Công thức gộp nghiệm phương trình lượng giác

1. Lý thuyết

Biểu diễn nghiệm trên đường tròn lượng giác:

Cung lượng giác $\alpha + \frac{k2\pi}{m}$; $k \in \mathbb{Z}$ được biểu diễn bởi m điểm trên đường tròn lượng giác (các điểm

cách nhau đúng góc $\frac{2\pi}{m}$)

Bước 1: Xác định điểm M biểu diễn cung α .

Bước 2: Xác định m – 1 điểm còn lại cách đều điểm M một góc $\frac{2\pi}{m}$. (Hoặc chia đường tròn thành m phần bằng nhau, bắt đầu chia từ điểm M, ta được m – 1 điểm còn lại).

2. Công thức:

Sau khi biểu diễn họ nghiệm trên đường tròn lượng giác

- * Ta hợp các nghiệm bằng cách:
- Tìm ra các điểm cách đều nhau. Tìm khoảng cách giữa chúng là β .
- Công thức biểu diễn các điểm đó là $x = \alpha + k\beta (k \in \mathbb{Z})$ với α là 1 cung bất kì của 1 điểm trong các điểm đó.
- * Loại nghiệm:
- Ta bỏ đi những điểm không xác định và tìm công thức biểu diễn các điểm còn lại như phần hợp nghiệm.

3. Ví dụ minh họa

Ví dụ 1: Hợp các họ nghiệm sau:

a)
$$x = k\pi$$

$$x = \frac{\pi}{2} + k\pi (k \in \mathbb{Z})$$

b)
$$x = \frac{\pi}{6} + k\pi$$
$$x = \frac{2\pi}{3} + k\pi \quad (k \in \mathbb{Z})$$

c)
$$\begin{cases} x = \frac{k\pi}{3} \\ x \neq \pi + k2\pi \end{cases} (k \in \mathbb{Z})$$

a)
$$x = k\pi$$
$$x = \frac{\pi}{2} + k\pi (k \in \mathbb{Z})$$

Bước 1: Biểu diễn $x = k\pi = 0 + k\pi (k \in \mathbb{Z})$ trên đường tròn lượng giác.

- Xác định điểm M_1 biểu diễn cung 0.
- Điểm còn lại cách M_1 một góc π (tức nửa đường tròn lượng giác) là điểm M_2 trên hình vẽ.

Bước 2: Biểu điễn $x = \frac{\pi}{2} + k\pi (k \in \mathbb{Z})$ trên đường tròn lượng giác.

- Xác định điểm N_1 biểu diễn cung $\frac{\pi}{2}$.
- Điểm còn lại cách N_1 một góc π (tức nửa đường tròn lượng giác) là điểm N_2 trên hình vẽ.

Bước 3: Hợp nghiệm

Ta thấy 4 điểm cách đều nhau một góc $\frac{\pi}{2}$

Công thức biểu diễn 4 điểm đó là: $x=0+k\frac{\pi}{2}\big(k\in\mathbb{Z}\big)$ hay $x=\frac{k\pi}{2}\big(k\in\mathbb{Z}\big)$.

b)
$$x = \frac{\pi}{6} + k\pi$$

$$x = \frac{2\pi}{3} + k\pi$$
 $(k \in \mathbb{Z})$

Bước 1: Biểu diễn $x = \frac{\pi}{6} + k\pi (k \in \mathbb{Z})$ trên đường tròn lượng giác.

- Xác định điểm M_1 biểu diễn cung $\frac{\pi}{6}$.
- Điểm còn lại cách M_1 một góc π (tức nửa đường tròn lượng giác) là điểm M_2 trên hình vẽ.

Bước 2: Biểu diễn $x = \frac{2\pi}{3} + k\pi (k \in \mathbb{Z})$ trên đường tròn lượng giác.

- Xác định điểm N_1 biểu diễn cung $\frac{2\pi}{3}$.
- Điểm còn lại cách N_1 một góc π (tức nửa đường tròn lượng giác) là điểm N_2 trên hình vẽ.

Bước 3: Hợp nghiệm

Ta thấy 4 điểm cách đều nhau một góc $\frac{\pi}{2}$ và chọn điểm bắt đầu là $\frac{\pi}{6}$.

