

Departamento de Matemáticas 4º Académicas

Examen de final de trimestre

Nombre:	Fecha:
Tiempo: 50 minutos	Tipo: Λ

Esta prueba tiene 6 ejercicios. La puntuación máxima es de 11. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	Total
Puntos:	3	1	1	3	1	2	11

- 1. Resuelve las siguientes inecuaciones de manera justificada:
 - (a) $x^3 < x$ (1 punto)

Solución: $(-\infty, -1) \cup (0, 1)$

(b)
$$\frac{x^2 - x}{x^2 + x} \geqslant 0$$
 (2 puntos)

Solución: $(-\infty, -1) \cup [1, \infty)$

2. Calcula las razones trigonométricas principales de los ángulos agudos de un triángulo en el que uno de sus catetos mide 2,5 cm y la hipotenusa, 6,5 cm. (1 punto)

Solución: El otro cateto mide $\sqrt{6,5^2 - 2,5^2} = 6cm$ sen $\alpha = \frac{6}{6,5}$ cos $\alpha = \frac{2,5}{6,5}$ tg $\alpha = \frac{6}{2,5}$ cos $\beta = \frac{6}{6,5}$ sen $\beta = \frac{2,5}{6,5}$ tg $\beta = \frac{2,5}{6}$

3. Completa la siguiente tabla:

(1 punto)

Grados	Radianes	Cuadrante	Signo del	Signo del	Signo de la
			seno	coseno	tangente
30°					
	$\frac{11\pi}{6}$				
210°					
	$\frac{\pi}{3}$				

(2 puntos)

Solución:						
Grados	Radianes	Cuadrante	Signo del	Signo del	Signo de	la
			seno	coseno	tangente	
30°	$\frac{\pi}{6}$	I	+	+	+	
330°	$\frac{11\pi}{6}$	IV	-	+	-	
210°	$\frac{7\pi}{6}$	III	-	-	+	
60°	$\frac{\pi}{3}$	I	+	+	+	

- 4. Si sen $\alpha = \frac{1}{2}$, calcula usando radicales:
 - (a) El resto de las razones trigonométricas principales usando las relaciones trigonométricas fundamenteles y sabiendo que $\alpha \in I$ (primer cuadrante)

Solución:
$$\cos \alpha = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2} \operatorname{tg} \alpha = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

(b) El resto de las razones trigonométricas principales usando el apartado anterior y sabiendo que $\alpha \in II$ (segundo cuadrante)

Solución:
$$\cos \alpha = -\frac{\sqrt{3}}{2}$$
 $\operatorname{tg} \alpha = -\frac{\sqrt{3}}{3}$

5. Calcula la altura de una casa sabiendo que al tender un cable de 9 m desde el tejado, este forma con el suelo un ángulo de 60. ¿A qué distancia de la casa cae el cable? (1 punto)

Solución:
$$\cos 60 = \frac{x}{9} \to x = 9 \cdot \frac{1}{2} = 4.5m$$

6. Dos edificios distan entre sí 150 m. Desde un punto que está entre los edificios, vemos que las visuales a los puntos más altos de estos forman con la horizontal ángulos de 35° y 20°. ¿Cuál es la altura de los edificios si sabemos que miden lo mismo?

$$\begin{array}{c} \operatorname{tg} 35 = \frac{y}{x} \\ \operatorname{Soluci\acute{o}n:} \\ \operatorname{tg} 20 = \frac{y}{150 - x} \end{array} \right\} \rightarrow \left\{ x : \frac{150 \tan \left(\frac{\pi}{9}\right)}{\tan \left(\frac{\pi}{9}\right) + \tan \left(\frac{7\pi}{36}\right)}, \quad y : -\frac{75}{\tan \left(\frac{11\pi}{36}\right)} + \frac{75\sqrt{\sqrt{3} + 2}}{2 \sin \left(\frac{11\pi}{36}\right)} \right\} \\ \rightarrow \frac{150 \tan \left(\frac{\pi}{9}\right) \tan \left(\frac{7\pi}{36}\right)}{\tan \left(\frac{\pi}{9}\right) + \tan \left(\frac{7\pi}{36}\right)} \approx 35,9227623864298m \end{array}$$