Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 8

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 1 & 5 \\ 3 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix}$$

Standard E3. Mark:

Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\3-21a\\-7a\\12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

Find a basis for the solution set to the system of equations

$$x + 2y - 3z = 0$$
$$2x + y - 4z = 0$$

$$3y - 2z = 0$$

$$x - y - z = 0$$

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ 0 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\frac{5}{3} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} \frac{5}{3}a\\ \frac{2}{3}a\\ a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

So a basis is $\left\{ \begin{bmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\}$ or $\left\{ \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} \right\}$.

Standard V1.

Mark:

Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (0, cy_1)$

- (a) Show that this scalar multiplication \odot distributes over scalar addition.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $(x_1, y_1) \in V$, and let $c, d \in \mathbb{R}$. Then

$$(c+d)\odot(x_1,y_1)=(0,(c+d)y_1)=(0,cy_1)\oplus(0,dy_1)=c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

However, V is not a vector space, as $1 \odot (x_1, y_1) = (0, y_1) \neq (x_1, y_1)$.

Additional Notes/Marks