EXERCÍCIOS DE SOLUÇÕES

- 01. A popular maionese caseira é formada pela mistura de óleo, limão (ou vinagre) e gema de ovo; este último componente tem a função de estabilizar a referida mistura. Esta mistura é um exemplo de:
 - a) solução verdadeira concentrada;
 - b) solução verdadeira diluída;
 - c) uma dispersão coloidal do tipo gel;
 - d) uma dispersão coloidal do tipo emulsão;
 - e) um gel que sofreu uma peptização.
- 02. Qual das misturas abaixo exemplifica uma dispersão coloidal?
 - a) Soro fisiológico.
- d) Água sanitária.
- b) Acido muriático.
- e) Álcool hidratado.
- c) Leite pasteurizado.
- 03. A diminuição da eficiência dos faróis de um automóvel na neblina está intimamente relacionada
 - a) o movimento browniano

d) a eletroforese

b) a diálise

e) a adsorção de carga elétrica.

- c) o efeito Tyndall
- 04. (U. Santa Úrsula-RJ) No gráfico, os pontos assinalados representam soluções de um mesmo soluto. De sua análise, pode-se afirmar que as soluções saturadas com presença de precipitado são:

- a) A, B, C e D
- b) E e F
- c) H e G
- d) E e H
- e) G e F
- 05. (UFRS) A solubilidade da soda cáustica (NaOH) em água, em função da temperatura, é dada na tabela abaixo.

Temperatura (°C)	20	30	40	50
Solubilidade (gramas/100 g de H ₂ O)	109	119	129	145

Considerando soluções de NaOH em 100 g de água, é correto afirmar que:

- a) a 20 °C, uma solução com 120 g de NaOH é concentrada.
- b) a 20 °C, uma solução com 80 g de NaOH é diluída.
- c) a 30 °C, uma solução com 11,9 g de NaOH é concentrada.
- d) a 30 °C, uma solução com 119 g de NaOH é supersaturada.
- e) a 40 °C, uma solução com 129 g de NaOH é saturada.
- 06. (UnB-DF) Analise o gráfico ao lado. Julgue os itens abaixo,

- 11. A substância que apresenta menor variação da solubilidade entre 30 °C e 80 °C é o cloreto de sódio.
- 22. A solubilidade de qualquer sólido aumenta com a elevação da temperatura da solução.
- 33. A mistura de 20 g de NH₄Cl com 100 g de água a 50 °C resultará em uma solução insaturada.
- 44. Uma solução preparada com 80 g de KNO₃ em 100 g de água, a 40 °C, apresentará sólido no fundo do recipiente.

07. Quatro tubos contêm 20 mL de água cada um a 20 °C. Coloca-se nesses tubos dicromato de potássio (K₂Cr₂O7) nas seguintes quantidades:

	Tubo A	Tubo B	Tubo C	Tubo D
Massa de K ₂ Cr ₂ O ₇ (g)	1,0	3,0	5,0	7,0

A solubilidade do sal, a 20°C, é igual a 12,5g por 100 mL de água. Após agitação, em quais dos tubos coexistem, nessa temperatura, solução saturada e fase sólida?

a) Em nenhum.

d) Apenas em B, C e D.

b) Apenas em D.

- e) Em todos.
- c) Apenas em C e D.
- 08. Suponhamos um sal cujo K_S seja 120/100g água a 50°C. Conhecido o coeficiente de solubilidade, assinale quais das experiências citadas abaixo correspondem à realidade:
- 00. 200g de sal adicionados a 100g de água dão solução saturada e um corpo de fundo de massa igual a 80g a 50°C.
- 11. Em 300g de água podemos dissolver completamente 350g do sal a 50°C.
- 22. Se adicionarmos cuidadosamente 122g de sal em 100g de água a 50°C, teremos uma solução supersaturada.
- 33. Se adicionarmos 130g de sal a 50g de água a 50°C, a maior parte do sal permanecerá no corpo
- 44. A temperatura não influi no coeficiente de solubilidade do sal.
- 09. Fornecido o diagrama esquemático de solubilidade para os sais S1 e S2, observe-o e assinale a opção correta:
- a) A 15°C a solubilidade do sal S₁ é o dobro da solubilidade do sal S_{2.}

- b) A 10°C a solubilidade do sal S₁é menor que a do sal S₂.
- c) O sal S_2 é mais solúvel que o sal S_1 .
- d) A 5°C os sais apresentam solubilidade iguais.
- e) Para uma mesma variação de temperatura, o sal S₂ apresenta maior variação de solubilidade que o sal S₁.

- 10. Em uma solução saturada temos:
- a) Pouco soluto em relação ao solvente.
- b) Quantidade de soluto e solvente equivalentes.
- c) Proporção: solvente/soluto igual a unidade.
- d) A quantidade máxima de soluto dissolvida, sendo estável na presença do soluto não dissolvido.
- e) Sempre o corpo de fundo ou de chão.
- 11. Em uma solução aquosa iônica, o soluto forma com as moléculas do solvente um sistema:
- a) homogêneo, condutor de corrente elétrica.
- b) homogêneo, separável por filtração.
- c) homogêneo, cujos constituintes separam-se por filtração.
- d) heterogêneo, coloidal.
- e) heterogêneo, não condutor de corrente elétrica.
- 12. Para uma solução binária é válida a curva do gráfico abaixo, onde o eixo das abscissas contém as temperaturas em °C, e o das ordenadas os valores da y solubilidade, em g de soluto por 100 g de solvente.

