Multiple regression - indicator functions STAT 401 - Statistical Methods for Research Workers

Jarad Niemi

Iowa State University

October 20, 2013

Multiple regression

The multiple regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p}, \sigma^2)$$

where

- Y_i is the response for observation i and
- $X_{i,p}$ is the p^{th} explanatory variable for observation i.

If we want to incorporate categorical explanatory variables, we need to use indicator functions to construct the explanatory variables.

Two-sample regression

Two-sample regression

- Choose one of the levels as the reference level, e.g. perished
- Construct a dummy variable using an indicator function for the other level, e.g.

$$X_{i,1} = \begin{cases} 1 & \text{observation } i \text{ survived} \\ 0 & \text{otherwise} \end{cases}$$

we often write $X_{i,1} = I(\text{observation } i \text{ survived})$ where an indicator function has the following definition:

$$I(A) = \begin{cases} 1 & A \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

• Run a simple linear regression using this dummy variable.

Categorical variables SAS output

See Section 2.1.1 14:56 Tuesday, February 28, 2012 11

The REG Procedure Model: MODEL1 Dependent Variable: humerus

Number of Observations Read

59 Number of Observations Used 59

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1447.55650	1447.55650	3.16	0.0809
Error	57	26130	458.41813		
Corrected Total	58	27577			

Root MSE	21.41070	R-Square	0.0525
Dependent Mean	733.89831	Adj R-Sq	0.0359
Coeff Var	2.91739		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	727.91667	4.37044	166.55	<.0001
x1	1	10.08333	5.67436	1.78	0.0809

Two-sample regression

Using a categorical variable as an explanatory variable.

Regression with a categorical variable

- Choose one of the levels as the reference level, e.g. N/N85
- Construct dummy variables using indicator functions for the other levels, e.g.

```
X_{i,1} = I(\text{diet for observation } i \text{ is NP})

X_{i,2} = I(\text{diet for observation } i \text{ is N/R50 lopro})

X_{i,3} = I(\text{diet for observation } i \text{ is N/R50})

X_{i,4} = I(\text{diet for observation } i \text{ is R/R50})

X_{i,5} = I(\text{diet for observation } i \text{ is N/R40})
```

• Run a multiple linear regression using these dummy variables.

```
DATA case0501;
INFILE 'U:/401A/Sleuth Datasets/CSV/case0501.csv' DSD FIRSTOBS=2;
INPUT lifetime diet $;
IF diet ='NP' THEN x1=1; ELSE x1=0;
IF diet ='lopro' THEN x2=1; ELSE x2=0;
IF diet ='N/R50' THEN x3=1; ELSE x3=0;
IF diet ='N/R50' THEN x4=1; ELSE x4=0;
IF diet ='N/R40' THEN x5=1; ELSE x5=0;
RUN;

PROC REG DATA=case0501;
MODEL lifetime = x1 x2 x3 x4 x5;
RUN; QUIT:
```

Categorical variables Multi-group example

The REG Procedure
Model: MODEL1
Dependent Variable: lifetime

Number of Observations Read 349 Number of Observations Used 349

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	5	12734	2546.78836	57.10	<.0001	
Error	343	15297	44.59888			
Corrected Total	348	28031				

Root MSE	6.67824	R-Square	0.4543
Dependent Mean	38.79713	Adj R-Sq	0.4463
Coeff Var	17.21323		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	32.69123	0.88455	36.96	<.0001
x1	1	-5.28919	1.30101	-4.07	<.0001
x2	1	6.99449	1.25652	5.57	<.0001
x3	1	9.60596	1.18768	8.09	<.0001
x4	1	10.19449	1.25652	8.11	<.0001
x5	1	12.42544	1.23521	10.06	<.0001

```
DATA case0501:
  INFILE 'U:/401A/Sleuth Datasets/CSV/case0501.csv' DSD FIRSTOBS=2;
  INPUT lifetime diet $;
  IF diet = 'N/N85' THEN diet = 'zN/N85';
PROC GLM DATA=case0501;
  CLASS diet;
  MODEL lifetime=diet / SOLUTION;
  RUN:
```

The GLM Procedure

Dependent Variable: lifetime

			2	Sum of					
Source		DF	Sc	uares	Mean S	quare	F V	alue	Pr > F
Model		5	12733.	94181	2546.	78836	5	7.10	<.0001
Error		343	15297.	41532	44.	59888			
Corrected Tot	al	348	28031.	35713					
	R-Square	Coeff	Var	Root M	SE li	fetime M	lean		
	0.454275	17.2	1323	6.6782	39	38.79	713		
Source		DF	Туре	I SS	Mean S	quare	F V	alue	Pr > F
diet		5	12733.	94181	2546.	78836	5	7.10	<.0001
Source		DF	Type 1	III SS	Mean S	quare	F V	alue	Pr > F
diet		5	12733.	94181	2546.	78836	5	7.10	<.0001
				St	andard				
Parameter		Esti	mate		Error	t Valu	e	Pr >	t
Intercept		32.6912	2807 B	0.88	455439	36.9	6	<.0	001
diet	N/R40	12.4254	3860 B	1.23	521298	10.0	6	<.0	001
diet	N/R50	9.6059	5503 B	1.18	768248	8.0	9	<.0	001
diet	NP	-5.2891	8725 B	1.30	100640	-4.0	7	<.0	001
diet	R/R50	10.1944	8622 B	1.25	652099	8.1	1	<.0	001
diet	lopro	6.9944	8622 B	1.25	652099	5.5	7	<.0	001
diet	zN/N85	0.0000	0000 B						

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Multi-sample regression

