Seção 1.2. Curvas Parametrizadas

By Gabriela Silva

10 de fevereiro de 2020

Exercício 5. Seja $\alpha: I \to \mathbb{R}^3$ uma curva parametrizada, com $\alpha'(t) \neq 0$ para todo $t \in I$. Mostre que $||\alpha(t)||$ é uma constante não nula se, e somente se, $\alpha(t)$ é ortogonal a $\alpha'(t)$ para todo $t \in I$.

Solução. Temos que $\alpha:I\to\mathbb{R}^3$ uma curva parametrizada, com $\alpha'(t)\neq 0$. Precisamos mostrar que

$$||\alpha(t)|| = c \Leftrightarrow \langle \alpha(t), \alpha'(t) \rangle$$
, para todo $t \in I$

Então,

$$||\alpha(t)|| = c \Leftrightarrow ||\alpha(t)||^2 = c^2 \Leftrightarrow \langle \alpha(t), \alpha(t) \rangle = c^2 \Leftrightarrow 2\langle \alpha'(t), \alpha \rangle = 0 \Leftrightarrow$$
$$\langle \alpha'(t), \alpha(t) \rangle = 0$$