NBPs

- 1-NBP(CLIQUE_ONLY) = $2^{\Omega(\sqrt{n})}$ [Borodin, Razborov, Smolensky, 1993]
- 1-NBP(\bigoplus_{Δ})= $2^{\Omega(n)}$ [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
 - \bigoplus_{Δ} parity of triangles in a graph

Known lower bounds for 1-NBPs

- 1-NBP(CLIQUE_ONLY) = $2^{\Omega(\sqrt{n})}$ [Borodin, Razborov, Smolensky, 1993]
- 1-NBP(\bigoplus_{Δ})= $2^{\Omega(n)}$ [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
 - \bigoplus_{Δ} parity of triangles in a graph
- 1-coNBP(MCSP) = $2^{\Omega(n)}$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
 - Equivalent to 1-NBP(!MCSP) = $2^{\Omega(n)}$

Known lower bounds for 1-NBPs

- 1-NBP(CLIQUE_ONLY) = $2^{\Omega(\sqrt{n})}$ [Borodin, Razborov, Smolensky, 1993]
- 1-NBP(\bigoplus_{Δ})= $2^{\Omega(n)}$ [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
 - \bigoplus_{Δ} parity of triangles in a graph
- 1-coNBP(MCSP) = $2^{\Omega(n)}$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
 - Equivalent to 1-NBP(!MCSP) = $2^{\Omega(n)}$

MCSP naturally a nondeterministic problem, so it is harder to prove a lower bound against NBP

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

This result is tight for MCSP with linear size parameter

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

This result is tight for MCSP with linear size parameter

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

This result is tight for MCSP with linear size parameter

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

(n x n)-Bipartite
Independent Set
Problem

This result is tight for MCSP with linear size parameter

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

This result is tight for MCSP with linear size parameter

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

This result is tight for MCSP with linear size parameter

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$ In MCSP* input is a truth table of a partial function

(n x n)-Bipartite Independent Set Problem

ETH-hard

ETH-hard

This result is tight for MCSP with linear size parameter

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log\log N)}$ In MCSP* input is a truth table of a partial function reduction | MCSP* |

ETH-hard

Unconditionally

hard for 1-NBP

This result is tight for MCSP with linear size parameter

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log\log N)}$ In MCSP* input is a truth table of a partial function

(n x n)-Bipartite Independent Set Problem

MCSP*

47

Unconditionally

hard for 1-NBP

This result is tight for MCSP with linear size parameter

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log\log N)}$ In MCSP* input is a truth table of a partial function reduction

[Independent Set Problem]

[Independent Set Prob

This result is tight for MCSP with linear size parameter

49

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$ In MCSP* input is a truth table of Exp-time a partial function reduction (n x n)-Bipartite Independent Set MCSP* Problem Computable by 1-BP Have the same ETH-hard 1-NBP complexity Unconditionally hard for 1-NBP **MCSP**

- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
 - These vertices are from the two quadrants
 - These vertices form independent set

- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
 - These vertices are from the two quadrants
 - These vertices form independent set

- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
 - These vertices are from the two quadrants
 - These vertices form independent set

- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
 - These vertices are from the two quadrants
 - These vertices form independent set

- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
 - These vertices are from the two quadrants
 - These vertices form independent set

(n x n)-BPIS is hard for 1-NBP

Lemma: size of 1-NBP computing an $(n \times n)$ -BPIS is $2^{\Omega(n \log n)}$

(n x n)-BPIS is hard for 1-NBP

Lemma: size of 1-NBP computing an $(n \times n)$ -BPIS is $2^{\Omega(n \log n)}$

Idea of the proof:

• Show that the minimum 1-NBP for Bipartite Permutation Independent Set has the same size as the minimum 1-NBP for Bipartite Permutation Clique

(n x n)-BPIS is hard for 1-NBP

Lemma: size of 1-NBP computing an $(n \times n)$ -BPIS is $2^{\Omega(n \log n)}$

Idea of the proof:

- Show that the minimum 1-NBP for Bipartite Permutation Independent Set has the same size as the minimum 1-NBP for Bipartite Permutation Clique
- Adapt the proof of the lower bound on 1-NBP for CLIQUE_ONLY to get a lower bound on BPC

Progress so far


```
\gamma(x,y,z) = \begin{cases} \bigvee_{i \in [2n]} (y_i \wedge z_i) &, \text{ if } x = 0^{2n} \\ \bigvee_{i \in [2n]} z_i &, \text{ if } x = 1^{2n} \\ \bigvee_{i \in [2n]} (x_i \vee y_i) &, \text{ if } z = 1^{2n} \\ 0 &, \text{ if } z = 0^{2n} \\ \text{OR}_n(x_1,\ldots,x_n) &, \text{ if } z = 1^n0^n \text{ and } y = 0^{2n} \\ \text{OR}_n(x_{n+1},\ldots,x_{2n}) &, \text{ if } z = 0^n1^n \text{ and } y = 0^{2n} \\ 1 &, \text{ if } \exists \; ((j,k),(j',k')) \in E \text{ such that } (x,y,z) = (\overline{e_k e_{k'}},0^{2n},e_j e_{j'}) \\ \star &, \text{ otherwise} \end{cases}
```

```
\gamma(x,y,z) = \begin{cases} \bigvee_{i \in [2n]} (y_i \wedge z_i) &, \text{ if } x = 0^{2n} \\ \bigvee_{i \in [2n]} z_i &, \text{ if } x = 1^{2n} \\ \bigvee_{i \in [2n]} (x_i \vee y_i) &, \text{ if } z = 1^{2n} \\ 0 &, \text{ if } z = 0^{2n} \\ \text{OR}_n(x_1,\ldots,x_n) &, \text{ if } z = 1^n0^n \text{ and } y = 0^{2n} \\ \text{OR}_n(x_{n+1},\ldots,x_{2n}) &, \text{ if } z = 0^n1^n \text{ and } y = 0^{2n} \\ 1 &, \text{ if } \exists \; ((j,k),(j',k')) \in E \text{ such that } (x,y,z) = (\overline{e_k e_{k'}},0^{2n},e_j e_{j'}) \\ \star &, \text{ otherwise} \end{cases}
```

$$\gamma(x,y,z) = \begin{cases} \bigvee_{i \in [2n]} (y_i \wedge z_i) &, \text{ if } x = 0^{2n} \\ \bigvee_{i \in [2n]} z_i &, \text{ if } x = 1^{2n} \\ \bigvee_{i \in [2n]} (x_i \vee y_i) &, \text{ if } z = 1^{2n} \\ 0 &, \text{ if } z = 0^{2n} \\ \operatorname{OR}_n(x_1,\ldots,x_n) &, \text{ if } z = 1^n0^n \text{ and } y = 0^{2n} \\ \operatorname{OR}_n(x_{n+1},\ldots,x_{2n}) &, \text{ if } z = 0^n1^n \text{ and } y = 0^{2n} \\ 1 &, \text{ if } \exists \; ((j,k),(j',k')) \in E \text{ such that } (x,y,z) = (\overline{e_k e_{k'}},0^{2n},e_j e_{j'}) \\ \star &, \text{ otherwise} \end{cases}$$

$$\gamma(x,y,z) = \begin{cases} \bigvee_{i \in [2n]} (y_i \wedge z_i) &, \text{ if } x = 0^{2n} \\ \bigvee_{i \in [2n]} z_i &, \text{ if } x = 1^{2n} \\ \bigvee_{i \in [2n]} (x_i \vee y_i) &, \text{ if } z = 1^{2n} \\ 0 &, \text{ if } z = 0^{2n} \\ \text{OR}_n(x_1,\ldots,x_n) &, \text{ if } z = 1^n0^n \text{ and } y = 0^{2n} \\ \text{OR}_n(x_{n+1},\ldots,x_{2n}) &, \text{ if } z = 0^n1^n \text{ and } y = 0^{2n} \\ 1 &, \text{ if } \exists \; ((j,k),(j',k')) \in E \text{ such that } (x,y,z) = (\overline{e_k e_{k'}},0^{2n},e_j e_{j'}) \\ \star &, \text{ otherwise} \end{cases}$$

