TOPIC 4. LOGISTIC REGRESSION

Introduction

- Logistic regression is a method that allows the prediction (classification) of discrete variables (outputs) based on a mixture of continuous and discrete predictors (inputs).
- It offers a non-linear relationship between the outputs and inputs (but linear after certain transformation generalized linear models)
 - Example: the probability of heart disease changes very little with a ten-point difference among people with low-blood pressure, but a ten point change can mean a drastic change in the probability of heart disease in people with high blood-pressure.

Introduction

■ Application criteria: the limitation on using the logistic regression is that the output should be discrete.

Terms used in logistic regression

- Odds like probability, a measure of the likelihood of an event.
 - Odds are usually written as "1 to 4 odds" which is equivalent to 1 out of five or .20 probability or 20% chance.
- Odds ratio the ratio of the odds over 1 the odds. The probability of winning over the probability of losing. 1 to 4 odds equates to an odds ratio of .20/.80 = .25.
- Logit this is the natural log of an odds ratio; often called a log odds.

Introduction

- Y = A BINARY RESPONSE (Discrete Variable), p and 1 p
 - 1 POSITIVE RESPONSE (Success) $\rightarrow p$
 - 0 NEGATIVE RESPONSE (failure) $\rightarrow 1 p$
- MEAN(Y) = p, observed proportion of successes
- VAR(Y) = p(1-p), maximized when p = .50, variance depends on mean
- $X = ANY TYPE OF PREDICTOR \rightarrow Continuous, Dichotomous, Polytomous.$
- \blacksquare p depends on X.

The Logistic Function

$$p(X) = \frac{e^u}{1 + e^u}$$

Where p(X) is the estimated probability that Y is in the success category and u is the regular linear regression equation:

$$u = b_0 + b_1 X$$

The Logistic Function

■ Simple case

$$p(X) = \frac{e^{b_0 + b_1 X}}{1 + e^{b_0 + b_1 X}}$$

The Logit Function

By algebraic manipulation, the logistic regression equation can be written in terms of an <u>odds</u> ratio for success:

$$\frac{p(X)}{1 - p(X)} = e^{b_0 + b_1 X}$$

■ Taking the natural log of both sides, we can write the equation in terms of logits (log-odds):

$$\ln \frac{p(X)}{1 - p(X)} = b_0 + b_1 X$$

Logistic Regression

■ The response (binary)

$$Y \sim Bernoulli(p(X))$$

Probability of success:

$$p(X) = \frac{e^{b_0 + b_1 X}}{1 + e^{b_0 + b_1 X}} \qquad \ln \frac{p(X)}{1 - p(X)} = b_0 + b_1 X$$

Latent Variable Model

$$Z = b_0 + b_1 X + \varepsilon$$

$$Y = \begin{cases} 1, & \text{if } Z > 0 \\ 0, & \text{if } Z \le 0 \end{cases}$$

- Where the random error ε follows a logistic distribution.
- This latent variable model is equivalent to the standard logistic regression.

Interpretation

$$p(X) = \frac{e^{b_0 + b_1 X}}{1 + e^{b_0 + b_1 X}} \qquad \ln \frac{p(X)}{1 - p(X)} = b_0 + b_1 X$$

- If $b_1 = 0$, there is no relationship between the response and the predictor.
- If $b_1 > 0$, when X gets larger so does the probability of success.
- If $b_1 < 0$, when X gets larger, the probability of success gets smaller.
- How much bigger or smaller depends on value of the slope.

Estimating Coefficients

- Given a dataset $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$, find estimates for b_0, b_1 .
- Maximum likelihood estimation (MLE): find \hat{b}_0 , \hat{b}_1 that maximize the likelihood function

$$L(b_0, b_1) = \prod_{i=1}^{n} P(y_i) = \prod_{i:y_i=1} P(y_i = 1) \prod_{i':y_{i'}=0} P(y_{i'} = 0)$$

