Алгебры винтов и бикватернионов и их применение для вычисления винтового движения

Геворкян Мигран Нельсонович

25 марта 2025 г.

Российский университет дружбы народов Факультет физико-математических и естественных наук Кафедра теории вероятностей и кибербезопасности

Алгебра винтов

Но тем не менее число исследователей в этом направлении весьма ограничено, и в сущности винтовое исчисление продолжает оставаться неизвестным громадному кругу лиц, занимающихся механикой твердого тела и сплошной среды, а тем более инженерам, работающим в промышленности.

Диментберг Ф. М. Винтовое исчисление и его приложение в механике. / под ред. И. Л. Антонов. Москва :

Издательство «Наука» главная редакция физико-математической литературы, 1965. 200 с., **с. 14**

Момент вектора

$$\mathbf{m} = \mathbf{p} \times \mathbf{v}$$

где ${f p}$ — радиус вектор точки P. Момент зависит от точки O, поэтому также обозначают ${f m}={f v}^o.$

- Точка *O* точка начала отсчета или точка приведения.
- В силу свойств векторного произведения:

$$\mathbf{m} \perp (OPQ)$$
,

$$\|\mathbf{m}\| = 2S_{\triangle OPQ},$$

- В общем случае p не перпендикулярен v.
- Два равных вектора называются эквивалентными, если их моменты равны.
- Скользящие векторы равные векторы, лежащие на одной прямой.

Скользящий вектор

Примеры скользящих векторов:

- угловая скорость;
- вектор силы;
- направляющий вектор прямой.

Если ${f v}$ — направляющий вектор прямой, то его момент ${f m}$ одинаков для любой точки P данной прямой. Если ${f p}'={f p}+\Delta {f v}$, то

$$m' = p' \times v = (p + \Delta v) \times v = p \times v + \Delta v \times v = p \times v = m.$$

Скользящие векторы таким образом являются одновременно и эквивалентными. Для скользящих векторов:

$$(\mathbf{v},\mathbf{m})=0.$$

Угловая скорость— векторная величина, задающая мгновенную ось вращения абсолютно твердого тела, то есть в геометрическом смысле— направляющий вектор прямой, представляющей ось вращения.

Замена начала координат

Произведем замену начала координат O o C'. Вектор ${f v}$ не измениться, так как он свободный. Если $\Delta {f p} = {f O}'{f O}$, то ${f p}' = {f p} + \Delta {f p}$, тогда

$$\mathbf{v}^{o'} = \mathbf{p}' \times \mathbf{v} = (\mathbf{p} + \Delta \mathbf{p}) \times \mathbf{v} = \mathbf{p} \times \mathbf{v} + \Delta \mathbf{p} \times \mathbf{v} = \mathbf{v}^o + \Delta \mathbf{p} \times \mathbf{v},$$

$$\mathbf{v}^{o'} = \mathbf{v}^o + \Delta \mathbf{p} \times \mathbf{v}$$
 или $\mathbf{m}' = \mathbf{m} + \Delta \mathbf{p} \times \mathbf{v}$.

Вычислим скалярное произведение:

$$(\mathbf{v}, \mathbf{v}^{o'}) = (\mathbf{v}, \mathbf{v}^o + \Delta \mathbf{p} \times \mathbf{v}) = (\mathbf{v}, \mathbf{v}^o),$$

в силу $\mathbf{v} \perp \Delta \mathbf{p} \times \mathbf{v}$.

Скалярное произведение $({\bf v},{\bf v}^o)$ — скалярный инвариант, так как не зависит от выбора начала координат.

Мотор и винт

Мо́тором (**мо**мент + век**тор**) назовем двойку векторов $\{\mathbf{v} \mid \mathbf{v}^o\}$, где:

- ${\bf v}-$ скользящий вектор (направляющий вектор прямой), главная часть,
- ${\bf v}^o$ его момент относительно начала координат O моментная часть.

Оба вектора откладываются от произвольной точки P прямой с радиус вектором ${f p}$ и ${f v}^o={f p} imes{f v}$.

Мотор можно также записать в виде дуального вектора или диады:

$$\mathbf{R} = \mathbf{v} + \varepsilon \mathbf{v}^o, \quad \varepsilon^2 = 0, \quad \varepsilon \neq 0,$$

где ε — дуальная мнимая единица (мнимая единица комплексных чисел параболического типа) или символ комплексности Клиффорда.

