

20" COLOR TELEVISION

TV-2000A MK7

IMPORTANT SAFETY NOTICE

Proper service and repair is important to the safe, reliable operation of all Funai Equipment. The service procedures recommended by Funai and described in this service manual are effective methods of performing service operations. Some of these service special tools should be used when and as recommended.

It is important to note that this service manual contains various CAUTIONS and NOTICES which should be carefully read in order to minimize the risk of personal injury to service personnel. The possibility exists that improper service methods may damage the equipment. It also is important to understand that these CAUTIONS and NOTICES ARE NOT EXHAUSTIVE. Funai could not possibly know, evaluate and advice the service trade of all conceivable ways in which service might be done or of the possible hazardous consequences of each way. Consequently, Funai has not undertaken any such broad evaluation. Accordingly, a servicer who uses a service procedure or tool which is not recommended by Funai must first use all precautions thoroughly so that neither his safety nor the safe operation of the equipment will be jeopardized by the service method selected.

TABLE OF CONTENTS

General Specifications	1-1
Performance Specifications	2-1
renormance opecinications	2_1
Important Safety Precautions	1
Disassembly Instructions	
Electrical Adjustment Instructions	5-1
Block Diagram	6-1
Schematic Diagrams / PCB's and Test Points	7-1
Schematic Diagrams / POD's and Test Forms	0.1
Waveforms	0-1
Wiring Diagram	9-1
Exploded View	10-1
Mechanical Parts List	11-1
Electrical Parts List	12-1
Flectrical Parts List	.,,,,,,,,

GENERAL SPECIFICATIONS*

FEATURE and SPECIFICATIONS

Color System:

PAL - B/G.

SECAM - B/G. D/K

NTSC 4.43/3.58MHz

(Video In only)

Voltage Synthesizer Tuning System: Receivable Channels: VHF-L: R1~R5/

- (OIRT + CCIR ch) -E2~E4 ch (X~S2)

VHF-H: R6~R12/

E5~E12 ch (S3~S10)

UHF: 21~69 ch

CATV-Mid

Numer of Present: up to 50 Antenna Impedance:

UHF/VHF 75Ω. Unhalanced

14", Tinted Picture Tube:

Picture Control: (Remote)

Color, Brightness, Contrast and

Video mode (Sharp/Soft)

Picture Control Memory: Standard - Select

(Remote)

Speaker:

77m/m, Round Type, 8Ω

Output Power: Other Features: 1W. 10% THD **Automatic Channel**

Programming

Automatic Degaussing

220-240V, 50Hz AC Power Source:

Power Consumption:

Cabinet Size:

366(W) x 35(D) x 32(H)

mm (Approx)

Weight:

70W

Regulations:

9Kg (Approx) IEC-65 Passable

JACK AND TERMINALS

UHF/VHF Antenna: Video In Jack:

BNC Jack

Audio In Jack: EARPHONE:

RCA Jack 3.5mm CES

75Ω IEC Jack

CONTROL and SWITCHES

Power:

Push (Front)

Channel Up/Down: Volume Up/Down:

Push (Front) Push (Front) Push (Front)

Tuning Up/Down: Program:

Push (Front)

Auto Memo/Band:

Push (Front) Standby

Remote Control: (20keys)

0/AV 1~9

Channel Up/Down

Control& Volume Up/Down

Picture Select

(Bright/Contrast/

Color/Video Mode)

Previous Mute

Sleep Display

DISPLAY

LED Indicator:

LED (Red)

* When turning on the power, the stand-by

LED will turn off.

On Screen Display: Channel

Volume Brightness

Color Contrast Sharp-Soft Sleep Timer (10~90 Minute)

Tuning Indicator **Band Position**

ACCESSORIES

Remote Control Transmitter

Batterry: Owner's Manual Rod Antenna

UM3 x 2

^{*} Specifications are subject to change without notice.

PERFORMANCE SPECIFICATIONS

< Tuner >

ANT. Input ------ 75\Omega Unbalanced, IEC connector Reference Level ----- 300mVp-p at Video Output Test Input Signal ----- 400Hz 30% modulation

<u>Description</u>	Condition	Unit	Nominal	_Limit_
1. Peak Picture Sens	VHF UHF	dΒμV dΒμV	20 30	30 40
2. AFT Pull In Range (80dBμ input)	-	MHz	±1.0	± 0.7
3. Intermediate Freq.	Picture Sound Sound	MHz MHz MHz	38.0 31.5 (D/K) 32.5 (B/G)	=
4. Intercarrier Freq.	=	MHz MHz	6.5 (D/K) 5.5 (B/G)	_

< Deflection >

Description	Condition	Unit	_Nominal_	Limit
Deflection Freq.	Horizontal (PAL/SECAM) (NTSC) Vertical (PAL/SECAM) (NTSC)	KHz KHz Hz Hz	15.625 15.75 50 60	<u>-</u> -
2. Linearity	Horizontal Vertical	% %	_	± 15 ± 15
3. High Voltage		κv	23	_

< Video & Chroma>

Description	Condition	Unit	Nominal	_Llmit_
1. Misconvergence	Center	mm		0.4
-	Side	mm	_	1.5
	Corner	mm	_	2.0
2. Over Scan	Horizontal	%	10	_
	Vertical	%	10	_
3. Color Temperature	_	к	8000K-10MPCD	_
4. Resolution	Horizontal	Line	300	
	Vertical	Line	300	_
5. Brightness	APL 100%	Ft-L	45	35

<Audio>

All items are measured across 16Ω resistor at speaker output terminal.

Description	Condition	Unit	Nominal	_Limit_
1. Audio Output Power	10% THD	w	1.2	0.8
2. Audio Distortion	500mW	%	2	5
3. Audio Freq. Response	-6dB	Hz	_	100~6K

IMPORTANT SAFETY PRECAUTIONS

Prior to shipment from the factory, our products are strictly inspected for recognized product safety and electrical codes of the countries in which they are to be sold. However, in order to maintain such compliance, it is equally important to implement the following precautions when a set is being serviced.

Safety Precautions for TV Circuit

- Before returning an instrument to the customer, always make a safety check of the entire instrument, including, but not limited to, the following items:
- a. Be sure that no built-in protective devices are defective and have been defeated during servicing. (1) Protective shields are provided on this chassis to protect both the technician and the customer. Correctly replace all missing protective shields, including any removed for servicing convenience. (2) When reinstalling the chassis and/or other assembly in the cabinet, be sure to put back in place all protective devices, including but not limited to, nonmetallic control knobs, insulating fishpapers, adjustment and compartment covers/shields, and isolation resistor/capacitor networks. Do not operate this instrument or permit it to be operated without all protective devices correctly installed and functioning. Servicers who defeat safety features or fall to perform safety checks may be liable for any resulting damage.
- b. Be sure that there are no cabinet openings through which an adult or child might be able to insert their fingers and contact a hazardous voltage. Such openings include, but are not limited to, (1) spacing between the picture tube and the cabinet mask, (2) excessively wide cabinet ventilation slots, and (3) an improperly fitted and/or incorrectly secured cabinet back cover.
- c. Antenna Cold Check With the instrument AC plug removed from any AC source, connect an electrical jumper across the two AC plug prongs. Place the instrument AC switch in the on position. Connect one lead of an ohmmeter to the AC plug prongs tied together and touch the other ohmmeter lead in turn to each tuner antenna input exposed terminal screw and, if applicable, to the coaxial connector. If the measured resistance is less than 1.0 megohm or greater than 5.2 megohm, an abnormality exists that must be corrected before the instrument is returned to the customer.

- Repeat this test with the instrument AC switch in the off position.
- d. Leakage Current Hot Check With the instrument completely reassembled, plug the AC line cord directly into a AC outlet. (Do not use an isolation transformer during this test.) Use a leakage current tester. With the instrument AC switch first in the on position and then in the off position, measure from a known earth ground (metal water pipe, conduit, etc.) to all exposed metal parts of the instrument (antennas, handle brackets, metal cabinet, screw heads, metallic overlays, control shafts, etc.), especially any exposed metal parts that offer an electrical return path to the chassis. Any current measured must not exceed 0.5 milliampere. Reverse the instrument power cord plug in the outlet and repeat the test.

ANY MEASUREMENTS NOT WITHIN THE LIMITS SPECIFIED HEREIN INDICATE A POTENTIAL SHOCK HAZARD THAT MUST BE ELIMINATED BEFORE RETURNING THE INSTRUMENT TO THE CUSTOMER OR BEFORE CONNECTING THE ANTENNA OR ACCESSORIES.

- e. x-Radiation and High Voltage Limits Because the picture tube is the primary potential source of X-radiation in solid-state TV receivers, it is specially constructed to prohibit X-radiation emissions. For continued X-radiation protection. the replacement picture tube must be the same type as the original. Also, because the picture tube shields and mounting hardware perform an X-radiation protection function, they must be correctly in place. High voltage must be measured each time servicing is performed that involves B+, horizontal deflection or high voltage. Correct operation of the X-radiation protection circuits also must be reconfirmed each time they are serviced. (X-radiation protection circuits also may be called "horizontal disable" or "hold down.") Read and apply the high voltage limits and, if the chassis is so equipped, the X-radiation protection circuit specifications given on instrument labels and in the Product Safety & X-Radiation Warning note on the service data chassis schematic. High voltage is maintained within specified limits by close tolerance safety-related components/adjustments in the high-voltage circuit. If high voltage exceeds specified limits, check each component specified on the chassis schematic and take corrective action.
- Read and comply with all caution and safety-related notes on or inside the receiver cabinet, on the receiver chassis, or on the picture tube.
- 3. Design Alteration Warning Do not alter or add to the mechanical or electrical design of this TV receiver. Design alterations and additions, including, but not limited to circuit modifications and the addition of items such as auxiliary audio and/or video output connections, might alter the safety characteristics of this receiver and create a hazard to the user. Any design alterations or additions will void the manufacturer's warranty and may make you, the servicer, responsible for personal injury or property damage resulting therefrom.
- 4. Picture Tube Implosion Protection Warning The picture tube in this receiver employs integral implosion protection. For continued implosion protection, replace the picture tube only with one of the same type number. Do not remove, install, or otherwise handle the picture tube in any manner without first putting on shatterproof goggles equipped with side shields. People not so equipped must be kept safely away while picture tubes are handled. Keep the picture tube away from your body. Do not handle

the picture tube by its neck. Some "in-line" picture tubes are equipped with a permanently attached deflection yoke; because of potential hazard, do not try to remove such "permanently attached" yokes from the picture tube.

5. Hot Chassis Warning -

- a. Some TV receiver chassis are electrically connected directly to one conductor of the AC power cord and may be safety-serviced without an isolation transformer only if the AC power plug is inserted so that the chassis is connected to the ground side of the AC power source. To confirm that the AC power plug is inserted correctly, with an AC voltmeter, measure between the chassis and a known earth ground. If a voltage reading in excess of 1.0V is obtained, *remove and reinsert the AC power plug in the opposite polarity and again measure the voltage potential between the chassis and a known earth ground.
- b. Some TV receiver chassis have a circuit which obtain voltage about 70% of AC voltage between chassis and earth ground regardless of the AC plug polarity. This chassis can be safety-serviced only with an isolation transformer inserted in the power line between the receiver and the AC power source, for both personnel and test equipment protection.
- c. Some TV receiver chassis have a secondary ground system in addition to the main chassis ground. This secondary ground system is not isolated from the AC power line. The two ground systems are electrically separated by insulation material that must not be defeated or aftered.

Note: * In case unit has no polarity AC plug only.

- 6. Observe original lead dress. Take extra care to assure correct lead dress in the following areas: a. near sharp edges, b. near thermally hot parts-be sure that leads and components do not touch thermally hot parts, c. the AC supply, d. high voltage, and e. antenna wiring. Always inspect in all areas for pinched, out of place, or frayed wiring. Check AC power cord for damage.
- 7. Components, parts, and/or wiring that appear to have overheated or are otherwise damaged should be replaced with components, parts, or wiring that meet original specifications. Additionally, determine the cause of overheating and/or damage and, if necessary, take corrective action to remove any potential safety hazard.
- Product Safety Notice Some electrical and mechanical parts have special safety-related characteristics which are often not evident from visual

3-2

inspection, nor can the protection they give necessarily be obtained by replacing them with components rated for higher voltage, wattage, etc.. Parts that have special safety characteristics are identified by a (\(\tilde{\Delta} \)) on schematics and in parts lists. Use of a substitute replacement that does not have the same safety characteristics as the recommended replacement part might create shock, fire, and/or other hazards. The Product's Safety is under review continu-

ously and new instructions are issued whenever appropriate. Prior to shipment from the factory, our products are strictly inspected to confirm with the recognized product safety and electrical codes of the countries in which they are to be sold. However, in order to maintain such compliance, it is equally important to implement the following precautions when a set is being serviced.

