Ortogonalusis papildinys. Ortogonaliosios matricos

Paulius Drungilas

Vilniaus universitetas Matematikos ir informatikos fakultetas

2013 m. rugsėjo 27 d.

Turinys

Ortogonalusis papildinys

Apibrėžimas 1

Tegul (V,\langle,\rangle) – Euklido erdvė, o $L\subset V$ – tiesinis poerdvis. Aibė

$$L^{\perp} := \{ v \in V : v \perp u, \ \forall u \in L \}.$$

vadinama poerdvio *L* ortogonaliuoju papildiniu.

Teiginys 2

Euklido erdvės (V, \langle, \rangle) tiesinio poerdvio L ortogonalusis papildinys L^{\perp} taip pat yra erdvės V tiesinis poerdvis.

Irodymas.

Tegul $v_1, v_2 \in L^{\perp}$, $\alpha_1, \alpha_2 \in \mathbb{R}$. Tada bet kuriam $u \in L$,

$$\langle \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2, \mathbf{u} \rangle = \alpha_1 \langle \mathbf{v}_1, \mathbf{u} \rangle + \alpha_2 \langle \mathbf{v}_2, \mathbf{u} \rangle = \mathbf{0},$$

todėl $\alpha_1v_1+\alpha_2v_2\in L^\perp$. Vadinasi, L^\perp – erdvės V tiesinis poerdvis.

Teiginys 3

Tegul (V, \langle, \rangle) – Euklido erdvė, o $L \subset V$ – tiesinis poerdvis. Tada $L \cap L^{\perp} = \{\mathcal{O}\}.$

Įrodymas.

Tegul $v \in L \cap L^{\perp}$. Kadangi $v \in L^{\perp}$, tai kiekvienam $u \in L$, $v \perp u$. Tačiau $v \in L$, todėl $v \perp v$, t. y. $\langle v, v \rangle = 0 \Rightarrow v = \mathcal{O}$.

Teiginys 4

Tegul (V, \langle, \rangle) – baigtinės dimensijos Euklido erdvė, o $L \subset V$ – tiesinis poerdvis. Tada erdvė V yra poerdvių L ir L^{\perp} tiesioginė suma, t. y. $V = L \oplus L^{\perp}$.

Jrodymas

Priminsime, kad tiesinė erdvė V yra jos tiesinių poerdvių U_1 ir U_2 tiesioginė suma (žymima $V=U_1\oplus U_2$) tada ir tik tada, kai $V=U_1+U_2$ ir $U_1\cap U_2=\{\mathcal{O}\}.$

Lygybę $L\cap L^\perp=\{\mathcal{O}\}$ jau esame įrodę. Įrodysime lygybę $V=L+L^\perp$. Iš tikrųjų, tegul v_1,v_2,\ldots,v_r – poerdvio L bazė. Šią bazę papildome iki visos erdvės V bazės

$$v_1, v_2, \ldots, v_r, v_{r+1}, \ldots, v_n$$

Šiai vektorių šeimai pritaikę ortogonalizacijos algoritmą, gauname erdvės ${\it V}$ ortonormuotą bazę

$$u_1, u_2, \ldots, u_r, u_{r+1}, \ldots, u_n$$
.

Be to,

$$L = L(v_1, v_2, \ldots, v_r) = L(u_1, u_2, \ldots, u_r).$$

Tegul $v \in V$. Egzistuoja tokie $\alpha_j \in \mathbb{R}$, kad

$$\mathbf{v} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_r \mathbf{u}_r + \alpha_{r+1} \mathbf{u}_{r+1} + \dots + \alpha_n \mathbf{u}_n.$$

Tada

$$v = \underbrace{\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_r u_r}_{\in L} + \underbrace{\alpha_{r+1} u_{r+1} + \dots + \alpha_n u_n}_{\in L^{\perp}},$$

t. y.
$$v \in L + L^{\perp}$$
, todėl $V = L + L^{\perp}$.

Išvada 5

Tegul (V, \langle, \rangle) – baigtinės dimensijos Euklido erdvė, o $L \subset V$ – tiesinis poerdvis. Tada dim $L + \dim L^{\perp} = \dim V$.

Išvada 6

Tegul (V, \langle, \rangle) – baigtinės dimensijos Euklido erdvė, o $L \subset V$ – tiesinis poerdvis. Tada kiekvienam erdvės V vektoriui v egzistuoja tokie vektoriai v0 L1 ir v1 L2 L3, kad

$$v = u + w. (1)$$

Vektoriai u ir w randami vienareikšmiškai.

Apibrėžimas 7

(1) lygybėje vektorius u vadinamas vektoriaus v **projekcija** poerdvyje L, o vektorius w vadinamas vektoriaus v **statmeniu** į poerdvį L.

Teiginys 8

Tegul (V, \langle, \rangle) – Euklido erdvė, o $L \subset V$ – tiesinis poerdvis. Tada $(L^{\perp})^{\perp} = L$.

Pavyzdys 9

Tegul (\mathbb{R}^3 , \langle , \rangle) – standartinė Euklido erdvė, $L = L(v_1, v_2)$, kur $v_1 = (1, 1, 2), v_2 = (2, 3, 7)$. Rasime ortogonalaus papildinio L^{\perp} bazę.

Sprendimas.

Tarkime, kad $v = (x, y, z) \in L^{\perp}$. Tada $v \perp v_1$ ir $v \perp v_2$, t. y.

$$\begin{cases} x + y + 2z = 0 \\ 2x + 3y + 7z = 0 \end{cases} \begin{cases} x + y + 2z = 0 \\ y + 3z = 0 \end{cases}$$

Iš čia randame $w:=(-1,3,-1)\in L^{\perp}$. Kadangi

$$\dim L^{\perp} = \dim \mathbb{R}^3 - \dim L = 3 - 2 = 1,$$

tai vektorius w sudaro ortogonalaus papildinio L^{\perp} bazę.

