Table des matières

1	Le cor	ps des nombres réels	2
	I.1	Le groupe $(\mathbb{R},+)$	2
	I.2	L'anneau $(\mathbb{R}, +, \times)$	2
	I.3	Le corps $(\mathbb{R}, +, \times)$	3
	I.4	Nombres rationnels ou irrationnels	3
	I.5	Relation d'ordre	4
	I.6	Exposants entiers relatifs	4
	I.7	Intervalles de \mathbb{R}	5
	I.8	Droite numérique achevée	5
	I.9	Identités remarquables	6
	I.10	Valeur absolue et distance	7
	I.11	Quelques inégalités classiques	8
II	Borne	supérieure, borne inférieure	8
	II.1	Axiome de la borne supérieure	8
	II.2	Propriétés de la borne Sup et la borne Inf	9
	II.3	Congruences, partie entière	10
	II.4	Valeurs approchées, densité de $\mathbb Q$	11
	II.5	Exposants rationnels	11
III	Génér	alités sur les suites	12
	III.1	Suites d'éléments d'un ensemble quelconque	12
	III.2	Suites extraites	12
	III.3	Suites périodiques ou stationnaires	13
	III.4	Suites définies par récurrence	13
	III.5	Généralités sur les suites numériques	14
	III.6	Suites arithmétiques ou géométriques	15
IV	Limite	e d'une suite numérique	17
	IV.1	Définitions générales	17
	IV.2	Propriétés des suites admettant une limite	18
	IV.3	Limites et ordre dans la droite numérique achevée	19
	IV.4	Suites réelles monotones, et conséquences	20
	IV.5	Suites de Cauchy	21
	IV.6	Limites particulières	21
	IV.7	Formes indéterminées	22
	IV.8	Pratique de l'étude des suites réelles	22

I Le corps des nombres réels

I.1 Le groupe $(\mathbb{R}, +)$

On admet l'existence d'un ensemble, noté \mathbb{R} , contenant l'ensemble \mathbb{N} , dont les éléments sont appelés nombres réels, muni de deux opérations + (addition) et \times (produit, noté par juxtaposition : xy plutôt que $x \times y$) et d'une relation d'ordre total \leq , qui "étendent" toutes trois celles de \mathbb{N} , et qui vérifient les propriétés P_1 , P_2 , P_3 , P_4 , et P_5 , que nous allons passer en revue.

P_1 : Propriétés de l'addition

```
Commutativité : \forall (x,y) \in \mathbb{R}^2, x+y=y+x

Associativité : \forall (x,y,z) \in \mathbb{R}^3, x+(y+z)=(x+y)+z.

L'entier 0 est élément neutre : \forall x \in \mathbb{R}, x+0=x.

Tout réel x possède un unique "opposé" y vérifiant : x+y=0. Il est noté y=-x.
```

On exprime les propriétés P_1 en disant que $(\mathbb{R}, +)$ est un groupe commutatif.

Remarques et notations

- Pour tous réels x et y, on note y-x plutôt que y+(-x). On définit ainsi une nouvelle opération sur \mathbb{R} (soustraction) qui ne présente que très peu d'intérêt : elle n'est ni commutative, ni associative, et il n'y a pas d'élément neutre.
- On vérifie la propriété : $\forall (x,y) \in \mathbb{R}^2, -(x+y) = -x y$.
- Pour toute partie A de \mathbb{R} , on note $-A = \{-x, x \in A\}$.
- On note $\mathbb{Z} = \mathbb{N} \cup (-\mathbb{N})$. Les éléments de \mathbb{Z} sont appelés entiers relatifs. On pose $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.
- La commutativité et l'associativité de la loi + font qu'on peut envisager $x_1 + x_2 + \cdots + x_n$ sans parenthèses et sans se préoccuper de l'ordre des termes. Une telle somme est notée $\sum_{k=1}^{n} x_k$.

I.2 L'anneau $(\mathbb{R}, +, \times)$

P2: Propriétés du produit

```
Commutativité : \forall (x,y) \in \mathbb{R}^2, xy = yx.

Associativité : \forall (x,y,z) \in \mathbb{R}^3, x(yz) = (xy)z.

Distributivité par rapport à l'addition : \forall (x,y,z) \in \mathbb{R}^3, x(y+z) = xy + xz.

1 est neutre pour le produit : \forall x \in \mathbb{R}, x1 = x.
```

On exprime les propriétés P_1 et P_2 en disant que $(\mathbb{R}, +, \times)$ est un anneau commutatif.

Remarques

- $\forall x \in \mathbb{R}, \ x0 = 0. \ \forall (x, y) \in \mathbb{R}^2, \ x(-y) = (-x)y = -(xy).$
- La commutativité et l'associativité de \times font qu'on peut considérer un produit $x_1x_2\cdots x_n$ sans utiliser de parenthèses ni tenir compte de l'ordre des termes.

Un tel produit est noté $\prod_{k=1}^{n} x_k$.

- L'ensemble \mathbb{Z} est stable pour les lois + et \times : $\forall (n,p) \in \mathbb{Z}^2, n+p \in \mathbb{Z}$ et $np \in \mathbb{Z}$. Muni des restrictions des lois de \mathbb{R} , \mathbb{Z} a lui-même une structure d'anneau commutatif.

Exposants entiers positifs

Pour tout x réel, on définit par récurrence les puissances x^n de x, avec $n \in \mathbb{N}$:

On pose : $x^0 = 1$ et pour tout n de \mathbb{N} , $x^{n+1} = x^n x$.

Alors: $\forall n \in \mathbb{N}, 1^n = 1, \text{ et } \forall n \in \mathbb{N}^*, 0^n = 0.$

On démontre par récurrence les propriétés suivantes :

$$\forall (x,y) \in \mathbb{R}^2, \ \forall (n,p) \in \mathbb{N}^2 \qquad \begin{cases} (xy)^n = x^n y^n \\ x^n x^p = x^{n+p} \\ (x^n)^p = x^{np} \end{cases}$$

I.3 Le corps $(\mathbb{R}, +, \times)$

On note $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ l'ensemble des réels non nuls. Il contient \mathbb{Z}^* et donc \mathbb{N}^* .

P_3 : Inversibilité des réels non nuls

Tout réel non nul x possède un unique "inverse" y, vérifiant xy=1. Ce réel est noté $y=x^{-1}$ ou $y=\frac{1}{x}$.

On exprime les propriétés P_1 , P_2 , P_3 en disant que $(\mathbb{R}, +, \times)$ est un corps commutatif.

Propriétés

$$- \forall x \in \mathbb{R}^*, -x \in \mathbb{R}^* \text{ et } (-x)^{-1} = -(x^{-1})$$

$$- \forall (x, y) \in \mathbb{R}^* \times \mathbb{R}^*, \ xy \in \mathbb{R}^* \text{ et } (xy)^{-1} = x^{-1}y^{-1}.$$

$$- \forall (x, y) \in \mathbb{R}, \ xy = 0 \Leftrightarrow (x = 0) \text{ ou } (y = 0).$$

On note habituellement : $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}^*, xy^{-1} = x\frac{1}{y} = \frac{x}{y}$.

Une telle notation est rendue possible car le produit est une opération commutative.

I.4 Nombres rationnels ou irrationnels

Définition

On note
$$\mathbb{Q} = \left\{ \frac{a}{b}, \ a \in \mathbb{Z}, \ b \in \mathbb{Z}^* \right\}$$
, et $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$.
Les éléments de \mathbb{Q} sont appelés nombres rationnels.

Remarques

- L'ensemble \mathbb{Q} , qui contient \mathbb{Z} , est stable pour les lois + et \times .
- Muni des restrictions de ces lois, il est lui-même un corps commutatif.
- En particulier l'inverse de tout élément de \mathbb{Q}^* est encore dans \mathbb{Q}^* .

Définition

Les éléments de $\mathbb{R} \setminus \mathbb{Q}$ sont appelés nombres irrationnels.

I.5 Relation d'ordre

P_4 : Propriétés de la relation d'ordre

 $\begin{cases} \text{Compatibilit\'e avec l'addition}: & \forall \, (x,y,z) \in \mathbb{R}^3, x \leqslant y \Rightarrow x+z \leqslant y+z. \\ \text{Compatibilit\'e avec le produit par un r\'eel positif ou nul}: \\ & \forall \, (x,y,z) \in \mathbb{R}^3, (x \leqslant y) \text{ et } (0 \leqslant z) \Rightarrow xz \leqslant yz. \end{cases}$

On résume P_1 à P_4 en disant que \mathbb{R} est un corps commutatif totalement ordonné.

