

Unité d'Enseignement :

Concours Programmation

Gilles Menez

Université de Nice – Sophia-Antipolis Département d'Informatique email : menez@unice.fr www : www.i3s.unice.fr/~menez

27 septembre 2018: V 1.1

Table of contents

. Computers and Data abstraction	4	9.4.Intel x86 and x64 target specific	47
1.1.Counting	5	9.5.GCC builtins	48
1.2.Modern Numbers	6	9.6.Integers : the range problem	49
1.3.First machines - Numbers first	7	10. Beyond natural precision computations	51
1.4.First electronic digital computer	8	10.1.Big Numbers	51
1.5.Data words	9	10.2.Factorial overflow	53
1.6.Coding Numbers	10	10.3.Stack overflow	54
1.7.Floats : holes and bounds	11	10.4.C++/Boost Lib Solution	55
1.8.Simple precision IEEE754 values	12	10.5.Factorial in Python	56
1.9.Scalar abstractions : Numbers and characters	13	10.6.Challenge Pb : Big addition	57
1.10.Scalar abstractions : Limitations	14	11. Challenge Pb : Big addition	57
1.11.Improvements	15	12. Multiplication	60
2. Bitwise Operators	18	12.1.Standard multiplication algorithm	60
3. Opérateurs Binaires (bit à bit/bitwise)	18	12.2.Challenge Pb : Big multiplication	62
. Opérateurs de complément à 1	20	13. IP addresses	65
. Opérateurs "et", "ou", "ou exclusif"	21		66
i. Opérateurs de décalage	23	13.1.Challenge Pb: 1/3 13.2.Semantic of IP addresses	
. Applications des opérateurs bit à bit	25	13.2.Semantic of IP addresses 13.3.Classfull way	67 68
3. Masquages	26	13.3.Classiuli way 13.4.Challenge Pb : 2/3	70
8.1.Champs de bits	30	13.4.Challenge Pb : 2/3 13.5.Challenge Pb : 3/3	70
8.2.Contraintes d'utilisations	31		
). Bitwise Arithmetic	35	14. System control (Embedded systems)	73
9.1.Addition	35	15. FFT	77
9.2.Overflow prediction	45	16. Challenge Pb : Bit Reverse	82
9.3.Overflow Traps	46	16.1.Fast(est?) solution	84

© Gilles Menez

Part 1: Introduction

1. Computers and Data abstraction	4
1.1.Counting	5
1.2.Modern Numbers	6
1.3.First machines - Numbers first	7
1.4.First electronic digital computer	8
1.5.Data words	9
1.6.Coding Numbers	10
1.7.Floats : holes and bounds	11
1.8.Simple precision IEEE754 values	12
1.9.Scalar abstractions : Numbers and characters	13
1.10.Scalar abstractions : Limitations	14
1.11.Improvements	15

© Gilles Menez

Computers and Data abstraction

- An old history.
- Abstraction remains abstractions.
- How to make by himself?

Counting

Soon after language develops, it is safe to assume that humans begin counting to represent, amount of cows, volume of wine, area of fields, ... It is safe to assume too that fingers and thumbs provide nature's abacus.

Rmks:

- The decimal system is no accident. Ten has been the basis of most counting systems in history.
- Abacus from greek "dust table" is the generic name given to "planar mechanical instrument" for computation and counting.

Modern Numbers

Arab Numbers (and 10 basis digit system) are a modern representation : 4th century AC

They:

- ightharpoonup still are abstractions of volume, amount, and so on. in \mathbb{N} , \mathbb{Z} , \mathbb{R} , ...
- > allow counting, writing and computing!

First machines - Numbers first

It is unknown when exactly were developed first devices to facilitate calculation, such as the counting board, or abacus.

> but probably very shortly after counting.

First electronic digital computer

So first machines and more particularly first electro*.* machines were always dedicated to numbers processing.

- G.R. Stibitz first electronic digital computer (half-adder 1 bit)
 - Characters will be introduced in modern computing machines when a dialog will be possible between the machine and its user.

Data words

Machine numbers are abstractions of mathematical numbers :

> They are supported by a bit, a group/words (finite) of bits whose logical nature is compatible with electronic processing (on-off).

Any coding your are using, as the software representation is finite, we can only represent a subset of values : 2^n !

Coding numbers

Most of machines will offer two well known coding methods :

① Two's Complement for signed integers : $v = \sum_{i=0}^{i < n} v_i * 2^i$

$$\begin{split} &\bullet 12_{\text{ten}} - \ 5_{\text{ten}} = 12_{\text{ten}} + (-\ 5_{\text{ten}}) \\ &0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1100\ \ (12_{\text{ten}}) \\ &+ \ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ \ (-5_{\text{ten}}) \\ &= \ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0111\ \ (\ 7_{\text{ten}}) \end{split}$$

② IEEE 754 for floats

Abstractions: holes and bounds

These codes remain abstractions (size limited) and are inevitably **weaker in range and in precision** ...than real world quantities/numbers (and mathematic abstractions)

Density of floats: http://jasss.soc.surrey.ac.uk/9/4/4.html

> using the types float or double in C, roughly half of all representable floating-point numbers are between -1 and 1

