

Regression: Multiple Regression

CS 418. Introduction to Data Science

© 2018 by Gonzalo A. Bello

Linear Regression Multiple Linear Regression

- Multiple linear regression models a linear relationship between one quantitative response variable and more than one predictor variable.
- The response variable is the variable being modeled or predicted and the predictor variables are the variables used to predict the response.
- The multiple linear regression model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 ... + \beta_p X_p + \varepsilon$$

where:

- *Y* is the response variable.
- $X_1, X_2, ..., X_p$ are the predictor variables.
- $\beta_0, \beta_1, \beta_2, ..., \beta_p$ are the **regression parameters**.
- ε is the **regression error term**.

Multiple Linear Regression Assumptions

- A multiple linear regression model makes the following assumptions:
 - Linearity
 - There is a **linear relationship** between the response variable and the predictor variables.
 - Normality.
 - Errors are normally distributed with a mean of 0.
 - Homoscedasticity.
 - Errors have constant variance.
 - Independence.
 - Errors are independent of each other.
 - No collinearity.
 - Predictor variables are linearly independent.

Multiple Linear Regression Adjusted R²

- R² measures the proportion of variance of the response variable that is explained by the model. The value of R² is between 0 and 1. The higher the value, the better the fit of the model.
- The value of \mathbb{R}^2 never decreases when adding more predictor variables.
- The adjusted R^2 is a modified version of R^2 that has been adjusted for the number of predictor variables in the model.

$$R_{adj}^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - p - 1}$$

where n is the sample size and p is the number of predictor variables.

- The value of the adjusted R^2 increases only if the new predictor variables improve the fit of the model more than would be expected by chance. Otherwise, it decreases.
- The value of the adjusted R^2 can be negative.

Multiple Linear Regression AIC and BIC

 The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are two commonly used criteria for model comparison and selection.

$$AIC = 2p - 2 \ln L$$

$$BIC = ln(n) p - 2 ln L$$

where L is the likelihood function, p is the number of predictor variables, and n is the sample size.

- The model with the lowest AIC or BIC is preferred.
- Both AIC and BIC penalize models with more predictor variables, but BIC penalizes model complexity more heavily.
- In general, it might be best to use AIC and BIC together, although, in some cases, AIC may choose a more complex model than BIC.

Multiple Linear Regression Categorical Predictors

- A categorical predictor variable has qualitative values representing one of a finite number of categories.
- A multiple linear regression model can incorporate categorical predictors if these are recoded into one or more dummy variables.
 - A dummy variable is a binary variable that is 1 for a specified category of a categorical predictor and 0 for all other categories.
 - **Example:** for a "gender" predictor variable, a "male" dummy variable is 1 for males or 0 for females, while a "female" dummy variable is 1 for females or 0 for males.
 - To avoid collinearity, one dummy variable must be omitted from the model. The category represented by the omitted dummy variable is known as the reference level of the categorical predictor.

Multiple Linear Regression Nonlinear Relationships

- Nonlinear relationships can be incorporated to a multiple linear regression model by using transformations of the response and/or the predictor variables.
 - Polynomial regression:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$$

Used when there is a **polynomial** (e.g., quadratic) relationship between the response and the predictor variable.

Interaction model.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Used when the effect of a predictor variable on the response depends on the values of another predictor variable.

Logarithmic variable transformation.

$$\log Y = \beta_0 + \beta_1 X + \varepsilon$$

Used when the distribution of a variable is **skewed** (that is, higher values are more spread out than lower values).

Multiple Linear Regression Regularization (I)

- Regularization techniques add an additional constraint (or penalty) to the regression model to discourage large coefficients.
 - Ridge regression or regression with L_2 regularization minimizes the sum of squared errors plus the sum of the squares of the coefficients. That is,

$$\sum_{i=1}^{n} (Y_i - \beta_0 - \sum_{j=1}^{m} \beta_j X_{ij})^2 + \alpha \sum_{j=0}^{m} (\beta_j)^2$$

where α is a user-defined parameter.

• LASSO (least absolute shrinkage and selection operator) regression or regression with L_1 regularization minimizes the sum of squared errors plus the sum of the absolute values of the coefficients. That is,

$$\sum_{i=1}^{n} (Y_{i} - \beta_{0} - \sum_{j=1}^{m} \beta_{j} X_{ij})^{2} + \alpha \sum_{j=0}^{m} |\beta_{j}|$$

where α is a user-defined parameter.

Multiple Linear Regression Regularization (II)

- Regularization techniques add an additional constraint (or penalty) to the regression model to discourage large coefficients.
 - In LASSO regression, some coefficients will become 0 and can be dropped.
 - In ridge regression, the coefficients will approach 0, but will not be dropped.
 - Elastic net linearly combines the L_1 and L_2 penalties of ridge regression and LASSO regression. That is,

$$\sum_{i=1}^{n} (Y_i - \beta_0 - \sum_{j=1}^{m} \beta_j X_{ij})^2 + \alpha (\lambda \sum_{j=0}^{m} (\beta_j)^2 + (1 - \lambda) \sum_{j=0}^{m} |\beta_j|)$$
 where α and λ are user-defined parameters.

Multiple Linear Regression References

- Daniel Chen. Pandas for Everyone (2018).
- Joel Grus. Data Science from Scratch (2015).
- Cathy O'Neil and Rachel Schutt. Doing Data Science (2013).