Market Impact with Autocorrelated Order Flow Under Perfect Competition: The Donier Model

Jim Gatheral (joint work with Jonathan Donier and Fabrizio Lillo)

Market Microstructure: Confronting Many Viewpoints, December 11, 2012

Terminology

- By metaorder, we mean an order that is sufficiently large that it cannot be filled immediately without eating into the order book.
 - Nowadays, this means just about any order.
 - Such orders need to be split.
- We refer to each component of a metaorder as a *child order*.
- By the metaorder impact profile (or just impact profile), we mean the average path of the stock price during and after execution of a metaorder.
- Completion refers to the timestamp of the last child order of a metaorder.

Schematic of the metaorder impact profile

Figure 1: The metaorder impact profile

The impact profile

- When a buy metaorder is sent, its immediate effect is to move the price upwards (to p say).
- After completion, the price reverts to some price p_{∞} .
- Market impact then has two components, one transient and one permanent.
- Knowledge of the metaorder impact profile is key to the derivation of optimal execution strategies.
- The Donier model provides a framework for understanding and quantifying the impact profile.

Price impact of metaorders

It is now (fairly) well-accepted that:

- Metaorder price impact is a power-law function of the quantity, close to square-root.
- Prior to completion, the impact profile is a power-law function of time, close to square-root.
- After completion, market impact decays, possibly to a permanent level.

Impact of proprietary metaorders (from Tóth et al.)

Figure 2: Log-log plot of the volatility-adjusted price impact vs the ratio Q/V

Notes on Figure 2

- In Figure 2 which is taken from [Tóth, Bouchaud et al.], we see the impact of metaorders for CFM¹ proprietary trades on futures markets, in the period June 2007 to December 2010.
 - Impact is measured as the average execution shortfall of a metaorder of size Q.
 - The sample studied contained nearly 500,000 trades.
- We see that the market impact is empirically power-law (roughly square-root) for metaorders with a range of sizes spanning two to three orders of magnitude!

¹Capital Fund Management (CFM) is a well-known large Paris-based hedge fund.

Empirical impact profile (from Moro et al.)

Figure 3: Average path of the stock price during execution of a metaorder on two exchanges

Empirically observed impact profile

From Figure 3, we see that

- There is reversion of the stock price after completion of the metaorder.
- Some component of the market impact of the metaorder appears to be permanent.
- The path of the price prior to completion looks like a power law.
 - From [Moro et al.]

$$m_t - m_0 \approx (4.28 \pm 0.21) \left(\frac{t}{T}\right)^{0.71 \pm 0.03}$$
 (BME)
 $m_t - m_0 \approx (2.13 \pm 0.05) \left(\frac{t}{T}\right)^{0.62 \pm 0.02}$ (LSE)

where T is the duration of the metaorder.

Summary of empirical observations

- The square-root formula gives an amazingly accurate rough estimate of the cost of executing an order.
- During execution of a metaorder, the price moves on average roughly according to $(t/T)^{2/3}$.
- Immediately after completion of a metaorder, the price begins to revert.
- The impact profile seems to exhibit scale invariance (which is implicit in Figure 3).

The Lillo, Mike, Farmer model of order splitting

- Let ϵ_t be the sign of the child order observed at time t.
- Then the autocorrelation function is given by $\rho(\tau) = \langle \epsilon_t \, \epsilon_{t+\tau} \rangle$.
 - By assumption, if two child orders come from different metaorders, their order signs are uncorrelated.
- p(L) is the probability that a metaorder has length L.
- We assume there are always N active metaorders.

The power-law case

In the realistic case where metaorder sizes L are power-law distributed so

$$p(L) \sim L^{-(1+\gamma)}$$

we find

$$\rho(\tau) \sim N^{\gamma-2} \tau^{1-\gamma}$$
.

