An introduction to the Cobordism Hypothesis

VII Congreso de Jóvenes Investigadores de la RSME

Santiago Pareja Pérez

Unizar-UCM

14th January 2025

We want to try to explain the following statement:

The Cobordism Hypothesis (Baez–Dolan, 1995)

The n-category of framed cobordisms **Bord**^{fr}_n is...

...the free symmetric monoidal *n*-category on a fully dualizable object.

We want to try to explain the following statement:

The Cobordism Hypothesis (Baez-Dolan, 1995)

The n-category of framed cobordisms **Bord**^{fr}_n is...

...the free symmetric monoidal n-category on a fully dualizable object.

We want to try to explain the following statement:

The Cobordism Hypothesis (Baez-Dolan, 1995)

The n-category of framed cobordisms **Bord** $_n^{fr}$ is...

...the free symmetric monoidal *n*-category on a fully dualizable object.

We want to try to explain the following statement:

The Cobordism Hypothesis (Baez-Dolan, 1995)

The *n*-category of framed cobordisms \mathbf{Bord}_n^{fr} is...

...the free symmetric monoidal *n*-category on a fully dualizable object.

Unextended cobordisms and TQFTs

Cobordisms

We assume everything smooth and compact.

Let M and N be two closed (n-1)-manifolds.

A **cobordism** $B: M \to N$ is an *n*-manifold with boundary endowed with two embeddings $M \hookrightarrow \partial B \leftrightarrow N$ such that $\partial B \cong M \sqcup N$.

M is the in-boundary and N is the out-boundary.

A cobordism needs not be connected:

Cobordisms

We assume everything smooth and compact.

Let M and N be two closed (n-1)-manifolds.

A **cobordism** $B: M \to N$ is an *n*-manifold with boundary endowed with two embeddings $M \hookrightarrow \partial B \leftrightarrow N$ such that $\partial B \cong M \sqcup N$.

M is the in-boundary and N is the out-boundary.

A cobordism needs not be connected:

Cobordisms

We assume everything smooth and compact.

Let M and N be two closed (n-1)-manifolds.

A **cobordism** $B: M \to N$ is an n-manifold with boundary endowed with two embeddings $M \hookrightarrow \partial B \leftrightarrow N$ such that $\partial B \cong M \sqcup N$.

M is the in-boundary and N is the out-boundary.

A cobordism needs not be connected:

Gluing and adding cobordisms

We can *compose* cobordisms by gluing.

$$S^{1} \rightarrow S^{1} \sqcup S^{1} \rightarrow S^{1} \qquad S^{1} \rightarrow S^{1} \sqcup S^{1} \rightarrow S^{1} \sqcup S^{1}$$

The identities are the cylinders $M \times [0, 1]: M \rightarrow M$.

We can add cobordisms by taking their disjoint union.

This is a *monoidal structure* with unit the empty manifold: $M \sqcup \emptyset \cong M$.

We can freely interchange connected components.

These twist cohordisms give a symmetric structure.

Gluing and adding cobordisms

We can *compose* cobordisms by gluing.

The identities are the cylinders $M \times [0,1]: M \rightarrow M$.

We can add cobordisms by taking their disjoint union.

This is a *monoidal structure* with unit the empty manifold: $M \sqcup \emptyset \cong M$.

We can freely interchange connected components. These *twist cobordisms* give a *symmetric structure*.

Gluing and adding cobordisms

We can *compose* cobordisms by gluing.

The identities are the cylinders $M \times [0,1]: M \rightarrow M$.

We can add cobordisms by taking their disjoint union.

This is a *monoidal structure* with unit the empty manifold: $M \sqcup \emptyset \cong M$.

We can freely interchange connected components.

These twist cobordisms give a symmetric structure.

n-cobordisms assemble into a symmetric monoidal category, \mathbf{Cob}_n :

Objects Closed (n-1)-manifolds M, N.

Morphisms n-cobordisms $B: M \rightarrow N$, up to diffeomorphism.

Identities "Cylinders" $M \times [0, 1]: M \rightarrow M$

Composition Gluing of cobordisms.

Monoid Disjoint union $B \sqcup B' : M \sqcup M' \to N \sqcup N'$. **Unit** Empty manifold \emptyset .

Twists Twist cobordisms $M \sqcup N \rightarrow N \sqcup M$.

One well-understood symmetric monoidal category is (**Vect**_k, \otimes , k, σ), the category of vector spaces equipped with tensor product and the usual interchange of factors.

(i.e., the twist maps $\sigma_{V,W} \colon V \otimes W \to W \otimes V$ are given by $v \otimes w \mapsto w \otimes v$).

We can use $Vect_k$ to study Cob_n , via maps $Cob_n \rightarrow Vect_k$

n-cobordisms assemble into a symmetric monoidal category, \mathbf{Cob}_n :

Objects Closed (n-1)-manifolds M, N.

Morphisms n-cobordisms $B: M \rightarrow N$, up to diffeomorphism.

Identities "Cylinders" $M \times [0,1]: M \rightarrow M$.

Composition Gluing of cobordisms.

Monoid Disjoint union $B \sqcup B' : M \sqcup M' \to N \sqcup N'$. **Unit** Empty manifold \emptyset .

Twists Twist cobordisms $M \sqcup N \rightarrow N \sqcup M$.

One well-understood symmetric monoidal category is (**Vect**_k, \otimes , k, σ), the category of vector spaces equipped with tensor product and the usual interchange of factors.

(i.e., the twist maps $\sigma_{V,W} \colon V \otimes W \to W \otimes V$ are given by $v \otimes w \mapsto w \otimes v$).

We can use $\mathbf{Vect}_{\mathbf{k}}$ to study \mathbf{Cob}_n , via maps $\mathbf{Cob}_n \to \mathbf{Vect}_{\mathbf{k}}$

n-cobordisms assemble into a symmetric monoidal category, \mathbf{Cob}_n :

Objects Closed (n-1)-manifolds M, N.

