Final Project 131

Yuanning Li

2022-11-08

Introduction

The aim of the project is to analyze the population trend among the world from 1970s to 2020s, and research about which model can best fit on the population data and predict and population. I use data from Kaggle and implement several techniques to answer the questions about population, growth rate, country areas, etc. I am also interested in fitting models on current data to predict the trend.

Loading Packages and Setting Up The Environment

This project uses data from Kaggle which records the population, land area, population density, etc. of 234 countries.

```
library(tidyverse) # using tidyverse and tidymodels for this project mostly
library(tidymodels)
library(ggplot2) # for most of our visualizations
library(rpart.plot) # for visualizing trees
library(randomForest) # for building our randomForest

# import data
df <- read.csv('data/world_population.csv')
head(df)</pre>
```

##		Rank	CCA3	Country	y.Territory		Capital	Contin	ent X2022.	Population
##	1	36	AFG	Ī	Afghanistan		Kabul	Α	sia	41128771
##	2	138	ALB		Albania		Tirana	Eur	оре	2842321
##	3	34	DZA		Algeria		Algiers	Afr	ica	44903225
##	4	213	ASM	Ame	rican Samoa		Pago Pago	Ocea	nia	44273
##	5	203	AND		Andorra	Andori	ra la Vella	Eur	ope	79824
##	6	42	AGO		Angola		Luanda	Afr	ica	35588987
##		X2020	Popı).	ılation	X2015.Popul	lation	X2010.Popu	Lation :	X2000.Popu	lation
##	1		38	3972230	33	753499	28:	L89672	19	542982
##	2		2	2866849	28	382481	29	913399	3:	182021
##	3		43	3451666	39	543154	358	356344	30.	774621
##	4			46189		51368		54849		58230
##	5			77700		71746		71519		66097
##	6		33	3428485	28:	127721	233	364185	163	394062
##		X1990).Popı	ılation	X1980.Popu	lation	X1970.Popu	Lation .	Areakm	
##	1		10	0694796	124	486631	10	752971	652230	
##	2		3	3295066	29	941651	23	324731	28748	
##	3		25	5518074	187	739378	13	795915	2381741	
##	4			47818		32886		27075	199	
##	5			53569		35611		19860	468	
##	6		11	1828638	83	330047	60	29700	1246700	

##		Densityper.km	Growth.Rate	World.Population.Percentage
##	1	63.0587	1.0257	0.52
##	2	98.8702	0.9957	0.04
##	3	18.8531	1.0164	0.56
##	4	222.4774	0.9831	0.00
##	5	170.5641	1.0100	0.00
##	6	28.5466	1.0315	0.45

DATA DESCRIPTION

This database from Kaggle contains 17 variables and 234 columns. While the codebook is provided in my text file, the variables listed here are useful for understanding this report.

Rank="Rank of Popluation"

CCA3="3 Digit Country/Territories Code"

Country="Name of the Country/ Territories"

Capital="Name of the Capital"

Continent="Name of the Continent"

2022_Population="Population of the Country/Territories in the year 2022"

2020_Population="Population of the Country/Territories in the year 2020"

2015_Population="Population of the Country/Territories in the year 2015"

2010_Population="Population of the Country/Territories in the year 2010"

2000.Population="Population of the Country/Territories in the year 2000"

1990_Population="Population of the Country/Territories in the year 1990"

1980_Population="Population of the Country/Territories in the year 1980"

1970_Population="Population of the Country/Territories in the year 1970"

Area="Area size of the Country/Territories in square kilometer"

Density="Population Density per square kilometer"

Growth_Rate="Population Growth Rate by Country/Territories"

World_Population_Percentage="The Population percentage by each Country/Territories"

Note: a full copy of the codebook is available in text files

What is the current state of the world population?

In June 2019, the world population estimate surveyed by the U.S. Census Bureau showed that the current global population is 757,713,040 people, which is much higher than the world population of 7.2 billion in 2015. It seems that the earth is very crowded and the population is still growing very fast.

Why is analyzing and modeling the population so important?

For a growing population, since the resources on our planet are limited, the more the population, the greater the demand for various resources. When the world's population reaches a certain number, resources will be exhausted, and the loss of resources may lead to the destruction of the earth! So I hope these analysis and models can help us understand the current population situation and take corresponding measures to maintain the earth.

Project pathway

Knowing the background and the importance of the topic, I'd like to discuss how to analyze and build models. First I do some initial data manipulation and cleaning on the original data. Then I explore the data and see if there's any interesting findings about population, density, area in time series and continent perspective.

At the end, I use existing data from previous years to make the prediction. I'll split and resample the data, build the recipe and workflow, and train the model. Because this is a regression problem, I choose Ridge regression, Lasso regression, regression tree, and random forest these four models. I'd like to find the best parameters for our model using cross validation, and find which of the four models perform the best on our test dataset.

Clean Data

Our original data is quite clean, so there's not much data cleaning to do. I simply renamed the feature names to make it more clean.

Exploratory Data Analysis (EDA)

The entire exploratory data analysis will be based on the entire data set with 234 observations. Each observation represents the data of a country.

Key Takeaways

- What are the countries with largest and smallest population in the world? Is China going to remain the Top 1 population country in the world in the future?
- Are the countries with small density / population has smaller growth rate than those countries with large density / population?
- In the continent perspective, which continent has largest population and density? What is the trend?
- What are the largest and smallest countries in size? The EDA part will answer the above questions. First extract the top five countries by population from 1970 to 2022.

```
# for EDA, no need for more dropping or cleaning, we will clean later for model
# add column for growth rate??
# EDA
# 1. Top 5 populous countries in 1970, 1980, 1990, 2000, 2010, 2015, 2020 and 2022.
```

```
df1 <- df
colnames(df1) <- c('Rank', 'CCA3', 'Country', 'Capital', 'Continent', '2022',</pre>
                   '2020','2015','2010',
                   '2000','1990','1980',
                   '1970', 'Area', 'Density', 'Growth_Rate',
                   'World_Population_Percentage')
df1 <- df1 %>% select(c('Country','2022','2020',
                        '2015','2010',
                       '2000','1990',
                       '1980','1970')) %>% pivot_longer(cols=c('2022','2020',
                       '2015','2010',
                       '2000','1990',
                       '1980','1970'),
                      names_to = 'Year', values_to = 'Population') %>%
  arrange(desc(Population)) %>%
  group_by(Year) %>%
  slice(1:5)
head(df1, 10)
## # A tibble: 10 x 3
## # Groups:
               Year [2]
##
      Country
                    Year Population
##
      <chr>
                    <chr>>
                                <int>
## 1 China
                    1970
                            822534450
```

3 United States 1970 200328340 ## 4 Russia 1970 130093010 ## 5 Indonesia 1970 115228394 ## 6 China 1980 982372466 ## 7 India 1980 696828385 ## 8 United States 1980 223140018 ## 9 Indonesia 148177096 1980 ## 10 Russia 1980 138257420

1970

557501301

2 India

Then, use the above content to make a bar plot. it show the population of the top five populous countries from 1970 to 2022.

```
ggplot(df1, aes(fill=Country, y=Population, x=Year)) +
  geom_bar(position='dodge', stat='identity') +
  ggtitle ('Top 5 Populous Countries from 1970 to 2022')
```


Top 5 Populous Countries from 1970 to 2022

From the figure, We can conclude that Russia's population growth is relatively small, so that it fell out of the top five after 1990. Brazil had a large population in 1990-2010, and it was not in the top five at other times. China has always maintained the first place, but India's population has grown relatively faster and has been catching up with China. In the very near future, India's population will soon catch up with China's.