- 11. A solução indicada no ponto B não pode existir.
- 22. A solução no ponto B é supersaturada.
- 33. A solução no ponto A é insaturada.
- 44. A curva é válida apenas para soluto e solvente líquidos.

- 13. Para saber-se uma solução aquosa é iônica, basta:
- a) deixar o solvente evaporar e verificar se há resíduo sólido.
- b) acrescentar ácido e verificar se há desprendimento de gás.
- c) testar sua condutibilidade elétrica e verificar se é superior à da água.
- d) medir sua temperatura de ebulição e compará-la com a da água.
- e) determinar sua densidade e verificar se é superior à da água.

Instruções para as questões de números 14 e 15.

Essas questões referem-se ao gráfico abaixo, que fornece a solubilidade de cinco sais (gramas do sal/100 g de água) em diferentes temperaturas.

- 14. Qual é o sal cuja solubilidade na água diminui com o aumento da temperatura?
- a) NaNO₃
- b) KNO₃
- c) KCl
- d) NaCl
- e) Ce₂ (SO₄)₃
- 15. Qual é a máxima massa, em gramas, de nitrato de sódio que pode ser dissolvida em 50 g de água, a 10°C?
- a) 80
- b) 40
- c) 35
- d) 20
- e) 10
- 16. As curvas de solubilidade dos sais NaCl e NH₄Cl estão representadas no gráfico ao lado:

Com base neste gráfico, podemos afirmar que em 100 a de H₂O:

- 100 g de H₂O:
- a) dissolve-se maior massa de NH $_4$ Cl que NaCl a 20 $^{\rm o}$ C.
- b) NaCl é mais solúvel que NH₄Cl a 60 °C.
- c) NaCl é menos solúvel que NH₄Cl a 40°C.
- d) 30 g de qualquer um desses sais são totalmente dissolvidos a 40°C.
- e) a quantidade de NaCl dissolvida a 80°C é maior que a 40°C.

Gráfico para as questões de números 17 e 18.

17. Observe com atenção o gráfico acima e responda:

A menor quantidade de água necessária para dissolver 36 g de KCl a 30°C é:

- a) 30 g.
- b) 45 g.
- c) 64 g.
- d) 90 g.
- e) 728 g.
- 18. Assinale a solução que apresenta maior massa de soluto em 100 g de água:
- a) solução saturada de NaCl a 100°C.
- b) solução saturada de KCl a 50°C.

- c) solução saturada de NaNO₃ a 25°C.
- d) solução saturada de KNO₃ a 25°C.
- e) solução saturada de K₂CrO₄ a 50°C.
- 19. A tabela abaixo fornece as solubilidades do KCl e do Li₂CO₃ a várias temperaturas:

Temperatura (°C)	Solubilidade (g/100 g H ₂ O)			
	KCI	Li ₂ CO ₃		
0	27,6	0,154		
10	31,0	0,143		
20	34,0	0,133		
30	37,0	0,125		
40	40,0	0,117		
50	42,6	0,108		

Assinale a alternativa falsa:

- a) A dissolução do KCl em água é endotérmica.
- b) O aquecimento diminui a solubilidade do Li₂CO₃ em água.
- c) A massa de KCl capaz de saturar 50 g de água, a 40°C, é 20 g.
- d) Ao resfriar, de 50°C até 20°C, uma solução que contém inicialmente 108 mg de Li₂CO₃ em 100 g de água, haverá precipitação de 25 mg de Li₂CO₃.
- e) A 10°C, a solubilidade do KCl é maior do que a do Li₂CO₃.
- 20. O gráfico ao lado mostra a solubilidade (S) de $K_2Cr_2O_7$ sólido em água, em função da temperatura (t). Uma mistura constituída de 30 g de $K_2Cr_2O_7$ e 50 g de água, a uma temperatura inicial de 90° C, foi deixada esfriar lentamente e com agitação. A que temperatura aproximada deve começar a cristalizar o $K_2Cr_2O_7$?

- a) 25° C
- b) 45° C
- c) 60° C

- d) 70° C
- e) 80° C

O gráfico a seguir, referente às questões 21 e 22, corresponde às curvas de solubilidade de cinco sais.

- 21. Adicionam-se, separadamente, 40,0 g de cada um dos sais em 100 g de H_2O . À temperatura de 40°C, quais sais estão totalmente dissolvidos na água?
- a) KNO₃ e NaNO₃
- d) $Ce_2(SO_4)_3$ e KCl
- b) NaCl e NaNO₃
- e) NaCl e Ce₂(SO₄)₃
- c) KCl e KNO₃
- 22. Qual dos sais apresentados no gráfico tem sua solubilização prejudicada pelo aquecimento?
- a) NaNO₃
- b) KNO₃
- c) KCl
- d) NaCl
- e) $Ce_2(SO_4)_3$

