Метрики семантической близости с приложениями к задачам АОТ

Александр Панченко

Université catholique de Louvain alexander.panchenko@uclouvain.be

4 апреля 2013 г.

Приложения

План

- 1 Введение
- 2 Обзор метрик семантической близости
- 3 Метрика основанная на лексико-синтаксических шаблонах
- 4 Гибридная метрика семантической близости
- 5 Приложения метрик семантической близости

План

- Введение

- - Поиск и визуализация семантически связанных слов
 - Классификация коротких текстов

Введение

00000

Мотивация

- Метрики семантической близости полезны для:
 - систем обработки коротких текстов (Šaric et al., 2012; Panchenko at., 2012);
 - расширешия поисковых запросов (Hsu et al., 2006);
 - вопросно-ответных систем (Sun et al., 2005);
 - разрешения омонимии (Patwardhan et al., 2003);
 -
- Лексико-семантическое знание о языке.
- Вычислительная лексическая семантика.
- Computational Lexical Semantics.

Метрики семантической близости

Определение

Введение

00000

Метрика семантической близости численно выражает семантическую связность двух c_i, c_i : $s_{ii} = sim(c_i, c_i)$:

$$s_{ij} = \left\{ egin{array}{ll} ext{велико} & ext{ если } \langle c_i, c_j
angle - ext{пара } ext{syn, hyper, cohypo} \ 0 & ext{иначе} \end{array}
ight.$$

Свойства

- Неотрицательность: $0 \le s_{ii} \le 1$;
- Рефлективность: $s_{ii} = 1 \Leftrightarrow c_i = c_i$;
- \blacksquare Симметричность: $s_{ii} = s_{ii}$;
- $s_{ii} \leq s_{ik} + s_{ki}$

00000

Метрики семантической близости

■ Малое количество подобных пар: $s_{ii} \sim exp(\lambda)$.

■ Распределение сем. близости слова "doctor":

00000

Системы измерения семантической близости

Как построить систему с высокой точностью и лексическим покрытием?

Оценка качества метрики семантической близости

- Корреляция с суждениями человека о сем. близости:
 - Статистики: корреляция Пирсона (ρ) и Спирмена (r).
 - Проверочные данные: MC, RG, WordSim.
- Ранжирование семантических отношений:
 - Точность, Полнота, F-мера.
 - Проверочные данные: BLESS, SN.
- Точность извлечения семантических отношений:
 - Статистики: Точность@k.
 - Проверочные данные: аннотирование и/или тезаурусы.
- Использование метрики в системе AOT:
 - в системе классификации имен файлов (iCOP);
 - с системе поиска семантически связанных слов (Serelex).

Panchenko A., Similarity Measures for Semantic Relation Extraction. PhD thesis. Université catholique de Louvain. 197 pages, 2013, (Chapter 1).

План

- 2 Обзор метрик семантической близости

- - Поиск и визуализация семантически связанных слов
 - Классификация коротких текстов

Публикации (анализ 37 базовых метрик):

- Panchenko A., Similarity Measures for Semantic Relation Extraction. PhD thesis. Université catholique de Louvain. 197 pages, 2013, (Chapter 3).
- Panchenko A. A Study of Heterogeneous Similarity Measures for Semantic Relation Extraction. // In JEP-TALN-RECITAL 2012 — Grenoble (France), 2012.

Метрики основанные на семантической сети

Данные: семантическая сеть WordNet 3.0, корпус SemCor. Переменные:

- $len(c_i, c_j)$ длина **кратчайшего пути** между c_i и c_j
- $len(c_i, lcs(c_i, c_j))$ длина кратчайшего пути от c_i до ближайшего общего предка (БОП) слов c_i и c_j
- $len(c_{root}, lcs(c_i, c_j))$ длина кратчайшего пути от **корня** c_{root} до БОП слов c_i и c_j (глубина БОП)
- P(c) вероятность слова c, оцененная из корпуса
- $P(lcs(c_i, c_j))$ вероятность БОП слов c_i и c_j

Метрики: Инвертированная длина пути (Jurafsky and Martin, 2009), Leacock-Chodorow (1998), Wu-Palmer (1994), Resnik (1995), Jiang-Conrath (1997), Lin (1998).

