Лекция 4: Функции

Минко Марков

minkom@fmi.uni-sofia.bg

Факултет по Математика и Информатика Софийски Университет "Свети Климент Охридски"

25 юни 2020 г.

Основни определения

Определение 1 (Частична функция)

Нека X и Y са множества. Частична функция с домейн X и кодомейн Y е всяка релация $f\subseteq X\times Y$, такава че за всяко $x\in X$ съществува не повече от едно $y\in Y$, такова че $(x,y)\in f$.

Определение 2 (Тотална функция)

Нека X и Y са множества. Тотална функция с домейн X и кодомейн Y е всяка релация $f\subseteq X\times Y$, такава че за всяко $x\in X$ съществува точно едно $y\in Y$, такова че $(x,y)\in f$.

Определенията с изрази от предикатната логика

Определение (Частична функция)

Нека X и Y са множества. Частична функция с домейн X и кодомейн Y е всяка релация $f\subseteq X\times Y$, такава че

$$\forall x \in X ((\neg \exists y \in Y : (x, y) \in f) \lor ((\exists y \in Y : (x, y) \in f) \land (\forall w, z \in Y : (x, w) \in f \land (x, z) \in f \rightarrow w = z)))$$

Или по-просто

Определение (Частична функция)

Нека X и Y са множества. Частична функция с домейн X и кодомейн Y е всяка релация $f \subseteq X \times Y$, такава че

$$\forall x \in X ((\neg \exists y \in Y : (x, y) \in f) \lor (\forall w, z \in Y : (x, w) \in f \land (x, z) \in f \rightarrow w = z)))$$

Определенията с изрази от предикатната логика (2)

Определение (Тотална функция)

Нека X и Y са множества. Тотална функция с домейн X и кодомейн Y е всяка релация $f \subseteq X \times Y$, такава че

$$\forall x \in X ((\exists y \in Y : (x, y) \in f) \land (\forall w, z \in Y : (x, w) \in f \land (x, z) \in f \rightarrow w = z))$$

Частични функции и функции

Тоталните функции се срещат по-често в практиката, затова само "функция" е "тотална функция". При дадени X и Y, очевидно тоталните са строго подмножество на частичните. Следователно, само "функция" е частен случай на "частична функция": всяка функция е частична функция, но не всяка частична функция е функция.

Това води до противоречие с приетото разбиране за прилагателните, с които отделяме подмножества като в аксиомата за отделянето.

Частични функции и функции (2)

За формалните определения

На практика често казваме "изображение" (mapping) вместо "функция". Това обаче не е определение: а какво е "изображение"?

Предпочитаме да не въвеждаме "функция" като ново първично понятие, а да използваме вече изградени понятия и да дефинираме "функция" чрез тях.

И така, формално, функция е вид релация.

Типични записи на функции

Наместо $f \subseteq X \times Y$, пишем $f: X \to Y$. Чете се "f е функция с домейн X и кодомейн Y". Още може да се чете и като "f изобразява X в Y".

Наместо $(x,y) \in f$ или инфиксния запис x f y, в контекста на функциите ползваме добре известния запис f(x) = y. "x" е *променлива*. Променлива е нещо като кутийка, в която можем да слагаме неща (от домейна).

Функции на много променливи

Свикнали сме да мислим за функциите на много променливи като за обобщение на функциите на една променлива. Но всяка функция на k променливи в някакъв смисъл е функция на една променлива, която обаче е наредена k-орка.

Пример: някаква реална функция на две променливи. Типичен запис е g(x,y)=z, където x, y и z са реални. Тогава $g:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$. Можем да мислим за g като функция на една променлива, която не е реално число, а наредена двойка от реални числа. Формално правилният запис би бил g((x,y))=z, където $(x,y)\in\mathbb{R}\times\mathbb{R}$, но това не се ползва.

Представяне на функция с диаграма

Нека $f: X \to Y$, като X и Y са крайни. Да кажем, $X = \{a, b, c, d\}$, $Y = \{1, 2, 3\}$. От всяка точка в елипсата, отговаряща на X, излиза точно една стрелка.

