Теория вероятностей и математическая статистика

доц. Флегель Александр Валерьевич

flegel@cs.vsu.ru

2014

Условные вероятности

Пример 1.

Допустим, что студент выучил из 28 билетов 4 четных и 12 нечетных. По классической схеме вероятность того, что студент получит выученный билет (событие A), равна

$$P(A) = \frac{16}{28} = \frac{4}{7}.$$

Пусть к моменту прихода студента осталось 14 билетов и все они нечетные (событие B). Какова вероятность события A при условии, что B произошло.

$$P(A|B) = \frac{12}{14} = \frac{6}{7}.$$

Условные вероятности

Пример 2.

N карточек трех типов: N_B — черные (обе стороны черные), N_A — белые (обе стороны белые), N_{AB} — разноцветные (одна сторона белая, а другая черная). Вынимается одна карточка.

1. Какова вероятность P(A) появления белого цвета (событие A) в предположении, что карточки извлекаются с равными вероятностями?

$$P(A)=\frac{N_A}{N};$$

2. Наудачу выбранная карточка положена на стол, и ее верхнаяя сторона оказалась черной (событие B). Какова в этом случае вероятность P(A|B) того, что другая сторона белая?

$$P(A|B) = \frac{N_{AB}}{N_B} = \frac{N_{AB}/N}{N_B/N} = \frac{P(AB)}{P(B)}.$$

◆ロト ◆@ ト ◆ 差 ト ◆ 差 ・ かくの

Условные вероятности. Общее определение.

Пусть (Ω, U, P) — произвольное вероятностное пространство. Если $A, B \in U$ и P(B) > 0, то **условная вероятность** события A при условии, что произошло событие B, определяется формулой

$$P(A|B) = \frac{P(AB)}{P(B)},$$

в правой части которой символ P понимается как вероятность в рассматриваемом вероятностном пространстве.

Пусть теперь некоторое событие B с P(B)>0 фиксировано. Функция

$$P_B(A) = P(A|B) = P(AB)/P(B),$$

определенная для $\forall A \in U$, удовлетворяет аксиомам теории вероятностей, в частности

$$P(A|B) \geqslant 0$$
, $P(\Omega|B) = 1$, $P(A_1 + A_2|B) = P(A_1|B) + P(A_2|B)$ $(A_1 \cdot A_2 = \emptyset)$.

Для функции условной вероятности $P_B(A)$ справедливы все следствия из аксиом. Кроме того,

$$P(B|B) = 1,$$

 $P_B(A|C) = P(A|BC).$

Вероятность произведения событий

Теорема умножения вероятностей.

$$P(AB) = P(A)P(B|A).$$

Обобщение по индукции (цепное правило):

$$P(A_1A_2\cdots A_n) = P(A_1)P(A_2|A_1)\cdots P(A_n|A_1\cdots A_{n-1}).$$

Формула полной вероятности

Пусть A — произвольное событие, события B_1, B_2, \ldots, B_n попарно несовместны, $P(B_k)>0, k=1,\ldots,n$, и $A\subset B_1+B_2+\cdots+B_n$. Тогда имеет место следующая формула (формула полной вероятности):

$$P(A) = \sum_{k=1}^{n} P(B_k) P(A|B_k).$$

Доказательство:

Событие A можно представить в виде суммы попарно *несовместных* событий:

$$A = AB_1 + AB_2 + \dots + AB_n.$$

$$\Rightarrow P(A) = \sum_{k=1}^{n} P(AB_k) = \sum_{k=1}^{n} P(B_k)P(A|B_k). \quad \Box$$

• Формулу можно распространить на случай счетной системы попарно несовместных событий $B_k,\ k=1,2,\ldots,n,\ldots$

Формулы Байеса

Заменив в равенстве

$$P(B_k|A) = \frac{P(AB_k)}{P(A)} = \frac{P(B_k)P(A|B_k)}{P(A)}$$

вероятность P(A) по формуле полной вероятности, получим формулы Байеса:

$$P(B_k|A) = \frac{P(B_k)P(A|B_k)}{\sum_{i=1}^n P(B_i)P(A|B_i)}.$$

Формула полной вероятности. Формулы Байеса. Примеры

Пример 1. На фабрике, изготавливающей болты, первая машина производит 25%, вторая — 35%, третья — 40% всех изделий. Брак в их продукции составляет соответственно 5%, 4%, 2%.

- а) Какова вероятность того, что случайно выбранный болт оказался дефектным?
- б) Какова вероятность того, что случайно выбранный болт произведен первой, второй и третьей машиной, если он оказался дефектным?

Решение.

а) A — событие, состоящее в том, что случайный болт — дефектный; B_1, B_2, B_3 — события, состоящие в том, что этот болт произведен соответственно первой, второй и третьей машинами.

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)$$

= 0.25 \cdot 0.05 + 0.35 \cdot 0.04 + 0.40 \cdot 0.02 = 0.0345.

Формула полной вероятности. Формулы Байеса. Примеры

Пример 1. На фабрике, изготавливающей болты, первая машина производит 25%, вторая — 35%, третья — 40% всех изделий. Брак в их продукции составляет соответственно 5%, 4%, 2%.

- а) Какова вероятность того, что случайно выбранный болт оказался дефектным?
- б) Какова вероятность того, что случайно выбранный болт произведен первой, второй и третьей машиной, если он оказался дефектным?

Решение.

