4 MÁQUINAS DE REGISTRADORES **NORMA**

- 4.1 Codificação de Conjuntos Estruturados
- 4.2 Definição da Máquina Norma
- 4.3 Máquina Norma como Máquina Universal
 - 4.3.1 Operações e Testes
 - 4.3.2 Valores Numéricos
 - 4.3.3 Dados Estruturados
 - 4.3.4 Endereçamento Indireto e Recursão
 - 4.3.5 Cadeias de Caracteres
- 4.4 Conclusões
- 4.5 Exercícios

4 MÁQUINAS DE REGISTRADORES -NORMA

Algoritmo

- termo intuitivamente usado como solução de um problema,
- uma forma de descrever se determinada propriedade pode ser verificada ou não para uma dada classe de entrada.

Investigação da solucionabilidade de um problema

• é a investigação da existência de um algoritmo capaz de resolvê-lo.

Noção intuitiva de algoritmo

- sua descrição deve ser finita e não-ambígua;
- deve consistir de passos discretos, executáveis mecanicamente e em um tempo finito.
- limitações de **tempo** ou de **espaço não são restrições teóricas**, mas podem determinar se um algoritmo pode ou não ser usado na prática.
- estudo será restrito aos **algoritmos naturais**, ou seja, definidos sobre o conjunto dos números naturais.
- qualquer conjunto contável pode ser equivalente ao conjunto dos naturais, através de uma codificação.
- conceito de programa, como introduzido anteriormente, satisfaz à noção intuitiva de algoritmo.

Máquina

- *simples*, para permitir estudos de propriedades, sem a necessidade de considerar características não-relevantes, bem como permitir estabelecer conclusões gerais sobre a classe de funções computáveis;
- *poderosa*, capaz de simular qualquer característica de máquinas reais ou teóricas, de tal forma que os resultados provados sejam válidos para modelos aparentemente com mais recursos.

Máquina Universal

Se for possível representar qualquer algoritmo como um programa em tal máquina, então esta é denominada de máquina universal.

As evidências de que uma máquina é universal:

- *Evidência Interna*. Consiste na demonstração de que qualquer extensão das capacidades da máquina universal proposta computa, no máximo, a mesma classe de funções, ou seja, não aumenta o seu poder computacional;
- *Evidência Externa*. Consiste no exame de outros modelos que definem a noção de algoritmo, juntamente com a prova de que são, no máximo, computacionalmente equivalentes.

Máquina Norma, uma máquina universal

- um conjunto de registradores naturais
- três instruções sobre os registradores:
 - operação de incrementar um sucessor
 - operação de decrementar um antecessor
 - teste se o valor armazenado é zero.

4.1 Codificação de conjuntos estruturados

• *codificação de conjuntos estruturados*, onde elementos de tipos de dados estruturados são representados como números naturais.

Para um dado conjunto estruturado X, define-se uma função injetora c: $X \rightarrow N$, onde, para todo x, $y \in X$, tem-se que:

se
$$c(x) = c(y)$$
, então $x = y$

o número natural c(x) é a codificação do elemento estruturado x.

Exemplo 4.1 Número de Gödel - codificação em n-uplas

Codificar de forma unívoca, elementos de Nⁿ como números naturais, ou seja, deseja-se uma função injetora

c: $N^n \rightarrow N$. Uma codificação simples é a seguinte:

- a) lembre-se de que, pelo *Teorema Fundamental da Aritmética*, cada número natural é univocamente decomposto em seus fatores primos;
- b) suponha os n primeiros números primos denotados por:

$$p_1=2$$
, $p_2=3$, $p_3=5$ e assim successivamente.

A codificação unívoca c: $N^n \to N$ é definida como abaixo, supondo $(x_1,\ x_2,\ ...,\ x_n)$ em N^n e o símbolo • denotando a operação de multiplicação nos naturais):

$$c(x_1, x_2, ..., x_n) = p_1^{x_1} \bullet p_2^{x_2} \bullet ... \bullet p_n^{x_n}$$

Deve-se reparar que essa codificação (Número de Gödel) não constitui uma função bijetora, ou seja, nem todo número natural corresponde a uma n-upla.

Entretanto, todo número naturais é decomponível em n primeiros números primos correspondendo a uma n-upla.

Exemplo 4.2 Codificação de programas monolíticos.

