

NPN/PNP Silicon Digital Transistor Array

- Switching circuit, inverter, interface circuit, driver circuit
- Two (galvanic) internal isolated NPN/PNP
 Transistors in one package
- Built in bias resistor (R_1 =2.2k Ω , R_2 =47k Ω)

Tape loading orientation

Marking on SOT-363 package (for example W1s) corresponds to pin 1 of device

Position in tape: pin 1 opposite of feed hole side

EHA07193

Туре	Marking	Pin Configuration				Package		
BCR08PN	WFs	1=E1	2=B1	3=C2	4=E2	5=B2	6=C1	SOT363

Maximum Ratings

Parameter	Symbol	Value	Unit	
Collector-emitter voltage	V _{CEO}	50	V	
Collector-base voltage	V_{CBO}	50		
Emitter-base voltage	V_{EBO}	5		
Input on Voltage	V _{i(on)}	10		
DC collector current	I _C	100	mA	
Total power dissipation, $T_S = 115 ^{\circ}\text{C}$	P _{tot}	250	mW	
Junction temperature	T_{j}	150	°C	
Storage temperature	$T_{ m stg}$	-65 150		

Thermal Resistance

Junction - soldering point ¹⁾	R _{thJS}	≤ 140	K/W

1

 $^{^{1}\}mbox{For calculation of }\mbox{\it R}_{\mbox{\scriptsize thJA}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at T_A =25°C, unless otherwise specified

Parameter	Symbol	Values			Unit	
			typ.	max.	*	
DC Characteristics					•	
Collector-emitter breakdown voltage	V _{(BR)CEO}	50	-	-	V	
$I_{\rm C} = 100 \ \mu \text{A}, \ I_{\rm B} = 0$						
Collector-base breakdown voltage	V _{(BR)CBO}	50	-	-		
$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$						
Collector cutoff current	/ _{CBO}	-	-	100	nA	
$V_{CB} = 40 \text{ V}, I_{E} = 0$						
Emitter cutoff current	/ _{EBO}	-	-	164	μΑ	
$V_{EB} = 5 \text{ V}, I_{C} = 0$						
DC current gain 1)	h _{FE}	70	-	-	-	
$I_{C} = 5 \text{ mA}, \ V_{CE} = 5 \text{ V}$						
Collector-emitter saturation voltage1)	V _{CEsat}	-	-	0.3	V	
$I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0.5 mA						
Input off voltage	V _{i(off)}	0.4	-	0.8		
$I_{\rm C} = 100 \ \mu \text{A}, \ V_{\rm CE} = 5 \ \text{V}$						
Input on Voltage	V _{i(on)}	0.5	-	1.1		
$I_{\rm C} = 2 \text{ mA}, \ V_{\rm CE} = 0.3 \text{ V}$						
Input resistor	R ₁	1.5	2.2	2.9	kΩ	
Resistor ratio	R_1/R_2	0.042	0.047	0.052	-	
AC Characteristics						
Transition frequency	f_{T}	-	170	-	MHz	
$I_{C} = 10 \text{ mA}, \ V_{CE} = 5 \text{ V}, \ f = 100 \text{ MHz}$						
Collector-base capacitance	C _{cb}	-	2	-	pF	
$V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$						

¹⁾ Pulse test: $t < 300\mu s$; D < 2%

NPN Type

DC Current Gain $h_{FE} = f(I_C)$

 $V_{CE} = 5V$ (common emitter configuration)

Input on Voltage $V_{i(On)} = f(I_C)$

 $V_{CE} = 0.3V$ (common emitter configuration)

Collector-Emitter Saturation Voltage

 $V_{\text{CEsat}} = f(I_{\text{C}}), h_{\text{FE}} = 20$

Input off voltage $V_{i(off)} = f(I_C)$

 $V_{CE} = 5V$ (common emitter configuration)

PNP Type

DC Current Gain $h_{FE} = f(I_C)$

 $V_{CE} = 5V$ (common emitter configuration)

Input on Voltage $V_{i(On)} = f(I_C)$

 $V_{CE} = 0.3V$ (common emitter configuration)

Collector-Emitter Saturation Voltage

 $V_{\text{CEsat}} = f(I_{\text{C}}), h_{\text{FE}} = 20$

Input off voltage $V_{i(off)} = f(I_C)$

 $V_{CE} = 5V$ (common emitter configuration)

4

Total power dissipation $P_{\text{tot}} = f(T_{\text{S}})$

Permissible Pulse Load $R_{thJS} = f(t_p)$

Permissible Pulse Load

$$P_{\text{totmax}} / P_{\text{totDC}} = f(t_p)$$

5

