Momentum. Acceleration. Optimal methods Optimization in ML

Aleksandr Beznosikov

Skoltech

28 November 2023

Questions from previous lectures

• We obtained an upper bound on the convergence of gradient descent for L-smooth and μ -strongly convex problems. Question: how many iterations/oracle calls should be made to find a ε -solution?

Questions from previous lectures

• We obtained an upper bound on the convergence of gradient descent for L-smooth and μ -strongly convex problems. Question: how many iterations/oracle calls should be made to find a ε -solution?

$$O\left(\frac{L}{\mu}\log\frac{\|x^0-x^*\|_2}{\varepsilon}\right)$$
 iterations/oracle calls.

Questions from previous lectures

• We obtained an upper bound on the convergence of gradient descent for L-smooth and μ -strongly convex problems. Question: how many iterations/oracle calls should be made to find a ε -solution?

$$O\left(\frac{L}{\mu}\log\frac{\|x^0-x^*\|_2}{\varepsilon}\right)$$
 iterations/oracle calls.

• The question we're going to answer today is: can we do better?

Heavy ball method

• B.T. Polyak proposed the heavy ball method in 1964.

Algorithm 1 Heavy ball method

Input: stepsizes $\{\gamma_k\}_{k=0} > 0$, momentums $\{\tau_k\}_{k=0} \in [0;1]$, starting point $x^0 = x^{-1} \in \mathbb{R}^d$, number of iterations K

- 1: for k = 0, 1, ..., K 1 do
- 2: Compute $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma_k \nabla f(x^k) + \tau_k (x^k x^{k-1})$
- 4: end for

Output: x^K

Heavy ball method

• B.T. Polyak proposed the heavy ball method in 1964.

Algorithm 2 Heavy ball method

Input: stepsizes $\{\gamma_k\}_{k=0} > 0$, momentums $\{\tau_k\}_{k=0} \in [0; 1]$, starting point $x^0 = x^{-1} \in \mathbb{R}^d$, number of iterations K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Compute $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma_k \nabla f(x^k) + \tau_k (x^k x^{k-1})$
- 4: end for

Output: x^K

• Let us add a momentum term to the gradient descent — assume that the point responsible for the current position value x^k has inertia.

Aleksandr Beznosikov Lecture 8.2 28 November 2023 3 / 29

Comparison of heavy ball and gradient descent

Comparison of heavy ball and gradient descent

heavy-ball method

An interactive illustration is available at the link.

Aleksandr Beznosikov

Pros and cons

Question: what pros and cons of the heavy ball method do you see?

Pros and cons

Question: what pros and cons of the heavy ball method do you see? Pros

- Understandable physics and intuition.
- Easy to implement.
- Cheapness of computation.

Cons

- Now we need to choose two parameters. Now we only know how to estimate γ_k in theory. Now we need to do something about τ_k Typically, τ_k is taken to be close to 1 or to limit to 1.
- We were going for the acceleration of gradient descent. Does it even exist in the general case?

Pros and cons

Question: what pros and cons of the heavy ball method do you see? Pros

- Understandable physics and intuition.
- Easy to implement.
- Cheapness of computation.

Cons

- Now we need to choose two parameters. Now we only know how to estimate γ_k in theory. Now we need to do something about τ_k Typically, τ_k is taken to be close to 1 or to limit to 1.
- We were going for the acceleration of gradient descent. Does it even exist in the general case? No...

Aleksandr Beznosikov

Accelerated gradient method

Y.E. Nesterov proposed an accelerated gradient method in 1983.