Метрики основанные на Веб корпусе текстов

Данные: количество документов возвращенных ИПС: Google, Yahoo, AltaVista, Bing, и т.п.

Переменные:

Введение

- h_i количество документов возвращенных по запросу слова "*c*;"
- h_{ii} количество документов возвращенных по запросу "c; AND c;"

Метрики:

- Normalized Google Distance (NGD) (Cilibrasi and Vitanyi, 2007)
- Pointwise Mutual Information Information Retrieval (PMI-IR) (Turney, 2001)

Дистрибутивные метрики

Данные: корпус, такой как Википедия или ukWaC **Переменные:**

- f_i вектор признаков представляющий слово c_i , основанный на контекстном окне
- \mathbf{f}_i^s вектор признаков представляющий слово c_i , основанный на синтаксическом контекстном окне

Метрики:

- Bag-of-words Distributional Analysis (BDA) (Sahlgren, 2006)
- Syntactic Distributional Analysis (SDA) (Curran, 2003)

Другие метрики основанные на корпусе текстов

Данные: корпус, такой как Википедия или ukWaC **Метрики:**

- Латентно-семантический анализ (LSA) (Landauer and Dumais, 1997)
- Вероятностные модели (pLSA, LDA и др.) (Griffiths et al., 2007)
- NGD и PMI-IR (Veksler et al., 2008)
- **.** . . .

Метрики основанные на определениях

Данные: определения из WordNet, Википедии, Викисловаря или любого другого словаря.

Переменные:

Введение

- $gloss(c_i)$ определение слова c_i ;
- **I** f_i вектор признаков, построенный из $gloss(c_i)$;
- f_i вектор признаков c_i , вычисленный на корпусе из всех определений методом контекстного окна;
- $exist(c_i, c_i)$ наличие связи между c_i и c_i в словаре.

Метрики:

- ExtendedLesk (Banerjee and Pedersen, 2003)
- GlossVectors (Patwardhan and Pedersen, 2006)
- DefVectors (Панченко и др., 2012), (Panchenko et al., 2012)

Лучшие базовые метрики семантической близости

- Каждая метрика излекает много ко-гипонимов:
 - ⟨Canon, Nikon⟩,
 - ⟨Lamborghini, Ferrari⟩,
 - ⟨Obama, Romney⟩.

Резюме

Введение

Основные ресурсы для построения метрик:

- семантические сети и тезаурусы;
- корпуса текстов;
- Веб корпус текстов;
- определения из словарей и энциклопедий.

Метрики дополняют друг друга в терминах:

- лексического покрытия;
- точности;
- типов извлекаемых отношений.

- Semantic Vectors:
 - https://code.google.com/p/semanticvectors/
- S-Space Package:

https://code.google.com/p/airhead-research/

- WordNet::Similarity:
 - http://wn-similarity.sourceforge.net
- NLTK: http://nltk.googlecode.com/svn/trunk/doc/ howto/wordnet.html
- WikiRelate!
- PatternSim / Serelex: http://serelex.cental.be
- Метрики основанные на Веб корпусе: http://cwl-projects.cogsci.rpi.edu/msr
- LSA: http://lsa.colorado.edu
- **DefVectors**: http://github.com/jgc128/defvectors

- 3 Метрика основанная на лексико-синтаксических шаблонах
- - Поиск и визуализация семантически связанных слов
 - Классификация коротких текстов

- Panchenko A., Morozova O., Naets H. A Semantic Similarity Measure Based on Lexico-Syntactic Patterns. In Proceedings of KONVENS 2012, pp.174-178, 2012
- Panchenko A., Romanov P., Morozova O., Naets H., Philippovich A., Fairon C. Serelex: Search and Visualization of Semantically Related Words. In Proceedings of the 35th European Conference on Information Retrieva (ECIR 2013).
- Панченко А., Романов П., Романов А., Филиппович А., Филиппович Ю., Морозова О. Серелекс: поиск и визуализация семантически связанных слов. (АИСТ 2013)

http://serelex.cental.be/

Лексико-синтаксические паттерны

■ 18 паттернов извлекающих гиперонимы, ко-гипонимы и синонимы

_	such NP as NP, NP[,] and/or NP;		NP, for example, NP, NP[,] and/or NP; NP, i. e.[,] NP;
	NP such as NP, NP[,] and/or NP;		
	NP, NP [,] or other NP;	Ш	NP (or NP);
	NP, NP [,] and other NP;		NP means the same as NP;
	NP, including NP, NP [,] and/or NP;	_	NP, in other words[,] NP;
	NP, especially NP, NP [,] and/or NP;		NP, also known as NP;
	NP: NP, [NP,] and/or NP;		NP, also called NP;
	NP is DET ADJ.Superl NP;		NP alias NP;
	NP, e. g., NP, NP[,] and/or NP;		NP aka NP.

