CSC 446/546 Operations Research: Simulation / Operations Research II

Dr. Sudhakar Ganti sganti@uvic.ca

Course details

- Lectures: Tuesday, Wednesday and Friday 12:30 to 13:20PM, COR A120
- Office hours: TWF 10:30-11:30AM
- My office: **ECS 628**
- Text Book:
 - □ Discrete-Event System Simulation, Fifth Edition
 Jerry Banks, John S.Carson, Barry L.Nelson, David
 M.Nicol, Prentice Hall, 2005, ISBN: 0-13-144679-7

Course Website

- Class material (Slides, Assignments etc) will be available through connex system (<u>https://connex.csc.uvic.ca</u>) for all the registered students
- Let me know of any problems you may encounter
- I will post the class slides and other material in the pdf format

Plagiarism

"The action or practice of taking someone else's work, idea, etc., and passing it off as one's own; literary theft. (Oxford English Dictionary online, 2006)"

- Give credit when you use other people's content in your academic work.
- Your assignments, exams and projects must be your own original work, not someone else's.

What the course is about?

- It is not definitely about
 - □ Flight simulations!!
 - □ or other game simulations
 - □ or Virtual reality simulations
 - □ These all are concerned with graphical emulations of some real-world or imaginary problems
 - Issues are how well you can perform graphical modeling
 - Need faster graphical processors, better I/O, cool rendering algorithms
 - Useful for training and entertainment scenarios

What the course is about?

- It is about
 - Discrete Event Simulations
 - Will define soon what this is!!
 - Used to simulate systems or processes in order to study a particular design, it's behavior and performance characterization
 - □ The trick here is how well you capture the behavior (model) of the intended design

Interdisciplinary

Involves

- ☐ Statistics (Probability Theory)
 - Used to model various inputs, outputs and system behavior
 - Analyze the observed behavior
- Queueing Theory
 - Many real-life systems can be modeled as queues or network of queues
 - Analyze various Queueing systems and study their behavior
- Programming
 - Modeling the whole system using either general purpose languages (C, C++, Java) or special purpose languages.

Course Outline

- Introduction to Discrete-Event Simulations
- Elementary Probability and Queueing Theory
- Basic techniques of discrete event simulation
- Generating Random Numbers and Random Variates
- Input and output modeling
- Simulation Programming using general purpose languages and also special purpose simulation tools
- Analysis of Simulation results

Grading

- 4 Assignments (4@10%) = 40%
- 2 Mid-term Examination = 30%
 - □ Papers are different for CSC 446 and 546
- Final Project and Report = 30%
 - Projects will involve using a simulation tool
 - □ Topics will be listed in first week of October or you can choose your topics.
 - Expect grad students to take more challenging problems here.

What is expected

- Note that the course intention is to teach simulation concepts and methodology, but not any specific packages
- Therefore, students are expected to learn the usage of the simulation tools on their own, slowly but steadily!!
- We will use a simulation tool called OMNeT++ (http://www.omnetpp.org)
 - □ Mainly meant for Queueing network simulations
- It is installed on all Windows lab (ECS 250, 258, 266) machines
 - Documentation is available on the OMNeT webpage as well as on the course website.
- There is also another simulation tool available from SSFNET (<u>www.ssfnet.org</u>) written in Java.

Questions??

Poll

Poll

- Why are you taking this course?
- Anyone with Probability Theory background?
- Anyone with Queueing Theory background?
- Anyone with simulation tool experience?

What is Operations Research (OR) ??

What is Operations Research (OR)?

In a nutshell:

Operations research is the discipline of applying advanced analytical methods to help make better decisions and improve performance.

What is Operations Research (OR)?

- By using techniques such as mathematical modeling to analyze complex situations:
 - Operations research gives the *power to make* more effective decisions and build more productive systems based on:
 - More complete data
 - Consideration of all available options
 - Careful predictions of outcomes and estimates of risk
 - The latest decision tools and techniques

OR: The secret of better decision making

- Executives and Researchers in every kind of organization – large and small, private and public, for-profit and not-for-profit – are using operations research (O.R.)
 - □ to unlock the value in their data,
 - □ model complex systems,
 - performance characterization of systems
 - Bottleneck Analysis (Where the problem is ...)
 - Performance Analysis (How well the system works ..)
 - Risk Analysis (How reliable a given system is ..)
 - □ and make better decisions with less risk.

OR (continued ..)

- The performance of a given process (or system) depends upon:
 - □ What kind of "resources" it has and how many
 - Type, Dimensionality, Risk
 - Who is "contending (or accessing)" for these resources
 - Resource request and usage
 - Causes bottleneck if too much demand
 - □ How well these resources are "allocated"
 - Optimal Resource Allocation

OR: The secret of better decision making

- Whether O.R. is used to inform high-level strategy or to improve day-to-day operations, the results speak for themselves:
 - ☐ Insight into difficult problems.
 - □ Improved processes, productivity, and performance.
 - Millions in cost savings and increased revenues.
 - More (and better) options.
 - □ Accurate predictions, plans, and forecasts.
 - More profitable pricing. Greater market share. Higher quality. Superior ROI (Return Of Investment).
 - □ Better asset utilization....

OR (continued ..)

- To achieve these results, O.R. professionals draw upon the latest analytical technologies, including:
 - □ Simulations Giving you the ability to try out approaches and test ideas for improvement.
 - □ Optimization Narrowing your choices to the very best when there are virtually innumerable feasible options and comparing them is difficult.
 - Probability and statistics Helping you measure risk, mine data to find valuable connections and insights, test conclusions, and make reliable forecasts.

OR Value Proposition

- Business insight Providing quantitative and business insight into complex problems
- Business performance Improving business performance by embedding model-driven intelligence into an organization's information systems to improve decision making
- Cost reduction Finding new opportunities to decrease cost or investment
- Decision making Assessing the likely outcomes of decision alternatives and uncovering better alternatives
- Forecasting Providing a better basis for more accurate forecasting and planning

OR Value Proposition (continued ..)

- Improved scheduling Efficiently scheduling staff, equipment, events, and more
- Planning Applying quantitative techniques to support operations, tactical planning, and strategic planning
- Pricing Dynamically pricing products and services
- Productivity Helping organizations find ways to make processes and people more productive
- Profits Increasing revenue or return on investment; increasing market share
- Quality Improving quality as well as quantifying and balancing qualitative considerations

OR Value Proposition (continued ..)

- Recovery Gaining greater control and achieving turnaround
- Resources Gaining greater utilization from limited equipment, facilities, money, and personnel
- Risk Measuring risk quantitatively and uncovering factors critical to managing and reducing risk
- Throughput Increasing speed or throughput and decreasing delays

5 Signs one can benefit from OR

- Facing Complex Decisions
- Having Problems with Processes
- Troubled by Risk
- Organization not making use of its data
- Want to Beat the Competition

OR (continued ..)

- OR I: deals with Optimization Techniques
- OR II: deals with Simulations and Analysis

Time for OR Executive Guide