CdS Microclusters in Sodalite Frameworks of Different Composition: A Density Functional Study

A. Trave, †,‡ F. Buda,§ and A. Selloni*,†,||

Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland, Institute IRRMA, Swiss Federal Institute of Technology, PHB-Ecublens, CH-1015 Lausanne, Switzerland, INFM, Forum Laboratory, Scuola Normale Superiore, I-56126 Pisa, Italy, and II Facoltà di Scienze MM.FF.NN., Università di Milano, Sede di Como, I-22100 Como, Italy

Received: June 26, 1997; In Final Form: November 5, 1997

We present a local density functional study of Cd_4S and Cd_4S_4 clusters inside sodalite cages of different compositions (Al:Si ratios). The composition of the framework determines the cluster \rightarrow cage charge transfer and strongly affects the atomic structure of the inclusion. The energy gap and the character of the highest occupied (HOMO) and lowest unoccupied (LUMO) electronic states depend on the size and stoichiometry of the included clusters, as well as on the overall stoichiometry of the composite. The calculated gap for Cd_4S inclusions in aluminosilicate and aluminate sodalite (at half and full packing respectively) is \sim 2.5 eV (i.e., about twice the calculated gap of bulk CdS), while for Cd_4S_4 in aluminosilicate and pure silica sodalite (at half packing) it is 1.7-1.9 eV (i.e., about 1.5 times the gap of bulk CdS). Our results indicate that simple confinement arguments are usually insufficient to predict the behavior of semiconductor—zeolite composites.

I. Introduction

The creation of novel materials by insertion of molecules and/ or clusters into the cages and channels of zeolitic frameworks is a subject of intensive research and continuing interest. ^{1,2} In particular zeolites are considered as ideal templates for growing three-dimensional "quantum-dot crystals", with several potential applications in the field of optoelectronic devices. So far, the possibility of incorporating small semiconductor clusters³ into various zeolite hosts has been demonstrated by several experimental studies. An important issue which has emerged concerns the structure of the semiconductor—zeolite composites and how this is related to the fundamental gap of these systems.

Some aspects of this issue have been analyzed in a few recent theoretical investigations. The structure and stability of M₄X₄ (M = Cd or Zn; X = O or S) clusters in siliceous faujasite has been investigated using atomistic simulation methods.⁴ These calculations found significant distortions of both the host lattice and the cubic clusters and predict that half packing of the lattice (i.e., in which only alternate sodalite cages are occupied by the clusters) is preferred to full packing. In a Local Density Functional (LDF) study by two of us,⁵ the structure and electronic properties of different microclusters of III-V compound semiconductors (GaP, InAs, and GaN) in aluminosilicate sodalite have been examined. Structures are found to be characterized by a strong bonding of the group III atoms to the oxygens of the cage. The clusters introduce optically active electronic states in the energy gap of the zeolite, and the overall gap of the semiconductor-zeolite composite is determined by the chemical nature of the cluster. LDF calculations have been carried out also for Si_n (n = 2-7) clusters in silicasodalite,⁶ a system for which no charge transfer between cluster and framework should occur. For sufficiently small aggregates (n < 5), both the atomic and the electronic structures of the embedded clusters are close to those of the clusters in free space. For larger n's, the volume of the sodalite cage becomes too small, the cluster is "squeezed" inside the cage, and the interaction between the framework and the embedded cluster becomes repulsive.

In this work, we again use first principles LDF methods to investigate CdS microclusters in sodalite. The properties of CdS clusters and nanocrystals have been the subject of numerous experimental³ and theoretical investigations (see, for example, refs 7 and 8) over the last years. Morever, several experimental studies have dealt with II-VI semiconductor inclusions in the sodalitic cages of zeolites of different composition (for a recent review, see ref 2). In most of these experiments the clusters which are believed to occur are II₄VI and II₄VI₄. In our study we shall thus consider Cd₄S and Cd₄S₄ inclusions and study how the atomic and electronic structures depend on the composition and charge of the sodalitic framework. Although density functional theory is known to severely underestimate the HOMO-LUMO (HOMO = highest occupied molecular orbital, LUMO = lowest unoccupied molecular orbital) band gap, 9 so that calculated gaps are not immediately comparable to experiment, in this work we are mostly interested in trends, which are widely believed to be quite well described by this approach.

II. Computations

A. Geometry. The sodalite structure can be described as a body-centered cubic arrangement of β cages, or sodalitic cages. The β cage is the building block of several zeolites, including sodalite, zeolite A, as well as zeolites X and Y. This cage has the shape of a truncated octahedron, with eight hexagonal and six square faces. In the sodalite structure, cages are joined through the square faces. The vertices of the cage correspond to tetrahedrally coordinated (T) Si or Al atoms. Each of these

[†] University of Geneva.

