Course Title: Fundamentals of IT

Course Code: CMP-105.2 Administration: First Semester Duration: One Semester

Class Load: 4 Hrs. per Week (Theory: 2 Hrs., Tutorial: 2 Hrs.)

Pre-requisite: Nil

Evaluation:

	Theory	Practical	Total
Sessional	50	-	50
Final	50	-	50
Total	100	-	100

Course Objectives:

The main objective of this course is to provide the student with an overall knowledge in the broad arena of IT, its historical background, its growth and development and its role in business and organizational context.

Course Contents:

1. Introduction to Information Technology

(6 Hrs.)

Information Technology in Business Environment. Elements of Information System and its Architecture. Types of Information System. Role of Information Technology in Organization. Managing Information Technology in Organization

2. Information Technology Components

(12 Hrs.)

Hardware Components: CPU. Memory Elements. Types of Computer and Input-Output Components; Software Components: System Software. Application Software. Programming Tools (Software) and Enterprise Software. Data and Information: Data Organization and Access. File Systems, Database Systems. DBMS. Data Models. Data Warehouse: Telecommunication and Data Networks: Telecommunication Systems. Data Networks. Network Software. Data Processing Strategies Hill Network Environment, Applications of Telecommunication and Computer Network; Internets and Intranets: Basics of Internet. its Evolution and its Operations. Services on Internet World Wide Web Future of Internet. Intranets

3. Applications of Information Technology and E-Commerce (12 Hrs.) Inter-Organizational Information System, Global Information System, IT Application in Organizational Context, Extranets. Implementation of Inter-Organizational Information System. Role of IT in Business Functions: Transaction Processing. Accounting. Finance. Marketing. Sales, Production, Decision Support. Human Resource Management, Integrated Information System and Enterprise Resource Planning-. Data, Knowledge and Decision Support Systems. Intelligent Systems in Business: AI and Intelligent Systems. Expert Systems. Intelligent Agents: Fundamentals of E-Commerce. B-to-B and B-to-C Applications, Supporting Elements of ECommerce, Consumer. Market Research. Customer Support. Infrastructure. Payments and Other Supports

Text Book:

Turban, E., Rainer, R. K.. and Potter, (t. E.. Introduction to Information Technology. John Wiley and Sons. Inc., 2000, ISBN: 9971-51-321-8

Reference Books:

Rajaraman, V., Fundamentals of Computers. 3rd Edition. PHI. 1999. ISBN-81-203-1531-6.

CMP 102.3 Problem Solving Techniques (3-2-0)

Evaluation:

	Theory	Practical	Total
Sessional	50	-	50
Final	50	-	50
Total	100	-	100

Course Objectives:

A large part of everyday activity involves problem solving in some form. On order to solve problem one must think analytically to find a solution to a problem. The main aim of this course is:

- 1. To improve and impart conceptual clarity in thinking analytically and logically.
- 2. To provide fundamental means of approach how to translate verbal discussion onto analytical data and then how to solve it by computer.

Course Contents:

1. Basic Concepts of Problem Solving

(10 hrs)

Introduction to Problem Solving Approach. How to count. Use of induction principle. Problems of Logic and Issues of Parity.

2. Application of Geometry

(10 hrs)

Classical Planar Geometry. Analytic Geometry. Solid Geometry and miscellaneous problems.

3. Miscellaneous Problem Solving Techniques

(15 hrs)

Probabilistic approach to solving Counting Problems. Logic Problems (Simple logic, theory of games. Tracing routes. Learning from Parity. Mysterious arithmetic problems and surprise). Problems from Recreational math. (Magic square and Weighing problems). Problems of Algebra and Analysis (Inequality, Trignometry and related ideas).

4. Solving Miscellaneous Real Life Problems

(10 hrs)

Miscellaneous problems, impossible problems, Problems from everyday life and Statistics.

Laboratory Work:

Realization and Implementation of the numerous problems and various problemsolving techniques learned is to be implemented in C Programming Language. However, the practical implementation is also considered as an assignment for the "Programming in C" course module.

