协议专栏特别福利 | 答疑解惑第一期

2018-08-20 刘超

- 00:50 / 14:40

你好,我是刘超。

首先,感谢大家关注并在留言区写下近3000条留言。留言太多,没有及时回复,一是每周写三篇文章压力真的挺大的。为了保质保量的产出,晚上和周末的时间基本上都搭进去了。 二是很多人的留言非常有深度,水平很高,提的问题一两句话解释不清楚。

导出PDF

每一节结尾我基本都会留两个思考题,其中第一个问题是启发思考的,是对本节内容的延伸学习;第二个问题是为了引出下一节,下一节的内容其实就是答案。

所以我会回答一下每一节的第一个问题,并列出第一个同我的思路最相近的同学,并对留言中比较有代表性的问题,做一个统一的回答,顺便也实现之前要送知识图谱和奖励礼券的 承诺。

当然,这并不能说明我的回答就是一定是正确的或者全面的,有很多同学的留言有非常大的信息量,甚至更广的思路,也对这些同学表示感谢。还有些同学指出了我的错误,也感谢你们。

《第1讲 | 为什么要学习网络协议? 》

课后思考

当网络包到达一个城关的时候,可以通过路由表得到下一个城关的 IP 地址,直接通过 IP地址找就可以了,为什么还要通过本地的MAC地址呢?

🔪 徐良红

写于 2018/05/19

关于老师最后的问题, 我觉得是这样: ip 报 文端到端的传输过程中, 目的地址和源地址 是不变的,但是每通过一个网关,源 mac 和目的 mac 一直在变。两个王国之间的网 关要通过 mac 互相传递报文。

引自: 趣谈网络协议 第1讲 | 为什么要学习网络协议?

徐良红同学说的比较接近。在网络包里,有源IP地址和目标IP地址、源MAC地址和目标MAC地址。从路由表中取得下一跳的IP地址后,应该把这个地址放在哪里呢?如果放在目 标IP地址里面,到了城关,谁知道最终的目标在哪里呢?所以要用MAC地址。

所谓的下一跳,看起来是IP地址,其实是要通过ARP得到MAC地址,将下一跳的MAC地址放在目标MAC地址里面。

1.MAC地址可以修改吗?

写于 2018/05/18

很多人都说 mac 地址是唯一的, 不变的, 网络老师也这么说,

- 1. 但记得大学时为了能上网, 在 windows XP 下自己改了 mac 地铁就可以了, 可能 只是操作系统级别的修改, 但理解起来好矛
- 2. 如果是全球唯一的, 那么意思是这些网卡 厂商都要维护自己的 mac 列表? 以保证和 其它厂商绝对不重复,有这样的机构吗

真是困惑, 自己猜想 mac 唯一应该也只是 保证局域网内保证唯一吧

引自: 趣谈网络协议

第1讲 | 为什么要学习网络协议?

iceco1a

写于 2018/05/31

网卡 MAC 码是由全球惟一的一个固定组织 来分配的,未经认证和授权的厂家无权生产 网卡。每块网卡都有一个固定的卡号,并且 任何正规厂家生产的网卡上都直接标明了卡 号,一般为一组 12 位的 16 进制数。其中前 6 位代表网卡的生产厂商。后面的位数是设 备号。当然在操作系统级别改 Mac 地址又 是一种说法。

引自: 趣谈网络协议

第1讲 | 为什么要学习网络协议?

我查了一下,MAC (Media Access Control, 介质访问控制) 地址, 也叫硬件地址, 长度是48比特(6字节), 由16进制的数字组成, 分为前24位和后24位。

前24位叫作组织唯一标志符(Organizationally Unique Identifier,OUI),是由IEEE的注册管理机构给不同厂家分配的代码,用于区分不同的厂家。后24位是厂家自己分配的, 称为扩展标识符。同一个厂家生产的网卡中MAC地址后24位是不同的。

也就是说,MAC本来设计为唯一性的,但是后来设备越来越多,而且还有虚拟化的设备和网卡,有很多工具可以修改,就很难保证不冲突了。但是至少应该保持一个局域网内是唯一 的。

MAC的设计,使得即便不能保证绝对唯一,但是能保证一个局域网内出现冲突的概率很小。这样,一台机器启动的时候,就能够在没有IP地址的情况下,先用MAC地址进行通信,获

好在MAC地址是工作在一个局域网中的,因而即便出现了冲突,网络工程师也能够在自己的范围内很快定位并解决这个问题。这就像我们生成UUID或者哈希值,大部分情况下是不 会冲突的,但是如果碰巧出现冲突了,采取一定的机制解决冲突就好。

2.TCP重试有没有可能导致重复下单?

zhangc

写于 2018/05/27

tcp 重试有没有可能导致重复下单?

