

**CORRECTED
VERSION***

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification⁶: C12N 15/31, C07K 14/35, A61K 39/04, 48/00, 49/00, C12N 15/62, C07K 19/00, G01N 33/50, 33/60, 33/569, C12N 1/19, 1/20, 1/21, 5/10		A2	(11) International Publication Number: WO 98/16646 (43) International Publication Date: 23 April 1998 (23.04.98)
(21) International Application Number: PCT/US97/18293 (22) International Filing Date: 7 October 1997 (07.10.97)		(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).	
(30) Priority Data: 08/730,510 11 October 1996 (11.10.96) US 08/818,112 13 March 1997 (13.03.97) US		(81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(71) Applicant: CORIXA CORPORATION [US/US]; 1124 Columbia Street, Seattle, WA 98104 (US). (72) Inventors: REED, Steven, G.; 2843 - 122nd Place N.E., Bellevue, WA 98005 (US). SKEIKY, Yasir, A., W.; 8327 - 25th Avenue N.W., Seattle, WA 98107 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAMPOS-NETO, Antonio; 9308 Midship Court N.E., Bainbridge Island, WA 98021 (US). HOUGHTON, Raymond; 2636 - 242nd Place S.E., Bothell, WA 98021 (US). VEDVICK, Thomas, S.; 124 South 300th Place, Federal Way, WA 98003 (US). TWARDZIK, Daniel, R.; 10195 South Beach Drive, Bainbridge Island, WA 98110 (US). LODES, Michael, J.; 9223 - 36th Avenue S.W., Seattle, WA 98126 (US).		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(54) Title: COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS			
(57) Abstract <p>Compounds and methods for inducing protective immunity against tuberculosis are disclosed. The compounds provided include polypeptides that contain at least one immunogenic portion of one or more <i>M. tuberculosis</i> proteins and DNA molecules encoding such polypeptides. Such compounds may be formulated into vaccines and/or pharmaceutical compositions for immunization against <i>M. tuberculosis</i> infection, or may be used for the diagnosis of tuberculosis.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS

5 TECHNICAL FIELD

The present invention relates generally to detecting, treating and preventing *Mycobacterium tuberculosis* infection. The invention is more particularly related to polypeptides comprising a *Mycobacterium tuberculosis* antigen, or a portion or other variant thereof, and the use of such polypeptides for diagnosing and vaccinating 10 against *Mycobacterium tuberculosis* infection.

BACKGROUND OF THE INVENTION

Tuberculosis is a chronic, infectious disease, that is generally caused by infection with *Mycobacterium tuberculosis*. It is a major disease in developing 15 countries, as well as an increasing problem in developed areas of the world, with about 8 million new cases and 3 million deaths each year. Although the infection may be asymptomatic for a considerable period of time, the disease is most commonly manifested as an acute inflammation of the lungs, resulting in fever and a nonproductive cough. If left untreated, serious complications and death typically result.

20 Although tuberculosis can generally be controlled using extended antibiotic therapy, such treatment is not sufficient to prevent the spread of the disease. Infected individuals may be asymptomatic, but contagious, for some time. In addition, although compliance with the treatment regimen is critical, patient behavior is difficult to monitor. Some patients do not complete the course of treatment, which can lead to 25 ineffective treatment and the development of drug resistance.

Inhibiting the spread of tuberculosis requires effective vaccination and accurate, early diagnosis of the disease. Currently, vaccination with live bacteria is the most efficient method for inducing protective immunity. The most common Mycobacterium employed for this purpose is *Bacillus Calmette-Guerin* (BCG), an 30 avirulent strain of *Mycobacterium bovis*. However, the safety and efficacy of BCG is a source of controversy and some countries, such as the United States, do not vaccinate

the general public. Diagnosis is commonly achieved using a skin test, which involves intradermal exposure to tuberculin PPD (protein-purified derivative). Antigen-specific T cell responses result in measurable induration at the injection site by 48-72 hours after injection, which indicates exposure to Mycobacterial antigens. Sensitivity and 5 specificity have, however, been a problem with this test, and individuals vaccinated with BCG cannot be distinguished from infected individuals.

While macrophages have been shown to act as the principal effectors of *M. tuberculosis* immunity, T cells are the predominant inducers of such immunity. The essential role of T cells in protection against *M. tuberculosis* infection is illustrated by 10 the frequent occurrence of *M. tuberculosis* in AIDS patients, due to the depletion of CD4 T cells associated with human immunodeficiency virus (HIV) infection. Mycobacterium-reactive CD4 T cells have been shown to be potent producers of gamma-interferon (IFN- γ), which, in turn, has been shown to trigger the anti-mycobacterial effects of macrophages in mice. While the role of IFN- γ in humans is 15 less clear, studies have shown that 1,25-dihydroxy-vitamin D3, either alone or in combination with IFN- γ or tumor necrosis factor-alpha, activates human macrophages to inhibit *M. tuberculosis* infection. Furthermore, it is known that IFN- γ stimulates human macrophages to make 1,25-dihydroxy-vitamin D3. Similarly, IL-12 has been shown to play a role in stimulating resistance to *M. tuberculosis* infection. For a review 20 of the immunology of *M. tuberculosis* infection see Chan and Kaufmann in *Tuberculosis: Pathogenesis, Protection and Control*, Bloom (ed.), ASM Press, Washington, DC, 1994.

Accordingly, there is a need in the art for improved vaccines and methods for preventing, treating and detecting tuberculosis. The present invention 25 fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

Briefly stated, this invention provides compounds and methods for preventing and diagnosing tuberculosis. In one aspect, polypeptides are provided 30 comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In

one embodiment of this aspect, the soluble antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 120)
- 5 (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 121)
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 122)
- 10 (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 124)
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 125)
- 15 (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser; (SEQ ID No. 126)
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn; (SEQ ID No. 128)
- 20 (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) or
- 25 (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136)

wherein Xaa may be any amino acid.

In a related aspect, polypeptides are provided comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of such an antigen that

differs only in conservative substitutions and/or modifications, the antigen having one of the following N-terminal sequences:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 137) or
5 (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 129)

wherein Xaa may be any amino acid.

In another embodiment, the soluble *M. tuberculosis* antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of 10 the sequences recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101 or a complement thereof under moderately stringent conditions.

In a related aspect, the polypeptides comprise an immunogenic portion 15 of a *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, wherein the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201, the complements of said sequences, and DNA sequences that hybridize to a sequence 20 recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201 or a complement thereof under moderately stringent conditions.

In related aspects, DNA sequences encoding the above polypeptides, expression vectors comprising these DNA sequences and host cells transformed or transfected with such expression vectors are also provided.

25 In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known *M. tuberculosis* antigen.

Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more of the above polypeptides, or a DNA molecule 30 encoding such polypeptides, and a physiologically acceptable carrier. The invention

also provides vaccines comprising one or more of the polypeptides as described above and a non-specific immune response enhancer, together with vaccines comprising one or more DNA sequences encoding such polypeptides and a non-specific immune response enhancer.

5 In yet another aspect, methods are provided for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above polypeptides.

In further aspects of this invention, methods and diagnostic kits are provided for detecting tuberculosis in a patient. The methods comprise contacting 10 dermal cells of a patient with one or more of the above polypeptides and detecting an immune response on the patient's skin. The diagnostic kits comprise one or more of the above polypeptides in combination with an apparatus sufficient to contact the polypeptide with the dermal cells of a patient.

In yet other aspects, methods are provided for detecting tuberculosis in a 15 patient, such methods comprising contacting dermal cells of a patient with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203; and detecting an 20 immune response on the patient's skin. Diagnostic kits for use in such methods are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All 25 references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1A and B illustrate the stimulation of proliferation and interferon-30 γ production in T cells derived from a first and a second *M. tuberculosis*-immune donor, respectively, by the 14 Kd, 20 Kd and 26 Kd antigens described in Example 1.

Figure 2 illustrates the stimulation of proliferation and interferon- γ production in T cells derived from an *M. tuberculosis*-immune individual by the two representative polypeptides TbRa3 and TbRa9.

Figures 3A-D illustrate the reactivity of antisera raised against secretory 5 *M. tuberculosis* proteins, the known *M. tuberculosis* antigen 85b and the inventive antigens Tb38-1 and TbH-9, respectively, with *M. tuberculosis* lysate (lane 2), *M. tuberculosis* secretory proteins (lane 3), recombinant Tb38-1 (lane 4), recombinant TbH-9 (lane 5) and recombinant 85b (lane 5).

Figure 4A illustrates the stimulation of proliferation in a TbH-9-specific 10 T cell clone by secretory *M. tuberculosis* proteins, recombinant TbH-9 and a control antigen, TbRa11.

Figure 4B illustrates the stimulation of interferon- γ production in a TbH-9-specific T cell clone by secretory *M. tuberculosis* proteins, PPD and recombinant TbH-9.

15 Figures 5A and B illustrate the stimulation of proliferation and interferon- γ production in TbH9-specific T cells by the fusion protein TbH9-Tb38-1.

Figures 6A and B illustrate the stimulation of proliferation and interferon- γ production in Tb38-1-specific T cells by the fusion protein TbH9-Tb38-1.

20 Figures 7A and B illustrate the stimulation of proliferation and interferon- γ production in T cells previously shown to respond to both TbH-9 and Tb38-1 by the fusion protein TbH9-Tb38-1.

25 Figures 8A and B illustrate the stimulation of proliferation and interferon- γ production in T cells derived from a first *M. tuberculosis*-immune individual by the representative polypeptides XP-1, RDIF6, RDIF8, RDIF10 and RDIF11.

Figures 9A and B illustrate the stimulation of proliferation and interferon- γ production in T cells derived from a second *M. tuberculosis*-immune individual by the representative polypeptides XP-1, RDIF6, RDIF8, RDIF10 and RDIF11.

SEQ. ID NO. 1 is the DNA sequence of TbRa1.
SEQ. ID NO. 2 is the DNA sequence of TbRa10.
SEQ. ID NO. 3 is the DNA sequence of TbRa11.
SEQ. ID NO. 4 is the DNA sequence of TbRa12.
5 SEQ. ID NO. 5 is the DNA sequence of TbRa13.
SEQ. ID NO. 6 is the DNA sequence of TbRa16.
SEQ. ID NO. 7 is the DNA sequence of TbRa17.
SEQ. ID NO. 8 is the DNA sequence of TbRa18.
SEQ. ID NO. 9 is the DNA sequence of TbRa19.
10 SEQ. ID NO. 10 is the DNA sequence of TbRa24.
SEQ. ID NO. 11 is the DNA sequence of TbRa26.
SEQ. ID NO. 12 is the DNA sequence of TbRa28.
SEQ. ID NO. 13 is the DNA sequence of TbRa29.
SEQ. ID NO. 14 is the DNA sequence of TbRa2A.
15 SEQ. ID NO. 15 is the DNA sequence of TbRa3.
SEQ. ID NO. 16 is the DNA sequence of TbRa32.
SEQ. ID NO. 17 is the DNA sequence of TbRa35.
SEQ. ID NO. 18 is the DNA sequence of TbRa36.
SEQ. ID NO. 19 is the DNA sequence of TbRa4.
20 SEQ. ID NO. 20 is the DNA sequence of TbRa9.
SEQ. ID NO. 21 is the DNA sequence of TbRaB.
SEQ. ID NO. 22 is the DNA sequence of TbRaC.
SEQ. ID NO. 23 is the DNA sequence of TbRaD.
SEQ. ID NO. 24 is the DNA sequence of YYWCPG.
25 SEQ. ID NO. 25 is the DNA sequence of AAMK.
SEQ. ID NO. 26 is the DNA sequence of TbL-23.
SEQ. ID NO. 27 is the DNA sequence of TbL-24.
SEQ. ID NO. 28 is the DNA sequence of TbL-25.
SEQ. ID NO. 29 is the DNA sequence of TbL-28.
30 SEQ. ID NO. 30 is the DNA sequence of TbL-29.

- SEQ. ID NO. 31 is the DNA sequence of TbH-5.
- SEQ. ID NO. 32 is the DNA sequence of TbH-8.
- SEQ. ID NO. 33 is the DNA sequence of TbH-9.
- SEQ. ID NO. 34 is the DNA sequence of TbM-1.
- 5 SEQ. ID NO. 35 is the DNA sequence of TbM-3.
- SEQ. ID NO. 36 is the DNA sequence of TbM-6.
- SEQ. ID NO. 37 is the DNA sequence of TbM-7.
- SEQ. ID NO. 38 is the DNA sequence of TbM-9.
- SEQ. ID NO. 39 is the DNA sequence of TbM-12.
- 10 SEQ. ID NO. 40 is the DNA sequence of TbM-13.
- SEQ. ID NO. 41 is the DNA sequence of TbM-14.
- SEQ. ID NO. 42 is the DNA sequence of TbM-15.
- SEQ. ID NO. 43 is the DNA sequence of TbH-4.
- SEQ. ID NO. 44 is the DNA sequence of TbH-4-FWD.
- 15 SEQ. ID NO. 45 is the DNA sequence of TbH-12.
- SEQ. ID NO. 46 is the DNA sequence of Tb38-1.
- SEQ. ID NO. 47 is the DNA sequence of Tb38-4.
- SEQ. ID NO. 48 is the DNA sequence of TbL-17.
- SEQ. ID NO. 49 is the DNA sequence of TbL-20.
- 20 SEQ. ID NO. 50 is the DNA sequence of TbL-21.
- SEQ. ID NO. 51 is the DNA sequence of TbH-16.
- SEQ. ID NO. 52 is the DNA sequence of DPEP.
- SEQ. ID NO. 53 is the deduced amino acid sequence of DPEP.
- SEQ. ID NO. 54 is the protein sequence of DPV N-terminal Antigen.
- 25 SEQ. ID NO. 55 is the protein sequence of AVGS N-terminal Antigen.
- SEQ. ID NO. 56 is the protein sequence of AAMK N-terminal Antigen.
- SEQ. ID NO. 57 is the protein sequence of YYWC N-terminal Antigen.
- SEQ. ID NO. 58 is the protein sequence of DIGS N-terminal Antigen.
- SEQ. ID NO. 59 is the protein sequence of AEES N-terminal Antigen.
- 30 SEQ. ID NO. 60 is the protein sequence of DPEP N-terminal Antigen.

- SEQ. ID NO. 61 is the protein sequence of APKT N-terminal Antigen.
- SEQ. ID NO. 62 is the protein sequence of DPAS N-terminal Antigen.
- SEQ. ID NO. 63 is the deduced amino acid sequence of TbRa1.
- SEQ. ID NO. 64 is the deduced amino acid sequence of TbRa10.
- 5 SEQ. ID NO. 65 is the deduced amino acid sequence of TbRa11.
- SEQ. ID NO. 66 is the deduced amino acid sequence of TbRa12.
- SEQ. ID NO. 67 is the deduced amino acid sequence of TbRa13.
- SEQ. ID NO. 68 is the deduced amino acid sequence of TbRa16.
- SEQ. ID NO. 69 is the deduced amino acid sequence of TbRa17.
- 10 SEQ. ID NO. 70 is the deduced amino acid sequence of TbRa18.
- SEQ. ID NO. 71 is the deduced amino acid sequence of TbRa19.
- SEQ. ID NO. 72 is the deduced amino acid sequence of TbRa24.
- SEQ. ID NO. 73 is the deduced amino acid sequence of TbRa26.
- SEQ. ID NO. 74 is the deduced amino acid sequence of TbRa28.
- 15 SEQ. ID NO. 75 is the deduced amino acid sequence of TbRa29.
- SEQ. ID NO. 76 is the deduced amino acid sequence of TbRa2A.
- SEQ. ID NO. 77 is the deduced amino acid sequence of TbRa3.
- SEQ. ID NO. 78 is the deduced amino acid sequence of TbRa32.
- SEQ. ID NO. 79 is the deduced amino acid sequence of TbRa35.
- 20 SEQ. ID NO. 80 is the deduced amino acid sequence of TbRa36.
- SEQ. ID NO. 81 is the deduced amino acid sequence of TbRa4.
- SEQ. ID NO. 82 is the deduced amino acid sequence of TbRa9.
- SEQ. ID NO. 83 is the deduced amino acid sequence of TbRaB.
- SEQ. ID NO. 84 is the deduced amino acid sequence of TbRaC.
- 25 SEQ. ID NO. 85 is the deduced amino acid sequence of TbRaD.
- SEQ. ID NO. 86 is the deduced amino acid sequence of YYWCPG.
- SEQ. ID NO. 87 is the deduced amino acid sequence of TbAAMK.
- SEQ. ID NO. 88 is the deduced amino acid sequence of Tb38-1.
- SEQ. ID NO. 89 is the deduced amino acid sequence of TbH-4.
- 30 SEQ. ID NO. 90 is the deduced amino acid sequence of TbH-8.

- SEQ. ID NO. 91 is the deduced amino acid sequence of TbH-9.
- SEQ. ID NO. 92 is the deduced amino acid sequence of TbH-12.
- SEQ. ID NO. 93 is the amino acid sequence of Tb38-1 Peptide 1.
- SEQ. ID NO. 94 is the amino acid sequence of Tb38-1 Peptide 2.
- 5 SEQ. ID NO. 95 is the amino acid sequence of Tb38-1 Peptide 3.
- SEQ. ID NO. 96 is the amino acid sequence of Tb38-1 Peptide 4.
- SEQ. ID NO. 97 is the amino acid sequence of Tb38-1 Peptide 5.
- SEQ. ID NO. 98 is the amino acid sequence of Tb38-1 Peptide 6.
- SEQ. ID NO. 99 is the DNA sequence of DPAS.
- 10 SEQ. ID NO. 100 is the deduced amino acid sequence of DPAS.
- SEQ. ID NO. 101 is the DNA sequence of DPV.
- SEQ. ID NO. 102 is the deduced amino acid sequence of DPV.
- SEQ. ID NO. 103 is the DNA sequence of ESAT-6.
- SEQ. ID NO. 104 is the deduced amino acid sequence of ESAT-6.
- 15 SEQ. ID NO. 105 is the DNA sequence of TbH-8-2.
- SEQ. ID NO. 106 is the DNA sequence of TbH-9FL.
- SEQ. ID NO. 107 is the deduced amino acid sequence of TbH-9FL.
- SEQ. ID NO. 108 is the DNA sequence of TbH-9-1.
- SEQ. ID NO. 109 is the deduced amino acid sequence of TbH-9-1.
- 20 SEQ. ID NO. 110 is the DNA sequence of TbH-9-4.
- SEQ. ID NO. 111 is the deduced amino acid sequence of TbH-9-4.
- SEQ. ID NO. 112 is the DNA sequence of Tb38-1F2 IN.
- SEQ. ID NO. 113 is the DNA sequence of Tb38-2F2 RP.
- SEQ. ID NO. 114 is the deduced amino acid sequence of Tb37-FL.
- 25 SEQ. ID NO. 115 is the deduced amino acid sequence of Tb38-IN.
- SEQ. ID NO. 116 is the DNA sequence of Tb38-1F3.
- SEQ. ID NO. 117 is the deduced amino acid sequence of Tb38-1F3.
- SEQ. ID NO. 118 is the DNA sequence of Tb38-1F5.
- SEQ. ID NO. 119 is the DNA sequence of Tb38-1F6.
- 30 SEQ. ID NO. 120 is the deduced N-terminal amino acid sequence of DPV.

- SEQ. ID NO. 121 is the deduced N-terminal amino acid sequence of AVGS.
- SEQ. ID NO. 122 is the deduced N-terminal amino acid sequence of AAMK.
- SEQ. ID NO. 123 is the deduced N-terminal amino acid sequence of YYWC.
- SEQ. ID NO. 124 is the deduced N-terminal amino acid sequence of DIGS.
- 5 SEQ. ID NO. 125 is the deduced N-terminal amino acid sequence of AEES.
- SEQ. ID NO. 126 is the deduced N-terminal amino acid sequence of DPEP.
- SEQ. ID NO. 127 is the deduced N-terminal amino acid sequence of APKT.
- SEQ. ID NO. 128 is the deduced amino acid sequence of DPAS.
- SEQ. ID NO. 129 is the protein sequence of DPPD N-terminal Antigen.
- 10 SEQ ID NO. 130-133 are the protein sequences of four DPPD cyanogen bromide fragments.
- SEQ ID NO. 134 is the N-terminal protein sequence of XDS antigen.
- SEQ ID NO. 135 is the N-terminal protein sequence of AGD antigen.
- SEQ ID NO. 136 is the N-terminal protein sequence of APE antigen.
- 15 SEQ ID NO. 137 is the N-terminal protein sequence of XYI antigen.
- SEQ ID NO. 138 is the DNA sequence of TbH-29.
- SEQ ID NO. 139 is the DNA sequence of TbH-30.
- SEQ ID NO. 140 is the DNA sequence of TbH-32.
- SEQ ID NO. 141 is the DNA sequence of TbH-33.
- 20 SEQ ID NO. 142 is the predicted amino acid sequence of TbH-29.
- SEQ ID NO. 143 is the predicted amino acid sequence of TbH-30.
- SEQ ID NO. 144 is the predicted amino acid sequence of TbH-32.
- SEQ ID NO. 145 is the predicted amino acid sequence of TbH-33.
- 25 SEQ ID NO. 146-151 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD and Tb38-1.
- SEQ ID NO. 152 is the DNA sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1.
- SEQ ID NO. 153 is the amino acid sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1.
- 30 SEQ ID NO. 154 is the DNA sequence of the *M. tuberculosis* antigen 38 kD.

- SEQ ID NO: 155 is the amino acid sequence of the *M. tuberculosis* antigen 38 kD.
- SEQ ID NO: 156 is the DNA sequence of XP14.
- SEQ ID NO: 157 is the DNA sequence of XP24.
- 5 SEQ ID NO: 158 is the DNA sequence of XP31.
- SEQ ID NO: 159 is the 5' DNA sequence of XP32.
- SEQ ID NO: 160 is the 3' DNA sequence of XP32.
- SEQ ID NO: 161 is the predicted amino acid sequence of XP14.
- SEQ ID NO: 162 is the predicted amino acid sequence encoded by the reverse complement of XP14.
- 10 SEQ ID NO: 163 is the DNA sequence of XP27.
- SEQ ID NO: 164 is the DNA sequence of XP36.
- SEQ ID NO: 165 is the 5' DNA sequence of XP4.
- SEQ ID NO: 166 is the 5' DNA sequence of XP5.
- 15 SEQ ID NO: 167 is the 5' DNA sequence of XP17.
- SEQ ID NO: 168 is the 5' DNA sequence of XP30.
- SEQ ID NO: 169 is the 5' DNA sequence of XP2.
- SEQ ID NO: 170 is the 3' DNA sequence of XP2.
- SEQ ID NO: 171 is the 5' DNA sequence of XP3.
- 20 SEQ ID NO: 172 is the 3' DNA sequence of XP3.
- SEQ ID NO: 173 is the 5' DNA sequence of XP6.
- SEQ ID NO: 174 is the 3' DNA sequence of XP6.
- SEQ ID NO: 175 is the 5' DNA sequence of XP18.
- SEQ ID NO: 176 is the 3' DNA sequence of XP18.
- 25 SEQ ID NO: 177 is the 5' DNA sequence of XP19.
- SEQ ID NO: 178 is the 3' DNA sequence of XP19.
- SEQ ID NO: 179 is the 5' DNA sequence of XP22.
- SEQ ID NO: 180 is the 3' DNA sequence of XP22.
- SEQ ID NO: 181 is the 5' DNA sequence of XP25.
- 30 SEQ ID NO: 182 is the 3' DNA sequence of XP25.

- SEQ ID NO: 183 is the full-length DNA sequence of TbH4-XP1.
- SEQ ID NO: 184 is the predicted amino acid sequence of TbH4-XP1.
- SEQ ID NO: 185 is the predicted amino acid sequence encoded by the reverse complement of TbH4-XP1.
- 5 SEQ ID NO: 186 is a first predicted amino acid sequence encoded by XP36.
- SEQ ID NO: 187 is a second predicted amino acid sequence encoded by XP36.
- SEQ ID NO: 188 is the predicted amino acid sequence encoded by the reverse complement of XP36.
- SEQ ID NO: 189 is the DNA sequence of RDIF2.
- 10 SEQ ID NO: 190 is the DNA sequence of RDIF5.
- SEQ ID NO: 191 is the DNA sequence of RDIF8.
- SEQ ID NO: 192 is the DNA sequence of RDIF10.
- SEQ ID NO: 193 is the DNA sequence of RDIF11.
- SEQ ID NO: 194 is the predicted amino acid sequence of RDIF2.
- 15 SEQ ID NO: 195 is the predicted amino acid sequence of RDIF5.
- SEQ ID NO: 196 is the predicted amino acid sequence of RDIF8.
- SEQ ID NO: 197 is the predicted amino acid sequence of RDIF10.
- SEQ ID NO: 198 is the predicted amino acid sequence of RDIF11.
- SEQ ID NO: 199 is the 5' DNA sequence of RDIF12.
- 20 SEQ ID NO: 200 is the 3' DNA sequence of RDIF12.
- SEQ ID NO: 201 is the DNA sequence of RDIF7.
- SEQ ID NO: 202 is the predicted amino acid sequence of RDIF7.
- SEQ ID NO: 203 is the DNA sequence of DIF2-1.
- SEQ ID NO: 204 is the predicted amino acid sequence of DIF2-1.
- 25 SEQ ID NO: 205-212 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD, Tb38-1 and DPEP (hereinafter referred to as TbF-2).
- SEQ ID NO: 213 is the DNA sequence of the fusion protein TbF-2.
- SEQ ID NO: 214 is the amino acid sequence of the fusion protein TbF-2.

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for preventing, treating and diagnosing tuberculosis. The compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. Polypeptides within the scope of the present invention include, but are not limited to, immunogenic soluble *M. tuberculosis* antigens. A "soluble *M. tuberculosis* antigen" is a protein of *M. tuberculosis* origin that is present in *M. tuberculosis* culture filtrate. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (*i.e.*, antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an immunogenic portion of one of the above antigens may consist entirely of the immunogenic portion, or may contain additional sequences. The additional sequences may be derived from the native *M. tuberculosis* antigen or may be heterologous, and such sequences may (but need not) be immunogenic.

"Immunogenic," as used herein, refers to the ability to elicit an immune response (*e.g.*, cellular) in a patient, such as a human, and/or in a biological sample. In particular, antigens that are immunogenic (and immunogenic portions or other variants of such antigens) are capable of stimulating cell proliferation, interleukin-12 production and/or interferon- γ production in biological samples comprising one or more cells selected from the group of T cells, NK cells, B cells and macrophages, where the cells are derived from an *M. tuberculosis*-immune individual. Polypeptides comprising at least an immunogenic portion of one or more *M. tuberculosis* antigens may generally be used to detect tuberculosis or to induce protective immunity against tuberculosis in a patient.

The compositions and methods of this invention also encompass variants of the above polypeptides. A "variant," as used herein, is a polypeptide that differs from the native antigen only in conservative substitutions and/or modifications, such that the ability of the polypeptide to induce an immune response is retained. Such variants may generally be identified by modifying one of the above polypeptide

sequences, and evaluating the immunogenic properties of the modified polypeptide using, for example, the representative procedures described herein.

A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

10 Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the 15 protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

In a related aspect, combination polypeptides are disclosed. A 20 "combination polypeptide" is a polypeptide comprising at least one of the above immunogenic portions and one or more additional immunogenic *M. tuberculosis* sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (i.e., with no intervening amino acids) or may be joined by way of a linker sequence (e.g., Gly-Cys-Gly) that does not significantly 25 diminish the immunogenic properties of the component polypeptides.

In general, *M. tuberculosis* antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, soluble antigens may be isolated from *M. tuberculosis* culture filtrate by procedures known to those of ordinary skill in the art, including anion-exchange and reverse phase 30 chromatography. Purified antigens are then evaluated for their ability to elicit an

appropriate immune response (e.g., cellular) using, for example, the representative methods described herein. Immunogenic antigens may then be partially sequenced using techniques such as traditional Edman chemistry. See Edman and Berg, *Eur. J. Biochem.* 80:116-132, 1967.

5 Immunogenic antigens may also be produced recombinantly using a DNA sequence that encodes the antigen, which has been inserted into an expression vector and expressed in an appropriate host. DNA molecules encoding soluble antigens may be isolated by screening an appropriate *M. tuberculosis* expression library with anti-sera (e.g., rabbit) raised specifically against soluble *M. tuberculosis* antigens. DNA sequences encoding antigens that may or may not be soluble may be identified by screening an appropriate *M. tuberculosis* genomic or cDNA expression library with sera obtained from patients infected with *M. tuberculosis*. Such screens may generally be performed using techniques well known to those of ordinary skill in the art, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold 10 Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989.

15 DNA sequences encoding soluble antigens may also be obtained by screening an appropriate *M. tuberculosis* cDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated soluble antigens. Degenerate oligonucleotide sequences for use in 20 such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989 (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a 25 cDNA or genomic library. The library screen may then be performed using the isolated probe.

Alternatively, genomic or cDNA libraries derived from *M. tuberculosis* may be screened directly using peripheral blood mononuclear cells (PBMCs) or T cell lines or clones derived from one or more *M. tuberculosis*-immune individuals. In 30 general, PBMCs and/or T cells for use in such screens may be prepared as described

below. Direct library screens may generally be performed by assaying pools of expressed recombinant proteins for the ability to induce proliferation and/or interferon- γ production in T cells derived from an *M. tuberculosis*-immune individual. Alternatively, potential T cell antigens may be first selected based on antibody 5 reactivity, as described above.

Regardless of the method of preparation, the antigens (and immunogenic portions thereof) described herein (which may or may not be soluble) have the ability to induce an immunogenic response. More specifically, the antigens have the ability to induce proliferation and/or cytokine production (*i.e.*, interferon- γ and/or interleukin-12 10 production) in T cells, NK cells, B cells and/or macrophages derived from an *M. tuberculosis*-immune individual. The selection of cell type for use in evaluating an immunogenic response to a antigen will, of course, depend on the desired response. For example, interleukin-12 production is most readily evaluated using preparations containing B cells and/or macrophages. An *M. tuberculosis*-immune individual is one 15 who is considered to be resistant to the development of tuberculosis by virtue of having mounted an effective T cell response to *M. tuberculosis* (*i.e.*, substantially free of disease symptoms). Such individuals may be identified based on a strongly positive (*i.e.*, greater than about 10 mm diameter induration) intradermal skin test response to tuberculosis proteins (PPD) and an absence of any signs or symptoms of tuberculosis 20 disease. T cells, NK cells, B cells and macrophages derived from *M. tuberculosis*-immune individuals may be prepared using methods known to those of ordinary skill in the art. For example, a preparation of PBMCs (*i.e.*, peripheral blood mononuclear cells) 25 may be employed without further separation of component cells. PBMCs may generally be prepared, for example, using density centrifugation through Ficoll™ (Winthrop Laboratories, NY). T cells for use in the assays described herein may also be purified directly from PBMCs. Alternatively, an enriched T cell line reactive against mycobacterial proteins, or T cell clones reactive to individual mycobacterial proteins, may be employed. Such T cell clones may be generated by, for example, culturing PBMCs from *M. tuberculosis*-immune individuals with mycobacterial proteins for a 30 period of 2-4 weeks. This allows expansion of only the mycobacterial protein-specific

T cells, resulting in a line composed solely of such cells. These cells may then be cloned and tested with individual proteins, using methods known to those of ordinary skill in the art, to more accurately define individual T cell specificity. In general, antigens that test positive in assays for proliferation and/or cytokine production (*i.e.*, 5 interferon- γ and/or interleukin-12 production) performed using T cells, NK cells, B cells and/or macrophages derived from an *M. tuberculosis*-immune individual are considered immunogenic. Such assays may be performed, for example, using the representative procedures described below. Immunogenic portions of such antigens may be identified using similar assays, and may be present within the polypeptides described herein.

10 The ability of a polypeptide (*e.g.*, an immunogenic antigen, or a portion or other variant thereof) to induce cell proliferation is evaluated by contacting the cells (*e.g.*, T cells and/or NK cells) with the polypeptide and measuring the proliferation of the cells. In general, the amount of polypeptide that is sufficient for evaluation of about 10^5 cells ranges from about 10 ng/mL to about 100 μ g/mL and preferably is about 15 10 μ g/mL. The incubation of polypeptide with cells is typically performed at 37°C for about six days. Following incubation with polypeptide, the cells are assayed for a proliferative response, which may be evaluated by methods known to those of ordinary skill in the art, such as exposing cells to a pulse of radiolabeled thymidine and measuring the incorporation of label into cellular DNA. In general, a polypeptide that 20 results in at least a three fold increase in proliferation above background (*i.e.*, the proliferation observed for cells cultured without polypeptide) is considered to be able to induce proliferation.

25 The ability of a polypeptide to stimulate the production of interferon- γ and/or interleukin-12 in cells may be evaluated by contacting the cells with the polypeptide and measuring the level of interferon- γ or interleukin-12 produced by the cells. In general, the amount of polypeptide that is sufficient for the evaluation of about 10^5 cells ranges from about 10 ng/mL to about 100 μ g/mL and preferably is about 10 μ g/mL. The polypeptide may, but need not, be immobilized on a solid support, such as a bead or a biodegradable microsphere, such as those described in U.S. Patent 30 Nos. 4,897,268 and 5,075,109. The incubation of polypeptide with the cells is typically

performed at 37°C for about six days. Following incubation with polypeptide, the cells are assayed for interferon- γ and/or interleukin-12 (or one or more subunits thereof), which may be evaluated by methods known to those of ordinary skill in the art, such as an enzyme-linked immunosorbent assay (ELISA) or, in the case of IL-12 P70 subunit, a 5 bioassay such as an assay measuring proliferation of T cells. In general, a polypeptide that results in the production of at least 50 pg of interferon- γ per mL of cultured supernatant (containing 10⁴-10⁵ T cells per mL) is considered able to stimulate the production of interferon- γ . A polypeptide that stimulates the production of at least 10 pg/mL of IL-12 P70 subunit, and/or at least 100 pg/mL of IL-12 P40 subunit, per 10⁵ 10 macrophages or B cells (or per 3 x 10⁵ PBMC) is considered able to stimulate the production of IL-12.

In general, immunogenic antigens are those antigens that stimulate proliferation and/or cytokine production (*i.e.*, interferon- γ and/or interleukin-12 production) in T cells, NK cells, B cells and/or macrophages derived from at least about 15 25% of *M. tuberculosis*-immune individuals. Among these immunogenic antigens, polypeptides having superior therapeutic properties may be distinguished based on the magnitude of the responses in the above assays and based on the percentage of individuals for which a response is observed. In addition, antigens having superior therapeutic properties will not stimulate proliferation and/or cytokine production *in vitro* 20 in cells derived from more than about 25% of individuals that are not *M. tuberculosis*-immune, thereby eliminating responses that are not specifically due to *M. tuberculosis*-responsive cells. Those antigens that induce a response in a high percentage of T cell, NK cell, B cell and/or macrophage preparations from 25 *M. tuberculosis*-immune individuals (with a low incidence of responses in cell preparations from other individuals) have superior therapeutic properties.

Antigens with superior therapeutic properties may also be identified based on their ability to diminish the severity of *M. tuberculosis* infection in experimental animals, when administered as a vaccine. Suitable vaccine preparations for use on experimental animals are described in detail below. Efficacy may be 30 determined based on the ability of the antigen to provide at least about a 50% reduction

in bacterial numbers and/or at least about a 40% decrease in mortality following experimental infection. Suitable experimental animals include mice, guinea pigs and primates.

Antigens having superior diagnostic properties may generally be
5 identified based on the ability to elicit a response in an intradermal skin test performed on an individual with active tuberculosis, but not in a test performed on an individual who is not infected with *M. tuberculosis*. Skin tests may generally be performed as described below, with a response of at least 5 mm induration considered positive.

Immunogenic portions of the antigens described herein may be prepared
10 and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunogenic properties. The representative proliferation and cytokine production assays described herein may generally be employed in these screens. An immunogenic
15 portion of a polypeptide is a portion that, within such representative assays, generates an immune response (e.g., proliferation, interferon- γ production and/or interleukin-12 production) that is substantially similar to that generated by the full length antigen. In other words, an immunogenic portion of an antigen may generate at least about 20%, and preferably about 100%, of the proliferation induced by the full length antigen in the
20 model proliferation assay described herein. An immunogenic portion may also, or alternatively, stimulate the production of at least about 20%, and preferably about 100%, of the interferon- γ and/or interleukin-12 induced by the full length antigen in the model assay described herein.

Portions and other variants of *M. tuberculosis* antigens may be generated
25 by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are
30 sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.*

85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, CA, and may be operated according to the manufacturer's instructions. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such 5 as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide 10 using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or 15 more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or 20 transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other 25 variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure. In certain preferred embodiments, described in

detail below, the substantially pure polypeptides are incorporated into pharmaceutical compositions or vaccines for use in one or more of the methods disclosed herein.

In certain specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a soluble *M. tuberculosis* 5 antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 120)
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 121)
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 122)
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 124)
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 125)
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ser-Pro-Pro-Ser; (SEQ ID No. 126)
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn; (SEQ ID No. 128)
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) or

(l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136)

wherein Xaa may be any amino acid, preferably a cysteine residue. A DNA sequence encoding the antigen identified as (g) above is provided in SEQ ID No. 52, and the 5 polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. A DNA sequence encoding the antigen defined as (a) above is provided in SEQ ID No. 101; its deduced amino acid sequence is provided in SEQ ID No. 102. A DNA sequence corresponding to antigen (d) above is provided in SEQ ID No. 24 a DNA sequence corresponding to antigen (c) is provided in SEQ ID No. 25 and a DNA sequence 10 corresponding to antigen (i) is provided in SEQ ID No. 99; its deduced amino acid sequence is provided in SEQ ID No. 100.

In a further specific embodiment, the subject invention discloses polypeptides comprising at least an immunogenic portion of an *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only 15 in conservative substitutions and/or modifications:

(m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No 137) or

(n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 129)

20 wherein Xaa may be any amino acid, preferably a cysteine residue.

In other specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen) that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID Nos.: 1, 2, 4-10, 13-25 and 25 52; (b) the complements of such DNA sequences, or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In further specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a *M. tuberculosis* antigen (or a variant of such an antigen), which may or may not be soluble, that comprises one 30 or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID

Nos.: 26-51, 138, 139, 163-183 and 201, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In the specific embodiments discussed above, the *M. tuberculosis* antigens include variants that are encoded by DNA sequences which are substantially homologous to one or more of DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the case of cross-species homology at 45°C, 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS). Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known *M. tuberculosis* antigen, such as the 38 kD antigen described in Andersen and Hansen, *Infect. Immun.* 57:2481-2488, 1989, (Genbank Accession No. M30046) or ESAT-6 (SEQ ID Nos. 103 and 104), together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide 5 linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser 10 residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene* 40:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA* 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. 15 Peptide sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements 20 responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

In another aspect, the present invention provides methods for using one 25 or more of the above polypeptides or fusion proteins (or DNA molecules encoding such polypeptides) to induce protective immunity against tuberculosis in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat tuberculosis.

In this aspect, the polypeptide, fusion protein or DNA molecule is generally present within a pharmaceutical composition and/or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a 5 physiologically acceptable carrier. Vaccines may comprise one or more of the above polypeptides and a non-specific immune response enhancer, such as an adjuvant or a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other *M. tuberculosis* antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.

10 Alternatively, a vaccine may contain DNA encoding one or more polypeptides as described above, such that the polypeptide is generated *in situ*. In such vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the 15 necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, 20 or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., *Science* 259:1745-1749, 1993 and reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by 25 coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

In a related aspect, a DNA vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known *M. tuberculosis* antigen, such as the 38 kD antigen described 30 above. For example, administration of DNA encoding a polypeptide of the present

invention, either "naked" or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.

Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunization using BCG. In general, the pharmaceutical compositions and vaccines may be administered by injection (*e.g.*, intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (*e.g.*, by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from *M. tuberculosis* infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced *in situ* by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 μ g. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (*e.g.*, polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of adjuvants may be employed in the vaccines of this invention to nonspecifically enhance the immune response. Most adjuvants contain a

substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a nonspecific stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis*. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Freund's
5 Complete Adjuvant (Difco Laboratories) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ). Other suitable adjuvants include alum, biodegradable microspheres, monophosphoryl lipid A and quil A.

In another aspect, this invention provides methods for using one or more of the polypeptides described above to diagnose tuberculosis using a skin test. As used
10 herein, a "skin test" is any assay performed directly on a patient in which a delayed-type hypersensitivity (DTH) reaction (such as swelling, reddening or dermatitis) is measured following intradermal injection of one or more polypeptides as described above. Such injection may be achieved using any suitable device sufficient to contact the polypeptide or polypeptides with dermal cells of the patient, such as a tuberculin
15 syringe or 1 mL syringe. Preferably, the reaction is measured at least 48 hours after injection, more preferably 48-72 hours.

The DTH reaction is a cell-mediated immune response, which is greater in patients that have been exposed previously to the test antigen (*i.e.*, the immunogenic portion of the polypeptide employed, or a variant thereof). The response may be
20 measured visually, using a ruler. In general, a response that is greater than about 0.5 cm in diameter, preferably greater than about 1.0 cm in diameter, is a positive response, indicative of tuberculosis infection, which may or may not be manifested as an active disease.

The polypeptides of this invention are preferably formulated, for use in a
25 skin test, as pharmaceutical compositions containing a polypeptide and a physiologically acceptable carrier, as described above. Such compositions typically contain one or more of the above polypeptides in an amount ranging from about 1 μ g to about 100 μ g, preferably from about 10 μ g to about 50 μ g in a volume of 0.1 mL. Preferably, the carrier employed in such pharmaceutical compositions is a saline
30 solution with appropriate preservatives, such as phenol and/or Tween 80TM.

In a preferred embodiment, a polypeptide employed in a skin test is of sufficient size such that it remains at the site of injection for the duration of the reaction period. In general, a polypeptide that is at least 9 amino acids in length is sufficient. The polypeptide is also preferably broken down by macrophages within hours of 5 injection to allow presentation to T-cells. Such polypeptides may contain repeats of one or more of the above sequences and/or other immunogenic or nonimmunogenic sequences.

The following Examples are offered by way of illustration and not by 10 way of limitation.

EXAMPLES

EXAMPLE 1

15 PURIFICATION AND CHARACTERIZATION OF POLYPEPTIDES
 FROM *M. TUBERCULOSIS* CULTURE FILTRATE

This example illustrates the preparation of *M. tuberculosis* soluble 20 polypeptides from culture filtrate. Unless otherwise noted, all percentages in the following example are weight per volume.

M. tuberculosis (either H37Ra, ATCC No. 25177, or H37Rv, ATCC No. 25618) was cultured in sterile GAS media at 37°C for fourteen days. The media was then vacuum filtered (leaving the bulk of the cells) through a 0.45 µ filter into a sterile 2.5 L bottle. The media was next filtered through a 0.2 µ filter into a sterile 4 L 25 bottle and NaN₃ was added to the culture filtrate to a concentration of 0.04%. The bottles were then placed in a 4°C cold room.

The culture filtrate was concentrated by placing the filtrate in a 12 L reservoir that had been autoclaved and feeding the filtrate into a 400 ml Amicon stir cell which had been rinsed with ethanol and contained a 10,000 kDa MWCO membrane.

The pressure was maintained at 60 psi using nitrogen gas. This procedure reduced the 12 L volume to approximately 50 ml.

The culture filtrate was dialyzed into 0.1% ammonium bicarbonate using a 8,000 kDa MWCO cellulose ester membrane, with two changes of ammonium bicarbonate solution. Protein concentration was then determined by a commercially available BCA assay (Pierce, Rockford, IL).

The dialyzed culture filtrate was then lyophilized, and the polypeptides resuspended in distilled water. The polypeptides were dialyzed against 0.01 mM 1,3 bis[tris(hydroxymethyl)-methylamino]propane, pH 7.5 (Bis-Tris propane buffer), the 10 initial conditions for anion exchange chromatography. Fractionation was performed using gel profusion chromatography on a POROS 146 II Q/M anion exchange column 4.6 mm x 100 mm (Perseptive BioSystems, Framingham, MA) equilibrated in 0.01 mM Bis-Tris propane buffer pH 7.5. Polypeptides were eluted with a linear 0-0.5 M NaCl gradient in the above buffer system. The column eluent was monitored at a wavelength 15 of 220 nm.

The pools of polypeptides eluting from the ion exchange column were dialyzed against distilled water and lyophilized. The resulting material was dissolved in 0.1% trifluoroacetic acid (TFA) pH 1.9 in water, and the polypeptides were purified on a Delta-Pak C18 column (Waters, Milford, MA) 300 Angstrom pore size, 5 micron 20 particle size (3.9 x 150 mm). The polypeptides were eluted from the column with a linear gradient from 0-60% dilution buffer (0.1% TFA in acetonitrile). The flow rate was 0.75 ml/minute and the HPLC eluent was monitored at 214 nm. Fractions containing the eluted polypeptides were collected to maximize the purity of the individual samples. Approximately 200 purified polypeptides were obtained.

25 The purified polypeptides were then screened for the ability to induce T-cell proliferation in PBMC preparations. The PBMCs from donors known to be PPD skin test positive and whose T-cells were shown to proliferate in response to PPD and crude soluble proteins from MTB were cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 µg/ml gentamicin. Purified 30 polypeptides were added in duplicate at concentrations of 0.5 to 10 µg/mL. After six

- days of culture in 96-well round-bottom plates in a volume of 200 µl, 50 µl of medium was removed from each well for determination of IFN- γ levels, as described below. The plates were then pulsed with 1 µCi/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter.
- 5 Fractions that resulted in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone were considered positive.

IFN- γ was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates were coated with a mouse monoclonal antibody directed to human IFN- γ (PharMingen, San Diego, CA) in PBS for four hours at room temperature.

10 Wells were then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates were then washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates were incubated overnight at room temperature. The plates were again washed and a polyclonal rabbit anti-human IFN- γ serum diluted 1:3000 in PBS/10% normal goat serum was added to

15 each well. The plates were then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis, MO) was added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates were washed and TMB substrate added. The reaction was stopped after 20 min with 1 N sulfuric acid. Optical density was

20 determined at 450 nm using 570 nm as a reference wavelength. Fractions that resulted in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, were considered positive.

For sequencing, the polypeptides were individually dried onto Biobrene™ (Perkin Elmer/Applied BioSystems Division, Foster-City, CA)-treated-glass fiber filters. The filters with polypeptide were loaded onto a Perkin Elmer/Applied BioSystems Division Procise 492 protein sequencer. The polypeptides were sequenced from the amino terminal and using traditional Edman chemistry. The amino acid sequence was determined for each polypeptide by comparing the retention time of the PTH amino acid derivative to the appropriate PTH derivative standards.

Using the procedure described above, antigens having the following N-terminal sequences were isolated:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Xaa-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 54)
- 5 (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 55)
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 56)
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 57)
- 10 (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 58)
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 59)
- 15 (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ala-Pro-Pro-Ala; (SEQ ID No. 60) and
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 61)

wherein Xaa may be any amino acid.

20 An additional antigen was isolated employing a microbore HPLC purification step in addition to the procedure described above. Specifically, 20 µl of a fraction comprising a mixture of antigens from the chromatographic purification step previously described, was purified on an Aquapore C18 column (Perkin Elmer/Applied Biosystems Division, Foster City, CA) with a 7 micron pore size, column size 1 mm x 25 100 mm, in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted from the column with a linear gradient of 1%/minute of acetonitrile (containing 0.05% TFA) in water (0.05% TFA) at a flow rate of 80 µl/minute. The eluent was monitored at 250 nm. The original fraction was separated into 4 major peaks plus other smaller components and a polypeptide was obtained which was shown to

have a molecular weight of 12.054 Kd (by mass spectrometry) and the following N-terminal sequence:

- 5 (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Asn-Leu-Ala-Asp-Pro-Asp-Val-Ser-Phe-Ala-Asp (SEQ ID No. 62).

This polypeptide was shown to induce proliferation and IFN- γ production in PBMC preparations using the assays described above.

Additional soluble antigens were isolated from *M. tuberculosis* culture filtrate as follows. *M. tuberculosis* culture filtrate was prepared as described above.

10 Following dialysis against Bis-Tris propane buffer, at pH 5.5, fractionation was performed using anion exchange chromatography on a Poros QE column 4.6 x 100 mm (Perseptive Biosystems) equilibrated in Bis-Tris propane buffer pH 5.5. Polypeptides were eluted with a linear 0-1.5 M NaCl gradient in the above buffer system at a flow rate of 10 ml/min. The column eluent was monitored at a wavelength of 214 nm.

15 The fractions eluting from the ion exchange column were pooled and subjected to reverse phase chromatography using a Poros R2 column 4.6 x 100 mm (Perseptive Biosystems). Polypeptides were eluted from the column with a linear gradient from 0-100% acetonitrile (0.1% TFA) at a flow rate of 5 ml/min. The eluent was monitored at 214 nm.

20 Fractions containing the eluted polypeptides were lyophilized and resuspended in 80 μ l of aqueous 0.1% TFA and further subjected to reverse phase chromatography on a Vydac C4 column 4.6 x 150 mm (Western Analytical, Temecula, CA) with a linear gradient of 0-100% acetonitrile (0.1% TFA) at a flow rate of 2 ml/min. Eluent was monitored at 214 nm.

25 The fraction with biological activity was separated into one major peak plus other smaller components. Western blot of this peak onto PVDF membrane revealed three major bands of molecular weights 14 Kd, 20 Kd and 26 Kd. These polypeptides were determined to have the following N-terminal sequences, respectively:

- 30 (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134)

- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) and
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136), wherein Xaa may be any amino acid.

5 Using the assays described above, these polypeptides were shown to induce proliferation and IFN- γ production in PBMC preparations. Figs. 1A and B show the results of such assays using PBMC preparations from a first and a second donor, respectively.

DNA sequences that encode the antigens designated as (a), (c), (d) and
10 (g) above were obtained by screening a genomic *M. tuberculosis* library using ^{32}P end labeled degenerate oligonucleotides corresponding to the N-terminal sequence and containing *M. tuberculosis* codon bias. The screen performed using a probe corresponding to antigen (a) above identified a clone having the sequence provided in SEQ ID No. 101. The polypeptide encoded by SEQ ID No. 101 is provided in SEQ ID
15 No. 102. The screen performed using a probe corresponding to antigen (g) above identified a clone having the sequence provided in SEQ ID No. 52. The polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. The screen performed using a probe corresponding to antigen (d) above identified a clone having the sequence provided in SEQ ID No. 24, and the screen performed with a probe corresponding to
20 antigen (c) identified a clone having the sequence provided in SEQ ID No. 25.

The above amino acid sequences were compared to known amino acid sequences in the gene bank using the DNA STAR system. The database searched contains some 173,000 proteins and is a combination of the Swiss, PIR databases along with translated protein sequences (Version 87). No significant homologies to the amino
25 acid sequences for antigens (a)-(h) and (l) were detected.

The amino acid sequence for antigen (i) was found to be homologous to a sequence from *M. leprae*. The full length *M. leprae* sequence was amplified from genomic DNA using the sequence obtained from GENBANK. This sequence was then used to screen the *M. tuberculosis* library described below in Example 2 and a full
30 length copy of the *M. tuberculosis* homologue was obtained (SEQ ID No. 99).

The amino acid sequence for antigen (j) was found to be homologous to a known *M. tuberculosis* protein translated from a DNA sequence. To the best of the inventors' knowledge, this protein has not been previously shown to possess T-cell stimulatory activity. The amino acid sequence for antigen (k) was found to be related to 5 a sequence from *M. leprae*.

In the proliferation and IFN- γ assays described above, using three PPD positive donors, the results for representative antigens provided above are presented in Table 1:

10

TABLE 1
RESULTS OF PBMC PROLIFERATION AND IFN- γ ASSAYS

Sequence	Proliferation	IFN- γ
(a)	+	-
(c)	+++	+++
(d)	++	++
(g)	+++	+++
(h)	+++	+++

In Table 1, responses that gave a stimulation index (SI) of between 2 and 15 4 (compared to cells cultured in medium alone) were scored as +, an SI of 4-8 or 2-4 at a concentration of 1 μ g or less was scored as ++ and an SI of greater than 8 was scored as +++. The antigen of sequence (i) was found to have a high SI (+++) for one donor and lower SI (++) and (+) for the two other donors in both proliferation and IFN- γ assays. These results indicate that these antigens are capable of inducing proliferation and/or 20 interferon- γ production.

EXAMPLE 2USE OF PATIENT SERA TO ISOLATE *M. TUBERCULOSIS* ANTIGENS

This example illustrates the isolation of antigens from *M. tuberculosis* lysate by screening with serum from *M. tuberculosis*-infected individuals.

Dessicated *M. tuberculosis* H37Ra (Difco Laboratories) was added to a 2% NP40 solution, and alternately homogenized and sonicated three times. The resulting suspension was centrifuged at 13,000 rpm in microfuge tubes and the supernatant put through a 0.2 micron syringe filter. The filtrate was bound to Macro 10 Prep DEAE beads (BioRad, Hercules, CA). The beads were extensively washed with 20 mM Tris pH 7.5 and bound proteins eluted with 1M NaCl. The 1M NaCl elute was dialyzed overnight against 10 mM Tris, pH 7.5. Dialyzed solution was treated with DNase and RNase at 0.05 mg/ml for 30 min. at room temperature and then with α -D-mannosidase, 0.5 U/mg at pH 4.5 for 3-4 hours at room temperature. After returning to 15 pH 7.5, the material was fractionated via FPLC over a Bio Scale-Q-20 column (BioRad). Fractions were combined into nine pools, concentrated in a Centriprep 10 (Amicon, Beverley, MA) and then screened by Western blot for serological activity using a serum pool from *M. tuberculosis*-infected patients which was not immunoreactive with other antigens of the present invention.

20 The most reactive fraction was run in SDS-PAGE and transferred to PVDF. A band at approximately 85 Kd was cut out yielding the sequence:

(m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 137), wherein Xaa may be any amino acid.

25 Comparison of this sequence with those in the gene bank as described above, revealed no significant homologies to known sequences.

A DNA sequence that encodes the antigen designated as (m) above was obtained by screening a genomic *M. tuberculosis* Erdman strain library using labeled degenerate oligonucleotides corresponding to the N-terminal sequence of SEQ ID 30 NO:137. A clone was identified having the DNA sequence provided in SEQ ID NO:

203. This sequence was found to encode the amino acid sequence provided in SEQ ID NO: 204. Comparison of these sequences with those in the genebank revealed some similarity to sequences previously identified in *M. tuberculosis* and *M. bovis*.

5

EXAMPLE 3

PREPARATION OF DNA SEQUENCES ENCODING *M. TUBERCULOSIS* ANTIGENS

This example illustrates the preparation of DNA sequences encoding *M. tuberculosis* antigens by screening a *M. tuberculosis* expression library with sera obtained from patients infected with *M. tuberculosis*, or with anti-sera raised against soluble *M. tuberculosis* antigens.

A. PREPARATION OF *M. TUBERCULOSIS* SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST *M. TUBERCULOSIS* SUPERNATANT

15 Genomic DNA was isolated from the *M. tuberculosis* strain H37Ra. The DNA was randomly sheared and used to construct an expression library using the Lambda ZAP expression system (Stratagene, La Jolla, CA). Rabbit anti-sera was generated against secretory proteins of the *M. tuberculosis* strains H37Ra, H37Rv and Erdman by immunizing a rabbit with concentrated supernatant of the *M. tuberculosis* cultures. Specifically, the rabbit was first immunized subcutaneously with 200 µg of protein antigen in a total volume of 2 ml containing 10 µg muramyl dipeptide (Calbiochem, La Jolla, CA) and 1 ml of incomplete Freund's adjuvant. Four weeks later the rabbit was boosted subcutaneously with 100 µg antigen in incomplete Freund's adjuvant. Finally, the rabbit was immunized intravenously four weeks later with 50 µg protein antigen. The anti-sera were used to screen the expression library as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

30 Thirty two clones were purified. Of these, 25 represent sequences that have not been previously identified in human *M. tuberculosis*. Recombinant antigens

were expressed and purified antigens used in the immunological analysis described in Example 1. Proteins were induced by IPTG and purified by gel elution, as described in Skeiky et al., *J. Exp. Med.* 181:1527-1537, 1995. Representative sequences of DNA molecules identified in this screen are provided in SEQ ID Nos.: 1-25. The 5 corresponding predicted amino acid sequences are shown in SEQ ID Nos. 63-87.

On comparison of these sequences with known sequences in the gene bank using the databases described above, it was found that the clones referred to hereinafter as TbRA2A, TbRA16, TbRA18, and TbRA29 (SEQ ID Nos. 76, 68, 70, 75) show some homology to sequences previously identified in *Mycobacterium leprae* but 10 not in *M. tuberculosis*. TbRA11, TbRA26, TbRA28 and TbDPEP (SEQ ID Nos.: 65, 73, 74, 53) have been previously identified in *M. tuberculosis*. No significant homologies were found to TbRA1, TbRA3, TbRA4, TbRA9, TbRA10, TbRA13, TbRA17, TbRa19, TbRA29, TbRA32, TbRA36 and the overlapping clones TbRA35 15 and TbRA12 (SEQ ID Nos. 63, 77, 81, 82, 64, 67, 69, 71, 75, 78, 80, 79, 66). The clone TbRa24 is overlapping with clone TbRa29.

The results of PBMC proliferation and interferon- γ assays performed on representative recombinant antigens, and using T-cell preparations from several different *M. tuberculosis*-immune patients, are presented in Tables 2 and 3, respectively.

TABLE 2
RESULTS OF PBMC PROLIFERATION TO REPRESENTATIVE SOLUBLE ANTIGENS

Antigen	Patient												
	1	2	3	4	5	6	7	8	9	10	11	12	13
TbRa1	-	-	±	++	-	-	±	-	-	-	+	±	-
TbRa3	-	±	++	-	±	-	++	±	-	-	-	-	-
TbRa9	-	-	nt	nt	++	nt							
TbRa10	-	-	±	±	±	+	nt	±	-	+	±	±	-
TbRa11	±	±	+	++	++	+	nt	-	++	++	++	±	nt
TbRa12	-	+	+	±	++	+	±	±	-	+	+	-	-
TbRa16	nt	nt	nt	-	+	nt							
TbRa24	nt	nt	nt	nt	-	nt							
TbRa26	+	nt	nt	-	-	nt							
TbRa29	nt	nt	nt	nt	-	-	nt						
TbRa35	++	nt	++	++	++	nt	++	++	++	++	++	++	nt
TbRaB	nt	nt	nt	-	-	nt							
TbRaC	nt	nt	nt	-	-	nt							
TbRaD	nt	nt	nt	nt	-	nt							
AAMK	-	±	-	-	-	nt	-	-	nt	nt	±	nt	nt
YY	-	-	-	-	-	nt	-	-	nt	-	+	nt	nt
DPEP	-	+	-	++	-	-	nt	++	±	+	±	nt	nt
Control	-	-	-	-	-	-	-	-	-	-	-	-	-

nt = not tested

TABLE 3
RESULTS OF PBMC INTERFERON- γ PRODUCTION TO REPRESENTATIVE SOLUBLE ANTIGENS

In Tables 2 and 3, responses that gave a stimulation index (SI) of between 1.2 and 2 (compared to cells cultured in medium alone) were scored as \pm , a SI of 2-4 was scored as +, as SI of 4-8 or 2-4 at a concentration of 1 μ g or less was scored as ++ and an SI of greater than 8 was scored as +++. In addition, the effect of 5 concentration on proliferation and interferon- γ production is shown for two of the above antigens in the attached Figure. For both proliferation and interferon- γ production, TbRa3 was scored as ++ and TbRa9 as +.

These results indicate that these soluble antigens can induce proliferation and/or interferon- γ production in T-cells derived from an *M. tuberculosis*-immune 10 individual.

B. USE OF SERA FROM PATIENTS HAVING PULMONARY OR PLEURAL TUBERCULOSIS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

The genomic DNA library described above, and an additional H37Rv 15 library, were screened using pools of sera obtained from patients with active tuberculosis. To prepare the H37Rv library, *M. tuberculosis* strain H37Rv genomic DNA was isolated, subjected to partial *Sau3A* digestion and used to construct an expression library using the Lambda Zap expression system (Stratagene, La Jolla, Ca). Three different pools of sera, each containing sera obtained from three individuals with 20 active pulmonary or pleural disease, were used in the expression screening. The pools were designated TbL, TbM and TbH, referring to relative reactivity with H37Ra lysate (*i.e.*, TbL = low reactivity, TbM = medium reactivity and TbH = high reactivity) in both ELISA and immunoblot format. A fourth pool of sera from seven patients with active pulmonary tuberculosis was also employed. All of the sera lacked increased reactivity 25 with the recombinant 38 kD *M. tuberculosis* H37Ra phosphate-binding protein.

All pools were pre-adsorbed with *E. coli* lysate and used to screen the H37Ra and H37Rv expression libraries, as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. 30 Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

Thirty two clones were purified. Of these, 31 represented sequences that had not been previously identified in human *M. tuberculosis*. Representative sequences of the DNA molecules identified are provided in SEQ ID Nos.: 26-51 and 105. Of these, TbH-8-2 (SEQ. ID NO. 105) is a partial clone of TbH-8, and TbH-4 (SEQ. ID NO. 43) and TbH-4-FWD (SEQ. ID NO. 44) are non-contiguous sequences from the same clone. Amino acid sequences for the antigens hereinafter identified as Tb38-1, TbH-4, TbH-8, TbH-9, and TbH-12 are shown in SEQ ID Nos.: 88-92. Comparison of these sequences with known sequences in the gene bank using the databases identified above revealed no significant homologies to TbH-4, TbH-8, TbH-9 and TbM-3, although weak homologies were found to TbH-9. TbH-12 was found to be homologous to a 34 kD antigenic protein previously identified in *M. paratuberculosis* (Acc. No. S28515). Tb38-1 was found to be located 34 base pairs upstream of the open reading frame for the antigen ESAT-6 previously identified in *M. bovis* (Acc. No. U34848) and in *M. tuberculosis* (Sorensen et al., *Infect. Immun.* 63:1710-1717, 1995).

Probes derived from Tb38-1 and TbH-9, both isolated from an H37Ra library, were used to identify clones in an H37Rv library. Tb38-1 hybridized to Tb38-1F2, Tb38-1F3, Tb38-1F5 and Tb38-1F6 (SEQ. ID NOS. 112, 113, 116, 118, and 119). (SEQ ID NOS. 112 and 113 are non-contiguous sequences from clone Tb38-1F2.) Two open reading frames were deduced in Tb38-1F2; one corresponds to Tb37FL (SEQ. ID. NO. 114), the second, a partial sequence, may be the homologue of Tb38-1 and is called Tb38-IN (SEQ. ID NO. 115). The deduced amino acid sequence of Tb38-1F3 is presented in SEQ. ID. NO. 117. A TbH-9 probe identified three clones in the H37Rv library: TbH-9-FL (SEQ. ID NO. 106), which may be the homologue of TbH-9 (R37Ra), TbH-9-1 (SEQ. ID NO. 108), and TbH-9-4 (SEQ. ID NO. 110), all of which are highly related sequences to TbH-9. The deduced amino acid sequences for these three clones are presented in SEQ ID NOS. 107, 109 and 111.

Further screening of the *M. tuberculosis* genomic DNA library, as described above, resulted in the recovery of ten additional reactive clones, representing seven different genes. One of these genes was identified as the 38 Kd antigen discussed

above, one was determined to be identical to the 14Kd alpha crystallin heat shock protein previously shown to be present in *M. tuberculosis*, and a third was determined to be identical to the antigen TbH-8 described above. The determined DNA sequences for the remaining five clones (hereinafter referred to as TbH-29, TbH-30, TbH-32 and 5 TbH-33) are provided in SEQ ID NO: 138-141, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 142-145, respectively. The DNA and amino acid sequences for these antigens were compared with those in the gene bank as described above. No homologies were found to the 5' end of TbH-29 (which contains the reactive open reading frame), although the 3' end of TbH-29 was 10 found to be identical to the *M. tuberculosis* cosmid Y227. TbH-32 and TbH-33 were found to be identical to the previously identified *M. tuberculosis* insertion element IS6110 and to the *M. tuberculosis* cosmid Y50, respectively. No significant homologies to TbH-30 were found.

Positive phagemid from this additional screening were used to infect *E. coli* XL-1 Blue MRF', as described in Sambrook et al., *supra*. Induction of recombinant protein was accomplished by the addition of IPTG. Induced and uninduced lysates were run in duplicate on SDS-PAGE and transferred to nitrocellulose filters. Filters were reacted with human *M. tuberculosis* sera (1:200 dilution) reactive with TbH and a rabbit sera (1:200 or 1:250 dilution) reactive with the N-terminal 4 Kd portion of lacZ. 15 20 Sera incubations were performed for 2 hours at room temperature. Bound antibody was detected by addition of ¹²⁵I-labeled Protein A and subsequent exposure to film for variable times ranging from 16 hours to 11 days. The results of the immunoblots are summarized in Table 4.

TABLE 4

<u>Antigen</u>	<u>Human M. tb Sera</u>	<u>Anti-lacZ Sera</u>
TbH-29	45 Kd	45 Kd
TbH-30	No reactivity	29 Kd
TbH-32	12 Kd	12 Kd
TbH-33	16 Kd	16 Kd

5

10

Positive reaction of the recombinant human *M. tuberculosis* antigens with both the human *M. tuberculosis* sera and anti-lacZ sera indicate that reactivity of the human *M. tuberculosis* sera is directed towards the fusion protein. Antigens reactive with the anti-lacZ sera but not with the human *M. tuberculosis* sera may be the result of the human *M. tuberculosis* sera recognizing conformational epitopes, or the antigen-antibody binding kinetics may be such that the 2 hour sera exposure in the immunoblot is not sufficient.

The results of T-cell assays performed on Tb38-1, ESAT-6 and other representative recombinant antigens are presented in Tables 5A, B and 6, respectively, below:

TABLE 5ARESULTS OF PBMC PROLIFERATION TO REPRESENTATIVE ANTIGENS

25

Antigen	Donor										
	1	2	3	4	5	6	7	8	9	10	11
Tb38.1	+++	+	-	-	-	++	-	+	-	++	+++
ESAT-6	+++	+	+	+	-	+	-	+	+	++	+++
TbH-9	++	++	-	++	±	±	++	++	++	++	++

TABLE 5B
RESULTS OF PBMC INTERFERON- γ PRODUCTION TO REPRESENTATIVE ANTIGENS

Antigen	Donor										
	1	2	3	4	5	6	7	8	9	10	11
Tb38.1	+++	+	-	+	+	+++	-	++	-	+++	+++
ESAT-6	+++	+	+	+	+-	+	-	+	+	+++	+++
TbH-9	++	++	-	+++	\pm	\pm	+++	+++	++	+++	++

5

TABLE 6
SUMMARY OF T-CELL RESPONSES TO REPRESENTATIVE ANTIGENS

Antigen	Proliferation			Interferon- γ			total
	patient 4	patient 5	patient 6	patient 4	patient 5	patient 6	
TbH9	++	++	++	+++	++	++	13
TbM7	-	+	-	++	+	-	4
TbH5	-	+	+	++	++	++	8
TbL23	-	+	\pm	++	++	+	7.5
TbH4	-	++	\pm	++	++	\pm	7
- control	-	-	-	-	-	-	0

10

These results indicate that both the inventive *M. tuberculosis* antigens and ESAT-6 can induce proliferation and/or interferon- γ production in T-cells derived from an *M. tuberculosis*-immune individual. To the best of the inventors' knowledge, ESAT-6 has not been previously shown to stimulate human immune responses.

15

A set of six overlapping peptides covering the amino acid sequence of the antigen Tb38-1 was constructed using the method described in Example 6. The sequences of these peptides, hereinafter referred to as pep1-6, are provided in SEQ ID Nos. 93-98, respectively. The results of T-cell assays using these peptides are shown in Tables 7 and 8. These results confirm the existence, and help to localize T-cell epitopes within Tb38-1 capable of inducing proliferation and interferon- γ production in T-cells derived from an *M. tuberculosis* immune individual.

20

TABLE 7
RESULTS OF PBMC PROLIFERATION TO TB38-1 PEPTIDES

TABLE 8
RESULTS OF PBMC INTERFERON- γ PRODUCTION TO Tb38-1 PEPTIDES

Studies were undertaken to determine whether the antigens TbH-9 and Tb38-1 represent cellular proteins or are secreted into *M. tuberculosis* culture media. In the first study, rabbit sera were raised against A) secretory proteins of *M. tuberculosis*, B) the known secretory recombinant *M. tuberculosis* antigen 85b, C) recombinant Tb38-1 and D) recombinant TbH-9, using protocols substantially the same as that as described in Example 3A. Total *M. tuberculosis* lysate, concentrated supernatant of *M. tuberculosis* cultures and the recombinant antigens 85b, TbH-9 and Tb38-1 were resolved on denaturing gels, immobilized on nitrocellulose membranes and duplicate blots were probed using the rabbit sera described above.

The results of this analysis using control sera (panel I) and antisera (panel II) against secretory proteins, recombinant 85b, recombinant Tb38-1 and recombinant TbH-9 are shown in Figures 3A-D, respectively, wherein the lane designations are as follows: 1) molecular weight protein standards; 2) 5 µg of *M. tuberculosis* lysate; 3) 5 µg secretory proteins; 4) 50 ng recombinant Tb38-1; 5) 50 ng recombinant TbH-9; and 6) 50 ng recombinant 85b. The recombinant antigens were engineered with six terminal histidine residues and would therefore be expected to migrate with a mobility approximately 1 kD larger than the native protein. In Figure 3D, recombinant TbH-9 is lacking approximately 10 kD of the full-length 42 kD antigen, hence the significant difference in the size of the immunoreactive native TbH-9 antigen in the lysate lane (indicated by an arrow). These results demonstrate that Tb38-1 and TbH-9 are intracellular antigens and are not actively secreted by *M. tuberculosis*.

The finding that TbH-9 is an intracellular antigen was confirmed by determining the reactivity of TbH-9-specific human T cell clones to recombinant TbH-9, secretory *M. tuberculosis* proteins and PPD. A TbH-9-specific T cell clone (designated 131TbH-9) was generated from PBMC of a healthy PPD-positive donor. The proliferative response of 131TbH-9 to secretory proteins, recombinant TbH-9 and a control *M. tuberculosis* antigen, TbRa11, was determined by measuring uptake of tritiated thymidine, as described in Example 1. As shown in Figure 4A, the clone 131TbH-9 responds specifically to TbH-9, showing that TbH-9 is not a significant component of *M. tuberculosis* secretory proteins. Figure 4B shows the production of IFN-γ by a second TbH-9-specific T cell clone

(designated PPD 800-10) prepared from PBMC from a healthy PPD-positive donor, following stimulation of the T cell clone with secretory proteins, PPD or recombinant TbH-9. These results further confirm that TbH-9 is not secreted by *M. tuberculosis*.

5 C. USE OF SERA FROM PATIENTS HAVING EXTRAPULMONARY TUBERCULOSIS TO IDENTIFY
DNA SEQUENCES ENCODING *M. TUBERCULOSIS* ANTIGENS

Genomic DNA was isolated from *M. tuberculosis* Erdman strain, randomly sheared and used to construct an expression library employing the Lambda ZAP expression 10 system (Stratagene, La Jolla, CA). The resulting library was screened using pools of sera obtained from individuals with extrapulmonary tuberculosis, as described above in Example 3B, with the secondary antibody being goat anti-human IgG + A + M (H+L) conjugated with alkaline phosphatase.

Eighteen clones were purified. Of these, 4 clones (hereinafter referred to as 15 XP14, XP24, XP31 and XP32) were found to bear some similarity to known sequences. The determined DNA sequences for XP14, XP24 and XP31 are provided in SEQ ID Nos.: 156-158, respectively, with the 5' and 3' DNA sequences for XP32 being provided in SEQ ID Nos.: 159 and 160, respectively. The predicted amino acid sequence for XP14 is provided in SEQ ID No: 161. The reverse complement of XP14 was found to encode the amino acid 20 sequence provided in SEQ ID No.: 162.

Comparison of the sequences for the remaining 14 clones (hereinafter referred to as XP1-XP6, XP17-XP19, XP22, XP25, XP27, XP30 and XP36) with those in the genebank as described above, revealed no homologies with the exception of the 3' ends of XP2 and XP6 which were found to bear some homology to known *M. tuberculosis* cosmids. 25 The DNA sequences for XP27 and XP36 are shown in SEQ ID Nos.: 163 and 164, respectively, with the 5' sequences for XP4, XP5, XP17 and XP30 being shown in SEQ ID Nos: 165-168, respectively, and the 5' and 3' sequences for XP2, XP3, XP6, XP18, XP19, XP22 and XP25 being shown in SEQ ID Nos: 169 and 170; 171 and 172; 173 and 174; 175 and 176; 177 and 178; 179 and 180; and 181 and 182, respectively. XP1 was found to 30 overlap with the DNA sequences for TbH4, disclosed above. The full-length DNA sequence for TbH4-XP1 is provided in SEQ ID No.: 183. This DNA sequence was found to contain an

open reading frame encoding the amino acid sequence shown in SEQ ID No: 184. The reverse complement of TbH4-XP1 was found to contain an open reading frame encoding the amino acid sequence shown in SEQ ID No.: 185. The DNA sequence for XP36 was found to contain two open reading frames encoding the amino acid sequence shown in SEQ ID Nos.: 5 186 and 187, with the reverse complement containing an open reading frame encoding the amino acid sequence shown in SEQ ID No.: 188.

Recombinant XP1 protein was prepared as described above in Example 3B, with a metal ion affinity chromatography column being employed for purification. As illustrated in Figures 8A-B and 9A-B, using the assays described herein, recombinant XP1 10 was found to stimulate cell proliferation and IFN- γ production in T cells isolated from an *M. tuberculosis*-immune donors.

D. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST M. TUBERCULOSIS FRACTIONATED PROTEINS

15 *M. tuberculosis* lysate was prepared as described above in Example 2. The resulting material was fractionated by HPLC and the fractions screened by Western blot for serological activity with a serum pool from *M. tuberculosis*-infected patients which showed little or no immunoreactivity with other antigens of the present invention. Rabbit anti-sera was generated against the most reactive fraction using the method described in Example 3A . 20 The anti-sera was used to screen an *M. tuberculosis* Erdman strain genomic DNA expression library prepared as described above. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones determined.

Ten different clones were purified. Of these, one was found to be TbRa35, 25 described above, and one was found to be the previously identified *M. tuberculosis* antigen, HSP60. Of the remaining eight clones, seven (hereinafter referred to as RDIF2, RDIF5, RDIF8, RDIF10, RDIF11 and RDIF 12) were found to bear some similarity to previously identified *M. tuberculosis* sequences. The determined DNA sequences for RDIF2, RDIF5, RDIF8, RDIF10 and RDIF11 are provided in SEQ ID Nos.: 189-193, respectively, with the 30 corresponding predicted amino acid sequences being provided in SEQ ID Nos: 194-198, respectively. The 5' and 3' DNA sequences for RDIF12 are provided in SEQ ID Nos.: 199

and 200, respectively. No significant homologies were found to the antigen RDIF-7. The determined DNA and predicted amino acid sequences for RDIF7 are provided in SEQ ID Nos.: 201 and 202, respectively. One additional clone, referred to as RDIF6 was isolated, however, this was found to be identical to RDIF5.

5 Recombinant RDIF6, RDIF8, RDIF10 and RDIF11 were prepared as described above. As shown in Figures 8A-B and 9A-B, these antigens were found to stimulate cell proliferation and IFN- γ production in T cells isolated from *M. tuberculosis*-immune donors.

10

EXAMPLE 4PURIFICATION AND CHARACTERIZATION OF A POLYPEPTIDE FROM TUBERCULIN PURIFIED PROTEIN DERIVATIVE

15 An *M. tuberculosis* polypeptide was isolated from tuberculin purified protein derivative (PPD) as follows.

PPD was prepared as published with some modification (Seibert, F. et al., Tuberculin purified protein derivative. Preparation and analyses of a large quantity for standard. The American Review of Tuberculosis 44:9-25, 1941).

20 *M. tuberculosis* Rv strain was grown for 6 weeks in synthetic medium in roller bottles at 37°C. Bottles containing the bacterial growth were then heated to 100° C in water vapor for 3 hours. Cultures were sterile filtered using a 0.22 μ filter and the liquid phase was concentrated 20 times using a 3 kD cut-off membrane. Proteins were precipitated once with 50% ammonium sulfate solution and eight times with 25% ammonium sulfate solution. The resulting proteins (PPD) were fractionated by reverse phase liquid chromatography (RP-HPLC) using a C18 column (7.8 x 300 mM; Waters, Milford, MA) in a Biocad HPLC system (Perseptive Biosystems, Framingham, MA). Fractions were eluted from the column with a linear gradient from 0-100% buffer (0.1% TFA in acetonitrile). The flow rate was 10 ml/minute and eluent was monitored at 214 nm and 280 nm.

25 Six fractions were collected, dried, suspended in PBS and tested individually in *M. tuberculosis*-infected guinea pigs for induction of delayed type hypersensitivity (DTH)

reaction. One fraction was found to induce a strong DTH reaction and was subsequently fractionated further by RP-HPLC on a microbore Vydac C18 column (Cat. No. 218TP5115) in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted with a linear gradient from 5-100% buffer (0.05% TFA in acetonitrile) with a flow rate of 80
5 µl/minute. Eluent was monitored at 215 nm. Eight fractions were collected and tested for induction of DTH in *M. tuberculosis*-infected guinea pigs. One fraction was found to induce strong DTH of about 16 mm induration. The other fractions did not induce detectable DTH. The positive fraction was submitted to SDS-PAGE gel electrophoresis and found to contain a single protein band of approximately 12 kD molecular weight.

10 This polypeptide, herein after referred to as DPPD, was sequenced from the amino terminal using a Perkin Elmer/Applied Biosystems Division Procise 492 protein sequencer as described above and found to have the N-terminal sequence shown in SEQ ID No.: 129. Comparison of this sequence with known sequences in the gene bank as described above revealed no known homologies. Four cyanogen bromide fragments of DPPD were
15 isolated and found to have the sequences shown in SEQ ID Nos.: 130-133.

The ability of the antigen DPPD to stimulate human PBMC to proliferate and to produce IFN- γ was assayed as described in Example 1. As shown in Table 9, DPPD was found to stimulate proliferation and elicit production of large quantities of IFN- γ ; more than that elicited by commercial PPD.

TABLE 9
RESULTS OF PROLIFERATION AND INTERFERON- γ ASSAYS TO DPPD

PBMC Donor	Stimulator	Proliferation (CPM)	IFN- γ (OD ₄₅₀)
A	Medium	1,089	0.17
	PPD (commercial)	8,394	1.29
	DPPD	13,451	2.21
B	Medium	450	0.09
	PPD (commercial)	3,929	1.26
	DPPD	6,184	1.49
C	Medium	541	0.11
	PPD (commercial)	8,907	0.76
	DPPD	23,024	>2.70

5

EXAMPLE 5

USE OF REPRESENTATIVE ANTIGENS FOR DIAGNOSIS OF TUBERCULOSIS

This example illustrates the effectiveness of several representative
10 polypeptides in skin tests for the diagnosis of *M. tuberculosis* infection.

Individuals were injected intradermally with 100 μ l of either PBS or PBS plus Tween 20TM containing either 0.1 μ g of protein (for TbH-9 and TbRa35) or 1.0 μ g of protein (for TbRa38-1). Induration was measured between 5-7 days after injection, with a response of 5 mm or greater being considered positive. Of the 20 individuals tested, 2 were PPD negative and 18 were PPD positive. Of the PPD positive individuals, 3 had active tuberculosis, 3 had been previously infected with tuberculosis and 9 were healthy. In a second study, 13 PPD positive individuals were tested with 0.1 μ g TbRa11 in either PBS or PBS plus Tween 20TM as described above. The results of both studies are shown in Table 10.

TABLE 10
RESULTS OF DTH TESTING WITH REPRESENTATIVE ANTIGENS

	TbH-9 Pos/Total	Tb38-1 Pos/Total	TbRa35 Pos/Total	Cumulative Pos/Total	TbRa11 Pos/Total
PPD negative	0/2	0/2	0/2	0/2	
PPD positive					
healthy	5/9	4/9	4/9	6/9	1/4
prior TB	3/5	2/5	2/5	4/5	3/5
active	3/4	3/4	0/4	4/4	1/4
TOTAL	11/18	9/18	6/18	14/18	5/13

5

EXAMPLE 6
SYNTHESIS OF SYNTHETIC POLYPEPTIDES

10 Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following 15 cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the 20 peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

EXAMPLE 7PREPARATION AND CHARACTERIZATION OF *M. TUBERCULOSIS* FUSION PROTEINS

A fusion protein containing TbRa3, the 38 kD antigen and Tb38-1 was
5 prepared as follows.

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR in order to facilitate their fusion and the subsequent expression of the fusion protein TbRa3-38 kD-Tb38-1. TbRa3, 38 kD and Tb38-1 DNA was used to perform PCR using the primers PDM-64 and PDM-65 (SEQ ID NO: 146 and 147), PDM-57 and PDM-58 (SEQ ID NO: 148 and 149), and PDM-69 and PDM-60 (SEQ ID NO: 150 and 151), respectively. In each case, 10 the DNA amplification was performed using 10 µl 10X Pfu buffer, 2 µl 10 mM dNTPs, 2 µl each of the PCR primers at 10 µM concentration, 81.5 µl water, 1.5 µl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 µl DNA at either 70 ng/µl (for TbRa3) or 50 ng/µl (for 38 kD and Tb38-1). For TbRa3, denaturation at 94°C was performed for 2 min, followed by 40 15 cycles of 96°C for 15 sec and 72°C for 1 min, and lastly by 72°C for 4 min. For 38 kD, denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 30 sec, 68°C for 15 sec and 72°C for 3 min, and finally by 72°C for 4 min. For Tb38-1 denaturation 20 at 94°C for 2 min was followed by 10 cycles of 96°C for 15 sec, 68°C for 15 sec and 72°C for 1.5 min, 30 cycles of 96°C for 15 sec, 64°C for 15 sec and 72°C for 1.5, and finally by 72°C for 4 min.

The TbRa3 PCR fragment was digested with NdeI and EcoRI and cloned directly into pT7^L2 IL 1 vector using NdeI and EcoRI sites. The 38 kD PCR fragment was digested with Sse8387I, treated with T4 DNA polymerase to make blunt ends and then digested with EcoRI for direct cloning into the pT7^L2Ra3-1 vector which was digested with 25 StuI and EcoRI. The 38-1 PCR fragment was digested with Eco47III and EcoRI and directly subcloned into pT7^L2Ra3/38kD-17 digested with the same enzymes. The whole fusion was then transferred to pET28b - using NdeI and EcoRI sites. The fusion construct was confirmed by DNA sequencing.

The expression construct was transformed into BLR pLys S *E. coli* (Novagen, 30 Madison, WI) and grown overnight in LB broth with kanamycin (30 µg/ml) and chloramphenicol (34 µg/ml). This culture (12 ml) was used to inoculate 500 ml 2XYT with

the same antibiotics and the culture was induced with IPTG at an OD₅₆₀ of 0.44 to a final concentration of 1.2 mM. Four hours post-induction, the bacteria were harvested and sonicated in 20 mM Tris (8.0), 100 mM NaCl, 0.1% DOC, 20 µg/ml Leupeptin, 20 mM PMSF followed by centrifugation at 26,000 X g. The resulting pellet was resuspended in 8 M urea, 20 mM Tris (8.0), 100 mM NaCl and bound to Pro-bond nickel resin (Invitrogen, Carlsbad, CA). The column was washed several times with the above buffer then eluted with an imidazole gradient (50 mM, 100 mM, 500 mM imidazole was added to 8 M urea, 20 mM Tris (8.0), 100 mM NaCl). The eluates containing the protein of interest were then dialyzed against 10 mM Tris (8.0).

10 The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbRa3-38 kD-Tb38-1) are provided in SEQ ID NO: 152 and 153, respectively.

15 A fusion protein containing the two antigens TbH-9 and Tb38-1 (hereinafter referred to as TbH9-Tb38-1) without a hinge sequence, was prepared using a similar procedure to that described above. The DNA sequence for the TbH9-Tb38-1 fusion protein is provided in SEQ ID NO: 156.

20 The ability of the fusion protein TbH9-Tb38-1 to induce T cell proliferation and IFN-γ production in PBMC preparations was examined using the protocol described above in Example 1. PBMC from three donors were employed: one who had been previously shown to respond to TbH9 but not Tb38-1 (donor 131); one who had been shown to respond to Tb38-1 but not TbH9 (donor 184); and one who had been shown to respond to both antigens (donor 201). The results of these studies (Figs. 5-7, respectively) demonstrate the functional activity of both the antigens in the fusion protein.

25 A fusion protein containing TbRa3, the antigen 38kD, Tb38-1 and DPEP was prepared as follows.

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR and cloned into vectors essentially as described above, with the primers PDM-69 (SEQ ID NO:150 and PDM-83 (SEQ ID NO: 205) being used for amplification of the Tb38-1A fragment. Tb38-1A differs from Tb38-1 by a DraI site at the 3' end of the coding region that

keeps the final amino acid intact while creating a blunt restriction site that is in frame. The TbRa3/38kD/Tb38-1A fusion was then transferred to pET28b using NdeI and EcoR1 sites.

DPEP DNA was used to perform PCR using the primers PDM-84 and PDM-85 (SEQ ID NO: 206 and 207, respectively) and 1 µl DNA at 50 ng/µl. Denaturation at 94 °C
5 was performed for 2 min, followed by 10 cycles of 96 °C for 15 sec, 68 °C for 15 sec and 72 °C for 1.5 min; 30 cycles of 96 °C for 15 sec, 64 °C for 15 sec and 72 °C for 1.5 min; and finally by 72 °C for 4 min. The DPEP PCR fragment was digested with EcoRI and Eco72I and clones directly into the pET28Ra3/38kD/38-1A construct which was digested with DraI and EcoRI. The fusion construct was confirmed to be correct by DNA sequencing.
10 Recombinant protein was prepared as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-2) are provided in SEQ ID NO: 208 and 209, respectively.

The reactivity of the fusion protein TbF-2 with sera from *M. tuberculosis*-infected patients was examined by ELISA using the protocol described above. The results of
15 these studies (Table 11) demonstrate that all four antigens function independently in the fusion protein.

TABLE 11
REACTIVITY OF TbF-2 FUSION RECOMBINANT WITH TB AND NORMAL SERA

Serum ID	Status	TbF	Status	TbF-2	Status	ELISA Reactivity			
		OD450		OD450		38 kD	TbRa3	Tb38-1	DPEP
B931-40	TB	0.57	+	0.321	+	-	+	-	+
B931-41	TB	0.601	+	0.396	+	+	+	+	-
B931-109	TB	0.494	+	0.404	+	+	+	±	-
B931-132	TB	1.502	+	1.292	+	+	+	+	±
5004	TB	1.806	+	1.666	+	±	±	+	-
15004	TB	2.862	+	2.468	+	+	+	+	-
39004	TB	2.443	+	1.722	+	+	+	+	-
68004	TB	2.871	+	2.575	+	+	+	+	-
99004	TB	0.691	+	0.971	+	-	±	+	-
107004	TB	0.875	+	0.732	+	-	±	+	-
92004	TB	1.632	+	1.394	+	+	±	±	-
97004	TB	1.491	+	1.979	+	+	±	-	+
118004	TB	3.182	+	3.045	+	+	±	-	-
173004	TB	3.644	+	3.578	+	+	+	+	-
175004	TB	3.332	+	2.916	+	+	+	-	-
274004	TB	3.696	+	3.716	+	-	+	-	+
276004	TB	3.243	+	2.56	+	-	-	+	-
282004	TB	1.249	+	1.234	+	+	-	-	-
289004	TB	1.373	+	1.17	+	-	+	-	-
308004	TB	3.708	+	3.355	+	-	-	+	-
314004	TB	1.663	+	1.399	+	-	-	+	-
317004	TB	1.163	+	0.92	+	+	-	-	-
312004	TB	1.709	+	1.453	+	-	+	-	-
380004	TB	0.238	-	0.461	+	-	±	-	+
451004	TB	0.18	-	0.2	-	-	-	-	±
478004	TB	0.188	-	0.469	+	-	-	-	±
410004	TB	0.384	+	2.392	+	±	-	-	+
411004	TB	0.306	+	0.874	+	-	+	-	+
421004	TB	0.357	+	1.456	+	-	+	-	+
528004	TB	0.047	-	0.196	-	-	-	-	+
A6-87	Normal	0.094	-	0.063	-	-	-	-	-
A6-88	Normal	0.214	-	0.19	-	-	-	-	-
A6-89	Normal	0.248	-	0.125	-	-	-	-	-
A6-90	Normal	0.179	-	0.206	-	-	-	-	-
A6-91	Normal	0.135	-	0.151	-	-	-	-	-
A6-92	Normal	0.064	-	0.097	-	-	-	-	-
A6-93	Normal	0.072	-	0.098	-	-	-	-	-
A6-94	Normal	0.072	-	0.064	-	-	-	-	-
A6-95	Normal	0.125	-	0.159	-	-	-	-	-
A6-96	Normal	0.121	-	0.12	-	-	-	-	-
Cut-off		0.284		0.266					

One of skill in the art will appreciate that the order of the individual antigens within the fusion protein may be changed and that comparable activity would be expected provided each of the epitopes is still functionally available. In addition, truncated forms of the proteins containing active epitopes may be used in the construction of fusion proteins.

5

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Reed, Steven G.
Skeiky, Yasir A.W.
Dillon, Davin C.
Campos-Neto, Antonio
Houghton, Raymond
Vedwick, Thomas S.
Twardzik, Daniel R.
Lodes, Michael J.
- (ii) TITLE OF INVENTION: COMPOUNDS AND METHODS FOR IMMUNOTHERAPY
AND DIAGNOSIS OF TUBERCULOSIS
- (iii) NUMBER OF SEQUENCES: 214
- (iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: SEED and BERRY LLP
(B) STREET: 6300 Columbia Center, 701 Fifth Avenue
(C) CITY: Seattle
(D) STATE: Washington
(E) COUNTRY: USA
(F) ZIP: 98104-7092
- (v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE: 01-OCT-1997
(C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Maki, David J.
(B) REGISTRATION NUMBER: 31,392
(C) REFERENCE/DOCKET NUMBER: 210121.411C7
- (ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: (206) 622-4900
(B) TELEFAX: (206) 682-6031

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 766 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGAGGCACCG	GTAGTTGAA	CCAAACGCAC	AATCGACGGG	CAAACGAACG	GAAGAACACA	60
ACCATGAAGA	TGGTGAAATC	GATGCCGCA	GGTCTGACCG	CCGCGGCTGC	AATCGCGCC	120
GCTGCGGCCG	GTGTGACTTC	GATCATGGCT	GGCGGCCCGG	TCGTATAACCA	GATGCAGCCG	180
GTCGTCTTCG	GCGCGCCACT	GCCGTTGGAC	CCGGCATCCG	CCCCTGACGT	CCCGACCGCC	240
GCCCAGTTGA	CCAGCCTGCT	CAACAGCCTC	GCCGATCCA	ACGTGTCGTT	TGCGAACAAAG	300
GGCAGTCTGG	TCGAGGGCGG	CATCGGGGC	ACCGAGGC	GCATCGCCGA	CCACAAGCTG	360
AAGAAGGCCG	CCGAGCACCG	GGATCTGCCG	CTGTCGTTCA	GGGTGACGAA	CATCCAGCCG	420
GGGGCCGCCG	GTTCGGCCAC	CGCCGACGTT	TCCGTCTCGG	GTCCGAAGCT	CTCGTCGCCG	480
GTCACGCAGA	ACGTCACGTT	CGTGAATCAA	GGCGGCTGGA	TGCTGTCACG	CGCATTGGCG	540
ATGGAGTTGC	TGCAGGCCGC	AGGGNAACTG	ATTGGCGGGC	CGGNTTCAGC	CCGCTGTTCA	600
GCTACGCCGC	CCGCCTGGTG	ACGCGTCCAT	GTCGAACACT	CGCGCGTGT	GCACGGTGCG	660
GTNTGCGCAG	GGNCGCACGC	ACCGCCCGGT	GCAAGCCGTC	CTCGAGATAG	GTGGTGNCTC	720
GNCACCAGNG	ANCACCCCCN	NNTCGNNT	TCTCGNTGNT	GNATGA		766

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 752 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATGCATCACC	ATCACCATCA	CGATGAAGTC	ACGGTAGAGA	CGACCTCCGT	CTTCCCGCGCA	60
GACTTCCTCA	GCGAGCTGGA	CGCTCCTGCG	CAAGCGGTA	CGGAGAGCGC	GGTCTCCGGG	120
GTGGAAGGGC	TCCCGCCGGG	CTCGCGTTG	CTGGTAGTCA	AACGAGGCC	CAACGCCGGG	180
TCCCGTTCC	TACTCGACCA	AGCCATCACG	TCGGCTGGTC	GGCATCCCGA	CAGCGACATA	240
TTTCTCGACG	ACGTGACCGT	GAGCCGTCGC	CATGCTGAAT	TCCGGTTGGA	AAACAAACGAA	300
TTCAATGTCG	TCGATGTCGG	GAGTCTCAAC	GGCACCTACG	TCAACCGCGA	GCCCGTGGAT	360
TCGGCGGTGC	TGGCGAACGG	CGACGAGGTC	CAGATCGGA	AGCTCCGGTT	GGTGTCTTG	420
ACCGGACCCA	AGCAAGGC	GGATGACGGG	AGTACCGGGG	GCCCGTGAGC	GCACCCGATA	480
GCCCCCGCGCT	GGCCGGGATG	TCGATCGGGG	CGGTCCCTCG	ACCTGCTACG	ACCGGATT	540
CCCTGATGTC	CACCATCTCC	AAGATTGAT	TCTTGGGAGG	CTTGAGGGTC	NGGGTGACCC	600
CCCCCGGGC	CTCATTNCNGG	GGTNTCGGCN	GGTTTCACCC	CNTACCNACT	GCCNCCCGGN	660

TTGCNAATTC NTTCTCNCT GCCCNAAAG GGACCNTTAN CTTGCCGCTN GAAANGGTNA	720
TCCNGGGCCC NTCCTNGAAN CCCCNCCCC CT	752

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 813 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CATATGCATC ACCATCACCA TCACACTTCT AACCGCCCAG CGCGTCGGGG GCGTCGAGCA	60
CCACCGCGACA CCGGGCCCCGA TCGATCTGCT AGCTTGAGTC TGTCAGGCA TCGTCGTAG	120
CAGCGCGATG CCCTATGTTT GTCGTCGACT CAGATATCGC GGCAATCCAA TCTCCGCCT	180
GCGGCCGGCG GTGCTGCAAAGTACTCCCG AGGAATTTCG ACGTGCACAT CAAGATCTTC	240
ATGCTGGTCA CGGCTGTCGT TTTGCTCTGT TGTCGGGTG TGGCCACGGC CGCGCCCAAG	300
ACCTACTGCG AGGAGTTGAA AGGCACCGAT ACCGGCCAGG CGTGCCAGAT TCAAATGTCC	360
GACCCGGCCT ACAACATCAA CATCAGCCTG CCCAGTTACT ACCCCGACCA GAAGTCGCTG	420
GAAAATTACA TCGCCCAGAC GCGCGACAAG TTCTCAGCG CGGCCACATC GTCCACTCCA	480
CGCGAAGCCC CCTACGAATT GAATATCACC TCGGCCACAT ACCAGTCCCG GATACCGCCG	540
CGTGGTACGC AGGCCGTGGT GCTCAMGGTC TACCACAACG CCGGCGGCAC GCACCCAACG	600
ACCACGTACA AGGCCTTCGA TTGGGACCAAG GCCTATCGCA AGCCAATCAC CTATGACACG	660
CTGTGGCAGG CTGACACCGA TCCGCTGCCA GTCGTCTTCC CCATTGTTGC AAGGTGAAC	720
GAGCAACGCA GACCGGGACA ACWGGTATCG ATAGCCGCCN AATGCCGGCT TGGAACCCNG	780
TGAAATTATC ACAACTTCGC AGTCACNAAA NAA	813

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 447 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CGGTATGAAC ACGGCCGCGT CCGATAACTT CCAGCTGTCC CAGGGTGGGC AGGGATTGCG	60
---	----

CATTCCGATC GGGCAGGCAGA TGGCGATCGC GGGCCAGATC CGATCGGGTG GGGGGTCACC	120
CACCGTTCAT ATCGGGCCTA CCGCCTTCCT CGGCTTGGGT GTTGTGACA ACAACGGCAA	180
CGGCGCACGA GTCCAACGCG TGTCGGGAG CGCTCCGGCG GCAAGTCTCG GCATCTCCAC	240
CGGCGACGTG ATCACCGCGG TCGACGGCGC TCCGATCAAC TCGGCCACCG CGATGGCGGA	300
CGCGCTTAAC GGGCATCATC CCGGTGACGT CATCTCGGTG AACTGGCAA CCAAGTCGGG	360
CGGCACGCGT ACAGGGAACG TGACATTGGC CGAGGGACCC CCGGCCTGAT TTCGTCGYGG	420
ATACCACCCG CCGGCCGGCC AATTGGA	447

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 604 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GTCCCAC TGC GGTCGCCGAG TATGTCGCC AGCAAATGTC TGGCAGCCGC CCAACGGAAT	60
CCGGTGATCC GACGTCGCAG GTTGTGAAAC CCGCCGCCGC GGAAGTATCG GTCCATGCCT	120
AGCCCCGGCGA CGGCGAGCGC CGGAATGGCG CGAGTGAGGA GGCAGGGCAAT TTGGCGGGGC	180
CCGGCGACGG NGAGCGCCGG AATGGCGCGA GTGAGGAGGT GGNCAGTCAT GCCCAGNGTG	240
ATCCAATCAA CCTGNATTG GNCTGNGGN CCATTTGACA ATCGAGGTTAG TGAGCGAAA	300
TGAATGATGG AAAACGGGNG GNGACGTCCG NTGTTCTGGT GGTGNTAGGT GNCTGNCTGG	360
NGTNGNGNT ATCAGGGATGT TCTTCGNCGA AANCTGATGN CGAGGAACAG GGTGTNCCCG	420
NNANNCCNAN GGNGTCCNAN CCCNNNNTCC TCGNCGANAT CANANAGNCG NTTGATGNGA	480
NAAAAGGGTG GANCAGNNNN AANTNGNGGN CCNAANAANC NNNNNGNNG NNAGNTNGNT	540
NNNTNTTNNC ANNNNNNNNTG NNGNNGNNCN NNNCAANCNN NTNNNNNGNAA NNGGNTTNTT	600
NAAT	604

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 633 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TTGCANGTCG AACCACCTCA CTAAAGGGAA CAAAAGCTNG AGCTCCACCG CGGTGGCGGC	60
CGCTCTAGAA CTAGTGKATM YYYCKGGCTG CAGSAATYCG GYACGAGCAT TAGGACAGTC	120
TAACGGTCCT GTTACGGTGA TCGAATGACC GACGACATCC TGCTGATCGA CACCGACGAA	180
CGGGTGCAGAA CCCTCACCCCT CAACCGGCCG CAGTCCCGYA ACGCGCTCTC GGCGCGCTA	240
CGGGATCGGT TTTTCGCGGY GTTGGYCGAC GCCGAGGYCG ACGACGACAT CGACGTCGTC	300
ATCCTCACCG GYGCCGATCC GGTGTTCTGC GCCGGACTGG ACCTCAAGGT AGCTGGCCGG	360
GCAGACCGCG CTGCCGGACA TCTCACCGCG GTGGGCGGCC ATGACCAAGC CGGTGATCGG	420
CGCGATCAAC GGCGCCGCGG TCACCGGCCG GCTCGAACTG GCGCTGTACT GCGACATCCT	480
GATCGCCTCC GAGCACGCC GCTTCGNCGA CACCCACGCC CGGGTGGGGC TGCTGCCAC	540
CTGGGGACTC AGTGTGTGCT TGCCGAAAA GGTCGGCATC GGNCTGGGCC GGTGGATGAG	600
CCTGACCGGC GACTACCTGT CCGTGACCGA CGC	633

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1362 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CGACGACGAC GGCGCCGGAG AGCGGGCGCG AACGGCGATC GACGCGGCCG TGGCCAGAGT	60
CGGCACCACC CAGGAGGGAG TCGAATCATG AAATTGTCA ACCATATTGA GCCCGTCGCG	120
CCCCGCCGAG CCGGCGGCGC GTCTCGCGAG GTCTATGCCG AGGCCCAGCG CGAGTTCGGC	180
CGGCTGCCCG AGCCGCTCGC CATGCTGTCC CCGGACGAGG GACTGCTCAC CGCCGGCTGG	240
GCGACGTTGC GCGAGACACT GCTGGTGGGC CAGGTGCCGC GTGGCCGCAA GGAAGCCGTC	300
GCCGCCGCCG TCGCGGCCAG CCTGCGCTGC CCCTGGTGC GCGACGCACA CACCAACATG	360
CTGTACGCGG CAGGCCAAC CGACACCGCC GCGCGATCT TGGCCGGCAC AGCACCTGCC	420
GCCGGTGACC CGAACGCGCC GTATGTGGCG TGGCGGGCAG GAACCGGGAC ACCGGCGGGA	480
CCGCCGGCAC CGTTCGGCCG GGATGTCGCC GCGAATACC TGGGCACCGC GGTGCAATTG	540
CACTTCATCG CACGCCTGGT CCTGGTGCTG CTGGACGAAA CCTTCCTGCC GGGGGGCCG	600
CGCGCCCAAC AGCTCATGCG CCGCGCCGGT GGACTGGTGT TCGCCCGCAA GGTGCGCGCG	660
GAGCATCGGC CGGGCCGCTC CACCCGCCGG CTCGAGCCGC GAACGCTGCC CGACGATCTG	720

GCATGGCAA CACCGTCCGA	GCCCATAGCA ACCCGGTTCG	CCCGCGTCAG CCACCACCTG	780
GACACCGCGC CGCACCTGCC	GCCACCGACT CGTCAGGTGG	TCAGGCGGGT CGTGGGGTCG	840
TGGCACGGCG AGCCAATGCC	GATGAGCAGT CGCTGGACGA	ACGAGCACAC CGCCGAGCTG	900
CCCGCCGACC TGCACGCC	CACCCGTCTT GCCCTGCTGA	CCGGCCTGGC CCCGCATCAG	960
GTGACCGACG ACGACGTCGC	CGCGGCCCGA TCCCTGCTCG	ACACCGATGC GGCGCTGGTT	1020
GGCGCCCTGG CCTGGGCCGC	CTTCACCGCC GCGCGGCGCA	TCGGCACCTG GATCGGCGCC	1080
GCCGCCGAGG GCCAGGTGTC	GCAGCAAAAC CCGACTGGGT	GAGTGTGCGC GCCCTGTCGG	1140
TAGGGTGTCA TCGCTGGCCC	GAGGGATCTC GCGGCGGCGA	ACGGAGGTGG CGACACAGGT	1200
GGAAGCTGCG CCCACTGGCT	TGCGCCCCAA CGCCGTCGTG	GGCGTTCGGT TGGCCGCACT	1260
GGCCGATCAG GTCGGCGCCG	GCCCTGGCC GAAGGTCCAG	CTAACGTGC CGTCACCGAA	1320
GGACCGGACG GTCACCGGGG	GTCACCCCTGC GCGCCCAAGG AA		1362

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1458 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GCGACGACCC CGATATGCCG	GGCACCGTAG CGAAAGCCGT	CGCCGACGCA CTCGGCGCG	60
GTATCGCTCC CGTTGAGGAC	ATTCAAGGACT GCGTGGAGGC	CCGGCTGGGG GAAGCCGGTC	120
TGGATGACGT GGCCCGTGT	TACATCATCT ACCGGGAGCG	GCGCGCCGAG CTGCGGACGG	180
CTAAGGCCTT GCTCGCGTG	CGGGACGAGT TAAAGCTGAG	CTTGGCGGCC GTGACGGTAC	240
TGCGCGAGCG CTATCTGCTG	CACGACGAGC AGGGCCGGCC	GGCCGAGTCG ACCGGCGAGC	300
TGATGGACCG ATCGGCGCGC	TGTGTCGCGG CGGCCGAGGA	CCAGTATGAG CCGGGCTCGT	360
CGAGGGCGGTG GGCGAGCGG	TTCGCCACGC TATTACGCAA	CCTGGAATTCTGCGAATT	420
CGCCCACGTT GATGAACTCT	GGCACCGACC TGGGACTGCT	CGCCGGCTGT TTTGTTCTGC	480
CGATTGAGGA TTGCGTGC	AA TCGATCTTG CGACGCTGGG	ACAGGCCGCC GAGCTGCAGC	540
GGGCTGGAGG CGGCACCGGA	TATGCGTTCA GCCACCTGCG	ACCCGCCGGG GATCGGGTGG	600
CCTCCACGGG CGGCACGGCC	AGCGGACCGG TGTCGTTCT	ACGGCTGTAT GACAGTGCCG	660
CGGGTGTGGT CTCCATGGGC	GGTCGCCGGC GTGGCGCCTG	TATGGCTGTG CTTGATGTGT	720
CGCACCCCGGA TATCTGTGAT	TTCGTCACCG CCAAGGCCGA	ATCCCCCAGC GAGCTCCCGC	780

ATTTCAACCT ATCGGTTGGT GTGACCGACG CGTCCTGCG GGCGTCGAA CGAACGGCC	840
TACACCGGCT GGTCAATCCG CGAACCGGCA AGATCGTCGC GCGGATGCC CCGGCCGAGC	900
TGTTCGACGC CATCTGAAA GCCGCGCACG CCGGTGGCGA TCCCAGGCTG GTGTTCTCG	960
ACACGATCAA TAGGGCAAAC CCGGTGCCGG GGAGAGGCCG CATCGAGGCC ACCAACCGT	1020
GCGGGGAGGT CCCACTGCTG CCTTACGAGT CATGTAATCT CGGCTCGATC AACCTGCC	1080
GGATGCTCGC CGACGGTCGC GTCGACTGGG ACCGGCTCGA GGAGGTCGCC GGTGTGGCGG	1140
TGCGGTTCT TGATGACGTC ATCGATGTCA GCCGCTACCC CTTCCCCGAA CTGGGTGAGG	1200
CGGCCCGCGC CACCCGCAAG ATCGGGCTGG GAGTCATGGG TTTGGCGGAA CTGCTTGCCG	1260
CACTGGGTAT TCCGTACGAC AGTGAAGAAG CCGTGCCTT AGCCACCCGG CTCATGCGTC	1320
GCATACAGCA GGCGCGCAC ACGGCATCGC GGAGGCTGGC CGAAGAGCGG GGCGCATTCC	1380
CGGCCTTCAC CGATAGCCGG TTCGCGCGGT CGGGCCCGAG GCGCAACGCA CAGGTCACCT	1440
CCGTCGCTCC GACGGGCA	1458

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 862 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ACGGTGTAAT CGTGCTGGAT CTGGAACCGC GTGGCCCGCT ACCTACCGAG ATCTACTGGC	60
GGCGCAGGGG GCTGGCCCTG GGCATCGCG TCCTCGTAGT CGGGATCGCG GTGGCCATCG	120
TCATCGCCTT CGTCGACAGC AGCGCCGGTG CCAAACCGGT CAGCGCCGAC AAGCCGGCCT	180
CCGCCAGAG CCATCCGGGC TCGCCGGCAC CCCAAGCACC CCAGCCGGCC GGGCAAACCG	240
AAGGTAACGC CGCCGCGGCC CCGCCGCAGG GCCAAAACCC CGAGACACCC ACGCCCACCG	300
CCGCGGTGCA GCCGCCGCG GTGCTCAAGG AAGGGGACGA TTGCCCCGAT TCGACCGCTGG	360
CCGTCAAAGG TTTGACCAAC GCGCCGCAGT ACTACGTCGG CGACCAGCCG AAGTTCACCA	420
TGGTGGTCAC CAACATCGGC CTGGTGTCT GTAAACCGCA CGTTGGGGCC GCGGTGTTGG	480
CCGCCTACGT TTACTCGCTG GACAACAAGC GGTTGTGGTC CAACCTGGAC TGCAGCGCC	540
CGAATGAGAC GCTGGTCAAG ACGTTTCCC CCGGTGAGCA GGTAACGACC GCGGTGACCT	600
GGACCGGGAT GGGATCGGCG CCGCGCTGCC CATTGCCGCG GCCGGCGATC GGGCCGGGCA	660
CCTACAATCT CGTGGTACAA CTGGGCAATC TGCGCTCGCT GCCGGTTCCG TTCATCCTGA	720

ATCAGCCGCC	GCGCCGCC	GGGCCGGTAC	CCGCTCCGGG	TCCAGCGCAG	GCGCCTCCGC	780
CGGAGTCTCC	CGCGCAAGGC	GGATAATTAT	TGATCGCTGA	TGGTCGATTC	CGCCAGCTGT	840
GACAACCCCT	CGCCTCGTGC	CG				862

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 622 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

TTGATCAGCA	CCGGCAAGGC	GTCACATGCC	TCCCTGGGTG	TGCAGGTGAC	CAATGACAAA	60
GACACCCCGG	GCGCCAAGAT	CGTCGAAGTA	GTGGCCGGTG	GTGCTGCCGC	GAACGCTGGA	120
GTGCCGAAGG	GCGTCGTTGT	CACCAAGGTC	GACGACCGCC	CGATCAACAG	CGCGGACGCG	180
TTGGTTGCCG	CCGTGCGGTC	CAAAGCGCCG	GGGCCACGG	TGGCGCTAAC	CTTCAGGAT	240
CCCTCGGGCG	GTAGCCGCAC	AGTGCAAGTC	ACCCTCGGCA	AGGCGGAGCA	GTGATGAAGG	300
TCGCCGCGCA	GTGTTCAAAG	CTCGGATATA	CGGTGGCACCC	CATGGAACAG	CGTGCAGGAGT	360
TGGTGGTTGG	CCGGGCACTT	GTCGTCGTG	TTGACGATCG	CACGGCGCAC	GGCGATGAAG	420
ACACACAGCGG	GCCGCTTGTC	ACCGAGCTGC	TCACCGAGGC	CGGGTTTGTT	GTGACCGGCG	480
TGGTGGCGGT	GTGCGCCGAC	GAGGTCGAGA	TCCGAAATGC	GCTGAACACA	CGCGTGATCG	540
GCGGGGTGGA	CCTGGTGGTG	TCGGTCGGCG	GGACCGGNGT	GACGNCTCGC	GATGTCACCC	600
CGGAAGCCAC	CCGNGACATT	CT				622

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1200 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGCGCAGCGG	TAAGCCTGTT	GGCCGCCGGC	ACACTGGTGT	TGACAGCATG	CGGGCGGTGGC	60
ACCAACAGCT	CGTCGTCAGG	CGCAGGCGGA	ACGTCTGGGT	CGGTGCACTG	CGGCAGCAAG	120
AAGGAGCTCC	ACTCCAGCGG	CTCGACCGCA	CAAGAAAATG	CCATGGAGCA	GTTCGTCTAT	180

GCCTACGTGC	GATCGTGCC	GGGCTACACG	TTGGACTACA	ACGCCAACGG	GTCCGGTGCC	240
GGGGTGACCC	AGTTTCTCAA	CAACGAAACC	GATTCGCCG	GCTCGGATGT	CCCGTTGAAT	300
CCGTCGACCG	GTCAACCTGA	CCGGTCGGCG	GAGCGGTGCG	GTTCCCCGGC	ATGGGACCTG	360
CCGACGGTGT	TCGGCCCGAT	CGCGATCACC	TACAATATCA	AGGGCGTGAG	CACGCTGAAT	420
CTTGACGGAC	CCACTACCGC	CAAGATTTTC	AACGGCACCA	TCACCGTGTG	GAATGATCCA	480
CAGATCCAAG	CCCTCAACTC	CGGCACCGAC	CTGCCGCCAA	CACCGATTAG	CGTTATCTTC	540
CGCAGCGACA	AGTCCGGTAC	GTCGGACAAC	TTCCAGAAAT	ACCTCGACGG	TGTATCCAAC	600
GGGGCGTGGG	GCAAAGGCAC	CAGCGAAACG	TTCAGCGGGG	CCGTCGGCGT	CGGCCGCCAGC	660
GGGAACAAACG	GAACGTCGGC	CCTACTGCAG	ACGACCGACG	GGTCGATCAC	CTACAACGAG	720
TGGTCGTTG	CGGTGGGTAA	GCAGTTGAAC	ATGGCCCAGA	TCATCACGTC	GGCGGGTCCG	780
GATCCAGTGG	CGATCACCAAC	CGAGTCGGTC	GGTAAGACAA	TCGCCGGGGC	CAAGATCATG	840
GGACAAGGCA	ACGACCTGGT	ATTGGACACG	TCGTCGTTCT	ACAGACCCAC	CCAGCCTGGC	900
TCTTACCCGA	TCGTGCTGGC	GACCTATGAG	ATCGTCTGCT	CGAAATACCC	GGATGCGACG	960
ACCGGTACTG	CGGTAAGGGC	GTTATGCAA	GCCGCGATTG	GTCCAGGCCA	AGAAGGCCTG	1020
GACCAATACG	GCTCCATTCC	GTTGCCAAA	TCGTTCCAAG	CAAAATTGGC	GGCCGCGGTG	1080
AATGCTATTT	CTTGACCTAG	TGAAGGGAAT	TCGACGGTGA	GCGATGCCGT	TCCGCAGGTA	1140
GGGTCGCAAT	TTGGGCCGTA	TCAGCTATTG	CGGCTGCTGG	GCCGAGGCCG	GATGGGCGAG	1200

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1155 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCAAGCAGCT	GCAGGTCGTG	CTGTTGACG	AACTGGGCAT	GCCGAAGACC	AAACGCACCA	60
AGACCGGCTA	CACCACGGAT	GCCGACGCGC	TGCAGTCGTT	GTTCGACAAG	ACCGGGCATC	120
CGTTTCTGCA	ACATCTGCTC	GCCCACCGCG	ACGTCACCCG	GCTCAAGGTC	ACCGTCGACG	180
GGTTGCTCCA	AGCGGTGGCC	GCCGACGGCC	GCATCCACAC	CACGTTCAAC	CAGACGATCG	240
CCGCGACCGG	CCGGCTCTCC	TCGACCGAAC	CCAACCTGCA	GAACATCCCG	ATCCGCACCG	300
ACGCGGGCCG	GCGGATCCGG	GACCGCGTCG	TGGTCGGGGA	CGGTTACGCC	GAGTTGATGA	360
CGGCCGACTA	CAGCCAGATC	GAGATGCGGA	TCATGGGGCA	CCTGTCCGGG	GACGAGGGCC	420

TCATCGAGGC	GTTAACACCC	GGGGAGGACC	TGTATCGTT	CGTCGCGTCC	CGGGTGTTCG	480
GTGTGCCCAT	CGACGAGGTC	ACCGGCGAGT	TGCGGCGCCG	GGTCAAGGCG	ATGTCCTACG	540
GGCTGGTTA	CGGGTTGAGC	GCCTACGGCC	TGTCGAGCA	GTTGAAAATC	TCCACCGAGG	600
AAGCCAACGA	GCAGATGGAC	GCGTATTCG	CCCGATTCTGG	CGGGGTGCGC	GACTACCTGC	660
GCGCCGTAGT	CGAGCGGGCC	CGCAAGGACG	GCTACACCTC	GACGGTGCTG	GGCCGTCGCC	720
GCTACCTGCC	CGAGCTGGAC	AGCAGCAACC	GTCAAGTGC	GGAGGCCGCC	GAGCGGGCGG	780
CGCTGAACGC	GCCGATCCAG	GGCAGCGCGG	CCGACATCAT	CAAGGTGGCC	ATGATCCAGG	840
TCGACAAGGC	GCTCAACGAG	GCACAGCTGG	CGTCGCGCAT	GCTGCTGCAG	GTCCACGACG	900
AGCTGCTGTT	CGAAATCGCC	CCCGGTGAAC	GCGAGCGGGT	CGAGGCCCTG	GTGCGCGACA	960
AGATGGCGG	CGCTTACCCG	CTCGACGTCC	CGCTGGAGGT	GTGGTGGGC	TACGGCCGCA	1020
GCTGGGACGC	GGCGGCGCAC	TGAGTGCCGA	GCGTGCATCT	GGGGCGGGAA	TTCGGCGATT	1080
TTTCCGCCCT	GAGTTCACGC	TCGGCGCAAT	CGGGACCGAG	TTTGTCCAGC	GTGTACCCGT	1140
CGAGTAGCCT	CGTCA					1155

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1771 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAGCGCCGTC	TGGTGTGTTGA	ACGGTTTAC	CGGTCCGCAT	CGGCACGGGC	GTTGCCGGGT	60
TCGGGCCTCG	GGTTGGCGAT	CGTCAAACAG	GTGGTGCTCA	ACCACGGCGG	ATTGCTGCGC	120
ATCGAAGACA	CCGACCCAGG	CGGCCAGCCC	CCTGGAACGT	CGATTACGT	GCTGCTCCCC	180
GGCCGTCGGA	TGCCGATTCC	GCAGCTTCCC	GGTGCACGG	CTGGCGCTCG	GAGCACGGAC	240
ATCGAGAACT	CTCGGGTTTC	GGCGAACGTT	ATCTCAGTGG	AATCTCAGTC	CACGCGCGCA	300
ACCTAGTTGT	GCAGTTACTG	TTGAAAGCCA	CACCATGCC	AGTCCACGCA	TGGCCAAGTT	360
GGCCCGAGTA	GTGGGCCTAG	TACAGGAAGA	GCAACCTAGC	GACATGACGA	ATCACCCACG	420
GTATTGCGCA	CCGCCGCAGC	AGCCGGGAAC	CCCAGGTTAT	GCTCAGGGGC	AGCAGCAAAC	480
GTACAGCCAG	CAGTTCGACT	GGCGTTACCC	ACCGTCCCCG	CCCCCGCAGC	CAACCCAGTA	540
CCGTCAACCC	TACGAGGCAGT	TGGGTGGTAC	CCGGCCGGGT	CTGATACCTG	GCGTGATTCC	600
GACCATGACG	CCCCCTCCTG	GGATGGTTCG	CCAACGCCCT	CGTGCAGGCA	TGTTGGCCAT	660

CGGCGCGGTG ACGATAGCGG TGGTGTCCGC CGGCATCGGC GGCAGGGCCG CATCCCTGGT	720
CGGGTTCAAC CGGGCACCCG CCGGCCCGAG CGGCAGGCCA GTGGCTGCCA GCGCGGCCGC	780
AAGCATCCCC GCAGCAAACA TGCCGCCGGG GTCGGTCGAA CAGGTGGCGG CCAAGGTGGT	840
GCCCAGTGTGTC GTCATGTTGG AAACCGATCT GGGCCGCCAG TCGGAGGAGG GCTCCGGCAT	900
CATTCTGTCT GCCGAGGGGC TGATCTTGAC CAACAACCAC GTGATCGCAG CGGCCGCCAA	960
GCCTCCCTG GGCAGTCCGC CGCCGAAAAC GACGGTAACC TTCTCTGACG GGCGGACCGC	1020
ACCCCTTCACG GTGGTGGGGG CTGACCCAC CAGTGATATC GCCGTCGTCC GTGTTCAAGG	1080
CGTCTCCGGG CTCACCCCGA TCTCCCTGGG TTCCCTCTCG GACCTGAGGG TCGGTCAGCC	1140
GGTGCTGGCG ATCGGGTCGC CGCTCGGTT GGAGGGCACC GTGACCACGG GGATCGTCAG	1200
CGCTCTCAAC CGTCCAGTGT CGACGACCGG CGAGGCCGG AACAGAACAA CGTGCTGGA	1260
CGCCATTCAAG ACCGACGCCG CGATCAACCC CGGTAACCTCC GGGGGCGCGC TGGTGAACAT	1320
GAACGCTCAA CTCGTCGGAG TCAACTCGGC CATTGCCACG CTGGGCGCGG ACTCAGCCGA	1380
TGCGCAGAGC GGCTCGATCG GTCTCGGTT TGCGATTCCA GTCGACCAGG CCAAGCGCAT	1440
CGCCGACGAG TTGATCAGCA CCGGCAAGGC GTCACATGCC TCCCTGGGTG TGCAGGTGAC	1500
CAATGACAAA GACACCCCGG GCGCCAAGAT CGTCGAAGTA GTGGCCGGTG GTGCTGCCGC	1560
GAACGCTGGA GTGCCGAAGG GCGTCGTTGT CACCAAGGTC GACGACCGCC CGATCAACAG	1620
CGCGGACGCG TTGGTTGCCG CCGTGCAGTC CAAAGCGCCG GGCGCCACGG TGGCGCTAAC	1680
CTTCAGGAT CCCTCGGGCG GTAGCCGCAC AGTGCAAGTC ACCCTCGGCA AGGCGGAGCA	1740
GTGATGAAGG TCGCCGCGCA GTGTTCAAAG C	1771

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1058 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTCCACCGCG GTGGCGGCCG CTCTAGAACT AGTGGATCCC CCGGGCTGCA GGAATTCGGC	60
ACGAGGATCC GACGTCGCAG GTTGTGAAAC CCGCCGCCGC GGAAGTATCG GTCCATGCCT	120
AGCCCCGGCGA CGGCGAGCGC CGGAATGGCG CGAGTGAGGA GGCGGGCAAT TTGGCGGGGC	180
CCGGCGACGG CGAGCGCCGG AATGGCGCGA GTGAGGAGGC GGGCAGTCAT GCCCAGCGTG	240
ATCCAATCAA CCTGCATTG GCCTGCCGGC CCATTTGACA ATCGAGGTAG TGAGCGAAA	300

TGAATGATGG AAAACGGCG GTGACGTCCG CTGTTCTGGT GGTGCTAGGT GCCTGCCTGG	360
CGTTGTGGCT ATCAGGATGT TCTTCGCCGA AACCTGATGC CGAGGAACAG GGTGTTCCCG	420
TGAGGCCGAC GGCGTCCGAC CCCGCGCTCC TCGCCGAGAT CAGGCAGTCG CTTGATGCGA	480
CAAAAGGGTT GACCAGCGTG CACGTAGCGG TCCGAACAAC CGGGAAAGTC GACAGCTTGC	540
TGGGTATTAC CAGTGCCGAT GTCGACGTCC GGGCCAATCC GCTCGCGGCA AAGGGCGTAT	600
GCACCTACAA CGACGAGCAG GGTGTCCCGT TTCGGGTACA AGGCGACAAC ATCTCGGTGA	660
AACTGTTCGA CGACTGGAGC AATCTCGGCT CGATTCTGA ACTGTCAACT TCACGCGTGC	720
TCGATCCTGC CGCTGGGTG ACGCAGCTGC TGTCCGGTGT CACGAACCTC CAAGCGCAAG	780
GTACCGAAGT GATAGACGGA ATTCGACCA CCAAAATCAC CGGGACCATC CCCGCGAGCT	840
CTGTCAAGAT GCTTGATCCT GGCGCCAAGA GTGCAAGGCC GGCGACCGTG TGGATTGCC	900
AGGACGGCTC GCACCACCTC GTCCGAGCGA GCATCGACCT CGGATCCGGG TCGATTCA	960
TCACCGCAGTC GAAATGGAAC GAACCCGTCA ACGTCGACTA GGCGAAGTT GCGTCGACGC	1020
GTTGNTCGAA ACGCCCTTGT GAACGGTGTG AACGGNAC	1058

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 542 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCA CGAGAGGTGA TCGACATCAT CGGGACCAGC CCCACATCCT GGGAACAGGC	60
GGCGCGGGAG GCGGTCCAGC GGGCGCGGGA TAGCGTCGAT GACATCCGCG TCGCTCGGGT	120
CATTGAGCAG GACATGGCCG TGGACAGCGC CGGCAAGATC ACCTACCGCA TCAAGCTCGA	180
AGTGTGTTTC AAGATGAGGC CGCGCAACC GCGCTAGCAC GGGCCGGCGA GCAAGACGCA	240
AAATCGCACG GTTTGCGGTT GATTGCGCG ATTTTGTGTC TGCTCGCCGA GGCTTACCA	300
GCGCGGCCCA GGTCCCGGTG CTGCCGTATC CAGGCGTGCA TCGCGATTCC GGCGGCCACG	360
CCGGAGTTAA TGCTTCGCGT CGACCCGAAC TGGGCGATCC GCCGGNGAGC TGATCGATGA	420
CCGTGGCCAG CCCGTCGATG CCCGAGTTGC CCGAGGAAAC GTGCTGCCAG GCCGGTAGGA	480
AGCGTCCGTA GGCGGGCGGTG CTGACCGGCT CTGCCCTGCGC CCTCAGTGC GCGAGCGAGC	540
GG	542

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 913 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGGTGCCGCC	CGCGCCTCCG	TTGCCCCCCAT	TGCCGCCGTC	GCCGATCAGC	TGCGCATCGC	60
CACCATCAC	GCCTTGCCG	CCGGCACCGC	CGGTGGCGCC	GGGGCCGCCG	ATGCCACCGC	120
TTGACCCCTGG	CCGCCGGCGC	CGCCATTGCC	ATACAGCACC	CCGCCGGGGG	CACCGTTACC	180
GCCGTCGCCA	CCGTCGCCG	CGCTGCCGTT	TCAGGCCGGG	GAGGCCGAAT	GAACCGCCGC	240
CAAGCCCGCC	GCCGGCACCG	TTGCCGCCCTT	TTCCGCCCGC	CCGCCGGCG	CCGCCAATTG	300
CCGAACAGCC	AMGCACCGTT	GCCGCCAGCC	CCGCCGCCGT	TAACGGCGCT	GCCGGCGCC	360
GCCGCCGGAC	CCGCCATTAC	CGCCGTTCCC	GTTCGGTGCC	CCGCCGTTAC	CGGCCGCCGC	420
GTTCGCCGCC	AATATTCCGGC	GGGCACCGGCC	AGACCCGCCG	GGGCCACCAT	TGCCGCCGGG	480
CACCGAAACA	ACAGCCCAAC	GGTGCCGCCG	GCCCCGCCGT	TTGCCGCCAT	CACCGGCCAT	540
TCACCGCCAG	CACCGCCGTT	AATGTTTATG	AAACCCGGTAC	CGCCAGCGCG	GCCCCCTATTG	600
CCGGGGCGCCG	GAGNGCGTGC	CCGCCGGCGC	CGCCAACGCC	CAAAGCCCCG	GGGTTGCCAC	660
CGGCCCCGCC	GGACCCACCG	GTCCCGCCGA	TCCCCCGTT	GCCGCCGGTG	CCGCCGCCAT	720
TGGTGCTGCT	GAAGCCGTTA	GCGCCGGTTC	CGCSGGTTCC	GGCGGTGGCG	CCNTGGCCGC	780
CGGCCCCGCC	GTTGCCGTAC	AGCCACCCCCC	CGGTGGCGCC	GTTGCCGCCA	TTGCCGCCAT	840
TGCCGCCGTT	GCCGCCATTG	CCGCCGTTCC	CGCCGCCACC	GCCGGNTTGG	CCGCCGGCGC	900
CGCCGGCGGC	CGC					913

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1872 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GAATACGTTG	GTGTAGAAAA	ATCCTGCCGC	CCGGACCCCTT	AAGGCTGGGA	CAATTCTGA	60
TAGCTACCCC	GACACAGGGAG	GTTACGGGAT	GAGCAATTG	CGCCGCCGCT	CACTCAGGTG	120

GTCATGGTTG	CTGAGCGTGC	TGGCTGCCGT	CGGGCTGGGC	CTGGCCACGG	CGCCGGCCCA	180
GGCGGCCCG	CCGGCCTTGT	CGCAGGACCG	GTTCGCCGAC	TTCCCCGCGC	TGCCCCCTCGA	240
CCC GTCC CGCG	ATGGTCGCC	AAGTGGCGCC	ACAGGTGGTC	AACATCAACA	CCAAACTGGG	300
CTACAACAAAC	GCCGTGGCG	CCGGGACC GG	CATCGTCATC	GATCCCAACG	GTGTCGTGCT	360
GACCAACAAAC	CACGTGATCG	CGGGCGCCAC	CGACATCAAT	GCGTTCAGCG	TCGGCTCCGG	420
CCAAACCTAC	GGCGTCGATG	TGGTCGGGTA	TGACCGCACC	CAGGATGTG	CGGTGCTGCA	480
GCTGCGCGGT	GCCGGTGGCC	TGCCGTCGGC	GGCGATCGGT	GGCGGCGTGC	CGGTTGGTGA	540
GCCCGTCGTC	GCGATGGCA	ACAGCGGTGG	GCAGGGCGGA	ACGCCCCGTG	CGGTGCCTGG	600
CAGGGTGGTC	GCGCTCGGCC	AAACCGTGCA	GGCGTCGGAT	TCGCTGACCG	GTGCCGAAGA	660
GACATTGAAC	GGGTTGATCC	AGTCGATGC	CGCAATCCAG	CCC GG TGATT	CGGGCGGGCC	720
CGTCGTCAAC	GGCCTAGGAC	AGGTGGTCGG	TATGAACACG	GCCGCGTCCG	ATAACTTCCA	780
GCTGTCCCAG	GGTGGGCAGG	GATTGCCAT	TCCGATCGGG	CAGGCGATGG	CGATCGCGGG	840
CCAAATCCGA	TCGGGTGGGG	GGTCACCCAC	CGTTCATATC	GGGCCTACCG	CCTTCCTCGG	900
CTTGGGTGTT	GTCGACAACA	ACGGCAACGG	CGCACCGAGTC	CAACCGTGG	TCGGAAGCGC	960
TCCGGCGGCA	AGTCTCGGCA	TCTCCACCGG	CGACGTGATC	ACCGCGGTG	ACGGCGCTCC	1020
GATCAACTCG	GCCACCGCGA	TGGCGGACGC	GCTTAACGGG	CATCATCCCG	GTGACGTCAT	1080
CTCGGTGAAC	TGGCAAACCA	AGTCGGCGG	CACGCGTACA	GGGAACGTGA	CATTGGCGA	1140
GGGACCCCCG	GCCTGATTTG	TCGCGGATAC	CACCCGCCGG	CCGGCCAATT	GGATTGGCGC	1200
CAGCCGTGAT	TGCCGCGTGA	GCCCCCGAGT	TCCGTCCTCC	GTGCGCGTGG	CATTGTGGAA	1260
GCAATGAACG	AGGCAGAACCA	CAGCGTTGAG	CACCCCTCCCG	TGCAGGGCAG	TTACGTGAA	1320
GGCGGTGTGG	TCGAGCATCC	GGATGCCAAG	GA CTT CGGCA	GCGCCGCCGC	CCTGCCCGCC	1380
GATCCGACCT	GGTTTAAGCA	CGCCGTCTTC	TACGAGGTGC	TGGTCCGGGC	GTTCTTCGAC	1440
GCCAGCGCGG	ACGGTTCCGN	CGATCTCGT	GGACTCATCG	ATCGCCTCGA	CTACCTGCAG	1500
TGGCTTGGCA	TCGACTGCAT	CTGTTGCCGC	CGTT CCTACG	ACTCACCGCT	GCGCGACGGC	1560
GGTTACGACA	TTC GCGACTT	CTACAAGGTG	CTGCCGAAT	TCGGCACCGT	CGACGATTTC	1620
GTCGCCCTGG	TCGACACCGC	TCACCGCGA	GGTATCCGCA	TCATCACCGA	CCTGGTGATG	1680
AATCACACCT	CGGAGTCGCA	CCCCTGGTTT	CAGGAGTCCC	GCCGCGACCC	AGACGGACCG	1740
TACGGTGACT	ATTACGTGTG	GAGCGACACC	AGCGAGCGCT	ACACCGACGC	CCGGATCATC	1800
TTCGTCGACA	CCGAAGAGTC	GAAC TGGTCA	TTCGATCCTG	TCCGCCGACA	GTNNCTACTG	1860
GCACCGATTC	TT					1872

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CTTCGCCGAA	ACCTGATGCC	GAGGAACAGG	GTGTTCCCGT	GAGCCCGACG	GCGTCCGACC	60
CCCGCGCTCCT	CGCCGAGATC	AGGCAGTCGC	TTGATGCGAC	AAAAGGGTTG	ACCAGCGTGC	120
ACGTAGCGGT	CCGAACAACC	GGGAAAGTCG	ACAGCTTGCT	GGGTATTACC	AGTGCCGATG	180
TCGACGTCCG	GGCCAATCCG	CTCGCGCAA	AGGGCGTATG	CACCTACAAAC	GACGAGCAGG	240
GTGTCCCGTT	TCGGGTACAA	GGCGACAACA	TCTCGGTGAA	ACTGTTCGAC	GACTGGAGCA	300
ATCTCGGCTC	GATTCTGAA	CTGTCAACTT	CACGCGTGCT	CGATCCTGCC	GCTGGGGTGA	360
CGCAGCTGCT	GTCCGGTGTC	ACGAACCTCC	AAGCGCAAGG	TACCGAAGTG	ATAGACGGAA	420
TTTCGACCAC	CAAATCACCC	GGGACCATCC	CCCGGAGCTC	TGTCAAGATG	CTTGATCCTG	480
GCGCCAAGAG	TGCAAGGCCG	GCGACCGTGT	GGATTGCCCA	GGACGGCTCG	CACCACCTCG	540
TCCGAGCGAG	CATCGACCTC	GGATCCGGGT	CGATTCAAGCT	CACGCAGTCG	AAATGGAACG	600
AACCCGTCAA	CGTCGACTAG	GCCGAAGTTG	CGTCGACGCG	TTGCTCGAAA	CGCCCTTGTG	660
AACGGTGTCA	ACGGCACCCG	AAAATGACC	CCCTGACGGC	ATCTGAAAAT	TGACCCCCTA	720
GACCGGGCGG	TTGGTGTTA	TTCTCGGTG	GTTCCGGCTG	GTGGGACGCG	GCCGAGGTG	780
CGGTCTTGA	GCCGGTAGCT	GTGCCCTTG	AGGGCGACGA	CTTCAGCATG	GTGGACGAGG	840
CGGTCGATCA	TGGCGGCAGC	AACGACGTCG	TCGCCGCCGA	AAACCTCGCC	CCACCGGCCG	900
AAGGCCTTAT	TGGACGTGAC	GATCAAGCTG	GCCCGCTCAT	ACCGGGAGGA	CACCAGCTGG	960
AAGAAGAGGT	TGGCGGCCTC	GGGCTAAAC	GGAATGTAAC	CGACTTCGTC	AACCACCAGG	1020
AGCGGATAGC	GGCAAACCG	GGTGAGTTG	GCGTAGATGC	GCCC GGCGTG	GTGAGCCTCG	1080
GCGAACCGTG	CTACCCATTG	GGCGCGGTG	GCGAACAGCA	CCCGATGACC	GGCCTGACAC	1140
GCGCGTATCG	CCAGGCCGAC	CGCAAGATGA	GTCTTCCCGG	TGCCAGGCCG	GGCCAAAAAA	1200
CACGACGTTA	TCGCGGGCGG	TGATGAAATC	CAGGGTGCCC	AGATGTGCGA	TGGTGTGCG	1260
TTTGAGGCCA	CGAGCATGCT	CAAAGTCGAA	CTCTTCCAAC	GACTTCCGAA	CCGGGAAGCG	1320
GGCGGGCGG	ATGCGGCCCT	CACCAACATG	GGACTCCCGG	GCTGACACTT	CCCGCTGCG	1380
GCAGGGCGCC	AGGTATTCTT	CGTGGCTCCA	GTTCTGGCG	CGGGCGCGAT	CGGCCAGCCG	1440
GGACACTGAC	TCACGCAGGG	TGGGAGCTTT	CAATGCTCTT	GT		1482

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 876 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCTGGCA	CGAGCCGGCG	ATAGCTTCTG	GGCCGCGGCC	GACCAGATGG	CTCGAGGGTT	60
CGTGCTCGGG	GCCACCGCCG	GGCGCACAC	CCTGACCGGT	GAGGGCCTGC	AACACGCCGA	120
CGGTCACTCG	TTGCTGCTGG	ACGCCACCAA	CCCGCCGGTG	GTTGCCTACG	ACCCGGCCTT	180
CGCCTACGAA	ATCGGCTACA	TCGNGGAAAG	CGGACTGGCC	AGGATGTGCG	GGGAGAACCC	240
GGAGAACATC	TTCTTCTACA	TCACCGTCTA	CAACGAGCCG	TACGTGCAGC	CGCCGGAGCC	300
GGAGAACTTC	GATCCCGAGG	GCGTGCTGGG	GGGTATCTAC	CGNTATCACG	CGGCCACCGA	360
GCAACGCACC	AACAAGGNNGC	AGATCCTGGC	CTCCGGGTA	GCGATGCCCG	CGGCGCTGCG	420
GGCAGCACAG	ATGCTGGCCG	CCGAGTGGGA	TGTCGCCGCC	GACGTGTGGT	CGGTGACCAG	480
TTGGGGCGAG	CTAAACCGCG	ACGGGGTGGT	CATCGAGACC	GAGAAGCTCC	GCCACCCCGA	540
TCGGCCGGCG	GGCGTGCCT	ACGTGACGAG	AGCGCTGGAG	AATGCTCGGG	GCCCCGGTGAT	600
CGCGGTGTCG	GACTGGATGC	GCGCGGTCCC	CGAGCAGATC	CGACCGTGGG	TGCCGGGCAC	660
ATACCTCACG	TTGGGCACCG	ACGGGTTCGG	TTTTTCCGAC	ACTCGGCCCG	CCGGTCGTCG	720
TTACTTCAAC	ACCGACGCCG	AATCCCAGGT	TGGTCGCGGT	TTTGGGAGGG	GTTGGCCGGG	780
TCGACGGGTG	AATATCGACC	CATTGGTGC	CGGTGCGGG	CCGCCCGCCC	AGTTACCCGG	840
ATTGACGAA	GGTGGGGGGT	TGCGCCCGAN	TAAGTT			876

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1021 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

ATCCCCCCCG	GCTGCAGGAA	TTCGGCACGA	GAGACAAAAT	TCCACGCGTT	AATGCAGGAA	60
CAGATTCTATA	ACGAATTACAC	AGCGGCACAA	CAATATGTCG	CGATGCGGGT	TTATTCGAC	120

AGCGAAGACC	TGCCGCAGTT	GGCGAAGCAT	TTTTACAGCC	AAGCGGTCGA	GGAACGAAAC	180
CATGCAATGA	TGCTCGTGCA	ACACCTGCTC	GACCGCGACC	TTCGTGTCGA	AATTCCCGGC	240
GTAGACACGG	TGCGAAACCA	GTTGACAGA	CCCCGCGAGG	CACTGGCGCT	GGCGCTCGAT	300
CAGGAACGCA	CAGTCACCGA	CCAGGTCGGT	CGGCTGACAG	CGGTGGCCCG	CGACGGAGGGC	360
GATTCCTCG	GCGAGCAGTT	CATGCAGTGG	TTCTTGCAGG	AACAGATCGA	AGAGGGTGGCC	420
TTGATGGCAA	CCCTGGTGCG	GGTTGCCGAT	CGGGCCGGGG	CCAACCTGTT	CGAGCTAGAG	480
AACTTCGTCG	CACGTGAAGT	GGATGTGGCG	CCGGCCGCAT	CAGGCGCCCC	GCACGCTGCC	540
GGGGGCCGCC	TCTAGATCCC	TGGGGGGGAT	CAGCGAGTGG	TCCC GTTCGC	CCGCCC GTCT	600
TCCAGGCCAGG	CCTTGGTGCG	GCCGGGGTGG	TGAGTACCAA	TCCAGGCCAC	CCCGACCTCC	660
CGGNAAAAGT	CGATGTCCTC	GTACTCATCG	ACGTTCCAGG	AGTACACCGC	CCGGCCCTGA	720
GCTGCCGAGC	GGTCAACGAG	TTGCGGATAT	TCCTTTAACG	CAGGCAGTGA	GGGTCCCACG	780
CGGGTTGGCC	CGACCGCCGT	GGCCGCACTG	CTGGTCAGGT	ATCGGGGGGT	CTTGGCGAGC	840
AACAACGTCG	GCAGGAGGGG	TGGAGCCCGC	CGGATCCGCA	GACCGGGGGG	GCGAAAACGA	900
CATCAACACCC	GCACGGGATC	GATCTGCGGA	GGGGGGTGCG	GGAATACCGA	ACCGGTGTAG	960
GAGGCCAGC	AGTTGTTTT	CCACCAGCGA	AGCGTTTCG	GGTCATCGGN	GGCNNTTAAG	1020
T						1021

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 321 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CGTGCCGACG	AACGGAAGAA	CACAACCATG	AAGATGGTGA	AATCGATCGC	CGCAGGTCTG	60
ACCGCCGCGG	CTGCAATCGG	CGCCGCTGCG	GCCGGTGTGA	CTTCGATCAT	GGCTGGCGGN	120
CCGGTCTAT	ACCAGATGCA	GCCGGTCGTC	TTCGGCGCGC	CACTGCCGTT	GGACCCGGNA	180
TCCGCCCTG	ANGTCCCAC	CGCCGCCAG	TGGACCAGNC	TGCTAACAG	NCTCGNCGAT	240
CCCAACGTGT	CGTTTNGAA	CAAGGGNAGT	CTGGTCGAGG	GNNGNATCGG	NGGNANCAG	300
GGNGNGNATC	GNCGANCACA	A				321

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 373 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

TCTTATCGGT	TCCGGTTGGC	GACGGGTTTT	GGGNGCGGGT	GGTTAACCCG	CTCGGCCAGC	60
CGATCGACGG	GCGCGGAGAC	GTCGACTCCG	ATACTCGGCG	CGCGCTGGAG	CTCCAGGCAGC	120
CCTCGGTGGT	GNACCGGCAA	GGCGTGAAGG	AGCCGTTGNA	GACCGGGATC	AAGGCGATTG	180
ACGCGATGAC	CCCGATCGGC	CGCGGGCAGC	GCCAGCTGAT	CATCGGGGAC	CGCAAGACCG	240
GCAAAAACCG	CCGTCTGTGT	CGGACACCAT	CCTCAAACCA	GCGGGAAGAA	CTGGGAGTCC	300
GGTGGATCCC	AAGAAGCAGG	TGCGCTTGTG	TATACGTTGG	CCATCGGGCA	AGAAGGGGAA	360
CTTACCATCG	CCG					373

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 352 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTGACGCCGT	GATGGGATTC	CTGGGCGGGG	CCGGTCCGCT	GGCGGTGGTG	GATCAGCAAC	60
TGGTTACCCG	GGTGCCGCAA	GGCTGGTCGT	TTGCTCAGGC	AGCCGCTGTG	CCGGTGGTGT	120
TCTTGACGGC	CTGGTACGGG	TTGGCCGATT	TAGCCGAGAT	CAAGGCAGGC	GAATCGGTGC	180
TGATCCATGC	CGGTACCGGC	GGTGTGGCA	TGGCGCTGT	GCAGCTGGCT	CGCCACTGGG	240
GCGTGGAGGT	TTTCGTCACC	GCCAGCCGTG	GNAAGTGGGA	CACGCTGCGC	GCCATNGNGT	300
TTGACGACGA	NCCATATCGG	NGATTCCNC	ACATNCGAAG	TTCCGANGGA	GA	352

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 726 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GAAATCCGCG	TTCATTCCGT	TCGACCAGCG	GCTGGCGATA	ATCGACGAAG	TGATCAAGCC	60
CGGGTTCGCG	GCGCTCATGG	GTCACAGCGA	GTAATCAGCA	AGTTCTCTGG	TATATCGCAC	120
CTAGCGTCCA	GTTGCTTGCC	AGATCGCTT	CGTACCGTCA	TCGCATGTAC	CGGTTTCGCGT	180
GCCGCACGCT	CATGCTGGCG	GCGTGCATCC	TGGCCACGGG	TGTGGCGGGT	CTCGGGGTGCG	240
GCGCGCAGTC	CGCAGCCCCA	ACCGCGCCGG	TGCCCGACTA	CTACTGGTGC	CCGGGGCAGC	300
CTTTCGACCC	CGCATGGGGG	CCCAAATGGGG	ATCCCTACAC	CTGCCATGAC	GACTTCCACC	360
GCGACAGCGA	CGGCCCCGAC	CACAGCCGCG	ACTACCCCGG	ACCCATCCTC	GAAGGTCCCG	420
TGCTTGACGA	TCCC GG TGCT	GCGCCGCCGC	CCCCGGCTGC	CGGTGGCGGC	GCATAGCGCT	480
CGTTGACCGG	GCCGCATCAG	CGAATACGCG	TATAAACCCG	GGCGTGCCCC	CGGCAAGCTA	540
CGACCCCCGG	CGGGGCAGAT	TTACGCTCCC	GTGCCGATGG	ATCGGCCCGT	CCGATGACAG	600
AAAATAGGCG	ACGGTTTGG	CAACCGCTTG	GAGGACGCTT	GAAGGGAACC	TGTCATGAAC	660
GGCGACAGCG	CCTCCACCAT	CGACATCGAC	AAGGTTGTTA	CCCGCACACC	CGTTGCCCGG	720
ATCGTG						726

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 580 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CGCGACGACG	ACGAACGTCG	GGCCCACCAAC	CGCCTATGCG	TTGATGCAGG	CGACCGGGAT	60
GGTCGGCGAC	CATATCCAAG	CATGCTGGGT	GCCCAC TGAG	CGACCTTTG	ACCAGCCGGG	120
CTGCGCGATG	GC GGGCCGGT	GAAGTCATTG	CGCCGGGGCT	TGTGCACCTG	ATGAACCCGA	180
ATAGGGAACA	ATAGGGGGGT	GATTGGCAG	TTCAATGTCG	GGTATGGCTG	GAAATCCAAT	240
GGCGGGGCAT	GCTCGGCGCC	GACCAGGCTC	GCGCAGGC GG	GCCAGCCC GA	ATCTGGAGGG	300
AGCACTCAAT	GGCGGCGATG	AAGCCCCGGA	CCGGCGACGG	TCCTTGAA	GCAACTAAGG	360
AGGGGCGCGG	CATTGTGATG	CGAGTACCAAC	TTGAGGGTGG	CGGTGCGCTG	GTCGTCGAGC	420
TGACACCCGA	CGAAGCCGCC	GCACTGGGTG	ACGAAC TCAA	AGGC GTTACT	AGCTAAGACC	480
AGCCCAACGG	CGAATGGTCG	GCGTTACGCG	CACACCTTCC	GGTAGATGTC	CAGTGTCTGC	540
TCGGCGATGT	ATGCC CAGGA	GA ACTCTTGG	ATACAGCGCT			580

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 160 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

AACGGAGGCG CCGGGGGTTT TGGCGGGGCC GGGGCGGTCG GCGGCAACGG CGGGGCCGGC	60
GGTACCGCCG GGTTGTTCGG TGTCGGCGGG GCCGGTGGGG CCGGAGGCCA CGGCATCGCC	120
GGTGTCACGG GTACGTCGGC CAGCACACCG GGTGGATCCG	160

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 272 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GACACCGATA CGATGGTGAT GTACGCCAAC GTTGTGACA CGCTCGAGGC GTTCACGATC	60
CAGCGCACAC CCGACGGCGT GACCATCGGC GATGCGGCC CGTTCGCGGA GGCGGCTGCC	120
AAGGCGATGG GAATCGACAA GCTGCGGGTA ATTACATACCG GAATGGACCC CGTCGTCGCT	180
GAACCGAAC AGTGGGACGA CGGCAACAAAC ACGTTGGCGT TGGCGCCCGG TGTCGTTGTC	240
GCCTACGAGC GCAACGTACA GACCAACGCC CG	272

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 317 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

GCAGCCGGTG GTTCTCGGAC TATCTGCGCA CGGTGACGCA GCGCGACGTG CGCGAGCTGA	60
AGCGGATCGA GCAGACGGAT CGCCTGCCGC GGTTCATGCG CTACCTGCC GCTATCACCG	120

CGCAGGAGCT GAACGTGGCC GAAGCGGCAGC GGGTCATCGG GTCGACGCG GGGACGATCC	180
GTTCGGATCT GGCGTGGTTC GAGACGGTCT ATCTGGTACA TCGCCTGCC GCCTGGTCGC	240
GGAATCTGAC CGCGAAGATC AAGAACGCGGT CAAAGATCCA CGTCGTCGAC AGTGGCTTCG	300
CGGCCTGGTT GCGCGGG	317

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 182 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GATCGTGGAG CTGTCGATGA ACAGCGTTGC CGGACGCGCG GCGGCCAGCA CGTCGGTGTA	60
GCAGCGCCGG ACCACCTCGC CGGTGGGCAG CATGGTGATG ACCACGTCGG CCTCGGCCAC	120
CGCTTCGGGC GCGCTACGAA ACACCGCGAC ACCGTGCGCG GCGGCGCCGG ACGCCGCCGT	180
GG	182

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 308 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

GATCGCGAAG TTTGGTGAGC AGGTGGTCGA CGCGAAAGTC TGGGCGCCTG CGAACGGGT	60
CGGCGTTCAC GAGGCGAAGA CACGCCGTGC CGAGCTGCTG CGGCTCGTCT ACGGCGGGCA	120
GAGGTTGAGA TTGCCCGCCG CGGCGAGCCG GTAGCAAAGC TTGTGCCGCT GCATCCTCAT	180
GAGACTCGGC GGTTAGGCAT TGACCATGGC GTGTACCGCG TGCCCGACGA TTTGGACGCT	240
CCGTTGTCAG ACGACGTGCT CGAACGCTTT CACCGGTGAA GCGCTACCTC ATCGACACCC	300
ACGTTTGG	308

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 267 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

CCGACGACGA GCAACTCACG TGGATGATGG TCGGCAGCGG CATTGAGGAC GGAGAGAATC	60
CGGCCGAAGC TGCCGCGCG CAAGTGCTCA TAGTGACCGG CGTAGAGGG CTCCCCGAT	120
GGCACCGGAC TATTCTGGTG TGCCGCTGGC CGGTAAGAGC GGGTAAAAGA ATGTGAGGGG	180
ACACGATGAG CAATCACACC TACCGAGTGA TCGAGATCGT CGGGACCTCG CCCGACGGCG	240
TCGACGCGGC AATCCAGGGC GGTCTGG	267

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1539 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CTCGTGCAGA AAGAACATGAGA GGGGACACGA TGAGCAATCA CACCTACCGA GTGATCGAGA	60
TCGTCGGGAC CTCGCCCCAC GGCGTCGACG CGGCAATCCA GGGCGGTCTG GCCCGAGCTG	120
CGCAGACCAT GCGCGCGCTG GACTGGTCG AAGTACAGTC AATTGAGGC CACCTGGTCG	180
ACGGAGCGGT CGCGCACTTC CAGGTGACTA TGAAAGTCGG CTTCCGCTGG AGGATTCCCTG	240
AACCTTCAAG CGCGGCCGAT AACTGAGGTG CATCATTAAG CGACTTTCC AGAACATCCT	300
GACGCGCTCG AAACGCGGTT CAGCCGACGG TGGCTCCGCC GAGGCGCTGC CTCCAAAATC	360
CCTGCGACAA TTGTCGGCG GCGCCTACAA GGAAGTCGGT GCTGAATTCTG TCGGGTATCT	420
GGTCGACCTG TGTGGGCTGC AGCCGGACGA AGCGGTGCTC GACGTCGGCT GCGGCTCGGG	480
CGGGATGGCG TTGCGCTCA CCGGCTATCT GAACAGCGAG GGACGCTACG CCGGCTTCGA	540
TATCTCGCAG AAAGCCATCG CGTGGTGCCA GGAGCACATC ACCTCGGCCG ACCCCAACTT	600
CCAGTTCGAG GTCTCCGACA TCTACAAC GCTGTACAAC CCGAAAGGGGA AATACCAGTC	660
ACTAGACTTT CGCTTTCCAT ATCCGGATGC GTCGTTCGAT GTGGTGTTC TTACCTCGGT	720
GTTCACCCAC ATGTTCCGC CGGACGTGGA GCACTATCTG GACGAGATCT CCCGCGTGCT	780
GAAGCCCGGC GGACGATGCC TGTGCACGTA CTTCTGCTC AATGACGAGT CGTTAGCCCA	840
CATCGCGGAA GGAAAGAGTG CGCACAACTT CCAGCATGAG GGACCGGGTT ATCGGACAAT	900

CCACAAGAAG CGGCCCGAAG AAGCAATCGG CTTGCCGGAG ACCTTCGTCA GGGATGTCTA	960
TGGCAAGTTC GGCCTCGCCG TGCACGAACC ATTGCACTAC GGCTCATGGA GTGGCCGGGA	1020
ACCACGCCTA AGCTTCCAGG ACATCGTCAT CGCGACCAAA ACCGCGAGCT AGGTCGGCAT	1080
CCGGGAAGCA TCGCGACACC GTGGCGCCGA GCGCCGCTGC CGGCAGGCCG ATTAGGCCGG	1140
CAGATTAGCC CGCCCGGGCT CCCGGCTCCG ACTACGGCGC CCCGAATGGC GTCACCGGCT	1200
GGTAACCACG CTTGCCGCC TGGGCGGCCG CCTGCCGGAT CAGGTGGTAG ATGCCGACAA	1260
AGCCTGCGTG ATCGGTACATC ACCAACGGTG ACAGCAGCCG GTTGTGCACC AGCGCGAACG	1320
CCACCCCGGT CTCCGGGTCT GTCCAGCCGA TCGAGCCGCC CAAGCCCACA TGACCAAACC	1380
CCGGCATTACAC GTTGCCGATC GGCATACCGT GATAAGCCAAG ATGAAAATT AAGGGCACCA	1440
ATAGATTCG ATCCGGCAGA ACTTGCCGTC GGTTGCCGGT CAGGCCCGTG ACCAGCTCCC	1500
GCGACAAGAA CCGTATGCCG TCGATCTCGC CTCGTGCCG	1539

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 851 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CTGCAGGGTG GCGTGGATGA GCGTCACCGC GGGGCAGGCC GAGCTGACCG CCGCCCAGGT	60
CCGGGTTGCT GCGGCGGCCT ACGAGACGGC GTATGGGCTG ACGGTGCCCG CGCCGGTGAT	120
CGCCGAGAAC CGTGCTGAAC TGATGATTCT GATAAGCGACC AACCTCTTGG GGCAAAACAC	180
CCCGGGGATC GCGGTCAACG AGGCCGAATA CGGCGAGATG TGGGCCAAG ACGCCGCCGC	240
GATGTTGGC TACGCCGCCG CGACGGCGAC GGCGACGGCG ACGTTGCTGC CGTTGAGGA	300
GGCGCCGGAG ATGACCAGCG CGGGTGGGCT CCTCGAGCAG GCCGCCGCCG TCGAGGAGGC	360
CTCCGACACC GCCGCGGCCGA ACCAGTTGAT GAACAATGTG CCCCAGGCCG TGAAACAGTT	420
GGCCCAGCCC ACGCAGGGCA CCACGCCTTC TTCCAAGCTG GGTGGCTGT GGAAGACGGT	480
CTCGCCGCAT CGGTCGCCGA TCAGAACAT GGTGTCGATG GCCAACAAACC ACATGTCGAT	540
GACCAACTCG GGTGTGTCGA TGACCAACAC CTTGAGCTCG ATGTTGAAGG GCTTGCTCC	600
GGCGGGCGCC GCCCAGGCCG TGCAAACCGC GGCGCAAAAC GGGGTCCGGG CGATGAGCTC	660
GCTGGGCAGC TCGCTGGGTT CTTCGGGTCT GGGCGGTGGG GTGGCCGCCA ACTTGGGTCG	720
GGCGGGCTCG GTACGGTATG GTCACCGGGA TGGCGGAAAA TATGCANAGT CTGGTCGGCG	780

GAACGGTGGT CCGGCGTAAG GTTTACCCCC GTTTCTGGA TGC GGTAAC TTCGTCAACG	840
GAAACAGTTA C	851

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 254 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GATCGATCGG GCGGAAATT GGACCAGATT CGCCTCCGGC GATAACCAA TCAATCGAAC	60
CTAGATTAT TCCGTCCAGG GGCCCGAGTA ATGGCTCGCA GGAGAGGAAC CTTACTGCTG	120
CGGGCACCTG TCGTAGGTCC TCGATACGGC GGAAGGCAGTC GACATTTCC ACCGACACCC	180
CCATCCAAAC GTTCGAGGGC CACTCCAGCT TGTGAGCGAG GCGACGCAGT CGCAGGCTGC	240
GCTTGGTCAA GATC	254

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1227 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GATCCTGACC GAAGCGGCCG CCGCCAAGGC GAAGTCGCTG TTGGACCAGG AGGGACGGGA	60
CGATCTGGCG CTGCGGATCG CGGTTCAAGCC GGGGGGGTGC GCTGGATTGC GCTATAACCT	120
TTTCTTCGAC GACCGGACGC TGGATGGTGA CCAAACCGCG GAGTTCGGTG GTGTCAGGTT	180
GATCGTGGAC CGGATGAGCG CGCCGTATGT GGAAGGCAGTC TCGATCGATT TCGTCGACAC	240
TATTGAGAAG CAAGGTTCAC CATCGACAAT CCCAACGCCA CCGGCTCCTG CGCGTGCAGGG	300
GATTGTTCA ACTGATAAAA CGCTAGTACG ACCCCGCGGT GCGCAACACCG TACGAGCACA	360
CCAAGACCTG ACCCGCGCTGG AAAAGCAACT GAGCGATGCC TTGCACCTGA CCGCGTGGCG	420
GGCCGCCGGC GGCAGGTGTC ACCTGCATGG TGAACAGCAC CTGGGCCTGA TATTGCGACC	480
AGTACACGAT TTTGTCGATC GAGGTCACTT CGACCTGGGA GAACTGCTTG CGGAACGCAGT	540
CGCTGCTCAG CTTGGCCAAG GCCTGATCGG AGCGCTTGTC GCGCACGCCG TCGTGGATAC	600

CGCACAGCGC ATTGCGAACG ATGGTGTCCA CATCGCGTT CTCCAGCGCG TTGAGGTATC	660
CCTGAATCGC GGTTTGGCC GGTCCCTCCG AGAATGTGCC TGCCGTGTTG GCTCCGTTGG	720
TGCGGACCCC GTATATGATC GCCGCCGTCA TAGCCGACAC CAGCGCGAGG GCTACCACAA	780
TGCCGATCAG CAGCCGCTTG TGCCGTCGCT TCGGGTAGGA CACCTGCGGC GGCACGCCGG	840
GATATGCGGC GGGCGGCAGC GCCGCCTCGT CTGCCGGTCC CGGGGCGAAG GCCGGTTCGG	900
CGGGCGCGAG GTCGTGGGG TAGTCCAGGG CTTGGGGTTC GTGGGATGAG GGCTCGGGT	960
ACGGCGCCGG TCCGTTGGTG CCGACACCGG GGTTCGCGA GTGGGGACCG GGCATTGTGG	1020
TTCTCCTAGG GTGGTGGACG GGACCAGCTG CTAGGGCGAC AACCGCCCGT CGCGTCAGCC	1080
GGCAGCATCG GCAATCAGGT GAGCTCCCTA GGCAGGCTAG CGCAACAGCT GCCGTCAGCT	1140
CTCAACCGCGA CGGGGCGGGC CGCGCGCCG ATAATGTTGA AAGACTAGGC AACCTTAGGA	1200
ACGAAGGGACG GAGATTTGT GACGATC	1227

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 181 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGGGCCGGC GGGGCCGGCG	60
GGACCGGCCGC TAACGGTGGT GCCGGCGGCA ACGCCTGGTT GTTCGGGGCC GGCGGGTCCG	120
GCGGNGCCGG CACCAATGGT GGNNTCGCG GGTCCGGCGG ATTGTCTAC GGCAACGGCG	180
G	181

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 290 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGTGTCGGC GGCGGGGGCG	60
GCGACGGCGT CTTTGCCGGT GCCGGCGGCC AGGGCGGCCT CGGTGGGCAG GGCGGCAATG	120

GC GG CG GG CT C ACC GG CG GC AAC GG CG GT TT GG CG GG CG GC GGG CG GT GG GC GG AGG CA AC G 180
CCCC CG GA CG CG CG GT GG CT TG CG GT GG GC AA AC GG CG GT TA AG GG GT GG CC AG GG CG GN ATT GG CG GG CG 240
GC ACT CAG AG CG CG AC CG GC CT CG GN GG GT AC GG CG GT GA CG CG CG GT GA 290

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 34 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GATCCAGTGG CATGGNGGT GTCAGTGGAA GCAT 34

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 155 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

GATCGCTGCT CGTCCCCCC TTGCCGCCGA CGCCACCGGT CCCACCGTTA CCGAACAAAGC 60
TGGCGTGGTC GCCAGCACCC CGGGCACCGC CGACGCCGGA GTCGAACAAT GGCACCGTCG 120
TATCCCCACC ATTGCCGCCG GNCCCACCGG CACCG 155

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

ATGGCGTTCA CGGGGCGCCG GGGACCGGGC AGCCCGGNNGG GGCCGGGGGG TGG 53

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 132 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GATCCACCGC GGGTGCAGAC GGTGCCCGCG GCGCCACCCC GACCAGCGGC GGCAACGGCG	60
GCACCGGGCGG CAACGGCGCG AACGCCACCG TCGTCGGNGG GGCCGGCGGG GCCGGCGGCA	120
AGGGCGGCAA CG	132

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GATCGGGCGGC CGGNACGGNC GGGGACGGCG GCAAGGGCGG NAACGGGGC GCCGNAGCCA	60
CCNGCCAAGA ATCCTCCGNG TCCNCCAATG GCGCGAATGG CGGACAGGGC GGCAACGGCG	120
GCANCAGGGCGG CA	132

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 702 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

CGGCACGAGG ATCGGTACCC CGCGGCATCG GCAGCTGCCG ATTGCCGGG TTTCCCCACC	60
CGAGGAAAGC CGCTACCAGA TGGCGCTGCC GAAGTAGGGC GATCCGTTCG CGATGCCGGC	120
ATGAACGGGC GGCATCAAAT TAGTGCAGGA ACCTTCAGT TTAGCGACGA TAATGGCTAT	180
AGCACTAAGG AGGATGATCC GATATGACGC AGTCGCAGAC CGTGACGGTG GATCAGCAAG	240
AGATTTGAA CAGGGCCAAC GAGGTGGAGG CCCCGATGGC GGACCCACCG ACTGATGTCC	300
CCATCACACC GTGCGAACTC ACGGNGGNTA AAAACGCCGC CCAACAGNTG GTNTTGTCCG	360

CCGACAACAT GCGGGAATAC CTGGCGGCCG GTGCCAAAGA CGGGCAGCGT CTGGCGACCT	420
CGCTGCGCAA CGCGGCCAAG GNGTATGGCG AGGTTGATGA GGAGGGCTGCG ACCGCGCTGG	480
ACAACGACGG CGAAGGAACT GTGCAGGCAG AATCGGCCGG GGCGTCGGA GGGGACAGTT	540
CGGCCGAACT AACCGATAACG CCGAGGGTGG CCACGGCCGG TGAACCCAAC TTCATGGATC	600
TCAAAGAACG GGCAAGGAAG CTCGAAACGG GCGACCAAGG CGCATCGCTC GCGCACTGNG	660
GGGATGGGTG GAACACTTNC ACCCTGACGC TGCAAGGCGA CG	702

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 298 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GAAGCCGCAG CGCTGTCGGG CGACGTGGCG GTCAAAGCGG CATCGCTCGG TGGCGGTGGA	60
GGCGCGGGGG TGCCGTCGGC GCCGTTGGGA TCCGCGATCG GGGGCGCCGA ATCGGTGCGG	120
CCCGCTGGCG CTGGTGACAT TGCCGGCTTA GGCCAGGGAA GGGCCGGCGG CGGCGCCGCG	180
CTGGGCGGCG GTGGCATGGG AATGCCGATG GGTGCCGCGC ATCAGGGACA AGGGGGCGCC	240
AAGTCCAAGG GTTCTCAGCA GGAAGACGAG GCGCTCTACA CCGAGGATCC TCGTGCCG	298

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1058 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:-

CGGCACGAGG ATCGAATCGC GTCGCCGGGA GCACAGCGTC GCACTGCACC AGTGGAGGAG	60
CCATGACCTA CTCGCCGGGT AACCCCGGAT ACCCGCAAGC GCAGCCCGCA GGCTCCTACG	120
GAGGCACAC ACCCTCGTTC GCCCACGCCG ATGAGGGTGC GAGCAAGCTA CCGATGTACC	180
TGAACATCGC GGTGGCAGTG CTCGGTCTGG CTGCGTACTT CGCCAGCTTC GGCCCAATGT	240
TCACCCCTCAG TACCGAACTC GGGGGGGGTG ATGGCGCAGT GTCCGGTGC ACTGGGCTGC	300
CGGTCGGGGT GGCTCTGCTG GCTGCGCTGC TTGCCGGGT GGTTCTGGTG CCTAAGGCCA	360

AGAGCCATGT GACGGTAGTT GCGGTGCTCG GGGTACTCGG CGTATTCTG ATGGTCTCGG	420
CGACGTTAA CAAGCCCAGC GCCTATTGCA CCGGTTGGC ATTGTGGTT GTGTTGGCTT	480
TCATCGTGTT CCAGGCGGTT GCGGCAGTCC TGGCGCTCTT GGTGGAGACC GGCGCTATCA	540
CCGCGCCGGC GCCGCCGGCC AAGTCGACC CGTATGGACA GTACGGCGG TACGGGCAGT	600
ACGGGCAGTA CGGGGTGCAG CCGGGTGGGT ACTACGGTCA GCAGGGTGCT CAGCAGGCCG	660
CGGGACTGCA GTCGCCCGGC CCGCAGCAGT CTCCGCAGCC TCCCGGATAT GGGTCGCAGT	720
ACGGCGGCTA TTCGTCCAGT CCGAGCCAAT CGGGCAGTGG ATACACTGCT CAGCCCCCGG	780
CCCAGCCGCC CGCGCAGTCC GGGTCGCAAC AATCGCACCA GGGCCCATCC ACGCCACCTA	840
CCGGCTTCC GAGCTTCAGC CCACCACAC CGGTCAGTGC CGGGACGGGG TCGCAGGCTG	900
GTTCGGCTCC AGTCAACTAT TCAAACCCCA GCGGGGGCGA GCAGTCGTG TCCCCCGGGG	960
GGGCGCCGGT CTAACCGGGC GTTCCCGCGT CCGGTCCGCG C GTGTGCGCGA AGAGTGAACA	1020
GGGTGTCAGC AAGCGCGGAC GATCCTCGTG CCGAATT	1058

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 327 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CGGCACGAGA GACCGATGCC GCTACCCCTCG CGCAGGAGGC AGGTAATTTC GAGCGGATCT	60
CCGGCGACCT GAAAACCCAG ATCGACCAGG TGGAGTCGAC GGCAGGTTCG TTGCAGGGCC	120
AGTGGCGCGG CGCGGCCGGG ACGGCCGCC AGGCCGCGGT GGTGCGCTTC CAAGAACGAG	180
CCAATAAGCA GAAGCAGGAA CTCGACGAGA TCTCGACGAA TATTGTCAG GCCGGCGTCC	240
AATACTCGAG GGCGACGAG GAGCAGCAGC AGGCCTGTC CTCGCAAATG GGCTTCTGAC	300
CCGCTAATAC GAAAAGAAC GGAGCAA	327

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CGGTCCGCGAT GATGGCGTTG TCGAACGTGA CCGATTCTGT ACCGCCGTCG TTGAGATCAA	60
CCAACAAACGT GTTGGCGTCG GCAAATGTGC CGNACCCGTG GATCTCGGTG ATCTTGTCT	120
TCTTCATCAG GAAAGTGCACA CGGGCCACCC TGCCCTCGGN TACCTTCGG	170

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 127 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

GATCCGGCGG CACGGGGGGT GCCGGCGGCA GCACCGCTGG CGCTGGCGGC AACGGCGGGG	60
CCGGGGGTGG CGGCGGAACC GGTGGGTTGC TCTTCGGCAA CGGCGGTGCC GGCGGGCACG	120
GGGCCGT	127

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 81 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CGGCGGCAAG GGCGGCACCG CC GGCAACGG GAGCGGCGCG GCCGGCGGCA ACGGCGGCAA	60
CGGC GGCTCC GG CCTCAACG G	81

(2) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 149 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

GATCAGGGCT GGCGGCTCC GGCCAGAAGG GCGGTAACGG AGGAGCTGCC GGATTGTTG	60
---	----

GCAACGGCGG GGCCGGNGGT GCCGGCGCGT CCAACCAAGC CGGTAACGGC GGNGCCGGCG	120
GAAACGGTGG TGCCGGTGGG CTGATCTGG	149

(2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 355 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CGGCACGAGA TCACACCTAC CGAGTGATCG AGATCGTCGG GACCTCGCCC GACGGTGTG	60
ACGCGGNAAT CCAGGGCGGT CTGGCCCGAG CTGCGCAGAC CATGCGCGCG CTGGACTGGT	120
TCGAAGTACA GTCAATTGCA GGCCACCTGG TCGACGGAGC GGTGCGCAC TTCCAGGTGA	180
CTATGAAAGT CGGCTTCCGC CTGGAGGATT CCTGAACCTT CAAGCGCGGC CGATAACTGA	240
GGTGCATCAT TAAGCGACTT TTCCAGAACCA TCCTGACGCG CTCGAAACGC GGTTCAGCCG	300
ACGGTGGCTC CGCCGAGGCG CTGCCTCAA AATCCCTGCG ACAATTGTC GGC	355

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 999 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ATGCATCACC ATCACCATCA CATGCATCAG GTGGACCCA ACTTGACACG TCGCAAGGGA	60
CGATTGGCGG CACTGGCTAT CGCGGCGATG GCCAGCGCCA GCCTGGTGAC CGTTGCGGTG	120
CCCGCGACCG CCAACGCCGA TCCGGAGCCA GCGCCCCCGG TACCCACAAC GGCCGCCTCG	180
CCGCCGTCGA CCGCTGCAGC GCCACCCGCA CGGGCGACAC CTGTTGCCCG CCCACCACCG	240
GCCGCCGCCA ACACGCCGAA TGCCCAGCCG GGCGATCCA ACGCAGCACC TCCGCCGGCC	300
GACCCGAACG CACCGCCGCC ACCTGTCATT GCCCCAAACG CACCCCAACC TGTCCGGATC	360
GACAACCCGG TTGGAGGATT CAGCTTCGCG CTGCCTGCTG GCTGGGTGGA GTCTGACGCC	420
GCCCACCTCG ACTACGGTTC AGCACTCCTC AGCAAAACCA CGGGGGACCC GCCATTCCC	480
GGACAGCCGC CGCCGGTGGC CAATGACACC CGTATCGTGC TCGGCCGGCT AGACCAAAAG	540

CTTTACGCCA GCGCCGAAGC CACCGACTCC AAGGCCGCGG CCCGGTTGGG CTCGGACATG	600
GGTGAGTTCT ATATGCCCTA CCCGGGCACC CGGATCAACC AGGAAACCGT CTCGCTCGAC	660
GCCAACGGGG TGTCTGGAAG CGCGTCGTAT TACGAAGTCA AGTTCAGCGA TCCGAGTAAG	720
CCGAACGGCC AGATCTGGAC GGGCGTAATC GGCTCGCCCG CGGCGAACGC ACCGGACGCC	780
GGGCCCCCTC AGCGCTGGTT TGTGGTATGG CTCGGGACCG CCAACAACCC GGTGGACAAG	840
GGCGCGGCCA AGGCGCTGGC CGAATCGATC CGGCCTTTGG TCGCCCCGCC GCCGGCGCCG	900
GCACCGGCTC CTGCAGAGCC CGCTCCGGCG CGGGCGCCGG CCAGGGAAAGT CGCTCCTACC	960
CCGACGACAC CGACACCGCA GCGGACCTTA CGGGCCTGA	999

