Разработка системы позиционирования общественного транспорта по сигналам сотовых сетей

http://svn.auditory.ru/repos/tatmon/

Автор: Максим Максимович Ковалев maxim.kovalev@2007.auditory.ru

Руководитель: Дмитрий Олегович Столяров dmitry.stolyarov@gmail.com

Московский Государственный Институт Электроники и Математики (Технический Университет) Кафедра ИКТ

6 июня 2012 г.

Цели работы

- ▶ Высшая удобство перемещения по городу!
- Создать новую хорошую систему позиционирования;
- Отказаться от СПУТНИКОВОГО позиционирования;
- Повысить точность триангуляции по вышкам GSM.
 - Проверить изобретённый метод.

Автобусы Казани в реальном времени на телефоне.

Архитектура системы

Методы позиционирования

Спутниковая

- Спутники
- Время прохождения сигнала
- Строго и однозначно
- ▶ 1 50 метров погрешности

Сотовые сети

- Базовые станции
- Уровень сигнала
- Машинное обучение
- ▶ 10 500 метров погрешности

Гипотеза

Триангуляция в сетях GSM недостаточно точна из-за чрезмерной экстраполяции.

Теоретически предсказанное затухание сигнала

Реально принятые уровни

Общественный транспорт

Заранее известный маршрут:

- Делает задачу одномерной
- Позволяет набрать больше статистики

Статистические методы

Параметр	Расстояние Махаланобиса	Байесовский классифика- тор
Непрерывность аргумен-	-	-
та		
Непрерывность значения	+	-
Устойчивость к выбросам	-	+

Предлагаемый алгоритм

И был создан новый алгоритм, который:

- 1. Учитывает непрерывность случайной переменной уровня сигнала;
- 2. Учитывает значения в соседних точках;
- Устойчив к выбросам.

Как он работает?

Выборка из базы

Интерполяция

Максим Ковалев GSM-позиционирование транспорта 10/20

Псевдоплотность вероятности

Требования:

1.
$$\forall_{f(x),y} P(f(x),y) \in (0,1]$$

2.
$$\forall_{f(x),y} f(x) = y \Leftrightarrow P(f(x),y) = 1$$

3.
$$\lim_{|f(x)-y|\to\infty} P(f(x),y) = 0$$

Вид:

$$P(f(x), y) = \frac{1}{1 + (f(x) - y)^2}$$

Вычисление псевдоплотности

Максим Ковалев GSM-позиционирование транспорта 12/20

Итоговая псевдоплотность

Результат: 143 метра, истина: 165,5 метров.

Архитектура системы

Тестирование

Гистограмма ошибок

Опытов: 176, математическое ожидание ошибки: 49 метров.

Сравнение систем

Параметр	GPS	Триангуляция	Созданная
Точность, м	10	200	50
Стоимость	GPS+GSM	GSM	GSM
Покрытие	Земля	Город	Маршрут

Исследование данных

Максимальная степень: 10

Максимальная степень: 100

Выводы

- 1. Созданный метод работает;
- 2. Точность лучше триангуляции;
- 3. Точность не достигает GPS;
- 4. Требуются дополнительные исследования.

Разработка системы позиционирования общественного транспорта по сигналам сотовых сетей

http://svn.auditory.ru/repos/tatmon/

Автор: Максим Максимович Ковалев maxim.kovalev@2007.auditory.ru

Руководитель: Дмитрий Олегович Столяров dmitry.stolyarov@gmail.com

Московский Государственный Институт Электроники и Математики (Технический Университет) Кафедра ИКТ

6 июня 2012 г.

Потоки сервера

Режим сбора данных

<u>Режим позиционирования</u>

Мобильное приложение

Пример сообщен<u>ия</u>

```
{ "GSM":{
"cellcount":2,
"cells":[
{"CID":11531, "Psc":-1, "RSSI":26, "type":"EDGE"},
{"CID":32779, "Psc":-1, "RSSI":22, "type":"EDGE"}
"GPS": {
"lng":37.64814019203186,
"Itd":55.75437605381012,
"acc":24.0
}}
```

Вход алгоритма

$$data = egin{pmatrix} Dist_0 & RSSI_0 \ Dist_1 & RSSI_1 \ dots & dots \ Dist_{len(data)-1} & RSSI_{len(data)-1} \end{pmatrix}$$

Создание переменных

$$self.X = egin{pmatrix} 1 & Dist_0 & Dist_0^2 & \cdots & Dist_0^{order} \\ 1 & Dist_1 & Dist_1^2 & \cdots & Dist_1^{order} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & Dist_{len(data)-1} & Dist_{len(data)-1}^2 & \cdots & Dist_{len(data)-1}^{order} \end{pmatrix}$$
 $self.Y = egin{pmatrix} RSSI_0 \\ RSSI_1 \\ \vdots \\ RSSI_{len(data)-1} \end{pmatrix}$

Нормальные уравнения

```
self.theta = (self.X^{T} \cdot self.X)^{+} \cdot self.X^{T} \cdot self.Y
def solve theta(self):
    self.theta = numpy.transpose(self.X)
    self.theta = numpy.dot(self.theta, self.X)
    self.theta = numpy.linalg.pinv(self.theta)
    self.theta = numpy.dot(self.theta,\
         numpy.transpose(self.X))
    self.theta = numpy.dot(self.theta, self.Y)
```