#### **Bus Seat Numbering**

There is a bus with 30 seats. The seats are numbered from 1 to 30, and the numbering is as depicted in this image.



As can be seen in the image, the bus is divided into two decks - The Lower deck, and the Upper deck, with 15 seats each. And some of the seats come as Single and some as Double. For example, Seats 1 and 2 are Double, whereas Seat 11 is a Single.

You will be given a Seat number, and your job is to classify it as one of these 4 types:

- Lower Single
- Lower Double
- Upper Single
- Upper Double

### **Input Format**

- $\bullet$  The first line of input will contain a single integer T, denoting the number of test cases.
- $\bullet$  Each test case consists of a single line of input which contains a single integers N the seat number.

#### **Output Format**

For each test case, output on a new line, the type of seat.

#### **Constraints**

- 1 ≤ *T* ≤ 100
- $1 \le N \le 30$

# Sample 1:

| Input                          |                                                                  |
|--------------------------------|------------------------------------------------------------------|
| Output                         |                                                                  |
| 5<br>6<br>28<br>16<br>13<br>10 | Lower Double Upper Single Upper Double Lower Single Lower Double |

## **Explanation:**

**Testcase 1:** The seat number 6 is in the Lower deck, and it is a Double. Hence the output is "Lower Double".

Testcase 2: The seat number 28 is in the Upper deck, and it is a Single. Hence the output is "Upper Single".

Testcase 3: The seat number 16 is in the Upper deck, and it is a Double. Hence the output is "Upper Double".

Testcase 4: The seat number 13 is in the Lower deck, and it is a Single. Hence the output is "Lower Single".

Testcase 5: The seat number 10 is in the Lower deck, and it is a Double. Hence the output is "Lower Double".