

Algoritmika

Dr. Pătcaș

Csaba

Alapvető algoritmusok

13. előadás

Dr. Pătcaș Csaba

programozás módszere

Edit dista

Hátizsák diszkrét feladata

Leghosszabb *k* páratlan számot tartalmazó növekvő

Mátrixok optimális

Zárójelezések

Tartalom

Algoritmika

Dr. Pătcas

Dinamikus programozás módszere

Leghosszabb k

- Dinamikus programozás módszere
 - Palindrom
 - Edit distance
 - Hátizsák diszkrét feladata
 - Leghosszabb k páratlan számot tartalmazó növekvő részsorozat
 - Mátrixok optimális szorzása
 - Zárójelezések
 - Összefoglalás

Palindrom

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Edit distanc

Hátizsák diszkrét feladata

> eghosszabb *k* áratlan számot artalmazó növekvő észsorozat

Mátrixok optimális

szorzása Zárójelezések

Zárójelezések

Feladat

Adott egy n karakterből álló s karakterlánc. Határozzuk meg a leghosszabb olyan részsorozatát s karaktereinek, melyek az eredeti sorrendben írva tükörszót alkotnak!

Példa: s = abecbd

Megoldás: 3 (abecbd)

- Próbáljuk a megoldást s kisebb "darabjaiból" felépíteni.
- Egy ilyen "darabot" jellemezhetünk a kezdő és végső karakter indexével.
- Legyen maxPal[i][j] a leghosszabb palindrom részsorozat hossza, amely s[i..j]-ben található.
- A megoldás természetesen maxPal[1][n] lesz.
- Nyilván egy karakter önmagában palindrom, tehát maxPal[i][i] = 1
- Hasznos, ha kezdetben az üres részeket is lekezeljük ilyen módon: maxPal[i][i - 1] = 0

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Edit distance

Hátizsák diszkrét feladata

Leghosszabb k páratlan számot tartalmazó növekvő részsorozat

Mátrixok optimális szorzása

Zárójelezések

Algoritmika

Dr. Pătcas

programozás

Palindrom

- Az előző feladat alapján könnyen beláthatjuk, hogy ha s[i] = s[j], akkor $\max Pal[i][i] = 2 + \max Pal[i + 1][i - 1]$
- A leghosszabb közös részsorozat feladatában látott logika alapján, ha $s[i] \neq s[j]$, a két karakter közül valamelyik felesleges az optimális részmegoldás kialakításában, tehát

```
\max Pal[i][j] = \max(\max Pal[i + 1][j], \max Pal[i][j - 1])
```

Palindrom

Megoldás

• Mennyi az algoritmus idő- és memóriabonyolultsága?

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Edit distance

Hátizsák diszkrét feladata

Leghosszabb k páratlan számot tartalmazó növekvő részsorozat

Mátrixok optimális szorzása

Zárójelezések

Palindrom

Megoldás

Algoritmika

Dr. Pătcas

programozás

Palindrom

- Mennyi az algoritmus idő- és memóriabonyolultsága?
- Egy $n \times n$ méretű mátrix főátló feletti részére van szükségünk, tehát a memóriabonyolultság $\Theta(n^2)$.
- Minden elem kiszámítása konstans időben történik, tehát az időbonyolultság is $\Theta(n^2)$.
- Hogyan javíthatunk a memóriabonyolultságon?

Szerkesztési távolság (Edit distance)

Algoritmika

Dr. Pătcaș Csaba

programozás módszere

Palindrom

Edit distance

Hátizsák diszkrét feladata

> eghosszabb *k* áratlan számot artalmazó növekvő

> fátrixok optimális

Zárójelezések

árójelezések sszefoglalás

Feladat

Hogyan alakíthatunk át egy s_1 karakterláncot egy s_2 karakterláncoá minimális számú művelettel, ahol egy művelet egy karakter hozzáadása, törlése, vagy módosítása?

