

The
Patent
Office

EP00/346

40
9/889689
INVESTOR IN PEOPLE

REC'D	01 MAR 2000
WIPO	PCT

The Patent Office
Concept House
Cardiff Road
Newport
South Wales EPO - DG 1
NP10 8QQ

21.02.2000

(74)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Signed
Dated 20 January 2000

**The
Patent
Office**

99090.1

/77

29 JAN 1999

01FEB99 E421841-10 D02029

F01/7700 0.00 - 9100 Patent Office
Cardiff Road
Newport
Gwent NP9 1RH

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

1. Your reference

ACC/JLD/BC45217

2. Patent application number

*(The Patent Office will fill in this part)*3. Full name, address and postcode of the or of each applicant *(underline all surnames)*SmithKline Beecham Biologicals s.a.
rue de l'Institut 89, B-1330 Rixensart, BelgiumPatents ADP number *(if you know it)*

Belgium

If the applicant is a corporate body, give the country/state of its incorporation

COST OF IS 00001

4. Title of the invention

NOVEL COMPOUNDS

5. Name of your agent *(if you have one)*

CORPORATE INTELLECTUAL PROPERTY

"Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)

SMITHKLINE BEECHAM PLC
TWO NEW HORIZONS COURT
BRENTFORD
MIDDLESEX TW8 9EP

Patents ADP number *(if you know it)*

0580097403

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or each of these earlier applications and *(if you know it)* the or each application number

Country	Priority application number	Date of filing <i>(if you know it)</i>
---------	-----------------------------	---

(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application	Date of filing <i>(day / month / year)</i>
-------------------------------	---

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? *(Answer yes if:*

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is named as an applicant, or
- c) any named applicant is a corporate body

See note (d)

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description 23

Claim(s) 3 1 81

Abstract 1

Drawings

10. If you are also filing any of the following, state how many against each item.

Priority Documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patents Form 1/77*)

Request for preliminary examination and search (*Patents Form 9/77*)

Request for substantive examination
(*Patents Form 10/77*)

Any other documents
(please specify)

11.

We request the grant of a patent on the basis of this

application

Signature A. Connell Date 28-Jan-99

A. C. Connell

12. Name and daytime telephone number of person to contact in the United Kingdom

A. C. Connell 01279 644395

Warning

After an application for a Patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission unless an application has been filed at least six weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) For details of the fee and ways to pay please contact the Patent Office.

Novel Compounds

Field of the Invention

This invention relates to newly identified polypeptides and polynucleotides encoding such polypeptides, to their use in diagnostics, prophylaxis and therapy and in identifying 5 compounds which may be agonists, antagonists and /or inhibitors which are potentially useful in therapy, and to production of such polypeptides and polynucleotides.

Background of the Invention

- 10 The drug discovery process is currently undergoing a fundamental revolution as it embraces 'functional genomics', that is, high throughput genome- or gene-based biology. This approach is rapidly superceding earlier approaches based on 'positional cloning'. A phenotype, that is a biological function or genetic disease, would be identified and this would then be tracked back to the responsible gene, based on its genetic map position.
- 15 Functional genomics relies heavily on high-throughput DNA sequencing technologies and the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available. cDNA libraries enriched for genes of relevance to a particular tissue or physiological situation can be constructed using recently developed subtractive cloning strategies. Construction of subtractive libraries reduces cDNA sequence complexity, 20 focuses experimental resources on relevant genes and thus greatly accelerates the gene identification process. There is a continuing need to identify and characterise further genes and their related polypeptides/proteins, as targets for drug discovery.

High throughput genome- or gene-based biology allows new approaches to the identification and cloning of target genes for useful immune responses for the prevention and 25 vaccine therapy of diseases such as cancer and autoimmunity.

Summary of the Invention

The present invention relates to CASB500, in particular CASB500 polypeptides and CASB500 polynucleotides, recombinant materials and methods for their production. In another 30 aspect, the invention relates to methods for using such polypeptides and polynucleotides, including the treatment of cancer and autoimmune disease, hereinafter referred to as "the Diseases", amongst others. In a further aspect, the invention relates to methods for identifying agonists and antagonists/inhibitors using the materials provided by the invention, and treating conditions associated with CASB500 imbalance with the identified compounds. In a still further aspect, the

invention relates to diagnostic assays for detecting diseases associated with inappropriate CASB500 activity or levels.

Description of the Invention

5 In a first aspect, the present invention relates to CASB500 polypeptides. Such peptides include isolated polypeptides encoded by a polynucleotide comprising the sequence contained in SEQ ID NO:1.

Polypeptides and polynucleotides of the present invention are believed to be important immunogens for specific prophylactic or therapeutic immunization against tumors, because they are
10 highly overexpressed in tumors and can thus be targeted by antigen-specific immune mechanisms leading to the destruction of the tumor cell. They can also be used to diagnose the occurrence of tumor cells. Furthermore, their inappropriate expression in certain circumstances can cause an induction of autoimmune, inappropriate immune responses, which could be corrected through appropriate vaccination using the same polypeptides or polynucleotides. In this respect the most
15 important biological activities to our purpose are the antigenic and immunogenic activities of the polypeptide of the present invention. A polypeptide of the present invention may also exhibit at least one other biological activity of CASB500, which could qualify it as a target for therapeutic or prophylactic intervention different from that linked to the immune response.