Remarques et notations

- Toute partie minorée non vide de \mathbb{Z} possède un plus petit élément.
- Toute partie majorée non vide de Z possède un plus grand élément.
- On note bien sûr, pour tous réels x et y: $\begin{cases} x < y \Leftrightarrow (x \leqslant y) \text{ et } (x \neq y) \\ x \geqslant y \Leftrightarrow y \leqslant x; \quad x > y \Leftrightarrow y < x \end{cases}$
- On pose $\mathbb{R}^{+*} = \{x \in \mathbb{R}, \ x > 0\}, \ \mathbb{R}^+ = \mathbb{R}^{+*} \cup \{0\} = \{x \in \mathbb{R}, \ x \geqslant 0\}.$ On définit de la même manière $\mathbb{Z}^{+*}, \ \mathbb{Z}^+, \ \mathbb{Q}^{+*}, \ \text{et} \ \mathbb{Q}^+.$
- On pose $\mathbb{R}^{-*}=\{x\in\mathbb{R},\ x<0\},\ \mathbb{R}^-=\mathbb{R}^{-*}\cup\{0\}=\{x\in\mathbb{R},\ x\leqslant0\}.$ On définit de la même manière $\mathbb{Z}^{-*},\ \mathbb{Z}^-,\ \mathbb{Q}^{-*},\ \mathrm{et}\ \mathbb{Q}^-.$
- Le tableau ci-après résume les règles des signes

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline x & \geqslant 0 & \leqslant 0 & \geqslant 0 & > 0 & < 0 & > 0 & > 0 & > 0 & < 0 & < 0 \\ \hline y & \geqslant 0 & \leqslant 0 & \leqslant 0 & > 0 & < 0 & \leqslant 0 & \geqslant 0 & \leqslant 0 & \geqslant 0 & \leqslant 0 \\ \hline x+y & \geqslant 0 & \leqslant 0 & ? & > 0 & < 0 & ? & > 0 & ? & ? & < 0 \\ xy & \geqslant 0 & \geqslant 0 & \leqslant 0 & > 0 & > 0 & < 0 & \geqslant 0 & \leqslant 0 & \geqslant 0 \\ \hline \end{array}$$

On démontre également les propriétés suivantes, pour tous réels x, y, z:

$$\begin{cases} x+z\leqslant y+z\Leftrightarrow x\leqslant y & x+z< y+z\Leftrightarrow x< y\\ x\leqslant y\Leftrightarrow -y\leqslant -x & x< y\Leftrightarrow -y<-x\\ x\leqslant 0\Leftrightarrow -x\geqslant 0 & x<0\Leftrightarrow -x>0\\ x>0\Leftrightarrow x^{-1}>0 & x<0\Leftrightarrow x^{-1}<0\\ 0< x< y\Rightarrow 0< y^{-1}< x^{-1} & x< y<0\Rightarrow y^{-1}< x^{-1}<0\\ (x\leqslant y\text{ et }z\leqslant 0)\Rightarrow xz\geqslant yz & x^2\geqslant 0\\ (x< y\text{ et }z>0)\Rightarrow xz< yz & (x< y\text{ et }z<0)\Rightarrow xz>yz \end{cases}$$

I.6 Exposants entiers relatifs

Pour tout réel non nul x, et tout entier relatif strictement négatif m, on pose $x^m = (x^{-m})^{-1}$. On connait donc maintenant le sens de x^m , pour tout x de \mathbb{R}^* et tout m de \mathbb{Z} .

Propriétés

$$\forall (x,y) \in \mathbb{R}^* \times \mathbb{R}^* \quad \begin{cases} (xy)^n = x^n y^n, & x^n x^p = x^{n+p} \\ \frac{1}{x^n} = x^{-n} & \frac{x^n}{x^p} = x^{n-p} \end{cases} (x^n)^p = x^{np}$$

Parité et monotonie

L'application $x \to x^m$ est paire si m est pair, et impaire si m est impair.

$$\text{Sur } \mathbb{R}^{+*} \text{, elle est } \left\{ \begin{array}{l} \text{strictement croissante si } m > 0, \\ \text{strictement décroissante si } m < 0, \\ \text{constante (valeur 1) si } m = 0. \end{array} \right.$$

Le tableau ci-après indique ce que devient l'inégalité x < y par élévation à la puissance m-ième.

$m \in \mathbb{Z}^*, x,y \in \mathbb{R}^*$	m > 0, pair	m > 0, impair	m < 0, pair	m < 0, impair
0 < x < y	$0 < x^m < y^m$	$0 < x^m < y^m$	$0 < y^m < x^m$	$0 < y^m < x^m$
x < y < 0	$0 < y^m < x^m$	$x^m < y^m < 0$	$0 < x^m < y^m$	$y^m < x^m < 0$

I.7 Intervalles de \mathbb{R}

Pour tous réels a et b, on définit les ensembles suivants, dits *intervalles* de \mathbb{R} .

$$\begin{cases} [a,b] = \{x \in \mathbb{R}, a \leqslant x \leqslant b\} &, [a,b[= \{x \in \mathbb{R}, a \leqslant x < b\}] \\ [a,b] = \{x \in \mathbb{R}, a < x \leqslant b\} &, [a,b[= \{x \in \mathbb{R}, a < x < b\}] \\ [a,b] = \{x \in \mathbb{R}, a < x \leqslant b\} &, [a,b[= \{x \in \mathbb{R}, a < x < b\}] \\ [a,+\infty[= \{x \in \mathbb{R}, a \leqslant x\}] &, [a,+\infty[= \{x \in \mathbb{R}, a < x\}] \\ [a,+\infty[= \{x \in \mathbb{R}, x \leqslant b\}] &, [a,+\infty[= \{x \in \mathbb{R}, x < b\}] \end{cases}$$

En particulier :
$$\mathbb{R}^+ = [0, +\infty[, \mathbb{R}^{+*} =]0, +\infty[, \mathbb{R}^- =]-\infty, 0], \mathbb{R}^{-*} =]-\infty, 0[$$

Remarques et définitions

- On dit que [a, b] (avec a ≤ b) est le segment d'origine a et d'extrémité b.
- Les intervalles $]a, b[,]a, +\infty[,]-\infty, b[$ et $]-\infty, \infty[$ sont dits ouverts.
- Les intervalles $[a, b], [a, +\infty[,]-\infty, b]$ et $]-\infty, \infty[$ sont dits fermés.
- Les intervalles [a, b] et [a, b] sont dits semi-ouverts (ou semi-fermés!).
- Le segment [a, a] se réduit à $\{a\}$; L'intervalle [a, a] est vide.
- Seuls les intervalles [a, b], [a, b], [a, b] et [a, b] sont bornés.
- Les segments sont les intervalles fermés bornés.

Proposition

 \parallel Une partie I de \mathbb{R} est un intervalle \Leftrightarrow elle est convexe c'est-à-dire $\forall (x,y) \in I \times I, [x,y] \subset I$.

I.8 Droite numérique achevée

Définition

On note $\overline{\mathbb{R}}$ l'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$.

Cet ensemble est appelé droite numérique achevée.

Relation d'ordre sur $\overline{\mathbb{R}}$

On munit $\overline{\mathbb{R}}$ d'un ordre total \leq prolongeant celui de \mathbb{R} et défini en outre par :

$$\forall x \in \mathbb{R}, -\infty \leq x \leq +\infty \text{ (en fait } -\infty < x < +\infty).$$

Opérations sur $\overline{\mathbb{R}}$

De même, on "étend" (de façon toujours commutative) les lois + et \times de \mathbb{R} en posant :

$$\begin{cases} (+\infty) + (+\infty) = +\infty & (-\infty) + (-\infty) = (-\infty) \\ \forall x \in \mathbb{R}, & x + (-\infty) = -\infty & x + (+\infty) = +\infty \\ (+\infty)(+\infty) = +\infty & (-\infty)(-\infty) = +\infty & (-\infty)(+\infty) = -\infty \\ \forall x \in \mathbb{R}^{+*}, & x(-\infty) = -\infty & x(+\infty) = +\infty \\ \forall x \in \mathbb{R}^{-*}, & x(-\infty) = +\infty & x(+\infty) = -\infty \end{cases}$$

Formes indéterminées

Comme on le voit, on ne donne pas de valeur aux expressions suivantes :

$$(+\infty) + (-\infty), \quad 0(+\infty), \quad 0(-\infty)$$

Ces expressions sont appelées formes indéterminées.