Precautions during Servicing

- A. Parts identified by the (\(\Delta \)) symbol are critical for safety.
- Replace only with part number specified.
- B. In addition to safety, other parts and assemblies are specified for conformance with regulations applying to spurious radiation. These must also be replaced only with specified replacements. Examples: RF converters, RF cables, noise blocking capacitors, and noise blocking filters, etc.
- C. Use specified internal wiring. Note especially:
 - 1) Wires covered with PVC tubing
 - 2) Double insulated wires
 - 3) High voltage leads
- D. Use specified insulating materials for hazardous live parts. Note especially:
 - 1) Insulation Tape
 - 2) PVC tubing
 - 3) Spacers
 - 4) Insulators for transistors.
- E. When replacing AC primary side components (transformers, power cord, etc.), wrap ends of wires securely about the terminals before soldering.
- F. Observe that the wires do not contact heat producing parts (heatsinks, oxide metal film resistors, fusible resistors, etc.)
- G. Check that replaced wires do not contact sharp edged or pointed parts.

- H. When a power cord has been replaced, check that 10-15 kg of force in any direction will not loosen it.
- I. Also check areas surrounding repaired locations.
- J. Use care that foreign objects (screws, solder droplets, etc.) do not remain inside the set.
- K. Crimp type wire connector

When replacing the power transformer in sets where the connections between the power cord and power transformer primary lead wires are performed using crimp type connectors, in order to prevent shock hazards, perform carefully and precisely the following steps.

Replacement procedure

- Remove the old connector by cutting the wires at a point close to the connector.
- Important: Do not re-use a connector (discard it).
- Strip about 15 mm of the insulation from the ends of the wires. If the wires are stranded, twist the strands to avoid frayed conductors.
- Align the lengths of the wires to be connected.
 Insert the wires fully into the connector.
- Use the crimping tool to crimp the metal sleeve at the center position. Be sure to crimp fully to the complete closure of the tool.
- L. When connecting or disconnecting the VCR connectors, first, disconnect the AC plug from AC supply socket.

Safety Check after Servicing

Examine the area surrounding the repaired location for damage or deterioration. Observe that screws, parts and wires have been returned to original positions. Afterwards, perform the following tests and confirm the specified values in order to verify compliance with safety standards.

1. Clearance Distance

When replacing primary circuit components, confirm specified clearance distance (d) and (d') between soldered terminals, and between terminals and surrounding metallic parts. (See Fig. 1)

Table 1: Ratings for selected area

AC Line Voltage	Region	Clearance Distance (d) (d')
200 to 240 V	Europe Australia	≥ 4mm (d) ≥ 6mm (d')

Note: This table is unofficial and for reference only. Be sure to confirm the precise values.

2. Leakage Current Test

Confirm specified (or lower) leakage current between B (earth ground, power cord plug prongs) and externally exposed accessible parts (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.).

Measuring Method: (Power ON)

Insert load Z between B (earth ground, power cord plug prongs) and exposed accessible parts. Use an AC voltmeter to measure across both terminals of load Z. See Fig. 2 and following table.

Shassis

Primary circuit terminals

d'

d

Fig. 1

Table 2: Leakage current ratings for selected areas

AC Line Voltage	Region	Load Z	Leakage Current (i)	Earth Ground (B) to:
		2kΩ RES.	i≤0.7mA rms	Antenna terminals
200 to 240 V	Europe	in connected	i≤2mA dc	Antenna terminais
200 10 240 V	Australia	50kΩ RES.	i≤0.7mA rms	Oth
		in connected	i≤2mA dc	Other terminals

Note: This table is unofficial and for reference only. Be sure to confirm the precise values.

3-3

DISASSEMBLY INSTRUCTIONS

1. DISASSEMBLY FLOW CHART

This flow chart indicates the disassembly steps of the cabinet parts and PCB in order to gain access to item(s) to be serviced. When reassembling, perform the step(s) in the reverse order. Bend, route and dress the cables as they were originally.

CAUTION!: When removing the CRT, make sure to discharge Anode Lead of the CRT. Use the CRT Ground Wire to discharge the CRT before removing the Anode Cap.

2. DISASSEMBLY METHOD

STEP			REMOVAL	
/LOC. NO.	PART	FIG. NO.	REMOVE / *UNLOCK / RELEASE / UNPLUG / UNCLAMP / DESOLDER	NOTE
[1]	Rear Cabinet	CAB1 CAB2	L2 (4pcs), L3	1
[2]	CRT PCB	CAB4 CAB5	CN602, CN603, CN604 FOCUS WIRE, SCREEN WIRE	2
[3]	Main PCB	CAB3 CAB5	CN201, CN202, CN203, CN204, CN208, CN501 ANODE CAP, FOCUS WIRE, SCREEN WIRE	3
[4]	IF PCB	CAB3	CN101, CN102	4
[5]	CRT	CAB4	B2 (4pcs)	5

4-1

Reference < Notes > in Table

- 1. (1) Remove 5 screws (L2, L3) and slide the Rear Cabinet backward.
- 2. (1) If not already removed, first remove the Rear Cabinet.
- (2) Remove all relative wires, then pull the CRT PCB backward.
- 3. (1) If not already removed, first remove the Rear Cabinet.
 - (2) Remove all relative wires on the Main PCB and remove the Anode Cap, then slide the main PCB backward.
- 4. (1) If not already removed, first remove the Rear Cabinet.
 - (2) Desolder CN101 and CN102, then remove the IF PCB from the Main PCB.

Discharge Anode Lead of the CRT with the CRT Ground Wire before removing the Anode Cap.

- 5. (1) If not already removed, first remove the Rear Cabinet and Main PCB.
 - (2) Remove 4 screws (B2), then the CRT can be removed.

L7480DC

L7480DC

FLECTRICAL ADJUSTMENT INSTRUCTIONS

NOTE:

Electrical adjustments are required after replacing circuit components. It is important to perform these adjustments only after all repairs and replacements have been completed. Also, do not attempt these adjustments unless the proper equipment is available.

TEST EQUIPMENT REQUIRED:

- 1. IF Sweeper
- 2. DC Volt Meter
- 3. Oscilloscope: Dual Trace with 10:1 probe
- 4. PAL. SECAM and NTSC Pattern Generator
- 5. Monoscope
- 6. Color Analyzer

HOW TO SET UP THE ADJUSTMENT MODE:

Preset Mode: Press picture select button on the remote control unit, then press the number "1" button.

Brightness ----- Center Color ----- Center Contrast ----- Approx 70%

5-1

1. POWER SUPPLY DC VOLTAGE ADJUSTMENT

Purpose: To get correct voltage.

Symptom of Misadjustment: If voltage is incorrect, picture is dark.

Spec.
DC +114±0.5V
a.
C Volt Meter

Reference Notes: D245, VR205 --- MAIN PCB

- 1. To inactivate FBT, ground the base of Q220.
- 2. Connect both terminal of C343 by 1KΩ (60W~80W).
- 3. Connect the equipment as shown in the above table.
- 4. Adjust VR205 for reading +114±0.5V on the DC Volt Meter.

2. 38.0MHz PEAK ADJUSTMENT (for TUNER)

Purpose: To adjust PIF (Picture Intermediate Frequency).

Symptom of Misadjustment: Beat may appear on the picture and buzz may sound.

Reference Notes: IC101, L106 --- IF PCB

Connect Output of sweeper to 6pin of IC101.

Frequency set of sweeper are below:

(1) 31.5MHz (2) 32.4MHz (3) 33.57MHz (4) 35.8MHz (5) 38.0MHz

(6) 39.45MHz

- 2. Connect the oscilloscope to 16pin of IC101.
- 3. Load DC Voltage to 4pin of IC101 as the wave of oscilloscope not to clip.
- 4. Adjust L106 as the marker for 38.0MHz to be peak.

3. AFT CURVE ADJUSTMENT (for TUNER)

Purpose: To operate AFT correctly.

Symptom of Misadjustment: AFT does not work correctly and/or synchronism will be faulty.

Test Point	Adjustment Point	Input	
IC101 6pin, 11pin	L107	***	
	ment	Spec.	
	Oscilloscope	See below	
	Figure		
		38.0MHz	

Reference Notes: SW206 --- MAIN PCB IC101, L107 --- IF PCB

- Connect output of sweeper to 6pin of IC101.
 Frequency set is the same as for 38.0MHz Peak Adjustment.
- 2. Connect the oscilloscope to 11pin of IC101.
- 3. Push SW206 to disengage AFT action.
- 4. Adjust L107 as the marker for 38.0MHz to the center of AFT curve.

4. RF AGC ADJUSTMENT (for TUNER)

Purpose: Set AGC (Auto Gain Control) Level.

Symptom of Misadjustment: AGC does not synchronize correctly when RF input Level is weak and distortion may cause on the picture when it is strong.

Test Point	Adjustment Point	Input
TU201 6pin	VR101	PAL Color Bar
Equip	ment	Spec.
PAL Pattern Genera		DC +4.1±0.1V
	Connections	of M. EQ.
		DC Volt Meter
	, , , , , , , , , ,	② ① TU201

Reference Notes: TU201 --- MAIN PCB VR101 --- IF PCB

- 1. Receive the PAL Color Bar signal for 2ch (48.25MHz). (RF input level 80dBμV at the best syncronized point)
- 2. Connect the equipment as shown in the above table.
- 3. Adjust VR101 for reading +4.1±0.1V on the DC Volt Meter.

5. 4.43MHz ADJUSTMENT

Purpose: To adjust the color sub-carrier frequency of PAL and SECAM.

Symptom of Misadjustment: No color when receiving PAL and SECAM signal.

Test Point	Adjustment Point		Input
Screen	C299		PAL Red Raster
Equi	oment		Spec.
PAL Patter	n Generator		See below
	F	igure	
		(Pink)	Picture is rolling or unstable.
	√ <turr< td=""><td>C299></td><td></td></turr<>	C299>	
		(Purple)	
	Who	le Screen Red	Picture is stable.

Reference Notes: C299 --- MAIN PCB

- 1. Input the PAL Red Raster.
- 2. Check picture. A. If Red picture is stable.OK

B. If Red picture is rolling or unstable, adjust C299 untill stable.

6. 3.58MHz ADJUSTMENT

Purpose: To adjust the color sub-carrier frequency of NTSC.

Symptom of Misadjustment: No color when receiving NTSC signal.

Test Point	Adjustment Point	Input	
Screen	C298	NTSC Red Raster	
Equ	ripment	Spec.	
NTSC Pat	tern Generator	See below	

Reference Notes: C298 --- MAIN PCB

- 1. Input the NTSC Red Raster.
- 2. Check picture. Procedure is the same as for 4.43MHz Adjustment.

7. V. SIZE ADJUSTMENT

Purpose: To get correct vertical size of screen image.

Symptom of Misadjustment: Vertical size of screen image may not be properly displayed.

Test Point	Adjustment Point	Input
Screen	VR204	Monoscopic Pattern
	ulpment	Spec.
	noscope	90±5%
	Flgu	ire
		H: 0000

Reference Note: VR204 --- MAIN PCB

- 1. Operate the unit more than 20 minutes.
- 2. Input the Monoscopic Pattern.
- 3. Adjust VR204 so that the vertical size will be 90±5% of Monoscopic Pattern and the circle is round.

5-5

8. CUT OFF ADJUSTMENT

Purpose: To adjust the beam current of R, G, B and screen voltage.

Symptom of Misadjustment: White color may be reddish, greenish or bluish.

When the screen voltage is too high, the scanning line is appeared on the screen.

Test Point	Adjustment Point	Input
Screen	VR604, VR605, VR606 Screen-VR (FBT)	Black Raster
Eq	ulpment	Spec.
Patter	n Generator	See below
	Figure	
		Using this line

Reference Notes: VR601, VR602, VR603, VR604, VR605, VR606 --- CRT PCB

SW209 --- MAIN PCB

Screen-VR --- MAIN PCB (FBT)

- 1. Operate the unit more than 20 minutes.
- 2. Degauss the CRT using Degaussing Coil
- 3. Input the Black Raster.
- 4. Turn the Screen-VR (FBT) fully counterclockwise.
- Set VR602 (B. Drive), VR603 (R. Drive), VR604 (B. Cut Off), VR605 (G. Cut Off), VR606 (R. Cut Off) and VR601 (Sub Bright) to center.
- 6. Set the SW209 (Service SW) to ON.
- 7. Slowly turn the Screen-VR (FBT) to the point where horizontal line just visible.
- 8. Adjust VR604 (Blue), VR605 (Green) and VR606 (Red) so that horizontal line becomes pure white.
- 9. Turn off the SW209 (Service SW).

Note: Confirm that White Balance Adj. Is correct after this adjustment, and attempt White Balance Adj. if needed.

9. 1 H DELAY LINE ADJUSTMENT (for PAL)

Purpose: To get correct 1H delay line when the PAL signal is entered.

Symptom of Misadjustment: The Anti-PAL signal part is colored when the Philips Pattern is entered.

Each scanning line is colored on the color bar.

Reference Notes: D230, TP1, TP5, L210, VR202, VR203 --- MAIN PCB

- 1. Input the Philips Pattern.
- 2. Connect the equipment as shown in the above table.
- 3. Adjust VR202 VR203 and L210 so that the amplitude at Anti-PAL signal part becomes minimum (no color) and the waveform at the color bar part is not seen in double ("Venetian Blind" does not appear at the color bar signal part).

5-7

10. BELL FILTER ADJUSTMENT (for SECAM)

Purpose: To adjust the center frequency of SECAM bell filter.

Symptom of Misadjustment: The color will be reversed when the SECAM signal is entered.

Reference Notes: D230, TP1, TP2, L216 --- MAIN PCB

- 1. Input the SECAM Color Bar signal.
 - The Contrast, Bright and Color control to center.
- 2. Connect the equipment as shown in the above table.
- 3. Set oscilloscope to 10: 1 probe, AC 5mV/div and Range 10us/div.
- 4. Adjust L216 with core driver to flat waveform.

L7480EA

11. R-Y DEMODULATE COIL ADJUSTMENT (for SECAM)

Purpose: To adjust the level of R-Y color difference signal.

Symptom of Misseljustment: The R, G and B will be unbalanced.

Reference Notes: D230, TP1, TP3, L212 --- MAIN PCB

- 1. Connect the equipment as shown in the above table.
- 2. Input the SECAM Black Raster.
- 3. Adjust L212 with core driver so that ① becomes center of ② as shown in the above table.

5-9

12. B-Y DEMODULATE COIL ADJUSTMENT (for SECAM)

Purpose: To adjust the level of B-Y color difference signal.

Symptom of Misadjustment: The R, G and B will be unbalanced.

Test Point	Adjustment Point	Input
TP4	L211	SECAM Black Raster
TP1 (GND)	<u> </u>	
	ipment	Spec.
	ttern Generator	See below
Oscilloscope (20	mV/div, 5μs/div AC)	
	Connectio	ns of M. EQ.
	Oscilk	oscope
		◯ D230
		Ext.
TP4 ○<	O CH+	Trig.
777	rp4	TP1 7/17
///	ir i	,
	FI	gure
		2 0
		HARANA HATAT BARANA MATALAN ANA ANA ANA ANA ANA ANA ANA ANA ANA
	with the state of	
		2

Reference Notes: D230, TP1, TP4, L211 --- MAIN PCB

- 1. Connect the equipment as shown in the above table.
- 2. Input the SECAM Black Raster.
- 3. Adjust L211 with core driver so that ① becomes center of ② as shown in the above table.

5-10

13. SUB BRIGHT ADJUSTMENT

Purpose: To get proper brightness.

Symptom of Misadjustment: Proper brightness cannot be obtained by adjusting the Bright Control.

Test Point	Adjustment Point	Input	
Screen	VR601	Gray Scale pattern	
Equ	ipment	Spec.	
	Generator	See below	
		ure	
	White —	ar just visible Black	

Reference Notes: VR601 --- CRT PCB

- 1. Operate the unit more than 20 minutes.
- 2. Input the 8-step Gray Scale pattern.
- 3. Adjust VR601 so that the bar is just visible. (See above figure)

14. FOCUS ADJUSTMENT

Purpose: To get correct focus.

Symptom of Misadjustment: Blurred image is shown on the display.

Test Point	Adjustment Point	Input
Screen	Focus-VR (FBT)	Monoscopic Pattern
Equ	Ilpment	Spec.
	noscope	See below
A-20.	Figur	· · · · · · · · · · · · · · · · · · ·
		H: 2000

Reference Note: Focus-VR (FBT) --- MAIN PCB

- 1. Operate the unit more than 20 minutes.
- 2. Input the Monoscopic Pattern.
- 3. Adjust Focus-VR (FBT) to be obtained clear picture.

SCHEMATIC DIAGRAMS / PCB'S AND TEST POINTS

STANDARD NOTES

Warning

Critical components having special safety characteristics are identified with a 🛕 by the Ref. No. in the parts list and enclosed within a broken line * (where several critical components are grouped in one area) along with the safety symbol A on the schematics or exploded views.

Use of substitute replacement parts which do not have the same specified safety characteristics may create shock, fire, or other hazards.

Under no circumstances should the original design be modified or altered without written permission from Funai Electric Company. Funai assumes no liability, express or implied, arising out of any unauthorized modification of design. Servicer assumes all liability.

Notes:

- ① Do not use the part number shown on these drawings for ordering. The correct part number is shown in the parts list, and may be slightly different or amended since these drawings were prepared.
- ② All resistance values are indicated in ohms (K=10³, M=10⁶).
- 3 Resistor wattages are 1/5W or 1/6W unless otherwise specified.
- All capacitance values are indicated in μF (P=10⁻⁶μF).

Note of Capacitors:

(SC) --- Semiconductor Cap. (M) --- Mylar Cap.

(TF) --- Stacked Metallized Film Cap.

Temprature Characteristics of Capacitors are noted with the following:

(YB) --- ±10%

(SR) --- ±15% (NP0) --- 0±60ppm/°C

(SL) --- +350~-1000ppm/°C

Tolerance of Capacitors are noted with the following:

(K) --- ±10%

(Z) --- +80~-20%

Note of Resistor:

F) --- Fuse Res.

VOLTAGE CHART

(Unit: Volt)

Pin No.	IC101	IC201	IC206
1	5.7	4.6	2.8
2	4.7	3.5	4.3
3	5.4	2.6	5.8
4	3.9	2.0	4.6
5	3.9	* 5.0~0.1	5.8
6	4.3	0	5.8
7	4.3	5.0	6.6
8	0	0	4.4
9	1.4	2.4	NC
10	4.8	2.5	4.4
11	6.0	2.5	0
12	3.8	5.0	0
13	8.4	5.0	0
14	8.4	5.0	0
15	3.8	5.0	3.1
16	4.4	5.0	5.0
17	11.7	0	2.9
18	0	NC	0.9
19	3.0	5.0	8.9
20	3.0	3.5	0.2
21		0	4.8
22		NC	0
23		0	0
24		0	2.2
25		0	9.0
26		4.1	3.6
27		5.0	0.5
28		3.0	0
29		3.0	4.2
30		0	5.2
31		_	3.0
32			0.6
33		4.9	0.4
34		0	6.1
35		5.0	6.1
36		4.5	5.8
37		0	2.5
38		5.0	2.6
39		0	2.5
40		0	3.9
41	1	0	4.8
42	 	5.0	6.8
43			2.6
44	 	1	3.3
45			3.6
46	 		6.3
47	 	 	8.9
48	1	+	0
40			

Pin No.	IC202	IC203	IC204	1C205
1	5.0	6.0	0	11.0
2	2.5	5.9	13.0	4.9
3	2.5	6.9	27.4	NC
4	5.0	6.9	0.8	*0.7~11.3
5	0	7.0	0.7	7.2
6	5.0	0	27.0	7.4
7	5.0	0	1.7	0
8	5.0	0		7.5
9		11.7		15.5
10		11.7		
11		11.7		
12		4.6	L	
13		5.0	l	
14		5.0		
15		6.0	I	
16		11.7		1

Pin No.	IC207	IC208	IC209	IC210
1	16.3	32.0	2.5	11.8
2	0	0	2.5	0
3	11.8		4.9	8.9
4			4.9	
5			1.7	
6			1.7	
7			2.5	
8			2.6	
9			3.3	
10			2.7	
11			2.7	
12			1.7	
13			0.2	
14			0	
15			2.2	
16			3.8	
17			2.3	
18			1.7	
19			4.9	
20			4.9	
21			2.5	
22			2.5	
23			0	
24			2.5	1

^{*} Vol. Min~Max

Input: PAL Color Bar Signal (with 1KHz Audio Signal)

Receiving Ch.: E2 ch (48.25 MHz)

Preset Mode: Press Picture Select button on the remote control unit,

then press the number "1" button. Brightness--- Center

Brightness--- Center Color--- Center Contrast--- Approx 70%

EXPLODED VIEW

Jnit: Volt)

IC205
11.0
4.9
NC
0.7-11.3
7.2
7.4
0
7.5
15.5

11.8 0 8.9

Signal)

ate control unit,

L7530VOL

MECHANICAL PARTS LIST

PRODUCT SAFETY NOTE: Products marked with a Δ have special characteristics important to safety. Before replacing any of these components, read carefully the product safety notice in this service manual. Don't degrade the safety of the product through improper servicing.

11-1

Ref. No.	Description	Part No.
A 1	FRONT CABINET ASS'Y	0EM300556
A1-1*	FRONT CABINET	0EM000113
A1-2	CONTROL PANEL	0EM200264
A1-3	SENSOR WINDOW	OEM401486
A1-4	LED INDICATOR	0EM401470
A1-5	BRAND BADGE	0EM400975
A 2	REAR CABINET ASSY	0EM300557
A 2- 1	REAR CABINET	0EM000114
A2-2 A	RATING LABEL	0EM401495
A 2- 3	JACKPLATE	0EM401488
A 3	(See Electrical Parts List)	
B 1	TENSION SPRING	26WH006
B 2	CRT MOUNTING SCREW	8A00083
B 3	(See Electrical Parts List)	
B 4	(See Electrical Parts List)	
B 5	(See Electrical Parts List)	
L 1	(See Electrical Parts List)	
L 2	SCREW P-TIGHT BIND HEAD 4X18	GBMP4180
L 3	SCREW P-TIGHT BIND HEAD 4X12	GBMP4120
	ACCESSORIES	
	REMOTE CONTROL UNIT	UREMT20MM007
	DRY BATTERY UM-3(K) 2PCS PACK or	1813020
	DRY BATTERY UM3/RS6 2PCS PACK	579W099
Δ	OWNER'S MANUAL	OEMN00641
	ROD ANTENNA	0EMN00542

^{*} Material certificate is required to attach.

ELECTRICAL PARTS LIST

PRODUCT SAFETY NOTE: Products marked with a Δ have special characteristics important to safety. Before replacing any of these components, read carefully the product safety notice in this service manual. Don't degrade the safety of the product through improper servicing.

NOTE: Parts that not assigned part number (-----) are not available.

Tolerance of Capacitors and Resistors are noted with the following symbols.

C±0.25%	F±1%	J±5%	M±20%	Z+80/-20%
D±0.5%	G±2%	K±10%	N±30%	

MMA PCB ASSEMBLY

Ref. No.	Description	Part No.
	MMA PCB ASSEMBLY Consists of the following:	0ESA00337
Δ	PCB (MAIN+CRT+IF)	BL7401F010B
	MAIN PCB (MMA-A)	
	CRT PCB (MMA-B)	
	IF PCB (MMA-C)	

MAIN F	PCB (MI	MA-A)

Ref. No.	Description	Part No.
	MAIN PCB (NMA-A) Consists of the following:	
	CAPACITORS	
C 202	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 203	ELECTROLYTIC CAP. 4.7µF/50V M	126F475S
C 209	ELECTROLYTIC CAP. 4.7µF/50V M	126F475S
C 211	ELECTROLYTIC CAP. 4.7µF/50V M	126F475S
C 212	ELECTROLYTIC CAP. 220µF/6.3V M	126A227S
C 213	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 214	CHIP CERAMIC CAP. F Z 0.022µF/50V	CHE1JZB0F223
C 215	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 216	MYLAR CAP. 0.18µF/50V K	2250184S
C 217	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 218	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 219	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 220	CHIP CERAMIC CAP. SLJ 120pF/50V	CHE1JJBSL121
C 221	ELECTROLYTIC CAP. 2.2µF/50V M	126F225S
C 224	CHIP CERAMIC CAP. CH J 24pF/50V	CHE1JJBCH240
C 225	CHIP CERAMIC CAP. CH J 24pF/50V	CHE1JJBCH240
C 229	CHIP CERAMIC CAP. F Z 0.01 µF/50V	CHE1JZB0F103
C 230	ELECTROLYTIC CAP. 47µF/16V M	126C476S
C 232	CHIP CERAMIC CAP. SLJ 100pF/50V	CHE1JUBSL101
C 233	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 234	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 235	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 236	CHIP CERAMIC CAP. F Z 0.01 µF/50V	CHE1JZB0F103
C 237	CHIP CERAMIC CAP. SL J 47pF/50V	CHE1JJBSL470
C 238	MYLAR CAP. 0.001 µF/50V K	2250102S
C 239	MYLAR CAP. 0.0022µF/50V K	22502228
C 240	MYLAR CAP. 0.1µF/50V K	22501048
C 241	CHIP CERAMIC CAP. B K 0.001µF/50V	CHE1JKB0B102

