Lec 14 10/26/17 Mul 249

Custon r.v.'s

Rouletse in sum. Bet \$1 on black. Pyon is 1:1.

 $\times 2 - 41 \text{ up } \frac{18}{30}$ $= \frac{1}{30} + \frac{1}{30} = \frac{1}{30} =$

If I gly ranny my ore... my arg. manys will be ...

X > 19 Lang Long #15.

1m T = -0 If I phy lover... I less 9/1 mg

X- { \$12 y 300 m 3

All lets de sone esperson. Stog.

Farge bes in black. San pagers but.

X- 3-81

Ex = -\$1.027 mile Laiver"

Ref: Fair Gone ' E(X) = 0

Basic I.v. Transformers User couple P(Affir) = 0.3 If siffer -> sour, else Vanleych

WN & 7 mm up 0.7 (hot a Carmelle)

E[w] = 0.7.7m + 0.3.12mm = 2 1 min // Kerpres.

Oler my sips, my avenue sime is the sazi is a limin. In az gra sip...

To cotal this Leveler ... Wa & Jum mp 0.3 Ew) = 85 min Use Charges \$0.40/min a surformon f à r.v. B = \$0.40/mm · w 3 B~ { \$2.80 p 0.7 E(B) = \$2.80.0.7+ B4.80.0.3 = \$3.12 Ligand our ship FAF shough Common Griff... Book 821 Colors the theory to do this Is shore on easer my?

B is a simple in supple.

Note that B = g(w) = Q. 4 & "Scale" (A) = q f(x) st. q eR

g is a sching thereon. Is E(B) what re E(w) shough g?

Regard scape of coopse. FAKE PROOF! E(x):= \(\(\chi \) (\(\chi \) \(\chi \) \(\left \) Lebesgue i's regal on a responsible furcion \(\) \(If X is direct. $S_{TP}(X) = \{X_1, X_2, X_3, \dots \}$ Roll S for 1x = S for 1x

(4)

$$E\left(g(X)\right) = \begin{cases} g(X(x_0)) R(d w) \\ S(x_0) R(d w) \end{cases}$$

$$= \begin{cases} g(x_0) R(x_0) + \int g(x_0) R(d w) \\ S(x_0) R(d w) + \int g(x_0) R(d w) \end{cases}$$

$$= \begin{cases} g(x_0) R(x_0) + \int g(x_0) R(d w) \\ S(x_0) R(d w) + \int g(x_0) R(d w) \end{cases}$$

$$= \begin{cases} g(x_0) R(x_0) + \int g(x_0) R(d w) \\ S(x_0) R(d w) + \int g(x_0) R(d w) \\ S(x_0) R(d w) + \int g(x_0) R(d w) \end{cases}$$

$$= \begin{cases} g(x_0) R(x_0) + \int g(x_0) R(d w) \\ S(x_0) R(d w) + \int g(x_0) R(d w) \\$$

(med reals of and

freely Se and cus...

Who if Y= aX scaling Jan 16 B= Q, & W

E(Y) = E(x) = Saxp(x) = 9 E(x) by . 4 (1) xey(x) xey(x) = 9 E(x)

So .. E(B)=01 E(W)= \$3.12

the is a base fee - \$ >

T= B+ \$3

EG)?

Y= X+C

 $E(f) = E(X - c) = \sum_{X \in \mathcal{Y}(R)} (X + c) p(R) = \sum_{X \in \mathcal{Y}$

$$E(Y) = \sum_{i=1}^{n} x_{i}^{2} g(x_{i}) = \sum_{i=1}^{n} x_{i}^{2} (x_{i}^{2}) = \sum_{i=1}^{n} x_{i}^{2} (x$$

eno Suson", loss Amepor burn dois on fili @ or (3) C(X,M) = X-M C(n) = 1xm/ bad for taky bossesse! How to prove thems ... C(xm) - (xm) 3 "gand and loss" or LZ error". les L:= (x.v.'s) Ell is who? The especial sed area disone from My. It ames how for my on ay is a reducen of X from its one rem "? $E(L) = E[g(x)] = \sum_{x \in A_{p}(x)} g(x) p(x) = \sum_{x \in A_{p}(x)} (x-n)^{2} p(x)$ X - Rodemahr =>M=E(x) = 0 $E(L) = (E_1) - (0)^2 g(1) + ((1) - (0)^2 g(1) = |.0.5 + |.0.5 = [1]$ $B(1) = (-10-0)^2 p(1) + (10-0)^2 p(1) = 100.05 + 100.0.5 = 100$ he did om job. In Ima go mefel het its our nour 02:= Vm (x):= E(x-n)2]

$$\sqrt{m(x)} = \left(0 - \frac{1}{3}\right)^{2} \frac{2}{3} + \left(1 - \frac{1}{3}\right)^{2} \frac{1}{3}$$

$$= \frac{1}{3} \cdot \frac{2}{3} + \frac{4}{3} \cdot \frac{1}{3} = \frac{6}{27} \cdot \frac{2}{9} = .259$$

gent forda?

$$V_{m}(x) = (0) \cdot (p1)^{2} (1-p) + (1) \cdot (p1)^{2} p$$

$$= p^{2}(p) + (1-p)^{2} p$$

$$= (p) (p^{2} + (1-p)^{2} p)$$

$$= p^{2}(p) + (1-p)^{2} p$$

Rullte: let on Kicky #7

$$X_{7} = \begin{cases} 435 & \text{up } \frac{1}{30} \\ -\frac{1}{9} & \text{up } \frac{32}{30} \end{cases}$$
 $M = -\frac{1}{9}0.053$

$$V_{an}(x_{3}) = (335 - 40003)^{2} \frac{1}{38}$$

 $+ (-11 - 4.003)^{2} \cdot \frac{37}{38}$
 $= 33.20)$ fz

11 11 Bes n Block

X7 -> M the are until laust variance. The will prove my laper X6 -> m Olivo! A? ... has no menning o Pasjest my to solve 173 - \$ hise aid respectible les 6:= SE(X):= JUNX) = J02 Student anor or Standard down on 0, = \$5.79, 6s = \$1.00 6 y wheren 6 ihrann ... not so cler! It is not an experience it is just a grantical strategy to regard spread. but is it will be ruft lass... E(T) = \(\sum_{\test{tesyp}}\) \(\text{tesyp}\) \(\text{T} \) \ T2:=X, x X2 (Sally) Sally Hand to get X. X2 Holy px, x3= p(x) p(x2)