Planche nº 29. Dimensions des espaces vectoriels : corrigé

Exercice nº 1

 e_4 et e_5 ne sont pas colinéaires. Donc (e_4,e_5) est une famille libre et dim $G=\operatorname{rg}\ (e_4,e_5)=2$. Ensuite, puisque e_1 et e_2 ne sont pas colinéaires, on a $2\leqslant \dim F\leqslant 3$. Soit alors $(\lambda,\mu,\nu)\in\mathbb{R}^3$.

$$\lambda e_{1} + \mu e_{2} + \nu e_{3} = 0 \Rightarrow \begin{cases} \lambda + \mu + 2\nu = 0 & (1) \\ 2\lambda + \mu + \nu = 0 & (2) \\ 3\lambda + \mu + \nu = 0 & (3) \\ 4\lambda + 3\mu + \nu = 0 & (4) \end{cases} \Rightarrow \begin{cases} \lambda = 0 \ ((3) - (2)) \\ \nu - \lambda = 0 \ ((1) - (2)) \\ \lambda + \mu + 2\nu = 0 \ (1) \end{cases} \Rightarrow \lambda = \mu = \nu = 0.$$

On a montré que : $\forall (\lambda, \mu, \nu) \in \mathbb{R}^3$, $(\lambda e_1 + \mu e_2 + \nu e_3 = 0 \Rightarrow \lambda = \mu = \nu = 0)$. La famille (e_1, e_2, e_3) est donc libre et dim $F = \operatorname{rg}(e_1, e_2, e_3) = 3$.

Comme $F \subset F + G$, dim $(F + G) \ge 3$ ou encore dim (F + G) = 3 ou 4. De plus :

$$\dim (F + G) = 3 \Leftrightarrow F = F + G \Leftrightarrow G \subset F \Leftrightarrow \{e_4, e_5\} \subset F.$$

On cherche alors (λ, μ, ν) élément de \mathbb{R}^3 tel que $e_4 = \lambda e_1 + \mu e_2 + \nu e_3$ ce qui équivaut au système :

$$\begin{cases} \lambda + \mu + 2\nu = -1 & (1) \\ 2\lambda + \mu + \nu = 0 & (2) \\ 3\lambda + \mu + \nu = -1 & (3) \\ 4\lambda + 3\mu + \nu = 2 & (4) \end{cases}$$

(3) – (2) fournit $\lambda = -1$ puis (1) – (2) fournit $\nu = -2$ puis (2) fournit $\mu = 4$.

Avec ces valeurs, (4) n'est pas vérifiée car $4 \times (-1) + 3 \times 4 - 2 = 6 \neq 2$. Le système proposé n'admet pas de solution ou encore $e_4 \notin \text{Vect}(e_1, e_2, e_3) = F$. Par suite, dim (F + G) = 4.

Enfin,

$$\dim (F \cap G) = \dim F + \dim G - \dim (F + G) = 3 + 2 - 4 = 1.$$

Exercice nº 2

On a $H_1 \subset H_1 + H_2$ et donc dim $(H_1 + H_2) \geqslant n-1$ ou encore dim $(H_1 + H_2) \in \{n-1,n\}$. Donc

$$\dim(H_1\cap H_2) = \dim\, H_1 + \dim\, H_2 - \dim(H_1+H_2) = \left\{ \begin{array}{l} (n-1) + (n-1) - (n-1) = n-1 \\ \quad \text{ou} \\ (n-1) + (n-1) - n = n-2 \end{array} \right..$$

Maintenant, si $\dim(H_1 + H_2) = n - 1 = \dim H_1 = \dim H_2$, alors $H_1 = H_1 + H_2 = H_2$ et donc en particulier, $H_1 = H_2$. Réciproquement, si $H_1 = H_2$ alors $H_1 + H_2 = H_1$ et dim $(H_1 + H_2) = n - 1$.

En résumé, si H_1 et H_2 sont deux hyperplans distincts, $\dim(H_1 \cap H_2) = \mathfrak{n} - 2$ et bien sûr, si $H_1 = H_2$, alors $\dim(H_1 \cap H_2) = \mathfrak{n} - 1$.

Si n = 2, les hyperplans sont des droites vectorielles et l'intersection de deux droites vectorielles distinctes du plan vectoriel est de dimension 0, c'est-à-dire réduite au vecteur nul.

Si n = 3, les hyperplans sont des plans vectoriels et l'intersection de deux plans vectoriels distincts de l'espace de dimension 3 est une droite vectorielle.

Exercice $n^o 3$

On a

$$n = \dim E = \dim(\operatorname{Ker} f + \operatorname{Ker} q) = \dim(\operatorname{Ker} f) + \dim(\operatorname{Ker} q) - \dim(\operatorname{Ker} f \cap \operatorname{Ker} q),$$

mais aussi,

$$n = \dim (\operatorname{Im} f) + \dim (\operatorname{Im} g) - \dim (\operatorname{Im} f \cap \operatorname{Im} g) = n - \dim \operatorname{Ker} f + n - \dim (\operatorname{Ker} g) - \dim (\operatorname{Im} f \cap \operatorname{Im} g).$$

Par suite,

$$\dim (\operatorname{Ker} f) + \dim \operatorname{Ker} g = n + \dim (\operatorname{Ker} f \cap \operatorname{Ker} g) = n - \dim (\operatorname{Im} f \cap \operatorname{Im} g)$$

et donc dim (Ker $f \cap \text{Ker } g$) + dim (Im $f \cap \text{Im } g$) = 0 ou encore dim (Ker $f \cap \text{Ker } g$) = dim (Im $f \cap \text{Im } g$) = 0, et finalement, Ker $f \cap \text{Ker } g = \text{Im } f \cap \text{Im } g = \{0\}$, ce qui montre que les sommes proposées sont directes.

