Installation:

We distribute BSATOS as a convenient Dockerfile, which can be downloaded from: https://github.com/maypoleflyn/BSATOS/blob/master/Dockerfile.

Assuming to have docker correctly installed (more info here: https://docs.docker.com/) To install BSATOS, users just have to download the Docker file and save it in a folder of their liking. From that folder, the docker can be built, in Linux, with:

```
docker build -t bsatos .
```

similar commands are available for other operating systems.

Running BSATOS

The BSATOS container can be run using:

```
docker run -i -t bsatos /bin/bash
```

Once the container is started, BSATOS can be run with:

bsatos

which will give a list of possible commands and a command line guide. All the steps of the pipeline can be manually run one after the other, but we recommend to launch the full pipeline with:

```
bsatos all
```

which will create a bash script with all the commands of the pipeline that can then be invoked to run the whole analysis process.

We recommend to run the BSATOS container with the following command:

```
docker run --rm --user=$(id -u):$(id -g) -v local folder:/BSATOS/data -i -t bsatos /bin/bash
```

where local_folder is a folder in the local machine that contains all the data. This folder would be mounted, within the BSATOS container, in /BSATOS/data and the owner of the data would be the local user.

BSATOS will create several files and folders during its execution. See below for a description of all the files.

Workflow description

In step I:

This step is performed using two commands: 'prepar' and 'prep'. The first is used to process parent data including SNVs and SV calling, variation annotation and SNVs classification. The second to obtain reads counts with different genotypes and conduct some filtering process.

Detailed information on each command:

The 'prepar' command prepares the parents data as follows:

1) Align the reads from the two parents (pollen parent and maternal parent) to the genome reference using BWA (note that this is skipped if inputs are pre-aligned BAMs files);

- 2) Remove duplicates, index and sort BAMs files from 1) using SAMtools;
- 3) Perform SNP and InDel calling using SAMtools;
- 4) Perform SVs calling (bigger segment deletion and insertion) using Delly2;
- 5) Filter SNVs based on reads depth (default: min 10) and phred-scaled quality (default:30);
- 6) Filter SVs based support reads depth (default:10) and phred-scaled quality (default:30);
- 7) Annotate SNVs and SVs using ANNOVAR;
- 8) Split SNVs into three types (gP, gM and gMP, respectively present in the pollen, maternal sample and both) and obtain three types of SNVs sets.

The 'prep' command prepares the pool data as follows:

- 1) Align the reads from two pools (High pool and Low pool) to the reference genome, using BWA (note that this step is skipped if BAM files are provided as input);
- 2) Remove duplicates, index and sort BAMs files from 1) using SAMtools;
- 3) Genotype BAMs of H and L pools using SAMtools mpileup respectively.
- 4) Filter SNVs based on the total read depth (default: min 10) and the phred-scaled quality (default: 30). For each pool, SNVs with support lower than 3 reads are considered noise and removed.
- 5) Extract read counts for H and L pools and merge them into three types of reads counts files (gP, gM and gMP)

In step II:

In the second module, haplotype blocks are assembled using paired-reads. The maximum-likelihood-based tool HapCUT2 or Hidden Markov Model-based algorithm integrated in SAMtools are used to assemble haplotype blocks from DNA sequence reads (Edge, et al., 2017; Li, 2011; Li, et al., 2009). This step is accomplished with one single command of the BSATOS pipeline: 'haplotype'.

In a nutshell, HapCUT2 is a maximum-likelihood-based tool for assembling haplotypes from DNA sequence reads, designed to "just work" with excellent speed and accuracy. Besides NGS short reads, HapCUT2 support: clone-based sequencing (Fosmid or BAC clones), SMRT reads (PacBio),Oxford Nanopore reads,10X Genomics Linked-Reads,proximity-ligation (Hi-C) reads, high-coverage sequencing (>40x coverage-per-SNP) using above technologies and combinations of the above technologies (e.g. scaffold long reads with Hi-C reads)

For NGS short reads data, in practice, SAMtools could construct longer haplotype blocks.

The 'haplotype' command is used to construct and classify the haplotype blocks

If SAMtools is selected

- 1) Build four phased haplotype blocks (P.blocks, M.blocks, H.blocks and L.blocks) based on BAMs files from the two parents and H, L pools with *SAMtools phase*.
- 2) Filter SNVs located in haplotype blocks based on SNVs files from STEP1.
- 3) Sort four block files (P.blocks, M.blocks, H.blocks and L.blocks) and haplotype blocks keeping blocks with more reference alleles "on the left". Finally, the four block files are merged into one file.
- 4) Missing genotypes within haplotype blocks are imputed using a sliding window approach moving by one marker at a time and merged based on linkage relationships. A window harboring two adjacent makers slides one maker every time. Within one window, the missing genotype or gaps within the haplotype blocks were inferred and merged based on the linkage

- relationship.
- 5) Compare and classify haplotype blocks of parents (Figure 1B).

If HapCUT2 is selected

- 1) Convert BAM files to the compact fragment file format containing only haplotype-relevant information with extractHAIRS. This is a necessary preparation step to running HapCUT2;
- 2) Assemble fragment files into haplotype blocks (P.blocks, M.blocks, H.blocks and L.blocks) with HAPCUT2;
- 3) Filter SNVs located in haplotype blocks based on SNVs files from step I.
- 4) Sort four block files (P.blocks, M.blocks, H.blocks and L.blocks) and haplotype blocks keeping blocks with more reference alleles "on the left". Finally, the four block files are merged into one file.
- 5) Missing genotypes within haplotype blocks are imputed using a sliding window approach moving by one marker at a time and merged based on linkage relationships. A window harboring two adjacent makers slides one maker every time. Within one window, the missing genotype or gaps within the haplotype blocks were inferred and merged based on the linkage relationship.
- 6) Compare and classify haplotype blocks of parents. .

