CLASS QUIZ (TAKE-HOME): MARCH 2: LOOSE ENDS

MATH 153, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters): Please attempt these quiz questions prior to class and turn them in during class on Wednesday March 2.
 (1) Which of the following is the correct definition of lim_{x→∞} f(x) = L for L a finite number? (A) For every ε > 0 there exists a ∈ ℝ such that if 0 < x - L < ε then f(x) > a. (B) For every ε > 0 there exists a ∈ ℝ such that if x > a then f(x) - L < ε. (C) For every a ∈ ℝ there exists ε > 0 such that if x > a then f(x) - L < ε. (D) For every a ∈ ℝ there exists ε > 0 such that if 0 < x - L < ε then f(x) > a. (E) There exists a ∈ ℝ and ε > 0 such that if x > a then f(x) - L < ε.
Your answer:
 (2) Suppose lim_{x→∞} f'(x) is finite. Which of the following is true (be careful about f versus f' when reading the choices)? (A) If lim_{x→∞} f'(x) is zero, then lim_{x→∞} f(x) is finite. (B) If lim_{x→∞} f(x) is finite, then lim_{x→∞} f'(x) is zero. (C) If lim_{x→∞} f(x) is finite, then lim_{x→∞} f(x) is zero. (D) All of the above. (E) None of the above.
Your answer:
(3) Suppose a function y of time t satisfies the differential equation $y' = f(y)$ for all time t , where f is a continuous function on \mathbb{R} . Further, suppose we know that $\lim_{t\to\infty} y = L$ for some finite L . What can we conclude is true about L ? (A) $f(L) = L$ (B) $f(L) = 0$ (C) $f'(L) = L$ (D) $f'(L) = 0$ (E) $f''(L) = 0$
Your answer:
 (4) A sequence a_n is found to satisfy the recurrence a_{n+1} = 2a_n(1 - a_n). Assume that a₁ is strictly between 0 and 1. What can we say about the sequence (a_n)? (a) It is monotonic non-increasing, and its limit is 0. (b) It is monotonic non-decreasing, and its limit is 1. (c) From a₂ onward, it is monotonic non-decreasing, and its limit is 1/2.
 (d) From a₂ onward, it is monotonic non-increasing, and its limit is 1/2. (e) It is either monotonic non-decreasing or monotonic non-increasing everywhere, and its limit is 1/2.
Your answer:
(5) Suppose f is a continuous function on \mathbb{R} and (a_n) is a sequence satisfying the recurrence $f(a_n) = a_{n+1}$

1

M. What can we say about L and M?

for all n. Further, suppose the limit of the a_n s for odd n is L and the limit of the a_n s for even n is

(A) $f(L) = L$ and $f(M) = M$ (B) $f(L) = M$ and $f(M) = L$ (C) $f(L) = f(M) = 0$ (D) $f'(L) = f'(M) = 0$ (E) $f'(L) = M$ and $f'(M) = L$
Your answer:
Consider a function f on the natural number

rs defined as follows: f(m) = m/2 if m is even, and f(m) = 3m + 1 if m is odd. Consider a sequence where a_1 is a natural number and we define $a_n := f(a_{n-1})$. It is conjectured (see Collatz conjecture) that (a_n) is eventually periodic, regardless of the starting point, and that there is only one possibility for the eventual periodic fragment. Which of the following can be the eventual periodic fragment?

(A)	(1,	2,	3)

- (B) (1,3,2)
- (C) (1,2,4)
- (D) (1,4,2)
- (E) (1,3,4)

(7) For which of the following properties p of sequences of real numbers does p equal eventually p?

- (A) Monotonicity
- (B) Periodicity
- (C) Being a polynomial sequence (i.e., given by a polynomial function)
- (D) Being a constant sequence
- (E) Boundedness

(8) Which of the following series converges? Assume for all series that the startin point of summation is large enough that the terms are well defined.

- $\begin{array}{ll} \text{(A)} & \sum 1/(k \ln(\ln k)) \\ \text{(B)} & \sum 1/(k \ln k) \end{array}$
- (C) $\sum 1/(k(\ln(\ln k))^2)$
- (D) $\sum 1/(k(\ln k)(\ln(\ln k)))$ (E) $\sum 1/(k(\ln k)(\ln(\ln k))^2)$

Your answer: __

(9) Which of the following series converges?

- which of the fold (A) $\sum \frac{k+\sin k}{k^2+1}$ (B) $\sum \frac{k+\cos k}{k^3+1}$ (C) $\sum \frac{k^2-\sin k}{k+1}$ (D) $\sum \frac{k^3+\cos k}{k^2+1}$ (E) $\sum \frac{k}{\sin(k^3+1)}$

Your answer:

Suppose F is a function of two real variables, say x and t, so F(x,t) is a real number for x and t restricted to suitable open intervals in the real number. Suppose, further, that F is jointly continuous

(whatever that means) in x and t. Define $f(t) := \int_0^\infty F(x,t) \, dx$. Here, while doing the integration, t is treated as a constant. x, the variable of integration, is being integrated on $[0, \infty)$.

Suppose further that f is defined and continuous for t in $(0,\infty)$. Note that similar computations we did in the midterm review session involved integration from $-\infty$ to ∞ .

In the next few questions, you are asked to compute the function f explicitly given the function F, for $t \in (0, \infty)$.

- (10) $F(x,t) := e^{-tx}$. Find f. (A) $f(t) = e^{-t}/t$

 - (B) $f(t) = e^{t}/t$
 - (C) f(t) = 1/t
 - (D) f(t) = -1/t
 - (E) f(t) = -t

Your answer:

- (11) $F(x,t) := 1/(t^2 + x^2)$. Find f.
 - (A) $f(t) = \pi/(2t)$
 - (B) $f(t) = \pi/t$
 - (C) $f(t) = 2\pi/t$
 - (D) $f(t) = \pi t$
 - (E) $f(t) = 2\pi t$

Your answer: _

- (12) $F(x,t) := 1/(t^2 + x^2)^2$. Find f.
 - (A) $f(t) = \pi/t^3$
 - (B) $f(t) = \pi/(2t^3)$
 - (C) $f(t) = \pi/(4t^3)$
 - (D) $f(t) = \pi/(8t^3)$
 - (E) $f(t) = 3\pi/(8t^3)$

Your answer:

- (13) $F(x,t) = \exp(-(tx)^2)$. Use that $\int_0^\infty \exp(-x^2) dx = \sqrt{\pi}/2$. Find f.
 - (A) $f(t) = t^2 \sqrt{\pi}/2$
 - (B) $f(t) = t\sqrt{\pi}/2$
 - (C) $f(t) = \sqrt{\pi}/2$
 - (D) $f(t) = \sqrt{\pi}/(2t)$
 - (E) $f(t) = \sqrt{\pi}/(2t^2)$

Your answer: _

- (14) In the same general setup as above (but with none of these specific Fs), which of the following is a sufficient condition for f to be an increasing function of t?
 - (A) $t \mapsto F(x_0, t)$ is an increasing function of t for every choice of $x_0 \ge 0$.
 - (B) $x \mapsto F(x, t_0)$ is an increasing function of x for every choice of $t_0 \in (0, \infty)$.
 - (C) $t \mapsto F(x_0, t)$ is a decreasing function of t for every choice of $x_0 \ge 0$.
 - (D) $x \mapsto F(x, t_0)$ is a decreasing function of x for every choice of $t_0 \in (0, \infty)$.
 - (E) None of the above.

Your answer: