Given $f(t) = \frac{df(t)}{dt}$ and $f(0) = f_0$ the objective is to numerically estimate f(t).

Euler's method

Recognize that I'(1) is geometrically the stope, so we can ase this and the initial point to estimate a new value for I(1).

First, select a stepsize in t, eg. st Now, predict the value of f(t+s+)by using a linear prediction model slope institut point

f(0) + + + f(0) = f'(0) st+ f(0)

Graph cally, for for form

0 ti

Repeat this process to Obtain sequential values of f (+), ie,

f(++x+)= f(+)x++f(+)

Note that as st gets smaller, the numerical solution be comes more decurete, however this means more calculations. example: f'(t) = -2Ht) f(0) = 10Select a step size of, $\Delta t = 0.1$ f(0) = 10 f(1) = (-2)(10)(0.1) + 10 = 8.0 f(2) = (-2)(8)(0.1) + 8 = 6.4 f(3) = (-2)(6.4)(0.1) + 6.4 = 5.12 f(4) = (-2)(5.12)(0.1) + 5.12 = 4.096etc.

Note: The analytocal solinforthis f'(4) = -2t is $f(4) = e^{-2t}$ Plotting this us the numerical soln,

The numerical solins for 8tepsizes of O. I and O. 2 are presented below can pared to the analytical soln.

The plot of error for the 8tep sizes is given below. As you can see, step size afterests model accuracy.

Heun's method (Predictor-Corrector method)

an improved over Euler's method is to use the average of 20 lopes to predict the slope of a 8 tep. In this method, the slope's at t and to are used to get a bester estimate of the slope.

02

Now the challenge is how to calculate f'(+).

To do this we first use Euler's method to predict f(t,), then we use this estimate to correct to get the new averaged slope

Since we know & (4,), first use Enler's method to predoct &(tr)

f(+1)= f(40) xt + f(40)

Using this value of f(t,) we apply
the differential egn f'(t) to get

f'(t,) = f'(f(t,),t,)

We then use this value to 'correct'
the slope for the step

f(t) = f'(t) + f'(f(t), t,) st + f(t)

2

Using the example from before, f'(t) = -2f(t) f(0) = 10 st = 0.1

Using Euler's method $f'(t_0) = -2 (10) = -20$ $f(t_1) = (-2)(10)(0.1) + 10 = 8$ Using this value of $f(t_1)$, cale. $f'(t_1)$ $f'(t_1) = (-2)(8) = -16$ Using this as an estimate of $f'(t_1)$ arenage it w/ $f(t_0)$ to get corrected

8 lope

S'(t)= & (40) + P'(41) est = -18

So predicted/corrected value of
$$f(4)$$

 $f(4) = \frac{p'(40) + p'(4)}{2} + f(40)$
 $= -20 + (-16) + 2 + f(40)$
 $= -\frac{36}{2} (0.1) + 10$
 $= 8.2$

Repeating this process,

$$f(t_1) = 8.2$$
 $\Delta t = 0.1$
 $f'(t_1) = (-2)(8.2) = -16.4$
 $f'(4_2) = f'(4_1) \Delta t + f(4_1)$
 $= (-16.4)(0.1) + 8.2$
 $= 6.56$

$$f'(t_3) = (-2)(5.3792) = -10.7589$$

$$f(t_3) = \frac{(13.448 - 10.7684)(0.1) + (6.724)}{2}$$

$$= 5.51368$$

exc.

This is a graphff the Euler US Heun method US the Onalytical soln.

The error analysis of the Euler is Heur method shows the improved accuracy of the predictor - corrector method.

Notes

These methods are appliantile to any differential egn f'(x).

The Heum method is a predictorcorrector method based on using a correction of the slope based on the asteracyl value of the predicted + corrected slopes. Higher order predictor corrector methods (combinations of multiple slopes) are often used also. The Runge-Kutta methods are an example. In these, the slopes are not simply averaged, but each is weighted to have more or less impact on the final corrected slope.