FCC REPORT

Applicant: SENWA MEXICO,S.A.DE C.V

Av. Javier Barros Sierra 540, Torre I, Planta 5; COL. LOMAS DE

Address of Applicant: SANTA FE DELEGACION ALVARO OBREGON C.P. 01210

MEXICO, DISTRITO FEDERAL

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: S750

Trade mark: SENWA

FCC ID: 2AAA6-S750

FCC CFR Title 47 Part 2

Applicable standards: FCC CFR Title 47 Part22 Subpart H

FCC CFR Title 47 Part24 Subpart E

Date of sample receipt: 03 Jan.,2014

Date of Test: 06 Jan., to 16 Jan., 2014

Date of report issued: 16 Jan., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2. Version

Version No.	Date	Description
00	16 Jan., 2014	Original

Prepared by: Date: 16 Jan., 2014

Report Clerk

Reviewed by: Date: 16 Jan., 2014

Project Engineer

3. Contents

			Page
1.	CO	VER PAGE	1
2.	VEF	RSION	2
3.		NTENTS	
4.		ST SUMMARY	
5.	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODES	8
	5.4	RELATED SUBMITTAL(S) / GRANT (S)	
	5.5	TEST METHODOLOGY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	
6.	SYS	STEM TEST CONFIGURATION	10
	6.1	EUT CONFIGURATION	10
	6.2	EUT Exercise	10
	6.3	CONFIGURATION OF TESTED SYSTEM	10
	6.4	DESCRIPTION OF TEST MODES	
	6.5	CONDUCTED OUTPUT POWER	
	6.6	Occupy Bandwidth	
	6.7	MODULATION CHARACTERISTIC	
	6.8 6.9	OUT OF BAND EMISSION AT ANTENNA TERMINALSERP, EIRP MEASUREMENT	
	6.10	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	
	6.11	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	
	6.12	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	
7	TEC	ST SETUP PHOTO	
8	EUT	T CONSTRUCTIONAL DETAILS	56

4. Test Summary

Test Item	Section in CFR 47	Result
RF Exposure (SAR)	Part 1.1307 Part 2.1093	Passed* (Please refer to SAR Report)
RF Output Power	Part 2.1046 Part 22.913 (a)(2) Part 24.232 (c)	Pass
Modulation Characteristics	Part 2.1047	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 22.917 Part 24.238	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 22.917 (a) Part 24.238 (a)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 22.917 (a) Part 24.238 (a)	Pass
Out of band emission, Band Edge	Part 22.917 (a) Part 24.238 (a)	Pass
Frequency stability vs. temperature	Part 2.1055(a)(1)(b)	Pass
Frequency stability vs. voltage	Part 2.1055(d)(1)(2)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5. General Information

5.1 Client Information

Applicant:	SENWA MEXICO,S.A.DE C.V
Address of Applicant:	Av. Javier Barros Sierra 540, Torre I, Planta 5; COL. LOMAS DE SANTA FE DELEGACION ALVARO OBREGON C.P. 01210 MEXICO, DISTRITO FEDERAL
Manufacturer:	Shenzhen Gold Star Group Co., LTD
Address of Manufacturer:	307-308,building B,High-Tech Plaza Phase I,Tian An Cyber Park,Futian Shenzhen,China

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	S750
Trade mark:	SENWA
Operation Frequency range:	GSM 850: 824.20MHz-848.80MHz PCS1900: 1850.20MHz-1909.80MHz WCDMA Band V:826.4MHz-846.6MHz WCDMA Band II:1852.4 MHz -1907.6 MHz
Modulation type:	GSM/GPRS:GMSK, UMTS:QPSK
Antenna type:	Integral Antenna
Antenna gain:	GSM 850: 1.85 dBi PCS 1900:4.88 dBi WCDMA 850 :1.62 dBi WCDMA1900 : 0.36 dBi
AC adapter:	Model:AYANE QS4 Input:100-240V AC,50/60Hz 0.3A Output:5.0V DC MAX1000mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-2000mAh

Operation Frequency List:							
GS	M 850	PCS1900					
Channel:	Frequency (MHz)	Channel:	Frequency (MHz)				
128	824.20	512	1850.20				
129	824.40	513	1850.40				
189	836.40	660	1879.80				
190	836.60	661	1880.00				
191	836.80	662	1880.20				
250	848.60	809	1909.60				
251	848.80	810	1909.80				
WCDN	1A Band V	WCDMA Band II					
Channel:	Frequency (MHz)	Channel:	Frequency (MHz)				
4132	826.40	9262	1852.40				
4133	826.60	9263	1852.60				
4182	836.40	9399	1879.80				
4183	836.60	9400	1880.00				
4184	836.80	9401	1880.20				
4232	846.40	9537	1907.40				
4233	846.60	9538	1907.60				

Regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	GSM850		PCS1900		
	Channel	Frequency(MHz)		Channel	Frequency(MHz)
Lowest channel	128	824.20	Lowest channel	512	1850.20
Middle channel	190	836.60	Middle channel	661	1880.00
Highest channel	Highest channel 251 848.80		Highest channel	810	1909.80
\	NCDMA Band	I V	WCDMA Band II		
	Channel	Frequency(MHz)		Channel	Frequency(MHz)
Lowest channel	west channel 4132 826.40		Lowest channel	9262	1852.40
Middle channel	4183	836.60	Middle channel	9400	1880.00
Highest channel 4233 846.60		Highest channel	9538	1907.60	

5.3 Test modes

Communicate mode (GSM850)	Keep the EUT in communicating mode on GSM 850 band.
Data mode (GPRS850)	Keep the EUT in data communicating mode on GPRS 850 band.
Communicate mode (PCS1900)	Keep the EUT in communicating mode on PCS1900 band.
Data mode (GPRS1900)	Keep the EUT in data communicating mode on GPRS1900 band.
Communicate mode (UMTS 850)	Keep the EUT in communicating mode on UMTS 850 band.
Communicate mode (UMTS 1900)	Keep the EUT in communicating mode on UMTS 1900 band.
Data mode (RMC UMTS 850)	Keep the EUT in data communicating mode on RMC in UMTS 850 (12.2 kbps, 64 kbps, 144 kbps & 384 kbps).
Data mode (HSDPA UMTS 850)	Keep the EUT in data communicating mode on HSDPA in UMTS 850(Sub-test 1~Sub-test 4).
Data mode (HSUPA UMTS 850)	Keep the EUT in data communicating mode on HSDPA in UMTS 850(Sub-test 1~Sub-test 5).
Data mode (RMC UMTS 1900)	Keep the EUT in data communicating mode on RMC in UMTS 850 (12.2 kbps, 64 kbps, 144 kbps & 384 kbps).
Data mode (HSDPA UMTS 1900)	Keep the EUT in data communicating mode on HSDPA in UMTS 1900. (Sub-test 1~Sub-test 4).
Data mode (HSDPA UMTS 1900)	Keep the EUT in data communicating mode on HSDPA in UMTS 1900. (Sub-test 1~Sub-test 5).
Remark :	Pre-test output power of all modes, and found GSM 850, PCS 1900, UMTS 850 12.2 kbps RMC & UMTS 1900 12.2 kbps RMC were the worst case. The details please refer to section 6.5.

5.4 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is filing to comply with Section Part 22 subpart H and Part 24 subpart E of the FCC CFR 47 Rules.

5.5 Test Methodology

Both conducted and radiated testing were performed according to the procedures document on TIA/EIA 603 and FCC CFR 47.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2013	June 08 2014	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	June 04 2013	June 03 2014	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 30 2013	May 29 2014	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2013	Mar. 31 2014	
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2013	Mar. 31 2014	
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2013	Mar. 31 2014	
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2013	Mar. 31 2014	
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2013	Mar. 31 2014	
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2013	Mar. 31 2014	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2013	June 08 2014	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2013	Mar. 31 2014	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2013	Mar. 29 2014	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 29 2013	May. 28 2014	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2013	Mar. 31 2014	
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014	
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 29 2013	May. 28 2014	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 29 2013	May. 28 2014	

6. System test configuration

6.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

6.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency which was for the purpose of the measurements.

6.3 Configuration of Tested System

Remote Side

6.4 Description of Test Modes

The EUT has been tested under operating condition.

EUT staying in continuous transmitting mode. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing.

The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for three modes (GSM850, PCS1900, WCDMA Band V and WCDMA Band II) with power adaptor, earphone and Data cable. The worst-case H mode for GSM850, PCS1900, UMTS 850 and UMTS 1900.

6.5 Conducted Output Power

Test Requirement:	FCC part 22.913(a) and FCC part 24.232(b)				
Test Method:	FCC part 2.1046				
Limit:	GSM 850 7W PCS 1900 2W WCDMA Band V: 7W WCDMA Band II: 2W				
Test setup:	EUT ATT Communication Tester Note: Measurement setup for testing on Antenna connector				
Test Procedure:	The transmitter output was connected to a calibrated attenuator, the other end of which was connected to the CMU200. Transmitter output power was read off in dBm.				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

