${\bf Geometria} \,\, {\bf e} \,\, {\bf Algebra}$

Prova Scritta 26-05-2017

Prof. Marco Trombetti

-	•	•	-
Eser	CIT	710	. 1

Determinare per quali valori del parametro reale k il sistema

$$S: \begin{cases} x+z=0\\ kx+y+2z=0\\ (k-2)x+y+(k^2-1)z=0\\ 2x+ky+3z=-1 \end{cases}$$

${ m ammett}$	te so	luzio	mı.

Descrivere l'insieme delle soluzioni del sistema \mathcal{S} per $k=-1$ e del suo sistema omogeneo associato usando Cramer.

	$A = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 2 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 4 & 0 & 0 & -1 \end{pmatrix}.$
ual è la dimension enerato dalle coloni	ne del sottospazio generato dalle righe della matrice A ? Qual è invece la dimensione del sottospane? Motivare le risposte.
Qual è la dimension enerato dalle coloni	e del sottospazio generato dalle righe della matrice A ? Qual è invece la dimensione del sottospane? Motivare le risposte.
Qual è la dimension enerato dalle colon	ne del sottospazio generato dalle righe della matrice A ? Qual è invece la dimensione del sottospa ne? Motivare le risposte.
Qual è la dimension enerato dalle colon	le del sottospazio generato dalle righe della matrice A ? Qual è invece la dimensione del sottospa ne? Motivare le risposte.
enerato dalle colon:	te del sottospazio generato dalle righe della matrice A? Qual è invece la dimensione del sottospazione? Motivare le risposte. Tibile? (Perché?) Scrivere la sottomatrice corrispondente ad un minore fondamentale di A. Trovar
enerato dalle colon:	ne? Motivare le risposte.
enerato dalle colon \cdot oa matrice A è inver	ne? Motivare le risposte.
enerato dalle colon \cdot a matrice A è inver	ne? Motivare le risposte.
enerato dalle colon	ne? Motivare le risposte.

Esercizio 3 Studiare la diagonalizzabilità della matrice	
$B = \begin{pmatrix} 2 & 3 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$	
Determinare una matrice invertibile P che realizzi la diagonalizzazione di B e la matrice diagonale D in cui B vie portata.	ene
501 vava.	

		$\alpha = (\lambda + 2)$	0 \	
		$C = \begin{pmatrix} \lambda + 2 \\ -\lambda \end{pmatrix}$	$(\lambda + 1)$.	
Determinare se C sia diagona	lizzabile per tali va	lori di λ .		

	$f: (x, y, z) \in \mathbb{R}^3 \mapsto (\lambda x + y, \lambda z, (\lambda^2 + 1)y) \in \mathbb{R}^3.$	
teterminare per quali	valori del parametro λ la funzione f è un omomorfismo, per quali una funzione iniettiva	a e ne
uali una funziona sur	dettiva. Giustificare il procedimento.	х с р

Geometria e Algebra

Prova Scritta 19-06-2017

Prof. Marco Trombetti

Esercizio 1

Determinare (spiegandone i motivi) quali dei seguenti sottoinsiemi sono sottospazi vettoriali e, in caso affermativo, determinarne la dimensione ed una base:

$$W_1 = \langle (1,0,-1), (10,0,-10) \rangle \subseteq \mathbb{R}^3$$

$$W_2 = \{(1,0,1), (0,0,0)\} \subseteq \mathbb{R}^3$$

$$W_3 = \{(x, y, z, t) : x - y = 0; z + t = -2\} \subseteq \mathbb{R}^4$$

$$W_4 = \{(x, y, z, t, u) : x - xu = 0; u + t = 0\} \subseteq \mathbb{R}^5$$

$$W_5 = \{(x, y, z) : x - y - z = x - z = 0\} \subseteq \mathbb{R}^3$$

Determinare, al variare del parametro reale h, il rango della seguente matrice

$$A_h = \begin{pmatrix} 1 & h & 0 & 0 \\ 1+h & 0 & -1 & h \\ -h & 0 & h & -h \end{pmatrix}.$$

Descrivere l'insieme delle soluzioni del sistema lineare $A_1X = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, con $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$.

Determinare dimensione e una base dell'insieme delle soluzioni del sistema lineare omogeneo

$$A_0 X = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

con

$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}.$$

Esercizio 3	
Calcolare la distanza nello spazio tra la retta	
	$r: \begin{cases} y-3=0\\ z=0 \end{cases}$ $s: \begin{cases} y=-5\\ x+2=0 \end{cases}$
	z = 0
e la retta	`
0.14.10004	$\int y = -5$
	$x : \begin{cases} x + 2 = 0 \end{cases}$
	`

Determinare gli autovalori della matrice

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

Per ciascun autovalore λ scrivere un autovettore di autovalore $\lambda.$

Determinare una base per l'autospazio V(-2) e una per l'autospazio V(0).

Sia x un elemento di $V(-2)$ e y uno di $V(2)$. È vero che il sistema di vettori $\{x, y\}$ è sempre linearmente dipende invece vero che è sempre indipendente? Fornire chiare spiegazioni per le risposte.	ente?

Sia ${\cal F}_A$ l'applicazione lineare determinata dalla matrice

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

- \bullet F_A è iniettiva?

- $(1,1,1) \in F_A(\mathbb{R}^4)$? Qual è la matrice associata ad F_A nel riferimento naturale di \mathbb{R}^4 ? Sia $\mathcal{R} = ((1,1,0,0),(1,0,0,1),(0,1,0,0),(0,1,1,0))$ un riferimento di \mathbb{R}^4 . Determinare $M_{\mathcal{RR}_{\mathrm{nat}}}(F_A)$.

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra Prova Scritta 07-07-2017

Prof. Marco Trombetti

Esercizio 1
Sia r la retta nello spazio passante per il punto di coordinate $(1,2,3)$ e avente come numeri direttori $(0,1,2)$. Rappresentare parametricamente ed in forma ordinaria la retta r (con procedimento). Trovare infine l'equazione di un piano passante per la retta r ed il punto $B(1,10,19)$.

Determinare, al variare del parametro reale h , la dimensione dello spazio vettoriale					
	$\left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle$	$\begin{pmatrix} h \\ 0 \end{pmatrix}, \begin{pmatrix} 1+h \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ h \end{pmatrix}, \begin{pmatrix} -h & 0 \\ h & -h \end{pmatrix}$	\rangle	
	`	, (, , ,		

Esercizio 3	namamatur int	mo h la '	viao				
Calcolare per quali valori del	parametro inte						
		$ \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} $	$ \begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & (-1)^h \\ -2 & 0 \end{array} $	$\cdot \cdot 2$			
simile ad una diagonale. I	Per tali valori	scrivere sia	una matrice	diagonale a c	ui è simile, si	a una che real	izzi tal

Nello spazio vettoriale $\mathbb{R}[x]$ dei polinomi a coefficienti reali nell'indeterminata x, siano

$$U = \{p(x) \in \mathbb{R}[x] | p(-x) = p(x)\}$$

е

$$V = \{ p(x) \in \mathbb{R}[x] | p(-x) = -p(x) \}.$$

Si risponda vero o falso alle seguenti domande, motivando le risposte.

- U è un sottospazio vettoriale di $\mathbb{R}[x]$, ma V non lo è.
- $\bullet\ U\cap V$ è il polinomio nullo.
- $\bullet \ \mathbb{R}[x] = U \oplus V.$

Per ogni $h \in \mathbb{R},$ sia F_{A_h} l'applicazione lineare determinata dalla matrice

$$A_h = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & h \end{pmatrix}.$$

- \bullet Per quali valori del parametro hrisulta $dim(Ker(F_{A_h}))=1?$ Determinare in questo caso una base per il nucleo dell'omomorfismo.
- Trovare due vettori distinti di \mathbb{R}^4 che abbiamo come immagine (0,0,6) mediante F_{A_3} .

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra

Prova Scritta 21-07-2017

Prof. Marco Trombetti
Esercizio 1 Al variare del parametro λ , sia
$W_{\lambda} = \langle x^3 + x^2 + \lambda x, \lambda x^2 + x - \lambda, 2x^3 - x^2 + x - 1 \rangle$
un sottospazio vettoriale di $\mathbb{R}[x]$. Determinare, al variare del parametro λ , la dimensione di W_{λ} .

Dire quale dei seguenti sottoinsiemi di $\mathbb{R}[x]$ sono sottospazi vettoriali e quali no (giustificare le risposte).

$$W_1 := \{x^3 + x^2, 0, x^5\}$$

$$W_2 := \langle x^7, x^{100} \rangle$$

$$W_3 := \{a_2 x^2 + a_1 x + a_0 \mid \exists n \in \mathbb{N}_0 = \{0, 1, \dots\}, a_1 = 2n - 1\}$$

$$W_4 := \{a_2 x^2 + a_1 x + a_0 \mid \exists n \in \mathbb{N}_0, a_1 = 2n\}$$

$$W_5 := \{a_2 x^2 + a_1 x + a_0 \mid a_2 \ge 0\}$$

Esercizio 3
Considerati i due riferimenti
$\mathcal{R} := ((1,4,1), (1,5,0), (2,5,-1))$
ed $\mathcal{R}' := ((1,0,-1),(0,2,1),(2,3,-2))$
di \mathbb{R}^3 . Sia v un vettore di \mathbb{R}^3 e si supponga che esso abbia componenti (x_1, x_2, x_3) nel riferimento \mathcal{R} , mentre abbia componenti (x_1', x_2', x_3') nel riferimento \mathcal{R}' . Qual è la relazione che sussiste tra queste terne? DOPO aver descritto tale relazione in generale mostrare come tale relazione sia verificata con il vettore w espresso nella base canonica da $(1,0,1)$.

opresentarle.			

Esercizio 5
Sia $f:\{(1,1,0),(0,1,1),(1,0,1)\}\longrightarrow \mathbb{R}^3$ la funzione definita dalle seguenti posizioni
f(1,1,0) = (3,2,0)
f(0,1,1) = (0,2,1)
f(1,0,1) = (3,0,1)
Si può estendere f ad una applicazione lineare f' di \mathbb{R}^3 ? Se fosse possibile, in quanti modi si potrebbe fare? Quale sarebbe la matrice associata ad f' nel riferimento naturale? Dopodiché dire, usando semplicemente le definizioni, se tale funzione f' sia diagonalizzabile o meno e determinarne (sempre solo con la definizione) autovalori, autovettori ed autospazi.

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra Prova Scritta 24-07-2017

Prof. Marco Trombetti

Esercizio	1

In \mathbb{R}^3 , considerati i sistemi di vettori

$$U_1 = \langle (0,1,0), (0,0,1) \rangle$$

$$U_2 = \langle (0,2,0), (0,4,0) \rangle$$

$$U_3 = \langle (0,-2,2) \rangle$$

$$U_4 = \langle (1,1,0), (0,-1,3), (1,-2,3), (2,-4,6) \rangle$$

$$U_5 = \langle (1,-1,1), (0,1,1), (0,0,1) \rangle$$

determinare la dimensione ed una base di $U_i,\,U_i\cap U_j$ e U_i+U_j con $i,j\in\{1,2,3,4,5\}$ e $i\neq j.$

		$C = \begin{pmatrix} \lambda + i \\ -\lambda \end{pmatrix}$	$\begin{pmatrix} 2 & 0 \\ \lambda + 1 \end{pmatrix}$.		
Determinare se C sia diagonaliz	zabile per tali				

Esercizio 3
Considerati i due riferimenti
$\mathcal{R} := ((1,4,1), (1,5,0), (2,5,-1))$
ed $\mathcal{R}' := ((1,0,-1),(0,2,1),(2,3,-2))$
di \mathbb{R}^3 . Sia v un vettore di \mathbb{R}^3 e si supponga che esso abbia componenti (x_1, x_2, x_3) nel riferimento \mathcal{R} , mentre abbia componenti (x_1', x_2', x_3') nel riferimento \mathcal{R}' . Qual è la relazione che sussiste tra queste terne? DOPO aver descritto tale relazione in generale mostrare come tale relazione sia verificata con il vettore w espresso nella base canonica da $(1,0,1)$.

