Trabajo Práctico Nro. 5

Singularidades. Teorema de los residuos.

1. Hallar y clasificar las singularidades en \mathbb{C}^* de:

Hallar y clasificar las singularidades en
$$\mathbb{C}^*$$
 de:

(a) $f(z) = \frac{z+1}{(z-1)(z+2)}$ (b) $f(z) = \frac{(z+1)^2}{(z-1)(z+2)}$ (c) $f(z) = e^{\frac{1}{z-2}}$ (d) $f(z) = z \operatorname{ctg}(z)$ (e) $f(z) = \frac{z}{2 + \operatorname{sen} z}$ (f) $f(z) = \frac{1}{z(1 - \operatorname{ch} z)}$ (g) $f(z) = \frac{e^{\frac{1}{z-1}}}{e^{\frac{1}{z}} - 1}$ (h) $f(z) = \frac{\operatorname{sen} z}{z(z-\pi)^2}$ (i) $f(z) = \frac{e^{-2z}}{e^{-2z} + 9}$ (j) $f(z) = \frac{1}{\operatorname{Log}(z^2 - i)}$

- 2. Sea f una función holomorfa en un dominio D que tiene ceros z_1, z_2, \dots, z_k con multiplicidades m_1, m_2, \cdots, m_k respectivamente. Mostrar que existe una función holomorfa g en D tal que $f(z) = (z-z_1)^{m_1}(z-z_2)^{m_2}\cdots(z-z_k)^{mk}g(z)$.
- 3. Probar que f tiene un polo de orden menor o igual que $m \in \mathbb{N}$ en z_0 , si y sólo si $g(z) = (z - z_0)^m f(z)$ tiene una singularidad evitable en z_0 .
- 4. Caracterizar las funciones analíticas en \mathbb{C} según tengan en ∞ una singularidad evitable, un polo (de orden m) o una singularidad esencial.
- 5. ¿Existe una función $f \in \mathcal{H}(\mathbb{C} \{1, 5\})$ con un único cero simple, polos simples en z=1 y z=5 respectivamente, tal que $\lim_{z\to\infty} zf(z)=3$, y $\int_{|z|=2} f(z) dz=3\pi i$?
- 6. Sean z_0 cero de orden m de g y cero de orden n de h y $f(z) = \frac{g(z)}{h(z)}$. Probar:
 - (a) Si n > m, f tiene un polo de orden n m en $z = z_0$.
 - (b) Si $n \leq m$, z_0 es singularidad evitable de f. ¿Cómo se extiende f como función continua en z_0 ? (diferenciar los casos n = m y n < m).
- 7. Sea $g:D\to\Omega$ holomorfa, tal que para w_0 en Ω , z_0 es raiz simple de la ecuación $g(z)-w_0=0$. Sea $f\in\mathcal{H}(\Omega-\{w_0\})$ tal que w_0 es un polo de orden m de f. Si h(z) = f(g(z)), determinar el tipo de singularidad de h en z_0 . ¿Y si z_0 es una raiz de multiplicidad k de la ecuación $g(z) - w_0 = 0$? Ejemplificar ambas situaciones.
- 8. Sea f(z) una función que tiene solamente polos en un dominio D del plano complejo. Clasificar las singularidades de $\frac{f'(z)}{f(z)}$ en D.
- 9. Probar que si f es holomorfa para |z| > R y su límite en infinito es cero, entonces existe $m \in \mathbb{N}$ tal que $|f(z)| \le \frac{c}{|z|^m}$ para |z| > R y algún c > 0.
- 10. Para cada función f del Ejercicio 1, verificar si $\operatorname{Res}[f,0]$ y de $\operatorname{Res}[f,\infty]$ están definidos y en tal caso, calcularlos.

