### Отчет по выполнению упражнения

Фигура Лиссажу

Горяйнова Алёна

## Содержание

| 1 | Цель работы                    | 5  |
|---|--------------------------------|----|
| 2 | Задание                        | 6  |
| 3 | Выполнение лабораторной работы | 7  |
| 4 | Выводы                         | 21 |

## Список иллюстраций

| 3.1  | Модель для построения фигуры Лиссажу в xcos                               | 7         |
|------|---------------------------------------------------------------------------|-----------|
| 3.2  | Ввод параметров для генератора синусоидальных колебаний                   | 8         |
| 3.3  | Ввод параметров для CSOPXY                                                | 9         |
| 3.4  | Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = 0$                     | 10        |
| 3.5  | Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = \pi/4$                 | 10        |
| 3.6  | Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = \pi/2$                 |           |
| 3.7  | Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = 3\pi/4$                |           |
| 3.8  | Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = \pi$                   | <b>12</b> |
| 3.9  | Ввод параметров для генератора синусоидальных колебаний                   |           |
|      | $m{0}$ Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=0$                        |           |
|      | $A$ Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = \pi/4$             |           |
|      | $\mathbf{P}$ Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/2$              |           |
|      | В Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = 3\pi/4$              |           |
| 3.14 | $\mathbf{A}$ Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi$                | <b>15</b> |
|      | Ввод параметров для генератора синусоидальных колебаний                   |           |
|      | $\delta$ Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = 0$            |           |
|      | $Y$ Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = \pi/4$             |           |
|      | В Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = \pi/2$               |           |
|      | $m{O}$ Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$                   |           |
| 3.20 | ${f O}$ Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi$                     | 17        |
|      | Ввод параметров для генератора синусоидальных колебаний                   |           |
|      | $\mathbf{P}$ Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = 0$        |           |
|      | В Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = \pi/4$               |           |
|      | $\mathbf{A}$ Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/2$              |           |
|      | 5 Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = 3\pi/4$              |           |
| 3.26 | $\delta$ Фигура Лиссажу: $A = B = 1$ , $a = 2$ , $b = 3$ , $\delta = \pi$ | 20        |

## Список таблиц

# 1 Цель работы

Выполнить упражнение по ознакомлению с программой хсоз.

#### 2 Задание

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

**1)** 
$$A = B = 1, a = 2, b = 2, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

**2)** 
$$A = B = 1, a = 2, b = 4, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

**3)** 
$$A = B = 1, a = 2, b = 6, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

**4)** 
$$A = B = 1, a = 2, b = 3, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi.$$

#### 3 Выполнение лабораторной работы

Математическое выражение для кривой Лиссажу:

$$\begin{cases} x(t) = A\sin(at + \delta), \\ y(t) = B\sin(bt), \end{cases}$$

где A, B – амплитуды колебаний, a, b – частоты,  $\delta$  – сдвиг фаз. В модели, изображённой на рис. 3.1, использованы следующие блоки хсоs: - CLOCK\_c – запуск часов модельного времени; - GENSIN\_f – блок генератора синусоидального сигнала; - CSOPXY – анимированное регистрирующее устройство для построения графика типа y = f(x); - TEXT\_f – задаёт текст примечаний.



Рис. 3.1: Модель для построения фигуры Лиссажу в хсоѕ

Щелкнув правой кнопкой мышки по генератору синусоидальный колебаний,

откроем вкладку параметры на редактирование и внесем нужные данные (рис. 3.2).



Рис. 3.2: Ввод параметров для генератора синусоидальных колебаний

Таким же образом введем параметры в регистрирующее устройство (рис. 3.3).



Рис. 3.3: Ввод параметров для СЅОРХҮ

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах:  $A=B=1, a=2, b=2, \delta=0$  (рис. 3.4). Меняя фазу в первом генераторе на  $\pi/4$ ;  $\pi/2$ ;  $3\pi/4$ ;  $\pi$ ; соответственно получим другие фигуры Лиссажу (рис. 3.5-3.8).



