

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

MATEMÁTICAS PARA LAS CIENCIAS APLICADAS 1

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN

4TA LISTA DE PROBLEMAS

Cuarto Parcial

Autores:

Ramírez Mendoza Joaquín Rodrigo Villalobos Juárez Gontrán Eliut Treviño Puebla Héctor Jerome

4ta lista de problemas

Ramírez Mendoza Joaquín Rodrigo Treviño Puebla Héctor Jerome Villalobos Juárez Gontrán Eliut

24 de noviembre de 2024

Evaluar la integral

$$\int \frac{x}{(x^2 - 1)\sqrt{x^4 - 2x^x}} dx$$

haciendo la sustitución $u = x^2 - 1$

Ejercicio 13 Cápitulo 5 ABD

13.- Evalua la integral:

$$\int \frac{x}{(x^2 - 1)\sqrt{x^4 - 2x^2}} dx$$

Haciendo la sustitución de:

$$u = x^2 - 1$$

Así:

$$\frac{du}{dx} = \frac{d}{dx}x^2 - 1$$
$$\frac{du}{dx} = 2x$$
$$du = 2xdx$$

Para resolver esta integral, completaremos el T.C.P. (Trinomio Cuadrado Perfecto) que se encuentra adentro de la raíz de esta forma:

$$x^{4} - 2x^{2} = x^{4} - 2x^{2} + 1 - 1$$
$$x^{4} - 2x^{2} = (x^{4} - 2x^{2} + 1) - 1$$
$$x^{4} - 2x^{2} = (x^{2} - 1)^{2} - 1$$

Así nuestra integral resulta:

$$\int \frac{x}{(x^2 - 1)\sqrt{(x^2 - 1)^2 - 1}} dx$$

Ahora, podemos hacer uso de la Fórmula de 18 (Del formulario auorizado):

$$\int \frac{du}{u\sqrt{u^2-a^2}} = \frac{1}{a}arcsec\frac{u}{a} + c$$

Usando:

$$u^{2} = (x^{2} - 1)^{2}$$
 $a^{2} = 1$ $a = 1$ $du = 2xdx$

De esta forma:

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \int \frac{x}{(x^2 - 1)\sqrt{(x^2 - 1)^2 - 1}} dx$$
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{2} \int \frac{2xdx}{(x^2 - 1)\sqrt{(x^2 - 1)^2 - 1}}$$

Tenemos:

$$\frac{1}{a}arcsec\frac{u}{a} + c = \frac{1}{2}\left[\frac{1}{1}arcsec(\frac{x^2 - 1}{1}) + c\right]$$
$$\frac{1}{a}arcsec\frac{u}{a} + c = \frac{1}{2}arcsec(x^2 - 1) + c$$

Resultado:

$$\int \frac{x}{(x^2 - 1)\sqrt{x^4 - 2x^2}} dx = \frac{1}{2} \operatorname{arcsec}(x^2 - 1) + c$$

Ejercicio 53 Cápitulo 5 ABD

53.- Usa la parte 2 del Teorema Fundamental del Calculo y (donde sea necesario) la Fórmula 18 de la Sección 5.10 para encontrar las derivadas:

Recordando:

2da Parte del Teorema Fundamental del Calculo en el ABD:

$$\frac{d}{dx} \left[\int_{a}^{b} f(t)dt \right] = f(x)$$

Fórmula 18 Sección 5.10 ABD:

$$\frac{d}{dx} \left[\int_{a}^{g(x)} f(t)dt \right] = f(g(x))g'(x)$$

Para el caso de este ejercicio (53) haremos uso de la fórmula 18:

$$\frac{d}{dx} \Bigl[\int_2^{sen(x)} \frac{1}{1+t^3} dt \Bigr]$$

Con:

$$g(x) = sen(x)$$
$$g'(x) = cos(x)$$

Así:

$$f(g(x)) = \frac{1}{1 + sen^3(x)}$$

Por lo tanto:

$$f(g(x))g'(x) = \frac{1}{1 + sen^3(x)}(cos(x))$$

El resultado es:

$$\frac{d}{dx} \Bigl[\int_2^{sen(x)} \frac{1}{1+t^3} dt \Bigr] = \frac{\cos(x)}{1+sen^3(x)}$$

