Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model

Authors: Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, Xinggang Wang

Motivation

- Introducing Vision Mamba (Vim) with Bidirectional SSM
- Improving existing SOTA Transformer based models (DeiT) for high resolution in terms of:
 - Memory efficiency
 - Performance in Vision Tasks

State Space Models (SSM)

They are inspired in basic 1-D continuous differential models for sequences

$$h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t),$$

 $y(t) = \mathbf{C}h(t).$

Learnable parameters: Step size (Δ), B, C **Method:** Convolution (Efficient in GPU)

$$\overline{\mathbf{K}} = (\mathbf{C}\overline{\mathbf{B}}, \mathbf{C}\overline{\mathbf{A}}\overline{\mathbf{B}}, \dots, \mathbf{C}\overline{\mathbf{A}}^{\mathtt{M}-1}\overline{\mathbf{B}}),$$

 $\mathbf{y} = \mathbf{x} * \overline{\mathbf{K}},$

$$h_t = \overline{\mathbf{A}}h_{t-1} + \overline{\mathbf{B}}x_t,$$
$$y_t = \mathbf{C}h_t.$$

^{*}Images: AICoffeeBreak, (2024, April 08). MAMBA and State Space Models explained | SSM explained [Video]. YouTube. URL: https://www.youtube.com/watch?v=vrF3MtGwD0Y&t=1s&ab_channel=AICoffeeBreakwithLetitia

SSMs vs. Transformers (Efficiency)

^{*}Images: AICoffeeBreak, (2024, April 08). MAMBA and State Space Models explained | SSM explained [Video]. YouTube. URL: https://www.youtube.com/watch?v=vrF3MtGwD0Y&t=1s&ab_channel=AICoffeeBreakwithLetitia

Vision Mamba

$$\mathbf{T}_0 = [\mathbf{t}_{cls}; \mathbf{t}_p^1 \mathbf{W}; \mathbf{t}_p^2 \mathbf{W}; \cdots; \mathbf{t}_p^J \mathbf{W}] + \mathbf{E}_{pos},$$
 L: Num $\mathbf{T}_l = \mathbf{Vim}(\mathbf{T}_{1-1}) + \mathbf{T}_{1-1},$ E: Expand $\hat{p} = \mathbf{MLP}(\mathbf{f}),$ N: SSM

	Tiny	Small
L: Number of vim blocks	24	24
D: Hidden state dimension	192	384
E: Expanded state dimension	384	768
N: SSM dimensión	16	16

Method	image size	#param.	ImageNet top-1 acc.			
	Convnet	ts				
ResNet-18	224^{2}	12M	69.8			
ResNet-50	224^{2}	25M	76.2			
ResNet-101	224^{2}	45M	77.4			
ResNet-152	224^{2}	60M	78.3			
ResNeXt50-32×4d	224^{2}	25M	77.6			
RegNetY-4GF	224^{2}	21M	80.0			
Transformers						
ViT-B/16	384^{2}	86M	77.9			
ViT-L/16	384^{2}	307M	76.5			
DeiT-Ti	224^{2}	6M	72.2			
DeiT-S	224^{2}	22M	79.8			
DeiT-B	224^{2}	86M	81.8			
	SSMs					
S4ND-ViT-B	224^{2}	89M	80.4			
Vim-Ti	224^{2}	7M	76.1			
Vim-Ti [†]	224^{2}	7M	78.3 +2.2			
Vim-S	224^{2}	26M	80.5			
Vim-S [†]	224^{2}	26M	81.6 +1.1			

Table 1. Comparison with different backbones on ImageNet-1K validation set. † represents the model is fine-tuned with our long sequence setting.

ImageNet-1K Dataset:

- 1.28M training images
- **50K validation** images
- 1,000 categories

Long Sequence Fine-Tuning: Double of patches than DeiT with the same size (stride 8, 16x16).

