1 \mathbb{R} und \mathbb{C}

Ordnungsvollständigkeit: Seien $A, B \subseteq \mathbb{R}$ s. d.

(i) $A \neq \emptyset$ (ii) $\forall a \in A \ \forall b \in B \ a \leqslant b$

Dann: $\exists c \in \mathbb{R}$ s.d. $\forall a \in A \ a \leqslant c \ \forall b \in B \ c \leqslant b$ Korollar 1.1.7 (Archimedisches Prinzip)

Sei $x > 0y \in \mathbb{R}$ Dann: $\exists n \in \mathbb{N} \quad y \leq n * x$

Satz 1.1.8 $\forall t \ge 0, t \in \mathbb{R}$ hat $x^2 = t$ eine Lösung in \mathbb{R}

Satz 1.1.10 $\forall x, y \in \mathbb{R}$ (i) $|x| \ge 0$ (ii) |xy| = |x||y|

(iii) $|x + y| \le |x| + |y|$ (iv) $|x + y| \ge ||x| - |y||$

Satz 1.1.11 (Young'sche Ungleichung)

 $\forall \varepsilon > 0, \forall x, y \in \mathbb{R} \text{ gilt:} \qquad 2|xy| \leqslant \varepsilon x^2 + \frac{1}{\varepsilon}y^2$

Definition 1.1.12 Sei $A \subset \mathbb{R}$

(i) / (ii) $c \in \mathbb{R}$ ist eine obere/untere Schranke von A wenn $\forall a \in A$ $a \leqslant / \geqslant c$. A ist nach oben/unten beschränkt, wenn es eine obere/untere Schranke gibt. (iii) / (iv) $m \in \mathbb{R}$ ist ein Maximum/Minimum von A wenn $m \in A$ und m obere/untere Schranke von A ist. Satz 1.1.15 Sei $A \subseteq \mathbb{R}$, $A \neq \emptyset$ Sei A nach oben/unten beschränkt. Dann gibt es eine kleinste obere/ grösste untere Schranke von A: $c := \sup A / c := \inf A$ genannt Supremum/Infimum von A

Korollar 1.1.16 Seien $A \subseteq B \subseteq \mathbb{R}$ Wenn B nach oben/unten beschränkt ist, folgt sup $A \leqslant \sup B$ / inf $B \leqslant \inf A$

Konvention: Wenn A nicht beschränkt ist, definieren wir sup $A = +\infty$ bzw. inf $A = -\infty$

Satz 1.3.4 (Fundamentalsatz der Algebra) Sei $n \ge 1$, $n \in \mathbb{N}$, $a_j \in \mathbb{C}$ und $P(z) = z^n + a_{n-1}z^{n-1} + ... + a_0$ Dann $\exists z_1, ..., z_n \in \mathbb{C}$, so dass $P(z) = (z - z_1)(z - z_2)...(z - z_n)$

2 Folgen und Reihen

2.1 Grenzwert einer Folge

Definition 2.1.1 Eine Folge (reeller Zahlen) ist eine Abbildung $a: N^* \longrightarrow \mathbb{R}$. Wir schreiben a_n statt a(n) und bezeichnen eine Folge mit $(a_n)_{n\geqslant 1}$

Lemma 2.1.3 Sei $(a_n)_{n\geq 1}$ eine Folge. Dann gibt es

höchstens eine reelle Zahl $l \in \mathbb{R}$ mit der Eigenschaft: $\forall \varepsilon > 0$ ist die Menge $\{n \in \mathbb{N} : a_n \notin]l - \varepsilon, l + \varepsilon[\}$ endlich.

Definition 2.1.4 Eine Folge $(a_n)_{n\geqslant 1}$ ist **konvergent**, wenn es $l\in\mathbb{R}$ gibt, so dass $\forall \varepsilon>0$ die Menge $\{n\in\mathbb{N}: a_n\notin]l-\varepsilon, l+\varepsilon[\}$ **endlich** ist.

Lemma 2.1.6 Sei $(a_n)_{n\geqslant 1}$ eine Folge. Folgende Aussagen sind äquivalent

(1) $(a_n)_{n\geqslant 1}$ konvergiert gegen $l=\lim_{n\to\infty} a_n$

(2) $\forall \varepsilon > 0 \exists N \geqslant 1$, so dass $|a_n - l| < \varepsilon \quad \forall n \geqslant N$

Satz 2.1.8 Seien $(a_n)_{n\geqslant 1}$, $(b_n)n\geqslant 1$ konvergent mit $a=\lim_{n\to\infty}a_n$, $b=\lim_{n\to\infty}b_n$

(1) $(a_n + b_n)_{n \ge 1}$ ist **konvergent**: $\lim_{n \to \infty} (a_n + b_n) = a + b$

(2) $(a_n \cdot b_n)_{n \ge 1}$ ist konvergent: $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$

(3) Sei $\forall n \geqslant 1$ $b_n \neq 0$ und $b \neq 0$. Dann ist $(\frac{a_n}{b_n})_{n\geqslant 1}$ konvergent und $\lim_{n\to\infty}(\frac{a_n}{b_n})_{n\geqslant 1}=\frac{a}{b}$

(4) Wenn $\exists K \ge 1 \text{ mit } \forall n \ge K : a_n \le b_n \text{, folgt } a \le b$

Beispiel 2.1.9 $b \in \mathbb{Z}$: $\lim_{n \to \infty} (1 + \frac{1}{n})^b = 1$. Das folgt aus $\lim_{n \to \infty} (1 + \frac{1}{n}) = 1$ unde wiederholter Anwendung von Satz 2.1.8 (2) und (3).

2.2 Satz von Weierstrass

Definition 2.2.1 (1) [(2)] $(a_n)_{n\geqslant 1}$ ist monoton wachsend [fallend] wenn: $a_n\leqslant [\geqslant |a_{n+1}| \forall n\geqslant 1]$

Satz 2.2.2 (Weierstrass) Sei $(a_n)_{n\geqslant 1}$ monoton wachsend [fallend] und nach oben [unten] beschränkt. Dann konvergiert $(a_n)_{n\geqslant 1}$ mit $\lim_{n\to\infty} a_n = \sup\{a_n : n\geqslant 1\}$ [$\lim_{n\to\infty} a_n = \inf\{a_n : n\geqslant 1\}$]

Beispiel 2.2.3 Sei $a \in \mathbb{Z}$ und $0 \leqslant q < 1$. Dann gilt $\lim_{n \to \infty} n^a q^n = 0$. Wir können annehmen, dass q > 0. Sei $x_n = n^a q^n$; dann folgt: $x_{n+1} = (n+1)^a q^{n+1} = (\frac{n+1}{n})^a q \cdot n^a q^n = (1+\frac{1}{n})^a \cdot q \cdot x_n$. Also: $x_{n+1} = (1+\frac{1}{n})^a \cdot q \cdot x_n$. Da $\lim_{n \to \infty} (1+\frac{1}{n})^a = 1$ (Beispiel 2.1.9), gibt es ein n_0 , so dass $(1+\frac{1}{n})^a < \frac{1}{a} \ \forall n \geqslant n_0$. Es folgt: $x_{n+1} < \frac{1}{n}$

 $x_n \ \forall n \geqslant n_0$. Da für $x_n > 0 \ \forall n \geqslant 1$ die Folge nach **unten beschränkt** ist und für $n \geqslant n_0$ **monoton fallend** ist. Sei $l = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (1 + \frac{1}{n})^a \cdot q x^n = q \cdot \lim_{n \to \infty} x_n = q \cdot l$. Also $(1 - q) \cdot l = 0$ woraus l = 0 folgt.

Bemerkung 2.2.24 In Beispiel 2.2.3 wird zweimal die folgende einfache Tatsache verwendet: Sei $(a_n)_{n\geqslant 1}$ eine konvergente Folge mit $\lim_{n\to\infty}a_n=a$ und $k\in\mathbb{N}$. Dann ist die durch $b_n:=a_{n+k}$ $n\geqslant 1$ definierte Folge konvergent und $\lim_{n\to\infty}b_n=a$.

Lemma 2.2.7 (Bernoulli Ungleichung) $(1+x)^n \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1$

2.3 Limes superior und Limes inferior

Limes inferior/ superior: Sei $(a_n)_{n\geqslant 1}$ eine beschränkte Folge. Sei $\forall n\geqslant 1$: $b_n=\inf\{a_k:k\geqslant n\}$, $c_n=\sup\{a_k:k\geqslant n\}$ Dann folgt $\forall n\geqslant 1$ $b_n\leqslant b_{n+1}$ (monoton wachsend) und $c_n\geqslant c_{n+1}$ (monoton fallend) und beide Folgen beschränkt. Wir definieren: $\liminf_{n\to\infty}a_n:=\lim_{n\to\infty}b_n$ $\limsup_{n\to\infty}a_n:=\lim_{n\to\infty}c_n$

2.4 Cauchy Kriterium

Lemma 2.4.1 $(a_n)_{n\geqslant 1}$ konvergiert genau dann, wenn $(a_n)_{n\geqslant 1}$ beschränkt und $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$

Satz 2.4.2 (Cauchy Kriterium) $(a_n)_{n\geqslant 1}$ ist genau dann kovergent, wenn $\forall \varepsilon > 0 \,\exists N \geqslant 1$, so dass $|a_n - a_m| < \varepsilon \quad \forall n, m \geqslant N$

2.5 Satz von Bolzano-Wierstrass

Definition 2.5.1 Ein **abgeschlossenes Intervall** $I \subseteq \mathbb{R}$ ist von der Form

(1) [a,b] $a \leq b \in \mathbb{R}$

(3) $]-\infty,a]$ $a\in\mathbb{R}$

(2) $[a, +\infty[$ $a \in \mathbb{R}$

(4) $]-\infty, +\infty[=\mathbb{R}$

Bemerkung 2.5.2 Ein Intervall $I \subseteq \mathbb{R}$ ist **genau** dann abgeschlossen, wenn für jede konvergente Folge $(a_n)_{n\geqslant 1}$ mit $a_n\in I$ $\lim_{n\to\infty}a_n\in I$.

Bemerkung 2.5.3 Seien I = [a, b], J = [c, d] mit $a \le b$, $c \le d$, a, b, c, $d \in \mathbb{R}$. Dann ist $I \subseteq J$ genau dann,

wenn $c \leq a, b \leq d$

Satz 2.5.5.5 (Cauchy-Cantor) Sei $I_1 \supseteq I_2 \supseteq ...I_n \supseteq I_{n+1} \supseteq ...$ eine Folge abgeschlossener Intervalle mit $\mathcal{L}(I_1) < +\infty$ Dann gilt $\bigcap_{n\geqslant 1} I_n \neq \emptyset$. Falls **zudem** $\lim_{n\to\infty} \mathcal{L}(I_n) = 0$ gilt, enthält $\bigcap_{n\geqslant 1} I_n$ **genau einen Punkt**.

