Computer Vision and Machine Learning

(Neural Network-2)

Bhabatosh Chanda bchanda57@gmail.com

What are Artificial Neural Networks?

- Mimics the function of the brain and nervous system
- Highly parallel
 - Process information much more like the brain than a serial computer
- Learning
- Very simple principles
- Very complex behaviours

5/28/2023

Function of a node

- At node $\hbox{Output } O = \sigma(\sum w_i x_i)$ where $\sigma(.)$ is a squashing function.
- Squashing function limits node output.

Node

5/28/2023

Neural Networks: History

- McCulloch & Pitts (1943) are generally recognised as the designers of the first neural network
- Many of their ideas still used today (e.g. many simple units combine to give increased complexity and the idea of a threshold).
- 1949-First learning rule

5/28/2023

- 1969-Minsky & Papert perceptron limitation Death of ANN
- 1980's Re-emergence of ANN multi-layer networks

Theory of Back Propagation Neural Net (BPNN)

- Use many samples to train the weights (W), so it can be used to classify an unknown input into different classes.
- Will explain
 - How to use it after training: forward pass (classification or recognition of the input).
 - How to train it: how to train the weights and biases (using forward and backward passes).

Neural Networks Ch9. , ver. 9b

The First Neural Networks

Neuron is a McCulloch-Pitts network are connected by directed, weighted paths.

5/28/2023

Data

- Input data is presented to the network in the form of activations in the input layer
- Examples
 - Pixel intensity (for pictures)
 - Share prices (for stock market prediction)
- Data usually requires pre-processing
 - · Analogous to senses in biology
- How to represent more abstract data, e.g. a label?
 - Choose a pattern, e.g., 0-0-0-1-0-0-0-0 for "digit 5"

5/28/2023

Loss function or Error or Cost function

- Training sample is composed of
 - Input data (feature vector) and
 - Actual class label (also known as groundtruth)
- Given the input, feed forward network predicts class label
 - based on current parameters
 - Loss or error or cost is measured as total deviation from groundtruth

Cost or Loss or Error: $E(\mathbf{w}) = \sum (Predicted \ | abel - Actual \ | abel)^2$ where \mathbf{w} is parameter vector.

18

Training the network

- Means setting correct weights (including bias) or parameters of the network.
- Backpropagation
 - Requires training set (input / output pairs)
 - Starts with small random weights
 - Compute error between predicted label and actual label (groundtruth)
 - Error is used to adjust weights (supervised learning)
 - → Gradient descent on error landscape

Training the network

- Means setting correct weights (including bias) or parameters of the network.
- Backpropagation
 - Requires training set (input / output pairs)
 - Starts with small random weights
 - Compute error between predicted label and actual label (groundtruth)
 - Error is used to adjust weights (supervised learning)
 - → Gradient descent on error landscape

E(w)

5/28/2023

5/28/2023

Maths: Weight setting by gradient descent

- Error function: $E(w) = \frac{1}{2n} \sum_{x} ||y(x, w) a_x||^2$
- A small change in error E may be given by

$$\Delta E \approx \frac{\partial E}{\partial w_1} \Delta w_1 + \frac{\partial E}{\partial w_2} \Delta w_2 = \left(\frac{\partial E}{\partial w_1} - \frac{\partial E}{\partial w_2}\right)^T \cdot \left(\Delta w_1 - \Delta w_2\right)^T = \nabla E \cdot \Delta w$$

- Let $\Delta w = -\eta \nabla E$ which implies $\Delta E = -\eta \| \nabla E \|^2 \le 0$
- This suggests updating weights as $w_k^{(t+1)} = w_k^{(t)} \eta \frac{\partial E}{\partial w_k}$

5/28/2023

21

Time requirement

- Error function: $E(\mathbf{w}) = \frac{1}{2n} \sum_{\mathbf{x}} ||\hat{y}(\mathbf{x}, \mathbf{w}) y(\mathbf{x})||^2$
- This suggests updating weights as $w_k^{(t+1)} = w_k^{(t)} \eta \, \frac{\partial E}{\partial w_k}$
- Error due to individual input x, $E_x = \frac{||\hat{y}(x,w) y(x)||^2}{2}$ and $E(w) = \frac{1}{n} \sum_x E_x$
- This implies that error due to all inputs are computed before updating the weights.
 - Huge training time is needed if *n* is large (which is the case always).