Винтом называют мотор, у которого $\mathbf{v} \parallel \mathbf{v}^o$. Любой мотор можно превратить в винт путем замены начала координат O. Прямая I для которой \mathbf{v} является направляющей, называется осью винта.

Если $\mathbf{v} \parallel \mathbf{v}^o$, то $\mathbf{v}^o = p\mathbf{v}$, где p - параметр винта (действительное число).

Замена мотора на винт

Пусть дан мотор

$$\mathbf{R} = \mathbf{v} + \mathbf{v}^o \varepsilon, \ \mathbf{v} \not\parallel \mathbf{v}^o.$$

Заменим начало координат $O \to O'$, $O' \in l$, где l — прямая, для которой ${\bf v}$ направляющий вектор. Причем возьмем

$$\mathbf{O}'\mathbf{O} = \frac{\mathbf{v}^o \times \mathbf{v}}{\|\mathbf{v}\|^2}.$$

Можно показать, что такая замена приведет к тому, что

$$\mathbf{v}^{o'} = \frac{(\mathbf{v}, \mathbf{v}^o)}{\|\mathbf{v}\|^2} \mathbf{v} = p\mathbf{v}, \quad p = \frac{(\mathbf{v}, \mathbf{v}^o)}{\|\mathbf{v}\|^2}.$$

В случае скользящего вектора:

- $\mathbf{v}^{o'} = \mathbf{0} \text{ и } p = 0;$
- точка O' ближайшая точка прямой l к началу координат O или проекция O на l;

• OO' =
$$\frac{\mathbf{v} \times \mathbf{v}^o}{\|\mathbf{v}\|^2}$$
.

Единичный винт, нуль-система, координаты Плюккера

Единичным называется винт с нулевым параметром p и с единичным вектором e. Единичному винту соответствует мотор

$$E = e + e^{o} \varepsilon$$
, $(e, e^{o}) = 0 = p$, $||v|| = 1$.

Всякий единичный винт геометрически можно интерпретировать как прямую, на которой заданно направление по правилу буравчика (отсюда название винт).

Условие $(\mathbf{e},\mathbf{e}^o)=0$ — условие Плюккера. Все моторы и винты, для которых оно выполняется, задают прямые в трехмерном пространстве.

Однородное представление прямой

Вообще, из любой пары векторов $\{\mathbf{v} \mid \mathbf{m}\}$ для которых $(\mathbf{v},\mathbf{m})=0$ можно составить диаду $\mathbf{L}=\mathbf{v}+\varepsilon\mathbf{m}$ и однозначно интерпретировать ее как прямую, проходящую через точку с радиус вектором $\mathbf{p}=\mathbf{v}\times\mathbf{m}$ по направлению \mathbf{v} . Шесть компонент (три от \mathbf{v} и три от \mathbf{m}) называются координатами Плюккера или нуль-системой [2].

Дуальный угол

Дуальным углом $\Theta=\theta+\theta^o\varepsilon$ между двумя винтами ${f A}_1$ и ${f A}_2$ называется фигура, образованная осями этих винтов и отрезком прямой P_2P_1 , пересекающей эти оси под прямым углом.

- Винт ${\bf A}_{21}$ с осью в виде прямой (P_2P_1) ось дуального угла.
- Дуальная часть угла $\theta^o = \|\mathbf{P_2}\mathbf{P_1}\|$.
- Действительная часть угла $\theta = \measuredangle(\mathbf{A}_2, \mathbf{A}_1)$.

Дуальный угол ⊙ определяется винтом

$$\mathbf{\Theta} = \Theta \mathbf{A}_{21} = (\theta + \theta^o \varepsilon) \mathbf{A}_{21}.$$

Для вычисления тригонометрических функций от дуального угла используются следующие формулы:

$$\sin \Theta = \sin(\theta + \theta^{o} \varepsilon) = \sin \theta + \theta^{o} \cos \theta \varepsilon,$$

$$\cos \Theta = \cos(\theta + \theta^{o} \varepsilon) = \cos \theta - \theta^{o} \sin \theta \varepsilon,$$

$$tg \Theta = tg(\theta + \theta^{o} \varepsilon) = tg \theta + \frac{\theta^{o}}{\cos^{2} \theta} \varepsilon.$$

Скалярное умножение винтов

Пусть даны два винта ${f R}_1={f r}_1+{f r}_1^o arepsilon$ и ${f R}_2={f r}_2+{f r}_2^o arepsilon$. Их скалярное произведение вычисляется по формуле:

$$(\mathbf{R}_1, \mathbf{R}_2) = (\mathbf{r}_1, \mathbf{r}_2) + [(\mathbf{r}_1, \mathbf{r}_2^o) + (\mathbf{r}_1^o, \mathbf{r}_2)]\varepsilon$$

Величина $M(\mathbf{R}_1,\mathbf{R}_2)=(\mathbf{r}_1,\mathbf{r}_2^o)+(\mathbf{r}_1^o,\mathbf{r}_2)$ — взаимный момент двух винтов (двух прямых).

- Если $M \neq 0$, то оси винтов (прямые) скрещиваются и
 - если M>0, то поворот от ${f R}_1$ к ${f R}_2$ правый,
 - если M<0, то поворот от ${\bf R}_1$ к ${\bf R}_2$ левый.
- Если M=0, то оси винтов лежат в одной плоскости (компланарны).

Зная формулу для скалярного произведения, можно определить квадрат нормы винта ${f R}={f r}+{f r}^o {f \epsilon}$ как

$$\|\mathbf{R}\|^2 = (\mathbf{R}, \mathbf{R}) = (\mathbf{r}, \mathbf{r}) + 2(\mathbf{r}, \mathbf{r}^o)\varepsilon = \|\mathbf{r}\|^2 + 2(\mathbf{r}, \mathbf{r}^o)\varepsilon.$$

Используя формулу $\sqrt{a+b\varepsilon}=\sqrt{a}+rac{b}{2\sqrt{a}}\varepsilon$ можно также вычислить

$$\|\mathbf{R}\| = \sqrt{(\mathbf{R},\mathbf{R})} = \|\mathbf{r}\|(1+p\varepsilon)$$
, где $p = \frac{(\mathbf{r},\mathbf{r}^0)}{\|\mathbf{r}\|^2}$.

Для единичного винта параметр p=0, так как по условию Плюккера $({\bf r},{\bf r}^o)=0$ и норма винта — действительное число.

Вычисление скалярного произведения через дуальный угол

Если даны два винта \mathbf{R}_1 и \mathbf{R}_2 :

$$\mathbf{R}_1 = \mathbf{r}_1 + \mathbf{r}_1^o \varepsilon, \ \mathbf{R}_2 = \mathbf{r}_2 + \mathbf{r}_2^o \varepsilon$$

и дуальный угол между их осями $\Theta=\theta+\theta^o\varepsilon$, то можно доказать, что скалярное произведение этих винтов вычисляется также по формуле:

$$(\mathbf{R}_1, \mathbf{R}_2) = \|\mathbf{R}_1\| \|\mathbf{R}_2\| \cos \Theta$$

где

$$\cos\Theta = \cos(\theta + \theta^o \varepsilon) = \cos\theta - \theta^o \sin\theta\varepsilon.$$

Подробное доказательство см. в [1, с. 46] и его сокращенный вариант в книге [3, с. 55].

Винтовое (векторное) умножение винтов

Пусть даны два винта ${f R}_1={f r}_1+{f r}_1^o \epsilon$ и ${f R}_2={f r}_2+{f r}_2^o \epsilon$. Их винтовое (векторное) произведение вычисляется по формуле:

$$\boxed{\mathbf{R}_1 \times \mathbf{R}_2 = \mathbf{r}_1 \times \mathbf{r}_2 + (\mathbf{r}_1 \times \mathbf{r}_2^o + \mathbf{r}_1^o \times \mathbf{r}_2)\varepsilon}$$

Аналогично можно доказать, что

$$\mathbf{R}_1 \times \mathbf{R}_2 = \|\mathbf{R}_1\| \|\mathbf{R}_2\| \sin \Theta \mathbf{R}_{21}$$
,

где Θ — дуальный угол, \mathbf{R}_{21} — ось дуального угла.

Дуальные координаты винта

Рассмотрим диаду $\mathbf{R} = \mathbf{r} + \mathbf{r}^o \epsilon$ и запишем ее в компонентном виде:

$$\mathbf{R} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} x^o \\ y^o \\ z^o \end{bmatrix} \varepsilon = \begin{bmatrix} x + x^o \varepsilon \\ y + y^o \varepsilon \\ z + z^o \varepsilon \end{bmatrix} = \begin{bmatrix} R_x \\ R_y \\ R_z \end{bmatrix}$$

где R_x , R_y , R_z — дуальные числа. Таким образом винт можно представить двумя способами:

- шестью действительными числами (координатами Плюккера) в виде компонент двух векторов $\{\mathbf{r} \mid \mathbf{r}^o\};$
- тремя дуальными числами дуальными координатами винта.

