NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Joseph Nah, Kenny Sng

MA2108 Mathematical Analysis I

AY 2008/2009 Sem 1

Question 1

(a) No. We will illustrate a counter-example. Let (x_n) be a sequence of positive real numbers with $x_n = \frac{1}{n^2}$ if n is odd and $x_n = \frac{1}{n^3}$ if n is even. Then

$$\sum_{n=1}^{\infty} x_n = \frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \frac{1}{5^2} + \dots < \sum_{n=1}^{\infty} \frac{1}{n^2}$$

By Comparison Test, $\sum x_n$ is convergent. However, $\frac{1}{5^2} > \frac{1}{4^3}$. Hence, (x_n) is not decreasing.

(b) First, we establish the inequality

$$n^{\frac{1}{n+1}} \le (-2 + n \ln n)^{\frac{1}{1+n}} \le (2 \cos n + n \ln n)^{\frac{1}{\sin n + n}} \le (2 + n \ln n)^{\frac{1}{-1+n}} \le (n^2)^{\frac{1}{n-1}}$$

Since

$$\lim_{x \to \infty} n^{\frac{1}{n+1}} = \lim_{x \to \infty} (n^2)^{\frac{1}{n-1}} = 1$$

By Squeeze Theorem,

$$\lim_{x \to \infty} (2\cos n + n\ln n)^{\frac{1}{\sin n + n}} = 1$$

Question 2

(a) (i) By Root Test, since

$$\lim_{n \to \infty} \sqrt[n]{\left(\frac{n+1}{n}\right)^{n^2} e^{-2n}} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n e^{-2}$$

$$= e \times e^{-2}$$

$$= e^{-1}$$

$$< 1$$

Therefore,
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{n^2} e^{-2n}$$
 converges.

(ii) By Raabe's Test, since

$$\begin{vmatrix} a_{n+1} \\ a_n \end{vmatrix} = \begin{vmatrix} \frac{2 \cdot 4 \cdots (2n+2)}{5 \cdot 7 \cdots (2n+5)} \\ \frac{2 \cdot 4 \cdots (2n)}{5 \cdot 7 \cdots (2n+3)} \end{vmatrix}$$
$$= \begin{vmatrix} \frac{2n+2}{2n+5} \\ \end{vmatrix}$$
$$= 1 - \frac{3}{2n+5}$$

Therefore, $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdots (2n)}{5 \cdot 7 \cdots (2n+3)}$ converges.

(iii) By Comparison Test,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1-3\lfloor (n+1/3\rfloor}}{n} = 1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} - \frac{1}{9} + \cdots$$

$$> \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{6} + \frac{1}{6} - \frac{1}{6} + \frac{1}{9} + \frac{1}{9} - \frac{1}{9} + \cdots$$

$$= \frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \cdots$$

$$= \frac{1}{3} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots \right)$$

Since the harmonic series diverges, therefore, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1-3\lfloor (n+1/3\rfloor}}{n}$ diverges.

(b) By using Limit Comparison Test with $\frac{1}{n^{2q}}$, we have

$$\lim_{n \to \infty} \frac{\frac{1}{(n^2 + n)^q}}{\frac{1}{n^{2q}}} = \lim_{n \to \infty} \frac{n^{2q}}{(n^2 + n)^q}$$

$$= \lim_{n \to \infty} \frac{1}{(\frac{n^2 + n}{n^2})^q}$$

$$= \lim_{n \to \infty} \frac{1}{(1 + \frac{1}{n})^q}$$

$$= 1$$

This means that if the series $\sum_{n=1}^{\infty} \frac{1}{n^{2q}}$ converges or diverges, then $\sum_{n=1}^{\infty} \frac{1}{(n^2+n)^q}$ converges or diverges respectively.

By the p-series, we know that $\sum_{n=1}^{\infty} \frac{1}{n^{2q}}$ converges if $q > \frac{1}{2}$, and it diverges if $q \le \frac{1}{2}$. Therefore, the series $\sum_{n=1}^{\infty} \frac{1}{(n^2+n)^q}$ converges if $q > \frac{1}{2}$, and it diverges if $q \le \frac{1}{2}$.

(c) Since $\sum_{n=1}^{\infty} na_n^3$ is convergent, $\lim_{n\to\infty} na_n^3 = 0$. Therefore, the sequence (na_n^3) is bounded, say $na_n^3 \leq M$ for all $n \in \mathbb{N}$. Note that

$$0 < na_n^3 \le M$$

so

$$0 < a_n^3 \le \frac{M}{n}$$

Therefore, by Squeeze Theorem, $\lim_{n\to\infty} a_n^3 = 0$.

By $\epsilon - \delta$ definition, there exists $\epsilon^3 > 0$ such that $\forall \delta > 0$,

$$|x^3 - 0| < \epsilon^3$$
$$|x - 0| < \epsilon$$

Therefore, $\lim_{n\to\infty} a_n = 0$.

By Limit Comparison Test, since

$$\lim_{n \to \infty} \frac{n^2 a_n^7}{n a_n^3} = \lim_{n \to \infty} n a_n^4$$
$$= \lim_{n \to \infty} n \cdot a_n \cdot a_n^3$$
$$= 0$$

Therefore, $\sum_{n=1}^{\infty} n^2 a_n^7$ is convergent.

Question 3

(a) Let $\epsilon > 0$. We want to prove that $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\left| \frac{x^2+1}{3x+2} - \frac{2}{5} \right| < \epsilon$ whenever $|x-1| < \delta$. Suppose $\delta = \frac{1}{5}$. Then,

$$-\frac{1}{5} < x - 1 < \frac{1}{5}$$
$$3 < 5x - 1 < 5$$
$$\frac{22}{5} < 3x + 2 < \frac{28}{5}$$

Hence, |5x+1| < 5 and $|\frac{1}{3x+2}| < \frac{5}{22}$. Set $\delta = \inf(\frac{1}{5}, \frac{22}{5}\epsilon)$, then $\forall |x-1| < \delta$,

$$\begin{vmatrix} \frac{x^2+1}{3x+2} - \frac{2}{5} \end{vmatrix} = \begin{vmatrix} \frac{5x^2+5-6x-4}{5(3x+2)} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{(5x-1)(x-1)}{5(3x+2)} \end{vmatrix}$$

$$\leq \frac{|5x-1||x-1|}{5|3x+2|}$$

$$< \frac{5|x-1|}{5} \times \frac{5}{22}$$

$$= \frac{5}{22}|x-1|$$

$$< \epsilon$$

Therefore, $\lim_{x\to 1}\frac{x^2+1}{3x+2}=\frac{2}{5}.$

(b) Using l-Hopital's Rule,

$$\lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}}}{x^{2}} = \lim_{x \to 0^{-}} \frac{x^{-2}}{e^{-x^{-1}}}$$

$$= \lim_{x \to 0^{-}} \frac{-2x^{-3}}{x^{-2}e^{-x^{-1}}}$$

$$= \lim_{x \to 0^{-}} \frac{-2x^{-1}}{e^{-x^{-1}}}$$

$$= \lim_{x \to 0^{-}} \frac{2x^{-2}}{x^{-2}e^{-x^{-1}}}$$

$$= \lim_{x \to 0^{-}} \frac{2}{e^{-x^{-1}}}$$

$$= \lim_{x \to 0^{-}} 2e^{x^{-1}}$$

$$= 0$$

(c) Let $\epsilon = 1$ and $\alpha = K(L-1)$. We observe that

$$L-1 < \frac{f(x)}{x} < L+1 \implies x(L-1) < f(x) < x(L+1)$$

$$\Rightarrow f(x) > x(L-1)$$

$$\Rightarrow f(x) > K(L-1)$$

$$\Rightarrow f(x) > \alpha$$

Since for any $\alpha \in \mathbb{R}$, $\exists K > a$ for some $a \in \mathbb{R}$ such that for any x > K, $f(x) > \alpha$, we have $\lim_{x \to \infty} f(x) = \infty$.

Question 4

(a) Let $\epsilon > 0$. Set $\delta = \frac{\epsilon}{4}$. If $x, y \in \mathbb{R}$ and $|x - y| < \delta$, then

$$\left| \frac{1}{2x^2 + 1} - \frac{1}{2y^2 + 1} \right| = \left| \frac{2x^2 - 2y^2}{(2x^2 + 1)(2y^2 + 1)} \right|$$

$$= \left| \frac{2(x + y)(x - y)}{(2x^2 + 1)(2y^2 + 1)} \right|$$

$$\leq \frac{2|x - y||x + y|}{|2x^2 + 1||2y^2 + 1|}$$

$$\leq 2|x - y| \left(\frac{|x|}{|2x^2 + 1||2y^2 + 1|} + \frac{|y|}{|2x^2 + 1||2y^2 + 1|} \right)$$

$$\leq 2|x - y|(1 + 1)$$

$$\leq \epsilon$$

Therefore, f(x) is uniformly continuous on \mathbb{R} .

