Partie 1: La tectonique des plaques: histoire d'un modèle

Chapitre 1 : Naissance d'une théorie : la dérive des continents

Animation dérive des continents :

- Depuis 600 MA:
 http://www.biologieenflash.net/geo/flash/00
 62.swf
- Depuis 200 MA
 http://www.universcience.tv/video-la-derive-des-continents-depuis-200-millions-d-annees-943.html

La dérive des continents

Animation arguments de Wegener :
 http://www2.ggl.ulaval.ca/personnel/bourque/s1/derive.html

<u>Distribution bimodale des altitudes</u>

La Pangée de Wegener

Hypothèse de la contraction thermique de la Terre

Modèle mobiliste de Wegener pour expliquer la dérive des continents

La théorie des ponts continentaux

http://www.svt.ac-versailles.fr/IMG/swf/theories.swf

Modèles fixistes et distribution des altitudes

Les ondes sismiques pour connaître la structure interne du globe

Onde P (compression)

 http://planet-terre.enslyon.fr/planetterre/objets/Image s/ondes-s-et-noyau/ondes-s-etnoyau-fig03.gif

Onde S (cisaillement)

 http://planet-terre.enslyon.fr/planetterre/objets/Image s/ondes-s-et-noyau/ondes-s-etnoyau-fig06.gif

Etude de la zone d'ombre : modèle analogique

Modèle analogique : propagation des ondes lumineuses

Contres arguments à la théorie de Wegener

Animation ondes et structure terre

- http://www.biologieenflash.net/geo/flash/00 30.swf
- http://www2.ggl.ulaval.ca/personnel/bourque /img.communes.pt/str.interne.terre.html

Ondes sismiques et structure du globe

Moteurs de la dérive des continents proposés par Wegener:

- Rotation de la Terre
- Rotation de la lune autour de la Terre: Effets de marée
- Forces d'Eötvös

Modèle proposé par Holmes

Lames minces de roches observées au MO en LPA

<u>basalte</u>

gabbro

granite

<u>péridotite</u>

Lame mince de granite

Chapitre 2 : De la dérive des continents à la tectonique des plaques

Topographie des fonds océaniques

Flux géothermique à la surface de la Terre

Inversions du champ magnétique

Inversions du champs magnétique au niveau des océans

Analyse d'échantillons de basalte prélevés sur le plancher océanique

Age (Ma)	e (Ma) Polarité		Polarité	
13,8	Normale	20,1	Inverse	
23,5	Inverse	5	Normale	
7	Inverse	12	Normale	
8,3	Inverse	6,9	Normale	
17	Normale	20	Normale	
9,1	Inverse	11,9	Inverse	
9	Normale	14	Inverse	
16,9	Inverse	8,5	Normale	

Paléopôles et mémoire magnétique des roches

Distinction lithosphère-asthénosphère

Lithosphère et asthénosphère

Géotherme moyen océanique

Flux thermique, topographie et isothermes dans une zone de subduction

Etude des séismes au niveau des fosses océaniques

Failles transformantes

Modélisation du mouvement relatif de deux plaques à la surface d'une sphère

Animation mouvement d'une plaque sur une sphère

https://www.youtube.com/watch?v=0YD2IQZ7i30 https://www.youtube.com/watch?v=ym_f3jUnuKo

Animation dorsale

https://www.edumediasciences.com/fr/media/674-dorsale-oceanique

Volcanisme de point chaud

Les îles hawaïennes

Chapitre 3: La tectonique des plaques : un modèle qui s'enrichit

Coupe du flanc ouest de la dorsale atlantique

Données concernant les forages

	Forage 21	Forage 20	Forage 19	Forage 14	Forage 15	Forage 16	Forage 18	Forage 17
Âge du sédiment au contact du basalte (Ma)	75	65	48	40	23	11	23	35
Distance à la dorsale (km)	1700	1300	1000	800	400	250	500	750
Épaisseur des sédiments	3200	3000	2500	2200	1100	750	1200	1700
Profondeur du toit du basalte	-7200	-6800	-6000	-5700	-4600	-3650	-4400	-5100

Données GPS de la station MAS1

Modélisation de l'amincissement de la lithosphère continentale

Modélisation de la remontée de l'asthénosphère au niveau d'une dorsale

Comparaison du basalte et du gabbro

<u>gabbro</u> <u>basalte</u>

Mise en évidence de la taille des cristaux en fonction de la vitesse de refroidissement de la vaniline

Refroidissement lent

Refroidissement rapide

Modèle analogique	Réalité				
Récipient avec					
 huile incolore en surface 	Couche terrestre superficielle = lithosphère				
	(croûte + manteau supérieur)				
 huile colorée 	Couche terrestre plus interne =				
	asthénosphère				
Source de chaleur ponctuelle située à la base du récipient	Chaleur interne de la Terre (désintégration des atomes radioactifs à l'origine d'une émission d'énergie interne).				