

Electronic Circuits Design

Lecture – 1

- MOS I-V Characteristics
- MOS C-V Characteristics

Yeonbae Chung School of Electronics Engineering Kyungpook National University

CMOS Cross Sectional View

EECS324

Symbol of n-MOS and p-MOS

MOSFET I-V Characteristics

➤ We are focusing on n-MOSFET at first

Threshold Voltage: Concept

- The value of V_{GS} where strong inversion occurs is called the threshold voltage, V_{TH}

EECS324 6 Lecture-1

Threshold Voltage

$$V_{TH} = V_{TH0} + \gamma (\sqrt{2\phi_F + V_{SB}} - \sqrt{2\phi_F})$$

where

- V_{TH0} is the threshold voltage at V_{SB} = 0 and is mostly a function of the manufacturing process: difference in work-function between gate and substrate material, oxide thickness, Fermi voltage, charge of impurities trapped at the surface, dosage of implanted ions, etc.
- V_{SB} is the source-to-body voltage
- $\phi_F = V_T ln(N_A/n_i)$ is the Fermi potential ($V_T = kT/q = 26mV$ at 300K is the thermal voltage; N_A is the body doping concentration; $n_i \approx 1.5 \times 10^{10}$ cm⁻³ at 300K is the intrinsic carrier concentration in pure silicon)
- $\gamma = \sqrt{(2q\epsilon_{si}N_A)/C_{ox}}$ is the body-effect coefficient (impact of changes in V_{BS}); $\epsilon_{si} = 1.053 \times 10^{-10} \text{F/m}$ is the permittivity of silicon, $C_{ox} = \epsilon_{ox}/t_{ox}$ is the gate oxide capacitance with $\epsilon_{ox} = 3.5 \times 10^{-11} \text{F/m}$

$$\rightarrow$$
 $V_{GD} > V_{TH}$

• When $V_{GS} \ge V_{TH}$, $V_{DS} < V_{GS}$ - V_{TH}

$$I_{D} = \mu_{n} C_{OX} \frac{W}{L} (V_{GS} - V_{TH} - \frac{1}{2} V_{DS}) V_{DS}$$

Saturation Region

$$V_{GD} \leq V_{TH}$$

• When $V_{GS} \ge V_{TH}$, $V_{DS} \ge V_{GS} - V_{TH}$

$$I_D = \frac{1}{2} \mu_n C_{OX} \frac{W}{L - \Delta L} (V_{GS} - V_{TH})^2$$
 channel length modulation

Channel Length Modulation in Spice Model

From p-n+ step junction

$$\Delta L \approx \sqrt{\frac{2\varepsilon_{si}}{qN_A} \cdot (V_{DS} - V_{DSAT})}$$
 where $V_{DSAT} = V_{GS} - V_{TH}$

$$\approx \lambda L V_{DS}$$

When $\Delta L/L \ll 1$,

$$\frac{1}{L-\Delta L} \ = \ \frac{1}{L} \cdot \frac{1}{1-\frac{\Delta L}{L}} \ \approx \ \frac{1}{L} \cdot \left(1+\frac{\Delta L}{L}\right) \ = \ \frac{1}{L} \cdot (1+\lambda \, V_{DS})$$

I-V Equation in SPICE Model Level-1

- Linear Region ($V_{GS} \ge V_{TH}$, $V_{DS} < V_{GS}$ - V_{TH})

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{1}{2} V_{DS} \right) V_{DS} \cdot (1 + \lambda V_{DS})$$

- Saturation Region (V_{GS} ≥ V_{TH}, V_{DS} ≥ V_{GS}-V_{TH})

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \cdot (1 + \lambda V_{DS})$$

- Cutoff Region ($V_{GS} < V_{TH}$)

$$I_D = 0$$

- All dopings and voltages are inverted for p-MOS
- Mobility µ_p is determined by holes
 - Typically 2-3 times lower than that of electrons μ_n
 - $\mu_n = 340 \text{ cm}^2/\text{V} \cdot \text{s}$, $\mu_p = 130 \text{ cm}^2/\text{V} \cdot \text{s}$ in AMI 0.35 μ m process
- Thus PMOS must be wider W to provide same current
 - Typically, assume $\mu_n / \mu_p = 2.5$

