第一节 二维随机变量及其联合分布

第二节 边缘分布

第三节 条件分布 🗙

第四节 相互独立的随机变量

第五节 两个随机变量的函数的分布

教学计划: 3次课-9学时

两章 关系	第二章一维 X	第一节 二维(<i>X,Y</i>)	第二节 一边缘分布	## 第三节 ## 相依(条件分布)	第四节 一 独立
分布函数	F(x)	F(x,y)	$F_{X}(x)$ $F_{Y}(y)$	$P(A B) = \frac{P(AB)}{P(B)}$	P(AB) = P(A)P(B)
离散型 分布律	$P\{X = x_k\}$ $= p_k$	$P\{X = x_i, Y = y_j\}$ $= p_{ij}$	$P\{X = x_i\}$ $P\{Y = y_i\}$	$P\{Y = y_j X = x_i\}$ $P\{X = x_i Y = y_j\}$	$P\{X = x_i, Y = y_j\}$ $= P\{X = x_i\} \cdot P\{Y = y_j\}$
连续型 概率 密度	f(x)	f(x,y)	$f_{X}(x) \bigstar f_{Y}(y)$	$f_{Y}(y X = x)$ $f_{X}(x Y = y)$	$f(x,y) = f_X(x) \cdot f_Y(y)$
算概率	$P(x_1 < X \le$	$x_2) = \int_{x_1}^{x_2} f(x) dx$ $= \sum_{x_1 < x_k \le x_2} p_k$	$P\{(X,Y) \in G\} = \iint_G f(x,y) dxdy \bigstar$ $= \sum_{(x_i,y_i)\in G} p_{ij}$		
函数 分布	$Y = g(X)$ $f_X(x) \longrightarrow$	$f_{Y}(y)=F_{Y}'(y)$	$Z = g(X,Y)$ 第五节 $f(x,y) \longrightarrow f_Z(z) = F_Z'(z) \text{ 分布函数法 } \bigstar$		

第一节 二维随机变量及其联合分布 第二节 边缘分布 第四节 相互独立的随机变量 第五节 两个随机变量的函数的分布

第一节 二维随机变量及其联合分布函数

- 二维随机变量及分布函数
 - 二维离散型随机变量及其分布
 - 二维连续型随机变量及其分布

一. 二维随机变量及分布函数

1. 二维随机变量产生的背景

在实际问题中,有很多情况下随机试验的结果需要同时用两个随机变量来描述:

例:为了研究某一地区学龄前儿童的发育情况,对这一地区的儿童进行抽查。对于每个抽查儿童都测量和记录他(她)的体重 W 和身高 H。

样本空间 $S = \{e\} = \{$ 该地区抽查到的儿童 $\}$

而 W(e) 和 H(e) 是定义在 S 上的两个随机变量

(W(e), H(e))称为二维随机变量

一. 二维随机变量及分布函数

1. 二维随机变量产生的背景

在实际问题中,有很多情况下随机试验的结果需要同时用两个随机变量来描述:

例: 炮弹的弹着点的位置需要由它的横坐标和纵坐标来确定。

样本空间 $S = \{e\} = \{$ 炮弹的弹着点的位置 $\}$

X(e) 表示弹着点位置的横坐标

Y(e) 表示弹着点位置的纵坐标

则 X(e) 和 Y(e) 是定义在 S 上的两个随机变量

(X(e), Y(e))称为二维随机变量

一. 二维随机变量及分布函数

2. 二维随机变量的定义

定义1 设 $S = \{e\}$ 是随机试验 E 的样本空间, X = X(e), Y = Y(e) 是定义在 S上的随机变量,由它们构成的向量(X, Y)称为二维随机变量.

