

SOLUCIÓN A LOS EJERCICIOS PROPUESTOS DE LA UNIDAD 2

1) Responde las siguientes preguntas:

a) ¿Menciona al menos 3 características que presenta el álgebra booleana?

R:

- 1. Los únicos valores permitidos son 0 y 1.
- 2. El valor O representa un voltaje bajo y el 1 un voltaje alto.
- 3. El valor 0 se encuentra entre 0 y 0.8 volts, el valor 1 se encuentra entre 2 y 5 volts.
- 4. Solo existen 3 operaciones OR, AND y NOT.
- b) ¿Qué operación representan las funciones OR, AND y NOT?

R:

OR: suma.

AND: multiplicación.

NOT: Negación.

c) ¿Qué es un valor o nivel lógico?

R: Son valores booleanos que representan un nivel de voltaje, estos valores se representan como 0 al valor bajo y 1 para el valor alto.

d) ¿Qué es una tabla de verdad?

R: Es una herramienta que sirve para representar los valores de entradas y salidas lógicas. Dependiendo de las combinaciones presentes en las entradas obtendremos algún valor de salida que puede ser 1 o 0.

e) Construya una tabla de verdad con tres variables de entrada y dibujar la tabla de verdad para R= BA+CB'

R:

1.- Para construirla se tienen dos partes las columnas de entradas y las columnas de salida.

Columnas de entradas:

Para construir una tabla de verdad se inicia de derecha a izquierda. En la columna A de la derecha se iniciará con un valor bajo,0, continuando con un valor alto,1, posteriormente un valor bajo y así sucesivamente. En la columna B se representa como 21, por lo tanto se colocaran dos valores bajos,0 0, seguidos por 2 valores altos,1 1, Finalmente en la columna C se representa como 22, por lo tanto se colocaran 4 valores bajos,0 0 0 0 seguidos por 4 valores altos,1 1 1 1 1, y así sucesivamente continuando con 2n para cada variable.

Columnas de salida:

Primero se construye para cada salida, las columnas correspondientes para cada término que la componen, en la columna de la función de salida se presenta la suma de términos correspondientes.

2) Dibuja la tabla de verdad para R= BA+CB'

R: ENTRADAS C, B, A TERMINOS BA, CB' SALIDA R

	С	В	Α		AB	B'C	R	
	0	0	0		0	0	0	
	0	0	1		0	0	0	
	0	1	0		0	0	0	
1	0	1	1		1	0	1	
	1	0	0		0	1	1	
	1	0	1		0	1	1	
	1	-1	0		0	0	0	
	1	1	1		1	0	1	

Unidad II. Fundamentos de sistemas digitales

3) Menciona 3 características de las compuertas OR.

- 1. La salida será 1 siempre y cuando alguna o todas de sus entradas sea 1.
- 2. La operación que realiza es la de sumar las entradas para obtener una salida lógica.
- 3. El valor máximo posible es 1, sin importar que la suma sea 1+1+1.
- 4. Las operaciones se leen como A OR B.

4) ¿Cuál de las siguientes imágenes representa la compuerta OR?

R: El inciso B) representa la compuerta OR.

5) Menciona 2 características de las compuertas AND.

- 1. Representan multiplicación o producto lógico.
- 2. Es necesario que todas las entradas estén en un nivel alto para que la salida también lo esté, de lo contrario la salida será 0.
- 3. Las operaciones se leen como A AND B.

6) ¿Cuál de las siguientes imágenes representa la compuerta AND?

R: El inciso c) representa a la compuerta AND.

7) Menciona 3 características de las compuertas NOT.

- 1.- No es posible realizar operaciones sobre más de una variable.
- 2.- Al aplicar esta función se obtiene el complemento de la variable.
- 3.- El complemento de una variable es su inversa.
- 4.- La inversa de una función se representa como: A 🛮 A'. B 🗷 B'.

8) ¿Cuál de las siguientes imágenes representa la compuerta NOT?