I-V Equation in p-MOSFET

- Linear Region ($V_{SG} \ge |V_{THP}|$, $V_{SD} < V_{SG}$ - $|V_{THP}|$)

$$I_D = \mu_P C_{OX} \frac{W}{L} (V_{SG} - |V_{THP}| - \frac{1}{2} V_{SD}) V_{SD} (1 + |\lambda_P| V_{SD})$$

- Saturation Region ($V_{SG} \ge |V_{THP}|$, $V_{SD} \ge V_{SG} - |V_{THP}|$)

$$I_D = \frac{1}{2} \mu_P C_{OX} \frac{W}{L} (V_{SG} - |V_{THP}|)^2 (1 + |\lambda_P| V_{SD})$$

- Cutoff Region ($V_{SG} < |V_{THP}|$)

$$I_D=0$$

- V_{TH}: Gate voltage necessary to invert channel
- V_{TH} increases if source-to-body voltage increases because source is connected to the channel
- Increase in V_{TH} with V_{SB} is called the body effect

$$V_{TH} = V_{TH0} + \gamma (\sqrt{2\phi_F + V_{SB}} - \sqrt{2\phi_F})$$

15

Subthreshold Conduction

- For V_{GS} < V_{TH}, the drain current is not zero
 - There is subthreshold conduction
 - Leakage component: critical in VLSI containing millions of transistors
 - Main source of static power consumption in CMOS VLSI

Subthreshold Current

- Subthreshold swing: S is ΔV_{GS} for $I_{D2}/I_{D1} = 10$ - For $V_{GS} < V_{TH}$,

$$I_D = \mu_n C_{ox} \frac{W}{L} \cdot \frac{\gamma \cdot V_T^2}{2\sqrt{2\phi_F + V_{SB}}} \cdot \exp\left(\frac{V_{GS} - V_{TH}}{nV_T}\right) \cdot \left(1 - e^{-\frac{V_{DS}}{V_T}}\right)$$

<--- diffusion current; similar to bipolar transistor

$$V_T = \frac{kT}{q}$$
 ; thermal voltage

$$n = 1 + \frac{C_D}{C_{ox}} + \frac{q \cdot NFS}{Cox}$$

where C_D = channel depletion capacitance per unit area NFS = surface state density

- For $V_{DS} >> V_T$ and $V_{GS} = 0$,

$$I_{D,OFF} = \mu_n C_{ox} \frac{W}{L} \cdot \frac{\gamma \cdot V_T^2}{2\sqrt{2\phi_F + V_{SB}}} \cdot \exp\left(\frac{-V_{TH}}{nV_T}\right)$$

$$= f (V_{SB}, V_{TH})$$

Practical Subthreshold ID vs VGS

• 0.25 μm CMOS technology

Practical Subthreshold ID vs VDS

❖ 0.25 µm CMOS technology

 $V_{DS}(V)$

Junction Leakage

Reverse-biased p-n junctions have some leakage

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

- I_s depends on doping level, area and perimeter of diffusion regions
 - Typically < 1 fA/μm²

20

- Carriers may tunnel thorough very thin gate oxides
- Predicted tunneling current

- Negligible for old CMOS process
- May soon be critically important

- Subthreshold conduction
 - Transistor OFF current
- Junction leakage
 - Reverse-biased p-n junction diode current
- Gate leakage
 - Tunneling through ultrathin gate dielectric
- Subthreshold leakage is the biggest source in modern transistors

Temperature Dependence

- Increasing temperature
 - Reduces mobility
 - Reduces V_{TH} <--- due to diffusion current</p>

23

- I_{ON} decreases with temperature
- I_{OFF} increases with temperature

MOSFET C-V Characteristics

Parasitic Capacitances in MOS Transistor

- Any two conductors separated by an insulator have capacitance
 - Overlap capacitances due to lateral diffusion
 - Gate-to-channel capacitance due to thin gate oxide
 - Source and drain capacitances due to reverse-biased pn junction

Overlap Capacitances

Overlap capacitance: $C_{GSO} = C_{GDO} = C_{OX} L_D W$

Gate-to-Channel Capacitance

■ The gate-to-channel capacitance depend upon the operating region and the terminal voltages

Distribution of Gate-to-Channel Capacitance

Operation Region	C_{GB}	C_{GS}	C_{GD}	
Cutoff	$C_{OX}WL_{eff}$	0	0	
Linear	0	C _{OX} WL _{eff} /2	C _{OX} WL _{eff} /2	
Saturation	0	(2/3)C _{OX} WL _{eff}	0	

Gate-to-Channel Capacitance

Junction Capacitance

■ The source-body and drain-body capacitances are from the reversebiased source-body and drain-body p-n junctions.

