Sean n, m números naturales. Defina las funciones $\mathbf{2} \times [n]$, $\operatorname{Pred}[n]$ y $\mathbf{m} - [n]$ de la siguiente manera:

función $2 \times [n]$:	función $PRED[n]$:	función $m-[n]$:
$\mathbf{Si} \ n == 0$:	$\mathbf{Si} \ n == 0$:	$\mathbf{Si} \ n == 0$:
retornar 0	retornar 0	$\mathbf{retornar}\ m$
Si no:	Si no:	Si no:
retornar $2 + 2 \times [n-1]$	retornar $n-1$	retornar $PRED[m-[PRED[n]]]$

Ejercicio 1.

- a) Escriba el paso a paso de $2 \times [3]$.
- b) Escriba el paso a paso de m-[2] y de m-[3].
- c) Demuestre por inducción sobre n que $2 \times [n]$ devuelve el número 2n.
- d) Suponga que m es un número natural arbitrario. Demuestre por inducción sobre n que m-[n] devuelve el número $\max\{0,m-n\}$ (es decir, el máximo entre 0 y el número m-n).

Una manera sencilla de escribir un árbol mediante la estructura Tree(left, right) es primero escribir sus subárboles y luego usarlos para construir el árbol de interés. Considere el siguiente árbol y su representación mediante la estructura Tree(left, right):

EJERCICIO 2: Utilice la estructura Tree(left, right) para representar los siguientes árboles según el modelo dado en el ejemplo anterior:

Periodo: 2022-1

Profesor: E. Andrade

Una función recursiva para contar el número de aristas de un árbol es la siguiente:

```
función num_aristas(A):
    Si A.right == NULL:
        retornar 0
Si no:
    retornar 2 + num_aristas(A.left) + num_aristas(A.right)
```

El paso a paso de aplicar esta función al árbol r_2 es:

num_aristas
$$(r_2)$$
 = 2 + num_aristas $(r_2.left)$ + num_aristas $(r_2.right)$
= 2 + num_aristas (h) + num_aristas (r_1)
= 2 + 0 + num_aristas (r_1)
= 2 + 0 + $(2 + num_aristas(r_1.left) + num_aristas(r_1.right))$
= 2 + 0 + $(2 + num_aristas(h) + num_aristas(h))$
= 2 + 0 + $(2 + 0 + 0)$ = 4

EJERCICIO 3: Presente el paso a paso de num $_{-}$ aristas para los árboles k_2 y t_3 .

Una función recursiva para determinar la altura de un árbol es la siguiente:

```
función Altura(A):
    Si A.right == NULL:
        retornar 0
Si no:
    retornar 1 + max{Altura(A.left), Altura(A.right)}
```

EJERCICIO 4: Presente el paso a paso de Altura para los árboles r_2 , k_2 y t_3 .

EJERCICIO 5: Defina una función recursiva num_nodos que encuentre el número de nodos de un árbol y presente el paso a paso de num_nodos para cada uno de los árboles del ejercicio 2.

EJERCICIO 6: Demuestre mediante inducción estructural que, para cualquier árbol binario A:

$$\operatorname{num_nodos}(A) = \operatorname{num_aristas}(A) + 1$$

EJERCICIO 7: Sea A un árbol binario y a=Altura(A). Demuestre por inducción estructural que:

$$num_nodos(A) \le 2^{a+1} - 1$$

Periodo: 2022-1

Profesor: E. Andrade