

American Computer Science League

2019-2020

Contest #3

INTERMEDIATE DIVISION SOLUTIONS

					_
1	Daal	aan	A 1	$\alpha \Delta$	hwa
1.	Bool	lean	A	126	Dra

$$A(\overline{B} + C) + B(A + \overline{C}) + \overline{ABC}$$

$$= A\overline{B} + AC + AB + B\overline{C} + \overline{A} + \overline{B} + \overline{C}$$

$$= \overline{A} + A\overline{B}(A + 1) + \overline{C}(B + 1) + AC + AB$$

$$= \overline{A} + \overline{B} + \overline{C} + A(B + C)$$

$$\overline{A} + \overline{B} + \overline{C} + A(B + C) = 0$$

$$\rightarrow \overline{A} = 0 \land \overline{B} = 0 \land \overline{C} = 0 \land A(B + C) = 0$$

$$\Rightarrow A = 1 \land B = 1 \land C = 1 \land 1^*(1 + 1) = 0$$
which is impossible

So none make it FALSE

1. 0

$$\overline{A(B+C)} + \overline{B}(\overline{A}+C)$$

$$= \overline{A} + \overline{B} + C + \overline{A}\overline{B} + \overline{B}C$$

$$= \overline{A} + \overline{B}\overline{C} + \overline{A}\overline{B} + \overline{B}C$$

$$= \overline{A} + \overline{B}(\overline{C} + \overline{A} + C)$$

$$= \overline{A} + \overline{B} \text{ or } \overline{AB}$$

2. $\overline{A} + \overline{B}$ or \overline{AB}

3. Data Structures

There are 5 with only 1 child: W, C, E, N, C.

The following is the binary search tree for: WINDSORCONNECTICUT

3. 5

American Computer Science League

2019-2020 — Contest #3

INTERMEDIATE DIVISION SOLUTIONS

