II modello E/R

Definizione

- □ II modello E/R (Entity Relationship) rappresenta uno «standard de facto» per la progettazione concettuale di una base dati.
 - > Proposto da Peter S. Chen nel 1976.
- Attraverso una rappresentazione grafica di semplice lettura si semplifica la comunicazione col cliente «non addetto ai lavori»
- □ E' una modellazione concettuale: fornisce una rappresentazione astratta della realtà di interesse, che può essere successivamente implementata in modi diversi
 - Nella fase di progettazione logica, il modello ER viene convertito in uno schema logico
- Tre concetti fondamentali: entità, relazione, attributo

Dai requisiti alla base di dati

Entità

- □ E' un insieme di oggetti della realtà di interesse che possiedono caratteristiche comuni (es. persone, città, ...) e che hanno esistenza autonoma
- □ L'istanza (elemento) di un'entità è uno specifico oggetto appartenente a quella entità (es. Manuele, Bologna, ...)
- Graficamente si rappresentata con un rettangolo
 - > Per convenzione, il nome delle entità si indica tipicamente in singolare

Persona Città

- Rappresenta un legame logico tra due o più entità; un'entità può essere legata con se stessa, e più relazioni possono esistere tra le stesse entità.
- L'istanza di un'associazione è la combinazione di istanze delle entità che prendono parte all'associazione
- Graficamente si rappresenta con un rombo
 - ➤ Se Manuele è un'istanza di Persona e Bologna è un'istanza di Città, la coppia (Manuele, Bologna) è un'istanza dell'associazione Residenza

- □ L'insieme delle istanze di un'associazione è un sottoinsieme del prodotto Cartesiano degli insiemi delle istanze di entità che partecipano all'associazione: non possono esistere istanze ripetute
 - > Manuele non può essere residente più volte nella stessa città

- Un'associazione può legare più di due entità
 - > Si parla di associazione binaria se le entità sono 2
 - > Si parla di associazione ternaria se le entità sono 3

□ Tra due entità possono esistere più associazione (di significato ovviamente diverso)

- Un'associazione può mettere in relazione le istanze di una stessa entità (associazione ad anello)
- Un'associazione ad anello può essere:
 - ightharpoonup Simmetrica: (a,b) \in A \Rightarrow (b,a) \in A
 - ➤ Riflessiva: (a,a) ∈ A
 - > Transitiva: $(a,b) \in A$, $(b,c) \in A \Rightarrow (a,c) \in A$
- L'associazione Amico è simmetrica

□ Se l'associazione non è simmetrica, ogni ramo dell'associazione deve specificare il relativo ruolo

Attributi

- Un attributo è una proprietà elementare di un'entità o di un'associazione
 - Ogni attributo è definito su un dominio di valori: ad ogni istanza di entità (o di associazione) è associato un valore del corrispondente dominio

Graficamente:

Attributi

- □ Si possono definire attributi composti, aggregando attributi che presentano una forte affinità nell'uso e nel significato. Non aggiungono semantica ma migliorano la chiarezza dello schema ed aiutano ad evitare ambiguità
 - > Si definiscono **semplici** gli attributi non-composti

Vincoli

- In ogni schema E/R sono presenti dei vincoli
- Alcuni sono impliciti, in quanto dipendono dalla semantica stessa dei costrutti del modello:
 - Ogni istanza di associazione deve riferirsi a istanze di entità; (esempio: in DOCENZA non può esservi la coppia (Pasini, Basi di Dati) se Pasini non è un'istanza dell'entità DOCENTE.)
 - ➤ Istanze diverse della stessa associazione devono riferirsi a differenti combinazioni di istanze delle entità partecipanti all'associazione; esempio: la coppia (Rossi, Basi di Dati) non può essere presente due volte nell'associazione ESAME SUPERATO.
- Altri vincoli sono espliciti, e vengono definiti da chi progetta lo schema E/R sulla base della conoscenza della realtà che si sta modellando
 - Vincoli di cardinalità (per associazioni e attributi)
 - > Vincoli di identificazione

- Sono coppie di valori (min-card, max-card) associati a ogni entità che partecipa a un'associazione, che specificano il numero minimo e massimo di istanze dell'associazione a cui un'istanza dell'entità può partecipare
 - > min-card(Persona, Residenza) = 1: una persona deve avere una residenza
 - max-card(Persona, Residenza) = 1: una persona può avere una sola residenza
 - > min-card(Città, Residenza) = 0: una città può non avere alcun residente
 - > max-card(Persona, Residenza) = n: una città può avere un numero arbitrario di residenti
 - ➤ In assenza di indicazioni, il valore sottointeso è (1,1)

