

Машинное обучение для решения исследовательских и инженерных задач в науках о Земле

Михаил Криницкий

K.T.H., H.C.

Институт океанологии РАН им. П.П. Ширшова

Лаборатория взаимодействия океана и атмосферы и мониторинга климатических изменений (ЛВОАМКИ)

Классификация задач и методов машинного обучения

Михаил Криницкий

К.Т.Н., Н.С.

Институт океанологии РАН им. П.П. Ширшова

Лаборатория взаимодействия океана и атмосферы и мониторинга климатических изменений (ЛВОАМКИ)

ЦЕЛЬ: **сформулировать задачу** (в терминах машинного обучения)

○«Обучение с учителем»

• восстановление регрессии

что я хочу? — значение y $y \in \mathbb{R}^m$

m – размерность целевой переменной

ремарки

• Количество размеченных данных (зачастую) играет роль

• Разные модели ведут себя по-разному в зависимости от шума в данных, от количества данных, от наличия выбросов в данных

• Сложная точная модель — не обязательно лучшая для конкретной задачи

ЦЕЛЬ: **сформулировать задачу** (в терминах машинного обучения)

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация

что я хочу? — метку класса «красный или синий?» (бинарная классификация)

ЦЕЛЬ: **сформулировать задачу** (в терминах машинного обучения)

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация
- о «Обучение без учителя»
 - поиск структуры в данных

что я хочу?

- метки групп
- знать, есть ли группы?
- сколько групп?

ремарки

Кластеризация:

• Количество данных часто, но не всегда играет роль

• Разные модели ведут себя по-разному в зависимости от шума в данных, от количества данных, от наличия выбросов в данных, от наличия структуры в данных

• Разные модели дают разный результат, но нет «более правильного» результата. Есть «более подходящий» для целей конкретного исследования.

ЦЕЛЬ: **сформулировать задачу** (в терминах машинного обучения)

типы задач:

- о «Обучение с учителем»
 - восстановление регрессии
 - классификация
- о«Обучение без учителя»
 - кластеризация
 - понижение размерности

что я хочу?

- новое представление (признаковое описание) данных в пространстве ме́ньшей размерности цели:
- Визуализация на плоскости, в 3D
- Борьба с переобучением (в контексте т.н. «проклятия размерности»)
- Сжатие данных с минимальными потерями
- Сокращение вычислительных затрат при обработке данных
- Извлечение значимых признаков, feature engineering

Пожелания:

- Сохранение структуры данных
- Сохранение отношений близости между объектами (событиями)
- Возможность визуализации
- Интерпретируемость новых признаков

Задача понижения размерности: пример

MNIST dataset*

^{* &}lt;a href="http://yann.lecun.com/exdb/mnist/">http://yann.lecun.com/exdb/mnist/

example #0 (label = "5")

data distribution (4 of 784 features)

Задача понижения размерности: пример

<u>PCA</u>Principal components analysisМетод главных компонент

<u>UMAP</u>
Uniform Manifold Approximation and Projection

ремарки

Понижение размерности:

- Количество данных почти всегда играет роль
- Разные модели ведут себя по-разному в зависимости от шума в данных, от количества данных, от наличия выбросов в данных, от наличия структуры в данных
- Разные модели дают разный результат, нет «более правильного» результата. Но есть «более подходящий» для целей конкретного исследования.
- Модели различаются по интерпретируемости (e.g. PCA vs. UMAP)

типы задач:

- ○«Обучение с учителем»
 - восстановление регрессии
 - классификация
- о «Обучение без учителя»
 - кластеризация
 - понижение размерности
 - <u>восстановление</u> <u>распределения данных</u>

что я хочу?

• Получить модель, генерирующую примеры, распределение которых совпадает с распределением обучающих данных

Цели:

- дополнение данных
- заполнение пропусков в данных

Примеры:

- DeepFake video
- SuperResolution images
- Text-to-speech audio (Siri, Алиса, Cortana, Alexa etc.)

типы задач:

- о «Обучение с учителем» Supervised learning
 - восстановление регрессии
 - классификация
- «Обучение без учителя» Unsupervised learning
 - кластеризация
 - понижение размерности
 - восстановление распределения данных

другие (реже используемые в ES) типы

- «Обучение с частичным привлечением учителя»
 - Weakly supervised learning
- «Обучение с подкреплением» Reinforcement learning

ОБЩАЯ СХЕМА РЕШЕНИЯ ЗАДАЧ <u>ОБУЧЕНИЯ С УЧИТЕЛЕМ</u>

обучаем (тренируем) модель <u>на имеющихся данных</u>

ОБЩАЯ СХЕМА РЕШЕНИЯ ЗАДАЧ <u>ОБУЧЕНИЯ С УЧИТЕЛЕМ</u>

обучаем (тренируем) модель <u>на имеющихся данных</u>

формулировка задачи:

 $x \in \mathbb{X}$ — объекты

 $y \in \mathbb{Y}$ — ответы

 $\mathcal{F} \colon \mathbb{X} \to \mathbb{Y}$ — искомая закономерность

 $\mathcal{T} \colon \{x_i; y_i\}$ — «обучающая выборка» (прецеденты)

Найти: $\widehat{\mathcal{F}}$: $\{x_i\} \rightarrow \{y_i\}$

(вернее, на большей их части)

ОБЩАЯ СХЕМА РЕШЕНИЯ ЗАДАЧ <u>ОБУЧЕНИЯ С УЧИТЕЛЕМ</u>

обучаем (тренируем) модель <u>на имеющихся данных</u>

формулировка задачи:

$$x \in \mathbb{X}$$
 — объекты

$$y \in \mathbb{Y}$$
 — ответы

$$\mathcal{F}\colon \mathbb{X} \to \mathbb{Y}$$
 — искомая закономерность

$$\mathcal{T} \colon \{x_i; y_i\}$$
 — «обучающая выборка» (прецеденты)

Найти: $\widehat{\mathcal{F}}$: $\{x_i\} \rightarrow \{y_i\}$

один из способов решения:

$$\mathcal{L}(\hat{\mathcal{F}}(x))$$
 — функционал ошибки (эмпирического риска, потерь)

$$\widehat{y_i} = \widehat{\mathcal{F}}(x_i) = f(\vec{p}, x_i)$$
 — функционально задаваемая зависимость. **Предположение** исследователя о виде закономерности. Иногда задается параметрически, \vec{p} — вектор параметров.

$$\mathcal{L} = L(\vec{p}, \mathcal{T})$$
 — функция ошибки $\hat{p} = \operatorname*{argmin} ig(L(\vec{p}, \mathcal{T})ig)$ $\widehat{\mathcal{F}} = f(\hat{p}, x)$

ЛИНЕЙНАЯ РЕГРЕССИЯ