Utiliser $\overline{\mathbb{R}}$ permet par exemple de simplifier les énoncés du genre :

$$(\lim u_n = \lambda \text{ et } \lim v_n = \mu) \Rightarrow \lim (u_n + v_n) = \lambda + \mu$$

Ce résultat est en effet vrai pour tous λ , μ de $\overline{\mathbb{R}}$ à l'exception des formes indéterminées pour lesquelles on devra faire une étude plus poussée (on devra lever la forme indéterminée).

I.9 Identités remarquables

Proposition (Formule du binôme)

$$\forall (a,b) \in \mathbb{R}^2, \forall n \in \mathbb{N}, (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

En particulier, pour tous réels a et b: $\begin{cases} (a+b)^2 = a^2 + 2ab + b^2 \\ (a-b)^2 = a^2 - 2ab + b^2 \\ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \\ (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \end{cases}$

Carré d'une somme de
$$n$$
 termes : $\left[\sum_{k=1}^n x_k\right]^2 = \sum_{k=1}^n x_k^2 + 2\sum_{1 \le j < k \le n} x_j x_k$

Le développement fait apparaître la somme des carrés et celle des doubles produits.

Une factorisation classique

$$\forall (a,b) \in \mathbb{R}^2, \forall n \in \mathbb{N}, \ a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^n a^{n-k} b^k = (a-b)(a^n + a^{n-1}b + \dots + ab^{n-1} + b^n).$$
Si l'entier n est pair : $a^{n+1} + b^{n+1} = (a+b)(a^n - a^{n-1}b + \dots - ab^{n-1} + b^n)$
En particulier :
$$\begin{cases} a^2 - b^2 = (a-b)(a+b) \\ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \\ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \end{cases}$$

Une somme classique

Pour tout réel $x \neq 1$, et tout entier naturel n:

$$S_n(x) = 1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$
 et $S_n(1) = n + 1$.

I.10 Valeur absolue et distance

Définition

Pour tout réel x, on pose $|x| = \max(-x, x)$.

Cette quantité est appelée valeur absolue de x.

On vérifie immédiatement les propriétés suivantes :

– Pour tout réel
$$x$$
:
$$\begin{cases} |x| \ge 0, & |x| = 0 \Leftrightarrow x = 0 \\ |x| = x \Leftrightarrow x \ge 0, & |x| = -x \Leftrightarrow x \le 0 \end{cases}$$

$$- \ \forall x \in \mathbb{R}, \ \forall \alpha \in \mathbb{R}^+ : \begin{cases} |x| = \alpha \Leftrightarrow x \in \{-\alpha, \alpha\} \\ |x| \leqslant \alpha \Leftrightarrow -\alpha \leqslant x \leqslant \alpha \\ |x| < \alpha \Leftrightarrow -\alpha < x < \alpha \\ |x| \geqslant \alpha \Leftrightarrow x \in]-\infty, -\alpha] \cup [\alpha, +\infty[\\ |x| > \alpha \Leftrightarrow x \in]-\infty, -\alpha[\cup]\alpha, +\infty[\end{cases}$$

- $-\forall (x,y) \in \mathbb{R}^2 : |xy| = |x||y|$
- $\forall n \in \mathbb{N} : |x^n| = |x|^n \text{ (idem si } x \neq 0 \text{ et } n \in \mathbb{Z}).$

$$- \forall (x,y) \in \mathbb{R}^2 : \begin{cases} x^2 = y^2 \Leftrightarrow |x| = |y| \\ x^2 \leqslant y^2 \Leftrightarrow |x| \leqslant |y| \end{cases}$$

Proposition (Inégalité triangulaire)

$$| \forall (x,y) \in \mathbb{R}^2, |x+y| \leqslant |x| + |y|.$$

 $\parallel \forall (x,y) \in \mathbb{R}^2, \ |x+y| \leqslant |x|+|y|.$ On a l'égalité $|x+y|=|x|+|y| \Leftrightarrow x$ et y ont le même signe.

Généralisation

$$\begin{cases} \left| \prod_{k=1}^{n} x_k \right| = \prod_{k=1}^{n} |x_k| & \text{et} \quad \left| \sum_{k=1}^{n} x_k \right| \leqslant \sum_{k=1}^{n} |x_k| \\ \text{On a l'égalité} \left| \sum_{k=1}^{n} x_k \right| = \sum_{k=1}^{n} |x_k| \Leftrightarrow \text{les } x_k \text{ ont tous le même signe.} \end{cases}$$

Définition

Pour tout réel
$$x$$
, on note $x^+ = \max(x, 0)$ et $x^- = \max(-x, 0)$.

Pour tout réel
$$x$$
, on note $x^+ = \max(x, 0)$ et $x^- = \max(-x, 0)$.
Autrement dit : $x^+ = \begin{cases} x & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}$ et $x^- = \begin{cases} -x & \text{si } x \leqslant 0 \\ 0 & \text{sinon} \end{cases}$

Avec ces notations, pour tout réel
$$x: \left\{ \begin{array}{ll} x^+ \geqslant 0 & x^- \geqslant 0 \\ x = x^+ - x^- & |x| = x^+ + x^-. \end{array} \right.$$

Pour tous réels
$$x$$
 et y :
$$\begin{cases} \max(x,y) = \frac{1}{2}(x+y+|x-y|) \\ \min(x,y) = \frac{1}{2}(x+y-|x-y|) \end{cases}$$

Définition

Pour tous réels x, y, la quantité d(x, y) = |x - y| est appelée distance de x et de y.

Elle vérifie :
$$\forall (x, y, z) \in \mathbb{R}^3$$
, $\begin{cases} d(x, y) \ge 0, & d(x, y) = 0 \Leftrightarrow x = y \\ d(x, y) \le d(x, z) + d(z, y) \end{cases}$

Remarque

Pour tous reéls x et y, on a $d(|x|,|y|) \leq d(x,y)$, c'est-à-dire $||x|-|y|| \leq |x-y|$.

Ce résultat complète donc l'inégalité triangulaire.

I.11 Quelques inégalités classiques

Quelques inégalités classiques

Voici trois inégalités souvent utiles :

$$\begin{cases} \forall (x,y) \in \mathbb{R}^2, \ xy \leqslant \frac{1}{2}(x^2 + y^2) & \text{(\'egalit\'e} \Leftrightarrow x = y) \\ \forall x \in [0,1], \ x(1-x) \leqslant \frac{1}{4} & \text{(\'egalit\'e} \Leftrightarrow x = \frac{1}{2}) \\ |x| \leqslant k < 1 \Rightarrow 1 - k \leqslant |1+x| \leqslant 1 + k. \end{cases}$$

Un autre groupe de trois inégalités fréquemment utilisées :

$$\begin{cases} \forall x \in \mathbb{R}, \ |\sin x| \leqslant |x| & \text{(égalité} \Leftrightarrow x = 0) \\ \forall x \in \mathbb{R}, \ \exp x \geqslant 1 + x & \text{(égalité} \Leftrightarrow x = 0) \\ \forall x > -1, \ \ln(1 + x) \leqslant x & \text{(égalité} \Leftrightarrow x = 0) \end{cases}$$

Proposition (Inégalité de Cauchy-Schwarz)

Pour tous réels
$$x_1, \ldots, x_n$$
 et y_1, \ldots, y_n , on a :
$$(x_1y_1 + x_2y_2 + \cdots + x_ny_n)^2 \leqslant (x_1^2 + x_2^2 + \cdots + x_n^2)(y_1^2 + y_2^2 + \cdots + y_n^2)$$
 Il y a égalité \Leftrightarrow les n -uplets $u = (x_1, x_2, \ldots, x_n)$ et $v = (y_1, y_2, \ldots, y_n)$ sont proportionnels.

II Borne supérieure, borne inférieure

II.1 Axiome de la borne supérieure

Il reste à admettre un axiome de \mathbb{R} , qui fait la spécificité de \mathbb{R} par rapport à \mathbb{Q} .

P₅ : Axiome de la borne supérieure

Soit A une partie non vide et majorée de \mathbb{R} .