Then, we extract the least five countries by population from 1970 to 2022.

```
# 2. Top 5 populous countries in 1970, 1980, 1990, 2000, 2010, 2015, 2020 and 2022.
df2 <- df
colnames(df2) <- c('Rank', 'CCA3', 'Country', 'Capital', 'Continent', '2022',</pre>
                   '2020','2015','2010',
                   '2000', '1990', '1980',
                   '1970', 'Area', 'Density', 'Growth_Rate',
                   'World_Population_Percentage')
df2 <- df2 %>% select(c('Country','2022','2020',
                        '2015','2010',
                       '2000','1990',
                       '1980','1970')) %>% pivot_longer(cols=c('2022','2020',
                       '2015','2010',
                       '2000','1990',
                       '1980','1970'),
                       names_to = 'Year', values_to = 'Population') %>%
  arrange(Population) %>%
  group_by(Year) %>%
  slice(1:5)
head(df2, 10)
```

```
## # A tibble: 10 x 3
   # Groups:
                Year [2]
      Country
                         Year Population
##
##
      <chr>
                                     <int>
                         <chr>>
##
    1 Vatican City
                         1970
                                       752
                         1970
##
    2 Tokelau
                                      1714
    3 Falkland Islands 1970
                                      2274
##
##
    4 Saint Barthelemy 1970
                                      2417
##
    5 Niue
                         1970
                                      5185
##
    6 Vatican City
                         1980
                                       733
                                      1647
##
    7 Tokelau
                         1980
    8 Falkland Islands 1980
                                      2240
##
    9 Saint Barthelemy 1980
                                      2983
## 10 Niue
                         1980
                                      3637
```

The method I use to create a bar plot is similar to the previous question, it shows the population of the five least populous countries from 1970 to 2022.

```
ggplot(df2, aes(fill=Country, y=Population, x=Year)) +
geom_bar(position='dodge', stat='identity') +
ggtitle ('Top 5 Least Populous Countries from 1970 to 2022')
```

Top 5 Least Populous Countries from 1970 to 2022

We can conclude that the population of Niue began to decrease from 1970 until 2010, and then increased a little. Montserrat is gaining momentum, starting in 2000 as the most populous of the five least populated countries, but Falkland Island has been growing as well.

Next, we look at the population growth rate for top 5 countries.

As described above, although China's population is currently the largest in the world, India is gaining

momentum. Is it possible to surpass China and become the next country with the largest population in the world?

```
# 3. growth rate of the 5 most populous countries
df3 <- df1 %>% filter(Year == 2022)
df tmp <- df %>% select(c('Country', 'Growth Rate'))
df3 <- merge(df3, df_tmp, by='Country', all.x=TRUE) %>%
  select(c('Country','Population','Growth_Rate')) %>% arrange(desc(Population))
df3
##
           Country Population Growth_Rate
## 1
             China 1425887337
                                   1.0000
             India 1417173173
                                   1.0068
## 2
## 3 United States 338289857
                                   1.0038
## 4
         Indonesia 275501339
                                   1.0064
## 5
          Pakistan 235824862
                                   1.0191
```

From the data, the China has the least population growth rate and Pakistan has the highest population growth rate. Based on India's growth rate of 1.0068 is higher than China's growth rate of 1.0000, and the population until 2022, we expect India's population will have more than China's population.

Using the data df3 obtained above, make a visualization to observe the population and growth trends of the top five countries in the world.

```
ggplot(df3, aes(x=reorder(Country, +desc(Population)))) +
  geom_bar(aes(y=Population*0.000000001, group=1),stat="identity", fill="cyan") +
  geom_line(aes(y=(Growth_Rate-1)*100, group=1),stat="identity",color="black",size=1)+
  scale_y_continuous(name = 'Population in Billion', sec.axis=sec_axis(trans = ~.*1, name="Increase Groups (title="Population vs. Growth Rate Top 5 Populous Countries", x = 'Country') +
  geom_point(aes(y=(Growth_Rate-1)*100, group=1), col='red') +
  geom_text(x=c(1,2,3,4,5), y = c(0.1, 0.8, 0.5, 0.8, 1.7), label=c(0, 0.68, 0.38, 0.64, 1.91))
```


To better visualize the growth rate, we changed population growth rate to increase of growth rate in percentage, for example, India's growth rate is 1.0068, so the increase of growth rate is 0.68%.

From the plot, Pakistan has the highest increase of growth rate 1.91%. China has a increase of growth rate 0% in recent years, while India has a increase of growth rate 0.68%. If maintains, India's population will surpass that of China.

Then, we look at the comparison of population density. First look at the five countries with the lowest population density.

```
# 4. The 5 countries with the least population density
df4 <- df %>% arrange(Density) %>% slice(1:5) %>%
   select(c("Country", "Population_2022", "Density"))
df4
```

```
##
              Country Population_2022 Density
            Greenland
## 1
                                 56466 0.0261
## 2 Falkland Islands
                                  3780
                                       0.3105
## 3
       Western Sahara
                                575986
                                        2.1654
             Mongolia
                               3398366
## 4
                                       2.1727
## 5
              Namibia
                               2567012 3.1092
```

From the data, we know Greenland, Falkland Islands, Western Sahara, Mongolia and Namibia has the least population density.

Using the data df4 obtained above, make a visualization to observe the population and density of the five countries with the least population in the world.

```
ggplot(df4, aes(x=reorder(Country, +Population_2022))) +
geom_bar(aes(y=Population_2022*0.000001, group=1),stat="identity", fill="blue") +
```

```
geom_line(aes(y=Density, group=1),stat="identity",color="black",size=1)+
scale_y_continuous(name = 'Population in Million', sec.axis=sec_axis(trans = ~.*1, name="Density (per
labs(title= "5 Least Density Countries", x= 'Country') +
geom_point(aes(y=Density, group=1), col='red') +
geom_text(x=c(1,2,3,4,5), y = c(0.51,0.23,2.36,3.31,2.37), label=c(0.31,0.03,2.16,3.11,2.17))
```

5 Least Density Countries

From the figure, the blue bars represents the population and the line represents the population density. Of the five countries, Namibia has the highest population density of $3.11(people/km^2)$ and Greenland has the lowest of $0.03(people/km^2)$.

