Биогенные метаплы

Биометаллоорганическая химия изучает роль металлов в биологических процессах. Биогенные металлы — это металлы, которые непременно встречаются в живой клетке и выпопределенную роль:

Na, K, Mg, Ca, V, Mo, W, Mn, Fe, Co, Ni, Cu, Zn

Содержание элементов в организме человека

В организме «среднего» здорового человека (вес 70 кг):

- кислорода 45,5 кг (т. е. больше половины массы)
- углерода-12,6 кг
- водорода 7,0 кг
- азота 2,1 кг, примерно столько же фосфора.
- кальция в человеке 1,7 кг,
- калия 0,28 кг
- натрия 0,07 кг
- магиня 42 г
- железа только 5 г («железа в человеке хватит лишь на один гвоздь»)
- иника 3 г.

Остальных металлов в сумме меньше, чем 1 г. В частности, меди - 0,2 г, марганца - 0,02 г.

Биометаллорганическая химия

Родь органических соединений

С, N, O, H, S, Р Образование и функционирование биомолекул Роль металлов и их соединений

Na,K,Mg,Ca,V,Mo,W,Mn,Fe, Co,Ni,Cu,Zn

Ферментативный катализ Преобразование энергии Транспорт через мембраны

H₁₅₇₅₀ N₃₁₀ O₆₅₀₀ C₂₂₅₀ Ca₆₃ P₄₈ I C₁₆ Mg₃ Fe₁.

Фуллерен – одна из аллотропных форм углерода

Учение Вернадского В.И.

Академик Императорской

Санкт-Петербургской академии наук (1912).

Создатель научных школ (минералог геохимия) и науки биогеохимии

Использование биометаллов

UNIVERSITY

«Я считаю, здоровым организмом можно считать только тот, у которого все ферментные системы находятся в хорошо сбалансированном виде. Наступит время, когда врач будет лечить не язву, артрит или геморрой (что является лишь спедствием), а первопричину - дефицит магния, калия, селена...»

Лайпус Паулинг американский

химик. Лау двух Нобел премий: по (1954) и про мира (1962)

Биогенные металлы

PEDIATRIC UNIVERSITY

VIIIA 5-6,70% Re Uns Uno Une Uun to contune tune tunh

Биогенные металлы — это незаменимые для живых организмов металлы, непосредственно принимающие активное участие в о жизненных процессов.

MCTATUTE

Эти элементы в физиологических условиях находятся или в фо свободных (гидратированных) изнов, или в составе комплексо бирлигандами

Биомолекулы, содержащие металлы

- Белки процессы транспорта и запасания
- Переносчики электронов (цитохромы)
- Железо-серные белки
- Ферритин (Fe)
- Церулоплазмин (Cu)

В организме человека (г/70 кг)

Co	~1000 g	Fe	~4.5 g	Sn	~20 mg
K	~140 g	Zn	-2.3 g	Cr	~14 mg
Na	~100 g	Cu	-72 mg	Mn	~12 mg
Ma	~25 g	٧	-28 mg	Mo	-5 mg

Гидролазы Фосфатазы (Zn, Mg, Cu) Аминопептидазы (Zn, Mg) Карбоксипептидазы (Zn)

Ферменты, содержащие металлы

Оксидоредуктазы

Оксидазы (Fe, Cu) Редуктазы (Fe, Cu, Мо) Нитрогеназы (Fe, Mo, V) Гидроксилазы (Fe, Cu, Mo) Гидрогеназы (Fe, Ni) Супероксид дисмутаза (Fe, Mn)

Белки как биолиганды

- Ферменты (рибонуклеаза катализирует гидролиз РНК)
- Регуляторные белки (писудии регулирует уровень сахара в крови)
- Транспортные белки (гемоглобия доставляет О₂ в ткани)
- Структурные белки (коллаген является компонентом соединительных тканей)
- Сократительные белки (актии и миозии содержатся в мышцах)
- Запасные белки (ферритии денопирует Fe в селезенке, в печени)
- Scaffolding proteins & modules: (доставляют необходимому участку)
- Экзотические белки (белки-антифризы у ры.

