1

EE5609: Matrix Theory Assignment-13

Y.Pranaya AI20MTECH14014

Abstract—This document contains a solution for a given function over a $n \times n$ diagonal matrix

Download the latex-tikz codes from

https://github.com/pranaya14014/EE5609/tree/master/Assignment13

1 PROBLEM

Let **A** be an $n \times n$ diagonal matrix over the field **F**, i.e., a matrix satisfying $\mathbf{A}_{ij} = 0$ for $i \neq j$. Let f be the polynomial over **F** defined by $f = (x - A_{11})...(x - A_{nn})$. What is the matrix $f(\mathbf{A})$?

2 SOLUTION

Given A is a diagonal matrix. let, diagonal elements be,

$$A_{ij} = a_{ij}$$
 $i = j$ $i, j = 1, 2, ..., n$ (2.0.1)

Characteristic equation of A,

$$\left| A - \lambda \mathbf{I} \right| = 0 \quad (2.0.2)$$

$$\implies (a_{11} - \lambda)(a_{22} - \lambda)...(a_{nn} - \lambda) = 0$$
 (2.0.3)

$$\implies (A_{11} - \lambda)(A_{22} - \lambda)...(A_{nn} - \lambda) = 0$$
 (2.0.4)

from (2.0.4) we see f(x) = 0 is the characteristic equation of **A**. Hence using Cayley-Hamilton theorem we get $f(\mathbf{A}) = 0$.