

ADAM MICKIEWICZ UNIVERSITY IN POZNAŃ

Faculty of Mathematics and Computer Science Department of Natural Language Processing

Automatic error correction in ASR

2019-05-23

Tomasz Ziętkiewicz

Outline

- 1 About me
- 2 Problem definition
- 3 Related work
- 4 A Spelling Correction Model For End-to-end Speech Recognition
 - Motivation
 - Dataset
 - Method
 - Evaluation
- 5 Tagging approach

- ► Tomasz Ziętkiewicz
- ▶ tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ▶ Work at Samsung R&D Poland
- ► Area of work & research:
 - ► Automatic Speech Recognition post-processing
 - ► Inverse Text Normalization
 - ► Automatic correction of ASR errors
 - Sequence labeling
 - ► Sequence-to-sequence methods

- ► Tomasz Ziętkiewicz
- ► tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ▶ Work at Samsung R&D Poland
- ► Area of work & research:
 - ► Automatic Speech Recognition post-processing
 - Inverse Text Normalization
 - Automatic correction of ASR errors
 - Sequence labeling
 - ► Sequence-to-sequence methods

- ► Tomasz Ziętkiewicz
- ► tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ▶ Work at Samsung R&D Poland
- ► Area of work & research:
 - ► Automatic Speech Recognition post-processing
 - ► Inverse Text Normalization
 - ► Automatic correction of ASR errors
 - Sequence labeling
 - ► Sequence-to-sequence methods

- ► Tomasz Ziętkiewicz
- ► tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ▶ Work at Samsung R&D Poland
- ► Area of work & research:
 - Automatic Speech Recognition post-processing
 - ► Inverse Text Normalization
 - ► Automatic correction of ASR errors
 - Sequence labeling
 - ► Sequence-to-sequence methods

- ► Tomasz Ziętkiewicz
- ► tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ▶ Work at Samsung R&D Poland
- ► Area of work & research:
 - ► Automatic Speech Recognition post-processing
 - ► Inverse Text Normalization
 - ► Automatic correction of ASR errors
 - ► Sequence labeling
 - ► Sequence-to-sequence methods

- ► Tomasz Ziętkiewicz
- ► tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ► Work at Samsung R&D Poland
- ► Area of work & research:
 - ► Automatic Speech Recognition post-processing
 - ► Inverse Text Normalization
 - ► Automatic correction of ASR errors
 - ► Sequence labeling
 - ► Sequence-to-sequence methods

- ► Tomasz Ziętkiewicz
- ► tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ► Work at Samsung R&D Poland
- ► Area of work & research:
 - ► Automatic Speech Recognition post-processing
 - ► Inverse Text Normalization
 - ► Automatic correction of ASR errors
 - ► Sequence labeling
 - ► Sequence-to-sequence methods

- ► Tomasz Ziętkiewicz
- ► tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ► Work at Samsung R&D Poland
- ► Area of work & research:
 - ► Automatic Speech Recognition post-processing
 - ► Inverse Text Normalization
 - ► Automatic correction of ASR errors
 - ► Sequence labeling
 - ► Sequence-to-sequence methods

- ► Tomasz Ziętkiewicz
- ► tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ► Work at Samsung R&D Poland
- ► Area of work & research:
 - ► Automatic Speech Recognition post-processing
 - ► Inverse Text Normalization
 - ► Automatic correction of ASR errors
 - ► Sequence labeling
 - ► Sequence-to-sequence methods

- ► Tomasz Ziętkiewicz
- ► tomasz.zietkiewicz (at) amu.edu.pl
- ▶ PhD Student at "Applied Doctorate" studies
- ► Work at Samsung R&D Poland
- ► Area of work & research:
 - ► Automatic Speech Recognition post-processing
 - ► Inverse Text Normalization
 - ► Automatic correction of ASR errors
 - ► Sequence labeling
 - ► Sequence-to-sequence methods

Outline

- 1 About me
- 2 Problem definition
- 3 Related work
- 4 A Spelling Correction Model For End-to-end Speech Recognition
 - Motivation
 - Dataset
 - Method
 - Evaluation
- 5 Tagging approach

Problem definition

Given corpus of hypothesis from Automatic Speech Recognition system and corresponding reference utterances, learn a transformation from the former to the latter

Rationale

Why such transformation is needed? It can be used in ASR system as postprocessing stage as:

- ► re-scoring of hypothesis produced by ASR using information not present at earlier stages of processing (i.e. one directrional LM)
- ▶ adaptation of a black box, general domain ASR system to some specific domain

Outline

- 1 About me
- 2 Problem definition
- 3 Related work
- 4 A Spelling Correction Model For End-to-end Speech Recognition
 - Motivation
 - Dataset
 - Method
 - Evaluation
- 5 Tagging approach

