A Carrier-Grade L2BSA Gateway with Netgraph

Lutz Donnerhacke

IKS Service GmbH

Personal background

- Grown up with a C64 in Eastern Germany
- Short excurse to MSDOS and Win3.11
- Switched to Linux in 1992
- Individual Network e.V. in Germany
 - grassroot Internet for ordinary people
- Build regional ISP in 1996
 - infrastructure provider of two regional Broadband-ISPs in Thuringia
- Switch to FreeBSD in 2013
 - Replace commercial LNS by netgraph/MPD

Broadband in Germany

- 1983 CDU (German conservatives) choose copper over fiber
 - Probably due to corruption via the minister Schwarz-Schilling
- 1995 CDU privatization created Deutsche Telekom
 - Got the whole cable network as gift, hence a (copper) monopoly
- 1998 Unbundling of last mile to competitors
- 2009 Vectoring for increased bandwith over copper (DSL)
 - All lines need to be handled by a single DLSAM
 - Unbundling not longer possible
 - To break the local monopoly, regulated bitstream access was introduced
- We are still a copper DSL based country!
 - Fiber is rolled out 2022 but expected to be available not before 2024

Layer2 Bitstream Access (regulated)

- Solution for the layer1 monopoly created by vectoring
 - DSL port in sync: Hand over all layer2 traffic to a different ISP
 - Requires a transport layer which maps 1:1 to the port
 - No opportunity for smart networks (like Multicast distribution)
 - Problem: How to handle bandwidth discrepancy?
- Technical approach (A10NSP)
 - Add a VLAN tag to all traffic from the port (IEEE 802.1ad)
 Can only handle up to ~4000 customers per aggregation line
 - Add current line speed in DHCP option or PPP LCP option
 Shape downstream traffic to signaled speed (or pay fines)

Commercial aspects

- Numbers
 - 1 Mio households in Thuringia => ~260 interconnection points
 - About 50 interconnections needed for DTAG operated areas
 - Most rural regions are operated by us (not DTAG)
- You need a line to each area, where your customer is
 - pay for a 1G/10G WAN + interconnection fee
 - get a couple of customers switching to you
- We need a very cheap termination device
 - Commercially available: Large PPPoE appliances
 - We like to have DHCP and IPv6 in multiple VLANs (i.e. separate VoIP)

What happens on wire?

Customer
Payload (IP)
C-VLAN Tag
Source-MAC
Destination-MAC

A10NSP Interconnection
Payload (IP)
C-VLAN Tag
S-VLAN Tag
Source-MAC
Destination-MAC

What really happens on wire

Customer
Payload (IP)
140
01:02:03:04:05:06
01:02:03:07:08:09

A10NSP Interconnection
Payload (IP)
140
27
01:02:03:04:05:06
01:02:03:07:08:09

What really happens on wire?

Customer
Payload (IP)
140
01:02:03:04:05:06
01:02:03:07:08:09

A10NSP Interconnection
Payload (IP)
140
35
01:02:03:04:05:06
01:02:03:07:08:09

What really happens on wire!

Customer
Payload (IP)
140
01:02:03:04:05:06
01:02:03:07:08:09

A10NSP Interconnection					
Payload (IP)					
140					
35					
35					
35 01:02:03:04:05:06					

- On every DSL resync
 - A new, dynamic S-VLAN is used
 - Traffic send to the old S-VLAN is lost immediately
- PPP will drop the line and resync
- DHCP does not even notice

Simplify by adding complexity

static

Customer	A10NSP	Interface	Rotate	Service	Interface	Line
Payload	Payload	Payload	Payload	Payload	Payload	Payload
C-Vlan	C-Vlan	C-Vlan	<mark>S-Vlan</mark>	<mark>S-Vlan</mark>	<mark>S-Vlan</mark>	Src-MAC
Src-MAC	<mark>S-Vlan</mark>	<mark>S-Vlan</mark>	<mark>A-Vlan</mark>	<mark>A-Vlan</mark>	Src-MAC	Dst-MAC
Dst-MAC	Src-MAC	<mark>A-Vlan</mark>	C-Vlan	Src-MAC	Dst-MAC	
	Dst-MAC	Src-MAC	Src-MAC	Dst-MAC		
		Dst-MAC	Dst-MAC			

QoS per interface

QoS per service

Customer traffic handled per service

Todo list for netgraph

- Blue/Red: Existing nodes
- Green: Insufficient node
- Orange: Missing node
- Yellow/Rose: Userspace scripting

Necessary modifications to FreeBSD

Mandatory

- D21846: Add 802.1Q ethertypes used in the wild
- D24179: ixl: Permit 802.1ad frames to pass though the chip
- D22076: netgraph/ng_vlan_rotate: IEEE 802.1ad VLAN manipulation netgraph node type

Bridging

- D21803: netgraph/ng_bridge: Replace NG_BRIDGE_MAX_LINKS with unlimited links
- D23840: netgraph/ng_base: Allow larger BINARY2ASCII conversions
- D23963: netgraph/ng_bridge: Introduce "uplink" ports without MAC learning
- D28123: netgraph/ng bridge: become multithreaded

QoS

- D22140: netgraph/ng_tag: Variable length data can not be set for all length
- D22110: netgraph/ng_car: Add color marking code

Debugging

- D21968: netgraph/ng_source: Allow ng_source to inject into any netgraph network
- D21965: usr.sbin/ngctl: Generate more compact GraphWiz output

Real world problems

- Same MAC in different VLANs
 - Tagged and untagged from the same customer device (CPE)
 - Overlapping MACs from different CPEs due to MAC increase per VLAN
- Different CPE configuration
 - Same service may come in different C-Vlans (or untagged)
 - Need a decision mechanism to choose the right one
- Erroneous transmission of data rates
 - No DHCP exchange due to signaled 0 bps (enforced!)
- Broken interface cards (ixl) do not transmit 802.1ad
 - Customer untagged is an IEEE violation, but works

Real world interface

Real world bridge table

MAC	Link	Line	S-Vlan	C-Vlan
<u>08:96:d7:46:fa:ec</u>	hsi:link61	ixl0	2	140
<u>08:96:d7:46:fa:ed</u>	voip:link4249	ixl0	2	142
2c:91:ab:bb:4b:76	hsi:link7554	ixl10	10	140
2c:91:ab:bb:4b:77	voip:link3536	ixl10	10	142
3c:a6:2f:fe:ac:03	voip:link2299	ixl10	18	142
3c:a6:2f:fe:ac:02	hsi:link3507	ixl10	18	untagged
2c:3a:fd:dd:39:2a	hsi:link3588	ixl1	49	140
2c:3a:fd:dd:39:2b	voip:link5014	ixl1	49	142
<u>00:01:21:01:44:2d</u>	hsi:link9805	ixl8	5	180
<u>00:01:21:01:44:2d</u>	voip:link4426	ixl8	5	182

Questions?

https://lutz.donnerhacke.de/Blog

https://www.thyotec.de/

https://www.netkom.de/Privatkunden/Internet