Связывание металлов в аминокислотах

Функциональные группы в аминокислотах, которые могут связывать атом металла (N,O,S-лиганды)

Тирозин [фенол (O·)] Цистеин [тиол (S-)]

Гистидин [имидазол (N)]

Метионин [тиоэфир (S)]

His: Zn2+, Cu2+, Cu+, Fe2+

Met: Fe2+, Fe3+, Cu+, Cu2+

Cys": Zn2+, Cu2+, Cu+, Fe3+, Fe2+, Mo4+-6+,

Ni1+-3+

Tyr: Fe3+

Glu-, Asp-: Fe3+, Mn3+, Fe2+, Zn2+, Mg2+, Ca2+

МЕТАЛЛОТИОНЕИНЫ

Металлотноненны (МТ) — семейство низкомолекулярных белков, обогащенных аминокислотными остатками цистеина (30% Cys, Mr = 500 -14000 Да).

МТ локализованы в мембране аппарата Гольджи и обладают способностью связывать как биогенные металлы (Zn. Cu), так и токсичные металлы (Сс Ag, As)

запасание металлов транспорт металлов детоксификация металлов

Sigel, A., Sigel, H.; Sigel, R.K.O., Fds. Metallothicucins mid Related Chelators, In-"Metal loas in Life Sciences".

Нуклеиновые кислоты как лиганды

Участки связывания металло азотистых основаниях

Нуклеиновые кислоты как лиганды

комплекс Pb(II), который промотирует разрыв цепи тРНК

Нуклеиновые кислоты как лиганды

комплекс, который образует транс- $[Pt(NH_3)_2Cl_2$

Для осмия характерно образование комплекса по углеводному остатку, для магния - по фосфатной группе, для платины – по атому азота.

Пример взаимодействия ванадня с двумогидроксильными группами углевода и образования типичного стабильного о комплекса

Углеводы как лиганды

UNIVERSITY

Переходные металлы связываются легч якорными группами углеводов

Липиды как лиганды

Ионофоры - специфические молекулы или их ансамбли, которые образуют комплекс с нонами на одной стороне мембраны, в виде такого комплекса переносят их через липидный слой и затем высвобождают ионы. Такие вещества иначе называют «переносчиками».

Структура валиномицина (b) и ого комплекса с К+ (a)

Цинк активный комплексообразователь, координационное число равно 4 и 6.
Токсическая доза для человека составляет 600 мг/день. На промышленных предприятиях, где используются цинк и его соединения, возможны острые и хронические отравления (профессиональная вредность).

Карбоангидраза Карбоксипептидаза Щелочная фосфатаза

Карбоангидраза

$\frac{0}{C} + H_2O \xrightarrow{k_1} HO OH HO O + H^+$ Угольная БикарбонатКислота ион

Активация молекулы Н2О

Депротонирование

Поляризация

Механизм каталитической гидратации СО₂ в активном центре карбоангидразы

стресс.

В среднем, около 70% железа приходится на гемоглобин, остальные 30% приходятся на ферменты и другие белки.

Важным является поддержание определенного уровня железа в организме, т.к. при его недостатке или избытке могут возникать различные патологии — анемия, окислительный

- •Обратимое связывание, транспорт и хранение кислорода в составе таких белков, как гемоглобии, многлобии, гемэритрии
- •Обратимый перенос электронов в составе железосерных белков, цитохромов a, b, c, цитохрома с
- Функционирование активных центров редокеферментов, которые участвуют в окислении (пероксидазы, цитохромы Р450),
- *разложении активных метаболитов кислорода (каталаза, супероксиддисмугаза),
- •образовании активных метаболитов кислорода (оксидаза фагоцитов),
- образовании реакционноспособных азотсодержчастиц (NO-синтаза)

Транспорт железа

Трансферрин

PEDIATRIC

Важнейший железо-транспортный белок у млекопитающих М = 80 кДа Два домена Перенос двух Fe(III) катионов Важно наличие противоиона (аниона)

Активный центр Fe(III)-трансферрина

PEDIATRIC

Белок обеспечивает 4 допорных атома: •3 O (2 Tyr, 1 Asp) •1 N (His)

Два допорных атома предоставляет карбопат:

•2 О
КЧ Fe(III) = 6
октардрическая
геометрия искажена.
Свизывание карбоната и
Fe(III) является

синэргическим ироцессом, т.с. связывание одного промотирует связывание другого.

•Ферритин важнейший железосберегающий белок.

^вМожет связывать до 4500 нонов Fe(III) (~1 атом на 1 аминокислотный остаток).

 Молекулириая масса 747 000 Да; после отщепления Fe образуется аноферритии. 24 субъединицы ферритина

Ферритин

*«Контейнер» для хранения железа со сферической оболочкой, состоящий из 24 идентичных иентилных субъединин, соединециых нековалентными взаимодействиями.

• Неорганическое ядро [Fe₉O₉(OH)₈(H₂PO₄)]

Внутри белка существует полость, в которой за счёт кислородных связей мостиковых ОН- и фосфатных групп содержится полиядерный кластер железа +3. «Железное ядро» ферритина

Четырех-координированные тетраэдрические комплексы Fe

- Сульфиды (S²⁻) выполняют роль мостиковых лигандов
- боковые цени цистсина (Суз) также принимаю участие в координации Fe: связывают кластер с белком

Катализирует стеревенецифическую реакцию изомеризацы циграта в изоцитрат посредством образования цис-акопит цикле Кребся без окислительно-восстановительного механ Акопитаза имеет железо-серный кластер в активном сайте капал, обеспечивающий доступ субстрата. Циграт связыва лабильным поном железа.

Каталитический цикл аконитазы

UNIVERSITY

Цитрат связывается лабильным ноном Fe как полид лиганд.

Железо действует как кислота Льюнса, промотируя ОН группы цитратом

Катион Cu²⁺ – достаточно сильный окислитель.

Катионы меди сильные комплексообразователи и особенно с лигандами, содержащими карбоксильную (-СОО-), амино- (-NH,), циано- (-CN-) и тиольную (-SH) группы. За счет реакции с тиольными группами белков катионы меди(II) инактивируют ферменты и разруш нативную конформацию белка на основано их антимикробное дейст

Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди, в основном в мыщцах, коже, костях, печени, головном мозге, крови (1,01 мг/л). В крови медь связывается с сывороточным альбумином (12-17%), аминокислотами – гистидином, треонином, глутамином (10-15%),

Всего в организме обнаружено около 30 медьсодержащих ферментов. Токсическая до человека: более 250 мг.

транспортным транскуприном (12-14%) и

церулоплазмином (до 60-65%).

Медь-содержащие белки

Медь-содержащие белки содержат медь в различных состояниях в активном центре. Существует схема транспорта и хранения меди, схожая с таковой для железа.

После попадания в клетку часть меди используется в цитохроме С и супероксиддисмутазе.

Медь-содержащие белки

Существует три типа медь содержащих белков; Тип 1 - снине медиые протенны. Содержит простой комплекс меди с координационным числом 4. Лигандами являются два гистидина, один цистени, и сщё один лиганд, обозначенный как R.

Этим лигандом может быть метионин (как в азурине, лакказе, иластоцианицах), глугамат (фитоцианицы), или вода (церулоплазмин).

Примеры различных групп синих медных протеннов: Малые синие протенны (перепосчики электропов): азурян, пластоциацины, фитопианины, растишанин, аурациацин.

Синие оксидазы (оксидазы): аскорбат оксидаза, лакказа. церулоплазмин. Нитрит редуктаза (редуктазы).

Обигает в киперчинце

DOMESTING TO SERVICE OF SERVICE O

Строение активного центра азурипа, иллюстрирующее образование структуры тригональной бинирамиды для комплекса ме

UNIVERSITY

Си, Zпсупероксид-дисмутаза

- •Диокситеназы
- •Монооксигеназы
- •Дофамии в-гидроксилаза
- •Нитрит редуктаза
- Аминоксидаза
- •Галактозоксидаза

У меди бывает двуядерный комплекс, имеет форму полиздра – тригональной антипризмы, ферменты осуществляют катализ реакций оксигенирования, также отвечают за транспорт кислорода. Примеры: катехолоксидаза, гемоцианины, тирозиназа.

Крезолазная (Монофенолазная) активность

Катеходазная (дифенолазная) активность

меланц

(Альбинизм - врождённов отсутствие пигмента меланина)

*Центр СиА - биялерный - координация: 2N(His), 1S(Met), О(амид)(Glu), 2µ-S(Cys) (мостиковые литанды, стабилизируют комплекс в строго фиксированной позиции)

*Центр СиВ - координация: 3N(His)

«Цитохром а: координация - 2N(His) Цитохром а3: координация - N(His) Цитохром а3 - СиВ центр: тем цитохрома и комплекс меди имеют вакантные координационные положения для связывания субстрата, возможно в окнеяенной форме координированный субстрат принимает участие в передаче обменного взаимодействия между а3 и СиВ.

Металлы-токсиканты

Токсичность металлов или отравление металлами - это токсическое воздействие определенных металлов в определенных формах и дозах на биосистему. Некоторые металлы токсичны, когда они образуют ядовитые растворимые соединения. Некоторые металлы не играют биологической роли, то есть не являются незаменимыми минералами, или токсичны в определенной форме.

Токсичность металлов

Биологическая активность металлов связана с их способностью повреждать клеточные мембраны, повышать проницаемость барьеров, связываться с белками, блокировать многие ферментные системы, что в итоге ведет к токсическим изменениям. Соединения метаплов, хорошо растворимые в воде и биологических жидкостях, легче проникают через биологические барьеры и вызываю нарушения в организме.

- 1) высокотоксичные металлы ртуть, уран, индий, кадмий, медь, таллий, мышьяк, золото, ванадий, платина, бериллий, серебро, цинк, никель, висмут;
- 2) умеренно токсичные металлы марганец, хром, палладий, свинец, осмий, барий, иридий, олово, кобальт, галлий, молибден, скандий, стронций, сурьма, рутений, родий, лантан, лантанонды;

3) малотоксичные металлы — алюминий, железо, германий, кальций, магний, стронций, цезий, рубидий, литий, титан, натрий.

Ионы металлов, которые относятся к группе высокотоксичных, вызывают острые и хронические отравления.

ноны Pb(2+), Hg(2+), Co(2+), Cd(2+), Tl(1+-3+)

Кадмий относят к иммунотоксичным элементам, многие соединения кадмия ядовиты.

Ингибирует ферменты:

- Аденозинтрифосфатазу
- алкогольдегидрогеназу
- Карбоангидразу
- Амилазу
- Карбоксипептидазу

ПДК для солей кадмия в сточных водах – 0,1 мг/л, в питьевой воде – 0,01 мг/л. В меди сульфат кадмия используют при провед исследований свертываемости крови.

Ртуть обнаружена во всех органах и тканях человека. Есть сведения о положительном влиянии ее на фагоцитарную активность лейкоцитов и иммунологическую устойчивость организма.
Ртуть попадает в организм человека с водой, с морской рыбой, морепродуктами и рисом, общим количеством до 0,2 мг/кг в сутки.

Высокая устойчивость комплексов ртути с белками и денатурация белков под дейстионов Hg^{2+} объясниют ее накопление в э организме и трудность выведения

Ингибирует ферменты:

- Щелочная фосфатаза
- Глицеральдегид -3 фосфатдегидрогеназа
- Глюкозо-6-фосфатаза

Ртутное отравление приводит к поражению нервной системы, почек, печени, органов дыхания и кровообращения.

Применение ртути в медицине

HgCl2 - антисептик

Hg(CN)2·HgO - антисептик

Hg - антисептик мазь ртутная серая

(30% ртути)

HgNH2Cl - антисептик

HgO - антисептик (желтая окись ртути)

Hg₂Cl₂ - антисептик
ClHgCH₂CH₂OH - антисептик
(этанолмеркурхлорид - биоцид)

Таллий и его соединения ядовиты. Класс опасности 1 - особо опасен.

Смертельная для человека доза таллия составляет 400 мг.

Таллий поражает первную систему, легкие, сердце, печень и почки.

Симитомами отравления являются выпадение волос и расстройство желудка и кишечника. При тяжелом отравлении у больных могут развиться полиневриты, исихические расстройства и поражения зрения.

Механизм токсичности не устаповлен. Предполагается, что токсичность таллия связана с нарушением баланса нонов Na⁺ и K⁺, ингибированием белков за счет связывания с SH групнами цистенна, влиянием митохондриальный потенциал и на высвобожде цитохрома С.

Ежесуточно человек поглощает до 100 мкг свинца с пищей, водой, воздухом. Безопасным считается поступление 0,2 - 2 мг свинца в сутки.

Свинец депонируется преимущественно в скелете (до 90%) в виде малорастворим фосфата Pb₃(PO4)₂.

Свинец участвует в обменных процессах костной ткани.

Является канцерогеном для организма, действующим преимущественно на нервную, сосудистую системы и непосредственно на кровь.

Установлено, что свинец, содержащийся в продуктах питания, влияет на развитие кариеса.

Мишенями действия Рb являются ферменты, участвующие в биосинтезе гема, антиоксиданти системы - супероксиддисмутаза, каталаза, глуга пероксидаза, глюкоза-6-фосфат -дегидрогеназа и глутатион GSH.

Свинец в медицине

Вступая в реакцию с цитоплазмой микробных клеток и тканей, ионы свинца образуют гелеобразные альбуминаты.

В небольших дозах соли свинца проявляют вяжущее действие, вызывая гелефикацию белков. Образование гелей препятствует проникновению микробов вглубь клеток и уменьшает воспалительную реакцию. На этом основано действие свинцовых примочек.

Pb(CH₃COO)₂·3H₂O, PbO₂

Использование металлов в медицине

- 1. Терапевтические средства, содержащие металл
- противоопухолевые (цисплатин)
- противоартритные, содержащие золото
- -литий: контроль биполярных эмоциональных расстройств
- противоязвенные препараты, содержащие висмут

Цисплатин - комплекс платины, противоопухолевый препарат.

Платиновые препараты, допущенные к использовацию в различных странах

Цисплатин

Присоединение цисплатина к ДНК вызывает стягивание азотистых оснований и соответственное изменение формы и структуры ДНК на 45 градусов. Данные нарушения не поддаются репарации

АНТИСЕПТИКИ И ДЕЗИНФИЦИРУЮЩИЕ СРЕДСТВА

(язавиная болюзнь жолудка и двенадцатиперстной кишки)

до-нол

десмол

ранитидин висмут

Использование металлов в медицине

- 2. Контрастные и диагностические агенты
- радиодиатностические и радиотерапевтические агенты
- Контрастные агенты для МРТ
- 3. Молекулярные мишени
- Металлоферменты
- Миметики инсудина
- Противомикробные и противовирусные агенты
- Миметики супероксиддисмутазы
- Оксид азота

Sr - Изотои строиция 90-Sr является радионктивным с периодом полурасияда 28.9 лет.

Радиоактивный стропций используют в качестве аппликаторов при лечении кожных и глазных болезпей.

Радионуклид ⁸²Sr — основной компонент Sr-Rb генераторов, которые используются для проведения процедур позитроннозмиссионной томографии (ПЭТ) при днагностике и лечении опко- и кардиологических заболеваний. Двигаясь вместе с кровью, Rb выявляет кровотоки во всем организме и, что особенно важно, - в сердце.

Поэтому способ используется при р диагностике инфаркта мнокарда

Наиболее распространенным является применение Ва в виде ВаSО4 для диатностики заболеваний пищеварительного тракта при реитгеиологическом исследовании в качестве контрастного средства. Взвесь сульфата бария в воде мерастворима и видиа на реитгеновском синмке, что используется при неследования пищеварительного тракта на предмет нарушения оболочки тракта.

Комплексы V(O) (а также Zn), обладающие анти/знабетичесими

Соединения V как инсулин-миметики Комплекс ванадила с алликсином в качес лигандов