Knowledge Extraction from Deep Learning Models

Konda Reddy Mopuri MFSDSAI, IITG

Success of Deep Learning

- Impressive progress
- Numerous applications

Deep Learning Models are heavy

- Hundreds of layers
- Millions of parameters
- Heavy memory footprint and power consumption
- → less suitable to host in resource constrained environments

Efficient DL models

- 1. Train them from scratch
- 2. Compress the sophisticated models

Efficient DL models

- 1. Train them from scratch
 - 0
 - Neural Architecture Search (NAS) ?

Efficient DL models

- 2. Compress the sophisticated models
 - Parameter Pruning
 - Parameter Quantization
 - Knowledge Distillation

Pruning

Pruning

- DNNs may have redundant weights
 - Neurons learn similar features
 - Removing them may not affect the performance

Compression via parameter pruning

- Fine vs Coarse pruning
 - Weights vs Neurons
- Static vs Dynamic pruning
 - During vs after training

Pruning

- Naive approach: remove the weights that are equal (or close) to zero
- May use threshold values to prune
- Can be stored as sparse matrices → efficient operations

Pruning (Deep Compression, Han et al. ICLR 2016)

Pruning (Deep Compression, Han et al. ICLR 2016)

Sparsifying at train time

Weight (fine) pruning: summary

- Secondary memory footprint is reduced
- Not the RAM requirement (zeros are still present)
- Without the optimized sparse matrix operations gains can't be enjoyed!

Neuron (coarse) pruning (Drop Neuron, Pan et al.)

 Regulares to reduce the weights and thresholds prune the neurons

$$\texttt{li_regulariser} := \lambda_{\ell_i} \sum_{\ell=1}^L \sum_{j=1}^{n^\ell} \| \mathbf{W}_{:,j}^\ell \|_2 = \lambda_{\ell_i} \sum_{\ell=1}^L \sum_{j=1}^{n^\ell} \sqrt{\sum_{i=1}^{n^{\ell-1}} \left(W_{ij}^\ell \right)^2}$$

$$\texttt{lo_regulariser} := \lambda_{\ell_o} \sum_{\ell=1}^L \sum_{i=1}^{n^{\ell-1}} \| \mathbf{W}_{i,:}^\ell \|_2 = \lambda_{\ell_o} \sum_{\ell=1}^L \sum_{i=1}^{n^{\ell-1}} \sqrt{\sum_{j=1}^{n^\ell} \left(W_{ij}^\ell \right)^2}$$

Neuron (coarse) pruning: summary

Results in smaller weight matrices → faster inference

Quantization

Quantization

Quantization is the process of reducing the precision of the weights, biases, and activations such that they consume less memory

- Compromise the precision of storing the weights
- Can be combined with pruning → better compression

Knowledge Distillation

Knowledge Distillation (KD)

 Transfer the mapping function learned by a high-capacity Teacher model to a smaller Student model

Knowledge Distillation (KD)

Hinton et al. Distilling the Knowledge in a Neural Network, 2015

Data-free Knowledge Extraction

Advanced

Deployment

1. Handing Over the model physically

Deployment

- 1. Handing Over the model physically
- 2. Allowing access over the cloud (MLaaS)

1. Handing over the model

physically

Models in the absence of training data

- Can
 - Inference (deploying)
 - Better initialization (pre-training)
- Can't
 - Compression & Distillation
 - Fine-tuning & Continual learning
 - Adapting, etc.

Absence of training data (?!)

- We may have the trained models but not the training data
 - o Privacy → e.g. Patients' data, biometric data, etc.
 - Data is property → Proprietary data
 - Transience → observations of an RL training environment
 - Scale

Requirement

Requires
Training Data on which
T is trained

KD in the absence of training data

Can samples be synthesized from the trained Teacher model?

Mining Data-Impressions from Deep Models as Substitute for Unavailable Training Data

Konda Reddy Mopuri et al. ICML 2019 & Trans. on PAML 2021

Class Impressions: Parameters → patterns

K R Mopuri et al., Ask, Acquire and Attack: Data-free UAP generation using Class impressions, ECCV 2018

Class Impressions: Parameters → patterns

K R Mopuri et al., Ask, Acquire and Attack: Data-free UAP generation using Class impressions, ECCV 2018

Class Impressions: Parameters → patterns

Training on Cls: Limitations

- Generated samples are less faithful and diverse
- One-hot vector labels are reconstructed
 - \circ \rightarrow minimal latent/dark knowledge \rightarrow not so close to the natural data
- Student suffers poor generalization

