Université Constantine 2

Faculté des Nouvelles Technologies Département dInformatique Fondamentale et ses Applications — IFA

Développement d'une approche de distribution des espaces d'états basée sur la théorie de jeux : Application au model checking distribué

Présenté par: Karimou Seyni Ibrahim

Encadré par

Pr. Djamel Eddine SAIDOUNI,

Dr. Bouneb Zine El Abidine,

Directeur de mémoire

Co-encadreur

- 1.1 Contexte
- 1.2 Problèmes
- 1.3 Motivation

2. Solutions Proposées

- 2.1 Première Catégorie
- 2.2 Deuxième Catégorie
- 2.3 Solution en aval
- 2.4 Partitionnent

3. Contribution

- 3.1 Points de partitions
- 3.2 Équilibre de Nash3.3 Stratégie de Distribution
- 3.4 Model checking par déduction

4. Conclusion

- 4.1 Conclusion
- 4.2 Perspectives

Introduction 00000000

1.1. Contexte

Ces dernières années plusieurs catastrophes sont dues à des erreurs de spécifications des systèmes développés.

1.1. Contexte

Ces dernières années plusieurs catastrophes sont dues à des erreurs de spécifications des systèmes développés.

Abbildung: Ariane 5

Introduction 00000000

1.1. Contexte

Ces dernières années plusieurs catastrophes sont dues à des erreurs de spécifications des systèmes développés.

Abbildung: Ariane 5

Abbildung: Missile **Patriote**

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliograph

 ○●○○○○○
 ○○○○○
 ○○○○
 ○○○○
 ○○○○

1. Introduction

1.1. Contexte

Ces dernières années plusieurs catastrophes sont dues à des erreurs de spécifications des systèmes développés.

Abbildung: Ariane 5

Abbildung: Missile Patriote

IE9+, Google Chrome, Firefox, Opera, Safari, etc						
Real year	1858	1990	1994	2000	200	
.getYear() result	-42	90	94	100	107	
getFullYear() result	1858	1990	1994	2000	200	

IE6-8							
Real year	1858	1990	1994	2000	2007		
.getYear() result	1858	90	94	2000	2007		
getFullYear() result	1858	1990	1994	2000	2007		

Abbildung: Bug 2000

1. Introduction

1.1. Contexte

Ces dernières années plusieurs catastrophes sont dues à des erreurs de spécifications des systèmes développés.

Abbildung: Ariane 5

Abbildung: Missile Patriote

IE9+, Google Chrome, Firefox, Opera, Safari, etc.							
	Real year	1858	1990	1994	2000	2007	
	.getYear() result	-42	90	94	100	107	
	.getFullYear() result	1858	1990	1994	2000	2007	

IE6-8						
Real year	1858	1990	1994	2000	2007	
.getYear() result	1858	90	94	2000	2007	
.getFullYear() result	1858	1990	1994	2000	2007	

Abbildung: Bug 2000

La fiabilité de tout système est envisageable, en particulier celle de systèmes critiques.

Comment faire?

IntroductionSolutions ProposéesContributionConclusionBibliographie○○●●○○○○○○○○○○○○○○○○○○○

1. Introduction 1.1. Contexte

1. Introduction

1. Introduction

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 000 ● 0000
 00000
 0000
 0000

1. Introduction

1. Introduction

1. Introduction 1.1. Contexte

Problèmes

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliogra

 0000 ●00
 0000000
 00000
 0000

1.2. Problèmes

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 0000 ●00
 0000000
 0000
 0000

Comment distribué?

Introduction

1.3. Motivation

Introduction

1.3. Motivation

1. Introduction 1.3. Motivation

2. Solutions Proposées

2. Solutions Proposées

2.1. Première Catégorie

Les approches de cette catégorie aboutissent à une meilleur équilibrage de charge entre les différentes machines.

Problèmes

- ▶ Distribution statique.
- Nombre de Transitons externes minimum implique -t-il réduction du taux de communication?.
- La puissance des machines non exploitée.
- ► Temps de réponse déraisonnable.

oduction Solutions Proposées Contribution Conclusion

2. Solutions Proposées 2.2. Deuxième Catégorie

La philosophie de cette catégorie vise à minimiser les transitions externes avec un bon équilibrage de charge entre les différentes machines.

Problèmes

- Distribution statique.
- ► L'équilibrage peut être dégradé.
- La puissance des machines non exploitée.

Minimisation des transitions externes $\stackrel{?}{\Rightarrow}$ Temps de réponse minimisé.

ntroduction Solutions Proposées Contribution Conclusion Bibliographie

2. Solutions Proposées 2.2. Deuxième Catégorie

La philosophie de cette catégorie vise à minimiser les transitions externes avec un bon équilibrage de charge entre les différentes machines.

Problèmes

- Distribution statique.
- ► L'équilibrage peut être dégradé.
- La puissance des machines non exploitée.

Minimisation des transitions externes $\stackrel{?}{\Rightarrow}$ Temps de réponse minimisé.

2. Solutions Proposées 2.2. Deuxième Catégorie

La philosophie de cette catégorie vise à minimiser les transitions externes avec un bon équilibrage de charge entre les différentes machines.

