Snoring and Pathologic UARS

Principles and Practice of Sleep Medicine Chapter 112

Overview

- Snoring and UARS = Obstructed breathing but too mild for treatment
- Terms to know:
 - Inspiratory airflow limitation (IFL) = State of upper airway during sleep in which inspiratory airflow plateaus at a maximal level despite a continued increase in the pressure gradient between the nostrils and hypopharynx
 - 2 subgroups:
 - Snoring (further subdivided into two subgroups)
 - Habitual snoring
 - Isolated snoring
 - Silent IFL

Overview

- Terms to know:
 - Snoring = Audible inspiratory fluttering of the upper airway
 - ICSD definition: Respiratory sound generated in upper airway during sleep that typically occurs during inspiration but may also occur in expiration
 - Habitual snoring = Consistent snoring during sleep
 - Isolated snoring = When patient does not meet criteria for OSA
 - Silent IFL = Same fluttering as snoring but inaudible to the human ear
 - RERA = Transient arousals following a period of IFL
 - UARS = Symptom of hypersomnolence or fatigue together with the presence of IFL and an AHI <
 5/hour

UARS vs. Pharyngeal Collapse

- Upper airway during sleep in UARS has increased upper airway resistance and upper airway collapse
- Pharyngeal collapse is not synonymous with apnea
 - It can cause either persistent apnea or IFL
- Pharyngeal critical pressure = Perit
 - When pressure at upstream end of pharynx falls below Perit, pharynx collapses, resulting in persistent apnea
 - When pressure at the nares is above Perit but pressure at downstream end of pharynx falls below Perit (as seen in snoring), pharynx also collapses
- Starling resistor model states the upper airway does not experience increased resistance during sleep, but a fixed driving pressure that limits airflow to a maximal level

Inspiratory Airflow Limitation

- Because RERAs incorporated into diagnostic criteria for OSA, you need to be able to recognize IFL preceding an arousal and differentiate that breathing from normal breathing
 - Necessary for PSGs, HSTs, and titrations
- During IFL, ration of inspiratory time to the time of the entire respiratory cycle is prolonged
 - Non-flow-limited breaths have a more prolonged expiratory time
 - IFL will have a more plateaued appearance to the airflow

- ICSD3 does not include UARS in its classification of SRBD
 - Absorbed it into OSA—replaced AHI with RDI for classification of OSA
 - This new clinical criteria makes former UARS cases now OSA cases
- UARS came to attention following a case series by Guilleminault and associates
 - Snoring was noted
 - AHI < 5/hour
 - Arousal index > 10/hour
 - Reduced airflow not meeting hypopnea criteria noted
 - Treatment of these patients with nasal CPAP eliminated these events and arousals and relieved their hypersomnolence
 - UARS was designated because they did not meet criteria for OSA
 - Was controversial as many thought RERAs and hypopneas were essentially the same phenomenon

- Defined as symptom of either hypersomnolence or fatigue together with presence of IFL during sleep and AHI < 5/hour
- Patients are usually younger, leaner, and more frequently female compared to OSA
 - Mean age = 40 years
 - BMI between 23-30
 - Approximately 50% female
- Signs and symptoms:
 - Nonapneic, habitual snoring or silent IFL
 - AHI < 5/hour
 - Nonrestorative sleep, fatigue, sleepiness, or insomnia

- Hypersomnolence and fatigue are not the same thing
 - Hypersomnolence = Increase sleep pressure with short sleep latency
 - Inconsistent with insomnia
 - Fatigue = Longer sleep latency
 - Reflects state of hyperarousal commonly observed in insomnia patients
- 1/3 of UARS patients complain of sleep-onset insomnia
 - 2/3 report sleep maintenance insomnia
- UARS patients can also experience parasomnias
- Not enough evidence yet to conclude UARS as an independent cardiovascular risk factor
 - Although some arterial hypertension has been noted in these patients

- Depression and anxiety have been reported in UARS patients
- PSG findings re: breathing:
 - AHI < 5/hour
 - Periods of IFL during sleep terminated by arousals or changes in background EEG associated with return to normal airflow
 - SpO2 > 90% during sleep
- PSG findings re: sleep architecture:
 - Unstable, nonrestorative sleep
 - Alpha intrusion
 - Alpha-delta sleep
 - Increased sleep stage shifts
 - Cyclic alternating pattern (CAP)
 - Increased alpha frequency
- Treatment = Nasal CPAP

Fundamentals of Snoring

- Habitual snoring can be observed in patients with OSA complaining of EDS, fatigue, and insomnia
 - But it can also occur in the absence of symptoms and signs of OSA and without an RDI meeting OSA criteria
- Sleep-related sound caused by vibration of soft tissue in upper airway under conditions of IFL
- What causes snoring and sleep apnea?
- Treatment difficult because snoring can originate from any membranous part of upper airway lacking cartilaginous support
- Where Snoring Comes From

Pathophysiology of Snoring

- Structures of upper airway vibrate
 - This includes soft palate, uvula, faucial pillars, pharyngeal walls
- Snoring is not measured quantitatively
 - Only commented upon in general terms
- Methods of measurement vary
 - No uniform method of measurement

Epidemiology of Snoring

- Snoring is common but estimates of prevalence vary and are imprecise
- There are ethnic differences in snoring
- Bed partners or family members describe patient's snoring so reports are subjective and inconsistent
- There is night-to-night variability with snoring
- There is male predominance in snoring prevalence
- Snorers usually have history of at least one other affected family member

Health Effects of Non-apneic Snoring

- EDS
 - ESS increased progressively with snoring severity
- Cardiovascular disease
 - Correlation between snoring and hypertension, cardiovascular disease, and stroke
- Health Effects

Assessment of Snoring

- Clinical history
 - How bad is snoring?
 - Determine loudness and frequency and whether it is positional
 - Time course of snoring
 - Age of onset
 - Is snoring getting worse?

- What risk factors for snoring are present?
 - Weight gain
 - Alcohol consumption
 - Use of sedative medications
 - Nasal congestion, discharge, trauma or surgery
 - Tonsillitis
 - Other medical conditions

Assessment of Snoring

- Clinical history
 - Does patient in fact have OSA?
 - Inquire about nighttime symptoms and daytime symptoms
 - Quantify daytime sleepiness through a standardized tool like ESS
 - Document medical conditions that are possibly associated with OSA, like hypertension and cardiovascular disease
- Physical exam
 - Should include: BP, BMI, neck circumference, inspection of nose, dimensions of oropharynx
- Clinical and laboratory investigations
 - Upper airway assessment
 - Assess during wakefulness through x-ray cephalometry, computed tomography, or MRI

- Can visualize using fiberoptic nasopharyngoscopy
- Endoscopic exam
- Polysomnography
 - Gold standard for evaluating SDB
 - Used to differentiate nonapneic snoring from OSA and UARS
 - Those with intermediate to high probability of OSA should be evaluated first
- Treatment
 - Nonsurgical
 - Surgical

Nonsurgical Treatment

Lifestyle modification

- Weight loss
- Avoidance of alcohol and sedatives
- Positional training
- Partner interventions

Treating nasal congestion

- Pharmacologic treatments
 - Tissue lubricants
 - Intranasal corticosteroids
 - Nasal decongestants
- Nasal dilators pulls nares open

Oral appliances

- Mandibular repositioning appliance is most commonly used
- Snoring shown to improve with these devices
- Must be constructed by dentists with specialized expertise
- Video

CPAP

- Snoring can be eliminated with CPAP use in most patients
- Patient has to be motivated to use therapy though

Surgical Treatment

Nasal surgery

Pharyngeal surgery

- Uvulopalatopharyngoplasty (UPPP)
 - Was the surgical option of choice for snoring and OSA
 - Quite painful surgery and not 100% effective for all patients
- Laser-assisted Uvuloplasty (LAUP)
 - Alternative for UPPP
 - Office procedure done under local anesthesia
 - Resects less tissue than UPPP
 - Not generally recommended as treatment for snoring
 - <u>Video</u>

Surgical Treatment

- Pharyngeal surgery
 - Injection snoreplasty
 - Injecting sclerotherapy agent into submucosa of soft palate
 - Outpatient surgery
 - Induces scarring and may serve to stiffen and shorten the palate, reducing snoring
 - Not enough evidence to recommend as treatment
 - Radiofrequency ablation
 - Outpatient procedure applying thermal energy to pharyngeal tissues
 - Causes volume reduction and stiffening of pharynx
 - Need more studies to determine effectiveness.

Surgical Treatment

Palatal implants

- Stiffens soft palate
- Insufficient evidence to recommend as treatment

Tonsillectomy

 Effective for pediatrics, but for adults, there is not much data on effectiveness

The Reason Many Snoring Patients Get Referred to the Sleep Lab....