Ejercicio 68 Cápitulo 5 ABD

68.- Una partícula se mueve a lo largo del eje-s. Use la información dada para encontrar la función posición del la partícula:

Información dada:

$$a(t) = 4\cos(2t)$$
$$v(0) = -1$$
$$s(0) = -3$$

Sabemos que al Integrar la Acelearción obtendremos la función de la velocidad de la partícula:

$$v(t) = \int a(t)dt$$

$$v(t) = \int 4\cos(2t)dt$$

$$v(t) = 4 \int \cos(2t)dt$$
Con:
$$u = 2t$$

$$du = 2dt$$

$$v(t) = 4\frac{1}{2} \int \cos(2t)2dt$$

$$v(t) = \frac{4}{2} \int \cos(2t)2dt$$

$$v(t) = 2\sin(2t) + c$$

Para hallar la constante de integración (c) y dar a v(t), ocuparemos la evaluación que nos dieron de la velocidad en el tiempo t=0.

$$v(0) = -1 = 2sen(0) + c$$

 $-1 = 2(0) + c$
 $-1 = c$

Así:

$$v(t) = 2sen(2t) - 1$$

Hacemos un proceso semejante para hallar la función posición s(t). Sabemos que al integrar la velocidad, obtendremos la posición.

$$s(t) = \int v(t)dt$$

$$s(t) = \int (2sen(2t) - 1)dt$$

$$s(t) = \int 2sen(2t)dt - \int dt$$
Con:
$$u = 2t$$

$$du = 2dt$$

$$s(t) = \frac{2}{2} \int sen(2t)dt - t + c$$

$$s(t) = -\frac{2}{2}cos(2t) - t + c$$

$$s(t) = -cos(2t) - t + c$$

Para hallar la c, seguimos un proceso semejante al anterior:

$$s(0) = -3 = -\cos(2(0)) - (0) + c$$

$$-3 = -\cos(0) + c$$

$$-3 = -1 + c$$

$$-3 + 1 = c$$

$$-2 = c$$

Así conseguimos la función posición s(t) que buscabamos:

$$s(t) = -\cos(2t) - t - 2$$

Ejercicio 85 Cápitulo 5 ABD

85.- Evalua la integral hacienodo una sustitución apropieada:

$$\int_0^1 sen^2(\pi x)cos(\pi x)dx$$

Para la sustitución tomaremos a u como:

$$u = sen(\pi x)$$

Así:

$$\frac{du}{dx} = \frac{d}{dx}sen(\pi x)$$
$$\frac{du}{dx} = cos(\pi x)\pi$$
$$du = \pi cos(\pi x)dx$$

Así podemos usar la Fórmula 2 del formulario autorizado:

$$\int u^n du = \frac{u^{n+1}}{n+1} + c$$

Con esto:

$$\int u^n du = \int_0^1 sen^2(\pi x)cos(\pi x)dx$$

$$\int_0^1 sen^2(\pi x)cos(\pi x)dx = \frac{1}{\pi} \int_0^1 sen^2(\pi x)\pi cos(\pi x)dx$$

$$\int_0^1 sen^2(\pi x)cos(\pi x)dx = \frac{1}{\pi} \int_0^1 sen^2(\pi x)\pi cos(\pi x)dx$$

$$\int_0^1 sen^2(\pi x)cos(\pi x)dx = \frac{1}{\pi} \left[\frac{sen^3(\pi x)}{3} \right]_0^1$$

$$\int_0^1 sen^2(\pi x)cos(\pi x)dx = \frac{1}{\pi} \left[\frac{sen^3(\pi(1))}{3} - \frac{sen^3(\pi(0))}{3} \right]$$

$$\int_0^1 sen^2(\pi x)cos(\pi x)dx = \frac{1}{\pi} \left[\frac{sen^3(\pi)}{3} - \frac{sen^3(0)}{3} \right]$$

$$\int_0^1 sen^2(\pi x)cos(\pi x)dx = \frac{1}{\pi} \left[\frac{0}{3} - \frac{0}{3} \right]$$