Next, we look at the population growth rate for 5 countries with least density.

```
# Growth rate of the 5 least densely populated countries
df5 <- df %>% arrange(Density) %>% slice(1:5) %>%
   select(c("Country", "Density", "Growth_Rate"))
df5
```

```
##
              Country Density Growth_Rate
## 1
                                    1.0040
            Greenland
                       0.0261
## 2 Falkland Islands
                       0.3105
                                    1.0043
       Western Sahara
                                    1.0184
## 3
                       2.1654
## 4
             Mongolia
                        2.1727
                                    1.0151
## 5
              Namibia 3.1092
                                    1.0146
```

From the data, the Greenland has the least population growth rate and Western Sahara has the highest population growth rate.

```
ggplot(df5, aes(x=reorder(Country, +Density))) +
geom_bar(aes(y=Density, group=1),stat="identity", fill="orange") +
```

```
geom_line(aes(y=(Growth_Rate-1)*100, group=1),stat="identity",color="black",size=1)+
scale_y_continuous(name = 'Density (per km^2)', sec.axis=sec_axis(trans = ~.*1, name="Increase Growth
labs(title= "5 Least Density Countries's Growth Rate", x = "Country") +
geom_point(aes(y=(Growth_Rate-1)*100, group=1), col='red') +
geom_text(x=c(1,2,3,4,5), y = c(0.6,0.6,2,1.7,1.7), label=c(0.4,0.43,1.81,1.51,1.46))
```

5 Least Density Countries's Growth Rate

From the plot, the Western Sahara has the highest increase population growth rate of 1.81%, and the Greenland has the lowest increase population growth rate of 0.4%. comparing to the countries with large population and high density, the increase of growth rate of these low density countries are the similar.

Then, Let's focus on the proportion of the population of different continents in the world from 1970 to 2022.

This time we use a line chart to do this visualization.

```
ggplot(data = df6, aes(x=Year)) +
  geom_line(aes(y=Population / 1000000000, colour=Continent)) +
  geom_point(aes(y=Population / 1000000000, colour=Continent)) +
  labs(title= "Population distribution by Continent", y = "Population in Billion")
```

Population distribution by Continent

In the plot, Asia's population grows fast continuously form 1970s to 2022. And its population is much more than other continents. The other continent that has obvious population growth trend is Africa. Compare to Asia and Africa, other continents do not have a big growth throughout the years. The population of Oceania is the smallest of all continents, and the growth rate is also very small.

Then, Let's look at the population density of each of these continents.

```
# 7. Population density of each continent
```

```
df7 <- df
df7 <- df7 %>% select(c('Continent', 'Population 2022', 'Population 2020',
                        'Population_2015', 'Population_2010',
                       'Population_2000', 'Population_1990',
                       'Population_1980', 'Population_1970', 'Area')) %>% group_by(Continent) %>%
  summarise(density_2022 = sum(Population_2022) / sum(Area),
            density_2020 = sum(Population_2020) / sum(Area),
            density 2015 = sum(Population 2015) / sum(Area),
            density_2010 = sum(Population_2010) / sum(Area),
            density_2000 = sum(Population_2000) / sum(Area),
            density_1990 = sum(Population_1990) / sum(Area),
            density_1980 = sum(Population_1980) / sum(Area),
            density_1970 = sum(Population_1970) / sum(Area))
colnames(df7) <- c('Continent', '2022',</pre>
                  '2020', '2015', '2010',
                  '2000','1990','1980',
                  '1970')
df7 <- df7 %>% pivot_longer(cols=c('2022','2020',
                       '2015','2010',
                      '2000','1990',
                      '1980','1970'),
                      names_to = 'Year', values_to = 'Density') %>%
  arrange(Continent, Year)
df7[['Year']] <- as.numeric(df7[['Year']])</pre>
```

Through the above calculation and classification, visualization can now be made.

```
ggplot(data = df7, aes(x=Year)) +
  geom_line(aes(y=Density, colour=Continent)) +
  geom_point(aes(y=Density, colour=Continent)) +
  labs(title= "Population Density by Continent", y = "Density per km^2")
```


From the visualization, Asia is still far ahead of other continents. From a population density of about 65 people per square kilometer in 1970 to about 150 people per square kilometer in 2022. Oceania still has the lowest population density. In 1970, the population density was about 1 to 2 people per square kilometer. By 2022, about 3 to 4 people per square kilometer.

By comparing population trend and population density trend from 1970 to 2020, we find the two trend shares the same pattern.

Finally, we are interest in the land area of countries. The following distribution is the largest 5 countries and the smallest 5 countries.

```
# Five largest countries
df8 <- df %>% arrange(desc(Area)) %>% slice(1:5) %>% select(c("Country", "Area"))
df8
##
           Country
                        Area
## 1
            Russia 17098242
## 2
            Canada
                    9984670
## 3
             China
                    9706961
## 4 United States
                    9372610
            Brazil
                    8515767
## 5
```

The Largest country is Russia, the Area is $17098242 \ km^2$.

In the visualization, Russia is shown to have the largest area, roughly twice the size of Brazil, which ranks fifth. The area gap between Canada, China and the United States, which ranks second to fourth, is relatively small.

```
# Five smallest countries
df9 <- df %>% arrange(Area) %>% slice(1:5) %>% select(c("Country", "Area"))
df9
```

```
## Country Area
## 1 Vatican City 1
## 2 Monaco 2
## 3 Gibraltar 6
## 4 Tokelau 12
## 5 Nauru 21
```

The smallest country is Vatican City, and it's area is $1km^2$.

Five Smallest Countries

In the visualization, the Vatican is shown to have the smallest area at $1km^2$, about the size of a square. The largest of them, Nauru, is only $21km^2$.

Data split & cross validation

For model training, we only keep the relevant features, including all the previous year's population, area, and continent. We delete features such as density and growth rate because they can be used to calculate population of 2022 directly (correlation is almost 1).

The data was split in 70% training, 30% testing split. Stratified sampling was used as the Continent.

##		Continent	Area	Population_1970	Population_1980	Population_1990
##	1	Asia	652230	10752971	12486631	10694796
##	2	Europe	28748	2324731	2941651	3295066
##	3	Africa	2381741	13795915	18739378	25518074
##	4	Oceania	199	27075	32886	47818
##	5	Europe	468	19860	35611	53569
##	6	Africa	1246700	6029700	8330047	11828638
##		Population	n_2000 Po	opulation_2010 Po	opulation_2015 Po	opulation_2020
##	1	195	542982	28189672	33753499	38972230
##	2	31	182021	2913399	2882481	2866849

```
## 3
             30774621
                              35856344
                                               39543154
                                                                43451666
               58230
## 4
                                                  51368
                                                                    46189
                                 54849
## 5
                66097
                                 71519
                                                  71746
                                                                    77700
                                                                33428485
## 6
             16394062
                              23364185
                                               28127721
##
     Population_2022
            41128771
## 1
## 2
             2842321
## 3
             44903225
## 4
                44273
                79824
## 5
## 6
             35588987
# initial train test split
pop_split <- initial_split(data, strata = Continent, prop = 0.7)</pre>
pop_split
```

```
## <Analysis/Assess/Total>
## <162/72/234>
```

The training data set has 161 observations and the testing data set has 73 observations.

