Semantics of Probabilistic Programming I

Xin Zhang
Peking University

Recap: Problem and Motivation

• Evaluate P(Z | X) and related expectations

- Problem with exact methods
 - Curse of dimensionality
 - P(Z | X) has a complex form making expectations analytically intractable

Recap: Variational Inference

• Functional: a function that maps a function to a value

$$H[p] = \int p(x) \ln p(x) dx$$

- Variational method: find a input function that maximizes the functional
- Variational inference: find a distribution q(z) to approximate $p(Z \mid X)$ so a functional is maximized

Recap: Variational Inference

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \mathrm{KL}(q||p)$$

Between p(Z|X) and q(Z)
$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$\mathrm{KL}(q \| p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

If q can be any distribution, then variational inference is precise.

But in practice, it cannot

Is the following statement right?

• Probability p(Z,X) is usually easier to evaluate compared to $P(Z \mid X)$.

Stochastic methods

Also called Monte Carlo methods

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) \, \mathrm{d}\mathbf{z}$$
 \longrightarrow $\hat{f} = rac{1}{L} \sum_{l=1}^L f(\mathbf{z}^{(l)}) \, \mathbf{z}_{1,\,\cdots,\,} \mathbf{z}_l$ are samples from p

- Transformation method: CDF⁻¹(uniform(0,1))
- Rejection sampling
 - A proposal distribution q(z)
 - Choose k, such that $k*q(z) \ge p(z)$, for any x
 - Sampling process:
 - Sample z_0 from q(z)
 - Sample h from uniform(0, $k*q(z_0)$)
 - If $h > p(z_0)$, discard it; otherwise, keep it

Is the following statement correct?

• All primitive distributions can be constructed using the transformation method.

Is the following statement right?

• In rejection sampling, the probability whether a sample is accepted does not depend on the proposal distribution

Is the following statement correct?

• The efficiency of importance sampling depends on the choice of the proposal distribution

- Importance sampling
 - Used to evaluate f(z) where z is from p(z)

$$E(f) = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \approx \frac{1}{L}\sum_{l=1}^{L}\frac{p(z^{l})}{q(z^{l})}f(z^{l})$$

• How to get real samples: create a new discrete distribution using the above samples and set their probabilities using the importance weights

- Markov Chain Monte Carlo
 - A sampling method that works with a large family of distributions and high dimensions
- Workflow
 - Start with some sample z_0
 - Suppose the current sample is z^{τ} . Draw next sample z^{*} from $q(z \mid z^{\tau})$
 - Decide whether to accept z^* as the next state based some criteria. If accepted, $z^{\tau+1}=z^*$. Otherwise, $z^{\tau+1}=z^{\tau}$
 - Samples form a Markov chain

	Metropolis	Metropolis-Hasting
Constraints on the proposal distribution	Symmetric	None
Accepting probability	$\min(1,\frac{p(z')}{p(z)})$	$\min(1, \frac{p(z')q(z' z)}{p(z)q(z z')})$

Recap: Why MCMC works?

• Markov chain:

$$p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)}).$$

- Stationary distribution of a Markov chain: each step in the chain does not change the distribution.

• Detailed balance:
$$p^*(\mathbf{z})T(\mathbf{z},\mathbf{z}') = p^*(\mathbf{z}')T(\mathbf{z}',\mathbf{z})$$

- $p^*(z)$ is a stationary distribution
- A ergodic Markov chain converges to the same distribution regardless the initial distribution
 - The system does not return to the same state at fixed intervals
 - The expected number of steps for returning to the same state is finite

Is the following statement right?

• The samples drawn using MCMC are independent

Is the following statement right?

• A Markov chain can have more than one stationary distribution

Use MCMC to solve the problem below

- Super optimization
 - There is a straight-line program
 - A set of test cases are given
 - The program can be modified by deleting a statement, inserting a statement from the initial program at a given place
 - Optimize the program by using the above operations

This Class

• The lecture is heavy in math. It is OK if you only get a sense of it. We won't focus on it in exams

• Semantics of probabilistic programming

• Measure theory

Motivations

• In order to reason about properties of a program, we need formal tools

- Example questions
 - Is the postcondition satisfied?
 - Does this program halt on all inputs?
 - Does it always halt in polynomial time?