Algorithm 3 Accelerated gradient method

Input: stepsizes $\{\gamma_k\}_{k=0} > 0$, momentums $\{\tau_k\}_{k=0} \in [0; 1]$, starting point $x^0 = y^0 \in \mathbb{R}^d$, number of iterations K

- 1: for k = 0, 1, ..., K 1 do
- 2: Compute $\nabla f(y^k)$
- 3: $x^{k+1} = y^k \gamma_k \nabla f(y^k)$
- 4: $y^{k+1} = x^{k+1} + \tau_k(x^{k+1} x^k)$
- 5: end for

Output: x^K

Accelerated gradient and heavy ball methods

 Question: What is the key difference between Nesterov's method and the heavy ball?
 Heavy ball method:

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k) + \tau_k (x^k - x^{k-1})$$

Accelearated gradient method:

$$x^{k+1} = y^k - \gamma_k \nabla f(y^k)$$

$$y^{k+1} = x^{k+1} + \tau_k (x^{k+1} - x^k)$$

Accelerated gradient and heavy ball methods

 Question: What is the key difference between Nesterov's method and the heavy ball?
 Heavy ball method:

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k) + \tau_k (x^k - x^{k-1})$$

Accelearated gradient method:

$$x^{k+1} = y^k - \gamma_k \nabla f(y^k)$$

$$y^{k+1} = x^{k+1} + \tau_k (x^{k+1} - x^k)$$

Let us rewrite the accelerated gradient method:

$$x^{k+1} = x^k + \tau_k(x^k - x^{k-1}) - \gamma_k \nabla f(x^k + \tau_k(x^k - x^{k-1})).$$

Momentum at the gradient counting point/«look ahead»/extrapolation

Aleksandr Beznosikov Lecture 8.2 28 November 2023

Accelerated gradient method

- The convergence of Nesterov's method is proved in the book.
- Now there are modifications of Nesterov's idea that also achieve the same result.

Algorithm 4 Linear coupling: inner loop

Input: stepsizes $\{\gamma_k\}_{k=0} > 0$ and $\{\eta_k\}_{k=0} > 0$, momentums $\{\tau_k\}_{k=0} \in [0;1]$, starting point $x^0 = y^0 = z^0 \in \mathbb{R}^d$, number of iterations K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Compute $\nabla f(x^k)$
- 3: $y^{k+1} = x^k \eta_k \nabla f(x^k)$
- 4: $z^{k+1} = z^k \gamma_k \nabla f(x^k)$
- 5: $x^{k+1} = \tau_k z^{k+1} + (1 \tau_k) y^{k+1}$
- 6: end for

Output: $\frac{1}{K} \sum_{k=0}^{K-1} x^k$

'To prove we need

The method itself (with fixed parameters):

Algorithm 5 Linear coupling: inner loop

Input: stepsizes $\gamma > 0$ and $\eta > 0$, momentums $\tau \in [0; 1]$, starting point $x^0 = y^0 = z^0 \in \mathbb{R}^d$. number of iterations K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Compute $\nabla f(x^k)$
- 3: $y^{k+1} = x^k \eta \nabla f(x^k)$
- 4: $z^{k+1} = z^k \gamma \nabla f(x^k)$
- 5: $x^{k+1} = \tau z^{k+1} + (1-\tau)y^{k+1}$
- 6: end for

Output: $\frac{1}{K} \sum_{k=0}^{K-1} x^k$

μ-strong convexity and L-smoothness:

$$\frac{\mu}{2}\|x-y\|_2^2 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{L}{2}\|x-y\|_2^2.$$

Aleksandr Beznosikov Lecture 8.2 28 November 2023

Use line 4 of Algorithm 5:

$$||z^{k+1} - x^*||_2^2 = ||z^k - \gamma \nabla f(x^k) - x^*||_2^2$$

$$= ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), z^k - x^* \rangle + \gamma^2 ||\nabla f(x^k)||^2$$

$$= ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle$$

$$- 2\gamma \langle \nabla f(x^k), z^k - x^k \rangle + \gamma^2 ||\nabla f(x^k)||^2.$$
(1)

Use line 4 of Algorithm 5:

$$||z^{k+1} - x^*||_2^2 = ||z^k - \gamma \nabla f(x^k) - x^*||_2^2$$

$$= ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), z^k - x^* \rangle + \gamma^2 ||\nabla f(x^k)||^2$$

$$= ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle$$

$$- 2\gamma \langle \nabla f(x^k), z^k - x^k \rangle + \gamma^2 ||\nabla f(x^k)||^2.$$
 (1)

Let us estimate $\left[-\langle \nabla f(x^k), z^k - x^k \rangle\right]$ and $\|\nabla f(x^k)\|^2$.

