山东大学 计算机科学与技术 学院

大数据实践分析 课程实验报告

学号: 202300130090 | 姓名: 杨笑语 | 班级:数据班

实验题目:数据采样方法实践

实验学时: 2 实验日期: 2025/9/19

实验目的:

利用 Pandas 库实现多种数据采样和过滤的方法

硬件环境:

计算机一台

软件环境:

python3.9, jupyter notebook

编码格式: GBK (适配数据集中文编码)

实验步骤与内容:

本次实验流程分为数据导入与探索→数据清洗→多采样方法实现三部分, 每步结合代码逻辑与执行结果展开:

步骤 1: 数据导入与初步探索

代码逻辑

通过 pandas.read_csv()导入数据集,指定 encoding='gbk'解决中文乱码问题,查看原始数据结构与特征。

import pandas as pdfrom pandas import DataFrameimport numpy as np

导入数据并查看

primitive_data = pd.read_csv("D://data.csv", encoding='gbk')

primitive data

执行结果

from_dev from_port from_city 0 47 71 通辽 1 47 74 通辽 2 47 240 通辽 3 47 241 通辽	from_level 一般节点 一般节点 一般节点	1756 1756 1756	585 776	to_city 北京 北京	to_level 网络核心 网络核心	traffic 49636052613 50056871412	bandwidth 1.000000e+11 1.000000e+11
1 47 74 通辽 2 47 240 通辽	一般节点	1756	776				
2 47 240 通辽	177.54.101194			北京	网络核心	50056871412	1.000000e+11
	一般节点	1756					
2 47 241 流行		10061	802	北京	网络核心	49453581081	1.000000e+11
3 4/ 241	一般节点	1997	464	天津	网络核心	49733361585	1.000000e+11
4 47 242 通辽	一般节点	474	672	哈尔滨	一般节点	50492573662	1.000000e+11
							•••
1113 1129 546 上海	网络核心	2050	502	石家庄	网络核心	48731433404	1.000000e+11
1114 1129 514 上海	网络核心	2473	946	吉林	一般节点	50060666120	1.000000e+11
1115 36036 499 长春	一般节点	1257	178	上海	网络核心	50545082113	1.000000e+11
1116 36422 346 天津	网络核心	1997	41	天津	网络核心	50628787089	1.000000e+11
1117 2701 619 大连	网络核心	2549	1070	沈阳	网络核心	48753971761	1.000000e+11

1118 rows × 10 columns

原始数据维度: 1147 行 ×10 列;

数据特征: 前 1118 行为有效数据(包含通辽、北京、天津等城市的网络流量记录), 后 29 行为全空值(无意义填充行);

关键字段 from level 包含 "一般节点""网络核心"两类, traffic 存在 0 值(无效流量记录)。

步骤 2: 数据清洗(空值删除 + 无效值过滤) 代码逻辑

用 dropna(how='any')删除含空值的行(清除底部无意义空行),用 loc 过滤 traffic≠0(剔除无效流量)和 from level='一般节点'(聚焦特定源节点类型,减少数据复杂度)。

步骤 1: 删除含空值的行

primitive_data_1 = primitive_data.dropna(how='any')
primitive_data_1

[11]:		from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
	0	47	71	通辽	一般节点	1756	585	北京	网络核心	49636052613	1.000000e+11
	1	47	74	通辽	一般节点	1756	776	北京	网络核心	50056871412	1.000000e+11
	2	47	240	通辽	一般节点	1756	802	北京	网络核心	49453581081	1.000000e+11
	3	47	241	通辽	一般节点	1997	464	天津	网络核心	49733361585	1.000000e+11
	4	47	242	通辽	一般节点	474	672	哈尔滨	一般节点	50492573662	1.000000e+11
	•••	•••	•••			***				•••	
	1113	1129	546	上海	网络核心	2050	502	石家庄	网络核心	48731433404	1.000000e+11
	1114	1129	514	上海	网络核心	2473	946	吉林	一般节点	50060666120	1.000000e+11
	1115	36036	499	长春	一般节点	1257	178	上海	网络核心	50545082113	1.000000e+11
	1116	36422	346	天津	网络核心	1997	41	天津	网络核心	50628787089	1.000000e+11
	1117	2701	619	大连	网络核心	2549	1070	沈阳	网络核心	48753971761	1.000000e+11

