Command	Explanation	Abbreviation
correlate y x	gives correlation of <i>x</i> and <i>y</i>	corr
regression y x	regresses y on x	reg
predict yhat	creates vector of predicted values yhat after reg	
predict e, resid	creates vector of residuals <i>e</i> after reg	
test x = c	tests $H_0: x = c$ against $H_a: x \neq c$	

The following regresses the price of an automobile on its mileage-per-gallon.

```
. sysuse auto
(1978 Automobile Data)
```

. regress price mpg

price		Std. Err.			Interval]
mpg	-238.8943 11253.06	53.07669	-4.50	0.000	-133.0879 13587.03

You test the claim that one more mile per gallon is associated with a lower price by \$400. Specifically, $H_0: \beta_2 = -400$ against $H_a: \beta_2 \neq -400$.

. test mpg =
$$-400$$

(1) mpg = -400
F(1, 72) = 9.21
Prob > F = 0.0033

When there is only one regressor, then $F(1,72) = t^2$, so the *t*-statistic is $\sqrt{9.21} = 3.035$, which can be confirmed by manually calculating

$$t = \frac{-238.8943 - (-400)}{53.07669} = 3.035.$$

The p-value is 0.0033, so reject the null hypothesis at any conventional significance level. Note that the residual has mean zero, as it always will.

```
. predict e, resid
```

. sum e

Variable	•	 Mean	Std.	 Min	Max
е	.+ 	 -6.29e-06		 	9669.721