Definition 2.5.7 Eine **Teilfolge** einer Folge $(a_n)_{n\geqslant 1}$ ist eine Folge $(b_n)_{n\geqslant 1}$, wobei $b_n=a_{l(n)}$ und $l:\mathbb{N}^*\longrightarrow \mathbb{N}^*$ eine **Abbildung** mit der Eigenschaft l(n)< l(n+1) $\forall n\geqslant 1$

Satz 2.5.9 (Bolzano-Weierstrass) Jede beschränkte Folge besitzt eine konvergente Teilfolge.

2.6 Folgen in \mathbb{R}^d und \mathbb{C}

Definition 2.6.1 Eine **Folge in** \mathbb{R}^d ist eine Abbildung $a: \mathbb{N}^* \longrightarrow \mathbb{R}^d$. Wir schreiben a_n statt a(n) und bezeichnen die Folge mit $(a_n)_{n \ge 1}$

Definition 2.6.2 Eine Folge $(a_n)_{n\geqslant 1}$ in \mathbb{R}^d ist **konvergent**, wenn $\exists a \in \mathbb{R}^d$, so dass $\forall \varepsilon > 0 \exists N \geqslant 1$ mit $||a_n - a|| < \varepsilon \qquad \forall n \geqslant N$

Satz 2.6.3 Sei $b = (b_1, ..., b_d)$. Folgende Aussagen sind äquivalent:

(1)
$$\lim_{n\to\infty} a_n = b$$
 (2) $\lim_{n\to\infty} a_{nj} = b_j \quad \forall 1 \leq j \leq d$

Bemerkung 2.6.4 Sei $x = (x_1, ..., x_d)$. Dann ist $\forall 1 \leqslant j \leqslant d$: $x_j^2 \leqslant \sum_{i=1}^d x_i^2 = \|x\|^2 \leqslant d \cdot \max_{1 \leqslant i \leqslant d} x_i^2$ woraus $|x_j| \leqslant \|x\| \leqslant \sqrt{d} \cdot \max_{1 \leqslant i \leqslant d} |x_i|$ folgt.

Bemerkung 2.6.5 Eine konvergente Folge $(a_n)_{n\geqslant 1}$ in \mathbb{R}^d ist beschränkt. Das heisst: $\exists R \geqslant 0$ mit $\|a_n\| \leqslant R \ \forall n \geqslant 1$

Satz 2.6.6 (1) Eine Folge $(a_n)_{n\geqslant 1}$ konvergiert genau dann, wenn sie eine Cauchy Folge ist: $\forall \varepsilon > 0 \,\exists N \geqslant 1$ mit $||a_n - a_m|| < \varepsilon \quad \forall n, m \geqslant N$.

(2) Jede beschränkte Folge hat eine konvergente Teilfolge.

2.7 Reihen

Definition 2.7.1 Die Reihe $\sum_{k=1}^{\infty} a_k$ ist konvergent, wenn die Folge $(S_n)_{n\geqslant 1}$ der Partialsummen konvergiert. In diesem Fall definieren wir: $\sum_{k=1}^{\infty} a_k = \lim_{n\to\infty} S_n$

Beispiel 2.7.2 (Geometrische Reihe) Sei $q \in \mathbb{C}$ mit |q| < 1. Dann konvergiert $\sum_{k=0}^{\infty} q^k$ und dessen Wert ist: $\frac{1}{1-q}$. Sei $S_n = \sum_{k=0}^n q^k = 1 + q + ... + q^n$. $q \cdot S_n = q + ... + q^n + q^{n+1}$ woraus $(1-q)S_n = 1 - q^{n+1}$ folgt. Es gilt also: $S_n = \frac{1-q^{n+1}}{1-q}$ Nun zeigen wir die Konvergenz: $|S_n - \frac{1}{1-q}| = |\frac{-q^{n+1}}{1-q}| = \frac{|q|^{n+1}}{|1-q|}$. Es folgt aus Beispiel 2.2.3 und $0 \le |q| < 1$: $\lim_{n \to \infty} |S_n - \frac{1}{1-1}| = \lim_{n \to \infty} \frac{|q|^{n+1}}{|1-q|} = 0$. Somit konvergiert $(S_n)_{n \ge 1}$ gegen $\frac{1}{1-q}$.

Beispiel 2.7.3 (Harmonische Reihe) Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert.

Satz 2.7.4 Seien $\sum_{k=1}^{\infty} a_k$, $\sum_{j=1}^{\infty} b_j$ **konvergent** sowie $\alpha \in \mathbb{C}$. Dann ist:

(1) $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergent und $\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{i=1}^{\infty} b_i)$

(2) $\sum_{k=1}^{\infty} (\alpha \cdot a_k)$ konvergent und $\sum_{k=1}^{\infty} (\alpha \cdot a_k) = \alpha \cdot \sum_{k=1}^{\infty} a_k$

Satz 2.7.5 (Cauchy Kriterium) Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, wenn: $\forall \varepsilon > 0 \,\exists N \geqslant 1$ mit $|\sum_{k=n}^{m} a_k| < \varepsilon \quad \forall m \geqslant n \geqslant N$.

Satz 2.7.6 Sei $\sum_{k=1}^{\infty} a_k$ eine Reiehe mit $a_k \ge 0 \quad \forall k \in \mathbb{N}^*$. $\sum_{k=1}^{\infty} a_k$ konvergiert genau dann, wenn die Folge $(S_n)_{n \ge 1}$, $S_n = \sum_{k=1}^n a_k$ der Partialsummen nach oben beschränkt ist.

Korollar 2.7.7 (Vergleichssatz) Seien $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ Reihen mit: $0 \le a_k \le b_k \quad \forall k \ge 1$. Dann gelten: $\sum_{k=1}^{\infty} b_k$ konvergent $\Longrightarrow \sum_{k=1}^{\infty} a_k$ konvergent $\sum_{k=1}^{\infty} a_k$ divergent Die Implikationen treffen auch zu, wenn $\exists K \ge 1$ mit $0 \le a_k \le b_k \quad \forall k \ge K$ Definition 2.7.9 Die Reihe $\sum_{k=1}^{\infty} a_k$ ist absolut konvergent, wenn $\sum_{k=1}^{\infty} |a_k|$ konvergiert.

Satz 2.7.10 Eine absolut konvergente Reihe $\sum_{k=1}^{\infty} a_k$ ist auch konvergent und es gilt: $|\sum_{k=1}^{\infty} a_k| \le \sum_{k=1}^{\infty} |a_k|$ Satz 2.7.12 (Leibniz 1682) Sei $(a_n)_{n\geqslant 1}$ monoton fallend mit $a_n\geqslant 0$ $\forall n\geqslant 1$ und $\lim_{n\to\infty} a_n=0$. Dann konvergiert $S:=\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ und es gilt: $a_1-a_2\leqslant S\leqslant a_1$

Definition 2.7.14 Eine Reihe $\sum_{n=1}^{\infty} a'_n$ ist eine **Umordnung der Reihe** $\sum_{n=1}^{\infty} a_n$ wenn es eine **bijektive Abbildung** $\phi : \mathbb{N}^* \longrightarrow \mathbb{N}^*$ **gibt**, so dass $a'_n = a_{\phi(n)}$

Satz 2.7.16 (Drichlet 1837) Wenn $\sum_{n=1}^{\infty} a_n$ absolut konvergiert, dann konvergiert jede Umordnung der Reihe mit demselben Grenzwert.

Satz 2.7.17 (Quotientenkriterium, Cauchy 1821) Sei $(a_n)_{n\geqslant 1}$ mit $a_n\neq 0$ $\forall n\geqslant 1$ und $\sum_{n=1}^\infty a_n$ eine Reihe. Wenn: $\limsup_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}<1$ kovergiert die Reiehe

 $\sum_{n=1}^{\infty} a_n$ absolut. Wenn: $\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1$ divergiert die Reihe

Beispiel 2.7.18 (Exponential funktion) Für $z \in \mathbb{C}$ betrachte die Reihe: $1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots$ mit allgemeinem Glied $a_n=\frac{z^n}{n!}$. Fann folgt für $z\neq 0$: $\frac{|a_{n+1}|}{|a_n|}=|\frac{z^{n+1}}{(n+1)!}\frac{n!}{z^n}|=\frac{|z|}{n+1}$. Also gilt: $\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=0$ und die Reihe konvergiert für alle $z\in\mathbb{C}$. Wir definieren die Exponential funktion: $\exp z:=1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots=\sum_{n=0}^{\infty}\frac{z^n}{n!}$

Bemerkung 2.7.19 Das Quotientenkriterium versagt, wenn z. B. unenedlich viele Glieder a_n der Reihe verschwinden (= 0 sind)

Satz 2.7.20 (Wurzelkriterium, Cauchy 1821)

(1) $\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1 \Longrightarrow \sum_{n=1}^{\infty} a_n$ konvergiert absoluti

(2) $\limsup_{n\to\infty} \sqrt[n]{|a_n|} > 1 \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ und } \sum_{n=1}^{\infty} |a_n| \text{ divergieren.}$

Konvergenzradius ρ : Sei $(c_k)_{k\geqslant 0}$ eine Folge (in $\mathbb R$ oder $\mathbb C$). Wenn $\limsup_{k\to\infty}\sqrt[k]{|c_k|}$ existiert, definieren wir:

Jonas Degelo Analysis I FS2020

 $ho = +\infty$ wenn $\limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0$ und $ho = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}}$ wenn $\limsup \sqrt[k]{|c_k|} > 0$

Riemann Zeta Funktion Sei s > 1 und $\zeta(s) =$ $\overline{\sum_{n=1}^{\infty} \frac{1}{n^s}}$. Wir wissen, dass $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert. Die **3.1 Reellwertige Funktionen** Reihe konvergiert $\forall s > 1$

Korollar 2.7.21 Die Potenzreihe $\sum_{k=0}^{\infty} c_k z^k$ konvergiert absolut $\forall |z| < \rho$ und divergiert $\forall |z| > \rho$.

Definition 2.7.22 $\sum_{k=0}^{\infty} b_k$ ist eine **lineare Anordnung** der Doppelreihe $\sum_{i,i\geq 0} a_{ii}$, wenn es eine Bijektion $\sigma: \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ gibt, mit $b_k = a_{\sigma(k)}$.

