RBE 2001 Project Presentation: Team 8

Zachary Rivernider, Yasmine Aoua and Hushmand Esmaeili

Overview of Strategy and Systems

Strategy:

- Our goal is to autonomously complete the entire challenge in one run
- Aim to earn the most amount of bonus points possible
- Fine tune PID for increased accuracy and precision
- Robot completely assembled 3 days prior to demo

Systems:

- Maintain less than 25% stall torque
- Designed gripper to be in toggle point when in locked position
- Designed 18:1 compound transmission
- Designed lifting mechanism base to maximize space for electronics and sensors

Linkage Synthesis Design Process

Video Demonstration of SolidWorks Model

Screenshots of Complete Robot with Aluminum Plate in Max. Reach Positions

Screenshots of Complete Robot with Aluminum Plate in Max. Reach Positions

Video Demo of SolidWorks Motion Study: Crank Torque through Range of Motion

Solidworks Motion Study

Evaluating Solidworks Motion Study

 $T_{\text{MAX}} = 2.575 \text{ in-lbf}$

Lifting Mechanism Force Analysis: Crank Torque and Forces on Joints

Known Parameters:

$$a := 3.053in$$

$$cc := 3.892i$$

$$CG_{xAW4} := 0.06$$

$$B_v := .373 in CB_v := 1$$

$$W_2 := .071571$$

$$W_2 = .07157lbf$$
 $W_3 = 0.56lbf$ Theta₂ = 47.20deg Theta₄ = 79.67deg COM_{3x} = 2.581in COM_{4x} = 1.969in AD_x = 1.933in AD_y = .442in CD_x = 3.862in CD_y = .482in

Supply initial guesses for unknowns:

$$A_x := 21bf$$

$$A_v := 21bf$$
 $B_x := 21bf$

$$B_x := 21b$$

$$B_{y} := 21bf$$

$$C_x := 21bf$$

$$C_y := 21bf$$
 $D_x := 21bf$

$$D_y := 21bf$$

$$M_2 := 4in \cdot lbf$$

$$M_4 := 4in \cdot 1bf$$

From equations of equilibrium we have nine equations with nine unknowns:

Given

From FBE of L2, L3, and L4 as a system:

$$0 = -\mathrm{M}_2 + \mathrm{W}_2 \cdot \mathrm{CG}_{\mathrm{xAW2}} + \mathrm{W}_3 \cdot \mathrm{CG}_{\mathrm{xAW3}} + \mathrm{W}_4 \cdot \mathrm{CG}_{\mathrm{xAW4}} + \mathrm{D}_{\mathrm{x}} \cdot \mathrm{AD}_{\mathrm{y}} + \mathrm{D}_{\mathrm{y}} \cdot \mathrm{AD}_{\mathrm{x}} \ \Sigma \mathrm{M}_{\mathrm{A}} := 0$$

$$0 = A_x - D_x$$

$$0 = A_y + D_y - W_2 - W_3 - W_4$$

$$0 = W_3 \cdot COM_{3x} + C_x \cdot CB_y - C_y \cdot CB_x$$

$$0 = -C_{X} - B_{X}$$

$$0 = B_y - C_y - W_3$$

$$\Sigma M_B := 0$$

 $\Sigma F_x := 0$

 $\Sigma F_v := 0$

$$\sum_{XXX} = 0$$

$$\sum_{i=0}^{\infty} F_{i} = 0$$

From FBE of L4:

$$0 = W_4 \cdot COM_{4x} + C_x \cdot CD_y - C_y \cdot CD_x$$

$$0 = C_x - D_x$$

$$0 = C_v + D_v - W_4$$

$$\Sigma M_D := 0$$

$$\sum_{XXX} = 0$$

$$\sum_{i=0}^{\infty} F_{i} = 0$$

$$SA_X = -0.751bf$$

$$SA_v = 0.551bf$$

$$SB_X = 0.751bf$$

$$SB_y = 0.481bf$$

$$SC_X = -0.751bf$$

$$SC_y = -0.081bf$$

$$SD_x = -0.75 \, \text{lbf}$$

$$SD_v = 0.11bf$$

$$SM_2 = 2.56 \text{ in lbf}$$

Gear Teeth Force Analysis

Given $T := 2.57 \text{in lbf} \qquad r := 1.5 \text{in}$ Guess $F_t := 2 \text{lbf}$ $0 = T - F_t \cdot r \qquad \Sigma M_A := 0$ $Find(F_t) = 1.713 \, \text{lbf}$

Stresses and Factor of Safety of Gear Teeth

Stress Analysis

Factor of Safety

Given

b := .25in P := $24\frac{1}{in}$ T := 2.57in1bf r := 1.5in

Equations

$$t := \frac{\pi}{2P}$$
 $d := 2r$ $F := \frac{(2T)}{d}$ $A := b \cdot t$ $\tau := \frac{F}{A}$

 $\tau = 104.711 \, \text{psi}$

Given

$$\pi_{y} := 104.711 \text{psi}$$
 $\tau_{y} := 2500 \text{psi}$

$$\frac{\tau_{y}}{\tau} = 23.875$$

Gripping Mechanism in Locked Position Force Analysis

$$C_{v} = 1.916 \, lbf$$

$$C_{x} = -0.494 \, lbf$$

Torque of servo is **zero** because the line of action of F_{servo} passes through the pivot point.

 $Find(F_{servo}, C_{v}, C_{x}) =$

Finding
$$E_T$$

Knowns

 $W_P := 0.4 \, \mathrm{lbf} \qquad d_{wp1} := 2 \cdot \mathrm{in} \qquad d_{Fb} := 1.00 \cdot \mathrm{in}$

Guesses for E_T and E_B
 $E_T := 1 \cdot \mathrm{lbf} \qquad E_B := 1 \cdot \mathrm{lbf}$

Given

 $0 = F_B \cdot d_{Fb} - W_P \cdot d_{wp1} \qquad \Sigma M_{prox} = 0$
 $0 = F_B - F_T - W_P \qquad \Sigma F_y = 0$

Find $(F_B, F_T) = \begin{pmatrix} 0.8 \\ 0.4 \end{pmatrix} \, \mathrm{lbf}$

Finding Forces on Joints

Knowns

 $M_{Qb} := 0.4 \, \mathrm{lbf} \qquad d_{CW} := 2.25 \cdot \mathrm{in} \qquad d_{CFt} := 0.25 \cdot \mathrm{in} \qquad d_{CB} := 1 \cdot \mathrm{in}$

theta := 63.69 \deg $K_{Qb} := 0.4 \, \mathrm{lbf}$

Guesses for E_T and E_B
 $E_T := 0.4 \, \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$

Given

 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$

Given

 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$

Given

 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$

Given

 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$
 $0 = F_T := 1 \cdot \mathrm{lbf} \qquad C_T := 1 \cdot \mathrm{lbf}$