- Um programa monolítico pode ser codificado como um número natural.
- Suponha um programa monolítico P = (I, r) com m instruções rotuladas onde {F1, F2,..., Ff} e {T1, T2, ..., Tt} são os correspondentes conjuntos de identificadores de operações e testes, respectivamente.
- Seja P' = (I, 1) como P, exceto pelos rótulos, os quais são renomeados como números naturais, onde 1 é o rótulo inicial, e o 0 único rótulo final (se existir).
- Assim, uma instrução rotulada pode ser de uma das duas seguintes formas:

```
a) Operação. r_1: faça F_k vá_para r_2
b) Teste.
   r_1:se T_k então vá para r_2 senão vá para r_3
```

• Cada instrução rotulada pode ser denotada por uma quádrupla ordenada, onde a primeira componente identifica o tipo da instrução:

```
a) Operação. (0, k, r_2, r_2)
              (1, k, r_2, r_3)
b) Teste.
```

Usando a codificação do exemplo anterior, o programa monolítico P', visto como quádruplas ordenadas podem ser codificadas como segue:

- cada quádrupla (instrução rotulada) é codificada como um número natural, usando a codificação. Assim, o programa monolítico P' com m instruções rotuladas pode ser visto como uma m-upla;
- por sua vez, a m-upla correspondente ao programa monolítico P' é codificada como um número natural, usando a codificação.
- codificação de programas monolíticos apresentada não é uma função bijetora.

Exemplo 4.3 Codificação de programas monolíticos

Considere o programa monolítico Q da Figura 4.1.

```
Programa Monolítico Q

1: faça F vá_para 2

2: se T então vá_para 3 senão vá_para 5

3: faça G vá_para 4

4: se T então vá_para 1 senão vá_para 0

5: faça F vá_para 6

6: se T então vá_para 7 senão vá_para 2

7: faça G vá_para 8

8: se T então vá_para 6 senão vá_para 0
```

Figura 4.1 Programa monolítico

A correspondente codificação $c(i_1, i_2, i_3, i_4, i_5, i_6, i_7, i_8)$ é o numero natural q dado por:

$$q = 2i_1 \bullet 3i_2 \bullet 5i_3 \bullet 7i_4 \bullet 11i_5 \bullet 13i_6 \bullet 17i_7 \bullet 19i_8$$

sendo que (tomando F como 1, G como 2 e o teste T como 1 na determinação de k, ou seja, o expoente do número primo 3):

$i_1 = 20 \cdot 31 \cdot 52 \cdot 72$	obtido da quádrupla: (0, 1, 2, 2)
$i_2 = 21 \cdot 31 \cdot 53 \cdot 75$	(1, 1, 3, 5)
$i_3 = 20 \cdot 32 \cdot 54 \cdot 74$	(0, 2, 4, 4)
$i_4 = 21 \cdot 31 \cdot 51 \cdot 70$	(1, 1, 1, 0)
$i_5 = 20 \cdot 31 \cdot 56 \cdot 76$	(0, 1, 6, 6)
$i_6 = 21 \cdot 31 \cdot 57 \cdot 72$	(1, 1, 7, 2)
$i_7 = 20 \cdot 32 \cdot 58 \cdot 78$	(0, 2, 8, 8)
$i_8 = 21 \cdot 31 \cdot 56 \cdot 70$	(1, 1, 6, 0)

Exemplo 4.4

Decodificação de programas monolíticos

A decodificação de um número natural p que denota um programa monolítico em seu correspondente programa é ilustrada.

Suponha o número natural p decomposto em fatores primos.

$$\mathbf{p} = (2^{150}) \bullet (3^{105})$$

Pode-se recuperar o programa original. Como a decomposição apresentou dois numeros primos, então o programa possui duas instruções rotuladas correspondentes aos números 150 e 105.

Relativamente às decomposições em seus fatores primos, tem-se que:

$$150 = 2^{1} \cdot 3^{1} \cdot 5^{2} \cdot 7^{0}$$
 e $105 = 2^{0} \cdot 3^{1} \cdot 5^{1} \cdot 7^{1}$

o que corresponde às quádrulas:

```
(1, 1, 2, 0) e (0, 1, 1, 1)
```

```
1: se T_1 então vá_para 2 senão vá_para 0
```

2: **faça** F_1 vá para 1

Exercícios de Codificação

Exercício 4.1

Analise o programa monolítico abaixo e assinale a opção que contém a codificação correta (considere a seguinte ordem de operações F=1, G=2, H=3 e dos testes $T_1=1$, $T_2=2$).

```
Programa Monolítico

1: faça F vá-para 2

2: se T<sub>1</sub> então vá-para 3 senão vá-para 1

3: faça G vá-para 4

4: se T<sub>2</sub> então vá-para 1 senão vá-para 5

5: faça H vá-para 6

6: se T<sub>2</sub> então vá-para 0 senão vá-para 5

a) 23675 • 35250 • 5135025 • 7151260 • 11496371875 • 1330256
```

- b) 2375 3525 51350625 7151630 114963311875 133025
- c) 23675 35250 513505625 71512630 1149633171875 13302526
- d) 2375 35250 51355625 7151260 1149633171875 1330256
- e) 23675 35250 513505625 7152630 114963171875 133526

Codifique o seguinte programa monolítico e escolha a alternativa que representa o resultado de forma correta.

```
Programa Monolítico

1: se T<sub>1</sub> então vá-para 2 senão vá-para 3
2: faça F<sub>1</sub> vá-para 3
3: faça F<sub>2</sub> vá-para 4
4: se T<sub>1</sub> então vá-para 1 senão vá-para 0
a) 251450 • 3128625 • 513505625 • 730
b) 22 • 312825 • 513505625 • 710
c) 2450 • 3108625 • 413505625 • 720
d) 240532 • 3128888 • 413505625 • 770
e) 22345 • 31555555 • 513505625 • 730
```