Related work

- Cucu, Horia, Andi Buzo, Laurent Besacier, and Corneliu Burileanu, 2013. "Statistical Error Correction Methods for Domain-Specific ASR Systems"
- ► Luis Fernando D'Haro, Rafael E. Banchs, "Automatic Correction of ASR outputs by Using Machine Translation", Interspeech 2016
- ▶ Jinxi Guo, Tara N. Sainath, Ron J. Weiss "A Spelling Correction Model For End-to-end Speech Recognition"

Statistical Error Correction Methods for Domain-Specific ASR Systems

- error correction using SMT (Statistical Machine Translation) model.
- ► trained on relatively small parallel corpus
- ▶ 2000 ASR transcripts and their manually corrected versions.
- ► At evaluation time the model is used to "translate" ASR hypothesis into it's corrected form.
- ▶ Results: 10.5% relative WER improvement by reducing the baseline ASR system's WER from 11.4 to 10.332 .

Automatic Correction of ASR outputs by Using Machine Translation

- ▶ Phrase-based machine translation used on reference sentences and n-best list of hypothesis from ASR
- ► Uses Minimum Bayes Risk re-ranker to choose among translated entries from n-best list

Automatic Correction of ASR outputs by ... System architecture

Train

Automatic Correction of ASR outputs by ... - Results

Oracle

System

Outline

- 1 About me
- 2 Problem definition
- 3 Related work
- 4 A Spelling Correction Model For End-to-end Speech Recognition
 - Motivation
 - Dataset
 - Method
 - Evaluation
- 5 Tagging approach

A SPELLING CORRECTION MODEL FOR END-TO-END SPEECH RECOGNITION

Jinxi Guo^{1*}, Tara N. Sainath², Ron J. Weiss²

¹University of California, Los Angeles, USA ²Google Inc., USA

lennyguo@g.ucla.edu, {tsainath, ronw}@google.com

- ▶ Popularity of end-to-end ASR models
- ► Acousting, pronunciation and language model combined in one neural network
- ▶ Problem: needs annotated audio data
- ► LM trained on small dataset compared with "traditionalapproach
- ► Worse performance on rare words

- ▶ Popularity of end-to-end ASR models
- ► Acousting, pronunciation and language model combined in one neural network
- ▶ Problem: needs annotated audio data
- ► LM trained on small dataset compared with "traditionalapproach
- ► Worse performance on rare words

- ▶ Popularity of end-to-end ASR models
- ► Acousting, pronunciation and language model combined in one neural network
- ▶ Problem: needs annotated audio data
- ► LM trained on small dataset compared with "traditionalapproach
- ► Worse performance on rare words

- ▶ Popularity of end-to-end ASR models
- ► Acousting, pronunciation and language model combined in one neural network
- ▶ Problem: needs annotated audio data
- ► LM trained on small dataset compared with "traditionalapproach"
- ► Worse performance on rare words

- ▶ Popularity of end-to-end ASR models
- ► Acousting, pronunciation and language model combined in one neural network
- ▶ Problem: needs annotated audio data
- ► LM trained on small dataset compared with "traditionalapproach
- ► Worse performance on rare words

- ► Incorporating external LM trained on text-only data
 - Rescoring n-best decoded hypothesis from end-to-end ASR
 - ► Incorporate RNN-LM into first-pass beam search by shallow, cold or deep fusion
- ► Rare words and proper nouns are still problematic with this approach
- ► Why?
- ► LM trained with other objective then correcting e2e model's errors

- ► Incorporating external LM trained on text-only data
 - ► Rescoring n-best decoded hypothesis from end-to-end ASR
 - ► Incorporate RNN-LM into first-pass beam search by shallow, cold or deep fusion
- ► Rare words and proper nouns are still problematic with this approach
- ► Why?
- ► LM trained with other objective then correcting e2e model's errors

- ► Incorporating external LM trained on text-only data
 - ► Rescoring n-best decoded hypothesis from end-to-end ASR
 - ► Incorporate RNN-LM into first-pass beam search by shallow, cold or deep fusion
- ► Rare words and proper nouns are still problematic with this approach
- ► Why?
- ► LM trained with other objective then correcting e2e model's errors

- ► Incorporating external LM trained on text-only data
 - ► Rescoring n-best decoded hypothesis from end-to-end ASR
 - ► Incorporate RNN-LM into first-pass beam search by shallow, cold or deep fusion
- ► Rare words and proper nouns are still problematic with this approach
- ► Why?
- ► LM trained with other objective then correcting e2e model's errors

- ► Incorporating external LM trained on text-only data
 - ► Rescoring n-best decoded hypothesis from end-to-end ASR
 - ► Incorporate RNN-LM into first-pass beam search by shallow, cold or deep fusion
- ► Rare words and proper nouns are still problematic with this approach
- ► Why?
- ► LM trained with other objective then correcting e2e model's errors

- ► Incorporating external LM trained on text-only data
 - ► Rescoring n-best decoded hypothesis from end-to-end ASR
 - ► Incorporate RNN-LM into first-pass beam search by shallow, cold or deep fusion
- ► Rare words and proper nouns are still problematic with this approach
- ► Why?
- ► LM trained with other objective then correcting e2e model's errors

Solution

Proposed solution: spelling corrector model on text-to-text (hypothesis-to-refrerence) pairs.

