MATERIAL MAJU

USULAN PENELITIAN TAHUN ANGGARAN 2020 SKEMA INOVASI DAN PERCEPATAN HILIRISASI GELOMBANG KEDUA

PENGUJIAN PROTOTIPE BIOREAKTOR WINDROW AEROBIK SKALA PILOT PLANT UNTUK KONVERSI LIMBAH BIOMASSA PABRIK KELAPA SAWIT MENJADI BIOFERTILIZER

Ketua: Prof. Dr. Adrianto Ahmad, MT; 0018105802

Anggota: Drs. Edward HS, MT; 0022105901

Jecky Asmura, ST, MT; 0016047703

Sumber Dana: PNBP LPPM UNRI

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT
UNIVERSITAS RIAU
MARET, 2020

Halaman Pengesahan Penelitian

1. Judul Kegiatan

Pengujian Prototipe Bioreaktor Windrow Aerobik Skala Pilot Plant Untuk Konversi Limbah Biomassa Pabrik Kelapa Sawit menjadi Biofertilizer

2. Ketua Peneliti

a. Nama Lengkap

: Prof. Dr. H. Adrianto Ahmad, MT

b. Jenis Kelamin

: Laki-laki :0018105802

c. NIDN

d. Jabatan Struktural

: Kepala Laboratorium Teknologi Bioproses

Jabatan Fungsional f. Fakultas/Jurusan

: Guru Besar

g. Alamat Kantor

: Teknik/Teknik Kimia : Jurusan Teknik Kimia UNRI

h. Telp/Fax

: 0761-566937

i. Alamat Rumah

: Jln. Serai No. 2 Tuanku Tambusai Pekanbaru

j. Telp/Fax/HP/Email

: 0761-567446/0761-33671; 0813 7891 1958

adri@unri.ac.id

3. Anggota Peneliti 1

a. Nama Lengkap

: Drs. Edward HS, MT

b. Jabatan Fungsional

: Lektor :0022105901

c. NIDN

4. Anggota Peneliti 2

: Jecky Asmura, ST, MT

a. Nama Lengkap b. Jabatan Fungsional

: Lektor

c. NIDN

5. Jangka Waktu Penelitian

: 001604773

6. Pembiayaan

: Tahun ke I dari rencana 3 tahun

a. Dana Yang Diusulkan

: Rp. 70,000.000,00

b. Sumber Dana

: DIPA LPPM Universitas Riau Tahun 2020

Pekanbaru, 12 Maret 2020. Ketua Peneliti

Mengetahui,

Dekan Fakultas Teknik Universitas Riau

(Dr. Jr. Air Sandhyavitri, MSe) NIP 49680427 199512 1 001

(Prof. Dr. Adrianto Ahmad, MT)

NIP. 19581018 198703 1 001

Menyetujui

Ketua Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Riau

> (Prof. Dr. Almasdi Syahza, SE, MP) NIP. 19600822 199002 1 002

RINGKASAN RENCANA PENELITIAN

Pemerintah Indonesia telah mencanangkan bahwa produksi minyak sawit kasar (CPO) pada tahun 2020 dicapai sebesar 26 juta ton yang diolah dari 68 juta ton TBS. Setiap ton TBS yang diolah akan menghasilkan limbah biomassa berupa tandan kosong sawit sebesar 20-30 %, cangkang sawit 4-5 % dan serat 8-11 % dengan sendirinya menghasilkan limbah biomassa tandan kosong sawit sebesar 17,2 juta ton, limbah biomassa serat sebesar 6,5 juta ton dan limbah biomassa cangkang sebesar 3,1 juta ton. Data tersebut menunjukkan bahwa betapa beratnya beban yang ditanggung oleh lingkungan akibat pencemaran oleh limbah biomassa pabrik kelapa sawit. Oleh karena itu, limbah biomassa pabrik kelapa sawit ini perlu penanganan terlebih dahulu sebelum dibuang ke lingkungan (Ahmad dkk, 2009). Limbah biomassa pabrik kelapa sawit yang diperhatikan pada penelitian ini terdiri atas tandan kosong dan serat sawit.

`Pada penelitian terdahulu, Ahmad (2011) telah berhasil memanfaatkan tandan kosong dan serat sawit untuk dikonversi menjadi *biofertilizer*. Hasil penelitian menunjukkan bahwa tandan kosong dan serat sawit dapat dikonversi menjadi *biofertilizer* dengan memanfaatkan mikroorganisme campuran yang diisolat dari alam. Konsentrasi mikroorganisme yang optimum untuk biodegradasi tandan kosong sawit diperoleh sebesar 60 % selama 50 hari, sedangkan konsentrasi mikroorganisme yang optimum untuk biodegradasi serat sawit diperoleh sebesar 30 % selama 60 hari.

Pada penelitian lanjutan yang dilakukan Ahmad dkk (2012) menunjukkan bahwa metoda windrow aerobik mampu mengolah dan mengubah limbah padat pabrik kelapa sawit (tandan kosong dan serat sawit) menjadi *biofertilizer* dalam waktu yang singkat. Ahmad dkk., (2012a) menyimpulkan bahwa selama proses biodegradasi TKS menunjukkan bahwa kadar karbon semakin menurun, kadar nitrogen mengalami fluktuasi, dan rasio C/N cenderung mengalami penurunan. Semakin besar konsentrasi *starter* semakin cepat proses penguraian bahan organik dan semakin cepat tercapainya rasio C/N optimum. Konsentrasi *starter* optimum adalah 60% yang diperoleh pada hari ke-40 dengan kadar karbon 34,13%, kadar nitrogen 1,73%, dan rasio C/N sebesar 19.69.

Sementara itu, Ahmad dkk. (2012b) menunjukkan bahwa penambahan konsentrasi nitrogen dapat mempercepat proses biodegradasi TKS. Konsentrasi nitrogen optimum diperoleh pada konsentrasi nitrogen 1,5 % pada hari ke 20, dengan rasio C/N 18,15. Selanjutnya, penelitian Ahmad dkk. (2012c) menunjukkan bahwa penambahan fosfor tidak memberikan pengaruh yang signifikan terhadap temperatur, pH dan kadar nitrogen selama proses biodegradasi TKS. Semakin besar kadar fosfor (P) maka semakin mempercepat penurunan rasio C/N selama proses biodegradasi. Konsentrasi fosfor optimum diperoleh pada penambahan konsentrasi fosfor 0.20% dengan nilai rasio C/N 19.64 dan waktu biodegradasi selama 20 hari.

Selanjutnya pada biodegradasi serat sawit, Ahmad dkk. (2012d) mendapatkan konsentrasi starter optimum pada hari ke-60 sebesar 30 %, temperatur berkisar antara 30-32°C dalam kondisi mesofilik dan pH mendekati pH netral. Menurut Ahmad dkk., (2012e) bahwa penambahan konsentrasi nitrogen dapat mempercepat proses biodegradasi serat sawit. Konsentrasi nitrogen optimum diperoleh pada konsentrasi nitrogen 1.5% pada hari ke 20 dengan rasio C/N sebesar 14.92.

Ahmad dan Andrio (2017 & 2018) telah menguji bioreaktor windrow aerobik tersebut pada skala laboratorium. Hasil riset menunjukkan bahwa penambahan POME sebagai ko-substrat dapat mempercepat proses biodegradasi biomassa kelapa sawit menjadi *biofertilizer*. Hasil riset menunjukkan bahwa penerapan bioreaktor windrow aerobik mampu mencegah pencemaran lingkungan yang disebabkan oleh limbah biomassa, juga dapat menghasilkan *biofertilizer* yang dapat digunakan sebagai pupuk organik yang bermanfaat sebagai pengganti pupuk anorganik. Riset ini telah menghasilkan **Paten No. P00201803099**.

Berdasarkan teknologi yang telah didaftarkan paten tersebut di atas, maka pengujian prototipe teknologi bioreaktor windrow aerobik untuk konversi limbah biomassa pabrik kelapa sawit (tandan kosong dan serat sawit) menjadi material maju berupa biofertilizer diarahkan untuk scale-up bioreaktor windrow aerobik dari skala laboratorium menjadi skala pilot plant. Oleh karena itu, penting dilakukan penelitian tentang penerapan dan pengujian kinerja prototipe bioreaktor windrow aerobik dalam konversi limbah biomassa pabrik kelapa sawit pada skala pilot plant. Selain mampu mencegah pencemaran lingkungan yang disebabkan oleh limbah biomassa, juga dapat menghasilkan material maju berupa biofertilizer yang dapat digunakan sebagai pupuk

organik yang bermanfaat sebagai pengganti pupuk anorganik. Riset yang akan diusulkan ini merupakan *Scale-up* prototipe teknologi bioreaktor windrow aerobik dari skala laboratorium menjadi skala *pilot plant* sebagai wujud untuk memperkuat Sistem Inovasi Nasional (**SINas**) dan Sistem Inovasi Daerah (**SIDa**).

Riset yang akan dilakukan selama 3 (tiga) tahun yakni pada tahun 2020, 2021 dan 2022. Riset yang dilakukan pada Tahun Pertama yakni tahun 2020 diarahkan untuk scale-up teknologi bioreaktor windrow aerob skala laboratorium menjadi skala produksi dengan cara jajaran 5 windrow secara kontinu. Variabel yang dilakukan adalah penambahan starter sebesar 10 %; 20 % dan 30 %, Selanjutnya pada tahun kedua (2021) merupakan kelanjutan dari riset tahun 2020 yang diarahkan untuk peningkatan produksi material maju berupa biofertilizer dengan cara subsitusi POME sebesar 10 %; 20 % dan 30 %, sedangkan tahun ketiga (2022) diarahkan untuk rancangbangun alat pemisahan produk dilakukan dengan mengoptimalkan saringan getar. Biofertilizer yang dihasilkan akan diujicobakan pada lahan perkebunan sawit. Bioreaktor windrow aerobik yang digunakan mempunyai panjang 5 m, lebar 2 m, ketinggian 1,5 m dengan kapasitas total 15 m³ sebanyak 5 jajaran sehingga mampu menghasilkan biofertilizer sebesar 75 m³. Bioreaktor windrow aerobik tersebut akan diujicobakan di lahan Fakultas Teknik Universitas Riau. Pengoperasian bioreaktor secara kontinu dengan waktu proses 20-30 hari dengan pengujian kualitas sesuai dengan standar SNI pupuk organik. Dengan demikian, akan dihasilkan **Teknologi** pada TKT 7 dan Produksi pupuk organik. Penelitian ini melibatkan 4 mahasiswa program sarjana di Jurusan Teknik Kimia.

IDENTITAS ANGGOTA KEGIATAN PENELITIAN

No.	a) Nama Lengkap b) Bidang Keahlian dan Tugas dalam Penelitian/NIM	a) Gelar Kesarjanaan b) Pendidikan Akhir (S1/S2/S3)	a) Pria/Wanita b) Alokasi waktu (jam/minggu)	a) Unit Kerja b) Lembaga
1.	a) Adrianto Ahmad b) Bidang Keahlian: Bioteknologi Lingkungan Secara umum, tugas peneliti utama dalam penelitian ini adalah bertanggung jawab atas semua kegiatan penelitian.	a) Prof, Dr., MT. b) S3	a) Pria b) 20	a) Lab Teknologi Bioproses b) Universitas Riau
2.	a) Edward HS b) Bidang Keahlian: Teknik Kimia Secara umum, tugas anggota peneliti dalam penelitian ini adalah bertanggung jawab atas kegiatan kualitas <i>biofertilizer</i>	a) Drs., MT., b) S2	a) Pria b) 15	a) Lab Uji Kimia b) Universitas Riau
3.	a) Jecky Asmura b) Bidang Keahlian: Teknik Lingkungan Secara umum, tugas anggota peneliti dalam penelitian ini adalah bertanggung jawab atas kegiatan Konversi Limbah Biomassa	a) ST., MT., b) S2	a) Pria b) 15	a) Lab Teknik Lingkungan b) Universitas Riau

Mahasiswa Yang Terlibat Penelitian

No.	a) Nama Lengkap b) Bidang Keahlian/NIM	a) Pendidikan (S1/S2/S3)	a) Pria/Wanita b) Alokasi waktu (jam/minggu)	a) Unit Kerja b) Lembaga
1.	a) Mora Rahmayuanda b) Teknik Lingkungan, NIM. 1307123520	S1	a) Laki-laki b) 15	a) Lab Teknologi Bioproses b) UR
2.	a) Nindy Tahnia b) Teknik Lingkungan, NIM. 1307113295	S1	a) Wanita b) 15	a) Lab Teknologi Bioproses b) UR
3.	a) Adinda Ryvania Abrir b) Teknik Lingkungan, NIM. 1307114706	S1	a) Wanita b) 15	a) Lab Teknologi Bioproses b) UR
4.	a) Bagus Anugrah b) Teknik Lingkungan, NIM. 1307113506	S1	a) Laki-laki b) 15	a) Lab Teknologi Bioproses b) UR

DAFTAR ISI

	Hal.
Halaman Pengesahan Penelitian	ii
Ringkasan Rencana Penelitian	iii
Identitas Anggota Kegiatan Penelitian	V
Daftar Isi	vi
Daftar Tabel	vii
Daftar Gambar	viii
A. LATAR BELAKANG PENELITIAN	1
B. PERUMUSAN MASALAH	3
C. MAKSUD DAN TUJUAN PENELITIAN	4
D. LUARAN/MANFAAT PENELITIAN	5
E. TINJAUAN PUSTAKA	6
 Limbah Biomassa Pabrik Kelapa Sawit 	6
Pengolahan Limbah Biomassa Pabrik Kelapa Sawit	7
3. Pemanfaatan Limbah Biomassa Pabrik Kelapa Sawit	7
4. Prose Biodegradasi Limbah Biomassa Pabrik Kelapa Sawit	9
5. Penelitian Terdahulu	12
6. Kerangka Penelitian	14
7. Roadmap Penelitian	15
F. METODE PENELITIAN	16
 Lokasi dan Waktu Penelitian 	16
2. Bioreaktor Windrow Aerobik	16
3. Tahapan Penelitian	17
4. Prosedur Penelitian	19
G. JADWAL KEGIATAN	20
H. DAFTAR PUSTAKA	21
I. REKAPITULASI BIAYA	23
I. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM	23
J. JUSTIFIKASI ANGGARAN PENELITIAN	27
K. LAMPIRAN	

DAFTAR TABEL

Tabel	Hal.
Fraksi Limbah Biomassa Pabrik Kelapa Sawit	6
2. Komposisi Kimia Tandan Kosong Sawit	7
3. <i>Heat Value</i> Fraksi Limbah Biomassa	8
4. Kerangka Penelitian	14
5. Jadwal Penelitian	20

DAFTAR GAMBAR

Gambar		
Rancangbangung Bioreaktor Windrow Aerobik Skala Pilot Plant	3	
2. Roadmap Penelitian	15	
3. Prototipe Bioreaktor Windrow Aerobik	17	

A. LATAR BELAKANG

Pemerintah Indonesia telah mencanangkan bahwa produksi minyak sawit kasar (CPO) pada tahun 2020 dicapai sebesar 26 juta ton yang diolah dari 68 juta ton TBS. Setiap ton TBS yang diolah akan menghasilkan limbah biomassa berupa tandan kosong sawit sebesar 20-30 %, cangkang sawit 4-5 % dan serat 8-11 % dengan sendirinya menghasilkan limbah biomassa tandan kosong sawit sebesar 17,2 juta ton, limbah biomassa serat sebesar 6,5 juta ton dan limbah biomassa cangkang sebesar 3,1 juta ton. Data tersebut menunjukkan bahwa betapa beratnya beban yang ditanggung oleh lingkungan akibat pencemaran oleh limbah biomassa pabrik kelapa sawit. Oleh karena itu, limbah biomassa pabrik kelapa sawit ini perlu penanganan terlebih dahulu sebelum dibuang ke lingkungan (Ahmad dkk, 2009). Limbah biomassa pabrik kelapa sawit yang diperhatikan pada penelitian ini terdiri atas tandan kosong dan serat sawit.