23. A partir do gráfico abaixo, assinale a alternativa falsa:

SOLUÇÕES

4

- a) Na faixa de 0 a 100°C, a solubilidade do NaCl cresce muito pouco com a temperatura.
- b) 80 g de KNO₃ saturam 200 g de água a 30°C.
- c) A solubilidade do Ce₂(SO₄)₃ diminui com o aumento da temperatura.
- d) NaNO₃ é o menos solúvel a 20°C.
- e) A 40°C, o NH₄Cl é mais solúvel que o NaCl e menos solúvel que o KNO₃.
- 24. A solubilidade do dicromato de potássio a 20°C é 12,5 g por 100 mL de água. Colocando-se em um tubo de ensaio 20 mL de água e 5 g de dicromato de potássio a 20°C. Podemos afirmar que, após agitação e posterior repouso, nessa temperatura:
- a) coexistem, solução saturada e fase sólida.
- b) não coexistem solução saturada e fase sólida.
- c) só existe solução saturada.
- d) a solução não é saturada.
- e) o dicromato de potássio não se dissolve.
- 25. Sabendo-se que o coeficiente de solubilidade do KNO_3 a $10^{\circ}C$ é igual a 22 gramas de KNO_3 por 100 gramas de H_2O , a massa de KNO_3 contida em 500 gramas de solução saturada será:
- a) 120,5 g
- b) 90,2 g
- c) 60,3 g
- d) 50,5 g
- e) 81,5 g
- 26. O gráfico abaixo representa as curvas de solubilidade de substâncias genéricas A, B, C, D e E. Com base nessas informações, assinale a afirmativa correta.

- a) Dissolvendo-se 100 gramas da substância B em 200 g de água, a 30 °C, obteremos uma solução saturada, com depósito de 35 g desta substância que não será dissolvida.
- b) Se 60 g da substância E forem dissolvidas em 300 g de água, a 10 °C, quando aquecermos esta solução haverá gradativa precipitação da substância E, tornando-se pouco solúvel a 100 °C.
- c) A substância D, na faixa de temperatura de 0 °C a 100 °C, apresenta uma solubilidade em água acentuadamente crescente.
- d) A menor quantidade de água a 60°C para dissolver completamente 90 g da substância C é, aproximadamente, de 150 g.
- e) A substância menos solúvel em 100 g de água a 30°C é a substância A.
- 27. A massa de soluto adicionada a 500 mL de álcool etílico, para obter-se uma solução de título no mínimo de 0,1, deve ser maior que:

Dado: d = 0.8 g/mL (álcool etílico).

- a) 50g
- b) 45g
- c) 90g
- d) 100g
- e) 44,44g
- 28. (PUC SÃO PAULO SP) Uma solução aquosa de brometo de cálcio tem concentração igual a 10,0 g/L e densidade praticamente igual a 1,00 g/mL. Sua molaridade, normalidade e título são, respectivamente, iguais a:
- a) 0,10; 0,05; 0,01
- b) 0,05; 0,10; 0,01

- c) 0,05; 0,025; 0,01 d) 0,083; 0,166; 0,1 e) 0,166; 0,083; 0,1 29. (FAC. FRANCISCANAS - SP) - Um frasco está assim rotulado: ácido clorídrico de ebulição constante, 20,2% em peso de HCl, densidade 1,096 g/ml. A molaridade da solução de HCl é: d) 6.07×10^{-3} a) 3,03 b) 3.50 c) 6,07 e) 6,93 30. Uma solução contém 184g de glicerina (C₃H₈O₃) em 800g de água e apresenta densidade igual a 1,044 g/cm³. Calcular: I – a molalidade da solução. II – a molaridade da solução. A alternativa correta é: a) 2,5 molal e 2,5 molar.
- b) 2,0 molal e 1,5 molar.
- c) 2,5 molal e 2,1 molar.
- d) 1,5 molal e 2,0 molar.
- e) 3,0 molal e 2,2 molar.
- 31. Vamos obter uma solução molal de cloreto de sódio, dissolvendo, em 200 gramas de água: (Na =

$$23$$
; CI = $35,5$)

- a) 1,00g de NaCl
- d) 58,5g de NaCl
- b) 5,85g de NaCl
- e) 117g de NaCl
- c) 11,7g de NaCl
- 32. Calcule as massas de etanol e de água contidas em 750g de solução sabendo-se que a fração molar do etanol é igual a 0,250.
- a) 250g e 500g
- b) 150g e 600g
- c) 345g e 405g
- d) 350g e 400g
- e) 375g e 375g
- 33. Calcule as frações molares da sacarose e da água numa solução aquosa contendo massas iguais de sacarose e água.

(Dado: fórmula da sacarose = $C_{12}H_{22}O_{11}$)

- a) 0,05 e 0,95
- b) 0,01 e 0,99
- c) 0,50 e 0,50

- d) 0,07 e 0,93
- e) 0,30 e 0,70
- 34. (OSEC-SP) Uma solução 0,1 molal de sulfato de ferro III apresenta título em massa igual a:
- a) 0,42
- b) 1,15
- c) 0.042
- d) 0,038
- e) 0,16

- 35. (U.E. MARINGÁ PR) Julgue as proposições:
- 00. Uma solução 1M contém 1 mol de soluto por litro de solução.
- 11. Uma solução 1N contém 1 equivalente-grama de soluto por litro de solução.
- 22. Em 250mL de solução de ácido sulfúrico 1N, estão presentes 12,25g de soluto.
- 33. Em 250mL de solução de ácido sulfúrico 0,5M, estão presentes 0,125 moles de soluto.
- 44. Um litro de solução 1M de ácido sulfúrico possui a mesma massa de soluto que um litro de solução 1N deste ácido.
- 55. Um litro de solução, cuja densidade é igual a 1,84g/mL e que apresenta 96% em peso de ácido sulfúrico, possui concentração igual a 36M.
- 66. Para preparar 500 mL de solução de ácido sulfúrico 0,01M, são necessários 10mL de solução 1N de ácido sulfúrico.
- 36. (CESGRANRIO RJ) No gráfico que se segue, estão representadas pelas retas I, II e III, três soluções dos ácidos H₃PO₄, HCl e H₂SO₄, não necessariamente nesta ordem.

