数值分析 期末速通教程

3. 函数的最佳逼近

3.1 基本概念

[**定义3.1.1**] 设 B 是由 n 次多项式、有理函数或分段低次多项式等组成的简单函数类. 对一个经过点 (x_i,y_i) $(i=1,\cdots,n)$ 的函数 f(x) , 求函数 $s(x)\in B$ s.t. s(x) 未必过所有点 (x_i,y_i) $(i=1,\cdots,n)$, 且 s(x) 与 f(x) 的误差在某种度量下最小,该问题称为**最佳逼近问题**,称 s(x) 为 f(x) 的最佳逼近函数.

[**定义3.1.2**] 设数域 E . **范数** $||\cdot||$ 是映射 $E \to \mathbb{R}$, 满足如下三个性质:

- (1) [非负性, 正定性] $||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$.
- (2) [**正齐性**] $||\alpha x|| = |\alpha| \cdot ||x||$.
- (3) [**三角不等式**] $||x+y|| \le ||x|| + ||y||$.

定义了范数的线性空间称为赋范线性空间.

[定义3.1.3] 在线性空间 \mathbb{R}^n 上定义**欧式范数**如下. 对向量 $x=(x_1,\cdots,x_n)^T\in\mathbb{R}^n$:

(1)
$$||x||_1 = \sum_{i=1}^n |x_i|$$
 .

(2)
$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}.$$

(3)
$$\left|\left|x\right|\right|_p = \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}} \ \left(p \geq 1\right)$$
 .

(4)
$$||x||_{\infty} = \max_{1 \leq i \leq n} |x_i|$$
 .

[**注**] 下面将不再区分 \overrightarrow{x} 和x.

[**定义3.1.4**] 在线性空间 C[a,b] 上定义范数如下. 对函数 $f(t) \in C[a,b]$:

(1)
$$||f(t)||_1 = \int_a^b |f(t)| \mathrm{d}t$$
 .

(2)
$$||f(t)||_2 = \sqrt{\int_a^b |f(t)|^2 \mathrm{d}t}$$
.

(3)
$$||f(t)||_{\infty} = \max_{t \in [a,b]} |f(t)|$$
 .

[**定义3.1.5**] 设数域 E . 内积 (\cdot,\cdot) 是映射 $E\times E\to C(R)$, 满足如下三条性质:

- (1) [非负性, 正定性] $(x,x) \geq 0, (x,x) = 0 \Leftrightarrow x = 0$.
- (2) [**共轭对称性**] $(x,y) = \overline{(y,x)}$, 此处取共轭是为了保证非负性.
- (3) [第一变元线性性] $(\alpha x,y)=lpha(x,y)$, (x+y,z)=(x,z)+(y,z) .

定义了内积的线性空间称为内积空间.

[**注**] 内积满足**第二变元共轭线性性**, 即 $(x, lpha y) = \overline{lpha}(x,y)$, (x,y+z) = (x,y) + (x,z) .

[
$$i \mathbf{E}$$
] $(x, \alpha y) = \overline{(\alpha y, x)} = \overline{\alpha(y, x)} = \overline{\alpha}(x, y)$.

$$(x,y+z)=\overline{(y+z,x)}=\overline{(y,x)+(z,x)}=(x,y)+(x,z)$$
 .

[定义3.1.6]

(1) 在线性空间 \mathbb{R}^n 上定义内积如下.

对向量
$$x=(x_1,\cdots,x_n)^T$$
 , $y=(y_1,\cdots,y_n)^T$, $x,y\in\mathbb{R}^n$, 定义内积 $(x,y)=\sum_{i=1}^n x_i\cdot y_i$.

(2) 在线性空间 \mathbb{C}^n 上定义内积如下.

对向量
$$x=(x_1,\cdots,x_n)^T$$
 , $y=(y_1,\cdots,y_n)^T$, $x,y\in\mathbb{C}^n$, 定义内积 $(x,y)=\sum_{i=1}^n x_i\cdot y_i$.

(3) 在线性空间 \mathbb{C}^n 上定义**加权内积**如下. 设权重 $w_1,\cdots,w_n>0$.

对向量
$$x=(x_1,\cdots,x_n)^T$$
 , $y=(y_1,\cdots,y_n)^T$, $x,y\in\mathbb{C}^n$, 定义加权内积 $(x,y)=\sum_{i=1}^n w_i\cdot x_i\cdot y_i$.

特别地, $w_i = 1$ $(i = 1, \dots, n)$ 时, 加权内积即内积.

[定义3.1.7]

(1) 设 [a,b] 为有限或无限区间, 若非负函数 $\rho(t)$ 满足如下两性质, 则称 $\rho(t)$ 是 [a,b] 上的**权函数**:

①
$$\int_a^b t^k \cdot
ho(t) \mathrm{d}t \ (k=0,1,\cdots)$$
 存在且有限.

② 对
$$[a,b]$$
 上的非负连续函数 $g(t)$, 若 $\int_a^b
ho(t) \cdot g(t) \mathrm{d}t = 0$, 则 $g(t) \equiv 0$.

(2) 在线性空间 C[a,b] 上定义**加权内积**如下. 设权函数 $\rho(t)$.

对函数
$$f(t),g(t)\in C[a,b]$$
 , 定义加权内积 $(f(t),g(t))=\int_a^b
ho(t)\cdot f(t)\cdot g(t)\mathrm{d}t$.

特别地, $\rho(t) \equiv 1$ 时, 加权内积即内积.

[**定理3.1.1**] 设 E 是数域 K 上的内积空间.

- (1) [Cauchy-Schwarz 不等式] $|(x,y)| \leq (x,x)^{\frac{1}{2}} \cdot (y,y)^{\frac{1}{2}}$.
- (2) [内积可诱导范数]

① 在线性空间
$$\mathbb{R}^n$$
 或 \mathbb{C}^n 上, 有 $||x||=\sqrt{(x,x)}=\sqrt{\sum_{i=1}^n w_i\cdot |x_i|^2}$.

② 在线性空间
$$C[a,b]$$
 上,有 $||f(t)|| = \sqrt{\int_a^b |f(t)|^2 \mathrm{d}t}$.

- (3) [**平行四边形公式**] $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$.
- (4) 内积关于两个变量连续,

[证]

(1) 对 $\forall x,y\in E$, $\forall \lambda\in K$, 有 $(x+\lambda y,x+\lambda y)\geq 0$, 即 $(x,x)+\overline{\lambda}(x,y)+\lambda(y,x)+|\lambda|^2(y,y)\geq 0$. y=0 时, 结论显成立. 下面讨论 $y\neq 0$ 的情况.

取
$$\lambda=-rac{(x,y)}{(y,y)}$$
 , 则上式化为: $(x,x)-rac{|(x,y)|^2}{(y,y)}\geq 0$, 则 $|(x,y)|^2\leq (x,x)\cdot (y,y)$.

[定义3.1.8] 设 M 是内积空间 U 的线性子空间, $x\in U$. 若 $\exists~x_0\in M$, $x_1\in M^\perp$ s.t. $x=x_0+x_1$ (*),则称 x_0 为 x 在 M 上的正交投影, (*) 式称为 x 关于 M 的正交分解.

[**定理3.1.2**] 设 M 是内积空间 U 中的完备线性子空间. 对 $\forall x\in U$, \exists 唯一的 $x_0\in M$, $x_1\in M^\perp$ s.t. $x=x_0+x_1$.

[**定理3.1.3**] [**最佳逼近**] 设 U 是内积空间, $M \subset U$ 是线性子空间. 若 x_0 是 $x \in U$ 在子空间 M 上的投影, 则 $||x-x_0|| = \inf_{y \in M} ||x-y||$ (*), 且 x_0 是 M 中 s.t. (*) 式成立的唯一点. (*) 式表明: x_0 是 M 中逼近 x 的**最佳元**.

[注]

- (1) 在内积空间中, 当逼近的线性子空间是有限维时, 线性子空间完备, 此时最佳逼近元等价于投影.
- (2) 在数值逼近中, 选取的子空间如正交多项式子空间、三角多项式子空间、有限元子空间、边界元子空间等都是有限维的, 则求最佳逼近元等价于求投影.
 - (3) 子空间的构造不同和范数的选取构成不同的数值逼近方法.

3.2 最佳逼近元

#不重要.

3.3 最佳平方逼近

[**例3.3.1**] 求函数 $f(x)=x^3+3x+2$ 在区间 [0,1] 上关于 $\rho(x)=1$ 的最佳平方逼近多项式.

(1) 取 $\Phi = \operatorname{span}\{1, x\}$.

(2) $\mathbb{R} \Phi = \text{span}\{1, x, x^2\}$.

「解

(1)
$$\Phi = \operatorname{span}\{1, x\} = \operatorname{span}\{\varphi_0, \varphi_1\}$$
 .

$$(arphi_0,arphi_0) = \int_0^1 1 \mathrm{d}x = 1$$
 , $(arphi_1,arphi_1) = \int_0^1 x^2 \mathrm{d}x = rac{1}{3}$, $(arphi_0,arphi_1) = (arphi_1,arphi_0) = \int_0^1 x \mathrm{d}x = rac{1}{2}$, $(f,arphi_0) = \int_0^1 1 \cdot (x^2 + 3x + 2) \mathrm{d}x = rac{23}{6}$, $(f,arphi_1) = \int_0^1 x \cdot (x^2 + 3x + 2) \mathrm{d}x = rac{9}{4}$.

