Ork Community School

Reactions 1

What's the science story? From KS3 NC

This unit explores:

- displacement reactions
- defining acids and alkalis in terms of neutralisation reactions
- the pH scale for measuring acidity/alkalinity; and indicators
- reactions of acids with metals to produce a salt plus hydrogen
- the concept of a pure substance
- mixtures, including dissolving
- diffusion in terms of the particle model
- simple techniques for separating mixtures: filtration, evaporation, distillation and chromatography
- the identification of pure substances

Previous knowledge:

KS2:

- demonstrate that dissolving, mixing and changes of state are reversible changes
- explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda.

Next steps...

KS3:

Y8 – Reactions 2

Y9 – Reactions 3

KS4:

Chemistry Paper 1—Chemical change

Chemistry Paper 2—Our atmosphere

Keywords

Chemical	Acid	Alkali	Concentrated	Independent	Acid	Gradient	Mixture	Evaporation	Chromatography
Physical	Acidic	Alkaline	Dilute	Dependent	Metal	Rate	Filtrate	Filter	Chromatogram
Reaction	Corrosive	Indicator	Particles	Control	Hydrogen	Passive	Residue	Residue	Solvent
Reversible	Hydrochloric	Neutral	Solution	Neutralisation	Product		Soluble	Filtrate	Dissolve
Irreversible	Nitric	рН		Compare	Reactant		Insoluble	Distillation	
	Sulphuric			Prediction	Reactivity				

KS3 – Year 7

Working scientifically skills:

WS2 - Draw/Interpret diagrams

WS3 - Make predictions

WS8 - Method

WS10 - Selecting equipment

WS16 - Using equations

WS17 - Make conclusions

Assessments:

Exit ticket 1: Types of reaction (formative)
Exit ticket 2: Acids and Alkalis (formative)

Exit ticket 3: Neutralisation (formative)

Assessment: Changing pH of soil

Assessment: Filtration

Assessment: Evaporation planning

End of unit test (summative)

Lesson No. and Title	Learning objectives	National Curriculum	Practical equipment
1 What is a chemical reaction	ARE: Compare chemical reactions to physical changes AGD: Compare and contrast physical and chemical reactions		PRAC: Per group: Lemon juice & bicarbonate of soda Baking powder, plaster of paris, ammonium nitrate, zinc powder & copper sulphate solution, copper sulphate & NaOH solution
2. What is an acid?	ARE: To describe the uses of common acids. AGD: To consider how acids are used in industry.		DEMO: Selection of household substances and chemicals; Lemon juice, jam, fruit juice, pickled beetroot, jelly, HCl, H ₂ SO ₄ , HNO ₃ (bottle of each)

133 – 168	T		
3. Natures indicators x 2 lessons	ARE - To identify patterns and classify solutions as acidic or alkaline. AGD - To explain how a conclusion matches the evidence obtained.		PRAC: per group: mortar, pestle, 2 teat pipettes, 4 test tubes, measuring cylinder, Access to: red cabbage and beetroot, Dilute solutions (0.1M) of H2SO4and NaOH 0.1M H2SO4is low hazard, 0.1M NaOH is irritant, Methylated spirits, 2 unlabelled bottles, one containing NaOH, the other containing H2SO4
4. Strong or weak UI	ARE - To identify patterns and classify solutions as acidic, alkaline or neutral using pH value. AGD - To relate the pH value of an acid or alkali to its hazards and corrosiveness.	 the pH scale for measuring acidity/alkalinity; and indicators 	PRAC: per group: 5 test-tubes, Access to: 5 unknown solutions with pH values of approx. 1,5,7,9,14, labelled A, B, C, D, E (Possible solutions pH1 0.1M HCl, 5 0.1M boric acid, 7 0.1M ammonium etha-noate, 9 0.1M borax14 1.0M NaOH) (NB Corrosive and safety goggles must be used.)
5. pH and the home	ARE: Use the pH scale to measure acidity and alkalinity AGD: Use a variety of indicators to measure acidity and alkalinity and explain how they work.	 the pH scale for measuring acidity/alkalinity; and indicators 	PRAC: per group UI, various household chemicals, test tubes

