UNIVERSITEIT TWENTE.

Multiphase Reactor Technology

HC 2: Fixed Bed Reactors **Description & Modeling**

Sascha Kersten

Fausto Gallucci

Transport phenomena in fixed bed reactors description of prevailing phenomena

- > Bed level:
 - ✓ Flow distribution over catalyst bed or (parallel) tubes
 - ✓ Flow inside the catalyst bed
 - ✓ Mass and heat transport in the catalyst bed

- Catalyst particle level:
 - ✓ External mass and heat transfer to the catalyst particle
 - ✓ Internal diffusion of mass and heat
 - ✓ Adsorption and chemical reaction at (internal) surface

Velocity profile

- Local / linear velocity, V
- Superficial velocity, U_o
 - U_o = volumetric flow rate / total area
 - For a tube: $U_0 = \frac{\phi_v}{\frac{1}{4}\pi d_t^2}$
- Plug flow is a good approximation for the superficial velocity

frictional pressure drop and flow field

Frictional pressure drop (for example Ergun equation)

$$-\frac{dp}{dz} = 150 \frac{(1-\varepsilon_b)^2}{\varepsilon_b^3} \frac{\mu U_0}{(\phi_s d_p)^2} + 1.75 \frac{\rho_f}{(\phi_s d_p)} \frac{(1-\varepsilon_b) U_0^2}{\varepsilon_b^3}$$

Additional equation (equation of state):

$$\rho_f = \rho_f(p) \qquad \qquad \rho_f = \frac{M_f p}{R T_f}$$

Flow field: governed by the single phase fluid flow equations (Navier-Stokes equations)

for practical purposes we use the volume-averaged fluid equation Averaging volume big compared to particle size but small compared to fixed bed size

frictional pressure drop and flow field

- $\nabla \varepsilon_h \bar{u} = 0$ Continuity equation (volume averaged description): interstitial velocity in void spaces between the particles <
- Brinkman equation (extension of Darcy's law for wall-bounded flow):

$$0 = -\nabla p - \beta \bar{u} + \mu_e \nabla^2 \bar{u}$$
 μ_e represents the effective viscosity

expression for the friction coefficient β:

viscous term only of importance near the wall region

$$\beta = 150 \frac{(1 - \varepsilon_b)^2}{\varepsilon_b^2} \frac{\mu}{\left(\phi_s d_p\right)^2} + 1.75 \frac{\rho_f}{\left(\phi_s d_p\right)} \frac{(1 - \varepsilon_b) |\bar{u}|}{\varepsilon_b}$$

Empirical expression for porosity profile:
$$\varepsilon_b = \varepsilon_0 \left[1 + Cexp \left(1 - 2 \frac{s}{d_p} \right) \right]$$

 ε_0 and C are fitted constants, s represents the distance from the wall UNIVERSITEIT TWENTE. Multiphase Reaction Technology

frictional pressure drop and flow field

Porosity profiles in fixed beds and fitted empirical equations

Note: preferential wall flow due to the porosity profile is only important in tubes containing relatively few (<20) particles in radial direction

Particle level

- Description of relevant phenomena for a catalyst particle
 - 1) Mass transport through external boundary layer to particle
 - 2) Diffusion of reactants through macro and micro pores
 - 3) Chemisorption of reactants at catalyst surface
 - 4) Surface reactions at active sites
 - 5) Desorption of products from catalyst surface
 - 6) Diffusion of products through micro and macro pores
 - 7) Mass transport through external boundary from particle + corresponding superimposed heat transport

- Single spherical particle model (single reaction):
 - $\frac{\partial C_A}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_A \frac{\partial C_A}{\partial r} \right) + r_A$ Species conservation equation:
 - $\rho_{s}C_{p,s}\frac{\partial T_{s}}{\partial t} = \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\lambda_{s}\frac{\partial T_{s}}{\partial r}\right) + (-r_{A})(-\Delta H_{r,A})$ - Thermal energy equation:

Catalyst Particle

$$r=0$$
: $\frac{\partial C_A}{\partial r}=0$

$$r = 0$$
: $\frac{\partial C_A}{\partial r} = 0$ $k_f(C_{A,f} - C_A) = D_A \frac{\partial C_A}{\partial r}$

$$r=0$$
: $\frac{\partial T_S}{\partial r}=0$

$$r = 0$$
: $\frac{\partial T_S}{\partial r} = 0$ $\alpha_f(T_f - T_S) = \lambda_S \frac{\partial T_S}{\partial r}$

Mass and heat transfer film surrounding area

Results for first order kinetics:

$$\phi = R \sqrt{\frac{k_0}{D_A}} \qquad \gamma = \frac{E_A}{RT_f}$$

$$\beta = \frac{C_{A,f}(-\Delta H_{r,A})D_A}{T_f \lambda_S}$$

$$\beta = \frac{\Delta T}{T_f}$$

Transport phenomena at reactor level

- Description of relevant phenomena
 - ✓ Transfer of mass and heat between particles and gas / liquid
 - ✓ Mass dispersion in radial and axial direction
 - ✓ Effective radial and axial heat conductivities

Mass and Heat transfer between particles and fluid

 Transfer of mass and heat between particles and gas (correlation due to Gunn (1978, Int. J. Heat Mass Transfer, 21, 467)

$$Nu_p = (7 - 10\varepsilon_b + 5\varepsilon_b^2)(1 + 0.7Re_p^{0.2}Pr^{\frac{1}{3}}) + (1.33 - 2.4\varepsilon_b + 1.2\varepsilon_b^2)Re_p^{0.7}Pr^{\frac{1}{3}}$$

With Nu_p, Re_p and Pr respectively the particle Nusselt, Reynolds and the Prandtl number given
 by:

 $Nu_p = \frac{\alpha_f d_p}{\lambda_f}$ $Re_p = \frac{\rho_f U_0 d_p}{\mu}$ $Pr = \frac{\mu C_{p,f}}{\lambda_f}$

• Adaption for mass transport: replace Nu_p by Sherwood number Sh_p and Pr by Schmidt number Sc, with Sh_p and Sc given by:

$$Sh_p = \frac{k_f d_p}{D} \qquad Sc = \frac{\mu}{\rho_f D}$$

Radial and axial dispersion coefficients

- Radial and axial dispersion coefficients

Radial mass dispersion coefficient:
$$\frac{1}{Pe_{e,r}} = \frac{G_1}{(Re_pSc)^{G_4}} + \frac{G_2}{1 + \frac{G_3}{(Re_pSc)^{G_5}}}$$

fitted constants: $G_1=0.34$, $G_2=0.08$, $G_3=10.8$, $G_4=0.8$, $G_5=1.0$

Axial mass dispersion coefficient:

$$\frac{1}{Pe_{e,z}} = \frac{E_1}{Re_pSc} + \frac{E_2}{1 + \frac{E_3}{Re_pSc}}$$

fitted constants: E1=0.72, E2=0.52 and E3= 9.0

Can (almost) always be neglected

dimensionless groups

$$Pe_{e,r} = \frac{U_0 d_p}{D_{e,r}} \qquad Pe_{e,z} = \frac{U_0 d_p}{D_{e,z}} \qquad Re_p = \frac{\rho_f U_0 d_p}{\mu} \qquad Sc = \frac{\mu}{\rho_f D}$$

Heat transfer to the wall

 1D model: α function of velocity, d_p, d_t and fluid properties (see Froment and Bischoff)

$$Nu = \frac{\alpha_w d_t}{\lambda_g} = 3.5 Re_p^{0.7} e^{\left(\frac{-4.6 d_p}{d_t}\right)}$$

$$Re_p = \frac{\rho_g d_p u}{\mu_g}$$

- 2D model: effective radial conductivity
 - with our without separate $\alpha_{\rm w}$ (conductivity changes near the wall)
- Pseudo 2D: 1 D model based on effective radial conductivity

• Effective radial heat conductivity: $\lambda_{e,r} = \lambda_{e,r,static} + \lambda_{e,r,dynamic}$

Parameters influencing effective radial and axial heat conductivity:

- ✓ Conductivity of fluid and solid phases
- ✓ Bed porosity
- ✓ Pressure and temperature
- ✓ Tube and particle diameter
- ✓ Fluid flow
- ✓ Particle characteristics (PSD and shape)
- ✓ Mechanical and optical properties of the particles
- ✓ Thermodynamic and optical properties of fluid phase

The cell model of Zehner and Schuendler (1970, Chemie, Ing. Tech. 42/14, 933) for static part of effective radial conductivity λ_{e,r,static}:

Cell model is based on combination of heat resistances in series and parallel

$$\lambda_{e,r,static} = \lambda_{b,f} + \lambda_{b,s}$$

The cell model of Zehner and Schuendler (1970, Chemie, Ing. Tech. 42/14, 933) for static part of effective radial conductivity λ_{e.r.static}:

$$\lambda_{e,r,static} = \lambda_{b,f} + \lambda_{b,s}$$

$$\lambda_{b,f} = \left(1 - \sqrt{(1 - \varepsilon_b)}\right) \lambda_{f,o}$$

$$\lambda_{b,S} = \sqrt{1 - \varepsilon_b} \left\{\omega A + (1 - \omega)\Gamma\right\} \lambda_{f,o}$$

$$\Gamma = \frac{2}{1 - \frac{B}{A}} \left\{ \frac{A - 1}{\left(1 - \frac{B}{A}\right)^2} \frac{B}{A} \ln\left(\frac{A}{B}\right) - \frac{B - 1}{1 - \frac{B}{A}} - \frac{1}{2}(B + 1) \right\}$$

$$A = \frac{\lambda_{s,o}}{\lambda_{f,o}}$$
 $B = 1.25 \left[\frac{1 - \varepsilon_b}{\varepsilon_b} \right]^{\frac{10}{9}}$ $\omega = 0.00726$ for spheres

• $\lambda_{f,o}$ and $\lambda_{s,o}$ represent the microscopic conductivity of the fluid and solid phase

The dynamic part of effective radial conductivity λ_{e,r,dynamic}:

$$\frac{\lambda_{e,r,dynamic}}{\lambda_{f,o}} = \frac{Pe}{Pe_{r,f}} \qquad Pe_{r,f} = \frac{8}{C_{form}} \left[2 - \left(1 - 2.0 \frac{d_p}{d_t} \right)^2 \right]$$

- C_{form} accounts for particle shape and equals 1.15 for spheres
- Effective axial conductivity: $\lambda_{e,z} = \lambda_{e,z,static} + \lambda_{e,z,dynamic}$

From Zehner and Schluender model for $\lambda_{e,r,static}$

■ Dynamic contribution:
$$\frac{\lambda_{e,z}}{\lambda_{f,o}} = \frac{\lambda_{e,z,static}}{\lambda_{f,o}} + \frac{0.0145Pe}{d_p \left(1 + \frac{C}{Re_p Pr}\right)}$$

Design Models for Fixed Bed Reactors

- Relevance: for design of fixed bed chemical reactors models are required to quantify the effect of important operating variables and explore the operational borders (thermal runaway etc.)
- Pressure drop can be included (see slide 4)
- Types of models
 - Homogeneous one-dimensional model
 - Homogeneous two-dimensional model
 - Heterogeneous one-dimensional model
 - Heterogeneous two-dimensional model

The gas and solid phase are treated as a mixture with effective properties

The gas and solid phase are treated as separate phases

1D or 2D?

$$\frac{-r_{A}(T)(-\Delta H_{r,A})d_{t}^{2}E_{a}}{4\lambda_{e,r}RT_{w}^{2}}\left\{1+\left[\frac{8}{\frac{\alpha_{w}d_{p}}{\lambda_{e,r}}}\left(\frac{d_{p}}{d_{t}}\right)\right]\right\}$$

Evaluate this group in the hot spot computed from one-dimensional model: if value exceeds 0.4 then two-dimensional model is required

Homogeneous or heterogeneous models

 Use particle model to check if there are strong interfacial and / or intra-particle temperature and concentration gradients

 Use criteria, such as the ones derived by Mears (paper is on blackboard)

Design Models for Fixed Bed Reactors homogeneous one-dimensional model

r_A in mol/m³_{reactor}/s

- Basic assumptions: no radial gradients, no concentration and temperature differences between phases. Axial conduction and dispersion terms can be neglected
- Continuity species A: $D_{e,z} \frac{d^2 C_A}{dz^2} U_0 \frac{d C_A}{dz} + r_A = 0$
- Energy equation:

$$\lambda_{e,z} \frac{d^2 T}{dz^2} - U_0 \rho_f C_{p,f} \frac{dT}{dz} - 4 \frac{\alpha_w}{d_t} (T - T_w) + (-r_A) (-\Delta H_{r,A}) = 0$$

