模态逻辑系统作业参考答案

1.考察Kripke模型M = (W, R, L),其中:

$$W = \{a, b, c, d, e\}, R = \{(a, c), (a, e), (b, a), (b, c), (d, e), (e, a)\},$$

以及
$$L(a) = \{p\}, L(b) = \{p, q\}, L(c) = \{p, q\}, L(d) = \{q\}, L(e) = \emptyset.$$

1) 画出*M*的图

Figure: M的图

2) 确定下面的公式那些世界是真的

Solution

- (a) $\Box \neg p \wedge \Box \Box \neg p$ {c}
- (b) $\Diamond q \land \neg \Box q$ $\{a, b\}$
- (c) $\Diamond p \vee \Diamond q$ $\{a, b, e\}$
- (d) $\Box p \lor \Box \neg p$ $\{b, c, d, e\}$
- (e) $\Box(p \vee \neg p)$ $\{a, b, c, d, e\}$

(a)
$$\Box(\phi \wedge \psi) \leftrightarrow (\Box \phi \wedge \mathbf{\nabla} \psi)$$

Solution

对任意模型 $\mathcal{M} = \langle W, R, L \rangle$ 的任意世界 $x \in W$,若 $x \Vdash \Box (\phi \land \psi)$ 当且仅当 $\forall y$,若 $(x,y) \in R$,则 $y \Vdash \phi \land \psi$ 当且仅当 $\forall y$,若 $(x,y) \in R$,则 $y \Vdash \phi$ 且 $y \Vdash \psi$ 当且仅当 $\forall y$,若 $(x,y) \in R$,则 $y \Vdash \phi$ 并且 $\forall y$,若 $(x,y) \in R$,则 $y \Vdash \psi$ 当且仅当 $x \Vdash \Box \phi$ 且 $x \Vdash \Box \psi$ 当且仅当 $x \Vdash \Box \phi \land \Box \psi$

(b)
$$\Diamond(\phi \lor \psi) \leftrightarrow (\Diamond\phi \lor \Diamond\psi)$$

Solution

对任意模型 $\mathcal{M} = \langle W, R, L \rangle$ 的任意世界 $x \in W$,若 $x \Vdash \Diamond (\phi \lor \psi)$ 当且仅当 $\exists y$, $(x,y) \in R$ 且 $y \Vdash \phi \lor \psi$ 当且仅当 $\exists y$, $(x,y) \in R$ 且 $y \Vdash \phi$ 或 $y \Vdash \psi$ 当且仅当 $\exists y$, $(x,y) \in R$ 且 $y \Vdash \phi$ 或者 $\exists y$, $(x,y) \in R$ 且 $y \Vdash \psi$ 当且仅当 $x \Vdash \Diamond \phi$ 或者 $x \Vdash \Diamond \psi$ 当且仅当 $x \Vdash (\Diamond \phi \lor \Diamond \psi)$

(c) $\Box \top \leftrightarrow \top$

Solution

对任意模型 $\mathcal{M} = \langle W, R, L \rangle$ 的任意世界 $x \in W$,

- 1) 若x ⊩ □T
 - ∵ x ⊩ ⊤永远成立
 - $\therefore x \Vdash \top$
- 2) 若x ⊩ T
 - $\therefore \forall y$, 若 $(x,y) \in R$, 则 $y \Vdash \top$
 - $\therefore x \Vdash \Box \top$
- 综上, □ $T \leftrightarrow T$ 成立

(d)
$$\lozenge \top \to (\Box \phi \to \lozenge \phi)$$

Solution

对任意模型 $\mathcal{M} = \langle W, R, L \rangle$ 的任意世界 $x \in W$,

若x \Vdash ♦ \top

 $\exists y, (x,y) \in R \perp \exists y \Vdash \top$

又若 $x \Vdash \Box \phi$

 $∴ \forall y$, 若 $(x,y) \in R$ 则 $y \Vdash \phi$

∴ $\exists y, (x,y) \in R \perp \exists y \Vdash \phi$

 $\therefore x \Vdash \Diamond \phi$

 $\therefore x \Vdash \Box \phi \to \Diamond \phi$

 $\therefore x \Vdash \Diamond \top \to (\Box \phi \to \Diamond \phi)$

1.证明公理B和公理5。

Proof.

1) 公理*B*:

$$若x \Vdash \phi$$

$$\forall y \in W, \ \Xi(x,y) \in R$$

- ·· R 对称
- $(y,x) \in R$
- $\therefore \exists z, (y, z) \in R \ \exists z \Vdash \phi (z \ 就 \exists x)$
- $\therefore y \Vdash \Diamond \phi$
- $\therefore x \Vdash \Box \Diamond \phi$

2) 公理5:

 $\forall x \in W$, $\exists x \Vdash \Diamond \phi$

- $\therefore y, (x, y) \in R \perp \exists y \Vdash \phi$
- :: R 是欧式的
- \therefore $(z, y) \in R$
- $\therefore z \Vdash \Diamond \phi$
- $\therefore x \Vdash \Box \Diamond \phi$

8 / 12

2.定义可达关系R使得下面公式成立:

- (a) $\phi \rightarrow \Box \phi$
- R 是自反的且函数的.

Proof.

 $若x \Vdash \phi$

::x 是自反的

 \therefore $(x,x) \in R$

又:: R 是函数的

 $\therefore x$ 是唯一满足 $(x,x) \in R$ 的世界

 $\therefore x \Vdash \mathbf{\nabla} \phi$

(b) □⊥

R必为空集. 若不, 设 $(x,y) \in R$, 因为 $y \lor \bot$, 所以 $x \lor \Box \bot$.

9 / 12

- (c) $\Diamond \Box \phi \rightarrow \Box \Diamond \phi$
- 1) R可以是函数的

Proof.

- $\therefore \exists y, (x, y) \in R \ \exists y \models \Box \phi \ (1)$
- :: R是函数的
- :. (1) 中的y是唯一的, (2)中的z必然存在
- $\therefore y \models \Diamond \phi$
- $\therefore x \vDash \Box \Diamond \phi$

- (c) $\Diamond \Box \phi \rightarrow \Box \Diamond \phi$
- 2) R可以是对称的

Proof.

- $\therefore \exists y, (x, y) \in R \ \exists y \models \Box \phi$
- ·: R 对称
- $\therefore (y,x) \in R$
- $\forall z, \ \Xi(y,z) \in R \ \mathbb{M}z \models \phi, \ \mathbb{M} \ \mathbb{M}x \models \phi \ (\diamondsuit z = x)$

$$\forall p, \ \exists (x,p) \in R, \ \mathbb{M}(p,x) \in R, \ \mathbb{M}p \models \Diamond \phi$$

$$\therefore x \models \Box \Diamond \phi$$

3.从自己的研究中,找到(特殊)模态逻辑可以表达(描述)的例子。

略.