BAN 602: Quantitative Fundamentals

Lecture 3: Central Limit Theorem and Confidence Interval

Agenda

- 1. Big Picture of Chapter 7: Sampling Distribution and Central Limit Theorem
- 2. Big Picture of Chapter 8: Confidence Interval
- 3. Example 1 (population mean quantitative data)
- 4. Example 2 (population proportion categorical data)

Big Picture of Chapter 7: Sampling Distribution & CLT

Sampling and Point Estimation	Sample Distribution	Properties of Point Estimators
 Population (finite and infinite) vs. Sample Sampling Simple random sampling Stratified random sampling Cluster sampling Systematic sampling Convenience sampling Judgment sampling Sample statistic (a sample characteristic: sample mean; sample proportion; sample standard deviation) Point estimation 	 Sampling Distribution (prob. Dist. of a sample statistic) Sampling distribution of sample mean Sampling distribution of sample proportion Sampling distribution of sample variance or sd 	 Unbiased Efficiency Consistency

Big Picture of Chapter 8: Interval Estimation

Basics of Interval Estimation	Population Mean	Population Proportion
 Interval estimate Margin of error Interval estimate of a population mean Interval estimate of a population proportion Interval estimate of difference of two population means/proportions (ch. 10) What if more than 2 population means (ch. 13) What if more than 2 population proportions (ch. 12) Interval estimate of a population variance & ratio of two population variances (ch. 11) 	 Confidence level and confidence interval When σ is known (generally speaking, use normal distribution) When σ is unknown (generally speaking, use t distribution) Given desired margin of error, determine the appropriate sample size 	 Interval estimation of population proportion Determine the sample size

We want to study the annual cost of auto insurance.

 What would be the population of our interest? Let X be the random variable that describes the population. How can we interpret this random variable?

We want to study the annual cost of auto insurance.

• What would be the population of our interest? Let X be the random variable that describes the population. How can we interpret this random variable?

The population is the annual costs of all auto insurance policy.

X represents the annual cost of a randomly selected auto insurance policy.

We want to study the annual cost of auto insurance.

 What probability distribution does X follow? Note that this probability distribution describe the population.

We want to study the annual cost of auto insurance.

 What probability distribution does X follow? Note that this probability distribution describe the population.

We do not know the probability distribution of X. But we can make inference but the mean and variance/sd of this distribution.

How can we know about the (population) mean μ and the standard deviation σ?

- How can we know about the (population) mean μ and the standard deviation σ?
 - 1. Randomly select n, called sample size, auto policies. Say, n is 25. Record their annual costs. Call this collection of 25 annual costs sample 1. Each of the 25 annual costs is called a sampling unit. Compute the mean and call it \bar{X}_1 , a sample mean.
 - 2. Repeat the above step many times. We then have a collection of many sample means. These sample means are also random. Let \bar{X} be the random variable representing the population of all sample means.

- How can we know about the (population) mean μ and the standard deviation σ?
 - 3. Plot histogram with all the sample means collected and we can see the "empirical" probability distribution of \bar{X} . This distribution is called a sampling distribution (of sample mean). The sampling distribution also has its mean, $\mu_{\bar{X}}$, and standard deviation, $\sigma_{\bar{X}}$. The properties of the sampling distribution of sample mean are summarized as central limit theorem (CLT).

- How can we know about the (population) mean μ and the standard deviation σ?
 - 4. Central limit theorem.
 - \bar{X} approximately follows a normal distribution, i.e., the sampling distribution of sample mean is approximately normal.
 - The larger the sample size n is, the closer the sampling distribution is to a normal distribution.
 - $\mu_{\bar{X}} = \mu$, $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$.

• Now, let's assume the (population) mean μ = \$939 and the (population) standard deviation σ = \$245, and n = 25. Can you describe the sampling distribution of \bar{X} ?

• Now, let's assume the (population) mean μ = \$939 and the (population) standard deviation σ = \$245, and n = 25. Can you describe the sampling distribution of \bar{X} ?

The sampling distribution of sample mean is approximately normal, with $\mu_{\bar{X}}$, the mean of the sampling distribution being the same as the population mean, \$939, and $\sigma_{\bar{X}}$, the standard deviation of the sample distribution (aka standard error) being 245/5 = \$49.

 What is the probability that a simple random sample of automobile insurance policies will have a sample mean within \$25 of the population mean?

 What is the probability that a simple random sample of automobile insurance policies will have a sample mean within \$25 of the population mean?

```
\Pr(\mu - 25 \le \bar{X} \le \mu + 25) = \text{pnorm}(939+25, 939, 49) - \text{pnorm}(939-25, 939, 49) = 39\%
```

• In reality, we rarely know μ and σ . We instead apply the process reversely: use the sample mean to infer the population mean. And this process is called **statistical inference**. Now suppose we collect information on 25 auto insurance polices and their average annual cost is \$1000. For the time being, assume we still know σ = \$245 (We will handle the situation where σ is unknown later). What is the probability that the population mean is within \$50 of the sample mean?

