נושאים במתמטיקה לתלמידי מח"ר - 10444 סמסטר 2009ב

פתרון ממ"ן 13

תשובה 1

 $egin{pmatrix} a&b&c\\ 1&2&3 \end{pmatrix}$ א. תהי f:A o B הפונקציה בעלת הגרף f:A o B ותהי g:B o B הפונקציה בעלת הגרף

היא $g\circ f:A\to B$ אינה פונקציה חד-חד-ערכית כי g(3)=g(4) אינה פונקציה חד-חד-ערכית כי g(3)=g(4) אינה שונות שונות g(3)=g(4) אינה שונים. $\begin{pmatrix} a & b & c \\ 1 & 2 & 3 \end{pmatrix}$ וזוהי פונקציה חד-חד-ערכית כי לאותיות שונות מותאמים מספרים שונים.

. אינה על כי למספר 4 בטווח אין מקור h

הפונקציה על, כי לכל $\begin{vmatrix} 1 & 2 & 3 & 4 \\ a & b & c & c \end{vmatrix}$ היא בעלת הגרף היא בעלת הגרף היא בעלת הגרף אחד מאברי $k \circ h: B \to A$ היא מקור.

ג. נניח ש**יש** שתי פונקציות $h:B \to B$ ו- $k:B \to A$ הפונקציות שתי שתי שתי א נניח שיש אתי הפונקציות . $k \circ h:B \to A$

: אינה חד-חד-ערכית. נסביר זאת $k \circ h$

היא פונקציה שתחום הגדרתה הוא קבוצה בת 4 איברים והטווח שלה הוא קבוצה $k \circ h$ בת 3 איברים. לכן, יש **לפחות** שני איברים בתחום שמתאים להם **אותו** איבר בטווח וזה, לפי ההגדרה משמעות הדבר – הפונקציה $k \circ h$ **אינה** חד-חד-ערכית.

ההוכחה ש- $A \circ h: B \to A$ אינה חד-חד-ערכית פשוטה, והיא מסתמכת על הטענה $k \circ h: B \to A$ שבראש עמי 76 בספר הלימוד. לפי טענה זו אם $k \circ h$ חד-חד-ערכית, אז $|B| \le |A|$ אצלנו |B| = 4 ו- |B| > |A| לכן |B| > |A| ו- |B| = 4 אינה חד-חד-ערכית.

תשובה 2

: אינה חד-חד-ערכית א. נוכיח ש- f

$$f(2) = 1 = f(1)$$

ב. f היא על.

נבחר $n \in \mathbb{N}_1$ והרי לכל $n \in \mathbb{N}_1$ (עמי 73 בספר הלימוד), והרי לכל fטבעי.) $x = 2n - 1 \ge 1$ טבעי, לכן $1 \ge 1 - 1 \ge 1$ טבעי.) $x = 2n - 1 \in \mathbb{N}_1$. x = 2n - 1

$$f(x) = f(2n-1) = \frac{(2n-1)+1}{2} = n$$

תמיד אי זוגי 2n-1

: הטענה נכונה. הוכחה

$$f\circ g(n)=f\left(g(n)\right)=f\left(2n-1\right)=n$$
 : מתקיים $n\in \mathbf{N}_1$ לכל

כפי שראינו בסעיף בי

$$f \circ g = id_{\mathbf{N_1}}$$
 ולכן,

.2) הטענה אינה נכונה

$$g\circ f(2)=gig(f(2)ig)=g(1)=1
eq 2$$
 : מתקיים $n=2\in \mathbb{N}_1$ עבור $n=1$

. כלומר, $g \circ f(2) \neq 2$, ולא מתקיים השוויון בטענה.

