Лабораторная работа 2 МЕТОДЫ ПОИСКА БЕЗУСЛОВНОГО ЭКСТРЕМУМА

Цель работы

Изучение методов поиска безусловного экстремума, применение этих методов на практике (реализация методов для трех различных функций в какой-либо среде программирования, а также проверка при помощи математических пакетов) и сравнение методов по их эффективности.

Задание

- 1. Найти локальные минимумы трех функций (по вариантам, см. таблицу 1) с использованием следующих методов: метод нулевого порядка (любой) и метод ненулевого порядка (по вариантам, см. таблицу 2).
- 2. Дать геометрическую интерпретацию решения для двумерных функций.
- 3. Проверить решения с помощью математических пакетов.

Содержание отчета

- 1. Титульный лист с указанием варианта.
- 2. Цель лабораторной работы.
- 3. Задание.
- 4. Постановка задачи.
- 5. Краткое описание указанного метода.
- 6. Листинг программы с комментариями.
- 7. Результаты выполнения программы для указанных функций.
- 8. Графическая интерпретация для двумерного случая.
- 9. Проверка вычислений в математических пакетах.
- 10. Подробные выводы: анализ полученных результатов, сравнение эффективности методов для различных функций.

Таблица 1

Вариант	Функции
1	$f(x_1, x_2) = 4.5x_1^2 - 4.5x_1 - 3x_1x_2 + 2x_2^2 - 3x_2$
	а) Начальная точка $x^0 = (2,3)$
	$f(x_1, x_2, x_3) = 8(x_1 - 2)^2 + (x_2 - 5)^2 + 4(x_3 - 3)^2$
	б) Начальная точка $x^0 = (3, 6, 6)$
	$ _{\mathrm{B})}$ Функция Биля $f(x_1, x_2) = \sum_{i=1}^{3} \left(c_i - x_1 (1 - x_2^i) \right)^2$
	$\Pi_{\text{араметр}} c = (1.5, 2.25, 2.625)$
	Начальная $x^0 = (0,0)$
	Р.S. Функция имеет седлообразную «ловушку».
2	$f(x_1, x_2) = 18x_1^2 + 18x_1 - 12x_1x_2 + 8x_2^2 - 12x_2 - 8$
	а) Начальная точка $x^0 = (-2, -3)$
	$f(x_1, x_2, x_3) = 7(x_1 - 1)^2 + 6(x_2 - 2)^2 + 8(x_3 - 5)^2$
	б) Начальная точка $x^0 = (2, 4, 0)$
	в) Функция Уайлда – Ремортеля
	$f(x_1, x_2) = -\alpha y_1 + \beta \sqrt{y_1^2 + \delta(y_2^2 + 1)} - \sqrt{\delta(\beta^2 - \alpha^2)}$
	$y_1 = \frac{\alpha x_1 - x_2}{\beta} + \alpha \sqrt{\frac{\delta}{\beta^2 - \alpha^2}}, \ y_2 = \frac{x_1 + \alpha x_2}{\beta}$
	Параметры $\alpha = \sqrt{3}$, $\beta = 2$, $\delta = 0.5$
	Начальная точка $x^0 = (-178, 710)$
	P.S. Функция имеет эллипсоидальные линии уровня, ассиметрично сдвинутые относительно экстремума.
3	$f(x_1, x_2) = 9x_1^2 + 9x_1 - 6x_1x_2 + 4x_2^2 - 6x_2 - 4$
	а) Начальная точка $x^0 = (-1,3)$ $f(x_1, x_2, x_3) = 8(x_1 - 1)^2 + (x_2 - 4)^2 + (x_3 + 7)^2$
	б) Начальная точка $x^0 = (2, 6, -10)$
	$f(x_1, x_2) = 100(x_2 - x_1^2) + (1 - x_1)^2$ Розенброка $x^0 = (-1, 2, 1)$
	Начальная точка
	P.S. Функция имеет нелинейный овраг параболического вида.

Вариант	Функции			
4	$f(x_1, x_2) = 9x_1^2 - 9x_1 - 6x_1x_2 + 4x_2^2 - 6x_2 $ a)			
	$x^0 = (2,4)$ Начальная точка			
	$f(x_1, x_2, x_3) = (x_1 - 2)^2 + 2(x_2 - 3)^2 + 8(x_3 - 5)^2 $ 6)			
	$x^0 = (2, 4, 1)$ Начальная			
	точка			
	в) Функция Розенброка $f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (x_1 - 1)^2$			
	Начальная точка $x^0 = (-1, 2, 1)$			
	Р. S. Функция имеет кубический овраг. Её гессиан (функция H)			
_	меняет свою определенность в области $ x_i < 3$, $i = 1, 2$.			
5	$f(x_1, x_2) = 18x_1^2 - 18x_1 - 12x_1x_2 + 8x_2^2 - 12x_2$			
	а) Начальная точка $x^0 = (2,4)$			
	$f(x_1, x_2, x_3) = 3(x_1 - 5)^2 + 2(x_2 - 4)^2 + (x_3 - 1)^2$			
	$x^0 = (7, 5, 4)$			
	Начальная точка			
	в) Функция Витте - Холста $f(x_1, x_2) = 10^{-4}(x_1 - 3)^2 - (x_2 - x_1) + \exp(20(x_2 - x_1))$			
	$x^{0} = (0, 1)$			
	Начальная точка			
	Р.S. Функция имеет резко ассиметричный овраг вблизи точки x^* .			
6	$f(x_1, x_2) = 27x_1^2 - 27x_1 - 18x_1x_2 + 12x_2^2 - 18x_2 - 5$			
	а) Начальная точка $x^0 = (2, 4)$			
	$f(x_1, x_2, x_3) = (x_1 - 3)^2 + 2(x_2 + 2)^2 + 3(x_3 - 1)^2$			
	б)Начальная точка $x^0 = (4, -5, 2)$			
	в) Функция Пауэлла			
	$f(x_1, x_2, x_3, x_4) = (x_1 + 10x_2)^2 +$			
	$+5(x_3-x_4)^2+(x_2-2x_3)^4+10(x_1-x_4)^4$			
	Начальная точка $x^0 = (3, -1, 0, 1)$			
	Р. S. Функция задает «уплощенное» дно оврага (слабовырожденная			
7	ситуация). Её гессиан (функция H) вырожден в точке x^* . $f(x_1, x_2) = 9x_1^2 - 9x_1 - 6x_1x_2 + 4x_2^2 - 6x_2 + 6$			
-	а) Начальная точка $x^0 = (2,4)$			
	a) IIu imibiiu/i 10 iku			

