Relatório 3º projeto ASA 2024/2025

Grupo: AL077

Aluno(s): Alexandre Delgado (109441) e Madalena Yang (110206)

Descrição da Solução

Neste relatório é considerado o problema da maximização do número de crianças que poderão ver os seus pedidos satisfeitos respeitando as restrições do problema.

Identificar as variáveis do problema

Para cada criança $C_k|_{k=1}^t$ criamos x_{ki} se $F_i \in desejos(C_k)$, sendo $desejos(C_k)$ o conjunto de brinquedos que a criança k pede ao Pai Natal. $x_{ki} = 1$ se e só se C_k receber o brinquedo da fábrica F_i

Por exemplo, x_{24} é a variável binária que indica se o pedido da criança 2 foi atendido pela fábrica 4.

Modelar o objetivo

Função objetivo: maximizar a soma das variáveis associadas aos pedidos de todas as crianças, ou seja, maximizar o nº total de pedidos atendidos.

$$\max \sum_{k=1}^{t} \sum_{F_i \in desejos(C_k)} x_{ki}$$

Modelar as restrições

1. Restrição do stock máximo para cada fábrica F_i

Cada fábrica F_i tem um stock máximo de brinquedos disponíveis para a distribuição no Natal. Ou seja, a soma de todos os pedidos atendidos pela fábrica F_i não pode ser superior a fmax[i].

$$\sum_{F_i \in desejos(C_k)} x_{ki} \le fmax[i], \quad \forall i \in \{1, 2, ..., n\}$$

Restrição da exportação para cada país P_i

Cada país P_i é limitado por um pmax[j] de brinquedos que pode exportar. Isto é, a soma dos pedidos enviados do país P_i para crianças fora do país P_j não pode ser superior a pmax[j].

país
$$P_j$$
 não pode ser superior a $pmax[j]$.

$$\sum_{\substack{C_k \in \{k \in \{c_1, \dots, c_t\}: \\ pais_crianca[k] \neq j\}}} \sum_{\substack{f_i \in \{i \in desejos(c_k): \\ pais_crianca[k] \neq j\}}} x_{ki} \leq pmax[j], \qquad \forall j \in \{1, 2, \dots, m\}$$
 • $pais_crianca[k]$ representa o país j que a criança k pertence. • $pais_fabrica[i]$ representa o país j que a fábrica j pertence.

a fábrica i pertence.

3. Restrição da entrega mínima para cada país P_i

Cada país P_i tem um nº mínimo pmin[j] de brinquedos que deve distribuir. Isto é, o n^0 de crianças do país P_i que recebem brinquedos deve ser superior a pmin[j].

$$\sum_{\substack{C_k \in \{k \in \{c_1, \dots, c_t\}: \\ \text{pais_crianca}[k] = j\}}} \sum_{i=1}^n x_{ki} \ge pmin[j], \qquad \forall j \in \{1, 2, \dots, m\}$$

Relatório 3º projeto ASA 2024/2025

Grupo: AL077

Aluno(s): Alexandre Delgado (109441) e Madalena Yang (110206)

4. Restrição do nº de pedidos atendidos para cada criança C_k

Cada criança C_k recebe, dos pedidos que fez, no máximo, um.

$$\sum_{F_i \in desejos(C_k)} x_{ki} \leq 1 \,, \qquad \forall k \in \{1,2,\dots,t\}$$

Programação Linear $\max \sum_{k=1}^{t} \sum_{F_i \in desejos(C_k)} x_{ki}$

Inicialmente, recebemos o input e organizamos as variáveis em 4 dicionários, um

para cada restrição, de forma que mais tarde possamos percorrer só os dicionários para verificar cada restrição. Depois temos um for loop que itera até o max(n, m, t) para percorrer esses 4 dicionários de uma só vez e verificar cada restrição.

Um "pedido" representa um par criança-brinquedo [k, i], uma variável do problema.

for z *in* range(1, max+1):

if
$$z \le n$$
:

 $\sum_{pedidos_por_fabrica[z]} x_{ki} \le fmax[z]$

pedidos_por_fabrica é um dicionário com i: [pedidos feitos à fábrica i]

if $z \leq m$:

 $\sum_{pedidos_por_exportacao[z]} x_{ki} \leq pmax[z]$

pedidos_por_exportacao é j: [pedidos feitos a fábricas do país j por crianças fora do país j]

 $\sum_{pedidos_por_entrega[z]} x_{ki} \le pmin[z]$

pedidos_por_entrega é j: [pedidos feitos pelas crianças do país j]

if $z \le t$:

 $\sum_{pedidos_por_crianca[z]} x_{ki} \leq 1$

pedidos_por_crianca é k: [pedidos feitos pela criança k]

Complexidade do modelo

• <u>Nº de restrições:</u> O(n) + O(m) + O(m) + O(t) = O(n + m + t) mas devido a uma otimização, fica $O(\max(n, m, t))$

• N^0 de variáveis: O(tn) (no pior caso, cada criança pede brinquedos de todas as fábricas)

Avaliação Experimental dos Resultados

Após ter gerado várias instâncias de tamanho incremental, obteve-se o seguinte gráfico: no eixo das abcissas, está o nº de variáveis; no eixo das ordenadas, o tempo em segundos.

Deste modo, observa-se um gráfico aproximadamente logarítmico, ao contrário de um gráfico exponencial que era esperado. Este facto deve-se a otimizações realizadas no código e também ao facto da biblioteca PULP incluir várias heurísticas.

