

DataFlix

Data management for streaming

Meet the Producers

RAFFI MANNARELLI

VICTORIA LIU

SIMRAN KAUR

AGENDA

Project Overview 01 Business Stakeholders 02 Data Source 03 Data Strategy & Stack 04 NoSQL Pipeline 05 Results/Dashboarding 06 Conclusion and Next Steps 07

Stakeholders 02 Data Source 03 Data

Strategy & Stack 04 NoSQL Pipeline 05

Results/Dashboarding 06 Conclusion &

01

Project Overview

Data and Data tools

- We look at how data is generated, stored and used.
- What are the factors that decide how and what to data use?
- User privacy and other factors

Pipelines

- Our data stack and the reasons for our choices
- Overview of how the **data flows** within the organization

Analytics and beyond

- · Why do we need to collect and maintain data
- What **business value** is derived from the metrics
- What **changes** can we propose based on our findings of the data

Next steps

- Other use-cases or data strategies used in a streaming service
- · The future of analytics and data

Stakeholders 02 Data Source 03 Data

Strategy & Stack 04 NoSQL Pipeline 05

Results/Dashboarding 06 Conclusion &

Stakeholders

VIDEO PLATFORM TEAM

Role: Develops and manages the core technology behind video streaming.

Data Use: Utilizes 'PlayEvents' and 'BufferTime' from the data to optimize the video player stack, ensuring smooth streaming with minimal buffering.

SUBSCRIPTION TEAM ----

Role: Oversees subscriber management and service access control.

Data Use: Leverages
'Subscriptions' data to manage
user subscriptions effectively,
tracking start and end dates, as
well as monitoring subscription
statuses for renewals or
cancellations.

ENGAGEMENT TEAM

Role: Focuses on maintaining and increasing viewer engagement.

Data Use: Analyzes 'PauseEvents',
'StartEvents', and 'StopEvents' to
understand viewing patterns,
helping to create targeted
content recommendations and
improving overall user
engagement with the platform.

Stakeholders 02 <u>Data Source 03</u> Data

Strategy & Stack 04 NoSQL Pipeline 05

Results/Dashboarding 06 Conclusion &

Data Source

DATA CREATION

The dataset we used was a fabricated representation structured to simulate actual user interaction analytics within a streaming service application such as Netflix or Hulu etc.

COMPOSITION

- Video Playback Events: Details of video play, pause, buffer and error instances and type including session IDs and timestamp.
- User Subscriptions: Subscription activity, covering the lifecycle from start to end date, with subscription types
- Recommendations: Data on content suggested to users, aligned with the algorithmic approach.
- CMS: Data related to the content, Language, rating, etc with ContentID as the key

Stakeholders 02 Data Source 03 Data

Strategy & Stack 04 NoSQL Pipeline 05

Results/Dashboarding 06 Conclusion &

Data Stack & Strategy

Azure for Data Storage

Cost-Effective: Offers a range of options that fit various budgets without compromising on quality.xyz

High Performance: Provides rapid execution speeds and robust parallel computing capabilities.

Power BI for Dashboarding

Intuitive Interface: Power BI's user-friendly design makes it easy to create and share dashboards.

Integrated Analytics: Seamlessly integrates with Azure for consistent data analysis and reporting.

Azure Cosmos for NoSQL

Flexible Data Model: Schema-less architecture allows for the storage and combination of various data types, ideal for handling streaming data.

Data Stack & Strategy

Main keywords

What is the motivation?

Insights at large a scale
Enhancing Product performance
User delight and retention

What are the benefits?

Excellent user experience
Predictive analytics
Targeted marketing

What are the risks?

Content piracy

Managing personal & payment data

Stakeholders 02 Data Source 03 Data

Strategy & Stack 04 NoSQL Pipeline 05

Results/Dashboarding 06 Conclusion &

NoSQL Pipeline

Cosmos DB Highlights

SCALABILITY

Designed for horizontal scaling.

Easy to handle more traffic and larger data sizes by distributing the load across multiple servers

MULTI-MODEL SUPPORT

Schema-less. Flexible data storage of multiple data types including document, key-value, graph, and column-family.

INDEXING & QUERYING

Automatically indexes all data without requiring explicit index management. Enable faster data retrieval through sql-like querying.

LOW LATENCY

It supports replicating data across multiple Azure regions, ensuring low-latency access to data regardless of where users are located.

COST-EFFECTIVENESS

Avoid continuous server operation, even when the workload is low or inconsistent. Pay only for the resources used.

AGILE DEVELOPMENT

The schema-less nature and the serverless databases enable faster development cycles and agility.

Stakeholders 02 Data Source 03 Data

Strategy & Stack 04 NoSQL Pipeline 05

Results/Dashboarding 06 Conclusion &

PowerBI Dashboard

\$999.51

Revenue

60

Content

100

Subscribers

New Subscribers

43

Cancellations

Error Analysis Dashboard

22# Buffers

Most of the users have opted for either a Premium or a Standard membership

Device Type Distribution by Users

There is almost equl distribution of Device Type amongst users

Stakeholders 02 Data Source 03 Data

Strategy & Stack 04 NoSQL Pipeline 05

Results/Dashboarding 06 Conclusion &

Steps 07

Conclusion & Next Steps

Takeaway 1

Implemented a Database
 Strategy and worked on full
 data pipeline from designing
 Architecture till the final
 dashboard

Takeaway 2

- Business needs define what Data to process
- Data then, gives business insights or identifies problems
- This virtuous cycle is at the heart of the BigData revolution

Next Steps

 With LLMs generating complex data such as natural language interactions, our flexible service infrastructure is equipped to adjust and interpret these advanced data streams.

Thank you!