б)

$$P(B_1|A) = \frac{0.25 \cdot 0.05}{0.0345} = \frac{125}{345},$$

$$P(B_2|A) = \frac{0.35 \cdot 0.04}{0.0345} = \frac{140}{345},$$

$$P(B_3|A) = \frac{0.40 \cdot 0.02}{0.0345} = \frac{80}{345}$$

Формула полной вероятности. Формулы Байеса. Примеры

Пример 2. Из урны, содержащей M белых и N-M черных шаров, один шар неизвестного цвета утерян. Какова вероятность извлечь наудачу из урны белый шар?

Решение.

Пусть B_k — событие, состоящее в том, что утеряно k белых шаров (k=0,1); A — событие, состоящее в том, что шар, извлеченный из оставшихся, оказался белым.

$$P(B_0) = \frac{N-M}{N}, \quad P(B_1) = \frac{M}{N}, \quad P(A|B_0) = \frac{M}{N-1}, \quad P(A|B_1) = \frac{M-1}{N-1}.$$

По формуле полной вероятности

$$P(A) = \frac{N-M}{N} \cdot \frac{M}{N-1} + \frac{M}{N} \cdot \frac{M-1}{N-1} = \frac{M}{N}.$$

Независимость событий

События A и B называются **независимыми**, если

$$P(AB) = P(A)P(B)$$
.

В случае P(A)>0 и P(B)>0 независимость A и B эквивалентна любому из равенств

$$P(A|B) = P(A), \quad P(B|A) = P(B).$$

• В основе независимости событий лежит их физическая независимость, сводящаяся к тому, что множества случайных факторов, приводящих к тому или другому исходу опыта, не пересекаются (или почти не пересекаются).

Последовательности испытаний

Задача

В урне 1 - 2 синих и 3 красных шара; в урне 2 - 2 синих и 2 красных; в урне 3 - 3 синих и 1 красных.

Из первой урны наугад один шар переложен во вторую. После этого из второй урны также наугад — в третью; наконец, из $3 \to 1$.

- Какой состав шаров в урне 1 наиболее вероятен?
- Что более вероятно: изменение состава шаров урны 1 или сохранение?

Пусть A_k — событие, состоящее в том, что при k-м перекладывании (k=1,2,3) был переложен синий шар.

 $\Omega = \{A_1 A_2 A_3, \overline{A}_1 A_2 A_3, A_1 \overline{A}_2 A_3, A_1 \overline{A}_2 \overline{A}_3, \overline{A}_1 \overline{A}_2 \overline{A}_3, \overline{A}_1 \overline{A}_2 \overline{A}_3, \overline{A}_1 \overline{A}_2 \overline{A}_3, \overline{A}_1 \overline{A}_2 \overline{A}_3\}$

На введенные формально обозначения для элементарных событий можно смотреть как на произведения случайных событий.

Состав шаров известен, если известно какой шар в данную урну переложен \Rightarrow заданы вероятности $P(A_1), P(\overline{A_1}), P(A_2|A_1), P(A_3|A_1\overline{A_2})$ и т.д.

$$P(A_1A_2A_3) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2) = \frac{2}{5} \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{125}$$

$$P(A_1A_2A_3) = \frac{24}{125}, \ P(\overline{A}_1A_2A_3) = \frac{24}{125}, \ P(A_1\overline{A}_2A_3) = \frac{12}{125}, \ P(A_1A_2\overline{A}_3) = \frac{6}{125},$$

$$P(\overline{A}_1\overline{A}_2\overline{A}_3) = \frac{18}{125}, \ P(A_1\overline{A}_2\overline{A}_3) = \frac{8}{125}, \ P(\overline{A}_1A_2\overline{A}_3) = \frac{6}{125}, \ P(\overline{A}_1\overline{A}_2A_3) = \frac{27}{125}.$$

По этим вероятностям однозначно определяется вероятность любого случайного события. Пусть $B_l\ (l=1,2,3)$ — [в первой урне после перекладывания оказалось l белых шаров].

$$B_{1} = \{A_{1}A_{2}\overline{A}_{3}, A_{1}\overline{A}_{2}\overline{A}_{3}\}, \qquad P(B_{1}) = 14/125$$

$$B_{2} = \{A_{1}A_{2}A_{3}, A_{1}\overline{A}_{2}A_{3}, \overline{A}_{1}A_{2}\overline{A}_{3}, \overline{A}_{1}\overline{A}_{2}A_{3}\}, \qquad P(B_{2}) = 60/125$$

$$B_{3} = \{\overline{A}_{1}A_{2}A_{3}, \overline{A}_{1}\overline{A}_{2}A_{3}\}, \qquad P(B_{3}) = 51/125$$

$$P(B_1) = \frac{14}{125}, \qquad P(B_2) = \frac{60}{125}, \qquad P(B_3) = \frac{51}{125}$$

- Вероятность сохранения состава шаров 60/125.
- Более вероятно изменение состава шаров в первой урне, но наиболее вероятным составом является певоначальный состав.

Последовательность из n испытаний, в каждом из которых может произойти один из N исходов.

Определение: Под последовательностью из n испытаний будем понимать дискретное вероятностное пространство (Ω, U, P) , в котором

$$\Omega = \{(I_1I_2...I_n)\}, I_k = 1, 2, ..., N; k = 1, ..., n,$$

и вероятностями $p(I_1I_2\dots I_n)$, задаются формулой

$$p(I_1I_2...I_n) = p(I_1)p(I_2|I_1)p(I_3|I_1I_2)\cdots p(I_n|I_1...I_{n-1}),$$

где числа $p(I_1), p(I_2|I_1), \cdots, p(I_n|I_1 \dots I_{n-1})$ удовлетворяют условиям:

- 1) $p(l_1) \ge 0$, $\sum_{l_1=1}^{N} p(l_1) = 1$;
- 2) $p(l_2|l_1) \geqslant 0$, $\sum_{l_2=1}^{N} p(l_2|l_1) = 1 \quad \forall l_1$;

.....

