

Understanding Ozone Pollution:

A Comparison of Chemical Mechanisms

Jane Coates and Tim Butler

Motivation

- ► Importance of O₃ production chemistry representation future emission scenarios.
- ► Compare different O₃ chemistry representations used in chemical transport models.
- ► Determine effects on O₃ production by comparing treatment of Volatile Organic Compounds (VOCs) degradation products.

Approach

- ► Tagged Ozone Production Potentials (TOPPs) [1] calculated over 7 days for VOCs common to urban environments.
- ▶ Following mechanisms are compared to near-explicit MCM v3.2.

MCM v3.1 CRI v2 CBM-IV CB05 RADM2 RACM RACM2 MOZART-4

▶ O_x (= $O_3 + NO_2$) production allocated to emitted VOC by 'tagging' its organic degradation products.

Conclusions

- Near-explicit mechanisms produce more O_x than less-explicit mechanisms.
- \triangleright VOCs broken down into smaller fragments quicker in less-explicit mechanisms resulting in less O_x production.
- ▶ First day O_x production from VOCs similar between many mechanisms, larger differences over time.
- \triangleright Differences in VOC degradation treatments impacts O_x production RACM aromatic chemistry.

References

[1] T. M. Butler, M. G. Lawrence, D. Taraborrelli, and J. Lelieveld. Multi-day ozone production potential of volatile organic compounds calculated with a tagging approach. Atmospheric Environment, 45(24):4082–4090, 2011.

