Lezioni del 26 Febbraio del prof. Frigerio

Osservazione 1. a $p: E \to X$ un rivestimento e $x_0 \in X$ e sia γ è un cammino in X con punto iniziale x_0 .

Se $\tilde{x_0} \in p^{-1}(x_0)$ allora esiste un unico sollevamento di γ con punto iniziale $\tilde{x_0}$, indichiamo tale cammino con $\tilde{\gamma}_{\tilde{x_0}}$

Proposizione 0.1. Sia $p: E \to X$ un rivestimento $e x_0, x_1 \in X$ allora esiste una bigezione tra $p^{-1}(x_0)$ e $p^{-1}(x_1)$

Dimostrazione. Poichè X è connesso per archi, $\exists \gamma \in \Omega(x_0, x_1)$.

$$\psi: p^{-1}(x_0) \to p^{-1}(x_1) \quad x_0 \to \tilde{\gamma}_{\tilde{x_0}}(1)$$

Tale mappa è ben definita in quanto se $\gamma(1) = x_1$ allora $\tilde{\gamma}_{\tilde{x_0}}(1) \in p^{-1}(x_1)$ ed inoltre è invertibile (basta usare la stessa definizione di ψ usando il cammino $\bar{\gamma}$

Osservazione 2. La bigezione non è canonica, se cambio γ , viene a modificarsi l'identificazione tra le 2 fibre

Definizione 0.1 (Grado del rivestimento).

Sia $p: E \to X$ rivestimento, per la proposizione precedente, è ben definito il grado del rivestimento come la cardinalità di una fibra $|p^{-1}(x_0)|$, tale cardinalità si inndica con deg p

Definizione 0.2. Una sezione di un rivestimento $p: E \to X$ è una mappa continua $s: U \to E$ tale che $p(s(x)) = x \ \forall x \in U$.

Si dice che la sezione è locale se U è un aperto di X e globale se U = X.

(Ha senso di parlare di sezione per ogni mappa p)

Osservazione 3. Dalla definizione di rivestimento si ha $\forall x \in X \exists U \ni x$ aperto con sezione locale definita su U (prendo U intorno ben rivestito e scelgo uno degli intorni della preimmagine di x)

Teorema 0.2 (Sollevamento delle omotopie).

Sia $p: E \to X$ rivestimento $e f: X \to Y$ continua con Y localmente connesso. Sia $F: Y \to [0,1] \to X$ tale che $F(y,0) = f(y) \ \forall y \in Y$.

Supponiamo che esista $\hat{f}: Y \to E$ un sollevamento di f.

Allora esiste unico sollevamento $\tilde{F}: T \to [0,1] \to E$ di F (ovvero tale che $\tilde{F}(y,0) = \tilde{f}(y)$

Dimostrazione. Andiamo a definire \tilde{F} e poi verifichiamo che con questa definizione risulta continua.

 $\forall y_0 \in Y \text{ sia } \gamma_{y_0} \text{ il cammino dato da } \gamma_{y_0}(t) = F(y_0, t).$

Sia $\tilde{\gamma}_{y_0}$ il sollevamento di γ_{y_0} s partire da $f(y_0)$.

Poniamo dunque

$$\tilde{F}(y_0, t) = \tilde{\gamma}_{y_0}(t)$$

è chiaro che con questa scelta \tilde{F} solleva F e dunque se tale cammino è continuo, è l'unico sollevamento.

Mostriamo la continuità.

Basta vedere che $\forall (y_0, t) \in Y \times [0, 1]$ esiste un intorno U in $Y \times [0, 1]$ tale che $\tilde{F}_{|U} = s \circ F_{|U}$ dove s è una sezione locale continua del rivestimento.

Andiamo a ""quadrettare"" $Y \times [0, 1]$

Poichè $y_0 \times [0,1]$ è compatto e $\{F^{-1}(W) \mid W \text{ aperto ben rivestito di } X\}$ è un suo ricoprimento otteniamo che Z_1, \ldots, Z_n sono un numero finito di aperti di $Y \times [0,1]$ che ricoprono $\{y_0\} \times [0,1]$ e sono tali che $F(Z_i)$ è contenuto in un intorno ben rivestito di X.

Per la definizione di topologia prodotto, posso supporre $Z_i = A_i \times B_i$ con A_i aperto in Y e B_i aperto in [0,1] e tale che $y_0 \in A_i \ \forall i$.

Sia
$$A = \bigcap_{i=1}^{n} A_i$$
 che è aperto in $Y \in y_0 \in A$.

Ora $B_1 \cup \cdots \cup B_n = [0, 1]$ allora sia $\frac{1}{k}$ minore del numero di Lesbbegue di $\{B_1, \ldots, B_n\}$.

$$\forall j = 0, \dots, k-1 \quad A \times \left[\frac{j}{k}, \frac{j+1}{k}\right] \subseteq A_i \times B_i \quad \Rightarrow \quad F\left(A \times \left[\frac{j}{k}, \frac{j+1}{j}\right]\right) \subseteq U_j \text{ intorno ben rivestito}$$

In questo modo abbiamo ricoperto $Y \times [0,1]$ con dei "quadrati" che finiscono tramite F in intorni ben rivestiti di X, mostriamo che su questi "quadrati" \tilde{F} coincide con $s \circ F$.

