Problèmes de Synthèse : Limites et Continuité Corrigés Complets

Baccalauréat Scientifique Koudaya Kossi Boris

Problème 1 : Étude complète d'une fonction rationnelle -Corrigé

Rappel de cours 1. Pour une fonction rationnelle $f(x) = \frac{P(x)}{Q(x)}$:

- Le domaine est \mathbb{R} privé des racines de Q(x)
- Les limites à l'infini se calculent en comparant les degrés
- Les asymptotes verticales correspondent aux racines du dénominateur

1. Domaine de définition

- 1. $\mathcal{D}_f = \mathbb{R} \setminus \{-2, 2\} \text{ car } x^2 4 = 0 \iff x = \pm 2.$
- 2. Factorisation:

Numérateur :
$$x^3 - 3x + 2 = (x - 1)^2(x + 2)$$

Dénominateur : $x^2 - 4 = (x - 2)(x + 2)$

2. Limites et asymptotes

1. Limites:

- En 2:
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{(x-1)^2}{x-2} = \begin{cases} +\infty & x > 2\\ -\infty & x < 2 \end{cases}$$
- En -2: $\lim_{x \to -2} f(x) = \frac{(-3)^2}{-4} = -\frac{9}{4}$
- En $\pm \infty$: $\lim_{x \to \pm \infty} \frac{x^3}{x^2} = \pm \infty$

- 2. Asymptotes:
 - Asymptote verticale en x=2
 - Asymptote oblique $y = x (\operatorname{car} f(x) x \to 0)$
- 3. Position relative:

$$f(x) - x = \frac{-3x + 2}{x^2 - 4}$$

3. Continuité et prolongement

- 1. Continue sur \mathcal{D}_f
- 2. Prolongement en x = -2: $f(-2) = -\frac{9}{4}$
- 3. Dérivabilité en -2:

$$f'(x) = \frac{(x-1)(x^2 - 4x + 7)}{(x-2)^2} \Rightarrow f'(-2) = -\frac{57}{16}$$

4. Théorème des valeurs intermédiaires

- 1. $f(x) = 1 \Leftrightarrow x^3 3x + 2 = x^2 4 \Leftrightarrow x^3 x^2 3x + 6 = 0$ Solutions: $x \approx -1.5$, x = 1, $x \approx 2.5$ (3 solutions)
- 2. Sur $]2, +\infty[$: solution dans]2.5, 2.51[(f(2.5) < 1, f(2.51) > 1)

5. Bijection réciproque

- 1. f strictement croissante sur] -2,0[de $f(-2^+)=+\infty$ à $f(0)=-\frac{1}{2}$ Bijection sur $J=]-\frac{1}{2},+\infty[$
- 2. f^{-1} dérivable sur J et :

$$(f^{-1})'\left(\frac{1}{2}\right) = \frac{1}{f'(f^{-1}(1/2))}$$

Trouver x tel que $f(x) = \frac{1}{2}$: $x \approx -1$ puis calculer $f'(-1) = \cdots$

Problème 2 : Fonction avec paramètres et exponentielle - Corrigé

Rappel de cours 2. Continuité en $a: \lim_{x\to a^+} g(x) = \lim_{x\to a^-} g(x) = g(a)$

Dérivabilité : existence de $\lim_{h\to 0} \frac{g(a+h)-g(a)}{h}$

1. Continuité en 0

- 1. $\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} ae^{-1/x^2} = 0$ $\lim_{x \to 0^-} g(x) = b \cdot 0 + c = c$ g(0) = cPour continuité : c = 0
- 2. Si c = 0, alors q continue partout

2. Dérivabilité en 0

1. Taux d'accroissement :
$$\frac{g(h)-g(0)}{h} = \begin{cases} \frac{ae^{-1/h^2}}{h} & h > 0\\ b & h < 0 \end{cases}$$

- 2. Si dérivable : $\lim_{h\to 0^+} \frac{ae^{-1/h^2}}{h} = 0$ et b=0
- **3.** Étude pour b = c = 0, a = 1
 - 1. $g'(x) = \frac{2}{x^3}e^{-1/x^2}$ pour x > 0
 - 2. Par récurrence : $g^{(n)}(x) = P_n(1/x)e^{-1/x^2}$ où P_n polynôme
 - 3. $q^{(n)}(0) = 0$ pour tout n