Motivations

• In order to reason about properties of a program, we need formal tools

- Example questions
 - What is the probability that the postcondition is satisfied?
 - What is the probability that this program halts on all inputs?
 - What is the probability that it halts in polynomial time?

Motivations

• When designing a language, rigorous semantics is needed to guarantee its correctness

- Example that didn't have rigorous semantics: Javascript
 - https://javascriptwtf.com

Examples

We can decompose the semantics of a program into semantics of statements

What is the probability that It runs through n iterations? What is the expected number of iterations? What is the probability that the program halts?

Examples

```
main {
          u = 0;
          v = 0;
          step(u,v);
          while u!=0 | | v!=0 do
                    step(u,v)
step(u,v) {
          x := coin();
          y:=coin();
          u:=u+(x-y);
          v = v + (x + y - 1)
```

What is the probability that the program halts?

The program is a two-dimensional random walk. According to probability theory, the probability that it returns to the origin is 1.

By relating to concepts in probabilities, we can simplify the reasoning

Examples

```
i = 0;
n = 0;
while i<1e9 do
      x = rand();
      y:=rand();
      if (x^*x+y^*y) < 1 then n:=n+1;
      i:=i+1
i:=4*n/1e9;
```

What does this program compute?

How to reason about it?

Measure Theory

The mathematical foundation of probabilities and integration

Uniform(0,1) is called *Lebesgue measure*

Measure Theory

• Measures: generalization of concepts like length, area, or volume

- We will talk about
 - What is a measurable space
 - Measures on measurable spaces
 - Rich structures of spaces of measures

Measure Example: Length

• What subsets of R can meaningfully be assigned a length?

• What properties should be the length function *l* satisfy?

Measure Example: Length

$$\ell([a_1,b_1] \cup [a_2,b_2]) = \ell([a_1,b_1]) + \ell([a_2,b_2]) = (b_1-a_1) + (b_2-a_2).$$
 $b_1 < a_2$

$$\ell\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \ell(A_i)$$
. A_i and A_j are disjoined. l is called additive

$$\ell\left(\bigcup_{i=0}^{\infty}A_{i}\right)=\sum_{i=0}^{\infty}\ell(A_{i}). \quad A_{i} \text{ and } A_{j} \text{ are disjoined . The set is countable.}$$

$$l \text{ is called countably additive or } \sigma-\text{additive}$$

 $l(R) = \infty$, but we are only going to talk about finite measures

$$\ell(B\setminus A)=\ell(B)-\ell(A)$$
 Domain should be closed under complementation

Measure Example: Length

• Can we extend the domain of length l to all subsets of R?

- No. Counterexample: Vitali sets
 - $V \subseteq [0,1]$, such that for each real number r, there exists exactly one number $v \in V$ such that v r is rational
 - Let q_1, q_2, \dots be the rational numbers in [-1,1], construct sets $V_k = V + q_k$
 - $[0,1] \subseteq \bigcup_k V_k \subseteq [-1,2]$
 - $l(V_k) = l(V)$, and there finitely many V_k
- *l* is called the *Lebesgue measure* on real numbers

Measurable Spaces and Measures

- (S, B) is a measurable space
 - **S** is a set
 - **B** is a σ -algebra on **S**, which is a collection of subsets of **S**
 - It contains Ø
 - Closed under complementation in **S**
 - Closed under countable union
 - The elements of **B** are called measurable sets
- If **F** is a collection of subsets of **S**, $\sigma(F)$ is the smallest σ -algebra containing **F**, or $\sigma(\mathcal{F}) \triangleq \bigcap \{\mathcal{A} \mid \mathcal{F} \subseteq \mathcal{A} \text{ and } \mathcal{A} \text{ is a } \sigma\text{-algebra} \}$. We say (S, $\sigma(F)$) is generated by **F**.

Measurable Functions

• (S, B_S) and (T, B_T) are measurable spaces. A function $f: S \to T$ is measurable if $f^{-1}(B) = \{x \in S | f(x) \in B\}$ for every $B \in B_T$ is a measurable subset of S

Example:
$$\chi_B(s) = \begin{cases} 1, & s \in B, \\ 0, & s \notin B. \end{cases}$$

Measures: Definitions

- A signed (finite) measure on (S, B) is a countably additive map $\mu: B \to R$ such that $\mu(\emptyset) = 0$
- Positive signed measure: $\mu(A) \ge 0$ for all $A \in B$
- A positive measure is a probability measure if $\mu(S) = 1$
- ...is a subprobability measure if $\mu(S) \leq 1$