3)
$$p(l_n|l_1...l_{n-1}) \geqslant 0$$
, $\sum_{l_n=1}^{N} p(l_n|l_1...l_{n-1}) = 1 \quad \forall l_1, l_2, ..., l_n$

Распределение вероятностей:

$$P(A) = \sum_{(l_1, l_2, \dots, l_n) \in A} p(l_1, l_2, \dots, l_n), \quad \sum_{l_1, l_2, \dots, l_n = 1}^{N} p(l_1, l_2, \dots, l_n) = 1$$

Число $p(l_k|l_1l_2\dots l_{k-1})$ является условной вероятностью появления в k-м испытании исхода l_k при условии, что до этого была получена цепочка исходов $(l_1l_2\dots l_{k-1})$.

$$n = 3, N = 2.$$

- 1) p(1) = 2/5, p(2) = 3/5;
- 2) p(1|1) = 3/5, p(2|1) = 2/5, p(1|2) = 2/5, p(2|2) = 3/5;
- 3) p(1|11) = p(1|21) = 4/5, p(2|11) = p(2|21) = 1/5, p(1|12) = p(1|22) = 3/5, p(2|12) = p(2|22) = 2/5,

где исходы "1" и "2" соответствуют извлечению синего и красного шара.

• Вероятности p(i|jk) не зависят от j, т.к. на состав последней пары влияет только цвет шара, переложенного из второй урны.

4 D > 4 D > 4 D > 4 D > 9 Q Q

Определение:

Последовательность испытаний, в которой условные вероятности $p(l_t|l_1\dots l_{t-1})$ не зависят от l_1,\dots,l_{t-2} ,

$$p(I_t|I_1...I_{t-1})=p_{I_{t-1}I_t}^{(t)}$$

называются цепью Маркова.

В случае, когда $p(l_t|l_1\dots l_{t-1})$ не зависят от l_1,\dots,l_{t-1} , последовательность испытаний называется последовательностью независимых испытаний.

Последовательность независимых испытаний

Определение:

Под последовательностью n независимых испытаний, в каждом из которых может осуществиться один из N исходов (обозначим исходы $1,2,\ldots,N$), мы будем понимать вероятностное пространство (Ω,U,P) , в котором

$$\Omega = \{(I_1I_2...I_n)\}, \quad I_k = 1, 2, ..., N; \quad k = 1, ..., n,$$

и вероятности $p(I_1I_2...I_n)$, приписываемые цепочкам из результатов отдельных испытаний, задаются формулой

$$p(I_1I_2\ldots I_n)=p_{I_1}p_{I_2}\cdots p_{I_n},$$

где
$$p_k \geqslant 0$$
, $k = 1, \dots, N$, $\sum_{k=1}^{N} p_k = 1$.

Число p_k является вероятностью появления исхода k в фиксированном испытании.

$$\sum_{1,l_2,\ldots,l_n=1}^{N} p(l_1,l_2,\ldots,l_n) = 1$$

Последовательность независимых испытаний

Если событие $A_1(k)$ заключается в том, что в первом испытании наступил исход k, то

$$A_1(k) = \{(l_1 l_2 \dots l_n) : l_1 = k\}, \qquad P(A_1(k)) = \sum_{l_2, \dots, l_n = 1}^{N} p_k p_{l_2} \cdots p_{l_n} = p_k.$$

Более общий случай:

$$A_{i_1...i_s}(L_1,...,L_s) = \{(I_1I_2...I_n) : I_{i_1} = L_1,...,I_{i_s} = L_s\},$$

$$P(A_{i_1...i_s}(L_1,...,L_s)) = p_{L_1}p_{L_2}\cdots p_{L_s}.$$

Последовательность независимых испытаний

Теорема: События $A=A_{i_1...i_s}(L_1,\ldots,L_s)$ и $B=B_{j_1...j_t}(L'_1,\ldots,L'_t),$ независимы, если $(i_1\ldots i_s)\cap (j_1\ldots j_t)=\emptyset.$

Доказательство в частном случае. Пусть

$$A = \{(I_1 \dots I_n) : I_1 = 2\}, \qquad B = \{(I_1 \dots I_n) : I_2 = 1, I_4 = 3\}.$$

Тогда

$$AB = \{(I_1 \dots I_n) : I_1 = 2, I_2 = 1, I_4 = 3\}.$$

$$P(A) = \sum_{l_2,\ldots,l_n=1}^{N} p_2 p_{l_2} \cdots p_{l_n} = p_2, \quad P(B) = \sum_{l_1,l_3,l_5,l_6,\ldots,l_n=1}^{N} p_{l_1} p_2 p_{l_3} p_3 p_{l_5} p_{l_6} \cdots p_{l_n} = p_1 p_3$$

$$P(AB) = \sum_{l=1}^{N} p_2 p_1 p_{l_3} p_3 p_{l_5} \cdots p_{l_n} = p_2 p_1 p_3 \Rightarrow P(AB) = P(A)P(B).$$

Испытания Бернулли

Независимые испытания при N=2 называют **испытаниями Бернулли**. Исходы 1 и 2 называют "успехом" (1) и "неудачей" (0), и их вероятности p_1 и p_2 полагают равными p и q=1-p. Элементарные события — цепочки вида (из n элементов)

110001...1.

Вероятность:

$$P(110001...1) = p^m q^{n-m},$$

где m — число успехов (1).

