WP5: Exploiting Large Datasets to Understand the Genetics and Clinical Heterogeneity of PID

Chris Wallace, Ken Smith Tom Willis

Aims of WP5

- Task 5.1 Coheritability of IMD and other molecular phenotypes with PID
- Task 5.2: Identify common PID-associated variants
- Task 5.3: Leverage common disease genetics to aid rare variant analysis
- Task 5.4: Genetic regulation of immunophenotypes generated in WP2, WP3
- Task 5.5: Reverse genetics: phenotype of carriers of PID variants in EPIC, UK Biobank

Integration of PID GWAS with other IMD (Task 5.2)

With conditional FDR we can adapt our rejection region to reject slightly larger p values when a related trait has smaller p values

Breast cancer only

Breast cancer | ovarian cancer

Liley, Wallace 2021

	rsID	Chr.	v-value	Prin. p-value	MAF	Gene	Local genes
	rs6679677	1	1.54e-23	9.58e-03	0.09		PHTF1, RSBN1
ı	rs4845623	1	2.00e-09	7.97e-03		IL6R	RP11-350G8.5, PSMD8P1, SHE,
							RP11-350G8.9
	rs840016	1	3.05e-10	9.89e-03	0.38	CD247	POU2F1, RP11-104L21.2,
							RP11-104L21.3
	rs78037977	1	1.26e-14	3.79e-03	0.12		SLC25A38P1, RP3-332O11.2,
							RP1-15D23.2
	rs72837847	2	1.17e-08	3.18e-03	0.13	MIR4435-	AC108463.1, AC108463.2,
						2HG	RP11-181E10.3, AC068491.2,
							RP11-803D5.4
i.	rs13390894	2	8.77e-10	8.91e-03	0.26	STAT1	GLS, AC067945.3, AC067945.2,
							AC067945.4, STAT4
	rs62323881	4	1.20e-09	7.24e-04	0.08		AC097533.1, RN7SL335P,
							KIAA1109
	rs76487164	4	4.96e-10	7.94e-04	0.08	IL21-AS1	IL21
	rs55649498	4	1.90e-08	6.51e-03	0.25		RNA5SP158, TLR10, TLR1
	rs10068466	5	5.42e-10	9.70e-03	0.30	NDFIP1	CTC-463A16.1

	rsID	Chr.	v-value	Prin. p-value	MAF	Gene	Local genes
	rs67297943	6	2.89e-09	5.88e-03	0.19		TNFAIP3, RP11-10J5.1, RP11-
					2		240M16.1
	rs10760122	9	2.29e-08	6.66e-03	0.36	PHF19	PSMD5, PSMD5-AS1, TRAF1
,	rs61839660	10	1.65e-22	5.63e-03	0.07	IL2RA	SNORA14, RP11-536K7.5,
							RP11-414H17.2, RBM17
	rs9419741	10	1.25e-08	3.33e-03	0.48		KIF11, RN7SL644P, EIF2S2P3,
							HHEX, Y_RNA
	rs147793459	15	1.97e-08	2.09e-05	0.04	SMAD3	RP11-342M21.2
	rs12927355	16	3.09e-21	2.53e-04	0.33	CLEC16A	RP11-66H6.4, RP11-66H6.3
	rs10445308	17	5.02e-15	7.16e-03	0.48	IKZF3	GRB7
	rs77301847	17	3.65e-08	6.65e-03	0.24	CRHR1	RP11-293E1.2, RP11-293E1.1
	rs1893217	18	9.97e-18	4.67e-04	0.14	PTPN2	Y_RNA, RP11-973H7.1
	rs4369774	18	2.54e-08	7.19e-03	0.45	TNFRSF11A	KIAA1468, RP11-173A16.1,
							Y_RNA, RP11-640A1.3
,	rs909334	20	8.28e-10	5.33e-03			GMEB2, CTD-3184A7.4,
							STMN3, RTEL1, RTEL1-
					·		TNFRSF6B

Choice of diseases to condition on (Task 5.1)

Can't iterate forever: these diseases are related and we would lose control of type 1 error

Must choose a small number that are

- a. Informative for PID
- b. Relatively independent of each other

Genetic correlation is not useful here because PID sample size too small.

Published: 24 August 2015

Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases

Yun R Li, Jin Li, [...] Hakon Hakonarson □

Nature Medicine 21, 1018–1027 (2015) Cite this article

11k Accesses | 117 Citations | 134 Altmetric | Metrics

L

GPS p value gives results across range of sample sizes

r_g p value dependent on sample size

GPS p value

looks flat when comparing immune & non-immune traits

Next steps

Full coheritability analysis across broad range of diseases, IgG/M/A levels in 8,000 samples from EPIC-Norfolk

Select optimal subset and run cFDR using existing PID GWAS data

Update PID GWAS when additional 800 case data are available

Update coheritability and cFDR analyses

Extend method to work with rare variants, leveraging "linked" common variants

Acknowledgements

Tom Willis, PhD student has led the analyses presented today

Integration of PID GWAS with other IMD (Task 5.2)

Conditional FDR is one way to leverage information from a larger GWAS

Type 1 diabetes | psoriasis

Type 1 diabetes | rheumatoid arthritis

GPS (upper diag.) and rg p-values (lower diag.), -log10 scale

8

6

GPS (upper diag.) and rg p-values (lower diag.), -log10 scale

8

6

GPS (upper diag.) and rg p-values (lower diag.), -log10 scale

8

6

GPS (upper diag.) and rg p-values (lower diag.), -log10 scale

GPS (upper diag.) and rg p-values (lower diag.), -log10 scale

GPS (upper diag.) and rg p-values (lower diag.), -log10 scale

Choice of diseases to condition on (Task 5.1)

Can't iterate forever: these diseases are related and we would lose control of type 1 error

Choice of diseases to condition on (Task 5.1)

