

Contents lists available at ScienceDirect

# **Applied Energy**

journal homepage: www.elsevier.com/locate/apenergy



CrossMark

## Review

# CO<sub>2</sub> transport: Data and models – A review



SINTEF Energy Research, P.O. Box 4761 Sluppen, NO-7465 Trondheim, Norway



- Data and models for CO<sub>2</sub> transport with emphasis on transient situations are reviewed.
- There are large gaps in thermophysical property data for CCS-relevant CO<sub>2</sub> mixtures.
- A case study with modelling of expansion-tube data for pure CO<sub>2</sub> is presented.
- Data and models for depressurization of CO<sub>2</sub> pipes are needed for safety and operation.
- Non-equilibrium flow modelling and ship transport of CO<sub>2</sub> are also considered.

#### ARTICLE INFO

### Article history: Received 8 October 2015 Received in revised form 26 January 2016 Accepted 28 January 2016 Available online 23 February 2016

Keywords: CO<sub>2</sub> transport Fluid dynamics Thermodynamics Thermophysical properties Depressurization Decompression

## ABSTRACT

This review considers data and models for  $\mathrm{CO}_2$  transport. The thermophysical properties of  $\mathrm{CO}_2$  and  $\mathrm{CO}_2$ -rich mixtures are needed as a basis for various models within  $\mathrm{CO}_2$  capture and storage (CCS). In particular, this is true for transient models of pipes and vessels. Here, the data situation for phase equilibria, density, speed of sound, viscosity and thermal conductivity is reviewed, and property models are considered. Further, transient flow data and models for pipes are reviewed, including considerations regarding running-ductile fractures, which are essential to understand for safety. A depressurization case study based on recently published expansion-tube data is included as well. Non-equilibrium modelling of flow and phase equilibria are reviewed. Further, aspects related to the transport of  $\mathrm{CO}_2$  by ship are considered. Many things are known about  $\mathrm{CO}_2$  transport, e.g., that it is feasible and safe. However, if full-scale CCS were to be deployed today, conservative design and operational decisions would have to be made due to the lack of quantitative validated models.

© 2016 Elsevier Ltd. All rights reserved.

# Contents

| 1. | Introduction                                                                     |                                |                                          | 500 |
|----|----------------------------------------------------------------------------------|--------------------------------|------------------------------------------|-----|
| 2. | Thermophysical property data                                                     |                                |                                          | 501 |
|    | 2.1. CCS capture product and transport fluid specifications                      |                                |                                          | 501 |
|    | 2.2.                                                                             | Data s                         | ituation for equilibrium properties      | 501 |
|    |                                                                                  | 2.2.1.                         | Vapour-liquid-liquid equilibrium (VLE)   | 503 |
|    |                                                                                  | 2.2.2.                         | Vapour–liquid–liquid equilibrium (VLLE)  | 505 |
|    |                                                                                  | 2.2.3.                         | Equilibria involving solids and hydrates | 505 |
|    |                                                                                  | 2.2.4.                         | Density and related properties           | 505 |
|    |                                                                                  | 2.2.5.                         | Speed of sound                           | 505 |
|    |                                                                                  | 2.2.6.                         | Viscosity                                |     |
|    |                                                                                  | 2.2.7.                         | Thermal conductivity                     | 505 |
| 3. | Thermophysical property models                                                   |                                |                                          | 505 |
|    | 3.1. Property models for pure CO <sub>2</sub> and CO <sub>2</sub> -rich mixtures |                                |                                          | 506 |
|    | 3.2. Implementation in fluid-dynamic models                                      |                                |                                          | 50  |
|    | 3.3.                                                                             | 3.3. Flow through restrictions |                                          |     |
| 4. | Pipeline transport of CO <sub>2</sub>                                            |                                |                                          | 508 |

E-mail address: svend.t.munkejord@sintef.no (S.T. Munkejord).

<sup>\*</sup> Corresponding author.