Square Mapping Considerations (/Square+Mapping+Considerations)

* It's time for us to say farewell... Regretfully, we've made the tough decision to close Wikispaces. Find out why, and what will

* Brappete, here Rttp://Sigu.withageing+Considerations#discussion)

* 31 (/page/history/Square+Mapping+Considerations)

... (/page/menu/Square+Mapping+Considerations)

```
Table of Contents
```

Square and Bitindex

Deduction on Files and Ranks

Endianness

Little-Endian Rank-File Mapping

Square Enumeration

Compass Rose

Some hexadecimal Constants

Little-Endian File-Rank Mapping

Square Enumeration

Compass Rose

Some hexadecimal Constants

See also

Forum Posts

What links here?

Home * Board Representation * Bitboards * Square Mapping Considerations

Square and Bitindex

Bitboards implement a finite set of up to 64 elements - all the squares of a chessboard. There is a bijective one-to-one correspondence between bits of a bitboard and the squares of a board, but there are many different ways to create this mapping. Some various considerations on this mapping are listed here.

In the strict sense there are even three finite sets with bijective one-to-one correspondence.

- A set of all squares on a chessboard for from a1 to h8 (A1 to H8). The 8 ranks of a board are labeled from 1 to 8. The 8 files of a board are labeled from 'a' to 'h' (or 'A' to 'H').
- A set of all 64 squares enumerated from 0..63 (or 1..64).
- The 64 bits inside a bitboard may be enumerated in different orders. (FirstOne versus LastOne, Forward versus Reverse).

Usually we define the bit-indices in arithmetical order to map bits inside a bitboard to numbers.

- Bit index zero is the least significant bit (LSB = 2⁰).
- Bit index 63 is the most significant bit (MSB = 2^63).

The reversed ordering was used as well, motivated by the leading zero count instruction of certain processors.

In the following we rely on arithmetical bit-order order and focus on how to map squares to numbers, which applies to other 8*8 board representations as well.

Deduction on Files and Ranks

We can deduct square mapping on enumerating $\underline{\text{files}}$ and $\underline{\text{ranks}}$ from 0 to 7 each.

There are two common approaches to calculate the square-index from file or rank,

Least Significant File Mapping or Least Significant Rank Mapping.

```
LSF squareIndex = 8*rankIndex + fileIndex
LSR squareIndex = 8*fileIndex + rankIndex
```

LSR mapping has some advantages in calculating pawn attacks, since there are no wraps to consider. Anyway, more common is LSF-mapping where ranks are aligned to the eight consecutive bytes of a bitboard and we further rely on LSF-mapping.

```
squareIndex = 8*rankIndex + fileIndex
FileIndex = squareIndex modulo 8 = squareIndex & 7
RankIndex = squareIndex div 8 = squareIndex >> 3
```

Endianness

Main article: Endianness

The question remains how to enumerate files and ranks. There are two different orders each, little-endian versus big-endian order of bits and bytes. Thus in total four possible alternatives. The drawback of little endian file mapping becomes aware if we write bitboards as binary or hexadecimal strings, since we usually write numbers big endian wise.

Anyway, further we rely on little-endian mapping of files and ranks though, since we retain a kind of "natural" relation - that is a < h and 0 < 7.

```
Rank 1 .. Rank 8 -> 0..7

A-File .. H-File -> 0..7

*\Pile *\pi \text{lt's time for us to say farewell... Regretfully, we've made the tough decision to close Wikispaces. Find out why, and what will
```

happen, here (http://blog.wikispaces.com)
To convert from little-endian file mapping to big-endian file mapping and vice versa:

```
squareIndexBigEndianFile = squareIndexLittleEndianFile ^ 7;
squareIndexLittleEndianFile = squareIndexBigEndianFile ^ 7;
```

To convert from little-endian rank mapping to big endian-rank mapping and vice versa:

One may combine both conversions in one step by xoring with 63.

Little-Endian Rank-File Mapping

Most often used in CPW samples

Square Enumeration

Little endian rank-file (LERF) mapping implies following C++ enumeration:

```
enum enumSquare {
    a1, b1, c1, d1, e1, f1, g1, h1,
    a2, b2, c2, d2, e2, f2, g2, h2,
    a3, b3, c3, d3, e3, f3, g3, h3,
    a4, b4, c4, d4, e4, f4, g4, h4,
    a5, b5, c5, d5, e5, f5, g5, h5,
    a6, b6, c6, d6, e6, f6, g6, h6,
    a7, b7, c7, d7, e7, f7, g7, h7,
    a8, b8, c8, d8, e8, f8, g8, h8
};
```

Compass Rose

We rely on the $\underline{\text{compass rose}}$ to identify $\underline{\text{ray-directions}}$ with following increments to neighbored squares.

