实验一: TS码流分析

一、实验目的

- ■加深对MPEG-2系统复用的理解;
- ■理解TS包包头中各参数的含义;
- 掌握使用PSI从码流中提取所需视音频节目 PID号的方法。

二、实验原理

1、MPEG TS 流逻辑结构

包头 数据净荷

188 字节

- ■sync_byte: 固定为0100 0111 (0x47)的 8 位字段;
- ■transport_error_indicator:1 比特标志位。当置为 1 时表明在相关的传送分组中至少有一个不可纠正的错误位。当被置1后,在错误被纠正之前不能重置为0。

188 字节 2、TS包结构

包头 | 数据净荷

 同步
 传输错
 开始
 传输
 PID
 加扰
 适配域
 连续性

 字节
 误指示
 优先级
 控制
 计数器

 8
 1
 1
 13
 2
 2
 4

- ■payload_unit_start_indicator:1 比特标志位,用来指示传输流分组带有 PES 分组或PSI数据时的情况。
- ■当传输流分组的有效负载带有 PES 分组数据时: 置'1'表明传输流分组的有效负载将以 PES 分组的第一个字节开始;
- ■当传输流分组带有一个 PSI部分的第一个字节:置'1',表明传输流分组的第一个字节带有 pointer_field。置'0',表明传输流分组不带有一个 PSI部分的第一个字节,在有效负载中没有pointer_field。

188 字节 包头 数据净荷

■transport_priority: 1 位指示器。当被置为'1'时表明相关的分组比其他具有相同PID 但此位没有被置'1'的分组有更高优先级。

188 字节

包头 数据净荷

|--|

- ■PID:13 位字段,唯一识别携带某一类型数据的传输包。
- ■transport_scrambling_control: 2 位字段,用来指示传输流分组有效负载的加密模式。

188 字节

包头 数据净荷

 同步 字节 3
 传输错 指示 4
 开始 优先级 1
 传输 优先级 1
 PID 控制 控制 1
 面抗 控制 控制 2
 适配域 控制 1
 连续性 计数器 2
 透常 数据净荷

■adaptation_field_control: 2 位字段。用于指示本传输流分组首部是否跟随有调整字段和 /或有效负载。"00"未来使用保留;"01"仅含有效载荷;"10"无有效载荷;"11"调整字段后为有效载荷。

TS包结构

包头 数据净荷

 同步 字节 8
 传输错 指示 1
 开始 优先级 1
 传输 优先级 1
 PID 控制 控制 1
 加扰 控制 控制 2
 连续性 计数器 2
 适配域 数据净荷

■continuity_counter: 4 位字段。随着每一个具有相同 PID 的传输流分组而增加,当它达到最大值后又回复到0。

Table 2-3 -- ITU-T Rec. H.222.0 | ISO/IEC 13818 transport packet

Syntax		No. of bits	Mnemonic		
transport_packet(){					
1	sync_byte	8	bslbf		
	transport_error_indicator	1	bslbf		
	payload_unit_start_indicator	1	bslbf		
TS包	transport_priority	1	bslbf		
必有	PID	13	uimsbf		
成分	transport_scrambling_control	2	bslbf		
,,,,,	adaptation_field_control	2	bslbf		
	continuity_counter	4	uimsbf		
	if(adaptation_field_control=='10' adaptation_field_control=='11'){				
	adaptation_field() 自适应区:包含PCR等信息				
	}				
	if(adaptation_field_control=='11') {				
	for $(i=0;i< N;i++)$ {				
	data_byte 有效载荷区:	8	bslbf		
	}				
	}				
}					

3、PAT

■ PAT表由PID为0x0000的TS包传送,作用是为复用的每一路传送流提供出所包含的节目和节目编号,以及对应节目的节目映射表(PMT)的位置,即PMT的TS包的包标识符(PID)的值,同时还提供网络信息表(NIT)的位置,即NIT的TS包的包标识符(PID)的值。

PAT (PID=0)

节目	PMT的PID	NIT (PID=16)
节目0	16	─────────────────────────────────────
节目1	22	
节目3	33	

4、PAT结构

- table_id: 8位字段。固定为0x00,标志该表是PAT表。
- section_syntax_indicator: 1位字段,段语法标志位,固 定为1。

- section_length: 12位字段,表示这个字节后面有用的字节数,包括CRC32。
- transport_stream_id: 16位字段,表示该传输流的ID,区别于同一个网络中其它多路复用流。