6. Concentrated or dilute	ARE: Describe the differences between concentrated and dilute solutions of an acid AGD: Explain what 'concentrated' and 'dilute' mean, in terms of the numbers of particles present	Describe the differences between concentrated and dilute solutions of an acid	PRAC: Per group:1 mol HCL, 1 mol NaOH, deionised water, pipettes, 10ml measuring cylinders, 7 test tubes, UI
7. Finding the balance	ARE: Describe how pH changes during neutralisation reactions AGD: Interpret a graph of pH changes during a neutralisation reaction.	defining acids and alkalis in terms of neutralisation reactions	PRAC: per group: 7 test tubes, 10ml measuring cylinders, HCl 0.2M, NaOH 0.2M, UI, pH probe (as DEMO)
8. Uses of neutralisation	ARE: State examples of useful neutralisation reactions AGD: Explain why neutralisation reactions are useful in the context of specific examples		iPADS if needed for researching neutralisation reactions.

9. Which indigestion remedy	ARE To investigate and compare a range of antacids. AGD To evaluate date and explain how it could be improved.		PRAC: Per group: 5 test tubes, 2 x 100cm3 beakers,spatula, glass rod, 3 teat pipettes, Access to: "stomach acid", (0.1M HCl will do) variety of indigestion remedies, UI or litmus, top- pan balance pH probe (as DEMO Planning sheet, Conclusion and Evaluation sheet (for AGD)
10. Metals and acids	ARE: Describe what a salt is and predict the salts formed when acids react with metals or bases AGD: Predict the formulae for products of reactions between acids and metals, or acids and bases and suggest how temperature changes may be linked with reactivity	 reactions of acids with metals to produce a salt plus hydrogen 	PRAC: per group: 6 test tubes, thermometer OR temperature probes Mg , Zn, Fe + sulfuric acid (0.1M)Mg, Zn, Fe + hydrochloric acid (0.1M)
11. Pure substances	ARE: Explain how to identify pure substances. AGD: Comment on a substance's purity by interpreting temperature change data	 the concept of a pure substance the identification of pure substances 	PRAC: Per group: Mixture A: iron filings and flour Mixture B: sand and water Mixture C: sugar and dried peas, glass beakers, conical flasks, funnel, filter paper, sieves, magnifying glass, distilled water, measuring cylinders, evaporating basin

133 – 16			
12. Solutions	ARE: Use the particle model to explain dissolving. Explain what a saturated solution is. Explain the meaning of solubility AGD: Draw particle diagrams to represent solutions and pure substances Explain what a solubility graph shows	mixtures, including dissolving	PRAC: per group: Salt, sugar, flour, chalk, sand, fruit cordial, coffee, pepper, glass paint, jelly cube, beaker, stirring rod, teaspoon, timer Kettle Bucket & sieve for disposal
13. Diffusion	ARE – To investigate which factors affect diffusion. AGD – To explain why particles diffuse more quickly at higher temperatures	diffusion in terms of the particle model	DEMO: can of deodorant potassium permanganate, large beaker
14. Filtration	ARE: Explain how filtration works AGD: Explain whether or not filtering can be Used in given situations	 simple techniques for separating mixtures: filtration, evaporation, distillation and chromatography 	PRAC: per group: Sample of dirty water, tights, filter paper cloth, muslin, funnels,.

15. Evaporation	ARE: Use the particle model to explain evaporation AGD: Justify whether evaporation or distillation would be suitable for obtaining given substances from solution .	 simple techniques for separating mixtures: filtration, evaporation, distillation and chromatography 	PRAC: per group: Copper oxide, sulfuric acid, filter paper, funnels, conical flasks, spatulas, splints, evaporating dishes.
16. Distillation	ARE: Explain how distillation works AGD: Discuss whether evaporation or distillation would be suitable for separating a mixture	 simple techniques for separating mixtures: filtration, evaporation, distillation and chromatography 	DEMO : —Liebig condenser
17. Chromatography	ARE: Explain how chromatography separates mixtures and analyse chromatograms to identify substances in mixtures. AGD: Explain how chromatography can be used in different scenarios	 simple techniques for separating mixtures: filtration, evaporation, distillation and chromatography 	PRAC: per group: Felt tip pens, filter paper, beakers, paperclips Spinach leaves (and other green leaves) pestle & mortar, filter paper, solvent (acetone) capillary tubing, 250ml beakers.