Вариант	Функции				
	$f(x_1, x_2, x_3) = 3(x_1 + 2)^2 + 2(x_2 + 3)^2 + 5(x_3 - 5)^2$				
	б) Начальная точка $x^0 = (-3, 4, 1)$				
	в) Функция Миля-Кантрелла				
	$f(x_1, x_2, x_3, x_4) = (\exp(x_1) - x_2)^4 + 100(x_2 - x_3)^6 + (\arctan(x_3 - x_4))^4 + x_1^8$				
	Начальная точка $x^0 = (1, 2, 2, 2)$				
8	P.S. Функция задает «извивающийся» овраг. $f(x_1, x_2) = 3x_1^2 - 3x_1 - 2x_1x_2 + \frac{4}{3}x_2^2 - 2x_2 a)$				
	$x^0 = (2,4)$ Начальная точка $f(x_1, x_2, x_3) = 6(x_1 - 1)^2 + 4(x_2 - 3)^2 + 2(x_3 - 7)^2$ б)				
	$x^0 = (2, 5, 10)$ Начальная				
	в) Функция Бокса				
	$f(x_1, x_2) = \sum_{i=1}^{2} \left(\sum_{j=1}^{2} (-1)^j \left(\exp\left(-\frac{i \alpha_j}{10} \right) - \exp\left(\frac{-i x_i}{10} \right) \right) \right)^2$				
	Параметры $\alpha_1 = 1$, $\alpha_2 = 10$				
	Начальная точка $x^0 = (0,0)$				
	Максимальное число итераций: 20				
	P.S. Функция имеет резко ассиметричный овраг в обширной области изменения переменных.				
9	a) $f(x_1, x_2) = 4(x_1 - 5)^2 + (x_2 - 6)^2$				
	Начальная точка $x^0 = (2,4)$				
	$6) f(x_1, x_2, x_3) = 5(x_1 - 4)^2 + (x_2 - 2)^2 + 3(x_3 - 4)^2$				
	Начальная точка $x^0 = (2,4,1)$				
	в) Функция Флетчера-Пауэлла				
	$f(x_1, x_2, x_3) = 100 \left\{ \left[x_3 - 5 \left(\left(\frac{1}{\pi} \right) arctg\left(\frac{x_2}{x_1} \right) + \frac{1}{2} (1 - sign(x_1)) \right) \right]^2 + \frac{1}{2} \left(\left(\frac{1}{\pi} \right) arctg\left(\frac{x_2}{x_1} \right) + \frac{1}{2} (1 - sign(x_1)) \right) \right\} \right\}$				
	$\left[\left(x_1^2 + x_2^2 \right)^{\frac{1}{2}} - 1 \right]^2 + x_3^2$				
	Начальная точка $x^0=(-1,0,0)$				

Вариант	Функции		
	Р.S. Функция имеет резко «извивающийся» овраг. Её производные первого порядка кусочно-непрерывны.		
10	a) $f(x_1, x_2) = 4.5x_1^2 - 4.5x_1 - 3x_1x_2 + 2x_2^2 - 3x_2 - 4$		
	Начальная точка $x^0 = (2,4)$		
	$6) f(x_1, x_2, x_3) = (x_1 - 9)^2 + 4(x_2 - 4)^2 + 2(x_3 - 5)^2$		
	Начальная точка $x^0 = (10,4,7)$		
	в) Функция Вуда		
	$f(x_1, x_2, x_3, x_4) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 + 90 \left\{ \left[x_3 - x_1^2 \right]^2 + (1 - x_1)^2 + \frac{1}{2} \right\} $		
	$\left[5\left(\frac{1}{\pi}\right)arctg\left(\frac{x_2}{x_1}\right) + \frac{1}{2}(1 - sign(x_1))\right]^2 + \left[(x_1^2 + x_2^2)^{\frac{1}{2}} - 1\right]^2 + x_3^2$		
	Начальная точка $x^0 = (-1,0,0)$		
	Р. S. Функция имеет резко «извивающийся» овраг. Её производные первого порядка кусочно-непрерывны.		

Таблица 2

Вариант	Порядок	Метод
1	первый	покоординатного спуска
2	второй	Ньютона - Рафсона
3	первый	Полака - Рибьера
4	первый	градиентного спуска с постоянным шагом
5	первый	Дэвидона - Флетчера - Пауэлла
6	второй	Марквардта
7	первый	наискорейшего градиентного спуска
8	первый	Гаусса - Зейделя
9	первый	Флетчера - Ривса
10	второй	Ньютона