Start with $\|\nabla f(x^k)\|^2$ and use smoothness

$$f(y^{k+1}) \le f(x^k) + \langle \nabla f(x^k), y^{k+1} - x^k \rangle + \frac{L}{2} ||y^{k+1} - x^k||_2^2.$$

Start with $\|\nabla f(x^k)\|^2$ and use smoothness

$$f(y^{k+1}) \le f(x^k) + \langle \nabla f(x^k), y^{k+1} - x^k \rangle + \frac{L}{2} ||y^{k+1} - x^k||_2^2.$$

Let us substitute the iterative step for y^{k+1} (line 3 Algorithm 5):

$$f(y^{k+1}) \le f(x^k) - \eta \|\nabla f(x^k)\|_2^2 + \frac{L\eta^2}{2} \|\nabla f(x^k)\|_2^2.$$

= $f(x^k) - \eta \left(1 - \frac{L\eta}{2}\right) \|\nabla f(x^k)\|_2^2.$

Start with $\|\nabla f(x^k)\|^2$ and use smoothness

$$f(y^{k+1}) \le f(x^k) + \langle \nabla f(x^k), y^{k+1} - x^k \rangle + \frac{L}{2} ||y^{k+1} - x^k||_2^2.$$

Let us substitute the iterative step for y^{k+1} (line 3 Algorithm 5):

$$f(y^{k+1}) \le f(x^k) - \eta \|\nabla f(x^k)\|_2^2 + \frac{L\eta^2}{2} \|\nabla f(x^k)\|_2^2.$$

= $f(x^k) - \eta \left(1 - \frac{L\eta}{2}\right) \|\nabla f(x^k)\|_2^2.$

Let us choose $\eta \in (0; \frac{2}{L})$, then

$$\|\nabla f(x^k)\|_2^2 \le \frac{2}{\eta(2-L\eta)} (f(x^k) - f(y^{k+1})). \tag{2}$$

Aleksandr Beznosikov Lecture 8.2 28 November 2023 11 /

Combine (1) and (2):

$$||z^{k+1} - x^*||_2^2 \le ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle + \frac{2\gamma^2}{\eta(2 - L\eta)} (f(x^k) - f(y^{k+1})) + 2\gamma \langle \nabla f(x^k), x^k - z^k \rangle.$$
(3)

Combine (1) and (2):

$$||z^{k+1} - x^*||_2^2 \le ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle + \frac{2\gamma^2}{\eta(2 - L\eta)} (f(x^k) - f(y^{k+1})) + 2\gamma \langle \nabla f(x^k), x^k - z^k \rangle.$$
(3)

It remains $\left[-\langle \nabla f(x^k), z^k - x^k \rangle\right]$.

Use 5 of Algorithm 5:

$$\langle \nabla f(x^k), x^k - z^k \rangle = \langle \nabla f(x^k), x^k - \frac{1}{\tau} (x^k - (1 - \tau) y^k) \rangle$$
$$= \frac{1 - \tau}{\tau} \langle \nabla f(x^k), y^k - x^k \rangle.$$

Use 5 of Algorithm 5:

$$\langle \nabla f(x^k), x^k - z^k \rangle = \langle \nabla f(x^k), x^k - \frac{1}{\tau} (x^k - (1 - \tau) y^k) \rangle$$
$$= \frac{1 - \tau}{\tau} \langle \nabla f(x^k), y^k - x^k \rangle.$$

Next take into account:

$$\langle \nabla f(x^k), x^k - z^k \rangle \le \frac{1 - \tau}{\tau} (f(y^k) - f(x^k)). \tag{4}$$