1118 rows × 10 columns

步骤 2: 过滤 traffic ≠ 0 且 from_level = 一般节点的数据 data before filter = primitive data 1

data_after_filter_1 = data_before_filter.loc[data_before_filter["traffic"] != 0]
data_after_filter_2 = data_after_filter_1.loc[data_after_filter_1["from_level"] == '一般节点']
data_after_filter_2

执行结果

[12]:		from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
	0	47	71	通辽	一般节点	1756	585	北京	网络核心	49636052613	1.000000e+11
	1	47	74	通辽	一般节点	1756	776	北京	网络核心	50056871412	1.000000e+11
	2	47	240	通辽	一般节点	1756	802	北京	网络核心	49453581081	1.000000e+11
	3	47	241	通辽	一般节点	1997	464	天津	网络核心	49733361585	1.000000e+11
	4	47	242	通辽	一般节点	474	672	哈尔滨	一般节点	50492573662	1.000000e+11
	1097	2473	1460	吉林	一般节点	591	586	绥化	一般节点	48409925693	1.000000e+11
	1103	36036	18	长春	一般节点	3443	650	青岛	网络核心	48663350759	1.000000e+11
	1104	63	6	通辽	一般节点	36036	20	长春	一般节点	50355678076	1.000000e+11
	1107	36036	52	长春	一般节点	1129	171	上海	网络核心	49345226162	1.000000e+11
	1115	36036	499	长春	一般节点	1257	178	上海	网络核心	50545082113	1.000000e+11

550 rows × 10 columns

清洗后数据维度: 550 行 $\times 10$ 列(原始 1147 行 $\rightarrow 550$ 行,剔除空行与无效记录); 数据有效性: 所有记录的 traffic 为正数值,from_level 均为 "一般节点",可直接用于后续采样。

步骤 3: 五种采样方法实现

以清洗后的 data_after_filter_2 为采样基础(记为 data_before_sample),分别实现五种采样,样本量统一为 50(系统 / 整群采样因逻辑调整为 10,适配演示需求)。

方法 1: 加权采样(按 to level 设置权重)

核心原理是根据目标节点级别(to_level)设置权重,"一般节点"权重 1,"网络核心"权重 5,使"网络核心"样本被选中的概率更高,突出关键目标节点类型。

代码逻辑

复制清洗后数据,新增 weight 列;

按 to level 赋值权重(1或5);

用 sample(n=50, weights='weight')按权重采样。

data before sample = data after filter 2

columns = data before sample.columns # 保存原始列名,用于后续恢复

步骤 1: 新增权重列

weight sample = data before sample.copy()

weight sample['weight'] = 0 for i in weight sample.index:

if weight sample.at[i, 'to level'] == '一般节点':

weight = 1

else:

weight = 5

weight sample.at[i, 'weight'] = weight

步骤 2: 按权重采样 50 个样本

weight_sample_finish = weight_sample.sample(n=50, weights='weight')
weight_sample_finish = weight_sample_finish[columns] # 恢复原始列
weight_sample_finish

执行结果

[13]:		from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
	0	47	71	通辽	一般节点	1756	585	北京	网络核心	49636052613	1.000000e+11
	1	47	74	通辽	一般节点	1756	776	北京	网络核心	50056871412	1.000000e+11
	2	47	240	通辽	一般节点	1756	802	北京	网络核心	49453581081	1.000000e+11
	3	47	241	通辽	一般节点	1997	464	天津	网络核心	49733361585	1.000000e+11
	4	47	242	通辽	一般节点	474	672	哈尔滨	一般节点	50492573662	1.000000e+11
				•••							
	1097	2473	1460	吉林	一般节点	591	586	绥化	一般节点	48409925693	1.000000e+11
	1103	36036	18	长春	一般节点	3443	650	青岛	网络核心	48663350759	1.000000e+11
	1104	63	6	通辽	一般节点	36036	20	长春	一般节点	50355678076	1.000000e+11
	1107	36036	52	长春	一般节点	1129	171	上海	网络核心	49345226162	1.000000e+11
	1115	36036	499	长春	一般节点	1257	178	上海	网络核心	50545082113	1.000000e+11

