Consider the divsibility in \mathbb{N} :

$$\forall (n,m) \in \mathbb{N}^2, n \mid m \iff \exists k \in \mathbb{N} \mid m = kn$$

- 1. Verify that that relation defines a partial order over \mathbb{N} ;
- 2. Does $\mathbb N$ admit an infimum, supremum for that order?
- 3. What are the maximums and minimums of $\mathbb{N}\setminus\{0,1\}$?
- 1. $(\forall x \in \mathbb{N}, x \mid x)$; $(\forall (x, y, z) \in \mathbb{N}^2$, if $x \mid y$ and $z \mid x \Rightarrow z \mid y)$; $(\forall (x, y, z) \in \mathbb{N}^2, x \mid y \text{ and } y \mid x \iff x = y)$; Then \mid is an order relation over \mathbb{N} . Knowing 11 \mid 13 and 13 \mid 11 is false \Rightarrow \mid is partial over \mathbb{N} .
- 2. $\forall x \in \mathbb{N}, 1 \mid x \Rightarrow 1$ is an infimum. $\forall x \in \mathbb{N}, x \mid 0 \Rightarrow 0$ is a supremum.
- 3. There are no maximums and minimums in $\mathbb{N}\setminus\{0,1\}$ by |.