Gene Basics

Molecular biology Introduction

What is this?

Quipu

A quipu usually consisted of cotton or camelid fiber strings. The Inca people used them for collecting data and keeping records, monitoring tax obligations, properly collecting census records, calendrical information, and for military organization. The cords stored numeric and other values encoded as knots, often in a base ten positional system.

– en.wikipedia.org/wiki/quipu

DNA – Nucleus

 $https://www.microscopyu.com/assets/gallery-images/Comparison/DIC_cheekcellsdic.jpg$

Human metaphase chromosomes

Human cheek cells

DNA - Chromosomes

http://iramis.cea.fr/dna2006/mitosis.html

Mitosis and cell plate formation in a flattened endosperm cell of the African blood lily, *Haemanthus katherinae*, observed with phase contrast microscopy. (a) prophase, (b) metaphase, (c) anaphase, (d) telophase.

DNA - Structure

DNA – Electron microscopy

Science Advances 28 Aug 2015: Vol. 1, no. 7, e1500734 DOI: 10.1126/sciadv.1500734

DNA – Electron microscopy ribosomes

DNA Sequence

TO ACTIVITY DEPOS OF THE PROPERTY OF A CONTROL OF A CONTR TOTAL CONTROL FAST/11/11/10/20/13/13/14/20/11/20/11/20/1 ATGAAGTTGTGTGGGGGTAGGAGGTAAGGGGTGAGCGTGGAGGTAGGAGGTGAACGGAATTAGGAGGAATTAGGAGGAATTAGGAGAATAGCACTAGAATAGAATAGCACTAGAATAGCACTAGAATAGCACTAGAATAGAATAGCACTAGAATAGAATAGCACTAGAATAGAATAGCACTAGAATAGAATAGCACTAGAATAGAATAGCACTAGAATAGAATAGCACTAGAATAGAATAGAATAGCACTAGAATAGAATAGAATAGCACTAGAATAGA 02011/1021/102041/10304 TECHNICATION CONTROL C GACTGGGAGAAATGGCTTATACACTCTTCCCCAGTGGGAGCCAGGAAGCAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGCCTGTTTTACACTGTATCCTCAACTGGTCTCTGCACTGACTCTCAACTGGCACTCTTTCAACTGTACTCTCAACTGCAACTGCCAACTG GAGCACCAGGGTCCAGGGTCCAGGCTCGCCTAAGGGCCTGGCTTCTAAGGGGCGTTCTTAGCATTGGTCTACTCTAAAAGTGGCAAAAAGGAGCCCCAAAAGCCTGCAGATTACCTTTACAAGTGGCATAACAAAGCCTGCAAGTTACCCTTCAAAGTGGCCCCAAAAGCCTGCAAGTTACCCTTCAAAGTGGCCCCAAAAGCCTGCTGAATTACCATTCACTTACCATTCACATTCACTTCAAAACAAAAGCATTACCATTCA ATTOTOTORA PROPERTIES AND A TOTOTOTORAD A PROPERTIES AND A TOTOTOTORAD A PROPERTIES AND A TOTOTOTORAD A PROPERTIES AND A TOTOTORAD A PROPERTIES AND A PROPERT CCTIGGG/ATCCATTC/ATACACAGAGACCCGGTG/ACTTIGCTTCAACTAGGCAACAACTTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTAAAACCAT/ATTTCAAACCAT/ATTTCAAACCAT/ATTTCAAACCAT/ATTTCAAAACCAT/ATTTCAAACCAT/ATTTCAAACCAT/ATTTCAAACCAT/ATTTCAAACCAT/ATTCCAAACCAT/ACACAT/ACACCAT/ACACAT/ACACCAT/ACACAT/ACACCAT/ACACA

Genes contain useful information

Gene Structure

DNA Splicing

One way to find information is to make comparisons

Words can be conserved

English	Dutch	German	Danish	Norwegian	Swedish	Icelandic
book (n)	boek	buch	bog	bok	bok	bók
come (v)	komen	kommen	komme	komme	komma	koma
drink (v)	drinken	trinken	drikke	drikke	dricka	drekka

What can you change?

Ingredients

- + 1 cup white sugar
- + 1/2 cup butter
- + 2 eggs
- + 2 teaspoons vanilla extract

- + 1 1/2 cups all-purpose flour
- + 13/4 teaspoons baking powder
- + 1/2 cup milk
- Add all ingredients to list

Genes can be conserved

Genes with essential functions are heavily conserved

Survivorship bias

We can categorize these changes (mutations)

Transitions

Purines(A/G) mutated to Purines

Or

Pyrimidines (C/T) mutated to Pyrimidines

Transversions

Purines (A/G) to
Pyrimidines (C/G) or vice
versa

Indels

Gain or Loss of Nucleotides

Summary points

- Mitochondrial DNA contains genes (and non-genes, more on this later)
- On any given stretch of a chromosome, DNA may either contain useful information (gene) or not contain any information
- Genes that are "important" (have a function essential to life) tend to be conserved
- Changes in genes (mutations) can either be insertions/deletions (indels), transitions, or transversions