$$\int_0^1 sen^2(\pi x)cos(\pi x)dx = \frac{1}{\pi} \left[0 \right]$$

Así el resultado de la integral es:

$$\int_0^1 sen^2(\pi x)cos(\pi x)dx = 0$$

Ejercicios capitulo 5 ABD Grupo 3

Ejercicio 42

Calcular el área bajo la curva $y=\frac{1}{x}$ en el intervalo $[1,e^3]$. El área bajo la curva está dada por la integral definida:

$$\int_{1}^{e^3} \frac{1}{x} dx$$

Plantear la integral

Tenemos:

$$\int_{1}^{e^3} \frac{1}{x} dx$$

Calcular la integral indefinida

Sabemos que:

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

Evaluar la integral definida

Sustituimos los límites de integración:

$$\int_{1}^{e^{3}} \frac{1}{x} dx = [\ln x]_{1}^{e^{3}}$$

Sustituir los límites

Evaluamos en los límites:

$$[\ln x]_1^{e^3} = \ln(e^3) - \ln(1)$$

Simplificar

Sabemos que:

$$\ln(e^3) = 3$$
 y $\ln(1) = 0$

Por lo tanto:

$$\ln(e^3) - \ln(1) = 3 - 0 = 3$$

Resultado final

El área bajo la curva es:

3

Ejercicio 64

Encontrar el valor promedio de $f(x) = e^x + e^{-x}$ en el intervalo $[\ln \frac{1}{2}, \ln 2]$. El valor promedio de una función está dado por:

$$f_{\text{promedio}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

En este caso, $f(x) = e^x + e^{-x}$, $a = \ln \frac{1}{2}$ y $b = \ln 2$.

Planteamiento

Sustituimos en la fórmula:

$$f_{\text{promedio}} = \frac{1}{\ln 2 - \ln \frac{1}{2}} \int_{\ln \frac{1}{2}}^{\ln 2} (e^x + e^{-x}) dx$$

Simplificar los límites del denominador

Sabemos que:

$$\ln 2 - \ln \frac{1}{2} = \ln 2 - \ln 2^{-1} = \ln 2 + \ln 2 = 2 \ln 2$$

Por lo tanto:

$$f_{\text{promedio}} = \frac{1}{2 \ln 2} \int_{\ln \frac{1}{2}}^{\ln 2} (e^x + e^{-x}) \, dx$$

Calcular la integral indefinida

 $\int (e^x + e^{-x}) \, dx = \int e^x \, dx + \int e^{-x} \, dx$

Resolviendo cada término:

$$\int e^x dx = e^x, \quad \int e^{-x} dx = -e^{-x}$$

Por lo tanto:

$$\int (e^x + e^{-x}) \, dx = e^x - e^{-x} + C$$

Evaluar la integral definida

Sustituimos los límites:

$$\int_{\ln \frac{1}{2}}^{\ln 2} (e^x + e^{-x}) \, dx = \left[e^x - e^{-x} \right]_{\ln \frac{1}{2}}^{\ln 2}$$

Sustituir los límites en la función

Evaluamos:

$$\left[e^x - e^{-x}\right]_{\ln\frac{1}{2}}^{\ln 2} = \left(e^{\ln 2} - e^{-\ln 2}\right) - \left(e^{\ln\frac{1}{2}} - e^{-\ln\frac{1}{2}}\right)$$

Simplificamos:

$$e^{\ln 2} = 2$$
, $e^{-\ln 2} = \frac{1}{2}$, $e^{\ln \frac{1}{2}} = \frac{1}{2}$, $e^{-\ln \frac{1}{2}} = 2$

Por lo tanto:

$$\left(e^{\ln 2} - e^{-\ln 2}\right) - \left(e^{\ln \frac{1}{2}} - e^{-\ln \frac{1}{2}}\right) = \left(2 - \frac{1}{2}\right) - \left(\frac{1}{2} - 2\right)$$

Simplificamos:

$$\left(2 - \frac{1}{2}\right) - \left(\frac{1}{2} - 2\right) = \frac{3}{2} + \frac{3}{2} = 3$$

Calcular el valor promedio

Sustituimos en la fórmula del promedio:

$$f_{\text{promedio}} = \frac{1}{2 \ln 2} \cdot 3 = \frac{3}{2 \ln 2}$$

Resultado final

El valor promedio es:

$$\frac{3}{2\ln 2}$$

Ejercicio 76

La función de velocidad dada es:

$$v(t) = \frac{2}{5}\sqrt{5t+1} + \frac{8}{5}.$$

Queremos calcular el **desplazamiento** y la **distancia** recorrida por la partícula en el intervalo [0, 3].

Desplazamiento

El desplazamiento se calcula como la integral de la velocidad:

Desplazamiento =
$$\int_0^3 v(t) dt$$
.

Sustituimos v(t) en la integral:

$$\int_0^3 v(t) dt = \int_0^3 \left(\frac{2}{5} \sqrt{5t+1} + \frac{8}{5} \right) dt.$$

Separando la integral:

$$\int_0^3 v(t) dt = \frac{2}{5} \int_0^3 \sqrt{5t+1} dt + \frac{8}{5} \int_0^3 1 dt.$$

Primera integral: $\int_0^3 \sqrt{5t+1} dt$

Sea u = 5t + 1, por lo tanto:

$$du = 5 dt$$
 y $dt = \frac{1}{5} du$.

Cuando t = 0, u = 1; y cuando t = 3, u = 16. Sustituyendo:

$$\int_0^3 \sqrt{5t+1} \, dt = \int_1^{16} \sqrt{u} \cdot \frac{1}{5} \, du = \frac{1}{5} \int_1^{16} u^{1/2} \, du.$$

La integral de $u^{1/2}$ es:

$$\int u^{1/2} \, du = \frac{2}{3} u^{3/2}.$$

Entonces:

$$\frac{1}{5} \int_{1}^{16} u^{1/2} du = \frac{1}{5} \left[\frac{2}{3} u^{3/2} \right]_{1}^{16} = \frac{2}{15} \left[u^{3/2} \right]_{1}^{16}.$$

Evaluamos los límites:

$$\frac{2}{15} \left[16^{3/2} - 1^{3/2} \right] = \frac{2}{15} \left[(16)^{3/2} - 1 \right].$$

Sabemos que $16^{3/2} = (16^{1/2})^3 = 4^3 = 64$, entonces:

$$\frac{2}{15} \left[64 - 1 \right] = \frac{2}{15} \cdot 63 = \frac{126}{15} = \frac{42}{5}.$$

Segunda integral: $\int_0^3 1 dt$

La integral es directa:

$$\int_0^3 1 \, dt = [t]_0^3 = 3 - 0 = 3.$$

Combinando ambas integrales

Sustituyendo los resultados en la expresión original:

$$\int_0^3 v(t) dt = \frac{2}{5} \cdot \frac{42}{5} + \frac{8}{5} \cdot 3 = \frac{84}{25} + \frac{24}{5}.$$

Simplificamos $\frac{24}{5}$ a denominador 25:

$$\frac{24}{5} = \frac{120}{25}.$$

Entonces:

$$\int_0^3 v(t) \, dt = \frac{84}{25} + \frac{120}{25} = \frac{204}{25}.$$

Por lo tanto, el desplazamiento es:

$$\boxed{ \text{Desplazamiento} = \frac{204}{25} \, \text{m} }$$

Distancia recorrida

La distancia recorrida es la misma que el desplazamiento, ya que $v(t) \ge 0$ en todo el intervalo [0, 3]. Entonces:

Distancia =
$$\int_0^3 |v(t)| dt = \int_0^3 v(t) dt = \boxed{\frac{204}{25} \text{ m}}$$

Ejercicio 13 Cápitulo 6 ABD

13.- Encuentra la longitud del arco en el segundo cuadrante de la curva:

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 4$$

De: x = -8 hasta x = -1.

