SISTEMI A SEGNALI CAMPIONATI (1)

- •Controllori a segnali campionati
- •II campionamento
- •L'organo di Tenuta
- •Spettro di un segnale campionato
- Aliasing

06/04/2010

Terza Universita' degli studi di Roma

G.U -FdA- **1**

1

Orebro

{f_i} successione 0 123

CAMPIONAMENTO (A/D)

Ad essa associamo una successione di impulsi

$$f^*(t) = \sum_{i=0}^{\infty} i f_i \cdot \delta(t - iT_C)$$

In tal modo abbiamo di nuovo un segnale e l'informazione relativa al tempo.

Schema equivalente:

$$F^*(s) = \sum_{i=1}^{\infty} f_i \cdot e^{-iT_C s}$$
 Transformata di Laplace

06/04/2010

3

PERIODICITÀ DELLE TRASFORMATE

$$x^*(t) = \sum_{t=0}^{\infty} x(t) \delta(t - iT_C)$$

REM:
$$L[\delta(t-iT_C)] = e^{-st_i}$$

$$(t_i = iT_C)$$

PERIODICITÀ DELLE TE
$$x^{*}(t) = \sum_{i=0}^{\infty} x(t)\delta(t - iT_{C})$$

$$L\left[\delta(t - iT_{C})\right] = e^{-st_{i}} \qquad (t_{i} = iT_{C})$$

$$X^{*}(s) = L\left[x^{*}(t)\right] = \sum_{i=0}^{\infty} x(iT_{C})e^{-siT_{C}}$$

$$e^{-siT_C} = e^{-\alpha iT_C} \cdot e^{-j\omega iT_C}$$

$$s = \alpha + i\omega$$

$$\overline{\omega} = \omega + \omega_C = \omega + \frac{2\pi}{T_c}$$

REM: $e^{-siT_C} = e^{-\alpha iT_C} \cdot e^{-j\omega iT_C}$ $s = \alpha + j\omega$ per $\overline{\omega} = \omega + \omega_C = \omega + \frac{2\pi}{T_C}$ $e^{j\overline{\omega} iT_C} = e^{j\omega iT_C}$ Quindi $X^*(s + kj\omega_C) = X^*(s)$ K=...,-1,0,1,2,...

Ovvero X*(s) è periodica

rispetto a ω =Im[s] con periodo $\omega_C = \frac{2\pi}{T_C}$

$$\omega_C = \frac{2\pi}{T_C}$$

Vero anche per

$$X^*(j\omega) = X^*(s) \bigg|_{s = j\omega}$$

06/04/2010

Terza Universita' degli studi di Roma

G.U -FdA- 7

Si ha la risposta impulsiva W(t)=sync(t), non è causale!

 $W(t) \neq 0$ $t = -\infty \cdots \infty$

 $W(t) \neq 0 \quad t < 0 !!$

Anche un suo troncamento e traslazione (fisicamente realizzabile) non va bene: introduce un tempo di ritardo

Però questa idea è utilizzabile nelle TLC (e.g. Compact Disk)

06/04/2010

Terza Universita' degli studi di Roma

G.U -FdA- 8

ORGANO DI TENUTA: ZOH

Dagli impulsi "ricostruisce" il segnale tempo continuo

$$T(s) = \frac{1 - e^{-sT_C}}{s}$$

Funzione di trasferimento in s dell'organo di tenuta di ordine 0 (ZOH)

06/04/2010

Terza Universita' degli studi di Roma

G.U -FdA- 9

APPROSSIMAZIONE DELLO ZOH

$$T(s) = \frac{1 - e^{-sT_C}}{s} = \frac{1}{s} \left(1 - \frac{1}{e^{sT_C}} \right)$$

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

 $\approx 0 \text{ per } |sT_C| << 1$

$$T_C << \frac{1}{\omega}$$

$$T(s) \cong \frac{1}{s} \left(\frac{1 + sT_C - 1}{1 + sT_C} \right) = \frac{T_C}{1 + sT_C}$$

L'organo di tenuta alle basse frequenze ha un comportamento passa basso.

06/04/2010

Terza Universita' degli studi di Roma

G.U -FdA- 10

Orebro

6