Ref. No.	Description	Part No.
C 242	ELECTROLYTIC CAP. 100µF/35V M	126E107S
C 243	ELECTROLYTIC CAP. 22µF/35V M	126E226S
C 245	ELECTROLYTIC CAP. 2.2µF/50V M	126F225S
C 246	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 247	ELECTROLYTIC CAP. 470µF/25V M or	CE1EMZDDL471
	ELECTROLYTIC CAP. 470µF/25V M or	CE1EMZNTL471
	ELECTROLYTIC CAP. 470µF/25V M W/F	626D477
C 249	METALIZED FILM CAP. 0.39µF/200V J or	1222180
	METALIZED FILM CAP. 0.39µF/200V J or	C8P2DKD00394
	METALIZED FILM CAP. 0.39µF/200V J	1220610
C 250	MYLAR CAP. 0.1µF/50V K	2250104S
C 251	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 252	CHIP CERAMIC CAP. B K 0.01 µF/50V	CHE1JKB0B103
C 253	ELECTROLYTIC CAP. 2.2µF/50V M	126F225S
C 254	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 255	ELECTROLYTIC CAP. 10µF/50V M	126F106S
C 256	MYLAR CAP. 0.082µF/50V K	2250623S
C 257	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZDDL471
	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZNTL471
	ELECTROLYTIC CAP. 470µF/16V M	626C477
C 259	ELECTROLYTIC CAP. 470µF/25V M or	CE1EMZDDL471
	ELECTROLYTIC CAP. 470µF/25V M or	CE1EMZNTL471
	ELECTROLYTIC CAP. 470µF/25V M W/F	626D477
C 260	ELECTROLYTIC CAP. 1µF/250V M(106°C)	CA2E010NC000
C 261	ELECTROLYTIC CAP. 330µF/35V M or	CE1GMZDDL331
	ELECTROLYTIC CAP. 330µF/35V M or	CE1GMZNTL331
	ELECTROLYTIC CAP. 330µF/35V M W/F	626E337
C 262	ELECTROLYTIC CAP. 1µF/100V or	CE2AMADDL010
	ELECTROLYTIC CAP. 1µF/100V	CE2AMANTL010
C 263	METALIZED FILM CAP. 0.0047µF/1.6KV or	122Z183
	METALIZED FILM CAP. 0.0047µF/1.6KV J	1220496
C 264	METALIZED FILM CAP. 0.0027µF/1.6KV J or	1227279
	METALIZED FILM CAP, 0.0027µF/1.6KV J	1220493
C 265	ELECTROLYTIC CAP. 0.47µF/160V or	CE2CMADDLR47
	ELECTROLYTIC CAP. 0.47µF/160V	CE2CMANTLR47
C 268	CERAMIC CAP. B K 2200pF/500V	CCD2JKS08222
C 271	ELECTROLYTIC CAP.	CA2C470NC009
	47μF/160V M (105°C) or	
	ELECTROLYTIC CAP. 47µF/160V M	CE2CMZDEH470
C 273	ELECTROLYTIC CAP. 4.7µF/50V M	126F475S
C 276	ELECTROLYTIC CAP. 0.22µF/50V M	126F224S

^{*} Mylar is a registered trademark of E. I. Du Pont de Nemours and Company.

12-1

L7480CA

Ref. N	o. Description	Part No.
C 277	CHIP CERAMIC CAP, SL J 330F/50V	CHE1JJBSL330
C 278	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZDDL471
C 2/8	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZNTL471
	ELECTROLYTIC CAP. 470µF/16V M	626C477
C 279	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 290	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 281	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 282	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 283	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 284	ELECTROLYTIC CAP. 4.7µF/50V M	126F475S
C 285	STACKED FILM CAP. 0.22µF/50V J or	125U224S
	STACKED FILM CAP. 0.22µF/50V J	125R224S
C 286	STACKED FILM CAP. 0.22µF/50V J or	125U224S
	STACKED FILM CAP. 0.22µF/50V J	125R224S
C 287	STACKED FILM CAP. 0.22uF/50V J or	125U224S
25,	STACKED FILM CAP. 0.22µF/50V J	125R224S
C 288	SEMICONDUCTOR CAP. SR K 0.047µF/25V	12Y2473S
C 289	CHIP CERAMIC CAP, B K 0.001 µF/50V	CHE1JKB0B102
C 290	CHIP CERAMIC CAP. FZ 0.022uF/50V	CHE1JZB0F223
C 291	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 292	CHIP CERAMIC CAP. FZ 0.01µF/50V	CHE1JZB0F103
C 293	ELECTROLYTIC CAP. 100µF/16V M	126C107S
C 294	FILM CAP. 0.47µF/50V J or	125U474S
10 23	FILM CAP. 0.47µF/50V J	125R474S
C 295	STACKED FILM CAP. 0.15µF/50V J or	125U154S
2.00	STACKED FILM CAP. 0.15uF/50V J	125R154S
C 296	ELECTROLYTIC CAP. 0.47µF/50V M	126F474S
C 297	CHIP CERAMIC CAP. B K 0.001 µF/50V	CHE1JKB0B102
C 298	TRIMMER CAP. VCT51F++++ 30P	CVC300UT1008
C 299	TRIMMER CAP. VCT51F**** 30P	CVC300UT1008
C 300	CHIP CERAMIC CAP. B K 0.0022µF/50V	CHE1JKB0B222
C 301	STACKED FILM CAP. 0.22µF/50V J or	125U224S
	STACKED FILM CAP. 0.22µF/50V J	125R224S
C 302	ELECTROLYTIC CAP. 22uF/50V M	126F226S
C 303	CHIP CERAMIC CAP. SL J 10pF/50V	CHE1JJBSL100
C 304	CHIP CERAMIC CAP, SL J 82pF/50V	CHE1JJBSL820
C 306	CHIP CERAMIC CAP. SL J 22pF/50V	CHE1JJBSL220
C 306	CHIP CERAMIC CAP. F Z 0.01µF/50V	CHE1JZB0F103
C 307	CHIP CERAMIC CAP. SLJ 75pF/50V	CHE1JJBSL750
C 308	SEMICONDUCTOR CAP, F Z 0.1µF/25V	1220520S
C 309	CHIP CERAMIC CAP. SLJ 27pF/50V	CHE1JJBSL270
C 310	CHIP CERAMIC CAP. SLJ 120pF/50V	CHE1JJBSL121
C 311	ELECTROLYTIC CAP. 1µF/50V M	126F105S
C 313	CHIP CERAMIC CAP. B K 0.0056µF/50V	CHE1JKB0B562
C 314	CHIP CERAMIC CAP. SL J 220pF/50V	CHE1JJBSL221
C 315	CHIP CERAMIC CAP. F Z 0.01 µF/50V	CHE1JZB0F103
C 316	CHIP CERAMIC CAP. SLJ 100oF/50V	CHE1JJBSL101
C 317	SEMICONDUCTOR CAP. F Z 0.1µF/25V	1220520S
C 316	CHIP CERAMIC CAP. SL J 22pF/50V	CHE1JJBSL220
C 319	CHIP CERAMIC CAP. SL J 75pF/50V	CHE1JJBSL750
C 320	SEMICONDUCTOR CAP. F Z 0.1µF/25V	1220520S
C 321	CHIP CERAMIC CAP, SL J 1200F/50V	CHE1JJBSL121
C 322	ELECTROLYTIC CAP. 47uF/16V M	126C476S
C 340		CCD2JKSSL471
C 341	CERAMIC CAP. 8 K 470pF/50V	1283471S
C 342		1283471S
	LELECTROLYTIC CAP.	CA2C101NC009
C 343	ELECTROLYTIC CAP. 100µF/160V M(105°C) or	CA2C101NC009
		CE2CMZDEH101

Ref. No.	Description	Part No.
C 344	ELECTROLYTIC CAP. 1000µF/25V M or	CE1EMZDDL102
U 344		CE1EMZNTL102
	ELECTROLYTIC CAP. 1000µF/25V M W/F	626D108
C 345	ELECTROLYTIC CAP. 47µF/16V M	126C476S
C 346	ELECTROLYTIC CAP. 2200µF/25V M	CE1EMZNTL222
C 347	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZDDL471
0 347	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZNTL471
	ELECTROLYTIC CAP. 470µF/16V M	626C477
C 348	ELECTROLYTIC CAP. 2.2µF/50V M	126F225S
C 363	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZDDL471
0 000	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZNTL471
	ELECTROLYTIC CAP. 470µF/16V M	626C477
C 364	MYLAR CAP. 0.1µF/50V K	2250104S
C 365	CHIP CERAMIC CAP. F Z 0.022µF/50V	CHE1JZB0F223
C 366	MM_AR CAP. 0.0022µF/50V K	2250222S
C 368	CHIP CERAMIC CAP. B K 0.001µF/50V	CHE1JKB0B102
C 370	MYLAR CAP. 0.1µF/50V K	2250104S
C 372	CERAMIC CAP. CH D 10pF/50V	12CH100S
C 3/2	ELECTROLYTIC CAP. 47µF/16V M	126C476S
C 376	CERAMIC CAP. 1000pF/1KV or	CCD3AKP0E102
0 3/6	CERAMIC CAP. 1000pF/1KV	6220574
C 377	CERAMIC CAP. CH J 47pF/50V	12CH470S
C 378	ELECTROLYTIC CAP. 1000µF/16V M W/F or	CE1CMZDDL102
C 3/6	ELECTROLYTIC CAP. 1000µF/16V M or	CE1CMZNTL102
	ELECTROLYTIC CAP. 1000µF/16V M W/F	626C108
0.070	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZDDL471
C 379	ELECTROLYTIC CAP. 470µF/16V M or	CE1CMZNTL471
	ELECTROLYTIC CAP. 470µF/16V M	626C477
	CERAMIC CAP./SAFETY E.M	CCG2HMP0E222
C 501 🕰	2200pF/AC125V or	OCGZIMI VCZZZ
	CERAMIC CAP,/SAFETY 0.0022uF	1220621
	CERAMIC CAP./SAFETY E.M.	CCG2HMP0E222
C 502 🛦	2200pF/AC125V or	OOGE/IM GEEE
	CERAMIC CAP./SAFETY 0.0022µF	1220621
C 503 A	CERAMIC CAP./SAFETY E M	CCG2HMP0E222
C 300 A	2200pF/AC125V or	000211111
	CERAMIC CAP SAFETY 0.0022uF	1220621
C 504 A	CERAMIC CAP./SAFETY E M	CCG2HMP0E222
~ 25	2200oF/AC125V or	
	CERAMIC CAP./SAFETY 0.0022µF	1220621
C 505 A	METALIZED FILM CAP, 0.1µF/250V or	1220971
<u></u>	METALIZED FILM CAP. 0.1µF/250V or	122Z181
	LINE ACROSS CAP. 0.1µF/250V	6227631
C 506	ELECTROLYTIC CAP.	CA2H151NC013
0	150µF/400V(LQ TYPE)	
C 507	MYLAR CAP. 0.039µF/50V K	2250393S
C 508	CERAMIC CAP. 680pF/2KV or	CCD3DKP0B681
	CERAMIC CAP. 680pF/2KV	6220584
C 509	MYLAR CAP. 0.022µF/50V K	2250223S
C 510	MYLAR CAP. 0.022µF/50V K	2250223S
C 512 A	CERAMIC CAP. 2200pF/400V(T4KV) or	CCN2HMP0E222
J 512 2/A	CERAMIC CAP. 0.0022µF/4KV	1227011
C 513	CERAMIC CAP. 2200pF/1KV or	CCD3AKP0B222
0 313	CERANIC CAP. 2200pF/1KV	6220576
C 515	ELECTROLYTIC CAP. 330µF/25V M or	CE1EMZDDL331
0 313	ELECTROLYTIC CAP. 330µF/25V M or	CE1EMZNTL331
	ELECTROLYTIC CAP. 330µF/25V M W/F	626D337
0 510	ELECTROLYTIC CAP. 220µF/6.3V M	126A227S
C 516 C 517	CERAMIC CAP. 22000F/1KV or	CCD3AKP0B222
0 31/		6220576
	CERAMIC CAP, 2200pF/1KV	J022VD/0

Ref. No.	Description	Part No.
	CONNECTORS	
CN 201	STRAIGHT PIN HEADER	1740764
CN 202	PIN HEADER 5P (for D.Y) or	1730812
	PIN HEADER 5P (for D.Y)	1780168
CN 203	WIRE HOLDER 3P or	XW01D03NF001
	WIRE HOLDER 3P	XW01B03NF001
CN 204	WIRE HOLDER 6P or	XW01D06NF001
	WIRE HOLDER 6P	XW01B06NF001
CN 501	PIN HEADER 2P (for D.G COIL) or	1780276
	PIN HEADER 2P (for D.G COIL)	1780165
	DIODES	
D 202	SWITCHING DIODE 1SS133 or	1SS133T
D 2.42	DIODE 1SS176TPA7	1SS176T
D 204	SWITCHING DIODE 1SS133 or	1SS133T
0 204	DIODE 1SS176TPA7	1SS176T
0 007	SWITCHING DIODE 1SS133 or	1SS133T
D 207	DIODE 1SS176TPA7	1SS176T
		MTZ7.5BT
D 211	ZENNER DIODE MTZ7.58-T77 or	
	ZENER DIODE GZS7.5Y-BT or	QDTY00GZS7R5
	ZENER DIODE UZ-7.5BSA	QOTAQUZ7RSBS
D 212	ZENNER DIODE MTZ7.58-T77 or	MTZ7.5BT
	ZENER DIODE GZS7.5Y-BT or	QDTY00GZS7R5
	ZENER DIODE UZ-7.5BSA	QDTA0UZ7R5BS
D 213	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 214	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 215	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 216	SWITCHING DIODE 1SS133 or	1SS133T
2 2.0	DIODE 1SS176TPA7	1SS176T
D 217	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 218	SWITCHING DIODE 1SS133 or	1SS133T
D 2.10	DIODE 1SS176TPA7	1SS176T
D 221	LED SLR-55VC3F(RED) or	1401273
0 221	LED KLR-133L	NP9Z0KLR133L
D 222	ZENNER DIODE MTZ5.1C or	MTZ5.1CT
1	ZENER DIODE GZS5.1Z-BT or	QDTZ00GZS5R1
	ZENER DIODE UZ-5.1BSB	QOTBOUZ5R1BS
0 227	RECTIFIER DIODE ERA15-02KFRB	QDNZ0ERA1502
D 228	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 229	DIODE ERB12-02L3	AERB1202L300
D 230	FAST RECOVERY DIODE ERB44-04L3	QDQZ0ERB4404
D 231	DIODE 1SS130	1SS130T
0 232	ZENNER DIODE MTZ188T or	MTZ188T
	ZENNER DIODE GZS18Y-BT or	QDTY000GZS18
	ZENER DIODE UZ-188SB	QDTB00UZ18BS
D 233	ZENNER DIODE MTZ12B or	MTZ12BT
	ZENNER DIODE GZS12Y-BT or	ODTY000GZS12
1	ZENER DIODE UZ-128SA	QDTA00UZ12BS
D 234	ZENNER DIODE MTZ5.6B or	MTZ5.6BT
1.00		
	ZENER DIODE GZSS.6Y-BT or	QDTY00GZS5R6
0.045	ZENER DIODE UZ-5.68SA	QDTA0UZ5R6BS
D 242	FAST RECOVERY DIODE ERD38-06L	AERD3806L000
D 243	RECTIFIER DIODE ERA22-02KFRB	QOSZ0ERA2202
D 244	FAST RECOVERY DIODE ERB44-02L3	QCDZERB4402L
D 245	RECTIFIER DIODE R2M LF-B1 or	QDDZ00000R2M
	ZENER DIODE EQB01-150	AEQB01150000

12-3

Ref. No.	Description	Part No.
D 248	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 249	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
0 251	ZENNER DIODE MTZ6.8B or	MTZ6.88T
	ZENER DIODE GZS6.8Y-BT or	ODTY00GZS6R8
	ZENER DIODE UZ-6.8BSA	QOTAQUZ6R8BS
D 252	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 254	ZENNER DIODE MTZ8.28 or	MTZ8.2BT
<i>-</i> 24	ZENNER DIODE GZS8.2Y-BT or	ODTY00GZS8R2
	ZENER DIODE UZ-8.28SA	ODTAQUZ6R2BS
D 501	RECTIFIER DIODE ERCO4-10L3	QDDZ0ERC0410
D 502	RECTIFIER DIODE ERCO4-10L3	QDDZ0ERC0410
		QDDZ0ERC0410
D 503	RECTIFIER DIODE ERCO4-10L3	
D 504	RECTIFIER DIODE ERCO4-10L3	Q0020ERC0410
D 505	SWITCHING DIODE 1SS139 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 506	FAST RECOVERY DIODE ERB44-02L3	QCDZERB4402L
D 507	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 509	SWITCHING DIODE 1SS133 or	1SS133T
	DIODE 1SS176TPA7	1SS176T
D 510	ZENNER DIODE MTZ15B-T77 or	MTZ15BT
	ZENNER DIODE GZS15Y-8T or	QDTY000GZS15
	ZENER DIODE UZ-158SA	QDTA00UZ15BS
D 511	SWITCHING DIODE 1SS133 or	1SS133T
0 311	DIODE 1SS176TPA7	1SS176T
	ICS	1001701
IC 201	ICMICON TMP47C434N-R214	QSMQA0ZTS015
IC 202	IC TC89101P	GTC89101P###
	IC TC40538P or	14DW168
IC 203		
	IC BU4053B	14LF166
IC 204	IC LA7830	14LQ163
IC 205	IC ANS265	14LN160
IC 206	IC CXA1213BS	QSBLA0SSN019
IC 207	VOLTAGE REGULATOR IC NUM78M12FA or	14L0242
	IC AN78M12 or	AN78M12
	IC 78M12 or	UPC78M12HF
	IC 78M12	L78M12
IC 208	IC L5631	L5631
IC 209	IC CXA1214P	QSBLA0SSN011
IC 210	IC:VOLTAGE REGULATOR AN78MO9 or	AN78M09
	IC 78M09	L78M09
	COILS	12
L 204	INDUCTOR 39µH-J-26T or	LLAXJATTU390
C 604	INDUCTOR 39µH(J)	2161390T
L 208	MICRO INDUCTOR 47µH-K-AXT or	2165470T
. 200		2162470T
1 000	MICRO INDUCTOR 47µH-K-SFT	
L 209	DELAYLINE	113N852
L 210	CASING COIL (PAL) or	LFA07V0MM011
	CASING COIL (PAL)	LFA07V0TK006
L 211	CASING COIL (B-Y) or	LFA07V0MM004
	CASING COIL (B-Y)	LFA07V0TK010
L 212	CASING COIL (R-Y) or	LFA07V0MM004
	CASING COIL (R-Y)	LFA07V0TK010
L 213	MICRO INDUCTOR 10µH or	2165100T
	MICRO INDUCTOR 10µH	2162100T
L 214	MICRO INDUCTOR 33µH-K-AXT or	2165330T

930521

12-2

Ref. No.	Description	Part No.
215	MICRO INDUCTOR 15µH-K-AXT or	2165150T
	MICRO INDUCTOR 15uH-K-AXT	2162150T
. 216	CASING COIL (BELL) or	LFA07V0MM003
	CASING COIL (BELL)	LFA07V0TK009
217	MICRO INDUCTOR 15µH-K-AXT or	2165150T
	MICRO INDUCTOR 15µH-K-AXT	2162150T
218	POT COIL 47MHK	LLBD##DMM00
501 ⚠	LINE FILTER 25mH or	LLBG00ZBW007
	LINE FILTER 2.5mH or	LLBG00ZMS008
	LINE FILTER 2.5mH	1812745
	TRANSISTORS	•
204	TRANSISTOR 2SC3331(T) or	QSC3331TNPA
	TRANSISTOR 2SC3331(U) or	OSC3331UNPA
	TRANSISTOR KTC3198GR TO-92 or	NGS40KTC3196
	TRANSISTOR KTC3199GR	NQS10KTC3196
205	TRANSISTOR 25C3331(T) or	QSC3331TNPA
2 200	TRANSISTOR 2SC3331(U) or	QSC3331UNPA
	TRANSISTOR KTC3198GR TO-92 or	NOS40KTC319
		NQS40KTC3196
	TRANSISTOR KTC3199GR	
2 206	TRANSISTOR 2SC3331(T) or	QSC3331TNPA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPA
	TRANSISTOR KTC3196GR TO-92 or	NOS40KTC319
	TRANSISTOR KTC3199GR	NQS10KTC319
207	TRANSISTOR 2SC3331(T) or	QSC3331TNPA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC319
	TRANSISTOR KTC3199GR	NQS10KTC319
208	TRANSISTOR 2SC3331(T) or	QSC3331TNPA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC319
	TRANSISTOR KTC3199GR	NOS10KTC319
209	TRANSISTOR 2SA1318T or	2SA1318T
	TRANSISTOR 2SA1318U or	2SA1318U
	TRANSISTOR KTA1266GR TO-92 or	NGS40KTA126
	TRANSISTOR KTA1267GR	NQS10KTA126
210	TRANSISTOR 2SA1318T or	2SA1318T
2 210	TRANSISTOR 2SA1318U or	2SA1318U
	TRANSISTOR KTA1266GR TO-92 or	NQS40KTA126
	TRANSISTOR KTA1267GR	NOS10KTA126
211	TRANSISTOR 2SA1318T or	2SA1318T
	TRANSISTOR 2SA1318U or	2SA1318U
	TRANSISTOR KTA1266GR TO-92 or	NQ\$40KTA126
	TRANSISTOR KTA1267GR	NQS10KTA126
213	TRANSISTOR 2SC3331(T) or	QSC3331TNPA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC319
	TRANSISTOR KTC3199GR	NQS10KTC319
214	TRANSISTOR 2SC3331(T) or	QSC3331TNPA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC319
	TRANSISTOR KTC3199GR	NQS10KTC319
215	TRANSISTOR 2SA1318T or	2SA1318T
	TRANSISTOR 2SA1318U or	2SA1318U
	TRANSISTOR KTA1266GR TO-92 or	NOS40KTA126
	TRANSISTOR KTA1267GR	NOS10KTA126
2 246	TRANSISTOR 25C3331(T) or	QSC3331TNPA
Q 216		QSC3331UNPA
	TRANSISTOR 2SC3331(U) or	NGS40KTC319
		1
	TRANSISTOR KTC3199GR	NQS10KTC319
Q 217	TRANSISTOR 2SC3331(T) or	QSC3331TNPA

Ref. No.	Description	Part No.
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NQS10KTC3199
Q 218	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NQS10KTC3199
Q 219	TRANSISTOR 2SC2271(D) or	2SC2271D
	TRANSISTOR 2SC2271(E)	2SC2271E
Q 220	TRANSISTOR 2SD2331 LS	QQPZ02SD2331
Q 221	TRANSISTOR 2SA1318T or	2SA1318T
	TRANSISTOR 2SA131BU or	2SA1318U
	TRANSISTOR KTA1266GR TO-92 or	NQS40KTA1266
	TRANSISTOR KTA1267GR	NOS10KTA1267
Q 222	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NOS10KTC3199
Q 223	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NQS10KTC3198
Q 224	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NQS10KTC3199
Q 225	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NQS10KTC3199
Q 227	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NQS10KTC3199
Q 228	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NGS10KTC3199
Q 229	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NOS40KTC3198
	TRANSISTOR KTC3199GR	NOS10KTC3199
Q 233	TRANSISTER 2SB1274(R) or	Q2SB1274R000
4 200	TRANSISTER 2SB1274(S)	Q2SB1274S000
Q 234	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
Q 254	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NOS40KTC3198
	TRANSISTOR KTC3199GR	NOS10KTC3190
Q 235	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
Q 235	TRANSISTOR 25C3331(U) or	OSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR TO-92 or	NOS10KTC3198
Q 236	TRANSISTOR RICSTONGR	OSC3331TNPAA
u 236	TRANSISTOR 25C3331(1) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NGS40KTC3198
	TRANSISTOR KTC3199GR	NQS10KTC3199
Q 237	TRANSISTOR 2SC3331(T) or TRANSISTOR 2SC3331(U) or	QSC3331TNPAA QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NOS40KTC3198

12-4

Ref. No.	Description	Part No.
Q 239	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NOS40KTC3198
	TRANSISTOR KTC3199GR	NQS10KTC3199
Q 240	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NQS10KTC3199
Q 501	TRANSISTOR 2SD1710CA	QR6Z02SD1710
Q 502	TRANSISTOR 2SC3807	QQPZ02SC3807
Q 504	TRANSISTOR 2SB698(F) or	QQSF002SB698
	TRANSISTOR 2SB696(G)	QQSG002SB698
Q 505 A	PHOTO COUPLER PC111LYS	QPESOPC111LY
Q 506	FET 2SK212E or	2SK212E
	FET 2SK212F	2SK212F
Q 507	TRANSISTOR 2SC3331(T) or	OSC3331TNPAA
u 50,	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198
	TRANSISTOR KTC3199GR	NGS10KTC3199
	RESISTORS	11120.511100188
R 204	CHIP RES. 1/10W J 6.8KΩ	RRXAJB8Z0682
R 205	CHIP RES. 1/10W J 5.6KΩ	RRXAJBBZ0562
R 207	CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103
R 214	CHIP RES. 1/10W J 12KQ	RRXAJBBZ0123
R 215	CHIP RES. 1/10W J 12KΩ	RRXAJBBZ0123
R 216	CARBON RES. 1/6W J 10KΩ or	132A103T
	CARBON RES. 1/5W J 10KΩ	1324103T
R 217	CARBON RES. 1/6W J 10KΩ or	132A103T
	CARBON RES. 1/5W J 10KΩ	1324103T
R 220	CHIP RES. 1/10W J 5.6KΩ	RRXAJBBZ0562
R 221	CHIP RES. 1/10W J 3.9KΩ	RRXAJBBZ0392
R 222	CHIP RES. 1/10W J 12KΩ	RRXAJBBZ0123
R 223	CHIP RES. 1/10W J 12KΩ	RRXAJBBZ0123
R 224	CHIP RES. 1/10W J 68KΩ	RRXAJBBZ0683
R 225	CHIP RES. 1/10W J 4.7KΩ	RRXAJBBZ0472
R 226	CHIP RES. 1/10W J 3.9KΩ	RRXAJBBZ0392
R 227	CHIP RES. 1/10W J 33KΩ	RRXAJBBZ0333
R 226	CHIP RES. 1/10W J 2.2KΩ	RRXAJBBZ0222
R 231	CHIP RES. 1/10W J 47KΩ	RRXAJBBZ0473
R 232	CHIP RES. 1/10W J 47KΩ	RRXAJBBZ0473
R 233	CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103
R 234	CHIP RES. 1/10W J 15KQ	RRXAJBBZ0153
R 235	CHIP RES. 1/10W J 18KQ	RRXAJBBZ0183
R 236	CHIP RES. 1/10W J 10KΩ	RRXAJB8Z0103
R 237	CHIP RES. 1/10W J 33KΩ	RRXAJBBZ0333
R 238		
R 238	CHIP RES. 1/10W J 15KΩ	RRXAJBBZ0153
R 240	CHIP RES. 1/10W J 15KΩ	RRXAJBBZ0153
	CHIP RES. 1/10W J 22KΩ	RRXAJBBZ0223
R 241	CHIP RES. 1/10W J 27KΩ	RRXAJB8Z0273
R 244	CHIP RES. 1/10W J 68KΩ	RRXAJB8Z0683
R 245	CHIP RES. 1/10W J 390Ω	RRXAJB8Z0391
R 246	CHIP RES. 1/10W J 1KΩ	RRXAJBBZ0102
R 247	CHIP RES. 1/10W J 5.6KΩ	RRXAJ88Z0562
R 248	CHIP RES. 1/10W J 1KΩ	RRXAJBBZ0102
R 249	CARBON RES. 1/6W J 150Ω or	132A151T
	CARBON RES. 1/5W J 150Ω	1324151T
R 250	CARBON RES. 1/6W J 2.2KΩ or	132A222T
	CARBON RES. 1/5W J 2.2KG	1324222T
R 251	CHIP RES. 1/10W J 1KΩ	RRXAJBBZ0102
	THE INCO. INVITED ING.	11100000000000