Exercício 4.3

Dado um programa monolítico abaixo, sabe-se que sua codificação é da forma $p = 2^{X} \cdot 3^{Y} \cdot 5^{Z}$.

```
1: se T<sub>1</sub> então vá-para 4 senão vá-para 3
2: faça F<sub>1</sub> vá-para 1
3: se T<sub>1</sub> então vá-para 2 senão vá-para 1
```

Marque a alternativa correta:

- a) x = 643125, y = 128625 e z = 26250
- b) x = 1286250, y = 105 e z = 1050
- c) x = 643125, y = 210 e z = 525
- d) x = 36750, y = 128625 e z = 26250
- e) x = 1286250, y = 128625 e z = 1050

Exercício 4.4

Considere o seguinte programa monolítico:

```
1: se T então vá-para 2 senão vá-para 3
2: faça F vá-para 6
3: se U então vá-para 5 senão vá-para 4
4: faça G vá-para 0
5: faça F vá-para 0
6: se U então vá-para 4 senão vá-para 1
```

Assinale a quádrupla ordenada que *não* corresponde a nenhuma codificação das instruções rotuladas existentes neste programa:

- a) (0, 1, 1, 0)
- b) (0, 2, 0, 0)
- c) (1, 1, 2, 3)
- d) (1, 2, 4, 1)

```
e) (1, 2, 5, 4)
```

Considere o seguinte programa monolítico:

```
    faça F vá-para 2
    se T<sub>1</sub> então vá-para 1 senão vá-para 3
    faça G vá-para 4
    se T<sub>2</sub> então vá-para 5 senão vá-para 1
```

Marque a correspondente codificação correta:

```
a) 2(2^{0}3^{1}5^{2}7^{2}) + 3(2^{1}3^{1}5^{1}7^{3}) + 5(2^{0}3^{2}5^{4}7^{4}) + 7(2^{1}3^{2}5^{5}7^{1})

b) 2(2^{1}3^{2}5^{5}7^{1}) \cdot 3(2^{1}3^{1}5^{1}7^{3}) \cdot 5(2^{0}3^{2}5^{4}7^{4}) \cdot 7(2^{0}3^{1}5^{2}7^{2})

c) 2(2^{0}+3^{1}+5^{2}+7^{2}) \cdot 3(2^{1}+3^{1}+5^{1}+7^{3}) \cdot 5(2^{0}+3^{2}+5^{4}+7^{4}) \cdot 7(2^{1}+3^{2}+5^{5}+7^{1})

d) 2(2^{2}3^{1}5^{2}7^{2}) \cdot 3(2^{3}3^{1}5^{1}7^{3}) \cdot 5(2^{0}3^{2}5^{4}7^{4}) \cdot 7(2^{1}3^{2}5^{5}7^{1})

e) 2(2^{0}3^{1}5^{2}7^{2}) \cdot 3(2^{1}3^{1}5^{1}7^{3}) \cdot 5(2^{0}3^{2}5^{4}7^{4}) \cdot 7(2^{1}3^{2}5^{5}7^{1})
```

Exercício 4.6

Considere o seguinte programa monolítico:

```
1: faça F vá-para 2
2: se T<sub>1</sub> então vá-para 1 senão vá-para 3
3: faça F<sub>2</sub> vá-para 0
```

Marque a alternativa que representa o número natural associado pela função de codificação codigo(P):

```
a) 340341750
```

```
b) 27350 • 35145 • 518
```

- c) 23675 310290 59
- d) 583200
- e) 77145

Exercício 4.7

Qual dos números abaixo representa a codificação de um programa monolítico?

```
a) 23675 • 318375 • 54410
```

- b) 211025 31470 55292
- c) 29261 36174 59450
- d) 28505 313230 52835
- e) 9447840

Qual dos números abaixo *não* representa a codificação de uma instrução de programa monolítico?

- a) 210
- b) 450
- c) 315
- d) 750
- e) 525

Exercício 4.9

Considere o seguinte programa monolítico codificado:

$$p = 251450 \cdot 3105 \cdot 59$$

Marque a alternativa que representa a reescrita como um programa iterativo:

- a) enquanto T faça (F;G)
- b) até T faça (F);G
- c) até T faça (F;G)
- d) enquanto T faça (F); G
- e) enquanto T faça (F)

Exercício 4.10

Codifique o seguinte programa iterativo e marque a opção correta:

```
enquanto T_1 faça (F_1); F_2; (se T_2 então faça até T_1 faça (F_3;F_1); \sqrt{\phantom{+}} senão faça \sqrt{\phantom{+}})
```