- version_number: 5位字段,表示PAT的版本号。
- current_next_indicator: 1位字段,表示发送的PAT表是当前有效还是下一个PAT有效。

- section_number: 8位字段,表示分段的号码。PAT可能分为多段传输,第一段为0,以后每个分段加1,最多可能有256个分段。
- last_section_number: 8位字段,表示PAT最后一个分段的号码。

- network_PID: 13位字段,表示网络信息表(NIT)的PID, 节目号为0时对应ID为network_PID。
- CRC_32: 32位字段,CRC32校验码Cyclic Redundancy Check。

PAT表的段结构:

Syntax	No. of bits	Mnemonic			
program_association_section() {					
table_id	8	uimsbf			
section_syntax_indicator	1	bslbf			
'0'	1	bslbf			
reserved	2	bslbf			
section_length	12	uimsbf			
transport_stream_id	16	uimsbf			
reserved	2	bslbf			
version_number	5	uimsbf			
current_next_indicator	1	bslbf			
section_number	8	uimsbf			
last_section_number	8	uimsbf			
for $(i=0; i< N; i++)$ {					
program_number	16	uimsbf			
reserved	3	bslbf			
if(program_number == '0') {					
network_PID	13	uimsbf			
}					
else {					
program_map_PID	13	uimsbf			
}					
}					
CRC_32	32	rpchof			
_}		_			

某TS流中用于传输PAT表格信息的段:

```
表明这个段是属于PAT表的
table id = 0x00
section_syntax_indicator=1
section_length = 0x55
                      该段的长度
version number = 1
current_next_indicator = 1
section number = 0x00
                      表明这个段是该PAT表第一个段
                       该PAT表总共分成了多少个段
last_section_number = 0x02
table_id = 0x00
                      表明这个段是属于PAT表的
section number = 0x01
                       表明这个段是该PAT表第二个段
last section number = 0x02
                      该PAT表总共分成了多少个段
table id = 0x00
                      表明这个段是属于PAT表的
section number = 0x02
                       表明这个段是该PAT表第三个段
                      该PAT表总共分成了多少个段
last_section_number = 0x02
```


三、实验准备

- ■文件操作
- ■位运算
- ■参考文档

■ 文件打开:

virtual BOOL Open(LPCTSTR /pszFileName, UINT nOpenFlags, CFileException* pError = NULL);

- □ IpszFileName 需要打开文件的路径字符串,这个路径可以是相对 路径也可以是绝对路径,或者是网络名字 (UNC)
- □ nOpenFlags 一个UINT定义文件的存取共享模式。它指定文件打 开时可以采取的操作。你可以使用"|"号来组合多个选项。文件的 一个存取权限和一个共享选项是必须要指定的。
- □ 返回值:成功为非0,否则为0,仅当返回值为0时pError参数才有意义。

```
    例:
        CFile cfile;
        CString FileName;
        if(!cfile.Open(FileName,CFile::modeRead,NULL))
        {
            cout<<"Open File Error!!"<<endl;
            return;
        }
        </li>
```

- 文件读取: virtual UINT Read(void* *lpBuf*, UINT *nCount*);
- 例:CFile cfile;char pbuf[100];cfile.Read(pbuf, 100);

- 获得文件长度: virtual ULONGLONG GetLength() const;
- 例:CFile cfile;long length=cfile.GetLength();

■ 指针指向位置:

```
virtual ULONGLONG Seek( LONGLONG /Off, UINT nFrom );
```

- □ CFile::begin
- □ CFile::current
- □ CFile::end
- 例:

CFile cfile;

cfile.Seek(len,CFile::begin);

2、位运算

- **47** 44 00 3D
- <u>01000111</u> 010<u>00100 00000000</u> 00111101

- Sync=pBuff[0];
- transport_error_indicator=pBuff[1]/128;
- payload_unit_start_indicator=(pBuff[1]<<1)/128;</p>
- PID=(pBuffer[1]%32)*256+pBuffer[2];

3、MPEG标准中文.pdf

- P25 TS语法结构
- P47 PSI
- P49 PAT (PID=0)
- P52 PMT
- P66 stream_type
- P120 语法图

四、实验结果

- 完善程序内容;
- 输出以下参数:
 - □TS包分组长度;
 - □节目套数及对应各节目PMT PID;
- ■提交程序。