Il existe un réel
$$\alpha$$
 tel que :
$$\begin{cases} \forall x \in A, \ x \leqslant \alpha \\ \forall \varepsilon > 0, \ \exists \ a \in A, \ \alpha - \varepsilon < a \end{cases}$$

Remarques

– Les conditions définissant le réel α signifient que :

$$\alpha$$
 est un majorant de A .

Tout réel strictement inférieur à α n'est plus un majorant de A.

- Cela équivaut à dire que α est le plus petit des majorants de A. A ce titre, il est unique.
- L'ensemble des majorants de A est alors l'intervalle $[\alpha, +\infty]$.
- On exprime cette situation en disant que α est la borne supérieure de A. On note $\alpha = \sup(A)$.
- L'axiome P_5 peut donc être traduit en : Toute partie non vide majorée de \mathbb{R} possède une borne supérieure dans \mathbb{R}

L'axiome de la borne supérieure étant admis, on peut démontrer le résultat suivant :

Proposition (Borne inférieure dans \mathbb{R})

```
Soit A une partie non vide et minorée de \mathbb{R}. Il existe un réel \alpha tel que :  \left\{ \begin{array}{l} \forall \, x \in A, \alpha \leqslant x \ (\alpha \text{ est un minorant de } A). \\ \forall \, \varepsilon > 0, \exists \, a \in A, a < \alpha + \varepsilon \ (\text{tout réel} > \alpha \text{ n'est donc plus un minorant de } A). \end{array} \right.
```

Remarques

- Cela signifie que α est le plus grand des minorants de A. Il est donc unique.
- L'ensemble des minorants de A est l'intervalle $]-\infty,\alpha]$.
- On dit que α est la borne inférieure de A, et on note $\alpha = \inf(A)$. Ainsi : Toute partie non vide minorée de \mathbb{R} possède une borne inférieure dans \mathbb{R} .

II.2 Propriétés de la borne Sup et la borne Inf

Dans ce paragraphe, A et B désignent des parties non vides de \mathbb{R} .

L'énoncé suivant est une conséquence immédiate des définitions :

Proposition

```
Si A est majorée, x est un majorant de A \Leftrightarrow \forall a \in A, x \geqslant a \Leftrightarrow x \geqslant \sup(A).
Si A est minorée, x est un minorant de A \Leftrightarrow \forall a \in A, x \leqslant a \Leftrightarrow x \leqslant \inf(A).
```

Voici les rapports entre Sup et Max, et entre Inf et Min:

Proposition

```
Si A est majorée, \max(A) existe \Leftrightarrow \sup(A) \in A. Dans ce cas, \sup(A) = \max(A).
Si A est minorée, \min(A) existe \Leftrightarrow \inf(A) \in A. Dans ce cas, \inf(A) = \min(A).
```

La proposition suivante donne le comportement de Sup et de Inf par rapport à l'inclusion.

Proposition

```
Si B est majorée et si A \subset B, alors A est majorée et \sup(A) \leq \sup(B).
Si B est minorée et si A \subset B, alors A est minorée et \inf(B) \leq \inf(A).
```

On rappelle que pour toute partie A de \mathbb{R} , $-A = \{-a, a \in A\}$.

Proposition

```
Si A est majorée, alors -A est minorée et : \inf(-A) = -\sup(A).
Si A est minorée, alors -A est majorée et : \sup(-A) = -\inf(A).
```

Rappelons que pour toutes parties A et B de \mathbb{R} , on note $A + B = \{a + b, a \in A, b \in B\}$.

Proposition

Si A et B sont majorées, alors A + B est majorée et : $\sup(A + B) = \sup(A) + \sup(B)$. Si A et B sont minorées, alors A + B est minorée et : $\inf(A + B) = \inf(A) + \inf(B)$.

Enfin les résultats suivants sont évidents, pour tous réels a et b, avec a < b:

$$\begin{cases} \sup([a,b]) = \sup([a,b[) = \sup(]a,b]) = \sup(]a,b[) = \sup(]-\infty,b]) = \sup(]-\infty,b[) = b \\ \inf([a,b]) = \inf([a,b[) = \inf(]a,b]) = \inf(]a,b[) = \inf([a,b[) = \inf(]a,b]) = a \end{cases}$$

II.3 Congruences, partie entière

On commence par démontrer un résultat qui semble évident, mais qui est une conséquence de l'axiome de la borne supérieure.

Proposition (\mathbb{R} est archimédien)

Soit x un réel, et a un réel strictement positif.

Alors il existe un entier n tel que na > x.

On exprime cette propriété en disant que \mathbb{R} est archimédien.

Conséquence

Soit x un réel, et a un réel strictement positif.

Alors il existe un couple unique (n, y) de $\mathbb{Z} \times [0, a[$ tel que x = na + y.

Définition (Congruence modulo a)

Soit a un réel strictement positif. Les réels x et y sont dits congrus modulo a, et on note $x \equiv y$ (a), s'il existe un entier relatif q tel que x - y = qa.

Propriétés

- La relation de congruence modulo a est une relation d'équivalence sur \mathbb{R} .
- Chaque classe a un représentant unique dans [0, a[ou encore dans $[-\frac{a}{2}, \frac{a}{2}[$.
- $\forall \lambda \in \mathbb{R}, x \equiv y \ (a) \Leftrightarrow x + \lambda \equiv y + \lambda \ (a)$
- $\ \forall \ \lambda \in \mathbb{R}^*, x \equiv y \ (a) \Leftrightarrow \lambda x \equiv \lambda y \ (\lambda a)$

Exemples

$$\tan x = \tan y \Leftrightarrow x \equiv y (\pi); \quad \cos x = 1 \Leftrightarrow x \equiv 0 (2\pi); \quad \sin(2x) = 0 \Leftrightarrow x = 0 (\pi/2)$$

Avec a = 1, on est conduit à la notion de partie entière...

Définition (Partie entière)

Soit x un réel. Il existe un entier relatif unique m tel que $m \le x < m + 1$.

 $\|$ On l'appelle partie entière de x et on le note E(x), ou [x].

Propriétés

Pour tous réels x et y, et tout entier relatif m:

- $-[x] = m \Leftrightarrow x \in [m, m+1]$
- $-[x] = x \Leftrightarrow x \in \mathbb{Z}$
- -[x+m] = [x] + m
- Si $x \notin \mathbb{Z}, [-x] = -[x] 1$
- $[x+y] \in \{[x] + [y], [x] + [y] + 1\}$

II.4 Valeurs approchées, densité de Q

Définition

Soit x un réel et n un entier naturel.

Il existe un unique entier relatif m tel que $m10^{-n} \le x < (m+1)10^{-n}$.

Le réel $\alpha_n = m10^{-n}$ est appelé valeur approchée de x à 10^{-n} près par défaut.

On a $\alpha_n = 10^{-n} [10^n x]$.

Définition et propriétés

- Posons $\beta_n = (m+1)10^{-n} = \alpha_n + 10^{-n}$. Le réel β_n est appelé valeur approchée de x à 10^{-n} près par excès.
- La suite (α_n) est une suite croissante de nombres rationnels.
- La suite (β_n) est une suite décroissante de nombres rationnels.
- Les deux suites (α_n) et (β_n) convergent vers x.

Proposition (Densité de \mathbb{Q} dans \mathbb{R})

Soient x et y deux réels, avec x < y.

L'intervalle]x,y[contient une infinité de nombres rationnels.

On exprime cette situation en disant que \mathbb{Q} est dense dans \mathbb{R} .

Remarque

L'intervalle [x, y] contient également une infinité de nombres irrationnels.

L'ensemble des nombres irrationnels est donc dense dans \mathbb{R} .

II.5Exposants rationnels

Définition

Soit x un réel et n un élément de \mathbb{N}^* .

On dit qu'un réel y est une racine n-ième de x si $y^n = x$.

Proposition

Si $x \ge 0$, x admet une unique racine n-ième positive y.

On la note habituellement $y = x^{1/n}$ ou $y = \sqrt[n]{x}$ $(y = \sqrt{x} \text{ si } n = 2)$.

Exposants rationnels

- Soit n est un entier impair, et x un réel.

L'équation $y^n = x$ possède une solution unique dans \mathbb{R} , notée encore $y = x^{1/n}$.

La fonction $x \to x^{1/n}$ est alors définie sur \mathbb{R} tout entier.

