Smooth Manifolds and Lie Groups

Directed Reading Program Fall 2023

Estella Xu

Colin Fan

December 1, 2023

Northwestern University Dept. of Mathematics

Overview

- 1. An Introduction to Manifolds
- 2. Lie Groups
- 3. A Non-Example: S^2
- 4. The Hairy Ball Theorem and Parallelizability

Introduction to Manifolds

Definition (Manifold). Let M be a topological space. M is a manifold if it is

- (1) Hausdorff,
- (2) second-countable, and
- (3) locally Euclidean.

Today, we'll only focus on (3).

Topological Spaces

Being in a topological space allows us to define continuity of functions.

Locally Euclidean

Definition (Locally Euclidean). Given any point on a manifold M of dimension n, we can find an open set around the point and a homeomorphism (a continuous bijective map with a continuous inverse) between that open set and \mathbb{R}^n .

Intuitively...

A manifold is an object that looks like \mathbb{R}^n in a small area around each point.

Smooth Manifolds

We will look at **smooth manifolds**, which will allow us to do calculus on manifolds.

Smooth manifolds "smoothly" look like \mathbb{R}^n locally; instead of finding a continuous map from an open set to \mathbb{R}^n , we find a smooth (infinitely differentiable) one.¹

Manifold Examples

- \mathbb{R}^n where we take the identity map as our homeomorphism.
- The torus (we'll touch on this later).
- The 2-dimensional sphere, given by

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$

It is embedded in \mathbb{R}^3 .

Let's provide more details on the sphere.

Example (Sphere)

The sphere is a smooth manifold. Consider the open set $U = \{(x, y, z) : z > 0\}$.

The "Flattening Map"2

$$\phi: U \to \mathbb{R}^2$$

$$(x,y,z)\mapsto (x,y),$$

with inverse

$$\phi^{-1}: \mathbb{R}^2 \to U$$

$$(x,y) \mapsto \left(x,y,\sqrt{1-(x^2+y^2)}\right).$$

²Another map we can use is stereographic projection.

Nonexample

Consider the x- and y-axes (embedded in \mathbb{R}^2). This is **not** a manifold.

The key reasoning:

- Homeomorphisms on a space are still homeomorphisms on a subspace of the space.
- Continuous maps preserve connectedness (and homeomorphisms preserve the number of connected components).

Lie Groups

Definition (Lie Group). G is a Lie group if it is a smooth manifold that is a group such that

- the multiplication map $m: G \times G \rightarrow G$ and
- the inverse map $()^{-1}: G \to G$

are smooth.

Example (\mathbb{R}^n)

Consider \mathbb{R}^n .

- We've seen that \mathbb{R}^n is a smooth manifold.
- \mathbb{R}^n is a group under addition; in particular, addition and negation (its inverse map) are both smooth.

Example (Tori)

As a group, the *n*-torus is $\mathbb{R}^n/\mathbb{Z}^n$. Consider the group operation

$$(x_1,...,x_n) + (y_1,...,y_n) = (x_1 + y_1 \mod 1,...,x_n + y_n \mod 1).$$

Example (Matrix Groups)

- The general linear group: $GL(n) = \{A \in M(n \times n) : M \text{ is invertible}\}.$
- The rotation group: $SO(3) = \{A \in M(3 \times 3) : A^TA = AA^T = I\}.$
- The special linear group: $SL(2) = \{A \in M(2 \times 2) : \det(A) = 1\}.$

Nonexample (Sphere)

We show that the sphere is not a Lie group.

How can you show something is not a Lie group?

It's tricky...

You'd have to show that no group operation on the space will be smooth.

Instead, let's use a much nicer method.

Vector Fields

We create a **vector field** on a smooth manifold by placing tangent vectors at every point on the manifold.

- If the vectors continuously vary, the vector field is continuous.
- If the vectors *smoothly vary*, the vector field is smooth.

The Hairy Ball Theorem

Theorem (Hairy Ball). Every continuous vector field on a sphere has to vanish somewhere, i.e., there is some point on the sphere whose vector is 0.

The Hairy Ball Theorem

The Tangent Bundle of a Lie Group (Parallelizability)

Theorem. Let G be a Lie group of dimension n. Then,

$$TG \cong G \times \mathbb{R}^n$$
.

The Tangent Bundle

The **tangent bundle** of a manifold M (written TM) is, loosely speaking, the collection of all smooth vector fields on M.

Diffeomorphic

Two smooth manifolds are **diffeomorphic** (\cong) if there exists a smooth, bijective map with a smooth inverse between them. We can *identify* the two spaces with each other.

A Contradiction

Suppose the sphere is a Lie group. Then, by the previous theorem,

$$TS^2 \cong S^2 \times \mathbb{R}^2$$
.

Then, there would be a vector field consisting of a *nonzero* constant tangent vector at every point on the sphere. $\chi = \{(\rho, (1/1)) : \rho \in S^2 \}$

However, this is impossible under the Hairy Ball Theorem.

"Parallelizability"

The tangent bundle theorem tells us that Lie groups have a *nonvanishing vector* field. This gives us a way to show if something is *not* a Lie group.

Some Fun Facts

It turns out that...

- S^1 and S^3 are Lie groups.
 - S^1 can be endowed with the operation of angle addition.
 - $S^3 \cong SU(2)$.
- S^7 is parallelizable, i.e.,

$$TS^7 \cong S^7 \times \mathbb{R}^7$$
,

but not a Lie group (parallelizability is not an "if and only if" relation!).

Conclusion

- 1. A manifold is locally similar to \mathbb{R}^n .
- 2. A Lie group is a smooth manifold that is also a topological group.
- 3. The tangent bundle of a Lie group is trivial.