FYSS360 Numerical exercise

Sakari Kapanen

October 29, 2016

A single particle electron model was used to estimate the loss cone of electrons in an ECR ion source. It is also a demonstration of the confinement of electrons (and ions) in a magnetic bottle formed by the generated solenoid and hexapole magnetic fields.

The on-axis solenoid field $B_z(r=0,z)$ and the hexapole field $\mathbf{B}(x,y)$ were plotted (figures 1 and 2). Slices of the total magnetic field were plotted as well at (x=0,y,z) and (x,y=0,z) (figures 3 and 4).

Electrons with uniform random velocities (with constant energy $10\,\mathrm{keV}$) and positions inside the cylindrical plasma chamber ($z_1 = -160\,\mathrm{mm}$, $z_2 = 170\,\mathrm{mm}$ and $r = 39\,\mathrm{mm}$) were generated. Further selection was done with respect to the position: only electrons with position \mathbf{r} such that $|\mathbf{B}(\mathbf{r})| < 0.5\,\mathrm{T}$ were accepted for the simulation — these correspond to electrons within the ECR zone.

The paths of the electrons were tracked independently, one at a time. The Boris integrator was used to solve the equations of motion in the presence of a static magnetic field. In order to determine the timestep length sufficient to maintain stability, the trajectory of one random particle was tracked for 10^{-8} s and plotted with timestep lengths 10^{-10} , 10^{-11} and 10^{-12} s (figures 5, 6 and 7 respectively). From these figures it is immediately seen that at $\Delta t = 10^{-10}$ s the solution is unstable. At $\Delta t = 10^{-11}$ s it seems that for this trajectory stability is achieved. In the end, a timestep length $\Delta t = 5 \times 10^{12}$ s was chosen in order to have a safety margin.

In order to have sufficient statistics, the number of test particles was chosen to be $N=10^5$. Particles were tracked until they hit any of the cylinder ends and walls or the confinement time of 10^{-6} s was elapsed. The locations where the electrons hit the geometry were recorded. Histograms for the end circles at $z_1 = -160$ mm and $z_2 = 170$ mm and the radial wall are shown in figures 8, 9 and 10 respectively.

Figure 1: Solenoid on-axis magnetic field $B_z(r=0,z)$.

Figure 2: The direction and magitude of the hexapole B field.

Figure 3: A slice of the total magnetic field $\mathbf{B}(x=0,y,z)$.

Figure 4: A slice of the total magnetic field $\mathbf{B}(x, y = 0, z)$.

Figure 5: The trajectory of a particle with timestep $\Delta t = 10^{-10} \,\mathrm{s}.$

Figure 6: The trajectory of a particle with timestep $\Delta t = 10^{-11}\,\mathrm{s}.$

Figure 7: The trajectory of a particle with timestep $\Delta t = 10^{-12} \,\mathrm{s}.$

Figure 8: Histogram of electron collision locations at the end circle $z_1=-160\,\mathrm{mm}.$

Figure 9: Histogram of electron collision locations at the end circle $z_2=170\,\mathrm{mm}.$

Figure 10: Histogram of electron collision locations at the wall of the cylinder.