Some hexadecimal Constants

Some bitboard constants with LERF-mapping:

```
a-file 0x01010101010101
h-file 0x8080808080808080
```

Little-Endian File-Rank Mapping

Square Enumeration

Little endian file-rank (LEFR) mapping implies following C++ enumeration:

```
enum enumSquare {
    a1, a2, a3, a4, a5, a6, a7, a8,
    b1, b2, b3, b4, b5, b6, b7, b8,
    c1, c2, c3, c4, c5, c6, c7, c8,
    d1, d2, d3, d4, d5, d6, d7, d8,
    e1, e2, e3, e4, e5, e6, e7, e8,
    f1, f2, f3, f4, f5, f6, f7, f8,
    g1, g2, g3, g4, g5, g6, g7, g8,
    h1, h2, h3, h4, h5, h6, h7, h8
};
```

Compass Rose

We rely on the $\underline{\text{compass rose}}$ to identify $\underline{\text{ray-directions}}$ with following increments to neighbored squares.

```
noWe
            nort
                         noEa
             +1
            \ |
west
       -8 <-
              0 -> +8
                         east
              \
       -9
                  +7
             -1
soWe
            sout
                         soEa
```

Some hexadecimal Constants

Some bitboard constants with LEFR-mapping:

See also
• x It's time for us to say farewell... Regretfully, we've made the tough decision to close Wikispaces. Find out why, and what will

• Piappen, here (http://blog.wikispaces.com)

Forum Posts

- Efficient Bitboard Implementation on 32-bit Architecture by Roberto Waldteufel, CCC, October 25, 1998
- BitBoard representations of the board by Uri Blass, CCC, October 14, 2007

What links here?

Page	Date Edited
8x8 Board	Aug 29, 2017
<u>Anti-Diagonals</u>	Sep 2, 2012
Best Magics so far	Sep 17, 2017
Bibob	Jul 5, 2014
Big-endian	Jan 25, 2015
Bitboard Serialization	Dec 24, 2014
Bitboards	Nov 14, 2017
Butterfly Boards	Jan 27, 2015
Color Flipping	May 17, 2017
<u>Crafty.</u>	Jan 28, 2018
<u>De Bruijn sequence</u>	Feb 20, 2018
<u>Demolito</u>	Mar 1, 2018
<u>Diagonals</u>	Jan 16, 2013
Efficient Generation of Sliding Piece Attacks	Nov 5, 2016
<u>Endianness</u>	Jan 25, 2015
Exploding Bitboards	Mar 9, 2015
<u>Files</u>	Nov 22, 2015
Flipping Mirroring and Rotating	Oct 14, 2016
<u>Floyd</u>	Sep 11, 2016
General Setwise Operations	Feb 25, 2018
Horizontal Mirroring	Jun 29, 2013
King of Kings	Sep 4, 2013
Kogge-Stone Algorithm	Sep 17, 2016
<u>Little-endian</u>	Jan 25, 2015
<u>MappingHint</u>	Jun 28, 2012
NoraGrace	Nov 23, 2014
Obstruction Difference	May 27, 2016
On an empty Board	Mar 18, 2014
Parallel Prefix Algorithms	Jun 22, 2016
Promotion Square	Aug 15, 2011
Ranks	Dec 15, 2008
Rival	Jul 30, 2017
Rotated Bitboards	Mar 7, 2017
RuyDos	Feb 17, 2018
Senpai	Nov 10, 2017
Sherwin Bitboards	Mar 20, 2013
Square Mapping Considerations	Feb 28, 2018
<u>Squares</u>	Feb 15, 2015
<u>Stockfish</u>	Mar 10, 2018
Subtracting a Rook from a Blocking Piece	Dec 2, 2016

Page	Date Edited
TBM ★ It's time for us to say farewell Regretfully, we've made the tough decision to close Wikispace Verticah appeing here (http://blog.wikispaces.com)	Jun 28, 2012 s. Find out Why, and what will Oct 10, 2013
WyldChess	Mar 10, 2018
<u>Xiphos</u>	Feb 28, 2018

Up one Level

 $\textbf{Hilfe} \cdot \ddot{\textbf{U}} \textbf{ber} \cdot \textbf{Preisliste} \cdot \textbf{Privatsphäre} \cdot \textbf{Bedingungen} \cdot \textbf{Unterstützung} \cdot \textbf{H\"{o}} \textbf{herstufen}$

Contributions to https://chessprogramming.wikispaces.com/ are licensed under a Creative Commons Attribution Share-Alike 3.0 License.

Portions not contributed by visitors are Copyright 2018 Tangient LLC

TES: The largest network of teachers in the world