R: En este caso ninguna representa la compuerta NOT ya que el símbolo para esta compuerta es.

Donde el círculo representa la inversión.

- 9) Escribe las salidas de cada una de las siguientes imágenes.
 - a)

b)

$$A \longrightarrow Y =$$

R: X = A + B' + C

- Y= (ABC)'
- 10) De la siguiente tabla de verdad obtener los minitérminos y los maxitérminos.

Α	В	С	Salida (S)
0	Ο	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

R:

Miniterminos:

Los minitérminos son también conocidos como suma de productos, y consiste en tomar las filas de la columna de salida representadas por 1 y por cada fila, hacer su respectiva multiplicación y sumándolo a la fila siguiente.

S= A'BC+AB'C+ABC'.

Como se está trabajando con 1, las entradas que lo contengan se colocan sin negar y en donde aparezca 0 se coloca como negadas.

Maxitérminos:

Son conocidos también como productos de sumas, consiste en tomar las filas en donde las salidas son 0 y por cada fila, hacer su respectiva suma y multiplicarlo por fila siguiente.

S = (A+B+C)(A+B+C')(A+B'+C)(A'+B+C)(A'+B'+C').

11) De acuerdo a la siguiente tabla de verdad, utiliza los símbolos digitales para representar X.

Α	В	С	X
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1
in the second			

Unidad II. Fundamentos de sistemas digitales

12) De la siguiente tabla de verdad obtener los minitérminos y maxitérminos.

		9	
X	Υ	Z	Salida (S)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

R:

Miniterminos:

S = x'yz' + x'yz + xyz' + xyz

Maxiterminos:

S=(x+y+z)(x+y+z')(x'+y+z)(x'+y+z')

13) Obtenen los maxiterminos a partir de la siguiente tabla de verdad y pasarlos a su forma estándar.

Α	В	С	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

R:

MAXITERMINO

X=(A+B'+C)(A'+B+C')

Para pasar a su forma estándar, primero se multiplican los productos.

Teniendo en cuenta las siguientes reglas: x*x'=0 ; x*x=x

X=AA'+AB+AC'+A'B'+BB'+B'C'+A'C+BC+C'C=0+AB+AC'+A'B'+0+B'C'+A'C+BC+0

Quitando los ceros, la función a estandarizar quedaría de la siguiente forma X= AB+AC'+A'B'+B'C'+A'C+BC

Ahora solo multiplicamos por los términos faltantes.

X = AB(C+C')+AC'(B+B')+A'B'(C+C')+B'C'(A+A')+A'C(B+B')+BC(A+A')

Quedando...

X=ABC+ABC'+ABC'+AB'C'+A'B'C+A'B'C'+ A B'C+A'B'C'+A'BC+A'B'C+ABC+ABC

14) Escribe las salidas para los siguientes circuitos

15) Genera la tabla de verdad para X a partir del diagrama

R: Una estrategia al momento de resolver este problema sería sustituir las expresiones por una letra que identifique cada salida. De la siguiente forma.

L=A+B; M=C+D; N=(A+B)'; P=(C+D)'; X=NP

Por lo tanto, al generar nuestra tabla de verdad quedaría de la siguiente forma:

Α	В	С	D	L	М	N	Р	X
0	0	0	0	0	0	1	1	1
0	0	0	1	0	1	1	1	1
0	0	1	0	0	1	1	1	1
0	0	1	1	0	1	1	0	0
0	1	0	0	1	0	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	1	1	1
1	0	0	1	1	1	1	1	1
1	0	1	0	1	1	1	1	1
1	0	1	1	1	1	1	0	0
1	1	0	0	1	0	0	1	0
1	1	0	1	1	1	0	1	0
1	1	1	0	1	1	0	1	0
1	1	1	1	1	1	0	0	0

16) Diseña el diagrama correspondiente a la siguiente tabla de verdad.