Morphisms n-cobordisms $B: M \rightarrow N$, up to diffeomorphism.

Identities "Cylinders" $M \times [0,1]: M \rightarrow M$.

Composition Gluing of cobordisms.

Monoid Disjoint union $B \sqcup B' : M \sqcup M' \to N \sqcup N'$. **Unit** Empty manifold \emptyset .

Twists Twist cobordisms $M \sqcup N \rightarrow N \sqcup M$.

One well-understood symmetric monoidal category is (**Vect**_k, \otimes , k, σ), the category of vector spaces equipped with tensor product and the usual interchange of factors.

(i.e., the twist maps $\sigma_{V,W} \colon V \otimes W \to W \otimes V$ are given by $v \otimes w \mapsto w \otimes v$).

We can use \mathbf{Vect}_k to study \mathbf{Cob}_n , via maps $\mathbf{Cob}_n \to \mathbf{Vect}_k$.

n-cobordisms assemble into a symmetric monoidal category, \mathbf{Cob}_n :

Objects Closed (n-1)-manifolds M, N.

Morphisms n-cobordisms $B: M \rightarrow N$, up to diffeomorphism.

Identities "Cylinders" $M \times [0, 1]: M \rightarrow M$.

Composition Gluing of cobordisms.

Monoid Disjoint union $B \sqcup B' : M \sqcup M' \to N \sqcup N'$.

Unit Empty manifold Ø.

Twists Twist cobordisms $M \sqcup N \rightarrow N \sqcup M$.

One well-understood symmetric monoidal category is (**Vect**_k, \otimes , k, σ), the category of vector spaces equipped with tensor product and the usual interchange of factors.

(i.e., the twist maps $\sigma_{VW}: V \otimes W \to W \otimes V$ are given by $v \otimes w \mapsto w \otimes v$).

We can use \mathbf{Vect}_k to study \mathbf{Cob}_n , via maps $\mathbf{Cob}_n \to \mathbf{Vect}_k$.

n-cobordisms assemble into a symmetric monoidal category, \mathbf{Cob}_n :

Objects Closed (n-1)-manifolds M, N.

Morphisms n-cobordisms $B: M \rightarrow N$, up to diffeomorphism.

Identities "Cylinders" $M \times [0, 1]: M \rightarrow M$.

Composition Gluing of cobordisms.

Monoid Disjoint union $B \sqcup B' : M \sqcup M' \to N \sqcup N'$.

Unit Empty manifold Ø.

Twists Twist cobordisms $M \sqcup N \rightarrow N \sqcup M$.

One well-understood symmetric monoidal category is (**Vect**_k, \otimes , k, σ), the category of vector spaces equipped with tensor product and the usual interchange of factors.

(i.e., the twist maps $\sigma_{V,W} \colon V \otimes W \to W \otimes V$ are given by $v \otimes w \mapsto w \otimes v$).

We can use \mathbf{Vect}_k to study \mathbf{Cob}_n , via maps $\mathbf{Cob}_n \to \mathbf{Vect}_k$

n-cobordisms assemble into a symmetric monoidal category, \mathbf{Cob}_n :

Objects Closed (n-1)-manifolds M, N.

Morphisms n-cobordisms $B: M \rightarrow N$, up to diffeomorphism.

Identities "Cylinders" $M \times [0, 1]: M \rightarrow M$.

Composition Gluing of cobordisms.

Monoid Disjoint union $B \sqcup B' : M \sqcup M' \to N \sqcup N'$.

Unit Empty manifold Ø.

Twists Twist cobordisms $M \sqcup N \rightarrow N \sqcup M$.

One well-understood symmetric monoidal category is (**Vect** $_{\mathbb{k}}$, \otimes , \mathbb{k} , σ), the category of vector spaces equipped with tensor product and the usual interchange of factors.

(i.e., the twist maps $\sigma_{V,W} \colon V \otimes W \to W \otimes V$ are given by $v \otimes w \mapsto w \otimes v$).

We can use \mathbf{Vect}_k to study \mathbf{Cob}_n , via maps $\mathbf{Cob}_n \to \mathbf{Vect}_k$.

Topological Quantum Field Theories

Let C be a symmetric monoidal category. A **TQFT** is a symmetric monoidal functor $Z: \mathbf{Cob}_n \to C$.

Consider the case $C = \mathbf{Vect}_k$. A TQFT $Z : \mathbf{Cob}_n \to \mathbf{Vect}_k$ assigns:

- closed (n-1)-manifold $M \rightsquigarrow k$ -vector space Z(M).
- n-cobordism $B: M \to N \longrightarrow \mathbb{k}$ -linear map $Z(B): Z(M) \to Z(N)$

And these must satisfy the axioms of a symmetric monoidal functor: for example, $Z(B \sqcup B') = Z(B) \otimes Z(B')$.

Usually our manifolds carry extra structure, such as an orientation $(\mathbf{Cob}_n^{\mathsf{or}})$ or a framing $(\mathbf{Cob}_n^{\mathsf{fr}})$.

All is the same: for example, an **oriented TQFT** is a map $Z: \mathbf{Cob}_n^{\mathrm{or}} \to \mathcal{C}$.

Topological Quantum Field Theories

Let $\mathcal C$ be a symmetric monoidal category. A **TQFT** is a symmetric monoidal functor $Z \colon \mathbf{Cob}_n \to \mathcal C$.

Consider the case $C = \mathbf{Vect}_k$. A TQFT $Z : \mathbf{Cob}_n \to \mathbf{Vect}_k$ assigns:

- closed (n-1)-manifold $M \rightsquigarrow \mathbb{k}$ -vector space Z(M).
- n-cobordism $B: M \to N \longrightarrow \mathbb{k}$ -linear map $Z(B): Z(M) \to Z(N)$.

And these must satisfy the axioms of a symmetric monoidal functor: for example, $Z(B \sqcup B') = Z(B) \otimes Z(B')$.

