Importance Weighted Actor-Learner Architecture (IMPALA)

arXiv '18

IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures

Lasse Espeholt * 1 Hubert Soyer * 1 Remi Munos * 1 Karen Simonyan 1 Volodymyr Mnih 1 Tom Ward 1 Yotam Doron 1 Vlad Firoiu 1 Tim Harley 1 Iain Dunning 1 Shane Legg 1 Koray Kavukcuoglu 1

Policy Based RL

$$V_{\theta}(s) \approx V^{\pi}(s)$$

 $Q_{\theta}(s,a) \approx Q^{\pi}(s,a)$

$$V_{\theta}(s) \approx V^{\pi}(s)$$
 \rightarrow $\pi_{\theta}(s, a) = \mathbb{P}\left[a \mid s, \theta\right]$

$$V_{\theta}(s) \approx V^{\pi}(s)$$

$$Q_{\theta}(s,a) \approx Q^{\pi}(s,a)$$

Policy Based RL

$$V_{\theta}(s) \approx V^{\pi}(s)$$
 \rightarrow $\pi_{\theta}(s, a) = \mathbb{P}[a \mid s, \theta]$

- 1. Better convergence properties
- 2. Effective in high-dimensional or continuous action spaces
- 3. Can learn stochastic policies

But,

- 1. Typically converge to a local rather than global optimum
- 2. Evaluating a policy is typically inefficient and high variance

$$V_{ heta}(s) pprox V^{\pi}(s) \ Q_{ heta}(s,a) pprox Q^{\pi}(s,a)$$

Policy Based RL

$$V_{\theta}(s) \approx V^{\pi}(s)$$
 \rightarrow $\pi_{\theta}(s, a) = \mathbb{P}\left[a \mid s, \theta\right]$ \rightarrow

- 1. Better convergence properties
- 2. Effective in high-dimensional or continuous action spaces
- 3. Can learn stochastic policies

But,

- 1. Typically converge to a local rather than global optimum
- 2. Evaluating a policy is typically inefficient and high variance

Actor-Critic (& Advantage)

Critic Updates action-value function parameters w Actor Updates policy parameters θ , in direction suggested by critic

$$egin{aligned} A^{\pi_{ heta}}(s,a) &= Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \
abla_{ heta} J(heta) &= \mathbb{E}_{\pi_{ heta}}\left[
abla_{ heta} \log \pi_{ heta}(s,a) \ A^{\pi_{ heta}}(s,a)
ight] \end{aligned}$$

Policy Based RL

Actor-Critic (& Advantage)

$$V_{\theta}(s) \approx V^{\pi}(s)$$

$$Q_{ heta}(s,a) pprox Q^{\pi}(s,a)$$

$$\Rightarrow \quad \pi_{\theta}(s,a) = \mathbb{P}\left[a \mid s,\theta\right]$$

$$V_{\theta}(s) \approx V^{\pi}(s)$$
 \rightarrow $\pi_{\theta}(s, a) = \mathbb{P}[a \mid s, \theta]$ \rightarrow $\nabla_{\theta}J(\theta) \approx \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta}\log \pi_{\theta}(s, a) \ Q_{w}(s, a)]$
 $\Delta \theta = \alpha \nabla_{\theta}\log \pi_{\theta}(s, a) \ Q_{w}(s, a)$

Image: https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

Intro

Value Based RL

Policy Based RL

Actor-Critic (& Advantage)

$$V_{ heta}(s) pprox V^{\pi}(s)$$
 $Q_{ heta}(s,a) pprox Q^{\pi}(s,a)$

$$\pi_{\theta}(s,a) = \mathbb{P}\left[a \mid s, \theta\right]$$

 $V_{\theta}(s) \approx V^{\pi}(s)$ $\rightarrow \pi_{\theta}(s,a) = \mathbb{P}\left[a \mid s,\theta\right] \rightarrow \nabla_{\theta}J(\theta) \approx \mathbb{E}_{\pi_{\theta}}\left[\nabla_{\theta}\log \pi_{\theta}(s,a) \; Q_{w}(s,a)\right]$ $\Delta \theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) \ Q_{w}(s, a)$

* A3C (Asynchronous Advantage Actor-Critic) - Deepmind

Image: http://rail.eecs.berkeley.edu/deeprlcourse-fa18/static/slides/lec-21.pdf

http://rail.eecs.berkeley.edu/deeprlcourse-fa18/static/slides/lec-21.pdf

IMPALA

- 1. Efficient (in single machine)
- 2. Scalable (in multiple machines)
- 3. Stable Learning (off-policy correction & V-trace)

Vs A3C (on-policy)?

