Dublin R El Dorado competition 2016

Mihai Todor, Software Engineer, Kevin Eid, Data Engineer, team miner49er

Introduction

1. Used Python

Scipy, Scikit-Learn, Matplotlib / Plotly

2. Strategy

- Get the optimal cluster in terms of amount of gold and elevation
- Find which parcels belong to this cluster
- Pick the 5 most profitable parcels and focus our investment plan on them

Data Preprocessing

- Elevation: continuous → categorical values:
 - 3 elevation categories for fixed costs
 - 3 elevation categories for variable costs
- 2. Linear Regression on the costs_data

Data Exploration

Clustering - K-means

- Clustering on gold_available and elevation
- Elbow method: computing and plotting the between-cluster sum of squares.
 - bss =
 total_sum_of_squares
 within-cluster_sum_of_
 squares

• K=3

First filtering of the parcels

top_parcel_ids = [10226, 7837, 19114, 20194, 11489,10905,1790,13249,14154,12810,1614,12221]

Another idea for filtering

- Compute average gold amount around each parcel
- Hope that Mick did not choose the gold quantities under neighbouring parcels at random:)

Empirical area radius selection

- Try radius = 1 .. 10
- Sort parcels by the estimated profit
- Eyeball the smallest radius for which the parcel order doesn't change (much). We chose radius = 3

Computing estimated extraction costs and profits

 Select the top 10 parcels which would yield the biggest profit for the selected radius

Match best parcels yielded by both methods

- Intersect the selected parcels with the ones produced by clustering
- Select the top 5 most promising parcels

	parcel_id	estimated_gold_r3	elevation	total_cost	estimated_profit
21	11489	15386.50	-390.65	4025575.76	19054177.21
40	19114	16367.82	496.51	3293960.39	21257774.74
22	11614	16338.16	266.58	3200895.25	21306340.94
43	20194	16484.74	413.19	3260236.74	21466877.59
24	12810	18371.89	-296.70	4064047.21	23493789.95

Bidding strategy using empirical Gaussian distribution

 Remove the gold extraction costs for the selected 5 parcels from the total budget

Bid more for the middle 3 parcels

	parcel_id	bid_amount
21	11489	5577642.33
40	19114	7000000.00
22	11614	7000000.00
43	20194	7000000.00
24	12810	5577642.33

El Dorado 2.0

- Run the second filtering on the parcels from the optimal cluster instead of all the parcels
- Try a different bidding strategy
- Using classifiers to predict to which cluster a parcel belongs to
- Verify results:)

Code

https://github.com/mihaitodor/el_dorado

THANK YOU