Connect (3) and (4):

$$||z^{k+1} - x^*||_2^2 \le ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle$$

$$+ \frac{2\gamma^2}{\eta(2 - L\eta)} (f(x^k) - f(y^{k+1}))$$

$$+ 2\gamma \cdot \frac{1 - \tau}{\tau} (f(y^k) - f(x^k)).$$

Let us adjust the parameters as follows $\frac{\gamma}{\eta(2-L\eta)}=\frac{1-\tau}{\tau}$:

$$||z^{k+1} - x^*||_2^2 \le ||z^k - x^*||_2^2 - 2\gamma \langle \nabla f(x^k), x^k - x^* \rangle + \frac{2\gamma^2}{\eta(2 - L\eta)} (f(y^k) - f(y^{k+1})).$$

Rearrange:

$$2\gamma \langle \nabla f(x^k), x^k - x^* \rangle \le ||z^k - x^*||_2^2 - ||z^{k+1} - x^*||_2^2 + \frac{2\gamma^2}{\eta(2 - L\eta)} (f(y^k) - f(y^{k+1})).$$

Rearrange:

$$2\gamma \langle \nabla f(x^k), x^k - x^* \rangle \le ||z^k - x^*||_2^2 - ||z^{k+1} - x^*||_2^2 + \frac{2\gamma^2}{\eta(2 - L\eta)} (f(y^k) - f(y^{k+1})).$$

Next we use convexity:

$$2\gamma(f(x^{k}) - f(x^{*})) \le ||z^{k} - x^{*}||_{2}^{2} - ||z^{k+1} - x^{*}||_{2}^{2} + \frac{2\gamma^{2}}{\eta(2 - L\eta)}(f(y^{k}) - f(y^{k+1})).$$

Summing up by k and averaging:

$$\frac{2\gamma}{K} \sum_{k=0}^{K-1} (f(x^k) - f(x^*)) \leq \frac{1}{K} \sum_{k=0}^{K-1} \left(\|z^k - x^*\|_2^2 - \|z^{k+1} - x^*\|_2^2 \right) \\
+ \frac{2\gamma^2}{\eta(2 - L\eta)K} \sum_{k=0}^{K-1} (f(y^k) - f(y^{k+1})) \\
= \frac{1}{K} \left(\|z^0 - x^*\|_2^2 - \|z^K - x^*\|_2^2 \right) \\
+ \frac{2\gamma^2}{\eta(2 - L\eta)K} (f(y^0) - f(y^K)) \\
\leq \frac{\|x^0 - x^*\|_2^2}{K} + \frac{2\gamma^2 (f(y^0) - f(x^*))}{\eta(2 - L\eta)K}.$$

Substituting starting points: $x^0 = y^0 = z^0$ and using Jensens's inequality:

$$2\gamma \left[f\left(\frac{1}{K}\sum_{k=0}^{K-1} x^k\right) - f(x^*) \right] \leq \frac{\|x^0 - x^*\|_2^2}{K} + \frac{2\gamma^2 (f(x^0) - f(x^*))}{\eta(2 - L\eta)K}.$$

Substituting starting points: $x^0 = y^0 = z^0$ and using Jensens's inequality:

$$2\gamma \left[f\left(\frac{1}{K} \sum_{k=0}^{K-1} x^k\right) - f(x^*) \right] \leq \frac{\|x^0 - x^*\|_2^2}{K} + \frac{2\gamma^2 (f(x^0) - f(x^*))}{\eta (2 - L\eta)K}.$$

Next we use μ -strong convexity

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right) - f(x^{*}) \leq \frac{f(x^{0}) - f(x^{*})}{2\mu\gamma K} + \frac{\gamma(f(x^{0}) - f(x^{*}))}{\eta(2 - L\eta)K}$$
$$= \left(\frac{1}{2\mu\gamma K} + \frac{\gamma}{\eta(2 - L\eta)K}\right)(f(x^{0}) - f(x^{*})).$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Aleksandr Beznosikov Lecture 8.2 28 November 2023 17 /

Optimizing estimation with the choice of $\eta = \frac{1}{L}$:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \left(\frac{1}{2\mu\gamma K}+\frac{\gamma L}{K}\right)(f(x^0)-f(x^*)).$$

Optimizing estimation with the choice of $\eta = \frac{1}{L}$:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \left(\frac{1}{2\mu\gamma K}+\frac{\gamma L}{K}\right)(f(x^0)-f(x^*)).$$

And with the choice of $\gamma = \frac{1}{\sqrt{2\mu L}}$:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*})\leq\sqrt{\frac{2L}{\mu K^{2}}}(f(x^{0})-f(x^{*})).$$

And then
$$K=\sqrt{\frac{8L}{\mu}}$$

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*})\leq \frac{1}{2}(f(x^{0})-f(x^{*})).$$

And then
$$K=\sqrt{rac{8L}{\mu}}$$

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \frac{1}{2}(f(x^0)-f(x^*)).$$

Question: why?

And then
$$K=\sqrt{rac{8L}{\mu}}$$

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \frac{1}{2}(f(x^0)-f(x^*)).$$

Question: why? for K iterations we are guaranteed to get 2 times closer to the solution. Then let this be one iteration of our new outer algorithm. That is, we run linear coupling for K iterations, and therefore restart with a new starting point $\frac{1}{K}\sum_{k=0}^{K-1}x^k$ taken from the last coupling run. These are called restarts.

Proof

Then, after T restarts:

$$f(x^T) - f(x^*) \le \frac{1}{2^T} (f(x^0) - f(x^*)).$$

From where we can immediately get oracle complexity:

$$\begin{split} f\left(x^T\right) - f(x^*) &\leq \frac{1}{2^T} (f(x^0) - f(x^*)) \leq \varepsilon. \\ T &\geq \log_2 \left(\frac{f(x^0) - f(x^*)}{\varepsilon}\right) \\ \mathcal{K} \cdot T &= O\left(\sqrt{\frac{L}{\mu}} \log_2 \frac{f(x^0) - f(x^*)}{\varepsilon}\right) \quad \text{oracle calls.} \end{split}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

Convergence of linear coupling

Theorem onconvergence of linear coupling

Let the unconditional optimization problem with L-smooth, μ -simply convex objective function f be solved using restored linear kapling. Then with $\eta=\frac{1}{L}$, $\gamma=\frac{1}{\sqrt{2\mu L}}$ and $K=\sqrt{\frac{8L}{\mu}}$, to achieve accuracy ε on the function $(f(x)-f(x^*)\leq \varepsilon)$, we need

$$O\left(\sqrt{\frac{L}{\mu}}\log\frac{f(x^0)-f(x^*)}{\varepsilon}
ight)$$
 oracle calls.

Questions remain

- A better method than gradient descent.
- But can we do more?
- Question: how do we know if it can be better?

Questions remain

- A better method than gradient descent.
- But can we do more?
- Question: how do we know if it can be better? to get lower bounds.

Questions remain

- A better method than gradient descent.
- But can we do more?
- Question: how do we know if it can be better? to get lower bounds.
- To get lower bounds, we don't need to come up with a method, but a «bad» function that any method will take a «long» time to optimize. Question: what does «any method» mean here?

• An initial point x^0 is given. This initial point gives rise to some set M_0 – the set of all points reached so far (at a given step k). $M_0 = \{x^0\}$.

- An initial point x^0 is given. This initial point gives rise to some set M_0 the set of all points reached so far (at a given step k). $M_0 = \{x^0\}$.
- On the current oracle call, the method can count the gradient of the function at the point x^k : $\nabla f(x^k)$, where $x^k \in M_k$, that is, the method can count the gradient at all the points it has already reached. Initially, we can only calculate the gradient at x^0 .

- An initial point x^0 is given. This initial point gives rise to some set M_0 the set of all points reached so far (at a given step k). $M_0 = \{x^0\}$.
- On the current oracle call, the method can count the gradient of the function at the point x^k : $\nabla f(x^k)$, where $x^k \in M_k$, that is, the method can count the gradient at all the points it has already reached. Initially, we can only calculate the gradient at x^0 .
- $M_{k+1} = \text{span}\{x', \nabla f(x'')\}$ (linear envelope), where $x', x'' \in M_k$.

- An initial point x⁰ is given. This initial point gives rise to some set M₀
 the set of all points reached so far (at a given step k). M₀ = {x⁰}.
- On the current oracle call, the method can count the gradient of the function at the point x^k : $\nabla f(x^k)$, where $x^k \in M_k$, that is, the method can count the gradient at all the points it has already reached. Initially, we can only calculate the gradient at x^0 .
- $M_{k+1} = \text{span}\{x', \nabla f(x'')\}$ (linear envelope), where $x', x'' \in M_k$.
- After K of oracle calls, the output of the method is some point of M_K .

- An initial point x⁰ is given. This initial point gives rise to some set M₀
 the set of all points reached so far (at a given step k). M₀ = {x⁰}.
- On the current oracle call, the method can count the gradient of the function at the point x^k : $\nabla f(x^k)$, where $x^k \in M_k$, that is, the method can count the gradient at all the points it has already reached. Initially, we can only calculate the gradient at x^0 .
- $M_{k+1} = \text{span}\{x', \nabla f(x'')\}$ (linear envelope), where $x', x'' \in M_k$.
- After K of oracle calls, the output of the method is some point of M_K .

Question: do the methods we have studied fit this definition?

- An initial point x^0 is given. This initial point gives rise to some set M_0 the set of all points reached so far (at a given step k). $M_0 = \{x^0\}$.
- On the current oracle call, the method can count the gradient of the function at the point x^k : $\nabla f(x^k)$, where $x^k \in M_k$, that is, the method can count the gradient at all the points it has already reached. Initially, we can only calculate the gradient at x^0 .
- $M_{k+1} = \text{span}\{x', \nabla f(x'')\}$ (linear envelope), where $x', x'' \in M_k$.
- After K of oracle calls, the output of the method is some point of M_K .

Question: do the methods we have studied fit this definition? yes, gradient descent, heavy ball method, linear coupling, and accelerated gradient method.

- An initial point x^0 is given. This initial point gives rise to some set M_0 the set of all points reached so far (at a given step k). $M_0 = \{x^0\}$.
- On the current oracle call, the method can count the gradient of the function at the point x^k : $\nabla f(x^k)$, where $x^k \in M_k$, that is, the method can count the gradient at all the points it has already reached. Initially, we can only calculate the gradient at x^0 .
- $M_{k+1} = \text{span}\{x', \nabla f(x'')\}$ (linear envelope), where $x', x'' \in M_k$.
- After K of oracle calls, the output of the method is some point of M_K .

Question: do the methods we have studied fit this definition? yes, gradient descent, heavy ball method, linear coupling, and accelerated gradient method.

Question: are all the methods that count the gradient included here?

Aleksandr Beznosikov

Lecture 8.2

28 November 2023

23 / 29

- An initial point x⁰ is given. This initial point gives rise to some set M₀
 the set of all points reached so far (at a given step k). M₀ = {x⁰}.
- On the current oracle call, the method can count the gradient of the function at the point x^k : $\nabla f(x^k)$, where $x^k \in M_k$, that is, the method can count the gradient at all the points it has already reached. Initially, we can only calculate the gradient at x^0 .
- $M_{k+1} = \text{span}\{x', \nabla f(x'')\}$ (linear envelope), where $x', x'' \in M_k$.
- After K of oracle calls, the output of the method is some point of M_K .

Question: do the methods we have studied fit this definition? yes, gradient descent, heavy ball method, linear coupling, and accelerated gradient method.

Question: are all the methods that count the gradient included here? no, see the next lectures.

«Bad» function

A quadratic (its sufficient) function:

$$f(x) = \frac{L - \mu}{8} x^T A x + \frac{\mu}{2} x^T x - \frac{L - \mu}{4} e_1^T x,$$

where

 ζ will be defined later.

«Bad» function

A quadratic (its sufficient) function:

$$f(x) = \frac{L - \mu}{8} x^T A x + \frac{\mu}{2} x^T x - \frac{L - \mu}{4} e_1^T x,$$

where

 ζ will be defined later.

The function L is smooth and μ -strongly convex (homework problem).

