Záróvizsga tételsor mérnökinformatikus hallgatóknak*

Palkovics Dénes,

2019

A záróvizsga tematikája és tartalma

A záróvizsgán kettő kérdésre kell válaszolni, egyre az általános kérdések közül, egyre pedig a specializációnak megfelelő kérdések közül

Tartalomjegyzék

1.	Álta	Általános kérdések					
	1.1.	Az informatika logikai alapjai					
		1.1.1.	Azelsőrendű matematikai logikai nyelv	5			
		1.1.2.	A nyelv interpretációja, formulák igazságértéke az interpretációban adott változókiértékelés mellett.	5			
		1.1.3.	Logikai törvény, logikai következmény.	7			
		1.1.4.	Logikai ekvivalencia, normálformák.	7			
		1.1.5.	Kalkulusok (Gentzen-kalkulus)	7			
	1.2.	Operác	ciós rendszerek	10			
		1.2.1.	Operációs rendszerek fogalma, felépítése, osztályozásuk	10			
		1.2.2.	Az operációs rendszerek jellemzése (komponensei és funkciói)	10			
		1.2.3.	A rendszeradminisztráció, fejlesztői és alkalmazói támogatás eszközei.	12			
	1.3.	Magas	szintű Programozási nyelvek	13			
		1.3.1.	Adattípus, konstans, változó, kifejezés	13			
		1.3.2.	Paraméterkiértékelés, paraméterátadás	13			
		1.3.3.	Hatáskör, névterek, élettartam.	13			
		1.3.4.	Fordítási egységek, kivételkezelés	13			
	1.4.	Magas	Sintű programozási nyelvek 2	14			
		1.4.1.	Speciális programnyelvi eszközök	14			
		1.4.2.	Az objektumorientált programozás eszközei és jelentősége	14			
		1.4.3.	Funkcionális és logikai programozás.	14			
	1.5.	Adatsz	erkezetek és algoritmusok	15			
		1.5.1.	Adatszerkezetek reprezentációja	15			
		1.5.2.	Műveletek adatszerkezetekkel	15			
		1.5.3.	Adatszerkezetek osztályozása és jellemzésük.	15			
		1.5.4.	Szekvenciális adatszerkezetek: sor, verem, lista, sztring	15			
		1.5.5.	Egyszerű és összetett állományszerkezetek	15			
	1.6.	Adatbá	ázisrendszerek	16			

^{*}A Debreceni Egyetem mérnökinformatikus alapszakhoz

	1.6.1.	Relációs, ER és objektumorientált modellek jellemzése.	16
	1.6.2.	Adatbázisrendszer.	16
	1.6.3.	Funkcionális függés.	16
	1.6.4.	Relációalgebra és relációkalkulus.	16
	1.6.5.	Az SQL	16
1.7.	Hálóza	ti architektúrák	17
	1.7.1.	Az ISO OSI hivatkozási modell	17
	1.7.2.	Ethernet szabványok	17
	1.7.3.	A hálózati réteg forgalomirányító mechanizmusai	17
	1.7.4.	Az internet hálózati protokollok, legfontosabb szabványok és szolgáltatások	17
1.8.	Fizika	1	18
	1.8.1.	Fizikai fogalmak, mennyiségek	18
	1.8.2.	$Impulzus, impulzusmomentum. \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	18
	1.8.3.	Newton törvényei.	18
	1.8.4.	Munkatétel	18
	1.8.5.	Az I. és II. főtétel.	18
	1.8.6.	A kinetikus gázmodell	18
1.9.	Fizika	2	19
	1.9.1.	Elektromos alapfogalmak és alapjelenségek	19
	1.9.2.	Ohm-törvény	19
	1.9.3.	A mágneses tér tulajdonságai	19
	1.9.4.	Elektromágneses hullámok	19
	1.9.5.	A Bohr-féle atommodell	19
	1.9.6.	A radioaktív sugárzás alapvető tulajdonságai	19
1.10.	Elektro	onika 1, 2	20
	1.10.1.	Passzív áramköri elemek tulajdonságai, RC és RLC hálózatok	20
	1.10.2.	Diszkrét félvezető eszközök, aktív áramköri elemek, alapkapcsolások	20
	1.10.3.	Integrált műveleti erősítők	20
	1.10.4.	Tápegységek	20
	1.10.5.	Mérőműszerek	20
1.11.	Digitál	is Technika	21
	1.11.1.	Logikai függvények kapcsolástechnikai megvalósítása	21
	1.11.2.	Digitális áramköri családok jellemzői(TTL, CMOS, NMOS)	21
	1.11.3.	Különböző áramköri családok csatlakoztatása	21
	1.11.4.	Kombinációs és szekvenciális hálózatok. A/D és D/A átalakítók	21

