import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
import warnings
warnings.filterwarnings('ignore')

data=pd.read_csv("Churn_Modelling.csv")

data.head(10)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1590
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125
5	6	15574012	Chu	645	Spain	Male	44	8	113
6	7	15592531	Bartlett	822	France	Male	50	7	
7	8	15656148	Obinna	376	Germany	Female	29	4	1150
8	9	15792365	He	501	France	Male	44	4	1420
9	10	15592389	H?	684	France	Male	27	2	1340

data.tail(10)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenuı
9990	9991	15798964	Nkemakonam	714	Germany	Male	33	
9991	9992	15769959	Ajuluchukwu	597	France	Female	53	
9992	9993	15657105	Chukwualuka	726	Spain	Male	36	
2222	0004	4550000	D :	044	-	B.A. 1	00	

#describe statistics
data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Bala
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090

data.kurt(axis=0,skipna=True)

RowNumber	-1.200000
CustomerId	-1.196113
CreditScore	-0.425726
Age	1.395347
Tenure	-1.165225
Balance	-1.489412
NumOfProducts	0.582981
HasCrCard	-1.186973
IsActiveMember	-1.996747
EstimatedSalary	-1.181518
Exited	0.165671
dtype: float64	

31

data.kurt(axis=1,skipna=True)

0	10.998778	
1	10.997909	
2	10.995886	
3	10.998962	
4	10.997675	
	• • •	
9995	10.998908	
9996	10.998551	

9997 10.999788 9998 10.998530 9999 10.997973

Length: 10000, dtype: float64

sns.distplot(data['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fbde5f7eb10>

sns.countplot(data["Age"])

<matplotlib.axes._subplots.AxesSubplot at 0x7fbde5969ad0>

data.skew(axis=0,skipna=True)

RowNumber	0.000000
CustomerId	0.001149
CreditScore	-0.071607
Age	1.011320
Tenure	0.010991
Balance	-0.141109
NumOfProducts	0.745568
HasCrCard	-0.901812
IsActiveMember	-0.060437
EstimatedSalary	0.002085

```
Exited 1.471611
```

data.skew(axis=1,skipna=True)

```
      0
      3.316373

      1
      3.316193

      2
      3.315777

      3
      3.316411

      4
      3.316145

      ...
      9995

      9996
      3.316399

      9997
      3.316581
```

3.316321 3.316207

Length: 10000, dtype: float64

data.isnull().any()

9998

9999

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

data.duplicated()

0	False
1	False

```
2
        False
3
        False
4
        False
9995
        False
9996
        False
9997
        False
9998
        False
9999
        False
Length: 10000, dtype: bool
```

data.duplicated().sum()

0

plt.scatter(data.Age,data.Balance)

<matplotlib.collections.PathCollection at 0x7fbde572c9d0>

sns.scatterplot(data.Age,data.Balance)

<matplotlib.axes._subplots.AxesSubplot at 0x7fbde5692590>

sns.barplot(data['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fbde567a790>

sns.boxplot(data['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fbde55d7050>

data.corr()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	N
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495	-0.009067	

sns.heatmap(data.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fbde55d0650>

sns.pairplot(data)

