1. How many layers are there in MLP Mixer? What are they and what is the purpose of these layers

Two types of layers. Channel-mixing MLPs and Token-mixing MLPs. The channel-mixing MLPs allow communication between different channels and they operate on each token independently and take individual rows of the table as inputs. The token-mixing MLPs allow communication between different spatial locations (tokens) and they operate on each channel independently and take individual columns of the table as inputs.

2. What are modern regularization schemes? Have authors used it in the paper? If yes, how and when?

It is a key tool in the solution of inverse problems and it is used to introduce prior knowledge and allow a robust approximation of ill-posed pseudo inverses. Yes, the authors have used regularization techniques when pre-trained on ImageNet-21k that allowed the Mixer to achieve a strong overall performance otherwise the Mixer overfits without it. Mixer uses skip-connections and normalization layers.

3. Which state art of the approaches are used to compare the result of experiments and what is the evaluation score?

Convolutional Neural Networks and Vision Transformers. 87.94% top-1 validation accuracy on ILSVRC2012 "ImageNet".

4. What methods have they used so their results outperformed the existing approaches? Hint (Preprocessing, mathematical formulas, optimization) MLP layers, skip-connections, layer normalization, standard classification head with global average pooling layer followed by a linear classifier. Downstream tasks, pre-training, fine tuning.

5. What sort of dataset is used by the authors? Please list the datasets they have used for their experiments?

A large-scale hierarchical image database.

ILSVRC2021 ImageNet, and ImageNet-21k, a superset of ILSVRC2012 that contains 21k classes and 14M images . To assess performance at a larger scale, the authors train on JFT-300M, a proprietary dataset with 300M examples and 18k classes.