Measures: Definitions

• If $\mu(B) = 0$, then B is a μ -nullset

• A property is said to hold μ -almost surely (everywhere) if the sets of points on which it does not hold is contained in nullset

• In probability theory, measures are sometimes called distributions

Measures: Discrete Measures

• For $s \in S$, the Diract measure, or Diract delta, or point mass on s:

$$\delta_s(B) = \begin{cases} 1, & s \in B, \\ 0, & s \notin B. \end{cases}$$

- A measure is discrete if it is a countable weighted sum of Dirac measures
 - If the weights add up to one, then it is a discrete probability measure
- Continues measure: $\mu(s) = 0$ for all singleton sets s in b of s

Measures: Pushforward Measure and Lebesgue Integration

• Given $f: (S, B_S) \to (T, B_T)$ measurable an a measure μ on B_S , the pushfoward measure $\mu(f^{-1}(B))$ on B_T is defined as

$$f_*(\mu)(B) = \mu(f^{-1}(B)), B \in \mathcal{B}_T.$$

• Lebesgue integration: given (S, B), $\mu: B \to R$, $f: S \to R$, where m < f < M

$$\int f d\mu = \lim_{n \to max} \sum_{i=0}^{n} f(s_i) \mu(B_i)$$

where $B_0, ..., B_n$ is a measurable partition of S, and the value of f does not vary more than (M-m)/n in any B_i and $s_i \in B_i$

Measures: Absolute Continuity

- Given two measures μ and ν , we say μ is absolute continuous with respect to ν for all measurable sets B iff $\nu(B) = 0 \Longrightarrow \mu(B) = 0$
 - $\mu \ll v$

Theorem 1.1 (Radon–Nikodym) Let μ , ν be two finite measures on a measurable space (S, \mathcal{B}) and assume that μ is absolutely continuous with respect to ν . Then there exists a measurable function $f: S \to \mathbb{R}$ defined uniquely up to a μ -nullset such that

$$\mu(B) = \int_B f \, d\nu.$$

The function f is called the Radon–Nikodym derivative of μ with respect to ν .

Measures: More on Radon-Nikodym

- Not related to semantics, but one pillar of the probability theory
- f is called the Radon-Nikodym derivative. One example is density function

• Extends probability masses and probability measures to measures over arbitrary set

• Example: μ : gaussain, v: Lebesgue measure on R

Products of Measurable Spaces

• Given (S_1, B_1) and (S_2, B_2) , their product is $(S_1 \times S_2, B_1 \otimes B_2)$ where $B_1 \otimes B_2 = \sigma(\{B_1 \times B_2 \mid B_1 \in B_1, B_2 \in B_2\})$

- A measure on $(S_1 \times S_2, B_1 \otimes B_2)$ is sometimes called a joint distribution
- A special case $(\mu_1 \otimes \mu_2)(B_1 \times B_2) \triangleq \mu_1(B_1)\mu_2(B_2)$.

 μ_1 and μ_2 are independent

Markov Kernels

- Given (S, B_S) and (T, B_T) , $P: S \times B_T \to R$ is called a Markov kernel if
 - For fixed $A \in B_T$, the map $\lambda s. P(s,A) \to R$ is a measurable function on (S,B_S)
 - For fixed $s \in S$, the map $\lambda A.P(s,A) \to R$ is a probability measure on (T,B_T)

• Composition of two Markov kernels
• Given
$$P: S \to T$$
, $Q: T \to U$ $(P; Q)(s, A) = \int_{t \in T} P(s, dt) \cdot Q(t, A)$.

• Given μ on B_{S} , its push forward under the Markov Kernel P is

$$P_*(\mu)(B) = \int_{s \in S} P(s, B) \ \mu(ds).$$

- $(S, B_S): x = ... (x>0)$
- (T, B_T) : y = uniform(0,x)
- Markov kernel $P(x, \bigcup_{i=1}^{i=M} [a_i, b_i]) = \sum_{i=1}^{i=M} length([a_i, b_i] \cap [0, x])/x$