Simple precision IEEE754 values

Туре	Exposant	Mantisse	Valeur	Ecart / préc
Zéro	0000 0000	000 0000 0000 0000 0000 0000	0,0	
Plus petit nombre dénormalisé	0000 0000	000 0000 0000 0000 0000 0001	1,4×10 ⁻⁴⁵	1,4×10 ⁻⁴⁵
Nombre dénormalisé suivant	0000 0000	000 0000 0000 0000 0000 0010	2,8×10 ⁻⁴⁵	1,4×10 ⁻⁴⁵
Nombre dénormalisé suivant	0000 0000	000 0000 0000 0000 0000 0011	4,2×10 ⁻⁴⁵	1,4×10 ⁻⁴⁵
Autre nombre dénormalisé	0000 0000	100 0000 0000 0000 0000 0000	5,9×10 ⁻³⁹	
Plus grand nombre dénormalisé	0000 0000	111 1111 1111 1111 1111 1111	1.17549421×10 ⁻³⁸	
Plus petit nombre normalisé	0000 0001	000 0000 0000 0000 0000 0000	1.17549435×10 ⁻³⁸	1,4×10 ⁻⁴⁵
Nombre normalisé suivant	0000 0001	000 0000 0000 0000 0000 0001	1.17549449×10 ⁻³⁸	1,4×10 ⁻⁴⁵
Presque le double	0000 0001	111 1111 1111 1111 1111 1111	2,35098856×10 ⁻³⁸	1,4×10 ⁻⁴⁵
Nombre normalisé suivant	0000 0010	000 0000 0000 0000 0000 0000	2,35098870×10 ⁻³⁸	1,4×10 ⁻⁴⁵
Nombre normalisé suivant	0000 0010	000 0000 0000 0000 0000 0001	2.35098898×10 ⁻³⁸	2,8×10 ⁻⁴⁵
Presque 1	0111 1110	111 1111 1111 1111 1111 1111	0,99999994	
1	0111 1111	000 0000 0000 0000 0000 0000	1,00000000	0,6×10 ⁻⁷
Nombre suivant 1	0111 1111	000 0000 0000 0000 0000 0001	1,00000012	1,2×10 ⁻⁷
Presque le plus grand nombre	1111 1110	111 1111 1111 1111 1111 1110	3,40282326×10 ³⁸	
Plus grand nombre normalisé	1111 1110	111 1111 1111 1111 1111 1111	3,40282346×10 ³⁸	2×10 ³¹
Infini	1111 1111	000 0000 0000 0000 0000 0000	Infini	
NaN	1111 1111	010 0000 0000 0000 0000 0000	NaN	

http://fr.wikipedia.org/wiki/IEEE_754

Scalar abstractions: Numbers and characters

As a conclusion to this introduction, we know that since numbers are major (and historical) processing objects, all machines and all programming languages will provide these fundamentals of computation: scalar types!

> int, short, float, double, char, ...

These non-splittable (from a programming view) objects are matched, in the machine with memory word(s), coding standards and **dedicated operations**.

They are what a programming machine "naturally" offers :

➤ "off the shelf" ways to abstract numbers and characters.

Scalar abstractions: Limitations

Some limitations / issues come with "off the shelf" abstractions :

- ① There is no "standard" (over CPUs, compilers, languages) in this domain and for example different CPUs support different integral data types.
 - Typically, hardware will support both signed and unsigned types, but only a small, fixed set of widths.
- ② Alfred AHO (google him .. you will see) defines software science as "science of abstraction".
 - ➤ You build your universe, where physicians take THE universe as it is.

But reality is often bigger and smaller than our abstraction.

- > Scalar types will certainly miss range and a precision.
- ➤ Scalar operator set ('+', '-', ...) needs to be enlarged.

Improvements

The question now is:

Can a computer process something else than a number or a character "off the shelf"?

It should because:

- ➤ all potentially data to process are not "numbers" or "characters".
 - For example a network address is most of the time a group of bytes whose structure/coding is not twos-complement nor IEEE754.
 - All I/O peripherals have probably a specific protocol data unit. If the machine controls a peripheral (a robot?) data units associated to the robot status will mix numbers, status bits, . . .
- given pointed limitations and particularly the range, the programmer could organize several numbers to build an augmented range bignumber.
- some arithmetic operations are not provided by a machine (CPU). For example Fast Fourier Transform Butterfly mirror indexing or Endianess.

Solution

As a consequence, programmers have to build <u>their</u> abstractions and develop algorithms to access and/or give augmented semantic to bit words.

They will be given (by the hardware, the compiler and the language) memory words and dedicated operators (for example "bitwise operators").

As a result, they will augment these "off the shelf" abstractions.

➤ Let's try on examples!

Part 2 : Operators

2. Bitwise Operators	18
3. Opérateurs Binaires (bit à bit/bitwise)	18
4. Opérateurs de complément à 1	20
5. Opérateurs "et", "ou", "ou exclusif"	21
6. Opérateurs de décalage	23
7. Applications des opérateurs bit à bit	25
8. Masquages 8.1.Champs de bits 8.2.Contraintes d'utilisations	26 30 31

© Gilles Menez

Opérateurs Binaires : &, |, ^ , ~ , >>, <<

Le langage C comporte plusieurs opérateurs "bit à bit" (et, ou, ou-exclusif, complément à 1, décalages) qui permettent d'effectuer des manipulations de bits sur une expression (constante littérale, variable, . . .) entière.

Le langage C est, dès sa création, utilisé pour créer des applications systèmes.

Dans le cadre de ce type d'applications, le rôle de ces opérateurs est vital.

Ces opérateurs sont aujourd'hui présents dans bien d'autres langages : Java, Python, . . .

https://en.wikipedia.org/wiki/Bitwise_operation

Les différents opérateurs présentés ici ne peuvent s'appliquer qu'aux expressions entières (i.e. types char et int).

- On « casse » l'abstraction « nombre entier / codage complément à 2 » pour s'en servir autrement!
- > Ce n'est plus qu'un **groupement de bits** dont la sémantique n'est plus nécessairement celle d'un entier.

Les opérateurs binaires peuvent se répartir en trois groupes :

- ① l'opérateur de complémentation à un : ~
- ② les opérateurs logiques binaires : &, |, ^
- ③ les opérateurs de décalage : >>, <<

Complémentation à un : ~

Cet opérateur est aussi désigné par le « non logique ».

