Dekomposition von Linear-Time Properties

Stefan Walter

Universität Leipzig

30. November 2017

Linear-Time Properties

Literatur

Transitions-Systeme

Transitions-Systeme

2008. ISBN: 026202649X, 9780262026499.

Linear-Time Properties

Motivation

Transitions-System

Definition (Transitions-System TS)

$$TS = (S, Act, \rightarrow, I, AP, L)$$
 mit:

$$\rightarrow \subseteq S \times Act \times S$$
 Transitions- (Übergangs-) Relation

$$I \subseteq S$$
 Menge von initialen Zuständen

$$\subseteq S$$
 Menge von initialen Zustanden AP Menge von atomaren Aussagen

$$L:S
ightarrow 2^{AP}$$
 Labeling-Funktion

Bemerkungen:

- TS endlich, gdw. S, Act und AP endlich
- Notation: $s \stackrel{\alpha}{\to} s'$ gdw. $(s, \alpha, s') \in \to$

Transitions-System

Literatur

Einstieg

Beispiele TS - Ampel

```
Definition (Transitions-System TS)
TS = (S, Act, \rightarrow, I, AP, L) mit:
                   S Menge von Zuständen (States)
                 Act Menge von Aktionen (Actions)
\rightarrow \subseteq S \times Act \times S Transitions- (Übergangs-) Relation
              I \subseteq S Menge von initialen Zuständen
                 AP Menge von atomaren Aussagen
                                         (atomic propositions)
      L:S 
ightarrow 2^{AP} Labeling-Funktion
```

```
Beispiel (vereinfachte Ampel)
```

 $TS_{Ampel} = (S, Act, \rightarrow, I, AP, L)$ mit:

- $Act = \{r-g, g-r\}$
- $AP = \{fahren\}$

5-2

Literatur

Beispiele TS - Ampel

```
Definition (Transitions-System TS)
TS = (S, Act, \rightarrow, I, AP, L) mit:
                   S Menge von Zuständen (States)
                 Act Menge von Aktionen (Actions)
\rightarrow \subseteq S \times Act \times S Transitions- (Übergangs-) Relation
              I \subseteq S Menge von initialen Zuständen
                 AP Menge von atomaren Aussagen
                                         (atomic propositions)
      L:S 
ightarrow 2^{AP} Labeling-Funktion
```


5-4 5-3

Transitions-System

Definition (Transitions-System TS)

 $TS = (S, Act, \rightarrow, I, AP, L)$ mit:

S Menge von Zuständen (States)

Act Menge von Aktionen (Actions)

 $\rightarrow \subseteq S \times Act \times S$ Transitions- (Übergangs-) Relation

 $I \subseteq S$ Menge von initialen Zuständen

AP Menge von atomaren Aussagen (atomic propositions)

 $L: S \rightarrow 2^{AP}$ Labeling-Funktion

Nachfolger

Verhalten von Transitions-Systemen

Definition (Nachfolger)

$$TS = (S, Act, \rightarrow, I, AP, L) \text{ und } s \in S$$

Definiere:

$$\operatorname{Post}(s) = \left\{ s' \in S \mid \exists \alpha \in Act. \ s \xrightarrow{\alpha} s' \right\}$$

5 - 4 6-1

Transitions-System

Definition (Transitions-System TS)

 $TS = (S, Act, \rightarrow, I, AP, L)$ mit:

S Menge von Zuständen (States)

Act Menge von Aktionen (Actions)

 $\rightarrow \subseteq S \times Act \times S$ Transitions- (Übergangs-) Relation

 $I \subseteq S$ Menge von initialen Zuständen

AP Menge von atomaren Aussagen (atomic propositions)

 $L:S
ightarrow 2^{AP}$ Labeling-Funktion

Nachfolger

Verhalten von Transitions-Systemen

Literatur

Definition (Nachfolger)

 $TS = (S, Act, \rightarrow, I, AP, L) \text{ und } s \in S$

Definiere:

$$\operatorname{Post}(s) = \left\{ s' \in S \mid \exists \alpha \in Act. \ s \xrightarrow{\alpha} s' \right\}$$

Beispiel

- $Post(rot) = \{gr\ddot{u}n\}$
- $Post(gr\ddot{u}n) = \{rot\}$

5 - 4 6-2

Transitions-Systeme Verhalten von Transitions-Systemen

Literatur

Transitions-System

Definition (Transitions-System TS)

 $TS = (S, Act, \rightarrow, I, AP, L)$ mit:

S Menge von Zuständen (States)

Act Menge von Aktionen (Actions)

 $\rightarrow \subseteq S \times Act \times S$ Transitions- (Übergangs-) Relation

 $I \subseteq S$ Menge von initialen Zuständen

AP Menge von atomaren Aussagen (atomic propositions)

 $L: S \rightarrow 2^{AP}$ Labeling-Funktion

Terminal State

Definition (Terminal State - Endzustand)

$$TS = (S, Act, \rightarrow, I, AP, L) \text{ und } s \in S$$

Definiere: s heißt Terminal State gdw. $Post(s) = \emptyset$

Verhalten von Transitions-Systemen

Verhalten von Transitions-Systemen

Pfade und Traces - Beispiel

$$\bullet$$
 $\pi = \left(\operatorname{rot} \operatorname{gr\"{u}n}\right)^{\omega}$

• $\hat{\pi} = \text{grün rot grün}$

Pfade - Definition

Definition (Pfadfragment)

$$TS = (S, Act, \rightarrow, I, AP, L)$$

Unendliches Pfadfragment $\pi = s_0 s_1 \ldots \in S^{\omega}$:

mit
$$\forall i > 0. \ s_i \in \operatorname{Post}(s_{i-1})$$

Endliches Pfadfragment $\hat{\pi} = s_0 s_1 \dots s_n \in S^*$, $n \ge 0$:

$$mit \ \forall 0 < i < n. \ s_i \in Post(s_{i-1})$$

Pfade und Traces - Beispiel

$$\bullet$$
 $\pi = \left(\mathsf{rot} \; \mathsf{gr\"{u}n} \right)^\omega \; \mathsf{maximal}, \; \pi \in \mathsf{Paths}(\mathsf{rot})$