[‡] Swiss Federal Institute of Technology.

[§] INFM.

Il Università di Milano.

TABLE 1: Structural Parameters of the Sodalite Framework in the Presence of Different Included Clusters^a

	SOD-2(Na ₄ Cl)	SOD-Cd ₄ S	$SOD-2(Cd_4S)$	$SOD-Cd_4S_4$
		Angles (deg)		
SiOAl	138.2	12×138.7	140.3 ± 6.1	144.8 ± 5.2
		12×141.9		
$ au_{ m Si}$	24×107.7	12×103.2		
		12×112.3		
	12×113.0	6×109.7		
		6×116.2		
average	109.5	109.5	109.5 ± 3.3	109.5 ± 4.4
$ au_{ m Al}$	24×108.7	12×104.0		
		12×113.0		
	12×111.0	6×107.6		
		6×115.3		
average	109.5	109.5	109.4 ± 3.4	109.5 ± 3.7
ϕ_{Si}	23.9	6×18.6	21.5 ± 1.6	$6 \times 15.7 \pm 2.0$
		6×24.8		$6 \times 18.8 \pm 0.6$
$\phi_{ m Al}$	22.4	6×17.5	20.3 ± 1.6	$6 \times 15.0 \pm 1.3$
•		6×23.8		$6 \times 17.9 \pm 1.0$
		Distances (Å)		
SiO	1.62	12 × 1.652	1.631	12×1.627
		12×1.605		12×1.593
AlO	1.74	12×1.744	1.728	12×1.716
1110	2., 1	12×1.705	1., 20	12×1.688

^a Values for natural sodalite (second column) are from experiment (ref 13), while all other values are from calculations in this work. τ denote $\tilde{O}T\tilde{O}$ angles, where T = (Al and Si); ϕ are the collapse angles for the TO_4 tetrahedra. Average values together with their dispersion (standard deviation) are reported. When not explicitely given, the dispersion should be considered very small or negligible. For some parameters inequivalent sets of values are distinguished.

is connected via oxygen bridges to four other T-atoms in the first coordination shell. In sodalite, only one type of T-site is present.

The sodalite structure can be prepared with a variety of framework compositions and charges, from a neutral silica framework $[Si_{12}O_{24}]^{0,11}$ to pure aluminate sodalite $[Al_{12}O_{24}]^{-12,12}$ to the most frequent aluminosilicate sodalite [Al₆Si₆O₂₄]⁻⁶ (formulas refer to a unit cell). The negative charges are provided by counterions inside the sodalite cages. The counterions usually consist of M_4X clusters, where M = cation and X =anion. In natural sodalite, for instance, a Na₄Cl cluster is present inside each cage, so that the unit cell content is [Al₆Si₆O₂₄] $-2(Na_4Cl)$.

In the following, CdS microclusters embedded in [Al₆Si₆O₂₄] (SOD), [Si₁₂O₂₄] (SiSOD), and [Al₁₂O₂₄] (AlSOD) frameworks are considered. For the SOD framework, we use the lattice constant of natural sodalite, a = 8.92 Å, which has been obtained in a previous LDF study.¹³ For SiSOD and AlSOD, lattice constants of 8.836¹¹ and 8.818 Å, ¹² respectively, are used.

B. Technical Details. Calculations have been carried out using LDF theory within the framework of the Car-Parrinello method. 14,15 The electronic valence wavefunctions are expanded in plane waves and are calculated only at the Γ point of the Brillouin zone. For Si, Al, Cd, and S, electron-core interactions are described by norm-conserving pseudopotentials¹⁶ in a Kleinman and Bylander form, 17 whereas for oxygen an "ultrasoft" pseudopotential¹⁸ is used. For Cd, only 5s electrons are treated explicitely as valence electrons, whereas nonlinear core corrections are used to take care of the filled 4d shell. 19,20 A kinetic energy cutoff $E_{\text{cut},1} = 16$ Ry, is used for the smooth part of the electronic wave functions, while the cutoff for the augmented electron density is $E_{cut,2} = 200 \text{ Ry.}^{21}$ The parametrisation of Perdew-Zunger²² is employed for the functional of local exchange correlation. A preconditioned algorithm²³ is used in the electronic minimization procedure. With a preconditioning cutoff $E_p = 2$ Ry and an electronic fictitious mass μ = 500 au, our time step is $\Delta t = 9$ au. The atom positions are relaxed using a damped second-order dynamics algorithm until residual forces are less than 0.0003 au.

