Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2022

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 24 pages. *Hierdie nasienriglyne bestaan uit 24 bladsye.*

NSC/NSS – Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEOMETRY/MEETKUNDE			
	A mark for a correct statement		
S	(A statement mark is independent of a reason)		
3	'n Punt vir 'n korrekte bewering		
	('n Punt vir 'n bewering is onafhanklik van die rede)		
	A mark for the correct reason		
R	(A reason mark may only be awarded if the statement is correct)		
K	'n Punt vir 'n korrekte rede		
	('n Punt word slegs vir die rede toegeken as die bewering korrek is)		
	Award a mark if statement AND reason are both correct		
S/R	Ken 'n punt toe as die bewering EN rede beide korrek is		

Popularity score (x) Gewildheidspunt (x)	32	89	35	82	50	59	81	40	79	65
Number of votes (y) Getal stemme (y)	9	22	10	21	11	15	20	12	19	16

1.1.1	$\overline{y} = \frac{155}{100}$		√155
	10 = 15,5	ANSWER ONLY: Full marks	✓answer
1.1.2	SD = 4,59		(2) ✓ answer
			(1)
1.2	\overline{y} –SD		
	=15,5-4,59		
	= 10,91		✓ value of \overline{y} –SD
	$\therefore 10 - 2 = 8 \text{ learners}$		✓ answer
			(2)
1.3	<i>a</i> = 1,7709		✓ a
	b = 0,2243		$\checkmark b$
	$\hat{y} = 1,77 + 0,22x$		✓ equation
			(3)
1.4	$\hat{y} = 1,77 + 0,22(72)$		✓ substitution
	= 17,61		✓ answer
	≈18 votes		(2)
	OR/OF		(2)
	$\hat{y} = 17.92 \approx 18 \text{ votes}$		✓✓ answer
			(2)
1.5.1	Points are all scattered therefore prediction./Punte is versprei da	e low correlation and unrealistic	✓ R
	onrealistiese voorspelling.	a. o we not evalue on	(1)
1.5.2	r = 0.98/correlation very strong	/korrelasie baie sterk	✓ S
	∴ a reliable prediction/'n betro	ubare voorspelling	(1)
			[12]

2.1	60 employees	✓ answer (A)
		(1)
2.2	$20 < x \le 25$	✓ answer
		(1)
2.3	60 – 34	✓ 34
	= 26 employees ANSWER ONL	Y· Full marks
	THIS WERE STILL	(2)
2.4	Salary = $\frac{100}{7} \times 2400$	✓ method
	Salary = R34 285,71 ANSWER ONL	Y: Full marks ✓ answer (2)
2.5	 ∴ Ogive/Cumulative frequency graph we right/will become steeper. ∴ Ogief/Kumulatiewe frekwensie grafie skuif/sal steiler wees. 	ill shift to the ✓✓ answer k sal na regs
	simily sai sieller wees.	(2)
		[8]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2022

3.1.1	$m_{\rm AB} = \frac{2 - (-4)}{4 - 6}$ OR	$m_{\rm AB} = \frac{-4 - 2}{6 - 4}$	✓ substitution
	$m_{AB} = -3$	ANSWER ONLY: Full marks	✓ answer (2)
3.1.2	$\tan \alpha = m_{AB} = -3$		$\sqrt{\tan \alpha} = m_{AB} = -3$
	α=108,43°	ANSWER ONLY: Full marks	✓ answer (2)
3.1.3	$T\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$		
	$T\left(\frac{-2+6}{2};\frac{-3-4}{2}\right)$		-7
	$T\left(2;\frac{-7}{2}\right)$		$\checkmark x_{\rm T} = 2 \checkmark y_{\rm T} = \frac{-7}{2} \tag{2}$
3.1.4	5(0) - 6y = 8		$\checkmark x_{\rm S} = 0$
	$y = -\frac{4}{3}$		$\checkmark y_{S} = \frac{-4}{3}$
	$S\left(0; \frac{-4}{3}\right)$		(2)
3.2	$m_{\rm CD} = m_{\rm AB} = -3$		✓ gradient
	c = -9	y - (-3) = -3(x - (-2)) y = -3x - 9	✓ substitution of C(-2; -3)
	y = -3x - 9		✓ equation (3)

