МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Измерение коэффициента диффузии гелия при атмосферном давлении.

Автор: Шахматов Андрей Юрьевич Б02-304

Аннотация

Исследована зависимость коэффициента диффузии гелия в зависимости от давления. Для этого исследована зависимость концентрации гелия от времени в процессе диффузии гелийвоздух. Найден коэффициент диффузии гелия при атмосферном давлении. Полученное значение совпало с табличным значением коэффициента диффузии гелия.

Содержание

1	Введение	1
2	Методика	1
3	Результаты и их обсуждение	3
4	Выводы	6
5	Использованная литература	
6	Приложения 6.1 Параметры установки и погрешности приборов	6
	6.2 Данные результатов измерений	7

1 Введение

Цель настоящей работы заключалась в исследовании протекания процесса диффузии на примере гелия, а также опредления его коэффициента диффузии в зависимости от давления.

2 Методика

Теоретическое введение

Рассмотрим процесс выравнивания концентрации. Пусть концентрации одного из компонентов смеси в сосудах V_1 и V_2 равны n_1 и n_2 . Плотность диффузионного потока любого компонента (т. е. количество вещества, проходящее в единицу времени через единичную поверхность) определяется законом Фика:

$$j = -D\frac{\partial n}{\partial x},$$

где D — коэффициент взаимной диффузии газов, а j - плотность потока частиц.

В нашем случае ввиду того что, а) объем соединительной трубки мал по сравнению с объемами сосудов, б) концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему. Диффузионный поток в любом сечении трубки одинаков. Поэтому,

$$J = -DS \frac{n_1 - n_2}{l}.$$

Обозначим через Δn_1 и Δn_2 изменения концентрации в объемах V_1 и V_2 за время Δt . Тогда $V_1\Delta n_1$ равно изменению количества компонента в объеме V_1 , а $V_2\Delta n_2$ — изменению количества этого компонента в V_2 . Из закона сохранения вещества следует, что $V_1n_1 + V_2n_2 = const$, откуда $V_1\Delta n_1 = -V_2\Delta n_2$. Эти изменения происходят вследствие диффузии, поэтому:

$$V_1 \Delta n_1 = -V_2 \Delta n_2.$$

С другой стороны $V_1\Delta n_1=J\Delta t$ и $V_1\frac{dn_1}{dt}=-DS\frac{n_1-n_2}{l}$. Аналогично $V_2\frac{dn_2}{dt}=DS\frac{n_1-n_2}{l}$ Тогда

$$\frac{d(n_1 - n_2)}{dt} = -\frac{n_1 - n_2}{l} \frac{V_1 + V_2}{V_1 V_2}.$$

Проинтегрируем и получим, что

$$n_1 - n_2 = (n_1 - n_2)_0 e^{-t/\tau},$$

где $(n_1 - n_2)_0$ — разность концентраций в начальный момент времени,

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{L}{SD}.$$

В нашей установке объёмы сосудов примерно равны $V=V_1=V_2$. Для измерения концентраций в данной установке применяются датчики теплопроводности $_1$, $_2$ (см. рис. 1) используется зависимость теплопроводности газовой смеси от ее состава. Для измерения разности концентраций газов используется мостовая схема (рис. 1). Здесь $_1$ и $_2$ — датчики теплопроводности, расположенные в сосудах V_1 и V_2 . Сопротивления R_1 , R_2 и R служат для установки прибора на нуль (балансировка моста). В одну из диагоналей моста включен гальванометр, к другой подключается небольшое постоянное напряжение. Мост балансируется при заполнении сосудов (и датчиков) одной и той же смесью.

При заполнении сосудов смесями различного состава возникает «разбаланс» моста. При незначительном различии в составах смесей показания гальванометра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси. В процессе диффузии разность концентраций убывает по экспоненте, и значит по тому же закону изменяются во времени показания гальванометра

$$U = U_0 \exp(-t/\tau).$$

Эксперементальная установка

Схема установки изображена на рис. 1. Там же показана схема электрических соединений и конструкция многоходового крана K_6

Установка состоит из двух сосудов V_1 и V_2 соединенных краном $_3$, форвакуумного насоса Φ .Н. с выключателем , манометра M и системы напуска гелия, включающей в себя краны $_6$ и $_7$. Кран $_5$ позволяет соединять форвакуумный насос либо с установкой, либо с атмосферой. Между форвакуумным насосом и краном $_5$ вставлен предохранительный баллон П.Б., защищающий кран $_5$ и установку при неправильной эксплуатации ее от попадания форвакуумного масла из насоса Φ .Н. Сосуды V_1 и V_2 и порознь и вместе можно соединять как с системой напуска гелия, так и с форвакуумным насосом. Для этого служат краны $_1$, $_2$, $_4$ и $_5$. Манометр M регистрирует давление газа, до которого заполняют тот или другой сосуды.

