Feuille 5 – Fractions rationnelles (DES)

Méthode: (pour $F = \frac{P}{Q}$, avec $P, Q \in \mathbb{K}[X]$ ($Q \neq 0$))

- 1) On calcule la partie entière (si $\deg P \ge \deg Q$)
- On calcule les coefficients
 - Si les racines sont toutes simples, on a, si l'on cherche par exemple le terme en (X a),

$$\lambda = \frac{P(a)}{Q'(a)}$$

- Sinon, on peut toujours calculer (X a)F(X) et évaluer en a pour trouver λ .
- Pour les dernières valeurs, on peut utiliser $\lim_{X\to +\infty} XF(X)$, ou encore évaluer F en une valeur quelconque (souvent 0) pour la dernière valeur.

Exercice 1 (DES avec une partie entière)

Décomposer en éléments simples (sur \mathbb{R}) les fractions rationnelles suivantes :

$$F = \frac{2X^3 + X^2 - X + 1}{X^2 - 2X + 1} \qquad G = \frac{X^2 + 2X + 5}{X^2 - 3X + 2} \qquad H = \frac{X^7 + 3}{(X^2 + X + 2)^3}$$

$$G = \frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$

$$H = \frac{X^7 + 3}{(X^2 + X + 2)^3}$$

Exercice 2

Soit P un polynôme à coefficient réels de degré $n \ge 1$. Supposons que P admette exactement n racines distinctes x_1, \dots, x_n , toutes non nulles.

1) Montrer que

$$\lim_{x \to x_k} \frac{x - x_k}{x P(x)} = \frac{1}{x_k P'(x_k)}$$

2) Décomposer en éléments simples la fraction rationnelle suivante :

$$F(X) = \frac{1}{XP(X)}$$

3) En déduire la valeur de :

$$\sum_{k=1}^{n} \frac{1}{x_k P'(x_k)}$$

Indication : on pourra calculer $\lim_{x\to +\infty} xF(x)$.

Exercice 3

1) Soit $n \in \mathbb{N}^*$. Décomposer en éléments simples la fraction rationnelle suivante :

$$F(X) = \frac{X^{n-1}}{X^n - 1}$$

2) En déduire que $\forall x > 1$,

$$(\ln(x^n - 1))' = \sum_{k=1}^n \frac{1}{x - e^{2ik\pi/n}}$$

Commenter.