

LANDSCAPE RESILIENCE CONCEPTS & SCORE

THIS IS NOT AN OVERVIEW OF THE LANSCAPE RESILIENCE TOOL

Dan Wismer

Conservation Data Specialist

What is Landscape Resilience?

• NCC infers the term **Landscape Resilience** as the capacity for biodiversity to recover from local losses and persist at the landscape scale.

- For a landscape to be resilient, it must be able to adapt to pressures over time in a
 way that supports the long-term survival of biodiversity and ecosystems.
- Landscape Resilience within this context considers **ecological variables** and aligns more closely with **Ecological Resilience** defined in the academic literature.

NCC's Landscape scale is 1km x 1km square pixel

How can NCC Contribute to Landscape Resilience?

- Addressing the existing protected area gaps to better represent ecosystems, increase connectivity and promote species persistence within intact landscapes.
- By building a system of protected areas with a **diverse** ecological portfolio to help **mitigate** the risk of biodiversity loss.
- Adding redundancy of species and their habitat through protection ensures persistence of biodiversity at the landscape level (Peterson, Allen & Holling, 1998).

Why is a Score Needed?

- To **operationalize** the concept of Landscape Resilience.
- To consolidate conservation variables that support the definition of Landscape Resilience into a single composite metric.
- To assess a project's contribution to Landscape Resilience and validate securement.
- Provide basis for directing limited resources to those areas on the landscape where they are likely to have the greatest benefit.

How will the Score be used?

1. Enhance Where To Work site selection outputs

• Extracting the Landscape Resilience Score to Where To Work outputs provides a continuous variable to assess Landscape Resilience between planning units.

Guide Project Management Plans and validate Securement

• Extracting the Landscape Resilience Score to parcel boundaries provides a means to assess a projects contribution to Landscape Resilience.

Landscape Resilience Tool is the interface to extract the score

What makes up the Score?

NCC valued conservation themes that capture concepts of Landscape Resilience impacts and risks:

- 1. **Protection:** existing conservation
- 2. Biodiversity: richness, adequacy, key biodiversity areas, critical habitat
- 3. Connectivity: current density
- 4. Climate: centrality, refugia
- 5. Habitat: forest, wetland, grassland, rivers, shoreline
- 6. Threats: human disturbance, climate extremes

Protection

- Protected areas contribute to Landscape Resilience by safeguarding species from threats of biodiversity loss.
- Protected areas that intersect other themes of Biodiversity, Connectivity and Climate with less influence of Threats are more resilient.

Variable(s) that capture Protection:

- Existing conservation from <u>Canadian Protected and Conserved Areas Database</u>
- NCC fee simple and conservation agreement achievements
- All classes of protections is considered equal

Biodiversity

- Biodiversity theme is captured by mapping species data and calculating cumulative adequacy goals for each individual species.
- The adequacy goal explains the required protection needed to ensure species persistence throughout time; where some species need more conservation than others.

Variable(s) that capture Biodiversity:

- Species at risk: richness & cumulative adequacy goal (<u>ECCC</u>)
- Endemic species: richness & cumulative adequacy goal (NSC)
- Common species: richness & cumulative adequacy goal (IUCN & NSC)
- Key biodiversity areas (<u>IBA Canada</u>)
- Critical habitat for species at risk (<u>ECCC</u>)

Connectivity

- Landscapes that are connected promote the movement of species among habitat patches
- High connectivity values favor biological flows and represent movement and dispersal patterns of species.

Variable(s) that capture Connectivity:

- Current density (<u>Pither et al, 2023</u>)
 - Considered anthropogenic and natural features and their know effects on the movement of terrestrial non-volant fauna to predict connectivity.

Climate

- Related to connectivity, it is important to adjust for the effects of climate change and give species the opportunity to move as climate conditions change.
- Areas that provide climate resiliency increase the Landscape Resilience Score

Variable(s) that capture Climate:

- Climate refugia (Stralberg et al. 2021; <u>AdaptWest</u>)
 - Locations with rare climatic conditions that are likely to facilitate species persistence under climate change
- Climate centrality (Carroll et al. 2018; <u>AdaptWest</u>)
 - Represents connectivity between current and future climate analogs

Habitat

- By securing a diverse portfolio of habitat types ensures redundancy is built into the protected area network.
- Habitat types reflect NCC impact metrics.

