Villamos, elektronikus és virtuális mérések

1.5 Mérési hibák és hibaszámítás

A mérés célja egy fizikai mennyiség értékének meghatározása. Azonban a mérések soha nem tökéletesek, mindig tartalmaznak valamilyen hibát.

Alapfogalmak:

- Valódi érték (Xv): Az a fizikai mennyiség pontos, elméletileg létező értéke. Gyakorlatban általában ismeretlen.
- Mért érték (Xm): A mérés eredményeként kapott érték.
- Hiba (ΔX): A mért érték és a valódi érték különbsége: ΔX=Xm -Xv
- **Abszolút hiba:** Maga a ΔX különbség. Mértékegysége megegyezik a mért mennyiségével.
- Relatív hiba (δX): Az abszolút hiba és a valódi érték hányadosa, gyakran százalékban kifejezve: δX
 =Xv ΔX =XXm -Xv
- Hibaosztály: A mérőműszer pontosságát jellemző szám, amely megadja a megengedett maximális hibát a mérési tartományhoz képest, százalékban. Pl. 0,5-ös hibaosztályú műszer maximális hibája a mérési tartomány 0,5%-a.

Hibák csoportosítása eredetük szerint:

- 1. **Durva hibák (fatális hibák):** Emberi gondatlanságból, figyelmetlenségből adódó hibák (pl. leolvasási hiba, hibás bekötés). Ezeket a hibákat ki kell szűrni, és a mérést megismételni.
 - VEVM 28. oldal
- 2. **Szisztematikus hibák (rendszeres hibák):** Folyamatosan és azonos irányban ható hibák, amelyek a mérési elrendezésből, a műszer hibájából, vagy a mérési módszerből adódnak.
 - VEVM 29. oldal
 - Típusai:
 - Műszerhiba: A műszer pontatlanságából adódó hiba (pl. rossz kalibráció).
 - Módszerhiba: A mérési módszer sajátosságaiból eredő hiba (pl. mérőműszer bemeneti impedanciája befolyásolja a mért áramkört).
 - Környezeti hiba: Környezeti tényezők (hőmérséklet, páratartalom) hatására fellépő hiba.
 - Személyes hiba: A mérő személy szubjektív torzítása (pl. parallaxishiba).
 - Szisztematikus hibák kiküszöbölése/csökkentése:
 - Kalibrálás
 - Kompenzálás
 - Mérési körülmények stabilizálása
 - Helyes mérési módszer megválasztása
- Véletlen hibák: Olyan hibák, amelyek előre nem látható, sok, egyenként elhanyagolható nagyságú tényező együttes hatására jönnek létre. Nem lehet őket kiküszöbölni, de statisztikai módszerekkel kezelhetők.
 - VEVM 30. oldal
 - Jellemzői:
 - Pozitív és negatív irányú eltérések egyaránt előfordulnak.
 - Kisebb hibák gyakrabban fordulnak elő, mint a nagyobbak.
 - Nagyobb számú mérés esetén a hibák eloszlása közelít a Gauss-eloszláshoz (normális eloszlás).

Hibaszámítás:

Átlagérték (X⁻): Ismételt mérések esetén az értékek átlaga.

$$\bar{X} = \sum_{i=1}^{n} X_i$$

Ahol Xi az i-edik mérés eredménye, n a mérések száma.

VEVM 30. oldal

Szórás (σ): A mérések szóródását jellemző statisztikai mennyiség.

$$\sigma = \sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

$$n - 1$$

- VEVM 30. oldal
- Hiba terjedése (összetett hibák): Amikor több mért mennyiségből számítunk ki egy másik mennyiséget, a hibák összeadódnak.
 - Abszolút hibák összeadódása: Ha Y=A+B, akkor ΔY=ΔA+ΔB (legrosszabb eset).
 - Relatív hibák összeadódása: Ha Y=A·B vagy Y=A/B, akkor δY =δA +δB (legrosszabb eset).
 - VEVM 33. oldal (Hibák továbbterjedése függvényeknél)
 - Ha Y=f(X1,X2,...,Xn), akkor az abszolút hiba (teljes differenciál alapján):

$$dY = \frac{\partial Y}{\partial X_1} dX_1 + \frac{\partial Y}{\partial X_2} dX_2 + \ldots + \frac{\partial Y}{\partial X_n} dX_n$$

 A maximális abszolút hiba, ha feltételezzük, hogy a hibák a legrosszabb irányba adódnak össze:

$$\Delta Y_{max} = \begin{pmatrix} \partial Y \\ \partial X_1 \end{pmatrix} \Delta X_1 + \begin{pmatrix} \partial Y \\ \partial X_2 \end{pmatrix} \Delta X_2 + \ldots + \begin{pmatrix} \partial Y \\ \partial X_n \end{pmatrix} \Delta X_n$$

A véletlen hibák átlagos értékét figyelembe véve (gyökös négyzetes összeadás):

$$\Delta Y = \sqrt{\left(\frac{\partial Y}{\partial X_1} \Delta X_1\right)^2 + \left(\frac{\partial Y}{\partial X_2} \Delta X_2\right)^2 + \dots + \left(\frac{\partial Y}{\partial X_n} \Delta X_n\right)^2}$$

2.1 Állandó mágnesű (lengő tekercsű) műszer

Az állandó mágnesű lengő tekercses (D'Arsonval-típusú) műszer az egyenáramú mennyiségek (feszültség, áram) mérésére szolgáló elektromechanikus műszer.

Működési elv:

- Egy tekercs egy állandó mágneses mezőben helyezkedik el. Amikor áram folyik át a tekercsen, Lorentz-erő hat rá, ami forgatónyomatékot hoz létre.
- Ez a forgatónyomaték ellenállást fejt ki a műszer rugójában, ami a tekercs elfordulásához vezet.
- A tekercshez rögzített mutató egy skálán jelzi az áramerősséget.
- A kitérés egyenesen arányos a tekercsen átfolyó áramerősséggel. Ezért a skála lineáris.

Főbb részei:

- Állandó mágnes: Erős, állandó mágneses teret hoz létre.
- Lengő tekercs: Vékony drótból készült tekercs, amely könnyen elfordulhat.
- Rugók: Visszaállító nyomatékot biztosítanak és bevezetik az áramot a tekercsbe.
- Mutató: A skálán mutatja az értéket.
- Skála: A mért mennyiség (áram, feszültség) értékeit mutatja.
- Mágneses mag: A tekercs belsejében elhelyezkedő vasmag, amely homogenizálja a mágneses teret és növeli a fluxust.

Nyomatékok:

Működő nyomaték (Mm):

$$M_m = B \cdot A \cdot N \cdot I$$

Ahol:

- B: Mágneses indukció [Tesla]
- A: Tekercs felülete [m²]
- N: Tekercs menetszáma
- I: Áramerősség a tekercsben [A]
- VEVM 40. oldal, 2.1. ábra

• Ellennyomaték (Me): A rugók által kifejtett visszaállító nyomaték.

$$M_e = D \cdot \alpha$$

Ahol:

D: Rugóállandó [Nm/rad]

α: Kitérési szög [rad]

VEVM 40. oldal

Egyensúlyban Mm =Me , azaz $BA \cdot N \cdot I = D \cdot \alpha$. Ebből látszik, hogy a kitérési szög (α) egyenesen arányos az áramerősséggel (I), ami lineáris skálát eredményez.

Előnyök:

- Nagy érzékenység.
- Lineáris skála.
- Alacsony energiafogyasztás.
- · Pontos mérés egyenáramon.

Hátrányok:

- Csak egyenáram mérésére alkalmas (vagy egyenirányítóval AC esetén).
- Érzékeny a mechanikai rázkódásra és a külső mágneses terekre.
- Drágább, mint más típusú műszerek.

VEVM 39-41. oldal, 2.1. ábra (Állandó mágnesű lengő tekercsű műszer felépítése)

2.1.1 Az állandó mágnesű műszer mérési határának bővítése. Amper- és volt mérők, ohm mérők

Az alapállandó mágnesű lengő tekercses műszer tipikusan mikroamper vagy milliamper nagyságrendű áramot és néhány millivolt feszültséget képes mérni. A mérési tartomány bővítéséhez söntellenállásokat (ampermérőhöz) vagy előtét-ellenállásokat (voltmérőhöz) alkalmaznak.

Ampermérők - Áram mérése söntellenállással

- Cél: Nagyobb áramok mérése.
- Módszer: Egy söntellenállást (Rs) (kis ellenállású, precíziós ellenállás) párhuzamosan kapcsolnak a műszer tekercsével.
- **Elv:** A mérendő áram nagy része a söntön folyik át, és csak egy kis, ismert hányada jut a műszer tekercsébe.
- Képlet:
 - A műszer tekercsének árama: Im
 - A műszer tekercsének ellenállása: Rm
 - A söntellenállás árama: Is
 - A söntellenállás ellenállása: Rs
 - A mérendő teljes áram: I
 - A söntellenállásra és a műszerre eső feszültség azonos: Us=Um⇒ls Rs=Im Rm
 - A teljes áram: I=Im +Is =Im +Im Rs Rm (41 mRs Rm)
 - Az árammérő mérési határát bővítő tényező (nl):

$$n_I = \frac{I}{I_m} = 1 + \frac{R_m}{R_s}$$

A szükséges söntellenállás:

$$R_s = \frac{R_m}{n_I - 1}$$

- VEVM 41-42. oldal, 2.2. ábra (Ampermérő söntellenállással)
- Megjegyzés: A söntellenállásnak stabilnak, hőmérsékletfüggetlennek és nagy áramterhelhetőségűnek kell lennie. Ideális esetben az ampermérő belső ellenállása nagyon kicsi.

Voltmérők - Feszültség mérése előtét-ellenállással

Cél: Nagyobb feszültségek mérése.

- Módszer: Egy előtét-ellenállást (Re) (nagy ellenállású, precíziós ellenállás) sorosan kapcsolnak a műszer tekercsével.
- Elv: Az előtét-ellenállás korlátozza a műszeren átfolyó áramot egy adott feszültségnél, így a műszer a teljes feszültség egy kis részét érzékeli.
- Képlet:
 - A műszer tekercsének árama: Im
 - A műszer tekercsének ellenállása: Rm
 - Az előtét-ellenállás ellenállása: Re
 - A mérendő teljes feszültség: U
 - Az áramkörben folyó áram (Im) megegyezik a műszer teljes kitéréséhez szükséges árammal.
 - A teljes feszültség: U=Im (Rm +Re)
 - A feszültségmérő mérési határát bővítő tényező (nU):

$$n_U = \frac{U}{U_m} = \frac{I_m(R_m + R_e)}{I_m R_m} = 1 + \frac{R_e}{R_m}$$

A szükséges előtét-ellenállás:

$$R_e = R_m(n_U - 1)$$

- VEVM 43. oldal, 2.3. ábra (Voltmérő előtét-ellenállással)
- **Érzékenység:** A voltmérő érzékenységét ohm/voltban adják meg: S=lfm1, ahol lfm a műszer teljes kitéréséhez szükséges áram. Minél nagyobb az érzékenység, annál jobb a voltmérő, mert annál kevésbé terheli meg a mért áramkört (nagyobb a belső ellenállása).

Ohm mérők - Ellenállás mérése

Az ohm mérők az egyenáramú lengő tekercses műszer és egy belső elem vagy tápegység felhasználásával mérik az ellenállást.

