Continuité des fonctions vectorielles

Dans tout le chapitre, E et F sont des \mathbb{K} -ev normés par $\|\cdot\|_E$ et $\|\cdot\|_F$.

Les notions qui vont suivre sont invariantes par passage à une norme équivalente. En particulier elles ne dépendent pas de la norme lorsque les espace sont de dimensions finies.

1) Limites

Convergences

Définition:

Soient $f: X \subset E \to F$ et a un point adhérent à X. On dit que f tend vers $\ell \in F$ en a si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in X, \|x - a\|_E \leq \eta \Longrightarrow \|f(x) - \ell\| \leq \varepsilon$$

Cet élément ℓ est alors unique, et on note $\ell = \lim_{x \to a} f(x)$ ou $f(x) \xrightarrow[x \to a]{} \ell$.

Exemple: 🕏

1) Pour une fonction constante.

Soit
$$C \in F$$
. Soit $f : E \to F$
 $x \mapsto C \in F$

Soit $a \in E$.

Soit $\varepsilon > 0$, pour tout $\eta > 0$, alors

$$\forall x \in E, \|x - a\|_E \le \eta \Longrightarrow \|f(x) - C\|_F = \|C - C\|_F = 0 < \varepsilon$$

C'est toujours vrai, donc $\lim_{x \to a} f(x) = C$

2) Soit $i \in \llbracket 1, n
rbracket$, considérons $p_i : \mathbb{R}^n o \mathbb{R}$ $(x_1,\dots,x_n)\mapsto x_i$ Soit $a=(a_1,\dots,a_n)\in\mathbb{R}^n$

$$(x_1, \dots, x_n) \mapsto x_n$$

Soit
$$a = (a_1, ..., a_n) \in \mathbb{R}^n$$

Soit $\varepsilon > 0$

Posons $\eta = \varepsilon > 0$ (on a complété après)

Alors
$$\forall x = (x_1, ..., x_n) \in \mathbb{R}^n$$

$$\max_{1 \le k \le n} |x_k - a_k| = \|x - a\|_{\infty} \le \eta$$

$$\Rightarrow |p_i(x) - a_i| = |x_i - a_i| \le \|x - a\|_{\infty} \le \eta = \varepsilon$$

Donc
$$p_i(x) \xrightarrow[x \to a]{} a_i$$

Propriété:

Soient $f: X = X_1 \cup X_2 \subset E \to F$, a un point adhérent à X_1 et à X_2 et $\ell \in F$.

Si
$$f(x) \xrightarrow[x \in X_1]{x \to a} \ell$$
 et $f(x) \xrightarrow[x \in X_2]{x \to a} \ell$, alors $f(x) \xrightarrow[x \in X]{x \to a} \ell$.

<u>Démonstration</u>:

Supposons que
$$f(x) \xrightarrow[x \in X_1]{\ell} \ell$$
 et $f(x) \xrightarrow[x \in X_2]{\ell} \ell$

Soit $\varepsilon > 0$.

$$\begin{cases} \exists \eta_1 > 0, \|x - a\|_E \leq \eta_1 \Longrightarrow \|f(x) - \ell\|_F \leq \varepsilon \\ \exists \eta_2 > 0, \|x - a\|_E \leq \eta_2 \Longrightarrow \|f(x) - \ell\|_F \leq \varepsilon \end{cases}$$

Posons $\eta = \min(\eta_1, \eta_2)$, alors $\eta > 0$

On fait alors une distinction de cas selon si x est dans X_1 ou X_2 car $\eta \leq \eta_1$ et $\eta \leq \eta_2$.

Théorème: (caractérisation séquentielles)

Soient $f: X \subset E \to F$ et α un point adhérent à X. On a équivalence entre

(i)
$$f(x) \xrightarrow{x \to a} \ell$$

(ii)
$$\forall (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}, x_n \xrightarrow[n \to +\infty]{} a \Longrightarrow f(x_n) \xrightarrow[n \to +\infty]{} \ell$$

<u>Démonstration</u>:

$$(i) \Longrightarrow (ii)$$
: Supposons que $f(x) \xrightarrow{r \to a} \ell$

Soit
$$(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$$
 tel que $x_n\xrightarrow[n\to+\infty]{}a$

Soit $\varepsilon > 0$, comme $f(x) \xrightarrow[x \to a]{} \ell$,

$$\exists \eta > 0 \text{ tq } \forall x \in X, ||x - a||_E \le \eta \Longrightarrow ||f(x) - \ell||_F \le \varepsilon$$

Or $x_n \xrightarrow[n \to +\infty]{} a$, en exploitant la définition de la convergence avec $\eta > 0$,

$$\exists n_0 \in \mathbb{N} \ \mathrm{tq} \ \forall n \in \mathbb{N}, n \geq n_0 \Longrightarrow \|x_n - a\|_E \leq \eta, \, \mathrm{donc} \ \|f(x_n) - \ell\| \leq \varepsilon$$

Ainsi $f(x_n) \xrightarrow[n \to +\infty]{} \ell$.

 $(ii) \Rightarrow (i)$: par contraposée. Supposons que $f(x) \underset{x \to a}{\nrightarrow} \ell$

$$\exists \varepsilon_0 > 0, \forall \eta > 0, \exists x \in X, ||x - \alpha||_E \le \eta \text{ et } ||f(x) - l|| > \varepsilon_0$$

Propriété:

Soient
$$f,g:X\subset E\to F$$
 et $\lambda,\mu\in\mathbb{K}$. Si $f(x)\underset{x\to a}{\longrightarrow}\ell$ et $g(x)\underset{x\to a}{\longrightarrow}\ell'$, alors $(\lambda f+\mu g)(x)\underset{x\to a}{\longrightarrow}\lambda\ell+\mu\ell'$.

Propriété :

Soient
$$\alpha: X \subset E \to \mathbb{K}$$
 et $f: X \subset E \to F$. Si $\alpha(x) \xrightarrow[x-a]{} \lambda \in \mathbb{K}$ et $f(x) \xrightarrow[x\to a]{} \ell$, alors $(\alpha f)(x) \xrightarrow[x\to a]{} \lambda \ell$.

Propriété:

Soient
$$G$$
 un \mathbb{K} -evn, $f: X \subset E \to F$ et $g: Y \subset F \to G$, avec $f(X) \subset Y$. Si $f(x) \underset{x \to a}{\longrightarrow} b$ et $g(y) \underset{x \to b}{\longrightarrow} \ell$, alors $g \circ f(x) \underset{x \to a}{\longrightarrow} \ell$.

<u>Définition</u>: Les applications scalaires $f_1, ..., f_p : X \subset E \to \mathbb{K}$ sont appelées **fonctions coordonnées** de f relatives à la base $\mathcal{B} = (e_1, ..., e_p)$.

Proposition:

Soit a un point adhérent à X. On a équivalence entre :

- (i) f tend vers $\ell = \sum_{i=1}^{p} l_i e_i$
- (ii) Pour tout $j \in [1; p]$, f_i tend vers l_i en a.

Proposition:

Soit $a \in E$ un point adhérent à X. On a équivalence entre :

- (i) $f \text{ tend vers } \ell = (\ell_1, ..., \ell_p) \text{ en } a$
- (ii) Pour tout $i \in [1; p]$, f_i tend vers ℓ_i en a

<u>Définition:</u>

Soit $f: X \subset \mathbb{R} \to F$ avec X une partie de \mathbb{R} non majorée. On dit que f tend vers $\ell \in F$ en $+\infty$ si

$$\forall \varepsilon > 0, \exists A \in \mathbb{R}_+, \forall x \in X, x \geq A \Longrightarrow ||f(x) - \ell||_F \leq \varepsilon$$

On note alors $f(x) \xrightarrow[x \to +\infty]{} \ell$. On définit de manière analogue $f(x) \xrightarrow[x \to -\infty]{} \ell$ pour $X \subset \mathbb{R}$ non minoré.

Définition:

Soit $f: X \subset E \to F$ avec X une partie de E non majorée. On dit que f tend vers $\ell \in F$ lorsque $\|x\|_E$ tend vers $+\infty$ si

$$\forall \varepsilon > 0, \exists A \in \mathbb{R}_+, \forall x \in X, ||x||_F \ge A \Longrightarrow ||f(x) - \ell||_F \le \varepsilon$$

On note alors $f(x) \xrightarrow{\|x\|_E \to +\infty} \ell$.

Définition:

Soient $f: X \subset E \to \mathbb{R}$ et a un point adhérent à X. On dit que f tend vers $+\infty$ en a si

$$\forall M \in \mathbb{R}_+, \exists \eta > 0, \forall x \in X, ||x - a||_E \le \eta \Longrightarrow f(x) \ge M$$

On note alors $f(x) \xrightarrow[x \to a]{} + \infty$, et on définit de manière analogue les limites en norme et en $-\infty$.

2) Continuité

Définitions et exemples :

Définition:

On dit que $f: X \subset E \to F$ est **continue** en $a \in X$ si $f(x) \xrightarrow{r \to a} f(a)$, ie si :

$$|\forall \varepsilon > 0, \exists \eta > 0, \forall x \in X, ||x - a||_{E} \le \eta \Longrightarrow ||f(x) - f(a)||_{F} \le \varepsilon$$

<u>Théorème</u>: (Caractérisation séquentielle de la continuité)

Soient $f: X \subset E \to F$ et $a \in X$. On a équivalence entre :

- (i) f est continue en a
- (ii) $\forall (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}, \lim_{n \to +\infty} x_n = a \Longrightarrow \lim_{n \to +\infty} f(x_n) = f(a)$

Exemple: Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour tout $(x,y) \in \mathbb{R}^2$, $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$

f est-elle continue en (0,0)?