Variable(s) that capture Habitat:

- Forest landcover hectares (<u>VLCE2</u> and <u>AFFC LUTS</u>)
- Wetland hectares (<u>CanVec</u>)
- Grassland hectares (<u>AAFC LU</u>)
- River kilometers (NRCan)
- Shoreline kilometers (<u>CanVec</u>)

Threats

- Habitat pressures pose a negative impact on Landscape Resilience.
- Protected areas decreases the threat of biodiversity loss from anthropogenic pressures.

Variable(s) that capture Threats:

- Human footprint index (<u>UNBC</u>)
 - considers built environments, population density, nighttime lights, crop lands, pasture lands, forestry, railways, roads dams, reservoirs, navigable waterways, mining and oil and gas disturbances.
- Climate extremes (<u>La Sorte et al. 2021</u>)
 - Useful way to capture extreme stressors on biodiversity

Landscape Resilience Score Details

Each variable is **scaled** between **0** and **1** before the score is executed. This step is required to combine features that have different units of measurement.

For variables that have **extreme** concentration of high or low values, a **log** transformation is applied before scaling.

Scaling equation:

Normalized feature = (feature - min value) / (max value - min value)

Landscape Resilience Score Details

Landscape Resilience Score =

```
(protection * value) +
(key biodiversity area * value) + (critical habitat * value) + (SAR richness * value) + (END richness * value) +
(common richness * value) + (SAR goal * value) + (END goal * value) + (common goal * value) +
(connectivity * value) +
(climate centrality * value) + (climate refugia * value) +
(forest landcover * value) + (wetland * value) + (grassland * value) + (rivers * value) + (shoreline * value)
- (human footprint index * value) - (climate extremes * value)
```

Where **value** represents the relative importance in rank with other variables in the equation.

Landscape Resilience Score Details

- For now, each variable gets an equal weight of 1.
- Eventually, we will need to decide **IF** variables **should** or **should not** be influenced by a "**relative importance value**".
- This decision should align with what NCC infers as Landscape Resilience.
- There is no **right** or **wrong** approach, as argument could be made for many different combinations.

Example of importance broken down by Impact and Risk:

Risks = Threats

LANDSCAPE RESILIENCE BUILDER

THIS IS NOT THE LANSCAPE RESILIENCE TOOL

Dan Wismer

Conservation Data Specialist

Landscape Resilience Builder

- Designed as an **engagement** tool that shows transparency in the make-up of the Landscape Resilience (LR) Score.
- Provides a proto-type of Landscape Resilience, where each pixel has a score

Users can change values and update the LR score in real time.
 This provides a means to reason with the relative importance of layers that comprise the score.

Landscape Resilience Builder

NEXT STEPS

- Finding agreement on Landscape
 Resilience definition
- Finding agreement on Landscape
 Resilience inputs
- Finding agreement on Landscape
 Resilience values
- Communicating the difference between Landscape Resilience concept, score and tool

References

Ecological Resilience, Biodiversity and Scale

https://link.springer.com/article/10.1007/s100219900002

Resilience and stability of ecological systems:

https://www.annualreviews.org/doi/abs/10.1146/annurev.es.04.110173.000245

Metrics and Models for Quantifying Ecological Resilience at Landscape Scales:

https://www.frontiersin.org/articles/10.3389/fevo.2019.00440/full

Wild, connected, and diverse: building a more resilient system of protected areas:

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.1527

Understanding protected area resilience: a multi-scale, social-ecological approach:

https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/13-2113.1?casa token=a5GUcC01mnsAAAAA:dsV4tSiXnHfhPwnCutvAEmA-FGFrxO40JND730ft-nI6Oq Eqe6GlarmzasTqznSmhyP1B2BW-0UNNq5

Landscape ecological concepts in planning: review of recent developments:

https://link.springer.com/article/10.1007/s10980-021-01193-y

Managing Rather Than Avoiding "Difficulties" in Building Landscape Resilience:

https://www.mdpi.com/2071-1050/13/5/2629

Quantifying spatial resilience:

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.12634

Resilience in the Studies of Biodiversity-Ecosystem Functioning:

https://www.cell.com/trends/ecology-evolution/fulltext/S0169-5347(15)00321-3

Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances: https://www.sciencedirect.com/science/article/pii/S1470160X15002411

A riparian conservation network for ecological resilience:

https://www.sciencedirect.com/science/article/pii/S0006320715002529#bb0155

A resilient and connected network of sites to sustain biodiversity under a changing climate https://www.pnas.org/doi/10.1073/pnas.2204434119

Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/1540-