• To answer the previous question, let's consider the general case. We randomly sampled n auto policies and the mean price is \bar{X} . What is the probability that the population mean is within \$m\$ (this is called margin of error) of the sample mean? This range of $\bar{X} \pm m$ is called a confidence interval and the probability $Pr(\bar{X} - m \le \mu \le \bar{X} + m)$ is called the confidence level.

• To answer the previous question, let's consider the general case. We randomly sampled n auto policies and the mean price is \bar{X} . What is the probability that the population mean is within \$m\$ (this is called margin of error) of the sample mean? This range of $\bar{X} \pm m$ is called a confidence interval and the probability $Pr(\bar{X} - m \le \mu \le \bar{X} + m)$ is called the confidence level.

$$\Pr(\bar{X} - m \le \mu \le \bar{X} + m)$$

$$= \Pr(\mu - m \le \bar{X} \le \mu + m)$$

$$= P(-m \le \bar{X} - \mu \le m)$$

$$= P\left(\frac{-m}{\sigma_{\bar{X}}} \le \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} \le \frac{m}{\sigma_{\bar{X}}}\right)$$

$$= P\left(\frac{-m}{\sigma/\sqrt{n}} \le z \le \frac{m}{\sigma/\sqrt{n}}\right)$$

• In reality, we rarely know μ and σ . We instead apply the process reversely: use the sample mean to infer the population mean. And this process is called **statistical inference**. Now suppose we collect information on 25 auto insurance polices and their average annual cost is \$1000. For the time being, assume we still know σ = \$245 (We will handle the situation where σ is unknown later). What is the probability that the population mean is within \$50 of the sample mean?

$$Pr(1000 - 50 \le \mu \le 1000 + 50)$$

$$= P\left(\frac{-50}{245/\sqrt{25}} \le z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{50}{245/\sqrt{25}}\right)$$

$$= pnorm(50/49) - pnorm(-50/49) = 2*pnorm(50/49) - 1 = 69.25\%$$

- In practice, we typically have desirable confidence levels, with 90%, 95%, and 99% being the most commonly used ones. We, instead, want to find the corresponding margin of error and the resulting confidence interval.
- Once again, assume σ , the population standard deviation is known. We randomly sampled n auto policies and the mean price is \bar{X} .
- Suppose the confidence level we want is $1-\alpha$. (α is called significance level, which we will use extensively later on. If the confidence level is, say 90%, then the significance level is 10%, vice versa.) What would be the margin of error that provides the confidence level of $1-\alpha$? And what would be the confidence interval that provides the confidence level of $1-\alpha$?.

• Suppose the confidence level we want is $1-\alpha$. What would be the margin of error (m) that provides the confidence level of $1-\alpha$? And what would be the confidence interval that provides the confidence level of $1-\alpha$?.

$$\Pr(\bar{X} - m \le \mu \le \bar{X} + m) = 1-\alpha$$
 (previously we know m and try to find $1-\alpha$)

$$P\left(\frac{-m}{\sigma/\sqrt{n}} \le z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le \frac{m}{\sigma/\sqrt{n}}\right) = 1 - \alpha$$

$$P\left(z \le \frac{m}{\sigma/\sqrt{n}}\right) = 1-\alpha/2$$
 (z is a standard normal random variable)

$$\frac{m}{\sigma/\sqrt{n}} = F_{standard\ normal}^{-1} (1 - \frac{\alpha}{2}) = \operatorname{qnorm}(1 - \alpha/2)$$

$$m = F_{s.n.}^{-1} \left(1 - \frac{\alpha}{2}\right) * \sigma/\sqrt{n} = \operatorname{qnorm}(1 - \alpha/2)^* \sigma/\sqrt{n}$$

1- α Confidence interval: $[\bar{X} - m, \bar{X} + m]$

• Now suppose we collect information on 25 auto insurance polices and their average annual cost is \$1000; σ = \$245. What would be the margin of error that provides a 95% confidence level? And what would be a 95% confidence interval?. How can we interpret this confidence interval?

• Now suppose we collect information on 25 auto insurance polices and their average annual cost is \$1000; σ = \$245. What would be the margin of error that provides a 95% confidence level? And what would be a 95% confidence interval? How can we interpret this confidence interval?

```
m = qnorm(1-5%/2, 0, 1)*245/5 = 1.96*49 = 96.04
95% confidence interval: [1000-96.04, 1000+96.04] = [904, 1096]
There is 95% chance (We are 95% confident) that the population mean will be within the range of 904 and 1096.
```

• Sometimes we have desirable margin of error and confidence level. We want to find the corresponding sample size that can help us achieve the desirable m and $1-\alpha$. How?

• Sometimes we have desirable margin of error and confidence level. We want to find the corresponding sample size that can help us achieve the desirable m and $1-\alpha$. How?