Exemple d'utilisation :

Opérateurs Binaires : &, |, ^

① « et logique » :

X	У	x & y
0	0	0
0	1	0
1	0	0
1	1	1

```
short a = 7;  /* a : 0000000000000111 */
short b = 8;  /* b : 000000000001000 */
short c;
c = a & b;  /* c : 0000000000000000 */
```

② « ou logique »

```
    x
    y
    x | y

    0
    0
    0

    0
    1
    1

    1
    0
    1

    1
    1
    1
```

```
short a = 0x7;  /* a : 000000000000111 */
short b = 0x8;  /* b : 000000000001000 */
short c;
c = a | b;  /* c : 00000000001111 */
```


Opérateurs Binaires : &, |, ^

③ « ou exclusif logique »

Х	У	x ^ y
0	0	0
0	1	1
1	0	1
1	1	0

```
short a = 0x7;  /* a : 000000000000111 */
short b = 0x9;  /* b : 000000000001001 */
short c;
c = a ^ b;  /* c : 000000000001110 */
```

Attention à ne pas confondre : && et & , ni || et |

Les opérateurs de comparaison rendent des valeurs 0 ou 1 :

Les opérateurs bit à bit rendent des valeurs sur le domaine des entiers :

Opérateurs Binaires de Décalage : >> , <<

```
short a,b,c;
a = 0x6db7; /* = 28087 = 0110  1101  1011  0111 */
b = 0xa726; /* = 42790 = 1010  0111  0010  0110 */

/* Décalage à gauche bit à bit */
c = a << 6; /* 0110  1101  1100  0000 = 0x6dc0 */

/* Décalage à droite bit à bit */
c = a >> 6; /* 0000  0001  1011  0110 = 0x01b6 */
```

- ➤ Le premier opérande, de type entier, est le motif binaire à décaler.
- Le second est un entier non signé, qui précise le nombre de déplacements.

Si le déplacement est supérieur à la largeur du motif, l'opération a un comportement "indéfini"!

Remarque : Décaler à gauche de 1 bit, c'est multiplier par 2. Décaler à droite, c'est diviser par 2.

24

Opérateurs de décalage : conservation du signe

Si le premier opérande délivre une valeur unsigned, le décalage est un décalage logique : les bits libérés sont remplis avec des zéros.

Sinon, le décalage peut être logique ou arithmétique (les bits libérés sont remplis avec le bit de signe), **cela dépend de l'implémentation**.

```
int main(int argc, char *argv[]){
    short a,b;

a = -1;
    printf("%d<sub>\upsilon</sub>=\underwx\n",a,a);
    b = a << 1; /* Décalage à gauche bit à bit */
    printf("%d<sub>\upsilon</sub>=\underwx\n",b,b);

a = -1;
    b = a >> 1; /* Décalage à droite bit à bit */
    printf("%d<sub>\upsilon</sub>=\underwx\n",b,b);

-1 = ffffffff
}
```


Utilisations et Applications

Les opérateurs bit à bit sont utilisés dans différentes applications :

- ① "Anecdotiques",
 - ➤ Multiplier/Diviser par 2 (<<,>>)
 - Echanger deux variables avec un « ou exclusif » sans avoir besoin d'une troisième variable mémoire.

```
int x,y;

x = x^{\hat{}}y; /* II faut savoir que x^{\hat{}}x = 0 */

y = x^{\hat{}}y;

x = x^{\hat{}}y;
```

② D'autres vitales : les masquages https://en.wikipedia.org/wiki/Mask_(computing)

Masquages

Définition :

Un processus de **transformation d'un motif binaire en un autre**, au moyen d'une opération logique binaire.

- ① Le motif d'origine est l'un des opérandes impliqués.
- 2 Le second opérande, appelé le **masque**, est un motif binaire choisi spécialement pour obtenir la transformation désirée.

Le masque en « et » permet d'isoler/sélectionner une partie d'un motif binaire.

Le masque en « ou » permet de modifier/positionner à 1 une partie d'un motif binaire.

Masquage en « et » : un scénario d'utilisation

On vous a confié l'écriture du programme de gestion d'un ascenseur,

➤ Les 3 premier bits d'une variable entière « S » correspondent à l'état de l'ascenseur.

L'organisation de ces bits dans cette variable est la suivante :

Bit 0 et 1 Ces deux bits représentent le niveau actuel de l'ascenseur.

Bit 2 \qquad à « 1 », l'ascenseur contient des passagers sinon « 0 ».

Analyse de l'état de l'ascenseur

Vous voulez savoir si l'ascenseur contient des passagers?

En considérant la globalité de la variable (ou plutôt ses 3 premiers bits), il faut écrire qu'il y a un passager dans l'ascenseur si :

Il serait bien plus simple de ne regarder que le bit concerné par cette information :

- > Si on teste (S&0x4) :
 - Cette expression ne peut prendre que deux valeurs : 0 ou 4. soit celles du bit 2 de S!
- > Si on veut faire encore plus commode, alors :

$$((S>> 2)\&0x1)$$

ne peut prendre que deux valeurs : 0 ou 1.

Masquage en « ou » : un scénario d'utilisation

Vous écrivez toujours un programme de gestion d'ascenseur,

> une variable entière « Cmd » commande son déplacement.

L'organisation des bits dans cette variable est la suivante :

```
Bit 0 Moteur monte
Bit 1 Moteur stoppe
Bit 2 Moteur descend
...
Bit 7 Allumage intérieur cabine
```

Vous voulez demander au moteur de descendre?

```
Cmd= Cmd & Oxfff8; /* Met à 0 les bits du moteur*/
Cmd |= Ox4; /* Met à 1 le bit de descente */
```


Champs de bits

Il est parfois nécessaire pour le programmeur de décrire la structure d'un mot machine, cela pour plusieurs raisons :

- > modéliser de façon plus fine;
- un mot de l'espace mémoire est un registre découpé en différents champs de bits;
- > pour des raisons de gain de place, on désire faire coexister plusieurs variables à l'intérieur d'un entier.

© Gilles Menez 30

31

Champs de bits : contraintes d'utilisations

Attention à la portabilité de ce concept!

- ① Un champ de bits ne peut pas être d'une taille supérieure à celle d'un int.
- ② Un champ de bits ne peut pas être à cheval sur deux int.
- 3 L'ordre dans lequel sont mis les champs de bits à l'intérieur d'un mot dépend du compilateur.
 - > Si on utilise les champs de bits pour gagner de la place, cela n'est pas gênant.
 - > Dans le cas où on les utilise pour décrire une ressource matérielle de la machine (registre, mot d'état programme, etc), il est bien sûr nécessaire de connaître le comportement du compilateur.
- 4 Un champ de bit déclaré comme étant de type int, peut en fait se comporter comme un int ou comme un unsigned int (cela dépend du compilateur).
 - > Il est donc recommandé d'une manière générale de déclarer les champs de bits comme étant de type unsigned int.
- ⑤ Un champ de bits n'a pas d'adresse, on ne peut donc pas lui appliquer l'opérateur adresse de (&).