1) Si P est un polynôme de degré inférieur ou égal à n, alors P(X+1) - P(X) est encore un polynôme de degré inférieur ou égal à n. Par suite, ϕ est bien une application de E dans lui-même.

Soient alors $(P, Q) \in E^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$\begin{split} \phi(\lambda P + \mu Q) &= (\lambda P + \mu Q)(X+1) - (\lambda P + \mu Q)(X) = \lambda (P(X+1) - P(X)) + \mu (Q(X+1) - Q(X)) \\ &= \lambda \phi(P) + \mu \phi(Q). \end{split}$$

φ est linéaire de E vers lui-même et donc un endomorphisme de E.

2) Soit $P \in E$. $P \in Ker \varphi \Leftrightarrow \forall x \in \mathbb{R}$, P(x+1) = P(x). Montrons alors que P est constant.

Soit Q = P - P(0). Q est un polynôme de degré inférieur ou égal à n s'annulant en les entiers naturels 0, 1, 2, ... (car P(0) = P(1) = P(2) = ...) et a ainsi une infinité de racines deux à deux distinctes. Q est donc le polynôme nul ou encore $\forall x \in \mathbb{R}, P(x) = P(0)$. Par suite, P est un polynôme constant.

Réciproquement, les polynômes constants sont clairement dans Ker φ et donc

$$\mathrm{Ker}\ \phi = \{\mathrm{polyn\^{o}mes\ constants}\} = \mathbb{R}_0[X].$$

Pour déterminer Im φ , on note tout d'abord que si P est un polynôme de degré inférieur ou égal à π , alors

 $\phi(P) = P(X+1) - P(X) \text{ est un polynôme de degré inférieur ou égal à } n-1. \text{ En effet, si } P = a_n X^n + \sum_{k=0}^{n-1} a_k X^k \text{ (avec } a_n X^n + \sum_{k=0}^{n-1} a_k X^n + \sum_{k=0}^{n-1} a_k$ quelconque, éventuellement nul) alors

$$\begin{split} \phi(P) &= \alpha_n((X+1)^n - X^n) + \mathrm{termes} \ \mathrm{de} \ \mathrm{degr\'e} \ \mathrm{inf\'erieur} \ \mathrm{on} \ \mathrm{\acute{e}gal} \ \mathrm{\grave{a}} \ n-1 \\ &= \alpha_n(X^n - X^n) + \mathrm{termes} \ \mathrm{de} \ \mathrm{degr\'e} \ \mathrm{inf\'erieur} \ \mathrm{on} \ \mathrm{\acute{e}gal} \ \mathrm{\grave{a}} \ n-1 \\ &= \mathrm{termes} \ \mathrm{de} \ \mathrm{degr\'e} \ \mathrm{inf\'erieur} \ \mathrm{on} \ \mathrm{\acute{e}gal} \ \mathrm{\grave{a}} \ n-1 \end{split}$$

Donc, Im $(\varphi) \subset \mathbb{R}_{n-1}[X]$. Mais d'après le théorème du rang,

$$\dim \operatorname{Im} (\varphi) = \dim \mathbb{R}_n[X] - \dim \operatorname{Ker} (\varphi) = (n+1) - 1 = n = \dim \mathbb{R}_{n-1}[X] < +\infty,$$

et donc Im $\phi = \mathbb{R}_{n-1}[X]$. (On peut noter que le problème difficile « soit $Q \in \mathbb{R}_{n-1}[X]$. Existe-t-il $P \in \mathbb{R}_n[X]$ tel que P(X + 1) - P(X) = Q? » a été résolu simplement par le théorème du rang.)

Exercice nº 5

Soit $u = (x, y, z, t) = xe_1 + ye_2 + ze_3 + te_4 \in \mathbb{R}^4$. Alors,

$$f(u) = xf(e_1) + yf(e_2) + zf(e_3) + tf(e_4) = x(2e_1 + e_3) + y(-e_2 + e_4) + z(e_1 + 2e_3) + t(e_2 - e_4)$$

= $(2x + z)e_1 + (-y + t)e_2 + (x + 2z)e_3 + (y - t)e_4$.

Par suite,

$$u \in \operatorname{Ker} f \Leftrightarrow \left\{ \begin{array}{l} 2x + z = 0 \\ -y + t = 0 \\ x + 2z = 0 \\ y - t = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = z = 0 \\ y = t \end{array} \right..$$

Donc, Ker $f = \{(0, y, 0, y), y \in \mathbb{R}\} = \text{Vect}((0, 1, 0, 1)) = \text{Vect}(e_2 + e_4)$. En particulier, Ker f est de dimension 1. Le théorème du rang permet d'affirmer que dim (Im(f)) = 4 - dim (Kerf) = 3. Ensuite,

