```
In [2]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [80]:

```
data = pd.read_csv(r'G:\FSDA\INEURON-INTERNSHIP-PROJECT-01\DATASET\MASTER.CSV',encoding = 'latin-1')
```

In [81]:

data.head()

Out[81]:

	ORDER_DATE	SHIPED_DATE	SalesOrderNumber	CUSTOME_BIRTHDAY	NAME_CUSTMOER	OrderQuantity	UnitPrice	TotalProductCost	SalesAmount
0	2014-01-22	2014-01-29	SO43793	57	Jon Yang	2	1699.995	1912.1544	3399.99
1	2016-01-22	2016-01-29	SO51522	57	Jon Yang	1	2319.990	1265.6195	2319.99
2	2016-01-22	2016-01-29	SO51522	57	Jon Yang	1	21.980	8.2205	21.98
3	2016-05-04	2016-05-11	SO57418	57	Jon Yang	1	2384.070	1481.9379	2384.07
4	2016-05-04	2016-05-11	SO57418	57	Jon Yang	1	28.990	10.8423	28.99
4.1									b.

In [10]:

data.isnull().sum()

Out[10]:

ORDER_DATE SHIPED_DATE
CUSTOME BIRTHDAY 0 0 NAME_CUSTMOER 0 OrderQuantity 0 UnitPrice 0 0 0 TotalProductCost SalesAmount 0 TaxAmt MaritalStatus 0 Gender 0 Education 0 Occupation 0 DATE_FIRST_PURCHASE 0 ProductName 0 country dtype: int64

In [11]:

data.info()

RangeIndex: 58189 entries, 0 to 58188Data columns (total 16 columns): Non-Null Count Dtype # Column 58189 non-null object 0 ORDER_DATE SHIPED_DATE 1 58189 non-null object CUSTOME_BIRTHDAY 58189 non-null int64 3 NAME_CUSTMOER 58189 non-null object 4 OrderQuantity 58189 non-null int64 5 UnitPrice 58189 non-null float64 TotalProductCost 58189 non-null float64 SalesAmount 58189 non-null float64 8 TaxAmt 58189 non-null float64 MaritalStatus 58189 non-null object 10 Gender 58189 non-null object Education 58189 non-null 11 object 12 Occupation 58189 non-null object

DATE_FIRST_PURCHASE 58189 non-null object

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(4), int64(2), object(10)

memory usage: 7.1+ MB

ProductName 15 country

13

14

58189 non-null object

obiect

58189 non-null

```
In [12]:
```

```
data['ORDER_DATE'] = pd.to_datetime(data['ORDER_DATE'])
data['SHIPED_DATE'] = pd.to_datetime(data['SHIPED_DATE'])
data['DATE_FIRST_PURCHASE'] = pd.to_datetime(data['DATE_FIRST_PURCHASE'])
```

EXPLORATORY DATA ANALYSIS

```
In [13]:
```

```
data['order_year'] = data['ORDER_DATE'].dt.year
data['order_month'] = data['ORDER_DATE'].dt.month
data['order_day'] = data['ORDER_DATE'].dt.day
```

In [14]:

data.head()

Out[14]:

ME_BIRTHDAY	NAME_CUSTMOER	OrderQuantity	UnitPrice	TotalProductCost	SalesAmount	TaxAmt	MaritalStatus	Gender	Education	Occupation	DATE.
57	Jon Yang	2	1699.995	1912.1544	3399.99	271.9992	М	М	Bachelors	Professional	
57	Jon Yang	1	2319.990	1265.6195	2319.99	185.5992	М	М	Bachelors	Professional	
57	Jon Yang	1	21.980	8.2205	21.98	1.7584	М	М	Bachelors	Professional	
57	Jon Yang	1	2384.070	1481.9379	2384.07	190.7256	М	М	Bachelors	Professional	
57	Jon Yang	1	28.990	10.8423	28.99	2.3192	М	М	Bachelors	Professional	
4											•

In [25]:

```
year_wise_sales=data.groupby(['order_year'])['SalesAmount'].sum().to_frame().reset_index()
year_wise_sales
```

Out[25]:

order_year SalesAmount

2014 7.072084e+062015 5.762134e+06

2 2016 1.647362e+07

In [102]:

```
plt.figure(figsize = (10,5))
plt.bar(year_wise_sales['order_year'],year_wise_sales['SalesAmount'],color='coral')
plt.xlabel('YEAR')
plt.ylabel('SALES')
plt.title('YEAR WISE SALES')
plt.show()
```


In [36]:

year_month_wise_sales=data.groupby(['order_year','order_month'])['SalesAmount'].sum().to_frame().reset_index()
year_month_wise_sales

Out[36]:

	order_year	order_month	SalesAmount
0	2014	1	4.733882e+05
1	2014	2	5.061917e+05
2	2014	3	4.739430e+05
3	2014	4	5.133295e+05
4	2014	5	5.439934e+05
5	2014	6	7.555279e+05
6	2014	7	5.967466e+05
7	2014	8	5.508167e+05
8	2014	9	6.441352e+05
9	2014	10	6.636923e+05
10	2014	11	6.735562e+05
11	2014	12	6.767636e+05
12	2015	1	5.003652e+05
13	2015	2	5.460015e+05
14	2015	3	3.504670e+05
15	2015	4	4.153902e+05
16	2015	5	3.350951e+05
17	2015	6	5.773140e+05
18	2015	7	4.388652e+05
19	2015	8	4.890903e+05
20	2015	9	4.855748e+05
21	2015	10	5.063993e+05
22	2015	11	5.627726e+05
23	2015	12	5.547992e+05
24	2016	1	8.866688e+05
25	2016	2	8.474135e+05
26	2016	3	1.010258e+06
27	2016	4	1.080450e+06
28	2016	5	1.196981e+06
29	2016	6	1.731788e+06
30	2016	7	1.340245e+06
31	2016	8	1.462480e+06
32	2016	9	1.480905e+06
33	2016	10	1.608751e+06
34	2016	11	1.878318e+06
35	2016	12	1.949361e+06

In [103]:

```
plt.figure(figsize = (10,5))
plt.bar(year_month_wise_sales['order_month'],year_month_wise_sales['SalesAmount'],color='teal')
plt.xlabel('month')
plt.ylabel('SALES')
plt.title('YEAR WISE SALES')
plt.show()
```


In [48]:

```
data.groupby(['country','order_year'])['SalesAmount'].sum().unstack().reset_index()
```

Out[48]:

order_year	country	2014	2015	2016
0	Australia	2.568701e+06	2.099585e+06	4383479.54
1	Canada	5.731010e+05	3.050107e+05	1088879.50
2	France	4.142453e+05	6.333997e+05	1592880.75
3	Germany	5.133532e+05	5.932472e+05	1784107.09
4	United Kingdom	5.505073e+05	6.965950e+05	2140388.50
5	United States	2.452176e+06	1.434296e+06	5483882.67

In [55]:

```
data['Gender'].value_counts()
```

Out[55]:

M 29314 F 28875

Name: Gender, dtype: int64

In [58]:

```
male=data[data['Gender']=='M']
female = data[data['Gender']=='F']
```

In [64]:

```
male_pro=male.groupby(['ProductName'])['OrderQuantity'].sum().nlargest(5).to_frame().reset_index()
male_pro
```

Out[64]:

	ProductName	OrderQuantity
0	Water Bottle - 30 oz.	3169
1	Patch Kit/8 Patches	2475
2	Mountain Tire Tube	2301
3	Road Tire Tube	1853
4	Sport-100 Helmet, Red	1712

In [66]:

```
plt.figure(figsize = (10,5))
plt.bar(male_pro['ProductName'],male_pro['OrderQuantity'],color='indianred')
plt.xlabel('ProductName')
plt.ylabel('OrderQuantity')
plt.title('NUMBER PRODUCT PURCHASE BY MALE CUSTOMER')
plt.show()
```


In [68]:

female_pro=female.groupby(['ProductName'])['OrderQuantity'].sum().nlargest(5).to_frame().reset_index()
female_pro

Out[68]:

	ProductName	OrderQuantity
0	Water Bottle - 30 oz.	3201
1	Mountain Tire Tube	2250
2	Patch Kit/8 Patches	2230
3	Road Tire Tube	1691
4	Sport-100 Helmet, Red	1686

In [104]:

```
plt.figure(figsize = (10,5))
plt.bar(female_pro['ProductName'],female_pro['OrderQuantity'],color='yellowgreen')
plt.xlabel('ProductName')
plt.ylabel('OrderQuantity')
plt.title('NUMBER PRODUCT PURCHASE BY FEMALE CUSTOMER')
plt.show()
```


In [70]:

```
age_bins=[0,40,50,60,70,80,100]
groupnames= ["0-40","40-50", "50-60", "60-70", "70-80", "80-100"]
```

In [73]

```
data["age category"]=pd.cut(data.CUSTOME_BIRTHDAY, age_bins, right= False, labels= groupnames)
```

```
In [76]:
```

```
data["age category"].value_counts().to_frame().reset_index()
Out[76]:
```

	inaex	age category
0	50-60	20288
1	60-70	16473
2	70-80	9128
3	40-50	8202
4	80-100	4021
5	0-40	0

In []:

In [77]:

data.head()

Out[77]:

OrderQuantity	UnitPrice	TotalProductCost	SalesAmount	TaxAmt	MaritalStatus	Gender	Education	Occupation	DATE_FIRST_PURCHASE	ProductName	
2	1699.995	1912.1544	3399.99	271.9992	М	М	Bachelors	Professional	2014-01-22	Mountain-100 Silver, 38	,
1	2319.990	1265.6195	2319.99	185.5992	М	М	Bachelors	Professional	2014-01-22	Mountain-200 Silver, 38	,
1	21.980	8.2205	21.98	1.7584	М	М	Bachelors	Professional	2014-01-22	Fender Set - Mountain	,
1	2384.070	1481.9379	2384.07	190.7256	М	М	Bachelors	Professional	2014-01-22	Touring-1000 Blue, 46	,
1	28.990	10.8423	28.99	2.3192	М	М	Bachelors	Professional	2014-01-22	Touring Tire	,
4										-	

RFM analysis

What is RFM Analysis? RFM analysis is a marketing technique used to quantitatively rank and group customers based on the recency, frequency and monetary total of their recent transactions to identify the best customers and perform targeted marketing campaigns.

Recency: How recently has the customer made a transaction?

Frequency: How frequently does the customer place an order?

Monetary: How much money has the customer spent on products?

In [79]:

Out[79]:

```
#Renaming the column:
#Grouping the data by Customer Unique ID to find the latest order of each customer:
df_recency = data.groupby(by = 'NAME_CUSTMOER', as_index = False)['ORDER_DATE'].max()

df_recency.rename(columns = {"ORDER_DATE": "LastPurchaseDate"}, inplace = True)

#Removing time and extracting only date from the datetime field:
df_recency["LastPurchaseDate"] = df_recency["LastPurchaseDate"].dt.date

#Using the last order in the entire dataset as a reference point to calculate recency:
recent_date = data['ORDER_DATE'].dt.date.max()
df_recency['Recency'] = df_recency['LastPurchaseDate'].apply(lambda x: (recent_date - x).days)

df_recency.head()
```

	NAME_CUSTMOER	LastPurchaseDate	Recency
0	Aaron Adams	2016-04-30	244
1	Aaron Alexander	2016-12-15	15
2	Aaron Allen	2014-12-04	757
3	Aaron Baker	2016-09-12	109

Aaron Bryant

156

2016-07-27

In [87]:

```
## calculating the frequency
frequency_df = data.groupby(['NAME_CUSTMOER']).agg({'SalesOrderNumber':'nunique'}).reset_index()
## renaming the columns
frequency_df.rename(columns={'SalesOrderNumber':'frequency'},inplace=True)
frequency_df.head()
```

Out[87]:

	NAME_CUSTMOER	frequency
0	Aaron Adams	1
1	Aaron Alexander	1
2	Aaron Allen	1
3	Aaron Baker	1
4	Aaron Bryant	2

In [88]:

```
## calculating Monetary
monetary_df=data.groupby(by='NAME_CUSTMOER',as_index=False)['SalesAmount'].sum()
# renaming the column
monetary_df.rename(columns={'SalesAmount':'monetary'},inplace=True)
monetary_df.head()
```

Out[88]:

NAME_CUSTMOER monetary 0 Aaron Adams 117.96 1 Aaron Alexander 69.99 2 Aaron Allen 3399.99 3 Aaron Baker 1750.98 4 Aaron Bryant 133.96

In [89]:

```
rfm = df_recency.merge(frequency_df,on='NAME_CUSTMOER').merge(monetary_df,on='NAME_CUSTMOER')
rfm.drop('LastPurchaseDate',axis=1,inplace=True)
rfm.head()
```

Out[89]:

	NAME_CUSTMOER	Recency	frequency	monetary
0	Aaron Adams	244	1	117.96
1	Aaron Alexander	15	1	69.99
2	Aaron Allen	757	1	3399.99
3	Aaron Baker	109	1	1750.98
4	Aaron Bryant	156	2	133.96

```
In [112]:
```

```
fig,ax=plt.subplots(nrows=1,ncols=3,figsize=(15,5))
#sns.set_palette('BrBG')
sns.histplot(rfm['Recency'],kde=True,ax=ax[0],color = 'tomato')
sns.histplot(rfm['frequency'],kde=True,ax=ax[1],color='green')
sns.histplot(rfm['monetary'],kde=True,ax=ax[2],color='teal')

plt.suptitle('Distribution of recency , frequency , Monetary',fontsize=15)
plt.tight_layout(pad=1)
plt.show()
```


In [91]:

```
rfm_transformed = rfm.copy()
for feature in rfm.columns[2:]:
    rfm_transformed[feature]=rfm_transformed[feature].apply(lambda X:np.power(X,(1/10)))
```

In [113]:

```
fig,ax=plt.subplots(nrows=1,ncols=3,figsize=(15,5))
sns.histplot(rfm_transformed['Recency'],kde=True,ax=ax[0])
sns.histplot(rfm_transformed['frequency'],kde=True,ax=ax[1])
sns.histplot(rfm_transformed['monetary'],kde=True,ax=ax[2],color = 'tomato')
plt.suptitle('Distribution of recency , frequency , Monetary',fontsize=15)
plt.tight_layout(pad=1)
plt.show()
```


In [93]:

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaled_rfm = scaler.fit_transform(rfm.drop('NAME_CUSTMOER', axis = 1))
scaled_rfm_df = pd.DataFrame(scaled_rfm, columns = rfm.columns[1:])
```

In [95]:

```
from sklearn.cluster import KMeans
final_model = KMeans(n_clusters = 5, random_state = 10)
final_model.fit(scaled_rfm_df)
```

Out[95]:

```
KMeans
KMeans(n_clusters=5, random_state=10)
```

In [96]:

```
data_output = rfm.copy()
data_output['Cluster'] = final_model.labels_
data_output.sample(5)
```

Out[96]:

	NAME_CUSTMOER	Recency	frequency	monetary	Cluster
12279	Marshall Xu	180	2	564.9800	0
12015	Marcus Thomas	311	1	38.9800	3
1842	Bailey Adams	240	2	4558.5225	4
17144	Tyler Jackson	216	1	1735.9800	3
3566	Chloe Gonzalez	169	2	3310.4075	4

In [97]:

```
sns.countplot(data = data_output, x = 'Cluster', palette = 'viridis_r')
plt.title('Cluster Sizes', fontsize = 15)
plt.xlabel('Clusters', fontsize = 14)
plt.ylabel('No. of Customers', fontsize = 14)
plt.xticks([0, 1, 2, 3, 4], ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster 5'], rotation = 0)
plt.text(x = 0 - 0.2, y = data_output.Cluster.value_counts()[0] + 500, s = data_output.Cluster.value_counts()[0])
plt.text(x = 1 - 0.2, y = data_output.Cluster.value_counts()[1] + 500, s = data_output.Cluster.value_counts()[1])
plt.text(x = 2 - 0.15, y = data_output.Cluster.value_counts()[2] + 500, s = data_output.Cluster.value_counts()[2])
plt.text(x = 3 - 0.12, y = data_output.Cluster.value_counts()[3] + 500, s = data_output.Cluster.value_counts()[3])
plt.text(x = 4 - 0.05, y = data_output.Cluster.value_counts()[4] + 500, s = data_output.Cluster.value_counts()[4])
plt.tight_layout(pad = -1)
plt.show()
```


In [98]:

```
monetary_averages = pd.Series(data_output.groupby(by = 'Cluster')['monetary'].mean())
monetary_averages.plot(kind = 'bar', color = 'teal')
plt.title('Cluster-Wise Average Spending', fontsize = 15)
plt.xlabel('Clusters', fontsize = 14)
plt.ylabel('Avg. Monetary (Spending)', fontsize = 14)
plt.xticks([0, 1, 2, 3, 4], ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster 5'], rotation = 0)
plt.show()
```


In [99]:

```
recency_averages = pd.Series(data_output.groupby(by = 'Cluster')['Recency'].mean())
recency_averages.plot(kind = 'bar', color = 'teal')
plt.title('Cluster-Wise Recency', fontsize = 15)
plt.xlabel('Clusters', fontsize = 14)
plt.ylabel('Avg. Recency (in days)', fontsize = 14)
plt.xticks([0, 1, 2, 3, 4], ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster 5'], rotation = 0)
plt.text(x = 0 - 0.2, y = recency_averages[0] + 3, s = "{}".format(recency_averages[0].round(0)))
plt.text(x = 1 - 0.2, y = recency_averages[1] + 3, s = "{}".format(recency_averages[1].round(0)))
plt.text(x = 2 - 0.2, y = recency_averages[2] + 3, s = "{}".format(recency_averages[2].round(0)))
plt.text(x = 3 - 0.2, y = recency_averages[3] + 3, s = "{}".format(recency_averages[3].round(0)))
plt.text(x = 4 - 0.2, y = recency_averages[4] + 3, s = "{}".format(recency_averages[4].round(0)))
plt.tight_layout(pad = -1)
plt.show()
```


In [100]:

Out[100]:

Avg. Recency Avg. Frequency Avg. Monetary Customer Count

Cluster				
0	75.1	1.3	554.3	7219
1	883.3	1.0	3151.0	336
2	19.6	19.1	898.5	35
3	255.1	1.1	573.9	6073
4	139.2	2.3	4965.6	4175

```
Recency: How recently has the customer made a transaction?

Frequency: How frequently does the customer place an order?

Monetary: How much money has the customer spent on products ?
```

```
cluster 0: Moderate customer
cluser 1: occainsal customer
cluster 2: Loyal customer
cluster 3: failed conversation with customers
cluster 4: Avoid and Higher spender customers
```

In []: