■ TRAPEZOIDAL RULE

In[@]:=

Plot
$$[-x^2 + 2, \{x, 0, 1\},$$

GridLines → {{0.1, 0.2, 0.3, 0.4, 0.5}, {0}}, PlotLabel → $\left\{ \text{"f(x)", "h=} \frac{b-a}{n} \text{"} \right\}$

$$\blacksquare A_1 = h \left(\frac{y_0 + y_1}{2} \right)$$

$$\blacksquare A_T = A_1 + A_2 + A_3 + A_4$$

 $A_2 = h(\frac{y_1 + y_2}{2}), A_3 = h(\frac{y_2 + y_3}{2}), \text{ and } A_4 = h(\frac{y_3 + y_4}{2}).$ The total area now is $A_T = \frac{h}{2}(y_0 + 2y_1 + 2y_2 + 2y_3 + y_4)$

$$A_T = \frac{h}{2} (y_0 + 2 y_1 + 2 y_2 + 2 y_3 + y_4)$$

Example:

Approximate the integral

$$\int_0^2 x^2 \, dx$$

using the Trapezoidal Rule with n = 10 subintervals.

Step 1: Understand the Trapezoidal Rule Formula

The Trapezoidal Rule for approximating

$$\int_a^b f(x)\,dx$$

with **n** subintervals is:

$$\int_a^b f(x) \, dx pprox rac{h}{2} \left[f(x_0) + 2 f(x_1) + 2 f(x_2) + \dots + 2 f(x_{n-1}) + f(x_n)
ight]$$

where:

- $h=rac{b-a}{n}$ is the width of each subinterval,
- ullet $\overline{x_0=a}$, $\overline{x_1=a+h}$, $\overline{x_2}=a+2h$, ..., $\overline{x_n=b}$.

Step 2: Apply the Values

We are given:

- a=0

- ullet n=10 $f(x)=x^2$

$$h = \frac{2-0}{10} = 0.2$$

Now compute the points:

$$x_k = 0 + k \cdot h = 0.2k$$
 for $k = 0, 1, 2, \dots, 10$

So the points are:

$$x_0=0.0,\; x_1=0.2,\; x_2=0.4,\; x_3=0.6,\; x_4=0.8,\; x_5=1.0,$$
 $x_6=1.2,\; x_7=1.4,\; x_8=1.6,\; x_9=1.8,\; x_{10}=2.0$

Now compute $f(x_k)=x_k^2$:				
K	X_K	$F(X_K)=X_K^2$		
0	0.0	0.00		
1	0.2	0.04		
2	0.4	0.16		
3	0.6	0.36		
4	0.8	0.64		
5	1.0	1.00		

	6	1.2	1.44
	7	1.4	1.96
•	8	1.6	2.56
	9	1.8	3.24
	10	2.0	4.00

Step 3: Apply the Trapezoidal Rule Formula

$$\int_0^2 x^2 \, dx pprox rac{h}{2} \left[f(x_0) + 2(f(x_1) + f(x_2) + \dots + f(x_9)) + f(x_{10})
ight]$$

Plug in the values:

$$\approx \frac{0.2}{2} \left[0.00 + 2 (0.04 + 0.16 + 0.36 + 0.64 + 1.00 + 1.44 + 1.96 + 2.56 + 3.24) + 4.00 \right]$$

First, sum the interior terms:

0.04 + 0.16 = 0.20
0.20 + 0.36 = 0.56
0.56 + 0.64 = 1.20
1.20 + 1.00 = 2.20
2.20 + 1.44 = 3.64
3.64 + 1.96 = 5.60
5.60 + 2.56 = 8.16
0 16 9 94 11 40

Now multiply by 2:

$$2 \times 11.40 = 22.80$$

Now add the first and last terms:

$$0.00 + 22.80 + 4.00 = 26.80$$

Now multiply by $rac{0.2}{2}=0.1$:

$$0.1 \times 26.80 = 2.68$$

Final Answer:

$$\int_0^2 x^2\,dxpprox 2.68$$

Compare with Exact Value:

The exact value is:

$$\int_0^2 x^2 \, dx = \left[rac{x^3}{3}
ight]_0^2 = rac{8}{3} pprox 2.6667$$

So our approximation is:

Error pprox 2.68 - 2.6667 = 0.0133 , which is quite small!

Conclusion:

Using the Trapezoidal Rule with n=10 , we approximated $\int_0^2 x^2\,dxpprox 2.68$, close to the exact value $rac{8}{3}pprox 2.6667$

- SIMULATION BY MATHEMATICA

```
In[13]:= (*Define the function*)f[x_] := x^2
       (*Integration limits*)
       a = 0;
       b = 2;
       n = 10;
       (*Step size*)
       h = (b - a) / n;
       (*Generate the x-values*)
       xValues = Table[a + i * h, {i, 0, n}];
       (*Evaluate f(x) at each point*)
       fValues = f /@ xValues;
       (*Apply Trapezoidal Rule formula*)
       approxIntegral = (h / 2) * (fValues[1] + 2 * Sum[fValues[i], {i, 2, n}] + fValues[n + 1])
       (*Optional:Compare with exact value*)
       exactIntegral = Integrate[x^2, {x, 0, 2}]
       error = approxIntegral - exactIntegral
Out[20]=
       67
       25
Out[21]=
       8
       3
Out[22]=
       1
       75
       67.0
In[12]:=
        25
Out[12]=
       2.68
```

Explanation of the Code:

- $f[x] := x^2$ defines the function.
- a=0; b=2; n=10; sets up interval and number of subintervals.
- h = (b a)/n computes step size.
- Table[a + i*h, $\{i, 0, n\}$] creates the 11 points from 0 to 2 in steps of 0.2.
- f/@xValues applies the function to all x-values.

$$rac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n)
ight]$$

• ------