Step III:

The three categories of markers (gP, gM and gMP) are processed in isolation. The commands used by BSATOS are 'afd', 'polish' and 'qtl pick'.

The 'afd' command is used to calculate and filter the allele frequency difference between two extreme pools as follows:

- 1) The Allele frequency (AF) of each allele and G value are calculated for each SNV based on read counts.
- 2) The Nadaraya-Watson kernel regression is used as smoothing function to compute a G' value at each site within a sliding window having size defined by the user.
- 3) Non-parametric estimation of the null distribution of G'. A P value is assigned to each SNV. The false discovery race (FDR) of each SNVs is calculated and compared to a threshold (default: 0.01); Significant regions with FDR <0.01 are picked as candidate QTLs.

The 'polish' command is used to polish candidate QTL regions and remove noisy markers based on haplotype information as follows:

[First of all, we define the reference allele frequency in each pool as RAF, the alternative allele frequency as AAF, the absolute value of the difference of the alternative allele frequency between two pools as AAFD. The sign of the difference of the alternative allele frequency of the two pools is AAFDS.]

REF	MUT		H pool	AAFD	AAFDS		
		RAF	AAF	RAF	L pool AAF	7	
Α	G	0.1	0.9	0.9	0.1	0.8	+
G	Α	0.15	0.85	0.8	0.2	0.65	+
Α	G	0.2	0.8	0.8	0.2	0.6	+
Α	Т	0.8	0.2	0.2	0.8	0.6	-
С	G	0.2	0.8	0.8	0.2	0.6	+
Α	G	0.11	0.89	0.8	0.2	0.69	+
Α	G	0.2	0.8	0.8	0.2	0.6	+

Figure S1 Scheme of the example of definition of AAF, AAFD and AAFDS

[For example, the first marker in Figure 1, we know that the reference allele is 'A' and the mutant allele is 'G', the AAF in H pool is 0.9 and the AAF in L pool is 0.1. so the AAFD=0.8 and the AAFDS should be '+';]

Markers of type gP, gM and gMP are processed in isolation as follows:

1. Based on the classified haplotype block information of the two parents (computed in step II) and allele frequency of each marker located in the haplotype blocks of a candidate QTL region, the haplotype blocks with at least 5 markers 1 and 70% of the markers showing consistent sign (AAFDS) are taken into account for further analysis. The other blocks are discarded.

Before processing further the kept blocks, markers showing inconsistent sign are removed.

	REF(allele1) MUT (e2) H	pool	L	L pool			
		_	RAF	AAF	RAF	AAF	AAFD	AAFDS	
- Handatana	А	G	0.1	0.9	0.9	0.1	0.8	+	
Haplotype block	G	Α	0.15	0.85	0.8	0.2	0.65	+	
	T	С	0.85	0.15	8.0	0.2	0.05	-	
7	А	G	0.2	0.8	0.8	0.2	0.6	+	
	А	Т	0.2	0.8	0.8	0.2	0.6	+	
	А	G	0.23	0.77	0.2	8.0	0.03	-	
	С	G	0.2	0.8	0.8	0.2	0.6	+	
	Α	Т	0.81	0.19	8.0	0.2	0.01	-	
	А	G	0.11	0.89	0.8	0.2	0.69	+	
	Α	G	0.2	0.8	0.8	0.2	0.6	+	

Figure S2 Scheme of the example of enriched haplotype block

In Figure S2, 10 markers are located in one haplotype block. 7 markers show consistent sign (AAFDS) are kept and the other three markers are discarded.

- 2. In the case of gMP markers (Figure S2A), if the phase of the marker linked with the functional mutation is not consistent between the two parents (Marker2 in Figure S2A), the marker is discarded as it does not produce observable differences between the two pools (both have an A:B allele ratio equal to 1:1).
- 3. The G statistic re-computed on all remaining markers is smoothed again with Nadaraya-Watson kernel regression using different window sizes (3w/4, w/2, w/4, w/8, w= user-defined window size).

The command 'qtl_pick' is used to identify QTLs from the three types of peaks (P, M and MP), as follows:

- 1) Candidate QTL regions are identified as above.
- 2) QTL regions are refined using different sliding window sizes. For example, in the Figure S4, different sliding window sizes produce different G' profiles and the intersection of the signals is used to refine the QTL peak.
- 3) For each gene in proximity with the QTL region, the relative distance scores (RDS) is computed as follows

Genes with smaller RDS are more likely to be the functional genes underlying the interesting phenotype

- 4) The origins of the QTLs are identified by comparing the profiles (P, M and MP type) more present in the H/L pool. If a QTL is detected by more than 2 profiles, the one with higher G' is regarded as the origin of the QTL.
- 5) Based on the origin of QTLs and RDS, candidate genes and the functional mutations underlying QTLs are reported.

The command 'igv' is used to generate files for Integrative Genomics Viewer (IGV)

In order to help users to explore the results of BASTOS, it produces an output that can be directly imported into IGV (see below).