$$\begin{aligned} &\operatorname{Imf} = \operatorname{Vect}\left(f\left(e_{1}\right), f\left(e_{2}\right), f\left(e_{3}\right), f\left(e_{4}\right)\right) = \operatorname{Vect}\left(2e_{1} + e_{3}, -e_{2} + e_{4}, e_{1} + 2e_{3}, e_{2} - e_{4}\right) \\ &= \operatorname{Vect}\left(2e_{1} + e_{3}, -\left(e_{2} - e_{4}\right), e_{1} + 2e_{3}, e_{2} - e_{4}\right) = \operatorname{Vect}\left(2e_{1} + e_{3}, e_{1} + 2e_{3}, e_{2} - e_{4}\right) \\ &= \operatorname{Vect}\left(2\left(2e_{1} + e_{3}\right) - \left(e_{1} + 2e_{3}\right), e_{1} + 2e_{3}, e_{2} - e_{4}\right) = \operatorname{Vect}\left(3e_{1}, e_{1} + 2e_{3}, e_{2} - e_{4}\right) \\ &= \operatorname{Vect}\left(e_{1}, e_{1} + 2e_{3}, e_{2} - e_{4}\right) = \operatorname{Vect}\left(e_{1}, e_{1} + 2e_{3} - e_{1}, e_{2} - e_{4}\right) = \operatorname{Vect}\left(e_{1}, 2e_{3}, e_{2} - e_{4}\right) \\ &= \operatorname{Vect}\left(e_{1}, e_{3}, e_{2} - e_{4}\right). \end{aligned}$$

Ainsi, la famille $(e_1, e_3, e_2 - e_4)$ est une famille génératrice de Imf.

D'autre part, $\operatorname{card}(e_1, e_3, e_2 - e_4) = 3 = \dim(\operatorname{Im} f) < +\infty$. On en déduit que la famille $(e_1, e_3, e_2 - e_4)$ est une base de $\operatorname{Im} f$

On peut aussi déterminer directement Imf de la façon suivante : soit $u' = (x', y', z', t') \in \mathbb{R}^4$.

$$u' \in \operatorname{Imf} \Leftrightarrow \exists (x, y, z, t) \in \mathbb{R}^4 / \begin{cases} 2x + z = x' \\ -y + t = y' \\ x + 2z = z' \\ y - t = t' \end{cases} \Leftrightarrow \exists (x, y, z, t) \in \mathbb{R}^4 / \begin{cases} x = \frac{1}{3}(2x' - z') \\ z = \frac{1}{3}(-x' + 2z') \\ t = y + y' \\ y' + t' = 0 \end{cases}$$
$$\Leftrightarrow u' + t' = 0.$$

(si $y' + t' \neq 0$, le système ci-dessus, d'inconnues x, y, z et t, n'a pas de solution et si y' + t' = 0, le système ci-dessus admet au moins une solution comme par exemple $(x, y, z, t) = \left(\frac{1}{3}(2x' - z'), 0, \frac{1}{3}(-x' + 2z'), y'\right)$.

Donc, Im $f = \{(x, y, z, t) \in \mathbb{R}^4 / y + t = 0\} = \{(x, y, z, -y) / (x, y, z) \in \mathbb{R}^3\} = \{xe_1 + y(e_2 - e_4) + ze_3, (x, y, z) \in \mathbb{R}^4\} = \{ve_1 + y(e_2 - e_4) + ze_4, (x, y, z) \in \mathbb{R}^4\} = \{ve_1 + y(e_2 - e_4) + ze_4, (x, y, z) \in \mathbb{R}^4\} = \{ve_1 + y(e_2 -$

Exercice nº 6

Soient $(z, z') \in \mathbb{C}^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$f(\lambda z + \mu z') = (\lambda z + \mu z') + a\left(\overline{\lambda z + \mu z'}\right) = \lambda\left(z + a\overline{z}\right) + \mu\left(z' + a\overline{z'}\right) = \lambda f(z) + \mu f(z').$$

f est donc \mathbb{R} -linéaire. On note que $f(i\mathfrak{a}) = i(\mathfrak{a} - |\mathfrak{a}|^2)$ et que $if(\mathfrak{a}) = i(\mathfrak{a} + |\mathfrak{a}|^2)$. Donc, $if(\mathfrak{a}) - f(i\mathfrak{a}) = 2i|\mathfrak{a}|^2$. Comme $\mathfrak{a} \neq 0$, on a $f(i\mathfrak{a}) \neq if(\mathfrak{a})$. f n'est pas \mathbb{C} -linéaire.

Soit $z \in \mathbb{C} \setminus \{0\}$. Posons $z = re^{i\theta}$ où $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

$$z \in \text{Ker } f \Leftrightarrow z + a\overline{z} = 0 \Leftrightarrow e^{i\theta} + ae^{-i\theta} = 0 \Leftrightarrow e^{2i\theta} = -a.$$

1er cas. Si $|a| \neq 1$, alors, pour tout réel θ , $e^{2i\theta} \neq -a$. Dans ce cas, Ker $f = \{0\}$ et d'après le théorème du rang, Im $f = \mathbb{C}$.

2ème cas. Si |a| = 1, posons $a = e^{i\alpha}$.

$$e^{2i\theta} = -\alpha \Leftrightarrow e^{2i\theta} = e^{i(\alpha + \pi)} \Leftrightarrow 2\theta \in \alpha + \pi + 2\pi\mathbb{Z} \Leftrightarrow \theta \in \frac{\alpha + \pi}{2} + \pi\mathbb{Z}.$$

Dans ce cas, Ker $f = \text{Vect}(e^{i(\alpha+\pi)/2})$. D'après le théorème du rang, Im f est une droite vectorielle et pour déterminer Im f, il suffit d'en fournir un vecteur non nul. Donc, si $a \neq -1$, Im f = Vect(f(1)) = Vect(1 + a). Si a = -1, $\forall z \in \mathbb{C}, \ f(z) = z - \overline{z} = 2i\text{Im} \ (z)$ et Im $f = i\mathbb{R}$.

