BLAKE

SWISS MADE

Jean-Philippe Aumasson

FHNW Windisch, Switzerland

Luca Henzen

ETH Zürich, Switzerland

Willi Meier

FHNW Windisch, Switzerland

Raphael Phan

Loughborough Uni, UK

BLAKE-64

for 64-bit words and 64-byte digests
10 cycles/byte

BLAKE-32

for 32-bit words and 32-byte digests
16 cycles/byte

the ChaCha function

bijective nonlinear transform of 4 words

$$a += b$$
 $d = (a \oplus d) \ll 16$
 $c += d$
 $b = (b \oplus c) \ll 12$
 $a += b$
 $d = (a \oplus d) \ll 8$
 $c += d$
 $b = (b \oplus c) \ll 7$

BLAKE based on tweaked ChaCha

repeated 80 times in BLAKE-32

$$a += m_{i} \oplus const_{i}$$
 $a += b$
 $d = (a \oplus d) \gg 16$
 $c += d$
 $b = (b \oplus c) \gg 12$
 $a += m_{j} \oplus const_{j}$
 $a += b$
 $d = (a \oplus d) \gg 8$
 $c += d$
 $b = (b \oplus c) \gg 7$

BLAKE based on tweaked ChaCha

repeated 112 times in BLAKE-64

$$a += m_i \oplus const_i$$

$$a += b \qquad d = (a \oplus d) \gg 32$$

$$c += d \qquad b = (b \oplus c) \gg 25$$

$$a += m_j \oplus const_j$$

$$a += b \qquad d = (a \oplus d) \gg 16$$

$$c += d \qquad b = (b \oplus c) \gg 11$$

compression function state

initialized with salt, counter, chaining value

or to all columns in parallel

or to all diagonals in parallel

14 rounds for BLAKE-6410 rounds for BLAKE-32

full diffusion in 2 rounds
best attack on ChaCha on 3.5 rounds
best attack on BLAKE on 2 rounds

BLAKE's iteration mode (simplified HAIFA)

randomized hashing

RO-indifferentiability

 2^n second preimage resistance

preserves collision and preimage resistance

BLAKE in hardware

straightforward implementation
various trade-offs speed/area
small memory requirements

our implementations

4 different architectures on 0.18 $\mu\mathrm{m}$ CMOS ASIC

on FPGA (Virtex-4, Virtex-5, Virtex-II-Pro)

ASIC architectures

high-throughput: 8 ChaCha functions

BLAKE-64: 132 kGE 5.9 Gbps

BLAKE-32: 58 kGE 5.3 Gbps

ASIC architectures

small fingerprint: 1 ChaCha function

BLAKE-64: 20 kGE 181 Mbps

BLAKE-32: 10 kGE 253 Mbps

ASIC architectures

trade-off space/speed: 4 ChaCha functions

BLAKE-64: 82 kGE 4.8 Gbps

BLAKE-32: 41 kGE 4.1 Gbps

BLAKE-32 lightweight hashing core

13.5 kGE 128 Mbps

BLAKE in software (eBASH)

in the top 5

faster than SHA-2

on NIST reference platform

BLAKE-64 \approx 10 cycles/byte

BLAKE-32 \approx 16 cycles/byte

eBASH figures

amd64, 2000MHz, AMD Athlon 64 X2 (40fb2), mace

BLAKE-64 11.32 cycles/byte

BLAKE-32 17.86 cycles/byte

eBASH figures

x86, 333MHz, Intel Pentium 2 (652), boris

BLAKE-64 56.32 cycles/byte

BLAKE-32 25.74 cycles/byte

eBASH figures

ia64, 997MHz, HP Itanium II, nmi0020

BLAKE-64 8.54 cycles/byte

BLAKE-32 20.69 cycles/byte

why BLAKE for SHA-3?

one of the first candidates published, no attack faster than SHA-2 and than many SHA-3 candidates based on a known algorithm (ChaCha/Salsa20) one of the simplest designs no AES-dependence

BLAKE's webpage

http://www.131002.net/blake/

complete specification
security analysis
reference C code
eBASH submission
light C code
VHDL code

BLAKE

SWISS MADE