

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЁТ

по домашней работе

Вариант №37

Дисциплина: Основы проектирования устройств ЭВМ

Студент	ИУ6-62Б		И.С. Марчук
	группа	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			С.В. Ибрагимов
		(Подпись, дата)	(И.О. Фамилия)

ВВЕДЕНИЕ

Цель работы

В ходе выполнения домашнего задания необходимо разработать устройство управления схемного типа, обрабатывающее входное командное слово $C=\{ABCDEF\}$ и выдающее сигналы управления $M=\{M0,...,Mk-1\}$ операционному блоку в соответствии с приведенной в индивидуальном задании логикой работы.

ОСНОВНАЯ ЧАСТЬ

Условие

Таблица 1 - Варианты диаграмм и активных сигналов

]	Вариант	Диаграмма	Активные сигналы М в состоянии									
	_	переходов	S1	S2	S3	S4	S5	S6				
	37	1	2	0	1,7	5,6	3	4				

Вариант 1

Рисунок 1 – Диаграмма переходов

Таблица 2 - Условия переходов и наименование отладочной платы («@» - иначе, « X» - НЕ X, «+» - ИЛИ, 1- безусловный переход)

	Название		Активные сигналы в М состоянии													
Вариант	отладочной платы	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
37.	Spartan3	@	ABC	A_B	@	E+D	F	@	D_F	@	A+_C	_A	AB	@	@	1

Таблица 3 - Активные сигналы для переходов

Вариант					Активные сигналы в М состоянии										
Барпант	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	Y13	Y14	Y15
37	-	-	-	-	5,6	5,7	-	4	6,7	2	5	-	-	ı	-

Этап 1

По диаграмме переходов автомата (Приложение 1) и описанию условий переходов и активных сигналов (дополнительный файл варианты.pdf), определить тип управляющего автомата (автомат Мили или Мура, смешанный). Выбор обосновать.

Произвести кодирование состояний управляющего автомата. Составить схему переходов/состояний полученного автомата. Схему представить в отчете.

Рисунок 2 - Схема автомата

Предложенный автомат является смешанным, так как некоторые выходные сигналы зависят только от текущего состояния (признака автомата Мура), и некоторых от двух состояний – текущего и прошлого (автомат Мили)

Этап 2

Разработать описание устройства управления на языке VHDL, для чего использовать приведенные в Приложении 2 шаблоны для автоматов Мили и Мура.

Листинг 1 – Описание устройства на языке VHDL

```
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.STD LOGIC ARITH.ALL;
USE IEEE.STD LOGIC UNSIGNED.ALL;
ENTITY control unit IS
PORT (
     C : IN std logic vector (5 DOWNTO 0);
     CLK : IN std logic; RST : IN std logic;
     M : OUT std logic vector (7 DOWNTO 0) );
END control unit;
ARCHITECTURE arch control unit OF control unit IS
     TYPE STATE TYPE IS (s1, s2, s3, s4, s5, s6);
     SIGNAL current state: STATE TYPE := s1;
BEGIN
PROCESS (clk, rst)
BEGIN
     IF (rst='1') THEN
          M <= "00000000";
          current state <= s1;</pre>
     ELSIF (CLK'EVENT AND CLK='1') THEN
          CASE current state IS
          WHEN S1 =>
               M <= "00000100";
```

```
IF (C(0)='1' \text{ AND } C(1)='1' \text{ AND } C(2)='1') THEN
          current state <= S2;
     ELSIF (C(0)='1' AND C(1)='0') THEN
          current state <= S4;
     ELSE
          current state <= S1;</pre>
     END IF;
WHEN S2 =>
     M \le "00000001";
     IF (C(4) = '1') OR (C(3) = '1') THEN
          M \le "01100000";
          current state <= S3;
     ELSE
           current state <= S2;
     END IF;
WHEN S3 =>
     M <= "10000010";
     IF (C(0) = '1' \text{ AND } C(1) = '1') THEN
          current state <= S1;</pre>
     ELSIF (C(0) = '0') THEN
          M \le "00100000";
          current state <= S6;
     ELSE
           current state <= S3;
     END IF;
WHEN S4 =>
     M <= "01100000";
     IF (C(3) = '1' \text{ AND } C(5) = '0') THEN
          M \le "00010000";
           current state <= S5;</pre>
     ELSIF (C(5) = '1') THEN
          M \le "10100000";
          current state <= S3;</pre>
     ELSE
           current state <= S4;
```

```
END IF;
          WHEN S5 =>
                M <= "00001000";
                IF (C(0)='1') OR (C(2)='0') THEN
                     M <= "00000100";
                     current state <= S6;</pre>
                ELSE
                     M <= "11000000";
                     current state <= S5;</pre>
                END IF;
          WHEN S6 =>
                M <= "00010000";
                current state <= S1;</pre>
          END CASE;
     END IF;
END PROCESS;
END arch control unit;
```

Разработать тестовое описание для устройства, представляющее собой генератор входных сигналов. Тестовое описание должно обеспечивать проверку всех ветвей автомата.

