Metropolis Algorithm Exercise

Situation: Our target distribution is, rather strangely, proportional to

θ	unstandardized posterior
100	0
101	4
102	2
103	3
104	0

The posterior of all other values of θ is 0.

Goal: Simulate this posterior using the Metropolis algorithm (clearly we could just standardize the posterior instead, but the idea is to get a sense of how the algorithm works).

Tools: A coin and the attached table of random numbers from the Uniform(0,1) distribution.

Directions: Record the following steps as you do them in the table on the next page.

- 1. Divide your age by 3, take the remainder, and add 101 (so the result is 101, 102, or 103). That is your starting value for θ . This process corresponds to the *starting distribution*.
- 2. For each row,
 - (a) Toss the coin. If you observe heads, set θ^* to $\theta + 1$. If you observe tails, set θ^* to $\theta 1$. This process corresponds to the *proposal distribution*.
 - (b) Calculate the ratio of the posteriors at the proposed point compared to the current point.

$$r = \frac{P(\theta^*|data)}{P(\theta^{t-1}|data)}.$$

- (c) Look at the next number in the random number table and call it U.
- (d) Set $\theta = \theta^*$ if $U \le r$ and fill in the appropriate circle to denote that. If U > r, don't fill in a circle at all.
- 3. The filled in circles under 101, 102, and 103 represent our sample from the underlying distribution.

				θ		
$ heta^*$	r	U	Accept or reject?	101	102	103
not applicable	not applicable	not applicable	not applicable	0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0
				0	0	0

Table of random digits.

^{0.543 0.520 0.260 0.758}

^{0.388 0.827 0.146 0.329}

^{0.927 0.506 0.106 0.060}

^{0.694 0.188 0.031 0.322}

^{0.558 0.463 0.592 0.239}