Taft algebra actions on preprojective algebras

Jason Gaddis

Special Session on Homological and combinatorial methods in noncommutative algebra AMS Fall Central Sectional Meeting

September 15, 2024

(Joint work with Amrei Oswald)

The Taft algebra

Let k be an algebraically closed field of characteristic zero.

Let H be a semisimple Hopf algebra that acts inner faithfully on the polynomial ring $\Bbbk[u,v]$. By Chan-Walton-Zhang (later generalized by Etingof-Walton), H is a group algebra ($\Bbbk[u,v]$ has no semisimple quantum symmetries). However, $\Bbbk[u,v]$ does have finite-dimensional quantum symmetries through the Taft algebra.

Let $r,m\in\mathbb{N}$ such that r>1 and $r\mid m$, and let $\lambda\in\Bbbk$ be a primitive r^{th} root of unity. The (generalized) Taft algebra corresponding to this data is

$$T_{\lambda}(r,m) := \mathbb{k}\langle g, x : gx - \lambda xg, g^m - 1, x^r \rangle.$$

Then $T_{\lambda}(r, m)$ is a Hopf algebra with coalgebra structure is given by

$$\Delta(g) = g \otimes g \quad \Delta(x) = 1 \otimes x + x \otimes g \qquad \varepsilon(g) = 1 \quad \varepsilon(x) = 0$$

The Taft algebra is noncommutative, noncocommutative, and nonsemisimple.

It is an example of a pointed Hopf algebra: every simple comodule is 1-dimensional.

They're points!

The Taft algebra

What does the Taft algebra look like?

According to ChatGPT:

Make it Hopfier:

Taft algebra actions

Allman classified (graded) Taft actions on polynomial rings. On k[u, v], the actions have the form (up to a change of variable)

$$g(u) = u$$
, $g(v) = \lambda v$, $x(u) = 0$, $x(v) = u$.

Actions of Taft algebras have been classified on a host of other families of algebras.

Actions on Artin-Schelter regular algebras:

- quantum planes (w/ Won, Yee)
- skew polynomial rings and quantum matrix algebras (w/ Cline)
- down-up algebras (w/ Crawford, Won)

On the other hand, actions of Taft algebras have been considered on path algebras of quivers by Kinser–Walton and Kinser–Oswald. (Also see work of Berrizbeitia on invariants of these actions.)

Goal

Merge the above lines of study.

Hopf actions on quivers

Let Q be a finite quiver. There is a natural filtration on the path algebra $\mathbb{k}Q$ where $(\mathbb{k}Q)_k$ denotes the span of paths of length at most k. We consider actions that respect this filtration.

Proposition (Kinser-Oswald)

Let λ be a primitive r^{th} root of unity. Let Q_0 be the vertex set of a quiver.

- (A) The following data determines a Hopf action of $T_{\lambda}(r,m)$ on $\Bbbk Q_0$.
 - (i) A permutation action of G on the set Q_0 such that $\#(G \cdot i) \mid m$ for all $i \in Q_0$.
 - (ii) A collection of scalars $(\gamma_i \in \mathbb{k})_{i \in Q_0}$ such that, for all $i \in Q_0$, $\gamma_{g \cdot i} = \lambda^{-1} \gamma_i$ and either $\#(G \cdot i) = r$ or $\gamma_i = 0$ for all i.

Given this data, the x-action is given by

$$x \cdot e_i = \gamma_i (e_i - \lambda^{-1} e_{g \cdot i})$$
 for all $i \in Q_0$.

(B) Every action of $T_{\lambda}(r, m)$ on kQ_0 is of the form above.

Hopf actions on quivers

Let Q be a quiver. We say a k-linear endomorphism $\sigma: kQ_0 \oplus kQ_1 \to kQ_0 \oplus kQ_1$ is a quiver-Taft map for Q if it satisfies (for all $a \in Q_1$):

$$\sigma(\Bbbk Q_0) = 0$$
 $\sigma(a) = e_{s(a)}\sigma(a)e_{g \cdot t(a)}$ $\sigma(g \cdot a) = \lambda^{-1}g \cdot \sigma(a)$

Theorem (Kinser-Oswald)

Let λ be a primitive r^{th} root of unity. Let Q be the vertex set of a quiver.