NSC/NSS – Marking Guidelines/Nasienriglyne

2.2.1	5 6 9	
3.3.1	5x - 6y = 8	
	$y = \frac{5}{6}x - \frac{8}{6}$	
	_	
	$\tan \theta = m_{AC} = \frac{5}{6}$	$\sqrt{\tan \theta - m} = \frac{5}{2}$
	$\theta = 39.81^{\circ}$	$\checkmark \tan \theta = m_{AC} = \frac{5}{6}$
		✓ θ = 39,81°
	$\hat{A} = 108,43^{\circ} - 39,81^{\circ}$	
	= 68,62°	$\checkmark \hat{A} = 68,62^{\circ}$
	$\hat{DCA} = 68,62^{\circ}$ [alt $\angle s$; $DC AB$]	✓ answer
		(4)
3.3.2	P(-3;0) and $F(1,6;0)$	✓ P(-3;0)
	Area POSC = Area \triangle FPC – Area \triangle OFS	✓ method
		$\sqrt{\frac{1}{2}(4,6)(3)}$
	$= \frac{1}{2}(4,6)(3) - \frac{1}{2}(1,6)\left(\frac{4}{3}\right)$	2
	= 6,9 - 1,07	$\sqrt{\frac{1}{2}(1,6)(\frac{4}{3})}$
	$= 5.83 \text{ units}^2$	2 (3)
	,	✓ answer (5)
	OR/OF	(3)
	P(-3;0)	✓ P(-3;0)
	$FC = \sqrt{\left(-2 - \frac{8}{5}\right)^2 + \left(-3 - 0\right)^2} = \frac{3\sqrt{61}}{5}$	
	Area $\triangle PFC = \frac{1}{2} (PF)(FC) \sin OFS$	
	$=\frac{1}{2}\left(\frac{23}{5}\right)\left(\frac{3\sqrt{61}}{5}\right)\sin 39,81^{\circ}$	$\checkmark \frac{1}{2} \left(\frac{23}{5}\right) \left(\frac{3\sqrt{61}}{5}\right) \sin 39,81^{\circ}$
	= 6,90	1(8)(4)
	Area $\triangle OFS = \frac{1}{2} \left(\frac{8}{5} \right) \left(\frac{4}{3} \right)$	$\checkmark \frac{1}{2} \left(\frac{8}{5} \right) \left(\frac{4}{3} \right)$
	= 1,07	
	Area POSC = $6.90 - 1.07$	✓ method
	= 5,83 units ²	✓ answer
		(5)
	OR/OF	

DBE/November 2022

P(-3;0)

Area of POSC = Area of OSCR + Area of \triangle PRC

$$= \frac{1}{2} \left(\frac{4}{3} + 3 \right) \times 2 + \frac{1}{2} \left(1 \times 3 \right)$$
$$= \frac{35}{6}$$
$$= 5.83 \text{ units}^2$$

OR/ OF

R

P

O

P(-3;0)

Area POSC = Area ROSW + Area \triangle PRC + Area \triangle WSC

$$= \left(\frac{4}{3}\right)(2) + \frac{1}{2}(1)(3) + \frac{1}{2}(2)\left(\frac{5}{3}\right)$$
$$= \frac{35}{6}$$
$$= 5,83 \text{units}^2$$

OR/OF

$$\checkmark P(-3;0)$$

✓ method

$$\checkmark \frac{1}{2} \left(\frac{4}{3} + 3 \right) \times 2 \checkmark \frac{1}{2} (1 \times 3)$$

✓ answer (5)

$$\sqrt{P(-3;0)}$$

✓ method

$$\begin{array}{|c|} \checkmark & \frac{1}{2}(1)(3) \\ \checkmark & \left(\frac{4}{3}\right)(2) + \frac{1}{2}(2)\left(\frac{5}{3}\right) \end{array}$$

