Exercice 1:

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 t^n \sin(\frac{t\pi}{2}) dt$.

- 1. Calculer I_0 et I_1 .
- 2. Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante. Est-ce que (I_n) est convergente?
- 3. (a) Pour tout $n \in \mathbb{N}$, justifier que $\forall t \in [0,1]$, $0 \le t^n \sin(\frac{t\pi}{2}) \le t^n$.
 - (b) En déduire : $\forall n \in \mathbb{N}, 0 \leq I_n \leq \frac{1}{n+1}$ puis déterminer la limite de (I_n) .
- 4. (a) A l'aide de deux intégrations par parties, établir : $\forall n\in\mathbb{N},\ I_n=\tfrac{1}{n+1}-\tfrac{\pi^2}{4(n+1)(n+2)}I_{n+2}$
 - (b) Quelle est la limite de nI_n lorsque n tend vers $+\infty$?

Exercice 2:

- 1. Soit $y \in]0,1[$. Étudier les variations de la fonction $f: x \mapsto (y-1)\ln(x) + \ln(x+y)$ sur l'intervalle]0,1[.
- 2. Montrer que f(x) > 0 pour tout $x \in]0,1[$.
- 3. Montrer: $\forall x \in]0,1[, \forall y \in]0,1[, x^y > \frac{x}{x+y}]$.
- 4. En déduire : $\forall x \in [0, 1[, \forall y \in]0, 1[, x^y + y^x > 1]$.

Exercice 3:

Les deux questions 1 et 2 ci-dessous sont indépendantes :

- 1. (a) Étudier les variations de $f: x \mapsto x^{\frac{1}{x}}$ sur \mathbb{R}_+^* .
 - (b) En déduire l'entier naturel n non nul tel que $\sqrt[n]{n}$ est maximal.
- 2. Soit $(x, y) \in]0, +\infty[^2]$. Pour tout réel t non nul, on pose

$$M_t(x,y) = \left(\frac{x^t + y^t}{2}\right)^{\frac{1}{t}}.$$

Pour tout réel t, on définit également g(t) par :

$$g(t) = \ln\left(\frac{x^t + y^t}{2}\right).$$

- (a) Justifier que g est dérivable sur $\mathbb R$ et calculer g'(t) pour tout réel t.
- (b) Rappeler la définition du nombre dérivé q'(0).
- (c) En déduire :

$$\lim_{t \to 0} M_t(x, y) = \sqrt{xy}.$$