The Lebesgue Integral

Svyatoslav Glazyrin

Department of Mathematics Simon Fraser University

January 2013

Outline

- Introduction
- Measure sets and functions
- 3 Lebesgue Integral
- 4 Conclusions

Introduction

- Riemann integral (1954)
- Shortcomings:
 - small class of integrable functions (assumptions!)
 - lack of nice limit properties
 - other analysis problems
- Alternative integration theory by H.L. Lebesgue (1902, doctoral thesis at Sarbonne)

General Idea

- Intuitive way: counting rectangles!
- ullet Partitioning the domain o partition the range
- Question: how to "measure" the domain?

Figure: Henri Léon Lebesgue 1875-1941

Intro to Measure theory

- E = [a, b] and set S of subsets of E with σ -algebra on it (nonempty collection S of subsets of E that is closed under the complement and countable unions of its members and contains S itself).
- Function $\mu: S \to \Re$ is called a measure if the following properties hold: Semi-Positive-Definite, Trivial case, monotonicity, countable additivity.

Measurable sets

- The outer measure of any interval I on the real number line with endpoints a < b is b a and is denoted as $m^*(I)$. extension to any subset!
- The inner measure of any set $A \subseteq E$, denoted $m_*(A)$, is defined as $m^*(E) m^*(E/A)$.
- set $A \subseteq E$ is Lebesgue measurable, if $m_*(A) = m^*(A)$, in which case the measure of A is denoted by m(A) and is given by $m(A) = m_*(A) = m^*(A)$.
- The measure for an unbounded set A is defined as $m(A) = \lim_{n \to +\infty} (A \cap [-n, n]).$

Measurable functions

• Let A be a bounded measurable subset of \Re and $f:A\to\Re$. Then f is said to be measurable on A if $\{x\in A|f(x)>r\}$ is measurable set for $\forall r\in\Re$.

More of Measurable functions

- ullet Step function o simple function
- Simple function $f: A \to \Re$ is a measurable function which takes on finitely many values.
- Theorem: A function $f:A\to\Re$ is measurable if and only if it is the pointwise limit of a sequence of simple functions.

Integrating Bounded Measurable Functions

- Let $f: A \to \Re$ be a bounded measurable function on a bounded measurable subset A of \Re . Let $I = glb\{f(x) \mid x \in A\}$ and $u > lub\{f(x) \mid x \in A\}$.
- The Lebesgue sum of f with respect to a partition P = $\{y_0, ..., y_n\}$ of the interval [I, u] is given as $L(f, P) = \sum_{i=1}^{n} y_i^* m(\{x \in A \mid y_{i-1} \le f(x) < y_i\})$
- A bounded measurable function $f:A\to\Re$, where A is a ,bounded measurable set, is Lebesgue integrable on A if there is a number $L\in\Re$ such that, given $\epsilon>0$, there exists a $\delta>0$ such that $|L(f,P)-L|<\epsilon$ whenever $||P||<\delta$. L is known as the Lebesgue integral of f on A and is denoted by $\int_A f(x)\,dm$.

Criteria for Integrability

- A bounded measurable function f is Lebesgue integrable on a bounded measurable set A if and only if, given $\epsilon > 0$, there exist simple functions f_l and f_u such that $f_l \leq f \leq f_u$ and $\int_A f_u \, dm \int_A f_l \, dm < \epsilon$.
- Furthermore, $\int_{A} f \ dm = lub\{\int_{A} f_{l} \ dm \mid f_{l} \text{ is simple and } f_{l} \leq f\} = glb\{\int_{A} f_{u} \ dm \mid f_{u} \text{ is simple and } f \leq f_{u}\}$
- Ready to integrate!

Lebesgue integral of the Dirichlet function

- Dirichlet function is measurable and (obviously!) bounded \Rightarrow Lebesgue integrable. Claim: $\int_{[0,1]} D \, dm = 0$.
- Proof by definition, i.e.show that, given $\epsilon > 0$, there exists a $\delta > 0$ such that $|L(D,P)| < \epsilon$ whenever $||P|| < \delta$. Hint: $\delta = \epsilon/3$ works as a charm!

Pro et contra

- Advantages:
 - works for wider class of functions (less strict assumptions)
 - 2 Rieman integrability \rightarrow Lebesgue integrability
 - Monotone convergency works
 - allows to integrate over various structures
- Drawbacks:
 - some functions are not Lebesgue integrable
 - Some improper Riemann integrals exist for functions that are not Lebesgue integrable

Thank you!