ABSOLUTE MAXIMAS AND MINIMAS. D.
21st January.
We developed techniques for finding the
local maximums and minimums in the last
class. Absolute maximum and minimum can be found on Closed and Boundedregion Closed and Bounded regions
Closed sets sets which in clude their
boundary.
What is a boundary? Boundary of x2 ty2 < 1
is x2+3=1
Boundary of x2 = y, y < 1 i
has two pasts: xizyand ()x
They intersect at (1,1) and (-1,+1). (Phag y=1 int x2=y The boundary is B, UB2 where B, is (x,y) such that x2 ≤ y and-1 <x≤1< td=""></x≤1<>
The boundary is B, UB2 where B, is (x,y) such that x2 ≤ y and-15x≤1
B2 is (x,y) such that y=1 and -1 < x < 1

(

Bounded sets are sets which as can be enclosed in a big enough circle. Closed and Bounded. Not Closed or Not Rounded (x,y) Such that (x,y) such that YStHS El X5 £35 51 not closed (ry) such that $-1 \leq \times \leq 1$ -1 < 9 < 1 not bounded f has an absolute maximum at (9,6) if flox, 6) > flx, y) for all (x,y) in the domain of

f has an absolute minimum at (9,6) if fla,6) & f(x,y) for all (x,y) in the domain of

- Finding absolute maximum minimum on the closed and bounded set R.

 (A) Find all critical values in the set R.

 Sketch

 (B) Praw R and find the boundary.

 - (6) Find the maximum and minimum values on the boundary.
 - (D) Find the greatest and smallest among (D) and (C).

Example: Find the absolute maximum and minimum of flag) = x2+y2-x-y on the Legion R salis fying

6	
nd y < 1	
1 24	
2	
_	

x2 Ey and y ≤1. Solution Step A. fx = 2x-1 fy = 2y-1 +x = 0 4420 => 5 ×-1 = 0 => 24-1=0 => K= P => 4= 12 The critical point is (12,12). and it satisfies x2 Ey a So it Was in the domain. f(212)= (2)2+(2)2-2-1 TY X 2 3. Step (B) · Bounday B,: x2=y-1<x<1 Bz:y=1-1<x<1 Stepl Parametrisation can be important On B, $x^2 = y$ and $-1 \le x \le 1$ -expressing in terms of xLet $g(x) = f(x,y) = f(x,x^2)$

$$=> x = (\frac{1}{4})^{\frac{1}{3}} - (\frac{1}{4})^{\frac{1}{3}} = (\frac{1}{4})^{\frac{1}{3}}.$$

$$g(-1)=f(-1,1)=H^{4}-(-1)=1+1=2$$

$$V(k) = t(k') = x_5 + (-k-1) = x_5 - x$$

图

End Porhts

x==1.

x=-1, y=(-1)=1.

 $h(-1) = f(-1, 1) = (-1)^2 - (-1) = 2$

x=1 y=(1)=1

h(1)= f(1,1)=(1)2-1=0]

Absoluk

Markinen, is at (-1,1) Value is 2

Abosolute

Miximum is-at (= 1 =) value is - =.

Example: Find the maximum value of the function. $f(x,y) = x^2 + y^2 - xy$ on

R= { x2+y2 < 13.

(7)
Solution: Critical points: fr= 2x-y=0=>2x=y0
th= 52-x=0=>52=x
Phygry O into & webget.
4x=x => x=0. => y=0.
Critical point (0,0)
Critical Value = :f10,01= [0].
Step B
X
Boundary: (x, y).
X5+ d5 = 1
Step (2) (xy) su Parmandon's alton.
Parametris aton:
(x,y) such x2 fcy2 (2) is the same as
(Sin 0, cost) when

0 < 0 < 2 to,

$$= 1 - \frac{1}{2} \sin(\frac{\pi}{2})$$

EndPolyts Cincle has no ends

The maximum is at (sin(317), (os (317)).

and (sin(717), cos(717)).

and the maximum value is 32.

e e mor mor e me e e me e e e e e e e e e e e e e
en e
er en
en de la companya de
en e
en e
en de la composition de la composition La composition de la