Integral Fresnel-Huygens com Simetria circular

$$\mathcal{E}(x,y,z) = \frac{\mathcal{E}_0}{i\lambda z} \int_{-\infty}^{\infty} \int f(x',y') e^{ikz} e^{ik\left[(x-x')^2 + (y-y')^2\right]/2z} dx' dy'$$

Com simetria circular convêm usar coordenados polares

$$x' = \rho' \cos \theta' \qquad y' = \rho' \sin \theta'$$
$$x = \rho \cos \theta \qquad y = \rho \sin \theta$$

$$(x-x')^2 = \rho^2 \cos^2 \theta - 2\rho \rho' \cos \theta \cos \theta' + \rho'^2 \cos^2 \theta'$$

$$\overline{r}_p = z + \rho^2 / 2z$$

$$+(y-y')^{2} = \rho^{2} \sin^{2}\theta - 2\rho\rho' \sin\theta \sin\theta' + \rho'^{2} \sin^{2}\theta'$$

$$(x-x')^{2} + (y-y')^{2} = \rho^{2} - 2\rho\rho' \cos(\theta-\theta') + \rho'^{2}$$

$$f(\rho') = \begin{cases} 1 & \rho' < R_a \\ 0 & \rho' \ge R_a \end{cases} \qquad \mathcal{E}(\rho, \theta, z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ik\bar{r}_p} \int_0^{2\pi} d\theta' \int_0^{R_a} \rho' d\rho' \exp\left[-ik\frac{\rho \rho'}{z}\cos(\theta - \theta') + ik\frac{\rho'^2}{2z}\right]$$

Abertura circular irradiância no eixo ótico

$$\mathcal{E}(\rho,\theta,z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ik\overline{r}_p} \int_0^{2\pi} d\theta' \int_0^{R_A} \rho' d\rho' \exp\left[-ik\frac{\rho\rho'}{z}\cos(\theta-\theta') + ik\frac{\rho'^2}{2z}\right]$$

Esta integral é difícil em geral e tem ser resolvida numericamente. No entanto no eixo ótico $\rho = 0$

$$\mathcal{E}(\rho = 0, z) = \frac{\mathcal{E}_{0}}{i\lambda z} e^{ikz} 2\pi \int_{0}^{R_{A}} \rho' d\rho' \exp\left[ik\frac{\rho'^{2}}{2z}\right]$$

$$u' = \frac{ik\rho'^{2}}{2z} = \frac{i\pi\rho'^{2}}{\lambda z} \quad \frac{\rho'^{2}}{2} = \frac{\lambda z}{i2\pi} u \quad \rho' d\rho' = \frac{\lambda z}{i2\pi} du'$$

$$\mathcal{E}(\rho = 0, z) = \frac{\mathcal{E}_{0}}{i\lambda z} e^{ikz} 2\pi \frac{\lambda z}{i2\pi} \int_{0}^{i\pi R_{A}^{2}/\lambda z} e^{u'} du' = -\mathcal{E}_{0} e^{ikz} \left[e^{i\pi R_{A}^{2}/\lambda z} - 1\right]$$

$$= -2i\mathcal{E}_{0} e^{ikz} e^{i\pi R_{A}^{2}/2\lambda z} \left[\frac{e^{i\pi R_{A}^{2}/2\lambda z} - e^{-i\pi R_{A}^{2}/2\lambda z}}{2i}\right]$$

$$\mathcal{I}(\rho=0,z) = 4\mathcal{I}_0 \sin^2\left(\frac{\pi R_a^2}{2\lambda z}\right)$$

Intensidade no eixo ótico – as Zonas de Fresnel

No eixo ótico (r = 0)
$$\mathcal{E}(\rho = 0, z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ikz} 2\pi \int_0^{R_a} \exp\left[i\frac{k\rho'^2}{2z}\right] \rho' d\rho'$$

Considere um ponto fixo,z, no eixo ótica

A maneira que ρ' aumenta a fase $e^{ik\rho'^2/2z}$ vai oscilar. Cada vez que a diferença em fase é igual meio ciclo, o sinal inverte.

