ALMAで分解する黒点振動

ALMA太陽観測ワークショップ@京都 2012年10月3日 京都 京都大学 阿南 徹

黒点振動

ひので/SOT CAIH

飛騨/DST He I 10830Å

2/21

14:41:41 JST

周期

振動数分布

Socas-Navvaro et al. 2009

CaⅡH、彩層

Nagashima et al. 2007

光球から彩層へ

ドップラー速度時間変化

衝擊波

コロナ

黒点上空のコロナの振動

d) 171 Å (650000K)

Rezníkova et al. 2012

- ・ コロナで観測される3分振動
 - ファン構造 (Krishna Prasad et al. 2012)
 - 周期:3分、9分
 - 速度:84、101 km/s
 - コロナループの振動 (De Moortel et al. 2000)
 - 周期:180-420 s
 - 速度: 70 165 km/s
 - エネルギーフラックス
 :3.5×10² ergs/cm²/s
 (ループの加熱に足りない)

彩層・低層コロナの加熱

- ・ 彩層・低層コロナの加熱に不十分
 - コロナループの振動(De Moortel et al. 2000)
 - 観測量を元にした黒点振動の数値計算(Felope et al. 2011)
 - 観測量
 - -光球磁場(Si I 10827Å)
 - 光球ドップラー速度の時間変化(Si I 10827Å)
 - 3D シミュレーションで彩層(Ca II H、He II 10830Å)の ドップラー速度時間変化を再現
 - 波の平均エネルギーフラックス = 3 × 10⁵ ergs/cm²/s (彩層の温度維持に必要なエネルギーフラックス 2 × 10⁶ ergs/cm²/s)
- しかし、波による加熱過程の観測に適している(私見)

源

- 黒点の構造の解明に繋がる
- 太陽固有振動 p-mode
- ・ 黒点内部の磁気対流
 - Umbral dot

黒点振動のk-ω図

3分振期の強いところ 光球の明るさ 彩層の明るさ 彩層の視線速度

Jess et al. 2012

- それぞれの定量的評価が課題
- 磁気対流と黒点振動の関係をはっきりさせる

モード

- 黒点の構造の解明に繋がる
- 観測的に明らかになっていない
 - 光球磁場の振動 => Fast mode と Slow mode の混合 (low-β) (Khomenko et al. 2003)
 - 17GHzの輝度温度変化 => traveling acoustic wave (Shibasaki 2001)
 - 光球の速度の振動が磁場に沿っている => Slow mode(Schunker et al. 2005)
 - 光球と彩層での振動の位相差と振幅の増大=> low-β slow mode の進行波(Centeno et al. 2006)
 - 活動領域におけるTime distanceの関係(局所日震学) => Fast mode (e.g. Braun 1997)

モード

- モード変換・混合
 - β ~ 1 で発生
 - 変換率や方向は磁場と波数ベクトルの間の角度、 振動数に依存
 - 観測されていない
- 振動モードは領域毎に違う
- *統一的に解明されていない
- 必要な情報
 - 各大気層、各領域の振動モード
 - β~1の層とその大気層での磁場と 波数ベクトルの間の角度

彩層、遷移層、コロナでの3分振動

- 共鳴振動の寄与は観測的に未解明
- Cut-off 振動数

$$f_c = \frac{\gamma g_o \cos \theta}{2\pi C_S(T)} < \frac{\gamma g_o \cos \theta}{2\pi C_S(T_{\min})} \approx 5 \cos \theta \ [mHz]$$

– Slow Low-β MHD wave

パワースペクトル(SDO/AIA)

黒点振動とフレア

3分振動パワーの時間変化(17GHz)

フレア中の17GHzとGOES のフラックス時間変化

Sych et al. 2009_{12/21}

黒点振動の研究

- 黒点振動
 - ローレンツカ~ガス圧勾配~浮力を復元力とする波
- 太陽物理
 - 黒点構造
 - (黒点での)波動によるコロナ・彩層加熱
- 知りたい事
 - エネルギー収支
 - 波源
 - 各大気層における波
 - モード
 - 進行波、定在波(共鳴振動)
 - モード変換の観測

黒点振動の研究

- 黒点振動
 - ローレンツカ~ガス圧勾配~浮力を復元力とする波
- 太陽物理
 - 黒点構造
 - (黒点での)波動によるコロナ・彩層加熱
- 知りたい事
 - エネルギー収支
 - 波源
 - 各大気層における波
 - モード
 - 進行波、定在波(共鳴振動)
 - モード変換の観測

ALMAで迫る

- •超高解像度観測
- ・多層での温度分布

視野

7

ALMA's Field of View [Band 3](100 GHz)

Hinode/SOT-FG Ca II H 13-Dec-2006 02:30:38.130 UT

An x class flare observed with NoRH, RHESSI and Hinode. Green Contours: NoRH 34 GHz, Blue Contours: RHESSI 35-100keV, Color Scale: Hinode Ca II H band.