EUT Mode	Channel	Frequency (MHz)	Burst Average power (dBm)	Limit(dBm)	Result
	128	824.20	32.58		
GSM 850	190	836.60	32.57		
	251	848.80	32.62		
	128	824.20	32.56		
GPRS 850	190	836.60	32.59		
(1 Uplink slot)	251	848.80	32.65		
	128	824.20	31.90		
GPRS 850	190	836.60	31.92	38.45	Pass
(2 Uplink slots)	251	848.80	31.92		
0000000	128	824.20	30.14		
GPRS 850	190	836.60	30.14		
(3 Uplink slots)	251	848.80	30.18		
0000000	128	824.20	29.49		
GPRS 850	190	836.60	29.49		
(4 Uplink slots)	251	848.80	29.48		
	512	1850.20	28.51		
PCS 1900	661	1880.00	28.51		
	810	1909.80	28.65		
0000 4000	512	1850.20	28.46		
GPRS 1900	661	1880.00	28.50		
(1 Uplink slot)	810	1909.80	28.65		
0000 4000	512	1850.20	27.50		
GPRS 1900	661	1880.00	27.54	33.00	Pass
(2 Uplink slots)	810	1909.80	27.63		
CDDC 4000	512	1850.20	25.68		
GPRS 1900	661	1880.00	25.70		
(3 Uplink slots)	810	1909.80	25.83		
CDDC 4000	512	1850.20	24.87		
GPRS 1900	661	1880.00	24.90		
(4 Uplink slots)	810	1909.80	25.01		

			Frequency	Burst Average		_
EUT Mode		Channel	(MHz)	power (dBm)	Limit(dBm)	Result
		4132	826.40	22.35		
	Subtest 1	4183	836.00	22.68		
		4233	846.60	22.67		
		4132	826.40	22.55		
	Subtest 2	4183	836.00	22.66		
UMTS 850		4233	846.60	22.56		
HSDPA		4132	826.40	21.14		
	Subtest 3	4183	836.00	21.38		
		4233	846.60	21.26		
		4132	826.40	21.53		
	Subtest 4	4183	836.00	21.60		Pass
		4233	846.60	21.50		
		4132	826.40	22.67		
	Subtest 1	4183	836.00	22.48	38.45	
		4233	846.60	22.37		
	Subtest 2	4132	826.40	22.55		
		4183	836.00	22.68		
		4233	846.60	22.66		
LINATO 050	Subtest 3	4132	826.40	21.04		
UMTS 850		4183	836.00	21.18		
HSUPA		4233	846.60	21.18		
		4132	826.40	22.66		
	Subtest 4	4183	836.00	22.78		
		4233	846.60	22.65		
		4132	826.40	21.86		
	Subtest 5	4183	836.00	21.99		
		4233	846.60	21.79		
LIMTO OFO		4132	826.40	23.67		
UMTS 850	12.2kbps	4183	836.00	23.24		
RMC		4233	846.60	23.68		
LIMTO OFO		4132	826.40	22.64		
UMTS 850	12.2kbps	4183	836.00	22.49		
AMR		4233	846.60	22.65		

/lode	Channel	Frequency (MHz)	Burst Average	Limit(dBm)	Result
	9262	1852.40	. , ,		
Subtest 1					
Subtest 2					
Subtest 3					
Subtest 4					
Subtest 1					
Cubicot .					
Subtest 2				33.00	Pass
Castoot 2				35.00	1 400
Subtest 3					
Subtest 4					
Oubtoot 4					
Subtest 5					
Oublest 5					
12 2khne					
12.2kuh2					
12.2kbps					
	Subtest 2 Subtest 3 Subtest 4 Subtest 2 Subtest 3 Subtest 3 Subtest 3 Subtest 5	Subtest 1 9262 Subtest 2 9400 9538 9262 Subtest 2 9400 9538 9262 Subtest 3 9400 9538 9262 Subtest 1 9400 9538 9262 Subtest 2 9400 9538 Subtest 2 9400 9538 Subtest 3 9262 Subtest 3 9400 9538 Subtest 4 9400 9538 9262 Subtest 5 9400 9538 12.2kbps 9400 9538 9262 Subtest 5 9400 9538 9262 Subtest 5 9400 9538 9262 Subtest 5 9400 9538 9262	Subtest 1 9262 1852.40 Subtest 2 9400 1880.00 9538 1907.60 9262 1852.40 Subtest 2 9400 1880.00 9538 1907.60 9262 1852.40 Subtest 3 9400 1880.00 9538 1907.60 9262 1852.40 Subtest 4 9400 1880.00 9538 1907.60 9262 1852.40 Subtest 1 9400 1880.00 9538 1907.60 9262 1852.40 Subtest 2 9400 1880.00 9538 1907.60 9262 1852.40 Subtest 3 9400 1880.00 9538 1907.60 9262 1852.40 Subtest 4 9400 1880.00 9538 1907.60 9262 1852.40 Subtest 5 9400 1880.00 9538 1907.60 9262 1852.40 12.2kbps 9400 1880.00	Subtest 1 9262 1852.40 22.38 Subtest 1 9400 1880.00 22.48 9538 1907.60 22.91 9262 1852.40 22.01 Subtest 2 9400 1880.00 22.38 9538 1907.60 22.38 9262 1852.40 21.47 Subtest 3 9400 1880.00 21.53 9538 1907.60 21.95 9262 1852.40 21.31 Subtest 4 9400 1880.00 21.48 9538 1907.60 21.87 9262 1852.40 21.88 Subtest 1 9400 1880.00 22.47 9538 1907.60 22.33 Subtest 2 9400 1880.00 22.57 Subtest 3 9400 1880.00 22.72 9262 1852.40 22.32 Subtest 3 9400 1880.00 21.11 9538 1907.60 22.16	Subtest 1 9262 1852.40 22.38 9538 1907.60 22.91 9262 1852.40 22.01 Subtest 2 9400 1880.00 22.05 9538 1907.60 22.38 9262 1852.40 21.47 Subtest 3 9400 1880.00 21.53 9538 1907.60 21.95 9262 1852.40 21.31 Subtest 4 9400 1880.00 21.48 9538 1907.60 21.87 Subtest 4 9400 1880.00 21.48 9538 1907.60 21.87 Subtest 1 9400 1880.00 22.47 9538 1907.60 22.33 9262 1852.40 22.33 Subtest 2 9400 1880.00 22.47 9538 1907.60 22.55 Subtest 3 9400 1880.00 22.55 Subtest 4 9400 1880.00 22.64 9538 1907.60 22.72 9262 1852.40 22.32 Subtest 3 9400 1880.00 21.11 9538 1907.60 22.16 9262 1852.40 22.63 Subtest 4 9400 1880.00 22.16 9262 1852.40 22.63 Subtest 5 9400 1880.00 21.84 9538 1907.60 22.75 Subtest 5 9400 1880.00 21.84 9538 1907.60 22.75 9262 1852.40 21.82 Subtest 5 9400 1880.00 21.84 9538 1907.60 22.75 9262 1852.40 23.16 12.2kbps 9400 1880.00 23.19 9538 1907.60 23.27 9262 1852.40 23.16 9262 1852.40 23.16 9262 1852.40 23.16 9262 1852.40 23.16

