Kaan Aksoy — Feb 27, 2020

Finding Your Birthmate

Problem

You want to find someone whose birthday matches yours. What is the least number of strangers whose birthday you need to ask about to have a 50-50 chance?

Solution

Let X be a random variable representing the number of people you need to ask before finding someone whose birthday matches yours. Then, applying the geometric distribution, we know P(X=n) is:

$$P(X=n) = \left(\frac{364}{365}\right)^n \left(\frac{1}{365}\right)$$

Extending the above, the probability that X is no more than some value n is simply:

$$P(X \le n) = \sum_{i=0}^{n} \left(\frac{364}{365}\right)^{n} \left(\frac{1}{365}\right)$$

To finish this problem, we assign $P(X \le n) = \frac{1}{2}$ and solve for n:

$$\frac{1}{2} = \sum_{i=0}^{n} \left(\frac{364}{365}\right)^{n} \left(\frac{1}{365}\right) = \frac{\frac{1}{365} \left[1 - \left(\frac{364}{365}\right)^{n}\right]}{1 - \frac{364}{365}}$$

$$\frac{1}{2} = \left(\frac{364}{365}\right)^n$$

The first line above comes from applying the formula for the sum of a finite geometric series, which is $s_n = \frac{a_1(1-r^n)}{1-r}$. The final answer is $\log_{\frac{364}{365}} \frac{1}{2} \approx 253$.