

IN THE CLAIMS:

1.-4. (Cancelled)

5. (Original) In an internal combustion engine having a partition wall which partitions an intake air passage for introducing air into a cylinder in an upper stage and a lower stage, wherein

 said partition wall is constituted of a bimetal, and
 a valve for closing a lower side passage of said intake air passage during a low temperature time of said engine is provided,

 said bimetal partition wall is constituted to deform to a position in which said bimetal partition wall makes narrow an upper side passage.

6. (Cancelled)

7. (Currently amended) A direct injection type internal combustion engine

 comprising:
 an electromagnetic type variable valve mechanism in which an opening and closing timing of an intake valve and an exhaust valve is enable to control regardless to a rotation number;

 an opening and closing valve for shutting off an intake air passage for introducing air into a cylinder, ~~cylinder~~; and

 a communication passage for communicating said intake air passage of adjacent cylinders;

thereby an intake stroke time of one cylinder, compression air of said adjacent cylinders is flown through one of said communication passages.

8. (Original) A direct injection type internal combustion engine according to claim 7, wherein during a starting time a specific cylinder is burned.

9. (Original) A control method of an intake air passage of an internal combustion engine, wherein

 during said starting time, supplying said air into a cylinder through an intake valve from an intake air passage having a small cross-section; and
 generating a tumble flow into said cylinder; and

 after a warming-up of said engine, increasing said cross-section area of said intake air passage than a cross-section area of said starting time.

10. (Original) An air supply method of an internal combustion engine, wherein

 during a starting time, supplying said air into a cylinder through an intake valve from a first intake air passage having a small cross-section area;

 generating a tumble flow into said cylinder;

 after a warming-up of said engine, supplying said air into said cylinder through an intake valve from a main intake air passage which is divided into an upper stage and a lower stage; and

 in a stratification operation region, generating said tumble flow into said cylinder by closing a lower side passage of said main intake air passage.

11. (Original) A direct injection type internal combustion engine comprising:

a fuel injector for injecting directly a fuel into a combustion chamber;

an ignition coil for igniting an air-fuel mixture of said combustion chamber; and

an air-fuel mixture induction device for forming an air-fuel mixture region which enable to easily spark at a vicinity of said ignition plug during a starting of said internal combustion engine.

12. (Original) A direct injection type internal combustion engine according to claim 11, wherein

said air-fuel mixture induction device comprises a tumble air supply device for forming a tumble air flow in said combustion chamber.

13. (Original) A direct injection type internal combustion engine according to claim 11, wherein

said air-fuel mixture induction device comprises a narrow conduit passage provided adjacently side by side to a main intake air passage and a change-over valve provided in a branch portion between said conduit passage and said main intake air passage.

14. (Original) A direct injection type internal combustion engine, wherein

an air and fuel mixture induction device for inducing a mixture of an air and a fuel in a surrounding portion of an ignition plug in a cylinder by operating immediately after an operation of a starting switch of said internal combustion engine is provided; and

said air and fuel mixture induction device functions to a cylinder which enters firstly to an intake stroke after at least an operation of said starting switch; and

said air and fuel mixture is induced to said surrounding portion of said ignition plug in said cylinder.

15. (Original) A direct injection type internal combustion engine, wherein

a bypass passage for supplying an air into a cylinder by bypassing a main intake passage is provided; and

when a rotation number of said internal combustion engine is 150-200 rpm, said bypass passage has a passage diameter in which a pressure in said cylinder during said intake stoke is -100 mmHg degree (88 Pka degree).