© Cahier des charges – Application mobile CAREDIFY

1. Contexte et Objectifs

1.1 Contexte

CAREDIFY est une solution innovante de télésuivi destinée aux patients atteints ou à risque d'insuffisance cardiaque. Elle repose sur un dispositif portable (ceinture ECG connectée) couplé à une application mobile intelligente. Le système permet :

- La détection en temps réel des anomalies cardiaques,
- L'alerte automatique des services d'urgence,
- La recommandation de comportements préventifs via une intelligence artificielle embarquée.

La solution se compose de trois éléments interdépendants :

- Une ceinture ECG intelligente,
- Une application mobile (iOS/Android) à destination des patients,
- Une plateforme web sécurisée pour les professionnels de santé.

1.2 Objectifs de l'application mobile

- Assurer un suivi ECG en temps réel via la ceinture connectée.
- Permettre aux patients de visualiser l'évolution de leur état cardiaque.
- **Détecter et prédire les anomalies** (arythmies, signes précurseurs d'insuffisance cardiaque) à l'aide d'un algorithme d'IA.
- Fournir des recommandations personnalisées adaptées à l'état de santé du patient.
- Faciliter une **communication sécurisée** entre le patient, le médecin et les aidants.
- Proposer une interface intuitive et ergonomique pour un usage quotidien.
- Intégrer une **messagerie de type "chat"** pour les échanges avec les professionnels de santé.
- Adapter l'affichage des résultats selon le profil utilisateur :
 - Pour le patient : indicateurs simplifiés (ex. : "Normal", "À surveiller",
 "Anormal"),
 - o Pour le médecin : accès complet aux données techniques et cliniques.

2. Utilisateurs Cibles

- Patients à risque ou atteints d'insuffisance cardiaque.
- Cardiologues et professionnels de santé.
- Familles et aidants.
- (Optionnel) Assureurs santé (accès aux données anonymisées avec consentement explicite).

3. Fonctionnalités Clés

🤵 Côté Patient

- Connexion Bluetooth avec la ceinture ECG Movesense Medical.
- Affichage temps réel du signal ECG (1 ou 3 dérivations).
- Alertes: tachycardie, bradycardie, arythmie, stress, insuffisance cardiaque.
- Historique et tendances ECG sur 7/30 jours.
- Recommandations et notifications intelligentes.
- Questionnaires bien-être/stress.
- Appel d'urgence automatique ou manuel.
- Profil santé : traitements, antécédents, médecins référents.

3.1 Tableau de bord patient

- Indicateurs vitaux : ECG, BPM, stress, SPO2, température.
- Évolution graphique de l'état de santé.
- Zones visuelles colorées : normal / à surveiller / danger.

3.2 Connexion au dispositif ECG

- Appairage Bluetooth (BLE).
- Synchronisation automatique toutes les 5–15 secondes.
- Détection de mise en place et mauvaise position.

3.3 Notifications & alertes intelligentes

- Alertes immédiates en cas d'anomalie critique.
- Rappels médicaux, rendez-vous.
- Notifications contextuelles (ex. : éviter les zones chaudes selon GPS).

3.4 Recommandations IA personnalisées

- Suggestions sur : activité, sommeil, alimentation, hydratation, stress.
- Questionnaire facultatif pour affiner les recommandations.
- Historique consultable.

3.5 Téléconsultation et messagerie

- Interface de chat sécurisé.
- Demande de téléconsultation.
- Transmission de rapports ECG.

3.6 Paramètres et profil utilisateur

- Données personnelles : âge, poids, antécédents.
- Paramètres : langue, confidentialité, notifications, Bluetooth.
- Sécurité : double authentification, biométrie.

4. Parcours Utilisateur Simplifié

- 1. Création du compte et saisie du profil médical.
- 2. Connexion Bluetooth à la ceinture ECG.
- 3. Lancement du suivi en temps réel.
- 4. Réception d'alertes et recommandations.
- 5. Suivi de l'évolution dans l'interface utilisateur.

5. Architecture Technique

Mobile

- OS: iOS 14+, Android 9+.
- Langage : Flutter (préféré), ou Kotlin/Swift natifs.
- Connexion BLE : fréquence ajustable.
- Base de données locale : SQLite ou Hive.
- API REST sécurisée.

Backend

- Serveur : Node.js ou Flask.
- Base de données cloud : PostgreSQL ou MongoDB.
- API sécurisée : OAuth2, JWT.
- Hébergement : AWS, Firebase ou Azure.
- Webhooks vers :
 - Dossier Médical Partagé (DMP),
 - o Plateforme médecin et Plateforme d'urgence.

🔐 Sécurité

- Chiffrement SSL + AES-256.
- Authentification à deux facteurs.
- Stockage temporaire local avec synchronisation différée.
- RGPD et HIPAA conformes.

6. Design & Expérience Utilisateur (UI/UX)

6.1 Principes

- Interface épurée et accessible.
- Couleurs rassurantes : bleu, vert, orange.
- Mode clair/sombre.
- Traduction multilingue : FR/EN/AR.
- Design basé sur Figma validé.

