Q.1 Question 1

A steam power plant operates with coupled regenerative and reheat Rankine cycle with 2 connected turbines as shown in Fig. 1. Primary steam is supplied by the boiler at 120 bar and 565°C. Conditions for water/steam flows are described in Table 1.

Figure 1: Reheat and regenerative Rankine cycle with 2 turbines.

	Table 1:	<i>Thermodynamic</i>	table of the	reheat and	regenerative	Rankine cucle	2.
--	----------	----------------------	--------------	------------	--------------	---------------	----

Stage	P	T	State	Н	S	Steam
	(bar)	$(^{o}\mathbf{C})$		$(\mathrm{kJ.kg^{-1}})$	$(\mathrm{kJ.(kg.K})^{-1})$	Quality
1	120	565	(a)	(b)	(c)	_
2	3	_	wet vapour	(d)	_	(e)
3	3	250	_	_	_	_
4	3	475	_	_	_	_
5	0.06	_	wet vapour	(f)	_	(g)
6	_	_	sat.liquid	(h)	_	_
7	3	_	_	(i)	_	_
8	3	_	_	_	_	_
9	120	_	_	(j)	_	-

(a) In Table 1, determine (a)-(j).

[10 marks]

Solution:

[1/10]

In order to fill the Table we need to calculate the thermodynamic properties for each stage of the cycle:

Stage 1: The fluid leaving the boiler towards the first turbine is at 120 bar and 565° C. This is well above the saturation temperature $(T_{sat} = 324.60^{\circ} C)$ and we can thus confirm that the fluid is superheated steam. At such pressure, the superheated steam tables (SHST) results in (through linear interpolation):

[1/10]
$$H_1 = 3518.77 \frac{kJ}{kg}$$
 and $S_1 = 6.6983 \frac{kJ}{kg.K}$.

[1/10]
$$S_1 = 6.6983 \frac{k\tilde{J}}{kg.K} .$$

[1/10] Stage 2: Isentropic expansion in HP Turbine at $P_2 = 3$ bar \Leftrightarrow $S_2 = S_1 = 6.6983 \frac{kJ}{kg.K}$. The fluid is at wet vapour state. The quality of the steam is

$$x_2 = \frac{S_2 - S_f}{S_a - S_f} = \frac{6.6983 - 1.6716}{6.9909 - 1.6716} = 0.9450$$

[1/10] Now calculating the enthalpy,

$$x_2 = \frac{H_2 - H_f}{H_g - H_f} = 0.9450 \Leftrightarrow H_2 = 2605.72 \frac{kJ}{kg}$$

Stage 3: The fluid at $P_3 = P_2 = 3.0$ bar and $T_3 = 250^{\circ}C \,(>> T_{sat} = 133.5^{\circ}C)$ is superheated steam with $H_3 = 2967.6 \frac{kJ}{kq}$ and $S_3 = 7.517 \frac{kJ}{kq.K}$.

Stage 4: The steam leaves the boiler towards the LP turbine at $P_4 = P_3 = 3.0$ bar and $T_4 = 475$ °C (also as superheated steam) with (via linear interpolation) $H_4 = 3433.33 \frac{kJ}{ka}$ and $S_4 = 8.252 \frac{kJ}{ka}$.

Stage 5: Isentropic expansion with $P_5 = 0.060$ bar (with $S_5 = S_4$). The quality of the steam is

$$x_5 = \frac{S_5 - S_f}{S_a - S_f} = \frac{8.252 - 0.521}{8.330 - 0.521} = 0.99$$

[1/10] and the enthalpy,

[1/10]

$$x_5 = 0.99 = \frac{H_5 - H_f}{H_g - H_f} = \frac{H_5 - 151.5}{2567.4 - 151.5} \Leftrightarrow H_5 = 2543.24 \frac{kJ}{kg}$$

Stage 6: The fluid leaves the condenser at $P_6 = P_5 = 0.06$ bar is saturated liquid with $H_6 = H_f (0.06 \text{ bar}) = 151.5 \frac{kJ}{ka}$

Stage 7: Saturated and incompressible liquid leaving the pump towards the regener-[1/10] ator at $P_7 = P_2 = 3.0$ bar,

$$H_7 \approx H_6 + V_6 (P_7 - P_6)$$

$$\approx 151.5 \frac{kJ}{kg} + 0.001006 \frac{m^3}{kg} (3 - 0.06) bar \times \frac{10^5 \frac{N}{m^2}}{1 \ bar} \times \frac{1 \ J}{1 \ N.m} \times \frac{10^{-3} \ kJ}{1 \ J}$$

$$\approx 151.795 \frac{kJ}{kg}$$

Stage 8: Saturated liquid water leaving the regenerator at $P_8 = 3.0$ bar with $H_8 = H_f(3.0 \text{ bar}) = 561.4 \frac{kJ}{ka}$ and $V_8 = 0.001068 \frac{m^3}{ka}$.

[1/10] Stage 9: Saturated and incompressible liquid at $P_9 = 120$ bar,

$$H_9 \approx H_8 + V_8 (P_9 - P_8)$$

$$\approx 561.4 \frac{kJ}{kg} + 0.001068 \frac{m^3}{kg} (120 - 3) bar \times \frac{10^5 \frac{N}{m^2}}{1 \ bar} \times \frac{1 \ J}{1 \ N.m} \times \frac{10^{-3} \ kJ}{1 \ J}$$

$$\approx 573.97 \frac{kJ}{kg}$$

Thus the Table becomes:

Stage	P	\mathbf{T}	State	Н	S	Steam
	(bar)	$(^{o}\mathbf{C})$		$(\mathrm{kJ.kg^{-1}})$	$(\mathrm{kJ.(kg.K})^{-1})$	Quality
1	120	565	Superheated vapour	3518.77	6.6983	_
2	3	_	$wet\ vapour$	2605.72	_	0.9450
3	3	250	_	_	_	_
4	3	475	_	_	_	_
5	0.06	_	$wet\ vapour$	2543.24	_	0.99
6	_	_	sat.liquid	151.5	_	-
7	3	_	_	151.8	_	_
8	3	_	_	_	_	_
9	120	_	_	573.97	_	_

(b) Calculate the fraction (as %) of steam supplied to the low-pressure (LP) turbine.

[2 marks]

Solution:

Energy balance in the regenerator, assuming total mass of water of $(m_T =)$ 1 kg, and that a fraction, \mathcal{F} , is bled-off from the HP turbine to the regenerator, and the remaining water-steam, $1 - \mathcal{F}$ is conducted back to the boiler

$$m_T H_8 = \mathcal{F} H_2 + (1 - \mathcal{F}) H_7 \Rightarrow \mathcal{F} = 0.1669 kg$$

Thus, $m_2 = \mathcal{F} = 0.1669$ kg and $m_3 = m_4 = m_5 = m_6 = m_7 = (1 - \mathcal{F}) = 0.833$ kg $\implies 83.3\%$ of the steam was supplied to the LP turbine.

(c) Determine the heat supplied by the boiler.

[2 marks]

Solution:

[2/2]

[2/2] The heat supplied by the boiler (Q_{Boiler}) can be calculated through the energy balance,

$$Q_{Boiler} = [m_T H_1 + (1 - \mathcal{F}) H_4] - [(1 - \mathcal{F}) H_3 + m_T H_9] \Rightarrow Q_{Boiler} = 3332.75 \frac{kJ}{kg}$$

(d) Determine the thermal efficiency of the cycle,

[6 marks]

$$\eta = \frac{W_{Total}}{Q_{Boiler}} = \frac{\sum W_{\text{Turbines}} - \sum W_{\text{Pumps}}}{Q_{Boiler}}$$

Solution:

Now, in order to calculate the thermal efficiency of the cycle,

$$\eta = rac{W_{Total}}{Q_{Boiler}} = rac{\sum W_{Turbines} - \sum W_{Pumps}}{Q_{Boiler}}$$

We need to calculate the work associated with the turbines and pumps.