Four-Bar Component Speeds at Max. Torque Position

Four-Bar Component Speeds at Max. Torque Position: Linkages Software Results

V_A = 2.105 in/s

Four-Bar Component Speeds at Max. Torque Position: Linkages Software Results

V_B = 1.368 in/s

Four-Bar Component Speeds at Max. Torque Position: Linkages Software Results

 $V_{coupler} = 3.234 in/s$

🖳 Linkages - Stu		,		- Copyright 2017		.7 8/13/2017 Y • 3 • Ve	Print Screen	ag ▼ 3 ▼ Veloc CI	,	- Ang - 3	□ × - Next >
Print 1 V	Set Angle Dec Pics 3	y Se	t Data 3	Functions O 1 O 2		ate System val O Local	ocity of Coupler Poi	nt - X, Y, Mag, Ang Co	ordinate	s v	Refresh
Current M	lodel Paramet	ers		Input Angle (deg)	Veloc CP X (in/sec)	Veloc CP Y (in/sec)	Veloc CP Mag (in/sec)	Veloc CP Ang (deg)	Velo	oc CP X	
Fourbar Linkage	Value	Unit		209.000	0.557	-3.040	3.091	-79.622	Max	4.902	in/sec
Links	4			210.000	0.599	-3.044	3.102	-78.863	Min	-2.004	in/sec
Link 2	3.053	in		211.000	0.642	-3.047	3.114	-78.100	P-P	6.905	in/sec
Link 3	2.000	in		212.000	0.686	-3.050	3.126	-77.333		0.505	
Link 4	3.892	in		213.000	0.729	-3.052	3.138	-76.560	Velo	ic CP Y	
Pivot O4x	1.93	in		214.000	0.774	-3.054	3.150	-75.783	Max	31.579	in/sec
Pivot O4v	0.44	in		215.000	0.818	-3.054	3.162	-75.000	ll llux		
I23-CplrPt	2.402	in		216.000	0.863	-3.054	3.174	-74.213	Min	-3.054	in/sec
CplrPtAng3	89.71	dea		217.000	0.909	-3.053	3.186	-73.420	P-P	34.633	in/sec
Chiroligo	03.71	ucy		218.000	0.955	-3.052	3.198	-72.622			
				219.000	1.001	-3.050	3.210	-71.819	Velo	c CP Mag	
				220.000	1.048	-3.046	3.222	-71.011	Max	31.646	in/sec
)	221.000	1.096	-3.043	3.234	-70.197		0.000	in/sec
				222.000	1.143	-3.038	3.246	-69.378	Min	0.000	III/Sec
				223.000	1.191	-3.032	3.258	-68.554	P-P	31.646	in/sec
Initial				224.000	1.240	-3.026	3.270	-67.724			
Conditions	Value	Unit		225.000	1.288	-3.019	3.282	-66.889	Velo	c CP Ang	
Start	30.0	deg		226.000	1.337	-3.011	3.294	-66.049	Max	269.464	deg
End	405.0	deg		227.000	1.387	-3.002	3.306	-65.203	Min	-89.829	deg
Delta	1.0	deg		228.000	1.436	-2.992	3.319	-64.352		050 555	
Omega2	0.7	rad/s		229.000	1.487	-2.981	3.331	-63.495	P-P	359.293	deg
				230.000	1.537	-2.969	3.343	-62.633			
				231.000	1.588	-2.956	3.356	-61.765		h	
				232.000	1.638	-2.943	3.368	-60.892		Design No	. 1
				233.000	1.690	-2.928	3.381	-60.014		-	
				234.000	1.741	-2.913	3.393	-59.131		10-01-202 at 00:51:2	
				235.000	1.793	-2.896	3.406	-58.242		File:	

Four-Bar Component Speeds at Max. Torque Position: Mathcad Results

Speed of **A** at maximum torque position was found to be 2.105 in/s.

Speed of **B** at maximum torque position was found to be 1.367 in/s.

Speed of **coupler** at maximum torque position was found to be 3.234 in/s.

Answers obtained using Linkages software and Mathcad are the same.

Summary of Sensors

- Ultrasonic sensor (range/distance finder)
 - Used to navigate the field, to find distance between robot and house/loading platform
- IR receiver
 - Used to receive commands from the remote; turns on robot; confirms before moving on to next state.
- QTR Reflector sensor array (line tracking)
 - Used to navigate the field, to trace the line on the field from house to box
- BlueMotor encoder
 - Used to drive the lifting mechanism; indicates position of Blue Motor (through encoder count)
- Chassis motors encoders
 - Used to drive robot chassis; allows for drive() and turnAngle() by keeping track of encoder counts.
- Servo analog input
 - Used to get servos current position to determine whether gripper is completely open or closed