Question: what can we say about the solution?

Question: what can we say about the solution? Strong convex problem — the only one solution.

Question: what can we say about the solution? Strong convex problem — the only one solution.

Question: how to find?

Question: what can we say about the solution? Strong convex problem — the only one solution.

Question: how to find? Optimality condition:

$$\nabla f(x^*) = 0$$

or

$$Ax^* + \frac{4\mu}{L - \mu}x^* - e_1 = 0$$

Question: what can we say about the solution? Strong convex problem — the only one solution.

Question: how to find? Optimality condition:

$$\nabla f(x^*) = 0$$

or

$$Ax^* + \frac{4\mu}{L - \mu}x^* - e_1 = 0$$

Let us rewrite it component by component. The first component:

$$2x_1^*-x_2^*+rac{4\mu}{L-\mu}x_1^*-1=0$$
 или $rac{2(L+\mu)}{L-\mu}\cdot x_1^*-x_2^*=1$

Question: what can we say about the solution? Strong convex problem — the only one solution.

Question: how to find? Optimality condition:

$$\nabla f(x^*) = 0$$

or

$$Ax^* + \frac{4\mu}{L - \mu}x^* - e_1 = 0$$

Let us rewrite it component by component. The first component:

$$2x_1^*-x_2^*+rac{4\mu}{L-\mu}x_1^*-1=0$$
 или $rac{2(L+\mu)}{L-\mu}\cdot x_1^*-x_2^*=1$

All coordiantes (not 1st and last):

$$-x_{k-1}^* + \frac{2(L+\mu)}{L-\mu}x_k^* - x_{k+1}^* = 0$$

Aleksandr Beznosikov Lecture 8.2 28 November 2023 25 / 29

Last coordinate:

$$-x_{d-1}^* + \zeta x_d^* + \frac{4\mu}{L-\mu} x_d^* = 0$$
 или $-x_{d-1}^* + \left(\zeta + \frac{4\mu}{L-\mu}\right) x_d^* = 0$

Last coordinate:

$$-x_{d-1}^* + \zeta x_d^* + rac{4\mu}{L-\mu} x_d^* = 0$$
 или $-x_{d-1}^* + \left(\zeta + rac{4\mu}{L-\mu}
ight) x_d^* = 0$

We can see that all equations (except the 1st and last one) are simply linear recurrence. The solution is as follows if ζ is chosen correctly:

$$x_k^* = q^k, \qquad q = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$

Let us take the starting point $x^0 = (0...0)^T$.

Let us take the starting point $x^0 = (0...0)^T$. Gradient:

$$\nabla f(x) = \frac{L-\mu}{4} Ax + \mu x - \frac{L-\mu}{4} e_1$$

Let us take the starting point $x^0 = (0...0)^T$. Gradient:

$$\nabla f(x) = \frac{L - \mu}{4} Ax + \mu x - \frac{L - \mu}{4} e_1$$

Note that $\nabla f(x^0) \in \operatorname{span}(e_1)$,

Let us take the starting point $x^0 = (0...0)^T$. Gradient:

$$\nabla f(x) = \frac{L-\mu}{4} Ax + \mu x - \frac{L-\mu}{4} e_1$$

Note that $\nabla f(x^0) \in \text{span}(e_1)$, so it turns out that for the first oracle call only the first coordinate of the method output can be non-zero

Let us take the starting point $x^0 = (0...0)^T$. Gradient:

$$\nabla f(x) = \frac{L-\mu}{4} Ax + \mu x - \frac{L-\mu}{4} e_1$$

Note that $\nabla f(x^0) \in \operatorname{span}(e_1)$, so it turns out that for the first oracle call only the first coordinate of the method output can be non-zero After the second oracle call: $\nabla f(x^1) \in \operatorname{span}(e_1,e_2)$, $x^1 \in M_1$, that is, for 2 oracle calls, at most 2 of the first coordinates can be non-zero.

