LISTA 1

LÓGICA

5. Admitindo que p e q são verdadeiras e r é falsa, determine o valor (V ou F) de cada proposição abaixo.

a)
$$p \rightarrow r$$

d) $(p \lor r) \leftrightarrow q$

e)
$$p \rightarrow (q \rightarrow r)$$

b) $p \leftrightarrow q$ f) $p \rightarrow (q \lor r)$

c) $r \rightarrow p$ and a simple self-form of g $\sim p \leftrightarrow \sim q$ as the stage series of

h) $\sim p \leftrightarrow r$

6. Sendo a proposição p \rightarrow (r \lor s) falsa e a proposição (q $\land \sim$ s) \leftrightarrow p verdadeira. classifique em verdadeira ou falsa as afirmações p, q, r e s.

7. Verifique, por meio das tabelas-verdades, a validade das equivalências abaixo.

a) da conjunção

 $q \land p \Leftrightarrow p \land q$

 $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

 $p \land p \Leftrightarrow p$

 $p \wedge v \Leftrightarrow p$

 $p \wedge f \Leftrightarrow f$

c) da conjunção relativamente à disjunção

 $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

 $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

 $p \land (p \lor q) \Leftrightarrow p$

 $p \lor (p \land q) \Leftrightarrow p$

b) da disjunção

 $p \lor q \Leftrightarrow q \lor p$

 $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$

 $p \lor p \Leftrightarrow p$

 $p \lor v \Leftrightarrow v$

 $p \vee f \Leftrightarrow p$

d) da negação

 $\sim (\sim p) \Leftrightarrow p$

 $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$

 $\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$

em que p, q e r são proposições quaisquer, v é uma tautologia e f uma proposição logicamente falsa.

8. Transforme as seguintes sentenças abertas em proposições verdadeiras usando quantificadores:

a)
$$x^2 - 5x + 4 = 0$$

b)
$$(a + 1)(a - 1) = a^2 - 1$$
 f) $5a + 4 \le 11$

c)
$$\frac{y}{3} + \frac{y}{4} \neq \frac{y}{7}$$

d)
$$\sqrt{m^2} + 9 \neq m + 3$$

e)
$$-(-x) = x$$

f)
$$5a + 4 \le 11$$

g)
$$\sqrt{x^2} = x$$

d)
$$\sqrt{m^2} + 9 \neq m + 3$$
 h) $\frac{a^2 - a}{a} = a - 1$

- 9. Diga qual é a negação de cada proposição abaixo.
 - a) mdc(2,3) = 1 ou $mmc(2,3) \neq 6$

b)
$$\frac{3}{5} = \frac{6}{10}$$
 ou $3 \cdot 10 \neq 6 \cdot 5$

c)
$$\frac{3}{7} \ge 1$$
 e $-3 \ge -7$

d)
$$2^2 = 4 \rightarrow \sqrt{4} = 2$$

e)
$$(-3)^2 = 9 \rightarrow \sqrt{9} \neq -3$$

$$f) \quad 2 \le 5 \to 3^2 \le 5^2$$

g)
$$(\forall x) (x > 2 \rightarrow 3^x > 3^2)$$

- h) $(\exists x) (\sqrt{x} < 0)$
- i) Todo número inteiro primo é ímpar.
- j) Todo triângulo isósceles é equilátero.
- k) Existe um losango que não é quadrado.
- Existe um número cuja raiz quadrada é zero.
- m) Todo triângulo que tem três ângulos congruentes tem três lados congruentes.
- 10. Classifique em V ou F as negações construídas no exercício anterior.