

ÉVOLUTION

Taux d'évolution

Propriété

Une valeur X subit une évolution pour arriver à une valeur Y. Le taux d'évolution est égal à :

$$t = \frac{Y - X}{X}$$

Coefficient multiplicateur

Propriété

- 1. Augmenter une valeur de p% revient à la multiplier par $1 + \frac{p}{100}$
- 2. Diminuer une valeur de p% revient à la multiplier par $1 \frac{p}{100}$
- 3. $1 + \frac{p}{100}$ et $1 \frac{p}{100}$ sont appelés coefficients multiplicateurs.

Evolutions successives

Propriété

Le coefficient multiplicateur global de plusieurs évolutions est égal aux produits des coeffcients multiplicateurs de chaque évolution.

Le coefficients multiplicateur correspondant aux évolutions suivantes :

Evolution réciproque

Propriété

L'évolution réciproque possède un coefficient multiplicateur inverse de l'évolution directe.

L'évolution réciproque d'une augmentation de 25% est $\frac{1}{1.25}$. Pour retrouver le prix initial après une diminution de 20%, on multiplie le prix final par $\frac{1}{0.8}$.

Taux d'évolution moyen

Propriété

Sur n années, on a un taux d'évolution global de t% entre la première et la dernière année. Pour savoir quel est le taux d'évolution annuel moyen t_M (d'une année à la suivante), on fait :

$$t_M = (1 + \frac{t}{100})^{\frac{1}{n}}$$

$$\underbrace{\frac{\text{évolution de}\,t_M\%}{\times 1 + \frac{t_M}{100}}}_{\text{suivi d'une}}\underbrace{\frac{\text{évolution de}\,t_M\%}{\times 1 + \frac{t_M}{100}}}_{\text{suivi d'une}}\underbrace{\frac{\text{évolution de}\,t_M\%}{\times 1 + \frac{t_M}{100}}}_{\text{evolution de}}\underbrace{\frac{\text{evolution de}\,t_M\%}{\times 1$$

Donc $1 + \frac{t_M}{100} = 0.8^{\frac{1}{3}}$, finalement $t_M = 100 \times (0.8^{\frac{1}{3}} - 1) \approx -7.17\%$: c'est une diminution mannuelle moyenne de 7.17%.

Indice

Tout ce qu'il faut comprendre sur les indices, c'est ce que c'est de la proportionnalité :

Année	2017	2018
Elèves	1450	1550
Indice	100	$\frac{1550 \times 100}{1450} \approx 107$

SUITES

Suites arithmétiques

Définition

Une suite (u_n) est arithmétique quand on passe d'un terme au suivant en ajoutant toujours la même valeur (positive ou négative) qui sera appelée la raison r.

Propriété

L'expression de u_n en fonction de r est la suivante :

$$u_n = u_0 + nr$$
$$= u_1 + (n-1)r$$

Suites géométriques

Définition

Une suite (u_n) est géométrique quand on passe d'un terme au suivant en multipliant toujours par la même valeur qui sera appelée la raison q.

Propriété

L'epxression de u_n en fonction de r est la suivante :

$$u_n = u_0 \times q^n$$
$$= u_1 \times q^{n-1}$$

Somme des termes d'une suite

On utilisera systématiquement la calculatrice :

- pour les TI:
 - 1. math
 - **2.** $0: somme \Sigma$
 - **3.** ensuite on met en bas le terme par lequel commence la somme puis en haut le terme par lequel on la finit. A l'intérieur, on met la formule de u_n en fonction de n.
- pour les casio :
 - 1. sur une page de calcul, on accède au catalogue en tapant SHIFT puis 4.
 - **2.** ensuite, on accède aux fonctionnalités où se trouve la somme en appuyant la touche \times .
 - **3.** enfin, on descend pour atteindre \sum (et on se refère à ce que j'ai dit pour les TI.

SECOND DEGRÉ

A

Définition

Une équation du second degré d'inconnue *x* est une égalité du type :

$$ax^2 + bx + c = 0$$

Les valeurs *a*, *b* et *c* sont connus, *a* n'est pas égal à 0 et *x* est la seule inconnue, c'est-à-dire la valeur que l'on doit trouver.

Propriété

Pour résoudre cette équation, nous devons calculer le discriminant $\Delta = b^2 - 4ac$.