法方程
$$\begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \frac{23}{6} \\ \frac{9}{4} \end{bmatrix}$$
 , 解得: $\begin{cases} a_0 = \frac{11}{6} \\ a_1 = 4 \end{cases}$. 故 $s_1(x) = \frac{11}{6} + 4x$.

(2)
$$\Phi = \operatorname{span}\{1, x, x^2\} = \operatorname{span}\{\varphi_0, \varphi_1, \varphi_2\}$$
 .

$$(\varphi_2, \varphi_2) = \int_0^1 x^4 dx = \frac{1}{5}$$
, $(\varphi_1, \varphi_2) = (\varphi_2, \varphi_1) = \int_0^1 x^3 dx = \frac{1}{4}$,

$$\phi((arphi_0,arphi_2) = (arphi_2,arphi_0) = \int_0^1 x^2 \mathrm{d}x = rac{1}{3} \ , \ (f,arphi_2) = \int_0^1 x^2 \cdot (x^2 + 3x + 2) \mathrm{d}x = rac{97}{60} \ .$$

3.4 Legendre 多项式

[定义3.4.1] 在区间
$$[-1,1]$$
 上定义的多项式序列 $P_0(x)=1$,
$$P_n(x)=\frac{1}{2^n\cdot n!}\cdot\frac{\mathrm{d}^n}{\mathrm{d}x^n}\big[(x^2-1)^n\big]\ \ (n=1,2,\cdots)\$$
 称为 **Legendre 多项式**,其首项(最高项 x^n)系数
$$a_n=\frac{(2n)!}{2^n\cdot (n!)^2} \text{ , 则首项系数为 } 1 \text{ 的 Legendre 多项式为 } \widetilde{P}_0(x)=1 \text{ ,}$$

$$\widetilde{P}_n(x) = rac{\mathbf{\hat{n}!'}}{(2n)!} \cdot rac{\mathrm{d}^n}{\mathrm{d}x^n} ig[(x^2-1)^n ig] \ \ (n=1,2,\cdots) \,.$$

[定理3.4.1] [Legendre 多项式的性质] 设区间 [-1,1] 上的 Legendre 多项式 $\{P_n(x)\}_{n=0}^\infty$.

- (1) [**正交性**] $\{P_n(x)\}_{n=0}^\infty$ 在 [-1,1] 上带权 ho(x)=1 正交.
- (2) [**奇偶性**] $P_n(-x) = (-1)^n \cdot P_n(x)$, 则: ① n 为奇数时, $P_n(x)$ 是奇函数; ② n 为偶数时, $P_n(x)$ 是偶函数.

(3) [**递推公式**]
$$P_0(x)=1$$
 , $P_1(x)=x$, $P_{n+1}(x)=rac{2n+1}{n+1}\cdot x\cdot P_n(x)-rac{n}{n+1}\cdot P_{n-1}(x)$ $(n=1,2,\cdots)$

[**注1**] 常用的低阶 Legendre 多项式: $P_0(x)=1$, $P_1(x)=x$, $P_2(x)=\dfrac{3x^2-1}{2}$, $P_3(x)=\dfrac{5x^3-3x}{2}$

[
$${f i}{\pm 2}$$
] $(P_i,P_i)=rac{2}{2i+1}$ $(i=0,1,\cdots)$.

[**定理3.4.2**] 区间 [-1,1] 上的函数 f(x) 按 Legendre 多项式展开的 n 阶最佳平方逼近多项式

$$s_n(x)=\sum_{i=0}^nlpha_i\cdot P_i(x)$$
 , 其中 $lpha_i=rac{(f_i,P_i)}{(P_i,P_i)}=rac{2i+1}{2}(f,P_i)$.

[**例3.4.1**] 求函数 $f(x)=\sin\left(\frac{\pi}{2}x\right)$ 在区间 [-1,1] 上按 Legendre 多项式展开, 求三阶最佳平方逼近多项式.

[解]
$$P_0(x)=1$$
 , $lpha_0=rac{1}{2}\int_{-1}^1\left[\sin\left(rac{\pi}{2}x
ight)\cdot 1
ight]\mathrm{d}x=0$. * 或因 $f(x)$ 是奇函数, 则 $lpha_0=0$.

$$P_1(x)=x$$
 , $lpha_1=rac{3}{2}\int_{-1}^1 \left[\sin\left(rac{\pi}{2}x
ight)\cdot x
ight]\!\mathrm{d}xpprox 1.2$.

$$P_2(x)=rac{3x^2-1}{2}$$
 , $lpha_2=rac{5}{2}\int_{-1}^1\left[\sin\left(rac{\pi}{2}x
ight)\cdotrac{3x^2-1}{2}
ight]\mathrm{d}x=0$. * 或因 $f(x)$ 是奇函数, 则 $lpha_3=0$.

$$P_3(x)=rac{5x^3-3x}{2}$$
 , $lpha_3=rac{7}{2}\int_{-1}^1\left[\sin\left(rac{\pi}{2}x
ight)\cdotrac{5x^3-3x}{2}
ight]\mathrm{d}xpprox-0.2$.