Then we use the cross validation resampling method to fold the training data into 10 folds with 5 repeats.

```
pop_train <- training(pop_split)
pop_test <- testing(pop_split)
# 5 fold cross validation
pop_folds <- vfold_cv(pop_train, v = 5)</pre>
```

Model Building

Steps we use to build and analysis the model:

- 1. Build the recipe and workflow for each of the model.
- 2. Use cross validation to tune the model parameters, and find the best parameter for the model.
- 3. Use the best parameters found in step2, fit the model on test set and calculate model performance.
- 4. Compare the performance for each model. Find the best model in the four models.

Building the Recipe

set up preprocess recipe for all models.

```
recipe <-
  recipe(formula = Population_2022 ~ ., data = pop_train) %>%
  step_novel(all_nominal_predictors()) %>%
  step_dummy(all_nominal_predictors()) %>%
  step_zv(all_predictors()) %>%
  step_normalize(all_predictors())
```

After many considerations, I decided to build the following four models.

- 1. Ridge Regression
- 2. Lasso Regression
- 3. Regression Tree

4. Random Forest

Ridge Regression

Loaded the required object that I saved in my script, set mode to "regression", tuned penality, and used the glmnet engine. I stored this model and recipe in workflow.

```
set.seed(1234)
ridge_spec <- linear_reg(mixture = 0, penalty = tune()) %>%
  set_mode("regression") %>%
  set_engine("glmnet")

ridge_workflow <- workflow() %>%
  add_recipe(recipe) %>%
  add_model(ridge_spec)
```

Next, I set up the adjustment grid and updated the penalty parameters. I tune the penalty, in the range of -10 to 10 with the level 50.

```
ridge_penalty_grid <- grid_regular(penalty(range = c(-10, 10)), levels = 50)

ridge_tune_res <- tune_grid(
   ridge_workflow,
   resamples = pop_folds,
   grid = ridge_penalty_grid)</pre>
```

Lasso Regression

In a similar process, I set the model with tuning parameter penalty. Set the engine as glmnet and created a workflow.

The difference between Lasso Regression and Ridge Regression is Lasso regression 's mixture parameter equals 1 and Ridge regression's mixture parameter equals 0. This differs the two models from L1 to L2.

```
set.seed(1234)
lasso_spec <-
  linear_reg(penalty = tune(), mixture = 1) %>%
  set_mode("regression") %>%
  set_engine("glmnet")

lasso_workflow <- workflow() %>%
  add_recipe(recipe) %>%
  add_model(lasso_spec)
```

Next, set up the adjustment grid and updated the parameters. Tune the penalty, in the range of -10 to 10 with the level 50.

```
lasso_penalty_grid <- grid_regular(penalty(range = c(-10, 10)), levels = 50)

lasso_tune_res <- tune_grid(
   ridge_workflow,
   resamples = pop_folds,
   grid = lasso_penalty_grid)</pre>
```

Regression Tree

In this process, Set mode to "regression" and used the rpart engine. Stored this model and recipe in workflow.

```
set.seed(1234)
reg_tree_spec <- decision_tree() %>%
  set_engine("rpart") %>%
  set_mode("regression")

reg_tree_wf <- workflow() %>%
  add_recipe(recipe) %>%
  add_model(reg_tree_spec %>% set_args(cost_complexity = tune()))
```

As above, Set up the adjustment grid and updated the parameters. Tune the cost complexity, in the range of -10 to -1 with the level 50.

```
reg_tree_param_grid <- grid_regular(cost_complexity(range = c(-10, -1)), levels = 50)

reg_tree_tune_res <- tune_grid(
   reg_tree_wf,
   resamples = pop_folds,
   grid = reg_tree_param_grid
)</pre>
```

! Fold1: internal: A correlation computation is required, but `estimate` is const...

Random Forest

To prepare, load the required objects that I saved in my script, tuned mtry, where mtry is the number of levels of the trees. Set mode to "regression", and used the random Forest engine. Stored this model and my recipe in a workflow.

```
set.seed(1234)
rf_spec <- rand_forest(mtry = tune()) %>%
  set_engine("randomForest", importance = TRUE) %>%
  set_mode("regression")

rf_wf <- workflow() %>%
  add_recipe(recipe) %>%
  add_model(rf_spec)
```

Next, set up the tuning grid, and updated the parameters to tune the number of level of the trees. The minimum number of level is 1 and the maximum number of level is 9.

```
rf_grid <- grid_regular(parameters(rf_spec) %>%
    update(mtry = mtry(range= c(1, 9))), levels = 9)

## Warning: `parameters.model_spec()` was deprecated in tune 0.1.6.9003.
## Please use `hardhat::extract_parameter_set_dials()` instead.

rf_tune_res <- tune_grid(
    rf_wf,
    resamples = pop_folds,
    grid = rf_grid
)</pre>
```

Repeated Cross Validation Parameter Tuning

Ridge Regression

Use the autoplot(), we can observe the change of rmse and rsq when I tune the penalty of the ridge model. From the plot, we can see the rmse is small and stable, and rsq is large and stable at the beginning and has a sudden drop of rmse and sudden rise of rsq at the final. Therefore we pick the initial value as the best penalty value for the model.

```
ridge_best <- select_best(ridge_tune_res, metric = "rsq")
ridge_best

## # A tibble: 1 x 2
## penalty .config
## <dbl> <chr>
## 1 0.00000000001 Preprocessor1_Model01
```

Using the select_best() function, the best value of penalty is 1e-10.

Lasso Regression

```
autoplot(lasso_tune_res)
```


The trend of this graph is similar to the one above.

```
lasso_best <- select_best(lasso_tune_res, metric = "rsq")
lasso_best</pre>
```

```
## # A tibble: 1 x 2
## penalty .config
## <dbl> <chr>
## 1 0.0000000001 Preprocessor1_Model01
```

Also using the select_best() function, the best value of penalty is 1e-10.

Regression Tree

```
autoplot(reg_tree_tune_res)
```


For regression tree model, we tune the cost complexity parameter. From the plot, similar to ridge and lasso regression models, we can see the rmse is small and stable, and rsq is large and stable at the beginning and has a sudden drop of rmse and sudden rise of rsq at the final. Therefore we also pick the initial value as the best penalty value for the model.

As same before, using the select_best() function, the best value of cost complexity is 1e-10.

Random Forest

The autoplot shows when the number of levels of tree increase, the rmse decrease and the rsq increase. However, the best value of rmse appears at level 5 and best value of rsq appears at level 5.

```
autoplot(rf_tune_res)
```


From the autoplot() we see the trend of rmse and rsq is getting better when we add layer to the trees. The best value of rmse and rsq appear when number of levels of trees is about 5.

```
rf_best <- select_best(rf_tune_res, metric = "rmse")
rf_best

## # A tibble: 1 x 2
## mtry .config
## <int> <chr>
## 1 7 Preprocessor1_Model7
```

Using the show_best() function, the best value of number of trees is config is 5 with mtry = 5.