Esercizio 4
Calcolare la di
e la retta

istanza nello spazio tra la retta (no formulette ma procedimento)

$$r: \begin{cases} y - x = 0 \\ z = y \end{cases}$$

$$s: \begin{cases} y = -5 + x \\ z = x \end{cases}$$

Esercizio 5
Sia V uno spazio vettoriale di dimensione $n \geq 0$. Determinare tutti e soli i valori di m tale che lo spazio vettoriale V sia isomorfo allo spazio vettoriale \mathbb{R}^m ? Per tali valori scrivere anche un isomorfismo tra V ed \mathbb{R}^m .

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra

Prova Scritta 11-09-2017

Prof. Marco Trombetti

Esercizio 1

Consideriamo i due seguenti spazi vettoriali di \mathbb{R}^4

$$U_1 = \langle (1,1,1,1), (0,1,1,1), (22,10,11,5), (0,0,2,0), (0,0,0,5), (3,2,5,8) \rangle$$

 \mathbf{e}

$$U_2 = \langle (2,0,0,3), (0,0,0,2) \rangle$$

e l'applicazione lineare $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ definita da la seguente posizione f(a,b,c,d) = (a,c,d). Determinare la dimensione e una base del seguente spazio vettoriale

$$f((U_1 \cap U_2) + \langle (0, 1, 0, 0) \rangle)$$

di \mathbb{R}^3 .

Esercizio 2 Descrivere, usando il sistema omogeneo ass	sociato le soluzioni del seguente sistema
<u> </u>	
	$S: \begin{cases} x_1 - hx_2 + x_3 = 1\\ x_1 - hx_2 + x_4 = -3\\ x_2 + x_3 = h \end{cases}$
al variare del parametro reale h .	

Esercizio 3	
Rispondere alle seguenti domande:	W 11 · 0
Cosa vuol dire rappresentare un sottoinsieSia	eme A dei piano!
	$X = \{(1,2), (0,3), (0,5)\}$
e	
	$Y = \{(0,1), (1,0), (2,0)\}.$
Qual è la distanza tra gli insiemi X e Y nel	piano?

$\{(h^2-1)x^2+a_1x+h^2: a_1 \in \mathbb{R}\}$	
$\{(n-1)x + u_1x + n : u_1 \in \mathbb{R}\}$	

Esercizio 5 Sia V_4 uno spazio vettoriale di dimensione 4. Esistono due sottospazi U e W di V_4 entrambi di dimensione 3 che intersechino in un sottospazio di dimensione 1? Se U e W sono due sottospazi distinti e non banali di V_4 , entrambi dimensione pari, allora la loro somma è un sottospazio di V_4 di dimensione 3?				

Foglio bonus per i conti		
rogno bonus per i conti		

Nome e Cognome	(leggibili):
Matricola:	

Geometria e Algebra Prova Scritta 27-10-2017

Esercizio 2
Per quali valori di h il vettore $(1,0,-1)$ è combinazione lineare dei vettori $(1,1+h,-h), (h,0,0), (0,-1,h), (0,h,-h)$?

Esercizio 3
 Dare la definizione di sistema di riferimento cartesiano ortogonale monometrico dello spazio.
 Bare la definizione di sistema di merimento cartesiano ortogonale monometrico dello spazio. Siano R e R' due sistemi di r.c.o.m. del piano e sia P un punto del piano. Che relazione sussiste tra le coordinate di
P in R e in R'?

Esercizio 4
Siano A , B e C definiti come nell'esercizio 1. Determinare dimensioni e basi dei sottospazi vettoriali di \mathbb{R}^2 generati da A , B e C rispettivamente.

Esercizio 5 Sia $f: \mathbb{R}_{0}[x] \longrightarrow \mathbb{R}_{0}[x]$ l'amamarfisma definita da
Sia $f: \mathbb{R}_3[x] \longrightarrow \mathbb{R}_3[x]$ l'omomorfismo definito da $x^3 + x^2 + x + 1 \mapsto 954x^3 + 848x^2 + 41290x$
$x^{2} + x^{2} + x + 1 \mapsto 954x^{2} + 848x^{2} + 41290x$ $x^{2} + x + 1 \mapsto 200x^{2}$
$x+1 \mapsto 723x$
$1 \mapsto x^3$.
Il numero 0 è un autovalore di f ? Se sì descrivere l'autospazio associato a 0 .

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra

Prova Scritta 18-12-2017

Esercizio 1 Siano $A = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0 \lor y + z + x = 1\}, B = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \le 0\} \text{ e } C = \{(x, y, z) \in \mathbb{R}^3 : 1 = 1\}$ sottoinsiemi dello spazio. Cacolare: $\text{dist}(A, B)$, $\text{dist}(B, C)$, $\text{dist}(A, C)$.

	$\bigcap_{L\in\mathcal{L}}L.$		

Esercizio 3
Sia V uno spazio vettoriale finitamente generabile. Dare la definizione di sottospazio generato da un sottoinsieme X di
V. Dimostrare (avendola enunciata) la caratterizzazione in termini di combinazioni lineari del sottospazio generato.

Esercizio 4
Esercizio 4 Siano $A, B \in C$ definiti come nell'esercizio 1. Determinare dimensioni e basi (se esistono) dei sottospazi vettoriali di \mathbb{R}^3 generati da $A \cap C, B \cap A$ rispettivamente.

Esercizio 5
Sia $f: \mathbb{R}_3[x] \longrightarrow \mathbb{R}_3[x]$ l'omomorfismo definito da
$200x^{3} + 134x^{2} + 10x + 1 \mapsto x^{3}$ $x^{2} + x + 12 \mapsto x^{3}$
$ \begin{array}{c} x + x + 12 \mapsto x^3 \\ x + 1 \mapsto x^3 \end{array} $
$1\mapsto x^3$.
Quali sono gli autovalori di f ?

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra

Prova Scritta 11-01-2018

Escretized Siano $A=\{(x,y)\in\mathbb{R}^2: x = y \}, B=\{(x,y)\in\mathbb{R}^2:x=4\}$ of $C=\{(x,y)\in\mathbb{R}^2:1/x=x\}$ sottoinsiemi dello spazio. Carolare: dist (A,B) , dist (B,C) , dist (A,C) .	
Cacolare: $\operatorname{dist}(A,B)$, $\operatorname{dist}(B,C)$, $\operatorname{dist}(A,C)$.	Esercizio 1 Siano $A = \{(x, y) \in \mathbb{R}^2 : x = y \}, B = \{(x, y) \in \mathbb{R}^2 : x = 4\} \in C = \{(x, y) \in \mathbb{R}^2 : 1/x = x\}$ sottoinsiemi dello spazio.
	Cacolare: $dist(A,B)$, $dist(B,C)$, $dist(A,C)$.

Esercizio 2	
Sia fissato un riferimento cartesiano ortogonale monometrico dello spazio. Determinare al variare del pa	arametro h , i
vettori $\bar{v}(x,y,z)$ tale che il prodotto scalare di \bar{v} con $(1,1-h,-h)$ sia 1, \bar{v} sia parallelo al piano $\pi:-y$	+hz=0 e il
prodotto scalare di \bar{v} con $(0, h, -h)$ sia -1 .	

Esercizio 3
Sia V uno spazio vettoriale finitamente generabile. Dare la definizione di sottospazio generato da un sottoinsieme X di
V. Dimostrare (avendola enunciata) la caratterizzazione in termini di combinazioni lineari del sottospazio generato.

Sia (V, \top, \bot) uno spazio vettoriale $(\top \ \text{è}\ \text{l'operazione interna}, \bot \text{ quella esterna})$. Siano $x \in x'$ vettori fissati in V to comunque si prenda un $y \in V$ risulti $x \top y = y$ e $x' \top y = y$. È vero o no che $x = x'$? (Dimostrare quanto affermator)	1. 1
comunque si prenda un $u \in V$ risulti $x \mid u = u \land x' \mid u = u$. El vero o no che $x = x'$? (Dimestrare quanto afformate	alı che
containque si pronda un $y \in V$ risuru $x + y = y$ e $x + y = y$. If vero o no the $x = x$: (Dimostrate quanto allermate	ɔ.)

Esercizio 5
Sia $f: \mathbb{R}_3[x] \longrightarrow \mathbb{R}_3[x]$ l'omomorfismo definito da
$200x^3 + 134x^2 + 10x + 1 \mapsto x^2$
$x^2 + x + 12 \mapsto x^2$
$x+1\mapsto x^2$
$1 \mapsto x^2$.
Quali sono gli autovalori di f ?

Foglio bonus per i conti		
rogno bonus per i conti		

${\bf Geometria} \,\, {\bf e} \,\, {\bf Algebra}$

Prova Scritta 07-02-2018

Esercizio 1 Sia $f: V \longrightarrow V$ un endomorfismo dello spazio vettoriale finitamente generabile V . E' vero che se f è diagonalizzzabile allora il polinomio caratteristico ammette tutte radici reali e distinte? E' vera invece l'impicazione inversa? (Se vere dimostrarle, se false fornire controesempi).

Esercizio 2	_
Che relazione sussiste tra le soluzioni di un sistema di equazioni e il sistema omogeneo associato a questo? Dimostrare le relazioni citate.	

Esercizio 3	
Enunciare il Lemma di Steinitz e, usando questo, mostrare che il concetto di dimensione di uno spazio vettoriale finitamente generabile è ben posto.	

Esercizio 4	
Definire cosa vuol dire rappresentare un sottoinsieme dello spazio. rica di una retta nello spazio.	Dopodiché dimostrare la rappresentazione paramet-
- Tica di una retiva neno spazio.	

Esercizio 5	
Che vuol dire che una funzione è iniettiva? suriettiva? Dimostrare (ed enunciare) la relazione che sussiste tra kernel e iniettività quando la funzione è un omomorfismo tra spazi vettoriali.	ì
	-

Foglio bonus per i conti		
rogno bonus per i conti		

${\bf Geometria} \,\, {\bf e} \,\, {\bf Algebra}$

Prova Scritta 26-06-2018

Prof. Marco Trombetti

Esercizio 1

Date le seguenti matrici

$$A = \begin{pmatrix} 1 & 2 & -1 & 4 \\ 2 & 0 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$

si determinino $se\ possibile$ le seguenti matrici:

$$BA + A$$
, $AC + B(I_2^{-1})$ e $C(B^{-1}) + (2I_2)C$

Di queste ultime trovarne per ciascuna una a gradini equivalente.

	$f_h: ax^2 + bx + c \in \mathbb{R}_2[x] \longrightarrow cx^h + bx^{h-1} + ax^{h-2} \in \mathbb{R}_h[x]$
nvertibile? Determina	re la funzione inversa in questi casi. Per quali valori di $h \geq 2$ la funzione è iniettiva?
	e ta ranzione inversa in questi etasi. I er quan vaiori ar $n \ge 2$ ta ranzione e iniettiva.

Esercizio 3
Sia $f: \mathbb{R}^5 \longrightarrow \mathbb{R}^5$ un endomorfismo diagonalizzabile avente 1 come unico autovalore. Determinare $Ker(f)$ e $Im(f)$.

Esercizio 4	
Fissata la matrice $A = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ vettoriale di $\mathbb{R}_{2,2}$.	1 nello spazio vettoriale $\mathbb{R}_{2,2}$. Provare che $V = \{X \in \mathbb{R}_{2,2} \mid AX = XA\}$ è un sottospazio
Determinare un supplement	are $W ext{ di } V ext{ in } \mathbb{R}_{2,2}.$

Esprimere $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ come somma di due matrici di V e W .