תשובה 3

: נוכיח זאת \mathbf{R} היא על

g(x)=y כך ש- כך גמצא $y\leq 5$ אם $y\leq 5$

$$x = \frac{y+1}{2} \le \frac{5+1}{2} = 3$$
 ולכן הרי שאכן מתקיים $x = \frac{y+1}{2}$

3

$$g(x) = g(\frac{y+1}{2}) = 2(\frac{y+1}{2}) - 1 = y$$

 $x \leq 3$ עבור g לפי הגדרת

$$g(x)=y$$
 כי: $x=y$ כיה הרי שלכל $y>5$ ואם $g(x)=x=y$

 $\mathfrak{c} = \mathfrak{c} > 5 > 3$ עבור $\mathfrak{c} = \mathfrak{c}$

. \mathbf{R} -ם מקור שלכל y ממשי שלכל והראנו

$$\varphi_{\mathbf{l}}(x) = g \circ f(x) = g(f(x)) = \begin{cases} 2f(x) - 1 & f(x) \le 3 \\ f(x) & f(x) > 3 \end{cases}$$
ב. $\mathbf{R} \to \mathbf{R}$ ב.

$$\varphi_1(x) = \begin{cases} 2x-3 & x \le 4 \\ x-1 & x > 4 \end{cases}$$
 נציב $f(x) = x-1$:

$$\varphi_2(x)=f\circ g(x)=f(g(x))=g(x)-1$$
 : מוגדרת על-ידי מוגדרת על-ידי $\varphi_2:\mathbf{R} o\mathbf{R}$

$$\varphi_2(x) = \begin{cases} 2x - 2 & x \le 3 \\ x - 1 & x > 3 \end{cases}$$

תשובה 4

.
$$f(3) = {x ∈ N : x ≤ 3} = {0,1,2,3}$$
 .×

: 71 עבור אפי ההגדרה אפי , $A = \{0,2\}$

$$f[A] = \{f(x) : x \in A\} = \{f(0), f(2)\} = \{\{0\}, \{0,1,2\}\}\$$

 $n \leq m$ אזי: $n \leq m$ אזי: הם טבעיים המקיימים ה

$$f(n) = \{x \in \mathbb{N} : x \le n\} = \{0, 1, 2, ..., n\}$$

$$f(m) = \{x \in \mathbb{N} : x \le m\} = \{0, 1, 2, ..., m\}$$

. $f(n) \subseteq f(m)$ נוכיח כי

 $x\in {\bf N}$, אכן , $n\le m$, אך אד אד $x\in {\bf N}$ הריש- אב $x\in f(n)$ אם אד אב $x\in f(n)$. אב $x\in f(m)$. אב $x\in f(m)$. אב

. $f(n) \subseteq f(m)$ כלומר , $x \in f(m)$ מתקיים גם $x \in f(n)$ הוכחנו שלכל

- ג. f היא פונקציה חד-חד-ערכית אך אינה פונקציה על.
 - : מוכיח ש-f חד-חד-ערכית (1)

. m=k אזי f(m)=f(k) מתקיים $m,k\in {\bf N}$ אזי m=k אזי $f(m)=\left\{0,1,2,...,m\right\}=\left\{0,1,2,...,k\right\}=f(k)$ ולכן m=k אד אם מתקיים $f(m)=\left\{0,1,2,...,k\right\}=f(k)$ חד-חד-ערכית.

קבוצה חלקית $\{10\}\in P(\mathbf{N})$ (כי $\{10\}\in P(\mathbf{N})$ היא קבוצה חלקית $f:\mathbf{N}\to P(\mathbf{N})$ (כי $\{10\}\in P(\mathbf{M})$, $f(m)=\{10\}$, $f(m)=\{0,1,2,...,m\}\neq \{10\}$. כי לכל $f(m)=\{0,1,2,...,m\}\neq \{10\}$, $f(m)=\{0,1,2,...,m\}\neq \{10\}$.