– Plus généralement, soit (p,q) dans $(\mathbb{Z},\mathbb{N}^*)$, la fraction p/q étant non simplifiable.

On pose $x^{p/q} = (x^{1/q})^p$. Le domaine de définition est :

Propriétés

Si q est impair, l'application $x \to x^{p/q}$ a la parité de p.

Sur leur domaine définition, les relations sur les exposants sont toujours valables.

Ainsi, pour tous rationnels
$$r, s:$$

$$\left\{ \begin{array}{ll} (xy)^r = x^r\,y^r & x^r\,x^s = x^{r+s} & (x^r)^s = x^{rs} \\ \frac{1}{x^r} = x^{-r} & \frac{x^r}{x^s} = x^{r-s} \end{array} \right.$$

III Généralités sur les suites

III.1 Suites d'éléments d'un ensemble quelconque

Définition

Une suite d'éléments d'un ensemble E est une application u de \mathbb{N} dans E, ou ce qui revient au même une famille d'éléments de E indicée par \mathbb{N} .

L'image u(n) est notée u_n et appelée terme d'indice n, ou terme général, de la suite u, et u_0 en est le terme initial.

La suite u est elle-même notée $(u_n)_{n\in\mathbb{N}}$, ou $(u_n)_{n\geqslant 0}$.

Remarques

- On parle de suite numérique si $E = \mathbb{R}$ ou \mathbb{C} , réelle si $E = \mathbb{R}$, et complexe si $E = \mathbb{C}$.
- On ne confondra pas la suite $(u_n)_{n\geq 0}$ et l'ensemble $\{u_n, n\in\mathbb{N}\}$ de ses valeurs.

En fait deux suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ sont égales $\Leftrightarrow \forall n \in \mathbb{N}, u_n = v_n$.

Par exemple, les suites de termes généraux $u_n = (-1)^n$ et $v_n = (-1)^{n+1}$ sont distinctes, mais elles ont le même ensemble de valeurs $\{-1,1\}$.

– La donnée d'une suite complexe $(z_n)_{n\geqslant 0}$ équivaut à celle de deux suites réelles $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ définies par : $\forall n\in\mathbb{N}, z_n=u_n+iv_n$, c'est-à-dire $u_n=\operatorname{Re}(z_n)$ et $v_n=\operatorname{Im}(z_n)$.

III.2 Suites extraites

Définition

Soit $(u_n)_{n\geqslant 0}$ une suite d'un ensemble E.

On appelle suite extraite de la suite u toute suite v de E dont le terme général peut s'écrire $v_n = u_{\varphi(n)}$, où φ est une application strictement croissante de $\mathbb N$ dans lui-même.

Proposition

Avec les notations de l'énoncé, et pour tout entier $n, \varphi(n) \ge n$.

Remarques

- Si $\varphi(n) = n + p \ (p \in \mathbb{N})$, la suite v est notée $(u_n)_{n \geqslant p}$ (son terme initial est u_p).
- On considère souvent $\begin{cases} \text{ la suite } (u_{2n})_{n\geqslant 0} \text{ des termes d'indices pairs : } \varphi(n)=2n, \\ \text{ la suite } (u_{2n+1})_{n\geqslant 0} \text{ des termes d'indices impairs : } \varphi(n)=2n+1. \end{cases}$

Les définitions et propriétés qui vont suivre seront données pour des suites $(u_n)_{n\geqslant 0}$, mais elles peuvent être adaptées aux suites $(u_n)_{n\geqslant p}$, avec des changements de notation évidents.

III.3 Suites périodiques ou stationnaires

Définition (Suites constantes ou stationnaires)

Soit $(u_n)_{n\geqslant 0}$ une suite d'un ensemble E.

Elle est dite constante s'il existe a dans E tel que $\forall n \in \mathbb{N}, u_n = a$.

Elle est dite stationnaire s'il existe a dans E et n_0 dans \mathbb{N} tels que : $\forall n \ge n_0, u_n = a$.

Définition (Suites périodiques)

Soit $(u_n)_{n\geqslant 0}$ une suite d'un ensemble E.

Elle est dite périodique s'il existe un entier positif p tel que : $\forall n \in \mathbb{N}, u_{n+p} = u_n$.

Si un entier p satisfait à cette propriété, tous ses multiples y satisfont aussi.

La période de la suite u est alors l'entier positif minimum p qui vérifie cette propriété.

On dit alors que la suite u est p-périodique.

Remarques

- Les suites constantes sont les suites 1-périodiques.
- Si la suite $(u_n)_{n\geq 0}$ est p-périodique, alors $\{u_n, n\in\mathbb{N}\}=\{u_n, n\in[0, p-1]\}$.

III.4 Suites définies par récurrence

Définition

Soit f une application de E dans E, et soit a un élément de E.

On peut définir une suite $(u_n)_{n\geq 0}$ de E par :

- \diamond La donnée de son terme initial $u_0 = a$.
- \diamond La relation de récurrence : $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

On dit alors que la suite u est définie par récurrence.

Remarque

Si f n'est définie que sur une partie \mathcal{D} de E, il faut vérifier, pour assurer l'existence de la suite u, que a appartient à \mathcal{D} et que pour tout n de \mathbb{N} : $u_n \in \mathcal{D} \Rightarrow u_{n+1} \in \mathcal{D}$.

Exemple

On définit une suite réelle $(u_n)_{n\geqslant 0}$ par : $u_0\in\mathbb{R}$ et $\forall\,n\in\mathbb{N},u_{n+1}=\sqrt{1-u_n}$

Pour que cette suite ait un sens il faut en particulier que u_1 existe, c'est-à-dire $u_0 \leq 1$.

Mais pour que u_2 existe il faut $u_1 = \sqrt{1 - u_0} \le 1$, c'est-à-dire $u_0 \ge 0$.

La condition $0 \le u_0 \le 1$ est suffisante pour assurer l'existence de la suite u, car l'intervalle [0,1] est stable par $f(x) = \sqrt{1-x}$.

Récurrences de pas supérieur

On peut également définir des suites par des récurrences de pas 2 (ou supérieur), c'est-à-dire en se donnant les deux termes initiaux u_0 et u_1 et une relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+2} = f(u_n, u_{n+1})$$

où f est une application à valeurs dans E, définie sur $E \times E$ ou sur une partie de $E \times E$.

III.5 Généralités sur les suites numériques

Dans la suite de ce chapitre, on note $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Les éléments de \mathbb{K} sont appelés scalaires.

Définition (Opérations sur les suites numériques)

Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ deux suites numériques (c'est-à-dire à valeurs dans \mathbb{K} .)

On définit la suite somme s et la suite produit p par : $\forall n \in \mathbb{N}, s_n = u_n + v_n$, et $p_n = u_n v_n$.

On définit le produit λu de la suite $(u_n)_{n\geqslant 0}$ par un scalaire λ : le terme général en est λu_n .

Définition (Suites numériques bornées)

La suite numérique $(u_n)_{n\geqslant 0}$ est dite bornée s'il existe $M\geqslant 0$ tel que : $\forall n\in\mathbb{N}, |u_n|\leqslant M$, c'est-àdire si l'ensemble des valeurs prises par cette suite est borné dans \mathbb{K} (on utilise la valeur absolue pour les suites réelles, le module pour les suites complexes.)

Remarque

Les suites constantes, stationnaires ou périodiques sont évidemment des suites bornées (tout simplement parce qu'elles ne prennent qu'un nombre fini de valeurs.)

Définition (Suites réelles monotones)

Soit $(u_n)_{n\geqslant 0}$ une suite de nombres réels.

La suite u est dite croissante si : $\forall n \in \mathbb{N}, u_n \leqslant u_{n+1}$.

Cela équivaut à : $m \leq n \Rightarrow u_m \leq u_n$.

Elle est dite décroissante si : $\forall n \in \mathbb{N}, u_n \geqslant u_{n+1}$.

Cela équivaut à : $m \leq n \Rightarrow u_m \geq u_n$.

Elle est dite monotone si elle est croissante ou décroissante.

Définition (Suites réelles strictement monotones)

La suite u est strictement croissante si : $\forall n \in \mathbb{N}, u_n < u_{n+1}$.

Cela équivaut à : $m < n \Rightarrow u_m < u_n$.

Elle est strictement décroissante si : $\forall n \in \mathbb{N}, u_n > u_{n+1}$.

