Non-standard Preferences

Risk preferences

Advanced course in Behavioural and Psychological Economics Tampere University

January, 2025

Link to updated version

Bibliography:

- DellaVigna, S. (2009). 'Psychology and Economics: Evidence from the field'. *Journal of Economic Literature*, 47(2): 315-372.
- O'Donoghue, T., & Sprenger, C. (2018). 'Reference-dependent Preferences'. *In Handbook of Behavioral Economics-Foundations and Applications* (Vol. 1, pp. 1-77)

Topics

Introduction

Endowment Effect

Housing

Finance

Insurance

Labor

Introduction

Standard theory poses:

$$\max_{x_t^i \in X_t} \sum_{t=0}^{\infty} \delta^t \sum_{s_t \in S_t} p(s_t) U(x_t^i \mid s_t) \tag{1}$$

- $U(x \mid s)$: utility
- x^t : period t payoffs
- p(s): probability of state s
- δ : (time-consistent) discount factor

Introduction

Standard theory poses:

$$\max_{x_t^i \in X_t} \sum_{t=0}^{\infty} \delta^t \sum_{s_t \in S_t} p(s_t) U(x_t^i \mid s_t) \tag{1}$$

- $U(x \mid s)$: utility
- x^t : period t payoffs
- p(s): probability of state s
- δ : (time-consistent) discount factor

... but utility is **not standard**

Risk Preferences

Empirical Evidence

- Kahneman & Tversky (1979):
 - T0: We give you \$1000 +
 - \rightarrow **A:** \$1000 with 50% chance.
 - \rightarrow **B:** \$500 for sure (100% chance).
 - T1: We give you \$2000 -
 - \rightarrow **C:** \$1000 with 50% chance.
 - \rightarrow **D:** \$500 for sure (100% chance).
 - Evidence:
 - ightarrow 16% choose A and 84% choose B
 - \rightarrow 69% choose C and 31% choose D
 - \rightarrow However, A=C and B=D!

Prospect Theory

Following Kahneman & Tversky (1979)

We consider a reference-dependent model of preferences that explains the observed deviations from the standard model:

- Reference Dependence
- 2 Loss Aversion
- Open Sensitivity
 Open Sensitivity
- Probability Weighting
- **6** Narrow Framing

Suppose that an individual evaluates a lottery $(y,(p)\,;\,z,(1-p))$: Win y with probability (p), win z with probability (1-p)

$$U = \pi(p)v(y-r) + \pi(1-p)v(z-r)$$
(4)

- r: reference point
- v: value function

• π : probability weighting function

Suppose that an individual evaluates a lottery $(y,(p)\,;\,z,(1-p))$: Win y with probability (p), win z with probability (1-p)

$$U = \pi(p)v(y-r) + \pi(1-p)v(z-r)$$
(4)

- r: reference point
- v: value function
 - **1 Reference Dependence:** defined over differences with reference point (r)
 - **2** Loss Aversion: kink at the reference point, steeper for losses than for gains
 - 3 Diminishing Sensitivity: concave over wins and convex over losses
- π : probability weighting function

Suppose that an individual evaluates a lottery (y, (p); z, (1-p)): Win y with probability (p), win z with probability (1-p)

$$U = \pi(p)v(y-r) + \pi(1-p)v(z-r)$$

- r: reference point
- v: value function
 - **1** Reference Dependence: defined over differences with reference point (r)
 - **2** Loss Aversion: kink at the reference point, steeper for losses than for gains
 - 3 Diminishing Sensitivity: concave over wins and convex over losses
- π : probability weighting function
 - 4 Probability Weighting: overweighting small (and underweighting large) probabilities

(4)

Prospect Theory In One Image

Narrow Framing

- Decision-Makers Evaluate Risks In Isolation
 - Ignoring background risks
 - → e.g., earnings or wealth fluctuations
- Standard Theory Predicts Individuals to Aggregate Risks
 - e.g., individuals with risky income sources should aggregate them into encountered lotteries
 - ightarrow e.g., consider compounded probability of winning lottery and earning more from other sources
- Empirical Evidence
 - Lab behavior coherent with narrow framing (Barberis et al., 2006)
- Usefulness
 - Each lottery or risk is evaluated as if it were the only determinant of consumption utility
 - Applications
 - → Often used to recover preferences, ignoring outside income
 - → Plays a key role in experimental and empirical studies

A simplified prospect theory model adopts (1) reference dependence and (2) loss aversion:

$$v(x \mid r) = \begin{cases} x - r & \text{if } x \ge r, \\ \lambda(x - r) & \text{if } x < r \end{cases}$$
 (5)

• λ : loss aversion parameter, restricted to $\lambda > 1$

Consider the lottery (-5, .5; 8, .5) from Fehr & Goette (2007):

Lose 5 with probability (.5), win 8 with probability (.5)

• For r=0

$$U = ((.5) \times \lambda(-5)) + ((.5) \times (8))$$

$$U = -\frac{5}{2}\lambda + \frac{8}{2} = 0 \Leftrightarrow \boxed{\lambda = \frac{8}{5} = 1.6}$$

• Indifferent between options only if losses are valued 60% more than gains

Consider the lottery $(-5,.5\,;\,8,.5)$ from Fehr & Goette (2007):

Lose 5 with probability (.5), win 8 with probability (.5)

• For r=0

$$U = ((.5) \times \lambda(-5)) + ((.5) \times (8))$$

$$U = -\frac{5}{2}\lambda + \frac{8}{2} = 0 \Leftrightarrow \lambda = \frac{8}{5} = 1.6$$

- Indifferent between options only if losses are valued 60% more than gains
 - ightarrow Kahneman & Tversky (1992) estimate even higher loss aversion: $\lambda=2.25$

Cases

- 1 Endowment Effect
- 2 Housing
- 3 Finance
- 4 Labor
- 6 Insurance
- **6** Employment

Topics

Introduction

Endowment Effect

Housing

Finance

Insurance

Labor

Definition

Asymetric willigness to pay (WTP) and willingness to accept (WTA)

Kahneman, Knetsch, & Thaler (1990): Randomized experiment with mugs

Kahneman, Knetsch, & Thaler (1990): Randomized experiment with mugs

- Setup:
 - T0: No mug
 - T1: Receive a mug
 - T2: Choose between a mug and money
- Evidence:
 - Indifference point in T2: \$3.12
 - WTP in T0 is \$2.87 vs. WTA in T1 is \$7.12

Plott & Zeiler (2005): Extension to investigate potential confounding factors (e.g., experience, anonymity)

- Setup:
 - Replication of Kahneman, Knetsch, & Thaler (1990) with:
 - → WTP/WTA training sessions
 - → Ensured anonymity
- Evidence:
 - WTP in **T0** is \$5.56 vs. WTA in **T1** is \$6.62

List (2003): Baseball cards exchange

List (2003): Baseball cards exchange

- Setup:
 - At a sports card fair, participants endowed with card A or B
 - → All participants have familiarity with object (in contrast to Kahneman, Knetsch, & Thaler, 1990; Plott & Zeiler, 2005)
 - Asked if they wanted to switch, distinguishing by experience
 - ightarrow Above-average trading experience: trade 6-time per month
- Evidence:
 - Below-average trading experience: 6.8% switched
 - \rightarrow WTP is \$3.32 vs. WTA is \$18.53
 - Above-average trading experience: 46.7% switched
 - \rightarrow WTP is \$6.27 vs. WTA is \$8.15
 - List (2004): Extended results to mug trade

List (2003): Baseball cards exchange

- Interpretation:
 - Endowment effect reflects trading behavior but is tempered by experience
 - \rightarrow Why?
 - 1 Experience reduces naïveté, increasing awareness of loss aversion
 - 2 Experience affects reference point formation
 - Individuals interiorize that reference point is determined by random factors They decide taking into account their stochastic reference point

Consider a stochastic reference point for having card A:

- For r=0 with probability .5 and r=1 with probability .5
 - Keeping card A:

$$.5 \times [(u(1) - u(0))] + .5 \times [(u(1) - u(1))] = \boxed{.5 [(u(1) - u(0))]}$$

• Selling card A:

$$.5 \times [(u(0) - u(0)) + p_{WTA}] + .5 \times [\lambda(u(0) - u(1)) + p_{WTA}] = \boxed{.5 [\lambda(u(0) - u(1))] + p_{WTA}}$$

• Indifference between keeping and selling card A:

$$.5 [(u(1) - u(0))] = .5 [\lambda(u(0) - u(1))] + p_{WTA}$$

$$\Leftrightarrow p_{WTA} = .5 [(u(1) - u(0))] - .5 [\lambda(u(0) - u(1))] = p_{WTA} = .5(1 + \lambda) (u(1) - u(0))$$

Consider a stochastic reference point for having card A:

- For r=0 with probability .5 and r=1 with probability .5
 - Not having card A:

$$.5 \times [(u(0) - u(0))] + .5 \times [\lambda (u(0) - u(1))] = 0.5 [\lambda (u(0) - u(1))]$$

Buying card A:

$$.5 \times [(u(1) - u(0)) - p_{WTP}] + .5 \times [(u(1) - u(1)) - p_{WTP}] = \boxed{.5 [(u(1) - u(0))] - p_{WTP}}$$

• Indifference between not having and buying card A:

$$.5 \left[\lambda(u(0) - u(1)) \right] = .5 \left[(u(1) - u(0)) \right] - p_{WTP}$$

$$\Leftrightarrow p_{WTP} = .5 \left[(u(1) - u(0)) \right] - .5 \left[\lambda(u(0) - u(1)) \right] = \boxed{p_{WTP} = .5(1 + \lambda) \left(u(1) - u(0) \right)}$$

Consider a stochastic reference point for having card A:

- For r=0 with probability .5 and r=1 with probability .5
 - Willingness to accept for card A:

$$p_{WTA} = .5(1 + \lambda) (u(1) - u(0))$$

Willingness to pay for card A:

$$p_{WTP} = .5(1 + \lambda) (u(1) - u(0))$$

$$\therefore p_{WTA} = p_{WTP}$$

There Is No Endowment Effect!

Topics

Introduction

Endowment Effect

Housing

Finance

Insurance

Labor

Housing

Observation

Homeowners use their buying price as a reference point.

• When the actual price is lower, loss aversion makes homeowners ask for higher prices

Housing

Genesove & Mayer (2001): House sales in Massachusets, United States

Housing

Genesove & Mayer (2001): House sales in Massachusets, United States

- Setup:
 - T0: Boom in 1983-87
 - → Homeowners bought houses at high prices
 - T1: Slump in 1989-92
 - → Homeowners bought houses at low prices
- Evidence:
 - Listing prices for houses predicted to sell at a loss are higher than predicted prices:
 - \rightarrow 1% predicted loss \Rightarrow .25% higher listing price
 - → Effect is stronger for individuals than companies, showing an experience effect
 - Higher listing prices lead to:
 - → Longer waiting times
 - → Higher final selling prices

Topics

Introduction

Endowment Effect

Housing

Finance

Insurance

Labor

Equity Premium Puzzle

Equity outperforms bonds by approximately 4% annually

... but why doesn't the market even out this premium?

Bernartzi & Thaler (1995): Premium is consistent with loss-averse investors evaluating over short-term horizons

Bernartzi & Thaler (1995): Premium is consistent with loss-averse investors evaluating over short-term horizons

- Short-Term:
 - Premium is required to invest in equity
 - Higher probability that equity underperforms bonds in the short term
- Long-Term:
 - Premium is not required to invest in equity
 - Lower probability that equity underperforms bonds over the long term
- Conclusion
 - Short-term evaluation of investments explains the observed equity premium

Disposition Effect

People tend to sell 'winners' and hold 'losers'

... but capital gain taxation incentivize to hold 'winners' and liquidate 'losers' sooner

Finance

Odean (1998): Individual trading data from a brokerage house for 1987–93

- Evidence:
 - Realized gains: 14.8% over purchase price
 - Realized losses: 9.8% over purchase price
 - Difference is not due to:
 - → Portfolio rebalancing
 - → Transaction costs
- Prospect Theory Interpretation:
 - Concavity over gains induces less risk taking
 - → Then, more sale of 'winners'
 - Convexity over losses induces more risk taking
 - → Then, more purchases of 'losers'

Topics

Introduction

Endowment Effect

Housing

Finance

Insurance

Insurance

Observation

Pervasiveness of small-scale insurance (e.g., policies on kitchen appliances)

... but potential losses are much small

Insurance

Sydnor (2006): Random sample of insurance company customers

Insurance

Sydnor (2006): Random sample of insurance company customers

- For required home insurance, choices narrow down to deductibles:
 - \$250 / \$500 / \$1000
- Evidence:
 - 83% (61% new customers) choose lower than \$1000 deductible
 - → Modal choice is \$500
 - Implies an additional premium of \$100
 - \rightarrow With a claim rate of 5%, value is: $25 = (1000 500) \times 5\%$.
 - \rightarrow This incurs a loss of \$75 (= 100-25) to insurance against a maximum loss of \$500
- Explanation:
 - Overweighting small probability of accident
 - Loss aversion to future losses
 - Social pressure from salesmen