Таблица 4 – Обход всех ветвей

A	В	С	D	Е	F	Дуга	Сигналы
0	_	-	_	-	-	$S1 \rightarrow S1$	2
1	1	1	-	-	-	$S1 \rightarrow S2$	2
-	-	-	0	0	-	$S2 \rightarrow S2$	0
-	-	-	-	1	-	$S2 \rightarrow S3$	5,6
1	0	-	-	-	-	$S3 \rightarrow S3$	1,7
1	1	-	-	-	-	S3 -> S1	1,7
1	0	-	-	-	-	S1 -> S4	2
-	_	-	0	-	0	S4 -> S4	5,6

-	-	-	1	-	0	S4 -> S5	4
0	-	1	-	-	-	S5 -> S5	6,7
1	-	-	-	-	_	$S5 \rightarrow S6$	2
-	-	-	-	-	_	S6 -> S1	4
1	0	-	-	-	-	S1 -> S4	2
-	-	-	-	-	1	S4 -> S3	5,7
0	-	-	-	-	-	S3 -> S6	5

Пропущенные значения в таблице могут принимать любой значение 0, или 1.

Листинг 2 – Тестовое описания для устройства

```
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.STD LOGIC UNSIGNED.ALL;
USE IEEE.NUMERIC STD.ALL;
ENTITY test IS
END test;
ARCHITECTURE arch test OF test IS
COMPONENT control unit PORT (
     M : OUT STD LOGIC VECTOR(7 DOWNTO 0);
     CLK : IN STD LOGIC;
     RST : IN STD LOGIC;
     C : IN STD LOGIC VECTOR (5 DOWNTO 0)
);
END COMPONENT;
     SIGNAL M : STD LOGIC VECTOR(7 DOWNTO 0);
     SIGNAL CLK : STD LOGIC := '0';
     SIGNAL RST : STD LOGIC := '0';
     SIGNAL C : STD LOGIC VECTOR(5 DOWNTO 0) := (OTHERS => '0');
     CONSTANT CLK PERIOD : TIME := 10NS;
BEGIN
     UUT : control unit
     PORT MAP (
          M => M
```

```
CLK => CLK,
     RST => RST,
     C => C
);
CLK PROCESS : PROCESS
BEGIN
     CLK <= '0';
     WAIT FOR CLK_PERIOD/2;
     CLK <= '1';
     WAIT FOR CLK PERIOD/2;
END PROCESS CLK PROCESS;
SIM PROC : PROCESS
BEGIN
     RST <= '0';
     WAIT FOR CLK PERIOD;
     C \le "000000"; --S1 -> S1
     RST <= '1';
     WAIT FOR CLK PERIOD;
     WAIT FOR CLK_PERIOD;
     C \leftarrow "000111"; --S1 -> S2
     WAIT FOR CLK_PERIOD;
     C \le "000000"; --S2 -> S2
     WAIT FOR CLK PERIOD;
     C \le "010000"; --S2 -> S3
     WAIT FOR CLK_PERIOD;
     C \leftarrow "000001"; --s3 -> s3
     WAIT FOR CLK PERIOD;
     C <= "000011"; --s3 -> s1
     WAIT FOR CLK_PERIOD;
     C \leftarrow "000001"; --S1 -> S4
     WAIT FOR CLK PERIOD;
     C \le "000000"; --S4 -> S4
     WAIT FOR CLK PERIOD;
     C \leftarrow "001000"; --s4 -> s5
     WAIT FOR CLK_PERIOD;
```

```
C <= "000100"; --s5 -> s5
WAIT FOR CLK_PERIOD;
C <= "000001"; --s5 -> s6
WAIT FOR CLK_PERIOD;
C <= "000000"; --s6 -> s1
WAIT FOR CLK_PERIOD;
C <= "000001"; --s1 -> s4
WAIT FOR CLK_PERIOD;
C <= "1000000"; --s4 -> s3
WAIT FOR CLK_PERIOD;
C <= "000000"; --s3 -> s6
WAIT FOR CLK_PERIOD;
WAIT;
END PROCESS SIM_PROC;
END ARCHITECTURE;
```

Этап 3

Установить ПО ModelSim PE (или аналогичный продукт: Xilinx ISE, Altera Quartus).

Выполнить моделирование полученного теста в ПО ModelSim PE. Результаты моделирования представить в отчете.

Рисунок 3 – Результаты моделирования

Из полученных диаграмм можно увидеть, что формируются активные выходные сигналы для каждого состояния. Достигнуты все конечные состояния автомата.

Вывод:

В ходе выполнения домашнего задания разработано устройство управления схемного типа, обрабатывающее входное командное слово $C=\{ABCDEF\}$ и выдающее сигналы управления $M=\{M0,...,Mk-1\}$ операционному блоку в соответствии с приведенной в индивидуальном задании логикой работы.