2.	Info	Infokommunikációs hálózatok						
	2.1.	Távközlő hálózatok						
	2.1.1. Fizikai jelátviteli közegek							
	Forráskódolás, csatornakódolás és moduláció	22						
		2.1.3.	Csatornafelosztás és multiplexelési technikák	22				
		2.1.4.	Vezetékes és a mobil távközlő hálózatok	22				
		2.1.5.	Műholdas kommunikáció és helymeghatározás	22				
	2.2.	Hálóza	atok hatékonyságanalízise	23				
		2.2.1.	Markov-láncok, születési-kihalási folyamatok	23				
2.2.2. A legalapvetőbb sorbanállási rendszerek vizsgálata								
		2.2.3.	$\label{eq:condition} A \ rendszerjellemzők \ meghatározásának \ módszerei, \ meghatározásuk \ számítógépes \ támogatása. \ .$	23				
2.3. Adatbiztonság								
		2.3.1.	Fizikai, ügyviteli és algoritmusos adatvédelem, az informatikai biztonság szabályozása	24				
		2.3.2.	Kriptográfiai alapfogalmak	24				
		2.3.3.	Klasszikus titkosító módszerek	24				
		2.3.4.	Digitális aláírás, a DSA protokoll.	24				
	2.4.	A RIP	protokoll működése és paramétereinek beállítása (konfigurációja)	25				
	etés a Cisco eszközök programozásába 1	26						
		2.5.1.	A forgalomszűrés, forgalomszabályozás (Trafficfiltering, ACL) céljai és beállítása (konfigurációja) egy választott példa alapján.	26				
	2.6.	Bevezetés a Cisco eszközök programozásába 2						
		2.6.1.	A forgalomirányítási táblázatok felépítése, statikus és dinamikus routing összehasonlítása	27				
Τá	irgyr	nutató		28				

1. Általános kérdések

1.1. Az informatika logikai alapjai

1.1.1. Az elsőrendű matematikai logikai nyelv.

Definíció (Elsőrendű nyelv). Klasszikus elsőrendű nyelven az

$$L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$$

rendezett ötöst értjük, ahol

- 1. $LC = \{\neg, \supset, \land, \lor, \equiv, =, \forall, \exists, (,)\}$ a nyelv logikai konstansainak halmaza¹
- 2. $Var = \{x_n | n = 0, 1, 2, ...\}$ a nyelv változóinak megszámlálhatóan végtelen halmaza²
- 3. $Con = \bigcup_{n=0}^{\infty} (\mathcal{F}(n) \cup \mathcal{P}(n))$ a nyelv nemlogikai konstansainak legfeljebb megszámlálhatóan végtelen halmaza³
 - a) $\mathcal{F}(0)$ a névparaméterek (névkonstansok),
 - b) $\mathcal{F}(n)$ az n argumentumú függvényjelek (műveleti jelek),
 - c) $\mathcal{P}(0)$ a állításparaméterek (állításkonstansok),
 - d) $\mathcal{P}(n)$ az n argumentumú predikátumparaméterek (predikátumkonstansok) halmaza.
- 4. $Az\ LC, Var, \mathcal{F}(n), \mathcal{P}(n)\ halmazok\ (n=0,1,2,\ldots)\ p\'{a}ronk\'{e}nt\ diszjunktak.$
- 5. A nyelv terminusainak a halmazát, azaz a Term halmazt az alábbi induktív definíció adja:
 - a) $Var \cup \mathcal{F}(0) \subseteq Term$
 - b) Ha $f \in \mathcal{F}(n), (n = 1, 2, \dots), és\ t_1, t_2, \dots, t_n \in Term,\ akkor\ f(t_1, t_2, \dots, t_n) \in Term$
- 6. A nyelv formuláinak halmazát, azaz a Form halmazt az alábbi induktív definíció adja meg:
 - a) $\mathcal{P} \subseteq Form$
 - b) Ha $t_1, t_2 \in Term$, akkor $(t_1 = t_2) \in Form$
 - c) Ha $P \in \mathcal{P}, (n = 1, 2, ...), \text{ \'es } t_1, t_2, ..., t_n \in Term, \text{ akkor } P(t_1, t_2, ..., t_n) \in Form$
 - d) Ha $A \in Form$, akkor $\neg A \in Form$
 - e) Ha $A, b \in Form$, akkor $(A \supset B), (A \land B), (A \lor B), (A \equiv B) \in Form$
 - f) Ha $x \in Var, A \in Form, akkor \forall xA, \exists xA \in Form$

Megjegyzés. Azokat a formulákat, amelyek a 6. a), b), c) szabályok által jönnek létre, atomi formuláknak vagy prímformuláknak nevezzük.

1.1.2. A nyelv interpretációja, formulák igazságértéke az interpretációban adott változókiértékelés mel-

Definíció (interpretáció (elsőrendű)). Az $\langle U, \rho \rangle$ párt az $L^{(1)}$ nyelv egy interpretációjának nevezzük, ha

- 1. $U \neq \emptyset$ azaz U nemüres halmaz
- 2. $Dom(\rho) = Con \ azaz \ a \ \rho \ a \ Con \ halmazon \ \'ertelmezett f\"uggv\'eny, \ amelyre \ teljes\"ulnek \ a \ k\"ovetkez\~ok$:

¹A logikai konstansok olyan nyelvi eszközök, amelyek jelentését a szemantikai szabályok (logikai kalkulusok esetén az axiómák) rögzítik. Egy adott logikai rendszer esetén a logikai konstansok rögzített jelentéssel (rögzített szemantikai értékkel)rendelkeznek, jelentésük (szemantikai értékük) minden interpretációban megegyezik. Egy adott logikai rendszer esetén a logikai konstansokat általában az adott logikai rendszer nyelvének *LC* halmaza tartalmazza.

²A köznyelvi mondatokban nevek helyett néha névmásokkal utalunk egyes individuumokra (objektumokra). A tudományos nyelvben gyakran kívánatos analóg kifejezési formák megadása. A szabatosság, az egyértelműség és a tömörség érdekében ilyenkor mesterséges névmásokat vezetnek be, amelyeket változóknak neveznek.

³ A nemlogikai konstansok, más néven paraméterek olyan nyelvi eszközök, amelyek jelentését az interpretáció rögzíti. Egy adott logikai rendszer esetén a nemlogikai konstansok (a paraméterek) nem rendelkeznek rögzített jelentéssel (rögzített szemantikai értékkel), jelentésük (szemantikai értékük) interpretációról interpretációra változhat. Egy adott logikai rendszer esetén a nemlogikai konstansokat általában az adott logikai rendszer nyelvének *Con* halmaza tartalmazza.

- a) Ha $a \in F(0)$, akkor $\rho(a) \in U$
- b) Ha $f \in \mathcal{F}(n)$ ahol $n \neq 0$, akkor $\rho(f)$ az $U^{(n)}$ halmazon értelmezett az U halmazba képező függvény $(\rho(f):U^{(n)} \to U)$
- c) Ha $p \in \mathcal{P}(0)$, akkor $\rho(p) \in 0, 1$
- d) Ha $P \in \mathcal{P}(n)$ ahol $n \neq 0$, akkor $\rho(P) \subseteq U^{(n)}$

Definíció (értékelés (elsőrendű)). Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, $\langle U, \rho \rangle$ pedig a nyelv egy interpretációja. Az $\langle U, \rho \rangle$ interpretációra támaszkodó ν értékelésen egy olyan függvényt értünk, amely teljesíti a következőket:

- $Dom(\nu) = Var$
- $Hax \in Var$, $akkor \nu(x) \in U$

Definíció (értékelés (elsőrendű)). Legyen $L^{(1)} = (LC, Var, Con, Term, Form)$ egy elsőrendű nyelv, $\langle U, \rho \rangle$ pedig a nyelv egy interpretációja, ν pedig az $\langle U, \rho \rangle$ interpretációra támaszkodó értékelés.

- 1. Ha $a \in F(0)$, akkor $|a|_{\nu}^{\langle U, \rho \rangle} = \rho(a)$
- 2. Ha $x \in Var$, akkor $|x|_{\nu}^{\langle U, \rho \rangle} = \nu(x)$
- 3. Ha $f \in F(n), (n = 1, 2, ...)$ és $t_1, t_2, ..., t_n \in Term$, akkor

$$|f(t_1, t_2, \dots, t_n)|_{\nu}^{\langle U, \rho \rangle} = \rho(f)(|t_1|_{\nu}^{\langle U, \rho \rangle}, |t_2|_{\nu}^{\langle U, \rho \rangle}, \dots, |t_n|_{\nu}^{\langle U, \rho \rangle})$$

- 4. Ha $p \in P(0)$, akkor $|p|_{\nu}^{\langle U, \rho \rangle} = \rho(p)$
- 5. Ha $t_1, t_2 \in Term$, akkor

$$|(t_1 = t_2)|_{\nu}^{\langle U, \rho \rangle} = \begin{cases} 1, & ha \ |t_1|_{\nu}^{\langle U, \rho \rangle} = |t_2|_{\nu}^{\langle U, \rho \rangle} \\ 0, & egy\'ebk\'ent. \end{cases}$$
(1)

6. Ha $P \in P(n)$ ahol $n = 0, t1, ..., tn \in Term$, akkor

$$|P(t_1, t_2, \dots, t_n)|_{\nu}^{\langle U, \rho \rangle} = \begin{cases} 1, & ha\left(|t_1|_{\nu}^{\langle U, \rho \rangle}, |t_2|_{\nu}^{\langle U, \rho \rangle}, \dots, |t_n|_{\nu}^{\langle U, \rho \rangle}\right) \in \rho(P) \\ 0, & egy\'ebk\'ent. \end{cases}$$
 (2)

- 7. Ha $A \in Form$, akkor $|\neg A|_{\nu}^{\langle U, \rho \rangle} = 1 |A|_{\nu}^{\langle U, \rho \rangle}$.
- 8. Ha $A, B \in Form, akkor$

$$|(A \supset B)|_{\nu}^{\langle U, \rho \rangle} \begin{cases} 0, & ha \ |A|_{\nu}^{\langle U, \rho \rangle} = 1, \ \emph{\'es} \ |B|_{\nu}^{\langle U, \rho \rangle} = 0 \\ 1, & \emph{egy\'ebk\'ent}. \end{cases}$$
 (3)

$$|(A \wedge B)|_{\nu}^{\langle U, \rho \rangle} \begin{cases} 1, & ha \ |A|_{\nu}^{\langle U, \rho \rangle} = 1, \ \acute{e}s \ |B|_{\nu}^{\langle U, \rho \rangle} = 1 \\ 0, & egy\acute{e}bk\acute{e}nt. \end{cases}$$
 (4)

$$|(A \vee B)|_{\nu}^{\langle U, \rho \rangle} \begin{cases} 0, & ha \ |A|_{\nu}^{\langle U, \rho \rangle} = 0, \ \acute{e}s \ |B|_{\nu}^{\langle U, \rho \rangle} = 0 \\ 1, & egy\acute{e}bk\acute{e}nt. \end{cases}$$
 (5)

$$|(A \equiv B)|_{\nu}^{\langle U, \rho \rangle} \begin{cases} 1, & ha \ |A|_{\nu}^{\langle U, \rho \rangle} = |B|_{\nu}^{\langle U, \rho \rangle} \\ 0, & egy\'ebk\'ent. \end{cases}$$
 (6)

