7.5 Inverses

Task: Understand what an inverse is and what formal properties it satisfies.

Definition: Let (A, *) be a monoid with identity element e and let $a \in A$. An element e of e is called the inverse of e if e if e if e inverse, then e is called invertible.

Examples:

- 1. $(\mathbb{R}, +)$ has identity element 0. $\forall x \in \mathbb{R}, (-x)$ is the inverse of x since x + (-x) = (-x) = x = 0.
- 2. (\mathbb{R}, \times) has identity element 1. $x \in \mathbb{R}$ is invertible only if $x \neq 0$. If $x \neq 0$, the inverse of x is $\frac{1}{x}$ since $x \times \frac{1}{x} = \frac{1}{x} \times x = 1$.
- 3. $(M_n, *)$ the identity element is I_n . $A \in M_n$ is invertible if $\det(A) \neq 0$. A^{-1} the inverse is exactly the one you computed in linear algebra. If $\det(A) = 0$, A is <u>NOT</u> invertible.
- 4. Given a set $A, (P(A), \cup)$ has \emptyset as its identity element. Of all the elements of P(A), only \emptyset is invertible and has itself as its inverse: $\emptyset \cup \emptyset = \emptyset \cup \emptyset = \emptyset$.

Theorem: Let (A, *) be a monoid. If $a \in A$ has an inverse, then that inverse is unique.

Proof: By contradiction: Assume not, then $\exists a \in A \text{ s.t.}$ both b and c in A are its inverses, **i.e.** a*b=b*a=e, the identity element of (A,*), and a*c=c*a=e, where $b\neq c$. Then b=b*e=b*(a*c)=(b*a)*c=e*c=c. $\Rightarrow \Leftarrow$

qed

Since every invertible element a of a monoid (A, *) has a unique inverse, we can denote the inverse by the more standard notation a^{-1} .

Next, we need to understand inverses of elements obtained via the binary operation:

Theorem: Let (A, *) be a monoid, and let a, b be invertible elements of A. Then a * b is also invertible, and $(a * b)^{-1} = b^{-1} * a^{-1}$.

Remark: You might remember this formula from linear algebra when you looked at the inverse of a product of matrices AB.

Proof: Let e be the identity element of (A,*). $a*a^{-1}=a^{-1}*a=e$, and $b*b^{-1}=b^{-1}*b=e$. We would like to show $b^{-1}*a^{-1}$ is the inverse of a*b by computing $(a*b)*(b^{-1}*a^{-1})$ and $(b^{-1}*a^{-1})*(a*b)$ and showing both are e.

$$(a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = a*a^{-1} = e \\ (b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*e*b = (b^{-1}*e)*b = b^{-1}*b = e$$

Thus $b^{-1} * a^{-1}$ satisfies the conditions needed for it to be the inverse of a*b. Since an inverse is unique, a*b is invertible and $b^{-1}*a^{-1}$ is its inverse.

Theorem: Let (A, *) be a monoid, and let $a, b \in A$. Let $x \in A$ be invertible. $a = b * x \Leftrightarrow b = a * x^{-1}$. Similarly, $a = x * b \Leftrightarrow b = x^{-1} * a$ **Proof:** Let e be the identity element of (A, *).

First $a = b * x \Leftrightarrow b = a * x^{-1}$:
"\Rightarrow" Assume a = b * x. Then $a * x^{-1} = (b * x) * x^{-1} = b * x * x^{-1} = b * e = b$ as needed.

"\(\infty\)" Assume $b = a*x^{-1}$. Then $b*x = (a*x^{-1})*x = a*(x^{-1}*x) = a*e = a$ as needed.

Apply the same type of argument to show $a = x*b \Leftrightarrow b = x^{-1}*a$.

Let (A,*) be a monoid. We can now make sense of a^n for $n \in \mathbb{Z}, n < 0$ for every $a \in A$ invertible. Since n is a negative integer, $\exists p \in \mathbb{N}$ s.t. n = -p. Set $a^n = a^{-p} = (a^p)^{-1}$.

Theorem: Let (A, *) be a monoid, and let $a \in A$ be invertible. Then $a^m * a^n = a^{m+n} \ \forall m, n \in \mathbb{Z}$.

qed

Proof: When $m \ge 0$ and $n \ge 0$, we have already proven this result. The rest of the proof splits into cases.

Case 1: m = 0 or n = 0If m = 0, $n \in \mathbb{Z}$, $a^m * a^n = a^0 * a^n = e * a^n = a^{n} = a^{0+n}$ as needed.

If $m \in \mathbb{Z}$, n = 0, $a^m * a^n = a^m * a^0 = a^m * e = a^m = a^{m+0}$ as needed.