实验报告

实验名称(多线程 FFT 程序性能分析和测试)

201608010627 智能 1602 任小禹

实验目标

测量多线程 FFT 程序运行时间,考察线程数目增加时运行时间的变化。

实验要求

- 采用 C/C++编写程序,选择合适的运行时间测量方法
- 根据自己的机器配置选择合适的输入数据大小 n, 保证足够长度的运行时间
- 对于不同的线程数目,建议至少选择1个,2个,4个,8个,16个线程进行测试
- 回答思考题,答案加入到实验报告叙述中合适位置

实验内容

多线程 FFT 代码

多线程 FFT 的代码。

该代码采用了pthread 库来实现多线程,其中

POSIX 线程(POSIX threads),简称 Pthreads,是线程的 POSIX 标准。该标准定义了创建和操纵线程的一整套 API。在类 Unix 操作系统(Unix、Linux、Mac OS X 等)中,都使用 Pthreads 作为操作系统的线程。

pthread_t:线程ID

pthread_attr_t:线程属性

pthread_mutex_t 互斥锁

pthread_cond_t: 条件变量的设定

pthread_create(): 创建一个线程

pthread_attr_init():初始化线程的属性

pthread_attr_destroy():删除线程的属性

pthread_mutex_init() 初始化互斥锁

```
pthread_mutex_destroy() 删除互斥锁
```

pthread_mutex_lock(): 占有互斥锁(阻塞操作)

pthread_mutex_trylock(): 试图占有互斥锁(不阻塞操作)。即,当互斥锁空闲时,将占有该锁;否则,

立即返回。

pthread_mutex_unlock(): 释放互斥锁

pthread_cond_init(): 初始化条件变量

pthread_cond_destroy(): 销毁条件变量

pthread_cond_signal(): 唤醒第一个调用 pthread_cond_wait()而进入睡眠的线程

pthread_cond_wait(): 等待条件变量的特殊条件发生

多线程 FFT 程序性能分析

通过分析多线程 FFT 程序代码,可以推断多线程 FFT 程序相对于单线程情况可达到的加速比应为: N (N 为线程数)

根据阿姆达尔定律:

S=1/(1-a+a/n),其中,a 为并行计算部分所占比例,n 为并行处理结点个数。

根据我们的代码主函数:

关键部分是: Tranform2D 转化函数, 我们在这里创建多个线程。1-a->0 时, s->N。

测试

测试平台

在如下机器上进行了测试:

部件 配置 备注

CPU core i7-8550U 内存 DDR4 8GB

操作系统 Ubuntu 18.04 LTS

测试记录

多线程 FFT 程序的测试参数如下:

参数 取值 备注

数据规模 1024

线程数目 1,2,4,8,16,32

多线程 FFT 程序运行过程的截图如下:

FFT 程序的输出

使用 perf 工具对程序的时间进行追踪:

1 thread

Performance counter stats for './threadDFT2d':				
3788.490910	task-clock (msec)	# 1.555 CPUs utilized		
32	context-switches	# 0.008 K/sec		
2	cpu-migrations	# 0.001 K/sec		
4,245	page-faults	# 0.001 M/sec		
14,319,800,474	cycles	# 3.780 GHz		
35,581,823,360	instructions	# 2.48 insn per cycle		
7,056,415,023	branches	# 1862.593 M/sec		
7,729,628	branch-misses	# 0.11% of all branches		
2.436714920	seconds time elapsed			

2 threads

```
Performance counter stats for './threadDFT2d':
  3970.671726 task-clock (msec) # 1.939 CPUs utilized
             context-switches
                                 # 0.011 K/sec
        43
                             # 0.001 K/sec
             cpu-migrations
         4
      4,254 page-faults
                                 # 0.001 M/sec
14,609,783,306 cycles
                           # 3.679 GHz
36,738,814,884 instructions # 2.51 insn per cycle
7,342,488,641 branches
                                 # 1849.180 M/sec
                                 # 0.11% of all branches
   7,803,144 branch-misses
  2.047718691 seconds time elapsed
```