Satz 2.7.23 (Cauchy 1821) Wir nehmen an, dass es $B \geqslant 0$ gibt, so dass $\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \leqslant B \quad \forall m \geqslant 0$. Dann kovergieren die folgenden Reihen absolut: $S_i :=$ $\sum_{i=0}^{\infty} a_{ij} \quad \forall i \geqslant 0 \text{ und } U_j := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geqslant 0 \text{ sowie}$ $\sum_{i=0}^{\infty} S_i$ und $\sum_{i=0}^{\infty} U_i$ und es gilt: $\sum_{i=0}^{\infty} S_i = \sum_{i=0}^{\infty} U_i$ Und jede lineare Anordnug der Doppelreihe konvergiert absolut mit gleichem Grenzwert.

Definition 2.7.24 Das Cauchy Produkt der Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{j=0}^{\infty} b_j$ ist die Reihe: $\sum_{n=0}^{\infty} (\sum_{j=0}^{\infty} a_{n-j}b_j) =$ $a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + \dots$

Satz 2.7.26 Falls die Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{i=0}^{\infty} b_i$ absolut konvergieren, konvergiert ihr Cauchy Produkt und es gilt: $\sum_{n=0}^{\infty} (\sum_{i=0}^{\infty} a_{n-i}b_i) = (sum_{i=0}^{\infty}a_i)(\sum_{i=0}^{\infty}b_i).$

Anwendung 2.7.27 (Exponential funktion) $\forall z, w \in$ \mathbb{C} : $\exp(w+z) = \exp(w) \exp(z)$. Wir berechnen das Cauchy Produkt der Reihen: $\sum_{i=0}^{\infty} \frac{w^i}{i!}$, $\sum_{i=0}^{\infty} \frac{z^i}{i!}$. Dies ist: $\sum_{n=0}^{\infty}(\sum_{j=0}^{n}\frac{w^{n-j}}{(n-j)!}\frac{z^{j}}{j!})$ Woraus die Behauptung folgt.

Satz 2.7.28 Sei $f_n : \mathbb{N} \longrightarrow \mathbb{R}$ eine Folge. Wir nehmen an, dass:

- (1) $f(j) := \lim_{n \to \infty} f_n(j) \quad \forall j \in \mathbb{N} \text{ existient}$
- (2) es eine Funktion $g: \mathbb{N} \longrightarrow [0, \infty[$ gibt, so dass
- 2.1 $|f_n(j)| \leq g(j) \quad \forall j \geq 0, \ \forall n \geq 0$
- **2.2** $\sum_{j=0}^{\infty} g(j)$ **konvergiert**. Dann folgt: $\sum_{j=0}^{\infty} f(j) =$ $\lim_{n\to\infty}\sum_{j=0}^i nftyf_n(j).$

Korollar 2.7.29 (Exponential funktion) $\forall z \in \mathbb{C}$ kon**vergiert** die Folge $((1+\frac{z}{n})^n)_{n\geqslant 1}$ und $\lim_{n\to\infty}(1+\frac{z}{n})^n=$ exp(z)

Stetige Funktionen

Definition 3.1.1 f ist nach [oben/unten] beschränkt 3.3 Zwischenwertsatz wenn $f(D) \subseteq \mathbb{R}$ nach [oben/unten] beschränkt ist.

 $D \subseteq \mathbb{R}$, ist:

(1)[(2)] [streng] monoton wachsend, wenn $\forall x, y \in$ $D \quad x \leq [<]y \Rightarrow f(x) \leq [<]f(y)$

(3)[(4)] [streng] monoton fallend, wenn $\forall x, y \in$ \overline{D} $x \le [<]y \Rightarrow f(x) \ge [>]f(y)$

(5)[(6)] [streng] monoton, wenn *f* [streng] monoton wachsend oder fallend ist.

3.2 Stetigkeit

Definition 3.2.1 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$. Die Funktion $\overline{f}: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, wenn $\forall \varepsilon > 0 \ \exists \delta > 0$, so dass $\forall x \in D$ die Implikation: $|x - x_0| < \delta \Rightarrow$ $|f(x) - f(x_0)| < \varepsilon$ gilt

Definition 3.2.2 Die Funktion $f: D \longrightarrow \mathbb{R}$ ist **stetig**, wenn sie in jedem Punkt von D stetig ist.

Satz 3.2.4 Sei $x_0 \in D \subseteq \mathbb{R}$ und $f: D \longrightarrow \mathbb{R}$. Die Funktion f ist genau dann in x_0 stetig, wenn für **jede Folge** $(a_n)_{n \ge 1}$ in *D* die folgende Implikation gilt: $\lim_{n\to\infty} a_n = x_0 \Longrightarrow \lim_{n\to\infty} f(a_n) = \check{f}(x_0).$

Korollar 3.2.5 Seien $x_0 \in D \subseteq \mathbb{R}$, $\lambda \in \mathbb{R}$ und $f: D \longrightarrow \mathbb{R}, g: D \longrightarrow \mathbb{R}$ beide **stetig** in x_0 :

(1) f + g, $\lambda \cdot f$, $f \cdot g$ sind stetig in x_0 .

(2) Wenn $g(x_0) \neq 0$ ist, ist $\frac{f}{g} : D \cap \{x \in D : g(x) \neq 0\}$ $0\} \longrightarrow \mathbb{R}, x \longmapsto \frac{f(x)}{g(x)}$ stetig in x_0

Definition 3.2.6 Eine **polynomielle Funktion** P: $\mathbb{R} \longrightarrow \mathbb{R}$ ist eine Funktion der Form: P(x) = $a_n x^n + ... + a_0$ wobei: $a_n, ..., a_0 \in \mathbb{R}$. Wenn $a_n \neq 0$ ist, ist *n* der **Grad** von *P*.

Korollar 3.2.7 Polynomielle Funktionen sind auf ganz \mathbb{R} stetig.

Korollar 3.2.8 Seien *P*, *Q* polynomielle Funktionen auf \mathbb{R} mit $Q \neq 0$. Seien $x_1, ..., x_m$ die Nullstellen von Q. Dann ist $\frac{P}{O}: \mathbb{R} \setminus \{x_1, ..., x_m\} \longrightarrow \mathbb{R}, x \longmapsto \frac{P(x)}{O(x)}$ stetig.

Satz 3.3.1 (Zwischenwertsatz, Bolzano 1817) Seien Definition 3.1.2 Eine Funktion $f:D \longrightarrow \mathbb{R}$, wobei $\overline{I \subseteq \mathbb{R}}$ ein Intervall, $f:I \longrightarrow \mathbb{R}$ eine stetige Funktion und $a, b \in I$. Für jedes c zwischen f(a) und f(b)**gibt es ein** *z* zwischen *a* und *b* mit f(z) = c.

3.4 Min-Max Satz

Definition 3.4.2 Ein **Intervall** $I \subset \mathbb{R}$ ist **kompakt**, wenn es von der Form $I = [a, b], a \le b$ ist.

Lemma 3.4.3 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$ und $f,g:D \longrightarrow \mathbb{R}$ stetig in x_0 . So sind |f|, $\max(f,g)$, $\min(f,g)$ stetig in

Lemma 3.4.4 Sei $(x_n)_{n \ge 1}$ eine konvergente Folge in \mathbb{R} mit Grenzwert $\lim_{n\to\infty} x_n \in \mathbb{R}$. Sei $a \leqslant b$. Wenn $\{x_n: n \geqslant 1\} \subseteq [a,b], \text{ folgt: } \lim_{n \to \infty} x_n \in [a,b].$

Satz 3.4.5 Sei $f: I = [a, b] \longrightarrow \mathbb{R}$ stetig auf einem **kompakten Intervall** *I*. Dann gibt es $u \in I$ und $v \in I$ mit: $f(u) \le f(x) \le f(v) \quad \forall x \in I$. Insbesondere ist f beschränkt.

3.5 Umkehrabbildung

Satz 3.5.1 Seien $D_1, D_2 \subseteq \mathbb{R}, f: D_1 \longrightarrow D_2, g:$ $\overline{D_2} \longrightarrow \mathbb{R}$ und $x_0 \in D_1$. Wenn f in x_0 und g in $f(x_0)$ **stetig sind**, so ist $g \circ f : D_1 \longrightarrow \mathbb{R}$ in x_0 **stetig**.

Korollar 3.5.2 Wenn in **Satz 3.5.1** f auf D_1 und g auf D_2 stetig sind, ist $g \circ f$ auf D_1 stetig.

Satz 3.5.3 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig, streng monoton. Dann ist $I := f(i) \subseteq \mathbb{R}$ ein Intervall und $f^{-1}: J \longrightarrow I$ ist **stetig**, **streng monoton**.

3.6 Reelle Exponentialfunktion

Satz 3.6.1 exp : $\mathbb{R} \longrightarrow]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv.

Korollar 3.6.2 $\exp(x) > 0 \quad \forall x \in \mathbb{R}$. Aus der

Potenzreihendarstellung von **exp** folgt ausserdem: $\exp(x) > 1 \quad \forall x > 0$. Wenn y < z ist, folgt (aus 2.7.27) $\exp(z) = \exp(y + (z - y)) = \exp(y) \exp(z - y)$ und da $\exp(z-y) > 1$ ist folgt folgendes Korollar:

Korollar 3.6.3 $\exp(z) > exp(y) \quad \forall z > y$

Korollar 3.6.4 $\exp(x) \ge 1 + x \quad \forall x \in \mathbb{R}$

Korollar 3.6.5 Der natürlich Logarithmus ln : $|0,+\infty| \longrightarrow \mathbb{R}$ ist eine streng monoton wachsende, stetige, bijektive Funktion. Des weiteren gilt $\ln(a \cdot$ $(b) = \ln a + \ln b \quad \forall a, b \in]0, +\infty[.$

Korollar 3.6.6 (1)/(2) Für a > / < 0 ist $]0, +\infty[\longrightarrow$ $[0,+\infty[$, $x\longmapsto \overline{x^a}$ eine stetige, streng monoton wachsende/fallende Bijektion. $\forall a, b \in \mathbb{R}, \forall x > 0$:

- (3) $ln(x^a) = a ln(x)$
- $(4) x^a \cdot x^b = x^{a+b}$
- (5) $(x^a)^b = x^{a \cdot b}$

3.7 Konvergenz von Funktionenfolgen

Definition 3.7.1 Die **Funktionenfolge** $(f_n)_{n\geq 0}$ **konvergiert punktweise** gegen eine Funktion $f: D \longrightarrow \mathbb{R}$, wenn $\forall x \in D : f(x) = \lim_{n \to \infty} f_n(x)$.

