道路工程深度学习技术

第八周 Transformer 实践 2—图像数据处理

- 1 ViT 图像分类模型
- 2 Segmentation Transformer 模型

1 ViT 图像分类模型

模型原理

① ViT 图像分类模型模型原理

2 Segmentation Transformer

Vision Transformer (ViT) 模型

- An Image Is Worth 16*16 Words: Transformers For Image Recognition at scale
- https://arxiv.org/abs/2010**/11**929

模型原理

模型详解

模型超参数

- Layers 是 Transformer 编码层数量
- Hidden size 是分块时卷积升维后的通道数量
- MLP size 是多层感知机输出尺寸
- Heads 是多头注意力数量

Model	Layers	${\it Hidden \ size \ } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

1 ViT 图像分类模型

模型原理

代码讲解

2 Segmentation Transformer

预处理模块

- 一张 224 × 224 × 3 的图片,通过 ** 卷积核大小为 16 × 16、步长为 16、输出通道为 768 的卷积,得到 14 × 14 × 768 的输出。
- 14×14×768 的输出,将其按照宽高进行 Flatten 操作,其 尺寸变成 196*768,表示为 196 个序列,每个序列长度为 768。
- 在 196×768 的数据上 聚合一个 1×768 的分类 token 在 最前面。则尺寸变成 197 * 768。我们设这个 197×768 的矩阵为 **A**。
- 设置一个 1 * 197 * 768 的 Position Embedding, 对应值相加至 **A**。

预处理模块

预外理模块代码

```
class PatchEmbed(nn.Module):
   2D Image to Patch Embedding, 二维图像patch Embedding
   .....
   def init (self, img size=224, patch size=16, in c=3, embed dim=768, norm layer=
       super(). init ()
       img size = (img size, img size) # 图片尺寸224*224
       patch size = (patch size, patch size) #下采样倍数,一个arid cell包含了16*16的图
       self.img size = img size
       self.patch size = patch size
       # grid size是经过patchembed后的特征层的尺寸
       self.grid size = (img size[0] // patch size[0], img size[1] // patch size[1])
       self.num patches = self.grid size[0] * self.grid size[1] #path 个数 14*14=196
       # 通过一个卷积,完成patchEmbed
       self.proj = nn.Conv2d(in c, embed dim, kernel size=patch size, stride=patch siz
       # 如果使用了norm层,如BatchNorm2d,将通道数传入,以进行归一化。否则进行恒等映射
       self.norm = norm layer(embed dim) if norm layer else nn.Identity()
```

预处理模块代码


```
def forward(self, x):
    B, C, H, W = x.shape #batch, channels, heigth, weigth
    # 输入图片的尺寸要满足既定的尺寸
    assert H == self.img size[0] and W == self.img size[1], \
        f"Input image size ({H}*{W}) doesn't match model ({self.img size[0]}*{self
    # proj: [B, C, H, W] \rightarrow [B, C, H, W], [B,3,224,224] \rightarrow [B,768,14,14]
    # flatten: [B, C, H, W] -> [B, C, HW], [B,768,14,14]-> [B,768,196]
    # transpose: [B, C, HW] -> [B, HW, C], [B,768,196]-> [B,196,768]
    x = self.proj(x).flatten(2).transpose(1, 2)
    x = self.norm(x)
    return x
```


Transformer 编码层

Muti-head Attention 层

Muti-head Attention 层代码

```
class Attention(nn.Module):
   muti-head attention模块, 也是transformer最主要的操作
   def init (self,
               dim, # 输入token的dim,768
               num heads=8, #muti-head的head个数, 实例化时base尺寸的vit默认为12
               akv bias=False,
               ak scale=None,
               attn drop ratio=0.,
               proj drop ratio=0.):
       super(Attention, self). init ()
       self.num heads = num heads
       head dim = dim // num heads #平均每个head的维度
       self.scale = qk_scale or head_dim ** -0.5 #进行query操作时,缩放因子
       # qkv矩阵相乘操作, dim * 3使得一次性进行qkv操作
       self.qkv = nn.Linear(dim, dim * 3, bias=qkv bias)
       self.attn drop = nn.Dropout(attn drop ratio)
       self.proj = nn.Linear(dim, dim) #一个卷积层
       self.proi drop = nn.Dropout(proi drop ratio)
```

Muti-head Attention 层代码


```
def forward(self, x):
    # [batch_size, num_patches + 1, total_embed_dim] 如 [bactn,197,768]
    B, N, C = x.shape # N:197 , C:768

# qkv进行注意力操作,reshape进行muti-head的维度分配,permute维度调换以便后续操作
# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim] 如 [b,197,2304]
# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head] 如 [t
# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2,
# qkv的维度相同,[batch_size, num_heads, num_patches + 1, embed_dim_per_head]
    q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as to
```


东南大学 交诵学院

Muti-head Attention 层代码

```
# transpose: -> [batch size, num heads, embed dim per head, num patches + 1]
# @: multiply -> [batch size, num heads, num patches + 1, num patches + 1]
attn = (q @ k.transpose(-2, -1)) * self.scale #矩阵相乘操作
attn = attn.softmax(dim=-1) #每一path进行softmax操作
attn = self.attn drop(attn)
# [b, 12, 197, 197]@[b, 12, 197, 64] \rightarrow [b, 12, 197, 64]
# @: multiply -> [batch size, num heads, num patches + 1, embed dim per head]
# 维度交換 transpose: -> [batch size, num patches + 1, num heads, embed dim per hea
# reshape: -> [batch size, num patches + 1, total embed dim]
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x) #经过一层卷积
x = self.proj drop(x) #Dropout
return x
```

MLP 层代码

MLP 是一个两层感知机, 隐藏层通道数升维为原来 4 倍。

```
class Mlp(nn.Module):
   MLP as used in Vision Transformer, MLP-Mixer and related networks
    def __init__(self, in_features, hidden_features=None, out_features=None,
                act layer=nn.GELU, # GELU是更加平滑的relu
                drop=0.):
        super().__init__()
       out features = out features or in features #如果out features不存在,则为in 1
       hidden features = hidden features or in features #如果hidden features 不存在,
        self.fc1 = nn.Linear(in_features, hidden_features) #fc 21
        self.act = act layer() #激活
        self.fc2 = nn.Linear(hidden features, out features) #fc层2
        self.drop = nn.Dropout(drop)
    def forward(self, x):
       x = self.fc1(x)
       x = self.act(x)
       x = self.drop(x)
       x = self.fc2(x)
       x = self.drop(x)
        return x
```

Transformer 编码层代码

```
class Block(nn.Module):
    基本的Transformer模块
   def __init__(self,
                dim, num heads, mlp ratio=4.,
                gkv bias=False, gk scale=None, drop ratio=0.,
                attn drop ratio=0., drop path ratio=0.,
                act layer=nn.GELU, norm layer=nn.LayerNorm):
       super(Block, self). init ()
       self.norm1 = norm layer(dim) #norm #
       self.attn = Attention(dim, num heads=num heads, gkv bias=gkv bias, gk scale=gk
                             attn drop ratio=attn drop ratio, proj drop ratio=drop ra
       # NOTE: drop path for stochastic depth, we shall see if this is better than dr
       # 代码使用了DropPath, 而不是原版的dropout
       self.drop path = DropPath(drop path ratio) if drop path ratio > 0. else nn.Ide
       self.norm2 = norm layer(dim) #norm层
       mlp hidden dim = int(dim * mlp ratio) #隐藏层维度扩张后的通道数
       # 多层感知机
       self.mlp = Mlp(in features=dim, hidden features=mlp hidden dim, act layer=act
```

Transformer 编码层代码


```
def forward(self, x):
   x = x + self.drop_path(self.attn(self.norm1(x))) # attention后残差连接
   x = x + self.drop_path(selfpython'.mlp(self.norm2(x))) # mlp后残差连接
   return x
```


分类层代码

分类头很简单,就是取特征层如 197×768 的第一个向量,即 1×768 ,再对此进行线性全连接层进行多分类即可。

```
# self.num_features=768
# num_classes为分类任务的类别教量
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Ident
```