引自: 趣谈网络协议

第1讲 | 为什么要学习网络协议?

答案是不会的。这个在TCP那一节有详细的讲解。因为TCP层收到了重复包之后,TCP层自己会进行去重,发给应用层、HTTP层。还是一个唯一的下单请求,所以不会重复下单。

那什么时候会导致重复下单呢?因为网络原因或者服务端错误,导致TCP连接断了,这样会重新发送应用层的请求,也即HTTP的请求会重新发送一遍。

如果服务端设计的是无状态的,它记不住上一次已经发送了一次请求。如果处理不好,就会导致重复下单,这就需要服务端除了实现无状态,还需要根据传过来的订单号实现幂等, 同一个订单只处理一次。

还会有的现象是请求被黑客拦截,发送多次,这在HTTPS层可以有很多种机制,例如通过 Timestamp和Nonce随机数联合起来,然后做一个不可逆的签名来保证。

3.TCP报平安的包是原路返回吗?

语鬼

写于 2018/05/21

"会沿着刚才来的方向走回去,报个平安"

应该不一定原路返回吧? 愚见

引自: 趣谈网络协议

第1讲 | 为什么要学习网络协议?

谢谢语鬼同学的指正。这里的比喻不够严谨,容易让读者产生误会,这里的原路返回的意思是原样返回,也就是返回也是这个过程,不一定是完全一样的路径。

芒果

写于 2018/05/18

个人发表一下对这个问题的看法, 抛砖引 玉、希望老师指正: 1. 局域网内 IP 地址是 动态分配的、假如我是 192.168.2.100、如 果我下线了,可能 IP 就分配给了另一台电 脑。IP 和设备并不总是对应的,这对通信就 产生了问题、但是 MAC 地址不同、MAC 地 址和设备是——对应且全球唯一的。所以局 域网使用 MAC 地址通信没有问题。2. 历史 遗留问题:早期的以太网只有交换机,没有 路由器,以太网内通过 MAC 地址通信。后 来才有了互联网, 为了兼容原本的模式, 采 用了 IP+MAC 地址通信的方式。为啥不推到 了重来呢? 看看 IPv6 的处境你就知道了。 所以是先有 MAC 地址后有的 IP, IP 的提出 主要还是因为 MAC 地址本身的缺陷, 这个 问题换成有了 MAC 为何还要 IP 地址也很有 意思。3. 我这里简单说一下第一: MAC 地 址本身的缺陷:因为 MAC 地址是硬件提供 商写在网卡中的, MAC 地址虽然唯一但是不 能表明用户在整个互联网中的位置,除非维 护一个超级大 MAC 地址对应表, 那寻址效 率肯定爆炸。但是 IP 地址解决了这个问题, 因为 IP 地址是网络提供商给你的, 所以你在 哪里整个网络都是知道的。第二:安全问 题: 获取 MAC 地址是通过 ARP 协议来完 成的,如果只用 MAC 地址通信,那么广播 风暴是个难题。4. 那么我觉得如果哪天每人 一个固定的 IPv6 地址, 那么我觉得 MAC 地址 +IPv4 的模式是不是可以被替换了?

引自: 趣谈网络协议

第1讲 | 为什么要学习网络协议?

识别二维码打开原文 「极客时间」 App

芒果同学的理解非常准确,讲IP和MAC的关系的时候说了这个问题。IP是有远程定位功能的,MAC是没有远程定位功能的,只能通过本地ARP的方式找到。

我个人认为,即便有了IPv6,也不会改变当前的网络分层模式,还是IP层解决远程定位问题,只不过改成IPv6了,到了本地,还是通过MAC。

5.如果最后一跳的时候,IP改变了怎么办?

lishaohui

写于 2018/07/18

有个疑问。我现在的理解是当到达了目标机器所在的网关时,网管会使用 Arp 协议发送广播来得到目标机器的 mac 地址。但是如果在这之前目标机器的 IP 就已经改变了,那不就会有问题了。

引自: 趣谈网络协议

第1讲 为什么要学习网络协议?