Если ввести три дуальных угла $A=\alpha+\alpha^o\varepsilon$, $B=\beta+\beta^o\varepsilon$, $\Gamma=\gamma+\gamma^o\varepsilon$, которые образуются осью винта с осями декартовой системы координат Ox, Oy и Oz, то компоненты винта можно представить также как

$$\mathbf{R} = R \begin{bmatrix} \cos A \\ \cos B \\ \cos \Gamma \end{bmatrix} \quad R = \|\mathbf{R}\|.$$

Косинусы от A, B, Γ — аналоги направляющих косинусов для случая обычных векторов.

Условие единичности винта

Запишем винт в дуальных компонентах. Если условится дуальные числа обозначать прописными буквами, то можно записать:

$$\mathbf{R} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} x + x^o \varepsilon \\ y + y^o \varepsilon \\ z + z^o \varepsilon \end{bmatrix} = \begin{bmatrix} R \cos A \\ R \cos B \\ R \cos \Gamma \end{bmatrix}$$

Квадрат нормы винта ${f R}$ вычисляется следующим образом:

$$\begin{split} (\mathbf{R}, \mathbf{R}) &= (\mathbf{r}, \mathbf{r}) + (\mathbf{r}, \mathbf{r}^o)\varepsilon = x^2 + y^2 + z^2 + 2(xx^o + yy^o + zz^o)\varepsilon = \\ &= (x^2 + 2xx^o\varepsilon) + (y^2 + 2yy^o\varepsilon) + (y^2 + 2yy^o\varepsilon) = X^2 + Y^2 + Z^2 = R(\cos^2 \mathbf{A} + \cos \mathbf{B} + \cos \mathbf{\Gamma}) = R = \|\mathbf{R}\|, \end{split}$$

что согласуется с формулой для квадрата дуального числа $(a+barepsilon)^2=a^2+2abarepsilon$. Также получаем, что

$$\cos^2 A + \cos B + \cos \Gamma = 1.$$

Если $\mathbf{E} = \mathbf{e} + \mathbf{e}^o \varepsilon = (X,Y,Z)^T - \mathbf{e}$ единичный винт, то из условия единичности $\|\mathbf{E}\| = 1$ следует:

$$(\mathbf{E}, \mathbf{E}) = 1 = x^2 + y^2 + z^2 + 2(xx^o + yy^o + zz^o)\varepsilon,$$

что приводит к $x^2 + y^2 + z^2 = 1 = \|\mathbf{e}\|$ и условию Плюккера:

$$(\mathbf{e}, \mathbf{e}^o) = xx^o + yy^o + zz^o = 0.$$

Скалярное и винтовое произведения в дуальных координатах

Можно доказать, что для двух винтов $\mathbf{R}_1 = (X_1, Y_1, Z_1)^T$ и $\mathbf{R}_2 = (X_2, Y_2, Z_2)^T$ справедливо:

$$(\mathbf{R}_1, \mathbf{R}_2) = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2, \qquad \mathbf{R}_1 \times \mathbf{R}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \end{vmatrix}$$

где i,j,k — базисные векторы декартовой системы координат.

Для скалярного произведения также запишем:

$$(\mathbf{R}_1,\mathbf{R}_2) = x_1x_2 + y_1y_2 + z_1z_2 + (x_1x_2^o + x_1^ox_2 + y_1y_2^o + y_1^oy_2 + z_1z_2^o + z_1^oz_2)\varepsilon,$$

где $M(\mathbf{R}_1,\mathbf{R}_2)=x_1x_2^o+x_1^ox_2+y_1y_2^o+y_1^oy_2+z_1z_2^o+z_1^oz_2$ — взаимный момент двух винтов.