[1/6] HP Turbine:
$$W_{T,HP} = m_T H_1 - [\mathcal{F} H_2 + (1 - \mathcal{F}) H_3] = 611.86 \frac{kJ}{kg}$$

[1/6] LP Turbine:
$$W_{T,LP} = (1 - \mathcal{F}) (H_4 - H_5) = 741.44 \frac{kJ}{kg}$$

[1/6] Pump 1:
$$W_{P,1} = (1 - \mathcal{F}) (H_7 - H_6) = 0.246 \frac{kJ}{kg}$$

[1/6] Pump 2:
$$W_{P,2} = m_T (H_9 - H_8) = 12.57 \frac{kJ}{kq}$$

[2/6] Thus the thermal efficiency of the cycle is,

$$\eta = \frac{\sum W_{Turbines} - \sum W_{Pumps}}{Q_{Boiler}} = \frac{1339.76}{3332.27} = 0.4022$$

To solve this problem, you should assume that the saturated liquid streams are incompressible, and therefore dH = VdP (where H, V and P are enthalpy, volume and pressure, respectively). Quality of the steam is expressed as

$$x_j = \frac{\Psi_j - \Psi_f}{\Psi_g - \Psi_f}$$
 with $\Psi = \{H, S\}$

Q.2 Question 2

Refrigerant R-134a is used in a geothermal heat pump system (Fig. 2) to a storage in an industrial facility at 40°C. The heat pump uses underground water from a well to produce a heating capacity of 6 tons. Determine:

Figure 2: Heat pump cycle.

1. Enthalpies and Entropies: H_i , S_i with $i = \{1, 2, 3, 4\}$;

[8 marks]

Solution:

[2/8]

[2/8]

[2/8]

[2/8]

[1/3]

Calculating all enthalpies and entropies of the cycle:

Stage 1: The refrigerant fluid leaves the evaporator at $P_1 = 2$ bar and $T_1 = 10^{\circ}C >> T_{sat} = -10.09^{\circ}C$, thus the fluid is at superheated vapour state and with $H_1 = 258.89 \frac{kJ}{kq}$ and $S_1 = 0.9898 \frac{kJ}{kq.K}$.

Stage 2: Isentropic compression, $S_2 = S_1$, and assuming ideal compressor at $P_2 = 14$ bar. Via linear interpolation, $H_2 = 303.66 \frac{kJ}{kg}$ and $T_2 = 77.08^{\circ}C$.

Stage 3: The fluid leaves the condenser at $P_3 = 14$ bar and $T_3 = 15^{\circ}C$ ($<< T_{sat} = 52.4^{\circ}C$) is a sub-cooled liquid with $H_3 = 125.26 \frac{kJ}{kg}$ and $S_3 = 0.4453 \frac{kJ}{kg.K}$.

Stage 4: Isenthalpic process, $H_4 = H_3$, at $P_4 = 2$ bar. Calculating the quality of the vapour, $H_4 - H_f = 125.26 - 36.84$

 $x_4 = \frac{H_4 - H_f}{H_g - H_f} = \frac{125.26 - 36.84}{241.30 - 36.84} = 0.4325$

and the entropy,

$$x_4 = \frac{S_4 - S_f}{S_g - S_f} = \frac{S_4 - 0.1481}{0.9253 - 0.1481} \Rightarrow S_4 = 0.4842 \frac{kJ}{kg.K}$$

2. Volumetric flow rate of heated air to the room (m^3/s) ; [3 marks] Solution:

In order to calculate the volumetric flow rate of heated air, we first need to determine the mass flow rate,

$$Q_{H} = \dot{m}_{air} \left(H_{out}^{air} - H_{in}^{air} \right) = \dot{m}_{air} C_{p}^{air} \left(T_{out}^{air} - T_{in}^{air} \right)$$

$$6 \ ton \times \frac{210 \frac{kJ}{min}}{1 \ ton} \times \frac{1 \ min}{60s} = \dot{m}_{air} \times 1.004 \frac{kJ}{kg.K} (40 - 15)^{o} C$$