C. Preliminary Test: Bulk CdS. Most of the ingredients of our calculations have already been tested in our previous studies of sodalite and offretite zeolites. 5,13,24 As a further test for the present study, we have calculated the lattice parameter of bulk CdS in the zincblende structure using a cubic supercell containing 64 atoms and sampling the Γ -point only of the corresponding Brillouin zone. The resulting value is a = 5.92Å (corresponding to a nearest neighbor CdS distance of \sim 2.57 Å), to be compared to an experimental value of \sim 5.82 Å. The difference between theory and experiment is less than 2%. The calculated band gap for bulk CdS is $E_{\rm gap}^{\rm bulk} = 1.3$ eV, to be compared to the experimental gap of 2.5 eV. As mentioned previously, the strong underestimate of energy gaps is a wellknown feature of density functional calculations.

III. Results

A. Cd_4S Clusters in Aluminosilicate (Al:Si = 1) and Pure Aluminate Sodalite. 1. $SOD-2(Cd_4S)$ and $SOD-Cd_4S$. In order to illustrate the influence of the cluster → framework charge transfer on the structure and band gap of the composite, it is interesting to compare the behavior of SOD-2(Cd₄S), in which each sodalite cage contains a Cd₄S cluster, with that of SOD-Cd₄S, in which only one every two cages contains a cluster. SOD-Cd₄S is a stoichiometric composite, where the six electrons that Cd₄S can donate perfectly compensate the missing charge of the sodalitic framework. For SOD-2(Cd₄S), instead, the charge that the clusters may donate to the framework is twice the missing charge on the sodalitic cage. This may make the practical realization of such structure difficult (see also below).

The structure of SOD-2(Cd₄S) was calculated starting from natural sodalite, SOD-2(Na₄Cl), and replacing each Na₄Cl tetrahedral unit by a Cd₄S cluster. Upon relaxation, a very different behavior of the two non-equivalent Cd₄S clusters in the unit cell is observed (see Table 3). This is at variance with the results for SOD-2(III₄V) composites, where the two nonequivalent clusters have the same structure also after relaxation.⁵ In the present case, one Cd₄S maintains a tetrahedral

TABLE 2: Structural Parameters of the Silica— and Alumina—Sodalite Frameworks^a

			AlSOD-	AlSOD-2(Cd ₄ S)	
	$SiSOD{-}Cd_4S_4\\$		(experimental)	(simulation)	
		Angles ((deg)		
SiÔSi	12×147.8	AlÔAl	24×126.1	24×130.6	
	12×157.4				
$ au_{ m Si}$	12×105.0	$ au_{ m Al}$	48×108.1	48×107.8	
	24×106.9		24×112.5	24×113.0	
	12×110.8				
	24×113.6				
ϕ_{Si}	12×11.30	$\phi_{ m Al}$		12×28.506	
	12×16.11			12×28.518	
Distances (Å)					
$\overline{\text{SiO}}$	24×1.626	AlO	48×1.750	24×1.716	
	24×1.594			24×1.717	

^a Symbols and notations are as in Table 1. For AlSOD-2(Cd₄S) both theoretical and experimental results from ref 12 are presented. For these systems, dispersions of the data are negligible.

TABLE 3: Geometrical Parameters of Cd₄S Clusters Included in Sodalitic Frameworks^a

	SOD-2(Cd ₄ S)			AlSOD-2	2(Cd ₄ S)
			$SOD{-}Cd_4S$	(experimental)	(simulation)
$\overline{\text{CdO}}$	2.488	2.445	2.386	2.198	2.285
	3.044		2.989	3.297	3.213
CdS	2.634	2.487	2.668	2.535	2.528
CdCd		2.718			
		2.733			
CdSCd	109.4		109.5		109.5

^a For SOD−2(Cd₄S), the parameters of the two clusters in the unit cell are separately reported. For the split-up cluster (right column), the bond length of the CdS fragment and the distances in the Cd₃ fragment are reported. For AlSOD−2(Cd₄S), the calculations are compared to the experimental values reported in ref 12.

symmetry, with the Cd atoms located at the center of the 6-ring faces of the cage, whereas the other cluster is strongly deformed. Two fragments may be distinguished: a Cd–S strongly bonded pair (Cd–S = 2.487 Å), with the cadmium atom still interacting with the cage, and an L-shaped Cd $_3$ fragment. Relaxed structural parameters for the framework are given in Table 1, together with corresponding results for other sodalite composites. We can remark that the framework geometry does not change substantially from one composite to the other.

