Q1. (a)

8.800

```
function Euler(m,c,g,t0,v0,tn,n)
% print headings and initial conditions
fprintf('values of t approximations v(t)\n')
fprintf('%8.3f',t0),fprintf('%19.4f\n',v0)
% compute step size h
h=(tn-t0)/n;
% set t,v to the initial values
t=t0;
v=v0;
% compute v(t) over n time steps using Euler's method
for i=1:n
   v=v+(q-c/m*v)*h;
   t=t+h;
   fprintf('%8.3f',t),fprintf('%19.4f\n',v)
Q1. (b)
>> Euler(86.2, 12.5, 9.81, 0, 0, 12, 15)
values of t approximations v(t)
   0.000
                  0.0000
  0.800
                   7.8480
  1.600
                  14.7856
  2.400
                  20.9183
  3.200
                  26.3396
  4.000
                  31.1319
  4.800
                  35.3684
                  39.1133
  5.600
                  42.4238
  6.400
  7.200
                  45.3502
  8.000
                  47.9372
  8.800
                  50.2240
  9.600
                  52.2456
 10.400
                  54.0326
                  55.6123
 11.200
                  57.0088
 12.000
Q1. (c)
>> Euler(86.2, 12.5, 3.71, 0, 0, 12, 15)
values of t approximations v(t)
   0.000
                   0.0000
  0.800
                   2.9680
  1.600
                   5.5917
                   7.9110
  2.400
  3.200
                   9.9612
  4.000
                 11.7737
  4.800
                 13.3758
  5.600
                 14.7921
                 16.0441
  6.400
                  17.1508
  7.200
                  18.1292
  8.000
```

18.9940

```
CSC 349A Assignment 1
Allan Liu
V00806981
                  19.7585
   9.600
  10.400
                   20.4343
  11.200
                   21.0318
 12.000
                  21.5599
Q1. (d)
>> (9.81*86.2/12.5)*(1-exp(-12.5*12/86.2))
ans =
   55.7775
>> abs((55.7775-57.0088)/55.7775)
ans =
    0.0221
Q2. (a)
function Euler2(m,k,g,t0,v0,tn,n)
% print headings and initial conditions
fprintf('values of t approximations v(t)\n')
fprintf('%8.3f',t0),fprintf('%19.4f\n',v0)
% compute step size h
h=(tn-t0)/n;
% set t, v to the initial values
t=t0;
v=v0;
% compute v(t) over n time steps using Euler's method
for i=1:n
    v=v+(g-k/m*v^2)*h;
    t=t+h;
    fprintf('%8.3f',t),fprintf('%19.4f\n',v)
end
Q2. (b)
>> Euler2(73.5, 0.234, 9.81, 0, 0, 18, 72)
values of t approximations v(t)
   0.000
                    0.0000
   0.250
                    2.4525
  0.500
                    4.9002
  0.750
                    7.3336
  1.000
                    9.7433
  1.250
                   12.1202
  1.500
                   14.4558
                   16.7420
  1.750
  2.000
                   18.9714
                  21.1374
  2.250
  2.500
                  23.2343
  2.750
                   25.2572
  3.000
                  27.2019
   3.250
                   29.0655
```

CSC 349A Assignment 1

Allan Liu

V00806981

3.500	30.8456
3.750	32.5408
4.000	34.1505
4.250	35.6748
4.500	37.1143
4.750	38.4705
5.000	39.7450
5.250	40.9402
5.500	42.0587
5.750	43.1033
6.000	44.0770
6.250	44.9832
6.500	45.8252
6.750	46.6063
7.000	47.3300
7.250	47.9995
7.500	48.6182
7.750	49.1894
8.000	49.7161
8.250	50.2013
8.500	50.6480
8.750	51.0588
9.000	51.4363
9.250	51.7831
9.500	52.1013
9.750	52.3933
10.000	52.6609
10.250	52.9062
10.500	53.1309
10.750	53.3366
11.000	53.5249
11.250	53.6971
11.500	53.8547
11.750	53.9988
12.000	54.1305
12.250	54.2509
12.500	54.3608
12.750	54.4613
13.000	54.5531
13.250	54.6369
13.500	54.7134
13.750	54.7833
14.000	54.8471
14.250	54.9053
14.500	54.9584
14.750	55.0069
15.000	55.0512
15.250	55.0915
15.500	55.1284
15.750	55.1620
16.000	55.1926
16.250	55.2206
16.500	55.2461
16.750	55.2693
17.000	55.2905

```
Allan Liu
V00806981
  17.250
                   55.3099
  17.500
                    55.3275
 17.750
                   55.3436
 18.000
                   55.3583
Q2. (c)
>> sqrt((9.81*73.5)/0.234)*tanh(sqrt((9.81*0.234)/73.5)*18)
ans =
   55.3186
>> abs((55.3186-55.3583)/55.3186)
ans =
   7.1766e-04
The relative error at t = 18 is:
|Et | = 0.071766%
Q3.
>> 1-2+(2^2/factorial(2))-(2^3/factorial(3))+(2^4/factorial(4))-
(2^5/factorial(5))
ans =
   0.0667
>> abs((exp(-2)-0.0667)/exp(-2))
ans =
   0.5071
 = 50.71%
1/(1+2+(2^2/factorial(2))+(2^3/factorial(3))+(2^4/factorial(4))+(2^5/factorial(4))
1(5)))
ans =
   0.1376
>> abs((exp(-2)-0.1376)/exp(-2))
ans =
   0.0167
```

CSC 349A Assignment 1

= 1.67%

CSC 349A Assignment 1 Allan Liu V00806981

The true relative error is closer to the true value when it is approximated by 1 over the MacLaurin series. Both methods will eventually converge to $\rm e^{-2}$ value, but the second method will approach at a faster rate.