

IATEX-Vorlage für diverse Ausarbeitungen .. oder so ähnlich

Programmentwurf

der Vorlesung "Advanced Software Engineering"

an der

Dualen Hochschule Baden-Württemberg Karlsruhe

von

Max Mustermann

Abgabedatum 1. April 2090

Matrikelnummer Kurs Bearbeitungszeitrum Gutachter der Studienakademie

4711 tinf17b3 5. & 6. Semester Mirko Dostmann

Inhaltsverzeichnis

Inhaltsverzeichnis				
\mathbf{A}	Abbildungsverzeichnis Codeverzeichnis			
C				
\mathbf{A}	kürzungsverzeichnis	v		
1	Domain Driven Design	1		
	1.1 Analyse der Ubiquitous Language			
2	Clean Architecture 2.1 Schichtenarchitektur	2 2		
3	Programming Principles	3		
	3.1 SOLID	4		
4	Refactoring 4.1 Identifizieren von Codesmells	5		
5	Entwurfsmuster	6		
	5.1 Begründung des Einsatzes			
	5.2 Unified Modeling Language (UML) Vorher			
	5.3 UML Nachher	6		
\mathbf{A}	Anhang	Ι		
	A.1 Löwenmann			
	A 2 SQL Snippet	II		

Abbildungsverzeichnis

Liste der Algorithmen

Abkürzungsverzeichnis

\mathbf{UML}	Unified Modeling Language	i
----------------	---------------------------	---

1. Domain Driven Design

- 1.1 Analyse der Ubiquitous Language
- 1.2 Analyse und Begründung der verwendeten Muster
- 1.2.1 Value Objects

Analyse

Begründung

1.2.2 Entities

Analyse

Begründung

1.2.3 Aggregates

Analyse

Begründung

1.2.4 Repositories

Analyse

Begründung

1.2.5 Domain Services

Analyse

Begründung

2. Clean Architecture

- 2.1 Schichtenarchitektur
- 2.1.1 Planung
- 2.1.2 Entscheidung anhand von Kriterien

3. Programming Principles

3.1 SOLID

3.1.1 Single Responsibility

Analyse

Begründung

3.1.2 Open Closed Principle

Analyse

Begründung

3.1.3 Liskov Substitution Principle

Analyse

Begründung

3.1.4 Interface Segregation Principle

Analyse

Begründung

3.1.5 Dependency Inversion Principle

Analyse

Begründung

3.2 GRASP (insb. Kopplung/Kohäsion)

3.2.1 Low Coupling

Analyse

Begründung

3.2.2 High Cohesion

Analyse

Begründung

3.2.3 Polymorphismus

Analyse

Begründung

4. Refactoring

4.1 Identifizieren von Codesmells

4.1.1 Code Smell 1

Begründung

 \mathbf{Fix}

4.1.2 Code Smell 2

Begründung

 \mathbf{Fix}

5. Entwurfsmuster

- 5.1 Begründung des Einsatzes
- 5.2 UML Vorher
- 5.3 UML Nachher

A. Anhang

A.1 Löwenmann

Abbildung A.1: Löwe

A.2 SQL Snippet

```
1
2
     – Die Tabellengößen aus der Postgre_size Tabelle abfragen,
3
   SELECT
4
      relname \ as \ "Table" \, ,
5
       {\tt pg\_size\_pretty} \, (\, {\tt pg\_total\_relation\_size} \, (\, {\tt relid} \, ) ) \  \, {\tt As} \  \, "\, {\tt Size} \, " \, ,
6
       pg_size_pretty(pg_total_relation_size(relid) - pg_relation_size(relid)) as "
       External Size"
   FROM pg_catalog.pg_statio_user_tables as cat
8
    -, wenn der Name der Tabelle in dieser Liste steht
    where cat.relname LIKE any('{a,
10
                                by,
11
                                с,
^{12}
                                d}'::text[])
13
   ORDER by pg_total_relation_size(relid) desc ;
14
15
     16
```

Algorithmus A.1: SQL - Snippet