识别二维码打开原文 「极寒时间」 App

对于IP层来讲,当包到达最后一跳的时候,原来的IP不存在了。比如网线拔掉了,或者服务器直接岩机了,则ARP就找不到了,所以这个包就会发送失败了。对于IP层的工作就结束了。

但是IP层之上还有TCP层,TCP会重试的,包还是会重新发送,但是如果服务器没有启动起来,超过一定的次数,最终放弃。

如果服务器重启了,IP还是原来的IP地址,这个时候TCP重新发送的一个包的时候,ARP是能够得到这个地址的,因而会发到这台机器上来,但是机器上面没有启动服务端监听那个端口,于是会发送ICMP端口不可达。

如果服务器重启了,服务端也重新启动了,也在监听那个端口了,这个时候TCP的服务端由于是新的,Sequence Number根本对不上,说明不是原来的连接,会发送RST。

那有没有可能有特殊的场景Sequence Number也能对的上呢?按照Sequence Number的生成算法,是不可能的。

但是有一个非常特殊的方式,就是虚拟机的热迁移,从一台物理机迁移到另外一台物理机,IP不变,MAC不变,内存也拷贝过去,Sequence Number在内存里面也保持住了,在迁移的过程中会丢失一两个包,但是从TCP来看,最终还是能够连接成功的。

6.TCP层报平安,怎么确认浏览器收到呢?

夏夜vv凉

写于 2018/06/17

tcp 层报平安, 怎么确认浏览器收到呢

引自: 趣谈网络协议

第1讲 | 为什么要学习网络协议?

TCP报平安,只能保证TCP层能够收到,不保证浏览器能够收到。但是可以想象,如果浏览器是你写的一个程序,你也是通过socket编程写的,你是通过socket,建立一个TCP的连 接,然后从这个连接里面读取数据,读取的数据就是TCP层确认收到的。

这个读取的动作是本地系统调用,大部分情况下不会失败的。如果读取失败呢,当然本地会报错,你的socket读取函数会返回错误,如果你是浏览器程序的实现者,你有两种选择, 一个是将错误报告给用户,另一个是重新发送一次请求,获取结果显示给用户。

7.ARP协议属于哪一层?

维维

写于 2018/05/27

有的文章介绍 ARP 是网络层协议,这里介 绍是数据链路层协议, 到底是哪一层很困 惑。

引自: 趣谈网络协议

第1讲 | 为什么要学习网络协议?

「极客时间」 App

ARP属于哪个层,一直是有争议的。比如《TCP/IP详解》把它放在了二层和三层之间,但是既然是协议,只要大家都遵守相同的格式、流程就可以了,在实际应用的时候,不会有歧 义的,唯一有歧义的是参加各种考试,让你做选择题,ARP属于哪一层?平时工作中咱不用纠结这个。

《第2讲 | 网络分层的真实含义是什么?》

课后思考题

如果你也觉得总经理和员工的比喻不恰当,你有更恰当的比喻吗?

报婚中国共间

小雨

写于 2018/05/22

很像发快递的过程(http,应用层),你向顺丰下单(第一次请求),顺丰接单(应答),你向手机小伙联系(回应应答),你将消息放进盒子里(开始封装请求,会话层),快递员封装一层盒子贴上快递单带回网店(传输层),将快递点检查是否区域快件(网络层),将快件交给运输车(链路层),各个快递转运中心(物理层),转运输车(链路层),到达区域分发(网络层),网点派送(传输层),似到快递(应用层)。

Aaaaaaaaaaayou

写于 2018/05/22

想象有这么一个场景, 居住在 a 市的小明想 给自己居住在 b 市的朋友小红写信。

小明写好了, 然后把信给自己的妈妈。这里 信的内容就是应用层的内容,小明就是应用 层。

妈妈拿到信,帮小明把信用信封装好,然后 信封上写上, from 小明 to 小红, 然后把信 交给邮递员。这里妈妈是传输层。

邮递员拿到信,查到小红的住址,然后把信 放到一个包裹里面,在上面写上 from a to b, 然后把信交给物流。这里邮递员是网络 层。

物流拿到包裹,把包裹分发到到开往 b 的火 车上。这里物流是数据链路层, 火车是数据 包内容。

引自: 趣谈网络协议

第2讲丨网络分层的真实含义是什么?

