1. Ejercicio de equilibrio estático.

Para cierto sistema masa resorte se deben satisfacer las siguientes ecuaciones de equilibrio estático.

$$(k_1+k_2+k_3+k_5)\cdot x_1-k_3\cdot x_2-k_5\cdot x_3=m_1\cdot g$$

$$-k_3\cdot x_1+(k_3+k_4)\cdot x_2-k_4\cdot x_3=m_2\cdot g$$

$$-k_5\cdot x_1-k_4\cdot x_2+(k_4+k_5)\cdot x_3=m_3\cdot g$$
 siendo
$$k_1=k_3=k_4=k,\;k_2=k_5=5k,\;m_1=m_3=2m,\;m_2=m$$

```
• Código de Octave
function [x]=desplazamientoElas(m,k)
%% La funcion me da como resultado los valores de los
%% desplazamientos elasticos.
\%\% - k es la constante del resorte.
\%\% - m es la masa del resorte.
%% Se resuelve el sistema mediante el metodo iterativo de Gauss-Seidel.
%%Entrada
k=input("Ingrese el valos de k:");
m=input("Ingrese el valor de m:");
%%Proceso
if k,m>0
A = [12*k,-k,-5*k,-k,2*k,-k,-5*k,-k,6*k];
b=[19.62*m;9.81*m;19.62*m];
x0=[0;0;0];
tol=1E-3;
x=gs(A,b,x0,tol); (*)
```

%%Salida

disp("Los valores de los desplazamientos elasticos son:");

```
else
disp("Los valores de k y m no son mayores a cero")
end if
end function\\
(*)Programa ocupado para resolver el problema anterior.
function [x]=gs(A,b,x0,tol)
\%\% El siguiente programa resuelve el SEL
%% por el método iterativo de Gauss-Seidel.
[n,n]=size(A);
x = zeros(n,1);
erro=999;
%% Obtengo la matriz diagonal de A.
for i=1:n
D(i,i)=A(i,i);
end for
%% Obtengo la matriz triangular estrictamente inferior.
Tinf = tril(A,-1);
%% Obtengo la matriz triangular estrictamente superior.
Tsup = triu(A,1);
An=(D+Tinf);
while erro>tol
bn=b-Tsup*x0;
\%\%\ Aplicamos\ sustitucion\ progresiva.
x(1)=bn(1)/An(1,1);
for k=2:n
x(k) = (bn(k)-An(k,1:k-1)*x(1:k-1))/An(k,k);
```

```
endfor
erro=norm((x-x0),1);
x0=x;
endwhile
endfunction
```

• Captura del programa en ejecución

• El método que se utiliza para resolver el problema es el método iterativo de Gauss-Seidel

2. Ejercicio de equilibrio estático.

Los desplazamientos de un cierto reticulado plano se pueden determinar mediante el conjunto de ecuaciones de equilibrio estático que se presentan a continuación.

```
27,58E6u_1+7,004E6u_2-7,0044E6u_3=0 7,004E6u_1+29,57E6u_2-5,253E6u_3-24,32E6u_5=0 -7,004E6u_1-5,253E6u_2+29,57E6u_3=0 27,58E6u_4-7,004E6u_5=0 -24,31E6u_2-7,004E6u_4+29,57E6u_5=-47000[N]
```

donde los coeficientes numéricos que multiplican a los desplazamientos expresan rigidez en (N/m).

• Código de Octave

function [u]=desplazamientoElas2()

%% La funcion me da como resultado los valores de los

%% desplazamientos elasticos.

%% Se resuelve el sistema mediante triangulacion superior seguida

%% de una sustitución regresiva.

%%Entrada

```
\begin{array}{l} A \!=\! [27580,\!7004,\!-7004,\!0,\!0;\!7004,\!29570,\!-5253,\!0,\!-24320;\!-7004,\!-5253,\!29570,\!0,\!0;\!0,\!0,\!0,\!27580,\!-7004;\!0,\!-24310,\!0,\!-7004,\!29570]; \end{array}
```

B = [0;0;0;0;-47000];

%%Proceso

%% Resolvemos Au=Bmediante triangulacion superior seguida de sustitucion regresiva.

```
u=tSSR(A,B); (*)
```

%%Salida

disp("Los valores de los desplazamientos elasticos son:");

end function

```
(*) Programa utilizado para resolver el problema anterior.
function [X]=tSSR(A,B)
%%Ingreso - A matriz N x N no singular
\%\% - B es una matriz N x 1
\%salida - X es matriz N x 1 con la solución de AX=B.
%%Iniciaalizar X y la matriz temporario de almacenaje C
[N N] = size(A);
X = zeros(N,1);
C=zeros(1,N+1);
%%Forma la matriz aumentada: Aug=[A|B]
Aug=[A B];
for p=1:N-1
%%Pivoteo parcial para columna p
[Y,j]=\max(abs(Aug(p:N,p)));
%%Intercambio fila p y j
C=Aug(p,:);
Aug(p,:) = Aug(j+p-1,:);
Aug(j+p-1,:)=C;
if \operatorname{Aug}(p,p) = = 0
'A es singular. No hay solución única'
break
end if
%%etapa de eliminación para columna p
for k=p+1:N
m = Aug(k,p)/Aug(p,p);
Aug(k,p:N+1) = Aug(k,p:N+1) - m*Aug(p,p:N+1);
```

end for

end for

%sustituación hacia atrás en [U|Y]

 $X \small{=} sustRegre(Aug(1:N,1:N), Aug(1:N,N+1));$

end function

• Captura del programa en ejecución

- El método que se utilizo para resolver el problema es el método de triangulación superior seguda de sustitucion regresiva.
- 3. Ejercicio de circuitos eléctricos

En un circuito "puente de Wheatstone", las leyes de Kirchoff establecen que en cada lazo del circuito la suma de las caídas de tensión deben igualar a la suma de las fuentes de tensión. Para una configuración dada se obtiene el siguiente conjunto de ecuaciones.

$$(50+R) \cdot i_1 - R \cdot i_2 - 30 \cdot i_3 = 0$$

$$-R \cdot i_1 + (65+R) \cdot i_2 - 15 \cdot i_3 = 0$$

$$-30 \cdot i_1 - 15 \cdot i_2 + 45 \cdot i_3 = 120$$

• Código de Octave

```
function [i] = corrientes Elec(R)
\%\% La funcion me da como resultado los valores de las
%% corrientes electricas.
%% - R es la resistencia.
\%\% Se resuelve el sistema mediante el metodo iterativo de Jacobi.
%%Entrada
R=input("Ingrese el valos de R:");
%%Proceso
if R > 0
A = [(50+R), -R, -30; -R, (65+R), -15; -30, -15, 45];
b=[0;0;120];
x0=[0;0;0];
tol=1E-3;
i=jacobi(A,b,x0,tol); (*)
%%Salida
disp("Los valores de las corrientes electricas son:");
else
disp("El valor de R no es mayor a cero")
end if
end function
```

```
(*) Programa utilizado para resolver el problema anterior.
function [x]=jacobi(A,b,x0,tol)
\%\% El siguiente programa resuelve el SEL por el método iterativo de Jacobi.
%%Entrada
[N,N] = size(A);
for i=1:N;
D(i,i)=A(i,i);
Dinv(i,i) \!=\! 1/A(i,i);
end for
R=A-D;
c = Dinv*b;
T = -Dinv*R;
errort = 999;
{\it while} \ {\it errort}{>}{\it tol}
x=c+T*x0;
\operatorname{errort} = \operatorname{norm}((x-x0),1);
x0=x;
end while
end function
```

• Captura del programa en ejecución

 El método que se ultilizo para resolver el problema es el método iterativo de Jacobi.

4. Ejercicio de mecánica de fluidos

Para un conjunto de tanques interconectados, donde se bombea una solución de agua y un químico determinado, el principio de conservación de la masa establece que, para cada tanque la suma de los caudales másicos de entrada debe ser igual a la suma de los caudales másicos de salida, es decir, $\sum \dot{m}_i^e = \sum \dot{m}_i^s$, $m_i = q_i.c_i$ Donde q_i es el caudal volumétrico y c_i es la concentración del químico. Si se expresa el principio para cada tanque se obtiene el siguiente conjunto de ecuaciones.

$$4 \cdot 20 + 4 \cdot c_2 = 8 \cdot c_1$$

$$8 \cdot c_1 + 2 \cdot c_3 = (4+6) \cdot c_2$$

$$6 \cdot c_2 + 5 \cdot c_4 = (2+3+6) \cdot c_3$$

$$3 \cdot c_3 + 4 \cdot c_5 = (2+5)c_4$$

$$2 \cdot 15 + 2 \cdot c_4 = 4 \cdot c_5$$

• Código de Octave

```
function [c]=mecanicaFluid()
   %% La funcion me da como resultado los valores de las
   \%\% contracciones en cada tanque.
   %% Se resuelve el sistema mediante triangulacion superior seguida
   %% de una sustitución regresiva.
   %%Entrada
   A = [8, -4, 0, 0, 0; 8, -10, 2, 0, 0; 0, 6, -11, 5, 0; 0, 0, 3, -7, 4; 0, 0, 0, -2, 4];
   B = [80;0;0;0;30];
   %%Proceso
   %%Resolvemos Ac=B mediante triangulacion superior seguida de sustitu-
cion regresiva.
   c=tSSR(A,B); (*)
   %%Salida
   disp("Los valores de las contracciones en cada tanque son:");
   end function
(*) Programa utilizado para resolver el problema anterior.
function [X]=tSSR(A,B)
\%\% Ingreso - A matriz N x N no singular
\%\% - B es una matriz N x 1
%%salida - X es matriz N x 1 con la solución de AX=B.
%%Iniciaalizar X y la matriz temporario de almacenaje C
[N N] = size(A);
X = zeros(N,1);
C=zeros(1,N+1);
%%Forma la matriz aumentada: Aug=[A|B]
Aug=[A B];
for p=1:N-1
%%Pivoteo parcial para columna p
[Y,j]=\max(abs(Aug(p:N,p)));
%%Intercambio fila p y j
C = Aug(p,:);
```

```
\begin{split} &\operatorname{Aug}(p,:) = \operatorname{Aug}(j + p - 1,:); \\ &\operatorname{Aug}(j + p - 1,:) = C; \\ & \text{if } \operatorname{Aug}(p,p) = = 0 \\ & \text{'A es singular. No hay solución única'} \\ & \text{break} \\ & \text{endif} \\ & \text{\%etapa de eliminación para columna p} \\ & \text{for } k = p + 1:N \\ & \text{m} = \operatorname{Aug}(k,p) / \operatorname{Aug}(p,p); \\ & \operatorname{Aug}(k,p:N+1) = \operatorname{Aug}(k,p:N+1) - m^* \operatorname{Aug}(p,p:N+1); \\ & \text{endfor} \\ & \text{endfor} \\ & \text{\%sustituación hacia atrás en } [U|Y] \\ & \text{X} = \operatorname{sustRegre}(\operatorname{Aug}(1:N,1:N),\operatorname{Aug}(1:N,N+1)); \\ & \text{endfunction} \\ \end{split}
```

• Captura del programa en ejecución

```
Octave
 Archivo
         Editar
                Depurar
                         Ventana Ayuda Noticias
                          Directorio actual: lumerico\Trabajos\Trabajo integrador de SEL
Ventana de comandos
>> [c]=mecanicaFluid()
Los valores de las contracciones en cada tanque son:
c =
   19.722
   19.444
   18.333
   17.000
   16.000
>>
```

• El método que se utilizo para resolver el problema es el método de triangulación superior seguda de sustitucion regresiva.