Сводка формул

Векторная запись	Дуальная запись
$\mathbf{R} = \mathbf{r} + \mathbf{r}^{o} \varepsilon = \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \varepsilon \begin{bmatrix} x^{o} \\ y^{o} \\ z^{o} \end{bmatrix}$	$\mathbf{R} = \begin{bmatrix} x + x^o \varepsilon \\ y + y^o \varepsilon \\ z + z^o \varepsilon \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$
$ \begin{split} (\mathbf{R}_1, \mathbf{R}_2) &= (\mathbf{r}_1, \mathbf{r}_2) + [(\mathbf{r}_1, \mathbf{r}_2^o) + (\mathbf{r}_1^o, \mathbf{r}_2)] \varepsilon \\ (\mathbf{R}_1, \mathbf{R}_2) &= \ \mathbf{R}_1\ \ \mathbf{R}_2\ \cos \Theta \end{split} $	$(\mathbf{R}_1, \mathbf{R}_2) = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2$
$\begin{aligned} \mathbf{R}_1 \times \mathbf{R}_2 &= \mathbf{r}_1 \times \mathbf{r}_2 + (\mathbf{r}_1 \times \mathbf{r}_2^o + \mathbf{r}_1^o \times \mathbf{r}_2)\varepsilon \\ \mathbf{R}_1 \times \mathbf{R}_2 &= \ \mathbf{R}_1\ \ \mathbf{R}_2\ \sin \Theta \mathbf{R}_{21} \end{aligned}$	$\mathbf{R}_1 \times \mathbf{R}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \end{vmatrix}$

Список литературы 1

- 1. Диментберг Ф. М. Винтовое исчисление и его приложение в механике. /. Под ред. И. Л. Антонов. Москва : Издательство «Наука» главная редакция физико-математической литературы, 1965. 200 с.
- 2. Клейн Ф. Высшая геометрия. /. Под ред. В. Бляшке ; пер. с нем. Н. К. Брушлинский. 3-е изд. Москва : Книжный дом «ЛИБРОКОМ», 2009. 400 с. ISBN 9785397001069.
- 3. Челноков Ю. Н. Кватернионные и бикватернионные модели и методы механики твердого тела и их приложения. Геометрия и кинематика движения. /. Под ред. И. Л. Легостаева. Москва : ФИЗМАТЛИТ, 2006. 512 с. ISBN 5922106805.

Применение винтов для описания кинематики

абсолютно твердого тела

Некоторые определения из теории абсолютно твердого тела

Неизменяемая система — система материальных точек, в которой расстояние между двумя любыми точками постоянно. При непрерывном распределении масс такая система идеальный образ твердого тела и называется абсолютно твердым телом [1, с. 48].

Различают абсолютно твердые тела:

- с одной неподвижной точкой,
- свободные.

Теорема Эйлера

всякое перемещение абсолютно твердого тела около неподвижной точки можно получить одним только поворотом тела вокруг определенной оси, проходящей через эту точку и называемой осью конечного вращения [1, с. 132].

Теорема Шаля

всякое перемещение свободного абсолютно твердого тела из одного положения в другое может быть получено посредством поступательного перемещения вместе с произвольно выбранным полюсом и поворота вокруг некоторой оси, проходящей через этот полюс [1, с. 153].

Мишель Шаль, 1793–1880 гг. — французский геометр.

Винтовое движение

Теорема Шаля (другая формулировка)

всякое перемещение свободного абсолютно твердого тела может быть осуществлено одним винтовым движением около некоторой винтовой оси, называемой осью конечного винтового перемещения.

Пусть движение тела слагается из:

- равномерного вращения вокруг оси постоянного направления с угловой скоростью ω ;
- равномерного прямолинейного поступательного движения с постоянной скоростью ${f v}$, параллельной ${f \omega}$.

Результирующее движение тела в этом случае называется винтовым движением, а ось вращения — осью винта [1, с. 146]. Любая точка тела остается во время винтового движения на поверхности круглого цилиндра, описывая винтовую линию.

Принцип перенесения Котельникова-Штуди

Принцип перенесения

Все формулы теории конечных поворотов и кинематики движения твердого тела с одной неподвижной точкой при замене в них вещественных величин на дуальные аналоги переходят в формулы теории конечных перемещений и кинематики движения свободного твердого тела [3, с. 67].

Иначе говоря, если в формулах для вращения точки в пространстве заменить вещественные числа, векторы, углы и кватернионы на дуальные числа, винты, дуальные углы и бикватернионы, то получатся корректные формулы для винтового движения. Принцип сформулирован Котельниковым Александр Петровичем и Эдуардом Штуди (Eduard Study) [2, с. 12—13].

Радиус вектор р	Винт L
Угол $ heta$	Дуальный угол Θ
Действительное число λ	Дуальное число Λ

Если формулы для вращений в пространстве применяются к **аффинным точкам** (радиус векторам), то полученные по принципу перенесения формулы следует применять к **винтам** то есть к **прямым** в пространстве.