- Soros ohm mérő:
 - A műszer, egy belső ellenállás és egy elem sorosan van kapcsolva. A mérendő ellenállást is sorosan kötik be.
 - Az áram a mérendő ellenállás nagyságától függ. Minél nagyobb az ellenállás, annál kisebb az áram, annál kisebb a kitérés.
 - Skála: Nem lineáris, az ellenállás növekedésével a kitérés csökken, a skála a végtelen felé zsúfolt.
 - VEVM 44. oldal, 2.4. ábra (Soros ohmmérő)
- Párhuzamos ohm mérő:
 - A mérendő ellenállást a műszerrel párhuzamosan kötik.
 - VEVM 45. oldal, 2.5. ábra (Párhuzamos ohmmérő)

Fontos megjegyzés: Az állandó mágnesű műszerek csak egyenáramú jel mérésére alkalmasak. Váltakozó áramú méréshez egyenirányítót kell eléjük kapcsolni.

2.1.2 Diódás mérési egyenirányítók

Mivel az állandó mágnesű lengő tekercses műszer csak egyenáramot képes mérni, váltakozó áramú (AC) feszültség vagy áram méréséhez egyenirányító áramkörre van szükség.

Működési elv:

- Az egyenirányító áramkör a váltakozó feszültséget vagy áramot egyenáramúvá (pulzáló egyenárammá) alakítja, amit a lengő tekercses műszer mérni tud.
- A műszer ekkor az egyenirányított jel átlagértékét fogja mutatni.

Típusok:

- 1. Félhullámú egyenirányító:
 - Egy diódát használ. Csak a váltakozó jel egyik félhullámát engedi át.
 - VEVM 46. oldal, 2.6. ábra (Félhullámú egyenirányító)
 - Hátrány: Csak az energia felét hasznosítja, és a kimeneti jel erősen pulzál. Az átlagérték kisebb, mint a teljes hullámú egyenirányításnál.

Ideális szinuszos jelnél az átlagérték: Ua ´tl =πUcsu´cs

2. Teljes hullámú egyenirányító (Graetz-híd):

- Négy diódát használ híd-kapcsolásban. Mindkét félhullámot egyenirányítja, a negatív félhullámot pozitívvá fordítva.
- VEVM 46. oldal, 2.7. ábra (Teljes hullámú egyenirányító (Graetz-híd))
- Előny: Hatékonyabb, a kimeneti jel egyenletesebb, mint a félhullámú egyenirányításnál.
- Ideális szinuszos jelnél az átlagérték: Ua ´tl =π2Ucsu´cs
- VEVM 47. oldal, 2.8. ábra (Diódás egyenirányítás a műszer bemeneténél)
 - A diódák nyitófeszültsége (kb. 0,7 V szilícium diódák esetén) torzítja a mérést, különösen kis feszültségeknél. Ezt kompenzálni kell, vagy nagy feszültségeknél elhanyagolható.

Problémák a diódás egyenirányítással:

- Nemlineáris működés: A diódák nyitófeszültsége miatt kis feszültségeknél a műszer nemlineárisan működik, vagy egyáltalán nem mutat kitérést.
- Csúcs- vagy átlagérték mérése: A lengő tekercses műszer az egyenirányított jel átlagértékét mutatja.
 Ha effektív értéket (RMS) akarunk mérni, akkor a műszer skáláját úgy kell kalibrálni, hogy a szinuszos jel effektív értékét mutassa az átlagérték alapján. Ez viszont azt jelenti, hogy nem-szinuszos jelek esetén a mérés hibás lesz.
 - Szinuszos jel esetén:

$$U_{\text{RMS}} = \frac{1}{\sqrt{2}} U_{\text{csúcs}}$$
 és $U_{\text{átl}} = \frac{2}{\pi} U_{\text{csúcs}}$

Ebből következik:

$$U_{\rm RMS} = \frac{2\sqrt{2}}{\pi} U_{\rm atl} \approx 1.11 \cdot U_{\rm alt}$$

Ez az ún. alakfaktor.

 A diódás egyenirányítású műszer tehát az átlagértéket méri, és ezt szinuszos jelre kalibrált skálával átváltja effektív értékre. Más hullámformák esetén ez a kalibráció hibás eredményt ad.

2.1.3 Multiméterek

A multiméter (más néven volt-ohm-milliampermérő, VOM) egy sokoldalú mérőműszer, amely képes több elektromos mennyiség, például feszültség, áram és ellenállás mérésére. Modern multiméterek gyakran mérnek további mennyiségeket is, mint kapacitás, frekvencia, hőmérséklet, dióda és tranzisztor teszt. **Típusok:**

1. Analóg multiméterek:

- Az állandó mágnesű lengő tekercses műszer elvén alapulnak, kiegészítve sönt- és előtétellenállásokkal, valamint egyenirányítókkal.
- Jellemzők:
 - Több mérési tartomány (választókapcsolóval választható).
 - Több skála a különböző mennyiségekhez és tartományokhoz.
 - VEVM 48. oldal, 2.9. ábra (Analóg multiméter felépítése)
- Előnyök:
 - Egyszerű, robusztus kivitel.
 - Jó a trendek és a gyorsan változó jelek megfigyelésére.
- Hátrányok:
 - Leolvasási hibák, parallaxishiba.
 - Alacsonyabb pontosság a digitálishoz képest.
 - Belső ellenállásuk (különösen a voltmérő funkcióban) alacsonyabb lehet, mint a digitális műszereké, ami befolyásolhatja a mért áramkört.

2. Digitális multiméterek (DMM):

 Analóg-digitális átalakító (ADC) segítségével a mért analóg jelet digitális értékké alakítják, amelyet numerikus kijelzőn jelenítenek meg.

Jellemzők:

- LCD vagy LED kijelző.
- Magasabb pontosság és felbontás.
- Automatikus tartományváltás (autoranging) gyakori.
- Számos kiegészítő funkció (pl. True RMS, frekvenciamérés, kapacitásmérés).
- VEVM 49. oldal, 2.10. ábra (Digitális multiméter felépítése)

Előnyök:

- Könnyű leolvasás, nincsenek leolvasási hibák.
- Nagyon pontos és nagy felbontású.
- Magas bemeneti impedancia (különösen feszültségmérésnél), minimális áramköri terhelés.

Hátrányok:

- Nehezebb a gyorsan változó jelek trendjének megfigyelése (bár egyesek rendelkeznek bargraph kijelzővel).
- Lehetnek zajra érzékenyek.

Főbb funkciók és alapelvek:

DC feszültségmérés:

- Az analóg multiméterek előtét-ellenállásokat használnak.
- A digitális multiméterek bemeneti osztóval és A/D átalakítóval működnek. Magas bemeneti impedancia (tíz megohm vagy több) jellemzi őket.

AC feszültségmérés:

- Az analóg multiméterek diódás egyenirányítókat használnak, az átlagértéket mérik és effektív értékre kalibrálják a szinuszos jelnél.
- A digitális multiméterek is használhatnak egyenirányítókat, de a fejlettebbek True RMS (valódi effektív érték) mérésre képesek, ami bármilyen hullámforma esetén pontos effektív értéket ad.

DC árammérés:

Söntellenállásokat használnak, a feszültségesést mérik a söntön.

AC árammérés:

Söntellenállások és egyenirányítók kombinációja, vagy áramváltó.

Ellenállásmérés (ohmmérő):

- A multiméter belső áramforrást és ismert ellenállásokat használva méri az ismeretlen ellenálláson eső feszültséget vagy az azon átfolyó áramot.
- VEVM 44-45. oldal (Soros és párhuzamos ohmmérő)

3.1 Egyenáramú hidak

Az egyenáramú hidak, különösen a Wheatstone-híd, pontos ellenállásmérésre szolgálnak. A híd kiegyensúlyozott állapotában a nullmódszer elvén alapulnak, ami nagyon nagy pontosságot tesz lehetővé.

3.1.1 A Wheatstone-hid

A Wheatstone-híd egy négy ellenállásból álló áramkör, amelyet feszültségforrás táplál, és egy nullindikátor (galvanométer vagy voltmérő) van bekötve a híd átlójába.

Felépítés:

- Négy ellenállás: R1 ,R2 ,R3 (ismertek, vagy állíthatók) és Rxismeretlen, mérendő ellenállás).
- Feszültségforrás (U0).
- Nullindikátor (G) a híd két ágának középső pontja között.

Működési elv:

- A híd akkor van kiegyensúlyozott állapotban, ha a nullindikátoron átfolyó áram vagy az azon eső feszültség nulla. Ez azt jelenti, hogy a nullindikátor két bemeneti pontjának potenciálja azonos (UAB =0).
- Kiegyensúlyozott állapotban az áramok aránya a híd két ágában azonos:

$$\frac{U_0 \cdot R_3}{R_1 + R_3} = \frac{U_0 \cdot R_x}{R_2 + R_x}$$

- VEVM 56. oldal, 3.1. ábra (Wheatstone-híd)
- A kiegyensúlyozott híd feltétele:

$$\frac{R_1}{R_2} = \frac{R_3}{R_x}$$
 vagy $R_1 R_x = R_2 R_3$

Ebből az ismeretlen ellenállás (Rx) kifejezhető:

$$R_x = R_3 \frac{R_2}{R_1}$$

Ahol R1 és R2 az aránykarok, R3 a mérőkar, Rx a mérendő ellenállás.

VEVM 56. oldal

A híd kiegyensúlyozása:

- Általában R3 vagy R1/R2 (vagy az arányuk) változtatásával érik el, amíg a nullindikátor nullát mutat.
- Nullmódszer: Ez a módszer rendkívül pontos, mivel a nullindikátor akkor sem terheli a mért áramkört, ha nem ideális, hiszen nulla áram folyik rajta. A pontosságot csak a referencia ellenállások és a feszültségforrás stabilitása korlátozza.

Alkalmazások:

- · Precíz ellenállásmérés (pl. laboratóriumokban).
- Érzékelők (hőmérséklet, nyomás, deformáció) mérése, amelyek ellenállás-változáson alapulnak (pl. Wheatstone-hídba kötött nyúlásmérő bélyeg).
- VEVM 57. oldal (Mérőhíd érzékelőkkel)

Hidak kiegyensúlyozatlansága:

- Ha a híd nincs kiegyensúlyozott állapotban, akkor a nullindikátoron feszültség (UAB) jelenik meg. Ezt a
 feszültséget lehet mérni, és ebből számítani az ellenállás változását. Ez az ún. kitérési módszer,
 amely kevésbé pontos, de gyorsabb.
 - A híd kimeneti feszültsége (UAB) arányos az ellenállás változásával, amennyiben az változás kicsi.

3.2 Váltóáramú mérő hidak

A váltóáramú hidak hasonló elven működnek, mint az egyenáramú hidak, de váltakozó áramú (AC) forrás táplálja őket, és kapacitás, induktivitás, valamint impedancia mérésére is alkalmasak. A nullindikátor itt általában egy AC-s érzékelő (pl. oszcilloszkóp, fejhallgató magas frekvencián, vagy speciális AC-s voltmérő).

Általános feltétel a váltóáramú híd kiegyensúlyozottságához:

 A híd akkor van kiegyensúlyozott állapotban, ha a nullindikátoron nulla feszültség esik. Ez azt jelenti, hogy a híd két ágának impedancia aránya komplex síkon azonos:

$$\frac{Z_1}{Z_2} = \frac{Z_3}{Z_x}$$
 vagy $Z_1 Z_x = Z_2 Z_3$

Ahol Z1 ,Z2Z3 ,Zx a híd elemeinek komplex impedanciái.

