

Machine Learning

Logistic Regression Classifier

Dr. Mehran Safayani

safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Classification

- Email: spam/not spam
- Animal: cat/non cat

Classification

If:
$$h_{\theta}(x) \ge 0.5 \rightarrow predict, y = 1$$

If: $h_{\theta}(x) \le 0.5 \rightarrow predict, y = 0$

$$0 \le h_{\theta}(x) \le 1$$

$$0 \le h_{\theta}(x) = P(y = 1)|x) \le 1$$

Logistic Regression

مبانی رگرسیون لجستیک:

- عمدتاً برای مسائل طبقهبندی دودویی استفاده میشود.
- احتمال تعلق یک ورودی به یکی از دو کلاس را مدلسازی می کند.

مرزهای تصمیمگیری خطی:

• رگرسیون لجستیک بهطور معمول مرزهای تصمیم گیری خطی را در فرم استاندارد خود ایجاد می کند.

کاربردها:

• در مسائلی مانند طبقهبندی تصویر، تشخیص پزشکی و همچنین جایی که سطوح تصمیم پیچیده برای بهبود دقت ضروری هستند، استفاده می شود.

Logistic Regression

Output Purchase | Yes or No

Decision Boundary

$$\theta = \begin{bmatrix} -3\\1\\1 \end{bmatrix}$$

Predict
$$y = 1$$
, $if \underbrace{-3 + x_1 + x_2 \ge 0}_{\theta^T X}$
$$x_1 + x_2 \ge 3$$

Sigmoid Function: Logistic Function

Model output example : P(y =

$$P(y=1|x)=0.8$$

Non-Linear Decision Boundaries

Cost Function

Training Set: $\{(x^1, y^1), (x^2, y^2), ..., (x^m, y^m)\}$

$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}, x_0 = 1, y \in \{0,1\}$$

Linear Regression: $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Logistic Regression: $h_{\theta}(x^i) = g(\theta^T x^i)$

MSE:
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (g(\theta^T x^i) - y^i)^2$$

Convex VS Non-Convex Cost Function

Convex Cost Function:

- •Bowl-shaped with a single global minimum.
- •Easier optimization, guarantees finding the global minimum.

Non-Convex Cost Function:

- •Contains multiple local minima.
- •Challenges: Optimization algorithms can get stuck in local minima.
- •Impact: Risk of poor model performance, as finding the global minimum is difficult.

Logistic Regression

MSE Cost Function:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)})^2)$$

Binary Cross Entropy cost function:

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)), & if \quad y = 1 \\ -log(1 - h_{\theta}(x)), & if \quad y = 0 \end{cases}$$

if y=1 and
$$h_{\theta}(x) = 1 \Rightarrow cost = 0$$
;
if y=1 and $h_{\theta}(x) = 0 \Rightarrow cost = \infty$;
if y=0 and $h_{\theta}(x) = 0 \Rightarrow cost = 0$;
if y=0 and $h_{\theta}(x) = 1 \Rightarrow cost = \infty$;

Logistic Regression

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)), & if \quad y = 1 \\ -log(1 - h_{\theta}(x)), & if \quad y = 0 \end{cases}$$

$$cost(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) - (1 - y)log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{i}log(h_{\theta}(x^{i})) - (1 - y^{i})log(1 - h_{\theta}(x^{i}))$$

$$\min_{\theta} J(\theta)$$

Gradient Descent: Repeat Unit Convergence:

repeat {
$$\theta_j = \theta_j - \alpha \frac{dJ(\theta)}{d_\theta} \quad J = 0, \dots, n$$
 } until convergence

$$\frac{dJ(\theta)}{d_{\theta}} = ? J(\theta) = \frac{1}{m} \sum_{i=1}^{m} T_i \frac{dJ(\theta)}{d_{\theta}} = \frac{1}{m} \sum_{i=1}^{m} \frac{dT_i}{di}$$

$$T_i = -[y^i \log h_{\theta}(x^i) + (1 - y^i) \log(1 - h_{\theta}(x^i))] \quad h_{\theta}(x^i) = \sigma(\theta^T x^i) = \sigma(z^i) = \frac{1}{1 + e^{-z^i}}$$

$$T_i = -[y^i \log \sigma(z^i) + (1 - y^i) \log(1 - \sigma(z^i))]$$

$$(1)\frac{dT_i}{d\sigma(z^i)} = -\left[\frac{y^i}{\sigma(z^i)} + \left(1 - y^i\right) \cdot \frac{-1}{1 - \sigma(z^i)}\right] = -\left[\frac{y^i}{\sigma(z^i)} - \frac{1 - y^i}{1 - \sigma(z^i)}\right]$$

