Artificial Intelligence Homework 5

Alic Szecsei

April 12, 2019

1. Probability Theorems

1. $P(\alpha|\beta \wedge \alpha) = 1$ whenever $P(\beta \wedge \alpha) \neq 0$

Proof: Assume that $P(\beta \wedge \alpha) \neq 0$. Then $P(\alpha | \beta \wedge \alpha) = \frac{P(\alpha \wedge (\beta \wedge \alpha))}{P(\beta \wedge \alpha)}$ by the definition of conditional probability. By logical equivalence, this is $\frac{P(\beta \wedge \alpha)}{P(\beta \wedge \alpha)}$, which is equal to 1.

2. $P(\alpha) = P((\alpha \land \beta) \lor (\alpha \land \neg \beta))$

Proof: By logical equivalence, we can rearrange terms from $P((\alpha \land \beta) \lor (\alpha \land \neg \beta))$ to $P(\alpha \land (\beta \lor \neg \beta))$. Since $\beta \lor \neg \beta$ is a tautology, we can further reduce this via logical equivalence to $P(\alpha)$, which is what we wanted to show.

3. $P(\alpha) = P(\alpha|\beta)P(\beta) + P(\alpha|\neg\beta)P(\neg beta)$

Proof: By the definition of conditional probability, $P(\alpha|\beta)P(\beta) + P(\alpha|\neg\beta)P(\neg\beta) = \frac{P(\alpha\wedge\beta)}{P(\beta)}P(\beta) + \frac{P(\alpha\wedge\neg\beta)}{P(\neg\beta)}P(\neg\beta)$. This can be further reduced to $P(\alpha\wedge\beta) + P(\alpha\wedge\neg\beta)$; this is equivalent to $P((\alpha\wedge\beta)\vee(\alpha\wedge\neg\beta))$ since $P((\alpha\wedge\beta)\wedge(\alpha\wedge\neg\beta)) = 0$. By the previous problem, this is equivalent to $P(\alpha)$.

4. $P(\alpha|\beta) = 1 - P(\neg \alpha|\beta)$

Proof: By the definition of conditional probability, $P(\alpha|\beta) = \frac{P(alpha \wedge beta)}{P(\beta)}$. Due to axiom 2, $P(\alpha) = 1 - P(\neg \alpha)$, and so $P(\alpha \wedge \beta) = P(\beta) - P(\neg \alpha \wedge \beta)$. Substituting this in the original equation gives $\frac{P(\beta) - P(\neg \alpha \wedge beta)}{P(\beta)}$, which reduces to $1 - \frac{P(\neg \alpha \wedge beta)}{P(\beta)}$. By the definition of conditional probability, this is equivalent to $1 - P(\neg \alpha|\beta)$, which is what we wanted to show.

2. Probabilistic Reasoning

Let's say that $P(\alpha)$ is the probability of the engine actually being cracked. The knowledge that only one in 10,000 cars of my specific model having this issue seems to place $P(\alpha)$ at $\frac{1}{10.000}$ - a fairly low chance!

However, I have extra information. The computer is reporting a cracked engine, with 99% accuracy. This extra information updates my model - now, rather than the naive belief that I have a 0.001% chance of my engine being cracked, I have a 99% chance of this being the case (since I know that the check engine light is on).

Given my knowledge of the situation (namely, the check engine light being on), and the consequences of such a fault (potential death for myself and others if I choose to ignore the alarm and am wrong, versus a monetary loss if I choose to replace the engine and don't need to) I cannot ignore the alarm and should replace the engine.

3. Constructing Belief Networks I

Belief Network

Flames

$$\frac{P(Flames)}{0.1}$$

Smoke

Flames	P(Smoke)
$\overline{\mathrm{T}}$	0.8
F	0.1

Sprinkler

Smoke	P(Sprinkler)
$\overline{\mathrm{T}}$	0.9
F	0.01

Figure 1: Belief Network

Tampering

P(Tampering)	
0.1	

Alarm

Smoke	Sprinkler	Tampering	P(Alarm)
$\overline{\mathrm{T}}$	Т	Т	0.9
T	${f T}$	F	0.99
T	F	${ m T}$	0.9
T	\mathbf{F}	F	0.92
F	${ m T}$	${ m T}$	0.8
F	${ m T}$	F	0.89
F	F	T	0.8
F	F	F	0.01

Escape

Alarm	P(Escape)
$\overline{\mathrm{T}}$	0.9
F	0.2

Report

Escape	P(Report)
$\overline{\mathrm{T}}$	0.9
F	0.1

Fire

Report	P(Fire)
$\overline{\mathrm{T}}$	0.7
F	0.1

4. Constructing Belief Networks II

5. Querying Belief Networks

1. $P(W|S \land \neg R \land C)$

From the CPT, we see that $P(W|S \land \neg R)$ is 0.90. Due to the conditional independence of belief networks, $P(W|S \land \neg R) = P(W|S \land \neg R \land C)$. Thus, the end result is 0.90.

2. $P(\neg R|C)$

From the CPT, we see that P(R|C) = 0.80; since $P(\neg A) = 1 - P(A)$, we can say that $P(\neg R|C) = 1 - 0.8 = 0.2$.

3. $P(S|R \wedge C)$

Since S and R are conditionally independent, $P(S|R \wedge C) = P(S|C) = 0.10$.

4. P(S)

From 1.3 above, we see that $P(S) = P(S|C)P(C) + P(S|\neg C)P(\neg C) = 0.1 * 0.5 + 0.5 * 0.5 = 0.3.$

5. P(R)

Again,
$$P(R) = P(R|C)P(C) + P(R|\neg C)P(\neg C) = 0.8 * 0.5 + 0.2 * 0.5 = 0.5.$$

6. $P(S \wedge R | \neg C)$

Since S and R are conditionally independent given C, $P(S \wedge R|C) = P(S|C)P(R|C) = 0.1*0.8 = 0.08$.

7. $P(S \wedge R)$

$$P(S \land R) = P(S|R)P(R)$$
; since S and R are conditionally independent, $P(S|R) = P(S)$, so $P(S \land R) = P(S)P(R) = 0.3 * 0.5 = 0.15$.

8. $P(S \wedge \neg R)$

Since
$$P(\neg R) = 1 - P(R)$$
, the expression in 5.7 above is $P(S \land \neg R) = P(S)P(\neg R) = P(S)(1 - P(R)) = P(S) - P(S)P(R) = 0.3 - 0.15 = 0.15$.

Figure 2: Dentist Belief Networks ${6\atop 6}$