Assembly Video of Gripper

Blue Motor Current Requirement at Max. Torque Position

Blue Motor		Speed (RP)		Torque (in-lb	Current (A)	Pout (W)	Efficiency	Pin (W)	Heat (W)	back-EMF (V)
		0	0.0796	0.705	0.300	0.000	0.000	2,700	2,700	0.000	
Tstall (in-lbf)	0.7047	5	0,0771	0.682	0,292	0,040	1.538	2.624	2.584	0.253	
wnoload (RPM)	158	7	0.0761	0.673	0.288	0.056	2.150	2.594	2,538	0.355	
Inoload (A)	0.033	11	0.0741	0.656	0.281	0.085	3,369	2,533	2.447	0.558	
Istali (A)	0.3	13	0.0731	0.647	0.278	0.099	3-975	2,502	2.403	0.659	
Ref Voltage	9	20	0.0695	0.615	0.266	0.146	6.079	2.396	2,250	1.014	
		27	0.0660	0.584	0.254	0.187	8,152	2.289	2,103	1.369	
R _A	30	33	0.0630	0.558	0.244	0.218	9.902	2.198	1.980	1.673	
		40	0.0595	0.526	0.232	0.249	11.907	2,092	1.843	2.028	
		47	0.0559	0.495	0.221	0.275	13.867	1,985	1.710	2.383	
		53	0.0529	0.468	0.210	0.294	15.504	1.894	1.600	2.687	
$V_T = R_A I_A + E_A$		60	0.0494	0.437	0.199	0,310	17.358	1.787	1.477	3,042	
		67	0.0459	0.406	0.187	0.322	19,138	1.681	1.359	3-397	
		73	0.0428	0.379	0.177	0.327	20.595	1,590	1.262	3/701	
		79	0.0398	0.352	0.167	0.329	21,976	1,499	1.169	4.005	
		80	0.0393	0.348	0.165	0.329	22.198	1.483	1.154	4.056	
		87	0.0358	0.317	0.153	0.326	23,673	1.377	1.051	4.411	
		93	0.0328	0.290	0.143	0.319	24.811	1.286	0.967	4-715	
		100	0.0292	0.259	0.131	0.306	25-955	1.179	0.873	5.070	
		107	0.0257	0.227	0.119	0.288	26.844	1.073	0.785	5.424	
		118.5	0.0199	0.176	0,100	0.247	27.511	0.898	0,651	6,008	
		119	0.0197	0.174	0.099	0.245	27.511	0.890	0.645	6.033	
		121	0.0186	0.165	0.096	0.236	27.478	0.860	0.623	6,134	
		125	0.0166	0.147	0.089	0.218	27.245	0.799	0.581	6.337	
		135	0.0116	0,103	0.072	0.164	25.330	0.647	0.483	6.844	
		142	0.0081	0,071	0,060	0.120	22.187	0.540	0,420	7.199	
		149	0.0045	0.040	0.048	0.071	16.308	0.434	0.363	7:554	
		156	0.00	0.009	0.036	0.016	5.028	0.327	0.311	7.909	

Program Pseudocode

Start robot

Line follow until ultrasonic sensor measures desired distance from house

Raise arm into position for picking up from roof

Open gripper and move forward a bit to have grabber around plate

Close gripper and pause until given signal from IR sensor to continue

Take off plate and drive to block (line following again)

Place plate and pause until given signal from IR sensor to continue

Fully let go and pause until given signal from IR sensor to continue

Grab new plate, fift new plate up and drive to house

Place plate on pins and wait to continue

Release plate, raise lifting mechanism and drive to other side of house (using driveDistance and line tracking)

Pick up plate and pause until given signal from IR sensor to continue

Drive to block and place plate and pause until given signal from IR sensor to continue

Release plate and pause until given signal from IR sensor to continue

Pick up new plate and pause until given signal from IR sensor to continue

Drive back to house and place on pins and pause until given signal from IR sensor to continue

