Implementacja LCP w $\mathcal{O}(n)$ przy niższym narzucie pamięciowym

Marcin Witkowski

Wstęp

Oryginalny algorytm autorstwa *Kasai et al.* przedstawiony na wykładzie działa w $\mathcal{O}(n)$ aczkolwiek wykorzystuje średnio 13n bajtów pamięci podczas swoich obliczeń. Celem tego projektu była implementacja dwóch wersji algorytmu wykorzystujących odpowiednio 9n i $(6+\delta)n$ pamięci używając trików z *Two Space Saving Tricksfor Linear Time LCP Array Computation*. Wytłumaczenie algorytmów można znaleźć w kodzie źródłowym src/algorithms.rs.

Testy

Testy można uruchomić używając komendy \$ cargo test --lib --release. Zostały one zrealizowane przez testowanie odpowiedzi między algorytmami przy użyciu 10000 losowych słów długości 1000.

Benchmarki

Pamięciowe

Na tekście naturalnym oraz na słowach fibonacciego, algorytm wykorzystujący $(6n + \delta)$ faktycznie jest najlepszy. W przypadku słów losowych mamy natomiast sporo wartości dla których BWT $[k-1] \neq \text{BWT}[k], \ k = \text{RSA}[i],$ przez co tablica pomocniczna ssa rośnie do sporych rozmiarów w wziązku z czym musimy skopiować prawie całą tablice SA. W każdym jednak przypadku obie implementacje były sporo lepsze niż niemodyfikowany algorytm Kasai-a. Benchmarki można uruchomić samemu korzystając z komendy \$ cargo bench.

Złożonościowe

Wszystkie wykresy jak i więcej danych można znaleźć w katalogu charts, a dostęp do wszystkich wykresów można uzyskać korzystając z charts/report/index.html. Podsumowując, wszystkie algorytmy działają w czasie $\mathcal{O}(n)$, przy czym oryginalny algorytm Kasai-a był najszybszy, następnie 9n i algorytm działający w pamięci $(6+\delta)n$ jest ostatni. Do testowania złożoności zostały użyte słowa losowe oraz słowa fibonacciego odpowiedniej długości.

Rysunek 1: Memory benchmark on Lorem Ipsum

Rysunek 2: Memory benchmark on random words

Rysunek 3: Memory benchmark on fibonacci words

Rysunek 4: Kasai LCP on Fibonacci words

Rysunek 5: 9
n ${\it LCP}$ on Fibonacci words

Rysunek 6: $(6+\delta)n$ LCP on Fibonacci words