Fresnel usou este efeito para definir zonas sobre qual o sinal da fase é positiva ou negativa Zonas brancas (fase positiva) Zonas cinzentas (fase negativa)

$$\frac{{\rho_m'}^2}{2z} = m\frac{\lambda}{2}$$

 $\rho'_m = \sqrt{m\lambda z}$

Raios limitadores
$$\frac{{\rho'_m}^2}{2z} = m\frac{\lambda}{2}$$
 $k\frac{{\rho'_m}^2}{2z} = m\pi$

$$\begin{array}{c|c}
 & y' \\
\hline
\sqrt{\lambda z} \\
\hline
0 & 1 \sqrt{2} \\
\hline
\sqrt{\lambda z} \\
\hline
\sqrt{\lambda z}
\end{array}$$

Abertura circular

Imagine que temos uma abertura circular com um raio R_a que podemos variar. Qual é a intensidade no eixo ótico (r =0) á uma distância z da abertura?

$$\mathcal{E}(\rho=0,z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ikz} \int_0^{R_a} e^{ik\rho'^2/2z} 2\pi \rho' d\rho' \qquad \qquad \rho'_m = \sqrt{m\lambda z}$$

 $0 \le R_a \le \rho_1'$ dentro a primeira zona Fresnel interferência é construtiva e a irradiância aumenta com Ra

Começa haver interferência $\rho_1 \le R_a \le \rho_2$ destrutiva e a irradiância no eixo vai diminuir até atingir 0 quando Ra = ρ_2

 $z = z_p$ fixo, variar R_a

$$\mathcal{I}(\rho=0,z) = 4\mathcal{I}_0 \sin^2\left(\frac{\pi R_a^2}{2\lambda z}\right)$$

Zonas de Fresnel

$$\rho'_m = \sqrt{m\lambda z}$$

Note que depende da distância entre a abertura e o plano de observação (z)

A área entre ho_{m-1}' e ho_m' é a m $^{ ext{issima}}$ zona Fresnel

Todas as zonas têm a mesma área

$$\pi \left(\rho_{m+1}^{\prime 2} - \rho_m^{\prime 2} \right) = \pi \lambda z \left(m + 1 - m \right) = \pi \lambda z$$

Placa de Fresnel

Se eliminamos todas as zonas cinzentas (ou em alternativa todas as zona brancas) a luz que passa pelos os restantes zonas vai interfere construtivamente (no eixo).

É equivalente á uma lente

$$f = \frac{{\rho_1'}^2}{\lambda}$$
 i.e. foca uma onda plana na posição z = f

Útil nas situações em que refração não é uma opção (Raios X, focagem dum feixe de átomos neutrais,...)

Uma placa Fresnel para átomos de He

Lentes Fresnel

Abertura circular irradiância no eixo ótico

$$\mathcal{E}(\rho = 0, z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ikz} \int_0^{R_a} e^{ik\rho'^2/2z} 2\pi \rho' d\rho'$$

$$= \frac{\mathcal{E}_0}{i\lambda z} e^{ikz} \frac{2\pi z}{ik} \left[e^{ikR_a^2/2z} - 1 \right]$$

$$= -2i\mathcal{E}_0 e^{ikz} e^{ikR_a^2/4z} \left[\frac{e^{ikR_a^2/4z} - e^{-ikR_a^2/4z}}{2i} \right]$$

$$= -2i\mathcal{E}_0 e^{ikz} e^{ikR_a^2/4z} \sin\left(\frac{kR_a^2}{4z}\right)$$

$$\mathcal{I}(\rho=0,z) = 4\mathcal{I}_0 \sin^2\left(\frac{\pi R_a^2}{2\lambda z}\right)$$

 $z = z_p$ fixo, variar R_a

Variação da intensidade ao longo do eixo ótico

$$\mathcal{I}(\rho=0,z) = 4\mathcal{I}_0 \sin^2\left(\frac{\pi R_a^2}{2\lambda z}\right)$$

$$N_F = \frac{R_a^2}{\lambda z}$$
 Número Fresnel

Quando $N_{\scriptscriptstyle F} \ll 1$ no limite paraxial a padrão de difração fica mais estável e mais simples, tal como aconteceu no caso duma fenda simples.

Quando z < R

 $z < R_a$ a aproximação de Fresnel deixa ser valida

Variação da padrão de difração com z

$$\mathcal{I}(\rho,\theta,z) = \mathcal{I}_0 \left| \int_0^{2\pi} d\theta' \int_0^{R_A} \rho' d\rho' \exp\left[-ik \frac{\rho \rho'}{z} \cos(\theta - \theta') + ik \frac{{\rho'}^2}{2z} \right] \right|^2$$

Simulação numérica da integral

Abertura circular
$$z = \frac{R_a}{\lambda}$$

Disco circular

Principio de Babinet

O principio de Babinet é efetivamente o principio de sobreposição

Jaques Babinet (1794-1872)