Boundary conditions at respectively z=0 (inlet) and z=L (outlet)

$$U_0(C_{A,o} - C_A) = -D_{e,z} \frac{dC_A}{dz}$$

$$U_0\rho_f C_{p,f}(T_o - T) = -\lambda_{e,z} \frac{dT}{dz}$$

$$\frac{dT}{dz} = 0$$
Continuity species A
$$\frac{dT}{dz} = 0$$
Energy

Or without axial dispersion and conduction: z=0: $C_A=C_{A,o}$ and $T=T_o$

Design Models for Fixed Bed Reactors homogeneous two-dimensional model

r_A in mol/m³_{reactor}/s

- Basic assumptions: no concentration and temperature differences between phases
- Continuity species A: $\frac{D_{e,r}}{r} \, \frac{\delta}{\delta r} \left(r \frac{\delta \mathcal{C}_A}{\delta r} \right) U_0 \frac{\delta \mathcal{C}_A}{\delta z} + r_A = 0$
- Energy equation: $\frac{\lambda_{e,r}}{r} \frac{\delta}{\delta r} \left(r \frac{\delta T}{\delta r} \right) U_0 \rho_f C_{p,f} \frac{\delta T}{\delta z} + (-r_A) \left(-\Delta H_{r,A} \right) = 0$
- Boundary conditions: z = 0: $C_A = C_{A,0}$ $T = T_0$

r=0:
$$\frac{\delta C}{\delta r} = 0$$
 and $\frac{\delta T}{\delta r} = 0$

Two parameters $\lambda_{e,r}$ and α_w are used to describe the radial heat transport

$$r = R_t$$
: $\frac{\delta C}{\delta r} = 0$ and $\lambda_{e,r} \frac{\delta T}{\delta r} = \alpha_w (T - T_w)$

Design Models for Fixed Bed Reactors homogeneous two-dimensional model

Effective radial heat conduction λ_{e,r}

$$\lambda_{e,r} = \lambda_{e,r,static} + \lambda_{e,r,dynamic}$$

Expressions for static and dynamic contributions have been given before

Bed-wall heat transfer coefficient α_w:

$$\alpha_w = \alpha_w^0 + 0.0115 \frac{d_t}{d_p} Re \qquad Re_p = \frac{\rho_f U_0 d_p}{\mu}$$

Design Models for Fixed Bed Reactors heterogeneous one-dimensional model

r_A in mol/m³_{reactor}/s

Specific bed surface $a_b = \frac{6(1-\varepsilon_b)}{d_p}$ Fluid continuity species A: $U_0 \frac{dC_{A,f}}{dz} = -k_f a_b \left(C_{A,f} - C_{A,S}^*\right)$

Energy equation fluid:

$$U_0 \rho_f C_{p,f} \frac{dT_f}{dz} = -4 \frac{\alpha_i}{d_t} (T_f - T_w) - \alpha_w a_b (T_f - T_s^*)$$

Solid continuity species A:

$$k_f a_b \left(C_{A,f} - C_{A,S}^* \right) = \left(-r_A \left(C_{A,S}^*, T_S^* \right) \right) \eta$$

Energy equation solid:

$$\alpha_f a_b (T_S^* - T_f) = \left(-r_A (C_{A,S}^*, T_S^*) \right) \left(-\Delta H_{r,A} \right) \eta$$

■ Boundary conditions: z=0: $C_{A,f}=C_{A,o}$ and $T_f=T_{f,o}$

Superscript * denotes conditions at catalyst particles surface

Ethylene oxide case

Run away: 11% O₂, other conditions identical

UNIVERSITEIT TWENTE.

ETHYLENE OXIDE CASE

1D Vs 2D MODEL (HOMOGENEOUS) - RESULT COMPARISON

UNIVERSITEIT TWENTE.

ETHYLENE OXIDE CASE

1D Vs 2D MODEL (HOMOGENEOUS) - RESULT COMPARISON

UNIVERSITEIT TWENTE.

To do for the workshop (Thursday)

- Derive the reactor models yourself
- Catalyst particle problems
 - Order reduction
 - BVP4C slide package on blackboard
- Fixed bed problems
 - DAE slide package on blackboard
 - Fixed bed catalyst particle slide package on blackboard