Usually our manifolds carry extra structure, such as an orientation $(\mathbf{Cob}_n^{\mathrm{or}})$ or a framing $(\mathbf{Cob}_n^{\mathrm{fr}})$.

All is the same: for example, an *oriented TQFT* is a map $Z: \mathbf{Cob}_n^{\mathrm{or}} \to \mathcal{C}$

Topological Quantum Field Theories

Let ${\mathcal C}$ be a symmetric monoidal category.

A **TQFT** is a symmetric monoidal functor $Z: \mathbf{Cob}_n \to \mathcal{C}$.

Consider the case $C = \mathbf{Vect}_k$. A TQFT $Z : \mathbf{Cob}_n \to \mathbf{Vect}_k$ assigns:

- closed (n-1)-manifold $M \rightsquigarrow \mathbb{k}$ -vector space Z(M).
- n-cobordism $B: M \to N \longrightarrow \mathbb{k}$ -linear map $Z(B): Z(M) \to Z(N)$.

And these must satisfy the axioms of a symmetric monoidal functor: for example, $Z(B \sqcup B') = Z(B) \otimes Z(B')$.

Usually our manifolds carry extra structure, such as an orientation $(\mathbf{Cob}_n^{\mathrm{or}})$ or a framing $(\mathbf{Cob}_n^{\mathrm{fr}})$.

All is the same: for example, an **oriented TQFT** is a map $Z: \mathbf{Cob}_n^{\mathrm{or}} \to \mathcal{C}$.

We can give explicit generators and relations for Cob_2^{or} .

Generators:

- Objects: the circle \$1. (Both orientations are isomorphic).
- Morphisms

0

0

(Proof: Morse theory).

Relations:

And the mirrored ones.

We can give explicit generators and relations for Cob_2^{or} .

Generators:

- Objects: the circle \$1. (Both orientations are isomorphic).
- · Morphisms:

 \mathbb{O}

 \bigcirc

(Proof: Morse theory).

Relations

And the mirrored ones.

We can give explicit generators and relations for Cob_2^{or} .

Generators:

- Objects: the circle \$1. (Both orientations are isomorphic).
- · Morphisms:

0

(Proof: Morse theory).

Relations:

And the mirrored ones.

Consider TQFTs $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_{\Bbbk}$.

- Generators become algebraic structure.
- Relations become algebraic properties.

First consider the generators.

- A unit $Z(\mathbb{O}): \mathbb{k} \to A$.
- A multiplication $Z(\mathcal{D}): A \otimes A \rightarrow A$
- A counit Z(①): A → k.
- A comultiplication Z(<
): A → A ⊗ A

Consider TQFTs $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_{\Bbbk}$.

- Generators become algebraic structure.
- Relations become algebraic properties.

First consider the generators.

- A unit $Z(\mathbb{O})$: $\mathbb{k} \to A$.
- A multiplication $Z(\mathcal{D}): A \otimes A \rightarrow A$.
- A counit $Z(\mathbb{O}): A \to \mathbb{K}$
- A comultiplication $Z(\triangleleft : A \rightarrow A \otimes A)$

Consider TQFTs $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_{\Bbbk}$.

- Generators become algebraic structure.
- Relations become algebraic properties.

First consider the generators.

- A unit $Z(\mathbb{O})$: $\mathbb{k} \to A$.
- A multiplication $Z(\mathcal{D}): A \otimes A \rightarrow A$
- A counit $Z(\mathbb{O}): A \to \mathbb{K}$
- A comultiplication $Z(\triangleleft S): A \rightarrow A \otimes A$

Consider TQFTs $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_{\Bbbk}$.

- Generators become algebraic structure.
- Relations become algebraic properties.

First consider the generators.

- A unit $Z(\mathbb{O})$: $\mathbb{k} \to A$.
- A multiplication $Z(\mathcal{D}): A \otimes A \rightarrow A$.
- A counit $Z(\mathbb{O}): A \to \mathbb{R}$
- A comultiplication $Z({\mathbb Q}): A \to A \otimes A$

Consider TQFTs $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_{\Bbbk}$.

- Generators become algebraic structure.
- Relations become algebraic properties.

First consider the generators.

- A unit $Z(\mathbb{O})$: $\mathbb{k} \to A$.
- A multiplication $Z(\mathcal{D}): A \otimes A \rightarrow A$.
- A counit $Z(\mathbb{O})$: $A \to \mathbb{k}$.
- A comultiplication $Z(\triangleleft S): A \rightarrow A \otimes A$

Consider TQFTs $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_{\Bbbk}$.

- Generators become algebraic structure.
- Relations become algebraic properties.

First consider the generators.

- A unit $Z(\mathbb{O})$: $\mathbb{k} \to A$.
- A multiplication $Z(\mathcal{D}): A \otimes A \rightarrow A$.
- A counit $Z(\mathbb{O})$: $A \to \mathbb{k}$.
- A comultiplication $Z(\triangleleft \!\!\!\! \triangleleft \!\!\!): A \rightarrow A \otimes A$.

Now consider the relations of Cob_2^{or} .

The vector space $A = Z(S^1)$ becomes:

· A commutative, associative and unital algebra

and also a cocommutative, coassociative and counital coalgebra

in a compatible way:

Theorem (Folklore)

2D oriented TQFTs $Z: \mathbf{Cob}_2^{\mathsf{or}} \to \mathbf{Vect}_k$ are the same as commutative Frobenius algebras.

Now consider the relations of Cob_2^{or} .

The vector space $A = Z(S^1)$ becomes:

• A commutative, associative and unital algebra

and also a cocommutative, coassociative and counital coalgebra

in a compatible way:

Theorem (Folklore)

2D oriented TQFTs Z: $\mathbf{Cob}_2^{\text{or}} \to \mathbf{Vect}_k$ are the same as commutative Frobenius algebras.