20 The polypeptides of the present invention may be in the form of the "mature" protein or may be a part of a larger protein such as a fusion protein. It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification such as multiple histidine residues, or an additional sequence for stability during recombinant production. Furthermore, addition of exogenous polypeptide or lipid tail or polynucleotide sequences to increase the immunogenic potential of the final
25 molecule is also considered.

30 The present invention also includes variants of the aforementioned polypeptides, that is polypeptides that vary from the referents by conservative amino acid substitutions, whereby a residue is substituted by another with like characteristics. Typical such substitutions are among Ala, Val, Leu and Ile; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gln; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr. Particularly preferred are variants in which several, 5-10, 1-5, 1-3, 1-2 or 1 amino acids are substituted, deleted, or added in any combination.

Polypeptides of the present invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced

polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

Further polynucleotides of the present invention include isolated polynucleotides comprising a nucleotide sequence which has at least 70% identity, preferably at least 80% 5 identity, more preferably at least 90% identity, yet more preferably at least 95% identity, to SEQ ID NO:1 over the entire length of SEQ ID NO:1. In this regard, polynucleotides which have at least 97% identity are highly preferred, whilst those with at least 98-99% identiy are more highly preferred, and those with at least 99% identity are most highly preferred. Such polynucleotides include a polynucleotide comprising the polynucleotide of SEQ ID NO:1 as well as the 10 polynucleotide of SEQ ID NO:1. Said polynucleotide can be inserted in a suitable plasmid or recombinant microrganism vector and used for immunization (see for example Wolff et. al., Science 247:1465-1468 (1990); Corr et. al., J. Exp. Med. 184:1555-1560 (1996); Doe et. al., Proc. Natl. Acad. Sci. 93:8578-8583 (1996)).

The invention also provides polynucleotides which are complementary to all the above 15 described polynucleotides.

Preferred polypeptides and polynucleotides of the present invention are expected to have, *inter alia*, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention 20 have at least one CASB500 activity.

Polynucleotides of the present invention may be obtained, using standard cloning and screening techniques, from a cDNA library derived from mRNA in cells of human colorectal tumors, using the expressed sequence tag (EST) analysis (Adams, M.D., *et al.* Science (1991) 252:1651-1656; Adams, M.D. *et al.*, Nature, (1992) 355:632-634; Adams, M.D., *et al.*, Nature 25 (1995) 377 Supp:3-174). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.

When polynucleotides of the present invention are used for the recombinant production of polypeptides of the present invention, the polynucleotide may include the coding sequence for 30 the mature polypeptide, by itself; or the coding sequence for the mature polypeptide in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence which facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments of this aspect of the invention, the marker sequence is a hexa-histidine peptide, as

provided in the pQE vector (Qiagen, Inc.) and described in Gentz *et al.*, Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag. The polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.

5 Further embodiments of the present invention include polynucleotides encoding polypeptide variants which comprise the amino acid sequence of SEQ ID NO:2 and in which several, for instance from 5 to 10, 1 to 5, 1 to 3, 1 to 2 or 1, amino acid residues are substituted, deleted or added, in any combination.

Polynucleotides which are identical or sufficiently identical to a nucleotide sequence contained in SEQ ID NO:1, may be used as hybridization probes for cDNA and genomic DNA or as primers for a nucleic acid amplification (PCR) reaction, to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes (including genes encoding homologs and orthologs from species other than human) that have a high sequence similarity to SEQ ID NO:1. Typically these nucleotide sequences are 70% identical, preferably 80% identical, more preferably 90% identical, most preferably 95% identical to that of the referent. The probes or primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50 nucleotides. Particularly preferred probes will have between 30 and 50 nucleotides. In particular, polypeptides or polynucleotides derived from sequences from homologous animal origin could be used as 10 immunogens to obtain a cross-reactive immune response to the human gene.

A polynucleotide encoding a polypeptide of the present invention, including homologs and orthologs from species other than human, may be obtained by a process which comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled probe having the sequence of SEQ ID NO: 1 or a fragment thereof; and isolating full-length cDNA and 15 genomic clones containing said polynucleotide sequence. Such hybridization techniques are well known to the skilled artisan. Preferred stringent hybridization conditions include overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA; followed by washing the filters in 20 0.1x SSC at about 65°C. Thus the present invention also includes polynucleotides obtainable by screening an appropriate library under stringent hybridization conditions with a labeled probe having the sequence of SEQ ID NO:1 or a fragment thereof.

The skilled artisan will appreciate that, in many cases, an isolated cDNA sequence will be incomplete, in that the region coding for the polypeptide is cut short at the 5' end of the

cDNA. This is a consequence of reverse transcriptase, an enzyme with inherently low 'processivity' (a measure of the ability of the enzyme to remain attached to the template during the polymerisation reaction), failing to complete a DNA copy of the mRNA template during 1st strand cDNA synthesis.

- 5 There are several methods available and well known to those skilled in the art to obtain full-length cDNAs, or extend short cDNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman et al., PNAS USA 85, 8998-9002, 1988). Recent modifications of the technique, exemplified by the Marathon™ technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer
- 10 cDNAs. In the Marathon™ technology, cDNAs have been prepared from mRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the 'missing' 5' end of the cDNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is then repeated using 'nested' primers, that is, primers designed to anneal within the amplified product (typically
- 15 an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the known gene sequence). The products of this reaction can then be analysed by DNA sequencing and a full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.
- 20 Recombinant polypeptides of the present invention may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems which comprise a polynucleotide or polynucleotides of the present invention, to host cells which are genetically engineered with such expression systems and to the production of polypeptides of the invention by
- 25 recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Introduction of polynucleotides into host cells can be effected by methods described in many standard laboratory manuals, such as Davis et al., Basic Methods in Molecular Biology (1986) and Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). Preferred such methods include, for instance, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-

mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.

