Unconsciousness detection

Application of artificial intelligence in image recognition and classification

Applications
Results
Methodology
Introduction

Data Analytics Ironhack Bootcamp

Student

Unconsciousness detection

Application of artificial intelligence in image recognition and classification

Project

Lead teacher

Gonçalo Nobre

Teaching assistant **Karollyne Silva**

Supervisors

Methodology

Summary

Conscious status is deteriminated by open eyes and unconscious status is determinated by a consistente period of closed eyes

Identification and visualization of some applications in everyday situations, aiming to determine the usefulness of the tools

Results

Face and eye detection – Haar Cascades

- Object detection algorithm, used in OpenCV, an open computer vision library
 - Capable of detecting objects in images, regardless of their location and scale
- Not as accurate as other modern algorithms, tend to be prone to false-positive detections
- **Really fast**, making it possible to detect objects in real-time video streams

Face and eye detection – Algorithm improvement

Facial symmetries and proportions

Eye classification – Transfer learning

Deep learning architecture: **MobileNet**

Eye classification – Transfer learning

Eye classification – Model training

80 / 20 % train test validation split

Applications

Live demonstration

Conclusions

Alarm sounds when security guard falls asleep (video)

Vehicle stops when driver passes out (video)

Synthesis

- Although Haar Cascades is not the most accurate object detection algorithm, it's really fast, making it possible to apply it to real-time video streams
- The implementation of relevant changes related to facial symmetry and proportions allowed the improvement of the face and eye detection algorithm
- With the transfer learning technique it was possible to use existing knowledge to boost the performance of a new model used on a related task
- The eye classification model was trained using a very diverse and complete database, which made it more robust and allowed it to achieve an accuracy of 98%
- The biggest challenges faced are related to the quality of the captured image and to the difficulty of producing fast and accurate results at the same time
- The work developed was successfully applied in some real-life examples and, from one of them, an app was created

Results Methodology Introduction Presentation

Thank you!

