最小生成樹 (Minimum Spanning Tree)

1

1.1 生成樹 (Spanning Tree)

給定一張連通圖 G,若 G 的子圖 T 是一棵樹,並且包含 G 的所有頂點,我們說 T 是 G 的生成樹。T 同時也是 G 最少邊數的子圖,使得所有頂點之間連通。T 理所當然會有所有一棵樹該有的性質,由於通常維護樹上資料比維護圖上資料結構簡單,處理一張圖的問題時,我們可能會以一棵生成樹代表之,如下圖所示。

注意若所有點不連通,則生成樹不會存在。

1.2 最小生成樹 (MST, Minimum Spanning Tree)

最小生成樹是最小權重生成樹的簡稱,也就是所有生成樹中邊權總和最小的。最小生成樹的形狀不一定唯一,但其邊權和是固定的。最小生成樹有以下一些性質,我們可以利用貪心法求出最小生成樹。

定理 1.2.1: Cut Property

將 G 的頂點集合分成兩個頂點集合 $S \cdot V - S$,設連結兩個頂點集合的邊集 為 E_{cut} ,其中最小的邊為 e,則必定存在一個包含 e 的最小生成樹。

證明:設所有 MST 均不包含 e,在任一最小生成樹 T 中加上 e 後必會形成一環,除了 e 之外該環上至少有一條屬於 E_{cut} 的邊(否則 $S \times V - S$ 不連通),我

們以 e 替換這條邊能夠得到權重不小於 T 且包含 e 的生成樹,假設矛盾。

定理 1.2.2: Cycle Property

對於每一個環 C 其上最大的邊 e,必定有不包含它的最小生成樹(也就是不選擇它不會影響 MST 的解答)。

證明:設所有 MST 都包含 e,去除了 e 之後它們都會變為兩棵子樹,而環上有另一不比 e 大的邊可以用來連接兩棵子樹,便構成了權重不小於原本的 MST,並且不包含 e 的生成樹,假設矛盾。

本章介紹的所有找最小生成樹的演算法都是屬於利用了 Cut Property 的 Greedy method。

1.3 Prim's Algorithm

概念

我們可以將 Cut Property 中的 S 視為執行到目前已經確定的 MST 點集,而不斷的以 E_{cut} 中最小的邊擴增 S 的大小,這是 Prim 的主要思想。Prim 和 Dijkstra 演算法的架構相當類似,我們以 V 代表原本的點集,E 代表原本的邊集 V_{new} 代表 MST 中的點集, E_{new} 代表 MST 中的邊集;以下是 Prim 的執行步驟:

- 1. 初始化: $V_{new} = \{x\}$,其中 x 為任一起始點, $E_{new} = \{\}$ 。
- 2. 重複下列操作,直到 $V_{new} = V$:
 - a) 選取權值最小的邊 (u,v) 使得 $u \in V_{new}$,而 $v \notin V_{new}$ (如果存在多條,則可任選),v 同時也可以說是距離目前的 MST 最近的頂點。
 - b) 將 v 加入集合 V_{new} 中,將 (u,v) 加入集合 E_{new} 中。
- 3. V_{new} 和 E_{new} 即是最後的 MST!

證明

考慮 Cut Property,對於有 n 個頂點的圖 G_n ,某個起點 x 其最近的鄰居若是 y,則邊 (x,y) 必定會屬於 MST,之後我們可以將 x,y 看成同一點 z,並以圖 G_{n-1} 代表此剩下 n-1 個點的新圖(原圖連向 x 或 y 的邊均連到 z),我們利用數學歸納法能夠好好的確認 Prim 的正確性。

實作

從上面的流程中需要不斷的選取邊權最小的邊,在 V_{new} 加入新節點時又要不斷插入新邊權。這樣有效支援插入數字以及取最小值的資料結構,不難想到可以用priority_queue來幫助我們。由於概念都很簡單,最難的就是證明,所以我們先看程式碼吧!

```
1 #include "bits/stdc++.h"
2 typedef pair<int,int> pii;
3 vector<pii> g[MAXV]; // adjacency list {weight, to}
4 int prim(int n){
      int sum=0, v=0LL; // 權重和、已選取頂點數
      bool inMST[MAXV]={};
      // heap 中的 pair 表示
      // {該頂點與MST的最短距離, 不在目前MST中的頂點編號}
      priority queue<pii, vector<pii>, greater<pii> > pq;
      pq.push({0,0});
10
      while(v<n && pq.size()){</pre>
11
          pii cur=pq.top(); pq.pop();
12
          // 如果拿出來的最近頂點已經在MST中則跳過
13
          if(inMST[t.second]) continue;
14
          inMST[t.second]=true;
15
          sum+=t.first, v++;
16
          for(auto &e:g[t.second]) {
17
              if(!inMST[e.second]) pq.push(e);
18
19
20
21
       return sum;
22 }
```

由於我們至多存取 heap |V|+|E| 次,Prim 演算法的總時間複雜度將會是 $O((|V|+|E|)\log |V|)$,如果用費波納契堆還能進一步優化到 $O(|E|+|V|\log |V|)$ 。

1.4 Kruskal's Algorithm

這個演算法較不複雜,應該是最常被使用的 MST 算法,可以好好看一下。

概念

Kruskal 演算法是以邊為主角,以下為 Kruskal 的流程:

- 1. 將所有邊 (u_i, v_i) 按照邊權sort
- 2. 初始化,將所有點視為獨立的連通塊
- 3. 由小到大檢查所有邊 (u,v),若 u 與 v 互不連通,則將這條邊加入 MST 中, 並合併 u,v 所在的連通塊,若相連通則略過。
- 4. 重複前一步驟,直到所有點都相連通。

證明

和 Prim 類似,Kruskal 每次會選取 G_n 中權重最小且連接不同連通塊的邊 (x,y),此時能夠將 x 及 y 看成同一點,得到 G_{n-1} ,利用數學歸納法同樣可以得到證明。

實作

上面的流程中提到要在新建的 MST 中,檢查任兩個點有沒有相連。當然最直覺的做法是每次都 DFS 看兩個點有沒有相連,但這個方法很明顯太慢了。然而你會發現,事實上我們在意的其實就是兩個點所屬的連通塊是否相同。我們可以想到用 Disjoint Sets 的資料結構維護,畢竟程式碼結構真的很簡單,所以直接看code 吧!

```
1 struct edge{
       int u, v, w;
2
4 bool operator<(edge a, edge b){return a.w<b.w;}</pre>
5 vector<edge> edges;
6 int pa[MAXV],sz[MAXV]; // 大家還記得 dsu 怎麼寫嗎?
7 void init(int n) {
       for(int i = 0; i < n; i++) pa[i] = i, sz[i] = 1;
8
9 }
10 int anc(int x){
       return x == pa[x] ? x : (pa[x] = anc(pa[x]));
11
12 }
13 bool same(int x,int y){
14
      return x=anc(x), y=anc(y), x==y;
15 }
16 void join(int x, int y){
       if((x=anc(x)) == (y=anc(y))) return;
17
       if(sz[x] < sz[y]) swap(x, y);
18
       pa[y] = x, sz[x] += sz[y];
19
20 }
21 int kruskal(int n){
       int CC = n, sum = 0; // 連通塊數 \ 權重和
22
       init(n); // 初始化 dsu
23
       sort(edges.begin(),edges.end()); // 按邊權 sort
24
       for(auto &e:edges) { // 邊權由小到大檢查
25
           if(!same(e.u,e.v)) {//兩個點若不連通,則加入 MST
26
               join(e.u,e.v);
27
               sum += e.w;
28
29
           }
30
31
       return sum;
```

Kruskal 主要的時間花費在排序邊 $O(|E|\log|E|)$,排序之後的合併只需要 $O(|E|\cdot\alpha(|E|,|V|)$ 即能完成,故 Kruskal 的總時間複雜度為 $O(|E|\log|E|)$ 。

1.5 Borůvka's Algorithm

又名 Sollin 演算法,它其實是最早被發明的 MST 多項式時間複雜度演算法,不過卻有點像是 Prim 和 Kruskal 的混合版,似乎很少人在競賽中使用這個演算法。