- 注: $\triangleright X$, Y 要求定义在同一个样本空间S上.
 - **▶**(X, Y)的几何意义:

可以将二维随机变量(X,Y)看成是平面上的一个随机点的坐标。

第一节 二维随机变量及其联合分布函数

- 二维随机变量及分布函数
 - 二维离散型随机变量及其分布
 - 二维连续型随机变量及其分布

3. 二维随机变量的分布函数

复习:一维随机变量的分布函数

设X是一个一维随机变量,

$$\xrightarrow{\chi}$$

$$F(x) = P(X \le x)$$

3. 二维随机变量的分布函数

$$F(x) = P(X \le x)$$

定义2 设 (X,Y) 是二维随机变量,对任意的实数 x,y,

二元函数 $F(x,y) = P(X \le x, Y \le y)$ (积事件) 称为二维随机变量 (X,Y) 的分布函数或 X与Y 的联合分布函数。

注:

- $\triangleright F(x, y)$ 定义在整个平面上。
- $\triangleright F(x, y)$ 几何意义:

将(X, Y)看成是随机点的坐标,则

F(x, y) = 随机点 (X, Y)落在以 (x, y)

为顶点的左下方无穷矩形内的概率.

$$P(x_1 < X \le x_2) = F(x_2) - F(x_1)$$

$$F(x,y) = P(X \le x, Y \le y)$$

(X, Y)落在矩形区域: $x_1 < x \le x_2, y_1 \le y \le y_2$ 的概率为:

$$\begin{split} &P(x_1 < X \le x_2, y_1 < Y \le y_2) \\ &= F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \end{split}$$

第一节 二维随机变量及其联合分布函数

- 二维随机变量及分布函数
- 二维离散型随机变量及其分布
 - 二维连续型随机变量及其分布

二. 二维离散型随机变量及其分布

1. 二维离散型随机变量的定义

如果二维随机变量(X,Y)可能的取值是有限对或可列对,则称(X,Y)为二维离散型随机变量.

2. 二维离散型随机变量的分布律

设(X,Y)的所有可能取的值为: (x_i,y_j) , $i,j=1,2\cdots$

其相应的概率为: $P_{ij} = P(X = x_i, Y = y_j)$ $i, j = 1, 2, \dots$

称为二维离散型随机变量(X,Y)的概率分布或分布律,或称为X与Y 联合分布律.

$$(X,Y)$$
: $(x_i, y_j), i, j = 1, 2 \cdots$
 $P_{ij} = P(X = x_i, Y = y_j)$ $i, j = 1, 2, \cdots$

注: ➤ 同一维离散型随机变量类似,联合分布律可用下列表格 形式表示:

X	$\boldsymbol{y_0}$	$\boldsymbol{y_1}$	•••	y_j
$\boldsymbol{x_0}$	p_{00}	p_{01}	• • •	p_{0j}
$x_{\underline{1}}$	p_{10}	p_{11}	• • •	p_{1j}
$\dot{x_i}$	p_{i0}	p_{i1}	• • •	p_{ij}
	:	•		•

$$P(X = x_0, Y = y_0) = p_{00}$$
 $P(X = x_0, Y = y_1) = p_{01}$
 $P(X = x_1, Y = y_0) = p_{10}$

》联合分布律需满足: $(1)p_{ij} \ge 0$, $(2)\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}p_{ij} = 1$

例1 从 $1,2,3,\dots$ 21 数中任取一个数n,

当n 能被 2 整除时,随机变量 X=1; 当n 不能被 2 整除时,随机变量 X=0; 当n 能被 3整除时,随机变量 Y=1; 当n 不能被 3 整除时,随机变量 Y=0.

求: (X,Y)的分布律

解:由题意可知:X取值为0,1;Y的取值为0,1(X,Y):(0,0) (0,1) (1,0) (1,1)

解:
$$(X,Y)$$
: $(0,0)$ $(0,1)$ $(1,0)$ $(1,1)$

$$P(X=0,Y=0)=\frac{7}{21}$$

$$P(X=0,Y=1)=\frac{4}{21}$$

$$P(X=1,Y=0)=\frac{7}{21}$$

$$P(X=1,Y=1)=\frac{3}{21}$$

3,

6,12,18这3个数能被2 整除,又能被3整除

不难验证:
$$p_{ij} > 0$$
, $\sum_{0}^{1} \sum_{0}^{1} p_{ij} = \frac{7}{21} + \frac{4}{21} + \frac{7}{21} + \frac{3}{21} = 1$

第一节 二维随机变量及其联合分布函数

- ✓ 二维随机变量及分布函数
- ✓ 二维离散型随机变量及其分布
- 二维连续型随机变量及其分布

复习:一维连续型随机变量

X 为连续型随机变量:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

性质1
$$f(x) \ge 0$$

性质2
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

性质3
$$P(x_1 < X \le x_2) = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$$

性质4
$$F'(x) = f(x)$$

三. 二维连续型随机变量及其分布

1. 二维连续型随机变量的定义及概率密度

定义3 对于二维随机变量(X,Y) 的分布函数F(x,y), 若存在非负函数f(x,y), 对任意的x,y有:

$$F(x,y) = P\{X \le x, Y \le y\} = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

则称 (X,Y) 是二维连续型随机变量,f(x,y)为 (X,Y) 的联合概率密度.

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t) dt$$

2. 概率密度的性质

性质1
$$f(x,y) \ge 0$$

性质2
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1$$

性质3 若f(x,y)在点(x,y)处连续,

则:
$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$$

性质4 设 $G \in XOY$ 平面上的一个区域,则点(X,Y)落在G内的概率为:

$$\bigstar P\{(X,Y) \in G\} = \iint_G f(x,y) \, dx \, dy$$

- $1 \quad f(x) \ge 0$
- $2 \int_{-\infty}^{\infty} f(x) dx = 1$
- 3 $P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(x) dx$
- $4 \quad F'(x) = f(x)$

概率密度曲面下面的体积是1

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

注: 一维连续型随机变量的三种常用分布可推广到二维随机 变量上。

②②:
$$X \sim U(a,b)$$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & 其它 \end{cases}$$

$$X \sim E(\lambda) \qquad f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{其他} \end{cases}$$

$$X \sim N(\mu, \sigma^2) \qquad f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

注: 一维连续型随机变量的三种常用分布可推广到二维随机 变量上。

$$\mathbf{1}^{0} \quad \stackrel{}{\text{Z}} f(x,y) = \begin{cases} \frac{1}{(b_{1} - a_{1})(b_{2} - a_{2})} & a_{1} \leq x \leq b_{1} \\ a_{2} \leq y \leq b_{2} \\ 0 & \stackrel{}{\text{其它}} \end{cases}$$

则称 (X,Y)在矩形区域上服从均匀分布。

$$X \sim U(a,b)$$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \exists \dot{\Xi} \end{cases}$$

则称 (X,Y) 平面区域D上服从均匀分布,A是D的面积。

$$X \sim U(a,b)$$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & 其它 \end{cases}$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1$$

(X,Y) 只能在平面有限 区域上服从均匀分布。

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1$$

则称 (X,Y) 服从参数为 λ 的指数分布.

$$X \sim E(\lambda)$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{其他} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & \text{其他} \end{cases}$$

 3^0 若 f(x,y)

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1$$

$$=\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]}$$

其中: $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 为5个常数,

则称 (X,Y) 服从参数为 $\mu_1,\mu_2,\sigma_1,\sigma_2,\rho$ 的正态分布.

$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$

$$X \sim N(\mu, \sigma^2) \quad f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

正态曲面下面的体积是1

例2 设
$$f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0 \\ 0, & 其它 \end{cases}$$

求: (X,Y) 落在 G 内的概率

G: x + y = 1 及 x 轴, y 轴所围区域

$$y = 1$$

$$x + y = 1$$

解:
$$P\{(X,Y) \in G\} = \iint_G f(x,y) dxdy = \iint_G e^{-(x+y)} dxdy$$

$$= \int_0^1 \mathbf{d}x \int_0^{1-x} e^{-(x+y)} \mathbf{d}y = \int_0^1 \mathbf{d}x \int_0^{1-x} e^{-x} dy = -\int_0^1 e^{-x} dx \int_0^{1-x} e^{-y} d(-y)$$

$$= -\int_0^1 e^{-x} \left(e^{-y} \Big|_0^{1-x} \right) dx = -\int_0^1 e^{-x} \left(e^{x-1} - 1 \right) dx = -\int_0^1 \left(e^{-1} - e^{-x} \right) dx$$

$$= \int_0^1 (e^{-x} - e^{-1}) dx = \int_0^1 e^{-x} dx - \int_0^1 e^{-1} dx = -\int_0^1 e^{-x} d(-x) - e^{-1} \int_0^1 dx$$

$$= -e^{-x} \Big|_{0}^{1} - e^{-1}x \Big|_{0}^{1} = -(e^{-1} - 1) - e^{-1}(1 - 0) = 1 - 2e^{-1} \approx 0.2642$$