Esercizio 5 Sia V_n uno spazio vettoriale di dimensione n . Dimostrare che $ogni$ sottospazio di dimensione n coincide con V_n .	_
Sia v_n uno spazio vertoriale di dimensione n . Dimostrare che ogni sottospazio di dimensione n comerce con v_n .	

Foglio bonus per i conti		
rogno bonus per i conti		

${\bf Geometria} \,\, {\bf e} \,\, {\bf Algebra}$

Prova Scritta 23-07-2018

Prof. Marco Trombetti

	•	•	-
$\mathbf{E}\mathbf{serc}$	17	10	- 1

Sia data la seguente matrice

$$A = \begin{pmatrix} h & 1 & -1 & 0 \\ 0 & h-1 & 1 & -1 \\ 0 & 1 & -1 & 0 \end{pmatrix}.$$

Determinare al variare del parametro reale h tutti i minori fondamentali di A.

Esercizio 2	gtoma lineava
Considerato il si	stema illeare $\int_{C} 2x - y - z = 0$
	$S: \begin{cases} 2x - y - z = 0\\ x - 2y + z = 1 \end{cases}$
aggiungervi se pe	$ossibile$ una equazione lineare (diversa dalle precedenti) in modo che il nuovo sistema abbia ∞^1 soluzione
$\Lambda ggiungervene \ s$ edimenti.	se possibile poi una (al nuovo sistema) in maniera tale che ammetta una sola soluzione. Spiegare i p
edimenti.	

l vettore risultante è perpend			$\bullet \ 2w+1](w\times v).$		
l vettore risultante è perpend	dicolare al piano	o di equazione 4:		0	
		Il vettore risultante è perpendicolare al piano di equazione $4x + 20y + 64z = 0$?			

$C=egin{pmatrix} \lambda_1 & 2 & 0 \ -\lambda & \lambda + 1 \end{pmatrix}.$ eterminare i possibili autovalori per v al variare di λ .	Esercizio 4) è autovettore della matrice
eterminare i possibili autovalori per v ai variare (ii A.		
	Determinare i possibili autovalori per v al variare di λ .	

	$f: (x, y, z) \in \mathbb{R}^3 \mapsto (\lambda x + y, \lambda z, (\lambda^2 + 1)y) \in \mathbb{R}^3.$	
		1: 1:1
eterminare per quali v	llori del parametro reale λ la funzione f è un omomorfismo non diagon	nalizzabile.

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra

Prova Scritta 10-09-2018

Prof. Marco Trombetti

T-3	•	•	-
Eser	CT	7.10) I

Sia $\mathcal{R}=(\underline{e}_1,\,\underline{e}_2,\,\underline{e}_3)$ il riferimento canonico di \mathbb{R}^3 . È possibile estendere l'applicazione

$$f(\underline{e}_1 + \underline{e}_2) = \underline{e}_3 - \underline{e}_1$$

$$f(2\underline{e}_1 + \underline{e}_3) = \underline{e}_1 + \underline{e}_2$$

$$f(-\underline{e}_1 - \underline{e}_3 + \underline{e}_2) = \underline{e}_2 + \underline{e}_3$$

ad un endomorfismo di $\mathbb{R}^3?$ Spiegarne i motivi.

Esercizio 2			
Sia	$f: \mathbb{R}_2[x] \longrightarrow \mathbb{R}_2[x]$		
l'applicazione definita dalla posizion			
con $a,b,c\in\mathbb{R}$ e λ parametro reale. 3 come autovettore.	con $a,b,c\in\mathbb{R}$ e λ parametro reale. Determinare per quali valori del parametro λ l'applicazione f è lineare ed ammette		

Esercizio 3
Sia V_2 un qualsiasi spazio vettoriale di dimensione 2 e sia $f:V_2\longrightarrow V_2$ un endomorfismo diagonalizzabile che ammetta 1 e 0 come unici autovalori. Determinare la dimensione di $Ker(f)$ e $Im(f)$.

Esercizio 4
Dare la definizione di distanza tra insiemi nel piano, di rappresentazione di un insieme nello spazio e dire, dimostrando, quali sono le coordinate del punto medio di un segmento nel piano.

	$A = \langle$	$x^3 + x^2 \rangle, B = \langle x \rangle$		
Determinare $A \cap B$ e, se possib			$B\rangle$.	
			·	

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra

Prova Scritta 22-10-2018

Prof. Marco Trombetti

Esercizio 1

Si consideri \mathbb{R} come spazio vettoriale reale. Dire se i seguenti sono sottospazi vettoriali di \mathbb{R} e, in caso affermativo, determinarne dimensione e, per ciascuno, se possibile, due basi distinte:

$$A:=\{r\in\mathbb{R}\,|\,\exists s\in\mathbb{R}\,:\,r=s\cdot2\}$$

$$B:=\{r\in\mathbb{R}\,|\,\exists s\in\mathbb{R}\,:\,r=s\cdot\pi\}$$

$$C:=\{r\in\mathbb{R}\,|\,\exists s\in\mathbb{R}\,:\,r=s\cdot i\}\quad(i\ \mbox{\'e}\ \mbox{l'unit\`a}\ \mbox{immaginaria})$$

Esercizio 2	
Sia	$f: \mathbb{R}_2[x] \longrightarrow \mathbb{R}$
l'applicazione definita dalla pos	
- approximate definite dente pos	$ax^2 + bx + c \mapsto 25 \cdot \lambda^2 + 5 \cdot \lambda + c \cdot \lambda$
con $a,b,c\in\mathbb{R}$ e λ parametro re	eale. Determinare per quali valori del parametro λ l'applicazione f è lineare.

Esercizio 3		
Sia V_2 un qualsiasi spazio v	ttoriale di dimensione 2 e sia $f: V_2 \longrightarrow V_2$ un endomorfismo diagonalizzabile che amm	netta
λ e 0 come unici autovalori.	Determinare la dimensione di $Ker(f)$ e $Im(f)$ al variare del parametro reale λ .	

sercizio 4 are la definizione di dist	anza tra insiemi nello	spazio, di rapprese	ntazione di un insie	eme nel piano e dire	e, dimostrand
ali sono le coordinate d	el punto medio di un	segmento nello spaz	rio.	-	,

	$A = \langle x^3 + x^2 + x \rangle, B = \langle x \rangle, C = \langle 3x^3, 2x^2 \rangle.$	
ire se la seguente equivalenza	ì è corretta	
	$\langle (A+C)\cap B,\ (A+B)\cap C\rangle = A+B.$	

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra Prova Scritta 27-05-2019

Prof. Marco Trombetti

Esercizio 1 Sia V uno spazio vettoriale e sia $S=\{e_1,\,e_2,\,e_3\}$ un sottoinsieme indipendente di V. Dimostrare che se un certo vettore $v \in V$ dipende da Sallora vi dipende in maniera univoca. Mostrare, fornendo un controesempio, che in generale l'unicità della dipendenza non vale per sistemi di vettori dipendenti.

tale che	re diagonalizzabile che ammetta un solo autovalore di molteplicità geometric
	f(2, 0) + f(1, 0) = f(2, 0).
Calcolare i possibili valori per $f(\pi, \pi/4)$.	

Esercizio 3	
Siano $A = \{(x, 0) : x \in \mathbb{R} \text{ e } x > 0\}, B = \{(-x, 0) : x \in \mathbb{R} \text{ e } x > 0\} \text{ e } C = \{(x, -x) : x^3 + x = 0\} \text{ sottoinsiemi depiano. Cacolare: } \operatorname{dist}(A, B), \operatorname{dist}(B, C), \operatorname{dist}(A, C).$	lel

Esercizio 4
Qual è il numero massimo di minori fondamentali ottenibile da una matrice a valori reali 3×3 avente rango 2 ?

Esercizio 5
Sia V uno spazio vettoriale finitamente generabile. Siano A, B e C sottospazi vettoriali di V . E' valida la seguente
relazione? $(A+C) \cup B = \langle A \cup B, C \cup B \rangle$
(se sì dimostrarla, altrimenti fornire un controesempio in \mathbb{R}^2).

Foglio bonus per i conti		
rogno bonus per i conti		

${\bf Geometria} \,\, {\bf e} \,\, {\bf Algebra}$

Prova Scritta 15-07-2019

Prof. Marco Trombetti

e possibile) due sott	$ \mathbb{E} \mathbb{R}_2[x] \mapsto \begin{pmatrix} a & a \\ a & a \end{pmatrix} \in $ ospazi C_1 e C_2 di \mathbb{R}_2	tale che $\mathbb{R}_2 = C_2$	$\oplus C_1 \oplus \operatorname{Im}(f).$	

Esercizio 3 Dimostrare la formula risolutiva che concerne i sistemi omogenei di $n-1$ equazioni in n incognite.	
Dimostrare la formula risolutiva che concerne i sistemi omogenei di $n-1$ equazioni in n incognite.	

Esercizio 4 ia $V = \mathbb{R}^3 \times \mathbb{R}_2[x]$. Dire (spiegando) se le seguenti affermazioni sono vere o false.				
1. V ha dimensione 5.				
2. $\{((y,0,0),a+bx+cx^2):a,b,c,y\in\mathbb{R}\}$ è un sottospazio vettoriale di V .				

Esercizio 5	
Sia V uno spazio vettoriale e sia H un sottoinsieme di V . Quale condizione deve soddisfare H affinché tutti i sot	tomsiemi
di V contenenti H siano sottospazi vettoriali?.	

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra Prova Scritta 09-09-2019

Prof. Marco Trombetti

Esercizio 1 Sia $f:V\longrightarrow V$ una applicazione lineare che ammetta i tre autovalori distinti $\lambda_1,\,\lambda_2$ e λ_3 . Dimostrare che gli autospazi relativi sono in somma diretta.

Esercizio 2

Sia
$$X = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} \, : \, a \in \mathbb{R} \right\}.$$

- X è un sottospazio vettoriale di \mathbb{R}_2 ?
- Definire (se possibile) una applicazione lineare di X in $\mathbb{R}_2[x]$ tale che l'immagine abbia dimensione almeno 1 (un punto in più se si trova con dimensione 2).

• Il prod	Il prodotto righe per colonne nelle matrici quadrate di ordine n non è mai commutativo.							
• La son ordine	nma (di due mat n .	rici di ordine i	n) è distributi	va rispetto al	la moltiplicaz	ione a destra	per un'altra i	natrice

Esercizio 4 Sia $V = \mathbb{R}^2 \times \mathbb{R}_2[x]$. Dire (spiegando) se le seguenti affermazioni sono vere o false.	
1. Chi è l'elemento neutro di V ?	i sono vere o false.
2. Determinare un sottospazio di V isomorfo a \mathbb{R}^2 .	

Esercizio 5 Sia V uno spazio vettoriale e sia H un sottoinsieme di V . Quale condizione deve soddisfare H affinché tutti i sottoinsiemi di V contenuti in H siano sottospazi vettoriali?
ar y convenier in 11 state scoospan2 toccerain.

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra Prova Scritta 28-10-2019

Prof. Marco Trombetti

Esercizio 1 Sia $f:V\longrightarrow V$ una applicazione lineare che ammetta almeno un autovalore λ . Prendiamo $v\in V$ che non sia un autovettore. E' vero che l'autospazio $V(\lambda)$ e il sottospazio $\langle v\rangle$ sono in somma diretta?

Esercizio 2
Sia $X = \{ax^3 + ax^2 + ax + a : a \in \mathbb{R}\}.$
• X è un sottospazio vettoriale di $\mathbb{R}_5[x]$?
• Definire (se possibile) una applicazione lineare di X in $\mathbb{R}_{3,3}$ tale che l'immagine abbia dimensione almeno 1 (un punto in più se si trova suriettiva).

Il prodotto righe per colonne nelle matrici quadrate di ordine n non è mai associativo.					
Per ogni matrice	A di ordine n esiste semp	re una matrice B di c	ordine n tale che $AB =$	$I_n = BA.$	

Esercizio 5
Sia V uno spazio vettoriale e sia H un sottoinsieme di V avente un numero finito di oggetti n . Per quali valori di n il
sottoinsieme H di V è un sottospazio vettoriale di V ?