Представяне на частична функция с диаграма

Нека g е частична функция с домейн X и кодомейн Y. От всяка точка в елипсата, отговаряща на X, излиза не повече от една стрелка.

Диаграма на релация, която не е частична функция

Ако от поне една точка в елипсата, отговаряща на X, излиза повече от една стрелка, това не може да е диаграма на частична функция (оттам, и на тотална). Това е диаграма на релация φ с първи домейн X и втори домейн Y.

Инекции, сюрекции, биекции

Нека $f: X \to Y$. f е инекция, ако $\forall x_1, x_2 \in X: f(x_1) = f(x_2) \to x_1 = x_2$.

Инекции, сюрекции, биекции Контрапример за инекция

Инекции, сюрекции, биекции Сюрекции

Нека $f: X \to Y$. f е *сюрекция*, ако $\forall y \in Y \exists x \in X : f(x) = y$. Неформално: кодомейнът да бъде "покрит" от изображението.

Инекции, сюрекции, биекции Контрапример за сюрекция

Инекции, сюрекции, биекции

Нека $f: X \to Y$. f е биекция, ако е инекция и сюрекция. Още се казва взаимно еднозначно изображение.

Инекции, сюрекции, биекции – пример

Сядането на хора в зала е частична функция с домейн хората и кодомейн столовете, ако никой не седи на повече от един стол; възможно е да има правостоящи.

Ако няма правостоящи, сядането е функция.

Ако на никой стол не седи повече от един човек, сядането е инекция.

Ако няма празни столове, сядането е сюрекция.

Ако всеки човек седи на отделен стол и няма празни столове, сядането е биекция. Очевидно броят на столовете е равен на броя на хората.

Инекции, сюрекции, биекции – ограничения за бройките

Все още не сме въвели формално "крайно множество" и "брой на елементи на крайно множество", но интуитивно всеки разбира за какво става дума.

Нека
$$X = \{x_1, x_2, \dots, x_m\}, Y = \{y_1, y_2, \dots, y_n\}.$$
 Нека $f: X \to Y$.

Необходимо условие f да е инекция е $m\leqslant n$. Необходимо условие f да е сюрекция е $m\geqslant n$. Необходимо условие f да е биекция е m=n.

Иначе казано, при m > n няма инекция, при m < n няма сюрекция, при $m \neq n$ няма биекция.

Обратна функция на биекция

Нека $f: X \to Y$ е биекция. Обратната функция на f се бележи с f^{-1} . Тя е с домейн Y и кодомейн X и се дефинира така:

$$\forall y \in Y: f^{-1}(y) = x$$
, където x е уникалният елемент на X , такъв че $f(x) = y$

Обратна функция на биекция – пример

Нека f е биекцията от слайд 17. Нейната обратна функция е следната:

Обратна функция на функция

Образно казано, обратната функция има диаграма с разменени домейн и кодомейн и обърнати посоки на стрелките.

Ако опитаме да "обърнем" функция, която не е инекция, ще получим обект, който дори не е функция. Ето какво ще получим, ако се опитаме да "обърнем" сюрекцията от слайд 15:

Обратна функция на функция (2)

Ако обърнем произволна инекция, ще получим частична функция, която не е непременно функция. Ето какво ще получим, ако се опитаме да "обърнем" инекцията от слайд 13:

Рестрикция на функция

Нека $f: X \to Y$ и $X' \subseteq X$. Рестрикцията на f върху X' е $f': X' \to Y$, където $\forall x \in X': f'(x) = f(x)$. Бележим рестрикцията така: $f|_{X'}$.

Понятието "рестрикция" може да се обобщи и за частични функции по естествения начин. Очевидно, всяка частична функция има рестрикция, която е функция — вземаме такова X', че всеки елемент от X' да има изображение.

Крайни множества Неправилна дефиниция

Забележете, че дефиницията "множество е крайно, ако има краен брой елементи" не върши работа. На практика тя казва "множество е крайно, ако е крайно". Очевидно това е порочно зациклена дефиниция!