그림 2.3.3 드레인-벌크 접합의 bottom쪽과 sidewall쪽 커패시턴스

Source Junction Capacitance

$$\begin{aligned} \mathbf{C}_{junc} &= \mathbf{C}_{bottom} + \mathbf{C}_{sw} = \mathbf{C}_{JA} \times \mathbf{AREA} + \mathbf{C}_{JSW} \times \mathbf{PERIMETER} \\ &= \mathbf{C}_{JA} \mathbf{L}_{S} \mathbf{W} + \mathbf{C}_{JSW} (2\mathbf{L}_{S} + \mathbf{W}) \end{aligned}$$

MOS Source/Drain Capacitance

$$CJA = CJAO \left(1 - \frac{V_J}{V_B}\right)^{-M_J}$$

$$CJSW = CJSWO \left(1 - \frac{V_J}{V_B}\right)^{-MJSW}$$

 C_{JAO} = zero-bias area capacitance [fF/ μ m²]

 C_{JSWO} = zero-bias perimeter capacitance [fF/ μ m]

 V_J = applied junction voltage (typically < 0)

 V_B = built-in potential (~ 0.6V)

 M_J = grading coefficient of area junction

 M_{JSW} = grading coefficient of sidewall perimeter junction $\int_{0.3^{-0.5}}^{0.3^{-0.5}}$

CDB and CSB in Spice Model

그림 2.3.2 최소크기 트랜지스터의 레이아웃 (λ = 0.2 μm)

$$AS = AD = W \times 5\lambda = 4\lambda \times 5\lambda = 20\lambda^2 = 0.8 \times 10^{-12} m^2$$

$$PS = PD = W + 2 \times 5\lambda = 4\lambda + 10\lambda = 14\lambda = 2.8 \mu m$$

$$C_{DB} = AD \cdot \frac{CJ}{\left(1 - \frac{V_{BD}}{PB}\right)^{MJ}} + PD \cdot \frac{CJSW}{\left(1 - \frac{V_{BD}}{PB}\right)^{MJSW}}$$

$$C_{SB} = AS \cdot \frac{CJ}{\left(1 - \frac{V_{BS}}{PB}\right)^{MJ}} + PS \cdot \frac{CJSW}{\left(1 - \frac{V_{BS}}{PB}\right)^{MJSW}}$$

CJ = zero-potential bottom junction capacitance

CJSW = zero-potential sidewall junction capacitance

PB = built-in potential

MJ, MJSW = grading coefficient

MOSFET Capacitance Model

Simple Hand Calculation

Typically, for simple hand calculation in digital circuits, we approximate regardless of transistor operating mode:

-
$$C_{GATE} = C_{GD} + C_{GS} + C_{GB} + C_{GDO} + C_{GSO} \simeq C_{OX} \cdot W \cdot L$$

$$-C_{SB} = C_{DB} \simeq C_{JAO} \times W \cdot L_S + C_{JSWO} \times (W + 2L_S)$$

Hand Calculation Example

	C_{ox} (fF/ μ m ²)	C_{jao} (fF/ μ m ²)	m _j	ф _b (V)	C _{jswo} (fF/µm)	$m_{ m jsw}$	φ _{bsw} (V)
NMOS	10	2	0.5	0.9	0.28	0.44	0.9
PMOS	10	1.9	0.48	0.9	0.22	0.32	0.9

Example: an NMOS with L = 0.25 μ m, W = 0.5 μ m, L_S = 0.65 μ m

- $C_{GATE} \simeq C_{OX} \cdot W \cdot L = 1.25 \text{ fF}$
- $C_{SB} = C_{DB} \simeq C_{JAO} \times W \cdot L_S + C_{JSWO} \times (W + 2L_S) = 1.154 \text{ fF}$