15.2) Cross-Validation

Vitor Kamada

January 2020

Tables, Graphics, and Figures from:

1) An Introduction to Statistical Learning

James et al. (2017): Chapters: 5.1

2) The Elements of Statistical Learning

Hastie et al. (2017): Chapter: 7.10

Training Set vs Validation or Hold-out Set

Randomly division in two part:

3/16

mpg on Polynomial Functions of hp

Random Split (10x)

Leave-One-Out Cross-Validation (LOOCV)

$$\{(x_2,y_2),...,(x_n,y_n)\} o$$
 Training Set $(x_1,y_1) o$ Validation Set $MSE_1 = (y_1 - \hat{y}_1)^2$ $CV_{(n)} = rac{1}{n} \sum_{i=1}^n MSE_i$

LOOCV: mpg on hp ...

Generalized Cross-Validation (GCV)

$$\hat{y} = Sy$$

$$\frac{1}{N} \sum_{i=1}^{N} [y_i - \hat{f}^{-i}(x_i)]^2 = \frac{1}{N} \sum_{i=1}^{N} [\frac{y_i - \hat{f}(x_i)}{1 - S_{ii}}]^2$$

$$GCV(\hat{f}) \cong \frac{1}{N} \sum_{i=1}^{N} \left[\frac{y_i - \hat{f}(x_i)}{1 - \frac{trace(S)}{N}} \right]^2$$

trace(S): Effective # of Parameters

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへで

8/16

Vitor Kamada ECO 7100 Econometrics I January 2020

LOOCV for OLS

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} (\frac{y_i - \hat{y}_i}{1 - h_i})^2$$

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}$$

9/16

Vitor Kamada ECO 7100 Econometrics I January 2020

k-Fold Cross-Validation

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

123 n 47 11 76 5 11 76 5 47 11 76 5 47 11 76 5 47 11 76 5 47

Vitor Kamada ECO 7100 Econometrics I

10 / 16

10-fold CV: mpg on hp ...

January 2020

Hypothetical Learning Curve for a Classifier

Cross-Validation on Classification Problems

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

$$log(\frac{p}{1-p}) = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_4 X_2^2$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 9000

Vitor Kamada ECO 7100 Econometrics I January 2020 13 / 16

Test Error Rates: 20.1% and 19.7%

Bayes Error Rate: 13.3%

14 / 16

Test Error Rates: 16% and 16.2%

Degree=3

Degree=4

Test (brown), Training (blue), and 10-fold CV Error (black)