In particular, if $\gamma=3/2$ as is more or less the case empirically for many stocks, we have

$$ho(au) \sim rac{1}{\sqrt{ au}}.$$

 The LMF model gives a link between the distribution of order sizes and the autocorrelation function of order signs.

Empirical confirmation

- [Tóth, Lillo et al.] perform a careful analysis of order flow data from the London Stock Exchange containing exchange membership identifiers.
- They conclude that order splitting is indeed the dominant cause of the long memory of the order sign process.

The Glosten and Milgrom sequential trade model

- In the [Glosten and Milgrom] model, the market maker \mathcal{M} learns the informed trader \mathcal{I} 's information by observing the order flow.
 - If there are more buys than sells over time, M sets the price higher.
- Under perfect competition:
 - \mathcal{M} posts bid and ask prices $B = \mathbb{E}[V|Sell]$ and $A = \mathbb{E}[V|Buy]$ where V denotes the efficient price.
 - The spread s = A B is proportional to the probability μ of informed trading.

Dynamical properties of the Glosten and Milgrom model

- The trade price series is a martingale.
 - Both bid and ask prices are expectations conditioned on an expanding information set (the time series of trade signs):

$$B_k = \mathbb{E}[V|\mathcal{F}_k, \epsilon_k = -1]$$

 $A_k = \mathbb{E}[V|\mathcal{F}_k, \epsilon_k = +1]$

- Order signs are predictable: $\mathbb{E}[\epsilon_k | \mathcal{F}_k] \neq 0$ in general.
- Orders are serially correlated because informed traders always trade in the same direction.
- There is market impact in this model. A buy causes both the bid and the offer to increase.

The FGLW market impact model

In the model of [Farmer, Gerig, Lillo, and Waelbroeck] (FGLW from now on), there is a market maker \mathcal{M} , informed traders \mathcal{I} and uninformed (or noise) traders \mathcal{U} . Informed traders trade using metaorders.

The authors show that the typical impact profile associated with the execution of a metaorder may be recovered starting from two assumptions:

- The Martingale Condition: The price process is a martingale.
 - ullet $\mathcal M$ does not know how long a given metaorder will continue.
- The Fair Pricing Condition: On average, the price reverts after completion of the metaorder to a level equal to the average price paid by \(\mathcal{I} \).
 - If metaorder sizes are power-law distributed with exponent γ , the price reverts on average to a level which is a factor $1/\gamma$ of the peak price reached at completion.

Empirical confirmation of FGLW

- In a (very!) recent paper, [Bershova and Rakhlin] perform an empirical study of a proprietary dataset of large institutional equity orders.
- They broadly confirm the predictions of FGLW, including the power-law impact profile, the reversion level of 2/3 and roughly square-root permanent impact.
- They also study reversion of market impact in detail.

The CFM model of latent supply and demand

- [Tóth, Bouchaud et al.] introduce the concept of *latent* supply and demand, to be distinguished from the visible supply/demand profile associated with the limit order book.
- [Tóth, Bouchaud et al.] note that if latent supply and demand is roughly linear in price over some reasonable range of prices, market impact should be roughly square-root.

The Donier model

In the model of [Donier]:

- As before, the market consists of informed traders \mathcal{I} , noise traders \mathcal{U} , and market makers \mathcal{M} .
- There is *perfect competition* between market makers. We may thus suppose there is only one market maker \mathcal{M} .
- Informed traders submit metaorders generating autocorrelation in the order sign process according to the order-splitting model of [Lillo, Mike and Farmer].
- M has perfect information and can distinguish informed and uniformed child orders as in the colored print model of [Gerig, Farmer and Lillo].
 - As before, ${\cal M}$ does not know in advance when ${\cal I}$'s metaorder will complete.
 - ullet ${\cal M}$ does however know the distribution of metaorder sizes.