Α	В	С	S=BC	T=A+B'	U=A'C	V=S+TU
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	1	1	0	1

R: Construimos una a una cada etapa

17) Dibuja el diagrama equivalente de los siguientes circuitos.

18) A partir de la siguiente expresión, dibuja su correspondiente diagrama.

$$R=[(A+B+C)'(XYZ)]M'N'$$

19) Anota las leyes del algebra de Boole.

1 x*O=O	9 x+y=y+x	17 x'+xy=x'+y
2 x*1=x	10 x*y=y*x	
3 x*x=x	11 $x+(y+z)=(x+y)+z=x+y+z$	
4 x*x'=0	12 x(yz)=(xy)z=xyz	
5 x+0=x	13 x(y+z)=xy+xz	
6 x+1=1	14	
	(w+x)(y+z)=wy+xy+wz+xz	
7 x+x=x	15. x+xy=x	
8 x+x'=1	16 x+x'y=x+y	

20) Anotar cuantos son y cuáles son los teoremas de De Morgan.

R: Son dos teoremas

 $(x+y)^x=x^y^x$

(xy)'=x'+y'

21) Simplifica las siguientes expresiones utilizando los teoremas de Boole.

a) S = xyz(x+y+z)

R: Primero multiplicamos la función xyz por cada elemento que está dentro del paréntesis.

S=xyz(x)+xyz(y)+xyz(z)

Después para cada parte de la suma se aplicará el teorema x*x=x quedando de la siguiente forma.

S= xyz+xyz+xyz

Lo anterior quedaría simplificado cómo

S=xyz.

b) X= AB+ABC+ABCD

R: En esta función se factoriza la expresión tomando la o las variables en común.

X=AB(1+C+CD)

Ahora tomamos los términos que están dentro del paréntesis y aplicamos el teorema \square x+xy=x

X = AB(1+C)

Para terminar multiplicamos y aplicamos el teorema 🛘 x+xy=x.

X=AB+ABC

X=AB

c) A= XYZ´+W´X+WXYZ

R: Tomamos las variables en común y las colocamos fuera del paréntesis.

 $A=X(YZ^+W^+WYZ)$

Ahora se toman los términos dentro del paréntesis y se factorizan.

A=X(W'+Y(Z'+Z))

Para Z'+Z se aplica el teorema $\square x+x'=1$.

A=X(W'+Y)

Por lo tanto, al multiplicar la expresión queda:

A=W'X+XY

Unidad II. Fundamentos de sistemas digitales

d) Z= (ABC´D)(A+B´+C´)+(AB´)(CD)

R: En este caso, lo primero será desarrollar la función.

 $Z=(A*ABC^D+B^*ABC^D+C^*ABC^D)+(AB^CD)$

Ahora se aplican los respectivos teoremas y al mismo tiempo se eliminan los paréntesis.

Z=ABC´D+A0C´D+ABC´D+AB´CD

Se elimina el termino multiplicado por cero (0)

Z=ABC´D+ABC´D+AB´CD

Los términos iguales, se aplica el teorema x+x=x

Y el resultado final es... Z=ABC´D+AB´CD

22) Simplificar las siguientes expresiones, utilizando los teoremas de DeMorgan.

a) W=[(ABC) ´+(A´B´C) ´]

R: Aplicamos el teorema 1 y obtenemos como resultado que la función totalmente negada, se divida en 2.

W=(ABC) \(\text{ '*(A 'B 'C) ' }

Como cada parte de la función está doblemente negada, se eliminan entre sí quedando sin negar.

 $(ABC)*(A^B^C).$

Al final se multiplican los productos, aplicando x'*x=0 del álgebra de Boole.

Por lo tanto W=0.

b) X=[(ABC) ´+(A´B´C)] ´+[AB´C´]

R: Se aplica el teorema 1.

 $X=(ABC)^{^*}(A^B^C)^{^*}(AB^C)^{^*}$

Se elimina la doble negación y se aplica el teorema 2.