Figure S3

Scheme of BSATOS

A: the schema of three types of makers and getting reads counts harboring different genotypes

B, C: the schema of haplotype classification

D: the QTLs profiles of example data

Figure S4

Scheme of segregation rule of different types of markers in different circumstances

A) The functional mutation underlying QTLs is double heterozygous (PM type) and the origin of QTL is from both parents. B) and C) the functional mutations underlying QTLs is single heterozygous (P or M type) and the origin of QTL is either pollen parent or maternal parent. Maker1 – Maker4 represent four different type of SNPs, A for one type of base (A,T,G,C) and B for other one (A,T,G,C)

Here, we analyze the segregation rule of different types of markers (P, M and PM) in different circumstances.

- A) When the functional mutation underlying QTLs (R) is double heterozygous (MP type) and the origin of QTL is from both parents, there are two double heterozygous markers (Marker1 and Marker2) and two P type markers in the figure. The phase between Marker1 and R are consistent with parents, however, the phase between Marker2 and R are inconsistent with parents. When the R locus is complete dominant to S locus, after extreme progenies selection, the allele frequency of R in H pool should be 3/4 and the allele frequency of R in L pool should be 1/4. When Marker1 is close linked with R locus, the allele frequency of allele A in H pool should be 3/4, the allele frequency of allele A in L pool should be 1/4 and allele frequency difference of allele A should be 1/2. However, when Marker2 is also close linked with R locus, the allele frequency of allele A both in H and L pools are 1/2 and the allele frequency difference is 0. For other two P type markers (Marker3 and Marker4), When Marker3 is close linked with R locus, the allele frequency of allele A in H pool should be 1/3, the allele frequency of allele A in L pool should be 0 and the allele frequency difference should be 1/3.
- B), C) the functional mutations underlying QTLs (R) is heterozygous (P or M type) in one of the parents and the origin of QTL is either pollen parent or maternal parent. When the R locus is complete dominant to S locus, after extreme progenies selection, when Markers are close linked with R locus, the allele frequency difference of allele A between H and L pools should be 1/2.

Figure S5

The profile of detect QTL regions using different sliding window sizes.

DESCRIPTION OF OUTPUT:

The 'prepar' command prepares the parents data.

Outputs

By default, all the result will be kept in the 'prepar_dir'.

```
|--snv.AT_multianno.txt [FILE] (annotated SNVs file)
|--snv.AT_multianno.vcf [FILE] (annotated SNVs VCF file)
|--snv.avinput [FILE] (inputs of SNVs annotation)
|--sv.AT_multianno.txt [FILE] (annotated SVs file)
|--sv.avinput [FILE] (inputs of SVs annotation)
|-- sv.AT_multianno.vcf (annotated SVs VCF file)
|--AT_refGeneMrna.fa [FILE] (annotation database)
|--AT_refGene.txt [FILE] (annotation database)
```

P_M.p [FILE]

The genotype of the markers are homozygous in maternal parent but are heterozygous in pollen parent

The first part of the file::

From left to right by column:

CHROM: the chromosome of this SNV

POS: the position of the SNVs in the chromosome

REF: the allele of reference ALT: the allele of alter.

P_M.m [FILE]

The genotype of the markers are homozygous in pollen parent but is heterozygous in maternal parent

The first part of the file::

#CHROM	POS	REF	ALT
Chr06	42	C	T
Chr06	56	G	T
Chr06	82	A	С
Chr06	101	C	T
Chr06	156	A	G
Chr06	160	G	A
Chr06	221	C	T
Chr06	240	G	A
Chr06	261	C	T
Chr06	283	G	T
Chr06	287	C	G
Chr06	319	A	G

From left to right by column:

CHROM: the chromosome of this SNV

POS: the position of the SNVs in the chromosome

REF: the allele of reference ALT: the allele of alter.

P_M.pm [FILE]

The genotypes of the markers are both heterozygous

#CHROM	POS	REF	ALT
Chr06	133	G	A
Chr06	141	C	T
Chr06	522	G	A
Chr06	530	A	G
Chr06	1282	T	С
Chr06	2703	A	G
Chr06	3044	T	С
Chr06	4733	T	C
Chr06	9567	T	G
Chr06	12828	С	T
Chr06	13011	G	A

From left to right by column:

CHROM: the chromosome of this SNV

POS: the position of the SNVs in the chromosome

REF: the allele of reference ALT: the allele of alter.

M_P.snv [FILE]

The SNVs VCF file of two parents

sv.vcf [FILE]

The SVs VCF file of two parents

anno [DIR]

Annotated files are all included in this directory

AT_refGene.txt [FILE]

GenePred file

AT_refGeneMrna.fa [FILE]

transcript FASTA file

snv.AT_multianno.txt [FILE]

SNVs multianno file

snv.AT_multianno.vcf [FILE]

SNVs annotated VCF file

snv.avinput [FILE]

SNVs input file

sv.AT_multianno.txt [FILE]

SVs multianno file

sv.AT multianno.vcf [FILE]

SVs annotated VCF file

sv.avinput [FILE]

SVs input file

summary [FILE]

summary of the reads alignment of each parents The number of SNVs &SVs The number of SNVs in P, M and PM type.