Market making strategy

The market maker reacts to a child order as follows:

- If the child order is uniformed, \mathcal{M} responds by refilling the order book so as to restore it to its original state.
- If the child order is informed, $\mathcal M$ lets the child order eat into the order book.
 - The zero profit condition imposes the quantity v_p that should be available at the price level p.
- Only informed trades can cause the price to move.

Computation of v_p

- Let ℓ denote the (unknown) length of the metaorder.
- \mathcal{M} posts limit orders such that the quantity $v_p = L_p L_{p-1}$ available at price p satisfies

$$\rho = \mathbb{E}[\rho_{\infty} | \ell \ge L_{\rho}] \tag{1}$$

where $p_{\infty} = \lim_{t \to \infty} p_t$.

- Note that the v_p limit orders could be posted either in advance or at the time in response to incoming market orders. The v_p thus represents *latent* limit order supply.
- Strictly speaking, our argument works only if informed orders have length L_k for some k. We believe that a more careful analysis will not substantially change the results.

Imperfect information

- We have assumed perfect information for convenience; only informed trades move the price which is thus a deterministic function of L.
 - The impact profile and in particular the final price p and the reversion price p_{∞} are deterministic.
- In reality, M cannot tell whether a given child order is informed or not. Information is asymmetric and noise trades also move the price.
 - The deterministic impact profile, p and p_{∞} should then be viewed as expectations of actual prices.
- I is informed only in the sense that he knows what the size of his own metaorder is. This is of course I's private information.

- Let ℓ be the (a priori unknown) length of the metaorder and p_{max} the price reached at completion.
- Then, either
 - $\ell > L + \nu_p$ and the metaorder exhausts the available quantity at p, causing the price to increase to p + 1, or
 - $L \le \ell \le L + v_p$, $p = p_{\text{max}}$, the metaorder completes, and the price reverts to p_{∞} .
- Denote the probability that the metaorder continues by q.
- Then because p_t is a martingale,

$$p = (1 - q) p_{\infty} + q (p + 1)$$
 (2)

and the decay after completion (transient impact) is

$$\Delta(p) := p - p_{\infty} = \frac{q}{1 - q}.$$
 (3)

• Equation (2) is essentially the Martingale Condition of FGLW.

Relation between order size distribution and p_{∞}

- Denote the (informed) order size required to consume limit orders up to price p by $L_p = \sum_{k=0}^p v_p$ and the tail distribution function of metaorder sizes by $\tilde{F}(L) = \mathbb{P}(\ell \geq L)$.
- ullet Then the continuation probability q is given by

$$q = \mathbb{P}(\ell \geq L_{
ho} | \ell \geq L_{
ho-1}) = rac{ ilde{F}(L_{
ho})}{ ilde{F}(L_{
ho-1})}.$$

Thus

$$\Delta(p) = \frac{\tilde{F}(L_p)}{\tilde{F}(L_{p-1}) - \tilde{F}(L_p)}.$$
 (4)

Remarks

- Equation (4) relates the magnitude of transient impact to the distribution of metaorder sizes.
- (4) is valid for any given metaorder size distribution, not just for the power-law case explored in the following.
- Note that the price must revert immediately to p_{∞} after completion if $\mathcal M$ can tell when the metaorder ends.
 - In real markets, such information is partial and is inferred from observations; the price after completion decays over time to p_{∞} .

ullet Suppose further that ${\mathcal M}$ sets his prices so as to target zero expected profit for any order size. Then

$$L_p p_{\infty} = \sum_{k=0}^{p} k v_k \tag{5}$$

- This condition is not strictly imposed by the perfect competition assumption but can be obtained by supposing for example that M is risk averse and minimizes his P&L volatility.
- Equation (5) is the Fair Pricing condition of FGLW.
 - However (5) follows from the assumption of perfect competition between market makers. There is no notion of fair pricing here.