Pada penelitian terdahulu, Ahmad (2011) telah berhasil memanfaatkan tandan kosong dan serat sawit untuk dikonversi menjadi *biofertilizer*. Hasil penelitian menunjukkan bahwa tandan kosong dan serat sawit dapat dikonversi menjadi *biofertilizer* dengan memanfaatkan mikroorganisme campuran yang diisolat dari alam. Konsentrasi mikroorganisme yang optimum untuk biodegradasi tandan kosong sawit diperoleh sebesar 60 % selama 50 hari, sedangkan konsentrasi mikroorganisme yang optimum untuk biodegradasi serat sawit diperoleh sebesar 30 % selama 60 hari.

Ahmad dkk (2012) menunjukkan bahwa metoda windrow aerobik mampu mengolah dan mengubah limbah biomassa pabrik kelapa sawit (tandan kosong dan serat sawit) menjadi *biofertilizer* dalam waktu yang singkat. Ahmad dkk., (2012a) menyimpulkan bahwa selama proses biodegradasi TKS menunjukkan bahwa kadar karbon semakin menurun, kadar nitrogen mengalami fluktuasi, dan rasio C/N cenderung mengalami penurunan. Semakin besar konsentrasi *starter* semakin cepat proses penguraian bahan organik dan semakin cepat tercapainya rasio C/N optimum. Konsentrasi *starter* optimum adalah 60% yang diperoleh pada hari ke-40 dengan kadar karbon 34,13%, kadar nitrogen 1,73%, dan rasio C/N sebesar 19,69.

Sementara itu, hasil penelitian Ahmad dkk. (2012b) menunjukkan bahwa penambahan konsentrasi nitrogen dapat mempercepat proses biodegradasi TKS. Konsentrasi nitrogen optimum diperoleh pada konsentrasi nitrogen 1,5 % pada hari ke 20, dengan rasio C/N 18,15. Selanjutnya, penelitian Ahmad dkk. (2012c) menunjukkan bahwa

penambahan fosfor tidak memberikan pengaruh yang signifikan terhadap temperatur, pH dan kadar nitrogen selama proses biodegradasi TKS. Semakin besar kadar fosfor (P) maka semakin mempercepat penurunan rasio C/N selama proses biodegradasi. Konsentrasi fosfor optimum diperoleh pada penambahan konsentrasi fosfor 0.20% dengan nilai rasio C/N 19.64 dan waktu pengomposan selama 20 hari.

Selanjutnya pada biodegradasi serat sawit, Ahmad dkk. (2012d) mendapatkan konsentrasi starter optimum pada hari ke-60 sebesar 30 %, temperatur berkisar antara 30-32°C dalam kondisi mesofilik dan pH mendekati pH netral. Menurut Ahmad dkk., (2012e) bahwa penambahan konsentrasi nitrogen dapat mempercepat proses pengomposan serat sawit. Konsentrasi nitrogen optimum diperoleh pada konsentrasi nitrogen 1.5% pada hari ke 20 dengan rasio C/N sebesar 14.92.

Ahmad dan Andrio (2017 dan 2018) telah menguji bioreaktor windrow aerobik pada skala laboratorium. Hasil riset menunjukkan bahwa bioreaktor windrow aerobik mampu mencegah pencemaran lingkungan yang disebabkan oleh limbah padat, juga dapat menghasilkan *biofertilizer* yang dapat digunakan sebagai pupuk organik yang bermanfaat sebagai pengganti pupuk anorganik. Riset yang akan diusulkan ini merupakan *Scale-up* teknologi bioreaktor windrow aerobik dari skala laboratorium menjadi skala *pilot plant* sebagai wujud untuk memperkuat Sistem Inovasi Nasional (SINas) dan Sistem Inovasi Daerah (SIDa).

Riset yang akan dilakukan selama 3 (tiga) tahun yakni pada tahun 2020, 2021 dan 2022. Riset yang dilakukan pada Tahun Pertama yakni tahun 2020 diarahkan untuk scale-up teknologi bioreaktor windrow aerob skala laboratorium menjadi skala produksi dengan cara jajaran 5 windrow secara kontinu dengan TKT 7. Variabel yang dilakukan adalah penambahan starter sebesar 10 %; 20 % dan 30 %, Selanjutnya pada tahun kedua (2021) merupakan kelanjutan dari riset tahun 2020 yang diarahkan untuk peningkatan produksi material maju berupa biofertilizer dengan cara subsitusi POME sebesar 10 %; 20 % dan 30 %, sedangkan tahun ketiga (2022) diarahkan untuk rancangbangun alat pemisahan produk material maju dilakukan dengan mengoptimalkan saringan getar. Biofertilizer yang dihasilkan akan diujicobakan pada lahan perkebunan sawit. Bioreaktor windrow aerobik yang digunakan mempunyai panjang 5 m, lebar 2 m, ketinggian 1,5 m dengan kapasitas total 15 m³ sebanyak 5 jajaran sehingga mampu menghasilkan biofertilizer sebesar 75 m³. Bioreaktor windrow aerobik tersebut akan

diujicobakan di lahan Fakultas Teknik Universitas Riau. Pengoperasian bioreaktor secara kontinu dengan waktu proses 20-30 hari dengan pengujian kualitas sesuai dengan standar SNI pupuk organik. Rancangbangun sistem yang ditawarkan ditampilkan pada Gambar berikut:

Gambar 1. Rancangbangun Bioreaktor Windrow Aerobik Skala Pilot Plant

B. PERUMUSAN PERMASALAHAN (PROBLEM STATEMENT)

Berdasarkan uraian latar belakang tersebut di atas menunjukkan bahwa betapa beratnya beban yang ditanggung oleh lingkungan akibat pencemaran oleh limbah biomassa pabrik kelapa sawit. Oleh karena itu, limbah biomassa pabrik kelapa sawit ini perlu penanganan terlebih dahulu sebelum dibuang ke lingkungan (Ahmad dkk, 2009).

Penanganan limbah biomassa pabrik kelapa sawit di Indonesia sebagian besar menggunakan insinerator atau pemanfaatan sebagai bahan bakar boiler kemudian sisanya dibuang ke lingkungan. Sistem ini mampu menyisihkan kandungan padatan, namun menghasilkan gas yang berpotensi menghasilkan gas rumah kaca dan dapat mencemari lingkungan hidup. Sementara itu, pengomposan secara alami membutuhkan waktu yang lama yakni 6 bulan sehingga membutuhkan lahan instalasi yang sangat luas. Ahmad dkk. (2002) berupaya mempersingkat waktu pengolahan dengan menggunakan metoda *windrow* pada proses pengolahan limbah lumpur minyak dengan waktu 3 bulan. Ahmad dkk. (2004) berusaha untuk memperbaiki kinerja proses pengomposan dalam mengolah limbah biomassa dengan menggunakan metoda *windrow*. Sistem ini mampu menghasilkan kompos dengan kualitas yang relatif baik dengan waktu pengolahan selama 50 hari.

Ahmad (2011) telah berhasil memanfaatkan tandan kosong dan serat sawit untuk dikonversi menjadi *biofertilizer*. Hasil penelitian menunjukkan bahwa konsentrasi mikroorganisme yang optimum untuk biodegradasi tandan kosong sawit diperoleh sebesar 60 %,

sedangkan konsentrasi mikroorganisme yang optimum untuk biodegradasi serat sawit diperoleh sebesar 30 %.

Ahmad dkk (2012) telah diperoleh kandungan nutrisi (C, N, P) optimal pada proses pengomposan tandan kosong dengan metoda *windrow* aerob menjadi *biofertilizer* pada skala lab. Konsentrasi nitrogen optimum diperoleh pada konsentrasi nitrogen 1,5 % dan konsentrasi fosfor optimum diperoleh pada konsentrasi fosfor 0.20 %. Pada proses pengomposan serat sawit dengan metoda *windrow* aerob menjadi *biofertilizer* pada skala lab dengan konsentrasi nitrogen optimum diperoleh pada konsentrasi nitrogen 1,5 %.

Ahmad dan Andrio (2017 dan 2018) telah menguji bioreaktor windrow aerobik pada skala *pilot plant*. Hasil riset menunjukkan bahwa bioreaktor windrow aerobik mampu mencegah pencemaran lingkungan yang disebabkan oleh limbah padat, juga dapat menghasilkan *biofertilizer* yang dapat digunakan sebagai pupuk organik yang bermanfaat sebagai pengganti pupuk anorganik. Hasil penelitian tersebut di atas merupakan dasar untuk merancang proses pengomposan skala *pilot plant* sebagai tahap untuk melakukan *scale-up* dan mendapatkan prototipe BIOREAKTOR WINDROW AEROBIK SKALA PILOT PLANT.

Atas dasar ini perlu diupayakan pengembangan mikroorganisme tersebut dengan mengoptimalkan konsentrasi nutrisi untuk biokonversi tandan kosong dan serat sawit menjadi biofertilizer dengan tahapan proses sebagai berikut: proses pembibitan, aklimatisasi, start-up dan operasional sistem, agar kehilangan biomassa dapat dihindari, kualitas biofertilizer dapat diperbaiki dan waktu pengolahan menjadi singkat. Penelitian ini menggunakan metoda windrow skala pilot plant berkapasitas 15 m³ dengan perincian lebar 2 m, tinggi 1,5 m dan panjang 5 m yang dilengkapi dengan bak penampung limpahan leacheat dari bioreaktor. Proses pengomposan dilakukan dengan 5 jajaran. Limbah biomassa yang akan diujicobakan adalah tandan kosong sawit dan serat sawit yang berasal dari Pabrik Kelapa Sawit PTPN V Sei Pagar Kabupaten Kampar Propinsi Riau. Variabel yang ditinjau antara lain dengan penambahan starter dan penambahan limbah cair pabrik kelapa sawit (POME) sebagai ko-substrat. Penelitian ini melibatkan 4 (empat) orang mahasiswa program sarjana Teknik Kimia.

C. MAKSUD DAN TUJUAN PENELITIAN

Tujuan khusus dari penelitian ini adalah

1. Penerapan teknik pengomposan limbah biomassa pabrik kelapa sawit menjadi material maju berupa *biofertilizer* dengan mikroorganisme aerob pada skala *pilot plant*.

- 2. Uji kinerja teknik pengomposan dengan metoda *windrow* dalam satu sistem terpadu dengan tingkat kualitas kompos sesuai standar nasional indonesia (SNI).
- 3. Membuat prototipe sistem pengomposan secara aerob menggunakan metoda *windrow* dengan **kapasitas skala** *pilot plant* **dengan TKT 7** yang mampu mengolah limbah biomassa pabrik kelapa sawit dalam rangka menurunkan beban pencemar lingkungan dan **menghasilkan pupuk organik** di Indonesia.
- 4. Membentuk jejaring kerja antara industri perkebun dan industry minyak kelapa sawit dengan lembaga penelitian dan pengabdian kepada masyarakat Universitas Riau dengan memanfaatkan teknologi konversi limbah biomassa dan produk material maju berupa biofertilizer.
- 5. Pengembangan bahan pupuk organik untuk membentuk *industrial cluster* disekitar pabrik kelapa sawit dengan perkebunan.

Target penelitian ini adalah untuk mendapatkan kondisi tunak konversi limbah biomassa kebun dan pabrik kelapa sawit secara aerobik sehingga dapat dihasilkan suatu prototipe bioreaktor windrow aerobik dengan TKT 7 yang kompak dan mampu bekerja secara kontinu dalam mengkonversi limbah biomassa pabrik kelapa sawit menjadi material maju berupa biofertilizer pada skala pilot plant dengan tingkat efisiensi yang tinggi sehingga menghasilkan bahan pupuk organik sesuai SNI.

D. LUARAN/MANFAAT PENELITIAN

Penelitian ini akan menghasilkan **luaran** berupa:

- (1) Teknologi tepat guna yang berkenaan dengan industrialisasi limbah biomassa dalam bidang pengembangan perkebunan kelapa sawit
- (2) Prototipe Produk Hasil Inovasi P2: Prototipe yang telah memenuhi konsep sebagai **produk** dan teknologi dengan TKT 7.
- (3) Draft Buku ajar dengan judul bioremediasi biomassa nonpati.
- (4) Publikasi berupa draft artikel ilmiah yang diterbitkan dalam jurnal.
- (5) Terjalinnya hubungan kerja sama antara Universitas Riau dengan Pabrik Kelapa Sawit di Propinsi Riau.
- (6) Terjadinya pengembangan *technology roadmap* yang relevan dengan perkembangan pupuk organik dari limbah biomassa pabrik kelapa sawit.

- (7) Terbangunnya *techno-industrial cluster*, yaitu jaringan kemitraan antara industri minyak kelapa sawit, lembaga penelitian dan pengabdian kepada masyarakat Universitas Riau dengan usaha kecil dan menengah dalam **memanfaatkan bahan pupuk organik dengan kualitas yang unggul yang dapat digunakan untuk pupuk perkebunan kelapa sawit.**
- (8) Dihasilkan Skripsi dengan empat Sarjana Teknik Kimia.

E. TINJAUAN PUSTAKA

1. Limbah Biomassa Pabrik Kelapa Sawit

Limbah biomassa Pabrik Kelapa Sawit berasal dari dua sumber yaitu stasiun pemipilan (thressing/stripping) dan stasiun pengolahan inti. Limbah biomassa yang dihasilkan dari stasiun pemipilan terdiri dari tandan kosong sawit (TKS), cangkang dan serat (fiber), sedangkan cangkang kasar berasal dari proses pemisahan inti sawit (kernel) dengan menggunakan clay bath/hydrocyclone pada stasiun pengutipan inti sawit.

Di samping itu, menurut Fithri (2009) bahwa fraksi limbah biomassa dari beberapa pabrik kelapa sawit beraneka ragam yang ditampilkan pada Tabel 1.

