

NHẬP MÔN TRÍ TUỆ NHÂN TẠO

ThS Nguyễn Thị Trang CNTT1

Học viện Công nghệ Bưu chính Viễn thông

Email: trangnguyen.hust117@gmail.com

Nhập môn trí tuệ nhân tạo

SUY DIỄN XÁC SUẤT

- □ Vấn đề suy diễn trong điều kiện không rõ ràng
- □ Nguyên tắc suy diễn xác suất
- Một số khái niệm về xác suất

Vấn đề suy diễn trong điều kiện không rõ ràng (1/2)

- □ Logic
 - Cho phép biểu diễn tri thức và suy diễn
 - Đòi hỏi tri thức rõ ràng, đầy đủ, chắc chắn, không mâu thuẫn
- □ Thế giới thực
 - Luôn có yếu tố không rõ ràng, thiếu thông tin, có mâu thuẫn

Vấn đề suy diễn trong điều kiện không $r\tilde{o}$ ràng (2/2)

- □ Các yếu tố ảnh hưởng tới tính rõ ràng, chắc chắn của tri thức, thông tin
 - Thông tin có chứa đựng yếu tố ngẫu nhiên
 - □ Khi chơi bài, tung đồng xu
 - Lý thuyết không rõ ràng
 - □ Ví dụ không biết hết cơ chế chế gây bệnh
 - Thiếu thông tin thực tế
 - □ Không đủ thông tin xét nghiệm của bệnh nhân
 - Các yếu tố liên quan tới bài toán quá lớn, quá phức tạp
 - Không thể biểu diễn được mọi yếu tố
 - Sai số khi lấy thông tin từ môi trường
 - □ Các thiết bị đo có sai số

Các cách tiếp cận

- □ Logic đa trị
 - Cho phép sử dụng nhiều giá trị hơn, ngoài "đúng" và "sai"
- Logic mò
 - Biểu thức có thể nhận giá trị "đúng" với một giá trị trong khoảng [0,1]
- □ Lý thuyết khả năng
 - Các sự kiện hay công thức được gán một số thể hiện khả năng xảy ra sự kiện
- Suy diễn xác suất
 - Kết quả suy diễn trả về xác suất một sự kiện hay công thức nào đó đúng.

- □ Vấn đề suy diễn trong điều kiện không rõ ràng
- □ Nguyên tắc suy diễn xác suất
- Một số khái niệm về xác suất

PTiT

Nguyên tắc suy diễn xác suất (1/2)

- □ Thay vì suy diễn về tính "đúng" hoặc "sai" của mệnh đề (2 giá trị), suy diễn về "niềm tin" mệnh đề đó đúng hay sai (vô số giá trị)
 - Gắn cho mỗi mệnh đề một số đó giá trị niềm tin
 - Biểu diễn mức đo niềm tin như giá trị xác suất, sử dụng lý thuyết xác suất để làm việc với giá trị này
 - Với mệnh đề A
 - □ Gán xác suất P(A): $0 \le P(A) \le 1$
 - P(A)=1 nếu A đúng, P(A)=0 nếu A sai

PITT

Nguyên tắc suy diễn xác suất (1/2)

- □ Thay vì suy diễn về tính "đúng" hoặc "sai" của mệnh đề (2 giá trị), suy diễn về "niềm tin" mệnh đề đó đúng hay sai (vô số giá trị)
 - Gắn cho mỗi mệnh đề một số đo giá trị niềm tin
 - Biểu diễn mức đo niềm tin như giá trị xác suất, sử dụng lý thuyết xác suất để làm việc với giá trị này
 - Với mệnh đề A
 - □ Gán xác suất P(A): $0 \le P(A) \le 1$;
 - P(A) = 1 nếu A đúng, P(A) = 0 nếu A sai

PInT

Nguyên tắc suy diễn xác suất

□ Ví dụ

- P(Cảm = true) = 0.6: Người bệnh bị cảm với xác suất 60%, "Cảm" là biến ngẫu nhiên có thể nhận 1 trong 2 giá trị {True, Fasle}
- P(trời = nắng ∧ gió = mạnh) = 0.8: ta tin rằng trời nắng và gió mạnh với xác suất 80%, trời là biến ngẫu nhiễn nhận các giá trị {nắng, mưa, u ám}, gió là biến ngẫu nhiên nhận giá trị {mạnh,yếu,trung bình}

Nguyên tắc suy diễn xác suất (2/2)