$$P\{(X,Y) \in G\} = \iint_G f(x,y) \, dx \, dy$$

例3. 设随机变量 (X,Y) 在矩形域: $a \le x \le b$, $c \le y \le d$ 内服从均匀分布。

求:
$$(1)(X,Y)$$
联合概率密度

$$(2) P(X \leq b, Y \leq \frac{c+d}{2})$$

解: (1) 由题意在 $a \le x \le b$, $c \le y \le d$ 区域内

(X,Y) 服从均匀分布,所以联合概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{(b-a)(d-c)} & a \le x \le b, c \le y \le d \\ 0 &$$
其它

$$(2) P(X \leq b, Y \leq \frac{c+d}{2})$$

$$= \iint_{C} f(x, y) \, dx \, dy$$

$$\begin{array}{c|c}
c & \cdots \\
\hline
c & \cdots \\
\hline
c & a & b
\end{array}$$

$$(b, \frac{c+d}{2})$$

$$= \int_{-\infty}^{b} \int_{-\infty}^{\frac{c+d}{2}} f(x,y) dx dy = \int_{a}^{b} \int_{c}^{\frac{c+d}{2}} \frac{1}{(b-a)(c-d)} dx dy$$

$$= \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{\frac{c+d}{2}} dx dy = \frac{(b-a)(\frac{c+d}{2}-c)}{(b-a)(d-c)}$$

$$= \frac{\frac{1}{2}(d-c)}{d-c} = \frac{1}{2}$$

$$f(x,y) = \begin{cases} \frac{1}{(b-a)(d-c)}, & a \le x \le b, \\ \hline (b-a)(d-c), & c \le y \le d, \end{cases}$$
① 其它

例4 设二维随机变
$$P\{(X,Y) \in G\} = \iint_G f(x,y) dx dy$$

$$f(x,y) = \begin{cases} 6x, & 0 \le x \le y \le 1 & \text{----概率密度取值非零区域} \\ 0, & \text{其它} & \text{求 } P\{X+Y \le 1\} \end{cases}$$

解:
$$P\{X + Y \le 1\} = \iint_{C} f(x, y) dx dy = \iint_{D} f(x, y) dx dy = \iint_{D} 6x dx dy$$

$$= \int_0^{\frac{1}{2}} dx \int_x^{1-x} 6x dy = \int_0^{\frac{1}{2}} 6x dx \int_x^{1-x} dy = \int_0^{\frac{1}{2}} 6x (y \Big|_x^{1-x}) dx$$

$$= \int_0^{\frac{1}{2}} 6x(1-2x) dx = \int_0^{\frac{1}{2}} (6x-12x^2) dx$$

$$= \int_0^{\frac{1}{2}} 6x dx - \int_0^{\frac{1}{2}} 12x^2 dx = 6 \cdot \frac{x^2}{2} \Big|_0^{\frac{1}{2}} - 12 \cdot \frac{x^3}{3} \Big|_0^{\frac{1}{2}}$$

$$=3[(\frac{1}{2})^2-0]-4[(\frac{1}{2})^3-0]=\frac{1}{4}$$

 $\triangleright D$ 是积分区域G和概率密度取值非零区域的交集

归纳题目类型:

$$f(x,y) \longrightarrow P\{(X,Y) \in G\} \bigstar$$

$$P\{(X,Y) \in G\} = \iint_G f(x,y) dxdy = \iint_D f(x,y) dxdy$$

 $\triangleright D$ 是积分区域G和概率密度取值非零区域的交集。

第一节 二维随机变量及其联合分布函数

- ✓ 二维随机变量及分布函数
- ✓ 二维离散型随机变量及其分布
- ✓ 二维连续型随机变量及其分布

练习

」设随机变量 (X,Y) 的概率密度为:

$$f(x,y) = \begin{cases} k(6-x-y), & 0 \le x \le 2, 2 \le y \le 4 \\ 0 & \text{#$\dot{\mathbf{r}}$} \end{cases}$$

求: (1) 常数k;

- (2) $P(X \le 1, Y \le 3), P(X \le 1.5);$
- (3) $P(X+Y \le 4)$.

