Simon King, FSU Jena Fakultät für Mathematik und Informatik Daniel Max

Numerische Mathematik

Sommersemester 2022

Übungsblatt 9

Hausaufgaben (Abgabe bis 14.06.2022, $10^{\underline{00}}$ Uhr)

Hausaufgabe 9.1: Gram-Schmidt und QR-Zerlegung

Es sei $A \in \mathbb{R}^{m \times n}$ mit linear unabhängigen Spalten $a_1, ..., a_n \in \mathbb{R}^m$, d.h. Rang $(A) = n \leq m$. Das **modifizierte Gram-Schmidt-Verfahren** berechnet eine obere Dreiecksmatrix $\hat{R} \in M_n(\mathbb{R})$ sowie eine Matrix $\hat{Q} \in \mathbb{R}^{m \times n}$ mit Spalten $q_1, ..., q_n \in \mathbb{R}^m$ wie folgt (wobei die q_j im Laufe des Algorithmus mehrfach geändert werden). Für j von 1 bis n:

- Sei anfänglich jeweils $q_j := a_j$.
- Für i von 1 bis j-1 definiere $R_{i,j} := \frac{q_i^\top q_j}{q_i^\top q_i}$ und ersetze $q_j := q_j R_{i,j}q_i$.
- Setze $R_{j,j} := 1$.

(4 P.) Zeigen Sie: $q_1, ..., q_n$ ist ein Orthogonalsystem bzgl. Standardskalarprodukt, d.h. $\hat{Q}^{\top}\hat{Q}$ ist eine invertierbare Diagonalmatrix, und zudem $A = \hat{Q}\hat{R}$.

Hausaufgabe 9.2: Vergleich von Lösungsmethoden

Sei $A := \begin{pmatrix} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & \varepsilon \end{pmatrix} \in \mathbb{R}^{4 \times 3}$, wobei $\varepsilon > 0$ so gewählt sei, dass $1 \boxplus \varepsilon \neq 1$ und $1 \boxplus \varepsilon^2 = 1$ (In double precision könnte man beispielsweise $\varepsilon = 10^{-15}$ wählen). Ferner sei $b := \begin{pmatrix} 1 \\ \varepsilon \\ -\varepsilon \end{pmatrix} \in \mathbb{R}^4$.

In dieser Aufgabe werden zwei Ansätze zur numerischen Lösung des linearen Ausgleichsproblems $||b - Ax|| \stackrel{!}{=} \min$ verglichen.

- a) (4 P.) Berechnen Sie $A^{\top} \boxdot A$ und berechnen Sie \hat{Q}, \hat{R} mit dem Algorithmus aus HA 9.1. Rechnen Sie dabei gerundet, so dass $\forall n \in \mathbb{N}^* \colon n \boxplus \varepsilon^2 = n$.
- b) (4 P.) Fortsetzung der vorigen Teilaufgabe: Zeigen Sie, dass das lineare Ausgleichsproblem nicht numerisch mit den Normalgleichungen lösbar ist, und lösen Sie es numerisch mit der Zerlegung $A \approx \hat{Q}\hat{R}$. Wie das geht, ist Thema der Vorlesung vom 08.06.2022.

Bitte wenden

Programmieraufgabe 9.3: Zur Vorlesung vom 08.06.2022

Sei $n \in \mathbb{N}^*$, $x_0 < x_n$, $\Delta := \frac{x_n - x_0}{n}$. Für $k \in \{1, ..., n-1\}$ sei $x_k := x_0 + k\Delta$ und $b \in \mathbb{R}^{n+1}$ mit $b_k := \mathrm{e}^{x_k}$. Für $c_1, c_2, c_3 \in \mathbb{R}$ sei $f : \mathbb{R} \to \mathbb{R}$ mit $f(x) := c_1 + c_2 x + c_3 x^2$. (4 P.) Schreiben Sie ein Programm, das zur Eingabe n, x_0, x_n die Parameter $c_1, c_2, c_3 \in \mathbb{R}$ so bestimmt, dass der quadratische Fehler bei Approximation von b durch $(f(x_0), ..., f(x_n))$ minimiert wird. Stellen Sie f(x) und e^x auf [a, b] zudem graphisch dar, und zwar einerseits für $n = 10, x_0 = -2, x_{10} = 0$, andererseits für $n = 10, x_0 = -2, x_{10} = 0$. Ihr Programm soll auf der Lösung der Normalgleichungen in double precision basieren. Für die Lösung linearer Gleichungssysteme sollen Sie Funktionen aus geeigneten numerischen Bibliotheken verwenden.

Erreichbare Punktzahl: 16