Breast cancer response model

Mathematical model

$$\frac{\partial N(\bar{x},t)}{\partial t} = \nabla \cdot \left(D\nabla N(\bar{x},t)\right) + k(\bar{x})\left(1 - \frac{N(\bar{x},t)}{\theta}\right)N(\bar{x},t)$$

$$D = D_0 e^{-\gamma \sigma_{vm}(\bar{x},t)}$$

$$\nabla \cdot \sigma + \lambda \nabla N(\bar{x},t) = 0$$

Code summary

Calibration

Inputs:

- patient data
- scanning schedule

Outputs:

calibrated parameters

Functions:

- NtcFD3DmechOPUT1to2
- Boundaries3DUT
- Diffy3D
- NtcFDmech3DUTLogisticOnly
- forwardsolveLogisticOnly
- ThreeDmech opt solver bcg
- ThreeDmeq_matrix_builder_opt
- ThreeDstress_calc
- CalcCCC

Simulation

Inputs:

- patient data
- scanning schedule
- calibrated parameters

Outputs:

 3D patient-specific prediction

Functions:

- ModelRunFDMech3DUTLogisticOnly
- Boundaries3DUT
- Diffy3D
- NtcFDmech3DUTLogisticOnly
- forwardsolveLogisticOnly
- ThreeDmech_opt_solver_bcg
- ThreeDmeq_matrix_builder_opt
- ThreeDstress_calc
- DiceAndCC
- CalcCCC
- •regionprops3

Workflow schematic: calibration

Required data files:
 testpatient.txt
 BreastMask_ testpatient.mat
 NativeX_ testpatient.mat
 NativeY_ testpatient.mat
 NTC1_ testpatient.mat
 NTC2_ testpatient.mat
 Tissues1_ testpatient.mat
 Tissues2_ testpatient.mat

Workflow schematic: simulation