Испытания Бернулли

Пусть задано вероятностное пространство (Ω, U, P) . $\mu_n = \mu_n (110001\dots 1)$ — случайная величина, равная числу успехов в первых n испытаниях схемы Бернулли.

$$\mu_4 = \mu_4(1101) = 3, \mu_4 = \mu_4(0000) = 0$$

Найдем вероятности событий

$$\{\mu_n = m\} = \{(110001...1) : \mu_n(110001...1) = m\}.$$

Теорема

Если μ_n — число успехов в n испытаниях Бернулли, то

$$P(\mu_n = m) = p_n(m) = C_n^m p^m q^{n-m}, \quad m = 0, 1, ..., n.$$

◆ロ → ◆母 → ◆ 章 → ◆ 章 → り へ ○

Полиномиальная схема

Для схемы испытаний с произвольным N введем случайные величины ξ_k , равные числам исходов $k,\ k=1,2,\ldots,N$.

$$P(\xi_1 = m_1, \xi_2 = m_2, \dots, \xi_N = m_N) = \frac{n!}{m_1! \cdots m_N!} p_1^{m_1} \cdots p_N^{m_N},$$

где m_1, m_2, \ldots, m_N — неотрицательные целые числа, удовлетворяющие условию $m_1+m_2+\cdots+m_N=n$.

Вероятность каждой цепочки:

$$p_1^{m_1}p_2^{m_2}\cdots p_N^{m_N}$$
.

$$C_n^{m_1}C_{n-m_1}^{m_2}\cdots C_{n-m_1-\cdots-m_{N-1}}^{m_N}=\frac{n!}{m_1!m_2!\cdots m_N!}$$

<ロ > ← □

Предельные теоремы в схеме Бернулли

 $n\gg 1$

Теорема Пуассона

Если $n o \infty$ и p o 0 так, что $np o \lambda$, $0 < \lambda < \infty$, то

$$P(\mu_n = m) = C_n^m p^m q^{n-m} \to \frac{\lambda^m}{m!} e^{-\lambda}$$

при любом постоянном m, m = 0, 1, 2, ...

Часто эта формула используется при n > 100 и np < 30.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣۹で

Предельные теоремы в схеме Бернулли

Локальная теорема Муавра-Лапласа

Если $n \to \infty$, $p \ (0 постоянно, величина$

$$x_m = \frac{m - np}{\sqrt{npq}} \quad (-\infty < a \leqslant x_m \leqslant b < \infty)$$

ограничена равномерно по m и n, то

$$P(\mu_n = m) = \frac{1}{\sqrt{2\pi npq}} e^{-x_m^2/2} (1 + \alpha_n(m)),$$

где $|\alpha_n| < C/\sqrt{n}$ при $x_m \in [a,b], C > 0$ — постоянная.

Формулу $P(\mu_n = m) \approx e^{-\chi_m^2/2}/\sqrt{2\pi npq}$ часто используют при n > 100 и при npq > 20.

$$n \to \infty \implies m \to \infty$$
.

m и n должны отличаться не очень сильно.

Для $P(\mu_n=0)$ локальная теорема дает плохое приближение.

Предельные теоремы в схеме Бернулли

Интегральная теорема Муавра-Лапласа

Если $p\ (0 постоянно, то при <math>n o \infty$ величина

$$P\left(a \leqslant \frac{\mu_n - np}{\sqrt{npq}} \leqslant b\right) - \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx \to 0$$

равномерно по a и b, $-\infty \leqslant a \leqslant b \leqslant \infty$.

Приближенная формула

$$P\left(a \leqslant \frac{\mu_n - np}{\sqrt{npq}} \leqslant b\right) \approx \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx$$

используется в тех случаях, когда возможно использование формулы $P(\mu_n=m) \approx e^{-\chi_m^2/2}/\sqrt{2\pi npq}$.

Случайные величины

Определения и примеры

Пусть (Ω, \mathcal{F}, P) — произвольное вероятностное пространство. **Случайной величиной** X назовем действительную функцию $X=X(\omega),\ \omega\in\Omega,$ такую, что при любом действительном x

$$\{\omega : X(\omega) < x\} \in \mathcal{F}.$$

Так как $\mathcal{F}-\sigma$ -алгебра, то

$$(X \geqslant x) = \overline{(X < x)} \in \mathcal{F},$$
 (1)

$$(x_1 \leqslant X < x_2) = \overline{(X < x_2)} \setminus (X < x_1) \in \mathcal{F}, \tag{2}$$

$$(X = x) = \bigcap_{n=1}^{\infty} \left(x \leqslant X < x + \frac{1}{n} \right) \in \mathcal{F}.$$
 (3)

Для вычисления вероятностей событий вида (1)-(3) достаточно при любом x знать вероятность

$$F_X(x) = P(X < x).$$

Функция распределения

Функция $F_X(x) \equiv F(x)$,

$$F(x) = P(X < x),$$

действительной переменной $x, -\infty < x < \infty$, называется функцией распределения случайной величины X.

• Так как $(X < x_2) = (x_1 \leqslant X < x_2) + (X < x_1)$, то

$$P(X < x_2) = P(x_1 \leqslant X < x_2) + P(X < x_1).$$

$$P(x_1 \leqslant X < x_2) = F(x_2) - F(x_1)$$

- $P(X \ge x) = 1 F(x)$.
- $P(X = x) = \lim_{n \to \infty} \left[F\left(x + \frac{1}{n}\right) F(x) \right] = F(x + 0) F(x)$

Функция распределения. Примеры

Пример 1.