我觉得,寄快递和寄信这两个比喻都挺好的。关键是有了封装和解封装的过程。有的同学举了爬楼,或者公司各层之间的沟通,都无法体现封装和解封装的过程。 留言问题

1.为什么要分层?

節 陈炽伟

写于 2018/06/02

老师你好,

我觉得对于 网络为何要分层? 这个问题的解 释有点过于牵强, 虽说复杂的程序都要分层 这点没错,但我觉得这只是它的表现,网络 每一层协议负责的工作都是不一样的,也就 对应了有不同设备来处理。

比如应用层,一般是由计算机来处理,用于 用户可使用的实际程序上; 网络层, 是网关 之间的通讯协议, 一般是路由器作处理转 发。

倘若说整个网络只有一层, 网络上所有节点 都处于同一层级,必然会造成混乱,所以最 主要原因还是要明确职责。

引自: 趣谈网络协议

第2讲 | 网络分层的真实含义是什么?

识别二维码打开原文 「极客时间」 App

是的,仅仅用复杂性来解释分层,太过牵强了。

写于 2018/05/26

计算机科学领域的任何问题都可以通过增加 一个间接的中间层来解决, 计算机整个体系 从上到下都是按照严格的层次结构设计的。

引自: 趣谈网络协议

第2讲 | 网络分层的真实含义是什么?

识别二维码打开原文 「极客时间」 App

其实这是一个架构设计的通用问题,不仅仅是网络协议的问题。一旦涉及到复杂的逻辑,或者软件需求需要经常变动,一般都会通过分层来解决问题。

假如我们将所有的代码都写在一起,但是产品经理突然想调整一下界面,这背后的业务逻辑变不变,那要不要一起修改呢?所以会拆成两层,把UI层从业务逻辑中分离出来,调用API来进行组合。API不变,仅仅界面变,是不是就不影响后台的代码了?

为什么要把一些原子的API放在基础服务层呢?将数据库、缓存、搜索引擎等,屏蔽到基础服务层以下,基础服务层之上的组合逻辑层、API层都只能调用基础服务层的API,不能直接访问数据库。

比如我们要将Oracle切换成MySOL。MySOL有一个库,分库分表成为4个库。难道所有的代码都要修改吗?当然只要把基础服务层屏蔽,提供一致的接口就可以了。

网络协议也是这样的。有的想基于TCP,自己不操心就能够保证到达;有的想自己实现可靠通信,不基于TCP,而使用UDP。一旦分了层就好办了,定制化后要依赖于下一层的接口,只要实现自己的逻辑就可以了。如果TCP的实现将所有的逻辑耦合在了整个七层,不用TCP的可靠传输机制都没有办法。

2.层级之间真实的调用方式是什么样的?

写于 2018/05/21

老师您好,有几个问题不太明白

- 1. 按理说下层的协议不需要知道上层的协 议,那 ip 层转给上层的时候应该不是 if 判 断而且一个回调函数?
- 2. 假设有很多 tcp 请求某个服务器 A, 各请 求的端口不同,对于操作系统来说,是有一 个统一的入口处理这些请求, 然后检查机器 上是否有这个端口再做转发处理,在操作系 统这个层面他的大致流程是什么样的呢?

引自: 趣谈网络协议

第2讲 | 网络分层的真实含义是什么?

识别二维码打开原文 「极客时间」 App

如果文中是一个逻辑图,这个问题其实已经到实现层面上来了,需要看TCP/IP的协议栈代码了。这里首先推荐一本书《深入理解Linux网络技术内幕》。

其实下层的协议知道上层协议的,因为在每一层的包头里面,都会有上一层是哪个协议的标识,所以不是一个回调函数,每一层的处理函数都会在操作系统启动的时候,注册到内核 的一个数据结构里面,但是到某一层的时候,是通过判断到底是哪一层的哪一个协议,然后去找相应的处理函数去调用。

调用的大致过程我这里再讲一下。由于TCP比较复杂,我们以UDP为例子,其实发送的包就是一个sk_buff结构。这个在Socket那一节讲过。

int udp_send_skb(\$truct sk_buff *skb, \$truct flowi4 *fl4)

接着,UDP层会调用IP层的函数。

int ip_send_skb(&ruct net *net, &ruct sk_buff *skb)

然后, IP层通过路由判断, 最终将包发给下一层。

int ip_output(\$ruct net *net, \$ruct sock *sk, \$ruct sk_buff *skb)