Definition 3.7.3 (Weierstrass 1841) Die Folge f_n : $D \longrightarrow \mathbb{R}$ konvergiert gleichmässig in D gegen f: $D \longrightarrow \mathbb{R}$, wenn gilt: $\forall \varepsilon > 0 \exists N \geqslant 1$, so dass: $\forall n \geqslant 1$ $N, \forall x \in D: |f_n(x) - f(x)| < \varepsilon.$

Satz 3.7.4 Sei $D \subseteq \mathbb{R}$ und $f_n : D \longrightarrow \mathbb{R}$ eine Funktionenfolge bestehend aus (in D) stetigen Funktionen, die (in D) gleichmässig gegen eine Funktion $f: D \longrightarrow \mathbb{R}$ konvergiert. Dann ist f (in D) stetig.

Definition 3.7.5 Eine Funktionenfolge $f_n: D \longrightarrow \mathbb{R}$ ist gleichmässig konvergent, wenn $\forall x \in D$ der Grenzwert $f(x) := \lim_{n \to \infty} f_n(x)$ existiert und die Folge $(f_n)_{n \geqslant 0}$ gleichmässig gegen *f* konvergiert.

Korollar 3.7.6 Die Funktionenfolge $f_n: D \longrightarrow \mathbb{R}$ konvergiert genau dann gleichmässig in *D*, wenn: $\forall \varepsilon > 0 \exists N \geqslant 1$, so dass $\forall n, m \geqslant N$ und $\forall x \in D$: $|f_n(x) - f_m(x)| < \varepsilon$.

Korollar 3.7.7 Sei $D \subseteq \mathbb{R}$. Wenn $f_n : D \longrightarrow \mathbb{R}$ eine

gleichmässig konvergente Folge stetiger Funktionen 3.9 Die Kreiszahl π ist, dann ist die Funktion $f(x) := \lim_{n \to \infty} f_n(x)$ stetig.

Definition 3.7.8 Die Reihe $\sum_{k=0}^{\infty} f_k(x)$ konvergiert **gleichmässig** (in *D*), wenn die durch $S_n(x) :=$ $\sum_{k=0}^{\infty} f_k(x)$ definierte Funktionenfolge **gleichmässig** konvergiert.

Satz 3.7.9 Sei $D \subseteq \mathbb{R}$ und $f_n : D \longrightarrow \mathbb{R}$ eine Folge **stetiger Funktionen**. Wir nehmen an, dass $|f_n(x)| \le$ $c_n \ \forall x \in D \ \text{und, dass} \ \sum_{n=0}^{\infty} c_n \ \text{konvergiert.} \ \text{Dann kon-}$ **vergiert** die Reihe $\sum_{n=0}^{\infty} f_n(x)$ **gleichmässig** in D und deren Grenzwert $f(x) := \sum_{n=0}^{\infty} f_n(x)$ ist eine in D stetige Funktion.

Definition 3.7.10 Die Potenzreihe $\sum_{k=0}^{\infty} c_k x^k$ hat **posi**tiven Konvergenzradius, wenn $\limsup \sqrt[k]{|c_k|}$ existiert.

Der Konvergenzradius ist dann definiert als: ρ = $+\infty$ für $\limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0$, $\rho = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}}$ für $\limsup \sqrt[k]{|c_k|} > 0.$

Satz 3.7.11 Sei $\sum_{k=0}^{\infty}$ eine **Potenzreihe** mit **positivem Konvergenzradius** $\rho > 0$ und $f(x) := \sum_{k=0}^{\infty} c_k c^k$, $|x| < \infty$ ρ . Dann gilt: $\forall 0 \le r < \rho$ konvergiert $\sum_{k=0}^{\infty} c_k x^k$ gleich**mässig** auf [-r,r], insbesondere ist $f:]-\rho,\rho[\longrightarrow \mathbb{R}$ stetig.

3.8 Trigonometrische Funktionen

Satz 3.8.1 $\sin : \mathbb{R} \longrightarrow \mathbb{R}$ und $\cos : \mathbb{R} \longrightarrow \mathbb{R}$ sind stetige Funktionen.

Satz 3.8.2 Sei $z \in \mathbb{C}$

- (1) $\exp iz = \cos(z) + i\sin(z)$
- (2) $\cos(z) = \cos(-z) \text{ und } \sin(-z) = -\sin(z)$
- (3) $\sin(z) = \frac{e^{iz} e^{-iz}}{2i}$, $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$
- (4) $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$, $\overline{\cos(z+w)} = \cos(z)\cos(w) - \sin(z)\sin(w)$
- (5) $\cos^2(z) + \sin^2(z) = 1$

Korollar 3.8.3 $\sin(2z) = 2\sin(z)\cos(z)$ $\cos(2z) = \cos^2(z) - \sin^2(z)$

Satz 3.9.1 Die Sinusfunktion hat auf $]0, +\infty[$ mindestens eine Nullstelle. Sei $\pi := \inf\{t > 0 : \sin t =$

- (1) $\sin \pi = 0, \pi \in]2,4[$
- (2) $\forall x \in]0, \pi[: \sin x > 0]$
- $(3) e^{\frac{i\pi}{2}} = i$

Korollar 3.9.2 $x \ge \sin x \ge x - \frac{x^3}{21} \quad \forall 0 \le x \le \sqrt{6}$

Korollar 3.9.3 Sei $x \in \mathbb{R}$

- (1) $e^{i\pi} = -1$, $e^{2i\pi} = 1$
- (2) $\sin(x + \frac{\pi}{2}) = \cos(x)$, $\cos(x + \frac{\pi}{2}) = -\sin(x)$
- (3) $\sin(x + \pi) = -\sin(x)$, $\sin(x + 2\pi) = \sin(x)$
- (4) $\cos(x + \pi) = -\cos(x)$, $\cos(x + 2\pi) = \cos(x)$
- (5) Nullstellen von Sinus = $\{k \cdot \pi : k \in \mathbb{Z}\}$ $\sin(x) > 0 \quad \forall x \in]2k\pi, (2k+1)\pi[, k \in \mathbb{Z}]$ $\sin(x) < 0 \quad \forall x \in](2k+1)\pi, (2k+2)\pi[, k \in \mathbb{Z}]$
- (6) Nullstellen von Cosinus = $\{\frac{\pi}{2} + k \cdot \pi : k \in \mathbb{Z}\}$ $\cos(x) > 0 \quad \forall x \in]-\frac{\pi}{2} + 2k\pi, -\frac{\pi}{2} + (2k+1)\pi[, k \in \mathbb{Z}]$ cos(x) < 0 $\forall x \in]-\frac{\pi}{2}+(2k+1)\pi, -\frac{\pi}{2}+(2k+2)\pi[, k \in \mathbb{Z}]$

3.10 Grenzwerte von Funktionen

Definition 3.10.1 $x_0 \in \mathbb{R}$ ist ein **Häufungspunkt** der Menge D, wenn $\delta > 0: (|x_0 - \delta, x_0 + \delta|) \setminus \{x_0\} \cap D \neq \emptyset$

Definition 3.10.3 Sei $f: D \longrightarrow \mathbb{R}$, $x_0 \in \mathbb{R}$ ein **Häu**fungspunkt von D. Dann ist $A \in \mathbb{R}$ der Grenzwert von f(x) für $x \to x_0$, bezeichnet mit $\lim_{x \to a} f(x) = A$, wenn $\forall \varepsilon > 0 \,\exists \delta > 0$, so dass $\forall x \in D \cap (|x_0 - \delta, x_0 + \delta|)$ $\delta[\setminus \{x_0\}): |f(x) - A| < \varepsilon.$

Bemerkung 3.10.4 (1) Sei $f: D \longrightarrow \mathbb{R}$ und x_0 ein **Häufungspunkt** von *D*. Dann gilt $\lim_{x \to x_0} f(x) = A$ **genau, dann wenn** für jede Folge $(a_n)_{n\geq 1}$ in $D\setminus \{x_0\}$ mit $\lim_{n\to\infty} a_n = x_0$ folgendes gilt: $\lim_{n\to\infty} f(a_n) = A$.

(2) Sei $x_0 \in D$. Dann ist f genau dann stetig, wenn

 $\lim_{x \to x_0} f(x) = f(x_0).$

(3) Mittels (1) zeigt man leicht, dass wenn $f,g: D \longrightarrow \mathbb{R}$ und $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ existieren: $\lim_{x \to x_0} (f + g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$ und $\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$ folgen.

(4) Seien $f,g:D\longrightarrow \mathbb{R}$ mit $f\leqslant g$. Dann folgt $\lim_{x\to x_0}f(x)\leqslant \lim_{x\to x_0}g(x)$ falls beide Grenzwerte existieren.

(5) Wenn $g_1 \leqslant f \leqslant g_2$ und $\lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x)$, so existiert $l := \lim_{x \to x_0} f(x)$ und $l = \lim_{x \to x_0} g_1(x)$

Satz 3.10.6 Seien $D, E \subseteq \mathbb{R}$, x_0 Häufungspunkt von $D, f: D \longrightarrow E$ eine Funktion. Wir nehmen an, dass $y_0 := \lim_{x \to x_0} f(x)$ existiert und $y_0 \in E$. Wenn $g: E \longrightarrow \mathbb{R}$ in y_0 stetig ist, folgt: $\lim_{x \to x_0} g(f(x)) = g(y_0)$.

4 Differenzierbare Funktionen

4.1 Die Ableitung

Definition 4.1.1 f ist in x_0 differenzierbar, wenn der Grenzwert $\lim_{x \to x_0} \frac{f(x) - f(x-0)}{x - x_0}$ existiert. Ist dies der Fall, wird der Grenzwert mit $f'(x_0)$ bezeichnet.

Bemerkung 4.1.2 Es ist oft von Vorteil in der Definition von $f'(x_0)$, $x = x_0 + h$ zu setzen, so dass: $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$

Satz 4.1.3 (Weierstrass 1861) Sei $f: D \longrightarrow \mathbb{R}$, $x_0 \in D$ Häufungspunkt von D. Folgende Aussagen sind äquivalent:

(1) f ist in x_0 differenzierbar

(2) Es gibt $c \in \mathbb{R}$ und $r : D \longrightarrow \mathbb{R}$ mit:

2.1 $f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$

2.2 $r(x_0) = 0$ und r ist stetig in x_0

Wenn dies zutrifft, ist $c = f'(x_0)$ eindeutig bestimmt.