Cela équivaut à : $m < n \Rightarrow u_m > u_n$.

Elle est strictement monotone si elle est strictement croissante ou strictement décroissante.

Définition (Suites réelles majorées ou minorées)

Soit $(u_n)_{n\geqslant 0}$ une suite de nombres réels.

La suite u est majorée si : $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$.

Cela équivaut à dire que l'ensemble de ses valeurs est majoré dans \mathbb{R} .

Elle est dite minorée si : $\exists m \in \mathbb{R}, \forall n \in \mathbb{N}, m \leq u_n$.

Cela équivaut à dire que l'ensemble de ses valeurs est minoré.

Remarques

- Une suite réelle u est bornée \Leftrightarrow elle est majorée et minorée.
- Notons -u la suite de terme général $-u_n$. Pour les deux suites u et -u,

L'une est minorée \Leftrightarrow l'autre est majorée L'une est croissante \Leftrightarrow l'autre est décroissante. L'une est strictement croissante \Leftrightarrow l'autre est strictement décroissante.

Cette remarque permet de se ramener à des suites croissantes et/ou majorées.

III.6 Suites arithmétiques ou géométriques

On note toujours $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Définition

Une suite $(u_n)_{n\geqslant 0}$ est dite arithmétique s'il existe un scalaire r tel que $\forall n\in\mathbb{N}, u_{n+1}=u_n+r$. Le scalaire r est appelé raison de la suite arithmétique. Il est défini de façon unique.

Remarques

- La suite u est constante si r=0.
- Si $\mathbb{K} = \mathbb{R}$, elle est strictement croissante si r > 0, strictement décroissante si r < 0.
- Pour tout n de \mathbb{N} , $u_n = u_0 + nr$, et plus généralement :

$$\forall (n,p) \in \mathbb{N}^2, u_n = u_p + (n-p)r.$$

- Réciproquement, si le terme général d'une suite $(u_n)_{n\geqslant 0}$ s'écrit $u_n=a+nb$, alors $(u_n)_{n\geqslant 0}$ est la suite arithmétique de premier terme $u_0 = a$ et de raison b.

Proposition

 $\|$ La suite $(u_n)_{n\geqslant 0}$ est arithmétique $\Leftrightarrow \forall n \in \mathbb{N}, u_n + u_{n+2} = 2u_{n+1}$.

Définition

On dit que trois scalaires a, b, c sont en progression arithmétique s'ils sont des termes successifs d'une suite arithmétique : cela équivaut à dire que a+c=2b.

Proposition

La somme des n premiers termes d'une suite $(u_n)_{n\geq 0}$ arithmétique de raison r est :

$$S_n = \sum_{k=0}^{n-1} u_k = nu_0 + \frac{n(n-1)}{2} r = \frac{n}{2} (u_0 + u_{n-1}).$$

Plus généralement, la somme de n termes successifs est :

$$\sum_{k=m}^{m+n-1} u_k = \frac{n}{2} (u_m + u_{m+n-1}).$$

Définition (Suites géométriques)

Une suite $(u_n)_{n\geqslant 0}$ est dite géométrique s'il existe un scalaire q tel que $\forall n\in\mathbb{N}, u_{n+1}=qu_n$. Le scalaire q est appelé raison de la suite géométrique (il est défini de façon unique, sauf si $u_0 = 0$, auquel cas la suite u est identiquement nulle, ce qui n'a pas beaucoup d'intérêt).

Remarques

- La suite u est constante si q=1; elle est stationnaire en 0 (à partir de n=1) si q=0.
- Si $\mathbb{K} = \mathbb{R}$ et si q > 0, la suite u garde un signe constant et est monotone.

Plus précisément :

Si $u_0 > 0$ et q > 1, la suite u est positive strictement croissante.

Si $u_0 > 0$ et 0 < q < 1, la suite u est positive strictement décroissante. Si $u_0 < 0$ et q > 1, la suite u est négative strictement décroissante. Si $u_0 < 0$ et 0 < q < 1, la suite u est négative strictement croissante.

- Si $\mathbb{K} = \mathbb{R}$ et q < 0, alors pour tout n les termes u_n et u_{n+1} sont de signes contraires. La suite u n'est donc pas monotone.
- $-\forall n \in \mathbb{N}, u_n = u_0 q^n$. Plus généralement : $\forall (n, p) \in \mathbb{N}^2, p \leqslant n \Rightarrow u_n = u_p q^{n-p}$.
- Réciproquement, si le terme général d'une suite $(u_n)_{n\geqslant 0}$ s'écrit $u_n=aq^n$, alors $(u_n)_{n\geqslant 0}$ est la suite géométrique de premier terme $u_0 = a$ et de raison q.

Proposition

 $\|$ La suite $(u_n)_{n\geqslant 0}$ est géométrique \Leftrightarrow pour tout entier $n:u_n\,u_{n+2}=u_{n+1}^2$.

Définition

On dit que trois scalaires a, b, c sont en progression géométrique s'ils sont des termes successifs d'une suite géométrique : cela équivaut à dire que $ac = b^2$.

Proposition

La somme des n premiers termes d'une suite $(u_n)_{n\geqslant 0}$ géométrique de raison q est :

• Si
$$q \neq 1$$
, $S_n = \sum_{k=0}^{n-1} u_k = u_0 \sum_{k=0}^{n-1} q^k = u_0 \frac{1-q^n}{1-q}$ • Si $q = 1$, $S_n = nu_0$.

Plus généralement, si $q \neq 1$, la somme de n termes successifs est : $\sum_{k=0}^{m+n-1} u_k = u_m \frac{1-q^n}{1-q}.$

Définition (Suites arithmético-géométriques)

 $\|$ La suite $(u_n)_{n\geqslant 0}$ est dite arithm'etico-g'eom'etrique si $\exists (a,b) \in \mathbb{K}, \forall n \in \mathbb{N}, u_{n+1} = au_n + b$.

Remarques

- Si b=0, c'est une suite géométrique. Si a=1, c'est une suite arithmétique.
- Supposons $a \neq 1$: soit α l'unique scalaire vérifiant $\alpha = a\alpha + b$ (donc $\alpha = \frac{b}{a-1}$). Alors la suite $(u_n - \alpha)$ est géométrique de raison $a : \forall n \in \mathbb{N}, u_{n+1} - \alpha = a(u_n - \alpha).$ On en déduit l'expression générale de $u_n: \forall n \in \mathbb{N}, u_n = a^n(u_0 - \alpha) + \alpha$.

IV Limite d'une suite numérique

IV.1 Définitions générales

Définition

Soit $u = (u_n)_{n \ge 0}$ une suite de nombres réels.

– On dit que la suite u tend vers $+\infty$ (quand n tend vers $+\infty$) si :

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \ n \geqslant N \Rightarrow u_n \geqslant A.$$

– On dit que la suite u tend vers $-\infty$ (quand n tend vers $+\infty$) si :

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \ n \geqslant N \Rightarrow u_n \leqslant A.$$

– Soit ℓ un nombre réel.

On dit que la suite u tend vers ℓ (quand n tend vers $+\infty$) si :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \ n \geqslant N \Rightarrow \ell - \varepsilon \leqslant u_n \leqslant \ell + \varepsilon \text{ (c'est-à-dire } |u_n - \ell| \leqslant \varepsilon).$$

Définition

Soit ℓ un élément de $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$.

Si la suite u tend vers ℓ quand n tend vers l'infini, on dit que ℓ est limite de la suite u.

On note alors indifféremment :
$$\lim_{\infty} u = \ell$$
, ou $\lim_{n \to \infty} u_n = \ell$, ou $u_n \to \ell$

Remarques

- Une suite peut très bien ne posséder aucune limite.

C'est le cas de la suite de terme général $(-1)^n$.

- Une suite stationnaire admet une limite : la valeur en laquelle elle "stationne"!

Proposition (Unicité de la limite)

Soit $u = (u_n)_{n \geqslant 0}$ une suite de réels, admettant une limite ℓ dans $\overline{\mathbb{R}}$.

Alors cette limite est unique (on l'appelle donc la limite de la suite u).

Définition (Extension au cas des suites complexes)

Soit $(z_n)_{n\geq 0}$ une suite de nombres complexes.

