ITU Computer and Informatics Faculty BLG311E - Formal Languages and Automata 20.03.2014 Midterm 1

1) Solution 1:

a) State transition diagram:

In this machine,

- N \rightarrow the monkey has no fruits (initial state)
- A → the monkey has a single apple
- B → the monkey has a single banana (The monkey eats a banana any time he has a single banana)
- A2 → the monkey has two apples (If at any time monkey only has two apples he eats both of them)
- B2 → the monkey has two bananas and an apple (If at any time monkey has two bananas he eats the bananas and throws other fruits away)
- A2B → the monkey has two apples and a banana (If at any time monkey has two apples and a banana he eats all the fruits)
- AB → the monkey has an apple and a banana

b) Dependency table:

N	_					
Χ	Α	_				
OK	Χ	В				
OK	Х	OK	A2	_		
OK	Х	OK	ОК	B2	_	
OK	Х	OK	ОК	ОК	A2B	
Χ	Х	Χ	Χ	Χ	Χ	AB

State transition table:

	а	b
N	A/0	B/1
Α	A2/1	AB/0
В	A/0	B/1
A2	A/0	B/1
B2	A/0	B/1
A2B	A/0	B/1
AB	A2B/1	B2/1

Reduced State transition table:

	а	b
S1={N,B,A2,B2,A2B}	S2/0	S1/1
S2={A}	S1/1	S3/0
S3={AB}	S1/1	S1/1

Solution 2:

a) The state transition diagram given on the right represents the machine.

N → the monkey has no fruits

A > the monkey has an apple

 $AB \rightarrow$ the monkey has an apple and a banana

A	
b/1 35	E .
N. S.	AR
a,b/1	AB

	а	b
N	A/0	N/1
Α	N/1	AB/0
AB	N/1	N/1

No equivalent states. The state machine cannot be reduced.

2)
$$A = abb^+ba \rightarrow ab^na, n \ge 3$$

 $B = a(bb)^+ba \rightarrow ab^{2n+1}a, n > 0$
 $C = a(bbb)^*a \rightarrow ab^{3n}a, n > 0$

i) An example string that is accepted by the all three languages: abbba

ii) An example string that is accepted by only A: abbbba

iii) An example string that is accepted by only A and B: abbbbba

iv) An example string that is accepted by only A and C: abbbbbba

v) An example string that is accepted by only C: aa

vi) $B \subset A$ as $(ab^{2n+1}a, n > 0) \subset (ab^na, n \ge 3)$ C has no subset/superset relation with the others as it is the only language that accepts aa and it is more restrictive than A and B for b's.

3) $\alpha^{s+kp+i} = \alpha^{s+i}$; $\forall k > 0 \land \forall i (0 < i < p)$ and $\alpha^s = \alpha^t$ where s < t and p = t - s $\alpha^{s+kp}\alpha^i = \alpha^s\alpha^i \to \alpha^{s+kp} = \alpha^s; \ \forall k > 0 \ \ \text{(We do not need to consider } \alpha^i, \text{ thus } i.\text{)}$ Proving $\alpha^{s+kp} = \alpha^s; \ \forall k > 0 \ \ \text{by induction,}$

Basis step (k = 1): $\alpha^{s+p} = \alpha^{s+t-s} = \alpha^t = \alpha^s$ as $\alpha^s = \alpha^t$ where s < t and p = t - s

Inductive step
$$(k = n)$$
:
Assume $\alpha^{s+np} = \alpha^s$

For k=n+1, checking if $\alpha^{s+(n+1)p}$ is equal to α^s : $\alpha^{s+(n+1)p}=\alpha^{s+np+p}=\alpha^{s+p+np}$ As $\alpha^s=\alpha^t$ where s< t and p=t-s: $\alpha^{s+p+np}=\alpha^{s+t-s+np}=\alpha^{t+np}=\alpha^t\alpha^{np}=\alpha^s\alpha^{np}$ We assumed $\alpha^{s+np}=\alpha^s$:

$$\alpha^s \alpha^{np} = \alpha^{s+np} = \alpha^s$$

We can also prove the complete expression ($\alpha^{s+kp+i} = \alpha^{s+i}$) without omitting i.

- Basis step (i=1 and k=1): $\alpha^{s+p+1}=\alpha^{s+t-s+1}=\alpha^{t+1}=\alpha^t\alpha=\alpha^s\alpha=\alpha^{s+1}$ as $\alpha^s=\alpha^t$ where s< t and p=t-s
- Inductive step (i = m and k = n):

Assume
$$\alpha^{s+np+m} = \alpha^{s+m}$$

For i=m+1 and k=n+1, checking if $\alpha^{s+(n+1)p+m+1}$ is equal to α^{s+m+1} : $\alpha^{s+(n+1)p+m+1}=\alpha^{s+np+p+m+1}=\alpha^{s+p+np+m+1}$ As $\alpha^s=\alpha^t$ where s< t and p=t-s: $\alpha^{s+p+np+m+1}=\alpha^{s+t-s+np+m+1}=\alpha^{t+np+m+1}=\alpha^t\alpha^{np+m+1}=\alpha^s\alpha^{np+m+1}$ We assumed $\alpha^{s+np+m}=\alpha^{s+m}$: $\alpha^s\alpha^{np+m+1}=\alpha^{s+np+m+1}=\alpha^{s+np+m}\alpha=\alpha^{s+m}\alpha=\alpha^{s+m+1}$

4) a) It is Type-2 since it suits the definition of Type-2 given as follows:

"Type-2 grammars are defined by rules of the form $A \to \gamma$ with a nonterminal(A) and a string of terminals and nonterminals(γ)."

It is not Type-3 as it does not satisfy the relevant definition stated in b (involving multiple nonterminals on the right-hand side (n_0A)).

b) A Type-3 grammar can be given as follows by taking the relevant definition (i.e., "A Type-3 grammar restricts its rules to a single nonterminal on the left-hand side and a right-hand side consisting of *a number of terminals*, *possibly* followed by a single nonterminal.") into account.

$$< S >= ab \mid aab \mid abb \mid ab < S > \mid aab < S > \mid abb < S >$$
 c) $n_0 = (ab \lor aab \lor abb)^+$