

RAPPORT TP CALCUL DIFFERENTIEL

MEMBRES DU GROUPE

. DJOSSOU Kokou Armand Light

. DOH Kodzo Benjamin

. SEGUE Yao Louis Freeman

CHARGE DU TP

M. SALAMI

ANNEE SCOLAIRE: 2024-2025

OBJECTIF GENERAL

L'objectif de ce TP est d'utiliser les bibliothèques : sympy, numpy et matplotlib pour tracer la courbe d'une fonction sur un intervalle donné.

I. INTRODUCTION

Dans le but de pouvoir utiliser les différentes bibliothèques pour l'analyse et la visualisation des données, Par ces séances de travaux pratiques nous sommes appelés à utiliser certaines bibliothèques de python pour le traçage des courbes de différentes fonctions.

II. APPLICATION

PROBLEME

Soit $x(t) = 6t^2 + t - 5$ la position d'une moto en un instant t.

1. UTILISATION DE SYMPY

a) <u>définissons la fonction x(t)</u>

On doit d'abord importer la bibliothèques sympy dans notre environnement de développement

```
In [1]: import sympy as sp # importation de sympy comme sp
```

Définissons la fonction x(t) en sympy

```
In [2]: #définition de la fonction X(t) en sympy
t=sp.Symbol('t') # définition du symbole t X=sp.Function('X')
# définition du symbole de la fonction
```

```
X=6*t**2+t-5 # définition de la fonction
```

Affichage de la fonction

```
In [3]: display(X) # affichage de La fonction X=6t^2+t-5
```

b) $traçons\ la\ courbe\ pour\ t=[0,15]$

In [4]: display(r'la courbe de f pour t=[0,15]') sp.plot(X,(t,0,15)) # traçage de la courbe de X pour t=[0,15]

'la courbe de f pour t=[0,15]'

Out[4]: <sympy.plotting.backends.matplotlibbackend.matplotlib.MatplotlibBackend at 0x20 f61f3fb00>

c) traçons la courbe sur [-10;0]

```
In [7]: sp.plot(X,(t,-10,0))
```


d) <u>traçons la courbe sur [0 ;10]</u>

sp.plot(X,(t,0,10))

In [8]:

2. <u>UTILISONS NUMPY ET MATPLOTLIB</u>

a- définissons la fonction x(t)

• On doit d'abord importer la bibliotheque Numpy et matplotlib dans notre environnement de développement.

• Définissons la fonction x(t) en Numpy à l'aide d'un tableau.

```
t=np.linspace(0,15,100) # définition de 100 points entre 0
et 15
X=6*t**2+t-5 # définition de la fonction
```

b- traçons x(t) sur [0; 15]

```
print(r'la courbe de X pour t=[0,15]')
plt.plot(t,X)  # traçage de La courbe
plt.show()
```

la courbe de X pour t=[0,15]

c- traçons la courbe sur [-10; 0]

```
t=np.linspace(-10,0,100)
X=6*t**2+t-5
print(r'la courbe de X pour t=[-10,0]')
plt.plot(t,X) # traçage de La courbe
plt.show()
```

La courbe de X pour t=[-10;0]

d- traçons la courbe sur [0;10]

```
t=np.linspace(-10,0,10
t=np.linspace(0,10,100) X=6*t**2+t-5 print(r'la
courbe de X pour t=[0,10]') plt.plot(t,X)
# traçage de La courbe
plt.show()
```

La courbe de X pour t=[0,10]

III. <u>Conclusion</u>

Cette séance de travaux pratique nous a permis de maitriser l'utilisation des différentes bibliothèques de python comme : sympy, numpy et matplotlib pour faire la représentation graphique d'une fonction sur un intervalle donné. Ce qui nous servira plus tard dans l'analyse de donnée et d'autres domaines.