Винтовое движение прямой

Рассмотрим прямую l лежащую в плоскости Oxy с направляющим вектором $\mathbf{v}=(1,1,0)^T$, проходящую через точку O. Зная $\mathbf{p}=(0,0,0)^T$ и направляющий вектор \mathbf{v} вычислим момент прямой:

$$\mathbf{m}=\mathbf{p}\times\mathbf{v}=\mathbf{0},$$

что дает представление прямой в виде мотора

$$\mathbf{L} = \mathbf{v} + \mathbf{0}\varepsilon.$$

Подвергнем l винтовому движению вдоль оси Oz повернув на $\pi/4$ и подняв на 1 вверх по оси. Для этого зададим дуальный угол

$$\Theta = \pi/4 + \varepsilon$$

и подставим его в матрицу элементарного поворота вокруг оси Oz:

$$R_z(\Theta) = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Винтовое движение прямой

Матрица $R_z(\Theta)$ — матрица с дуальными коэффициентами. Умножим ее на винт, представив последний как вектор с дуальными коэффициентами:

$$\mathbf{L}' = R_z(\Theta)\mathbf{L} = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos\Theta - \sin\Theta \\ \cos\Theta + \sin\Theta \\ 0 \end{bmatrix}$$

Так как $\Theta = \theta + \theta^o \varepsilon$, то

$$\begin{split} \cos\Theta - \sin\Theta &= \cos\theta - \sin\theta - (\cos\theta + \sin\theta)\theta^o\varepsilon, \\ \cos\Theta + \sin\Theta &= \cos\theta + \sin\theta + (\cos\theta - \sin\theta)\theta^o\varepsilon. \end{split}$$

Подставим $\Theta = \pi/4 + 1$ и получим:

$$\cos\Theta - \sin\Theta = -\sqrt{2}\varepsilon, \quad \cos\Theta + \sin\Theta = +\sqrt{2}.$$

$$\mathbf{L}' = \begin{bmatrix} -\sqrt{2}\varepsilon \\ \sqrt{2} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \sqrt{2} \\ 0 \end{bmatrix} + \varepsilon \begin{bmatrix} -\sqrt{2} \\ 0 \\ 0 \end{bmatrix}$$

Винтовое движение прямой

Нормируем винт \mathbf{L}' поделив и векторную и моментную части на норму $\|\mathbf{L}'\|$. Так как выполняется условие Плюккера:

$$(\mathbf{v}', \mathbf{m}') = 0 \cdot (-\sqrt{2}) + \sqrt{2} \cdot 0 + 0 \cdot 0 = 0,$$

то винт задает прямую и его норма — действительное число $\|\mathbf{L}'\| = \sqrt{2}$.

$$\hat{\mathbf{L}}' = \hat{\mathbf{v}}' + \hat{\mathbf{m}}' \varepsilon = (0, 1, 0)^T + \varepsilon (-1, 0, 0)^T.$$

Найдем точку прямой, вычислив координаты проекции начала координат на прямую:

$$\mathbf{p}_0' = \frac{\hat{\mathbf{v}}' \times \hat{\mathbf{m}}'}{\|\hat{\mathbf{v}}'\|^2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ +1 \end{bmatrix}$$

Таким образом винт $\hat{\mathbf{L}}'$ задает прямую, проходящую через точку $P_0=(0,0,1)$ по направлению $\hat{\mathbf{v}}'=(0,1,0)^T.$

Получение винтового аналога формулы Родрига с коэффициентами Родрига–Гамильтона

Для вращения точки P с радиус вектором $\mathbf{p}=(x,y,z)^T$ абсолютно твердого тела с закрепленной точкой, вокруг оси, проходящей через начало координат с направляющим вектором $\mathbf{a}=(a_x,a_y,a_z)^T$ справедлива следующая формула:

$$\mathbf{p}' = \mathbf{p} + 2\lambda_0 \lambda \times \mathbf{p} + 2\lambda \times \lambda \times \mathbf{p},$$

где λ_0 , $\lambda = (\lambda_1, \lambda_2, \lambda_3)^T$ — коэффициенты Родрига–Гамильтона, которые вычисляются как

$$\lambda_0 = \cos\frac{\theta}{2}, \; \lambda = \sin\frac{\theta}{2} \mathbf{a} \; \Leftrightarrow \; \lambda_1 = \sin\frac{\theta}{2} a_x, \; \lambda_2 = \sin\frac{\theta}{2} a_y, \; \lambda_3 = \sin\frac{\theta}{2} a_z,$$