Példa: $s_1 = abcd$, $s_2 = bxd$

Műveletek minimális száma: 2 (abcd ightarrow bcd ightarrow bxd)

Szerkesztési távolság (Edit distance)

Megoldás

- Az intuíció azt súgja, hogy a részfeladatok paraméterezésénél figyelembe kell vennünk s_1 és s_2 karaktereit is.
- Innen jön az ötlet, hogy jelöljük tav[i][j]-vel a műveletek minimális számát, melyek segítségével átalakíthatjuk s₁ első *i* karakterét s₂ első *i* karakterévé.
- Az eredmény tav[s₁.hossz][s₂.hossz] lesz, ahol s.hossz az s karakterlánchan található karakterek száma.
- tav[0][j] = j, mivel az üres karakterláncból úgy kaphatjuk meg s₂ első j karakterét, hogy egyenként hozzáadjuk őket.
- Hasonló módon tav[i][0] = i, mivel s_1 első i karakteréből úgy kapunk üres karakterláncot, ha egyenként töröljük őket.

Algoritmika

Dr. Pătcas

Edit distance

Algoritmika

Dr. Pătcas

programozás

Edit distance

- Ideje megállapítani a rekurzív összefüggéseket!
- Ha $s_1[i] = s_2[i]$, akkor könnyű dolgunk van, nem kell semmilyen műveletet elvégeznünk, hanem arra hagyatkozhatunk, hogy az egyenlő karakter nélkül mekkora a szerkesztési távolság, vagyis ekkor tav[i][j] = tav[i - 1][j - 1]
- Ellenkező esetben valamelyik művelet elvégzésére lesz szükségünk, hogy az (i, j) állapotba jussunk.

- Ha módosítunk, akkor s_1 i. karakteréből lesz s_2 j. karaktere és az előző esethez hasonlóan, leolvassuk, hogy mennyi a megoldás ezek nélkül a karakterek nélkül.
- Ha törlünk, azt jelenti, hogy eddig átalakítottuk $s_1[1..i-1]$ -et $s_2[1..j]$ -vé és $s_1[i]$ -t eldobhatjuk.
- Hozzáadáskor eddig felépítettük s_1 első i karakteréből s_2 első j-1 karakterét, ehhez fűzzük hozzá $s_2[j]$ -t.
- Nyilvánvalóan a három művelet közül azt választjuk, amelyik minimális lépésszámhoz vezet, vagyis tav[i][j] =

```
1 + min(tav[i - 1][j - 1], tav[i][j - 1], tav[i - 1][j])
```

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Edit distance

Hátizsák diszkrét

Leghosszabb *k* páratlan számot tartalmazó növekvő

látrixok optimális zorzása

Zárójelezések Összefoglalás

Műveletek visszakeresése

- Felfele nyíl: s'_1 -et átalakítjuk s'_2c_2 -vé, majd töröljük c_1 -et
- Balra nyíl: $s_1'c_1$ -et átalakítjuk s_2' -vé, majd hozzá adjuk c_2 -t
- Átlós nyíl: ha $c_1 = c_2$ nem csinálunk semmit, egyébként átalakítjuk c_1 -et c_2 -vé

Milyen műveletekkel kezdődik a megoldás, ha a mátrix nulladik sorába, illetve

oszlopába érünk a nyilakat követve?

Algoritmika Dr. Pătcas

programozás

Edit distance

◆□▶ ◆周▶ ◆三▶ ◆三 ◆900

Műveletek visszakeresése

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Edit distance

Edit distance Hátizsák diszkrét

Leghosszabb *k*páratlan számot
tartalmazó növekvé

részsorozat Mátrixok optimális

Zárójelezések

Összofoglalás

Milyen műveletek sorozatát jelöli a lila, illetve a sárga útvonal? (a $\rightarrow ... \rightarrow bx$)

Műveletek visszakeresése

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Edit distance

Edit distance

Hátizsák diszkró feladata

Leghosszabb k
páratlan számot
tartalmazó növekvő

Mátrixok optimális szorzása

Zárójelezések

Milyen műveletek sorozatát jelöli a lila, illetve a sárga útvonal? (a $\rightarrow ... \rightarrow bx$)

$$a \rightarrow ba \rightarrow bx$$

Műveletek visszakeresése

Milyen műveletek sorozatát jelöli az útvonal? (abcd $\rightarrow \ldots \rightarrow$ bxd)

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Edit distance

feladata

Leghosszabb k

Leghosszabb k
páratlan számot
tartalmazó növekvő
részsorozat

Mátrixok optimális szorzása

Zárójelezések

Zarojelezesek

Műveletek visszakeresése

Milyen műveletek sorozatát jelöli az útvonal? (abcd $\rightarrow \ldots \rightarrow$ bxd)