Дефинирането на "крайно множество" става чрез биекция между него и някое множество $\{1,2,\ldots,n\}$.

Определение 3 (крайно множество, кардиналност)

Множество А е крайно, ако

- ullet $A=igotimes_{}$, в който случай кардиналността на A е 0,
- или съществува $n \in \mathbb{N}^+$, такова че съществува биекция $f: A \to \{1, 2, \dots, n\}$; тогава кардиналността на A е n.

Кардиналността на A е броят на елементите и се бележи с |A|. "Мощност на множество" е синоним на "кардиналност на множество". Множества са *равномощни*, ако между тях съществува биекция.

Безкрайни множества

Определение 4 (безкрайно множество)

Множество е безкрайно, ако не е крайно.

Очевидно $\mathbb N$ не е крайно: колкото и голямо естествено число n да вземем, n+1 е по-голямо. Така че за всяко n е вярно, че $n+1\notin\{0,1,\ldots,n\}$.

Изброими множества

Определение 5 (изброимо безкрайно множество)

Множество A е изброимо безкрайно, ако е равномощно на \mathbb{N} .

Определение 6 (изброимо множество)

Множество A е изброимо, ако A е крайно или изброимо безкрайно.

Определение 7 (неизброимо множество)

Множество е неизброимо, ако не е изброимо.

Очевидно всяко неизброимо множество е безкрайно. Не е очевидно, че съществуват неизброими множества.

За безкрайните множества (1) Потенциална и актуална безкрайност

Естествените числа се генерират от процес, който започва от 0 с добавяне на единица: $0+1=1,\ 1+1=2,\ \ldots,\ 1\,000\,000+1=1\,000\,001,\ \ldots$ Аристотел характеризира този процес като "потенциална безкрайност". Кулминацията на процеса, а именно множеството от всички естествени числа, е "пълна безкрайност", или "актуална безкрайност".

За безкрайните множества (2) Потенциална и актуална безкрайност

От Аристотелово време чак до 19 век мнозинството от мислителите отхвърлят актуалната безкрайност като нелегитимно понятие. Гаус (Carl Friedrich Gauss), най-великият математик на своето време, пише:

But concerning your proof, I protest above all against the use of an infinite quantity as a *completed* one, which in mathematics is never allowed. The infinite is only façon de parler, in which one properly speaks of limits.

> Georg Cantor, His Mathematics and Philosophy of the Infinite, Dauben, pp. 120

Потенциална и актуална безкрайност – допълнителна илюстрация на разликата

Редът на Лайбниц е

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Ако гледаме на сумата вдясно като на процес, който апроксимира $\frac{\pi}{4}$ все по-добре с добавяне на все повече събираеми, имаме предвид потенциална безкрайност. Тогава $\frac{\pi}{4}$ е само граница, по израза на Гаус, към която клони сумата, без да я достига никога. Тук и дума не става за пълна безкрайност: на всеки етап от сумирането сме събрали краен брой събираеми.

Ако гледаме на сумата вдясно като на едно цяло нещо, което е точно равно на $\frac{\pi}{4}$, имаме предвид актуална безкрайност.

За безкрайните множества (4)

Проблем при безкрайните множества: цялото е "равно" на своя част. "Равно" има смисъл на "равномощно".

Примерно, множеството на естествените числа и множеството на четните числа $\{0,2,\ldots\}$ са равномощни. Интуитивно, естествените са повече, защото има естествени нечетни числа. От друга страна, биекцията $f:\mathbb{N} \to \{0,2,\ldots\}$:

$$\forall n \in \mathbb{N} : f(n) = 2n$$

съчетава точно естествените и четните числа.

Оттук и мнението, че да се говори за "броя на всички числа" е безсмислица.

За безкрайните множества (5)

Георг Кантор (Georg Cantor) е първият математик, който разглежда сериозно безкрайните множества и създава кохерентна и задълбочена теория за тях. Той въвежда понятия, имащи смисъл на бройки на елементите на безкрайни множества, и работи с тези понятия.

