Problem:

$$f: \mathbb{R}^n \to \mathbb{R}^1$$
, $G: \mathbb{R}^n \to \mathbb{R}^m$, $M = \{x: G(x) = 0\}$.

Badamy różnicę $f(x_0 + h) - f(x_0)$ (jest fajna bo możemy ją rozwinąć ze wzoru Taylora) Próbujemy ożenić te języki. Zbadajmy G'(x).

• G'(x) - jest macierzą $[G']_{m,n}$

$$G(x_1, \dots, x_n) = \begin{bmatrix} G^1(x_1, \dots, x_n) \\ \vdots \\ G^m(x_1, \dots, x_n) \end{bmatrix}.$$

$$\begin{bmatrix} G'(x_1, \dots, x_n) \\ \vdots \\ G^{m}(x_1, \dots, x_n) \end{bmatrix}.$$

$$[G'(x)] = \begin{bmatrix} \frac{\partial G^1}{\partial x^1} & \dots & \frac{\partial G^1}{\partial x^n} \\ \vdots & & & \\ \frac{\partial G^m}{\partial x^1} & \dots & \frac{\partial G^m}{\partial x^n} \end{bmatrix}.$$
$$[G'(x)] : \mathbb{R}^n \to \mathbb{R}^m.$$

Pytanie 1. Jaki jest "wymiar" zbioru M?

Albo, jeżeli $\mathbb{R}^n \to \mathbb{R}^m$, to wiąż G(x) = 0 zadaje funkcję

$$\varphi(x): \mathbb{R}^{n-m} \to \mathbb{R}^m.$$

Taką, że $G(x^1,\ldots,x^{n-m},\varphi^1(x^1,\ldots,x^{n-m}),\ldots,\varphi^m(x^1,\ldots,x^{n-m}))$, (jeżeli det $G_y(x)\neq 0$)

Jeżeli det $G'_{\nu}(x) \neq 0$, to znaczy, że w macierzy

$$G' = \begin{bmatrix} \frac{\partial G_1}{\partial x^1} & \cdots & \frac{\partial G_1}{\partial x^{n-m}} & \frac{\partial G_1}{\partial y^1} & \cdots & \frac{\partial G_1}{\partial y^m} \\ \vdots & & & & \\ \frac{\partial G_m}{\partial x^1} & \cdots & \frac{\partial G_m}{\partial x^{n-m}} & \frac{\partial G_m}{\partial y^1} & \cdots & \frac{\partial G_m}{\partial y^m} \end{bmatrix}.$$

Gdzie $x\stackrel{\text{ozn}}{=}(x^1,\dots,x^{n-m},y^1,\dots,y^m)$. Żeby podkreślić to, że niektóre współrzędne (y^1,\dots,y^m) można uzyskać z innych (x^1,\dots,x^{n-m}) poprzez funkcję $\varphi:x=\varphi(y)$

Gdy założymy, że det $G_y' \neq 0$, to znaczy, że m-liniowo niezależnych kolumn, bo

$$\dim imG'(x) = m = \dim \mathbb{R}^m \text{ i } G'(x) : \mathbb{R}^n \to \mathbb{R}^m.$$

Oznacza to, że

$$\dim \ker G'(x) = n - m.$$

(tw. o rzędzie (paweł odpalił kiedyś))

Oznaczmy $X_1 = \ker G'(x)$ i $X_2 = imG'(x)$ (dim $X_1 = n - m$, dim $X_2 = m$) Oznacza to, że każdy wektor $h \in \mathbb{R}^n$ da się przedstawić jako $h = h_1 + h_2, h_1 \in X_1, h_2 \in X_2$ czyli $\mathbb{R}^n = X_1 \bigoplus X_2$

Oznacza to, że możemy tak wybrać bazę, że

$$X_{1} = \left\{ \begin{bmatrix} x^{1} \\ \vdots \\ x^{n-m} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \right\}, X_{2} = \left\{ \begin{bmatrix} 0 \\ \vdots \\ 0 \\ y^{1} \\ \vdots \\ y^{m} \end{bmatrix} \right\}, \quad x^{1}, \dots, x^{n-m}, y_{1}, \dots, y_{m} \in \mathbb{R}.$$

Co więcej,

$$X_{2} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \varphi^{1}(x^{1}, \dots, x^{n-m}) \\ \vdots \\ \varphi^{m}(x^{1}, \dots, x^{n-m}) \end{bmatrix}, \quad x^{i} \in \mathcal{O} : \det(G'_{y}) \neq 0.$$