1. Si $\Delta > 0$ alors l'équation a deux solutions distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$
et la factorisation est $ax^2 + bx + c = a(x - x_1)(x - x_2)$

On appelle c_1 la plus petite de ces valeurs et c_2 la plus grande.

x	$-\infty$		c_1		c_2		+∞
ax^2+bx+c		signe de <i>a</i>	0	signe de – a	0	signe de <i>a</i>	

2. Si $\Delta = 0$ alors l'équation a une solution double :

$$x_0 = \frac{-b}{2a}$$
et la factorisation est $ax^2 + bx + c = a(x - x_0)^2$

	x	$-\infty$		x_0		+∞
ax	c^2+bx+c		signe de <i>a</i>	0	signe de <i>a</i>	

3. Si Δ < 0 alors l'équation n'a pas de solutions réelles. Il n'y a aucune solution réelle, ce qui implique un signe constant :

x	$-\infty$	+∞
ax^2+bx+c	signe de <i>a</i>	

DÉRIVATION

Propriété

Soit f une fonction définie sur I telle que f'(x) existe sur $J \subset I$.

Si $f'(x) \le 0$ pour $x \in [a; b] \subset J$ alors f est décroissante sur [a; b].

Si $f'(x) \ge 0$ pour $x \in [a; b] \subset J$ alors f est croissante sur [a; b].

Si f admet un extremum en $x_0 \in J$ alors $f'(x_0) = 0$; la réciproque est fausse en général.

L'équation de la tangente à f en $a \in J$ est :

$$y = f'(a)(x - a) + f(a)$$

Propriété

Fonction	Dérivée
$k \in \mathbb{R}$	0
x	1
x^n avec $n \ge 1$	nx^{n-1}
$\frac{1}{x^n}$ avec $n \ge 1$	$-\frac{n}{x^{n+1}}$
$k \times u(x)$	ku'(x)
$\frac{u(x)}{v(x)}$	$\frac{u'(x)v(x)-u(x)v'(x)}{v(x)^2}$
[f(u(x))]	$u'(x) \times f'(u(x))$

STATISTIQUES

Définition

On considère deux séries de points :

x_i	a_1	a_2	 a_n
y_i	b_1	b_2	 b_n

Les coordonnées du point moyen G sont $(\overline{x}; \overline{y})$ où \overline{x} est la moyenne des x_i et \overline{y} est la moyenne des y_i .

Définition

A partir des deux séries précedentes, on peut construire un nuage de points de coordonnées $(x_i; y_i)$. Quand ce nuage de points est constitué de points qui ont l'air alignés, on peut donner l'équation de la droite qui approche le plus précisement ce nuage par la méthodes moindres carrés : la droite dont on obtient ainsi l'équation est appelée droite de régression linéaire.

Déterminer cette équation revient à trouver deux coefficients a et b: l'équation cherchée sera alors y = ax + b.

La calculatrice nous donnera la valeur de ces coefficients :

- sur TI:
 - 1. stats
 - 2. Dans ÉDIT, on fait 1: Modifier...
 - **3.** Dans L_1 on rentre la liste des x_i et dans L_2 on rentre les y_i .
 - **4.** *stats* , dans CALC on fait 4 : RégLin(ax+b)
 - **5.** XListe : L_1 et Yliste : L_2 puis Calculer
- sur casio:
 - 1. on va dans le menu stat
 - **2.** dans List 1, on rentre la liste des x_i puis dans la List 2, on rentre la liste des y_i .
 - **3.** on appuie ensuite sur $\boxed{F2}$ pour faire CALC
 - **4.** on appuie ensuite sur |F3| pour faire REG
 - **5.** on appuie ensuite sur $\overline{F1}$ pour faire X
 - **6.** on appuie ensuite sur $\overline{F1}$ pour faire ax+b

Cette droite nous permettra deux choses:

- 1. pronostiquer la valeur de y_i correspondant à une valeur de x_i qui n'est pas dans le tableau en utilisant la formule $y_i = ax_i + b$.
- **2.** pronostiquer à partir de quelle valeur de x_i on obtiendra une valeur y_i qui n'est pas dans le tableau en résolvant l'équation $y_i = ax_i + b$.

PROBABILITÉS CONDITIONNELLES

Propriété

[Formule de Laplace] Soit un événement E sur un ensemble fini $\mathcal E$:

$$P(E) = \frac{\text{nombre d'éléments de E}}{\text{nombre d'élément de } \mathcal{E}}$$

Définition

[Probabilités conditionnelles]

$$P_A(B) = \frac{P(A \cap B)}{P(B)}$$

Cette notation désigne la probabilités de *B* sachant *A*.

En général, elle est différente de la probabilité de l'intersection de A et B qui représente la proportion d'élements de $A \cap B$ par rapport au éléments de l'ensemble fini dans lequel sont prélévés A et B

Tandis que $P_A(B)$ représente la proportion d'éléments de $A \cup B$ par rapport à l'ensemble A.

