

| Rodzaj dokumentu: | Zasady oceniania rozwiązań<br>zadań |  |
|-------------------|-------------------------------------|--|
| Egzamin:          | Egzamin maturalny                   |  |
| Przedmiot:        | Matematyka                          |  |
| Poziom:           | Poziom rozszerzony                  |  |
| Formy arkusza:    | EMAP-R0-100, EMAP-R0-200,           |  |
|                   | EMAP-R0-300, EMAP-R0-400,           |  |
|                   | EMAP-R0-600, EMAP-R0-700,           |  |
|                   | EMAP-R0-Q00, EMAP-R0-Z00            |  |
| Termin egzaminu:  | 2 czerwca 2023 r.                   |  |

### **Z**ADANIA ZAMKNIĘTE

# Zadanie 1. (0-1)

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

D

# Zadanie 2. (0-1)

# Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

Α

# Zadanie 3. (0-1)

## Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

### Rozwiązanie

Α

# Zadanie 4. (0-1)

### Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

# Rozwiązanie

С

### **ZADANIE OTWARTE (KODOWANE)**

# Zadanie 5. (0-2)

### Zasady oceniania

2 pkt – odpowiedź całkowicie poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

#### Rozwiązanie

| 1 | 3 | 3 |
|---|---|---|
|   |   |   |

### **ZADANIA OTWARTE (NIEKODOWANE)**

### Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

#### Zadanie 6. (0-3)

#### Zasady oceniania

3 pkt – zastosowanie poprawnej metody i poprawny wynik:  $x_0 = 2$  oraz y = 17x - 16.

2 pkt – obliczenie odciętej  $x_0$  punktu P i wyznaczenie pochodnej funkcji f:  $x_0 = 2$  oraz  $f'(x) = 6x^2 - 8x + 9$ .

1 pkt – obliczenie odciętej  $x_0$  punktu P:  $x_0 = 2$ 

– wyznaczenie pochodnej funkcji f:  $f'(x) = 6x^2 - 8x + 9$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

### Przykładowe pełne rozwiązanie

Obliczamy odciętą  $x_0$  punktu P:

$$18 = 2x_0^3 - 4x_0^2 + 9x_0$$

$$2x_0^3 - 4x_0^2 + 9x_0 - 18 = 0$$

$$2x_0^2(x_0 - 2) + 9(x_0 - 2) = 0$$

$$(2x_0^2 + 9)(x_0 - 2) = 0$$

$$2x_0^2 + 9 = 0 \quad \text{lub} \quad x_0 - 2 = 0$$

Ponieważ  $2x_0^2 + 9 > 0$  dla każdej liczby rzeczywistej  $x_0$ , więc  $x_0 = 2$ .



Egzamin maturalny z matematyki na poziomie rozszerzonym – termin dodatkowy 2023 r.

Wyznaczamy pochodną funkcji f:

$$f'(x) = 6x^2 - 8x + 9$$

Wyznaczamy równanie kierunkowe stycznej do wykresu funkcji f w punkcie P. Obliczamy współczynnik kierunkowy a w równaniu stycznej:

$$a = f'(2) = 17$$

Obliczamy współczynnik  $\,b\,$  w równaniu stycznej:

$$18 = 17 \cdot 2 + b$$

$$b = -16$$

Styczna ma równanie y = 17x - 16.

### Zadanie 7. (0-3)

### Zasady oceniania

- 3 pkt spełnienie kryterium oceniania za 2 punkty i uzasadnienie prawdziwości nierówności  $\frac{(a-2)^2(a+4)}{a} \geq 0 \;\; \text{lub} \;\; (a-2)^2(a+4) \geq 0, \; \text{lub} \;\; a(a-2)^2(a+4) \geq 0 \;\; \text{z powołaniem się na założenie (dla sposobu I)}$  ALBO
  - spełnienie kryterium oceniania za 2 punkty i przekształcenie nierówności  $\frac{a^2 + \frac{8}{a} + \frac{8}{a}}{3} \ge \sqrt[3]{a^2 \cdot \frac{8}{a} \cdot \frac{8}{a}}$  do postaci tezy (dla sposobu II),
  - spełnienie kryterium oceniania za 2 punkty oraz obliczenie f(2): f(2) = 12 (dla sposobu III).
- 2 pkt przekształcenie nierówności  $a^2+\frac{16}{a}\geq 12$  do postaci  $\frac{(a-2)^2(a+4)}{a}\geq 0$  lub  $(a-2)^2(a+4)\geq 0$ , lub  $a(a-2)^2(a+4)\geq 0$  (dla sposobu I)
  - spełnienie kryterium oceniania za 1 punkt oraz zapisanie wielomianu  $a^3-12a+16$  w postaci  $(a-2)^2(a+4)$  (dla sposobu I), *ALBO*
  - zapisanie, że dla każdego a>0 liczby  $a^2,\frac{8}{a},\frac{8}{a}$  są dodatnie oraz zapisanie nierówności między średnimi arytmetyczną i geometryczną liczb dodatnich  $a^2,\frac{8}{a},\frac{8}{a}$ :  $\frac{a^2+\frac{8}{a}+\frac{8}{a}}{3} \geq \sqrt[3]{a^2\cdot\frac{8}{a}\cdot\frac{8}{a}} \text{ (dla sposobu II)},$
  - obliczenie miejsca zerowego pochodnej funkcji f oraz wyznaczenie w przedziale  $(0, +\infty)$  argumentu, dla którego funkcja osiąga w tym przedziale wartość najmniejszą (wraz z uzasadnieniem): a=2 (dla sposobu III).
- 1 pkt przekształcenie nierówności  $a^2+\frac{16}{a}\geq 12$  do postaci  $\frac{a^3-12a+16}{a}\geq 0$  lub  $a^3-12a+16\geq 0$ , lub  $a(a^3-12a+16)\geq 0$  (dla sposobu l) *ALBO* 
  - zapisanie, że dla każdego a>0 liczby  $a^2,\frac{8}{a},\frac{8}{a}$  są dodatnie (dla sposobu II), *ALBO*
  - obliczenie pochodnej funkcji f określonej wzorem  $f(a)=a^2+\frac{16}{a}$  dla a>0 (lub w szerszym zakresie), np.  $f'(a)=2a-\frac{16}{a^2}$  (dla sposobu III).
- 0 pkt rozwiązanie, w którym zastosowano nieprawidłową metodę, albo brak rozwiązania.