Representative examples of appropriate hosts include bacterial cells, such as *streptococci*, *staphylococci*, *E. coli*, *Streptomyces* and *Bacillus subtilis* cells; fungal cells, such as yeast cells and 5 *Aspergillus* cells; insect cells such as *Drosophila S2* and *Spodoptera Sf9* cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used, for instance, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, 10 from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any system or vector which is able to maintain, propagate or 15 express a polynucleotide to produce a polypeptide in a host may be used. The appropriate nucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook *et al.*, Molecular Cloning, A Laboratory Manual (supra). Appropriate secretion signals may be incorporated into the desired polypeptide to allow secretion of the translated protein into the lumen of the endoplasmic reticulum, 20 the periplasmic space or the extracellular environment. These signals may be endogenous to the polypeptide or they may be heterologous signals.

If a polypeptide of the present invention is to be expressed for use in screening assays, it is generally preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If the polypeptide is secreted into the 25 medium, the medium can be recovered in order to recover and purify the polypeptide. If produced intracellularly, the cells must first be lysed before the polypeptide is recovered.

Polypeptides of the present invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, 30 hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.

Another important aspect of the invention relates to a method for inducing, re-inforcing or modulating an immunological response in a mammal which comprises inoculating the mammal with a fragment or the entire polypeptide or polynucleotide of the present invention, adequate to produce antibody and/or T cell immune response for prophylaxis or for therapeutic treatment of the diseases hereinbefore mentioned, amongst others. Yet another aspect of the invention relates to a method of inducing, re-inforcing or modulating immunological response in a mammal which comprises, delivering a polypeptide of the present invention *via* a vector or cell directing expression of the polynucleotide and coding for the polypeptide *in vivo* in order to induce such an immunological response to produce immune responses for prophylaxis or treatment of said mammal from diseases.

A further aspect of the invention relates to an immunological/vaccine formulation (composition) which, when introduced into a mammalian host, induces, re-forces or modulates an immunological response in that mammal to a polypeptide of the present invention wherein the composition comprises a fragment or the entire polypeptide or polynucleotide of the present invention. The vaccine formulation may further comprise a suitable carrier. Since a polypeptide may be broken down in the stomach, it is preferably administered parenterally (for instance, subcutaneous, intramuscular, intravenous, or intradermal injection). Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems, immunomodulators and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

A further aspect of the invention relates to the *in vitro* induction of immune responses to a fragment or the entire polypeptide or polynucleotide of the present invention or a molecule comprising the polypeptide or polynucleotide of the present invention, using cells from the immune system of a mammal, and reinfusing these activated immune cells of the mammal for the treatment of disease. Activation of the cells from the immune system is achieved by *in vitro* incubation with the entire polypeptide or polynucleotide of the present invention or a molecule comprising the polypeptide or polynucleotide of the present invention in the presence or absence of various immunomodulator molecules.

A further aspect of the invention relates to the immunization of a mammal by administration of antigen presenting cells modified by *in vitro* loading with part or the entire polypeptide of the present invention or a molecule comprising the polypeptide of the present invention and administered *in vivo* in an immunogenic way. Alternatively, antigen presenting cells can be transfected *in vitro* with a vector containing a fragment or the entire polynucleotide of the present invention or a molecule comprising the polynucleotide of the present invention, such as to express the corresponding polypeptide, and administered *in vivo* in an immunogenic way.

This invention also relates to the use of polynucleotides of the present invention as diagnostic reagents. Detection of a mutated form of the gene characterised by the polynucleotide of SEQ ID NO:1 which is associated with a dysfunction will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, or susceptibility to a disease, which results from under-expression, over-expression or altered expression of the gene. Individuals carrying mutations in the gene may be detected at the DNA level by a variety of techniques.

Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to labeled CASB500 nucleotide sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing (ee, e.g., Myers *et al.*, Science (1985) 230:1242). Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (see Cotton *et al.*, Proc Natl Acad Sci USA (1985) 85: 4397-4401). In another embodiment, an array of oligonucleotides probes comprising CASB500 nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of e.g., genetic mutations. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability (see for example: M.Chee et al., Science, Vol 274, pp 610-613 (1996)).

The diagnostic assays offer a process for diagnosing or determining a susceptibility to the Diseases through detection of mutation in the CASB500 gene by the methods described. In

addition, such diseases may be diagnosed by methods comprising determining from a sample derived from a subject an abnormally decreased or increased level of polypeptide or mRNA. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, nucleic acid 5 amplification, for instance PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as a polypeptide of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

- 10 Thus in another aspect, the present invention relates to a diagnostic kit which comprises:
- (a) a polynucleotide of the present invention, preferably the nucleotide sequence of SEQ ID NO: 1, or a fragment thereof ;
 - (b) a nucleotide sequence complementary to that of (a);
 - (c) a polypeptide of the present invention; or
 - 15 (d) an antibody to a polypeptide of the present invention.

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component. Such a kit will be of use in diagnosing a disease or susceptibility to a disease, particularly, amongst others.

- 20 The nucleotide sequences of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to, and can hybridize with, a particular location on an individual human chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data.
- 25 Such data are found in, for example, V. McKusick, Mendelian Inheritance in Man (available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes).

- 30 The differences in the cDNA or genomic sequence between affected and unaffected individuals can also be determined. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

The polypeptides of the invention or their fragments or analogs thereof, or cells expressing them, can also be used as immunogens to produce antibodies immunospecific for polypeptides of the present invention. The term "immunospecific" means that the antibodies have substantially greater affinity for the polypeptides of the invention than their affinity for other related polypeptides
5 in the prior art.

- Antibodies generated against polypeptides of the present invention may be obtained by administering the polypeptides or epitope-bearing fragments, analogs or cells to an animal, preferably a non-human animal, using routine protocols. For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used.
10 Examples include the hybridoma technique (Kohler, G. and Milstein, C., *Nature* (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor *et al.*, *Immunology Today* (1983) 4:72) and the EBV-hybridoma technique (Cole *et al.*, *Monoclonal Antibodies and Cancer Therapy*, 77-96, Alan R. Liss, Inc., 1985).

- Techniques for the production of single chain antibodies, such as those described in U.S. Patent No. 4,946,778, can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms, including other mammals, may be used to express humanized antibodies.
15

- The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography.
20 Antibodies against polypeptides of the present invention may also be employed to treat the Diseases, amongst others.

- In a further aspect, the present invention relates to genetically engineered soluble fusion proteins comprising a polypeptide of the present invention, or a fragment thereof, and various portions of the constant regions of heavy or light chains of immunoglobulins of various
25 subclasses (IgG, IgM, IgA, IgE). Preferred as an immunoglobulin is the constant part of the heavy chain of human IgG, particularly IgG1, where fusion takes place at the hinge region. In a particular embodiment, the Fc part can be removed simply by incorporation of a cleavage sequence which can be cleaved with blood clotting factor Xa. Furthermore, this invention relates to processes for the preparation of these fusion proteins by genetic engineering, and to the use
30 thereof for drug screening, diagnosis and therapy. A further aspect of the invention also relates to polynucleotides encoding such fusion proteins. Examples of fusion protein technology can be found in International Patent Application Nos. WO94/29458 and WO94/22914.

Another aspect of the invention relates to a method for inducing an immunological response in a mammal which comprises inoculating the mammal with a polypeptide of the

present invention, adequate to produce antibody and/or T cell immune response to protect said animal from the Diseases hereinbefore mentioned, amongst others. Yet another aspect of the invention relates to a method of inducing immunological response in a mammal which comprises, delivering a polypeptide of the present invention *via* a vector directing expression of 5 the polynucleotide and coding for the polypeptide *in vivo* in order to induce such an immunological response to produce antibody to protect said animal from diseases.

Polypeptides of the present invention are responsible for many biological functions, including many disease states, in particular the Diseases hereinbefore mentioned. It is therefore desirous to devise screening methods to identify compounds which stimulate or which inhibit the 10 function of the polypeptide. Accordingly, in a further aspect, the present invention provides for a method of screening compounds to identify those which stimulate or which inhibit the function of the polypeptide. In general, agonists or antagonists may be employed for therapeutic and prophylactic purposes for such Diseases as hereinbefore mentioned. Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical libraries, and natural 15 product mixtures. Such agonists, antagonists or inhibitors so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of the polypeptide; or may be structural or functional mimetics thereof (see Coligan *et al.*, Current Protocols in Immunology 1(2):Chapter 5 (1991)).

The screening method may simply measure the binding of a candidate compound to the 20 polypeptide, or to cells or membranes bearing the polypeptide, or a fusion protein thereof by means of a label directly or indirectly associated with the candidate compound. Alternatively, the screening method may involve competition with a labeled competitor. Further, these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells 25 bearing the polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed. Constitutively active polypeptides may be employed in screening methods for inverse agonists or inhibitors, in the absence of an agonist or inhibitor, by testing whether the candidate compound results in inhibition of activation of the polypeptide. Further, 30 the screening methods may simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide of the present invention, to form a mixture, measuring CASB500 activity in the mixture, and comparing the CASB500 activity of the mixture to a standard. Fusion proteins, such as those made from Fc portion and CASB500 polypeptide, as hereinbefore described, can also be used for high-throughput screening assays to identify

antagonists for the polypeptide of the present invention (see D. Bennett *et al.*, J Mol Recognition, 8:52-58 (1995); and K. Johanson *et al.*, J Biol Chem, 270(16):9459-9471 (1995)).

The polynucleotides, polypeptides and antibodies to the polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents which may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.

The polypeptide may be used to identify membrane bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, ^{125}I), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (cells, cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide which compete with the binding of the polypeptide to its receptors, if any. Standard methods for conducting such assays are well understood in the art.

Examples of potential polypeptide antagonists include antibodies or, in some cases, oligonucleotides or proteins which are closely related to the ligands, substrates, receptors, enzymes, etc., as the case may be, of the polypeptide, e.g., a fragment of the ligands, substrates, receptors, enzymes, etc.; or small molecules which bind to the polypeptide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented.

Thus, in another aspect, the present invention relates to a screening kit for identifying agonists, antagonists, ligands, receptors, substrates, enzymes, etc. for polypeptides of the present invention; or compounds which decrease or enhance the production of such polypeptides, which comprises:

- 30 (a) a polypeptide of the present invention;
- (b) a recombinant cell expressing a polypeptide of the present invention;
- (c) a cell membrane expressing a polypeptide of the present invention; or
- (d) antibody to a polypeptide of the present invention.

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.

It will be readily appreciated by the skilled artisan that a polypeptide of the present invention may also be used in a method for the structure-based design of an agonist, antagonist
5 or inhibitor of the polypeptide, by:

- (a) determining in the first instance the three-dimensional structure of the polypeptide;
- (b) deducing the three-dimensional structure for the likely reactive or binding site(s) of an agonist, antagonist or inhibitor;
- (c) synthesing candidate compounds that are predicted to bind to or react with the deduced
10 binding or reactive site; and
- (d) testing whether the candidate compounds are indeed agonists, antagonists or inhibitors.

It will be further appreciated that this will normally be an interative process.

In a further aspect, the present invention provides methods of treating abnormal conditions such as, for instance, cancer and autoimmune disease, related to either an excess of, or an under-
15 expression of, CASB500 polypeptide activity.

If the activity of the polypeptide is in excess, several approaches are available. One approach comprises administering to a subject in need thereof an inhibitor compound (antagonist) as hereinabove described, optionally in combination with a pharmaceutically acceptable carrier, in an amount effective to inhibit the function of the polypeptide, such as, for example, by blocking the
20 binding of ligands, substrates, receptors, enzymes, etc., or by inhibiting a second signal, and thereby alleviating the abnormal condition. In another approach, soluble forms of the polypeptides still capable of binding the ligand, substrate, enzymes, receptors, etc. in competition with endogenous polypeptide may be administered. Typical examples of such competitors include fragments of the CASB500 polypeptide.

25 In still another approach, expression of the gene encoding endogenous CASB500 polypeptide can be inhibited using expression blocking techniques. Known such techniques involve the use of antisense sequences, either internally generated or separately administered (see, for example, O'Connor, J Neurochem (1991) 56:560 in Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Alternatively,
30 oligonucleotides which form triple helices with the gene can be supplied (see, for example, Lee *et al.*, Nucleic Acids Res (1979) 6:3073; Cooney *et al.*, Science (1988) 241:456; Dervan *et al.*, Science (1991) 251:1360). These oligomers can be administered *per se* or the relevant oligomers can be expressed *in vivo*.

For treating abnormal conditions related to an under-expression of CASB500 and its activity, several approaches are also available. One approach comprises administering to a subject a therapeutically effective amount of a compound which activates a polypeptide of the present invention, i.e., an agonist as described above, in combination with a pharmaceutically acceptable carrier, to thereby alleviate the abnormal condition. Alternatively, gene therapy may be employed to effect the endogenous production of CASB500 by the relevant cells in the subject. For example, a polynucleotide of the invention may be engineered for expression in a replication defective retroviral vector, as discussed above. The retroviral expression construct may then be isolated and introduced into a packaging cell transduced with a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention such that the packaging cell now produces infectious viral particles containing the gene of interest. These producer cells may be administered to a subject for engineering cells *in vivo* and expression of the polypeptide *in vivo*. For an overview of gene therapy, see Chapter 20, Gene Therapy and other Molecular Genetic-based Therapeutic Approaches, (and references cited therein) in Human Molecular Genetics, T Strachan and A P Read, BIOS Scientific Publishers Ltd (1996). Another approach is to administer a therapeutic amount of a polypeptide of the present invention in combination with a suitable pharmaceutical carrier.

In a further aspect, the present invention provides for pharmaceutical compositions comprising a therapeutically effective amount of a polypeptide, such as the soluble form of a polypeptide of the present invention, agonist/antagonist peptide or small molecule compound, in combination with a pharmaceutically acceptable carrier or excipient. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention. Polypeptides and other compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

The composition will be adapted to the route of administration, for instance by a systemic or an oral route. Preferred forms of systemic administration include injection, typically by intravenous injection. Other injection routes, such as subcutaneous, intramuscular, or intraperitoneal, can be used. Alternative means for systemic administration include transmucosal and transdermal administration using penetrants such as bile salts or fusidic acids or other detergents. In addition, if a polypeptide or other compounds of the present invention can be formulated in an enteric or an encapsulated formulation, oral administration may also be possible.

Administration of these compounds may also be topical and/or localized, in the form of salves, pastes, gels, and the like.

The dosage range required depends on the choice of peptide or other compounds of the present invention, the route of administration, the nature of the formulation, the nature of the subject's condition, and the judgment of the attending practitioner. Suitable dosages, however, are in the range of 0.1-100 µg/kg of subject. Wide variations in the needed dosage, however, are to be expected in view of the variety of compounds available and the differing efficiencies of various routes of administration. For example, oral administration would be expected to require higher dosages than administration by intravenous injection. Variations in these dosage levels can be adjusted using standard empirical routines for optimization, as is well understood in the art.

Polypeptides used in treatment can also be generated endogenously in the subject, in treatment modalities often referred to as "gene therapy" as described above. Thus, for example, cells from a subject may be engineered with a polynucleotide, such as a DNA or RNA, to encode a polypeptide *ex vivo*, and for example, by the use of a retroviral plasmid vector. The cells are then introduced into the subject.