Method	image	#param.	ImageNet
Wicthod	size	πparaiii.	top-1 acc.
	Convnet	ts	
ResNet-18	224^{2}	12M	69.8
ResNet-50	224^{2}	25M	76.2
ResNet-101	224^{2}	45M	77.4
ResNet-152	224^{2}	60M	78.3
ResNeXt50-32×4d	224^{2}	25M	77.6
RegNetY-4GF	224^{2}	21M	80.0
Tr	ansform	iers	
ViT-B/16	384^{2}	86M	77.9
ViT-L/16	384^{2}	307M	76.5
DeiT-Ti	224^{2}	6M	72.2
DeiT-S	224^{2}	22M	79.8
DeiT-B	224^{2}	86M	81.8
	SSMs		
S4ND-ViT-B	224^{2}	89M	80.4
Vim-Ti	224^{2}	7M	76.1
Vim-Ti [†]	224^{2}	7M	78.3 +2.2
Vim-S	224^{2}	26M	80.5
Vim-S [†]	224^{2}	26M	81.6 +1.1

Table 1. Comparison with different backbones on ImageNet-1K validation set. † represents the model is fine-tuned with our long sequence setting.

ImageNet-1K Dataset:

- 1.28M training images
- **50K validation** images
- 1,000 categories

Long Sequence Fine-Tuning: Double of patches than DeiT with the same size (stride 8, 16x16).

Results:

3.9 points higher for Vim-Tiny over DeiT-Tiny

+3.9

Method	image	#param.	ImageNet
	size	· · · · · · · · · · · · · · · · · · ·	top-1 acc.
	Convnet	ts	
ResNet-18	224^{2}	12M	69.8
ResNet-50	224^{2}	25M	76.2
ResNet-101	224^{2}	45M	77.4
ResNet-152	224^{2}	60M	78.3
ResNeXt50-32×4d	224^{2}	25M	77.6
RegNetY-4GF	224^{2}	21M	80.0
Tr	ansform	iers	
ViT-B/16	384^{2}	86M	77.9
ViT-L/16	384^{2}	307M	76.5
DeiT-Ti	224^{2}	6M	72.2
DeiT-S	224^{2}	22M	79.8 ◀
DeiT-B	224^{2}	86M	81.8
	SSMs		
S4ND-ViT-B	224^{2}	89M	80.4
Vim-Ti	224^{2}	7M	76.1
Vim-Ti [†]	224^{2}	7M	78.3 +2.2
Vim-S	224^{2}	26M	80.5
Vim-S [†]	224^{2}	26M	81.6 +1.1

Table 1. Comparison with different backbones on ImageNet-1K validation set. † represents the model is fine-tuned with our long sequence setting.

ImageNet-1K Dataset:

- 1.28M training images
- **50K validation** images
- 1,000 categories

Long Sequence Fine-Tuning: Double of patches than DeiT with the same size (stride 8, 16x16).

Results:

- 3.9 points higher for Vim-Tiny over DeiT-Tiny
- 0.7 points higher for Vim-Small over DeiT-Small

+0.7

Method	image size	#param.	ImageNet top-1 acc.
	Convnet	ts	
ResNet-18	224^{2}	12M	69.8
ResNet-50	224^{2}	25M	76.2
ResNet-101	224^{2}	45M	77.4
ResNet-152	224^{2}	60M	78.3
ResNeXt50-32×4d	224^{2}	25M	77.6
RegNetY-4GF	224^{2}	21M	80.0
Tr	ansform	iers	_
ViT-B/16	384^{2}	86M	77.9
ViT-L/16	384^{2}	307M	76.5
DeiT-Ti	224^{2}	6M	72.2
DeiT-S	224^{2}	22M	79.8
DeiT-B	224^{2}	86M	81.8
	SSMs		
S4ND-ViT-B	224^{2}	89M	80.4
Vim-Ti	224^{2}	7M	76.1
Vim-Ti [†]	224^{2}	7M	78.3 +2.2
Vim-S	224^{2}	26M	80.5
Vim-S [†]	224^{2}	26M	81.6 +1.1

Table 1. Comparison with different backbones on ImageNet-1K validation set. † represents the model is fine-tuned with our long sequence setting.

ImageNet-1K Dataset:

- 1.28M training images
- **50K validation** images
- 1,000 categories

Long Sequence Fine-Tuning: Double of patches than DeiT with the same size (stride 8, 16x16).