Part 3 : Representation of numbers

9. Bitwise Arithmetic	35
9.1.Addition	35
9.2. Overflow prediction	45
9.3.Overflow Traps	46
9.4.Intel x86 and x64 target specific	47
9.5.GCC builtins	48
9.6.Integers : the range problem	49
10. Beyond natural precision computations	51
10.1.Big Numbers	51
10.2.Factorial overflow	53
10.3.Stack overflow	54
10.4.C++/Boost Lib Solution	55
10.5.Factorial in Python	56
10.6.Challenge Pb : Big addition	57
11 Challenge Dh. Die addition	57
11. Challenge Pb: Big addition	5/
12. Multiplication	60
12.1.Standard multiplication algorithm	60
12.2 Challenge Ph. Big multiplication	60

© Gilles Menez 32

Corrigés des exos de L2 (cours J.C. Régin) I

```
#include<stdio.h>
1
     int getBit(unsigned int x, unsigned int pos){
       /* pos in [31, 0] */
       return (x & (1<<pos))>>pos;
5
     unsigned int setBit(unsigned int x, int pos){
7
       return x | (1<<pos);
8
9
     unsigned int clearBit(unsigned int x, int pos){
       return x & (~(1<<pos));
10
11
12
     unsigned int toggleBit(unsigned int x, int pos){
       unsigned int tmp = x & (1 << pos);
13
14
       if (tmp == 0)
15
         return setBit(x.pos):
16
       else
17
         return clearBit(x,pos);
18
19
     unsigned int defineBit(unsigned int x, int pos, int bool){
20
       if (bool == 1)
21
         return setBit(x, pos);
22
       else
23
         return clearBit(x,pos);
24
25
     void printbits (unsigned int x){
26
27
       for (i=31 : i>=0 : i--){
28
         printf("%d",getBit(x,i));
29
30
       printf("\n"):
31
32
33
34
```


Corrigés des exos de L2 (cours J.C. Régin) II

```
35
     int main(void){
37
       unsigned int v = 5:
38
       printf("%x\n",getBit(v,0));
39
       printf("%x\n",getBit(v,1));
40
       printf("%x\n",getBit(v,2));
       printf("%x\n", setBit(v,1));
41
       printf("%x\n",clearBit(v,1));
42
43
       printf("%x\n",toggleBit(v,1));
44
       printbits(v);
45
       // bitfields!!!!
46
```

cf https://graphics.stanford.edu/~seander/bithacks.html

We keep bitwise arithmetic problems solving for the following slides.

Unsigned addition

Let's see now how addition can be realized only with bitwise operators!

```
#include <stdio.h>
2
      #include <stdint.h>
 3
     #define TYPE unsigned char
 5
     /*
6
     #define TYPE unsigned long int
     #define TYPE unsigned int
8
      */
9
     TYPE add(TYPE a, TYPE b){
        // from : https ://www.geeksforgeeks.org/add-two-numbers-without-using-arithmetic-operators/
10
11
12
        while (b != 0){ // Iterate till there is no carry
13
          // carry now contains common set bits of a and b
14
          TYPE carry = a & b;
15
16
          // Sum of bits of a and b where at least one of the bits is not set
          a = a \hat{b};
17
18
19
          // Carry is shifted by one so that adding it to a gives the required sum
           b = carry << 1;
20
21
23
        return a:
24
25
26
27
28
     int main(void){
29
        printf("%x\n",add(2,2));
30
```


The logical background

Symbol	Truth Table			
	В	А	SUM	CARRY
A -1 Sum	0	0	0	0
B	0	1	1	0
& Carry	1	0	1	0
	1	1	0	1

https://www.electronics-tutorials.ws/combination/comb_7.html

Half Sum = $A \oplus B$ Sum = $(A \oplus B) \oplus Cin$

Half Carry = A.BCin Cout = $C_{in}(A \oplus B) + A.B$

n-bits Unsigned addition

A classical algorithm with **propagation of the carry** between successive powers of two.

n-bits Unsigned addition : overflow!

The only difficulty adding unsigned numbers occurs when you add numbers that are resulting in a too large number :

- > The last carry is 1! It overflows the size of a number and so it cannot be naturally represented in the machine.
- ➤ To detect and compensate for overflow (unsigned arihmetic context only!), one needs n+1 bits if an n-bit number representation is employed. For example, in 32-bit arithmetic, 33 bits are required to detect or compensate for overflow.

39

Overflow **not overflow flag!**

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Do not confuse the English verb "to overflow" with the "overflow flag" in the ALU. The verb "to overflow" is used casually to indicate that some math result doesn't fit in the number of bits available; it could be integer math, or floating-point math, or whatever.

The "overflow flag" is set specifically by the ALU as described below, and it isn't the same as the casual English verb "to overflow".

In English, we may say "the binary/integer math overflowed the number of bits available for the result, causing the carry flag to come on". Note how this English usage of the verb "to overflow" is *not* the same as saying "the overflow flag is on".

A math result can overflow (the verb) the number of bits available without turning on the ALU "overflow" flag (cf two's complement representation properties).

This would result an overflow!

The hardware way (on 4 bits)

Ripple Carry Adder:

Cascading (by carry) full adder.

- X No storage . . . just signal propagation!
 The hardware way.
- ✗ Carry propagation delay!!!

Many, many others/better hardware solutions

The software way (on 4 bits)

We analyze the flow of the algorithm used in the program given previously :

> All bits are processed in parallel.

- ① On the first iteration, the program computes s_i and c_j for each bit using half adder (114, 117).
- ② These informations are stored in reused variable a and carry variable.
- As all bits are processed in parallel, the propagation of carry (if any) will be realized by shifting (I20).

If there is no carry on (b==0), we can stop.

But suppose (a_0+b_0) generated a carry. Current value of s_1 is false since it did not take it into account :

> We have to iterate (I12) to propagate the carry to upper bits.

We need to shift left: (I20).

After second iteration s_1 is correct since it integrates the carry for the previous bit :

$$s_1 = s_1 + c_0 = (a_1 + b_1) + c_0.$$

If other carry (c_1, c_2, c_3) are 0, s_i remains s_i else they will be added.