Price reversion

• The Fair Pricing Condition (5) gives

$$\Delta(p) = p - p_{\infty} = p - \frac{1}{L_p} \sum_{k=0}^{p} k v_k$$
 (6)

which may be rewritten as

$$\Delta(p) = \frac{1}{L_p} \sum_{k=0}^{p-1} L_k.$$
 (7)

- In particular, since $0 < L_k < L_p$ for all k < p, we must have $0 < \Delta(p) < p$.
 - That is, the price always reverts after completion, no matter what the distribution of metaorder sizes is.

Rôle of the bid-ask spread

- Equation (5) applied to the case p=0 gives $p_{\infty}=0$.
- The martingale condition then implies, as in FGLW, that the price cannot move.
 - This problem may be resolved by introducing a bid-ask spread.
- From (2), when the spread is a half-tick, zero expected profit per share imposes that

$$\frac{1}{2} = (1-q) p_{\infty} + q(p+1) = q$$

when $p=p_{\infty}=0$. This then gives us the condition that

$$\mathbb{P}(\ell \geq L_0) = \frac{1}{2}$$

which fixes L_0 in terms of the spread.

• In FGLW, L_0 is an undetermined parameter which is used to set the scale of market impact. In contrast, the perfect competition assumption imposes a connection between L_0 and the spread.

The latent order book

- The volume v_p that the market maker posts at price p can be interpreted as the latent volume that would emerge were the price to reach p.
- In the Donier model, the shape of the latent order book reflects the adaptive reaction of the market-maker under perfect competition to the distribution of metaorder sizes, as estimated for example from the order flow autocorrelation function.
 - In particular, according to the LMF order-splitting model, if $\mathbb{P}(\ell>L)\sim L^{-\gamma}$, the autocorrelation function of order flow decays as

$$\rho(au) \sim \frac{1}{ au^{\gamma-1}}.$$

Recursion for L_p

Equation (4) reads

$$\Delta(p) = rac{ ilde{F}(L_p)}{ ilde{F}(L_{p-1}) - ilde{F}(L_p)}$$

and equation (7) reads

$$\Delta(p) = \frac{1}{L_p} \sum_{k=0}^{p-1} L_k.$$

Equating these two gives

$$\frac{\tilde{F}(L_p)}{\tilde{F}(L_{p-1}) - \tilde{F}(L_p)} = \frac{1}{L_p} \sum_{k=0}^{p-1} L_k.$$
 (8)

from which the L_p may be computed recursively starting with (e.g.) $\tilde{F}(L_0) = 1/2$.

Solving for the metaorder impact profile

• The latent order book is then given by

$$v_p=L_p-L_{p-1}.$$

- Plotting p vs L_p gives the impact profile prior to completion.
- The reversion level is given by

$$\Delta(p) = \frac{\tilde{F}(L_p)}{\tilde{F}(L_{p-1}) - \tilde{F}(L_p)}$$

where p is the maximum price reached.

• We can generate the impact profile for any choice of $\tilde{F}(\cdot)$.

Example: The zeta distribution

Suppose that the probability of an order of length ℓ is given by

$$f(\ell) = \frac{\ell^{-\gamma+1}}{\zeta(\gamma+1)}$$

Then

$$\widetilde{F}(\ell) = \sum_{i=\ell}^{\infty} f(j) = \frac{\zeta(\gamma+1,\ell)}{\zeta(\gamma+1)} \sim \ell^{-\gamma} \text{ as } \ell \to \infty.$$

Set $\gamma = 3/2$. The condition $\tilde{F}(L_0) = 1/2$ gives

$$L_0 = 1.40541.$$

We then find recursively

$$\{L_1, L_2, L_3, ...\} = \{2.37, 3.43, 4.59, ...\}.$$
 (9)

Graphs of L_p and v_p

Figure 4: Plots of the cumulative latent order depth L_p (left) and the latent order density v_p (right) vs p

• L_p is roughly quadratic and $v_p = \Delta L_p$ is roughly linear.