Model performance evaluation and select best model

Create a workflow with an adjusted name so I can identify it. Use the fit() function for each model to run the models on the test set and find the best model by comparing r squared value.

Final Ridge Regression Model

```
ridge_final <- finalize_workflow(ridge_workflow, ridge_best)
ridge_final_fit <- fit(ridge_final, data = pop_train)
augment(ridge_final_fit, new_data = pop_test) %>%
    rsq(truth = Population_2022, estimate = .pred)
```

A tibble: 1 x 3

Final Lasso Regression Model

Final Regression Tree Model

```
reg_tree_final <- finalize_workflow(reg_tree_wf, reg_tree_best)</pre>
reg_tree_final_fit <- fit(reg_tree_final, data = pop_train)</pre>
#reg_tree_final_fit %>%
  #extract_fit_engine() %>%
  #rpart.plot()
augment(reg_tree_final_fit, new_data = pop_test) %>%
 rsq(truth = Population_2022, estimate = .pred)
## # A tibble: 1 x 3
##
     .metric .estimator .estimate
     <chr> <chr>
##
                             <dbl>
## 1 rsq
             standard
                             0.845
```

Final Random Forest Model

By comparison, Lasso Regression is the best model because it's r squared value is the largest.

Final model fitting and analysis

Compare the predictions of the four models across countries, actual values, and append them into a data frame for comparison.

```
# append country, actual value, predict result from 4 models together in one data frame
data_pred_result <- df %>% select('Country', 'Population_2022')

data_pred_result['reg_tree_pred'] <- augment(reg_tree_final_fit, new_data = data)['.pred']

data_pred_result['rf_pred'] <- augment(rf_final_fit, new_data = data)['.pred']

data_pred_result['ridge_pred'] <- augment(ridge_final_fit, new_data = data)['.pred']

data_pred_result['lasso_pred'] <- augment(lasso_final_fit, new_data = data)['.pred']

data_pred_result['lasso_pred'] <- augment(lasso_final_fit, new_data = data)['.pred']</pre>
```

##		Country	Population_2022	reg tree pred
##	1	Afghanistan	41128771	43945079.65
##	2	Albania	2842321	2576001.67
##	3	Algeria	44903225	43945079.65
##	4	American Samoa	44273	45548.29
##	5	Andorra	79824	102367.82
##	6	Angola	35588987	43945079.65
##	7	Anguilla	15857	8000.60
##	8	Antigua and Barbuda	93763	102367.82
##	9	Argentina	45510318	43945079.65
##	10	Armenia	2780469	2576001.67
##	11	Aruba	106445	102367.82
##	12	Australia	26177413	24063625.15
##	13	Austria	8939617	7507049.91
##	14	Azerbaijan	10358074	10751702.19
##	15	Bahamas	409984	301374.29
##	16	Bahrain	1472233	2576001.67
##	17	Bangladesh	171186372	555085699.29
##	18	Barbados	281635	301374.29
##	19	Belarus	9534954	10751702.19
##	20	Belgium	11655930	10751702.19
##	21	Belize	405272	301374.29
	22	Benin	13352864	16328847.00
##	23	Bermuda	64184	45548.29
##	24	Bhutan	782455	830537.44
##	25	Bolivia	12224110	10751702.19
##	26	Bosnia and Herzegovina	3233526	2576001.67
##	27	Botswana	2630296	2576001.67
##	28	Brazil	215313498	555085699.29
##	29	British Virgin Islands	31305	45548.29
##	30	Brunei	449002	830537.44
##	31	Bulgaria	6781953	7507049.91
##	32	Burkina Faso	22673762	24063625.15
##	33	Burundi	12889576	10751702.19
##	34	Cambodia	16767842	16328847.00
##	35	Cameroon	27914536	24063625.15
##	36	Canada	38454327	43945079.65
##	37	Cape Verde	593149	830537.44
##	38	Cayman Islands	68706	45548.29
##	39	Central African Republic	5579144	4956415.73
##	40	Chad	17723315	16328847.00

		a1 . 1	4000700	04000005 45
## ##		Chile China	19603733	24063625.15
##		Colombia	1425887337 51874024	555085699.29 43945079.65
##		Comoros	836774	830537.44
	45	Cook Islands	17011	8000.60
##		Cook Islands Costa Rica	5180829	4956415.73
	47		4030358	4956415.73
	48	Croatia Cuba	11212191	10751702.19
##			191163	301374.29
##	50	Curacao Cyprus	1251488	830537.44
	51	Czech Republic	10493986	10751702.19
##	52	Denmark	5882261	4956415.73
##	53	Djibouti	1120849	830537.44
##	54	Dominica	72737	102367.82
##	55	Dominican Republic	11228821	10751702.19
##	56	DR Congo	99010212	98478049.29
##	57	Ecuador	18001000	16328847.00
##	58	Egypt	110990103	98478049.29
##		El Salvador	6336392	7507049.91
	60	Equatorial Guinea	1674908	2576001.67
##		Eritrea	3684032	4956415.73
##	62	Estonia	1326062	830537.44
##	63	Eswatini	1201670	830537.44
##	64	Ethiopia	123379924	98478049.29
##	65	Falkland Islands	3780	8000.60
##	66	Faroe Islands	53090	45548.29
##	67	Fiji	929766	830537.44
##	68	Finland	5540745	4956415.73
##	69	France	64626628	98478049.29
##	70	French Guiana	304557	301374.29
##	71	French Polynesia	306279	301374.29
##	72	Gabon	2388992	2576001.67
##	73	Gambia	2705992	2576001.67
##	74	Georgia	3744385	4956415.73
##	75	Germany	83369843	98478049.29
##	76	Ghana	33475870	43945079.65
	77	Gibraltar	32649	45548.29
##		Greece	10384971	10751702.19
	79	Greenland	56466	45548.29
	80	Grenada	125438	102367.82
	81	Guadeloupe	395752	301374.29
	82	Guam	171774	301374.29
	83	Guatemala	17843908	16328847.00
	84	Guernsey	63301	45548.29
	85	Guinea	13859341	16328847.00
	86	Guinea-Bissau	2105566	2576001.67
	87	Guyana	808726	830537.44
	88	Haiti	11584996	10751702.19
##		Honduras	10432860	10751702.19
	90	Hong Kong	7488865	7507049.91
##	91	Hungary Iceland	9967308 372899	10751702.19 301374.29
	92	India	1417173173	555085699.29
	93	India Indonesia	275501339	555085699.29
##	94	Indonesia	210001009	000000000000000000000000000000000000000