Considerando o gráfico, assinale a opção que estabelece a correspondência correta.

M = molaridade da solução N = normalidade da solução

reta I	reta II	reta III
a) H₃PO₄	HCI	H_2SO_4
b) H ₃ PO ₄	H_2SO_4	HCI
c) HCl	H_2SO_4	H_3PO_4
d) HCl	H_3PO_4	H_2SO_4
e) H_2SO_4	HCI	H_3PO_4

- 37. (FEI-SP) A massa de $Na_2CO_3.10H_2O$ necessária para preparar 5 L de solução aquosa de Na_2CO_3 0,10 M é igual a:
- a) 53 g.
- b) 106 g.
- c) 143 g.
- d) 286 g.
- e) 500 g.
- 38. (PUC-MG) O soro caseiro, recomendado para evitar a desidratação infantil, consiste em uma solução aquosa de cloreto de sódio (3,5 g/L) e de sacarose (11,0 g/L). As concentrações, em mol/L, do cloreto de sódio e da sacarose nessa solução, valem respectivamente:
- a) 0,190 e 0,064.
- d) 0,760 e 0,032.
- b) 0,060 e 0,032.
- e) 0,950 e 0,064.
- c) 0,380 e 0,128.
- 39. (Esal-MG) As soluções químicas são amplamente utilizadas tanto em nosso cotidiano como em laboratórios. Uma delas, solução aquosa de sulfato de cobre, CuSO₄, a 1%, é aplicada no controle fitossanitário das plantas atacadas por determinados fungos. A massa de sulfato de cobre, CuSO₄, em gramas, necessária para prepararmos 20 litros dessa solução a 1% p/V é:
- a) 2,0
- b) 2,0 . 10¹
- c) $2,0.10^2$
- d) $2,0.10^3$
- e) 2,0 . 10⁴
- 40. (UFU-MG) Em um laboratório há dois frascos, A e B, contendo soluções aquosas em cujos rótulos pode-se ler: concentração 110 g . L⁻¹ e densidade 1,10 g.cm³, respectivamente. Comparando as duas soluções dos frascos A e B pode-se afirmar que:
- a) A solução do frasco A é mais concentrada do que a solução do frasco B.
- b) As massas de soluto dissolvidas nos dois frascos, A e B, são iguais.
- c) O mesmo soluto está dissolvido nos frascos A e B.
- d) A solução do frasco B é 100 vezes mais concentrada do que a do frasco a
- e) As concentrações das soluções dos frascos A e B podem ser iguais.
- 41. (Med. Catanduva-SP) O consumo de água com mais de 10 ppm (partes por milhão) de nitratos não é recomendável, segundo a Organização Mundial de Saúde. Sabendo-se que a densidade da água é de aproximadamente 1,0 grama por mililitro, em 1,0 metro cúbico de água (1 000 litros) a quantidade máxima de nitratos, aceitável pela OMS, seria de:
- a) 10 microgramas.
- d) 10 gramas.
- b) 10 miligramas.
- e) 10 quilogramas.
- c) 10 centigramas.
- 42. (ITA-SP) A 20 °C uma solução aquosa de hidróxido de sódio tem uma densidade de 1,04 g/cm³ e é 0,946 molar em NaOH. A quantidade e a massa de hidróxido de sódio presentes em 50,0 cm³ dessa solução são, respectivamente:
- a) (0,946 . 50,0) milimol; (0,946 . 50,0 . 40,0) miligrama.
- b) (50,0 . 1,04/40,0) mol; (50,0 . 1,04) grama.
- c) (50,0 . 1,04/40,0) mol; (50,0 . 1,04) miligrama.
- d) (0,946 . 50,0) milimol; (50,0 . 1,04) miligrama.
- e) (0,946 . 50,0) mol; (0,946 . 50,0 . 40,0) grama.

- 45. (Esal-MG) A normalidade é a unidade de concentração de soluções mais utilizada em análise química. A massa do ácido sulfúrico necessária para preparar 2 litros de solução desse ácido a 2 N é:
- a) 49g b) 98g c) 164 g d) 196 g e) 392 g
- 46. (UFSC) Considere duas soluções de AgNO₃ e seus respectivos volumes:
- uma solução A com concentração 1,0 N e volume de 600 mL;
- uma solução B com concentração 1,5 N e volume de 400 mL.

Sobre elas, é correto afirmar que:

- 00. A solução A é mais concentrada do que a solução B.
- 11. O volume da solução B apresenta maior quantidade de soluto que o volume da solução A.
- 22. O número de equivalentes-grama de $AgNO_3$, em ambas as soluções, é 0,6.
- 33. As concentrações em mol/L das soluções A e B são iguais.
- 44. A quantidade de matéria (número de mols) de AgNO₃ é uma vez e meia maior no volume da solução B do que no volume da solução A.
- 47. (Fumec-MG) Na reação:

1 $K_2Cr_2O_7$ + 14 $HCl \rightarrow$ 2 KCl + 2 $CrCl_3$ + 3 Cl_2 + 7 H_2O

o equivalente-grama do $K_2Cr_2O_7$ é o seu mol dividido por:

- a) 2 b) 3 c) 6 d) 7 e) 14
- 48. (Unifor-CE) A quarta parte do volume de uma solução de ácido sulfúrico é recolhida num béquer. A solução inicial e a alíquota separada diferem quanto às:
- a) densidades. d) porcentagens em massa do soluto.
- b) massas do soluto. e) concentrações em g/L.
- c) concentrações molares.
- 49. (ITA-SP) Considere as seguintes soluções:
- I. 10 g de NaCl em 100 g de água.
- II. 10 g de NaCl em 100 ml de água.
- III. 20 g de NaCl em 180 g de água.
- IV. 10 mols de NaCl em 90 mols de água.