Satz 4.1.4 Eine Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 genau dann differenzierbar, wenn es eine Funktion

 $\phi: D \longrightarrow \mathbb{R}$ gibt, die in x_0 **stetig** ist und $f(x) = f(x_0) + \phi(x)(x - x_0) \quad \forall x \in D$. In diesem Fall gilt: $\phi(x) = f'(x)$.

Korollar 4.1.5 Sei $f: D \longrightarrow \mathbb{R}$ und x_0 ein Häufungspunkt von D. Wenn f in x_0 differenzierbar ist, ist f in x_0 stetig.

Definition 4.1.7 $f: D \longrightarrow \mathbb{R}$ ist in D differenzierbar, wenn für jeden Häufungspunkt $x_0 \in D$, f in x_0 differenzierbar ist.

Satz 4.1.9 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$ ein Häufungspunkt von D und $f,g:d \longrightarrow \mathbb{R}$ in x_0 differenzierbar. Dann gelten:

(1) f + g ist in x_0 differenzierbar und $(f + g)'(x_0) = f'(x_0) + g'(x_0)$

(2) $f \cdot g$ ist in x_0 differenzierbar und $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$

(3) Wenn $g(x_0) \neq 0$ ist, ist $\frac{f}{g}$ in x_0 differenzierbar und $(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$

Satz 4.1.11 Seien $D, E \subseteq \mathbb{R}$, sei $x_0 \in D$ ein Häufungspunkt, sei $f: D \longrightarrow E$ eine in x_0 differenzierbare Funktion, so dass $y_0 := f(x_0)$ ein Häufungspunkt von E ist und sei $g: E \longrightarrow \mathbb{R}$ eine in y_0 differenzierbare Funktion. Dann ist $g \circ f: D \longrightarrow \mathbb{R}$ in x_0 differenzierbar und $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$

Korollar 4.1.12 Sei $f: D \longrightarrow E$ eine bijektive Funktion, sei $x_0 \in D$ ein Häufungspunkt. Wir nehmen an f ist in x_0 differenzierbar und $f'(x_0) \neq 0$. Zudem nehmen wir an f^{-1} ist in $y_0 = f(x_0)$ stetig. Dann ist y_0 ein Häufungspunkt von E, f^{-1} ist in y_0 differenzierbar und $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

Definition 4.2.1 Sei $f: D \longrightarrow \mathbb{R}$, $D \subseteq \mathbb{R}$ und $x_0 \in D$.

(1) [(2)] f besitzt ein **lokales Maximum [Minimum]** in x_0 , wenn $\exists \delta > 0$ mit: $f(x) \leqslant [\geqslant] f(x_0) \quad \forall x \in]x_0 - \delta, x_0 + \delta[\cap D]$

(3) f besitzt ein **lokales Extremum** in x_0 , wenn es ein **lokales Minimum oder Maximum** ist.

Satz 4.2.2 Sei $f:]a, b[\longrightarrow \mathbb{R}, x_0 \in]a, b[$. Wir nehmen

an, f ist in x_0 differenzierbar.

(1) Wenn $f'(x_0) > 0$ ist, $\exists \delta > 0$ mit: $f(x) > f(x_0) \quad \forall x \in]x_0, x_0 + \delta[f(x) < f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$

(2) Wenn $f'(x_0) < 0$ ist, $\exists \delta > 0$ mit: $f(x) < f(x_0) \quad \forall x \in]x_0, x_0 + \delta[f(x) > f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$

(3) Wenn f in x_0 ein **lokales Extremum** besitzt, folgt $f'(x_0) = 0$.

Satz 4.2.3 (Rolle 1690) Sei $f : [a,b] \longrightarrow \mathbb{R}$ stetig und in]a,b[**differenzierbar**. Wenn f(a) = f(b), so gibt es $\xi \in]a,b[$ mit: $f'(\xi) = 0$.

Satz 4.2.4 (Lagrange 1797) Sei $f \longrightarrow \mathbb{R}$ stetig und in]a,b[differenzierbar. Es gibt $\xi \in]a,b[$ mit: $f(b)-f(a)=f'(\xi)(b-a)$.

Korollar 4.2.5 Seien $f, g : [a, b] \longrightarrow \mathbb{R}$ stetig und in [a, b[differenzierbar.

(1) Wenn $f'(\xi) = 0 \quad \forall \xi \in]a, b[$ ist, ist f konstant.

(2) Wenn $f'(\xi) = g'(\xi) \quad \forall \xi \in]a, b[$ ist, gibt es $c \in \mathbb{R}$ mit: $f(x) = g(x) + c \quad \forall x \in [a, b].$

(3) [(4)] Wenn $f'(\xi) \ge [>]0 \quad \forall \xi \in]a, b[$ ist, ist f auf [a,b] [strikt] monoton wachsend.

(5) [(6)] Wenn $f'(\xi) \leq [<]0 \quad \forall \xi \in]a, b[$ ist, ist f auf [a,b] [strikt] monoton fallend.

(7) Wenn es $M \ge 0$ gibt, mit: $|f'(\xi)| \le M \quad \forall \xi \in]a,b[$, folgt $\forall x_1, x_2 \in [a,b]: |f(x_1) - f(x_2)| \le M|x_1 - x_2|$.

Beispiel 4.2.6 (1) arcsin Da sin' = cos und cos(x) > $0 \ \forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ folgt aus **Korollar 4.2.5 (4)**, dass die Sinusfunktion auf $[-\frac{\pi}{2}, \frac{\pi}{2}]$ strikt monoton wachsend ist. Also ist sin : $[-\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow [-1,1]$ bijektiv. Wir definieren arcsin : $[-1,1] \longrightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$ als die Umkehrfunktion von sin. Nach **Korollar 4.1.12** ist sie auf]-1,1[differenzierbar und für $y=\sin x, x\in]-\frac{\pi}{2}, \frac{\pi}{2}[$ folgt nach **4.1.12**: $\arcsin'(y)=\frac{1}{\sin'(x)}=\frac{1}{\cos x}.$ Wir verwenden nun: $y^2=\sin^2 x=1-\cos^2 x$ woraus mit $\cos c>0$ folgt: $\cos x=\sqrt{1-y^2}.$ Wir erhalten also $\forall y\in]-1,1[$ $\arcsin'(y)=\frac{1}{\sqrt{1-y^2}}.$

(2) arccos Eine analoge Diskussion, wie in (1) zeigt,

dass cos : $[0,\pi] \longrightarrow [-1,]$ strikt monoton fallend ist und $[0,\pi]$ auf [-1,1] bijektiv abbildet. Sei: arccos : $[-1,1] \longrightarrow [0,\pi]$ die Umkehrfunktion. Sie ist auf -1,1[differenzierbar und $\arccos'(y) = \frac{-1}{\sqrt{1-v^2}} \ \forall y \in$ -1,1[.

(3) arctan Für $x \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$ hatten wir die Tangensfunktion definiert: $\tan x = \frac{\sin x}{\cos x}$ und deren Ableitung berechnet: $\tan' x = \frac{1}{\cos^2 x}$. Also ist $\tan \text{ auf }] - \frac{\pi}{2}, \frac{\pi}{2}[$ streng monoton wachsend mit $\lim_{x \to \infty} \tan x = +\infty$,

 $\lim \tan x = -\infty$. Also ist $\tan :]-\frac{\pi}{2}, \frac{\pi}{2}[\longrightarrow]$ $x \rightarrow \frac{\pi}{2}^+$

 ∞, ∞ [bijektiv. Sei arctan :] $-\infty, \infty$ [\longrightarrow] $-\frac{\pi}{2}, \frac{\pi}{2}$ [die Umkehrfunktion. Dann ist arctan differenzierbar und für $y = \tan x$: $\arctan'(y) = \cos^x = \frac{1}{1+u^2}$.

Satz 4.2.9 (Cauchy) Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ stetig und in]a,b[differenzierbar. Es gibt $\xi \in]a,b[$ mit: $g'(\xi)(f(b)-f(a))=f'(\xi)(g(b)-g(a))$. Wenn $g'(x)\neq 0$ $0 \quad \forall x \in]a,b[$ ist, folgt: $g(a) \neq g(b)$ und $\frac{f(b)-f(a)}{g(b)-g(a)} =$

Satz 4.2.10 (Bernoulli 1691/92, de l'Hôpital 1696) Seien $f,g:]a,b[\longrightarrow \mathbb{R}$ differenzierbar mit $g'(x) \neq \emptyset$ $0 \quad \forall x \in]a,b[$. Wenn $\lim_{x \to b^-} f(x) = 0$, $\lim_{x \to b^-} g(x) = 0$ und

 $\lim_{x\to b^-}\frac{f'(x)}{g'(x)}=:\lambda \text{ existiert, folgt: } \lim_{x\to b^-}\frac{f(x)}{g(x)}=\lim_{x\to b^-}\frac{f'(x)}{g'(x)}.$

Bemerkung 4.2.11 Der Satz gilt auch wenn: b = $+\infty$ $\lambda = +\infty$ $x \to a^+$

Definition 4.2.13 (1) *f* ist **konvex** (auf *I*), wenn $\forall x, y \in I, x \leq y \text{ und } \lambda \in [0,1] \text{ folgendes gilt: } f(\lambda x + y)$ $(1 - \lambda)y \le \lambda f(x) + (1 - \lambda)f(y)$

(2) *f* ist **streng konvex**, wenn $\forall x, y \in I$, x < y und $\overline{\lambda} \in]0,1[$ folgendes gilt: $f(\lambda x + (1-\lambda)y) < \lambda f(x) +$ $(1-\lambda)f(y)$

Bemerkung 4.2.14 Sei $f: I \longrightarrow \mathbb{R}$ konvex. $g: E \longrightarrow \mathbb{R}$ n-mal differenzierbar. Dann ist Ein einfacher Induktionsbeweis zeigt, dass $\forall n \geqslant$ $\{x_1, ..., x_n\} \subseteq I \text{ und } \lambda_1, ... \lambda_n \text{ in } [0, 1] \text{ mit } \sum_{i=1}^n \lambda_i = 1$ folgendes gilt: $f(\sum_{i=1}^{n} \lambda_i x_i) \leq \sum_{i=1}^{n} \lambda_i f(x_i)$

Lemma 4.2.15 Sei $f: I \longrightarrow \mathbb{R}$ eine beliebige Funktion. Die Funktion f ist genau dann konvex, wenn $\forall x_0 < x < x_1 \text{ in } I \text{ folgendes gilt: } \frac{f(x) - f(x_0)}{x - x_0} \leqslant \frac{f(x_1) - f(x)}{x_1 - x}$

Satz 4.2.16 Sei $f:]a, b[\longrightarrow \mathbb{R}$ differenzierbar. f ist genau dann (streng) konvex, wenn f' (streng) monoton wachsend ist.