The reversion level

Figure 5: Graph of the relative reversion $\alpha(p) := \Delta(p)/p$ vs p

The impact profile: Power-law case

Figure 6: The metaorder impact profile for a trade of length L_{300}

Price reversion after completion

- The deterministic version of the Donier model gives us the impact profile prior to completion.
 - If ${\mathcal M}$ can tell when the metaorder has ended, the decay to p_∞ is instant
 - Otherwise, we need to consider the information set available to M. We will return to this later.

Asymptotic analysis: Power-law distribution

Rewrite (4) as

$$\frac{\tilde{F}(L_p)}{\tilde{F}(L_{p-1})} = \frac{1}{1 + \frac{1}{\Delta(p)}}.$$

Assume $\alpha(p) := \Delta(p)/p \to \alpha_{\infty} \in [0,1]$ as $p \to \infty$. Taking logs gives

$$\log \tilde{F}(L_p) - \log \tilde{F}(L_{p-1}) = -\log \left(1 + \frac{1}{\alpha_{\infty} p}\right)$$

Then

$$\log \tilde{F}(L_p) = -\sum_{k=1}^{p} \log \left(1 + \frac{1}{\alpha_{\infty} p} \right) \sim -\frac{1}{\alpha} \log p \text{ as } p \to \infty \quad (10)$$

The power-law case: Impact profile

If $\tilde{F}(L) \sim L^{-\gamma}$, (10) gives

$$p(L) \sim L^{\alpha_{\infty} \gamma}$$
 as $L \to \infty$

 This gives the impact profile prior to completion (asymptotically for large L).

The Fair Pricing condition (5) can be approximated for large p as

$$p_{\infty} = \frac{1}{L_p} \int_0^{L_p} p(L) dL = \frac{p}{\alpha_{\infty} \gamma + 1}$$

Also,
$$p - \Delta(p) = (1 - \alpha_{\infty}) p$$
 so

$$lpha_{\infty} = 1 - rac{1}{\gamma} \quad ext{and} \quad extstyle{p}_{\infty} = rac{1}{\gamma} \, extstyle{p}.$$

The power-law case: Latent order book

Since $p \sim L^{\gamma-1}$, we have

$$v_p = L_p - L_{p-1} \sim p^{\frac{1}{\gamma - 1}} - (p-1)^{\frac{1}{\gamma - 1}}$$

 $\sim \frac{1}{\gamma - 1} p^{\frac{1}{\gamma - 1} - 1}$

- \bullet With $\gamma \approx 3/2$ consistent with one of the stylized facts, we obtain both
 - the linear latent order book of [Tóth, Bouchaud et al.], and
 - the metaorder impact profile of FGLW, in particular the reversion level $p_{\infty} = \frac{2}{3} p$.

Asymptotic profile vs exact profile

Figure 7: The blue points are the exact solution (9); the red dashed line is the asymptotic solution (10)

 The asymptotic solution is qualitatively very close to the exact solution.

Asymptotic analysis: Exponential distribution

Again assume $\alpha(p):=\Delta(p)/p\to\alpha_\infty\in[0,1]$ as $p\to\infty$. Then if $\tilde{F}(L)\sim e^{-\lambda\,L}$, (10) gives

$$-\lambda \, L_p \sim \log \tilde{F}(L_p) = -\sum_{k=1}^p \, \log \left(1 + rac{1}{lpha_\infty \, p}
ight) \sim -rac{1}{lpha} \log p \, \, ext{as} \, \, p o \infty$$

Equation (7) then reads

$$\alpha_{\infty} \sim \frac{1}{p} \frac{1}{L_p} \sum_{k=0}^{p-1} L_k = \frac{1}{p \log p} \sum_{k=0}^{p-1} \log k \to 1 \text{ as } p \to \infty$$

so the price reverts asymptotically to zero.

- This impact profile is completely inconsistent with empirical observation.
- We now confirm this with a numerical computation.