X=ABC*(A"+B"+C")+(AB C)

Volvemos a eliminar la doble negación y multiplicamos.

X=ABC+ABC+AB'C'

Sumamos y queda...

X=ABC+AB'C'

c) Y=[(ABCD) ^(AB) ^] ^*[(AC ^D)+(BD) ^] ^

R: Otra Forma de resolver estos ejemplos es empezando desde adentro hacia afuera de la función, esto es resolver termino por termino en particular.

Y=[(A'+B'+C'+D')(A'+B')]'*[(AC'D)+(B'+D')]'

Ahora por separado aplicamos el teorema 2 a la parte izquierda de la multiplicación general y al mismo tiempo aplicamos el teorema 1 a la parte derecha de la misma.

Y=[(A'+B'+C'+D')'+(A'+B')']* [(AC'D)'(B'+D')']

Ahora aplicamos el teorema 1 en la parte izquierda y el teorema 2 en la parte derecha.

Y=[(ABCD)+(AB)]*[(A'+C''+D')(BD)]

Quitamos las dobles negaciones y eliminamos paréntesis.

Y=(ABCD+AB)*(A'BD+BCD)

Ahora multiplicamos

Y=ABCD+ABCD

Sumamos y el resultado final es...

Y=ABCD

d) Z=[(A´C´D´)´+(AC)´]+[(BCD)+(BCD)´]

R: Del lado izquierdo de la suma resolvemos por partes, aplicando el teorema 2 de De Morgan. Del lado derecho aplicamos el teorema x+x'=1 del álgebra de Boole. Z=A"+C"+D"+A'+C'+1

Ahora se eliminan las partes doblemente negadas.

Z=A+C+D+A'+C'+1

Ahora aplicamos el teorema x+x'=1 del álgebra de Boole.

7=1+1+1+D

Para terminar, se realiza una suma, en el álgebra de Boole cualquier término sumado a uno, es igual a 1.

Z=1

23) SIMPLIFICA y muestra EL CIRCUITO PARA Q=BC+(A+B')(A'C)

R: Para simplificar este circuito se toma su salida: Q= BC+(A+B')(A'C) Ahora se resuelve la multiplicación.

Q=BC+A'B'C.

Finalmente se diseña el circuito simplificado.

Se puede notar que al hacer la simplificación se ahorran compuertas y se facilita la elaboración del circuito.

24) Simplifica las funciones utilizando mapas de Karnaugh.

a) S = xyz(x+y+z)

R: Lo primero que hay que hacer en este caso es multiplicar la función para poder meter los datos en el mapa K. Por lo tanto la función multiplicada queda xyz+xyz+xyz = {7,7,7} = {7} en forma canónica.

Al meter estos datos en el mapa, se puede notar que existe un 1 en la intersección XYZ y todo lo demás aparece como 0, esto es porque los términos son iguales.

Mapa de Karnaugh para 3 variables, expresada en miniterminos.

Por lo tanto la función simplificada es S= XYZ

b) X= AB+ABC+ABCD

R: A partir del valor de X, se debe obtener el formato en miniterminos, lo haremos con una tabla de verdad.

	Α	В	С	D	AB	ABC	ABCD	Х
0	0	0	0	0				
1	0	0	0	1				
2	0	0	1	0				
3	0	0	1	1				
4	0	1	0	0				
5	0	1	0	1				
6	0	1	1	0				
7	0	1	1	1				
8	1	0	0	0				
9	1	0	0	1				
10	1	0	1	0				
11	1	0	1	1				
12	1	1	0	0	1			1
13	1	1	0	1	1			1
14	1	1	1	0	1	1		1
15	1	1	1	1	1	1	1	1

Nota: para mayor claridad se omitieron los ceros

Por lo que Q={12,13,14,15}

Hacemos el mapa de Karnaugh y se agrupan los 1 en múltiplos de 2ⁿ

Por lo que da como resultado Q=AB

- c) A= XYZ´+W´X+WXYZ
- R.- Primero se debe de ordenar las variables, como corresponda, ya sea XYZW ó WXYZ como lo especifique la función.

