SET - 1 Code No: R1622055

II B. Tech II Semester Supplementary Examinations, November - 2019 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer science and Engineering)

Time: 3 hours Max. Marks:			70	
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B		
		<u>PART -A</u>		
1.	a)	Write about transition and extended transition functions.	(2M)	
	b)	Relate regular grammars and regular expressions.	(2M)	
	c)	Specify the reason for eliminating useless symbols? How to identify them?	(2M)	
	d)	Write about the model of Push Down Automata.	(3M)	
	e)	What is Turing machine halting problem?	(3M)	
	f)	Prove that integer linear programming is NP-Hard.	(2M)	
		<u>PART –B</u>		
2.	a)	Explain the procedure to test the equivalence of two finite state machines over	(7M)	
	b)	set of strings 'S' with an example. (0/1)*011 for this regular expression draw the NFA with ε-closures and convert it into NFA.	(7M)	
3.	a)	Construct DFA equivalent to regular expression (0+1)*(00+11)(0+1)* and also	(7M)	
	b)	find the reduced DFA Explain the Pumping Lemma for regular sets. Show that $L=\{a^p p \text{ is a prime}\}$ is not regular.	(7M)	
4.	a)	Describe the closure properties of context free grammars. How to simplify the	(7M)	
	b)	context free grammars? Explain. Find GNF equivalent to the given CFG: $E \rightarrow E + T \mid T$, $T \rightarrow T * F \mid F$, $F \rightarrow (E) \mid id$	(7M)	
5.	a)	What is Deterministic PDA? Differentiate acceptance by final state and	(7M)	
	b)	acceptance by empty state. S→aABB aAA, A→aBB a, B→bBB A, construct the PDA that accepts the language generated by given grammar.	(7M)	
6.	a)		(7M)	
	b)	$L = \{a^n \ b^n n >= 1\}$ Write about Churches hypothesis and Computable function in Turing Machines with an example.	(7M)	
7.	a)	Write the general working principle of post correspondence theorem? How it is	(7M)	
	b)	modified? Explain. Find whether post correspondence problem P={(10,101),(011,11),(101,011)} has match? Give the solution.	(7M)	