• $\hat{\pi} = \text{grün rot grün}$

Pfade - Definition

Verhalten von Transitions-Systemen

Literatur

Definition (Pfadfragment)

$$TS = (S, Act, \rightarrow, I, AP, L)$$

Unendliches Pfadfragment $\pi = s_0 s_1 \ldots \in S^{\omega}$:

$$mit \ \forall i > 0. \ s_i \in \operatorname{Post}(s_{i-1})$$

Endliches Pfadfragment $\hat{\pi} = s_0 s_1 \dots s_n \in S^*, \quad n \geq 0$:

$$mit \ \forall 0 < i < n. \ s_i \in Post(s_{i-1})$$

Maximales Pfadfragment π_{max} :

$$\hat{\pi}$$
 mit Terminal State s_n ; oder π

Für $s \in S$ definiere: $Paths(s) = \{\pi_{max} \mid s_0 = s\}$

Verhalten von Transitions-Systemen

Pfade und Traces - Beispiel

$$\begin{array}{c} \longrightarrow & \text{rot} \\ \\ \text{g-r} & & \\ \hline \text{grün} \\ \\ \text{\{fahren}\} \end{array}$$

- $\pi = (\text{rot gr"un})^{\omega} \text{ maximal, } \pi \in \text{Paths}(\text{rot})$ $\operatorname{trace}(\pi) = (\{\}\{\mathsf{fahren}\})^{\omega}$
- $\hat{\pi} = \text{grün rot grün}$ $trace(\hat{\pi}) = \{fahren\}\{\}\{fahren\}$

Traces - Definition

Verhalten von Transitions-Systemen

Definition (Trace und Trace-Fragment)

 $TS = (S, Act, \rightarrow, I, AP, L)$ ohne Terminal States

• unendliches Pfadfragment $\pi = s_0 s_1 \cdots \in S^{\omega}$

definiere:
$$\operatorname{trace}(\pi) = L(s_0)L(s_1) \cdots \in (2^{AP})^{\omega}$$

• endliches Pfadfragment $\hat{\pi} = s_0 s_1 \dots s_n \in S^*$

definiere:
$$\operatorname{trace}(\hat{\pi}) = L(s_0)L(s_1)\dots L(s_n) \in (2^{AP})^*$$

rot

grün

{fahren}

r-g

g-r

Transitions-Systeme

Linear-Time Properties

Transitions-Systeme

Linear-Time Properties

Verhalten von Transitions-Systemen

Pfade und Traces - Beispiel

- $\pi = (\text{rot grün})^{\omega}$ maximal, $\pi \in \text{Paths}(\text{rot})$ $trace(\pi) = (\{\}\{fahren\})^{\omega}$ $\in \operatorname{Traces}(\operatorname{rot}), \in \operatorname{Traces}(TS_{Ampel})$
- $\hat{\pi} = \text{grün rot grün}$

 $trace(\hat{\pi}) = \{fahren\}\{\}\{fahren\}$

Traces - Definition

Literatur

```
Definition (Trace und Trace-Fragment)
```

$$TS = (S, Act, \rightarrow, I, AP, L)$$
 ohne Terminal States
• unendliches Pfadfragment $\pi = s_0 s_1 \cdots \in S^{\omega}$

definiere:
$$\operatorname{trace}(\pi) = L(s_0)L(s_1)\dots \in (2^{AP})^{\omega}$$

• endliches Pfadfragment
$$\hat{\pi} = s_0 s_1 \dots s_n \in S^*$$

definiere:
$$\operatorname{trace}(\hat{\boldsymbol{\pi}}) = L(s_0)L(s_1)\dots L(s_n) \in (2^{AP})^*$$

• Mengen von Pfaden
$$\Pi$$
: $\operatorname{trace}(\Pi) = \bigcup_{\pi \in \Pi} \operatorname{trace}(\pi)$

•
$$s \in S$$
: Traces $(s) = \text{trace} \left(\text{Paths}(s) \right)$
• TS : Traces $(TS) = \bigcup \text{Traces}(s)$

Systeme Lii

 Transitions-Systeme

Lin

Literatur

Einstieg

Linear-Time Property

Motivation: Formalisierung Eigenschaften eines TS

Definition (Linear-Time Property
$$P$$
 über \overline{AP})

$$P \subseteq (2^{AP})^{\omega}$$

Literatur

Transitions-Systeme

Linear-Time Properties

Einstieg

Linear-Time Property

Motivation: Formalisierung Eigenschaften eines TS

Definition (Linear-Time Property P über AP)

$$P \subseteq (2^{AP})^{\omega}$$

Definition (Erfüllbarkeit / Verifikation von LT-Properties)

$$TS = (S, Act, \rightarrow, I, AP, L)$$
 ohne Terminal States; $s \in S$

TS bzw. s erfüllt (satisfies) P gdw.

$$\operatorname{Traces}(TS) \subseteq P$$
 bzw. $\operatorname{Traces}(s) \subseteq P$

Notation:
$$TS \models P$$
 bzw. $s \models P$

Transitions-Systeme

Linear-Time Properties

Literatur

Transitions-Systeme

Linear-Time Properties

Invarianten

Invarianten

Modellierung von z. B. Mutual Exclusion, Deadlock-Freiheit

Definition (Invariante P_{inv})

LT-Property P_{inv} über AP ist Invariante, gdw.

 \exists aussagenlogische Formel Φ über AP.

$$P_{inv} = \left\{ A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \forall i \ge 0. \ A_i \models \Phi \right\}$$

Invarianten

11 - 1

Invarianten

Literatur

Beispiel Überprüfen von Invarianten - Tiefensuche

Bemerkung: Algorithmus gilt nur für endliche TS

Beispiel

Ampelkreuzung mit zwei Ampeln und $AP = \{fahren_i\}, i \in \{1, 2\}$

In keinem Zustand dürfen beide Richtungen gleichzeitig fahren.

$$P_{inv} = \left\{\sigma = A_0 A_1 ... \in (2^{AP})^\omega \mid \forall A_i. \; \{\mathsf{fahren}_1, \mathsf{fahren}_2\} \not\subseteq A_i\right\}$$

R - Menge besuchter Zustände

U - Stack; aktuelle Position/Pfad-Fragment

eingefärbt $\in R$ (grün [rot]: Invariante gilt [nicht])

Beispiel Überprüfen von Invarianten - Tiefensuche

Abbildung: bewusst falsch modellierte Ampelkreuzung (ohne Act)

$$R = \{\}$$

$$U =$$
\$

11 - 2

Invarianten

Invarianten Beispiel Überprüfen von Invarianten - Tiefensuche

Bemerkung: Algorithmus gilt nur für endliche TS

Beispiel

Literatur

Ampelkreuzung mit zwei Ampeln und $AP = \{fahren_i\}, i \in \{1, 2\}$

In keinem Zustand dürfen beide Richtungen gleichzeitig fahren.

