3.7 Distributive Property

Part 1: DO IT NOW!

Write a simplified expression for the area of the rectangle:

Remember: Area of a rectangle = length x width.

Area of the rectangle =
$$5(4x+2)$$

Before we can simplify the expression we need to learn the distributive property!

Distributive Property

$$a(x + y) = ax + ay$$

When you apply the distributive property, you are getting rid of the brackets by multiplying everything in the brackets by the term in front of the brackets.

Part 2: Multiply a Constant by a Polynomial

Expand and Simplify the Following:

1)
$$2(5x+3)$$

= $2(5x)+2(3)$
= $10x+6$

2)
$$-2(7x-4)$$

= $-2(7x)-2(-4)$
= $-14x+8$

Note: Make sure to include the negative sign when distributing the -2. Follow integer rules for multiplication.

3)
$$-3(2x^2 - 5x + 4)$$

= $-3(2x^2) - 3(-5x) - 3(4)$
= $-6x^2 + 16x - 12$

Note: You can also apply the distributive property to trinomials.

4)
$$2(6m-3)+3(16+4m)$$

= $2(6m)+2(-3)+3(16)+3(4m)$
= $|2m-6+48+|2m$
= $|2m+|2m-6+48$

- 24m+42

Remember: You can collect like terms! Like terms have identical variables (same letters and exponents)

Part 3: Apply Our Knowledge

Write an expression for the area of the rectangle in expanded form:

Area =
$$4x(2x+3)$$

= $4x(2x)+4x(3)$
= $8x^2+12x$

What is the area of the rectangle if x = 5 cm

Area =
$$8x^{2}+12x$$

= $8(5)^{2}+12(5)$
= $8(25)+60$
= $200+60$
= 260 cm^{2}

Part 4: Distribute Variables

Example:

$$x(x^2-3)$$

$$= x^3 - 3x$$

Remember exponent laws:

$$x(x^2) = x^{(1+2)} = x^3$$

Expand and Simplify the following:

6)
$$x(x-3)$$

= $x(x) + x(-3)$
= $x^2 - 3x$

7)
$$-x(7x-4)$$

= $-x(7x)-x(-4)$
= $-7x^{2}+4x$

8)
$$-3x(2x^2 - 5x + 4)$$

= $-6x^3 + 15x^2 - 12x$

9)
$$3m(m-5) - 1(2m^2 - m)$$

= $3m^2 - 15m - 2m^2 + m$
= $m^2 - 14m$

For this question you can multiply the second polynomial by -1 or use the properties for subtracting polynomials; both give the same result!

10)
$$\frac{1}{2}(2w-6) - \frac{2}{3}(9w-6)$$

$$= \frac{1}{2}(2w) + \frac{1}{3}(-6) - \frac{2}{3}(9w) - \frac{2}{3}(-6)$$

$$= \frac{2}{3}(2w) + \frac{1}{3}(-6) - \frac{2}{3}(9w) - \frac{2}{3}(-6)$$

$$= \frac{2}{3}(2w) - \frac{2}{3}(-6)$$

$$= \frac{2}{3}(-6) - \frac{2}{3}(-6)$$

Part 5: Nested Brackets

If there is a bracket inside of a bracket, simplify the inner most brackets first and then work your way out.

11)
$$3[2 + 5(2k - 1)]$$

= $3(2 + 10k - 5)$
= $3(10k - 3)$
= $30k - 9$