16

- Nel caso di un'associazione binaria A tra due entità E1 ed E2 (non necessariamente distinte), si dice che:
 - A è uno a uno se le cardinalità massime di entrambe le entità rispetto ad A sono 1
 - A è uno a molti se max -card(E1,A) = n e max-card(E2,A) = 1, oppure se max -card(E2,A) = n e max-card(E1,A) = 1
 - > A è molti a molti se max-card(E1,A) = n e max-card(E2,A) = n
- Si dice inoltre che:
 - ➤ La partecipazione di E1 in A è **opzionale** se min-card(E1,A)=0
 - ➤ La partecipazione di E1 in A è obbligatoria (o totale) se min-card(E1,A)=1
 - > La partecipazione di E1 in A è a valore singolo se max-card(E1,A)=1
 - ➤ La partecipazione di E1 in A è a valore multiplo se max-card(E1,A)1

- □ I vincoli di cardinalità possono essere specificati anche sugli attributi, per indicare il numero minimo e massimo di valori dell'attributo che possono essere associati ad un'istanza della corrispondente associazione o entità
 - ➤ Se non specificato, il valore sottointeso è (1,1)
 - > Si parla di attributo opzionale se la cardinalità minima è 0

Esercizio 4 – ssocia i vincoli cardinalità

Esercizio 4 - Soluzione

Esercizio 5 – associa attributi e vincoli di cardinalità

Esercizio 5 - Soluzione

Riassunto - Esercizio

[Sherlock's Convenience Store] [callus@sherlockcs.com], [222 555 7777]

Product Order Form

Order Number: 01234

Prepared for: [Haley Schmidt]

Address: [865 Poplar Chase Ln., Boise, ID 83702]

Email: [haley@ymail.com] Date: December 03, 2030

Terms & Conditions

- 1. Full Payment will be collected prior to the delivery of goods.
- 2. Product refund is allowed within 7 days upon receipt.

Disegnegnare lo schema ER per modellare i dati necessari per questo modulo d'ordine

Click Below to Accept this Order

undefined

Description	Quantity	Price	Total
Suntory Chuhi 350ml	5	USD 40.00 box	USD 200
Kirin Chuhi 350ml	5	USD 40.00 box	USD 200
Tax			8 %
Total	USD 400		

Riassunto - Esercizio

[Sherlock's Convenience Store] [callus@sherlockcs.com], [222 555 7777]

Product Order Form

Order Number: 01234

Prepared for: [Haley Schmidt]

Address: [865 Poplar Chase Ln., Boise, ID 83702]

Email: [haley@ymail.com] Date: December 03, 2030

Terms & Conditions

1. Full Payment will be collected prior to the delivery of goods.

2. Product refund is allowed within 7 days upon receipt.

Click Below to Accept this Order

undefined

Description	Quantity	Price	Total
Suntory Chuhi 350ml	5	USD 40.00 box	USD 200
Kirin Chuhi 350ml	5	USD 40.00 box	USD 200
Tax			8 %
Total			USD 400

Identificatori

- Un identificatore ha lo scopo di permettere l'individuazione univoca delle istanze di un'entità
- □ Deve valere anche la proprietà di minimalità: nessun sottoinsieme proprio dell'identificatore deve a sua volta essere un identificatore
- Per definire un identificatore per un'entità E si hanno due possibilità di base:
 - > Identificatore interno: si usano uno o più attributi di E
 - ▶ Identificatore esterno: si usano altre (una o più) entità, collegate a E da associazioni, più eventuali attributi di E
 - ➤ Identificatore misto: si usano sia altre entità, sia attributi propri
- Se il numero di elementi (attributi o entità) che costituiscono l'identificatore è pari a 1 si parla di identificatore semplice, altrimenti l'identificatore è composto

Identificatori: esempi

Identificatori: esempi

- Ogni entità deve avere almeno un identificatore; in generale può averne più di uno
- Un'entità si dice debole se ha solo identificatori esterni, forte se ha solo identificatori interni
- Un identificatore esterno può sfruttare solo legami diretti
 - ➤ Si modella intersecando l'arco tra l'entità referenziata e l'associazione che la collega con l'entità di partenza
 - Può essere modellato solo in presenza di associazioni con cardinalità (1,1)

Attributi sulle associazioni

- 1) Uno studente può sostenere un solo esame per un corso
- 2) Uno studente può sostenere più esami per un corso, anche nella stessa data
- □ 3) Uno studente può sostenere più esami per un corso, ma non nella stessa data

Identificatori: esercizio

Trova gli identificatori e aggiungi le cardinalità

Identificatori: esercizio

Trova gli identificatori e aggiungi le cardinalità

Identificatori: esercizio

In base ai vincoli espressi nello schema si indichi se le seguenti affermazioni sono vere o false:

- a) All'interno di un albergo non ci sono 2 camere con lo stesso numero
- b) Una camera non può avere due prenotazioni nello stesso periodo
- c) Una camera non può avere due soggiorni nello stesso periodo
- d) Una prenotazione è relativa a una o più camere purché dello stesso albergo