Do you get it?

Overflow

When overflow occurs on unsigned integer addition and subtraction, contemporary machines invariably discard the high-order bit of the result and store the low-order bits that the adder naturally produces.

No overflow on 4 bits:

carry		0110
operand 1		0110
operand 2	+	0111
		1100

Overflow on 4 bits:

carry		1110
operand 1		0110
operand 2	+	1111
		0100

The carry has probably been discarded : The result is false!

High level programming

This section discusses methods that a programmer might use to detect when overflow has occurred, without using the machine's "status bits" that are often supplied expressly for this purpose.

This is important, because some machines do not have such status bits , and even if the machine is so equipped, it is often difficult or impossible to access the bits from a high-level language.

Overflow prediction

Given the range of number (deduced from size of words used and coding), we can propose some tests to predict if an arithmetic operation will overflow:

```
#include <stdio.h>
  #include <stdlib.h>
   #include <limits.h>
   #include <signal.h>
   #include <stdint.h>
6
   int check_addition_overflow(unsigned int a, unsigned int b) {
       if (a > 0 \&\& b > (UINT_MAX - a)) {
8
         // if ((a+b) < a) // make an overflow and see : unsigned only!
9
         // proof in : /* https://stackoverflow.com/questions/33948450/c-detect-unsigned-int-
10
   overflow-of-addition */
         printf("overflow_will_occur\n");
11
         return 1:
12
13
       return 0:
14
15
```

© Gilles Menez 45

Overflow Traps

In the **signed** context, one option of gcc has to be mentioned : | -ftrapv

This option generates traps for signed overflow on addition, subtraction, multiplication operations.

```
#include < stdio.h>
     #include < stdlib.h>
     #include <limits.h>
    #include < signal.h>
5
     #include <stdint.h>
     void h(int signal){
       printf("caught..signal..exiting\n"):
       exit(1);
9
10
11
     int main(void){
       int x = INT MAX:
13
      int v:
      signal(SIGABRT.h):
14
15
      v = x+1:
      printf("%d\n".v):
16
       return 0:
18
```

```
menez@vtr ~/EnseignementsCurrent/s
$ gcc -ftrapv trap_overflow.c

menez@vtr ~/EnseignementsCurrent/s
$ ./a.out
-2147483648

menez@vtr ~/EnseignementsCurrent/s
$ gcc -ftrapv trap_overflow.c

menez@vtr ~/EnseignementsCurrent/s
$ ./a.out
caught signal exiting
```

But ...

- > For "unsigned int", the program wraps (goes most negative).
- ➤ If not gcc?

Intel x86 and x64 target specific

The Intel CPUs have the so-called EFLAGS-register, which is filled by the processor after each integer arithmetic operation: http://en.wikipedia.org/wiki/EFLAGS

- ➤ The relevant flags are the "Overflow" Flag (mask 0x800) and the "Carry" Flag (mask 0x1).
- To interpret them correctly, one should consider if the operands are of signed or unsigned type.

```
#include <stdio.h>
     static inline size t query intel x86 eflags (const size t query bit mask ) {
 3
     #ifdef GNUC
         // this code will work only on 64-bit GNU-C machines:
 5
         size_t eflags;
         __asm__ __volatile__(
              "pushfa..\n\t"
                                                                      menez@vtr ~/Enseignements(
8
             "pop..%%rax\n\t"
                                                                       $ gcc mult overflow.c
             "movg.,%%rax.,,%0\n\t"
                                                                       menez@vtr ~/Enseignements(
10
              : "=r"(eflags)
                                                                       $ ./a.out
11
              : "%rax"
13
14
         return eflags & query bit mask:
                                                                       menez@vtr ~/Enseignements(
15
                                                                       $ acc mult overflow.c
     #else
     #pragma message("Nouinlineuassemblyuwithuthisucompiler!")
16
                                                                       menez@vtr ~/Enseignements(
         return 0:
                                                                       $ ./a.out
18
     #endif
19
                                                                       801
20
     int main(int argc, char **argv){
21
      int x = 10000; //00000;
22
       int y = 20000;
23
       int z = x * y;
24
       int f = query intel x86 eflags ( 0x801 );
25
       printf( "%X\n", f );
26
```


GCC builtins

The following built-in functions of gcc allow performing simple arithmetic operations (**signed** and **unsigned**) together with checking whether the operations overflowed.

https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html

```
#include < stdio.h>
     #include <assert.h>
     #include mits.h>
3
    int main(void){
6
      int x = INT MAX;
7
      int y;
                                                             menez@vtr ~/EnseignementsCurrent
8
      int ovf;
                                                             $ gcc builtin.c
      unsigned int ux = UINT MAX;
10
      unsigned int uy;
                                                             menez@vtr ~/EnseignementsCurrent,
11
                                                             $ ./a.out
      printf("%d\n",x);
12
                                                             2147483647
13
       ovf = builtin add overflow(x, INT MAX, &y);
                                                              - 2
      printf("%d\n",y);
14
                                                             Overflow!
15
      if (ovf)
         printf("Overflow, !\n"); /* Pos + Pos => Neg ? */
16
                                                             Overflow !
17
18
       ovf = builtin uadd overflow(ux, 1, &uv):
19
       printf("%d\n",uy);
20
       if (ovf)
         printf("Overflow..!\n"): /* 0 ? the carry has been trapped */
21
22
23
       return 0:
24
```


49

Integers: the range problem

We know machine integers are only abstractions and as a consequence their ranges can be programming issues.

```
https://en.wikipedia.org/wiki/Integer_(computer_science)
```

In many cases, the task or the programmer can guarantee that the integer values in a specific application will not grow large enough to cause an overflow.

- → Such guarantees may be based on pragmatic limits: "a school attendance program may have a task limit of 4,000 students".
- → The programmer may design the computation so that intermediate results stay within specified precision boundaries.

But sometimes (more and more in modern applications), we need to get off the range of the machine and/or of the language.

