Materials 35 - ... And still estimating the anchoring function

Laura Gáti

June 29, 2020

Overview

1	Estimation procedure		2
2	1D function		3
	2.1	Simulated data, evaluate loss on a $6^6 = 46656$ grid \dots	3
	2.2	Simulated data, $\alpha^{true} \in (0, 0.1)$ and convex	5
	2.3	100000 starting points, top 10 minima	7
	2.4	Add moments	7
	2.5	But is it robust?	7
	2.6	Is the L-shape a residue of too many coefficients?	10
A	A Model summary		11
В	3 Target criterion		11

1 Estimation procedure

Instead of the AR(1) anchoring function used so far (Equation A.6), I use the following equation

$$k_t^{-1} = \alpha s(X) \tag{1}$$

where $X = (k_{t-1}^{-1}, fe_{t|t-1})$ and I use piecewise linear interpolation. I initialize α_0 by specifying a grid for X, passing the grid through Equation (A.6) to generate k_t^{-1} -values, and approximating by fitting the grid to the k_t^{-1} -values. See Fig. 1.

Then I estimate α using GMM, targeting the autocovariance structure of inflation, the output gap and the nominal interest rate (federal funds rate) in the data.

Figure 1: Initialization via Equation (A.6) implies this functional relationship

T=233 before BK-filtering, T=209 after BK-filtering. Using the "constant-only, inflation-only" learning PLM. I drop the ndrop=5 initial values. I restrict $\alpha \in (0,1)$, the support of k^{-1} in the grid. I target the lag $0, \ldots, 4$ autocovariance matrices, dropping repeated entries at lag 0, leaving me with 42 moments.

2 1D function

2.1 Simulated data, evaluate loss on a $6^6 = 46656$ grid

Figure 2: Objective function values on a grid with values (0; 0.2; 0.4; 0.6; 0.8; 1)

Figure 3: The α s with highest and lowest objective function values

2.2 Simulated data, $\alpha^{true} \in (0, 0.1)$ and convex

Figure 4: Effects of making the truth i) convex ii) between 0 and 0.1

Actually, this improves the solver's ability to get close (up to $\alpha(fe=-5)$) dramatically! But this indicates the finite-element issue: there might not be any data in the -5 range for the forecast error. If that's so, then redoing this spiel with the true data involving a smaller forecast error support should do the trick.

(d) Moments

BAM! That did it! PTO.

(c) $\alpha^{true}, \alpha_0, \hat{\alpha}$

Figure 5: Effects of making the truth i) convex ii) between 0 and 0.1 iii) shrinking the true forecast error support to (-3.5, 3.5)

2.3 100000 starting points, top 10 minima

Didn't improve on 1000, besides the nonconvex truth was too much of a challenge, so not pursing this.

2.4 Add moments

2.4.1 Strict priors: anchoring function should be convex

2.4.2 Calibrated moments: e.g. average gain in simulation should be 0.05

Starting with simulated data, and then turning to the real data, I've found that

- without (and also with!) additional moments, data is able identify 5 parameters;
- the convexity moment forces the solution to be convex (otherwise it is often not convex);
- the mean moment helps pinning down the solution when the convexity moment is in place.

Such a solution seems quite robust to starting points (there are some starting points that lead the solver not to converge). The solution looks like this:

Figure 6: The candidate solution

 $n_{\alpha} = 5, fe \in (-3.5, 3.5), \alpha \in (0, 1),$ convexity and mean moment imposed, starting point is given by the AR(1) gain function on this grid. $\hat{\alpha} = (0.7696; 0.0026; 0; 0.0058; 0.0107)$

2.5 But is it robust?

Initialization for robustness check: random straight lines between (0,1). I've also done completely random sets of points and I get similar, but less clean results because initializing at non-convex points impairs the solver's behavior (gets stuck at more local minima).

Figure 7: Converged solutions for 20 runs (6 converged)

 $n_{\alpha} = 5, fe \in (-3.5, 3.5), \alpha \in (0, 1),$ convexity and mean moment imposed, from different straight lines between (0,1) as initial points.