A3C: agents communicate gradients with respect to the parameters of the policy to a central

parameter server

IMPALA: actors communicate trajectories of experience (s, a, r) to a centralized learner

Methods (Overview)

Methods (Overview)

O2 Meth

Methods (Overview)

- 1. Beginning of each trajectory
- 2. Actor updates its own local policy μ to latest learner policy π
- 3. Runs it for n steps in its environment
- 4. After n steps
- 5. the actor sends the trajectory of s, a, r together with the corresponding policy distributions $\mu(a|s)$ and initial LSTM state to the learner through a queue
- 6. The learner continuously updates its policy π on batches of trajectories
- 7. At the time of update, policy π is potentially several updates ahead of the policy μ
 - → policy-lag between the actors and leaner(s)
 - → V-trace corrects for this lag

Goal of an off-policy RL algorithm

- 1. Generating trajectories by behaviour policy μ
- 2. Learning the value function of target policy π

Importance Sampling

Estimate the expectation of a different distribution

$$\mathbb{E}_{X \sim P}[f(X)] = \sum_{X \sim P} P(X)f(X)$$

$$= \sum_{X \sim Q} Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

- 7. At the time of update, policy π is potentially several updates ahead of the policy μ
 - → policy-lag between the actors and leaner(s)
 - → V-trace corrects for this lag

n-steps V-trace target

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i \right) \delta_t V, \quad (1)$$

Temporal difference for V: $\delta_t V \stackrel{\text{def}}{=} \rho_t \big(r_t + \gamma V(x_{t+1}) - V(x_t) \big)$

Importance sampling weights:
$$\rho_t \stackrel{\text{def}}{=} \min \left(\bar{\rho}, \frac{\pi(a_t|x_t)}{\mu(a_t|x_t)} \right)$$

$$c_i \stackrel{\text{def}}{=} \min \left(\bar{c}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)} \right)$$

n-steps V-trace target

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i \right) \delta_t V, \quad (1)$$

Temporal difference for V: $\delta_t V \stackrel{\text{def}}{=} \rho_t (r_t + \gamma V(x_{t+1}) - V(x_t))$

Importance sampling weights:
$$\rho_t \stackrel{\text{def}}{=} \min\left(\bar{\rho}, \frac{\pi(a_t|x_t)}{\mu(a_t|x_t)}\right)$$

$$c_i \stackrel{\text{def}}{=} \min\left(\bar{c}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)}\right)$$

If on-policy? $\rightarrow \pi = \mu$

$$v_{s} = V(x_{s}) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(r_{t} + \gamma V(x_{t+1}) - V(x_{t}) \right)$$
$$= \sum_{t=s}^{s+n-1} \gamma^{t-s} r_{t} + \gamma^{n} V(x_{s+n}), \tag{2}$$

n-steps V-trace target

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i \right) \delta_t V, \quad (1)$$

Temporal difference for V: $\delta_t V \stackrel{\text{def}}{=} \rho_t (r_t + \gamma V(x_{t+1}) - V(x_t))$

Importance sampling weights: $\rho_t \stackrel{\text{def}}{=} \min \left(\bar{\rho}, \frac{\pi(a_t|x_t)}{\mu(a_t|x_t)} \right)$ $c_i \stackrel{\text{def}}{=} \min \left(\bar{c}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)} \right)$

If on-policy? $\rightarrow \pi = \mu$

$$v_{s} = V(x_{s}) + \sum_{t=s}^{s+n-1} \gamma^{t-s} (r_{t} + \gamma V(x_{t+1}) - V(x_{t}))$$
$$= \sum_{t=s}^{s+n-1} \gamma^{t-s} r_{t} + \gamma^{n} V(x_{s+n}), \tag{2}$$

→ On-policy n-step Bellman target!

n-steps V-trace target

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i \right) \delta_t V, \quad (1)$$

Temporal difference for V: $\delta_t V \stackrel{\text{def}}{=} \rho_t (r_t + \gamma V(x_{t+1}) - V(x_t))$

Importance sampling weights: $\rho_t \stackrel{\text{def}}{=} \min\left(\bar{\rho}, \frac{\pi(a_t|x_t)}{\mu(a_t|x_t)}\right)$ $c_i \stackrel{\text{def}}{=} \min\left(\bar{c}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)}\right)$

If on-policy? $\rightarrow \pi = \mu$

$$v_{s} = V(x_{s}) + \sum_{t=s}^{s+n-1} \gamma^{t-s} (r_{t} + \gamma V(x_{t+1}) - V(x_{t}))$$

= $\sum_{t=s}^{s+n-1} \gamma^{t-s} r_{t} + \gamma^{n} V(x_{s+n}),$ (2)

- → On-policy n-step Bellman target!
- → We can use the same algorithm for off- and on-policy data!

n-steps V-trace target

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i \right) \delta_t V$$

Temporal difference for V:
$$\delta_t V \stackrel{\text{def}}{=} \rho_t (r_t + \gamma V(x_{t+1}) - V(x_t))$$

Importance sampling weights:
$$\rho_t \stackrel{\text{def}}{=} \min \left(\bar{\rho}, \frac{\pi(a_t|x_t)}{\mu(a_t|x_t)} \right)$$

$$c_i \stackrel{\text{def}}{=} \min \left(\bar{c}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)} \right)$$

n-steps V-trace target

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i \right) \delta_t V$$

Temporal difference for V:
$$\delta_t V \stackrel{\text{def}}{=} \rho_t \big(r_t + \gamma V(x_{t+1}) - V(x_t) \big)$$

p defines the fixed point of update rule!

c used as a variance reduction technique!

