

CLAIMS

We claim:

- 1 1. A method for adjusting an m-bit CRC of a sub-message, wherein the CRC generating polynomial is primitive or irreducible and the sub-message corresponds to a composite sub-message having n trailing zeroes, comprising:
 - 4 storing the m-bit CRC in an m-bit memory location;
 - 5 examining each bit of N, where N equals $n \bmod (2^m - 1)$, in order from the most significant bit to the least significant bit; the examining act for each examined bit comprising:
 - 8 finite field squaring the contents of the m-bit memory location, and;
 - 9 if the examined bit equals one, advancing the contents of the m-bit memory location to the next state as determined by the Galois field defined by the CRC generating polynomial.
- 1 2. The method of claim 1, wherein the CRC generating polynomial is a primitive polynomial.
- 1 3. The method of claim 1, wherein the CRC generating polynomial is an irreducible polynomial
- 1 4. The method of claim 1, wherein for each examined bit equaling one, the finite field squaring act and the advancing the contents act are performed simultaneously.

1 5. A method for adjusting an m-bit CRC of a sub-message, wherein the sub-
2 message corresponds to a composite sub-message having n trailing zeroes and the m-
3 bit CRC is equal or congruent to one, comprising:

4 storing the m-bit CRC in an m-bit memory location;

5 examining each bit of N, where N equals $n \bmod (2^m - 1)$, in order from the most
6 significant bit to the least significant bit; the examining act for each examined bit
7 comprising:

8 finite field squaring the contents of the m-bit memory location, and;

9 if the examined bit equals one, advancing the contents of the m-bit
10 memory location to the next state as determined by the Galois field defined by the
11 CRC generating polynomial.

1 6. The method of claim 5, wherein the CRC generating polynomial is neither
2 primitive nor irreducible.

1 7. A method for adjusting an m-bit CRC of a sub-message, the sub-message
2 corresponding to a composite sub-message having n trailing zeroes, wherein the CRC
3 generating polynomial is $P(x)$, comprising:

4 (a) computing $Y = x^n \bmod P(x)$ using a lookup table;

5 (b) field multiplying the partial m-bit CRC and Y together; and

6 (c) field dividing the result from act (b) by $P(x)$, wherein the remainder forms
7 the adjusted partial m-bit CRC.

1 8. The method of claim 7, wherein act (a) comprises:

2 (d) factoring x^n into powers of two;

(e) computing the modulus $P(x)$ of each factor from act (d) using a lookup table, and

5 (f) computing Y by field multiplying together the results from act (e).

1 9. The method of claim 8, wherein P(x) represents a 32 bit number and the
2 lookup table is no larger than 17 32-bit entries.

1 10. A method for adjusting an m-bit CRC of a sub-message, the sub-message
2 corresponding to a composite sub-message having n trailing zeroes, wherein the CRC
3 generating polynomial is P(x) and n is less than m, comprising:

4 (a) computing $Y = x^n \bmod P(x)$ by setting $Y = x^n$;

(b) field multiplying the partial m-bit CRC and Y together by shifting the partial m-bit CRC to the left by n bits; and

7 (c) field dividing the result from act (b) by $P(x)$, wherein the remainder forms
8 the adjusted partial m-bit CRC.

1 11. A method of adjusting a CRC of a message composed of a plurality of sub-
2 messages wherein the adjustment is in response to changes in a given sub-message,
3 the given sub-message having a first m-bit CRC and corresponding to a first
4 composite sub-message having n trailing zeroes, the changed sub-message having a
5 second m-bit CRC and corresponding to a second composite sub-message having n
6 trailing zeroes, and wherein the CRC generating polynomial is primitive or
7 irreducible, comprising:

8 storing the first m-bit CRC in a first m-bit memory location;

examining each bit of N, where N equals $n \bmod (2^m - 1)$, in order from the most significant bit to the least significant bit; the examining act for each examine

11 bit comprising:

12 finite field squaring the contents of the first m-bit memory location,

13 and

14 if the examined bit equals one, advancing the contents of the first m-bit

15 memory location to the next state as determined by the Galois field defined by the

16 CRC generating polynomial, whereby the first m-bit memory location stores a third

17 CRC of the first composite sub-message;

18 modulo 2 subtracting the third CRC from the CRC of the message to produce

19 an intermediary CRC;

20 storing the second m-bit CRC in a first m-bit memory location;

21 examining each bit of N in order from the most significant bit to the least

22 significant bit; the examining act for each examined bit comprising:

23 finite field squaring the contents of the second m-bit memory location,

24 and;

25 if the examined bit equals one, advancing the contents of the second

26 m-bit memory location to the next state as determined by the Galois field defined by

27 the CRC generating polynomial, whereby the second m-bit memory location stores a

28 fourth CRC of the second composite sub-message;

29 modulo 2 adding the fourth CRC to the intermediary CRC to produce the

30 adjusted CRC of the message.

1 12. The method of claim 11, wherein the first and second memory locations are

2 the same.

1 13. The method of claim 11, wherein the CRC generating polynomial is primitive.

1 14. The method of claim 11, wherein the CRC generating polynomial is
2 irreducible.

1 15. A method of advancing an m-bit sequence through n states of a Galois field
2 generated by a primitive or irreducible polynomial of degree m, comprising:
3 storing the m-bit sequence in an m-bit memory location;
4 examining each bit of N, where N equals $n \bmod (2^m - 1)$, in order from the
5 most significant bit to the least significant bit; the examining act for each examined
6 bit comprising:

7 finite field squaring the contents of the m-bit memory location, and;
8 if the examined bit equals one, advancing the contents of the m-bit memory location
9 to the next state as determined by the Galois field.

1 16. The method of claim 15, wherein the polynomial is a primitive polynomial.

1 17. The method of claim 15, wherein the polynomial is an irreducible polynomial.