Linear Algebra 1

Exercise Number 9

- 1) Find $a \in \mathbf{R}$ such that the three vectors (1, -1, 1), (2, 0, 3) and (1, 1, a) will be linearly dependent.
 - 2) In \mathbb{C}^2 , are the vectors (1,i) and (i,-1) linearly independent?
 - 3) In each of the following cases, find a basis for the corresponding vector spaces:
- a) The vector space which consists of all real solutions to the linear system

$$x + y + t = 0$$
$$2x + 4y + 3z = 0$$

- b) All symmetric matrices of size $n \times n$.
- c) The vector space $\mathbf{Q}(\sqrt{2})$ as a vector space over the field \mathbf{Q} .
- d) The vector space \mathbb{C}^2 over the field \mathbb{C} .
- e) The vector space \mathbb{C}^2 over the field \mathbb{R} .
- f) Let $U = \{(a, b, c) : a + b + c = 0\}$ and $W = \{(a, b, c) : a = b = c\}$ be two subspaces of F^3 . Find a basis for $U \cap W$ and U + W.
- g) In $V = P_3(x)$, let $W = \{p(x) \in P_3(x) : p(0) = p'(0) = p''(0) = 0\}$. Find a basis for W.
- 4) If A is a given matrix, prove that the dimension of the row space of A equals the rank of A. In other words, prove that $\dim R(A) = \operatorname{rank}(A)$.
- 5) In a given vector space V, prove that any subset of vectors which contains the zero vector, is linearly dependent.
- **6)** Prove that if $K \subset V$ is a linearly independent set of vectors, then any subset of K is linearly independent.
 - 7) If $T \subset K \subset V$, and if T is linearly dependent, prove that K is also linearly dependent.
 - 8) Let $v_1 = (1, 1, 1, 1)$ and $v_2 = (2, 1, 1, 1)$. Complete the set $\{v_1, v_2\}$ to a basis of F^4 .
- 9) In \mathbf{R}^n let $W = \{(a_1, a_2, \dots, a_n) : a_1 + a_2 + \dots + a_n = 0\}$. What is dimW? Find a subspace $U \subset \mathbf{R}^n$ such that $\mathbf{R}^n = U \oplus W$.
 - **10)** In $Mat_{n\times n}(F)$, let $W = \{A \in Mat_{n\times n}(F) : tr(A) = 0\}$. Find a basis for W.

- **11)** a) Let $A \in Mat_{n \times n}(\mathbf{R})$. Given $\lambda \in R$, define $V_{\lambda} = \{v \in Mat_{n \times 1}(\mathbf{R}) : Av = \lambda v\}$. Prove that V_{λ} is a subspace of $Mat_{n \times 1}(\mathbf{R})$.
- Prove that V_{λ} is a subspace of $Mat_{n\times 1}(\mathbf{R})$. b) Let $A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$, and let $\lambda = 2$. Find a basis and compute the dimension of V_2 .