4 threads

Performance counter stats for './threadDFT2d':				
5744.246121	task-clock (msec)	# 2	2.841	CPUs utilized
59	context-switches	# (0.010	K/sec
0	cpu-migrations	# (9.000	K/sec
4,272	page-faults	# (9.744	K/sec
19,842,244,433	cycles	# 3	3.454	GHz
46,403,741,105	instructions	# 2	2.34	insn per cycle
9,758,551,753	branches	# 1698	8.839	M/sec
7,809,049	branch-misses	# (0.08%	of all branches
2.021960535	seconds time elapsed			

8 threads

16 threads

Performance counter s	tats for './threadDFT2d':			
18563.395183	task-clock (msec)	#	5.575 CPUs utilized	
2,720	context-switches	#	0.147 K/sec	
77	cpu-migrations	#	0.004 K/sec	
4,376	page-faults	#	0.236 K/sec	
61,564,175,502	cycles	#	3.316 GHz	
115,992,931,151	instructions	#	1.88 insn per cycle	
27,156,978,626	branches	# 1	1462.932 M/sec	
8,380,017	branch-misses	#	0.03% of all branches	
3.329624429 seconds time elapsed				
Performance counter stats for './threadDFT2d':				
15098 268494	task-clock (msec)	#	5 182 CPUs utilized	

Performance counter stats for './threadDFT2d':				
15098.268494	task-clock (msec)	# 5.182 CPUs utilized		
1,812	context-switches	# 0.120 K/sec		
29	cpu-migrations	# 0.002 K/sec		
4,309	page-faults	# 0.285 K/sec		
49,947,575,707	cycles	# 3.308 GHz		
92,489,139,085	instructions	# 1.85 insn per cycle		
21,281,366,008	branches	# 1409.524 M/sec		
8,332,226	branch-misses	# 0.04% of all branches		
2.913862465 seconds time elapsed				

32 threads

分析和结论

Performance counter stats for './threadDFT2d':				
33047.742327	task-clock (msec)	#	6.352	CPUs utilized
6,841	context-switches	#	0.207	K/sec
203	cpu-migrations	#	0.006	K/sec
4,510	page-faults	#	0.136	K/sec
109,499,056,883	cycles	#	3.313	GHz
211,787,893,193	instructions	#	1.93	insn per cycle
51,103,464,085	branches	# 15	46.353	M/sec
8,867,026	branch-misses	#	0.02%	of all branches
5.202492829	seconds time elapsed			

分析和结论

从测试记录来看,FFT 程序的执行时间随线程数目增大,先减小后增大,其相对于单线程情况的加速比如图:

线程数	运行时间(s)	理论加速比	加速比
1	2.44	1	1
2	2.05	2	2.38
4	2.02	4	4.83
8	2.91	8	6.71
16	3.33	16	11.72
32	5.20	32	15.02

思考题

1. pthread 是什么?怎么使用?

POSIX 线程是 POSIX 的线程标准,定义了创建和操纵线程的一套 API,定义了一套 C 语言的类型、函数与常量,它以 pthread.h 头文件和一个线程库实现。

Pthreads API 中大致共有 100 个函数调用,全都以"pthread_"开头,并可以分为四类:

- 线程管理,例如创建线程,等待(join)线程,查询线程状态等。
- 互斥锁(Mutex): 创建、摧毁、锁定、解锁、设置属性等操作
- 条件变量(Condition Variable): 创建、摧毁、等待、通知、设置与查询属性等操作
- 使用了互斥锁的线程间的同步管理
- 2. 多线程相对于单线程理论上能提升多少性能? 多线程的开销有哪些?

理论上 N 个线程是单线程性能的 N 倍,多线程的开销有线程的创建和线程上下文切换,线程越多,其这两类开销越多。

3. 实际运行中多线程相对于单线程是否提升了性能?与理论预测相差多少?可能的原因是什么?我们可以看到,多线程相对于单线程的性能先提升后减弱,在我的测试环境下,于4线程达到最大的加速比,以后性能逐渐减弱,8线程与理论值相差不多,32线程的加速比比理论值一半还低,其性能甚至低于单线程的性能。分析可知,首先的原因是多线程有一定的开销,线程的创建和上下文切换都需要一定时间,而且随着线程数增多,其开销也越来越大。还有机器环境的问题,我的机器是四核八线程的,所以线程数过多时,处理器也无法立即处理,这也就增加了运行时间。所以线程数很多时反倒性能不如单线程。