#### **Uwaga:**

Jeśli zdający opiera swoje rozwiązanie na nierówności między średnimi (sposób III) i stosuje nierówność między średnimi liczb  $a^2$ ,  $\frac{8}{a}$ ,  $\frac{8}{a}$  bez zapisania, że liczby te są dodatnie, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.



#### Przykładowe pełne rozwiązania

### Sposób I

Przekształcamy nierówność  $a^2 + \frac{16}{a} \ge 12$ :

$$\frac{a^3}{a} + \frac{16}{a} - \frac{12a}{a} \ge 0$$

$$\frac{a^3 - 12a + 16}{a} \ge 0$$

$$a(a^3 - 12a + 16) \ge 0$$
 i  $a \ne 0$ 

Zauważamy, że pierwiastkiem wielomianu  $W(a)=a^3-12a+16$  jest liczba 2. Stąd  $W(a)=(a-2)(a^2+2a-8)$ . Ponieważ pierwiastkami trójmianu kwadratowego  $a^2+2a-8$  są liczby 2 i (-4), więc  $W(a)=(a-2)^2(a+4)$ . Zatem nierówność  $a(a^3-12a+16)\geq 0$  można równoważnie zapisać w postaci

$$a(a-2)^2(a+4) \ge 0$$

Dla każdej liczby dodatniej a wyrażenie  $(a-2)^2$  jest liczbą nieujemną, natomiast wyrażenie (a+4) jest liczbą dodatnią. Zatem dla każdej liczby dodatniej a wyrażenie  $a(a-2)^2(a+4)$  jest nieujemne jako iloczyn liczb nieujemnych. Oznacza to, że nierówność  $a^2+\frac{16}{a}\geq 12$  jest prawdziwa dla każdej liczby dodatniej a. To należało wykazać.

Inna realizacja rozkładu wielomianu  $a^3 - 12a + 16$  na czynniki:

$$a^{3} - 12a + 16 = a^{3} - 16a + 4a + 16 = a(a^{2} - 16) + 4(a + 4) =$$

$$= a(a - 4)(a + 4) + 4(a + 4) = (a + 4)[a(a - 4) + 4] =$$

$$= (a + 4)(a^{2} - 4a + 4) = (a + 4)(a - 2)^{2}$$

#### Sposób II

Dla każdego a>0 liczby  $a^2,\frac{8}{a},\frac{8}{a}$  są dodatnie. Korzystamy z nierówności między średnimi arytmetyczną i geometryczną liczb  $a^2,\frac{8}{a},\frac{8}{a}$  i otrzymujemy:

$$\frac{a^{2} + \frac{8}{a} + \frac{8}{a}}{3} \ge \sqrt[3]{a^{2} \cdot \frac{8}{a} \cdot \frac{8}{a}}$$

$$\frac{a^{2} + \frac{16}{a}}{3} \ge \sqrt[3]{64}$$

$$a^{2} + \frac{16}{a} \ge 12$$

To należało wykazać.

### Sposób III

Niech f będzie funkcją określoną wzorem  $f(a) = a^2 + \frac{16}{a}$  dla każdej liczby rzeczywistej a > 0.

Obliczamy pochodną funkcji f:

$$f'(a) = 2a - \frac{16}{a^2} = \frac{2a^3 - 16}{a^2}$$

Obliczamy miejsca zerowe pochodnej funkcji f:

$$\frac{2a^3-16}{a^2}=0$$

$$2a^3 - 16 = 0$$

$$a = 2$$

Ponieważ f'(a)>0 dla  $a\in(2,+\infty)$  oraz f'(a)<0 dla  $a\in(0,2)$ , więc funkcja f jest malejąca w przedziale (0,2) oraz jest rosnąca w przedziale  $(2,+\infty)$ . Zatem dla argumentu a=2 funkcja przyjmuje wartość najmniejszą równą  $f(2)=2^2+\frac{16}{2}=12$ . Stąd  $f(a)\geq 12$  dla każdej liczby dodatniej a.

To oznacza, że nierówność  $a^2 + \frac{16}{a} \ge 12$  jest prawdziwa dla każdego a > 0.

# Zadanie 8. (0-3)

#### Zasady oceniania

- 3 pkt spełnienie kryterium oceniania za 2 punkty oraz uzasadnienie, że |AC| = |BC|.
- 2 pkt wyznaczenie długości odcinków AP, AQ, BD, CD, CQ w zależności od tej samej zmiennej, np. |AP| = 5x, |AQ| = 5x, |BD| = x, |CD| = 2x, |CQ| = 2x.
- 1 pkt zapisanie równości wynikającej z twierdzenia o odcinkach stycznych: |BD| = |BP| (lub |AP| = |AQ|, lub |CQ| = |CD|).
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

### Przykładowe pełne rozwiązanie

Niech |BP| = x.

Z twierdzenia o odcinkach stycznych wnioskujemy, że |BD| = |BP| = x.

Z założenia  $|CD| = 2 \cdot |BD|$  otrzymujemy |CD| = 2x. Z twierdzenia o odcinkach stycznych wnioskujemy, że |CQ| = |CD| = 2x (zobacz rysunek).



Ponieważ  $|AQ| = 5 \cdot |BP|$ , więc |AQ| = 5x. Ponownie z twierdzenia o odcinkach stycznych wnioskujemy, że |AP| = |AQ| = 5x.

Zatem |AC| = |AQ| - |CQ| = 5x - 2x = 3x oraz |BC| = |BD| + |CD| = x + 2x = 3x. Wobec tego |AC| = |BC|, więc trójkąt ABC jest równoramienny. To należało wykazać.