- a) $2(2^{1}3^{1}5^{2}7^{3}) \bullet 3(2^{0}3^{1}5^{1}7^{1}) \bullet 5(2^{1}3^{2}5^{4}7^{4}) \bullet 7(2^{0}3^{2}5^{5}7^{0}) \bullet 11(2^{1}3^{3}5^{6}7^{6}) \bullet 13(2^{1}3^{1}5^{7}11^{7}) \bullet 17(2^{0}3^{1}5^{0}7^{5})$
- $\textbf{b)} \quad 2(2^{1}3^{1}5^{2}7^{3}) \bullet 3(2^{0}3^{1}5^{1}7^{1}) \bullet 5(2^{0}3^{2}5^{4}7^{4}) \bullet 7(2^{1}3^{2}5^{5}7^{0}) \bullet 11(2^{1}3^{1}5^{0}7^{6}) \bullet 13(2^{0}3^{3}5^{7}7^{7}) \bullet 17(2^{0}3^{1}5^{5}7^{5})$
- c) $2(2^{0}3^{1}5^{2}7^{3}) \bullet 3(2^{1}3^{6}5^{1}7^{1}) \bullet 5(2^{1}3^{2}5^{4}7^{4}) \bullet 7(2^{0}3^{2}5^{5}7^{0}) \bullet 11(2^{1}3^{3}5^{6}7^{6}) \bullet 13(2^{1}3^{1}5^{7}7^{7}) \bullet 17(2^{0}3^{1}5^{0}7^{7})$
- $\textbf{d)} \quad 2(2^{1}3^{1}5^{2}7^{3}) \bullet 3(2^{0}3^{1}5^{1}7^{1}) \bullet 5(2^{0}3^{2}5^{4}7^{4}) \bullet 7(2^{1}3^{2}5^{5}7^{0}) \bullet 11(2^{0}3^{3}5^{6}7^{6}) \bullet 13(2^{0}3^{1}5^{7}7^{7}) \bullet 19(2^{1}3^{1}5^{0}7^{5})$
- e) $2(2^{0}3^{1}5^{2}7^{3}) \bullet 3(2^{1}3^{1}5^{1}7^{1}) \bullet 5(2^{1}3^{2}5^{4}7^{4}) \bullet 7(2^{0}3^{2}5^{5}7^{0}) \bullet 11(2^{1}3^{3}5^{6}7^{6}) \bullet 13(2^{5}3^{1}5^{7}7^{7}) \bullet 19(2^{0}3^{1}5^{0}7^{5})$

4.2 Definição da Máquina Norma

A Máquina Universal Norma (<u>Number TheOretic Register MAchine</u>) possui como memória um conjunto infinito de registradores naturais e três instruções sobre cada registrador: adição e subtração do valor um e teste se o valor armazenado é zero.

- N^{\iiii} denota o conjunto de todas as uplas com infinitos (mas contáveis) componentes sobre o conjunto dos números naturais.
- As componentes das uplas são denotadas por letras maiúsculas como X, Y, A, B,..., registradores na Máquina Norma.

Definição 4.1. Máquina Norma.

A *Máquina Norma* é uma sete-upla (suponha que K seja um registrador, K∈ { X, Y, A, B, ... }):

Norma = $(N^{\infty}, N, N, ent, sai, \{ad_K, sub_K\}, \{zero_K\})$

- a) Cada elemento do conjunto de valores de memória N[∞] denota uma configuração de seus infinitos *registradores*, os quais são denotados por: X, Y, A, B,...
- b) A função de entrada: ent: $N \to N^{\infty}$ é tal que carrega no registrador denotado por X o valor de entrada, inicializando todos os demais registradores com zero;
- c) A função de saída: sai: $N^{\infty} \rightarrow N$ é tal que retorna o valor corrente do registrador denotado por Y;
- d) O conjunto de *interpretações de operações* é uma família de operações indexada pelos registradores, na qual, para cada registrador K ∈ { A, B, X, Y,... }, tem-se que:
- $ad_K: N^{\infty} \to N^{\infty}$ adiciona um à componente correspondente ao registrador K, deixando as demais com seus valores inalterados. K:=K+1
- $\operatorname{sub}_K \colon N^\infty \to N^\infty$ subtrai um da componente correspondente ao registrador K, se o seu valor for maior que zero (caso contrário, mantém o valor zero), deixando as demais com seus valores inalterados. K := K-1
- e) O conjunto de *interpretações de testes* é uma família de testes indexada pelos registradores na qual, para cada registrador K, tem-se que:
 - $zero_K: N^{\infty} \rightarrow \{ \text{ verdadeiro, falso } \} \text{ resulta } \text{ em } \text{ verdadeiro, se a componente correspondente ao registrador } K \text{ for zero e em falso, caso contrário. } K=0?$

4.3 Máquina Norma como Máquina Universal

É uma máquina extremamente simples, de tal forma que parece difícil acreditar que o seu poder computacional é, no mínimo, o de qualquer computador moderno.

Características de máquinas reais são simuladas usando a Máquina Norma, reforçando as evidências de que se trata de uma máquina universal.

