Context Free Languages and Grammars

Example: Palindromes can be expressed by the following

$$S \to \epsilon$$

$$S \to a$$

$$S \to b$$

$$S \to aSa$$

$$S \to bSb$$

Another Example

$$E \rightarrow id$$

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

Another Example:

$$S \rightarrow id = E$$

 $S \rightarrow \text{If } E \text{ Then } id = E \text{ Else } id = E \text{ EndIf } S \rightarrow S; S$

CFG

G = (V, T, P, S), where

- V: A finite set of variables or non-terminals.
- T: A finite set of terminals $(V \cap T = \emptyset)$.
- P: finite set of productions. Each production is of the form $A \to \gamma$, where $A \in V$ and $\gamma \in (V \cup T)^*$.
- ullet S: start symbol, a member of V

Simpler notation to make writing shorter:

 $S \to a|b|\epsilon|aSa|bSb$

Derivations

 $\alpha A\beta \Rightarrow_G \alpha \gamma \beta$, if there is a production of the form $A \to \gamma$.

We now define $\alpha \Rightarrow_G^* \beta$.

Base case: $\alpha \Rightarrow_G^* \alpha$ for all $\alpha \in (V \cup T)^*$.

Induction: If $\alpha \Rightarrow_G^* \beta$ and $\beta \Rightarrow_G \gamma$, then $\alpha \Rightarrow_G^* \gamma$.

 $L(G) = \{ w \in T^* \mid S \Rightarrow_G^* w \}.$

If clear from context, we drop G from \Rightarrow_G^* , and just write \Rightarrow^* .

Derivations

Consider the grammar

$$S \rightarrow A1B$$

$$A \rightarrow 0A \mid \epsilon$$

$$B \rightarrow 0B \mid 1B \mid \epsilon$$

The above generates the language 0*1(0+1)*

Consider the derivation of 00110.

$$S \Rightarrow A1B \Rightarrow A11B \Rightarrow 0A11B \Rightarrow 00A11B \Rightarrow 00A110B \Rightarrow 00A110 \Rightarrow 00110$$

Another possible derivation is:

$$S \Rightarrow A1B \Rightarrow 0A1B \Rightarrow 00A1B \Rightarrow 001B \Rightarrow 0011B \Rightarrow 00110B \Rightarrow 00110$$

Sentential Forms

If $S \Rightarrow_G^* \alpha$, then α is called a sentential form.

Left Most and Right Most Derivations

In Left Most Derivation, in each step of the derivation, one replaces the leftmost non-terminal in the sentential form.

In Right Most Derivation, in each step of the derivation, one replaces the rightmost non-terminal in the sentential form.

Parse Trees

Right-Linear Grammars

A CFG is called right linear if all the productions in it are of the form:

$$A \to wB$$
, for $B \in V$ and $w \in T^*$, or $A \to w$, for $w \in T^*$.

Theorem: Every regular language can be generated by some right-linear grammar.

Theorem: Language generated by a right-linear grammar is regular.

Theorem: Every regular language can be generated by some right-linear grammar.

Suppose L is accepted by DFA $A = (Q, \Sigma, \delta, q_0, F)$.

(Without loss of generality, assume that $Q \cap \Sigma = \emptyset$).

Then, let $G = (Q, \Sigma, P, q_0)$, where

i) For $q, p \in Q$, $a \in \Sigma$,

if $\delta(q,a)=p$, then we have a production in P of the form $q\to ap$.

ii) We also have productions, $q \to \epsilon$, for each $q \in F$.

Prove by induction on length of w that $\hat{\delta}(q_0, w) = p$ iff $q_0 \Rightarrow_G^* wp$.

This would also give us that

$$\hat{\delta}(q_0, w) \in F \text{ iff } q_0 \Rightarrow_G^* w.$$

Inductive proof for: $\hat{\delta}(q_0, w) = p$ iff $q_0 \Rightarrow_G^* wp$.

If w is of length 0, then clearly, $\hat{\delta}(q_0, \epsilon) = p$ iff $p = q_0$, and $q_0 \Rightarrow_G^* p$ iff $q_0 = p$.

Suppose by induction, the claim holds for all w of length k, then we show that it holds for all w of length k+1. So consider any w=ua, where length of u is k.

Then, $\hat{\delta}(q_0, ua) = p'$ iff $(\exists p)[\hat{\delta}(q_0, u) = p$ and $\delta(p, a) = p']$ iff $(\exists p)[q_0 \Rightarrow_G^* up \text{ and } p \to ap']$ iff $[q_0 \Rightarrow_G^* uap']$.

Theorem: Language generated by a right-linear grammar is regular.

Suppose $G = (V, \Sigma, P, S)$.

(Without loss of generality, assume that $V \cap \Sigma = \emptyset$).

Assume without loss of generality that each production is of the form $A \to bC$, or of the form $A \to \epsilon$, where $b \in \Sigma \cup \{\epsilon\}$,

 $A, C \in V$.

Then, define NDFA $A=(V,\Sigma,\delta,S,F)$, as follows. If there is a production of the form $A\to aB$, then $B\in\delta(A,a)$. $F=\{A\mid A\to\epsilon \text{ is a production in }P\}.$ Show by induction that

$$A \Rightarrow_G^* wB \text{ iff } B \in \hat{\delta}(A, w).$$

This would also give,

$$A\Rightarrow_G^* w \text{ iff } \hat{\delta}(A,w)\cap F\neq\emptyset$$
 and thus,

$$S \Rightarrow_G^* w \text{ iff } \hat{\delta}(S, w) \cap F \neq \emptyset$$

To see that we can assume without loss of generality that every production in a right linear grammar is of the form $A \to bB$ or $A \to \epsilon$, where $B \in V$ and $b \in \Sigma \cup \{\epsilon\}$, we can do as follows.

If $A \to b_1 b_2 \dots b_n B$ is a production, where $n \ge 1$, then it can be replaced by the productions:

$$A \to b_1 B_1$$

$$B_1 \to b_2 B_2$$

. . .

$$B_{n-1} \to b_n B$$

where $B_1, B_2, \ldots, B_{n-1}$ are new non-terminals.

A production of the form $A \to b_1 b_2 \dots b_n$, where $n \ge 1$ can be replaced by

$$A \rightarrow b_1 B_1$$

$$B_1 \rightarrow b_2 B_2 \dots$$

$$B_{n-1} \to b_n B_n$$

$$B_n \to \epsilon$$

where B_1, B_2, \ldots, B_n are new non-terminals.

Ambiguous Grammars

Consider

$$E \to E + E$$

$$E \to E * E$$

$$E \rightarrow id$$
.

Consider derivation of id + id * id.

It can be done in 2 ways:

$$S \to S + T$$

$$S \to T$$

$$T \to T * id$$

$$T \to id$$

Inherently ambiguous languages

$$L = \{a^n b^n c^m d^m \mid n, m \ge 1\} \cup \{a^n b^m c^m d^n \mid n, m \ge 1\}.$$

Any grammar for above language is ambiguous. Note that above is a context free language as shown by following grammar:

$$S \to A|B$$

$$A \to CD$$

$$B \to aBd|aEd$$

$$C \to aCb|ab$$

$$D \to cCd|cd$$

$$E \to bEc|bc$$