### Zadanie 9. (0-4)

### Zasady oceniania

- 4 pkt poprawne wyznaczenie wszystkich wartości zmiennej x, dla których suma szeregu istnieje  $(x \in (-\infty, -2) \cup (4, +\infty))$  oraz poprawne wyznaczenie wszystkich wartości zmiennej x, dla których suma jest równa  $\frac{15}{2}$ : x = 6.
- 3 pkt wyznaczenie zbioru wszystkich wartości x, dla których istnieje skończona suma szeregu ( $x \in (-\infty, -2) \cup (4, +\infty)$ ) oraz zastosowanie wzoru na sumę szeregu geometrycznego, wyznaczenie tej sumy i zapisanie równania z niewiadomą x:  $\frac{2x}{1-\left(-\frac{3}{x-1}\right)} = \frac{15}{2}$  ALBO
  - zapisanie warunku zbieżności szeregu (|q|<1) oraz zastosowanie wzoru na sumę szeregu geometrycznego, wyznaczenie tej sumy, zapisanie równania z niewiadomą  $x \ (\frac{2x}{1-\left(-\frac{3}{x-1}\right)}=\frac{15}{2})$  i rozwiązanie tego równania:  $x=-\frac{5}{4}$ , x=6.
- 2 pkt wyznaczenie zbioru wszystkich wartości x, dla których istnieje skończona suma szeregu:  $x \in (-\infty, -2) \cup (4, +\infty)$  ALBO
  - zapisanie warunku zbieżności szeregu (|q| < 1) oraz zastosowanie wzoru na sumę szeregu geometrycznego, wyznaczenie tej sumy i zapisanie równania z niewiadomą x:

$$\frac{2x}{1 - \left(-\frac{3}{x-1}\right)} = \frac{15}{2}$$

1 pkt – zapisanie ilorazu:  $q = -\frac{3}{x-1}$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### **Uwagi:**

- **1.** Jeśli zdający rozwiąże odpowiednie równanie i zapisze:  $x = -\frac{5}{4}$  V x = 6, a następnie obliczy iloraz szeregu dla każdej z wyznaczonych wartości zmiennych i na tej podstawie dokona właściwego wyboru rozwiązania, to otrzymuje **4 punkty**.
- **2.** Jeśli zdający rozwiąże zadanie bez rozważenia warunku |q| < 1, to może otrzymać maksymalnie **2 punkty**.
- **3.** Jeśli zdający zapisze poprawny warunek zbieżności szeregu:  $\left|-\frac{3}{x-1}\right| < 1$ , ale popełni błąd przy wyznaczaniu przedziału zbieżności i konsekwentnie rozwiąże zadanie do końca, to może otrzymać **3 punkty**.
- **4.** Jeżeli zdający popełni błąd przy wyznaczaniu ilorazu ciągu, który będzie wyrażeniem wymiernym zmiennej x, np. zapisze, że  $q=-\frac{3x}{x-1}$ , i konsekwentnie rozwiąże zadanie do końca, to może otrzymać maksymalnie **2 punkty**.
- **5.** Jeśli zdający zapisze dany szereg jako sumę dwóch szeregów postaci  $2x + \frac{18x}{(x-1)^2} + \frac{172x}{(x-1)^4} + \dots$  oraz  $-\frac{6x}{x-1} \frac{54x}{(x-1)^3} \frac{516x}{(x-1)^5} \dots$  bez odpowiedniego komentarza i rozwiąże zadanie konsekwentnie do końca, obliczając sumę dwóch szeregów, to może otrzymać maksymalnie **3 punkty**.



# Przykładowe pełne rozwiązanie

Pierwszy wyraz i iloraz tego szeregu są równe, odpowiednio,  $a_1=2x$  oraz  $q=-\frac{3}{x-1}$ . Ponieważ  $x\neq 1$  i  $x\neq 0$ , to szereg ten jest zbieżny wtedy i tylko wtedy, gdy  $\left|-\frac{3}{x-1}\right|<1$ , czyli |x-1|>3. Stąd  $x\in (-\infty,-2)\cup (4,+\infty)$ .

Wtedy suma S tego szeregu jest skończona i równa

$$S = \frac{a_1}{1 - q} = \frac{2x}{1 - \left(-\frac{3}{x - 1}\right)} = \frac{2x(x - 1)}{x + 2}$$

Rozwiązujemy równanie  $\frac{2x(x-1)}{x+2} = \frac{15}{2}$  w zbiorze  $(-\infty, -2) \cup (4, +\infty)$ :

$$\frac{2x(x-1)}{x+2} = \frac{15}{2}$$

$$4x(x-1) = 15(x+2)$$

$$4x^2 - 19x - 30 = 0$$

$$x = -\frac{5}{4} \notin (-\infty, -2) \cup (4, +\infty)$$
 lub  $x = 6 \in (-\infty, -2) \cup (4, +\infty)$ 

Zatem x = 6.

# Zadanie 10. (0-4)

### Zasady oceniania

4 pkt – poprawne metoda rozwiązania równania i poprawny wynik:  $-\frac{\pi}{8}$ ,  $\frac{3\pi}{8}$ ,  $-\frac{5\pi}{12}$ ,  $-\frac{\pi}{12}$ ,  $\frac{\pi}{4}$ .