Рис. 1: Схема экспериментальной установки.

Для сохранения гелия, а также для уменьшения неконтролированного попадания гелия в установку (по протечкам в кране 6) между трубопроводом подачи гелия и краном 6 поставлен металлический кран 7. Его открывают только на время непосредственного заполнения установки гелием. Все остальное время он закрыт.

В силу того, что в сосуд требуется подавать малое давление гелия, между кранами $_7$ и $_4$ стоит кран $_6$, снабженный дозатором. Дозатор - это маленький объем, который заполняют до давления гелия в трубопроводе, а затем уже эту порцию гелия с помощью крана $_6$ впускают в установку.

Описание схемы электрического соединения. $_1$ и $_2$ — сопротивления проволок датчиков парциального давления, которые составляют одно плечо моста. Второе плечо моста составляют сопротивления r_1 , R_1 и r_2 , R_2 . $r_1 \ll R_1$, $r_2 \ll R_2$, R_1 и R_2 спаренные, их подвижные контакты находятся на общей оси. Оба они исполь- зуются для грубой регулировки моста. Точная балансировка моста выполняется потенциометром R. Последовательно с гальванометром, стоящим в диагонали моста, поставлен магазин сопротивлений MR. Когда мост балансируют, магазин сопротивлений выводят на ноль. В процессе же составления рабочей смеси в сосудах V_1 и V_2 мост разбалансирован. Чтобы не сжечь при этом гальванометр, магазин MR ставят на максимальное сопротивление.

3 Результаты и их обсуждение

Измерена зависимость концентрации гелия от времени при различных начальных давлениях P. Соотношение давлений и номеров эксперимента представленно в таблице 1. Построим соответствующие зависимости (Puc. 2).

Рис. 2: Зависимости разности напряжений на вольтметре V в зависимости от времени проведения эксперимента. Цифрами обозначены эксперименты, проведённые при соответствующих давлениях представленных в таблице 1. Пунктирными линиями обозначены кривые, соответствующие экспоненциальному затуханию.

Согласно теории, зависимости должны иметь вид $V=V_0\exp{-\frac{t}{\tau}}$. Для проверки построим зависимости в логарифмическом масштабе $\ln V=\ln V_0-\frac{t}{\tau}$ (Рис. 3). Из рисунков видно, что все зависимости точно ложатся на прямые линии, потому можно считать теоретическую модель применимой.

Рис. 3: Зависимости разности напряжений на вольтметре V в зависимости от времени проведения эксперимента в логарифмическом масштабе. Цифрами обозначены эксперименты, проведённые при соответствующих давлениях представленных в таблице 1.

Вычислены значения коэффициентов наклона $\frac{1}{\tau}$ и согласно формуле:

$$D = \frac{1}{2} \frac{L}{S\tau}$$

вычислены коэффициенты диффузии гелия. Согласно теории коэффициент диффузии обратно пропорционально зависит от давления газа. Построим зависимости $D(\frac{1}{P})$ (Рис. 4). Так как зависимость оказалась линейной возможно экстраполировать график к значению диффузии при атмосферном давлении $P_0=760$. Полученный коэффициент оказался равен $D_0=(1.05\pm0.24)\cdot10^{-4}$ $\frac{M^2}{C}$.

Рис. 4: Зависимость коэффициента диффузии гелия D в зависимости от давления $\frac{1}{P}$.

4 Выводы

Проведено измерение коэффициента диффузии гелия в зависимости от его давления. Определён вид зависимости коэффициент диффузии от давления. С помощью экстраполяции найден коэффициент диффузии гелия при одной атмосфере. Полученное значение совпало с табличным значением коэффициента диффузии гелия при атмосферном давлении.

5 Использованная литература

Список литературы

- [1] Лабораторный практикум по общей физике, Том 1, под редакцией А. Д. Гладуна
- [2] Н.А. Кириченко «Термодинамика, статистическая и молекулярная физика».

6 Приложения

6.1 Параметры установки и погрешности приборов

Объём сосуда установки равен $V=(8.00\pm0.05)\cdot10^{-4}$ м³, отношение длины участка диффузии к площади его сечения равно $\frac{L}{S}=(1.500\pm0.010)\cdot10^{3}$ $\frac{1}{M}$.

6.2 Данные результатов измерений

N	P , Πa
1	40.0
2	97.5
3	146.3
4	202.5

Таблица 1: Соотношение номера эксперимента N и приготовленного давления в установке P.