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra

Prova Scritta 25-11-2019

Prof. Marco Trombetti

Esercizio 1 Sia A una matrice diagonalizzabile di ordine 2 e avente come autovalori 3 e 4. La matrice $A \cdot A \cdot A \cdot A$ è diagonalizzabile?
Se sì, quali sono i suoi autovalori?

 • X è un sottospazio vettoriale di R₅[x]? • Definire (se possibile) una applicazione lineare di X in ℝ tale che non sia suriettiva. 						
• Definire (se possibile) una applicazione lineare di X in k tale che non sia suriettiva.						

Esercizio 2

Il prodotto vettoriale è simmetrico. Un riferimento cartesiano ortonormale monometrico è una coppia ordinata.						

Esercizio 4 Sia $V = \mathbb{R}_4[x] \times \mathbb{R}_{2,2}$. Determinare due dis	stinti sottospazi di V che siano iso	omorfi.	

	_
Esercizio 5	
Sia V uno spazio vettoriale e sia H un sottoinsieme di V tale che $V\setminus H$ abbia un numero finito di oggetti, diciamo n .	
Per quali valori di n risulta H un sottospazio vettoriale di V ?	
rei quan vaiori di n risuita n un sottospazio vettoriale di v:	-

Foglio bonus per i conti		
rogno bonus per i conti		

Geometria e Algebra Prova Scritta 26-02-2020

Prof. Marco Trombetti

Esercizio 1	T.: ·				
Sia A una matrice diagonalizzabile di ordine 2 e avente come autovalori 3 e 4 .					
$\{B \in \mathcal{M}_2(\mathbb{R}) : B \text{ sia proporzionale ad } A\}$					
è uno sottospazio vettoriale di $M_2(\mathbb{R})$?					

Esercizio 2 Sia $X = \left\{ax^4\right\}$	$0 + bx^2 + ax + b :$	$a, b \in \mathbb{R}$.			
	sottospazi di $M_1(I$		i ad X ?		
• Quanti s	sottospazi di X so	ono isomorfi ad	$\mathrm{M}_2(\mathbb{R})$?		

 v × w = 0 se e solo se v e w sono dipendenti. Quando si ha che v × w = 2(v × w)? 						

Esercizio 4
Sia $V = \mathbb{R}_5[x] \times \mathbb{R}_{2,2}$. Qual è il massimo numero di sottospazi 1-dimensionali a due a due distinti che è possibile ottenere?

Esercizio 5
Sia V uno spazio vettoriale di dimensione 2 e sia H un sottospazio di V tale che non esista nessun sottospazio $K \neq V$
per cui $V = H \oplus K$. Chi è H ?

Foglio bonus per i conti		
rogno bonus per i conti		

Esercizi per "Geometria e Algebra"

Prof. Marco Trombetti

(0) Si consideri il seguente sottoinsieme dello spazio vettoriale \mathbb{R}^3

$$S = \{(1,0,2), (-1,0,1), (3,0,0), (1,1,0)\}.$$

- \bullet Si provi che \mathcal{S} è linearmente dipendente.
- \bullet Si determini una combinazione lineare dei vettori di ${\mathcal S}$ con coefficienti non tutti nulli che sia uguale a (0,0,0).
- \bullet Si determini un vettore di \mathcal{S} che dipende dai rimanenti.
- ullet Si determinino due sottoinsiemi distinti di ${\mathcal S}$ che siano massimali indipendenti.
- Quanti sottoinsiemi distinti indipendenti di ordine 3 si possono estrarre da S? Quanti di ordine 2? E di ordine 1?
- (1) Si provi che nello spazio vettoriale \mathbb{R}^4 i vettori del sistema

$$S = \{(0,1,0,0), (2,2,2,1), (0,1,-1,1), (0,1,1,1)\}$$

sono linearmente indipendenti e sono un sistema di generatori per \mathbb{R}^4 . Si scriva inoltre il vettore (0,0,1,0) come combinazione lineare dei vettori di \mathcal{S} . Esistono due combinazioni lineari distinte che producono il vettore (0,0,1,0)? (Giustificare la risposta.)

(2) In \mathbb{R}^3 , considerati i sistemi di vettori

$$U_1 = \langle (0, 1, 0), (0, 0, 1) \rangle$$

$$U_2 = \langle (0, 2, 0), (0, 4, 0) \rangle$$

$$U_3 = \langle (0, -2, 2) \rangle$$

$$U_4 = \langle (1, 1, 0), (0, -2, 3), (1, -2, 3), (2, -4, 6) \rangle$$

$$U_5 = \langle (1, -1, 1), (0, 1, 1), (0, 0, 1) \rangle$$

determinare la dimensione ed una base di U_i , $U_i \cap U_j$ e $U_i + U_j$ con $i, j \in$ $\{1, 2, 3, 4, 5\}$ e $i \neq j$.

- (3) Stabilire quali dei seguenti sottoinsiemi sono sottospazi vettoriali e, in caso affermativo, determinarne la dimensione ed una base.
 - $W_1 = \{(1,0,-1,-1),(1,0,1,1),(0,1,1,0),(2,0,0,1)\} \subseteq \mathbb{R}^4$.
 - $W_2 = \langle (5,0,-3,1), (0,2,3,1), (4,1,0,0) \rangle \subseteq \mathbb{R}^4$.
 - $W_3 = \langle (0,0,0), (1,1,1), (2,2,2) \rangle \subseteq \mathbb{R}^3$.
 - $W_4 = \langle (0,0), (-1,1), (5,-5) \rangle \subseteq \mathbb{R}^2$.
 - $W_5 = \{(x_1, x_2, x_3, x_4, x_5) : x_1 x_2 x_3 = x_5 = 0)\} \subseteq \mathbb{R}^5$. $W_6 = \{(x_1, x_2, x_3, x_4) : x_1^2 + x_2 x_3 = 0)\} \subseteq \mathbb{R}^4$.

 - $W_7 = \{(x_1, x_2, x_3, x_4, x_5) : x_1 + x_2 x_3 = x_4 3x_5 = 0)\} \subseteq \mathbb{R}^5$.
 - $W_8 = \{(x_1, x_2, x_3, x_4) : x_1 x_2 = 0; x_3 + x_4 = -1)\} \subseteq \mathbb{R}^4$.
 - $W_9 = \{(x_1, x_2, x_3, x_4) : x_1 = 2x_2 x_3; x_4 = x_5 = 0\} \subseteq \mathbb{R}^4.$
 - $W_{10} = \{(x_1, x_2, x_3, x_4) : x_1^2 = x_2; x_3 + x_4 = 0)\} \subseteq \mathbb{R}^4$.

(4) In \mathbb{R}^3 , per ciascuno dei seguenti sistemi di vettori

$$S_{1} = \{(1,0,1), (0,-1,0), (0,1,1), (0,2,-2)\}$$

$$S_{2} = \{(1,0,2), (0,1,-1), (0,1,-1)\}$$

$$S_{3} = \{(0,1,1), (-1,1,1)\}$$

$$S_{4} = \{(2,2,2), (1,1,1)\}$$

$$S_{5} = \{(2,-2,1), (4,4,1), (0,0,1)\}$$

$$S_{6} = \{(2,2,3), (0,2,1), (-5,0,0)\}$$

$$S_{7} = \{(1,0,0), (1,1,2), (-1,1,5)\}$$

$$S_{8} = \{(1,1,0), (0,-2,0), (2,2,0), (2,0,0), (3,1,0)\}$$

stabilire, giustificando le risposte, se è linearmente dipendente o indipendente; se è un sistema di generatori di \mathbb{R}^3 ; se è una base di \mathbb{R}^3 ; se è possibile completarlo ad una base di \mathbb{R}^3 e, in caso affermativo, esibirne una.

(5) In \mathbb{R}^4 , per ciascuno dei seguenti sistemi di vettori

$$T_1 = \{(0,1,0,1), (2,0,-1,1), (-2,1,1,0)\}$$

$$T_2 = \{(1,0,0,2), (1,1,0,0), (0,0,1,-1)\}$$

$$T_3 = \{(1,0,1,0), (1,0,1,-1)\}$$

$$T_4 = \{(-1,0,-2,1), (0,1,-1,0), (1,0,-3,0), (0,0,1,1)\}$$

$$T_5 = \{(1,0,1,0), (0,-2,0,2), (0,0,1,2), (1,0,0,5), (1,0,-1,-1), (0,0,0,1)\}$$

stabilire, giustificando le risposte, se è linearmente dipendente o indipendente; se è un sistema di generatori di \mathbb{R}^3 ; se è una base di \mathbb{R}^3 ; se è possibile completarlo ad una base di \mathbb{R}^3 e, in caso affermativo, esibirne una.

(6) Si provi che il sottoinsieme

$$S = \{2 - x, 1 + x, x^2 + x^3, 1 - x + x^4, x^3\}$$

dello spazio vettoriale $\mathbb{R}_4[x]$ dei polinomi di grado al più 4 è linearmente indipendente ed è un sistema di generatori per lo spazio stesso. Si scriva il polinomio $1 + x^2$ come combinazione lineare dei polinomi di \mathcal{S} . Infine, descrivere il sottospazio vettoriale generato dai vettori 2-x e 1+x.

- (7) Sia $X = \{x_1, x_2, \ldots, x_t\}$ un insieme di vettori di uno spazio vettoriale finitamente generato V e sia S un sistema di generatori per V contenente m vettori. Stabilire, motivando le risposte, quali delle seguenti affermazioni sono vere e quali false.
 - Se X è linearmente indipendente, allora t > m.
 - Se |X| = |S|, allora X è linearmente indipendente.
 - \bullet Se X è linearmente indipendente, allora contiene al più m vettori.

(8) Determinare la dimensione ed una base dei sottospazi

$$U = \langle (1, 0, -1, 0), (0, 0, 0, 1), (1, 0, -1, 2) \rangle$$

e

$$V = \langle (1, 1, 2, 1) \rangle$$

di \mathbb{R}^4 e scrivere le equazioni nella base naturale. Stabilire, inoltre, se U e V sono sommandi diretti e se sono supplementari.