где θ — величина угла поворота вокруг оси с направляющим вектором ${f a}.$

Согласно принципу перенесения следует сделать следующие замены:

Вращение	Винтовое движение	
$\mathbf{p} = (x, y, z)^T$	$\mathbf{L} = \mathbf{v} + \mathbf{m}\varepsilon$	
Угол $ heta$	$\Theta = \theta + \theta^o \varepsilon$	
$\mathbf{a} = (a_x, a_y, a_z)$	$\mathbf{A} = \mathbf{a} + \mathbf{a}^o \varepsilon$	
$\lambda_0 = \cos \frac{\theta}{2}$	$\Lambda_0 = \cos\frac{\Theta}{2} = \cos\frac{\theta}{2} - \frac{\theta^0}{2}\sin\frac{\theta}{2}\varepsilon$	
$\lambda = \sin \frac{\theta}{2} \mathbf{a}$	$\mathbf{\Lambda} = \sin\frac{\Theta}{2}\mathbf{A} = \left(\sin\frac{\theta}{2} + \frac{\theta^o}{2}\cos\frac{\theta}{2}\varepsilon\right)\mathbf{A}$	

Винтовая формула Родрига с коэффициентами Родрига-Гамильтона

В результате получим, что винтовое движение винта ${\bf L}={\bf v}+{\bf m}\varepsilon$ вдоль оси винта ${\bf A}={\bf a}+{\bf a}^o\varepsilon$ на дуальный угол $\Theta=\theta+\theta^o\varepsilon$ задается формулой:

$$\mathbf{L}' = \mathbf{L} + 2\Lambda_0 \mathbf{\Lambda} \times \mathbf{L} + 2\mathbf{\Lambda} \times \mathbf{\Lambda} \times \mathbf{L},$$

где
$$\Lambda_0 = \cos \frac{\Theta}{2}$$
 — дуальное число, а $\Lambda = \sin \frac{\Theta}{2} \mathbf{A}$ — винт \mathbf{A} умноженный на дуальное число $\Theta = \theta + \theta^0 \varepsilon$.

- Геометрический смысл: прямая, которую представляет ось винта L, подвергается винтовому движению вдоль прямой, которую представляет ось винта A.
- Винтовое движение складывается из:
 - трансляции вдоль оси винта **A** на расстояние θ^0 , при условии, что $\|\mathbf{A}\| = 1$;
 - вращению на угол θ вокруг оси винта ${\bf A}$.
- ullet Ось винта f A может находиться где угодно в пространстве и не привязана к началу координат.

Если винт ${\bf A}$ не единичный, то его норма $\|{\bf A}\|$ вносит вклад в расстояние на которое транслируется винт ${\bf L}$, поэтому перед вычислениями винт ${\bf A}$ необходимо нормировать.

Список литературы 1

- 1. Бухгольц Н. Н. Основной курс теоретической механики. В 2 т. Т. 1. Кинематика, статика, динамика материальной точки. /. Под ред. И. А. Маркузон. 6, переработанное и дополненное С. М. Тарогом. Москва : Наука, 1965. 468 с.
- 2. Диментберг Ф. М. Винтовое исчисление и его приложение в механике. /. Под ред. И. Л. Антонов. Москва : Издательство «Наука» главная редакция физико-математической литературы, 1965. 200 с.
- 3. Челноков Ю. Н. Кватернионные и бикватернионные модели и методы механики твердого тела и их приложения. Геометрия и кинематика движения. /. Под ред. И. Л. Легостаева. Москва: ФИЗМАТЛИТ, 2006. 512 с. ISBN 5922106805.

Бикватернионы

Дуальные бикватернионы

Дуальные или параболические бикватернионы получаются из кватернионов $q=q_0+q_1\mathrm{i}+q_2\mathrm{j}+q_3\mathrm{k}$ с помощью процедуры удвоения при замене действительных коэффициентов q_0,q_1,q_2,q_3 на дуальные числа Q_0,Q_1,Q_2,Q_3 .

$$Q = Q_0 + Q_1 \mathbf{i} + Q_2 \mathbf{j} + Q_3 k = Q_0 + \mathbf{Q},$$

где Q_0 — скалярная часть (дуальное число), а ${f Q}$ — винтовая часть (дуальный вектор).

