Procesamiento Digital de Imágenes

Práctica 6, "Filtrado en Frecuencia"

Prácticas de Laboratorio

1. Objetivo.

Que el alumno aplique las técnicas de filtrado espacial para acentuar o disminuir ciertas características de las imágenes digitales.

2. Introducción

Como se ha indicado en temas anteriores, los bordes y otras transiciones abruptas en los niveles de gris (como el ruido) de una imagen contribuyen significativamente a los componentes de altas frecuencias de su transformada de Fourier. Por lo tanto el suavizamiento (emborronamiento) en el dominio de la frecuencia se lleva a cabo eliminando los componentes de altas frecuencias de la transformada dada. El modelo básico es:

$$G(u, v) = F(u, v)H(u, v)$$

F(u,v) es la transformada de Fourier de la imagen a procesar, y H(u,v) es un filtro paso-bajas.

Por su parte, a diferencia de los filtros paso-bajos aplicados en el dominio de la frecuencia para el emborronamiento de la imagen, el realce de la imagen (proceso inverso al emborronamiento) puede llevarse a cabo en el dominio de la frecuencia utilizando friltros paso-altas, los cuales atenúan los componentes de frecuencias bajas sin alterar la información de las frecuencias altas de la transformada de Fourier.

Lo anterior se ilustra en la siguiente figura:

FIGURE 4.5 Basic steps for filtering in the frequency domain.

3. Desarrollo

A) Filtros suavizadores

Filtra la imagen "BOAT.BMP" usando un filtro suavizador tipo bloque de 7x7 elementos. Visualiza los espectros de Fourier del filtro en 2D-3D, así como el de la imagen filtrada. Visualiza las imágenes obtenidas después de aplicar el filtrado espacial y en frecuencia respectivamente.

B) Filtros pasa-altas

Filtra la imagen "BOAT.BMP" usando un filtro pasa altas definido por la siguiente mascara de convolución:

$$h = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\nabla^2(f(x,y)) \leftrightarrow -(u^2+v^2)F(u,v)$$
Donde

$$H(u,v) = -(u^2 + v^2)$$

Visualiza los espectros de Fourier del filtro en 2D-3D, así como el de la imagen filtrada. Visualiza las imágenes obtenidas después de aplicar el filtrado espacial y en frecuencia respectivamente.

C) Filtro Butterworth paso-bajas

Realiza el filtrado de la imagen "LENA.BMP" en el domino de la frecuencia usando un filtro Butterworth pasa-bajas de orden 2 y con una frecuencia de corte normalizada al 25%:

$$H(u,v) = \frac{1}{1 + \left[\frac{D(u,v)}{D_0}\right]^{2n}}$$


```
clc;
close all;
clear all;
[m n] = size(I);
orden = 2; % Orden del filtro Butterworth
D0 = 0.5;
mm = m;
nn = n;
% Frecuencias normalizadas entre 0 y 0.5, positivas ((nn/2)-1) y negativas (-nn/2)
xr = (-nn/2:(nn/2)-1) / nn;

yr = (-mm/2:(mm/2)-1) / mm;
[u, v] = meshgrid(xr, yr);
D = sqrt(u.^2 + v.^2);
butter = 1.0 ./ (1.0 + (D ./ D0).^(2*orden));
figure(); imshow(butter);
title('Espectro del filtro Butterworth pasa-bajas')
figure(); mesh(abs(butter))
title('Espectro del filtro Butterworth pasa-bajas (3D)')
IF = fftshift(M).*butter;
```

D) Filtro Butterworth paso-altas

Realiza el filtrado de la imagen "LENA.BMP" en el domino de la frecuencia usando un filtro Butterworth paso-altas de orden 2 y con una frecuencia de corte normalizada al 25%:

$$H(u,v) = \frac{1}{1 + \left[\frac{D_0}{D(u,v)}\right]^{2n}}$$

4. Resultados

5. Código

En esta sección deberán presentar el código fuente del programa en MATLAB (o en la herramienta que hayan utilizado en su defecto).

6. Conclusiones

Referencias

- [1]
- [2]