Destas soluções, tem concentração 10% em massa de cloreto de sódio:

- a) Apenas I.
- c) Apenas IV.
- e) Apenas III e IV.

- b) Apenas III.
- d) Apenas I e II.
- 50. (UFPI) O nível medicinalmente aceito de chumbo (peso atômico 207) no sangue é de $200\mu g L^{-1}$. Isto é igual a aproximadamente:
- a) 200 ppm (ppm = parte por milhão)
- d) 2 . 10^{-6} mol L⁻¹
- b) 200 ppb (ppb = parte por bilhão)
- e) 2 μmol L⁻¹

c) 200 mol L⁻¹

51. (U. Caixias do Sul-RS) O formol é uma solução aquosa de metanal (HCHO) a 40%, em massa, e possui densidade de 0,92 g/mL. Essa solução apresenta: a) 920 g de metanal em 1 L de água. b) 40 g de metanal em 100 mL de água. c) 4 g de metanal em 920 g de solução. d) 4 g de metanal em 10 g de solução. e) 9,2 g de metanal em 100 mL de água. 52. (Londrina) As concentrações de cátions e ânions em uma solução 0,2M de sulfato de potássio são, respectivamente: a) 0,2M e 0,2M b) 0,3M e 0,3M c) 0,3M e 0,4M d) 0,4M e 0,2M e) 0,4M e 0,30 53. (Fund. Carios Chagas) Sabe-se que uma solução de cloreto férrico em água contém 0,60 mol/litro de íons cloreto. A molaridade da solução em relação ao FeCl₃ é: d) 1,20 molar a) 0,20 molar b) 0,60 molar e) 1,80 molar c) 0,80 molar 54. (ESAL) Um litro de uma solução contém 0,1 mol de NaCl e 0,2 mol de CaCl2. A molaridade dos íons Na^{l+}, Ca²⁺ e Cl¹⁻ será, respectivamente, igual a: a) 0,01M; 0,02M; 0,05M. b) 0,01M; 0,02M; 0,04M. c) 0,1 M; 0,2M; 0,4M. d) 0,1M; 0,2M; 0,5M. e) 0,2M; 0,4M; 0,4M. 55. (U.F. Uberlândia) Dissolve-se 1,56g de Al(OH)₃ em 100mL de solução. As concentrações molares dos íons Al³⁺ e OH¹⁻ nesta solução valem, respectivamente: a) 0,6M e 1,8M. d) 1,8M e 0,6M. b) 0,2M e 0,6M. e) 0,6M e 0,2M. c) 0,3M e 0,9M. 56. (Fuvest-SP) Comparando soluções aquosas 0,01 molar das substâncias I. cloreto de magnésio IV. cloreto de potássio II. cloreto de amônio V. cloreto de hidrogênio III. sulfato de amônio conclui-se que apresentam igual molaridade de um mesmo íon as soluções das substâncias: a) I e II b) I e IV c) I e V d) II e III e) II e V 57. (Fuvest-SP) A seguir é apresentada a concentração, em mg/kg, de alguns íons na água do mar: íon concentração 1.350 Mg SO 4-2.700 Na⁺ 10.500 Cl 19.000 Dentre esses íons, os que estão em menor e maior concentração molar são, respectivamente: (Dados: Massas atômicas – O = 16; Na = 23; Mg = 24; S = 32; Cl = 35,5): a) Cl⁻ e Mg²⁺ d) Mg²⁺ e Cl⁻ b) SO₄²⁻ e Na⁺ e) SO₄²⁻ e Cl⁻ c) Mg²⁺ e Na⁺ 58. (UFMG) Todas as soluções de ácido sulfúrico (H₂SO₄) abaixo têm a mesma concentração, exceto: a) 100 ml, 0,1 mol/L; b) 200 ml, 0,05 mol/L; c) 100 ml, 9,8 g/L; d) 200 ml, 0,98% (p/v);

e) 200 ml, 9,8 g/L.

59. (UFMG) Das soluções de hidróxido de sódio (NaOH) abaixo especificadas, a que apresenta a maior número de moles de íons OH- é:					
a) 20 mL a b) 0,10L a 4 c) 200 mL a d) 0,05L, 11 e) 2,0L, 0,1	1% (p/v); 10,4% (p/v); M;				
			ão 0,2N de ácido Dlução tem norma		te volume, 50 mL são
a) 0,24	b) 0,15	c) 0,12	d) 0,30	e) n	.d.a.
			úrico. O volume ução 0,1 normal,		ve ser adicionado a um
a) 5,0 litros	; b) 40 milil	itros; c) 400	mililitros; d) 4,0 litros;	e) 0,004 litros.
evapora		volume de 100			quer, perde água por ara 0,5 M. O volume de
a) 50 mL	b) 100 mL	c) 500	mL d)	900 mL	e) 1.000 mL
água suf		mL de solução.	Dessa solução, o		o-se 16,8 g da base em ve ser diluído a 300 mL
a) 75 mL	b) 25 mL	c) 50 mL	d) 100 ml	e) 15	0 mL
			56g de hidróxido nL de água. A mo		é se obter o volume de ção final é:
a) 0,90	b) 0,55	c) 0,1	d)	0,09	e) 0,01
solução (a) adicionar (b) evaporar (c) adicionar (d) adicionar		sal. O que ele de a.	ar solução norma ve fazer com a so		proveitando 200mL de
	e MgCl ₂ , para cor 25 0		centada à massa a solução a 10% (ção aquosa a 25% em
67. A massa de água que devemos acrescentar a 1 kg de solução aquosa 6,25 molal de NaOH, para transformá-la em solução 1,25 molal, é:					
a) 800 g	b) 3 000 g	c) 3 20	0 g d)	4 000 g	e) 5 000g
					s quantidades de água s, respectivamente?
a) 0,2 ml e b) 99,8 ml e c) 0,3 mL e	e 0,2 mL	d) 49,7 mL e (e) 0,4 mL e 39			
pacotes,	com 40 g cada	de permangan	ato de potássio	(KMnO ₄) em 2	enfermeira dissolveu 3 litros de água. Retirou 19 litros de água. A