Два игрока по одному разу подбрасывают симметричную монету. Если выпал "орел", то первый игрок получает 1 рубль, а если выпала "решка", то — отдает 1 рубль. Для описания данной игры естественно положить $\Omega = \{\text{Орел}, \text{Решка}\}$ и $P(\{\text{Орел}\}) = P(\{\text{Решка}\}) = 1/2$. Случайная величина X, равная выигрышу первого игрока, определяется следующим образом:

$$X=X(\mathsf{Ope}\mathtt{J})=1,\quad X=X(\mathsf{Pe}\mathtt{mka})=-1.$$

Функция распределения:

$$F(x) = \begin{cases} 0, & x \leq -1, \\ 1/2, & -1 < x \leq 1, \\ 1, & x > 1. \end{cases}$$

Функция распределения. Примеры

Пример 2.

Пусть в единичный квадрат $\Omega = \{(u,v): 0 \leqslant u \leqslant 1, 0 \leqslant v \leqslant 1\}$ наудачу брошена точка. Элементарными событиями ω являются точки квадрата Ω ; σ -алгебра $\mathcal F$ порождается квадрируемыми подмножествами квадрата. Вероятность — площадь. Случайное событие, например — первая координата брошенной точки, X = X(u,v) = u. Найдем функцию распределения величины X.

$$F(x) = \begin{cases} 0, & x \leq 0, \\ x, & 0 < x \leq 1, \\ 1, & x > 1. \end{cases}$$

Функция распределения. Примеры

Пример 3.

Пусть один раз подбрасывается монета. Если выпал "орел", то на этом опыт заканчивается. Если выпала "решка", то на отрезок [0,1] наудачу бросается точка. Пространство элементарных событий:

$$\Omega = \{\mathsf{ope}\mathsf{\pi}; (\mathsf{pe}\mathsf{m}\mathsf{k}\mathsf{a}, u)\}, \quad 0 \leqslant u \leqslant 1,$$

 σ -алгебра ${\mathcal F}$ порождается событиями

$$\{\mathsf{open}\};\ \{(\mathsf{peшka},u): a\leqslant u< b\},\ 0\leqslant a\leqslant b\leqslant 1.$$

Пусть вероятности равны:

$$P(\{\mathsf{open}\}) = \frac{1}{2}, \ \ P(\{(\mathsf{peшкa}, u) : a \leqslant u < b\}) = \frac{b-a}{2}.$$

Рассмотрим случайную величину X:

$$X(\mathsf{open}) = -1, \quad X(\mathsf{peшka}, u) = u.$$

Функция распределения. Примеры

Пример 3 (продолжение).

Так как

$$(X < x) = \left\{ \begin{array}{cc} \emptyset, & x \leqslant -1, \\ \{\mathsf{open}\}, & -1 < x \leqslant 0, \\ \{\mathsf{open}\} + \{(\mathsf{peшka}, u) : 0 \leqslant u < x\}, & 0 < x \leqslant 1, \end{array} \right.$$

то

$$F(x) = \begin{cases} 0, & x \leq -1, \\ 1/2, & -1 < x \leq 0, \\ (x+1)/2, & 0 < x \leq 1. \end{cases}$$

Функция распределения. Свойства

$$F(-\infty) = 0,$$
 $F(+\infty) = 1.$

Теорема:

- **①** Если $x_1 < x_2$, то $F(x_1) \leqslant F(x_2)$.
- $\lim_{x\to-\infty}F(x)=F(-\infty)=0; \lim_{x\to+\infty}F(x)=F(+\infty)=1.$
- $\lim_{x \to x_0 0} F(x) = F(x_0)$ (непрерывность слева).

Доказательство на лекции. См. также, например, Чистяков В.П. Курс теории вероятностей.

Любая функция G(x), обладающая тремя свойствами, указанными в теореме, является функцией распределения некоторой случайной величины.

Случайная величина X называется **величиной дискретного типа**, если существует конечное или счетное множество чисел $x_1, x_2, \ldots, x_n, \ldots$ (без предельных точек) таких, что

$$P(X = x_n) = p_n > 0, \quad n = 1, 2, ...; \quad \sum_{n=1}^{\infty} p_n = 1.$$

Для дискретной случайной величины закон распределения полностью определяется указанием значений $x_n, n=1,2,\ldots$, и вероятностей p_n , с которыми эти значения принимает X.

F(x) — ступенчатая; скачок в точке x_n равен p_n .

Случайная величина X называется **величиной абсолютно непрерывного типа**, если существует неотрицательная функция f(x) такая, что $\forall x$

$$F(x) = P(X < x) = \int_{-\infty}^{x} f(x')dx'.$$

Функция f(x) называется плотностью распределения вероятностей.

$$P(a \leqslant X < b) = \int_{a}^{b} f(x) dx$$

$$P(X=a) = \lim_{n \to \infty} P\left(a \leqslant X < a + \frac{1}{n}\right) = \lim_{n \to \infty} \int_{a}^{a+1/n} f(x) dx = 0$$

$$P(a \leqslant X \leqslant b) = P(a \leqslant X \leqslant b) = P(a \leqslant X \leqslant b) = P(a \leqslant X \leqslant b)$$

Если x — точка непрерывности f(x), то при $\Delta x o 0$

$$P(x < X < x + \Delta x) = f(x)\Delta x + o(\Delta x)$$

Плотность распределения вероятностей. Свойства

- **③** F'(x) = f(x) в точках непрерывности f(x).

Плотность распределения полностью определяет распределение случайной величины.

Плотность распределения абсолютно непрерывной величины непрерывна.

