Projektowanie Algorytmów i Metody Sztucznej Inteligencji

Sprawozdanie 3: Sortowanie szybkie

Cel ćwiczenia:

Implementacja sortowania szybkiego. Badanie czasu trwania sortowania w zależności od ilości elementów do posortowania.

Wyniki pomiarów:

Elementy sortowanej tablicy przy każdej próbie pomiarowej, były losowe i różne od elementów próby poprzedzającej. Pomiary zostały odczytanie w milisekundach.

Tabela 1 Quicksort - pomiary w milisekundach

nr. Pomiaru	10	100	1 000	1 000 000
1.	0,000709	0,007403	0,095736	2990,17
2.	0,000838	0,007246	0,191647	3025,31
3.	0,000658	0,030347	0,348463	3049,81
4.	0,001279	0,024534	0,108084	2999,62
5.	0,000802	0,032536	0,095946	3002,74
6.	0,00339	0,01471	0,099688	2990,94
7.	0,00116	0,033286	0,247533	2990,4
8.	0,002796	0,034136	0,453898	2992,18
9.	0,002577	0,029223	0,143183	3022,97
10.	0,002782	0,02414	0,153321	2986,35
Średnia	0,001699	0,023756	0,19375	3005,049

Rysunek 1 Quicksort– wykres złożoności obliczeniowej

Wnioski:

Zaimplementowana wersja algorytmu sortowania szybkiego wykazuje złożoność O(n logn).

Zastosowana metoda wyboru pivot'u to wybór elementu o środkowym indeksie sortowanej tablicy.

Złożoność $O(n^2)$ występuje jeśli wybrany pivot jest elementem bliski lewemu bądź prawemu krańcowi sortowanej tablicy.

Pomiary dla 10^9 elementów nie zostały wykonane przez niemożność alokacji wystarczającej ilości pamięci.