Textbooks:

1. Krantz, Steven G., *Techniques of Problem Solving*, University Press, 1998, ISBN:81-737-116-X

Reference Books:

- 1. Etter, D. M., Engineering Problem Solving with ANSI C, Prentice Hall, NJ, 1995,
- 2. Lakatos, *Proofs and Refutation*, Cambridge University Press, 1976.
- 3. Polya, G., How to Solve It, Princeton University Press, Princeton, 1998.

9. CMP 103.3 Programming in C (3-0-3)

Evaluation:

	Theory	Practical	Total
Sessional	30	20	50
Final	50		50
Total	80	20	100

Course Objectives:

The object of this course is to acquaint the students with the basic principles of programming and development of software systems. It encompasses the use of programming systems to achieve specified goals, identification of useful programming abstractions or paradigms, the development of formal models of programs, the formalization of programming language semantics, the specification of program, the verification of programs, etc. the thrust is to identify and clarify concepts that apply in many programming contexts:

Chapter	Content	Hrs
1	Introduction	3
	History of computing and computers, programming, block diagram of computer, generation of computer, types of computer, software, Programming Languages, Traditional and structured programming concept	
2	Programming logic	5
	Problems solving(understanding of problems, feasibility and requirement analysis) Design (flow Chart & Algorithm), program coding (execution, translator), testing and debugging, Implementation, evaluation and Maintenance of programs, documentation	
3	Variables and data types	3
	Constants and variables, Variable declaration, Variable Types, Simple input/output function, Operators	
4	Control Structures	6
	Introduction, types of control statements- sequential, branching- if, else, else-if and switch statements, case, break and continue statements; looping- for loop, while loop, do—while loop, nested loop, goto statement	
5	Arrays and Strings	6
	Introduction to arrays, initialization of arrays, multidimensional arrays, String, function related to the strings	
6	Functions	6
	Introduction, returning a value from a function, sending a value to a function, Arguments, parsing arrays and structure, External variables, storage classes, pre-processor directives, C libraries, macros, header files and prototyping	

Pointers

Definition pointers for arrays, returning multiple values form functions using pointers. Pointer arithmetic, pointer for strings, double indirection, pointer to arrays, Memory allocation-malloc and calloc

Structure and Unions 8

5

7

Definition of Structure, Nested type Structure, Arrays of Structure, Structure and Pointers, Unions, self-referential structure

9 Files and File Handling

Operating a file in different modes (Real, Write, Append), Creating a file in different modes (Read, Write, Append)

Laboratory:

Laboratory work at an initial stage will emphasize on the verification of programming concepts learned in class and use of loops, functions, pointers, structures and unions. Final project of 10 hours will be assigned to the students which will help students to put together most of the programming concepts

Textbooks:

- 1. Programming with C, Byran Gottfried
- 2. C Programming, Balagurusami

References

- 1. A book on C by A L Kely and Ira Pohl
- 2. The C Programming Language by Kerighan, Brain and Dennis Ritchie
- 3. Depth in C, Shreevastav

4. ENG 104.2 Communication Technique (2-2-1)

Evaluation:

-	Theory	Dec eti 1	IN DESCRIPTION OF THE PARTY.
Sessional	50	Practical	Total
Final	50	STEELING TO SELECT	50
Total	100		50
			100

Course Objectives:

The main objectives of this course are:

- 4. To develop the ability to deliver technical knowledge orally in English.
- To be able to comprehend and take notes after listening.
- 6. To fasten reading skills in technical and non-technical reading materials.
- 7. To develop summarizing skills in writings.
- 8. To write reports, letters, description on technical talks, seminar papers, memoranda, application

Chapters Content Review of Written English Hrs. Identification of Sentence and clause 2 Classification of sentence (simple, compound, complex) transformation of sentences 2 Oral Communication and Note Taking Variety of English (BrE, AmE, formal, informal, polite, familiar, tentative) General rules of pronunciation (English Vowels and Consonants) General rules of stress and intonations Oral presentation/technical talk: Environmental pollution, construction, water resources, impact of satellite communication, urban development, impact of computer in modern society **Technical Writing Skills** Preparation of short memoranda (Importance, formats) 10 Business letters (Importance-purposes) Preparation of job application and CV Description writing (Process, Mechanism, Place etc.) Calling meeting and writing minutes, notification, preparation of agenda Reading Skills

Comprehension questions and exercises from:

- The use and the misuse of science, Road foundation, Beauty, Custom, The story of an hour (Kate Chopin), Knowledge and wisdom, Freedom, Letter from foreign grave (D. B Gurung), Natural Resources of Nepal: Forests & Water (Mani Bhadra Gautam)
- Note making and precise writing from any passage

9

Tutorial Works:

- 1. Some general rules of pronunciation...
- 2. To present a seminar paper/report/proposal.
- 3. To participate in a group discussion.
- 4. To conduct a meeting.
- 5. To prepare and practice to face an interview.

