What is Lasso Regression?

Lasso Regression (short for *Least Absolute Shrinkage and Selection Operator*) is a **regularized** version of linear regression.

Regularization helps prevent **overfitting** by adding a penalty to the loss function.

♣ In Lasso:

We **add a penalty** based on the **absolute value** of the coefficients (weights), unlike Ridge Regression which uses the square of the coefficients.

Why do we need Lasso?

In linear regression, we try to find weights w_1, w_2, \ldots, w_n such that:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

But if we have too many features, the model may:

- Fit noise
- Become complex
- · Perform poorly on new data

Lasso helps by:

- Reducing overfitting
- Selecting only important features (others get zero weight)

Mathematical Formulation of Lasso

The Lasso loss function is:

$$ext{Loss} = ext{MSE} + \lambda \sum_{j=1}^n |w_j|$$

Where:

- MSE = $\frac{1}{m} \sum_{i=1}^{m} (y_i \hat{y}_i)^2$
- $oldsymbol{\lambda}$ is a regularization parameter (sometimes called **alpha**)
- ullet $|w_j|$ is the absolute value of the weight

Unlike Ridge, this L1 norm can shrink coefficients to exactly zero.

How Are Coefficients Affected by Lambda

- As **lambda increases**, the penalty term grows.
- This forces more coefficients to become zero.
- The model becomes sparser.

Example:

Lasso(alpha=0.01) → more features retained Lasso(alpha=1.0) → some weights become 0 Lasso(alpha=100) → most weights go to 0

Great for feature selection.

Higher Coefficients Are Affected More

Lasso affects all coefficients, but:

- Large weights contribute more to the regularization term.
- They are more likely to be shrunk or zeroed to reduce loss.
- So the model tends to drop features with large but unstable effects.

(C) Impact of Lambda on Bias and Variance

This is related to the Bias-Variance Tradeoff.

- Low $\lambda \rightarrow$ model is flexible \rightarrow low bias, high variance
- High $\lambda \rightarrow$ model is simpler \rightarrow high bias, low variance

Lasso with proper λ helps balance both:

- Avoids overfitting
- · Keeps the model interpretable

Effect on Loss Function

In Linear Regression:

$$Loss = MSE$$

In Lasso Regression:

$$\mathrm{Loss} = \mathrm{MSE} + \lambda \sum |w_j|$$

- The model is penalized **not just for errors** but also for **having too many or too large weights**.
- So Lasso finds a compromise: small error with fewer or smaller weights.

> Summary of Lasso

Feature	Lasso
Penalty	L1 Norm: (\sum
Effect on Coefficients	Can set them exactly to 0
Use Case	Feature selection, sparse models
Bias-Variance	Controls model complexity
Key Parameter	alpha or λ