NATIONAL INSTITUTE OF TECHNOLOGY MIZORAM MID SEMESTER EXAM, EVEN 2022-23

4TH SEM EEE

Signals and Systems (EEL1406)

ANSWER ALL THE QUESTIONS

TOTAL MARKS: 30

TIME: 1.30 HR

- Determine the unit step response of the first order system governed by the equation [4]
- (a) below with zero initial conditions.

$$\frac{dy(t)}{dt} + 0.5y(t) = x(t)$$

(b) What is the importance of convolution?

[1]

[2]

(c) State and prove the associative and commutative properties of convolution.

Find the state variable description of the circuit below, if the input is the applied voltage [3] (d) x(t) and the output is the current y(t) through the resistor R2

The state space representation of a discrete time system is given by,

[5]

(a) $A=\frac{2}{4}$ $\frac{-1}{1}$; $B=\frac{1}{2}$, $C=[1 \ 3]$, D=[3]

Derive the transfer function of the system.

[3]

Obtain the trigonometric series for the waveform shown in figure (b)

- (c) Explain about exponential Fourier series and derive the Fourier series coefficient
- [2] [2] State and proof Parseval's Theorem 3.
- [3] (a) (b)
 - Find the fourier transform of the given waveform

- (c) Determine whether the following signal is energy signal or power signal. Calculate its energy [2] or power?
- X(t)=Scos4tcos6t (d) Distinguish causal and anti-causal signals Sketch the following signal 2 u(t+2)- 2 u(t-3)

[1+2=3]

National Institute of Technology Mizoram Class Test, Even Semester – 2022-23 Signals and Systems (EEL-1406)

4th Semester EEE& CSE Full Marks: 15 Duration: 50 mins

Answer all Questions

1	L. Determine the Nyquist sampling rate and Nyquist sampling interval for the signal x(t)	- sin c 1 (200π	t). (2
2	2. Find the DTFT of x[n]=3"u[-n]		(2
3.	 If a discrete signal is represented by x[n]= a" u(n), then what is the value of the signal. 	ai g(n)= x(n)- a	(n-1 (2)
4	Consider the sequence x[n]= (4-5j+j24). Find the conjugate anti-symmetric part of the	sequence	(3)
5	5. A 5-point sequence $x = \{n\}$ is given as $x = 3\} = 1$, $x = 2\} = 1$, $x = 1 = 0$, $x = 0 = 5$, $x = 1 = 1$. Call the discrete-time Fourier transform of $X[n]$. Find the value of $\int_{-\pi}^{\pi} X(e^{j\omega x}) dx$.	¦tet X(e jω)de	enote (3)

6. Given the finite length input x[n] and the corresponding finite length output

of an LTI system as shown below. Find the impulse response h [n] of the system.

1

[n]

(3)

National Institute of Technology Mizoram

End - Semester Examination, Even Semester (2022-23)

Signals and Systems - (EEL-1402/1406)

4th Semester (EEE& CSE)

Full Marks: 50 marks

Duration: 2.5 hours

Answer all 5 (Five) Questions. All Questions Carry Same Marks $(5 \times 10 = 50 \text{ Marks})$

1. (a) (b)	Write the condition for LTI system to be stable and causal. If two LTI systems with impulse responses $h_1(t) = e^{-at} u(t)$ and $h_2(t) = e^{-bt} u(t)$ are connected in cascade, what will be the overall impulse response of cascaded	[2] [2]
(c) (d)	System? What are the conditions for a system to be LTI System? What is Impulse Response? Show that the response of an LTI system is	[3] [3]
2. (a)	convolution integral of its impulse response with input signal? Define Sampling theorem?Prove the sampling theorem and explain how the	[5]
(b)	original signal can be reconstructed from the sampled version. Find the state transition matrix for the continuous time system parameter matrix,	[5]
3. (a)	$A = \begin{pmatrix} -3 & 0 \\ 0 & -2 \end{pmatrix}$ Determine whether the following systems are: i) Memory less, ii) Stable iii) Causal iv) Linear and v) Time-invariant. i) $y(n) = nx(n)$ ii) $y(t) = e^{x(t)}$	[4]
(b)	Find the trigonometric fourier series representation of a periodic square wave $x(t) = 1$, for the interval $(0, \pi)$ = 0, for the interval $(\pi, 2\pi)$	[3]
(c)	Find the Z transform of the given system $x[n] = (3)^n \cup [n] + (4)^n \cup [-n-1]$	[3]
4. (a)	Give the Existence of DTFT	[2]
(b)	Find the Nyquist sampling rate from the analog signal $m(t) = 4\cos(100 \pi t) + 8\sin(200 \pi t) + \cos(300 \pi t)$	[2]
(c)	State whether the given signal is energy or power signal $X[n] = \left(\frac{1}{2}\right)^n u(n)$	[3]
(d)	Determine the value of the given signal	[3]
(4)	$I = \int_{-\infty}^{+\infty} [\cos(\pi t).\delta(t-2) + 3\delta(t+1) + \sin(\pi t).\delta(2t-1)]dt$	
5. (a)	For the given system determine even, odd conjugate symmetric and conjugate anti symmetric components. $X[n] = \{-4 - 5j, 1 + 2j, 4\}$	[2]
(b)	Find DTFT of the given signal $X[n] = -a^n u[-n-1]$	[3]
(c)	Calculate Nyquist rate in rad/sec and frequency in Hz for the given signal $m(t) = 2\sin(4\pi t) + \cos(2\pi t)$	[2]

(d) Let m(t)= 10sin(400πt) to be sampled at 300 Hz and reconstructed using an ideal Low Pass Filter with cut off frequency of 150 Hz. Find the frequencies present in the reconstructed signal.

National Institute of Technology Mizoram Mid-Semester Examination, Even Semester-2022 Signals and Systems (EEL-1406)

EEE & CSE 4th semester Full Marks: 15 marks Duration: 1hour

Answer all the questions

- 1. Find the given signal is energy or power signal. [4]
 - a) $x(n) = (1/4)^n u(n)$ b) $x(t) = 0.9e^{-3t} u(t)$
- 2. Determine whether the given systems are: i) memory less, ii) time-invariant, iii) linear, iv) causal or v) BIBO stable. Justify your answers.

a)
$$y[n] = x[1-n]$$

b) $y(t) = x(t)/(1+x(t-1))$

3. Define different types of signals with examples. [4]