A co możemy powiedzieć o wierszach G'(x)? - jest ich m i są liniowo niezależne Jeżeli $h=h_1+h_2, \quad h_1\in X_1, h_2\in X_2$, to możemy powiedzieć, że

$$h_2 = \varphi(h_1).$$

Zatem dalej piszemy

$$h_2 = \varphi(0 + h_1) = \varphi(0) + \varphi'(0)h_1 + r(0, h_1).$$

gdzie $(r \frac{0,h_1}{\|h_1\|} \xrightarrow[\|h_1\|]{\to} 0)$ (bo z tw. o funkcji uwikłanej wiemy, że φ - różniczkowalna, co więcej $\varphi' = -(G_y')^{-1}G_x'$ a $\varphi'(0) = -(G_y'(0))^{-1}G_x'(0)$ czyli $\varphi'(0)h_1 = -(G_y'(0))^{-1}G_x'(0)h_1 = 0$ Zatem

$$h_2 = \varphi(h_1) = r(0, h_1).$$

gdzie

$$\frac{r(0,h_1)}{\|h_1\|} \underset{h_1 \to 0}{\longrightarrow} 0.$$

czyli h_2 maleje szybciej niż $||h_1||$

Chcemy zbadać różnicę

$$f(x_0 + h) - f(x_0).$$

Skoro $h \in \mathbb{R}^n$, to możemy przedstawić h jako

$$h = h_{\parallel} + h_{\perp}, \quad h_{\parallel} \in X_1, h_{\perp} \in X_2.$$

czyli

$$G'(x_0)h_{\parallel} = 0$$
?.

Przykład 1. niech $G(x,y) = (x-1)^2 + (y-1)^2 - 1$, G' = (2(x-1), 2(y-1))

$$f(x_0 + h) - f(x_0) = f(x_0 + h_{\perp} + h_{\parallel}) - f(x_0).$$

W małym otoczeniu h będzie bardziej decydował $h_{\parallel},$ bo zawsze mogę zmniejszyć h i w efekcie h_{\perp} się zmniejszy

Wiemy, że

$$f(x_0 + h) - f(x_0) = f'(x_0)h + \frac{1}{2!}f''(x_0)(h, h) + r_1(x_0, h).$$

bo f - różniczkowalna

$$G(x_0 + h) - G(x_0) = G'(x_0)h + \frac{1}{2!}G''(x_0)(h, h) + r_2(x_0, h).$$

bo G - różniczkowalna

niech

$$\Lambda = [\lambda_1, \ldots, \lambda_m], \lambda_i \in \mathbb{R}.$$

"../img/"fig_26.png

Rysunek 1: biedronka i szprycha

Wtedy

$$f(x_0 + h) - f(x_0) = f(x_0 + h) - f(x_0) - \Lambda(G(x_0 + h) - G(x_0)) = (f'(x_0) - \Lambda G'(x_0))h.$$

Dalej dostajemy

$$(f'(x_0) - \Lambda G'(x_0))h + \frac{1}{2!}(f''(x_0) - \Lambda G''(x_0))(h,h) + r_1(x_0,h) + r_2(x_0,h).$$

Ale dla minimum lub maksimum chcemy, aby

$$f'(x_0) = \Lambda G'(x_0).$$

więc dla minimum / maksimum $f(x_0+h)-f(x_0)=\frac{1}{2}(f''(x_0)-\Lambda G''(x_0))(h,h)+r_1(x_0,h)+r_2(x_0,h)$ Zatem jako, że $\frac{r_1(0,h)}{\|h\|^2}\underset{\|h\|^2}{\longrightarrow} 0$, $\frac{r_2(0,h)}{\|h\|^2}\underset{\|h\|^2}{\longrightarrow} 0$, to o znaku $f(x_0+h)-f(x_0)$ decyduje znak

$$(f''(x_0) - \Lambda G''(x_0))(h, h).$$

Wiemy, że $h \in \mathbb{R}^n i \mathbb{R}^n = X_1 \bigoplus X_2$, czyli $h = h_\perp + h_\parallel$

$$f''(x_0) - \Lambda G''(x_0))(h,h) = \underbrace{f''(x_0)\Lambda G''(x_0)}_{\square}(h_{\parallel} + h_{\perp}, h_{\perp} + h_{\parallel}).$$

$$= (\Box)(h_{\perp}, h_{\perp}) + (\Box)(h_{\perp}, h_{\parallel}) + (\Box)(h_{\parallel}, h_{\perp}) + (\Box)(h_{\parallel}, h_{\parallel}).$$

Pytanie 2. Króre z powyższych wyrażeń jest najmniejsze (które z powyższych wyrażeń są o rząd mniejsze od pozostałych dla $||h|| \to 0$

Wiemy, że

$$||h_{\perp}|| ||h_{\parallel}||.$$

Oznacza to, że dla małych $\|h_{\parallel}\|$ o znaku decyduje

$$(f''(x_0) - \Lambda G''(x_0))(h_{\parallel}, h_{\parallel}).$$

Twierdzenie 1. Niech

$$f: U \subset \mathbb{R}^n \to \mathbb{R}^1, \quad f \in \mathcal{C}^2(U),$$

 $G: U_2 \subset \mathbb{R}^n \to \mathbb{R}^m, \quad G \in \mathcal{C}^2(U_2),$
 $\exists G(x_0) = 0, \quad G'(x_0) \text{ - ma rząd maksymalny } (m).$

oraz

$$\exists \Lambda = [\lambda_1, \dots, \lambda_m], \lambda_i \in \mathbb{R}, f'(x_0) - \Lambda G'(x_0) = 0.$$

to jeżeli

$$(f''(x_0) - \Lambda G''(x_0))(h_{\parallel}, h_{\parallel}) > 0, h_{\parallel} \stackrel{def}{=} \{G'(x_0)h_{\parallel} = 0\}.$$

to f posiada $w x_0$ minimum lokalne (< 0, to maksimum lokalne) na zbiorze

$$M = \{x \in \mathbb{R}^n, G(x) = 0\}$$