Supponiamo A connesso per archi.

Sia $s_0: U_0 \to E$ una sezione locale.

Su $A \times \{0\}$ confrontando le mappe \tilde{F} e $s_0 \circ F$ esse coincidono su un punto, sonp continue e poichè A connesso per unicità dei sollevamenti, le 2 mappe coincidono su $A \times \{0\}$ e per definizione di \tilde{F} coincidono su tutto il quadrato $A \times \left[0, \frac{1}{k}\right]$ (\tilde{F} è definito in base a dove viene mandato $F(A \times \{0\})$).

Induttivamente si mostra che

$$\tilde{F}_{\left|\left[\frac{j}{k},\frac{j+1}{k}\right]\right|} = s_k \circ F$$

Osservazione 4. Il teorema dice che se ho un omotopia tra f e una certa funzione, se riesco a sollevare f allora l'omotopia si solleva

Corollario 0.3. Siano $\gamma_1, \gamma_2 : [0, 1] \to X$ cammini omotopi a estremi fissi con stesso punto iniziale x_0 .

Se $\tilde{x_0} \in p^{-1}(x_0)$ allora

$$(\tilde{\gamma_1})_{\tilde{x_0}} \sim (\tilde{\gamma_2})_{\tilde{x_1}}$$
 a estremi fissi

in particolare si ha $\gamma_1 x_0(1) = (\tilde{\gamma_2})_{\tilde{x_1}}(1)$

 $Dimostrazione. \ {\rm Sia}\ F: \ [0,1]\times [0,1] \to X\ {\rm un\ omotopia\ tra}\ \gamma_1 \ {\rm e}\ \gamma_2.$

Usando il teorema appena dimostrato con $f = \gamma_1$ e $\tilde{f} = (\tilde{\gamma_1})_{\tilde{x_0}}$ otteniamo $\tilde{F}: [0,1] \times [0,1] \to E$ che solleva F dove

$$\tilde{F}(t,0) = (\tilde{\gamma_1})_{\tilde{x_0}}(t)$$

Se prendo $s \to \tilde{F}(0,s)$ è un sollevamento del cammino costante a x_0 a partire da $\tilde{x_0}$ perciò è il cammino costante a $\tilde{x_0}$.

Analogamente $\tilde{F}(1,s) = (\tilde{\gamma_1})_{\tilde{x_0}}$.

Il cammino $t \to \tilde{F}(1,t)$ solleva γ_2 a partire da $\tilde{x_0}$ dunque per unicità dei sollevamenti tale sollevamento è $(\tilde{\gamma_2})_{\tilde{x_0}}$

Dunque \tilde{F} è un omotopia e estremi fissi cercata.

Corollario 0.4. $p: E \to X$ rivestimento

$$p_{\star}: \pi_1(E, \tilde{x_0}) \to \pi_1(X, x_0)$$

è iniettiva

Dimostrazione. Sia $\alpha = [\gamma] \in \ker p_{\star}$ dunque si ha

$$p \circ \gamma \sim c_{x_0} \quad \Rightarrow \quad \gamma = (p \,\tilde{\circ} \,\gamma)_{\tilde{x_0}} \sim (\tilde{c_{x_0}})_{\tilde{x_0}} = c_{\tilde{x_0}}$$

dunque $[\gamma] = 1 \in \pi_1(E, \tilde{x}_0)$

Definizione 0.3 (Monodromia).

Sia $p: E \to X$ rivestimento, $x_0 \in X$ e $F = p^{-1}(x_0)$ allora esiste un azione destra di $\pi_1(X, x_0)$ su ${\cal F}$

$$F \times \pi_1(X, x_0) \to F$$
 $\tilde{x} \cdot [\gamma] = (\tilde{\gamma})_{\tilde{x}}(1)$

Osservazione 5. Se $\gamma \sim \gamma'$ allora $(\tilde{\gamma})_{\tilde{x}} \sim (\tilde{\gamma'})_{\tilde{x}}$ da cui $(\tilde{\gamma})_{\tilde{x}}(1) = (\tilde{\gamma'})_{\tilde{x}}(1)$. Da quanto osservato l'azione di monodromia è ben definita.

Mostriamo che è un azione

$$\tilde{x} \cdot ([\gamma] \cdot [\alpha]) = (\tilde{x} \cdot [\gamma]) \cdot [\alpha]$$

in quanto

$$\tilde{x}_{\bullet}([\gamma] \cdot [\alpha]) = \tilde{x}_{\bullet}[\gamma \star \alpha] = (\gamma \circ \alpha)_{\tilde{x}} \, (1) = \left((\tilde{\gamma})_{\tilde{x}} \star \left(\tilde{\alpha}_{\tilde{\gamma}_{\tilde{x}}(1)} \right) \right) \, (1) = \tilde{\alpha}_{\tilde{\gamma}_{\tilde{x}}(1)}(1) = \tilde{\gamma}_{\tilde{x}}(1)_{\bullet}[\alpha] = (\tilde{x}_{\bullet}[\gamma])_{\bullet}[\alpha]$$