Em particular considere um disco circular O campo no eixo ótico é

$$\begin{split} \mathcal{E}_{disco}\left(\rho=0,z\right) &= \mathcal{E}_{plana}\left(0,z\right) - \mathcal{E}_{abertura}\left(0,z\right) \\ &= \mathcal{E}_{0}e^{ikz} + \mathcal{E}_{0}e^{ikz} \left[e^{i\pi R_{a}^{2}/\lambda z} - 1\right] \\ &= \mathcal{E}_{0}e^{ikz}e^{i\pi R_{a}^{2}/\lambda z} \end{split}$$

$$\mathcal{I}_{disco}(\rho=0,z)=\mathcal{I}_0$$

O spot de Poisson/Arago

Complementaridade

No limite Fraunhofer a integral Fresnel de difração é uma transformada Fourier

$$\begin{split} N_F \ll 1 & \text{Desprezar termos} \quad \frac{x'^2}{z\lambda}, \frac{y'^2}{z\lambda} & N_F \sim \frac{\left(\text{tamnaho da abertura}\right)^2}{\lambda z} \\ \mathcal{E}\big(x,y,z\big) = & \frac{\mathcal{E}_0}{i\lambda z} e^{ikz} \int\limits_{-\infty}^{\infty} \int f\big(x',y'\big) e^{\left\{ik\left[(x-x')^2+(y-y')^2\right]/2z\right\}} dx' dy' \\ & \Rightarrow & \frac{\mathcal{E}_0}{i\lambda z} e^{ikz} e^{ik(x^2+y^2)/2z} \int\limits_{-\infty}^{\infty} \int f\big(x',y'\big) e^{-ik\left[xx'+yy'\right]/z} dx' dy' \end{split}$$

Uma abertura complementaria (uma que é o inverso da abertura original) da a mesma padrão (exceto no eixo ótico)

$$\mathcal{E}_{comp}(x, y, z) = \frac{\mathcal{E}_{0}}{i\lambda z} e^{ikz} e^{ik(x^{2} + y^{2})/2z} \int_{-\infty}^{\infty} \int \left[1 - f(x', y')\right] e^{-ik[xx' + yy']/z} dx' dy'$$

$$= -\mathcal{E}_{original}(x, y, z) + -i\mathcal{E}_{0}\lambda z e^{ikz} 2\pi\delta(x)\delta(y)$$

Exceto na origem $\mathcal{E}_{comp}\left(x,y,z\right) = -\mathcal{E}_{original}\left(x,y,z\right)$ $\mathcal{I}_{comp}\left(x,y,z\right) = \mathcal{I}_{original}\left(x,y,z\right)$

Exemplo do principio de Babinet

Uma rede de buracos

Uma rede de anti-buracos

Difração de abertura circulares

Integral da difração de Fresnel

$$\mathcal{E}(\rho,\theta,z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ik\overline{r}_p} \int_0^{2\pi} d\theta' \int_0^{R_A} \rho' d\rho' \exp\left[-ik\frac{\rho\rho'}{z}\cos(\theta-\theta') + ik\frac{\rho'^2}{2z}\right]$$

Para o caso de uma abertura circular com diâmetro D, existe 2 casos particulares onde a dependência nos termo $ho'^2/2z$

é anulada / desprezável

Caso I : Onda plana incidente, no limite Fraunhofer $N_F = \frac{D^2}{4\lambda z} \ll 1$

$$\frac{k\rho'^2}{2z} \le \pi \frac{D^2}{\lambda z} = 4\pi N_F \ll 1$$

$$\mathcal{E}(\rho,\theta,z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ik\overline{r}_p} \int_0^{2\pi} d\theta' \int_0^{R_A} \rho' d\rho' \exp\left[-ik\frac{\rho\rho'}{z}\cos(\theta-\theta') + ik\frac{\rho^{2}}{2z}\right]$$

Difração de abertura circulares

Integral Fresnel de difração

$$\mathcal{E}(\rho,z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ikz - ik\rho^2/2z} \int_0^{2\pi} d\phi' \int_0^{D/2} \rho' d\rho' e^{\left[-ik\rho\rho'\cos(\phi - \phi')/z\right]}$$

