



# **CMOS** invertor

- Osnovna ideja CMOS tehnologije zasniva se na naponskoj logici u kojoj NMOS tranzistori imaju ulogu prekidača sa radnim kontaktom, a PMOS tranzistori imaju ulogu prekidača sa mirnim kontaktom. NMOS tranzistori formiraju pull-down mrežu, dok PMOS tranzistori formiraju dualnu pull-up mrežu, pri čemu je logika uvek invertujuća.
- Osnovno kolo CMOS tehnologije je invertor, koji čine dva redno vezana komplementarna MOS tranzistora (PMOS i NMOS).
- Princip rada: kada je na ulazu visok napon, provodan je NMOS tranzistor koji kratko spaja izlaz na masu, a istovremeno je PMOS zakočen, pa je stoga na izalzu nizak napon. U suprotnom, kada je ulaz nizak, NMOS je zakočen, a PMOS je provodan i spaja izlaz na napon napajanja, što je visok logički nivo.



Osnovna struktura CMOS invertora



### Prenosna karakteristika CMOS invertora

- Cilj je izraziti izlazni napon u funkciji ulaznog napona, odnosno  $V_{out} = f(V_{in})$ .
- Parametri kola su:  $V_{CC} = 5V$ ,  $B_1 = B_2$ ,  $V_{TH1} = |V_{TH2}| = 2V$ .



za NMOS tranzistor M1:

$$v_{GS1} = v_{in}$$

$$v_{DS1} = v_{out}$$

za PMOS tranzistor M2:

$$v_{SG2} = V_{CC} - v_{in} = 5 - v_{in}$$

$$v_{SD2} = V_{CC} - v_{out} = 5 - v_{out}$$



# Režimi rada tranzistora u CMOS invertoru(1)

#### **NMOS**



• Za  $v_{GS1} < V_{TH}$ , M1 je zakočen

$$v_{GS1} = v_{in} \Rightarrow \left\{ egin{array}{l} M1 \ je \ zakočen \ za \ v_{in} < 2V \ M1 \ je \ provodan \ za \ v_{in} \geq 2V \end{array} 
ight.$$

• Za  $v_{GS1} \ge V_{TH} \ i \ v_{DS1} > v_{GS1} - V_{TH}, \, \text{M1 vodi u}$  oblasti zasićenja

$$i_D = B \cdot (v_{GS1} - V_{TH})^2 =$$
  
=  $B \cdot (v_{in} - 2V)^2$ 

• Za  $v_{GS1} \ge V_{TH} \ i \ v_{DS1} < v_{GS1} - V_{TH}, \, \text{M1 vodi u}$  omskom režimu

$$\begin{array}{l} v_{DS1} = v_{out} \Rightarrow \\ \Rightarrow \left\{ \begin{array}{l} M1 \ je \ u \ zasi\acute{c}enju \ za \ v_{out} > v_{in} - 2V \\ M1 \ je \ u \ omskom \ re\ zimu \ za \ v_{out} < v_{in} - 2V \end{array} \right. \end{array}$$

$$i_D = B \cdot (2 \cdot (v_{GS1} - V_{TH}) \cdot v_{DS1} - v_{DS1}^2) =$$
  
=  $B \cdot (2 \cdot (v_{in} - 2V) \cdot v_{out} - v_{out}^2)$ 

#### **PMOS**



• Za  $v_{SG2} < |V_{TH}|$ , M2 je zakočen

$$\begin{array}{l} v_{SG2} = 5V - v_{in}) \Rightarrow \\ \Rightarrow \left\{ \begin{array}{l} M2 \ je \ zako\check{c}en \ za \ v_{in} > 3V \\ M2 \ je \ provodan \ za \ v_{in} \leq 3V \end{array} \right. \end{array}$$

• Za  $v_{SG2} \ge |V_{TH}|$  i  $v_{SD2} > v_{SG2} - |V_{TH}|$ , M2 vodi u oblasti zasićenja

$$i_D = B \cdot (v_{SG2} - |V_{TH}|)^2$$
  
=  $B \cdot (3V - v_{in})^2$ 

• Za  $v_{SG2} \ge |V_{TH}|$  i  $v_{SD2} < v_{SG2} - |V_{TH}|$ , M2 vodi u omskom režimu

$$\begin{aligned} v_{SD2} &= 5V - v_{out} \Rightarrow \\ &= M2 \ je \ u \ zasićenju \ za \ v_{out} < v_{in} + 2V \\ &= M2 \ je \ u \ omskom \ režimu \ za \ v_{out} > v_{in} + 2V \end{aligned}$$

$$i_D = B \cdot (2 \cdot (v_{SG2} - |V_{TH}|) \cdot v_{SD2} - v_{SD2}^2) =$$

$$= B \cdot (2 \cdot (3V - v_{in}) \cdot (5V - v_{out}) - (5V - v_{out})^2)$$



## Režimi rada tranzistora u CMOS invertoru(2)





### Prenosna karakteristika CMOS invertora

I.  $v_i < 2 \Rightarrow M1$  je u zakočenju, M2 je u omskom režimu

$$i_D = 0$$
,  $v_{out} = 5V$ 

II. M1 je u zasićenju, M2 je u omskom režimu

$$i_{D1} = i_{D2} \Rightarrow B \cdot (v_{in} - 2)^2 = B \cdot (2 \cdot (3 - v_{in}) \cdot (5 - v_{out}) - (5 - v_{out})^2)$$

$$v_{out}^2 - v_{out} \cdot (2v_{in} + 4) + v_{in}^2 + 6v_{in} - 1 = 0$$

$$v_{out} = v_{in} + 2 \pm \sqrt{5 - 2v_{in}}$$

$$v_{out} > v_{in} + 2 \Rightarrow v_{out} = v_{in} + 2 + \sqrt{5 - 2v_{in}}$$

Granice intervala: tačka A(2V, 5V), tačka B(2.5V, 4.5V)

III. Oba tranzistora su u zasićenju

$$i_{D1} = i_{D2} \Rightarrow B \cdot (v_{in} - 2)^2 = B \cdot (3 - v_{in})^2 \Rightarrow v_{in} = 2.5V$$

Granice intervala: tačka B(2.5V, 4.5V), tačka C(2.5V, 0.5V)

IV. M1 je u omskom režimu, M2 je u zasićenju

$$i_{D1} = i_{D2} \Rightarrow B \cdot (2 \cdot (v_{in} - 2) \cdot v_{out} - v_{out}^2) = B \cdot (3 - v_{in})^2$$

$$v_{out}^2 - v_{out} \cdot (2v_{in} - 4) + v_{in}^2 - 6v_{in} + 9 = 0$$

$$v_{out} = v_{in} - 2 \pm \sqrt{2v_{in} - 5}$$

$$v_{out} < v_{in} - 2 \Rightarrow v_{out} = v_{in} - 2 - \sqrt{2v_{in} - 5}$$

Granice intervala: tačka C(2.5V, 0.5V), tačka D(3V, 0V)

V.  $v_i > 3 \Rightarrow M1$  je u omskom režimu, M2 je u zakočenju

$$i_D = 0$$
,  $v_{out} = 0V$ 







## **CMOS NI-kolo**



Električna šema dvoulaznog CMOS NI-kola

| $x_1$ | $x_0$ | MF1      | MF2      | MF3      | MF4      | у |
|-------|-------|----------|----------|----------|----------|---|
| 0     | 0     | zakočen  | zakočen  | provodan | provodan | 1 |
| 0     | 1     | provodan | zakočen  | provodan | zakočen  | 1 |
| 1     | 0     | zakočen  | provodan | zakočen  | provodan | 1 |
| 1     | 1     | provodan | provodan | zakočen  | zakočen  | 0 |

Režimi rada tranzistora



## **CMOS NILI-kolo**



### Električna šema dvoulaznog CMOS NILI-kola

| $x_I$ | $x_0$ | MF1      | MF2      | MF3      | MF4      | У |
|-------|-------|----------|----------|----------|----------|---|
| 0     | 0     | zakočen  | zakočen  | provodan | provodan | 1 |
| 0     | 1     | provodan | zakočen  | zakočen  | provodan | 0 |
| 1     | 0     | zakočen  | provodan | provodan | zakočen  | 0 |
| 1     | 1     | provodan | provodan | zakočen  | zakočen  | 0 |

Režimi rada tranzistora



### CMOS kola sa trostatičkim izlazima

 Trostatički izlazi mogu se implementirati na svim CMOS logičkim kolima. Posebno je od interesa trostatički bafer, CMOS kolo koje na izlazu y daje ulazni signal x ako je signal dozvole d na logičkoj 1, a visoku impendansu ako je signal dozvole d na logičkoj 0.



- Tipična primena trostatičkih kola je u slučajevima kada je potreno istovremeno vezati izlaze više različitih kola na zajedničku liniju (magistralu).
- Upravljačka logika mora biti realizovana na takav način da u svakom trenutku signal dozvole sme biti aktivan kod tačno jednog kola koje je spojeno na magistralu, dok izlazi svih ostalih kola na istoj magistrali moraju biti u stanju visoke impedanse. Ovim se predupređuje pojava konflikta na magistrali, kada dva različita kola pokušavaju istovremeno da forsiraju različita logička stanja, što može rezultovati fizičkim oštećenjem, ili čak uništenjem tranzistora.



# Struktura trostatičkog CMOS invertora



#### Električna šema

#### Šematski simbol

| d | х | MF1      | MF2      | MF3      | MF4      | у                 |
|---|---|----------|----------|----------|----------|-------------------|
| 0 |   | zakočen  |          |          | zakočen  | visoka impendansa |
| 1 | 0 | provodan | zakočen  | provodan | provodan | 1                 |
| 1 | 1 | provodan | provodan | zakočen  | provodan | 0                 |

#### Režimi rada tranzistora