from scipy.stats import spearmanr

Me Me

corr=spearmanr(data) corr

```
[8.55178468e-001, 5.95071292e-001, 0.00000000e+000,
5.03861020e-001, 2.33332702e-002, 8.30304249e-001,
8.90508036e-001, 8.74364323e-002, 9.36216720e-001,
8.39475437e-002, 3.71469037e-001, 8.90503148e-001,
2.38243578e-001, 2.72106138e-001],
[6.07981798e-001, 5.50722932e-001, 5.03861020e-001,
0.00000000e+000, 5.41558890e-001, 7.63332662e-001,
4.25266703e-001, 9.09790109e-001, 5.69634028e-001,
2.08874884e-001, 7.03844602e-001, 1.52541637e-002,
9.01602674e-001, 1.98609526e-002],
[3.11698199e-001, 5.46203060e-001, 2.33332702e-002,
5.41558890e-001, 0.00000000e+000, 8.37437458e-001,
4.06537979e-004, 7.06678685e-001, 2.01668047e-023,
9.38702072e-001, 4.70093788e-001, 6.57076013e-001,
9.84458653e-001, 1.08256524e-007],
[6.88261457e-002, 7.93006618e-001, 8.30304249e-001,
7.63332662e-001, 8.37437458e-001, 0.00000000e+000,
2.89407525e-003, 1.31173411e-001, 1.76909716e-001,
1.98811127e-001, 5.64246762e-001, 2.41686809e-002,
4.08370570e-001, 1.25850456e-026],
[9.62034639e-001, 3.80283664e-001, 8.90508036e-001,
4.25266703e-001, 4.06537979e-004, 2.89407525e-003,
0.00000000e+000, 2.98157345e-001, 8.65526378e-004,
4.60240532e-009, 1.26581605e-001, 6.74797620e-005,
8.07912562e-001, 4.60367975e-243],
[4.88086885e-001, 1.31785022e-001, 8.74364323e-002,
```

```
9.09790109e-001, 7.06678685e-001, 1.31173411e-001,
 2.98157345e-001, 0.00000000e+000, 3.41506861e-001,
 1.96808492e-001, 2.53904935e-002, 4.13650739e-003,
 4.36732384e-001, 1.62203448e-001],
[3.67465405e-001, 1.63585747e-001, 9.36216720e-001,
 5.69634028e-001, 2.01668047e-023, 1.76909716e-001,
 8.65526378e-004, 3.41506861e-001, 0.00000000e+000,
 1.12319427e-231, 3.25429744e-001, 2.50330560e-001,
 2.38918636e-001, 7.64706959e-029],
[4.06300660e-001, 5.36514208e-002, 8.39475437e-002,
 2.08874884e-001, 9.38702072e-001, 1.98811127e-001,
 4.60240532e-009, 1.96808492e-001, 1.12319427e-231,
 0.00000000e+000, 6.99615740e-001, 1.03295766e-001,
 2.08799333e-001, 2.85374243e-036],
[9.52261425e-001, 1.60847582e-001, 3.71469037e-001,
 7.03844602e-001, 4.70093788e-001, 5.64246762e-001,
 1.26581605e-001, 2.53904935e-002, 3.25429744e-001,
 6.99615740e-001, 0.00000000e+000, 2.35441825e-001,
 3.15383179e-001, 4.75414918e-001],
[2.28461236e-001, 8.66447868e-001, 8.90503148e-001,
 1.52541637e-002, 6.57076013e-001, 2.41686809e-002,
 6.74797620e-005, 4.13650739e-003, 2.50330560e-001,
 1.03295766e-001, 2.35441825e-001, 0.00000000e+000,
 2.51464473e-001, 1.34826852e-055],
[5.48097586e-001, 1.27389774e-001, 2.38243578e-001,
 9.01602674e-001, 9.84458653e-001, 4.08370570e-001,
 8.07912562e-001, 4.36732384e-001, 2.38918636e-001,
 2.08799333e-001, 3.15383179e-001, 2.51464473e-001,
 0.00000000e+000, 2.27067756e-001],
[9.75106276e-002, 5.31116466e-001, 2.72106138e-001,
 1.98609526e-002, 1.08256524e-007, 1.25850456e-026,
 4.60367975e-243, 1.62203448e-001, 7.64706959e-029,
```

import statsmodels.api as sm

```
x=data[["EstimatedSalary"]]
y=data["CreditScore"]
```

```
model=sm.OLS(y,x)
result=model.fit()
result.summary()
```

OLS Regression Results

Dep. Variable:	CreditScore	R-squared (uncentered):	0.735
Model:	OLS	Adj. R-squared (uncentered):	0.735
Method:	Least Squares	F-statistic:	2.779e+04
Date:	Wed, 09 Nov 2022	Prob (F-statistic):	0.00
Time:	04:26:15	Log-Likelihood:	-72429.
No. Observations:	10000	AIC:	1.449e+05
Df Residuals:	9999	BIC:	1.449e+05

from sklearn.preprocessing import scale
x=scale(x)
x

sns.lmplot(x='Age',y='Balance',data=data)

sns.barplot(x="Age",y="CreditScore",data=data)

<matplotlib.axes._subplots.AxesSubplot at 0x7fbdd2ff7550>

qnt = data.quantile(q=[0.75,0.25])
qnt

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	Has
0.75	7500.25	15753233.75	718.0	44.0	7.0	127644.24	2.0	
0.25	2500.75	15628528.25	584.0	32.0	3.0	0.00	1.0	

iqr=qnt.loc[0.75]-qnt.loc[0.25]
iqr

RowNumber	4999.5000
CustomerId	124705.5000
CreditScore	134.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000
dtyne: float64	

upper= qnt.loc[0.75]+1.5*iqr
upper

1.499950e+04			
1.594029e+07			
9.190000e+02			
6.200000e+01			
1.300000e+01			
3.191106e+05			
3.500000e+00			
2.500000e+00			
2.500000e+00			
2.969675e+05			
0.000000e+00			

lower= qnt.loc[0.25]-1.5*iqr
lower

-4.998500e+03 RowNumber 1.544147e+07 CustomerId CreditScore 3.830000e+02 Age 1.400000e+01 Tenure -3.000000e+00 Balance -1.914664e+05 NumOfProducts -5.000000e-01 HasCrCard -1.500000e+00 IsActiveMember -1.500000e+00 EstimatedSalary -9.657710e+04 Exited 0.000000e+00

dtype: float64

sns.boxplot(data["Age"])

<matplotlib.axes._subplots.AxesSubplot at 0x7fbdd2cfd610>

data["Age"]= np.where(data["Age"]>45,31,data["Age"])

sns.boxplot(data["Age"])

<matplotlib.axes._subplots.AxesSubplot at 0x7fbdd2cd1b50>

data["Balance"]= np.where(data["Balance"]>618,316,data["Balance"])

sns.boxplot(data["Balance"])

<matplotlib.axes._subplots.AxesSubplot at 0x7fbdd2c33810>

data.head()

data["Gender"].replace({"Female":0, "Male":1},inplace = True)

data.head(10)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	0	42	2	
1	2	15647311	Hill	608	Spain	0	41	1	3
2	3	15619304	Onio	502	France	0	42	8	3
3	4	15701354	Boni	699	France	0	39	1	
4	5	15737888	Mitchell	850	Spain	0	43	2	3
5	6	15574012	Chu	645	Spain	1	44	8	3
6	7	15592531	Bartlett	822	France	1	31	7	
7	8	15656148	Obinna	376	Germany	0	29	4	3
8	9	15792365	Не	501	France	1	44	4	3
9	10	15592389	H?	684	France	1	27	2	3
7									

data["HasCrCard"].replace({1:"yes",0:"no"},inplace = True)

data.head(10)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	0	42	2	
1	2	15647311	Hill	608	Spain	0	41	1	3
2	3	15619304	Onio	502	France	0	42	8	3
3	4	15701354	Boni	699	France	0	39	1	
4	5	15737888	Mitchell	850	Spain	0	43	2	3
5	6	15574012	Chu	645	Spain	1	44	8	3
6	7	15592531	Bartlett	822	France	1	31	7	
7	8	15656148	Obinna	376	Germany	0	29	4	3
8	9	15792365	He	501	France	1	44	4	3
9	10	15592389	H?	684	France	1	27	2	3


```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
```

```
data["Age"]=le.fit_transform(data["Age"])
data.Age.unique()
     array([24, 23, 21, 25, 26, 13, 11, 9, 6, 16, 7, 17, 27, 14, 20, 18, 15,
            22, 19, 1, 8, 3, 4, 12, 10, 2, 5, 0])
x=data.iloc[:,0:13].values
Х
     array([[1, 15634602, 'Hargrave', ..., 'yes', 1, 101348.88],
            [2, 15647311, 'Hill', ..., 'no', 1, 112542.58],
            [3, 15619304, 'Onio', ..., 'yes', 0, 113931.57],
            [9998, 15584532, 'Liu', ..., 'no', 1, 42085.58],
            [9999, 15682355, 'Sabbatini', ..., 'yes', 0, 92888.52],
            [10000, 15628319, 'Walker', ..., 'yes', 0, 38190.78]], dtype=object)
y=data.iloc[:,13:14].values
у
     array([[1],
            [0],
            [1],
            [1],
            [1],
```

