Apprentissage continu pour la classification des consommables de santé

Présenté par: Lmouden Taher - Mohamed Demes Encadré par: Hamidi Massinissa

Plan

01

Introduction

Problématique et objectives

04

Expériences et résultats

Evaluation des modèles.

02

Etat de l'art

Etude de l'existant.

05

Conclusion

Conclusion et perspectives.

03

Configuration expérimentale

Dataset et modèles utilisés.

O1 Introduction au projet

Problématique

- les coûts des déchets de soins de santé étaient estimés à 36 milliards de dollars en 2020.
- La dépendance envers l'intervention humaine.

Objectives

Solution intelligente

Utilisation de l'intelligence artificielle et l'internet des objets pour la classification des déchets.

Autonome et durable

Adaptation au nouveaux types de déchets.

02 Etat de l'art

Apprentissage continu

Régularisation

Transfert des connaissances de l'ancien modèle vers le modèle en cours d'entraînement.

Architecturale

Modification de la structure du modèle.

Basée sur la mémoire

Conservation des échantillons, pour les intégrer dans les prochains entraînements.

Apprentissage Few-Shots

Quantité de données limitée

Entraînement à partir d'un petit nombre d'exemples.

Flexibilité et généralisation

Compréhension abstraite des données et des concepts, permettant au modèle de tirer des conclusions sur de nouveaux exemples.

Modèles de fondation

Entraîné sur une grande quantité de données

Généralisation aux différentes tâches

Transfert d'apprentissage

Exemples: ChatGPT - MistralAI - Gemma - ViT - ResNet-50 etc.

03

Configuration expérimentale

Dataset

Nom	Medical-Waste-4.0-Dataset	
Nombre d'images	4245 images	
Nombre de classes	13 classes	
<u>Distribution du dataset</u>	70% pour l'entrainement (2967 images)	
	15% pour la validation (629 images)	
	15% pour le test (649 images)	

Exemples:

medical_glasses

test_tube

shoe_cover_pair

glove_single_surgery

Modèles

Modèles de fondation:

<u>Nom</u>	Nombre de paramètres	Dataset de pré-entraînement		
		<u>Nom</u>	Nombre d'images	Nombre de classes
ViT	86.6 Millions	ImageNet-21K	14 Millions	1000
ResNet-50	25.6 Millions	ImageNet-1K	1 Million	1000

Architectures des modèles:

Réseau de neurones simple

ViT

04

Expériences et résultats

Expériences

Fine-tuning

Cadre du Few-Shots

Cadre d' apprentissage continu

1- Fine-tuning

Architectures des modèle en fine-tuning:

ViT

1- Fine-tuning

Paramètres figées:

Réseau de neurones simple (acc: 86.34%)

ResNet-50 (acc: 88.67%)

Paramètres non-figées:

Réseau de neurones simple (acc: 86.34%)

ResNet-50 (acc: 84.43%)

ViT (acc: 99.84%)

2- Few-Shots

Paramètres figées:

Réseau de neurones simple (acc: 45.52%)

ResNet-50 (acc: 79.66%)

ViT (acc: 77.96%)

Paramètres non-figées:

Réseau de neurones simple (acc: 45.52%)

ResNet-50 (acc: 82.58%)

ViT (acc: 90.29%)

3- Apprentissage continu

Approche de régularisation:

Architecture du Learning without forgetting

Approche architecturale:

Architecture de l'approche architecturale

Accuracy des modèles en apprentissage incrémental

Accuracy des modèles en apprentissage incrémental

05

Conclusion et perspectives

Merci pour votre attention!