Para esto, ocuparemos la fórmula:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$$

Para tener la curva en Función de x, despejamos de la curva dada:

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 4$$

$$y^{\frac{2}{3}} = 4 - x^{\frac{2}{3}}$$

$$(y^{\frac{2}{3}})^{\frac{3}{2}} = (4 - x^{\frac{2}{3}})^{\frac{3}{2}}$$

$$y = (4 - x^{\frac{2}{3}})^{\frac{3}{2}}$$

Ahora, para evaluar la integral, necesitamos la 1er derivada de esta función de x

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} (4 - x^{\frac{2}{3}})^{\frac{3}{2}} \\ y' &= \frac{3}{2} (4 - x^{\frac{2}{3}})^{\frac{3}{2} - \frac{2}{2}} \frac{d}{dx} (4 - x^{\frac{2}{3}}) \\ y' &= \frac{3}{2} (4 - x^{\frac{2}{3}})^{\frac{1}{2}} (-\frac{2}{3} x^{-\frac{1}{3}}) \\ y' &= -(4 - x^{\frac{2}{3}})^{\frac{1}{2}} (x^{-\frac{1}{3}}) \\ y' &= \frac{-(4 - x^{\frac{2}{3}})^{\frac{1}{2}}}{x^{\frac{1}{3}}} \end{aligned}$$

Ya que hemos derivado al función podemos evaluarla en la integral como se indica, resolveremos:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx = \int_{-8}^{-1} \sqrt{1 + \left[\frac{-(4 - x^{\frac{2}{3}})^{\frac{1}{2}}}{x^{\frac{1}{3}}} \right]^{2}} dx$$

Desarrollando:

$$L = \int_{-8}^{-1} \sqrt{1 + \left[\frac{-(4 - x^{\frac{2}{3}})^{\frac{1}{2}}}{x^{\frac{1}{3}}} \right]^{2}} dx$$

$$L = \int_{-8}^{-1} \sqrt{1 + \left[\frac{(-(4 - x^{\frac{2}{3}})^{\frac{1}{2}})^{2}}{(x^{\frac{1}{3}})^{2}} \right]} dx$$

$$L = \int_{-8}^{-1} \sqrt{1 + \frac{(4 - x^{\frac{2}{3}})^{\frac{2}{2}}}{x^{\frac{2}{3}}}} dx$$

$$L = \int_{-8}^{-1} \sqrt{1 + \frac{4 - x^{\frac{2}{3}}}{x^{\frac{2}{3}}}} dx$$

$$L = \int_{-8}^{-1} \sqrt{\frac{x^{\frac{2}{3}} + 4 - x^{\frac{2}{3}}}{x^{\frac{2}{3}}}} dx$$

$$L = \int_{-8}^{-1} \sqrt{\frac{4}{x^{\frac{2}{3}}}} dx$$

$$L = \int_{-8}^{-1} \frac{2}{(x^{\frac{2}{3}})^{\frac{1}{2}}} dx$$

$$L = \int_{-8}^{-1} \frac{1}{x^{\frac{1}{3}}} dx$$

$$L = 2 \int_{-8}^{-1} \frac{1}{x^{\frac{1}{3}}} dx$$

$$L = 2 \int_{-8}^{-1} x^{-\frac{1}{3}} dx$$

$$L = 2 \int_{-8}^{-1} x^{-\frac{1}{3}} dx$$

$$L = 2 \left[\frac{3x^{\frac{2}{3}}}{2} \right]_{-8}^{-1}$$

$$L = 2 \left[\frac{3(-8)^{\frac{2}{3}}}{2} - \frac{3(-1)^{\frac{2}{3}}}{2} \right]$$

$$L = 2 \left[\frac{3(2^{\frac{6}{3}})}{2} - \frac{3(1)}{2} \right]$$

Continuación:

$$L = 2 \left[\frac{3(2^{\frac{6}{3}})}{2} - \frac{3(1)}{2} \right]$$

$$L = 2 \left[\frac{3(2^{2})}{2} - \frac{3}{2} \right]$$

$$L = 2 \left[\frac{3(4)}{2} - \frac{3}{2} \right]$$

$$L = 2 \left[\frac{12}{2} - \frac{3}{2} \right]$$

$$L = 2 \left[\frac{12 - 3}{2} \right]$$

$$L = 2 \left[\frac{9}{2} \right]$$

$$L = 9 \text{ unidades}$$

Capitulo 6 ABD Grupo 3

Ejercicio 16

Dada la curva $27x - y^3 = 0$ entre y = 0 y y = 2, queremos encontrar la superficie generada en tres casos distintos.