(9) Si considerino gli spazi vettoriali

$$V = \langle (2, 2, 4, 1, -1), (1, 1, 2, -1, 1), (0, 0, 0, 1, -1) \rangle$$

е

$$W = \langle (1, -2, 2, 0, 2), (0, 1, 0, -1, -1) \rangle.$$

Si determinino:

- \bullet le equazioni che definiscono gli spazi V e W.
- la dimensione ed una base per $V, W, V \cap W$ e V + W.
- \bullet si completi la base di V+W, determinata al punto precedente, ad una base di tutto lo spazio.
- (10) Sia V_4 uno spazio vettoriale 4-dimensionale. Stabilire, motivando le risposte, quali delle seguenti affermazioni sono vere e quali false.
 - ullet Esistono due sottospazi U e W entrambi di dimensione 3 che si intersecano in un sottospazio 1-dimensionale.
 - \bullet Se Ue Wsono due sottospazi distinti e non banali di $V_4,$ entrambi di dimensione pari, allora la loro somma è un sottospazio di V_4 di dimensione ${\bf 3}$
 - Esistono due sottospazi non banali U e W di V_4 , uno di dimensione pari e l'altro di dimensione dispari, la cui somma sia un sottospazio di dimensione 3.
- (11) Considerato lo spazio vettoriale delle matrici di ordine 2, sia U il sottospazio costituito dalle matrici A tali che $A = A^T$ (A^T è la matrice trasposta di A).
 - \bullet Si determinino la dimensione ed una base di U.
 - Si rappresenti U nella base naturale di $\mathbb{R}_{2,2}$.
 - \bullet Si determini per quali valori del parametro reale k il vettore

$$A_k = \begin{pmatrix} k-1 & 2-k \\ 2(k+1) & -1 \end{pmatrix}$$

di $\mathbb{R}_{2,2}$ appartiene a Ue per quali valori di kil vettore A_k ha componenti (1,1,2,-1)nella base ordinata

$$\Big(\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\Big).$$

(12) Nello spazio vettoriale \mathbb{R}^4 si consideri il sottoinsieme

$$U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 - x_2 = x_3 + x_4\}.$$

Si provi che U è un sottospazio e se ne calcoli la dimensione ed una base. Inoltre, si determinino, se esistono,

- un sottospazio supplementare di U in \mathbb{R}^4 ;
- \bullet un sottospazio di dimensione 2 di \mathbb{R}^4 che intersechi U in un sottospazio 1-dimensionale;
- un sottospazio di dimensione 3 di \mathbb{R}^4 che intersechi U in un sottospazio di dimensione 1;
- \bullet un sottospazio 3-dimensionale di \mathbb{R}^4 che intersechi Unel solo vettore nullo.
- (13) Determinare la dimensione ed una base del sottospazio U di $\mathbb{R}_{2,3}$ rappresentato nel riferimento naturale dalle equazioni

$$\begin{cases} x_1 - x_2 + x_3 = 0 \\ x_1 + x_4 = 0 \\ x_4 - x_5 + x_6 = 0 \end{cases}$$

Determinare

- un sottospazio 2-dimensionale V tale che $V \subset U$;
- un sottospazio W di $\mathbb{R}_{2,3}$ tale che la dimensione di W sia 2 e la dimensione dell'intersezione $U\cap W$ sia 1;
- un sottospazio H di $\mathbb{R}_{2,3}$ tale che dim H = 3 e $dim(U \cap H) = 2$.
- (14) Nello spazio vettoriale $\mathbb{R}_{2,2}$ si considerino i seguenti insiemi:

$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} \right\},$$

$$T = \left\{ \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\},$$

$$U = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathbb{R}_{2,2} : x + y - z = 0 \right\}.$$

Dimostrare le seguenti affermazioni:

- $\langle T \rangle \neq \langle S \rangle$;
- $\langle T \rangle \subseteq U$;
- $\langle S \rangle \not\subset U$.
- (15) Considerata la seguente matrice:

$$\begin{pmatrix} h & 0 & 1 & h \\ 0 & 2 & 0 & h^2 + 1 \\ 1 & 0 & h & 0 \\ 0 & 0 & 0 & h \end{pmatrix}$$

stabilire per quali valori di $h \in \mathbb{R}$ essa invertibile; ha rango 3; ha rango 2; ha rango 1.

(16) Determinare al variare del parametro reale h il rango delle seguenti matrici

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & h \\ h & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & h & 0 \\ h & 1 & 0 & 1 \\ -h & 0 & -1 & h \end{pmatrix}.$$

(17) Si provi che il sottoinsieme

$$\mathcal{S} = \left\{ \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \right\}$$

dello spazio vettoriale $\mathbb{R}_{2,2}$ delle matrici quadrate di ordine 2 è linearmente indipendente ed è un sistema di generatori. Si scriva la matrice

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

come combinazione lineare delle matrici di \mathcal{S} .

(18) Considerati i seguenti sistemi di vettori in $\mathbb{R}_{2,2}$

$$\mathcal{S} = \left\{ \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ 1 & 3 \end{pmatrix} \right\}$$

$$\mathcal{T} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

studiare i sottospazi $\langle \mathcal{S} \rangle$, $\langle \mathcal{T} \rangle$ determinandone la dimensione ed una base; completare, se possibile, i sistemi \mathcal{S} e \mathcal{T} in basi di $\mathbb{R}_{2,2}$; determinare una base di $\langle \mathcal{S} \cup \mathcal{T} \rangle$.

(19) Sia assegnato il seguente sottoinsieme di vettori di \mathbb{R}^4

$$S = \{(1, -1, 0, -1), (0, 0, 1, 0), (1, 1, 1, 1), (1, -1, 1, -1), (0, 0, 0, 1), (0, 0, 1, 0)\}.$$

Si estraggano da S i seguenti sottoinsiemi, motivando le risposte.

- Un sistema linearmente indipendente e di generatori per \mathbb{R}^4 .
- Un sistema di generatori di \mathbb{R}^4 che non sia linearmente indipendente.
- Un sistema di vettori linearmente indipendenti che non sia un sistema di generatori.
- (20) Nello spazio vettoriale $\mathbb{R}[x]$ dei polinomi a coefficienti reali nell'indeterminata x, siano

$$U = \{ p(x) \in \mathbb{R}[x] \mid p(-x) = p(x) \}$$

е

$$V = \{ p(x) \in \mathbb{R}[x] \mid p(-x) = -p(x) \}.$$

Si risponda vero o falso alle seguenti domande, motivando le risposte.

• U è un sottospazio vettoriale di $\mathbb{R}[x]$, ma V non lo è.

- $U \cap V$ è il polinomio nullo.
- $\bullet \ \mathbb{R}[x] = U \oplus V$

(Suggerimento. Sia $p(x) \in \mathbb{R}[x]$, tale polinomio si può allora scrivere come somma di un polinomio in cui figurano solo potenze pari e uno in cui figurano solo potenze dispari della incognita x).

(21) Si considerino i seguenti vettori dello spazio vettoriale $\mathbb{R}[x]$:

$$f(x) = x^5 + 2x^6 - x^8$$
, $g(x) = x^6 + 3x^8$, $h(x) = 2x^5 + 5x^6 + x^8$
 $k(x) = 2g(x) = 2x^6 + 6x^8$.

Si dica se le seguenti affermazioni sono vere o false (motivando la risposta).

- 2f(x) + g(x) h(x) è il polinomio nullo.
- f(x) e h(x) sono linearmente dipendenti.
- \bullet Ciascuno dei vettori $f(x),\,g(x)$ e h(x)può essere espresso come combinazione lineare degli altri due.
- $\{f(x), g(x), k(x)\}\$ è un sistema linearmente indipendete.
- Ciascuno dei vettori f(x), g(x) e k(x) può essere espresso come combinazione lineare degli altri due.
- Il vettore l(x) = 3k(x) può essere espresso in unico modo come combinazione lineare di f(x), g(x) e k(x).
- (22) Sia assegnato l'insieme di vettori

$$S = \{2 + x, -1 - x^2, x^4\}$$

dello spazio vettoriale $\mathbb{R}_5[x]$.

- Si determini se S è linearmente indipendente o meno. È una base per $\mathbb{R}_5[x]$?
- Si verifichi se i vettori $x^3 x^2 + 1$ e $1 + x^2$ dipendono o no dai vettori di S.
- Descrivere il sottospazio $\langle \bar{S} \rangle$ generato dagli elementi di

$$\bar{S} = \{1\} \cup (S \setminus \{2 + x\}),$$

determinarne una base ed un riferimento per il sottospazio $\langle \bar{S} \rangle$.

- Si scriva il vettore $1 + x + x^2 + x^3 + x^4$ di $\mathbb{R}_5[x]$ come combinazione lineare dei vettori di \bar{S} .
- (23) Si considerino i seguenti sottoinsiemi di vettori dello spazio vettoriale numerico \mathbb{R}^3 .

$$U_1 = \{(x, y, z) \in \mathbb{R}^3 | x + y = 0\}; \quad U_2 = \{(x, x + 1, x + 2) \in \mathbb{R}^3\};$$

$$U_3 = \langle (1,0,1), (1,0,0), (0,0,1) \rangle; \quad U_4 = \{(x,y,z) \in \mathbb{R}^3 | x+y+z=1 \}.$$

Si dica quale dei seguenti sottoinsiemi di \mathbb{R}^3 sono (e non sono) sottospazi vettoriali di \mathbb{R}^3 , motivando le risposte.

(24) Considerati i riferimenti

$$\mathcal{R} = ((1,4,1), (1,5,0), (2,5,-1))$$

ed

$$\mathcal{R}' = ((1,0,-1),(0,2,1),(2,3,-2))$$

di \mathbb{R}^3 , determiniamo le formule di passaggio da \mathcal{R} ad \mathcal{R}' .

Soluzione Parziale

Poiché

$$(1,4,1) = (1,0,-1) + 2(0,2,1) + 0(2,3,-2)$$

 $(1,5,0) = -(1,0,-1) + (0,2,1) + (2,3,-2)$

$$(2,5,-1) = 0(1,0,-1) + (0,2,1) + (2,3,-2),$$

le formule richieste sono

$$\begin{cases} x_1' = x_1 - x_2 \\ x_2' = 2x_1 + x_2 + x_3 \\ x_3' = x_2 + x_3 \end{cases}$$

Note le componenti di un vettore di \mathbb{R}^3 nel riferimento \mathcal{R} , possiamo allora conoscere mediante le formule di passaggio, le componenti dello stesso vettore nel riferimento \mathcal{R}' . Ad esempio, le componenti in \mathcal{R}' del vettore

$$(-3,2,7) = 3(1,4,1) + 2(1,5,0) - 4(2,5,-1)$$

sono

$$x'_1 = 3 - 2 = 1$$
, $x'_2 = 6 + 2 - 4 = 4$, $x'_3 = 2 - 4 = -2$;

è infatti

$$(-3,2,7) = 1(1,0,-1) + 4(0,2,1) - 2(2,3,-2).$$

(25) Determinare una base di \mathbb{R}^3 contenente il vettore $v_1 = (1,0,2)$.

Soluzione Parziale

Un vettore che non dipende da v_1 , ad esempio, il vettore (1,1,0). Il sottospazio

$$H = \langle (1,0,2), (1,1,0) \rangle$$

ha dimensione due e quindi non contiene tutti e tre i vettori della base naturale di \mathbb{R}^3 . Si vede facilmente, ad esempio, che $(1,0,0) \notin H$; il sistema

$$\{(1,0,2),(1,1,0),(1,0,0)\}$$

è dunque indipendente e costituisce quindi una base di \mathbb{R}^3 .

(26) Determinare una base di \mathbb{R}^4 contenente i vettori (2, -1, 0, 0) e (0, 1, 3, 0).

Soluzione Parziale

Il sottospazio $H = \langle (2, -1, 0, 0), (0, 1, 3, 0) \rangle$ ha dimensione due e quindi non contiene tutti e quattro i vettori della base naturale di \mathbb{R}^4 . Si vede facilmente, ad esempio, che $(1, 0, 0, 0) \notin H$. Il sistema

$$T = \{(2, -1, 0, 0), (0, 1, 3, 0), (1, 0, 0, 0)\}$$

è dunque indipendente. Il sottospazio $K = \langle T \rangle$ ha dimensione tre e pertanto non contiene tutti e quattro i vettori della base natural di \mathbb{R}^4 . Il vettore (0,0,0,1) non è in K e dunque il sistema

$$T \cup \{(0,0,0,1)\}$$

è indipendente, per cui esso è una base di \mathbb{R}^4 .

(27) Determinare una base del sottospazio

$$H = \langle (1,0,1,2), (-1,2,3,0), (3,-2,1,4), (-2,4,6,0) \rangle$$

di \mathbb{R}^4 .

Soluzione Parziale

Poiché il vettore (-2, 4, 6, 0) dipende dai rimanenti (infatti

$$(-2, 4, 6, 0) = 2(-1, 2, 3, 0),$$

allora

$$H = \langle (1,0,1,2), (-1,2,3,0), (3,-2,-1,4) \rangle.$$

Poiché (3, -2, -1, 4) dipende dai vettori (1, 0, 1, 2) e (-1, 2, 3, 0) (infatti

$$(3, -2, -1, 4) = 2(1, 0, 1, 2) - (-1, 2, 3, 0),$$

allora $H = \langle (1,0,1,2), (-1,2,3,0) \rangle$. I vettori

$$(1,0,1,2)$$
 e $(-1,2,3,0)$,

che generano H, sono indipendenti e costituiscono perciò una base di H. Ne segue che dimH=2. Osserviamo che avendo H dimensione due, due qualsiasi vettori indipendenti appartenenti ad H ne costituiscono una base. Ne segue, as esempio, che anche i sistemi

$$\{(1,0,1,2),(3,-2,-1,4)\},\$$

$$\{(1,0,1,2),(-2,4,6,0)\},\$$

$$\{(-1,2,3,0),(3,-2,-1,4)\}$$

sono basi di H.