练习

设随机变量 (X,Y) 的概率密度为:

$$f(x,y) = \begin{cases} k(6-x-y), & 0 \le x \le 2, 2 \le y \le 4 \\ 0 & 其它 \end{cases}$$

 $\begin{array}{c|c}
 & y \\
 & 4 \\
\hline
 & D \\
\hline
 & 0 \\
\hline
 & x \\
\end{array}$

求: (1) 常数k;

解: (1)

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \iint_{D} f(x, y) dx dy = \int_{0}^{2} dx \int_{2}^{4} k(6 - x - y) dy$$

$$= k \int_{0}^{2} dx \left[\int_{2}^{4} (6 - x) dy - \int_{2}^{4} y dy \right] = k \int_{0}^{2} \left[(6 - x) y \Big|_{2}^{4} - \frac{1}{2} y^{2} \Big|_{2}^{4} \right] dx$$

$$= k \int_{0}^{2} \left[2(6 - x) - 6 \right] dx = k \int_{0}^{2} (6 - 2x) dx = k \left[6x \Big|_{0}^{2} - x^{2} \Big|_{0}^{2} \right] = 8k$$

$$\therefore k = 1/8$$

练习 设随机变量 (X,Y) 的概率密度为:

$$f(x,y) = \begin{cases} \frac{1/8}{6}(6-x-y), & 0 \le x \le 2, 2 \le y \le 4 \\ 0 & \text{#$\dot{\mathbf{r}}$} \end{cases}$$

求: (2)
$$P(X \le 1, Y \le 3)$$
, $P(X \le 1.5)$;

解:
$$P(X \le 1, Y \le 3) = \int_{-\infty}^{1} \int_{-\infty}^{3} f(x, y) dx dy$$

$$= \iint_{\mathbb{R}} f(x,y) dxdy = \int_{0}^{1} dx \int_{2}^{3} \frac{1}{8} (6-x-y) dy$$

$$= \frac{1}{8} \int_0^1 dx \left[\int_2^3 (6-x) dy - \int_2^3 y dy \right] = \frac{1}{8} \int_0^1 \left[(6-x)y \Big|_2^3 - \frac{1}{2} y^2 \Big|_2^3 \right] dx$$

$$= \frac{1}{8} \int_0^1 \left[(6-x) - \frac{5}{2} \right] dx = \frac{1}{8} \int_0^1 \left(\frac{7}{2} - x \right) dx = \frac{1}{8} \left(\frac{7}{2} x \Big|_0^1 - \frac{1}{2} x^2 \Big|_0^1 \right)$$

$$=\frac{1}{8}(\frac{7}{2}-\frac{1}{2})=\frac{3}{8}$$

$$P\{(X,Y) \in G\} = \iint_G f(x,y) dx dy$$

|x|

练习

设随机变量 (X,Y) 的概率密度为:

$$f(x,y) = \begin{cases} 1/8(6-x-y), & 0 \le x \le 2, 2 \le y \le 4 \\ 0 & \text{ #$\dot{\mathbf{r}}$} \end{cases}$$

求: (2)
$$P(X \le 1, Y \le 3)$$
, $P(X \le 1.5)$;

解:
$$P(X \le 1.5) = \int_{-\infty}^{1.5} \int_{-\infty}^{+\infty} f(x, y) dx dy = \iint_{D} f(x, y) dx dy$$

$$= \int_0^{1.5} dx \int_2^4 \frac{1}{8} (6 - x - y) dy = \frac{1}{8} \int_0^{1.5} \left[(6 - x) y \Big|_2^4 - \frac{1}{2} y^2 \Big|_2^4 \right] dx$$

$$= \frac{1}{8} \int_0^{1.5} \left[2(6-x) - 6 \right] dx = \frac{1}{8} \int_0^{1.5} (6-2x) dx = \frac{1}{8} \left(6x \Big|_0^{1.5} - x^2 \Big|_0^{1.5} \right)$$

$$=\frac{1}{8}(9-2.25)=\frac{6.75}{8}=0.84375$$

$$P\{(X,Y) \in G\} = \iint_G f(x,y) dx dy$$

练习 设随机变量 (X,Y) 的概率密度为:

$$f(x,y) = \begin{cases} 1/8(6-x-y), & 0 \le x \le 2, 2 \le y \le 4 \\ 0 & \text{ #$\dot{\mathbf{r}}$} \end{cases}$$

求: (3) $P(X+Y \leq 4)$.

