Lecture 32: Variance and unbiased estimators

Lecture 32. Variance and unbiased estimators

Ciaran Evans

Best unbiased estimators

Suppose we restrict ourselves to **unbiased** estimators.

Definition (best unbiased estimator):

Cramer-Rao lower bound

Suppose $X_1, ..., X_n \stackrel{iid}{\sim} Poisson(\lambda)$

Suppose that $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$.

Why MLEs are nice

Let θ be a parameter of interest, and $\widehat{\theta}$ be the maximum likelihood estimator from a sample of size n. Under regularity conditions, $\widehat{\theta}$ satisfies the following properties:

$$\triangleright \widehat{\theta} \xrightarrow{p} \theta$$

Sufficient statistics

Question: Given an unbiased estimator, can I improve its variance?

Answering this requires us to introduce a new concept: sufficient statistics

Definition (sufficient statistic):

Suppose $X_1, ..., X_n \stackrel{iid}{\sim} Poisson(\lambda)$

Suppose $X_1, ..., X_n \stackrel{iid}{\sim} Bernoulli(p)$