The impact profile: Exponential case

Figure 8: The metaorder impact profile for a trade of length L_{300}

Comparison with empirical impact profile

- Obviously the power-law profile is much more realistic.
 - The convex impact in Figure 8 is completely inconsistent with the empirical impact profile of for example [Moro et al.] (Figure 3).

Price reversion

- As indicated earlier, if \mathcal{M} does not know if the order has ended, the price cannot suddenly revert to p_{∞} .
- However \mathcal{M} knows both the participation rate π of \mathcal{I} and the number n of informed child orders so far.
- ullet Denote the event that the metaorder is still active by ${\cal A}.$
- Let m be the number of uniformed child orders since the last informed order and assume that orders arrive as Poisson processes.
- \mathcal{M} may then use a Bayesian argument to compute $\mathbb{P}(\mathcal{A}|m)$ (it being implicit that we assume n informed orders already observed).

A Bayesian argument

We have

$$\mathbb{P}(m|\mathcal{A}) = (1-\pi)^m$$
 and $\mathbb{P}(m|\bar{\mathcal{A}}) = 1$.

Also, note that

$$\mathbb{P}(\mathcal{A}) = rac{ ilde{F}(n+1)}{ ilde{F}(n)}$$

is the probability that there are more informed child order to come, we have

$$\mathbb{P}(m) = \mathbb{P}(m|\mathcal{A}) \, \mathbb{P}(\mathcal{A}) + \mathbb{P}(m|\bar{\mathcal{A}}) \, \mathbb{P}(\bar{\mathcal{A}})$$
$$= (1 - \pi)^m \, \mathbb{P}(\mathcal{A}) + (1 - \mathbb{P}(\mathcal{A}))$$
$$= 1 - \mathbb{P}(\mathcal{A}) \, [1 - (1 - \pi)^m] \, .$$

Then

$$\mathbb{P}(\mathcal{A}|m) = \frac{\mathbb{P}(m|\mathcal{A})\,\mathbb{P}(\mathcal{A})}{\mathbb{P}(m)}$$
$$= \frac{(1-\pi)^m\,\mathbb{P}(\mathcal{A})}{1-\mathbb{P}(\mathcal{A})\,[1-(1-\pi)^m]}.$$

Let p_m denote the price after m uninformed child orders. Perfect competition imposes that

$$p_m = \mathbb{P}(\mathcal{A}|m) p_{\mathcal{A}} + \mathbb{P}(\bar{\mathcal{A}}|m) p_{\infty}$$

where $p_{\mathcal{A}}$ is the price if the metaorder continues. In particular,

$$p = p_0 = \mathbb{P}(\mathcal{A}) \, p_{\mathcal{A}} + \mathbb{P}(\bar{\mathcal{A}}) \, p_{\infty} = p_{\infty} + \mathbb{P}(\mathcal{A}) \, (p_{\mathcal{A}} - p_{\infty}).$$

Then

$$p_{m} = p_{\infty} + \mathbb{P}(\mathcal{A}|m) (p_{\mathcal{A}} - p_{\infty})$$

$$= p_{\infty} + \frac{\mathbb{P}(\mathcal{A}|m)}{\mathbb{P}(\mathcal{A})} (p - p_{\infty})$$

$$= p_{\infty} + \frac{(1 - \pi)^{m}}{1 - \mathbb{P}(\mathcal{A}) [1 - (1 - \pi)^{m}]} (p - p_{\infty})$$
(11)

- p₀ = p. The price is fair if no uninformed child orders are detected.
- $p_m \to p_\infty$ as $m \to \infty$. If no new informed child orders are ever detected, the fair price is p_∞ .
- Decay from p to p_{∞} is exponential but scale invariant:

$$p_m - p_\infty \sim e^{-m/\bar{m}} (p - p_\infty)$$
 with $\bar{m} = 1/\pi$.