Korollar 4.2.17 Sei $f:]a,b[\longrightarrow \mathbb{R}$ zweimal differenzierbar in a, b[. f ist (streng) konvex, wenn $f'' \ge 0$ (bzw. f'' > 0) auf |a, b|.

Definition 4.3.1 (1) Für $n \ge 2$ ist f n-mal differenzierbar in D, wenn $f^{(n-1)}$ in D differenzierbar ist. Dann ist $f^{(n)} := (f^{(n-1)})'$ und nennt sich die n-te **Ableitung** von *f*

(2) f ist n-mal stetig differenzierbar in D, wenn f nmal differenzierbar in $D \& f^{(n)}$ in D stetig ist.

(3) Die Funktion f ist in D glatt, wenn sie $\forall n \ge 1$ nmal differenzierbar ist.

Bemerkung 4.3.2 Es folgt aus Korollar 4.1.5, dass für $n \ge 1$ eine *n*-mal differenzierbare Funktion (n-1)mal stetig differenzierbar ist.

Satz 4.3.3 (analog zu Satz 4.1.9) Sei $D \subseteq \mathbb{R}$ wie in Definition 4.3.1, $n \ge 1$ und $f, g: D \longrightarrow \mathbb{R}$ n-mal differen**zierbar** in D.

(1) f + g ist *n*-mal differenzierbar und $(f + g)^{(n)} =$

(2) $f \cdot g$ ist *n*-mal differenzierbar und $(f \cdot g)^{(n)} =$ $\sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$.

Satz 4.3.5 Sei $D \subseteq \mathbb{R}$ wie in **Definition 4.3.1**, $n \geqslant 1$ und $f,g:D\longrightarrow \mathbb{R}$ *n*-mal differenzierbar in *D*. Wenn $g(x) \neq 0 \quad \forall x \in D \text{ ist, ist } \frac{f}{g} \text{ in } D \text{ } n\text{-mal differenzier-}$ bar.

Satz 4.3.6 Seien $E,D \subseteq \mathbb{R}$ Teilmengen für die jeder Punkt Häufungspunkt ist. Seien $f:D \longrightarrow E$, $f \circ g$ n-mal differenzierbar und $(g \circ f)^{(n)}(x) =$ $\sum_{k=1}^{n} A_{nk}(x) (g^{(k)} \circ f)(x)$ wobei A_{nk} ein Polynom in den Funktionen $f', f^{(2)}, ..., f^{n+1-k}$ ist.

Satz 4.4.1 Seien $f_n:]a,b[\longrightarrow \mathbb{R}$ eine Funktionenfolge wobei f_n einmal in a, b $\forall n \ge 1$ stetig differenzier**bar** ist. Wir nehmen an, dass sowohl die Folge $(f_n)_{n\geq 1}$ wie auch $(f'_n)_{n\geqslant 1}$ gleichmässig in]a,b[mit $\lim_{n\to\infty} f_n=:f$ und $\lim_{n\to\infty} f'_n =: p$ konvergieren. Dann ist f stetig dif**ferenzierbar** und f' = p.

Satz 4.4.2 Sei $\sum_{k=0}^{\infty} c_k x^k$ eine **Potenzreihe** mit pos. Konvergenzradius $\rho > 0$. Dann ist $f(x) = \sum_{k=0}^{\infty} c_k (x - 1)^k$ $x_0)^k$ auf $]x_0 - \rho, x_0 + \rho[$ differenzierbar und $f'(x) = \sum_{k=0}^{\infty} kc_k(x-x_0)^{k-1} \quad \forall x \in]x_0 - \rho, x_0 + \rho[$.

Korollar 4.4.3 Unter der Voraussetzung von Satz **4.4.1** ist f auf $|x_0 - \rho, x_0 + \rho|$ glatt und $f^{(j)}(x) =$ $\sum_{k=j}^{\infty} c_k \frac{k!}{(k-i)!} (x-x_0)^{k-j}$. Insbesondere ist $c_j = \frac{f^{(j)}(x_0)}{i!}$.

Satz 4.4.5 Sei $f: [a,b] \longrightarrow \mathbb{R}$ stetig und in]a,b[(n+1)-mal differenzierbar. Für jedes $a < x \le b$ gibt es $\xi \in]a,x[$ mit: $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k +$ $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$.

Korollar 4.4.6 (Taylor Approximation) Sei f : $[c,d] \longrightarrow \mathbb{R}$ stetig und in [c,d] (n+1)-mal differen**zierbar**. Sei c < a < d. $\forall x \in [c,d] \exists \xi$ zwischen x und a, so dass: $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^k$

Korollar 4.4.7 Sei $n \ge 0$, $a < x_0 < b$ und $f : [a, b] \longrightarrow$ \mathbb{R} in [a,b[(n+1)]-mal stetig differenzierbar. Annahme: $f'(x_0) = f^{(2)}(x_0) = \dots = f^{(n)}(x_0) = 0$.

(1) Wenn *n* gerade ist und x_0 eine lokale Extremal**stelle** ist, folgt $f^{(n+1)}(x_0) = 0$.

(2) Wenn *n* ungerade ist und $f^{(n+1)}(x_0) > 0$ ist, ist x_0 eine strikt lokale Minimalstelle.

(3) Wenn *n* ungerade ist und $f^{(n+1)}(x_0) < 0$ ist, x_0 eine strikt lokale Maximalstelle.

Korollar 4.4.8 Sei $f: [a,b] \longrightarrow \mathbb{R}$ stetig und in [a,b]zweimal stetig differenzierbar. Sei $a < x_0 < b$. Annahme: $f'(x_0) = 0$.

(1) Wenn $f^{(2)}(x_0) > 0$ ist, ist x_0 eine strikt lokale

Minimalstelle.

(2) Wenn $f^{(2)}(x_0) < 0$ ist, ist x_0 eine strikt lokale $S(f,P) - s(f,P) < \varepsilon$. Maximalstelle.

Riemann Integral

Definition und Integrabilitätskriterien

Definition 5.1.1 Eine **Partition** von *I* ist eine endliche Teilmenge $P \subseteq [a,b]$ wobei $\{a,b\} \subseteq P$. Es gilt: $n := \operatorname{card} P - 1 \geqslant 1$ und es gibt genau eine Bijektion $\{0,1,2,...,n\} \longrightarrow P, j \mapsto x_j$ mit der Eigenschaft $i < j \Longrightarrow x_i < x_i$.

Eine **Partition** P' ist eine Verfeinerung von P, wenn $P \subset P'$. Offensichtlich ist die Vereinigung $P_1 \cup P_2$ zweier Partitionen wieder eine Partition. Insbesondere haben zwei Partitionen immer eine gemeinsame Vereinigung. Sei $f:[a,b] \longrightarrow \mathbb{R}$ eine **beschränkte Funktion**, das heisst es gibt $M \ge 0$ mit $|f(x)| \leq M \quad \forall x \in [a,b].$ Sei $P = \{x_0, x_1, ..., x_n\}$ eine **Partition** von *I*. Insbesondere gilt: $x_0 = a <$ $x_1 < ... < x_n = b$ Länge des Teilintervalls $[x_{i-1}, x_i]$, $\delta_i := x_i - x_{i-1}, i \geqslant 1$

Untersumme $s(f, P) := \sum_{i=1}^{n} f_i \delta_i$, $f_i = \inf_{x_{i-1} \leq x \leq x_i} f(x)$ Obersumme $S(f, P) := \sum_{i=1}^{n} F_i \delta_i, F_i = \sup_{x_{i-1} \le x \le x_i} f(x)$

Lemma 5.1.2 (1) Sei P' eine Verfeinerung von P. $\phi(x) - \phi(y) \leq \sup_{[c,d]} \phi - \inf_{[c,d]} \phi$, woraus durch ver-Dann gilt: $s(f, P) \leq s(f, P') \leq S(f, P') \leq S(f, P)$.

(2) Für beliebige Partitionen P_1, P_2 gilt: $s(f, P_1) \leq$ $\overline{S(f,P_2)}$.

Sei $\mathcal{P}(I)$ die Menge der Partitionen von I. Wir $\eta \in [c,d]$ $\phi(\xi) > \varepsilon$ und $\phi(\eta) < \inf_{[c,d]} \phi + \varepsilon$ woraus $\sup s(\overline{f}, P), S(f)$ definieren: s(f) $P \in \mathcal{P}(I)$ inf S(f, P).

Definition 5.1.3 Eine beschränkte Funktion f: $[a,b] \longrightarrow \mathbb{R}$ ist (Riemann) integrierbar, wenn s(f) = S(f). In diesem Fall bezeichnen wir den **gemeinsamen Wert** von s(f) und S(f) mit $\int_a^b f(x) dx$. Satz 5.1.4 Eine beschränkte Funktion ist genau

dann integrierbar, wenn $\forall \varepsilon > 0 \exists P \in \mathcal{P}(I): \forall x,y \in D: |x-y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon.$

Satz 5.1.8 (Du Bois-Reymond 1875, Darboux 1875) Eine beschränkte Funktion $f:[a,b] \longrightarrow \mathbb{R}$ ist genau dann integrierbar, wenn $\forall \varepsilon > 0 \exists \delta > 0$, so dass: $\forall P \in \mathcal{P}_{\delta}(I), S(f, P) - s(f, P) < \varepsilon$. Hier bezeichnet $\mathcal{P}_{\delta}(I)$ die Menge der Partitionen P, für welche $\max \delta_i \leq \delta$.

Korollar 5.1.9 Die beschränkte Funktion $f : [a, b] \longrightarrow$ \mathbb{R} ist genau dann integrierbar mit $A := \int_a^b f(x) dx$, **wenn**: $\forall \varepsilon > 0 \ \exists \delta > 0$, so dass $\forall P \in \mathcal{P}(I) \ \text{mit} \ \delta(P) < \delta$ und $\xi_1,...,\xi_n$ mit $\xi_i \in [x_{i-1},x_i], P = \{x_0,...,x_n\}$ $|A - \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})| < \varepsilon$.