- (a) Probar que si f tiene un polo simple en z_0 y g es holomorfa en z_0 entonces $Res[fg, z_0] = g(z_0)Res[f, z_0].$
 - (b) Supongamos que f y g son dos funciones holomorfas y que z_0 es cero de orden k y de orden k+1 de f y g respectivamente. Probar que:

$$\operatorname{Res}\left[\frac{f}{g}, z_0\right] = (k+1) \frac{f^{(k)}(z_0)}{g^{(k+1)}(z_0)}.$$

- 12. Hallar todas las funciones f que verifican: f tiene un polo doble con residuo igual a 3 en z=0; f tiene un polo simple con residuo igual a 7 en z=1 y f es acotada en un entorno del infinito.
- 13. Sea $f(z) = \frac{e^z 1 z}{z^n}$, $n \in \mathbb{N}$.
 - (a) Indicar para qué valores de n la serie de Laurent de f(z) tiene sólo términos de exponentes no negativos con radio de convergencia infinito.
 - (b) Indicar para qué valores de $n \exists z_0 \in \mathbb{C}$ tal que z_0 es polo de orden k de f(z). Hallar en ese caso la serie de Laurent en una vecindad de z_0 .
 - (c) Calcular $\int f(z) dz$ siendo $C: \{z \in \mathbb{C} : |z| = 1\}.$
 - (d) ¿Qué tipo de singularidad tiene f en infinito? Hallar $\operatorname{Res}[f,\infty]$.
- 14. Calcular las integrales de las siguientes funciones a lo largo de los contornos que se indican recorridos con orientación positiva.
 - (a) $f(z) = \pi \operatorname{sen}(\pi z)$ C: el cuadrado de vértices 0, 1, 1+i y i
 - (b) $f(z) = \frac{\sin(3z)}{(z-\frac{\pi}{2})^2}$ C: el cuadrado de vértices 2-2i, 2+2i, -2+2i y -2-2i

$$\begin{array}{ll} \text{(c)} \ f(z) = \frac{e^{-2z}}{e^{-2z} + 9} + z \, \mathrm{sen} \left(\frac{1}{z} \right) & C \colon \{z \in \mathbb{C} : |z| = 9\} \\ \text{(d)} \ f(z) = \frac{1}{z \, (1 - e^{-2iz})} & C \colon \{z \in \mathbb{C} : |z - 1| = 1.5\} \\ \text{(e)} \ f(z) = (1 + z) (e^{\frac{1}{z}} + e^{\frac{1}{z - 1}}) & C \colon \{z \in \mathbb{C} : |z| = 3\} \\ \text{(f)} \ f(z) = \frac{(z - i)e^{1/z}}{z^2} & C \colon \{z \in \mathbb{C} : |z - 1 - i| = 2\} \\ \end{array}$$

(d)
$$f(z) = \frac{1}{z(1 - e^{-2iz})}$$
 $C: \{z \in \mathbb{C} : |z - 1| = 1.5\}$

(e)
$$f(z) = (1+z)(e^{\frac{1}{z}} + e^{\frac{1}{z-1}})$$
 $C: \{z \in \mathbb{C} : |z| = 3\}$

(f)
$$f(z) = \frac{(z-i)e^{1/z}}{z^2}$$
 $C: \{z \in \mathbb{C}: |z-1-i|=2\}$

15. Calcular los posibles valores de

$$\int_{|z|=r} \left(|z-r|e^{|z|} + \frac{z e^z}{z^2 + a^2} \right) dz \quad (a > 0, \ r > 0, \ a \neq r)$$

16. Determinar si vale la siguiente igualdad:

$$\int_{|z|=\frac{5}{4}} \frac{1}{\sin(\frac{\pi}{z})} dz = \int_{|z|=\frac{3}{4}} \frac{1}{\sin(\frac{\pi}{z})} dz + 4i$$

Cálculo de integrales reales mediante integración compleja.

