Course	21100205T	Course	AERO ENGINEERING THERMODYNAMICS	Course	_	DDOEESSIONAL CODE	L	Т	Р	С
Code	21ASC2051	Name	AERO ENGINEERING THERMODYNAMICS	Category	C	PROFESSIONAL CORE	3	0	0	3

Pre-requisite Courses	N	1	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Aero	ospace Engineering	Data Book / Codes / Standards		Nil

Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to:			Program Outcomes (PO)									Program Specific					
CLR-1:	identify the engineering and practical applications of Heat, Energy and Work			2	3	4	5	6	7	8	9	10	11	12	Ou			
CLR-2:	CLR-2: identify the applications of Thermodynamics on Engineering systems				of	SL.					ork		Se					
CLR-3:	identify the significance of Th	ermodynamic Laws	Knowledge	s swlec	S	nent	investigations ex problems	Usage	ъ			N E		& Finance	Вu			
CLR-4:	R-4: utilize the Thermodynamic concepts in physics for the broad understanding of Engineering and Technology			Analysis	velopment	estic orob	I Us	er and	خ + ک		Team	fion		earning		'		
CLR-5:	analyze the working principle	of Heat Energy driven systems	ering	m An	(D)		looT r	engineer ety	ironment atainability		ual &	ommunication	: Mgt.	Long Le				
Course O	utcomes (CO):	At the end of this course, learners will be able to:	Engine	Problem	Design/desolutions	일	Modern	The er society	Environi Sustaina	Ethics	Individual	Comm	Project Mgt.	rife Lo	PS0-1	PS0-2	PSO-3	
CO-1:	0-1: understand laws of Thermodynamics and its applications to Aerospace Engineering		2	2	-	-	1	-	-	1	-	-	1	1	1	1	-	
CO-2:	comprehend the concept and applications of energy, entropy and exergy		3	2	-	-	•	-		,	-	-	-	1	2	-	-	
CO-3:	understand various gas and vapor power cycles with applications		3	2	2	-	-	-	-	-	-	-	-	1	2	-	-	
CO-4:	apply the Thermodynamic Principles to Aerospace Engineering Applications		2	2	-	-	·	-	-	•	-	-	-	1	1	-	-	
CO-5:	understand the gas mixture behavior and chemical reactions		2	2	-	-	-	-	-	-	-	-	-	1	2	-	-	

Unit-1 - First Law of Thermodynamics

9 Hour

Basic Concepts: Microscopic & macroscopic point of view, Path and point functions. Intensive and extensive, total and specific quantities. System and their types. Zeroth law of thermodynamics, Thermodynamic equilibrium. First law of Thermodynamics: First law for a closed system undergoing a cycle, concept of Internal energy, change of state. Energy and Work Transfer in closed systems, P-V diagram, PMM1. First law for an Open system: Conservation of mass, energy, steady flow energy equation. Applications of SFEE to Nozzles, Diffusers. Types of turbines, compressor, boiler, pump. Heat exchanger and Throttling process

Unit-2 - Second Law of Thermodynamics

9 Hour

Limitations of the first law of Thermodynamics - Introduction to heat reservoirs, sources and sinks. Heat Engine, Refrigerator and Heat pump. Thermal efficiency of heat engines, COP - Second law of Thermodynamics - Kelvin-Planck statement, Clausius statement and their equivalence. Reversible and irreversible processes - causes of irreversibility. Carnot Theorem and corollary. Absolute Thermodynamic Temperature scale. Carnot cycle and its performance

Unit-3 - Third Law of Thermodynamics and Entropy

э поиі

Limitations of Second Law of Thermodynamics. Explanation of the Concept of Entropy. Clausius inequality, T-s diagram. Entropy changes for different processes. Principle of increase of Entropy, p-v-t behavior and properties of ideal gas mixtures. Dalton's law of partial pressures, Avogadro's law. Gibbs-Dalton law, enthalpy and specific heat of a gas mixture. Maxwell relations, T-ds Equations, Difference and ratio of heat capacities. Energy equation, Joule Thomson Coefficient, Clausius-Clapeyron equation. Entropy changes of Ideal and Real gases. Isentropic efficiencies of steady flow devices. Exergy- High and low-grade energy. Available and unavailable energy of a source and finite body.

Unit-4 - Air Standard Cycles

9 Hour

Otto cycle, Diesel cycle, Dual cycle. Indicator diagram, Air standard efficiency, Mean effective pressure. Brayton cycle - Effect of Reheat, Regeneration and Intercooling. Isentropic efficiency of Turbine and Compressor. Equivalent Carnot cycles- Stirling and Ericsson cycle, Humphrey cycle.

Unit-5 - Basic Concepts, Heat Transfer and Combustion

9 Hour

Modes of heat transfer- conduction, convection and radiation. Governing equations for conduction. Newton's law of cooling, free and forced convective heat transfer, ablative heat transfer. Heat exchange due to radiation, Fundamentals of mass transfer, Fick's law of diffusion, Fundamentals of combustion and dissociation, Simulation of heat transfer and combustion processes

Learning
Resources

- 1. Nag, P. K, "Engineering Thermodynamics", 6th Edition, Tata McGraw Hill, New Delhi, 2017.
- 2. Yunus A. Cengel and Michael A. Boles, "Thermodynamics: an engineering approach", seventh edition, McGraw Hill Higher education, 2011.
- 3. Rayner Joel, "Basic Engineering Thermodynamics", 5th Edition, Addison Wesley, New York, 2016.
- 4. Michael Moran, J., and Howard Shapiro, N., "Fundamentals of Engineering Thermodynamics", 4th Edition, John Wiley & Sons, New York, 2010.
- 5. Holman, J. P., "Thermodynamics", 4th Edition Tata McGraw Hill, New Delhi, 2015.

arning Assessm			0					
	Bloom's Level of Thinking	CLA-1 Avera	native ge of unit test %)	CL	Learning A-2 9%)	Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	15%	-	15%	-	15%	-	
Level 2	Understand	25%	-	25%	-	25%	-	
Level 3	Apply	30%	-	30%	-	30%	-	
Level 4	Analyze	30%	-	30%	-	30%	-	
Level 5	Evaluate	-	-	-	-	-	-	
Level 6	Create	-	-	-	-	-	-	
	Total	100) %	100	0 %	100) %	

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
 Dr RS Praveen, Deputy Project Director, VSSC, ISRO, rs_praveen@vssc.gov.in 	1. Dr S.R. Chakravarthy, I.I.T.Madras, src@ae.iitm.ac.in	1. Dr G Saravanan, SRMIST						
Dr Lakshmi VM, Scientist/Engineer 'SG', VSSC, ISRO, vm_lakshmi@vssc.gov.in	2. Dr. Rajiv Kumar, BIT Mesra, rajiv@bitmesra.ac.in	2. Mr. Vinayak Malhotra, SRMIST						