Parte (a): Revolución alrededor del eje x

La fórmula general para la superficie de revolución alrededor del eje x es:

$$S = \int 2\pi y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy.$$

De la ecuación de la curva, despejamos x:

$$x = \frac{y^3}{27}.$$

Derivamos x respecto a y:

$$\frac{dx}{dy} = \frac{3y^2}{27} = \frac{y^2}{9}.$$

Sustituimos en la fórmula de S:

$$S = \int_0^2 2\pi y \sqrt{1 + \left(\frac{y^2}{9}\right)^2} \, dy.$$

Parte (b): Revolución alrededor del eje y

La fórmula general para la superficie de revolución alrededor del eje y es:

$$S = \int 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx.$$

De la ecuación de la curva, despejamos y:

$$y = (27x)^{1/3}.$$

Derivamos y respecto a x:

$$\frac{dy}{dx} = \frac{1}{3}(27x)^{-2/3} \cdot 27 = 9x^{-2/3}.$$

Sustituimos en la fórmula de S:

$$S = \int_0^{8/27} 2\pi x \sqrt{1 + \left(9x^{-2/3}\right)^2} \, dx.$$

Parte (c): Revolución alrededor de la línea y = -2

Cuando la rotación es alrededor de y = -2, ajustamos la distancia al eje de rotación sumando 2 a y. La fórmula de la superficie es:

$$S = \int 2\pi (y+2) \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy.$$

Sustituimos:

$$S = \int_0^2 2\pi (y+2) \sqrt{1 + \left(\frac{y^2}{9}\right)^2} \, dy.$$

Ejercicio 14 Cápitulo 7 ABD

14.- Una partícula que se mueve a lo largo del eje-x, tiene una función velocidad:

$$v(t) = t^3 e^{-t}$$

Que tan lejos la partícula viaja desde el tiempo t=0 hasta t=5.

Para encontrar lo que recorrío debemos resolver la integral de la función v(t) en el intervalo dado: (D = Distancia)

$$D = \int_0^5 v(t)dt$$

Es decir:

$$D = \int_0^5 t^3 e^{-t} dt$$

Para resolver esta integral, lo haremos por Integración por Partes y haciendo uso de:

$$\int u \, dv = uv - \int v \, du$$

Resolviendo:

$$D = \int_0^5 t^3 e^{-t} dt$$

Con:

$$u = t^2$$
$$du = 2tdt$$

$$dv = e^{-t}dt$$

$$\int dv = \int e^{-t} dt$$

$$v = -e^{-t}$$

Sust en la Fórmula de Integración por Partes:

$$D = (t^2)(-e^{-t}) - \int_0^5 -e^{-t}2t \, dt \tag{1}$$

$$D = (t^2)(-e^{-t}) + 2\int_0^5 e^{-t}t \, dt$$

Ahora, para resolver:

$$\int_0^5 e^{-t}t \, dt$$

Usaremos:

$$u = t$$

$$du = dt$$

$$\int dv = \int e^{-t} dt$$

$$v = -e^{-t}$$

Así:

$$\int_0^5 e^{-t}t \, dt = (t)(-e^{-t}) - \int -e^{-t} \, dt$$

$$\int_0^5 e^{-t}t \, dt = (t)(-e^{-t}) + \int e^{-t} \, dt$$

$$\int_0^5 e^{-t}t \, dt = (t)(-e^{-t}) - e^{-t}$$

$$\int_0^5 e^{-t}t \, dt = (e^{-t})(-t-1)$$

$$\int_0^5 e^{-t}t \, dt = (-e^{-t})(t+1)$$

Reemplazado de vuelta en (1):

$$\begin{split} D &= (t^2)(-e^{-t}) + 2 \int_0^5 e^{-t}t \, dt = (t^2)(e^{-t}) + 2[(-e^{-t})(t+1)] \bigg]_0^5 \\ D &= (t^2)(-e^{-t}) + 2(-e^{-t})(t+1) \bigg]_0^5 \\ D &= (-e^{-t})[t^2 + 2(t+1)] \bigg]_0^5 \\ D &= (-e^{-t})[t^2 + 2t + 2] \bigg]_0^5 \\ D &= (-e^{-t})[t^2 + 2t + 2] \bigg]_0^5 \\ D &= [(-e^{-(5)})[(5)^2 + 2(5) + 2]] - [(-e^{-(0)})[(0)^2 + 2(0) + 2]] \\ D &= [(-e^{-(5)})[25 + 10 + 2]] - [(-e^{-(0)})[0 + 0 + 2]] \\ D &= [(-e^{-(5)})[37]] - [(-e^{-(0)}[2]] \\ D &= [(-e^{-(5)})[37]] - [-\frac{1}{e^0}[2]] \\ D &= -37e^{-(5)} - [-2] \\ D &= -37e^{-(5)} + 2 \end{split}$$

Así la partícula se movió:

$$D = -37e^{-5} + 2$$
 unidades

o

$$D = -\frac{37}{e^5} + 2 \text{ unidades}$$

Capitulo 7 ABD Grupo 3

Ejercicio 33

Queremos resolver la integral:

$$\int \frac{1}{x^3 - x} \, dx.$$

Parte (a): Sustitución $x = \sec \theta$

Sea $x = \sec \theta$, entonces:

$$dx = \sec \theta \tan \theta \, d\theta$$
.

La expresión $x^3 - x$ se transforma en:

$$x^3 - x = \sec^3 \theta - \sec \theta = \sec \theta (\sec^2 \theta - 1) = \sec \theta \tan^2 \theta$$

Sustituyendo todo en la integral:

$$\int \frac{1}{x^3 - x} dx = \int \frac{\sec \theta \tan \theta d\theta}{\sec \theta \tan^2 \theta} = \int \frac{1}{\tan \theta} d\theta = \int \cot \theta d\theta.$$

La integral de $\cot \theta$ es:

$$\int \cot \theta \, d\theta = \ln|\sin \theta| + C.$$

Regresamos a la variable x:

$$\sin\theta = \sqrt{\frac{x^2-1}{x^2}}, \quad \text{por lo tanto: } \ln|\sin\theta| = \ln\sqrt{\frac{x^2-1}{x^2}} = \frac{1}{2}\ln\left(\frac{x^2-1}{x^2}\right).$$

Finalmente:

$$\int \frac{1}{x^3 - x} \, dx = \ln \sqrt{\frac{x^2 - 1}{x^2}} + C = \ln \frac{\sqrt{x^2 - 1}}{|x|} + C$$

Esta expresión es válida para |x| > 1.

Parte (b): Sustitución $x = \sin \theta$

Sea $x = \sin \theta$, entonces:

$$dx = \cos\theta \, d\theta$$
.

La expresión $x^3 - x$ se transforma en:

$$x^3 - x = \sin^3 \theta - \sin \theta = \sin \theta (\sin^2 \theta - 1) = -\sin \theta \cos^2 \theta$$

Sustituyendo todo en la integral:

$$\int \frac{1}{x^3 - x} dx = \int \frac{\cos \theta d\theta}{-\sin \theta \cos^2 \theta} = -\int \frac{1}{\sin \theta \cos \theta} d\theta = -\int \csc \theta d\theta.$$

La integral de $\csc \theta$ es:

$$\int \csc\theta \, d\theta = \ln|\csc\theta - \cot\theta| + C.$$

Regresamos a la variable x:

$$\csc \theta = \frac{1}{x}, \quad \cot \theta = \sqrt{\frac{1 - x^2}{x^2}}, \quad \text{entonces:}$$

$$\ln|\csc \theta - \cot \theta| = \ln\left|\frac{1}{x} - \sqrt{\frac{1 - x^2}{x^2}}\right| = \ln\left|\frac{1 - \sqrt{1 - x^2}}{x}\right|.$$

Por lo tanto:

$$\int \frac{1}{x^3 - x} dx = \ln \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + C$$

Esta expresión es válida para 0 < |x| < 1.

Parte (c): Fracciones parciales

Factorizamos $x^3 - x$:

$$x^3 - x = x(x-1)(x+1).$$

Escribimos la fracción como suma de fracciones parciales:

$$\frac{1}{x^3 - x} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}.$$

Resolviendo para A, B, y C, obtenemos:

$$\frac{1}{x^3 - x} = \frac{1}{x} - \frac{1}{2(x-1)} + \frac{1}{2(x+1)}.$$

Entonces:

$$\int \frac{1}{x^3 - x} \, dx = \int \frac{1}{x} \, dx - \frac{1}{2} \int \frac{1}{x - 1} \, dx + \frac{1}{2} \int \frac{1}{x + 1} \, dx.$$

Resolvemos las integrales:

$$\int \frac{1}{x} \, dx = \ln|x|, \quad \int \frac{1}{x-1} \, dx = \ln|x-1|, \quad \int \frac{1}{x+1} \, dx = \ln|x+1|.$$

Por lo tanto:

$$\int \frac{1}{x^3 - x} \, dx = \ln|x| - \frac{1}{2} \ln|x - 1| + \frac{1}{2} \ln|x + 1| + C$$

Ejercicio 51 Cápitulo 7 ABD

51.- Encuentra el área encerrada entre el eje-x y la curva:

$$y = \frac{\ln(x) - 1}{x^2}$$

Para $x \ge e$.

Esto quiere decir que encontraremos el área dada por la Integral:

$$A = \int_{e}^{\infty} \frac{\ln(x) - 1}{x^2} \, dx$$

Para hacer el calculo de esta integral que es infinita en su límite superior de la integral, haremos uso de un límite: Así el área esta dad por:

$$A = \lim_{k \to \infty} \int_{e}^{k} \frac{\ln(x) - 1}{x^2} \, dx$$

Usaremos también el método de Integración por Partes:

$$\int u \, dv = uv - \int v \, du$$

Con:

$$u = \ln(x) - 1$$

$$du = \frac{1}{x}dx$$

$$\int dv = \int x^{-2} dx$$

$$v = -\frac{1}{x}$$

Así, reemplazando tenemos que:

$$\lim_{k \to \infty} \int_{e}^{k} \frac{\ln(x) - 1}{x^{2}} \, dx = (\ln(x) - 1)(\frac{-1}{x}) - \int (\frac{-1}{x})(\frac{1}{x}) \, dx$$

Resilviendo sin aplicar el Límite:

$$(\ln(x) - 1)(\frac{-1}{x}) - \int (\frac{-1}{x})(\frac{1}{x}) dx = -(\ln(x) - 1)(\frac{1}{x}) + \int (\frac{1}{x})(\frac{1}{x}) dx$$

$$= (\ln(x) - 1)(-\frac{1}{x}) + \int x^{-2} dx$$

$$= (\ln(x) - 1)(-\frac{1}{x}) + \frac{x^{-1}}{-1}$$

$$= (\ln(x) - 1)(-\frac{1}{x}) - \frac{1}{x}$$

$$= (-\frac{1}{x})((\ln(x) - 1) + 1)$$

$$= (-\frac{1}{x})((\ln(x)))$$

$$= -\frac{\ln(x)}{x}$$

Evaluando:

$$\begin{split} &\lim_{k \to \infty} \left[-\frac{ln(x)}{x} \right]_e^k \\ &\left[\lim_{k \to \infty} -\frac{ln(k)}{k} \right] - \left[-\frac{ln(e)}{e} \right] \\ &\left[\lim_{k \to \infty} -\frac{ln(k)}{k} \right] - \left[-\frac{ln(e)}{e} \right] \\ &\left[\lim_{k \to \infty} -\frac{ln(k)}{k} \right] - \left[-\frac{1}{e} \right] \end{split}$$

El Límite
$$\left[\lim_{k \to \infty} -\frac{\ln(k)}{k}\right]$$
 tiende a 0, por lo tanto:

$$[0] - \left[-\frac{1}{e} \right]$$
$$0 + \frac{1}{e}$$

Así el área encerrada entre el eje x y la curva $y=\frac{\ln(x)-1}{x^2}$ es:

$$A=\frac{1}{e}$$
 unidades cuadradas