Substitute bits of the truth table of γ that do not depend on BPIS' input

$$\gamma(x,y,z) = \begin{cases} \bigvee_{i \in [2n]} (y_i \wedge z_i) &, \text{ if } x = 0^{2n} \\ \bigvee_{i \in [2n]} z_i &, \text{ if } x = 1^{2n} \\ \bigvee_{i \in [2n]} (x_i \vee y_i) &, \text{ if } z = 1^{2n} \\ 0 &, \text{ if } z = 0^{2n} \\ \text{OR}_n(x_1,\ldots,x_n) &, \text{ if } z = 1^n0^n \text{ and } y = 0^{2n} \\ \text{OR}_n(x_{n+1},\ldots,x_{2n}) &, \text{ if } z = 0^n1^n \text{ and } y = 0^{2n} \\ \end{cases}$$
 Only these bits of the truth table depend on the input bits of BPIS
$$0 \\ \text{OR}_n(x_{n+1},\ldots,x_{2n}) &, \text{ if } z = 0^n1^n \text{ and } y = 0^{2n} \\ 1 &, \text{ if } \exists \ ((j,k),(j',k')) \in E \text{ such that } (x,y,z) = (\overline{e_k e_{k'}},0^{2n},e_j e_{j'}) \\ \star &, \text{ otherwise} \end{cases}$$

1-NBP for MCSP*

Substitute bits of the truth table of γ that do not depend on BPIS' input

Substitute 1-BPs that computes dependency on the edges of BPIS

Almost finished

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal 1–NBP computing MCSP

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal 1–NBP computing MCSP

1-NBP for MCSP*

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal 1–NBP computing MCSP

1-NBP for MCSP*

1-NBP for MCSP

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal 1–NBP computing MCSP

1-NBP for MCSP*

1-NBP for MCSP

1-NBP for MCSP

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal 1–NBP computing MCSP

1-NBP for MCSP

1-NBP for MCSP

1-NBP for MCSP

1-NBP for MCSP*

Putting all together

Upper bound

Lemma: MCSP on an input of length 2^n with a size parameter s can be computed by a 1-NBP of size $O(2^n 2^{s \log s})$

Upper bound

Simple guess and check strategy

Lemma: MCSP on an input of length 2^n with a size parameter s can be computed by a 1-NBP of size $O(2^n 2^{s \log s})$

Upper bound

Simple guess and check strategy

Lemma: MCSP on an input of length 2^n with a size parameter s can be computed by a 1-NBP of size $O(2^n 2^{s \log s})$

Corollary: our lower bound is tight for inputs with a linear size parameter

Open questions

- Show tight lower bound for MCSP with higher size parameters
 - The same technique cannot work, as we cannot construct a truth table of a function with higher than linear circuit complexity

Open questions

- Show tight lower bound for MCSP with higher size parameters
 - The same technique cannot work, as we cannot construct a truth table of a function with higher than linear circuit complexity
- Extend this result to other models of computations
 - For any model in which (n x n)-BPIS is hard and the reduction to the truth table is efficiently computable the same size lower bound will hold

Partial Minimum Circuit Size Problem

Input:

- truth table of a partial Boolean function $f: \{0, 1\}^n \to \{0, 1, *\}$
- size parameter s

Output:

yes, if exists a total function g that is consistent with f and can be computed by a circuit of size at most s

Truth table of f of length $N = 2^n$

