IL LIVELLO LOGICO DIGITALE (Prima parte)

Argomenti

- Il livello logico digitale:
 - algebra di Boole;
 - le trasformazioni nel dominio di Boole.
- Circuiti logici digitali elementari:
 - circuiti Integrati;
 - circuiti combinatori e sequenziali;
 - circuiti combinatori:
 - Multiplexer;
 - Decoder;
 - Comparatori;
 - Programmable Logic Arrays.
 - Circuiti Aritmetici:
 - Shifter;
 - Adder;
 - Arithmetic Logic Units.
 - Clock.

Il livello logico digitale

- Il livello logico digitale è l'hardware del calcolatore.
- È fatto di piccoli dispositivi elettronici chiamati porte logiche che lavorano con l'albegra di Boole.
- Utilizzando questi piccoli mattoncini si possono comporre funzioni complesse come sommatori, shifter, memorie,...

Algebra di Boole

- George Boole (1815–1864) è il matematico che ha ideato quest'algebra basata su un insieme (B) di due valori: true e false.
- Per convenzione al valore logico true corrisponde il simbolo 1 e a false il simbolo 0.

 Sul dominio B, si possono definire delle funzioni booleane:

funzioni unarie: B
$$\longrightarrow$$
 B

funzioni binarie: B \times B \longrightarrow B

...

funzioni n-arie: B \times ... \times B \longrightarrow B

Funzioni Booleane come scatole nere

 Si possono immaginare le funzioni logiche come delle scatole nere che ricevono in ingresso e restituiscono in uscita variabili logiche.

Confronto tra funzioni booleane e funzioni reali

- Il comportamento di una funzione booleana è semplice da descrivere, perché gli ingressi/uscite variano in un insieme finito di valori.
- La tavola di verità è lo strumento che permette di esplorare esaustivamente tutte le possibili combinazioni.

L'insieme delle possibili funzioni booleane

 Con n ingressi si hanno 2ⁿ combinazioni che originano 2^{2ⁿ} possibili funzioni.

Unary Boolean functions

Le funzioni ad un solo operando sono 2²=4.

Negation (NOT operator)

- Esiste una stretta correlazione tra algebra booleana e circuiti digitali.
- La negazione è una funzione che inverte il valore della variabile in ingresso.

Segnali digitali

 La relazione che sussiste tra livelli logici digitali e reali segnali analogici:

L'insieme delle possibili funzioni booleane binarie

Proprietà dell'algebra di Boole

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{AB}$

Come verificare la validità di un'equivalenza?

$$A + AB \stackrel{?}{=} A$$

Utilizzando il metodo algebrico attraverso le proprietà:

$$A + AB = A(1 + B) = A$$

Utilizzando la tavola di verità con il metodo esaustivo:

A	В	AB	A + AB	A	
0	0	0	0	0	la dua acpressioni
0	1	0	0	0	Le due espressioni sono identiche per
1	0	0	1	1	ogni combinazione
1	1	1	1	1	degli ingressi

 Utilizzando la logica e le definizioni: la variabile A è già presente a sinistra dell'operatore OR perciò la sua presenza nel gruppo di AND ha lo scopo di ridurre B ad A (quindi non aggiunge nulla a B).

Come verificare la validità di un'equivalenza?

$$A + \overline{A}B \stackrel{?}{=} A + B$$

 Utilizzando il metodo algebrico attraverso le proprietà (distributiva):

$$A + \overline{A}B = (A + \overline{A})(A + B) = A + B$$

Utilizzando la tavola di verità con il metodo esaustivo:

A	В	Ā	Ā B	A + AB	A+B	
0	0	1	0	0	0	Le due espressioni
0	1	1	1	1	1	sono identiche per
1	0	0	0	1	1	ogni combinazione
1	1	0	0	1	1	degli ingressi

 Utilizzando la logica e le definizioni: la variabile A è già presente a sinistra dell'operatore OR perciò la sua presenza nel gruppo di AND in forma negata ha lo scopo di ridurre B ad A negato (quindi se A è true l'espressione è true mentre se A è falsa il risultato è B).

