COMP 3411

Assignment 7

Martin Atanacio - T00684924

Queue: 45, 110, 12, 15, 20, 70, 145, 90, 80

Cylinder Range: 0 - 199

What is the order that the requests are serviced for the algorithms listed below

A. FCFS Scheduling

Order	45		110		12		15		20		70		145		90		80
Diff.		65		98		3		5		50		75		55		10	

(Seek Time) Total Head Movement = 65 + 98 + 3 + 5 + 50 + 75 + 55 + 10 = 361

B. SCAN Scheduling (arm moving from cylinder 45 towards cylinder 0)

Order	45		20		15		12		70		80		90		110		145
Diff.		25		5		3		82		10		10		20		35	

*82 because 12 needs to go to 0, then all the way back to 70

(Seek Time) Total Head Movement = 25 + 5 + 3 + 82 + 10 + 10 + 20 + 35 = 190

C. C-SCAN Scheduling

Order	45		70		80		90		110		145		12		15		20
Diff.		25		10		10		20		35		265		3		5	

*265 because 145 needs to go to 199, then all the way back to 0, then to 12

(Seek Time) Total Head Movement = 25 + 10 + 10 + 20 + 35 + 265 + 3 + 5 = 373

D. Which algorithm gives the best result (i.e., services all the requests with the minimum amount of head movement).

SCAN algorithm with a head movement of 190, compared to 361 from FCFS and 373 from C-SCAN

Queue: 85, 115, 13, 25, 35, 75, 155, 100, 90

Cylinder Range: 0 - 199

E. FCFS Scheduling

Order	85		115		13		25		35		75		155		100		90
Diff.		30		102		12		10		40		80		55		10	

(Seek Time) Total Head Movement = 30 + 102 + 12 + 10 + 40 + 80 + 55 + 10 = 339

F. SCAN Scheduling (arm moving right from cylinder 85 towards cylinder 0)

Order	85		75		35		25		13		90		100		115		155
Diff.		10		40		10		12		103		10		15		40	

*103 because 13 needs to go to 0, then all the way back to 90

(Seek Time) Total Head Movement = 10 + 40 + 10 + 12 + 103 + 10 + 15 + 40 = 240

G. C-SCAN Scheduling

Order	85		90		100		115		155		13		25		35		75
Diff.		5		10		15		40		256		12		10		40	

*256 because 155 needs to go to 199, then all the way back to 0, then to 13

(Seek Time) Total Head Movement = 5 + 10 + 15 + 40 + 256 + 12 + 10 + 40 = 388

H. Which algorithm gives the worst result (i.e., services all the requests but requires the maximum amount of head movement).

C-SCAN algorithm with a head movement of 388, compared to 339 from FCFS and 240 from SCAN.

Consider a legacy disk drive with a sector size of 512 bytes, 128 tracks per surface and 500 sectors per track. The disk has 5 double-sided platters.

A. Calculate capacity of a track in bytes? What is the capacity of each surface? What is the capacity of the disk?

Bytes per Track = Bytes per sector * Sectors per Track

= 512 bytes * 500

= <u>256,000 bytes per track</u>

Bytes per Surface = Bytes per Track * Tracks per Surface

= 256,000 * 128

= <u>32,768,000 bytes per surface</u>

Bytes per Disk = Bytes per surface * surfaces per disk

= 32,768,000 * 5 * 2 (5 double-sided platters)

= 327,680,000 bytes per disk

B. How many cylinders does the disk have?

Number of cylinders == Number of tracks on each platter

Therefore, Number of cylinders = $\underline{128}$

C. Give 3 examples of valid block sizes.

Block size should be a multiple of the sector size (512 bytes). Cannot exceed track size (256,000):

- 1. 1,024
- 2. 2,048
- 3. 4,096

Assume that a hard disk rotates at 15,000 revolutions per minute (rpm). Each track of the disk has 500 sectors. The average seek time of the disk is 8 milliseconds. Calculate the average access time for this disk. Hint: the average rotation time is ½ of the maximum rotation time.

- Disk Rotation Speed = 15,000 rpm
- Sectors per Track = 500 sectors
- Avg. Seek Time = 8 ms

Avg. Access Time = Avg. Seek Time + Rotational Latency + Transfer Time

- 1. Seek Time: This is the time taken by the read/write head to move to the desired track.
- 2. Rotation Latency: This is the time it takes for the desired sector to rotate under the read/write head. As per the hint, the average rotation time is half of the maximum rotation time.
- 3. Transfer Time: This is the time taken to read the actual data from the sector.

Seek time (given) = 8ms

The disk rotates at 15,000 revolutions per minute (rpm). To find the time for one complete revolution:

Time for 1 revolution

= 60,000ms (1min) / RPM

= 60,000 / 15,000

= 4ms

The average rotation time is half of the maximum rotation time, so average rotation time

Avg. rotation time = Half of the maximum rotation time

= 4 ms / 2

= 2ms

Since each track has 500 sectors, the time taken to read one sector:

Transfer Time = Time for one revolution / Sectors per track

= 4ms / 500 sectors

= 0.008ms

Avg. Access Time = Avg. Seek Time + Rotational Latency + Transfer Time

= 8ms + 2ms + 0.008ms

= 10.008ms