import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sbn
%matplotlib inline

path = "/content/abalone.csv"
df = pd.read_csv(path)
df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shel
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	

df['age'] = df['Rings']+1.5
df = df.drop('Rings', axis = 1)

#Univariate Analysis
sbn.boxplot(df.Length)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fca10ec6e10>

#Bi-Variant Analysis
sbn.barplot(x=df.Height,y=df.Diameter)

<matplotlib.axes._subplots.AxesSubplot at 0x7fca106e4210>

#Multi-Variant Analysis
sbn.pairplot(df)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

Data	COTUMNIS (COCAT	J COLUMNIS).	
#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64

```
float64
      7
          Shell weight
                          4177 non-null
      8
          age
                          4177 non-null
                                           float64
     dtypes: float64(8), object(1)
     memory usage: 293.8+ KB
df['Height'].mean()
     0.13951639932966242
df['Diameter'].median()
     0.425
df['Length'].mode()
          0.550
     1
          0.625
     dtype: float64
df.max()
     Sex
                             Μ
     Length
                        0.815
     Diameter
                         0.65
     Height
                         1.13
     Whole weight
                       2.8255
     Shucked weight
                        1.488
     Viscera weight
                         0.76
     Shell weight
                        1.005
                         30.5
     age
     dtype: object
df.min()
     Sex
                             F
     Length
                        0.075
     Diameter
                        0.055
     Height
                          0.0
     Whole weight
                        0.002
     Shucked weight
                        0.001
     Viscera weight
                       0.0005
     Shell weight
                       0.0015
     age
                          2.5
     dtype: object
#EDA
sbn.heatmap(df.isnull())
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fca0bed39d0>

numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/r

```
nical features
```

```
numerical_features
```

categorical_features

```
Index(['Sex'], dtype='object')
```

```
plt.figure(figsize = (20,7))
sbn.heatmap(df[numerical_features].corr(),annot = True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fca0bf1d8d0>

sbn.countplot(x = 'Sex', data = df, palette = 'Set3')

<matplotlib.axes._subplots.AxesSubplot at 0x7fca0a264790>


```
plt.figure(figsize = (20,7))
sbn.swarmplot(x = 'Sex', y = 'age', data = df, hue = 'Sex')
sbn.violinplot(x = 'Sex', y = 'age',data = df)
```

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 56. warnings.warn(msg, UserWarning)

```
#Data Preprocessing
#Outlier handling
df = pd.get_dummies(df)
dummy_df = df

var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
var = 'Shell weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
 df.drop(df[(df['Shell weight'] > 0.6) \& (df['age'] < 25)].index, inplace = True) \\ df.drop(df[(df['Shell weight'] < 0.8) \& (df['age'] > 25)].index, inplace = True)
```

```
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


df.drop(df[(df['Shucked weight'] >= 1) & (df['age'] < 20)].index, inplace = True)
df.drop(df[(df['Viscera weight']<1) & (df['age'] > 20)].index, inplace = True)

```
var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
      df.drop(df[(df['Diameter'] < 0.1) & (df['age'] < 5)].index, inplace = True) \\       df.drop(df[(df['Diameter'] < 0.6) & (df['age'] > 25)].index, inplace = True) \\       df.drop(df[(df['Diameter'] > 0.6) & (df['age'] < 25)].index, inplace = True)
```

```
var = 'Height'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


df.drop(df[(df['Height'] > 0.4) &(df['age'] < 15)].index, inplace = True)
df.drop(df[(df['Height']<0.4) & (df['age'] > 25)].index, inplace = True)

```
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
X = df.drop('age', axis = 1)
y = df['age']
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import SelectKBest
standardScale = StandardScaler()
standardScale.fit_transform(X)

selectkBest = SelectKBest()
X_new = selectkBest.fit_transform(X, y)

X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size = 0.25)
```

from sklearn.linear_model import LinearRegression

```
lm = LinearRegression()
lm.fit(X_train, y_train)
     LinearRegression()
y_train_pred = lm.predict(X_train)
y_test_pred = lm.predict(X_test)
from sklearn.metrics import mean_absolute_error, mean_squared_error
s = mean_squared_error(y_train, y_train_pred)
print('Mean Squared Error of training set :%2f'%s)
p = mean_squared_error(y_test, y_test_pred)
print('Mean Squared Error of testing set :%2f'%p)
     Mean Squared Error of training set :3.477822
     Mean Squared Error of testing set :3.805329
from sklearn.metrics import r2_score
s = r2_score(y_train, y_train_pred)
print('R2 Score of training set:%.2f'%s)
p = r2_score(y_test, y_test_pred)
print('R2 Score of testing set:%.2f'%p)
     R2 Score of training set:0.54
     R2 Score of testing set:0.53
```