

Why do we want to make predictions for molecules?

Motivation

- Molecules are the building blocks of life
 - Understanding their functions and interactions is relevant for many different natural sciences
 - Biology
 - Biochemistry
 - Medicine
 - Environmental Sciences
 - It has also many import industrial applications
 - Designing new materials with desired properties
 - Designing new pathways of chemical reactions for the synthesis of different substances
 - Drugs
 - Biofuels
 - Chemicals

Malate

2,4-Dihydroxybutyric acid (DHB)

Methods to determine molecule properties

- Experiments
- Advantage: Usually very accurate
- Disadvantages: Often time-consuming, difficult, and expensive
- Non-ML computational methods: Simulate the behavior of molecules using theoretical principles, empirical data, and statistical analysis
 - Advantages: Speed, Costs, Accessibility
 - Disadvantages: Accuracy, Complexity Limits, Data Requirement
- Machine Learning models:
 - Advantages: Handling Complexity, Detecting Patterns, Speed, Flexibility
 - Disadvantages: Accuracy, Data Dependency, Overfitting

Examples for predicting molecule properties

Protein property prediction:

Small molecule property prediction:

Examples for predicting molecule properties (2)

Protein-small molecule interaction predictions:

On what kind of molecules will we focus?

- We will mostly focus on biomolecules:
 - Micromolecules (Small Molecules):
 - Vitamins
 - Amino Acids
 - Monosaccharides
 - Nucleotides
 - Macromolecules
 - Proteins
 - Nucleic Acids (DNA and RNA)
 - Polysaccharides