Tabel 1. Fraksi Limbah Biomassa PKS

		Limbah Padat					
No	Nama Pabrik	TKS (%)		Cangkang(%)	Fiber(%)
		A	N*	A	N*	A	N*
1	PT. RKSS	21,91	22	6,11	6	14,32	14
2	PT. Sewangi Sawit sejahtera	22,98	22	8,09	8	11,99	12
3	PT. Tasma puja	22,23	23	5,59	5	14,22	17
4	PT. Ciliandra	21,94	22	7,88	7	13,80	13
5	PTPN V Terantam	22,15	22	7	7	13,34	14

% = Berat tiap fraksi (TKS, cangkang, dan fiber)/ berat TBS x 100%

A: aktual

N : Norma (neraca massa tahunan perusahaan laporan bulanan)

Tabel 1 tersebut di atas menunjukkan bahwa fraksi TKS berkisar pada rentang 22 %-23 %, sedangkan fraksi cangkang berada pada kisaran 6 %-8 % dan serat (fiber) berkisar pada rentang 12 %-14 %.

Limbah biomassa pabrik kelapa sawit berkisar 20 - 30 % merupakan fraksi tandan kosong sawit (TKS) yang berasal dari stasiun pemipilan buah (*thressing*). Jumlah tersebut setara dengan jumlah CPO yang dihasilkan tiap ton TBS. Dengan demikian, fraksi TKS tersebut cukup

melimpah dan akan meningkat jika tidak dimanfaatkan atau ditangani, sehingga akan menjadi sumber pencemar yang cukup potensial. TKS merupakan limbah organik yang terdiri dari selulosa, hemiselulosa dan lignin. Kandungan kimiawi yang terdapat pada TKS ditampilkan pada Tabel 2.

Tabel 2. Komposisi Kimia Tandan Kosong Sawit (Darnoko dan Mangunwidjaya, 1990)

Komponen	Dasar kering (%)
Selulosa	45.95
Hemiselullosa	22.84
Lignin	16.49
Abu	1.23
Minyak*	2.41
Nitrogen (N)*	5.4
Posfat(P)*	0.4
Kalium(K)*	35.3
Magnesium (Mg)*	2.7
Kalsium (Ca)*	2.3

2. Pengelolaan Limbah Biomassa Pabrik Kelapa Sawit

Pengelolaan limbah biomassa dapat dilakukan dengan 3 cara, yaitu: meminimalisasi kuantitas, memanfaatkan (daur ulang) dan mengolah limbah biomassa. Pengelolaan limbah biomassa yang umum dilakukan adalah: penimbunan (*landfill*), pembakaran (insinerasi) dan pengomposan. Pengolahan limbah biomassa yang dilakukan sekarang ini hanya berorientasi kepada pengurangan volume dan tingkat keamanan apabila dibuang ke lingkungan. Penanganan limbah biomassa tersebut antara lain pembakaran dan sebagai penutup lahan pertanian (mulsa). TKS yang dibakar di ruang insinerator menghasilkan abu yang dapat dimanfaatkan sebagai sumber pupuk kalium. Namun demikian, cara ini menyebabkan polusi udara yang diakibatkan oleh pembakaran yang tidak sempurna terhadap TKS karena TKS mengandung kadar air (*moisture content*) yang cukup tinggi sekitar 65% sedangkan, penggunaan TKS sebagai media penutupan areal lahan perkebunan akan menyebabkan berkembang-biaknya hama kumbang yang merusak tanaman kelapa sawit. Sementara itu, serat (*fiber*) dan cangkang dapat dimanfaatkan sebagai bahan bakar dalam proses produksi dan bahan penimbun serta penghasil absorber (arang aktif).

3. Pemanfaatan Limbah Biomassa Pabrik Kelapa Sawit

Limbah biomassa PKS terdiri dari tandan kosong sawit (TKS), cangkang dan serat (*fiber*). Secara umum pemanfaatan limbah biomassa PKS dibagi menjadi beberapa golongan

sesuai dengan fraksi limbah biomassa tersebut. Fraksi pertama adalah tandan kosong sawit (TKS), digunakan sebagai bahan pembenah tanah pertanian/perkebunan. Pemanfaatan TKS sebagai bahan pembenah tanah menggunakan berbagai cara sebagai berikut :

1. Pengomposan

Limbah biomassa TKS terdiri dari serat yang tersusun dari limbah organik yang dapat terurai secara alami. TKS mengandung unsur dan senyawa MgO, C, K, N, P₂O₅ serta unsur mikro seperti B,Cu dan Zn yang sangat dibutuhkan oleh tanah. Schucard dkk (2000) telah memanfaatkan tandan kosong sawit sebagai kompos.

2. Mulsa (*Mulching*)

Kandungan nutrien yang ada di dalam TKS sangat dibutuhkan oleh tanah untuk memulihkan unsur hara yang dikandungnya. Penguraian bahan organik yang dikandung oleh TKS dapat dilakukan secara langsung tanpa perlakuan terhadap TKS dan dengan perlakuan terhadap TKS. Perlakuan terhadap TKS dengan cara proses penguraian (pelapukan) oleh mikroorganisme yang dikenal dengan nama sistem pengomposan, sedangkan TKS tanpa perlakuan hanya dengan jalan menebarkan ditanah dengan proses *mulcing*. Darmosarkoto dan Hutomo (2000) telah memanfaatkan TKS sebagai mulsa penutup permukaan lahan kebun. Aplikasi TKS sebagai mulsa dapat memperbaiki sifat fisik tanah yang mempunyai dampak positif yaitu meningkatnya produksi buah kelapa sawit hingga mencapai 23% jika dibandingkan dengan hanya menggunakan pupuk anorganik saja.

Fraksi kedua yaitu serat (*fiber*) dan cangkang sisa dari pengempaan. Menurut Bailey dan Hui (2000) bahwa serat (*fiber*) dan cangkang dapat dimanfaatkan sebagai bahan bakar dalam proses produksi. Fraksi serat (*fiber*) dan cangkang sangat mudah dijadikan sebagai bahan bakar tanpa mengalami perlakuan khusus sebelum dibakar. Di samping itu, serat (*fiber*) dan cangkang memiliki nilai kalori panas yang lebih tinggi jika dibandingkan dengan TKS. Serat (*fiber*) dan cangkang memiliki kandungan air yang relatif lebih rendah jika dibandingkan TKS. Kandungan air yang lebih kecil (<50%) akan mempermudah proses pembakaran pada tungku boiler. Nilai kadar air dan kalor antara TKS, serat (*fiber*) dengan cangkang ditampilkan pada Tabel 3.

Tabel 3. Heat Value Fraksi Limbah Biomassa

Fraksi Limbah	Moisture (%)	Heat Value (Kcal/Kg)
Padat		
TKS	65	3700
Fiber	45	4420
Cangkang	7	4950

Penggunaan serat (*fiber*) dan cangkang sebagai bahan bakar untuk memanaskan air dalam ketel boiler dapat menghasilkan uap. Uap yang diperoleh akan digunakan untuk menggerakkan turbin sebagai penghasil tenaga listrik, proses perebusan TBS (sterilisasi) dan proses pengolahan lainnya. Uap yang dihasilkan memiliki suhu 207° C, dengan nilai entalpi masuk dan keluar adalah 2790 kkal dan 2525 kkal (*steam table*) dengan $\Delta H = 265$ kkal. Menurut Naibaho (1998) bahwa 24,79 kg uap mampu menghasilkan 1 KW tenaga listrik.

4. Proses Biodegradasi Limbah Biomassa Pabrik Kelapa Sawit

Proses penguraian limbah organik dikenal dengan proses biodegradasi. Proses biodegradasi dapat terjadi secara alamiah dan proses penguraian yang dikondisikan dengan menggunakan mikroorganisme (bakteri dan fungi). Proses biodegradasi secara alamiah membutuhkan waktu yang cukup lama bahkan mencapai ratusan tahun, sedangkan proses penguraian yang telah dikondisikan dengan mikroorganisme berlangsung dalam jangka waktu yang relatif lebih cepat. Murbandono (2000) dan Susanto (1998) melaporkan, bahwa faktorfaktor yang berpengaruh terhadap laju biodegradasi yaitu:

- 1. Kandungan lignin, lilin (*wax*), dammar dan senyawa sejenis dalam bahan baku. Jika bahan baku makin banyak mengandung zat-zat tersebut, akan cepat mengurai dan makin banyak bagian yang menjadi kompos.
- 2. Sifat dan ukuran. Jika bahan baku makin halus dan makin kecil maka penguraian akan makin cepat dan makin banyak kompos yang diperoleh. Dengan makin kecilnya ukuran bahan baku maka permukaan bahan yang bersentuhan dengan bio-aktivator akan makin besar. Akan tetapi ukuran bahan baku yang terlalu kecil membuat timbunan limbah menjadi cukup padat sehingga ruang udara menjadi kurang yang menyebabkan proses pelapukan menjadi terhambat.
- 3. Kandungan nitrogen bahan baku. Makin banyak kandungan nitrogen bahan baku makin cepat penguraian terjadi. Hal ini disebabkan jasad-jasad renik sebagai bio-aktivator memerlukan nitrogen untuk perkembangannya.
- 4. Kadar pH pada timbunan kompos. Makin tinggi pH pada timbunan makin cepat penguraian terjadi. Untuk memperoleh pH yang tinggi perlu ditambahkan abu dapur atau kapur
- 5. Air dan udara. Apabila kekurangan air, timbunan bahan baku akan mudah bercendawan. Hal ini akan sangat merugikan karena penguraian bahan baku akan menjadi lambat dan kurang sempurna. Namun jika kandungan airnya berlebih keadaan akan menjadi anaerob dan tidak menguntungkan bagi jasad renik.

- 6. Variasi bahan
- 7. Suhu. Timbunan akan cepat mengurai apabila suhunya tepat. Suhu ideal untuk pengomposan adalah 30-45°C

Hasil biodegradasi terdiri dari bahan organik sederhana dapat mengambil alih fungsi pupuk dalam memperkaya unsur hara tanah, bahkan pupuk yang berasal dari limbah organik (pupuk organik) mempunyai keunggulan jika dibandingkan dengan pupuk buatan (pupuk anorganik atau pupuk artifisial). Beberapa penelitian, menyimpulkan bahwa pemberian pupuk anorganik (mengandung Nitrogen) yang berlebihan akan menyebabkan struktur tanah menjadi keras, sedangkan pemberian pupuk organik malah mendatangkan efek sebaliknya. Di samping itu, pupuk kompos dapat melepaskan asam-asam organik (asam *humic* dan asam *fulvic*) yang dapat menetralisir unsur racun dalam tanah dan merangsang pertumbuhan tanaman. Hal ini tidak bisa dilakukan oleh pupuk sintesis atau pupuk artifisial.

Proses pelapukan Tandan Kosong Sawit (TKS) berlangsung dalam waktu yang relatif cepat, sebagai mana yang dilaporkan oleh Goenadi dkk (1994). Goenadi dkk (1994) mengukur laju dekomposisi TKS dengan menggunakan bioaktivator *Cytopaga sp* dan *Trichoderma sp*. Dari penelitian ini diperoleh bahwa laju pelapukan TKS dengan menggunakan *Cytopaga sp* sebesar 2,1 sampai 8,2 dm³/ hari, dan 2,5 sampai 42 dm³/hari. Peneliti lain, Willyanto (1999) menggunakan bioaktivator isolat pelapuk lignin atau isolat FPL menunjukkan bahwa laju pelapukan relatif cepat. Proses pelapukan yang relatif cepat dikarenakan TKS merupakan biomassa mengandung serat pendek sebagaimana yang dilaporkan Guritno dkk (1994). Faktor lain yang mendukung cepatnya laju pelapukan TKS adalah tingginya kadar lignin yang dikandung.

Suchard dkk (2000) melakukan studi pembuatan kompos dengan menggunakan TKS sebagai bahan baku dan limbah cair sebagai bahan penolong dalam proses *composting*. Hasil studi Suchard dkk (2000) menunjukan bahwa kandungan nutrien dalam kompos seperti N, P, K, Ca dan Mg meningkat cukup signifikan jika dibandingkan dengan kompos yang dihasilkan tanpa menggunakan limbah cair. Di samping itu, penambahan limbah cair pada proses pengomposan bertujuan untuk menjaga kadar air dan kelembaban bahan baku kompos sehingga proses penguraian berlangsung secara maksimal.

Proses pengomposan ini menggunakan mikroorganisme dengan bantuan enzim sebagai katalis untuk mendegradasi senyawa organik menjadi senyawa yang tidak berbahaya (Cookson,1995). Dibandingkan dengan cara lain, maka pengomposan memiliki keuntungan, antara lain:

- 1. Merupakan teknologi hijau karena tidak menghasilkan limbah sebagai hasil akhir proses yang dapat menambah kerusakan lingkungan
- 2. Resiko kerusakan ditempat pengolahan kecil
- 3. Pengawasan dan pemeliharaannya sangat sederhana
- 4. Menggunakan energi yang sangat kecil
- 5. Lebih ekonomis dibandingkan dengan biaya pengolahan lainnya

Pengomposan limbah biomassa dapat dilakukan baik secara alami (*natural composting*) maupun secara mekanik (*mechanical composting*). Pengomposan secara alami membutuhkan waktu yang relatif lama (± 3 bulan), namun dapat dipersingkat dengan perlakuan mekanis terhadap limbah biomassa. Hasil pengomposan bermanfaat antara lain:

- 1. Memperbaiki struktur tanah, memberikan masukan udara, dan perembesan air yang lebih baik.
- 2. Sebagai stimulan pertumbuhan tanaman yang lebih sehat, meningkatkan daya tahan tanaman terhadap penyakit dan toleransi terhadap kekeringan
- 3. Peningkatan struktur tanah sehingga lebih absorbsif
- 4. Peningkatan kimiawi tanah sehingga basa atau asamnya berkurang, meningkatkan ketersediaan *micro nutrient*
- 5. Menghemat penggunaan air (holding capacity)
- 6. Peningkatan penetrasi dan retensi air (tanah liat). Pengurangan aliran limpasan
- 7. Pengurangan bahan-bahan yang sebelumnya dibuang begitu saja ke landfill
- 8. Menghemat pemakaian pupuk buatan

Proses pengomposan sangat dipengaruhi oleh beberapa faktor (Cookson. 1995). Faktor-faktor penting tersebut adalah :

a). Kandungan air

Air dibutuhkan oleh semua mahluk hidup, air dapat membawa nutrisi penting yang tersedia untuk mikroorganisme pengurai. Kandungan air yang rendah dapat menghambat kinerja mikroorganisme. Kandungan air diukur sebagai kelembaban (*moisture content*). Kandungan air yang baik untuk proses pengomposan adalah 40-60 %.

b). Temperatur

Pengomposan akan berjalan dengan baik bila temperaturnya sesuai dengan temperatur optimum pertumbuhan bakteri pengurai. Pada pengomposan ini temperatur dijaga antara 35-60°C.

c). Keasaman (pH)

Mikroba perombak limbah padat umumnya menghendaki pH antara 6-8,5.

d). Rongga Udara

Yang dimaksud rongga udara ialah adanya udara di sela-sela tumpukan media. Rongga udara ini perlu ada dalam proses pengomposan. Pembalikan tumpukan sampah merupakan cara untuk menjaga kondisi ini. Rongga udara yang optimal adalah 35%.

e). Ukuran Bahan Kompos

Jika ukuran bahan besar, aktivitas mikroorganisme pengurai sulit untuk menembus bagian dalam bahan dan hanya akan berada pada permukaan bahan saja, sedangkan pada ukuran bahan yang lebih kecil mikroorganisme pengurai akan menembus bagian dalam bahan sehingga proses penguraian akan berlangsung lebih cepat. Oleh karena itu pada penelitian ini dilakukan pengecilan ukuran bahan (*size reduction*) secara manual. Ukuran bahan kompos optimal adalah < 10 cm.

f). Penambahan Nutrisi bagi Mikroorganisme

Bahan makanan sumber nutrisi bagi mokroorganisme yang sangat diperlukan untuk pertumbuhannya. Untuk itu pada proses pengomposan ini ditambahkan nutrisi berupa Nitrogen, Phospor dan Kalium.

g). Jumlah Mikroorganisme

Pengomposan akan berjalan lama apabila jumlah mikroba pada mulanya sedikit. Hal ini berhubungan erat dengan waktu adaptasi mikroorganisme tersebut. Semakin banyak jumlah bakteri pada awal suatu proses maka fase adaptasinya semakin singkat. Oleh karena itu pada proses pengomposan ini ditambahkan bakteri *starter* (bibit). Dengan penambahan ini juga dapat menjaga kadar air dan C/N rasio.