$$\begin{array}{c|c}
y \\
2 \\
D \\
x + y = 4 \\
\vdots \\
x \\
2
\end{array}$$

解:
$$P(X+Y \le 4) = \iint_{x+y\le 4} f(x,y) dxdy = \iint_{D} f(x,y) dxdy$$

$$= \int_0^2 dx \int_2^{4-x} \frac{1}{8} (6-x-y) dy = \frac{1}{8} \int_0^2 \left[\int_2^{4-x} (6-x) dy - \int_2^{4-x} y dy \right] dx$$

$$= \frac{1}{8} \int_0^2 \left[(6-x)y \Big|_2^{4-x} - \frac{1}{2}y^2 \Big|_2^{4-x} \right] dx = \frac{1}{16} \int_0^2 \left[12 - 8x + x^2 \right] dx$$

$$= \frac{1}{16} \left[12x - 4x^2 + \frac{1}{3}x^3 \right]_0^2$$

$$=\frac{1}{16}[24-16+\frac{8}{3}]=\frac{2}{3}$$

$$P\{(X,Y) \in G\} = \iint_G f(x,y) dx dy$$

第三章 多维随机变量及其分布

第一节 二维随机变量及其联合分布

第二节 边缘分布

第四节 相互独立的随机变量

第五节 两个随机变量的函数的分布

第三章 多维随机变量及其分布

第二节 边缘分布

离散型随机变量的边缘分布律

连续型随机变量的边缘概率密度

一维离散型随机变量的分布律

X的分布律:

X	0	1	2	3	4	5	
P_{k}	$\frac{1}{12}$	1 6	$\frac{1}{3}$	$\frac{1}{12}$	2 9	$\frac{1}{9}$	

▶分布律需满足: $(1)p_k \ge 0$, $(2)\sum_{k=1}^{\infty} p_k = 1$

一. 离散型随机变量的边缘分布律

已知 $P(X = x_i, Y = y_j) = P_{ij}$ 为 (X,Y) 的联合分布律

XY	$\boldsymbol{y_0}$	$\boldsymbol{y_1}$	• • •	\boldsymbol{y}_{j}	• • •	
$\boldsymbol{x_0}$	p_{00}	p_{01}	• • •	p_{0j}	• • •	
x_1	p_{10}	p_{11}	•••	p_{1j}	•••	
x_{i}	$oldsymbol{p_{i0}} \ dots$	$p_{i1} \\ \vdots$	• • •	$p_{ij} \ dots$	• • •	
$P(Y=y_j)$						

一. 离散型随机变量的边缘分布律

已知 $P(X = x_i, Y = y_j) = P_{ij}$ 为 (X,Y) 的联合分布律

X	\mathcal{Y}_0	$\boldsymbol{y_1}$	•••	\boldsymbol{y}_{j}	• • •	
$\boldsymbol{x_0}$	p_{00}	p_{01}	•••	p_{0j}	• • •	
x_1	p_{10}	p_{11}	• • •	p_{1j}	•••	
x_{i}	$p_{i0} \\ \vdots$	$p_{i1} \\ \vdots$	•••	$oldsymbol{p}_{ij} \ dots$	•••	
$P(Y=y_j)$	$P_{ullet 0}$					

$$P\{Y = y_0\} = P\{X = x_0, Y = y_0\} + P\{X = x_1, Y = y_0\} + \dots + P\{X = x_i, Y = y_0\} + \dots$$

$$= \sum_{i=0}^{+\infty} p_{i0} = p_{\bullet 0}$$

一. 离散型随机变量的边缘分布律

已知 $P(X = x_i, Y = y_j) = P_{ij}$ 为 (X,Y) 的联合分布律

X	$\boldsymbol{y_0}$	$\boldsymbol{y_1}$	• • •	\boldsymbol{y}_{j}	• • •	$P(X=x_i)$
$\boldsymbol{x_0}$	p_{00}	p_{01}		p_{0j}	• •	P_{0ullet}
x_1	p_{10}	p_{11}	• • •	$p_{_{1j}}$		P _{1•}
x_i	p_{i0}	p_{i1}	• • •	$oldsymbol{p}_{ij}$	•••	$P_{iullet}^{:}$
$P(Y = y_j)$	$P_{ullet 0}$	$P_{\bullet 1}$		$P_{ullet j}$: 1

注意:

- 1. 习惯上常将边缘分布律写在联合分布律表格的边缘上,由此得出边缘分布这个名词.
- 2. 由联合分布律可以确定边缘分布律,但由边缘分布律一般不能确定联合分布律.