Satz 5.2.1 Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ beschränkt, integrierbar und $\lambda \in \mathbb{R}$. Dann sind f + g, $\lambda \cdot f$, $f \cdot g$, |f| $\max(f,g)$, $\min(f,g)$ und (falls $|g(x)| \ge \beta > 0$ $\forall x \in$ [a,b]) $\frac{f}{g}$ integrierbar.

Bemerkung 5.2.2 Sei ϕ : $[c,d] \longrightarrow \mathbb{R}$ eine beschränkte Dann ist (*) sup $|\phi(x) - \phi(y)| =$

 $\sup \phi(x) - \inf \phi(x)$. Einerseits gilt offensichtlich

 $\forall x, y \in [c, d]: \phi(x) \leq \sup \phi, \quad \phi \geq \inf \phi \text{ also ist}$

tauschen von x, y folgt: $|\phi(x) - \phi(y)| \leq \sup - \inf_{x \in \mathcal{X}} \phi$.

Andererseits sei $\varepsilon > 0$. Dann gibt es $\xi \in [c,d]$ und

 $\phi(\xi) - \phi(\eta) > \sup_{[c,d]} \phi - \inf_{[c,d]} \phi - 2\varepsilon$ folgt. Dies zeigt die

Aussage (*)

Korollar 5.2.3 Seien P,Q Polynome und [a,b] ein Intervall in dem Q keine Nullstelle besitzt. Dann ist $[a,b] \longrightarrow \mathbb{R}, x \mapsto \frac{P(x)}{Q(x)}$ integrierbar.

ist in *D* gleichmässig stetig, wenn $\forall \varepsilon > 0 \ \exists \delta > 0$

Satz 5.2.6 (Heine 1872) Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig in dem kompakten Intervall [a, b]. Dann ist f in [a, b] gleichmässig stetig.

Satz 5.2.7 Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig. So ist f integrier-

Satz 5.2.8 Sei $f:[a,b] \longrightarrow \mathbb{R}$ monoton. So ist f integrierbar.

Bemerkung 5.2.9 Seien a < b < c und $f : [a, c] \longrightarrow \mathbb{R}$ beschränkt mit $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar. Dann ist f integrierbar und (*) $\int_a^c f(x) dx = \int_a^b f(x) dx +$ $\int_{b}^{c} f(x) dx$. In der Tat ergibt die Summe einer Obersumme (respektive Untersumme) für $f|_{[a,b]}$ und $f|_{[b,c]}$ eine Obersumme (respektive Untersumme) für f. Wir erweitern jetzt die Definition von $\int_a^b f(x) dx$ auf: $\int_a^a f(x) dx = 0$ und wenn a < b, $\int_b^a f(x) dx :=$ $-\int_a^b f(x) dx$. Dann gilt (*) für alle Tripel a, b, c unter den entsprechenden Integrabilitätsvoraussetzungen.

Satz 5.2.10 Sei $I \subseteq \mathbb{R}$ ein kompaktes Intervall mit Endpunkten a, b sowie $f_1, f_2 : I \longrightarrow \mathbb{R}$ beschränkt integrierbar und $\lambda_1, \lambda_2 \in \mathbb{R}$. Dann gilt: $\int_a^b (\lambda_1 f_1(x) + f_2(x)) dx$ $\lambda_2 f_2(x) dx = \lambda_1 \int_1^b f_1(x) dx + \lambda_2 \int_2^b f_2(x) dx.$

Satz 5.3.1 Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ beschränkt integrierbar, und $f(x) \leq g(x) \quad \forall x \in [a,b]$. Dann folgt: $\int_a^b f(x) \, dx \leqslant \int_a^b g(x) \, dx.$

Korollar 5.3.2 Wenn $f : [a, b] \longrightarrow \mathbb{R}$ beschränkt integrierbar, folgt: $\left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx$.

Satz 5.3.3 (Cauchy-Schwarz Ungleichung) Seien $f,g:[a,b]\longrightarrow \mathbb{R}$ beschränkt integrierbar. Dann gilt: $\left| \int_{a}^{b} f(x)g(x) dx \right| \le \sqrt{\int_{a}^{b} f^{2}(x) dx} \sqrt{\int_{a}^{b} g^{2}(x) dx}$.

Satz 5.3.4 (Mittelwertsatz, Cauchy 1821) Sei *f* : $[a,b] \longrightarrow \mathbb{R}$ stetig. So $\exists \xi \in [a,b]$: $\int_a^b f(x) dx =$ $f(\xi)(b-a)$.

Satz 5.3.6 (Cauchy 1821) Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ Definition 5.2.4 Eine Funktion $f:D\longrightarrow \mathbb{R}$, $D\subseteq \mathbb{R}$ wobei f stetig, g beschränkt und integrierbar mit $g \ge 0 \quad \forall x \in [a,b]$. Dann gibt es $\xi \in [a,b]$ mit:

 $\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx.$

Satz 5.4.1 (Fundamentalsatz der Analysis) Seien a < b und $f : [a,b] \longrightarrow \mathbb{R}$ stetig. Die Funktion $F(x) = \int_a^x f(t) dt$, $a \le x \le b$ ist in [a,b] stetig differenzierbar und $F'(x) = f(x) \quad \forall x \in [a,b]$.

Definition 5.4.2 Sei a < b und $f : [a,b] \longrightarrow \mathbb{R}$ **stetig**. Eine Funktion $F : [a,b] \longrightarrow \mathbb{R}$ heisst **Stammfunktion** von f, wenn F (**stetig) differenzierbar** in [a,b] ist und F' = f in [a,b] gilt.

Satz 5.4.3 (Fundamentalsatz der Differentialrechnung) Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig. So gibt es eine Stammfunktion F von f, die bis auf eine addidive Konstante eindeutig bestimmt ist und: $\int_a^b f(x) \, dx = F(b) - F(a)$. Satz 5.4.5 (Partielle Integration) Seien $a < b \in \mathbb{R}$ und $f,g:[a,b] \longrightarrow \mathbb{R}$ stetig differenzierbar. Dann gilt: $\int_a^b f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x) \, dx$.

Satz 5.4.6 (Substitution) Sei a < b, $\phi : [a, b] \longrightarrow \mathbb{R}$ **stetig differenzierbar**, $I \subseteq \mathbb{R}$ ein Intervall mit $\phi([a,b]) \subseteq I$ und $f : I \longrightarrow \mathbb{R}$ eine **stetige Funktion**. Dann gilt: $\int_{\phi(a)}^{\phi(b)} f(x) dx = \int_a^b f(\phi(t))\phi'(t)dt$.

Korollar 5.4.8 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig.

(1) Seien $a,b,c \in \mathbb{R}$, so dass das abgeschlossene Intervall mit **Endpunkten** $a+c,b+c \in I$. Dann gilt: $\int_{a+c}^{b+c} f(x) dx = \int_a^b f(t+c) dt$.

(2) Seien $a,b,c \in \mathbb{R}$ mit $c \neq 0$, so dass das abgeschlossene Intervall mit den **Endpunkten** $ac,bc \in I$. Dann gilt: $\int_a^b f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$.

Satz 5.5.1 Sei $f_n:[a,b]\longrightarrow \mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen, die gleichmässig gegen eine Funktion $f:[a,b]\longrightarrow \mathbb{R}$ konvergiert. So ist f beschränkt integrierbar und $\lim_{n\to\infty}\int_a^b f_n(x)\,dx=\int_a^b f(x)\,dx$.

Korollar 5.5.2 Sei $f_n : [a,b] \longrightarrow \mathbb{R}$ eine Folge beschränkter, integrierbarer Funktionen, so dass

 $\sum_{n=0}^{\infty} f_n$ auf [a,b] gleichmässig konvergiert. Dann gilt: $\sum_{n=0}^{\infty} \int_a^b f_n(x) dx = \int_a^b \left(\sum_{n=0}^{\infty} f_n(x)\right) dx$.

Korollar 5.5.3 Sei $f(x) = \sum_{n=0}^{\infty} c_k x^k$ eine **Potenzreihe** mit positivem Konvergenzradius $\rho > 0$. Dann ist für jedes $0 \le r < \rho$, f auf [-r,r] **integrierbar** und es gilt $\forall x \in]-\rho, \rho[$: $\int_0^x f(t) dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}.$

Definition 5.8.1 Sei $f: [a, \infty[\longrightarrow \mathbb{R}])$ beschränkt und integrierbar auf [a,b] für alle b>a. Wenn $\lim_{b\to\infty}\int_a^b f(x)\,dx$ existiert, bezeichnen wir den Grenzwert mit $\int_a^\infty f(x)\,dx$ und sagen, dass f auf $[a,+\infty[$ integrierbar ist.

Lemma 5.8.3 Sei $f: [a, \infty[\longrightarrow \mathbb{R} \text{ beschränkt und integrierbar auf } [a, b] \ \forall b > a.$ (1) Wenn $|f(x)| \le g(x) \ \forall x \ge a \text{ und } g(x) \text{ auf } [a, \infty[\text{ integrierbar ist, ist } f \text{ auf } [a, \infty[\text{ integrierbar.}]$ (2) Wenn $0 \le g(x) \le f(x)$ und $\int_a^\infty g(x) \, dx$ divergiert, divergiert auch $\int_a^\infty f(x) \, dx$.

Satz 5.8.5 (McLaurin 1742) Sei $f: [1, \infty[\longrightarrow [0, \infty[$ monoton fallend. Die Reihe $\sum_{n=1}^{\infty} f(n)$ konvergiert genau dann, wenn $\int_{1}^{\infty} f(x) dx$ konvergiert.

Eine Situation, die zu einem uneigentlichen Integral führt, ist wenn $f:]a,b] \longrightarrow \mathbb{R}$ auf jedem Intervall $[a+\varepsilon,b], \ \varepsilon>0$ beschränkt und integrierbar ist, aber auf [a,b] nicht notwendigerweise beschränkt ist.

Definition 5.8.8 In dieser Situation ist $f:]a,b] \longrightarrow \mathbb{R}$ integrierbar, wenn $\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) \, dx$ existiert.In

diesem Fall wird der **Grenzwert** mit $\int_a^b f(x) dx$ bezeichnet.

Definition 5.8.11 Für s > 0 definieren wir Γ(s) := $\int_0^\infty e^{-x} x^{s-1} dx$.

Satz 5.8.12 (Bohr-Mollerup)

(1) Die **Gamma Funktion** erfüllt die Relationen:

(a)
$$\Gamma(1) = 1$$
 (b) $\Gamma(s+1) = s\Gamma(s) \quad \forall s > 0$

(c) γ ist logarithmisch konvex, d.h. $\Gamma(\lambda x + (1 - \lambda)y) \leq \Gamma(x)^{\lambda}\Gamma(y)^{1--\lambda}$ für alle x, y > 0 und $0 \leq \lambda \leq 1$.

(2) Die Gamma Funktion ist die einzige Funktion

 $]0, \infty[\longrightarrow]0, \infty[$, die (a), (b) und (c) erfüllt. Darüberhinaus gilt: $\Gamma(x) = \lim_{n \to +\infty} \frac{n!n^x}{x(x+1)...(x+n)} \quad \forall x > 0$

Lemma 5.8.13 Sei p>1 und q>1 mit $\frac{1}{p}+1q=1$. Dann gilt $\forall a,b\geqslant 0$: $a\cdot b\leqslant \frac{a^p}{p}+\frac{b^q}{q}$.

Satz 5.8.14 (Hölder Ungleichung) Seien p, q > 1 mit $\frac{1}{p} + \frac{1}{1}$. Für alle stetigen Funktionen $f, g : [a, b] \longrightarrow \mathbb{R}$ gilt: $\int_a^b |f(x)g(x)| dx \le ||f||_p ||g||_q$

Satz 5.9.3 Seien P,Q Polynome mit grad(P) < grad(Q) und Q mit Produktzerlegung (*) Dann gibt es $A_{ij}, B_{ij}, C_{ij} \in \mathbb{R}$ mit: $\frac{P(x)}{Q(x)} = \sum_{i=1}^{l} \sum_{j=1}^{m_i} \frac{(A_{ij} + B_{ij}x)}{((x-a_i)^2 + \beta_i^2)^j} + \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{C_{ij}}{x - \gamma_i)^j}$.

6 Anhang A

Satz A.0.1 (Binomialsatz) $\forall x, y \in \mathbb{C}, n \geqslant 1$ gilt: $(x+y)^n = \sum_n kx^k y^{n-k}$.

7 Wichtige Beispiele

Ungerade und gerade Funktionen Sei f(x) eine gerade Funktion. Dann: f(x) = f(-x). Sei g(x) eine ungerade Funktion. Dann: -g(x) = g(-x). Das Produkt von 2 geraden Funktionen ist gerade. Das Produkt von 2 ungeraden Funktionen ist gerade. Das Produkt einer ungeraden und einer geraden Funktion, ist ungerade. Für ungerade Funktionen gilt: $\int_{-a}^{+a} g(x) dx = 0$. (Dies kann man sich graphisch vorstellen).

Konvergenztest für Reihen Gegeben: $\sum_{n=0}^{\infty} a_n$.

(1) Spezieller Typ?

1.1 Geometrische Reihe: $\sum q^n$? **Konvergent**, wenn: |q| < 1.

1.2 Alternierende Reihe: $\sum (-1)^n a_n$? Konvergent, wenn: $\lim a_n = 0$.

1.3 Riemann Zeta: $\zeta(s) = \sum \frac{1}{n^s}$ Konvergent, wenn: s > 1.

1.4 Teleskopreihe $\sum (b_n - b_{n-1})$? Konvergent, wenn: $\lim b_n$ existiert.

- (2) Kein spezieller Typ:
- 2.1 $\lim a_n = 0$? Nein: divergent.
- 2.2 Quotientenkriterium anwendbar?
- 2.3 Wurzelkriterium anwendbar?
- 2.4 Gibt es eine konvergente Majorante?
- 2.5 Gibt es eine divergente Minorante?
- 2.6 Nichts von all dem?
- \Longrightarrow kreativ sein.

Allgemeine Potenzen Wir können die Exponentialfunktion und den natürlichen Logarithmus verwenden, um allgemeine Potenzen zu definieren. Für x > 0und $a \in \mathbb{R}$ beliebig definieren wir: $x^a := \exp(a \ln x)$. Insbesondere: $x^0 = 1 \ \forall x > 0$.

Trigonometrische Funktionen Sinusfunktion für $z \in \arcsin' x = \frac{1}{\sqrt{1-x^2}}$

C:
$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$
. Kosinusfunktion für $z \in \mathbb{C}$: $\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!}$. Tangensfunktion für $z \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$: $\tan z = \frac{\sin z}{\cos z}$. Cotangensfunktion für $z \notin \pi \cdot \mathbb{Z}$: $\cot z = \frac{\cos z}{\sin z}$.

Hyperbelfunktionen $\forall x \in \mathbb{R}: \cosh x = \frac{e^x + e^{-x}}{2}.$ $\sinh x = \frac{e^x - e^{-x}}{2}.$ $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$ Es gilt offensichtlich: $\cosh x \geqslant 1 \ \forall x \in \mathbb{R}, \ \sinh x \geqslant 1 \ \forall x \in]0, +\infty[, \sin(0) = 0.$ Daraus folgt: \cosh ist auf $[0, \infty[$ strikt monoton wachsend, $\cosh(0) = 1$ und $\lim_{x \to +\infty} \cosh x = +\infty.$ Also ist $\cosh: [0, \infty[\to [1, \infty[$ bijektiv. Deren Umkehrfunktion wird mit arcosh: $[1, \infty[\to [0, \infty[$ bezeichnet. Unter Verwendung von $\cosh^2 x - \sinh^2 x = 1 \ \forall x \in \mathbb{R}$ folgt: $\arccos' y = \frac{1}{\sqrt{y^2 - 1}} \ \forall y \in]1, +\infty[.$ Analog zeigt man, dass $\sinh: \mathbb{R} \to \mathbb{R}$ streng monoton wachsend und bijektiv ist. Dessen Umkehrfunktion wird mit arsinh: $\mathbb{R} \to \mathbb{R}$ bezichnet und es gilt: $\arcsin' y = \frac{1}{\sqrt{1 + y^2}} \ \forall y \in \mathbb{R}.$

Für $\tanh x$ folgt: $\tanh' x = \frac{1}{\cosh^2 x} > 0$ Also ist \tanh auf R streng monoton wachsend und man zeigt, dass $\lim_{x \to +\infty} \tanh x = 1$, $\lim_{x \to -\infty} \tanh x = -1$. Die Funktion

tanh : $\mathbb{R} \longrightarrow]-1,1[$ ist bijektiv. Ihre Umkehrfunktion wird mit artanh : $]-1,1[\longrightarrow \mathbb{R}$ bezeichnet. Es gilt dann: artanh' $y=\frac{1}{1-\nu^2} \ \forall y\in]-1,1[$.

7.1 Ableitungen

$$(ax^{z})' = azx^{z-1}$$

$$(x^{x})' = (e^{x \ln x})' = (\ln(x) + 1)e^{x}$$

$$(x \ln x)' = \ln(x) + 1$$

$$e'^{x} = e^{x}$$

$$\sin' x = \cos x$$

$$\cos' x = -\sin x$$

$$\tan' x = \frac{1}{\cos^{2} x}$$

$$\cot' x = -\frac{1}{\sin^{2} x}$$

$$\ln' x = \frac{1}{x}$$

$$\arccos' x = \frac{1}{\sqrt{1-x^{2}}}$$

$$\arccos' x = \frac{1}{\sqrt{1-x^{2}}}$$

$$\arccos' x = \frac{1}{\sqrt{1-x^{2}}}$$

$$\arctan' x = \frac{1}{1+x^{2}}$$

$$\sinh' x = \cosh x$$

$$\cosh' x = \sinh x$$

$$\tanh' x = \frac{1}{\cosh^{2} x}$$

$$\arcsin' y = \frac{1}{\sqrt{1+y^{2}}} \quad \forall y \in \mathbb{R}$$

$$\operatorname{arcosh'} y = \frac{1}{\sqrt{y^{2}-1}} \quad \forall y \in]1, +\infty[$$

$$\operatorname{artanh'} y = \frac{1}{1-y^{2}} \quad \forall y \in]-1, 1[$$

7.2 Integrale

$$\int x^{s} dx = \frac{x^{s+1}}{s+1} + C \quad s \neq -1 \qquad \int x^{s} dx = \ln x + C$$

$$C \quad s = -1$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sinh x dx = \cosh x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$\int \frac{1}{\sqrt{1-x^{2}}} dx = \arcsin x + C$$

$$\int \frac{1}{\sqrt{1+x^{2}}} dx = \arcsin x + C$$

$$\int \frac{1}{1+x^{2}} dx = \arctan x + C$$

$$\int \frac{1}{\sqrt{x^{2}-1}} dx = \operatorname{arcsin} x + C$$

$$\int e^{x} dx = e^{x} + C$$

$$\int \ln x \, dx = x \ln x - x + C \text{ (verwende } \ln x = \ln x \cdot 1)$$

$$\int x \ln x \, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C$$

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x$$

$$n \geqslant 1 \quad I_n = \int \sin^n x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} I_{n-2}$$

$$\int (ax + b)^s \, dx = \frac{1}{a(s+1)} (ax + b)^{s+1} + C \quad s \neq 1$$

$$\int (ax + b)^s \, dx = \frac{1}{a} \ln |ax + b| + C$$
7.3 Additionstheoreme
$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

$$\sin 3x = 3 \sin x - 4 \sin^3 x$$

$$\cos 3x = 4 \cos^3 x - 3 \cos x$$

$$\tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$$

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$$

$$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{1 + \cos x}$$

$$\tan^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x} \tan \frac{x}{2} = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$$

$$\sin x + \sin y = 2 \sin \frac{x + y}{2} \cos \frac{x - y}{2}$$

$$\sin x - \sin y = 2 \cos \frac{x + y}{2} \sin \frac{x - y}{2}$$

$$\cos x + \cos y = 2 \cos \frac{x + y}{2} \cos \frac{x - y}{2}$$

$$\sin x \sin y = \frac{1}{2} (\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = \frac{1}{2} (\cos(x - y) + \cos(x + y))$$

$$\sin x \cos y = \frac{1}{2} (\sin(x - y) + \sin(x + y))$$

7.4 Grenzwerte

$$\begin{split} &\lim_{x\to\infty} (1+\frac{x}{n})^n = e^x \\ &\forall \alpha \in \mathbb{R} \quad \lim_{x\to\infty} \sqrt[n]{n^\alpha} = 1 \\ &\lim_{x\to\infty} \sqrt[n]{n!} = \infty \\ &\forall \alpha \in \mathbb{R}, \ |q| < 1 \quad \lim_{x\to\infty} n^\alpha \cdot q^n = 0 \\ &\lim_{x\to0} \sqrt[x]{x} = \dots \\ &\lim_{x\to0} x^x = \dots \end{split}$$