

vSGX

Virtualizing SGX Enclaves on AMD SEV

Shixuan Zhao

PhD Student @ SecLab CSE, The Ohio State University zhao.3289@osu.edu

A joint work with Mengyuan Li, Yingian Zhang and Zhigiang Lin

Trusted Execution Environment

Intel SGX - An x86-64 TEE standard

Anonymity network

Game protection

Machine learning

IoT network

Blockchains

rivoev processing contact tracing

Vendor lock-in

Apps have to be written specifically for SGX and can't run else where

Vendor lock-in

Vendor lock-in

Vendor lock-in

Desktop & Embedded SGX 2015 - 2021

Decoupling TEEs from hardware

- A new trend in the industry
- A strong desire of cloud providers
- Attempts have been made
- Compatibility is a huge issue

Decoupling TEEs from hardware

Asylo

Decoupling TEEs from hardware

Virtualization

AWS Nitro Enclave

Decoupling TEEs from hardware Ideally...

Decoupling TEEs from hardware while maintaining compatibility

Software-defined TEE

- Flexibility on deployment
- Fast feature evolution
- Fast bug fixes

E.g. Komodo[1]

[1] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo: Using verification to disentangle secure-enclave hardware from software. In Proc. of the 26th Symposium on Operating Systems Principles (SOSP '17), Oct. 2017

Software-defined TEE

	SGX	SEV	TrustZone	Komodo
Isolation	MMU	PSP	MMU	TrustZone
Interface	SGX	SEV	TrustZone	Komodo
Application	Enclave	OS/App	Secure OS/App	Enclave

What is demanded

- An enclave-based TEE in the cloud
- No vendor lock-in
- Decoupling TEEs from hardware with good compatibility
- Software-defined TEE

What our solution is

- An enclave-based TEE in the cloud SGX capability on SEV
- No vendor lock-in You don't have to choose Intel to run SGX apps
- Decoupling TEEs from hardware with good compatibility
 Binary compatibility
- Software-defined TEE
 SGX implemented as software atop SEV

What our solution is

	SGX	SEV	Komodo
Isolation	MMU	PSP	TrustZone
Interface	SGX	SEV	Komodo
Application	Enclave	OS/App	Enclave

What our solution is

	SGX	SEV	Komodo	vSGX
Isolation	MMU	PSP	TrustZone	SEV
Interface	SGX	SEV	Komodo	SGX
Application	Enclave	OS/App	Enclave	Enclave

What is SGX

What is SGX

What is SGX

- Memory confidentiality
- Control flow integrity

- Create an empty enclave
- Add pages
- Calculate measurement hash
- Verify against a signed known hash
- · Enclave launched

- Create an empty enclave
- Add pages
- Calculate measurement hash
- Verify against a signed known hash
- · Enclave launched

- · Create an empty enclave
- Add pages
- · Calculate measurement hash
- Verify against a signed known hash
- Enclave launched

- · Create an empty enclave
- Add pages
- Calculate measurement hash
- Verify against a signed known hash
- Enclave launched

- Create an empty enclave
- Add pages
- Calculate measurement hash
- Verify against a signed known hash
- · Enclave launched

Control Flow

- Limited interface
- EENTER and EEXIT: Only to predefined entry points
- "ECalls": Intel SDK's wrapper

Enclave Memory in SGX

Memory Access

- Same virtual address space
- Single way trust

What is SEV (and friends)

- VMs and hypervisors: The same story
- SEV: Against malicious hypervisors
 - Encrypts the entire VM
 - Explicitly shares data
- Can deploy an encrypted image

The vSGX model

Design goals

- Binary compatibility
- Comparable security guarantee with BOTH SGX AND SEV
- Reasonable performance

vSGX should work like an SGX module plugged onto an SEV machine

Challenges

Designing the system comes with some nontrivial challenges

- Enclave Isolation
- Instruction Emulation
- Memory Access
- Component Communication
- Control Flow

vSGX architecture

Enclave Isolation

- Two-VM architecture
- One enclave per VM

Instruction emulation

Step 1: Interception

- Hook the #UD trap
- Check and emulate

Instruction emulation

Step 2: Emulation

- Accord to the Intel SGX's manual
- Send the request to EVM
- EVM send the result back

Instruction emulation

Step 2: Emulation

- Accord to the Intel SGX's manual
- Send the request to EVM
- EVM send the result back

Memory access

- FPC is trivial
- Fetch-and-map for untrusted memory access
- "Switchless syncing"

Cross-VM communication

Challenges

- SEV's security
- No data shall be leaked/altered/resent

Cross-VM communication

- Encrypted & CMACed
- Replay protection

How to call enclave functions?

- Just like SGX, using EENTER and EEXIT
- We also have to handle the AEX feature of SGX

EENTER

- The EENTER request is sent to the EVM
- A counterpart thread is launched within the EVM
- The AVM's app thread is put to sleep

EENTER

- The EENTER request is sent to the EVM
- A counterpart thread is launched within the EVM
- The AVM's app thread is put to sleep

EENTER

- The EENTER request is sent to the EVM
- An enclave thread is launched within the EVM
- The AVM's app thread is put to sleep

EEXIT

- The enclave thread is killed
- The AVM's thread is woken up

EEXIT

- · The enclave thread is killed
- The AVM's thread is woken up

AEX

Similar but reversed

Prototype

- 16000+ LoC, most of them are in the kernel
- Tested on an AMD EPYC 7251

Capability tested

- √ Graphene (including Nginx and other demos)
- √ wolfSSL
- √ BYTEmark on Intel SGX
- √ GMP Library for Intel SGX (and examples)

Performance - Microbenchmarks

Performance - Instructions

Leaf		Average Overhead (µs)	Packets Sent	
ENCLS	EADD	1421.23	3	
	EAUG	990.20	2	
	EBLOCK	840.85	2	
	ECREATE	3719.06	3	
	EDBGRD	N/A	N/A	
	EDBGWR	N/A	N/A	
	EEXTEND	986.76	2	
	EINIT	811.03	2	
	ELDB/ELDU	1958.13	4	
	EMODPR	1071.26	2	
	EMODT	976.15	2	
	EPA	1273.26	3	
	EREMOVE	1013.70	2	
	ETRACK	N/A	N/A	
	EWB	1818.66	4	

Leaf		Average Overhead (µs)	
	EACCEPT	0.79	
	EACCEPTCOPY	2.19	
	EENTER	N/A	
크	EEXIT	N/A	
ENCLU	EGETKEY	5.00	
	EMODPE	0.91	
	EREPORT	18.91	
	ERESUME	N/A	

Performance - BYTEmark

Performance - Graphene

Graphene SGX on vSGX

Performance - wolfCrypt

	vSGX	Intel SGX	Ratio
	MB/s	MB/s	
RNG	82.57	117.51	1.42
AES-128-CBC-enc	187.36	363.82	1.94
AES-128-CBC-dec	172.59	399.39	2.31
AES-192-CBC-enc	156.95	309.70	1.97
AES-192-CBC-dec	184.4	341.43	1.85
AES-256-CBC-enc	139.01	269.16	1.94
AES-256-CBC-dec	123.05	291.93	2.37
AES-128-GCM-enc	54.10	94.98	1.76
AES-128-GCM-dec	56.02	94.99	1.70
AES-192-GCM-enc	54.36	90.29	1.66
AES-192-GCM-dec	54.49	90.16	1.65
AES-256-GCM-enc	51.78	86.79	1.68
AES-256-GCM-dec	49.74	86.64	1.74
ARC4	138.05	478.18	3.46
RABBIT	222.37	710.37	3.19
3DES	22.60		1.73
MD5	296.77	820.75	2.77
SHA	223.09	661.65	2.97

	vSGX	Intel SGX	Ratio
	MB/s	MB/s	
SHA-256	115.56	298.76	2.59
HMAC-MD5	377.70	821.12	2.17
HMAC-SHA	381.57	662.07	1.74
HMAC-SHA256	164.82	298.90	1.81
	KB/s	KB/s	
PBKDF2	9.49	34.63	
	op/s		
RSA 2048 Public	10264.09	8443.25	0.82
RSA 2048 Private	188.40	146.93	0.78
DH 2048 Key Gen	378.24	374.80	0.99
DH 2048 Agree	614.50	375.19	0.61
ECC 256 Key Gen	453.50	6569.28	14.49
ECDHE 256 Agree	1461.67	2201.94	1.51
ECDSA 256 Sign	3611.59	5297.49	1.47
ECDSA 256 Verify	1336.96	1875.64	1.40
Geo Mean			1.90

- Formally-verified enclave kernel: seL4 can be a good choice if it gets supported on SEV
- If the user does not need AVM to be SEV-protected: No more cross-VM encryption needed. Also, we can map the untrusted memory directly to EVM, resulting in high untrusted memory performance because no fetch-and-map or syncing is needed

• vSGX: Virtualizing SGX enclaves on ...

vSGX: Virtualizing SGX enclaves on... Intel MKTME?

- vSGX: Virtualizing SGX enclaves on... Intel MKTME?
- vTrustZone...?

Conclusion

- Emulate SGX on SEV with binary compatibility
- Release SGX from vendor lock-in
- Decouple SGX from hardware
- Software defined

Q&A

vSGX Source Code

https://github.com/OSUSecLab/vSGX

SecLab @ OSU

https://go.osu.edu/seclab

Teecert Labs @ SUSTech

https://teecertlabs.com