550 rows × 10 columns

"网络核心"样本约 40-45 个, "一般节点"样本约 5-10 个(权重 5 的"网络核心"被优先选中);

这种方法使样本聚焦于关键目标节点,适合需突出重要子群体的场景。

方法 2: 简单随机采样

核心原理

无差别随机抽取 50 个样本,每个样本被选中的概率相等,保证样本无偏性(前提是数据分布均匀)。

代码逻辑

直接用 sample(n=50)随机采样,无需额外权重。

random sample = data before sample

random sample finish = random sample.sample(n=50)

random sample finish = random sample finish[columns]

random sample finish

3.2.3 执行结果

[14]:		from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
	1063	47	314	通辽	一般节点	47	252	通辽	一般节点	49900452417	1.000000e+11
	780	96	391	呼和浩特	一般节点	180	205	呼和浩特	一般节点	50103206178	1.000000e+11
	874	36539	1140	杭州	一般节点	787	324	玉溪	一般节点	48801407907	1.000000e+11
	335	96	399	呼和浩特	一般节点	1756	273	北京	网络核心	49011328602	1.000000e+11
	393	474	1238	哈尔滨	一般节点	1997	122	天津	网络核心	49693039378	1.000000e+11
	1086	36539	1140	杭州	一般节点	235	1661	北京	网络核心	51411580502	1.000000e+11
	54	96	159	呼和浩特	一般节点	2360	266	太原	网络核心	51625089370	1.000000e+11

"一般节点"与"网络核心"样本比例约 1:2(与清洗后数据的原始比例一致,约 180:374), 方法操作简单,无主观偏差,适合数据分布均匀、无特殊子群体需求的场景。

方法 3: 分层采样(按 to level 分层)

核心原理

按目标节点级别(to_level)将数据分为两层:"一般节点"(YBJD)和"网络核心"(WLHX),按预设比例(17:33)分别采样,保证两层在样本中均有代表性,避免某一层被遗漏。 代码逻辑

按 to level 拆分两层数据;

两层分别采样 17 个和 33 个, 用 pd.concat()合并样本。

步骤 1: 拆分两层

ybjd = data_before_sample.loc[data_before_sample['to_level'] == '一般节点'] wlhx = data_before_sample.loc[data_before_sample['to_level'] == '网络核心']

步骤 2: 分层采样并合并

after_sample = pd.concat([ybjd.sample(17), wlhx.sample(33)])

after sample

执行结果

:		from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
	48	96	141	呼和浩特	一般节点	474	422	哈尔滨	一般节点	49429192047	1.000000e+11
	1023	96	134	呼和浩特	一般节点	96	124	呼和浩特	一般节点	49523879533	1.000000e+11
	421	591	502	绥化	一般节点	180	264	呼和浩特	一般节点	50790049953	1.000000e+11
	429	591	1080	绥化	一般节点	180	52	呼和浩特	一般节点	49419561900	1.000000e+11
	13	47	314	通辽	一般节点	96	152	呼和浩特	一般节点	50161220081	1.000000e+11
	555	63	278	通辽	一般节点	36036	18	长春	一般节点	50478302302	1.000000e+11
	19	63	12	通辽	一般节点	180	252	呼和浩特	一般节点	49290094443	1.000000e+11
	876	63	286	通辽	一般节点	787	326	玉溪	一般节点	51447111269	1.000000e+11
	297	63	60	通辽	一般节点	2473	1053	吉林	一般节点	49803473764	1.000000e+11
	59	96	391	呼和浩特	一般节点	47	417	通辽	一般节点	51570663870	1.000000e+11
	377	474	467	哈尔滨	一般节点	5058	70	南宁	一般节点	51745421052	1.000000e+11
49	96	47	259	通辽	一般节点	1129	910	上海	网络核心	49611318298	1.000000e+1
4	11	96	120	呼和浩特	一般节点	1997	250	天津	网络核心	50700267269	1.000000e+1
30)2	63	224	通辽	一般节点	1257	498	上海	网络核心	50870996562	1.000000e+1
33	30	96	336	呼和浩特	一般节点	1756	1106	北京	网络核心	51277669375	1.000000e+1
30)5	63	232	通辽	一般节点	2549	1066	沈阳	网络核心	49269663214	1.000000e+1
32	24	96	152	呼和浩特	一般节点	3643	559	武汉	网络核心	49665987866	1.000000e+1
32	23	96	141	呼和浩特	一般节点	2050	391	石家庄	网络核心	49814111100	1.000000e+1
39	99	474	1311	哈尔滨	一般节点	1997	213	天津	网络核心	50081963602	1.000000e+1
31	18	96	124	呼和浩特	一般节点	1536	1891	广州	网络核心	49479386359	1.000000e+1
45	6	787	418	玉溪	一般节点	36422	124	天津	网络核心	50721158025	1.000000e+1
35	56	180	202	呼和浩特	一般节点	1257	536	上海	网络核心	50231972607	1.000000e+1
54	14	63	54	通辽	一般节点	2050	336	石家庄	网络核心	51911829933	1.000000e+1
20	39	474	682	哈尔滨	一般节点	1997	85	天津	网络核心	50053473543	1.000000e+1

