Project 4:

RACHEL WEBER

Aims and Hypotheses

1. Aim 1

- Hypothesis a. Higher baseline levels of cytokines and chemokines is associated with greater declines in episodic memory and decreased cortical thickness
- 2. Hypothesis b. Greater increases in cytokines and chemokines is associated with greater declines in episodic memory and decreased cortical thickness

2. Aim 2

 Hypothesis: Presence of Amyloid Deposition and elevated peripheral inflammatory markers is the strongest predictor of memory decline and decline in AD-signature cortical thickness

3. Aim 3

- Hypothesis a. Levels of cytokines and chemokines from CNS-derived exosomes will be higher in aMCI relative to HC subjects.
- Hypothesis b. High levels of inflammatory markers from CNS-derived exosomes and increases in these levels better predicts memory decline and decreases in AD-signature on neuroimaging relative to total exosomes.

Aim 1—Analysis Plan

Hypothesis A:

- 1. memory decline = baseline cytokines + sex + age + BMI + NSAIDS
- 2. memory decline = baseline chemokines + sex + age + BMI + NSAIDS
- 3. Δ cortical thickness = baseline cytokines + sex + age + BMI + NSAIDS
- **4.** Δ cortical thickness = baseline chemokines + sex + age + BMI + NSAIDS
- 5. Overall F-tests will determine model significance
- 6. Variables will be significant if p-value is below .05
- 7. Partial F-tests will determine individual variable significance

Hypothesis B:

1. Model will be repeated but will use Δ cytokines and Δ chemokines in place of baseline.

Aim 2—Analysis Plan

- 1. Δ amyloid deposition = baseline inflammatory markers + sex + age + BMI + APOE + NSAIDs
- 2. Δ cortical thickness = baseline inflammatory markers + sex + age + BMI + APOE + NSAIDs
- 3. memory decline = Δ amyloid dep. + sex + age + BMI + APOE + NSAIDs

VS.

memory decline = Δ amyloid dep. +base inflam. + sex + age + BMI + APOE + NSAIDs

4. memory decline = Δ cortical thickness + sex + age + BMI + APOE + NSAIDs

VS

memory decline = Δ cortical thickness + base inflam. + sex + age + BMI + APOE + NSAIDs

3 and 4 to check if chemokines/cytokines are effect modifiers

Aim 3—Sample Size Calculation

- 1. Power Calculation
 - Desired Power: 0.8
 - Enrollement: 137 aMCl and 55 control—192 total
 - Ratio of control to aMIC = 55:137
 - $N = \frac{N(1+k)^2}{4k}$ for total sample size given unequal group sizes where k is the group ratio and N is the sample given from the power calculation
 - SD of ΔMCI: 0.5
 - True Difference in Means: 4.6
 - Significance Level: 0.05
 - Test correlations: .25, .5, .75

Whitley E, Ball J. Statistics review 4: sample size calculations. Crit Care. 2002;6(4):335-41.

Aim 3—Analysis Plan

- 1. Δ Memory = baseline markers + sex + age + BMI + NSAIDs + APOE + aMCI_{Yes}
 - aMCI status included as precision variable. Will elucidate is there is a difference between healthy controls and aMCI when all other variables remain constant. Significance at p = 0.05
- 2. \triangle ADsignature = baseline markers + sex + age + BMI + NSAIDs + APOE + aMCI_{Yes}
- 3. \triangle Memory = \triangle markers + sex + age + BMI + NSAIDs + APOE + aMCI_{Yes}
- 4. \triangle ADsignature = \triangle markers + sex + age + BMI + NSAIDs + APOE + aMCI_{Yes}