

All-Pairs Shortest Paths (APSP)

Algorithms: Design and Analysis, Part II

Johnson's Algorithm

Example

Note: Adding s does not add any new u-v paths for any u, $v \in G$.

Key insight: Define vertex weight $p_v := \text{length of a shortest } s-v$ path.

Example (con'd)

Recall: For each edge e = (u, v), define $c'_e = c_e + p_u - p_v$.

Note: After reweighting, all edge lengths nonnegative! \Rightarrow Can compute all (reweighted) shortest paths via n Dijkstra computations! [No need for Bellman-Ford]

Johnson's Algorithm

Input: Directed graph G = (V, E), general edge lengths c_e .

(1) Form G' by adding a new vertex s and a new edge (s, v) with length 0 for each $v \in G$.

- (2) Run Bellman-Ford on G' with source vertex s. [If B-F detects a negative-cost cycle in G' (which must lie in G), halt + report this.]
- (3) For each $v \in G$, define $p_v = \text{length of a shortest } s \to v$ path in G'. For each edge $e = (u, v) \in G$, define $c'_e = c_e + p_u p_v$.
- (4) For each vertex u of G: Run Dijkstra's algorithm in G, with edge lengths $\{c'_e\}$, with source vertex u, to compute the shortest-path distance d'(u, v) for each $v \in G$.
- (5) For each pair $u, v \in G$, return the shortest-path distance $d(u, v) := d'(u, v) p_u + p_v$

Analysis of Johnson's Algorithm

Running time:
$$O(n) + O(mn) + O(m) + O(nm \log n) + O(n^2)$$

Step (1), form G' Step (2), run BF Step (3), form G' Step (4), G' Step (5), G' Step (5), G' work per G' Step (7)

 $= O(mn \log n)$. [Much better than Floyd-Warshall for sparse graphs!]

Correctness: Assuming $c'_e \ge 0$ for all edges e (see next slide for proof), correctness follows from last video's quiz.

[Reweighting doesn't change the shortest u-v path, it just adds $(p_u - p_v)$ to its length]

Correctness of Johnson's Algorithm

Claim: For every edge e = (u, v) of G, the reweighted length $c'_e = c_e + p_u - p_v$ is nonnegative.

Proof: Fix an edge (u, v). By construction, $p_{ii} = \text{length of a shortest } s - u \text{ path in } G'$ $p_v = \text{length of a shortest } s - v \text{ path in } G'$

Let P = a shortest s-u path in G' (with length p_u - exists, by construction of G')

- $\Rightarrow P + (u, v) = \text{an } s v \text{ path with length } p_u + c_{uv}$
- \Rightarrow Shortest s-v path only shorter, so $p_v \leq p_u + c_{uv}$

$$\Rightarrow c'_{uv} = c_{uv} + p_u - p_v \ge 0$$
. QED!