The 'prep' command prepares the pool data

```
prep_dir[DIR]

|-M.counts [FILE] read counts with different alleles from H & L pools in M type loci
|-P.counts [FILE] read counts with different alleles from H & L pools in P type loci
|-PM.counts [FILE] read counts with different alleles from H & L pools in PM type loci
|-sum [FILE] summary data of M.counts, P.counts and PM.counts
```

*.counts [FILE]

read counts file with different alleles from H & L pools in P, M and PM type loci

The first part of the files is as followings:

From left to right by column:

Chromosome: the chromosome of this SNV

Position the position of the SNVs in the chromosome H_REF: reads counts with reference alleles in H pool H_ALT: reads counts with alter alleles in H pool L_REF: reads counts with reference alleles in L pool L_ALT: reads counts with alter alleles in L pool

The command 'haplotype' is used to construct haplotype blocks.

*_block [FILE]

haplotype blocks of maternal parent, pollen parent

The first part of the file is as followings:

From left to right by column:

CHROM: the chromosome of this SNV

POS: the position of the SNVs in the chromosome

REF: the allele of reference ALT: the allele of alter

HAP2: allele in haplotype1 [0 for reference allele; 1 for alter allele] HAP1: allele in haplotype2 [0 for reference allele; 1 for alter allele]

NAME: haplotype name

*_haplotype.bed [FILE]

BED format haplotype information of maternal parent

overlapped.bed [FILE]

BED format haplotype information classified from two parents and two pools.

sub_haplotype [FILE]

haplotype sub-blocks information within haplotype block

The first part of the file:

#SUB	CHROM	START	END	HAP	HAP ST	ART	HAP_END
SUB1	Chr06	101	4587	HAP1	82	4587	
SU81	Chr06	4705	10881	HAP2	4665	10881	
SUB1	Chr06	11623	16085	HAP3	11614	16085	
SUB1	Chr06	19969	21073	HAP4	19153	21073	
SUB1	Chre6	21155	27438	HAP5	21152	27438	
SUB1	Chr86	38102	39109	HAP6	38101	39109	
SUB1	Chr06	39171	39622	HAP7	39148	39622	
SUB1	Chr86	39814	39904	HAP8	39706	45234	
SUB2	Chr06	39984	45234	HAP8	39706	45234	
SUB1	Chr06	45981	46306	HAP9	45966	46306	
SUB1	Chr06	54924	55179	HAP10	54917	55179	
SUB1	Chr06	58058	62429	HAP11	57725	62429	
SUB1	Chre6	62464	62746	HAP12	62461	67238	
SUB2	Chr06	62746	67238	HAP12	62461	67238	
SUB1	Chr86	67567	70777	HAP13	67490	78777	
SUB1	Chr06	73684	74002	HAP14	73592	74944	
SUB2	Chr86	74002	74009	HAP14	73592	74944	

From left to right by column:

SUB: sub-blocks name in the haplotype block CHROM: the chromosome of sub-block

START: the start position of sub-block in chromosome END: the end position of sub-block in chromosome

HAP: haplotype block name

HAP_START: the start position of haplotype block HAP_END: the end position of haplotype block

haplotype.block [FILE]

#CHROM	POS	REF	ALT	P_HAP1	P_HAP2	P_NAME	M_HAP1	M_HAP2	M_NAME	H_HAP1	H_HAP2	H_NAME	L_HAP1	L_HAP2	L_NAME
Chr86	22									0		block5			
Chr06	42							1	block5	0		block5			
Chr86	56							1	block5	0		block5			
Chr86	82			0		block5		1	block5	е		block5			block5
Chr86	101			0		block5		1	block5	0		block5		0	block5
Chr06	104			0		block5		1	block5	0		block5		0	blockS
Chr86	133		A	0		block5		1	block5	0		block5			blockS
Chr86	141			0		block5	0	1	block5	0		block5	1	0	block5
Chr86	156			0		block5		1	block5	0		block5		0	block5
Chr86	160		A	0		block5		1	block5	0		block5			block5
Chr86	221			0		block5		1	block5	0		block5		0	block5
		_					_			_					

From left to right by column:

CHROM: The chromosome of the SNV

POS: The position of the SNV in chromosome

REF: The reference allele

ALT: the alter allele

P_HAP1: allele in haplotype1 [0 for reference allele; 1 for alter allele] of pollen parent P_HAP2: allele in haplotype2 [0 for reference allele; 1 for alter allele] of pollen parent

P_NAME: haplotype name in pollen parent

M_HAP1: allele in haplotype1 [0 for reference allele; 1 for alter allele] of maternal parent M_HAP2: allele in haplotype1 [0 for reference allele; 1 for alter allele] of maternal parent

M_NAME: haplotype name in maternal parent

H_HAP1: allele in haplotype1 [0 for reference allele; 1 for alter allele] of H pool H_HAP2: allele in haplotype1 [0 for reference allele; 1 for alter allele] of H pool

H_NAME: haplotype name in H pool

L_HAP1: allele in haplotype1 [0 for reference allele; 1 for alter allele] of L pool L_HAP2: allele in haplotype1 [0 for reference allele; 1 for alter allele] of L pool

L_NAME: haplotype name in L pool

The 'afd' command is used to calculate and filter allele frequency difference between two extreme pools

```
AFD_dir[DIR]

|
|--P.AFD [FILE]
|--M.AFD [FILE]
|--PM.AFD [FILE]
```

P.AFD [FILE]

G value based P type loci and smoothed curve with different window across genome with haplotype information

M.AFD [FILE]

G value based M type loci and smoothed curve with different window across genome with haplotype information

PM.AFD [FILE]

G value based PM type loci and smoothed curve with different window across genome with haplotype information

The first part of the * AFD:

Column1-10:

#CHROM	POS	H_REF	H_ALT	L_REF	L_ALT	H_REF_AF	H_ALT_AF	L_REF_AF	L_ALT_AF
Chr06	67994	33	2	19	11	0.94285714285714	3 6	0.0571428571428571	0.6333333333333
Chr06	85240	27	10	37	12	0.72972972972973		3.27027027027027	0.755102040816
Chr86	93951	37	10	50	11	0.78723404255319	2 6	3.212765957446809	0.819672131147
Chre6	93975	37	8	49	16	0.82222222222222	2 6	.17777777777778	0.753846153846
Chr86	94247	57	17	72	32	0.77027027027027		3.22972972972973	0.692307692307
Chre6	94475	73	23	71	26	0.76041666666666	7 6	. 23958333333333	0.731958762886
Chr86	94618	30	17	26	17	0.63829787234842	6 6	3.361702127659574	0.604651162790
Chr06	94662	26	8	24	13	0.76470588235294	1 6	. 235294117647059	0.648648648648
Chr06	94684	26	10	21	11	0.7222222222222	2 6	3.27777777777778	0.65625 0.3437
Chr06	103937	19	12	19	16	0.61290322580645	2 6	3.387096774193548	0.542857142857

Column11-15:

G_VALUE	Gprimer_1M	Gprimer	0.75M	Gprimer_	0.5M G	primer_0.25M
3333	0.36666666666	67	10.2905	728448925	1.	1207843829849
6326	0.2448979591836	73	0.07109	534198471	91 1	.1639169608415
7541	0.1803278688524	59	0.17752	797859291	3 1.	1642558145198
6154	0.2461538461538	46	0.74161	102532963	8 1.	.1642605953467
7692	0.3076923076923	88	1.33413	06967514	1.16431474	4529776
6598	0.2680412371134	92	0.20638	569046524	5 1.	.1643600893114
8698	0.3953488372093	92	0.10812	138548923	2 1.	.1643885071662
8649	0.3513513513513	51	1.15521	019779262	1.	.1643972477723
75 0.34512	9833744719	1.16440	16174843	5	0.9957644	30851408
7143	0.4571428571428	57	0.33081	537936788	8 1	1662044931636
1.03419	227909791	1.16621	27082053	8	0.9952870	10402043
3529	0.3823529411764	71	1.17351	428570143	1.	1662209217354
3333	0.366666666666	67	1.35564	661685504	1.	.1662235955818
4615	8 3846153846153	85	2 84241	564618487	1	1662289427939

Column16—haplotype.block information

From left to right by column:

CHROM: The chromosome of the marker

POS: The position of the marker in the chromosome

H REF: read counts with reference allele in H pool

H_ALT: read counts with alter allele in H pool

L_REF; read counts with reference allele in L pool

L_ALT: read counts with alter allele in L pool

H_REF_AF: allele frequency of reference allele in H pool

H_REF_ALT: allele frequency of alter allele in H pool

L_REF_AF: allele frequency of reference allele in L pool

L REF ALT: allele frequency of alter allele in L pool

G_VALUE: G value

Gprimer 1M: G' value with the one window size (default: 1Mbp)

Gprimer 0.75M: G' value with 3/4 window size (default: 0.75Mbp)

Gprimer_0.5M: G' value with 1/2 window size (default: 0.5Mbp)

Gprimer 0.25M: G' value with 1/4 window size (default: 0.25Mbp)

The command 'polish' is used to polish candidate QTLs regions and remove noisy makers based on haplotype information

```
polish_dir[DIR]

|
|--M.polished.afd [FILE]
|--P.polished.afd [FILE]
|--PM.polished.afd [FILE]
|--m.igv [FILE]
```

|--p.igv [FILE] |--pm.igv [FILE]

P.polished.afd [FILE]

The format is the same as P.AFD

G value based on P type loci (after removing noisy) and smoothed curve with different window across genome with haplotype information

M.polished.afd [FILE]

The format is the same as M.AFD

G value based on M type loci (after removing noisy) and smoothed curve with different window across genome with haplotype information

PM.polished.afd [FILE]

The format is the same as PM.AFD

G value based on PM type loci (after removing noisy) and smoothed curve with different window across genome with haplotype information

m.igv [FILE]

G' value profiles of M type loci could be visualized by Integrative Genomics Viewer (IGV)

The first part is as followings:

#CHROM	START	END	FEATURE	M
Chr06	67993	67994	M	1.12078438298498
Chr06	85239	85240	M	1.1639169608415
Chr06	93950	93951	M	1.16425581451984
Chr06	93974	93975	M	1.16426059534675
Chr06	94246	94247	M	1.16431474529776
Chr06	94474	94475	M	1.16436008931141
Chr06	94617	94618	M	1.16438850716624
Chr06	94661	94662	M	1.16439724777236
Chr06	94683	94684	M	1.16440161748435
Chr06	103936	103937	M	1.16620449316364
Chr06	103979	103980	M	1.16621270820538
Chr06	104022	104023	M	1.16622092173548
Chr06	104036	104037	M	1.16622359558187
Chr06	104064	104065	M	1.16622894279393
Chr06	104114	104115	M	1.16623848979265

From left to right by column:

CHROM: The chromosome of the marker START: The start position of the marker END: The end position of the marker FEATURE: The marker type [P or M or PM]

M: The G' value of this marker

p.igv [FILE]

The format is the same as m.igv

G' value profiles of P type loci could be visualized by Integrative Genomics Viewer (IGV)

pm.igv [FILE]