In the relaxed configuration of the stoichiometric SOD—Cd₄S composite, the tetrahedral symmetry of the Cd₄S cluster is conserved, with a Cd—S bond length of 2.668 Å, slightly longer than the calculated bulk bond length of 2.57 Å (see Table 3). Nearest-neighbor and next-nearest-neighbor oxygens around each Cd are at distances 2.386 and 2.989 Å, respectively. The optimized structures of the filled and unfilled cages are different: the filled cages are wider than the unfilled ones, and the oxygen atoms are more collapsed in the void cells (as shown by the collapse angles ϕ , in Table 1). The final configuration for both cages shows a very little dispersion of the geometrical parameters around their average values.

To get insight into the energetics of cluster incorporation, we have calculated the embedding energy $E_{\rm emb}$, which we define as the difference between the total energy per unit cell ($E_{\rm tot}$) of the sodalite framework with the encapsulated cluster(s), and the sum of the energies of the *non-interacting*, *neutral* framework ($E_{\rm frame}$), and cluster(s) ($E_{\rm clus}$). In this case for $E_{\rm clus}$ we take the total energy of neutral Cd₄S frozen in the structure attained within the sodalite cage. For SOD–Cd₄S, the resulting value is $E_{\rm emb} = 4.619$ hartrees. Such a large energy can be

TABLE 4: Structural Parameters for Cd₄S₄ Clusters Embedded in Sodalite and Silicasodalite Frameworks at Half Packing^a

	SOD-Cd ₄ S ₄	SiSOD-Cd ₄ S ₄	Cd_4S_4
CdO	2.336	2.913	
	2.849	3.201	
$\overline{\mathrm{SO}}$		2.796	
		3.425	
CdS	2.487	2.539	2.582
<u>CdS</u> CdSCd		79.3	73.0
SĈdS		99.8	104.7

 $[^]a$ For comparison, the corresponding values for an isolated Cd₄S₄ cluster are also reported (last column). Notice that both the cluster embedded in silicasodalite and the "free" Cd₄S₄ have S atoms on their outer shell.

TABLE 5: Electronic Gap Widths and Spatial Localization of HOMOs and LUMOs for the Composite Samples

	$E_{\rm gap}({ m eV})$	НОМО	LUMO
SOD-2(Cd ₄ S)	0.91	cluster (S of CdS)	cluster (Cd ₄ S)
SOD-Cd ₄ S	2.42	mixed (S and O)	cluster
$AlSOD-2(Cd_4S)$	2.55	cage (O)	cage (O)
$SOD-Cd_4S_4$	1.93	mixed	cage (O)
SiSOD-Cd ₄ S ₄	1.66	cluster	cluster

rationalized by taking into account the transfer of six electronic charges from the cluster to the cage and the resulting electrostatic interactions between $[Cd_4S]^{6+}$ and the $[Al_6Si_6O_{24}]^{6-}$ framework. For the SOD-2(Cd₄S), the calculated $E_{\rm emb}$ is 8.626 hartrees, (i.e., substantially less than twice the embedding energy for SOD-Cd₄S), indicating that half packing of the lattice is preferred to full packing.

In Figures 1a,b the electronic densities of states (DOS) of SOD-2(Cd₄S) and SOD-Cd₄S are compared to that of the negatively charged empty framework [SOD]⁶⁻. For the latter we find an HOMO-LUMO gap of 3.94 eV, which is close to the gap of 4.39 eV that Filippone et al.¹³ calculated for SOD- $2(Na_4Cl)$ (for which the experimental gap is ~ 6.1 eV). For SOD-2(Cd₄S) system, the band gap is rather small, 0.91 eV, even smaller than the calculated gap for bulk CdS, whereas the electronic gap of SOD-Cd₄S is 2.42 eV, (i.e. almost twice the gap for bulk CdS). We remark that both these gaps are quite different with respect to the calculated gap of GaP-sodalite systems,⁵ in spite of the fact that the experimental gaps of bulk CdS and bulk GaP are very similar. Analysis of the electronic charge distributions of the HOMOs and LUMOs, shows that for SOD-2(Cd₄S) both the HOMO and the LUMO are associated with states of the included clusters, whereas for SOD-Cd₄S the HOMO has mixed cluster-framework character and the LUMO is localized on the cluster (see Table 5). It may be also interesting to point out that for SOD-2(Na₄Cl) both the HOMO and the LUMO have been found to be localized on the framework's oxygen atoms,13 while for III-V infilled clusters the HOMO arises from the inclusions and the LUMO has a mixed cluster-cage character.⁵

2. AlSOD-2(Cd₄S). Al₁₂O₂₄-2(Cd₄S) has been synthesized and experimentally characterized by X-ray diffraction, infrared spectroscopy, and ultraviolet reflectance.¹² This combination of alumina-sodalite cage and Cd₄S inclusions has again a stoichiometric composition.