Для двух бикватернионов

$$Q = Q_0 + Q_1 \mathbf{i} + Q_2 \mathbf{j} + Q_3 k = Q_0 + \mathbf{Q}, P = P_0 + P_1 \mathbf{i} + P_2 \mathbf{j} + P_3 k = P_0 + \mathbf{P},$$

можно аналогично кватернионам доказать формулу для бикватернионного произведения

$$PQ = P_0Q_0 - (\mathbf{P}, \mathbf{Q}) + P_0\mathbf{Q} + Q_0\mathbf{P} + \mathbf{P} \times \mathbf{Q}$$

Кватернионное и дуальное представления бикватернионов

$$Q=q+q^o\varepsilon,\ q,q^o\in\mathbb{H},\ \varepsilon^2=0,\ \varepsilon\neq0,$$

где q — главная часть, q^o — моментная часть.

$$q=q_0+q_1{\rm i}+q_2{\rm j}+q_3{\rm k},\ \ q^o=q_0^o+q_1^o{\rm i}+q_2^o{\rm j}+q_3^o{\rm k}.$$

Бикватернионное умножение:

$$PQ = pq + (pq^o + p^o q)\varepsilon,$$

где pq, pq^o, p^oq — кватернионные умножения. Скалярное произведение бикватернионов:

$$(P,Q) = (p,q) + [(p^o,q) + (p,q^o)]\varepsilon,$$

 $(p,q), (p^o,q), (p,q^o)$ — скалярные произведения кватернионов.

$$Q = Q_0 + Q_1 \mathbf{i} + Q_2 \mathbf{j} + Q_3 \mathbf{k} = Q_0 + \mathbf{Q}$$

 Q_0, Q_1, Q_2, Q_3 — дуальные числа, Q_0 — скалярная часть, \mathbf{Q} — винтовая часть.

Бикватернионное умножение

$$PQ = P_0Q_0 - (\mathbf{P}, \mathbf{Q}) + P_0\mathbf{Q} + Q_0\mathbf{P} + \mathbf{P} \times \mathbf{Q},$$

где $({f P},{f Q})$, ${f P} imes {f Q}$ — скалярное и винтовое умножения винтов, $P_0{f Q}$, $Q_0{f P}$ —умножение винта на дуальное число. Скалярное произведение бикватернионов:

$$(P,Q) = P_0 Q_0 + P_1 Q_1 + P_2 Q_2 + P_3 Q_3$$

Бикватернионное представление точки, прямой и плоскости

Геометрический объект	Бикватернионное представление	Однородные координаты	Трехмерное декартово пространство
Аффинная точка	$P = 1 + \mathbf{p}\varepsilon, \mathbf{p} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$	$\vec{\mathbf{p}} = (\mathbf{p} \mid 1) = (x, y, z \mid 1)$	$\mathbf{p} = (x, y, z)^T$
Точечная масса	$P = w + \mathbf{p}\varepsilon$	$\vec{\mathbf{p}} = (\mathbf{p} \mid w) = (x, y, z \mid w)$	$\mathbf{p} = (x/w, y/w, z/w)$
Вектор	$V = \mathbf{v}\varepsilon$, $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$	$\vec{\mathbf{v}} = (\mathbf{v} \mid 0) = (v_x, v_y, v_z \mid 0)$	$\mathbf{v} = (v_x, v_y, v_z)^T$
Прямая	$\mathbf{L} = \mathbf{v} + \mathbf{m}\varepsilon$ $P(t) = P_0 + \mathbf{v}t\varepsilon, P_0 = 1 + \frac{\mathbf{v} \times \mathbf{m}}{\ \mathbf{v}\ ^2}\varepsilon$	$\vec{\mathbf{L}} = \{ \mathbf{v} \mid \mathbf{m} \}$ $\vec{\mathbf{p}} = (\mathbf{v} \times \mathbf{m} \mid \mathbf{v} ^2)$	$\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{v}t$
Плоскость	$\Pi = \mathbf{n} + d\varepsilon, \mathbf{n} = n_x \mathbf{i} + n_y \mathbf{j} + n_z \mathbf{k}$	$\vec{\boldsymbol{\pi}} = [\mathbf{n} \mid d]$	ax + by + cz + d = 0

Сопоставление терминов

Аффинная точка	Вектор	Точечная масса	Винт
- конечная точка - собственная точка - радиус вектор - связанный вектор - вектор точка - кватернион с $q_0=1$	- точка на бесконечности - несобственная точка - свободный вектор - вектор направление - чистый кватернион	- конечная точка с $w eq 1$ - кватернион с $q_0 eq 1$	- чистый бикватернион - дуальный вектор - диада - нуль система

Список литературы 1