Arbre de probabilités

Pour obtenir la probabilité au bout d'une branche, on multiplie les valeurs sur cette branche. A chaque embranchement, la somme des deux probabilités est égale à 1.

LOI NORMALE

Définition

La loi normale correspond à une probabilité qui est est définie comme l'aire sous une courbe entre deux valeurs sur l'axe des abscisses :

Sur le dessin, l'aire en couleur correspond à la probabilité que X soit compris entre a et b. La valeur μ est l'espérance de la loi normale, $x=\mu$ est un axe de symétrie pour la courbe. La valeur σ est l'écart-type de la loi normale, elle représente la dispersion de la loi autour de son espérance : plus σ est petit, plus la courbe est resserrée autour de $x=\mu$.

$$P(\mu-2\sigma \leq X \leq \mu+2\sigma) = 0.95$$

Calculs avec la calculatrice:

- ⇔ TI:
 - **1.** $P(X \le t)$ se calcule avec normalFDR (après avoir fait 2nde var), upper=t et lower= -10^9 .
 - **2.** $P(X \ge t)$ se calcule avec normalFDR, upper= 10^9 et upper=t.
 - **3.** $P(u \le X \le t)$ se calcule avec normalFDR, lower=u et upper=t.
- Casio:
 - 1. dans le menu calculs, on appuie sur $\boxed{\textit{OPTN}}$
 - **2.** on appuie sur F5 pour aller dans STAT
 - **3.** on appuie sur $\overline{F3}$ pour aller dans DIST
 - **4.** on appuie sur $\boxed{F1}$ pour aller dans NORM
 - **5.** on appuie sur $\overline{F2}$ pour aller dans Ncd :
 - **a.** $P(X \le t)$ se calcule avec NormCD $(-10^9, t, \sigma, \mu)$
 - **b.** $P(X \ge t)$ se calcule avec NormCD $(t, 10^9, \sigma, \mu)$
 - **c.** $P(u \le X \le t)$ se calcule avec NormCD (u, t, σ, μ)

TSTMG

LOI BINOMIALE

Définition

Quand une varibale aléatoire X compte le nombre de succès d'une répétiton de n épreuves de Bernouilli (car deux issues), indépendantes (car tirage avec remise) et de même probabilité p, alors X suit la loi binomiale de paramètres n et p notée $\mathcal{B}(n,p)$.

Propriété

Si X suit la loi binomiale de paramètres n et p alors son espérance (sa moyenne) est $n \times p$ et est notée E(X).

Elle correspond au nombre de succès moyen que nous pouvons compter sur un échantillon de n résultats.

Calculs avec la calculatrice:

- **1.** P(X = k).
 - Sur la TI, on fera 2nd puis le menu des distributions, on prendra BinomFpd ou la sinon la première concernant la loi binomiale dans le menu.

Le nombre d'essai ou trials sera n, la probabilité p et la valeur de X sera k.

Sur la casio, on ira dans le menu STAT puis dans DIST et enfin dans BINOM. Dans ce menu, on prendra la première fonction en partant de la gauche puis BinomialPD(n, p, k)

2. $P(X \le k)$.

Sur la TI, on fera 2nd var puis le menu des distributions, on prendra BinomFrep ou la sinon la deuxième concernant la loi binomiale dans le menu.

Le nombre d'essai ou trials sera n, la probabilité p et la valeur de X sera k.

Sur la casio, on ira dans le menu STAT puis dans DIST et enfin dans BINOM. Dans ce menu, on prendra la deuxième fonction en partant de la gauche puis BinomialCD(n, p, k).

- **3.** $P(X \ge k) = 1 P(X \le k 1)$ sauf pour $P(X \ge 0)$ qui vaut toujours 1.
- **4.** $P(i \le X \le j) = P(X \le j) P(X \le i 1).$

ECHANTILLONAGE ET ESTIMATION

Intervalle de fluctuation

Définition

p est la proportion théorique.

L'intervalle de fluctuation asymptotique à au moins 95% est : $I = \left[p - \frac{1}{\sqrt{n}}; p + \frac{1}{\sqrt{n}}\right]$

Règle de décision : f est la fréquence observée d'un échantillon de taille n.

I est l'intervalle de fluctuation asymptotique à au moins 95%.

On fait l'hypothèse : "La proportion est p" :

- **1.** si $f \in I$, alors on accepte l'hypothèse
- **2.** si \notin *I*, alors on rejette l'hypothèse.

Intervalle de confiance

Définition

f est la fréquence observée. L'intervalle de confiance au niveau au moins 95% est : $J = \left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right]$