תשובה 5

- $\{1,2\} \neq \{2,3\}$ בעוד , $f(\{1,2\}) = \{2\} = f(\{2,3\})$ א. אינה חד-חד-ערכית f
- ב. $Y=\{1\}$ ב- $Y=\{1\}$ ב- $Y=\{1\}$ ב- $Y=\{1\}$ שלילה שf על. לכן לקבוצה $Y=\{1\}$ ב- $Y=\{1\}$ יש מקור, $Y=\{1\}$ ב- $Y=\{1\}$ ב-
 - ג. הקבוצות המקיימות את הדרוש הן הקבוצות החלקיות ל- A המכילות את 4 בצירוף הקבוצות המספרים 1 או 3 (או אף אחד מהם). ואלה הן $\{4\},\{1,4\},\{3,4\},\{1,3,4\}$

תשובה 6

 $f(\langle x, y \rangle) = (x-1) \cdot y$, $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$:א. תהי

. $f\left(\left\langle 4,3\right\rangle \right)=9=f\left(\left\langle 2,9\right\rangle \right)$: אינה אחייע כי למשל f

x,y שלמים) כך ש-: נוכיח כי x,y על: יהי x,y מספר שלם, נמצא בx,y (כלומר x,y

$$f(\langle x,y\rangle) = m$$

שיויון או מתקיים ו-אז y=mו- x=2לכן נקבע למשל: $m=(x-1)\cdot y$ ים ואז אומר שיויון שיויון אומר אומר

$$f(\langle 2, m \rangle) = m$$
 -1 $\langle 2, m \rangle \in \mathbb{Z} \times \mathbb{Z}$

 $f(\langle x, y \rangle) = (x-1) \cdot y$, $f: \mathbf{N}_1 \times \mathbf{N}_1 \to \mathbf{Z}$:ב. תהי

מאותה סיבה כמו קודם f אינה חחייע.

תשובה 7

א. c - ו-c (נסמן ב-c את השורש השלישי של הפולינום) את השורשים של הפולינום ולכן:

$$mx^3 - 5x^2 - 13nx + 30 = m(x - 2)(x - 3)(x - c)$$

לכן,

$$mx^{3} - 5x^{2} - 13nx + 30 = m(x^{2} - 5x + 6)(x - c)$$

$$= m(x^{3} - 5x^{2} + 6x - x^{2}c + 5cx - 6c)$$

$$= m(x^{3} - (5 + c)x^{2} + (5c + 6)x - 6c)$$

וקיבלנו כי:

$$mx^3 - 5x^2 - 13nx + 30 = mx^3 - m(5+c)x^2 + (5c+6)mx - 6mc$$

הפולינומים בשני האגפים מתלכדים לכל x ממשי, לכן מקדמי המונומים שווים זה לזה בהתאמה. כלומר:

(*)
$$\begin{cases} m = m \\ m(5+c) = 5 \\ 13n = -(5c+6)m \\ -6mc = 30 \end{cases}$$

.
$$m = -\frac{5}{c} \iff mc = -5$$
 לכן , $-6mc = 30$

 $-\frac{5(5+c)}{c}=5$ נציב זאת במשוואה השנייה ונקבל

.
$$c=-2\frac{1}{2}$$
 -1 $2c=-5$ או $5+c=-c$ ולכן $\frac{5+c}{c}=-1$

(**)
$$m = -\frac{5}{c} = -\frac{5}{-2\frac{1}{2}} = 2$$
 לכן

$$13n = -(5 \cdot (-2 \frac{1}{2}) + 6)2 = 13$$
 -1

$$n = 1 \Leftarrow$$

$$m=1$$
 , $m=2$ קיבלנו, אם כן,

 $c = -\frac{5}{m} = -\frac{5}{2}$ (כי לפי (**), $-2\frac{1}{2}$ והשורש השלישי של הפולינום הוא

שים לב – אם נציב את n , m ו- c שקיבלנו במערכת המשוואות (*) נראה שהם אכן כל הפתרונות של מערכת זו.

ב. הפולינום הנתון הוא ממעלה 3 ולכן יש לו לכל היותר 3 שורשים.

ננחש תחילה שורש אחד (כשאנו מנחשים ננסה תחילה את 0 , אחר כך את 1 ו- 1- ואז את ננחש תחילה שורש אחד (כשאנו מנחשים ונסה הנתון כי, 2 ו- 2- וכוי) קל לראות ש- 1- הוא שורש של הפולינום הנתון כי,

$$2(-1)^3 + 3(-1)^2 - 1 = -2 + 3 - 1 = 0$$

: נחלק גמשפט 14, בחלק את הפולינום הנתון. נחלק את לכן, לפי משפט 14, בחלק את הפולינום הנתון. נחלק

$$2x^3 + 3x^2 - 1$$
: $x + 1$

 $2x^2+x-1$ נבצע חילוק ארוך (כדוגמת החילוק בעמי 97 בספר הלימוד) ונקבל את התוצאה ולכן

$$2x^3 + 3x^2 - 1 = (x+1)(2x^2 + x - 1)$$

$$2x^2 + x - 1 = 0$$
 וכל שנותר הוא למצוא את פתרונות המשוואה הריבועית

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{4} = \frac{-1 \pm 3}{4}$$
שפתרונותיה הם

.
$$x_2 = \frac{1}{2}$$
 ולכן $x_1 = -1$

. $\frac{1}{2}$ -ו -1 זייא , $\frac{1}{2}$, -1 , -1 לכן כל הפתרונות של המשוואה הנתונה הם

תשובה 8

 $2 \mid n3^{n+1} - (n+1)3^n + 1$ א. למעשה עלינו להוכיח כי לכל n טבעי

נוכיח את הטענה הנתונה בדומה לפתרון שאלה 4.3 בספר הלימוד.

הנחת האינדוקציה היא שלאיזשהו , 2 $\left|k3^{k+1}-(k+1)3^{k}+1\right|$, הנחת האינדוקציה היא שלאיזשהו , אונדוקציה היא שלאיזשהו , אונדוקציה היא שלאיזשהו אונדוקציה היא שלאיזשהו , אונדוקציה היא שלאיזשהו אונדוקציה היא שלא היא היא היא שלא היא היא של הי

. 2
$$|(k+1)3^{k+2} - (k+2)3^{k+1} + 1|$$
 ש-

$$(k+1)3^{k+2} - (k+2)3^{k+1} + 1 = k3^{k+2} + 3^{k+2} - (k+1)3^{k+1} - 3^{k+1} + 1 =$$

$$= 3k3^{k+1} - 3(k+1)3^k + 3 - 3 + 3^{k+2} - 3^{k+1} + 1$$

$$= 3(k3^{k+1} - (k+1)3^k + 1) + 3 \cdot 3^{k+1} - 3^{k+1} - 2$$

$$= 3(k3^{k+1} - (k+1)3^k + 1) + 3^{k+1}(3-1) - 2$$

$$= 3(k3^{k+1} - (k+1)3^k + 1) + 2(3^{k+1} - 1)$$

המחובר הראשון מתחלק ב-2 לפי הנחת האינדוקציה, וגם המחובר השני מתחלק ב-2 (מיידי), לכן הסכום מתחלק ב-2, כלומר זוגי, כנדרש.

ובכך הוכחנו את הטענה הנתונה.

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n+1}{n+2}$$
 צ.ל. $n=1$ ב. בסיס האינדוקציה הוא הטענה עבור $n=1$

$$\sum_{k=1}^{2} \frac{1}{k(k+1)} = \frac{1}{1(1+1)} + \frac{1}{2(2+1)} = \frac{1}{2} + \frac{1}{6} = \frac{2}{3} = \frac{1+1}{1+2}$$

והוכח השוויון הדרוש.

: הנחת האינדוקציה

$$\sum_{k=1}^{m+1} \frac{1}{k(k+1)} = \frac{m+1}{m+2}$$
 , מתקיים, $m \ge 1$ מתקיים, $m \ge 1$ ובהנחה זו עלינו להוכיח כי $\frac{m+2}{k(k+1)} = \frac{m+2}{m+3}$: ובהנחה זו עלינו

ובהנחה זו עלינו להוכיח כי:

: נעשה זאת

$$\sum_{k=1}^{m+2} \frac{1}{k(k+1)} = \sum_{k=1}^{m+1} \frac{1}{k(k+1)} + \frac{1}{(m+2)(m+3)}$$

$$= \frac{m+1}{m+2} + \frac{1}{(m+2)(m+3)} = \frac{(m+1)(m+3)+1}{(m+2)(m+3)}$$

$$= \frac{m^2 + 4m + 4}{(m+2)(m+3)} = \frac{(m+2)^2}{(m+2)(m+3)}$$

$$= \frac{m+2}{m+3}$$

ובכך הוכח הדרוש.

ג. חשוב: לפני שאגש לפתרון , ברצוני לציין שסטודנטים שמתקשים לעבוד עם סיגמאות (עם סימן הסכימה), מוטב שיעבדו עם סכומים. לדוגמא, את השוויון שיש להוכיח $n+(n+1)+(n+2)+\ldots+(3n)=2n(2n+1)$ בשאלה זו ניתן "לתרגם" ל-ולהוכיח שוויון זה.

$$\sum_{k=0}^{2} (1+k) = 1+2+3=6$$
 בסיס האינדוקציה : נבדוק עבור $n=1$ עבור : בסיס האינדוקציה

. $2 \cdot 3 = 6$ ומצד שני:

n=1 לכן השיויון נכון עבור

$$\sum_{k=1}^{2m} (m+k) = 2m(2m+1)$$
 , $m \ge 1$ הנחת האינדוקציה : נניח שמתקיים עבור

:צעד האינדוקציה : נוכיח עבור m+1, זייא נוכיח כי

$$\sum_{k=0}^{2(m+1)} ((m+1)+k) = 2(m+1)(2(m+1)+1)$$

כלומר, נוכיח שמתקיים:

(*)
$$\sum_{k=0}^{2m+2} (m+1+k) = 2(m+1)(2m+3)$$

: נתחיל מהאגף השמאלי ונפתח אותו עד שנגיע לאגף הימני

(*)
$$\sum_{k=0}^{2m+2} (m+1+k) = \sum_{k=0}^{2m} (m+1+k) + (m+1+(2m+1)) + (m+1+(2m+2))$$
$$= \sum_{k=0}^{2m} ((m+k)+1) + (3m+2) + (3m+3)$$
$$= \sum_{k=0}^{2m} (m+k) + \sum_{k=0}^{2m} 1 + (3m+2) + (3m+3)$$

$$= 2m(2m+1) + (2m+1) + (3m+2) + (3m+3)$$
עפייי הנחת האינדוקציה

וכללי הסכימה (עמי 102 בשיעור I)

$$=4m^2+10m+6=(2m+2)(2m+3)$$

 $n \geq 1$ הוכחנו את (*) ולכן השיויון נכון לכל

 $2^{n-1} + 2^{2n-1} \ge 3^n$ ד. נוכיח כי כל $n \ge 0$ טבעי מתקיים

n=0 בסיס האינדוקציה: עבור n=0: n=1: n=0: עבור בסיס האינדוקציה: עבור n=k: כלשהו.

 $2^n + 2^{2k+1} \ge 3^{k+1}$: נוכיח שמתקיים אייא n = k+1 עבור נוכיח צעד האינדוקציה איינדוקציה

$$2^k + 2^{2k+1} = 2 \cdot 2^{k-1} + 2^2 \cdot 2^{2k-1} = 2(2^{k-1} + 2^{2k-1}) + 2 \cdot 2^{2k-1}$$
 , והרי $2^{2k} = 4^k$, והרי $2^{2k} = 4^k$, והרי $2^{2k} = 4^k$, והרי $2^{2k-1} = 2(2^{k-1} + 2^{2k-1}) + 4^k \ge 2 \cdot 3^k + 4^k \ge 2 \cdot 3^k + 3^k$

עפייי הנחת האינדוקציה

$$2^k + 2^{2k+1} \ge 3 \cdot 3^k = 3^{k+1}$$
 וקיבלנו,

. טבעי $n \geq 0$ טבעי מתקיים לכל