VE203 Assignment 7

Name: YIN Guoxin Student ID: 517370910043

Q1. Since $ac \equiv bc \pmod{m}$, we have m|(ac-bc). Since $\frac{m}{\gcd(c,m)}|m$, we also have $\frac{m}{\gcd(c,m)}|(ac-bc)=(a-b)c$ and also $\gcd(\frac{m}{\gcd(c,m)},c)=1$. From this, we know that $\gcd(c,m)|(a-b)$, which means $a \equiv b \pmod{\frac{m}{\gcd(c,m)}}$.

Q2. Since $36x \equiv 75 \pmod{1309}$, we have $1309 \mid (36x - 75)$, i.e. there exists $m \in \mathbb{Z}$ such that 75 = 36x + 1209m. Since

$$1309 = 36 \times 36 + 13$$
$$36 = 2 \times 13 + 10$$
$$13 = 10 + 3$$
$$10 = 3 \times 3 + 1$$
$$3 = 3 \times 1,$$

we know that gcd(1309,36)=1. Therefore, there we have

$$1 = 10 - 3 \times 3$$

$$= 10 - 3 \times (13 - 10)$$

$$= 4 \times 10 - 3 \times 13$$

$$= 4 \times (36 - 2 \times 13) - 3 \times 13$$

$$= 4 \times 36 - 11 \times 13$$

$$= 4 \times 36 - 11 \times (1309 - 36 \times 36)$$

$$= 400 \times 36 - 11 \times 1309,$$

which means $1=400 \times 36 - 11 \times 1309$. Therefore $75 = 400 \times 75 \times 36 - 11 \times 75 \times 1309 = 30000 \times 36 - 825 \times 1309$. Hence, x = 30000 is a solution.

Q3. To solve this system, we need to solve

$$x \equiv 2 \pmod{5}$$
$$x \equiv 4 \pmod{7}$$
$$x \equiv 4 \pmod{13}$$

Now,

$$m = m_1 m_2 m_3 = 455$$

$$M_1 = \frac{455}{5} = 91$$

$$M_2 = \frac{455}{7} = 65$$

$$M_3 = \frac{455}{13} = 35$$

To find y_1 ,

$$91 = 18 \times 5 + 1$$

 $1 = 91 - 18 \times 5$

Hence, let $y_1 = 1$. To find y_2 ,

$$65 = 9 \times 7 + 2$$

$$7 = 3 \times 2 + 1$$

$$1 = 7 - 3 \times 2$$

$$= 7 - 3 \times (65 - 9 \times 7)$$

$$= 28 \times 7 - 3 \times 65$$

Hence, let $y_2 = -3$. To find y_3 ,

$$35 = 2 \times 13 + 9$$

$$13 = 9 + 4$$

$$9 = 2 \times 4 + 1$$

$$1 = 9 - 2 \times 4$$

$$= 9 - 2 \times (13 - 9)$$

$$= 3 \times 9 - 2 \times 13$$

$$= 3 \times (35 - 2 \times 13) - 2 \times 13$$

$$= 3 \times 35 - 8 \times 13$$

Hence, let $y_3 = 3$. Therefore,

$$x = \sum_{k=1}^{n} a_k M_k y_k = 2 \times 91 \times 1 + 4 \times 65 \times (-3) + 4 \times 35 \times 3 = -178 \pmod{455}.$$

Therefore, the solutions are -178+455y, where $y \in \mathbb{Z}$.

Q4.

$$6|(x-5) \Rightarrow 3|(x-2)$$

$$2|(x-1),$$

$$10|(x-3) \Rightarrow 5|(x-3)$$

$$2|(x-1),$$

$$15|x-8) \Rightarrow 5|(x-3)$$

$$3|(x-2)$$

Since there are no contradiction between the equations in the right hand side, there must exist solutions and we turn the system into

$$x \equiv 1 \pmod{2}$$
$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$

Now,

$$m = m_1 m_2 m_3 = 30$$

$$M_1 = \frac{30}{2} = 15$$

$$M_2 = \frac{30}{3} = 10$$

$$M_3 = \frac{30}{5} = 6$$

To find y_1 ,

$$15 = 7 \times 2 + 1$$
$$1 = 15 - 7 \times 2$$

Hence, let $y_1 = 1$. To find y_2 ,

$$10 = 3 \times 3 + 1$$

 $1 = 10 - 3 \times 3$

Hence, let $y_2 = 1$. To find y_3 ,

$$6 = 5 + 1$$

 $1 = 6 - 5$

Hence, let $y_3 = 1$. Therefore,

$$x = \sum_{k=1}^{n} a_k M_k y_k = 1 \times 15 \times 1 + 2 \times 10 \times 1 + 3 \times 6 \times 1 = 53 \pmod{30}.$$

Therefore, the solutions are 53+30y, where $y \in \mathbb{Z}$.