- 3 pkt rozwiązanie równania  $\sin(5x) = \sin\left(x \frac{\pi}{2}\right)$  (lub równania  $\cos x = \cos\left(5x + \frac{\pi}{2}\right)$ ) w zbiorze liczb rzeczywistych:  $x = -\frac{\pi}{8} + \frac{k\pi}{2}$  lub  $x = \frac{\pi}{4} + \frac{k\pi}{3}$ , gdzie  $k \in \mathbb{Z}$ 
  - przekształcenie równania do alternatywy elementarnych równań trygonometrycznych i rozwiązanie jednego z tych równań w zbiorze  $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ , *ALBO*
  - przekształcenie równania do alternatywy elementarnych równań trygonometrycznych i rozwiązanie wszystkich równań tej alternatywy w zbiorze R.
- 2 pkt równoważne przekształcenie równania do postaci, która jest równością sinusów lub cosinusów, np.  $\sin(5x) = \sin\left(x \frac{\pi}{2}\right)$ ,  $\cos x = \cos\left(5x + \frac{\pi}{2}\right)$ 
  - zastosowanie wzoru na sumę sinusów lub na sumę cosinusów i przekształcenie równania do postaci alternatywy elementarnych równań trygonometrycznych, np.  $\sin\left(2x+\frac{\pi}{4}\right)=0$  lub  $\cos\left(3x-\frac{\pi}{4}\right)=0$ ,  $\cos\left(\frac{\pi}{4}-2x\right)=0$  lub  $\cos\left(\frac{\pi}{4}-3x\right)=0$ .
- 1 pkt zastosowanie wzoru redukcyjnego i przekształcenie równania do postaci, w której występuje tylko jedna funkcja trygonometryczna, np.  $\sin(5x) + \sin\left(\frac{\pi}{2} x\right) = 0$ ,  $\cos\left(\frac{\pi}{2} 5x\right) + \cos x = 0$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### Przykładowe pełne rozwiązania

### Sposób I (równość sinusów)

Zapisujemy równanie w postaci równoważnej, w której występuje tylko jedna funkcja trygonometryczna zmiennej x:

$$\sin(5x) + \cos x = 0$$

$$\sin(5x) + \sin\left(\frac{\pi}{2} - x\right) = 0$$

$$\sin(5x) = -\sin\left(\frac{\pi}{2} - x\right)$$

Ponieważ funkcja sinus jest nieparzysta, więc

$$\sin(5x) = \sin\left(x - \frac{\pi}{2}\right)$$

Stąd

$$5x = x - \frac{\pi}{2} + 2k\pi$$
 lub  $5x = \pi - (x - \frac{\pi}{2}) + 2k\pi$   
 $x = -\frac{\pi}{8} + \frac{k\pi}{2}$  lub  $x = \frac{\pi}{4} + \frac{k\pi}{3}$ 

gdzie  $k \in \mathbb{Z}$ .



Wyznaczamy rozwiązania równania  $\sin(5x) + \cos x = 0$  w zbiorze  $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ :

$$-\frac{\pi}{8}$$
,  $\frac{3\pi}{8}$ ,  $-\frac{5\pi}{12}$ ,  $-\frac{\pi}{12}$ ,  $\frac{\pi}{4}$ 

### Sposób II (poprzez sumę sinusów)

Zapisujemy równanie w postaci równoważnej, w której występuje tylko jedna funkcja trygonometryczna zmiennej x:

$$\sin(5x) + \cos x = 0$$
$$\sin(5x) + \sin\left(\frac{\pi}{2} - x\right) = 0$$

Korzystamy ze wzoru na sumę sinusów i otrzymujemy

$$2\sin\left(\frac{5x + \frac{\pi}{2} - x}{2}\right) \cdot \cos\left(\frac{5x - \left(\frac{\pi}{2} - x\right)}{2}\right) = 0$$

$$\sin\left(2x + \frac{\pi}{4}\right) = 0 \quad \text{lub} \quad \cos\left(3x - \frac{\pi}{4}\right) = 0$$

$$2x + \frac{\pi}{4} = k\pi \quad \text{lub} \quad 3x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi$$

$$x = -\frac{\pi}{8} + \frac{k\pi}{2} \quad \text{lub} \quad x = \frac{\pi}{4} + \frac{k\pi}{3}$$

gdzie  $k \in \mathbb{Z}$ .

Wyznaczamy rozwiązania równania  $\sin(5x) + \cos x = 0$  w zbiorze  $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ :

$$-\frac{\pi}{8}$$
,  $\frac{3\pi}{8}$ ,  $-\frac{5\pi}{12}$ ,  $-\frac{\pi}{12}$ ,  $\frac{\pi}{4}$ 

# Zadanie 11. (0-4)

### Zasady oceniania

4 pkt – zastosowanie poprawnej metody i poprawny wynik: n = 10.

3 pkt – wyznaczenie prawdopodobieństwa zdarzenia A w zależności od n:  $P(A) = \frac{n^2 - 3n + 4}{n^2}$ .

2 pkt – wyznaczenie prawdopodobieństw zdarzeń  $A_1$  oraz  $A_2$  w zależności od n:

$$P(A_1) = \frac{n-3}{n} \text{ oraz } P(A_2) = \frac{n-1}{n}.$$

1 pkt – wyznaczenie prawdopodobieństw zdarzeń B oraz C w zależności od n:  $P(B) = \frac{n-2}{n} \text{ oraz } P(C) = \frac{2}{n}.$ 

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### Przykładowe pełne rozwiązanie

Przyjmijmy następujące oznaczenia zdarzeń:

B – zdarzenie polegające na tym, że w pierwszym losowaniu została wylosowana kula biała,

 C – zdarzenie polegające na tym, że w pierwszym losowaniu została wylosowana kula czarna,

 $Z_1$  – zawartość pudełka po wylosowaniu za pierwszym razem kuli białej i dołożeniu kuli czarnej,

 $Z_2$  – zawartość pudełka po wylosowaniu za pierwszym razem kuli czarnej i dołożeniu kuli białej,

 $A_1$  – zdarzenie polegające na tym, że wylosowana z pudełka o zawartości  $Z_1$  kula jest biała

 $A_2$  – zdarzenie polegające na tym, że wylosowana z pudełka o zawartości  $Z_2$  kula jest biała.