Examples of large numbers describing everyday real-world objects are (vs 18×10^{18} with 64 bits) :

- \triangleright The estimated number of atoms in the observable universe (10⁸⁰)
- \triangleright Earth's mass consist of about $(4x10^{51})$ nucleons
- \succ The number of cells in the human body (more than 10^{14})
- \succ The number of neuronal connections in the human brain (estimated at 10^{14})
- ➤ The lower bound on the game-tree complexity of chess, also known as the "Shannon number" (estimated at around 10¹²⁰)
- ➣ ...

Big Numbers

In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are limited **only by the available memory** of the host system.

This contrasts with the faster fixed-precision arithmetic found in most arithmetic logic unit (ALU) hardware, which typically offers between 8 and 64 bits of precision.

- Several modern programming languages have built-in or options to support for bignums: Lisp, Python, Perl, Haskell and Ruby.
- ➤ Others (C, C++, Java,) have libraries available for arbitrary-precision integer and floating-point math.

The hint:

Rather than store values as a fixed number of binary bits related to the size of the processor register, these implementations typically use variable-length arrays of digits.

Although this reduces performance, it eliminates the possibility of incorrect results (or exceptions) due to simple overflow.

It also makes it possible to guarantee that arithmetic results will be the same on all machines, regardless of any particular machine's word size.

The exclusive use of arbitrary-precision numbers in a programming language also simplifies the language, because a number is a number and there is no need for multiple types to represent different levels of precision.

So when?

As a conclusion, arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required: programming challenges?

© Gilles Menez 52

53

Factorial overflow

The factorial developped on natural precision is rapidly overflowing:

```
#include <stdio.h>
   #include <limits.h>
3
    static unsigned long fact (unsigned long n) {
4
      if (n > 1) {
        return n * fact(n - 1);
      } else {
7
                                                      menez@vtr ~/EnseignementsCurrent/Conco
        return 1:
8
                                                      $ gcc fact.c
                                                      menez@vtr ~/EnseignementsCurrent/Conco
10
11
   int main (int argc, char **argv) {
12
                                                                 2432902008176640000
13
                                                              = 14197454024290336768
      /* https://en.wikibooks.org/wiki/C_Prografact(22)
14
                                                              = 8128291617894825984
      printf("ULONG_MAX = 3201u\n", ULONG_MAX);
15
                                                              = 10611558092380307456
      /* ... */
16
      printf("fact(20),,,=,,%20lu\n", fact(20));
17
      printf("fact(21),,,=,,%20lu\n", fact(21));
18
19
      printf("fact(22),,,=,,%20lu\n", fact(22)):
      printf("fact(23),,,=,,%20lu\n", fact(23)); // overflow
20
      printf("fact(24),,,=,,%201u\n", fact(24)); // overflow
21
      return 0:
22
23
```


Stack overflow

Addresses (in program stack) too can overflow ...

```
#include <stdio.h>
    unsigned long int sum_of_first_n_natural_numbers(unsigned long int n){
      /* The recursive way ... splash ! */
3
      if (n == 0)
        return 0:
      else
6
        return n + sum of first n natural numbers (n-1);
7
8
    int main(void){
9
      unsigned long int n:
10
      n = 100000
11
      printf("result_{\square}:_{\square}%lu_{\square}\n", n*(1+n)/2); // closed form
12
      printf("result_::u%lu_\n", sum_of_first_n_natural_numbers(n));
13
      n = n*10; // => stack overflow
14
      printf("result.::,%lu,\n", sum of first n natural numbers(n));
15
      return 0:
16
17
                           menez@vtr ~/EnseignementsCurrent/
                           $ qcc sumn integers.c
                           menez@vtr ~/EnseignementsCurrent/
                           s ./a.out
                           result : 5000050000
                           result: 5000050000
                           Erreur de segmentation
```


C++/Boost Lib Factorial Big Num

```
#include <boost/multiprecision/cpp int.hpp>
   #include <iostream>
   namespace mp = boost::multiprecision;
   using namespace std;
   mp::cpp_int fact(unsigned long n){
     mp::cpp int u = 1;
     for (int i = 1; i \le n; i++)
       u *= i:
9
     return u:
10
11
12
13
   int main(){
     mp::cpp int u;
14
     u = fact(100);
15
     cout << "100!"="" << u << '\n':
     mp::cpp int v = u / 100;
17
     cout << "99!"=" << v << '\n':
18
19
```

menez@vtr ~/EnseignementsCurrent/ConcoursArnaud/Sr
\$ g++ boost_fact.cpp

menez@vtr ~/EnseignementsCurrent/ConcoursArnaud/Src

Factorial in Python

Challenge Pb: Big addition I

We want to add large numbers (unsigned integers) stored in strings.

ightharpoonup The numbers may be very large (may not fit in long long int).

Your program reads (from stdin) sequences of two strings containing big numbers, computes the sum and writes (on stdout) the string of the resulting number.

> If one of the two input strings is not a number (i.e all letters of the string are not digits or the string is empty) output should be the string "?"

Examples of Inputs / Outputs :

Input stream	Output stream
3333311111111111	
4442222221111	
	3377733333332222
7777555511111111	
3332222221111	
	7780887733332222
43	
1×	
	?
00930261	
4	
	930265

Challenge Pb: Big addition II

The last example/sample shows that non significant leading $\bf 0$ should be removed in the output string!

Two problems: with and without "Arbitrary Arithmetic".

1 With "Arbitrary Arithmetic" facilities

In the first version of the problem, THERE IS NO CONSTRAINT ON THE LANGUAGE you can use.

- So as an hint you should use a language able to deal with big integers: Python?, Java?...
- ② Without "Arbitrary Arithmetic" facilities

In the second version, ALL LANGUAGES WITH ARBITRARY ARITHMETIC FEATURES ARE PROHIBITED!

> So as an hint you should use C or C++ ...

Challenge Pb : Big addition

Speaking about "efficiency":

Why this challenge is quite simple?

How to improve the challenge and the solution?

Where will issues appear?

