

Satisfação de Restrições

Capítulo 6

- Até agora (Cap 3, Cap 4) olhámos para resolução de problemas através de procura
 - Problemas de Procura Tradicional
 - Procura num espaço de estados
 - estado é uma "caixa preta" qualquer estrutura de dados que suporte função sucessores, função heurística, e teste objectivo
 - Utiliza-se informação específica do problema/domínio para guiar processo de procura
- Ideia:
 - Porque não tentar usar informação acerca da estrutura dos estados para guiar o processo de procura?
 - O estado deixa de ser uma caixa preta!

- Ideia:
 - Representar cada estado por um conjunto explicito de variáveis
 - Variáveis essas que podem ter restrições
- Problemas de Satisfação de Restrições
 - Designados de CSP (Constraint Satisfaction Problems)

- CSP, definido por 3 componentes:
 - X Conjunto de variáveis {X₁, ..., X_n}
 - D Conjunto de domínios {D_{x1},...,D_{xn}}
 - Um domínio para cada variável
 - Define os valores que uma variável pode tomar
 - $D_{x_1} = \{v_1, \dots, v_k\}$
 - C Conjunto de restrições
 - especificam combinações possíveis de valores para subconjuntos de variáveis
 - Representação explícita
 - $<(X_1,X_2),[(0,1),(1,0)]>$ para um domínio $\{0,1\}$
 - Representação implícita
 - $<(X_1, X_2), X_1 \neq X_2 >$

- Estado num CSP
 - Atribuição de valores a 0 ou mais variáveis do problema.
 - {} atribuição vazia
 - $\{X_i = V_i, X_j = V_j, ...\}$
 - Atribuição parcial
 - atribui valores apenas a algumas variáveis
 - Atribuição completa
 - atribui valores a todas as variáveis do problema
 - Atribuição consistente
 - atribuição que não viola nenhuma restrição.
- Solução de um CSP
 - Atribuição completa e consistente

Exemplo: Coloração de Mapa

- Variáveis WA, NT, Q, NSW, V, SA, T
- Domínios D_i = {vermelho, verde, azul}
- Restrições: regiões adjacentes com cores diferentes
 - e.g., WA ≠ NT, ou (WA,NT) ∈ {(vermelho,verde), (vermelho,azul), (verde,vermelho), (verde,azul), (azul,vermelho), (azul,verde)}

Exemplo: Coloração de Mapa

 Soluções são atribuições completas e consistentes, e.g., WA = vermelho, NT = verde, Q = vermelho, NSW = verde, V = vermelho, SA = azul, T = verde

TÉCNICO LISBOA Grafo de Restrições

Grafo de restrições: nós são variáveis, arcos são restrições

- Porquê usar CSPs?
- Facilidade de representação
 - Muitos problemas são naturalmente representados por restrições
 - Sudoku
 - Casas com valores entre 1 e 9
 - Não posso ter valores repetidos
 - » Linhas
 - » Colunas
 - » Caixas de 3x3
 - Problemas de escalonamento

Vantagens de CSP

- Eficiência
 - Extremamente mais rápidos que procura tradicional para certos tipos de problema
 - Eliminam rapidamente grandes porções do espaço de estados
 - Ex: {SA= azul} → podemos remover a cor azul das variáveis correspondentes aos 5 vizinhos de SA
 - Em vez de considerarmos 3 cores \rightarrow 3⁵ = 243
 - Consideramos 2 cores \rightarrow 2⁵ = 32

TÉCNICO Variáveis em CSPs

Variáveis discretas

- Domínios finitos:
 - n variáveis, domínio dimensão d → O(dⁿ) atribuições completas
 - e.g., CSPs Booleanos, incluindo satisfação Booleana -SAT (NP-completo)

– Domínios infinitos:

- inteiros, strings, etc.
- e.g., escalonamento de tarefas, variáveis têm datas de início/fim para cada tarefa
- Não é possível usar representação explicita de restrições
- necessidade de uma linguagem de restrições, que perceba
 - e.g., InícioTarefa₁ + 5 ≤ InícioTarefa₃
 - Sem ter de enumerar todos os valores possíveis para as variáveis