(b) An example will be $f(x) = \sin(\frac{1}{x^2})$, on $A = (0, \infty)$. Consider the sequence (x_n) and (y_n) in A where for each n,

$$x_n = \frac{1}{\sqrt{\frac{\pi}{2} + 2n\pi}}, y_n = \frac{1}{\sqrt{\frac{3\pi}{2} + 2n\pi}}$$

Since $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$, we have $\lim_{n\to\infty} (x_n - y_n) = 0$. However,

$$|f(x_n) - f(y_n)| = |\sin(\frac{\pi}{2} + 2n\pi) - \sin(\frac{3\pi}{2} + 2n\pi)| = 2$$

Hence, by Nonuniform Continuity Criteria, f(x) is continuous and bounded on A but not uniformly continuous.

(c) Consider f on [c-1,c+1]. By Uniform Continuity Theorem, f is uniformly continuous on [c-1,c+1]. So there exists $\delta_A>0$ such that

$$|f(x) - f(y)| < \epsilon$$
 whenever $x, y \in [c-1, c+1]$ and $|x-y| < \delta_A$

Also, since f is uniformly continuous on $(-\infty, c)$, there exists $\delta_B > 0$ such that

$$|f(x)-f(y)|<\epsilon$$
 whenever $x,y\in(-\infty,c)$ and $|x-y|<\delta_B$

Now, set $\delta_1 = \inf\{\delta_A, \delta_B, 1\}$. Suppose $x, y \in \mathbb{R}$ such that $|x - y| < \delta_1$. Without loss of generality, we may assume that x < y. Then either $x, y \in [c - 1, c + 1]$ or $x, y \in (-\infty, c)$ (note that the case of $x \le c - 1$ and $y \ge c$ never occur since otherwise $|x - y| = y - x \ge 1$, contradicting the assumption that $|x - y| < \delta_1 \le 1$.) Now, the result follows from the 2 equations, that is

$$|f(x) - f(y)| < \epsilon$$
 whenever $x, y \in (-\infty, c+1]$ and $|x - y| < \delta_1$

Also, since f is uniformly continuous on (c, ∞) , there exists $\delta_C > 0$ such that

$$|f(x)-f(y)|<\epsilon$$
 whenever $x,y\in(c,\infty)$ and $|x-y|<\delta_C$

Now, set $\delta_2 = \inf\{\delta_A, \delta_C, 1\}$. Suppose $x, y \in \mathbb{R}$ such that $|x - y| < \delta_2$. Without loss of generality, we may assume that x < y. Then either $x, y \in [c - 1, c + 1]$ or $x, y \in (c, \infty)$ (note that the case of $x \le c$ and $y \ge c + 1$ never occur since otherwise $|x - y| = y - x \ge 1$, contradicting the assumption that $|x - y| < \delta_2 \le 1$.) Now, the result follows from the 2 equations, that is

$$|f(x)-f(y)|<\epsilon$$
 whenever $x,y\in[c-1,\infty)$ and $|x-y|<\delta_2$

Now, set $\delta = \inf\{\delta_1, \delta_2, 2\}$. Suppose $x, y \in \mathbb{R}$ such that $|x - y| < \delta$. Without loss of generality, we may assume that x < y. Then either $x, y \in (-\infty, c+1]$ or $x, y \in [c-1, \infty)$ (note that the case of $x \le c-1$ and $y \ge c+1$ never occur since otherwise $|x-y| = y-x \ge 2$, contradicting the assumption that $|x-y| < \delta \le 2$.) Now, the result follows from the 2 equations, that is

$$|f(x) - f(y)| < \epsilon$$
 whenever $x, y \in (-\infty, \infty)$ and $|x - y| < \delta$

We conclude that f is uniformly continuous on \mathbb{R} .

Question 5

(a) From (i), since (a_{2k-1}) is bounded and monotone decreasing, by Monotone Convergence Theorem, (a_{2k-1}) is convergent.

From (ii), since (a_{2k}) is bounded and monotone increasing, by Monotone Convergence Theorem, (a_{2k}) is convergent.

From (iii), since $\lim_{n\to\infty} |a_{n+1}-a_n|=0$, there exists $N\in\mathbb{R}$ such that for all $m,n>N, |a_{n+1}-a_n|<\frac{\epsilon}{m-n}$. Hence, for m>n,

$$|a_{m} - a_{n}| = |(a_{m} - a_{m-1}) + (a_{m-1} - a_{m-2}) + \dots + (a_{n+1} - a_{n})|$$

$$\leq |a_{m} - a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots + |a_{n+1} - a_{n}|$$

$$< \frac{\epsilon}{m-n} + \frac{\epsilon}{m-n} + \dots + \frac{\epsilon}{m-n}$$

$$= \epsilon$$

Therefore, a_n is a Cauchy sequence and is convergent. Since (a_{2k-1}) and (a_{2k}) are subsequences of (a_n) , they all have the same limit, and so there exists $\alpha \in \mathbb{R}$ such that

$$\alpha = \lim_{n \to \infty} a_n = \lim_{k \to \infty} a_{2k-1} = \lim_{k \to \infty} a_{2k}$$

(b) We are given that $f(x) = f(\frac{x+a}{b}) = f(\frac{x}{b} + \frac{a}{b})$. Hence,

$$f(x) = f(\frac{x}{b} + \frac{a}{b})$$

$$= f(\frac{x}{b^2} + \frac{a}{b^2} + \frac{a}{b})$$

$$= f(\frac{x}{b^n} + \frac{a}{b^n} + \dots + \frac{a}{b})$$

Therefore,

$$\lim_{n \to \infty} f(x) = \lim_{n \to \infty} f\left(\frac{x}{b^n} + \frac{a}{b^n} + \dots + \frac{a}{b}\right)$$

$$= f\left(\frac{\frac{a}{b}}{1 - \frac{1}{b}}\right)$$

$$= f\left(\frac{a}{b - 1}\right)$$

$$= c$$

where c is a constant.

Hence, f(x) is a constant function.

When b=1, f(x)=f(x+a). This is a periodic function but not a constant function. One example of a function that satisfies this will be $f(x)=\sin x$, where $a=2\pi$.

Question 6

(a) We shall prove by induction.

k = 1:

By Cauchy Condensation Test, $\sum_{n=N_1}^{\infty} \frac{1}{n \ln n}$ converges $\Rightarrow \sum_{n=N_1}^{\infty} 2^n \frac{1}{2^n \ln 2^n}$ converges $\Rightarrow \sum_{n=N_1}^{\infty} \frac{1}{n \ln 2}$ converges. However, by p-series, $\sum_{n=N_1}^{\infty} \frac{1}{n}$ diverges, so $\sum_{n=N_1}^{\infty} \frac{1}{n \ln n}$ diverges.

Suppose this is true for k = m. Then we have,

$$\sum_{n=N}^{\infty} \frac{1}{n(\ln n)(\ln_2 n)(\ln_3 n)\cdots(\ln_m n)} \text{ diverges}$$

k = m + 1:

By Cauchy Condensation Test,

$$\sum_{n=N_{m+1}}^{\infty} \frac{1}{n(\ln n)(\ln_2 n)\cdots(\ln_{m+1} n)} \text{ converges} \quad \Rightarrow \quad \sum_{n=N_{m+1}}^{\infty} 2^n \frac{1}{2^n(\ln 2^n)(\ln_2 2^n)\cdots(\ln_{m+1} 2^n)} \text{ converges}$$

$$\Rightarrow \quad \sum_{n=N_{m+1}}^{\infty} \frac{1}{(n\ln 2)(\ln n\ln 2)\cdots(\ln_m n\ln 2)} \text{ converges}$$

However, by Comparison Test,

$$\sum_{n=N_{m+1}}^{\infty} \frac{1}{(n \ln 2)(\ln n \ln 2) \cdots (\ln_{k-1} n \ln 2)} \text{ converges} \Rightarrow \sum_{n=N_{m+1}}^{\infty} \frac{1}{n(\ln n)(\ln_2 n) \cdots (\ln_m n)} \text{ converges}$$

since $\ln 2 < 1$.

However, we arrive at a contrdiction, since $\sum_{n=N_{m+1}}^{\infty} \frac{1}{n(\ln n)(\ln_2 n)\cdots(\ln_m n)}$ diverges. Therefore,

$$\sum_{n=N_{m+1}}^{\infty} \frac{1}{n(\ln n)(\ln_2 n)(\ln_3 n)\cdots(\ln_{m+1} n)} \text{ diverges.}$$

By Mathematical Induction, since the case for k=1 is true and k=m true implies k=m+1 true, $\sum_{n=N_k}^{\infty} \frac{1}{n(\ln n)(\ln_2 n)\cdots(\ln_k n)}$ diverges for all $k\in\mathbb{N}$.

(b) We take the logarithmic function on both sides to obtain

$$\ln(f(x) - \lfloor x \rfloor) = \lfloor x \rfloor \ln(x - \lfloor x \rfloor)$$

The function $\lfloor x \rfloor$ is continuous on $\mathbb{R} \setminus \mathbb{Z}$. Since $x > \frac{1}{2}$, $\lfloor x \rfloor$ is continuous on $[\frac{1}{2}, \infty) \setminus \mathbb{Z}$. Since $\ln(f(x) - \lfloor x \rfloor)$ is made up of a composition of $\ln x$, x and $\lfloor x \rfloor$, it is continuous on $[\frac{1}{2}, \infty) \setminus \mathbb{Z}$. Since e^x is continuous on \mathbb{R} , $f(x) - \lfloor x \rfloor$ is continuous on $[\frac{1}{2}, \infty) \setminus \mathbb{Z}$. Therefore, f is continuous on $[\frac{1}{2}, \infty) \setminus \mathbb{Z}$.

It suffices to prove that f is continuous on \mathbb{Z}^+ . Let $a \in \mathbb{Z}^+$.

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} \left(\lfloor x \rfloor + (x - \lfloor x \rfloor)^{\lfloor x \rfloor} \right)$$

$$= a + (a - a)^{a}$$

$$= a$$

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{-}} \left(\lfloor x \rfloor + (x - \lfloor x \rfloor)^{\lfloor x \rfloor} \right)$$

$$= (a - 1) + (a - (a - 1))^{a - 1}$$

$$= (a - 1) + 1$$

$$= a$$

Since $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x)$, we conclude that f is continuous on \mathbb{Z}^+ . Hence, f is continuous on $\left[\frac{1}{2},\infty\right)$.

Question 7

(a) Suppose c is rational and $c \neq 0$. Let (x_n) be a sequence of irrational numbers converging to c. If f is continuous at c, then $f(c) = \lim f(x_n) = 0$. On the other hand, by definition, $f(c) = \sin c$. So $\sin c = 0$ which gives us c = 0, contradicting our assumption. So f is NOT continuous at rational numbers $c \neq 0$.

Similarly, suppose c is irrational and $c \neq n\pi$ where $n \in \mathbb{Z} \setminus \{0\}$. Let (y_n) be a sequence of rational numbers converging to c. If f is continuous at c, then $f(c) = \lim f(y_n) = \sin c$. On the other hand, by definition, f(c) = 0. So $\sin c = 0$ which gives us $c = n\pi$ where $n \in \mathbb{Z} \setminus \{0\}$, contradicting our assumption. So f is NOT continuous at irrational numbers $c \neq n\pi$ where $n \in \mathbb{Z} \setminus \{0\}$.

Now we show that f is continuous at $c = n\pi$ where $n \in \mathbb{Z}$. Let $\epsilon > 0$. Set $\delta = \inf\{0, \epsilon\}$. Note that $f(n\pi) = 0$. Suppose $|x - n\pi| < \delta$.

If x is irrational, then

$$|f(x) - f(n\pi)| = |0 - 0|$$

$$< \delta \le \epsilon$$

If x is rational, then

$$|f(x) - f(n\pi)| = |\sin x - \sin n\pi|$$

$$= 2 \left|\cos \frac{x + n\pi}{2} \sin \frac{x - n\pi}{2}\right|$$

$$\leq 2 \left|\sin \frac{x - n\pi}{2}\right|$$

$$\leq 2 \left|\frac{x - n\pi}{2}\right|$$

$$\leq \delta \leq \epsilon$$

Therefore, f is continuous at all $n\pi$ where $n \in \mathbb{Z}$.

(b) We define $g(x) = f(x+1) - f(x) - \frac{f(x)}{2} + \frac{f(0)}{2}$. This means that g is continuous on [0,1]. It suffices to find $k \in [0,1]$ such that g(k) = 0, since this will lead us to a = k+1, b = k.

If g(0) = 0 or g(1) = 0, then we have found the k which leads us to the values of a and b.

If $g(0) \neq 0$ and $g(1) \neq 0$, then we see that

$$g(0) = f(1) - f(0) - \frac{f(2)}{2} + \frac{f(0)}{2}$$

$$= -\frac{f(0)}{2} + f(1) - \frac{f(2)}{2}$$

$$g(1) = f(2) - f(1) - \frac{f(2)}{2} + \frac{f(0)}{2}$$

$$= \frac{f(0)}{2} - f(1) + \frac{f(2)}{2}$$

$$= -g(0)$$

By Intermediate Value Theorem, there exists a $k \in (0,1)$ such that g(k) = 0. Therefore, there exists $k \in [0,1]$ such that g(k) = 0. Taking $a = k + 1, b = k, a, b \in [0,2]$, and we are done.

Page: 8 of 8