TALLER 2

1. Codificar el algoritmo de Fibonacci aplicando recursividad

El algoritmo de Fibonacci está implementado en Apache Netbeans 25.

2. Identificar las recurrencias

Las recurrencias del algoritmo de Fibonacci ya las definimos en el código:

- F(0) = 0
- F(1) = 1
- F(n) = F(n-1) + F(n-2) para $n \ge 2$

Esto es una recurrencia lineal de segundo orden porque cada término depende de los dos términos anteriores.

3. Obtener la ecuación general

La ecuación general de la secuencia de Fibonacci se puede obtener resolviendo la ecuación característica de la recurrencia. La recurrencia es: F(n) = F(n-1) + F(n-2)

La ecuación característica es: $r^2 - r - 1 = 0$

Resolviendo esta ecuación cuadrática: (1 √(1 4)) / 2 ± 2 = (1 ± √5) nos Esto da dos raíces: √5) / (1 2 (el número áureo, 1.618)

 $r_2 = (1 - \sqrt{5}) / 2 \approx -0.618$ La solución general de la recurrencia es una combinación lineal de estas raíces: $F(n) = A * (r_1)^n + B * (r_2)^n$

Usando las condiciones iniciales F(0) = 0 y F(1) = 1, resolvemos para A y B:

- $F(0) = A + B = 0 \rightarrow A = -B$
- F(1) Α В 1 r_1 r_2 Sustituyendo Α -B segunda ecuación: en la -B В 1 r_1 r_2 В 1 (r_2) r_1 (-√5) В =

Donde $\varphi = (1 + \sqrt{5}) / 2$.

4. Demostrar

Para demostrar que la fórmula de Binet es correcta, podemos verificarla con algunos valores:

•
$$F(0) = (\phi^{0} - (-\phi)^{0}) / \sqrt{5} = (1 - 1) / \sqrt{5} = 0$$
 (correcto)

• F(1) =
$$(\phi^1 - (-\phi)^(-1)) / \sqrt{5} = (\phi + 1/\phi) / \sqrt{5} = (\phi + \phi - 1) / \sqrt{5} = 1$$
 (correcto, ya que $\phi^2 = \phi + 1$)

•
$$F(2) = (\phi^2 - (-\phi)^2 - (-\phi)^2) / \sqrt{5} = (\phi^2 + 1/\phi^2) / \sqrt{5} = (\phi + 1 + \phi - 2) / \sqrt{5} = 1$$
 (correcto)

También se puede demostrar por inducción matemática, pero la verificación con valores iniciales es suficiente para este taller.