Let us take the starting point $x^0 = (0...0)^T$. Gradient:

$$\nabla f(x) = \frac{L - \mu}{4} Ax + \mu x - \frac{L - \mu}{4} e_1$$

Note that $\nabla f(x^0) \in \operatorname{span}(e_1)$, so it turns out that for the first oracle call only the first coordinate of the method output can be non-zero After the second oracle call: $\nabla f(x^1) \in \operatorname{span}(e_1,e_2)$, $x^1 \in M_1$, that is, for 2 oracle calls, at most 2 of the first coordinates can be non-zero. After K oracle calls, only the first K of coordinates can be non-zero, the rest are exactly zero.

«Bad» function: guarantees

Let us take d = 2K, where K is the number of oracle calls. **Question:** why?

«Bad» function: guarantees

Let us take d = 2K, where K is the number of oracle calls. Question: why?

Initial distance to solution:

$$||x^0 - x^*||_2^2 = \sum_{i=1}^{2K} q^{2i} = (1 + q^{2K}) \sum_{i=1}^{K} q^{2i}$$

«Bad» function: guarantees

Let us take d = 2K, where K is the number of oracle calls. **Question:** why?

Initial distance to solution:

$$||x^0 - x^*||_2^2 = \sum_{i=1}^{2K} q^{2i} = (1 + q^{2K}) \sum_{i=1}^{K} q^{2i}$$

After K of oracle calls, the final output can be evaluated as follows (only the first K of coordinates are non-zero):

$$||x^{K} - x^{*}||^{2} \ge \sum_{i=K+1}^{2K} q^{2i} = q^{2K} \sum_{i=1}^{K} q^{2i} = \frac{q^{2K}}{1 + q^{2K}} ||x^{0} - x^{*}||_{2}^{2}$$
$$\ge \frac{q^{2K}}{2} ||x^{0} - x^{*}||_{2}^{2} = \left(1 - \frac{2\sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^{2K} \frac{||x^{0} - x^{*}||_{2}^{2}}{2}$$

Aleksandr Beznosikov Lecture 8.2 28 November 2023 28 / 29

Lower bound on oracle complexity

For any method from the class described above, there exists an unconditional optimization problem with L-smooth, μ -strongly convex objective function f such that to solve this problem the method needs to

$$\Omega\left(\sqrt{\frac{L}{\mu}}\log\frac{\|x^0-x^*\|_2}{\varepsilon}\right) \text{ oracle calls}.$$

Lower bound on oracle complexity

For any method from the class described above, there exists an unconditional optimization problem with L-smooth, μ -strongly convex objective function f such that to solve this problem the method needs to

$$\Omega\left(\sqrt{\frac{L}{\mu}}\log\frac{\|x^0-x^*\|_2}{\varepsilon}\right) \text{ oracle calls}.$$

• Linear coupling is the optimal method in terms of oracle calls for L-smooth and μ -strongly convex problems.

Lower bound on oracle complexity

For any method from the class described above, there exists an unconditional optimization problem with L-smooth, μ -strongly convex objective function f such that to solve this problem the method needs to

$$\Omega\left(\sqrt{\frac{L}{\mu}}\log\frac{\|x^0-x^*\|_2}{\varepsilon}\right) \text{ oracle calls}.$$

- Linear coupling is the optimal method in terms of oracle calls for L-smooth and μ -strongly convex problems.
- For L-smooth and convex problems too.

<ロト < 回 ト < 亘 ト < 亘 ト ○ 亘 ・ り へ ◎

Lower bound on oracle complexity

For any method from the class described above, there exists an unconditional optimization problem with L-smooth, μ -strongly convex objective function f such that to solve this problem the method needs to

$$\Omega\left(\sqrt{\frac{L}{\mu}}\log\frac{\|x^0-x^*\|_2}{\varepsilon}\right) \text{ oracle calls}.$$

- Linear coupling is the optimal method in terms of oracle calls for L-smooth and μ -strongly convex problems.
- For L-smooth and convex problems too.
- For the accelerated gradient method the results are the same.

4 D > 4 A > 4 B > 4 B > B = 900

Aleksandr Beznosikov Lecture 8.2 28 November 2023 29 / 29