CLAIMS

A computer-implemented method for digitally signing data, comprising: generating a lattice \mathcal{L} having at least one short basis establishing a private key and at least one long basis establishing a public key;

mapping at least the message μ or a concatenation thereof to a message point "x" in n-dimensional space using a function "f" rendering infeasible the possibility of mapping two messages close together in the space; and using the short basis, finding a lattice point "y" of the lattice $\mathcal L$ that is close to the message point "x".

- 2. The method of Claim 1, further comprising returning at least the message point "x" and the lattice point "y" as a digital signature.
- 3. The method of Claim 2, further comprising randomizing the function "f".
- 4. The method of Claim 3, wherein the function "f" is randomized by concatenating the message μ with a random number ρ .
- 5. The method of Claim 1, wherein the function "f" maps the message μ to a point on a grid.

2

2

1

2

2

1

2

The method of Claim 5, wherein the function "f" is collision intractable.

- 7. The method of Claim 6, wherein the collision intractability of the function "f" is derived from the hardness of lattice problems.
- 8. The method of Claim 5, wherein the function "f" is not collision intractable.
- The method of Claim 1, wherein the function "f" maps at least the 9. message to a point on an auxiliary lattice.
- The method of Clarm 1, further comprising verifying a digital signature 10. at least in part by determining whether a difference between the lattice point "y" and the message point "x" is no more than a predetermined distance.
- 11. The method of Claim 10, wherein the predetermined distance is related to the number of dimensions in the lattice \mathcal{L} .
- 12. A computer program storage device including a program of instructions for generating a digital signature for a message, the program of instructions including:

5

2

computer readable code means for mapping a message μ or a concatenation thereof to a message point "x" in n-dimensional space, the message point "x" being a point of a grid or a point of an auxiliary lattice;

computer readable code means for finding a point "y" of a key lattice $\mathcal L$ that is nearby the message point "x"; and

computer readable code means for establishing a digital signature, based at least on the points "x" and "y".

- 13. The computer program storage device of Claim 12, wherein the means for mapping uses a function "f' rendering infeasible the possibility of mapping two messages close together in the space, and wherein the means for finding includes using a hard to find short basis of the key lattice \mathcal{L} .
- 14. The computer program storage device of Claim 13, further comprising means for randomizing the function "f".
- 15. The computer program storage device of Claim 14, wherein the function "f" is randomized by concatenating the message μ with a random number ρ .
- 16. The computer program storage device of Claim 12, wherein the function "f" maps the message μ to a point on a grid, and wherein the function "f" is

13

3	
4	
1	
2	
	_
2	
7	
8	
9	
10	
11	

collision	intractable, 1	the collis	ion intra	actability	being	derived	from	the	hardness	of
lattice pr	oblems.	·								

- The computer program storage device of Claim 12, wherein the function "f" is not collision intractable.
- 18. The computer program storage device of Claim 13, wherein the function "f" maps at least the message to a point on an auxiliary lattice.
- 19. A compute system for generating a digital signature of a message u. comprising:

at least one sender computer including logic for executing method steps including:

> mapping the message μ to a message point "x" at which it is not feasible to map any other message;

> finding a lattice point "y" that is relatively close to the message point "x"; and

transmitting at least the message μ and the points "x" and "y"; at least one receiver computer receiving the message μ and points "x" and "y" and including logic for executing method steps including:

determining whether a distance between the points "x" and "y" is related in a predetermined way to a predetermined distance, and

1

2

based thereon determining whether the message $\boldsymbol{\mu}$ has been properly signed.

- 20. The system of Claim 19, wherein the mapping act is undertaken using a function "f" that maps the message point "x" to a point of a grid or of an auxiliary lattice, and further wherein the lattice point "y" is a member of a lattice \mathcal{L} , and the finding act is undertaken using a hard-to-find short basis of the lattice \mathcal{L} .
- 21. The system of Claim 20, wherein the acts undertaken by the logic of the sender computer further comprise randomizing the function "f" by concatenating the message μ with a random number ρ .
- 22. The system of Claim 20, wherein the function "f" is collision intractable.
- 23. The system of Claim 22, wherein the collision intractability of the function "f" is derived from the hardness of lattice problems.
- 24. The system of Claim 20, wherein the function "f" is not collision intractable.

2

2

26. A computer-implemented method for digitally signing data, comprising: generating a lattice \mathcal{L} having at least one short basis and at least one long basis;

mapping at least the message μ or a concatenation thereof to a message point "x" in n-dimensional space, the message point "x" being an element of a set of spaced-apart points; and

using the short basis, finding a lattice point "y" of the lattice $\mathcal L$ that is close to the message point "x".

- 27. The method of Claim 26, wherein the mapping is undertaken using a function "f".
- 28. The method of Claim 27, further comprising randomizing the function "f" by concatenating the message μ with a random number ρ .
- 29. The method of Claim 27, wherein the function "f" maps the message μ to a point on a grid.

2

1	
2	
1	
20	
	•
. 1	
2	
a⊊ nn	
7	
Ó	
The state of	
t	
ļh	
F	

3 0.	The	method	of	Claim	29,	wherein	the	function	"f"	is	collision
ntractable											

- 31. The method of Claim 30, wherein the collision intractability of the function "f" is derived from the hardness of lattice problems.
- The method of Claim 29, wherein the function "f" is not collision 32. intractable.
- The method of Claim 27, wherein the function "f" maps at least the 33. message to a point on an auxiliary lattice.
- 34. The method of Claim 28, further comprising verifying a digital signature at least in part by determining whether a difference between the lattice point "y" and the message point "x" is no more than λ predetermined distance.
- 35. The method of Claim 34, wherein the predetermined distance is related to the number of dimensions in the lattice \mathcal{L} .