

DeepStore: In-Storage Acceleration for Intelligent Queries

Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Garcia de Gonzalo, Youjie Li, Hubertus Franke*, Jinjun Xiong*, Jian Huang, Wen-mei Hwu University of Illinois at Urbana-Champaign, Urbana, IL 61801 * IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598

State-of-art Intelligent Query System

Intelligent Query Applications Studied

Intelligent Queries System Requirement

Removal of SSD I/O Bandwidth

Compute in Storage

High throughput Compute

Add DL accelerators to SSD

DeepStore Accelerator Design

DeepStore Accelerator Placement

DeepStore's channel level design performs best due to parallelism exploited and high reuse of weights

Query Cache

Optimization: exploit temporal locality and semantic similarity of queries

Q1. A brown dog is running in the sand Semantically

Q2. A brown dog plays at the beach similar query **Query Cache**

Va	alid	QFV(Tag)	TopKFV
	1	Q1_QFV	Top1, Top2
	1	Q8_QFV	Top1, Top2

Hit: Take from query cache. Miss: Execute SCN over database

Results

DeepStore performs up to 17x faster due to the removal of I/O bottleneck, parallelism exploited, and high reuse of weights

DeepStore is up to 78x more efficient than GPU for intelligent queries

Query Cache in DeepStore can significantly improve performance due to DeepStore's lower mis penalty