- 3.9 points higher for Vim-Tiny over DeiT-Tiny
- 0.7 points higher for Vim-Small over DeiT-Small
- Vim-S achieves results similar to DeiT-B with LSFT

Method	image size	#param.	ImageNet top-1 acc.
	Convnet	ts	
ResNet-18	224^{2}	12M	69.8
ResNet-50	224^{2}	25M	76.2
ResNet-101	224^{2}	45M	77.4
ResNet-152	224^{2}	60M	78.3
ResNeXt50-32×4d	224^{2}	25M	77.6
RegNetY-4GF	224^{2}	21M	80.0
Tr	ansform	iers	
ViT-B/16	384^{2}	86M	77.9
ViT-L/16	384^{2}	307M	76.5
DeiT-Ti	224^{2}	6M	72.2
DeiT-S	224^{2}	22M	79.8
DeiT-B	224^{2}	86M	81.8
	SSMs		
S4ND-ViT-B	224^{2}	89M	80.4
Vim-Ti	224^{2}	7M	76.1
Vim-Ti [†]	224^{2}	7M	78.3 +2.2
Vim-S	224^{2}	26M	80.5
Vim-S [†]	224^{2}	26M	81.6 +1.1

Table 1. Comparison with different backbones on ImageNet-1K validation set. † represents the model is fine-tuned with our long sequence setting.

ImageNet-1K Dataset:

- 1.28M training images
- **50K validation** images
- 1,000 categories

Long Sequence Fine-Tuning: Double of patches than DeiT with the same size (stride 8, 16x16).

- 3.9 points higher for Vim-Tiny over DeiT-Tiny
- 0.7 points higher for Vim-Small over DeiT-Small
- Vim-S achieves results similar to DeiT-B with LSFT
- 1248×1248: Vim is 2.8× faster than DeiT and saves 86.8% GPU memory in batch inference

Method	Backbone	image size	#param.	val mIoU
DeepLab v3+	ResNet-101	$ \begin{array}{ c c c } 512^{2} \\ 512^{2} \\ 512^{2} \end{array} $	63M	44.1
UperNet	ResNet-50		67M	41.2
UperNet	ResNet-101		86M	44.9
UperNet	DeiT-Ti	$\begin{vmatrix} 512^2 \\ 512^2 \end{vmatrix}$	11M	39.2
UperNet	DeiT-S		43M	44.0
UperNet	Vim-Ti	512^2 512^2	13M	41.0
UperNet	Vim-S		46M	44.9

Table 2. Results of semantic segmentation on the ADE20K val set.

ADE20K Dataset:

- **20K training** images
- **2K validation** images
- 150 categories
- **UperNet** framework

Method	Backbone	image size	#param.	val mIoU	A
DeepLab v3+ UperNet UperNet	ResNet-101 ResNet-50 ResNet-101	$ \begin{array}{ c c c } 512^{2} \\ 512^{2} \\ 512^{2} \end{array} $	63M 67M 86M	44.1 41.2 44.9	
UperNet UperNet	DeiT-Ti DeiT-S	512^2 512^2	11M 43M	39.2 44.0	+1.8
UperNet UperNet	Vim-Ti Vim-S	512^2 512^2	13M 46M	41.0	

Table 2. Results of semantic segmentation on the ADE20K val set.

ADE20K Dataset:

- 20K training images
- 2K validation images
- 150 categories
- **UperNet** framework

Results:

• 1.8 mIoU higher for Vim-Ti over DeiT-Ti

Method	Backbone	image size	#param.	val mIoU
DeepLab v3+	ResNet-101	$ \begin{array}{ c c c } 512^{2} \\ 512^{2} \\ 512^{2} \end{array} $	63M	44.1
UperNet	ResNet-50		67M	41.2
UperNet	ResNet-101		86M	44.9
UperNet	DeiT-Ti	512^2 512^2	11M	39.2
UperNet	DeiT-S		43M	44.0
UperNet UperNet	Vim-Ti Vim-S	512^2 512^2	13M 46M	41.0

Table 2. Results of semantic segmentation on the ADE20K val set.

ADE20K Dataset:

- **20K training** images
- 2K validation images
- 150 categories
- **UperNet** framework

- 1.8 mloU higher for Vim-Ti over DeiT-Ti
- 0.9 mloU higher for Vim-S over DeiT-S

Method	Backbone	image size	#param.	val mIoU
DeepLab v3+	ResNet-101	$ \begin{array}{ c c } 512^{2} \\ 512^{2} \\ 512^{2} \end{array} $	63M	44.1
UperNet	ResNet-50		67M	41.2
UperNet	ResNet-101		86M	44.9
UperNet	DeiT-Ti	512^2 512^2	11M	39.2
UperNet	DeiT-S		43M	44.0
UperNet	Vim-Ti	512^2 512^2	13M	41.0
UperNet	Vim-S		46M	44.9

Table 2. Results of semantic segmentation on the ADE20K val set.