Tipos de restrições

- Restrições unárias referem-se a uma variável,
 - e.g., SA ≠ verde
- Restrições binárias referem-se a pares de variáveis,
 - e.g., SA ≠ WA
- Restrições de ordem superior envolvem 3 ou mais variáveis,
 - e.g., restrições para cripto-aritmética
- Restrições globais envolvem um número arbitrário de variáveis (por exemplo todas)
 - AllDiff $(X_1,...,X_n)$

- Restrições de preferências
 - Indicam preferências de atribuições/soluções face a outras
 - E.g. Criação de horários
 - Restrição absoluta
 - Um professor n\u00e3o pode dar duas aulas ao mesmo tempo
 - Restrição de preferência
 - Prefiro n\u00e3o dar aulas sexta-feira
 - Implementado como custos de atribuições de variáveis
 - Atribuição de uma aula à sexta-feira tem custo 2
 - Aula noutro dia tem custo 1
 - CSP com preferências resolvidos como problemas de optimização (procura sistemática ou local)
 - Constraint Optimization Problem

Exemplo: Cripto-aritmética

- Variáveis: FTUWROX₁X₂X₃
- Domínios: {0,1,2,3,4,5,6,7,8,9}
- Restrições: Alldiff (F,T,U,W,R,O)
 - $O + O = R + 10 \cdot X_1$
 - $X_1 + W + W = U + 10 \cdot X_2$
 - $-X_2 + T + T = 0 + 10 \cdot X_3$
 - $X_3 = F, T \neq 0, F \neq 0$

- Problemas de atribuição
 - e.g., quem ensina o quê?
- Problemas de horários
 - e.g., que aulas são oferecidas, quando e onde?
- Escalonamento de transportes
- Escalonamento do processo de fabrico

TÉCNICO Inferência em CSP

- Num espaço de estados convencional um algoritmo só pode fazer uma coisa:
 - Procurar
- Num CSP um algoritmo pode:
 - Procurar
 - Fazer inferência Propagação de Restrições
- Propagação de Restrições
 - Usar as restrições para reduzir o domínio de variáveis

- Propagação de Restrições
 - Pode ser feito alternadamente com procura
 - Ou como pré-processamento antes de a procura começar
 - Por vezes este pré-processamento pode resolver completamente o problema
 - E nem precisamos de procura
- Vamos olhar para um CSP como um grafo
 - Variáveis nós do grafo
 - Restrições binárias arcos

TÉCNICO Propagação de Restrições

Grafo de restrições: nós são variáveis, arcos são restrições

- Consistência de nó
 - Forma de consistência mais simples
 - Uma variável (nó no grafo) é nó-consistente sse
 - Todos os valores no domínio da variável satisfazem as restrições unárias da variável
 - E.g. SA ≠ verde
 - Podemos tornar a variável nó-consistente ao remover verde do domínio de SA
 - $-D_{SA} = \{vermelho, azul\}$
 - Um grafo é nó-consistente se todas as variáveis do grafo são nó-consistentes

- Consistência de arcos
 - Considerem 2 variáveis X e Y ligadas por um arco
 - X é consistente em arco para Y sse
 - Para cada valor do domínio D_x
 - Existe um valor do domínio D_Y que satisfaz a restrição binária do arco X → Y
 - Y é consistente em arco para X sse
 - Para cada valor do domínio D_Y
 - Existe um valor do domínio D_X que satisfaz a restrição binária do arco Y → X
 - Um CSP ou grafo de CSP é arco-consistente sse
 - cada variável é arco-consistente com todas as restantes variáveis

Exemplo:

- Variáveis: X,Y
- Domínio: $D_X = \{0,1,...,9\} D_y = \{0,1,...,9\}$
- Restrições: Y = X²
- Para tornar X → Y arco consistente
 - $D_X = \{0,1,2,3\}$
- Para tornar Y → X arco consistente
 - $D_Y = \{0,1,4,9\}$
- Neste caso o CSP é arco-consistente
- Algoritmo mais conhecido para consistência de arco AC-3

TÉCNICO Algoritmo AC-3

function AC-3(*csp*) **returns** false if an inconsistency is found and true otherwise

inputs: *csp*, a binary CSP with components (X,D,C)

local variables: queue, a queue of arcs, initially all arcs in the CSP

```
while queue is not empty do
      (X_i, X_i) \leftarrow Remove-First(queue)
      if Revise(csp, X<sub>i</sub>, X<sub>i</sub>) then
         if size of D_i = 0 then return false
         for each X_k in X_i.Neighbors – \{X_i\} do
                add (X_k, X_i) to queue
```

return true

- Se uma variável X perde um valor, então os vizinhos de X têm de ser revistos
- O algoritmo só para quando todos os domínios estabilizarem
- Se algum domínio for vazio, então sabemos que não existe solução

function Revise($csp_iX_{i,i}X_{j}$) **returns** true iff we revise the domain of X_{i} revised \leftarrow false

for each x in D_i do

if no value y in D_j allows (x, y) to satisfy the constraint between X_i and X_j then

delete x from D_i revised \leftarrow true

Basta existir um valor em Dj para não apagarmos x

return revised

TÉCNICO Exemplo: Sudoku

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Ε	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
I			5		1		3		

Variáveis

– A1,...,A9,B1,...,B9...

Domínios

$$-D_{A1}=D_{A2}=...=\{1,...,9\}$$

Restrições

- Alldiff(A1,...,A9)
- Alldiff(A1,...,I1)
- Alldiff(A1,A2,A3,B1, ...,C3)

TÉCNICO Exemplo: Sudoku

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
1			5		1		3		

Variável E6

- Restrições Caixa
 - 1,2,7,8
- Restrições Coluna
 - 5,6,2,8,9,3
- $-D_{F6} = \{4\}$

TÉCNICO LISBOA Exemplo: Sudoku

	1	2	3	4	5	6	7	8	9	
Α			3		2		6			
В	9			3		5			1	
С			1	8		6	4			
D			8	1		2	9			
Е	7					4			8	
F			6	7		8	2			
G			2	6		9	5			
Н	8			2		3			9	
I			5		1		3			

Variável 16

- Restrições Coluna
 - 5,6,2,<mark>4</mark>,8,9,3
 - Agora já sabemos que E6=4
- Restrições Caixa
 - 6,9,2,3,1
- $-D_{16}=\{7\}$

TÉCNICO Exemplo Sudoku

- Algoritmo AC-3 consegue resolver este exemplo de Sudoku
 - No entanto apenas funciona para os puzzles mais simples
- Para puzzles mais complexos
 - Chegamos a um ponto onde todas as variáveis são arcoconsistentes
 - Mas ainda existem variáveis com vários valores possíveis no domínio

- Para resolver puzzles mais complexos
 - Ou usamos algoritmos de consistência mais fortes
 - Ou precisamos de misturar inferência com procura
 - Escolhemos um valor possível para uma variável
 - Aplicamos propagação de restrições
 - Se não funcionar, voltamos para trás, escolhemos outro valor para a variável e tentamos de novo
 - Estes algoritmos conseguem resolver os problemas mais difíceis Sudoku
 - < 0.1 segundos :D

TÉCNICO Propriedades AC-3

- Complexidade temporal para AC-3:
 - Considerem um CSP com
 - n variáveis
 - d tamanho máximo de domínio
 - c restrições correspondentes a arcos binários
 - Cada arco pode ser inserido na fila no máximo até d vezes
 - porque o domínio só tem d valores para ser removidos
 - Temos que fazer c . d verificações
 - A consistência de um arco é verificada em O(d²)
 - $O(c \cdot d \cdot d^2) = O(c \cdot d^3)$

