CE331 Assignment-2

Devang Singh

March 22, 2021

1 1).

angle misclosure(e) =
$$\sum_{i=1}^{5} \theta_i - (n-2) \times 180$$

e = 11"
 $C_e = -\frac{e}{n} = -\frac{11''}{5} = -2.2''$

S No.	Point	Interior angle	Correction	Corrected value of interior angle
1	A	100°45′37″	-2.2"	100°45′34.8″
2	В	231°23′43″	-2.2"	100°45′40.8″
3	\mathbf{C}	17°12′59′′	-2.2"	100°45′56.8″
4	D	89°3′28″	-2.2"	100°45′25.8″
5	\mathbf{E}	101°34′11″	-2.2"	100°45′8.8″

let
$$C_e = -2''$$

Line WCB

AB 126°55′17″

BC 178°19′0″

CD 15°31′57″

DE 284°35′23″

EA 206°9′42″

finding ΔE and ΔN

Line	Length	ΔE	ΔN
AB	647.25	517.450	-388.815
BC	203.03	5.964	-202.942
CD	720.35	192.898	694.041
DE	610.24	-590.562	153.716
EA	285.13	-125.7155	-255.919
Total	2466	0.0356	0.0815

$$e_L = \sqrt{(0.0356^2 + 0.0815^2)} = 0.089$$

Quality of traverse $= \frac{e_L}{2466} = 3.609 \times e^-5$

	_		
Point	\mathbf{E}	N	
A	5000	10000)
В	5517.450	9611.	184
\mathbf{C}	5523.414	9408.	242
D	5716.313	36 10102	2.284
E	5125.751	1 10256	6.0009
A	5000.035	66 10000	.0815
Line	Length	δE	δN
AB	647.25	-0.0093	-0.0214
BC	203.03	-0.0029	-0.0067
CD	720.35	-0.0104	-0.0238
DF	610.24	-0.0088	-0.0202
EA	285.13	-0.0041	-0.0094
Total	2466	-0.0356	-0.0815

2 2).

let slope of line AB be m let slope of line AC be m1 let slope of line BC be m2

at angle A :
$$tanA = \frac{m-m1}{1+m \times m1}$$

at angle B :
$$tanB = \frac{m-m2}{1+m \times m2}$$

Therefore,

$$m1 = \frac{m - tanA}{1 + m \times tanA} = k1(let)$$

$$m2 = \frac{m - tanB}{1 + m \times tanB} = k2(let)$$

since m, tanA, tanB are known therefore k1 and k2 are known

now putting values of m1 and m2,
$$x_c = \frac{(k_1 x_a - k_2 x_b) + (y_b - y_a)}{k1 - k2}$$
, $y_c = \frac{(k_1 y_b - k_2 y_a) + (x_a - x_b)}{k1 - k2}$

3 3).

Let $\angle EAB = \theta$ Since, AB is considered as true length therefore, horizontal line will intersect it at right angle(since AB is along plumb line) therefore,

$$\begin{array}{l} \cos\theta = \frac{AB}{AE} \\ error = AE - AB = AE(1-\cos\theta) \end{array}$$