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met His His His His His Met His Gln Val Asp Pro Asn Leu Thr	
1 5 . . . 10	15
Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser	
20 . . . 25	30
Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro	
35 . . . 40	45
Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr	
50 55 . . . 60	
Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro Pro	
65 70 . . . 75	80
Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala	
85 . . . 90	95
Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro Val Ile Ala Pro	
100 . . . 105	110
Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser	
115 . . . 120	125
Phe Ala Leu Pro Ala Gly Trp Val Glu Ser Asp Ala Ala His Phe Asp	
130 . . . 135	140
Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro	
145 . . . 150	155
Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg	
165 . . . 170	175

Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala
 180 185 190
 Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro
 195 200 205
 Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val
 210 215 220
 Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys
 225 230 235 240
 Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn
 245 250 255
 Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly
 260 265 270
 Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu
 275 280 285
 Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro
 290 295 300
 Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr
 305 310 315 320
 Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala
 325 330

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Asp	Pro	Val	Asp	Ala	Val	Ile	Asn	Thr	Thr	Xaa	Asn	Tyr	Gly	Gln	Val
1					5				10					15	

Val Ala Ala Leu
20

(2) INFORMATION FOR SEQ ID NO:55:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:56:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys
1 5 10 15
Glu Gly Arg

(2) INFORMATION FOR SEQ ID NO:57:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 15 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:58:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 14 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val
1 5 10

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro
1 5 10

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Ala Ala Ala Ala Pro Pro
1 5 10 15
Ala

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Asp	Pro	Ala	Ser	Ala	Pro	Asp	Val	Pro	Thr	Ala	Ala	Gln	Gln	Thr	Ser
1						5			10					15	
Leu	Leu	Asn	Asn	Leu	Ala	Asp	Pro	Asp	Val	Ser	Phe	Ala	Asp		
						20			25				30		

(2) INFORMATION FOR SEQ ID NO:63:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 187 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Thr	Gly	Ser	Leu	Asn	Gln	Thr	His	Asn	Arg	Arg	Ala	Asn	Glu	Arg	Lys
1						5			10				15		
Asn	Thr	Thr	Met	Lys	Met	Val	Lys	Ser	Ile	Ala	Ala	Gly	Leu	Thr	Ala
			20					25					30		
Ala	Ala	Ala	Ile	Gly	Ala	Ala	Ala	Gly	Val	Thr	Ser	Ile	Met	Ala	
			35					40				45			
Gly	Gly	Pro	Val	Val	Tyr	Gln	Met	Gln	Pro	Val	Val	Phe	Gly	Ala	Pro
		50				55					60				
Leu	Pro	Leu	Asp	Pro	Ala	Ser	Ala	Pro	Asp	Val	Pro	Thr	Ala	Ala	Gln
	65				70				75		80				
Leu	Thr	Ser	Leu	Leu	Asn	Ser	Leu	Ala	Asp	Pro	Asn	Val	Ser	Phe	Ala
			85					90				95			
Asn	Lys	Gly	Ser	Leu	Val	Glu	Gly	Gly	Ile	Gly	Gly	Thr	Glu	Ala	Arg
			100					105				110			
Ile	Ala	Asp	His	Lys	Leu	Lys	Lys	Ala	Ala	Glu	His	Gly	Asp	Leu	Pro
		115						120			125				
Leu	Ser	Phe	Ser	Val	Thr	Asn	Ile	Gln	Pro	Ala	Ala	Gly	Ser	Ala	
				130				135			140				
Thr	Ala	Asp	Val	Ser	Val	Ser	Gly	Pro	Lys	Leu	Ser	Ser	Pro	Val	Thr
	145				150				155			160			
Gln	Asn	Val	Thr	Phe	Val	Asn	Gln	Gly	Gly	Trp	Met	Leu	Ser	Arg	Ala
		165							170			175			
Ser	Ala	Met	Glu	Leu	Leu	Gln	Ala	Ala	Gly	Xaa					
			180					185							

(2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 148 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

Asp Glu Val Thr Val Glu Thr Thr Ser Val Phe Arg Ala Asp Phe Leu
1 5 10 15

Ser Glu Leu Asp Ala Pro Ala Gln Ala Gly Thr Glu Ser Ala Val Ser
20 25 30

Gly Val Glu Gly Leu Pro Pro Gly Ser Ala Leu Leu Val Val Lys Arg
35 40 45

Gly Pro Asn Ala Gly Ser Arg Phe Leu Leu Asp Gln Ala Ile Thr Ser
50 55 60

Ala Gly Arg His Pro Asp Ser Asp Ile Phe Leu Asp Asp Val Thr Val
65 70 75 80

Ser Arg Arg His Ala Glu Phe Arg Leu Glu Asn Asn Glu Phe Asn Val
85 90 95

Val Asp Val Gly Ser Leu Asn Gly Thr Tyr Val Asn Arg Glu Pro Val
100 105 110

Asp Ser Ala Val Leu Ala Asn Gly Asp Glu Val Gln Ile Gly Lys Leu
115 120 125

Arg Leu Val Phe Leu Thr Gly Pro Lys Gln Gly Glu Asp Asp Gly Ser
130 135 140

Thr Gly Gly Pro
145

(2) INFORMATION FOR SEQ ID NO:65:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 230 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

Thr Ser Asn Arg Pro Ala Arg Arg Gly Arg Arg Ala Pro Arg Asp Thr
1 5 10 15

Gly Pro Asp Arg Ser Ala Ser Leu Ser Leu Val Arg His Arg Arg Gln
20 25 30

Gln Arg Asp Ala Leu Cys Leu Ser Ser Thr Gln Ile Ser Arg Gln Ser
 35 40 45
 Asn Leu Pro Pro Ala Ala Gly Gly Ala Ala Asn Tyr Ser Arg Arg Asn
 50 55 60
 Phe Asp Val Arg Ile Lys Ile Phe Met Leu Val Thr Ala Val Val Leu
 65 70 75 80
 Leu Cys Cys Ser Gly Val Ala Thr Ala Ala Pro Lys Thr Tyr Cys Glu
 85 90 95
 Glu Leu Lys Gly Thr Asp Thr Gly Gln Ala Cys Gln Ile Gln Met Ser
 100 105 110
 Asp Pro Ala Tyr Asn Ile Asn Ile Ser Leu Pro Ser Tyr Tyr Pro Asp
 115 120 125
 Gln Lys Ser Leu Glu Asn Tyr Ile Ala Gln Thr Arg Asp Lys Phe Leu
 130 135 140
 Ser Ala Ala Thr Ser Ser Thr Pro Arg Glu Ala Pro Tyr Glu Leu Asn
 145 150 155 160
 Ile Thr Ser Ala Thr Tyr Gln Ser Ala Ile Pro Pro Arg Gly Thr Gln
 165 170 175
 Ala Val Val Leu Xaa Val Tyr His Asn Ala Gly Gly Thr His Pro Thr
 180 185 190
 Thr Thr Tyr Lys Ala Phe Asp Trp Asp Gln Ala Tyr Arg Lys Pro Ile
 195 200 205
 Thr Tyr Asp Thr Leu Trp Gln Ala Asp Thr Asp Pro Leu Pro Val Val
 210 215 220
 Phe Pro Ile Val Ala Arg
 225 230

(2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe
 1 5 10 15
 Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser
 20 25 30
 Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly
 35 40 45

Leu	Gly	Val	Val	Asp	Asn	Asn	Gly	Asn	Gly	Ala	Arg	Val	Gln	Arg	Val
50							55				60				
Val	Gly	Ser	Ala	Pro	Ala	Ala	Ser	Leu	Gly	Ile	Ser	Thr	Gly	Asp	Val
65							70			75			80		
Ile	Thr	Ala	Val	Asp	Gly	Ala	Pro	Ile	Asn	Ser	Ala	Thr	Ala	Met	Ala
							85			90			95		
Asp	Ala	Leu	Asn	Gly	His	His	Pro	Gly	Asp	Val	Ile	Ser	Val	Asn	Trp
							100			105			110		
Gln	Thr	Lys	Ser	Gly	Gly	Thr	Arg	Thr	Gly	Asn	Val	Thr	Leu	Ala	Glu
							115			120			125		
Gly	Pro	Pro	Ala												
			130												

(2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

Val	Pro	Leu	Arg	Ser	Pro	Ser	Met	Ser	Pro	Ser	Lys	Cys	Leu	Ala	Ala
1							5				10				15
Ala	Gln	Arg	Asn	Pro	Val	Ile	Arg	Arg	Arg	Arg	Leu	Ser	Asn	Pro	Pro
							20				25			30	
Pro	Arg	Lys	Tyr	Arg	Ser	Met	Pro	Ser	Pro	Ala	Thr	Ala	Ser	Ala	Gly
							35			40			45		
Met	Ala	Arg	Val	Arg	Arg	Ala	Ile	Trp	Arg	Gly	Pro	Ala	Thr	Xaa	
							50			55			60		
Ser	Ala	Gly	Met	Ala	Arg	Val	Arg	Arg	Trp	Xaa	Val	Met	Pro	Xaa	Val
							65			70			75		80
Ile	Gln	Ser	Thr	Xaa	Ile	Arg	Xaa	Xaa	Gly	Pro	Phe	Asp	Asn	Arg	Gly
							85			90			95		
Ser	Glu	Arg	Lys												
			100												

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 163 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

Met Thr Asp Asp Ile Leu Leu Ile Asp Thr Asp Glu Arg Val Arg Thr
1 5 10 15

Leu Thr Leu Asn Arg Pro Gln Ser Arg Asn Ala Leu Ser Ala Ala Leu
20 25 30

Arg Asp Arg Phe Phe Ala Xaa Leu Xaa Asp Ala Glu Xaa Asp Asp Asp
35 40 45

Ile Asp Val Val Ile Leu Thr Gly Ala Asp Pro Val Phe Cys Ala Gly
50 55 60

Leu Asp Leu Lys Val Ala Gly Arg Ala Asp Arg Ala Ala Gly His Leu
65 70 75 80

Thr Ala Val Gly Gly His Asp Gln Ala Gly Asp Arg Arg Asp Gln Arg
85 90 95

Arg Arg Gly His Arg Arg Ala Arg Thr Gly Ala Val Leu Arg His Pro
100 105 110

Asp Arg Leu Arg Ala Arg Pro Leu Arg Arg His Pro Arg Pro Gly Gly
115 120 125

Ala Ala Ala His Leu Gly Thr Gln Cys Val Leu Ala Ala Lys Gly Arg
130 135 140

His Arg Xaa Gly Pro Val Asp Glu Pro Asp Arg Arg Leu Pro Val Arg
145 150 155 160

Asp Arg Arg

(2) INFORMATION FOR SEQ ID NO:69:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 344 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Met Lys Phe Val Asn His Ile Glu Pro Val Ala Pro Arg Arg Ala Gly
1 5 10 15

Gly Ala Val Ala Glu Val Tyr Ala Glu Ala Arg Arg Glu Phe Gly Arg
20 25 30

Leu Pro Glu Pro Leu Ala Met Leu Ser Pro Asp Glu Gly Leu Leu Thr
35 40 45

100

Ala Gly Trp Ala Thr Leu Arg Glu Thr Leu Leu Val Gly Gln Val Pro
 50 55 60

Arg Gly Arg Lys Glu Ala Val Ala Ala Val Ala Ala Ser Leu Arg
 65 70 75 80

Cys Pro Trp Cys Val Asp Ala His Thr Thr Met Leu Tyr Ala Ala Gly
 85 90 95

Gln Thr Asp Thr Ala Ala Ala Ile Leu Ala Gly Thr Ala Pro Ala Ala
 100 105 110

Gly Asp Pro Asn Ala Pro Tyr Val Ala Trp Ala Ala Gly Thr Gly Thr
 115 120 125

Pro Ala Gly Pro Pro Ala Pro Phe Gly Pro Asp Val Ala Ala Glu Tyr
 130 135 140

Leu Gly Thr Ala Val Gln Phe His Phe Ile Ala Arg Leu Val Leu Val
 145 150 155 160

Leu Leu Asp Glu Thr Phe Leu Pro Gly Gly Pro Arg Ala Gln Gln Leu
 165 170 175

Met Arg Arg Ala Gly Gly Leu Val Phe Ala Arg Lys Val Arg Ala Glu
 180 185 190

His Arg Pro Gly Arg Ser Thr Arg Arg Leu Glu Pro Arg Thr Leu Pro
 195 200 205

Asp Asp Leu Ala Trp Ala Thr Pro Ser Glu Pro Ile Ala Thr Ala Phe
 210 215 220

Ala Ala Leu Ser His His Leu Asp Thr Ala Pro His Leu Pro Pro Pro
 225 230 235 240

Thr Arg Gln Val Val Arg Arg Val Val Gly Ser Trp His Gly Glu Pro
 245 250 255

Met Pro Met Ser Ser Arg Trp Thr Asn Glu His Thr Ala Glu Leu Pro
 260 265 270

Ala Asp Leu His Ala Pro Thr Arg Leu Ala Leu Leu Thr Gly Leu Ala
 275 280 285

Pro His Gln Val Thr Asp Asp Asp Val Ala Ala Ala Arg Ser Leu Leu
 290 295 300

Asp Thr Asp Ala Ala Leu Val Gly Ala Leu Ala Trp Ala Ala Phe Thr
 305 310 315 320

Ala Ala Arg Arg Ile Gly Thr Trp Ile Gly Ala Ala Ala Glu Gly Gln
 325 330 335

Val Ser Arg Gln Asn Pro Thr Gly
 340

(2) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 485 amino acids
 - (B) TYPE: amino acid

101

- (C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

Asp Asp Pro Asp Met Pro Gly Thr Val Ala Lys Ala Val Ala Asp Ala
1 5 10 15

Leu Gly Arg Gly Ile Ala Pro Val Glu Asp Ile Gln Asp Cys Val Glu
20 25 30

Ala Arg Leu Gly Glu Ala Gly Leu Asp Asp Val Ala Arg Val Tyr Ile
35 40 45

Ile Tyr Arg Gln Arg Ala Glu Leu Arg Thr Ala Lys Ala Leu Leu
50 55 60

Gly Val Arg Asp Glu Leu Lys Leu Ser Leu Ala Ala Val Thr Val Leu
65 70 75 80

Arg Glu Arg Tyr Leu Leu His Asp Glu Gln Gly Arg Pro Ala Glu Ser
85 90 95

Thr Gly Glu Leu Met Asp Arg Ser Ala Arg Cys Val Ala Ala Glu
100 105 110

Asp Gln Tyr Glu Pro Gly Ser Ser Arg Arg Trp Ala Glu Arg Phe Ala
115 120 125

Thr Leu Leu Arg Asn Leu Glu Phe Leu Pro Asn Ser Pro Thr Leu Met
130 135 140

Asn Ser Gly Thr Asp Leu Gly Leu Leu Ala Gly Cys Phe Val Leu Pro
145 150 155 160

Ile Glu Asp Ser Leu Gln Ser Ile Phe Ala Thr Leu Gly Gln Ala Ala
165 170 175

Glu Leu Gln Arg Ala Gly Gly Thr Gly Tyr Ala Phe Ser His Leu
180 185 190

Arg Pro Ala Gly Asp Arg Val Ala Ser Thr Gly Gly Thr Ala Ser Gly
195 200 205

Pro Val Ser Phe Leu Arg Leu Tyr Asp Ser Ala Ala Gly Val Val Ser
210 215 220

Met Gly Gly Arg Arg Gly Ala Cys Met Ala Val Leu Asp Val Ser
225 230 235 240

His Pro Asp Ile Cys Asp Phe Val Thr Ala Lys Ala Glu Ser Pro Ser
245 250 255

Glu Leu Pro His Phe Asn Leu Ser Val Gly Val Thr Asp Ala Phe Leu
260 265 270

Arg Ala Val Glu Arg Asn Gly Leu His Arg Leu Val Asn Pro Arg Thr
275 280 285

Gly Lys Ile Val Ala Arg Met Pro Ala Ala Glu Leu Phe Asp Ala Ile
 290 295 300
 Cys Lys Ala Ala His Ala Gly Gly Asp Pro Gly Leu Val Phe Leu Asp
 305 310 315 320
 Thr Ile Asn Arg Ala Asn Pro Val Pro Gly Arg Gly Arg Ile Glu Ala
 325 330 335
 Thr Asn Pro Cys Gly Glu Val Pro Leu Leu Pro Tyr Glu Ser Cys Asn
 340 345 350
 Leu Gly Ser Ile Asn Leu Ala Arg Met Leu Ala Asp Gly Arg Val Asp
 355 360 365
 Trp Asp Arg Leu Glu Glu Val Ala Gly Val Ala Val Arg Phe Leu Asp
 370 375 380
 Asp Val Ile Asp Val Ser Arg Tyr Pro Phe Pro Glu Leu Gly Glu Ala
 385 390 395 400
 Ala Arg Ala Thr Arg Lys Ile Gly Leu Gly Val Met Gly Leu Ala Glu
 405 410 415
 Leu Leu Ala Ala Leu Gly Ile Pro Tyr Asp Ser Glu Glu Ala Val Arg
 420 425 430
 Leu Ala Thr Arg Leu Met Arg Arg Ile Gln Gln Ala Ala His Thr Ala
 435 440 445
 Ser Arg Arg Leu Ala Glu Glu Arg Gly Ala Phe Pro Ala Phe Thr Asp
 450 455 460
 Ser Arg Phe Ala Arg Ser Gly Pro Arg Arg Asn Ala Gln Val Thr Ser
 465 470 475 480
 Val Ala Pro Thr Gly
 485

(2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

Gly Val Ile Val Leu Asp Leu Glu Pro Arg Gly Pro Leu Pro Thr Glu
 1 5 10 15
 Ile Tyr Trp Arg Arg Arg Gly Leu Ala Leu Gly Ile Ala Val Val Val
 20 25 30
 Val Gly Ile Ala Val Ala Ile Val Ile Ala Phe Val Asp Ser Ser Ala
 35 40 45

Gly Ala Lys Pro Val Ser Ala Asp Lys Pro Ala Ser Ala Gln Ser His
 50 55 60

Pro Gly Ser Pro Ala Pro Gln Ala Pro Gln Pro Ala Gly Gln Thr Glu
 65 70 75 80

Gly Asn Ala Ala Ala Ala Pro Pro Gln Gly Gln Asn Pro Glu Thr Pro
 85 90 95

Thr Pro Thr Ala Ala Val Gln Pro Pro Pro Val Leu Lys Glu Gly Asp
 100 105 110

Asp Cys Pro Asp Ser Thr Leu Ala Val Lys Gly Leu Thr Asn Ala Pro
 115 120 125

Gln Tyr Tyr Val Gly Asp Gln Pro Lys Phe Thr Met Val Val Thr Asn
 130 135 140

Ile Gly Leu Val Ser Cys Lys Arg Asp Val Gly Ala Ala Val Leu Ala
 145 150 155 160

Ala Tyr Val Tyr Ser Leu Asp Asn Lys Arg Leu Trp Ser Asn Leu Asp
 165 170 175

Cys Ala Pro Ser Asn Glu Thr Leu Val Lys Thr Phe Ser Pro Gly Glu
 180 185 190

Gln Val Thr Thr Ala Val Thr Trp Thr Gly Met Gly Ser Ala Pro Arg
 195 200 205

Cys Pro Leu Pro Arg Pro Ala Ile Gly Pro Gly Thr Tyr Asn Leu Val
 210 215 220

Val Gln Leu Gly Asn Leu Arg Ser Leu Pro Val Pro Phe Ile Leu Asn
 225 230 235 240

Gln Pro Pro Pro Pro Gly Pro Val Pro Ala Pro Gly Pro Ala Gln
 245 250 255

Ala Pro Pro Pro Glu Ser Pro Ala Gln Gly Gly
 260 265

(2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly Val Gln Val
 1 5 10 15

Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu Val Val Ala
 20 25 30

Gly Gly Ala Ala Ala Asn Ala Gly Val Pro Lys Gly Val Val Val Thr
35 40 45

Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu Val Ala Ala
50 55 60

Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr Phe Gln Asp
65 70 75 80

Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly Lys Ala Glu
85 90 95

Gln

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 364 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

Gly Ala Ala Val Ser Leu Leu Ala Ala Gly Thr Leu Val Leu Thr Ala
1 5 10 15

Cys Gly Gly Gly Thr Asn Ser Ser Ser Ser Gly Ala Gly Gly Thr Ser
20 25 30

Gly Ser Val His Cys Gly Gly Lys Lys Glu Leu His Ser Ser Gly Ser
35 40 45

Thr Ala Gln Glu Asn Ala Met Glu Gln Phe Val Tyr Ala Tyr Val Arg
50 55 60

Ser Cys Pro Gly Tyr Thr Leu Asp Tyr Asn Ala Asn Gly Ser Gly Ala
65 70 75 80

Gly Val Thr Gln Phe Leu Asn Asn Glu Thr Asp Phe Ala Gly Ser Asp
85 90 95

Val Pro Leu Asn Pro Ser Thr Gly Gln Pro Asp Arg Ser Ala Glu Arg
100 105 110

Cys Gly Ser Pro Ala Trp Asp Leu Pro Thr Val Phe Gly Pro Ile Ala
115 120 125

Ile Thr Tyr Asn Ile Lys Gly Val Ser Thr Leu Asn Leu Asp Gly Pro
130 135 140

Thr Thr Ala Lys Ile Phe Asn Gly Thr Ile Thr Val Trp Asn Asp Pro
145 150 155 160

Gln Ile Gln Ala Leu Asn Ser Gly Thr Asp Leu Pro Pro Thr Pro Ile
165 170 175

Ser Val Ile Phe Arg Ser Asp Lys Ser Gly Thr Ser Asp Asn Phe Gln
 180 185 190
 Lys Tyr Leu Asp Gly Val Ser Asn Gly Ala Trp Gly Lys Gly Ala Ser
 195 200 205
 Glu Thr Phe Ser Gly Gly Val Gly Val Gly Ala Ser Gly Asn Asn Gly
 210 215 220
 Thr Ser Ala Leu Leu Gln Thr Thr Asp Gly Ser Ile Thr Tyr Asn Glu
 225 230 235 240
 Trp Ser Phe Ala Val Gly Lys Gln Leu Asn Met Ala Gln Ile Ile Thr
 245 250 255
 Ser Ala Gly Pro Asp Pro Val Ala Ile Thr Thr Glu Ser Val Gly Lys
 260 265 270
 Thr Ile Ala Gly Ala Lys Ile Met Gly Gln Gly Asn Asp Leu Val Leu
 275 280 285
 Asp Thr Ser Ser Phe Tyr Arg Pro Thr Gln Pro Gly Ser Tyr Pro Ile
 290 295 300
 Val Leu Ala Thr Tyr Glu Ile Val Cys Ser Lys Tyr Pro Asp Ala Thr
 305 310 315 320
 Thr Gly Thr Ala Val Arg Ala Phe Met Gln Ala Ala Ile Gly Pro Gly
 325 330 335
 Gln Glu Gly Leu Asp Gln Tyr Gly Ser Ile Pro Leu Pro Lys Ser Phe
 340 345 350
 Gln Ala Lys Leu Ala Ala Ala Val Asn Ala Ile Ser
 355 360

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 309 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

Gln Ala Ala Ala Gly Arg Ala Val Arg Arg Thr Gly His Ala Glu Asp
 1 5 10 15
 Gln Thr His Gln Asp Arg Leu His His Gly Cys Arg Arg Ala Ala Val
 20 25 30
 Val Val Arg Gln Asp Arg Ala Ser Val Ser Ala Thr Ser Ala Arg Pro
 35 40 45
 Pro Arg Arg His Pro Ala Gln Gly His Arg Arg Arg Val Ala Pro Ser
 50 55 60

Gly Gly Arg Arg Arg Pro His Pro His His Val Gln Pro Asp Asp Arg
 65 70 75 80

Arg Asp Arg Pro Ala Leu Leu Asp Arg Thr Gln Pro Ala Glu His Pro
 85 90 95

Asp Pro His Arg Arg Gly Pro Ala Asp Pro Gly Arg Val Arg Gly Arg
 100 105 110

Gly Arg Leu Arg Arg Val Asp Asp Gly Arg Leu Gln Pro Asp Arg Asp
 115 120 125

Ala Asp His Gly Ala Pro Val Arg Gly Arg Gly Pro His Arg Gly Val
 130 135 140

Gln His Arg Gly Gly Pro Val Phe Val Arg Arg Val Pro Gly Val Arg
 145 150 155 160

Cys Ala His Arg Arg Gly His Arg Arg Val Ala Ala Pro Gly Gln Gly
 165 170 175

Asp Val Leu Arg Ala Gly Leu Arg Val Glu Arg Leu Arg Pro Val Ala
 180 185 190

Ala Val Glu Asn Leu His Arg Gly Ser Gln Arg Ala Asp Gly Arg Val
 195 200 205

Phe Arg Pro Ile Arg Arg Gly Ala Arg Leu Pro Ala Arg Arg Ser Arg
 210 215 220

Ala Gly Pro Gln Gly Arg Leu His Leu Asp Gly Ala Gly Pro Ser Pro
 225 230 235 240

Leu Pro Ala Arg Ala Gly Gln Gln Pro Ser Ser Ala Gly Gly Arg
 245 250 255

Arg Ala Gly Gly Ala Glu Arg Ala Asp Pro Gly Gln Arg Gly Arg His
 260 265 270

His Gln Gly Gly His Asp Pro Gly Arg Gln Gly Ala Gln Arg Gly Thr
 275 280 285

Ala Gly Val Ala His Ala Ala Gly Pro Arg Arg Ala Ala Val Arg
 290 295 300

Asn Arg Pro Arg Arg
 305

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

Ser Ala Val Trp Cys Leu Asn Gly Phe Thr Gly Arg His Arg His Gly
1 5 10 15

Arg Cys Arg Val Arg Ala Ser Gly Trp Arg Ser Ser Asn Arg Trp Cys
20 25 30

Ser Thr Thr Ala Asp Cys Cys Ala Ser Lys Thr Pro Thr Gln Ala Ala
35 40 45

Ser Pro Leu Glu Arg Arg Phe Thr Cys Cys Ser Pro Ala Val Gly Cys
50 55 60

Arg Phe Arg Ser Phe Pro Val Arg Arg Leu Ala Leu Gly Ala Arg Thr
65 70 75 80

Ser Arg Thr Leu Gly Val Arg Arg Thr Leu Ser Gln Trp Asn Leu Ser
85 90 95

Pro Arg Ala Gln Pro Ser Cys Ala Val Thr Val Glu Ser His Thr His
100 105 110

Ala Ser Pro Arg Met Ala Lys Leu Ala Arg Val Val Gly Leu Val Gln
115 120 125

Glu Glu Gln Pro Ser Asp Met Thr Asn His Pro Arg Tyr Ser Pro Pro
130 135 140

Pro Gln Gln Pro Gly Thr Pro Gly Tyr Ala Gln Gly Gln Gln Gln Thr
145 150 155 160

Tyr Ser Gln Gln Phe Asp Trp Arg Tyr Pro Pro Ser Pro Pro Pro Gln
165 170 175

Pro Thr Gln Tyr Arg Gln Pro Tyr Glu Ala Leu Gly Gly Thr Arg Pro
180 185 190

Gly Leu Ile Pro Gly Val Ile Pro Thr Met Thr Pro Pro Pro Gly Met
195 200 205

Val Arg Gln Arg Pro Arg Ala Gly Met Leu Ala Ile Gly Ala Val Thr
210 215 220

Ile Ala Val Val Ser Ala Gly Ile Gly Gly Ala Ala Ala Ser Leu Val
225 230 235 240

Gly Phe Asn Arg Ala Pro Ala Gly Pro Ser Gly Gly Pro Val Ala Ala
245 250 255

Ser Ala Ala Pro Ser Ile Pro Ala Ala Asn Met Pro Pro Gly Ser Val
260 265 270

Glu Gln Val Ala Ala Lys Val Val Pro Ser Val Val Met Leu Glu Thr
275 280 285

Asp Leu Gly Arg Gln Ser Glu Glu Gly Ser Gly Ile Ile Leu Ser Ala
290 295 300

Glu Gly Leu Ile Leu Thr Asn Asn His Val Ile Ala Ala Ala Ala Lys
305 310 315 320

Pro Pro Leu Gly Ser Pro Pro Pro Lys Thr Thr Val Thr Phe Ser Asp

108

325	330	335
Gly Arg Thr Ala Pro Phe Thr Val Val Gly Ala Asp Pro Thr Ser Asp		
340	345	350
Ile Ala Val Val Arg Val Gln Gly Val Ser Gly Leu Thr Pro Ile Ser		
355	360	365
Leu Gly Ser Ser Ser Asp Leu Arg Val Gly Gln Pro Val Leu Ala Ile		
370	375	380
Gly Ser Pro Leu Gly Leu Glu Gly Thr Val Thr Thr Gly Ile Val Ser		
385	390	395
Ala Leu Asn Arg Pro Val Ser Thr Thr Gly Glu Ala Gly Asn Gln Asn		
405	410	415
Thr Val Leu Asp Ala Ile Gln Thr Asp Ala Ala Ile Asn Pro Gly Asn		
420	425	430
Ser Gly Gly Ala Leu Val Asn Met Asn Ala Gln Leu Val Gly Val Asn		
435	440	445
Ser Ala Ile Ala Thr Leu Gly Ala Asp Ser Ala Asp Ala Gln Ser Gly		
450	455	460
Ser Ile Gly Leu Gly Phe Ala Ile Pro Val Asp Gln Ala Lys Arg Ile		
465	470	475
Ala Asp Glu Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly		
485	490	495
Val Gln Val Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu		
500	505	510
Val Val Ala Gly Gly Ala Ala Ala Asn Ala Gly Val Pro Lys Gly Val		
515	520	525
Val Val Thr Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu		
530	535	540
Val Ala Ala Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr		
545	550	555
Phe Gln Asp Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly		
565	570	575
Lys Ala Glu Gln		
580		

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 233 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

Met Asn Asp Gly Lys Arg Ala Val Thr Ser Ala Val Leu Val Val Leu
 1 5 10 15

Gly Ala Cys Leu Ala Leu Trp Leu Ser Gly Cys Ser Ser Pro Lys Pro
 20 25 30

Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro
 35 40 45

Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala Thr Lys Gly Leu
 50 55 60

Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys Val Asp Ser Leu
 65 70 75 80

Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala Asn Pro Leu Ala
 85 90 95

Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly Val Pro Phe Arg
 100 105 110

Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp Asp Trp Ser Asn
 115 120 125

Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val Leu Asp Pro Ala
 130 135 140

Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn Leu Gln Ala Gln
 145 150 155 160

Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys Ile Thr Gly Thr
 165 170 175

Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly Ala Lys Ser Ala
 180 185 190

Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser His His Leu Val
 195 200 205

Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln Leu Thr Gln Ser
 210 215 220

Lys Trp Asn Glu Pro Val Asn Val Asp
 225 230

(2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 66 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala

110

1	5	10	15												
Ala	Glu	Ala	Val	Gln	Arg	Ala	Arg	Asp	Ser	Val	Asp	Asp	Ile	Arg	Val
			20					25							30
Ala	Arg	Val	Ile	Glu	Gln	Asp	Met	Ala	Val	Asp	Ser	Ala	Gly	Lys	Ile
			35					40							45
Thr	Tyr	Arg	Ile	Lys	Leu	Glu	Val	Ser	Phe	Lys	Met	Arg	Pro	Ala	Gln
			50			55					60				
Pro	Arg														
	65														

(2) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 69 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Val	Pro	Pro	Ala	Pro	Pro	Leu	Pro	Pro	Leu	Pro	Pro	Ser	Pro	Ile	Ser
1				5					10					15	
Cys	Ala	Ser	Pro	Pro	Ser	Pro	Pro	Leu	Pro	Pro	Ala	Pro	Pro	Val	Ala
				20					25					30	
Pro	Gly	Pro	Pro	Met	Pro	Pro	Leu	Asp	Pro	Trp	Pro	Pro	Ala	Pro	Pro
				35				40						45	
Leu	Pro	Tyr	Ser	Thr	Pro	Pro	Gly	Ala	Pro	Leu	Pro	Pro	Ser	Pro	Pro
				50				55					60		
Ser	Pro	Pro	Leu	Pro											
	65														

(2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 355 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Met	Ser	Asn	Ser	Arg	Arg	Arg	Ser	Leu	Arg	Trp	Ser	Trp	Leu	Leu	Ser
1				5					10				15		
Val	Leu	Ala	Ala	Val	Gly	Leu	Gly	Leu	Ala	Thr	Ala	Pro	Ala	Gln	Ala
				20					25				30		

Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu
 35 40 45

Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val
 50 55 60

Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr
 65 70 75 80

Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val
 85 90 95

Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln
 100 105 110

Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala
 115 120 125

Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly
 130 135 140

Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly
 145 150 155 160

Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu
 165 170 175

Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr
 180 185 190

Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser
 195 200 205

Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr
 210 215 220

Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe Ala
 225 230 235 240

Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly
 245 250 255

Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu
 260 265 270

Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val
 275 280 285

Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile
 290 295 300

Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp
 305 310 315 320

Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln
 325 330 335

Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly
 340 345 350

Pro Pro Ala

355

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

Ser	Pro	Lys	Pro	Asp	Ala	Glu	Glu	Gln	Gly	Val	Pro	Val	Ser	Pro	Thr
1					5				10					15	
Ala	Ser	Asp	Pro	Ala	Leu	Leu	Ala	Glu	Ile	Arg	Gln	Ser	Leu	Asp	Ala
					20				25				30		
Thr	Lys	Gly	Leu	Thr	Ser	Val	His	Val	Ala	Val	Arg	Thr	Thr	Gly	Lys
					35			40				45			
Val	Asp	Ser	Leu	Leu	Gly	Ile	Thr	Ser	Ala	Asp	Val	Asp	Val	Arg	Ala
					50			55			60				
Asn	Pro	Leu	Ala	Ala	Lys	Gly	Val	Cys	Thr	Tyr	Asn	Asp	Glu	Gln	Gly
					65		70		75				80		
Val	Pro	Phe	Arg	Val	Gln	Gly	Asp	Asn	Ile	Ser	Val	Lys	Leu	Phe	Asp
					85			90				95			
Asp	Trp	Ser	Asn	Leu	Gly	Ser	Ile	Ser	Glu	Leu	Ser	Thr	Ser	Arg	Val
				100				105				110			
Leu	Asp	Pro	Ala	Ala	Gly	Val	Thr	Gln	Leu	Leu	Ser	Gly	Val	Thr	Asn
				115				120				125			
Leu	Gln	Ala	Gln	Gly	Thr	Glu	Val	Ile	Asp	Gly	Ile	Ser	Thr	Thr	Lys
				130				135			140				
Ile	Thr	Gly	Thr	Ile	Pro	Ala	Ser	Ser	Val	Lys	Met	Leu	Asp	Pro	Gly
				145				150			155			160	
Ala	Lys	Ser	Ala	Arg	Pro	Ala	Thr	Val	Trp	Ile	Ala	Gln	Asp	Gly	Ser
				165				170				175			
His	His	Leu	Val	Arg	Ala	Ser	Ile	Asp	Leu	Gly	Ser	Gly	Ser	Ile	Gln
				180				185			190				
Leu	Thr	Gln	Ser	Lys	Trp	Asn	Glu	Pro	Val	Asn	Val	Asp			
				195				200			205				

(2) INFORMATION FOR SEQ ID NO:81:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 286 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

Gly Asp Ser Phe Trp Ala Ala Ala Asp Gln Met Ala Arg Gly Phe Val
1 5 10 15

Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln
20 25 30

His Ala Asp Gly His Ser Leu Leu Leu Asp Ala Thr Asn Pro Ala Val
35 40 45

Val Ala Tyr Asp Pro Ala Phe Ala Tyr Glu Ile Gly Tyr Ile Xaa Glu
50 55 60

Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro Glu Asn Ile Phe Phe
65 70 75 80

Tyr Ile Thr Val Tyr Asn Glu Pro Tyr Val Gln Pro Pro Glu Pro Glu
85 90 95

Asn Phe Asp Pro Glu Gly Val Leu Gly Ile Tyr Arg Tyr His Ala
100 105 110

Ala Thr Glu Gln Arg Thr Asn Lys Xaa Gln Ile Leu Ala Ser Gly Val
115 120 125

Ala Met Pro Ala Ala Leu Arg Ala Ala Gln Met Leu Ala Ala Glu Trp
130 135 140

Asp Val Ala Ala Asp Val Trp Ser Val Thr Ser Trp Gly Glu Leu Asn
145 150 155 160

Arg Asp Gly Val Val Ile Glu Thr Glu Lys Leu Arg His Pro Asp Arg
165 170 175

Pro Ala Gly Val Pro Tyr Val Thr Arg Ala Leu Glu Asn Ala Arg Gly
180 185 190

Pro Val Ile Ala Val Ser Asp Trp Met Arg Ala Val Pro Glu Gln Ile
195 200 205

Arg Pro Trp Val Pro Gly Thr Tyr Leu Thr Leu Gly Thr Asp Gly Phe
210 215 220

Gly Phe Ser Asp Thr Arg Pro Ala Gly Arg Arg Tyr Phe Asn Thr Asp
225 230 235 240

Ala Glu Ser Gln Val Gly Arg Gly Phe Gly Arg Gly Trp Pro Gly Arg
245 250 255

Arg Val Asn Ile Asp Pro Phe Gly Ala Gly Arg Gly Pro Pro Ala Gln
260 265 270

Leu Pro Gly Phe Asp Glu Gly Gly Leu Arg Pro Xaa Lys
275 280 285

(2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 173 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

Thr Lys Phe His Ala Leu Met Gln Glu Gln Ile His Asn Glu Phe Thr
1 5 10 15

Ala Ala Gln Gln Tyr Val Ala Ile Ala Val Tyr Phe Asp Ser Glu Asp
20 25 30

Leu Pro Gln Leu Ala Lys His Phe Tyr Ser Gln Ala Val Glu Glu Arg
35 40 45

Asn His Ala Met Met Leu Val Gln His Leu Leu Asp Arg Asp Leu Arg
50 55 60

Val Glu Ile Pro Gly Val Asp Thr Val Arg Asn Gln Phe Asp Arg Pro
65 70 75 80

Arg Glu Ala Leu Ala Leu Asp Gln Glu Arg Thr Val Thr Asp
85 90 95

Gln Val Gly Arg Leu Thr Ala Val Ala Arg Asp Glu Gly Asp Phe Leu
100 105 110

Gly Glu Gln Phe Met Gln Trp Phe Leu Gln Glu Gln Ile Glu Glu Val
115 120 125

Ala Leu Met Ala Thr Leu Val Arg Val Ala Asp Arg Ala Gly Ala Asn
130 135 140

Leu Phe Glu Leu Glu Asn Phe Val Ala Arg Glu Val Asp Val Ala Pro
145 150 155 160

Ala Ala Ser Gly Ala Pro His Ala Ala Gly Gly Arg Leu
165 170

(2) INFORMATION FOR SEQ ID NO:83:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

Arg Ala Asp Glu Arg Lys Asn Thr Thr Met Lys Met Val Lys Ser Ile
1 5 10 15

Ala Ala Gly Leu Thr Ala Ala Ala Ala Ile Gly Ala Ala Ala Ala Gly
 20 25 30

Val Thr Ser Ile Met Ala Gly Gly Pro Val Val Tyr Gln Met Gln Pro
 35 40 45

Val Val Phe Gly Ala Pro Leu Pro Leu Asp Pro Xaa Ser Ala Pro Xaa
 50 55 60

Val Pro Thr Ala Ala Gln Trp Thr Xaa Leu Leu Asn Xaa Leu Xaa Asp
 65 70 75 80

Pro Asn Val Ser Phe Xaa Asn Lys Gly Ser Leu Val Glu Gly Gly Ile
 85 90 95

Gly Gly Xaa Glu Gly Xaa Xaa Arg Arg Xaa Gln
 100 105

(2) INFORMATION FOR SEQ ID NO:84:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

Val Leu Ser Val Pro Val Gly Asp Gly Phe Trp Xaa Arg Val Val Asn
 1 5 10 15

Pro Leu Gly Gln Pro Ile Asp Gly Arg Gly Asp Val Asp Ser Asp Thr
 20 25 30

Arg Arg Ala Leu Glu Leu Gln Ala Pro Ser Val Val Xaa Arg Gln Gly
 35 40 45

Val Lys Glu Pro Leu Xaa Thr Gly Ile Lys Ala Ile Asp Ala Met Thr
 50 55 60

Pro Ile Gly Arg Gly Gln Arg Gln Leu Ile Ile Gly Asp Arg Lys Thr
 65 70 75 80

Gly Lys Asn Arg Arg Leu Cys Arg Thr Pro Ser Ser Asn Gln Arg Glu
 85 90 95

Glu Leu Gly Val Arg Trp Ile Pro Arg Ser Arg Cys Ala Cys Val Tyr
 100 105 110

Val Gly His Arg Ala Arg Arg Gly Thr Tyr His Arg Arg
 115 120 125

(2) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

Cys Asp Ala Val Met Gly Phe Leu Gly Gly Ala Gly Pro Leu Ala Val
1 5 10 15

Val Asp Gln Gln Leu Val Thr Arg Val Pro Gln Gly Trp Ser Phe Ala
20 25 30

Gln Ala Ala Ala Val Pro Val Val Phe Leu Thr Ala Trp Tyr Gly Leu
35 40 45

Ala Asp Leu Ala Glu Ile Lys Ala Gly Glu Ser Val Leu Ile His Ala
50 55 60

Gly Thr Gly Gly Val Gly Met Ala Ala Val Gln Leu Ala Arg Gln Trp
65 70 75 80

Gly Val Glu Val Phe Val Thr Ala Ser Arg Gly Lys Trp Asp Thr Leu
85 90 95

Arg Ala Xaa Xaa Phe Asp Asp Xaa Pro Tyr Arg Xaa Phe Pro His Xaa
100 105 110

Arg Ser Ser Xaa Gly
115

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 103 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

Met Tyr Arg Phe Ala Cys Arg Thr Leu Met Leu Ala Ala Cys Ile Leu
1 5 10 15

Ala Thr Gly Val Ala Gly Leu Gly Val Gly Ala Gln Ser Ala Ala Gln
20 25 30

Thr Ala Pro Val Pro Asp Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp
35 40 45

Pro Ala Trp Gly Pro Asn Trp Asp Pro Tyr Thr Cys His Asp Asp Phe
50 55 60

His Arg Asp Ser Asp Gly Pro Asp His Ser Arg Asp Tyr Pro Gly Pro
65 70 75 80

Ile Leu Glu Gly Pro Val Leu Asp Asp Pro Gly Ala Ala Pro Pro Pro

85

90

95

Pro Ala Ala Gly Gly Gly Ala
100

(2) INFORMATION FOR SEQ ID NO:87:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

Val	Gln	Cys	Arg	Val	Trp	Leu	Glu	Ile	Gln	Trp	Arg	Gly	Met	Leu	Gly
1				5					10				15		
Ala	Asp	Gln	Ala	Arg	Ala	Gly	Gly	Pro	Ala	Arg	Ile	Trp	Arg	Glu	His
			20					25					30		
Ser	Met	Ala	Ala	Met	Lys	Pro	Arg	Thr	Gly	Asp	Gly	Pro	Leu	Glu	Ala
		35				40						45			
Thr	Lys	Glu	Gly	Arg	Gly	Ile	Val	Met	Arg	Val	Pro	Leu	Glu	Gly	Gly
	50				55						60				
Gly	Arg	Leu	Val	Val	Glu	Leu	Thr	Pro	Asp	Glu	Ala	Ala	Ala	Leu	Gly
	65				70					75			80		
Asp	Glu	Leu	Lys	Gly	Val	Thr	Ser								
					85										

(2) INFORMATION FOR SEQ ID NO:88:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 95 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Thr	Asp	Ala	Ala	Thr	Leu	Ala	Gln	Glu	Ala	Gly	Asn	Phe	Glu	Arg	Ile
1				5					10				15		
Ser	Gly	Asp	Leu	Lys	Thr	Gln	Ile	Asp	Gln	Val	Glu	Ser	Thr	Ala	Gly
			20				25					30			
Ser	Leu	Gln	Gly	Gln	Trp	Arg	Gly	Ala	Ala	Gly	Thr	Ala	Ala	Gln	Ala
		35				40						45			
Ala	Val	Val	Arg	Phe	Gln	Glu	Ala	Ala	Asn	Lys	Gln	Lys	Gln	Glu	Leu
			50			55					60				

Asp	Glu	Ile	Ser	Thr	Asn	Ile	Arg	Gln	Ala	Gly	Val	Gln	Tyr	Ser	Arg
65						70						75			80

Ala	Asp	Glu	Glu	Gln	Gln	Ala	Leu	Ser	Ser	Gln	Met	Gly	Phe
				85				90					95

(2) INFORMATION FOR SEQ ID NO:89:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

Met	Thr	Gln	Ser	Gln	Thr	Val	Thr	Val	Asp	Gln	Gln	Glu	Ile	Leu	Asn
1					5					10				15	

Arg	Ala	Asn	Glu	Val	Glu	Ala	Pro	Met	Ala	Asp	Pro	Pro	Thr	Asp	Val
				20				25					30		

Pro	Ile	Thr	Pro	Cys	Glu	Leu	Thr	Xaa	Xaa	Lys	Asn	Ala	Ala	Gln	Gln
				35				40					45		

Xaa	Val	Leu	Ser	Ala	Asp	Asn	Met	Arg	Glu	Tyr	Leu	Ala	Ala	Gly	Ala
				50		55					60				

Lys	Glu	Arg	Gln	Arg	Leu	Ala	Thr	Ser	Leu	Arg	Asn	Ala	Ala	Lys	Xaa
65					70					75				80	

Tyr	Gly	Glu	Val	Asp	Glu	Glu	Ala	Ala	Thr	Ala	Leu	Asp	Asn	Asp	Gly
				85					90					95	

Glu	Gly	Thr	Val	Gln	Ala	Glu	Ser	Ala	Gly	Ala	Val	Gly	Gly	Asp	Ser
				100					105				110		

Ser	Ala	Glu	Leu	Thr	Asp	Thr	Pro	Arg	Val	Ala	Thr	Ala	Gly	Glu	Pro
				115			120					125			

Asn	Phe	Met	Asp	Leu	Lys	Glu	Ala	Ala	Arg	Lys	Leu	Glu	Thr	Gly	Asp
				130			135				140				

Gln	Gly	Ala	Ser	Leu	Ala	His	Xaa	Gly	Asp	Gly	Trp	Asn	Thr	Xaa	Thr
145					150					155				160	

Leu	Thr	Leu	Gln	Gly	Asp										
				165											

(2) INFORMATION FOR SEQ ID NO:90:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

Arg Ala Glu Arg Met
1 5

(2) INFORMATION FOR SEQ ID NO:91:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 263 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala
1 5 10 15

Gln Val Arg Val Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr
20 25 30

Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu
35 40 45

Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn
50 55 60

Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe
65 70 75 80

Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe
85 90 95

Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gln Ala
100 105 110

Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Asn Gln Leu Met
115 120 125

Asn Asn Val Pro Gln Ala Leu Lys Gln Leu Ala Gln Pro Thr Gln Gly
130 135 140

Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro
145 150 155 160

His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met
165 170 175

Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met
180 185 190

Leu Lys Gly Phe Ala Pro Ala Ala Ala Gln Ala Val Gln Thr Ala
195 200 205

120

Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly
 210 215 220
 Ser Ser Gly Leu Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala
 225 230 235 240
 Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly
 245 250 255
 Arg Arg Asn Gly Gly Pro Ala
 260

(2) INFORMATION FOR SEQ ID NO:92:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 303 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

Met Thr Tyr Ser Pro Gly Asn Pro Gly Tyr Pro Gln Ala Gln Pro Ala
 1 5 10 15
 Gly Ser Tyr Gly Gly Val Thr Pro Ser Phe Ala His Ala Asp Glu Gly
 20 25 30
 Ala Ser Lys Leu Pro Met Tyr Leu Asn Ile Ala Val Ala Val Leu Gly
 35 40 45
 Leu Ala Ala Tyr Phe Ala Ser Phe Gly Pro Met Phe Thr Leu Ser Thr
 50 55 60
 Glu Leu Gly Gly Asp Gly Ala Val Ser Gly Asp Thr Gly Leu Pro
 65 70 75 80
 Val Gly Val Ala Leu Leu Ala Ala Leu Leu Ala Gly Val Val Leu Val
 85 90 95
 Pro Lys Ala Lys Ser His Val Thr Val Val Ala Val Leu Gly Val Leu
 100 105 110
 Gly Val Phe Leu Met Val Ser Ala Thr Phe Asn Lys Pro Ser Ala Tyr
 115 120 125
 Ser Thr Gly Trp Ala Leu Trp Val Val Leu Ala Phe Ile Val Phe Gln
 130 135 140
 Ala Val Ala Ala Val Leu Ala Leu Leu Val Glu Thr Gly Ala Ile Thr
 145 150 155 160
 Ala Pro Ala Pro Arg Pro Lys Phe Asp Pro Tyr Gly Gln Tyr Gly Arg
 165 170 175
 Tyr Gly Gln Tyr Gly Gln Tyr Gly Val Gln Pro Gly Gly Tyr Tyr Gly
 180 185 190

Gln Gln Gly Ala Gln Gln Ala Ala Gly Leu Gln Ser Pro Gly Pro Gln
195 200 205

Gln Ser Pro Gln Pro Pro Gly Tyr Gly Ser Gln Tyr Gly Gly Tyr Ser
210 215 220

Ser Ser Pro Ser Gln Ser Gly Ser Gly Tyr Thr Ala Gln Pro Pro Ala
225 230 235 240

Gln Pro Pro Ala Gln Ser Gly Ser Gln Gln Ser His Gln Gly Pro Ser
245 250 255

Thr Pro Pro Thr Gly Phe Pro Ser Phe Ser Pro Pro Pro Pro Val Ser
260 265 270

Ala Gly Thr Gly Ser Gln Ala Gly Ser Ala Pro Val Asn Tyr Ser Asn
275 280 285

Pro Ser Gly Gly Glu Gln Ser Ser Ser Pro Gly Gly Ala Pro Val
290 295 300

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

Gly Cys Gly Glu Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn
1 5 10 15

Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile
20 25

(2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:95:

- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

Gly Cys Gly Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala
1 5 10 15
Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg
20 25

(2) INFORMATION FOR SEQ ID NO:96:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

Gly Cys Gly Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu
1 5 10 15
Ala Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu
20 25

(2) INFORMATION FOR SEQ ID NO:97:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

Gly Cys Gly Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu Ile Ser Thr
1 5 10 15
Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg
20 25

(2) INFORMATION FOR SEQ ID NO:98:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

Gly Cys Gly Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu
1 5 10 15
Glu Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe
20 25

(2) INFORMATION FOR SEQ ID NO:99:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 507 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

ATGAAGATGG TGAAATCGAT CGCCGCAGGT CTGACCGCCG CGGCTGCAAT CGGCGCCGCT 60
GCGGCCGGTG TGACTTCGAT CATGGCTGGC GGCCCAGTCG TATACCAGAT GCAGCCGGTC 120
GTCTTCGGCG CGCCACTGCC GTTGGACCCG GCATCCGCCCT TGACGTCCC GACCGCCGCC 180
CAGTTGACCA GCCTGCTCAA CAGCCTGCC GATCCCAACG TGTCGTTGC GAACAAGGGC 240
AGTCTGGTCG AGGGCGGCAT CGGGGGCACC GAGGCGCGCA TCGCCGACCA CAAGCTGAAG 300
AAGGCCGCCG AGCACGGGA TCTGCCGCTG TCGTTCAGCG TGACGAACAT CCAGCCGGCG 360
GCCGCCGGTT CGGCCACCGC CGACGTTCC GTCTCGGGTC CGAAGCTCTC GTGCCCGGTC 420
ACGCAGAACG TCACGTTCGT GAATCAAGGC GGCTGGATGC TGTCACGCGC ATCGGCGATG 480
GAGTTGCTGC AGGCCGCAGG GAACTGA 507

(2) INFORMATION FOR SEQ ID NO:100:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 168 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala Ala Ala Ala
 1 5 10 15

Ile Gly Ala Ala Ala Gly Val Thr Ser Ile Met Ala Gly Gly Pro
 20 25 30

Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro Leu Pro Leu
 35 40 45

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser
 50 55 60

Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn Lys Gly
 65 70 75 80

Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg Ile Ala Asp
 85 90 95

His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro Leu Ser Phe
 100 105 110

Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala Thr Ala Asp
 115 120 125

Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr Gln Asn Val
 130 135 140

Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala Ser Ala Met
 145 150 155 160

Glu Leu Leu Gln Ala Ala Gly Asn
 165

(2) INFORMATION FOR SEQ ID NO:101:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 500 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

CGTGGCAATG TCGTTGACCG TCGGGGCCGG GGTCGCCTCC GCAGATCCCG TGGACGCGGT	60
CATTAACACC ACCTGCAATT ACGGGCAGGT AGTAGCTGCG CTCAACGCGA CGGATCCGGG	120
GGCTGCCGCA CAGTTCAACG CCTCACCGGT GGCGCAGTCC TATTTGCGCA ATTCCTCGC	180
CGCACCGCCA CCTCAGCGCG CTGCCATGGC CGCGCAATTG CAAGCTGTGC CGGGGGCGGC	240
ACAGTACATC GGCTTGTCG AGTCGGTTGC CGGCTCCTGC AACAACTATT AAGCCCATGC	300
GGGCCCATC CCGCGACCCG GCATCGTCGC CGGGGCTAGG CCAGATTGCC CCGCTCCTCA	360
ACGGGCCGCA TCCCAGGACCC GCATCGTCGC CGGGGCTAGG CCAGATTGCC CCGCTCCTCA	420
CAACGGGCCG CATCTCGTGC CGAATTCCCTG CAGCCCCGGG GATCCACTAG TTCTAGAGCG	480

GCCGCCACCG CGGTGGAGCT

500

(2) INFORMATION FOR SEQ ID NO:102:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

Val	Ala	Met	Ser	Leu	Thr	Val	Gly	Ala	Gly	Val	Ala	Ser	Ala	Asp	Pro
1				5				10						15	

Val	Asp	Ala	Val	Ile	Asn	Thr	Thr	Cys	Asn	Tyr	Gly	Gln	Val	Val	Ala
	20				25							30			

Ala	Leu	Asn	Ala	Thr	Asp	Pro	Gly	Ala	Ala	Ala	Gln	Phe	Asn	Ala	Ser
	35				40						45				

Pro	Val	Ala	Gln	Ser	Tyr	Leu	Arg	Asn	Phe	Leu	Ala	Ala	Pro	Pro	Pro
	50				55			60							

Gln	Arg	Ala	Ala	Met	Ala	Ala	Gln	Leu	Gln	Ala	Val	Pro	Gly	Ala	Ala
	65				70			75			80				

Gln	Tyr	Ile	Gly	Leu	Val	Glu	Ser	Val	Ala	Gly	Ser	Cys	Asn	Asn	Tyr
		85				90					95				

(2) INFORMATION FOR SEQ ID NO:103:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 154 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

ATGACAGAGC	AGCAGTGGAA	TTTCGCGGGT	ATCGAGGCCG	CGGCAAGCGC	AATCCAGGGA	60
AATGTCACGT	CCATTCATTC	CCTCCTTGAC	GAGGGGAAGC	AGTCCCTGAC	CAAGCTCGCA	120
CGGGCCTGGG	GCGGTAGCGG	TTCGGAAGCG	TACC			154

(2) INFORMATION FOR SEQ ID NO:104:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

```

Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu Ala Ala Ala Ser
1          5           10          15

Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu Leu Asp Glu Gly
.          .          20           25          .          30

Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly Gly Ser Gly Ser
.          .          35           40          .          45

Glu Ala Tyr
.          .
50

```

(2) INFORMATION FOR SEQ ID NO:105:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 282 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

(2) INFORMATION FOR SEQ ID NO:106:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3058 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

```

GATCGTACCC GTGCGAGTGC TCGGGCCGTT TGAGGATGGA GTGCACGTGT CTTTCGTGAT      60
GGCATAACCCA GAGATGTTGG CGGGCGCGGC TGACACCTG CAGAGCATCG GTGCTACCAC      120
TGTGGCTAGC AATGCCGCTG CGGGGGCCCC GACGACTGGG GTGGTGCCCC CCGCTGCCGA      180

```

TGAGGTGTCG	GCGCTGACTG	CGGCGCACTT	CGCCGCACAT	GCGGCGATGT	ATCAGTCCGT	240
GAGCGCTCGG	GCTGCTGCGA	TTCATGACCA	GTTCGTGGCC	ACCCTTGCCA	GCAGCGCCAG	300
CTCGTATGCG	GCCACTGAAG	TCGCCAATGC	GGCGGCGGCC	AGCTAAGCCA	GGAACAGTCG	360
GCACGAGAAA	CCACGAGAAA	TAGGGACACG	TAATGGTGGA	TTTCGGGGCG	TTACCACCGG	420
AGATCAAATC	CGCGAGGATG	TACGCCGGCC	CGGGTTCGGC	CTCGCTGGTG	GCCGCGGCTC	480
AGATGTGGGA	CAGCGTGGCG	AGTGACCTGT	TTTCGGCCGC	GTCGGCGTTT	CAGTCGGTGG	540
TCTGGGGTCT	GACGGTGGGG	TCGTGGATAG	GTTCGTCGGC	GGGTCTGATG	GTGGCGGCCG	600
CCTCGCCGTA	TGTGGCGTGG	ATGAGCGTCA	CCGCAGGGCA	GGCCGAGCTG	ACCGCCGCC	660
AGGTCCGGGT	TGCTGCGGCG	GCCTACGAGA	CGGCGTATGG	GCTGACGGTG	CCCCCGCCGG	720
TGATCGCCGA	GAACCGTGCT	GAAC TGATGA	TTCTGATAGC	GACCAACCTC	TTGGGGCAAA	780
ACACCCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGCGA	GATGTGGGCC	CAAGACGCCG	840
CCGCGATGTT	TGGCTACGCC	CGCGCGACGG	CGACGGCGAC	GGCGACGTTG	CTGCCGTTCG	900
AGGAGGGCGCC	GGAGATGACC	AGCGCGGGTG	GGCTCCTCGA	GCAGGCCGCC	GCGGTCGAGG	960
AGGCCTCCGA	CACCGCCCGC	GCGAACCACTG	TGATGAACAA	TGTGCCCCAG	GCGCTGCAAC	1020
AGCTGGCCCA	GCCCACGCAG	GGCACCAACGC	CTTCTTCCAA	GCTGGGTGGC	CTGTGGAAGA	1080
CGGTCTCGCC	GCATCGGTG	CCGATCAGCA	ACATGGTGTC	GATGGCCAAC	AACCACATGT	1140
CGATGACCAA	CTCGGGTGTG	TCGATGACCA	ACACCTTGAG	CTCGATGTTG	AAGGGCTTTG	1200
CTCCGGCGGC	GGCCGCCAG	GCCGTGCAAA	CCGCGGCCA	AAACGGGGTC	CGGGCGATGA	1260
GCTCGCTGGG	CAGCTCGCTG	GGTTCTCGG	GTCTGGCGG	TGGGGTGGCC	GCCAACTTGG	1320
GTCGGCGGCC	CTCGGTGGT	TCGTTGTCGG	TGCCGCAGGC	CTGGGCCGCG	GCCAACCAGG	1380
CAGTCACCCC	GGCGGCGCGG	GCGCTGCCGC	TGACCAGCCT	GACCAGCGCC	GCGGAAAGAG	1440
GGCCCGGGCA	GATGCTGGC	GGGCTGCCGG	TGGGGCAGAT	GGGCGCCAGG	GCGGTGGTG	1500
GGCTCAGTGG	TGTGCTGCGT	GTTCCGCCGC	GACCTATGT	GATGCCGCAT	TCTCCGGCGG	1560
CCGGCTAGGA	GAGGGGGCGC	AGACTGTCGT	TATTGACCA	GTGATCGCG	GTCTCGGTGT	1620
TTCCCGCGGCC	GGCTATGACA	ACAGTCAATG	TGCATGACAA	GTTACAGGTA	TTAGGTCCAG	1680
GTTCAACAAG	GAGACAGGCA	ACATGGCCTC	ACGTTTATG	ACGGATCCGC	ACGCGATGCG	1740
GGACATGGCG	GGCCGTTTG	AGGTGCACGC	CCAGACGGTG	GAGGACGAGG	CTCGCCGGAT	1800
GTGGCGTCC	GCGAAAACA	TTTCCGGTGC	GGGCTGGAGT	GGCATGGCCG	AGGCGACCTC	1860
GCTAGACACC	ATGGCCCAGA	TGAATCAGGC	GTTCGCAAC	ATCGTGAACA	TGCTGCACGG	1920
GGTGCCTGAC	GGGCTGGTTC	GCGACGCCAA	CAACTACGAG	CAGCAAGAGC	AGGCCTCCCA	1980
GCAGATCCTC	AGCAGCTAAC	GTCAGCCGCT	GCAGCACAAAT	ACTTTACAA	GCGAAGGAGA	2040

ACAGGTTCGA	TGACCATCAA	CTATCAATT	GGGGATGTCG	ACGCTCACGG	CGCCATGATC	2100
CGCGCTCAGG	CCGGGTTGCT	GGAGGCCGAG	CATCAGGCCA	TCATTCGTGA	TGTGTTGACC	2160
GCGAGTGACT	TTTGGGGCGG	CGCCGGTTCG	GCGGCCTGCC	AGGGGTTCAT	TACCCAGTTG	2220
GGCCGTAACT	TCCAGGTGAT	CTACGAGCAG	GCCAACGCC	ACGGGCAGAA	GGTGCAGGCT	2280
GCCGGCAACA	ACATGGCGCA	AACCGACAGC	GCCGTCGGCT	CCAGCTGGC	CTGACACCAG	2340
GCCAAGGCCA	GGGACGTGGT	GTACGAGTGA	AGTTCCCTCGC	GTGATCCTTC	GGGTGGCAGT	2400
CTAAGTGGTC	AGTGCTGGGG	TGTTGGTGGT	TTGCTGCTTG	GCGGGTTCTT	CGGTGCTGGT	2460
CAGTGCTGCT	CGGGCTCGGG	TGAGGACCTC	GAGGCCAGG	TAGGCCGTC	CTTCGATCCA	2520
TTCGTCGTGT	TGTTCGGCAG	GGACGGCTCC	GACGAGGCAG	ATGATCGAGG	CGCGGTGGG	2580
GAAGATGCC	ACGACGTCGG	TTCGGCGTCG	TACCTCTCGG	TTGAGGCGTT	CCTGGGGTT	2640
GTTGGACCAG	ATTTGGGCC	AGATCTGCTT	GGGGAAGGCG	GTGAACGCCA	GCAGGTCGGT	2700
GCGGGCGGTG	TCGAGGTGCT	CGGCCACCGC	GGGGAGTTTG	TCGGTCAGAG	CGTCGAGTAC	2760
CCGATCATAT	TGGGCAACAA	CTGATTGCGC	GTCGGGCTGG	TCGTAGATGG	AGTGCAGCAG	2820
GGTGCGCACC	CACGGCCAGG	AGGGCTTCGG	GGTGGCTGCC	ATCAGATTGG	CTGCGTAGTG	2880
GGTTCTGCAG	CGCTGCCAGG	CCGCTGCCGG	CAGGGTGGCG	CCGATCGCGG	CCACCAGGCC	2940
GGCGTGGCG	TCGCTGGTGA	CCAGCGCGAC	CCCGGACAGG	CCGCGGGCGA	CCAGGTCGCG	3000
GAAGAACGCC	AGCCAGCCGG	CCCCGTCCTC	GGCGGAGGTG	ACCTGGATGC	CCAGGATC	3058

(2) INFORMATION FOR SEQ ID NO:107:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 391 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

Met	Val	Asp	Phe	Gly	Ala	Leu	Pro	Pro	Glu	Ile	Asn	Ser	Ala	Arg	Met
1					5				10					15	

Tyr	Ala	Gly	Pro	Gly	Ser	Ala	Ser	Leu	Val	Ala	Ala	Ala	Gln	Met	Trp
								20		25			30		

Asp	Ser	Val	Ala	Ser	Asp	Leu	Phe	Ser	Ala	Ala	Ser	Ala	Phe	Gln	Ser
					35			40			45				

Val	Val	Trp	Gly	Leu	Thr	Val	Gly	Ser	Trp	Ile	Gly	Ser	Ser	Ala	Gly
					50		55			60					

Leu	Met	Val	Ala	Ala	Ala	Ser	Pro	Tyr	Val	Ala	Trp	Met	Ser	Val	Thr
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

65	70	75	80
Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala			
85	90		95
Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala			
100	105		110
Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly			
115	120		125
Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met			
130	135		140
Trp Ala Gln Asp Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala			
145	150		155
160			
Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr			
165	170		175
Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser			
180	185		190
Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu			
195	200		205
Gln Gln Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu			
210	215		220
Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser Asn			
225	230		235
240			
Met Val Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val			
245	250		255
Ser Met Thr Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala			
260	265		270
Ala Ala Ala Gln Ala Val Gln Thr Ala Ala Gln Asn Gly Val Arg Ala			
275	280		285
Met Ser Ser Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu Gly Gly Gly			
290	295		300
Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser Leu Ser Val			
305	310		315
320			
Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro Ala Ala Arg			
325	330		335
Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly			
340	345		350
Gln Met Leu Gly Gly Leu Pro Val Gly Gln Met Gly Ala Arg Ala Gly			
355	360		365
Gly Gly Leu Ser Gly Val Leu Arg Val Pro Pro Arg Pro Tyr Val Met			
370	375		380
Pro His Ser Pro Ala Ala Gly			
385	390		

(2) INFORMATION FOR SEQ ID NO:108:

- (i). SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1725 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

GACGTCAGCA	CCCGCCGTGC	AGGGCTGGAG	CGTGGTCGGT	TTTGATCTGC	GGTCAAGGTG	60
ACGTCCCTCG	GCGTGTGCC	GGCGTGGATG	CAGACTCGAT	GCCGCTCTT	AGTGCAACTA	120
ATTTCGTTGA	AGTGCCTGCG	AGGTATAGGA	CTTCACGATT	GGTTAACGTA	GCGTTCACCC	180
CGTGTGGGG	TCGATTGGC	CGGACCAGTC	GTCACCAACG	CTTGGCGTGC	GCGCCAGGCG	240
GGCGATCAGA	TCGCTTGACT	ACCAATCAAT	CTTGAGCTCC	CGGGCCGATG	CTCGGGCTAA	300
ATGAGGAGGA	GCACGCGTGT	CTTTCACTGC	GCAACCGGAG	ATGTTGGCGG	CCGCGGCTGG	360
CGAACTTCGT	TCCCTGGGG	CAACGCTGAA	GGCTAGCAAT	GCCGCCGAG	CCGTGCCGAC	420
GACTGGGTG	GTGCCCCGG	CTGCCGACGA	GGTGTGCTG	CTGCTTGCCA	CACAATTCCG	480
TACGCATGCG	GCGACGTATC	AGACGGCCAG	CGCCAAGGCC	GCGGTGATCC	ATGAGCAGTT	540
TGTGACCACG	CTGGCCACCA	GCGCTAGTTC	ATATGCGGAC	ACCGAGGCCG	CCAACGCTGT	600
GGTCACCGGC	TAGCTGACCT	GACGGTATTC	GAGCGGAAGG	ATTATCGAAG	TGGTGGATTT	660
CGGGCGTTA	CCACCGGAGA	TCAACTCCGC	GAGGATGTAC	GCCGGCCCGG	GTTCGGCCTC	720
GCTGGTGGCC	GCCGCGAAGA	TGTGGGACAG	CGTGGCGAGT	GACCTGTTT	CGGCCGCGTC	780
GGCGTTTCAG	TCGGTGGTCT	GGGGTCTGAC	GGTGGGTG	TGGATAGTT	CGTGGCGGG	840
TCTGATGGCG	GCAGCGGCCT	CGCCGTATGT	GGCGTGGATG	AGCGTCACCG	CGGGGCAGGC	900
CCAGCTGACC	GCCGCCCAAGG	TCCGGGTTGC	TGCGGCGGCC	TACGAGACAG	CGTATAAGGCT	960
GACGGTGCCC	CCGCCGGTGA	TCGCGAGAA	CCGTACCGAA	CTGATGACGC	TGACCGCGAC	1020
CAACCTCTTG	GGGCAAAACA	CGCCGGCGAT	CGAGGCCAAT	CAGGCCGCAT	ACAGCCAGAT	1080
GTGGGGCCAA	GACGCGGAGG	CGATGTATGG	CTACGCCGCC	ACGGCGGCCA	CGGCGACCGA	1140
GGCGTTGCTG	CCGTTGAGG	ACGCCCCACT	GATCACCAAC	CCCGGCGGGC	TCCTTGAGCA	1200
GGCCGTCGCG	GTCGAGGAGG	CCATCGACAC	CGCCGCGGCC	AACCAGTTGA	TGAACAATGT	1260
GCCCCAAGCG	CTGCAACAGC	TGGCCCAGCC	AGCGCAGGGC	GTCGTACCTT	CTTCCAAGCT	1320
GGGTGGGCTG	TGGACGGCGG	TCTCGCCGCA	TCTGTGCCG	CTCAGCAACG	TCAGTTCGAT	1380
AGCCAACAAAC	CACATGTCGA	TGATGGGCAC	GGGTGTGTCG	ATGACCAACA	CCTTGCACTC	1440

GATGTTGAAG GGCTTAGCTC CGGCGGCGGC TCAGGCCGTG GAAACCGCGG CGGAAAACGG	1500
GGTCTGGCG ATGAGCTCGC TGGGCAGCCA GCTGGGTTCG TCGCTGGTT CTTCGGGTCT	1560
GGCGCTGGG GTGGCCGCCA ACTTGGGTCG GGCGGCCCTCG GTCGGTTCGT TGTCGGTGCC	1620
GCCAGCATGG GCCGCCGCCA ACCAGGCGGT CACCCCGGCG GCGCGGGCGC TGCCGCTGAC	1680
CAGCCTGACC AGCGCCGCCA AAACCGCCCC CGGACACATG CTGGG	1725

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met	
1 5 10 15	
Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp	
20 25 30	
Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser	
35 40 45	
Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly	
50 55 60	
Leu Met Ala Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr	
65 70 75 80	
Ala Gly Gln Ala Gln Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala	
85 90 95	
Ala Tyr Glu Thr Ala Tyr Arg Leu Thr Val Pro Pro Pro Val Ile Ala	
100 105 110	
Glu Asn Arg Thr Glu Leu Met Thr Leu Thr Ala Thr Asn Leu Leu Gly	
115 120 125	
Gln Asn Thr Pro Ala Ile Glu Ala Asn Gln Ala Ala Tyr Ser Gln Met	
130 135 140	
Trp Gly Gln Asp Ala Glu Ala Met Tyr Gly Tyr Ala Ala Thr Ala Ala	
145 150 155 160	
Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr	
165 170 175	
Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile	
180 185 190	
Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu	
195 200 205	

Gln Gln Leu Ala Gln Pro Ala Gln Gly Val Val Pro Ser Ser Lys Leu
 210 215 220

Gly Gly Leu Trp Thr Ala Val Ser Pro His Leu Ser Pro Leu Ser Asn
 225 230 235 240

Val Ser Ser Ile Ala Asn Asn His Met Ser Met Met Gly Thr Gly Val
 245 250 255

Ser Met Thr Asn Thr Leu His Ser Met Leu Lys Gly Leu Ala Pro Ala
 260 265 270

Ala Ala Gln Ala Val Glu Thr Ala Ala Glu Asn Gly Val Trp Ala Met
 275 280 285

Ser Ser Leu Gly Ser Gln Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu
 290 295 300

Gly Ala Gly Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser
 305 310 315 320

Leu Ser Val Pro Pro Ala Trp Ala Ala Asn Gln Ala Val Thr Pro
 325 330 335

Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Gln Thr
 340 345 350

Ala Pro Gly His Met Leu Gly
 355

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3027 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

AGTTCAAGTCG AGAATGATA	TGACGGGCTG TATCCACGAT GGCTGAGACA ACCGAACCAC	60
CGTCGGACGC GGGGACATCG	CAAGCCGACG CGATGGCGTT GGCCGCCGAA GCCGAAGCCG	120
CCGAAGCCGA AGCGCTGGCC	GCCGCCGGCGC GGGCCCGTGC CCGTGCCGCC CGGTTGAAGC	180
GTGAGGGCGCT GGCGATGGCC	CCAGCCGAGG ACGAGAACGT CCCCCGAGGAT ATGCAGACTG	240
GGAAGACGCC GAAGACTATG	ACGACTATGA CGACTATGAG GCCCGAGACC AGGAGGCCGC	300
ACGGTCGGCA TCCTGGCGAC	GGCGGTTGCG GGTGCGGTTA CCAAGACTGT CCACGATTGC	360
CATGGCGGCC GCAGTCGTCA	TCATCTGCGG CTTCACCGGG CTCAGCGGAT ACATTGTGTG	420
GCAACACCAT GAGGCCACCG AACGCCAGCA GCGCGCCGCG GCGTCGCCG	CCGGAGCCAA	480
GCAAGGTGTC ATCAACATGA CCTCGCTGGA CTTCAACAAG	GCCAAAGAAG ACGTCGCGCG	540

TGTGATCGAC AGCTCCACCG GCGAATTCAAG GGATGACTTC CAGCAGCGGG CAGCCGATT	600
CACCAAGGTT GTCGAACAGT CCAAAGTGGT CACCGAAGGC ACGGTGAACG CGACAGCCGT	660
CGAATCCATG AACGAGCATT CCGCCGTGGT GCTCGTCGCG GCGACTTCAC GGGTCACCAA	720
TTCCGCTGGG GCGAAAGACG AACCAACGTGC GTGGCGGCTC AAAGTGACCG TGACCGAAGA	780
GGGGGGACAG TACAAGATGT CGAAAGTTGA GTTCGTACCG TGACCGATGA CGTACGCGAC	840
GTCAACACCG AAACCACGTGA CGCCACCGAA GTCGCTGAGA TCGACTCAGC CGCAGGGCAA	900
GCCGGTGATT CGGCGACCGA GGCATTTGAC ACCGACTCTG CAACGGAATC TACCGCGCAG	960
AAGGGTCAGC GGCACCGTGA CCTGTGGCGA ATGCAGGTTA CCTTGAAACC CGTTCCGGTG	1020
ATTCTCATCC TGCTCATGTT GATCTCTGGG GGCGCGACGG GATGGCTATA CCTTGAGCAA	1080
TACGACCCGA TCAGCAGACG GACTCCGGCG CCGCCCCGTGC TGCCGTCGCC GCGCGTCTG	1140
ACGGGACAAT CGCGCTGTTG TGTATTCAAC CGACACGTG ACCAAGACTT CGCTACCGCC	1200
AGGTCGCACC TCGCCGGCGA TTTCCGTGCC TATACGACCA GTTCACGCG CAGATCGTGG	1260
CTCCGGCGGC CAAACAGAAAG TCACTGAAAA CCACCGCCAA GGTGGTGCAG GCGGCCGTGT	1320
CGGAGCTACA TCCGGATTG GCCGTGTTG TGGTTTTGT CGACCAGAGC ACTACCAGTA	1380
AGGACAGCCC CAATCCGTG ATGGCGGCCA GCAGCGTGAT GGTGACCTA GCCAAGGTG	1440
ACGGCAATTG GCTGATCACC AAGTTCACCC CGGTTTAGGT TGCCGTAGGC GGTGCCAAG	1500
TCTGACGGGG GCGCGGGTGG CTGCTCGTGC GAGATACCGG CCGTTCTCCG GACAATCACG	1560
GCCCGACCTC AAACAGATCT CGGCGCTGT CTAATCGGCC GGGTTATTAA AGATTAGTTG	1620
CCACTGTATT TACCTGATGT TCAGATTGTT CAGCTGGATT TAGCTCGCG GCAGGGCGGC	1680
TGGTGCACCT TGCACTCTGGG GTTGTGACTA CTTGAGAGAA TTTGACCTGT TGCCGACGTT	1740
TTTGCTGTC CATCATTGGT GCTAGTTATG GCCGAGCGGA AGGATTATCG AAGTGGTGG	1800
CTTCGGGGCG TTACCACCGG AGATCAACTC CGCGAGGATG TACGCCGGCC CGGGTTCGGC	1860
CTCGCTGGTG GCCGCCGCGA AGATGTGGGA CAGCGTGGCG AGTGACCTGT TTTCGGCCGC	1920
GTCGGCGTTT CAGTCGGTGG TCTGGGTCT <u>GACGACGGGA</u> TCGTGGATAG GTTCGTCGGC-	1980
GGGTCTGATG GTGGCGGCCG CCTCGCCGTA TGTGGCGTGG ATGAGCGTCA CCGCGGGGCA	2040
GGCCGAGCTG ACCGCCGCC ACCGCGCCGAGGTCGGGT TGCTCGCGC GCCTACGAGA CGCGTATGG	2100
GCTGACGGTG CCCCCGCCGG TGATCGCCGA GAACCGTGCT GAACTGATGA TTCTGATAGC	2160
GACCAACCTC TTGGGGCAAACACCCCGC GATCGCGTC AACGAGGCCG AATACGGGGA	2220
GATGTGGGCC CAAGACGCCG CCGCGATGTT TGGCTACGCC GCCACGGCG CGACGGCGAC	2280
CGAGGGCGTTG CTGCCGTTCG AGGACGCCCA ACTGATCACC AACCCCGGCG GGCTCCTTGA	2340
GCAGGCCGTC GCGGTGAGG AGGCCATCGA CACCGCCGCG GCGAACCAAGT TGATGAACAA	2400

TGTGCCCAA GCGCTGCAAC AACTGGCCA GCCCACGAAA AGCATCTGGC CGTCGACCA	2460
ACTGAGTGAA CTCTGGAAAG CCATCTCGCC GCATCTGTCG CCGCTCAGCA ACATCGTGTC	2520
GATGCTCAAC AACACACGTGT CGATGACCAA CTCGGGTGTG TCGATGGCCA GCACCTTGCA	2580
CTCAATGTTG AAGGGCTTTG CTCCGGCGGC GGCTCAGGCC GTGGAAACCG CGGCGCAAAA	2640
CGGGGTCCAG GCGATGAGCT CGCTGGGCAG CCAGCTGGGT TCGTCGCTGG GTTCTTCGGG	2700
TCTGGCGCT GGGGTGGCCG CCAACTTGGG TCGGGCGGCC TCGGTCGGTT CGTTGTCGGT	2760
GCCGCAGGCC TGGGCCGCGG CCAACCAGGC GGTCACCCCG GCGGCGCGGG CGCTGCCGCT	2820
GACCAGCCTG ACCAGCGCCG CCCAAACCGC CCCCAGACAC ATGCTGGCG GGCTACCGCT	2880
GGGGCAACTG ACCAATAGCG GCGGCGGGTT CGGCGGGTT AGCAATGCGT TGCGGATGCC	2940
GCCGCGGGCG TACGTAATGC CCCGTGTGCC CGCCGCCGGG TAACGCCGAT CCGCACGCAA	3000
TGCGGGCCCT CTATGCGGGC AGCGATC	3027

(2) INFORMATION FOR SEQ ID NO:111:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 396 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met	
1 5 10 15	
Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp	
20 25 30	
Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser	
35 40 45	
Val Val Trp Gly Leu Thr Thr Gly Ser Trp Ile Gly Ser Ser Ala Gly	
50 55 60	
Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr	
65 70 75 80	
Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala	
85 90 95	
Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala	
100 105 110	
Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly	
115 120 125	
Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met	

130	135	140
Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Thr Ala Ala		
145	150	155
Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr		
165	170	175
Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile		
180	185	190
Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu		
195	200	205
Gln Gln Leu Ala Gln Pro Thr Lys Ser Ile Trp Pro Phe Asp Gln Leu		
210	215	220
Ser Glu Leu Trp Lys Ala Ile Ser Pro His Leu Ser Pro Leu Ser Asn		
225	230	235
Ile Val Ser Met Leu Asn Asn His Val Ser Met Thr Asn Ser Gly Val		
245	250	255
Ser Met Ala Ser Thr Leu His Ser Met Leu Lys Gly Phe Ala Pro Ala		
260	265	270
Ala Ala Gln Ala Val Glu Thr Ala Ala Gln Asn Gly Val Gln Ala Met		
275	280	285
Ser Ser Leu Gly Ser Gln Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu		
290	295	300
Gly Ala Gly Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser		
305	310	315
Leu Ser Val Pro Gln Ala Trp Ala Ala Asn Gln Ala Val Thr Pro		
325	330	335
Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Gln Thr		
340	345	350
Ala Pro Gly His Met Leu Gly Gly Leu Pro Leu Gly Gln Leu Thr Asn		
355	360	365
Ser Gly Gly Phe Gly Gly Val Ser Asn Ala Leu Arg Met Pro Pro		
370	375	380
Arg Ala Tyr Val Met Pro Arg Val Pro Ala Ala Gly		
385	390	395

(2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1616 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

CATCGGAGGG	AGTGATCACC	ATGCTGTGGC	ACGCAATGCC	ACCGGAGTAA	ATACCGCACG	60
GCTGATGGCC	GGCGCGGGTC	CGGCTCCAAT	GCTTGCGGCG	GCCGCGGGAT	GGCAGACGCT	120
TTCGGCGGCT	CTGGACGCTC	AGGCCGTCGA	GTTGACCGCG	CGCCCTGAAC	CTCTGGGAGA	180
AGCCTGGACT	GGAGGTGGCA	GCGACAAGGC	GCTTGCGGCT	GCAACGCCGA	TGGTGGTCTG	240
GCTACAAACC	CGCTAACAC	AGGCCAAGAC	CCGTGCGATG	CAGGCGACGG	CGCAAGCCGC	300
GGCATACACC	CAGGCCATGG	CCACGACGCC	GTCGCTGCCG	GAGATCGCCG	CCAACCACAT	360
CACCCAGGCC	GTCCTTACGG	CCACCAACTT	CTTCGGTATC	AACACGATCC	CGATCGCGTT	420
GACCGAGATG	GATTATTTCA	TCCGTATGTG	GAACCAGGCA	GCCCTGGCAA	TGGAGGTCTA	480
CCAGGCCGAG	ACCGCGGTTA	ACACGCTTTT	CGAGAAGCTC	GAGCCGATGG	CGTCGATCCT	540
TGATCCCAGC	GCGAGCCAGA	GCACGACGAA	CCCGATCTTC	GGAATGCCCT	CCCCTGGCAG	600
CTCAACACCG	GTTGCCAGT	TGCCGCCGGC	GGCTACCCAG	ACCCCTGGCC	AACTGGGTGA	660
GATGAGCGGC	CCGATGCAGC	AGCTGACCCA	GCCGCTGCAG	CAGGTGACGT	CGTTGTTCA	720
CCAGGTGGGC	GGCACCGGGCG	GCGGCAACCC	AGCCGACGAG	GAAGCCGCGC	AGATGGGCCT	780
GCTCGGCACC	AGTCCGCTGT	CGAACCATCC	GCTGGCTGGT	GGATCAGGCC	CCAGCGCGGG	840
CGCGGGCCTG	CTGCGCGCGG	AGTCGCTACC	TGGCGCAGGT	GGGTCGTTGA	CCCGCACGCC	900
GCTGATGTCT	CAGCTGATCG	AAAAGCCGGT	TGCCCCCTCG	GTGATGCCGG	CGGCTGCTGC	960
CGGATCGTCG	GCGACGGGTG	GCGCCGCTCC	GGTGGGTGCG	GGAGCGATGG	GCCAGGGTGC	1020
GCAATCCGGC	GGCTCCACCA	GGCGGGGTCT	GGTCGCCCGG	GCACCGCTCG	CGCAGGAGCG	1080
TGAAGAAGAC	GACGAGGACG	ACTGGGACGA	AGAGGACGAC	TGGTGAGCTC	CCGTAATGAC	1140
AACAGACTTC	CCGGCCACCC	GGGCCGGAAG	ACTTGCCAAC	ATTTTGGCGA	GGAAGGTAAA	1200
GAGAGAAAGT	AGTCCAGCAT	GGCAGAGATG	AAGACCGATG	CCGCTACCCCT	CGCGCAGGAG	1260
GCAGGTAATT	TCGAGCGGAT	CTCCGGCGAC	CTGAAAACCC	AGATCGACCA	GGTGGAGTCG	1320
ACGGCAGGTT	CGTTGCAGGG	CCAGTGGCGC	GGCGCGGCCGG	GGACGGCCGC	CCAGGCCGCG	1380
GTGGTGCCT	TCCAAGAACG	AGCCAATAAG	CAGAAGCAGG	AACTCGACGA	GATCTCGACG	1440
AATATTGTC	AGGCCGGCGT	CCAATACTCG	AGGGCCGACG	AGGAGCAGCA	GCAGGGCGCTG	1500
TCCTCGCAAA	TGGGCTTCTG	ACCCGCTAAT	ACGAAAAGAA	ACGGAGCAA	AACATGACAG	1560
AGCAGCAGTG	GAATTCGCG	GGTATCGAGG	CCGCGGCAAG	CGCAATCCAG	GGAAAT	1616

(2) INFORMATION FOR SEQ ID NO:113:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 432 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

CTAGTGGATG GGACCATGGC CATTTCCTGC AGTCTCACTG CCTTCTGTGT TGACATTTG	60
GCACGCCGGC GGAAACGAAG CACTGGGGTC GAAGAACGGC TCGCCTGCCA TATCGTCCGG	120
AGCTTCCATA CCTTCGTGCG GCCGGAAGAG CTTGTCGTAG TCGGCCGCCA TGACAAACCTC	180
TCAGAGTGC GCTCAAACGTA TAAACACGAG AAAGGGCGAG ACCGACGGAA GGTGAACTC	240
GCCCCGATCCC GTGTTTCGCT ATTCTACGCG AACTCGGC GTGCCCTATGC GAACATCCCA	300
GTGACGTTGC CTTCGGTCGA AGCCATTGCC TGACCGGCTT CGCTGATCGT CCGGCCAGG	360
TTCTGCAGCG CGTTGTTCA GCTCGGTAGCC GTGGCGTCCC ATTTTGCTG GACACCCTGG	420
TACGCCCTCCG AA	432

(2) INFORMATION FOR SEQ ID NO:114:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 368 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

Met Leu Trp His Ala Met Pro Pro Glu Xaa Asn Thr Ala Arg Leu Met	
1 5 10 15	
Ala Gly Ala Gly Pro Ala Pro Met Leu Ala Ala Ala Ala Gly Trp Gln	
20 25 30	
Thr Leu Ser Ala Ala Leu Asp Ala Gln Ala Val Glu Leu Thr Ala Arg	
35 40 45	
Leu Asn Ser Leu Gly Glu Ala Trp Thr Gly Gly Ser Asp Lys Ala	
50 55 60	
Leu Ala Ala Ala Thr Pro Met Val Val Trp Leu Gln Thr Ala Ser Thr	
65 70 75 80	
Gln Ala Lys Thr Arg Ala Met Gln Ala Thr Ala Gln Ala Ala Tyr	
85 90 95	
Thr Gln Ala Met Ala Thr Thr Pro Ser Leu Pro Glu Ile Ala Ala Asn	
100 105 110	
His Ile Thr Gln Ala Val Leu Thr Ala Thr Asn Phe Phe Gly Ile Asn	
115 120 125	

Thr Ile Pro Ile Ala Leu Thr Glu Met Asp Tyr Phe Ile Arg Met Trp
 130 135 140
 Asn Gln Ala Ala Leu Ala Met Glu Val Tyr Gln Ala Glu Thr Ala Val
 145 150 155 160
 Asn Thr Leu Phe Glu Lys Leu Glu Pro Met Ala Ser Ile Leu Asp Pro
 165 170 175
 Gly Ala Ser Gln Ser Thr Thr Asn Pro Ile Phe Gly Met Pro Ser Pro
 180 185 190
 Gly Ser Ser Thr Pro Val Gly Gln Leu Pro Pro Ala Ala Thr Gln Thr
 195 200 205
 Leu Gly Gln Leu Gly Glu Met Ser Gly Pro Met Gln Gln Leu Thr Gln
 210 215 220
 Pro Leu Gln Gln Val Thr Ser Leu Phe Ser Gln Val Gly Gly Thr Gly
 225 230 235 240
 Gly Gly Asn Pro Ala Asp Glu Glu Ala Ala Gln Met Gly Leu Leu Gly
 245 250 255
 Thr Ser Pro Leu Ser Asn His Pro Leu Ala Gly Gly Ser Gly Pro Ser
 260 265 270
 Ala Gly Ala Gly Leu Leu Arg Ala Glu Ser Leu Pro Gly Ala Gly Gly
 275 280 285
 Ser Leu Thr Arg Thr Pro Leu Met Ser Gln Leu Ile Glu Lys Pro Val
 290 295 300
 Ala Pro Ser Val Met Pro Ala Ala Ala Ala Gly Ser Ser Ala Thr Gly
 305 310 315 320
 Gly Ala Ala Pro Val Gly Ala Gly Ala Met Gly Gln Gly Ala Gln Ser
 325 330 335
 Gly Gly Ser Thr Arg Pro Gly Leu Val Ala Pro Ala Pro Leu Ala Gln
 340 345 350
 Glu Arg Glu Glu Asp Asp Glu Asp Asp Trp Asp Glu Glu Asp Asp Trp
 355 360 365

(2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly
 1 5 10 15

Asn	Phe	Glu	Arg	Ile	Ser	Gly	Asp	Leu	Lys	Thr	Gln	Ile	Asp	Gln	Val
20									25					30	
Glu	Ser	Thr	Ala	Gly	Ser	Leu	Gln	Gly	Gln	Trp	Arg	Gly	Ala	Ala	Gly
35						40				45					
Thr	Ala	Ala	Gln	Ala	Ala	Val	Val	Arg	Phe	Gln	Glu	Ala	Ala	Asn	Lys
50						55				60					
Gln	Lys	Gln	Glu	Leu	Asp	Glu	Ile	Ser	Thr	Asn	Ile	Arg	Gln	Ala	Gly
65					70				75				80		
Val	Gln	Tyr	Ser	Arg	Ala	Asp	Glu	Gln	Gln	Ala	Leu	Ser	Ser		
						85		90				95			
Gln	Met	Gly	Phe												
			100												

(2) INFORMATION FOR SEQ ID NO:116:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 396 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

GATCTCCGGC GACCTGAAAA CCCAGATCGA CCAGGTGGAG TCGACGGCAG GTTCGTTGCA	60
GGGCCAGTGG CGCGGCGCGG CGGGGACGGC CGCCCAGGCC GCGGTGGTGC GCTTCCAAGA	120
AGCAGCCAAT AAGCAGAACGC AGGAACTCGA CGAGATCTCG ACGAATATTG GTCAGGCCGG	180
CGTCCAATAC TCGAGGGCCG ACGAGGAGCA GCAGCAGGCG CTGTCCTCGC AAATGGGCTT	240
CTGACCCGCT AATACGAAAA GAAACGGAGC AAAAACATGA CAGAGCAGCA GTGGAATTTC	300
GCGGGTATCG AGGCCGCGGC AAGCGCAATC CAGGGAAATG TCACGTCCAT TCATTCCTC	360
CTTGACGAGG GGAAGCAGTC CCTGACCAAG CTCGCA	396

(2) INFORMATION FOR SEQ ID NO:117:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 80 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala

1	5	10	15												
Gly	Ser	Leu	Gln	Gly	Gln	Trp	Arg	Gly	Ala	Ala	Gly	Thr	Ala	Ala	Gln
			20					25						30	
Ala	Ala	Val	Val	Arg	Phe	Gln	Glu	Ala	Ala	Asn	Lys	Gln	Lys	Gln	Glu
						35			40			45			
Leu	Asp	Glu	Ile	Ser	Thr	Asn	Ile	Arg	Gln	Ala	Gly	Val	Gln	Tyr	Ser
						50			55			60			
Arg	Ala	Asp	Glu	Glu	Gln	Gln	Ala	Leu	Ser	Ser	Gln	Met	Gly	Phe	
					65				70			75		80	

(2) INFORMATION FOR SEQ ID NO:118:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 387 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

GTGGATCCCG	ATCCCGTGT	TTCGCTATTCT	ACGCGAACTC	GGCGTTGCC	TATGCGAAC	60
TCCCAGTGAC	GTTGCCTTCG	GTCGAAGCCA	TTGCCTGACC	GGCTTCGCTG	ATCGTCCGCG	120
CCAGGTTCTG	CAGCGCGTTG	TTCAGCTCGG	TAGCCGTGGC	GTCCCATT	TGCTGGACAC	180
CCTGGTACGC	CTCCGAACCG	CTACCGCCCC	AGGCCGCTGC	GAGCTTGGTC	AGGGACTGCT	240
TCCCCTCGTC	AAGGAGGGAA	TGAATGGACG	TGACATTCC	CTGGATTGCG	CTTGCCGCGG	300
CCTCGATAACC	CGCGAAATTC	CACTGCTGCT	CTGTCATGTT	TTTGCTCCGT	TTCTTTCGT	360
ATTAGCGGGT	CAGAAGCCCA	TTTGC	GA			387

(2) INFORMATION FOR SEQ ID NO:119:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 272 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

CGGCACGGAGG	ATCTCGGTTG	GCCCAACGGC	GCTGGCGAGG	GCTCCGTTCC	GGGGGGCGAGC	60
TGCGCGCCGG	ATGCTTCCTC	TGCCCGCAGC	CGCGCCTGGA	TGGATGGACC	AGTTGCTACC	120
TTCCCGACGT	TTCTGTCGGT	GTCTGTGCGA	TAGCGGTGAC	CCCGGGCGCGC	ACGTCGGGAG	180

TGTTGGGGGG CAGGCCGGGT CGGTGGTTCG GCCGGGGACG CAGACGGTCT GGACGGAACG
GGCGGGGGTT CGCCGATTGG CATCTTGCC CA

240

272

(2) INFORMATION FOR SEQ ID NO:120:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val
1 5 10 15
Val Ala Ala Leu
20

(2) INFORMATION FOR SEQ ID NO:121:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 15 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:122:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys
1 5 10 15
Glu Gly Arg

(2) INFORMATION FOR SEQ ID NO:123:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:124:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val
1 5 10

(2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro
1 5 10

(2) INFORMATION FOR SEQ ID NO:126:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro
1 5 10 15
Ser

(2) INFORMATION FOR SEQ ID NO:127:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 15 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:128:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser
1 5 10 15
Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn
20 25 30

(2) INFORMATION FOR SEQ ID NO:129:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

Asp Pro Pro Asp Pro His Gln Xaa Asp Met Thr Lys Gly Tyr Tyr Pro
1 5 10 15

Gly Gly Arg Arg Xaa Phe
20

(2) INFORMATION FOR SEQ ID NO:130:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

Asp Pro Gly Tyr Thr Pro Gly
1 5

(2) INFORMATION FOR SEQ ID NO:131:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(ix) FEATURE:

(D) OTHER INFORMATION: /note= "The Second Residue Can Be Either a Pro or Thr"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

Xaa Xaa Gly Phe Thr Gly Pro Gln Phe Tyr
1 5 10

(2) INFORMATION FOR SEQ ID NO:132:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(ix) FEATURE:

(D) OTHER INFORMATION: /note= "The Third Residue Can Be Either a Gln or Leu"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

Xaa Pro Xaa Val Thr Ala Tyr Ala Gly
1 5

(2) INFORMATION FOR SEQ ID NO:133:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

Xaa Xaa Xaa Glu Lys Pro Phe Leu Arg
1 5

(2) INFORMATION FOR SEQ ID NO:134:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

Xaa Asp Ser Glu Lys Ser Ala Thr Ile Lys Val Thr Asp Ala Ser
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:135:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Ala Gly Asp Thr Xaa Ile Tyr Ile Val Gly Asn Leu Thr Ala Asp
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:136:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Ala	Pro	Glu	Ser	Gly	Ala	Gly	Leu	Gly	Gly	Thr	Val	Gln	Ala	Gly
1					5					10				15

(2) INFORMATION FOR SEQ ID NO:137:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Xaa	Tyr	Ile	Ala	Tyr	Xaa	Thr	Thr	Ala	Gly	Ile	Val	Pro	Gly	Lys	Ile
1					5					10				15	
Asn Val His Leu Val															
20															

(2) INFORMATION FOR SEQ ID NO:138:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 882 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

GCAACGCTGT	CGTGGCCTTT	GCGGTGATCG	GTTTCGCCTC	GCTGGCGGTG	GCGGTGGCGG	60
TCACCACATCCG	ACCGACCGCG	GCCTCAAAAC	CGGTAGAGGG	ACACCAAAAC	GCCCAGCCAG	120
GGAAGTTCAT	GCCGTTGTTG	CCGACGCAAC	AGCAGGCGCC	GGTCCCGCCG	CCTCCGCCCG	180
ATGATCCCAC	CGCTGGATTTC	CAGGGCGGCA	CCATTCCGGC	TGTACAGAAC	GTGGTGCCGC	240
GGCCGGGTAC	CTCACCCGGG	GTGGGTGGGA	CGCCGGCTTC	GCCTGCGCCG	GAAGCGCCGG	300
CCGTGCCCGG	TGTTGTGCCT	GCCCCGGTGC	CAATCCGGT	CCCGATCATC	ATTCCCCCGT	360
TCCC GG GTTG	GCAGCCTGGA	ATGCCGACCA	TCCCCACCGC	ACCGCCGACG	ACGCCGGTGA	420
CCACGTCGGC	GACGACGCCG	CCGACCACGC	CGCCGACCAC	GCCGGTGACC	ACGCCGCCAA	480
CGACGCCGCC	GACCACGCCG	GTGACCACGC	CGCCAACGAC	GCCGCCGACC	ACGCCGGTGA	540
CCACGCCACC	AACGACCGTC	GCCCCGACGA	CCGTCGCCCG	GACGACGGTC	GCTCCGACCA	600
CCGTCGCCCG	GACCACGGTC	GCTCCAGCCA	CCGCCACGCC	GACGACCGTC	GCTCCGCAGC	660

CGACGCAGCA	GCCCACGCAA	CAACCAACCC	AACAGATGCC	AACCCAGCAG	CAGACCGTGG	720
CCCCGCAGAC	GGTGGCGCCG	GCTCCGCAGC	CGCCGTCCGG	TGGCCGCAAC	GGCAGCGCG	780
GGGGCGACTT	ATT CGGC GGGG	TTCTGATCAC	GGTCGCGGCT	TCACTACGGT	CGGAGGACAT	840
GGCCGGTGAT	GCGGTGACGG	TGGTGCTGCC	CTGTCTAAC	GA		882

(2) INFORMATION FOR SEQ ID NO:139:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 815 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:						
CCATCAAACCA	ACCGCTCGCG	CCGCCCCGCG	CGCCGGATCC	GCCGTGCGCG	CCACGCCCGC	60
CGGTGCCTCC	GGTGC CCCCCG	TTGCCGCCGT	CGCCGCCGTC	GCCGCCGACC	GGCTGGGTGC	120
CTAGGGCGCT	GTT ACCGCC	TGGTTGGCGG	GGACGCCGCC	GGCACCACCG	GTACCGCCGA	180
TGGGCCGTT	GCCGCCGGCG	GCACCGTTGC	CACCGTTGCC	ACCGTTGCCA	CCGTTGCCGA	240
CCAGCCACCC	GCCGCGACCA	CGGGCACCGC	CGGCCGCCGCC	CGCACCGCCG	GCGTGC CCGGT	300
TCGTGCCCGT	ACCGCCGGCA	CCGCCGTTGC	CGCCGTCACC	GCCGACGGAA	CTACCGGCGG	360
ACGCGGCCTG	CCCGCCGGCG	CCGCCCGC AC	CGCCATTGGC	ACCGCCGTCA	CCGCCGGCTG	420
GGAGTGC CCGC	GATTAGGGCA	CTGACCGGCG	CAACCAGCGC	AAGTACTCTC	GGTCACCGAG	480
CACTTCCAGA	CGACACCACA	GCACGGGGTT	GTCGGCGGAC	TGGGTGAAAT	GGCAGCCGAT	540
AGCGGCTAGC	TGTCGGCTGC	GGTCAACCTC	GATCATGATG	TCGAGGTGAC	CGTGACCGCG	600
CCCCCGAAG	GAGGC GCTGA	ACTCGCGTT	GAGCCGATCG	GCGATCGTT	GGGGCAGTGC	660
CCAGGCCAAT	ACGGGGATAC	CGGGTGT CNA	AGCCGCCGCG	AGCGCAGCTT	CGGTTGCCGCG	720
ACNGTGGTCG	GGGTGGCCTG	TTACGCCGTT	GTCNTCGAAC	ACGAGTAGCA	GGTCTGCTCC	780
GGCGAGGGCA	TCCACCACGC	GTTGCGTCAG	CTCGT			815

(2) INFORMATION FOR SEQ ID NO:140:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1152 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

ACCAGCCGCC	GGCTGAGGTC	TCAGATCAGA	GAGTCTCCGG	ACTCACCGGG	GCGGTTCA	GC	60
CTTCTCCCAG	AACAACTGCT	GAAGATCCTC	GCCCCGAAA	CAGGCGCTGA	TTTGACGCTC		120
TATGACCGGT	TGAACGACGA	GATCATCCGG	CAGATTGATA	TGGCACCGCT	GGGCTAACAG		180
GTGCGCAAGA	TGGTGCAGCT	GTATGTCTCG	GAUTCCGTGT	CGCGGATCAG	CTTTGCCGAC		240
GGCCGGGTGA	TCGTGTGGAG	CGAGGGAGCTC	GGCGAGAGCC	AGTATCCGAT	CGAGACGCTG		300
GACGGCATCA	CGCTGTTTGG	GCGGCCGACG	ATGACAACGC	CCTTCATCGT	TGAGATGCTC		360
AAGCGTGAGC	GCGACATCCA	GCTCTTCACG	ACCGACGGCC	ACTACCAGGG	CCGGATCTCA		420
ACACCCGACG	TGTCATAACGC	GCCGCGGCTC	CGTCAGCAAG	TTCACCGCAC	CGACGGATCCT		480
GCGTTCTGCC	TGTCGTTAAG	CAAGCGGATC	GTGTCGAGGA	AGATCCTGAA	TCAGCAGGCC		540
TTGATTCTGGG	CACACACGTC	GGGGCAAGAC	GTTGCTGAGA	GCATCCGCAC	GATGAAGCAC		600
TCGCTGGCCT	GGGTCGATCG	ATCGGGCTCC	CTGGCGGAGT	TGAACGGGTT	CGAGGGAAAT		660
GCCGCAAAGG	CATACTTCAC	CGCGCTGGGG	CATCTCGTCC	CGCAGGAGTT	CGCATTCCAG		720
GGCCGCTCGA	CTCGGCCGCC	GTTGGACGCC	TTCAACTCGA	TGGTCAGCCT	CGGCTATTCTG		780
CTGCTGTACA	AGAACATCAT	AGGGCGATC	GAGCGTCACA	GCCTGAACGC	GTATATCGGT		840
TTCCTACACC	AGGATTACAG	AGGGCACGCA	ACGTCTCGT	CCGAATTCTGG	CACGAGCTCC		900
GCTGAAACCG	CTGGCCGGCT	GCTCAGTGCC	CGTACGTAAT	CCGCTGCGCC	CAGGCCGGCC		960
CGCCGGCCGA	ATACCAGCAG	ATCGGACAGC	GAATTGCCGC	CCAGCCGGTT	GGAGCCGTGC		1020
ATACCGCCGG	CACACTCACC	GGCAGCGAAC	AGGCCTGGCA	CCGTGGCGGC	GCCGGTGTCC		1080
GCGTCTACTT	CGACACCGCC	CATCACGTAG	TGACACGTG	GCCCGACTTC	CATTGCCCTGC		1140
GTTCGGCACG	AG						1152

(2) INFORMATION FOR SEQ ID NO:141:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 655 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

CTCGTGC	GGCA	TTCGGCAGGG	TGTACTTGCC	GGTGGTGTAN	GCCGCATGAG	TGCCGACGAC	60
CAGCAATGCG	GCAACAGCAC	GGATCCGGT	CAACGACGCC	ACCCGGTCCA	CGTGGGCGAT		120

CCGCTCGAGT	CCGCCCTGGG	CGGCTCTTC	CTTGGGCAGG	GTCATCCGAC	GTGTTCCGC	180
CGTGGTTGC	CGCCATTATG	CCGGCGCGCC	GCGTCGGCG	GCCGGTATGG	CCGAANGTCG	240
ATCAGCACAC	CCGAGATAACG	GGTCTGTGCA	AGCTTTTGAA	GCGTCGCGCG	GGGCAGCTTC	300
GCCGGCAATT	CTACTAGCGA	GAAGTCTGGC	CCGATACGGA	TCTGACCGAA	GTCGCTGCAG	360
TGCAGCCCAC	CCTCATTGGC	GATGGCGCCG	ACGATGGCGC	CTGGACCGAT	CTTGTGCCGC	420
TTGCCGACGG	CGACGCGGTA	GGTGGTCAAG	TCCGGTCTAC	GCTTGGGCCT	TTGCAGACGG	480
TCCCGACGCT	GGTCGCGGTT	GCGCCGCGAA	AGCGGCGGGT	CGGGTGCCAT	CAGGAATGCC	540
TCACCGCCGC	GGCACTGCAC	GGCCAGTGCC	GCGGCGATGT	CAGCCATCGG	GACATCATGC	600
TCGCGTTCAT	ACTCCTCGAC	CAGTCGGCGG	AACAGCTCGA	TTCCCGGACC	GCCCCA	655

(2) INFORMATION FOR SEQ ID NO:142:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 267 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

Asn	Ala	Val	Val	Ala	Phe	Ala	Val	Ile	Gly	Phe	Ala	Ser	Leu	Ala	Val
1															15
Ala	Val	Ala	Val	Thr	Ile	Arg	Pro	Thr	Ala	Ala	Ser	Lys	Pro	Val	Glu
															30
Gly	His	Gln	Asn	Ala	Gln	Pro	Gly	Lys	Phe	Met	Pro	Leu.	Leu	Pro	Thr
															45
Gln	Gln	Gln	Ala	Pro	Val	Pro	Pro	Pro	Pro	Asp	Asp	Pro	Thr	Ala	
															50
															60
Gly	Phe	Gln	Gly	Gly	Thr	Ile	Pro	Ala	Val	Gln	Asn	Val	Val	Pro	Arg
															65
															70
															75
															80
Pro	Gly	Thr	Ser	Pro	Gly	Val	Gly	Gly	Thr	Pro	Ala	Ser	Pro	Ala	Pro
															85
															90
															95
Glu	Ala	Pro	Ala	Val	Pro	Gly	Val	Val	Pro	Ala	Pro	Val	Pro	Ile	Pro
															100
															105
															110
Val	Pro	Ile	Ile	Ile	Pro	Pro	Phe	Pro	Gly	Trp	Gln	Pro	Gly	Met	Pro
															115
															120
															125
Thr	Ile	Pro	Thr	Ala	Pro	Pro	Thr	Thr	Pro	Val	Thr	Thr	Ser	Ala	Thr
															130
															135
															140
Thr	Pro	Pro	Thr	Thr	Pro	Pro	Thr	Thr	Pro	Val	Thr	Thr	Pro	Pro	Thr

150

145	150	155	160
Thr Pro Pro Thr Thr Pro Val Thr Thr Pro Pro Thr Thr Pro Pro Thr			
	165	170	175
Thr Pro Val Thr Thr Pro Pro Thr Thr Val Ala Pro Thr Thr Val Ala			
	180	185	190
Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro			
	195	200	205
Ala Thr Ala Thr Pro Thr Thr Val Ala Pro Gln Pro Thr Gln Gln Pro			
	210	215	220
Thr Gln Gln Pro Thr Gln Gln Met Pro Thr Gln Gln Gln Thr Val Ala			
	225	230	235
240			
Pro Gln Thr Val Ala Pro Ala Pro Gln Pro Pro Ser Gly Gly Arg Asn			
	245	250	255
Gly Ser Gly Gly Asp Leu Phe Gly Gly Phe			
	260	265	

(2) INFORMATION FOR SEQ ID NO:143:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 174 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

Ile	Asn	Gln	Pro	Leu	Ala	Pro	Pro	Ala	Pro	Pro	Asp	Pro	Pro	Ser	Pro
1				5					10					15	
Pro	Arg	Pro	Pro	Val	Pro	Pro	Val	Pro	Pro	Leu	Pro	Pro	Ser	Pro	Pro
				20				25					30		
Ser	Pro	Pro	Thr	Gly	Trp	Val	Pro	Arg	Ala	Leu	Leu	Pro	Pro	Trp	Leu
					35			40					45		
Ala	Gly	Thr	Pro	Pro	Ala	Pro	Pro	Val	Pro	Pro	Met	Ala	Pro	Leu	Pro
					50			55			60				
Pro	Ala	Ala	Pro	Leu	Pro	Thr									
				65			70			75			80		
Ser	His	Pro	Pro	Arg	Pro	Pro	Ala	Pro	Pro	Ala	Pro	Pro	Ala	Pro	Pro
				85				90					95		
Ala	Cys	Pro	Phe	Val	Pro	Val	Pro	Pro	Ala	Pro	Pro	Leu	Pro	Pro	Ser
					100				105			110			
Pro	Pro	Thr	Glu	Leu	Pro	Ala	Asp	Ala	Ala	Cys	Pro	Pro	Ala	Pro	Pro
				115				120			125				

151

Ala Pro Pro Leu Ala Pro Pro Ser Pro Pro Ala Gly Ser Ala Ala Ile
130 135 140

Arg Ala Leu Thr Gly Ala Thr Ser Ala Ser Thr Leu Gly His Arg Ala
145 150 155 160

Leu Pro Asp Asp Thr Thr Ala Arg Gly Cys Arg Arg Thr Gly
165 170

(2) INFORMATION FOR SEQ ID NO:144:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

Gln Pro Pro Ala Glu Val Ser Asp Gln Arg Val Ser Gly Leu Thr Gly
1 5 10 15

Ala Val Gln Pro Ser Pro Arg Thr Thr Ala Glu Asp Pro Arg Pro Arg
20 25 30

Asn Arg Arg
35

(2) INFORMATION FOR SEQ ID NO:145:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 104 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

Arg Ala Asp Ser Ala Gly Cys Thr Cys Arg Trp Cys Xaa Pro His Glu
1 5 10 15

Cys Arg Arg Pro Ala Met Arg Gln Gln His Gly Ser Arg Ser Thr Thr
20 25 30

Pro Pro Gly Pro Arg Gly Arg Ser Ala Arg Val Arg Pro Gly Arg Leu
35 40 45

Phe Pro Trp Ala Gly Ser Ser Asp Val Phe Pro Pro Trp Phe Ala Ala
50 55 60

Ile Met Pro Ala Arg Arg Val Gly Arg Pro Val Trp Pro Xaa Val Asp
65 70 75 80

Gln His Thr Arg Asp Thr Gly Leu Cys Lys Leu Phe Glu Arg Arg Ala
85 90 95

Gly Gln Leu Arg Arg Gln Phe Tyr
100

(2) INFORMATION FOR SEQ ID NO:146:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "PCR primer"
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

GGATCCATAT GGGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC

53

(2) INFORMATION FOR SEQ ID NO:147:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "PCR Primer"
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

CCTGAATTCA GCCCTCGGTT GCGCCGGCCT CATCTTGAAC GA

42

(2) INFORMATION FOR SEQ ID NO:148:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "PCR Primer"
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

GGATCCTGCA GGCTCGAAAC CACCGAGCGG T

31

(2) INFORMATION FOR SEQ ID NO:149:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 31 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "PCR primer"

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Mycobacterium tuberculosis

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

CTCTGAATTG AGCGCTGGAA ATCGTCGCGA T

31

(2) INFORMATION FOR SEQ ID NO:150:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 33 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "PCR primer"

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Mycobacterium tuberculosis

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

GGATCCAGCG CTGAGATGAA GACCGATGCC GCT

33

(2) INFORMATION FOR SEQ ID NO:151:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 33 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "PCR primer"

(vi) ORIGINAL SOURCE:
(A) ORGANISM: Mycobacterium tuberculosis

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

GAGAGAATTC TCAGAACGCC ATTTGCGAGG ACA

33

(2) INFORMATION FOR SEQ ID NO:152:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 1993 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:
(A) ORGANISM: *Mycobacterium tuberculosis*

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 152 1273

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

TGTTCTTCGA CGGCAGGCTG GTGGAGGAAG GGCCCCACCGA ACAGACTGTTG TCCTCCCCCA

AGCATGCGGA AACCGCCCCA TAGCTCCCCC GACTGTCCCC CCGACCTGAG C1CCCC1CCC

GC GGAA ATTG AAGAGCACAG AAAGGTATGG C GTG AAA ATT CGT TTG CAT ACG
 Val Lys Ile Arg Leu His Thr
 1 5

CTG TTG GCC GTG TTG ACC GCT GCG CCG CTG CTG CTA GCA GCG GCG GGC
 Leu Leu Ala Val Leu Thr Ala Ala Pro Leu Leu Leu Ala Ala Ala Gly
 10 15 20

TGT GGC TCG AAA CCA CCG AGC GGT TCG CCT GAA ACG GGC GCC GGC GCC
 Cys Gly Ser Lys Pro Pro Ser Gly Ser Pro Glu Thr Gly Ala Gly Ala
 25 30 35

GGT ACT GTC GCG ACT ACC CCC GCG TCG TCG CCG GTG ACG TTG GCG GAG
 Gly Thr Val Ala Thr Thr Pro Ala Ser Ser Pro Val Thr Leu Ala Glu
 40 45 . 50 . 55

ACC GGT AGC ACG CTG CTC TAC CCG CTG TTC AAC CTG TGG GGT CCG GCC
 Thr Gly Ser Thr Leu Leu Tyr Pro Leu Phe Asn Leu Trp Gly Pro Ala
 60 65 70

TTT CAC GAG AGG TAT CCG AAC GTC ACG ATC ACC GCT CAG GGC ACC GGT
 Phe His Glu Arg Tyr Pro Asn Val Thr Ile Thr Ala Gln Gly Thr Gly
 75 80 85

TCT GGT GCC GGG ATC GCG CAG GCC GCC GGG ACG GTC AAC ATT GGG
 Ser Gly Ala Gly Ile Ala Gln Ala Ala Ala Gly Thr Val Asn Ile Gly
 90 95 100

GCC TCC GAC GCC TAT CTG TCG GAA GGT GAT ATG GCC GCG CAC AAG GGG . . . 508
 Ala Ser Asp Ala Tyr Leu Ser Glu Gly Asp Met Ala Ala His Lys Gly
 105 110 115

CTG ATG AAC ATC GCG CTA GCC ATC TCC GCT CAG CAG GTC AAC TAC AAC
 Leu Met Asn Ile Ala Leu Ala Ile Ser Ala Gln Gln Val Asn Tyr Asn
 120 125 130 135

CTG CCC GGA GTG AGC GAG CAC CTC AAG CTG AAC GGA AAA GTC CTG GCG Leu Pro Gly Val Ser Glu His Leu Lys Leu Asn Gly Lys Val Leu Ala 140 145 150	604
GCC ATG TAC CAG GGC ACC ATC AAA ACC TGG GAC GAC CCG CAG ATC GCT Ala Met Tyr Gln Gly Thr Ile Lys Thr Trp Asp Asp Pro Gln Ile Ala 155 160 165	652
GCG CTC AAC CCC GGC GTG AAC CTG CCC GGC ACC GCG GTA GTT CCG CTG Ala Leu Asn Pro Gly Val Asn Leu Pro Gly Thr Ala Val Val Pro Leu 170 175 180	700
CAC CGC TCC GAC GGG TCC GGT GAC ACC TTC TTG TTC ACC CAG TAC CTG His Arg Ser Asp Gly Ser Gly Asp Thr Phe Leu Phe Thr Gln Tyr Leu 185 190 195	748
TCC AAG CAA GAT CCC GAG GGC TGG GGC AAG TCG CCC GGC TTC GGC ACC Ser Lys Gln Asp Pro Glu Gly Trp Gly Lys Ser Pro Gly Phe Gly Thr 200 205 210 215	796
ACC GTC GAC TTC CCG GCG GTG CCG GGT GCG CTG GGT GAG AAC GGC AAC Thr Val Asp Phe Pro Ala Val Pro Gly Ala Leu Gly Glu Asn Gly Asn 220 225 230	844
GGC GGC ATG GTG ACC GGT TGC GCC GAG ACA CCG GGC TGC GTG GCC TAT Gly Gly Met Val Thr Gly Cys Ala Glu Thr Pro Gly Cys Val Ala Tyr 235 240 245	892
ATC GGC ATC AGC TTC CTC GAC CAG GCC AGT CAA CGG GGA CTC GGC GAG Ile Gly Ile Ser Phe Leu Asp Gln Ala Ser Gln Arg Gly Leu Gly Glu 250 255 260	940
GCC CAA CTA GGC AAT AGC TCT GGC AAT TTC TTG TTG CCC GAC GCG CAA Ala Gln Leu Gly Asn Ser Ser Gly Asn Phe Leu Leu Pro Asp Ala Gln 265 270 275	988
AGC ATT CAG GCC GCG GCT GGC TTC GCA TCG AAA ACC CCG GCG AAC Ser Ile Gln Ala Ala Ala Gly Phe Ala Ser Lys Thr Pro Ala Asn 280 285 290 295	1036
CAG GCG ATT TCG ATG ATC GAC GGG CCC GCC CCG GAC GGC TAC CCG ATC Gln Ala Ile Ser Met Ile Asp Gly Pro Ala Pro Asp Gly Tyr Pro Ile 300 305 310	1084
ATC AAC TAC GAG TAC GCC ATC GTC AAC AAC CGG CAA AAG GAC GCC GCC Ile Asn Tyr Glu Tyr Ala Ile Val Asn Asn Arg Gln Lys Asp Ala Ala 315 320 325	1132
ACC GCG CAG ACC TTG CAG GCA TTT CTG CAC TGG GCG ATC ACC GAC GGC Thr Ala Gln Thr Leu Gln Ala Phe Leu His Trp Ala Ile Thr Asp Gly 330 335 340	1180
AAC AAG GCC TCG TTC CTC GAC CAG GTT CAT TTC CAG CCG CTG CCG CCC Asn Lys Ala Ser Phe Leu Asp Gln Val His Phe Gln Pro Leu Pro Pro 345 350 355	1228
GCG GTG GTG AAG TTG TCT GAC GCG TTG ATC GCG ACG ATT TCC AGC Ala Val Val Lys Leu Ser Asp Ala Leu Ile Ala Thr Ile Ser Ser 360 365 370	1273
TAGCCTCGTT GACCACCACG CGACAGCAAC CTCCGTCGGG CCATCGGGCT GCTTTGCGGA	
	1333

GCATGCTGGC CCGTGCCGGT GAAGTCGGCC GCGCTGGCCC GGCCATCCGG TGGTTGGGTG	1393
GGATAGGTGC GGTGATCCCG CTGCTTGCAC TGGTCTGGT GCTGGTGGTG CTGGTCATCG	1453
AGGCGATGGG TGCGATCAGG CTCAACGGGT TGCATTCTT CACCGCCACC GAATGGAATC	1513
CAGGCAACAC CTACGGCGAA ACCGTTGTCA CCGACCGCCTC GCCCATCCGG TCGGCGCCTA	1573
CTACGGGGCG TTGCCGCTGA TCGTCGGGAC GCTGGCGACC TCGGCAATCG CCCTGATCAT	1633
CGCGGTGCCG GTCTCTGTAG GAGCGCGCCT GGTGATCGTG GAACGGCTGC CGAACGGTT	1693
GGCCGAGGCT GTGGGAATAG TCCTGGAATT GCTCGCCGGA ATCCCCAGCG TGTCGTCGG	1753
TTTGTGGGGG GCAATGACGT TCGGGCCGTT CATCGCTCAT CACATCGCTC CGGTGATCGC	1813
TCACAACGCT CCCGATGTGC CGGTGCTGAA CTACTTGCAC GGCACCCGG GCAACGGGA	1873
GGGCATGTTG GTGTCCGGTC TGGTGTGTC GGTGATGGTC GTTCCCATT A TCGCCACCA	1933
CACTCATGAC CTGTTCCGGC AGGTGCCGGT GTTGCCCCGG GAGGGCGCGA TCGGGAATT	1993

(2) INFORMATION FOR SEQ ID NO:153:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 374 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

Val Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro	
1 5 10 15	
Leu Leu Leu Ala Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser	
20 25 30	
Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser	
35 40 45	
Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu	
50 55 60	
Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr	
65 70 75 80	
Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala	
85 90 95	
Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly	
100 105 110	
Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser	
115 120 125	
Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys	
130 135 140	

Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr
 145 150 155 160

Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro
 165 170 175

Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr
 180 185 190

Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly
 195 200 205

Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly
 210 215 220

Ala Leu Gly Glu Asn Gly Asn Gly Met Val Thr Gly Cys Ala Glu
 225 230 235 240

Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala
 245 250 255

Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn
 260 265 270

Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala Gly Phe
 275 280 285

Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro
 290 295 300

Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn
 305 310 315 320

Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu
 325 330 335

His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val
 340 345 350

His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu
 355 360 365

Ile Ala Thr Ile Ser Ser
 370

(2) INFORMATION FOR SEQ ID NO:154:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1993 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

TGTTCTTCGA CGGCAGGCTG GTGGAGGAAG GGCCCACCGA ACAGCTGTTC TCCTCGCCGA

AGCATGCGGA AACCGCCCGA TACGTCGCCG GACTGTCGGG GGACGTCAAG GACGCCAAGC	120
GCGGAAATTG AAGAGCACAG AAAGGTATGG CGTGAAAATT CGTTGCATA CGCTGTTGGC	180
CGTGTGACC GCTGCGCCGC TGCTGCTAGC AGCGGGGGC TGTGGCTCGA AACCACCGAG	240
CGGTTCGCCT GAAACGGCG CCGGCGCCGG TACTGTCGCG ACTACCCCCG CGTCGTCGCC	300
GGTGACGTTG GCGGAGACCG GTAGCACGCT GCTCTACCCG CTGTTCAACC TGTGGGTCC	360
GGCCTTCAC GAGAGGTATC CGAACGTCAC GATCACCGCT CAGGGCACCG GTTCTGGTGC	420
CGGGATCGCG CAGGCCGCCG CCGGGACGGT CAACATTGGG GCCTCCGACG CCTATCTGTC	480
GGAAGGTGAT ATGGCCGCGC ACAAGGGCT GATGAACATC GCGCTAGCCA TCTCCGCTCA	540
GCAGGTCAAC TACAACCTGC CCGGAGTGAG CGAGCACCTC AAGCTGAACG GAAAAGTCCT	600
GGCGGCCATG TACCAGGGCA CCATCAAAAC CTGGGACGAC CCGCAGATCG CTGCGCTCAA	660
CCCCGGCGTG AACCTGCCCG GCACCGCGGT AGTTCCGCTG CACCGCTCCG ACGGGTCCGG	720
TGACACCTTC TTGTTCACCC AGTACCTGTC CAAGCAAGAT CCCGAGGGCT GGGGCAAGTC	780
GCCCAGCTTC GGCACCACCG TCGACTTCCC GGCGGTGCCG GGTGCGCTGG GTGAGAACGG	840
CAACGGCGGC ATGGTGACCG GTTGCGCCGA GACACCGGGC TGCCTGGCCT ATATCGGCAT	900
CAGCTTCCTC GACCAGGCCA GTCAACGGGG ACTCGGCGAG GCCCAACTAG GCAATAGCTC	960
TGGCAATTTC TTGTTGCCCG ACGCGCAAAG CATTCAAGGCC GCGGCGGCTG GCTTCGCATC	1020
GAAAACCCCG GCGAACCAAG CGATTCGAT GATCGACGGG CCCGCCCGG ACGGCTACCC	1080
GATCATCAAC TACGAGTACG CCATCGTCAA CAACCGGCAA AAGGACGCCG CCACCGCGCA	1140
GACCTTGCAG GCATTTCTGC ACTGGCGAT CACCGACGGC ACAAGGCCT CGTTCCCTCGA	1200
CCAGGTTCAT TTCCAGGCCG TGCCGCCCGC GGTGGTGAAG TTGTCTGACG CGTTGATCGC	1260
GACGATTTCC AGCTAGCCTC GTTGACCACC ACGCGACAGC AACCTCCGTC GGGCCATCGG	1320
GCTGCTTGC GGAGCATGCT GGCGCGGCC GGTGAAGTCG GCCCGCGCTGG CCCGGCCATC	1380
CGGTGGTTGG GTGGGATAGG TGCCTGATC CCGCTGCTTG CGCTGGTCTT GGTGCTGGTG	1440
GTGCTGGTCA TCGAGGCGAT GGGTGCATC AGGCTCAACG GGTTGCATTT CTTCACCGCC	1500
ACCGAATGGA ATCCAGGCAA CACCTACGGC GAAACCGTTG TCACCGACGC GTCGCCCATC	1560
CGGTCGGCGC CTACTACGGG GCGTTGCCGC TGATCGTCGG GACGCTGGCG ACCTCGGCAA	1620
TCGCCCTGAT CATCGCGGTG CCGGTCTCTG TAGGAGCGGC GCTGGTGCATC GTGGAACGGC	1680
TGCCGAAACG GTTGGCCGAG GCTGTGGAA TAGTCCTGGA ATTGCTGCC GGAATCCCCA	1740
CGCTGGTCGT CGGTTGTGG GGGGCAATGA CGTTCGGGCC GTTCATCGCT CATCACATCG	1800
CTCCGGTGCAT CGCTCACAAAC GCTCCCGATG TGCCGGTGCT GAACTACTTG CGCGGGGACCC	1860
CGGGCAACGG GGAGGGCATG TTGGTGTCCG GTCTGGTGT GGCCTGGTGCATG GTCGTTCCCA	1920

TTATCGCCAC CACCACTCAT GACCTGTTCC GGCAGGTGCC GGTGTTGCC CGGGAGGGCG 1980
 CGATCGGGAA TTC 1993

(2) INFORMATION FOR SEQ ID NO:155:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 374 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

Met	Lys	Ile	Arg	Leu	His	Thr	Leu	Leu	Ala	Val	Leu	Thr	Ala	Ala	Pro
1				5					10			15			
Leu	Leu	Leu	Ala	Ala	Ala	Gly	Cys	Gly	Ser	Lys	Pro	Pro	Ser	Gly	Ser
						20		25			30				
Pro	Glu	Thr	Gly	Ala	Gly	Ala	Gly	Thr	Val	Ala	Thr	Thr	Pro	Ala	Ser
	35					40			45						
Ser	Pro	Val	Thr	Leu	Ala	Glu	Thr	Gly	Ser	Thr	Leu	Leu	Tyr	Pro	Leu
	50					55			60						
Phe	Asn	Leu	Trp	Gly	Pro	Ala	Phe	His	Glu	Arg	Tyr	Pro	Asn	Val	Thr
65					70				75			80			
Ile	Thr	Ala	Gln	Gly	Thr	Gly	Ser	Gly	Ala	Gly	Ile	Ala	Gln	Ala	Ala
	85					90				95					
Ala	Gly	Thr	Val	Asn	Ile	Gly	Ala	Ser	Asp	Ala	Tyr	Leu	Ser	Glu	Gly
	100					105			110						
Asp	Met	Ala	Ala	His	Lys	Gly	Leu	Mét	Asn	Ile	Ala	Leu	Ala	Ile	Ser
	115						120			125					
Ala	Gln	Gln	Val	Asn	Tyr	Asn	Leu	Pro	Gly	Val	Ser	Glu	His	Leu	Lys
	130						135			140					
Leu	Asn	Gly	Lys	Val	Leu	Ala	Ala	Met	Tyr	Gln	Gly	Thr	Ile	Lys	Thr
145					150				155			160			
Trp	Asp	Asp	Pro	Gln	Ile	Ala	Ala	Leu	Asn	Pro	Gly	Val	Asn	Leu	Pro
	165							170				175			
Gly	Thr	Ala	Val	Val	Pro	Leu	His	Arg	Ser	Asp	Gly	Ser	Gly	Asp	Thr
	180						185			190					
Phe	Leu	Phe	Thr	Gln	Tyr	Leu	Ser	Lys	Gln	Asp	Pro	Glu	Gly	Trp	Gly
	195					200				205					
Lys	Ser	Pro	Gly	Phe	Gly	Thr	Thr	Val	Asp	Phe	Pro	Ala	Val	Pro	Gly
	210					215			220						
Ala	Leu	Gly	Glu	Asn	Gly	Asn	Gly	Gly	Met	Val	Thr	Gly	Cys	Ala	Glu
	225					230			235			240			

Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala
 245 250 255
 Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn
 260 265 270
 Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala Gly Phe
 275 280 285
 Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro
 290 295 300
 Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn
 305 310 315 320
 Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu
 325 330 335
 His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val
 340 345 350
 His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu
 355 360 365
 Ile Ala Thr Ile Ser Ser
 370

(2) INFORMATION FOR SEQ ID NO:156:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1777 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

GGTCTTGACC ACCACCTGGG TGTCAAGTC GGTGCCCGA TTGAAGTCCA GGTACTCGTG	60
GGTGGGGCGG GCGAAACAAT AGCGACAAGC ATGCGAGCAG CCGCGGTAGC CGTTGACGGT	120
GTAAGCAAAC GGCAACGCGG CCGCGTTGGG CACCTGTTC AGCGCTGATT TGCACAACAC	180
CTCGTGGAAAG GTGATGCCGT CGAATTGTGG CGCGCGAACG CTGCGGACCA GGCCGATCCG	240
CTGCAACCCG GCAGCGCCCG TCGTCAACGG GCATCCCGTT CACCGCGACG GCTTGCCGGG	300
CCCAACGCAT ACCATTATTC GAACAACCGT TCTATACTTT GTCAACGCTG GCCGCTACCG	360
AGCGCCGCAC AGGATGTGAT ATGCCATCTC TGCCCCACA GACAGGAGCC AGGCCTTATG	420
ACAGCATTGCGT GCGTCGAGCC CTACGGGCAG CCGAAGTACC TAGAAATCGC CGGGAAAGCGC	480
ATGGCGTATA TCGACGAAGG CAAGGGTGAC GCCATCGTCT TTCAGCACGG CAACCCCACG	540
TCGTCTTACT TGTGGCGCAA CATCATGCCG CACTTGGAAAG GGCTGGGCCG GCTGGTGGCC	600

TGCGATCTGA	TCGGGATGGG	CGCGTCGGAC	AAGCTCAGCC	CATCGGGACC	CGACCGCTAT	660
AGCTATGGCG	AGCAACGAGA	CTTTTGTTTC	GCGCTCTGGG	ATGCGCTCGA	CCTCGGCGAC	720
CACGTGGTAC	TGGTGCTGCA	CGACTGGGGC	TCGGCGCTCG	GCTTCGACTG	GGCTAACCAAG	780
CATCGCGACC	GAGTGCAGGG	GATCGCGTTC	ATGGAAGCGA	TCGTCACCCC	GATGACGTGG	840
GCGGACTGGC	CGCCGGCCGT	GCGGGGTGTG	TTCCAGGGTT	TCCGATCGCC	TCAAGGCGAG	900
CCAATGGCGT	TGGAGCACAA	CATCTTGTC	GAACGGGTGC	TGCCCGGGGC	GATCCTGCGA	960
CAGCTCAGCG	ACGAGGAAAT	GAACCACTAT	CGGCGGCCAT	TCGTGAACGG	CGGCGAGGAC	1020
CGTCGCCCCA	CGTTGTCGTG	GCCACGAAAC	CTTCCAATCG	ACGGTGAGCC	CGCCGAGGTC	1080
GTCGCGTTGG	TCAACGAGTA	CCGGAGCTGG	CTCGAGGAAA	CCGACATGCC	GAAACTGTTC	1140
ATCAACGCCG	AGCCCGGGCGC	GATCATCACC	GGCCGCATCC	GTGACTATGT	CAGGAGCTGG	1200
CCCAACCAGA	CCGAAATCAC	AGTGCCCGGC	GTGCATTCG	TTCAGGAGGA	CAGCGATGGC	1260
GTCGTATCGT	GGGCGGGCGC	TCGGCAGCAT	CGGCGACCTG	GGAGCGCTCT	CATTCACGA	1320
GACCAAGAAT	GTGATTCCG	GCGAAGGCAG	CGCCCTGCTT	GTCAACTCAT	AAGACTTCCT	1380
GCTCCGGGCA	GAGATTCTCA	GGGAAAAGGG	CACCAATCGC	AGCCGTTCC	TTCGCAACGA	1440
GGTCGACAAA	TATACGTGGC	AGGACAAAGG	TCTTCCTATT	TGCCAGCGA	ATTAGTCGCT	1500
GCCTTCTAT	GGGCTCAGTT	CGAGGAAGCC	GAGCGGATCA	CGCGTATCCG	ATTGGACCTA	1560
TGGAACCGGT	ATCATGAAAG	CTTCGAATCA	TTGGAACAGC	GGGGGCTCCT	GCGCCGTCCG	1620
ATCATCCCAC	AGGGCTGCTC	TCACAACGCC	CACATGTACT	ACGTGTTACT	AGCGCCCAGC	1680
GCCGATCGGG	AGGAGGTGCT	GGCGCGTCTG	ACGAGCGAAG	GTATAGGCGC	GGTCTTCAT	1740
TACGTGCCGC	TTCACGATTC	GCCGGCCGGG	CGTCGCT			1777

(2) INFORMATION FOR SEQ ID NO:157:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 324 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

GAGATTGAAT	CGTACCGGTC	TCCTTAGCGG	CTCCGTCCCG	TGAATGCCCA	TATCACGCAC	60
GGCCATGTTC	TGGCTGTCGA	CCTTCGCCCC	ATGCCCGGAC	GTTGGTAAAC	CCAGGGTTTG	120
ATCAGTAATT	CCGGGGGACG	GTTGCGGGAA	GGCGGCCAGG	ATGTGCGTGA	GCCGCGGCCGC	180
CGCCGTGCC	CAGGCGACCG	CTGGATGCTC	AGCCCCGGTG	CGGCGACGTA	GCCAGCGTT	240

GGCGCGTGTC GTCCACAGTG GTACTCCGGT GACGACGCCG CGCGGTGCCT GGGTGAAGAC	300
CGTGACCGAC GCCGCCGATT CAGA	324

(2) INFORMATION FOR SEQ ID NO:158:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1338 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

GCGGTACCGC CGCGTTGCGC TGGCACGGGA CCTGTACGAC CTGAACCAC TCGCCTCGCG	60
AACGATTGAC GAACCGCTCG TCGGGCGGCT GTGGGTGCTC AAGGTGTGGG GTGATGTCGT	120
CGATGACCGG CGCGGCACCC GGCCACTACG CGTCGAAGAC GTCCTCGCCG CCCGCAGCGA	180
GCACGACTTC CAGCCCGACT CGATCGCGT GCTGACCCGT CCTGTCGCTA TGGCTGCCCTG	240
GGAAGCTCGC GTTCGGAAGC GATTTGCGTT CCTCACTGAC CTGGACGCCG ACGAGCAGCG	300
GTGGGCCGCC TGGCACGAAC GGCACCGCCG CGAACGTGGAG AACCGCCTGG CGGTGCTGCG	360
GTCCTGATCA ACCTGCCGGC GATCGTGCCT TTCCGCTGGC ACGGTTGCCG CTGGACGCCG	420
CTGAATCGAC TAGATGAGAG CAGTTGGCA CGAATCCGGC TGTGGTGGTG AGCAAGACAC	480
GAGTACTGTC ATCACTATTG GATGCACTGG ATGACCGGCC TGATTCAAGCA GGACCAATGG	540
AACTGCCCGG GGCAAAACGT CTCGGAGATG ATCGGCGTCC CCTCGGAACC CTGCGGTGCT	600
GGCGTCATTC GGACATCGGT CCGGCTCGCG GGATCGTGGT GACGCCAGCG CTGAAGGGAGT	660
GGAGCGCGGC GGTGCACGCG CTGCTGGACG GCCGGCAGAC GGTGCTGCTG CGTAAGGGCG	720
GGATCGGCGA GAAGCGCTTC GAGGTGGCGG CCCACGAGTT CTTGTTGTT CCGACGGTCG	780
CGCACAGCCA CGCCGAGCGG GTTCGCCCCG AGCACCGCGA CCTGCTGGC CGGGCGGCCG	840
CCGACAGCAC CGACGAGTGT GTGCTACTGC GGGCCGCAGC GAAAGTTGTT GCCGCACTGC	900
CGGTTAACCG GCCAGAGGGT CTGGACGCCA TCGAGGATCT GCACATCTGG ACCGCCGAGT	960
CGGTGCGCGC CGACCGGCTC GACTTCGGC CCAAGCACAA ACTGGCCGTC TTGGTGGTCT	1020
CGGCGATCCC GCTGGCCGAG CCGGTCCGGC TGGCGCGTAG GCCCGAGTAC GGCGGTTGCA	1080
CCAGCTGGGT GCAGCTGCCG GTGACGCCGA CGTTGGCGGC GCCGGTGCAC GACGAGGCCG	1140
CGCTGGCGA GGTCGCCGCC CGGGTCCGCG AGGCCGTGGG TTGACTGGC GGCATCGCTT	1200
GGGTCTGAGC TGTACGCCA GTCGGCGCTG CGAGTGATCT GCTGTCGGTT CGGTCCCTGC	1260
TGGCGTCAAT TGACGGCGCG GGCAACAGCA GCATTGGCGG CGCCATCCTC CGCGCGGCCG	1320

GCGCCCACCG CTACAACC

1338

(2) INFORMATION FOR SEQ ID NO:159:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 321 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

CCGGCGGCAC CGGCGGCACC GGCGGTACCG GCGGCAACGG CGCTGACGCC	GCTGCTGTGG	60
TGGGCTTCGG CGCGAACGGC GACCCTGGCT TCGCTGGCGG CAAAGGCGGT AACGGCGGA		120
TAGGTGGGGC CGCGGTGACA GGCGGGTTCG CGGGCGACGG CGGCACCGGGC GGCAAAGGTG		180
GCACCGGCGG TGCCGGCGGC GCCGGCAACG ACGCCGGCAG CACCGGCAAT CCCGGCGGTA		240
AGGGCGGCGA CGGCGGGATC GGCGGTGCCG GCAGGGCCGG CGGCGCGGCC GGCACCGGCA		300
ACGGCGGCCA TGCCGGCAAC C		321

(2) INFORMATION FOR SEQ ID NO:160:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 492 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

GAAGACCCGG CCCCCGCCATA TCGATCGGCT CGCCGACTAC TTTGCCGAA CGTGCACGCG	60
CGGGCGTCGG GCTGATCATC ACCGGTGGCT ACGCGCCCAA CGGCACCGGA TGGCTGCTGC	120
CGTCGCCTC CGAAACTCGTC ACTTCGGCGC AAGCCGACG GCACCGCCGA ATCACCAAGGG	180
CGGTCCACGA TTCGGGTGCA AAGATECTGC TGCAAATCCT GCACGCCGGA CGCTACGCC	240
ACCACCCACT TGCAGTCAGC GCCTCGCCGA TCAAGGCGCC GATCACCCCG TTTCGTCCGC	300
GAGCACTATC GGCTCGCGGG GTCGAAGCGA CCATCGCGGA TTTGCCCGC TGCGCGCAGT	360
TGGCCCGCGA TGCCGGCTAC GACGGCGTCG AAATCATGGG CAGCGAAGGG TATCTGCTCA	420
ATCAGTTCCCT GGCGCCGCGC ACCAACAAAGC GCACCGACTC GTGGGGCGGC ACACCGGCCA	480
ACCGTCGCCG GT	492

(2) INFORMATION FOR SEQ ID NO:161:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 536 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

Phe Ala Gln His Leu Val Glu Gly Asp Ala Val Glu Leu Trp Arg Ala
1 5 10 15

Asn Ala Ala Asp Gln Ala Asp Pro Leu Gln Pro Gly Ser Ala Arg Arg
20 25 30

Gln Arg Ala Ser Arg Ser Pro Arg Arg Leu Ala Gly Pro Asn Ala Tyr
35 40 45

His Tyr Ser Asn Asn Arg Ser Ile Leu Cys Gln Arg Trp Pro Leu Pro
50 55 60

Ser Ala Ala Gln Asp Val Ile Cys His Leu Cys Pro His Arg Gln Glu
65 70 75 80

Pro Gly Leu Met Thr Ala Phe Gly Val Glu Pro Tyr Gly Gln Pro Lys
85 90 95

Tyr Leu Glu Ile Ala Gly Lys Arg Met Ala Tyr Ile Asp Glu Gly Lys
100 105 110

Gly Asp Ala Ile Val Phe Gln His Gly Asn Pro Thr Ser Ser Tyr Leu
115 120 125

Trp Arg Asn Ile Met Pro His Leu Glu Gly Leu Gly Arg Leu Val Ala
130 135 140

Cys Asp Leu Ile Gly Met Gly Ala Ser Asp Lys Leu Ser Pro Ser Gly
145 150 155 160

Pro Asp Arg Tyr Ser Tyr Gly Glu Gln Arg Asp Phe Leu Phe Ala Leu
165 170 175

Trp Asp Ala Leu Asp Leu Gly Asp His Val Val Leu Val Leu His Asp
180 185 190

Trp Gly Ser Ala Leu Gly Phe Asp Trp Ala Asn Gln His Arg Asp Arg
195 200 205

Val Gln Gly Ile Ala Phe Met Glu Ala Ile Val Thr Pro Met Thr Trp
210 215 220

Ala Asp Trp Pro Pro Ala Val Arg Gly Val Phe Gln Gly Phe Arg Ser
225 230 235 240

Pro Gln Gly Glu Pro Met Ala Leu Glu His Asn Ile Phe Val Glu Arg
245 250 255

Val Leu Pro Gly Ala Ile Leu Arg Gln Leu Ser Asp Glu Glu Met Asn
260 265 270

His	Tyr	Arg	Arg	Pro	Phe	Val	Asn	Gly	Gly	Glu	Asp	Arg	Arg	Pro	Thr
275							280					285			
Leu	Ser	Trp	Pro	Arg	Asn	Leu	Pro	Ile	Asp	Gly	Glu	Pro	Ala	Glu	Val
290						295					300				
Val	Ala	Leu	Val	Asn	Glu	Tyr	Arg	Ser	Trp	Leu	Glu	Glu	Thr	Asp	Met
305					310					315				320	
Pro	Lys	Leu	Phe	Ile	Asn	Ala	Glu	Pro	Gly	Ala	Ile	Ile	Thr	Gly	Arg
					325				330					335	
Ile	Arg	Asp	Tyr	Val	Arg	Ser	Trp	Pro	Asn	Gln	Thr	Glu	Ile	Thr	Val
					340				345				350		
Pro	Gly	Val	His	Phe	Val	Gln	Glu	Asp	Ser	Asp	Gly	Val	Val	Ser	Trp
					355				360				365		
Ala	Gly	Ala	Arg	Gln	His	Arg	Arg	Pro	Gly	Ser	Ala	Leu	Ile	Ser	Arg
					370				375				380		
Asp	Gln	Glu	Cys	Asp	Phe	Arg	Arg	Arg	Arg	Arg	Pro	Ala	Cys	Gln	Leu
					385				390				395		400
Ile	Arg	Leu	Pro	Ala	Pro	Gly	Arg	Asp	Ser	Gln	Gly	Lys	Gly	His	Gln
					405				410				415		
Ser	Gln	Pro	Leu	Pro	Ser	Gln	Arg	Gly	Arg	Gln	Ile	Tyr	Val	Ala	Gly
					420				425				430		
Gln	Arg	Ser	Ser	Tyr	Leu	Pro	Ser	Glu	Leu	Val	Ala	Ala	Phe	Leu	Trp
					435				440				445		
Ala	Gln	Phe	Glu	Glu	Ala	Glu	Arg	Ile	Thr	Arg	Ile	Arg	Leu	Asp	Leu
					450				455				460		
Trp	Asn	Arg	Tyr	His	Glu	Ser	Phe	Glu	Ser	Leu	Glu	Gln	Arg	Gly	Leu
					465				470				475		480
Leu	Arg	Arg	Pro	Ile	Ile	Pro	Gln	Gly	Cys	Ser	His	Asn	Ala	His	Met
					485				490				495		
Tyr	Tyr	Val	Leu	Leu	Ala	Pro	Ser	Ala	Asp	Arg	Glu	Glu	Val	Leu	Ala
					500				505				510		
Arg	Leu	Thr	Ser	Glu	Gly	Ile	Gly	Ala	Val	Phe	His	Tyr	Val	Pro	Leu
					515				520				525		
His	Asp	Ser	Pro	Ala	Gly	Arg	Arg								
					530				535						

(2) INFORMATION FOR SEQ ID NO:162:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:

Asn	Glu	Ser	Ala	Pro	Arg	Ser	Pro	Met	Leu	Pro	Ser	Ala	Arg	Pro	Arg
1				5					10					15	
Tyr	Asp	Ala	Ile	Ala	Val	Leu	Leu	Asn	Glu	Met	His	Ala	Gly	His	Cys
			20				25						30		
Asp	Phe	Gly	Leu	Val	Gly	Pro	Ala	Pro	Asp	Ile	Val	Thr	Asp	Ala	Ala
			35				40					45			
Gly	Asp	Asp	Arg	Ala	Gly	Leu	Gly	Val	Asp	Glu	Gln	Phe	Arg	His	Val
			50			55					60				
Gly	Phe	Leu	Glu	Pro	Ala	Pro	Val	Leu	Val	Asp	Gln	Arg	Asp	Asp	Leu
			65			70				75			80		
Gly	Gly	Leu	Thr	Val	Asp	Trp	Lys	Val	Ser	Trp	Pro	Arg	Gln	Arg	Gly
			85				90					95			
Ala	Thr	Val	Leu	Ala	Ala	Val	His	Glu	Trp	Pro	Pro	Ile	Val	Val	His
			100				105					110			
Phe	Leu	Val	Ala	Glu	Leu	Ser	Gln	Asp	Arg	Pro	Gly	Gln	His	Pro	Phe
			115				120					125			
Asp	Lys	Asp	Val	Val	Leu	Gln	Arg	His	Trp	Leu	Ala	Leu	Arg	Arg	Ser
			130			135					140				
Glu	Thr	Leu	Glu	His	Thr	Pro	His	Gly	Arg	Arg	Pro	Val	Arg	Pro	Arg
			145			150				155			160		
His	Arg	Gly	Asp	Asp	Arg	Phe	His	Glu	Arg	Asp	Pro	Leu	His	Ser	Val
			165				170					175			
Ala	Met	Leu	Val	Ser	Pro	Val	Glu	Ala	Glu	Arg	Arg	Ala	Pro	Val	Val
			180				185					190			
Gln	His	Gln	Tyr	His	Val	Val	Ala	Glu	Val	Glu	Arg	Ile	Pro	Glu	Arg
			195			200					205				
Glu	Gln	Lys	Val	Ser	Leu	Leu	Ala	Ile	Ala	Ile	Ala	Val	Gly	Ser	Arg
			210			215					220				
Trp	Ala	Glu	Leu	Val	Arg	Arg	Ala	His	Pro	Asp	Gln	Ile	Ala	Gly	His
			225			230				235			240		
Gln	Pro	Ala	Gln	Pro	Phe	Gln	Val	Arg	His	Asp	Val	Ala	Pro	Gln	Val
			245				250					255			
Arg	Arg	Arg	Gly	Val	Ala	Val	Leu	Lys	Asp	Asp	Gly	Val	Thr	Leu	Ala
			260				265					270			
Phe	Val	Asp	Ile	Arg	His	Ala	Leu	Pro	Gly	Asp	Phe				
			275				280								

(2) INFORMATION FOR SEQ ID NO:163:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 264 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:

ATGAACATGT CGTCGGTGGT GGGTCGCAAG GCCTTGCGC GATTGCCGG CTACTCCTCC	60
GCCATGCACG CGATGCCGG TTTCTCCGAT GCGTTGCGCC AAGAGCTGCG GGGTAGCGGA	120
ATGCCGTCT CGGTGATCCA CCCGGCGCTG ACCCAGACAC CGCTGTTGGC CAACGTCGAC	180
CCCGCCGACA TGCCGCCGCC GTTTCGCAGC CTCACGCCA TTCCCGTTCA CTGGGTCGCG	240
GCAGCGGTGC TTGACGGTGT GGCG	264

(2) INFORMATION FOR SEQ ID NO:164:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1171 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

TAGTCGGCGA CGATGACGTC GCGGTCCAGG CCGACCGCTT CAAGCACCAAG CGCGACCACG	60
AAGCCGGTGC GATCCTTACC CGCGAACGAG TGGGTGAGCA CCGGGCGTCC GGCGGCAAGC	120
AGTGTGACGA CACGATGTAG CGCGCGCTGT GCTCCATTGC GCGTTGGAA TTGGCGATAAC	180
TCGTCGGTCA TGTAGCGGGT GGCCGGTCA TTTATCGACT GGCTGGATTG GCCGGACTCG	240
CCGTTGGACC CGTCATTGGT TAGCAGCCTC TTGAATGCGG TTTCGTGCAG CGCTGAGTCG	300
TCGGCGTCAT CATCGGCGAG GTGGGGGAAC GGCAGCAGGT GGACGTCGAT GCCGTCCCGGA	360
ACCCGTCCTG GACCGCGCG GGCAACCTCC CGGGACGACC GCAGGTCGGC AACGTCGGTG	420
ATCCCCAGCC GGCGCAGCGT TGCCCCTCGT GCCGAATTG GCACGAGGCT GGCGAGCCAC	480
CGGGCATCAC CAAGCAACGC TTGCCAGTA CGGATCGTCA CTTCCGCATC CGGCAGACCA	540
ATCTCCTCGC CGCCCATCGT CAGATCCCGC TCGTGCAGTG ACAAGAACGG CCGCAGATGT	600
GCCAGCGGGT ATCGGAGATT GAACCGCGCA CGCAGTTCTT CAATCGCTGC GCGCTGCCGC	660
ACTATTGGCA CTTTCCGGCG GTCGCGGTAT TCAGCAAGCA TGCGAGTCTC GACGAACTCG	720
CCCCACGTAA CCCACGGCGT AGCTCCCGGC GTGACGCGGA GGATCGGCAG GTGATCTTG	780
CCGCCACGCT CGTAGCCGTT GATCCACCGC TTGCGGGTGC CGGCAGGGAG GCCGATCAGC	840

TTATCGACCT CGGCGTATGC CGACGGCAAG CTGGGCGCGT TCGTCGAGGT CAAGAACTCC	900
ACCATCGGCA CCGGCACCAA GGTGCCGCAC CTGACCTACG TCGGCGACGC CGACATCGGC	960
GAGTACAGCA ACATCGGCAC CTCCAGCGTG TTCGTCAACT ACGACGGTAC GTCCAAACGG	1020
CGCACCAACCG TCGGTTCGCA CGTACGGACC GGGTCCGACA CCATGTTCGT GGCCCCAGTA	1080
ACCATCGGCG ACGGCGCGTA TACCGGGGCC GGCACAGTGG TGCGGGAGGA TGTCCC GCCG	1140
GGGGCGCTGG CAGTGT CGGC GGGTCCGCAA C	1171

(2) INFORMATION FOR SEQ ID NO:165:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 227 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

GCAAAGGCAGG CACCGGCAGGG GCCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCAAG	60
ACGGCGGCCA AGGCGGCACC GGCAGGCACCG GCGGCAACGC CGGCGCCGGC GGCACCAAGCT	120
TCACCCAAGG CGCCGACGGC AACGCCGGCA ACGGCGGTGA CGGCGGGGTC GGCGGCAACG	180
CGCGAACCGG CGGAAACGGC GCAGACAACA CCACCACCGC CGCCGCC	227

(2) INFORMATION FOR SEQ ID NO:166:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 304 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

CCTCGCCACC ATGGGCGGGC AGGGCGGTAG CGGTGGCGCC GGCTCTACCC CAGGCGCCAA	60
GGGCGCCAC GGCTTCACTC CAACCAGCGG CGGCGACGGC GGCACGGCG GCAACGGCG	120
CAACTCCCAA GTGGTCGGCG GCAACGGCGG CGACGGCGGC AATGGCGGCA ACGGCGGCAG	180
CGCCGGCACG GGCAGCAACG GCAGGCCGG CGGCGACGGC GCGTTGGTG GCATGAGTGC	240
CAACGCCACC AACCCCTGGTG AAAACGGGCC AAACGGTAAC CCCGGCGGCA ACGGTGGCGC	300
CGGC	304

(2) INFORMATION FOR SEQ ID NO:167:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1439 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

GTGGGACGCT	GCCGAGGCTG	TATAACAAGG	ACAAACATCGA	CCAGCGCCGG	CTCGGTGAGC	60
TGATCGACCT	ATTTAACAGT	GCGCGCTTCA	GCCGGCAGGG	CGAGCACCAGC	GCCCCGGATC	120
TGATGGGTGA	GGTCTACGAA	TACTTCCTCG	GCAATTTCGC	TCGCGCGGAA	GGGAAGCGGG	180
GTGGCGAGTT	CTTTACCCCG	CCCAGCGTGG	TCAAGGTGAT	CGTGGAGGTG	CTGGAGCCGT	240
CGAGTGGGCG	GGTGTATGAC	CCGTGCTGCG	GTTCCGGAGG	CATGTTGTG	CAGACCGAGA	300
AGTTCATCTA	CGAACACGAC	GGCGATCCGA	AGGATGTCTC	GATCTATGGC	CAGGAAAGCA	360
TTGAGGAGAC	CTGGCGGATG	GCGAAGATGA	ACCTCGCCAT	CCACGGCATH	GACAACAAGG	420
GGCTCGGCGC	CCGATGGAGT	GATACCTTCG	CCCGCGACCA	GCACCCGGAC	GTGCAGATGG	480
ACTACGTGAT	GGCCAATCCG	CCGTTCAACA	TCAAAGACTG	GGCCCGCAAC	GAGGAAGACC	540
CACGCTGGCG	CTTCGGTGTT	CCGCCCGCCA	ATAACGCCAA	CTACGCATGG	ATTCAAGCACA	600
TCCTGTACAA	CTTGGCGCCG	GGAGGTCGGG	CGGGCGTGGT	GATGGCCAAC	GGGTCGATGT	660
CGTCGAACTC	CAACGGCAAG	GGGGATATTC	GCGCGCAAAT	CGTGGAGGCG	GATTGGTTT	720
CCTGCATGGT	CGCGTTACCC	ACCCAGCTGT	TCCGCAGCAC	CGGAATCCCG	GTGTGCCTGT	780
GGTTTTCGC	CAAAAACAAG	GCGGCAGGTA	AGCAAGGGTC	TATCAACCCG	TGCGGGCAGG	840
TGCTGTTCAT	CGACGCTCGT	GAACCTGGCG	ACCTAGTGGA	CCGGGCCGAG	CGGGCGCTGA	900
CCAACGAGGA	GATCGTCCGC	ATCGGGGATA	CCTTCCACGC	GAGCACGACC	ACCGGCAACG	960
CCGGCTCCGG	TGGTGCCGGC	GGTAATGGGG	GCACTGGCCT	CAACGGCGCG	GGCGGTGCTG	1020
CGGGGGCCGG	CGGCAACGCG	GGTGTGCGCG	GCGTGTCCCT	CGGCAACGCT	GTGGGCGGCG	1080
ACGGCGGCAA	CGGCGGCAAC	GGCGGCCACG	CGGGCGACGG	CACGACGGGC	GGCGCCGGCG	1140
GCAAGGGCGG	CAACGGCAGC	AGCGGTGCCG	CCAGCGGCTC	AGGCCTCGTC	AACGTCACCG	1200
CCGGCCACGG	CGGCAACGGC	GGCAATGGCG	GCAACGGCGG	CAACGGCTCC	GCGGGCGCCG	1260
CGGGCCAGGG	CGGTGCCGGC	GGCAGCGCCG	GCAACGGCGG	CCACGGCGGC	GGTGCCACCG	1320
CGGGCGCCAG	CGGCAAGGGC	GGCAACGGCA	CCAGCGGTGC	CGCCAGCGGC	TCAGGCGTCA	1380
TCAACGTCAC	CGCCGGCCAC	GGCGCAACCG	GCAGCAATGG	CCGCAACGGC	GGCAACGGC	1439

(2) INFORMATION FOR SEQ ID NO:168:

170

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 329 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

GGGCCGGCGG GGCCGGATT TCTCGTCCT TGATTGTCGC TGGGGATAAC GGCGGTGATG	60
GTGGTAACGG CGGGATGGGC GGGGCTGGCG GGGCTGGCGG CCCCAGCGGG GCCGGCGGCC	120
TGATCAGCCT GCTGGCGGC CAAGGCGCCG GCAGGGCCGG CGGGACCGGC GGGGCCGGCG	180
GTGTTGGCGG TGACGGCGGG GCCGGCGGCC CGGGCAACCA GGCCTTCAAC GCAGGGTGC	240
GCAGGGGCCGG CGGCCTGATC AGCCTGCTGG GCAGGCAAGG CGCCGGCGGG GCCGGCGGG	300
CCGGCGGGGC CGGCGGTGTT GGCAGGTGAC	329

(2) INFORMATION FOR SEQ ID NO:169:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 80 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

GCAACGGTGG CAACGGCGGC ACCAGCACGA CCGTGGGGAT GGCGGGAGGT AACTGTGGTG	60
CCGCCGGGCT GATCGGCAAC	80

(2) INFORMATION FOR SEQ ID NO:170:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 392 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

GGGCTGTGTC GCACTCACAC CGCCGCATTC GGCGACGTTG GCCGCCAAT ATCCAGCTCA	60
AGGCCTACTA CTTACCGTCG GAGGACCGCC GCATCAAGGT GCAGGGTCAGC GCCCAAGGAA	120
TCAAGGTCAT CGACCGCGAC GGGCATCGAG GCCGTCGTCG CGCGGCTCGG GCAGGATCCG	180

CCCCGGCGCA	CTTCGCGCGC	CAAGCGGGCT	CATCGCTCCG	AACGGCGGCG	ATCCTGTGAG	240
CACAAGTGT	GCGCGCAAC	GAGATTGTC	CAATTGTCAA	GCCGTGTTCG	ACCGCAGGGA	300
CCGGTTATAAC	GTATGTCAAC	CTATGTCACT	CGCAAGAACCC	GGCATAACGA	TCCCGTGATC	360
CGCCGACAGC	CCACGAGTGC	AAGACC GTTA	CA			392

(2) INFORMATION FOR SEQ ID NO:171:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 535 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

ACCGGGCGCCA	CCGGCGGCAC	CGGGTTCGCC	GGTGGCGCCG	GCGGGGCCGG	CGGGCAGGCG	60
GGTATCAGCG	GTGCCGGCGG	CACCAACGGC	TCTGGTGGCG	CTGGCGGCAC	CGGCGGACAA	120
GGCGCGCCG	GGGGCGCTGG	CGGGGCCGGC	GCCGATAACC	CCACCGGCAT	CGGC GGCGGCC	180
GGCGGCACCG	CGGGCACCGG	CGGAGCGGCC	GGAGCCGGCG	GGGCCGGTGG	CGCCATCGGT	240
ACCGGGCGCA	CCGGCGGCAC	GGTGGGCAGC	GTCGGTAACG	CCGGGATCGG	CGGTACCGGC	300
GGTACGGGTG	GTGTCGGTGG	TGCTGGTGGT	GCAGGTGCGG	CTGCGGCCGC	TGGCAGCAGC	360
GCTACCGGTG	GCGCCGGGTT	CGCCGGCGGC	GCCGGCGGAG	AAGGCGGACC	GGGCGGCAAC	420
AGCGGTGTGG	GCGGCACCAA	CGGCTCCGGC	GGCGCCGGCG	GTGCAGGCAG	CAAGGGCGGC	480
ACCGGAGGTG	CCGGCGGGTC	CGGCGCGGAC	AACCCACCG	GTGCTGGTTT	CGCCG	535

(2) INFORMATION FOR SEQ ID NO:172:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 690 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

CCGACGTCGC	CGGGGCGATA	CGGGGGTCAC	CGACTACTAC	ATCATCCGCA	CCGAGAATCG	60
GCCGCTGCTG	CAACCGCTGC	GGGCGGTGCC	GGTCATCGGA	GATCCGCTGG	CCGACCTGAT	120
CCAGCCGAAC	CTGAAGGTGA	TCGTCAACCT	GGGCTACGGC	GACCCGAAC	ACGGCTACTC	180
GACGAGCTAC	GCCGATGTGC	GAACGCCGTT	CGGGCTGTGG	CCGAACGTGC	CGCCTCAGGT	240

CATCGCCGAT	GCCCTGGCCG	CCGGAACACA	AGAAGGCATC	CTTGACTTCA	CGGCCGACCT	300
GCAGGGCGCTG	TCCGCGAAC	CGCTCACGCT	CCCGCAGATC	CAGCTGCCGC	AACCCGCCGA	360
TCTGGTGGCC	GCGGTGGCCG	CCGCACCGAC	GCCGGCCGAG	GTGGTGAACA	CGCTGCCAG	420
GATCATCTCA	ACCAACTACG	CCGTCCTGCT	GCCCACC GTG	GACATCGCCC	TCGCCTGGTC	480
ACCAC CCTGC	CGCTGTACAC	CACCCA ACTG	TTCGTCAGGC	AACTCGCTGC	GGGCAATCTG	540
ATCAAC GCGA	TCGGCTATCC	CCTGGCGGCC	ACCGTAGGTT	TAGGCACGAT	CGATA CGGG	600
CGGCGTGGAA	TTGCTCACCC	TCCTCGCGGC	GGCCTCGGAC	ACCGTTCGAA	ACATCGAGGG	660
CCTCGTCACC	TAACGGATT C	CCGACGGCAT				690

(2) INFORMATION FOR SEQ ID NO:173:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 407 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

ACGGTGACGG	CGGTACTGGC	GGCGGCCACG	GCGGCAACGG	CGGGAATCCC	GGGTGGCTCT	60
TGGGCACAGC	CGGGGGTGGC	GGCAACGGTG	GCGCCGGCAG	CACCGGTACT	GCAGGTGGCG	120
GCTCTGGGG	CACCGGCGGC	GACGGCGGG	CCGGCGGGCG	TGGCGGCCTG	TTAATGGGCG	180
CCGGCGCCGG	CGGGCACGGT	GGCACTGGCG	GCGCGGGCG	TGCCGGTGT	GACGGTGGCG	240
GCGCCGGCGG	GGCCGGCGGG	GCGGCGGC	ACGGCGGC	CGGGGGTCAA	GCCGCCCTGC	300
TGTTCGGGCG	CGCGGGCACC	GGCGGAGCCG	GCGGCTACGG	CGGCGATGGC	GGTGGCGCG	360
GTGACGGCTT	CGACGGCACG	ATGGCCGGCC	TGGGTGGTAC	CGGTGGC		407

(2) INFORMATION FOR SEQ ID NO:174:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 468 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

GATCGGTCA	CGCATCGCCC	TCGGCGGCAA	GCGATTCCGC	GGTCTCACCG	AAGAACATCG	60
TGCACGCGGC	GGCGCGGACC	AGCCCGCTGC	GCTGCGGCC	GTCGAACGCC	TCCAGCAGGC	120

ACAGGCCAGTC CTTGGCGGCC TCGGAGGCGA ACACGTCGGT GTCACCGGTG TAGATGCCG	180
GGATGCCCGC CTCCGCCAAC GCATTCCGGC ACGCCCGCGC GTCTTGTA TGCTCGACGA	240
TCACCGCGAT GTCTGCGGCC ACCACGGGCC GCCCGGGCAA GGTGGCCCCG CTGGCCAGTA	300
GCGCCCGCGAC GTCGGCGGCC AGGTCTCGG GGATGTGCCG GCGCAGCGCT CCGGCGCGAC	360
GCCCCAAAAA CGACCCCTCA CCCAGCTGGG TCCCGCTGGC ATATCCCTTG CCGTCCTGGG	420
CGATATTGGA CGCGCATGCC CCGACCGCGT ACAGGCCGGC CACCACCG	468

(2) INFORMATION FOR SEQ ID NO:175:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 219 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

GGTGGTAACG GCGGCCAGGG TGGCATCGGC GGCGCCGGCG AGAGAGGCCG CGACGGCGCC	60
GGCCCCAATG CTAACGGCGC AAACGGCGAG AACGGCGTA GCGGTGGTAA CGGTGGCGAC	120
GGCGCGCCCG GCGGCAATGG CGCGCGGGC GGCAACGCGC AGGCGGCCGG GTACACCGAC	180
GGCGGCCACGG GCACCGGCCG CGACGGCGGC AACGGCGGC	219

(2) INFORMATION FOR SEQ ID NO:176:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 494 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

TAGCTCCGGC GAGGGCGGCA AGGGCGGCAG GGGTGGCAC GGCGGTGACG GCGTCGGCGG	60
CAACAGTTCC GTCACCCAAG GCGGCAGCGG CGGTGGCGGC GGCGCCGGCG GCGCCGGCGG	120
CAGCGGCTTT TTCGGCGGCA AGGGCGGCTT CGGCAGCGAC GGCGGTCAAGG GCGGCCCAA	180
CGGCAGCGGT ACCGTCGGCA CCGTGGCCGG TGGCGCGGC AACGGCGGTG TCGGCGGCCG	240
GGGCAGCGAC GGCAGCTTTG CCGGTGCCGG CGGCCAGGGC GGCTCGGTG GGCAGGGCGG	300
CAATGGCGGC GGCTCCACCG GCGGCAACGG CGGCCTTGGC GGCGCGGGCG GTGGCGGAGG	360
CAACGCCCG GCTCGTGCCG AATCCGGCT GACCATGGAC AGCGCGGCCA AGTCGCTGC	420

174

CATCGCATCA GGCGCGTACT GCCCCGAACA CCTGGAACAT CACCCGAGTT AGCGGGCGC	480
ATTCCTGAT CACC	494

(2) INFORMATION FOR SEQ ID NO:177:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 220 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

GGGCCGGTGG TGCCGCGGGC CAGCTTTCA GCGCCGGAGG CGCGGCGGGT GCCGTTGGGG	60
TTGGCGGCAC CGGCGGCCAG GGTGGGGCTG GCGGTGCCGG AGCGGCCGGC GCCGACGCC	120
CCGCCAGCAC AGGTCTAACCG GGTGGTACCG GGTCGCTGG CGGGGCCGGC GGCGTCGGCG	180
GCCAGAGCGG CAACGCCATT GCCGGCGGCA TCAACGGCTC	220

(2) INFORMATION FOR SEQ ID NO:178:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 388 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

ATGGCGGCAA CGGGGGCCCGG GGCGGTGCTG GCAGGGCCGG CGACTACAAT TTCCAACGGC	60
GGGCAGGGTG GTGCCGGCGG CCAAGGCCGG CAAGGCCGGC TGGGCGGGGC AAGCACCACC	120
TGATCGGCCT AGCCGCACCC GGGAAAGCCG ATCCAACAGG CGACGATGCC GCCTTCCTTG	180
CCGCGTTGGA CCAGGCCGGC ATCACCTACG CTGACCCAGG CCACGCCATA ACGGCCGCCA	240
AGGCGATGTG TGGGCTGTGT GCTAACGGCG TAACAGGTCT ACAGCTGGTC GC GGACCTGC	300
GGGACTACAA TCCCAGGCTG ACCATGGACA GCGCGGCCAA GTTCGCTGCC ATCGCATTAG	360
GCGCGTACTG CCCCGAACAC CTGGAAACA	388

(2) INFORMATION FOR SEQ ID NO:179:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 400 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

GCAAAGGCGG CACC GGCGGG GCGGCATGA ACAGCCTCGA CCCGCTGCTA GCCGCCAAG	60
ACGGCGGCCA AGGCGGCACC GGCGGCACCG GCGGCAACGC CGGCGCCGGC GGCACCAGCT	120
TCACCCAAGG CGCCGACGGC AACGCCGGCA ACGGCGGTGA CGGCGGGGTC GGCGGCAACG	180
CGGAAACGG CGGAAACGGC GCAGACAACA CCACCACCGC CGCCGCCGGC ACCACAGGCG	240
GCGACGGCGG GGCGGGCGGG GCCGGCGGAA CGGGCGGAAC CGGCGGAGCC GCCGGCACCG	300
GCACCGGCGG CCAACAAGGC AACGGCGGCA ACGGCGGCAC CGGCGGAAA GGCGGCACCG	360
CGGGCGACGG TGCACTCTCA GGCAGCACCG GTGGTGCCGG	400

(2) INFORMATION FOR SEQ ID NO:180:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 538 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

GGCAACGGCG GCAACGGCGG CATGCCGGC ATTGGCGGC AACGGCGTTC CGGGACGGGC	60
AGCGGCAACG CGGGCAACG CGGGCAGCGG CGGCAACGGC GGCAACGCG GCATGGCGG	120
CAACAGCGGC ACCGGCAGCG GCGACGGCGG TGCCGGCGGG AACGGCGGC CGGGGGCAC	180
GGCGGCACC GGCGCGACG CGGGCCTCAC CGGTACTGGC GGCACCGGGC GCAGCGGTGG	240
CACCGCGGT GACGGCGGTA ACGGCGGCAA CGGAGCAGAT AACACCGCAA ACATGACTGC	300
GCAGGGCGGC GGTGACGGTG GCAACGGCGG CGACGGTGGC TTCGGCGGGC GGGCCGGGGC	360
CGGC CGGCGGT GGCTTGACCG CTGGCGCCAA CGGCACCGGC GGGCAAGGCG GCGCCGGCGG	420
CGATGGCGGC AACGGGGCCA TCGGCGGCCA CGGCCCACTC ACTGACGAAC CGGGCGGCAA	480
CGGGGGCACC GGCGGCAACG CGGGCACCGG CGGCACCGGC GGCGCGGGCA TCGGCAGC	538

(2) INFORMATION FOR SEQ ID NO:181:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 239 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

GGGCCGGTGG TGCCGCGGGC CAGCTCTTCA GCGCCGGAGG CGCGGCGGGT GCCGTTGGGG	60
TTGGCGGCAC CGGCGGCCAG GGTGGGCTG GCAGGTGCCGG AGCAGGCCGGC GCCGACGCC	120
CCGCCAGCAC AGGTCTAACCG GGTGGTACCG GGTCGCTGG CGGGGCCGGC GGCGTCGGCG	180
GCCACGGCGG CAACGCCATT GCCGGCGGA TCAACGGCTC CGGTGGTGCC GGCGGCACC	239

(2) INFORMATION FOR SEQ ID NO:182:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 985 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

AGCAGCGCTA CCGGTGGCGC CGGGTTCGCC GGCGGCGCCG GCGGAGAAGG CGGAGCGGGC	60
GGCAACAGCG GTGTGGCGG CACCAACGGC TCCGGCGCGC CCGGCGGTGC AGGCGGCAAG	120
GGCGGCACCG GAGGTGCCGG CGGGTCCGGC GCGGACAACC CCACCGGTGC TGGTTTCGCC	180
GGTGGCGCCG GCGGCACAGG TGGCGCGGCC GGCGCCGGCG GGGCCGGCGG GGCGACCGGT	240
ACCGGGCGCA CGGGCGGCGT TGTCGGCGCC ACCGGTAGTG CAGGCATCGG CGGGGCCGGC	300
GGCGCGGGCG GTGACGGCGG CGATGGGCC AGCGGTCTCG GCCTGGGCCT CTCCGGCTTT	360
GACGGCGGCC AAGGCGGCCA AGGCAGGGCC GGCGGCAGCG CCGGCGCCGG CGGCATCAAC	420
GGGGCCGGCG GGGCCGGCGG CAACGGCGGC GACGGGGGG ACAGCGAAC CGGTGCCGCA	480
GGTCTCGCGC ACAACGGCGG GGTCGGCGGT GACGGTGGGG CCGGTGGCGC CGCCGGCAAC	540
GGCGGCAACG CGGGCGTCGG CCTGACAGCC AAGGCGGGCG ACAGCGGCC CGCGGGCAAT	600
GGCGGCAACG GGGCGCCCG CGGTGCTGGC GGGGCGGGCG ACAACAATT CAACGGCGGC	660
CAGGGTGGTG CGGGCGGCCA AGGCAGGCCA GGCGGCTTGG GCGGGGCAAG CACCAACTGA	720
TCGGCCTAGC CGCACCCGGG AAAGCCGATC CAACAGGCAGA CGATGCGGCC TTCCTGCG	780
CGTTGGACCA GGCGGGCATC ACCTACGCTG ACCCAGGCCA CGCCATAACG GCCGCCAAGG	840
CGATGTGTGG GCTGTGTGCT AACGGCGTAA CAGGTCTACA GCTGGTCGCG GACCTGCGGG	900
AATACAATCC CGGGCTGACC ATGGACAGCG CGGCCAAGTT CGCTGCCATC GCATCAGGCG	960
CGTACTGCC CGAACACCTG GAACA	985

(2) INFORMATION FOR SEQ ID NO:183:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2138 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

CGGCACGAGG ATCGGTACCC CGCGGCATCG GCAGCTGCCG ATTGCCGGG TTTCCCCACC	60
CGAGGAAAGC CGCTACCAGA TGGCGCTGCC GAAGTAGGGC GATCCGTTCG CGATGCCGGC	120
ATGAACGGGC GGCATCAAAT TAGTGCAGGA ACCTTCAGT TTAGCGACGA TAATGGCTAT	180
AGCACTAAGG AGGATGATCC GATATGACGC AGTCGAGAC CGTGACGGTG GATCAGCAAG	240
AGATTTGAA CAGGGCCAAC GAGGTGGAGG CCCCAGATGGC GGACCCACCG ACTGATGTCC	300
CCATCACACC GTGCGAACTC ACGGCGGCTA AAAACGCCGC CCAACAGCTG GTATTGTCCG	360
CCGACAACAT GCGGGAATAC CTGGCGGCCG GTGCCAAAGA GCGGCAGCGT CTGGCGACCT	420
CGCTGCGCAA CGCGGCCAAC GCGTATGGCG AGGTTGATGA GGAGGCTGCC ACCGGCTGG	480
ACAACGACGG CGAAGGAACT GTGCAGGCAG AATCGGCCGG GGCCGTCGGA GGGGACAGTT	540
CGGCCGAACT AACCGATAACG CCGAGGGTGG CCACGGCCGG TGAACCCAAC TTCATGGATC	600
TCAAAGAACG GGCAAGGAAG CTCGAAACGG GCGACCAAGG CGCATCGCTC GCGCACTTTG	660
CGGATGGGTG GAACACTTTC AACCTGACGC TGCAAGGCAG CGTCAAGCGG TTCCGGGGGT	720
TTGACAAC TG GGAAGGCCAT GCGGCTACCG CTTGCGAGGC TTGCTCGAT CAACAACGGC	780
AATGGATACT CCACATGGCC AAATTGAGCG CTGCGATGGC CAAGCAGGCT CAATATGTCG	840
CGCAGCTGCA CGTGTGGCT AGGGGGAAC ATCCGACTTA TGAAGACATA GTCGGGCTCG	900
AACGGCTTTA CGCGAAAAC CCTCGGCCG GCGACCAAAT TCTCCGGTG TACGGGAGT	960
ATCAGCAGAG GTCGGAGAAC GTGCTGACCG AATACAACAA CAAGGCAGCC CTGGAACCGG	1020
TAAACCCGCC GAAGCCTCCC CCCGCCATCA AGATCGACCC GCCCCCGCCT CCGCAAGAGC	1080
AGGGATTGAT CCCTGGCTTC CTGATGCCCG CGTCTGACGG CTCCGGTGTG ACTCCCGGT	1140
CCGGGATGCC AGCCGCACCG ATGGTTCCGC CTACCGGATC GCCGGGTGGT GGCCTCCGG	1200
CTGACACGGC GGCGCAGCTG ACGTCGGCTG GGCGGGAAAGC CGCAGCGCTG TCGGGCGACG	1260
TGGCGGTCAA AGCGGCATCG CTGGTGGCG GTGGAGGCAG CGGGGTGCCG TCGGCGCCGT	1320
TGGGATCCGC GATCGGGGGC GCCGAATCGG TGCGGCCCGC TGGCGCTGGT GACATTGCCG	1380
GCTTAGGCCA GGGAAAGGGCC GGCGCGGCCG CCGCGCTGGG CGGCGGTGGC ATGGGAATGC	1440
CGATGGGTGC CGCGCATCAG GGACAAGGGG GCGCCAAGTC CAAGGGTTCT CAGCAGGAAG	1500

ACGAGGCGCT	CTACACCGAG	GATCGGGCAT	GGACCGAGGC	CGTCATTGGT	AACCGTCGGC	1560
GCCAGGACAG	TAAGGAGTCG	AAGTGAGCAT	GGACGAATTG	GACCCGCATG	TCGCCCGGGC	1620
GTTGACGCTG	GCGGCGCGGT	TTCAGTCGGC	CCTAGACGGG	ACGCTCAATC	AGATGAACAA	1680
CGGATCCTTC	CGCGCCACCG	ACGAAGCCGA	GACCGTCGAA	GTGACGATCA	ATGGGCACCA	1740
GTGGCTCACC	GGCCTGCGCA	TCGAAGATGG	TTTGCTGAAG	AAGCTGGGTG	CCGAGGCGGT	1800
GGCTCAGCGG	GTCAACGAGG	CGCTGCACAA	TGCGCAGGCC	GCGGCGTCCG	CGTATAACGA	1860
CGCGGCGGGC	GAGCAGCTGA	CCGCTGCGTT	ATCGGCCATG	TCCCAGCGA	TGAACGAAGG	1920
AATGGCCTAA	GCCCCATTGTT	GCCTGGTAG	CGACTACGCA	CCGAATGAGC	GCCGCAATGC	1980
GGTCATTCAG	CGCGCCCGAC	ACGGCGTGAG	TACGCATTGT	CAATGTTTG	ACATGGATCG	2040
GCCGGGTTCG	GAGGGCGCCA	TAGTCCTGGT	CGCCAATATT	GCCGCAGCTA	GCTGGTCTTA	2100
GGTCGGTTA	CGCTGGTTAA	TTATGACGTC	CGTTACCA			2138

(2) INFORMATION FOR SEQ ID NO:184:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 460 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

Met	Thr	Gln	Ser	Gln	Thr	Val	Thr	Val	Asp	Gln	Gln	Glu	Ile	Lle	Leu	Asn
1						5				10					15	
Arg	Ala	Asn	Glu	Val	Glu	Ala	Pro	Met	Ala	Asp	Pro	Pro	Thr	Asp	Val	
						20				25				30		
Pro	Ile	Thr	Pro	Cys	Glu	Leu	Thr	Ala	Ala	Lys	Asn	Ala	Ala	Gln	Gln	
						35				40				45		
Leu	Val	Leu	Ser	Ala	Asp	Asn	Met	Arg	Glu	Tyr	Leu	Ala	Ala	Gly	Ala	
						50				55				60		
Lys	Glu	Arg	Gln	Arg	Leu	Ala	Thr	Ser	Leu	Arg	Asn	Ala	Ala	Lys	Ala	
						65				70				75		80
Tyr	Gly	Glu	Val	Asp	Glu	Glu	Ala	Ala	Thr	Ala	Leu	Asp	Asn	Asp	Gly	
						85				90				95		
Glu	Gly	Thr	Val	Gln	Ala	Glu	Ser	Ala	Gly	Ala	Val	Gly	Gly	Asp	Ser	
						100				105				110		
Ser	Ala	Glu	Leu	Thr	Asp	Thr	Pro	Arg	Val	Ala	Thr	Ala	Gly	Glu	Pro	
						115				120				125		
Asn	Phe	Met	Asp	Leu	Lys	Glu	Ala	Ala	Arg	Lys	Leu	Glu	Thr	Gly	Asp	
						130				135				140		

Gln Gly Ala Ser Leu Ala His Phe Ala Asp Gly Trp Asn Thr Phe Asn
 145 150 155 160
 Leu Thr Leu Gln Gly Asp Val Lys Arg Phe Arg Gly Phe Asp Asn Trp
 165 170 175
 Glu Gly Asp Ala Ala Thr Ala Cys Glu Ala Ser Leu Asp Gln Gln Arg
 180 185 190
 Gln Trp Ile Leu His Met Ala Lys Leu Ser Ala Ala Met Ala Lys Gln
 195 200 205
 Ala Gln Tyr Val Ala Gln Leu His Val Trp Ala Arg Arg Glu His Pro
 210 215 220
 Thr Tyr Glu Asp Ile Val Gly Leu Glu Arg Leu Tyr Ala Glu Asn Pro
 225 230 235 240
 Ser Ala Arg Asp Gln Ile Leu Pro Val Tyr Ala Glu Tyr Gln Gln Arg
 245 250 255
 Ser Glu Lys Val Leu Thr Glu Tyr Asn Asn Lys Ala Ala Leu Glu Pro
 260 265 270
 Val Asn Pro Pro Lys Pro Pro Pro Ala Ile Lys Ile Asp Pro Pro Pro
 275 280 285
 Pro Pro Gln Glu Gln Gly Leu Ile Pro Gly Phe Leu Met Pro Pro Ser
 290 295 300
 Asp Gly Ser Gly Val Thr Pro Gly Thr Gly Met Pro Ala Ala Pro Met
 305 310 315 320
 Val Pro Pro Thr Gly Ser Pro Gly Gly Leu Pro Ala Asp Thr Ala
 325 330 335
 Ala Gln Leu Thr Ser Ala Gly Arg Glu Ala Ala Ala Leu Ser Gly Asp
 340 345 350
 Val Ala Val Lys Ala Ala Ser Leu Gly Gly Gly Gly Gly Val
 355 360 365
 Pro Ser Ala Pro Leu Gly Ser Ala Ile Gly Gly Ala Glu Ser Val Arg
 370 375 380
 Pro Ala Gly Ala Gly Asp Ile Ala Gly Leu Gly Gln Gly Arg Ala Gly
 385 390 395 400
 Gly Gly Ala Ala Leu Gly Gly Gly Gly Met Gly Met Pro Met Gly Ala
 405 410 415
 Ala His Gln Gly Gln Gly Ala Lys Ser Lys Gly Ser Gln Gln Glu
 420 425 430
 Asp Glu Ala Leu Tyr Thr Glu Asp Arg Ala Trp Thr Glu Ala Val Ile
 435 440 445
 Gly Asn Arg Arg Arg Gln Asp Ser Lys Glu Ser Lys
 450 455 460

(2) INFORMATION FOR SEQ ID NO:185:

180

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 277 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

Ala Gly Asn Val Thr Ser Ala Ser Gly Pro His Arg Phe Gly Ala Pro
1 5 10 15

Asp Arg Gly Ser Gln Arg Arg Arg Arg His Pro Ala Ala Ser Thr Ala
20 25 30

Thr Glu Arg Cys Arg Phe Asp Arg His Val Ala Arg Gln Arg Cys Gly
35 40 45

Phe Pro Pro Ser Arg Arg Gln Leu Arg Arg Arg Val Ser Arg Glu Ala
50 55 60

Thr Thr Arg Arg Ser Gly Arg Arg Asn His Arg Cys Gly Trp His Pro
65 70 75 80

Gly Thr Gly Ser His Thr Gly Ala Val Arg Arg Arg His Gln Glu Ala
85 90 95

Arg Asp Gln Ser Leu Leu Arg Arg Arg Gly Arg Val Asp Leu Asp
100 105 110

Gly Gly Arg Leu Arg Arg Val Tyr Arg Phe Gln Gly Cys Leu Val
115 120 125

Val Val Phe Gly Gln His Leu Leu Arg Pro Leu Leu Ile Leu Arg Val
130 135 140

His Arg Glu Asn Leu Val Ala Gly Arg Arg Val Phe Arg Val Lys Pro
145 150 155 160

Phe Glu Pro Asp Tyr Val Phe Ile Ser Arg Met Phe Pro Pro Ser Pro
165 170 175

His Val Gln Leu Arg Asp Ile Leu Ser Leu Leu Gly His Arg Ser Ala
180 185 190

Gln Phe Gly His Val Glu Tyr Pro Leu Pro Leu Ile Glu Arg Ser
195 200 205

Leu Ala Ser Gly Ser Arg Ile Ala Phe Pro Val Val Lys Pro Pro Glu
210 215 220

Pro Leu Asp Val Ala Leu Gln Arg Gln Val Glu Ser Val Pro Pro Ile
225 230 235 240

Arg Lys Val Arg Glu Arg Cys Ala Leu Val Ala Arg Phe Glu Leu Pro
245 250 255

Cys Arg Phe Phe Glu Ile His Glu Val Gly Phe Thr Gly Arg Gly His

260

265

270

Pro Arg Arg Ile Gly
275

(2) INFORMATION FOR SEQ ID NO:186:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 192 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

Arg	Val	Ala	Ala	Ser	Phe	Ile	Asp	Trp	Leu	Asp	Ser	Pro	Asp	Ser	Pro
1				5				10				15			
Leu	Asp	Pro	Ser	Leu	Val	Ser	Ser	Leu	Leu	Asn	Ala	Val	Ser	Cys	Gly
	20					25						30			
Ala	Glu	Ser	Ser	Ala	Ser	Ser	Ser	Ala	Arg	Ser	Gly	Asn	Gly	Ser	Arg
	35					40			45						
Trp	Thr	Ser	Met	Pro	Ser	Gly	Thr	Arg	Pro	Gly	Pro	Arg	Arg	Ala	Thr
	50					55			60						
Ser	Arg	Asp	Asp	Arg	Arg	Ser	Ala	Thr	Ser	Val	Ile	Pro	Ser	Arg	Arg
	65					70			75			80			
Ser	Val	Ala	Pro	Arg	Ala	Glu	Phe	Gly	Thr	Arg	Leu	Ala	Ser	His	Arg
						85			90			95			
Ala	Ser	Pro	Ser	Asn	Ala	Cys	Pro	Val	Arg	Ile	Val	Thr	Ser	Ala	Ser
						100			105			110			
Gly	Arg	Pro	Ile	Ser	Ser	Pro	Pro	Ile	Val	Arg	Ser	Arg	Ser	Cys	Val
	115						120			125					
Asp	Lys	Asn	Gly	Arg	Arg	Cys	Ala	Ser	Gly	Tyr	Arg	Arg	Leu	Asn	Arg
	130					135				140					
Ala	Arg	Ser	Ser	Ser	Ile	Ala	Ala	Arg	Cys	Arg	Thr	Ile	Gly	Thr	Phe
	145					150			155			160			
Arg	Arg	Ser	Arg	Tyr	Ser	Ala	Ser	Met	Arg	Val	Ser	Thr	Asn	Ser	Pro
	165						170		175						
His	Val	Thr	His	Gly	Val	Ala	Pro	Gly	Val	Thr	Arg	Arg	Ile	Gly	Gly
	180						185			190					

(2) INFORMATION FOR SEQ ID NO:187:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 196 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

182

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

Gln	Glu	Arg	Pro	Gln	Met	Cys	Gln	Arg	Val	Ser	Glu	Ile	Glu	Pro	Arg
1				5					10				15		

Thr	Gln	Phe	Phe	Asn	Arg	Cys	Ala	Leu	Pro	His	Tyr	Trp	His	Phe	Pro
			20					25				30			

Ala	Val	Ala	Val	Phe	Ser	Lys	His	Ala	Ser	Leu	Asp	Glu	Leu	Ala	Pro
				35			40				45				

Arg	Asn	Pro	Arg	Arg	Ser	Ser	Arg	Arg	Asp	Ala	Glu	Asp	Arg	Arg	Val
			50			55			60						

Ile	Phe	Ala	Ala	Thr	Leu	Val	Ala	Val	Asp	Pro	Pro	Leu	Arg	Gly	Ala
65					70				75			80			

Gly	Gly	Glu	Ala	Asp	Gln	Leu	Ile	Asp	Leu	Gly	Val	Cys	Arg	Arg	Gln
				85				90			95				

Ala	Gly	Arg	Val	Arg	Arg	Gly	Gln	Glu	Leu	His	His	Arg	His	Arg	His
			100					105			110				

Gln	Gly	Ala	Ala	Pro	Asp	Leu	Arg	Arg	Arg	Arg	His	Arg	Arg	Val	
				115			120			125					

Gln	Gln	His	Arg	Arg	Leu	Gln	Arg	Val	Arg	Gln	Leu	Arg	Arg	Tyr	Val
				130			135			140					

Gln	Thr	Ala	His	His	Arg	Arg	Phe	Ala	Arg	Thr	Asp	Arg	Val	Arg	His
145					150				155			160			

His	Val	Arg	Gly	Pro	Ser	Asn	His	Arg	Arg	Arg	Val	Tyr	Arg	Gly	
				165				170			175				

Arg	His	Ser	Gly	Ala	Gly	Gly	Cys	Pro	Ala	Gly	Gly	Ala	Gly	Ser	Val
				180				185			190				

Gly	Gly	Ser	Ala												
			195												

(2) INFORMATION FOR SEQ ID NO:188:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 311 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

Val	Arg	Cys	Gly	Thr	Leu	Val	Pro	Val	Pro	Met	Val	Glu	Phe	Leu	Thr
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

1	5	10	15
Ser	Thr	Asn	Ala
20		Pro	Pro
Ser	Leu	Pro	Ser
		Tyr	Ala
			Glu
			Val
			Asp
			Lys
			30
Leu	Ile	Gly	Leu
35		Pro	Ala
		Gly	Gly
		Thr	Ala
			Lys
			Arg
			Trp
			Ile
			Asn
			Gly
			Tyr
Glu	Arg	Gly	Gly
50		Lys	Asp
		His	Pro
		Pro	Pro
		Ile	Leu
		Arg	Val
			Thr
			Pro
			Gly
Ala	Thr	Pro	Trp
65		Val	Thr
		Trp	Gly
		Glu	Phe
		Val	Glu
			Thr
			Arg
			Met
			Leu
Ala	Glu	Tyr	Arg
85		Asp	Arg
		Arg	Arg
		Lys	Val
		Pro	Ile
		Val	Arg
			Gln
			Arg
			Ala
Ala	Ile	Glu	Glu
100		Leu	Arg
		Ala	Arg
		Phe	Asn
			Leu
			Arg
			Tyr
			Pro
			Leu
			Ala
His	Leu	Arg	Pro
115		Phe	Leu
		Ser	Thr
			His
			Glu
			Arg
			Asp
			Leu
			Thr
			Met
			Gly
Gly	Glu	Glu	Ile
130		Gly	Leu
		Pro	Asp
		Ala	Glu
		Val	Val
			Thr
			Ile
			Arg
			Thr
			Gly
Gln	Ala	Leu	Leu
145		Gly	Asp
		Ala	Arg
		Trp	Leu
		Ala	Ser
		Val	Leu
			Val
			Pro
			Asn
Ser	Ala	Arg	Gly
165		Ala	Thr
		Leu	Arg
		Arg	Leu
		Gly	Gly
		Ile	Ile
		Thr	Asp
			Val
			Ala
Asp	Leu	Arg	Ser
180		Ser	Arg
		Glu	Val
		Ala	Arg
		Arg	Gly
			Pro
			Gly
			Arg
			Val
Pro	Asp	Gly	Ile
195		Asp	Val
		His	Leu
		Leu	Pro
		Phe	Pro
		Pro	Asp
		Leu	Ala
		Asp	Asp

Asp	Asp	Ala	Asp	Asp	Ser	Ala	Pro	His	Glu	Thr	Ala	Phe	Lys	Arg	Leu
210						215						220			
Leu	Thr	Asn	Asp	Gly	Ser	Asn	Gly	Glu	Ser	Gly	Glu	Ser	Ser	Gln	Ser
225						230				235		240			
Ile	Asn	Asp	Ala	Ala	Thr	Arg	Tyr	Met	Thr	Asp	Glu	Tyr	Arg	Gln	Phe
245						250			250		255				
Pro	Thr	Arg	Asn	Gly	Ala	Gln	Arg	Ala	Leu	His	Arg	Val	Val	Thr	Leu
260						265					270				
Leu	Ala	Ala	Gly	Arg	Pro	Val	Leu	Thr	His	Cys	Phe	Ala	Gly	Lys	Asp
275						280					285				
Arg	Thr	Gly	Phe	Val	Val	Ala	Leu	Val	Leu	Glu	Ala	Val	Gly	Leu	Asp
290						295				300					
Arg	Asp	Val	Ile	Val	Ala	Asp									
305						310									

(2) INFORMATION FOR SEQ ID NO:189:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2072 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

CTCGTGCCGA	TTCGGCACGA	GCTGAGCAGC	CCAAGGGGCC	GTTCGGCGAA	GTCATCGAGG	60
CATTGCCGA	CGGGCTGGCC	GGCAAGGGTA	AGCAAATCAA	CACCACGCTG	AACAGCCTGT	120
CGCAGGCCTT	GAACGCCTTG	AATGAGGGCC	GCGGCAGACTT	CTTCGCGGTG	GTACGCAGCC	180
TGGCGCTATT	CGTCAACGCG	CTACATCAGG	ACGACCAACA	GTTCGTCGCG	TTGAACAAGA	240
ACCTTGCAGA	GTTCACCGAC	AGGTTGACCC	ACTCCGATGC	GGACCTGTCG	AACGCCATCC	300
AGCAATTGCA	CAGCTTGCTC	GCCGTCGCGC	GCCC GTTCTT	CGCCAAGAAC	CGCGAGGTGC	360
TGACGCATGA	CGTCAATAAT	CTCGCGACCG	TGACCACAC	GTTCGTCAG	CCCGATCCGT	420
TGGATGGGTT	GGAGACCGTC	CTGCACATCT	TCCCGACGCT	GGCGGCGAAC	ATTAACCAGC	480
TTTACCATCC	GACACACGGT	GGCGTGGTGT	CGCTTTCCGC	GTTCACGAAT	TTCGCCAACC	540
CGATGGAGTT	CATCTGCAGC	TCGATTCAAGG	CGGGTAGCCG	GCTCGGTTAT	CAAGAGTCGG	600
CCGAACCTCTG	TGCGCAGTAT	CTGGCGCCAG	TCCTCGATGC	GATCAAGTTTC	AACTACTTTC	660
CGTTCGGCCT	GAACGTGGCC	AGCACCGCCT	CGACACTGCC	TAAAGAGATC	GCGTACTCCG	720
AGCCCCGCTT	GCAGCCGCC	AACGGGTACA	AGGACACCAAC	GGTGCCCGGC	ATCTGGGTGC	780
CGGATACGCC	GTTGTCACAC	CGCAACACGC	AGCCCGGTTG	GGTGGTGGCA	CCCGGGATGC	840
AAGGGGTTCA	GGTGGGACCG	ATCACGCAGG	GTTCGTCAG	GCCGGAGTCC	CTGGCCGAAC	900
TCATGGGTGG	TCCCGATATC	GCCCCCTCCGT	CGTCAGGGCT	GCAAACCCCCG	CCCGGACCCC	960
CGAATGCGTA	CGACGAGTAC	CCCGTGCTGC	CGCCGATCGG	TTTACAGGCC	CCACAGGTGC	1020
CGATACCACC	GCCGCCTCCT	GGGCCCGACG	TAATCCCGGG	TCCGGTGCCA	CCGGTCTTGG	1080
CGGCGATCGT	GTTCCCAAGA	GATCGCCCGG	CAGCGTCGGA	AAACTTCGAC	TACATGGGCC	1140
TCTTGTGCT	GTCGCCGGGC	CTGGCGACCT	TCCTGTCGG	GGTGTCACT	AGCCCCGCC	1200
GTGGAACGAT	GGCCGATCGG	CACGTGTTGA	TACCGGCGAT	CACCGGCCTG	GCGTTGATCG	1260
CGGCATTGCGT	CGCACATTG	TGGTACCGCA	CAGAACATCC	GCTCATAGAC	ATGCCCTTGT	1320
TCCAGAACCG	AGCGGTGCGC	CAGGCCAACCA	TGACGATGAC	GGTGCCTCTCC	CTCGGGCTGT	1380
TTGGCTCCTT	CTTGCTGCTC	CCGAGCTACC	TCCAGCAAGT	GTTGCACCAA	TCACCGATGC	1440
AATCGGGGGT	GCATATCATC	CCACAGGGCC	TCGGTGCCAT	GCTGGCGATG	CCGATCGCCG	1500
GAGCGATGAT	GGACCGACGG	GGACCGGCCA	AGATCGTGCT	GGTTGGGATC	ATGCTGATCG	1560

CTGCGGGGTT GGGCACCTTC GCCTTGGTG TCGCGCGGCA AGCGGACTAC TTACCCATT	1620
TGCCGACCGG GCTGGCAATC ATGGGCATGG GCATGGGCTG CTCCATGATG CCACTGTCCG	1680
GGGCGGCAGT GCAGACCCTG GCCCCACATC AGATCGCTCG CGGTTCGACG CTGATCAGCG	1740
TCAACCAGCA GGTGGGCGGT TCGATAGGGA CCGCACTGAT GTCGGTGCTG CTCACCTACC	1800
AGTTCAATCA CAGCGAAATC ATCGCTACTG CAAAGAAAGT CGCACTGACC CCAGAGAGTG	1860
GCGCCGGGCG GGGGGCGGCG GTTGACCCCTT CCTCGCTACC GCGCCAAACC AACTTCGCGG	1920
CCCAACTGCT GCATGACCTT TCGCACGCCT ACGCGGTGGT ATTCTGTGATA GCGACCGCGC	1980
TAGTGGTCTC GACGCTGATC CCCGCGGCAT TCCTGCCGAA ACAGCAGGCT AGTCATCGAA	2040
GAGCACCGTT GCTATCCGCA TGACGTCTGC TT	2072

(2) INFORMATION FOR SEQ ID NO:190:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1923 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

TCACCCCGGA GAAGTCGTTG TCGACGACC TGGACATCGA CTCGCTGTCG ATGGTCGAGA	60
TCGCCGTGCA GACCGAGGAC AAGTACGGCG TCAAGATCCC CGACGAGGAC CTCGCCGGTC	120
TGCGTACCGT CGGTGACGTT GTCGCCTACA TCCAGAAGCT CGAGGAAGAA AACCCGGAGG	180
CGGCTCAGGC GTTGCAGCG AAGATTGAGT CGGAGAACCC CGATGCGGCA CGAGCAGATC	240
GGTGCCTTTC ACCCACATCG CAAGCTCGAG ACGCCCGTCG TCCCTTTGCA CGCTCAGCCA	300
GGTTGGCGTG TCGCCGCCTT CCAGCAAGTG TTCCCACAC ACGAAGGGAC CCTCGCGAAA	360
GGTGAETGAT CCGCGGACCA CATAGTCGAT GCCACCGTGG CTGACAATTG CGCCGGGTCC	420
GAGTTGGCGG GGGCCGAATT GCGGCATTGC GTCGAAGGCC AGCGGATCCC GGCAGCCGCC	480
CGGCGTGGCT GGTGTTTGCG GCGGCGGGAT GGCCACGACG AGAACGACGA TGGCGGCGAT	540
GAACAGCGCC ACGGCAATCA CGACCAGCAG ATTTCCCACG CATACCCCTCT CGTACCGCTG	600
CGCCCGGGTT GGTCGATCGG TCGCATATCG ATGGCGCCGT TTAACGTAAC AGCTTCGCG	660
GGACCGGGGG TCACAAACGGG CGAGTTGTCC GGCGGGAAAC CCGGCAGGTC TCGGCCGCGG	720
TCACCCCGAC TCACTGGTGC ACCATCCGGG TGTGGTGAG CGTCAACTC AAACACACTC	780
AACGGCAACG GTTTCTCAGG TCACCCAGCTC AACCTCGACC CGCAATCGCT CGTACGTTTC	840
GACCGCGCGC AGGTGCGAG TCAGCAGCTT TGCGCCGGCA GCTTCGCGG TGAAGCCGAC	900

CAGGGCATCG TAGGTTGCAC CACCGGTGAC ATCGTGCTCG GCGAGGGTGGT CGGTCAAGCC	960
GCGATATGAG CAGGCATCCA GTGCCAGGTA GTTGCTGGAG GTGATGTCCG CCAAGTAGGC	1020
GTGGACGGCA ACAGGGGCAA TACGATGCGG CGGTGGTAGC CGGGTCAAGA CGGAATAGGT	1080
TTCCACAGCC GCGTGCAGCA TCAGATGGAC GCCACGGTTG AGCGCGCGCA CGGCAGGCCTC	1140
GTGCCCTTCG TGCCAGGTAGC CGAACATCCGGC AACCAAGCACG CTGGTGTCTG GTGCGATCAC	1200
CGCCGTGTGC GATCGAGCGT TTCCCGAACG ATTCGTCGG TCAACGGGGG CAGGGGACGT	1260
TCTGGCCGTG CGACGAGAAC CGAGCCTTCC CGAACAGAGTT CGACACCGGT CGGGGCCGGC	1320
TCAATCTCGA TGCGCCCACG GCGCTCGGTG ATCTCCACCT GGTGTTCCC GCGCAAGCCA	1380
AGGCAGCTCGC GAATCCGCTT GGGAAATCACC AGACGTCCGT CGACATCGAT GGTTGTTCGC	1440
ATGGTAGGAA ATTTACCATC GCACGTTCCA TAGGCGTGTG CTGCGCGGG A TGTCGGGACG	1500
ATCCGCTAGC GTATCGAACG ATTGTTTCGG AAATGGCTGA GGGAGCGTGC GGTGCGGGTG	1560
ATGGGTGTGC ATCCCCGGTT GACCCGATGC GGGCTGTGCG TCATCGAGAG TGGGCGTGGT	1620
CGGCAGCTCA CCGCGCTGGA TGTGACGTG GTGCGCACAC CGTCGGATGC GGCCTTGGCG	1680
CAGCGCCTGT TGGCCATCAG CGATGCCGTG GAGCACTGGC TGGACACCCA TCATCCGGAG	1740
GTGGTGGCTA TCGAACGGGT GTTCTCTCAG CTCAACGTGA CCACGGTGAT GGGCACCGCG	1800
CAGGCCGGCG GCGTGATCGC CCTGGCGCG GCAAACGTG GTGTCGACGT GCATTCCAT	1860
ACCCCCAGCG AGGTCAAGGC GGCGGTCACT GGCAACGGTT CCGCAGACAA GGCTCAGGTC	1920
ACC	1923

(2) INFORMATION FOR SEQ ID NO:191:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1055 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

CTGGCGTGCC AGTGTACCCG GCGATATGAC GTCGGCATTC AATTCGCGG CCCCAGCCGG	60
CCCGTCCCA CCCAATCTGG ACCACCCGGT CCGTCAATTG CCGAAGGTGCG CCAAGTGGT	120
GCCCAATGTG GTGCTGGTT TCTTGAACGA AGGCCTGCCG TATCGGGTGC CCTACCCCCA	180
AACAACGCCA GTCCAGGAAT CCGGTCCCGC GCGGCCGATT CCCAGCGGCA TCTGCTAGCC	240
GGGGATGGTT CAGACGTAAC GGTTGGCTAG GTCGAAACCC GCGCCAGGGC CGCTGGACGG	300
GCTCATGGCA GCGAAATTAG AAAACCCGGG ATATTGTCCG CGGATTGTCA TACGATGCTG	360

AGTGCTTGGT GGTCGTGTT TAGCCATTGA GTGTGGATGT GTTGAGACCC TGGCCTGGAA	420
GGGGACAACG TGCTTTGCC TCTTGGTCCG CCTTTGCCGC CCGACGCGGT GGTGGCGAAA	480
CGGGCTGAGT CGGGAATGCT CGGGGGGTTG TCGGTTCCGC TCAGCTGGGG AGTGGCTGTG	540
CCACCCGATG ATTATGACCA CTGGGCGCCT GCGCCGGAGG ACGGCGCCGA TGTCGATGTC	600
CAGGCGGCCG AAGGGGCGGA CGCAGAGGCC GCGGCCATGG ACGAGTGGGA TGAGTGGCAG	660
GCGTGGAACG AGTGGGTGGC GGAGAACGCT GAACCCCGCT TTGAGGTGCC ACGGAGTAGC	720
AGCAGCGTGA TTCCGCATTC TCCGGCGGCC GGCTAGGAGA GGGGGCGCAG ACTGTCGTTA	780
TTTGACCAGT GATCGGCGGT CTCGGTGTTC CCGCGGCCGG CTATGACAAC AGTCAAATGTG	840
CATGACAAGT TACAGGTATT AGGTCCAGGT TCAACAAGGA GACAGGCAAC ATGGCAACAC	900
GTGTTATGAC GGATCCGCAC GCGATGCGGG ACATGGCGGG CCGTTTGAG GTGCACGCC	960
AGACGGTGGA GGACGAGGCT CGCCGGATGT GGGCGTCCGC GCAAAACATC TCGGGNGCGG	1020
GCTGGAGTGG CATGGCCGAG GCGACCTCGC TAGAC	1055

(2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

CCGCCTCGTT GTTGGCATAC TCCGCCGCGG CCGCCTCGAC CGCACTGGCC GTGGCGTGTG	60
TCCGGGCTGA CCACCGGGAT CGCCGAACCA TCCGAGATCA CCTCGCAATG ATCCACCTCG	120
CGCAGCTGGT CACCCAGCCA CGGGCGGTG TGCGACAGCG CCTGCATCAC CTTGGTATAG	180
CCGTCGCGCC CCAGCCGCAG GAAGTTGTAG TACTGGCCA CCACCTGGTT ACCGGGACGG	240
GAGAAGTTCA GGGTGAAGGT CGGCATGTGCG CCGCCGAGGT AGTTGACCCG GAAAACCAGA	300
TCCCTCCGGCA GGTGCTCGGG CCCGCGCCAC ACGACAAACC CGACGCCGGG ATAGGTCAG	359

(2) INFORMATION FOR SEQ ID NO:193:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

AACGGGCCCG TGGGCACCGC TCCTCTAAGG GCTCTCGTTG GTCGCATGAA GTGCTGGAAG	60
GATGCATCTT GGCAGATTCC CGCCAGAGCA AAACAGCCGC TAGTCCTAGT CCGAGTCGCC	120
CGCAAAGTTC CTCGAATAAC TCCGTACCCG GAGCGCCAAA CCGGGTCTCC TTTCGCTAACG	180
TGCGCGAACC ACTTGAGGTT CCGGGACTCC TTGACGTCCA GACCGATTGCG TTTCGAGTGGC	240
TGATCGGTTC GCCGCGCTGG CGCGAATCCG CCGCCGAGCG GGGTGATGTC AACCCAGTGG	300
GTGGCCTGGA AGAGGTGCTC TACGAGCTGT CTCCGATCGA GGACTTCTCC	350

(2) INFORMATION FOR SEQ ID NO:194:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 679 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

Glu Gln Pro Lys Gly Pro Phe Gly Glu Val Ile Glu Ala Phe Ala Asp	
1 5 10 15	
Gly Leu Ala Gly Lys Gly Lys Gln Ile Asn Thr Thr Leu Asn Ser Leu	
20 25 30	
Ser Gln Ala Leu Asn Ala Leu Asn Glu Gly Arg Gly Asp Phe Phe Ala	
35 40 45	
Val Val Arg Ser Leu Ala Leu Phe Val Asn Ala Leu His Gln Asp Asp	
50 55 60	
Gln Gln Phe Val Ala Leu Asn Lys Asn Leu Ala Glu Phe Thr Asp Arg	
65 70 75 80	
Leu Thr His Ser Asp Ala Asp Leu Ser Asn Ala Ile Gln Gln Phe Asp	
85 90 95	
Ser Leu Leu Ala Val Ala Arg Pro Phe Phe Ala Lys Asn Arg Glu Val	
100 105 110	
Leu Thr His Asp Val Asn Asn Leu Ala Thr Val Thr Thr Leu Leu	
115 120 125	
Gln Pro Asp Pro Leu Asp Gly Leu Glu Thr Val Leu His Ile Phe Pro	
130 135 140	
Thr Leu Ala Ala Asn Ile Asn Gln Leu Tyr His Pro Thr His Gly Gly	
145 150 155 160	
Val Val Ser Leu Ser Ala Phe Thr Asn Phe Ala Asn Pro Met Glu Phe	
165 170 175	

Ile Cys Ser Ser Ile Gln Ala Gly Ser Arg Leu Gly Tyr Gln Glu Ser
 180 185 190

Ala Glu Leu Cys Ala Gln Tyr Leu Ala Pro Val Leu Asp Ala Ile Lys
 195 200 205

Phe Asn Tyr Phe Pro Phe Gly Leu Asn Val Ala Ser Thr Ala Ser Thr
 210 215 220

Leu Pro Lys Glu Ile Ala Tyr Ser Glu Pro Arg Leu Gln Pro Pro Asn
 225 230 235 240

Gly Tyr Lys Asp Thr Thr Val Pro Gly Ile Trp Val Pro Asp Thr Pro
 245 250 255

Leu Ser His Arg Asn Thr Gln Pro Gly Trp Val Val Ala Pro Gly Met
 260 265 270

Gln Gly Val Gln Val Gly Pro Ile Thr Gln Gly Leu Leu Thr Pro Glu
 275 280 285

Ser Leu Ala Glu Leu Met Gly Gly Pro Asp Ile Ala Pro Pro Ser Ser
 290 295 300

Gly Leu Gln Thr Pro Pro Gly Pro Pro Asn Ala Tyr Asp Glu Tyr Pro
 305 310 315 320

Val Leu Pro Pro Ile Gly Leu Gln Ala Pro Gln Val Pro Ile Pro Pro
 325 330 335

Pro Pro Pro Gly Pro Asp Val Ile Pro Gly Pro Val Pro Pro Val Leu
 340 345 350

Ala Ala Ile Val Phe Pro Arg Asp Arg Pro Ala Ala Ser Glu Asn Phe
 355 360 365

Asp Tyr Met Gly Leu Leu Leu Ser Pro Gly Leu Ala Thr Phe Leu
 370 375 380

Phe Gly Val Ser Ser Ser Pro Ala Arg Gly Thr Met Ala Asp Arg His
 385 390 395 400

Val Leu Ile Pro Ala Ile Thr Gly Leu Ala Leu Ile Ala Ala Phe Val
 405 410 415

Ala His Ser Trp Tyr Arg Thr Glu His Pro Leu Ile Asp Met Arg Leu
 420 425 430

Phe Gln Asn Arg Ala Val Ala Gln Ala Asn Met Thr Met Thr Val Leu
 435 440 445

Ser Leu Gly Leu Phe Gly Ser Phe Leu Leu Leu Pro Ser Tyr Leu Gln
 450 455 460

Gln Val Leu His Gln Ser Pro Met Gln Ser Gly Val His Ile Ile Pro
 465 470 475 480

Gln Gly Leu Gly Ala Met Leu Ala Met Pro Ile Ala Gly Ala Met Met
 485 490 495

Asp Arg Arg Gly Pro Ala Lys Ile Val Leu Val Gly Ile Met Leu Ile
 500 505 510

Ala Ala Gly Leu Gly Thr Phe Ala Phe Gly Val Ala Arg Gln Ala Asp
 515 520 525
 Tyr Leu Pro Ile Leu Pro Thr Gly Leu Ala Ile Met Gly Met Gly Met
 530 535 540
 Gly Cys Ser Met Met Pro Leu Ser Gly Ala Ala Val Gln Thr Leu Ala
 545 550 555 560
 Pro His Gln Ile Ala Arg Gly Ser Thr Leu Ile Ser Val Asn Gln Gln
 565 570 575
 Val Gly Gly Ser Ile Gly Thr Ala Leu Met Ser Val Leu Leu Thr Tyr
 580 585 590
 Gln Phe Asn His Ser Glu Ile Ile Ala Thr Ala Lys Lys Val Ala Leu
 595 600 605
 Thr Pro Glu Ser Gly Ala Gly Arg Gly Ala Ala Val Asp Pro Ser Ser
 610 615 620
 Leu Pro Arg Gln Thr Asn Phe Ala Ala Gln Leu Leu His Asp Leu Ser
 625 630 635 640
 His Ala Tyr Ala Val Val Phe Val Ile Ala Thr Ala Leu Val Val Ser
 645 650 655
 Thr Leu Ile Pro Ala Ala Phe Leu Pro Lys Gln Gln Ala Ser His Arg
 660 665 670
 Arg Ala Pro Leu Leu Ser Ala
 675

(2) INFORMATION FOR SEQ ID NO:195:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

Thr Pro Glu Lys Ser Phe Val Asp Asp Leu Asp Ile Asp Ser Leu Ser
 1 5 10 15
 Met Val Glu Ile Ala Val Gln Thr Glu Asp Lys Tyr Gly Val Lys Ile
 20 25 30
 Pro Asp Glu Asp Leu Ala Gly Leu Arg Thr Val Gly Asp Val Val Ala
 35 40 45
 Tyr Ile Gln Lys Leu Glu Glu Asn Pro Glu Ala Ala Gln Ala Leu
 50 55 60
 Arg Ala Lys Ile Glu Ser Glu Asn Pro Asp Ala Ala Arg Ala Asp Arg
 65 70 75 80

Cys Val Ser Pro Thr Ser Gln Ala Arg Asp Ala Arg Arg Pro Leu Ala
85 90 95

Arg Ser Ala Arg Leu Ala Cys Arg Arg Leu Pro Ala Ser Val Pro Thr
100 105 110

Thr Arg Arg Asp Pro Arg Glu Arg
115 120

(2) INFORMATION FOR SEQ ID NO:196:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 89 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

Leu Ala Cys Gln Cys His Arg Arg Tyr Asp Val Gly Ile Gln Phe Arg
1 5 10 15

Gly Pro Ala Gly Pro Val Ala Thr Gln Ser Gly Pro Pro Gly Pro Ser
20 25 30

Ile Ala Glu Gly Arg Gln Val Arg Ala Gln Cys Gly Ala Gly Phe Leu
35 40 45

Glu Arg Arg Pro Ala Val Ser Gly Ala Leu Pro Pro Asn Asn Ala Ser
50 55 60

Pro Gly Ile Arg Ser Arg Ala Ala Asp Ser Gln Arg His Leu Leu Ala
65 70 75 80

Gly Asp Gly Ser Asp Val Thr Val Gly
85

(2) INFORMATION FOR SEQ ID NO:197:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 119 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

Ala Ser Leu Leu Ala Tyr Ser Ala Ala Ala Ser Thr Ala Leu Ala
1 5 10 15

Val Ala Cys Val Arg Ala Asp His Arg Asp Arg Arg Thr Ile Arg Asp
20 25 30

His	Leu	Ala	Met	Ile	His	Leu	Ala	Gln	Leu	Val	Thr	Gln	Pro	Pro	Gly
35								40					45		
Gly	Val	Arg	Gln	Arg	Leu	His	His	Leu	Gly	Ile	Ala	Val	Ala	Pro	Gln
50								55					60		
Pro	Gln	Glu	Val	Val	Val	Leu	Ala	His	His	Leu	Val	Thr	Gly	Thr	Gly
65								70			75		80		
Glu	Val	Gln	Gly	Glu	Gly	Arg	His	Val	Ala	Ala	Glu	Val	Val	Asp	Pro
						85					90			95	
Glu	Asn	Gln	Ile	Leu	Arg	Gln	Val	Leu	Gly	Pro	Ala	Pro	His	Asp	Lys
						100					105		110		
Pro	Asp	Ala	Gly	Ile	Gly	Gln									
						115									

(2) INFORMATION FOR SEQ ID NO:198:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 116 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

Arg	Ala	Arg	Gly	His	Arg	Ser	Ser	Lys	Gly	Ser	Arg	Trp	Ser	His	Glu
1								5					10		15
Val	Leu	Glu	Gly	Cys	Ile	Leu	Ala	Asp	Ser	Arg	Gln	Ser	Lys	Thr	Ala
								20					25		30
Ala	Ser	Pro	Ser	Pro	Ser	Arg	Pro	Gln	Ser	Ser	Ser	Asn	Asn	Ser	Val
								35					40		45
Pro	Gly	Ala	Pro	Asn	Arg	Val	Ser	Phe	Ala	Lys	Leu	Arg	Glu	Pro	Leu
								50					55		60
Glu	Val	Pro	Gly	Leu	Leu	Asp	Val	Gln	Thr	Asp	Ser	Phe	Glu	Trp	Leu
								65					70		80
Ile	Gly	Ser	Pro	Arg	Trp	Arg	Glu	Ser	Ala	Ala	Glu	Arg	Gly	Asp	Val
								85					90		95
Asn	Pro	Val	Gly	Gly	Leu	Glu	Glu	Val	Leu	Tyr	Glu	Leu	Ser	Pro	Ile
								100					105		110
Glu	Asp	Phe	Ser												
			115												

(2) INFORMATION FOR SEQ ID NO:199:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 811 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

TGCTACGCAG CAATCGCTTT	GGTGACAGAT GTGGATGCCG	GCGTCGCTGC TGGCGATGGC	60
GTGAAAGCCG CCGACGTGTT	CGCCGCATTG GGGGAGAAC	TCGAACTGCT CAAAAGGCTG	120
GTGCGGGCCG CCATCGATCG	GGTCGCCGAC GAGCGCACGT	GCACGCACTG TCAACACCAC	180
GCCGGTGTTC CGTTGCCGTT	CGAGCTGCCA TGAGGGTGCT	GCTGACCGGC CGGCCGGCT	240
TCATCGGGTC GCGCGTGGAT	GCGCGTGTAC GGGCTGCGGG	TCACGACGTG GTGGCGTCG	300
ACCGCGCTGCT	GCCCCGCCGCG CACGGGCCAA	ACCCGGTGCT GCCACCGGGC	360
TCGACGTGCG CGACGCCAGC	GCGCTGGCCC CGTTGTTGGC	CGGTGTCGAT CTGGTGTGTC	420
ACCAGGCCGC CATGGTGGGT	GCCGGCGTCA ACGCCGCCGA	CGCACCCGCC TATGGCGGCC	480
ACAACGATTG CGCCACCAACG	GTGCTGCTGG CGCAGATGTT	CGCCGCCGGG GTCCGCCGTT	540
TGGTGCTGGC GTCGTGATG	GTGGTTTACG GGCAGGGGCG	CTATGACTGT CCCCAGCATG	600
GACCGGTCGA CCCGCTGCCG	CGGCAGCGAG CCGACCTGGA	CAATGGGTC TTGGAGCACC	660
GTTGCCCGGG GTGCGGCGAG	CCAGTCATCT GGCAATTGGT	CGACGAAGAT GCCCGCTTGC	720
GCCCGCGCAG CCTGTACGCG	GCAGCAAGAC CGCGCAGGAG	CACTACGCGC TGGCGTGGTC	780
GGAAACGAAT GGCGGTTCCG	TGGTGGCGTT G		811

(2) INFORMATION FOR SEQ ID NO:200:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 966 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi)- SEQUENCE DESCRIPTION: SEQ ID NO:200:

GTCCCGCGAT GTGGCCGAGC	ATGACTTTCG GCAACACCGG	CGTAGTAGTC GAAGATATCG	60
GACTTTGTGG TCCCGGTGGC	GGGATAGAGC ACCTGTCGGC	GTTGGTCAGC GTCACCCGTT	120
GCTCGGACGC CGAACCCATG	CTTCAACGT AGCCTGTCGG	TCACACAAGT CGCGAGCGTA	180
ACGTCACGGT CAAATATCGC	GTGGAATTTC GCCGTGACGT	TCCGCTCGCG GACAATCAAG	240
GCATACTCAC TTACATGCGA	GCCATTGGA CGGGTTCGAT	CGCCTTCGGG CTGGTGAACG	300
TGCCGGTCAA GGTGTACAGC	GCTACCGCAG ACCACGACAT	CAGGTTCCAC CAGGTGCACG	360

CCAAGGACAA CGGACGCATC CGGTACAAGC GCGTCTGCGA GGCGTGTGGC GAGGTGGTCG	420
ACTACCGCGA TCTTGCCCCG GCCTACGAGT CCGGCGACGG CCAAATGGTG GCGATCACCG	480
ACGACGACAT CGCCAGCTTG CCTGAAGAAC GCAGCCGGGA GATCGAGGTG TTGGAGTTCG	540
TCCCCGCCGC CGACGTGGAC CCGATGATGT TCGACCGCAG CTACTTTTG GAGCCTGATT	600
CGAAGTCGTC GAAATCGTAT GTGCTGCTGG CTAAGACACT CGCCGAGACC GACGGATGG	660
CGATCGTGA TCGCCCCACC GGCGTGAAT GCAGGAAAAA TAAGAGCCGC TATCCACAAT	720
TCGGCGTCGA GCTCGGCTAC CACAAACGGT AGAACGATCG AGACATTCCC GAGCTGAAGT	780
GCGGCGCTAT AGAAGCCGCT CTGCGCGATT ATCAAACGCA AAATACGCTT ACTCATGCCA	840
TCGGCGCTGC TCACCCGATG CGACGTTTT GCCACGCTCC ACCGCCTGCC GCGCGACCTC	900
AAGTGGGCAT GCATCCCACC CGTCCCCGGA AACCGGTTCC GGCGGGTCGG CTCATCGCTT	960
CATCCT	966

(2) INFORMATION FOR SEQ ID NO:201:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2367 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

CCGCACCGCC GGCAATACCG CCAGCGCCAC CGTTACCGCC GTTTGCGCCG TTGCCCCCGT	60
TGCCGCCCGT CCCGCCGGCC CCGCCGATGG AGTTCTCATC GCCAAAAGTA CTGGCGTTGC	120
CACGGGAGCC GCCGTTGCCG CCGTCACCGC CAGCCCCGCC GACTCCACCG GCCCCACCGA	180
CTCCGCCGCT GCCACCGTTG CCGCCGTTGC CGATCAACAT GCCGCTGGCG CCACCCTTGC	240
CACCCACGCC ACCGGCTCCG CCCACCCCGC CGACACCAAG CGAGCTGCCG CGGGAGCCAC	300
CATCACCACC TACGCCACCG ACCGCCAGA CACCAGCGAC CGGGTCTTCG TGAAACGTG	360
CGGTGCCACC ACCGCCGCCG TTACCGCCAA CCCCACCGGC AACGCCGGCG CGGCCATCCC	420
CGCCGGCCCC GGC GTTGCCCG CCGTTGCCGC CGTTGCCGAA CAACAACCCG CGGGGCCGC	480
CGTTGCCGCC CGCGCCGCCG GTCCCGCCGG CGCCGCCGAC GCCAAGGCCG CTGCCGCCCT	540
TGCCGCCATC ACCACCCCTTG CCGCCGACCA CATCGGGTTC TGCCCTGGGG TCTGGGCTGT	600
CAAACCTCGC GATGCCAGCG TTGCCGCCGC TTCCCCCGGG CCCCCCCGTG GCGCCGTCAC	660
CACCGATAACC ACCCGCGCCA CGGGCGCCAC CGTTGCCGCC ATCACCGAAT AGCAACCCGC	720
CGGGGCCACC ATTGCCGCCA GCTCCCCCTG CGCCACCGTC GGCGCCGGAG CGGGCACTGG	780

CAGCCCCGTT	ACCACCGAAA	CCGCCGCTAC	CACCGGTAGA	GGTGGCAGTG	GCGATGTGTA	840
CGAAAGCGCC	GCCTCCGGCG	CCGCCGCTAC	CACCCCACT	GCCGGCGGCT	ACACC GTCGG	900
ACCCGTTGCC	ACCATCACCG	CAAAGGCAGC	TCGAATGTC	GCCCTGCGCG	ACTCCGCCGT	960
CGCCGCCGTT	GCCGCCGCCG	CCACCGGCAG	CGGCGGTACC	GCCGTACCA	CCGGCACCGC	1020
CGGTGGCCTT	GCCCAGGCCT	GCCGTCGCGG	TGGCACCGTC	GCCGCCGGTG	CCACCGGTG	1080
GC GTGCCGGC	AGTGCCATGG	CCGCCC GTGC	CGCCGTCGCC	GCCGGTTTG	TCACCGATGC	1140
CGGACACATC	TGCCGGGCTG	TCCCCGGTGC	TGGCCGCGG	GCCGGGCGTG	GGATTGACCC	1200
CGTTGCC	GGCGAGGCCG	GCGCCGCCGG	TACCACCGGC	GCCGCCATGG	CCGAACAGCC	1260
CGGCGTTGCC	GCCGTTACCG	CCCGCACCCC	CGATGCCTGC	GGCCACGCTG	GTGCCGCCGA	1320
CACCGCCGTT	GCCGCCGTTG	CCCCACAACC	ACCCCCCGTT	CCCACCGGCA	CCGCCGGCCG	1380
CGCCGGTACC	ACCGGCCCCG	CCGTTGCCGC	CGTTGCCGAT	CAACCCGCC	GCGCCTCCGC	1440
TGCCGCCGGT	TTGACCGAAC	CCGCCAGCCG	CGCCGTTGCC	ACCGTTGCCA	AACAGCAACC	1500
CGCCGGCCGC	GCCAGGCTGC	CCGGGTGCCG	TCCC GTCGGC	GCCGTTTCCG	ATCAACGGGC	1560
GCCCCAAAG	CGCCTCGGTG	GGCGCATTCA	CCGCACCCAG	CAGACTCCGC	TCAACAGCGG	1620
CTTCAGTGCT	GGCATACCGA	CCCGCGGCCG	CAGTCAACGC	CTGCACAAAC	TGCTCGTGAA	1680
ACGCTGCCAC	CTGTACGCTG	AGCGCCTGAT	ACTGCCGAGC	ATGGGCCCCG	AACAACCCCG	1740
CAATCGCCGC	CGACACTTCA	TCGGCAGCCG	CAGCCACCAC	TTCCGTGTC	GGGATCGCCG	1800
CGGCCGCATT	AGCCGCGCTC	ACCTGCGAAC	CAATAGTCGA	TAAATCCAAA	GCCGCAGTTG	1860
CCAGCAGCTG	CGCGTCGCG	ATCACCAAGG	ACACCTCGCA	CCTCCGGATA	CCCCATATCG	1920
CCGCACCGTG	TCCCCAGCGG	CCACGTGACC	TTTGGTCGCT	GGCTGGCGGC	CCTGACTATG	1980
GCCCGACGG	CCCTCGTTCT	GATT CGCCCC	GGCGCGCAGC	TTGTTGCGCG	AGTTGAAGAC	2040
GGGAGGACAG	GCCGAGCTTG	GTGTAGACGT	GGGTCAAGTG	GGAATGCACG	GTCCGCCGGCG	2100
AGATGAATAG	GCGGACGCCG	ATCTCCTTGT	TGCTGAGTCC	CTCACCGACC	AGTAGAGCCA	2160
CCTCAAGCTC	TGTCGGTGTC	AACCGCCCCC	AGCCACTTGT	CGGGCGTTTC	CGTGCACCGC	2220
GGCCTCGTTG	GGCGTAGEGEG	ATCGCCTCAT	CGATCGATAA	TGCAAGTTCT	TGCGCCAGG	2280
CATCGTCGAA	CTCGCTGTCA	CCCATGGATT	TTCGAAGGGT	GGCTAGCGAC	GAGTTACAGC	2340
CCGCCTGGTA	GATCCCGAAG	CGGACCG				2367

(2) INFORMATION FOR SEQ ID NO:202:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:

Gln Pro Ala Gly Ala Thr Ile Ala Ala Ser Ser Pro Cys Ala Thr Val
1 5 10 15

Gly Ala Gly Gly Gly Thr Gly Ser Pro Val Thr Thr Glu Thr Ala Ala
20 25 30

Thr Thr Gly Arg Gly Gly Ser Gly Asp Val Tyr Glu Ser Ala Ala Ser
35 40 45

Gly Ala Ala Ala Thr Thr Pro Thr Ala Gly Gly Tyr Thr Val Gly Pro
50 55 60

Val Ala Thr Ile Thr Ala Lys Gly Ala Arg Asn Val Ala Leu Arg Asp
65 70 75 80

Ser Ala Val Ala Ala Val Ala Ala Ala Ala Thr Gly Ser Gly Gly Thr
85 90 95

Ala Val Thr Thr Gly Thr Ala Gly Gly Leu Ala Arg Ala Cys Arg Arg
100 105 110

Gly Gly Thr Val Ala Ala Gly Ala Thr Gly Arg Arg Ala Gly Ser Ala
115 120 125

Met Ala Ala Arg Ala Ala Val Ala Ala Gly Leu Ile Thr Asp Ala Gly
130 135 140

His Ile Cys Arg Ala Val Pro Gly Ala Gly Arg Gly Ala Gly Arg Gly
145 150 155 160

Ile Asp Pro Val Cys Pro Gly Glu Ala Gly Ala Ala Gly Thr Thr Gly
165 170 175

Ala Ala Met Ala Glu Gln Pro Gly Val Ala Ala Val Thr Ala Arg Thr
180 185 190

Pro Asp Ala Cys Gly His Ala Gly Ala Ala Asp Thr Ala Val Ala Ala
195 200 205

Val Ala Pro Gln Pro Pro Pro Val Pro Thr Gly Thr Ala Gly Arg Ala
210 215 220

Gly Thr Thr Gly Pro Ala Val Ala Ala Val Ala Asp Gln Pro Gly Arg
225 230 235 240

Ala Ser Ala Ala Ala Gly Leu Thr Glu Pro Ala Ser Arg Ala Val Ala
245 250 255

Thr Val Ala Lys Gln Gln Pro Ala Gly Arg Ala Arg Leu Pro Gly Cys
260 265 270

Arg Pro Val Gly Ala Val Ser Asp Gln Arg Ala Pro Gln Lys Arg Leu
275 280 285

Gly Gly Arg Ile His Arg Thr Gln Gln Thr Pro Leu Asn Ser Gly Phe
290 295 300

Ser Ala Gly Ile Pro Thr Arg Gly Arg Ser Gln Arg Leu His Lys Leu
 305 310 315 320

Leu Val Lys Arg Cys His Leu Tyr Ala Glu Arg Leu Ile Leu Pro Ser
 325 330 335

Met Gly Pro Glu Gln Pro Arg Asn Arg Arg Arg His Phe Ile Gly Ser
 340 345 350

Arg Ser His His Phe Arg Arg Arg Asp Arg Arg Gly Arg Ile Ser Arg
 355 360 365

Ala His Leu Arg Thr Asn Ser Arg
 370 375

(2) INFORMATION FOR SEQ ID NO:203:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2852 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

GGCCAAAACG	CCCCGGCGAT	CGCGGCCACC	GAGGCCGCCT	ACGACCAGAT	GTGGGCCAG	60
GACGTGGCGG	CGATGTTGG	CTACCATGCC	GGGGCTTCGG	CGGCCGTCTC	GGCGTTGACA	120
CCGTTCTGCC	AGGCGCTGCC	GACCGTGGCG	GGCGGCGGTG	CGCTGGTCAG	CGCGGCCGCG	180
GCTCAGGTGA	CCACGCGGCT	CTTCCGCAAC	CTGGGCTTGG	CGAACGTCCG	CGAGGGCAAC	240
GTCCGCAACG	GTAATGTCCG	GAACTTCAAT	CTCGGCTCGG	CCAACATCGG	CAACGGCAAC	300
ATCAGGCAGCG	GCAACATCGG	CAGCTCCAAC	ATCGGGTTTG	GCAACGTGGG	TCCTGGTTG	360
ACCGCAGCGC	TGAACAAACAT	CGGTTCTGGC	AACACCGGCA	GCAACAAACAT	CGGGTTTGGC	420
AACACCGGCA	GCAACAAACAT	CGGGTTCTGGC	AATACCGGAG	ACGGCAACCG	AGGTATCGGG	480
CTCACGGGTA	GCGGTTTGTT	GGGGTTCTGGC	GGCCTGAACT	CGGGCACCCG	CAACATCGGT	540
CTGTTCAACT	CGGGCACCCG	AAACGTCTGGC	ATCGGCAACT	CGGGTACCCG	GAACGTGGGC	600
ATTGGCAACT	CGGGCAACAG	CTACAACACC	GGTTTGGA	ACTCCGGCGA	CGCCAACACG	660
GGCTCTTCA	ACTCCGGAAT	AGCCAACACC	GGCGTCGGCA	ACGCCGGCAA	CTACAACACC	720
GGTAGCTACA	ACCCGGCAA	CAGCAATACC	GGCGGCTTCA	ACATGGGCCA	GTACAACACG	780
GGCTACCTGA	ACAGCGCAA	CTACAACACC	GGCTTGGCAA	ACTCCGGCAA	TGTCAACACC	840
GGCGCCCTCA	TTACTGGCAA	CTTCAACAAAC	GGCTTCTTGT	GGCGCGGCCGA	CCACCAAGGC	900
CTGATTTTCG	GGAGCCCCGG	CTTCTTCAAC	TCGACCAGTG	CGCCGTCGTC	GGGATTCTTC	960

AACAGCGGTG	CCGGTAGCGC	GTCCGGCTTC	CTGAACTCCG	GTGCCAACAA	TTCTGGCTTC	1020
TTCAACTCTT	CGTCGGGGC	CATCGGTAAAC	TCCGGCCTGG	CAAACGCAGG	CGTGCTGGTA	1080
TCGGCGTGA	TCAACTCGGG	CAACACCGTA	TCGGGTTTGT	TCAACATGAG	CCTGGTGGCC	1140
ATCACAAACGC	CGGCCTTGAT	CTCGGGCTTC	TTCAACACCG	GAAGCAACAT	GTCGGGATTT	1200
TTCGGTGGCC	CACCGGTCTT	CAATCTCGC	CTGGCAAACC	GGGGCGTCGT	GAACATTCTC	1260
GGCAACGCCA	ACATCGGAA	TTACAACATT	CTCGGCAGCG	GAAACGTGG	TGACTTCAAC	1320
ATCCTTGGCA	GCGGCAACCT	CGGCAGCCAA	AACATTTGG	GCAGCGGCAA	CGTCGGCAGC	1380
TTCAATATCG	GCAGTGGAAA	CATCGGAGTA	TTCAATGTCG	GTTCCGGAAG	CCTGGGAAAC	1440
TACAACATCG	GATCCGGAAA	CCTCGGGATC	TACAACATCG	TTTTGGAAA	CGTCGGCGAC	1500
TACAACGTG	GCTTCGGGAA	CGCGGGCGAC	TTCAACCAAG	GCTTGCCAA	CACCGGCAAC	1560
AACAACATCG	GGTCGCCAA	CACCGGCAAC	AACAACATCG	GCATCGGGCT	GTCGGCGAC	1620
AACCAGCAGG	GCTTCAATAT	TGCTAGCGC	TGGAACTCGG	GCACCGGCAA	CAGCGGCCTG	1680
TTCAATTCTGG	GCACCAATAA	CGTTGGCATC	TTCAACGCGG	GCACCGGAAA	CGTCGGCATC	1740
GCAAACCTCGG	GCACCGGGAA	CTGGGGTATC	GGGAACCCGG	GTACCGACAA	TACCGGCATC	1800
CTCAATGCTG	GCAGCTACAA	CACGGGCATC	CTCAACGCCG	GCGACTTCAA	CACGGCTTC	1860
TACAACACGG	GCAGCTACAA	CACCGGCGGC	TTCAACGTG	GTAACACCAA	CACCGGCAAC	1920
TTCAACGTGG	GTGACACCAA	TACCGGCAGC	TATAACCCGG	GTGACACCAA	CACCGGCTTC	1980
TTCAATCCCG	GCAACGTCAA	TACCGGCGCT	TTCGACACGG	GCGACTTCAA	CAATGGCTTC	2040
TTGGTGGCGG	GCGATAACCA	GGGCCAGATT	GCCATCGATC	TCTCGGTAC	CACTCCATT	2100
ATCCCCATAA	ACGAGCAGAT	GGTCATTGAC	GTACACAACG	TAATGACCTT	CGGCGGCAAC	2160
ATGATCACGG	TCACCGAGGC	CTCGACCGTT	TTCCCCAAA	CCTTCTATCT	GAGCGGTTG	2220
TTCTTCTTCG	GCCCGBTCAA	TCTCAGCGCA	TCCACGCTGA	CCGTTCCGAC	GATCACCCCTC	2280
ACCATCGGCG	GACCGACGGT	GACCGTCCCC	ATCAGCATTG	TCGGTGCTCT	GGAGAGCCGC	2340
ACGATTACCT	TCCTCAAGAT	CGATCCGGCG	CCGGGCATCG	GAAATTCGAC	CACCAACCCC	2400
TCGTCCGGCT	TCTTCAACTC	GGGCACCGGT	GGCACATCTG	GCTTCCAAAA	CGTCGGCGGC	2460
GGCAGTTCAAG	GGGTCTGGAA	CAGTGGTTTG	AGCAGCGCGA	TAGGGAATTC	GGGTTTCCAG	2520
AACCTCGGCT	CGCTGCAGTC	AGGCTGGCG	AACCTGGC	ACTCCGTATC	GGGCTTTTTC	2580
AACACCAGTA	CGGTGAACCT	CTCCACGCCG	GCCAATGTCT	CGGGCCTGAA	CAACATCGGC	2640
ACCAACCTGT	CCGGCGTGTT	CCGCGGTCCG	ACCGGGACGA	TTTCAACGC	GGGCCTTGCC	2700
AACCTGGGCC	AGTTGAACAT	CGGCAGCGCC	TCGTGCCGAA	TTCGGCACGA	GTTAGATACG	2760
GTTTCAACAA	TCATATCCGC	GTTTGGCGC	AGTGCATCAG	ACGAATCGAA	CCCGGAAAGC	2820

GTAAGCGAAT AAACCGAATG GCGGCCTGTC AT

2852

(2) INFORMATION FOR SEQ ID NO:204:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 943 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

Gly Gln Asn Ala Pro Ala Ile Ala Ala Thr Glu Ala Ala Tyr Asp Gln
1 5 10 15

Met Trp Ala Gln Asp Val Ala Ala Met Phe Gly Tyr His Ala Gly Ala
20 25 30

Ser Ala Ala Val Ser Ala Leu Thr Pro Phe Gly Gln Ala Leu Pro Thr
35 40 45

Val Ala Gly Gly Gly Ala Leu Val Ser Ala Ala Ala Gln Val Thr
50 55 60

Thr Arg Val Phe Arg Asn Leu Gly Leu Ala Asn Val Arg Glu Gly Asn
65 70 75 80

Val Arg Asn Gly Asn Val Arg Asn Phe Asn Leu Gly Ser Ala Asn Ile
85 90 95

Gly Asn Gly Asn Ile Gly Ser Gly Asn Ile Gly Ser Ser Asn Ile Gly
100 105 110

Phe Gly Asn Val Gly Pro Gly Leu Thr Ala Ala Leu Asn Asn Ile Gly
115 120 125

Phe Gly Asn Thr Gly Ser Asn Asn Ile Gly Phe Gly Asn Thr Gly Ser
130 135 140

Asn Asn Ile Gly Phe Gly Asn Thr Gly Asp Gly Asn Arg Gly Ile Gly
145 150 155 160

Leu Thr Gly Ser Gly Leu Leu Gly Phe Gly Gly Leu Asn Ser Gly Thr
165 170 175

Gly Asn Ile Gly Leu Phe Asn Ser Gly Thr Gly Asn Val Gly Ile Gly
180 185 190

Asn Ser Gly Thr Gly Asn Trp Gly Ile Gly Asn Ser Gly Asn Ser Tyr
195 200 205

Asn Thr Gly Phe Gly Asn Ser Gly Asp Ala Asn Thr Gly Phe Phe Asn
210 215 220

Ser Gly Ile Ala Asn Thr Gly Val Gly Asn Ala Gly Asn Tyr Asn Thr
225 230 235 240

Gly Ser Tyr Asn Pro Gly Asn Ser Asn Thr Gly Gly Phe Asn Met Gly

200

245

250

255

Gln Tyr Asn Thr Gly Tyr Leu Asn Ser Gly Asn Tyr Asn Thr Gly Leu
 260 265 270

Ala Asn Ser Gly Asn Val Asn Thr Gly Ala Phe Ile Thr Gly Asn Phe
 275 280 285

Asn Asn Gly Phe Leu Trp Arg Gly Asp His Gln Gly Leu Ile Phe Gly
 290 295 300

Ser Pro Gly Phe Phe Asn Ser Thr Ser Ala Pro Ser Ser Gly Phe Phe
 305 310 315 320

Asn Ser Gly Ala Gly Ser Ala Ser Gly Phe Leu Asn Ser Gly Ala Asn
 325 330 335

Asn Ser Gly Phe Phe Asn Ser Ser Ser Gly Ala Ile Gly Asn Ser Gly
 340 345 350

Leu Ala Asn Ala Gly Val Leu Val Ser Gly Val Ile Asn Ser Gly Asn
 355 360 365

Thr Val Ser Gly Leu Phe Asn Met Ser Leu Val Ala Ile Thr Thr Pro
 370 375 380

Ala Leu Ile Ser Gly Phe Phe Asn Thr Gly Ser Asn Met Ser Gly Phe
 385 390 395 400

Phe Gly Gly Pro Pro Val Phe Asn Leu Gly Leu Ala Asn Arg Gly Val
 405 410 415

Val Asn Ile Leu Gly Asn Ala Asn Ile Gly Asn Tyr Asn Ile Leu Gly
 420 425 430

Ser Gly Asn Val Gly Asp Phe Asn Ile Leu Gly Ser Gly Asn Leu Gly
 435 440 445

Ser Gln Asn Ile Leu Gly Ser Gly Asn Val Gly Ser Phe Asn Ile Gly
 450 455 460

Ser Gly Asn Ile Gly Val Phe Asn Val Gly Ser Gly Ser Leu Gly Asn
 465 470 475 480

Tyr Asn Ile Gly Ser Gly Asn Leu Gly Ile Tyr Asn Ile Gly Phe Gly
 485 490 495

Asn Val Gly Asp Tyr Asn Val Gly Phe Gly Asn Ala Gly Asp Phe Asn
 500 505 510

Gln Gly Phe Ala Asn Thr Gly Asn Asn Asn Ile Gly Phe Ala Asn Thr
 515 520 525

Gly Asn Asn Asn Ile Gly Ile Gly Leu Ser Gly Asp Asn Gln Gln Gly
 530 535 540

Phe Asn Ile Ala Ser Gly Trp Asn Ser Gly Thr Gly Asn Ser Gly Leu
 545 550 555 560

Phe Asn Ser Gly Thr Asn Asn Val Gly Ile Phe Asn Ala Gly Thr Gly
 565 570 575

Asn Val Gly Ile Ala Asn Ser Gly Thr Gly Asn Trp Gly Ile Gly Asn
 580 585 590
 Pro Gly Thr Asp Asn Thr Gly Ile Leu Asn Ala Gly Ser Tyr Asn Thr
 595 600 605
 Gly Ile Leu Asn Ala Gly Asp Phe Asn Thr Gly Phe Tyr Asn Thr Gly
 610 615 620
 Ser Tyr Asn Thr Gly Gly Phe Asn Val Gly Asn Thr Asn Thr Gly Asn
 625 630 635 640
 Phe Asn Val Gly Asp Thr Asn Thr Gly Ser Tyr Asn Pro Gly Asp Thr
 645 650 655
 Asn Thr Gly Phe Phe Asn Pro Gly Asn Val Asn Thr Gly Ala Phe Asp
 660 665 670
 Thr Gly Asp Phe Asn Asn Gly Phe Leu Val Ala Gly Asp Asn Gln Gly
 675 680 685
 Gln Ile Ala Ile Asp Leu Ser Val Thr Thr Pro Phe Ile Pro Ile Asn
 690 695 700
 Glu Gln Met Val Ile Asp Val His Asn Val Met Thr Phe Gly Gly Asn
 705 710 715 720
 Met Ile Thr Val Thr Glu Ala Ser Thr Val Phe Pro Gln Thr Phe Tyr
 725 730 735
 Leu Ser Gly Leu Phe Phe Gly Pro Val Asn Leu Ser Ala Ser Thr
 740 745 750
 Leu Thr Val Pro Thr Ile Thr Leu Thr Ile Gly Gly Pro Thr Val Thr
 755 760 765
 Val Pro Ile Ser Ile Val Gly Ala Leu Glu Ser Arg Thr Ile Thr Phe
 770 775 780
 Leu Lys Ile Asp Pro Ala Pro Gly Ile Gly Asn Ser Thr Thr Asn Pro
 785 790 795 800
 Ser Ser Gly Phe Phe Asn Ser Gly Thr Gly Gly Thr Ser Gly Phe Gln
 805 810 815
 Asn Val Gly Gly Ser Ser Gly Val Trp Asn Ser Gly Leu Ser Ser
 820 825 830
 Ala Ile Gly Asn Ser Gly Phe Gln Asn Leu Gly Ser Leu Gln Ser Gly
 835 840 845
 Trp Ala Asn Leu Gly Asn Ser Val Ser Gly Phe Phe Asn Thr Ser Thr
 850 855 860
 Val Asn Leu Ser Thr Pro Ala Asn Val Ser Gly Leu Asn Asn Ile Gly
 865 870 875 880
 Thr Asn Leu Ser Gly Val Phe Arg Gly Pro Thr Gly Thr Ile Phe Asn
 885 890 895
 Ala Gly Leu Ala Asn Leu Gly Gln Leu Asn Ile Gly Ser Ala Ser Cys
 900 905 910

Arg Ile Arg His Glu Leu Asp Thr Val Ser Thr Ile Ile Ser Ala Phe
915 920 925

Cys Gly Ser Ala Ser Asp Glu Ser Asn Pro Gly Ser Val Ser Glu
930 935 940

(2) INFORMATION FOR SEQ ID NO:205:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

GGATCCATAT GGGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC

53

(2) INFORMATION FOR SEQ ID NO:206:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:

CCTGAATTCA GCCCTCGGTT GCGCCGGCCT CATCTTGAAC GA

42

(2) INFORMATION FOR SEQ ID NO:207:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 31 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

GGATCCTGCA GGCTCGAAAC CACCGAGCGG T

31

(2) INFORMATION FOR SEQ ID NO:208:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 31 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:

CTCTGAATTC AGCGCTGGAA ATCGTCGCGA T

31

(2) INFORMATION FOR SEQ ID NO:209:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

GGATCCAGCG CTGAGATGAA GACCGATGCC GCT

33

(2) INFORMATION FOR SEQ ID NO:210:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 38 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:

GGATATCTGC AGAATTCAAGG TTTAAAGCCC ATTTGCAG

38

(2) INFORMATION FOR SEQ ID NO:211:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:

CCGCATGCGA GCCACGTGCC CACAACGGCC

30

(2) INFORMATION FOR SEQ ID NO:212:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 37 base pairs
- (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:

CTTCATGGAA TTCTCAGGCC GGTAAGGTCC GCTGCAG

37

(2) INFORMATION FOR SEQ ID NO:213:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7676 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:

TGGCGAATGG GACGCGCCCT GTAGCGCGC ATTAAAGCGCG GCAGGGTGTGG TGGTTACGCG	60
CAGCGTGACC GCTACACTTG CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC	120
CTTTCTCGCC ACGTTCGCCG GCTTTCCCCG TCAAGCTCTA AATCAGGGGGC TCCCTTTAGG	180
GTTCCGATT AGTGCTTAC GGCACCTCGA CCCCCAAAAAA CTTGATTAGG GTGATGGTTC	240
ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCCT TTGACGTTGG AGTCCACGTT	300
CTTTAATAGT GGACTCTTGT TCCAAACTGG AACAAACACTC AACCCCTATCT CGGTCTATTG	360
TTTGATTAA TAAGGGATT TGCCGATTTC GGCCTATTGG TTAAAAAAATG AGCTGATTAA	420
ACAAAAAATT AACGCGAATT TTAACAAAAT ATTAACGTTT ACAATTTCAG GTGGCACTTT	480
TCGGGGAAAT GTGCGCGGAA CCCCTATTG TTTATTTC TAAATACATT CAAATATGTA	540
TCCGCTCATG AATTAATTCT TAGAAAAACT CATCGAGCAT CAAATGAAAC TGCAATTAT	600
TCATATCAGG ATTATCAATA CCATATTGTTT GAAAAAGCCG TTTCTGTAAT GAAGGGAGAA	660
ACTCACCGAG GCAGTTCCAT AGGATGGCAA GATCCTGGTA TCGGTCTGCG ATTCCGACTC	720
GTCCAACATC AATACAACCT ATTAATTCC CCTCGTAAA AATAAGGTTA TCAAGTGAGA	780
AATCACCATG AGTGACGACT GAATCCGGTG AGAATGGCAA AAGTTTATGC ATTTCTTCC	840
AGACTTGTTC AACAGGCCAG CCATTACGCT CGTCATCAAATC ACTCGAGCGA TCAACCAAAC	900
CGTTATTCAAT TCGTGATTGC GCCTGAGCGA GACGAAATAC GCGATCGCTG TTAAAAGGAC	960
AATTACAAAC AGGAATCGAA TGCAACCGGC GCAGGAACAC TGCCAGCGCA TCAACAAATAT	1020
TTTCACCTGA ATCAGGATAT TCTTCTAATA CCTGGAATGC TGTTTCCCG GGGATCGCAG	1080
TGGTGAGTAA CCATGCATCA TCAGGAGTAC GGATAAAATG CTTGATGGTC GGAAGAGGCA	1140

TAAAATCCGT CAGCCAGTTT AGTCTGACCA TCTCATCTGT AACATCATTG GCAACGCTAC	1200
CTTTGCCATG TTTCAGAAAC AACTCTGGCG CATCGGGCTT CCCATACAAT CGATAGATTG	1260
TCGCACCTGA TTGCCCAGCA TTATCGCGAG CCCATTATA CCCATATAAA TCAGCATCCA	1320
TGTTGGAATT TAATCGCGGC CTAGAGCAAG ACGTTTCCCG TTGAATATGG CTCATAACAC	1380
CCCTTGTATT ACTGTTATG TAAGCAGACA GTTTATTGT TCATGACCAA AATCCCTAA	1440
CGTGAGTTTT CGTTCCACTG AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA	1500
GATCCTTTTT TTCTGCGGT AATCTGCTGC TTGCAAACAA AAAAACACC GCTACCAGCG	1560
GTGGTTGTT TGCCGGATCA AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC	1620
AGAGCGCAGA TACCAAATAC TGTCCTTCTA GTGTAGCCGT AGTTAGGCCA CCACTTCAAG	1680
AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC TGTTACCAGT GGCTGCTGCC	1740
AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC GATAAGTACCG GGATAAGGCG	1800
CAGCGGTCGG GCTGAACGGG GGGTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC	1860
ACCGAACTGA GATACTACA GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA	1920
AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT	1980
CCAGGGGGAA ACGCCTGGTA TCTTATAGT CCTGTCGGGT TTCGCCACCT CTGACTTGAG	2040
CGTCGATTTT TGTGATGCTC GTCAAGGGGG CGGAGCCTAT GGAAAAACGC CAGCAACGCG	2100
GCCTTTTAC GGTTCCCTGGC CTTTGCTGG CCTTTTGCTC ACATGTTCTT TCCTGCGTTA	2160
TCCCCTGATT CTGTGGATAA CCGTATTACC GCCTTGAGT GAGCTGATAC CGCTCGCCGC	2220
AGCCGAACGA CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG CGGAAGAGCG CCTGATGCGG	2280
TATTTCTCC TTACGCATCT GTGCGGTATT TCACACCGCA TATATGGTGC ACTCTCAGTA	2340
CAATCTGCTC TGATGCCGCA TAGTTAAGCC AGTATACACT CCGCTATCGC TACGTGACTG	2400
GGTCATGGCT GCGCCCCGAC ACCCGCCAAC ACCCGCTGAC GCGCCCTGAC GGGCTTGTCT	2460
GCTCCGGCA TCCGCTTACA GACAAGCTGT GACCGTCTCC GGGAGCTGCA TGTGTCAGAG	2520
GTTTCAACCG TCATCACCGA AACCGCGAG GCAGCTGCGG TAAAGCTCAT CAGCGTGGTC	2580
GTGAAGCGAT TCACAGATGT CTGCCTGTTA ATCCGCGTCC AGCTCGTTGA GTTTCTCCAG	2640
AAGCGTTAAT GTCTGGCTTC TGATAAAGCG GGCCATGTTA AGGGCGGTTT TTTCCTGTTT	2700
GGTCACTGAT GCCTCCGTGT AAGGGGGATT TCTGTTCATG GGGTAATGA TACCGATGAA	2760
ACGAGAGAGG ATGCTCACGA TACGGGTTAC TGATGATGAA CATGCCCGGT TACTGGAACG	2820
TTGTGAGGGT AAACAACTGG CGGTATGGAT GCGGCGGGAC CAGAGAAAAA TCACTCAGGG	2880
TCAATGCCAG CGCTTCGTTA ATACAGATGT AGGTGTTCCA CAGGGTAGCC AGCAGCATCC	2940
TGCGATGCAG ATCCGGAACA TAATGGTGCA GGGCGCTGAC TTCCGCGTTT CCAGACTTTA	3000

CGAAACACGG AAACCGAAGA CCATTCATGT TGGTGCAG GTCGCAGACG TTTTGCA	3060
GCAGTCGCTT CACGTTCGCT CGCGTATCGG TGATTCAATT TGCTAACAG TAAGGCAACC	3120
CCGCCAGCCT AGCCGGGTCC TCAACGACAG GAGCACGATC ATGCGCACCC GTGGGGCCGC	3180
CATGCCGGCG ATAATGGCCT GCTTCTCGCC GAAACGTTG GTGGCGGGAC CAGTGACGAA	3240
GGCTTGAGCG AGGGCGTGCA AGATTCCGAA TACCGCAAGC GACAGGCCGA TCATCGTCGC	3300
GCTCCAGCGA AAGCGGTCT CGCCGAAAAT GACCCAGAGC GCTGCCGGCA CCTGTCCTAC	3360
GAGTTGCATG ATAAAGAAGA CAGTCATAAG TGCGGCGACG ATAGTCATGC CCCGCGCCCA	3420
CCGGAAGGAG CTGACTGGGT TGAAGGCTCT CAAGGGCATC GGTCGAGATC CCGGTGCCTA	3480
ATGAGTGAGC TAACTTACAT TAATTGCGTT GCGCTCACTG CCCGCTTCC AGTCGGGAAA	3540
CCTGTCGTGC CAGCTGCATT AATGAATCGG CCAACGCGCG GGGAGAGGCG GTTTGCGTAT	3600
TGGCGCCAG GGTGGTTTT CTTTCACCA GTGAGACGGG CAACAGCTGA TTGCCCTTCA	3660
CCGCCTGGCC CTGAGAGAGT TGCAGCAAGC GGTCCACGCT GGTTTGCCCC AGCAGGCCAA	3720
AATCCTGTTT GATGGTGGTT AACGGCGGA TATAACATGA GCTGCTTCG GTATCGTCGT	3780
ATCCCACATAC CGAGATATCC GCACCAAACGC GCAGCCCCGA CTCGGTAATG GCGCGCATTG	3840
CGCCCGCGC CATCTGATCG TTGGCAACCA GCATCGCAGT GGGAACGATG CCCTCATTCA	3900
GCATTTGCAT GGTTGTTGA AAACCGGACA TGGCACTCCA GTGCCCTTCC CGTTCCGCTA	3960
TCGGCTGAAT TTGATTGCGA GTGAGATATT TATGCCAGCC AGCCAGACGC AGACGCCCG	4020
AGACAGAACT TAATGGGCC GCTAACAGCG CGATTTGCTG GTGACCCAAT GCGACCAGAT	4080
GCTCCACGCC CAGTCGGTA CCGTCTTCAT GGGAGAAAAT AATACTGTTG ATGGGTGTCT	4140
GGTCAGAGAC ATCAAGAAAAT AACGCCGGAA CATTAGTGCA GGCAGCTTCC ACAGCAATGG	4200
CATCCTGGTC ATCCAGCGGA TAGTTAATGA TCAGCCACT GACGCGTTGC GCGAGAAGAT	4260
TGTGCACCGC CGCTTACAG GCTTCGACGC CGCTTCGTTTC TACCATCGAC ACCACCACGC	4320
TGGCACCCAG TTGATCGCG CGAGATTAA TCGCCGCGAC AATTGCGAC GGCGCGTGCA	4380
GGGCCAGACT GGAGGTGGCA ACGCCAATCA GCAACGACTG TTTGCCCGCC AGTTGTTGTG	4440
CCACGCGGT GGGAAATGTA TTCAGCTCCG CCATCGCCGC TTCCACTTT TCCCGCGTTT	4500
TCGCAGAAAC GTGGCTGGCC TGGTCACCA CGCGGGAAAC GGTCTGATAA GAGACACCGG	4560
CATACTCTGC GACATCGTAT AACGTTACTG GTTTCACATT CACCACCCCTG AATTGACTCT	4620
CTTCCGGCG CTATCATGCC ATACCGCGAA AGGTTTGCG CCATTCGATG GTGTCCGGGA	4680
TCTCGACGCT CTCCCTTATG CGACTCCTGC ATTAGGAAGC AGCCCAAGTAG TAGGTTGAGG	4740
CCGTTGAGCA CCGCCGCCGC AAGGAATGGT GCATGCAAGG AGATGGCGCC CAACAGTCCC	4800
CGGGCCACGG GGCCTGCCAC CATAACCCACG CCGAAACAAG CGCTCATGAG CCCGAAGTGG	4860

CGAGCCCGAT	CTTCCCCATC	GGTGATGTCG	GCGATATAAGG	CGCCAGCAAC	CGCACCTGTG	4920
GCGCCGGTGA	TGCCGGCAC	GATGCGTCCG	GCGTAGAGGA	TCGAGATCTC	GATCCCAGCGA	4980
AATTAATACG	ACTCACTATA	GGGAAATTGT	GAGCGGATAA	CAATTCCCCT	CTAGAAATAA	5040
TTTTGTTAA	CTTTAAGAAG	GAGATATACA	TATGGGCCAT	CATCATCATC	ATCACGTGAT	5100
CGACATCATC	GGGACCAGCC	CCACATCCTG	GGAACAGGCG	GCGGCGGAGG	CGGTCCAGCG	5160
GGCGCGGGAT	AGCGTCGATG	ACATCCGCGT	CGCTCGGGTC	ATTGAGCAGG	ACATGGCCGT	5220
GGACAGCGCC	GGCAAGATCA	CCTACCGCAT	CAAGCTCGAA	GTGTCGTTCA	AGATGAGGCC	5280
GGCGCAACCG	AGGGGCTCGA	AACCACCGAG	CGGTTCGCCT	GAAACGGGCG	CCGGCGCCGG	5340
TACTGTCGCG	ACTACCCCCG	CGTCGTCGCC	GGTGACGTTG	GCGGAGACCG	GTAGCACGCT	5400
GCTCTACCCG	CTGTTCAACC	TGTGGGGTCC	GGCCTTTCAC	GAGAGGTATC	CGAACGTCAC	5460
GATCACCGCT	CAGGGCACCG	GTTCTGGTGC	CGGGATCGCG	CAGGCCGCCG	CCGGGACGGT	5520
CAACATTGGG	GCCTCCGACG	CCTATCTGTC	GGAAGGTGAT	ATGGCCGCGC	ACAAGGGGCT	5580
GATGAACATC	GCGCTAGCCA	TCTCCGCTCA	GCAGGTCAAC	TACAACCTGC	CCGGAGTGAG	5640
CGAGCACCTC	AAGCTGAACG	AAAAAGTCCT	GGCGGCCATG	TACCAGGGCA	CCATCAAAAC	5700
CTGGGACGAC	CCGCAGATCG	CTGCGCTCAA	CCCCGGCGTG	AACCTGCCCG	GCACCGCGGT	5760
AGTTCCGCTG	CACCGCTCCG	ACGGGTCCGG	TGACACCTTC	TTGTTCACCC	AGTACCTGTC	5820
CAAGCAAGAT	CCCGAGGGCT	GGGGCAAGTC	GCCC GGCTTC	GGCACCACCG	TCGACTTCCC	5880
GGCGGTGCCG	GGTGCCTGG	GTGAGAACGG	CAACGGCGGC	ATGGTGACCG	GTTGCGCCGA	5940
GACACCGGGC	TGCGTGGCCT	ATATCGGCAT	CAGCTTCCTC	GACCAGGCCA	GTCAACGGGG	6000
ACTCGGCGAG	GCCCAACTAG	GCAATAGCTC	TGGCAATTTC	TTGTTGCCCG	ACGCGCAAAG	6060
CATTCAAGGCC	GCGGCGGCTG	GCTTCGCATC	AAAAACCCCG	GCGAACCCAGG	CGATTTCGAT	6120
GATCGACGGG	CCCGCCCCGG	ACGGCTACCC	GATCATCAAC	TACGAGTACG	CCATCGTCAA	6180
CAACCGGCAA	AAGGACGCCG	CCACCGCGCA	GACCTTGCAG	GCATTTCTGC	ACTGGCGAT	6240
CACCGACGGC	AACAAGGCCT	CGTTCTCGA	CCAGGTTCAT	TTCCAGCCGC	TGCGGCCCGC	6300
GGTGGTGAAG	TTGTCTGACG	CGTTGATCGC	GACGATTTC	AGCGCTGAGA	TGAAGACCGA	6360
TGCCGCTACC	CTCGCGCAGG	AGGCAGGTAA	TTTCGAGCGG	ATCTCCGGCG	ACCTGAAAAC	6420
CCAGATCGAC	CAGGTGGAGT	CGACGGCAGG	TTCGTTGCAG	GGCCAGTGGC	GCGGCGCGGC	6480
GGGGACGGCC	GCCCAGGCCG	CGGTGGTGCG	CTTCCAAGAA	GCAGCCAATA	AGCAGAAGCA	6540
GGAACCTGAC	GAGATCTCGA	CGAATATTG	TCAGGGCGGC	GTCCAATACT	CGAGGGCCGA	6600
CGAGGGAGCAG	CAGCAGGCCG	TGTCCTCGCA	AATGGGCTTT	GTGCCACAA	CGGCCGCCTC	6660
GCCGCCGTG	ACCGCTGCAG	CGCCACCCCGC	ACCGGGGACA	CCTGTTGCC	CCCCACCACC	6720

GGCCGCCGCC	AACACGCCGA	ATGCCAGCC	GGGCGATCCC	AACGCAGCAC	CTCCGCCGGC	6780
CGACCCGAAC	GCACCGCCGC	CACCTGTCAT	TGCCCCAAAC	GCACCCCAAC	CTGTCCGGAT	6840
CGACAACCCG	GTTGGAGGAT	TCAGCTTCGC	GCTGCCTGCT	GGCTGGGTGG	AGTCTGACGC	6900
CGCCCACCTC	GACTACGGTT	CAGCACTCCT	CAGCAAAACC	ACCGGGGACC	CGCCATTTC	6960
CGGACAGCCG	CCGCCGGTGG	CCAATGACAC	CCGTATCGTG	CTCGGCCGGC	TAGACCAAAA	7020
GCTTACGCC	AGCGCCGAAG	CCACCGACTC	CAAGGCCGCG	GCCC GGTTGG	GCTCGGACAT	7080
GGGTGAGTTC	TATATGCCCT	ACCCGGGCAC	CCGGATCAAC	CAGGAAACCG	TCTCGCTTGA	7140
CGCCAACGGG	GTGTCTGGAA	GCGCGTCGTA	TTACGAAGTC	AAGTTCAGCG	ATCCGAGTAA	7200
GCCGAACGGC	CAGATCTGGA	CGGGCGTAAT	CGGCTGCC	GCGGCGAACG	CACCGGACGC	7260
CGGGCCCCCT	CAGCGCTGGT	TTGTGGTATG	GCTCGGGACC	GCCAACAACC	CGGTGGACAA	7320
GGGCGCGGCC	AAGGCGCTGG	CCGAATCGAT	CCGGCCTT	GTCGCC	CGCCGGCGCC	7380
GGCACCGGCT	CCTGCAGAGC	CCGCTCCGGC	GCCGGCGCCG	GCCGGGAAAG	TCGCTCCTAC	7440
CCCGACGACA	CCGACACCGC	AGCGGACCTT	ACCGGCCTGA	GAATTCTGCA	GATATCCATC	7500
ACACTGGCGG	CCGCTCGAGC	ACCACCA	CCACCACTGA	GATCCGGCTG	CTAACAAAGC	7560
CCGAAAGGAA	GCTGAGTTGG	CTGCTGCCAC	CGCTGAGCAA	TAACTAGCAT	AACCCCTTGG	7620
GGCCTCTAAA	CGGGTCTTGA	GGGGTTTTTT	GCTGAAAGGA	GGAAC	TATAT CCGGAT	7676

(2) INFORMATION FOR SEQ ID NO:214:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 802 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

Met	Gly	His	His	His	His	His	Val	Ile	Asp	Ile	Ile	Gly	Thr	Ser	
1							5			10			15		
Pro	Thr	Ser	Trp	Glu	Gln	Ala	Ala	Ala	Glu	Ala	Val	Gln	Arg	Ala	Arg
			20						25				30		
Asp	Ser	Val	Asp	Asp	Ile	Arg	Val	Ala	Arg	Val	Ile	Glu	Gln	Asp	Met
			35					40				45			
Ala	Val	Asp	Ser	Ala	Gly	Lys	Ile	Thr	Tyr	Arg	Ile	Lys	Leu	Glu	Val
	50					55					60				
Ser	Phe	Lys	Met	Arg	Pro	Ala	Gln	Pro	Arg	Gly	Ser	Lys	Pro	Pro	Ser
	65					70				75				80	

Gly Ser Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro
85 90 95

Ala Ser Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr
100 105 110

Pro Leu Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn
115 120 125

Val Thr Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln
130 135 140

Ala Ala Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser
145 150 155 160

Glu Gly Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala
165 170 175

Ile Ser Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His
180 185 190

Leu Lys Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile
195 200 205

Lys Thr Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn
210 215 220

Leu Pro Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly
225 230 235 240

Asp Thr Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly
245 250 255

Trp Gly Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val
260 265 270

Pro Gly Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys
275 280 285

Ala Glu Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp
290 295 300

Gln Ala Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser
305 310 315 320

Gly Asn Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Ala
325 330 335

Gly Phe Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp
340 345 350

Gly Pro Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile
355 360 365

Val Asn Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala
370 375 380

Phe Leu His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp
385 390 395 400

Gln Val His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp
405 410 415

WO 98/16646

210

Ala Leu Ile Ala Thr Ile Ser Ser Ala Glu Met Lys Thr Asp Ala Ala
 420 425 430
 Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu
 435 440 445
 Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly
 450 455 460
 Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg
 465 470 475 480
 Phe Gln Glu Ala Ala Asn Lys Gln Lys Glu Leu Asp Glu Ile Ser
 485 490 495
 Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu
 500 505 510
 Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe Val Pro Thr Thr Ala
 515 520 525
 Ala Ser Pro Pro Ser Thr Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro
 530 535 540
 Val Ala Pro Pro Pro Pro Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro
 545 550 555 560
 Gly Asp Pro Asn Ala Ala Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro
 565 570 575
 Pro Pro Val Ile Ala Pro Asn Ala Pro Gln Pro Val Arg Ile Asp Asn
 580 585 590
 Pro Val Gly Gly Phe Ser Phe Ala Leu Pro Ala Gly Trp Val Glu Ser
 595 600 605
 Asp Ala Ala His Phe Asp Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr
 610 615 620
 Gly Asp Pro Pro Phe Pro Gly Gln Pro Pro Pro Val Ala Asn Asp Thr
 625 630 635 640
 Arg Ile Val Leu Gly Arg Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu
 645 650 655
 Ala Thr Asp Ser Lys Ala Ala Ala Arg Leu Gly Ser Asp Met Gly Glu
 660 665 670
 Phe Tyr Met Pro Tyr Pro Gly Thr Arg Ile Asn Gln Glu Thr Val Ser
 675 680 685
 Leu Asp Ala Asn Gly Val Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys
 690 695 700
 Phe Ser Asp Pro Ser Lys Pro Asn Gly Gln Ile Trp Thr Gly Val Ile
 705 710 715 720
 Gly Ser Pro Ala Ala Asn Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp
 725 730 735
 Phe Val Val Trp Leu Gly Thr Ala Asn Asn Pro Val Asp Lys Gly Ala

211

740

745

750

Ala Lys Ala Leu Ala Glu Ser Ile Arg Pro Leu Val Ala Pro Pro Pro
755 760 765

Ala Pro Ala Pro Ala Pro Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala
770 775 780

Gly Glu Val Ala Pro Thr Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu
785 790 795 800

Pro Ala

CLAIMS

1. A polypeptide comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (SEQ ID No. 120)
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser; (SEQ ID No. 121)
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg; (SEQ ID No. 122)
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro; (SEQ ID No. 123)
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val; (SEQ ID No. 124)
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro; (SEQ ID No. 125)
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser; (SEQ ID No. 126)
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly; (SEQ ID No. 127)
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn; (SEQ ID No. 128) and
- (j) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136)

wherein Xaa may be any amino acid.

2. A polypeptide comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative

substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:

- (a) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 129) and
- (b) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 137), wherein Xaa may be any amino acid.

3. A polypeptide comprising an immunogenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101 or a complement thereof under moderately stringent conditions.

4. A polypeptide comprising an immunogenic portion of a *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 26-51, 138, 139, 163-183 and 201 or a complement thereof under moderately stringent conditions.

5. A DNA molecule comprising a nucleotide sequence encoding a polypeptide according to any one of claims 1-4.

6. An expression vector comprising a DNA molecule according to claim 5.

7. A host cell transformed with an expression vector according to claim 6.

8. The host cell of claim 7 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.

9. A pharmaceutical composition comprising one or more polypeptides according to any one of claims 1-4 and a physiologically acceptable carrier.

10. A pharmaceutical composition comprising one or more DNA molecules according to claim 5 and a physiologically acceptable carrier.

11. A pharmaceutical composition comprising one or more DNA sequences recited in SEQ ID Nos.: 3, 11, 12, 140 and 141; and a physiologically acceptable carrier.

12. A vaccine comprising one or more polypeptides according to any one of claims 1-4 and a non-specific immune response enhancer.

13. A vaccine comprising:
a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and
a non-specific immune response enhancer.

14. A vaccine comprising:
one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140 and 141, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140 and 141; and
a non-specific immune response enhancer.

15. The vaccine of claims 12-14 wherein the non-specific immune response enhancer is an adjuvant.

16. A vaccine comprising one or more DNA molecules according to claim 5 and a non-specific immune response enhancer.

17. A vaccine comprising one or more DNA sequences recited in SEQ ID Nos.: 3, 11, 12, 140 and 141; and a non-specific immune response enhancer.

18. The vaccine of claims 16 or 17 wherein the non-specific immune response enhancer is an adjuvant.

19. A pharmaceutical composition according to any one of claims 9-11, for use in the manufacture of a medicament for inducing protective immunity in a patient.

20. A vaccine according to any one of claims 12-18, for use in the manufacture of a medicament for inducing protective immunity in a patient.

21. A fusion protein comprising two or more polypeptides according to any one of claims 1-4.

22. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and ESAT-6.

23. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and the *M. tuberculosis* antigen 38 kD (SEQ ID NO:155).

24. A pharmaceutical composition comprising a fusion protein according to any one of claims 21-23 and a physiologically acceptable carrier.

25. A vaccine comprising a fusion protein according to any one of claims 21-23 and a non-specific immune response enhancer.

26. The vaccine of claim 25 wherein the non-specific immune response enhancer is an adjuvant.

27. A pharmaceutical composition according to claim 24, for use in the manufacture of a medicament for inducing protective immunity in a patient.
28. A vaccine according to claims 25 or 26, for use in the manufcture of a medicament for inducing protective immunity in a patient.
29. A method for detecting tuberculosis in a patient, comprising:
 - (a) contacting dermal cells of a patient with one or more polypeptides according to any one of claims 1-4; and
 - (b) detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
30. A method for detecting tuberculosis in a patient, comprising:
 - (a) contacting dermal cells of a patient with a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and
 - (b) detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
31. A method for detecting tuberculosis in a patient, comprising:
 - (a) contacting dermal cells of a patient with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203; and
 - (b) detecting an immune response on the patient's skin and therefrom detecting tuberculosis in the patient.
32. The method of any one of claims 29-31 wherein the immune response is induration.

33. A diagnostic kit comprising:
 - (a) a polypeptide according to any one of claims 1-4; and
 - (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
34. A diagnostic kit comprising:
 - (a) a polypeptide having an N-terminal sequence selected from the group consisting of sequences recited in SEQ ID NO: 134 and 135; and
 - (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
35. A diagnostic kit comprising:
 - (a) a polypeptide encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140, 141, 156-160, 189-193, 199, 200 and 203; and
 - (b) apparatus sufficient to contact said polypeptide with the dermal cells of a patient.
36. A diagnostic kit comprising:
 - (a) a fusion protein according to any one of claims 21-23; and
 - (b) apparatus sufficient to contact said fusion protein with the dermal cells of a patient.
37. A fusion protein according to claim 23 comprising an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO: 153 and 209.

1/11

Fig. 1A-1

Fig. 1A-2

2/11

Fig. 1B-1

Fig. 1B-2

3/11

Fig. 2A

Fig. 2B

4/11

	M	1	2	3	4	5
97-						
68-						
43-						
29-						
18-						
14-						

	M	1	2	3	4	5
97-						
68-						
43-						
29-						
18-						

	M	1	2	3	4	5
97-						
68-						
43-						
29-						
18-						
14-						

Fig. 3C

Fig. 3D

II

5/11

Fig. 4A

6/11

Fig. 4B

*Fig. 5A**Fig. 5B*

*Fig. 6A**Fig. 6B*

Fig. 7A

Fig. 7B

10/11

Fig. 8A

Fig. 8B

11/11

Fig. 9A

Fig. 9B

**CORRECTED
VERSION***

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A3	(11) International Publication Number:	WO 98/16646
C12N 15/31, C07K 14/35, A61K 39/04, 48/00, 49/00, C12N 15/62, C07K 19/00, G01N 33/50, 33/60, 33/569, C12N 1/19, 1/20, 1/21, 5/10 // (C12N 1/21, C12R 1:19)			(43) International Publication Date:	23 April 1998 (23.04.98)
(21) International Application Number:	PCT/US97/18293		(74) Agents:	MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).
(22) International Filing Date:	7 October 1997 (07.10.97)		(81) Designated States:	AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(30) Priority Data:	11 October 1996 (11.10.96) 08/730,510 13 March 1997 (13.03.97) 08/818,112	US	Published	<i>With international search report.</i>
(71) Applicant:	CORIXA CORPORATION [US/US]; 1124 Columbia Street, Seattle, WA 98104 (US).		(88) Date of publication of the international search report:	8 October 1998 (08.10.98)
(72) Inventors:	REED, Steven, G.; 2843 - 122nd Place N.E., Bellevue, WA 98005 (US). SKEIKY, Yasir, A., W.; 8327 - 25th Avenue N.W., Seattle, WA 98107 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAMPOS-NETO, Antonio; 9308 Midship Court N.E., Bainbridge Island, WA 98021 (US). HOUGHTON, Raymond; 2636 - 242nd Place S.E., Bothell, WA 98021 (US). VEDVICK, Thomas, S.; 124 South 300th Place, Federal Way, WA 98003 (US). TWARDZIK, Daniel, R.; 10195 South Beach Drive, Bainbridge Island, WA 98110 (US). LODES, Michael, J.; 9223 - 36th Avenue S.W., Seattle, WA 98126 (US).			

(54) Title: COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS

(57) Abstract

Compounds and methods for inducing protective immunity against tuberculosis are disclosed. The compounds provided include polypeptides that contain at least one immunogenic portion of one or more *M. tuberculosis* proteins and DNA molecules encoding such polypeptides. Such compounds may be formulated into vaccines and/or pharmaceutical compositions for immunization against *M. tuberculosis* infection, or may be used for the diagnosis of tuberculosis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

Internat'l Application No
PCT/US 97/18293

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/31 C07K14/35 A61K39/04 A61K48/00 A61K49/00
C12N15/62 C07K19/00 G01N33/50 G01N33/60 G01N33/569
C12N1/19 C12N1/20 C12N1/21 C12N5/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N C07K A61K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>WO 95 01441 A (STATENS SERUMSINSTITUT ;ANDERSEN PETER (DK); ANDERSEN AASE BENGAAR) 12 January 1995</p> <p>see abstract see page 9, line 3 - page 20, line 31 see page 25, line 1-25 see page 32, line 6 - page 35, line 6 see page 43, line 9 - page 50, line 24 see claims --- -/-</p>	<p>1,3, 5-10,12, 15,16, 18-29, 32,33, 36,37</p>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

4

Date of the actual completion of the international search	Date of mailing of the international search report
5 March 1998	16-07- 1998

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Macchia, G

INTERNATIONAL SEARCH REPORT

Internatinal Application No
 PCT/US 97/18293

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 // (C12N1/21, C12R1:19)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>WO 95 01440 A (STATENS SERUMINSTITUT ; HASLOEV KAARE (DK); ANDERSEN AASE BENGAARD) 12 January 1995</p> <p>see abstract see page 1, line 1-30 see page 4, line 8-31 see page 6, line 22 - page 7, line 21 see page 11, line 18 - page 12, line 31 see page 17, line 8-24 see page 24, line 18-25; figure 1 see page 30, line 26 - page 32, line 22 see page 36 - page 43; examples 2-5 see claims</p> <p style="text-align: center;">---</p> <p style="text-align: center;">-/--</p>	<p>1,3, 5-10,12, 15,16, 18-29, 32,33, 36,37</p>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

4

Date of the actual completion of the international search	Date of mailing of the international search report
5 March 1998	

Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Macchia, G

INTERNATIONAL SEARCH REPORT

Intern. Application No	PCT/US 97/18293
------------------------	-----------------

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	ANDERSEN P. ET AL.: "Identification of immunodominant antigens during infection with <i>Mycobacterium tuberculosis</i> " SCANDINAVIAN JOURNAL OF IMMUNOLOGY, vol. 36, 1992, pages 823-831, XP002057524 ---	1,3, 5-10,12, 15,16, 18-29, 32,33, 36,37
A	WO 95 31216 A (MEDICAL RES COUNCIL ; LOWRIE DOUGLAS BRUCE (GB)) 23 November 1995 see abstract see claims ---	10,16, 18-20
A	WO 96 15241 A (MERCK & CO INC ; INNOGENETICS NV (BE); LIU MARGARET A (US); MONTGOM) 23 May 1996 see abstract see claims ---	10,16, 18-20
A	WO 96 23885 A (PASTEUR INSTITUT ; LAQUEYRERIE ANNE (FR); MARCHAL GILLES (FR); PESC) 8 August 1996 ---	
A	WO 92 21758 A (PASTEUR INSTITUT) 10 December 1992 ---	
A	AUSUBEL ET AL.: "Current Protocols in Molecular Biology" 1993 , WILEY & SONS , US, NEW YORK XP002026411 cited in the application see page 10.19.1 - page 10.19.12 ---	
A	YOUNG ET AL.: "Screening of a recombinant mycobacterial DNA library with polyclonal antiserum and molecular weight analysis of expressed antigens" INFECTATION AND IMMUNITY, vol. 55, no. 6, June 1987, pages 1421-1425, XP002026410 ---	
A	WO 94 00493 A (KAPOOR ARCHANA ; MUNSHI ANIL (US)) 6 January 1994 ---	
A	FR 2 265 402 A (MITSUI PHARMACEUTICALS) 24 October 1975 ---	
A	FR 2 244 539 A (MITSUI PHARMACEUTICALS) 18 April 1975 ---	
A	ROMAIN ET AL.: "Preparation of Tuberculin antigen L" ANN. INST. PASTEUR/MICROBIOL., vol. 136B, 1985, pages 235-248, XP002026409 ---	
		-/-

INTERNATIONAL SEARCH REPORT

Intern: al Application No

PCT/US 97/18293

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	<p>WO 97 09428 A (CORIXA CORP) 13 March 1997</p> <p>see abstract see page 158 - page 163; claims ---</p>	<p>1,3, 5-10,12, 15,16, 18-22, 24-29, 32,33,36</p>
P,X	<p>WO 97 09429 A (CORIXA CORP) 13 March 1997</p> <p>see abstract see page 173-181; claims -----</p>	<p>1,3,5-8, 21,22</p>

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 97/ 18293

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claim(s) 29 and 32 is(are) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See annex

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

See annex subject 1 -

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1, 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

A polypeptide comprising an immunogenic portion of a soluble M. tuberculosis antigen or a variant, having an N-terminal aminoacid sequence as in Seq.ID:120. A DNA molecule encoding said polypeptide as in Seq.ID:101. An expression vector comprising said DNA molecule, a host transformed with said expression vector. A pharmaceutical composition or vaccine comprising said polypeptide or said DNA molecule. Fusion protein comprising said polypeptide and pharmaceutical composition or vaccine therof. A diagnostic kit comprising said polypeptide or fusion protein.

2. Claims: 1, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:121.

3. Claims: 1, 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:122 and 25.

4. Claims: 1, 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:123 and 24.

5. Claims: 1, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:124.

6. Claims: 1, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:125.

7. Claims: 1, 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 1 but for Seq.ID:126 and 52.

8. Claims: 1, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:127.

9. Claims: 1, 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:128 and 99.

10. Claims: 1, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:136.

11. Claims: 2, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:129.

12. Claims: 2, 5-10, 12, 15, 16, 18-29, 31-33,
35-37 all partially.

Same as invention 1 but for Seq.ID:137 and 203.

13. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:1.

14. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:2.

15. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 1 but for Seq.ID:4 and 17.

16. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:5.

17. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:6.

18. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:7.

19. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:8.

20. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially

Same as invention 1 but for Seq.ID:9.

21. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:10 and 13.

22. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:14.

23. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 1 but for Seq.ID:15 and 153.

24. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:16.

25. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:18.

26. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:19.

27. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:20.

28. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:21.

29. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:22.

30. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:23.

31. Claims: 3, 5-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 1 but for Seq.ID:99.

32. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:26.

33. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:27.

34. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:28.

35. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:29.

36. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:30.

37. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:31.

38. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:32.

39. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 1 but for Seq.ID:33.

40. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:34.

41. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:35.

42. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:36.

43. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:37.

44. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:38.

45. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:39.

46. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:40.

47. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 1 but for Seq.ID:41.

48. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:42.

49. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:43, 44 and 183.

50. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:45.

51. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:46 and 153.

52. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:47.

53. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:48.

54. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:49.

55. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 1 but for Seq.ID:50.

56. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:51.

57. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:138.

58. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:139.

59. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:163.

60. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:165.

61. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:166.

62. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:167.

63. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 1 but for Seq.ID:168.

64. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:169 and 170.

65. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:171 and 172.

66. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:173 and 174.

67. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:175 and 176.

68. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:177 and 178.

69. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:179 and 180.

70. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

Same as invention 1 but for Seq.ID:181 and 182.

71. Claims: 4-10, 12, 15, 16, 18-29, 32, 33, 36,
37 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 1 but for Seq.ID:201.

72. Claims: 11, 14, 15, 17-20, 31, 32, 35 all partially.

Pharmaceutical composition or vaccine comprising a DNA sequence as in Seq.ID:3. Vaccine comprising a polypeptide encoded by said Seq.ID:3, complement or hybridizing sequences thereof. Use of said polypeptide in diagnostic.

73. Claims: 11, 14, 15, 17-20, 31, 32, 35 all partially.

Same as invention 72 but for Seq.ID:11.

74. Claims: 11, 14, 15, 17-20, 31, 32, 35 all partially.

Same as invention 72 but for Seq.ID:12.

75. Claims: 11, 14, 15, 17-20, 31, 32, 35 all partially.

Same as invention 72 but for Seq.ID:140.

76. Claims: 11, 14, 15, 17-20, 31, 32, 35 all partially.

Same as invention 72 but for Seq.ID:141.

77. Claims: 13, 15, 20, 30, 32, 34 all partially.

Vaccine comprising a polypeptide having an N-terminal sequence as in Seq.ID:134. Use of said polypeptide in diagnostic.

78. Claims: 13, 15, 20, 30, 32, 34 all partially.

Same as invention 77 but for Seq.ID:135.

79. Claims: 31, 32, 35 all partially.

Use in diagnostic of a polypeptide encoded by a DNA sequence as in Seq.ID:156.

80. Claims: 31, 32, 35 all partially.

Same as invention 79 but for Seq.ID:157.

81. Claims: 31, 32, 35 all partially.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Same as invention 79 but for Seq.ID:158.

82. Claims: 31, 32, 35 all partially.

Same as invention 79 but for Seq.ID:159 and 160.

83. Claims: 31, 32, 35 all partially.

Same as invention 79 but for Seq.ID:189.

84. Claims: 31, 32, 35 all partially.

Same as invention 79 but for Seq.ID:190.

85. Claims: 31, 32, 35 all partially.

Same as invention 79 but for Seq.ID:191.

86. Claims: 31, 32, 35 all partially.

Same as invention 79 but for Seq.ID:192.

87. Claims: 31, 32, 35 all partially.

Same as invention 79 but for Seq.ID:193.

88. Claims: 31, 32, 35 all partially.

Same as invention 79 but for Seq.ID:199 and 200.

89. Claims: 31, 32, 35 all partially.

Same as invention 79 but for Seq.ID:203.

Polypeptides comprising an immunogenic portion of a soluble M. tuberculosis antigen are well documented in the prior art.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internatinal Application No
PCT/US 97/18293

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9501441 A	12-01-95	AU 682879 B AU 7068894 A CA 2165949 A EP 0706571 A NZ 267984 A	23-10-97 24-01-95 12-01-95 17-04-96 22-09-97
WO 9501440 A	12-01-95	AU 685133 B AU 7068694 A EP 0749486 A	15-01-98 24-01-95 27-12-96
WO 9531216 A	23-11-95	AU 2529095 A EP 0804230 A JP 10500128 T	05-12-95 05-11-97 06-01-98
WO 9615241 A	23-05-96	US 5736524 A AU 4110296 A CZ 9701451 A EP 0792358 A FI 972034 A HU 77028 A NO 972196 A PL 320091 A SK 59797 A ZA 9509608 A	07-04-98 06-06-96 15-10-97 03-09-97 11-07-97 02-03-98 11-07-97 15-09-97 14-01-98 29-05-96
WO 9623885 A	08-08-96	US 5714593 A AU 4667596 A CA 2210928 A EP 0807178 A	03-02-98 21-08-96 08-08-96 19-11-97
WO 9221758 A	10-12-92	FR 2677365 A CA 2110389 A EP 0589943 A JP 6508513 T	11-12-92 10-12-92 06-04-94 29-09-94
WO 9400493 A	06-01-94	US 5330754 A AU 689075 B AU 4651193 A EP 0649435 A JP 7508649 T	19-07-94 26-03-98 24-01-94 26-04-95 28-09-95

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern al Application No

PCT/US 97/18293

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9400493 A		US 5559011 A	24-09-96
FR 2265402 A	24-10-75	NONE	
FR 2244539 A	18-04-75	NONE	
WO 9709428 A	13-03-97	AU 7158696 A	27-03-97
WO 9709429 A	13-03-97	AU 7158796 A EP 0850305 A	27-03-97 01-07-98