TÉCNICO Consistência de Arcos

- Problemas de consistência de arcos
 - Em certos problemas não consegue inferir informação suficiente
 - E.g. colorir mapa Austrália

TÉCNICO LISBOA Exemplo: Coloração de Mapa

- Variáveis WA, NT, Q, NSW, V, SA, T
- Domínios $D_i = \{\text{vermelho, azul}\}$
- Restrições: regiões adjacentes com cores diferentes
- e.g., WA ≠ NT

- No exemplo anterior
 - Consistência de arco não faz nada
 - Para cada arco X,Y
 - Cada valor de D_x tem um valor de D_y válido
 - -X = vermelho, Y = azul
 - -X = azul, Y = vermelho
 - No entanto não existe solução
 - Precisamos pelo menos de 3 cores
 - AC3 não consegue descobrir que não existe solução
 - Para resolvermos o problema precisamos de ...

- Consistência de Caminhos
 - Em vez de analisar pares de variáveis
 - Vamos analisar trios de variáveis
 - Um conjunto de 2 variáveis {X_i,X_j} é consistente em caminho para uma 3.ª variável X_m sse
 - Para cada atribuição {Xi=a,Xj=b} consistente com as restrições {X_i,X_j}, então tem que existir uma atribuição para X_m que satisfaça:
 - As restrições em {X_i,X_m}
 - As restrições em $\{X_m, X_j\}$

Exemplo:

- Tornar {WA,SA} consistente em caminho para NT
- Atribuições consistentes de {WA,SA}
 - {WA = vermelho, SA = azul}, {WA = azul, SA = vermelho}
- Para cada uma das atribuições verificamos as atribuições para NT
 - Nenhuma atribuição para NT é válida
 - Conflito com {WA,NT} ou com {NT,SA}
 - Logo $D_{NT} = \{\}$
 - Não existe solução

- Algoritmo consistência de Caminhos
 - PC-2 (Path Consistency 2)
 - Muito semelhante ao AC-3

- Consistência K
 - Um CSP é K-consistente sse
 - Para qualquer conjunto de k-1 variáveis
 - E para qualquer atribuição consistente a essas variáveis
 - Podemos sempre atribuir um valor consistente a qualquer nova variável k
 - 1-consistente → consistência de nó
 - 2-consistente → consistência de arco
 - 3-consistente → consistência de caminho

– ...

- Um CSP é fortemente K-consistente sse
 - é K-consistente
 - é (K-1)-consistente
 - **—** ...
 - é 1-consistente
- Encontrar uma solução num CSP com n variáveis e que seja fortemente n-consistente é relativamente simples
- No entanto, tornar um CSP fortemente n-consistente tem uma complexidade exponencial em n.
 - Quer em tempo
 - Quer em memória
- Portanto esta abordagem n\u00e3o \u00e9 usada

TÉCNICO Restrições globais

- Ocorrem frequentemente em problemas reais
- Normalmente tratadas por algoritmos específicos
 - Mais eficientes que os algoritmos de propagação de restrições genéricos que vimos até agora
 - Exemplo: Alldiff
 - Todas as variáveis envolvidas num Alldiff têm que ter valores distintos

TÉCNICO Restrições globais

Alldiff

- Detecção de inconsistência mt simples
 - Se temos m variáveis no alldiff.
 - E no seu conjunto elas têm n valores distintos possíveis
 - Se m > n então a restrição nunca poderá ser satisfeita

Algoritmo

- Remover qualquer variável da restrição que tenha um domínio com um único valor
- Apagar o valor da variável do domínio das restantes variáveis
- Repetir enquanto houver variáveis com domínio tamanho 1
- Se a qualquer altura Dx = {} ou existem mais variáveis que valores de domínio
 - Então a restrição Alldiff é violada