Polynucleotide and polypeptide sequences form a valuable information resource with which to identify further sequences of similar homology. This is most easily facilitated by storing the sequence in a computer readable medium and then using the stored data to search a sequence database using well known searching tools, such as GCC. Accordingly, in a further aspect, the present invention provides for a computer readable medium having stored thereon a polynucleotide comprising the sequence of SEQ ID NO:1 and/or a polypeptide sequence encoded thereby.

The following definitions are provided to facilitate understanding of certain terms used frequently hereinbefore.

"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an Fab or other immunoglobulin expression library.

"Isolated" means altered "by the hand of man" from the natural state. If an "isolated" composition or substance occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living animal is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.

"Polynucleotide" generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotides" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single-
5 and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single- stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term "polynucleotide" also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other
10 reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications may be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short polynucleotides, often referred
15 to as oligonucleotides.

"Polypeptide" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain
20 amino acids other than the 20 gene-encoded amino acids. "Polypeptides" include amino acid sequences modified either by natural processes, such as post-translational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications may occur anywhere in a polypeptide, including the peptide backbone,
25 the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present to the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from post-
30 translation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-

links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and 5 ubiquitination (see, for instance, Proteins - Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993; Wold, F., Post-translational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in Post-translational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter *et al.*, "Analysis for protein modifications and nonprotein cofactors", Meth Enzymol (1990) 182:626-10 646 and Rattan *et al.*, "Protein Synthesis: Post-translational Modifications and Aging", Ann NY Acad Sci (1992) 663:48-62).

"Variant" refers to a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes 15 in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the 20 sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that 25 is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis.

"Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, 30 as the case may be, as determined by the match between strings of such sequences. "Identity" and "similarity" can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology; Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin,

H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM *J. Applied Math.*, 48: 1073 (1988). Preferred methods to determine identity are designed to give the largest
5 match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol. 215: 403-410 (1990). The BLAST X program
10 is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990). The well known Smith Waterman algorithm may also be used to determine identity.

Preferred parameters for polypeptide sequence comparison include the following:

- 1) Algorithm: Needleman and Wunsch, *J. Mol Biol.* 48: 443-453 (1970)
- 15 Comparison matrix: BLOSSUM62 from Hentikoff and Hentikoff, *Proc. Natl. Acad. Sci. USA.* 89:10915-10919 (1992)
- Gap Penalty: 12
- Gap Length Penalty: 4

A program useful with these parameters is publicly available as the "gap" program from
20 Genetics Computer Group, Madison WI. The aforementioned parameters are the default parameters for polypeptide comparisons (along with no penalty for end gaps).

Preferred parameters for polynucleotide comparison include the following:

- 1) Algorithm: Needleman and Wunsch, *J. Mol Biol.* 48: 443-453 (1970)
- Comparison matrix: matches = +10, mismatch = 0
- 25 Gap Penalty: 50
- Gap Length Penalty: 3

A program useful with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison WI. The aforementioned parameters are the default parameters for polynucleotide comparisons.

- 30 By way of example, a polynucleotide sequence of the present invention may be identical to the reference sequence of SEQ ID NO:1, that is be 100% identical, or it may include up to a certain integer number of nucleotide alterations as compared to the reference sequence. Such alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3'
35 terminal positions of the reference nucleotide sequence or anywhere between those terminal

positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. The number of nucleotide alterations is determined by multiplying the total number of nucleotides in SEQ ID NO:1 by the numerical percent of the respective percent identity(divided by 100) and subtracting that product from said total number of nucleotides in SEQ ID NO:1, or:

$$n_n \leq x_n - (x_n \cdot y),$$

wherein n_n is the number of nucleotide alterations, x_n is the total number of nucleotides in SEQ ID NO:1, and y is, for instance, 0.70 for 70%, 0.80 for 80%, 0.85 for 85%, 0.90 for 90%, 0.95 for 95%,etc., and wherein any non-integer product of x_n and y is rounded down to the nearest integer prior to subtracting it from x_n . Alterations of a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2 may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.

Similarly, a polypeptide sequence of the present invention may be identical to the reference sequence of SEQ ID NO:2, that is be 100% identical, or it may include up to a certain integer number of amino acid alterations as compared to the reference sequence such that the % identity is less than 100%. Such alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. The number of amino acid alterations for a given % identity is determined by multiplying the total number of amino acids in SEQ ID NO:2 by the numerical percent of the respective percent identity(divided by 100) and then subtracting that product from said total number of amino acids in SEQ ID NO:2, or:

$$n_a \leq x_a - (x_a \cdot y),$$

wherein n_a is the number of amino acid alterations, x_a is the total number of amino acids in SEQ ID NO:2, and y is, for instance 0.70 for 70%, 0.80 for 80%, 0.85 for 85% etc., and wherein any non-integer product of x_a and y is rounded down to the nearest integer prior to subtracting it from x_a .

"Fusion protein" refers to a protein encoded by two, often unrelated, fused genes or fragments thereof. In one example, EP-A-0 464 discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or

part thereof. In many cases, employing an immunoglobulin Fc region as a part of a fusion protein is advantageous for use in therapy and diagnosis resulting in, for example, improved pharmacokinetic properties [see, e.g., EP-A 0232 262]. On the other hand, for some uses it would be desirable to be able to delete the Fc part after the fusion protein has been expressed,
5 detected and purified.