- Mivel az impedanciák komplex mennyiségek (Z=R+jX), a kiegyensúlyozottság két feltételt jelent:
 - 1. Az abszolút értékek arányának egyenlősége: |Z1|/|Z2|=|Z3|/|Zx|
 - 2. A fázisszögek egyenlősége: \$\phi1 -\phi2 =\phi3 -\phix\$
- Ez azt jelenti, hogy a híd kiegyensúlyozásához általában két független paramétert kell állítani (pl. egy ellenállást és egy kapacitást).

Típusok és alkalmazások (példák):

- Maxwell-híd: Induktivitás mérésére, ahol az induktív karral párhuzamosan egy kondenzátor van.
 - VEVM 58-59. oldal, 3.2. ábra (Maxwell-híd)
 - Kiegyenlítéshez az ismeretlen induktivitás (Lx) és soros ellenállás (Rx) határozható meg.
 - Kiegyenlítés feltétele: Rx =R1 R2 R3 és Lx =C1 R2 R3.
- Hay-híd: Hasonló a Maxwell-hídhoz, de soros kondenzátort használ induktív karral. Magasabb Q-faktorú tekercsek mérésére alkalmasabb.
 - VEVM 60. oldal, 3.3. ábra (Hay-híd)

- Schering-híd: Kapacitás és veszteségi tényező (tg δ) mérésére használják, főként dielektromos anyagok vizsgálatára.
 - VEVM 61-62. oldal, 3.4. ábra (Schering-híd)
 - Kiegyenlítés feltétele: Cx =R2 R1 C3 és Rx =R3 C3 C4 .
- **Wien-híd:** Frekvencia mérésére használható, ha az ellenállások és kondenzátorok ismertek. Szinuszhullámú oszcillátorokban is alkalmazzák.
 - VEVM 62-63. oldal, 3.5. ábra (Wien-híd)
 - Kiegyenlítés feltétele: R3R4=R2R1+C1C2 és ω2=R1 C1 R2 C2 1.
 - Ha R1 =R2=R és C1=C2=C, akkor R3 R4 = 2 és f=2πRC1.

Előnyök:

- Nagyon pontos mérések a nullmódszernek köszönhetően.
- Széles körben alkalmazhatók különböző elektromos paraméterek mérésére.

Hátrányok:

- A kiegyenlítés néha időigényes lehet, különösen, ha két paramétert kell beállítani.
- Külső zajok és parazita kapacitások/induktivitások befolyásolhatják a pontosságot magas frekvenciákon.

4.1 Villamos feszültség mérése

A villamos feszültség mérése az egyik leggyakoribb feladat az elektronikában és az elektrotechnikában. Különböző eszközök és módszerek léteznek erre a célra.

Alapelvek:

- A feszültségmérés mindig párhuzamosan történik a mérendő áramkörrel.
- A voltmérőnek ideálisan végtelen nagy belső ellenállással kell rendelkeznie, hogy ne terhelje a mért áramkört.

Mérőműszerek:

1. Analóg voltmérők:

- Alapvetően lengő tekercses műszerek, melyekhez sorosan előtét-ellenállás van kapcsolva a mérési tartomány bővítésére.
- Csak egyenáram mérésére alkalmasak közvetlenül. Váltakozó áramhoz egyenirányító szükséges.
- Érzékenységük korlátozott (pl. 20 kΩ/V), ami azt jelenti, hogy terhelhetik az áramkört.
- VEVM 43. oldal

2. Digitális voltmérők (DVM):

- A modern feszültségmérés alapja.
- Bemeneti osztóval és analóg-digitális átalakítóval (ADC) alakítják a feszültséget digitális számmá.
- Nagyon magas bemeneti impedanciával rendelkeznek (tipikusan 10 MΩ vagy több), így minimálisra csökkentik az áramkör terhelését.
- Képesek DC és AC feszültséget is mérni, sok esetben True RMS funkcióval.
- VEVM 49. oldal (Digitális multiméter felépítése)

3. Elektronikus voltmérők:

- Olyan voltmérők, amelyek aktív elektronikai alkatrészeket (pl. műveleti erősítőket) használnak a bemeneti impedancia növelésére és a jelfeldolgozásra.
- Ezek közé tartoznak a digitális voltmérők is, de régebben léteztek analóg kijelzős elektronikus voltmérők is (pl. elektroncsöves voltmérők).
- VEVM 65-72. oldal (Elektronikus voltmérők)

4.1.1 Feszültségmérő transzformátorok (feszültségváltók)

Nagyfeszültségű rendszerekben (pl. energiaátviteli hálózatokban) a közvetlen feszültségmérés veszélyes és nehézkes. Erre a célra feszültségmérő transzformátorokat (vagy feszültségváltókat, angolul Potential Transformer - PT vagy Voltage Transformer - VT) használnak.

Cél:

 Lefeszültségszintek csökkentése: A nagyfeszültséget egy biztonságosan mérhető, szabványos szintre (pl. 100 V vagy 110 V) alakítják át. Galvanikus leválasztás: Elválasztják a mérőműszereket a nagyfeszültségű rendszertől, növelve a biztonságot.

Működési elv:

- Egy speciális transzformátor, amelynek primer tekercse a mérendő nagyfeszültségre van kapcsolva (párhuzamosan), a szekunder tekercse pedig a mérőműszerre.
- A primer oldalon nagy menetszámú tekercs, a szekunder oldalon arányosan kisebb menetszámú tekercs van.
- Az átviteli arány (menetszám-arány) pontosan ismert és stabil.

$$\frac{U_1}{U_2} \approx \frac{N_1}{N_2} = \text{konstans}$$

Ahol:

U1: Primer feszültség

U2: Szekunder feszültség

• N1: Primer menetszám

N2: Szekunder menetszám

VEVM 74. oldal, 4.1. ábra (Feszültségmérő transzformátor elvi kapcsolása)

Jellemzők:

- **Nagy primer impedancia:** A primer tekercs nagyon magas induktív ellenállással rendelkezik, így minimális áramot vesz fel a mért áramkörből.
- Pontosság: Precíziós gyártásúak, a feszültségarány és a fáziseltolás minimális.
- Névleges feszültségek: A primer oldal több kV-tól több száz kV-ig terjedhet, a szekunder oldal általában 100 V, 110 V vagy 120 V.
- **Terhelés:** A szekunder oldalra csatlakoztatott mérőműszerek (voltmérők, teljesítménymérők) terhelése minimálisra van tervezve, hogy ne befolyásolja az átviteli arányt.
- **Osztálypontosság:** Hibaosztályuk (pl. 0.2, 0.5) jelzi a maximális megengedett feszültségarány hibát és fázishibát.
 - VEVM 75. oldal, 4.2. ábra (Feszültségváltók jellemző hibagörbéi)

Alkalmazások:

- Nagyfeszültségű hálózatokban feszültségmérésre, védelmi rendszerekhez.
- Teljesítménymérőkhöz, energiafogyasztás méréséhez.

4.2 Áramerősségek mérése

Az áramerősség mérése az egyik alapvető feladat az elektromos rendszerekben. Fontos szempont, hogy az ampermérő minimálisra csökkentse a mért áramkör ellenállását.

Alapelvek:

- Az árammérés mindig sorosan történik a mérendő áramkörrel.
- Az ampermérőnek ideálisan nulla belső ellenállással kell rendelkeznie, hogy ne befolyásolja a mért áram nagyságát.

Mérőműszerek:

1. Analóg ampermérők:

- Alapvetően lengő tekercses műszerek, melyekkel párhuzamosan söntellenállás van kapcsolva a mérési tartomány bővítésére.
- Csak egyenáram mérésére alkalmasak közvetlenül. Váltakozó áramhoz egyenirányító szükséges.
- VEVM 41-42, oldal

2. Digitális ampermérők (DMM):

- A söntellenálláson eső feszültséget mérik (ami arányos az árammal), majd ezt a feszültséget digitalizálják.
- Képesek DC és AC áramot is mérni, sok esetben True RMS funkcióval.

3. Áramfogó (lakháromszög):

• Transzformátor elvén működő eszköz, amely a vezeték körül kialakuló mágneses teret érzékeli, így érintésmentesen mér áramot. Különösen hasznos nagy áramoknál és a

feszültségmentesítés elkerülésére.

VEVM 84. oldal, 4.14. ábra (Áramfogó)

4.2.1 Hall-érzékelő árammérők

A Hall-effektuson alapuló érzékelőkkel nem csak mágneses tér, hanem áramerősség is mérhető, különösen AC és DC áramok egyaránt.

Hall-effektus elve:

 Ha egy áramvezetőt (pl. félvezetőt) merőlegesen mágneses térbe helyezünk, akkor a vezetőben lévő töltéshordozókra Lorentz-erő hat, és a vezetőben az áram és a mágneses tér irányára merőlegesen feszültség (Hall-feszültség) keletkezik.

$$U_H = R H \frac{I_c B}{d}$$

Ahol:

UH: Hall-feszültség

RH : Hall-állandó (anyagfüggő)Ic : Vezetőn átfolyó vezérlőáram

• B: Mágneses indukció

d: A vezető vastagsága

VEVM 80. oldal (Hall-generátor működési elve)

ÉMH 29. oldal, 2.3.1. ábra (Hall-generátor)

Hall-érzékelő árammérő működése:

- Az áramot mérő vezeték köré egy vasmagot helyeznek (gyűrűs mag, mint egy transzformátornál), amely a mérendő áram által keltett mágneses fluxust koncentrálja.
- A Hall-érzékelőt (Hall-szondát) a vasmag légrésébe helyezik.
- A mért áram (lx) által keltett mágneses tér indukciója (B) arányos az árammal (B∝lx).
- A Hall-érzékelő a mágneses indukciót Hall-feszültséggé alakítja át, ami így arányos a mért árammal.
- VEVM 81. oldal, 4.10. ábra (Hall-effektuson alapuló áramérzékelő)

Előnyök:

- Galvanikus leválasztás: A mérőrendszer el van szigetelve a nagyfeszültségű áramkörtől.
- DC és AC mérés: Képes mind egyenáram, mind váltakozó áram mérésére (a mágneses tér polaritását és nagyságát is érzékeli).
- Széles mérési tartomány: Nagy áramok mérésére is alkalmas.
- Alacsony bemeneti impedancia: Nem terheli meg a mért áramkört.

Hátrányok:

- Hőmérsékletfüggés (kompenzáció szükséges).
- Offset feszültség (nullpont eltolódás).
- Hisszterézis a vasmagban.

Alkalmazások:

- Nagy áramok mérése ipari alkalmazásokban.
- Akkumulátor töltés/kisütés monitorozása.
- Védelmi rendszerek.

4.2.2 Áram mérése mérő transzformátorral (áramváltó)

Nagy váltakozó áramok mérésére a biztonság és a műszerek védelme érdekében árammérő transzformátorokat (áramváltókat, angolul Current Transformer - CT) alkalmaznak.

Cél:

- Áramerősség csökkentése: A nagy áramokat egy biztonságosan mérhető, szabványos szintre (pl. 1 A vagy 5 A) alakítják át.
- Galvanikus leválasztás: Elválasztják a mérőműszereket a nagyfeszültségű és nagyáramú rendszertől, növelve a biztonságot.

Működési elv:

• Egy speciális transzformátor, amelynek primer tekercse (gyakran maga a mérendő vezeték, 1 menetszámú tekercsként funkcionálva) sorosan van bekötve a mérendő áramkörbe.

