

July 18

TECHNOLOGY 28FDSOI - PEX MODELS Manual for StarRC

Version 2.4 03 July 2018

Table of Contents

			!
1.	Ma	anual	
		Post Layout Extraction	
		Supported Corner	
		Gate to contact computation.	
		FEOL description	

ABSTRACT

-

The intent of this document is to provide information about the starRC module PEX_models_28fd@2.4 release.

StarRC PEX MODELS release are aligned with DRM CMOS028FDSOI rev0.4.7 These models have been generated and validated with starRC release n-2017.12-sp3-1.

1. Manual

1.1. Post Layout Extraction

The Post layout extraction flow is aimed to provide spice transistor flat netlist back annotated with parasitic C's and R's extracted on interconnections. This flow is based on Calibre-StarRCXT tools.

RCmodels represent the analytical models used on the fly by starRCXT to compute the resistances and capacitances. RCmodels computation is based on the interconnect stack parameters described in the DRM.

1.2. Supported Corner

The table below summarizes the supported corner for backend of line.

Name	Definition		Metal Thick.	Metal width		Via Res.
nominal	typical values for all C's and R's	Process target	typ	typ	typ	typ
FuncCmin	hast C's worst D and host D	3σ on input parameter		min	max	min
SigCmin	best C's, worst R _{wire} and best R _{via}	3σ on output RC	min			
FuncCmax	worst C's, best R _{wire} and worst R _{via}	3σ on input parameter		max	min	max
SigCmax		3σ on output RC	max			
FuncRCmin	hand Dia and warmt lateral O	3σ on input parameter		max	max	min
SigRCmin	best R's and worst lateral C	3σ on output RC	max			
FuncRCmax	and Division division 10	3σ on input parameter		min	min	max
SigRCmax	worst R's and best lateral C	3σ on output RC	min			

The table below summarizes the corner definition for MIM.

MIM corner definition

	Cmin	RCmin	Cmax	RCmax
Metal thickness (BOT/TOPMIM)	min	max	max	min
Mim dielectric thickness	max	max	min	min
Metal RSH	min	max	max	min
Via R	min	min	max	max
Rmim (Via+Line)	min	~	max	~
Cmim	min	min	max	max

No Sigma variation on MIM

The illustration below summarizes the FEOL corner definition. There is no sigma variation for FEOL (for ex: SigCmax = FuncCmax).

FEOL corner definition

1.3. Gate to contact computation

The gate to contact spacing is computed by the formula:

 $\begin{tabular}{lll} SiliconPC2CA=(&Drawn&PC2CA&-global&PCcompensation+MOS&flavor\\ PCcompensation-specific PC compensation)*0.9 \end{tabular}$

1.4. FEOL description

Due to itf limitation, following assumptions on FEOL description have been made:

- No stair epitaxy description
- Square contact
- No epitaxy growth in W direction
- No CESL faceting
- No CA enclosure in epitaxy
- No conformal gate oxide

