Recall: the derivative of a function $f: \mathbb{R} \to \mathbb{R}$ is a function $f': \mathbb{R} \to \mathbb{R}$ where f(a) is the slope of the tangent line at (a, f(a))

If a function has a derivative, it is differentiable.

ex For x a vouriable, CER, n au integer >0,

c' = 0 $(e^{cx})' = ce^{cx}$ $(x^n)' = n x^{n-1}$ (os x)' = -sin x

 $(\sin x)^1 = \cos x$

Monex | x | is not differentiable at 0.

A second derivative $f'': \mathbb{R} \to \mathbb{R}$ is the derivative of the derivative of the derivative of exist. For instance, f(x) = x |x| is differentiable but not second—differentiable.

The nth Merivative f(m): IR-IR is the derivative of f(m-1): IR-IR.

A differential equation is an equation involving

an unknown function and its derivatives.

$$f' = 2f$$
 $f'' - f' + f = 0$

$$xg'(x) = cos x$$

A solution is a function (which is differentiable enough) which satisfies the different when substituted in.

ex $f(x) = e^{2x}$ is a solution to f' = 2f. Since $f' = 2e^{2x} = 2f$.

Differential equations come up when modeling continuous physical systems. The classic example is a mass on a spring:

on to some m

Let x be the position of the curty, and x' its velocity. Newton's 2nd law is the differential equation F = mx''. x'' is the anteration of the court, F the force applied to it. Hooke's law for springs is F = -kx

So, mx" = - kx is the differential equation governing its motion.

As a guess, quided by seeing the second devivative is negative itself, perhaps $x = A \cos(\omega t)$ $x' = -A\omega \sin(\omega t)$ $x'' = -A\omega^2\cos(\omega t)$ So $mx'' = -mA\omega^2\cos(\omega t)$ $-kx = -kA\cos(\omega t)$ which are equal if $m\omega^2 = k$. This is periodic motion, as one would expect. It decrease or minurease gives slower motion. Plan:

- Study linear second-order diff.egs } warmup

- study linear higher-order diff.egs } for

- study differential equations

\[\frac{\chi}{2} = A \opi (t) \quad \frac{\chi}{2} = \frac{\chi}{2} \quad \frac{\chi}{2} = \frac{\chi}{2} \quad \frac{\chi}{2} \quad \frac{\chi}{2} = \frac{\chi}{2} \quad \frac{\chi}{2} \quad \frac{\chi}{2} = \frac{\chi}{2} \quad \quad \frac{\chi}{2} \quad Many physical systems can be described on approximated by linear difference. The above cart system could instead be written as $\begin{bmatrix} x \\ x' \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{k}{k} \\ 0 \end{bmatrix} \begin{bmatrix} x \\ x' \end{bmatrix}$

This is especially execul when there are multiple interacting objects with their own positions and relocities!

Linear 2nd -order diff.egs

A linear 2nd -order det. cy is a det. eg. of
the form $f'' + \alpha f' + b f = q$, where

a, b e R, g: R > R some function, and f unknown.

Could also write $f''(t) + \alpha f'(t) + b f(t) = g(t)$.

g is sometimes interpreted as a driving term.

A homogeneous finear 2nd-order diff. eq. is one where g(t) =0. So: f" +af' + bf =0.

Let's stort by giving the way to solve them:

1. The auxitory polynomial is $r^2 + ar + b$. Let λ_1, λ_2 be the roots.

7. if $\lambda_1 \neq \lambda_2$, $f(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t}$ is a solution for all $A, B \in \mathbb{R}$. • if $\lambda_1 = \lambda_2$, $f(t) = Ae^{\lambda_1 t} + Bte^{\lambda_1 t}$ instead

ex f'' - 3f' + 2f = 0. $r^2 - 3r + 2 = (r - 2)(r - 1)$ $f(t) = Ae^{2t} + Be^{t}$

f'' - 4f' + 4f = 0 $r^{2} - 4r + 4 = (r - 2)^{2}$ $f(t) = A e^{2t} + B t = 2t$

If the voots are complex, it actually still works. f" +f =0 (2 +1 =0 $r = \pm i$ flt) = Aeit + Be-it Since $e^{it} = \cos t + i\sin t$ $e^{-it} = \cos t - i\sin t$ $f(t) = (A+B)\cos t + (A-B)i \sin t$ It's possible to solve A+B=C Ai-Bi=D for any C,D, so f(t) = C cos t + Dsin t. In general, if $\lambda = a + bi$ is a root, so is $\lambda = a - bi$, and together these aire give

f(t) = eat (A cos (bt) + Bsin (bt))

which is useful if you like give and cosine. Thus Existence and uniqueness: For f" + af' + bf = 0 (a, b \in IR) and to \in IR, $f_{0}, f_{1} \in \mathbb{R}$, there is a unique solution f with $f(t_{0}) = f_{0}$ and $f'(t_{0}) = f_{1}$.

ex
$$f'' - 3f' + 2f = 0$$
, $f(0) = 1$, $f'(0) = 2$
 $f(t) = Ae^{2t} + Re^{t}$ $f(0) = A + B = 1$
 $f'(t) = 2Ae^{2t} + Re^{t}$ $f'(0) = 2A + B = 2$