例1. 设随机变量 X 在 1, 2, 3, 4 四个整数中等可能地取值; 另一随机变量 Y 在 $1 \sim X$ 中等可能地取一整数.

求: 二维随机变量 (X,Y) 的边缘分布律 $P_{i.}$ 与 $P_{.j}$

解: 先出求出 (X,Y) 的联合分布律

(1) 因为 X 的取值是1, 2, 3, 4, 所以 Y 的取值也是1, 2, 3, 4.

X	1	2	3	4	$P_{i.}$
1					
2					
3					
4					
$P_{.j}$					

例1. 设随机变量 <i>X</i> 在	XY	1	2	3	4	P_{i} .						
另一随机变量Ya	1	1/4	0	0	0	1/4						
求: 二维随机变量	2	1/8	1/8	0	0	1/4						
解: 先出求出 (X,Y) 自	3	1/12	1/12	1/12	0	1/4						
	4	1/16	1/16	1/16	1/16	1/4						
(1) 因为 X 的取值是 $1, P(X=1,Y=1) = P(X=1,Y=1)$	$P_{.j}$	25/48	13/48	7/48	3/48	1						
P(X = 1, Y = 2) = P(X = 1, Y = 2)	$X = 1) \cdot P$	(Y=2 X	(1 = 1) = 1	$\sqrt{4\cdot0}=0$)							
P(X = 1, Y = 3) = 1/4		•										
P(X = 2, Y = 1) = P(X	$(z=2)\cdot P$	(Y=1 X)	= 2) = 1	/ 4 · 1 / 2 =	1/8							
		ı	·	•	$P(X = 2, Y = 2) = P(X = 2) \cdot P(Y = 2 X = 2) = 1/4 \cdot 1/2 = 1/8$							
$P(X=2,Y=3) = P(X=2) \cdot P(Y=3 X=2) = 1/4 \cdot 0 = 0$ $P(X=2,Y=3) = P(X=2) \cdot P(Y=3 X=2) = 1/4 \cdot 0 = 0$												
		•										

(1) (*X*,*Y*)的联合 分布律为:

XY	1	2	3	4	$P_{i.}$
1	1/4	0	0	0	1/4
2	1/8	1/8	0	0	1/4
3	1/12	1/12	1/12	0	1/4
4	1/16	1/16	1/16	1/16	1/4
$P_{.j}$	25/48	13/48	7/48	3/48	1

(2) (X,Y)的边缘分布律为:

\boldsymbol{X}	1	2	3	4
P_{k}	1/4	$\frac{1}{4}$	1 4	1 4

练习

把一枚均匀硬币抛掷三次,设X为三次抛掷中正面出现的次数,Y为正面出现次数与反面出现次数之差的绝对值.

求: (X,Y)的联合分布律与边缘分布律.

解: X --- 三次抛掷中正面出现的次数, 故可取值: 0, 1, 2, 3

三次抛掷中反面出现的次数, 可取值: 3, 2, 1, 0

Y---正面次数与反面次数差的绝对值,可取值: 3,1,1,3

(X,Y)可取值: (0,3),(1,1),(2,1),(3,3)

$$P(X = 0, Y = 3) = (1/2)^3 = 1/8$$

$$P(X=1,Y=1) = C_3^1(1/2)^3 = 3/8$$

$$P(X = 2, Y = 1) = C_3^2 (1/2)^3 = 3/8$$

$$P(X = 3, Y = 3) = (1/2)^3 = 1/8$$

联合分布律:

XY	1	3	
0	0	1/8	
1	3/8	0	
2	3/8	0	
3	0	1/8	

X---三次抛掷中正面出现的次数, 故可取值: 0, 1, 2, 3

三次抛掷中反面出现的次数, 可取值: 3, 2, 1, 0

Y---正面次数与反面次数差的绝对值,可取值: 3,1,1,3

(X,Y)可取值: (0,3),(1,1),(2,1),(3,3)

求: X, Y 的边缘分布律

X	0	1	2	3
P	1/8	3/8	3/8	1/8

Y	1	3
P	3/4	1/4

联合分布律:

	XY	1	3	$P(X=x_i)$
	0	0	1/8	1/8
	1	3/8	0	3/8
	2	3/8	0	3/8
	3	0	1/8	1/8
P(Y)	$= y_j$	6/8	2/8	1