Need an Improved modelling of the output space

Dirichlet modelling of output space

- ullet Softmax space of each class 'k' $y^k \sim Dir(K,lpha^k)$.
- Support is the probabilities of a K-way classification
- Concentration param (α) \rightarrow spread of the distribution

Dirichlet modelling of output space

- ullet Softmax space of each class 'k' $y^k \sim Dir(K,lpha^k)$,
- Support is the probabilities of a K-way classification
- Concentration param (α) \rightarrow spread of the distribution

$$C(i,j) = rac{oldsymbol{w}_i^T oldsymbol{w}_j}{\|oldsymbol{w}_i\| ig\|oldsymbol{w}_j\|}$$

W_k - weights learned by the Teacher's softmax classifier for class 'k'

Data Impressions

Data Impressions are generic

- Not tied to any downstream task
 - \circ \rightarrow applied in variety of tasks

Distillation with DIs

Distillation with DIs

$$\theta_S = \underset{\theta_S}{\operatorname{argmin}} \sum_{\bar{x} \in \bar{X}} L_{KD}(T(\bar{x}, \theta_T, \tau), S(\bar{x}, \theta_S, \tau))$$

Generated Samples

Performance

Model	Performance
Teacher – CE	99.34
Student – CE	98.92
Student-KD (Hinton et al., 2015) 60K original data	99.25
(Kimura et al., 2018) 200 original data	86.70
(Lopes et al., 2017) (uses meta data)	92.47
ZSKD (Ours) (24000 <i>DI</i> s, and no original data)	98.77

Model	Performance
Teacher – CE	83.03
Student – CE	80.04
Student – KD (Hinton et al., 2015) 50K original data	80.08
ZSKD (Ours) (40000 <i>DI</i> s, and no original data)	69.56

CIFAR-10

MNIST

Performance

Model	Data-free	Performance (%)
VGG-19 (T)	X	87.99
VGG-11 (S)- CE	X	84.19
VGG-11 (S)- KD [9]	X	84.93
VGG-11 (S)- KD (Ours)	/	74.10
Resnet-18 (S) -CE	×	84.45
Resnet-18 (S) -KD [9]	X	86.58
Resnet-18 (S) -KD (Ours)	/	74.76

Model	Data-free	Performance (%)
Resnet-18 (T)	X	86.54
Resnet-18-half (S)- CE	X	85.51
Resnet-18-half (S)- KD [9]	X	86.31
Resnet-18-half (S)- KD (Ours)	/	81.10

CIFAR-10

Multiple attempts followed

- Data-free knowledge distillation
- GAN-inspired algorithms: ZSKT, DAFL, DeGAN, etc. (can be found in references)

Adversarial Belief Matching (ZSKT)

Figure from Micaelli et al. NeurIPS 2019

Adversarial Belief Matching (ZSKT)

- **G** searches for the samples on which the **T** and **S** disagree
- Then S learns to match T on them
- Adversarial framework makes G to keep exploring the input space

Generated Images (ZSKT)

Figure from Micaelli et al. NeurIPS 2019

DAFL: GAN based generation [ICCV 2019]

$$\mathcal{L}_{oh} = \frac{1}{n} \sum_{i} \mathcal{H}_{cross}(\mathbf{y}_{T}^{i}, \mathbf{t}^{i}) \qquad \qquad \mathcal{L}_{a} = -\frac{1}{n} \sum_{i} \|f_{T}^{i}\|_{1} \qquad \qquad \mathcal{L}_{ie} = -\mathcal{H}_{info}(\frac{1}{n} \sum_{i} \mathbf{y}_{T}^{i})$$

Attributes of full-access (white-box) setting

- Assumes access to the model
 - Model architecture/parameters
 - Softmax predictions
 - Gradients

2. Accessing over Cloud (MLaaS)

- No access to the model architecture/parameters
- One can generate (x, f(x)) pairs by querying the service

- No access to the model architecture/parameters
- One can generate (x, f(x)) pairs by querying the service

Black-box setting

Model Extraction in black-box setting

Figure from DFME, CVPR 2021

Model Extraction in black-box setting

Figure from DFME, CVPR 2021

Model Extraction in black-box (or, hard label) setting

$$\mathcal{L}_{adv,real} = \underset{x \sim p_{data}(x)}{\mathbb{E}} [log\mathcal{D}(x)]$$

$$\mathcal{L}_{adv,fake} = \underset{z \sim \mathcal{N}(0,I)}{\mathbb{E}} [log(1 - \mathcal{D}(\mathcal{G}(z)))]$$