概念與實作

首先,一開始所有頂點都被設為是獨立的連通塊。對於每個連通塊,找出其連到其他連通塊的邊之中最短的邊(可以 O(|E|) 掃過一遍),把所有連通塊對應的邊連上(O(|V|)),並對新的連通塊們重複執行這個步驟,直到只剩下一個連通塊。

證明

同樣由 Cut Property 可以知道每個連通塊 S 向外連的最短邊 e 一定屬於 MST,對點數強數歸能夠得知 Borůvka 的正確性。

```
1 vector<edge> edges; // edge 同前面的宣告
  int boruvka(int n){
       int CC = n, sum = 0; // 連通塊數、權重和
       edge cheapest[MAXV] = {}; // 連通塊向外連最短的邊
       init(n); // 使用並查集
       while(CC != 1){
           for(int i = 0; i < n; i++) cheapest[i].w = 1e9;
7
           for(auto &e:edges){
              int fu = anc(e.u), fv = anc(e.v);
9
              if(fu == fv) continue;
10
              // 找到每個連通塊往外最短的邊
11
              if(e < cheapest[fu]) cheapest[fu] = e;</pre>
12
              if(e < cheapest[fv]) cheapest[fv] = e;</pre>
13
14
          for(int i = 0; i < n; i++) {
15
              if(i != anc(i)) continue;
16
              auto &e = cheapest[i];
17
              // 嘗試將每個連通塊以最短邊往外連
18
              if(!same(e.u,e.v)) {
19
                  join(e.u,e.v);
20
                  sum += e.w, --CC;
21
22
23
24
       return sum;
25
26
```

可以注意到,每一輪操作中每一個連通塊都會和其他連通塊合併,也就是總連通塊數至少會減少為原先的一半,因此最多需要執行 $O(\log |V|)$ 輪合併操作,總複雜度 $O((|V|+|E|)\log |V|)$ (森林結構維持在最佳狀態,DSU 操作的總時間複雜度,從 $O(|E|\cdot\alpha(|E|,|V|))$ 下降至 O(|E|) —演算法筆記)。

1.6. 例題 6

據某些大陸人說,Borůvka 有時靈活性比 Prim 和 Kruskal 都好,因不須將頂點或邊直接比較,但筆者目前還沒找到必須要用 Borůvka 才能解決的題目;不過值得一提的是,利用 Borůvka 的想法能夠進一步得到隨機期望複雜度線性 (O(|V|+|E|)) 的最小生成樹做法,在此暫不贅述。

1.6 例題

習題的唷

習題 1.6.1: 圖論之最小生成樹(TIOJ 1211)

給你一個加權的無向圖 (weighted undirected graph),請問這個圖的最小生成樹 (minimum spanning tree) 的權重和為多少? $(|V| \le 10^5, |E| \le 10^6, 1 \le w_i \le 1000)$

習題 1.6.2: 咕嚕咕嚕呱啦呱啦 (TIOJ 1795)

給定 N 個點 M 條邊,以及所有邊的邊權重,是否有辦法建構出一顆生成樹之權重總和剛好為 K?另外,任意一條邊的權重只有可能為 0 or 1 or $(N \le 10^5, M \le 3 \times 10^5)$

習題 1.6.3: 蓋捷運 (OJ 71)

給定一張圖,每條邊上有兩個權值 X,Y,求所有生成樹 T 中下述比率的最大值。

$$\frac{\sum_{e \in T} e_X}{\sum_{e \in T} e_Y}$$

 $(n, m \le 2 \times 10^5, 1 \le x, y \le 10^9)$

習題 1.6.4: 機器人組裝大賽(TIOJ 1445)

給 定 一 張 圖, 請 輸 出 其 最 小 生 成 樹 的 權 重 以 及 所 有 生 成 樹 中 權 重 和 不 嚴 格 第 二 小 的 權 重 和。 $(|V| \le 1000, |E| \le \frac{|V|(|V|-1)}{2}, w_i \ge 0$,保證答案在long long內)