$$P_{inv} = \left\{\sigma = A_0 A_1 ... \in (2^{AP})^\omega \mid \forall A_i. \; \{\mathsf{fahren}_1, \mathsf{fahren}_2\} \not\subseteq A_i\right\}$$

R - Menge besuchter Zustände

U - Stack; aktuelle Position/Pfad-Fragment

eingefärbt $\in R$ (grün [rot]: Invariante gilt [nicht])

Beispiel Überprüfen von Invarianten - Tiefensuche

Abbildung: bewusst falsch modellierte Ampelkreuzung (ohne Act)

$$R = \{(\mathsf{rot}_1, \mathsf{rot}_2)\}$$

$$U = \$(\mathsf{rot}_1, \mathsf{rot}_2)$$

11 - 4 11 - 3

Invarianten

11 - 5

Invarianten

Literatur

Beispiel Überprüfen von Invarianten - Tiefensuche

Bemerkung: Algorithmus gilt nur für endliche TS

Beispiel

Ampelkreuzung mit zwei Ampeln und $AP = \{fahren_i\}, i \in \{1, 2\}$

In keinem Zustand dürfen beide Richtungen gleichzeitig fahren.

$$P_{inv} = \left\{\sigma = A_0 A_1 ... \in (2^{AP})^{\omega} \mid \forall A_i. \; \{\mathsf{fahren}_1, \mathsf{fahren}_2\} \not\subseteq A_i\right\}$$

R - Menge besuchter Zustände

U - Stack; aktuelle Position/Pfad-Fragment

eingefärbt $\in R$ (grün [rot]: Invariante gilt [nicht])

Beispiel Überprüfen von Invarianten - Tiefensuche

Abbildung: bewusst falsch modellierte Ampelkreuzung (ohne Act)

$$R = \{(\mathsf{rot}_1, \mathsf{rot}_2), (\mathsf{rot}_1, \mathsf{gr\ddot{u}n}_2)\}$$

$$U = \$(\mathsf{rot}_1, \mathsf{rot}_2)(\mathsf{rot}_1, \mathsf{gr\ddot{u}n}_2)$$

11-6

Invarianten Beispiel Überprüfen von Invarianten - Tiefensuche

Bemerkung: Algorithmus gilt nur für endliche TS

Beispiel

Literatur

Ampelkreuzung mit zwei Ampeln und $AP = \{fahren_i\}, i \in \{1, 2\}$

In keinem Zustand dürfen beide Richtungen gleichzeitig fahren.

$$P_{inv} = \left\{\sigma = A_0 A_1 ... \in (2^{AP})^\omega \mid \forall A_i. \; \{\mathsf{fahren}_1, \mathsf{fahren}_2\} \not\subseteq A_i\right\}$$

R - Menge besuchter Zustände

U - Stack; aktuelle Position/Pfad-Fragment

eingefärbt $\in R$ (grün [rot]: Invariante gilt [nicht])

Beispiel Überprüfen von Invarianten - Tiefensuche

Abbildung: bewusst falsch modellierte Ampelkreuzung (ohne Act)

$$R = \{(\mathsf{rot}_1, \mathsf{rot}_2), (\mathsf{rot}_1, \mathsf{gr\ddot{u}n}_2)\}$$

$$U = \$(\mathsf{rot}_1, \mathsf{rot}_2)$$

11 - 8 11 - 7

Invarianten

Invarianten Beispiel Überprüfen von Invarianten - Tiefensuche

Bemerkung: Algorithmus gilt nur für endliche TS

Beispiel

Literatur

Ampelkreuzung mit zwei Ampeln und $AP = \{fahren_i\}, i \in \{1, 2\}$

In keinem Zustand dürfen beide Richtungen gleichzeitig fahren.

$$P_{inv} = \left\{ \sigma = A_0 A_1 ... \in (2^{AP})^\omega \mid \forall A_i. \; \{\mathsf{fahren}_1, \mathsf{fahren}_2\} \not\subseteq A_i
ight\}$$

R - Menge besuchter Zustände

U - Stack; aktuelle Position/Pfad-Fragment

eingefärbt $\in R$ (grün [rot]: Invariante gilt [nicht])

Beispiel Überprüfen von Invarianten - Tiefensuche

Abbildung: bewusst falsch modellierte Ampelkreuzung (ohne Act)

$$R = \{(\mathsf{rot}_1, \mathsf{rot}_2), (\mathsf{rot}_1, \mathsf{gr\ddot{u}n}_2), (\mathsf{gr\ddot{u}n}_1, \mathsf{rot}_2)\}$$

$$U = \$(\mathsf{rot}_1, \mathsf{rot}_2)(\mathsf{gr\ddot{u}n}_1, \mathsf{rot}_2)$$

11 - 10

Invarianten Beispiel Überprüfen von Invarianten - Tiefensuche

Bemerkung: Algorithmus gilt nur für endliche TS

Beispiel

Literatur

Ampelkreuzung mit zwei Ampeln und $AP = \{fahren_i\}, i \in \{1, 2\}$

In keinem Zustand dürfen beide Richtungen gleichzeitig fahren.

$$P_{inv} = \left\{\sigma = A_0 A_1 ... \in (2^{AP})^\omega \mid orall A_i. \; \{\mathsf{fahren}_1, \mathsf{fahren}_2\} \not\subseteq A_i
ight\}$$

R - Menge besuchter Zustände

U - Stack; aktuelle Position/Pfad-Fragment

eingefärbt $\in R$ (grün [rot]: Invariante gilt [nicht])

Beispiel Überprüfen von Invarianten - Tiefensuche

Abbildung: bewusst falsch modellierte Ampelkreuzung (ohne Act)

$$R = \{(\mathsf{rot}_1, \mathsf{rot}_2), (\mathsf{rot}_1, \mathsf{gr\"un}_2), (\mathsf{gr\"un}_1, \mathsf{rot}_2)(\mathsf{gr\"un}_1, \mathsf{gr\"un}_2)\}$$

$$U = \$(\mathsf{rot}_1, \mathsf{rot}_2)(\mathsf{gr\ddot{u}n}_1, \mathsf{rot}_2)(\mathsf{gr\ddot{u}n}_1, \mathsf{gr\ddot{u}n}_2)$$

Invarianten

Invarianten

Literatur

Beispiel Überprüfen von Invarianten - Tiefensuche

Bemerkung: Algorithmus gilt nur für endliche TS

Beispiel

Ampelkreuzung mit zwei Ampeln und $AP = \{fahren_i\}, i \in \{1, 2\}$

In keinem Zustand dürfen beide Richtungen gleichzeitig fahren.