TÉCNICO Restrições globais

- Atmost (tb designada de resource constraint)
 - Atmost(10,P1,P2,P3,P4)
 - A soma das 4 variáveis tem que ser no máximo 10
 - Podemos detectar inconsistência ao somar os valores mínimos de cada domínio
 - Ex: $D_{P1}=D_{P2}=D_{P3}=D_{P4}=\{3,4,5,6\}$
 - Também podemos forçar consistência ao apagar valores máximos não consistentes com valores mínimos
 - Ex: $D_{P1} = ... = D_{P4} = \{2,3,4,5,6\}$
 - Podemos apagar 5,6 de cada domínio
 - Variante do AC-3 focado em restrições em vez de arcos

TÉCNICO Procura em CSP

- Como vimos, nem sempre todos os problemas podem ser resolvidos apenas com inferência
- E será que os podemos resolver apenas com procura?

TÉCNICO Procura Básica

- Definição de um problema de satisfação de restrições como um problema de procura
 - Estados são caracterizados pelas atribuições feitas até ao momento
- Estado inicial: atribuição vazia { }
- Função sucessores: atribui um valor a uma variável não atribuída que não entra em conflito com a atribuição actual
 - X = 3
 - → falha se não existem atribuições possíveis
- Teste objectivo: atribuição actual é completa

- Esta formulação é comum a todos os CSPs
- Todas as soluções para n variáveis estão à profundidade n
 - procura em profundidade primeiro
- Caminho é irrelevante
 - estado final tem a solução

Procura Básica

d estados

- Total nós folha:
 - $n!.d^n$
- Mas só existem dⁿ atribuições completas
- Muito ineficiente ⊗

- Será que podemos fazer melhor?

 - Atribuições a variáveis são comutativas, i.e.,
 {X1 = 1, X2 = 2} é o mesmo que {X2 = 2, X1 = 1}
- Só é necessário considerar atribuições a uma única variável em cada nó
 - b = d e existem dⁿ nós folhas
- Procura em profundidade para CSPs com atribuição a uma única variável em cada nível
 - é denominada procura com retrocesso
- Procura com retrocesso é o algoritmo básico (não informado) para CSPs
 - Consegue resólver *n*-rainhas para *n* ≈ 25

function Backtracking-Search(*csp*) **returns** a solution, or failure **return** Backtrack({}, *csp*)

function Backtrack(assignment,csp) returns solution, or failure if assignment is complete then return assignment

var ← Select-Unassigned-Variable(csp)

for each value in Order-Domain-Values(var,assignment,csp) do
 if value is consistent with assignment then
 add {var = value} to assignment
 inferences ← Inference(csp,var,value)
 if inferences ≠ failure then
 add inferences to assignment
 result ← Backtrack(assignment,csp)
 if result ≠ failure then return result
 remove {var = value} and inferences from assignment
 return failure

Procura com Retrocesso

- Versão mais simples da Procura com Retrocesso (Backtracking search)
 - Select-Unassigned-Variable
 - escolher a próxima variável da lista de variáveis não atribuídas
 - Order-Domain-Values
 - Não ordenar nada, retornar a lista de valores pela mesma ordem recebida
 - Inference
 - Não fazer inferência, retornar um conjunto vazio de inferências

TÉCNICO Procura com Retrocesso

- Versão mais simples não é a mais eficiente
 - Pois é completamente cega
- Algoritmos de procura tradicional usam informação heurística para guiar procura
 - Heurísticas dependentes do domínio
- Ideia usar informação heurística para guiar Procura com Retrocesso:
 - Escolher a próxima variável a experimentar
 - Escolher o próximo valor do domínio a experimentar
- Grande vantagem
 - Heurísticas independentes do domínio
 - Funcionam para qualquer problema de satisfação de restrições!!!