Topics

Introduction

Endowment Effect

Housing

Finance

Insurance

Labo

Response of labor supply to wage fluctuations

- Complex combination of income and substitution effects
- Focus on simpler institutional contexts:
 - Jobs in which workers decide the labor supply daily
 - → Long-term income does not change substantially from day-to-day labor decisions
 - → Any income effect on labor supply becomes negligible compared to substitution effects
 - \rightarrow e.g., drivers
 - → e.g., delivery workers
 - → e.g., day laborer (agriculture, warehouse)
 - ightarrow e.g., free-lance workers

Response of labor supply to wage fluctuations: NYC taxi drivers

Following O'Donoghue & Sprenger (2018)

Consider a taxi driver choosing her daily work effort:

$$\max_{e} U = y(e) - c(e) \tag{6}$$

- U: utility
- *e*: effort level
- y(e): generated outcome
- ullet c(e): cost of effort

Following O'Donoghue & Sprenger (2018)

Consider a taxi driver choosing her daily work effort:

$$\max_{e} U = y(e) - c(e) \tag{6}$$

F.O.C.:
$$MB(e^*) = MC(e^*) \Leftrightarrow y'(e^*) = c'(e^*)$$

Following O'Donoghue & Sprenger (2018)

Consider a taxi driver choosing her daily work effort:

$$\max_{e} U = y(e) - c(e) \tag{6}$$

F.O.C.:
$$MB(e^*) = MC(e^*) \Leftrightarrow y'(e^*) = c'(e^*)$$

• For $y(e) = w \times e$ (with w being an hourly wage)

F.O.C.:
$$w = c'(e^*)$$

Following O'Donoghue & Sprenger (2018)

Consider taxi driver experiences (1) reference dependence and (2) loss aversion:

$$\max_{e} U = \begin{cases} (y(e) - r_y) - c(e) & \text{if } y(e) \ge r_y, \\ \lambda(y(e) - r_y) - c(e) & \text{if } y(e) < r_y \end{cases}$$
 (6)

- λ : loss aversion parameter, restricted to $\lambda>1$
- r_y : reference point for income

Following O'Donoghue & Sprenger (2018)

Consider taxi driver experiences (1) reference dependence and (2) loss aversion:

$$\max_{e} U = \begin{cases} (y(e) - r_y) - c(e) & \text{if } y(e) \ge r_y, \\ \lambda(y(e) - r_y) - c(e) & \text{if } y(e) < r_y \end{cases}$$
 (6)

- λ : loss aversion parameter, restricted to $\lambda > 1$
- r_y : reference point for income

We assume reference dependence and loss aversion only for income, not for effort!

Following O'Donoghue & Sprenger (2018)

Consider taxi driver experiences (1) reference dependence and (2) loss aversion:

$$\max_{e} U = \begin{cases} (y(e) - r_y) - c(e) & \text{if } y(e) \ge r_y, \\ \lambda(y(e) - r_y) - c(e) & \text{if } y(e) < r_y \end{cases}$$
 (6)

$$MB(e) = \begin{cases} y'(e) & \text{if } y(e) \ge r_y, \\ \lambda(y'(e)) & \text{if } y(e) < r_y \end{cases}$$

- For $D=\{1,2,3,4\}$, $w=w_1$, $MB_i=MB_j \ \forall i,j\in D$ (Taxi drivers differ only in their MC)
 - Driver 1: Fails to reach income reference point
 - Driver 2: Reaches income reference point and stops working
 - Driver 3: Reaches income reference point and stops working
 - **Driver 4:** Fulfills income reference point and works more

• For $D=\{1,2,3,4\}$, $w=w_2$, $MB_i=MB_j \ \forall i,j\in D$ (Taxi drivers differ only in their MC)

Taxi drivers effort response to $w_1 \to w_2$ (wage decline)

- Driver 1: Increases work, but fails to reach income reference point
- Driver 2: Increases work, but fails to reach income reference point
- Driver 3: Increases work to reach income reference point
- Driver 4: Decreases work, but not as much to don't fall from income reference point