D-4 No	Description	Bart No.
Ref. No.	Description Description	Part No.
R 253	CHIP RES. 1/10W J 1KΩ	RRXAJBBZ0102
R 254	CHIP RES. 1/10W J 1.5KQ	RRXAJBBZ0152
R 260	CARBON RES. 1/6W J 330Ω or	132A331T
	CARBON RES. 1/5W J 330Ω	1324331T
R 262	CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103
R 263	CHIP RES. 1/10W J 10KQ	RRXAJB8Z0103
R 264	CHIP RES. 1/10W J 33KΩ	RRXAJBBZ0333
R 265	CHIP RES. 1/10W J 2.7KΩ	RRXAJBBZ0272
R 266	CHIP RES. 1/10W J 12KΩ	RRXAJBBZ0123
R 267	CHIP RES. 1/10W J 5.6KΩ	RRXAJB820562
A 268	CHIP RES. 1/10W J 1.8KΩ	RRXAJBBZ0182
R 269	CHIP RES. 1/10W J 2.7KΩ	RRXAJBBZ0272
R 270	CHIP RES. 1/10W J 18KΩ	RRXAJBBZ0183
R 271	CHIP RES. 1/10W J 22KQ	RRXAJBBZ0223
R 272	CHIP RES. 1/10W J 8.2KQ	RRXAJBBZ0822
R 273	CHIP RES. 1/10W J 68KΩ	RRXAJBBZ0683
R 274	CHIP RES. 1/10W J 3.9KΩ	RRXAJBBZ0302
R 275	CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103
R 276	CHIP RES. 1/10W J 10KΩ	RFXAJBBZ0103
R 277	CHIP RES. 1/10W J 1KQ	RRXAJBBZ0102
R 278	CARBON RES. 1/6W J 10KΩ or	132A103T
	CARBON RES. 1/5W J 10KΩ	1324103T
R 279	CHIP RES. 1/10W J 47KΩ	RRXAJBBZ0473
R 280	CHIP RES. 1/10W J 10KΩ	RRXAJB8Z0103
R 281	CHIP RES. 1/10W J 82KΩ	RRXAJB8Z0823
R 282	CHIP RES. 1/10W J 56KΩ	RRXAJBBZ0563
R 283	CHIP RES. 1/10W J 33KQ	RRXAJBBZ0333
R 284	CHIP RES. 1/10W J 470Ω	RRXAJBBZ0471
R 285	CHIP RES, 1/10W J 1KQ	RRXAJBBZ0102
R 286	CHIP RES. 1/10W J 15KO	RRXAIBBZ0153
R 287	CHIP RES. 1/10W J 68KQ	RRXAIBBZ0683
R 288	CHIP RES. 1/10W J 68KΩ	RRXAJBBZ0683
R 289	CHIP RES. 1/10W J 12KQ	RRXAJBBZ0123
R 290	CHIP RES. 1/10W J 12KΩ	RRXAJBBZ0123
R 291	CARBON RES. 1/4W J 1Ω or	1345109S
	CARBON RES. 1/4W J 1Ω	RCX4JATZ0109
R 292	CARBON RES. 1/4W J 2.2Q or	1345229S
	CARBON RES. 1/4W J 2.2Ω	RCX4JATZ0229
R 296	CARBON RES. 1/4W J 1KΩ or	1345102S
	CARBON RES. 1/4W J 1KQ	RCX4JATZ0102
R 298	CHIP RES. 1/10W J 4.7KΩ	RRXAJBBZ0472
R 301	CHIP RES. 1/10W J 10KQ	RRXAJBBZ0103
R 302	CHIP RES. 1/10W J 18KQ	RRXAJBBZ0183
R 303	CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103
R 304	CHIP RES. 1/10W J 560Ω	RRXAJBBZ0561
R 305	CHIP RES. 1/10W J 4.7Ω	RRXAJBBZ04R7
R 306	CARBON RES. 1/4W J 220Q or	1345221\$
	CARBON RES. 1/4W J 220Ω	RCX4JATZ0221
R 307	FUSE RES. 2.2Ω 1W or	RF01229KA004
	FUSE RES. 1W J 2.2Ω	5363229
R 308	FUSE RES. 2.2Ω 1W or	RF01229KA004
	FUSE RES. 1W J 2.20	5363229
R 310	CARBON RES. 1/6W J 5.6KΩ pr	132A562T
	CARBON RES. 1/5W J 5.6KΩ	1324562T
R 311	CARBON RES. 1/6W J 5.6KQ or	132A562T
	CARBON RES. 1/5W J 5.6KΩ	1324562T
R 314	CHIP RES. 1/10W J 820Q	RRXAJBBZ0621
	CARBON RES. 1/4W J 2.2K\O or	
R 315		1345222S
	CARBON RES. 1/4W J 2.2KΩ	RCX4JATZ0222
		, ,

L7480EL

12-5

Ref. No.	Description	Part No.
R 316	CEMENT RES. 5W K 3.3KΩ or	RW05332PG003
	CEMENT RES. 3.3KQ 5W or	RW05332UB001
	CEMENT RES. 5W K 3.3KΩ	RW05332KA006
R 317	CHIP RES. 1/10W J 82KΩ	RRXAJBBZ0823
R 318	CARBON RES. 1/6W J 12KΩ or	132A123T
	CARBON RES. 1/5W J 12KΩ	1324123T
R 319	CHIP RES. 1/10W J 12KΩ	RRXAJBBZ0123
R 320	CHIP RES. 1/10W J 100KΩ	RRXAJBBZ0104
R 321	CARBON RES. 1/6W J 220KΩ or	132A224T
	CARBON RES. 1/5W J 220KΩ	1324224T
R 322	CHIP RES. 1/10W J 1.8KΩ	RRXAJBBZ0182
R 323	CHIP RES. 1/10W J 27KΩ	RRXAJBBZ0273
R 324	CHIP RES. 1/10W J 10KΩ	RRXAJB8Z0103
R 325	CHIP RES. 1/10W J 1.5KΩ	RRXAJBBZ0152
R 326	CHIP RES. 1/10W J 1.8KΩ	RRXAJBBZ0182
R 327	CHIP RES. 1/10W J 100KΩ	RRXAJBBZ0104
R 328	CHIP RES. 1/10W J 100KΩ	RRXAJBBZ0104
R 329	CHIP RES. 1/10W J 6.8KΩ	RRXAJBBZ0682
R 330	CHIP RES. 1/10W J 4.7KΩ	RRXAJBBZ0472
R 331	CHIP RES. 1/10W J 10KΩ	RRXAJ88Z0103
R 332	CHIP RES. 1/10W J 47KΩ	RRXAJBBZ0473
R 333	CHIP RES. 1/10W J 680KΩ	RRXAJBBZ0684
R 335	CHIP RES. 1/10W J 270Ω	RRXAJBBZ0271
R 336	CHIP RES. 1/10W J 180Ω	RRXAJBBZ0181
R 337	CHIP RES. 1/10W J 4.7KΩ	RRXAJBBZ0472
R 338	CHIP RES. 1/10W J 470Ω	RRXAJBBZ0471
R 339	CHIP RES. 1/10W J 330KΩ	RRXAJBBZ0334
A 340	CHIP RES. 1/10W J 330Ω	RRXAJBBZ0331
R 341	CHIP RES. 1/10W J 5.6KΩ	RRXAJBBZ0562
R 346 R 347	METALIZED FILM RES. 1/5W F 27KΩ	13C2702 RRXAJBBZ0472
R 348	CHIP RES. 1/10W J 4.7KΩ CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103
R 349	CHIP RES. 1/10W J 27KΩ	RRXAJBBZ0273
R 360	CHIP RES. 1/10W J 3.3MΩ	RRXAJBBZ0336
R 351	CHIP RES. 1/10W J 390Ω	RRXAJBBZ0391
R 365	CHIP RES. 1/10W J 47KΩ	RRXAJBBZ0473
R 356	CARBON RES. 1/6W J 470Ω or	132A471T
n 300	CARBON RES. 1/5W J 470Ω	1324471T
R 357	CHIP RES. 1/10W J 390Ω	RRXAJBBZ0391
R 358	CHIP RES. 1/10W J 820Q	RRXAJBBZ0821
R 359	CHIP RES. 1/10W J 1KΩ	RRXAJBBZ0102
R 360	CARBON RES. 1/6W J 270Ω or	132A271T
	CARBON RES. 1/5W J 270Q	1324271T
R 361	CHIP RES. 1/10W J 390Q	RRXAJB8Z0391
R 362	CHIP RES. 1/10W J 4.7KΩ	RRXAJBBZ0472
R 363	CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103
R 364	CHIP RES. 1/10W J 390Ω	RRXAJBBZ0391
R 365	CHIP RES. 1/10W J 270Ω	RRXAJBBZ0271
R 366	CHIP RES. 1/10W J 470Ω	RRXAJBBZ0471
R 367	CHIP RES. 1/10W J 2.2KΩ	RRXAJBBZ0222
R 368	CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103
R 369	CHIP RES. 1/10W J 22KΩ	BRXAJBBZ0223
R 396	CARBON RES. 1/6W J 150KΩ or	132A154T
	CARBON RES. 1/5W J 150KQ	1324154T
R 397	CARBON RES. 1/6W J 10KΩ or	132A103T
11 301	CARBON RES. 1/5W J 10KΩ	1324103T
R 398	CARBON RES. 1/6W J 33KΩ or	132A333T
11 300	CARBON RES. 1/SW J SSKQ	1924399T
R 399	CARBON RES. 1/4W J 1.5KΩ or	1345152S
	CARBON RES. 1/4W J 1.5KΩ	RCX4JATZ0152

Ref. No.	Description	Part No.
R 400	CARBON RES. 1/6W J 22KΩ or	132A223T
	CARBON RES. 1/5W J 22KΩ	1324223T
R 401	CARBON RES. 1/6W J 27KΩ or	132A273T
	CARBON RES. 1/5W J 27KΩ	1324273T
R 402	CARBON RES. 1/6W J 10KΩ or	132A103T
	CARBON RES. 1/5W J 10KΩ	1324103T
R 403	CARBON RES. 1/6W J 5.6KΩ or	132A562T
	CARBON RES. 1/5W J 5.6KΩ	1324562T
R 404	CARBON RES. 1/6W J 100KΩ or	132A104T
	CARBON RES. 1/5W J 100KΩ	1324104T
R 405	CARBON RES. 1/6W J 120KΩ or	132A124T
	CARBON RES. 1/5W J 120KΩ	1324124T
R 406	CARBON RES. 1/6W J 47KΩ or	132A473T
	CARBON RES. 1/5W J 47KΩ	1324473T
R 407	CARBON RES. 1/6W J 22K\O or	132A223T
	CARBON RES. 1/5W J 22KΩ	1324223T
R 408	METAL RES. 1W J 15KΩ or	RN01JZDZ0153
	METAL RES. 1W J 15KΩ	534A153
R 410	CARBON RES. 1/6W J 180Ω or	132A181T
	CARBON RES. 1/5W J 180Ω	1324181T
R 411	CHIP RES. 1/10W J 2.7KΩ	RRXAJBBZ0272
R 412	METAL RES. 2W J 27Ω or	RN02JZDZ0270
	METAL RES. 2W J 27Ω	534B270
R 413	CHIP RES. 1/10W J 68KΩ	RRXAJBBZ0683
R 414	CHIP RES. 1/10W J 27KΩ	RRXAJBBZ0273
R 415	CARBON RES. 1/6W J 10KΩ or	132A103T
	CARBON RES. 1/5W J 10KΩ	1324103T
R 416	CARBON RES. 1/6W J 3.3KΩ or	132A332T
	CARBON RES. 1/5W J 3.3KΩ	1324332T
R 417	CHIP RES. 1/10W J 100Ω	RRXAJBBZ0101
R 418	FUSE RES. 1/2W J 2.2Ω or	5367229
	FUSE RES. 1/2W J 2.2Ω	5362229
R 430	CHIP RES. 1/10W J 2.2KΩ	RRXAJBBZ0222
R 431	CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103
R 433	CHIP RES. 1/10W J 180Ω	RRXAJBBZ0181
R 434	CHIP RES. 1/10W J 3.3KΩ	RRXAJBBZ0332
R 435	CHIP RES. 1/10W J 4.7KΩ	RRXAJBBZ0472
R 436	CHIP RES. 1/10W J 100KΩ	RRXAJBBZ0104
R 437	CHIP RES. 1/10W J 100KΩ	RRXAJBBZ0104
R 440	CHIP RES. 1/10W J 3.3KΩ	RRXAJBBZ0332
R 441	CARBON RES. 1/6W J 47Ω or	132A470T
	CARBON RES. 1/5W J 47Ω	1324470T
R 442	CARBON RES. 1/6W J 33KΩ or	132A333T
	CARBON RES. 1/5W J 33KΩ	1324333T
R 443	CARBON RES. 1/6W J 33KΩ or	132A333T
	CARBON RES. 1/5W J 33KΩ	1324333T
R 446	CARBON RES. 1/6W J 10KΩ or	132A103T
	CARBON RES. 1/5W J 10KΩ	1324103T
R 447	CARBON RES. 1/6W J 10KΩ or	132A103T
	CARBON RES. 1/5W J 10KΩ	1324103T
R 501	CEMENT RES. 5W K 1.2Ω or	RW051R2PG001
	CEMENT RES. 5W K 1.2Ω or	RW051R2UB001
	CEMENT RES. 5W K 1.2Ω	RW051R2KA006
R 502	CARBON RES. 1/4W J 120KΩ or	1345124S
	CARBON RES. 1/4W J 120KΩ	RCX4JATZ0124
R 503	CARBON RES. 1/4W J 120KΩ or	1345124S
	CARBON RES. 1/4W J 120KΩ	RCX4JATZ0124
R 504	CARBON RES. 1/4W J 15KQ or	19451598
	CARBON RES. 1/4W J 15KΩ	RCX4JATZ0153