ADE20K Dataset:

- **20K training** images
- **2K validation** images
- 150 categories
- **UperNet** framework

- 1.8 mloU higher for Vim-Ti over DeiT-Ti
- 0.9 mloU higher for Vim-S over DeiT-S
- Vim-S similar to ResNet-101 but 2x fewer parameters

Experiments: Object Detection and Instance Segmentation

Backbone	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅ ^{box}	AP _s box	AP _m box	AP_l^{box}
DeiT-Ti	44.4	63.0	47.8	26.1	47.4	61.8
Vim-Ti	45.7	63.9	49.6	26.1	49.0	63.2
Backbone	AP ^{masl}	k AP ₅₀ ^{masl}	k AP ₇₅	AP _s ^{mas}	k AP _m asl	k AP _l mask
Backbone DeiT-Ti	AP ^{masl} 38.1	k AP ₅₀ AP ₅₀ 59.9	AP ₇₅ AP ₇₅ 40.5	AP _s ^{mas} 18.1	k AP _m ^{masl} 40.5	^k AP ₁ ^{mask} 58.4

Table 3. Results of object detection and instance segmentation on the COCO val set using Cascade Mask R-CNN [4] framework.

COCO 2017 Dataset:

- 118K training images
- **5K validation** images
- Cascade Mask R-CNN base framework

Experiments: Object Detection and Instance Segmentation

Backbone	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅ ^{box}	AP _s box	AP_{m}^{box}	AP_l^{box}
DeiT-Ti	44.4	63.0	47.8	26.1	47.4	61.8
Vim-Ti	45.7	63.9	49.6	26.1	49.0	63.2
Backbone	AP ^{mask}	AP ₅₀	AP ₇₅	AP _s ^{masl}	k AP _m ask	$^{\kappa}AP_{l}^{mas}$
DeiT-Ti	38.1	59.9	40.5	18.1	40.5	58.4
	30.1	57.7	10.5	10.1	10.5	50.1

Table 3. Results of object detection and instance segmentation on the COCO val set using Cascade Mask R-CNN [4] framework.

COCO 2017 Dataset:

- 118K training images
- **5K validation** images
- Cascade Mask R-CNN base framework

Results:

 Vim-Ti surpasses DeiT-Ti for medium-size and big objects, demonstrating better long-range context learning

Experiments: Object Detection and Instance Segmentation

Backbone	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅ ^{box}	AP _s box	AP_{m}^{box}	AP _l box
DeiT-Ti	44.4	63.0	47.8	26.1	47.4	61.8
Vim-Ti	45.7	63.9	49.6	26.1	49.0	63.2
Backbone	AP ^{masi}	AP ₅₀	AP ₇₅	AP _s ^{masl}	k AP _m asl	AP _l AP _l
Backbone DeiT-Ti	AP ^{mask} 38.1	59.9	40.5	AP_s^{mas} 18.1	^k AP _m ^{mask} 40.5	AP ₁ ^{mask} 58.4

Table 3. Results of object detection and instance segmentation on the COCO val set using Cascade Mask R-CNN [4] framework.

COCO 2017 Dataset:

- 118K training images
- **5K validation** images
- Cascade Mask R-CNN base framework

- Vim-Ti surpasses DeiT-Ti for medium-size and big objects, demonstrating better long-range context learning
- Not necessary window attention

Conclusions

- Computational complexity linear on sequence length as shown for text
- Modeling power similar to DeiT and superior for higher resolution images thanks to efficient long sequences management
- Possible alternative to Transformer based backbones

Future Lines:

- Broader Exploration. Running on different Datasets and Frameworks
- Self-Supervised Learning
- Comparison of improvements for SOTA systems based on Transformers
- As with Transformer architecture, opening a path to explore nexxtgeneration AI based applications.

References

Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., & Wang, X. (2024). Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model. arXiv preprint arXiv:2401.09417 [cs.CV].

Gu, A., & Dao, T. (2023). Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv preprint arXiv:2312.00752 [cs.LG].

Li, K., Li, X., Wang, Y., He, Y., Wang, Y., Wang, L., & Qiao, Y. (Year). VideoMamba: State Space Model for Efficient Video Understanding. arXiv preprint arXiv:2403.06977 [cs.CV].

AlCoffeeBreak, (2024, April 08). *MAMBA and State Space Models explained* [SSM explained [Video]. YouTube. URL: https://rb.gy/phwzer