

Single Cell Data Analysis for Beginners Block course 22nd – 26th of September 2025

Lisa Buchauer

Professor of Systems Biology of Infectious Diseases

Department of Infectious Diseases and Intensive Care

Charité - Universitätsmedizin Berlin

Anika Neuschulz

Postdoctoral Researcher
Division of Translational Immunology
BIH@Charité

Welcome

Schedule day 1

9:30 – 10:00	Opening, Icebreaker, Introductions
10:00-10:30	Intro to single cell sequencing resulting raw data types, bcl + fastq
10:30-11:30	Mini-intro how to cluster at Charité Live alignment session with cellranger, introduction of main parameters, inspection of output
11:00-12:00	inspect cellranger QC reports, assign sections to groups, study and present to everyone
12:00-13:00	Lunch break
13:00-14:30	Set-up environments (R or python)
14:30-16:00	Basic data wrangling introduction

Single-Cell Experimental Background

Why do we sequence RNA?

Why do we sequence RNA?

understand gene expression

- → the cell's identity
- → life functions
- → reactions to the environment

How to get to the RNA?

How to get to the RNA?

How to get to the RNA?

We can sequence DNA!

reference genome

Created with Biorender.com

observing which bases are used

Example: 10x Genomics 3' library preparation

(how our first training data set was generated)

Next Generation sequencing

(sequencing by synthesis)

After cluster generation:

- reverse strands are cleaved and washed away
- Polymerase attaches at forward strands & dye labelled nucleotides are provided
- Complementary strand is synthesised one nucleotide at a time, as dye blocks another nucleotide from being added

 Dyes are imaged and cleaved before the next cycle

Fluorescence emissions in a modern Illumina sequencer (NextSeq2000)

Data from the sequencer: bcl files

- Bcl (basecall) files are the binary output of the sequencing machine
 - They represent
 - which fluorophore was observed
 - in which location
 - during which cycle
 - with which certainty (-> base quality)
 - o Bcl files are not human readable
- Bcl files need to be converted to fastq files for further processing
 - Either by you or the sequencing facility

Turning bcl into fastq files (demultiplexing)

- Remember the sample index?
 - Sample index sequences are used to separate data from all samples that shared the flowcell after sequencing
 - Which sequence belongs to which sample needs to be noted in a so-called sample sheet before sequencing / at library preparation time
 - Samples with the same index are impossible to separate if they are processed on the same flowcell
- If you use a user-operated sequencer (e.g. NextSeq500 / NextSeq2000 at the genomics core) you will need to demultiplex yourself using bcl2fastq (not part of this course)
- If you submitted your samples for sequencing, you can usually request fastq files if you provide a sample sheet

The anatomy of a fastq file

Read name (instrument name, flowcell ID, position of the read on the flowcell, library index)

Read sequence (this one is a gene read)

+ sign, otherwise not used by illumna-style files

Quality score in ASCII

ASCII BASE=33 Illumina, Ion Torrent, PacBio and Sanger

Q	P error	ASCTT	0	P error	ASCIT	0	P error	ASCIT	0	P error	ASCIT
×		ASCII	~		ASCII	~	_crror	ASCII	~		ASCII
0	1.00000	64 @	11	0.07943	75 K	22	0.00631	86 V	33	0.00050	97 a
1	0.79433	65 A	12	0.06310	76 L	23	0.00501	87 W	34	0.00040	98 b
2	0.63096	66 B	13	0.05012	77 M	24	0.00398	88 X	35	0.00032	99 c
3	0.50119	67 C	14	0.03981	78 N	25	0.00316	89 Y	36	0.00025	100 d
4	0.39811	68 D	15	0.03162	79 0	26	0.00251	90 Z	37	0.00020	101 e
5	0.31623	69 E	16	0.02512	80 P	27	0.00200	91 [38	0.00016	102 f
6	0.25119	70 F	17	0.01995	81 Q	28	0.00158	92 \	39	0.00013	103 g
7	0.19953	71 G	18	0.01585	82 R	29	0.00126	93]	40	0.00010	104 h
50000	0.15849	72 H	19	0.01259	83 S	30	0.00100	94 ^	41	0.00008	105 i
9	0.12589	73 I	20	0.01000	84 T	31	0.00079	95 _	42	0.00006	106 j
0	0.10000	74 J	21	0.00794	85 U	32	0.00063	96 `			

The anatomy of a .sam/.bam file

(after mapping)

Flag has encoded information on how the read mapped (e.g. forward or reverse), if it is a PCR duplicate,...

CIGAR string describes the alignment of the read (if it has gaps, insertions, non-matching portions at the beginning or end,...)

Warming up with your programming environment for data analysis: Learning Objectives

By the end of the morning session, you will have learned how to

- Apply for Charité HPC cluster access
- Map (10x genomics) single cell RNA sequencing data to a genome
- Interpret the cellranger report after mapping

By the end of the afternoon session, you will be able to

- Set up a workspace for data analysis
- Load and inspect tabular datasets
- Perform basic data transformations (standardization)
- Filter and subset data based on conditions

(and you will see who these little guys are)

- Create basic visualizations