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set
10 forth.

Examples

- Subtractive cDNA cloning of colon tumour-associated antigen (TAA) candidates.
15 Subtractive cDNA libraries are produced using standard technologies. Briefly, total RNA is extracted from frozen (-70°C) tumour and matched normal colon samples using the TriPure reagent and protocol (Boehringer). Target RNA is prepared by pooling total RNA from three tumour samples (30 µg each). Driver RNA is prepared by pooling total RNA from three matched normal colon samples (10 µg each) and total RNA from seven normal tissues other than
20 colon(brain, heart, kidney, liver, bladder, skin, spleen; 10 µg each). Total RNA from non-colon normal tissues is purchased from InVitrogen.
Messenger RNA is purified from total RNA using oligo-dT magnetic bead technology (Dynal) and quantified by spectrofluorimetry (BioRad).
- Target and driver mRNA are reverse transcribed into cDNA using one of two strategies: 1)
25 Target sequences for PCR oligonucleotides are introduced onto the ends of the newly synthesised cDNA during reverse transcription using the template switching capability of reverse transcriptase (ClonTech SMART PCR cDNA synthesis kit). 2) Alternatively, the target and driver mRNA are reverse transcribed into cDNA using an oligo-dT primer and converted to double-strand cDNA; the cDNA is cleaved with RsaI and linkers for PCR amplification are
30 ligated onto the extremities of the cDNA fragments.
- In both cases, target and driver cDNA are amplified by long range PCR (ClonTech SMART PCR Synthesis Kit and Advantage PCR Polymerase Mix) and used as starting material for subtractive cloning. For amplification, cycling conditions and optimisation of the number of PCR cycles are as described in the Advantage PCR protocol.

Two subtractive cloning strategies are used: ClonTech PCR SELECT (see ClonTech kit protocol and N. Gurskaya et al. 1996. Analytical Biochemistry: 240, 90) and cRDA(M. Hubank and D. Schatz. 1994. Nucleic Acids Research: 22, 5640) . When the PCR SELECT protocol is used, the primary PCR SELECT subtraction products are submitted to a supplementary round of cRDA
5 subtraction. When the cRDA protocol is used, two consecutive cycles of cRDA subtraction are performed. In each case the products of both cycles of subtraction are cloned into pCR-TOPO (InVitrogen) and transformed into E. coli to produce a subtracted cDNA plasmid library.

An alternative strategy is also followed: subtraction of normal colon sequences and sequences
10 from non-colon normal tissues are subtracted in separate hybridizations. In this case, target and driver RNA are assembled for the first subtraction as above with the exception that non-colon RNA is left out of the driver pool and amounts of normal colon are increased to 10 µg.
Preparation of target and driver cDNA and subtractive hybridization are performed as described above. A second subtraction is then performed on the products of the first subtraction, but the
15 driver is now composed of a pool of normal colon and normal non-colon mRNA from the seven normal tissues.

Differential Screening of cDNA arrays.

Identification of tumour-associated genes in the subtracted cDNA library is accomplished by
20 differential screening.
Total bacterial DNA is extracted from 100 µl over-night cultures. Bacteria are lysed with guanidium isothiocyanate and the bacterial DNA is affinity purified using magnetic glass (Boehringer). Plasmid inserts are recovered from the bacterial DNA by Advantage PCR amplification (Clontech). The PCR products are dotted onto two nylon membranes to produce
25 high density cDNA arrays using the Biomek 96 HDRT tool (Beekman). The spotted cDNA is covalently linked to the membrane by UV irradiation. The first membrane is hybridised with a mixed cDNA probe prepared from the tumour of a single patient. The second membrane is hybridised with an equivalent amount of mixed cDNA probe prepared from normal colon of the same patient. The probe cDNA is prepared by PCR amplification as described above and is
30 labelled using the AlkPhos Direct System (Amersham). Hybridisation conditions and stringency washes are as described in the AlkPhos Direct kit. Hybridized probe is detected by chemiluminescence. Hybridisation intensities for each cDNA fragment on both blots are measured by film densitometry or direct measurement (BioRad Fluor-S Max). The ratio of the tumour to normal hybridisation intensities (T/N) is calculated for each gene to evaluate the

degree of over-expression in the tumour. Genes which are significantly over-expressed in colon tumours are followed-up. Significance is arbitrarily defined as one standard deviation of the T/N frequency distribution. Differential screening experiments are repeated using RNA from multiple patient donors (>18) to estimate the frequency of over-expressing tumours in the patient population.

5 In addition, the DNA arrays are hybridised with mixed cDNA probes from normal tissues other than colon (see list above) to determine the level of expression of the candidate gene in these tissues.

10 Real-time RT-PCR analysis

Real-time RT-PCR (Applied Biosystems 7700) is used to obtain an independent evaluation of the transcript abundance of a candidate antigen in tumour and normal tissue mRNA. This methodology uses minute amounts of mRNA as input material and is capable of detecting very low levels of transcripts with exquisite specificity (U. Gibson. 1996. Genome Research: 6,996).

15 Real-time experiments are run on mRNA from tumour and matched normal colon. Ct values are obtained for each sample; the difference between these two values (delta Ct) is a direct measure of the difference in transcript levels between the tumor and normal tissue. Samples from multiple patient donors (>18) are analysed to estimate delta Ct values for a particular transcript in the patient population.