Problèmes

- Distribution statique.
- ► L'équilibrage peut être dégradé.
- La puissance des machines non exploitée.

AGI

Minimisation des transitions externes [?]→ Temps de réponse minimisé.

Solutions Proposées 00000000

2. Solutions Proposées

Solution en aval

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 0000000
 00000
 0000
 0000
 0000

2. Solutions Proposées

2.3. Solution en aval

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 00000000
 0000
 0000
 0000
 0000

2. Solutions Proposées

2.3. Solution en aval

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 0000000
 0000
 0000
 0000

2. Solutions Proposées

2.3. Solution en aval

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 00000000
 0000
 0000
 0000
 0000

2. Solutions Proposées

2.3. Solution en aval

Solutions Proposées 00000000

2. Solutions Proposées

2. Solutions Proposées

2.3. Solution en aval

- Minimisations des transitions externes.
- Duplications et Migrations basées sur les transitions.
- Certains machines peuvent être surchargées de calcul ou de stockage.
- ▶ Duplication de certains états est sans intérêt.

- ► AG(a)
- ightharpoonup Si $0.45 < L/N_t$ 0.75, alors dupliqué [BENSETIRA, 2017].

2. Solutions Proposées

2.3. Solution en aval

- Minimisations des transitions externes.
- Duplications et Migrations basées sur les transitions.
- ► Certains machines peuvent être surchargées de calcul ou de stockage.
- ▶ Duplication de certains états est sans intérêt.

- ► AG(a)
- ightharpoonup Si $0.45 < L/N_t$ 0.75, alors dupliqué [BENSETIRA, 2017].

2. Solutions Proposées

2.3. Solution en aval

Critiques

- Minimisations des transitions externes.
- Duplications et Migrations basées sur les transitions.
- Certains machines peuvent être surchargées de calcul ou de stockage.
- Duplication de certains états est sans intérêt.

- ► AG(a)
- ightharpoonup Si 0.45 < L/N_t 0.75, alors dupliqué [BENSETIRA, 2017].

Université Constantine 2

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 0000000
 000000
 0000
 0000

2. Solutions Proposées

2.4. Partitionnent

- ▶ Minimisations des transitions externes.
- Duplications et Migrations basées sur les transitions.
- ► Certains machines peuvent être surchargées de calcul ou de stockage.
- Duplication de certains états est sans intérêt.

3. Contribution

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 0000000
 0000000
 0000
 0000

3. Contribution

3.1. Points de partitions

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 0000000
 0000000
 0000
 0000
 Bibliographie

3. Contribution

3.1. Points de partitions

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 0000000
 0000000
 0000
 0000

3. Contribution

3.1. Points de partitions

Contribution 00000

3. Contribution

3.2. Équilibre de Nash

- Une situation où adopte la meilleure réponse du choix des autres
- ▶ Il lui a valu le **Prix Nobel** d'économie en 1994.

3. Contribution

3. Contribution

3. Contribution

3. Contribution

Contribution 00000

3. Contribution

3. Contribution

3. Contribution

3. Contribution

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographic

 0000000
 0000
 0000
 0000

3. Contribution

3.4. Model checking par déduction

- Notion de duplicata
- ► Déduit la valeur logique des duplicatas
- ► Minimise le taux de communications

Introduction Solutions Proposées Contribution **Conclusion** Bibliographie

○○○○○○

○○○○

○○○○

○○○○

○○○○

4. Conclusion

4.1. Conclusion

formales System

Ein System welches Regeln enthält, mit deren Hilfe sich mathematische Aussagen beweisen lassen und mit denen aus bereits bewiesenen Aussagen neue Aussagen abgeleitet werden können.

widers pruch sfrei

- A Aussage
- ► T formales System

$$\neg \exists A : T \rightarrow A \land T \rightarrow \neg A$$

4. Conclusion

4.2. Perspectives

widers pruch sfrei

- ► A Aussage
- ▶ T formales System

$$\neg \exists A : T \rightarrow A \land T \rightarrow \neg A$$

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographie

 0000000
 000000
 0000
 000

4. Conclusion

▶ Large number of possible parameter-value combinations

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliographic

 00000000
 0000000
 0000
 0000

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters

 Introduction
 Solutions Proposées
 Contribution
 Conclusion
 Bibliograph

 0000000
 000000
 0000
 000
 000

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters
- ▶ Which parameters should be changed and by how much.

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters
- ▶ Which parameters should be changed and by how much.
- muliticollinearity or high correlation between parameter values

Introduction Solutions Proposées Contribution **Conclusion** Bibliographi

- ▶ Large number of possible parameter-value combinations
- ► Hard to find the optimal parameters
- ▶ Which parameters should be changed and by how much.
- muliticollinearity or high correlation between parameter values
- ▶ Which criteria for evaluating the difference between observed and simulated runoff.

Section 5

Bibliographie

[BENSETIRA 2017] BENSETIRA, Imene: Proposition d'algorithmes de distribution des espaces d'états en vue dune vérification basée model checking: Application aux automates temporisés avec durées d'actions, Université Abdelhamid Mehri - Constantine 2, Dissertation, 2017