Textbook:

- 1. Andrea J. Rutherford. Basic Communication Skills for Technology. 2nd Edition. Addision Wesley. Pearson Education Asia (LPE) ISBN: 8178082810
- Khanal Arjun, Communication Skills in English, Sukunda Pustak Bhawan, 2010

Reference Books:

- 1. Anne Eisenberg, Effective Technical Communication, Mc-Graw Hill 1982.
- 2. V.R. Narayanaswami, Strengthen your writing, Orient Longman, Madras.
- 3. Champa Tickoo & Jaya Sasikumar, Writing with a Purpose, Oxford University Press, Bombay.
- 4. A handbook of pronunciation of English words (with 90-minute audio cassettes) Communication
- 5. Chopin, Kate. "The Story of an Hour", Creative Delights
- 6. Gautam Shreedhar, Creation & Criticism: A Miscellaneous Thought
- 7. Gautam Mani Bhadra, Essays, Stories, Passages, Paragraphs and Letter writing for the Young Learners, Nirantar Prakashan, Kathmandu, 2008

5. MTH 111.3 Engineering Mathematics I (3-2-0)

Evaluation:

	Theory	Practical	Total
			50
Sessional	50		50
Final	100	. /	100
Total	100		

Course Objectives:

After the completion of this course students will be able to apply the concept of calculus (Differential and integral), analytical geometry and vector in their professional courses.

eometry and vi	ector in their professional coaless.		
Chanter	Content		rs
Chapter	Limit, Continuity and Derivative:	1	5
	i. Limit, continuity and Derivative of a function with their properties		
	ii. Mean values Theorem with their application		
	iii. Higher order derivative		
1 0	iv. Indeterminate forms		
	v. Asymptote		
	vi. Curvature		
	vii. Ideas of curve tracing		
	viii. Extreme values of functions of single variables		_
2	Integration with its Application:		17
2	Integration with its Application		
	i.Basic integration, standard integral, definite integral with their	1	8
	I.Basic integration, standard integral, definite integral		
	properties ii.Fundamental theorem of integral calculus (without proof)		
	II.Fundamental mediem of integral database (without pro-		
	iii.Improper integral		
	iv.Reduction formulae and use of beta Gamma functions		
	v.Area bounded by curves		
	vi.Approximate area by Simpsons and Trapezoidal rule,		
	vii. Volume of solid revolution		7
3	Two dimensional geometry:		
	the state of every		
	i. Review (circle, Translation and rotation of axes)		
	ii. Conic section(parabola, ellipse, hyperbola),		
	iii. Central conics (Introduction only).		
			6
- 4.	Vector Algebra:		
	Review of vector and scalar quantity		
	ii. Space coordinates		
	iii. Product of two or more vectors		
	iv. Reciprocal system of vectors and their properties		
	v. Equations of lines and planes by vector methods		
ks:		nead	
- 1. Engir	neering Mathematics I: Prof. D.D Sharma (Regmi), Toya Narayan Paudel, Hari Pra	asau .	
Adhil	kari, Sukunda Publication Bhotahity, Kathmandu		
O Colo	ulus and applytical geometry: George B Thomas, Ross L. Finney		

Text Books:

Calculus and analytical geometry: George B Thomas, Ross L. Finney

Pokhara University/Faculty of Science & Technology/Revised Syllabus-2012/First Year common

Reference Books:

- 1. Calculus with analytical geometry: E.W. Swokoswski.
 - 2. Coordinate Geometry: Lalji Prasad.
 - 3. Vector Analysis: M. B. Singh
 - 4. Integral Calculus: G.D. Panta

New

11. PHY 102.4 Physics (4-2-2)

Evaluation:

Theory	Practical	Total
		50
		50
	20	100
	Theory 30 50 80	30 20 50 -

Course Objectives:

The main objectives of this course are:

- 1. To apply the theory of simple Harmonic motion in different elastic systems.
- 2. To apply theory of wave propagation and knowledge of resonance.
- 3. To apply and analyze the Optical properties in different optical systems.
- 4. To make use of fundamentals of electromagnetic equipment.
- 5. To use the knowledge of basic physics in different engineering fields.