Towards DFME in hard label setting, Sanyal et al. CVPR 2022

Model Extraction in black-box (or, hard label) setting

$$\mathcal{L}_{class_div} = \sum_{j=0}^{K} \alpha_j \log \alpha_j$$

$$\alpha_j = \frac{1}{N} \sum_{i=1}^{N} \operatorname{softmax}(\mathcal{C}(x_i))_j$$

$$\mathcal{L}_{adv,real} = \underset{x \sim p_{data}(x)}{\mathbb{E}} [log\mathcal{D}(x)]$$

$$\mathcal{L}_{adv,fake} = \underset{z \sim \mathcal{N}(0,I)}{\mathbb{E}} \left[log(1 - \mathcal{D}(\mathcal{G}(z))) \right]$$

Towards DFME in hard label setting, Sanyal et al. CVPR 2022

Model Extraction in black-box (or, hard label) setting

Towards DFME in hard label setting, Sanyal et al. CVPR 2022

Experiments

Method	Hard Label	Black-Box	Data-Free	Victim Accuracy	Synthetic/ Data-Free	CIFAR-100 (40C)	CIFAR-100 (10C)
		Vi	ictim Accura	acy \sim 95.5%, Victin	n Model: ResNet-34		
MAZE [17]	×	✓	√	95.50	45.60	(#	<u>=</u>
DFME [35]	×	\checkmark	✓	95.50	88.10	12	-
DFMS-HL (Ours)	\checkmark	√	✓	95.59	84.51	92.06	85.53
DFMS-SL (Ours)	×	\checkmark	\checkmark	95.59	91.24	93.96	90.88
		Vi	ictim Accura	acy \sim 93.7%, Victin	n Model: ResNet-18		
ZSDB3KD [38]	√	√	√	93.65	50.18	15	
DFMS-HL (Ours)	✓	✓	✓	93.83	85.92	90.51	83.37

CIFAR-10 ResNet-34 Resnet-18

CIFAR-100 ResNet-18 Resnet-18

Method	Proxy Data	Victim Accuracy	Clone Accuracy
DeGAN [1]	CIFAR-10	78.52	75.62
DFMS-HL (Ours)	CIFAR-10	78.52	72.83
DFMS-HL (Ours)	Synthetic	78.52	43.56

Conclusion

- Security aspects of ML needs equal attention
- From extracting the learning to extracting the training data?

References: Gradient estimation in black-box setting

- Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order optimization in high dimensions. In International Conference on Artificial Intelligence and Statistics, pages 1356–1365, 2018.
- Yurii Nesterov and Vladimir Spokoiny. Random gradient free minimization of convex functions. Foundations of Computational Mathematics, 17(2):527–566, 2017.
- Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred Hero, and Pramod K. Varshney. A primer on zeroth order optimization in signal processing and machine learning, 2020.
- Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order optimization based blackbox attacks to deep neural networks without training substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pages 15–26, 2017

References: Zero-shot knowledge distillation

- Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, Venkatesh Babu Radhakrishnan, and Anirban Chakraborty. Zero-shot knowledge distillation in deep networks, ICML, 2019.
- Sravanti Addepalli, Gaurav Kumar Nayak, Anirban Chakraborty, and Venkatesh Babu Radhakrishnan. DeGAN: Data-enriching gan for retrieving representative samples from a trained classifier, AAAI, 2020.
- Gaurav Kumar Nayak, Konda Reddy Mopuri, Saksham Jain, Anirban Chakraborty, Mining Data Impressions from Deep Models as Substitute for the Unavailable Training Data, in IEEE Trans. on PAMI, 2021.
- Zero-shot knowledge transfer via adversarial belief matching, NeurIPS 2019.
- Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and Qi Tian. Data-free learning of student networks, ICCV 2019.

References: DFME in black-box setting

- Sunandini Sanyal, Sravanti Addepalli, R. Venkatesh Babu. Data-free Model Extraction in hard label setting, CVPR, 2022.
- Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas Papernot. Data-free model extraction. CVPR, 2021.
- Antonio Barbalau, Adrian Cosma, Radu Tudor Ionescu, and Marius Popescu. Black-Box Ripper: Copying black-box models using generative evolutionary algorithms. arXiv preprint arXiv:2010.11158, 2020.
- Zi Wang. Zero-shot knowledge distillation from a decision based black-box model. arXiv preprint arXiv:2106.03310, 2021.

Thank You