AI_11_29

Keys for Autonomous Navigation 自動化導航的關鍵

Environment Representation 環境表示法

角度測量: x, y, θ

離散測量 離散拓樸

How to do? (Model)

Odometry 里程計 ex. find a treasure -> Not applicable Modified Environment 改變環境,用於適應,讓設計不會複雜 ex. Landing at night ->

Expensive \ Inflexible

Feature-based Navigation 根據特徵導航 -> Still a challenge for artifical systems

Map Representation 地圖表示

- Recognizable locations
- Topological maps 只在東西之間的關係
- Metric topological maps
- Fully metric maps

Model

- Continuous 連續
- Discrete 離散
- Raw data 真實資料
- Features 特色

Method

Incrementally (dead reckoning) 遞增

- ex. Odometric or inertial sensors (gyro 陀螺儀)
- -> Not applicable 不適用
 Modifying the environment (artificial landmarks / beacons) 改變環境
- 用於環就改變的時候,可以用感測器來動作
- -> Expensive, Inflexible 貴、不靈活

Method for Localization

- A priori map: graph, metric 已知地圖,但你不知道你在哪裡
- Feature extraction 特徵萃取,一邊動作一邊獲取動作
- Matching: Find correspondence of features 多個狀態的變化,找尋對應的特徵, 找到變化量
- Position estimation (e.g., Kalman filter, Markov)
 - 不確定的表示
 - 根據優先統計的加權方式

Gaining Information through Motion 透過運動獲取訊息

Multi-hypothesis tracking 多假設跟蹤

- A prior map 先驗圖
- Method for determining the local uniqueness 確定本地唯一性的方法
- Library of *driving behaviors* 駕駛行為庫

How to Establish

- By hand
- Automatically
 - 機器人自己看、偵測,自己做判斷
- Basic requirements of a map
 - 循序漸進建構地圖
 - 路徑規劃、避開障礙
- Measure of quality of a map
 - + 拓樸正確
 - + 度量、量測正確

! But: Most environments are a mixture of predictable and unpredictable feature \rightarrow hybird approach

The Problems

Exploration and Graph Construction

- 探索
 - 提供正確拓樸
 - 必須辨識已訪問過的位置
 - 回溯到未開發的開口
- 圖形結構
 - 特定的地方會給一個 node
 - 像是轉角之類,明確有不一樣的特徵
 - 特徵出現或消失的地方