Modelling Club: Week 2

Welcome to Modelling Club!

Modelling Club

- Practice model-building in teams
- Practice scenario: BF.7 subvariant in Bangladesh

Tasks from Week 1

- Think about a specific key questions related to our scenario
- Consider the different roles for a modelling team and how you could contribute

Modelling Club

- Practice model-building in teams
- Practice scenario: BF.7 subvariant in Bangladesh
- Today's goals:
 - listen to ideas for key questions
 - choose 2 or 3 key questions to build models
 - discuss modelling team roles
 - divide into teams (1 team per key question)

Modelling Scenario

- Scenario: BF.7 subvariant in Bangladesh
- Main purpose: estimate number of cases, number of hospitalizations, number of deaths caused by BF.7

Model Development

- Multi-step process to develop our models
- Remember:
 - "All models are wrong, but some are useful."
 - George Box

Identify the question Identify existing knowledge Choose model structure Choose modeling method Model quantification Model validation Prediction & optimization **Decision making** Model transfer

Identify the Question

- What is our key question?
 - prediction questions
 - model will produce estimates of cases, hospitalizations, and deaths
 - what else are we interested in knowing?

Practice Model

• Main purpose: estimate number of cases, number of hospitalizations, number of deaths caused by BF.7

Forming imposts: if there was no vessionation, what would be

Possible key questions:

Economic impacts: if there was no vaccination, what would costs have been (compared to with vaccination)? Is vaccination cost-effective?

-costs associated with: cases, hospitalization, deaths, vaccination

-cases: lost productivity

-hospitalization: cost for bed, treatments, lost productivity

-deaths: YLL, cost for YLL

-run 2 models: one with vaccination, one without

-number of cases, number of hospitalizations, number of deaths

-number of vaccinations

-ages of those who died

Practice Model

- Main purpose: estimate number of cases, number of hospitalizations, number of deaths caused by BF.7
- Possible key questions:

Impact of different types of interventions?
-masking, social distancing, vaccination

Timing of epidemic: how quickly will numbers of cases, hospitalizations, and deaths occur?

- -assess different values of R0 for this virus (i.e. the transmissibility of the variant)
 - -best-case scenario vs worst-case scenario
 - -find possible values for R0 to test
- -run models with different R0 for variant and compare timing of epidemic
 - -compare epidemic curves for each
 - -timing of peak number of cases/hospitalizations/deaths or timing of a set number for each

Modelling Teams

Modelling Teams

- Many tasks and decisions for each step
 - Gathering information about the disease
 - Finding data about the population
 - Researching options for model structure/method
 - Coding
 - model code
 - model results & visualization
 - Presenting and explaining the model ℓ

transmission, disease progression cost estimates number of people, age groups

SEIR?

Ideas:

势

-cost-effectiveness of vaccine

- -timing of epidemic
- -vaccine efficacy
- -impact of other interventions

Modelling Teams

Team 1	Team 2	17 eanus
Question: indirect costs	Question: direct costs	Question:
- Sohel	-Sharif	
	-Farzana	
	to a little a bit of a little a	

Team 1: What is the impact of vaccination on indirect costs?

Team 2: What is the impact of vaccination on direct costs?

Types of costs:

Direct costs

Indirect costs

-vaccine

-DALY

-hospitalization

-YLL

-treatments

-lost productivity

-deaths

When we start the model, we don't have any data

- '-build the structure
- __-find parameter/input estimates (numbers to put in the model)
- -run some trials for the model to see if results make sense
- -make adjustments
- -compare to real data

Existing Knowledge

Identify Existing Knowledge

- What inputs do we know?
 - Demographics -# people, %age groups
 - Natural history parameters -transmission, severity (% hospitalized, % deaths)
 - Control options & impact -vaccine: % vaccinated, % efficacy
- Do other models exist?
 - Similar disease? -many COVID-19 models (structure, numbers)
 - Similar scenario?-cost analyses
 - Distributions/values for parameters?

-see what numbers and sources other models have used

Identify the question

Identify existing knowledge

Many types of models exist

-we can consider other models to
help us understand what we are
studying

-terms used to describe our type of model:

-mechanistic, compartmental, mathematical

∡ Tasks for Next Guided Session

We'll let other club members decide which team to join

Meet with your team!

discuss how to share the tasks

make a plan for communicating with each other

Find potential sources for existing knowledge

- human demographics, natural history of virus, control impacts
- similar models
- make a list or copy the links and send them to me can share

Table/list of all the numbers you will need for your model -notes on possible sources to use for these numbers

Possible sources

-WHO, UN

-published papers

-government ministries