Beamer Template for Texas A&M University

Alick Zhao

Texas A&M University

May 16, 2016

Outline

- Sample Section
- Various Samples
 - Sample Subsection
 - Another Sample Subsection
 - Yet Another Sample Subsection
- Summary

Computing Everywhere in 2020

- ullet Computers/computing everywhere 10^4 CPUs per person
 - Real-world computing sensors and actuators
 - Massively distributed and embedded
 - Collect data and make decisions
- Massive data a TeraByte per person per day
 - Sensors, personal, scientific, business, etc...
 - Extract information from this mass of data
 - Serious privacy issues
- People will spend much time in virtual environments
 - Integrating digital and physical worlds
 - Games, Interactive Movies, Virtual Classrooms many connected to physical spaces

A Block Example

Computers/computing everywhere — 10^4 CPUs per person

- Real-world computing sensors and actuators
- Massively distributed and embedded
- Collect data and make decisions

Pictures in Columns

A sample figure.

Another sample figure.

Formulas

- Electromagnetic Wave
 - Maxwell:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{1}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \tag{2}$$

$$\nabla \cdot \mathbf{D} = \rho \tag{3}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{4}$$

- Probability
 - Normal Distribution $\mathcal{N}(\mu, \sigma^2)$:

$$\int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1.$$

Formulas With Texts

Formulas in plain texts: P_{out}

- Formulas in lists
 - EARTH model

$$P_{\text{in}} = \begin{cases} N_{\text{TRX}} P_0 + \Delta_{\text{p}} P_{\text{out}}, & 0 < P_{\text{out}} \le P_{\text{max}} \\ N_{\text{TRX}} P_{\text{sleep}}, & P_{\text{out}} = 0 \end{cases}$$
 (5)

Formulas in blocks

Here is the EARTH model again:

$$P_{\rm in} = \begin{cases} N_{\rm TRX} P_0 + \Delta_{\rm p} P_{\rm out}, & 0 < P_{\rm out} \le P_{\rm max} \\ N_{\rm TRX} P_{\rm sleep}, & P_{\rm out} = 0 \end{cases}$$
 (6)

Title Subtitle

- Item 1
- Item 2
- Footnote citations [1], [2]

^[1] T. Tantau, J. Wright, and V. Miletić, The beamer class user guide for version 3.12, 2011.

^[2] C. E. Shannon, "A mathematical theory of communication," Bell System Technical Journal, vol. 27, pp. 379-423, 523-656, Jul. 1948. [Online]. Available: http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

Summary

• Lorem ipsum

• An outlook to the future.