$$P(y_i = 1) = \frac{e^{b_0 + b_1 x_i}}{1 + e^{b_0 + b_1 x_i}}$$

$$P(y_{i'} = 0) = \frac{1}{1 + e^{b_0 + b_1 x_{i'}}}$$

Example

Assume the dataset has 5 samples

Assume the dataset has 5 samples			$P(y_1 = 0) = \frac{1}{1 + e^{b_0 + 3b_1}}$
Patient	Risk score X	Surgery Outcome Y (survival/0;death/1)	$P(y_5 = 0) = \frac{1}{1 + e^{b_0}}$
1	3	0	$e^{b_0+10b_1}$
2	10	1	$P(y_2 = 1) = \frac{e^{b_0 + 10b_1}}{1 + e^{b_0 + 10b_1}}$
3	6	1	$e^{b_0+6b_1}$
4	8	1	$P(y_3 = 1) = \frac{e^{b_0 + 6b_1}}{1 + e^{b_0 + 6b_1}}$
5	0	0	$e^{b_0+8b_1}$
5 0 $P(y_4 = 1) = \frac{1}{1 + e^{b_0 + 3b_1}} \cdot \frac{1}{1 + e^{b_0} \cdot \frac{e^{b_0 + 10b_1}}{1 + e^{b_0 + 10b_1}} \cdot \frac{e^{b_0 + 6b_1}}{1 + e^{b_0 + 6b_1}} \cdot \frac{e^{b_0 + 8b_1}}{1 + e^{b_0 + 8b_1}}$ $L(b_0, b_1) = \frac{1}{1 + e^{b_0 + 3b_1}} \cdot \frac{1}{1 + e^{b_0} \cdot \frac{e^{b_0 + 10b_1}}{1 + e^{b_0 + 10b_1}} \cdot \frac{e^{b_0 + 6b_1}}{1 + e^{b_0 + 8b_1}} \cdot \frac{e^{b_0 + 8b_1}}{1 + e^{b_0 + 8b_1}}$ 12			

$$P(y_1 = 0) = \frac{1}{1 + e^{b_0 + 3b_1}}$$

$$P(y_5 = 0) = \frac{1}{1 + e^{b_0}}$$

$$P(y_2 = 1) = \frac{e^{b_0 + 10b_1}}{1 + e^{b_0 + 10b_1}}$$

$$P(y_3 = 1) = \frac{e^{b_0 + 10b_1}}{1 + e^{b_0 + 6b_1}}$$

$$P(y_4 = 1) = \frac{e^{b_0 + 8b_1}}{1 + e^{b_0 + 8b_1}}$$

$$L(b_0, b_1) = \frac{1}{1 + e^{b_0 + 3b_1}} \cdot \frac{1}{1 + e^{b_0}} \cdot \frac{e^{b_0 + 10b_1}}{1 + e^{b_0 + 10b_1}} \cdot \frac{e^{b_0 + 6b_1}}{1 + e^{b_0 + 6b_1}} \cdot \frac{e^{b_0 + 8b_1}}{1 + e^{b_0 + 8b_1}}$$

Significance Test

Hypothesis testing

 H_0 : $b_1 = 0$ (there is a relationship between X and Y)

 H_1 : $b_1 \neq 0$ (no relationship between X and Y)

■ Z (Wald) test

$$W = \frac{\hat{b}_1}{SD(\hat{b}_1)} \sim N(0, 1)$$

Extension

■ Multiple logistic regression

$$\ln \frac{p(X)}{1 - p(X)} = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$$

■ Multinomial logistic regression (Y = 0, 1, 2, ...)

$$\ln \frac{p_{Y=1}(X)}{p_{Y=0}(X)} = \dots \quad \ln \frac{p_{Y=2}(X)}{p_{Y=0}(X)} = \dots \quad \ln \frac{p_{Y=3}(X)}{p_{Y=0}(X)} = \dots$$

• Ordinal (ordered) logistic regression (Y = 0, 1, 2, ...)

$$\ln \frac{p_{Y \le 0}(X)}{1 - p_{Y \le 0}(X)} = \dots \quad \ln \frac{p_{Y \le 1}(X)}{1 - p_{Y \le 1}(X)} = \dots \quad \ln \frac{p_{Y \le 2}(X)}{1 - p_{Y \le 2}(X)} = \dots$$

Generalized Linear Models

- Logistic regression is a special type of GLM.
- General form of GLMs:

$$Y \sim Probability\ Distribution(\mu)$$

$$g(\mu) = b_0 + b_1 X$$

Example: Logistic regression $Y \sim Bernoulli(p)$ $g(p) = ln \frac{p}{1-p} = b_0 + b_1 X$

- lack g is called link function. It transforms the mean of the probability distribution to a linear function of X.
- $E(Y|X) = g^{-1}(b_0 + b_1 X)$ vs. $E(Y|X) = b_0 + b_1 X$ (linear regression)

Probit Regression

- Probit regression is another popular model for binary responses.
- Probit model:

$$Y \sim Bernoulli(p)$$

$$p = \Phi(b_0 + b_1 X)$$

$$g(p) = \Phi^{-1}(p) = b_0 + b_1 X$$

lacktriangle Φ is the cumulative distribution of standard normal distribution.

Latent Variable Model of Probit Regression

$$Z = b_0 + b_1 X + \varepsilon$$

$$Y = \begin{cases} 1, & \text{if } Z > 0 \\ 0, & \text{if } Z \le 0 \end{cases}$$

- Where the random error ε follows a standard normal distribution. So the model of Z is a linear regression model.
- This latent variable model is equivalent to the probit regression.

Logit vs. Probit Regression

■ Logit function and probit function have similar shapes.

Summary

- Generalized linear models including logistic regression is an extension of probability models to incorporate the effects of predictors.
- These models are easy to understand and have good interpretation.