Exercice nº 7

1) Pour $(x,y) \in \mathbb{R}^2$, posons f((x,y)) = (x',y').

$$f \in \mathscr{L}(\mathbb{R}^2) \Leftrightarrow \exists (\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4 / \ \forall (x, y) \in \mathbb{R}^2, \ \left\{ \begin{array}{l} x' = \alpha x + \gamma y \\ y' = \beta x + \delta y \end{array} \right..$$

2) Avec les notations précédentes,

$$z' = x' + iy' = (\alpha x + \gamma y) + i(\beta x + \delta y) = \left(\alpha \frac{z + \overline{z}}{2} + \gamma \frac{z - \overline{z}}{2i}\right) + i\left(\beta \frac{z + \overline{z}}{2} + \delta \frac{z - \overline{z}}{2i}\right)$$
$$= \left(\frac{\alpha + \delta}{2} + i \frac{\beta - \gamma}{2}\right) z + \left(\frac{\alpha - \delta}{2} + i \frac{\beta + \gamma}{2}\right) \overline{z} = \alpha z + b \overline{z}$$

où
$$a = \frac{\alpha + \delta}{2} + i \frac{\beta - \gamma}{2}$$
 et $b = \frac{\alpha - \delta}{2} + i \frac{\beta + \gamma}{2}$.

3) Réciproquement, si $z' = az + b\overline{z}$, en posant $a = a_1 + ia_2$ et $b = b_1 + ib_2$ où $(a_1, a_2, b_1, b_2) \in \mathbb{R}^4$, on obtient :

$$x' + iy' = (a_1 + ia_2)(x + iy) + (b_1 + ib_2)(x - iy) = (a_1 + b_1)x + (-a_2 + b_2)y + i((a_2 + b_2)x + (a_1 - b_1)y)$$

et donc,

$$\begin{cases} x' = (a_1 + b_1)x + (b_2 - a_2)y \\ y' = (a_2 + b_2)x + (a_1 - b_1)y \end{cases} .$$

Ceci montre que l'application de \mathbb{R}^2 dans lui-même d'expression complexe $z' = az + b\overline{z}$ est \mathbb{R} -linéaire.

Exercice nº 8

Par définition, rg $(u + v) = \dim (\operatorname{Im} (u + v))$. Mais, $\operatorname{Im} (u + v) = \{u(x) + v(x), x \in E\} \subset \{u(x) + v(x'), (x, x') \in E^2\} = \operatorname{Im} u + \operatorname{Im} v$. Donc,

$$\operatorname{rg} \ (\mathfrak{u} + \mathfrak{v}) = \operatorname{dim} \ (\operatorname{Im} \ \mathfrak{u} + \operatorname{Im} \ \mathfrak{v}) = \operatorname{dim} \ (\operatorname{Im} \ \mathfrak{u}) + \operatorname{dim} \ (\operatorname{Im} \ \mathfrak{v}) - \operatorname{dim} \ (\operatorname{Im} \ \mathfrak{u} \cap \ \operatorname{Im} \mathfrak{v}) \leqslant \operatorname{dim} \ (\operatorname{Im} \ \mathfrak{u}) + \operatorname{dim} \ (\operatorname{Im} \ \mathfrak{v}) = \operatorname{rg} \ \mathfrak{u} + \operatorname{rg} \ \mathfrak{v}.$$

On a montré que :

$$\forall (\mathfrak{u}, \mathfrak{v}) \in (\mathscr{L}(\mathsf{E}, \mathsf{F}))^2$$
, $\operatorname{rg}(\mathfrak{u} + \mathfrak{v}) = \operatorname{rg} \mathfrak{u} + \operatorname{rg} \mathfrak{v}$.

Ensuite,

$$\operatorname{rg} u = \operatorname{rg} (u + v - v) \leqslant \operatorname{rg} (u + v) + \operatorname{rg} (-v) = \operatorname{rg} (u + v) + \operatorname{rg} v,$$

(puisque Im (-v) = Im v) et donc rg u - rg v = rg (u + v). En échangeant les rôles de u et v, on a aussi rg v - rg u = rg (u + v) et finalement

$$\forall (\mathfrak{u}, \mathfrak{v}) \in (\mathscr{L}(\mathsf{E}, \mathsf{F}))^2, |\operatorname{rg} \mathfrak{u} - \operatorname{rg} \mathfrak{v}| \leqslant \operatorname{rg} (\mathfrak{u} + \mathfrak{v}).$$

Exercice nº 9

1) Posons F = Kerf = Imf puis r = dimF. D'après le théorème du rang,

$$r = \dim (Imf) = n - \dim (Kerf) = n - r$$

et donc n = 2r. Donc, n est pair et $r = \frac{n}{2}$.

Soit G un supplémentaire de F dans E (dim G = n - r = r). Soit $(v_1, ..., v_r)$ une base de G. Pour $i \in [1, r]$, on pose $u_i = f(v_i)$. Montrons que la famille $(u_1, ..., u_r)$ est libre.

Soit $(\lambda_1, ..., \lambda_r) \in \mathbb{R}^r$.

$$\sum_{i=1}^r \lambda_i u_i = 0 \Rightarrow f\left(\sum_{i=1}^r \lambda_i \nu_i\right) = 0 \Rightarrow \sum_{i=1}^r \lambda_i \nu_i \in \mathrm{Ker} \ f \cap G = \{0\} \Rightarrow \forall i \in [\![1,r]\!], \ \lambda_i = 0,$$

 $\operatorname{car}(v_i)_{1\leqslant i\leqslant r}$ est une famille libre. Ainsi, $(u_1,...,u_r)$ est une famille libre de Im f=F de cardinal r et donc une base de $F=\operatorname{Ker} f=\operatorname{Im} f$.