(28) Determinare una base del sottospazio

$$W = \left\{ \begin{pmatrix} a & a-b \\ 0 & 2a \end{pmatrix}, \text{ con } a, b \in \mathbb{R} \right\}$$

di $\mathbb{R}_{2,2,\cdot}$

Soluzione Parziale

Si può scrivere

$$\begin{pmatrix} a & a-b \\ 0 & 2a \end{pmatrix} = \begin{pmatrix} a & a \\ 0 & 2a \end{pmatrix} + \begin{pmatrix} 0 & -b \\ 0 & 0 \end{pmatrix} = a \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} + b \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}.$$

Ogni elemento di W è dunque combinazione lineare delle due matrici

$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} e \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$

che, ovviamente appartengono a W. Ne segue che W coincide con il sottospazio generato da queste. Essendo inoltre le due matrici indipendenti, esse costituiscono una base di W.

(29) Determinare i pivot delle seguenti matrici:

$$A = \begin{pmatrix} 1 & 4 & 0 & -1 & 3 \\ 0 & 2 & 1 & -1 & 0 \\ 0 & 0 & 0 & 2 & 5 \end{pmatrix}$$

е

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$

(30) Determinare una matrice a gradini equivalente alla matrice

$$A = \begin{pmatrix} 1 & -1 & 0 & 2 \\ 2 & 1 & 1 & -1 \\ -3 & 2 & 1 & -2 \end{pmatrix}$$

(31) Determinare una matrice a gradini equivalente alla matrice

$$\begin{pmatrix}
0 & 2 & -1 & 2 & 5 \\
0 & 2 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 2 \\
1 & 1 & 1 & -1 & 0
\end{pmatrix}$$

(32) Determinare se la matrice

$$\begin{pmatrix} 2 & 0 & -1 \\ 4 & -2 & 3 \\ -5 & 1 & 4 \end{pmatrix}$$

è invertibile ed in caso affermativo calcolarne l'inversa.

(33) Determinare, al variare del parametro reale h, il rango della matrice

$$A_h = \begin{pmatrix} 0 & 1 & 1 & h \\ 1 & -1 & 0 & -1 \\ 1 & 0 & h^2 & 0 \end{pmatrix}$$

Posto h = 0, calcolare, se esiste, l'inversa della matrice $A = A_0 A_0^T$.

(34) Stabilire se le seguenti matrici sono invertibili e, in caso affermativo, determinarne l'inversa:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 3 & -1 & -4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

(35) Ridurre a gradini le seguenti matrici:

$$\begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 1 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} -1 & 4 & 1 \\ 1 & -1 & -1 \\ 0 & 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 3 & 5 \\ 5 & 0 & 1 & 4 \end{pmatrix} \quad \begin{pmatrix} 1 & -2 & 0 & 5 \\ 0 & 1 & 2 & -1 \\ 0 & 1 & -3 & 0 \\ 4 & 3 & 1 & 2 \end{pmatrix}$$

(36) Calcolare il determinante delle seguenti matrici:

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 2 & -2 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 3 & 5 \\ 5 & 0 & 1 & 4 \end{pmatrix} \quad \begin{pmatrix} 1 & -2 & 0 & 5 \\ 0 & -1 & 92 & -1 \\ 0 & 0 & 2 & 10 \\ 5 & 0 & 0 & 3/2 \end{pmatrix}$$

(37) Stabilire se le seguenti matrici sono invertibili e, in caso affermativo, calcolarne l'inversa:

$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & 5 \\ -3 & 1 & 0 & 0 \end{pmatrix}$$

(38) Stabilire per quali valori del parametro reale k le seguenti matrici sono invertibili:

$$\begin{pmatrix} k & 1 & -1 \\ 0 & 0 & k^2 \\ 4 & k & -1 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & -k & 0 \\ 2k & 0 & 0 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & k & k^2 & k^3 \end{pmatrix}$$

(39) Si h un parametro reale e sia A_h la seguente matrice a coefficienti reali

$$\begin{pmatrix} 1 & 1 & h \\ h & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

Si calcoli il determinante di A_h , si dica per quali valori del parametro h la matrice A_h è invertibile e si determini l'inversa in tali casi.

(40) Si calcoli, al variare del parametro reale h, il rango della seguente matrice quadrata

$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ 1 & h^2 & 1 & 0 \\ h & 0 & 0 & 0 \\ 1 & h & 1 & 0 \end{pmatrix}$$

(41) In \mathbb{R}^4 , considerati i sottospazi

$$V = \{(x, y, z, t) : y + 3t = 0\}$$

$$W = \{(x, y, z, t) : x - 2z = 0; y + t = 0\}$$

studiare i sottospazi $V,\ W,\ V\cap W$ e W+V determinandone la dimensione ed una base.

- (42) Sia f l'applicazione che associa al vettore numerico $(x, y, z) \in \mathbb{R}^3$ il vettore $(x + 2y + z, y + z) \in \mathbb{R}^2$.
 - \bullet Verificare che f è lineare, determinare una base per il kernel di fe stabilire se fè iniettiva.
 - Inoltre calcolare f(3, 4, 5) e $f^{-1}(2, 1)$.
 - Determinare la matrice associata ad f nel riferimento canonico e nel riferimento ((1,1,0),(1,0,1),(0,1,0)).
- (43) Siano

$$U_1 = \langle (1,0,0,1,0), (0,0,1,1,-1), (1,0,1,2,0) \rangle,$$

$$U_2 = \langle (1,0,0,0,2), (3,0,0,1,-1), (-5,0,0,2,2) \rangle,$$

$$U_3 = \langle (0,0,0,1,5), (0,-2,-1,1,0) \rangle$$

sottospazi di \mathbb{R}^5 . Determinare la dimensione ed una base di $U_1,\ U_2,\ U_3,\ U_1\cap U_2,\ U_1\cap U_3,\ U_2\cap U_3,\ U_1+U_2,\ U_1+U_3,\ U_2+U_3.$

(44) Nello spazio vettoriale \mathbb{R}^4 , si considerino i seguenti sottoinsiemi:

$$S = \{(0, 1, 1, 0), (0, -1, 0, 1), (0, 0, 1, 1), (0, -1, 5, 6)\},$$

$$T = \{(0, -3, 2, 0), (0, 0, 0, 1)\},$$

$$U = \{(x, y, z, t) \in \mathbb{R}^4 : y + 3t = x - 2y = z + t = 0\},$$

$$X = \{(0, -1, 1, 2), (0, 2, 3, 1)\}$$

e si determini, motivando le risposte, quali affermazioni seguenti sono vere e quali false:

$$\langle S \rangle \not\subseteq \langle X \rangle$$

$$\langle T \rangle = \langle X \rangle$$

$$\langle X \rangle = \langle S \rangle$$

$$\langle T \rangle \not\subseteq \langle X \rangle.$$

(45) Nello spazio vettoriale $\mathbb{R}_{2,2}$ si considerino i seguenti sottospazi vettoriali:

$$S = \langle \begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 5 & 2 \\ -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 4 \\ -2 & 2 \end{pmatrix} \rangle$$

 \mathbf{e}

$$T = \langle \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathbb{R}_{2,2} : x + y = y + z - t = 0 \rangle.$$

Determinare la dimensione e una base di $S,\,T,\,S\cap T$ e T+S. Stabilire per quale valore di $k\in\mathbb{R}$, la matrice

$$\begin{pmatrix} k-7 & 4 \\ -2 & -k+5 \end{pmatrix}$$

appartiene a $S \cap T$.

(46) Nello spazio vettoriale $\mathbb{R}_{2,2}$ si considerino i seguenti sottospazi vettoriali:

$$S = \langle \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix} \rangle,$$

$$W = \langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \rangle,$$

$$T = \langle \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathbb{R}_{2,2} : z + t = x = y = 0 \rangle.$$

Determinare dimensione e base di S e di W. Stabilire motivando le risposte, se le seguenti affermazioni sono vere o false: $T \neq S$; $S \neq W$; S e W sono supplementari in $\mathbb{R}_{2,2}$. Determinare dimensione e una base di $T \cap W$, T + W, $S \cap W$ e S + W. Stabilire infinite per quali valori di $k \in \mathbb{R}$, la matrice

$$\begin{pmatrix} 1+3k & 2k-1 \\ 0 & 0 \end{pmatrix}$$

appartenga a $S \cap W$.

(47) Studiare il sistema di equazioni

$$\begin{cases} hx + hz = h \\ hy = 1 \\ hx + hz = h - 1 \end{cases}$$

al variare del parametro reale h.

(48) Si studino i seguenti sistemi lineari determinandone le soluzioni in caso di compatibilità.

$$\begin{cases} 2x + y - z = 0 \\ x - 2z = -1 \\ x + y + z = 1 \end{cases} \begin{cases} 3x + 2y + 5z = -1 \\ x + y + z = -4 \\ 5x + 4y + 7z = -9 \end{cases} \begin{cases} 3x + 2y = 1 \\ 2x - y = -2 \end{cases}$$

$$\begin{cases} 2x - y = -1 \\ 4x - 2y = -2 \\ 6x - 3y = -5 \end{cases} \begin{cases} 2x - y + z = 0 \\ x + y = 1 \\ 3x + z = 1 \\ 2x + 2y = 2 \end{cases} \begin{cases} x + y + z + t - w = -1 \\ 2x + y - 2t = 0 \\ x + 2z - t = 0 \end{cases}$$

(49) Si studino i seguenti sistemi lineari al variare del parametro reale h, determinandone le soluzioni in caso di compatibilità.

$$\begin{cases} hx - y + t = 1 \\ y - z = 0 \\ x - z + t = 1 \\ hy = 1 \end{cases} \qquad \begin{cases} x + hy + z = h \\ x - hz = 1 \\ x + y + z = 1 \end{cases} \qquad \begin{cases} hx + y - hz = -2h \\ x - hy + z = -4h \\ hx + y + (h+1)z = 2h + 1 \end{cases}$$

$$\begin{cases} x - hy + z = 0 \\ x + hz = 1 \\ hy - z = h \end{cases} \begin{cases} hx + y - z = h \\ (1 - h)y - z = -h \\ hx + (2 - h)y - 2z = 0 \end{cases} \begin{cases} 2x + y + z + t = 1 \\ x + h^2y + z = h \\ hx + t = 0 \end{cases}$$

$$\begin{cases} hx + y = 2\\ 2x + y = h \end{cases}$$

(50) Si studino i seguenti sistemi lineari determinandone le soluzioni in caso di compatibilità.

$$\begin{cases} x + y - 3z = 1 \\ x + 3y + z = 4 \\ 2x + 4y - 2z = -5 \end{cases} \begin{cases} x + 2t = 2 \\ y + z - 6t = -1 \\ x + z - 3t = 2 \\ 2x + y + 2z - 7t = 3 \end{cases} \begin{cases} x - z + t = 0 \\ y + 2z = 1 \\ 3x + 4z = -2t \\ t = 0 \\ 4x + y + 5z + 4t = 2 \end{cases}$$

$$\begin{cases} x - z = 1 \\ 2x + z - t = 1 \\ -x + y + t = 0 \\ y - z + t = 1 \\ x + y + z = 1 \end{cases} \begin{cases} -x - z = 0 \\ y - z = 0 \\ 2x + y + z = -1 \\ x + 2y - z = -1 \end{cases} \begin{cases} x - y + 2z = -1 \\ -x + y - 2z + t = 1 \\ 2x - 2y + 4z = -2 \\ 2x - 2y + 4z + t = -2 \end{cases}$$

- (51) Sia S un sistema lineare di 5 equazioni in 5 incognite. Stabilire, motivando le risposte, quali delle seguenti affermazioni sono vere e quali false.
 - \bullet S è sempre un sistema determinato.
 - \bullet S può essere determinato qualche volta.
 - \bullet S ha sempre infinite soluzioni.
 - \bullet S è determinato se e solo se il rango della matrice incompleta è 5.
- (52) Stabilire per quali valori di $k \in \mathbb{R}$, il seguente sistema è compatibile, determinandone in questi casi, le soluzioni.

$$\begin{cases} (k-1)z + k^2t = 0\\ -kx + 2y + kt = 1\\ -ky + z = 1 \end{cases}$$

Risolvere il precedente sistema lineare per k = 1.