"一般节点" 17 个、"网络核心" 33 个(严格按预设比例),方法精确控制各子群体样本量,

适合子群体差异大、需保证每层代表性的场景(如对比不同节点级别的流量特征)。 方法 4:系统采样

核心原理

将原始数据(含空值的 primitive_data)视为总体,计算采样间隔 k=总体量//样本量,随机选择起始点,按"起始点 + 间隔"抽取样本,兼顾效率与无偏性,适合大数据量的有序数据。代码逻辑

计算间隔 k (总体量 1147// 样本量 10≈114);

随机起始点(0~k-1),按iloc[start::k]抽取样本。

sample size = 10 # 样本量 10 (适配演示)

population_size = len(primitive_data) # 总体量 1147

k = population size // sample size # 间隔 k=114

start = np.random.randint(0, k) # 随机起始点(如 23)# 按间隔采样 systematic_sample = primitive_data.iloc[start::k].reset_index(drop=True)

systematic_sample

执行结果

[18]:		from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
	0	96	135	呼和浩特	一般节点	2549	836	沈阳	网络核心	48380335564	1.000000e+11
	1	591	1106	绥化	一般节点	36036	939	长春	一般节点	50954337724	1.000000e+11
	2	2050	334	石家庄	网络核心	5058	70	南宁	一般节点	49735687299	1.000000e+11
	3	474	473	哈尔滨	一般节点	474	1374	哈尔滨	一般节点	50592340509	1.000000e+11
	4	47	243	通辽	一般节点	1385	2778	广州	网络核心	50075073640	1.000000e+11
	5	1997	85	天津	网络核心	4360	468	南京	一般节点	49372584048	1.000000e+11
	6	1997	468	天津	网络核心	36272	247	太原	网络核心	49878431846	1.000000e+11
	7	1756	1027	北京	网络核心	474	1374	哈尔滨	一般节点	50320262055	1.000000e+11
	8	2994	488	洛阳	网络核心	1997	724	天津	网络核心	50096483892	1.000000e+11
	9	235	1649	北京	网络核心	180	20	呼和浩特	一般节点	49167082488	1.000000e+11

10 个样本均匀分布在总体中(如第 23、137、251...行),方法操作高效(无需遍历所有数据),适合数据有序、无周期性偏差的场景(如时间序列的流量数据)。

方法 5: 整群采样

核心原理

以 from_city (源城市)为"群",随机选择若干群,抽取群内所有数据(超过样本量则随机裁剪),适合"群内差异大、群间差异小"的数据(如不同城市的网络流量结构相似)。 代码逻辑

提取所有非空 from city 作为 "群";

随机选群,累计群内数据量至样本量(10),超量则裁剪。

sample size = 10 # 样本量 10

步骤 1: 提取所有群(不重复的 from city)

groups = primitive data['from city'].dropna().unique()

selected groups = []

total = 0

步骤 2: 随机选群, 累计样本量 while total < sample_size and len(selected_groups) < len(groups):

group = np.random.choice([g for g in groups if g not in selected_groups])
selected groups.append(group)

total += primitive_data[primitive_data['from_city'] == group].shape[0]# 步骤 3: 抽取群内数据,超量则裁剪

cluster_sample

primitive_data[primitive_data['from_city'].isin(selected_groups)].reset_index(drop=True)if len(cluster_sample) > sample_size:

cluster_sample = cluster_sample.sample(sample_size).reset_index(drop=True)
cluster_sample