- □ Bản chất của xác suất sử dụng trong suy diễn
 - Bản chất thống kê: dựa trên thực nghiệm và quan sát
 - Không phải khi nào cũng xác định được
 - Xác suất dựa trên chủ quan: mức độ tin tưởng, niềm tin là sự kiện đó đúng hoặc sai của chúng chuyên gia, người dùng
 - Được sử dụng khi suy diễn xác suất
- □ Thu nhập thông tin
 - Xác định các tham số liên quan tới bài toán: ví dụ "màu", "đẹp"
 - Mỗi tham số là một biến ngẫu nhiên

PTAT

Nguyên tắc suy diễn xác suất (2/2)

- □ Thu nhập thông tin (2)
 - Có thể là {True, False} hoặc nhiều giá trị hơn: { đỏ, xanh, vàng}
 - VD: P (màu = $d\mathring{o}$) = 0.09; P($\neg d\mathring{e}p$) = 0.2

- □ Vấn đề suy diễn trong điều kiện không rõ ràng
- □ Nguyên tắc suy diễn xác suất
- □ Một số khái niệm về xác suất

Các tiên đề xác suất và một số tính chất cơ bản

- □ Các tiên đề xác suất
- 1. $0 \le P(A = a) \le 1$ với mọi a thuộc miền giá trị của
- P(True) = 1, P(False) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Các tiên đề xác suất và một số tính chất cơ bản

- Một số tính chất chất
- $P(\neg A) = 1 P(A)$
- $P(A) = P(A \wedge B) + P(A \wedge \neg B)$
- 3. $\sum_{a} P(A = a) = 1$: Tổng lấy theo các giá trị a thuộc miền giá trị của A

Xác suất đồng thời

- \square Có dạng $P(V_1 = v_1, V_2 = v_2, ..., V_n = v_n)$
- □ Phân bố xác suất đồng thời đầy đủ: bao gồm xác suất cho tất cả các tổ hợp giá trị của tất cả biến ngẫu nhiên

Xác suất đồng thời

□ Ví dụ: Cho 3 biến Bool: Chim, Non, Bay

Chim (C)	Non (N)	Bay (B)	P
Т	T	T	0.0
T	T	F	0.2
T	F	T	0.04
T	F	F	0.01
F	T	T	0.01
F	T	F	0.01
F	F	T	0.23
F	F	F	0.5

Xác suất đồng thời

- Nếu có tất cả xác suất đồng thời, ta có thể tính xác suất cho mệnh đề liên quan tới bài đang xét
- □ Ví dụ
 - P(chim = T) = P(C) = 0.0 + 0.2 + 0.04 + 0.01 = 0.25
 - $P(\text{chim} = \text{T, Bay} = \text{F}) = P(\text{C, } \neg \text{B}) = P(\text{C, N, } \neg \text{B}) + P(\text{C, } \neg \text{N, } \neg \text{B}) = 0.2 + 0.01 = 0.21$

Xác suất điều kiện

- □ Đóng vai trò quan trọng trong suy diễn
 - Từ bằng chứng suy ra xác suất của kết quả
 - Ví dụ:
 - □ P(A|B) = 1 tương đương $B \Rightarrow A$ trong logic
 - □ P(A|B) = 0.9 tương đương $B \Rightarrow A$ với xác suất hay độ chắc là 90%
 - □ Với nhiều bằng chứng (quan sát) $E_1, ..., E_n$ có thể tính $P(Q|E_1, ..., E_2)$ tương đương: niềm tin Q đúng là bao nhiều nếu biết $E_1, ..., E_n$ và không biết gì thêm
- □ Định nghĩa xác suất điều kiện

$$P(A|B) = \frac{P(A \land B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

Xác suất điều kiện

- □ Các tính chất của xác suất điều kiện
 - P(A,B) = P(A|B)P(B)
 - Quy tắc chuỗi: P(A, B, C, D) = P(A|B, C, D)P(B|C, D)P(C|D)P(D)
 - Quy tắc chuỗi có điều kiện: P(A, B|C) = P(A|B, C)P(B|C)
 - Quy tắc Bayes: $P(A|B) = \frac{P(A)P(B|A)}{P(B)}$
 - Bayes có điều kiện: $P(A|B) = \frac{P(B|A,C)P(A|C)}{P(B|C)}$
 - $P(A) = \sum_{b} \{P(A|B=b)P(B=b)\}$, tổng lấy theo tất cả giá trị b của B
 - $P(\neg B|A) = 1 P(B|A)$