Power-law case

If $\tilde{F}(L) \sim L^{-\gamma}$, then as $n \to \infty$,

$$\mathbb{P}(\mathcal{A}) = rac{ ilde{\mathcal{F}}(n+1)}{ ilde{\mathcal{F}}(n)} \sim \left(1 + rac{1}{n}
ight)^{-\gamma} \sim 1 - rac{\gamma}{n}.$$

Then

$$egin{array}{lcl}
ho_m & = &
ho_\infty + rac{(1-\pi)^m}{1-\mathbb{P}(\mathcal{A}) \; [1-(1-\pi)^m]} \, (
ho-
ho_\infty) \ & \sim &
ho_\infty + rac{(1-\pi)^m}{1-\left(1-rac{\gamma}{n}
ight) \; [1-(1-\pi)^m]} \, (
ho-
ho_\infty). \end{array}$$

We plot this price reversion profile in Figure 9.

IBM example impact profile

Figure 9: Typical price reversion profile

 M maintains the price at p until he is certain that the metaorder is no longer active. Then the price drops quickly to

Numerical example: IBM

- Consider a trade of 1% of daily volume of IBM which is around 40,000 shares, executed as a VWAP over 30 minutes ($\approx 1/13$ days).
- Participation rate $\pi \approx 13\%$.
- Assume power-law distributed order sizes with $\gamma = 3/2$.
- Further assume that each child order is for 200 shares (roughly the average trade size). Then there will be 200 child orders in this metaorder.
- The tick size is \$0.01 on a price of \$200.
- With these parameters, this stylized version of the Donier model predicts a peak price move of \$0.52 with reversion to \$0.35.
 - Assuming daily volatility of 2%, the square-root formula estimates \$0.40 so the numbers are of the right order of magnitude.

IBM example impact profile

Figure 10: The impact profile for 1% of DV traded over 30 minutes

 Scale invariance means that the impact profile for the same quantity traded over a different time interval (such as 2 hours) is obtained by dilation of the time axis.

Price manipulation

- For each new metaorder then, the price reverts exponentially to p_{∞} after some characteristic time that is proportional to the completion time of the order.
 - The decay constant should be related to the precision of the estimator used by $\mathcal M$ to detect the end of the metaorder.
- In the power-law case, $p_{\infty} = \alpha_{\infty} p \sim L^{\gamma-1}$, so if $\gamma < 2$, there should be price manipulation in the sense of Huberman and Stanzl (see [Gatheral]).
 - An obvious strategy would be to buy 2 N shares using metaorders of length N separated by an interval long enough to allow for full decay of the price to the permanent level. Then sell back using a metaorder of length 2 N.

Bare and renormalized impact profiles

- The impact profile we have drawn is the bare impact profile assuming that:
 - There are no other active metaorders,
 - ullet ${\cal M}$ has no memory of previous metaorders.
- To be consistent with empirical studies such as that of [Moro et al.], we need the *renormalized* impact profile which corresponds to averaging unconditionally over a dataset of metaorders, ignoring the initial state of the market.

The renormalized impact profile

- In general, if a given trader A submits a child order, that order will either be in the same direction or the opposite direction to the net of other active metaorders (denoted by B).
- Denote the bare impact function by $I(\cdot)$ and the renormalized impact function by $\bar{I}(\cdot)$. Then assuming that B has already traded L shares, the impact of a single A child order is given by

$$\Delta \bar{I} = I(L+1) - I(L) \approx I'(L)$$
 (same sign)
 $\Delta \bar{I} = -\{I(L-1) - I(L)\} \approx I'(L)$ (opposite sign).

• In general, the sign of *B*'s metaorders will change several times during the execution of *A*'s metaorder.

Let ℓ be the size of A's metaorder and assume that the participation rates of A and B are equal. Then

$$\bar{I}(\ell) \approx \sum_{i=1}^{N_{\ell}} L_i I'(L_i)$$

assuming that B trades $\sum_i L_i$ shares during A's metaorder execution (of ℓ shares) and B's order changes sign N_ℓ times.