On dit que la suite z admet le nombre complexe ℓ pour limite, si :

$$\| \forall \varepsilon > 0, \exists N \in \mathbb{N}, \ n \geqslant N \Rightarrow |z_n - \ell| \leqslant \varepsilon \ (\text{il s'agit ici du module}).$$

Remarques

- On vérifie encore l'unicité de ℓ (si existence!) et on utilise les mêmes notations.
- Si on note $\ell = a + ib$, et pour tout $n, z_n = \alpha_n + i\beta_n$ $(a, b, \alpha_n, \beta_n \text{ réels})$, on vérifie :

$$\lim_{n \to \infty} z_n = \ell \Leftrightarrow \begin{cases} \lim_{n \to \infty} \alpha_n = a \\ \lim_{n \to \infty} \beta_n = b \end{cases}$$

Cette remarque ramène donc à l'étude de deux suites réelles.

Définition (Suites convergentes ou divergentes)

Soit $u=(u_n)_{n\geq 0}$ une suite numérique (c'est-à-dire une suite de $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}).

On dit que la suite u est convergente si elle admet une limite dans \mathbb{K} (dans \mathbb{R} s'il s'agit d'une suite réelle, dans C s'il s'agit d'une suite complexe).

Dans le cas contraire, on dit qu'elle est divergente (c'est notamment le cas des suites réelles tendant vers $\pm \infty$).

IV.2Propriétés des suites admettant une limite

Les énoncés suivants s'appliquent à des suites numériques admettant une limite ℓ .

Dans le cas des suites réelles, ℓ est un élément de \mathbb{R} .

Dans le cas de suites complexes, ℓ est un élément de $\mathbb C.$

Proposition

|| Si une suite numérique $(u_n)_{n\geqslant 0}$ est convergente, alors elle est bornée.

Remarque

La réciproque est fausse comme le montre l'exemple de la suite de terme général $(-1)^n$.

Proposition (Limite des suites extraites)

| Si la suite $u = (u_n)_{n \ge 0}$ a pour limite ℓ , alors toute suite extraite de u admet ℓ pour limite.

Remarques

- Il se peut que u n'ait pas de limite, mais que certaines de ses suites extraites en aient une.
- Si deux suites extraites de la suite u ont des limites différentes, alors on est certain que la suite u n'a pas de limite.

C'est le cas de la suite de terme général $(-1)^n$:

 $\begin{cases} \text{ La suite de ses termes d'indice pair converge vers 1.} \\ \text{ La suite de ses termes d'indice impair converge vers } -1. \end{cases}$

Proposition (Opérations sur les limites)

- 1. Si $\lim_{n \to \infty} u_n = \ell$, alors $\lim_{n \to \infty} |u_n| = |\ell|$ (en notant $|\pm \infty| = +\infty$).

2. Si
$$\lim_{n \to \infty} u_n = \ell$$
 et $\lim_{n \to \infty} v_n = \ell'$, alors :
$$\begin{cases} \lim_{n \to \infty} (u_n + v_n) = \ell + \ell' & \text{(si } \ell + \ell' \text{ existe dans } \overline{\mathbb{R}}) \\ \lim_{n \to \infty} (u_n v_n) = \ell \ell' & \text{(si } \ell \ell' \text{ existe dans } \overline{\mathbb{R}}) \end{cases}$$

- 3. Si $\lim_{n\to\infty} u_n = \ell$ et si λ est un scalaire non nul, alors $\lim_{n\to\infty} \lambda u_n = \lambda \ell$.
- 4. Si $\lim_{n \to \infty} u_n = \ell \neq 0$, alors $\exists n_0 \in \mathbb{N}, n \geqslant n_0 \Rightarrow u_n \neq 0$.

On a alors:
$$\lim_{n \to \infty} \frac{1}{u_n} = \frac{1}{\ell}$$
 (en posant $\frac{1}{\pm \infty} = 0$).

Remarques

- Pour le 1., la réciproque est fausse comme on le voit avec $u_n = (-1)^n$.
 - En revanche, $\lim_{n\to\infty} u_n = 0 \Leftrightarrow \lim_{n\to\infty} |u_n| = 0$.
- Si ℓ est fini, $\lim_{n \to \infty} u_n = \ell \Leftrightarrow \lim_{n \to \infty} (u_n \ell) = 0 \Leftrightarrow \lim_{n \to \infty} |u_n \ell| = 0$
- Pour le 3., si $\lambda = 0$, on a bien sûr : $\forall n \in \mathbb{N}, \lambda u_n = 0$.

Proposition

Si
$$\lim_{n \to \infty} u_n = 0^+$$
, alors $\lim_{n \to \infty} \frac{1}{u_n} = +\infty$.
Si $\lim_{n \to \infty} u_n = 0^-$, alors $\lim_{n \to \infty} \frac{1}{u_n} = -\infty$.

Si
$$\lim_{n \to \infty} u_n = 0^-$$
, alors $\lim_{n \to \infty} \frac{1}{u_n} = -\infty$.

IV.3Limites et ordre dans la droite numérique achevée

Proposition

Soient $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ deux suites réelles, de limites respectives ℓ et ℓ' dans \mathbb{R} . S'il existe un entier n_0 tel que $(n \ge n_0 \Rightarrow u_n \le v_n)$, alors $\ell \le \ell'$.

Remarques

- Si $(n \ge n_0 \Rightarrow u_n < v_n)$, alors on ne peut là encore affirmer que $\ell \le \ell'$.
- Cas particuliers:

Soit λ un réel (le cas le plus utile étant $\lambda = 0$), et n_0 un entier naturel.

$$\begin{cases} \text{Si } (n \geqslant n_0 \Rightarrow u_n \leqslant \lambda) \text{ alors } \ell \leqslant \lambda. \\ \text{Si } (n \geqslant n_0 \Rightarrow u_n \geqslant \lambda) \text{ alors } \ell \geqslant \lambda. \end{cases}$$

Si $(n \geqslant n_0 \Rightarrow u_n \leqslant \lambda)$ alors $\ell \leqslant \lambda$. Si $(n \geqslant n_0 \Rightarrow u_n \geqslant \lambda)$ alors $\ell \geqslant \lambda$. Si $\ell < \ell'$, alors il existe un entier n_0 à partir duquel on a l'inégalité stricte $u_n < v_n$. Si $\ell < \lambda$, $\exists n_0$ tel que : $n \geqslant n_0 \Rightarrow u_n < \lambda$. Si $\ell > \lambda$, $\exists n_0$ tel que : $n \geqslant n_0 \Rightarrow u_n > \lambda$.

$$\begin{cases} \text{ Si } \ell < \lambda, \, \exists \, n_0 \text{ tel que} : n \geqslant n_0 \Rightarrow u_n < \lambda. \end{cases}$$

Si
$$\ell > \lambda$$
, $\exists n_0$ tel que : $n \geqslant n_0 \Rightarrow u_n > \lambda$.

- Si ℓ est un réel non nul : $\exists n_0 \in \mathbb{N}$ tel que $n \geqslant n_0 \Rightarrow |u_n| \geqslant \frac{|\ell|}{2}$.

Cette propriété est utile pour majorer $\frac{1}{|u_n|}$ par $\frac{2}{|\ell|}$.

Proposition (Principe des gendarmes)

Soit $(u_n)_{n\geqslant 0}$, $(v_n)_{n\geqslant 0}$, $(w_n)_{n\geqslant 0}$ trois suites réelles.

On suppose que $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n = \ell$, où $\ell \in \mathbb{R}$.

S'il existe un entier n_0 tel que : $n \ge n_0 \Rightarrow u_n \le w_n \le v_n$, alors $\lim_{n \to \infty} w_n = \ell$.

Proposition (Autres propriétés liées à la relation d'ordre)

Si
$$\lim_{n \to \infty} u_n = 0$$
 et si $(n \ge n_0 \Rightarrow |v_n| \le |u_n|)$, alors $\lim_{n \to \infty} v_n = 0$.

Si $\lim_{n\to\infty} u_n = 0$ et si la suite $(v_n)_{n\geqslant 0}$ est bornée, alors $\lim_{n\to\infty} u_n v_n = 0$.

Si $\lim u_n = +\infty$ et si $(n \ge n_0 \Rightarrow v_n \ge u_n)$, alors $\lim v_n = +\infty$.

Si lim $u_n = -\infty$ et si $(n \ge n_0 \Rightarrow v_n \le u_n)$, alors lim $v_n = -\infty$.

