Calculus II Power series expansion of the exponent

Todor Miley

2019

•
$$f^{(n)}(x) =$$

•
$$f^{(n)}(x) = e^x$$
.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) =$

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right|$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty} ---$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{x^n}$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{x^n}$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1}$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} =$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} = 0$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} = 0 < 1$$

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• To find the radius of convergence, let $a_n = \frac{x^n}{n!}$.

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} = 0 < 1$$

• Therefore by the Ratio Test the series converges for all x.

Find the Maclaurin series of $f(x) = e^x$ and its radius of convergence.

- $f^{(n)}(x) = e^x$.
- $f^{(n)}(0) = e^0 = 1$.
- Therefore the Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)!}\cdot\frac{n!}{x^n}\right| = \lim_{n\to\infty}\frac{|x|}{n+1} = 0 < 1$$

- Therefore by the Ratio Test the series converges for all x.
- Therefore $R = \infty$.