UMA-Serie 6

3a zeigen: IP(N) | > IN|:

Dies kann millels Diagonalisierung und Kontradiktion gezeigt werden.

Angenommen, P(IN) sei abzahlban. Lann existient eine

Orjektive Funktion f: IN - P(IN).
P(IN) enthalf alle Untermengen von IN, also mun
jede natürliche Zahl i eIN mittels f auf eine salche
Untermenge Mi abzehildet werden können.

Es kann clie falgende Untermenge konstruient werden:

M= ZiEIN li& Mig

ld.h. Menthalt i g.d.w i nicht in 14; enthalten ist. Also exestient koin i EIN mit f(i) = M, da i genau dann in Menthalten ist, wenn es nicht in Menthalten ist und umgekehat. Mist also verschieden von allen M: Somit gift es keine bijektive Funktion f: IN - P(IN) und damit ist P(IN) überabzählbar.

a) TUV ist die Nereinigung der Teilmengen Tund V von IN x IN, enthalf also alle Elemente (x, y), wohel x ein Teiler oder Nieffaches von y ist. TUV = { (x,y) | x ist ein Nielfaches von y V

x ist ein leiler Nony. 3. () In Venthalf alle Elemente aus INXIN für die gilt: x. ist ein Teiler und ein Nielfaches von y. Dies ist now moglich wenn x=y, denn fug T. gilt: x ≤y und flug

V gilt: x≥y.

To V= \(\(\xi \) \(\x \) ist Teiler wony 1 x ist Nielfaches wony \(\x \) = \(\xi \) \((\text{Identifatione lation} \) (Es wird hier angenommen, class O € IN).

- c) TV enthal alle Elemente aus IVXIV, wober x ein Teiler von y, aber kein Nielfaches von y ist. Dies ist identisch zu T. \ (Vot.), also.
- TIV = 3 (x,y) | x teilt y 1 x ist kein Wielfaches Nony3 = 2 (x,y) | x tei/ y 1 x x x x x 3
- d) VIT. enthalf alle Elemente aus MXIN, wobei x ein Nielfeiches von y, aber kein Teiler von y ist. Des ist identisch zu VN (VnT), also VNT = 3 (x,y) | x ist ein Wielfaches von yn x ist kein Teiler von y 3
 - = 3 (x,y) | x ist ein Nieblaches von y 1 x x y 3
- (3) 1. Eine Relation Rist reflexiv, wenn (a,a) ER für jedes a EA 2. Eine Relation R ist symmetrisch, wenn (b,a) E R = (a,b) ER
 - 3. Eine Relation R ist transitiv, falls (a, b) ER 1 (b,c) ER, clann auch (a,c) ER.
 - a) 1. Rish reflexiv, weil x-y=0 => x=y also ist (a,a) & R fus jedes Element a e D.
 - 2. R ist symmetrisch, well es nur Elemente (x,y) enthalt, für die gitt x=y,d.h. #(x,y) ER - (y,x) ER.
 - 3. Die Relation ist transitiv, da txiyz E Q (x Ry 14Rz) - xRz, weil x=y=z. = o Es handelt sich hier um die Identitätserelation.
 - 8) 1. Rist nicht reflexiv, da 3.8 (-1,-1) nicht in R enthalten ist, weil 1-11 = -1.
 - 2. Rist nicht symmeterisch, weil 3.8. (-1,1) in R enthalten ist, (1,-1) above nicht.
 - 3. Rist nicht transitiv, weil 3.8. (-1,1) und (1,1) in Renthalten sind, (1,-1) abou nicht.
 - c) 1. Rist nicht suffexion, weil of undefinient und damit, 0 & N, also (0,0) & R.

 - 2. R ist transitiv, weil $\forall x,y,z \in \mathbb{Q}$ gilt, dan Wenn $(\frac{x}{2} \in \mathbb{N})$ $\frac{x}{2} \in \mathbb{N}$. -1 = 6N.

- d) 1. Rist nicht reflexiv, weil 0.0 \$ 1 and damit (0,0) & R. 2. Ricot symmetrisch, weil x.y = y.x also txy & Q: $(x,y) \in \mathbb{R} \longrightarrow (y,x) \in \mathbb{R}$ 3. RioL nicht transitiv, weil 3.8. $(1,2) \in \mathbb{R} \setminus (2,\frac{1}{2}) \in \mathbb{R}$, aber $(1,\frac{1}{2}) \notin \mathbb{R}$. e) 1. Rist nicht reflexiv, da $1.1 \neq 0$ und somit. $(1, 1) \notin R$. 2. Rist symmeterisch, weil x-y=y:x, also wenn $(x,y) \in \mathbb{R}$ dann auch $(y,x) \in \mathbb{R}$. 3. Rist nicht transitio, weil 3.8. falls (2,0) und (0,3) ER, dann GL (2,3) ER. f) 1. Rist nicht reflexiv, weil 0.0 ≠0 und damit (0,0) €R.