Puisque $E = F \oplus G$, $(u_1, ..., u_r, v_1, ..., v_r)$ est une base de E. Puisque $u_1, ..., u_r$ sont dans Imf = Kerf, $\forall i [1, r], f(u_i) = 0$. D'autre part, par construction, $\forall i [1, r], f(v_i) = u_i$.

2) (1) \Rightarrow (2). Si Ker f = Im f, alors pour tout élément x de E, f(x) est dans Im f = Ker f et donc f(f(x)) = 0. Par suite, f² = 0. De plus, d'après le théorème du rang, n = dim (Ker f) + rg f = 2r ce qui montre que n est nécessairement pair et que rg f = $\frac{n}{2}$.

 $(2) \Rightarrow (1)$. Si $f^2 = 0$, alors pour tout élément x de E, f(f(x)) = 0 ou encore pour tout élément x de E, f(x) est dans Kerf. Ceci montre que Imf \subset Kerf. De plus, d'après le théorème du rang

$$\dim (\operatorname{Kerf}) = \mathfrak{n} - \mathfrak{r} = 2\mathfrak{r} - \mathfrak{r} = \mathfrak{r} = \dim (\operatorname{Imf}) < +\infty.$$

Par suite, Ker f = Im f.

 $(1) \Rightarrow (3)$. Supposons Kerf = Imf. D'après ce qui précède, $f^2 = 0$. D'après 1), il existe une base $(u_1, ..., u_r, v_1, ..., v_r)$ de E telle que $\forall i [1, r]$, $f(u_i) = 0$ et $f(v_i) = u_i$.

Soit alors g l'endomorphisme de E défini par les égalités : $\forall i \in [\![1,r]\!], \ g(u_i) = v_i$ et $g(v_i) = v_i$ (g est entièrement déterminé par les images des vecteurs d'une base de E). Pour i élément de $[\![1,r]\!]$, on a alors :

$$(f \circ g + g \circ f)(u_i) = f(v_i) + g(0) = u_i + 0 = u_i$$

et

$$\left(f\circ g+g\circ f\right)\left(\nu_{i}\right)=f\left(u_{i}\right)+g\left(u_{i}\right)=0+\nu_{i}=\nu_{i}.$$

Les endomorphismes $f \circ g + g \circ f$ et Id_E coïncident sur une base de E, et donc $f \circ g + g \circ f = Id_E$.

 $(3) \Rightarrow (1)$. Supposons que $f^2 = 0$ et qu'il existe $g \in \mathcal{L}(E)$ tel que $f \circ g + g \circ f = Id_E$. Comme $f^2 = 0$, on a déjà Im $f \subset Ker f$. D'autre part, si x est un élément de Ker f, alors $x = f(g(x)) + g(f(x)) = f(g(x)) \in Im f$ et on a aussi $Ker f \subset Im f$. Finalement, Ker f = Im f.

Exercice nº 10

1) Soient k un entier naturel et x un élément de E.

$$x \in N_k \Rightarrow f^k(x) = 0 \Rightarrow f(f^k(x)) = f(0) \Rightarrow f^{k+1}(x) = 0 \Rightarrow x \in N_{k+1}$$
.

On a montré que : $\forall k \in \mathbb{N}, \ N_k \subset N_{k+1}$. Ensuite,

$$x \in I_{k+1} \Rightarrow \exists y \in E / x = f^{k+1}(y) \Rightarrow \exists z (= f(y)) \in E / x = f^k(z) \Rightarrow x \in I_k.$$

On a montré que : $\forall k \in \mathbb{N}, \ I_{k+1} \subset I_k$.

2) Soit k un entier naturel. Supposons que $N_k = N_{k+1}$. On a déjà $N_{k+1} \subset N_{k+2}$. Montrons que $N_{k+2} \subset N_{k+1}$. Soit x un élément de E.

$$\begin{aligned} x \in N_{k+2} &\Rightarrow f^{k+2}(x) = 0 \Rightarrow f^{k+1}(f(x)) = 0 \Rightarrow f(x) \in N_{k+1} = N_k \Rightarrow f^k(f(x)) = 0 \\ &\Rightarrow f^{k+1}(x) = 0 \Rightarrow x \in N_{k+1}. \end{aligned}$$

3) a) On a $\{0\} = N_0 \subset N_1 \subset N_2$... Supposons que chacune de ces inclusions soient strictes. Alors,

$$0=\dim\,N_0<\dim\,N_1<\dim\,N_2...$$

Donc dim $N_1 \geqslant 1$, dim $N_2 \geqslant 2$ et par récurrence , $\forall k \in \mathbb{N}$, dim $N_k \geqslant k$. En particulier, dim $N_{n+1} \geqslant n+1 > n = \dim E$, ce qui est impossible. Donc, il existe k entier naturel tel que $N_k = N_{k+1}$.

Ainsi, $\{k \in \mathbb{N} / N_k = N_{k+1}\}$, K est une partie non vide de \mathbb{N} . $\{k \in \mathbb{N} / N_k = N_{k+1}\}$ admet donc un plus petit élément. Soit donc \mathfrak{p} le plus petit des entiers k tels que $N_k = N_{k+1}$.