Плотность распределения вероятностей. Примеры

Нормальное распределение

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-(x-a)^2/(2\sigma^2)\right], \quad -\infty < a < \infty; \quad \sigma > 0.$$

Случайная величина называется нормально распределенной с параметрами (a,σ) .

Показательное распределение

$$f(x) = \begin{cases} \alpha e^{-\alpha x}, & x > 0, \\ 0, & x \leq 0. \end{cases}$$

Равномерное распределение

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & x \notin [a,b], \quad a < b. \end{cases}$$

Примеры дискретных распределений

Биномиальное распределение

$$P(X = m) = C_n^m p^m (1 - p)^{n-m}, \quad 0$$

Пуассоновское распределение

$$P(X=m)=\frac{\lambda^m}{m!}e^{-\lambda}, \quad m=0,1,\ldots; \quad \lambda>0.$$

Геометрическое распределение

$$P(X = m) = (1 - p)^{m-1}p, \quad m = 0, 1, ...; \quad 0$$

Гипергеометрическое распределение

$$P(X = m) = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}, \quad m = 0, 1, ..., \min(M, n).$$

Совместные распределения нескольких случайных величин

Пусть на вероятностном пространстве (Ω, \mathcal{F}, P) заданы случайные величины

$$X_1 = X_1(\omega), X_2 = X_2(\omega), \dots, X_n = X_n(\omega), \quad \omega \in \Omega.$$

Каждому $\omega \Longrightarrow \mathit{n}$ -мерный вектор.

Определение

Функцию от переменных x_1, \ldots, x_n :

$$F_{X_1...X_n}(x_1,...,x_n) = P(X_1 < x_1,...,X_n < x_n),$$

назовем **многомерной функцией распределения** случайного вектора (X_1, \ldots, X_n) .

Совместные распределения нескольких случайных величин

Свойства многомерной функции распределения

- ullet $F_{X_1...X_n}(x_1,...,x_n)$ монотонна по каждому аргументу,
- $\bullet \lim_{x_1 \to +\infty, \dots, x_n \to +\infty} F_{X_1 \dots X_n}(x_1, \dots, x_n) = 1,$
- $\bullet \lim_{x_1 \to -\infty} F_{X_1 \dots X_n}(x_1, \dots, x_n) = 0,$
- $\lim_{x_n \to +\infty} F_{X_1...X_n}(x_1,...,x_n) = F_{X_1...X_{n-1}}(x_1,...,x_{n-1}).$

Аналогичное свойство выполняется при переходе к пределу по любому аргументу.

Случайный вектор дискретного типа

$$\exists \vec{x}_k = (x_{k1}, x_{k2}, \dots, x_{kn}), \quad k = 1, 2, \dots :$$

$$P(X_1 = x_{k1}, \dots, X_n = x_{kn}) = p_{x_{k1}x_{k2}\cdots x_{kn}}, \quad \sum_{(x_{k1}, \dots, x_{kn})} p_{x_{k1}\cdots x_{kn}} = 1.$$

Совместные распределения нескольких случайных величин

Случайный вектор абсолютно непрерывного типа

$$\exists f_{X_1X_2...X_n}(x_1, x_2, ..., x_n) : \forall x_1, ..., x_n$$

$$F_{X_1...X_n}(x_1, ..., x_n) = \int_{-\infty}^{x_1} dx_1' \int_{-\infty}^{x_2} dx_2' \cdots \int_{-\infty}^{x_n} dx_n' f_{X_1X_2...X_n}(x_1', x_2', ..., x_n').$$

Функция $f_{X_1...X_n}(x_1,...,x_n)$ называется плотностью распределения вероятностей случайного вектора $(X_1,...,X_n)$.

Для любого квадрируемого множества B в n-мерном пространстве

$$P((X_1,\ldots,X_n)\in B)=\iint\limits_{B}\ldots\int\limits_{B}\int\limits_{X_1\ldots X_n}(x_1,\ldots,x_n)dx_1\cdots dx_n.$$

n=2

$$A = (a_1 \leqslant X < a_2, b_1 \leqslant Y < b_2)$$

 $B = (X < a_1, Y < b_2)$
 $C = (X < a_2, Y < b_1)$

Пусть
$$F(x,y) = F_{XY}(x,y) = P(X < x,Y < y).$$
 Тогда $(X < a_2,Y < b_2) = A + B + C$. Так как $BC = (X < a_1,Y < b_1)$, то $P(B+C) = P(B) + P(C) - P(BC) = F(a_1,b_2) + F(a_2,b_1) - F(a_1,b_1).$ $P(A) = F(a_2,b_2) + F(a_1,b_1) - F(a_1,b_2) - F(a_2,b_1).$ (X,Y) — абс. непр. вектор $\implies P(A) = \int_{a_1}^{a_2} dx \int_{b_1}^{b_2} dy \, f(x,y).$

n=2

По двумерной функции распределения можно найти одномерные функции распределения.

$$(X < x) = (X < x, Y < +\infty) \quad \Rightarrow \quad F_X(x) = F_{XY}(x, +\infty).$$

Таким образом,

$$F_X(x) = \lim_{y \to \infty} F_{XY}(x, y) = F_{XY}(x, \infty),$$

$$F_Y(y) = \lim_{x \to \infty} F_{XY}(x, y) = F_{XY}(\infty, y),$$

Если (X, Y) — абс. непр. вектор, то

$$F_X(x) = \int_{-\infty}^x \left(\int_{-\infty}^\infty f_{XY}(x', y') dy' \right) dx' = \int_{-\infty}^x f_X(x') dx',$$

где $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x',y')dy'$ — плотность распределения X.