$$\dot{m}_{air} = 0.8367 \frac{kg}{s}$$

[2/3] Now for the volumetric flow rate (with $T = 40^{\circ}C$ and P = 1.01325 bar)

$$\begin{array}{lll} \dot{V}_{air}^{out} & = & \dot{m}_{air}V_{air}^{out} = \dot{m}_{air}\frac{RT_{air}^{out}}{P_{air}} \\ & = & 0.8367\frac{kg}{s} \times 287\frac{J}{kg.K} \times \frac{(40 + 273.15)}{1.0125}\frac{K}{bar} \times \frac{1}{1}\frac{N.m}{J} \times \frac{1}{10^5}\frac{bar}{N/m^2} \\ & = & 0.7426\frac{m^3}{s} \end{array}$$

3. Mass flow rate of the R-134a refrigerant fluid;

[3 marks]

Solution:

[3/3] The mass flow rate of the refrigerant fluid R-134a can be calculated as,

$$Q_H = \dot{m}_R (H_2 - H_3) \Rightarrow \dot{m}_R = 0.1177 \frac{kg}{s}$$

4. Compressor power (W_C) in kW;

[3 marks]

Solution:

[3/3]

$$W_C = \dot{m}_R (H_2 - H_1) \Rightarrow W_C = 5.27 \ kW$$

5. Coefficient of performance $\left(\text{COP} = \frac{Q_H}{W_C}\right)$; [3 marks]

Solution:

[3/3]

$$COP = \frac{Q_H}{W_C} = 3.98$$

Given the heat capacity, $C_p^{\text{air}} = 1.004 \ kJ. (kg.K)^{-1}$, and molecular weight, $MW^{\text{air}} = 28.97 \ kg.kgmol^{-1}$ of air. Assume that air behaves as an ideal gas. Quality of the vapour is expressed as

$$x_j = \frac{\Psi_j - \Psi_f}{\Psi_q - \Psi_f}$$
 with $\Psi = \{H, S\}$

Q.3 Question 3

A steady flow energy device formed of a turbine with one inlet (labelled 1), and two outlets (labelled 2 and 3), does work on an ideal gas at a rate of 120 kW. The specific gas constant $R = 287 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ and the specific heat capacity at constant pressure $c_p = 1003 \,\mathrm{J\,kg^{-1}\,K^{-1}}$, while the known conditions at the inlet and each outlet are given in table 2.

Inlet/Outlet	Area	Volume flux	Temperature	Pressure	Height
	$A~(\mathrm{m}^2)$	$q \left(\mathrm{m}^3 \mathrm{s}^{-1} \right)$	T (°C)	p (Pa)	z (m)
1	0.1	2.0	20	p_1	0.0
2	0.1	1.0	50	200000	10.0
3	0.05	1.0	90	100000	4.0

Table 2: Inlet and outlet conditions for the steady flow device

(a) The steady flow energy equation for a steady flow device with one inlet and one outlet is

$$\frac{\dot{Q} - \dot{W}_s}{\dot{m}} = \left(c_p T_{\text{outlet}} + \frac{u_{\text{outlet}}^2}{2} + g z_{\text{outlet}}\right) - \left(c_p T_{\text{inlet}} + \frac{u_{\text{inlet}}^2}{2} + g z_{\text{inlet}}\right),$$

where u is the gas velocity, \dot{Q} is the rate of heat addition and \dot{W}_s is the rate at which shaft work is done on the gas. Explain how this equation should be changed to model the device described above. [4 marks]

Solution:

The mass flux entering the device \dot{m}_1 is now divided between two outlets. Therefore the modified mass conservation equation would be

$$\dot{m}_1 = \dot{m}_2 + \dot{m}_3$$
.