Para este ejercicio el orden será AXYZW = XYZ'+XW'+XYZW

0	1	3	2
4	5	7	6
12	13	15	14
8	9	11	10

	Х	Υ	z	w	XYZ'	XW'	XYZW	Α
0	0	0	0	0				
1	0	0	0	1				
2	0	0	1	0				
3	0	0	1	1				
4	0	1	0	0				
5	0	1	0	1				
6	0	1	1	0				
7	0	1	1	1				
8	1	0	0	0		1		1
9	1	0	0	1				
10	1	0	1	0		1		1
11	1	0	1	1				
12	1	1	0	0	1	1		1
13	1	1	0	1	1			1
14	1	1	1	0		1		1
15	1	1	1	1			1	1

Luego entonces A = {8, 10, 12, 13, 14, 15}

Por lo que A = XY+ZW'

25) Obten la función Z de la tabla de verdad, y simplificarlas usando mapas de karnaugh.

	Α	В	С	D	Z
О	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	0	0
3	0	1	1	1	1
4	1	0	0	0	0
5	1	0	1	1	1
6	1	1	0	0	1
7	1	1	1	1	1

Por lo que $Z = \{3, 5, 6, 7\} = A'BC+AB'C+ABC'+ABC'$ Reduciendo por Mapas de Karnaugh

0	1	3	2
4	5	7	6

Queda como resultado

Z=AB+AC+BC

26) Simplifica la siguiente expresión usando mapas de Karnaugh.

X=(A+B'+C)(A'BC')+A'BC'

R: El primer paso es hacer la multiplicación.

X=A'B'+A'C+AB+BC+AC'+B'C'+A'BC'

Ahora agregamos los valores a los mapas.

	A	В	С	Х
0	0	0	0	1
1	0	0	1	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	
4 5 6 7	1	1	0	1
7	1	1	1	1

	4	5	7	6
A	вс			В
A 6	Δ	1	1	
A	J		1	v
С				

Por lo que X=A'+B+C'

27) A partir de la tabla de verdad reducir la función. Z.

R: Usaremos mapas de Karnaugh

	Α	В	С	D	Z
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	Χ
11	1	0	1	1	Χ
12	1	1	0	Ο	X
12 13	1	1	0	1	Χ
14 15	1	1	1	0	Χ
15	1	1	1	1	Χ

Cuando aparecen X en las tablas de verdad, estas también se agregan al mapa de karnaugh, y significa que la X puede tomar el valor que convenga para hacer la reducción, sin que se afecte el resultado final.

	Α	В	С	D	Z
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	1
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	1
9	1	0	0	1	
10	1	0	1	0	Х
11	1	0	1	1	Х
12	1	1	0	0	Х
13	1	1	0	1	Х
14	1	1	1	0	Х
15	1	1	1	1	Х

0	1	3	2
4	5	7	6
12	13	15	14
8	9	11	10

Solo conviene X₁₂ para reducir, las demás x serán 0, por lo que Z=A'B'C´+C'D'

28) A partir de la tabla de verdad siguiente hacer el circuito digital.

Α	В	С	D	Z
0	0	0	0	Χ
0	0	0	1	1
0	0	1	0	0
0	0	1	1	Χ
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

R: Primero obtenemos la función reducida por mapas de Karnugh

t: I IIIIcio obtellelliosia le					
	Α	В	С	D	Z
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	1
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	1
9	1	0	0	1	
10	1	0	1	0	Х
11	1	0	1	1	Х
12	1	1	0	0	Х
13	1	1	0	1	Х
14	1	1	1	0	Х
15	1	1	1	1	Х

0	1	3	2	
4	5	7	6	
12	13	15	14	
8	9	11	10	

El circuito queda

Z=A'C'+A'D+B'D