Newton's Method

Contents

1 Newton's Method

Secant Method

3 Appendix: Other Methods

Newton's Method

Newton's Method

To find the root of f:

Newton's Method (Algorithm)

• Begin at the point $(x_0, f(x_0))$ on the curve and draw the tangent line at the point using the slope $f'(x_0)$:

$$y = f(x_0) + f'(x_0)(x - x_0).$$

• Find the x-intercept of the line and call it x₁:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \, .$$

• Continue this procedure to find x_2, x_3, \ldots until the sequence converges to the root.

General iterative formula:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 for $k = 0, 1, 2, ...$ (*)

Newton's Method: Illustration

Series Analysis

Let $\epsilon_k = x_k - r$, k = 1, 2, ..., where r is the limit of the sequence and f(r) = 0.

Substituting $x_k = r + \epsilon_k$ into the iterative formula (*):

$$\epsilon_{k+1} = \epsilon_k - \frac{f(r + \epsilon_k)}{f'(r + \epsilon_k)}.$$

Taylor-expand f about x = r and simplify (assuming $f'(r) \neq 0$):

$$\epsilon_{k+1} = \epsilon_k - \frac{f(r) + \epsilon_k f'(r) + \frac{1}{2} \epsilon_k^2 f''(r) + O(\epsilon_k^3)}{f'(r) + \epsilon_k f''(r) + O(\epsilon_k^2)}$$

$$= \epsilon_k - \epsilon_k \left[1 + \frac{1}{2} \frac{f''(r)}{f'(r)} \epsilon_k + O(\epsilon_k^2) \right] \left[1 + \frac{f''(r)}{f'(r)} \epsilon_k + O(\epsilon_k^2) \right]^{-1}$$

$$= \frac{1}{2} \frac{f''(r)}{f'(r)} \epsilon_k^2 + O(\epsilon_k^3).$$

Series Analysis (cont')

• Previous calculation shows that $\epsilon_{k+1} \approx C \epsilon_k^2$, eventually. Written differently,

$$|\epsilon_{k+1}|/|\epsilon_k|^2 \to \text{(some positive number)}, \text{ as } k \to \infty.$$

that is, each Newton iteration roughly squares the previous error. This is quadratic convergence.

Alternately, note that

$$\log |\epsilon_{k+1}| \approx 2 \log |\epsilon_k| + \text{(constant)},$$

ignoring high-order terms. This means that the number of accurate digits¹ approximately doubles at each iteration.

¹We say that an iterate is **correct within** p **decimal places** if the error is less than 0.5×10^{-p} .

Convergence of Newton's Method

Theorem 1 (Quadratic Convergence of Newton's Method)

Let f be twice continuously differentiable and f(r)=0. If $f'(r)\neq 0$, then Newton's method is locally and quadratically convergent to r. The error $\epsilon_k=x_k-r$ at step k satisfies

$$\lim_{k \to \infty} \frac{|\epsilon_{k+1}|}{|\epsilon_k|^2} = \left| \frac{f''(r)}{2f'(r)} \right|.$$

Implementation

```
function x = newton(f, dfdx, x1)
% NEWTON
          Newton's method for a scalar equation.
% Input:
           objective function
% dfdx derivative function
% v1
           initial root approximation
% Output
          vector of root approximations (last one is best)
% x
% Operating parameters.
   funtol = 100 \times eps; xtol = 100 \times eps; maxiter = 40;
   x = x1;
   v = f(x1);
   dx = Inf: % for initial pass below
   k = 1;
   while (abs(dx) > xtol) && (abs(y) > funtol) && (k < maxiter)
       dvdx = dfdx(x(k));
       dx = -y/dydx; % Newton step
       x(k+1) = x(k) + dx;
       k = k+1:
       y = f(x(k));
   end
   if k == maxiter, warning ('Maximum number of iterations reached.'), end
end
```

Note: Stopping Criteria

For a set tolerance, TOL, some example stopping criteria are:

Absolute error:

$$|x_{k+1} - x_k| < \text{TOL}.$$

Relative error: (useful when the solution is not too close to zero)

$$\frac{|x_{k+1}-x_k|}{|x_{k+1}|} < \text{TOL}.$$

Hybrid:

$$\frac{|x_{k+1} - x_k|}{\max(|x_{k+1}|, \theta)} < \text{TOL},$$

for some $\theta > 0$.

Residual:

$$|f(x_k)| < TOL.$$

Also useful to set a limit on the maximum number of iterations in case convergence fails.

Secant Method

Secant Method

- Newton's method requires calculation and evaluation of f'(x), which may be challenging at times.
- The most common alternative to such situations is the secant method.
- The secant method replaces the instanteneous slope in Newton's method by the average slope using the last two iterates.

Secant Method (cont')

Secant Method (Algorithm)

• Begin with two initial iterates x_{-1} and x_0 ; draw the secant line connecting $(x_{-1}, f(x_{-1}))$ and $(x_0, f(x_0))$:

$$y = f(x_0) + \frac{f(x_0) - f(x_{-1})}{x_0 - x_{-1}}(x - x_0).$$

• Find the x-intercept of the line and call it x_1 :

$$x_1 = x_0 - f(x_0) \frac{x_0 - x_{-1}}{f(x_0) - f(x_{-1})}$$
.

• Continue this procedure to find x_2, x_3, \ldots until convergence is obtained.

