

CS145 Discussion: Week 3 Decision Tree & SVM

Junheng Hao Friday, 10/23/2020

Roadmap

- Announcement
- Decision Tree
- SVM (Part I)

Announcements

- Homework 1 due on Oct 30 (Friday) 11:59 PT
 - Submit through GradeScope of 1 PDF (2 python file and 1 jupyter notebook into 1 PDF file)
 - Assign pages to the questions on GradeScope
- Group formation
 - Please email the TA whose session you're enrolled in for help if you cannot find a group with 4-5 members.
 - You may also find 1 or 2 additional team members if your group has someone who has dropped the class (before the end of Week 3)

Decision Boundary

Comparison: Logistic Regression vs Decision Tree

Decision Boundary: Exercise

One more question on logistics regression:

Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = 6, \theta_1 = 0, \theta_2 = -1$. Which of the following figures represents the decision boundary found by your classifier?

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}},$$

Decision Boundary: Exercise

Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = 6, \theta_1 = 0, \theta_2 = -1$. Which of the following figures represents the decision boundary found by your classifier?

Decision Tree

Decision Tree Classification: From data to model

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Decision Tree: Takeaway

- Choosing the Splitting Attribute
- At each node, available attributes are evaluated on the basis of separating the classes of the training examples.
- A goodness function (information measurement) is used for this purpose:
 - Information Gain
 - Gain Ratio
 - Gini Index*

Decision Tree: Attribute Selection

- Which is the best attribute?
 - The one which will result in the smallest tree
 - Heuristic: choose the attribute that produces the "purest" nodes
- Popular impurity criterion: information gain
 - Information gain increases with the average purity of the subsets that an attribute produces
- Strategy: choose attribute that results in greatest information gain

Decision Tree: Entropy of Random Variable

$$X = \begin{cases} 1 & \text{with probability} \quad p \\ 0 & \text{with probability} \quad 1 - p \end{cases}$$

$$H(X) = -p \log p - (1-p) \log(1-p) \stackrel{\text{def}}{=} H(p)$$

Decision Tree: Attribute Selection

Information in a split with x items of one class, y items of the second class

info([x,y]) = entropy(
$$\frac{x}{x+y}$$
, $\frac{y}{x+y}$)
= $-\frac{x}{x+y} \log(\frac{x}{x+y}) - \frac{y}{x+y} \log(\frac{y}{x+y})$

Attribute: "Outlook" = "Sunny"

"Outlook" = "Sunny": 2 and 3 split

info([2,3]) = entropy(2/5,3/5) =
$$-\frac{2}{5}\log(\frac{2}{5}) - \frac{3}{5}\log(\frac{3}{5}) = 0.971$$
 bits

Attribute: "Outlook" = "Overcast"

"Outlook" = "Overcast": 4/0 split

$$info([4,0]) = entropy(1,0) = -1log(1) - 0log(0) = 0 bits$$

Note: log(0) is not defined, but we evaluate 0*log(0) as zero.

Attribute: "Outlook" = "Rainy"

• "Outlook" = "Rainy":

info([3,2]) = entropy(3/5,2/5) =
$$-\frac{3}{5}\log(\frac{3}{5}) - \frac{2}{5}\log(\frac{2}{5}) = 0.971$$
 bits

Expected Information of Attribute "Outlook"

Expected information for attribute:

$$\inf_{\text{o}([3,2],[4,0],[3,2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971}$$
$$= 0.693 \text{ bits}$$

Compute Information Gain

Information gain:

(information before split) – (information after split)

Information gain for attributes from all weather data:

```
gain("Outlook") = 0.247 bits
gain("Temperature") = 0.029 bits
gain("Humidity") = 0.152 bits
gain("Windy") = 0.048 bits
```


Continue to Split

Final Tree

 Note: Not all leaves need to be pure. Sometimes identical instances have different classes. → Splitting can stop when data can't be split any further

Final Tree

SplitInfo and Gain Ratio

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

GainRatio(A) = Gain(A) / SplitInfo(A)

- Why Gain Ratio?
 - Information gain: biased towards attributes with a large number of values
- Practice: What is the gain ratio for attribute "Outlook" in the previous example?

