Prova scritta di Logica Matematica 1 25 gennaio 2011

Cognome Nome Matricola

Scrivete **subito** il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.			
1. <i>p</i>	$\to (\neg q \to r) \equiv (q \to \neg p) \to r.$	$\mathbf{V} \mathbf{F}$	1pt
2. Quante sono le variabili libere nella seguente formula?			
\forall :	$x r(x, f(x,y)) \to \exists z (p(f(z, f(z,z))) \land \exists y r(f(z,y),x)).$	$0 \begin{vmatrix} 1 \begin{vmatrix} 2 \end{vmatrix} 3$	1pt
3. Se un tableau per l'enunciato proposizionale F è aperto,			
	lora F è soddisfacibile.	$\mathbf{V} \mathbf{F}$	1pt
[.	F ¹ $F \rightarrow \bot$		
4.	$\frac{F]^{1}}{\frac{\bot}{\neg F}} \xrightarrow{1} $ è una deduzione naturale corretta.	$\mathbf{V}[\mathbf{F}]$	1pt
	$\neg F$		
	$y \exists z \ q(x, y, z)$ è una chiusura universale di $\exists z \ q(x, y, z)$.	$\mathbf{V} \mathbf{F}$	1pt
6. Si	ia I l'interpretazione con $D^{I} = \{0, 1, 2, 3\}, p^{I} = \{0, 2\}$ e		
r^{1}	$I = \{(0,3), (1,2), (2,3), (3,2)\}.$	<u></u> .	
A	llora $I \models \forall x (p(x) \lor \exists y r(y, x) \to \exists z (r(x, z) \land \neg p(z))).$	$\mathbf{V} \mathbf{F}$	1pt
7. O	gni interpretazione normale del linguaggio con uguaglianza ${\cal L}$		
SC	oddisfa $Eq_{\mathcal{L}}.$	$\mathbf{V} \mathbf{F}$	1pt
8. Se	e φ è un omomorfismo forte da I in J e σ uno stato di I		
	the che $I, \sigma \models \neg p(x) \lor p(a)$ allora $J, \varphi \circ \sigma \models \neg p(x) \lor p(a)$.	$\mathbf{V} \mathbf{F}$	1pt
9. Se	e un insieme di Hintikka contiene sia $p(a)$ che $\exists x(p(x) \land q(x))$		
al	lora contiene necessariamente anche $q(a)$.	$\mathbf{V} \mathbf{F}$	1pt
SECONDA PARTE			
10. Si	ia $f = \{f \mid n\}$ un linguaggio con f un simbolo di funzione una	rio e n un	

10. Sia $\mathcal{L} = \{f, p\}$ un linguaggio con f un simbolo di funzione unario e p un simbolo di relazione unario. Siano I e J le seguenti interpretazioni per \mathcal{L} :

4pt

$$D^I = \{A, B\}; \quad D^J = \{0, 1, 2\}; \qquad p^I = \{A\}; \quad p^J = \{1\};$$

$$f^I(A) = B; \quad f^I(B) = B; \quad f^J(0) = 2; \quad f^J(1) = 0; \quad f^J(2) = 0.$$

Sul retro del foglio dimostrate che $I \equiv_{\mathcal{L}} J$.

11. Sul retro del foglio dimostrate l'insoddisfacibilità dell'insieme

$$\{ \forall x \, r(x, f(x)), \forall y (\exists z \, r(y, z) \rightarrow \forall z \, \neg r(z, y)) \}.$$

- 12. Sia \mathcal{L} il linguaggio con uguaglianza $\{a,b,p,m,s,c,=\}$ dove a e b sono simboli di costante, p, m sono simboli di funzione unari, s è un simbolo di relazione unario e c è un simbolo di relazione binario. Interpretando a come "Anna", b come "Bruno", p(x) come "il padre di x", m(x) come "la madre di x", s(x) come "x è sereno" e c(x,y) come "x conosce y" traducete le seguenti frasi utilizzando lo spazio sotto di esse:
 - (i) la madre di Anna è una delle nonne di Bruno;

3pt

3pt

- (ii) tutti i padri conosciuti da almeno uno tra Anna e Bruno sono sereni.
- **13.** Dimostrate che $\neg F, \neg G \to H \lor \neg K, H \to F, K \rhd \neg (G \to F)$. Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)
- 14. Usando il metodo dei tableaux stabilite che

4pt

$$\forall x (p(x) \to \forall y \, r(x,y)) \land \forall x \, \forall y (r(x,y) \to \neg r(y,x)) \to \forall z \, \neg p(z)$$

è valida. (Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale disgiuntiva la formula

$$(p \to q \land \neg r) \land \neg s \to \neg (t \to p \lor \neg u).$$

Soluzioni

- 1. F come si verifica ad esempio con le tavole di verità.
- $\mathbf{2.}\ \mathbf{2}$ le uniche occorrenze libere sono la prima occorrenza di y e l'ultima di x.
- **3.** V l'affermazione è conseguenza immediata del teorema di completezza (Teorema 4.24 delle dispense).
- **4.** V la deduzione consiste in applicazioni corrette di $(\rightarrow e)$ e di $(\neg i)$.
- 5. F perché una chiusura universale si ottiene quantificando su tutte le variabili libere, in modo da ottenere un enunciato.
- **6.** F perché $I, \sigma[x/3] \nvDash p(x) \vee \exists y \, r(y, x) \to \exists z (r(x, z) \wedge \neg p(z))$. Infatti $(0, 3) \in r^I$, e quindi $I, \sigma[x/3] \models \exists y \, r(y, x)$, ma $I, \sigma[x/3] \nvDash \exists z (r(x, z) \wedge \neg p(z))$.
- 7. V è il Lemma 7.96 delle dispense.
- **8.** V visto che $\neg p(x) \lor p(a)$ è priva di quantificatori, basta applicare il Lemma 9.9 delle dispense.
- **9. F** $\{\exists x(p(x) \land q(x)), p(b) \land q(b), p(b), q(b), p(a)\}$ è un insieme di Hintikka che contiene sia p(a) che $\exists x(p(x) \land q(x)),$ ma non q(a).
- 10. Definiamo $\varphi: D^J \to D^I$ ponendo $\varphi(0) = B$, $\varphi(1) = A$ e $\varphi(2) = B$. Si tratta di verificare che φ è un omomorfismo forte suriettivo di J in I e applicare il Corollario 9.14 delle dispense.
- 11. Dobbiamo mostrare che nessuna interpretazione soddisfa entrambe le formule, che indichiamo con F e G. Supponiamo per assurdo che I sia un'interpretazione che soddisfa sia F che G.

Fissato $d_0 \in D^I$, dato che $I \models F$ si ha $(d_0^I, f^I(d_0)) \in r^I$ e anche $(f^I(d_0), f^I(f^I(d_0))) \in r^I$. Dato che $I \models G$ si ha in particolare che $I, \sigma[y/f^I(d_0)] \models \exists z \, r(y, z) \to \forall z \, \neg r(z, y)$. Visto che $(f^I(d_0), f^I(f^I(d_0))) \in r^I$ abbiamo $I, \sigma[y/f^I(d_0)] \models \exists z \, r(y, z)$ e perciò deve essere $I, \sigma[y/f^I(d_0)] \models \forall z \, \neg r(z, y)$. Da quest'ultima condizione segue in particolare che $(d_0^I, f^I(d_0)) \notin r^I$, che contraddice quanto osservato in precedenza.

- **12.** (i) $m(a) = m(p(b)) \vee m(a) = m(m(b));$
 - (ii) $\forall x(c(a, p(x)) \lor c(b, p(x)) \to s(p(x)))$, oppure $\forall x(\exists y \ x = p(y) \land (c(a, x) \lor c(b, x)) \to s(x))$ (le due formule sono logicamente equivalenti nella logica con uguaglianza).
- 13. Ecco una deduzione naturale che mostra quanto richiesto:

14. Per stabilire che la formula è valida costruiamo un tableau chiuso per la sua negazione. Indichiamo con F, G, H e K le γ -formule $\forall x(p(x) \rightarrow \forall y \, r(x,y)), \, \forall x \, \forall y \, (r(x,y) \rightarrow \neg r(y,x)), \, \forall y \, r(a,y) \in \forall y \, (r(a,y) \rightarrow \neg r(y,a)).$ In ogni passaggio sottolineiamo la formula su cui agiamo.

15.

$$\begin{split} & \left[\left\langle \left(p \to q \wedge \neg r \right) \wedge \neg s \to \neg (t \to p \vee \neg u) \right\rangle \right] \\ & \left[\left\langle \neg \left(\left(p \to q \wedge \neg r \right) \wedge \neg s \right) \right\rangle, \left\langle \neg (t \to p \vee \neg u) \right\rangle \right] \\ & \left[\left\langle \neg \left(p \to q \wedge \neg r \right) \right\rangle, \left\langle s \right\rangle, \left\langle \neg (t \to p \vee \neg u) \right\rangle \right] \\ & \left[\left\langle p, \neg (q \wedge \neg r) \right\rangle, \left\langle s \right\rangle, \left\langle t, \neg (p \vee \neg u) \right\rangle \right] \\ & \left[\left\langle p, \neg q \right\rangle, \left\langle p, r \right\rangle, \left\langle s \right\rangle, \left\langle t, \neg p, u \right\rangle \right] \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(p \land \neg q) \lor (p \land r) \lor s \lor (t \land \neg p \land u).$$