Now consider the relations of Cob_2^{or} .

The vector space $A = Z(\mathbb{S}^1)$ becomes:

• A commutative, associative and unital algebra

• and also a cocommutative, coassociative and counital coalgebra

in a compatible way:

Theorem (Folklore)

2D oriented TQFTs $Z: \mathbf{Cob}_2^{\mathsf{or}} \to \mathbf{Vect}_k$ are the same as commutative Frobenius algebras.

Now consider the relations of Cob_2^{or} .

The vector space $A = Z(S^1)$ becomes:

• A commutative, associative and unital algebra

• and also a cocommutative, coassociative and counital coalgebra

in a compatible way:

Theorem (Folklore)

2D oriented TQFTs $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_k$ are the same as commutative Frobenius algebras.

Now consider the relations of $\mathbf{Cob}_2^{\mathrm{or}}$.

The vector space $A = Z(S^1)$ becomes:

• A commutative, associative and unital algebra

• and also a cocommutative, coassociative and counital coalgebra

in a compatible way:

Theorem (Folklore)

2D oriented TQFTs $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_k$ are the same as commutative Frobenius algebras.

The Cobordism Hypothesis

Extended cobordisms and TQFTs:

What about higher dimensions?

We would like to generalize this result for dimensions n > 2. But notice that even the case n = 3 is a lot more complex: the category $\mathbf{Cob}_3^{\text{or}}$ has infinitely many generating objects (the g-tori).

A TQFT lets us cut manifolds in one direction.

But what if we could cut things up in more directions?

What about higher dimensions?

We would like to generalize this result for dimensions n > 2. But notice that even the case n = 3 is a lot more complex: the category $\mathbf{Cob}_3^{\text{or}}$ has infinitely many generating objects (the g-tori).

A TQFT lets us cut manifolds in one direction.

But what if we could cut things up in more directions?

Extended cobordisms

An extended cobordism is a "cobordism between cobordisms".

We read 1-cobs from left to right, and 2-cobs from top to bottom.

Extended cobordisms are required to be trivial along the boundary.

Extended cobordisms

An extended cobordism is a "cobordism between cobordisms".

We read 1-cobs from left to right, and 2-cobs from top to bottom.

Extended cobordisms are required to be trivial along the boundary.

Gluing and adding extended cobordisms

We can compose extended cobordisms in multiple directions:

These will be the n-morphisms of an n-category.

We can also add and permute, as before.

This is a symmetric monoidal *n*-category

Gluing and adding extended cobordisms

We can compose extended cobordisms in multiple directions:

These will be the *n*-morphisms of an *n*-category.

We can also add and permute, as before.

This is a symmetric monoidal *n*-category.

An n-category has k-morfisms between (k – 1)-morfisms:

We can define an *n*-category of cobordisms, **Bord**_n:

Objects Closed 0-manifolds (finite unions of points).

1-morphisms 1-cobordisms between 0-manifolds.

2**-morphisms** 2-cobordisms with corners.

An n-category has k-morfisms between (k – 1)-morfisms:

We can define an n-category of cobordisms, **Bord** $_n$:

Objects Closed 0-manifolds (finite unions of points).

1-morphisms 1-cobordisms between 0-manifolds.

2-morphisms 2-cobordisms with corners.

An n-category has k-morfisms between (k – 1)-morfisms:

We can define an n-category of cobordisms, **Bord** $_n$:

Objects Closed 0-manifolds (finite unions of points).

1-morphisms 1-cobordisms between 0-manifolds.

2**-morphisms** 2-cobordisms with corners.

:

An n-category has k-morfisms between (k – 1)-morfisms:

We can define an n-category of cobordisms, **Bord** $_n$:

Objects Closed 0-manifolds (finite unions of points).

1-morphisms 1-cobordisms between 0-manifolds.

2-morphisms 2-cobordisms with corners.

An n-category has k-morfisms between (k – 1)-morfisms:

We can define an n-category of cobordisms, **Bord** $_n$:

Objects Closed 0-manifolds (finite unions of points).

1-morphisms 1-cobordisms between 0-manifolds.

2-morphisms 2-cobordisms with corners.

An n-category has k-morfisms between (k – 1)-morfisms:

We can define an n-category of cobordisms, **Bord**_n:

Objects Closed 0-manifolds (finite unions of points).

1-morphisms 1-cobordisms between 0-manifolds.

2-morphisms 2-cobordisms with corners.

:

The absurdity of specifying extended TQFTs

An **extended TQFT** is a symmetric monoidal functor of *n*-categories

$$Z : \mathbf{Bord}_n \to \mathcal{C}.$$

By definition, we need to assign a value to each k-morphism of **Bord**_n. But we must ensure that everything commutes:

No matter how we cut up our manifolds, the result must be the same.

Extended TQFTs for $n \gg 0$ are absurdly hard to construct:

We have a lot of data to assign, but also a lot of constraints to satisfy.

But things are easier for n = 1!

The absurdity of specifying extended TQFTs

An **extended TQFT** is a symmetric monoidal functor of *n*-categories

$$Z \colon \mathbf{Bord}_n \to \mathcal{C}$$
.

By definition, we need to assign a value to each k-morphism of \mathbf{Bord}_n . But we must ensure that everything commutes:

No matter how we cut up our manifolds, the result must be the same.

Extended TQFTs for $n \gg 0$ are absurdly hard to construct:

We have a lot of data to assign, but also a lot of constraints to satisfy.

But things are easier for n = 1!

The absurdity of specifying extended TQFTs

An **extended TQFT** is a symmetric monoidal functor of *n*-categories

$$Z : \mathbf{Bord}_n \to \mathcal{C}.$$

By definition, we need to assign a value to each k-morphism of **Bord**_n. But we must ensure that everything commutes:

No matter how we cut up our manifolds, the result must be the same.

Extended TQFTs for $n \gg 0$ are absurdly hard to construct:

We have a lot of data to assign, but also a lot of constraints to satisfy.

But things are easier for n = 1!

Consider the 1-category $\mathbf{Bord}_1^{\mathrm{fr}} = \mathbf{Cob}_1^{\mathrm{fr}} = \mathbf{Cob}_1^{\mathrm{or}} = \mathbf{Bord}_1^{\mathrm{or}}$.

- Its objects are 1-framed 0-manifolds: finite unions of points.
- Its morphisms are 1-framed 1-cobordisms: circles and lines.

Every object can be written as a disjoint union $\bigsqcup_p pt^+ \sqcup \bigsqcup_m pt^-$.

And every morphism is generated from the following two:

There are two relations, known as "Zorro's Lemma":

Now consider TQFTs $Z: \mathbf{Bord}_1^{fr} \to \mathcal{C}$.

These two diagrams impose conditions on the image of the point: the target object $Z(pt^*) \in C$ must be **dualizable**.

So giving a TQFT $Z: \mathbf{Bord}_1^{\mathrm{Ir}} \to \mathcal{C}$ is the same as selecting an object $Z(\mathsf{pt}^*) \in \mathcal{C}$, and that object must be dualizable.

Consider the 1-category $\mathbf{Bord}_1^{\mathrm{fr}} = \mathbf{Cob}_1^{\mathrm{fr}} = \mathbf{Cob}_1^{\mathrm{or}} = \mathbf{Bord}_1^{\mathrm{or}}$.

- Its objects are 1-framed 0-manifolds: finite unions of points.
- Its morphisms are 1-framed 1-cobordisms: circles and lines.

Every object can be written as a disjoint union $\bigsqcup_p \operatorname{pt}^+ \sqcup \bigsqcup_m \operatorname{pt}^-$.

And every morphism is generated from the following two:

There are two relations, known as "Zorro's Lemma":

Now consider TQFTs $Z: \mathbf{Bord}_1^{fr} \to \mathcal{C}$.

These two diagrams impose conditions on the image of the point: the target object $Z(pt^*) \in C$ must be *dualizable*.

So giving a TQFT $Z: \mathbf{Bord}_1^{\mathrm{fr}} \to \mathcal{C}$ is the same as selecting an object $Z(\mathrm{pt}^+) \in \mathcal{C}$, and that object must be dualizable.

Consider the 1-category $\mathbf{Bord_1^{fr}} = \mathbf{Cob_1^{fr}} = \mathbf{Cob_1^{or}} = \mathbf{Bord_1^{or}}$.

- Its objects are 1-framed 0-manifolds: finite unions of points.
- Its morphisms are 1-framed 1-cobordisms: circles and lines.

Every object can be written as a disjoint union $\bigsqcup_p \operatorname{pt}^+ \sqcup \bigsqcup_m \operatorname{pt}^-$.

And every morphism is generated from the following two:

There are two relations, known as "Zorro's Lemma":

Now consider TQFTs $Z: \mathbf{Bord}_1^{\mathsf{fr}} \to \mathcal{C}$.

These two diagrams impose conditions on the image of the point: the target object $Z(pt^*) \in C$ must be *dualizable*.

So giving a TQFT $Z: \mathbf{Bord}_1^{\mathrm{fr}} \to \mathcal{C}$ is the same as selecting an object $Z(\mathrm{pt}^+) \in \mathcal{C}$, and that object must be dualizable.

Consider the 1-category $\mathbf{Bord_1^{fr}} = \mathbf{Cob_1^{fr}} = \mathbf{Cob_1^{or}} = \mathbf{Bord_1^{or}}$.

- Its objects are 1-framed 0-manifolds: finite unions of points.
- Its morphisms are 1-framed 1-cobordisms: circles and lines.

Every object can be written as a disjoint union $\bigsqcup_p \operatorname{pt}^+ \sqcup \bigsqcup_m \operatorname{pt}^-$.

And every morphism is generated from the following two:

There are two relations, known as "Zorro's Lemma":

Now consider TQFTs $Z: \mathbf{Bord}_1^{fr} \to \mathcal{C}$.

These two diagrams impose conditions on the image of the point: the target object $Z(pt^*) \in \mathcal{C}$ must be *dualizable*.

So giving a TQFT $Z: \mathbf{Bord_1^{fr}} \to \mathcal{C}$ is the same as selecting an object $Z(\mathsf{pt^+}) \in \mathcal{C}$, and that object must be dualizable.

Say we want to construct an extended TQFT.
Assume that our manifolds are *framed*, so that they are very rigid.

We can cut things up as much as we want, so maybe the n=1 case generalizes to higher dimensions:

A framed extended TQFT should be determined by the value assigned to the point.

That is **The Cobordism Hypothesis**.

But our initial statement was actually stronger:

The Cobordism Hypothesis (Baez–Dolan, 1995; Lurie, 2009)

The n-category of framed cobordisms $\mathbf{Bord}_n^{\mathsf{TT}}$ is the free symmetric monoidal n-category on a "fully dualizable object".

So giving a TQFT $Z: \mathbf{Bord}_n^{\mathsf{fr}} \to \mathcal{C}$ should be the same as selecting an object $Z(\mathsf{pt}^+) \in \mathcal{C}$, and that object must be "fully dualizable".

Say we want to construct an extended TQFT. Assume that our manifolds are *framed*, so that they are very rigid.

We can cut things up as much as we want, so maybe the n=1 case generalizes to higher dimensions:

A framed extended TQFT should be determined by the value assigned to the point.

That is **The Cobordism Hypothesis**.

The Cobordism Hypothesis (Baez–Dolan, 1995; Lurie, 2009)

The n-category of framed cobordisms **Bord**^{tr} is the free symmetric monoidal n-category on a "fully dualizable object".

So giving a TQFT $Z: \mathbf{Bord}_n^{fr} \to \mathcal{C}$ should be the same as selecting an object $Z(\mathsf{pt}^*) \in \mathcal{C}$, and that object must be "fully dualizable".