As características são as seguintes:

- a) *Operações e Testes*. Definição de operações e testes mais complexos como adição, subtração, multiplicação e divisão de dois valores e tratamento de valores diversos como os números primos;
- b) *Valores Numéricos*. Armazenamento de tratamento de valores numéricos de diversos tipos como inteiros (negativos e nãonegativos) e racionais;
- c) *Dados Estruturados*. Armazenamento de tratamento de dados estruturados como em arranjos (vetores uni e multidimensionais), pilhas, etc;
- d) *Endereçamento Indireto e recursão*. Desvio para uma instrução determinada pelo conteúdo de um registrador;
- e) *Cadeia de Caracteres*. Definição e manipulação de cadeias de caracteres.

4.3.1 Operações e Testes

As seguintes operações e teste não-definidos na Máquina Norma são exemplificadas a seguir:

- atribuição de valor a um registrador;
- adição de dois registradores;
- atribuição do valor de um registrador a outro registrador;
- multiplicação de dois registradores;
- atribuição de um número primo a um registrador;
- teste se o valor de um registrador é menor que o valor de outro registrador;
- teste se o valor de um registrador é múltiplo do valor de outro registrador (ou teste de divisão inteira com resto zero);
- teste se o valor de um registrador é um número primo.

Exemplo 4.5

Atribuição do valor zero a um registrador A.

• Programa Iterativo A := 0:

```
até A = 0
faça (A:= A - 1)
```

• Programa na forma de Instruções Rotuladas

```
1: se A = O então vá_para 3 senão vá_para 2
2 faça A:= A - 1 vá_para 1
```

- pode-se tratar a operação **A:= 0** como uma *macro*, ou seja, um trecho de programa que é substituído pela sua definição sempre que referenciado.
- Usando a macro A:= 0, é fácil construir macros para definir operações de atribuição de um valor qualquer.

Exemplo 4.6

Atribuição de um valor natural a um registrador.

- macro da atribuição de um valor natural n a um registrador A,
 A:= n, é a generalização do programa abaixo.
- Programa Iterativo n := 3:

```
A:= 0;
A:= A+1;
A:= A+1;
A:= A+1
```

Exemplo 4.7

Adição de dois registradores.

- macro da correspondente à operação de adição do valor do registrador B ao do registrador A, denotada por: A: = A + B
- Programa Iterativo A := A + B:

```
até B = 0
faça (A:= A + 1; B:= B - 1)
```

• Observe que, ao somar o valor de B em A, o registrador B é zerado!

Exemplo 4.8

Adição de dois registradores, preservando B

- Macro da correspondente à operação de adição do valor do registrador B ao do registrador A, preservando o valor em B, necessita usar um registrador auxiliar C
- Programa Iterativo **A:= A + B usando C**

```
C:= 0;

até B = 0

faça (A:= A + 1; C:= C + 1; B:= B - 1);

até C = 0

faça (B:= B + 1; C:= C - 1)
```

- como este programa não preserva o conteúdo original do registrador de trabalho C, faz-se necessário explicitar o uso deste registrador.
- é necessário escolher um registrador de trabalho C que não seja usado!

Exemplo 4.9

Atribuição do conteúdo de um registrador.

• Programa Iterativo A:= B usando C:

```
A:= 0;
A:= A + B usando C
```

Exemplo 4.10 Multiplicação de dois registradores.

- A definição da macro de multiplicação requer dois registradores de trabalho.
- Programa Iterativo A:= A B usando C, D:

```
C:=0;

até A=0

faça (C:=C+1; A:=A-1);

até C=0

faça (A:=A+B \text{ usando } D; C:=C-1)
```

Ou seja,

```
C := 0;
até A = 0
faça (C := C + 1; A := A - 1);
até C = 0
faça (D := 0;
até B = 0
faça (A := A + 1; D := D + 1; B := B - 1);
até D = 0
faça (B := B + 1; D := D - 1);
C := C - 1)
```

 correspondente a uma macro cuja operação é a multiplicação do valor do registrador B pelo valor do registrador A, usando dois registradores de trabalho C e D

Exemplo 4.11

Teste se o valor de um registrador é menor que outro registrador

macro do teste que verifica se o valor de um registrador A é menor que o valor de um registrador B, denotada por:

A < B usando C, D, E

Exemplo 4.12

Teste se o valor da divisão inteira é zero

macro do teste que verifica se o se o resto da divisão inteira do valor de um registrador A pelo valor de um registrador B é zero, denotada por:

Teste_mod(A, B) usando C, D, E, C', D', E'

Por simplicidade, no texto que segue, na referência a uma macro definida anteriormente, são omitidos os registradores usados. Por exemplo:

teste_mod(A, B) usando C, D, E, C', D', E' é abreviada por teste_mod(A, B)

Exemplo 4.13

Teste se o valor do registrador é um primo.