5. Penelitian Terdahulu

Pada penelitian terdahulu, Ahmad (2011) telah berhasil memanfaatkan tandan kosong dan serat sawit untuk dikonversi menjadi *biofertilizer*. Hasil penelitian menunjukkan bahwa tandan kosong dan serat sawit dapat dikonversi menjadi *biofertilizer* dengan memanfaatkan mikroorganisme campuran yang diisolat dari alam. Konsentrasi mikroorganisme yang optimum untuk biodegradasi tandan kosong sawit diperoleh sebesar 60 % selama 50 hari, sedangkan

konsentrasi mikroorganisme yang optimum untuk biodegradasi serat sawit diperoleh sebesar 30 % selama 60 hari.

Melihat hasil penelitian sampai saat ini ternyata waktu pengomposan cukup lama sehingga dinilai tidak kompetitif. Namun demikian, hal mendasar yang menyebabkan proses pengomposan tidak kompetitif terletak pada upaya mempertahankan konsentrasi sel tetap tinggi dalam sistem. Kelemahan ini dapat diatasi dengan cara memberikan konsentrasi nutrisi yang optimal pada saat proses pengomposan serta menresirkulasi (*recycle*) *leacheat* ke dalam sistem pengomposan.

Pada penelitian lanjutan yang dilakukan pada program penelitian Guru Besar Universitas Riau tahun 2012 menunjukkan bahwa metoda windrow aerob mampu mengolah dan mengubah limbah biomassa pabrik kelapa sawit (tandan kosong dan serat sawit) menjadi *biofertilizer* dalam waktu yang singkat. Penelitian tersebut dibiayai oleh dana PNBP dalam Program penelitian Guru Besar UR pada tahun 2012 telah menghasilkan 5 (lima) sarjana Teknik Kimia. Penelitian tersebut dikelompokkan dalam dua perlakuan yakni pengomposan tandan kosong sawit (TKS) dan pengomposan serat sawit. Pada penelitian pengomposan TKS diperoleh hasil penelitian sebagai berikut: Ahmad dkk., (2012a) menyimpulkan bahwa selama proses pengomposan TKS, kadar karbon semakin menurun, kadar nitrogen mengalami fluktuasi, dan rasio C/N cenderung mengalami penurunan. Semakin besar konsentrasi *starter* semakin cepat proses penguraian bahan organik dan semakin cepat tercapainya rasio C/N optimum. Konsentrasi *starter* optimum adalah 60 % yang diperoleh pada hari ke-40 dengan kadar karbon 34,13 %, kadar nitrogen 1,73 %, dan rasio C/N sebesar 19,69.

Sementara itu, hasil penelitian Ahmad dkk. (2012b) menunjukkan bahwa penambahan konsentrasi nitrogen dapat mempercepat proses pengomposan TKS. Konsentrasi nitrogen optimum diperoleh pada konsentrasi nitrogen 1,5 % pada hari ke 20, dengan rasio C/N 18,15. Selanjutnya, penelitian Ahmad dkk. (2012c) menunjukkan bahwa penambahan fosfor tidak memberikan pengaruh yang signifikan terhadap temperatur, pH dan kadar nitrogen selama proses pengomposan TKS. Semakin besar kadar fosfor (P) maka semakin mempercepat penurunan rasio C/N selama proses pengomposan. Konsentrasi fosfor optimum diperoleh pada penambahan konsentrasi fosfor 0.20 % dengan nilai rasio C/N 19.64 dan waktu pengomposan selama 20 hari.

Selanjutnya pada pengomposan serat sawit, Ahmad dkk. (2012d) mendapatkan konsentrasi starter optimum pada hari ke-60 sebesar 30 %, temperatur berkisar antara 30-32 0 C dalam kondisi mesofilik dan pH mendekati pH netral. Menurut Ahmad dkk., (2012e) bahwa

penambahan konsentrasi nitrogen dapat mempercepat proses pengomposan serat sawit. Konsentrasi nitrogen optimum diperoleh pada konsentrasi nitrogen 1.5 % pada hari ke 20 dengan rasio C/N sebesar 14.92.

6. Kerangka Penelitian

Kerangka penelitian ditampilkan pada Tabel 4 berikut,

Tabel 4. Kerangka penelitian yang akan dilaksanakan sebagai berikut:

No	URAIAN	TAHAP KEMAJUAN PELAKSANAAN					
		Tahun 2020	Tahun 2021	Tahun 2022			
1.	Masalah Riset	1. Rancangbangun dan Scale- up Bioreaktor Windrow Aerobik Kapasitas 15 m³ 2. Tahapan Proses: a. Pembibitan dan Aklimatisasi b. Penambahan Starter 10 %, 20 %, 30 % c. Start-up Bioreaktor c. Operasi Bioreaktor Windrow Aerobik pada waktu proses 20-30 hari Kondisi Proses: pH, Suhu, Kelembaban,N, P, K	1. Pengoperasian Teknologi Bioreaktor Windrow Aerobik Skala Komersial 15 m³: 2. Pengujian Teknologi Bioreaktor Windrow Aerobik Skala Komersial:: a. Pengendalian dosis POME rasio optimum 10 %, 20 %, 30 % b. Produksi Biofertilizer c. Pengujian Biofertilizer di Perkebunan Kelapa Sawit Kondisi Proses: pH, Suhu, Kelembaban,N, P, K	Rancangbangun Saringan Getar			
2.	Model dan Variabel Riset	Model Eksperimental murni Variabel parameter operasi antara lain Penambahan starter terhadap Tandan kosong dan Serat buah Sawit Kualitas biofertilizer dengan rasio C/N sesuai SNI	Model Eksperimental murni Variabel parameter operasi antara lain penambahan POME yang optimum Kualitas biofertilizer dengan rasio C/N sesuai SNI	Model Eksperimental murni Variabel parameter operasi antara lain Diameter Saringan Kualitas biofertilizer dengan ukuran tertentu			
3.	Teknik Pengumpulan Data	Sampling sekali waktu, duplo	Sampling sekali waktu, duplo	Sampling sekali waktu, duplo			
4.	Teknik Pengolahan Data	Tabel dan Grafik	Tabel dan Grafik	Tabel dan Grafik			

5.	Hasil Analisis dan Interpretasi Data	Kemampuan Starter Kuantitas biofertilizer Kualitas biofertilizer (N, P, K)	Dosis POME Laju produksi biofertilizer Kualitas biofertilizer dan pemanfaatannya Kuantitas biofertilizer dan pemanfaatan sebagai pupuk organik pengganti pupuk anaorganik Teknoekonomi Analisis	Kualitas Ukuran biofertilizer Saringan Getar dengan Ukuran Tertentu
6.	Generalisasi dan Rekomendasi	Diperoleh Teknologi Bioreaktor Windrow Aerobik dengan Starter Optimal	Diperoleh Teknologi Bioreaktor Windrow Aerobik Skala Pilot Palnt dengan TKT 7 .	Diperoleh Teknologi Saringan Getar Skala Pilot Palnt dengan TKT 7.

7. Roadmap Penelitian

Roadmap penelitian ditampilkan pada Gambar 2,

Gambar 2 Roadmap Penelitian

F. METODE PENELITIAN

1. Lokasi dan Waktu Penelitian

Penelitian konversi limbah biomassa pabrik kelapa sawit secara aerob dilakukan di laboratorium Teknologi Bioproses Jurusan Teknik Kimia Universitas Riau. Limbah biomassa yang digunakan adalah tandan kosong dan serat sawit yang berasal dari Pabrik Kelapa Sawit Sei Pagar PTPN V. Secara umum, tahapan pengerjaan dari limbah biomassa menjadi *biofertilizer* meliputi: pengumpulan seluruh limbah biomassa, penyortiran, proses pengecilan ukuran, pengumpulan dan pemadatan hingga porositas tertentu, pemberian bakteri starter, proses pengomposan (degradasi mikrobial), pemisahan limbah biomassa yang belum sempurna biodegradasinya, serta penyimpanan produk. Waktu penelitian selama 9 bulan mulai Bulan Maret 2020 sampai Nopember 2020

2. Bioreaktor Windrow Aerobik

Bioreaktor yang digunakan terdiri dari dua ruang. Ruang pertama digunakan sebagai lahan pengomposan (*composting*) dan ruang kedua digunakan sebagai tangki penampung *leacheat*. Bioreaktor skala *pilot plant* di Pabrik Kelapa Sawit dirancang dengan *scale-up factor* 10.

Bakteri aerob pada tangki bibit dipancarkan ke media pengompos secara vertikal memaksa agar bakteri tersebut tersebar merata pada limbah biomassa pabrik kelapa sawit sesuai dengan bentuk pola aliran yang dibentuk. Kemudian dilakukan pengadukan secara mekanik agar kontak antara bakteri aerob dengan limbah biomassa yang akan dikonversi seragam diseluruh media. Peningkatan pertumbuhan bakteri aerob pada bioreaktor *windrow* ditambahkan unsur nitrogen dan posfor dengan dosis yang telah ditentukan. Pengadukan media dan resirkulasi *leacheat* dilakukan setiap hari pada selang waktu 6 jam agar proses biokonversi limbah biomassa pabrik kelapa sawit berlangsung sempurna. Prototipe bioreaktor windrow aerobik ditampilkan pada Gambar 3.

Gambar 3. Prototipe Bioreaktor Windrow Aerobik

3. Tahapan Penelitian

Dalam rangka pencapaian tujuan penelitian selama 3 tahun, maka secara umum penelitian ini akan dibagi dalam beberapa tahap, yaitu: tahap pembibitan, tahap aklimatisasi biomassa aerob, tahap *start-up* dan kondisi tunak proses pengomposan, tahap operasi dan tahap pengujian *prototype* dan pemisahan produk material maju berupa *biofertilizer*.

Tahap pembibitan bertujuan untuk mengembang-biakan bakteri aerob sesuai dengan kebutuhan dilapangan. Tahap aklimatisasi bertujuan untuk mengembang-biakkan bakteri aerob dengan limbah padat. Tahap *start-up* pengomposan secara aerob bertujuan untuk mengembang-biakkan biomassa aerob dalam sistem pengomposan terpadu dan kondisi tunak proses pengomposan terpadu bertujuan untuk mendapatkan kondisi operasi biodegradasi proses pengomposan secara aerob.

Tahap operasi pengomposan bertujuan untuk mengkaji kondisi operasi dan kinerja pengomposan terpadu dalam konversi limbah biomassa pabrik kelapa sawit menjadi *biofertilizer*, sedangkan tahap pengujian Prototipe bertujuan untuk ujicoba proses pengomposan skala *pilot plant*. Tahap pemisahan produk bertujuan untuk mendapatkan ukuran produk yang seragam dan teratur.

Tahapan, sasaran, luaran, dan metodologi yang digunakan dalam penelitian ini diuraikan sebagai berikut,

No	Tahapan	Sasaran	Luaran	Metodologi
1	Pembibitan bakteri aerob	Untuk mengembang- biakan bakteri aerob dengan substrat sukrosa	Mendapatkan starter bakteri aerob	Pembibitan bakteri aerob menyangkut pengembang-biakan bakteri aerob dengan penambahan secara bertahap sukrosa hingga volume yang diinginkan dengan kondisi lingkungan pH 6,8 – 7,4 dan suhu

				kamar.
2	Aklimatisasi Bakteri Aerob: Konsentrasi inokulum Pengaturan pH Pengaturan Suhu Pengaturan kelembaban Pengaturan nutrisi	Untuk mengembang- biakan mikroorganisme aerob dengan limbah biomassa didalam sistem pengomposan	Mendapatkan bakteri aerob sebagai basis kebutuhan starter pada start-up proses pengomposan dengan bioreaktor windrow serta aktivitas bakteri aerob.	Aklimatisasi bakteri aerob menyangkut pengembang-biakan bakteri aerob dengan metoda buang dan isi (fill and drawn) dengan kondisi lingkungan pH 6,8 – 7,4 dan suhu kamar.
3	Start-up Pengomposan: Start-up proses pengomposan terpadu dengan tandan kosong sawit dan Start-up proses pengomposan terpadu dengan serat sawit	Untuk mengembangkan -biakan bakteri aerob didalam sistem pengomposan terpadu	Mendapatkan kondisi tunak sebagai basis pengoperasian pengomposan terpadu	Start-up pengomposan terpadu menyangkut pengembang-biakan bakteri aerob dengan substrat limbah biomassa pabrik kelapa sawit dalam bioreaktor secara aerob dengan waktu pengolahan 30 hari dengan kondisi lingkungan pH 6,8 – 7,2 dan suhu kamar.
4	Dosis POME Pada Proses Aerob: Mengkaji pengaruh konsentrasi nitrogen terhadap kinerja proses konversi limbah biomassa PKS dan Mengkaji pengaruh konsentrasi posfor terhadap kinerja proses konversi limbah biomassa PKS	Mendapatkan Dosis Optimum pengomposan yang dapat digunakan untuk mempelajari kelakuan dinamika bioreaktor windrow	kondisi operasi sistem konversi terpadu sebagai basis operasi bioreaktor windrow aerob.	Kondisi operasi bioreaktor windrow aerob dengan konsentrasi Nitrogen 1,5 %, konsentrasi Posfor 0,2 % pada kondisi lingkungan pH 6,8 – 7,2 dan suhu kamar Penambahan Starter 10 %, 20 %, 30 % dan Pengendalian dosis POME 10 %, 20 %, 30 % Dosis POME yang optimum digunakan untuk penentuan waktu konversi dan laju resirkulasi (<i>recycle</i>).
5	Rancangbangun Saringan Getar	Alat Pemisahan Produk	Produk terpisah dengan ukuran seragam	Pembuatan dan pengoperasian alat saringan getar untuk pemisahan produk biofertilizet
6	Analisis Data, Pelaporan dan Publikasi	Tersusun Laporan Penelitian	Publikasi Makalah lingkup Internasional, paten, aplikasi teknologi serta buku ajar	Laporan akhir Penelitian memuat seluruh tahap kegiatan, hasil-hasil yang diperoleh, dan penerapan di Pabrik Kelapa Sawit.