$$P_{inv} = \left\{\sigma = A_0 A_1 ... \in (2^{AP})^\omega \mid \forall A_i. \; \{\mathsf{fahren}_1, \mathsf{fahren}_2\} \not\subseteq A_i\right\}$$

R - Menge besuchter Zustände

U - Stack; aktuelle Position/Pfad-Fragment

eingefärbt $\in R$ (grün [rot]: Invariante gilt [nicht])

Beispiel Überprüfen von Invarianten - Tiefensuche

Abbildung: bewusst falsch modellierte Ampelkreuzung (ohne Act)

$$R = \{(\mathsf{rot}_1, \mathsf{rot}_2), (\mathsf{rot}_1, \mathsf{gr\"{u}n}_2), (\mathsf{gr\"{u}n}_1, \mathsf{rot}_2)(\mathsf{gr\"{u}n}_1, \mathsf{gr\"{u}n}_2)\}$$

$$U = \$(\mathsf{rot}_1, \mathsf{rot}_2)(\mathsf{gr\ddot{u}n}_1, \mathsf{rot}_2)(\mathsf{gr\ddot{u}n}_1, \mathsf{gr\ddot{u}n}_2)$$

Safety Properties

s-Systeme

Linear-Time Properties

Literatur Transitions-Systeme

Safety Properties

Linear-Time Properties

Präfix

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^\omega$ und LT-Property $P \subseteq (2^{AP})^\omega$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i \ge 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Safety Properties

Transitions-Systeme

Linear-Time Properties Literatur

Safety Properties

Transitions-Systeme

Linear-Time Properties

Präfix

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i \ge 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Beispiel (Präfix)

Sei
$$AP = \{fahren\}.$$

Betrachte $\sigma = (\{rot\}\{gr\ddot{u}n\})^{\omega}$

$$\operatorname{pref}(\sigma) = \left\{\epsilon, \{\}, \{\}\{\mathsf{fahren}\}, \{\}\{\mathsf{fahren}\}\}, \dots\right\}$$

Safety Properties

Literatur Tra

Transitions-Systeme Cocco Coc

Safety Properties

Safety Property

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

 $\neg P_{safe} \implies \exists$ endliches Trace-Fragment, das P_{safe} verletzt

12-4

Safety Property - Beispiel

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Safety Property - Beispiel

Beispiel

Literatur

Safety Properties

Computer mit $AP = \{an, aus, startet, beendet\}$

Direkt nach dem Herunterfahren soll der Computer aus sein:

$$P_{safe} = \left\{ A_0 A_1 ... \mid \forall A_i. \; \{ \mathsf{beendet} \} \subseteq A_i \Rightarrow \{ \mathsf{aus} \} \subseteq A_{i+1} \right\}$$

Beispiel bad prefix: {an}{beendet}{an}

14-2

Liveness Properties

Liveness Properties

Liveness Property

Modellierung von z. B. . . . (mit $\{ap\} \in AP$)

- Eventualität: $P = \{A_0 A_1 \dots \mid \exists i \geq 0. \ ap \in A_i\}$
- wiederholte Eventualität:

$$P = \{A_0 A_1 \dots \mid \forall i \ge 0. \ \exists j \ge i. \ ap \in A_j\}$$

Liveness Properties

Liveness Properties

Liveness Property

Modellierung von z. B. . . . (mit $\{ap\} \in AP$)

- Eventualität: $P = \{A_0 A_1 \dots \mid \exists i \geq 0. \ ap \in A_i\}$
- wiederholte Eventualität:

$$P = \{A_0 A_1 \dots \mid \forall i \ge 0. \ \exists j \ge i. \ ap \in A_j\}$$

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

 $\neg P_{live} \implies \exists$ unendliches Trace-Fragment, das P_{live} verletzt

Dekompositions-Theorem

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe})\right)\right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$closure(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Dekompositions-Theorem

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{line}) = (2^{AP})^*$$

Dekompositions-Theorem

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$closure(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

⇒ alternative Definition für Safety und Liveness: (ohne Beweis)

$$closure(P_{safe}) = P_{safe}$$

$$\operatorname{closure}(P_{live}) = (2^{AP})^{\omega}$$

Dekompositions-Theorem

Dekompositions-Theorem

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{line}) = (2^{AP})^*$$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$\operatorname{closure}(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

alternative Definition für Safety und Liveness: (ohne Beweis)

$$closure(P_{safe}) = P_{safe}$$

$$\operatorname{closure}(P_{line}) = (2^{AP})^{\omega}$$

Lemma (Distributivität von Vereinigung und closure)

$$\forall P, P' \subseteq (2^{AP})^{\omega}$$
 gilt:

$$\operatorname{closure}(P) \cup \operatorname{closure}(P') = \operatorname{closure}(P \cup P')$$

(ohne Beweis)

Dekompositions-Theorem

Dekompositions-Theorem

Literatur

Dekompositions-Theorem

Motivation: separate Verifikation einfacher

Satz (Dekomposition von Linear-Time Properties)

$$\forall P\subseteq (2^{AP})^{\omega}. \ \exists P_{safe}\subseteq (2^{AP})^{\omega} \ \textit{und} \ P_{live}\subseteq (2^{AP})^{\omega}$$

 P_{safe} ist Safety P. und P_{live} ist Liveness P., sodass

$$P = P_{safe} \cap P_{live}$$

Dekompositions-Theorem

Literatur

Dekompositions-Theorem Beweis

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$\operatorname{closure}(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Dekompositions-Theorem Beweis

Beweis.

Sei
$$P \subseteq (2^{AP})^{\omega}$$

Es gilt:
$$P \subseteq \operatorname{closure}(P) \subseteq (2^{AP})^{\omega}$$

Dekompositions-Theorem

Literatur

Dekompositions-Theorem Beweis

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$\operatorname{closure}(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Beweis. Sei
$$P\subseteq (2^{AP})^\omega$$
 Es gilt: $P\subseteq \operatorname{closure}(P)\subseteq (2^{AP})^\omega$ Closure (P)

Dekompositions-Theorem Beweis

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$\operatorname{closure}(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Dekompositions-Theorem Beweis

Literatur

Dekompositions-Theorem Beweis

Dekompositions-Theorem Beweis

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$\operatorname{closure}(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

$$P = \underbrace{\operatorname{closure}(P)}_{=P_{safe}} \cap \underbrace{\left(P \cup \left((2^{AP})^{\omega} \setminus \operatorname{closure}(P)\right)\right)}_{=P_{live}}$$

• zu zeigen: $P_{safe} = \operatorname{closure}(P)$ ist Safety Property

$$\sigma \in (2^{AP})^{\omega} \setminus \operatorname{closure}(P) \iff \operatorname{pref}(\sigma) \not\subseteq \operatorname{pref}(P)$$
$$\iff \exists \hat{\sigma} \in \operatorname{pref}(\sigma). \ \hat{\sigma} \not\in \operatorname{pref}(P)$$

19-2

Dekompositions-Theorem Beweis

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$\operatorname{closure}(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

Dekompositions-Theorem Beweis

Beweis.