Par définition de p (et même si p=0), pour k < p, $N_k \subseteq N_{k+1}$. D'autre part, d'après 2) et puisque $N_p = N_{p+1}$, on montre par récurrence que pour $k \geqslant p$, on a $N_k = N_p$.

b) Si p = 0 (ou encore si f est injectif), on a $p \le n$. Sinon

$$0 < \dim N_1 < ... < \dim N_p$$

et donc, par récurrence, pour $k\leqslant p,$ on a dim $N_k\geqslant k.$ En particulier

$$p \leq \dim N_p \leq n$$
.

4) Puisque $N_k \subset N_{k+1}$, $I_{k+1} \subset I_k$ et que dim $E < +\infty$, on a :

$$N_k = N_{k+1} \Leftrightarrow \dim N_k = \dim N_{k+1} \Leftrightarrow \mathfrak{n} - \operatorname{rg} \ (f^k) = \mathfrak{n} - \operatorname{rg} \ (f^{k+1}) \Leftrightarrow \dim \ (I_k) = \dim (I_{k+1}) \Leftrightarrow I_k = I_{k+1}.$$

 $\mathrm{Donc},\,\mathrm{pour}\ k<\mathfrak{p},\;I_k\underset{\prec}{\supset}I_{k+1}\ \mathrm{et\ pour}\ k\geqslant\mathfrak{p},\;I_k=I_{k+1}.$

5) Soient k un entier naturel puis g_k la restriction de f à I_k . D'après le théorème du rang,

$$d_k = \dim (I_k) = \dim (\operatorname{Ker} q_k) + \dim (\operatorname{Im} q_k).$$

Maintenant, $\operatorname{Im}(g_k) = g_k(I_k) = f(I_k) = I_{k+1}$ et donc $\operatorname{dim}(\operatorname{Im}(g_k)) = d_{k+1}$. D'autre part, $\operatorname{Ker} g_k = \operatorname{Ker} f_{/I_k} = \operatorname{Ker} f \cap I_k$. Ainsi, pour tout entier naturel k,

$$d_k - d_{k+1} = \dim(\operatorname{Kerf} \cap I_k)$$
.

Puisque la suite $(I_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion, la suite d'entiers naturels $(\dim (\operatorname{Ker} f \cap I_k))_{k\in\mathbb{N}} = (d_k - d_{k+1})_{k\in\mathbb{N}}$ est décroissante.

1) Soit $\mathfrak{p}(\in \mathbb{N}^*)$ l'indice de nilpotence de \mathfrak{u} .

Par définition, $u^{p-1} \neq 0$ et plus généralement, pour $1 \leqslant k \leqslant p-1$, $u^k \neq 0$ car si $u^k = 0$ alors $u^{p-1} = u^k \circ u^{p-1-k} = 0$ ce qui n'est pas.

Puisque $u^{p-1} \neq 0$, il existe au moins un vecteur x_0 tel que $u^{p-1}(x_0) \neq 0$ (et en particulier $x_0 \neq 0$). Montrons que la famille $(u^k(x))_{0 \leq k \leq p-1}$ est libre.

Soit $(\lambda_k)_{0 \leqslant k \leqslant p-1} \in \mathbb{K}^p$ tel que $\sum_{k=0}^{p-1} \lambda_k u^k(x) = 0$. Supposons par l'absurde qu'au moins un des coefficients λ_k ne soit pas nul. Soit $i = \min\{k \in [0, p-1] / \lambda_k \neq 0\}$.

$$\begin{split} \sum_{k=0}^{p-1} \lambda_k u^k(x) &= 0 \Rightarrow \sum_{k=i}^{p-1} \lambda_k u^k(x) = 0 \Rightarrow u^{p-1-i} \left(\sum_{k=i}^{p-1} \lambda_k u^k(x) \right) = 0 \Rightarrow \sum_{k=i}^{p-1} \lambda_k u^{p-1-i+k}(x) = 0 \\ &\Rightarrow \lambda_i u^{p-1}(x) = 0 \quad (\operatorname{car} \ \operatorname{pour} \ k \geqslant i+1, \ p-1-i+k \geqslant p \ \operatorname{et} \ \operatorname{donc} \ u^{p-1-i+k} = 0) \\ &\Rightarrow \lambda_i = 0 \quad (\operatorname{car} \ u^{p-1}(x) \neq 0) \end{split}$$

ce qui contredit la définition de i. Donc tous les coefficients λ_k sont nuls et on a montré que la famille $\left(\mathfrak{u}^k(x)\right)_{0\leqslant k\leqslant p-1}$ est libre.

2) Le cardinal d'une famille libre est inférieur ou égal à la dimension de l'espace et donc $p \leq n$. Par suite,

$$u^n = u^p \circ u^{n-p} = 0.$$

3) On applique le n° 10. Puisque $\mathfrak{u}^{n-1} \neq 0$, on a $N_{n-1} \subseteq N_n$.

Par suite (d'après le n° 10, 3)a)), les inclusions $N_0 \subset N_1 \subset ... \subset N_n = E$ sont toutes strictes et donc

$$0<\mathrm{dim}N_1<\mathrm{dim}N_2...<\mathrm{dim}N_n=n.$$

Pour $k \in [0, n]$, notons d_k est la dimension de N_k . Par récurrence, pour $k \in [0, n-1]$, on a $d_k \geqslant k$. Mais si de plus, pour un certain indice i élément de [1, n-1], on a $d_i = \dim N_i > i$, alors, par récurrence, pour $i \leqslant k \leqslant n$, on a $d_k > k$ et en particulier $d_n > n$ ce qui n'est pas. Donc,

$$\forall k \in [0, n], \dim(N_k) = k.$$

D'après le théorème du rang, $\forall k \in [0, n]$, rg $(u^k) = n - k$, et en particulier rg(u) = n - 1.