Ahhoz, hogy könnyebben elképzeljük a műveleteket, felírhatjuk fordított sorrendben, hogy melyik karakterláncot alakítjuk melyikké minden lépésben:

$$(abcd, bxd) \leftarrow (abc, bx) \leftarrow (ab, bx) \leftarrow (ab, b) \leftarrow (ab, \emptyset) \leftarrow (a, \emptyset) \leftarrow (\emptyset, \emptyset)$$

Ezek alapján a műveletek sorrendje:

$$abcd \rightarrow bcd \rightarrow cd \rightarrow bcd \rightarrow bxcd \rightarrow bxd \rightarrow bxd$$

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Edit distance

Edit distance Hátizsák diszkrét

Leghosszabb k
páratlan számot

részsorozat Mátrixok optimális

zorzása

Műveletek visszakeresése

Dr. Pătcas

Edit distance

Leghosszabb k

Hasonlóképpen itt a műveletek sorrendje: $abcd \rightarrow babcd \rightarrow bbcd \rightarrow bcd \rightarrow bxcd \rightarrow bxdcd \rightarrow bxdd \rightarrow bxd$

Ø

Α

В

D

Feladat

Adott n tárgy, melyeknek ismerjük az értékét és térfogatát. Válasszuk ki a tárgyak egy olyan részhalmazát, melynek összértéke maximális és becsomagolható egy S összkapacitással rendelkező hátizsákba! A tárgyakat nem lehet darabolni.

- Láttuk, hogy a greedy módszer nem ad optimális eredményt a feladat ezen változatára.
- Egy megoldási lehetőség backtracking-gel generálni a tárgyak összes részhalmazát és ezek közül kiválasztani a megoldást, ez a megközelítés $O(2^n)$ időt igényelne.

Algoritmika

Dr. Pătcas

programozás

Hátizcák diczkrát feladata

Megoldás

Ü

- A továbbiakban megoldjuk a feladatot a dinamikus programozás módszerével $\Theta(n \cdot S)$ időben.
- Mivel ez nem csak a bemenet n méretétől függ, hanem az S paramétertől is, nem tekinthetjük polinomiális futási időnek (mivel az S exponenciálisan nagy is lehet az n-hez képest), az ilyen futási időket pszeudopolinomiálisnak nevezzük.
- Legyen maxÉrték[i][j] a legnagyobb összérték, amelyet az első *i* tárgy felhasználásával kaphatunk úgy, hogy az össztérfogatuk *j* legyen.
- Ha az i. tárgy nem járulhat hozzá egy jobb megoldáshoz, akkor maxÉrték[i][j] = maxÉrték[i - 1][j].
- Egyébként az i. tárgy berakása előtt a hátizsákba, ebben j térfogat[i] összkapacitással rendelkező tárgyak voltak, tehát maxÉrték[i][j] = maxÉrték[i 1][j térfogat[i]] + érték[i].
- Nyilván a két lehetőség közül azt választjuk, amelyik maximalizálja a kapott értéket.

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom Edit distance

Hátizsák diszkrét feladata

eghosszabb *k* váratlan számot artalmazó növekvő észsorozat

látrixok optimál zorzása árójelezések

Zarojelezesek

Megoldás

- A táblázat kitöltése közben megjegyezzük a maxTárgy és maxTérfogat változókban azt a pozíciót, ahol a legnagyobb kapott összérték található.
- Innen indulva építjük majd vissza a megoldáshoz tartozó tárgyak listáját.
- Ehhez felhasznájuk a tárgy tömböt, melynek az (i,j) pozícióján a legutolsó tárgynak az indexét jegyezzük meg, amelyet felhasználtunk a maximális összérték eléréséhez j összekapacitással az első i tárgy segítségével.
- Ez a megoldás $\Theta(n \cdot S)$ memóriabonyolultsággal rendelkezik.
- Számos módszer létezik a memóriafelhasználás csökkentésére, ezekre nem térünk ki.