Wówczas  $Z_1$ : n-3 kul białych i 3 kule czarne,  $Z_2$ : n-1 kul białych i 1 kula czarna. Wyznaczamy prawdopodobieństwa zdarzeń B, C,  $A_1$  oraz  $A_2$ :

$$P(B) = \frac{n-2}{n}, \ P(C) = \frac{2}{n}, \ P(A_1) = \frac{n-3}{n}, \ P(A_2) = \frac{n-1}{n}$$

Zapisujemy prawdopodobieństwo zdarzenia *A* polegającego na tym, że kula wylosowana z pudełka ze zmienioną zawartością jest biała:

$$P(A) = P(A_1) \cdot P(B) + P(A_2) \cdot P(C)$$

$$P(A) = \frac{n-3}{n} \cdot \frac{n-2}{n} + \frac{n-1}{n} \cdot \frac{2}{n} = \frac{n^2 - 3n + 4}{n^2}$$

Ponieważ  $P(A) = \frac{37}{50}$ , więc stąd otrzymujemy kolejno:

$$\frac{n^2 - 3n + 4}{n^2} = \frac{37}{50}$$

$$50n^2 - 150n + 200 = 37n^2$$

$$13n^2 - 150n + 200 = 0$$

$$\Delta = 12100, \quad \sqrt{\Delta} = 110$$

$$n = \frac{150 - 110}{26} = \frac{40}{26} \quad \text{lub} \quad n = \frac{150 + 110}{26} = \frac{260}{26} = 10$$



Egzamin maturalny z matematyki na poziomie rozszerzonym – termin dodatkowy 2023 r.

Ponieważ liczba kul musi być liczbą naturalną większą niż  $\, 2$ , więc jedynym rozwiązaniem tego zadania jest  $\, n=10. \,$ 

### Zadanie 12. (0-5)

#### Zasady oceniania

Rozwiązanie zadania składa się z trzech etapów.

**Pierwszy etap** polega na rozwiązaniu warunku  $\Delta > 0$ . Za poprawne wykonanie tego etapu zdający otrzymuje **1 punkt**.

1 pkt – poprawne rozwiązanie warunku  $\Delta > 0$ :  $m \in \left(-\infty, \frac{1}{\alpha}\right) \cup (1, +\infty)$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

**Drugi etap** polega na wyznaczeniu wszystkich wartości parametru m, dla których jest spełniony warunek  $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$ .

Podział punktów za drugi etap rozwiązania:

3 pkt – wyznaczenie tych wszystkich wartości m, dla których spełniony jest warunek  $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$ :  $m \in \left(-4 - 2\sqrt{6}, 0\right) \cup \left(0, -4 + 2\sqrt{6}\right)$ .

2 pkt – zapisanie nierówności z jedną niewiadomą m, która odpowiada warunkowi

$$\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1, \text{ np. } \frac{\left(\frac{m+1}{m}\right)^2 - 2 \cdot \frac{(-2m+3)}{m}}{\left(\frac{-2m+3}{m}\right)^2} < 1.$$

1 pkt – przekształcenie wyrażenia  $\frac{1}{x_1^2}+\frac{1}{x_2^2}<1$  do postaci pozwalającej na bezpośrednie zastosowanie wzorów Viète'a, np.  $\frac{(x_1+x_2)^2-2x_1x_2}{(x_1x_2)^2}<1$  (lub innej równoważnej, ale zawierającej jedynie zmienne  $x_1+x_2$  oraz  $x_1x_2$ ).

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

**Trzeci etap** polega na wyznaczeniu wszystkich wartości parametru m, dla których spełnione są jednocześnie warunki:  $\Delta > 0$  i  $\frac{1}{x_s^2} + \frac{1}{x_s^2} < 1$ .

Za poprawne wykonanie tego etapu zdający otrzymuje 1 punkt.

1 pkt – poprawne wyznaczenie wszystkich wartości m, dla których  $\Delta > 0$  i  $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$ :

$$m \in \left(-4 - 2\sqrt{6}, 0\right) \cup \left(0, \frac{1}{9}\right).$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### Uwaqi:

- 1. Jeżeli zdający rozwiązuje warunek  $\Delta \ge 0$  (zamiast  $\Delta > 0$ ), to za I etap rozwiązania otrzymuje **0 punktów**.
- 2. Jeżeli zdający w II etapie rozwiązania rozważa niepoprawną nierówność wymierną i rozwiązanie tej nierówności jest zbiorem rozłącznym ze zbiorem rozwiązań nierówności z I etapu, to zdający otrzymuje **0 punktów** za III etap.
- 3. Jeżeli w rozwiązaniu zdającego nie ma zapisu  $m \neq 0$  albo  $m \neq \frac{3}{2}$ , albo zdający nie uwzględnia w rozwiązaniu warunku  $m \neq 0$ , albo  $m \neq \frac{3}{2}$ , to zdający może otrzymać co najwyżej **4 punkty** za całe rozwiązanie.



### Przykładowe pełne rozwiązanie

Równanie  $mx^2 - (m+1)x - 2m + 3 = 0$  ma dokładnie dwa różne rozwiązania rzeczywiste wtedy i tylko wtedy, gdy  $m \neq 0$  i wyróżnik  $\Delta$  trójmianu kwadratowego  $mx^2 - (m+1)x - 2m + 3$  jest dodatni.

#### I etap

Rozwiązujemy warunek  $\Delta > 0$ :

$$[-(m+1)]^{2} - 4m \cdot (-2m+3) > 0$$

$$9m^{2} - 10m + 1 > 0$$

$$(m-1)(9m-1) > 0$$

$$m \in \left(-\infty, \frac{1}{9}\right) \cup (1, +\infty)$$

Zatem równanie  $mx^2-(m+1)x-2m+3=0$  ma dokładnie dwa różne rozwiązania rzeczywiste, gdy  $m\in (-\infty,0)\cup \left(0,\frac{1}{9}\right)\cup (1,+\infty).$ 

### II etap

Wyznaczymy wszystkie wartości m, dla których jest spełniony warunek:  $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$ .