ALMA Solar WS@Tokyo 2012.9.4

温度変化の分解

• 音波、進行波(Landau & Lifshitz 1959)

$$\frac{\delta T}{T} = (\gamma - 1) \frac{v}{C_S} \approx 0.2 \left(\frac{v}{2km/s} \right) \left(\frac{C_S}{10km/s} \right)^{-1}$$

Δv ~ 2 km/s @Call H (Felipe et al. 2010) Δv ~ 0.2 km/s @光球

- ALMAの検出感度(下条さんスライドより)
 - ex. 検出感度 0.2 mJy/Beam = 1σ@Band7/1.5min/Cycle1
 - 太陽: ~10⁵ Jy/Beam

充分分解できる

空間方向の分解

励起源の情報に迫る

- 構造の分解は励起源の情報に繋がる
 - 微細構造
 - フィラメント構造 (Socas-Navvaro et al. 2009)
 - 0.2秒角の分解能でぎりぎり分解できる
 - 励起源(磁気対流)
 - Umbral dots (Jess et al. 2012)
 - 大きさ~0.4秒角
- ALMAの空間分解能
 - 0.38秒角@100 GHz
 - 0.12秒角@300 GHz
 - 0.04秒角@900 GHz

Socas-Navvaro et al. 2009

- 微細構造の分解、磁気対流の定量的評価を期待

時間方向の分解

必要な時間分解能

- ALMAの時間分解能はターゲットによる
- できるだけ短いTime cadenceが良い
 - 3分振動 => ~30秒、最低1分
 - 進行波の分解 => 60秒~20秒
 - 音速~10 km/s
 - 2周波数帯、放射層の高さの差~600 km?
 - 4周波数帯、放射層の高さの差~200 km?

彩層上層部(He I 10830Å)に おけるドップラー速度時間変化

- 振動パターンの空間方向の広がり => 20秒以下
 - 50~80 km/s (Kobanov et al. 2006)
 - 20秒以下の時間分解能でも充分分解できない (Socas-Navvaro et al. 2009)
- 彩層上層部での非線形化 => ~10秒

高さ方向の分解

4周波数带同時観測

「高さ方向の分解」でできる研究

多周波同時温度分布観測

位相速度と音速の比較

(+放射層の高さ)

各層のパワーマップや微細構造

=> 進行波と定在波の定量的評価

=> 波数ベクトル 磁場構造との比較

温度の振幅(+位相速度+密度)

エネルギー収支、フラックスの測定

=>振動モード

振幅の増大=>密度比

,(+モート仮定)

「5分振動から3分振動への変化」と温度の比較

=> Cut-off の直接観測

⇒温度最低層と3分振動の関係

(温度最低層が観測してる大気層に入れば)

まとめ

- 黒点振動
 - ローレンツカ~ガス圧勾配~浮力を復元力とする波
 - 黒点構造
 - 波動によるコロナ・彩層加熱
- ALMAによって可能となるサイエンスの展望
 - 超高解像度観測を活かして、
 - 黒点振動に対する磁気対流の影響を定量的に評価
 - 微細構造
 - 多周波同時温度分布観測を活かして、
 - ・エネルギーフラックス
 - ・温度最低層~彩層下部における波の位相速度と音速との関係
 - ・ 温度最低層の温度と3分振動の関係

ご清聴ありがとうございました

質問

- 黒点でのスペクトル線
- 複数の周波数帯を選んだときの高さ方向の 差分

Running penumbral wave

- 半暗部を外に向かって伝播
- 暗部/半暗部境界
 - 位相速度:15-20 km/s
 - 周期:3分
- 半暗部の外側の縁
 - 位相速度:4-7 km/s
 - 周期:8分

ひので/SOT CA II H

• 暗部の振動が伝播していると考えられている

理由は?

進行波と定在波の混合

$$C_{obs}e^{i(k_{obs}x-\omega_{obs}t)} = Ae^{i(kx-\omega t)} + Be^{i(-kx-\omega t)}$$

$$= \{(A-B)e^{ikx} + B\}e^{-i\omega t}$$

$$\omega_{obs} = \omega \qquad k_{obs} = -\frac{i}{x}\log\left(\frac{A-B}{C}e^{ikx} + \frac{B}{C}\right)$$

$$C_{obs} = (A-B)e^{ikx} + B$$