Standard mutliplication algorithm

We want to multiply the multiplicand (a) by the multiplier (b) :

(a) multiplicand	23958233	
(b) multiplier	5830	
	0000000(=	$23,958,233 \times 0$)
	71874699 (=	$23,958,233 \times 30)$
	191665864 (=	$23,958,233 \times 800$)
+	119791165 (=	$23,958,233 \times 5,000$)
	139676498390(=	139, 676, 498, 390)

Several multiply algorithms exist:

> We use the most classical one where each digit of b contributes (by addition if non zero), given the power matching its position (that is why there is a shift), to the final result obtained by addition.

© Gilles Menez

https://en.wikipedia.org/wiki/Multiplication_algorithm:

Remarks and focuses:

```
ightharpoonup Size of result : p+q
```

 \triangleright base parameter : a[i] "range"?

ightharpoonup "ai + bi - 1" index to "shift left"

> The carry propagation

© Gilles Menez 61

Challenge Pb: Big multiplication

Given two numbers (unsigned integers) as strings.

The numbers may be very large (may not fit in long long int), the task is to find multiply of these two numbers.

Example:

Input:

```
str1 = "12354214154545454545454545454"

str2 = "1714546546546545454544544544545"
```

Output:

2118187521397235888154583183918321221520083884298838480662480

Easy to check ... Python integers!

Challenge Pb: Big Multiplicationn

Speaking about "efficiency":

Why this challenge is quite simple?

How to improve the challenge and the solution?

Where will issues appear?

Part 4: Representation/Abstraction

13. IP addresses	65
13.1.Challenge Pb : 1/3	66
13.2.Semantic of IP addresses	67
13.3.Classfull way	68
13.4.Challenge Pb : 2/3	70
13.5.Challenge Pb : 3/3	71

14. System control (Embedded systems)

73

© Gilles Menez

IP addresses

An Internet address uses four bytes often specified in hexadecimal :

Because it is easier to remember (for a human), this number is often specified as 4 values of 8 bits. The split is marked by "." (dot)

Hence the dot notation is :

16 basis :	C0	29	06	14
10 basis :	192	41	6	20

Challenge Pb: 1/3

- $\ensuremath{\mathfrak{I}}$ Faire une fonction qui prend deux paramètres :
 - un entier en base 16 supposé être une adresse Internet (donc sur 32 bits)
 - > un choix de base parmi les valeurs 10 ou 16

et qui affiche cette représentation pointée dans la base souhaitée.

Examples

→ Inputs :

C0290614	16
C0290614	10
863B83AC	10
C0A80001	10

→ Outputs :

Semantic of IP addresses

To fully define the semantic of such an address, you have to know that this address contains two informations :

- 1. The **netid** identifies the network on which is the host.
- 2. The **hostid** identifies the host in this network.

Classfull way

First versions of Internet suppose their will be 5 configurations for the semantic analysis of such an address: they are address classes .

- ➤ The MSB bits value decide which, among 5, configuration/semantic is used by the four bytes.
- Each configuration modifies the size of each part (net/host id) and is labeled with one of these letters A,B,C,D ou E.

 $\verb|http://www.tcpipguide.com/free/t_IPClassfulAddressingNetworkandHostIdentificationan-3.htm| | to the continuous contin$

IPv6 Unicast adress

ĭ			J <u>Z</u>	· ·	4. I	I	12
	Globa	al Routing (48 bits)	Prefix	Subnet ID (16 bits)		Identifier bits)	
			IPv6 G	lobal Unica	st Address Format		
001		Level2 ID (12 bits)	Level 3 ID (23 bits)	Subnet ID (16 bits)		ldentifier bits)	
	Sa	mple Divi	sion of Glob	al Routing F	refix Into Three Hierar	chical Levels	
00	Level1 ID (10 bits)				Level1 Block (115 bits)		
	T	30	1,024 L	evel1 Block	s Created Globally	rid.	
	vel1 Net ID (13 bits)	Level2 ID (12 bits)			Level2 Block (103 bits)	Jier	9
Ea	ich Level	1 Organiz	ation Has a /	13 Network	Address and Can Assig	n 4,096 Level2	2 Blocks
l	_evel2 Net (25 bi		Level 3 ID (23 bits)		Level3 Block (80 bits)	(
Lev	vel2 Orga	nizations	Have /25 Ne	twork Addre	esses and Can Assign 8	,388,608 Leve	I3 Blocks
Level3 (Site) Network ID (48 bits)			work ID	Subnet ID (16 bits)		ldentifier bits)	

Levels Organizations have /48 Network Addresses and Can Subnet 16-bit Subnet ID

Challenge Pb: 2/3

① Faire une fonction capable à partir d'une adresse Internet fournie par un entier en base 16 de rendre la classe de l'adresse sous forme d'un caractère.

Examples

→ Inputs :

C0290614 863B83AC C0A80001 F0040506

→ Outputs :

В

C

Е

Challenge Pb: 3/3

Cet exercice ne peut être réalisé que si l'exercice 1 fonctionne.

① Faire une fonction capable à partir d'une adresse Internet fournie par un entier en base 16 de donner la valeur entière en base 16 du **netid et** la valeur entière en base 16 du **hostid**.

Pour ce qui est des classes D et E, la valeur entière rendue (pour le **hostid** et le **netid**) est celle de l'adresse dans sa globalité.

Par exemple, si on a l'adresse 863B8317₁₆,

Sa classe est B puisque le codage en base 2 de l'adresse commence par $1000..._2$.

La fonction rendra

- > un netid égal à la valeur $863B_{16}$ puisque ce type d'adresse code sur les 16 bits (2+14) de poids fort le netid.
- un hostid égal à la valeur 8317₁₆ puisque ce type d'adresse code sur les 16 bits de poids faible le hostid.