On a
$$\left(\frac{1}{n}, \frac{1}{n}\right) \xrightarrow[n \to +\infty]{} (0,0)$$
 et $f\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{\frac{1}{n} \times \frac{1}{n}}{\frac{1}{n^2} + \frac{1}{n^2}} = \frac{1}{2} \xrightarrow[n \to +\infty]{} \frac{1}{2}$

Avec
$$\frac{1}{2} \neq f(0,0) = 0$$

Donc f n'est pas continue en (0,0).

Définition:

On dit que $f: X \subset E \to F$ est **continue** sur X si f est continue sur tout point $a \in X$

On note C(X, F) l'ensemble des fonctions continues de X dans F.

Remarque : Si $f: X \subset E \to F$ est continue sur X, alors $\forall Y \subset X$, la restriction $f_{|Y}$ de f à Y est continue sur Y, mais la réciproque est **fausse**.

<u>Propriété</u>: Si $f: X \subset E \to F$ et $U \subset X$ un **ouvert** de E. Si la restriction de f à U (notée $f_{|U}$) est continue sur U, alors f est continue en tout point de U.

<u>Définition</u>: Une application $f: X \subset E \to F$ est dite lipschitzienne s'il existe $k \in \mathbb{R}_+$ tel que :

$$\forall x, y \in X, ||f(x) - f(y)||_F \le k||x - y||_F$$

Proposition: Les applications lipschitziennes sont continues.

<u>Démonstration</u> **★**

Supposons que $f: X \subset E \to F$ est lipschitzienne, alors $\exists k \in \mathbb{R}_+$ tel que $\forall x, y \in X$,

$$||f(x) - f(y)||_F \le k||x - y||_F$$

Soit $a \in X$. Montrons que f est continue en a.

Si $k \neq 0$:

Soit $\varepsilon > 0$. Posons $\eta = \frac{\varepsilon}{k} > 0$

Alors $\forall x \in X$, $\|x - a\|_E \le \eta \Longrightarrow \|f(x) - f(a)\|_E \le k\|x - a\|_E \le k\eta \le \varepsilon$.

Donc f est continue en a

Si k = 0,

 $\forall x, y \in X, 0 \le ||f(x) - f(y)|| \le 0 \times ||x - y||_E = 0$

Donc $||f(x) - f(y)||_F = 0$, d'où f(x) = f(y).

Ainsi f est constante, donc continue.

Exemple: 🕏

 $\|\cdot\|_E: E \to \mathbb{R}$ est 1-lipschtzienne, car $\forall x, y \in E$,

$$|||x||_E - ||y||_E| \le 1 \times ||x - y||_E$$

Par l'inégalité triangulaire inversée.

Ainsi $\| \cdot \|_E$ est continue sur $(E, \| \cdot \|_E)$

Opérations sur les fonctions continues

Propriété:

Soient $f, g: X \subset E \to F$ continues et $\lambda, \mu \in \mathbb{K}$. La fonction $\lambda f + \mu g$ est continue sur X

Propriété:

Soient $\alpha: X \subset E \to \mathbb{K}$ et $f: X \subset E \to F$ continues sur X. Le produit $\alpha \cdot f$ est continu sur X.

Propriété:

Soient $f: X \subset E \to F$ et $g: Y \subset F \to G$ vérifiant $f(X) \subset Y$. Si f et g sont continues, alors la composée $g \circ f$ l'est également.

Exemple: On appelle fonction monôme sur \mathbb{K}^n toute application $f: \mathbb{K}^n \to K$

$$(x_1, ..., x_n) \mapsto x_1^{\alpha_1} \times ... \times x_n^{\alpha_n}$$

Où $\alpha_1, \ldots, \alpha_n \in \mathbb{N}$

Comme les projections coordonnées sont continues sur \mathbb{K}^n , par produit, une fonction monôme est continue sur \mathbb{K}^n

On appelle fonction polynômiale sur \mathbb{K}^n toute combinaison sur linéaire finie de fonctions monômes sur \mathbb{K}^n . Par les propriétés précédentes, les fonctions polynômiales sont continues sur \mathbb{K}^n .

Fonctions à valeurs dans un evn de dimension finie ou un evn produit

Propriété:

Si F est de dimension finie, alors $f: X \subset E \to F$ est continue si et seulement si ses fonctions coordonnées dans une base de F le sont.

Propriété:

Soit $F = F_1 \times ... \times F_p$ un espace normée produit, et $f : X \subset E \to F$. On peut noter $f = (f_1, ..., f_p)$ avec $f_i : X \subset E \to F$ pour tout $i \in [1, p]$. La fonction f est continue sur X si et seulement si toutes ses composantes le sont.

3) Continuité et topologie

Autres caractérisations équivalentes de la continuité

Théorème:

Soit $f: E \to F$. On a équivalence entre :

- (i) f est continue sur E
- (ii) L'image réciproque par f de tout fermé de F est un fermé de E
- (iii) L'image réciproque par f de tout ouvert de F est un ouvert de E