20

Northern-Southern blot analysis

Limited amounts of mixed tumor and matched normal colon cDNA are amplified by Advantage PCR (see above). Messenger RNA from multiple normal tissues is also amplified using the same procedure. The amplified cDNA (1 µg) is electrophoresed on a 1.2% agarose gel and transferred onto a nylon membrane. The membrane is hybridised (AlkPhos Direct System) with a probe prepared using a fragment of the candidate TAA cDNA. Northern-Southern analysis provides information on transcript size, presence of splice variants and transcript abundance in tumour and normal tissues. Northern-Southern Blot analysis is used in place of the more familiar Northern Blot analysis as most tissue samples are too small to yield enough RNA for the latter procedure.

SEQUENCE INFORMATION

SEQ ID NO:1

TTTTTAGGGTTCAGTCCAGCTGATTTATTCCTCTCAAAAAAAGTTATTACAGAA
 GGTATATATCAACAATCTGACAGGCAGTGAACCTGACATGATTAGCTGGCATGATTTTT
 5 CTTTTTTCCCCAAACATTGTTTGTGGCCTGAAATTAAAGACAAATATTCTACAC
 GGCATATTGCACAGGATGGATGGAAAAAAAAGTTAAAACAAAACCCTAACCGAAC
 TGCCTTAAAAGGCAGACGTCTAGTCCTGTATGTTATTAACATAACACACAC
 ATCTTTTGCTTATTATAATACAGACTAAATGTACAAAGATGTTTCCACTTTTCAA
 10 TTTTAAACACAACAGCTATAAACCTGAACACATATGCTATCATGCCATAAGACTAA
 AACATTATATTAGCGACAAGTAGAAAGGATTAAATAGTCAAATACAAGAATGAAAAAC
 GCAGTACATAGTGTGCGAACCTCAAATCGGATTTAGATAGATCCAGTGGTTAACGGC
 ACGTTTTGCTTATAAAAAAAGTGCACAAAAGATGTGGTTACAAGTAAAGCTACAGAA
 TCCCTTTGCTGTAATTGACCACTTTAAAGCCTCTGGACAGAGCAGTATTCGTTA
 AAACTTTGTTTCTTAAAGCTTACAGTGTGGCTAATTCTCCTCCCTTTTACAAG
 15 ACGGGGCCGGAGGGTGGACACTGGTGGCAGGTTAACGGATACTGTCACTTAACAGGCC
 TGCAGATTGAAGTGTAAACATGGAGAAATTAGGGCTGATTTTAAACTGTGTGAGATA
 TTAACCAAGCCGCCCTGTTATAAAATCAGGAATCCAACAGCGATTACACCGATTAACA
 CCCCTTATATATTTTACAAAATACACTGAGAAAATAATCAAACGTTTCACTCT
 CTTGTCTTTTGTTTTAAAGTGTCAAAAGTCTACATTAAATATAAAAATTAAA
 20 AGTAAAACCTAGCCCTCAGTGAAGGAGACGTAAAATGGCTGGTAACAACAACTAC
 CAAAAAAAAGAAAAAAAAGAAAAAAAAGGAAAGGAAGGAATAAGAAATAAGGAA
 GTAAAAAGAAAGGAAAGAAAAAAAAGGGACAAAAGAAAAATATGTTGCCAGTATAAA
 TACGTCCCACATATAAAATGGCATCTGATTACATTACAAGGAAAAGAAATACGAGGAT
 GGAGCATCGGTGAAGGAAAAAACACGTCTCTCATTTACACCTATAAGGAATAACACA
 25 CACACTGAGAAAAATTGGCCCTGAATTGTTTAAAGTCCAGCACAGATTGAGTT
 GCGTTGAATCCTTAAAGAGTTAAGAATGAAAAAAAAGCTGGTGATAATTCTGTTGAGG
 AATCAAACATAGGCCATCTATCTGCTTTATATTACCTACACTATTAAAAACTGC
 TCAACAGTCTTATACAGAAATCTTAAAGATAGACAGGATAACATGCTATATTACCC
 ACCATTGAAATAATCCAACACCATCACGATTCCGATTAAGAGAAGNAAAAAT

What is claimed is:

1. An isolated polynucleotide comprising a nucleotide sequence that has at least 70% identity to a nucleotide sequence of SEQ ID NO:1 over its entire length; or a nucleotide sequence
5 complementary to said isolated polynucleotide.
2. The polynucleotide of claim 1 which is DNA or RNA.
3. The polynucleotide of claim 1 which is the polynucleotide of SEQ ID NO: 1.
10
4. An isolated polynucleotide comprising a polynucleotide that hybridizes under stringent condition to a nucleotide sequence having SEQ ID NO: 1 or a fragment thereof.
5. A polypeptide comprising amino acid sequence encoded by the polynucleotide obtained in claim
15 4.
6. A vaccine comprising an effective amount of the polynucleotide of claim 1 and a pharmaceutically acceptable carrier.
20
7. A vaccine comprising an effective amount of the polypeptide of claim 5 and a pharmaceutically effective carrier.
8. Use of the vaccines as claimed in claims 6 and 7 in the immunoprophylaxis or therapy of disease.
25

Abstract

CASB500 polypeptides and polynucleotides and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing CASB500 polypeptides and polynucleotides in diagnostics, prophylaxis and therapy, and diagnostic assays for such.

5