1 Part 1: probability review

Exercise 1.1

Let X be a random variable taking values between 0 and π with pdf given by $f(x) = c \sin(x), x \in [0, \pi]$. What is the value of c?

Solution: Since the integral of the pdf is always 1 (by definition),

$$1 = \int_0^{\pi} f(x) dx = \int_0^{\pi} c \sin x dx = -c \Big|_0^{\pi} \cos x = -c(\cos \pi - \cos 0) = -c(-2) = 2c.$$

And so, 2c = 1 and $c = \frac{1}{2}$. B

Exercise 1.2

What is $\mathbb{E}[X]$?

Solution: By the definition of expectation,

$$\mathbb{E}[X] = \int_0^\pi x f(x) \, \mathrm{d}x = \int_0^\pi cx \sin x \, \mathrm{d}x = c \Big|_0^\pi \left(\sin x - x \cos x \right) = c(-\pi \cos \pi + \sin \pi - 0 \cos 0 + \sin 0) = \pi c.$$

We know from the previous problem that $c = \frac{1}{2}$, so $\mathbb{E}[X] = \frac{\pi}{2}$. A.

Exercise 1.3

Let X be a Gaussian random variable with mean $\mu > 0$ and variance μ^2 . What is $\mathbb{E}[X]$?

Solution: The mean, that is $\mathbb{E}[X]$, is μ by definition. B

Exercise 1.4

What is $\mathbb{E}[X^2]$?

Solution: By definition of variance,

$$\mu^2 = \text{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X^2] - \mu^2,$$

so $\mathbb{E}[X^2] = 2\mu^2$. C

Exercise 1.5

What is $\mathbb{E}[X^3]$?

Solution: Using the binomial theorem,

$$\mathbb{E}[X^3] = \mathbb{E}[((X - \mu) + \mu)^3]$$

$$= \mathbb{E}[(X - \mu)^3] + 3\mathbb{E}[(X - \mu)^2\mu] + 3\mathbb{E}[(X - \mu)\mu^2] + \mathbb{E}[\mu^3]$$

$$= 3\mu\mathbb{E}[(X - \mu)^2] + \mu^3.$$

Since $X - \mu$ is a Gaussian random variable with mean 0 and variance μ^2 , $\mathbb{E}[(X - \mu)^2] = \mu^2$,

$$\mathbb{E}[X^3] = 3\mu^3 + \mu^= 4\mu^3.3$$

C

Exercise 1.6

What is $Var[X^2]$?

Solution: For a normal random variable with mean μ and standard deviation σ , $\mathbb{E}[X^4] = 3\sigma^4 + 6\mu^2\sigma^2 + \mu^4$. Since our mean and standard deviation are both μ in this case, $\mathbb{E}[X^4] = 10\mu^4$. Using this,

$$Var[X^{2}] = \mathbb{E}[X^{4}] - \mathbb{E}[X^{2}]^{2}$$
$$= 10\mu^{4} - (2\mu^{2})^{2}$$
$$= 6\mu^{4}.$$

B.

Exercise 1.7

What is $\mathbb{P}[X > 0]$ in terms of the CDF Φ of the standard Gaussian distribution?

Solution: By definition of the cdf,

$$\mathbb{P}[X>0] = \mathbb{P}\left[\frac{X-\mu}{\sigma} > -\frac{\mu}{\sigma}\right] = \mathbb{P}\left[\frac{X-\mu}{\sigma} > -1\right] = \mathbb{P}\left[\frac{X-\mu}{\sigma} < \right] = \Phi(1).$$

B.

Exercise 1.8

Let X be a random variable such that

$$X = \begin{cases} 1 & \text{with probability } p \\ -1 & \text{with probability } 1 - p \end{cases}$$

for some $p \in [0, 1]$. What is $\mathbb{E}[X]$?

Solution: Routine algebra shows that $\mathbb{E}[X] = 1 \cdot p + (-1) \cdot (1-p) = -1 + 2p$. D

Exercise 1.9

What is Var[X]?

Solution: The variance of X is $\mathbb{E}[X^2] - \mathbb{E}[X]^2 = 1 - (1 - 2p)^2 = 4p - 4p^2 = 4p(1 - p)$.

Exercise 1.10

For what p is Var[X] maximized?

Solution: We know from the previous problem that $Var[X] = 4p - 4p^2$, which has derivative 4 - 8p. The variance is maximized when that derivative is 0, so when $4 - 8p = 0 \Longrightarrow p = \frac{1}{2}$. \boxed{C} .

Exercise 1.11

What is $\mathbb{E}[X^k]$?

Solution: The expected value is $\mathbb{E}[X^k] = 1^k \cdot p + (-1)^k \cdot (1-p) = p + (-1)^k \cdot (1-p)$.

Exercise 1.12

Let X and Y be two independent standard Gaussian random variables. What is $\mathbb{E}[X^2Y]$?

Solution: Since X and Y are independent, $\mathbb{E}[X^2Y] = \mathbb{E}[X^2] \cdot \mathbb{E}[Y] = 0$. A.

Exercise 1.13

What is Var(X + Y)?

Solution: Since X and Y are independent, Var[X + Y] = Var[X] + Var[Y] = 1 + 1 = 2.

Exercise 1.14

What is Var[XY]?

Solution: The variance is $Var[XY] = \mathbb{E}[(XY)^2] - \mathbb{E}[XY]^2 = \mathbb{E}[X^2]\mathbb{E}[Y^2] = 1$.

Exercise 1.15

What is Cov[X, X + Y]?

Solution: The covariance is Cov[X, X + Y] = Cov[X, X] + Cov[X, Y] = 1 + 0 = 1.

Exercise 1.16

What is Cov[X, XY]?

Solution: The covariance is $Cov[X, XY] = \mathbb{E}[X^2Y] - \mathbb{E}[X]\mathbb{E}[XY] = 0$.