		_	00==0==0	
##		Iran	88550570	98478049.29
	96	Iraq	44496122	43945079.65
	97	Ireland	5023109	4956415.73
	98	Isle of Man	84519	102367.82
	99	Israel	9038309	7507049.91
	100	Italy	59037474	43945079.65
	101	Ivory Coast	28160542	24063625.15
	102	Jamaica	2827377	2576001.67
	103	Japan	123951692	98478049.29
	104	Jersey	110778	102367.82
	105	Jordan	11285869	10751702.19
	106	Kazakhstan	19397998	24063625.15
	107	Kenya	54027487	43945079.65
	108	Kiribati	131232	102367.82
	109	Kuwait	4268873	4956415.73
	110	Kyrgyzstan	6630623	7507049.91
	111	Laos	7529475	7507049.91
	112	Latvia	1850651	2576001.67
	113	Lebanon	5489739	4956415.73
	114	Lesotho	2305825	2576001.67
	115	Liberia	5302681	4956415.73
	116	Libya	6812341	7507049.91
	117	Liechtenstein	39327	45548.29
	118	Lithuania	2750055	2576001.67
	119	Luxembourg	647599	830537.44
	120	Macau	695168	830537.44
	121	Madagascar	29611714	24063625.15
	122	Malawi	20405317	24063625.15
	123	Malaysia	33938221	43945079.65
	124	Maldives	523787	830537.44
	125	Mali	22593590	24063625.15
	126	Malta	533286	830537.44
	127	Marshall Islands	41569	45548.29
	128	Martinique	367507	301374.29
	129	Mauritania	4736139	4956415.73
	130	Mauritius	1299469	830537.44
	131	Mayotte	326101	102367.82
	132	Mexico	127504125	98478049.29
	133	Micronesia	114164	102367.82
	134	Moldova	3272996	2576001.67
	135	Monaco	36469	45548.29
	136	Mongolia	3398366	2576001.67
	137	Montenegro	627082	830537.44
	138	Montserrat	4390	8000.60
	139	Morocco	37457971	43945079.65
	140	Mozambique	32969517	24063625.15
	141	Myanmar	54179306	43945079.65
	142	Namibia	2567012	2576001.67
	143	Nauru	12668	8000.60
	144	Nepal	30547580	24063625.15
	145	Netherlands	17564014	16328847.00
	146	New Caledonia	289950	301374.29
	147	New Zealand	5185288	4956415.73
##	148	Nicaragua	6948392	7507049.91

	4.40	AT *	0.0007077	04000005 45
	149	Niger	26207977	24063625.15
	150	Nigeria	218541212	98478049.29
	151	Niue	1934	8000.60
	152	North Korea	26069416	24063625.15
	153	North Macedonia	2093599	2576001.67
	154	Northern Mariana Islands	49551	45548.29
	155	Norway	5434319	4956415.73
	156	Oman	4576298	4956415.73
	157	Pakistan	235824862	555085699.29
	158	Palau	18055	45548.29
	159	Palestine	5250072	4956415.73
##	160	Panama	4408581	4956415.73
##	161	Papua New Guinea	10142619	10751702.19
##	162	Paraguay	6780744	7507049.91
##	163	Peru	34049588	43945079.65
##	164	Philippines	115559009	98478049.29
##	165	Poland	39857145	43945079.65
##	166	Portugal	10270865	10751702.19
	167	Puerto Rico	3252407	2576001.67
	168	Qatar	2695122	2576001.67
	169	Republic of the Congo	5970424	4956415.73
	170	Reunion	974052	830537.44
	171	Romania	19659267	24063625.15
	172	Russia	144713314	555085699.29
	173	Rwanda	13776698	16328847.00
	174	Saint Barthelemy	10967	8000.60
	175	Saint Kitts and Nevis	47657	45548.29
	176	Saint Lucia	179857	301374.29
	177	Saint Martin	31791	45548.29
	178	Saint Pierre and Miquelon	5862	8000.60
##		Saint Vincent and the Grenadines	103948	102367.82
	180	Samoa	222382	301374.29
	181	San Marino	33660	45548.29
	182	Sao Tome and Principe	227380	301374.29
	183	Saudi Arabia	36408820	43945079.65
	184	Senegal	17316449	16328847.00
	185	Serbia	7221365	7507049.91
	186	Seychelles	107118	102367.82
	187	Sierra Leone	8605718	7507049.91
	188	Singapore	5975689	4956415.73
	189	Sint Maarten	44175	45548.29
	190	Slovakia	5643453	4956415.73
	191	Slovenia	2119844	2576001.67
	192	Solomon Islands	724273	830537.44
	193	Somalia	17597511	16328847.00
	194	South Africa	59893885	43945079.65
	195	South Korea	51815810	43945079.65
	196	South Sudan	10913164	10751702.19
	197	Spain	47558630	43945079.65
	198	Sri Lanka	21832143	24063625.15
	199	Sudan	46874204	43945079.65
	200	Suriname	618040	830537.44
	201	Sweden	10549347	10751702.19
##	202	Switzerland	8740472	7507049.91

```
## 203
                                    Syria
                                                  22125249
                                                              24063625.15
## 204
                                   Taiwan
                                                  23893394
                                                              24063625.15
## 205
                               Tajikistan
                                                   9952787
                                                              10751702.19
## 206
                                 Tanzania
                                                  65497748
                                                              98478049.29
## 207
                                 Thailand
                                                  71697030
                                                              98478049.29
## 208
                              Timor-Leste
                                                   1341296
                                                                830537.44
## 209
                                                   8848699
                                                               7507049.91
                                     Togo
## 210
                                  Tokelau
                                                       1871
                                                                   8000.60
## 211
                                    Tonga
                                                    106858
                                                                102367.82
## 212
                     Trinidad and Tobago
                                                   1531044
                                                               2576001.67
## 213
                                  Tunisia
                                                  12356117
                                                              10751702.19
## 214
                                                              98478049.29
                                   Turkey
                                                  85341241
## 215
                             Turkmenistan
                                                   6430770
                                                               7507049.91
## 216
                Turks and Caicos Islands
                                                      45703
                                                                  45548.29
## 217
                                                                   8000.60
                                   Tuvalu
                                                      11312
## 218
                                   Uganda
                                                  47249585
                                                              43945079.65
## 219
                                  Ukraine
                                                  39701739
                                                              43945079.65
## 220
                    United Arab Emirates
                                                   9441129
                                                              10751702.19
## 221
                          United Kingdom
                                                              98478049.29
                                                  67508936
## 222
                            United States
                                                 338289857
                                                             555085699.29
## 223
           United States Virgin Islands
                                                     99465
                                                                102367.82
## 224
                                                   3422794
                                                               2576001.67
                                  Uruguay
## 225
                                                  34627652
                                                              43945079.65
                               Uzbekistan
## 226
                                  Vanuatu
                                                     326740
                                                                301374.29
## 227
                                                        510
                             Vatican City
                                                                   8000.60
## 228
                                Venezuela
                                                  28301696
                                                              24063625.15
## 229
                                  Vietnam
                                                  98186856
                                                              98478049.29
## 230
                       Wallis and Futuna
                                                     11572
                                                                   8000.60
## 231
                          Western Sahara
                                                     575986
                                                                830537.44
## 232
                                    Yemen
                                                  33696614
                                                              43945079.65
## 233
                                   Zambia
                                                  20017675
                                                              24063625.15
## 234
                                 Zimbabwe
                                                  16320537
                                                              16328847.00
##
               rf_pred
                          ridge_pred lasso_pred
## 1
         38498025.920
                          33672224.7
                                        38244672
## 2
          2782363.963
                          2187351.6
                                         4292551
## 3
                          40014858.7
                                        43206887
         45171477.550
## 4
             45398.560
                            627468.9
                                         1479620
## 5
             73319.664
                          -1253675.9
                                         1506739
## 6
         33414289.910
                          27202352.1
                                        32692585
## 7
             11919.553
                          1043171.0
                                         1446756
## 8
                          1124053.3
                                         1522878
             93225.922
## 9
         46040757.278
                          44786518.4
                                        45599617
## 10
          2784505.989
                          9047235.6
                                         4253514
## 11
           106438.041
                          1135049.8
                                         1536892
## 12
                                        26287050
         40270990.455
                          16565230.5
## 13
                          8469234.7
                                        10200830
          9268569.876
## 14
         10340911.531
                          15546392.0
                                        11512534
## 15
           433506.156
                          1407875.5
                                         1831151
## 16
          1464938.329
                          6568664.1
                                         2858832
## 17
        156669138.987
                        162066112.2
                                       164486089
## 18
           351939.351
                          1351653.7
                                         1710168
## 19
          9888133.614
                          10328493.4
                                        11050913
## 20
         11506733.907
                          11454886.5
                                        12825343
## 21
           388147.251
                          1331918.2
                                         1811507
```

