Decision Making (Hypothesis Testing)

11 Oct 2011 BUSI275 Dr. Sean Ho

- HW5 due Thu
- Work on REB forms

Outline for today

- Decision making and hypothesis testing
 - Null hypothesis (H₀) vs. alternate (H_A)
- Making conclusions:
 - "reject H₀" vs. "fail to reject H₀"
- Risks of error: Type I and Type II error
- Hypothesis test on population mean (µ)
 - One-tailed vs. two-tailed
- Test on μ , with unknown σ (TDIST)
- Test on binomial proportion π

Decision making

- The real world is fuzzy / uncertain / complex
- To make decisions, we need to assess risk
 - Fuzzy risk → binary yes/no decision
- A hypothesis is an idea of how the world works
 - Decision: accept or reject the hypothesis?
 - Based on the data, what are the risks in accepting hypothesis? Risks in rejecting?
- Null hypothesis (H₀) is the default, "status quo"
 - Fallback if insufficient evidence for H_A
- Alternate hypothesis (H_A) is the opposite
 - Usually same as our research hypothesis: what we intend to show

Ho vs. HA

- Do index funds outperform actively-managed mutual funds?
 - H₀: no difference, or do not outperform
 - H_A: do outperform
- Does gender affect investment risk tolerance?
 - H₀: no difference, tolerance same for both
 - H_A: risk tolerance of men + women differs
- Supplier claims defect rate is less than 0.001%
 - H_0 : defect rate is too high: $\geq 0.001\%$
 - H_A: supplier has proved defect rate is low

"Reject H₀" vs. "fail to rej H₀"

- Two options for making decisions:
 - Reject H₀: strong statement, significant evidence in favour of H_A and against H₀
 - Fail to reject H₀: weak statement,
 insufficient evidence in favour of H_A
 - Does not mean strong evidence in favor of accepting H₀! Perhaps need more data
- Index funds: "reject H₀" means strong evidence that index outperforms active management
 - "Fail to reject H₀" means insufficient evidence to show they perform better

Risks / errors

Our decision may or may not be correct:

	H _o true	H _A true
Rej H ₀	Type I	
Fail rej		Type II

- We define H₀/H_A so that Type I error is worse and Type II error is more bearable
 - Can't eliminate risk, but can manage it
 - $\bullet \alpha$ is our limit on Type I (level of significance)
 - β is our limit on Type II (1- β = "power")

Type I vs. Type II risks

- Supplier: H₀: high defect rate; H_A: low defects
 - Type I: think defect rate is low, when in reality it is high: ⇒ angry customers
 - Type II: supplier is good, but we wrongly suspected / fired them: ⇒ loss of partner
- Murder trial: H₀ / H_A? Type I/II?
- Parachute inspector: H₀ / H_A? Type I/II?
- In most research, α =0.05 and β is unlimited
 - But depends on context, meaning of H₀/H_A
 - \bullet e.g., what should α for parachute be?

Test on population mean

- e.g., assume starting salary of clerical workers is normally distributed with σ =\$3k
 - Research question: is avg salary < \$30k?</p>
 - Data: sample n=12 salaries, get x=\$28k
- \blacksquare H_0 (status quo): avg salary $\mu \ge $30k$
 - H_Δ (research hypothesis): μ < \$30k
- Strategy: calculate risk of Type I error (p-value)
 - Assume μ is what H_0 says it is (μ =\$30k)
 - Sample data \overline{x} is a threshold on the SDSM
 - Risk of Type I error is area in tail of SDSM

Test on pop mean, cont.

- In our example,
- Std err $\sigma_{\overline{x}} = \sigma/\sqrt{n}$ = $\$3k/\sqrt{12} \approx \866
- **Z-score:** $(28-30)/866 \approx 2.3$

- Area in tail: NORMSDIST(-2.3) → 1.07%
 - Or: NORMDIST(28, 30, 3/SQRT(12)) → 1.05%
- So there is a 1.05% risk of Type I error
 - Compare against α (usually 5%)
 - Conclude this is an acceptable risk, so
- Reject H₀: yes, at the 5% level of significance, salaries are significantly lower than \$30k

Two-tailed tests

- The preceding example was "one-tailed"
 - H₀ / H_A use directional inequalities <, ≤, >, ≥
 - "greater than", "bigger", "more/less"
- Two-tailed test uses non-directional inequalities
 - #, "differ", "change", "same / not same"
- e.g., standard height of doors is 203cm.
 Is a batch of doors significantly out of spec?
 - H_0 : no difference, within spec: $\mu = 203$ cm
 - H_A: differ from spec
 (either too tall or too short): μ ≠ 203 cm
 - Data: measure a sample of doors, get n, \overline{x} , s

Door ex.: two-tailed, no o

- H_{Δ} : $\mu \neq 203$
- Data: n=8, x=204, s=1.2
- Std err = $s/\sqrt{n} \approx 0.424$
- $t = (204-203)/0.424 \approx 2.357$

- \blacksquare df=7, so the % in both tails (p-value) is
 - TDIST(2.357, 7, 2) \rightarrow 0.0506
 - More precisely: TDIST(1/(1.2/SQRT(8)), 7, 2)
- So our calculated risk of Type I error is 5.06%
 - Assuming normal distribution
- This is larger than our tolerance (α) :
 - Unacceptably high risk of Type I error

Door ex.: conclusion

- In view of the high risk of Type I error, we are unwilling to take that chance, so we conclude:
 - Fail to reject H₀: at the 5% level, this batch of doors is not significantly out of spec
- In this example, we follow the research convention of assigning '≠' to H_A
 - But in quality control (looking for defects), we might want H₀ to assume there is a defect, unless proven otherwise
- Also note that if this test had been one-tailed:
 - TDIST(2.357, 7, 1) \rightarrow 2.53% < α and we would have rejected H₀!

Test on binomial proportion π

- p.373 #33: Wall Street Journal claims 39% of consumer scam complaints are on identity theft
 - RQ: do we believe the claim? H_A : $\pi \neq 0.39$
 - Data: 40/90 complaints are about ID theft
- Std err: $\sigma_p = \sqrt{(pq/n)} = \sqrt{(.39*.61/90)} \approx .0514$
- **Z-score**: $z = (40/90 .39) / .0514 \approx 1.06$
- P-value (two-tailed): 2*NORMSDIST(-1.06)
 - Or: 2*(1-NORMDIST(40/90, .39, .0514, 1))
 - \rightarrow 28.96%
- Fail to reject H₀: insufficient evidence to disbelieve the WSJ claim, so we believe it

TODO

- HW5 (ch7-8): due this Thu at 10pm
- REB form due next Tue 18 Oct 10pm
 - If approval by TWU's REB is required, also submit printed signed copy to me
 - You are encouraged to submit early to allow time for processing by TWU's REB (3-4 weeks)
- Midterm (ch1-8): next week Thu