- A szekunder tekercsen (amelynek sok menetszáma van) keresztül folyó áramot méri a mérőműszer.
- Az átviteli arány (menetszám-arány) alapján az ismert szekunder áramból vissza lehet számolni a primer áramot.

$$\frac{I_1}{I_2} \approx \frac{N_2}{N_1} = \text{konstans}$$

Ahol:

I1: Primer áram

I2: Szekunder áram

N1: Primer menetszám (gyakran 1)

N2: Szekunder menetszám

VEVM 76. oldal, 4.4. ábra (Árammérő transzformátor elvi kapcsolása)

Jellemzők:

- Soros kapcsolás: A primer tekercs sorosan van a mérendő áramkörbe kötve.
- Alacsony szekunder impedancia: A szekunder oldalon az ampermérő belső ellenállása nagyon kicsi, közel rövidzárlatban üzemel.
- **Fokozott biztonság:** A szekunder oldalt soha nem szabad nyitott áramkörben hagyni! Nyitott szekunder esetén a mágneses fluxus nem tud záródni, hatalmas feszültség indukálódhat, ami tönkreteheti az áramváltót és veszélyes lehet. Mindig terheléssel (műszerrel) vagy rövidre zárva kell hagyni a szekunder oldalt.
 - VEVM 77. oldal (Fontos megjegyzés az áramváltókról!)
- Névleges áramok: Primer oldal akár több ezer A, szekunder oldal általában 1 A vagy 5 A.
- Osztálypontosság: Hibaosztályuk (pl. 0.2, 0.5) jelzi a maximális megengedett áramarány hibát és fázishibát.
 - VEVM 77. oldal, 4.5. ábra (Áramváltók jellemző hibagörbéi)

Alkalmazások:

- Nagyáramú rendszerekben árammérésre.
- Védelmi relék táplálására.
- Teljesítménymérőkhöz, energiafogyasztás méréséhez.

4.5.1.1 Impedanciamérés feszültség-összehasonlítással

Ez a módszer az ismeretlen impedancia nagyságának meghatározására szolgál egy ismert referencia impedanciához viszonyítva, feszültségosztó elven alapulva.

Elv:

- A mérendő ismeretlen impedanciát (Zx) és egy ismert referencia impedanciát (Zr) sorosan kapcsolunk egy váltakozó áramú feszültségforrásra (U0).
- A feszültségosztás elve szerint a két impedancián eső feszültség aránya megegyezik az impedanciák arányával.
 - VEVM 95. oldal, 4.22. ábra (Impedanciamérés feszültség-összehasonlítással)
- A mérőműszer (voltmérő) felváltva méri a Zx -en (Ux) és a Zr -en (Ur) eső feszültségeket.

$$U_x = I \cdot Z_x$$
 és $U_r = I \cdot Z_r$

Ahol I a soros áram. Ebből:

$$\frac{U_x}{U_r} = \frac{Z_x}{Z_r}$$

Az ismeretlen impedancia nagysága:

$$|Z_x| = |Z_r| \frac{|U_x|}{|U_x|}$$

Megjegyzések:

• Fontos, hogy a referencia impedancia (Zr) típusa (ellenállás, kondenzátor, tekercs) megegyezzen az ismeretlen impedancia típusával, vagy legalábbis az áramkör túlnyomórészt ohmos, kapacitív vagy

induktív jellegű legyen.

- Ez a módszer csak az impedancia nagyságát (abszolút értékét) határozza meg, a fázisszög információja elveszik.
- A mérőműszernek ideális esetben nagy bemeneti impedanciával kell rendelkeznie, hogy ne befolyásolja a feszültségeséseket.
- Ez egy egyszerű, gyors módszer, de a pontossága korlátozott.

4.5.1.2 Impedanciamérés áram-összehasonlítással

Ez a módszer az impedancia mérésére szolgál egy ismert referencia impedanciához viszonyítva, áramosztó elven alapulva.

Elv:

- A mérendő ismeretlen impedanciát (Zx) és egy ismert referencia impedanciát (Zr) párhuzamosan kapcsolunk egy váltakozó áramú feszültségforrásra (U0).
- Az áramosztás elve szerint az impedanciákon átfolyó áramok aránya fordítottan arányos az impedanciák arányával.
 - VEVM 96. oldal, 4.23. ábra (Impedanciamérés áram-összehasonlítással)
- A mérőműszer (ampermérő) felváltva méri a Zx -en (lx) és a Zr -en (lr) átfolyó áramokat.

$$I_x = \frac{U_0}{Z_x}$$
 és $I_r = \frac{U_0}{Z_r}$

Ebből:

$$\frac{I_x}{I_r} = \frac{Z_r}{Z_x}$$

Az ismeretlen impedancia nagysága:

$$|Z_x| = |Z_r| \frac{|I_r|}{|I_x|}$$

Megjegyzések:

- Fontos, hogy a referencia impedancia (Zr) típusa megegyezzen az ismeretlen impedancia típusával.
- Ez a módszer is csak az impedancia **nagyságát** határozza meg, a fázisszög információja elveszik.
- A mérőműszernek ideális esetben nagyon alacsony bemeneti impedanciával kell rendelkeznie (közel rövidzárlat), hogy ne befolyásolja az áramokat.
- Az áram-összehasonlítás kevésbé elterjedt, mint a feszültség-összehasonlítás, mivel az ampermérő bekötése bonyolultabb lehet.

Mindkét összehasonlító módszer viszonylag egyszerű és olcsó, de a precíz impedancia- és fázisszögméréshez inkább a váltóáramú hidakat vagy speciális impedanciamérőket használnak.

4.5.3.1 Ellenállás mérése volt- és ampermérővel

Az ellenállás közvetlen mérése volt- és ampermérő segítségével Ohm törvénye alapján történik. Két alapvető bekötési mód létezik, amelyek a mérési pontosságot befolyásolják a műszerek belső ellenállásai miatt.

Ohm törvénye: R=IU Ahol R az ellenállás, U a rajta eső feszültség, I az általa átfolyó áram.

Bekötési módok:

- 1. Hosszú kapcsolás (Ampermérő a vizsgált ellenállás előtt):
 - **Kapcsolás**: Az ampermérő sorosan kapcsolódik az ismeretlen ellenállással (Rx), a voltmérő pedig párhuzamosan mindkettővel.
 - VEVM 99. oldal, 4.27. ábra (Hosszú kapcsolás)
 - Mért értékek:
 - Az ampermérő a Rx -en és a voltmérőn is átfolyó áramot méri (Im=Ix +IV).
 - A voltmérő a Rx -en eső valós feszültséget méri (Um=Ux).
 - Számított ellenállás: Rsza mı tott=lm Um =₩VUx
 - Hiba oka: A voltmérőn átfolyó áram (IV) hibát okoz az ampermérő által mért össz áramban.

 Alkalmazás: Akkor használatos, ha a mérendő ellenállás (Rx) nagysága nagy (kb. Rx≫RV), mert ekkor IV elhanyagolható Ix -hez képest. Ekkor a voltmérő árama elhanyagolható, és Im ≈Ix.

2. Rövid kapcsolás (Ampermérő a vizsgált ellenállás után):

- **Kapcsolás:** A voltmérő az ismeretlen ellenállással (Rx) párhuzamosan kapcsolódik, és az ampermérő sorosan van velük.
- VEVM 99. oldal, 4.28. ábra (Rövid kapcsolás)
- Mért értékek:
 - Az ampermérő a Rx -en átfolyó valós áramot méri (Im =Ix).
 - A voltmérő a Rx -en és az ampermérőn eső együttes feszültséget méri (Um =Ux +UA).
- Számított ellenállás: Rsza mı tott=lm Um =bx +UA
- Hiba oka: Az ampermérő belső ellenállásán (RA) eső feszültség (UA) hibát okoz a voltmérő által mért feszültségben.
- Alkalmazás: Akkor használatos, ha a mérendő ellenállás (Rx) nagysága kicsi (kb. Rx≪RA), mert ekkor UA elhanyagolható Ux -hez képest. Ekkor az ampermérő feszültségesése elhanyagolható, és Um ≈Ux.

Általános szabály:

- Nagy ellenállások mérésekor hosszú kapcsolást: Az ampermérő a mérendő ellenállás előtt van, a voltmérő a két elem (ampermérő és mért ellenállás) együttes feszültségét méri. Ekkor a voltmérő belső ellenállása nagy, így kevés áramot von el.
- Kis ellenállások mérésekor rövid kapcsolást: Az ampermérő a mérendő ellenállás után van, a voltmérő csak a mérendő ellenálláson eső feszültséget méri. Ekkor az ampermérő belső ellenállása kicsi, így kis feszültségesést okoz.

A műszerek belső ellenállása:

- Voltmérő belső ellenállása (RV): Ideálisan végtelen, gyakorlatban nagy (MΩ nagyságrend).
- Ampermérő belső ellenállása (RA): Ideálisan nulla, gyakorlatban kicsi (mΩ Ω nagyságrend).

A volt-ampermérős ellenállásmérés pontossága korlátozott, főleg akkor, ha a mérendő ellenállás nagysága közel esik a műszerek belső ellenállásaihoz. Pontosabb méréshez a Wheatstone-hidat vagy digitális multiméterek ellenállásmérő funkcióját használják.

4.5.4.1 Öninduktivitás mérése amper- és volt merővel

Az öninduktivitás (L) mérése váltakozó áramú körben, volt- és ampermérővel történhet, hasonlóan az ellenállás méréséhez. Itt azonban figyelembe kell venni az induktív reaktanciát (XL) és a tekercs ohmos ellenállását (RL).

Alapely:

- Váltakozó áramú feszültségforrást (U0) alkalmazunk.
- Mérjük a tekercsen eső feszültséget (UL) és a rajta átfolyó áramot (IL).
- A tekercs impedanciáját (ZL) a mért feszültség és áram hányadosából számoljuk: ZL=IL UL.
- A tekercs impedanciája a következőképpen adható meg:

$$Z_L = \sqrt{R_L^2 + X_L^2}$$

Ahol RL a tekercs egyenáramú (ohmos) ellenállása, XL pedig az induktív reaktancia.

Az induktív reaktancia:

$$X_L = 2\pi f L$$

Ahol f a váltakozó áram frekvenciája, L az öninduktivitás.

Mérési módszer:

- Mérjük meg a tekercs ohmos ellenállását (RL): Ezt egyenáramú (DC) ohmmérővel (pl. multiméterrel) mérhetjük.
- 2. Váltakozó áramú körben:
 - Kapcsoljuk a tekercset egy ismert frekvenciájú (f) váltakozó áramú feszültségforrásra.
 - Mérjük a tekercsen eső feszültséget (UL) voltmérővel.
 - Mérjük a tekercsen átfolyó áramot (IL) ampermérővel.

- VEVM 100. oldal, 4.29. ábra (Öninduktivitás mérése volt- és ampermérővel)
- Számítsuk ki a tekercs impedanciáját: ZL=IL UL .
- 3. Számítsuk ki az induktív reaktanciát (XL):

$$X_{L} = \sqrt{Z_{I}^{2} - R_{I}^{2}}$$

Fontos, hogy ZL >RL, különben valószínűleg mérési hiba történt, vagy a tekercs nem ideális.

