Assignment 1

- 1. Convert the decimal number 250.5 to base 3, base 4, base 7, and base 8, base 16
 - $(250.5)_{10} = 100021.111111_3$ 250/3 = 83; $a_0 = 1$

$$250/3 = 83$$
; $a_0 = 1$
 $83/3 = 27$; $a_1 = 2$

$$27/3 = 9 ; a_2 = 0$$

$$9/3 = 3$$
; $a_3 = 0$

$$3/3 = 0$$
; $a_3 = 0$
 $3/3 = 1$; $a_4 = 0$

$$3/3 = 1$$
; $a_4 = 0$
 $1/3 = 0$; $a_5 = 1$

$$0.5 \times 3 = 1.5 \; ; a_0 = 1$$

$$0.5 \times 3 = 1.5 \; ; a_1 = 1$$

$$0.5 \times 3 = 1.5 \; ; a_2 = 1$$

• $(250.5)_{10} = (3322.2)_3$

$$250/4 = 62$$
; $a_0 = 2$

$$62/4 = 15$$
; $a_1 = 2$

$$15/4 = 3$$
; $a_2 = 3$

$$3/4 = 0$$
; $a_3 = 3$

$$0.5 \times 4 = 2.0 \; ; a_0 = 2$$

 $(250.5)_{10} = (505.33333)_7$

$$250/7 = 35 ; a_0 = 5$$

$$35/7 = 5 ; a_1 = 0$$

$$5/7 = 0 \; ; a_2 = 5$$

$$0.5 \times 7 = 3.5 \; ; a_0 = 3$$

$$0.5 \times 7 = 3.5 \; ; a_1 = 3$$

$$0.5 \times 7 = 3.5 \; ; a_2 = 3$$

 $\bullet (250.5)_{10} = (372.4)_8$

$$250/8 = 31$$
; $a_0 = 2$
 $31/8 = 3$; $a_1 = 7$

$$3/8 = 0 ; a_2 = 3$$

$$0.5 \times 8 = 4.0 \; ; a_0 = 4$$

•
$$(250.5)_{10} = (FA.8)_{16}$$

 $250/16 = 15$; $a_0 = 10$
 $15/16 = 0$; $a_1 = 15$
 $0.5 \times 16 = 8$; $a_0 = 8$

2. Convert the following decimal to binary 12.0625, 104, 673.23 and 198

•
$$(12.0625)_{10} = (1100.101)_2$$

 $12/2 = 6$; $a_0 = 0$
 $6/2 = 3$; $a_1 = 0$
 $3/2 = 1$; $a_3 = 1$
 $1/2 = 0$; $a_4 = 1$
 $0.0625 \times 2 = 1.25$; $a_0 = 1$
 $0.25 \times 2 = 0.5$; $a_1 = 0$

$$0.25 \times 2 = 0.5 ; a_1 = 0$$

 $0.5 \times 2 = 1.0 ; a_2 = 1$
• $(104)_{10} = (1101000)_2$

$$104/2 = 52; a_0 = 0$$

$$52/2 = 26; a_1 = 0$$

$$26/2 = 13; a_2 = 0$$

$$13/2 = 6; a_3 = 1$$

$$6/2 = 3; a_0 = 0$$

$$3/2 = 1; a_0 = 1$$

$$1/2 = 0; a_0 = 1$$

- $(673.23)_{10} = (1010100001.00111010111)_2$
- 3. Convert the following binary numbers to decimal 10.10001, 101110.0101, 11100101.110, 1101101.111

•
$$(10.10001)_2 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} = (2.53125)_{10}$$

•
$$(101110.0101)_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}$$

= $(46.3125)_{10}$

•
$$(11100101.110)_2 = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} = (229.75)_{10}$$

•
$$(1101101.111)_2 = 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (109.875)_{10}$$

Assignment 2

Convert the following numbers from the given base to the bases indicated:

- 1. Decimal 225.225 to binary, octal and hexadecimal
 - $(225.225)_{10} = (1110001.00111)_2$
 - $(225.225)_{10} = (341.16)_8$
 - $(225.225)_{10} = (1E.39)_{16}$
- 2. Binary 11010111.110 to decimal, octal and hexadecimal
 - $(11010111.110)_2 = (215.75)_{10}$
 - $(11010111.110)_2 = (347.6)_8$
 - $(11010111.110)_2 = (D7.C)_{16}$
- 3. Octal 62377 to decimal binary and hexadecimal
 - $(62377)_8 = (25855)_{10}$
 - $(62377)_8 = (10110100111111111)_2$
 - $(62377)_8 = (64FF)_{16}$
- 4. Hexadecimal 2AC5.D to decimal, octal and binary
 - $(2AC5)_{16} = (10949.6875)_{10}$
 - $(2AC5)_{16} = (25425.54)_8$
 - $(2AC5)_{16} = (10101011000111.1011)_2$
- 5. Convert the following numbers to decimal:
 - (i) $(1001001.011)_2 = (72.375)_{10}$
 - (ii) $(12121)_3 = (151)_{10}$
 - (iii) $(1032.2)_4 = (78.5)_{10}$
 - (iv) $(4310)_5 = (580)_{10}$

Applications

• A CD-ROM stores 650 megabytes of digital data. How many bits of data is this? We have: $650 \times 1024768 \times 8 = 5328793600$ bits

•	Determine the odd parity bit required for each of the following 7 bit ASCII codes:
	100101 0 :0
	010110 1 :1
	0110101:1

 \bullet Determine the even parity bit required for each 7 bit ASCII code listed above. ${\bf 1}001010:1$

101101:0

110101:0