发送的时候,要进行ARP。如果有MAC,则调用二层的函数,neigh其实就是邻居系统,是二层的意思。

int neigh_output(\$ruct neighbour *n, \$ruct sk_buff *skb)

接收的时候,会调用这里的接收函数。

int netif_receive_skb(%ruct sk_buff *skb)

这个函数会根据是ARP或者IP等,选择调用不同的函数。如果是IP协议的话,就调用这里的函数。

int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)

这里也有路由判断。如果是本地的,则继续往上提交这个结构。

int ip local deliver(\$\frac{4}{3}\truct sk buff *skb)

接着,还是根据IP头里面的协议号,来判断是什么协议,从而调用什么函数。下面这个是对UDP的调用。

int udp rcv(fruct sk buff *skb)

3.什么情况下会有下层没上层?

cs五行八卦

写于 2018/05/21

不可能有上层没下层我能理解(因为是完整 的),但什么情况下会出现有下层没上层的 通信,这点想不明白

引自: 趣谈网络协议

第2讲 | 网络分层的真实含义是什么?

识别二维码打开原文

有时候我们自己写应用的时候,不一定是直接调用应用层协议的接口,例如HTTP等,而是自己写Socket编程,来约定应用层的协议。再如,ping也是一个应用,但是它没有用传输 层的协议,而是用了ICMP的协议。

最后,感谢留言次数前15名的同学,谢谢你们持之以恒的学习,相信你们一定有自己的收获。(统计数据截止到2018年8月8日)

Hurt	极客时间68元专栏阅码
_CountingStars	极客时间68元专栏阅码
o0oi1i	极客时间68元专栏阅码
Jay	极客时间68元专栏阅码
赵强强	极客时间68元专栏阅码
咖啡猫口里的咖啡猫	极客时间68元专栏阅码
云学	极客时间68元专栏阅码
Jason	极客时间68元专栏阅码
u	极客时间68元专栏阅码
feifei	极客时间68元专栏阅码
SummerJ	极客时间68元专栏阅码
zcpromising	极客时间68元专栏阅码
大树	极客时间68元专栏阅码
徐良红	极客时间68元专栏阅码
一步	极客时间68元专栏阅码

WINNING LIST GOOD LUCK

同时感谢第1讲、第2讲中对内容有深度思考和提出问题的同学。我会为你们送上奖励礼券和知识图谱。(稍后运营同学会发送短信通知。) 欢迎你继续提问!

中奖名单

(昵称)	奖励
zwfec	10元无门槛优惠券
iceco1a	10元无门槛优惠券
zhangc	10元无门槛优惠券
语鬼	10元无门槛优惠券
芒果	10元无门槛优惠券
lishaohui	10元无门槛优惠券
维维	10元无门槛优惠券
陈炽伟	10元无门槛优惠券
uchinho ko	10元无门槛优惠券
Michael	10元无门槛优惠券
cs五行八卦	10元无门槛优惠券
小雨	10元无门槛优惠券
夏夜vv凉	10元无门槛优惠券
Aaaaaaaaaayou	10元无门槛优惠券

WINNING LIST

2018-08-20 老师能不能去分享一些抓包和网络包分析相关的内容,带着问题进行抓包和分析,这样应该可以让之前学习的理论更好的理解和应用,谢谢啦◆◆ 2018-08-20 谢谢老师精彩用心的讲解,受益匪浅,学习完之后还有惊喜,太感谢老师了。期待老师下个专栏 Hurt 2018-08-20 我也想要~~~ 作者回复 2018-08-20 有你的名字呀 美团技术团队 2018-08-21 Nonce 这块技术 可能了解不是特别清晰 方便老师介绍下吗 我理解是服务端发给客户端的随机数 具体怎么应用方便老师分享下吗 美团技术团队 2018-08-21 Nonce随机数的应用 方便刘老师介绍下吗 我理解是是服务端给客户端的盐 夏洛克的救赎 2018-08-20 信息量有点大 balancer 2018-08-20 老师如果能后面加几节实操课,比如 哪LVS 的各种模式配置来举例,分析,那课程就完美了 2018-08-20 说下Ivs , dr模式, 为real-server 设置route add -host mask 的作用?

极等时间		

极等时间		

极等时间		

极等时间		

极等时间		

极等时间		

极等时间		

极等时间		

极等时间		

极等时间		

极等时间		

极等时间		

极等时间		