✓ answer

(5)

8
NSC/NSS – Marking Guidelines/Nasienriglyne

P(-3;0) Area of $\triangle PSC = \frac{1}{2}(PC)(CS) \sin D\hat{C}A$	✓ P(-3;0)
$= \frac{1}{2} \left(\sqrt{10} \right) \left(\frac{\sqrt{61}}{3} \right) \sin 68,62^{\circ}$ $= 3,833$	$\checkmark \frac{1}{2} \left(\sqrt{10}\right) \left(\frac{\sqrt{61}}{3}\right) \sin 68,62^{\circ}$
Area of $\triangle POS = \frac{1}{2}(PO)(OS)$ $= \frac{1}{2}(3)(\frac{4}{3})$ $= 2$	$\checkmark \frac{1}{2}(3)\left(\frac{4}{3}\right)$
Area POSC = $3,833 + 2$ = $5,83$ units ²	✓ method ✓ answer (5)
	[20]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2022

4.1	P(x;y); N(7;-2); M(3;-5) $\frac{x+7}{2}=3$ $\frac{y-2}{2}=-5$	
	$ \begin{array}{ccc} 2 & 2 \\ x=-1 & y=-8 \\ P(-1;-8) \end{array} $	$\checkmark x_P = -1 \checkmark y_P = -8 \tag{2}$
4.2.1	$r^2 = (7-3)^2 + (-2-(-5))^2$ OR/OF $r^2 = (-1-3)^2 + (-8-(-5))^2$ $r^2 = 25$	✓ substitution into distance formula
	$(x-3)^2 + (y+5)^2 = 25$	$\begin{array}{c} \checkmark & (x-3)^2 + (y+5)^2 \\ \checkmark & r^2 = 25 \end{array} $ (3)
4.2.2	$m_{\text{radius}} = \frac{-5 - (-2)}{3 - 7} = \frac{3}{4}$	substitution $ \checkmark m_{\text{radius}} = \frac{-3}{-4} = \frac{3}{4} $
	$m_{\text{tangent}} = -\frac{4}{3}$ [radius \perp tangent/raaklyn \perp radius] $-2 = -\frac{4}{3}(7) + c$ OR $y - (-2) = -\frac{4}{3}(x - 7)$	$\checkmark m_{\text{tangent}} = -\frac{4}{3}$
	$c = \frac{22}{3}$ $y = -\frac{4}{3}x + \frac{22}{3}$	✓ substitution of m and N(7; -2)
	$y = -\frac{4}{3}x + \frac{22}{3}$	✓ equation (5)
4.3	$-8 = -\frac{4}{3}(-1) + c$	\checkmark subst m and P
	$\therefore c = -\frac{28}{3}$	\checkmark value of c
	$-\frac{28}{3} < k < \frac{22}{3}$	✓✓ answer (4)

NSC/NSS – Marking Guidelines/Nasienriglyne

4.4.1	$AB^2 = AM^2 - MB^2$	
	$AB^{2} = \left[(t-3)^{2} + (t+5)^{2} \right] - 5^{2}$ $= t^{2} - 6t + 9 + t^{2} + 10t + 25 - 25$ $AB = \sqrt{2t^{2} + 4t + 9}$	✓ substitution intoPythagoras✓ simplification (A)
	·	(2)
4.4.2	$t = \frac{-4}{2(2)}$ $= -1$	✓ substitution into correct formula ✓ t=-1
	Minimum at $t=-1$	
	$AB = \sqrt{2(-1)^2 + 4(-1) + 9}$ $AB = \sqrt{7}$	✓ substitution ✓ answer (4)
	OR/OF	
	4t + 4 = 0	
	t=-1	ι — 1
	Minimum at $t=-1$	
	$AB = \sqrt{2(-1)^2 + 4(-1) + 9}$	✓ substitution
	$AB = \sqrt{7}$	✓ answer (4)
	on to r	(4)
	OR/OF Length of AB = $\sqrt{2t^2 + 4t + 9}$	
	$=\sqrt{2\left(t^2+2t+\frac{9}{2}\right)}$	
	$= \sqrt{2\left[\left(t+1\right)^{2} + \frac{7}{2}\right]}$ $= \sqrt{2\left(t+1\right)^{2} + 7}$	✓ completing of the square
	$-\sqrt{2(t+1)} + 7$ Minimum at $t = -1$	
		$\sqrt{t} = -1$
	$AB = \sqrt{2(-1)^2 + 4(-1) + 9}$	✓ substitution
	$AB = \sqrt{7}$	✓answer
		(4)
		[20]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2022

