

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar

Automatizálási és Alkalmazott Informatikai Tanszék

Okosóra készítése Projektfeladat mechatronikusoknak

Készítette: Nemes Balázs Boldizsár

Konzulens:

Dr. Iváncsy Szabolcs címzetes egyetemi docens

Tartalomjegyzék

1.	Fela	dat leírása	3
2.	Hasz	znált szoftverek, programnyelvek	4
3.	Har	dver kiválasztása	4
	3.1.	Mikrovezérlő	4
	3.2.	Perifériák	5
4.	Blok	kdiagram	7
5.	A sz	oftver fejlesztése	8
	5.1.	Gyártói LCD kezelő szoftver	8
	5.2.	A feladathoz szükséges struktúrák	8
	5.3.	Fő programot egyszerűsítő könyvtárak	9
	5.4.	Fő program	9
		5.4.1. A program állapotábrája	9
	5.5.	Gombok elhelyezkedése, funkciója	0
	5.6.	Időbeli pontosság	0
	5.7.	Üzemmódok	1
	5.8.	Az aktív üzemmód menüszerkezete	12
		5.8.1. Time display menu	12
		5.8.2. Set alarm menü	12
6.	Tova	ábbfejlesztési ötletek, lehetőségek	14
7.	Jelei	nlegi állanot	15

1. Feladat leírása

A projektfeladat célja egy viselhető, okos funkciókkal ellátott óra készítése volt.

A megvalósítandó feladatok:

- Dátum és idő pontos kijelzése
- Beállítható ébresztések (dátum és időpont)
- Időzítő funkció
- Vezeték nélküli kommunikáció
- Alacsony energiafogyasztás

2. Használt szoftverek, programnyelvek

Az arduino programozása előre definiált könyvtárakkal kiegészített C++ nyelven történik.

Az Arduino felprogramozását az Arduino IDE szoftver^[1], és az Arduino IoT rendszer^[2] segítségével végeztem el.

3. Hardver kiválasztása

3.1. Mikrovezérlő

A feladat megvalósításához egy Arduino Nano 33 IoT mikrokontrollert választottam.

A mikrovezérlő előnyei:

- Magas órajel (fontos az SPI kommunikációt használó LCD kijelző megfelelő frissítéséhez)
- Integrált WiFi és Bluetooth modul (vezeték nélküli kapcsolathoz)
- RTC modul (pontos idő nyomonkövetéséhez)
- Fejlesztői környezet (Arduino IDE szoftver)
- Előre készített könyvtárak könnyebbé teszik a perifériák kezelését
- Kiterjedt support (interneten könnyen lehet megoldást találni a felmerülő problémákra)

Hátrányai:

- A feladat esetpéén felmerülő hely-korlátozás miatt relatív nagy méret
- Kis mértékben személyre szabható (pl.: pin-ek tüskesorban -> nehéz NYÁK-ra integrálni)
- Ár (a feladat megvalósításához feleslegesen nagy tudás; jóval drágább, mint egy kisebb tudású mikrovezérlő)

3.2 Perifériák 3. Hardver kiválasztása

Műszaki paraméterek:

USB csatlakozó	Micro USB
WiFi és Bluetooth	Nina W102 uBlox modul
Üzemi feszültség	3.3 V
Processzor	ATSAMD21G18A
Órajel	48 MHz
Memória	256 KB SRAM, 1 MB flash

3.1. táblázat – Arduino Nano 33 IoT műszaki paraméterei [4]

3.1. ábra – Arduino Nano 33 IoT

3.2. Perifériák

A feladat megoldásához választott perifériák:

- Waveshare 1.28 inch kerek LCD kijelző^[5]
 - Felbontás: 240x240 pixel
 - 65K RGB szín kijelzés
 - Nyomógombok^[6]
 - Rezgő motor^[7]
 - Elektromágneses hangjelző^[8]

3.2 Perifériák 3. Hardver kiválasztása

(a) Waveshare 1.28 inch LCD

(b) Nyomógombok

(c) Rezgő motor

(d) Elektromágneses hangjelző

3.2. ábra – A felhasznált perifériák

4. Blokkdiagram

4.1. ábra – A rendszer blokkdiagramja

5. A szoftver fejlesztése

5.1. Gyártói LCD kezelő szoftver

A gyártó által kiadott szoftver az LCD felkonfigurálását végzi el. A szoftver öt különböző méretű betűtípust tartalmaz, emellett alapvető "rajzoló" funkciókat tartalmaz.