The format is the same as m.igv

G' value profiles of PM type loci could be visualized by Integrative Genomics Viewer (IGV)

Screenshot of the files loaded with IGV

The command 'qtl_pick' is used to judge and pick up QTLs from three types of peaks.

qtl [FILE] detected QTLs list file *.pdf G' value profiles across each chromosome (*:chromosome) [FILE] *.pdf multiple G' values profiles across QTL region (*:QTL accession) [FILE] p_hap [FILE] enriched haplotype information in P type loci enriched haplotype information in M type loci [FILE] m_hap pm_hap [FILE] enriched haplotype information in PM type loci haplotype information in each QTL region (*: QTL accession) *.hap [FILE] *.gene [FILE] gene list located in the QTL regions (*: QTL accession) *.snv screened SNVs based on genetic rules located in the QTL regions [FILE] (*:QTL accession) *.snv.igv.mut [FILE] screened SNVs based on genetic rules located in the QTL regions (*:QTL accession) [MUT format] *.snv.igv.vcf [FILE] screened SNVs based on genetic rules located in the QTL regions (*:QTL accession) [VCF format] *.sv [FILE] screened SNVs based on genetic rules located in the QTL regions (*:QTL accession) *.sv.igv.mut [FILE] screened SVs based on genetic rules located in the QTL regions (*:QTL accession) [MUT format] *.sv.igv.vcf [FILE] screened SVs based on genetic rules located in the QTL regions (*:QTL accession) [VCF format]

.thres [FILE] threshold information (: p/m/pm)

7.303028 7.341369 7.371755 7.43597

From top to bottom:

The threshold value from G' value smoothed with one sliding window size (user-defined) The threshold value from G' value smoothed with 3/4 sliding window size The threshold value from G' value smoothed with 1/2 sliding window size The threshold value from G' value smoothed with 1/4 sliding window size

qtl [FILE]

#Origin	CHROM	QTL_START	QTL_END PEAK_POS	PEAK	ACCESSION	
P	Chr06	10027489	10527489	10527489	3.059511	P1
P	Chr06	11009860	11509860	11009860	3.627277	P2
M	Chr06	1812818 2563869	2063869 8.240285	M1		
M	Chr06	4542571 5235914	5042571 9.296073	M2		
H	Chr06	3058865 3558865	3058865 3.423959	H1		

From left to right by column:

Origin: the origin of QTL

CHROM: the chromosome of the QTL QTL_START: the start position of the QTL

QTL_END: the end position of the QTL
PEAK_POS: the peak position of the QTL
PEAK: the G' value in the peak position

ACCESSION: the QTL accession

*.pdf [FILE]

G value profiles across each chromosome (*:chromosome)

Chr06 smoothed G value profile

The example G value profiles across chromosome 6

*.pdf [FILE]

multiple G' values profiles across QTL region (*.QTL accession)

See Figure S5

p_hap [FILE]

haplotype information in P type loci

#CHROM	POS	REF	ALT	P_HAP1	P_HAP2	P_NAME	P_EN	P_G	M_HAP1	M_HAP2	M_NAME	M_EN	M_G			_	
Chr06	1511588						block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511638	4					block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511639						block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511641	0					block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511645						block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511645						block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511648						block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511649						block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511650						block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511650	5					block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511656						block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511656	6					block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511658						block731	14		7.18019	1228246	75			block7316		7.18
Chr06	1511658	1	T	A	0	1	block731	14	Н	7.18019	1228246	75	1	0	block7316	L	7

From left to right by column:

CHROM: The chromosome of the marker POS: The position of the SNV in chromosome

REF: The reference allele

ALT: The alter allele

P_HAP1: allele in haplotype1 [0 for reference allele; 1 for alter allele] of pollen parent

P_HAP2: allele in haplotype2 [0 for reference allele; 1 for alter allele] of pollen parent

P_NAME: haplotype name in pollen parent P_EN: the P_HAP2 enriched in H/L pool P G: averaged G' value in the P haplotype

M_HAP1: allele in haplotype1 [0 for reference allele; 1 for alter allele] of maternal parent M_HAP2: allele in haplotype1 [0 for reference allele; 1 for alter allele] of maternal parent

M_NAME: haplotype name in maternal parent M_EN: the M_HAP2 enriched in H/L pool M G: averaged G' value in the M haplotype

m_hap [FILE]

haplotype information in M type loci

The format is the same as p_hap.

pm_hap [FILE]

haplotype information in MP type loci

The format is the same as p_hap.

*.gene [FILE]

gene list located in the QTL regions (*: QTL accession)

#CHROM	START	END	GENE	PEAK	RDS	
Chr06	4582147	4584370	MD06G103	35500	5042571	92.0848
Chr06	4620597	4622648	MD06G10	35600	5042571	84.3948
Chr06	4633833	4636732	MD06G10	35700	5042571	81.7476
Chr06	4639129	4641015	MD06G10	35800	5042571	80.6884
Chr06	4642129	4644365	MD06G10	35900	5042571	80.0884
Chr06	4651894	4655813	MD06G10	36000	5042571	78.1354
Chr06	4656091	4659669	MD06G10	36200	5042571	77.296
Chr06	4661099	4662310	MD06G10	36300	5042571	76.2944
Chr06	4663160	4667876	MD06G10	36400	5042571	75.8822
Chr06	4675577	4679818	MD06G10	36600	5042571	73.3988
Chr06	4683129	4683413	MD06G10	36700	5042571	71.8884
Chr06	4690441	4696360	MD06G10	36800	5042571	70.426
Chr06	4699553	4701512	MD06G10	36900	5042571	68.6036
Chr06	4705225	4708485	MD06G10	37000	5042571	67.4692
Chr06	4710491	4713008	MD06G10	37100	5042571	66.416
Chr06	4735916	4736995	MD06G10	37200	5042571	61.331
Chr06	4747254	4748441	MD06G10	37300	5042571	59.0634

