CLAIMS

What is claimed is:

S)	D)
	ΙŪ
	T
	;
	i and
	17
	D
	ij
	11
	12

1

2

3

4

5

6

7

8

1

2

1.	An	apparatus.	comprising:
T. /	7 77 1	appulatus,	CO111-P11-211-5.

a metal-oxide-semiconductor transistor with a shifted flat band magnitude;

a gate electrode coupled to said metal-oxide-semiconductor
transistor and to a positive voltage source; and
a source electrode, a drain electrode, and a substrate electrode
coupled to each other and to a negative voltage

2. The apparatus of claim 1, wherein said metal-oxide-

semiconductor includes a gate area material with a work function less

3 than - 0.56 volts.

source.

3. The apparatus of claim 2/wherein said gate area material is platinum silicate.

1 4. The apparatus of claim 2, wherein said gate area material is 2 selected from the group consisting of tantalum nitrate, iridium, nickel,

3 and arsenic.

1 5. The apparatus of claim 1, wherein said metal-oxide-

2 semiconductor transistor includes a heavily-doped substrate area.

The apparatus of claim 1, wherein said metal-oxide-6. 1 semiconductor transistor is a p-channel device. 2 The apparatus of claim 1, wherein said metal-oxide-7. 1 2 transistor is an n-channel device. A method, comprising: 1 8. shifting a flat band magnitude in a metal-oxide-semiconductor 2 transistor: 3 coupling a gate electrode of said metal-oxide-semiconductor 4 transistor to a positive voltage source; and 5 coupling a source electrode, a drain electrode, and a substrate 6 electrode of said metal-oxide-semiconductor 7 transistor to a negative voltage source. 8 The method of claim 8, wherein said shifting includes 9. 1 utilizing a gate area with a material whose work function is less than 2 - 0.56 volts. 3 The method of claim 9, wherein said material is platinum 1 10. 2 silicate. The method of claim 9, wherein said material is selected 1 11.

arsenic.

2

3

from the group consisting of tantalum nitrate, iridium, nickel, and

2	utilizing a substrate which is heavily-doped.
1	13. The method of claim 8, wherein said metal-oxide-
2	semiconductor transistor is a p-channel device.
1 2	14. The method of claim 8, wherein said metal-oxide-semiconductor transistor is an n-channel device.
\bigcap 1	15. An apparatus, comprising:
h^2	means for shifting a flat band magnitude in a metal-oxide-
\mathcal{Y}_3	semiconductor transistor;
4	means for coupling a gate electrode of said metal-oxide-
5	semiconductor transistor to a positive voltage source;
6	and
7	means for coupling a source electrode, a drain electrode, and a
8	substrate electrode of said metal-oxide-
9	semiconductor transistor to a negative voltage
10	source.

The method of claim 8, wherein said shifting includes

1

12.

16. The apparatus of claim 15, wherein said means for shifting includes a gate area with a material whose work function is less than – 0.56 volts.

- 1 17. The apparatus of claim 16, wherein said material is
- 2 platinum silicate.
- 1 18. The apparatus of claim 16, wherein said material is
- 2 selected from the group consisting of tantalum nitrate, iridium, nickel,
- 3 and arsenic.
- 1 19. The apparatus of claim 15, wherein said means for shifting
- 2 includes a substrate which is heavily-doped.

Add >

John Ward, Ess 1-7, 15, 19 8-14 8-14

-16-