9. Ha $A \in Form, x \in Var$, akkor

$$|(\forall_x A)|_{\nu}^{\langle U, \rho \rangle} = \begin{cases} 0, & \text{ha van olyan } u \in U, \text{ hogy} |A|_{\nu[x:u]}^{\langle U, \rho \rangle} = 0\\ 1, & \text{egy\'ebk\'ent.} \end{cases}$$
 (7)

$$|(\exists_x A)|_{\nu}^{\langle U, \rho \rangle} = \begin{cases} 1, & \text{ha van olyan } u \in U, \text{ hogy} |A|_{\nu[x:u]}^{\langle U, \rho \rangle} = 1\\ 0, & \text{egy\'ebk\'ent.} \end{cases}$$
(8)

1.1.3. Logikai törvény, logikai következmény.

Definíció (modell). Legyen $L^{(1)} = (LC, Var, Con, Term, Form)$ egy elsőrendű nyelv és $\Gamma \subseteq Form$ egy tetszőleges formulahalmaz. Az (U, ρ, ν) rendezett hármas elsőrendű modellje a Γ formulahalmaznak, ha

- (U, ρ) egy interpretációja az $L^{(1)}$ nyelvnek;
- ullet ν egy (U, ρ) interpretációra támaszkodó értékelés;
- $minden \ A \in \Gamma \ eset\'en \ |A|_{\nu}^{\langle U, \rho \rangle} = 1.$

Definíció. Legyen $L^{(1)} = (LC, Var, Con, Term, Form)$ egy elsőrendű nyelv és $\Gamma \subseteq Form$ egy tetszőleges formulahalmaz, $A, B \in Form$ egy tetszőleges formulák.

- Eqy Γ formulahalmaz kielégíthető, ha van (elsőrendű) modellje;
- Egy Γ formulahalmaz kielégíthetetlen, ha nem kielégíthető, azaz nincs modellje;
- Az A formula modellje az {A} egyelemű formulahalmaz modelljét értjük;
- Az A formula kielégíthető, ha {A} formulahalmaz kielégíthető;
- Az A formula kielégíthetetlen, ha {A} formulahalmaz kielégíthetetlen;
- A Γ formulahalmaznak <u>logikai következménye</u> az A formula, ha a $\Gamma \cup \{ \neq A \}$ formulahalmaz kielégíthetetlen. Jelölés: $\Gamma \models A$
- $Az\ A\ formula nak\ logikai\ következménye\ a\ B\ formula,\ ha\ a\ \{A\} \models B$. $Jel\"{o}l\acute{e}s:\ A\models B$
- Az A formula érvényes (logikai törvény), ha $\emptyset \models A$, azaz ha az A formula logikai következménye az üres halmaznak. Másképpen, ha minden $\langle U, \rho \rangle$ interpretációjában, minden ν értékelés szempontjából $|A|_{\nu}^{\langle U, \rho \rangle} = 1$ Jelölés: $\models A$
- $Az A \text{ \'es } a B \text{ formula logikailag ekvivalens}, ha A \models B \text{ \'es } B \models A. Jelöl\'es: } A \Leftrightarrow B$

1.1.4. Logikai ekvivalencia, normálformák.

Definíció (Logikai ekvivalencia). *lásd:a 1.1.3 fejezet definíciója*.

Definíció (elemi konjunkció). Legyen $L^{(0)} = (LC, Con, Form)$ egy nulladrendű nyelv. Ha az $A \in Form$ formula literál vagy különböző alapú literálok konjunkciója, akkor A-t elemi konjunkciónak nevezzük.

Definíció (elemi diszjunkció). Legyen $L^{(0)} = (LC, Con, Form)$ egy nulladrendű nyelv. Ha az $A \in Form$ formula literál vagy különböző alapú literálok diszjunkciója, akkor A-t elemi diszjunkciónak nevezzük.

Definíció (diszjunktív normálforma). Egy elemi konjunkciót vagy elemi konjunkciók diszjunkcióját diszjunktív normálformának nevezzük.

Definíció (konjunktív normálforma). Egy elemi diszjunkciót vagy elemi diszjunkciók konjunkcióját konjunktív normálformának nevezzük.

Definíció. Legyen $L^{(0)} = (LC, Con, Form)$ egy nulladrendű nyelv és $A \in Form$ egy formula. Ekkor létezik olyan $B \in Form$, hogy

- $A \Leftrightarrow B$
- B diszjunktív vagy konjunktív normálformájú.

