BMA

Vor.: Es seien $m, r \in \mathbb{N}$, V ein \mathbb{R} -Vektorraum der Dimension m und W ein beliebiger \mathbb{R} -Vektorraum. Weiter seien $v_1, \ldots, v_r \in V$ und $w_1, \ldots, w_r \in W$. **Beh.:** v_1, \ldots, v_r linear unabhängig $\Longrightarrow \exists f : V \to W$ mit

$$f(v_j) = w_j \quad (j = 1, \dots, r).$$

und f eine lineare Abbildung

Proof

Sei $v_1, \ldots, v_r \in V$ linear unabhängig und $w_1, \ldots, w_r \in Wf : V \to W$ mit und da v_1, \ldots, v_r linear unabhängig Existiert nach Korollar 13.9. eine Basis \mathcal{B} mit $\{v_1, \ldots, v_r\} \subset \mathcal{B}$, sodass $\mathcal{B} = \{v_1, \ldots, v_r, \ldots, v_m\}$.

Außerdem seien $w_{r+1} = w_m = 0$.

Sei

$$f: V \to W, v = \sum_{n=1}^{m} c_n v_n \mapsto \sum_{n=1}^{m} c_n w_n \quad \forall c_n \in \mathbb{R}$$

sodass $f(v_j) = w_j$ für j = 1, ..., r. zu zeigen f lineare Abbildung, also zu zeigen $\forall c \in \mathbb{R} : \forall \alpha, \beta \in V : f(c\alpha + \beta) = cf(\alpha) + f(\beta)$: Seien $c \in R, \alpha, \beta \in V$ gegeben, zu zeigen $f(c\alpha + \beta) = cf(\alpha) + f(\beta)$: Seien $a_n, b_n \in \mathbb{R}$ mit n = 1, ..., r gegeben, sodass $\alpha = \sum_{n=1}^m a_n v_n$ und $\beta = \sum_{n=1}^m b_n v_n$:

$$f(c\alpha + \beta) = f\left(c\sum_{n=1}^{m} a_n v_n + \sum_{n=1}^{m} b_n v_n\right)$$

$$= f\left(\sum_{n=1}^{m} (ca_n + b_n) v_n\right)$$

$$= \sum_{n=1}^{m} (ca_n + b_n) w_n$$

$$= c\sum_{n=1}^{m} a_n w_n + \sum_{n=1}^{m} b_n w_n$$

$$= cf\left(\sum_{n=1}^{m} a_n v_n\right) + f\left(\sum_{n=1}^{m} b_n v_n\right)$$

$$= cf(\alpha) + f(\beta)$$