Глава 1. Интегрирование

§1. Первообразная и неопределенный интеграл

П.1. Основные определения

Пусть функция f(x) определена на отрезке [a;b]. Нам нужно найти такую функцию F(x), что F'(x) = f(x) на [a;b]. Функция F(x) будет называться первообразной от функции f(x) на [a;b] при условии что F'(x) = f(x) во всех точках этого отрезка.

Пример: $f(x) = x^3$; $F(x) = \frac{x^4}{4}$.

Теорема 1. Пусть $F_1(x)$ и $F_2(x)$ – две первообразные от функции f(x) на [a;b]. Тогда $F_1(x) - F_2(x)$ равно некоторому константному значению.

Доказательство. Пусть $F_1(x)$ и $F_2(x)$ – две первообразные, и $F_1'(x) = f(x), F_2'(x) = f(x)$. Тогда $F_1'(x) - F_2'(x) = 0$. Пусть $\varphi(x) = F_1(x) - F_2(x)$. Тогда $\varphi'(x) = 0$. Покажем, что $\varphi(x)$ – константа на отрезке [a;b]. Рассмотрим отрезок [a;x]. По теореме Лагранжа существует такое ξ , принадлежащее промежутку (a;x), что $\varphi(x) - \varphi(a) = \varphi'(\xi)(x-a)$. Но $\varphi'(\xi) = 0$. Следовательно, $\varphi(x) - \varphi(a) = 0$, а значит $\varphi(x) = \varphi(a)$ и равно некоторому константному значению. Доказано.

<u>Следствие.</u> Если найдена первообразная, то все остальные отличаются от нее на константу. F(x) + c – семейство первообразных $(c \in R)$ (сдвиг графика первообразной по оси ординат).

Если (F(x)+c)'=f(x), то $\int f(x)dx=F(x)+c$ – неопределенный интеграл, где f(x)dx – подынтегральное выражение, f(x) – подынтегральная функция. Действия от нахождения первообразной – неопределенное интегрирование. В отличие от производной, интеграл элементарной функции не является элементарной функцией. Первообразную можно найти не для всех функций.

П.2. Свойства неопределенных интегралов

- 1) $(\int f(x) dx)' = (F(x) + c)' = f(x)$.
- 2) $d(\int f(x)dx) = f(x)dx = dF$.
- $3) \int dF(x) = F(x) + c.$
- 4) Линейность
 - a) $\int af(x)dx = a \int f(x)dx$.
 - b) $\int (f_1(x) + f_2(x)) dx = \int f_1(x) dx + \int f_2(x) dx$.

Доказательство b. $(\int (f_1(x) + f_2(x))dx)' = f_1(x) + f_2(x) = (\int f_1(x)dx)' + (\int f_2(x)dx)' = (\int f_1(x)dx + \int f_2(x)dx)'$. По первому свойству равны подынтегральные функции, и, следовательно, сами интегралы.

$$5) \int f(ax+b)dx = \frac{1}{a}F(ax+b) + c.$$

Доказательство. $(\int f(ax+b)dx)' = f(ax+b)$. Тогда $(\frac{1}{a}F(ax+b)+c)' = \frac{1}{a}F_y'(y)(ax+b)' = \frac{1}{a}F'(ax+b)*a = f(ax+b)$.

Следствие.
$$\int f\left(\frac{x}{a}\right) dx = aF\left(\frac{x}{a}\right) + c$$
.

П.3. Таблица интегралов

1.
$$\int x^a dx = \frac{x^{a+1}}{a+1} + c$$
, $a! = -1$.

$$2. \int \frac{dx}{x} = \ln|x| + c.$$

$$3. \int \sin x \, dx = -\cos x + c.$$

$$4. \int \cos x \, dx = \sin x + c.$$

$$5. \int \frac{dx}{\cos^2 x} = \tan x + c.$$

$$6. \int \frac{dx}{\sin^2 x} = -\cot x + c.$$

$$7. \int e^x dx = e^x + c.$$

8.
$$\int a^x dx = \frac{a^x}{\ln a} + c.$$

9.
$$\int \frac{dx}{1+x^2} = \tan x + c$$
.

$$10. \int \frac{dx}{\sqrt{1-x^2}} = a\sin x + c.$$

Первые 10 интегралов являются следствиями из таблицы производных. Остальные выводятся.

$$11. \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{atan} \frac{x}{a} + c.$$

Доказательство. $\int \frac{dx}{a^2+x^2} = \frac{1}{a^2} \int \frac{dx}{1+\left(\frac{x}{a}\right)^2}$. По следствию пятого свойства и девя-

тому интегралу это равно $\frac{a}{a^2}$ atan $\frac{x}{a} + c = \frac{1}{a}$ atan $\frac{x}{a} + c$.

$$12. \int \frac{dx}{\sqrt{a^2 - x^2}} = a\sin\frac{x}{a} + c.$$

Доказательство. $\int \frac{dx}{\sqrt{a^2-x^2}} = \frac{1}{a} \int \frac{dx}{\sqrt{1-\left(\frac{x}{a}\right)^2}}$. По следствию пятого свойства и деся-

тому интеграла это равно $\frac{a}{a} a \sin \frac{x}{a} + c = a \sin \frac{x}{a} + c$.

13.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + c$$
.

Доказательство. $\frac{1}{a^2-x^2} = \frac{1}{(a-x)(a+x)} = \frac{1}{2a} \left(\frac{1}{a+x} + \frac{1}{a-x} \right).$ Следовательно, $\int \frac{dx}{a^2-x^2} = \frac{1}{2a} \left(\int \frac{dx}{x+a} - \int \frac{dx}{x-a} \right) = \frac{1}{2a} \left(\ln|x+a| - \ln|x-a| \right) + c = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + c.$

§2. Интегрирование методом замены переменной или подстановкой

Пусть нужно найти интеграл вида $\int f(x)dx$ и пусть этот интеграл существует. Тогда $x=\varphi(t); dx=\varphi'(t)dt; \int f(x)dx=\int f\big(\varphi(t)\big)\varphi'(t)dt$. Это называется формулой замены переменной для неопределенного интеграла. Рассмотрим интеграл $\int f(\varphi)d\varphi=\int f\big(\varphi(t)\big)\varphi'(t)dt$. Тогда $\int f\big(\varphi(t)\big)\varphi'(t)dt=\int f(\varphi)d\varphi=F\big(\varphi(t)\big)+c$.

Пример:
$$\int \sqrt{\sin x} \cos x \, dx = \int \sqrt{\sin x} \, d(\sin x) = \int u^{1/2} du = \frac{2u^{3/2}}{\frac{3}{2}} = \frac{2}{3} \sin^{3/2} x + c.$$

14.
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{d(-\cos x)}{-\cos x} = -\ln|\cos x| + c$$
.

$$15. \int \cot x \, dx = \int \frac{\cos x}{\sin x} dx = \int \frac{d(\sin x)}{\sin x} = \ln|\sin x| + c.$$

Частные случаи

$$\int af(ax)dx = \int f(ax)d(ax)$$

$$\int f(x+b)dx = \int f(x+b)d(x+b)$$
 Пример: $\int \sin(2x+6) \, dx = \frac{1}{2} \int \sin(2x+6) \, d(2x+6) = -\frac{1}{2} \cos(2x+6) + c$.