If ρ is close to 1?
If ρ is close to zero?

Notice that this does not impact the solution to which we converge.

Actor–Critic algorithm (Policy Gradient)

On-policy case

Gradient of the value function:

$$\nabla V^{\mu}(x_0) = \mathbb{E}_{\mu} \Big[\sum_{s \geq 0} \gamma^s \nabla \log \mu(a_s | x_s) Q^{\mu}(x_s, a_s) \Big],$$

$$Q^{\mu}(x_s, a_s) \stackrel{\text{def}}{=} \mathbb{E}_{\mu} \Big[\sum_{t \geq s} \gamma^{t-s} r_t | x_s, a_s \Big]$$

Update the policy parameters in the direction of

$$\mathbb{E}_{a_s \sim \mu(\cdot|x_s)} \Big[\nabla \log \mu(a_s|x_s) q_s |x_s \Big]$$

Off-policy case

$$\mathbb{E}_{a_s \sim \mu(\cdot|x_s)} \Big[\frac{\pi_{\bar{\rho}}(a_s|x_s)}{\mu(a_s|x_s)} \nabla \log \pi_{\bar{\rho}}(a_s|x_s) q_s \Big| x_s \Big] \\ q_s \overset{\text{def}}{=} r_s + \frac{\text{V-trace estimate}}{\gamma v_{s+1}}$$

Canonical V-Trace Actor—Critic algorithm (Policy Gradient)

Appendix A & E.3

$$\mathbb{E}_{a_s \sim \mu(\cdot|x_s)} \left[\frac{\pi_{\bar{\rho}}(a_s|x_s)}{\mu(a_s|x_s)} \nabla \log \pi_{\bar{\rho}}(a_s|x_s) q_s |x_s \right]$$

$$\rho_s \nabla_\omega \log \pi_\omega(a_s|x_s) \big(r_s + \gamma v_{s+1} - V_\theta(x_s) \big) \quad -\nabla_\omega \sum_a \pi_\omega(a|x_s) \log \pi_\omega(a|x_s)$$

Prevent premature convergence: Adding entropy bonus, like in A3C

Experiment

Model architecture

Model architecture

Architecture	CPUs	GPUs ¹	FPS^2	
Single-Machine			Task 1	Task 2
A3C 32 workers	64	0	6.5K	9K
Batched A2C (sync step)	48	0	9K	5K
Batched A2C (sync step)	48	1	13K	5.5K
Batched A2C (sync traj.)	48	0	16K	17.5K
Batched A2C (dyn. batch)	48	1	16K	13K
IMPALA 48 actors	48	0	17K	20.5K
IMPALA (dyn. batch) 48 actors ³	48	1	21K	24K
Distributed				
A3C	200	0	46K	50K
IMPALA	150	1	80K	
IMPALA (optimised)	375	1	200K	
IMPALA (optimised) batch 128	500	1	250K	

 $^{^{1}}$ Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3 Limited by amount of rendering possible on a single machine.

Hyperparameter: Appendix D.1

Experiment

Experiment

	Task 1	Task 2	Task 3	Task 4	Task 5
Without Replay					
V-trace	46.8	32.9	31.3	229.2	43.8
1-Step	51.8	35.9	25.4	215.8	43.7
ε -correction	44.2	27.3	4.3	107.7	41.5
No-correction	40.3	29.1	5.0	94.9	16.1
With Replay					
V-trace	47.1	35.8	34.5	250.8	46.9
1-Step	54.7	34.4	26.4	204.8	41.6
ε -correction	30.4	30.2	3.9	101.5	37.6
No-correction	35.0	21.1	2.8	85.0	11.2

Tasks: rooms_watermaze, rooms_keys_doors_puzzle, lasertag_three_opponents_small, explore_goal_locations_small, seekavoid_arena_01

IMPALA

→ A new highly scalable distributed agent, and a new off-policy learning algorithm, V-trace.

V-trace

→ A general off-policy learning algorithm that is more stable and robust for actor critic agents.

Experiments

→ IMPALA is the first Deep-RL agent that has been successfully tested in such large-scale multi-task settings and it has shown superior performance compared to A3C based agents.

Q&A