Dataset

- ► LibriSpeech
- ► Large-scale (1000 hours) corpus of read English speech
- ▶ audiobooks from the LibriVox project
- carefully segmented and aligned
- ► http://www.openslr.org/12/
- ► License: CC BY 4.0

- ► LibriSpeech
- ► Large-scale (1000 hours) corpus of read English speech
- ▶ audiobooks from the LibriVox project
- carefully segmented and aligned
- ► http://www.openslr.org/12/
- ► License: CC BY 4.0

- ► LibriSpeech
- ► Large-scale (1000 hours) corpus of read English speech
- ▶ audiobooks from the LibriVox project
- carefully segmented and aligned
- ► http://www.openslr.org/12/
- ► License: CC BY 4.0

- ► LibriSpeech
- ► Large-scale (1000 hours) corpus of read English speech
- ▶ audiobooks from the LibriVox project
- carefully segmented and aligned
- ► http://www.openslr.org/12/
- ► License: CC BY 4.0

- ► LibriSpeech
- ► Large-scale (1000 hours) corpus of read English speech
- ▶ audiobooks from the LibriVox project
- carefully segmented and aligned
- ► http://www.openslr.org/12/
- ► License: CC BY 4.0

- ► LibriSpeech
- ► Large-scale (1000 hours) corpus of read English speech
- ▶ audiobooks from the LibriVox project
- carefully segmented and aligned
- ► http://www.openslr.org/12/
- ► License: CC BY 4.0

Baseline

- ► LAS Listen Attend and Spell
- ► Encoder-decoder with attention

Spelling correction model

▶ attention-based encoder-decoder sequence-to-sequence

Architecture

Fig. 1. Spelling Correction model architecture.

Results

System	Dev-clean	Test-clean
LAS	5.80	6.03
$LAS \rightarrow LM (8)$	4.56	4.72
LAS-TTS	5.68	5.85
$LAS-TTS \rightarrow LM$ (8)	4.45	4.52
$LAS \rightarrow SC(1)$	5.04	5.08
$LAS \rightarrow SC(8) \rightarrow LM(64)$	4.20	4.33
$LAS \rightarrow SC-MTR (1)$	4.87	4.91
$LAS \rightarrow SC-MTR (8) \rightarrow LM (64)$	4.12	4.28

Table 1. Word error rates (WERs) on LibriSpeech "clean" sets comparing different techniques for incorporating text-only training data. Numbers in parentheses indicate the number of input hypotheses considered by the corresponding model.

Results

System	Dev-clean	Test-clean
LAS	3.11	3.28
$LAS \rightarrow SC(1)$	3.01	3.02
LAS \rightarrow SC (8)	1.63	1.68

Table 2. Oracle WER before and after applying the SC model.

Results

System	Dev-clean	Dev-TTS
LAS baseline	5.80	5.26
$LAS \rightarrow SC (1)$	5.04	3.45
$LAS \rightarrow SC(8) \rightarrow LM(64)$	4.20	3.11

Table 3. WER comparison on a real audio and TTS dev sets.

Outline

- 1 About me
- 2 Problem definition
- 3 Related work
- 4 A Spelling Correction Model For End-to-end Speech Recognition
 - Motivation
 - Dataset
 - Method
 - Evaluation
- 5 Tagging approach

Edit operations tagger approach

- ► Train
 - ► Compare ASR hypothesis and reference sentences from parallel corpora
 - ► Extract pre-defined edit operations from the comparison
 - Create corpora with ASR hypothesis tagged with edit operations labels
 - ► Train a tagger using this corpora
- ► Test
 - ► Use tagger on ASR hypothesis
 - ► Apply edit operation to the hypothesis

Architecture

Example

Reference: "Multimodal distribution" Hypothesis: "Multi modal distribution"

Tagged hypothesis:

Word	Tag
Multi	join
modal	None
distribution	None

Edit operations tagger approach

► Pros

- ► Safe Default operation do nothing
- ► Easy to control filter operation using tag score treshold
- Set of used edit operations can be adjusted to fix only specific kind of errors

► Cons

- ► Need to manually define edit operations
- ▶ Need to implement edit operations deducer
- ► Set of operations is limited due to performance constraints

Implementation

- ► Current implementation: Conditional Random Fields (CRF) tagger
 - Handcrafted features: prefix, suffix, length, left context, right context
 - ► CrfSuite library
 - ▶ Number of edit operations limited to 200 most popular ones
- ▶ Planned implementation: Neural tagger using RNNs/LSTMs

Thank you

Thank you for your attention!