 2. Rist symmetrisch, weil x.y=y.x, also wenn (x,y) €R. dann auch (y,x) ER. 3. Rist transitiv, weil wenn x > 0, dann mus auch y > 0 sein und somit auch 7 >0. Dann ist auch x:7 >0. Wenn x<0, dann muss auch y und folglich auch z<0 sein. Damit ist auch x. = >0. x,4 oder z durfen nicht O sein. R ist nicht sufflexiv, weil $1 \neq 2.1$, also ist $(1,1) \notin \mathbb{R}$. Rist nicht symmetrisch, weil zwar $(2,1) \in \mathbb{R}$, aber 9) 1. (1,2) € R. Rist nicht transition, weil (2,1) ER und (1, 2) ER, aber (2, ½) & R. R ist nicht reflexiv, weil 2 \$ 22, also (2,2) &R. Rist nicht symmetrisch, weil (4,2) ER aber (2,4) ER. Rist transition weil worn (x,y) & R und (y,z) & R mus gellen, dant 2 y = 22 also ist auch TX = 22 und damit x ≥ 22 (z könnk als einziger Wert neight sein). R ist nicht reflexio, weil (2,2) & R.
 - 2. R ist symmetrisch, weil wenn $(x, 1) \in \mathbb{R}$, dann auch $(1, x) \in \mathbb{R}$ und wenn $(1, x) \in \mathbb{R}$, dann auch $(x, 1) \in \mathbb{R}$. 3. Rist nicht transitiv, weil $(3, 1) \in \mathbb{R}$ und $(1, 2) \in \mathbb{R}$, aber $(3, 2) \in \mathbb{R}$.

i) 1. R ist nicht reflexiv, da (2,2) & R.
2. Rish nicht symmetrisch, da (1,2) ER aber (2,1) ER.
3. Rist teansitiv weil wenn zwei Tupel (x,y), (y,z) $\in \mathbb{R}$, mun gelten, dans $x = y = 1$. Damit ist auch (x,z) $\in \mathbb{R}$.
Die Relation R auf der Menge X kann durch die
folgende binare Materix M dangestellt wenden.
$X_1 \times X_2 \times X_n$
X1 Wenn an einer Stelle mig
and an armodella and an armodella and armodella and armodella armodella armodella armodella armodella armodella
M= x2 :. in dex Materix one 1 steht, ledentet dies, dan (x;, x;) ∈ R.
a) Eine Rolation ist reflexiv, wenn davin alle (x;,x;) enthalen
sind, für die gilt: i = j.
[x, x, xn] In der Materix mun deshalb in
x, 1 der Diagonalen überall eine 1
M= x2 1 stehen. Die Elemente auszerhalt der
Diagonalen konnen O oder 1 sein.
Ein Beispiel einen Pelahen mit deesen Eigenschaft konnte sein: T = {(x,y) x deilt y 3 auf den Henge X = {1,2,3,48:
Dein: 1 = 3(x,4) x deilt y3 auf den Henge X = 21,2,3,43:
(xy/2/3/4)
$M = \begin{bmatrix} 2 & 0 & 1 & 0 & 1 \end{bmatrix}$
3.0.0.1.0.0.1.0.
[4001]
6) Eine Relation ist sueflexiv, wenn gitt, down Position mij =1,
g.d.w. Position m; = 1. Dies bedeutet auch, dars
[v. x2 ··· x.] wenn m. = O. dann auch m. = O. also
x10 1 0 ist R symmeterisch g.d.w. m; = m;
$M = \{x_2 \mid 1 \mid 0 \mid 1 \} \neq [X], \text{ this height,}$
$X_1 O 1 O ist R symmetrisch g.d.w. M_{ij} = M_{ji}M = X_2 1 O 1 $

Ein Beispiel dafür könnle sein $x_1 + x_2 = 3$ auf de y_1 .

Menge $X = \{0, 1, 2, 3\}$. $\begin{bmatrix} xy & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0 \end{bmatrix}$