Przekształcamy nierówność  $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$  do postaci, która pozwoli na bezpośrednie zastosowanie wzorów Viète'a:

$$\frac{x_{1+}^2 x_2^2}{(x_1 x_2)^2} < 1$$

$$\frac{(x_1 + x_2)^2 - 2x_1 x_2}{(x_1 x_2)^2} < 1$$

Stąd, po zastosowaniu wzorów Viète'a, otrzymujemy:

$$\frac{\left(\frac{m+1}{m}\right)^2 - 2 \cdot \frac{(-2m+3)}{m}}{\left(\frac{-2m+3}{m}\right)^2} < 1$$

i dalei

$$\left(\frac{m+1}{m}\right)^2 - 2 \cdot \frac{(-2m+3)}{m} < \left(\frac{-2m+3}{m}\right)^2 \quad \text{i} \quad m \neq 0 \quad \text{i} \quad m \neq \frac{3}{2}$$

$$(m+1)^2 - 2m(-2m+3) < (-2m+3)^2 \quad \text{i} \quad m \neq 0 \quad \text{i} \quad m \neq \frac{3}{2}$$

$$m^2 + 8m - 8 < 0 \quad \text{i} \quad m \neq 0 \quad \text{i} \quad m \neq \frac{3}{2}$$

$$m \in \left(-4 - 2\sqrt{6}, -4 + 2\sqrt{6}\right) \quad \text{i} \quad m \neq 0 \quad \text{i} \quad m \neq \frac{3}{2}$$

Zatem warunek  $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$  jest spełniony tylko dla  $m \in (-4 - 2\sqrt{6}, 0) \cup (0, -4 + 2\sqrt{6})$ .

# III etap

Wyznaczamy te wszystkie wartości m, które jednocześnie spełniają warunki:  $m \neq 0$  i  $m \in \left(-\infty, \frac{1}{9}\right) \cup (1, +\infty)$  i  $m \in \left(-4 - 2\sqrt{6}, -4 + 2\sqrt{6}\right)$  i  $m \neq \frac{3}{2}$ :

$$m \in \left(-4 - 2\sqrt{6}, 0\right) \cup \left(0, \frac{1}{9}\right)$$



# Zadanie 13. (0-5)

#### Zasady oceniania

- 5 pkt poprawna metoda rozwiązania oraz poprawny wynik:  $|AB| = 2\sqrt{10}$ ,  $|BC| = 3\sqrt{6}$ ,  $|CD| = \sqrt{10}$ ,  $|AD| = 2\sqrt{6}$ .
- 4 pkt obliczenie długości boków AB i AD:  $|AB| = 2\sqrt{10}$  i  $|AD| = 2\sqrt{6}$  oraz spełnienie jednego z poniższych kryteriów I–III:
  - I. obliczenie długości odcinka CE: |CE| = 3,
  - II. wyznaczenie skali podobieństwa trójkątów *DEC* i *AEB*:  $\frac{1}{2}$ ,
  - III. obliczenie długości jednego z boków tego czworokąta i zapisanie wyrażenia arytmetycznego opisującego długości pozostałych boków w zależności od długości tego obliczonego boku.
- 3 pkt obliczenie długości boków AB i AD:  $|AB| = 2\sqrt{10}$  i  $|AD| = 2\sqrt{6}$ .
- 2 pkt obliczenie wysokości AP trójkąta ASE:  $|AP| = \sqrt{15}$  ALBO
  - obliczenie długości odcinka CE: |CE| = 3, AIBO
  - wyznaczenie skali podobieństwa trójkątów DEC i AEB:  $\frac{1}{2}$ , AIBO
  - obliczenie długości odcinków DE, BE, AE: |DE|=2, |BE|=6 i |AE|=4 oraz zapisanie układu równań prowadzącego do wyznaczenia długości boków a oraz d:  $a^2+d^2=8^2$ ,  $a^2=6^2+4^2-2\cdot 6\cdot 4\cdot \cos \beta$  oraz  $d^2=2^2+4^2-2\cdot 2\cdot 4\cdot \cos(180^\circ-\beta)$ .
- 1 pkt obliczenie długości odcinków DE, BE oraz AE: |DE|=2, |BE|=6 oraz |AE|=4 ALBO
  - zapisanie, że trójkąty DEC oraz AEB (albo trójkąty BEC oraz AED) są podobne,
     ALBO
  - zapisanie równości wynikającej z twierdzenia o odcinkach siecznych:  $|AE| \cdot |CE| = |BE| \cdot |DE|$ .
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

#### **Uwaga:**

Jeśli zdający zapisze, że |DE| = 1 i konsekwentnie rozwiąże zadanie do końca, to może otrzymać co najwyżej **3 punkty**.

### Przykładowe pełne rozwiązanie

Ponieważ trójkąty ABD i BCD są prostokątne, to ich wspólna przeciwprostokątna BD jest średnicą okręgu opisanego na czworokącie ABCD. Zatem |BD|=8. Stąd i z warunków  $|BE|=3\cdot |DE|$  oraz  $|BD|=2\cdot |AE|$  otrzymujemy |DE|=2, |BE|=6 i |AE|=4. Oznaczmy przez S środek okręgu opisanego na czworokącie ABCD. Prowadzimy wysokość AP trójkąta ASE i przyjmijmy pozostałe oznaczenia jak na rysunku.



Ponieważ |AE| = 4 = |AS|, więc trójkąt ASE jest równoramienny. Zatem spodek P wysokości trójkąta ASE jest środkiem podstawy ES tego trójkąta. Stąd wynika, że |EP| = |PS| = 1.

Z twierdzenia Pitagorasa dla trójkata ASP otrzymujemy

$$|AS|^2 = |AP|^2 + |PS|^2$$
  
 $4^2 = h^2 + 1^2$   
 $h^2 = 15$ 

Z twierdzenia Pitagorasa dla trójkątów ABP i ADP otrzymujemy

$$|AB|^2 = |AP|^2 + |PB|^2$$
 oraz  $|AD|^2 = |AP|^2 + |PD|^2$   $a^2 = h^2 + 5^2$  oraz  $d^2 = h^2 + 3^2$   $a^2 = 15 + 25$  oraz  $d^2 = 15 + 9$   $a = \sqrt{40} = 2\sqrt{10}$  oraz  $d = \sqrt{24} = 2\sqrt{6}$ 