TÉCNICO Escolher a próxima variável

- Que variável deve ser atribuída de seguida?
 - Ideia
 - Escolher a variável com maior probabilidade de causar uma falha
 - Quanto mais cedo detectarmos uma falha, mais cortes vamos fazer na árvore de procura

TÉCNICO Escolher a próxima variável

- Variáveis
 - -X,Y,Z
- Domínio
 - Dx={1,2}, Dy = {2,4,6,8,10}, Dz = {-1,1,4}
- Restrições

22 testes consistência

Escolher a próxima variável

- Variáveis
 - -X,Y,Z
- Domínio
 - Dx={1,2}, Dy = {2,4,6,8,10}, Dz = {-1,1,4}
- Restrições

$$- Y = 3X$$

11 testes consistência

TÉCNICO Escolher a próxima variável

- Heurística dos valores remanescentes mínimos
 - Minimum Remaining Values (MRV) heuristic
 - Escolher a variável com o menor número de valores possíveis no domínio
 - Menos valores possíveis → + probabilidade falhar
 - Caso especial
 - Variável com domínio vazio
 - Escolhida imediatamente
 - Falha detectada imediatamente
 - Pode chegar a ser 1000x melhor que ordenação estática/aleatória para certos problemas

TÉCNICO Escolher a próxima variável

- Por vezes a heurística MRV não funciona
 - Ex: colorir o mapa
 - Inicialmente todas as regiões têm 3 valores possíveis para a cor.
- Que fazer?
 - Tentar reduzir o factor de ramificação de decisões futuras
 - olhando para variáveis que estão envolvidas em mais restrições

- Heurística do maior grau (Degree Heuristic)
 - Escolhe a variável que está envolvida no maior número de restrições com variáveis ainda não atribuídas
 - South Australia é adjacente a todas as outras regiões!

Escolher a próxima variável

- A heurística MRV é normalmente mais eficaz que a heurística de maior grau
 - Heurística MRV usada em primeiro lugar
 - Heurística de maior grau normalmente usada para desempatar variáveis com mesmo valor MRV

- Uma vez escolhida a variável a atribuir
 - É necessário escolher qual o valor a experimentar primeiro
 - No entanto, enquanto na escolha de variável o critério era falhar o mais rápido possível
- Na escolha de valor o critério é falhar o menos possível
 - A escolha do valor a experimentar primeiro não vai influenciar cortes no espaço de estado
 - Porque para haver backtrack (voltar para trás) é preciso experimentar todos os valores para uma variável
 - Como só queremos uma única solução
 - Então devemos experimentar primeiro os valores com maiores hipóteses de corresponder a uma solução
 - Se quiséssemos todas as soluções
 - A ordem dos valores n\u00e3o interessaria para nada

TÉCNICO Escolher o próximo valor

- Heurística do valor menos restritivo
 - Least-constraining-value
- Dada uma variável, escolher o valor que tem menos restrições:
 - Valor que elimina menos valores no domínio das outras variáveis

A combinação destas heurísticas permite resolver o problema das 1000-rainhas

TÉCNICO Procura e Inferência

- Para resolver CSP podemos usar
 - Inferência
 - Procura
- Mas porque não misturar as duas?
 - Escolhemos um valor possível para uma variável
 - Aplicamos inferência/propagação de restrições
 - Se não funcionar, voltamos para trás, escolhemos outro valor para a variável e tentamos de novo

Forward checking:

- Verificação posterior/olhar em frente
- Forma mais simples de inferência
- Quando uma variável X é atribuída
 - Tornar as outras variáveis consistentes em arco para X
 - Para cada variável Y ligada a X por uma restrição
 - Apagar do domínio de Y todos os valores inconsistentes com a atribuição feita para X
 - Se o domínio de uma variável ficar {}
 - Então a atribuição não é consistente
 - Temos de escolher outro valor para a variável
 - Ou então fazer backtrack para outra variável

TÉCNICO LISBOA Forward checking

TÉCNICO Forward checking

TÉCNICO LISBOA Forward checking

- Forward checking detecta muitas inconsistências
 - Mas não detecta todas
- Torna toda as variáveis consistentes em arco para X
 - Mas não as torna consistentes em arco uma para as outras
 - Não consegue detectar certas falhas antecipadamente

- Ao atribuir verde à variável Q
 - Reduzimos o domínio de NT e e SA
 - Mas NT e SA não podem ser ambos azuis!