Literatur

② z.z.: $P_{live} = P \cup ((2^{AP})^{\omega} \setminus \operatorname{closure}(P))$ ist Liveness Property

äquivalente Definition: $\operatorname{closure}(P_{live}) = (2^{AP})^{\omega}$

" \subseteq " closure $(P_{live}) \subseteq (2^{AP})^{\omega}$ gilt immer

Dekompositions-Theorem Beweis

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$closure(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Definition (Liveness Property P_{live})

LT-Property P_{line} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

Lemma (Distributivität von Vereinigung und closure)

$$\forall P, P' \subseteq (2^{AP})^{\omega}$$
 gilt:

$$\operatorname{closure}(P) \cup \operatorname{closure}(P') = \operatorname{closure}(P \cup P')$$

Dekompositions-Theorem Beweis

Beweis. ② z.z.: $P_{live} = P \cup ((2^{AP})^{\omega} \setminus \operatorname{closure}(P))$ ist Liveness Property äquivalente Definition: $\operatorname{closure}(P_{live}) = (2^{AP})^{\omega}$ " \subseteq " closure $(P_{live}) \subseteq (2^{AP})^{\omega}$ gilt immer "\sum \closure(P_{live}) = \closure\left(P \cup \left((2^{AP})^\omega \subset \closure(P)\right)\right) $\stackrel{Distr.}{=} \operatorname{closure}(P) \cup \operatorname{closure}\left((2^{AP})^{\omega} \setminus \operatorname{closure}(P)\right)$ $\begin{array}{c} \operatorname{closure}(P') \supseteq P' \\ \supseteq \\ \operatorname{Mon.} \cup \operatorname{bzgl.} \subseteq \end{array} \\ \operatorname{closure}(P) \cup \left((2^{AP})^{\omega} \setminus \operatorname{closure}(P) \right) = (2^{AP})^{\omega}$

Linear-Time Properties

Literatur

Transitions-Systeme

Backup Slides

Linear-Time Properties

Transitions-Systeme

Literatur

Sharpest Decomposition

Sharpest Decomposition

Lemma (Sharpest Decomposition)

LT-Property $P \subseteq (2^{AP})^{\omega}$ mit $P = P_{safe} \cap P_{live}$.

Transitions-Systeme

 P_{safe} ist Safety P. und P_{live} ist Liveness P. Es gilt:

- \bullet closure $(P) \subseteq P_{safe}$
- $P_{live} \subseteq P \cup \left((2^{AP})^{\omega} \setminus \text{closure}(P) \right)$

Lemma (Sharpest Decomposition)

LT-Property $P \subseteq (2^{AP})^{\omega}$ mit $P = P_{safe} \cap P_{live}$.

 P_{safe} ist Safety P. und P_{live} ist Liveness P. Es gilt:

- closure(P) $\subseteq P_{safe}$
- $P_{live} \subseteq P \cup ((2^{AP})^{\omega} \setminus \operatorname{closure}(P))$

Wir verwenden: (teilweise ohne Beweis)

- Monotonie von closure und ⊂
- alternative Def. Safety
- Monotonie von \ und ⊂
- OeMorgan

Beweis.

Dekompositions-Theorem

• closure(
$$P$$
) = closure($P_{safe} \cap P_{live}$)
$$\stackrel{a}{\subseteq} \text{closure}(P_{safe}) \stackrel{b}{=} P_{safe}$$

Lemma (Sharpest Decomposition)

LT-Property $P\subseteq (2^{AP})^{\omega}$ mit $P=P_{safe}\cap P_{live}$.

 P_{safe} ist Safety P. und P_{live} ist Liveness P. Es gilt:

- **1** closure(P) ⊆ P_{safe}
- $P_{live} \subseteq P \cup ((2^{AP})^{\omega} \setminus \operatorname{closure}(P))$

Wir verwenden: (teilweise ohne Beweis)

- alternative Def. Safety
- Monotonie von \ und ⊂
- DeMorgan

Beweis.

• closure(P) = closure($P_{safe} \cap P_{live}$)

$$\stackrel{a}{\subseteq} \operatorname{closure}(P_{safe}) \stackrel{b}{=} P_{safe}$$

② Widerspruch: Sei $\sigma \notin P \cup ((2^{AP})^{\omega} \setminus \operatorname{closure}(P))$. zu zeigen: $\sigma \notin P_{line}$

$$(2^{AP})^{\omega} \setminus \left(P \cup \left((2^{AP})^{\omega} \setminus \operatorname{closure}(P)\right)\right)$$

$$= \operatorname{closure}(P) \setminus P$$

$$\stackrel{1,c}{\subseteq} P_{safe} \setminus (P_{safe} \cap P_{live})$$

$$\stackrel{d}{=} \left(P_{safe} \setminus P_{safe}\right) \cup \left(P_{safe} \setminus P_{live}\right)$$

$$= P_{safe} \setminus P_{live}$$

Also $\sigma \notin P_{live}$.

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^\omega$ und LT-Property $P \subseteq (2^{AP})^\omega$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$closure(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Lemma (Monotonie von pref und closure bzgl. \subseteq)

$$\forall P, P' \subseteq (2^{AP})^{\omega} \text{ gilt: } P \subseteq P' \implies \dots$$

Dekompositions-Theorem

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$closure(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Lemma (Monotonie von pref und closure bzgl. \subseteq)

 $\forall P, P' \subseteq (2^{AP})^{\omega} \text{ gilt: } P \subseteq P' \implies \dots$

Beweis.

Annahme: $P \subseteq P'$

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$closure(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Lemma (Monotonie von pref und closure bzgl. \subseteq)

 $\forall P, P' \subseteq (2^{AP})^{\omega} \text{ gilt: } P \subseteq P' \implies \dots$

- \bullet ... $\operatorname{pref}(P) \subseteq \operatorname{pref}(P')$

Beweis.

Annahme: $P \subseteq P'$ also $\forall \sigma \in P$. $\sigma \in P'$

Dekompositions-Theorem

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\{\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0\}}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$closure(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Lemma (Monotonie von pref und closure bzgl. \subseteq)

 $\forall P, P' \subseteq (2^{AP})^{\omega} \text{ gilt: } P \subseteq P' \implies \dots$

Beweis.

Annahme: $P \subseteq P'$ also $\forall \sigma \in P$. $\sigma \in P'$

• trivial: Annahme $\stackrel{Def.}{\Longleftrightarrow} \forall \sigma \in P. \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P')$

$$\stackrel{Def.}{\iff} \operatorname{pref}(P) \subset \operatorname{pref}(P')$$

Dekompositions-Theorem

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$closure(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Lemma (Monotonie von pref und closure bzgl. \subseteq)

 $\forall P, P' \subseteq (2^{AP})^{\omega} \text{ gilt: } P \subseteq P' \implies \dots$

- \bullet ... $\operatorname{pref}(P) \subseteq \operatorname{pref}(P')$

Beweis.

Annahme: $P \subseteq P'$ also $\forall \sigma \in P$. $\sigma \in P'$

• trivial: Annahme $\stackrel{Def.}{\iff} \forall \sigma \in P. \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P')$

$$\stackrel{Def.}{\iff} \operatorname{pref}(P) \subseteq \operatorname{pref}(P')$$

 $\begin{array}{c|c} \textbf{2} & \operatorname{closure}(P) \stackrel{Def.}{=} \{\sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P)\} \\ & \stackrel{Ann.}{\subseteq} \{\sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P')\} \\ & \stackrel{Def.}{=} \operatorname{closure}(P') \end{array}$

Dekompositions-Theorem

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$closure(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Lemma (Distributivität von Vereinigung und pref)

$$\forall P, P' \subseteq (2^{AP})^{\omega}$$
 gilt:

$$\operatorname{pref}(P) \cup \operatorname{pref}(P') = \operatorname{pref}(P \cup P')$$

Beweis.

$$\hat{\sigma} \in \operatorname{pref}(P) \cup \operatorname{pref}(P') \iff \exists \sigma \in P \cup P'. \ \hat{\sigma} \in \operatorname{pref}(\sigma) \\ \iff \hat{\sigma} \in \operatorname{pref}(P \cup P')$$

٦J

Dekompositions-Theorem

Beweis Lemma Distributivität Vereinigung closure

Lemma (Distributivität von Vereinigung und closure)

$$\forall P, P' \subseteq (2^{AP})^{\omega}$$
 gilt:

$$\operatorname{closure}(P) \cup \operatorname{closure}(P') = \operatorname{closure}(P \cup P')$$

Beweis.

Lemma (Distributivität von Vereinigung und closure)

$$\forall P, P' \subseteq (2^{AP})^{\omega}$$
 gilt:

$$\operatorname{closure}(P) \cup \operatorname{closure}(P') = \operatorname{closure}(P \cup P')$$

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subset (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$\operatorname{closure}(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

" \subset " $P \subset P \cup P' \stackrel{Mon.}{\Longrightarrow} \operatorname{closure}(P) \subseteq \operatorname{closure}(P \cup P')$, analog $P' \subseteq P \cup P' \stackrel{Mon.}{\Longrightarrow} \operatorname{closure}(P') \subseteq \operatorname{closure}(P \cup P')$ also $\operatorname{closure}(P) \cup \operatorname{closure}(P') \subseteq \operatorname{closure}(P \cup P')$

"\[\]" Sei $\sigma \in \operatorname{closure}(P \cup P')$

 $\stackrel{Def.}{\iff} \operatorname{pref}(\sigma) \subset \operatorname{pref}(P \cup P') \stackrel{Dist.}{=} \operatorname{pref}(P) \cup \operatorname{pref}(P')$ umschreiben ergibt:

$$\operatorname{pref}(\sigma) = \underbrace{\left(\operatorname{pref}(\sigma) \cap \operatorname{pref}(P)\right)}_{1} \cup \underbrace{\left(\operatorname{pref}(\sigma) \cap \operatorname{pref}(P')\right)}_{2}$$

- \bullet $\sigma \in (2^{AP})^{\omega} \Rightarrow \operatorname{pref}(\sigma)$ unendlich
- \Rightarrow 3 Fälle: entweder 1 oder 2 oder beide unendlich

Lemma (Distributivität von Vereinigung und closure)

$$\forall P, P' \subseteq (2^{AP})^{\omega}$$
 gilt:

$$\operatorname{closure}(P) \cup \operatorname{closure}(P') = \operatorname{closure}(P \cup P')$$

Definition (Präfix)

Trace $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ und LT-Property $P \subseteq (2^{AP})^{\omega}$

Definiere:

- $\operatorname{pref}(\sigma) = {\hat{\sigma} = A_0 A_1 \dots A_i \in (2^{AP})^* \mid i > 0}$
- $\operatorname{pref}(P) = \bigcup_{\sigma \in P} \operatorname{pref}(\sigma)$

Definition (Closure/Hülle)

LT-Property $P \subseteq (2^{AP})^{\omega}$; definiere:

$$\operatorname{closure}(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) \}$$

Beweis.

" \supseteq " Gelte o.B.d.A. Fall 1: $\operatorname{pref}(\sigma) \cap \operatorname{pref}(P)$ unendlich

Dann gilt: $\operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P)$

Widerspruchsbeweis: Sei $\widehat{\sigma} \in \operatorname{pref}(\sigma) \setminus \operatorname{pref}(P)$ mit $k = |\widehat{\sigma}|$

Fall 2 $\Longrightarrow \exists \widehat{\sigma'} \in \operatorname{pref}(\sigma) \cap \operatorname{pref}(P). \ |\widehat{\sigma'}| > k$ $\Longrightarrow \exists \sigma' \in P. \ \widehat{\sigma'} \in \operatorname{pref}(\sigma')$

 $\implies \widehat{\sigma} \in \operatorname{pref}(\widehat{\sigma'}) \subseteq \operatorname{pref}(P)$

 $\implies \widehat{\sigma} \in \operatorname{pref}(P)$

Per Def.: $\sigma \in \operatorname{closure}(P)$ und $\sigma \in \operatorname{closure}(P) \cup \operatorname{closure}(P')$

Dekompositions-Theorem

Dekompositions-Theorem

Dekompositions-Theorem

Dekompositions-Theorem

Dekompositions-Theorem

Dekompositions-Theorem

Paths und Traces - Beispiele

infinite Path Fragment:

•
$$\pi_1 = 12111 \cdots = 121^{\omega}$$
 initial, maximal, also $\pi_1 \in \text{Paths}(TS)$

•
$$\pi_2 = 221212 \cdots = 22(12)^{\omega}$$
 initial, maximal, $\pi_2 \in \text{Paths}(TS)$

finite Path Fragment:

•
$$\hat{\pi}_1 = 111$$
 initial

•
$$\hat{\pi}_2 = 2211$$
 initial

Dekompositions-Theorem

Dekompositions-Theorem

Paths und Traces - Beispiele

infinite Path Fragment:

- $\pi_1 = 12111 \cdots = 121^{\omega}$ initial, maximal, also $\pi_1 \in \text{Paths}(TS)$ $\operatorname{trace}(\pi_1) = \{r_2\}\{x_2, r_2, y_2\}\{r_2\}^{\omega}$
- $\pi_2 = 221212 \cdots = 22(12)^{\omega}$ initial, maximal, $\pi_2 \in \text{Paths}(TS)$ $\operatorname{trace}(\pi_2) = \{x_2, r_2, y_2\}^2 (\{r_2\} \{x_2, r_2, y_2\})^{\omega}$

finite Path Fragment:

- $\hat{\pi}_1 = 111$ initial
- $\hat{\pi}_2 = 2211$ initial

Beispielaufgaben

Literatur
O

Dekompositions-Theorem

Transitions-Systeme

Linear-Time Properties

0000000000000000000000

. . -

TS mit
$$AP=\{x=0,x>1\}.$$
 Formuliere als LT-Property P : • false $P=\emptyset$

TS mit $AP = \{x = 0, x > 1\}$. Formuliere als LT-Property P:

Dekompositions-Theorem

Exercise 3.5.

• false
$$P=\emptyset$$
• am Anfang gilt: $x=0$

$$P=\{A\sigma \mid \{x=0\} \in A \ \land \ \sigma \in (2^{AP})^{\omega}\}$$

29 - 4

Exercise 3.5.

Dekompositions-Theorem

TS mit
$$AP = \{x = 0, x > 1\}$$
. Formuliere als LT-Property P :

• false
$$P = \emptyset$$
• am Anfang gilt: $x = 0$

$$\begin{array}{l} \bullet \quad \text{am Anfang gilt: } x=0 \\ P=\{A\sigma \mid \{x=0\} \in A \ \land \ \sigma \in (2^{AP})^\omega \} \end{array}$$

am Anfang gilt:
$$x \neq 0$$

$$P = \left\{ A\sigma \mid \{x > 1\} \in A \ \land \ \sigma \in (2^{AP})^{\omega} \right\}$$

Dekompositions-Theorem

Dekompositions-Theorem

Exercise 3.5.

TS mit $AP = \{x = 0, x > 1\}$. Formuliere als LT-Property P:

• am Anfang gilt:
$$x=0$$

$$P=\{A\sigma\mid \{x=0\}\in A\ \land\ \sigma\in (2^{AP})^\omega\}$$

• am Anfang gilt:
$$x \neq 0$$

$$P = \{A\sigma \mid \{x > 1\} \in A \ \land \ \sigma \in (2^{AP})^{\omega}\}$$

$$\begin{array}{l} \text{ am Anfang ist } x=0 \text{, aber irgendwann } x>1 \\ P=&\{A\sigma\mid \{x=0\}\in A \ \land \ \sigma\in (2^{AP})^\omega\} \\ & \cap \{A_0A_1A_2\cdots\in (2^{AP})^\omega\mid \exists i\geq 0.\ \{x>1\}\subseteq A_j\} \end{array}$$

Dekompositions-Theorem

Exercise 3.5.

TS mit $AP = \{x = 0, x > 1\}$. Formuliere als LT-Property P:

$$\begin{array}{l} \bullet \quad \text{am Anfang gilt: } x=0 \\ P=\{A\sigma \mid \{x=0\} \in A \ \land \ \sigma \in (2^{AP})^\omega \} \end{array}$$

am Anfang ist
$$x=0$$
, aber irgendwann $x>1$
$$P = \{A\sigma \mid \{x=0\} \in A \land \sigma \in (2^{AP})^{\omega}\}$$

$$\cap \{A_0A_1A_2 \cdots \in (2^{AP})^{\omega} \mid \exists i \geq 0. \ \{x>1\} \subseteq A_i\}$$

$$x > 1$$
 nur endlich oft $P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \exists i \geq 0. \ \forall j \geq i. \ \{x > 1\} \not\subseteq A_i\}$

Dekompositions-Theorem

Exercise 3.5.

TS mit $AP = \{x = 0, x > 1\}$. Formuliere als LT-Property P:

$$\bullet$$
 am Anfang gilt: $x=0$
$$P=\{A\sigma\mid \{x=0\}\in A\ \land\ \sigma\in (2^{AP})^\omega\}$$

• am Anfang gilt:
$$x \neq 0$$

 $P = \{A\sigma \mid \{x > 1\} \in A \land \sigma \in (2^{AP})^{\omega}\}$

a am Anfang ist
$$x=0$$
, aber irgendwann $x>1$
$$P = \{A\sigma \mid \{x=0\} \in A \ \land \ \sigma \in (2^{AP})^{\omega}\}$$

$$\cap \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \exists i \ge 0. \{x > 1\} \subseteq A_j\}$$

$$x > 1$$
 nur endlich oft $P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \exists i \geq 0. \ \forall j \geq i. \ \{x > 1\} \not\subseteq A_i\}$

$$\begin{array}{l} \text{ } \textbf{ } x>1 \text{ unendlich oft} \\ P=\left\{A_0A_1A_2\cdots \in (2^{AP})^\omega \mid \forall i\geq 0. \ \exists j\geq i. \ \{x>1\}\subseteq A_j \right\} \end{array}$$

Dekompositions-Theorem

Linear-Time Properties

TS mit
$$AP = \{x = 0, x > 1\}$$
. Formuliere als LT-Property P :

• am Anfang gilt:
$$x \neq 0$$

$$P = \{ A\sigma \mid \{x > 1\} \in A \land \sigma \in (2^{AP})^{\omega} \}$$

1 am Anfang ist
$$x=0$$
, aber irgendwann $x>1$
$$P = \{A\sigma \mid \{x=0\} \in A \land \sigma \in (2^{AP})^{\omega}\}$$
$$\cap \{A_0A_1A_2\dots \in (2^{AP})^{\omega} \mid \exists i>0. \ \{x>1\} \subseteq A_i\}$$

$$x > 1$$
 nur endlich oft $P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \exists i \geq 0. \ \forall j \geq i. \ \{x > 1\} \not\subseteq A_i\}$

$$P = \{ A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \forall i \ge 0. \ \exists j \ge i. \ \{x > 1\} \subseteq A_j \}$$

Linear-Time Properties

TS mit
$$AP = \{x = 0, x > 1\}$$
. Formuliere als LT-Property P :

