A.M .- I

QP Code: 28579

REVISED COURSE (3 Hours)

| Total Marks : 100

3

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions from question No. 2 to question no. 6.
- (3) Figures to the right indicate full marks.
- 1. (a) Solve the equation 7coshx+8sinhx = 1 for real values of x
 - (b) If z(x+y)=(x-y) find $\left(\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)^2$
 - (c) If $u=r^2cos2\theta$, $v=r^2sin2\theta$ find $\frac{\partial(u,v)}{\partial(r,\theta)}$
 - (d) Prove that $Sec^2x = 1 + x^2 + \frac{2x^4}{3} + \dots$ 3
 - (e) Find the rank of the Matrix by reducing it to normal form.

- (f) Find nth derivatives of $\frac{x}{(x-1)(x-2)(x-3)}$
- 2. (a) If α , β are the roots of the equation $x^2 2\sqrt{3} \cdot x + 4 = 0$ find the value of $\alpha^2 + \beta^3$
 - (b) Examine whether the vectors $X_{1} = \begin{bmatrix} 3 & 1 & 1 \end{bmatrix}, X_{2} = \begin{bmatrix} 2 & 0 & -1 \end{bmatrix}$ $X_{3} = \begin{bmatrix} 4 & 2 & 1 \end{bmatrix}$
 - are linearly independent.
 - (c) (i) State and prove Euler's theorem for a Homogeneous function in two variables.
 - (ii) If $y = x \cos u$ find the value of $x^2u_{xx} + 2xy u_{xy} + y^2u_{yy}$

TURN OVER

		2	
3.	(a)	Is the following system has trivial or non trivial solution? Obtain the non trivial solution if exist.	6
		$3x_1 + 4x_2 - x_3 - 9x_4 = 0$ $2x_1 + 3x_2 + 2x_2 - 3x_4 = 0$ $2x_1 + x_2 - 14x_2 - 12x_4 = 0$	
	(b)	$x_1+3x_2+13x_3+3x_4=0$ Discuss the stationary points for Maxima and Mininima of $x^2+xy^2-12x^2-2y^2+21x+10$	6
	(c)	(i) If $\tan (x+iy) = a + ib$ prove that $\tanh 2y = \frac{2b}{1+a^2+b^2}$	4
		(ii) Separate into real and imaginary parts of Log (3+4i)	4
4.	(a)	If $x = u \cos v$, $y = u \sin v$	6
		Prove that $\frac{\partial(u,v)}{\partial(x,y)}, \frac{\partial(x,y)}{\partial(u,v)} = 1$ Show that $\log e^{i\alpha} + e^{i\beta} = \log \left[2\cos\left(\frac{\alpha-\beta}{2}\right)\right] + i\left(\frac{\alpha+\beta}{2}\right)$	6
	(b)	Show that $\log[e^{xx} + e^{xy}] = \log[2\cos(\frac{x}{2})] + (\frac{x}{2})$	
	(c)	(i) Solve the system of equation by Gauss Jordan Method $x + 2y + 6z = 22$, $3x+4y+z = 26$ $6x - y - z = 19$	4
		(ii) Solve the system of equation by Gauss Siedel Method. Correct upto three decimal 2x - 4y + 49x - 49 43x + 2y + 25z - 23 3x + 53y + 3z = 91	4
		Prove that $\cos^6 \theta + \sin^6 \theta = \frac{1}{8} [3\cos 4\theta + 5]$	6
5.			6
	(p)		
		if $\lim_{x\to 0} \frac{x(1+a\cos x) - b\sin x}{x^3} = 1$	

(c) (i) If $y = e^x \cos 2x \cos x$ find y_n (ii) If $y = e^{\tan^{-1}x}$ prove that $(1+x^2)y_{n+2} + [2(n+1)x-1]y_{n+1} + n(n+1)y_n = 0$

TURN OVER

2

(a) Find non-Singular Matrices P & Q such that,

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10 \end{bmatrix}$$
 is redued to normal form. Also find rank.

- $(b) \quad \text{If } u = f(e^{y\cdot z},\,e^{z\cdot x},\,e^{x\cdot y}) \text{ find } \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$
- (c) (i) Fit a straight line to the following data :

Year x :	1951	1961	1971	1981	1991
Production y :	10	12	8	10	15

(ii) Fit a second degree parabolic curve to the following data:

I II a second argin i								-	9.	
	x :	1	2	3	4	5	6	7	8	9
	U.	2	6	7	8	10	11	11	10	9