[1/4]

With two outlets, the flux of energy must also be split between the two outlets, which gives

$$\dot{Q} - \dot{W}_s = \dot{m}_2 \left(c_p T_2 + \frac{u_2^2}{2} + g z_2 \right) + \dot{m}_3 \left(c_p T_3 + \frac{u_3^2}{2} + g z_3 \right) - \dot{m}_1 \left(c_p T_1 + \frac{u_1^2}{2} + g z_1 \right).$$

[3/4]

(b) Calculate the gas velocity at the inlet and each outlet;

[3 marks]

Solution:

The gas velocities are given by

$$u_1 = \frac{q_1}{A_1} = \frac{2.0 \, m^3 \, s^{-1}}{0.1 \, m^2} = 20 \, m \, s^{-1},$$

$$u_2 = \frac{q_2}{A_2} = \frac{1.0 \, m^3 \, s^{-1}}{0.1 \, m^2} = 10 \, m \, s^{-1},$$

$$u_3 = \frac{q_3}{A_3} = \frac{1.0 \, m^3 \, s^{-1}}{0.05 \, m^2} = 20 \, m \, s^{-1}.$$

[3/3]

(c) Determine the pressure at the inlet (p_1) ;

[5 marks]

Solution:

The densities at the outlets can be obtained via the ideal gas equation

$$\rho_2 = \frac{p_2}{RT_2} = \frac{200000 \, Pa}{287 \, J \, kg^{-1} \, K^{-1} \, (50 + 273.15) \, K} = 2.1564726 \, kg \, m^{-3},$$

$$\rho_3 = \frac{p_3}{RT_3} = \frac{100000 \, Pa}{287 \, J \, kg^{-1} \, K^{-1} \, (90 + 273.15) \, K} = 0.9594714 \, kg \, m^{-3}.$$

[2/5]

Mass conservation gives $\dot{m}_1 = \dot{m}_2 + \dot{m}_3$ where the mass flux $\dot{m} = \rho q$. Therefore

$$\rho_1 = \frac{\rho_2 q_2 + \rho_3 q_3}{q_1} = \frac{\left(2.1564726 \, kg \, m^{-3} \times 1 \, m^3 \, s^{-1}\right) + \left(0.9594714 \, kg \, m^{-3} \times 1 \, m^3 \, s^{-1}\right)}{2 \, m^3 \, s^{-1}}$$
$$= 1.557972 \, kg \, m^{-3}$$

[2/5]

The pressure at the inlet is now

$$p_1 = \rho_1 R T_1 = 1.557972 \, kg \, m^{-3} \times 287 \, J \, kg^{-1} \, K^{-1} \times (20 + 273.15) \, K = 131078.49 \, Pa.$$

[1/5]

(d) What is the relative percentage error if the gravitational potential energy terms are neglected when calculating the rate of heat transfer \dot{Q} ? [8 marks]

Solution:

The mass fluxes at each inlet and exit are

$$\dot{m}_1 = \rho_1 q_1 = 1.557972 \, kg \, m^{-3} \times 2 \, kg/s = 3.1159440 \, kg/s,$$

 $\dot{m}_2 = \rho_2 q_2 = 2.1564726 \, kg \, m^{-3} \times 1 \, kg/s = 2.1564726 \, kg/s,$
 $\dot{m}_3 = \rho_3 q_3 = 0.9594714 \, kg \, m^{-3} \times 1 \, kg/s = 0.9594714 \, kg/s.$

[1/8]

The energy fluxes without gravitational potential energy are

$$c_p T_1 + \frac{u_1^2}{2} = 294229.45 \ m^2/s^2,$$

$$c_p T_2 + \frac{u_2^2}{2} = 324169.45 \ m^2/s^2,$$

$$c_p T_3 + \frac{u_3^2}{2} = 364439.45 \ m^2/s^2.$$

[1/8]

The energy fluxes with gravitational potential energy are

$$\begin{split} c_p T_1 + \frac{u_1^2}{2} + g z_1 &= 294229.45 \ m^2/s^2, \\ c_p T_2 + \frac{u_2^2}{2} + g z_2 &= 324267.55 \ m^2/s^2, \\ c_p T_3 + \frac{u_3^2}{2} + g z_3 &= 364478.69 \ m^2/s^2. \end{split}$$

[1/8]

The rate of heat addition without gravitational potential energy is

$$\begin{split} \dot{Q}_{with} = & \dot{W}_s + \dot{m}_2 \left(c_p T_2 + \frac{u_2^2}{2} \right) + \dot{m}_3 \left(c_p T_3 + \frac{u_3^2}{2} \right) - \dot{m}_1 \left(c_p T_1 + \frac{u_1^2}{2} \right) \\ = & -120000 + 699062.53 + 349669.25 - 916802.49 \\ = & 11929.28 \ W. \end{split}$$

[2/8] Note turbine does work on gas so \dot{W}_s is negative.