Ref. No.	Description	Part No.
R 505	CARBON RES. 1/4W J 220Ω or	13452215
111	CARBON RES. 1/4W J 220Q	RCX4JATZ0221
R 506	CARBON RES. 1/4W J 1.5KΩ or	1345152S
	CARBON RES. 1/4W J 1.5KΩ	RCX4JATZ0152
R 507	METAL RES. 2W J 82Ω or	RN02JZDZ0820
	METAL RES. 2W J 82Ω	5348820
A 508	METAL RES. 3W J 68Ω or	RN03680KE003
	METAL RES. 3W J 68Ω or	RN03JZDZ0680
	METAL RES. 3W J 68Ω	RN03680KA001
R 509	CARBON RES. 1/6W J 470Ω or	132A471T
	CARBON RES. 1/5W J 470Ω	1324471T
R 510	CARBON RES. 1/6W J 22KQ or	132A223T
	CARBON RES. 1/5W J 22KΩ	1324223T RN02JZDZ068A
R 512	METAL RES. 2W J 0.68KΩ or METAL RES. 2W J 0.68KΩ	534B68A
	CARBON RES. 1/4W J 5.6K \(\O \) or	1345562S
A 513	CARBON RES. 1/4W J 5.6KΩ	RCX4JATZ0562
200	METAL RES. 3W J 33Ω or	RN03330KE003
R 514	METAL RES. 3W J 33Ω or	RN03JZDZ0330
	METAL RES. 3W J 33Ω	RN03330KA001
R 517	CARBON RES. 1/6W J 1.2MΩ or	132A125T
n 31/	CARBON RES. 1/5W J 1.2MΩ	1324125T
R 518	CARBON RES. 1/6W J 1MQ or	132A105T
N 310	CARBON RES. 1/5W J 1MQ	1324105T
R 519	CARBON RES. 1/6W J 330Q or	132A331T
	CARBON RES, 1/5W J 330Ω	1324331T
R 520	CARBON RES. 1/6W J 47KΩ or	132A473T
	CARBON RES. 1/5W J 47KΩ	1324473T
R 521	CARBON RES. 1/6W J 27KΩ or	132A273T
	CARBON RES. 1/5W J 27KΩ	1324273T
R 522	CARBON RES. 1/4W J 560KΩ or	1345564S
	CARBON RES. 1/4W J 560KΩ	RCX4JATZ0564
JW 202	CHIP RES. 1/10W J ΩΩ	RRXAJBBZ0000
JW 203	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 204	CHIP RES. 1/10W J ΩΩ	RRXAJBBZ0000
JW 205	CHIP RES. 1/10W J 0Ω	RRXAJ8B20000
JW 206	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 207	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 208	CHIP RES. 1/10W JOQ	RRXAJBBZ0000 RRXAJBBZ0000
JW 210	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 211 JW 213	CHIP RES. 1/10W J 0Ω CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 213	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 215	CHIP RES. 1/10W J QΩ	RAXAJBBZ0000
JW 215 JW 216	CHIP RES. 1/10W J 0S2 CHIP RES. 1/10W J 0S2	RRXAJBBZ0000
JW 217	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 218	CHIP RES. 1/10W J 052	RRXAJBBZ0000
JW 220	CHIP RES. 1/10W J 0Ω	RRXAJB8Z0000
JW 221	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 222	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 223	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 224	CHIP RES. 1/10W J 0Ω	RRXAJB8Z0000
JW 226	CHIP RES. 1/10W J 0Ω	RRXAJ88Z0000
JW 227	CHIP RES. 1/10W J ΩΩ	RRXAJBBZ0000
JW 228	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 230	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 232	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 233	CHIP RES. 1/10W J OQ	RRXAJBB20000
JW 234	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 240	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000

Ref. No.	Description	Part No.	
JW 241	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000	
JW 250	CHIP RES. 1/10W J OQ	RRXAJBBZ0000	
	SWITCHES		
SW 201	TACT SWITCH SKHHBV or	SST0101AL013	
	LIGHT TOUCH SWITCH EVQPAC07K	SST0101MS013	
SW 202	TACT SWITCH SKHHBV or	SST0101AL013	
	LIGHT TOUCH SWITCH EVOPACOTK SST0101MS		
SW 203	TACT SWITCH SKHIHBV or	SST0101AL013	
	LIGHT TOUCH SWITCH EVQPAC07K	SST0101MS013	
SW 204	TACT SWITCH SKHHBV or	SST0101AL013	
	LIGHT TOUCH SWITCH EVQPAC07K	SST0101MS013	
SW 205	TACT SWITCH SKHIBV or	SST0101AL013	
	LIGHT TOUCH SWITCH EVQPAC07K	SST0101MS013	
SW 206	TACT SWITCH SKHHBV or	SST0101AL013	
	LIGHT TOUCH SWITCH EVQPACO7K	SST0101MS013	
SW 207	TACT SWITCH SKHHBV or	SST0101AL013	
	LIGHT TOUCH SWITCH EVOPACOTK	SST0101MS013	
SW 208	TACT SWITCH SKHIHBV or	SST0101AL013	
	LIGHT TOUCH SWITCH EVQPAC07K	SST0101MS013	
SW 209	SLIDE SWITCH SSV-22-0300 or	SSS0202DK001	
	SLIDE SWITCH or	1621654	
	SLIDE SWITCH or	SSS0202WM001	
	SLIDE SWITCH	SSS0202HZ003	
SW 501 A	PUSH SWITCH SPPW81-6.55-A2	SPP0AAZMS001	
311 301 215	TRANSFORMERS	Of Torontonoon	
T 201 🛆	FLYBACK TRANS 154-064M [GOLD STAT] or	TEMEROSONI	
1 201 7		LTF00EPSM002	
T 202	H DRIVE TRANS TE-1410	1150325	
T 501 A	POWER TRANS TS8045VA	LTT00EPMS011	
1 301 77	VARIABLE RESISTORS	LITOUEPMOUTI	
VR 202	POTENTIONETER SOKO B	138J784	
VR 203	POTENTIOMETER 500Q B	138,7776	
VR 204	POTENTIOMETER 500Ω B	138J776	
VR 205	POTENTIOMETER 2KQBH	138,3778	
VH 205		1383//8	
	MISCELLANEOUS POWER KNOB	0EM401485	
A 3			
B 3	LED TUBE	0EM401473	
B 4	SENSOR HOLDER	0EM401471	
B 5	CUSHION	0EM401374	
DL 201	GLASS DELAY EFDEN645A61H or	1813554	
	GLASS DELAY	1812056	
F 501 🛧	FUSE T4.0AH 250V	PAGC20BAG402	
FH 501	HOLDER FUSE FH-V-03078 or	XH01Z00DK001	
	HOLDER FUSE CNT41-0014	1790424	
FH 502	HOLDER FUSE FH-V-03078 or	XH01Z00DK001	
	HOLDER FUSE CNT41-0014	1790424	
HS 1	HEAT SINK PR (for Q501)	0EM300441	
HS 2	HEAT SINK PS (for IC204/IC207)	0EM401145	
IP 201	IC PROTECTOR ICP-N10 579F085		
IP 202	IC PROTECTOR ICP-N20	579F087Z	
J 201	EARPHONE JACK HSJ1403-01-010	JYSL030HD002	
J 202	RCA JACK JPJ2030-01-030	JXRL010HD001	
J 203	BNC JACK or	JXNL010RA002	
	BNC JACK	JXNL010HD002	
L 1	SCREW B-TIGHT BIND HEAD 3X8	GBMB3080	
LD 2	RIBBON WIRE 3P	WX1L7401-003	
LD 3	RIBBON WIRE 6P	WX1L7401-004	
PS 501	POSISTOR ZP8538L200C	5790117	

930521 12-6 L7480EL 930521 12-7 L7480EL

Ref. No.	Description	Part No.
TP 1	TEST PIN or	1700093
	TEST PIN SJT-743-3	1740354
TP 2	TEST PIN or	1700093
	TEST PIN SJT-743-3	1740354
TP 3	TEST PIN or	1700093
	TEST PIN SJT-743-3	1740354
TP 4	TEST PIN or	1700093
	TEST PIN SJT-743-3	1740354
TP 5	TEST PIN or	1700093
	TEST PIN SJT-743-3	1740354
TU 201	TUNER UNIT ENV-79838-F2	UTUNPSDMS001
U 201	REMOTE SENSOR UNIT CMXX920F-S USESURS	
W 501 A	AC CORD LA-1398	WAE0192LW001
XT 201	CERALOCK 4.19MHz or	1812885
	CERAMIC RESONATOR KBR-4.19MKS	1813682
XT 202	SERAMIC RESONATOR CSB500F2	1812039
XT 203	CRYSTAL OSILLATOR 4.43MHz 181138	
XT 204	CRYSTAL OSILLATOR 3.579545KHz	1811291
	LEAD CLAMPER or	1790256
	LEAD CLAMPER	1790356

CRT PCB (MMA-B)

930521

Ref. No.	Description	Part No.
	CRT PCB (MMA-B)	
	Consists of the following:	
	CAPACITORS	
C 601 A	CERAMIC CAP. 0.01 µF/2KV or	CCD3DZP0E103
	CERAMIC CAP. 0.01µF/2KV	6220602
C 602	CHIP CERAMIC CAP. SLJ 270pF/50V	CHE1JJBSL271
C 603	CHIP CERAMIC CAP. SL J 270pF/50V	CHE1JJBSL271
C 604	CHIP CERAMIC CAP, SLJ 330pF/50V	CHE1JJBSL331
	CONNECTORS	
CN 601	CRT SOCKET HPS1171-01-020 or	1780090
	CRT SOCKET CVT3308-1301	1780218
CN 602	CONNECTOR PIN 1P or	1700576
	CONNECTOR PIN 1P RT-01N-2:3A	1730688
CN 603	WIRE HOLDER 3P 51039-0300 or	XW01D03NF001
	WIRE HOLDER 3P 51039-0300	XW01B03NF001
CN 604	WIRE HOLDER 6P 51039-0600 or	XW01D06NF001
	WIRE HOLDER 6P 51039-0600	XW01B06NF001
	TRANSISTORS	
Q 601	TRANSISTOR 2SC2228(D) or	2SC2228D
	TRANSISTOR 2SC2228(E)	2SC2228E
Q 602	TRANSISTOR 2SC2228(D) or	2SC2228D
	TRANSISTOR 2SC2228(E)	2SC2228E
Q 603	TRANSISTOR 2SC2228(D) or	2SC2228D
	TRANSISTOR 2SC2228(E)	2SC2226E
	RESISTORS	
R 601	CARBON RES. 1/4W J 1.8KΩ or	RCX4JATZ0182
	CARBON RES. 1/4W J 1.8KΩ	1345182S
R 602	CARBON RES. 1/4W J 1.8KΩ or	RCX4JATZ0182
	CARBON RES. 1/4W J 1.8KΩ	1345182S
R 603	CARBON RES. 1/4W J 1.8KΩ or	RCX4JATZ0182
	CARBON RES. 1/4W J 1.8KΩ	1345182S
R 604	CARBON RES. 1/4W J 1.5KΩ or	RCX4JATZ0152
	CARBON RES. 1/4W J 1.5KΩ	13451528
203 R	CARBON RES. 14W J 1.5KD or	RCXAJATZ0152
	CARBON RES, 1/4W J 1.5KΩ	1345152S

