第八次习题课 三重积分

例.1 设 V 是 锥 面 $z = \sqrt{x^2 + y^2}$ 和 球 面 $x^2 + y^2 + z^2 = R^2$ 所 围 成 的 区 域 , 积 分 $\iiint_U (x^2 + y^2 + z^2) dx dy dz =$

例. 2 求
$$\iint_{\Omega} (1+x^2+y^2)z dx dy dz$$
,其中 $\Omega = \{(x,y,z) | \sqrt{x^2+y^2} \le z \le H\}$.

例.3 设
$$f(t)$$
 在 $[0,+\infty)$ 上连续, $F(t) = \iiint_{\Omega} (z^2 + f(x^2 + y^2)) dx dy dz$,其中

$$\Omega = \left\{ (x, y, z) \mid 0 \le z \le h, x^2 + y^2 \le t^2 \right\} \quad (t > 0) \cdot \Re \lim_{t \to 0^+} \frac{F(t)}{t^2}.$$

例.4 求 三 重 积 分 :
$$I = \iiint_{\Omega} (x+y+z) dv \qquad , \qquad$$
 其 中
$$\Omega = \left\{ (x,y,z) \middle| \begin{cases} 0 \le z \le \sqrt{1-y^2-z^2} \\ z \le \sqrt{x^2+y^2} \end{cases} \right\}$$

例.5 求由曲面 $S: (x^2 + y^2)^2 + z^4 = z^2$ 所围立体 Ω 的体积。

- **例.6** 设 $A=(a_{ij})$ 为 3×3 实对称正定矩阵, $\sum_{i,j=1}^3 a_{ij}x_ix_j=1$ 表示三维空间的一个椭球面。证明该椭球面所包围立体V 的体积为 $|V|=\frac{4\pi}{3\sqrt{\det A}}$ 。
- **例.7** 令曲面 S 在球坐标下方程为 $r=a(1+\cos\theta)$, Ω 是 S 围成的有界区域,计算 Ω 在 直角坐标系下的形心坐标。
- 例.9 设 $V = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$, $h = \sqrt{a^2 + b^2 + c^2} > 0$, f(u) 在区间 [-h, h]上连续,证明: $\iiint_V f(ax + by + cz) dx dy dz = \pi \int_{-1}^{1} (1 t^2) f(ht) dt$ 。