molaridade da solução final, considerando o meio como ácido, será, aproximadamente:

a) 95 · 10⁻³ b) 19 · 10⁻³ c) 6,3 · 10⁻³ d) 5,7 · 10⁻³ e) 2,8 · 10⁻³

- 70. (Med. Catanduva-SP) Um químico necessita de 50,0 mL de solução de HCl 0,2 mol/L para realizar um experimento. Dispondo de 1,0 litro de uma solução de HCl 2,0 mol/L no estoque do laboratório, qual o procedimento ideal para que o químico obtenha o desejado?
- a) Com uma pipeta, transfere 5,0 mL da solução 2,0 mol/L para um balão volumétrico de 50,0 mL, completando até a marca do balão com água.
- b) Coloca toda a solução 2,0 mol/L num balde e acrescenta 9,0 litros de água.
- c) Coloca toda a solução 2,0 mol/L num frasco e evapora a água até restar o volume de 50,0 mL.
- d) Com uma pipeta, transfere 5,0 mL de solução 2,0 mol/L para um balão volumétrico de100 mL, completando até a marca do balão com água.
- e) Com uma pipeta, transfere 5,0 mL da solução 2,0 mol/L para um funil de Büchner e, usando um frasco kitassato, realiza uma filtração a vácuo.
- 71. (UFRN) O volume de solução de ácido sulfúrico a 20% em massa e densidade relativa igual a 1,14 g/cm³ necessário para preparar 200 mL de solução com concentração 0,2 mol/L, é:
- a) 0,98 mL
- b) 3,44 mL
- c) 8,59 mL
- d) 17,19 mL
- e) 19,61 mL
- 72. (UEL-PR) Um volume igual a 300 mL de solução contendo 0,01 mol/L de sulfato cúprico é cuidadosamente aquecido até que o volume da solução fique reduzido a 200 mL. A solução final tem concentração, em mol/L, igual a:
- a) 0,005
- b) 0,010
- c) 0,015
- d) 0,016
- e) 0,018
- 73. (Esal-MG) Uma solução de 500 mL de ácido sulfúrico 0,1 N foi misturada com 1/2 litro de solução deste mesmo ácido a 0,1 mol/L. A concentração final da solução resultante será: Dados: H = 1; S = 32 e O = 16.
- a) 0,10 N
- b) 0,15 N
- c) 0,20 N
- d) 0,10 mol/L
- e) 0,15 mol/L
- 74. (UEL-PR) Misturou-se 300 mililitros de solução de NH₄OH com concentração 3,0 g/L com 200 mililitros de outra solução de mesma base de concentração x g/L. Obtém-se solução final contendo 4,0 g/L de hidróxido de amônio. Indique respectivamente quantos gramas de soluto há na primeira solução e qual o valor numérico de x.
- a) 3,0
- b) 0,90
- c) 0,45
- d) 0,30
- e) 0,10
- 75. (CESGRANRIO) 500 mL de uma solução 1 M de H_2SO_4 e 1 500 mL de uma outra solução 2 M de H_2SO_4 foram misturados e o volume final completado a 2 500 mL pela adição de H_2O . Assinale, dentre as opções abaixo, aquela que apresenta corretamente a molaridade (M) e a normalidade (N) da solução resultante:
- a) 1,5M e 3,0N
- b) 1,4 M e 2,8N
- c) 1,8M e 0,9N
- d) 1,2M e 2,4N
- e) 1,6 M e 0,8 N
- 76. (U.F.GO) Misturando-se 280 mL de uma solução 0,5 N de HCl com 200 mL de uma segunda solução de HCl contendo 14,6 g deste ácido puro em 500 mL de solução, a normalidade final será:
- a) 0,625
- b) 0,8
- c) 0,84

- d) 0,4
- e) 1,46
- 77. (CESGRANRIO) Que massa de hidróxido de sódio sólido se deve adicionar a 500 mL de solução 0,1 N deste hidróxido, para se obter uma solução 0,5 N? (Admita que o volume da solução não se altera com a adição do hidróxido de sódio.)
- a) 0,8 g
- b) 1,0

c) 4,0 g

- d) 8,0g
- e) 20,0 g
- 78. (CESGRANRIO) Dispõe-se de quatro recipientes I, II, III e IV, contendo soluções de um mesmo soluto, representadas no gráfico que se segue pelos pontos a, b, c, d, respectivamente. Para se obter uma solução de molaridade igual a 1,25 devem-se juntar os conteúdos dos recipientes:

- a) I e II
- b) II e III
- c) I e III
- d) I e IV
- 79. (U. F. Ouro Preto-MG) A partir do esquema de diluições representado a seguir, qual será a concentração no frasco D, após a execução das operações indicadas na seqüência de 1 a 5?

GRÁFICO PARA AS QUESTÕES 80 E 81

80. (Unicamp-SP) "O jogo das soluções":

O quadro a seguir representa uma estante onde há béqueres que contêm o mesmo volume V de solução de $HCl_{(aq)}$ ou de $NaOH_{(aq)}$ (soluções diferenciadas pela tonalidade cinza, no desenho).

As concentrações, em mol/L, são as mesmas numa mesma linha e estão indicadas ao lado do quadro.

Usando um béquer de volume suficientemente grande, pode-se nele misturar os conteúdos de vários béqueres do quadro.

Misturando-se todas as soluções que estão no caminho indicado pela linha tracejada, indo da posição A1 até D5 inclusive, podemos afirmar que a solução final é:

- a) ácida, de concentração residual 0,05M.
- d) básica, de concentração residual 0,025M.
- b) básica, de concentração residual 0,05M.
- e) neutra.
- c) ácida, de concentração residual 0,025M.
- 81. Misturando-se todas as soluções que estão na seqüência indicada pela linha contínua, indo de A1 até D5 inclusive, podemos afirmar que a solução final é:
- a) ácida, de concentração residual 0,1M.
- d) básica, de concentração residual 0,05M.
- b) básica, de concentração residual 0,1M.
- e) neutra.
- c) ácida, de concentração residual 0,05M.
- 82. (U.F.ES) 1 litro de uma solução 0,5 molar de CaCl, é adicionado a 4L de solução 0,1 molar de NaCl. As molaridades dos íons Ca⁺⁺, Na⁺ e Cl⁻ na mistura são respectivamente:

Ca ⁺⁺	Na⁺	Cl⁻
a) 0,16	0,04	0,25
b) 0,10	0,08	0,28
c) 0,04	0,08	0,25
d) 0,20	0,25	0,16
e) 0,10	0,08	0,04

	83. (UFMG) Considere concentração 0,10 seguintes, exceto.						
	a) 0,15 M de íons nitratb) 0,15 M de íons sulfatc) 0,30 M de íons cloret	:o. e		e íons nitrito. e íons acetato.			
	84. (FESP-PE) Duas sol Quantos mililitros de 3,97 N?						
	Dados: Ca = 40u; Na =	= 23 u; H = 1u;	O = 16 u				
	a) 0,8 L de NaOH e 2,2 b) 2,2 L de Ca(OH) ₂ e 0 c) 0,5 L de NaOH e 1,5	,8 L de Na(OH)					
	85. (PUC) Foram mistur potássio. As conce respectivamente igu	entrações mola					
	a) 1: 2: 1 b) 1: 1: 2 c) 0,5: 1: 0,5 d) 0,5: 0,5: 1 e) 1: 0,5: 0,5						
	86. (FEI) Para neutraliza de solução 0,1N de						ios 40mL
	a) 2,000g b) 1,225g c) 4,900g d) 1,000g e) 2,450g	Massas atômica	as: H = 1, () = 16 e S = 3	2.		
87	. (Fatec) 100mL de solução H ₂ SO ₄ 0,3M. Na solução		aOH 0,1M f	oram misturad	los a 100mL	de solução a	quosa de
	a) 0,10 mol/litro de H ¹⁺ b) 0,20 mol/litro de H ¹⁺ c) 0,25 mol/litro de H ¹⁺ d) 0,30 mol/litro de H ¹⁺ e) 0,50 mol /litro de H ¹						
88	. (F. Diamantina) Se voc de NaOH, qual será a l				₂ SO ₄ com 20	0mL de solu	ção 0,30N
	a) 0,50 b) 0,23 c) 0,17 d) 0,30 e) 0,25						

89. (U.F. Ouro Preto) O correspondente a 200,0mL de solução de ácido sulfúrico 0,5N é:

```
a) 5,0g de carbonato de cálcio.
```

- b) 5,0g de carbonato de sódio.
- c) 5,0g de cloreto de sódio.
- d) 5,0g de hidróxido de potássio.
- e) 5,0g de hidróxido de sódio.

Massas atômicas: H = 1, C = 12, O = 16, Na = 23, CI = 35,5 e Ca = 40.

90. (Fatec) A massa de carbonato de sódio sólido necessária para neutralizar 200mL de uma solução que contém 490g de ácido sulfúrico por litro é:

- a) 53,0g
- b) 106g
- c) 212g
- d) 10,6g
- e) 21,2g

91. (Mack) Na dosagem de urna solução de ácido clorídrico com a utilização de uma solução titulada de hidróxido de sódio deve-se colocar:

- a) o HCl numa proveta e o NaOH num frasco erlenmeyer.
- b) o HCl numa bureta e o NaOH nurna pipeta.
- c) o HCl numa bureta e o NaOH num frasca erlenmeyer.