- (A) The following data determines a Hopf action of $T_{\lambda}(r, m)$ on kQ.
 - (i) A Hopf action of $T_{\lambda}(r, m)$ on kQ_0 as above;
 - (ii) A representation of G on kQ_1 satisfying (for all $a \in Q_1$):

$$s(g \cdot a) = g \cdot s(a)$$
 $t(g \cdot a) = g \cdot t(a)$,

and g^m acts as the identity on all of kQ.

(iii) A quiver-Taft map σ for Q satisfying (for all $a \in kQ_1$):

$$\gamma_{s(a)}^{r}g^{r}(a) - \gamma_{t(a)}^{r}a = \sigma^{r}(a). \tag{1}$$

Given this data, the x-action is given on $a \in Q_1$ by

$$x \cdot a = \gamma_{t(a)} a - \gamma_{s(a)} \lambda^{-1} (g \cdot a) + \sigma(a).$$

(B) Every action of $T_{\lambda}(r, m)$ on kQ is of the form above.

Preprojective algebras

The double \overline{Q} of a quiver Q is defined by setting $\overline{Q}_0 = Q_0$ and for every $a \in Q_1$ with $s(a) = e_i$ and $t(a) = e_j$ we add an arrow a^* with $s(a^*) = e_j$ and $t(a^*) = e_i$.

The preprojective algebra associated to a quiver Q is the quotient

$$k\overline{Q}/\left(\sum_{a\in Q_1}aa^*-a^*a\in\overline{Q}\right)$$

For the remainder, let $Q = A_{n-1}$ with n > 2:

If n = 1, then $\Pi_Q \cong \mathbb{k}[x, y]$.

In general, Π_Q is Calabi–Yau, noetherian, has global and GK dimension 2, and is PI.

Preprojective algebras of type A

Let g be a graded automorphism of $\Bbbk \overline{Q}$. The action of g on $\Bbbk \overline{Q}$ is described by one of the following cases where d is an integer satisfying $0 \le d \le n-1$:

▶ (rotation) There exists $\mu_i, \mu_i^* \in \mathbb{k}^{\times}$ such that for all $0 \leq i \leq n-1$,

$$g \cdot e_i = e_{i+d}, \qquad g \cdot a_i = \mu_i a_{i+d}, \qquad g \cdot a_i^* = \mu_i^* a_{i+d}^*.$$

▶ (reflection) There exists $\mu_i, \mu_i^* \in \mathbb{k}^{\times}$ such that for all $0 \leq i \leq n-1$,

$$g \cdot e_i = e_{n-(d+i)}, \qquad g \cdot a_i = \mu_i a_{n-(d+i+1)}^*, \qquad g \cdot a_i^* = \mu_i^* a_{n-(d+i+1)}.$$

Given an action of g as above, the action of $T_{\lambda}(r,m)$ on $\Bbbk \overline{Q}$ is given by

$$x \cdot e_i = \gamma_i e_i - \gamma_i \lambda^{-1} e_{g \cdot i}$$

$$x \cdot a_i = \gamma_{i+1} a_i - \gamma_i \lambda^{-1} g \cdot a_i + \sigma(a_i)$$

$$x \cdot a_i^* = \gamma_i a_i^* - \gamma_{i+1} \lambda^{-1} g \cdot a_i^* + \sigma(a_i^*).$$

Lemma

An inner faithful action of $T_\lambda(r,m)$ on $\Bbbk \overline{Q}$ descends to an action on Π_Q if and only if

$$egin{aligned} 0 &= \mu_i \mu_i^* - \mu_{i+1} \mu_{i+1}^* \ 0 &= a_i^* \sigma(a_i) + \sigma(a_i^*) (g \cdot a_i) - a_{i+1} \sigma(a_{i+1}^*) - \sigma(a_{i+1}) (g \cdot a_{i+1}^*) \end{aligned}$$

Rotations

Theorem

Suppose $T_{\lambda}(r,m)$ acts linearly and inner faithfully on $\Bbbk \overline{Q}$ so that $g \cdot e_i = e_{i+d}$ for some $0 \le d < n$, and this action descends to an action on Π_Q .

(I) For each $i \in Q_0$, there exist scalars $\mu_i, \mu_i^* \in \mathbb{k}^{\times}$ and $\gamma_i \in \mathbb{k}$ so that

$$g \cdot a_i = \mu_i a_{i+d}, \quad g \cdot a_i^* = \mu_i^* a_{i+d}^*, \quad x \cdot e_i = \gamma_i (e_i - \lambda^{-1} e_{i+d}), \quad \gamma_{i+d} = \lambda^{-1} \gamma_i.$$

(II) If $\gamma_i=0$ for all $i\in Q_0$, then $d\in\{1,2,n-2,n-1\}$ and there exist $c,c^*\in \Bbbk^\times$ so that

$$x \cdot a_i = \begin{cases} \lambda^i \mu_1 \mu_2 \dots \mu_i c e_i & \text{if } d = n - 1 \\ \lambda^i \mu_1 \mu_2 \dots \mu_i c a_{i-1}^* & \text{if } d = n - 2 \\ 0 & \text{if } d \neq n - 1, n - 2 \end{cases}$$

$$x \cdot a_i^* = \begin{cases} (\lambda^i \mu_0^* \mu_1^* \dots \mu_{i-1}^*)^{-1} c^* e_{i+1} & \text{if } d = 1 \\ (\lambda^i \mu_0^* \mu_1^* \dots \mu_{i-1}^*)^{-1} c^* a_{i+1} & \text{if } d = 2 \\ 0 & \text{if } d \neq 1, 2 \end{cases}$$

where $\mu_i \mu_i^* = \lambda^{-1}$ and if n or d is odd, m = lcm(r, n).

Rotations

Theorem

Suppose $T_{\lambda}(r,m)$ acts linearly and inner faithfully on $\Bbbk \overline{Q}$ so that $g \cdot e_i = e_{i+d}$ for some $0 \le d < n$, and this action descends to an action on Π_Q .

(III) Suppose there exists an $i \in Q_0$ so that $\gamma_i \neq 0$.

▶ (2 < d < n-2 and n > 4) If $i \equiv k \mod d$ for $0 \le k < d$, we have

$$\begin{aligned} \mathbf{x} \cdot \mathbf{a}_i &= \lambda^{\frac{k-i}{d}} \xi_0 \xi_1 \dots \xi_{k-1} \gamma_0 \left(\xi_k \mathbf{a}_i - \lambda^{-1} \mu_i \mathbf{a}_{i+d} \right), \\ \mathbf{x} \cdot \mathbf{a}_i^* &= \lambda^{\frac{k-i}{d}} \xi_0 \xi_1 \dots \xi_{k-1} \gamma_0 \left(\mathbf{a}_i^* - \lambda^{\mathsf{z}-1} \xi_k \mu_i^{-1} \mathbf{a}_{i+d}^* \right), \end{aligned}$$

for some $z \in \mathbb{Z}$, $\gamma_0, \xi_0, \xi_1, \dots \xi_{d-1} \in \mathbb{k}^{\times}$ where the ξ_i are m^{th} roots of unity so that

$$\xi_0 \xi_1 \dots \xi_{d-1} = \lambda^{-1}$$
 and $\mu_k \mu_{k+d} \dots \mu_{k+(r-1)d} = \xi_k^r$.

This case also implies that γ_i is nonzero.

Rotations

Theorem

Suppose $T_{\lambda}(r,m)$ acts linearly and inner faithfully on $\Bbbk \overline{Q}$ so that $g \cdot e_i = e_{i+d}$ for some $0 \le d < n$, and this action descends to an action on Π_Q .

(III) Suppose there exists an $i \in Q_0$ so that $\gamma_i \neq 0$.

• $(d = n - 1 \text{ and } n \neq 3)$ We have r = m = n. The γ_i satisfy $\gamma_i = \lambda^i \gamma_0$. There exists $c \in \mathbb{k}$ such that the x-action is given by

$$x \cdot a_i = \lambda^i \gamma_0 (\lambda a_i - \lambda^{-1} \mu_i a_{i-1}) + \lambda^i \mu_i \mu_{i-1} \cdots \mu_1 \operatorname{ce}_i$$
$$x \cdot a_i^* = \lambda^i \gamma_0 (a_i^* - \mu_i^* a_{i-1}^*)$$

If $c \neq 0$, then $\mu_i^* = (\lambda \mu_i)^{-1}$.

- \blacktriangleright $(d = 1 \text{ and } n \neq 3)$ Similar
- $\qquad \qquad (d=2 \ or \ d=n-2, \ and \ n\neq 4) \ NSFW$

Theorem (G-Oswald)

If $T = T_{\lambda}(r, m)$ acts on Π_Q with n > 3, d = 1 or n - 1, and $\sigma = 0$, then $(\Pi_Q)^T = \mathcal{Z}(\Pi_Q)$.

Reflections

Theorem

Suppose $T_{\lambda}(r,m)$ acts linearly and inner faithfully on $\mathbb{k}\overline{Q}$ so that $g\cdot e_i=e_{n-(d+i)}$ for some $0\leq d\leq n-1$, and this action descends to an action on Π_Q . Then r=2 and the action is described as follows:

▶ There exists scalars $\mu_i \in \mathbb{k}^{\times}$ such that

$$g \cdot e_i = e_{n-(d+i)}, \qquad g \cdot a_i = \mu_i a_{n-(d+i+1)}^*, \qquad g \cdot a_i^* = \mu_i^{-1} a_{n-(d+i+1)}$$
 where $(\mu_i \mu_{n-(d+i+1)}^{-1})^{m/2} = 1$ for all i .

► There exist scalars $\gamma_i \in \mathbb{k}$ so that

$$x \cdot e_i = \gamma_i (e_i + e_{n-(d+i)})$$

and the γ_i satisfy $\gamma_i = -\gamma_{n-(d+i)}$ (so $\gamma_j = 0$ when $g \cdot j = j)$ and

$$\gamma_{i+1}^2 = \mu_i \mu_{n-(d+i+1)}^{-1} \gamma_i^2.$$

for $i \neq j-1, j$.

Reflections

Theorem

Suppose $T_{\lambda}(r,m)$ acts linearly and inner faithfully on $\mathbb{k}\overline{Q}$ so that $g \cdot e_i = e_{n-(d+i)}$ for some $0 \le d \le n-1$, and this action descends to an action on Π_Q . Then r=2 and the action is described as follows:

▶ If j is a vertex such that $g \cdot j = j$, then we let $c_j = \pm \gamma_{j-1} \sqrt{\mu_j \mu_{j-1}}$ and

$$\begin{aligned} & \times \cdot a_{j-1} = \gamma_{j-1} \mu_{j-1} a_j^* + \mu_j^{-1} c_j a_{j-1} & x \cdot a_j = \gamma_{j+1} a_j + c_j a_{j-1}^* \\ & \times \cdot a_{j-1}^* = \gamma_{j-1} a_{j-1}^* - (\mu_j \mu_{j-1})^{-1} c_j a_j & x \cdot a_j^* = \gamma_{j+1} \mu_i^{-1} a_{j-1} - \mu_j^{-1} c_j a_j^* \end{aligned}$$

If k is such that $g \cdot k = k+1$ and $g \cdot (k+1) = k$, then there exists $c_k \in \mathbb{k}$ such that

$$x \cdot a_{k} = \gamma_{k+1} a_{k} + \gamma_{k} \mu_{i} a_{k+1}^{*} + c_{k} e_{k}$$
$$x \cdot a_{k}^{*} = \gamma_{k} a_{k}^{*} + \gamma_{k+1} \mu_{i}^{-1} a_{k+1} - \mu_{k}^{-1} c_{k} e_{k+1}$$

If $\gamma_i = 0$ for all i, then $c_k \neq 0$ for some such k.

If i satisfies neither of the above conditions, then

$$x \cdot a_i = \gamma_{i+1} a_i + \gamma_i \mu_i a_{n-(d+i+1)}^* \qquad x \cdot a_i^* = \gamma_i a_i^* + \gamma_{i+1} \mu_i^{-1} a_{n-(d+i+1)}$$

Future work

Some directions for future research:

- ▶ Compute invariants in some of the other cases including reflection actions.
- ▶ One can consider quantized versions of the preprojective algebra Π_Q where the relations are

$$a_i^* a_i = q_i a_{i+1} a_{i+1}^*$$
 for each $i, q_i \in \mathbb{k}^{\times}$.

Actions of other pointed Hopf algebras, e.g., bosonizations of quantum linear spaces.

Thank You!