Decision Tree: Visual Tutorials

Demo links

- http://www.r2d3.us/visual-intro-to-m achine-learning-part-1/
- http://explained.ai/decision-tree-viz/
- Does decision tree also have the bias-variance trade-off?
 - A visual demo:
 http://www.r2d3.us/visual-intro-to-ma
 chine-learning-part-2/

SVM: Visual Tutorials

Links: https://cs.stanford.edu/people/karpathy/svmjs/demo/

SVM: Takeaway

Hyperplane separating the data points

$$\mathbf{w}^T\mathbf{x} + \mathbf{b} = 0$$

Maximize margin

$$\rho = \frac{2}{\|w\|}$$

Solution by solving its dual problem

$$\mathbf{w} = \sum_{k:\alpha_k \neq 0} (y_k - \mathbf{w}^T \mathbf{x}_k) / N_k$$

SVM: Start with the margin

Margin Lines

$$\mathbf{w}^T \mathbf{x}_a + \mathbf{b} = 1 \qquad \mathbf{w}^T \mathbf{x}_b + \mathbf{b} = -1$$

Distance between parallel lines of ax1+bx2=c1/c2)

$$d=\frac{|c_2-c_1|}{\sqrt{a^2+b^2}}$$

Margin

$$\rho = \frac{|(b+1) - (b-1)|}{\|w\|} = \frac{2}{\|w\|}$$

SVM: Steps to understand SVM

- 1. Formulation of the Linear SVM problem: maximizing margin
- Formulation of Quadratic Programming (optimization with linear constraints) →
 Primal problem
- 3. Solving linear SVM problem with "great" math*
 - a. (Generalized) Lagrange function, lagrange multiplier
 - b. Identify primal and dual problem (duality) → KKT conditions
 - c. Solution to w and b regarding alpha
- 4. Support Vectors, SVM Classifier Inference
- 5. Non-linear SVM, Kernel tricks

SVM: Math*

- Slides: http://people.csail.mit.edu/dsontag/courses/ml13/slides/lecture6.pdf
- Notes: https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf

*To show in hand notes

Given labeled data and alpha values

Positively labeled data points (1 to 4)

$$\left\{ \left(\begin{array}{c} 3 \\ 1 \end{array}\right), \left(\begin{array}{c} 3 \\ -1 \end{array}\right), \left(\begin{array}{c} 6 \\ 1 \end{array}\right), \left(\begin{array}{c} 6 \\ -1 \end{array}\right) \right\}$$

Negatively labeled data points (5 to 8)

$$\left\{ \left(\begin{array}{c} 1 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ -1 \end{array}\right), \left(\begin{array}{c} -1 \\ 0 \end{array}\right) \right\}$$

- Alpha values
 - $\alpha_1 = 0.75$
 - $\alpha_2 = 0.75$
 - $\alpha_5 = 3.5$
 - Others = 0

Questions

- Which points are support vectors?
- Calculate normal vector of hyperplane: w
- Calculate the bias term
- What is the decision boundary?
- Predict class of new point (4, 1)

$$\mathbf{w} = \sum_{k:\alpha_k \neq 0} (y_k - \mathbf{w}^T \mathbf{x}_k) / N_k$$

Work of the state of the state

Predictions for new data

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$
 for any k where $C > \alpha_k > 0$

dot product of feature vectors of new example with support vectors

Plot

Linear SVM vs Logistic Regression

- Decision boundaries?
- Loss functions?

Non-linear SVM

 Datasets that are linearly separable (with some noise) work out great:

But what are we going to do if the dataset is just too hard?