- ➤ Si vuole creare un sistema informativo per una biblioteca, che permetta come la registrazione di un nuovo lettore, la catalogazione e il prestito dei libri. Il sistema deve fornire funzionalità come la visualizzazione delle copie disponibili di un libro, l'elenco dei libri che appartengono a una particolare categoria, ...
- ➤ Il catalogo dei libri include ISBN, titolo del libro, prezzo, categoria, edizione
- ➤ I lettori sono registrati con il loro IDUtente, e-mail, nome, cognome, uno o più numeri di telefono, indirizzo.
- ➤ I lettori possono prendere in prestito libri. Per ogni prestito, il sistema memorizza il codice ISBN del libro, l'ID utente, la data di prestito, la data di restituzione e decrementa il numero di copie disponibili per quel libro.

Soluzione 1

Soluzione 2

Gerarchie di generalizzazione

- □ Un'entità E è una generalizzazione di un gruppo di entità E_1 , E_2 , ..., E_n se ogni istanza di E_1 , E_2 , ..., E_n è anche un'istanza di E_n
 - ➤ Le entità E₁, E₂, ... E_n sono dette specializzazioni di E

- Per le gerarchie di generalizzazione va anche specificato il tipo di copertura (totale/parziale, esclusiva/sovrapposta)
- □ Le proprietà di E sono ereditate da E₁, E₂, ... E_n : ogni E_i ha gli attributi di E e partecipa alle associazioni definite per E (non vanno quindi replicati nello schema)

Gerarchie di generalizzazione

Gerarchie di generalizzazione

- □ Gli attributi e le associazioni comuni a tutte le specializzazioni vanno indicate sull'entità più astratta
- Le generalizzazioni vengono utilizzate per rappresentare aspetti statici (es. la suddivisione delle persone in uomini e donne); gli aspetti dinamici vanno invece modellati con associazioni (es. invece di suddividere le persone in sposati e single, modellare l'entità Matrimonio)
- □ Attenzione a non confondere entità con istanze di entità tentando di modellare attraverso gerarchie la conoscenza di specifiche istanze
- □ Attenzione a non modellare attraverso gerarchie i ruoli che un'entità assume in diversi periodi temporali o in relazione ad altre entità

Gerarchie di generalizzazione: esercizio

Lo schema sotto non è corretto, perché?

Gerarchie di generalizzazione: Esercizio

> Soluzione

Gerarchie di generalizzazione - Esercizio

In base ai vincoli espressi nello schema si indichi se le seguenti affermazioni sono vere o false:

- a) I cantanti possono essere memorizzati solo se hanno effettuato concerti
- b) Un cantante non può cantare una stessa canzone più volte in un concerto
- c) I diritti d'autore possono essere registrati solo per l'anno corrente
- d) Una canzone può essere cantata più volte in uno stesso concerto
- e) I diritti per una data canzone non possono essere suddivisi tra più autori

Associazioni ternarie

Quando in un'associazione ternaria esistono dipendenze funzionali tra le entità in gioco è preferibile sostituire la ternaria con una coppia di binarie, che modellano esplicitamente i vincoli del problema (es. la modellazione di lezioni come relazione tra aula, giorno e corso).

Se una (o più) entità partecipano con cardinalità massima 1 a un'associazione ternaria siamo in presenza di una "falsa ternaria" che può essere sempre modellata attraverso due binarie (es. la modellazione delle relazioni tra una partita di calcio e le due squadra che partecipano, una in casa e una fuori).

Un esempio complesso

Osservazioni generali

- □ I nomi di entità e associazioni alle volte traggono in inganno: è bene quindi, nel caso si presentino situazioni poco chiare, provare a ragionare anche in termini di istanze (cosa "contiene" effettivamente questa entità/associazione?). Come l'esempio precedente (V/F) sui diritti e gli autori.
- Quando, come praticamente sempre accade, interviene la variabile "tempo" è bene chiedersi quali sono gli aspetti che si vogliono modellare che sono indipendenti dal tempo e quali viceversa variano dinamicamente. Come l'esempio precedente (V/F) sui diritti e gli autori.