6.6 Occupy Bandwidth

Measurement Data

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (kHz)	-26dB bandwidth (kHz)
GSM 850	128	824.2	244	314
	190	836.6	244	314
	251	848.8	244	322
PCS 1900	512	1850.2	246	322
	661	1880.0	244	316
	810	1909.8	244	322
UMTS850 12.2k RMC	4132	824.40	4180	4700
	4183	836.00	4180	4700
	4233	846.60	4160	4680
UMTS1900 12.2k RMC	9262	1852.40	4180	4720
	9400	1880.00	4180	4700
	9538	1907.60	4160	4680

Note: GSM & GPRS use the same modulation technical (GMSK), and with the same channels, so the 99% OBW and the -26dB of GPRS not performed.

Test plot as follows:

Date: 11.JAN.2014 04:34:53

Lowest channel

Date: 11.JAN.2014 04:36:03

Middle channel

Date: 11.JAN.2014 04:35:26

Highest channel

Date: 11.JAN.2014 04:36:48

Lowest channel

Date: 11.JAN.2014 04:36:28

Middle channel

Date: 11.JAN.2014 05:30:23

Highest channel

Date: 11.JAN.2014 04:42:21

Lowest channel

Date: 11.JAN.2014 04:44:03

Middle channel

Date: 11.JAN.2014 04:43:03

Highest channel

Date: 11.JAN.2014 04:45:58

Lowest channel

Date: 11.JAN.2014 05:32:18

Middle channel

Date: 11.JAN.2014 05:32:02

Highest channel

Date: 11.JAN.2014 04:56:47

Lowest channel

Date: 11.JAN.2014 04:57:46

Middle channel

Date: 11.JAN.2014 04:57:20

Highest channel

Date: 11.JAN.2014 05:22:34

Lowest channel

Date: 11.JAN.2014 05:21:47

Middle channel

Date: 11.JAN.2014 05:22:12

Highest channel

Date: 11.JAN.2014 04:54:13

Lowest channel

Date: 11.JAN.2014 04:52:54

Middle channel

Date: 11.JAN.2014 04:53:41

Highest channel

Date: 11.JAN.2014 05:20:36

Lowest channel

Date: 11.JAN.2014 05:21:16

Middle channel

Date: 11.JAN.2014 05:20:59

Highest channel

6.7 Modulation Characteristic

According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

6.8 Out of band emission at antenna terminals

Test plots as follows:

30MHz~1GHz 1GHz~9GHz

30MHz~1GHz 1GHz~9GHz

30WINZ~TGNZ

30MHz~1GHz 1GHz~20GHz

30MHz~1GHz 1GHz~20GHz

30MHz~1GHz 1GHz~20GHz

30MHz~1GHz 1GHz~9GHz

30MHz~1GHz 1GHz~9GHz

30MHz~1GHz 1GHz~20GHz

30MHz~1GHz 1GHz~20GHz

30MHz~1GHz 1GHz~20GHz

Band edge emission:

Date: 11.JAN.2014 04:38:36

Lowest channel

Date: 11.JAN.2014 04:38:09

Highest channel

Date: 11.JAN.2014 04:47:24

Lowest channel

Date: 11.JAN.2014 04:46:48

Highest channel

Date: 11.JAN.2014 04:59:33

Lowest channel

Date: 11.JAN.2014 05:00:44

Highest channel

Date: 11.JAN.2014 04:55:37

Lowest channel

Date: 11.JAN.2014 04:55:59

Highest channel

6.9 ERP, EIRP Measurement

Test Requirement: FCC part 22.913(a) and FCC part 24.232(b) FcC part 2.1046 Limit: GSM850 7W ERP PCS1900 2W EIRP WCDMA Band V: 7W ERP WCDMA Band II: 2W EIRP Test setup: Below 1GHz Antenna Towar	6.9 ERP, EIRP Measurei	ment		
Limit: GSM850 7W ERP PCS1900 2W EIRP WCDMA Band V: 7W ERP WCDMA Band II: 2W EIRP Below 1GHz Antenna Tower Ground Plane Antenna Tower Antenna Tower Iller Antenna Antenna Tower	Test Requirement:	FCC part 22.913(a) and FCC part 24.232(b)		
PCS1900 2W EIRP WCDMA Band V: 7W ERP WCDMA Band II: 2W EIRP Test setup: Below 1GHz Antenna Tower Antenna Tower Antenna Tower Antenna Tower Item and the Antenna Tower Antenna Towe	Test Method:	FCC part 2.1046		
Antenna Tower Search Antenna Reveiver Ground Plane Above 1GHz Antenna Tower	Limit:	PCS1900 2W EIRP WCDMA Band V: 7W ERP		
Search Antenna RF Test Receiver Tum 0, Nm 1m	Test setup:	Below 1GHz		
Substituted Dipole or Horn Antenna Bi-Log Antenna or Horn Antenna		Antenna Tower Search Antenna RF Test Receiver Ground Plane Antenna Tower Horn Antenna Spectrum Analyzer Antenna mast d: distance in meters d: 3 meter Span Search Antenna RF Test Receiver Antenna Tower Horn Antenna Antenna mast d: distance in meters Span Span		

Test Procedure:	1. The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.
	 During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength (E in dBuV/m) was calculated.
	3. ERP in frequency band 824.2 –848.80.8MHz were measured using a substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follows:
	ERP = S.G. output (dBm) + Antenna Gain (dBd) – Cable Loss (dB)
	4. EIRP in frequency band 1850.2 –1909.8MHz were measured using a substitution method. The EUT was replaced by or horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:
	EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable Loss (dB)
	5. The worse case was relating to the conducted output power.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data (worst case)

EUT mode	Channel	EUT Pol.	Antenna Pol.	ERP(dBm)	Limit (dBm)	Result
			V	32.87		
		Н	Н	26.22		
			V	30.82		
GSM850	251	E1	Н	25.36	38.45	Pass
			V	30.75		
		E2	Н	25.30		

EUT mode	Channel	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result
			V	27.28		
		Н	Н	20.09		
			V	27.16		_
PCS1900	810	E1	Н	19.56	33.00	Pass
			V	26.58		
		E2	Н	18.63		

EUT mode	Channel	EUT Pol.	Antenna Pol.	ERP(dBm)	Limit (dBm)	Result
			V	22.58		
		Н	Н	15.00		
UMTS 850	4000	- .	V	22.03	00.45	_
12.2k RMC	4233	E1	Н	14.36	38.45	Pass
		5 0	V	21.06		
		E2	Н	14.09		

EUT mode	Channel	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result
			V	19.29		
		Н	Н	12.54		
UMTS 1900			V	18.26		_
12.2k RMC	9538	E1	Н	11.38	33.00	Pass
			V	17.69		
		E2	Н	10.69		

6.10 Field strength of spurious radiation measurement

	 was determined using the substitution method. 4. The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency. ERP / EIRP = S.G. output (dBm) + Antenna Gain(dB/dBi) – Cable Loss (dB)
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details. Based on the ERP/EIRP results, we selected GSM850, PCS1900, UMTS RMC 850 and UMTS RMC 1900 for Radiated spurious emission test, other modes were not test.
Test results:	Passed

Measurement Data (worst case)

Test mode:	,	1850	Test channel:	Lowest
	Spurious	Emission		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
1648.40	Vertical	-51.31		
2472.60	V	-49.74		
3296.80	V		40.00	
4121.00	V		-13.00	Pass
4945.20	V			
5769.40	V			
1648.40	Horizontal	-54.68		
2472.60	Н	-40.77		
3296.80	Н		40.00	_
4121.00	Н		-13.00	Pass
4945.20	Н			
5769.40	Н			
Test mode:	GSN	1850	Test channel:	Middle
	GSN Spurious			
Test mode: Frequency (MHz)			Limit (dBm)	Middle Result
	Spurious	Emission		
Frequency (MHz)	Spurious Polarization	Emission Level (dBm)		
Frequency (MHz)	Spurious Polarization Vertical	Emission Level (dBm) -51.25	Limit (dBm)	Result
Frequency (MHz) 1673.20 2509.80	Spurious Polarization Vertical V	Emission Level (dBm) -51.25		
Frequency (MHz) 1673.20 2509.80 3346.40	Spurious Polarization Vertical V	Emission Level (dBm) -51.25	Limit (dBm)	Result
Frequency (MHz) 1673.20 2509.80 3346.40 4183.00	Spurious Polarization Vertical V V V	Emission Level (dBm) -51.25	Limit (dBm)	Result
Frequency (MHz) 1673.20 2509.80 3346.40 4183.00 5019.60	Spurious Polarization Vertical V V V V	Emission Level (dBm) -51.25	Limit (dBm)	Result
Frequency (MHz) 1673.20 2509.80 3346.40 4183.00 5019.60 5856.20	Spurious Polarization Vertical V V V V V	Emission Level (dBm) -51.25 -49.33	Limit (dBm)	Result
Frequency (MHz) 1673.20 2509.80 3346.40 4183.00 5019.60 5856.20 1673.20	Spurious Polarization Vertical V V V V V Horizontal	Emission Level (dBm) -51.25 -49.33 -54.25	-13.00	Result Pass
Frequency (MHz) 1673.20 2509.80 3346.40 4183.00 5019.60 5856.20 1673.20 2509.80	Spurious Polarization Vertical V V V V V Horizontal H	Emission Level (dBm) -51.25 -49.33 -54.25 -40.74	Limit (dBm)	Result
Frequency (MHz) 1673.20 2509.80 3346.40 4183.00 5019.60 5856.20 1673.20 2509.80 3346.40	Spurious Polarization Vertical V V V V V Horizontal H H	Emission Level (dBm) -51.25 -49.33 -54.25 -40.74	-13.00	Result Pass

Remark:

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. Remark"---" means that the emission level is too low to be measured
- 3. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Test mode:	GSN	/ 1850	Test channel:	Highest
	Spurious	Emission		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
1697.60	Vertical	-51.24		
2546.40	V	-49.67		
3395.20	V			_
4244.00	V		-13.00	Pass
5092.80	V			
5941.60	V			
1697.60	Horizontal	-54.87		
2546.40	Н	-40.54		
3395.20	Н			Pass
4244.00	Н		-13.00	
5092.80	Н			
5941.60	Н			
Test mode:	PCS	1900	Test channel:	Lowest
F (A.411.)	Spurious	Emission	Livit (JD v)	D II
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
3700.40	Vertical	-39.54		
5550.60	V	-38.53		
7400.80	V		40.00	6
9251.00	V		-13.00	Pass
11101.20	V			
12951.40	V			
3700.40	Horizontal	-44.45		
5550.60	Н	-39.97		
7400.80	Н		40.00	D.
9251.00	Н		-13.00	Pass
11101.20	Н			
11101.20	11		_	

Remark:

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. Remark"---" means that the emission level is too low to be measured
- 3. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Test mode:	PCS	1900	Test channel:	Middle
	Spurious	Emission		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
3760.00	Vertical	-39.58		
5640.00	V	-38.65		
7520.00	V			_
9400.00	V		-13.00	Pass
11280.00	V			
13160.00	V			
3760.00	Horizontal	-44.18		
5640.00	Н	-39.74		
7520.00	Н			
9400.00	Н		-13.00	Pass
11280.00	Н			
13160.00	Н			
Test mode:	PCS	1900	Test channel:	Highest
(NALL_)	Spurious	Emission	Lineit (dDne)	Dazult
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
3819.60	Vertical	-39.67		
5729.40	V	-38.41		
7639.20	V		40.00	Dana
9549.00	V		-13.00	Pass
11458.80	V			
13368.60	V			
3819.60	Horizontal	-44.67		
5729.40	Н	-39.71		
7639.20	Н		40.00	Dess
9549.00	Н		-13.00	Pass
11458.80	Н			
13368.60	Н			

Remark:

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. Remark"---" means that the emission level is too low to be measured
- 3. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Test mode:	UMTS850	12.2k RMC	Test channel:	Lowest
		Emission		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
1652.80	Vertical	-50.54		
2479.20	V	-49.74		
3305.60	V			_
4132.00	V		-13.00	Pass
4958.40	V			
5784.80	V			
1652.80	Horizontal	-54.84		
2479.20	Н	-49.87		
3305.60	Н			
4132.00	Н		-13.00	Pass
4958.40	Н			
5784.80	Н			
Test mode:	UMTS850	12.2k RMC	Test channel:	Middle
	Spurious	Spurious Emission		5 "
Frequency (MHz)			I I Imit (dRm)	Result
(11112)	Polarization	Level (dBm)	Limit (dBm)	resuit
1673.20	Polarization Vertical	Level (dBm) -50.75	Limit (dBiri)	result
				result
1673.20	Vertical	-50.75	_	
1673.20 2509.80	Vertical V	-50.75	-13.00	Pass
1673.20 2509.80 3346.40	Vertical V V	-50.75 -49.36 	_	
1673.20 2509.80 3346.40 4183.00	Vertical V V	-50.75 -49.36 	_	
1673.20 2509.80 3346.40 4183.00 5019.60	Vertical V V V V	-50.75 -49.36 	_	
1673.20 2509.80 3346.40 4183.00 5019.60 5856.20	Vertical V V V V	-50.75 -49.36 	_	
1673.20 2509.80 3346.40 4183.00 5019.60 5856.20 1673.20	Vertical V V V V V Horizontal	-50.75 -49.36 -54.84	-13.00	Pass
1673.20 2509.80 3346.40 4183.00 5019.60 5856.20 1673.20 2509.80	Vertical V V V V V Horizontal	-50.75 -49.36 -54.84 -49.69	_	
1673.20 2509.80 3346.40 4183.00 5019.60 5856.20 1673.20 2509.80 3346.40	Vertical V V V V V Horizontal H	-50.75 -49.3654.84 -49.69	-13.00	Pass

Test mode:	UMTS850	12.2k RMC	Test channel:	Highest
- (111)	Spurious	Emission		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
1693.20	Vertical	-51.21		
2539.80	V	-49.63		
3386.40	V			Pass
4233.00	V		-13.00	
5079.60	V			
5926.20	V			
1693.20	Horizontal	-54.22		
2539.80	Н	-49.65		
3386.40	Н			_
4233.00	Н		-13.00	Pass
5079.60	Н			
5926.20	Н			

Remark:

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. Remark"---" means that the emission level is too low to be measured
- 3. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Test mode:	UMTS 1900	12.2k RMC	Test channel:	Lowest
		Emission	1900 0111111111111111111111111111111111	
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
3704.80	Vertical	-53.65		
5557.20	V	-48.87		
7409.60	V			
9262.00	V		-13.00	Pass
11114.40	V			
12966.80	V			
3704.80	Horizontal	-55.12		
5557.20	Н	-49.33		
7409.60	Н			
9262.00	Н		-13.00	Pass
11114.40	Н			
12966.80	Н			
Test mode:	UMTS 1900	12.2k RMC	Test channel:	Middle
			Tool on an inten	maaro
F (A411.)	Spurious	Emission		
Frequency (MHz)	Spurious Polarization		Limit (dBm)	Result
Frequency (MHz) 3760.00	•	Emission		
, , , ,	Polarization	Emission Level (dBm)		
3760.00	Polarization Vertical	Emission Level (dBm) -53.67	Limit (dBm)	Result
3760.00 5640.00	Polarization Vertical V	Emission Level (dBm) -53.67		
3760.00 5640.00 7520.00	Polarization Vertical V	Emission Level (dBm) -53.67 -49.41	Limit (dBm)	Result
3760.00 5640.00 7520.00 9400.00	Polarization Vertical V V	Emission Level (dBm) -53.67 -49.41	Limit (dBm)	Result
3760.00 5640.00 7520.00 9400.00 11280.00	Polarization Vertical V V V	Emission Level (dBm) -53.67 -49.41	Limit (dBm)	Result
3760.00 5640.00 7520.00 9400.00 11280.00 13160.00	Polarization Vertical V V V V V	Emission Level (dBm) -53.67 -49.41	Limit (dBm)	Result
3760.00 5640.00 7520.00 9400.00 11280.00 13160.00 3760.00	Polarization Vertical V V V V V V Horizontal	Emission Level (dBm) -53.67 -49.41 -55.74	-13.00	Result Pass
3760.00 5640.00 7520.00 9400.00 11280.00 13160.00 3760.00 5640.00	Polarization Vertical V V V V V Horizontal H	Emission Level (dBm) -53.67 -49.41 -55.74 -49.55	Limit (dBm)	Result
3760.00 5640.00 7520.00 9400.00 11280.00 13160.00 3760.00 5640.00 7520.00	Polarization Vertical V V V V V Horizontal H H	Emission Level (dBm) -53.67 -49.41 -55.74 -49.55	-13.00	Result Pass

Test mode:	UMTS 1900 12.2k RMC		Test channel:	Highest	
Fraguerou (MIII-)	Spurious Emission		Limit (dDm)	Danill	
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
3815.20	Vertical	-53.74			
5722.80	V	-49.37			
7630.40	V		40.00	Pass	
9538.00	V		-13.00		
11445.60	V				
13353.20	V				
3815.20	Horizontal	-55.33			
5722.80	Н	-49.74			
7630.40	Н				
9538.00	Н		-13.00	Pass	
11445.60	Н				
13353.20	Н				

Remark:

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. Remark"---" means that the emission level is too low to be measured
- 3. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

6.11 Frequency stability V.S. Temperature measurement

Test Requirement:	FCC Part 2.1055(a)(1)(b)
Test Method:	FCC Part 2.1055(a)(1)(b)
Limit:	2.5 ppm
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply
	Note: Measurement setup for testing on Antenna connector
Test procedure:	 The equipment under test was connected to an external DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All three channels of all modulations have been tested, but only the worst channel and the worst modulation show in this test item.

Measurement Data:

Measurement Data:					
Refe	erence Frequency: G	SM850 Midd	lle channel=190 channe	el=836.6MHz	
Dower aupplied (\/de)	Temperature (°C)	Frequency error		12-21-6-2-2	5
Power supplied (Vdc)		Hz	ppm	Limit (ppm)	Result
	-30	156	0.186469		
	-20	143	0.170930		
	-10	140	0.167344		Pass
	0	139	0.166149		
3.70	10	115	0.137461	2.5	
	20	126	0.150610		
	30	128	0.153000		
	40	130	0.155391		
	50	122	0.145828		
Refe	erence Frequency: P0	CS1900 Mid	dle channel=661 chann	el=1880MHz	
_	- (00)	Frequency error			
Power supplied (Vdc)	Temperature (°C)	Hz	ppm		Result
	-30	150	0.079787		Pass
	-20	146	0.077660	2.5	
	-10	136	0.072340		
3.70	0	126	0.067021		
	10	119	0.063298		
	20	109	0.057979		
	30	136	0.072340		
	40	140	0.074468		
	50	126	0.067021		

Reference Frequency: UMTS850 12.2k RMC Middle channel=4183 channel=836.6MHz					
		Frequency error			
Power supplied (Vdc)		Hz	ppm	Limit (ppm)	Result
	-30	130	0.155391		Pass
	-20	146	0.174516		
	-10	139	0.166149		
	0	119	0.142242		
3.70	10	102	0.121922	2.5	
	20	99	0.118336		
	30	115	0.137461		
	40	125	0.149414		
	50	93	0.111164		
Reference F	requency: UMTS190	0 12.2k RM	IC Middle channel=940	0 channel=1880	MHz
Daniel and Color	Tomorotium (°C)	Frequency error		Limit (none)	Dogult
Power supplied (Vdc)	Temperature (℃)	Hz	ppm	Limit (ppm)	Result
	-30	147	0.078191	2.5	Pass
	-20	136	0.072340		
	-10	129	0.068617		
	0	103	0.054787		
3.70	10	108	0.057447		
	20	122	0.064894		
	30	129	0.068617		
	40	117	0.062234		
	50	106	0.056383		

6.12 Frequency stability V.S. Voltage measurement

Test Requirement:	FCC Part 2.1055(d)(1)(2)
Test Method:	FCC Part 2.1055(d)(1)(2)
Limit:	2.5ppm
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector
Test procedure:	 Set chamber temperature to 25°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-15%) and endpoint, record the maximum frequency change.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.
Test results:	Passed

Measurement Data (the worst channel):

Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz							
Temperature (℃)	Power supplied	Frequency error		Limit (ppm)	Result		
	(Vdc)	Hz	ppm	Епти (ррпп)	rtoour		
	4.25	130	0.155391				
25	3.70	112	0.133875	2.5	Pass		
	3.40	108	0.129094				
Refe	Reference Frequency: PCS1900 Middle channel=661 channel=1880MHz						
Temperature (°C)	Power supplied	Frequency error		Limeit (mmma)	Dooult		
	(Vdc)	Hz	ppm	Limit (ppm)	Result		
	4.25	126	0.067021				
25	3.70	113	0.060106	2.5	Pass		
	3.40	96	0.051064				

Reference Frequency: UMTS 850 12.2k RMC Middle channel=4183 channel=836.6MHz							
Tomporoturo (°C)	Power supplied	Frequency error		Lineit (none	Dazult		
Temperature (°C)	(Vdc)	Hz	ppm	Limit (ppm)	Result		
	4.25	85	0.101602				
25	3.70	103	0.123117	2.5	Pass		
	3.40	96	0.114750				
Reference F	Reference Frequency: UMTS 1900 12.2k RMC Middle channel=9400 channel=1880MHz						
Temperature (℃)	Power supplied	Frequency error			Danult		
	(Vdc)	Hz	ppm	Limit (ppm)	Result		
	4.25	75	0.039894				
25	3.70	95	0.050532	2.5	Pass		
	3.40	56	0.029787				