5.1.1	$\sin(360^{\circ}+x)$		
3.1.1		$\checkmark + \checkmark \sin x$	
	$=\sin x$	5111 20	(2)
5.1.2	$x - \text{coordinate} = \sqrt{\left(\sqrt{13}\right)^2 - \left(-3\right)^2}$ $= -2$	✓✓ substitution	
	$\tan x = \frac{-3}{-2}$ $= \frac{3}{2}$	✓ method	
	$=\frac{1}{2}$		(3)
	OR/OF		
	$x - \text{coordinate} = \sqrt{\left(\sqrt{13}\right)^2 - \left(3\right)^2}$ $= 2$	✓✓ substitution	
	$\tan x = \frac{3}{2}$	✓ method	(3)
5.1.3	$\cos(180^\circ + x)$		` '
	$=-\cos x$	$\checkmark - \checkmark \cos x$	(2)
5.2	$\cos(90^{\circ} + \theta)$		
	$\frac{1}{\sin(\theta - 180^\circ) + 3\sin(-\theta)}$		
	$= \frac{-\sin\theta}{\sin(-(180^\circ - \theta)) - 3\sin\theta}$	$\checkmark - \sin\theta$ $\checkmark - 3\sin\theta$	
	$-\sin\theta$		
	$=\frac{1}{-\sin\theta-3\sin\theta}$	$\sqrt{-\sin\theta}$	
	$=\frac{-\sin\theta}{-4\sin\theta}$	✓ simplification	
	10110	Simpinication	
	$=\frac{1}{4}$	✓ answer	
			(5)

12 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

5.3	$(\cos x + 2\sin x)(3\sin 2x - 1) = 0$	
	$\cos x + 2\sin x = 0 \qquad \text{or} \qquad 3\sin 2x - 1 = 0$	✓ both equations
	1 1	
	$\tan x = -\frac{1}{2} \qquad \qquad \sin 2x = \frac{1}{3}$	$\checkmark \tan x = -\frac{1}{2}$
	ref ∠=26,565° ref ∠=19,471°	$\sqrt{\sin 2x} = \frac{1}{3}$
	$x = 153,43^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$ $x = 9,74^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$	$\sqrt{x} = 153,43^{\circ} \text{ OR}$
	OR / OF or	$x = 153,43^{\circ} & 333,43^{\circ}$ $\checkmark x = 9,74^{\circ} & 80,26^{\circ}$
	$x = 153,43^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $x = 80,26^{\circ} + k.180^{\circ};$	$\sqrt{x-9,74} & 80,20$ $\sqrt{+k.180^{\circ}}; k \in \mathbb{Z}$
	$k \in Z$	
	or $x = 333,43^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$	
5.4.1	$LHS = \cos(x+y).\cos(x-y)$	(6)
3.1.1	$= \left[\cos x \cdot \cos y - \sin x \cdot \sin y\right] \left[\cos x \cdot \cos y + \sin x \cdot \sin y\right]$	
	$= \cos^2 x \cdot \cos^2 y - \sin^2 x \cdot \sin^2 y$	✓ expansion
	$= (1 - \sin^2 x)(1 - \sin^2 y) - \sin^2 x \cdot \sin^2 y$	✓ simplification ✓ square identity
	$= 1 + \sin^2 x \cdot \sin^2 y - \sin^2 x - \sin^2 y - \sin^2 x \cdot \sin^2 y$	
		✓ product
	$=1-\sin^2 x-\sin^2 y = RHS$	(4)
5.4.2	$1-\sin^2 45^\circ - \sin^2 15^\circ$	(4)
	$= \cos(45^{\circ} + 15^{\circ}).\cos(45^{\circ} - 15^{\circ})$	\checkmark identifying x and y
	$= \cos 60^{\circ} \cdot \cos 30^{\circ}$	
	$= \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$	✓ substitution
	$=\frac{\sqrt{3}}{\sqrt{3}}$	
	$=\frac{1}{4}$	✓ answer
	OR/OF	(3)
	OK/OF	