东南大学 交诵学院

分类准确性

	Epochs	ImageNet	ImageNet ReaL	CIFAR-10	CIFAR-100	Pets	Flowers	exaFLOPs
name	16		-					
ViT-B/32	7	80.73	86.27	98.61	90.49	93.40	99.27	55
ViT-B/16	7	84.15	88.85	99.00	91.87	95.80	99.56	224
ViT-L/32	7	84.37	88.28	99.19	92.52	95.83	99.45	196
ViT-L/16	7	86.30	89.43	99.38	93.46	96.81	99.66	783
ViT-L/16	14	87.12	89.99	99.38	94.04	97.11	99.56	1567
ViT-H/14	14	88.08	90.36	99.50	94.71	97.11	99.71	4262
ResNet50x1	7	77.54	84.56	97.67	86.07	91.11	94.26	50
ResNet50x2	7	82.12	87.94	98.29	89.20	93.43	97.02	199
ResNet101x1	7	80.67	87.07	98.48	89.17	94.08	95.95	96
ResNet152x1	7	81.88	87.96	98.82	90.22	94.17	96.94	141
ResNet152x2	7	84.97	89.69	99.06	92.05	95.37	98.62	563
ResNet152x2	14	85.56	89.89	99.24	91.92	95.75	98.75	1126
ResNet200x3	14	87.22	90.15	99.34	93.53	96.32	99.04	3306
R50x1+ViT-B/32	7	84.90	89.15	99.01	92.24	95.75	99.46	106
R50x1+ViT-B/16	7	85.58	89.65	99.14	92.63	96.65	99.40	274
R50x1+ViT-L/32	7	85.68	89.04	99.24	92.93	96.97	99.43	246
R50x1+ViT-L/16	7	86.60	89.72	99.18	93.64	97.03	99.40	859
R50x1+ViT-L/16	14	87.12	89.76	99.31	93.89	97.36	99.11	1668

东南大学 交通学院

分类优越性

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	知于2.级问夏

东南大学 交通学院

- ① ViT 图像分类模型
- 2 Segmentation Transformer 模型

东南大学 交通学院

① ViT 图像分类模型

2 Segmentation Transformer 模型

模型原理

Segmentation Transformer 模型

- Segmenter: Transformer for Semantic Segmentation
- https://arxiv.org/abs/2105.05633

Decoder

最后一个 Transformer 编码层的输出工采样至原尺寸

输入的 $\mathbf{z_L} \in \mathbb{R}^{N \times D}$ 首先经过 point-wise linear layer 变换到 $\mathbf{z_{lin}} \in \mathbb{R}^{N \times K}$;

 $\mathbf{z_{lin}} \in \mathbb{R}^{N \times K}$ reshape $\mathfrak{P} | \mathbf{s_{lin}} \in \mathbb{R}^{H/P \times W/P \times K}$

 $\mathbf{s_{lin}} \in \mathbb{R}^{H/P \times W/P \times K}$ 再经过双线性上采样到原图像尺寸,得到最后的分割图像 $\mathbf{s} \in \mathbb{R}^{H \times W \times K}$

东南大学 交诵学院

① ViT 图像分类模型

2 Segmentation Transformer 模型

代码讲解

Decoder 代码

```
class DecoderLinear(nn.Module):
    def __init__(self, n_cls, patch_size, d_encoder):
        super().__init__()
        self.d encoder = d encoder
        self.patch_size = patch_size
        self.n cls = n cls
        self.head = nn.Linear(self.d encoder, n cls)
        self.apply(init_weights)
   @torch.jit.ignore
    def no weight decay(self):
        return set()
    def forward(self, x, im size):
        H, W = im size
        GS = H // self.patch size
        x = self.head(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=GS)
        return x
```

Decoder 代码

```
class MaskTransformer(nn.Module):
   def __init__(
       self,
       n cls.
                                       dpr = [x.item() for x in torch.linspace(0, drop path rate, n layers)]
       patch_size,
                                        self.blocks = nn.ModuleList(
       d encoder,
                                            [Block(d model, n heads, d ff, dropout, dpr[i]) for i in range(n layers)]
       n lavers.
       n heads,
       d model,
       d_ff,
                                       self.cls emb = nn.Parameter(torch.randn(1, n cls, d model))
       drop path rate,
                                       self.proj dec = nn.Linear(d encoder, d model)
       dropout,
                                       self.proi patch = nn.Parameter(self.scale * torch.randn(d model, d model))
       super(). init ()
                                       self.proi classes = nn.Parameter(self.scale * torch.randn(d model, d model))
       self.d encoder = d encoder
       self.patch_size = patch_size
                                       self.decoder norm = nn.LayerNorm(d model)
       self.n layers = n layers
                                       self.mask norm = nn.LayerNorm(n cls)
       self.n_cls = n_cls
       self.d model = d model
                                       self.apply(init weights)
       self.d ff - d ff
                                       trunc normal (self.cls emb, std=0.02)
       self.scale = d model ** -0.5
```

代码讲解 Decoder 代码

```
def no weight decay(self):
    return {"cls emb"}
def forward(self, x, im_size):
    H, W = im size
    GS = H // self.patch size
    x = self.proj dec(x)
    cls emb = self.cls emb.expand(x.size(0), -1, -1)
    x = torch.cat((x, cls emb), 1)
    for blk in self.blocks:
        x = blk(x)
    x = self.decoder norm(x)
    patches, cls seg feat = x[:, : -self.n cls], x[:, -self.n cls :]
    patches = patches @ self.proj patch
    cls seg feat = cls seg feat @ self.proj classes
    patches = patches / patches.norm(dim=-1, keepdim=True)
    cls seg feat = cls seg feat / cls seg feat.norm(dim=-1, keepdim=True)
```

attention map 代码

4

attention map 结果

分割结果

分割结果

- 4ロト 4回ト 4 差ト 4 差ト - 差 - 夕Qの

结果对比: ADE20K

The ADE20K semantic segmentation dataset contains more than 20K scene-centric images exhaustively annotated with pixel-level objects and object parts labels. There are totally 150 semantic categories, which include stuffs like sky, road, grass, and discrete objects like person, car, bed.

Training set 25.574 images

All images are fully annotated with objects and, many of the images have parts too.

Validation set

2.000 images

Fully annotated with objects and parts

Test set

Images to be released later.

Consistency set

64 images and annotations used for checking the annotation consistency (download)

Method	Backbone	Im/sec	mIoU	+MS
OCR [60]	HRNetV2-W48	83	-	45.66
ACNet [24]	ResNet-101	-	-	45.90
DNL [57]	ResNet-101	-	-	45.97
DRANet [22]	ResNet-101	-	-	46.18
CPNet [58]	ResNet-101	-	-	46.27
DeepLabv3+ [10]	ResNet-101	76	45.47	46.35
DeepLabv3+ [10]	ResNeSt-101	15	46.47	47.27
DeepLabv3+ [10]	ResNeSt-200	-	-	48.36
SETR-L MLA [67]	ViT-L/16	34	48.64	50.28
Swin-L UperNet [35]	Swin-L/16	34	52.10	53.50
Seg-B [†] /16	DeiT-B/16	77	47.08	48.05
Seg-B [†] -Mask/16	DeiT-B/16	76	48.70	50.08
Seg-L/16	ViT-L/16	33	50.71	52.25
Seg-L-Mask/16	ViT-L/16	31	51.82	53.63

结果对比: Pascal 和 Cityscapes 数据集

17 6		
Method	Backbone	mIoU (MS)
PSANet [66]	ResNet-101	79.1
DeepLabv3+ [10]	Xception-71	79.6
ANN [69]	ResNet-101	79.9
MDEQ [5]	MDEQ	80.3
DeepLabv3+ [10]	ResNeSt-101	80.4
DNL [57]	ResNet-101	80.5
CCNet [31]	ResNet-101	81.3
Panoptic-Deeplab [12]	Xception-71	81.5
DeepLabv3+ [10]	ResNeSt-200	82.7
SETR-L PUP [67]	ViT-L/16	82.2
Seg-B [†] /16	DeiT-B/16	80.5
Seg-B [†] -Mask/16	DeiT-B/16	80.6
Seg-L/16	ViT-L/16	80.7
Seg-L-Mask/16	ViT-L/16	81.3
	PSANet [66] DeepLabv3+ [10] ANN [69] MDEQ [5] DeepLabv3+ [10] DNL [57] CCNet [31] Panoptic-Deeplab [12] DeepLabv3+ [10] SETR-L PUP [67] Seg-B [†] -Massk/16 Seg-L/16	PSANet [66] ResNet-101 DeepLabv3+ [10] Xception-71 ANN [69] ResNet-101 MDEQ [5] MDEQ DeepLabv3+ [10] ResNest-101 DNL [57] ResNet-101 CCNet [31] ResNet-101 Panoptic-Deeplab [12] Xception-71 DeepLabv3+ [10] ResNeSt-200 SETR-L PUP [67] ViT-L/16 Seg-B [†] /16 DeiT-B/16 Seg-L/16 ViT-L/16