Untuk dapat memberikan gambaran yang lebih rinci, pada bagian berikut akan diuraikan urutan tata kerja dan hasil/kemajuan yang diharapkan pada setiap tahap. Penelitian yang akan dilakukan mencakup:

- a. Pembibitan bakteri aerob yang menyangkut pengembang-biakan bakteri starter.
- b. Aklimastisasi bakteri aerob yang menyangkut pengembang-biakan bakteri aerob dengan substrat sukrosa pada kondisi lingkungan pH 6,8 hingga 7,2 dan suhu kamar.

- c. *Start-up* bioreaktor aerob yang menyangkut pengembang-biakan bakteri aerob dengan substrat limbah padat pabrik kelapa sawit dalam bioreaktor *windrow* aerob pengaturan kondisi lingkungan pH 6,8 hingga 7,2 dan suhu kamar selama 30 hari.
- d. Kondisi tunak (*steady state*) pada bioreaktor *windrow* aerob dengan kondisi lingkungan pH 6,8 7,2 dan suhu kamar dengan dosis optimum Nitrogen dan Posfor.
- e. Pengoperasian kinerja sistem bioreaktor *windrow* aerob dalam mengkonversi limbah padat pabrik kelapa sawit menjadi *biofertilizer* dengan perlakuan tanpa dan dengan variasi dosis POME. Konsentrasi Nitrogen yang diuji adalah 1,5 % sedangkan Posfor yang diuji adalah 0.2 %.

f. Pengoperasian alat pemisah produk material maju yang kompak dan stabil

Dari hasil penelitian ini akan dapat ditentukan: (a) bakteri starter, (b) aktivitas bakteri aerob dalam bioreaktor, (c) kondisi tunak (*steady state*) sistem bioreaktor aerob. (d) Pengaruh penggabungan proses aerob dengan resirkulasi cairan, (e) populasi bakteri aerob dalam bioreaktor anaerob (f) kinerja sistem bioreaktor aerob dalam mengolah limbah biomassa pabrik kelapa sawit dan (g) kinerja alat pemisah produk material maju.

4. Prosedur Penelitian

Prosedur penelitian yang diuraikan di bawah ini mencakup pembibitan dan aklimatisasi, bioreaktor, *start-up* bioreaktor, program penelitian dan metoda analisis.

a). Pembibitan Dan Aklimatisasi

Biomassa aerob yang digunakan berasal dari komunitas bakteri aerob yang diisolasi dari instalasi pengolah sampah organik. Bakteri aerob tersebut diambil sebanyak 5 L dan ditambahkan setiap hari sebanyak 500 ml larutan sukrosa selama 10 hari sehingga diperoleh volume bibit 10 L.

Bibit bakteri aerob sebanyak 10 L diaklimatisasi dengan cara membuang padatan bibit sebanyak 1 L dan menambahkan larutan sukrosa sebagai substrat sebanyak 1 L. Proses ini dilakukan selama 1 bulan untuk memastikan bahwa bibit telah teraklimatisasi dengan baik terhadap larutan sukrosa tersebut (Chen dkk., 1985).

b). Start-up Bioreaktor Windrow Aerob

Start-up dilakukan dengan memasukkan lumpur bibit ke tiap media limbah biomassa sejumlah 50 % volume media limbah biomassa tersebut. Kemudian dibiarkan selama 3 hari

untuk mengendapkan lumpur pada setiap media (Boopathy dan Sievers, 1991). Setelah itu, diumpankan limbah biomassa dengan pembebanan organik sebesar 10 % dari volume total media perhari dan ini dianggap sebagai awal proses *start-up* bioreaktor. Kondisi operasi *start-up* pada suhu kamar dan pH diatur pada pH 6,8-7,2. Teknik *start-up* yang dipilih adalah metoda *batch* dan dibantu dengan resirkulasi dari *leacheat*. Proses *start-up* berlangsung hingga tercapai keadaan tunak (*steady state*) dengan fluktuasi efisiensi penyisihan sukrosa sekitar 10 %.

c). Program penelitian

Variabel proses yang digunakan pada proses pengomposan adalah tanpa dan dengan pengendalian konsentrasi nitrogen sebesar 1.5 % dan konsentrasi posfor sebesar 0.2 %. Kondisi operasi bioreaktor anaerob pada pH 7.0 ± 0.2 dengan suhu kamar untuk proses pengomposan tandan kosong sawit, sedangkan pada pengomposan serat sawit dilakukan pada konsentrasi nitrogen sebesar 1.5 % dan konsentrasi posfor sebesar 0.2 %. Kondisi operasi bioreaktor anaerob pada pH 7.0 ± 0.2 dengan suhu kamar. Parameter yang diamati antara lain pH, suhu, kelembaban, konsentrasi karbon, konsentrasi nitrogen, konsentrasi posfor dan konsentrasi bakteri aerob sebagai VSS. Variasi yang dilakukan yakni penambahan dosis POME sebesar 10 %, 20 % dan 30 % dari kapasitas biodegradasi.

d). Metoda Analisa

Analisa pH, suhu, kelembaban, konsentrasi karbon, konsentrasi nitrogen, konsentrasi posfor dan konsentrasi biomassa aerob sebagai VSS sesuai dengan *standard methode* (APHA, AWWA, WCF, 1992).

G. JADWAL KEGIATAN

Waktu pelaksanaan program penelitian tahun 2020 ini adalah sebagai berikut:

	KEGIATAN/									
NO	PENANGGUNG JAWAB		3	4	5	6	7	8	9	10
1	Persiapan Bahan Baku: - Perlakuan awal serat buah sawit - Perlakuan awal tandan buah kosong	•								
2	Karakterisasi Limbah biomassa: - Tandan Kosong Sawit - Serat Buah Sawit	•								

3	Kondisi Tunak Proses Bioreaktor Aerobik: 1. Pengaruh konsentrasi starter bakteri aerobik 2. Pengaruh dosis POME terhadap kualitas produk 3. Dosis POME optimum terhadap kuantitas produk 4. Pengaruh resirkulasi cairan lindi dan optimalisasi proses	*	*	*	*	•	*	*	*
7	Analisis Data dan Pelaporan			•	•	•	•	•	•
8	Publikasi			•				•	

H. DAFTAR PUSTAKA

- **Ahmad, A.** dan D. Andrio, 2018, Scale-up Biotransformasi Biomassa Pabrik Kelapa Sawit Menjadi Biofertilizer dengan Bioreaktor Windrow Aerob Skala Pilot Plant: Pengaruh Variabel POME, Laporan Penelitian Guru Besar, Universitas Riau
- **Ahmad, A.** dan D. Andrio, 2017, Scale-up Biotransformasi Biomassa Pabrik Kelapa Sawit Menjadi Biofertilizer dengan Bioreaktor Windrow Aerob Skala Pilot Plant: Pengaruh Variabel POME, Laporan Penelitian Guru Besar, Universitas Riau
- **Ahmad, A.,** Bahruddin, Chairul, Hafidawati, Debby, L. Legawati, dan A. Ardy, 2012a, Biodegradasi Tandan Kosong Sawit dengan Metode Windrow Aerob, Prosiding Seminar Nasional Teknik Kimia Indonesia, UI
- **Ahmad, A.,** Bahruddin, dan A. Ardy, 2012b, Pengaruh Kadar Fosfor terhadap Pengomposan Tandan Kosong Sawit dengan Metode Windrow Aerob, Prosiding Seminar Nasional Teknik Kimia Kejuangan, UPN
- **Ahmad, A.,** Chairul, dan L. Legawati, 2012c, Pengaruh Konsentrasi Starter pada Pembuatan Kompos dari Tandan Kosong Sawit dengan Teknologi Biofertilizer, Prosiding Seminar Nasional Teknik Kimia Kejuangan, UPN
- **Ahmad, A.,** Hafidawati, dan Debby, 2012d, Pengaruh Konsentrasi Nitrogen pada Pembuatan Kompos dari Limbah Tandan Kosong Sawit dengan Teknologi Biofertilizer, Prosiding Seminar Nasional Teknik Kimia Kejuangan, UPN
- **Ahmad, A.,** Khairat, dan T. Mailinda, 2012e, Pengaruh Konsentrasi Nitrogen terhadap Pengomposan Serat Buah Sawit dengan Teknologoi Biofertilizer, Prosiding Seminar Nasional Teknik Kimia Kejuangan, UPN
- Ahmad, A., 2011, "Biodegradasi Limbah Padat Pabrik Kelapa Sawit Menjadi Biofertilizer

- Dengan Bioreaktor Windrow Aerob", Laporan Penelitian, Lembaga Penelitian UNRI, Pekanbaru.
- **Ahmad, A.,** Bahruddin, S.Z. Amraini dan D. Andrio., 2009, "Biokonversi Limbah Cair Pabrik Kelapa Sawit Menjadi Bahan Bakar Gas Dalam Bioreaktor Anaerobik", Laporan Penelitian, Lembaga Penelitian UNRI, Pekanbaru.
- **Ahmad**, **A.**, Bahruddin, S.Z. Amraini, dan J. Pinem, 2003, "Penerapan proses Bioremediasi untuk penangan limbah padat industri minyak bumi", Prosiding Seminar Universitas Indonesia, Jakarta.
- Bahruddin, **A. Ahmad**, S.Z. Amraini, dan J. Pinem, 2003, "Penerapan Proses Bioremediasi untuk Penanganan Sampah Organik", Prosiding Seminar Bioteknologi Se-Sumatera 12 13 Desember, Pekanbaru.
- Cookson, J.T, 1995," *Bioremediation Engineering Design and Application*", McGraw-Hill Inc, New York
- Darnoko, S. M dan D. Mangunwidjaya, 1990, "Pengaruh Konsentrasi Asam, Suhu dan Waktu Terhadap Hidrolisis Hemiselulosa Tandan Kosong Kelapa Sawit", *Menara Perkebunan*, 58(4)
- Darmosarkoro, W dan S. Hutomo, 2000,: Tandan Kosong Kelapa Sawit Sebagai Bahan Pembenah Tanah", Pusat Penelitian Kelapa Sawit, Medan
- Goenadi, D, Y. Away, R.A Pasaribu dan R. Siagian, 1994, "Biodegradation of Empty Fruit Bunches of Oil Palm For Pulping", *Menara Perkebunan*, 62(2), 30-35
- Guritno, P, K. Paimin, Darnoko dan E. Suparman, 1994," Pemanfaatan Tandan Kosong Sawit Untuk Produksi Kertas Kraft", *Berita PPKS*, vol. 2
- Murbadono, H. L, 2000," Membuat Kompos", Penebar Swadaya
- Naibaho, P.M, 1998," Teknologi Pengolahan Kelapa Sawit", Pusat Penelitian Kelapa Sawit, Medan
- Pinem J.A., S.Z. Amraini, Bahruddin, A. Ahmad, 2002,"Penanganan Crude Oil Sludge di Zamrud Area PT. CPI", Prosiding Seminar Nasional Teknik Kimia, "Pengembangan Teknologi Proses dan Pemanfaatannya", Universitas Sumatera Utara, 8 Oktober.
- Rittman, B. E dan P. L. McCarty, 2001, *Environmental Biotechnology: Principles and Applications*, McGraw-Hill International Editions, Singapore
- Schucard, F, S. Balcke, F. Becker, P. Guritno, T. Herawan dan E. Darnoko, 2000," Production of Compost From EFB", Pusat Penelitian Kelapa Sawit, Medan

Shahila, N., A. Ahmad dan Wisrayetti, 2012, Pengaruh Konsentrasi Starter pada Pembuatan Kompos dari Limbah Serat Buah Sawit dengan Teknologi Biofertilizer, Prosiding Seminar Nasional Teknik Kimia Indonesia, UI

Susanto, H, 1998," Utilization of Biomass Chemical Resource: Preliminary Experiment on Acetosolv-Processing of Oil Palm Empty Bunch", *Paper Presented at HEDS-STT*, Padang Tchobanoglous, G, H. Theisen dan S. A, Vigil, 1993, *Integrted Solid Waste Management: Engineering Principles andManagement Issues*, McGraw-Hill International Editions, Singapore

Willyanto, S, 1999," Pembuatan Pulp Kertas dari Tandan Kosong Kelapa Sawit Secara Biokimia-Mekanis", *Prosiding Seminar Teknik Kimia Soehadi Reksoeardojo*, Bandung

I. REKAPITULASI BIAYA

Rekapitulasi biaya yang diusulkan Tahun 2020

No.	Uraian	Jumlah (Rp)
1.	Gaji dan Upah	8.100.000
2.	Bahan Habis Pakai/Peralatan	42.000.000
3.	Perjalanan	15.000.000
4.	ATK dan Laporan/Publikasi/Lain-lain	4.900.000
	Jumlah Biaya	70.000.000

J. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM PENELITI

Pembagian tugas dan koordinasi keseluruhan, baik penelitian mengenai pembibitan, aklimatisasi, start-up, operasional dan pegujian sistem bioreaktor anaerob serta evaluasi hasil akhir dan penulisan laporan dilakukan oleh peneliti utama, Prof. Dr. Adrianto Ahmad, MT. Selain pengawasan harian, maka setiap minggu pada hari Rabu siang dilakukan pertemuan mingguan di Ruang Seminar Laboratorium Teknologi Bioproses Universitas Riau dengan para peneliti (peneliti utama, mahasiswa/i, dan teknisi). Pada pertemuan tersebut, hasil penelitian selama seminggu sebelumnya dibahas dan dievaluasi. Dari hasil evaluasi maka direncanakan kegiatan penelitian untuk seminggu berikutnya. Satu hari sebelum pertemuan mingguan yang dilakukan setiap minggu, peneliti bersama pembantu peneliti (mahasiswa) mengevaluasi dan menuliskan hasil percobaan yang dirancang seminggu sebelumnya. Dalam pertemuan mingguan tersebut hasil penelitian didiskusikan bersama, kemudian menandatangani peneliti utama pengesahannya. Isi worksheet tersebut kemudian disarikan dan dirangkum dalam worksheet peneliti utama, dalam buku ini pula ditulis catatan-catatan yang menyangkut strategi maupun koordinasi menyeluruh mengenai penelitian ini. Dengan demikian dapat dijaga suasana kerja yang produktif dan efektif selain penyebaran tugas yang merata. Kualifikasi tim peneliti ditampilkan pada Tabel berikut,

1. Tenaga Peneliti

No.	a) Nama Lengkap b) Bidang Keahlian dan Tugas dalam Penelitian/NIM	a) Gelar Kesarjanaan b) Pendidikan Akhir (S1/S2/S3)	a) Pria/Wanita b) Alokasi waktu (jam/minggu)	a) Unit Kerja b) Lembaga
1.	a) Adrianto Ahmad b) Bidang Keahlian: Bioteknologi Lingkungan Secara umum, tugas peneliti utama dalam penelitian ini adalah bertanggung jawab atas semua kegiatan penelitian.	a) Prof, Dr., MT. b) S3	a) Pria b) 20	a) Lab Teknologi Bioproses b) Universitas Riau
2.	a) Edward HS b) Bidang Keahlian: Teknik Kimia Secara umum, tugas anggota peneliti dalam penelitian ini adalah bertanggung jawab atas kegiatan kualitas <i>biofertilizer</i>	a) Drs., MT., b) S2	a) Pria b) 15	a) Lab Uji Kimia b) Universitas Riau
3.	a) Jecky Asmura b) Bidang Keahlian: Teknik Lingkungan Secara umum, tugas anggota peneliti dalam penelitian ini adalah bertanggung jawab atas kegiatan Pengolahan Limbah Biomassa	a) ST., MT., b) S2	a) Pria b) 15	a) Lab Teknik Lingkungan b) Universitas Riau

2. Mahasiswa Yang Terlibat Penelitian

No.	a) Nama Lengkap b) Bidang Keahlian/NIM	a) Pendidikan (S1/S2/S3)	a) Pria/Wanita b) Alokasi waktu (jam/minggu)	a) Unit Kerja b) Lembaga
1.	a) Mora Rahmayuanda b) Teknik Lingkungan, NIM. 1307123520	S1	a) Laki-laki b) 15	a) Lab TeknologiBioprosesb) UNRI
2.	a) Nindy Tahnia b) Teknik Lingkungan, NIM. 1307113295	S1	a) Wanita b) 15	a) Lab TeknologiBioprosesb) UNRI
3.	a) Adinda Ryvania Abrir b) Teknik Lingkungan, NIM. 1307114706	S1	a) Wanita b) 15	a) Lab TeknologiBioprosesb) UNRI
4.	a) Bagus Anugrah b) Teknik Lingkungan, NIM. 1307113506	S1	a) Laki-laki b) 15	a) Lab Teknologi Bioproses b) UNRI

3. Tenaga Teknisi

No.	a) Nama Lengkap b) Bidang Keahlian dan Tugas dalam Penelitian	a) Gelar Kesarjanaan b) Pendidikan Akhir (SLA/D1/D2/D3/S1)	a) Pria/Wanita b) Alokasi waktu (jam/minggu)	a) Unit Kerja b) Lembaga
1.	a) Deby Oktavianti	a) A.Md	a) Wanita	a) Lab Teknologi
	b) Bidang Keahlian : Analis Kimia	b) D3	b) 20	Bioproses
	Teknisi bertugas untuk membantu			b) Universitas
	pengelolaan penelitian dalam bidang			Riau
	administrasi dan keuangan.			