- (S, B_S) : x = ... (x>0)
- (T, B_T) : y = uniform(0,x)
- (T, B_T) : z = uniform(0,y)
- Composition: $(P; Q)(x, [0, z]) = \int_{y \in [0, \infty]} P(x, dy) * Q(y, [0, z])$ $= \int_{y \in [0, x]} \frac{dy}{x} * \frac{length([0, z] \cap [0, y])}{y}$ $= \int_{y \in [0, z]} \frac{dy}{x} * \frac{y}{y} + \int_{y \in [z, x]} \frac{dy}{x} * \frac{z}{y} = \frac{z}{x} + \frac{z}{x}(lnx lnz)$

- (S, B_S) : x = uniform(0.1, 1.1) $\mu([a, b]) = \text{length}([a, b] \cap [0.1, 1.1])$
- (T, B_T) : y = uniform(0,x)
- Markov kernel $P(x, \bigcup_{i=1}^{i=M} [a_i, b_i]) = \sum_{i=1}^{i=M} length([a_i, b_i] \cap [0, x])/x$
- μ 's pushforward under P is

$$P_*(\mu)(B_T) = \int_{x \in [0.1, 1.1]} B_T \cap [0, x] * \mu(dx)$$

• We can use Markov kernels to define the meanings of statements

• A program can be seen as a Markov kernel that links the input variable (can be a distribution) with the output distribution

Spaces of Measures

- We now talk about the structures of the spaces of measures
 - This will allow us to talk about general properties of measures

• M(S,B) or MS is the set of all finite, signed measures on a measurable set (S,B)

Vector Space Structure

• **MS** is always a real vector space

$$(\mu + \nu)(B) \triangleq \mu(B) + \nu(B)$$

$$(a\mu)(B) \triangleq a\mu(B)$$

Normed Space Structure

• Every measure has a norm

$$\|\mu\| \triangleq \sup \left\{ \sum_{i=1}^n |\mu(B_i)| : \{B_1, \dots, B_n\} \text{ is a finite measurable partition of } S \right\}.$$

- For positive measures, $||\mu|| = \mu(S)$
- A complete normed vector space is a Banach space

- Measures have a natural pointwise order: $\mu \leq v$ if $\mu(B) \leq v(B)$, $\forall B$
- Are two distinct probability measures comparable?
- The partial order is compatible with the vector space structure:
 - if $\mu \le \nu$, then $\mu + \rho \le \nu + \rho$; and
 - if $0 \le a \in \mathbb{R}$ and $\mu \le \nu$, then $a\mu \le a\nu$.
- Additions and multiplications by a positive scalar are monotone

• The partial order defines a lattice

$$(\mu \vee \nu)(B) \triangleq \sup \{ \mu(A \cap B) + \nu(A^c \cap B) \mid A \in \mathcal{B} \}$$
$$(\mu \wedge \nu)(B) \triangleq \inf \{ \mu(A \cap B) + \nu(A^c \cap B) \mid A \in \mathcal{B} \}.$$

• Why do we care? It will be used to deal with loops

•
$$\mu^+ = \mu \vee 0$$
, $\mu^{-1} = -\mu \vee 0$, $\mu = \mu^+ - \mu^-$, modulus $|\mu| = \mu^+ + \mu^-$

• The order is compatible with the norm: $|\mu| \leq |v| \Rightarrow |\mu| \leq |v|$

- **MS** is a Banach lattice:
 - A Banach space with a lattice structure that is compatible with both the linear and normed structures
- A Banach lattice is σ -order-complete if every countable order-bounded set of measures in MS has a supremum in MS

• Every measure space is σ -order-complete

• For any measure set **MS**, every countable order-bounded set of measures in **MS** has a supremum in **MS**

- This will help us deal with loops
 - Every iteration can be seeing as joining measures
 - The measures are bounded
 - They will converge to the supremum

Operators

• Since spaces of measures are vector spaces, we can do linear algebra

• Linear operator T: T(x) + T(y) = T(x + y), T(ax) = aT(x)

• We are mostly interested in operators that send probability measures to subprobability measures (conditional probabilities)

Summary

• To reason about properties and correctness of probabilistic programs, we need semantics

- To define semantics, we can
 - Decompose it into semantics of program structures
 - Link it with mathematical concepts

Summary

- Measure theory is the theory about measures (generalization of length, area, volume...)
 - Foundation of probabilities and integration
- Measurable space
- Measures: distribution, state of a program
- Markov kernels: allows us to model statements
- The space of measures on a given measure space is a σ -order-complete Banach lattice

Next Class

- Semantics of probabilistic programs
 - Operational semantics
 - Denotational semantics