Maintaining Arc Consistency (MAC)

- Algoritmo que garante consistência de arco entre todas as variáveis
- Sempre que uma variável Xi é atribuída
 - O procedimento Inference chama o AC3
 - Mas em vez de inicializarmos o algoritmo com todos os arcos
 - Usamos todos os arcos (Xj,Xi) tais que Xj corresponde a uma variável ainda não atribuída que é vizinha de Xi
 - Fazemos consistência de arco de Xj para Xi (tal como forward ...)
 - caso especial de Xi já estar atribuída
 - » Testa-se cada valor domínio Xj contra valor Xi
 - Mas só paramos de fazer consistência quando todos os domínios estabilizarem

 Se X perde um valor, então os vizinhos de X têm de ser revistos

TÉCNICO Retrocesso + Forward Checking

Variáveis {X1,X2,X3,X4} Domínio X1 = Dom X2 = Dom X3 = Dom X4 = $\{1,2,3,4\}$ Xj = i significa que rainha j está na posição (i,j)

TÉCNICO Exemplo: 4-Rainhas

Exemplo: 4-Rainhas

Consistência de arcos já teria detectado inconsistência!

TÉCNICO LISBOA Exemplo: 4-Rainhas

Consistência de arcos já teria identificado a solução!

TÉCNICO Retrocesso inteligente

Retrocesso com salto (Backjumping):

- Q = vermelho, NSW = verde,
 - V = azul, T = vermelho,
 - SA = ... conflito!
 - Retrocesso → alterar valor de T
 - Mas T não foi responsável pelo conflito!
- Conjunto de conflito de uma variável
 - Conjunto de atribuições que estão em conflicto com algum valor para a variável
 - {Q=vermelho,NSW=verde,V=azul} cj de conflicto para SA
 - Retroceder "inteligentemente" para a variável que consta no conjunto de conflito e foi atribuída mais recentemente, i.e. V
- Forward checking é equivalente a backjumping
 - Ou se usa um ou o outro

TÉCNICO Retrocesso inteligente

Outro exemplo:

- WA = vermelho, NSW = vermelho,
 T = vermelho
- Atribuir NT, Q, V, SA → não existe nenhuma atribuição consistente
 - Mas conjunto de conflito n\u00e3o est\u00e1 completo
 - {WA=vermelho}
 - Era mais importante voltar para NSW
- Conjunto de conflito tem de ir para além de relações directas...

Retrocesso com salto dirigido ao conflito:

- Conflict-directed backjumping
- Definição mais completa de conj. Conflicto para uma variável X
 - Conjunto de variáveis atribuídas antes de X, tal que
 - Juntamente com outras variáveis que serão atribuídas mais à frente
 - Vão fazer com que X não tenha nenhum valor consistente
- Calcular conj. Conflicto
 - conf(X) inicializado {}
 - Sempre que testamos uma atribuição para X e uma restrição entre X e Y falhe, adicionar Y ao conf(X).
 - Xj variável actual; conf(Xj) conj. Conflicto para Xj
 - Se todos os valores para Xj falham, retroceder para a variável mais recente Xi em conf(Xj)
 - Alterar conf(Xi) ← conf(Xi) U conf(Xj) {Xi}

Retrocesso inteligente

Retrocesso com salto dirigido ao conflito:

- e.g. WA=vermelho, NSW=vermelho, T=vermelho, NT=azul, Q=verde, V, SA
 - SA falha
 - conf(SA)={WA,NT,Q}
 - Retrocesso inteligente para Q
 - conf(Q) inicialmente {NSW,NT}
 - Alterado para conf(Q) U conf(SA) {Q} = {WA,NSW,NT}
 - Retrocesso inteligente para NT
 - conf(NT) inicialmente {WA}
 - Alterado para conf(NT) U conf(Q) {NT} = {WA,NSW}
 - Retrocesso para NSW!