第三章 多维随机变量及其分布

第二节 边缘分布

✓ 离散型随机变量的边缘分布律

— 连续型随机变量的边缘概率密度

作业

授课内容	习题三		
3.1 二维随机变量	1(1)(2)离散,3连续		
3.2 边缘分布	6离散,7,8,9连续		
3.4 相互独立的随机变量	16(2), 18, 19连续,		
3.5 随机变量函数的分布	21(1),22		

袋中有红黑白球数分别为1,2,3。现有放回从袋中取球两次,每次取一个球。以X,Y,Z分别表示两次取球所取得的红黑白球的个数。(1) 求 $P\{X=1|Z=0\}$; (2) 求二维随机变量(X,Y)的概率分布。

解:

(1)
$$P\{X=1|Z=0\} = \frac{P\{X=1,Z=0\}}{P\{Z=0\}} = \frac{4}{9}$$

$$P{X = 1, Z = 0} = P{X = 1, Y = 1} = \frac{1}{6} \cdot \frac{2}{6} + \frac{2}{6} \cdot \frac{1}{6} = \frac{4}{36}$$

$$P{Z = 0} = P{X = 1, Y = 1} + P{X = 2, Y = 0} + P{X = 0, Y = 2}$$

$$= 2 \times \frac{1}{6} \cdot \frac{2}{6} + \frac{1}{6} \cdot \frac{1}{6} + \frac{2}{6} \cdot \frac{2}{6} = \frac{9}{36}$$

解2:
$$P\{X=1|Z=0\}=P\{X=1,Y=1\}=\frac{1}{3}\cdot\frac{2}{3}+\frac{2}{3}\cdot\frac{1}{3}=\frac{4}{9}$$

袋中有红黑白球数分别为1,2,3。现有放回从袋中取球两次,每次取一个球。以X,Y,Z分别表示两次取球所取得的红黑白球的个数。(1) 求 $P\{X=1|Z=0\}$; (2) 求二维随机变量(X,Y)的概率分布。

解:

(2)
$$P\{X = 0, Y = 0\} = \frac{3}{6} \cdot \frac{3}{6} = \frac{9}{36}$$
 $P\{X = 0, Y = 1\} = 2 \times \frac{2}{6} \cdot \frac{3}{6} = \frac{12}{36}$ $P\{X = 0, Y = 2\} = \frac{2}{6} \cdot \frac{2}{6} = \frac{4}{36}$ $P\{X = 1, Y = 0\} = 2 \times \frac{1}{6} \cdot \frac{3}{6} = \frac{6}{36}$ $P\{X = 1, Y = 1\} = 2 \times \frac{1}{6} \cdot \frac{2}{6} = \frac{4}{36}$ $P\{X = 1, Y = 2\} = 0$ $P\{X = 2, Y = 0\} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$ $P\{X = 2, Y = 0\} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$ $P\{X = 1, Y = 2\} = 0$ $P\{X = 2, Y = 0\} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$ $P\{X = 1, Y = 2\} = 0$ $P\{X = 2, Y = 0\} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$ $P\{X = 1, Y = 2\} = 0$ $P\{X = 2, Y = 0\} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$ $P\{X = 1, Y = 2\} = 0$ $P\{X = 2, Y = 0\} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$ $P\{X = 1, Y = 2\} = 0$ $P\{X = 2, Y = 0\} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$ $P\{X = 1, Y = 2\} = 0$ $P\{X = 2, Y = 0\} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$ $P\{X = 1, Y = 1\} =$

袋中有红黑白球数分别为1,2,3。现有放回从袋中取球两次,每次取一个球。以X,Y,Z分别表示两次取球所取得的红黑白球的个数。(1) 求 $P\{X=1|Z=0\}$; (2) 求二维随机变量(X,Y)的概率分布。

解:

(3) 求X,Y的边缘分布律

(4) *X*,*Y*是否相互独立? **显然不**相互独立。

X	0	1	2	
P	25/36	10/36	1/36	
Y	0	1	2	
P	16/36	16/36	4/36	

X^{Y}	0	1	2	
0	9/36	12/36	4/36	25/36
1	6/36	4/36	0	10/36
2	1/36	0	0	1/36
	16/36	16/36	4/36	