Utilità

Uno schema E/R è più espressivo di uno schema relazionale, inoltre può essere utilizzato con successo per alcuni compiti diversi dalla progettazione, ad esempio:

Documentazione

La simbologia grafica del modello E/R può essere facilmente compresa anche dai non "addetti ai lavori"

Reverse engineering

➤ A partire da un DB esistente si può fornirne una descrizione in termini E/R allo scopo di migliorare l'analisi del contesto applicativo ed eventualmente procedere a un'operazione di riprogettazione

Integrazione di sistemi

➤ Essendo indipendente dal modello logico dei dati, è possibile usare il modello E/R come "linguaggio comune" in cui rappresentare DB eterogenei, allo scopo di costruire un DB integrato

Limiti del modello E/R

- □ Per quanto più espressivo di uno schema relazionale, uno schema
 E/R non è sufficiente a rappresentare tutti gli aspetti di interesse
 - ➤ I nomi dei vari concetti possono non essere sufficienti per comprenderne il significato
 - ➤ Non tutti i vincoli di integrità sono esprimibili in uno schema E/R
 - •per sostenere un esame è necessario avere sostenuto tutti gli esami propedeutici
 - •un laureando deve aver sostenuto almeno tutti gli esami dei primi anni
- In fase di progettazione bisogna quindi fornire un'ulteriore documentazione appropriata a corredo dello schema

Ogni sede dell'azienda si trova in una città e ha un indirizzo specifico; una sede è organizzata in dipartimenti, ognuno dei quali ha un nome e un numero di telefono. Gli impiegati lavorano nei dipartimenti (a partire da una certa data) e alcuni di loro sono responsabili della direzione dei dipartimenti. Vogliamo memorizzare le seguenti informazioni sugli impiegati : cognome, stipendio, età e un codice identificativo personale. Gli impiegati lavorano su progetti da una data specifica; ogni progetto ha un nome, un budget e una data d'inizio.

Identificazione dei concetti primari

□ Ogni sede dell'azienda si trova in una città e ha un indirizzo specifico; una sede è organizzata in dipartimenti, ognuno dei quali ha un nome e un numero di telefono. Gli impiegati lavorano nei dipartimenti (a partire da una certa data) e alcuni di loro sono responsabili della direzione dei dipartimenti. Vogliamo memorizzare le seguenti informazioni sugli impiegati : cognome, stipendio, età e un codice identificativo personale. Gli impiegati lavorano su progetti da una data specifica; ogni progetto ha un nome, un budget e una data d'inizio.

Schema scheletro

Impiegato

Dipartimento

Progetto

Sede

Identificazione delle associazioni «primarie»

□ Ogni sede dell'azienda si trova in una città e ha un indirizzo specifico; una sede è organizzata in dipartimenti, ognuno dei quali ha un nome e un numero di telefono. Gli impiegati lavorano nei dipartimenti (a partire da una certa data) e alcuni di loro sono responsabili della direzione dei dipartimenti. Vogliamo memorizzare le seguenti informazioni sugli impiegati : cognome, stipendio, età e un codice identificativo personale. Gli impiegati lavorano su progetti da una data specifica; ogni progetto ha un nome, un budget e una data d'inizio.

Identificazione delle associazioni «primarie»

Identificazione degli attributi

□ Ogni sede dell'azienda si trova in una città e ha un indirizzo specifico; una sede è organizzata in dipartimenti, ognuno dei quali ha un nome e un numero di telefono. Gli impiegati lavorano nei dipartimenti (a partire da una certa data) e alcuni di loro sono responsabili della direzione dei dipartimenti. Vogliamo memorizzare le seguenti informazioni sugli impiegati : cognome, stipendio, età e un codice identificativo personale. Gli impiegati lavorano su progetti da una data specifica; ogni progetto ha un nome, un budget e una data d'inizio.

Schema finale

Sommario

- ➤ Il modello E/R è un modello concettuale largamente utilizzato per la progettazione di basi di dati.
- Esistono molti dialetti E/R, che spesso si differenziano in termini di costrutti e per la notazione grafica adottata.
- ➤ I principali costrutti del modello sono entità, associazione e attributo, a cui si aggiungono identificatori, gerarchie e vincoli di cardinalità.
- L'espressività del modello E/R non è normalmente sufficiente in fase di progettazione e ciò comporta la necessità di ulteriore documentazione di supporto.
- ➢ Il modello E/R può essere impiegato con successo anche in altri contesti, ad esempio per reverse engineering e integrazione di database.
- ➢ Si deve infine ricordare che così come conoscere un linguaggio di programmazione non significa di per sé saper programmare, conoscere il modello E/R non significa saper progettare basi di dati. Tuttavia è comunque un buon punto di partenza.

Questionario

- □ Si dia una definizione di associazione binaria e si illustri il significato delle cardinalità di partecipazione delle entità coinvolte.
- Quando è necessario far ricorso a generalizzazioni?
- Come si rappresenta in uno schema E/R la relazione composto-componente?
- In un'associazione ternaria una delle entità coinvolte partecipa con cardinalità (1,1). È possibile trasformare l'associazione ternaria in associazioni binarie?
- A cosa serve l'indicazione del ruolo di partecipazione in un'associazione? È sempre necessaria?
- Fare qualche esempio di vincolo non esprimibile con il modello E/R.

 Lo schema di figura non è corretto. Spiegarne i motivi e progettare uno schema adeguato.