$$(2)\frac{d\sigma(z^{i})}{dz^{i}} = \frac{e^{-z^{i}}}{(1+e^{-z^{i}})^{2}} = \frac{1}{1+e^{-z^{i}}} \cdot \frac{e^{-z^{i}}}{1+e^{-z^{i}}} = \sigma(z^{i}) \cdot (1-\sigma(z^{i}))$$

$$(3)\frac{dz^{i}}{d\theta_{j}} = x_{j}^{i}$$

$$z^{i} = \theta^{T}x^{i} = \theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n}$$

$$1 - \sigma(z^{i}) = 1 - \frac{1}{1 + e^{-z^{i}}} = \frac{1 + e^{-z^{i}} - 1}{1 + e^{-z^{i}}} = \frac{e^{-z^{i}}}{1 + e^{-z^{i}}}$$

From (1), (2) and (3):

$$\frac{dT_i}{d\theta_j} = -\left[\frac{y^i}{\sigma(z^i)} - \frac{1 - y^i}{1 - \sigma(z^i)}\right] \sigma(z^i) \cdot (1 - \sigma(z^i)) x_j^i
= -\left[y^i \cdot \left(1 - \sigma(z^i)\right) - \left(1 - y^i\right) \cdot \sigma(z^i)\right] x_j^i
= -\left[y^i - \sigma(z^i)\right] x_j^i = \left[\sigma(z^i) - y^i\right] x_j^i$$

$$\frac{dy(\theta)}{d\theta_j} = \frac{1}{m} \sum_{i=1}^m \frac{dT_i}{d\theta_j} = \frac{1}{m} \sum_{i=1}^m \frac{dT_i}{dz^i} \cdot \frac{dz^i}{d\theta_j} = \frac{1}{m} \sum_{i=1}^m \left(\frac{\sigma(z^i)}{h_{\theta}(x^i)} - y^i \right) \cdot x_j^i$$

GD: RpeatUntiConvergance{

$$\theta_j = \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^i) - y^i) \cdot x_j^i$$

Logistic regression on m examples

$$\theta_1 \leftarrow \text{ran}dom \quad \theta_2 \leftarrow \text{ran}dom \quad b \leftarrow \text{ran}dom$$

$$\theta_2 \leftarrow \text{ran}dom$$

$$b \leftarrow \text{ran}dom$$

$heta^t = egin{bmatrix} heta_1^t \ heta_2^t \ heta_t \end{bmatrix} heta^{t+1} = egin{bmatrix} heta_1^{t+1} \ heta_2^{t+1} \ heta_{t+1} \end{bmatrix}$

Repeat{

$$J=0;$$
 $d\theta_1=0;$ $d\theta_2=0;$ $db=0;$

$$d\theta_2 = 0$$
;

$$db = 0$$
;

$$\|\theta^{t+1} - \theta^t\|_2 \le \varepsilon$$

For
$$i=1$$
 to m

$$z^{(i)} = \theta^T x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J += \left[y^{(i)} Log a^{(i)} + \left(1 - y^{(i)} \right) Log \left(1 - a^{(i)} \right) \right]$$

$$dz^{(i)} = a^{(i)} - y^{(i)}$$

$$d\theta_1 += x_1^{(i)} dz^{(i)}$$
 $d\theta_2 += x_2^{(i)} dz^{(i)}$ $db += dz^{(i)}$

$$d\theta_2 += x_2^{(i)} dz^{(i)}$$

$$db += dz^{(i)}$$

$$J/=m$$
;

$$J/=m;$$
 $d\theta_1/=m;$

$$d\theta_2/=m$$
;

$$db/=m$$
;

$$\theta_1 = \theta_1 - \alpha \, d\theta_1$$

$$\theta_1 = \theta_1 - \alpha d\theta_1$$
 $\theta_2 = \theta_2 - \alpha d\theta_2$ $b = b - \alpha db$

$$b = b - \alpha db$$

 $d\theta = \begin{bmatrix} d\theta_1 \\ d\theta_2 \\ dh \end{bmatrix}$

 $||d\theta|| \le \varepsilon = 10^{-4}$

Decision Boundary of logistic regression

$$\theta = \begin{bmatrix} -3\\1\\1 \end{bmatrix}$$