

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - I	Maximum marks: 10
Course code: 22MA21C	First semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-P	Time: 20 Minutes Date: 05-07-2023

Name:	Branch:	USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	$ \begin{vmatrix} x & -1 & 2 & 4 \\ y & -5 & 4 & 0 \end{vmatrix} $			
	Ans: $4x - x^2$			
1.2	If $f(8) = 10$, $f(10) = 19$, $f(12) = 32.5$, $f(14) = 54$, $f(16) = 89.5$, then	1	L1	1
	$\Delta^2 f(12) = \underline{\hspace{1cm}}$			
1.0	Ans: 14	1	7 1	1
1.3	The value of $\Delta^3[(1+3x)(1-5x)(1-4x)]$ taking the interval of differencing $h=1$ is	1	L1	1
	Ans: 360			
1.4	The particular solution of the initial value problem $y'' + y' + 0.25y = 0$ with $y(0) = 3$ and	2	L2	2
1	y'(0) = -3.5 is	_		_
	Ans: $(3-2x)e^{-x/2}$			
1.5	Particular integral of $2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2y = e^{x/2}$ is	1	L2	2
	Ans: $\frac{xe^{x/2}}{5}$			
1.6	If $x = e^{-3t}$ is the solution of the differential equation $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + kx = 0$, then $k = 0$	1	L1	1
	$\overline{\text{Ans: } k = 3}$			
1.7	Given	2	L2	1
	x 0 2 4 6			
	f(x) 7 13 43 145			
	The value of $f'(2)$ =			
	The value of $f'(2) = $ Ans: -3			
L	мь. У			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - I	Maximum marks: 10
Course code: 22MA21C	First semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-P	Time: 20 Minutes Date: 05-07-2023

Name:	Branch:	USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	Using suitable interpolation, fit a polynomial for the data	2	L2	3
1.2	If $f(1) = 0$, $f(1.2) = 0.128$, $f(1.4) = 0.544$, $f(1.6) = 1.296$, $f(1.8) = 2.432$, then	1	L1	1
	$ abla^2 f(1.6) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			
1.3	The value of $\Delta^6[(2-3x)(3-4x^2)(2+5x^3)]$ taking the interval of differencing $h=1$ is	1	L1	1
	Ans: 43200			
1.4	The particular solution of the initial value problem $9y'' + 6y' + y = 0$ with $y(0) = 4$ and $y'(0) = -\frac{13}{3}$ is Ans: $(4 - 3x)e^{-x/3}$	2	L2	2
1.5	Particular integral of $4\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = e^{-2x}$ is Ans: $-\frac{xe^{-2x}}{13}$	1	L2	2
1.6	If the roots of the auxiliary equation are -2 and 3, then the corresponding differential equation is Ans: $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$	1	L1	1
1.7	Given $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	L2	1

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - I	Maximum marks: 10
Course code: 22MA21C	First semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-P	Time: 20 Minutes Date: 05-07-2023

Name:	Branch:	USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	x 2 4 5 y 0 6 12			
	Ans: $x^2 - 3x + 2$			
1.2	If $f(0.2) = 0.0350$, $f(0.4) = 0.1170$, $f(0.6) = 0.2165$, $f(0.8) = 0.2995$, $f(1) = 0.2165$	1	L1	1
	0.3340 , then $\Delta^2 f(0.8) =$			
	Anna Dana and and a			
1.2	Ans: Does not exist	1	T 1	1
1.3	The value of $\Delta^3[(1-x)(1-3x)(1-5x)]$ taking the interval of differencing $h=2$ is	1	L1	1
	Ans: -720			
1.4	The particular solution of the boundary value problem $y'' + y = 0$ with $y(0) = 1$ and	2	L2	2
	$y\left(\frac{\pi}{2}\right) = 2 \text{ is } \underline{\qquad}.$			
	(2)			
1.5	Ans: $\cos x + 2 \sin x$	1	L2	2
1.3	Particular integral of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 3^x + e^x$ is	1	L2	2
	Ans: $\frac{e^x}{10} + \frac{3^x}{(\log_e 3)^2 + 4\log_e 3 + 5}$			
1.6	If the complementary function of the differential equation is $y = (c_1 + c_2 x)e^{-2x}$, then the	1	L1	1
	corresponding differential equation is			
	Ans: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$			
1.7	Given	2	L2	1
1.7	x 20 25 30 35			1
	f(x) 354 332 291 260			
	The value of $f'(30) = $			
	Ans: -10.1			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - I	Maximum marks: 10
Course code: 22MA21C	First semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-P	Time: 20 Minutes Date: 05-07-2023

Name:	Branch:	USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
1.2	Ans: $-x^2 + 10x - 16$ If $f(1) = 7.4036$, $f(2) = 7.7815$, $f(3) = 8.1311$, $f(4) = 8.4554$, $f(5) = 8.7574$, then	1	T 1	1
1.2	If $f(1) = 7.4036$, $f(2) = 7.7815$, $f(3) = 8.1311$, $f(4) = 8.4554$, $f(5) = 8.7574$, then $\nabla^2 f(4) = \underline{\hspace{1cm}}$ Ans: -0.0253	1	L1	1
1.3	The value of $\Delta^4[(1-2x)(1-3x)(1-5x)(1-6x)]$ taking the interval of differencing $h=$	1	L1	1
	2 is Ans: 69120			
1.4	The particular solution of the initial value problem $9y'' - 25y = 0$ with $y(0) = 0$ and	2	L2	2
	y'(0) = -5 is Ans: $-1.5e^{\frac{5x}{3}} + 1.5e^{-\frac{5x}{3}}$			
1.5	Particular integral of $3\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 5y = e^{5x/3}$ is Ans: $\frac{xe^{\frac{5x}{3}}}{8}$	1	L2	2
1.6	Alls• 8		7.1	
1.6	If $x = e^{-t}$ is the solution of the differential equation $\frac{d^2x}{dt^2} - 6\frac{dx}{dt} - nx = 0$, then $n = \frac{1}{4}$. Ans: $n = 7$	1	L1	1
1.7	Given	2	L2	1
	Ans: -105.2222			