The rate of heat addition with gravitational potential energy is

$$\dot{Q}_{without} = \dot{W}_s + \dot{m}_2 \left(c_p T_2 + \frac{u_2^2}{2} + g z_2 \right) + \dot{m}_3 \left(c_p T_3 + \frac{u_3^2}{2} + g z_3 \right) - \dot{m}_1 \left(c_p T_1 + \frac{u_1^2}{2} + g z_1 \right)$$

$$= -120000 + 699274.08 + 349706.9 - 916802.49$$

$$= 12178.48 \ W.$$

[2/8] Note turbine does work on gas so \dot{W}_s is negative.

The relative percentage difference between the rate of heat addition with and without the gravitational potential energy terms is

$$100\% \left| \frac{\dot{Q}_{with} - \dot{Q}_{without}}{\dot{Q}_{with}} \right| = 100\% \left| \frac{12178.48 - 11929.28}{12178.48} \right| = 2.0462\%.$$

[1/8]

Q.4 Question 4

(a) Gas flows along a pipe of slowly varying cross section in the direction of increasing x. By considering the rate of change of the mass of gas within a small section of pipe and the gas mass fluxes into and out of this section of pipe, show that

$$\frac{\partial}{\partial t} (\rho A) + \frac{\partial}{\partial x} (\rho u A) = 0.$$

Here the gas velocity u, density ρ and pipe cross section A are all functions of x and time t.

Solution:

[1/5] The total mass contained in a section of pipe of length Δx is $\rho A \Delta x$.

The rate of change of mass in this section of pipe equals the mass flux entering the pipe ρuA minus the mass flux leaving the other end of the pipe section

$$\rho uA + \Delta x \frac{\partial}{\partial x} \left(\rho uA \right).$$

[2/5] [Obtained via a linearized Taylor expansion.]

Hence mass conservation implies

$$\frac{\partial}{\partial t}(\rho A) = \rho u A - \rho u A - \Delta x \frac{\partial}{\partial x}(\rho u A).$$

- [2/5] and hence dividing by Δx and rearranging gives the result.
 - (b) Explain what is meant by a steady flow and show that for steady flow in a pipe of uniform cross section

$$\frac{1}{\rho}\frac{\mathrm{d}\rho}{\mathrm{d}x} + \frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x} = 0.$$

[4 marks]

Solution:

The flow is steady if the density, velocity and cross section depend only on x and not time t. In this case the result from (a) gives

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\rho uA\right) = 0.$$

[2/4]

If the pipe has uniform cross section, then A is constant. Therefore via the chain rule

$$\rho \frac{\mathrm{d}u}{\mathrm{d}x} + u \frac{\mathrm{d}\rho}{\mathrm{d}x} = 0.$$

[2/4] Finally dividing by ρu gives the required result.

(c) For steady compressible flow in a uniform pipe, using the conservation of energy and the laws of thermodynamics; changes in the entropy s, is related to changes in the pressure pressure p, density ρ and velocity u, through

$$T \, \mathrm{d}s + \frac{\mathrm{d}p}{\rho} + u \, \mathrm{d}u = 0.$$

Hence show that the change in pressure and the change in entropy as fluid flows are related through

$$\left(1 - \frac{u^2}{c^2}\right) \frac{\mathrm{d}p}{\mathrm{d}x} = -\rho T \left(1 + \frac{u^2 \beta}{c_p}\right) \frac{\mathrm{d}s}{\mathrm{d}x}.$$

