Niveau: Première année de PCSI

COLLE 22 = ESPACES EUCLIDIENS ET PROBABILITÉ

Connaître son cours:

- 1. Citer l'identité du parallélogramme et donner une démonstration de celle-ci dans un espace préhilbertien.
- 2. Soit $n \ge 1$ et soit a_0, \ldots, a_n des réels distincts deux à deux. Montrer que l'application $\varphi : \mathbb{R}_n[X] \times \mathbb{R}_n[X] \to \mathbb{R}$ définie par $\varphi(P,Q) = \sum_{i=0}^n P(a_i)Q(a_i)$ définit un produit scalaire sur $\mathbb{R}_n[X]$.
- 3. Montrer que l'application qui à deux matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ associe le réel $\operatorname{tr}(A^T B)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

Exercices:

Exercice 1. (*)

Soient $x_1, \ldots, x_n > 0$ tels que $x_1 + \cdots + x_n = 1$. Montrer que

$$\sum_{k=1}^{n} \frac{1}{x_k} \ge n^2$$

Préciser les cas d'égalité.

Exercice 2. (**)

Donner un exemple de deux variables aléatoires X et Y indépendantes telles que X+Y et X-Y ne sont pas indépendantes?

Exercice 3. (*)

Soient X et Y deux variables aléatoires prenant pour valeurs a_1, \ldots, a_n avec

$$P(X = a_i) = P(Y = a_i) = p_i$$

On suppose que les variables X et Y sont indépendantes.

Montrer que

$$P(X \neq Y) = \sum_{i=1}^{n} p_i (1 - p_i)$$

Exercice 4. (**)

Soit x, y, z trois réels tels que $2x^2 + y^2 + 5z^2 \le 1$. Démontrer que

$$(x+y+z)^2 \le \frac{17}{10}$$

Niveau: Première année de PCSI

Exercice 5. (*)

Pour $A, B \in \mathcal{M}_n(\mathbb{R})$, on munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire usuel : $\langle A, B \rangle = \operatorname{tr}(A^T B)$.

1. Montrer que pour tous $A, B \in \mathcal{S}_n(\mathbb{R})$, on a

$$(\operatorname{tr}(AB))^2 \le \operatorname{tr}(A^2)\operatorname{tr}(B^2).$$

2. Montrer que pour $A \in \mathcal{M}_n(\mathbb{R})$, on a :

$$\operatorname{tr}(A^2) = \operatorname{tr}(A^T A) \Leftrightarrow A \in \mathcal{S}_n(\mathbb{R})$$

Exercice 6. (**)

Soit X et Y deux variables aléatoires indépendantes suivant des lois de Bernoulli de paramètres p et q.

- 1. Déterminer la loi de la variable $Z = \max(X, Y)$.
- 2. Deux archers tirent indépendamment sur n cibles. À chaque tir, le premier archer a la probabilité p de toucher, le second la probabilité q.
 - (a) Quelle est la loi suivie par le nombre de cibles touchées au moins une fois?
 - (b) Quelle est la loi suivie par le nombre de cibles épargnées?