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Hátizsák diszkrét feladata

Leghosszabb *k* páratlan számot tartalmazó növekvő

Mátrixok optimális szorzása

Pszeudokód


```
Algoritmika
```

Dr. Pătcaș Csaba

```
ALGORITMUS InitHátizsák(n, S, maxÉrték, tárgy, maxTárgy, maxTérfogat)

MINDEN j = 0, S végezd el:

maxÉrték[0][j] = 0

tárgy[0][j] = 0

VÉGE(Minden)

maxTárgy = 0

maxTérfogat = 0

VÉGE(Algoritmus)
```

Pszeudokód

```
N
```

```
Algoritmika
```

Dr. Pătcaș Csaba

```
Dinamikus
programozás
módszere
```

Palindro

Hátizsák diszkrét

Leghosszabb *k*páratlan számot
tartalmazó növekvő

Mátrixok optimális szorzása

```
4 D > 4 B > 4 B > 4 B > B 9 Q Q
```

```
ALGORITMUS Másol(maxÉrték, tárgy, i, S)
MINDEN j = 0, S végezd el:
   maxÉrték[i][j] = maxÉrték[i - 1][j]
   tárgy[i][j] = tárgy[i - 1][j]
   VÉGE(Minden)
VÉGE(Algoritmus)
```

Pszeudokód

```
Ä
```

```
ALGORITMUS Frissít(maxTárgy, maxTérfogat, i, j, maxÉrték)
  HA (maxÉrték[i][j] > maxÉrték[maxTárgy][maxTérfogat]) akkor
    maxTárgy = i
    maxTérfogat = j
  VÉGE(Ha)
VÉGE(Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Edit dista

Hátizsák diszkrét feladata

Leghosszabb *k* páratlan számot tartalmazó növekvő

Mátrixok optimális

Zárójelezések

Pszeudokód

```
ALGORITMUS Hátizsák(n, S, maxÉrték, tárgy, maxTárgy, maxTérfogat,
                   érték, térfogat)
  InitHátizsák(n, S, maxÉrték, tárgy, maxTárgy, maxTérfogat)
  MINDEN i = 1, n végezd el:
   Másol (maxÉrték, tárgy, i)
    MINDEN j = térfogat[i], S végezd el:
      segéd = maxÉrték[i - 1][j - térfogat[i]] + érték[i]
      HA (maxÉrték[i][j] < segéd)</pre>
        maxÉrték[i][j] = segéd
        tárgy[i][j] = i
        Frissít(maxTárgy, maxTérfogat, i, j, maxÉrték)
      VÉGE (Ha)
    VÉGE (Minden)
  VÉGE (Minden)
```

Algoritmika

Dr. Pătcas

Hátizcák diczkrát feladata

4 D > 4 B > 4 B > 4 B > 9 9 9

Pszeudokód

KiirMegoldás(maxTárgy, maxTérfogat, tárgy, térfogat)
VISSZATÉRÍT: maxÉrték[maxTárgy][maxTérfogat]
VÉGE(Algoritmus)

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindror

Edit dista

Hátizsák diszkrét feladata

Leghosszabb *k* páratlan számot tartalmazó növekvő

Mátrixok optimális

Pszeudokód

```
N
```

```
ALGORITMUS KiírMegoldás(maxTárgy, maxTérfogat, tárgy, térfogat)
  i = maxTárgv
   = maxTérfogat
  AMÍG (j > 0) végezd el:
    segéd = tárgy[i][j]
    KI: segéd
    i = segéd - 1
    i = i - térfogat[segéd]
  VÉGE (Amíg)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Edit distan

Hátizsák diszkrét feladata

Leghosszabb k
páratlan számot
tartalmazó növekvő

Mátrixok optimális szorzása

Zárójelezések

Leghosszabb k páratlan számot tartalmazó növekvő részsorozat

Algoritmika

Dr. Pătcaș Csaba

programozás módszere

T annuron

Edit distanc

Hátizsák diszkrét feladata

Leghosszabb k páratlan számot tartalmazó növekvő részsorozat

Mátrixok optimális szorzása

Zárójelezések

Zárójelezések

Feladat

Adott az n elemű a sorozat és egy k természetes szám. Határozzuk meg a azon leghosszabb növekvő részsorozatát, amely pontosan k darab páratlan számot tartalmaz!