故
$$s_3(x) = \sum_{i=0}^3 lpha_i \cdot P_i(x) = lpha_1 \cdot P_1(x) + lpha_3 \cdot P_3(x) = 1.6x - 0.6x^3$$
 .

[**例3.4.2**] 求函数 $f(x) = x^3$ 在区间 [-1,1] 上关于 $\rho(x) = 1$ 的最佳平方逼近多项式.

[解] 因 f(x) 在 [-1,1] 上连续, 则取 Legendre 多项式 $\{P_0,P_1,P_2\}$ 作基函数.

$$P_0(x)=1$$
 , $(f,P_0)=\int_{-1}^1(x^3\cdot 1)\mathrm{d}x=0$, $lpha_0=rac{1}{2}(f,P_0)=0$.

$$P_1(x)=x$$
 , $(f,P_1)=\int_{-1}^1(x^3\cdot x)\mathrm{d}x=rac{2}{5}$, $lpha_1=rac{3}{2}(f,P_1)=rac{3}{5}$.

$$P_2(2)=rac{3x^2-1}{2}$$
 , $(f,P_2)=\int_{-1}^1igg(x^3\cdotrac{3x^2-1}{2}igg)\mathrm{d}x=0$, $lpha_2=rac{5}{2}(f,P_2)=0$.

故
$$s_2(x)=\sum_{i=0}^2 lpha_i\cdot P_i(x)=rac{3}{5}x$$
 .

[**例3.4.3**] 设区间 [-1,1] 上的 Legendre 多项式 $\{P_n(x)\}_{n=0}^{\infty}$. 求 $\int_{-1}^{1} P_3(x) \cdot (x^2 - 7x + 9)$.

[解1]
$$\int_{-1}^1 P_3(x) \cdot (x^2-7x+9) = \int_{-1}^1 \left[P_3(x) \cdot x^2 - P_3(x) \cdot 7x + P_3(x) \cdot 9
ight]$$
 ,

其中:

① $P_3(x) \cdot x^2$ 、 $P_3(x) \cdot 9$ 是奇函数, 在 [-1,1] 上的积分为 0.

②
$$P_3(x)$$
 与 $x=P_1(x)$ 正交, $\int_{-1}^1 P_3(x)\cdot P_1(x)\mathrm{d}x=0$.

故
$$\int_{-1}^1 P_3(x) \cdot (x^2 - 7x + 9) = 0$$
.

[**解2**] 因 $P_3(x)$ 与 $P_2(x)$, $P_1(x)$, $P_0(x)$ 正交, 则 $P_3(x)$ 与 $P_2(x)$, $P_1(x)$, $P_0(x)$ 的线性组合正交.

因任意二次多项式可表示为 $P_2(x)$, $P_1(x)$, $P_0(x)$ 的线性组合, 则 $P_3(x)$ 与任意二次多项式正交.

3.5 Chebyshev 多项式

[**定义3.5.1**] 在区间 [-1,1] 上带权 $ho(x)=rac{1}{\sqrt{1-x^2}}$ 的正交多项式族

 $T_n(x) = \cos\left(n \cdot \arccos x\right) \ (-1 \le x \le 1)$ 称为 Chebyshev 多项式.

[**定理3.5.1**] [**Chebyshev 多项式的性质**] 设在区间 [-1,1] 上的 Chebyshev 多项式为 $T_n(x)=\cos\left(n\cdot\arccos x\right)\ (-1\leq x\leq 1)$.

(1) [递推公式]
$$T_0(x)=1$$
 , $T_1(x)=x$, $T_{n+1}(x)=2x\cdot T_n(x)-T_{n-1}(x)$ $\ (n=2,3.\cdots)$.

(2) [**正交性**]
$$\{T_n\}_{n=0}^\infty$$
 在 $[-1,1]$ 上带权 $ho(x)=rac{1}{\sqrt{1-x^2}}$ 正交, 且 $(T_0,T_0)=\pi$, $(T_n,T_n)=rac{\pi}{2}$ $(n\geq 1)$.

(3) [**奇偶性**] $T_n(-x) = (-1)^n T_n(x)$, 则: ① n 为奇数时, $T_n(x)$ 是奇函数; ② n 为偶数时, $T_n(x)$ 是偶函数.