

Winning Space Race with Data Science

Mariangela Santorsola March 4th 2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - SpaceX Data Collection
 - Web scraping
 - API
 - Exploratory Data Analysis (EDA)
 - Machine Learning (ML) Predictions
 - Visualization of key results
- Summary of all results
 - Prediction of the total cost of launches by best ML model

Introduction

- Project background and context
 - Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage.
- Problems you want to find answers
 - SpaceX Falcon 9 First Stage Landing Prediction
 - Cost of launch

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX API (api.spacexdata.com/v4/rockets)
 - https://en.wikipedia.org/w/index.php?
 title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922
- Perform data wrangling
 - Data summarized and landing outcome label created.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
- Collected data were normalized. Dataset split in test and training sets. Performed four different ML models, evaluation of accuracy.

Data Collection

- Data collection methodology:
 - SpaceX API (api.spacexdata.com/v4/rockets)
 - Data scraping

https://en.wikipedia.org/w/index.php?
title=List of Falcon 9 and Falcon Heavy launches&oldid=1027686922

Data Collection – SpaceX API

SpaceX API (api.spacexdata.com/v4/rockets)

https://github.com/msantorsola/python_project_data_science/blob/main/jupyter-labs-spacex-data-collection-api.ipynb

Data Collection - Scraping

https://en.wikipedia.org/w/index.php?
title=List_of_Falcon_9 and Falcon_Heavy_launches&oldid=1027686922

https://github.com/msantorsola/python_project_data_science/blob/main/jupyter-labs-webscraping.ipynb

Data Wrangling

- EDA to determine the labels for training supervised models
- https://github.com/msantorsola/python_project_data_science/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

Scatterplot and barplot to visualize relationship between each feature pair

https://github.com/msantorsola/python_project_data_science/blob/main/jupyter-labs-eda-dataviz.ipynb

EDA with SQL

- SQL queries:
 - Total payload mass by booster F9v1.1
 - 5 records where launch sites begin with the string 'CCA'
 - Total payload mass carried by boosters launched by NASA (CRS)
 - Average payload mass carried by booster version F9 v1.1
 - date when the first successful landing outcome in ground pad was acheived.
 - names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
 - Total number of successful and failure mission outcomes
 - List the names of the booster versions which have carried the maximum payload mass
 - List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
 - Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Build an Interactive Map with Folium

- Markers, circles, lines and marker clusters added to a folium map
 - Markers for launch sites
 - Circles for areas around defined coordinates
 - Marker clusters for events in each coordinates
 - Lines for distances between coordinates

https://github.com/msantorsola/python_project_data_science/blob/main/lab_jupyter_launch_site_location.ipynb

Build a Dashboard with Plotly Dash

- Pie chart of launch success
- Scatter plot for correlation between payload and launch success

AIM: Identification of the best place to launch according to payload

https://github.com/msantorsola/python_project_data_science

Predictive Analysis (Classification)

ML classification models used:

- Logistic regression
- support vector machine
- decision tree
- k neighrest neighbors

github.com/msantorsola/python_project_data_science/blob/main/ SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

The best launch site for number of success is CCAF5 SLC 40

Payload vs. Launch Site

 For CCAF5 SLC 40 and KSC LC 39A lauchsites, payload mass less than 9,000 kg have a higher success rate

Success Rate vs. Orbit Type

- High success rate in orbits:
 - ES-L1
 - GEO
 - HEO
 - SSO
 - VLEO

Flight Number vs. Orbit Type

- Lauch success rate correlates with flight number for LEO orbit.
- VLEO orbit has the most recent increasing of launch success

Payload vs. Orbit Type

- No positive or negative correlation for GTO orbit.
- With the successful landing rate for heavy payloads is higher in LEO and ISS orbits

Launch Success Yearly Trend

 Sucess rate increased since 2013 till 2020

All Launch Site Names

- Unique launch sites
 - CCAFS LC-40
 - CCAFS SLC-40
 - KSC LC-39A
 - VAFB SDLC-4E

obtained with `features['LaunchSite'].unique()`

Launch Site Names Begin with 'CCA'

Find 5 records where launch sites begin with `CCA`

_	<pre>features.loc[features['LaunchSite'].str.startswith('CCA')].head()</pre>												
[6]:	FlightNumber	PayloadMass	Orbit	LaunchSite	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	
0	1	6104.959412	LEO	CCAFS SLC 40	1	False	False	False	NaN	1.0	0	B0003	
1	2	525.000000	LEO	CCAFS SLC 40	1	False	False	False	NaN	1.0	0	B0005	
2	3	677.000000	ISS	CCAFS SLC 40	1	False	False	False	NaN	1.0	0	B0007	
4	5	3170.000000	GTO	CCAFS SLC 40	1	False	False	False	NaN	1.0	0	B1004	
5	6	3325.000000	GTO	CCAFS SLC 40	1	False	False	False	NaN	1.0	0	B1005	

Total Payload Mass

Total payload carried by boosters from NASA

total_payload 111268

Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1

avg_payload
2928

First Successful Ground Landing Date

First successful landing outcome on ground pad

first_success_gp

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

 Boosters which have successfully landed on drone ship, with payload mass greater than 4000 but less than 6000

booster_version
F9 FT B1021.2
F9 FT B1031.2
F9 FT B1022
F9 FT B1026

Total Number of Successful and Failure Mission Outcomes

Total number of successful and failure mission outcomes

mission_outcome qty		
Failure (in flight) 1		
Success 99		
Success (payload status unclear)	1	

Boosters Carried Maximum Payload

Booster which have carried the maximum payload mass

booster_version
F9 B5 B1048.4
F9 B5 B1048.5
F9 B5 B1049.4
F9 B5 B1049.5
F9 B5 B1049.7
F9 B5 B1051.3
F9 B5 B1051.4
F9 B5 B1051.6
F9 B5 B1056.4
F9 B5 B1058.3
F9 B5 B1060.2
F9 B5 B1060.3

2015 Launch Records

• Failed landing_outcomes in drone ship in year 2015

```
booster_version launch_site
F9 v1.1 B1012 CCAFS LC-40
F9 v1.1 B1015 CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Count of landing outcomes (Failure (drone ship) or Success (ground pad))
 between the date 2010-06-04 and 2017-03-20

landingoutcome	qty
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Launch sites on map

Launch outcomes on Map

<Folium Map Screenshot 3>

CCAFS site is less than one kilometer from coastline

Launch success count for all sites

Successful launches vary are related to launch sites

Launch site with highest launch success ratio

• KSC LC-39A is the site with highest success rate

Payload vs. Launch Outcome for all sites

• FT booster and payload less than 6.000 Kg is the most successful combination

Classification Accuracy

Decision Tree model has the highest classification accuracy


```
df.plot.bar(rot=0)
plt.xlabel("Methods")
plt.ylabel("Accuracy")
plt.show()
```


Confusion Matrix

Confusion matrix of Decision Tree
 Classifier showing the higher number
 of True Positive and True Negative

Conclusions

- KSC LC 39A is the best launch site
- Success rate is improving over the time
- Decision Tree Classifier is the best ML model for prediction of successful landing

Appendix

• I was not able to perform SVM on my PC