[0]])

data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	0	24	2	
1	2	15647311	Hill	608	Spain	0	23	1	3
2	3	15619304	Onio	502	France	0	24	8	3
3	4	15701354	Boni	699	France	0	21	1	
4	5	15737888	Mitchell	850	Spain	0	25	2	3
0									

from sklearn.preprocessing import OneHotEncoder

from sklearn.model_selection import train_test_split

```
x_test
```

```
array([[9395, 15615753, 'Upchurch', ..., 'yes', 1, 192852.67],
            [899, 15654700, 'Fallaci', ..., 'yes', 0, 128702.1],
            [2399, 15633877, 'Morrison', ..., 'yes', 1, 75732.25],
            [9550, 15772604, 'Chiemezie', ..., 'yes', 0, 141533.19],
            [2741, 15787699, 'Burke', ..., 'yes', 1, 11276.48],
            [6691, 15579223, 'Niu', ..., 'yes', 0, 192950.6]], dtype=object)
y_train
     array([[0],
            [0],
            [0],
            . . . ,
            [0],
            [0],
            [1]])
y_test
     array([[0],
            [1],
            [0],
            ...,
            [0],
            [0],
            [0]])
from sklearn.preprocessing import scale
x=data["CreditScore"]
S=scale(x)
S
     array([-0.32622142, -0.44003595, -1.53679418, ..., 0.60498839,
             1.25683526, 1.46377078])
y=data["Age"]
У
     0
             24
     1
             23
     2
             24
     3
             21
     4
             25
             . .
     9995
             21
     9996
             17
     9997
             18
     9998
             24
```

9999 10

Name: Age, Length: 10000, dtype: int64

x=data.drop(data["Age"],axis=0)

Х

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Ter
28	29	15728693	McWilliams	574	Germany	0	25	
29	30	15656300	Lucciano	411	France	1	11	
30	31	15589475	Azikiwe	591	Spain	0	21	
31	32	15706552	Odinakachukwu	533	France	1	18	
32	33	15750181	Sanderson	553	Germany	1	23	
9995	9996	15606229	Obijiaku	771	France	1	21	
9996	9997	15569892	Johnstone	516	France	1	17	
9997	9998	15584532	Liu	709	France	0	18	
9998	9999	15682355	Sabbatini	772	Germany	1	24	
9999	10000	15628319	Walker	792	France	0	10	

9972 rows × 14 columns

y=data.iloc[:,-1].values
y

array([1, 0, 1, ..., 1, 1, 0])

data=pd.DataFrame({"Age":[1,2,np.nan],"CreditScore":[1,np.nan,np.nan],"Balance":[1,2,3]})
data

	Age	CreditScore	Balance	1
0	1.0	1.0	1	
1	2.0	NaN	2	
2	NaN	NaN	3	

data.isnull().any()

Age True CreditScore True Balance False

dtype: bool

data.isnull().sum()

Age 1
CreditScore 2
Balance 0
dtype: int64

data.dropna()

data.dropna(axis=1)

В	alance	1
0	1	
1	2	
2	3	

data["Age"].mean()

1.5

Colab paid products - Cancel contracts here

✓ 0s completed at 10:15 AM

×