- Mean coefficients in Point 1 = (0.7663; 0.0011; 0.0007; 0.0054; 0.0092)
- Mean coefficients in Point 2 = (0.0267; 0; 0.0329; 0.0673; 0.1639)

Figure 8: Converged solutions for 100 runs (35 converged)

 $n_{\alpha} = 5, fe \in (-3.5, 3.5), \alpha \in (0, 1),$ convexity and mean moment imposed, from different straight lines between (0,1) as initial points.

- Mean coefficients in Point 1 = (0.7816; 0.0014; 0.0012; 0.0054; 0.0091)
- Mean coefficients in Point 2 = (0.0279; 0; 0.0324; 0.0654; 0.1652)

2.6 Is the L-shape a residue of too many coefficients?

No:

Figure 9: The same configurations as above, except less parameters

A Model summary

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
(A.1)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha)\beta \pi_{T+1} + u_T \right)$$
(A.2)

$$i_t = \psi_\pi \pi_t + \psi_x x_t + \bar{i}_t$$
 (if imposed) (A.3)

PLM:
$$\hat{\mathbb{E}}_t z_{t+h} = a_{t-1} + b h_x^{h-1} s_t \quad \forall h \ge 1 \qquad b = g_x h_x$$
 (A.4)

Updating:
$$a_t = a_{t-1} + k_t^{-1} (z_t - (a_{t-1} + bs_{t-1}))$$
 (A.5)

Anchoring function:
$$k_t^{-1} = \rho_k k_{t-1}^{-1} + \gamma_k f e_{t-1}^2$$
 (A.6)

Forecast error:
$$fe_{t-1} = z_t - (a_{t-1} + bs_{t-1})$$
 (A.7)

LH expectations:
$$f_a(t) = \frac{1}{1 - \alpha \beta} a_{t-1} + b(\mathbb{I}_{nx} - \alpha \beta h)^{-1} s_t$$
 $f_b(t) = \frac{1}{1 - \beta} a_{t-1} + b(\mathbb{I}_{nx} - \beta h)^{-1} s_t$

This notation captures vector learning (z learned) for intercept only. For scalar learning, $a_t = \begin{pmatrix} \bar{a}_t & 0 & 0 \end{pmatrix}'$ and b_1 designates the first row of b. The observables (π, x) are determined as:

$$x_t = -\sigma i_t + \begin{bmatrix} \sigma & 1 - \beta & -\sigma \beta \end{bmatrix} f_b + \sigma \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (\mathbb{I}_{nx} - \beta h_x)^{-1} s_t$$
 (A.9)

$$\pi_t = \kappa x_t + \begin{bmatrix} (1 - \alpha)\beta & \kappa \alpha \beta & 0 \end{bmatrix} f_a + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} (\mathbb{I}_{nx} - \alpha \beta h_x)^{-1} s_t$$
 (A.10)

B Target criterion

The target criterion in the simplified model (scalar learning of inflation intercept only, $k_t^{-1} = \mathbf{g}(fe_{t-1})$):

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} \left\{ x_{t} - \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + ((\pi_{t} - \bar{\pi}_{t-1} - b_{1}s_{t-1})) \mathbf{g}_{\pi}(t) \right) \right\}$$

$$\left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (1 - k_{t+1+j}^{-1} - (\pi_{t+1+j} - \bar{\pi}_{t+j} - b_{1}s_{t+j}) \mathbf{g}_{\bar{\pi}}(t+j)) \right)$$
(B.1)

where I'm using the notation that $\prod_{j=0}^{0} \equiv 1$. For interpretation purposes, let me rewrite this as follows:

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} x_{t} + \frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i}$$

$$-\frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (k_{t+1+j}^{-1} + f e_{t+1+j|t+j}^{eve}) \mathbf{g}_{\pi}(t+j) \right)$$
(B.2)

Interpretation: tradeoffs from discretion in RE + effect of current level and change of the gain on future tradeoffs + effect of future expected levels and changes of the gain on future tradeoffs

(A.8)