Printing the given table:

Eg: 9th table

9*1=9

9*2=18

...

...

9*10=90

Finding perfect no:

6 factors sum is 1+2+3=6

28 factors sum is 1+2+4+7+14=28

4 factors sum is 1+2=3 ← not a perfect no

Finding prime / composite no:

The no having 2 factors is called prime.

The no divisible with 1 and itself only is called prime.

2 factors are 1, 2 ← prime

3 factors are 1, 3 ← prime

4 factors are 1, 2, 4 ← composite no

Method 2:

Method 3:

Fibonacci series:

n=5 **→** 0 1 1 2 3

Finding step no.

1234 / 4321 **←** step no

1245 **←** not a step no

Harmonic series

$$\frac{\Upsilon}{5} \frac{i}{1} \frac{5}{1+1}$$

$$\frac{1}{2+1} \frac{5}{5} = \frac{3}{5} \cdot 5$$

$$\frac{5}{1+1} \frac{5}{2+1} \cdot 5 = \frac{3}{5} \cdot 5$$

$$\frac{7}{5} \frac{i}{1} \frac{5}{2+1} \cdot 5 = \frac{3}{5} \cdot 5$$

$$\frac{7}{5} \frac{1}{1+1} \frac{5}{2+1} \cdot 5 = \frac{3}{5} \cdot 5$$

$$\frac{7}{5} \frac{1}{1+1} \frac{5}{1+1} \cdot \frac{5}{5} \cdot \frac{3}{5} \cdot \frac{3}{5}$$