19ECE311: Computer Networks

Name: Devanandh A B Date: 28/4/25

Roll no: AM.EN.U4ECE22014

ASSIGNMENT 1 TOPOLOGIES

i. Bus Topology:

ii. Ring Topology:

iii. Mesh Topology:

19ECE311: Computer Networks

iv. Star Topology:

v. Tree Topology:

ASSIGNMENT 2: TOPOLOGY IMPLEMENTATION

LAN Networks with Tree, Star, and Ring Topologies:

Source PC IP adress: 220.14.1.2 (PC_Ring2)
Destination PC IP adress: 220.14.3.4 (PC_Tree4)

Ring topology: IP Addresses \rightarrow 220.14.1.1 - 220.14.1.4

Star topology: IP Addresses \rightarrow 220.14.2.1 - 220.14.2.5

Tree topology: IP Addresses \rightarrow 220.14.3.1 - 220.14.3.4

19ECE311: Computer Networks

Simulation Panel Event List Vis. Time(sec) Last Device At Device Type 0.000 PC_Ring2 **ICMP** 0.001 PC_Ring2 Switch_Ring2 **ICMP** 0.002 Switch Ring2 Switch_Ring1 **ICMP** 0.002 Switch_Ring2 Switch_Ring3 **ICMP** 0.003 Switch_Ring1 PC_Ring1 **ICMP** 0.003 Switch_Ring1 Switch_Ring4 ICMP 0.003 Switch_Ring1 Router **ICMP** 0.004 Switch_Ring4 PC_Ring4 **ICMP** 0.004 Switch_Ring4 Switch_Ring3 **ICMP** 0.004 Router Switch Tree1 **ICMP** 0.004 Router Switch_Star **ICMP** 0.004 Router Router **ICMP** 0.005 Switch_Ring3 PC_Ring3 ICMP 0.005 Switch_Tree1 Switch_Tree3 **ICMP** 0.005 Switch_Tree1 Switch_Tree2 ICMP PC_Star5 0.005 Switch_Star **ICMP** PC_Star4 0.005 Switch_Star **ICMP** 0.005 Switch_Star PC_Star1 **ICMP**

19ECE311: Computer Networks

Vis.	Time(sec)	Last Device				At Device				Ту	oe
	0.005	Switch_Star				PC_Star	2				ICMP
	0.005	Switch_Star				PC_Star	3				ICMP
	0.006	Switch_Tree3				PC_Tree	4				ICMP
	0.006	Switch_Tree3				PC_Tree	3				ICMP
	0.006	Switch_Tree2				PC_Tree2					ICMP
	0.006	Switch_Tree2				PC_Tree1					ICMP
	0.007	PC_Tree4				Switch_Tree3					ICMP
	0.008	Switch_Tree3				Switch_Tree1					ICMP
	0.009	Switch_Tree1				Router					ICMP
	0.010	Router				Switch_Ring1					ICMP
	0.011	Switch_Ring1				Switch_Ring2					ICMP
	0.012	Switch_Ring2				PC_Ring	2				ICMP
											-
ire	Last Status	Source Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete		
	Successful	PC_R PC_Tree4	ICMP		0.000	N	0	(edit)			(delete)

Inferences:

Each topology is suited to different networking needs, with trade-offs between complexity, cost, scalability, and fault tolerance. For example, bus topology is simple but limited in scalability, making it suitable only for small networks. Ring topology provides organized data flow but requires redundancy to prevent failure, whereas star topology offers ease of management and high reliability but depends heavily on the central device. Tree topology supports large network expansion but introduces potential points of failure at backbone nodes. Overall, the choice of topology must align with organizational priorities such as growth potential, reliability, and budget constraints to optimize network performance and resilience.

Results:

The analysis of various network topologies reveals that each configuration offers distinct advantages and limitations based on specific network requirements. The bus topology, while simple and cost-effective for small networks, suffers from scalability issues and significant performance degradation with increased devices. The ring topology provides orderly data flow and reduced collisions but is vulnerable to single points of failure unless redundancy measures are implemented. The star topology ensures easy management and fault isolation, making it suitable for modern LANs, though it relies heavily on the central hub, which can become a bottleneck or single point of failure. The tree topology facilitates scalable and hierarchical network expansion, ideal for large organizational structures, but its dependency on backbone nodes can compromise overall network resilience. Overall, selecting the appropriate topology depends on balancing factors such as scalability, fault tolerance, complexity, and cost, to meet specific network performance and reliability goals.