K.JUSTIFIKASI ANGGARAN PENELITIAN

1. Gaji dan Upah

No.	Pelaksana Kegiatan	Jumlah Minggu	Jumlah Jam/minggu	Honor/ Jam	Biaya (Rp)
1.	Analis Kimia	4 x 9	15	15.000	8.100.000
	Jumlah Biaya				8.100.000

2.A Bahan Habis Pakai

No.	Bahan	Volume	Biaya Satuan (Rp)	Biaya Rp)
1.	Seeding Bakteri Aerobik	1 paket	2.000.000	2.000.000
2.	Bahan Kimia	1 paket	17.500.000	17.500.000
4.	Nutrien Bakteri	1 paket	1.000.000	1.000.000
	Jumlah Biaya			20.500.000

2.B Peralatan

No.	Jenis	Volume	Biaya Satuan (Rp)	Biaya Rp)
1.	Mesin pencacah	1 unit	6.000.000	6.000.000
2.	Alat-alat Gelas	1 paket	2.000.000	2.000.000
3.	Tangki Seeding	2 unit	1.000.000	2.000.000
4.	Pompa Aerasi	2 unit	750.000	1.500.000
5.	Instalasi pipa	1 paket	850.000	850.000
6.	Alat-alat skop, cangkul dll	1 paket	500.000	500.000
7.	Jerigen	20 buah	50.000	1.000.000
8.	Botol sampel	20 buah	25.000	500.000
9.	Geo-membran	1 unit	10.000.000	3.150.000
10.	Saringan Getar	1 unit	10.000.000	4.000.000
	Jumlah Biaya			21.500.000

3. Perjalanan

No.	Tujuan	Volume	Biaya Satuan (Rp)	Biaya Rp)
1	Lumpsum peneliti	1	3.000.000	3.000.000
1.		kegiatan		
2.	Pengambilan Limbah Cair ke	4 unit	500.000	2.000.000
۷.	Pabrik			
3.	Perjalanan dinas	2 unit	5.000.000	10.000.000
	Jumlah Biaya			15.000.000

4. Lain-lain

No.	Kegiatan	Volume	Biaya Satuan (Rp)	Biaya Rp)
1.	Foto Copy Referensi	1 paket	1.500.000	1.500.000
2.	ATK (kertas, tinta, alat tulis)	1 paket	500.000	500.000
4.	Diskusi Group	1 paket	1.000.000	1.000.000

5.	Worksheet Peneliti	1 paket	250.000	500.000
6.	Pembuatan & Penggandaan Laporan	1 paket	1.000.000	1.400.000
	Jumlah Biaya		_	4.900.000

LAMPIRAN

Biodata Peneliti Utama dan Anggota Tim Peneliti

a. Biodata Peneliti Utama

I IDENTITAS DIRI

IDENTIFIED DIEG						
1.1	Nama Lengkap (dengan gelar)	Prof. Dr. H. Adrianto Ahmad, MT (L)				
1.2	Jabatan Fungsional	Guru Besar				
1.3	NIP/NIDN	19581018 198703 1 001/0018105802				
1.4	Tempat dan Tanggal Lahir	Bangkinang/18 Oktober 1958				
1.5	Alamat Rumah	Jl. Prof. M. Yamin, SH No. 110/14 Pekanbaru.				
		28155				
1.6	Nomor Telepon/Faks	0761-567446; 0761-561736				
1.7	Nomor HP	0813 7891 1958				
1.8	Alamat Kantor	Jurusan Teknik Kimia – Fak Teknik				
		Universitas Riau				
1.9	Nomor Telepon/Faks	0761-566937				
1.10	Alamat e-mail	adri@unri.ac.id; adriantounri@gmail.com				
1.11	Lulusan yg telah dihasilkan	S-1= 50 orang; S-2= 13 orang; S-3= 2 orang				
1.12	Mata Kuliah yg diampu	1. Bioremediasi (S1)				
		2. Bioteknologi Lingkungan (S1)				
		3. Teknologi Fermentasi (S1)				
		4. Perancangan Bioreaktor (S1)				
		5. Bioteknologi Lingkungan Lanjut (S2)				
		6. Pencegahan Pencemaran (S2)				
		7. Toksikologi dan Laboratorium Lingkungan				
		(S2)				
		8. Manajemen dan Pengelolaan Limbah Cair				
		(S2)				
		9. Ekoteknologi (S3)				

II RIWAYAT PENDIDIKAN

I KIWATAT I ENDIDIKAN					
2.1. Program:	S-1	S-2	S-3		
2.2. Nama PT	Universitas Andalas	ITB, Bandung	ITB, Bandung		
2.3. Bidang Ilmu	Kimia	Teknik Kimia	Teknik Lingkungan		
2.4. Tahun Masuk	1978	1987	1993		
2.5. Tahun Lulus	1985	1990	2001		
2.6. Judul Skripsi/	Metoda Destruksi	Produksi Asam	Biodegradasi		
Tesis/Disertasi	Basah Pada	Sitrat Dalam	Limbah Cair Industri		
	Penentuan Kadmium	Fermentasi Bawah	Minyak Sawit		
	dan Timbal Dalam	Permukaan	Dalam Sistem		
	Makanan Kaleng	Substrat Molase	Bioreaktor Anaerob		
	Secara				
	Spektrofotometri				
	Serapan Atom				
2.7. Nama	Dr. Soemanto Imam	Ir. Wibowo Suryo,	Prof. Dr. Oei Ban		
Pembimbing/	Khasani	M.Sc	Liang,		
Promotor			Dr. Ir. Tjandra		

Setiadi M.Eng,
Dr. Ir. Mindriany
Syafila, MS

III PENGALAMAN PENELITIAN

No.	Tahun	Judul Penelitian	Pendanaan	·
INU.	1 anuli	Judui i cheman	Sumber*	Jml
				(Juta
				Rp)
1.	2002	Pengolahan limbah cair pabrik kelapa sawit	Hibah Bersaing,	50
		dengan bioreaktor membran polipropilen	DP3M DIKTI	
		anaerob (KETUA)	DEPDIKNAS	
2.	2003	Bioreaktor membran polieter sulfon anaerob	RUT KRT	100
		untuk pengolahan limbah cair pabrik kelapa		
		sawit (KETUA)		
3.	2006	Pemanfaatan Limbah Padat Boiler (Fly Ash)	PT. RAPP	200
		Sebagai Bahan Campuran Beton dan Aspal		
		Hotmix (Ketua)		
4.	2006-	Pengaruh Transportasi Bahan Baku Industri Pulp	PT. RAPP	200
"	sekarang	dan Paper (Ketua)		
5.	2009	Pengembangan bioreaktor hibrid anaerob	Hibah Riset	100
<i>J</i> .	2009	bermedia batu untuk pengolahan limbah cair	Strategis Nasional	100
		pabrik kelapa sawit (ANGGOTA)	DP2M DIKTI	
		publik kelupu suwit (111 (000 171)	KemenDiknas	
6.	2009-2010	Biokonversi limbah cair pabrik kelapa sawit	Hibah Riset	465
0.	2009 2010	menjadi bahan bakar alternative dengan	Unggulan	105
		bioreactor hybrid anaerob skala pabrik (KETUA)	Strategis Nasional	
		oforeactor hybrid unacross shall pushin (1221 211)	Batch I DP2M	
			Kemendiknas	
7.	2010-2011	Pembuatan termoplastik berbasis karet alam	Hibah	87
		dengan bahan isian berbasis limbah padat	Kompetensi	
		industri sawit (ANGGOTA)	DP2M	
		, ,	Kemendiknas	
8.	2010	Bioproses Anaerobik : Praktek dan Teori	Hibah Penulisan	20
		(KETUA)	Buku Teks DP2M	
			KemenDiknas	
9.	2010	Metoda dan Alat Untuk Pengolahan Limbah Cair	Hibah Uber HKI	7,5
		Dengan Bioreaktor Hibrid Anaerob (KETUA)	DP2M	
			KemenDiknas	
10.	2011	Metoda dan Alat Untuk Produksi Biogas Secara	Hibah HKI	10
		Kontinu (KETUA)	Kemenristek	
11.	2011	Inovasi Pembangkit Biogas (KETUA)	DIPA UNRI	5
12.	2011	Biokonversi limbah padat pabrik kelapa sawit	DIPA UNRI	25
		menjadi biofertilizer dengan bioreaktor windrow		
		aerob (KETUA)		
13.	2011	Pengembangan fermentasi bioetanol dengan	DIPA UNRI	5
		metoda fermentasi secara simultan berbahan		

		baku limbah nanas (ANGGOTA)		
14.	2012	Rancangbangun dan Prorotipe Pembangkit Bioelektrik Berbahan Baku Limbah Cair Pabrik Kelapa Sawit Menggunakan Bioreaktor Hibrid Anaerob Skala Pabrik Berkapasitas 25 m ³ (KETUA)	Hibah Riset MP3EI DP2M DIKTI KemenDiknas	180
15.	2013	Rancangbangun dan Prorotipe Pembangkit Bioelektrik Berbahan Baku Limbah Cair Pabrik Kelapa Sawit Menggunakan Bioreaktor Hibrid Anaerob Skala Pabrik Berkapasitas 25 m ³ (KETUA)	Hibah Pasca Sarjana DP2M DIKTI KemenDiknas	85
16.	2013	Identifikasi, Karakteristik dan Daur Ulang Limbah Lumpur Biomassa Dari Instalasi Pengolah Limbah Cair Industri Pulp dsn Kerta Dalam Upaya Pencegahan Pencemaran Lingkungan (KETUA)	Hibah Riset MP3EI DP2M DIKTI KemenDiknas	170
17.	2014	Rancangbangun dan Prorotipe Pembangkit Bioelektrik Berbahan Baku Limbah Cair Pabrik Kelapa Sawit Menggunakan Bioreaktor Hibrid Anaerob Skala Pabrik Berkapasitas 25 m ³ (KETUA)	Hibah Riset MP3EI DP2M DIKTI KemenDiknas	150
18.	2014	Kajian dan Analisa Mutu Limbah Cair Pabrik Kelapa Sawit (POME) PKS Tandun, Sei Galuh dan Sei Garo PTPNV (KETUA)	PTPN V	250
19.	2010	Bioproses Anaerobik: Praktek dan Teori (KETUA)	Insentif Penulisan Buku Ajar Kemenristekdikti	17,5
20.	2015	Peningkatan Kapasitas Pembngkit Listrik Tenaga Biogas Sawit Dari Kapasitas Bioreaktor 12,5 m ³ Menjadi 50 m ³ perhari di Pabrik Kelapa Sawit Sei Pagar PTPNV (KETUA)	Kemenristekdikti	280
21.	2016	Peningkatan Kapasitas Pembangkit Listrik Tenaga Biogas Sawit Dari Kapasitas Bioreaktor 12,5 m³ Menjadi 50 m³ perhari di Pabrik Kelapa Sawit Sei Pagar PTPNV Tahun Kedua (KETUA)	Kemenristekdikti	185
22.	2016	POME dan Solusinya (KETUA)	Insentif Penulisan Buku Ajar Kemenristekdikti	17,5
23.	2017	Rancangbangun dan Alih Teknologi Pembangkit Listrik Tenaga Biogas Sawit Skala Pabrik Kapasitas 250 m³/hari di Pabrik Kelapa Sawit Sei Pagar PTPNV Riau (KETUA)	Kemenristekdikti	675
24.	2017	Scale-up Biotransformasi Biomassa Pabrik Kelapa Sawit Menjadi Biofertilizer Dengan Bioreaktor Windrow Aerob Skala Pilot Plant (KETUA)	DIPA Universitas Riau	55
25.	2018	Rancangbangun dan Alih Teknologi Pembangkit Listrik Tenaga Biogas Sawit Skala Pabrik	Kemenristekdikti	400

		Kapasitas 250 m3/hari di Pabrik Kelapa Sawit Sei Pagar PTPNV Riau (KETUA)		
26.	2018	Scale-up Biotransformasi Biomassa Pabrik Kelapa Sawit Menjadi Biofertilizer Dengan Bioreaktor Windrow Aerob Skala Pilot Plant: Variasi Dosis POME (KETUA)	DIPA Universitas Riau	64
27.	2019	Peningkatan Kinerja Teknologi Pembangkit Listrik Tenaga Biogas Sawit Skala Pabrik Kapasitas 250 m3/hari di Pabrik Kelapa Sawit Sei Pagar PTPNV Riau (KETUA)	Kemenristekdikti	289