(53) Stabilire per quali valori di $k \in \mathbb{R}$, il seguente sistema è compatibile, determinandone in questi casi, le soluzioni.

$$\begin{cases} kx + z = k \\ -x + y + 2kz = 0 \\ x + z = 0 \\ (k^2 - 1)y = k + 1 \end{cases}$$

Stabilire, motivando la risposta, per quali valori di k l'insieme delle soluzioni del precedente sistema lineare è un sottospazio vettoriale di \mathbb{R}^3 . Risolvere il precedente sistema lineare per k=-1.

(54) Data l'applicazione

$$f: (x, y, z) \in \mathbb{R}^3 \mapsto (x + y, 2x + 3z, 3x + y + 3z) \in \mathbb{R}^3$$

determinare se è suriettiva, iniettiva e se il vettore (0,0,1) appartiene all'immagine di \mathbb{R}^2 tramite f. Scrivere inoltre la matrice associata ad f nel riferimento

$$\mathcal{R}' = ((1,1,0), (0,1,1), (1,1,1)).$$

(55) Sia

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

l'endomorfismo di \mathbb{R}^2 rappresentato nel riferimento $\mathcal{R}=((0,1),\,(1,1))$ dalla matrice

 $\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$.

Determinare Im(f).

Soluzione Parziale

Dalla definizione di matrice associate ad f nel riferimento \mathcal{R} segue che

$$f(0,1) = 1(0,1) + 3(1,1) = (3,4);$$

$$f(1,1) = 2(0,1) + 1(1,1) = (1,3).$$

Poiché risulta $Im(f)=f(\mathbb{R}^2)=f(\langle (1,0),(0,1)\rangle)$, segue anche (da una proposizione nota) che $\mathbb{R}^2=\langle (3,4),(1,3)\rangle=Im(f)$.

(56) Per ognuna delle seguenti matrici:

$$\begin{pmatrix} -2 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 3 & 3 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{pmatrix}$$

- calcolare autovalori e autospazi;
- stabilire se sono diagonalizzabili e, in caso affermativo scrivere un riferimento dello spazio corrispondete costituito da autovettori, una matrice che le diagonalizza ed una matrice diagonale simile ad esse;
- (bonus)¹ stabilire se sono ortogonalmente diagonalizzabili e, in caso affermativo, scrivere: un riferimento ortonormale dello spazio corrispondente costituito da autovettori, una matrice che le diagonalizza ortogonalmente e una matrice diagonale simile (e congruente) ad esse.
- (57) Stabilire per quali valori del parametro h la matrice

$$A_h = \begin{pmatrix} 3 & -3 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & h \end{pmatrix}$$

è diagonalizzabile. Trovare una base di autovettori per A_0 .

(58) (bonus) Nello spazio vettoriale euclideo standard \mathbb{R}^3 assegnati i vettori

$$\underline{u} = (k-2, k-1, 1)$$

 $^{^1{\}rm Gli}$ esercizi classificati come bonusrichiedono conoscenza di argomenti che è in dubbio se vengano affronti o meno al corso.

$$\underline{v} = (k - 3, 1, 1)$$

е

$$w = (-1, 1, 2 - k)$$

si stabilisca:

- per quali valori del parametro reale k il vettore \underline{w} appartiene a $\langle \underline{u}, \underline{v} \rangle^{\perp}$;
- \bullet per quali valori del parametro reale ki vettori \underline{w} e \underline{v} formano un angolo pari a $\pi/4;$
- per quali valori del parametro reale k risulta $\underline{u} \wedge \underline{w} = (-1, 0, -1);$
- per k=2 determinare le equazioni rappresentative di $\langle u \rangle^{\perp}$ nella base natural di \mathbb{R}^3 .
- (59) Rappresentare (parametricamente e tramite singola equazione) la retta r passante per il punto A(-2,1) e parallela al vettore $\underline{v}(4,3)$.
- (60) Rappresentare (parametricamente e tramite singola equazione) la retta r per i punti A(1, -2) e B(0, 2).
- (61) Assegnati i punti A(1,1), B(2,1) e C(1,-1), determinare quante circonferenze passano per questi tre punti e rappresentarle.

Soluzione Parziale

Essendo $\overline{AB}(1,0)$ non proporzionale a $\overline{AC}(0,-2)$, i punti non sono allineati e dunque possiamo trovare una sola circonferenza passante per essi. La circonferenza richiesta ha equazione del tipo $x^2+y^2+ax+by+c=0$, con a,b e c opportuni. Per determinare a,b e c, i impone che le coordinate dei punti A,B e C soddisfino tale equazione. Si ottiene in questo modo il sistema lineare nelle incognite a,b e c

$$\begin{cases} a+b+c = -2 \\ 2a+b+c = -5 \\ a-b+c = -2 \end{cases}$$

esso è equivalente al sistema a gradini

$$\begin{cases} a+b+c = -2 \\ b+c = 1 \\ 2c = 2 \end{cases}$$

che ha come unica soluzione la terna (-3,0,1). Un'equazione della circonferenza richiesta è quindi $x^2 + y^2 - 3x + 1 = 0$.

(62) Rappresentare la retta r tangente alla circonferenza di equazione $x^2+y^2=1$ nel punto $P(\sqrt{2}/2,\sqrt{2}/2)$.

Soluzione Parziale

La circonferenza assegnata ha centro nell'origine e raggio 1, per cui la retta

r è la retta per P ortogonale al vettore $\overline{OP}(\sqrt{2}/2,\sqrt{2}/2).$ Si ha quindi che r è rappresentata dal sistema parametrico

$$\begin{cases} x = \sqrt{2}/2 - t \\ y = \sqrt{2}/2 + t \end{cases}$$

o, equivalentemente, dall'equazione $x+y-\sqrt{2}=0.$

(63) Rappresentare la retta r' per il punto A(5,1,-3) parallela alla retta

$$\begin{cases} x = t \\ y = 1 + 2t \\ z = -t \end{cases}$$

Soluzione Parziale

Possiamo scegliere come numeri direttori di r' la terna (1, 2, -1) di numeri direttori di r. Una rappresentazione parametrica di r' è allora

$$\begin{cases} x = 5 + t \\ y = 1 + 2t \\ z = -3 - t \end{cases}$$

(64) Considerata la retta r rappresentata da

$$\begin{cases} x = 1 - 3t \\ y = 2 \\ z = t \end{cases},$$

determinare due rette per l'origine ortogonali ad r.

Soluzione Parziale

Poiché (-3,0,1) è una terna di numeri direttori di r, allora una retta avente come numeri direttori (l,m,n) è ortogonale ad r se e solo se (l,m,n)·(-3,0,1)=0, ovvero -3l+n=0. Ad esempio,

$$\begin{cases} x = t \\ y = 0 \\ z = 3t \end{cases}$$

е

$$\begin{cases} x = 2t \\ y = t \\ z = 6t \end{cases}$$

sono due rette distinte per O entrambe ortogonali ad r.

(65) Determinare la distanza del punto A(1,2,0) della retta r rappresentata dalle equazioni

$$\begin{cases} x - y + 3 = 0 \\ 4x - z + 9 = 0 \end{cases}$$

I	Nome e Cognome (leggibili):
1	Matricola:

Geometria e Algebra Prova scritta 27-06-2022

Punteggio: ____ /32

Prof. Marco Trombetti

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

Esercizio 1 (6 punti)			
Fornire un esempio di applicazione lineare f tale che $\operatorname{Ker}(f) = \langle (1,0,1) \rangle$.			

Esercizio 2 (5 punti) Studiare la diagonalizzabilità della matrice	$A = \begin{pmatrix} 2 & 3 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$

	$\begin{cases} x_1 + x_2 \\ x_1 + 2x_2 \\ x_1 + 2x_2 \end{cases}$	$+5x_3 + x_4 = 0$ $2 + 10x_3 = 0$ $2 + 10x_4 = 0$		
er questo genere di sistemi si è s	studiato un metodo par	rticolare di risoluzione	. Quale? e quali sono a	allora le soluzioni?

Esercizio 4 (4 punti)
Sia $2x + 3y + 1 = 0$ una retta del piano. Rappresentarla in forma parametrica e trovare l'equazione di una retta perpendicolare passante per il punto $(1,0)$.

	f:(x,y)	$(y,z) \in \mathbb{R}^3 \mapsto (\lambda x^2)$	$x^2 + y, \lambda z, (\lambda^2 + 1)y$	$)\in\mathbb{R}^{3}.$	
eterminare per quali	valori di λ la funzio	one è 1) lineare; 2) iniettiva; 3) surie	ettiva.	

Determinare una base per $\langle (1,2,3), (0,0,1) \rangle \cap \langle (0,1,0), (8,8,8) \rangle$					

Esercizio 7 (3 punti)
Dimostrare la formula per le coordinate del punto medio del segmento nel piano. Dare la definizione di distanza tra insiemi nel piano.

Nome e Cognome	(leggibili):
Matricola:	

Geometria e Algebra (Prova scritta 18-07-2022)

Punteggio: ____ /32

Prof. Marco Trombetti

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

Cosa vuol dire matrici simili? Dimostrare che la similitudine è una relazione d'equivalenza. Le seguenti matrici

$$\begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 0 \\ 3 & -2 \end{pmatrix}$$

sono simili?

Esercizio 2 (5 punti) Studiare la diagonalizzabilità della matrice	$A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 2 & 2 \\ 1 & 0 & 4 \end{pmatrix}.$

$\{a^2x^2 + bx + c \mid a, b, c \in \mathbb{R}\};$	(2) $\{(a^2 - b^2)x^2 + bx + c \mid a, b, c \in \mathbb{R}\};$	(3) $\{(a^2 - b^2)x^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}$

Esercizio 4 (4 punti)
Sia $2x + 3y + 2z = 0$ una piano dello spazio. Rappresentarlo in forma parametrica e trovare la forma parametrica di una retta perpendicolare passante per il punto $(1,0,0)$.

$f:(x,y,z)\in\mathbb{R}^3\mapsto (y,\lambda z+\lambda,(\lambda^2+1)y)\in\mathbb{R}^3.$	Esercizio 5 (6 punti)		
	Sia λ un parametro reale. Si consideri la seguente applicazione lineare:		
eterminare per quali valori di λ la funzione è lineare.	$f:(x,y,z)\in\mathbb{R}^3\mapsto (y,\lambda z+\lambda,(\lambda^2+1)y)\in\mathbb{R}^3.$		
	Determinare per quali valori di λ la funzione è lineare.		

Nome e Cognome	(leggibili):
Matricola:	

Geometria e Algebra (Prova scritta 12-09-2022)

Punteggio: ____ /32

Prof. Marco Trombetti

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

Esercizio 1 (6 punti)

Dare la definizione di determinante. Per quale valore del parametro t la matrice

$$\begin{pmatrix} 2 & t & 1 & 5 \\ t & 2 & 0 & 0 \\ t+2 & 0 & 1 & 0 \\ 0 & t & t & 0 \end{pmatrix}$$

ha determinante 0?