Példa: $n = 10, k = 2, a = [2 \ 3 \ 4 \ 5 \ 1 \ 8 \ 9 \ 6 \ 12 \ 13]$

Egy lehetséges megoldás: [2 3 4 5 8 12]

Ha k = 4 lett volna, a megoldás ez lenne: [2 3 4 5 8 9 12 13]

Leghosszabb k páratlan számot tartalmazó növekvő részsorozat Megoldás

Algoritmika

Dr. Pătcas

Leghosszahh k páratlan számot tartalmazó növekvő

részsorozat

- Láthatjuk, hogy az optimális megoldás nem csak a elemeitől. hanem k értékétől is függ.
- Ebből arra következtetünk, hogy ismét több paraméterre lesz szükségünk.
- Legyen hossz[i][p] a leghosszab növekvő részsorozat hossza, amelv az i. pozíción végződik és pontosan p páratlan számot tartalmaz.
- Innen a megoldás nagyon hasonló az eredeti feladatéhoz.
- Ha a[i] páros hossz[i][p] = 1 + max {hossz[j][p], ahol a[j] < a[i]}
- Ha a[i] páratlan $hossz[i][p] = 1 + max {hossz[j][p - 1], ahol } a[j] < a[i]$

Feladat

Adott n darab mátrix sorainak és oszlopainak a száma, úgy, hogy ezeket össze lehessen szorozni a megadott sorrendben, vagyis $oszlop_i = sor_{i+1}$ minden $i = \overline{1, n-1}$. Határozzuk meg a mátrixsorozat azon zárójelezését, amelyre az elvégzett skalárszorzások száma minimális!

- Emlékezzünk rá, hogy a mátrixok szorzása asszociatív, tehát bárhogyan csoportosítva a mátrixsorozatot, ugyanazt az eredményt kapjuk.
- Két mátrixot akkor tudunk összeszorozni, ha az első oszlopainak a száma megegyezik a második sorainak a számával.
- Egy $x \times y$ és egy $y \times z$ méretű mátrix szorzatához $x \cdot y \cdot z$ skalárszorzásra van szükségünk és az eredmény egy $x \times z$ méretű mátrix lesz.

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Edit distan

Hátizsák diszkrét feladata

Leghosszabb k
páratlan számot
tartalmazó növekvő

Mátrixok optimális szorzása

Zárójelezések Összefoglalás

n = 3, (10 100) (100 5) (5 50)

Példa

- A skalárszorzatok minimális száma 7500, amelyet úgy kapunk, hogy először összeszorozzuk az első mátrixot a másodikkal ($10 \cdot 100 \cdot 5 = 5000$), majd az így kapott 10×5 méretű mátrixot összeszorozzuk a harmadikkal ($10 \cdot 5 \cdot 50 = 2500$).
- Az optimális csoportosítás $((M_1 \times M_2) \times M_3)$
- Ha először a második és a harmadik mátrixot szoroztuk volna össze $(100 \cdot 5 \cdot 50 = 25000)$, majd az első mátrixot az így kapott 100×50 méretűvel $(10 \cdot 100 \cdot 50 = 50000)$, tízszer annyi skalárszorzásra lett volna szükségünk, mint a minimum.

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Edit distance

Hátizsák diszkrét

Leghosszabb k
páratlan számot
tartalmazó növekvő

Mátrixok optimális szorzása

Zárójelezések Összofoglalás

Megoldás

- Jelöljük minSzorzás [i] [j]-vel a skalárszorzások minimális számát, amellyel össze lehet szorozni az összes megadott mátrixot i és j között.
- minSzorzás[i][i] nyilván 0 lesz, mert egyetlen mátrixról lévén szó, nincs szükség szorzásra.
- i < j esetén a zárójelezés valahol szétvágja a szorzatot, legyen ez a szétvágási pont a k. és k+1. mátrixok között.
- Ekkor az i..j mátrixok összeszorzásához, először összeszorozzuk az i..k mátrixokat, majd az k+1..j mátrixokat, végül az eredményül kapott két mátrixot, melynek költsége $sor_i \cdot oszlop_k \cdot oszlop_j$.
- Mivel nem tudjuk előre, hogy mennyi k értéke, ezért végig kell próbálni az összes lehetőséget az [i,j-1] intervallumból, és azt kiválasztani amelyikre minSzorzás[i] [j] minimális lesz, vagyis minSzorzás[i] [j] = $\min_{k=\overline{i,j-1}} \{ \min \text{Szorzás}[i] [k] + \min \text{Szorzás}[k+1] [j] + sor_i \cdot oszlop_k \cdot oszlop_j \}$

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Edit distance

Hátizsák diszkrét

Leghosszabb *k* páratlan számot cartalmazó növekvő

Mátrixok optimális szorzása

Zárójelezések Összefoglalás

4 D > 4 B > 4 B > 4 B > 9 0 0

Elemzés

Mennyi lesz az így kapott algoritmus bonyolultsága?