Le trasformazioni nel dominio di Boole

- Per ogni espressione logica c'è un circuito digitale equivalente e una colonna della tavola di verità.
- Per ogni colonna della tavola di verità c'è una espressione che la rappresenta e un corrispondente circuito digitale.
- Per ogni circuito digitale c'è una espressione che lo descrive ed una corrispondente colonna della tavola di verità.
- Ora si analizzeranno la trasformazione di una colonna della tavola di verità nella corrispondente espressione logica.

Tavola di verità → espressione logica

 Si vuole tradurre una colonna (X) della tavola di verità in funzione delle variabili A e B, cioè X = F (A, B).

A	В	X	A
0	0	0	$B \longrightarrow X$
0	1	1	
1	0	1	Il comportamento del circuito è descrit
1	1	0	completamente dalla tavola di verità

- Si considerano il minor numero di valori 0 oppure 1:
- True 1: X è composta da un insieme di gruppi AND che contengono tutte le variabili (negate quelle che hanno il valore 0 nella riga corrispondente), legati con OR.
- False 0: X è composta da un insieme di gruppi OR che contengono tutte le variabili (negate quelle che hanno il valore 1 nella riga corrispondente), legati con AND.

Tavola di verità → espressione logica (1)

- X è composto da tanti gruppi AND quanti sono i valori true nella colonna della tavola di verità.
- Ogni gruppo di AND contiene tutte le variabili in ingresso, sono negate quelle che sono false nella riga corrispondente.

$$X = \overline{A} \cdot B + A \cdot \overline{B}$$

Tavola di verità → espressione logica (0)

- X è composto da tanti gruppi OR quanti sono i valori false nella colonna della tavola di verità.
- Ogni gruppo di OR contiene tutte le variabili in ingresso, sono negate quelle che sono **true** nella riga corrispondente.

 ...so any Boolean function can be implemented using NOT, AND, and OR gates.

Gli operatori universali

- Abbiamo visto come ogni funzione logica booleana (una colonna della tavola di verità) si possa realizzare con gli operatori AND, OR e NOT
- È facile dimostrare che questi tre operatori possano essere realizzati con una sola porta NAND o NOR.
- Quindi ogni funzione logica booleana può essere realizzata con un solo operatore detto universale.

Gli operatori universali

- Tutte le porte logiche possono essere realizzate utilizzando dolo porte NAND o NOR.
- La presenza di operatori universali è molto importante per la costruzione dei circuiti digitali.

Circuiti integrati

- Le porte logiche sono vendute individualmente ma dentro i circuiti integrati (or chip).
- Essi sono pezzi di silicio sul quale sono stampati dei circuiti.
- I chip possono essere divisi in classi in funzione del numero di porte logiche che contengono:
 - SSI (Small Scale Integrated) sono circuiti con meno di 10 porte;
 - MSI (Medium Scale Integrated) sono circuiti con più di 10 porte e meno di 100;
 - LSI (Large Scale Integrated) sono circuiti con più di 100 porte e meno di 100.000;
 - VLSI (Very Large Scale Integrated) sono circuiti con più di 100.000 porte.

Circuiti combinatori e sequenziali

 I circuiti combinatori sono quei circuiti digitali nei quali l'uscita (O) dipende esclusivamente dagli ingressi (e non dallo stato del circuito, cioè dalla configurazione precedente degli ingressi):

 In un circuito sequenziale l'uscita (O) dipende dagli ingressi e dallo stato (S) del circuito:

$$\begin{array}{c} I_0 \\ I_1 \\ \vdots \\ I_{n-1} \end{array} \longrightarrow \begin{array}{c} \textbf{Circuito} \\ \textbf{Sequenziale} \\ \textbf{(S)} \end{array} \longrightarrow \textbf{O} = \textbf{F} (\textbf{S}, \, \textbf{I}_0 \, , \, \textbf{I}_1 \, , ..., \, \textbf{I}_{n-1} \,)$$

Multiplexer

 Il multiplexer è un circuito con 2ⁿ ingressi, un' uscita e n ingressi di controlo (selettorie) che selezionano la linea in ingresso che verrà trasferita in uscita:

Multiplexer per realizzare funzioni booleane

 Il Multiplexer può essere utilizzato per realizzare qualsiasi funzione logica.

