Connaissances professionnelles écrites Série 2023

Position 5

Technique des systèmes électriques, incl. bases technologiques

PQ selon offo 2015
Planificatrice-électricienne CFC
Planificateur-électricien CFC

Nom:	Prénom:	N° de candidat:	Date:

90	Minutes	19	Exercices	16	Pages	54	Points

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

Cotation – Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- · Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Le nombre de réponses demandé est déterminant.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.
- Toute erreur induite par une précédente erreur n'entraîne aucune déduction.

_		•		
0	~ r	•	m	_
_	ar	_		_

6	5,5	5	4,5	4	3,5	3	2,5	2	1,5	1
54,0-51,5	51,0-46,0	45,5-40,5	40,0-35,5	35,0-30,0	29,5-24,5	24,0-19,0	18,5-13,5	13,0-8,5	8,0-3,0	2,5-0,0

Expertes / Experts

Page 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Points:

experte/expert 1	experte/expert 2	Points	Note

Dainta

Délai d'attente:

Cianatura da

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2024.

Cianatura da

Créé par:

Groupe de travail PQ d'EIT.swiss pour la profession de planificatrice-électricienne CFC / Planificateur-électricien CFC

Editeur:

CSFO, département procédures de qualification, Berne

1. Systèmes électrochimiques

Une source de tension ayant une tension à vide de 1,58 V est chargée avec une résistance de 10 Ω . Un courant de 150 mA circule. Calculez :

a) La tension aux bornes de la résistance.

1

2

b) La résistance interne de la source de tension.

1

3

2. Distribution d'énergie

La plaquette signalétique suivante figure sur un transformateur triphasé.

a) Que signifie Dyn5 pour le groupe de commutation ?

2

D=

y =

n =

5 =

b) Quelle est l'intensité du courant au secondaire en cas de court-circuit ?

1

3. Loi d'Ohm 2

1

1

2

Caractéristique d'une résistance

- Expliquez le graphique ci-dessus. Deux des quatre termes suivants doivent être a) utilisés : plus grand / plus petit / proportionnel / inversement proportionnel
- b) Calculez la résistance à partir du graphique ci-dessus.

4. Dispositifs de commutation

Affirmation sur la capacité d'un condensateur. Pour chaque affirmation, cochez juste ou faux :

Affirmations	Juste	Faux
Plus la rigidité diélectrique est élevée, plus la capacité est petite.		
Plus la surface des armatures du condensateur est petite, plus la capacité est grande.		
Plus les armatures du condensateur sont épaisses, plus la capacité est grande.		
Plus la distance entre les armatures du condensateur est grande, plus la capacité est petite.		

0,5

0,5

0,5

5. Moteur triphasé

3

Une pompe à eau potable fournit 50 litres d'eau par seconde à un réservoir situé 60 m plus haut. Une puissance utile de 2,98 kW est nécessaire. Les pertes dans la canalisation sont de 10 %, le rendement de la pompe est de 80 %. Le moteur électrique 3 x 400 V couplé à la pompe a un rendement de 90 % et absorbe une puissance de 4,14 kW avec un cos ϕ de 0,88.

a) Calculez le rendement global du système.

0,5

b) Complétez les valeurs manquantes.

2,5

6. Effet calorifique

3

L'eau dans le ballon de stockage d'un système de pompe à chaleur doit être chauffée de 10°C à 60°C en 8 heures grâce à un système photovoltaïque agissant sur un corps de chauffe électrique. Le rendement est de 95 %.

$$c_{H2O} = 4,187 \frac{kWs}{kg \cdot K}$$
 $\rho_{H2O} = 1 \frac{kg}{dm^3}$

Calculer la puissance électrique fournie par l'onduleur.

