Predicting Song Genre

•••

Kevin Bengtsson, Lucius Bynum, Drew Summy 25 April 2018

Presentation Outline

- 1. Motivation/Introduction
- 2. Exploratory Data Analysis
- 3. Methods
 - a. Initial Results
 - b. Model Improvement
- 4. Final Results and Conclusions

Project objective:

Given lyrical and musical data, predict a song's genre

Motivation

We like music!

Existing businesses

Understanding genres

Exploratory Data Analysis

The Data

Distribution of Genre Labels After Joining

Distribution of Genre Labels After Joining

Word Popularity Across the Lyric Data

Word Popularity Rap vs. Pop

MSD Data Cleaning

- 46 features
 - Usable: loudness, tempo, key, etc.
 - Not-so-usable: bars_start (variable length), danceability/energy (0 for all examples), etc.

- Reduced to:

- key
- key_confidence
- mode
- mode_confidence
- time_signature

- time_signature_confidence
- duration
- end_of_fade_in
- loudness
- tempo

MSD Data -- Time Signature Confidence

Prediction Methods

Fit Initial Models

- Random Forest
- Logistic Regression
- Linear SVM
- RBF SVM

Initial Models and Challenges

- 1. Problem: very poor performance
 - Not enough data for some classes
 - Large class imbalance

Solution: binary classification

- 2. Problem: long training time (many hours)
 - Lots of features

Solution: train on a subset

Fit Initial Models

- Random Forest
- Logistic Regression
- Linear SVM
- RBF SVM

Fit Initial Models

- Random Forest
- Logistic Regression
- Linear SVM
- RBF SVM

Gauge Performance

- Accuracy
- Precision
- Recall
- F1-score
- ROC-AUC

Fit Initial Models

- Random Forest
- Logistic Regression
- Linear SVM
- RBF SVM

Gauge Performance

- Accuracy
- Precision
- Recall
- F1-score
- ROC-AUC

Improve Performance

- Explore parameters
- Grid-search CV

Model Improvements

Identify optimal model parameters using grid search cross-validation

Random Forest	Logistic Regression	Linear SVM	RBF SVM
Number of estimators	С	С	С
Max depth	Class weight	Class weight	Class weight
Max features			Gamma
Class weight			
Criterion (gini vs. entropy)			

Fit Initial Models

- Random Forest
- Logistic Regression
- Linear SVM
- RBF SVM

Gauge Performance

- Accuracy
- Precision
- Recall
- F1-score
- ROC-AUC

Improve Performance

- Explore parameters
- Grid-search CV

Fit Initial Models

- Random Forest
- Logistic Regression
- Linear SVM
- RBF SVM

Gauge Performance

- Accuracy
- Precision
- Recall
- F1-score
- ROC-AUC

Improve Performance

- Explore parameters
- Grid-search CV

Interpret Results

- Feature Importance
- Hard-to-classify songs
- Conclusions

Results

Results

	Accuracy	Precision	F1-score	Recall	ROC AUC
Dummy Classifier	0.618	0.381	0.472	0.618	0.500
Random Forest	0.944	0.946	0.943	0.944	0.931
Logistic Regression	0.893	0.893	0.893	0.893	0.889
Linear SVM	0.871	0.874	0.872	0.871	0.870
RBF SVM	0.927	0.927	0.927	0.927	0.923

Results

Feature Importance -- Random Forest

Most/Least Confident Classifications - Linear SVM

Most/Least Confident Classifications - Logistic Regression

Interesting Results

Walk Away / Remember Me (Paula DeAnda)

I'm gonna remember you You're gonna remember me

I saw you with your new girl just yesterday And I feel that I must confess Even though it kills me to have to say I'll admit that I was impressed

Physically just short of perfection Gotta commend you on your selection Though I know I shouldn't be concerned In the back of my mind I can't help but question

Does she rub your feet
When you've had a long day
And scratch your scalp
When you take out your braids?
Does she know you like to play PS2
Till six in the morning like I do

Interesting Results

I'm a little yellow fish

I'm a little yellow fish in the deep blue sea, Won't somebody help me! I'm a little yellow fish in the deep blue sea, Won't somebody save me!

Do you wanna know how living is beneath the waves? Do you wanna know how everything I knew was changed?

It wasn't such a big commotion,
I just had a drop of magic potion.
And with a wriggle... a twist... a splash... and a splish...
I was a fish!
Help me!

Help I'm a Fish (Creamy)

Conclusion

Things We Learned

- Pop and rap are distinguishable from each other!
- Profanity is key indicator of rap music (in this dataset)
- For RF, genres can be determined primarily by lyrics

Future Work

- Use all of the data for grid search
- Try other genre pairs
- Multiclass modelling
- Use audio instead of audio characteristics
- Dimensionality reduction for faster training

Acknowledgements

- Prof Wu!
- Grutoring team

Summary

Rap-Pop Classifiers

	F1-score		
Dummy Classifier	0.472		
Random Forest	0.943		
Logistic Regression	0.893		
Linear SVM	0.872		
RBF SVM	0.927		

Feature Importance