17. Hallar el valor de las siguientes integrales reales usando integrales complejas.

(a)
$$\int_{0}^{2\pi} \frac{dt}{(3+2\sin t)^2}$$
 (b) $\int_{0}^{2\pi} \frac{\cos 2t}{1-2a\cos t+a^2} dt$, $a \neq \pm 1$ (c) $\int_{0}^{\pi} \frac{\cos t}{5+4\cos t} dt$

18. Analizar la convergencia de las siguientes integrales impropias:

(a)
$$\int_{0}^{1} \frac{1}{\sqrt{1-x}} dx$$
 (b)
$$\int_{1}^{+\infty} \frac{x+1}{\sqrt{x^3}} dx$$
 (c)
$$\int_{0}^{1} \frac{1}{\sqrt{x+4x^3}} dx$$
 (d)
$$\int_{0}^{\pi} \frac{1}{\cos x} dx$$
 (e)
$$\int_{0}^{1} x^p \sin x dx, \forall p \in \mathbb{R}$$
 (f)
$$\int_{1}^{+\infty} e^{-x} x^p dx, \forall p \in \mathbb{R}$$
 (g)
$$\int_{0}^{1} x^p \ln x dx, \forall p \in \mathbb{R}$$
 (h)
$$\int_{1}^{+\infty} x^p \ln x dx, \forall p \in \mathbb{R}$$

19. Estudiar la convergencia de las siguientes integrales y de acuerdo a lo hallado, calcular el valor de la integral utilizando residuos.

(a)
$$\int_{-\infty}^{+\infty} \frac{1}{(x-1)^2 + 1} dx$$
 (b)
$$\int_{-\infty}^{+\infty} \frac{1}{x^4 + 5x^2 + 4} dx$$
 (c)
$$\int_{-\infty}^{+\infty} \frac{\cos 3x}{1 + x^2} dx$$
 (d)
$$\int_{-\infty}^{+\infty} \frac{\sin x}{x(1 + x^2)} dx$$
 (e)
$$\int_{-\infty}^{+\infty} \frac{x \sin \pi x}{(1 + x^2)(x^2 - 2)} dx$$
 (f)
$$\int_{0}^{+\infty} \frac{\log x}{x^2 + e^2} dx$$
 (g)
$$\int_{0}^{+\infty} \frac{1}{x^{\frac{1}{2}}(4 + x^2)} dx$$
 (h)
$$\int_{0}^{+\infty} \frac{x^{\frac{1}{3}}}{(2 + x^2)^2} dx$$
 (i)
$$\int_{1}^{+\infty} \frac{(x - 1)^{\frac{3}{2}}}{(x^2 - 2x + 2)^2} dx$$

- 20. Sean S_1 y S_2 la intersección de B(0,R) con el semi-plano superior y con el primer cuadrante respectivamente y $C_i = \partial S_i$ para i = 1, 2.
 - (a) ¿Es posible calcular $\int_{0}^{+\infty} \frac{x}{x^4+1} dx$ mediante integración compleja sobre C_1 ?
 - (b) Probar que

$$\int_{0}^{R} \frac{x}{x^4 + 1} dx - \int_{R}^{0} \frac{y}{y^4 + 1} dy + \int_{C_2} \frac{z}{z^4 + 1} dz = 2\pi i \sum_{z \in P} \text{Res}\left[\frac{z}{z^4 + 1}\right].$$

donde P representa el primer cuadrante del plano.

(c) Obtener que
$$\int_{0}^{+\infty} \frac{x}{x^4 + 1} dx = \pi/4.$$

21. Para todo
$$\omega \in \mathbb{R}$$
, comprobar que
$$\int_{-\infty}^{+\infty} \frac{xe^{i\omega x}}{x^4+1} dx = i\pi e^{-|\omega|/\sqrt{2}} \operatorname{sen}(\omega/\sqrt{2})$$

y deducir los valores de
$$\int_{-\infty}^{+\infty} \frac{x \cos(\omega x)}{x^4 + 1} dx$$
 y de $\int_{-\infty}^{+\infty} \frac{x \sin(\omega x)}{x^4 + 1} dx$.

22. (a) Verificar la igualdad:

$$\int_{-\infty}^{+\infty} e^{-ax^2} dx = \frac{\sqrt{\pi}}{a}, \quad a > 0.$$

(Sugerencia: usar integración doble y coordenadas polares.)

(b) Obtener que:

$$\int_{-\infty}^{+\infty} e^{-m^2 x^2} \cos bx \ dx = \frac{\sqrt{\pi}}{m} e^{-b^2/(4m^2)}, \quad m > 0, \ b \in \mathbb{R}.$$

(Sugerencia: usar residuos y un contorno de forma rectangular adecuado.)