In the derivation of this result, you may additionally assume that a change in gas density

$$\mathrm{d}\rho = \frac{\mathrm{d}p}{c^2} - \frac{\rho\beta T}{c_p}\mathrm{d}s,$$

where c is the speed of sound, β is the thermal expansion coefficient and c_p is the specific heat capacity as constant pressure. [8 marks]

Solution:

 $Variations over \ x \ imply$

$$T\frac{\mathrm{d}s}{\mathrm{d}x} + \frac{1}{\rho}\frac{\mathrm{d}p}{\mathrm{d}x} + u\frac{\mathrm{d}u}{\mathrm{d}x} = 0, \quad and \quad \frac{\mathrm{d}\rho}{\mathrm{d}x} = \frac{1}{c^2}\frac{\mathrm{d}p}{\mathrm{d}x} - \frac{\rho\beta T}{c_p}\frac{\mathrm{d}s}{\mathrm{d}x}.$$

Using the second equation, we eliminate the $\frac{d\rho}{dx}$ from the mass conservation equation to give

$$\rho \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{u}{c^2} \frac{\mathrm{d}p}{\mathrm{d}x} - \frac{u\rho\beta T}{c_p} \frac{\mathrm{d}s}{\mathrm{d}x} = 0.$$

[2/8]

Next we eliminate $\frac{du}{dx}$ to give

$$\frac{T}{u}\frac{\mathrm{d}s}{\mathrm{d}x} + \frac{1}{\rho u}\frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{u}{\rho c^2}\frac{\mathrm{d}p}{\mathrm{d}x} - \frac{u\beta T}{c_p}\frac{\mathrm{d}s}{\mathrm{d}x}.$$

[2/8]

Collecting all the terms involving $\frac{dp}{dx}$ on one side and all the terms involving $\frac{ds}{dx}$ on the other side

$$\frac{1}{\rho u}\frac{\mathrm{d}p}{\mathrm{d}x} - \frac{u}{\rho c^2}\frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{u\beta T}{c_n}\frac{\mathrm{d}s}{\mathrm{d}x} - \frac{T}{u}\frac{\mathrm{d}s}{\mathrm{d}x}.$$

$$\left(\frac{1}{\rho u} - \frac{u}{\rho c^2}\right) \frac{\mathrm{d}p}{\mathrm{d}x} = -T \left(\frac{u\beta}{c_p} + \frac{1}{u}\right) \frac{\mathrm{d}s}{\mathrm{d}x}.$$

[3/8]

If we multiply by ρu , then

$$\left(1 - \frac{u^2}{c^2}\right) \frac{\mathrm{d}p}{\mathrm{d}x} = -\rho T \left(1 + \frac{u^2 \beta}{c_p}\right) \frac{\mathrm{d}s}{\mathrm{d}x}.$$

[1/8]

(d) Define a Mach number, and (with reference to the result derived in part (c)), explain how the pressure changes as a compressible fluid flows subsonically along a pipe of uniform cross section. [3 marks]

Solution:

The Mach number Ma is the ratio of the actual speed u to the speed of sound c, i.e.

$$Ma = \frac{u}{c}$$
.

[1/3]

For subsonic flow Ma < 1, so the coefficient of $\frac{\partial p}{\partial x}$ is positive. The density, temperature and velocity are all positive, so the $-\rho T \left(1 + \frac{u^2 \beta}{c_p}\right)$ is negative, while the entropy must increase with flow along the pipe (i.e. $\frac{ds}{dx} > 0$).

[1/3][1/3]

Consequently the pressure must fall as fluid flows along the pipe.

Q.5 Question 5

MARKS

(a) Define the specific humidity ω . Assuming both dry air and water vapour behave like ideal gases with specific gas constants $R_a = 0.2871 \text{ kJ/(kg.K)}$ and $R_v = 0.4615 \text{ kJ/(kg.K)}$, respectively, show that

$$\omega = \frac{0.622p_v}{p - p_v},$$

where p is the absolute pressure and p_v is the partial pressure of water vapour. [5 marks]

Solution:

The specific humidity ω is the ratio of the mass of water vapour m_v to the mass of dry air m_a in a volume V, i.e.

$$\omega = \frac{m_v}{m_a}.$$

[1/5]

[1/5]

In terms of densities

$$\omega = \frac{\rho_v V}{\rho_a V} = \frac{\rho_v}{\rho_a}.$$

Treat both water vapour and dry air as ideal gases, so that

$$\omega = \frac{p_v}{R_v T} \frac{R_a T}{p_a} = \frac{0.622 p_v}{p_a}.$$

[2/5]

Finally the partial pressure of water vapour and dry air $p_v + p_a = p$, so

$$\omega = \frac{0.622p_v}{p - p_v}.$$

[1/5]

(b) Define the relative humidity φ , and hence show that

$$\omega = \frac{0.622\varphi p_g}{p - \varphi p_g},$$

where the saturation pressure of water is denoted p_g .

[3 marks]

Solution:

The relative humidity φ is the ratio of the mass of water vapour m_v to the mass of water vapour at saturation m_a , i.e.

$$\varphi = \frac{m_v}{m_a}.$$

[1/3]

Again using the ideal gas equation

$$\varphi = \frac{m_v}{m_g} = \frac{\rho_v V}{\rho_g V} = \frac{p_v}{R_v T} \frac{R_v T}{p_g} = \frac{p_v}{p_g}.$$

[1/3]

[1/3] Therefore writing $p_v = \varphi p_g$ in the equation from part (a), gives the required result.

- (c) Air enters an air-conditioning system at 1 atm, 35°C and 60% relative humidity, at a rate of 12 m³/min. Saturated air leaves the air-conditioning system at a temperature of 16°C. The moisture in the air that condenses during the process is removed at 16°C, while the specific enthalpy of liquid water at 16°C is 67.22 kJ/kg.
 - i) Determine the rate of moisture removal from the air; [7 marks] Solution:

The inlet and outlet are at 1 atm $(= 101.325 \, kPa)$ so we can determine the conditions using the psychrometric chart, which gives

$$h_1 = 90 \, kJ/kg \, dry \, air,$$
 $h_2 = 43 \, kJ/kg \, dry \, air,$ $\omega_1 = 0.022 \, kg \, water/kg \, dry \, air,$ $\omega_2 = 0.011 \, kg \, water/kg \, dry \, air,$ $V_1 = 0.905 \, m^3/kg \, dry \, air.$

[3/7]In the cooling section:

[1/7]

[1/7]

Conservation of dry air:
$$\dot{m}_{a_1} = \dot{m}_{a_2} = \dot{m}_a$$
,
Conservation of water vapour: $\dot{m}_{a_1}\omega_1 = \dot{m}_{a_2}\omega_2 + \dot{m}_w$,
 $\Rightarrow \dot{m}_w = \dot{m}_a(\omega_1 - \omega_2)$.

[2/7]

The mass flux of dry air is given by

$$\dot{m}_a = \frac{\dot{V}_1}{V_1} = \frac{12 \ m^3/min}{0.905 \ m^3/\ kg \ dry \ air} = 13.26 \ kg/min.$$

Hence the conservation of water vapour gives

$$\dot{m}_w = \dot{m}_a (\omega_1 - \omega_2)$$

= 13.26 kg/min × (0.022 – 0.011)
= 0.15 kg/min.

ii) Determine the rate of heat removal from the air.
Solution:

In the cooling section:

Conservation of energy:
$$\dot{Q} = \dot{m}_a (h_2 - h_1) + \dot{m}_w h_w.$$

[5 marks]

$$[1/5]$$
 The heat supplied to the system \dot{Q} is given by the energy conservation equation

$$\dot{Q} = \dot{m}_a (h_2 - h_1) + \dot{m}_w h_w$$
=13.26 kg/min (43 - 90) kJ/kg + (0.15 kg/min × 67.22 kJ/kg)
= -623.204 kJ/min + 9.804 kJ/min
= -613.4 kJ/min.

[3/5] The rate of heat addition \dot{Q} is negative indicating heat removal from the cooling section. Therefore the rate of heat removal is 613.4 kJ/min.

END OF PAPER