

PES University, Bengaluru

(Established under Karnataka Act 16 of 2013)

END SEMESTER ASSESSMENT (ESA) - May 2023

UE2	20CS332 - Algorithms for Ir	nformation Retrieva	l and Intelligence We	eb
				Total Marks : 100.0
1.a. Explain in o	detail, the steps involv	ved in the inverte	ed index construc	tion. (6.0 Marks)
	e minimum edit distar dit distance between			ein (6.0 Marks)
Doc1: I did ena	documents as follow ct Julius Caesar. I was be with Caesar. The no	killed I' the Capit		
	2 documents constructions also show the outpur			nce of (term, (6.0 Marks)

2.a. What is the basic idea of the BSBI algorithm? Comment on how expensive BSBI is. State limitations of BSBI. (6.0 Marks) 2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 38	1.d. List and explain pro	ximity operators	s in Westlaw.	(2.0 Marks)
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
2.b. Convert 824 in variable byte encoding and 511 in gamma encoding. (4.0 Marks) 2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38	2.a. What is the basic id	ea of the BSBI al	gorithm?	
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc3). Term	Comment on how expe	nsive BSBI is.	5	
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 0 38	State limitations of BSBI			(6.0 Marks)
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 0 38				
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 0 38				
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 0 38				
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 0 38				
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 0 38				
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 0 38				
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 0 38				
2.c. Consider the following documents and term frequencies. For simplicity do not consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term3 2 0 6 Term4 0 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38	2.b. Convert 824 in varia	able byte encodii	ng and 511 in ga	<mark>mma encodin</mark> g. (4.0 Marks)
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
consider Idf weighting. Compute log frequency weighting assuming idf=1. After length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
length normalization, calculate cosine similarity between (Doc1, Doc2) and (Doc1, Doc3) Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38				
Doc3). Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38	length normalization ca	compute log fred alculate cosine si	quency weighting milarity hetween	(Doc1 Doc2) and (Doc1
Term Doc1 Doc2 Doc3 Term1 115 58 20 Term2 10 7 11 Term3 2 0 6 Term4 0 0 38		inculate cosine si	Trindricy between	(DUC), DUCZ, GNG (DUC),
Term2 10 7 11 Term3 2 0 6 Term4 0 0 38	Term Doc1			
Term3 2 0 6 Term4 0 0 38				
Term4 0 0 38				
				-
	I CI III T	V	5 0	(10.0 Marks)

3.a. Consider the following graph. Let the initial page rank of all three nodes be 1/3.

According to the Basic page rank update rule, after 1st iteration, what is the page rank of Node C and Node B?

(4.0 Marks)

3.b. Compute precision, recall and F-score from the table;

	Relevant	Not relevant
Retrieved	20	40
Not retrieved	60	1,000,000

(3.0 Marks)

3.c. Explain in detail with the help of the diagram, the working of the URL frontier of a web crawler. (6.0 Marks)

3.d. What are IN and OUT components in a directed graph? In a Bow Tie structure of the web graph, what are the three components we see? (7.0 Marks)

system.	(8.0 Marks)
4.b. Briefly explain memory based collaborative filtering.	(6.0 Marks)
4.c. Explain with examples: 1. Support 2. Confidence 3. Association rule	(6.0 Marks)
5.a. What is RDF statement? Explain RDF triple with example.	(4.0 Marks)

5.b. Explain RDF triple graph notations with example.	(4.0 Marks)
5.c. Explain with example, OWL datatype property and object property.	(6.0 Marks)
5.d. Explain in details, classification of ontologies on the basis of seman spectrum.	itic (6.0 Marks)