шш	00	10006557 606	14052685.0	10007005
	22 23	12806557.622 64175.459		13367665 1495066
	24	812996.556		2189748
	25	12465122.347		12994387
				4815052
	27	3344750.333		3875138
		2598849.300		
		231687638.696		210676841
##	29	30621.430		1461832
##	30	476163.093		1863765
##	31	7116266.674		8508113
		21834804.676		21791483
##	33	12632318.859		13029671
##	34	17554875.908		17385540
##	35	27584762.929		26481416
##	36	50810061.104		38337502
##	37	606492.735		2000196
##	38	52532.606		1496223
##	39	5480379.710		6552035
##		17039318.353		17048716
	41	19837773.673		20104385
	42	1245388044.158		1408491018
##	43	51219474.301	49097941.6	50692127
##	44	807271.749		2205390
##	45	16782.095	591529.4	1448854
##	46	5435149.876	5741410.9	6446243
##	47	4773977.252	3979473.1	5571918
##	48	11450250.359	13934852.7	12700349
##	49	214891.922	2 1224489.9	1612597
##	50	1364936.739	-142890.5	2644799
##	51	10484124.880	11084218.2	11916067
##	52	5952241.285	5182691.3	7176480
##	53	1094717.540	5323907.1	2485158
##	54	78693.008	1113264.6	1502576
##	55	11148890.260	11350722.6	12158314
##	56	73028155.273	71215435.4	88465966
##	57	18299332.392	18238805.7	18414133
##	58	119639438.476	95334015.1	104722026
##	59	6950975.461	7791664.0	7674607
##	60	1523670.092	5516458.0	2925735
##	61	3560168.374	7524221.2	4890115
##	62	1461606.944	302227.2	2749898
##	63	1309019.155	5580493.3	2589508
##	64	117519377.287	94407499.0	112502461
##	65	5371.131	2759647.9	1435243
##	66	50880.861	-1270710.8	1482461
##	67	963994.325	1536734.8	2347003
##	68	5741434.126	4584723.8	6918980
##	69	66310462.460	69981931.5	65387068
##	70	274393.477	2900653.9	1708410
##	71	340647.536		1728428
##	72	2223309.862		3613630
##	73	2581504.867		3872143
##	74	3873929.123		5183891
##	75	110371032.496		83933571
	-			

	70	20062000 200	20000000	00044700
	76 77	32860980.380	30608333.3	32211739
##	77 78	34444.975 10778254.723	-1289852.1 11061355.1	1464142 12012829
##			-1238732.4	1487384
##	79	57968.705 124231.685	1161901.6	1552998
	80 81	441191.284	1494861.5	1826957
##				
##	82	202308.077	749255.4	1599689
##	83	17907651.918	15887354.3	18201090 1493728
## ##	84 85	63113.304 13103081.769	-1254917.8 15067282.0	13977561
##	86	1960447.314	6066897.0	
##	87			3352251
##	88	866184.974	3453759.5 11428511.9	2209390 12407073
		11337342.366		
##	89	10307197.005	9466584.5	11194734
##	90	7557573.438	13250750.9	8862712
##	91	10066559.422 424682.645	10798053.6	11177517
##	92	1242618639.349	-1082252.1	1783158
## ##	93 94	231115711.805	1303430449.0 263491368.2	1363876925 267273791
##	94 95		83031238.8	
##	96	95171407.202	38130297.0	86254332 41975081
##	96 97	44250570.344 5336926.309		6249903
##	91 98		3537406.2 -1235316.5	1515164
##	99	86600.719 8912473.792	13088146.7	9865810
##	100	65270394.541	68392534.4	60965062
##	100	28470982.094	25461614.9	26901582
##	101	2751546.425	4089170.8	4230403
##	102	136940071.402	153973656.8	126923357
##	103	106873.750	-1216641.8	1536541
##	104	10808957.910	12919121.3	11765962
##	103	19714255.425	22260005.0	19894425
##	107	49416932.561	45392874.7	51236424
##	107	122138.202	684857.8	1553845
##	100	4268413.659	8645212.6	5601093
##	110	6414009.021	11336067.3	7634669
##	111	7292482.097	11814283.9	8517022
##	112	2038837.655	1321969.3	3357123
	113	5753407.410	10971143.6	7352682
##	114	2304659.879	6680119.7	3624484
##	115	5145697.083	8447303.0	6316196
##	116	6839044.651	8739625.7	7881225
##	117	38428.051	-1286824.7	1469700
##	118	2834170.017	2538504.1	4295096
##	119	627446.231	-750005.9	2036078
##	120	682164.356	6027666.3	2081751
##	121	28887415.066	25967194.0	28248162
##	122	19478944.984	19715087.1	19795090
##	123	33994742.398	34092360.0	33678014
##	124	519307.219	5844849.4	1913763
##	125	21695822.474	19540501.9	21376834
##	126	549505.356	-828509.0	1922361
##	127	43571.431	624717.9	1477168
##	128	451034.664	1484549.4	1805514
##	129	4551499.344	6909485.1	5700148
		1001100.011	2220100.1	2.00110

##	130	1399704.881	5856627.9	2722283
##	131	245503.636	4656405.1	1714511
##	132	128963081.179	118188384.0	124667909
##	133	112218.012	690520.0	1542269
##	134	3307370.121	3166453.9	4577344
##	135	37038.678	-1286910.5	1468347
##	136	3024364.137	6772641.4	4586149
##	137	684802.202	-597194.2	2059955
##	138	5849.719	1037837.7	1436336
##	139	38746444.083	38770748.3	37199298
##	140	30762534.851	28080193.7	30821286
##	141	54485531.376	58691301.5	53890570
##	142	2565412.399	5731072.8	3831404
##	143	12142.190	582839.2	1443472
##	144	30299074.781	33676754.6	29993005
##	145	18406127.621	17803288.3	18643134
##	146	329707.256	822413.1	1715563
##	147	5293824.751	5146102.5	6291658
##	148	6806157.770	7097428.3	7984442
##	149	24049754.048	20434549.3	24054696
##	150	176233809.147	170666107.0	199581366
##	151	3764.586	573485.5	1433539
##	152	29881516.213	32588176.3	26958317
##	153	2256045.174	1086413.2	3532745
##	154	50816.795	627715.7	1481759
##	155	5688363.840	3991720.5	6716597
##	156	4467154.204	8428216.4	5821586
##	157	212349786.569	198309842.0	221473615
##	158	18252.738	590359.4	1449470
##	159	5116783.345	9447424.9	6225514
##	160	4491163.570	4757984.2	5579101
##	161	9941170.398	7732418.1	10732234
##	162	6753465.609	8407976.4	7854147
##	163	34213706.428	32792359.5	33605642
##	164	121432414.019	103446636.0	109650837
##	165	41425828.694	43670764.3	39747969
##	166	10359868.406	10780980.8	11712745
##	167	3341607.147	5180675.7	4776001
##	168	2404842.444	7091637.4	4048210
##	169	5682454.215	8552000.3	6866031
##	170	971965.320	5387117.6	2371961
##	171	20807358.856	23581351.6	20970420
##	172	169872122.714	153226955.2	146080326
##	173	12974748.573	15406735.2	13948004
##	174	10735.859	1038218.8	1441880
##	175	47888.680	1084295.0	1479141
##	176	204567.351	1216588.4	1608750
##	177	34499.150	1062184.7	1465002
##	178	5381.366	1036477.6	1437550
##	179	118520.157	1159300.4	1536546
##	180	274458.652	792554.0	1641330
##	181	34373.043	-1292203.0	1465339
##	182	201823.923	4634458.1	1642669
##	183	36988987.680	31786035.6	36036379

```
## 184
          17163110.685
                          17355265.0
                                        17003448
## 185
          7492034.006
                           7801442.7
                                         8820851
## 186
            104196.520
                           4546158.0
                                         1534325
##
  187
           8386257.730
                          11172955.5
                                         9279606
##
  188
           5802090.704
                          10662000.7
                                         7217494
## 189
             40318.507
                           1065646.3
                                         1473773
## 190
           5783875.356
                           4972037.4
                                         6853296
## 191
           2227712.954
                           1071445.6
                                         3526402
## 192
                                         2089905
            685309.914
                           1098963.6
## 193
         17259489.930
                          16362850.4
                                        16838657
##
  194
         60510309.889
                          58654868.1
                                        58869537
##
   195
         54421242.355
                          60896181.1
                                        52735358
##
   196
         11101178.996
                          13059127.7
                                        12218814
                          49507576.9
##
  197
         49124249.301
                                        48241660
## 198
         22417237.494
                          28049315.6
                                        22911623
## 199
         44915949.610
                          37963110.9
                                        43288147
## 200
            632543.318
                           3195000.5
                                         2024093
  201
         10346899.388
##
                           9293815.6
                                        11558642
##
  202
          9216770.847
                           7653309.8
                                         9897759
##
  203
         22833927.808
                          24884231.4
                                        21518029
##
  204
         26685408.267
                          31337493.6
                                        25035676
## 205
           9830782.935
                          13458215.0
                                        10545152
## 206
         59364988.920
                          50718008.6
                                        59373510
## 207
         77716458.576
                          78516316.2
                                        72158043
## 208
           1357406.381
                           6604945.4
                                         2690188
## 209
           8364320.252
                          11158769.4
                                         9468156
##
  210
              3933.439
                            572659.9
                                         1433318
## 211
            109587.897
                            692785.7
                                         1536789
## 212
           1553367.675
                           2634666.7
                                         2921291
## 213
         12590070.092
                          15975375.7
                                        13311672
## 214
         86446239.475
                          83558843.0
                                        83499239
## 215
          6302338.514
                          10533547.2
                                         7470865
## 216
             33227.756
                           1058051.2
                                         1472772
  217
##
             11864.629
                            582286.6
                                         1442590
## 218
                                        43000632
         44192054.497
                          37766932.6
## 219
         52530696.942
                          54976865.7
                                        45569310
## 220
           9478587.184
                          11897404.6
                                        10538568
## 221
         69638818.894
                          72334719.8
                                        67509998
## 222
        241047924.042
                         334457003.5
                                       331639277
## 223
            108883.757
                           1148531.6
                                         1532569
##
  224
           3418355.881
                           6481530.8
                                         4836416
  225
##
         34490867.313
                          35398746.5
                                        33832609
                            813455.1
##
  226
            304780.631
                                         1728541
  227
##
              3520.225
                          -1325267.8
                                         1432176
## 228
         30594388.430
                          30703427.1
                                        30584029
## 229
        119203747.042
                          98727948.7
                                        95972696
## 230
             12696.058
                            585581.4
                                         1443449
##
  231
            544164.258
                           4559827.7
                                         1960799
##
  232
         33194655.646
                          29971036.4
                                        32139667
  233
         18427524.021
                          17964745.8
                                        19255244
##
## 234
         17810879.839
                          18078317.5
                                        16456481
```

From the Table, In many countries, the model predictions are quite different from the actual values. For example, the actual value of American Samoa's population is 44273, but its Lasso Regression prediction result

is 1507434; the actual population value of Anguilla is 15857, but its Lasso Regression prediction result is 1476729. These predictions are much larger than actual values, so the predictions are not accurate.

Advantage of lasso model: the value of its metric r squared value is the highest and closest to the actual value among the four models. In the other three models, there are negative numbers in the prediction results, but Lasso model's predict result stays positive in all its predicted values.

Conclusion

Through research, testing and analysis, Lasso Regression performed best in my models, Ridge Regression and Random forest are not bad, and Regression Tree did not perform well. Although the value of the r squared value of Lasso Regression, Random Forest and Ridge Regression is very close to 1, there is still a gap between the prediction results of many countries and their real population values. Because a lot of factors such as people's life expectancy, fertility rate and death rate are all related to population growth, there is no way to predict the exact future world population.

In addition, the regression models has its limitation that it predicts a similar pattern for each continents or level of size of countries. However, from EDA at the beginning, even in the same continent or shares the similar value of areas, the country's growth rate differs. Therefore, for future research I propose to find more features to improve our model, such that gross national happiness index, and GDP, etc. We can also try more complicated models such as neuro network model.

Overall, this World Population Modeling project provided me with a great opportunity to gain experience and improve my skills through data analysis and machine learning techniques.