• false
$$P = \emptyset$$

$$\bullet \ \ \text{am Anfang gilt:} \ x=0$$

$$P = \{ A\sigma \mid \{x = 0\} \in A \land \sigma \in (2^{AP})^{\omega} \}$$

am Anfang gilt:
$$x \neq 0$$

• am Anfang gilt:
$$x \neq 0$$

$$P = \left\{ A\sigma \mid \{x > 1\} \in A \ \land \ \sigma \in (2^{AP})^{\omega} \right\}$$

am Anfang ist
$$x=0$$
, aber irgendwann $x>1$
$$P=\left\{A\sigma\mid\{x=0\}\in A\ \land\ \sigma\in(2^{AP})^{\omega}\right\}$$

$$P = \{A\sigma \mid \{x = 0\} \in A \land \sigma \in (2^{AP})^{\omega} \}$$
$$\cap \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \exists i > 0. \{x > 1\} \subseteq A_i\}$$

$$x > 1$$
 nur endlich oft $P = \int A_0 A_1 A_2 \dots \in C$

$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \exists i \ge 0. \ \forall j \ge i. \ \{x > 1\} \not\subseteq A_j\}$$

•
$$x > 1$$
 unendlich oft $P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \forall i > 0. \ \exists j > i. \ \{x > 1\} \subseteq A_i\}$

• true
$$P = (2^{AP})^{\omega}$$

Exercise 3.6.

Literatur

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

Exercise 3.6.

Dekompositions-Theorem

$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \forall i \geq 0 A \notin A_i \}$$
 Invariante

Exercise 3.6.

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

Exercise 3.6.

Dekompositions-Theorem

$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \forall i \geq 0 A \notin A_i \}$$
 Invariante

•
$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \exists ! \ i \geq 0. \ A \in A_i\}$$
 in keiner bekannten Kategorie

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

Dekompositions-Theorem

Literatur

Exercise 3.6.

•
$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \exists ! \ i \geq 0. \ A \in A_i\}$$
 in keiner bekannten Kategorie

• keine Liveness P.:
$$\operatorname{pref}(P) \neq (2^{AP})^*$$
, da $\hat{\sigma} = \{A\}^2 \not\in \operatorname{pref}(P)$

Exercise 3.6.

Literatur

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

Exercise 3.6.

Dekompositions-Theorem

Literatur

$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \forall i \geq 0 A \notin A_i \}$$
 Invariante

$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \exists ! \ i \geq 0. \ A \in A_i\}$$
 in keiner bekannten Kategorie

- keine Liveness P.: $\operatorname{pref}(P) \neq (2^{AP})^*$, da $\hat{\sigma} = \{A\}^2 \notin \operatorname{pref}(P)$
- keine Safety P.: Sei z. B. $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \setminus P_{safe}$ ein Trace für den gilt: $\forall i > 0$. $A \notin A_i$ Dann existiert kein Präfix von σ , welches sich zu einem Wort in P verlängern lässt.

Exercise 3.6.

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

Exercise 3.6.

Dekompositions-Theorem

Literatur

$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \forall i \geq 0 A \notin A_i \}$$
 Invariante

•
$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \exists ! \ i \geq 0. \ A \in A_i\}$$
 in keiner bekannten Kategorie

- keine Liveness P.: $\operatorname{pref}(P) \neq (2^{AP})^*$, da $\hat{\sigma} = \{A\}^2 \notin \operatorname{pref}(P)$
- keine Safety P.: Sei z. B. $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \setminus P_{safe}$ ein Trace für den gilt: $\forall i > 0$. $A \notin A_i$ Dann existiert kein Präfix von σ , welches sich zu einem Wort in P verlängern lässt.
- keine Invariante: trivial

Exercise 3.6.

Literatur

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{live}) = (2^{AP})^*$$

Exercise 3.6.

Dekompositions-Theorem

$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \forall i \geq 0 A \notin A_i \}$$
 Invariante

$$P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \exists ! \ i \geq 0. \ A \in A_i\}$$
 in keiner bekannten Kategorie

- keine Liveness P.: $\operatorname{pref}(P) \neq (2^{AP})^*$, da $\hat{\sigma} = \{A\}^2 \notin \operatorname{pref}(P)$
- keine Safety P.: Sei z. B. $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \setminus P_{safe}$ ein Trace für den gilt: $\forall i > 0$. $A \notin A_i$ Dann existiert kein Präfix von σ , welches sich zu einem Wort in P verlängern lässt.
- keine Invariante: trivial

$$P = \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \forall i \ge 0. \ \exists j \ge i. \ A \in A_j \quad \land \quad \forall i \ge 0. \ \exists j \ge i. \ B \in A_j\}$$

Liveness P.: Anhängen von $(\{A\}\{B\})^{\omega}$

Exercise 3.6.

Literatur

Definition (Safety Property P_{safe} , Bad Prefixes)

LT-Property P_{safe} über AP ist Safety Property, gdw.

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P_{safe}. \quad \left(\exists \hat{\sigma} \in \operatorname{pref}(\sigma). \quad \left(\hat{\sigma} \not\in \operatorname{pref}(P_{safe}) \right) \right)$$

 $\hat{\sigma}$ heißt bad prefix für P_{safe}

Definition (Liveness Property P_{live})

LT-Property P_{live} über AP ist liveness Property, gdw.

$$\operatorname{pref}(P_{line}) = (2^{AP})^*$$

Exercise 3.6.

Dekompositions-Theorem

- $P = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \mid \forall i \geq 0 A \notin A_i\}$ Invariante **b** $P = \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \exists ! \ i \geq 0. \ A \in A_i\}$
 - in keiner bekannten Kategorie • keine Liveness P.: $\operatorname{pref}(P) \neq (2^{AP})^*$, da $\hat{\sigma} = \{A\}^2 \notin \operatorname{pref}(P)$
 - keine Safety P.: Sei z. B. $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} \setminus P_{safe}$ ein Trace für den gilt: $\forall i > 0$. $A \notin A_i$ Dann existiert kein Präfix von σ , welches sich zu einem Wort in P verlängern lässt.
 - keine Invariante: trivial

•
$$P = \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \forall i \geq 0. \exists j \geq i. A \in A_j \land \forall i \geq 0. \exists j \geq i. B \in A_i\}$$

Liveness P.: Anhängen von $(\{A\}\{B\})^{\omega}$

1 $P = \{A_0 A_1 A_2 \dots \mid \forall i > 0. \ (A \in A_i \Rightarrow (\exists i > i. \ B \in A_i))\}$ Liveness P.: Anhängen von $\{B\}^{\omega}$