Say we want to construct an extended TQFT. Assume that our manifolds are *framed*, so that they are very rigid.

We can cut things up as much as we want, so maybe the n=1 case generalizes to higher dimensions:

A framed extended TQFT should be determined by the value assigned to the point.

That is **The Cobordism Hypothesis**.

But our initial statement was actually stronger:

The Cobordism Hypothesis (Baez-Dolan, 1995; Lurie, 2009)

The n-category of framed cobordisms $\mathbf{Bord}_n^{\mathsf{fr}}$ is the free symmetric monoidal n-category on a "fully dualizable object".

So giving a TQFT $Z: \mathbf{Bord}_n^{fr} \to \mathcal{C}$ should be the same as selecting an object $Z(\mathsf{pt}^*) \in \mathcal{C}$, and that object must be "fully dualizable".

Say we want to construct an extended TQFT.
Assume that our manifolds are *framed*, so that they are very rigid.

We can cut things up as much as we want, so maybe the n=1 case generalizes to higher dimensions:

A framed extended TQFT should be determined by the value assigned to the point.

That is **The Cobordism Hypothesis**.

But our initial statement was actually stronger:

The Cobordism Hypothesis (Baez-Dolan, 1995; Lurie, 2009)

The n-category of framed cobordisms $\mathbf{Bord}_n^{\mathrm{fr}}$ is the free symmetric monoidal n-category on a "fully dualizable object".

So giving a TQFT Z: **Bord**^{fr}_n $\to \mathcal{C}$ should be the same as selecting an object $Z(\mathsf{pt}^+) \in \mathcal{C}$, and that object must be "fully dualizable".

Fully dualizable objects

An object $X \in \mathcal{C}$ is **dualizable** if there exists:

- A dual object $X^{\vee} \in \mathcal{C}$;
- Morphisms ev: $X \square X^{\vee} \rightarrow I$ and coev: $I \rightarrow X^{\vee} \square X$;
- such that the following compositions are the identities:

An object $X \in \mathcal{C}$ is **fully dualizable** if:

- X is dualizable:
 - the morphisms ev and coev admit adjoints;
 - the 2-morphisms witnessing those adjunctions admit adjoints;
 - the (n-1)-morphisms witnessing those adjunctions admit adjoints.

An *n*-category C is **fully dualizable** if every one of its objects is fully dualizable, and every one of its *k*-morphisms admits adjoints.

Fully dualizable objects

An object $X \in \mathcal{C}$ is *dualizable* if there exists:

- A dual object $X^{\vee} \in \mathcal{C}$;
- Morphisms ev: $X \square X^{\vee} \rightarrow I$ and coev: $I \rightarrow X^{\vee} \square X$;
- such that the following compositions are the identities:

An object $X \in \mathcal{C}$ is **fully dualizable** if:

- X is dualizable;
- the morphisms ev and coev admit adjoints;
- the 2-morphisms witnessing those adjunctions admit adjoints;
- the (n-1)-morphisms witnessing those adjunctions admit adjoints.

An n-category \mathcal{C} is **fully dualizable** if every one of its objects is fully dualizable, and every one of its k-morphisms admits adjoints. Any category has a maximal fully dualizable subcategory $\mathcal{C}^{\mathsf{fd}}$.

Fully dualizable objects

An object $X \in \mathcal{C}$ is *dualizable* if there exists:

- A dual object $X^{\vee} \in \mathcal{C}$;
- Morphisms ev: $X \square X^{\vee} \rightarrow I$ and coev: $I \rightarrow X^{\vee} \square X$;
- such that the following compositions are the identities:

An object $X \in \mathcal{C}$ is **fully dualizable** if:

- X is dualizable;
- · the morphisms ev and coev admit adjoints;
- the 2-morphisms witnessing those adjunctions admit adjoints;

:

• the (n-1)-morphisms witnessing those adjunctions admit adjoints.

An n-category \mathcal{C} is **fully dualizable** if every one of its objects is fully dualizable, and every one of its k-morphisms admits adjoints. Any category has a maximal fully dualizable subcategory \mathcal{C}^{fd} .

Consider the *n*-category **Bord** $_{n}^{fr}$.

Its k-morphisms are k-manifolds with corners M^k equipped with an n-framing: a trivialization $TM \otimes \mathbb{R}^{n-k} \to \mathbb{R}^n$.

We can twist this framing by elements of O(n) in a natural way, by lifting the action $O(n) \curvearrowright \mathbb{R}^n$. So O(n) acts on **Bord**_n^{fr}.

Now let \mathcal{C} be any symmetric monoidal n-category.

The action $O(n) \curvearrowright \mathbf{Bord}_n^{\mathrm{fr}}$ induces an action on $\mathrm{Hom}(\mathbf{Bord}_n^{\mathrm{fr}},\mathcal{C})$. But remember:

Giving a map $Z: \mathbf{Bord}_n^{\mathsf{fr}} \to \mathcal{C}$ is the same as selecting a fully dualizable object $Z(\mathsf{pt}^+) \in \mathcal{C}^{\mathsf{fd}}$.

In other words, $\operatorname{Hom}(\mathbf{Bord}_n^{\operatorname{fr}}, \mathcal{C}) \cong (\mathcal{C}^{\operatorname{fd}})^{\sim}$, where $(\mathcal{C}^{\operatorname{fd}})^{\sim}$ is the space of fully dualizable objects of \mathcal{C} .

In conclusion:

Given any *n*-category C, there is a canonical action $O(n) \curvearrowright (C^{fd})^{\sim}$.

Consider the *n*-category **Bord** $_{n}^{fr}$.

Its k-morphisms are k-manifolds with corners M^k equipped with an n-framing: a trivialization $TM \otimes \mathbb{R}^{n-k} \to \mathbb{R}^n$.