Exercice nº 12

Montrons que Ker $(f - 2Id) \cap Ker (f - 3Id) = \{0\}$. Soit $x \in E$.

$$x \in \text{Ker } (f-2Id) \cap \text{Ker } (f-3Id) \Rightarrow f(x) = 2x \text{ et } f(x) = 3x \Rightarrow 3x - 2x = f(x) - f(x) = 0$$

 $\Rightarrow x = 0.$

Donc, Ker $(f-2Id) \cap \text{Ker } (f-3Id) = \{0\} \text{ (même si } f^2-5f+6Id \neq 0).$

Montrons que E = Ker (f-2Id) + Ker (f-3Id). Soit $x \in E$. On cherche y et z tels que $y \in \text{Ker } (f-2Id)$, $z \in \text{Ker } (f-3Id)$ et x = y + z.

Si y et z existent, nécessairement y et z sont solution du système $\left\{ \begin{array}{l} y+z=x \\ 2y+3z=f(x) \end{array} \right. \text{ et donc } \left\{ \begin{array}{l} y=3x-f(x) \\ z=f(x)-2x \end{array} \right. .$

Réciproquement . Soient $x \in E$ puis y = 3x - f(x) et z = f(x) - 2x. On a bien y + z = x puis

$$f(y) = 3f(x) - f^{2}(x) = 3f(x) - (5f(x) - 6x) \quad (\text{car } f^{2} = 5f - 6\text{Id})$$
$$= 6x - 2f(x) = 2(3x - f(x)) = 2y$$

et donc $y \in \text{Ker } (f - 2Id)$. De même,

$$f(z) = f^{2}(x) - 2f(x) = (5f(x) - 6x) - 2f(x) = 3(f(x) - 2x) = 3z,$$

et donc $z \in \text{Ker}(f-3Id)$. On a montré que E = Ker(f-2Id) + Ker(f-3d) et finalement que

$$E = Ker (f - 2Id) \oplus Ker (f - 3d).$$

On sait déjà que F est un sous-espace vectoriel de E (voir exercice n° 19, planche n° 28). Soit φ F \to \mathbb{C}^2 . $u \mapsto (u_0, u_1)$

- ϕ est bien une application de F dans \mathbb{C}^2 .
- Soient $(u, v) \in F^2$ et $(\lambda, \mu) \in \mathbb{C}^2$.

$$\varphi(\lambda u + \mu v) = (\lambda u_0 + \mu v_0, \lambda u_1 + \mu v_1) = \lambda (u_0, u_1) + \mu (v_0, v_1)$$

= $\lambda \varphi(u) + \mu \varphi(v)$.

 φ est une application linéaire de F dans \mathbb{C}^2 .

- Soit $u \in \text{Ker}\varphi$. Alors $u_0 = u_1 = 0$ et $\forall n \in \mathbb{N}$, $au_{n+2} + bu_{n+1} + cu_n = 0$ ou encore $\forall n \in \mathbb{N}$, $u_{n+2} = -\frac{b}{a}u_{n+1} \frac{c}{a}u_n$ (puisque $a \neq 0$). Mais alors, par récurrence double, $\forall n \in \mathbb{N}$, $u_n = 0$ ou encore u = 0. Ainsi, Ker φ est le sous-espace nul et donc φ est injectif.
- Soit $(a,b) \in \mathbb{C}^2$. Soit u la suite définie par $u_0 = a$, $u_1 = b$ et $\forall n \in \mathbb{N}$, $au_{n+2} + bu_{n+1} + cu_n = 0$. u est un élément de F tel que $\varphi(u) = (a,b)$. Ceci montre que φ est surjectif.

Finalement, φ est un isomorphisme de F sur \mathbb{C}^2 . En particulier, dim $F = \dim (\mathbb{C}^2) = 2$.

On a montré que F est un sous-espace vectoriel de E de dimension 2.

Exercice no 14

On a déjà montré que la famille (1,z) est une famille libre du \mathbb{R} -espace vectoriel \mathbb{C} (voir exercice n° 23, planche 28). De plus, $\operatorname{card}(1,z)=2=\dim_{\mathbb{R}}(\mathbb{C})<+\infty$. Donc (1,z) est une base du \mathbb{R} -espace vectoriel \mathbb{C} .

Exercice nº 15

Pour tout $k \in [0, n]$, $\deg(P_k) \leq n$. Donc chaque P_k , $0 \leq k \leq n$, est un élément de $\mathbb{R}_n[X]$. De plus,

$$\operatorname{card}\left(P_k\right)_{0 \leqslant k \leqslant \mathfrak{n}} = \mathfrak{n} + 1 = \dim \mathbb{R}_{\mathfrak{n}}[X] < +\infty.$$

Pour montrer que la famille $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$, il suffit de vérifier que la famille $(P_k)_{0 \le k \le n}$ est libre.