Kết hợp nhiều bằng chứng

- □ Ví dụ
 - Tính P(¬Chim|Bay, ¬Non) = $\frac{P(\neg Chim, Bay, \neg Non)}{P(Bay, \neg Non)}$
- □ Trường hợp tổng quát: cho bảng xác suất đồng thời, có thể tính
 - $P(V_1 = v_1, ..., V_k = v_k | V_{k+1} = v_{k+1}, ..., V_n = v_n)$
 - Tổng các dòng có $V_1 = v_2, ..., V_n = v_n$ chia cho tổng các dòng có $V_{k+1} = v_{k+1}, ..., V_n = v_n$

Tính độc lập xác suất

- □ A độc lập với B nếu P(A|B) = P(A)
 - Ý nghĩa: Biết giá trị của B không thêm thông tin về A
 - Từ đây có thể suy ra P(A,B) = P(A)P(B)
- □ A độc lập có điều kiện với B khi biết C nếu
 - P(A|B,C)=P(A|C) hoặc P(B|A,C)=P(B|C)
 - Ý nghĩa: nếu đã biết giá trị của C thi việc biết giá trị của B không cho ta thêm thông tin về A
 - Suy ra P(A,B|C)=P(A|C)P(B|C)

Sử dụng quy tắc Bayes

- Quy tắc Bayes đóng vai trò quan trọng trong suy diễn
- Để suy diễn cần biết P(A|B) nhưng thường P(B|A) dễ tính hơn
 - Ví dụ: Xác suất bị cúm khi đau đầu và xác suất đau đầu khi bị cúm

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Ví dụ

- Một người có kết quả xét nghiệm dương tính với bệnh B
- □ Thiết bị xét nghiệm không chính xác hoàn toàn
 - Thiết bị cho kết quả dương tính đối với 98% người có bệnh
 - Thiết bị cho kết quả dương tính đối với 3% người không có bệnh
- □ 0.8% dân số mắc bệnh này
- □ Hỏi: Người này có bị bệnh không?

Ví dụ (2/2)

- Kí hiệu sự kiện có bệnh là B, sự kiện xét nghiệm dương là A
- □ Theo dữ kiện bài toán ta có
 - $P(B)=0.008, P(\neg B) = 1 0.0008 = 0.992$
 - $P(A|B) = 0.98, P(\neg A|B) = 1 0.98 = 0.02$
 - $P(A|\neg B) = 0.03, P(\neg A|\neg B) = 1 0.03 = 0.97$
- □ Cần so sánh các xác suất P(B|A) và P(¬B|A)

Sử dụng quy tắc Bayes

 \square P(\neg B|A) > P(B|A), không bị bệnh

Chuẩn tắc hoá

- □ Để so sánh P(B|A) và P(¬B|A) ta không cần tính cụ thể hai giá trị xác suất này, thay vào đó ta tính $\frac{P(B|A)}{P(¬B|A)}$
 - Hai biểu thức có chung mẫu số P(A)
 - Kết luận có bệnh hay không phụ thuộc vào giá trị $\frac{P(B|A)}{P(\neg B|A)}$ lớn hơn hay nhỏ hơn 1

Chuẩn tắc hoá

□ Khi cần tính cụ thể xác suất này ta làm như sau $P(B|A) + P(\neg B|A) = 1$ nên $\frac{P(A|B)P(B)}{P(A)} + \frac{P(A|\neg B)P(\neg B)}{P(A)} = 1$ Do đó $P(A) = P(A|B)P(B) + P(A|\neg B)P(\neg B) = 0.00784 + 0.02976 = 0.0376$

Từ đó $P(\neg B|A) = 0.79$; P(B|A) = 0.21

Kết hợp quy tắc Bayes và tính độc lập xác suất

- □ Cần tính P(A|B, C), biết B và C độc lập xác suất khi biết A
 - Theo quy tắc Bayes $P(A|B,C) = \frac{P(B,C|A)*P(A)}{P(B,C)}$
 - Theo tính độc lập xác suất P(B, C|A) = P(B|A)*P(C|A)
 - Do đó $P(A|B,C) = \frac{P(B|A)*P(C|A)*P(A)}{P(B|C)}$

Kết hợp quy tắc Bayes và tính độc lập xác suất

- □ Ví du
 - Cho 3 biến nhị phân: gan BG, vàng da VD, thiếu máu TM
 - Giả sử VD độc lập với TM
 - Biết $P(BG) = 10^{-7}$
 - Có người khám bị VD
 - Biết $P(VD) = 2^{-10} \text{ và } P(VD|BG) = 2^{-3}$
 - Xác suất người khám bị bệnh là bao nhiêu?
 - Cho biết thêm người đó bị thiếu máu và $P(TM) = 2^{-6}$, $P(TM|BG) = 2^{-1}$. Hãy tính xác suất người bị bệnh BG