- Каскад конечных автоматов (FST)
- B формете Unitex

Пример реализации паттерна в виде автомата

- Паттерны основанные на автоматах позволяют учесть лингвистическую вариацию сохраняя точность
- В отличие от паттернов основанных на строках (Bollegala et al., 2007)

PatternSim: основные этапы

Введение

Корпус Wikipedia+ukWaC: 2.9 · 10¹² токенов Паттерны извлекают конкордансы

- such diverse {[occupations]} as {[doctors]}, {[engineers]} and {[scientists]}[PATTERN=1]
- such {non-alcoholic [sodas]} as {[root beer]} and {[cream soda]}[PATTERN=1]
- {traditional[food]}, such as {[sandwich]},{[burger]}, and {[fry]}[PATTERN=2]

Количество извлечений

- Wikipedia 1.196.468
- ukWaC 2 227 025
- WaCypedia+ukWaC 3.423.493

Вычисление подобия

Формула Efreg-Rnum-Cfreg-Pnum

$$s_{ij} = \sqrt{p_{ij}} \cdot \frac{2 \cdot \mu_b}{b_{i*} + b_{*j}} \cdot \frac{P(c_i, c_j)}{P(c_i)P(c_j)}.$$

- $P(c_i, c_j) = \frac{e_{ij}}{\sum_{ii} e_{ij}}$ вероятность извлечения отношения $\langle c_i, c_i \rangle$, где e_{ii} — частота взаимной встречаемости слов c_i и с; во множестве конкордансов
- $P(c_i) = \frac{f_i}{\sum_i f_i}$ вероятность слова c_i , где f_i частота c_i
- $lackbreak b_{i*} = \sum_{j:e_{ii}>eta} 1$ количество извлечений слова c_i с частотой $\geq eta$, где $\mu_b = rac{1}{|\mathcal{C}|} \sum_{i=1}^{|\mathcal{C}|} b_{i*}$ – среднее количество извлечений для отдельного слова
- $p_{ij} \in [1;18]$ количество отдельных паттернов которые извлекли отношение $\langle c_i, c_i \rangle$

- Точность сравнима или лучше чем у аналогов;
- Полнота меньше чем у аналогов.

Рис.: График точность-полнота (коллекция BLESS).

Извлечение семантических отношений

- Точность@1 ≈ 0.80;
- "Хорошее" лексическое покрытие:

computational linguistics Search	Word to search for: computational linguistics Search WordNet
System finds semantically related words.	
For example, cottage cheese	Display Options: (Select option to change) Change
Results count: 88	Key: "S:" = Show Synset (semantic) relations, "W:" = Show W
1 psycholinguistics	Display options for sense: (gloss) "an example sentence"
2 machine learning	
3 computer science	Noun
4 knowledge representation	
5 cognitive science	 S: (n) computational linguistics (the use of computers
6 artificial intelligence	applications)
7 information retrieval	 direct hyponym / full hyponym
8 neuroinformatics	 S: (n) machine translation, MT (the use of control
9 natural language	one language to another)
10 graduate student	 direct hypernym I inherited hypernym I sister terr
11 library science	 S: (n) <u>linguistics</u> (the scientific study of langu
42 distributed commutate	

- 1 Введение
- 2 Обзор метрик семантической близости
- 3 Метрика основанная на лексико-синтаксических шаблонах
- 4 Гибридная метрика семантической близости
- 5 Приложения метрик семантической близости
 - Поиск и визуализация семантически связанных слов
 - Классификация коротких текстов

Публикациии

- Panchenko A., Morozova O. A Study of Hybrid Similarity Measures for Semantic Relation Extraction. // Innovative Hybrid Approaches to the Processing of Textual Data Workshop, EACL 2012 — Avignon (France), 2012 — pp. 10–18
- Panchenko A., Similarity Measures for Semantic Relation Extraction. PhD thesis. Université catholique de Louvain. 197 pages, 2013, (Chapter 4).
- Panchenko A. A Study of Heterogeneous Similarity Measures for Semantic Relation Extraction. // In JEP-TALN-RECITAL 2012 — Grenoble (France), 2012 — pp. 29-42

Отдельные и гибридные метрики

Рис.: Система извлечения семантических отношений основанная на:

- **(a) отдельной** метрике;
- **(b) гибридной** метрике.

16 признаков = 16 отдельных метрик

- 5 метрик основанных на семантических сетях:
 - 1 WuPalmer;
 - 2 Leacock and Chodorow:
 - 3 Resnik:
 - 4 Jiang and Conrath;
 - 5 Lin.

- 3 метрики основанных на **Веб корпусе** (NGD-Yahoo/Bing/Google);
- 5 метрики основанные на корпусе текстов:
 - 2 дистрибутивных (BDA, SDA)
 - 1 лексико-синтаксические шаблоны (PatternSim)
 - 2 другие (LSA, NGD-Factiva)
- 3 метрики основанные на определениях
 - 1 ExtendedLesk;
 - 2 GlossVectors:
 - DefVectors-WktWiki.

HvbridSim

000000000

Методы комбинирования

- **8** Logit, Logit-L1, Logit-L2.
 - Бинарная логистическая регрессия;
 - Положительные обучающие примеры синонимы, гиперонимы, ко-гипонимы из BLESS/SN;
 - Отрицательные обучающие примеры случайные пары семантически несвязных слов из BLESS/SN;
 - Отношение $\langle c_i, t, c_j \rangle \in R$ представлено с помощью **вектора** попарных близостей: $\mathbf{x} = (s_{ii}^1, \dots, s_{ii}^N), N = \overline{2, 16};$
 - Категория *y_{ij}*:

$$y_{ij} = \left\{egin{array}{ll} 0 & \quad ext{ если } \langle c_i, t, c_j
angle \end{array}
ight.$$
 случайное отношение иначе

■ Использование модели $(w_1, ..., w_K)$ для комбинирования:

$$s_{ij}^{cmb} = \frac{1}{1 + e^{-z}}, z = \sum_{k=1}^{K} w_k s_{ij}^k + w_0.$$

Методы комбинирования

9 SVM.

Введение

■ Веса **w** и опорные вектора SV:

$$\mathbf{w} = \sum_{\mathbf{x}_i \in SV} \alpha_i y_i \mathbf{x}_i.$$

Использование модели

$$s_{ij}^{cmb} = \mathbf{w}^T \mathbf{x} + b = \sum_{k=1}^K w_i s_{ij}^k + b.$$

Методы комбинирования с учителем

График Точность-Полнота вычисленный на коллекции BLESS:

- (a) 16 отдельных метрик и гибридная метрика Logit-E15;
- (b) 8 гибридных метрик.

Методы комбинирования с учителем Logit-E15

Рис.: Значение подобия между 74 словами связанными со словом "acacia".