23

Weight setting by stochastic gradient descent

- To speed up the training process, stochastic gradient descent may be adopted.
 - Randomly $m \ll n$ samples from the training data set may be picked up.
 - Suppose these samples are \widetilde{x}_1 , \widetilde{x}_2 , \widetilde{x}_3 , ..., \widetilde{x}_m .
- Error due to individual input \widetilde{x}_i , $E_{\widetilde{x}_i} = \frac{||\widehat{y}(\widetilde{x}_i, w) y(\widetilde{x}_i)||^2}{2}$ and

$$\tilde{E}(\mathbf{w}) = \frac{1}{m} \sum_{i} E_{\widetilde{\mathbf{x}}_{i}}$$

• If m is sufficiently large, $\tilde{E}(w) \approx E(w)$

Training the network: Example

/28/2023

Feed-forward nets

- · Information flow is unidirectional
 - Data is presented to Input layer
 - Passed on to Hidden Layer
 - Passed on to Output layer
- · Information is distributed
- · Information processing is parallel
- True while testing new data

5/28/2023

Example: node function

• Feeding data through the net:

 $(1 \times 0.25) + (0.5 \times (-1.5)) = 0.25 + (-0.75) = -0.5$

Squashing:

$$\frac{1}{1+e^{0.5}} = 0.3775$$

5/28/2023

Machine learning network

Machine learning models for classification have followings are common:

- *Input layer:* quantitative representation of object features
- Hidden layer(s): apply transformations with nonlinearity
- Output layer: Result for classification, regression etc.
- The models are trained through *supervised learning*.
 - Training data are explicitly labelled (known output).
 - Weights are updated to minimize error between prediction and the groundtruth.

Different Non-Linearly Separable Problems

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	(A) (B) (B) (A)	B	

Backpropagation

- Algorithm proposed in 1970.
- Became convincingly popular in 1986 due to a paper by <u>David</u> <u>Rumelhart</u>, <u>Geoffrey Hinton</u>, and <u>Ronald Williams</u>.
- At the core of backpropagation is an expression for the partial derivative of Error function with respect to weights, i.e., $\frac{\partial E}{\partial w}$

Intro 2 ML

9

Weights of neural network

 w^l_{jk} is the weight from the $k^{\rm th}$ neuron in the $(l-1)^{\rm th}$ layer to the $j^{\rm th}$ neuron in the $l^{\rm th}$ layer

w^{to} the layer to neuron, from neuron

Intro 2 ML

Output of i-th node at the l-th layer

- Input to l-th layer is coming from (l-1)-th layer, i.e., $y^{(l-1)}$.
- Suppose there are K nodes in the (l-1)-th layer.

•
$$\mathbf{y}^{(l-1)} = \left(1, \ y_1^{(i-1)}, y_2^{(l-1)}, y_3^{(l-1)}, \dots, y_{K-1}^{(l-1)}\right)^T$$

- Weight of the connection from k-th node of the (l-1)-th layer to the j-th node of the l-th layer is $w_{ik}^{(l)}$.
 - $\mathbf{w}_{j}^{(l)} = \left(w_{j0}^{(l)}, w_{j1}^{(l)}, w_{j2}^{(l)}, ..., w_{jK-1}^{(l)}\right)^{T}$, where $w_{j0}^{(l)}$ is the weight to the bias.

Intro 2 ML

Output of j-th node at the l-th layer

ullet Output of the j-th node at the l-th layer is

$$y_j^{(l)} = \sigma\left(\left(\boldsymbol{w}_j^{(l)}\right)^T \boldsymbol{y}^{(l-1)}\right)$$

where $l=1,2,3,\ldots,L$ and that means the NN has L-1 hidden layers.

- Note that at the input layer, i.e., $\mathbf{y}^{(0)} = \mathbf{x}$ and output is $\mathbf{y}^{(L)} = \widehat{\mathbf{y}}$.
- Let us decompose $y_j^{(l)} = \sigma\left(\left(\mathbf{w}_j^{(l)}\right)^T \mathbf{y}^{(l-1)}\right)$ into

$$y_j^{(l)} = \sigma\left(z_j^{(l)}\right)$$
 where $z_j^{(l)} = \sum_k w_{jk}^{(l)} y_k^{(l-1)}$

Intro 2 ML

Chain rule to compute

ullet Considering single output node, rewrite $y_j^{(l)} = \sigma \left(\left(m{w}_j^{(l)} \right)^T m{y}^{(l-1)}
ight)$ as

$$y_j^{(l)} = \sigma\left(z_j^{(l)}\right)$$
 where $z_j^{(l)} = \sum_k w_{jk}^{(l)} y_k^{(l-1)}$

• Following the chain rule:

$$\begin{split} \hat{y}(\boldsymbol{x}, \boldsymbol{w}) &= y^{(L)} = \sigma \left(\sum_{k} w_{jk}^{(L)} y_{k}^{(L-1)} \right) \\ &= \sigma \left(\sum_{k} w_{jk}^{(L)} \sigma \left(z_{k}^{(L-1)} \right) \right) \\ &= \sigma \left(\sum_{k} w_{jk}^{(L)} \sigma \left(\sum_{m} w_{km}^{(L-1)} y_{m}^{(L-2)} \right) \right) \; \cdots \end{split}$$

Intro 2 ML

33

Derivative of function of functions

- Suppose we have $f(x) = log_e(sin(x^2))$
- Consider $f(x) = f_1(y)$ where $y = sin(x^2)$
- then $y = f_2(z)$ where $z = x^2$
- then $z = f_3(x)$
- Thus $f(x) = f_1(y) \Rightarrow f(x) = f_1(f_2(z)) \Rightarrow f(x) = f_1(f_2(f_3(x)))$
- $\frac{df}{dx} = \frac{df_1}{df_2} \frac{df_2}{df_3} \frac{df_3}{dx}$ OR $\frac{df}{dx} = \frac{df}{dy} \frac{dy}{dz} \frac{dz}{dx}$ OR $\frac{df}{dx} = \frac{1}{\sin(x^2)} \cos(x^2) 2x$

Intro 2 ML

2.4

Backpropagation

• We do not have groundtruth at the output of every layer, except the final layer, change in weight at any layer is related to the change in error ΔE as

$$\Delta E = \frac{\partial E}{\partial w_{jk}^{(l)}} \Delta w_{jk}^{(l)}$$

Recall that

$$\hat{y}(\boldsymbol{x}, \boldsymbol{w}) = y^{(L)} = \sigma \left(\sum_{k} w_{jk}^{(L)} \sigma \left(\sum_{m} w_{km}^{(L-1)} y_{m}^{(L-2)} \right) \right) \cdots$$

Backpropagation (contd.)

• However, to compute total change in error ΔE due to change in weights of k-th node of (l-1)-th layer connected to the j-th node of l-th layer, it is plausible that we should sum over all possible paths from k-th node of the (l-1)-th layer to the final layer, i.e.,

$$\Delta E \approx \sum_{mnp...qr} \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_p^{(L-2)}} \cdots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial w_{jk}^{(l)}} \Delta w_{jk}^{(l)}$$

ntro 2 ML

Backpropagation (contd.)

• Now combining following two equations:

$$\Delta E = rac{\partial E}{\partial w_{jk}^{(l)}} \Delta w_{jk}^{(l)}$$
 and

$$\Delta E \approx \sum_{mnp\dots qr} \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_p^{(L-2)}} \cdots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial w_{ik}^{(l)}} \Delta w_{jk}^{(l)}$$

· We obtain

$$\frac{\partial E}{\partial w_{jk}^{(l)}} = \sum_{mnp\dots qr} \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_p^{(L-2)}} \cdots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial w_{jk}^{(l)}}$$

Intro 2 ML

Updating weight

- Error function: $E(\mathbf{w}) = \frac{1}{2n} \sum_{\mathbf{x}} ||\hat{y}(\mathbf{x}, \mathbf{w}) y(\mathbf{x})||^2$ where $\hat{y}(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{k} w_{jk}^{(l)} \sigma \left(\sum_{m} w_{km}^{(l-1)} y_{m}^{(l-2)} \right) \right) \cdots$
- Earlier we had (for single layer): $w_k^{(t+1)} = w_k^{(t)} \eta \, \frac{\partial \mathit{E}}{\partial w_k}$
- Now updating weight from k-th node of (l-1)-th layer to j-th node of l-th layer as

$$w_{jk}^{(l)(t+1)} = w_{jk}^{(l)(t)} - \eta \frac{\partial E}{\partial w_{jk}^{(l)(t)}}$$

Intro 2 ML

Standard activation functions

- The hard-limiting threshold function
 - Corresponds to the biological paradigm
 - either fires or not (Perceptron)
- Sigmoid functions ('S'-shaped curves)
 - The hyperbolic tangent (symmetrical)
 - Both functions have a simple differential
 - Only the shape is important (Neuron)

ı

Sigmoid function

- Sigmoid function
 - may be expressed as

$$\sigma(z) = \frac{1}{1 + e^{-\alpha z}}$$

- is one of the most popular activation function.
- squashes the input value between 0 and 1.
- is smooth and differentiable.
- maximum slope is at z=0

Intro 2 ML

Derivative of sigmoid function

- We have $y = \sigma(z) = \frac{1}{1+e^{-\alpha z}}$
- Derivative of $\sigma(z)$ at z=0 may be written as

$$\frac{d\sigma}{dz}|_{z=0} = \frac{e^{-\alpha}}{(1+e^{-\alpha z})^2}|_{z=0} = \frac{1}{(1+1)^2} = 0.25$$

Intro 2 ML

• This is the maximum value of gradient for any z.

Multilayer neural network: Example Output laver

Vanishing gradient problem

- Number of layers are usually approximates the degree of polynomial function it can realize.
- However, more layers means more neurons and consequently more time to train
- Second, since the derivative of the activation function (resulting in output at each layer) ≤ 0.25 ,

$$\frac{\partial E}{\partial w_{ik}^{(l)}} = \sum_{mn} \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_n^{(L-2)}} \cdots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial w_{ik}^{(l)}}$$

- May tend to zero. This is known as vanishing gradient problem.
- This problem is more evident as we deeper layers from output input.

Vanishing gradient problem

• Recall the weight updating rule
$$w_{jk}^{(l)(t+1)} = w_{jk}^{(l)(t)} - \eta \, \frac{\partial E}{\partial w_{jk}^{(l)(t)}}$$

• If
$$\frac{\partial E}{\partial w_{jk}^{(l)(t)}} o 0$$
, we have $w_{jk}^{(l)(t+1)} pprox w_{jk}^{(l)(t)}$

- The first layers are supposed to carry most of the information, but we see it gets trained the least.
- Hence, the problem of vanishing gradient eventually leads to the death of the network.

Exploding gradient problem

- Suppose vanishing gradient problem does not occur.
- Then $\frac{\partial E}{\partial w_{jk}^{(l)}} = \sum_{mn} \dots_{qr} \frac{\partial E}{\partial y_m^{(L)}} \frac{\partial y_m^{(L)}}{\partial y_n^{(L-1)}} \frac{\partial y_n^{(L-1)}}{\partial y_p^{(L-2)}} \dots \frac{\partial y_q^{(l+1)}}{\partial y_r^{(l)}} \frac{\partial y_r^{(l)}}{\partial w_{jk}^{(l)}}$ implies that
- $\frac{\partial E}{\partial w_{jk}^{(l)}}$ is a sum of gradient magnitude along $m \times n \times p \times \cdots \times q \times r$ number of paths, where each gradient is greater than 0.
- Thus this sum could be significantly high resulting in exploding gradient problem.

Activation function (non-linear)

- Rectified Linear Unit (ReLU): y = max(0, x)
 - Softplus function: $y = \log(1 + e^x)$

• Leaky ReLU:

5/28/2023

Some hyperparameters

- **Epoch:** Suppose there are n samples in the training set. Passing (or using) all n samples to train the network is known as one epoch.
 - To train the network we need pass the training samples over and over again.
 - As the number of epoch increases network upgrades from underfitting to optimum to overfitting.
- Batch: If n is large, training set is divided into small batches or groups or sets of training data. Batch size is the number of training samples, say m, in each batch.
- *Iteration:* The number of batches that are passed through the network to complete one epoch, *i.e.*, n/m.

ntro 2 ML

Batch normalization

- As the training progresses the network encounters (or being feed into) newer data
 - The statistical distribution of the input data keeps changing.
 - The statistical distribution of the input data in different batches are different.
 - This reduces training efficiency.
- The input samples (in every batch) are normalized before feeding it into the network.
 - The mean and variance of all such batches, instead of the entire data, are computed.
 - This is known as batch normalization.

Intro 2 ML

49

Dropout

- This is used to overcome the overfitting problem.
- Often certain nodes in the network are randomly switched off, from some or all the layers of a neural network.
 - · Hence, in every iteration, we get a new network.
 - The resulting network (obtained at the end of training) is a combination of all of them.
 - This is an way of implementing the regularization.

Intro 2 ML

Thank you! Any question?

Intro 2 M