Two limiting cases

Denote the typical size of B's orders by \bar{L} . Then

ullet If $\ell \ll ar{\it L}$, ${\it N}_\ell = 1$ and

$$\bar{I}(\ell) \approx \ell I'(\ell)$$
.

• If $\ell\gg \bar{L}$, $N_\ell=\ell/\bar{L}$ and

$$\overline{I}(\ell) \approx N_{\ell} \, \overline{L} \, I' \left(\overline{L}\right) = \ell \, I' \left(\overline{L}\right) \propto \ell.$$

Two limiting cases: Power-law impact

In the power-law case $I(L) = C L^{\delta}$ with $\delta = \gamma - 1 \approx \frac{1}{2}$, we have

$$\overline{I}(\ell) pprox \left\{ egin{array}{ll} \delta \, I(\ell) & ext{if } \ell \ll \overline{L} \ \delta \, \left(rac{\overline{L}}{\ell}
ight)^{\delta} \, I(\ell) & ext{if } \ell \gg \overline{L}. \end{array}
ight.$$

- We see that renormalized market impact is always less than bare market impact.
 - However, permanent impact is always nonzero.
- In the limit $\ell \gg \bar{L}$, market impact $\bar{I}(\ell)$ is linear in ℓ .
 - So, for metaorders executed over long timescales, price manipulation is not possible.
 - The ratio of p_{∞}/p is preserved (2/3 if $\delta=1/2$).

Summary

- The Donier model framework has the following nice properties:
 - Both the Martingale Condition and (an approximate version of) the Fair Pricing Condition of FGLW follow from the assumption of perfect competition between market makers.
 - It provides a natural interpretation of the latent order book of [Tóth, Bouchaud et al.].
- We computed the difference between the bare and renormalized market impact functions.
- Price manipulation is not possible for long trades. It is possible that price manipulation is not possible in general.
- Further analysis is both possible and required ...

References

Nataliya Bershova and Dmitry Rakhlin, The Non-Linear Market Impact of Large Trades: Evidence from Buy-Side Order Flow, *Private communication* (2012).

Jonathan Donier, Market Impact with Autocorrelated Order Flow under Perfect Competition, available at SSRN: http://ssrn.com/abstract=2191660 (2012).

J Doyne Farmer, Austin Gerig, Fabrizio Lillo, and Henri Waelbroeck, How efficiency shapes market impact, arXiv (2011).

Jim Gatheral, No-dynamic-arbitrage and market impact, Quantitative Finance 10(7) 749-759 (2010).

Austin Gerig, J Doyne Farmer, and Fabrizio Lillo, Theory for long memory in supply and demand, *arXiv* (2011).

References

L. R. Glosten and P. R. Milgrom, Bid, ask, and transaction prices in a specialist market with heterogeneously informed traders. *Journal of Financial Economics* **14**(1) 71–100 (1985).

Fabrizio Lillo, Szabolcs Mike, and J Doyne Farmer, Theory for long memory in supply and demand, *Phys. Rev. E* 71(6) 66122 (2005).

Esteban Moro, Javier Vicente, Luis G Moyano, Austin Gerig, J. Doyne Farmer, Gabriella Vaglica, Fabrizio Lillo, and Rosario N Mantegna, Market impact and trading prole of hidden orders in stock markets, *Physical Review E* **80**(6) 066102 (2009).

Bence Tóth, Yves Lempérière, Cyril Deremble, Joachim de Lataillade, Julien Kockelkoren, and Jean-Philippe Bouchaud, Anomalous price impact and the critical nature of liquidity in financial markets, *Physical Review X* 021006, 1-11(2011).

Tóth, Bence, Imon Palit, Fabrizio Lillo, and J Doyne Farmer, Why Is Order Flow So Persistent?, arXiv (2011).