General iterative formula:

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$
 for $k = 0, 1, 2, ...$

Secant Method: Illustration

Series Analysis

Assume that the secant method converges to r and $f'(r) \neq 0$. Let $\epsilon_k = x_k - r$ as before.

It can be shown that

$$|\epsilon_{k+1}| \approx \left| \frac{f''(r)}{2f'(r)} \right| |\epsilon_k| |\epsilon_{k-1}|,$$

which implies that

$$|\epsilon_{k+1}| \approx \left| \frac{f''(r)}{2f'(r)} \right|^{\alpha-1} |\epsilon_k|^{\alpha},$$

where

$$\alpha = \frac{1 + \sqrt{5}}{2} \approx 1.618,$$

the golden ratio.

Therefore, the convergence of the secant method is **superlinear**; it lies between linearly and quadratically convergent methods.

Series Analysis (cont')

Exercise. Confirm the statements in the previous page. Namely, show that

1 The error ϵ_k satisfies the approximate equation

$$|\epsilon_{k+1}| \approx \left| \frac{f''(r)}{2f'(r)} \right| |\epsilon_k| |\epsilon_{k-1}|.$$

2 If in addition $\lim_{k\to\infty} |\epsilon_{k+1}|/|\epsilon_k|^{\alpha}$ exists and is nonzero for some $\alpha>0$, then

$$|\epsilon_{k+1}| pprox \left| rac{f''(r)}{2f'(r)}
ight|^{lpha-1} |\epsilon_k|^{lpha}, \quad ext{where } lpha = rac{1+\sqrt{5}}{2}.$$

Implementation

```
function x = secant(f,x1,x2)
% SECANT
          Secant method for a scalar equation.
% Input:
          objective function
 x1,x2 initial root approximations
% Output
         vector of root approximations (last is best)
% x
% Operating parameters.
    funtol = 100*eps; xtol = 100*eps; maxiter = 40;
   x = [x1 \ x2];
   dx = Inf; v1 = f(x1);
    k = 2; y2 = 100;
    while (abs(dx) > xtol) && (abs(v2) > funtol) && (k < maxiter)
       v2 = f(x(k));
       dx = -y2 * (x(k)-x(k-1)) / (y2-y1); % secant step
       x(k+1) = x(k) + dx:
       k = k+1:
       v1 = v2: % current f-value becomes the old one next time
   end
    if k == maxiter, warning ('Maximum number of iterations reached.'), end
end
```

Appendix: Other Methods

Inverse Interpolation

The **inverse quadratic interpolation** (IQI) is a generalization of the secant method to parabolas.

- Instead of using two most recent points (to determine a straight line), use three and obtain an quadratic interpolant.
- The parabola of the form y = p(x) may have zero, one, or two x-intercept(s). So use the form x = p(y), a parabola open sideways.

Algorithm.

- Begin with three initial iterates x_{-2}, x_{-1}, x_0 ; find the parabola of the form x = p(y) passing through the three points $(x_{-2}, f(x_{-2})), (x_{-1}, f(x_{-1})),$ and $(x_0, f(x_0))$.
- Find the x-intercept of the parabola and call it x₁.
- Continue the procedure to find x_2, x_3, \ldots until convergence is obtained.

Inverse Interpolation (cont')

General iterative formula:

$$x_{k+1} = x_k - \frac{r(r-q)(x_k - x_{k-1}) + (1-r)s(x_k - x_{k-2})}{(q-1)(r-1)(s-1)}, \quad \text{for } k = 0, 1, 2, \dots,$$

where

$$q = \frac{f(x_{k-2})}{f(x_{k-1})}, \quad r = \frac{f(x_k)}{f(x_{k-1})}, \quad s = \frac{f(x_k)}{f(x_{k-2})}.$$

Rather than deriving and implementing the formula, try using polyfit to perform the interpolation step.

Bisection Method: Bracketing a Root

The following is a corollary to the intermediate value theorem.

Theorem 2 (Existence of a Root)

Let f be a continuous function on [a,b], satisfying f(a)f(b) < 0. Then f has a root between a and b, that is, there exists a number $r \in (a,b)$ such that f(r) = 0.

Bisection Method (cont')

Algorithm.

- Start with an interval [a, b] where $f(a)f(b) \leq 0$.
- Bisect the interval into $[a,m] \cup [m,b]$ where m=(a+b)/2 is the midpoint.
- Select the subinterval in which f(x) changes signs, i.e., calculate f(a)f(m) and f(m)f(b), choose the nonpositive one, and update the values of a and b.
- Repeat the process until you get close enough to the solution.

Notes

Let [a,b] be the initial interval and let $[a_k,b_k]$ be the interval after k bisection steps.

- The length of $[a_k, b_k]$ is $(b-a)/2^k$.
- Using the midpoint $x_k = (a_k + b_k)/2$ as an estimate of the root r, note that

$$|\epsilon_k| = |x_k - r| < \frac{b - a}{2^{k+1}}.$$

• This accuracy is obtained by k+2 function evaluations.

Bisection Method: Pseudocode

```
while <a NOT CLOSE ENOUGH TO b>
 m = (a + b)/2;
 fm = f(m);
 if sign(fa) ~= sign(fm)
  b = m;
  fb = fm;
 else
   a = m;
   fa = fm;
 end
end
x_zero = .5*(a + b);
```