- O retrocesso inteligente não evita que o mesmo conflito venha a aparecer novamente noutro ramo da árvore, e.g.
 - NT = vermelho, WA = vermelho, NSW = vermelho
 - NT = azul, WA = vermelho, NSW = vermelho
- Repetição de erros pode ser evitada com aprendizagem!

TÉCNICO Aprendizagem de Restrições

- Aprendizagem de Restrições
 - Constraint Learning
 - Quando chegamos a uma contradição
 - Encontrar o conjunto mínimo de variáveis do conjunto de conflictos que está a causar o problema
 - Este conjunto de variáveis e os seus valores no-good
 - no-goods devem ser registados e lembrados
 - Ou como restrições adicionais
 - Ou com utilização de lista de no-goods
 - Adicionar uma restrição que não permita que volte a acontecer WA = vermelho \(\text{NSW} = vermelho \)
 - WA ≠ vermelho ∨ NSW ≠ vermelho

- Procuras locais muito eficazes para resolver muitos CSPs
- Usar algoritmos que usam estados "completos", i.e. todas as variáveis atribuídas
- Para aplicar procura local a CSPs:
 - Permitir estados em que não são satisfeitas todas as restrições
 - Transições entre estados consiste na re-atribuição de valores a variáveis

- Ordenação de variáveis: seleccionar aleatoriamente qualquer variável para a qual exista um conflito
- Selecção de valores com a heurística menor número de conflitos (min-conflicts):
 - Escolher valor que viola o menor número de restrições
 - Se existirem vários valores nestas condições escolher um deles aleatoriamente

function Min-Conflicts (csp,max_steps) returns a solution, or failure
inputs: csp, a constraint satisfaction problema
max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for *csp*

for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosed conflicted variable from csp. Variables
 value ← the value v for var that minimizes Conflicts(var,v,current,csp)
 set var = value in current

return failure

TÉCNICO LISBOA Exemplo: 4-Rainhas

Estado: 4 rainhas em 4 colunas $(4^4 = 256 \text{ estados})$

- Duas iterações são suficientes para resolver o problema
- Em cada iteração é escolhida uma rainha que esteja em conflito para mudar de posição
- Nova posição minimiza o número de ataques (local e globalmente)
- Escolha aleatória entre posições que minimizam de igual modo o número de ataques

- Min-conflicts eficiente para muitos CSPs
 - n-rainhas
 - Dado um estado inicial aleatório, existe uma grande probabilidade de resolver o problema das n-rainhas em tempo quase constante para n arbitrário (e.g., n = 10.000.000)
 - n-rainhas é fácil para procura local porque as soluções estão densamente distribuídas pelo espaço de estados
 - só nos interessa encontrar uma solução qualquer

TÉCNICO Procura Local vs. Retrocesso

Vantagens

- Encontra soluções para problemas de grandes dimensões (10.000.000 rainhas)
- Tempo de execução da heurística do menor número de conflitos está pouco dependente da dimensão do domínio

Desvantagens

 Não permite provar que não há solução porque não mantém um registo dos estados já visitados

Nº de testes de consistência

Algoritmo/Problema	50-rainhas
Retrocesso	>40.000 mil
Retrocesso + Valores mínimos remanescentes	13.500 mil
Forward Checking (FC)	>40.000 mil
FC + Valores mínimos remanescentes	817 mil
Min-Conflitos	4 mil

TÉCNICO Conclusões

- CSPs são um tipo especial de problemas:
 - Estados definidos por valores atribuídos a um conjunto específico de variáveis
 - Teste objectivo definido a partir de restrições nos valores das variáveis
- Retrocesso = procura em profundidade primeiro com uma variável atribuída por cada nível de profundidade
- Ordenação de variáveis e selecção de valores é importante
- Forward checking evita atribuições que garantidamente levarão a conflitos no futuro
- Propagação de restrições (e.g. consistência de arcos) detecta inconsistências adicionais
- Retrocesso inteligente identifica fonte do conflito
- Procura local + h. menor número de conflitos é eficiente