A szoftver függvényei:

- A képernyő elforgatása, tükrözése (inicializáláskor)
- A kijelző "törlése" (egy szín beállítása)
- String-ek, számok kiírása adott helyre
- Pixelek rajzolása
- Szakaszok, vastagabb vonalak, téglalapok és körök rajzolása

5.2. A feladathoz szükséges struktúrák

A feladat megoldásához létrehoztam két struktúrát. Ezek a date és alarm nevet kapták.

```
int year;
int month;
int day;
int hour;
int minute;
int second;
int weekday;
unsigned long TIME;
unsigned long DATE;
};
```

5.1. kód – "date" struktúra

```
struct alarm {
String name; // slot name
date time; // time of alarm
int style; // 0-OFF 1-vibrate
2-vibrate and sound
int repeat; // 0-once 1-weekly
2-monthly
};
```

5.2. kód – "alarm" struktúra

5.3. Fő programot egyszerűsítő könyvtárak

A program függvényeit kiszerveztem header fájl formájában.

A header fájlok:

- LCD setup inicializálás
- LCD GUI rajzoló, kiírató függvények
- Idő kijelző függvények
- WiFi init, kezelés
- RTC modul kezelés

5.4. Fő program

5.4.1. A program állapotábrája

5.1. ábra – A program állapotábrája

5.5. Gombok elhelyezkedése, funkciója

Az óra számlapja alá be van építve 4 gomb (12, 3, 6 és 9 óránál). A számlapot négy csavar tartja, melyek elmozognak a NYÁK furataiban, így a számlap minimálisan mozgatható. A gombok beépített rugója kellően erős hozzá, hogy megfelelő ellenerőt biztosítson a számlap súlyának (így nem nyomódnak meg "maguktól"). Emellett egy ötödik gomb is beépítésre került a számlaptól jobbra, annak forgatási tengelyére merőleges irányban (az óra oldalán).

A gombok funkciói:

- Négy számlapi gomb (UBTN, RBTN, DBTN, LBTN)
 - Sleep üzemmódból való
 - Alarm mód esetén szundi aktiválása
 - Jobb- és baloldali gomb
 - * Navigálás a főmenük között
 - * Navigálás a beállítható adatok között (pl.: óra perc másodperc)
 - * Mentés, elvetés
 - Alsó és felső gomb
 - * Főmenük és almenüjeik közötti átjárás
 - * Értékek beállítása (fel -> +1, le -> -1)
- Oldalsó gomb (OFFBTN)
 - Ébresztés és időzítő kikapcsolása

5.6. Időbeli pontosság

A megfelelő időbeli pontosság eléréséhez az alábbi megoldásokat találtam:

- Minél kevesebb számítás elvégzése egy-egy loop alatt
- Ehhez dátum struktúrában TIME és DATE tagok így elég futásonként ezt a két tagot összehasonlítani a pillanatnyi idővel -> harmadannyi for ciklus (ébresztések számának növelésével így hatványozott gyorsítás)

- RTC modul alkalmazásával pontos idő és egyszerű time interrupt-ok (pl.: másodpercenként frissíteni a képernyőt)
- Óra bekapcsolásakor pontos idő lekérése NTP szerverről
- Nyomógombok interrupt-két való használata (nem a loop egy adott pillanatában nézi, hogy meg van-e nyomva a gomb, hanem a fő programot megszakítva "lekönyveli" /interrupt függvény/, hogy megnyomtuk, majd a loop egy adott részében megnézi, hogy az előző lefutás óta meg lett-e nyomva valamelyik gomb)

5.7. Üzemmódok

Az okosórának három üzemmódja van:

- Sleep mode
 - LCD kikapcsolva energiafogyasztás csökkentése
 - Beállított ébresztések figyelése, összevetése a jelenlegi idővel (egyezés esetén *Alarm mode*)
- Active mode
 - LCD bekapcsolva
 - Interakció a programmal
 - Beállítások, vezérlés
- Alarm mode
 - LCD bekapcsolva (piros háttér)
 - Az éppen aktuális ébresztés nevének kiírása
 - Az ébresztés beállításától függően csak villogás/rezgés/rezgés és hangjelzés
 - Számlapi gombok szundi
 - Oldalsó gomb ébresztés kikapcsolása

5.8. Az aktív üzemmód menüszerkezete

5.8.1. Time display menu

- Quick watch almenü
 - Sleep módból bármelyik "számlapi gomb" megnyomásával ide kerülünk
 - 5 másodpercre kijelzi az időt
 - Utána visszatés sleep módba
- Permanent time display almenü
 - A pontos időt mutatja, kikapcsolásig
 - A quick watch almenüből ide jutunk az alsó vagy a felső gomb megnyomásával
 - A felső vagy alsó gomb újbóli megnyomásával visszatés sleep módba

5.8.2. Set alarm menü

- · Home almenü
 - Kijelzi, hogy a Set alarm menüben vagyunk
 - Jobbra-balra tudunk a többi menü között váltani
- · Select slot almenü
 - Itt lehet kiválasztani, hogy melyik helyre akarunk ébresztést beállítani
 - Jobb gomb OK
 - Bal gomb Cancel
- · Set alarm almenü
 - Ébresztés idejének megadása
 - Ébresztési stílus megadása (néma, rezgő, hangos)
 - Ismétlődés megadása (naponta, hetente, havonta)

- Jobb-bal: váltás a fentiek között
- Fel-le: érték növelése/csökkentése
- Settings menü
 - Home almenü
 - Time format almenü
 - * Óra formátum kiválasztása
 - * Analóg/digitális
 - Set snooze time almenü
 - * Szundi idejének megadása
- Timer menü
 - Home almenü
 - Set timer almenü
 - * Időzítő megadása
 - Countback almenü
 - * Hátralévő idő kiírása
 - Time is up almenü
 - * Hangjelzés és rezgés, ha lejárt a beállított idő

6. Továbbfejlesztési ötletek, lehetőségek

A projekt során megvalósított eszköz rengeteg módon továbbfejleszthető, kibővíthető. Ezen funkciók közül szeretnék kiemelni néhányat.

- Ébresztések kezelése menü létrehozása
 - Ébresztések ki- és bekapcsolása
 - Stílus, ismétlődés átállítása
- Esztétikai fejlesztések
 - Nagyobb betűkészletek létrehozása
 - Kijelzett String-eket, számokat automatikusan középre rendező függyény
 - Nem aktuális objektumok automatikus eltakarása, maszkolása
- Bluetooth-kommunikáció okostelefonnal
 - Mobil applikáció létrehozása
 - Ébresztések küldése, szerkesztése
 - Naptár szinkronizálása
 - Háttér/számlap beállítása
- Mikrofon és hangszóró beépítése
 - Kihangosító multimédia eszközként való használat
- Giroszkóp beépítése
 - Lépésszámlálás
 - Képernyő bekapcsolása, ha hirtelen vízszintes helyzetbe fordítjuk (megnézzük az időt gesztus)

7. Jelenlegi állapot

Az okosóra jelenleg nincs összeszerelve, csak bróbapanelen összehuzalozva. A funkciók mű-ködését így is tudtam tesztelni, viszont sajnos nem maradt időm a tok és a szükséges NYÁKok megtervezésére.

7.1. ábra – Az okosóra jelenlegi állapota

7.2. ábra – A kész okosóra látványterve

HIVATKOZÁSOK Hivatkozások

Hivatkozások

- [1] https://www.arduino.cc/en/software (2023.06.09)
- [2] https://docs.arduino.cc/arduino-cloud/ (2023.06.09)
- [3] https://fritzing.org/ (2023.06.09)
- [4] https://docs.arduino.cc/hardware/nano-33-iot (2023.06.09)
- [5] https://www.waveshare.com/1.28inch-lcd-module.htm (2023.06.09)
- [6] https://www.hestore.hu/prod_10040903.html (2023.06.09)
- [7] https://www.hestore.hu/prod_10042054.html (2023.06.09)
- [8] https://www.hestore.hu/prod_10026555.html (2023.06.09)