Camerer et al. (1997): Taxi drivers in NYC

Camerer et al. (1997): Taxi drivers in NYC

- Data:
 - Three different datasets of taxi drivers daily working hours and earnings
 - Computes average daily wages
 - → Problematic measure, which can potentially cause biases
- Evidence:
 - Consistent evidence of negative wage elasticity
 - → Taxi drivers work less hours when daily earnings are higher
 - $\,\,
 ightarrow\,$... but more experienced drivers behave more in line with standard theory

Camerer et al. (1997): Taxi drivers in NYC

- Critiques
 - Wage changes may be related to supply
 - → e.g., rain (which makes taxi driving more unpleasant)
 - → Camerer et al. controls for plausible supply shifters and interview taxi drivers to show price changes are more related to demand
 - Wage measure suffers division bias
 - → Measurement errors in hours mechanically induce downward bias on the elasticity
 - → Camerer et al. use other taxi drivers wage as instrument and find consistent results
- Academic debate:
 - Do NYC taxi drivers show reference dependent behavior?
 - Main issue: Lack of instruments for wage changes limits more robust results

Farber (2015): Taxi drivers in NYC

Farber (2015): Taxi drivers in NYC

- Data:
 - Driver's trip sheets
 - → Drivers are required to fill out each trip with (1) fare, (2) start and end times, and (3) locations
- Prior evidence:
 - Drivers more likely to stop working as daily cumulative earnings are higher (Farber, 2005)
 - → In line with reference dependence
 - Direct test of reference dependence are weakly in line with hypothesis (Farber, 2008)
 - ightarrow While it may occur, it has limited value for predicting behavior

Farber (2015): Taxi drivers in NYC

- Data:
 - All trips in 2009-2013 from a subsample of \sim 9,000 drivers
 - \rightarrow ~13% of all NYC taxi drives, amounts to ~115 million trips
- Evidence:
 - Little support for income reference dependence
- Interpretation:
 - Why wouldn't drivers target reference points?
 - → Because it would lead to inefficiency
 - What happens then?
 - → New drivers learn to take advantage of strong earnings opportunities (working more on high-wage days and less on low-wage days)
 - → Drivers who start with negative or small positive labor supply elasticities quit the business

Thakral & Tô (2021): Taxi drivers in NYC

- Data:
 - All NYC taxi trips in 2013
- Evidence:
 - Drivers more likely to stop working as daily cumulative earnings are higher
 - Effect changes depending on when the previous earnings were made
 - → Probability of stopping is less sensitive to earnings made earlier in the shift
- Interpretation:
 - Reference points adjusts over the course of a shift in response to realized earning
 - e.g., by the eight hour, earnings from the first few hours of the shift are mostly incorporated into the reference point and have no impact on behavior

36

Fehr & Goette (2007): Bike messengers

Fehr & Goette (2007): Bike messengers

- Setup:
 - Messengers in two companies working across two months
 - T0: Month 1 with 0% additional commission. Month 2 with 25% additional commission
 - T1: Month 2 with 25% additional commission. Month 2 with 0% additional commission
- Evidence:
 - Messengers work 30% more shifts on months with higher commission
 - → Consistent with standard theory (more effort when wage is higher)
 - → Consistent with reference dependence theory (easier to reach daily target)

Fehr & Goette (2007): Bike messengers

- More evidence:
 - Messengers do 6% less deliveries on shifts during months with higher commission
 - → Inconsistent with standard theory (more effort when wage is higher)
 - → Consistent with reference dependence theory (daily targets)
- Explanation:
 - Workers get tired from working more shifts and exert less effort within shifts?
 - Reference dependence behavior
 - → Independent loss aversion lab measurements predict negative response in within-shift effort
 - → Consistent with reference dependence, but not with tired workers

Mas (2006): Policemen in New Jersey, United States

Mas (2006): Policemen in New Jersey, United States

- Setup:
 - 9% of contracts reach a non-agreement between policemen and municipality
 - ightarrow Both parties submit their offer and an arbitrator chooses one
 - T0: Chooses municipality offer
 - T1: Chooses employee offer
- Evidence:
 - 12% lower crimes solved in T0 vs. T1 (i.e., less policemen effort)
- Explanation:
 - Reciprocity plays a role in the decision-making process:

 - ightarrow Mas (2006) computes the predicted reference point for policemen wages
 - → Response is higher when policemen experience a loss compared to a gain