Q5. Now,

$$m = m_1 m_2 m_3 m_4 = 6545$$

$$M_1 = \frac{6545}{5} = 1309$$

$$M_2 = \frac{6545}{7} = 935$$

$$M_3 = \frac{6545}{11} = 595$$

$$M_4 = \frac{6545}{17} = 385$$

To find y_1 ,

$$1309 = 261 \times 5 + 4$$

$$5 = 4 + 1$$

$$1 = 5 - 4$$

$$= 5 - (1309 - 261 \times 5)$$

$$= 262 \times 5 - 1309$$

Hence, let $y_1 = -1$. To find y_2 ,

$$935 = 133 \times 7 + 4$$

$$7 = 4 + 3$$

$$4 = 3 + 1$$

$$1 = 4 - 3$$

$$= 4 - (7 - 4)$$

$$= 2 \times 4 - 7$$

$$= 2 \times (935 - 133 \times 7) - 7$$

$$= 2 \times 935 - 267 \times 7$$

Hence, let $y_2 = 2$. To find y_3 ,

$$595 = 11 \times 54 + 1$$
$$1 = 595 - 11 \times 54$$

Hence, let $y_3 = 1$. To find y_4 ,

$$385 = 22 \times 17 + 11$$

$$17 = 11 + 6$$

$$11 = 6 + 5$$

$$6 = 5 + 1$$

$$1 = 6 - 5$$

$$= 6 - (11 - 6)$$

$$= 2 \times 6 - 11$$

$$= 2 \times (17 - 11) - 11$$

$$= 2 \times 17 - 3 \times (385 - 22 \times 17)$$

$$= 68 \times 17 - 3 \times 385$$

Hence, let $y_4 = -3$. Therefore,

$$x = \sum_{k=1}^{n} a_k M_k y_k = 5 \times 1309 \times (-1) + 3 \times 935 \times 2 + 8 \times 595 \times 1 + 2 \times 385 \times -3 = 1515 \pmod{6545}.$$

Therefore, the solutions are 1515+6545y, where $y \in \mathbb{Z}$.

Q6. Suppose, for a contradiction, that there exists $M, C \in \mathbb{N}$ such that for all n > M, $n \log_2(n) \le C \log_2(n)$. But it cannot be true since when n > C, $n \log_2(n) > C \log_2(n)$ always hold.

Q7. We just need to prove that $\log_a(n) = O\log_b(n)$ where a, b are positive integers greater than 1. Then,

$$\lim_{n \to \infty} \frac{\log_a(n)}{\log_b(n)} = \lim_{n \to \infty} \frac{\frac{1}{n(\ln a)}}{\frac{1}{n(\ln b)}} = \frac{\ln b}{\ln a},$$

which means $\log_a(n) = O\log_b(n)$. When a = 2, b = 10, a = 2, b = e, a = 10, b = 2, a = 10, b = e, a = e, b = 2, a = e, b = 10, we can see that they have the same order from the equation we proved.

Q8. For all $x \in \mathbb{R}$, $\lfloor x^3 - 4 \rfloor \leq x^3 - 4$. For $x \leq 2$, $|\lfloor x^3 - 4 \rfloor | \leq |x^3 - 4| < |x^3 + 4| = |x^3(1 + \frac{4}{x^3})| \leq |x^3(1+4)| = |(x^3)| \times 5$. Therefore, by choosing $C \in \mathbb{N}$ with $C \geq 5$, we can see that $\lfloor x^3 - 4 \rfloor$ is $O(x^3)$. Conversely, $\lfloor x^3 - 4 \rfloor \geq x^3 - 5$. It is clear that for all $\epsilon > 0$, there exists $D \in \mathbb{R}$ with D > 0 such that for all $\epsilon > 0$,

$$|1 - \frac{5}{x^3}| \ge 1 - \epsilon$$

So, choosing $\epsilon = \frac{1}{2}$, we get $D \in \mathbb{R}$ with D > 0 such that for all x > D,

$$|1 - \frac{5}{x^3}| \ge \frac{1}{2}$$
 and $|\lfloor x^3 - 4 \rfloor| > |x^3 - 5| = x^3 |1 - \frac{5}{x^3}| \ge \frac{1}{2}x^3$

So, if $C \in \mathbb{N}$ is such that $C \geq 2$, then $|x^3| \leq 2 \times |\lfloor x^3 - 4 \rfloor|$, which shows that x^3 is $O(\lfloor x^3 - 4 \rfloor)$. Therefore, they have the same order.

Q9. No. For n large enough,

$$\lim_{n \to \infty} \frac{n^n}{n^{n-k}} = \lim_{n \to \infty} n^k \to \infty,$$

So there doesn't exist $C \in \mathbb{R}$ with $C \ge 0$ such that $\lim_{n \to \infty} \frac{n^n}{n^{n-k}} = C$, which means $n^n \ne O(n^{n-k})$.

Q10.

- (i) Note that the summation only makes sense when $n \geq 2$, therefore, we only discuss conditions when $n \geq 2$.
 - When n=2, $\sum_{j=2}^{2} \frac{1}{j} = \frac{1}{2}$ and $\int_{1}^{2} \frac{1}{x} dx = \ln x |_{1}^{2} = \ln 2 \ln 1 = \ln 2 > \frac{1}{2}$.
 - If n > 2 and $\sum_{j=2}^{n} \frac{1}{j} < \int_{1}^{n} \frac{1}{x} dx$ holds, suppose for n+1, $\sum_{j=2}^{n+1} \frac{1}{j} = \sum_{j=2}^{n} \frac{1}{j} + \frac{1}{n+1} < \int_{1}^{n} \frac{1}{x} dx + \frac{1}{n+1}$. Besides, $\int_{1}^{n+1} \frac{1}{x} dx = \int_{1}^{n} \frac{1}{x} dx + \int_{n}^{n+1} \frac{1}{x} dx = \int_{1}^{n} \frac{1}{x} dx + \ln x |_{n}^{n+1} = \int_{1}^{n} \frac{1}{x} dx + \ln(n+1) \ln(n) > \int_{1}^{n} \frac{1}{x} dx + \frac{1}{n+1}$. Therefore, we have $\sum_{j=2}^{n+1} \frac{1}{j} < \int_{1}^{n+1} \frac{1}{x} dx$.
- (ii) $H(n) = \sum_{k=0}^{n-1} \frac{1}{n-k} = \sum_{j=1}^{n} \frac{1}{j} = 1 + \sum_{j=2}^{n} \frac{1}{j} < 1 + \int_{1}^{n} \frac{1}{x} dx < 1 + \ln n$. So, when n > e, $\ln e > 1$, $1 + \ln e < 2 \ln n$. Therefore, we have when n > e, $H(n) < 2 \ln n$, which means $O(\ln(n))$.

Q11.

(i) The pseudocode is as follow,

- (ii) Insertion Sort Algorithm: 8+(1+2)+(1+3)+(4+1)+(1+5)+(4+3)+(3+5)+(2+7)=50
 - Binary Insertion Sort Algorithm: 8+(1+3)+(3+4)+(3+2)+(5+6)+(5+4)+(5+6)+(7+8)=70
- (iii) We define a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ that on input n counts the worst-case number of comparisons needed sort a list of length n. For a specific j^{th} element to sort, if there is k comparisons during the **while** loop, which means i = k 1, there will be j i 1 + 1 + 1 = j i + 1 = j k + 1 comparisons during the inner **for** loop. So there are k + j k + 1 = j + 1 comparisons in total during the j^{th} passes. Adding all j we get

$$\sum_{j=2}^{n} (j+1) = \frac{n^2}{2} + \frac{3n}{2} - 2$$

Besides, we also have n comparisons for the outer for loops, so the total number of comparisons is $f(n) = n + \frac{n^2}{2} + \frac{3n}{2} - 2 = \frac{n^2}{2} + \frac{5n}{2} - 2$. Since it is a polynomial of degree 2, $f(n) = O(n^2)$.

(iv) We define a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ that on input n counts the worst-case number of comparisons (excluded comparisons in while loop and for loop) needed sort a list of length n. For a specific k^{th} element to sort, the worst case for the while-loop is $2^q = k - 1$, $q = \log_2(k - 1)$. Because there are N elements in the list, the complexity is $O(n \log_2 n)$.

Since we know for insertion sort, the corresponding complexity is $O(n^2)$. Since $O(n \log_2 n)$ is way smaller than $O(n^2)$, the Binary Insertion Sort Algorithm is significantly faster than Insertion Sort.