

GROWTH OF INTERFACE CRACKS ON CONSECUTIVE FIBERS: ON THE SAME OR ON THE OPPOSITE SIDES?

L. Di Stasio^{1,2}, J. Varna¹, Z. Ayadi²

¹ Division of Materials Science, Luleå University of Technology, Luleå, Sweden
² EEIGM & IJL, Université de Lorraine, Nancy, France

12th International Conference on Composite Science and Technology (ICCST/12) Sorrento (IT), May 8-10, 2019

Outline

Micromechanical Modeling of Initiation of Transverse Cracks

Conclusions

MICROMECHANICAL MODELING OF INITIATION OF TRANSVERSE CRACKS

Initiation of Transverse Cracking in FRPCs: Microscopic Observations

Left:

front view of $[0, 90_2]_S$, visual inspection.

Center:

edge view of $[0, 90]_S$, optical microscope.

Right:

edge view of $[0, 90]_S$, optical microscope.

Initiation of Transverse Cracking in FRPCs: Micromechanics

Stage 1: isolated debonds

Initiation of Transverse Cracking in FRPCs: Micromechanics

Stage 2: consecutive debonds

Initiation of Transverse Cracking in FRPCs: Micromechanics

Stage 3: kinking

Initiation of Transverse Cracking in FRPCs: Micromechanics

Stage 4: coalescence

Micromechanical Modeling of Initiation of Transverse Cracks Conclusions

Micromechanical Modeling of Initiation of Transverse Cracks Conclusions

Conclusions

 \rightarrow $f_{\text{straight crack}}(\Delta \theta): \sqrt{G_l}, \times G_{ll}$

 $f_{\text{inclined crack}}(\Delta \theta)$: $\sqrt{G_{I}}$, $\sqrt{G_{II}}$, $\times \# f_{\text{inclined crack}}(\Delta \theta = \frac{\pi}{2})$

 $f_{\text{curved crack}}(\Delta \theta)$: $\sqrt{G_I}$, $\sqrt{G_{II}}$

⇒ scaling breaks for $\Delta\theta \leq 20^{\circ}$ → microstructure is important for small debonds!