Comparison between experimentally determined and calculated structural parameters of the included clusters is presented in Table 3. The agreement is good, differences between the two sets of data being smaller than 5%. Our calculations show that upon relaxation the included clusters fully preserve the tetrahedral symmetry. Moreover, the relaxed configurations of

Figure 1. DOS for aluminosilicate— and alumino-sodalite with Cd₄S included clusters. For each case both the DOS for the frameworkcluster composite (dashed line) and the bare charged framework (thin full line) are shown. The vertical dashed (full) lines indicate the gap for the cluster-cage composite (bare framework). Note that in part c the HOMOs for the composite and the framework coincide. Different densities are aligned at the main peak of the deepest bands (at ~ -20 eV) and are normalized to the number of valence states of the corresponding sample. The calculated eigenvalue spectrum has been broadened with a gaussian of width 0.14 eV.

the two nonequivalent clusters are practically identical. The little dispersions around the average values of the geometrical parameters of the clusters (see Table 3) and of the cage (see Table 2) suggest that the structure has a great stability. From Table 3 we can see that the Cd-O distances, 2.285 Å, are shorter than in any other zeolite composite we have considered. This may be an effect of both the narrower size of the aluminasodalite cage and the strong interaction between cage and inclusions which is caused by the huge charge transfer. The Cd-S distance (2.528 Å) is comparable with the bulk distance.

In Figure 1c, we compare the electronic DOS of AlSOD-2(Cd₄S) to that of the negatively charged empty framework [AlSOD]¹²⁻. For the latter the calculated gap is 2.98 eV, while for the composite it is 2.55 eV (i.e., almost twice the calculated gap of bulk CdS). This appears to be at variance with experiment, where the adsorption edge for Al₁₂O₂₄-2(Cd₄S) is blue-shifted by only a few tenths of an eV with respect to bulk CdS.¹² However it is not unlikely that the experimental adsorption edges are related to different kinds of impurities and/ or defects rather than to the band edges. Figure 1c suggests that the HOMO of AlSOD-2(Cd₄S) arises from states of the framework, whereas the LUMO appears as a state of the framework down-shifted by the interaction with the clusters. Analysis of the electronic charge distributions confirms this suggestion, showing that both the HOMO and the LUMO are mostly localized on the oxygens of the framework, with a small contribution from the cluster S atoms. The different character of the LUMO for SOD-Cd₄S and AlSOD-2(Cd₄S) can be related to the narrower gap of [AlSOD]⁻¹² with respect to $[SOD]^{6-}$.

B. Cd_4S_4 Clusters in Aluminosilicate (Al:Si = 1) and Silica Sodalite. 1. The "Free" Cd_4S_4 Cluster. We have calculated the atomic structure of Cd₄S₄ starting from an initial cubic geometry in which S and Cd atoms form two interpenetrating tetrahedra (cubane). The cluster was placed in a cubic box of size equal to the unit cell of sodalite, and periodic boundary conditions were used. Upon relaxation, S (Cd) atoms

Figure 2. Ball-and-stick representation of the atomic structure of SOD-Cd₄S₄ (part a) and of "free" Cd₄S₄ (part b). Oxygen atoms are black, aluminum, and silicon are medium grey, sulphur is light grey, and cadmium is dark grey.

move outward (inward), so that in the final geometry the internal and external tetrahedra are made up of Cd and S atoms respectively. This relaxation pattern is reminiscent of the "buckling" reconstruction which takes place at the nonpolar surfaces of II-VI and III-V materials: the anions (cations) relax outward (inward), so as to give rise to fully occupied and empty dangling bond states on the anions and cations, respectively.25 For our Cd₄S₄ cluster, Cd-S, Cd-Cd, and S-S distances are 2.58, 3.07, and 4.04 Å respectively, with Cd-S-Cd and S-Cd-S angles of \sim 73° and 104.7° (see Table 4). The calculated electronic energy gap between the filled S-3p and Cd-5s states is 2.09 eV.

2. SOD-Cd₄S₄. Experimentally, results referring to various concentrations of Cd₄S₄ and mixed Cd₄O_nS_(4-n) clusters within the sodalitic cages of different zeolites have been reported.^{1,2} Although several of these results are still under debate,² it seems established that at low loading levels of CdS in zeolite Y, isolated cluster Cd₄S₄ inside the sodalite cages of Z-Y are present, with an adsorption peak at about 4.3 eV (i.e., an energy \sim 1.7 times the experimental gap of bulk CdS). With increasing loadings, the adsorption peak shifts to lower energies (down to about 3.5 eV), which has been interpreted as an indication of interactions between clusters. Here we restrict our study to Cd₄S₄ clusters inside sodalite at half packing.

The initial position of the cubic Cd₄S₄ cluster was chosen with the corners symmetrically pointing towards the centers of the eight 6-rings of the occupied cage. After relaxation, besides the usual splitting in the geometrical sizes of filled and unfilled cages (see Table 1), a strong deformation of the infilled Cd₄S₄ cluster is observed (see Figure 2 and Table 4). On the outer shell, Cd atoms are located in proximity of the center of the

Figure 3. DOS for SOD-Cd₄S₄ and SiSOD-Cd₄S₄. For each case both the DOS for the framework—cluster composite (dashed line) and the bare framework or free cluster (thin full line) are shown. The vertical dashed (full) lines indicate the gap for the cluster-cage composite (bare framework or free cluster). In the bottom panel, the HOMO of the free cluster and of the cluster-framework composite have been aligned. Other details are as in Figure 1.

6-rings of the sodalite cage, with rather short Cd-O distances (\sim 2.34 and 2.85 Å). Inside this shell, the S atoms form a covalently bonded chain structure, with S-S bondlengths of 2.168 and 2.046 Å for the central and two outer bonds respectively. In addition, each S atom is bonded also to one Cd atom (Cd-S = 2.487 Å). The shape of the S-chain is reminiscent of one of the low-energy isomers of gas-phase S₄ clusters. However, unlike the free clusters, the chain of sulphur atoms inside the sodalite cage is nonplanar, resembling a twisted trapezoid. It is also interesting to remark the difference between the open chain structure formed by the sulphurs of the Cd₄S₄ cluster and the P₄ ring structure which was found for the analogous Ga₄P₄ cluster infilled in sodalite.⁵

We calculated the embedding energy using for $E_{\rm clus}$ the energy of the optimized structure of Cd₄S₄ in free-space. The resulting value is $E_{\rm emb} = 1.081$ hartrees, which is considerably less than the embedding energy for SOD—Cd₄S. This difference suggests that for the present system the cluster \rightarrow framework charge transfer is either smaller or has a much higher energy cost, which may be related to the higher ionization potential of Cd₄S₄ with respect to Cd₄S. In fact, the Cd₄S₄ cluster must undergo a major structural rearrangement to make this charge transfer possible.

The DOS of the SOD $-Cd_4S_4$ structure is displayed in Figure 3a, where it is compared to the DOS of the bare framework, [SOD]⁶⁻. In spite of the large deformation of the infilled cluster with respect to "free" Cd_4S_4 , the energy gap of the composite (1.93 eV) is close to the HOMO-LUMO separation of the free cluster, while it is ~ 1.5 larger than the calculated gap of bulk CdS. Analysis of the electronic charge distributions shows that both the HOMO and the LUMO have mixed character, the HOMO being however mostly localized on the S atoms of the clusters, while the LUMO is mostly localized on the oxygens of the cage (see Table 5).

3. SiSOD—Cd₄S₄. To further investigate the influence of the cage composition on the structure of the inclusion, we have considered Cd₄S₄ clusters embedded within the charge-neutral cages of silicasodalite (SiSOD), with a filling factor of 1:2. For this case, we expect to see a weakening of the forces between cage and inclusion, which would result in a purely geometric confinement of the cluster. In fact the relaxed structure of the

cluster (see Table 4) shows the S anions in the outer shell of the cluster and the Cd cations in the inner shell, just like the isolated cluster. Moreover, the distances between Cd and S atoms remain rather short (2.539 Å), while the Cd–O distances are significantly greater than the corresponding distances in all other sodalite composites that we have considered. As a result of the confinement, the "buckling" is smaller than that of free Cd₄S₄, as indicated by the fact the CdSCd and SCdS bonding angles are closer to 90°. The embedding energy is $E_{\rm emb} = 0.451$ hartrees, (i.e. less than half the embedding energy for SOD–Cd₄S₄).

The DOS for SiSOD-Cd₄S₄ and for the bare SiSOD framework are presented in Figure 3b. For the bare SiSOD structure we find a wide gap of 5.45 eV, while that for the SiSOD-Cd₄S₄ composite is 1.66 eV, which is smaller than the calculated gap for the "free" Cd₄S₄ cluster (2.09 eV). This is surprising since the electronic structure of the cluster is expected to be influenced only by the confinement of the framework, without the formation of any bonding state or any charge transfer. However, if we compare the gap of SiSOD-Cd₄S₄ with that of isolated Cd₄S₄ frozen in the atomic configuration within the SiSOD cage (1.48 eV), a slight increase can be observed. This increase can be interpreted as an indication of a quantum confinement effect. On the other hand, the fact that the gap of the "frozen" cluster (1.48 eV) is smaller than that of free Cd₄S₄ (2.09 eV) can be related to the smaller "buckling" of the former, which, somewhat paradoxically, is also a confinement effect. A direct comparison of the electronic DOS for SiSOD-Cd₄S₄ and for the isolated frozen Cd₄S₄ cluster (see Figure 3c) shows a nearly perfect overlap of the states around the gap. This indicates that these states are pertinent to the cluster only, and that the semiconductive nature of the material is determined by the CdS inclusion.

IV. Summary and Conclusions

We have studied several combinations of sodalitic cages and CdS clusters by first principles LDF methods. Our results show that the composition of the sodalite framework, which determines the electronic charge transfer from the cluster to the cage, strongly affects the atomic structure of the infilled cluster. A case for which there is particular evidence of these deformations of the clusters is for SOD-Cd₄S₄. Free Cd₄S₄ consists of two interprenetating tetrahedra, with the S (Cd) atoms on the outer (inner) shell, and the electronic structure is characterized by a relatively wide gap between filled S-3p and empty Cd-5s states. Once inside the sodalite cage, the cluster undergoes a major rearrangement in order to facilitate the cluster → framework charge transfer: the S atoms migrate to the interior of the cluster, where they form a covalently bonded chain structure, while the Cd, on the outer shell, can easily donate electrons to the cage. In the case of Cd₄S₄ inside silica-sodalite, instead, the deformations of the infilled cluster with respect to its structure in free space, are very small. In fact, in this kind of sodalite there are no missing electrons that have to be transferred to the cage, and the only effect is a spatial confinement of the CdS cluster. However, this confinement, by reducing the "buckling", has the peculiar effect of reducing the energy gap with respect to that of free Cd₄S₄.

If we compare the CdS-sodalite structures of this work with the corresponding geometries of III-V inclusions in sodalite of ref 5, some interesting features emerge. While Cd_4S_4 and Ga_4P_4 inclusions show comparable geometries, the structures of the Cd_4S inclusions are typically less distorted than those of the analogous III_4V clusters and usually keep a tetrahedral symmetry, similar to that of the Na_4Cl inclusions of natural

sodalite. For all CdS-sodalite composites the cage is less collapsed than in the case of III-V inclusions, and the calculated structural parameters of the framework are quite similar to the experimentally determined parameteres of natural sodalite.

All the systems that we have studied show semiconductive properties, their gaps varying in a range 0.91-2.55 eV. We can distinguish between Cd₄S and Cd₄S₄ inclusions, as well as between stoichiometric (SOD-Cd₄S, AlSOD-2(Cd₄S), and SiSOD-Cd₄S₄) and nonstoichiometric composites (SOD-2(Cd₄S) and SOD-Cd₄S₄). For stochiometric SOD-Cd₄S and AlSOD-2(Cd₄S), the gaps are \sim 2.5 eV (i.e., twice the calculated gap of bulk CdS), both HOMOs have a large contribution from the framework, while the LUMOs have a different character in the two cases. For the nonstochiometric SOD-2(Cd₄S) composite, the gap is only \sim 0.9 eV (i.e., smaller than bulk CdS), and both the HOMO and the LUMO belong to the cluster. (We recall, however, that this composite is probably unstable, as for Cd₄S inclusions in alumino-silicate sodalite half filling is preferred to full filling.) For the two Cd₄S₄-sodalite structures, the gaps are similar, 1.7–1.9 eV (i.e., about 1.5 times larger than that of bulk CdS), in spite of the different localizations of the HOMOs and LUMOs and very different geometries of the included clusters.

This variety of behaviors indicates that the atomic structure and electronic properties of the material depend significantly on the size and stoichiometry of the cluster as well as on the overall stoichiometry of the composite. This finding may seem to contraddict one of the results of ref 5 (i.e., that for different GaP clusters in aluminosilicate sodalite the gap depends only marginally on the specific microcluster). However, this difference may be (at least to some extent) attributed to the fact that in that study no stoichiometric composite was considered. Moreover our results confirm the conclusion of ref 5 that in general the properties of semiconductor-sodalite composites cannot be simply interpreted in terms of a quantum confinement of the semiconductor by the zeolite framework. The present study shows that even in the case of SiSOD-Cd₄S₄ (i.e., for a system where no cluster → framework charge transfer is present) such an interpretation requires some care. In all other cases, important Cd-O interactions are present which strongly affect the properties, notably the energy gap, of the material.

V. Acknowledgment. The calculations of this work were run on the NEC-SX4 of the CSCS at Manno (Switzerland). A.T.

acknowledges a fellowship financed by the Forum-INFM laboratory during the first stage of this project, as well as the Swiss National Science Foundation for support under Grant 20-49486.96. We thank A. Dal Corso and L. Campana for helpful discussions and Prof. J. Weber for his stimulating support.

References and Notes

- (1) Stucky, G. D.; MacDougall, J. E., Science 1990, 247, 669.
- (2) Behrens, P.; Stucky, G.D. In *Comprehensive Supra-Molecular Chemistry*; Atwood, J. L., Davies, J. E., McNicol D.D., Vogtle, F., Eds.; Pergamon Press: NY, 1996; Vol. VII, Chapter 25, p 721.
- (3) For recent reviews on semiconductor clusters, nanocrystals, and quantum dots, see: Alivisatos, A. P. *Science* **1996**, *271*, 933. Alivisatos, A. P. *J. Phys. Chem.* **1996**, *100*, 13226.
- (4) Jentys, A.; Grimes, R. W.; Gale, J. D.; Catlow, C. R. A. J. Phys. Chem. **1993**, 97, 13535. Jentys, A.; Grimes, R. W.; J. Chem. Soc., Faraday Trans. **1996**, 92, 2003
- Trans. 1996, 92, 2093.
 (5) Trave, A.; Buda, F.; Fasolino, A. Phys. Rev. Lett. 1996 77, 5405.
- (6) Demkov, A. A.; Sankey, O. F. In *Access in Nanoporous Materials*; Pinnavaia, T. J., Thorpe, M. F., Eds.; Plenum Press: New York, 1995; p 273.
 - (7) Lippens, P. E.; Lannoo, M. Phys. Rev. B 1989, 39, 10935.
 - (8) Tomasulo, A.; Ramakrishna, M. V. *J. Chem. Phys.* **1996**, *105*, 3612.
- (9) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press: Oxford, 1989.
- (10) For example, see: Dyer, A. An Introduction to Zeolite Molecular Sieves; John Wiley and Sons: Chichester, 1988.
 - (11) Bibby, D. M.; Dale, M. P. Nature 1985, 317, 157.
 - (12) Brenchley, M. E.; Weller, M. T. Angew. Chem., 1993, 105, 1726.
- (13) Filippone, F.; Buda, F.; Iarlori, S.; Moretti, G.; Porta, P. J. Phys. Chem. **1995**, 99, 12883.
 - (14) Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471.
- (15) For a review, see: Galli, G.; Pasquarello A., *Computer Simulations in Chemical Physics*; Allen, M. P., Tildesley, D. J., Eds.; Kluwer: Dordrecht, 1994; pp 261-313.
- (16) Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Phys. Rev. B 1982, 26, 4199.
 - (17) Kleinman, L.; Bylander, D.M. Phys. Rev. Lett. 1982, 48, 1425.
 - (18) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.
- (19) Louie, S. G.; Froyen, S.; Cohen, M. L. Phys. Rev. B 1982, 26, 1738.
- (20) Dal Corso, A.; Baroni, S.; Resta, R.; De Gironcoli, S. *Phys. Rev.* B **1993**, *47*, 3588
- (21) Laasonen, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. *Phys. Rev. B* **1993**, *47*, 10142.
 - (22) Perdew, J.P.; Zunger, A. Phys. Rev. B 1981, 23, 5048.
 - (23) Tassone, F.; Mauri, F.; Car, R. Phys. Rev. B 1994, 50, 10561.
- (24) Campana, L.; Selloni, A.; Weber, J.; Pasquarello, A.; Papai, I.; Goursot, A. *Chem. Phys. Lett.* **1994**, 226, 245. Campana, L.; Selloni, A.; Weber, J.; Goursot, A. *J. Phys. Chem.* **1995**, 99, 16351.
- (25) Fasolino, A.; Shkrebtii; A., Selloni, A.; Surface Reconstruction and Relaxation, Landolt-Börnstein, III/24a. In *The Physics of Solid Surfaces*, Chiarotti, G., Ed.; Springer: Berlin, 1993; p 125.
- (26) Hohl, D.; Jones, R. O.; Car, R.; Parrinello, M. J. Chem. Phys. 1988, 89, 6923.