4. Théorème de la bijection

- 1. g strictement croissante sur \mathbb{R} (car g'(x) > 0 pour $x \neq 0$ et continue en 0) Bijection sur
- 2. g^{-1} continue et dérivable sur [0,1]

5. Limites

- 1. $\lim_{x \to +\infty} x^5 e^{-1/x^2} = +\infty \cdot 1 = +\infty$
- 2. $\lim_{x\to 0} \frac{e^{-1/x^2}}{x^n} = 0$ par croissances comparées

Problème 3 : Fonction trigonométrique - Corrigé

1. Continuité et dérivabilité

1. $\lim_{x\to 0} \frac{\sin x}{x} = 1 = h(0)$ donc continue

2. Dérivée en 0 : $\lim_{h\to 0} \frac{h(h)-h(0)}{h} = \lim_{h\to 0} \frac{\frac{\sin h}{h}-1}{h} = \lim_{h\to 0} \frac{\sin h-h}{h^2} = 0$

2. Variations et extremums

1. $h'(x) = \frac{x \cos x - \sin x}{x^2}$

2. Signe de h' : positif sur $[0,\pi]$, négatif sur $[\pi,2\pi]$

3. Maximum en x = 0 (h(0) = 1), minimum en $x = \pi$ $(h(\pi) = 0)$

3. Intégrale et aire

1. H bien définie car h continue

2. $\lim_{x \to +\infty} H(x) = \frac{\pi}{2}$ (intégrale de Dirichlet)

3. $|H(x)| \leq \int_0^x |h(t)| dt \leq \int_0^x dt = x$ mais meilleure borne : $|H(x)| \leq 2$

4. Équation fonctionnelle

1. Si périodique de période T, alors h(T)=h(0)=1 mais $\lim_{x\to\infty}h(x)=0$, contradiction

2. $h(x) = h(2x) \iff \frac{\sin x}{x} = \frac{\sin 2x}{2x} \iff 2\sin x = \sin 2x = 2\sin x \cos x$ Solutions: $\cos x = 1$ ou $\sin x = 0 \Rightarrow x = k\pi$

5. Théorème de Rolle

1. $h'(x) = 0 \iff x \cos x = \sin x \iff \tan x = x$ (infinites solutions)

2. Appliquer Rolle à $\varphi(x) = xh(x) = \sin x \text{ sur } [k\pi, (k+1/2)\pi]$

Problème 4 : Fonction avec valeur absolue - Corrigé

4

1. Domaine et expression

1. $\mathcal{D}_k = \mathbb{R} \setminus \{2\}$

2.
$$k(x) = \begin{cases} \frac{x^2 - 1}{x - 2} & x \in]-\infty, -1] \cup [1, +\infty[$$

$$\frac{1 - x^2}{x - 2} & x \in]-1, 1[$$

2. Limites et continuité

1. Limites en $2:\pm\infty$, en $\pm\infty:\pm\infty$

2. Continue sur \mathcal{D}_k

3. Non prolongeable en x = 2 (limite infinie)

3. Asymptotes

— Asymptote verticale en x = 2

— Asymptote oblique y = x + 2 (après division)

4. Dérivabilité

1. En x=1 : dérivées à gauche et à droite différentes

2.
$$k'(x) = \begin{cases} \frac{x^2 - 4x + 1}{(x - 2)^2} & |x| > 1\\ \frac{-x^2 + 4x - 1}{(x - 2)^2} & |x| < 1 \end{cases}$$

5. TVI généralisé

1. Sur] $-\infty,-1[,\,k$ strictement croissante de $-\infty$ à k(-1)=0 Bijection sur] $-\infty,0[$

2. Pour m > 0, toujours au moins une solution (limite $+\infty$ en $+\infty$)

3. Trois solutions quand m > k(1) = 0

6. Fonction composée

1. $m(x) = k(e^x)$ définie sur $\mathbb{R} \setminus \{\ln 2\}$

2. $\lim_{x \to -\infty} m(x) = \lim_{t \to 0} k(t) = \frac{1}{2}$

3. Continue et dérivable sur $\mathbb{R} \setminus \{\ln 2\}$