1.1.5. Kalkulusok (Gentzen-kalkulus).

Logikai kalkulus Logikai kalkuluson olyan adott nyelv formuláihoz tartozó formális rendszert, szabályrendszert értünk, amely pusztán szintaktikailag, szemantika nélkül ad meg egy következményrelációt. A logikai kalkulus tehát egy axiómarendszer, amely magában a logikai tautológiákat állítja elő, adott formulákat ideiglenesen hozzávéve (premissza) pedig más formulákra (konklúzió) lehet jutni (következtetni) vele.

Gentzen-féle szekvenciakalkulus Ebben a kalkulusban nem formulákra vonatkoznak a szabályok és nem is formulák alkotják az axiómákat, hanem a formulák eddigi szerepét az ún. szekvencia töltik be. Szekvenciának nevezzük

$$\Gamma \vdash \Delta$$

alakú jelsorozatokat, ahol Γ és Δ olyan rendezett jelsorozatok, amelyeknek minden tagja egy formula.

Definíció (axiómasémák). Legyen $L^{(0)} = (LC, Con, Form)$ egy nulladrendű nyelv (a klasszikus állításlogika nyelve). A nulladrendű kalkulus (klasszikus állításkalkulus) axiómasémái (alapsémái):

- 1. $A\supset (B\supset A)$
- $(A \supset (A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$
- 3. $(\neg A \supset \neg B) \supset (B \supset A)$

Az axiómaséma szabályos behelyettesítésén olyan formulát értünk, amely az axiómasémából a benne szereplő betűk tetszőleges formulával való helyettesítése útján jön létre. A nulladrendű kalkulus (klasszikus állításkalkulus) axiómái az axiómasémák szabályos behelyettesítései.

Definíció (szintaktikai következmény). Legyen $L^{(0)} = (LC, Con, Form)$ egy nulladrendű nyelv, $\Gamma \subseteq Form$ egy tetszőleges formulahalmaz. A Γ formulahalmaz szintaktikai következményeinek induktív definíciója:

Bázis:

- $Ha \ A \in \Gamma$, $akkor \ \Gamma \vdash A$
- $Ha\ A\ axi\acute{o}ma,\ akkor\ \Gamma\vdash A.$

Szabály (leválasztási szabály):

• $Ha \Gamma \vdash B$, és $\Gamma \vdash (B \subset A)$, $akkor \Gamma \vdash A$.

Definíció (szintaktikai következmény). Legyen $L^{(0)} = (LC, Con, Form)$ egy nulladrendű nyelv és $A, B \in Form$ két $tetsz \tilde{o} leges formula$. Az A formulának szintaktikai következménye a B formula, ha $\{A\} \vdash B$. Jelölés: $A \vdash B$

Definíció (szekvencia). Legyen $L^{(0)} = (LC, Con, Form)$ egy nulladrendű nyelv, $\Gamma \subseteq Form$ egy formulahalmaz és $A \in Form\ eqy\ formula.\ Ha\ az\ A\ formula\ szintaktikai\ következménye\ a\ \Gamma\ formulahalmaznak,\ akkor\ a\ \Gamma\vdash A\ jelsorozatot$ szekvenciának nevezzük.

 $\textbf{Definíció} \ (\text{levezethetőség}). \ \textit{Legyen} \ L^{(0)} = (\textit{LC}, \textit{Con}, \textit{Form}) \ \textit{egy nulladrendű nyelv \'es} \ \textit{A} \in \textit{Form egy tetszőleges}$ formula. Az A formula levezethető, ha ∅ ⊢ A, azaz ha az A formula szintaktikai következménye az üres halmaznak. $Jel\"{o}l\acute{e}s: \vdash A$

Definíció (természetes levezetés szabályai). Legyen $L^{(0)} = (LC, Con, Form)$ egy nulladrendű nyelv $\Gamma, \Delta \subseteq Form$ és $A, B, C \in Form$. A természetes levezetés által az $L^{(0)}$ nyelvben bizonyítható következményrelációk alábbiak:

Bázis:

$$\frac{\omega}{\Gamma, A \vdash A} \tag{9}$$

Szabályok:

- Struktúrális szabályok:
 - Bővítés $\frac{\Gamma \vdash A}{\Gamma B \vdash A}$
 - Felcser'el'es $\frac{\Gamma,B,C,\Delta\vdash A}{\Gamma,C,B,\Delta\vdash A}$
 - $\ \textit{Szűkítés} \ \tfrac{\Gamma,B,B,\Delta \vdash A}{\Gamma,B,\Delta \vdash A}$
 - $Metszet \xrightarrow{\Gamma \vdash A\Delta, A \vdash B}$
- Logikai szabályok:
 - Implikáció szabályai:

 - $\begin{array}{l} * \ bevezet \Hato: \ \frac{\Gamma,A \vdash B}{\Gamma \vdash A \supset B} \\ * \ alkalmaz \'ato: \ \frac{\Gamma \vdash A \Gamma \vdash A \supset B}{\Gamma \vdash B} \end{array}$
 - Negáció szabályai:

- $\begin{array}{l} * \ \ bevezet \ \ \, i : \frac{\Gamma, A \vdash B \Gamma, A \vdash \neg B}{\Gamma \vdash \neg A} \\ * \ \ alkalmaz \ \ \, i : \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \end{array}$
- Konjunkció szabályai:

 - $\begin{array}{l} * \ bevezet \~o : \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \land B} \\ * \ alkalmaz \~o : \frac{\Gamma, A, B \vdash C}{\Gamma, A \land B, \vdash C} \end{array}$
- Diszjunkció szabályai:
 - $\begin{array}{l} * \ bevezet \tilde{o} : \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B \cap \vdash B} \\ * \ alkalmaz \hat{o} : \frac{\Gamma, A \vdash C \Gamma, B \vdash C}{\Gamma, A \lor B \vdash C} \end{array}$
- (Materiális) ekvivalencia szabályai:

1.2. Operációs rendszerek

1.2.1. Operációs rendszerek fogalma, felépítése, osztályozásuk.

Operációs rendszerek fogalma Egy program, amely közvetítő szerepet játszik a számítógép felhasználója és a számítógéphardver között. Az operációs rendszer feladata, hogy a felhasználónak egy olyan egyenértékű kiterjesztett vagy virtuális gépet nyújtson, amelyiket egyszerűbb programozni, mint a mögöttes hardvert

Operációs rendszerek felépítése Az operációs rendszerek alapvetően három részre bonthatók:

- a felhasználói felület (a shell, amely lehet egy grafikus felület, vagy egy szöveges)
- alacsony szintű segédprogramok
- kernel (mag), amely közvetlenül a hardverrel áll kapcsolatban.

Operációs rendszerek osztályozása

- 1. Az operációs rendszer alatti hardver "mérete" szerint:
 - mikroszámítógépek operációs rendszerei
 - kisszámítógépek, esetleg munkaállomások operációs rendszerei
 - nagygépek (Main Frame Computers, Super Computers) operációs rendszerei
- 2. A kapcsolattartás típusa szerint:
 - kötegelt feldolgozású operációs rendszerek vezérlőkártyás kapcsolattartással
 - interaktív operációs rendszerek.
- 3. cél szerint: általános felhasználású vagy céloperációs rendszer
- 4. a processzkezelés: single-tasking, multi-tasking
- 5. a felhasználók száma szerint: single, multi
- 6. CPU-idő kiosztása szerint: szekvenciális, megszakítás vezérelt, event-polling, time-sharing
- 7. a memóriakezelés megoldása szerint: valós és virtuális címzésű

1.2.2. Az operációs rendszerek jellemzése (komponensei és funkciói).

Operációs rendszerek komponensei:

- Eszközkezelők (Device Driver) Felhasználók elől el fedik a perifériák különbségeit, egységes kezelői felületet kell biztosítani.
- Megszakítás kezelés (Interrupt Handling) Alkalmas perifériák felől érkező kiszolgálási igények fogadására, megfelelő ellátására.
- Rendszerhívás, válasz (System Call, Reply) az operációs rendszer magjának ki kell szolgálnia a felhasználói alkalmazások (programok) erőforrások iránti igényeit úgy, hogy azok lehetőleg észre se vegyék azt, hogy nem közvetlenül használják a perifériákat programok által kiadott rendszerhívások, melyekre rendszermag válaszokat küldhet.
- Erőforrás kezelés (Resource Management) Az egyes eszközök közös használatából származó konfliktusokat meg kell előznie, vagy bekövetkezésük esetén fel kell oldania.
- **Processzor ütemezés (CPU Scheduling)** Az operációs rendszerek ütemező funkciójának a várakozó munkák között valamilyen stratégia alapján el kell osztani a processzor idejét, illetve vezérelnie kell a munkák közötti átkapcsolási folyamatot.
- Memóriakezelés (Memory Management) Gazdálkodnia kell a memóriával, fel kell osztania azt a munkák között úgy, hogy azok egymást se zavarhassák, és az operációs renszerben se tegyenek kárt.

- Állomány- és lemezkezelés (File and Disk Management) Rendet kell tartania a hosszabb távra megőrzendő állományok között.
- Felhasználói felület (User Interface) A parancsnyelveket feldolgozó monito utódja, fejlettebb változata, melynek segítségével a felhasználó közölni tudja a rendszermaggal kívánságait, illetve annk állapotáról információt szerezhet.

Operációs rendszerek funkciói:

Folyamatkezelés A folyamat egy végrehajtás alatt álló program. Hogy feladatát ellássa erőforrásokra van szüksége (processzor idő, memória, állományok I/O berendezések). Az operációs rendszer feladata:

- Folyamatok létrehozása és törlése
- Folyamatok felfüggesztése és újraindítása
- Eszközök biztosítása a folyamatok kommunikációjához és szinkronizációjához.

Memória (főtár) kezelés Bájtokból álló tömbnek tekinthető, amelyet a CPU és az I/O közösen használ. Tartalma törlődik rendszerkikapcsoláskor és rendszerhibáknál. Az operációs rendszer feladata:

- Nyilvántartani, hogy az operatív memória melyik részét ki (mi) használja.
- Eldönteni melyik folyamatot kell betölteni, ha memória felszabadul.
- Szükség szerint allokálni és felszabadítani a memória területeket a szükségleteknek megfelelően.

Másodlagos tárkezelés Nem törlődik, és elég nagy hogy minden programot tároljon. A merevlemez a legelterjedtebb formája. Az operációs rendszer feladata:

- Szabadhely kezelés.
- Tárhozzárendelés.
- Lemez elosztás.

I/O rendszerkezelés • Puffer rendszer.

- Általános készülék meghajtó (device driver) interface.
- Speciális készülék meghajtó programok.

Fájlkezelés Egy fájl kapcsolódó információk együttese, amelyet a létrehozója definiál. Általában program és adatfájlokról beszélünk. Az operációs rendszer feladata:

- Fájlok és könyvtárak létrehozás és törlése.
- Fájlokkal és könyvtárakkal történő alapmanipuláció.
- Fájlok leképezése a másodlagos tárra, valamilyen nem törlődő, stabil adathordozóra.

Védelmi rendszer Olyan mechanizmus, mely az erőforrásokhoz való hozzá férést felügyeli. Az operációs rendszer feladata:

- Különbséget tenni jogos (authorizált) és jogtalan használat között.
- Specifikálni az alkalmazandó kontrolt.
- Korlátozó eszközöket szolgáltatni.

Hálózat elérés támogatása Az elosztott rendszer processzorok adat és vezérlő vonallal összekapcsolt együttese, ahol a memória és az óra nem közös. Adat- és vezérlővonal segítségével történik a kommunikáció. Az elosztott rendszer a felhasználóknak különböző osztott erőforrások elérését teszi lehetővé, mely lehetővé teszi:

- a számítások felgyorsítását,
- a jobb adatelérhetőséget,
- a nagyobb megbízhatóságot.

Parancs interpreter alrendszer Az operációs rendszernek sok parancsot vezérlő utasítás formájában lehet megadni. Vezérlő utasítások minden területhez tartoznak (folyamatok, I/O kezelés...). Az operációs rendszernek azt a programját, amelyik a vezérlő utasítást beolvassa és interpretálja a rendszertől függően más és más módon nevezhetik:

- Vezérlő kártya interpreter.
- Parancs sor interpreter (command line).
- Héj (burok, shell)

1.2.3. A rendszeradminisztráció, fejlesztői és alkalmazói támogatás eszközei.

Rendszeradminisztráció Magának az operációs rendszernek a működtetésével kapcsolatos funkciók. Ezek közvetlenül semmire sem használhatók, csak a hardverlehetőségek kibővítését célozzák, illetve a hardver kezelését teszik kényelmesebbé. A rendszeradminisztráción belül a következő összetett funkciókat jelölhetjük ki:

- 1. processzorütemezés: a CPU-idő szétosztása a rendszer- és a felhasználói feladatok (taszkok, folyamatok) között;
- 2. megszakításkezelés: a hardver-szoftver megszakításkérések elemzése, állapotmentés, a kezelőprogram hívása;
- 3. szinkronizálás: az események és az erőforrásigények várakozási sorokba állítása;
- 4. folyamatvezérlés: a programok indítása és a programok közötti kapcsolatok szervezése;
- 5. tárkezelés: a főtár, mint kiemelten kezelt erőforrás, elosztása;
- 6. perifériakezelés: a bemeneti/kimeneti (B/K ill. I/O) igények sorba állítása és kielégítése;
- 7. adatkezelés: az adatállományokon végzett műveletek segítése (létrehozás, nyitás, zárás, írás, olvasás stb.);
- 8. működés-nyilvántartás: a hardver hibastatisztika vezetése és a számlaadatok feljegyzése;
- 9. operátori interfész: a kapcsolattartás az üzemeltetővel.

A konkrét operációs rendszerek a funkciókat másképpen oszthatják fel. Így például az IBM OS operációs rendszerek változataiban négy fő funkciót szoktak megkülönböztetni:

- 1. a munkakezelést.
- 2. a taszkkezelést,
- 3. az adatkezelést és
- 4. a rendszerstatisztikát.

A rendszeradminisztrációs funkciókat a **rendszermag** valósítja meg, amelynek a szolgáltatásait a már említett rendszerhívásokkal érhetjük el.

Programfejlesztési támogatás fő funkciói:

- 1. rendszerhívások: a programokból alacsony szintű operációsrendszeri funkciók aktivizálására,
- 2. szövegszerkesztők: a programok és dokumentációk írására,
- **3. programnyelvi eszközök:** fordítóprogramok és interpreterek (értelmezők) a nyelvek fordítására vagy értelmezésére,
- 4. szerkesztő- és betöltő-programok: a programmodulok összefűzésére illetve tárba töltésére (végcímzés),
- 5. programkönyvtári funkciók: a különböző programkönyvtárak használatára,
- 6. nyomkövetési rendszer: a programok belövésére.

Alkalmazói támogatás Az alkalmazói támogatás funkciói a számítógépes rendszer több szintjén valósulnak meg, és az alábbi fő funkciókra bonthatók:

- 1. operátori parancsnyelvi rendszer: a számítógép géptermi üzemvitelének támogatására;
- 2. munkavezérlő parancsnyelvi rendszer: a számítógép alkalmazói szintű igénybevételének megfogalmazására;
- 3. rendszerszolgáltatások: az operációs rendszer magjával közvetlenül meg nem oldható rendszerfeladatokra;
- 4. segéd-programkészlet: rutinfeladatok megoldására;
- 5. alkalmazói programkészlet: az alkalmazásfüggő feladatok megoldására

- 1.3. Magas szintű Programozási nyelvek
- 1.3.1. Adattípus, konstans, változó, kifejezés.
- ${\bf 1.3.2.}\ \ {\bf Param\'eter} {\bf k\'i\'ert\'ekel\'es},\ {\bf param\'eter\'atad\'as}.$
- 1.3.3. Hatáskör, névterek, élettartam.
- 1.3.4. Fordítási egységek, kivételkezelés.

- 1.4. Magas Sintű programozási nyelvek 2
- 1.4.1. Speciális programnyelvi eszközök.
- 1.4.2. Az objektumorientált programozás eszközei és jelentősége.
- 1.4.3. Funkcionális és logikai programozás.

1.5. Adatszerkezetek és algoritmusok

- 1.5.1. Adatszerkezetek reprezentációja.
- 1.5.2. Műveletek adatszerkezetekkel.
- 1.5.3. Adatszerkezetek osztályozása és jellemzésük.
- 1.5.4. Szekvenciális adatszerkezetek: sor, verem, lista, sztring.
- 1.5.5. Egyszerű és összetett állományszerkezetek.

1.6. Adatbázisrendszerek

- 1.6.1. Relációs, ER és objektumorientált modellek jellemzése.
- 1.6.2. Adatbázisrendszer.
- 1.6.3. Funkcionális függés.
- 1.6.4. Relációalgebra és relációkalkulus.
- 1.6.5. Az SQL.

- 1.7. Hálózati architektúrák
- 1.7.1. Az ISO OSI hivatkozási modell.
- 1.7.2. Ethernet szabványok.
- 1.7.3. A hálózati réteg forgalomirányító mechanizmusai.
- 1.7.4. Az internet hálózati protokollok, legfontosabb szabványok és szolgáltatások.

- 1.8. Fizika 1
- 1.8.1. Fizikai fogalmak, mennyiségek.
- 1.8.2. Impulzus, impulzusmomentum.
- 1.8.3. Newton törvényei.
- 1.8.4. Munkatétel.
- 1.8.5. Az I. és II. főtétel.
- 1.8.6. A kinetikus gázmodell.

1.9. Fizika 2

- 1.9.1. Elektromos alapfogalmak és alapjelenségek.
- 1.9.2. Ohm-törvény.
- 1.9.3. A mágneses tér tulajdonságai.
- 1.9.4. Elektromágneses hullámok.
- 1.9.5. A Bohr-féle atommodell.
- 1.9.6. A radioaktív sugárzás alapvető tulajdonságai.

1.10. Elektronika 1, 2

- 1.10.1. Passzív áramköri elemek tulajdonságai, RC és RLC hálózatok.
- 1.10.2. Diszkrét félvezető eszközök, aktív áramköri elemek, alapkapcsolások.
- 1.10.3. Integrált műveleti erősítők.
- 1.10.4. Tápegységek.
- 1.10.5. Mérőműszerek.

1.11. Digitális Technika

- 1.11.1. Logikai függvények kapcsolástechnikai megvalósítása.
- 1.11.2. Digitális áramköri családok jellemzői
(TTL, CMOS, NMOS).
- 1.11.3. Különböző áramköri családok csatlakoztatása.
- 1.11.4. Kombinációs és szekvenciális hálózatok. A/D és D/A átalakítók.

2. Infokommunikációs hálózatok specializáció

2.1. Távközlő hálózatok

- 2.1.1. Fizikai jelátviteli közegek.
- 2.1.2. Forráskódolás, csatornakódolás és moduláció.
- 2.1.3. Csatornafelosztás és multiplexelési technikák.
- 2.1.4. Vezetékes és a mobil távközlő hálózatok.
- 2.1.5. Műholdas kommunikáció és helymeghatározás.

- 2.2. Hálózatok hatékonyságanalízise
- 2.2.1. Markov-láncok, születési-kihalási folyamatok.
- ${\bf 2.2.2.} \ \ \, {\bf A} \ \, {\bf legalapvet\"{o}bb} \ \, {\bf sorban\'{a}ll\'{a}si} \ \, {\bf rendszerek} \ \, {\bf vizsg\'{a}lata}.$
- 2.2.3. A rendszerjellemzők meghatározásának módszerei, meghatározásuk számítógépes támogatása.

2.3. Adatbiztonság

- 2.3.1. Fizikai, ügyviteli és algoritmusos adatvédelem, az informatikai biztonság szabályozása.
- 2.3.2. Kriptográfiai alapfogalmak.
- 2.3.3. Klasszikus titkosító módszerek.
- 2.3.4. Digitális aláírás, a DSA protokoll.

 $2.4.\ A\ RIP$ protokoll működése és paramétereinek beállítása (konfigurációja).

	2.5.	Bevezetés	a	Cisco	eszközök	programozásába	1
--	------	-----------	---	-------	----------	----------------	---

2.5.1. A forgalomszűrés, forgalomszabályozás (Trafficfiltering, ACL) céljai és beállítása (konfigurációja) egy választott példa alapján.

26	Revezetés	a C	isco	oszközök	programozásába	• 2
∠.∪.	Devezetes	$a \cup$	15CU	CSZKUZUK	programozasaba	1 4

2.6.1. A forgalomirányítási táblázatok felépítése, statikus és dinamikus routing összehasonlítása.

Tárgymutató

atomi formula, 5

prímforumla, 5