6.2 Tableau de bord santé

- Affichage : ECG, BPM, SPO2, température, stress.
- Zones colorées : normal / à surveiller / danger.
- Graphiques temporels (jour/semaine/mois).

6.3 Recommandations IA (Sujet Groupe 6)

- Générées via modèle IA : ECG + contexte.
- Conseils personnalisés (activité, alimentation, repos...).
- Historique et validation manuelle possible.

6.4 Notifications & alertes

- Médicaments, conseils, anomalies.
- Alerte envoyée au médecin en cas de danger.
- Mode silencieux (ex. la nuit).

6.5 Journal quotidien

- Suivi subjectif: humeur, douleur, sommeil.
- Données croisées avec capteurs pour IA.

6.6 Messagerie

- Chat sécurisé avec pièces jointes (PDF, ECG...).
- Alertes de réponse du médecin.

6.7 Paramètres et profil

- Données personnelles et antécédents.
- Autorisations : GPS, Bluetooth, notifications.
- Sécurité : biométrie, mot de passe fort.

6.8 Interfaces externes

- Capteur ECG (BLE),
- API REST backend,
- Plateforme médecin (WebApp),
- (Optionnel) Google Fit / Apple HealthKit.

7. Règles de Gestion

ID	Règle de gestion	
RG01	Données physiologiques enregistrées toutes les 15 secondes minimum	
RG02	Alertes envoyées uniquement en cas de dépassement de seuils personnalisés	
RG03	Les notifications non critiques peuvent être désactivées par le patient	
RG04	L'IA propose un maximum de 3 recommandations par jour	
RG05	En cas d'anomalie critique, le patient et le médecin sont notifiés	

8. Livrables attendus

- Application mobile (Android & iOS) prête à être publiée.
- Backend fonctionnel et sécurisé.
- Documentation technique (API, BLE, architecture).
- Guide utilisateur (manuel patient et médecin).
- Code source commenté et structuré.
- Déclaration de conformité RGPD/HIPAA.

9. Contraintes et exigences

Élément	Détail
Temps réel	Latence maximale autorisée : 2 secondes
Énergie	Faible consommation pour une autonomie prolongée
Compatibilité matérielle	Prise en charge de plusieurs modèles Movesense Médical
Accessibilité	Interface adaptée aux personnes âgées
Connexion	Fonctionnement partiel hors-ligne ; synchro automatique dès retour
Sécurité	Chiffrement des données, authentification renforcée

10. Diagramme technique

11. Diagramme d'architecture technique

******* CAREDIFY – Kit UI/UX (Figma)

1. Palette de Couleurs Officielle – CAREDIFY

♦ Bleu principal – Technologie & Confiance

Utilisé pour les éléments clés de l'interface (boutons, header, actions primaires)

Hex: #0092DF RGB: 0, 146, 223

₩ Rouge alerte – Urgences cardiaques / Alertes critiques

Utilisé pour les messages d'alerte, états critiques, notifications urgentes

Hex: #E53935 RGB: 229, 57, 53

Vert santé – Recommandations & états stables

Utilisé pour les messages positifs, validations, bons résultats ECG

Hex: #00C853 RGB: 0, 200, 83

Élément	Couleur	Usage
Gris clair	#F5F7FA	Fonds d'écran, cards
Gris moyen	#B0BEC5	Texte secondaire, icônes
Gris foncé	#455A64	Titres secondaires, bordures

Astuces d'application :

- Boutons principaux : fond #0092DF, texte blanc, ombre légère
- États d'alerte : fond #FFF4F4, icône rouge #E53935, texte #B71C1C
- Messages positifs : fond #E8F5E9, texte #1B5E20
- Graphiques ECG : ligne bleue ou verte, fond gris très clair
- Modes clair & sombre avec tokens dynamiques

2. 🗩 Composants UI clés

- Boutons : primaires, secondaires, icône only, désactivés
- Champs de formulaire : saisie ECG, login, questionnaire santé
- Cartes de données : ECG, recommandations, alertes
- Graphiques santé : ECG temps réel, jauge de stress, évolution cardiaque
- Modales : alerte critique, validation d'action médicale
- Toasts : prise en charge, mesure reçue, appairage Bluetooth

3. Écrans types CAREDIFY

- Splash screen animé avec logo
- Connexion / Inscription + biométrie
- Dashboard patient (résumé ECG, stress, activité)
- Historique des mesures et analyses
- Recommandations IA personnalisées (cartes scrollables)
- Messagerie médecin (chat avec pièce jointe ECG)
- Profil utilisateur + synchronisation appareil
- Alertes urgentes (popup rouge, vibration simulée)

4. X Architecture et composants Figma

- Utilisation d'Auto Layout pour adaptation mobile
- Variants pour chaque composant (états : normal, hover, erreur, etc.)
- Typographie harmonisée : Inter ou SF Pro
- Icônes médicales vectorielles (SVG, système unifié)
- Navigation tab-bar iOS/Android

5. 🚀 Prêt pour prototypage

- Transitions interactives : navigation, retour, scroll
- Connexions entre les écrans simulées
- Intégration des feedbacks UI (chargement, erreurs, succès)
- Optimisé pour tests utilisateurs et démonstration investisseurs