Kąty DCA i ABD są równe, gdyż są to kąty wpisane oparte na tym samym łuku AD. Kąty DEC i BEA są równe, gdyż są to kąty wierzchołkowe. Zatem trójkąty DEC i BEA są podobne (cecha kkk). Wynika stąd, że

$$\frac{|CD|}{|DE|} = \frac{|AB|}{|AE|}$$

$$\frac{c}{2} = \frac{2\sqrt{10}}{4}$$

$$c = \sqrt{10}$$



Z twierdzenia Pitagorasa dla trójkąta BCD otrzymujemy

$$|BD|^{2} = |CD|^{2} + |BC|^{2}$$

$$8^{2} = c^{2} + b^{2}$$

$$64 = (\sqrt{10})^{2} + b^{2}$$

$$b = \sqrt{54} = 3\sqrt{6}$$

# **Uwagi:**

- **1.** Długości boków CD i BC można obliczyć, wykorzystując twierdzenie o odcinkach siecznych. Wynika z niego, że  $|AE| \cdot |CE| = |BE| \cdot |DE|$ , więc |CE| = 3. Ponieważ  $\cos \angle AEP = \frac{|EP|}{|AE|} = \frac{1}{4}$ , to z twierdzenia cosinusów wynika, że  $|CD|^2 = 2^2 + 3^2 2 \cdot 2 \cdot 3 \cdot \frac{1}{4} = 10$  oraz  $|BC|^2 = 6^2 + 3^2 + 2 \cdot 6 \cdot 3 \cdot \frac{1}{4} = 54$ .
- **2.** Po wyznaczeniu odcinków |DE|=2, |BE|=6 i |AE|=4 można wyznaczyć długości boków a oraz d, korzystając z twierdzenia cosinusów. Przyjmując  $\beta=4AEB$ , możemy zapisać układ trzech równań:  $a^2+d^2=8^2$ ,  $a^2=6^2+4^2-2\cdot 6\cdot 4\cdot \cos \beta$  oraz  $d^2=2^2+4^2-2\cdot 2\cdot 4\cdot \cos(180^\circ-\beta)$ . Wtedy  $\cos \beta=\frac{1}{4}$  oraz  $a=2\sqrt{10}$  i  $d=2\sqrt{6}$ .

### Zadanie 14. (0-6)

### Zasady oceniania

6 pkt – poprawne wyznaczenie wzoru funkcji V(h) oraz jej dziedziny, oraz wyznaczenie wysokości graniastosłupa o największej objętości wraz z uzasadnieniem.

5 pkt – obliczenie miejsca zerowego pochodnej funkcji V:  $h = \frac{\sqrt{3}}{3}d$ .

4 pkt – wyznaczenie pochodnej funkcji V, np.  $V'(h) = 2(d^2 - 3h^2)$ .

3 pkt – wyznaczenie dziedziny funkcji V(h): (0, d).

2 pkt – wyznaczenie objętości V graniastosłupa jako funkcji jego wysokości, np.  $V(h) = 2(d^2 - h^2) \cdot h$ .

1 pkt – wyznaczenie długości krawędzi podstawy w zależności od wysokości graniastosłupa:  $a=\sqrt{2}\cdot\sqrt{d^2-h^2}$ .

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

# Przykładowe pełne rozwiązanie

Oznaczmy przez  $\,a\,$  długość krawędzi podstawy graniastosłupa, natomiast przez  $\,h\,-\,$  wysokość tego graniastosłupa.

a)Korzystamy z twierdzenia Pitagorasa dla trójkątaODH i otrzymujemy:

$$d^2 = h^2 + |OD|^2$$

$$|OD| = \sqrt{d^2 - h^2}$$

Ponieważ  $|OD|=\frac{1}{2}|BD|=\frac{a\sqrt{2}}{2},$  więc  $\frac{a\sqrt{2}}{2}=\sqrt{d^2-h^2}$  .

Stąd 
$$a = \sqrt{2} \cdot \sqrt{d^2 - h^2}$$
 i  $h \in (0, d)$ .

Pole  $P_P$  podstawy graniastosłupa jest równe

$$P_P = \left(\sqrt{2\cdot \sqrt{d^2 - h^2}}\right)^2 = 2(d^2 - h^2)$$



Wyznaczamy objętość graniastosłupa jako funkcję zmiennej h:

$$V(h) = 2(d^2 - h^2) \cdot h = 2(d^2h - h^3)$$
 dla  $0 < h < d$ .

b)

Wyznaczamy pochodną funkcji V:

$$V'(h) = 2(d^2 - 3h^2)$$

Obliczamy miejsce zerowe pochodnej funkcji V:

$$V'(h) = 0$$
$$2(d^2 - 3h^2) = 0 \quad i \quad h \in (0, d)$$
$$h = \frac{d}{\sqrt{3}}$$



Ponieważ V'(h)>0 dla  $h\in\left(0,\frac{d}{\sqrt{3}}\right)$  oraz V'(h)<0 dla  $h\in\left(\frac{d}{\sqrt{3}},d\right)$ , więc funkcja V jest rosnąca w przedziale  $\left(0,\frac{d}{\sqrt{3}}\right)$  oraz malejąca w przedziale  $\left(\frac{d}{\sqrt{3}},d\right)$ . Zatem funkcja V osiąga wartość największą dla  $h=\frac{d}{\sqrt{3}}$ .

Spośród rozważanych graniastosłupów największą objętość ma graniastosłup o wysokości  $h=rac{d}{\sqrt{3}}$  .

### Zadanie 15. (0-7)

#### Zasady oceniania

Rozwiązanie zadania składa się z dwóch etapów.

**Pierwszy etap** polega na wyznaczeniu równania osi symetrii figury F, prostopadłej do prostej  $S_1S_2$ , a następnie obliczeniu współrzędnych punktów M i N. Za poprawne rozwiązanie tego etapu zdający otrzymuje **4 punkty**.

Podział punktów za pierwszy etap rozwiązania:

Zdający otrzymuje **1 punkt**, gdy obliczy współrzędne środka  $S_2$  okręgu:  $S_2 = (2,3)$ . Zdający otrzymuje **2 punkty**, gdy wyznaczy równanie osi symetrii przechodzącej przez środek S odcinka  $S_1S_2$ , która jest prostopadła do prostej  $S_1S_2$ : y = x - 3.

Zdający otrzymuje **3 punkty** za zapisanie równania z jedną niewiadomą prowadzącego do wyznaczenia współrzędnych punktów M i N, np.  $(x-6)^2+(x-2)^2-16=0$ .