How about ... mapping data to a higher-dimensional space:

Non-linear SVM

•General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

SVM: Kernel

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C > \alpha_{i} > 0$$

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C \geq \alpha_{i} \geq 0$$

SVM: Kernel

The linear SVM relies on an inner product between data vectors,

$$K(\mathbf{x_i}, \mathbf{x_j}) = \mathbf{x_i^T} \mathbf{x_j}$$

 If every data point is mapped into high-dimensional space via transformation, the inner product becomes,

$$K(\mathbf{x_i}, \mathbf{x_j}) = \phi^T(\mathbf{x_i}) \cdot \phi(\mathbf{x_j})$$

Do we need to compute φ(x) explicitly for each data sample? → Directly compute kernel function K(xi, xj)

SVM: Kernel Function Example

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + c)^2 = \left(\sum_{j=1}^n x^{(j)} z^{(j)} + c\right) \left(\sum_{\ell=1}^n x^{(\ell)} z^{(\ell)} + c\right)$$

$$= \sum_{j=1}^n \sum_{\ell=1}^n x^{(j)} x^{(\ell)} z^{(j)} z^{(\ell)} + 2c \sum_{j=1}^n x^{(j)} z^{(j)} + c^2$$

$$= \sum_{j,\ell=1}^n (x^{(j)} x^{(\ell)}) (z^{(j)} z^{(\ell)}) + \sum_{j=1}^n (\sqrt{2c} x^{(j)}) (\sqrt{2c} z^{(j)}) + c^2,$$

Feature mapping given by:

$$\mathbf{\Phi}(\mathbf{x}) = [x^{(1)2}, x^{(1)}x^{(2)}, ..., x^{(3)2}, \sqrt{2c}x^{(1)}, \sqrt{2c}x^{(2)}, \sqrt{2c}x^{(3)}, c]$$

SVM: Kernel Function Example

Polynomial kernel of degree $h: K(X_i, X_i) = (X_i \cdot X_i + 1)^h$

Gaussian radial basis function kernel: $K(X_i, X_i) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

• Given the same data samples, what is the difference between linear kernel and non-linear kernel? Is the decision boundary linear (in original feature space)?

SVM: Demo of different kernels

Non-linear SVM: Example Practice

Positively labeled data points (1 to 4)

$$\left\{ \left(\begin{array}{c} 2\\2 \end{array}\right), \left(\begin{array}{c} 2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\2 \end{array}\right) \right\}$$

Negatively labeled data points (5 to 8)

$$\left\{ \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \left(\begin{array}{c} 1 \\ -1 \end{array}\right), \left(\begin{array}{c} -1 \\ -1 \end{array}\right), \left(\begin{array}{c} -1 \\ 1 \end{array}\right) \right\}$$

Non-linear mapping

$$\Phi_1 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left\{ \begin{array}{c} \left(\begin{array}{c} 4 - x_2 \\ 4 - x_1 \\ x_1 \\ x_2 \end{array} \right) & \text{if } \sqrt{x_1^2 + x_2^2} > 2 \\ \text{otherwise} \end{array} \right.$$

Non-linear SVM Example

New positively labeled data points (1 to 4)

$$\left\{ \left(\begin{array}{c} 2\\2 \end{array}\right), \left(\begin{array}{c} 6\\2 \end{array}\right), \left(\begin{array}{c} 6\\6 \end{array}\right), \left(\begin{array}{c} 2\\6 \end{array}\right) \right\}$$

New negatively labeled data points (5 to 8)

$$\left\{ \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \left(\begin{array}{c} 1 \\ -1 \end{array}\right), \left(\begin{array}{c} -1 \\ -1 \end{array}\right), \left(\begin{array}{c} -1 \\ 1 \end{array}\right) \right\}$$

- Alpha values
 - $\alpha_1 = 4$
 - $\alpha_5 = 7$
 - Others = 0

Non-linear SVM Example

- Which points are support vectors?
- Calculate normal vector of hyperplane: w
- Calculate the bias term
- What is the decision boundary?
- Predict class of new point (4, 5)

Plot

Thank you!

Q & A