Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 156.5 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 658.60 658.59 658.58 Bølgelengde (nm) 658.57 658.56 658.55 658.54 658.53 0 10 20 60 70 30 40 50 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 10.44, tilsynelatende blå størrelseklass $m_B=11.61$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 4.84, tilsynelatende blå størrelseklass $m_B = 7.01$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=4.84,$ tilsynelatende

blå størrelseklass m_B = 6.01

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 10.44, tilsynelatende blå størrelseklass $m_B = 12.61$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.67 og store halvakse a=12.36 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.67 og store halvakse a=35.54 AU.

Filen 1F.txt

Ved bølgelengden 599.72 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 8.60 Tilsynelatende størrelsklasse m_V 8.40 8.20 8.00 7.80 7.60 5 ò 10 30 35 15 20 25 40 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 27.40 solmasser, temperatur på 11.20 Kelvin og tetthet 1.41e-20 kg per kubikkmeter

Gass-sky B har masse på 19.40 solmasser, temperatur på 24.90 Kelvin og tetthet 1.89e-21 kg per kubikkmeter

Gass-sky C har masse på 12.00 solmasser, temperatur på 48.70 Kelvin og

tetthet 8.71e-21 kg per kubikkmeter

Gass-sky D har masse på 7.00 solmasser, temperatur på 28.40 Kelvin og tetthet 5.73e-21 kg per kubikkmeter

Gass-sky E har masse på 21.60 solmasser, temperatur på 21.40 Kelvin og tetthet 8.01e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas overflate består hovedsaklig av helium

STJERNE B) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

STJERNE C) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE D) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE E) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

Filen 1L.txt

Stjerne A har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 6.25

Stjerne B har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V = 7.95

Stjerne C har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 5.62

Stjerne D har spektralklasse K2 og visuell tilsynelatende størrelseklasse m_V = 1.40

Stjerne E har spektralklasse A6 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}=4.91$

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning) og den andre halvparten har ingen bevegelse langs synsretningen

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.745999999999999644729 AU.

Tangensiell hastighet er 40245.883231317107856739 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.378 AU.

Kometens avstand fra jorda i punkt 2 er r2=5.255 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=17.140.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9384 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00028 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=120.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9887 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 734.70 nm.

Filen 4A.txt

Stjernas masse er 3.14 solmasser.

Stjernas radius er 0.59 solradier.

Filen 4C.png

Figur 4C 2.2000 2.0000 1.8000 Sannsynlighetstetthet i 10⁻⁴ % 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -400 -200 200 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 25.49 millioner K

Filen 4G.txt

Massen til det sorte hullet er 4.07 solmasser.

r-koordinaten til det innerste romskipet er
r $=12.15~\mathrm{km}.$

r-koordinaten til det innerste romskipet er r $=23.37~\mathrm{km}.$