Zdający otrzymuje **4 punkty** za obliczenie współrzędnych punktów M i N: M = (2, -1) oraz N = (6, 3).

**Drugi etap** polega na zapisaniu równania prowadzącego do obliczenia współrzędnych punktu K i obliczeniu tych współrzędnych. Za ten etap rozwiązania zdający otrzymuje **3 punkty**.

Podział punktów za drugi etap rozwiązania:

Zdający otrzymuje **1 punkt** za uzależnienie współrzędnych punktu K od jednej niewiadomej, np. K = (x, -x + 5).

Zdający otrzymuje **2 punkty** za zapisanie równania z jedną niewiadomą prowadzącego do wyznaczenia współrzędnych punktu K, np.  $\frac{1}{2} \cdot |-8x+32| = 40$ ,  $2 \cdot |2x-8| = 40$ . Zdający otrzymuje **3 punkty** za obliczenie współrzędnych punktu K:  $K_1 = (-6,11)$ ,  $K_2 = (14,-9)$ .

### Uwaga:

Jeżeli zdający prowadzi poprawne rozumowanie na każdym etapie rozwiązania zadania, rozwiązuje zadanie do końca i jedynym błędem, który jednak nie ułatwia rozwiązania zadania na żadnym etapie rozwiązania, jest błąd polegający na:

- a) niepoprawnym wyznaczeniu współrzędnych środka okręgu  $o_1$ , to zdający otrzymuje co najwyżej **6 punktów** za całe rozwiązanie;
- b) zastosowaniu niepoprawnej metody obliczania współrzędnych punktów wspólnych okręgu  $o_1$  i osi symetrii figury F prostopadłej do prostej  $S_1S_2$ , to zdający otrzymuje co najwyżej **3 punkty** za całe rozwiązanie (za  $S_2$ , oś symetrii i K);
- c) zastosowaniu niepoprawnej metody wyznaczenia:
  - środka okręgu o<sub>2</sub>
  - współczynnika kierunkowego prostej prostopadłej do prostej  $S_1S_2$ ,

to zdający może otrzymać co najwyżej 5 punktów za całe rozwiązanie.



### Przykładowe pełne rozwiązania



Rozwiązanie zadania składa się z dwóch etapów.

#### I etap

Wyznaczamy współrzędne środka  $S_1$  okręgu  $o_1$ :  $S_1=(6,-1)$ . Ponieważ  $S_1=(6,-1)$  i  $\overrightarrow{S_1S_2}=[-4,4]$ , więc współrzędne środka  $S_2$  są równe:  $S_2=(6-4,-1+4)=(2,3)$ . Zauważmy, że figura F ma dwie osie symetrii. Jedną z nich jest prosta  $S_1S_2$ , do której należą środki okręgów  $o_1$  i  $o_2$ , drugą – prosta prostopadła do prostej  $S_1S_2$  przechodząca przez środek  $S_1S_2$  odcinka  $S_1S_2$ .

Oś symetrii, do której należą środki obu okręgów ma zatem równanie x+y-5=0, czyli y=-x+5.

Wyznaczamy równanie osi symetrii figury F, prostopadłej do prostej  $S_1S_2$ .

Obliczamy współrzędne środka S odcinka  $S_1S_2$ : S=(4,1) i wyznaczamy równanie prostej przechodzącej przez punkt S: y=x-3. Współczynnik kierunkowy tej osi symetrii jest dodatni, więc punkty M i N leżą na tej prostej.

Ponieważ punkty M i N są punktami przecięcia figury F i osi symetrii o równaniu y=x-3, więc są punktami przecięcia okręgu  $o_1$  i prostej y=x-3. Współrzędne tych punktów obliczamy, rozwiązując układ równań

$$\begin{cases} (x-6)^2 + (y+1)^2 = 16\\ y = x-3 \end{cases}$$

Po podstawieniu y = x - 3 do pierwszego równania otrzymujemy równanie

$$(x-6)^2 + (x-2)^2 - 16 = 0$$

a po przekształceniach – równanie kwadratowe  $2x^2 - 16x + 24 = 0$ .

Stąd  $x_1 = 2$ ,  $x_2 = 6$ . Zatem współrzędne punktów M i N są równe: M = (2, -1) oraz N = (6, 3).

### II etap

Punkt K leży na osi symetrii przechodzącej przez środki obu okręgów, więc jego współrzędne można zapisać w postaci: K = (x, -x + 5).

### Sposób I

Wiemy, że pole trójkąta MNK jest równe 40, więc

$$\frac{1}{2} \cdot |(6-2)(-x+5+1) - (3+1)(x-2)| = 40$$

Stąd po przekształceniach otrzymujemy równanie

$$\frac{1}{2} \cdot |-8x + 32| = 40$$

czyli

$$-4x + 16 = 40$$
 lub  $-4x + 16 = -40$   
 $x = -6$  lub  $x = 14$ 

Zatem są dwa takie punkty K:  $K_1 = (-6, 11)$  oraz  $K_2 = (14, -9)$ .

### Sposób II

Obliczamy długość podstawy MN trójkąta MNK:  $|MN| = \sqrt{(6-2)^2 + (3+1)^2} = 4\sqrt{2}$ . Wysokość h trójkąta MNK jest równa odległości punktu K od prostej MN o równaniu x-y-3=0. Zatem

$$h = \frac{|1 \cdot x - 1 \cdot (-x + 5) - 3|}{\sqrt{1^2 + (-1)^2}} = \frac{|2x - 8|}{\sqrt{2}}$$

Wiemy, że pole trójkąta MNK jest równe 40, więc

$$\frac{1}{2} \cdot 4\sqrt{2} \cdot \frac{|2x - 8|}{\sqrt{2}} = 40$$

Stad otrzymujemy równanie

$$2 \cdot |2x - 8| = 40$$

czyli

$$2x - 8 = -20$$
 lub  $2x - 8 = 20$   
 $x = -6$  lub  $x = 14$ 

Zatem K = (-6, 11) lub K = (14, -9).