$\{a^2x^2 + bx + c \mid a, b, c \in \mathbb{R}\};$	(2) $\{(a^2 - b^2)x^2 + bx + c \mid a, b, c \in \mathbb{R}\};$	(3) $\{(a^2 - b^2)x^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}$

Esercizio 4 (4 punti)
Sia $2x + 3y + 2z = 0$ una piano dello spazio. Rappresentarlo in forma parametrica e trovare la forma parametrica di una retta perpendicolare passante per il punto $(1,0,0)$.

Esercizio 5 (6 punti) Dare la definizione di riferimento cartesiano ortogonale monometrico. Quali se di riferimento ortogonali monometrici (dimostrare)?	ono le formule di passaggio tra due sistemi

Esercizio 6 (5 pun						
Cos'è un autospazio? controesempio)	relativi ad	autovalori	distinti sono	in somma diretta?	' (se sì, dimostrare	e, altrimenti

Nome e Cognome	(leggibili):
Matricola:	

Geometria e Algebra (Prova scritta 17-10-2022)

Punteggio: ____ /32

Prof. Marco Trombetti

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

Esercizio 1 (6 punti)

Dare la definizione di determinante. Per quale valore del parametro t la matrice

$$\begin{pmatrix} 2 & 0 & -1 & 0 \\ t & 2 & 0 & 0 \\ t^2 + 2 & 0 & 1 & 0 \\ 0 & t & t & 0 \end{pmatrix}$$

è diagonalizzabile?

$\{a^2x^2 + bx + c \mid a, b, c \in \mathbb{R}\};$	(2) $\{(a^2 - b^2)x^2 + bx + c \mid a, b, c \in \mathbb{R}\};$	(3) $\{(a^2 - b^2)x^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}$

Esercizio 4 (4 punti)
Sia $2x + 3y + 2z = 0$ una piano dello spazio. Rappresentarlo in forma parametrica e trovare la forma parametrica di una retta perpendicolare passante per il punto $(1,0,0)$.

Esercizio 5 (6 punti) Dare la definizione di riferimento cartesiano ortogonale monometrico. Quali sono le di riferimento ortogonali monometrici (dimostrare)?	formule di passaggio tra due sistemi
,	

re la defini	(5 punti) izione di moltep	licità geometrica	. Che rapport	o c'è con la mo	lteplicità algel	orica? (dimostr	are)

 		 nonometrico ad un a

Nome e Cognome	(leggibili):
Matricola:	

Geometria e Algebra (Prova scritta 23-01-2023)

Punteggio: ____ /32

Prof. Marco Trombetti

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

Esercizio 1 (6 punti)

Dare la definizione di determinante. Per quale valore del parametro t la matrice

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ t & 1 & 0 & 0 \\ t^2 + 2 & 0 & 1 & 0 \\ 0 & t & t & 1 \end{pmatrix}$$

è diagonalizzabile?

Esercizio 2 (5 punti) Si consideri la matrice $A = \begin{pmatrix} 4 & 0 & 1 & 0 & 1 \\ 2 & 2 & 2 & 1 & 0 \\ 1 & 0 & 4 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$ Quali sono dominio e codominio della funzione F_A ? La funzione F_A è iniettiva? suriettiva?
$A = \begin{pmatrix} 4 & 0 & 1 & 0 & 1 \\ 2 & 2 & 2 & 1 & 0 \\ 1 & 0 & 4 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$

	sottospazi vettoriali di $\mathbb{R}[x]$, che dimensi	
$\{(a^2+b)x+c a,b,c \in \mathbb{R}\};$	(2) $\{(a^2 - b^2)x^2 + bx + c \mid a, b, c \in \mathbb{R}\};$	(3) $\{(a^2 - b^2)x^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}$

Esercizio 4 (4 punti)
Sia $2x + 3y + 2z = 1$ una piano dello spazio. Rappresentarlo in forma parametrica e trovare la forma parametrica di una retta perpendicolare passante per il punto $(1,0,0)$.

Esercizio 5 (6 punti)
Siano $(1,0,0)$ e $(0,0,1)$ punti dello spazio. Determinare il luogo geometrico dei punti equidistanti da questi due.

Esercizio 6 (5 punti)
Un endomorfismo è diagonalizzabile se è solo se ammette una base di autovettori (dimostrare)

 ormule di passaggio		

Nome e Cognome	(leggibili):
Matricola:	

Geometria e Algebra (Prova scritta 17-02-2023)

Punteggio: ____ /32

Prof. Marco Trombetti

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

Esercizio 1 (6 punti)

Per quale valore del parametro λ la matrice

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ \lambda & 1 & 0 & 0 \\ \lambda^2 + 2 & 0 & 1 & 0 \\ 0 & \lambda & \lambda & \lambda \end{pmatrix}$$

Esercizio 2 (5 punti)
Sia $f:V\longrightarrow W$ una applicazione lineare tra i due spazi vettoriali arbitrari V e W . Siano \mathcal{R} e \mathcal{R}' rispettivamente un riferimento di V e di W . Cos'è la matrice associata ad f nei riferimenti $\mathcal{R}, \mathcal{R}'$? Fare un esempio concreto di una funzione f per cui $V=\mathcal{R}$ e $W=\mathcal{R}^2$ (scegliere due riferimenti diversi da quelli canonici e calcolare la matrice associata).

	ospazi vettoriali di $\mathbb{R}[x]$, che dimensione	
$) \{ (a^2 + b + c)x + c \mid a, b, c \in \mathbb{R} \};$	(2) $\{(a^2 - b^2)x^2 + bx + c \mid a, b, c \in \mathbb{R}\};$	(3) $\{(a^2 - b^2)x^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}$

Esercizio 4	(4 punti)					
Siano $2x + 3y$ parametrica)?	y + 2z = 1 e	2x + 3y +	-z = 0 du	e piani dello spazio	. Qual è la loro intersezione	(descriverla in forma

T (2 (2 (2))	
Esercizio 5 (6 punti)	
Siano $A = (1,0,0)$ e $B = (0,0,1)$ punti dello spazio.	Determinare due rette distinti perpendicolari alla retta passante
per i punti A e D.	

Esercizio 6 (5 punti)
Se un endomorfismo ammette tutti autovalori reali e distinti allora è diagonalizzabile. Se la precedente affermazione è vera dimostrarla, altrimenti fornire un controesempio.

 ormule di passaggio		

Nome e Cognome (leggibili):
Matricola:

Geometria e Algebra (Prova scritta 20-03-2023)

Punteggio: ____ /32

Prof. Marco Trombetti

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

Esercizio 1 (6 punti)

Per quale valore del parametro λ la matrice

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ \lambda^2 + 2 & 0 & 1 & 0 \\ 0 & \lambda & \lambda & \lambda \\ \lambda & 1 & 0 & 0 \end{pmatrix}$$

Esercizio 2 (5 punti) Sia $f: V \longrightarrow W$ una applicazione lineare tra i due spazi vettoriali arbitrari V e W . Siano \mathcal{R} e \mathcal{R}' rispettivamente un riferimento di V e di W . Cos'è la matrice associata ad f nei riferimenti $\mathcal{R}, \mathcal{R}'$? Se la matrice associata presenta una riga
tutta nulla, cosa possiamo affermare riguardo l'iniettività o suriettività della funzione?.

			i di $\mathbb{R}[x]$, che dimensione han		
1) $\{(a^2+b+c^2)x+c^2\}$	$-a^2 \mid a, b, c \in \mathbb{R}\};$	(2) $\{(a^2 -$	$(-b^2)x^2 + bx + c \mid a, b, c \in \mathbb{R}$;	(3) $\{(a^2 -$	$(-b^2)x^2 + cx + d \mid a, b, c, d \in \mathbb{R}$

Esercizio 4 (4 punti)			
Sia π : $2x + 3y + 2z = 1$ un piano e r :	$\begin{cases} x = t \\ y = 0 \\ z = 1/2 - 1t \end{cases}$	una retta.	Qual è la loro intersezione?

Esercizio 5 (6 punti)
Siano $A = (1,0,0)$ e $B = (0,0,1)$ punti dello spazio. Determinare tre rette distinte perpendicolari alla retta passante per
i punti A e B.

Esercizio 6 (5 punti)
Se un endomorfismo ammette tutti autovalori reali e distinti allora è diagonalizzabile. Se la precedente affermazione è vera dimostrarla, altrimenti fornire un controesempio.

Nome e Cognome	(leggibili):
Matricola:	

Geometria e Algebra (Prova scritta 26-06-2023)

Punteggio: ____ /32

Prof. Marco Trombetti

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

Esercizio 1 (6 punti)

Per quale valore del parametro λ la matrice

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ \lambda^2 + 2 & 0 & 1 & 0 \\ 0 & 0 & \lambda & 0 \\ \lambda & \lambda & \lambda & 1 \end{pmatrix}$$

$\int 2x + 3y + 5z + t = 0$					
	$\begin{cases} 2x + 3y + 5z + t = 0 \\ 2x + 6y + z + t = 0 \\ x + y + z + t = 0 \end{cases}$				
	x + y + z + t = 0				

(3 punti) enti insiemi sono s	sottospazi	vettoriali di	$\mathbb{R}[x]$, che dimer	nsione hanno nel caso lo fossero?
				(3) $\{a^3x^2 + b^6x + c^7 \mid a, b, c, d \in \mathbb{R}\}$

Esercizio 4 (4 punti)	_
Sia π : $2x + 3y + 1z = 1$ un piano e r : $\begin{cases} x = t \\ y = 0 \\ z = 1/2 - 1t \end{cases}$ una retta. Qual è la loro intersezione? Scrivere la retta r in	L
forma ordinaria.	
	-

Esercizio 5 (6 punti)
Siano $A = (1, 0, 0)$ e $B = (1, 1, 1)$ punti dello spazio. Determinare tre rette distinte perpendicolari alla retta passante per i punti $A \in B$.
<u>i</u> punti $A \in B$.

serminare 4 sottospazi di \mathbb{R}^2	ad intersezione triviale a	ι due a due. Fannno pro	odotto diretto?	

J T	licazione lineare. dim	(1)) (dimostra	

Nome e Cognome (leggibili):	
Matricola:	Punteggio: $__$ /32

Geometria e Algebra (Prova scritta 24-07-2023)

Prof. Marco Trombetti

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

Esercizio 1 (6 punti)

Per quali valori del parametro λ , l'endomorfismo

$$f:(x,y,z,t)\in\mathbb{R}^4\mapsto (x-z,\lambda^2+2+y,\lambda y,\lambda x+\lambda y+\lambda z+t)\in\mathbb{R}^4$$

Risolvere il seguente sistema lineare utilizzando (solo ed esclusivamente) il metodo del sistema omogeneo associato $(2m + 2n + 5n + t - 1)$	
	$\begin{cases} 2x + 3y + 5z + t = 1\\ 2x + 6y + z + t = 2\\ x + y + z + t = 3 \end{cases}$
	$\begin{cases} 2x + 3y + z + t - 2 \\ x + y + z + t = 3 \end{cases}$

Esercizio 3 (3 punti) Sia $f: \mathbb{R} \to \mathbb{R}$ un endomorfismo. Fornire un esempio di un autovettore di f .			

Esercizio 4 (4 punti)	
Sia π : $2x + 3y + 1z = 1$ un piano e r : $\begin{cases} x = t \\ y = 1 + t \\ z = 1/2 - 1t \end{cases}$ forma ordinaria.	una retta. Qual è la loro intersezione? Scrivere la retta r in
iorma ordinaria.	

Esercizio 5 (6	punti)
Siano $A = (1, 0, 0)$ da $A \in B$.	punti) e $B=(1,1,1)$ punti dello spazio. Determinare l'equazione del luogo geometrico dei punti equidistanti

Esercizio 6 (5 punti) Qual è la dimensione della somma diretta di due sottos	spazi? Dimostrare la formula.	

Esercizio 7 (3 punti)	
La matrice di passaggio è invertibile? Se sì dimostrare, altrimenti fornire un controesempio.	-