Release

Assembly Video of Lifting Mechanism

Exploded View of Gripper and Bill of Materials (BOM)

TEM NO.	PART NUMBER	QTY.	UNITCOST	EXT. COST	MATERIAL	WEIGHT (LBS)	EXT. WEIGH (LBS)	
1	GRIPPER BOTTOM JAW	1	\$.24	\$0.24	PLA	0.0229	0.0229	
2	SERVO HORN	1	\$0.00	\$0.00	NYLON	0.0004	0.0004	
3	SER∨⊙	1	\$7.95	\$7.95	SERVO	0.0156	0.0156	
4	TOP JAW AND MOUNT	1	\$1.31	\$1.31	PLA	0.0993	0.0993	
5	GRIPPER LINK 3	-1	\$0.10	\$0.10	PLA	0.0076	0.0076	
6	M5 NYLON INSERT LOCKNUT	6	\$.04	\$0.24	STEEL	0	0	
7	M5 X 20 M M BOLT	5	\$0.09	\$0.45	STEEL	0	0	
8	M5 X 45 M M BOLT	1	\$0.13	\$0.13	STEEL	0	0	
				ASSEMBLY C OST \$ 10.42			EXT. WEIGH (LBS) 0.1458	
		0			©			

Exploded View of Four Bar Mechanism and Bill of Materials (BOM)

TEM NO.	PART NUMBER	QIY.	UNIT COST	EXT C OST	MATERIAL	UNIT WEIGHT	EXT. WEIGHT	
1	BASE FIXTURE	1	\$3.41	\$3.41	PLA	0.1637	0.1637	
2	4 INCH AXLE VEX	3	\$0.83	\$2.49	STEEL	0.0023	0.0069	
3	BLUE MOTOR	1	\$5.95	\$5.95	MOTOR	0.696	0.696	
4	72 TO OTH GEAR LINK	2	\$1.08	\$2.16	PLA	0.0716		
5	MOTOR 12 TO OTH GEAR	1	\$0.03	\$0.03	PLA	0.0015	0.0015	
6	12 TOOTH GEAR	2	\$0.03	\$0.06	PLA	0.0016	0.0032	
7	36 TOOTH GEAR	1	\$0.25	\$0.25	PLA	0.016	0.016	
8	GRIPPER SUBASSEMBLY	1	\$ 10.42	\$10.42	GRIPPER SUBASSEMBL Y	0.1568	0.1568	
9	FLAT BEARING VEX	4	\$0.54	\$2.16	DELRIN	0.0034	0.0136	
10	3.892 INCH CURVED LINK	2	\$0.26	\$0.52	PLA	0.0165	0.033	
11	.S IN CH SPACER	2	\$0.03	\$0.06	NYLON	0.0031	0.0062	
12	.25 INCH SPACER	2	\$0.01	\$0.02	PLA	0.0015	0.003	
13	.125 INCH SPACER	2	\$0.01	\$0.02	PLA	8000.0	0.0016	
14	SHAFT COLLAR VEX	8	\$0.56	\$4.48	STEEL	0.0012	0.0096	
15	M3 × 40 MM B OLT	2	\$0.16	\$0.32	STEEL	0.000.0	0.0012	
16	M3 X 0.5 NUT	2	\$0.01	\$0.02	STEEL	0.0001	0.0002	
17	#8-32 LO CK NUTS VEX	8	\$0.04	\$0.32	STEEL	0.0005	0.004	
18	8-32 HEX 5/8 INCH VEX	8	\$0.06	\$0.48	STEEL	0.0006	0.0048	
				ASSEMBLY COST \$33.17			ASSEMBLY WEIGHT (LBS 12645	
			5 14 1	9(9(0)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
	.ms sc	ALE: 1:5	- 	-BAR WITH GR		O CTOBER		