n=2

Пусть (X, Y) — вектор дискретного типа:

$$P(X = x_i, Y = y_j) = \rho_{ij}, \quad i, j = 1, 2, ..., \quad \sum_{i,j=1}^{\infty} \rho_{ij} = 1.$$

$$P(X = x_i) = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{\infty} p_{ij}.$$

Пусть
$$p_i = \sum_{j=1}^\infty p_{ij}, \quad p_j = \sum_{i=1}^\infty p_{ij}.$$

$$P(X = x_i) = p_i,$$
 $P(Y = y_j) = p_j.$

Независимость случайных величин

Определение:

Случайные величины X_1, \ldots, X_n называются **независимыми в совокупности** или просто **независимыми**, если при любых действительных x_1, \ldots, x_n

$$F_{X_1X_2\cdots X_n}(x_1,x_2,\ldots,x_n)=F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n).$$

Альтернативное определение:

Случайные величины X_1, \dots, X_n независимы, если при любых множествах B_1, \dots, B_n (на которых определены вероятности событий $X_k \in B_k$) имеет место равенство

$$P(X_1 \in B_1, ..., X_n \in B_n) = P(X_1 \in B_1)P(X_2 \in B_2) \cdots P(X_n \in B_n).$$

4□ > 4□ > 4□ > 4□ > 4□ > 3

Теорема 1:

Если ∀ x, y

$$F_{XY}(x,y) = F_X(x)F_Y(y),$$

то при любых $a_k < b_k, \ k = 1, 2,$

$$P(a_1 \leqslant X < b_1, a_2 \leqslant Y < b_2) = P(a_1 \leqslant X < b_1)P(a_2 \leqslant Y < b_2).$$

Теорема 2:

Пусть распределение величин X, Y задается формулой

$$P(X = x_i, Y = y_j) = \rho_{ij} \geqslant 0, \qquad \sum_{i,j=1}^{\infty} \rho_{ij} = 1.$$

Случайные величины X,Y независимы тогда и только тогда, когда при любых i,j

$$p_{ij} = p_i \cdot p_j$$

где

$$P(X = x_i) = p_i = \sum_{j=1}^{\infty} p_{ij}, \qquad P(Y = y_i) = p_j = \sum_{i=1}^{\infty} p_{ij}.$$

Теорема 3:

Пусть $f_{XY}(x,y)$ — плотность распределения случайных величин X,Y. Случайные величины X,Y независимы тогда и только тогда, когда во всех точках непрерывности функций $f_{XY}(x,y)$, $f_X(x)$, $f_Y(y)$ имеем

$$f_{XY}(x,y)=f_X(x)f_Y(y).$$

Функции от случайных величин

Пусть (Ω, \mathcal{F}, P) — произвольное вероятностное пространство и $X = X(\omega)$, $\omega \in \Omega$, — некоторая случайная величина.

Суперпозиция X, заданной на Ω , и функция $\varphi(x): x \mapsto \varphi$, заданной на действительной прямой, является функцией

$$Y = \varphi[X(\omega)] = Y(\omega),$$

заданной на Ω .

Для дискретных вероятностных пространств функция Y — случайная величина.

Для произвольных вероятностных пространств требуется, чтобы $\forall \ y$

$$(Y < y) \in \mathcal{F}$$

Числовые характеристики случайных величин

Математическим ожиданием M(X) случайной величины $X=X(\omega_k)$, заданной на дискретном вероятностном пространстве (Ω, \mathcal{F}, P) , называется число

$$M(X) = \sum_{k=1}^{\infty} X(\omega_k) p_k,$$

если ряд абсолютно сходится.

Математическим ожиданием M(X) случайной величины $X = X(x_1, x_2, \dots, x_n)$, заданной на абсолютно непрерывном вероятностном пространстве (Ω, \mathcal{F}, P) , называется число

$$M(X) = \int \cdots \int_{\Omega} X(x_1, x_2, \dots, x_n) f(x_1, x_2, \dots, x_n) dx_1 dx_2 \cdots dx_n,$$

если интеграл абсолютно сходится.

Пусть $\Omega = \{\omega_1, \omega_2, \dots, \omega_N\}$ и событиям ω_k приписаны вероятности $p_k \geqslant 0$, $k=1,2,\dots,N$, $p_1+p_2+\dots+p_N=1$.

Положим $X = X(\omega_k) = x_k$.

Среднее значение случайной величины X:

$$p_1x_1 + p_2x_2 + \cdots + p_Nx_N$$
.

Пусть проводится n независимых испытаний, каждое из которых состоит в том, что X принимает определенное значение.

Пусть получены следующие значения:

$$y_1, y_2, \ldots, y_n, \qquad y_k \in (x_1, x_2, \ldots, x_N).$$

Тогда

$$\frac{y_1+y_2+\cdots+y_n}{n}=\frac{n_1x_1+n_2x_2+\cdots+n_Nx_N}{n},\quad \frac{n_k}{n}\approx p_k.$$

4□ > 4□ > 4 = > 4 = > = 90

Математическим ожиданием случайной величины X, заданной на вероятностном пространстве (Ω, \mathcal{F}, P) , называется число

$$M(X) = \int_{\Omega} X(\omega) P(d\omega),$$

если интеграл Лебега, стоящий в правой части равентсва, существует.

$$M(X) = \int_{-\infty}^{\infty} x dF_X(x).$$

Теорема 1:

Пусть (X,Y) — дискретный случайный вектор, для которого

$$P(X=x_i, Y=y_j)=p_{ij}\geqslant 0, \quad \sum_{ij}p_{ij}=1.$$

Если ряд

$$\sum_{ij}|g(x_i,y_j)|p_{ij}$$

сходится, то случайная величина $\xi = g(X,Y)$ имеет математическое ожидание

$$M(\xi) = \sum_{ii} g(x_i, y_j) p_{ij}.$$

Для
$$n=1$$
 и $g(x)=x$: $M(X)=\sum_{k=1}^{\infty}x_{k}P(X=x_{k}).$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Теорема 2:

Пусть (X,Y) — абсолютно непрерывный случайный вектор с плотностью распределения f(x,y). Если интеграл

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} |g(x,y)| f(x,y) dx dy$$

сходится, то математическое ожидание случайной величины $\xi=g(X,Y)$ существует и

$$M(\xi) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x, y) f(x, y) dx dy.$$

Для
$$n=1$$
 и $g(x)=x$: $M(X)=\int_{-\infty}^{\infty}xf(x)dx$.

Свойства математического ожидания

- lacktriangle Если C постоянная, то M(C) = C.
- $oldsymbol{2}$ Если C постоянная, то M(CX) = CM(X).
- Для любых величин X

$$|M(X)|\leqslant M(|X|).$$

🗿 Для любых случайных величин X_1 и X_2

$$M(X_1 + X_2) = M(X_1) + M(X_2).$$

Если существуют какие-нибудь два из участвующих в равенстве математических ожиданий, то существует и третье.

ullet Если случайные величины X_1 и X_2 независимы, то

$$M(X_1X_2)=M(X_1)M(X_2).$$

Из существования любых двух математических ожиданий следует существование третьего.

Дисперсия

Дисперсией D(X) случайной величины X называется число

$$D(X) = M[(X - M(X))^2],$$

если математическое ожидание в правой части равенства существует.

Дисперсия является мерой рассеяния значений случайной величины около ее математического ожидания. Величину $\sqrt{D(X)}$ называют **средним** квадратическим отклонением.

$$M[(X-M(X))^{2}] = M[X^{2}-2XM(X)+(M(X))^{2}] = M(X^{2})-2M(X)M(X)+[M(X)]^{2}$$
$$D(X) = M(X^{2})-[M(X)]^{2}$$

Дисперсия

Для абсолютно непрерывной случайной величины

$$D(X) = \int_{-\infty}^{\infty} (x - M(X))^2 f(x) dx.$$

Для дискретной случайной величины

$$D(X) = \sum_{k=1}^{\infty} (x_k - M(X))^2 P(X = x_k),$$

где
$$\sum_{k=1}^{\infty} P(X=x_k) = 1.$$

Свойства дисперсии

- **1** Для любой случайной величины X имеем $D(X) \geqslant 0$.
- \bigcirc Если C постоянная, то D(C) = 0.
- **③** Если *C* постоянная, то $D(CX) = C^2D(X)$.
- ullet Если случайные величины X_1 и X_2 независимы, то

$$D(X_1 + X_2) = D(X_1) + D(X_2).$$

Ковариация. Коэффициент корреляции

Рассмотрим две произвольные случайные величины.

Число

$$cov(X_1, X_2) = M[(X_1 - M(X_1))(X_2 - M(X_2))]$$

называется **ковариацией** случайных величин X_1 , X_2 .

- \bullet cov(X,X) = D(X)
- $cov(X_1, X_2) = cov(X_2, X_1)$
- $D(X_1 + X_2) = D(X_1) + D(X_2) + 2cov(X_1, X_2)$

Ковариация. Коэффициент корреляции

Теорема:

Если для случайных величин X_1, X_2, \ldots, X_n существуют $\mathrm{cov}(X_i, X_j) = \sigma_{ij},$ $i, j = 1, \ldots, n$, то при любых постоянных c_1, c_2, \ldots, c_n имеем

$$D(c_1X_1+c_2X_2+\cdots+c_nX_n)=\sum_{i,j=1}^n\sigma_{ij}c_ic_j.$$

Так как при любых c_1,\ldots,c_n дисперсия неотрицательна, то квадратичная форма неотрицательно определена.

$$\left| \begin{array}{cccc} \cos(X_1,X_1) & \cos(X_1,X_2) & \dots & \cos(X_1,X_m) \\ \cos(X_2,X_1) & \cos(X_2,X_2) & \dots & \cos(X_2,X_m) \\ \dots & \dots & \dots & \dots \\ \cos(X_m,X_1) & \cos(X_m,X_2) & \dots & \cos(X_m,X_m) \end{array} \right| \geqslant 0, \quad m=1,2,\dots$$

Для
$$m=2$$
: $\det(X_1,X_2)=D(X_1)D(X_2)-\cos^2(X_1,X_2)\leqslant 0$.

$$|\mathrm{cov}(X_1, X_2)| \leqslant \sqrt{D(X_1)D(X_2)}$$

Ковариация. Коэффициент корреляции

Для независимых случайных величин

$$\operatorname{cov}(X_1,X_2)=0.$$

Если $\mathrm{cov}(X_1, X_2) \neq 0$, то величины X_1 и X_2 зависимы.

Для количественной характеристики степени зависимости используется коэффициент корреляции $ho(X_1,X_2)$, определяемый следующим равенством:

$$\rho(X_1, X_2) = \frac{\text{cov}(X_1, X_2)}{\sqrt{D(X_1)D(X_2)}}.$$

Свойства коэффициента корреляции

- $|\rho(X_1,X_2)| \leq 1$
- $m{2}$ Если X_1 и X_2 независимы, то $ho(X_1, X_2) = 0$
- ullet Если $X_2 = AX_1 + B$, где A и B постоянные, то $|\rho(X_1, X_2)| = 1$