3

2

0,5

0,5

0,5

0,5

7. Résistances en AC

A quels composants correspondent les graphiques ci-dessous ? Sous chaque graphique, indiquez le chiffre correspondant parmi les choix suivants:

- 1: condensateur idéal
- 2: bobine réelle
- 3: bobine idéale

- 4: Résistance parfaite
- 5: Couplage R-C

8. Grandeurs des circuits

Pour chaque affirmation, cochez juste ou faux :

Affirmations	Juste	Faux
La résistance diminue lorsque la longueur du câble diminue.		
La résistance diminue lorsqu'un matériau conducteur avec une conductivité électrique plus faible est utilisé.		
La résistance diminue lorsqu'un fil de plus grande section est utilisé.		
La résistance diminue lorsqu'un matériau avec une résistivité plus élevée est utilisé.		

4

9. Energie en triphasé

Un chauffage et un moteur sont enclenchés pendant 8 heures par un contacteur Q1. Quelle est l'énergie active consommée ?

10. Alimentation triphasée

3

Les valeurs suivantes sont mesurées sur un réseau triphasé chargé symétriquement : $U = 390 \text{ V}, I = 120 \text{ A}, \cos \phi = 0.8.$

Calculez:

a) La puissance apparente.

1

b) La puissance active.

1

c) La puissance réactive.

1

11. Convertisseur de fréquence

1

Sur le schéma de principe d'un variateur de fréquence, complétez les symboles représentant le redresseur et l'onduleur.

2

3

1

1

1

12. Résistances en AC

Vous mesurez l'impédance de boucle $Z_{\mathbb{S}}$ avec cet appareil de mesure, qui affiche les valeurs suivantes :

Calculez X_L de la boucle.

13. Puissances actives, réactives, apparentes et facteur de puissance

Le moteur est enclenché pendant 30 secondes. Durant ce temps, vous comptez 5 impulsions sur le compteur électronique en amont.

$$(c = 1000 \frac{\text{impulsions}}{\text{kWh}})$$

- a) Calculez la puissance apparente du moteur.
- b) Calculez la puissance active absorbée par ce moteur.

PE_Pos_5_Techn_système_élec_incl_bases_techn_cand_PQ23

c) Calculez le $\cos \phi$ de ce moteur.

3

14. Résistance de ligne

Un grill électrique est connecté au réseau via un enrouleur. La tension à la prise murale est de 228 V.

(On néglige la résistance du cordon d'appareil du grill)

$$(\rho_{Cu}=0.0175\frac{\alpha\cdot mm^2}{m})$$

Calculez le courant réel circulant dans ce circuit ?

4

15. Loi d'Ohm

En termes simplifiés, le corps humain peut être considéré comme un « circuit mixte de résistances ». Calculez le courant de choc qui traverse le corps humain lorsqu'une tension de contact de 230 V est appliquée entre A (main) et B (pied).

3

1

1

1

16. Coupure de ligne dans le réseau triphasé

Le conducteur de neutre et un conducteur de phase sont coupés.

Calculez:

a) Les tensions aux bornes de R₁, R₂ et R₃.

b) Les courants traversant R₁, R₂ et R₃.

c) La puissance active totale (avec les deux coupures dans le circuit).

4

2

2

17. Système triphasé

Un système triphasé (3 x 400 V / 230 V 50 Hz) est chargé asymétriquement.

a) Calculez les courants dans les conducteurs $L_1,\,L_2$ et $L_3.$

b) Déterminez graphiquement le courant dans le conducteur neutre. (Echelle 1 A \triangleq 1 cm)

nts

		Poir
18.	Compensation	5
230 V	oteur monophasé à courant alternatif possède les caractéristiques suivantes : γ ; 50 Hz; 4,6 A; cos ϕ = 0,8. Le facteur de puissance doit être amélioré afin d'obtenir s ϕ = 0,9.	
a)	Quelle puissance réactive doit fournir le condensateur ?	3
b)		1
b)	Calculez la capacité du condensateur permettant cette compensation.	1
c)	Quelle est l'intensité du courant après compensation ?	1

19. Circuits logiques

2

Toutes les entrées de ce circuit ont un niveau 1 logique.

Quel est l'état logique de la sortie Q1 ? a)

1

Indiquer le niveau logique des entrées permettant de modifier l'état de Q1. b) (aucun changement de câblage autorisé)

1

Points