Proposition

Soient u et v deux suites à valeurs positives telles que : $\forall n \geqslant n_0, \frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$.

Dans ces conditions : $\lim_{n \to \infty} v_n = 0 \Rightarrow \lim_{n \to \infty} u_n = 0$.

De même : $\lim_{n \to \infty} u_n = +\infty \Rightarrow \lim_{n \to \infty} v_n = +\infty$.

IV.4 Suites réelles monotones, et conséquences

Théorème

Soit $(u_n)_{n\geqslant 0}$ une suite réelle croissante.

Si cette suite est majorée, alors elle est convergente.

Plus précisément, $\lim_{n\to\infty} u_n = \sup\{u_n, n \geqslant 0\}.$

Si cette suite n'est pas majorée, alors $\lim_{n\to\infty} u_n = +\infty$.

En considérant la suite de terme général $(-u_n)_{n\geqslant 0}$, on en déduit le résultat suivant :

Proposition

Soit $(u_n)_{n\geq 0}$ une suite réelle décroissante.

Si cette suite est minorée, alors elle est convergente.

Plus précisément, $\lim_{n\to\infty} u_n = \inf\{u_n, n \geqslant 0\}.$

Si cette suite n'est pas minorée, alors $\lim_{n\to\infty} u_n = -\infty$.

Définition (Suites adjacentes)

On dit que deux suites réelles $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ sont adjacentes si l'une d'elles est croissante, l'autre décroissante, et si $\lim_{n\to\infty} (v_n - u_n) = 0$.

Proposition

Soient $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ deux suites réelles adjacentes.

Alors ces deux suites sont convergentes et elles ont la même limite.

Théorème (des segments emboîtés)

On considère une suite $(I_n)_{n\geqslant 0}$ de segments de \mathbb{R} .

On suppose que cette suite est décroissante pour l'inclusion : $\forall n, I_{n+1} \subset I_n$.

Si on note d_n la longueur du segment I_n , on suppose que $\lim_{n\to\infty} d_n = 0$.

Alors l'intersection des segments I_n se réduit à un point : $\exists \alpha \in \mathbb{R}, \bigcap_{n \geq 0} I_n = \{\alpha\}.$

Théorème (de Bolzano-Weierstrass)

De toute suite bornée de \mathbb{R} , on peut extraire une suite convergente.

Cette propriété s'étend également aux suites bornées de $\mathbb C.$

IV.5 Suites de Cauchy

Remarque: la notion de suite de Cauchy est hors-programme en MPSI

Définition

On dit qu'une suite numérique $(u_n)_{n\geqslant 0}$ est une suite de Cauchy si : $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tel que} : \forall n \geqslant n_0, \forall m \geqslant n_0, |u_m - u_n| \leqslant \varepsilon.$

Remarques et propriétés

- Une définition équivalente à la précédente est : $\forall \, \varepsilon > 0, \exists \, n_0 \in \mathbb{N} \text{ tel que} : \forall \, n \geqslant n_0, \forall \, p \geqslant 0, |u_{n+p} u_n| \leqslant \varepsilon \,.$
- Si une suite numérique $(u_n)_{n\geqslant 0}$ est de Cauchy, alors elle est bornée.
- Toute suite numérique convergente est une suite de Cauchy.
- Soit $(z_n)_{n\geqslant 0}$ une suite de \mathbb{C} , et pour tout n de \mathbb{N} , $a_n = \operatorname{Re}(z_n)$ et $b_n = \operatorname{Im}(z_n)$. La suite $(z_n)_{n\geqslant 0}$ est de Cauchy \Leftrightarrow les suites réelles $(a_n)_{n\geqslant 0}$, $(b_n)_{n\geqslant 0}$ sont de Cauchy.

Théorème

 $\|$ Soit $(u_n)_{n\geq 0}$ une suite numérique. Si elle est de Cauchy, alors elle est convergente.

IV.6 Limites particulières

Suites arithmétiques : Soit $(u_n)_{n\geqslant 0}$ une suite réelle, arithmétique de raison r.

Si r = 0, la suite u est constante.

Si
$$r > 0$$
, $\lim_{n \to \infty} u_n = +\infty$. Si $r < 0$, $\lim_{n \to \infty} u_n = -\infty$.

Suites géométriques

Soit $(u_n)_{n\geq 0}$ une suite de \mathbb{R} ou \mathbb{C} , géométrique de raison q, avec $u_0\neq 0$.

La suite u converge si et seulement si :

$$\begin{cases}
\text{ ou bien } |q| < 1, \text{ et alors } \lim_{n \to \infty} u_n = 0. \\
\text{ ou bien } q = 1, \text{ et alors la suite est constante en } u_0.
\end{cases}$$

Suites récurrentes

Soit $(u_n)_{n\geq 0}$ une suite définie par une relation de récurrence $u_{n+1}=f(u_n)$.

Si f est continue, et si la suite u est convergente, alors sa limite ℓ vérifie $f(\ell) = \ell$.

Résoudre l'équation f(x) = x donne donc les limites éventuelles de la suite u.

Limites utiles : Soit a un réel > 1 et n un entier ≥ 1

$$\lim_{n \to \infty} \frac{a^n}{n^k} = +\infty. \qquad \lim_{n \to \infty} \frac{n!}{a^n} = +\infty. \qquad \lim_{n \to \infty} \frac{n^n}{n!} = +\infty.$$

IV.7 Formes indéterminées

Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ deux suites réelles, de limites respectives ℓ et ℓ' dans $\overline{\mathbb{R}}$.

On dit qu'on a affaire à la forme indéterminée :

$$\begin{cases}
\text{"$\infty - \infty$" si on veut calculer } \lim(u_n + v_n) \text{ et si } \ell = +\infty, \ \ell' = -\infty. \\
\text{"$0 \times \infty$" si on veut calculer } \lim(u_n v_n) \text{ et si } \ell = 0, \ \ell' = \pm \infty. \\
\text{"$\frac{0}{0}$" si on veut calculer } \lim \frac{u_n}{v_n} \text{ et si } \ell = \ell' = 0. \\
\text{"$\frac{\infty}{\infty}$" si on veut calculer } \lim \frac{u_n}{v_n} \text{ et si } \ell = \pm \infty \text{ et } \ell' = \pm \infty.
\end{cases}$$

Le calcul de $\lim_{n\to\infty} u_n v_n$ donne lieu à trois formes indéterminées :

$$\begin{cases}
"1^{\infty}" \text{ si } \ell = 1 \text{ et } \ell' = \pm \infty. \\
"\infty^0" \text{ si } \ell = +\infty \text{ et } \ell' = 0. \\
"0^0" \text{ si } \ell = \ell' = 0.
\end{cases}$$

Toutes ces formes indéterminées peuvent se ramener aux deux premières.

Pour les trois dernières, il suffit par exemple de poser $u^v = \exp(v \ln(u))$.

Dans une forme indéterminée, "tout est possible". Chaque problème doit donc être résolu individuellement (comme on dit, il faut "lever" la forme indéterminée).

IV.8 Pratique de l'étude des suites réelles

Penser à étudier la monotonie

L'étude d'une suite réelle passe très souvent par celle de sa monotonie.

C'est donc un réflexe à avoir que de vérifier si la suite étudiée est croissante ou décroissante.

On étudiera pour cela le signe de la différence $u_{n+1} - u_n$, ou on comparera le rapport u_{n+1}/u_n à 1 lorsque le terme général u_n s'exprime en termes de produits, de puissances ou de factorielles.

Suites $u_{n+1} = f(u_n)$: limites éventuelles et intervalles stables

Pour une suite définie par une récurrence $u_{n+1} = f(u_n)$, et si l'application f est continue, on cherchera les limites éventuelles en résolvant l'équation f(x) = x.

Il est recommandé d'étudier le signe de f(x)-x, et d'identifier des intervalles stables par f (souvent un intervalle séparant deux points fixes successifs de f).

Exemple:

- \diamond Supposons que α et β soient les seules solutions de f(x) = x.
- \diamond Supposons en outre que $\alpha < x < \beta \Rightarrow \alpha < f(x) < x < \beta$.
- \diamond Si $u_0 \in]\alpha, \beta[$, alors par une récurrence évidente : $\forall n \in \mathbb{N}, \alpha < u_{n+1} < u_n < \beta$
- \diamond On conclut que la suite u, décroissante minorée, converge vers α (seule limite possible ici).