Si consideri ad esempio la seguente funzione F che ha 3

ingressi: A, B e C:

Tavola di verità

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Il multiplexer è cablato per

Si può utilizzare un multiplexer con 3 ¹/₂ ingressi di selezione come mostrato in figura.

Decoder (decodificatori)

- È un circuito che riceve un numero a n-bit come ingresso e seleziona in uscita l'unica linea corrispondente al suo valore numerico.
- È utile quando si dispone di un indirizzo e si vuole selezionare il chip di memoria corrispondente.

Tavola di verità

A	В	C	D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0		0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Schema digitale di un decoder a 3 ingressi

Comparatore

- Questo circuito compara due parole A e B di 4 bit.
- Il risultato è 1 se i bit della prima parola sono uguali a quelli della seconda, cioè: A_i=B_i con i=0, 1, 2, e 3.
- Lo schema si basa sull'OR
 Esclusivo (XOR) delle due parole
 (eseguito bit-a-bit), i risultati
 parziali dei confronti tra i singoli
 bit (tutti 0 se le due parole sono
 identiche) sono inviati ad un
 NOR, che risponde 1 solo quando
 A=B.

PLA (Programmable Logic Arrays)

- Un chip generico per la costruzione di una funzione arbitraria può essere costruito formando gruppi di AND e OR è la PLA (Programmable Logic Array).
- Un esempio di PLA con 12 ingressi è mostrato in figura.
- Il cuore del circuito è un array di 50 porte AND che creano una matrice 24 × 50.
- Ogni linea di ingresso delle 50 porte AND contiene un fusibile.

Circuiti arithmetici – Lo shifter

- L'uscita è una parola (nell'esempio a 8 bit) che verrà fatta scorrere a destra o sinistra di un bit.
- Il segnale C definisce la direzione dello scorrimento (0=sinistra, 1=destra).

Half Adder (Semi-sommatore)

- Un sommatore è un circuito in grado di eseguire la somma tra bit.
- Considerando due varibili binarie A e B, il circuito genera il risultato della somma e l'eventuale riporto.
- Questo circuito molto semplice è chiamato half adder, o semi-sommatore, poiché non gestisce un riporto in ingresso.

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder (Sommatore)

 Utilizzando due half-adders si può costruire un full adder che prende in ingresso tre bit (A, B e riporto in ingresso) e restituisce in uscita somma e riporto (carry out).

A	В	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

ALU (Arithmetic Logic Unit)

- L'unità ALU contiene 3 differenti unità: un decoder, una unità logica e un full adder.
- Il Decoder permette di selezionare l'operazione richiesta in base ai segnali F₀ e F₁.

Fo	F ₁	Output	
0	0	A and B	
0	1	A or B	
1	0	not B	
1	1	A + B + Carry in	

- L'unità logica è in grado di calcolare:
 AB, A+B e la negazione di B.
- Il full adder somma A, B e il riporto in ingresso e calcola il risultato e l'eventuale riporto (carry out).

ALU ad n-bit

- Le ALU ad 1-bit possono essere assemblate insieme per costruire ALU di lunghezza variabile.
- Questa tecnica è detta bit slice (suddivisione di bit) e può essere applicata anche ai precedenti circuiti digitali che lavorano bit-a-bit.

Un ALU a 8-bit costruita con otto ALU ad un 1-bit.

Clock

- Il clock in questo contesto è un circuito che emette una serie di impulsi di larghezza predefinita a intervalli di tempo costanti.
- L'intervallo temporale compreso tra due fronti in salita (o discesa) di due impulsi consecutivi è detto ciclo di clock o periodo (T).

Clock

 Una tecnica che permette di aumentare la risoluzione del segnale di clock (C1) è di effetuare un AND tra il segnale originario e una sua replica ritardata (C2).