Рис. 3.4: Фигура Лиссажу:  $A=B=1, a=2, b=2, \delta=0$ 



Рис. 3.5: Фигура Лиссажу:  $A=B=1, a=2, b=2, \delta=\pi/4$ 



Рис. 3.6: Фигура Лиссажу:  $A=B=1, a=2, b=2, \delta=\pi/2$ 



Рис. 3.7: Фигура Лиссажу:  $A=B=1, a=2, b=2, \delta=3\pi/4$ 



Рис. 3.8: Фигура Лиссажу:  $A = B = 1, a = 2, b = 2, \delta = \pi$ 

Изменим параметр частоты на втором генераторе (рис. 3.9).



Рис. 3.9: Ввод параметров для генератора синусоидальных колебаний

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах:  $A=B=1, a=2, b=4, \delta=0$  (рис. 3.10). Меняя фазу в первом генераторе на  $\pi/4$ ;  $\pi/2$ ;  $3\pi/4$ ;  $\pi$ ; соответственно получим другие фигуры Лиссажу (рис. 3.11-3.14).



Рис. 3.10: Фигура Лиссажу:  $A=B=1, a=2, b=4, \delta=0$ 



Рис. 3.11: Фигура Лиссажу:  $A=B=1, a=2, b=4, \delta=\pi/4$ 



Рис. 3.12: Фигура Лиссажу:  $A=B=1, a=2, b=4, \delta=\pi/2$ 



Рис. 3.13: Фигура Лиссажу:  $A=B=1, a=2, b=4, \delta=3\pi/4$ 



Рис. 3.14: Фигура Лиссажу:  $A=B=1, a=2, b=4, \delta=\pi$ 

Изменим параметр частоты на втором генераторе (рис. 3.15).



Рис. 3.15: Ввод параметров для генератора синусоидальных колебаний

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах:  $A=B=1, a=2, b=6, \delta=0$  (рис. 3.16). Меняя фазу в первом генераторе на  $\pi/4$ ;  $\pi/2$ ;  $3\pi/4$ ;  $\pi$ ; соответственно получим другие фигуры Лиссажу (рис. 3.17-3.20).



Рис. 3.16: Фигура Лиссажу:  $A=B=1, a=2, b=6, \delta=0$ 



Рис. 3.17: Фигура Лиссажу:  $A=B=1, a=2, b=6, \delta=\pi/4$ 



Рис. 3.18: Фигура Лиссажу:  $A=B=1, a=2, b=6, \delta=\pi/2$ 



Рис. 3.19: Фигура Лиссажу:  $A=B=1, a=2, b=6, \delta=3\pi/4$ 



Рис. 3.20: Фигура Лиссажу:  $A=B=1, a=2, b=6, \delta=\pi$ 

Изменим параметр частоты на втором генераторе (рис. 3.21).



Рис. 3.21: Ввод параметров для генератора синусоидальных колебаний

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах:  $A=B=1, a=2, b=4, \delta=0$  (рис. 3.22). Меняя фазу в первом генераторе на  $\pi/4$ ;  $\pi/2$ ;  $3\pi/4$ ;  $\pi$ ; соответственно получим другие фигуры Лиссажу (рис. 3.23-3.26).



Рис. 3.22: Фигура Лиссажу:  $A = B = 1, a = 2, b = 3, \delta = 0$ 



Рис. 3.23: Фигура Лиссажу:  $A=B=1, a=2, b=3, \delta=\pi/4$ 



Рис. 3.24: Фигура Лиссажу:  $A=B=1, a=2, b=3, \delta=\pi/2$ 



Рис. 3.25: Фигура Лиссажу:  $A=B=1, a=2, b=3, \delta=3\pi/4$ 



Рис. 3.26: Фигура Лиссажу:  $A=B=1, a=2, b=3, \delta=\pi$ 

## 4 Выводы

В результате выполнения данной лабораторной работы я выполнила упражнение по ознакомлению с программой xcos.