We can twist this framing by elements of O(n) in a natural way, by lifting the action $O(n) \curvearrowright \mathbb{R}^n$. So O(n) acts on **Bord**_n^{fr}.

Now let $\mathcal C$ be any symmetric monoidal n-category.

The action $O(n) \sim \mathbf{Bord}_n^{\mathrm{fr}}$ induces an action on $\mathrm{Hom}(\mathbf{Bord}_n^{\mathrm{fr}}, \mathcal{C})$. But remember:

Giving a map $Z: \mathbf{Bord}_n^{\mathsf{fr}} \to \mathcal{C}$ is the same as selecting a fully dualizable object $Z(\mathsf{pt}^+) \in \mathcal{C}^{\mathsf{fd}}$.

In other words, $\operatorname{Hom}(\mathbf{Bord}_n^{\operatorname{fr}}, \mathcal{C}) \cong (\mathcal{C}^{\operatorname{fd}})^{\sim}$, where $(\mathcal{C}^{\operatorname{fd}})^{\sim}$ is the space of fully dualizable objects of \mathcal{C} .

In conclusion:

Given any *n*-category C, there is a canonical action $O(n) \curvearrowright (C^{fd})^{\sim}$

Consider the *n*-category **Bord** $_n^{fr}$.

Its k-morphisms are k-manifolds with corners M^k equipped with an n-framing: a trivialization $TM \otimes \mathbb{R}^{n-k} \to \mathbb{R}^n$.

We can twist this framing by elements of O(n) in a natural way, by lifting the action $O(n) \curvearrowright \mathbb{R}^n$. So O(n) acts on **Bord**^{fr}_n.

Now let C be any symmetric monoidal n-category.

The action $O(n) \sim \mathbf{Bord}_n^{\mathrm{fr}}$ induces an action on $\mathrm{Hom}(\mathbf{Bord}_n^{\mathrm{fr}}, \mathcal{C})$. But remember:

Giving a map $Z: \mathbf{Bord}_n^{\mathrm{fr}} \to \mathcal{C}$ is the same as selecting a fully dualizable object $Z(\mathrm{pt}^+) \in \mathcal{C}^{\mathrm{fd}}$.

In other words, $\operatorname{Hom}(\mathbf{Bord}_n^{\operatorname{fr}}, \mathcal{C}) \cong (\mathcal{C}^{\operatorname{fd}})^{\sim}$, where $(\mathcal{C}^{\operatorname{fd}})^{\sim}$ is the space of fully dualizable objects of \mathcal{C} .

In conclusion:

Given any *n*-category C, there is a canonical action $O(n) \curvearrowright (C^{fd})^{\sim}$

Consider the *n*-category **Bord**_n^{fr}.

Its k-morphisms are k-manifolds with corners M^k equipped with an n-framing: a trivialization $TM \otimes \mathbb{R}^{n-k} \to \mathbb{R}^n$.

We can twist this framing by elements of O(n) in a natural way, by lifting the action $O(n) \curvearrowright \mathbb{R}^n$. So O(n) acts on **Bord**^{fr}_n.

Now let C be any symmetric monoidal n-category.

The action $O(n) \sim \mathbf{Bord}_n^{\mathrm{fr}}$ induces an action on $\mathrm{Hom}(\mathbf{Bord}_n^{\mathrm{fr}}, \mathcal{C})$. But remember:

Giving a map $Z: \mathbf{Bord}_n^{\mathsf{fr}} \to \mathcal{C}$ is the same as selecting a fully dualizable object $Z(\mathsf{pt}^+) \in \mathcal{C}^{\mathsf{fd}}$.

In other words, $\operatorname{Hom}(\mathbf{Bord}_n^{\operatorname{fr}},\mathcal{C}) \cong (\mathcal{C}^{\operatorname{fd}})^{\sim}$, where $(\mathcal{C}^{\operatorname{fd}})^{\sim}$ is the space of fully dualizable objects of \mathcal{C} .

In conclusion:

Given any *n*-category C, there is a canonical action $O(n) \curvearrowright (C^{fd})^{\sim}$.

Generalization to G-structured cobordisms

Given a subgroup $G \hookrightarrow O(n)$ and a manifold M^n , a G-structure on M is a reduction of structure group of the frame bundle FrM from O(n) to G. (This makes sense up to homotopy).

- A {1}-structure is a framing.
- An SO(n)-structure fixes an orientation.
- An O(n)-structure gives no structure at all.

The Cobordism Hypothesis also has a G-structured version.

Thesis (Lurie, 2009)

G-structured extended TQFTs $Z: \mathbf{Bord}_n^G \to \mathcal{C}$ correspond to homotopy fixed points of the canonical G-action $G \hookrightarrow O(n) \curvearrowright (\mathcal{C}^{\mathsf{fd}})^{\sim}$:

$$\operatorname{Hom}(\operatorname{Bord}_n^G, \mathcal{C}) \simeq ((\mathcal{C}^{\operatorname{fd}})^{\sim})^{\operatorname{h} G}$$

Generalization to G-structured cobordisms

Given a subgroup $G \hookrightarrow O(n)$ and a manifold M^n , a G-structure on M is a reduction of structure group of the frame bundle FrM from O(n) to G. (This makes sense up to homotopy).

- A {1}-structure is a framing.
- An SO(*n*)-structure fixes an orientation.
- An O(n)-structure gives no structure at all.

The Cobordism Hypothesis also has a G-structured version.

Thesis (Lurie, 2009)

G-structured extended TQFTs $Z: \mathbf{Bord}_n^G \to \mathcal{C}$ correspond to homotopy fixed points of the canonical G-action $G \hookrightarrow O(n) \curvearrowright (\mathcal{C}^{\mathsf{fd}})^{\sim}$:

$$\operatorname{Hom}(\mathbf{Bord}_n^G, \mathcal{C}) \simeq ((\mathcal{C}^{\operatorname{fd}})^{\sim})^{\operatorname{h} G}$$

Generalization to G-structured cobordisms

Given a subgroup $G \hookrightarrow O(n)$ and a manifold M^n , a G-structure on M is a reduction of structure group of the frame bundle FrM from O(n) to G. (This makes sense up to homotopy).