From left to right by column:

CHROM: The chromosome of the gene located in

START: The start position of the gene located in the chromosome END: The end position of the gene located in the chromosome

GENE: The gene name

PEAK: The peak position of the profile peak

RDS: The RDS score. The smaller the better. (0-100)

*.snv [FILE]

screened SNVs based on genetic rules located in the QTL regions (*:QTL accession)

Column1-11:

#Chr	Start	End	Ref	Alt	Func.re	fGene	Gene.re	fGene	GeneDe	tail.refGene	Exonic	unc.ref	Gene	AAChang	e.refGen	9	Othe
Chr06	3068474	3068478	TTTTT		interge	nic	gene:MD	06G10252	00;gene	:MD06G1025300	dist=13	8067;dis	t=1457			0.5	30.4
Chr06	3068476	3068480	TTTGT		interge	nic	gene:MD	06G10252	00;gene	:MD06G1025300	dist=13	8069;dis	t=1455			0.5	31.5
Chr06	3068598	3068598			interge	nic	gene:MD	06G10252	00;gene	:MD06G1025300	dist=1	3191;dis	t=1337			0.5	477
Chr06	3070088	3070097	GAAAAAG	AAA		UTR3	gene:MD	06G10253	00	mRNA: MD06G102	25300:c.*16	9 *160d	elTTTCTT1	TTTC			0.5
Chr06	3070307	3070307	G		exonic	gene:ME	06G10253	00		nonsynonymous	SNV	gene:M	D06G1025	300:mRNA:	MD06G102	5300:exo	n3:c.
Chr06	3070840	3070845	AGGAGG		exonic	gene:ME	06G10253	00		nonframeshift				300:mRNA:			
Chr06	3071122	3071122	G		UTR5	gene:MD	06G10253	00	mRNA:M	D06G1025300:c	147C>T			0.5	476		Chr0
Chr06	3071248	3071248	C		upstrea	m	gene:MD	06G10253	00	dist=103			0.5	477	63	Chr06	3071
Chr06	3071654	3071654		G	upstrea	m	gene:MD	06G10253	00	dist=509			0.5	477	58	Chr06	3071
Chr06	3071885	3071885			upstrea	m	gene:MD	06G10253	00	dist=740			0.5	477	65	Chr06	3071
Chr06	3071894	3071894	G		upstrea	m	gene:MD	06G10253	00	dist=749			0.5	477	57	Chr06	3071
Chr06	3071940	3071940			upstrea	m	gene:MD	06G10253	00	dist=795			0.5	359		Chr06	3071
Chr06	3072058	3072058			upstrea	m	gene:MD	006G10253	00	dist=913			0.5	477		Chr06	3072
Chr06	3072311	3072311		ATA	interge	nic	gene:MD	06G10253	00;gene	:MD06G1025400	dist=11	l66;dist	=6411			0.5	217
Chr06	3072371	3072371			interge	nic	gene:MD	06G10253	00;gene	:MD06G1025400	dist=12	26;dist	=6351			0.5	477
Chr06	3072376	3072376		G	interge	nic	gene:MD	06G10253	00;gene	:MD06G1025400	dist=12	31;dist	=6346			0.5	477
Chr06	3072427	3072427	G		interge	nic	gene:MD	06G10253	00;gene	:MD06G1025400	dist=12	82;dist	=6295			0.5	477
Chr06	3077601	3077601			interge	nic	gene:MD	06G10253	00;gene	:MD06G1025400	dist=64	56;dist	=1121			0.5	477
Chr06	3078145	3078145			upstrea	m	gene:MD	06G10254	00	dist=577			0.5	477	82	Chr06	3078
Chr06	3080370	3080370		G	exonic	gene:ME	06G10254	00		nonsynonymous	SNV	gene:M	D06G10254	100:mRNA:	MD06G102	5400:exo	n2:c.
Chr06	3080980	3080980			UTR3	gene:MD	06G10254	00	mRNA:M	D06G1025400:c.				0.5	477		Chr0
Chr06	3080997	3080997		G	UTR3	gene:MD	06G10254	.00	mRNA:M	D06G1025400:c.*	577T>G			0.5	477	65	Chr0

Column12-25:

#CHROM	POS R	EF ALT	P_HAP1	P_HAP2	P_NAME	P_EN P_G	M_HAP1	M_HAP2 M_NAME M_EN	M_G		
Chr06	15115882					block7314		7.18019122824675			block7316
Chr06	15116384					block7314		7.18019122824675			block7316
Chr06	15116392					block7314		7.18019122824675			block7316
Chr06	15116410					block7314		7.18019122824675			block7316
Chr06	15116452					block7314		7.18019122824675			block7316
Chr06	15116453					block7314		7.18019122824675			block7316
Chr06	15116482					block7314		7.18019122824675			block7316
Chr06	15116495					block7314		7.18019122824675			block7316
Chr06	15116503					block7314		7.18019122824675			block7316
Chr06	15116505					block7314		7.18019122824675			block7316
Chr06	15116565					block7314		7.18019122824675			block7316
Chr06	15116566					block7314		7.18019122824675			block7316
Chr06	15116581					block7314		7.18019122824675			block7316
Chr06	15116606					block7314		7.18019122824675			block7316
Chr06	15116610					block7314		7.18019122824675			block7316
Chr06	15116611					block7314		7.18019122824675			block7316
Chr06	15116623					block7314		7.18019122824675			block7316
Chr06	15116624					block7314		7.18019122824675			block7316
Chr06	15116637			0	1	block7314	н	7.18019122824675	1	0	block7316

From left to right by column:

Chr: The chromosome of the SNVs

Start: The start position of the SNVs in the chromosome End: The end position of the SNVs in the chromosome

Ref: The reference allele
Alt: The alternative allele

Func.refGene: The functional region of the SNVs Gene.refGene: The closet gene with the SNVs GeneDetail.refGene: The detail information of the gene

ExonicFunc.refGene: The exonic functional annotation of the SNVs

AAChange.refGene: The amino acid alteration

Otherinfo: Other information CHROM: The chromosome of the marker

POS: The position of the SNV in chromosome

REF: The reference allele ALT: The alter allele

P_HAP1: allele in haplotype1 [0 for reference allele; 1 for alter allele] of pollen parent P_HAP2: allele in haplotype2 [0 for reference allele; 1 for alter allele] of pollen parent

P_NAME: haplotype name in pollen parent P_EN: the P_HAP2 enriched in H/L pool P_G: averaged G' value in the P haplotype

M_HAP1: allele in haplotype1 [0 for reference allele; 1 for alter allele] of maternal parent M_HAP2: allele in haplotype1 [0 for reference allele; 1 for alter allele] of maternal parent

M_NAME: haplotype name in maternal parent M_EN: the M_HAP2 enriched in H/L pool M G: averaged G' value in the M haplotype

screened SNVs based on genetic rules located in the QTL regions (*:QTL accession)

From left to right by column:

Chr: The chromosome of the SVs

Start: The start position of the SVs in the chromosome End: The end position of the SVs in the chromosome

Ref: The reference allele
Alt: The alternative allele

Func.refGene: The functional region of the SVs
Gene.refGene: The closet gene with the SVs
GeneDetail.refGene: The detail information of the gene

ExonicFunc.refGene: The exonic functional annotation of the SVs

AAChange.refGene: The amino acid alteration

Otherinfo: Other information

*.snv.igv.mut [FILE]

screened SNVs based on genetic rules located in the QTL regions (*:QTL accession) [MUT format]

https://software.broadinstitute.org/software/igv/MUT

```
Chr06
        1812874 1812874 parents
Chr06
        1812879 1812879 parents nonsynonymous SNV
Chr06
        1812880 1812880 parents stopgain
        1812882 1812882 parents
Chr06
        1812883 1812883 parents
Chr06
        1815178 1815178 parents .
Chr06
Chr06
        1922717 1922717 parents nonframeshift insertion
        1922737 1922737 parents nonsynonymous SNV
Chr06
Chr06
        1923087 1923087 parents nonsynonymous SNV
Chr06
        1964310 1964310 parents .
Chr06
        1964518 1964518 parents
        1964646 1964646 parents
Chr06
        1964710 1964710 parents .
Chr06
Chr06
        1967702 1967702 parents stopgain
        1967722 1967722 parents nonsynonymous SNV
Chr06
        1967893 1967893 parents nonsynonymous SNV
Chr06
        1968631 1968631 parents nonsynonymous
```

From left to right by column:

Chr: chromosome

start: start location (location of the first base pair in the mutated region) end: end location (location of the last base pair in the mutated region)

sample: sample or patient ID

type: mutation type (for example, Synonymous, Missense, Nonsense, Indel, etc.)

*.snv.igv.vcf [FILE]

screened SNVs based on genetic rules located in the QTL regions (*:QTL accession) [VCF format]

https://samtools.github.io/hts-specs/VCFv4.2.pdf

```
*.sv.igv.mut [FILE]
```

The format is the same as *.snv.igv.mut

```
*.sv.igv.vcf [FILE]
```

screened SVs based on genetic rules located in the QTL regions (*:QTL accession) [VCF format]

The format is the same as *.snv.igv.vcf

The command 'igv' is used to generate files for Integrative Genomics Viewer

reference.fasta [FILE]

Reference genome

```
gene.gtf [FILE]
```

Gene annotation file

*.snv.igv.mut [FILE]

screened SNVs based on genetic rules located in the QTL regions (*:QTL accession) [MUT format]

https://software.broadinstitute.org/software/igv/MUT

*.sv.igv.mut [FILE]

screened SVs based on genetic rules located in the QTL regions (*:QTL accession) [MUT format]

https://software.broadinstitute.org/software/igv/MUT

```
*.snv.igv.vcf [FILE]
```

screened SNVs based on genetic rules located in the QTL regions (*:QTL accession) [VCF format]

```
*.sv.igv.vcf [FILE]
```

screened SVs based on genetic rules located in the QTL regions (*:QTL accession) [VCF format]

```
snv.vcf [FILE]
```

The filtered SNVs between two parents [VCF format]

```
snv.maf [FILE]
```

The filtered SNVs between two parents [MAF format]

https://software.broadinstitute.org/software/igv/MutationAnnotationFormat

```
sv.vcf [FILE]
```

The filtered SVs between two parents [VCF format]

sv.maf [FILE]

The filtered SVs between two parents [MAF format]