Essentially, in $m = F_{s.n.}^{-1} \left(1 - \frac{\alpha}{2}\right) * \sigma / \sqrt{n}$, we always know m, σ , and α . We want n.

$$n = \left(F_{s.n.}^{-1}\left(1 - \frac{\alpha}{2}\right) * \sigma/m\right)^2 = \left(qnorm\left(1 - \frac{\alpha}{2}\right) * \sigma/m\right)^2$$

• Now suppose the population standard deviation of annual cost of auto insurance polices σ = \$245. What sample size can ensure that the margin of error of 99% confidence level is \$50?

$$n = \left(qnorm\left(1 - \frac{\alpha}{2}\right) * \sigma/m\right)^2 = \left(qnorm\left(1 - \frac{1\%}{2}\right) * 245/50\right)^2$$
$$= (2.576 * 4.9)^2 = 160 (159.3)$$

What are the impacts of large sample size n?

$$m = F_{s.n.}^{-1} \left(1 - \frac{\alpha}{2} \right) * \sigma / \sqrt{n}$$

• Now what if σ is unknow, which typically is the case?

• Now what if σ is unknow, which typically is the case?

statistic z =
$$\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$
 no longer available
$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$

$$m = F_t^{-1} \left(1 - \frac{\alpha}{2}, n - 1\right) * s/\sqrt{n} = pt(1 - \alpha/2) * s/\sqrt{n}$$

The president of Doerman Distributors, Inc., wants to know the percentage of the firm's orders that come from first-time customers. To that end, a random sample of 100 orders is collected among which 30% of the firm's orders come from first-time customers.

 What is the population parameter of interest? What do we know about this population parameter?

What is the population parameter of interest?

p: proportion of first-time customers' orders among all the firm's orders

What do we know about this population parameter?

consider random variable Y = 1 if it's an order from first-time customer and Y = 0, otherwise.

$$E(Y) = p; Var(Y) = p(1-p).$$

• We use sample statistic, sample proportion \bar{p} , to study p. What do we know about \bar{p} ?

• We use sample statistic, sample proportion \bar{p} , to study p. What do we know about \bar{p} ?

 \bar{p} is approximately normally distributed with mean p and standard deviation

$$\sqrt{\frac{p(1-p)}{n}}$$
. Alternatively, $\bar{p} \sim norm(p, \sqrt{\frac{p(1-p)}{n}})$ or $z = \frac{\bar{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim norm(0,1)$.

The president of Doerman Distributors, Inc., wants to know the percentage of the firm's orders that come from first-time customers. To that end, a random sample of 100 orders is collected among which 30% of the firm's orders come from first-time customers.

- If the confidence level is 90%, what is the margin of error and what is a confidence interval for the population proportion?
- How can we interpret this confidence interval?

• If the confidence level is 90%, what is the margin of error and what is a confidence interval for the population proportion?

$$m = F_{s.n.}^{-1} \left(1 - \frac{\alpha}{2}\right) * \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = qnorm(0.95) * \sqrt{\frac{0.3*0.7}{100}} = 1.645 * 4.58\% = 7.54\%.$$

Confidence interval: [30%-7.54%, 30%+7.54%] = [22.46%, 37.54%]

How can we interpret this confidence interval?

There is 90% chance that the population proportion is b/w 22.46% and 37.54%.

You are probably not happy with so wide a confidence interval. Suppose you want a confidence level of 95% $(1-\alpha)$ and a margin of error 3% (m). What sample size will be needed?

You are probably not happy with so wide a confidence interval. Suppose you want a confidence level of 95% $(1-\alpha)$ and a margin of error 3% (m). What sample size will be needed?

$$m = F_{s.n.}^{-1}(1 - \alpha/2) * \sqrt{\bar{p}(1 - \bar{p})/n} = qnorm(0.975) * \sqrt{0.3 * 0.7/100} = 1.645 * 4.58\% = 7.54\%.$$

$$n = \frac{\left(F_{s.n.}^{-1}(1-\alpha/2)\right)^2}{m^2} * \bar{p}(1-\bar{p}) \le \frac{\left(F_{s.n.}^{-1}(1-\alpha/2)\right)^2}{4m^2}$$

$$n \le \frac{(qnorm(0.975))^2}{4*(0.03)^2} = 1067 \text{ or } 1068.$$

Sample Size Requirements (Population Proportion)

	m = 1%	m = 3%	m = 5%
90%	6764	752	271
95%	9604	1068	385
99%	16588	1844	664

Quiz 3 Part 1

- 1. Write pmf of a discrete random variable.
- 2. Write cdf of a discrete random variable.
- Compute expectation, covariance, etc. (formula sheet for exam 1).
- 4. Independence
- 5. Relationship between correlation and independence.

Quiz 3 Part 2

- 1. Describe the sampling distribution of sample mean or proportion.
- 2. Compute the point estimate and the standard error.
- 3. Write down R code for computing margin of error.
- 4. Provide confidence interval and its interpretation.
- 5. Write down R code that computes the sample size needed for desirable confidence level and margin of error.