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindror

Edit distance

Hátizsák diszkrét feladata

Leghosszabb k
páratlan számot
tartalmazó növekvő

Mátrixok optimális szorzása

Zárójelezések Összefoglalás

Flemzés

- Mennyi lesz az így kapott algoritmus bonyolultsága?
- A memóriabonyolultság könnyen belátható, hogy $\Theta(n^2)$, mivel egy mátrix főátlóját és afeletti részét töltjük ki.
- Mivel egy-egy mező kitöltéséhez végig kell próbálni k lineáris nagyságrendű értékét, az időbonyolultság $O(n^3)$ és bizonyítható, hogy egyben $\Theta(n^3)$ is.
- Az implementáláshoz vegyük észre, hogy a mátrixot nem tölthetjük ki sorrol-sorra, mint a korábbi feladatok esetén.
- Egy (i,j) elem kiszámításához olyan elemekre van szükség, amelyek (i,j)-től balra vagy (i,j) alatt, de a főátlón vagy afelett helyezkednek el.
- Egy helyes kitöltési sorrend a főátlóval kezdeni, majd az ezzel párhuzamos átlókat egyenként kitölteni, míg el nem érjük az (1, n) pozíción lévő megoldást.
- Segítségünkre lehet a memoizálás módszere, mivel ezt alkalmazva nem kell explicite kódolnunk a fenti sorrendet.

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Edit distant

Hátizsák diszkrét

.eghosszabb *k* páratlan számot artalmazó növekvő

Mátrixok optimális szorzása

Zárójelezések Összefoglalás

Zárójelezések

Feladat

Határozzuk meg, hogy hány olyan n zárójelet tartalmazó helyes zárójelezés létezik, mely pontosan k darab közvetlenül egymás után nyíló és záródó zárójelpárt tartalmaz.

Példa: n = 6, k = 2

A megoldás: 3

((()))

(()())

(())()

()(())

Algoritmika

Dr. Pătcas

programozás

Megoldás

- Emlékezzünk a backtracking fejezetnél látott feladatra, melyben minden n hosszúságú zárójelezést generáltuk.
- Hogyan ellenőríztük, hogy egy zárójelezés helves-e?
- Egy adott zárójelezést elképzelhetünk a síkban, felírhatjuk két dimenzióban.
- Az origóból indulunk, egy (i, j) pozícióból egy nyitott zárójellel az (i + 1, i + 1). egy zárt zárójellel az (i+1, j-1) pozícióra jutunk.
- Soha nem kerülhetünk az Ox tengely alá és az utolsó zárójellel az (n,0)pozícióra kell jussunk.

Algoritmika

Dr. Pătcas

programozás

- Ez alapján elindulhatunk a következő megoldási szálon.
- Legyen hany [i] [j], hogy i darab zárójellel hányféleképpen juthatunk a j. szintre
- Tekinthetjük úgy, hogy hany[0][0] = 1
- Ha az összes helyes zárójelezés számára lennénk kíváncsiak, ezt hany [n] [0] értéke adná meg.
- A korábban látott gondolatmenet alapján hany[i][j] = hany[i - 1][j - 1] + hany[i - 1][j + 1], ha i > 0egyébként csak az összeg második tagjára van szükségünk.

Algoritmika

Dr. Pătcas

programozás

- Nekünk viszont csak azon zárójelezések számára van szükségünk, melyek pontosan k darabszor haladnak felfele, majd azonnal lefele.
- Vagyis biztosan szükségünk lesz még egy paraméterre, amely azt számolja, hogy ez eddig hányszor fordult elő.
- Ezek alapján hany[i][j][p] jelentése az lenne, hogy hányféleképpen juthatunk i zárójel letevése után a j. szintre úgy, hogy eddig p-szer tettünk közvetlenül egymás után nyitott maid zárt zárójelet.
- Az nyilvánvaló, hogy p akkor növekszik, ha (i-1, j+1)-ből érkezünk, viszont csak akkor, ha oda (i-2,j)-ből érkeztünk, vagyis szükség van egy negyedik paraméterre, amely azt jelzi, hogy adott pozícióba honnan érkeztünk, ami ekvivalens azzal, hogy az utoljára letett zárójel nyitott, vagy zárt volt.

