Machine Learning

Answer Sheet for Homework 4

Da-Min HUANG

R04942045

Graduate Institute of Communication Engineering, National Taiwan University

November 7, 2015

Problem 1

Deterministic error is the difference between best $h^* \in H$ and f. If $H' \subset H$, then the complexity of H' is lower than H in general. Hence, in general, the deterministic error increases.

Problem 2

1.

$$H(10,0,3) \cap H(10,0,4) = \left\{ \sum_{i=0}^{2} w_q L_q(x) \right\} \cap \left\{ \sum_{i=0}^{3} w_q L_q(x) \right\}$$
(1)

$$= \left\{ \sum_{i=0}^{2} w_q L_q(x) \right\} = H_2 \tag{2}$$

2.

$$H(10,0,3) \cup H(10,1,4) = \left\{ \sum_{i=0}^{2} w_{q} L_{q}(x) \right\} \cup \left\{ \sum_{i=0}^{3} w_{q} L_{q}(x) + \sum_{i=4}^{10} L_{q}(x) \right\}$$
(3)
$$= \left\{ \sum_{i=0}^{3} w_{q} L_{q}(x) + \sum_{i=4}^{10} L_{q}(x) \right\}$$
(4)

3.

$$H(10,1,3) \cap H(10,1,4) = \left\{ \sum_{i=0}^{2} w_{q} L_{q}(x) + \sum_{i=3}^{10} L_{q}(x) \right\} \cap \left\{ \sum_{i=0}^{3} w_{q} L_{q}(x) + \sum_{i=4}^{10} L_{q}(x) \right\}$$
(5)

$$= \left\{ \sum_{i=0}^{2} w_q L_q(x) + \sum_{i=4}^{10} L_q(x) \right\}$$
 (6)

4.

$$H(10,0,3) \cup H(10,0,4) = \left\{ \sum_{i=0}^{2} w_q L_q(x) \right\} \cup \left\{ \sum_{i=0}^{3} w_q L_q(x) \right\}$$
 (7)

$$= \left\{ \sum_{i=0}^{3} w_q L_q(x) \right\} = H_3 \tag{8}$$

Problem 3

We have

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \nabla E_{\text{aug}} \left(\mathbf{w}_t \right) \tag{9}$$

where $\nabla E_{\text{aug}}(\mathbf{w}_t)$ is

$$\nabla E_{\text{aug}}\left(\mathbf{w}_{t}\right) = \frac{\partial}{\partial \mathbf{w}_{t}^{T}} \left(E_{\text{in}}\left(\mathbf{w}_{t}\right) + \frac{\lambda}{N} \mathbf{w}_{t}^{T} \mathbf{w}_{t} \right) = \frac{\partial E_{\text{in}}\left(\mathbf{w}_{t}\right)}{\partial \mathbf{w}_{t}^{T}} + \frac{2\lambda}{N} \mathbf{w}_{t}$$
(10)

Hence, we have

$$\mathbf{w}_{t+1} \leftarrow \left(1 - \frac{2\eta\lambda}{N}\right) \mathbf{w}_t - \eta \nabla E_{\text{in}}\left(\mathbf{w}_t\right) \tag{11}$$

Problem 4

Since $\mathbf{w}_{\mathrm{lin}}$ is the optimal solution for the plain-vanilla linear regression, we have

$$E_{\rm in}\left(\mathbf{w}_{\rm lin}\right) \le E_{\rm in}\left(\mathbf{w}_{\rm reg}\left(\lambda\right)\right)$$
 (12)

Also, $\mathbf{w}_{\text{reg}}(\lambda)$ is the optimal solution for $E_{\text{aug}}(\mathbf{w})$, we have

$$E_{\text{aug}}\left(\mathbf{w}_{\text{reg}}\left(\lambda\right)\right) \le E_{\text{aug}}\left(\mathbf{w}_{\text{lin}}\right)$$
 (13)

So, we have

$$E_{\text{in}}\left(\mathbf{w}_{\text{reg}}\left(\lambda\right)\right) + \frac{\lambda}{N}\mathbf{w}_{\text{reg}}^{T}\left(\lambda\right)\mathbf{w}_{\text{reg}}\left(\lambda\right) \le E_{\text{in}}\left(\mathbf{w}_{\text{lin}}\right) + \frac{\lambda}{N}\mathbf{w}_{\text{lin}}^{T}\mathbf{w}_{\text{lin}}$$
(14)

$$0 \le E_{\text{in}}\left(\mathbf{w}_{\text{reg}}\left(\lambda\right)\right) - E_{\text{in}}\left(\mathbf{w}_{\text{lin}}\right) \le \frac{\lambda}{N} \left(\|\mathbf{w}_{\text{lin}}\|^2 - \|\mathbf{w}_{\text{reg}}\left(\lambda\right)\|^2\right), \ \forall \lambda$$
 (15)

Hence, we have $\|\mathbf{w}_{\text{lin}}\| \ge \|\mathbf{w}_{\text{reg}}(\lambda)\|$ if $\lambda > 0$.

Since this inequality holds for all λ and $\|\mathbf{w}_{lin}\|$ is not a function of λ . We know that $\|\mathbf{w}_{reg}(\lambda)\|$ is a non-increasing function of λ for $\lambda \geq 0$.

Problem 5

For constant model with three points A(-1,0), $B(\rho,1)$ and C(1,0).

$$\frac{1}{3} \left(\underbrace{\left(0 - \frac{1}{2}\right)^2}_{\text{leave } A} + \underbrace{\left(1 - 0\right)^2}_{\text{leave } B} + \underbrace{\left(0 - \frac{1}{2}\right)^2}_{\text{leave } C} \right) = \frac{1}{2}$$
 (16)

For linear model. Leave A, we get line $y = \frac{1}{\rho - 1}(x - 1)$; leave B, we get line y = 0; leave C, we get line $y = \frac{1}{\rho + 1}(x + 1)$. So the error is

$$\frac{1}{3} \left(\left(0 - \left(\frac{-2}{\rho - 1} \right) \right)^2 + (1 - 0)^2 + \left(0 - \frac{2}{\rho + 1} \right)^2 \right) \tag{17}$$

Then we have

$$\frac{1}{3} \left(\frac{4}{\rho^2 - 2\rho + 1} + 1 + \frac{4}{\rho^2 + 2\rho + 1} \right) = \frac{1}{2} \Rightarrow \rho = \pm \sqrt{9 + 4\sqrt{6}}$$
 (18)

Since $\rho > 0$, we have $\rho = \sqrt{9 + 4\sqrt{6}}$.

Problem 6

Problem 7	
Problem 8	
Problem 9	
Problem 10	
Problem 11	
Problem 12	
Problem 13	
Problem 14	

Problem 15	
Problem 16	
Problem 17	
Problem 18	
Problem 19	
Problem 20	

Reference

[1] Lecture Notes by Hsuan-Tien LIN, Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan.