CREDIT RISK PREDICTION

CLASSIFYING CUSTOMERS TO ASSESS THEIR PROBABILITY TO DEFAULT

WHAT IS CREDIT RISK?

Credit risk is the possibility of a loss resulting from a borrower's failure to repay a loan.

In a global perspective, bad credit risk assessments can lead to a multilevel failure.

WHY IT MATTERS?

BANK	BUSINESS	MORTGAGE	CONSUMER	CREDIT
LENDING	LENDING	LENDING	CREDIT	LOSSES
▲ 3.7 %	▲2.3 %	▲ 4.0 %	4 2.6%	▲3.9 %

overall, credit demand is expected to grow in the following years

TYPICAL SCORING TOOLS

FICO® Score Factors:

Payment history: 35%

Current amount of indebtedness: 30%

Length of credit history: 15%

Types of credit used: 10%

New credit accounts: 10%

VantageScore Factors:

Total credit usage: Extremely

Credit mix and experience: Highly

Payment history: Moderate

Age of credit history: Less

New accounts opened: Less

FACTORS IN CONSIDERATION...

factors USUALLY taken into consideration when calculating credit scores

CREDIT HISTORY

PAYMENT HISTORY CAPACITY TO REPAY

AMOUNT OF INDEBTEDNESS

ASSOCIATED COLLATERAL

factors **NOT** taken into consideration when calculating credit scores

LIVING PLACE

EMPLOYMENT HISTORY

FAMILY BACKGROUND EDUCATION HISTORY

LIVING FLAGS

GOALS

1. Agree on a definition of GOOD / BAD client based on credit repay record

→

DEFINE TARGET VARIABLE

2. Analyze the factors that affect the determination of GOOD / BAD clients

-

PROFILING AND FEATURE IMPORTANCE

3. Build a model that classifies/predicts the customers as GOOD / BAD for a credit approval.

-

MACHINE LEARNING PIPELINE

DEFINE THE TARGET VARIABLE

WINDOW

60 MONTHS ON RECORD

DEFINE THE TARGET VARIABLE

WINDOW GOOD/BAD

60 MONTHS ON RECORD +60 DAYS PAST DUE

DEFINE THE TARGET VARIABLE

WINDOW GOOD/BAD IMBALANCE

60 MONTHS ON RECORD +60 DAYS PAST DUE 98% vs. 2%

	Variable	Value	All	Good	Bad	Share	Bad Rate	Distribution Good	Distribution Bad	WoE	IV
0	AMT_INCOME_TOTAL	High	11161	10970	191	0.306141	0.017113	0.306074	0.310065	-0.012955	0.000052
1	AMT_INCOME_TOTAL	Low	14606	14348	258	0.400636	0.017664	0.400324	0.418831	-0.045195	0.000836
2	AMT_INCOME_TOTAL	Medium	10690	10523	167	0.293222	0.015622	0.293602	0.271104	0.079724	0.001794

	Variable	Value	All	Good	Bad	Share	Bad Rate	Distribution Good	Distribution Bad	WoE	IV
0	YEARS_AGE	20s	5539	5425	114	0.151932	0.020581	0.151363	0.185065	-0.201026	0.006775
1	YEARS_AGE	30s	10419	10259	160	0.285789	0.015357	0.286236	0.259740	0.097136	0.002574
2	YEARS_AGE	40s	8340	8212	128	0.228763	0.015348	0.229123	0.207792	0.097721	0.002084
3	YEARS_AGE	50s	7933	7786	147	0.217599	0.018530	0.217237	0.238636	-0.093951	0.002010
4	YEARS_AGE	60s	4226	4159	67	0.115917	0.015854	0.116040	0.108766	0.064737	0.000471

MACHINE LEARNING WORKFLOW (pipeline)

THE MODELS TESTED

RAW DATA (UNBALANCED)

nice scores...

	accuracy	presicion	recall	f1_score
classifiers				
LogisticRegression	0.983086	0.966459	0.983086	0.974702
KNeighbors	0.981715	0.971128	0.981715	0.975116
DecisionTree	0.979978	0.972917	0.979978	0.975848
RandomForest	0.983086	0.966459	0.983086	0.974702

bad performance!

BALANCED DATA

SMOTE OVERSAMPLING

LogisticRegression() score on train set: 0.6169 score on test set 0.6120

KNeighborsClassifier() score on train set: 0.9464 score on test set 0.9312

DecisionTreeClassifier() score on train set: 0.9686 score on test set: 0.9601

RandomForestClassifier() score on train set: 0.9391 score on test set: 0.9362

BALANCED DATA

CONFIDENCE INTERVALS

SCALER TESTING

Logistic Regression	Model improvement
Scaler	Test set f1-Score
StandardScaler	0.61
MinMaxScaler	0.60
PolynomialScaler	0.70
RobustScaler	0.60

POLYNOMYAL SCALER

LogisticRegression() score on train set: 0.6169 score on test set 0.6120 LogisticRegression() score on train set: 0.6994 score on test set 0.6979

FEATURE SELECTION (WoE & IV)

IV	Variable	
0.028349	FLAG_OWN_REALTY	3
0.026667	YEARS_EMPLOYED	14
0.01645	NAME_FAMILY_STATUS	7
0.015711	NAME_HOUSING_TYPE	15
0.013915	YEARS_AGE	1
0.013581	CODE_GENDER	0
0.007332	CNT_FAM_MEMBERS	9
0.003413	OCCUPATION_TYPE	12
0.002682	AMT_INCOME_TOTAL	13
0.00239	NAME_INCOME_TYPE	11
0.00223	NAME_EDUCATION_TYPE	10
0.001865	FLAG_WORK_PHONE	4
0.001144	FLAG_OWN_CAR	2
0.000748	CNT_CHILDREN	8
0.000366	FLAG_EMAIL	6
0.00015	FLAG_PHONE	5
None	CREDIT SCORE	16

- less than 0.02: useless for prediction
- 0.02 to 0.10: weak predictor
- o.10 to o.3: medium predictor
- 0.30 to 0.5: strong predictor
 - more than 0.5: too good to be true (suspicious)

FEATURE SELECTION (WoE & IV)

FEATURES USED (IV > 0.02):

FLAG_OWN_REALTY YEARS_EMPLOYED

FEATURES USED (IV > 0.01):

FLAG_OWN_REALTY NAME_HOUSING_TYPE YEARS_EMPLOYED YEARS_AGE NAME_FAMILY_STATUS CODE_GENDER

HYPERTUNING

K FOLD CROSS VALIDATION

K-folds = **13**

Ideal Accuracy = 0.84

LOGISTIC REGRESSION PREDICTIONS

CONCLUSIONS:

Jack is a young man who
just started at the
University. He lives in a
rented apartment, is
single and available on
Tinder and enjoys
travelling.
Is he gonna get credit?

Susan has been retired for 3 years now. She joined salsa group after his husband passed away last year. She lives in a municipal apartment at the center of the city.

Is she gonna get credit?

Lily married 10 years ago a musician. She inherited a house from her parents at the outskirts of the city. She has one kid and they are planning to have another one.

Is she gonna get credit?

THANK YOU