• Programa Iterativo **teste_primo(A)**

```
A = 0
(se
então
     falso
senão C:= A:
      C := C - 1;
      (se C = 0
       então verdadeiro
       senão até
                    teste\_mod(A, C)
             faça
                    (C := C - 1)
              C := C - 1;
                    C = 0
              (se
              então verdadeiro
              senão falso)))
```

- é uma macro de teste que verifica se o valor de um registrador A é um número primo, retornando o valor verdadeiro, se o valor de A é primo, e o valor falso, caso contrário:
- **teste_mod(A, C)** é um teste que retorna o valor verdadeiro, se o resto da divisão inteira do conteúdo de A por C é zero, e o valor falso, caso contrário.

Exemplo 4.14

Atribuição do n-ésimo número primo ao registrador.

• Programa Iterativo A:= primo(B)

```
A:= 1;
D:= B;
até \quad D = 0
faça \quad (D:= D - 1;
A:= A + 1;
até \quad teste\_primo(A)
faça \quad (A:= A + 1)
```

- é a atribuição do n-ésimo número primo a um registrador A, usando um registrador de trabalho D,
- usa a macro teste_primo construída acima (suponha que 1 é o 0-ésimo número primo)

4.3.2 Valores Numéricos

Norma pode definir inteiros e racionais?

Exemplo 4.15 Inteiros.

Um valor inteiro m pode ser representado como um par ordenado: (s, |m|), onde:

- m denota magnitude dada pelo valor absoluto de m;
- s denota o sinal de m: se m < 0,

então s = 1 (negativo)

senão s = 0 (positivo)

Como representar pares ordenados em Norma?

- usando codificação de n-uplas naturais como introduzido em 4.1;
- usando dois registradores, o primeiro referente ao sinal, e o segundo, à magnitude.

Representação de Inteiros utilizando dois registradores

- Supor que o registrador inteiro A é representado pelo par (A₁, A₂)
 na representação conhecida como *sinal-magnitude*, ou seja, A₁
 (sinal) e A₂ (magnitude).
- É necessário desenvolver programas em Norma para executar as operações inteiras A:= A+1, A:= A-1 e o teste A = 0?

A	A ₁	A ₂	A + 1	A ₁	A ₂	A - 1	A ₁	A2
	(sinal)	(mag.)		(sinal)	(mag.)		(sinal)	(mag.)
-2	1	2	-1	1	1	-3	1	3
-1	1	1	0	0	0	-2	1	2
0	0	0	1	0	1	-1	1	1
1	0	1	2	0	2	0	0	0
2	0	2	3	0	3	1	0	1

Figura 4.2 Operações inteiras A:= A + 1 e A:= A - 1

• Programa Iterativo A:= A + 1:

```
(se A_1 = 0

então A_2 := A_2 + 1

senão A_2 := A_2 - 1;

(se A_2 = 0

então A_1 := A_1 - 1

senão \sqrt{)})
```

• Programa Iterativo A:= A - 1:

```
(se A1 = 0
então (se A2 = 0
então A1 := A1 + 1;
A2 := A2 + 1
senão A2 := A2 - 1)
senão A2 := A2 + 1)
```

• Programa Iterativo A = 0 ?

```
(se A2 = 0
então verdadeiro
senão falso)
```

Exemplo 4.16 Racionais.

- Um valor racional r pode ser denotado como um par ordenado: (a, b) tal que b > 0 e r = a/b.
- A representação não é única pois, por exemplo, o valor racional 0.75 pode ser representado pelos pares (3, 4) e (6, 8), entre outros (na realidade, os pares (3, 4) e (6, 8) pertencem à mesma classe de equivalência).
- Neste contexto, as operações de adição, subtração, multiplicação e divisão, bem como o teste de igualdade, podem ser definidos como segue:

$$(a, b) + (c, d) = (a \cdot d + b \cdot c, b \cdot d)$$

$$(a, b) - (c, d) = (a \cdot d - b \cdot c, b \cdot d)$$

$$(a, b) \bullet (c, d) = (a \bullet c, b \bullet d)$$

$$(a, b) / (c, d) = (a \cdot d, b \cdot c) (com c \neq 0)$$

$$(a, b) = (c, d)$$
 se, e somente se, $a \cdot d = b \cdot c$

4.3.3 Dados Estruturados

Arranjos podem ser definidos em Norma?

E arranjos multidimensionais?

Exemplo 4.17 Arranjo Unidimensional.

 Uma estrutura do tipo arranjo unidimensional da forma A(1), A(2), ..., pode ser definida por um único registrador A usando a codificação de n-uplas naturais. Por exemplo: Se

A(1) = 5 A(2) = 2 A(3) = 0 A(4) = 3 A(5) = 1 então o valor a armazenada em A é o resultado de:

$$a = 25 \cdot 32 \cdot 50 \cdot 73 \cdot 111 \cdot 130 \cdot 170...$$

- Note-se que o arranjo não necessita ter tamanho máximo predefinido (número de posições indexáveis). Lembre-se de que a função de entrada é tal que carrega o valor da entrada no registrador X, zerando todos os demais, incluindo o arranjo.
- Para manter a coerência com a definição da Máquina Norma, é necessário definir as operações de adição e de subtração do valor 1, bem como o teste se o valor é zero.
 - o arranjo é implementado usando o registrador A;
 - pn denota o n-ésimo número primo;
 - teste_mod(A, C) é um teste que retorna o valor verdadeiro, se a divisão inteira do conteúdo de A pelo conteúdo de C é zero, e o valor falso, caso contrário;
 - A:= div(A, C) denotada uma macro de divisão de dois registradores;
- Em uma estrutura do tipo arranjo, é desejável indexar as suas posições de forma direta (número natural) ou indireta (conteúdo de um registrador).

a) Indexação Direta.

Programa Iterativo adA(n)

```
C := p_n;

A := A \cdot C
```

Programa Iterativo subA(n)

```
C := p_n;

(se teste_mod(A, C)

então A := div(A, C)

senão \sqrt{}
```

Programa Iterativo zeroA(n)

```
C := p<sub>n</sub>;

(se teste_mod(A, C)

então falso

senão verdadeiro)
```

b) Indexação Indireta.

Programa Iterativo adA(B)

```
C := primo(B)

A := A \cdot C
```

Programa Iterativo subA(B)

```
C := primo(B)

(se teste_mod(A, C)

então A := div(A, C)

senão \sqrt{}
```

Programa Iterativo zeroA(B)

```
C := primo(B)
(se teste_mod(A, C)
então falso
senão verdadeiro)
```

Observação 4.2

Arranjo Unidimensional × Norma com 2 Registradores.

- Usando a estrutura de arranjo unidimensional com indexação direta, podese mostrar que os registradores X e Y são suficientes para realizar qualquer processamento;
- De fato, é suficiente usar X para armazenar um arranjo unidimensional onde cada posição corresponde a um registrador (por exemplo: X, Y, A, B, ..., correspondem às posições do arranjo indexadas por 0, 1, 2, 3, ...).
- Assim, para um determinado registrador K, as operações e testes de Norma: adK, subK e zeroK podem ser simulados pelas operações e testes indexados introduzidos no *Exemplo 4.17*, ou seja, adX(k), subX(k) e zeroX(k) onde X(k) denota a k-ésima posição do arranjo em X.

Exemplo 4.18 Pilha.

• Estruturalmente, a principal característica de uma *pilha* é que o último valor gravado é o primeiro a ser lido.

figura 4.3 Estrutura do tipo pilha

- A *base* de uma pilha é fixa e define o seu início.
- O *topo* é variável e define a posição do último símbolo gravado.
- definem-se as operações *empilha* (adiciona o conteúdo de um registrador no topo da pilha) e *desempilha* (retira o valor do topo e armazena em um registrador).
- Uma pilha pode facilmente ser simulada usando um arranjo e um registrador de índice (indexação indireta do arranjo) que aponta para o topo da pilha.

4.3.4 Endereçamento Indireto e Recursão

Como definir desvios, usando endereçamento indireto (determinado pelo conteúdo de um registrador) em programas do tipo monolítico?

Exemplo 4.19 endereçamento indireto em um programa monolítico

- Uma operação com endereçamento indireto da seguinte forma, onde A é um registrador:
 - r: faça F vá_para A
- pode ser definida pelo seguinte programa monolítico:
 - r: faça F vá_para End_A

figura 4.4 Fluxograma para tratar endereçamento indireto

- A macro End_A trata o endereçamento indireto de A (cada circunferência rotulada representa um desvio incondicional para a correspondente instrução).
- Teste com endereçamento indireto, onde A e B são registradores:

r: se T então vá_para A senão vá_para B

4.3.5 Cadeias de Caracteres

 Cadeia de caracteres é outro tipo de dado não pré-definido na Máquina Norma.

• O tratamento da definição e da manipulação de cadeias de caracteres será realizado através de outra Máquina Universal, denominada Máquina de Turing, a qual se prova ser equivalente à Norma.

4.4 Conclusões

- Neste capítulo foram introduzidas as máquinas de registradores.
- Em particular, foi estudada a máquina NORMA que possui três tipos de instruções/teste (ad, sub e zero) sobre registradores naturais.
- Os recursos necessários para computar são bem poucos. Todos os demais recursos existentes em máquinas reais são apenas artifícios para facilitar a programação da computação.
- Evidências internas de que NORMA é uma máquina universal foram apresentadas.
- Evidencias externas serão vistas nos próximos capítulos.

4.5 Exercícios

Exercício 4.11

Codifique o fluxograma ilustrado na *Figura 4.5* como um número natural, usando a codificação de programas introduzida no *Exemplo 4.2* Codificação de programas monolíticos.

Figura 4.5 Fluxograma

Codifique o programa da *Figura 4.6* usando a codificação de programas monolíticos.

```
Programa Monolítico M

1: faça F vá_para 2

2: se T então vá_para 3 senão vá_para 1

3: faça G vá_para 4

4: se T então vá_para 1 senão vá_para 0
```

Figura 4.6 Programa monolítico

Exercício 4.13

Desenvolva um *software* que seja capaz de processar qualquer programa de Máquina Norma. A entrada para o *software* contem:

- o programa no formato de instruções rotuladas simples;
- o valor de entrada a ser computado pelo programa;

A saída é a computação do programa para a dada entrada. Teste o software para o cálculo do fatorial de 3.

Exercício 4.14

Mostre como a instrução abaixo podem ser construídas como uma macro em Norma:

```
r_1: se A < 2 então vá_para r_2 senão vá_para r_3
```

Desenvolva os programas, em Norma, que realizam as operações e testes abaixo:

- a) A := B C
- b) div(B, C): divisão inteira de B por C
- c) fat(A): fatorial;
- d) pot(x, y): potência;
- e) teste(A > B)
- f) teste($A \ge B$)
- g) teste($A \le B$)
- h) mdc(A, B): máximo divisor comum;
- i) mod(A, B): resto da divisão inteira;
- j) primos(A, B): todos os primos entre os valores de A e de B;
- k) teste nperf(A): verifica se é um número perfeito.

Exercício 4.16

Desenvolva os programas, em Norma, que realizam as operações abaixo nos inteiros (utilize a representação sinal-magnitude introduzida no *exemplo 4.15 Inteiros*):

- a) A := B + C
- b) A:= B C
- c) A := B C
- d) A := div(B, C)

Exercício 4.17

Desenvolva os programas, em Norma, que realizam as operações abaixo nos números racionais (utilize a representação de números racionais introduzida no *exemplo 4.16 Racional*):

- a) A := B + C
- b) A:= B C
- c) A := B C
- d) A := div(B, C)

Seja a *Máquina NormaNeg* a qual é, em todos os aspectos, idêntica a Norma, exceto pelo fato de poder armazenar números negativos (inteiros) em seus registradores. Prove que, para cada fluxograma *NormaNeg*, pode-se definir um fluxograma Norma equivalente sem o uso de registradores extras.

Sugestão: utilize a representação de inteiros baseada na função codificação e desenvolva os programas para as instruções de Norma que simulam as de NormaNeg.

Exercício 4.19

Seja $P = \{I, 1\}$ definido na Máquina Norma e suponha o conteúdo dos registradores A e B igual a 0 e 5 respectivamente. Marque o programa que realiza A := B na máquina Norma:

a)

```
Programa Monolítico

1: se zeroB então vá-para 5 senão vá-para 2

2: faça adp vá-para 3

3: faça subB vá-para 4

4: faça subA vá-para 1

b)
```

```
Programa Monolítico

1: se zeroA então vá-para 4 senão vá-para 2

2: faça adA vá-para 3

3: faça adB vá-para 1
```

c)

Programa Monolítico 1: se zeroA então vá-para 5 senão vá-para 2 2: faça adA vá-para 3 3: faça subB vá-para 1

d)

```
Programa Monolítico

1: se zeroB então vá-para 5 senão vá-para 2

2: faça adA vá-para 3

3: faça subB vá-para 1
```

e) Nenhuma das alternativas anteriores está correta.

A Máquina Norma é composta basicamente por um conjunto de registradores naturais e apenas três instruções sobre cada um deles (adição e subtração de uma unidade e a verificação se o conteúdo do registrador é zero). Portanto, é correto afirmar que:

- a) Seus registradores podem assumir valores naturais tão grandes quanto necessários.
- b) Os registradores podem assumir qualquer valor;
- c) Seu modelo formal encontra-se baseado em uma estrutura chamada fita;
- d) Não é capaz de simular mecanismos de recursão;
- e) Pode ser definida por uma 8-upla da forma $(\Sigma, \mathbb{Q}, \Pi, \mathbb{q}_0, F, \mathbb{V}, \beta, \mathbb{Q})$.

Exercício 4.21

Sobre a Máquina Norma, analise as seguintes afirmações:

- I. É uma Máquina extremamente simples, porém com poder computacional igual ao de qualquer computador atual;
- II. Em Norma, sub-rotinas e mecanismos de recursão, como os definidos em programas recursivos, podem ser simulados por programas monolíticos, usando endereçamento indireto;
- III. É impossível programar operações matemáticas complexas (radiciação, seno e co-seno, por exemplo) em Norma, visto que apenas as instruções de somar/diminuir 1 unidade a um registrador não dão suporte para que isso seja feito.

Marque a alternativa correta:

- a) Apenas I está correta;
- b) Apenas II está correta;
- c) Apenas III está correta;
- d) Apenas I e II estão corretas;
- e) Apenas II e III estão corretas.

Sobre a Máquina Norma, analise as seguintes afirmações:

- 1. Possui um conjunto finito de registradores naturais como memória;
- II. Possui poder computacional, no mínimo, igual ao de qualquer computador moderno;
- III. Sub-rotinas e mecanismos de recursão podem ser simulados por programas monolíticos, usando endereçamento indireto.

Marque a alternativa correta:

- a) Apenas I está correta;
- b) Apenas II está correta;
- c) Apenas I e III estão corretas;
- d) Apenas II e III estão corretas;
- e) I, II e III estão corretas.