

Sistemas Multiagentes - Revisión 2

Equipo: History of magic

Gestión de Emergencias por Fuga de Oxígeno en una Colonia Espacial

Descripción de la situación a modelar

¿Qué está pasando?

Se detecta una falla en un módulo de la colonia espacial, lo que provoca una fuga de oxígeno. El sistema debe reaccionar rápidamente para redistribuir el oxígeno disponible y evitar que los colonos sufran daños por la despresurización.

¿Qué agentes toman parte en esta situación?

- Colonos: Humanos que residen en la colonia. Dependen del suministro de oxígeno y pueden tomar acciones limitadas en emergencias.
- Supervisores de emergencia: Agentes encargados de gestionar la distribución de oxígeno. Pueden redirigir flujo de oxígeno o evacuar módulos.
- Drones de monitoreo: Sensores móviles que detectan cambios en los niveles de oxígeno y reportan datos en tiempo real.
- Unidades de reparación: Robots especializados en sellar fugas y reparar fallos estructurales en los módulos de la colonia.
- Sistema central de soporte vital: Regula la producción y distribución de oxígeno en la colonia, recibe información de sensores y ejecuta protocolos de emergencia.

¿Cuál es el contexto previo?

La colonia espacial funciona con un sistema de distribución de oxígeno controlado por un sistema central. En caso de falla en algún módulo, se activa un protocolo de emergencia que redistribuye oxígeno, asigna prioridades a los agentes y, si es necesario, iniciar procedimientos de evacuación.

¿Qué esperan lograr los agentes?

- Colonos: Buscar zonas seguras con oxígeno suficiente.
- Supervisores de emergencia: Minimizar pérdidas de oxígeno y proteger a los colonos.
- Drones de monitoreo: Detectar y reportar la ubicación de la fuga.
- Unidades de reparación: Reparar la fuga y restablecer la normalidad.
- Sistema central de soporte vital: Ejecutar protocolos automáticos de redistribución y coordinar con otros agentes.

Descripción de agentes

Agente	Rol	Tipo de razonamiento	Arquitectura	Subsistemas principales
Colonos	Seres humanos que dependen del oxígeno y pueden moverse.	Reactivo	Basado en reglas	Sensores de oxígeno, decisiones simples
Supervisores	Gestionan el suministro de oxígeno.	Basado en conocimiento	BDI (Belief-Desire-I ntention)	Monitoreo, toma de decisiones
Drones de monitoreo	Detectan fugas y reportan datos.	Basado en percepción	Sensores autónomos	Percepción, transmisión de datos
Unidades de reparación	Sellan fugas y reparan módulos.	Basado en planificación	Arquitectura deliberativa	Percepción, planificación de reparación
Sistema de soporte vital	Regula la producción y distribución de oxígeno.	Basado en reglas y control centralizado	Sensores distribuidos	Monitoreo, ajuste de distribución

Sensores y Actuadores

Agente	Sensores	Actuadores	
Colonos	Sensores de oxígeno portátil	Movimiento a zonas seguras	
Supervisores	Datos de sensores de la	Activar protocolos de	
	colonia	emergencia	
Drones de monitoreo	Sensores de presión y	Transmitir información	
	oxígeno		
Unidades de reparación	Cámara, sensores de fugas	Brazo robótico, dispensador	
		de sellador	
Sistema de soporte vital	Sensores de flujo de oxígeno	Ajustar válvulas, activar	
		alarmas	

Diagrama UML

Conclusión

La simulación multiagente de distribución de oxígeno en emergencias dentro de una colonia espacial nos permitió modelar cómo diferentes tipos de agentes pueden colaborar para garantizar la seguridad y estabilidad del sistema. Se identificaron cinco agentes clave: colonos, supervisores de emergencia, drones de monitoreo, unidades de reparación y el sistema de soporte vital, cada uno con un rol específico y un conjunto de sensores y actuadores que les permiten interactuar con su entorno.

A través del diagrama UML de clases, se definió la estructura de cada agente, destacando sus atributos y métodos principales. Con el diagrama UML de protocolos de interacción, se modeló el flujo de información y las decisiones que deben tomarse cuando ocurre una emergencia, mostrando la coordinación entre agentes para detectar la fuga, redistribuir el oxígeno y realizar reparaciones.

Este modelo es un primer paso hacia la construcción de una simulación más avanzada, donde podrían incorporarse elementos adicionales como toma de decisiones basada en aprendizaje, optimización del flujo de oxígeno y estrategias de mitigación de desastres. En futuras iteraciones, se podrían integrar algoritmos de inteligencia artificial y simulaciones más detalladas de comportamiento humano, lo que haría el sistema aún más realista y eficiente.

En general, este ejercicio demuestra la importancia de los sistemas multiagentes en entornos críticos como el espacio, donde la coordinación eficiente entre distintos actores puede marcar la diferencia entre la supervivencia y el desastre.