$1 - \sin^{2} 45^{\circ} - \sin^{2} 15^{\circ}$ $= \sin^{2} 15^{\circ} + \cos^{2} 15^{\circ} - \sin^{2} 45^{\circ} - \sin^{2} 15^{\circ}$ $= \cos^{2} 15^{\circ} - \left(\frac{\sqrt{2}}{2}\right)^{2}$ $= \cos^{2} 15^{\circ} - \frac{1}{2}$ $= \frac{2\cos^{2} 15^{\circ} - 1}{2}$ $= \frac{\cos 30^{\circ}}{2}$	✓ identity
$= \frac{\sqrt{3}}{2} \times \frac{1}{2}$ $= \frac{\sqrt{3}}{4}$	✓ substitution ✓ answer (3)
OR $1-\sin^{2} 45^{\circ} - \sin^{2} 15^{\circ}$ $= \cos^{2} 45^{\circ} - \sin^{2} (45^{\circ} - 30^{\circ})$ $= \left(\frac{1}{\sqrt{2}}\right)^{2} - \left(\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}\right)^{2}$ $= \frac{1}{2} - \left(\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}\right)^{2}$ $= \frac{1}{2} - \left(\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)^{2}$ $= \frac{1}{2} - \left(\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)^{2}$	✓ expansion✓ substitution
$= \frac{1}{2} - \left(\frac{3}{8} - \frac{\sqrt{3}}{4} + \frac{1}{8}\right)$ $= \frac{\sqrt{3}}{4}$	✓ answer (3)

NSC/NSS – Marking Guidelines/Nasienriglyne

5.5.1	$16\sin x.\cos^3 x - 8\sin x.\cos x$		
	$= 8\sin x \cdot \cos x \left(2\cos^2 x - 1\right)$	✓ factorisation	
	$=4\sin 2x(\cos 2x)$		
	$=2\sin 4x$	$\checkmark 4\sin 2x \checkmark \cos 2x$	
	OR/OF	✓ double angle	(4)
	$16\sin x.\cos^3 x - 8\sin x.\cos x$		
	$=16\cos^2 x \left(\frac{1}{2}\sin 2x\right) - 8\left(\frac{1}{2}\sin 2x\right)$	✓ factorisation	
	$=8\left(2\cos^2x-1\right)\left(\frac{1}{2}\sin 2x\right)$		
	$=4\sin 2x.\cos 2x$	$\checkmark 4\sin 2x \checkmark \cos 2x$	
	$=2\sin 4x$	✓ double angle	
			(4)
5.5.2	$16\sin x.\cos^3 x - 8\sin x.\cos x = 2\sin 4x$		
	Minimum at $x = 67.5^{\circ}$	✓ answer	
			(1)
			[30]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2022

6.1	180°	✓ answer	
			(1)
6.2.1	$k = \sqrt{3} = 1,73$	✓ answer	(1)
		(1200	(1)
6.2.2	$B(-120^{\circ}; \sqrt{3})$	$\checkmark x = -120^{\circ}$	(4)
6.2		/ [2 2]	(1)
6.3	Range of $g: y \in [-2, 2]$	$\checkmark y \in [-2; 2]$	
	Range of $2g(x)$: $y \in [-4, 4]$	✓ answer	(2)
	OD/OF		(2)
	OR/OF ANSWER ONLY: Full marks		
	Range of $g: -2 \le y \le 2$	$\checkmark -2 \le y \le 2$	
	Range of $2g(x)$: $-4 \le y \le 4$	✓ answer	
			(2)
6.4	$x \in \left[-65^{\circ}; -5^{\circ}\right]$	$\checkmark \checkmark x \in [-65^\circ; -5^\circ]$	
			(2)
	OR/OF		
	$-65^{\circ} \le x \le -5^{\circ}$	$\sqrt{-65^{\circ}} \le x \le -5^{\circ}$	
		05 2 3 2	(2)
6.5	$\sin x \cdot \cos x = p$		(2)
	$4\sin x \cdot \cos x = 4p$		
	$2\sin 2x = 4p$	$\checkmark 2\sin 2x = 4p$	
		$\checkmark 4p = \pm 2$	
	$4p = \pm 2$		
	$\therefore p = -\frac{1}{2} \text{ or } \frac{1}{2}$ ANSWER ONLY: Full marks	✓ answers	
	2 2 ANSWER ONLT. Full marks		(3)
		•	[10]

DBE/November 2022

7.1	$AD^2 = AB^2 + BD^2$	
	$AD^2 = \left(\sqrt{5}p\right)^2 + \left(2p\right)^2$	✓ substitution in Pythagoras
	$AD^2 = 9p^2$	
	AD = 3p	✓ answer (2)
7.2	$\frac{\text{CD}}{\sin(135^\circ - x)} = \frac{3p}{\sin x}$	✓ correct use of sine rule
	$\sin(135^{\circ} - x) = \sin x$	
	$3p\sin(135^{\circ}-x)$	✓ 135° – <i>x</i>
	$CD = \frac{3p\sin(135^\circ - x)}{\sin x}$	
	$CD = \frac{3p(\sin 135^{\circ}\cos x - \cos 135^{\circ}\sin x)}{\sin x}$	✓ compound angle
	$CD = \frac{3p(\sin 45^{\circ}\cos x + \cos 45^{\circ}\sin x)}{\sin x}$	
	SIII X	
	$CD = \frac{3p\left(\frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\sin x\right)}{\sin x}$	✓ special values
	$CD = \frac{1}{\sin x}$	
	$CD = \frac{3p\left(\frac{\sqrt{2}}{2}\right)(\cos x + \sin x)}{\sin x}$	✓ factorisation
	$CD = \frac{CD}{\sin x}$	
	$CD = \frac{3p(\sin x + \cos x)}{\sqrt{2}\sin x}$	
	$\sqrt{2}\sin x$	(5)

Need an amazing tutor? www.teachme2.com/matric

Mathematics P2/Wiskunde V2

NSC/NSS – Marking Guidelines/Nasienriglyne

7.3	Area $\triangle ADC = \frac{1}{2}(AD)(CD)\sin ADC$	✓ correct use of area rule
	$= \frac{1}{2} (3p) \left(\frac{3p \left(\sin x + \cos x \right)}{\sqrt{2} \sin x} \right) (\sin 45^{\circ})$	
	$= \frac{1}{2} (30) \left(\frac{30 (\sin 110^{\circ} + \cos 110^{\circ})}{\sqrt{2} \sin 110^{\circ}} \right) \sin 45^{\circ}$	✓ substitution in area rule
	$=143,11m^2$	✓ answer (3)
		[10]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2022

QUESTION/VRAAG 8

8.1

8.1.1	P = 116°	[opp ∠s of cyclic quad/teenoorst. ∠e van kvh]	✓ S ✓ R	(2)
8.1.2	$\hat{M}_1 + 64^\circ = 90^\circ$ $\hat{M}_1 = 26^\circ$	[∠ in semi-circle/∠ in halwe sirkel]	✓ R ✓ S	
				(2)
8.1.3	$\hat{O}_1 = 52^{\circ}$	[\angle at centre = 2 x \angle at circumference/midpts. \angle = 2 x omtreks. \angle]	✓ S ✓R	(2)