Ref. No.	Description	Part No.
R 606	CARBON RES. 1/4W J 1.5KΩ or	RCX4JATZ0152
	CARBON RES. 1/4W J 1.5KΩ	13451528
R 607	CHIP RES. 1/10W J 2.7KΩ	RRXAJBBZ0272
R 608	CHIP RES. 1/10W J 820Ω	RRXAJBBZ0821
R 609	CHIP RES. 1/10W J 220Ω	RRXAJBBZ0221
R 610	CHIP RES. 1/10W J 2.7KΩ	RRXAJBBZ0272
R 611	CHIP RES. 1/10W J 1.5KΩ	RRXAJBBZ0152
R 612	CHIP RES. 1/10W J 820Ω	RRXAJBBZ0821
R 613	CHIP RES. 1/10W J 220Ω	RRXAJBBZ0221
R 614	CHIP RES. 1/10W J 2.2KΩ	RRXAJBBZ0222
R 615	CHIP RES. 1/10W J 820Ω	RRXAJBBZ0821
R 616	CHIP RES. 1/10W J 220Ω	RRXAJBBZ0221
R 617	METAL RES. 1W J 15KΩ or	RN01JZDZ0153
	METAL RES. 1W J 15KΩ	534A153
R 618	METAL RES. 1W J 15KΩ or	RN01JZDZ0153
	METAL RES. 1W J 15KΩ	534A153
R 619	METAL RES. 1W J 15KΩ or	RN01JZDZ0153
	METAL RES. 1W J 15KΩ	534A153
R 620	CHIP RES. 1/10W J 2.2KΩ	RRXAJ88Z0222
R 621	CHIP RES. 1/10W J 470Ω	RRXAJBBZ0471
R 622	CHIP RES. 1/10W J 2.2KΩ	RRXAJB8Z0222
R 623	CHIP RES. 1/10W J 470Ω	RRXAJB8Z0471
R 624	CHIP RES. 1/10W J 2.2KΩ	RRXAJBBZ0222
R 625	CHIP RES. 1/10W J 470Ω	RRXAJBBZ0471
R 626	CHIP RES. 1/10W J 270Ω	RRXAJBBZ0271
R 627	CHIP RES. 1/10W J 270Ω	RRXAJBBZ0271
R 628	CHIP RES. 1/10W J 270Ω	RRXAJBBZ0271
JW 601	CHIP RES. 1/10W J 0Ω	RRXAJ8820000
JW 602	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 603	CHIP RES. 1/10W J 0Ω	RRXAJB8Z0000
JW 604	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
	VARIABLE RESISTOR	S
VR 601	POTENTIOMETER 50KΩ B	138,5920
VR 602	POTENTIOMETER 3KQ B	138J915
VR 603	POTENTIOMETER 3KQ B	138J915
VR 604	POTENTIOMETER 5KQ B	138J916
VR 605	POTENTIOMETER SKQ B	138J916
VR 606	POTENTIOMETER 5KQ B	138,916

IF PCB (MMA-C)

Ref. No.	Description	Part No.
	IF PCB (MMA-C) Consists of the following:	
	CAPACITORS	
C 101	CHIP CERAMIC CAP. SL J 22pF/50V	CHE1JJBSL220
C 102	CHIP CERAMIC CAP. SL J 10pF/50V	CHE1JJBSL100
C 103	CHIP CERAMIC CAP. B K 0.01µF/50V	CHE1JKB0B103
C 104	MYLAR CAP. 0.068µF/50V K	2250683S
C 105	CHIP CERAMIC CAP. B K 0.001µF/50V	CHE1JKB0B102
C 106	ELECTROLYTIC CAP. 0.47µF/50V M	126F474S
C 107	ELECTROLYTIC CAP. 4.7µF/50V M	126F475S
C 108	CHIP CERAMIC CAP. F Z 0.01µF/50V	CHE1JZB0F103
C 110	CHIP CERAMIC CAP. F Z 0.01µF/50V	CHE1JZB0F103
C 111	CHIP CERAMIC CAP. F Z 0.01µF/50V	CHE1JZB0F103
C 112	CHIP CERAMIC CAP. F Z 0.01µF/50V	CHE1JZB0F103
C 113	CHIP CERAMIC CAP. F Z 0.01µF/50V	CHE1JZB0F103
C 120	CHIP CERAMIC CAP. F Z 0.01 µF/50V	CHE1JZB0F103
C 121	CHIP CERAMIC CAP. F Z 0.01µF/50V	CHE1JZB0F103

Ref. No.	o. Description Part No.			
C 122	CHIP CERAMIC CAP. CH J 130pF/50V			
C 124	CHIP CERAMIC CAP. SL J 27pF/50V	CHE1JJBSL270		
C 125	CHIP CERAMIC CAP. SL. J 33pF/50V	CHE1JJBSL330		
C 126	CHIP CERAMIC CAP. SLJ 22pF/50V	CHE1JJBSL220		
C 127	CHIP CERAMIC CAP. SLJ 27pF/50V	CHE1JJBSL270		
C 128	ELECTROLYTIC CAP. 47µF/50V M	126F476S		
C 129	CHIP CERAMIC CAP. F Z 0.01µF/50V	CHE1JZB0F103		
C 130	CHIP CERAMIC CAP. FZ 0.01µF/50V	CHE1JZB0F103		
- 130	CONNECTORS	,		
CN 101	PCB CONNECTOR SP TXX-P06P-G1	1770989		
CN 102	PCB CONNECTOR SP TXX-P03P-G1	1770986		
UN IUZ	(L TYPE)			
CN 103	CONNECTOR BASE 4P (EH/TOP)	1730628		
CN 104	CONNECTOR BASE 3P (EH/TOP)	1730627		
CRICA	COILS	11100021		
1 404	MICRO INDUCTOR 1µH or	2165109T		
L 101	MICRO INDUCTOR 1µH	2162109T		
	MICRO INDUCTOR 1µH	21621091 2165688T		
L 102				
	MICRO INDUCTOR 0.68µH	2162688T		
L 104	MICRO INDUCTOR 10µH or	2165100T		
	MICRO INDUCTOR 10µH	2162100T		
L 105	MICRO INDUCTOR 10µH or	2165100T		
	MICRO INDUCTOR 10µH	2162100T		
L 106	CASING COIL	LFA07V0MM001		
L 107	CASING COIL	LFA07V0MM002		
	TRANSISTORS			
Q 102	TRANSISTOR 2SC3331(T) or	QSC3331TNPAA		
	TRANSISTOR 2SC3331(U) or	QSC3331UNPAA		
	TRANSISTOR KTC3198GR TO-92 or	NQS40KTC3198		
	TRANSISTOR KTC3199GR	NQS10KTC3199		
Q 103	TRANSISTOR 2SC3000D or	2SC3000D		
	TRANSISTOR 2SC3000E	2SC3000E		
Q 104	TRANSISTOR 2SA1318T or	2SA1318T		
	TRANSISTOR 2SA1318U or	2SA1318U		
	TRANSISTOR KTA1266GR TO-92 or	NGS40KTA1266		
	TRANSISTOR KTA1267(GR)	NOS10KTC1267		
	RESISTORS			
R 101	CHIP RES. 1/10W J 470Ω	RRXAJ8820471		
R 102	CHIP RES. 1/10W J 390Ω	RRXAJBBZ0391		
R 103	CHIP RES. 1/10W J 470Ω	RRXAJBBZ0471		
R 104	CHIP RES. 1/10W J 330Ω	RRXAJBBZ0331		
R 104	CHIP RES. 1/10W J 5.6KΩ	RRXAJBBZ0562		
		RRXAJB8Z0182		
R 106	CHIP RES. 1/10W J 1.8KΩ			
R 107	CHIP RES. 1/10W J 22KΩ	RRXAJB8Z0223		
R 108	CHIP RES. 1/10W J 560Ω	RRXAJBBZ0561		
R 109	CHIP RES. 1/10W J 10KΩ	RRXAJBBZ0103		
R 110	CHIP RES. 1/10W J 560Ω	RRXAJBBZ0561		
R 111	CHIP RES. 1/10W J 1.5KΩ	RRXAJBBZ0152		
R 112	CHIP RES. 1/10W J 82KQ	RRXAJBBZ0823		
R 113	CHIP RES. 1/10W J 180KΩ	RRXAJBBZ0184		
R 115	CHIP RES. 1/10W J 330Ω	RRXAJBBZ0331		
R 116	CHIP RES. 1/10W J 560Ω	RRXAJBBZ0561		
R 117	CHIP RES. 1/10W J 5.6KΩ	RRXAJBBZ0562		
R 118	CHIP RES. 1/10W J 33Ω	RRXAJBBZ0330		
R 119	CHIP RES. 1/10W J 1.5KΩ	RRXAJBBZ0152		
R 120	CHIP RES. 1/10W J 68Ω	RRXAJBBZ0680		
R 122	CHIP RES. 1/10W J 120KΩ	RRXAJBBZ0124		
R 123	CHIP RES. 1/10W J 120KΩ	RRXAJB8Z0104		
	JOHE MES. 1/10W J 100MLZ	INDOCUTOR		
	CHIED DEC TROM IT DAG	DOVA IDD70192		
R 124 R 126	CHIP RES. 1/10W J 1.8KΩ CHIP RES. 1/10W J 1KΩ	RRXAJBBZ0182 RRXAJBBZ0102		

Ref. No.	Description	Part No.
R 128	CHIP RES. 1/10W J 3.3KΩ	RRXAJ8820332
R 129	CHIP RES. 1/10W J 120Ω	RRXAJBBZ0121
R 130	CHIP RES. 1/10W J 1.5KΩ	RRXAJBBZ0152
R 131	CHIP RES. 1/10W J 560Ω	RRXAJBBZ0561
R 132	CHIP RES. 1/10W J 100Ω	RRXAJB8Z0101
JW 235	CHIP RES. 1/10W J OQ	RRXAJBBZ0000
JW 236	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 237	CHIP RES. 1/10W J 0Ω	RRXAJBBZ0000
JW 239	CHIP RES. 1/10W J QQ	RRXAJBBZ0000
	VARIABLE RESISTOR	
VR 101	POTENTIOMETER 10KΩ B V	138J917
	MISCELLANEOUS	
CF 101	CERAMIC DISCRE CDA5.5MC26	1812020
CF 102	CERAMIC DISCRE CDA6.5MC26	1813594
CF 103	CERAMIC TRAP TPW02B	1813593
CF 104	CERAMIC FILTER SFE5.5MBF	1812018
CF 105	CARAMIC FILTER SFE6.5MB	1813595
IC 101	IC LA7530N	14LQ162
SAW101	SAW FILTER KAF-38.0MR-MH	FBB386PKC001

CHASSIS ELECTRICAL PARTS

Ref. No.	Description	Part No.
CRT 1 A	CRT 370KBR22-TC09 (SPYB) or	1812341
	CRT 37GDA85X-TC01(P) or	1812724
	CRT A34KPU02XX48	TCRT190GS011
L 502 A	DEGAUSSING COIL or	LLBH00ZTZ011
_	DEGAUSSING COIL	LLBH00ZAB006
LD 1	WIRE ASSY	WX1L7500-001
LD 4	WIRE ASS'Y	WX1L7401-001
SP 801	SPEAKER S08J59A or	1520614
	SPEAKER R77A80A32X009 or	DSD08080J001
	SPEAKER SG-38018B	152N589

L7480EL

WAVEFORMS

WIRING DIAGRAM

15. WHITE BALANCE ADJUSTMENT

Purpose: To mix red, green and blue beams correctly for pure white. Symptom of Misadjustment: White becomes bluish or reddish.

Test Point	Adjustment Point	Input
Screen	VR602, VR603	White Raster (APL 100%)
Equ	pment	Spec.
	Generator Analyzer	See below
		ns of M. EQ.
	SET X	COLOR ANALYZER 0-CAL SW.

Reference Notes: VR602, VR603 --- CRT PCB

- 1. Operate the unit more than 20 minutes.
- 2. Face the unit to east. Degauss the CRT using Degaussing Coil.
- 3. Input the White Raster (APL 100%).
- Set the color analyzer to the CHROMA mode and after zero point calibration, bring the optical receptor to the center on the tube surface (CRT).
- Adjust VR603 (R. DRIVE) and VR602 (B. DRIVE) so that the respective chroma temperatures become 8000K-10MPCD (x:0.300/y:0.290) ±4%.

Note: Confirm that Cut Off Adj. is correct after this adjustment, and attempt Cut Off Adj. if needed.

BLOCK DIAGRAM

CRT PCB (Top View)

CRT PCB (Bottom View)

(BL7401F010B1-2-A)

IF PCB (Top View)

IF PCB (Bottom View)

(BL7401F010B1-3-A)

MAIN PCB (Bottom Vi

(Bottom View)

7 ^