Кантор показва, че множества като $\mathbb Q$ или множеството на алгебричните ирационални числа (като $\sqrt{2}$), които в днешната терминология са строги надмножества на $\mathbb N$, са равномощни с $\mathbb N$. След това показва, че $\mathbb R$ не е равномощно на $\mathbb N$.

За безкрайните множества (6)

Основен резултат на Кантор е, че има различни видове безкрайност. И естествените, и реалните числа са безброй много, но реалните са повече в смисъл, че няма биекция между тях и естествените.

$\mathbb{N} \times \mathbb{N}$ е изброимо

Теорема 1

Съществува биекция $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

Доказателство: Твърди се, че има начин да бъдат изброени наредените двойки от естествени числа.

Разбиваме множеството $\mathbb{N} \times \mathbb{N} = \{(a,b) \mid a,b \in \mathbb{N}\}$ на подмножества S_0, S_1, S_2, \ldots по следния начин

$$\forall k \in \mathbb{N} : S_k = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a + b = k\}$$

$\mathbb{N} \times \mathbb{N}$ е изброимо (2)

Изброяването е следното: при i < j, наредените двойки от S_i преди наредените двойки от S_j , а вътре във всяко S_i нареждаме двойките по нарастващ втори елемент:

$$\underbrace{(0,0)}_{S_0} \ \underbrace{(1,0)}_{S_1} \ \underbrace{(2,0)}_{S_2} \ \underbrace{(1,1)}_{(0,2)} \ \underbrace{(3,0)}_{(2,1)} \ \underbrace{(2,1)}_{(1,2)} \ \underbrace{(0,3)}_{(0,3)} \ \cdots$$

$\mathbb{N} \times \mathbb{N}$ е изброимо (3)

Да си представим наредените двойки от естествени числа в безкрайна таблица.

(a,b)	0	ı	2	3	4	5	6	
u	(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0.6)	
	(4 2)	(1.1)	(1,2)	(1.3)	(1, 4)	(1.5)	(1,6)	***
	(2,0)	(2.4)	(2,2)	(43)	(2,4)	(2.5)	(2,6)	
((3,0)	(2 4)	(3, 2)	(3,3)	(3,4)	(3,5)	(3,6))
1	(4,0)	(4,1)	(4,2)	(4.3)	(4,4)	(4,5	(4,6	
4_	(4,0)	(4, 1)		,	,		,	
5			,		,	`	١	
6_	,	1	<u>'</u>	,		1	,	
			,	١.		٠	•	
	1	i	1	1 '		l	(ı

$\mathbb{N} \times \mathbb{N}$ е изброимо (4)

Да групираме наредените двойки по диагонали.

6.1.)		diag	0	diag 2	di di	ag3	gh d	:095
(0,6) 6	1	X	3	4	5	6		
a 100	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0.6)		
10.6	1(4)	(1.2)	(1,3)	(1,4)	(1.5)	(1,6)		
The second second	(20)	12.2	(23)	(2,4)	(2,5)	(2,6)		
2 (2,0	(2,4)	12/2)		(3,4))	
1 (3,0	1 (8,4)	(4 2)		(4,4)	-	-		-
4 (4,0)(4,1)	(1, 4)		(1, 1)	(1,0)	10		
5/	1	,	`	'	,	`		
6		,		1	'	١		
6-1	+		,		١	,		
		,			•			
		1			1			

$\mathbb{N} \times \mathbb{N}$ е изброимо (5)

Ето визуализация на изброяването

			diag	0	diag 2	di	(a.9.3	egy dia	95
(a,b)	60	W.	K	3	14	5	6	3	
v.	(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0.6)		
	(4.0)	(1.1)	(1.2)	(1,3)	(1,4)		(1,6)		
HAMANO	(2.0)	(2.4)	12.2	(2,3)	(2,4)	(2.5)	(2,6)		
5	(30)	(3.1)	(3,2)	(3,1)	(3,4)	(3,5)	(3,6))	
	(4,0)	(41)	(4,2)		(4,4)			***	
75	4,0	,	,	``	,	,	,		
	/-		,		1	١	. 1		
6_		-		,		١	,		
			,		•	*	•		

Да разгледаме следната функция $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$:

$$f((a,b)) = egin{cases} 0, & ext{ ако } (a,b) = (0,0) \ rac{(a+b)(a+b+1)}{2} + b, & ext{ в противен случай} \end{cases}$$

Това е формалното описание на функцията на изброяването, която въведохме на слайд 36 и илюстрирахме на слайд 39.