IV PENGALAMAN PENGABDIAN KEPADA MASYARAKAT

No.	Tahun	Judul Pengabdian Kepada Masyarakat	Pend	lanaan
110.	Tunun	Judai i onguodian ixepuda iviasyarakat	Sumber*	Jml (Juta Rp)
1	2007	Water Discharge Sensitivity Mapping in	PT Chevron	410
		Bangko-Balam Area	Pacific	
			Indonesia,	
			RIAU	
2	2007	Pemanfaatan Fly Ash untuk Campuran	PT. RAPP	200
		Beton dan Hot Mix		
3	2006- 2009	Survey Transportasi Mobil Truk Balak	PT. RAPP	150
4	2008	Monitoring Of RKL-RPL PT. CPI Riau	PT Chevron	830
			Pacific	
			Indonesia,	
			RIAU	
5	2009	Monitoring Of RKL-RPL PT. CPI Riau	PT Chevron	830
			Pacific	
			Indonesia,	
			RIAU	
6	2010	Monitoring Of RKL-RPL PT. CPI Riau	PT Chevron	830
			Pacific	
			Indonesia,	
			RIAU	
7	2011	Monitoring Of RKL-RPL PT. CPI Riau	PT Chevron	830
			Pacific	
			Indonesia,	
	2011		RIAU	40
8	2011	Biogas dari Kotoran Sapi di Pedesaan	IA ITB	40
	2012	Kab. Kampar, Propinsi Riau		~ 0
9.	2012	IbM Pemberdayaan Kelompok Peternak	DP2M	50
		Sapi sebagai Pilar Untuk Mewujudkan	DIKTI	
		Desa Mandiri Energi Di Desa Batubelah	KemenDikn	
		Kabupaten Kampar Propinsi Riau	as	

		(KETUA)		
10.	2015	Pengembangan Energi Biogas Di Dusun	Universitas	10
		III Desa Batubelah Kabupaten Kampar	Riau	
		Propinsi Riau Sebagai Perwujudan Desa		
		Mandiri Energi (KETUA)		
11.	2015	Pengembangan Energi Biogas Di Dusun	Universitas	10
		III Desa Muktijaya Kabupaten	Riau	
		RokanHilir Propinsi Riau Sebagai		
		Perwujudan Desa Mandiri Energi		
		(KETUA)		
12.	2017	Desa Binaan: Produksi Bahan Bakar	Universitas	50
		Ramah Lingkungan Dalam Rangka	Riau	
		Mewujudkan Desa Mandiri Energi		
		Berbasis Sentra Peternak Sapi Di Desa		
		Batubelah Kabupaten Kampar Propinsi		
		Riau (KETUA)		
13.	2018	Desa Binaan: Produksi Bahan Bakar	Universitas	30
		Ramah Lingkungan Dalam Rangka	Riau	
		Mewujudkan Desa Mandiri Energi		
		Berbasis Sentra Peternak Sapi Di Desa		
		Batubelah Kabupaten Kampar Propinsi		
		Riau Tahun 2018(KETUA)		
14.	2019	Pemanfaatan Limbah Plastik Untuk	Universitas	5
		Berbagai Kebuituhan Di Desa Rumbio	Riau	
		Jaya Kabupaten Kampar Propinsi Riau		
		(Anggota)		

V PENGALAMAN PENULISAN ARTIKEL ILMIAH DALAM JURNAL

No.	Tahun	Judul Artikel Ilmiah	Volume/ Nomor	Nama Jurnal
1	2019	The Performance of a Pilot Scale	Vol. 19, No. 3	Reaktor
		Anaerobic Hybrid Bioreactor on Palm Oil Mill Effrluent Treatment		
2	2019	Start-up of Expanded Granular	Vol. 550	IOP Conf. Ser:
		Sludge Bed Reactor Treating		Mater. Sci. Eng
		Undiluted Palm Oil Mill Efrfluent		
3	2019	Enhanced Biogas Production by	Vol. 550	IOP Conf. Ser:
		Mesophilic and Thermophilic		Mater. Sci. Eng
		Anaerobhic co-Digestion of Palm		
		Oil Mill Effluent with Empty Fruit		
		Bunches in Expanded Granular		
		Sludge Bed Reactor		
4	2019	Production of Second Generation	Vol. 1295	Journal of
		Bioethanol form Palm Fruit Fiber		Physics: Conf.

		Biomass using Saccharomyces Cerevisiae		Ser.
5	2019	The Effect of Saccharomyces Cerevisiae Concentrations on Second Generation Bioethanol Production from Oil Palm Frond	Vol. 1295	Journal of Physics: Conf. Ser.
6	2019	Comparison of Cellular Vol. 10 No. (Lightweighat Concrete withy Addition of Palm Oil Mi8dribs		International Journal of Civil Engineering and Technology
7	2015	Implementasi Pengelolaan Limbah Cair Rumah Sakit Islam Ibnu Sina Pekanbaru	Vol. 2 No. 2	Dinamika Lingkungan Indonesia
8	2013	Kajian Toksisitas Limbah Biosludge yang berasal dari IPAL Industri Pulp dan Kertas dengan Metode Toxicity Characteristik Leaching Prosedure	Vol. 7 No.1	Jurnal Ilmu Lingkungan
9	2013	Dampak Radiasi terhadap Kesehatan Pekerja Radiasi di RSUD Arifin Achmad, RS Santa Maria, dan RS Awal Bros Pekanbaru	Vol. 7 No. 1	Jurnal Ilmu Lingkungan
10	2012	Uji Kinerja Bioreaktor Hibrid Anaerob Bermedia Tandan Kosong dan Pelepah Sawit dalam Penyisihan <i>Chemical Oxygen</i> <i>Demand</i> (COD) Limbah Cair Pabrik Minyak Sawit	Vol.4 , No. 2	Jurnal Teknik Kimia Indonesia
11	2011	Kinerja Bioreaktor Hibrid Anaerob Bermedia Tandan dan Pelepah Sawit dalam Penyisihan COD	Vol. 10 No. 3	Jurnal Teknik Kimia Indonesia
12	2007	Tinjauan Penerapan Bioreaktor Membran Anaerob Untuk Penanganan Limbah Cair Industri	Vol. 4, No. 2	Jurnal Sains, Teknologi dan Industri
13	2004	Disain dan Penerapan Bioreaktor Anaerob Untuk Penanganan Limbah Cair Pabrik Kelapa Sawit	Vol. 7, No. 1, hal. 9-13	Jurnal Natur Indonesai
14	2004	Studi Komperatif Sumber dan Proses Aklimatisasi Bakteri Anaerob Pada Limbah Cair Yang Mengandung Karbohidrat, Protein dan Minyak-Lemak	Vol. 3, No. 1	Jurnal Sains dan Teknologi
15	2003	Penentuan Parameter Kinetika Proses Biodegradasi Anaerob Limbah Cair Pabrik Kelapa Sawit	Vol. 6, No. 1	Jurnal Natur Indonesia

VI PENGALAMAN PENYAMPAIAN MAKALAH SECARA ORAL PADA PERTEMUAN/SEMINAR ILMIAH

	» T	T 1 1 A . 11 1	*** 1 .	
No.	Nama	Judul Artikel	Waktu	Tempat
	Pertemuan			
	Ilmiah/Seminar		2010	IDIDI
1	Seminar UR-	The Effects of Zn/Natural	2019	UNRI,
1	Internasional	Zeolite Ratio and Adsorbent		Pekanbaru
	Conference on	Calcination on H ₂ S Adsorption		
	Science and	in Biogas on The Proce3ssi8ng		
	Environment	of Palm Oil Mill Effluent		
	(URICSE)	(POME)	• • • • • • • • • • • • • • • • • • • •	
	Seminar UR-	The Effects of Time	2019	UNRI,
2	Internasional	Fermentation and		Pekanbaru
	Conference on	Saccharomyces Cerevisiae		
	Science and	Concentration for Bioethanol		
	Environment	Production fromk Empty Fruit		
	(URICSE)	Bunch		
	Seminar	Pengujian Kualitas NPK	2019	UNRI,
3	Nasional	Biofertilizer dalam Pengolahan		Pekanbaru
	Teknologi dan	Limbah Padat Serat Buah Sawit		
	Pengelolaan			
	Lingkungan			
	Tropis			
	Seminar	Kinerja Pengolahan Limbah	2019	UNRI,
4	Nasional	Padat Serat Buah Sawit		Pekanbaru
	Teknologi dan	Menggunakan Metode Windrow		
	Pengelolaan	Aerob Ditinjau dari Rasio C/N		
	Lingkungan			
	Tropis			
	Seminar	Pengaruh Penambahan POME	2019	UNRI,
5	Nasional	terhadap Konsentrasi N, P, K		Pekanbaru
	Teknologi dan	Pada Proses Pengomposan		
	Pengelolaan	Tandan Buah Sawit		
	Lingkungan			
	Tropis			
	Seminar	Kinerja Teknik Pengomposan	2019	UNRI,
6	Nasional	Limbah Tandan Buah Sawit		Pekanbaru
	Teknologi dan	Menggunakan Metode Windrow		
	Pengelolaan	Aerob Ditinjau dari Rasio C/N		
	Lingkungan			
	Tropis			
	The Padjajaran	Start-up of Expanded Granular	2018	UNPAD,
7	International	Sludge Bed Reactor Treating		Bandung
	Conference on	Undiluted Palm Oil Mill		
	Energy	Efrfluent		
	Research,			
	Technology			
	and Innovation			

	The Padjajaran	Enhanced Biogas Production by	2018	UNPAD,
8	International	Mesophilic and Thermophilic		Bandung
	Conference on	Anaerobhic co-Digestion of		
	Energy	Palm Oil Mill Effluent with		
	Research,	Empty Fruit Bunches in		
	Technology	Expanded Granular Sludge Bed		
	and Innovation	Reactor		
	3 rd	Production of Second	2018	UNDIP,
9	International	Generation Bioethanol form		Semarang
	Conference on	Palm Fruit Fiber Biomass using		
	Chemical and	Saccharomyces Cerevisiae		
	Material			
	Engineering			
	3 rd	The Effect of Saccharomyces	2018	UNDIP,
10	International	Cerevisiae Concentrations on		Semarang
	Conference on	Second Generation Bioethanol		
	Chemical and	Production from Oil Palm Frond		
	Material			
	Engineering			
	Seminar	Peningkatan Kapasitas	2015	RISTEK,
11	Nasional	Pembangkit Listrik Tenaga		Bandung
	Insentif Riset	Biogas Sawit Dari Kapasitas		8
	Sinas,	Bioreaktor 12,5 m ³ menjadi 50		
	INSINAS	M ³ Perhari di Pabrik Kelapa		
		Sawit Sei Pagar PTPNV		
	Seminar	Peningkatan Kinerja Pembangkit	2014	RISTEK,
12	Nasional	Listrik Biogas Berbasis Limbah		Serpong
	Insentif Riset	Cair Pabrik Kelapa Sawit		1 &
	Sinas,	Dengan Scale-up Bioreaktor		
	INSINAS	Hibrid Anaerobik dari 2,5 m ³		
		Menjadi 12,5 m ³		
	Seminar	Peningkatan Kinerja Pembangkit	2013	RISTEK,
13	Nasional	Listrik Biogas Berbasis Limbah		Serpong
	Insentif Riset	Cair Pabrik Kelapa Sawit		
	Sinas,	Dengan Scale-up Bioreaktor		
	INSINAS	Hibrid Anaerobik dari 2,5 m ³		
		Menjadi 12,5 m ³		
	Seminar	Peningkatan Kinerja Pembangkit	2012	RISTEK,
14	Nasional	Listrik Biogas Berbasis Limbah		Bandung
	Insentif Riset	Cair Pabrik Kelapa Sawit		
	Sinas,	Dengan Scale-up Bioreaktor		
	INSINAS	Hibrid Anaerobik dari 2,5 m ³		
		Menjadi 12,5 m ³		
	Seminar	Biokonversi Reject Nenas	2012	ITENAS,
15	Nasional Tjipto	dengan Menggunakan		Bandung
	Utomo	Saccharomyces Cerevisiae		
	Seminar	Uji Kinerja Bioreaktor Hibrid	2012	IPB, Bogor
16	Nasional dan	Anaerob dalam Mengolah		

	Kongres MAKSI	Limbah Cair Pabrik Kelapa Sawit dengan Beban Kejut		
17	Seminar Nasional Teknik Kimia Indonesia dan Musyawarah Nasional APTEKINDO	Kestabilan Bioreaktor Hibrid Anaerob Bermedia Batu pada Kondisi Start-Up dalam Pengolahan Limbah Cair Pabrik Sagu	2012	UI, Jakarta
18	Seminar Nasional Teknik Kimia Indonesia dan Musyawarah Nasional APTEKINDO	Efisiensi Penyisihan Kandungan Padatan Limbah Cair Pabrik Sagu Menggunakan Reaktor Hibrid Anaerob dengan Variabel Laju Alir	2012	UI, Jakarta
19	Seminar Nasional Teknik Kimia Indonesia dan Musyawarah Nasional APTEKINDO	Pengaruh Laju Pembebanan Organik terhadap pH dan asam Asetat dalam Bioreaktor Hibrid Anaerob pada Pengolahan Limbah Cair Pabrik Sagu	2012	UI, Jakarta
	Seminar Nasional Teknik Kimia Indonesia dan Musyawarah Nasional APTEKINDO	Pengaruh Laju Alir Umpan terhadap pH dan Alkalinitas Limbah Cair Sagu dalam Bioreaktor Hibrid Anaerob Bermedia Batu pada Kondisi Tunak	2012	UI, Jakarta
20	Seminar Nasional Teknik Kimia Teknologi Oleo dan Petro Kimia	Pengaruh Konsentrasi Starter Pada Pembuatan Kompos dari Limbah Serat Buah Sawit dengan Teknologi Biofertilizer	11 Juli 2012	UNRI, Pekanbaru
21	Seminar Nasional Teknik Kimia Teknologi Oleo dan Petro Kimia	Efisiensi Penyisihan Chemical Oxygen Demand (COD) Limbah Cair Pabrik Sagu dan Produksi Biogas Menggunakan Bioreaktor Hibrid Anaerob pada Kondisi Start-Up	11 Juli 2012	UNRI, Pekanbaru
22	Seminar Nasional Teknik Kimia Teknologi Oleo dan Petro Kimia	Pengaruh Laju Pembebanan Organik terhadap Produksi Biogas dari Limbah Cair Sagu Menggunakan Bioreaktor Hibrid Anaerob	11 Juli 2012	UNRI, Pekanbaru

