Optimal Control with Aerospace Applications - Longuski Notes

Joseph Le

Contents

1	Para	ameter Optimization
	1.1	Introduction
	1.2	Parameter Optimization with Constraints
		1.2.1 Lagrange Multipliers
		1.2.2 Parameter Optimization: The Hohmann Transfer (1925)
		1.2.3 Extensions of the Hohmann Transfer (1959)
		1.2.4 The Bi-parabolic Transfer
	1.3	Exercises
_		
2	_	imal Control Theory
	2.1	Optimal Launch of a Satellite
	2.2	General Form of the Problem
	2.3	The Problems of Bolza, Lagrange, and Mayer
		2.3.1 Transformation from Lagrange to Mayer
		2.3.2 Transformation from Mayer to Lagrange
	2.4	A Provocative Example Regarding Admissible Functions
	2.5	Summary
	2.6	Exercises
3	The	Euler-Lagrange Theorem
3		8 8
	3.1	
		The Euler-Lagrange Equation and the Brachistochrone Problem
	3.3	The Euler-Lagrange Theorem
		3.3.1 Proof Outline of the euler-Lagrange Theorem
		3.3.2 Summary of the Euler-Lagrange Theorem
		3.3.3 Alternate Form of the Transversality Condition
	3.4	Summary
	3.5	Exercises
4	Ann	olication of the Euler-Lagrange Theorem 1
•	Арр 4.1	Introduction
	4.2	Two-Point Boundary-Value Problem (TPBVP)
	4.3	Two Approaches to Terminal Constraints
	4.4	Transversality Condition
	4.4	·
		4.4.2 Case 2 Final State Specified
		4.4.3 Case 3 Final Endpoint Specified
	4.5	General Case of Supplying Needed B.C.s
		4.5.1 Adjoined Method
		4.5.2 Un-adjoined Method
	4.6	Examples
	4.7	A "Cookbook" for Optimization Problems
		4.7.1 Examples of Step 4

4 CONTENTS

	4.8	Constant Hamiltonian	11
	4.9	Summary	
			11
	4.10	Exercises	11
5	The	Weierstrass Condition	13
	5.1	Introduction	13
	5.2	Statement of the Weierstrass Necessary Condition	13
	5.3		13
	5.4	· · · · · · · · · · · · · · · · · · ·	13
	5.5	•	13
	5.5	Exercises	13
6	The	Minimum Principle	15
	6.1	Statement of the Minimum Principle	15
			15
		6.1.2 Pontryagin's Minimum Principle	15
		, E	15
	6.2		15
	6.3	E ,	15
			15 15
	6.4		
	6.5		15
	6.6		15
	6.7	Examples Illustrating the concept of a Conjugate Point	15
	6.8	Summary	15
	6.9	Exercises	15

Parameter Optimization

1.1 Introduction

Two main branches of optimization: parameter optimization and optimal control theory. Parameter optimization is finite dimensional, and a function is minimized via a set of optimal parameters. Optimal control is infinite dimensional find a trajectory x(t), generally an n-vector, that minimizes a **functional**.

Parameter optimization seeks to find maxima and minima using calculus. The problem is stated as: Find:

 \boldsymbol{x}

to minimize:

$$J = f(\mathbf{x}) \tag{1.1}$$

where J is a scalar cost function or index of performance and x is a constant n-vector. The solution, x^* , can be found by (if f has continuous partial derivatives and x_i are independent)

$$\frac{\partial f}{\partial x_i} = 0, \quad i = 1, 2, 3, \dots, n \tag{1.2}$$

Equation 1.2 is a necessary condition for an extreumum (maximum or minimum, note that f can be maximized by minimizing -f). The stationary point \mathbf{x}^* is the local minimum if the matrix $\frac{\partial^2 f}{\partial x_i \partial x_j}$ evaluated at \mathbf{x}^* is a **positive-definite** matrix, which is a sufficient condition for a local minimum. The second partial derivatives of f must also be continuous for the matrix to be well defined.

1.2 Parameter Optimization with Constraints

- 1.2.1 Lagrange Multipliers
- 1.2.2 Parameter Optimization: The Hohmann Transfer (1925)
- 1.2.3 Extensions of the Hohmann Transfer (1959)
- 1.2.4 The Bi-parabolic Transfer
- 1.3 Exercises

Optimal Control Theory

- 2.1 Optimal Launch of a Satellite
- 2.2 General Form of the Problem
- 2.3 The Problems of Bolza, Lagrange, and Mayer
- 2.3.1 Transformation from Lagrange to Mayer
- 2.3.2 Transformation from Mayer to Lagrange
- 2.4 A Provocative Example Regarding Admissible Functions
- 2.5 Summary
- 2.6 Exercises

The Euler-Lagrange Theorem

- 3.1 The Variation
- 3.2 The Euler-Lagrange Equation and the Brachistochrone Problem
- 3.3 The Euler-Lagrange Theorem
- 3.3.1 Proof Outline of the euler-Lagrange Theorem
- 3.3.2 Summary of the Euler-Lagrange Theorem
- 3.3.3 Alternate Form of the Transversality Condition
- 3.4 Summary
- 3.5 Exercises

Application of the Euler-Lagrange Theorem

- 4.1 Introduction
- 4.2 Two-Point Boundary-Value Problem (TPBVP)
- **4.3** Two Approaches to Terminal Constraints
- 4.4 Transversality Condition
- 4.4.1 Case 1 Final Time Specified
- 4.4.2 Case 2 Final State Specified
- 4.4.3 Case 3 Final Endpoint Specified
- 4.5 General Case of Supplying Needed B.C.s
- 4.5.1 Adjoined Method
- 4.5.2 Un-adjoined Method
- 4.6 Examples
- 4.7 A "Cookbook" for Optimization Problems
- 4.7.1 Examples of Step 4
- 4.8 Constant Hamiltonian
- 4.9 Summary
- 4.10 Exercises

The Weierstrass Condition

- 5.1 Introduction
- **5.2** Statement of the Weierstrass Necessary Condition
- **5.3** Proof Outline of the Weierstrass Necessary Condition
- 5.4 Summary
- 5.5 Exercises

The Minimum Principle

- **6.1** Statement of the Minimum Principle
- **6.1.1 Problem Statement**
- **6.1.2** Pontryagin's Minimum Principle
- 6.1.3 Examples
- 6.2 Legendre-Clebsch Necessary Condition
- **6.3** Notes on Necessary and Sufficient Conditions
- **6.4** Weak and Strong Extremals
- 6.5 An Example of a Weak but Not Strong Minimum
- **6.6** Second-Order Necessary and Sufficient Conditions
- 6.7 Examples Illustrating the concept of a Conjugate Point
- 6.8 Summary
- 6.9 Exercises