Dr. Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia. wnarifin@usm.my / wnarifin.github.io

Outlines

- Parametric Tests
- Two Independent Samples
- Two Related Samples
- More Than Two Independent Samples

Learning outcomes

 Able to perform selected non-parametric tests for comparison between samples for numerical/ordinal outcomes.

- Statistical test that requires:
 - Distribution free, sample data come from population
 NOT modeled by specific statistical distribution
 - e.g. cholesterol level of sample ← cholesterol level of population of unknown distributional form.
 - No specific parameters to be tested -- dependent on test used
 - Different or not (non-parametric) VS MEAN is different or not (parametric).

- Statistical test that requires (cont.):
 - More flexible, can perform analysis when assumptions for parametric not fulfilled.
 - e.g. data not normally distributed.
 - LESS powerful than parametric test.

- Non-parametric tests for comparison of samples for numerical outcomes:
 - Two independent samples: Mann-Whitney U test.
 - Two related samples: Wilcoxon Signed-Rank test.
 - More than two independent samples: Kruskal-Wallis test.

- Purpose: Compare RANKS of TWO independent samples/groups.
- Assumptions:
 - 1. Numerical/ordinal outcome.

Research objective:

To compare cholesterol level between male and female.

Research question:

Is there any difference in cholesterol level between male and female populations?

RQ: Is there any difference in cholesterol level between male and female populations?

Alternative Hypothesis:
Cholesterol level of male
population is different from
female population

Null Hypothesis:
No difference in cholesterol level between the populations

Statistical Test

Alternative Hypothesis: P-value ≤ 0.05

Null Hypothesis:

P-value > **0.05**

Mann-Whitney U

Mann-Whitney U test: Practical

- Dataset: cholestrol2_np.sav
- Sample size: 10/group
- Group: 2 (male and female)
- Outcome: cholesterol level in mmol/L

Normality: Histogram & Boxplot

Self-practice: Obtain histogram & box-plot for each group.

Normality

Normal?

Mann-Whitney: Steps

- 1. Analyze > Nonparametric Tests > Legacy Dialogs > 2 Independent Samples...
- 2. Test Variable List: *cholestrol*, Grouping Variable: *gender*
- 3. [Define Groups] > Group 1: 1, Group 2: 2 > Continue
- 4. Test Type: Mann-Whitney U [x]
- 5. OK

Mann-Whitney: Results

Ranks

	gender	N	Mean Rank	Sum of Ranks
cholesterol in mmol/L	male	10	5.50	55.00
	female	10	15.50	155.00
	Total	20		

Test Statistics^a

cholesterol in mmol/L

Mann-Whitney U	.000
Wilcoxon W	55.000
Z	-3.790
Asymp. Sig. (2-tailed)	.000
Exact Sig. [2*(1-tailed Sig.)]	.000 ^b

a. Grouping Variable: gender

b. Not corrected for ties.

Self-practice: Obtain Median and IQR for each group.

Descriptives

	gender			Statistic	Std. Error
cholesterol in mmol/L	male	Mean		7.330	.1212
		95% Confidence Interval	Lower Bound	7.056	
		for Mean	Upper Bound	7.604	
		5% Trimmed Mean		7.317	
		Median		7.300	
		Variance		.147	
		Std. Deviation		.3831	
		Minimum Maximum Range			
		Interquartile Range		.6	
		Skewness		.573	.687
		Kurtosis		.596	1.334

female	female	Mean		8.860	.1384
		95% Confidence Interval	Lower Bound	8.547	
		for Mean	Upper Bound	9.173	
		5% Trimmed Mean		8.856	
		Median		8.800	
		Variance		.192	
		Std. Deviation		.4377	
		Minimum		8.3	
		Maximum		9.5	
		Range		1.2	
		Interquartile Range		.8	
		Skewness		.168	.687
		Kurtosis		-1.761	1.334

- Purpose: Compare SIGNED RANKS of the DIFFERENCES between TWO related samples, i.e. equal to ZERO if there is no difference.
- Assumptions:
 - 1. Numerical/ordinal outcome.

Research objective:

To compare cholesterol level of hypertensive patients before and after treatment.

Research question:

Is there any difference in cholesterol level of hypertensive patients before and after treatment?

RQ: Is there any difference in cholesterol level of hypertensive patients before and after treatment?

Alternative Hypothesis:
Cholesterol level of HPT
patients is different before
and after treatment

Null Hypothesis:
No difference in cholesterol level of HPT patients before and after treatment

Statistical Test

Alternative Hypothesis: P-value ≤ 0.05

Null Hypothesis: P-value > **0.05**

Wilcoxon Signed-Rank

Wilcoxon Signed-Rank: Practical

- Dataset: cholestrol_prepost_np.sav
- Sample size: 10 paired observations
- Repetition: 2 (before and after treatment)
- Outcome: cholesterol level in mmol/L

Normality: Histogram & Boxplot

Self-practice: Obtain histogram & box-plot for the difference.

Normality of the difference

Wilcoxon Signed-Rank: Steps

- 1. Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples...
- 2. Select both *cholestrol_before*, *cholestrol_after* → Test Pairs
- 3. Test Type: Wilcoxon [x]
- 4. OK

Wilcoxon Signed-Rank: Results

Ranks

		N	Mean Rank	Sum of Ranks
cholesterol in mmol/L post treatment - cholesterol in mmol/L before treatment	Negative Ranks	9ª	5.89	53.00
	Positive Ranks	1 ^b	2.00	2.00
	Ties	0°		
	Total	10		

- a. cholesterol in mmol/L post treatment < cholesterol in mmol/L before treatment
- b. cholesterol in mmol/L post treatment > cholesterol in mmol/L before treatment
- c. cholesterol in mmol/L post treatment = cholesterol in mmol/L before treatment

Test Statisticsa

cholesterol in mmol/L post treatment - cholesterol in mmol/L before treatment

Z -2.601^b

Asymp. Sig. (2-tailed) .009

- a. Wilcoxon Signed Ranks Test
- b. Based on positive ranks.

Self-practice: Obtain Median and IQR for before and after treatment.

cholesterol in mmol/L before treatment	Mean	Mean		
	95% Confidence Interval	Lower Bound	8.052	
	for Mean	Upper Bound	8.508	
	5% Trimmed Mean	5% Trimmed Mean		
	Median	Median		
	Variance	.102		
	Std. Deviation	.3190		
	Minimum	7.6		
	Maximum	8.8		
	Range	1.2		
	Interquartile Range		.4	
	Skewness	Skewness		.687
	Kurtosis	Kurtosis		1.334

cholesterol in mmol/L post treatment	Mean	7.670	.1795	
	95% Confidence Interval	Lower Bound	7.264	
	for Mean	Upper Bound	8.076	
	5% Trimmed Mean	5% Trimmed Mean		
	Median	Median		
	Variance	.322		
	Std. Deviation	.5677		
	Minimum	6.8		
	Maximum	8.5		
	Range	1.7		
	Interquartile Range	1.1		
	Skewness	Skewness		.687
	Kurtosis	947	1.334	

- ANOVA on ranks.
- Purpose: Compare RANKS of THREE/MORE independent samples/groups.
- Assumptions:
 - 1. Numerical/ordinal outcome.

Research objective:

To compare cholesterol level between Group A, B and C treatment groups.

Research question:

Is there any difference in cholesterol level between Group A, B and C treatment groups?

RQ: Is there any difference in cholesterol level between any (i.e. A-B, AC, or B-C pairs) of the treatment groups?

Alternative Hypothesis: Cholesterol level between any of the populations are

different.

Null Hypothesis:
No difference in cholesterol level between any of the populations

Statistical Test

<u>Alternative Hypothesis</u>:

P-value ≤ **0.05**

Null Hypothesis:

P-value > **0.05**

Kruskal-Wallis

Kruskal-Wallis test: Practical

- Dataset: cholestrol3_np.sav
- Sample size: 10/group
- Group: 3 (Grp A, B and C)
- Outcome: cholesterol level in mmol/L

Normality: Histogram & Boxplot

Self-practice: Obtain histogram & box-plot for each group.

Normality

Kruskal-Wallis: Steps

- 1. Analyze > Nonparametric Tests > Legacy Dialogs > K Independent Samples...
- 2. Test Variable List: *cholestrol*, Grouping Variable: *group*
- 3. [Define Groups] > Range for Grouping Variable: Minimum: 1 Maximum 3 > Continue
- 4. Test Type: Kruskal-Wallis [x]
- **5. OK**

Kruskal-Wallis: Results

Ranks

	intervention group	N	Mean Rank
cholesterol in mmol/L	Grp A	10	7.90
	Grp B	10	15.35
	Grp C	10	23.25
	Total	30	

Test Statistics a,b

cholesterol in mmol/L

Chi-Square	15.294
df	2
Asymp. Sig.	.000

- a. Kruskal Wallis Test
- b. Grouping Variable: intervention group

Self-practice: Obtain Median and IQR for each group.

Descriptives

	interver	ntion group		Statistic	Std. Error	
cholesterol in mmol/L	Grp A	Mean		7.310	.1410	
		95% Confidence Interval	Lower Bound	6.991		
		for Mean	Upper Bound	7.629		
		5% Trimmed Mean		7.317		
		Median		7.350		
		Variance		.199		
		Std. Deviation Minimum		.4458		
				6.6		
			Maximum		7.9	
		Range		1.3		
	Interquartile Range		.8			
	Skewness		224	.687		
		Kurtosis		-1.305	1.334	

Grp B	Grp B Mean		8.080	.2294
	95% Confidence Interval	Lower Bound	7.561	
	for Mean	Upper Bound	8.599	
	5% Trimmed Mean		8.067	
	Median		7.800	
	Variance Std. Deviation		.526	
			.7254	
	Minimum		7.2	
	Maximum		9.2	
	Range		2.0	
	Interquartile Range Skewness		1.4	
			.371	.687
	Kurtosis		-1.594	1.334

Gı	Grp C Mean		8.850	.2094	
	-	95% Confidence Interval	Lower Bound	8.376	
		for Mean	Upper Bound	9.324	
	5% Trimmed Mean	8.861			
		Median		9.000	
		Variance		.438	
		Std. Deviation Minimum		.6621	
			7.8		
	Maximum Range Interquartile Range Skewness	9.7			
		1.9			
		Interquartile Range		1.1	
			655	.687	
		Kurtosis		667	1.334

Post Hoc multiple comparison

Self-practice:

- Perform Mann-Whitney U test for each pair: Grp A-Grp B, Grp A-Grp C, Grp B-Grp C (3 pairs).
- 2. For each P-value, calculate corrected P-value to adjust for multiple comparison (Bonferroni),

Bonferroni corrected P-value = P-value x number of pairs

Post Hoc: Results

Ranks

	intervention group	N	Mean Rank	Sum of Ranks
cholesterol in mmol/L	Grp A	10	7.60	76.00
	Grp B	10	13.40	134.00
	Total	20		

Test Statisticsa

cholesterol in mmol/L

Mann-Whitney U	21.000
Wilcoxon W	76.000
Z	-2.198
Asymp. Sig. (2-tailed)	.028
Exact Sig. [2*(1-tailed Sig.)]	.029 ^b

Bonferroni correction: Corrected P-value = 0.029 x 3 = 0.87

- a. Grouping Variable: intervention group
- b. Not corrected for ties.

Post Hoc: Results

Ranks

	intervention group	N	Mean Rank	Sum of Ranks
cholesterol in mmol/L	Grp A	10	5.80	58.00
	Grp C	10	15.20	152.00
	Total	20		

Test Statistics^a

cholesterol in mmol/L

Mann-Whitney U	3.000
Wilcoxon W	58.000
Z	-3.560
Asymp. Sig. (2-tailed)	.000
Exact Sig. [2*(1-tailed Sig.)]	.000b

- a. Grouping Variable: intervention group
- b. Not corrected for ties.

Bonferroni correction: Corrected P-value = 0 i.e. < 0.001

Post Hoc: Results

Ranks

	intervention group	N	Mean Rank	Sum of Ranks
cholesterol in mmol/L	Grp B	10	7.45	74.50
	Grp C	10	13.55	135.50
	Total	20		

Test Statistics^a

cho	les1	terol	in
r	nm	iol/I	

	mmoi/L
Mann-Whitney U	19.500
Wilcoxon W	74.500
Z	-2.317
Asymp. Sig. (2-tailed)	.021
Exact Sig. [2*(1-tailed Sig.)]	.019 ^b

- a. Grouping Variable: intervention group
- b. Not corrected for ties.

Bonferroni correction: Corrected P-value = 0.019 x 3 = 0.57

Q&A