Algoritmika

Dr. Pătcas

- Az eddigiek alapján a következő megoldás alakul ki.
- Legyen hany [i] [j] [p] [z] azon i darab zárójelből álló zárójelezések száma, melyekben a nyitott és zárt zárójelek számának különbsége j, p darabszor fordul elő bennük közvetlenül egymás után egy nyitott és egy zárt zárójel és az i. zárójelet a z jelöli, ahol z=0, ha az i. zárójel nyitott és z=1, ha az i. zárójel zárt.
- Kezdetben hany [0] [0] [0] = 1, a többi érték 0.
- A megoldás hany [n] [0] [k] [1]-ben lesz.
- Odafigyelve arra, hogy ne kérjünk le negatív j vagy p paramétert:
 hany[i][j][p][0] =
 hany[i 1][j 1][p][0] + hany[i 1][j 1][p][1]
 hany[i][j][p][1] =
 hany[i 1][j + 1][p 1][0] + hany[i 1][j + 1][p][1]

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Hátizsák diszkré

eladata

váratlan számot artalmazó növekvő észsorozat Mátrixok optimális

átrixok optimális orzása

Zárójelezések

Bónusz

Feladat

Határozzuk meg, hogy hány olyan n zárójelből álló zárójelezés létezik, amely legalább egyszer eljut a k. szintre!

Példa: n = 6, k = 3

Megoldás: 1

((()))

Meddig? Január 23., 23:59

Hova? Canvas privát üzenet

Mit? Forráskód, az ötlet rövid magyarázata, időbonyolultság

Mennyi? 2 pont

Hányszor? Diákonként egy beküldés

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Hátizsák diszkrét

Hatizsak diszkret feladata

Leghosszabb k páratlan számot cartalmazó növekvő részsorozat

Mátrixok optimális zorzása

Zárójelezések

Összefoglalás

Jeff Erickson a következő lépéseket ajánlja egy feladat megoldásához a dinamikus programozás módszerével:

- Fogalmazzuk meg a feladatot rekurzívan, rekurzív összefüggéseket használó képletek, vagy rekurzív hívásokat használó algoritmus formájában.
 - Jelentsük ki a feladatot természetes nyelven, precíz és koherens magyar megfogalmazást használva. Nem azt, hogy hogyan akarjuk megoldani a feladatot, hanem, hogy mi a feladat.
 - Adjuk meg a feladat megoldását rekurzívan, ugyanannak a feladatnak a kisebb méretű megoldásait felhasználva.

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Palindrom

Edit distan

Hátizsák diszkrét

Leghosszabb k páratlan számot tartalmazó növekvő

> szsorozat látrixok optimális orzása

Zárójelezések

Összefoglalás

- Építsük fel a megoldást lentről felfele (bottom-up). Kezdjük az alapesetekkel és ezekből jussunk el a köztes részfeladatokon keresztül a végső megoldásig.
 - Határozzuk meg a részfeladatok paraméterezését.
 - Válasszunk egy adatszerkezetet, amelyben minden részfeladat megoldását eltárolhatjuk.
 - Határozzuk meg, hogy egy általános részfeladat melyik más részfeladatoktól függ. Ehhez készíthetünk egy rajzot is nyilakkal.
 - Keressünk egy megfelelő sorrendet a részfeladatok megoldásához, ehhez használjuk az előző lépésben kapott eredményt. Kezdjük az alapesetekkel. Minden részfeladatot hamarabb kell megoldanunk, mint az összes tőle függő részfeladatot.
 - 6 Elemezzük az algoritmus memória- és időbonyolultságát.
 - 6 Írjuk le az algoritmust.

Algoritmika

Dr. Pătcaș Csaba

Dinamikus programozás módszere

Edit distan

Hátizsák diszkn

feladata

páratlan számot tartalmazó növekvő részsorozat

Mátrixok optimális szorzása

Zárójelezések