Ще докажем, че f е биекция.

$\mathbb{N} \times \mathbb{N}$ е изброимо (7)

Пояснения към функцията на изброяването (1)

Числата от вида $\frac{k(k+1)}{2}$ за $k \in \mathbb{N}$ се наричат *триъгълните числа*. В нарастващ ред на k, редицата от триъгълните числа започва така: $0,1,3,6,10,15,21,\ldots$ Следната визуализация за k>0 показва защо се наричат триъгълните числа .

Лесно се вижда, че триъгълните числа са точно сумите $\sum_{i=0}^k i$, за $k \in \mathbb{N}$.

В израза $\left\lfloor \frac{(a+b)(a+b+1)}{2} + b \right\rfloor$, събираемото $\frac{(a+b)(a+b+1)}{2}$ е точно броят на наредените двойки във всички диагонали преди диагонал номер a+b. То е триъгълното число

$$\frac{(a+b)(a+b+1)}{2} = 1 + 2 + \cdots + (a+b)$$

Събираемото b е броят на елементите **преди** (a,b) в диагонал номер a+b.

$\mathbb{N} \times \mathbb{N}$ е изброимо (9)

f е инекция

Да допуснем, че f не е инекция. Тогава съществуват наредени двойки (a_1,b_1) и (a_2,b_2) , такива че $(a_1,b_1) \neq (a_2,b_2)$ и $f(a_1,b_1)=f(a_2,b_2)$. Нека $a_1+b_1=m_1$ и $a_2+b_2=m_2$.

- Случай 1: $m_1 \neq m_2$. БОО, нека $m_1 < m_2$. Тогава $\frac{m_1(m_1+1)}{2}$ и $\frac{m_2(m_2+1)}{2}$ са различни триъгълни числа, като $\frac{m_1(m_1+1)}{2} < \frac{m_2(m_2+1)}{2}$. Но очевидно $\frac{m_1(m_1+1)}{2} + b_1 < \frac{m_2(m_2+1)}{2}$ за $0 \leqslant b_1 \leqslant m_1$. Противоречие.
- Случай 2: $m_1=m_2$. Тогава трябва b_1 да е различно от b_2 , иначе $a_1=a_2$, което влече $(a_1,b_1)=(a_2,b_2)$. Щом $b_1 \neq b_2$ и $m_1=m_2$, то $\frac{m_1(m_1+1)}{2}+b_1 \neq \frac{m_2(m_2+1)}{2}+b_2$.

Щом f е инекция, обратното и изображение е дефинирано и то е частична функция. Очевидно следният алгоритъм реализира въпросното обратно изображение. Това, че всяко естествено число е образ на някоя наредена двойка по отношение на изображението f доказва, че f е сюрекция (обратното изображение е **тотална** функция).

```
if (n == 0) {a = 0; b = 0;}
else {c = 1;
    while (c <= n) {n = n - c; c ++;}
    a = c - 1 - n; b = n;}
return (a, b);</pre>
```

$2^{\mathbb{N}}$ не е изброимо (1)

Теорема 2

Не съществува биекция $f: 2^{\mathbb{N}} \to \mathbb{N}$.

Доказателство: В доказателството на Теорема 1 беше достатъчно да покажем само един начин за изброяване. Сега обаче не е достатъчно да покажем, че един определен начин за изброяване "не работи". Сега се иска да покажем, че **никой** начин за изброяване "не работи". Ще извършим доказателството с допускане на противното. Допускаме, че $2^{\mathbb{N}}$ е изброимо, тоест, съществува биекция $h: 2^{\mathbb{N}} \to \mathbb{N}$.

$2^{\mathbb{N}}$ не е изброимо (2)

Xарактеристична редица е безкрайна булева редица (a_0, a_1, a_2, \ldots) , която характеризира, или определя, дадено подмножество X на $\mathbb N$ по следното правило. За всяко $n \in \mathbb N$:

- ullet ако $a_n = 1$, то n се съдържа в X,
- ако $a_n = 0$, то n не се съдържа в X.

Ето няколко примера за характеристични редици и подмножествата на \mathbb{N} , които определят:

- (0, 0, 0, . . .) /*само нули*/ определя празното множество;
- (1, 1, 1, ...) /*(само единици)*/ определя самото \mathbb{N} ;
- (1, 0, 1, 0, 1, 0, ...) /*(повтаряне на 10)*/ определя четните числа;
- (0, 1, 1, 0, 0, ...) /*(само две единици)*/ определя {1, 2}.

 $2^{\mathbb{N}}$ не е изброимо (3)

Съществува очевидна биекция между характеристичните редици и подмножествата на \mathbb{N} .

Твърдението "подмножествата на $\mathbb N$ могат да бъдат изброени" става "характеристичните редици на $\mathbb N$ могат да бъдат изброени". Това е допускането, което ще опровергаем.

$2^{№}$ не е изброимо (4)

Допускаме изброяване на характеристичните редици: A_0 , A_1 , ..., като всяка характеристична редица се появява точно веднъж. Нека $A_0=(a_{0,0},a_{0,1},\ldots),\ A_1=(a_{1,0},a_{1,1},\ldots),$ и така нататък. Представяме си ги написани в безкрайна колона:

$$A_0 = (a_{0,0}, a_{0,1}, a_{0,2}, a_{0,3}, \dots)$$

$$A_1 = (a_{1,0}, a_{1,1}, a_{1,2}, a_{1,3}, \dots)$$

$$A_2 = (a_{2,0}, a_{2,1}, a_{2,2}, a_{2,3}, \dots)$$

$$A_3 = (a_{3,0}, a_{3,1}, a_{3,2}, a_{3,3}, \dots)$$

$$\dots$$

$2^{№}$ не е изброимо (5)

Разглеждаме главния диагонал: редицата $X = (a_{0,0}, a_{1,1}, a_{2,2}, a_{3,3}, \dots)$.

$$A_0 = (a_{0,0}, a_{0,1}, a_{0,2}, a_{0,3}, \dots)$$

$$A_1 = (a_{1,0}, a_{1,1}, a_{1,2}, a_{1,3}, \dots)$$

$$A_2 = (a_{2,0}, a_{2,1}, a_{2,2}, a_{2,3}, \dots)$$

$$A_3 = (a_{3,0}, a_{3,1}, a_{3,2}, a_{3,3}, \dots)$$

$$\dots$$

Образуваме нейната "побитова инверсия", редицата $\overline{X}=(\overline{a_{0,0}},\overline{a_{1,1}},\overline{a_{2,2}},\overline{a_{3,3}},\ldots).$

За всяко i,j, $\overline{a_{i,j}}=0$, ако $a_{i,j}=1$, и обратно.

$2^{\mathbb{N}}$ не е изброимо (6)

Щом всяка булева числова редица се среща в изброяването (колоната), трябва и \overline{X} да се среща. Но \overline{X} не може да е A_0 , защото се различават в поне една позиция — нулевата. Ако $a_{0,0}=0$, то $\overline{a_{0,0}}=1$; ако $a_{0,0}=1$, то $\overline{a_{0,0}}=0$.

Аналогично, \overline{X} не може да е A_1 , защото се различават в първата позиция, \overline{X} не може да е A_2 , защото се различават във втората позиция, и така нататък.

Тогава \overline{X} не се среща в колоната; иначе казано, подмножеството B на $\mathbb N$, съответстващо на \overline{X} , няма образ в хипотетичната биекция $h:2^\mathbb N\to\mathbb N$.

Теорема 3

3а всяко множество A, не съществува сюрекция $g:A\to 2^A$.

Да допуснем противното. Тогава съществува A, такова че съществува сюрекция $g:A\to 2^A$. Разглеждаме множеството

$$S = \{ a \in A \mid a \notin g(a) \} \tag{1}$$

Ho $S \in 2^A$ и g е сюрекция, следователно $\exists x \in A : g(x) = S$. Дали $x \in S$?

- Ако $x \in S$, то $x \notin S$ съгласно (1).
- Ако $x \notin S$, то $x \in S$ съгласно (1).

Илюстрация на алтернативното доказателство

Принцип на Dirichlet (the pigeonhole principle)

Известен още като принцип на чекмеджетата

Ако X и Y са крайни множества и |X|>|Y|, то не съществува инекция $f:X\to Y$.

Алтернативна формулировка: ако има m ябълки в n чекмеджета и m>n, то в поне едно чекмедже има повече от една ябълка.

Обобщен принцип на Dirichlet: ако има kn+1 ябълки в n чекмеджета, то в поне едно чекмедже има повече от k ябълки.

Наличие на минимален и максимален елемент в крайни частични наредби (1)

Теорема 4

Нека A е крайно множество и нека $R \subseteq A^2$ е частична наредба. Тогава R има поне един минимален и поне един максимален елемент.

БОО, ще докажем само факта, че съществува минимален елемент. Да допуснем противното. Тогава съществува крайно A и поне една частична наредба R над A, такава че R няма минимален елемент.

Наличие на минимален и максимален елемент в крайни частични наредби (2)

Избираме произволен $a \in A$. По допускане, a не е минимален, така че съществува $b \in A$, такъв че $b \neq a$ и bRa.

По допускане, b не е минимален, така че съществува $c \in A$, такъв че $c \neq b$ и cRb.

И така нататък. Може да изградим колкото искаме дълга верига, завършваща на *а*:

$$p = z, \cdots, c, b, a$$

Правим p с повече от |A| елементи. Съгласно принципа на Dirichlet, p съдържа поне едно повтарящ се елемент x.

Наличие на минимален и максимален елемент в крайни частични наредби (3)

В общия случай, р изглежда така

$$p = z, \dots, x, \dots, x, \dots, c, b, a$$

Може x да е a, или b, или c, или z. Не правим никакви допускания за това. Важното е, че има повтарящ се елемент. Знаем, че двете появи на x не са съседни – дефиницията на "верига" не го позволява.

Забелязваме, че в R има контур:

$$p = z, \cdots, \underbrace{x, \cdots, x}_{\mathsf{TOBA \ e \ KOHTYP}}, \cdots, c, b, a$$

Това противоречи на теоремата, според която в частичните наредби няма контури.

Топологическо сортиране (1)

Теорема 5

Нека A е крайно множество, |A| = n и $R \subseteq A^2$ е частична наредба. Тогава съществува поне едно линейно разширение R' на R.

Доказателството е конструктивно: с алгоритъм, известен като *Topological Sorting*. Няма да строим самото линейно разширение R', а ще построим $B[1,\ldots,n]$, в който ще разположим елементите на A. Разполагането на елементи на множество в масив задава еднозначно линейна наредба. Формално, B и R' са съвършено различни обекти; най-малкото, $|R'| = \frac{n(n+1)}{2}$. Но R' може да бъде конструирана лесно от B.

Топологическо сортиране (2)

Вход: крайно A, като |A|=n; частична наредба $R\subseteq A^2$ Изход: масив B, реализиращ линейно разширение R' на R

- $0 i \leftarrow 1$
- ② избираме произволен $a\in A$, който е минимален елемент на R
- B[i] ← a, изтриваме a от A и от R, правим i++
- ullet ако i = n + 1, върни B, в противен случай иди на ullet.

Алгоритъмът е коректен, тъй като в началото има поне един минимален елемент съгласно Теорема 4, а при всяка следващо достигане на ред ② пак има поне един минимален елемент, тъй като изтриване на елемент от релацията не може да образува цикъл, ерго тя остава частична наредба след всяко изтриване на ред ③.

КРАЙ