

Quantum $\mathcal{O}(\kappa^2 \log(N))$

Classical $\mathcal{O}(N\kappa)$

The algorithm

What we need?

$$\mathbf{A}ec{x}=ec{b}$$

$$ec{b} = \sum_{i=1}^N eta_i ec{u_i}$$

$$ec{x} = \mathbf{A}^{-1}ec{b_i} = \sum_{i=1}^N \mathbf{A}^{-1}ec{u_i}$$

$$ec{x} = \sum_{i=1}^N rac{eta_i}{\lambda_i} ec{u}_i$$

$$|\psi_0
angle = \sum_{i=1}^N |0
angle_{\Lambda}^{\otimes n} \otimes eta_i |u_i
angle_U \otimes |0
angle_R$$

$$QPE[\sum_{i=1}^N \ket{0}_{\Lambda}^{\otimes n}eta_i\ket{u_i}_U\ket{0}_R] = \sum_{i=1}^N \ket{2^n\phi}_{\Lambda}eta_i\ket{u_i}_U\ket{0}_R = \sum_{i=1}^N \ket{\lambda_i}_{\Lambda}eta_i\ket{u_i}_U\ket{0}_R$$

HHL Algorithm

$$|\psi_1
angle = \sum_{i=1}^N |\lambda_i
angle_{oldsymbol{\Lambda}}\otimeseta_i|u_i
angle_{oldsymbol{\mathrm{U}}}\otimes|0
angle_{oldsymbol{\mathrm{R}}},$$

$$\ket{\psi_2} = \sum_{i=1}^N \ket{\lambda_i}_{\Lambda} \otimes eta_i \ket{u_i}_{U} \otimes (\sqrt{1-rac{C^2}{\lambda_i^2}}\ket{0} + rac{C}{\lambda_i}\ket{1})_{R}.$$

$$|\psi_3
angle = |0
angle_{\Lambda}^{\otimes n} \otimes \sum_{i=1}^N eta_i |u_i
angle_U \otimes (\sqrt{1-rac{C^2}{\lambda_i^2}}\,|0
angle + rac{C}{\lambda_i}|1
angle)_R$$

The algorithm

Theorem -1

Nonvanishing genuine multipartite entanglement

- For a successful run of the HHL algorithm, genuine multipartite entanglement should be nonvanishing in the second step
- We prove that all the single-site local density matrices, $ho_{f R}$, $ho_{f U}$ and $ho_{f \Lambda}$ of the state $|\psi_2
 angle$ are mixed i.e. $Tr(
 ho_X^2)<1$
- Since the total state is pure, mixed local density matrices ensure that no biparition is product, thereby proving nonvanishing GME of $|\psi_2\rangle$

Theorem -2

Bipartite entanglement between Λ and U is nonvanishing

$$egin{aligned} \mathcal{LN}(
ho_{\mathbf{\Lambda}\mathbf{U}})
eq 0 \ |oldsymbol{\psi}_{\mathbf{2}}
angle & \mathcal{LN}(
ho_{\mathbf{UR}}) = 0 \ \mathcal{LN}(
ho_{\mathbf{UR}}) = 0 \end{aligned}$$

Unlike GME, bipartite entanglement between subsystems are always present in different stages of the algorithm

Proposition -1

The l1-norm coherences are non-vanishing

- In computational basis C_R, C_U, and C_{AUR} are non vanishing
- C_{Λ} is zero as ρ_{Λ} is diagonal in computation basis

Remark: We found that C_R is closely related to Success Probability

$$\mathcal{SP} = \sum_{i=1}^N eta_i^2 rac{C^2}{\lambda_i^2}$$

$$\mathcal{C}_{\mathbf{R}} = 2\sum_{i=1}^N eta_i^2 \sqrt{1-rac{C^2}{\lambda_i^2}\cdotrac{C}{\lambda_i}}$$

Quantum Advantage

$$egin{array}{ccccc} rac{1}{2} egin{pmatrix} 3 & 1 \ 1 & 3 \end{pmatrix} egin{pmatrix} x_0 \ x_1 \end{pmatrix} = egin{pmatrix} b_0 \ b_1 \end{pmatrix} \ \mathbf{A} & ec{x} & = ec{b} \end{array}$$

Quantum Advantage in 3D

$$rac{1}{6}egin{bmatrix} 14 & -4 & -4 \ -4 & 11 & -1 \ -4 & -1 & 11 \end{bmatrix}egin{bmatrix} x_0 \ x_1 \ x_2 \end{bmatrix} = egin{bmatrix} b_0 \ b_1 \ b_2 \end{bmatrix}$$

Success Probability

$$\mathcal{SP} = \sum_{i=1}^N eta_i^2 rac{C^2}{\lambda_i^2}$$

$$\mathcal{C}_{\mathbf{R}} = 2\sum_{i=1}^N eta_i^2 \sqrt{1-rac{C^2}{\lambda_i^2}} \cdot rac{C}{\lambda_i}$$

0.06 $\sigma = 0.1$ $\sigma = 0.2$ 0.00

Imperfections

$$R(\lambda^{-1}) = R_y(heta) = egin{bmatrix} \cosrac{ heta}{2} & -\sinrac{ heta}{2} \ \sinrac{ heta}{2} & \cosrac{ heta}{2} \end{bmatrix}$$

$$rac{ ilde{ heta_i}}{2} = \sin^{-1}(rac{C}{\lambda_i}) + \epsilon_i$$

$$R(\lambda^{-1}) = R_y(heta) = egin{bmatrix} \cosrac{ heta}{2} & -\sinrac{ heta}{2} \ \sinrac{ heta}{2} & \cosrac{ heta}{2} \end{bmatrix}$$

The algorithm

Kappa – κ The condition number

$$\kappa = rac{\lambda_{max}}{\lambda_{min}}$$

$\mathcal{O}(\kappa^2 \log(N))$

