Sada příkladů 2/8

Metrické prostory, topologie \mathbb{R}^n

- 1. Jako vzdálenost mezi dvěma místy na území ČR definujme jako a) vzdálenost na mapě b) nejkratší vzdálenost jízdy autem c) cena jízdenky ČD. Jde v těchto případech o metriku? (Pro případ b), c) ji chápeme pouze na takové podmnožině, kde má funkce vzdálenost smysl.)
- 2. Ověřte, zda následující množiny posloupností $x = (x_1, x_2, ...)$ jsou metrické prostory.
 - a) Množina l_1 všech posloupností splňující $\sum_{n=1}^{\infty}|x_n|<\infty$ s metrikou $\varrho(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|$
 - b) Množina l_2 všech posloupností splňující $\sum_{n=1}^{\infty}|x_n|^2<\infty$ s metrikou $\varrho(x,y)=(\sum_{n=1}^{\infty}|x_n-y_n|^2)^{\frac{1}{2}}$ c) Množina l_{∞} všech posloupností splňující sup_n $|x_n|<\infty$ s metrikou
 - $\varrho(x,y) = \sum_{n} |x_n y_n|.$
- 3. V \mathbb{R}^2 s obvyklou metrikou najděte uzávěry grafů následujících funkcí a)

$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

- b) f(x) = D(x) (Dirichletova funkce).
- 4. Najděte vnitřek, uzávěr a hranici následujících množin
 - a) Množina všech racionálních čísel z intervalu $(0,1)\subset\mathbb{R}$
 - b) Množina všech $(x,y) \in \mathbb{R}^2$ splňujících nerovnosti

$$x^2 + y^2 < 1, \quad y \ge 0$$

c) Množina všech $(x, y, z) \in \mathbb{R}^3$ splňujících nerovnosti

$$|z| < x^2 + y^2 \le 1$$

- d) $\mathbb{R} \setminus \{\frac{1}{n}; n \in \mathbb{N}\}$
- e) Jednotkový kruh se středem v počátku bez úsečky $\left[-\frac{1}{2};\frac{1}{2}\right]$.

- 5. Které z následujících množin jsou otevřené resp. uzavřené
 - a) Množina všech $(x, y, z) \in \mathbb{R}^3$ splňujících nerovnost

$$x^2 + y^2 + z^2 > 1.$$

b) Množina všech $(x, y, z) \in \mathbb{R}^3$ splňujících nerovnost

$$1 < x^2 + y^2 + z^2 \le 2.$$

6. Najděte vnitřek a uzávěr množin (v závislosti na $t \in \mathbb{R}$)

$$M_t = \{(x, y) \in \mathbb{R}^2; (|x| + |y|)e^{-(|x| + |y|)} \le t\}.$$

7. Je množina

$$M = \{(x, y, z) \in \mathbb{R}^3; 2 \le xyz < 4\}$$

omezená?

8. Dokažte omezenost množiny

$$M = \{(x, y) \in \mathbb{R}^2; x^3 + y^3 - 2xy = 0, x \ge 0, y \ge 0\}.$$

- 9. Nechť $A\subset X$. Dokažte, že $\partial A=\overline{A}\cap (\overline{X\setminus A}).$
- 10. Nechť $A,B\subset\mathbb{R}^N$. Ukažte, že $(\partial A\times B)\cup(A\times\partial B)\subset\partial(A\times B)$. Kdy platí rovnost?
- 11. Nechť X, Y jsou metrické prostory (popř. $\mathbb{R}^N, \mathbb{R}^M$ pokud vám to pomůže pro lepší představu). Nechť $A, B \subset X$. Dokažte
 - (a) $\overline{A} = \operatorname{int} A \cup \partial A$ (disjunktně)
 - (b) $X = \operatorname{int} A \cup \operatorname{ext} A \cup \partial A$ (disjunktně)
 - (c) \overline{A} je nejmenší uzavřená nadmnožina A
 - (\mathbf{d}) int Aje největší otevřená podmnožina A
 - (e) extAje největší otevřená množina disjunktní sA
 - (f) $x_0 \in \overline{A}$ právě když existují $x_n \in A, x_n \to x_0$
 - (g) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (h) Platí analogické tvrzení pro průnik?
 - (i) Je-li $F: X \to Y$ spojité, je $F(\overline{A}) \subset \overline{F(A)}$.