	d) kitassato, balão volumétrico e proveta. e) pisseta, cadinho e erlenmeyer.							
93.	93. (Volta Redonda) Uma solução molar de ácido sulfúrico reage com 100mL de uma solução 4N de hidróxido de sódio. O volume da solução ácida, até completa neutralização, será de:							
	a) 400mL	b) 300mL	c) 100mL	d) 50mL	e) 200mL			
94.		dem-se neutraliza se igual volume, d		0mL de uma solução	de H ₂ SO ₄ 0,2M			
	a) NaOH 0,2M b) NaCl 0,4M. c) Ba(OH) ₂ 0,1 d) CaCl ₂ 0,2M. e) KOH 0,4M.	LM.						
95.		nínimo volume de u de AgNO ₃ para pre			r adicionado a 25mL de	uma		
	a) 25mL	b) 10mL	c) 2,5mL	d) 5,0mL	e) 0,1L			
96.	molar de NaC		npletou-se quando		os com solução aquosa 100mL de NaOH. Qual			
	a) 6,0% b) 12% c) 30%	d) 42% e) 60%						
	Massa molar d	o CH₃COOH = 60g	/mol.					
97.	(Osec) Para r necessário é:		de HCl 36,5% em	n massa e d = 1,2g,	/cm³, o volume de NaOl	H 5N		
	a) 54mL Massas atômic	b) 5,4mL cas: H =1, Cl= 35,5	c) 2L 5, Na = 23 e O =16	d) 20cm³ 5.	e) 0,02mL			
98.					n gastos 10mL de uma anja-pêra madura irá			
	c) maior volund) menor volu	el prever. mL da mesma solu ne da mesma solu me da mesma solu enor volume da mo	ção básica. Ição básica.	ca.				
99.	completando-	se esse volume co	om água. 10mL da		balão volumétrico de 1 ram neutralizados com orídrico comercial é:			
	a) 0,50M	b) 1,00M	c) 2,50M	d) 1,50M	e) 2,00M			
100	0,10N de ácio		cesso de ácido é n	eutralizado por 10m	ados 150mL de uma so L de solução 0,50N de N			
	a) 36u	b) 24u c)	23u	d) 137u	e) 40u			
101	uma alíquota uma solução	de 10mL de uma	solução de 100mL sulfúrico. Conside	desse material cons	do de potássio, sabendo umiu na titulação 20,0m cas presentes na mass	nL de		
			SOLUÇÕES			4		

92. (Vunesp) Com um instrumento de vidro A retira-se 25,0mL de uma solução de uma base e colocase num recipiente B. A concentração da solução é determinado por titulação com uma solução de

um ácido, contida num recipiente graduado C. A, B e C são, respectivamente:

d) o HCl numa provota e o NaOH numa bureta.

a) proveta, béquer e condensador.b) pipeta, erlenmeyer e bureta.

c) trompa de vácuo, kitassato e cadinho.

e) o HCl num frasco erlenmeyer e o NaOH numa bureta.

a) 93% b) 56% c) 50% d) 39% e) 100%

Dados: K=39, O=16, H=1 e S=32.

102. (UNESP) A fórmula empírica do ácido capróico (monoprótico) é C_3H_6O . Uma amostra de $$ g do ácido foi completamente neutralizada por 17,2 mL de solução de NaOH 0,050 molar. A fórmula molecular do ácido é (massas atômicas: C = 12; H = 1; O = 16):

- a) $C_4H_8O_3$
- b) $C_6H_{12}O_3$
- c) $C_9H_{18}O_3$
- d) C₁₂H₂₄O₄
- e) C_3H_6O

103. (MACKENZIE-SP) 20 mL de uma solução 0,5 N de NaOH foram diluídos com água destilada até um volume de 100 mL. A seguir, 25 mL dessa solução foram misturados a 25 mL de uma solução de $\rm H_2SO_4$ 0,2 N, contendo 2 gotas de fenolftaleína. A mistura contém, então:

- a) excesso de NaOH e apresenta-se incolor.
- b) excesso de NaOH e apresenta-se rosa.
- c) excesso de H₂SO₄ e apresenta-se incolor.
- d) excesso de H₂SO₄ e apresenta-se rósea.
- e) pH igual a 7 e apresenta-se rósea.

104. (PUC-SP) Misturando-se 50 mL de solução 0,2 normal de hidróxido de sódio com 40 mL de solução 0,8 normal de hidróxido de potássio, qual é o volume de solução 0,2 normal de ácido sulfúrico, necessário para neutralizar a mistura?

- a) 21 mL
- b) 40 mL
- c) 42 mL
- d) 50 mL
- e) 90 mL

GABARITO - SOLUÇÕES

01	D	36	С	71	D
02	С	37	С	72	С
03	С	38	В	73	В
04	D	39	С	74	В
05	Е	40	Е	75	В
06	FVFVV	41	D	76	E
07	C	42	Α	77	D
08	VVFVF	43	С	78	Α
09	Α	44	С	79	Α
10	D	45	D	80	D
11	Α	46	FFVFF	81	E
12	FFFFF	47	С	82	В
13	С	48	В	83	Α
14	Е	49	В	84	A C
15	В	50	Α	85	С
16	D	51	D	86	Е
17	D	52	D	87	С
18	С	53	Α	88	С
19	D	54	D	89	Α
20	D	55	В	90	В
21	Α	56	Е	91	Е
22	E	57	E	92	D
23	D	58	В	93	E
24	Α	59	E	94	E
25	В	60	В	95	В
26	D	61	D	96	В
27	E	62	D	97	D
28	В	63	D	98	D
29	С	64	C C	99	С
30	С	65		100	В
31	С	66	D	101	Α
32	С	67	D	102	В
33	А	68	В	103	С
34	D	69	В	104	Α
35	VVVVFFV	70	Α		