 $\mathrm{Soit} \, \left(\lambda_k \right)_{0 \leqslant k \leqslant n} \in \mathbb{R}^{n+1} \, \, \mathrm{tel} \, \, \mathrm{que} \, \sum_{k=0}^n \lambda_k P_k = 0. \, \, \mathrm{Supposons} \, \, \mathrm{par} \, \, \mathrm{l'absurde} \, \, \mathrm{que} \, \, \mathrm{l'un} \, \, \mathrm{au} \, \, \mathrm{moins} \, \, \mathrm{des} \, \, \lambda_k \, \, \mathrm{ne} \, \, \mathrm{soit} \, \, \mathrm{pas} \, \, \mathrm{nul}.$

Soit $p = \text{Max}\{k \in [0, n] / \lambda_k \neq 0\}$ ($\{k \in [0, n] / \lambda_k \neq 0\}$ est une partie non vide et majorée (par n) de \mathbb{N} et donc $\{k \in [0, n] / \lambda_k \neq 0\}$ admet un plus grand élément). Par définition de p,

$$\sum_{k=0}^{p} \lambda_k P_k = 0.$$

Cette dernière égalité est impossible car $\sum_{k=0}^p \lambda_k P_k$ est un polynôme de degré p (puisque $\lambda_p \neq 0$) et donc $\sum_{k=0}^p \lambda_k P_k$ n'est pas le polynôme nul. Donc

$$\forall \left(\lambda_k\right)_{0\leqslant k\leqslant n}\in\mathbb{R}^{n+1},\;\left(\sum_{k=0}^n\lambda_kP_k=0\Rightarrow \forall k\in[\![0,n]\!],\;\lambda_k=0\right),$$

et la famille $(P_k)_{0 \le k \le n}$ est libre.

On a montré que la famille $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

Exercice no 16

Soit $\mathscr{B}=(e_k)_{1\leqslant k\leqslant n}$ une base de E. Par hypothèse, $\forall k\in \llbracket 1,n\rrbracket,\ \exists p_k\in \mathbb{N}^*/\ f^{p_k}\ (e_k)=0.$ Soit $p=\operatorname{Max}\{p_1,p_2,\ldots,p_n\}$. p est un entier naturel non nul et pour tout $k\in \llbracket 1,n\rrbracket,\ p-p_k\geqslant 0.$ On a donc

$$f^{p}(e_{k}) = f^{p-p_{k}}(f^{p_{k}}(e_{k})) = f^{p-p_{k}}(0) = 0.$$

L'endomorphisme f^p s'annule en chacun des vecteurs d'une base de E et donc $f^p = 0$. On a montré que f est nilpotent.

1) Si $E = \{0\}$, alors f = 0 et en particulier f est une homothétie. Dorénavant, on supposera que $E \neq \{0\}$. Soit x_0 un élément non nul de E. Par hypothèse, il existe $\lambda \in \mathbb{K}$ tel que $f(x_0) = \lambda x_0$. Vérifions alors que pour tout x de E, $f(x) = \lambda x$. Soit donc x un élément de E.

1er cas. Supposons la famille (x, x_0) libre.

Il existe $\lambda_x \in \mathbb{K}$ tel que $f(x) = \lambda_x x$ et il existe $\lambda_{x+x_0} \in \mathbb{K}$ tel que $f(x+x_0) = \lambda_{x+x_0} (x+x_0) = \lambda_{x+x_0} + \lambda_{x+x_0} x_0$. Puisque f est linéaire,

$$\lambda_{x+x_0} + \lambda_{x+x_0} x_0 = f(x+x_0) = f(x) + f(x_0) = \lambda_x x + \lambda x_0.$$

Puisque la famille (x, x_0) est libre, on peut identifier les coefficients et on obtient $\lambda_x = \lambda_{x+x_0} = \lambda$. Par suite, $f(x) = \lambda x$.

2ème cas. Supposons la famille (x, x_0) liée. Puisque x_0 n'est pas nul, il existe $\mu \in \mathbb{K}$ tel que $x = \mu x_0$. Mais alors

$$f(x) = f(\mu x_0) = \mu f(x_0) = \mu . \lambda x_0 = \lambda . \mu x_0 = \lambda x.$$

Ainsi, on a trouvé $\lambda \in \mathbb{K}$ tel que, pour tout x de E, $f(x) = \lambda x$ ou encore on a trouvé $\lambda \in \mathbb{K}$ tel que $f = \lambda Id$. On a montré que f est une homothétie.

2) Soit f un endomorphisme de E tel que $\forall g \in \mathcal{L}(E)$, $f \circ g = g \circ f$. Vérifions que $\forall x \in E, \ \exists \lambda_x \in \mathbb{K}/\ f(x) = \lambda_x x$ ou encore vérifions que $\forall x \in E, \ f(x) \in \mathrm{Vect}(x)$. C'est immédiat si x = 0.

Soit x un élément non nul de E. Soit D la droite vectorielle engendrée par x, soit H un supplémentaire de D dans E puis s la symétrie par rapport à D parallèlement à H.

$$s\circ f=f\circ s\Rightarrow s(f(x))=f(s(x))\Rightarrow s(f(x))=f(x)\Rightarrow f(x)\in D\Rightarrow f(x)\in \mathrm{Vect}(x).$$

Ainsi, $\forall x \in E$, $f(x) \in Vect(x)$. D'après 1), f est nécessairement une homothétie.

Réciproquement, soient $\lambda \in \mathbb{K}$ puis $f = \lambda Id$. Pour tout $g \in \mathcal{L}(E)$, $f \circ g = \lambda Id \circ g = \lambda g$, $g \circ f = g \circ \lambda Id = \lambda g \circ Id = \lambda g$ et donc $f \circ g = g \circ f$.

On a montré que les endomorphismes qui commutent avec tous les endomorphismes sont les homothéties vectorielles.