Examples

→ Inputs :

C0290614 863B83AC C0A80001 F0040506

→ Outputs :

C02906 14 863B 83AC C0A800 01 F0040506 F0040506

System control (Embedded systems)

Program/code for STM32F0 to interface Keypad/keyboard http://www.eeherald.com/section/design-guide/esmod6b.html

PC5	ET PINS PB0	PB1	PRESSED KEY	PB2	OUTPUT PI	NS PB11	PB12
1	0	0	# 9 6 3	0 0 0 1	0 0 1 0	0 1 0 0	1 0 0 0
0	1	0	0 8 5 2	0 0 0 1	0 0 1 0	0 1 0 0	1 0 0 0
0	0	1	* 7 4 1	0 0 0 1	0 0 1 0	0 1 0 0	1 0 0 0

Bitwise Access of "one by n=4" coding :

```
initgpio();
while(1)
GPIOC->BSRR = GPIO Pin 5;//set bit as high
GPIOB->BRR = GPIO Pin 0;//set bit as low
GPIOB->BRR = GPIO Pin 1;//set bit as low
if(GPIO ReadInputDataBit(GPIOB, GPIO Pin 12))//read input bit PB12
display(3);
if(GPIO ReadInputDataBit(GPIOB, GPIO Pin 11)) //read input bit PB11
display(6);
if(GPIO ReadInputDataBit(GPIOB, GPIO Pin 10)) //read input bit PB10
display(9);
if(GPIO ReadInputDataBit(GPIOB, GPIO Pin 2)) //read input bit PB2
display(11);
GPIOC->BRR = GPIO Pin 5;//set bit as low
GPIOB->BSRR = GPIO Pin 0;//set bit as high
GPIOB->BRR = GPIO Pin 1://set bit as low
if(GPIO ReadInputDataBit(GPIOB, GPIO Pin 12))
display(2);
if(GPIO ReadInputDataBit(GPIOB, GPIO Pin 11))
display(5);
if(GPIO ReadInnutDataRit(GPIOR GPIO Pin 10))
```


Part 5 : Dedicated operations

15. FFT 77

16. Challenge Pb: Bit Reverse 16.1.Fast(est?) solution 82 84

© Gilles Menez

Example: FFT

FFT is for "Fast Fourier Transform" : the most frequent "machine procedure" all categories?

- Used in all sounds, images, videos processing.
- In 1990, 40% of all Cray supercomputer cycles were devoted to the FFT.

FFT is a rapid algorithm to compute DFT (Discret Fourier Transform) :

Given N signal samples : $x[0], \dots, x[N-1]$ computes spectral representation of this signal :

$$X[k]_{(k:0...N-1)} = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$
 (1)

where
$$W_N^{kn}=e^{-j\frac{2\pi}{N}*kn}=\cos(\frac{2\pi}{N}*kn)-j*\sin(\frac{2\pi}{N}*kn)$$

 \rightarrow Many good properties on W_N^{kn} !

FFT is a divide and conquer formulation (thanks to properties on W_N^{kn})

A decimation-in-time radix-2 FFT breaks a length-N DFT into two length-N/2 DFTs **followed** by a combining stage consisting of many butterfly operations.

You can find details/proofs on : https://web.eecs.umich.edu/~fessler/course/451/1/pdf/c6.pdf

Repeat/Recurse "divide and conquer" :

You will get $log_2(N)$ stages!

The same diagram with butterflies flow of data :

with each butterfly:

Look at the permutation needed on input samples => "mirror" or "bit reversed"!

Challenge Pb: Bit Reverse

On souhaite réaliser une fonction capable d'effectuer un "effet miroir" sur une partie de la représentation binaire d'un nombre entier.

Ainsi, si on applique cet effet sur les 3 bits de poids faible d'un nombre entier, on obtient :

$b_{31} \dots b_3 000_2$	devient	$b_{31} \dots b_3 000_2$
$b_{31} \dots b_3 001_2$	devient	$b_{31} \dots b_3 100_2$
$b_{31} \dots b_3 0 1 0_2$	devient	$b_{31} \dots b_3 0 1 0_2$
$b_{31} \dots b_3 011_2$	devient	$b_{31} \dots b_3 110_2$
$b_{31} \dots b_3 100_2$	devient	$b_{31} \dots b_3 001_2$
$b_{31} \dots b_3 101_2$	devient	$b_{31} \dots b_3 101_2$
$b_{31} \dots b_3 110_2$	devient	$b_{31} \dots b_3 011_2$
$b_{31} \dots b_3 111_2$	devient	$b_{31} \dots b_3 111_2$

L'effet miroir ne doit pas avoir d'effet de bord sur les bits de poids fort non concernés ($poids \in [31,3]$ dans l'exemple).

① Proposer un programme réalisant cet effet sur les n bits de poids faible d'un nombre entier x.

Si n \notin [32, 2] alors le nombre x n'est pas modifié. Sinon la valeur rendue est celle du nombre x avec un effet miroir sur ses n bits de poids faible.

On fournira une ligne avec x puis n (les deux en base 10).

Votre programme rend la valeur (en base 10) du nombre x avec un effet miroir sur ses n bits de poids faible.

Examples:

Inputs		Outputs
4	3	1
12	3	1
4	4	2
255	3	255
254	3	251
254	4	247

Fast(est?) solution

I hope your are convinced this is a real problem.

May be your solution will be iterative?

But as this is an important issue, people have proposed quite smart solutions: https://graphics.stanford.edu/~seander/bithacks.html

Reverse the bits in a byte with 4 operations (64-bit multiply, no division) :

```
1 unsigned char b; // reverse this byte
2 3 b = ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;}
```


abod afab (-> bafa daba)

Fastest solution

unsigned char b; // reverse this byte

```
3 b = ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;}
```

The following shows the flow of the bit values with the boolean variables a, b, c, d, e, f, g, and h, which comprise an 8-bit byte. Notice how the first multiply fans out the bit pattern to multiple copies, while the last multiply combines them in the fifth byte from the right :

*	1000 0000 0010 0000 0000 1000 0000 0010 (0x80200802)
&	Oabc defg h00a bcde fgh0 Oabc defg h00a bcde fgh0 0000 1000 1000 0100 0100 0010 0010 00
*	0000 d000 h000 0c00 0g00 00b0 00f0 0003 000e 0000 0000 0000 0000 000
0000 d000 h000 c00 g00 00bb 00f0 0000	0g00 00b0 00f0 000a 000e 0000 00f0 000a 000e 0000
0000 d000 h000 dc00 hg00 dcb0 hgf0 dcba >> 32	hgfe dcba hgfe 0cba 0gfe 00ba 00fe 000a 000e 0000
£	0000 d000 h000 dc00 hg00 dcb0 hgf0 dcba hgfe dcba 1111 1111
	hgfe dcba

Index

Index: