Facultad de Informática. Ingeniería en Informática Metodología y Tecnología de la Programación. Hoja de ejercicios 2.

Ejercicio 1 Dado un vector V[1..n] de n elementos que se puedan comparar entre sí, diseña un algoritmo que encuentre el máximo y el mínimo utilizando la técnica divide y vencerás, y calcula su complejidad.

Ejercicio 2 Diseña un algoritmo para calcular x^n , $n \in \mathbb{N}$, con un coste $\mathcal{O}(\lg n)$ en términos del número de multiplicaciones. Para simplificar el problema, considera el caso en el que el resultado de la operación puede representarse en una variable de coma flotante.

Ejercicio 3 Diseña un algoritmo mediante la técnica divide y vencerás que encuentre el cuadrado de unos más grande en una matriz cuadrada de bits $(n \times n, n)$ potencia de 2). Calcula el orden de complejidad del algoritmo desarrollado.

Ejercicio 4 Dado un vector de caracteres, diseña un algoritmo que utilice la técnica divide y vencerás para encontrar la subsecuencia más larga de caracteres iguales. Calcula el orden de complejidad del algoritmo desarrollado.

Ejercicio 5 Desarrolla un algoritmo para resolver el problema de la subsecuencia de suma máxima con complejidad lineal y utilizando la técnica divide y vencerás, pero que en cada paso de recursión del algoritmo divida en dos el vector de entrada.