Chapter	Content	Hrs
1	Mechanical Oscillation	4
	Introduction and equation of Simple Harmonic Motion, energy in Simple Harmonic Motion, oscillation of mass –spring system, compound pendulum	
2	Wave motion	4
	Introduction of wave, wave velocity and particle velocity, types of waves, equation, energy, power and intensity of plane progressive wave, standing wave and resonance.	
3	Acoustics	4
4	Reverberation of sound, absorption coefficient, Sabines formula, introduction, production and applications of ultrasonic wave Physical Optics Interference: introduction, coherent sources, interference in thin films due to reflected and transmitted light, Newton's Ring (3) Diffraction: introduction, fraunhoffer diffraction at single silt and double silt diffraction grating (2)	8
	Polarization: introduction, double refraction, Nicol prism, optical activity, specific rotation, wave plates (3)	
5	Laser and Fiber Optics Introduction of laser, spontaneous and stimulated emission, optical pumping, He-Ne laser, Ruby Laser, use of laser, Propagation of light waves, types of optical fiber, applications of optical fiber	4
6	Electrostatics Electric charge, electric force, electric flux, electric potential, Gauss law and its applications, electric field intensity and electric potential due to dipole, electric potential due to quadrupole, capacitors, electrostatic potential energy, dielectrics and gauss law charging and discharging of capacitor	8

7 Electricity and magnetism

10

Electric current, resistance, resistivity and conductivity, atomic view of resistivity, magnetic field, magnetic force, Lorentz force, Hall effect, Biot-Savart's law and its applications, force between two parallel conductors, Ampere's circuital law and its applications, Faraday's law of electromagnetic induction, self-induction R-L circuit, energy stored in magnetic field and magnetic energy density

8 Electromagnetism

9

LC oscillation, Damped oscillation, forced oscillation and resonance, Maxwell's equations displacement current, wave equations in free space, continuity equation, E and B fields, poynting vector, radiation pressure

9 Photon and matter waves

4

Photon, group velocity and phase velocity, De brogile wavelength, Schrodinger wave equation, one dimensional potential well, tunneling effect

10 Semiconductors and super conductivity

5

Introduction, types of semiconductors Dopping, P-N Junction, Metal-semiconductor junction, junction breakdown, junction capacitance, electrical conduction in metals, insulators and semiconductors according to band theory of solids, introduction to superconductor

Textbooks:

- 3. Fundamental of Physic by Robert Rescnick, and David Hallday
- 4. A Text Book of Engineering Physics, T. R. Lamichane
- 5. A text book of optics by Subramanyam and Brijlal
- 6. Modern physics by R. Murugason

Reference Books:

- 16. Concept of physic by H.C Verma
- 17. Modern Engineeering Physic by A.S Basudeva
- 18. Electronics by B.L Thereia
- 19. Principles of Electronics, V. K. Meheta

Laboratories:

- 1. To determine the acceleration due to gravity & radius of gyration by single bar pendulum.
- 2. To determine the frequency AC mains by using son mater apparatus
- 3. To determine the wave length by using diameter of Newton's ring
- 4. To determine the wave length of laser light by using diffraction grating
- To determine the value of Modulus of Elasticity of the material given and Moment of Inertia of Circular disc using torsional pendulum
- 6. To determine the capacitance of given capacitor by charging and discharging through resistor
- To determine the low resistance of a given wire and resistance per unit length of the wire by using Careyfoster bridge
- 8. To plot a graph current and frequency in an LRC series circuit and to find: i) the resonance frequency ii) the quality factor

Lab textbook: B. Sc Practical Physics by C. L. Arora

