Робастные методы сжатия данных

Парамонов Всеволод Антонович

2024

Lели

- Изучение метода главных компонент и робастных оценок корреляционных матриц
- Проведение компьютерного моделирования, имитирующего коррелированные данные с различными типами засорения
- Подбор больших публичных датасетов для анализа сжатия
- Сжатие данных с помощью метода главных компонент
- Построение метрик, оценивающих качество сжатия данных

Понижение размерности

- процесс сокращения количества измерений (признаков) с сохранением наиболее значимой информации о структуре данных

$$f: \mathbb{R}^d \to \mathbb{R}^k, \ k < d$$

Мотивы понижения размерности

- Сжатие данных для более эффективного хранения информации
- Визуализация и интерпретация данных
- Уменьшение вычислительных затрат (например, в задачах регрессии)
- Борьба с мультиколлинеарностью

MFK (PCA)

- линейное преобразование исходных признаков, направленная на поиск новых ортогональных осей таким образом, чтобы проекция исходных данных на эти оси имела максимальную дисперсию

Пусть $X = [X_1, X_2, \dots, X_k] \in R^{n \times k}$ - матрица объекты-признаки, где $X_i \in \mathbb{R}^n$. Главной задачей является переход от матрицы X к матрице $Z \in \mathbb{R}^{n \times m}$, причем m < k. Далее будем считать, что данные в матрице X центрированы и стандартизированы

Также необходима восстанавливаемость исходной матрицы признаков с приемлемой точностью. Таким образом $\exists U \in \mathbb{R}^{k \times m}$ (U - ортонормированная матрица, $U^T U = U U^T = I$), что матрица $Z U^T$ является неплохим приближением матрицы X

МГК. Постановка задачи

Максимизация дисперсии

Предположим, что признак Z_1 линейно выражается через все признаки матрицы X. Тогда:

$$Z_1 = w_{11}X_1 + \dots + w_{1k}X_k = Xw_1, \sum_{i=1}^k w_{1i}^2 = 1$$

Тогда задача выглядит следующим образом:

$$\begin{cases} ||Z_1||^2 = w_1^T X^T X w_1 \to \mathsf{max}_{w_1} \\ w_1^T w = 1 \end{cases}$$

МГК. Постановка задачи

Максимизация дисперсии

Выпишем Лагранжиан:

$$\mathbb{L} = w^T X^T X w - \lambda (w^T w - 1) \to max$$

$$\frac{\partial \mathbb{L}}{\partial w} = 2X^T X w - 2\lambda w = 0$$

$$X^T X w = \lambda w$$

Подставляя решение в функцию Лагранжа получается:

$$\mathbb{L} = \lambda w^T w - \lambda (w^T w - 1) = \lambda$$

Итого: максимальное значение дисперсии компоненты достигается при использовании собственного вектора, которому соответствует максимальное собственное значение, в качестве компоненты

MTK SVD

Допустим, что пока что не происходит сокращения размерности, тогда:

$$Z = XU \Rightarrow X = ZU^T$$

Разложим матрицу X с помощью SVD:

$$X = \underbrace{VD}_{Z} U^{T} = ZU^{T}$$

Тогда матрица ковариаций для главных компонент будет выглядеть следующим образом:

$$Z^TZ = U^TX^TXU = U^TUD^TV^TVDU^TU = D^TD$$

MFK SVD

Получилось так, что ковариационная матрица Z^TZ - диагональная матрица, у которой компоненты не коррелированны, а на диагонали находятся дисперсии данных компонент

MFK

Ошибка восстановления

Теперь представим, что мы берем не все компоненты, а лишь m штук. Тогда ошибка будет выглядеть следующим образом:

$$\epsilon = ||XU - X\hat{U}||_F^2,$$

где \hat{U} - матрица, у которой занулены столбцы, начиная с m+1. Домножим выражение на U^T , поскольку норма Фробениуса не зависит от домножения на ортогональную матрицу

$$\epsilon = ||XUU^{\mathsf{T}} - X\hat{U}U^{\mathsf{T}}||_F^2$$

MΓK

Ошибка восстановления

Разложим матрицу X через SVD и подставим в выражение:

$$\epsilon = ||VDU^{T} - V\hat{D}U^{T}||_{F}^{2} = ||V(D - \hat{D})U^{T}||_{F}^{2}$$

D и \hat{D} - диагональные матрицы \Rightarrow на диагонали матрицы $(D-\hat{D})=D^*$ находятся элементы $(0,\dots,\sqrt{\lambda_{m+1}},\dots)$. Тогда:

$$\epsilon = ||UD^*V^T||_F^2 = tr(UD^*V^TVD^{*T}U) = tr(D^2) = \sum_{i=m+1}^{n} \lambda_i$$

Итого: Ошибка будет соответствовать сумме квадратов собственных значений, которым соответствуют не использовавшиеся компоненты

Недостатки МГК

- Сложность вычисления главных компонент при большом количестве признаков. Данная проблема решается степенным методом нахождения собственных значений и собственных векторов
- МГК способен находить только линейные подпространства исходного пространства, которые сохраняют дисперсию исходных данных с высокой точностью. Таким образом от обычного МГК можно перейти к ядровому МГК
- МГК чувствителен к выбросам данных и зависит от стандартизации

Ядровый МГК

Идея ядрового МГК заключается в применении нелинейных преобразований к векторам признаков, которое сделало бы линейные методы более мощными

Вместо обычного скалярного произведения < x, y > в пространстве \mathbb{R}^n в обычном МГК теперь используется следующее скалярное произведение:

$$K(x,y) = <\phi(x), \phi(y)>,$$

где $\phi:\mathbb{R}^n \to \mathbb{R}^N$, N >> n. Также для применения функции ϕ нет необходимости знать явный вид функции

Ядровый МГК

Ядровый МГК

В качестве функции ϕ можно использовать следующие функции / ядра:

- Линейное ядро: K(x, y) = xy
- ullet Гауссово ядро: $K(x,y) = exp(-rac{||x-y||^2}{2\sigma^2})$
- Полиномиальное ядро: $K(x, y) = (\gamma xy + c)^d$
- ...

Выбор количества компонент

Установление порога

Дисперсиями главных компонент являются соответствующие собственные значения ковариационной матрицы стандартизированных величин, упорядоченные по убыванию. Тогда общая доля дисперсии, которую покрывают / компонент:

$$\frac{\sum_{i=1}^{l} \lambda_{(i)}}{\sum_{j=1}^{k} \lambda_{j}}$$

После того как был установлен порог t (удовлетворительная доля дисперсии, покрываемая главными компонентами), подбирается такое l, чтобы значение общей доли было больше порога

Выбор количества компонент

Критерий Кайзера

В соответствии с правилом Кайзера, следует выбирать те компоненты, у которых собственное значение больше 1

$$\Lambda = [c_i, c_{i+1}, ...] \ \forall \ \lambda_i \ge 1$$

Где Л - матрица с выбранными главными компонентами

Выбор количества компонент

Оценка качества сжатия данных

Для сравнения качества между моделями сжатия многомерных данных используется показатель:

$$e = \frac{\sum_{i=1}^{m} \lambda_i}{\sum_{i=1}^{m} \hat{\lambda}_i} - 1,$$

где λ - собственное значение истинной корреляционной матрицы, λ - собственное значение оцененной корреляционной матрицы

Идеальным значением показателя будет 0, поэтому в дальнейшем можно рассматривать модуль данного показателя Робастные оценки корреляционных матриц

Корреляция Пирсона

$$\rho(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 (Y_i - \overline{Y})^2}}$$

Корреляция Спирмена

- Для каждого значения признака присваивается ранг от наименьшего к наибольшему. Если же встречаются повторяющиеся признаки, то им присваивается среднее значение ранга
- Для каждой пары значений признаков вычисляется квадрат разности рангов

$$d_i = (rang_i^{X_j} - rang_i^{X_k})^2$$

Где j,k - номера признаков, i - номер значений признаков

• Расчет значения корреляции

$$\rho(d_i) = 1 - \frac{6\sum_{i=1}^{n} d_i}{n(n^2 - 1)}$$

Медианная корреляция

$$Med_X, Med_Y -$$
 медианы X и Y соответственно $MAD(X) = Med(|X_i - Med(X_i)|)$ $MAD(Y) = Med(|Y_i - Med(Y_i)|)$ $Covmed(X,Y) = [(X - Med_X)(Y - Med_Y)]$ $ho(X,Y) = rac{Covmed(X,Y)}{MAD(X) imes MAD(Y)}$

MAD

$$\rho(u, v) = \frac{(MAD^{2}(u) - MAD^{2}(v))}{(MAD^{2}(u) + MAD^{2}(v))}$$

$$u = \frac{X - Med(X)}{\sqrt{2}MAD(X)} + \frac{Y - Med(Y)}{\sqrt{2}MAD(Y)}$$

$$v = \frac{X - Med(X)}{\sqrt{2}MAD(X)} - \frac{Y - Med(Y)}{\sqrt{2}MAD(Y)}$$

Работа с синтетическими данными

Генерация данных

Сгенерируем данные из следующих распределений для проведения экспериментов с целью оценки качества робастности оценок корреляционных матриц и сжатия многомерных данных:

• Выборка 1: многомерное нормальное распределение

$$(X)_{i=1}^n \sim \mathbb{N}(0,K)$$

• Выборка 2: многомерное распределение Тьюки

$$(X)_{i=1}^n \sim (1-\delta)\mathbb{N}(0,K) + \delta\mathbb{N}(0,c^2K)$$

Выборка 3: многомерное распределение ACN

$$(X)_{i=1}^n \sim (1-\delta)\mathbb{N}(0,K) + \delta\mathbb{N}(\mu,c^2K)$$

• Выборка 4: многомерное распределение Стъюдента

$$(X)_{i=1}^n \sim t(df)$$

Визуализация данных

Оценка робастности корреляционных функций

Для оценки робастности k раз сгенерируем выборку из некоторого распределения и оценим корреляционную матрицу. В качестве метрики схожести корреляционных матриц (истинной и сгенерированной) будем использовать евклидово расстояние между векторами, представляющими верхний треугольник (без диагональных элементов) матриц корреляции

Итоговой оценкой робастности будет усредненное значение евклидова расстояния по k генерациям

Сравнение результатов оценивания для корреляционных функций

	Pearson	Spearman	MAD	MED
MultiNormal	0.208439	0.212653	5.219468	2.047972
ACN	0.206961	0.204515	9.596546	2.046548
SCN	0.191703	0.202676	9.682890	2.045978
t	0.283220	0.236937	5.505540	2.045801

Таблица: Средние "ошибки" оценок корреляционных матриц

Оценка разброса значений корреляционных функций

Сгенерируем для каждого распределения k выборок и для каждой из них посчитаем корреляционную матрицу. Соберем в матрицу все получившиеся оценки, где в каждой строке будут находиться значения верхнего треугольника корреляционной матрицы.

Далее посчитаем стандартное отклонение каждого столбца матрицы и посчитаем квадрат евклидовой нормы получившегося вектора, что и будет являться мерой разброса корреляционной функции

Проверка робастности корреляционных функций

	Pearson	Spearman	MAD	MED
MultiNormal	0.043312	0.05319	0.037553	0.052439
ACN	0.046013	0.043703	0.043022	0.041592
SCN	0.047638	0.045243	0.049953	0.040631
t	0.142757	0.101361	0.116142	0.105153

Таблица: Дисперсии оценок корреляционных матриц

Итоги. Выбор корреляционной функции

Показатели отражают, что следует выбрать корреляцию Пирсона в качестве функции для оценки корреляционных матриц, поскольку данная функция имеет маленький разброс и ошибку относительно других функций оценки корреляции

Также стоит отметить, что корреляция Спирмена составила неплохую конкуренцию, тк ее показатели не сильно отличаются от показателей корреляции Пирсона

Сравнение МГК с разными корреляционными функциями

По аналогии проведем несколько экспериментов, где для каждого набора данных и для каждой корреляционной функции посчитаем главные компоненты и возьмем первые 3 компоненты и посчитаем разброс проекций исходных данных на эти компоненты и показатель для сравнения моделей МГК (слайд 22):

$$e = \frac{\sum_{i=1}^{m} \lambda_i}{\sum_{i=1}^{m} \hat{\lambda}_i} - 1$$

Сравнение дисперсий компонент

	Pearson	Spearman	MAD	MED
MultiNormal	1.860765	1.860087	0.248955	1.037364
ACN	1.876917	1.876182	0.243319	0.229604
SCN	1.872717	1.871476	0.241794	0.886149
t	1.89755	1.8936	0.184575	1.270027

Таблица: Дисперсии главных компонент

Сравнение моделей по показателю близости истинных и оцененных собственных значений корреляционной матрицы

	Pearson	Spearman	MAD	MED
MultiNormal	0.004223	0.005806	0.321503	145.589495
ACN	0.004419	0.005942	0.363547	145.134802
SCN	0.002186	0.004058	0.379665	101.694736
t	0.015245	0.005533	0.779886	119.448396

Таблица: Дисперсии главных компонент

Выводы. МГК

Было показано, что действительно качество сжатия многомерных данных зависит от степени робастности выбранной корреляционной функции. Также были подтверждены выводы из предыдущего пункта о робастности корреляций Пирсона и Спирмена: модели МГК с использованием данных корреляционных функций показали наилучшие результаты

Работа с реальными данными