Throughout this article we denote by $H = \langle -1, 2 \rangle$ the subgroup generated by -1 and 2 in \mathbb{F}_p^{\times} and set

$$\ell_0 = [\mathbb{F}_p^{\times} : H]$$

for the index of H in \mathbb{F}_p^{\times} . Notice that if $4 \nmid o_p(2)$ then by definition we have that $\mathscr{O}(p) = \ell_0$. Furthermore, Conjecture A is a non-empty statement if and only if $\mathscr{O}(p) = \ell_0 \geq 3$.

The idea behind Conjecture A is the following. Suppose that Conjecture A holds, then each triple (a_i,b_i,c_i) in the conjecture corresponds to a nonequi-difference codeword $\mathbf{x_i} = \{0,a_i,-c_i\}$ with difference set $\Delta(\mathbf{x_i}) = \{\pm a_i,\pm b_i,\pm c_i\}$. Hence, we have $\left\lfloor \frac{\mathscr{O}(p)}{3} \right\rfloor$ nonequi-difference codewords whose difference sets are disjoint. From the complement of $\cup_{i=1}\Delta(\mathbf{x_i})$ in \mathbb{F}_p^{\times} , their algorithm then produces $\frac{p-1-2\mathscr{O}(p)}{4}$ equi-difference codewords and hence gives a CAC of size matching the upper bound given in (1).

As an illustration, we briefly discuss the case treated in [FLS14] Example 3] where the length p=31. Note that $o_{31}(2)=5$ and hence $\mathcal{O}(31)=3$. Then Conjecture A predicts that there are $3\left\lfloor\frac{\mathcal{O}(31)}{3}\right\rfloor=3$ cosets and one element in each coset such that their sum is zero. One finds that the triple (2,3,-5) gives a solution and the corresponding codeword is $\{0,2,5\}$ whose difference set is just $\{\pm 2,\pm 3,\pm 5\}$ while 2, 3 and -5 lie exactly in three distinct cosets of H in \mathbb{F}_p^{\times} . Moreover, there are six equi-difference codewords $\{0,4,8\}$, $\{0,6,12\}$, $\{0,7,14\}$, $\{0,9,18\}$, $\{0,10,20\}$ and $\{0,15,30\}$ produced by their algorithm. In total, one concludes that the size of an optimal CAC of length 31 is M(31)=7.

Independently, in MZS14 the authors proposed a conjecture which provides solutions to the existence of the triples (A_i, B_i, C_i) in Conjecture A in terms of the group structure of \mathbb{F}_p^{\times}/H .

Conjecture B ([MZS14] Conjecture]). Let p be an odd prime. If $\ell_0 \ge 3$, then there exist $b \in gH$ and $c \in g^2H$ such that

$$1+b+c=0$$
 in \mathbb{F}_p

for some generator g of \mathbb{F}_p^{\times} .

Remark 1.1. We see that Conjecture \mathbb{B} implies Conjecture \mathbb{A} by setting $A_1 = H$, $B_1 = gH$, $C_1 = g^2H$, $A_2 = g^3H$, $B_2 = g^4H$, $C_2 = g^5H$, ..., $A_e = g^{3e-3}H$, $B_e = g^{3e-2}H$ and $C_e = g^{3e-1}H$ where $e = \left|\frac{\ell_0}{3}\right|$. Moreover, Conjecture \mathbb{B} does not assume that $4 \nmid o_p(2)$.

Note that the subgroup $H=\langle -1,2\rangle$ consists of all the ℓ_0 -th power of elements of \mathbb{F}_p^\times . It follows that the elements b and c in Conjecture \mathbb{B} are of the forms gy^{ℓ_0} and $g^2x^{\ell_0}$ respectively for some $x,y\in \mathbb{F}_p^\times$. Observe that if $\ell_0\geq 3$ then any \mathbb{F}_p -rational solutions (x,y) to the the diagonal equation $g^2X^{\ell_0}+gY^{\ell_0}+1=0$ must satisfy $xy\neq 0$ since $-1\in H$ and g is a generator of \mathbb{F}_p^\times . Thus, any \mathbb{F}_p -rational solution gives a pair of elements b and c in Conjecture \mathbb{B} So Conjecture \mathbb{B} is equivalent to the following statement.