Transformada Fourier duma abertura circular do diâmetro D

ajuda dum amigo matemático

Friedrich Bessel (1784-1846)

$$\int_{0}^{2\pi} d\phi' \, \mathrm{e}^{\left[-ik\rho\rho'\cos(\phi-\phi')/z\right]} = 2\pi J_0\left(\frac{k\rho\rho'}{z}\right)$$

$$\int_{0}^{D/2} \rho' d\rho' J_{0} \left(\frac{k\rho\rho'}{z} \right) = \frac{Dz}{2k\rho} J_{1} \left(\frac{kD\rho}{2z} \right)$$

$$\mathcal{E}(\rho,z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ikz - ik\rho^2/2z} \frac{\pi Dz}{k\rho} J_1\left(\frac{kD\rho}{2z}\right)$$

Difração de abertura circulares

Integral Fresnel de difração limite Fraunhofer

$$\mathcal{E}(\rho,z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ikz - ik\rho^2/2z} \frac{\pi Dz}{k\rho} J_1\left(\frac{kD\rho}{2z}\right)$$
$$= -i\mathcal{E}_0 e^{ikz - ik\rho^2/2z} \frac{D}{2\rho} J_1\left(kD\rho/2z\right)$$

$$\mathcal{I}(\rho,z) = \mathcal{I}_0 \left(\frac{\pi D^2}{4\lambda z}\right)^2 \left[2\frac{J_1(kD\rho/2z)}{(kD\rho/2z)}\right]^2$$

$$= \underbrace{\text{jinc}^2(kD\rho/2z)}$$

$$\lim_{\xi \to 0} \left[2 \frac{J_1(\xi)}{\xi} \right]^2 = 1$$

$$\text{jinc}^2(\xi)$$

Zeros de J₁ @ 3.8317, 7.0156, 10.1735,...

O padrão de Airy

$$\mathcal{I}(\rho,z) = \mathcal{I}_0 \left(\frac{\pi D^2}{4\lambda z}\right)^2 \left[2\frac{J_1(kD\rho/2z)}{(kD\rho/2z)}\right]^2$$

$$= \mathcal{I}_0 (\pi N_F)^2 \operatorname{jinc}^2(4\pi N_F \rho/D)$$

Sir George Biddell Airy 1801-1892

Esta padrão é conhecida como o "padrão de Airy"

A maior parte da intensidade está no pico central

Padrão de Airy

A maior parte da potencia está no pico central

$$\frac{\int_{0}^{3.8317} \rho d\rho \left[\frac{J_{1}(\rho)}{(p)} \right]^{2}}{\int_{0}^{\infty} \rho d\rho \left[\frac{J_{1}(\rho)}{(p)} \right]^{2}} \approx 0.838$$

Cerca de 83,8% da potência total está dentro no pico central

Tamanho do spot central

Definir o tamanho do spot centro como a distância radial do centro até o primeiro mínimo

$$\mathcal{I}(\rho,z) = \mathcal{I}_0 \left(\frac{\pi D^2}{4\lambda z}\right)^2 \left[2\frac{J_1(kD\rho/2z)}{(kD\rho/2z)}\right]^2$$

$$J_1(\xi) = 0 \quad \xi \approx 3.83$$

$$\frac{kD\rho_{spot}}{2z} = \frac{\pi D\rho_{spot}}{\lambda z} \approx 3.83$$

$$\rho_{spot} \approx \frac{3.83}{\pi} \frac{\lambda z}{D} = 1.22 \frac{\lambda z}{D}$$

Abertura menor

Abertura maior

$$ho_{spot} \sim rac{\lambda z}{D}$$

Característica de difração

Simetria circular - Difração Fraunhofer

Integral da difração de Fresnel em coordenados polares

$$\mathcal{E}(\rho,\theta,z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ik\overline{r}_p} \int_0^{2\pi} d\theta' \int_0^{R_A} \rho' d\rho' \exp\left[-ik\frac{\rho\rho'}{z}\cos(\theta-\theta') + ik\frac{\rho'^2}{2z}\right]$$

Caso II : Onda plana incidente numa lente fina, observação no plano focal duma lente

Qual a função da abertura duma lente?

$$f_{lente}(\rho') = ?$$

Função da abertura duma lenta plana-convexa

A espessura da lenta nos coordenados (x´, y´)

$$t(x', y') = \sqrt{R_L^2 - (x'^2 + y'^2)} - R_L + t_0$$

$$\approx R_L - \rho'^2 / 2R_L - R_L + t_0 = t_0 - \rho'^2 / 2R_L$$

Ao atravessar da lente a fase que uma onda plana adquira é

$$\mathcal{E}(x',y') = \mathcal{E}_0 e^{ik(t_0-t)} e^{ikn_l t} = \mathcal{E}_0 e^{ik(t_0-t)} e^{ik(n_l-1)t}$$

$$\approx \mathcal{E}_0 e^{inkt_0} \exp\left[-ik(n_l-1)\rho'^2/2R_L\right]$$

$$= \mathcal{E}_0 e^{inkt_0} \exp\left[-ik\rho'^2/2f\right]$$
Lente delgada plano-convexa
$$\frac{1}{f} = \frac{(n_l-1)}{R_L}$$

Desprezando a fase global

$$f(\rho') = \begin{cases} \exp\left[-ik\rho'^2 / 2f\right] & \rho' < D_L / 2 \\ 0 & \rho' > D_L / 2 \end{cases}$$

No plano focal duma lenta

$$\mathcal{E}(\rho,\theta,z) = \frac{\mathcal{E}_0}{i\lambda z} e^{ik\overline{r}_p} \int_0^{2\pi} d\theta' \int_0^{D_L/2} f(\rho') \rho' d\rho' \exp\left[-ik\frac{\rho\rho'}{z}\cos(\theta-\theta') + ik\frac{{\rho'}^2}{2z}\right]$$

$$f(\rho') = \exp\left[-ik\rho'^2/2f\right]$$

No plano z = f as fases proporcionais $k\rho'^2/2f$ cortam

Efetivamente a lente transporta o limite z→∞ ao plano focal

$$\mathcal{E}_{lente}\left(\rho,\theta,z=f\right) = \frac{\mathcal{E}_{0}}{i\lambda f} e^{ikz-ik\rho^{2}/2f} \int_{0}^{2\pi} d\theta' \int_{0}^{D_{L}/2} \rho' d\rho' e^{\left[-ik\rho\rho'\cos(\theta-\theta')/f\right]}$$

Igual ao caso I: Limite Fraunhofer $N_F = \frac{D^2}{4z\lambda} \ll 1$

$$\mathcal{I}_{lente}\left(\rho,z=f\right) = \mathcal{I}_0 \left(\frac{\pi D^2}{4\lambda f}\right)^2 \left[2\frac{J_1(kD\rho/2f)}{(kD\rho/2f)}\right]^2$$

Ótica Fourier

Logo o plano focal duma lente é o plano Fourier (Limite Fraunhofer)

$$\mathcal{E}_{lente}\left(\rho,\theta,z=f\right) = \frac{\mathcal{E}_{0}}{i\lambda f} e^{ikz-ik\rho^{2}/2f} \int_{0}^{2\pi} d\theta' \int_{0}^{D_{L}/2} \rho' d\rho' e^{\left[-ik\rho\rho'\cos(\theta-\theta')/f\right]}$$

$$x = \rho \cos \theta$$
$$y = \rho \sin \theta$$

$$\mathcal{E}_{lente}\left(x,y,z=f\right) = \frac{\mathcal{E}_{0}}{i\lambda f} e^{ikz - ik(x^{2} + y^{2})/2f} \iint_{lente} dx' dy' e^{-i2\pi(xx' + yy')/\lambda f}$$

Objeto um ecrã opaco com uma abertura retangular

A transformada Fourier do rectangulo

Exemplo de Processamento Ótico

A smiley face behind bars (a) generates a Fourier pattern of dots (b). When a slit is used to block all but the zeroth order of the pattern (c), the bars disappear and the smiley is free (d).

Limite da difração

Imagine que utilize um telescópio para observar uma estrela distante

Será possível distinguir as duas estrelas?

Critério de Rayleigh

$$f\theta_{\min} = \rho_{spot} \approx 1.22 \frac{\lambda f}{D}$$

 $\theta_{\min} \approx 1.22 \frac{\lambda}{D}$

John William Strutt, 3rd Baron Rayleigh 1842 - 1919

Telescópio de Hubble

Espelho principal tem um diâmeter D = 2,4m

Luz @ $\lambda = 500 \, nm$ luz verde

$$\theta_{\min} \approx 1.22 \frac{\lambda}{D}$$

$$\approx 1.22 \frac{5x10^{-7}m}{2.4m}$$

$$\approx 2.5x10^{-7} radianos$$
0.05 arco segundos

Na prática o limite da resolução é cerca de 0.1 arco segundos devida aberração esférica ~2x o limite de difração

This photograph shows the Hubble Space Telescope's primary mirror being ground at the *Perkin-Elmer Corporation's* large optics fabrication facility in 1979, more than a decade before its very small but very significant flaw was discovered.

Antes

Depois a correção