Công thức biểu diễn 4 điểm đó là: $x = \frac{\pi}{6} + k \frac{\pi}{2} (k \in \mathbb{Z})$.

c)
$$\begin{cases} x = \frac{k\pi}{3} \\ x \neq \pi + k2\pi \end{cases} (k \in \mathbb{Z})$$

Bước 1: Biểu diễn $x = \frac{k\pi}{3} = 0 + \frac{k2\pi}{6} (k \in \mathbb{Z})$ trên đường tròn lượng giác. (Có 6 điểm biểu diễn)

- Xác định điểm M_1 biểu diễn cung 0.
- Điểm còn lại cách M_1 một góc $\frac{\pi}{3}$ (hoặc chia đường tròn thành 6 phần, bắt đầu chia từ điểm M_1) là các điểm M_2 ; M_3 ; M_4 ; M_5 ; M_6 trên hình vẽ.

Bước 2: Biểu diễn điểm $x \neq \pi + k2\pi (k \in \mathbb{Z})$ trên đường tròn lượng giác.

- Xác định điểm N biểu diễn cung π .
- Các điểm còn lại cách N đúng 2π (tức là 1 vòng tròn lượng giác). Tức là chỉ có 1 điểm N biểu diễn $x \neq \pi + k2\pi \big(k \in \mathbb{Z}\big)$ trên đường tròn.

Bước 3: Loại nghiệm

Ta thấy điểm M_4 trùng với N. Nên ta chỉ nhận các điểm M_1 ; M_2 ; M_3 ; M_5 ; M_6 .

- Điểm M_2 ; M_5 cách nhau một góc π và chọn điểm bắt đầu là M_2 có góc lượng giác là $\frac{\pi}{3}$. Công thức biểu diễn hai điểm M_2 ; M_5 là $x=\frac{\pi}{3}+k\pi\big(k\in\mathbb{Z}\big)$.
- Điểm M_3 ; M_6 cách nhau một góc π và chọn điểm bắt đầu là M_6 có góc lượng giác là $-\frac{\pi}{3}$. Công thức biểu diễn hai điểm M_3 ; M_6 là $x=-\frac{\pi}{3}+k\pi\big(k\in\mathbb{Z}\big)$.
- Điểm M_1 : công thức biểu diễn là $x = 0 + k2\pi (k \in \mathbb{Z})$.

Vậy các họ nghiệm thu được là $x = \pm \frac{\pi}{3} + k\pi$; $x = 2k\pi$; $(k \in \mathbb{Z})$

Ví dụ 2: Giải các phương trình sau:

- a) $\sin 2x 2\sin x = 0$
- b) tan3x = tanx

Lời giải

- a) Ta có: $\sin 2x 2\sin x = 0$
- \Leftrightarrow 2 sin x cos x 2 sin x = 0
- $\Leftrightarrow 2\sin x(\cos x 1) = 0$

$$\Leftrightarrow \begin{bmatrix} \sin x = 0 \\ \cos x = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = k\pi \\ x = k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

Ta kết hợp nghiệm:

Bước 1: Biểu diễn $x = k\pi = 0 + k\pi (k \in \mathbb{Z})$ trên đường tròn lượng giác.

- Xác định điểm M₁ biểu diễn cung 0.
- Điểm còn lại cách M_1 một góc π (tức nửa đường tròn lượng giác) là điểm M_2 trên hình vẽ.

Bước 2: Biểu điễn $x = k2\pi(k \in \mathbb{Z})$ trên đường tròn lượng giác.

- Xác định điểm N biểu diễn cung 0.
- Các điểm còn lại cách N đúng 2π (tức là 1 vòng tròn lượng giác). Tức là chỉ có 1 điểm N biểu diễn $x = k2\pi (k \in \mathbb{Z})$ trên đường tròn.

Bước 3: Kết hợp nghiệm

Ta thấy hai họ nghiệm lồng nhau. Vậy chỉ cần lấy họ nghiệm $x = k\pi (k \in \mathbb{Z})$.

Kết luận: Họ nghiệm của phương trình là $x = k\pi; k \in \mathbb{Z}$.

b) tan3x = tanx

Điều kiện xác định:
$$\begin{cases} \cos 3x \neq 0 \\ \cos x \neq 0 \end{cases} \Leftrightarrow \begin{cases} 3x \neq \frac{\pi}{2} + k\pi \\ x \neq \frac{\pi}{2} + k\pi \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{6} + \frac{k\pi}{3} \\ x \neq \frac{\pi}{2} + k\pi \end{cases} (k \in \mathbb{Z})$$

Ta có: tan3x = tanx

$$\Leftrightarrow$$
 3x = x + k π

$$\Leftrightarrow 2x = k\pi$$

$$\iff x = \frac{k\pi}{2} \big(k \in \mathbb{Z} \big)$$

Kết hợp với điều kiện xác định như sau:

Bước 1: Biểu diễn $x = k\frac{\pi}{2} = \frac{k2\pi}{4}(k \in \mathbb{Z})$ trên đường tròn lượng giác. (Có 4 điểm biểu diễn)

- Xác định điểm M_1 biểu diễn cung 0.
- Điểm còn lại cách M_1 một góc $\frac{\pi}{2}$ (hoặc chia đường tròn thành 4 phần, bắt đầu chia từ điểm M_1) là các điểm M_2 ; M_3 ; M_4 trên hình vẽ.

Bước 2: Biểu diễn $x \neq \frac{\pi}{6} + \frac{k\pi}{3} (k \in \mathbb{Z})$ trên đường tròn lượng giác. (Có 6 điểm biểu diễn)

- Xác định điểm N_1 biểu diễn cung $\frac{\pi}{6}$.
- Điểm còn lại cách N_1 một góc $\frac{\pi}{3}$ (hoặc chia đường tròn thành 6 phần, bắt đầu chia từ điểm N_1) là các điểm N_2 ; N_3 ; N_4 ; N_5 ; N_6 trên hình vẽ.

Bước 3: Biểu điễn $x \neq \frac{\pi}{2} + k\pi (k \in \mathbb{Z})$ trên đường tròn lượng giác.

- Xác định điểm P_1 biểu diễn cung $\frac{\pi}{2}$.
- Điểm còn lại cách P_1 một góc π (tức nửa đường tròn lượng giác) là điểm P_2 trên hình vẽ.

Bước 4: Loại nghiệm

Nghiệm của phương trình là các điểm M. Các điểm không thỏa mãn điều kiện xác định là các điểm N, P.

Theo hình vẽ ta chỉ lấy được nghiệm là biểu diễn bởi điểm M_1 và M_3 .

Điểm M_1 ; M_3 cách nhau một góc π và chọn điểm bắt đầu là M_1 có góc lượng giác là 0. Công thức biểu diễn hai điểm M_1 ; M_3 là $x = k\pi (k \in \mathbb{Z})$ hay $x = k\pi; k \in \mathbb{Z}$.

Vậy họ nghiệm của phương trình là: $x = k\pi; k \in \mathbb{Z}$.

4. Bài tập tự luyện

Câu 1. Phương trình $\frac{\sin x}{1 + \cos x} = 0$ có nghiệm là:

C.
$$(2k+1)\frac{\pi}{2}$$
 D. $(2k+1)\pi$

D.
$$(2k+1)\pi$$

Câu 2. Cho phương trình $\cos^2 x = \frac{1}{2}$. Các nghiệm của phương trình là:

$$\mathbf{A.} - \frac{\pi}{2} + \mathbf{k}\pi$$

$$\mathbf{B.} \ \frac{\pi}{4} + \mathbf{k} \frac{\pi}{2}$$

B.
$$\frac{\pi}{4} + k \frac{\pi}{2}$$
 C. $\pm \frac{\pi}{2} + k2\pi$ **D.** $\frac{\pi}{2} + k2\pi$

$$\mathbf{D.} \ \frac{\pi}{2} + \mathrm{k} 2\pi$$

Câu 3. Phương trình lượng giác $\frac{\cos x - \sqrt{3} \sin x}{2 \sin x - 1} = 0$ có nghiệm là:

B.
$$x = \frac{7\pi}{6} + k2\pi$$
 C. $x = \frac{\pi}{6} + k\pi$ **D.** $x = \frac{\pi}{6} + k2\pi$

C.
$$x = \frac{\pi}{6} + k\pi$$

D.
$$x = \frac{\pi}{6} + k2\pi$$

Đáp án: 1 - B, 2 - B, 3 - B