- A {1}-structure is a framing.
- An SO(n)-structure fixes an orientation.
- An O(n)-structure gives no structure at all.

The Cobordism Hypothesis also has a *G*-structured version.

Thesis (Lurie, 2009)

G-structured extended TQFTs Z: **Bord**_n^G $\rightarrow \mathcal{C}$ correspond to **homotopy fixed points** of the canonical G-action $G \hookrightarrow O(n) \curvearrowright (\mathcal{C}^{\text{fd}})^{\sim}$:

Hom(**Bord**_n^G,
$$C$$
) $\simeq ((C^{fd})^{\sim})^{h G}$.

Consider **Bord**₂^{or}.

- Notice that 1-morphisms $M, N: \emptyset \to \emptyset$ are closed 1-manifolds.
- And a 2-morphism $B: M \Rightarrow N$ is an unextended 2-cobordism.

So we can identify $\operatorname{Hom}_{\operatorname{\boldsymbol{Bord}}_2^{\operatorname{or}}}(\varnothing,\varnothing)\simeq\operatorname{\boldsymbol{Cob}}_2^{\operatorname{or}}.$

In other words, every extended TQFT yields an unextended TQFT. But the converse is not true.

When taking C to be the Morita bicategory Alg_2 , one can prove:

Theorem (Schommer-Pries, 2009)

2D oriented extended TQFTs Z: $Bord_2^{or} \rightarrow Alg_2$ are the same as separable symmetric Frobenius algebras.

So in this context, a TQFT $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_k$ will extend down to points if and only if its corresponding Frobenius algebra is separable.

Consider **Bord**₂^{or}.

- Notice that 1-morphisms $M, N: \emptyset \to \emptyset$ are closed 1-manifolds.
- And a 2-morphism $B: M \Rightarrow N$ is an unextended 2-cobordism.

So we can identify $\operatorname{Hom}_{\operatorname{\boldsymbol{Bord}}_2^{\operatorname{or}}}(\varnothing,\varnothing)\simeq\operatorname{\boldsymbol{Cob}}_2^{\operatorname{or}}.$

In other words, every extended TQFT yields an unextended TQFT. But the converse is not true.

When taking C to be the Morita bicategory Alg_2 , one can prove:

Theorem (Schommer-Pries, 2009)

2D oriented extended TQFTs $Z: \mathbf{Bord}_2^{\mathsf{or}} \to \mathbf{Alg}_2$ are the same as separable symmetric Frobenius algebras.

So in this context, a TQFT $Z: \mathbf{Cob}_2^{\mathsf{or}} \to \mathbf{Vect}_k$ will extend down to points if and only if its corresponding Frobenius algebra is separable

Consider **Bord**₂^{or}.

- Notice that 1-morphisms $M, N: \emptyset \to \emptyset$ are closed 1-manifolds.
- And a 2-morphism $B: M \Rightarrow N$ is an unextended 2-cobordism.

So we can identify $\operatorname{Hom}_{\operatorname{\boldsymbol{Bord}}_2^{\operatorname{or}}}(\varnothing,\varnothing)\simeq\operatorname{\boldsymbol{Cob}}_2^{\operatorname{or}}.$

In other words, every extended TQFT yields an unextended TQFT. But the converse is not true.

When taking C to be the Morita bicategory \mathbf{Alg}_2 , one can prove:

Theorem (Schommer-Pries, 2009)

2D oriented extended TQFTs Z: $Bord_2^{or} \rightarrow Alg_2$ are the same as separable symmetric Frobenius algebras.

So in this context, a TQFT $Z: \mathbf{Cob}_2^{\mathsf{or}} \to \mathbf{Vect}_k$ will extend down to points if and only if its corresponding Frobenius algebra is separable.

Consider **Bord**₂^{or}.

- Notice that 1-morphisms $M, N: \emptyset \to \emptyset$ are closed 1-manifolds.
- And a 2-morphism $B: M \Rightarrow N$ is an unextended 2-cobordism.

So we can identify $\operatorname{Hom}_{\operatorname{\boldsymbol{Bord}}_2^{\operatorname{or}}}(\varnothing,\varnothing)\simeq\operatorname{\boldsymbol{Cob}}_2^{\operatorname{or}}.$

In other words, every extended TQFT yields an unextended TQFT. But the converse is not true.

When taking C to be the Morita bicategory \mathbf{Alg}_2 , one can prove:

Theorem (Schommer-Pries, 2009)

2D oriented extended TQFTs Z: $Bord_2^{or} \rightarrow Alg_2$ are the same as separable symmetric Frobenius algebras.

So in this context, a TQFT $Z: \mathbf{Cob}_2^{or} \to \mathbf{Vect}_k$ will extend down to points if and only if its corresponding Frobenius algebra is separable.

References

- [1] J. C. Baez and J. Dolan. (1995). "Higher-dimensional Algebra and Topological Quantum Field Theory". DOI: 10.1063/1.531236. arXiv: q-alg/9503002.
- [2] J. Kock. (2003). Frobenius Algebras and 2D Topological Quantum Field Theories. DOI: 10.1017/CB09780511615443.
- [3] J. Lurie. (2009). "On the Classification of Topological Field Theories". DOI: 10.4310/CDM.2008.v2008.n1.a3. arXiv: 0905.0465 [math.CT].
- [4] C. J. Schommer-Pries. (2009). "The Classification of Two-Dimensional Extended Topological Field Theories". arXiv: 1112.1000v1 [math.AT].
- [5] C. L. Douglas, C. Schommer-Pries, and N. Snyder. (2020).

 Dualizable Tensor Categories. DOI: 10.1090/memo/1308. arXiv: 1312.7188 [math.QA].