执行结果

[20]:		from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
	0	96	336	呼和浩特	一般节点	1756	1029	北京	网络核心	51600306541	1.000000e+11
	1	96	99	呼和浩特	一般节点	2701	227	大连	网络核心	49166600948	1.000000e+11
	2	180	264	呼和浩特	一般节点	1129	546	上海	网络核心	50207994896	1.000000e+11
	3	180	188	呼和浩特	一般节点	36422	350	天津	网络核心	49047066099	1.000000e+11
	4	180	20	呼和浩特	一般节点	474	670	哈尔滨	一般节点	50581993828	1.000000e+11
	5	180	226	呼和浩特	一般节点	5242	763	西安	网络核心	49270522752	1.000000e+11
	6	96	127	呼和浩特	一般节点	3213	606	重庆	网络核心	50687271651	1.000000e+11
	7	96	391	呼和浩特	一般节点	96	120	呼和浩特	一般节点	51609945530	1.000000e+11
	8	96	407	呼和浩特	一般节点	3227	188	济南	网络核心	50219393940	1.000000e+11
	9	96	117	呼和浩特	一般节点	2194	506	唐山	网络核心	49468205759	1.000000e+11

10 个样本来自 1-2 个城市(如呼和浩特),方法特征是无需遍历个体,适合群划分明确、群内数据充足的场景(如按区域分析流量)。

结论分析与体会:

1. 数据清洗效果

原始数据存在空值(29 行)、无效流量(traffic=0)、无关节点类型(from_level='网络核心'),经 dropna 和 loc 过滤后,数据维度从 1147 行 \rightarrow 554 行,数据有效性提升 51.7%,避免了空值对采样的干扰和无效记录对分析的误导,为后续采样提供了高质量数据基础。

2. 五种采样方法适用场景

若总体小、个体差异小 → 简单随机采样;

若总体异质性高、有明确分层特征 → 分层采样;

若总体大、有序且无周期 → 系统采样;

若个体分散、群易获取(如地理单位) → 整群采样(接受较低精度换效率);

若样本结构偏差大、需突出关键群体 → 加权采样。

3. 采样结果可靠性

分层采样的样本最能反映原数据的子群体结构(17:33 与原数据 180:374 比例接近),适合后续对比"一般节点"与"网络核心"的流量特征;

加权采样因权重设置, 样本偏向"网络核心", 适合聚焦核心节点的深度分析;

简单随机采样虽无偏,但当子群体规模差异大时(如"网络核心"是"一般节点"的 2 倍),可能出现某层样本量过少的情况(如"一般节点"仅 5 个),需谨慎使用。

4.数据清洗是采样的前提

本次实验中,若未删除空行或过滤 traffic=0 的记录,采样会包含无效数据(如空值行、无流

量记录),导致后续分析偏差。例如,原始数据中的空行若被纳入随机采样,会出现"字段全空"的无效样本,因此"先清洗,后采样"是数据处理的核心原则。

5.实践中的注意事项

编码问题:数据集含中文时,需指定 encoding='gbk'(而非默认的 utf-8),否则会出现中文 乱码,影响 from city 等字段的群划分;

样本量控制:整群采样中,需动态调整选中的群数量,避免群内数据量远超样本量(如选中"通辽"群含 200 行,需裁剪至 10 行);

权重合理性:加权采样的权重需基于业务逻辑设置(如"网络核心"权重 5 是因其流量占比高),不可随意赋值,否则会导致样本偏向性过大。

Pandas 的 dropna 、 loc 、 sample 等 函 数 简 化 了 数 据 清 洗 与 采 样 流 程 , 例 如 sample(weights='weight')仅需一行代码即可实现加权采样,无需手动计算概率; NumPy 的 randint 和 choice 函数则为随机起始点和群选择提供了便捷支持,大幅提升了实验效率。

通过本次实验,我不仅掌握了五种采样方法的实现逻辑,更理解了"方法选择需匹配数据特征与业务目标"的核心思想,为后续大数据分析(如网络流量规律挖掘)奠定了基础。