

Heart rates from Three Different Exercises

Group Members:

Erik Ho

Jason Aguilar

Martin Perez

Alynne Wong

Experimental Methods for Engineers

ME 3040-01

Instructor: Hamid Ebrahimi

California State University, Los Angeles

May 12, 2023

Topical Agenda

- Abstract: Alynne Wong
- Introduction: Alynne Wong
- Methods: Jason Aguilar
- Results: Jason Aguilar & Erik Ho
- Discussion: Martin Perez
- Conclusion: Martin Perez

Table of Contents

- Abstract
- Introduction
- Methods
- Results
- Discussion
- Conclusion

Abstract

- Used a Single Factor Anova to get results
- Did Post-Hoc to either reject or accept
- Then analyzed using Regression analysis

Introduction

 Objective: to compare 30 people's heartrates doing jumping jacks, sit-ups, and push-ups.

Introduction

- Heart rate is the rate that your heart pumps per minute
- The heart must pump blood at a rate that ensures the body receives enough oxygen to have enough energy
- Exercising: the heart requires 3 to 4 times the cardiac input
- 64% to 76% would be the goal heart rate for moderate exercises
- Max heart rate= 220-age

Figure #1 – Schematic of a heart rate when under intense exercises

Methods

- Conducted 3 different exercises on 30 individuals, with 10 being assigned to one exercise each.
- Used an apple watch to measure heart beats per minute after their assigned exercise
- Used excel to store the data

Figure #2 – Apple Watch Schematic

Methods (Continued)

- Plugged data into Single Factor Anova to get results
- Did Post-Hoc to either reject or accept hypothesis
- Then analyzed using Regression analysis
- An ANOM was used to see the similarities and differences within the groups
- A normal probability plot was than constructed
- Lastly a Box and Whiskers plot was used to see variation between all 3 exercises

Figure #3 - ANOVA example diagram

Heart Rate (BPM)					
Person	Jumping jacks (20)	Person	Sit Ups(20)	Person	Push Ups(20)
1	132	11	115	21	133
2	136	12	126	22	130
3	137	13	135	23	136
4	131	14	128	24	132
5	133	15	110	25	135
6	136	16	119	26	136
7	132	17	122	27	133
8	135	18	127	28	128
9	128	19	114	29	131
10	133	20	129	30	134
Max	137		135		136
mean	133.3		122.5		132.8
stdev	2.750757471		7.877534865		2.616188916

Null Hypothesis: For every amount of time no matter the type of exercise, your heart-beat will be beating the same

Alternative Hypothesis:

Depending on the exercise, there will be a difference in heart rate for all three exercise

Table #1 – Heart Rate Data of all three exercises from 30 people

ANOVA

ANOVA Results		
Grand mean	129.533333	
n	30	
С	3	
SSA	575.62963	
SSW	623.777778	
SST	1199.40741	
MSA	115.125926	
MSW	29.7037037	
F-statistic	3.87581047	
F-crit	2.68478073	
p-value	0.01205759	
Confidence Level	95%	

- Null Hypothesis is rejected
 - F-statistic > Fcritical
 - Calculated p-valuegiven p-value
 - 0.0121 < 0.05

Table #2 – ANOVA summary results

Figure #4 - ANOVA Graphical representation

Post Hoc

NOTE: Because the Null Hypothesis is rejected, the Post Hoc testing can be conducted

q _u =	3.51
critical range =	11.04465

	Differences		
1	$ \bar{X}_{10} - \bar{X}_{20} $	10.80	
2	$ \bar{X}_{10}-\bar{X}_{30} $	0.50	
3	$ \bar{X}_{20} - \bar{X}_{30} $	10.30	

	Decision (Reject or Accept)		
1	$ \bar{X}_{10} - \bar{X}_{20} $	Significantly different	
2	$ \bar{X}_{10} - \bar{X}_{30} $	Not Significantly different	
3	$ \bar{X}_{20} - \bar{X}_{30} $	Significantly different	

Table #3 – Collective data of Post Hoc testing

If difference < critical range, then decision is NOT significantly different.

If difference > critical range, then decision is significantly different.

Regression Analysis

Exercise	Jumping Jacks	Sit Ups	Push Ups
Correlation Coefficient	0.340204184	0.016305326	0.140275773
Coefficient of Determination	0.115738887	0.000265864	0.019677292
а	-0.309090909	-0.042424242	-0.121212121
b	135	123.1575758	135.8909091
Least Square fit equation	y = -0.30909x + 135	y = -0.0424x + 123.157	y = -0.12121x + 135.8909
Standard Error	2.743587565	8.354276713	2.747450609
x *	20	20	20
ax*+b	128.82	122.309	133.4667
t	2.306	2.306	2.306
Margin of Error	87.097	85.92	91.2963
Prediction Interval	[41.723 215.917]	[36.389 208.229]	[42.1704 224.763]

Table #4 – Regression Analysis Summary Data

Correlation

Figure #5 - Regression Analysis plots of 3 exercises

 Regression for all three exercises are negatively decreasing

ANOM

ANOM		
Grand Mean	129.5333333	
α	0.05	
V	27	
n	3	
N	30	
h(α;n,ν)	2.49	
Mean square error	29.7037037	
Upper Dot #1	133.3	
Upper Dot #2	132.8	
Lower Dot	122.5	
LDL	126.2223001	
UDL	132.8443666	

Table #5 – ANOM test Summary

- Jumping Jacks heart rate is "significantly worse"
- Sit Ups mean heart rate is "significantly better"

Figure #6 – ANOM Graphical representation

Normality

Figure #7 – Normal Probability Plot of all 3 Exercises

- Probability plot is normally distributed
- Minor deviations

Normality

- Jumping Jack distribution is skewed to the left
- Sit Ups distribution skewed to the right
- Push Ups distribution is symmetrical

Figure #8 – Box and Whisker's Plot of the 3 Exercises

Discussion

- Null hypothesis was rejected
- Normal Distribution
- Regression analysis for all three exercise was negatively decreasing
- "Heart rate increases are dependent on the intensity of the exercise" [2]
- Additional testing was conducted but with younger subjects

Discussion

Limitations

- Age groups
- Body build
- Weight
- Height

Recommendations

- Different age groups
- Add more variety of body structures

Conclusion

- The Null hypothesis was rejected
- Figured out what distribution this experiment was
- Found and compared the regression analysis of each exercise

References

- (1) https://theheartfoundation.org/2018/11/02/your-heart-rate/
- (2) https://gto5mac.com/2022/12/23/apple-watch-heart-rate-history/
- (3) https://estamatica.net/anova-table-with-spss/