23	Seminar Nasional Teknik Kimia Teknologi Oleo dan Petro Kimia Seminar	Penyisihan Kandungan Padatan Limbah Cair Pabrik Sagu dengan Bioreaktor Hibrid Anaerob pada Kondisi Start-Up Kajian Aklimatisasi Proses	11 Juli 2012 11 Juli 2012	UNRI, Pekanbaru UNRI,
	Nasional Teknik Kimia Teknologi Oleo dan Petro Kimia	Pengolahan Limbah Cair Pabrik Sagu Secara Anaerob		Pekanbaru
25	Seminar Nasional Teknik Kimia Kejuangan	Pengaruh Konsentrasi Nitrogen Pada Pembuatan Kompos Dari Limbah Tandan Kosong Sawit Dengan Teknologi Biofertilizer	6 Maret 2012	UPN, Yogyakarta
26	Seminar Nasional Teknik Kimia Kejuangan	Pengaruh Konsentrasi Nitrogen Pada Pembuatan Kompos Dari Limbah Tandan Kosong Sawit Dengan Teknologi Biofertilizer	6 Maret 2012	UPN, Yogyakarta
27	Seminar Nasional Teknik Kimia Kejuangan	Pengaruh Konsentrasi Starter Pada Pembuatan Kompos Dari Tandan Kosong Sawit Dengan Teknologi Biofertilizer	6 Maret 2012	UPN, Yogyakarta
28	Seminar Nasional Teknik Kimia Kejuangan	Pengaruh Konsentrasi Nitrogen Terhadap Pengomposan Serat Buah Sawit Dengan Teknologi Biofertilizer	6 Maret 2012	UPN, Yogyakarta
29	Seminar Nasional Teknik Kimia Kejuangan	Pengaruh Kadar Fosfor Terhadap Pengomposan Dari Limbah Tandan Kosong Sawit Dengan Metode Windrow Aerob	6 Maret 2012	UPN, Yogyakarta
30	Seminar Nasional Teknik Kimia Kejuangan	Pengaruh Konsentrasi Urea Sebagai Sumber Nitogen Terhadap Proses Biokonversi <i>Reject</i> Nanas Menjadi Bioetanol	6 Maret 2012	UPN, Yogyakarta
31	Seminar Nasional Teknik Kimia Kejuangan	Pengaruh Konsentrasi Substrat Terhadap Biokonversi <i>Reject</i> Nanas Menjadi Bioetanol	6 Maret 2012	UPN, Yogyakarta
32	Seminar Nasional Teknik Kimia Kejuangan	Pengaruh Konsentrasi Inokulum Terhadap Biokonversi <i>Reject</i> Nanas Menjadi Bioetanol	6 Maret 2012	UPN, Yogyakarta
33	Seminar Nasional Teknik Kimia Kejuangan	Pengaruh Konsentrasi Fosfor Terhadap Biokonversi <i>Reject</i> Nanas Menjadi Bioetanol	6 Maret 2012	UPN, Yogyakarta

VII PENGALAMAN PENULISAN BUKU

No.	Tahun	Judul Buku	Jumlah Halaman	Penerbit
1	2002	Peranan Sumber Daya Alam Dan	150	FAPERIKA
		Pengelolaannya Dalam Meningkatkan		PRESS
		KesejahteraanMasyarakat Riau, Editor:		
		Feliatra, Optimalisasi Peran Universitas		
		Riau Dalam Menggapai Visi Riau 2020,		
		ISBN 9790-3314-03-6		
2	2003	Strategi Pengembangan Bioteknologi di	150	UNRI
		Propinsi Riau, Editor: Usman Pato,		PRESS
		Pengembangan Ilmu dan Penelitian		
		Bioteknologi di Riau, ISBN 9790-3297-66-2		
3	2012	Rekayasa Bioproses Anaerobik: Teori dan	222	UNRI
		Praktek. ISBN 978-979-792-407-2		PRESS
4	2015	Buku Teknologi Tepat Guna: Pedoman	28	UNRI
		Pembuatan Biogas Untuk Rumah Tangga.		PRESS
		ISBN 978-979-792-648-9		
5	2017	POME dan Solusinya. ISBN 978-979-792-	228	UNRI
		648-9		PRESS

VIII PENGALAMAN PEROLEHAN HKI

No.	Tahun	Judul/Tema HKI	Jenis	Nomor P/ID
1.	2010	Metoda dan Alat Untuk Pengolahan	Paten	P00201000841
		Limbah Cair Dengan Bioreaktor		
		Hibrid Anaerob		
2.	2011	Metoda dan Alat Untuk Produksi	Paten	P00201100837
		Biogas dan Pupuk Cair Secara		
		Kontinu		
3.	2012	Bioreaktor Sekat Anaerob Dua Fasa	Paten	P00201201209
		Untuk Pengolahan Limbah Cair		
		Dengan Beban Organik Tinggi		
4.	2017	Alat Purifikasi Biometan dari Biogas	Paten	P00201705561
5.	2017	Alat Pengendali Kestabilan Fluks pada	Paten	P00201705562
		Bioreaktor Membran Anaerob Secara		
		Kontinu		
6.	2018	Bioreaktor Windrow Aerobik Untuk	Paten	P00201805562
		Bioremediasi Biomassa Nonpati		
7.	2018	Alat Penutup Kolam Bioreaktor Hibrid	Paten	P00201805562
		Anaerob		
8.	2017	Rekayasa Bioproses Anaerobik: Teori	Hak Cipta	C00201700260
		dan Praktek		
9.	2017	Buku Teknologi Tepat Guna:	Hak Cipta	C00201700259
		Pedoman Pembuatan Biogas Untuk	_	
		Rumah Tangga		
10.	2018	POME dan Solusinya	Hak Cipta	C00201800259

IX PENGALAMAN MERUMUSKAN KEBIJAKAN PUBLIK/REKAYASA SOSIAL

Lu	HNNYA		_	
No.	Tahun	Judul/Tema/Jenis Rekayasa Sosial Lainnya yang Telah Diterapkan	Tempat Penerapan	Respons Masyarakat
1.	2007	Agenda 21 Propinsi Riau	Bapedal Propinsi Riau	Sebagai Acuan Kebijakan Lingkungan Daerah

X	PENCHA	RCAAN	VANG	PERNAH	DIRAIH

No.	Judul/Tema/Jenis Rekayasa Sosial Lainnya yang Telah Diterapkan	Institusi Pemberi Penghargaan	Tahun
1.	Satya Lancana Karya Satya 10 tahun	Presiden RI	2006
2.	Satya Lancana Karya Satya 20 tahun	Presiden RI	2008
3,	Peneliti Terbaik I UNRI 2009	Rektor Universitas Riau	2009
4.	Peneliti Terbaik I UNRI 2010	Rektor Universitas Riau	2010
5.	Peneliti Terbaik II UNRI 2012	Rektor Universitas Riau	2012
6.	Penyaji Makalah Terbaik Kelompok IV, Seminar Nasional Pengabdian Kepada Masyarakat	DP2M DIKTI	2013
7.	Satya Lancana Karya Satya 30 tahun	Presiden RI	2017
8.	Dekan Terbaik II di Universitas Riau	Rektor UNRI	2017
9.	Dosen Terbaik Peraih Kekayaan Intelektual Kategori Paten Terbanyak	Rektor UNRI	2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan hibah Skema Penelitian Inovasi dan Percepatan Hilirisasi.

Pekanbaru, 12 Maret 2020

Ketua Peneliti,

(Prof. Dr. H. Adrianto Ahmad, MT)

NIP. 19581018 198703 1 001

b. Biodata Anggota Peneliti 1

Identitas Diri

Nama	:	Drs. Edward Hs, M.Si
NIP/NIK	:	195910221987021001
NIDN		0022105901
Tempat dan Tanggal Lahir	:	Batusangkar, 22 Oktober 1959
Jenis Kelamin	:	Laki-laki
Status Perkawinan	:	Kawin
Agama	:	Islam
Golongan/Pangkat	:	III-d
Jabatan Fungsional Akademik	:	Lektor
Perguruan Tinggi	:	Universitas Riau
Alamat	:	Kampus Bina Widya Km. 12,5 Simpang Baru Pekanbaru 28294
Telp/Faks	:	(0761) 62382
Alamat Rumah	:	Jl. Damai Blok L. No.2 Pekanbaru
Telp/Faks	:	0761-62382
Alamat e-mail	:	Edwardhs150@gmail.com

RIWAYAT PENDIDIKAN PERGURUAN TINGGI								
Tahun Lulus	Jenjang	Perguruan Tinggi	Jurusan/Bidang Studi					
1985	Sarjana	Universitas Riau	Kimia-FMIPA					
2010	Magister	Universitas Hasanuddin	PLH					

	PELATIHAN PROFESIONAL						
Tahun	Pelatihan	Penyelenggara					
2012	Pelatihan Penelitian Tindakan kelas	Pusat Pengembangan dan					
		pendidikan Universitas Riau					
2011	Pelatihan PEKERTI-AA	Pusat Pengembangan dan					
		pendidikan Universitas Riau					
2011	Sosialisasi Penelitian dan pengabdian Kepada Masyarakat	Fakultas Teknik Universitas Riau					
	Fakultas Teknik Universitas Riau						
2012	Workshop Pembuatan Proposal Pengabdian Kepada	Lembaga Pengabdian Kepada					
	Masyarakat Program Mono dan Multi tahun	Masyarakat Universitas Riau					
2012	Sosialisasi Borang Akreditasi Sarjana Perguruan Tinggi	Universitas Riau					
2012	Workshop Metode dan Media Pembelajaran	RUTC Universitas Riau					

PENGALAMAN JABATAN						
Jabatan	Jabatan					
Dekan Fakultas teknik			Univeritas Riau	sampai th 2000		
Pembantu dekan 1.			Univeritas Riau	sampai th 1996		
Anggota Tim Akreditasi dan Eval		iri Prodi	Universitas Riau	2012		
Teknik Lingkungan Fakultas Teknik	k, UR					
Institusi			Jabatan	Periode Kerja		
Pengalaman Penelitian:						
Penggunaan Aktivator UH1 Untuk pencega	ahan		Ketua Peneliti	2008		
pencemaran minyak bumi di sungai			retua i chenti	2000		
Kinerja membran reverse terhadap rejeksi si	intetis	Ketua Peneliti		2009		
Pengolahan limbah cair secara kimia dan fis	sika	Ketua Peneliti		2011		
PEN	IGALA	MAN MEN	GAJAR			
Mata Kuliah	J	enjang	Institusi	Tahun		
Pencegahan pencemaran	5	Sarjana	Universitas Riau	s/d 2012		

Ekologi dan peng. Lingkungan	Sarjana	Universitas Riau	s/d 2012		
Koservasi lingkungan	Sarjana	Universitas Riau	s/d 2012		
Kimia lingkungan	Sarjana	Universitas Riau	s/d 2012		
Kesehatan lingkungan	Sarjana	Universitas Riau	s/d 2012		
Teknologi tepat guna	Sarjana	Universitas Riau	s/d 2012		
PENGALAMAN MEMBIMBING MAHASISWA					

Semester Genap/ Pembimbing Penelitian di D3 Teknik Kimia Ganjil s/d 2016 Penbimbing Penelitian di D3 Teknik Kimia					
Tahun	Pembimbing / Pembinaan				
	PENGALAM	AN MEMBIMBIN	IG MAHASISWA		
Teknologi tepat guna		Sarjana	Universitas Riau	s/d 2012	
Kesehatan lingkunga	in .	Sarjana	Universitas Riau	s/d 2012	
Kimia lingkungan		Sarjana	Universitas Riau	s/d 2012	
Koservasi lingkunga	n	Sarjana	Universitas Riau	s/d 2012	
Ekologi dan peng. I	ingkungan	Sarjana	Universitas Riau	s/d 2012	

	KARYA TULIS ILMIA	H		
Tahun	Judul	Penerbit/ Jurnal		
2015	Efisionsi Metode Multi Soil Layering dalam penyisihan COD dari Limbah cair Hotel Pangeran Beach Padang	Jurnal Teknik Lingkungan Universitas Andalas No. 7/DAMPAK/IX/2012		
	KEGIATAN PROFESIONAL/PENGABDIAN K	EPADA MASYARAKAT		
Tahun	Kegiatan	Company		
2015	Sosialisasi dan teknologi pembuatan kompos di SD N Dalam Rangka Menuju Sekelah Adiwiyata)	110 Kecamatan Tampan Kota Pekanbaru (
2015	Penyuluhan Masalah Lingkungan dan Teknologi Pembuatan Kompos Di SD N 075 Kota Pekanbaru (Dalam Rangka Menuju Sekolah Adiwiyata)			
2016	Pelatihan Pembuatan Teknologi Pengolahan Air Berminyask, Berbau dan Berkarat Bagi masyarakat Desa Bunga Raya Kel. Bunga Raya Kab. Siak			
2014	Sosialisasi Pengolahan Sampah Sederhana "Takakura Home Methods" di Rumah Tangga Desa Pantai Cermin Kecamatan Tapung			
2014	Penyuluhan teknologi pengomposan skala rumah tangga metode keranjang takakura di kelurahan balai makam kecamatan Mandau, duri			
2013	Pelatihan pembuatan pupuk cair organic di keluarahan palas kecamatan rumbai pekanbaru			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan hibah Skema Penelitian Inovasi dan Percepatan Hilirisasi.

Pekanbaru, 12 Maret 2020

Anegota Peneliti

Drs. Edward Hs. M.Si NIP: 195910221987021001

c. Biodata Anggota Peneliti 2

Identitas Diri

Nama : Jecky Asmura, ST, MT Nip. : 197709162005011002

Nidn: 0016047703 Pangkat: Illa/Asisten Ahli

a) Pendidikan

Program	Sarjana	Magister	Doktoral
Perguruan Tinggi	Universitas	Institut	
Asal	Andalas	Teknologi	
		Bandung	
Konsentrasi Ilmu	Teknik	Teknik	
	Lingkungan	Lingkungan	
Tahun Lulus	2001	2005	
Judul Tugas Akhir	Perencanaan	Pengelolaan	
	Sistem	Sampah Kota	
	Penyediaan Air	Padang Dengan	
	Minum Kec.	Pendekatan	
	Kuranji, Kota	Sistem Dinamik	
	Padang		

b) Pengalaman Penelitian 5 (lima) Tahun Terakhir

Judul riset	Tahun	Nilai	Sumber	Peran/	Mitra
	Riset	Pendanaan	Pendanaan	Dania:	Riset
		Riset (Juta)	Riset	Posisi	
Kajian Studi	2017	15.000.000	DIPA UNRI	Ketua	
	2017	13.000.000	DII A ONIN	Retua	
Kelayakan Sungai					
Sail Untuk					
Ketersediaan Air					
Baku di Kecamatan					
Bukit Raya					
Pekanbaru					
Pengembangan	2016	60.000.000	Hibah	Anggota	
Proses Produksi Pulp			Bersaing		
Cetak Tanpa Perekat			DIKTI		
dari Tandan Kosong					

Sawit (anggota)				
Kajian Sistem Drainase Berwawasan Lingkungan Menggunakan Pendekatan Model Matematik Environmental Protection Agency- Storm Water Management Model (EPA-SWMM) (anggota)	2016	20.000.000	DIPA UNRI	Anggota
Aplikasi Teknologi Rain Water Harvesting Sebagai Alternatif Pemenuhan Kebutuhan Air Bersih Daerah Rawa di Propinsi Riau (Tahun 2 dari 2)	2015	70.000.000	DIKTI	Anggota
Aplikasi Teknologi Rain Water Harvesting Sebagai Alternatif Pemenuhan Kebutuhan Air Bersih Daerah Rawa di Propinsi Riau (Tahun 1 dari 2)	2014	50.000.000	DIKTI	Anggota
Uji Toksisitas dan Studi Ekokinetik Air Lindi Dari TPA Muara Fajar Kecamatan Rumbai Pesisir Pekanbaru (anggota)	2013	14.500.000	DIPA UNRI	Anggota
Pengelolaan Sampah Kampus Panam	2012	15.000.000	DIPA UNRI	Ketua

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan hibah Skema Penelitian Inovasi dan Percepatan Hilirisasi.

Pekanbaru, 12 Maret 2020

Anggota Peneliti

Jecky Asmura, ST, M.T

NIP: 197709162005011002