8.2

8.2.1	Midpt theorem/Midpt. Stelling		✓ R	(1)
	OR/OF			(1)
	Converse prop intercept theorem	n	✓ R	(1)
8.2.2	$BG = 2DE \text{ or } 6x - 2$ $BG = 6x - 2$ $\frac{GH}{BG} = \frac{FC}{BF}$	[Midpt theorem/ $Midpt$. $stelling$] [line one side of Δ OR prop theorem; FG CH /	✓S ✓R ✓S ✓R	
	$\frac{x+1}{6x-2} = \frac{1}{4}$ $4x+4=6x-2$ $2x=6$	lyn een sy v. Δ]	\checkmark equation into x	
	x = 3 OR/OF		✓ answer	(6)

NSC/NSS – Marking Guidelines/Nasienriglyne

$\frac{BF}{FC} = \frac{BG}{GH}$	[line \parallel one side of Δ OR prop theorem; FG \parallel CH $/$	✓ S ✓ R
	$lyn \parallel een \ sy \ v. \ \Delta]$	
$\frac{AE}{AG} = \frac{DE}{BG}$	$[\Delta ADE \parallel\!\mid\!\Delta ABG]$	✓ S ✓R
BG = 4x + 4		
$\frac{1}{2} = \frac{3x - 1}{4x + 4}$		\checkmark equation into x
$\therefore 4x + 4 = 6x - 2$		
$\therefore x = 3$		✓ answer (6)
		[13]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2022

QUESTION/VRAAG 9

9.1

9.1.1	Construction:		
	Draw OA and OB		✓ construction
	In ΔADO and ΔBDO		
	OA = OB	[radii/radiusse]	
	OD = OD	[common side/gemeenskaplike sy]	✓ first pair of sides
	AD = DB	[given/gegee]	✓ other 2 pairs
	∴ ΔADO≡ ΔBDO	[S;S;S]	✓ R
	ADB is a straight line		✓ R
	$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{D}}_2$	$\Delta ADO \equiv \Delta BDO$	V K
	∴ OD⊥ AB	$[\angle s \text{ on a str line}/\angle e \text{ op 'n reguitlyn}]$	
			(5)
	OR/OF		
	Construction:		
	Draw OA and OB		✓ construction
	In ΔADO and ΔBDO		
	AD = DB	[given/gegee]	✓ first pair of sides
	$\hat{A} = \hat{B}$	[∠s opp; ∠s sides /∠e teenoor	
		gelyke sye]	
	OA = OB	[radii/radiusse]	✓ other 2 pairs
	∴ ΔADO≡ ΔBDO	[S;∠;S]	✓ R
	ADB is a straight line	[~, ←, ~]	
	$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{D}}_2$	$\Delta ADO \equiv \Delta BDO$	✓ R
	1 2		
	∴ OD ⊥ AB	$[\angle s \text{ on a str line}/\angle e \text{ op 'n reguitlyn}]$	(5)

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2022

9.2

9.2.1	OTG = 90°	[line from centre to midpt of chord/midpt. sirkel; midpt. koord]	✓S ✓ R	
	$\hat{OBG} = 90^{\circ}$	$[an \perp andius/raaklyn \perp andius]$	✓ S ✓ R	
	$\therefore \hat{OTG} = \hat{OBG} = 90^{\circ}$			
	∴OTBG is a cyclic quadrilatera	d [line subtends equal ∠s OR	✓ R	
		converse ∠s in the same segment/		
		lyn onderspan gelyke ∠e]		(5)
				(5)
9.2.2	$\hat{S} = \hat{BTG}$	[corresp \angle s; GF PS /	✓ S ✓ R	
		ooreenk. ∠s; GF PS]		
	But $\hat{BTG} = \hat{GOB}$	$[\angle s \text{ in the same segment}/\angle e \text{ in dies.}]$	✓ S ✓ R	
		sirkelsegment]		
	$\hat{GOB} = \hat{S}$			(4)
	1		1	[14]

10.1	$\hat{P}_1 = \hat{Q}_1$	[tan-chord theorem/∠ tussen raaklyn en koord]	✓ S
	$\begin{vmatrix} \hat{\mathbf{S}}_1 = \hat{\mathbf{Q}}_1 + \hat{\mathbf{Q}}_2 \\ \therefore \hat{\mathbf{S}}_1 = \hat{\mathbf{P}}_1 + \hat{\mathbf{Q}}_2 \end{vmatrix}$	[ext \angle of cyclic quad/buite \angle v. kvh]	✓ S/R
	$\hat{\mathbf{T}}_2 = \hat{\mathbf{R}}_2 + \hat{\mathbf{Q}}_2$	[ext \angle of \triangle /buite \angle v. \triangle]	✓ S
	but $\hat{P}_1 = \hat{R}_2$ $\hat{T}_2 = \hat{P}_1 + \hat{Q}_2$	[given/gegee]	✓ S
	$\therefore \hat{\mathbf{S}}_1 = \hat{\mathbf{T}}_2 = \hat{\mathbf{P}}_1 + \hat{\mathbf{Q}}_2$		(4)
10.2	In \triangle ASD and \triangle ACR		✓ identifying ∆'s
	$\hat{A} = \hat{A}$	[common ∠/gemeenskaplike ∠]	✓ S
	$\hat{\mathbf{S}}_1 = \hat{\mathbf{T}}_2$	[proven/reeds bewys]	
	$\hat{\mathbf{T}}_2 = \hat{\mathbf{C}}_2$	[alt \angle s; QS CA/verw. $\angle e$; QS CA	✓ S/R
	$\begin{array}{c}]\\ \therefore \hat{\mathbf{S}}_1 = \hat{\mathbf{C}}_2 \end{array}$		✓ S
	1 2		✓ S
	$\hat{\mathbf{D}}_1 = \hat{\mathbf{R}}_1$	[sum of \angle s in Δ / \angle e v. Δ]	
	$\triangle ASD \parallel \triangle ACR$ $\therefore \frac{AD}{AR} = \frac{AS}{AC}$	[corresponding sides in proportion/	
		ooreenstemmende sy in dies. verhouding]	
	OR/OF		(5)

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2022

	In \triangle ASD and \triangle ACR		✓ identifying ∆'s	
	$\hat{A} = \hat{A}$	[common ∠/gemeenskaplike ∠]	✓ S	
	$\hat{\mathbf{S}}_1 = \hat{\mathbf{T}}_2$	[proven/gegee]		
	$\hat{\mathbf{T}}_2 = \hat{\mathbf{C}}_2$	[alt \angle s; QS CA/verw. $\angle e$; QS CA]	✓ S/R	
	$\therefore \hat{\mathbf{S}}_1 = \hat{\mathbf{C}}_2$		✓ S	
	ΔASD ΔACR	[∠;∠;∠]	✓ R	
	$\therefore \frac{AD}{AR} = \frac{AS}{AC}$	[corresponding sides in proportion/		
		ooreenstemmende sy in dies. verhouding]		
			(5	5)
10.3	, a ar		,	
	$\frac{AS}{AC} = \frac{SD}{CR}$	$[\Delta ASD \parallel \Delta ACR]$	✓ S	
	$\therefore AS = \frac{AC \times SD}{CR}$			
	$\frac{AS}{AR} = \frac{CT}{CR}$	[line \parallel one side of Δ OR prop theorem;	✓ S ✓ R	
		TS \parallel CA/lyn \parallel een sy v. Δ]		
	$\therefore AS = \frac{AR \times CT}{CR}$			
	$\therefore \frac{AC \times SD}{CR} = \frac{AR \times CR}{CR}$	CT R	✓ equating	
	$\therefore AC \times SD = AR \times$	СТ		
			(4	!)
			[13	3]

TOTAL/TOTAAL: 150