

Reducing Space for Computing Fibonacci ◆ store only previous 2 values to compute next value ■ int fib(x) if (x=0) return 0; else if (x=1) return 1; else int last ← 1; nextlast ← 0; for i ← 2 to x do temp ← last + nextlast; nextlast ← last; last ← temp; return temp; Dynamic Programming version 1.4 5

line-breaking problem ♣ A simple version: ■ letters and spaces have equal width ■ input is set of n word lengths, w_1 , w_2 , ... w_n ■ also given line width limit L. ■ each length w_i includes one space ■ Placing words i up to j on one line means $\sum_{k=i}^{j} w_i \le L$ ■ Penalty for extra spaces $X = L - \sum_{k=i}^{j} w_i$ is X^3 ■ Minimize sum of penalties from each line (no last line penalty) Dynamic Programming version 1.4

An Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize A=A₀*A₁*...*A_{n-1}
- Calculate number of ops for each one
- Pick the one that is best

Running time:

- The number of paranethesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4ⁿ.
- This is a terrible algorithm!

Dynamic Programming version 1.4

A Greedy Approach

- ◆ Idea #1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - A*((B*C)*D) takes 500+250+250 = 1000 ops

Dynamic Programming version 1.4

Another Greedy Approach

- ◆ Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100 ■ D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value. Dynamic Programming version 1.4

A "Recursive" Approach

- Define subproblems:
 - Find the best parenthesization of A_i*A_{i+1}*...*A_i.
 - Let N_{i,i} denote the number of operations done by this
 - The optimal solution for the whole problem is N_{0,n-1}.
- ♦ **Subproblem optimality**: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: (A₀*...*A_i)*(A_{i+1}*...*A_{n-1}).
 - Then the optimal solution N_{0,n-1} is the sum of two optimal subproblems, N_{0,i} and N_{i+1,n-1} plus the time for the last multiply.
 If subproblems were not optimal, neither is global solution.

Dynamic Programming version 1.4

A Characterizing Equation

- Define global optimal in terms of optimal subproblems, by checking all possible locations for final multiply.
 - \blacksquare Recall that $\mathbf{A_i}$ is a $\mathbf{d_i} \times \mathbf{d_{i+1}}$ dimensional matrix.
 - So, a characterizing equation for N_{i,i} is the following:

$$N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Note that subproblems are not independent--the subproblems overlap (are shared)

Dynamic Programming version 1.4

A Dynamic Programming Algorithm

- Construct optimal subproblems "bottom-up.
- N_i's are easy, so start with them
- Then do length 2,3,... subproblems, and so on.
- Array N_{i,j} stores solutions
- Running time: O(n³)

Algorithm matrixChain(S):

Input: sequence S of n matrices to be multiplied Output: number of operations in an optimal paranthesization of S

for
$$i \leftarrow 1$$
 to n - I do
 $N_{i,i} \leftarrow 0$
for $b \leftarrow 1$ to n - I do
for $i \leftarrow 0$ to n - b - I do
 $j \leftarrow i$ + b
 $N_{i,i} \leftarrow +$ infinity

for $k \leftarrow i$ to i-1 do $N_{i,j} \leftarrow \min\{N_{i,j} \;,\, N_{i,k} + N_{k+1,j} + d_i \, d_{k+1} \, d_{j+1}\}$

Dynamic Programming version 1.4

A Dynamic Programming
Algorithm Visualization

N_{i,j} = min_{i Sk,i} + N_{k+1,j} + d_id_{k+1}d_{j+1}}

The bottom-up construction fills in the N array by diagonals

N_{i,j} gets values from pervious entries in i-th row and j-th column

Filling in each entry in the N table takes O(n) time.

Total run time: O(n³)

Getting actual parenthesization can be done by remembering "k" for each N entry

Dynamic Programming version 1.4

31