4. Számítsuk ki az öninduktivitást (L):

$$L = \frac{X_L}{2\pi f}$$

Megjegyzések és hibalehetőségek:

- Frekvencia ismerete: A frekvencia pontos ismerete elengedhetetlen, mivel XL frekvenciafüggő.
- Műszerek belső ellenállása: Ahogyan az ellenállásmérésnél, itt is figyelembe kell venni a voltmérő és ampermérő belső ellenállásait, és a megfelelő bekötési módot kell választani (hosszú vagy rövid kapcsolás) a tekercs impedanciájához képest.
- **Hullámforma:** A mérőműszereknek True RMS képességgel kell rendelkezniük, ha a feszültségforrás nem szinuszos jelet ad.
- **Tekercs minősége:** A tekercsnek lehetnek parazita kapacitásai, amelyek magas frekvenciákon befolyásolhatják a mérést.
- Kiegyensúlyozott hidak (pl. Maxwell-híd, Hay-híd) pontosabbak: Ez a módszer csak hozzávetőleges eredményt adhat, mivel a fázisszög információja elveszik, és a műszerek terhelési hatása is jelentkezik. A váltóáramú hidak lényegesen pontosabb eredményt szolgáltatnak az induktivitás és a veszteségi tényező (Q-faktor) egyidejű mérésére.

5.1. Attenuátorok, csillapítók

Az attenuátorok, vagy csillapítók olyan passzív áramköri elemek, amelyek a bemeneti jel teljesítményét, feszültségét vagy áramát csökkentik egy meghatározott arányban, frekvenciafüggetlenül (ideális esetben) és torzításmentesen.

Cél:

- Jelszint csökkentése: Túl nagy jelszintű források illesztése érzékenyebb bemenetekhez (pl. oszcilloszkóp, spektrumanalizátor, ADC).
- Impedancia illesztés: Bizonyos esetekben az illesztés javítására is használhatók.
- Mérési tartomány bővítése: Mérőműszerek bemeneténél a mérési tartomány bővítésére szolgálnak.

Jellemzők:

- Csillapítás (Attenuation): A jel csillapításának mértékét decibelben (dB) adják meg.
 - Feszültség csillapítás (dB): AU=20log10 (Ube Uk)
 - Teljesítmény csillapítás (dB): AP =10log10 (Pbe Pl)i
 - VEVM 107. oldal
 - Ahol Uki , Pki a kimeneti feszültség/teljesítmény, Ube , Pbe a bemeneti feszültség/teljesítmény.
- Jellemző impedancia (Z0): Az attenuátor bemeneti és kimeneti impedanciája, amelyhez illeszteni kell.
 Gyakran 50 Ω vagy 75 Ω.
- **Frekvenciameneti síkosság:** Az ideális attenuátor csillapítása a frekvencia széles tartományában állandó.

Alapvető topológiák:

Az attenuátorok ellenállásokból épülnek fel, különböző kapcsolásokban.

- 1. Pi-hálózat (π-attenuátor):
 - Három ellenállásból áll, amelyek a görög pi (π) betűhöz hasonló alakot öltenek.
 - VEVM 107. oldal, 5.1. ábra (Pi-hálózatú csillapító)
 - Két párhuzamos ellenállás (R1) van a bemeneten és kimeneten, és egy soros ellenállás (R2) köti össze őket.
 - Előnye, hogy könnyen tervezhető és szimmetrikus lehet.
- 2. T-hálózat (T-attenuátor):

- Három ellenállásból áll, amelyek a görög tau (T) betűhöz hasonló alakot öltenek.
- VEVM 108. oldal, 5.2. ábra (T-hálózatú csillapító)
- Két soros ellenállás (R1) van a bemeneti és kimeneti oldalon, és egy párhuzamos ellenállás (R2) köti össze a közös ponthoz.
- Szintén könnyen tervezhető és szimmetrikus lehet.

Képletek a tervezéshez (50 Ω-os rendszerre, szimmetrikus esetben):

A konkrét ellenállásértékek meghatározása a kívánt csillapítástól és a jellemző impedanciától függ.

- T-hálózat (VEVM 108. oldal):
 - R1=Z0 k+1k-1
 - R2=Z0 k2-12k
 - Ahol k=10AP /20 vagy k=10AU /20 (arány, nem dB érték).
- Pi-hálózat (VEVM 108. oldal):
 - R1=Z0 k-1k+1
 - R2=Z0 2kk2-1
 - Ahol k=10AP /20 vagy k=10AU /20.

Alkalmazások:

- Jelforrások kimenetén a jelszint csökkentésére.
- Mérőműszerek bemeneti fokozatainál (pl. oszcilloszkópok 10x-es, 100x-os osztói).
- RF (rádiófrekvenciás) rendszerekben jelszint beállítására és illesztésre.
- Hangtechnikában hangerő szabályzókban.

5.2.1 Alapkapcsolások műveleti erősítőkkel

A műveleti erősítő (műv. erősítő, op-amp) egy nagy erősítésű, differenciál bemenetű, egy kimenetű egyenáramú csatolt erősítő, amely ideális esetben végtelen bemeneti impedanciával, nulla kimeneti impedanciával és végtelen erősítéssel rendelkezik. Ezeket a tulajdonságokat kihasználva számos alapvető áramkör építhető belőlük.

Ideális műveleti erősítő feltételei:

- 1. **Végtelen feszültségerősítés (AV** →∞**):** Ez azt jelenti, hogy még egy nagyon kis bemeneti feszültségkülönbség is a kimenet telítődéséhez vezet.
- 2. **Végtelen bemeneti impedancia (Zbe**→∞): Nincs áram a bemeneteken (nem invertáló (+) és invertáló (-) bemenet).
- 3. **Nulla kimeneti impedancia (Zki →0):** A kimeneti feszültség független a terheléstől.
- 4. Nulla offset feszültség (Voffset =0): Ha a bemenetek azonos potenciálon vannak, a kimenet nulla.
- 5. Végtelen sávszélesség: Minden frekvencián azonos erősítés.

Alapkapcsolások (negatív visszacsatolással):

A negatív visszacsatolás stabilizálja az erősítő működését és meghatározza az erősítést. A "virtuális rövidzár" elve érvényesül: ha negatív visszacsatolás van, az invertáló bemenet potenciálja (közel) megegyezik a nem invertáló bemenet potenciáljával.

1. Invertáló erősítő:

- A bemeneti jel az invertáló (-) bemenetre, a nem invertáló (+) bemenet földre (vagy referencia feszültségre) van kötve.
- A visszacsatolás egy ellenálláson keresztül történik a kimenetről az invertáló bemenetre.
- VEVM 111. oldal, 5.5. ábra (Invertáló erősítő)
- Kimeneti feszültség:

$$U_{ki} = - \frac{R_2}{R_1} U_{be}$$

Ahol R1 a bemeneti ellenállás, R2 a visszacsatoló ellenállás.

Jellemzők: A kimeneti jel invertált (fázisban 180°-kal eltolt) és arányos a bemeneti jellel.
 Bemeneti impedanciája R1.

2. Nem invertáló erősítő:

- A bemeneti jel a nem invertáló (+) bemenetre van kötve.
- A visszacsatolás egy feszültségosztóval történik a kimenetről az invertáló (-) bemenetre.

- VEVM 112. oldal, 5.6. ábra (Nem invertáló erősítő)
- Kimeneti feszültség:

$$U_{ki} = (1 + \frac{R_2}{R_1})U_{be}$$

Ahol R1 és R2a feszültségosztó ellenállásai.

 Jellemzők: A kimeneti jel azonos fázisú a bemenetivel. Nagyon magas bemeneti impedanciája van, ami miatt alkalmas buffernek is.

3. Feszültségkövető (Buffer):

- Speciális esete a nem invertáló erősítőnek, ahol R1 →∞ (nyitott) és R2 →0 (rövidzár).
- VEVM 113. oldal, 5.7. ábra (Feszültségkövető)
- Kimeneti feszültség: Uki =Ube
- Jellemzők: Erősítése 1. Fő funkciója az impedancia illesztés: nagyon nagy bemeneti impedanciával és nagyon alacsony kimeneti impedanciával rendelkezik, így képes nagy terhelő áramot szolgáltatni anélkül, hogy a bemeneti jelforrást terhelné.

4. Összegző erősítő:

- Az invertáló erősítőre alapul, több bemeneti ellenállással.
- VEVM 113. oldal, 5.8. ábra (Összegző erősítő)
- Kimeneti feszültség:

$$U_{ki} = -R_f \left(\begin{array}{c} U_1 \\ R_1 \end{array} + \begin{array}{c} U_2 \\ R_2 \end{array} + \ldots + \begin{array}{c} U_n \\ R_n \end{array} \right)$$

Ahol Rf a visszacsatoló ellenállás. Ha R1 =R2:...=Rn=R, akkor Uki =−RRf (U1 +U2.+Un).

Jellemzők: Képes több analóg jel összegzésére.

5. Differenciáló erősítő (különbségerősítő):

- Két bemeneti jelszint különbségét erősíti fel.
- VEVM 114. oldal, 5.9. ábra (Differenciáló erősítő)
- Kimeneti feszültség:

$$U_{ki} = \frac{R_2}{R_1} (U_2 - U_1)$$

Ahol R1 = R3 és R2 = R4.

 Jellemzők: Alkalmas zajszűrésre (közös módusú zaj elnyomására), vagy szenzorok differenciális kimenetének feldolgozására.

6. Integráló erősítő:

- Az invertáló erősítőre alapul, ahol a visszacsatoló úton egy kondenzátor van.
- VEVM 115. oldal, 5.10. ábra (Integráló erősítő)
- Kimeneti feszültség:

$$U_{ki}(t) = - \frac{1}{R_1 C_f} \int U_{be}(t) dt$$

 Jellemzők: A kimeneti feszültség arányos a bemeneti feszültség integráljával. Jelalak átalakításra (pl. négyszögjelből háromszögjel) használható.

7. Differenciáló erősítő:

- Az invertáló erősítőre alapul, ahol a bemeneti úton egy kondenzátor van.
- VEVM 116. oldal, 5.11. ábra (Differenciáló erősítő jel alakító)
- Kimeneti feszültség:

$$U_{ki}(t) = -R \int_{f} C_{1} \frac{dU_{be}(t)}{dt}$$

 Jellemzők: A kimeneti feszültség arányos a bemeneti feszültség deriváltjával. Jelalak átalakításra (pl. háromszögjelből négyszögjel) használható, de zajra érzékeny. Ezek az alapkapcsolások a modern elektronika építőkövei, széles körben alkalmazzák őket méréstechnikában, jelfeldolgozásban és vezérlésben.

5.3.1 Csúcsegyenirányítók

A csúcsegyenirányító (más néven csúcstetektor) egy olyan áramkör, amely egy váltakozó (AC) vagy pulzáló egyenáramú (DC) jel csúcsértékét (legnagyobb pozitív vagy legkisebb negatív értékét) detektálja és tartja meg.

Működési elv:

- Egy dióda és egy kondenzátor a fő alkotóelemei.
- Amikor a bemeneti feszültség magasabb, mint a kondenzátoron lévő feszültség, a dióda nyit, és a kondenzátor feltöltődik a bemeneti jel pillanatnyi értékére.
- Amikor a bemeneti feszültség elkezd csökkenni, a dióda lezár (fordítottan polarizálódik), és a kondenzátor megtartja a korábbi csúcsértéket.

Alapkapcsolások:

- 1. Egyszerű pozitív csúcsegyenirányító (passzív):
 - VEVM 119. oldal, 5.14. ábra (Pozitív csúcsegyenirányító)
 - Egy dióda sorosan, egy kondenzátor párhuzamosan a kimeneten.
 - Hátrányok:
 - Dióda nyitófeszültsége (UD): A kimeneti feszültség Uki =Ube,csúcs-UD. Kis feszültségeknél jelentős hibát okoz.
 - Kondenzátor kisülése: A kondenzátor lassan kisül a terhelésen és a dióda fordított irányú szivárgó áramán keresztül, ami a mért csúcsérték csökkenéséhez (lecsengéséhez) vezet.
 - Alacsony bemeneti impedancia: A dióda és a kondenzátor terhelheti a bemeneti jelet.

2. Precíziós csúcsegyenirányító (aktív, műveleti erősítővel):

- A műveleti erősítő (op-amp) használata kiküszöböli a dióda nyitófeszültségéből adódó hibát és növeli a bemeneti impedanciát.
- VEVM 120. oldal, 5.15. ábra (Precíziós pozitív csúcsegyenirányító)
- Működés: A dióda a visszacsatoló körben van. Amikor az erősítő kimenete a dióda
 nyitófeszültségénél magasabb feszültségre próbál beállni, a dióda nyit, és a kondenzátor
 töltődik. A műveleti erősítő virtuális rövidzár elve miatt a kimeneti feszültség (a kondenzátoron)
 pontosan követi a bemeneti csúcsértéket (mínusz a dióda nyitófeszültség, de mivel a dióda a
 visszacsatoló körben van, az erősítő kompenzálja azt).
- Előnyök:
 - **Nincs dióda nyitófeszültség hiba:** A kimeneten a kondenzátor feszültsége majdnem pontosan megegyezik a bemeneti jel csúcsértékével.
 - Nagy bemeneti impedancia: A műveleti erősítő bemeneti impedanciája magas.
 - Gyorsabb válasz: Képes gyorsabban reagálni a változó csúcsértékekre.

Hátrányok:

- A kondenzátor kisülése továbbra is probléma lehet, ha a következő csúcs túl későn jön.
- A műveleti erősítő sávszélessége és elfordulási sebessége (slew rate) korlátozhatja a működést magas frekvenciákon.

Alkalmazások:

- Effektív érték konverterekben: A csúcsérték detektálásával, majd valamilyen skálázással és átlagolással lehet hozzávetőleges effektív értéket kapni.
- Modulált jelek demodulálásában: AM (amplitúdó modulált) jelek burkológörbéjének detektálására.
- Beszéd- és audiojelek jelszintjének mérésekor.
- Maximális/minimális feszültség monitorozása.

5.3.3 Lineáris effektívérték-átalakítók

Az effektív érték (RMS - Root Mean Square) egy váltakozó áramú jel "valódi" nagyságát jellemzi, azaz azt az egyenáramú feszültséget vagy áramot, amely azonos hőhatást fejt ki egy adott ellenálláson. A legtöbb

mérőműszer, amely váltakozó áramot mér, az effektív értéket jelzi ki. **Definíció (RMS):** URMS =T1 [OTi2(t)dt![](data:image/svg+xml;utf8,

) Ahol u(t) a pillanatnyi feszültség, T a periódusidő.

Probléma a hagyományos egyenirányítókkal:

- Ahogy korábban említettük (2.1.2), a diódás egyenirányítású analóg műszerek az átlagértéket mérik, és szinuszos jelnél az alakfaktor (1.11) alapján kalibrálják a skálát az effektív értékre.
- Ez azt jelenti, hogy nem-szinuszos hullámformák esetén (pl. négyszögjel, háromszögjel, impulzusok, zaj) a mért érték hibás lesz.

Lineáris effektívérték-átalakítók (True RMS konverterek):

Ezek az áramkörök a jelalak függetlenül képesek a valódi effektív érték meghatározására. Több elven működhetnek:

1. Analóg számítógépes módszer (Analog Computation):

- Ez a legáltalánosabb módszer, amely a RMS definícióját követi: négyzetre emelés, átlagolás, majd gyökvonás.
- VEVM 122. oldal, 5.16. ábra (Effektív érték konverter felépítése)
- Lépések:
 - Szorzó/négyzetre emelő (Multiplier/Squarer): A bemeneti jelet négyzetre emeli (u2(t)). Analóg szorzó áramkörökkel valósítják meg.
 - Integráló/Átlagoló (Integrator/Averager): Az u2(t) jelet egy aluláteresztő szűrővel vagy integrátorral átlagolja. Ez egyenáramú jelet eredményez, ami arányos a négyzetes középértékkel.
 - Gyökvonó (Square Rooter): Az átlagolt jelet gyökjelző áramkörrel (általában logaritmikus erősítőkkel és antilogaritmikus erősítőkkel) gyökvonásnak veti alá.
- Előnyök: Nagyon pontos, hullámforma független.
- Hátrányok: Komplex, drága, érzékeny a hőmérsékletre (kompenzáció szükséges).
- Kereskedelmi IC-k (pl. Analog Devices AD536, LTC1968) léteznek, amelyek ezt a funkciót integrálják.

2. Termikus módszer (Thermal Method):

- Ez a legrégebbi és legpontosabb módszer, az RMS definíciójának fizikai megfelelője (hőhatás).
- VEVM 121. oldal (Termikus effektívérték-konverter)
- Működés: A mérendő áramot egy fűtőellenálláson vezetik át, és az általa termelt hőt mérik egy hőelemmel vagy hőellenállással. Egy referencia áramot úgy állítanak be, hogy az azonos hőt termeljen, ez a referencia áram lesz az effektív érték.
- Előnyök: Nagyon pontos, széles frekvenciatartományban működik.
- Hátrányok: Lassú válaszidejű, hőmérsékletfüggő, drága. Inkább precíziós laboratóriumi műszerekben használatos.

Alkalmazások:

- Digitális multiméterek (True RMS DMM): Modern digitális multiméterek gyakran tartalmaznak True RMS funkciót.
- Oszcilloszkópok: Bizonyos oszcilloszkópok képesek RMS értéket számolni.
- Teljesítménymérők: Az aktív és meddő teljesítmény számításához elengedhetetlen a True RMS mérés.
- Ipari vezérlés és felügyelet: Nem szinuszos jelek (pl. PWM jelek) pontos méréséhez.

6.2.1 Súlyozott ellenállású digitális-analóg átalakítók (DAC)

A digitális-analóg átalakító (DAC - Digital-to-Analog Converter) egy olyan elektronikus áramkör, amely egy digitális bemeneti jelet (bináris számot) analóg feszültséggé vagy árammá alakít át. A súlyozott ellenállású DAC az egyik legegyszerűbb, de alapvető DAC architektúra.

Működési elv:

 A DAC bemeneti digitális száma bináris bitekből áll (pl. Dn Dn-1 ...D1 D0), ahol Dn a legmagasabb helyiértékű bit (MSB), D0 a legalacsonyabb helyiértékű bit (LSB).

- Minden bithez egy digitálisan vezérelt kapcsoló tartozik. Ha a bit logikai "1", a kapcsoló zár, ha logikai "0", a kapcsoló nyit.
- Minden kapcsoló egy ellenállásra csatlakozik, amelynek értéke arányos a bit helyiértékével. Az LSB ellenállása R, a következő bité R/2, az azt követőé R/4, és így tovább, az MSB-é R/2n-1.
- Ezek az ellenállások egy áramösszegző pontba (általában egy invertáló műveleti erősítő bemenetére) vannak vezetve.
- VEVM 136. oldal, 6.1. ábra (Súlyozott ellenállású digitális-analóg átalakító)

Kimeneti feszültség:

- A műveleti erősítő invertáló bemenetén az egyes ellenállásokon átfolyó áramok összeadódnak.
- A kimeneti feszültség (Uki) arányos az összeadott áramokkal és a visszacsatoló ellenállással (Rf).
- Matematikailag:

$$U_{ki} = -R f \cdot I_{\partial SSZ} = -R f (D_{n-1} \frac{U_{ref}}{2^{n-1}R} + ... + D_{1} \frac{U_{ref}}{2R} + D_{0} \frac{U_{ref}}{R})$$

Ezt általánosabban is írhatjuk:

$$U_{ki} = -U_{ref} R_f \sum_{j=0}^{n-1} D_j 2^j$$

Vagy a digitális bemenet (N) függvényében:

$$U_{ki} = -U_{ref} \frac{R_f}{R_{min \text{-}llengllas}} \cdot \frac{N}{2^n}$$

Ahol N a digitális szám értéke (0-tól 2n-1-ig), n a bitek száma, Uref a referenciafeszültség.

Előnyök:Egyszerű koncepció és viszonylag könnyű megvalósítani kis bitmélység esetén.

Hátrányok:

- Ellenállás pontossága: Nagy bitmélység esetén (pl. 8 bitnél több) rendkívül pontos ellenállásokra van szükség, amelyek aránya 2-es hatványokban nagyon pontosan kell, hogy megegyezzen. Pl. egy 10 bites DAC esetén az LSB ellenállása 210-1=1023-szor nagyobb az MSB ellenállásánál, és pontosan kell tartani az arányokat. Ez nagyon nehéz gyártástechnológiailag.
- Ellenállások szórása: A nagy ellenállásértékek szórása és a gyártási pontatlanságok miatt a felbontás és a pontosság korlátozott.
- Kapcsolók áramterhelése: Az egyes bitekhez tartozó kapcsolóknak különböző áramokat kell kapcsolniuk.
- Sebesség: Viszonylag lassú lehet a parazita kapacitások miatt.

Alkalmazások:

- Főleg kis bitmélységű alkalmazásokban vagy oktatási célokra használják.
- Gyakorlatban nagyfelbontású DAC-okhoz ritkán alkalmazzák a súlyozott ellenállású elvet a gyártási nehézségek miatt. Inkább az R-2R létra elvét használják.

6.2.2 R-2R létrát alkalmazó DAC

Az R-2R létra DAC a legelterjedtebb digitális-analóg átalakító architektúra a kiváló pontossági, stabilitási és gyártási előnyei miatt.

Működési elv:

- Csak kétféle ellenállásértéket használ: R és 2R. Ez a kulcsa a megbízhatóságának.
- A digitális bitek (Dn ...D0) vezérlik az egyes ágak kapcsolóit.
- Minden bithez egy kapcsoló tartozik, amely a 2R értékű ellenállást vagy földre, vagy egy referencia feszültségre (általában egy műveleti erősítő bemenetére) kapcsolja.
- VEVM 137. oldal, 6.2. ábra (R-2R létra digitális-analóg átalakító)
- Az áramkör egy feszültségosztó hálózatként működik, ahol az egyes bitekhez tartozó feszültségek binárisan súlyozódnak.

A létra működése (példa):

- Képzeljük el a láncot a legvégéről (LSB) a bemenet felé (MSB).
- Minden csomópontban a 2R ellenállás és az előző lépés eredő ellenállása párhuzamosan kapcsolódik.
 Az R ellenállás sorosan van a következő lépés 2R ellenállásával. Ennek az elrendezésnek az az előnye, hogy minden csomópont felé tekintve az eredő ellenállás mindig 2R.
- Ez biztosítja, hogy az áramok binárisan osszák meg magukat az egyes ágakban.

Kimeneti feszültség:

 A kimeneti feszültség (Uki) arányos a referencia feszültséggel (Uref) és a digitális bemenet (N) értékével:

$$U_{ki} = U_{ref} \cdot \frac{N}{2^n}$$

Ahol N a digitális szám értéke (0-tól 2n-1-ig), n a bitek száma.

- Az invertáló műveleti erősítővel kiegészítve az áramokat feszültséggé alakítja.
- VEVM 137. oldal (R-2R létra kimeneti feszültségének levezetése)

Előnyök:

- **Kétféle ellenállás:** Csak két ellenállásérték (R és 2R) szükséges, ami rendkívül megkönnyíti a gyártást és a pontosságot. Nem kell nagy ellenállásarányokat tartani.
- **Ellenálláspárok pontossága:** Sokkal könnyebb garantálni, hogy az R és 2R ellenállások közötti arány pontos legyen, mint abszolút értékekben pontos ellenállásokat gyártani. Ez biztosítja a jó linearitást.
- Moduláris felépítés: Könnyen bővíthető nagyobb bitmélységre.
- Jó sebesség: Viszonylag gyors működés.

Hátrányok:

• Még mindig igényel precíz ellenálláspárokat, bár kevésbé szigorú a követelmény, mint a súlyozott ellenállású DAC-nál.

Alkalmazások:

- A legelterjedtebb DAC architektúra a legtöbb digitális-analóg konverziós feladathoz, beleértve:
 - Audiolejátszók, hangkártyák
 - Videókártyák
 - Jelgenerátorok
 - Vezérlőrendszerek
 - Digitális multiméterek

6.3.1 Sorozatos megközelítéses analóg-digitális átalakítók (ADC)

A sorozatos megközelítéses (Successive Approximation Register - SAR) ADC egy elterjedt és viszonylag gyors analóg-digitális átalakító típus.

Működési elv:

- A SAR ADC egy "találd ki és ellenőrizd" (guess and check) elvet alkalmaz.
- Lényegében egy digitális-analóg átalakító (DAC), egy komparátor és egy sorozatos megközelítéses regiszter (SAR) kombinációja.
- VEVM 139. oldal, 6.3. ábra (Sorozatos megközelítéses A/D átalakító)

Lépések (pl. 4 bites ADC esetén):

- 1. **Indítás:** A SAR regiszter beállítja az MSB-t (legmagasabb helyiértékű bitet) 1-re, a többit 0-ra. A DAC ezt a digitális számot analóg feszültséggé alakítja (UDAC).
- 2. **Összehasonlítás:** A komparátor összehasonlítja az analóg bemeneti feszültséget (Ube) a DAC kimeneti feszültségével (UDAC).
 - Ha Ube ≥UDAC, akkor az aktuális bit (az MSB) 1 marad a SAR regiszterben.
 - Ha Ube <UDAC, akkor az aktuális bit 0-ra állítódik.
- 3. **Következő bit:** A SAR regiszter a következő bitet állítja 1-re (azaz a második MSB-t), a többit 0-ra hagyva, és a DAC újra konvertál.
- 4. **Ismétlés:** Ez a folyamat minden bitre megismétlődik, az MSB-től az LSB-ig. Minden lépésben a komparátor eldönti, hogy az aktuális bitnek 1-nek vagy 0-nak kell-e lennie, hogy a DAC kimenete a bemeneti feszültséghez a lehető legközelebb legyen.

5. **Eredmény:** Miután minden bitet eldöntött, a SAR regiszter tartalma lesz a digitális kimenet, amely a bemeneti analóg feszültség digitális reprezentációja.

Példa (4 bites SAR ADC, Uref =16V):

Lépés	Bit (MSB- től LSB-ig)	DAC kimenet (UDAC)	Komparátor (Ube vs. UDAC)	Eredmény	Digitális kimenet
1.	1000	8V	Ube ≥8V ?	Igen (pl. Ube =10V)	Bit marad 1
2.	1100	12V	Ube ≥12V ?	Nem (10V < 12V)	Bit lesz 0
3.	1010	10V	Ube ≥10V ?	Igen (10V = 10V)	Bit marad 1
4.	1011	11V	Ube ≥11V ?	Nem (10V < 11V)	Bit lesz 0

| Végeredmény: 1010 bináris, ami 10 decimális.

Előnyök:

- Jó felbontás: Akár 16-24 bites felbontás is elérhető.
- Viszonylag gyors: A konverziós idő arányos a bitek számával (n órajel ciklus szükséges egy n-bites konverzióhoz).
- Közepes komplexitás: Nem túl bonyolult áramkör.
- Alacsony energiafogyasztás: Sok alkalmazásban ideális.

Hátrányok:

- A konverziós idő függ a bitek számától, tehát nagy felbontásnál lassabb lehet, mint a Flash ADC.
- A beépített DAC és komparátor pontossága korlátozhatja az ADC teljes pontosságát.

Alkalmazások:

- Digitális multiméterek
- Dátumgyűjtő rendszerek
- Szenzorinterfészek (hőmérséklet, nyomás, stb.)
- Beágyazott rendszerek

6.3.2 Párhuzamos (flash) analóg-digitális átalakítók (ADC)

A párhuzamos, más néven flash ADC a leggyorsabb analóg-digitális átalakító típus.

Működési elv:

- Az ADC egyszerre, párhuzamosan hasonlítja össze a bemeneti analóg feszültséget egy sor előre meghatározott referencia feszültséggel.
- Egy n-bites flash ADC-hez 2n-1 darab komparátorra és egy ellenállásosztó láncra van szükség.
- VEVM 140. oldal, 6.4. ábra (Flash A/D átalakító)

Felépítés:

- Ellenállás osztó lánc: Egy referencia feszültség (Uref) egy sor ellenálláson keresztül kerül felosztásra, létrehozva 2n–1 darab referencia feszültségszintet.
- **Komparátorok:** Mindegyik komparátor egyik bemenete a mérendő analóg feszültség (Ube), a másik bemenete pedig az ellenállásosztó lánc egyik referencia feszültsége.
- Kódoló (Encoder): A komparátorok kimenetei (amelyek egy "thermometer code"-ot alkotnak, azaz egy bizonyos szint felett minden komparátor kimenete 1, alatta 0) egy digitális kódoló áramkörbe jutnak, amely ezt bináris számra alakítja.

Működés:

- A bemeneti analóg feszültséget egyszerre, egy lépésben összehasonlítják az összes referencia feszültségszinttel.
- Azok a komparátorok, amelyek referencia feszültsége kisebb, mint a bemeneti analóg feszültség, 1-es logikai szintet adnak ki, míg a többi 0-át.
- A kódoló áramkör a komparátorok állapotából közvetlenül előállítja a megfelelő bináris kódot.

Előnyök:

- **Rendkívül gyors:** Mivel a konverzió egyetlen órajel ciklus alatt megtörténik, a flash ADC a leggyorsabb típus.
- Ideális nagyon gyorsan változó jelek digitalizálására.

Hátrányok:

- Nagy áramköri komplexitás: Az 2n-1 komparátor és az ellenállásosztó lánc miatt a chip területe és a komponensszám exponenciálisan nő a bitmélységgel.
 - Egy 8 bites flash ADC-hez 28-1=255 komparátor szükséges.
 - Egy 10 biteshez 210–1=1023 komparátor.
- Magas energiafogyasztás: Sok komparátor folyamatosan működik.
- Drága: A komplexitás miatt.
- Nagy bemeneti kapacitás: A sok komparátor bemenete terhelheti az analóg jelforrást.

Alkalmazások:

- Nagyon nagy sebességű adatgyűjtés (pl. oszcilloszkópok digitális bemenetei).
- Video digitalizálás (TV tunerek, digitális kamerák).
- Radarkészülékek.
- Optikai kommunikáció.

6.3.3 Integráló feszültség-idő analóg-digitális átalakítók (ADC)

Az integráló ADC-k, mint például a kettős meredekségű (dual-slope) ADC, a bemeneti feszültséget időtartammá alakítják, majd ezt az időtartamot mérik digitálisan. Ezek a típusok lassabbak, de rendkívül pontosak és zajtűrők.

Kettős meredekségű ADC működési elve:

- VEVM 141. oldal, 6.5. ábra (Kettős meredekségű A/D átalakító)
- A fő elemek: Integrátor, komparátor, számláló, vezérlő logika és egy referencia áramforrás.

Működési fázisok:

- 1. Integrálási fázis (Integrate):
 - A vezérlő logika egy fix időtartamra (T1) rákapcsolja a mérendő analóg feszültséget (Ube) az integrátor bemenetére.
 - Az integrátor kimeneti feszültsége arányosan növekszik (vagy csökken) a bemeneti feszültséggel és az integrálási idővel.
 - Uint(T1)=-RC1 ∫0T1 Ube dt≈-RCUbe T1 (ha Ube állandó)
 - A számláló eközben nulláról elkezd számolni egy belső órajel impulzusait.

2. Dezintegrálási fázis (De-integrate):

- Amikor az T1 idő letelik, a vezérlő logika a bemeneti feszültséget egy állandó, ellenkező polaritású referencia feszültségre (Uref) kapcsolja.
- Az integrátor kimeneti feszültsége ekkor egy állandó meredekséggel elkezd nullához (vagy egy másik referencia szinthez) csökkenni.
- Amikor az integrátor kimenete eléri a komparátor nullszintjét, a komparátor jelet ad, és a számláló leáll.
- A számláló ekkor is számolja az órajel impulzusokat, egy T2 időtartamig.
- Uint(T1)+RCUref T2 =⊕RCUbe T1 =RCUref T2
- Ebből: Ube T1 =Uref T2
- Ahol T2 arányos a számláló értékével (Nx). Mivel T1 rögzített (Nref órajel ciklus), Ube Nref = Uref Nx .
- Tehát:

$$N_x = N_{ref} \frac{U_{be}}{U_{ref}}$$

A számláló végső értéke (Nx) tehát egyenesen arányos a bemeneti analóg feszültséggel.

Előnyök:

 Nagyon magas pontosság és linearitás: A konverzió az idő arányán alapul, ami nagyon pontosan mérhető.

- **Kiváló zajtűrés:** Az integrálási folyamat kisimítja a bemeneti zajt és az 50/60 Hz-es hálózati brummot (ha az integrálási idő a hálózati frekvencia periódusának többszöröse).
- Hőmérsékletfüggetlenség: Az R és C értékek változása azonos módon befolyásolja a töltési és kisülési meredekségeket, így a végső arány független lesz tőlük (feltéve, hogy azok aránya stabil marad).

Hátrányok:

- Lassú konverziós sebesség: Az integrálás és dezintegrálás időt vesz igénybe, ezért nem alkalmas gyorsan változó jelek mérésére.
- Bonyolultabb vezérlő logika.

Alkalmazások:

- Digitális multiméterek (DMM): A nagy pontosság és zajtűrés miatt ez a domináns ADC típus a precíziós DMM-ekben.
- Ipari vezérlőrendszerek, ahol a pontosság fontosabb, mint a sebesség.
- Hőmérséklet-érzékelők.

7.1 Digitális multiméterek

A digitális multiméter (DMM) az egyik leggyakrabban használt és leginkább sokoldalú mérőműszer az elektronika és elektrotechnika területén. A korábban tárgyalt alapelvek (ADC, feszültségosztó, sönt) kombinációját alkalmazza.

Főbb részei és működése:

- 1. Bemeneti fokozat (Input conditioning):
 - Választókapcsoló: Meghatározza, hogy milyen mennyiséget (feszültség, áram, ellenállás) és milyen tartományban mérünk.
 - Feszültségosztók (Voltage Dividers): Feszültségméréshez a nagy feszültségeket csökkentik le egy mérhető szintre. Ezek precíziós ellenállásokból állnak. VEVM 49. oldal, 2.10. ábra (Digitális multiméter felépítése)
 - Söntellenállások (Shunt Resistors): Áramméréshez az áramot feszültséggé alakítják (az áram áthalad egy ismert ellenálláson, és a rajta eső feszültséget mérik).
 - Diódák és védelmi áramkörök: Védik a műszert a túlfeszültségtől vagy túláramtól.
 - AC/DC átalakítás: AC méréshez egyenirányító (gyakran precíziós, műveleti erősítővel) vagy True RMS konverter van beépítve.

2. Analóg-digitális átalakító (ADC):

 A DMM lelke. A legtöbb precíziós DMM kettős meredekségű (dual-slope) ADC-t használ a magas pontosság, linearitás és zajtűrés miatt. Gyorsabb DMM-ekben SAR ADC is előfordulhat.
 VEVM 141. oldal, 6.5. ábra

3. Digitális feldolgozó egység (Digital Processing Unit - DPU):

• A mikrovezérlő vagy ASIC (Application-Specific Integrated Circuit) végzi a mérések vezérlését, a digitális adatok feldolgozását (pl. kalibráció, számítások), és a kijelző meghajtását.

4. Kijelző (Display):

- LCD (Liquid Crystal Display) a leggyakoribb, alacsony energiafogyasztása miatt. Numerikusan jeleníti meg a mért értéket.
- Néhány DMM-en van bargraph kijelző is a gyorsabb trendek megfigyelésére.

Főbb mérési funkciók:

- DC feszültségmérés (DCV): Magas bemeneti impedancia (10 MΩ), feszültségosztóval és ADC-vel.
- AC feszültségmérés (ACV): Egyenirányítóval (átlagérték vagy True RMS) és feszültségosztóval, majd ADC-vel.
- DC árammérés (DCA): Söntellenálláson eső feszültség mérésével, majd ADC-vel.
- AC árammérés (ACA): Söntellenálláson eső feszültség egyenirányításával (vagy True RMS konverzióval), majd ADC-vel.
- Ellenállásmérés (Ohmmeter): Belső áramforrással és ismert referenciaellenállással a mérendő ellenálláson eső feszültséget vagy azon átfolyó áramot méri.
- További funkciók (gyakran megtalálhatók):
 - Kapacitásmérés

- Frekvenciamérés
- Dióda teszt
- Folytonosság teszt (hangjelzéssel)
- Hőmérsékletmérés (hőelem vagy termisztor segítségével)
- Tranzisztor teszt
- True RMS mérés (fontos nem szinuszos jeleknél)

Pontosság és felbontás:

- A DMM-ek pontosságát általában százalékban adják meg (pl. ±0.1% az olvasott értékből + néhány digit).
- Felbontásukat a kijelzőn megjelenő "digit"-ek számával jellemzik (pl. 3.5 digit, 4.5 digit). A ".5" digit azt jelenti, hogy a legmagasabb helyiértékű szám csak 0 vagy 1 lehet. Pl. egy 3.5 digites DMM 0 és ±1999 közötti értéket képes kijelezni.

Előnyök:

- Magas pontosság és felbontás.
- Könnyű leolvasás, nincs parallaxishiba.
- Széles mérési tartományok és sok funkció.
- Magas bemeneti impedancia feszültségmérésnél.

Hátrányok:

- Lassabb válaszidő, mint az analóg műszereknél (bár ez a modern DMM-eknél egyre kevésbé igaz).
- Néha nehezebb a trendek, ingadozások megfigyelése (bár bargraph kijelzők segítenek).

7.2.2. Digitális oszcilloszkóp

A digitális oszcilloszkóp (DSO - Digital Storage Oscilloscope) a legfontosabb mérőműszer az elektronikában a feszültség időbeli lefutásának megjelenítésére és elemzésére. A hagyományos analóg oszcilloszkópokhoz képest számos előnnyel rendelkezik.

Főbb részei és működési elve:

- Bemeneti fokozat (Input Stage):
 - Attenuátorok/erősítők: A bemeneti jelet illesztik és erősítik vagy csillapítják a megfelelő szintre az ADC számára.
 - Impedancia: Általában 1 MΩ vagy 50 Ω (magas frekvenciás alkalmazásokhoz).
 - VEVM 150. oldal, 7.7. ábra (Digitális oszcilloszkóp felépítése)

Analóg-digitális átalakító (ADC):

- A bemeneti analóg feszültséget digitális mintavételezett adatokká alakítja.
- A mintavételezési sebesség (Sample Rate) kulcsfontosságú: minél gyorsabb, annál nagyobb sávszélességű jeleket lehet pontosan digitalizálni. (Nyquist-Shannon mintavételezési tétel szerint a mintavételezési sebességnek legalább a mérendő jel maximális frekvenciájának kétszeresének kell lennie).
- A felbontás (Resolution) a minták bitmélységét jelenti (pl. 8 bit, 10 bit).
- Gyakran Flash ADC-ket használnak a nagy sebesség miatt, vagy SAR ADC-ket, ha a sebesség kevésbé kritikus, de a felbontás fontos.

Memória (Memory):

 Az ADC által digitalizált mintákat tárolja. A memóriamélység (Record Length) határozza meg, hogy mennyi időtartamot tud rögzíteni az oszcilloszkóp adott mintavételezési sebesség mellett.

Trigger rendszer (Trigger System):

- A DSO kulcsfontosságú része. Meghatározza, hogy mikor kezdődjön a hullámforma rögzítése és megjelenítése. Ez biztosítja, hogy a hullámforma stabilan jelenjen meg a kijelzőn.
- Különböző triggertípusok: él trigger (Edge trigger), impulzusszélesség trigger (Pulse width trigger), video trigger, logikai trigger stb.
- VEVM 151. oldal (Trigger rendszer)

Mikroprocesszor/Jelfeldolgozó egység (Processor/DSP):

- A tárolt digitális adatokat dolgozza fel (pl. interpoláció, mérések, matematikai műveletek).
- Lehetővé teszi az automatikus méréseket (pl. Vpp, RMS, frekvencia, periódusidő).
- Kijelző (Display):

LCD kijelzőn jeleníti meg a rögzített és feldolgozott hullámformát.

Előnyök az analóg oszcilloszkóppal szemben:

- Jeltárolás: Képes a hullámformát tárolni és később elemezni, ami az analóg oszcilloszkópoknál lehetetlen.
- **Pre-trigger funkció:** Képes megjeleníteni a trigger esemény ELŐTTI jelet is, ami kritikus az egyszeri események vagy hibák felderítéséhez.
- Automatikus mérések: Számos paramétert (feszültség, idő, frekvencia) automatikusan mér és kijelez.
- Jelfeldolgozás: Matematikai műveleteket végezhet a hullámformákon (pl. FFT Fourier transzformáció a spektrumanalízishez).
- **Kényelem:** Könnyebben használható, jobb felhasználói felület, képmentés, PC-hez csatlakoztathatóság.
- Zajcsökkentés: Digitális szűrők alkalmazhatók.

Főbb paraméterek:

- Sávszélesség (Bandwidth): A legmagasabb frekvencia, amelyet az oszcilloszkóp még pontosan tud mérni (-3dB pont).
- Mintavételezési sebesség (Sample Rate): Hány mintát vesz másodpercenként (MSa/s vagy GSa/s).
- Memóriamélység (Record Length): Hány mintát tud tárolni.
- Felbontás (Resolution): A digitális konverzió bitmélysége.

Alkalmazások:

- Áramkörök hibakeresése és elemzése.
- Jelalakok vizsgálata, mint pl. négyszögjel, impulzusok, soros kommunikációs jelek.
- Szenzorjelek analízise.
- Beágyazott rendszerek fejlesztése.

7.4 Egyetemes számlálók, frekvenciamérők

Az egyetemes számlálók és frekvenciamérők olyan digitális mérőműszerek, amelyek a bemeneti jel frekvenciáját, periódusidejét, időintervallumait, és impulzusait számolják.

Alapely:

- A legtöbb digitális számláló egy kvarc-oszcillátorra alapuló pontos időbázist (referencia frekvenciát) használ.
- A bemeneti analóg jelet először egy schmitt-triggerrel digitális (négyszög) jellé alakítják, hogy a zaj ne befolyásolja a számlálást.
- VEVM 157. oldal, 7.13. ábra (Digitális frekvenciamérő felépítése)

Főbb funkciók és működési módok:

- 1. Frekvenciamérés (Counting Frequency):
 - **Módszer:** Egy ismert, pontos időintervallum (Tg , kapuidő) alatt megszámolják, hogy hány periódusa (impulzusa) van a mérendő jelnek.
 - **Képlet**: fx =TgNx
 - Ahol Nx a megszámolt impulzusok száma, Tg a kapuidő.
 - VEVM 157. oldal
 - Pontosság: Minél hosszabb a kapuidő, annál pontosabb a frekvenciamérés.
 - **Probléma:** Kis frekvenciák mérése lassú. Nagy frekvenciák esetén a kapuidő nem lehet túl rövid a megfelelő pontossághoz.

2. Periódusidő mérés (Measuring Period):

- **Módszer:** A mérendő jel egy periódusa alatt megszámolják a nagyfrekvenciás referencia oszcillátor impulzusait (Nref).
- Képlet: Tx =Nreftclk =Nrefclk 1
- Ahol tclk a referencia órajel periódusideje, fclk a referencia órajel frekvenciája.
- VEVM 158. oldal, 7.14. ábra (Periódusidő mérés)
- **Előny:** Kis frekvenciáknál pontosabb, mint a frekvenciamérés, mert a hibát az oszcillátor frekvenciája adja, ami nagy.
- **Hátrány:** Nagy frekvenciáknál a referencia órajel frekvenciája korlátozhatja a felbontást.

3. Időintervallum mérés (Time Interval Measurement):

- Két impulzus (vagy egy jel két élének) közötti időtartam mérése.
- A bemeneti jel két eseménye (START és STOP) között megszámolják a referencia órajel impulzusait.
- VEVM 159. oldal, 7.15. ábra (Időintervallum mérés)

4. Impulzusok számlálása (Totalizing):

 Egyszerűen megszámolja az összes bemeneti impulzust egy adott időintervallumon belül (vagy amíg le nem állítják).

Főbb komponensek:

- Bemeneti előkondicionáló (Schmitt-trigger): Átalakítja az analóg bemeneti jelet stabil digitális impulzusokká.
- Időbázis oszcillátor: Stabil kvarc oszcillátor, amely a referencia frekvenciát biztosítja (pl. 10 MHz).
 Ennek pontossága kritikus.
- **Kapu (Gate):** Egy digitális logikai kapu, amely nyitja/zárja az impulzusok áthaladását a számláló felé, az adott mérési módnak megfelelően.
- Számláló (Counter): Számolja a beérkező impulzusokat.
- Kijelző (Display): Megjeleníti a mért értéket.
- Vezérlő logika: Összehangolja az összes egység működését.

Pontosság:

- A számlálók és frekvenciamérők pontossága elsősorban a időbázis oszcillátor pontosságától és stabilitásától függ.
- A ±1 számlálási hiba (gating error) is jelentős lehet, különösen rövid kapuidőknél. Ez abból adódik, hogy az órajel és a bemeneti jel nem szinkronban van.

Előnyök:

- Nagyon nagy pontosság (különösen frekvenciamérésnél).
- Széles frekvenciatartomány.
- Digitális kijelzés, könnyű leolvasás.

Alkalmazások:

- Rádiófrekvenciás berendezések tesztelése.
- Kommunikációs rendszerekben.
- Oszcillátorok, jelgenerátorok kalibrálása.
- Sebességmérés (impulzusok alapján).
- Gyakoriságmérés ipari folyamatokban.