Методы комбинирования с учителем

			BLESS					SN		
Similarity Measure	Асси.	P(10)	P (20)	P(50)	R(50)	Асси.	P(10)	P(20)	P(50)	R(50)
C-SVM-linear-E15	0.833	0.995	0.986	0.884	0.817	0.820	0.995	0.981	0.816	0.816
C-SVM-poly-E15	0.749	0.993	0.976	0.798	0.737	0.795	0.993	0.977	0.791	0.791
C-SVM-radial-E15	0.832	0.996	0.986	0.883	0.816	0.831	0.995	0.988	0.838	0.839
C-SVM-sigmoid-E15	0.829	0.995	0.985	0.881	0.813	0.811	0.995	0.986	0.807	0.808
ν-SVM-radial-E15	0.827	0.995	0.985	0.879	0.812	0.815	0.996	0.984	0.811	0.811
ν-SVM-linear-E15	0.819	0.996	0.984	0.877	0.810	0.805	0.994	0.984	0.803	0.803
ν-SVM-poly-E15	0.827	0.996	0.985	0.879	0.812	0.826	0.995	0.988	0.833	0.833
ν-SVM-sigmoid-E15	0.827	0.995	0.984	0.878	0.811	0.811	0.995	0.984	0.809	0.809
Logit-E15	0.831	0.994	0.986	0.884	0.817	0.823	0.994	0.983	0.819	0.819
LogitL2-E15	0.823	0.995	0.982	0.874	0.808	0.773	0.990	0.967	0.798	0.798
LogitL1-E15	0.824	0.994	0.984	0.874	0.807	0.787	0.992	0.975	0.805	0.805
Logit-E5	0.796	0.989	0.977	0.853	0.788	0.795	0.985	0.965	0.791	0.791
C-SVM-radial-E5	0.802	0.990	0.976	0.857	0.792	0.788	0.980	0.959	0.787	0.787
Logit-E9	0.821	0.991	0.983	0.877	0.810	0.821	0.995	0.982	0.824	0.824
C-SVM-radial-E9	0.824	0.993	0.983	0.875	0.809	0.831	0.997	0.988	0.837	0.837
Logit-E15	0.831	0.995	0.986	0.884	0.817	0.832	0.995	0.989	0.840	0.839
C-SVM-radial-E15	0.831	0.994	0.986	0.884	0.817	0.823	0.994	0.983	0.819	0.819
C-SVM-radial-E15 ($C = 32, \gamma = 2$)	0.855	0.987	0.979	0.900	0.831	0.846	0.983	0.981	0.846	0.846
C-SVM-radial-E15 ($C = 32, \gamma = .125$)	0.841	0.996	0.987	0.892	0.824	0.844	0.995	0.990	0.845	0.845

Методы комбинирования с учителем (продолжение)

Рис.: Оптимизация мета-параметров метрики C-SVM-radial-E15.

- Приложения метрик семантической близости
 - Поиск и визуализация семантически связанных слов
 - Классификация коротких текстов

Поиск и визуализация семантически связанных слов

План

Введение

- 1 Введение
- 2 Обзор метрик семантической близости
- 3 Метрика основанная на лексико-синтаксических шаблонах
- 4 Гибридная метрика семантической близости
- 5 Приложения метрик семантической близости
 - Поиск и визуализация семантически связанных слов
 - Классификация коротких текстов

Поиск и визуализация семантически связанных слов

Введение

Серелекс: результаты в виде списка и графа слов

http://serelex.cental.be/

 Введение
 Обзор метрик
 PatternSim
 HybridSim
 Приложения

 0000
 00000000
 00000000
 00000000
 00000000

Поиск и визуализация семантически связанных слов

Серелекс: результаты в виде множества изображений

citroen Search
System finds semantically related words.
For example, linux

7. audi

Поиск и визуализация семантически связанных слов

Введение

Оценка качества работы системы Серелекс

Рис.: Удовлетворенность пользователей первыми 20 результатами поиска для 594 запроса (23 ассесора и 109 пользователей).

План

Введение

- Приложения метрик семантической близости
 - Поиск и визуализация семантически связанных слов
 - Классификация коротких текстов

іСор: классификация имен файлов

Рис.: Структура системы.

 Использование семантических отношений для расширения имени файла (Vocabulary Projection).

iCop: пример Vocabulary Projection

Качество классификации

Обучающая выборка	Тестовая выборка	Accuracy	Accuracy (voc. projection)
Gallery (train)	Gallery	96.41	96.83 (+0.42)
PirateBay Title+Desc+Tags	PirateBay Title+Desc+Tags	98.92	98.86 (-0.06)
PirateBay Title+Tags	PirateBay Title+Tags	97.73	97.63 (-0.10)
Gallery	PirateBay Title+Desc+Tags	90.57	91.48 (+0.91)
Gallery	PirateBay Title+Tags	84.23	88.89 (+4.66)
PirateBay Title+Desc+Tags	Gallery	88.83	89.04 (+0.21)
PirateBay Title+Tags	Gallery	91.16	91.30 (+0.14)

Таблица: Качество классификации с использованием C-SVM-linear с учетом кросс-валидации.

Классификация коротких текстов

Введение

Спасибо за внимание! Вопросы?