Meta Learning

Дилара Хамдеева, 172

"Learn to learn"

 \mathcal{D}

 \mathcal{D}_1

 \mathcal{D}_2

 $\mathcal{D}_{\text{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$ $\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}\$

Meta Learning vs Machine Learning

1. Learning to learn by gradient descent by gradient descent

2. MAML

3. Reptile

Learning to learn by gradient descent by gradient descent

ИДЕЯ: представить алгоритм оптимизации как задачу обучения

Классическая задача оптимизации:

$$f(\theta) \to min_{\theta \in \Theta}$$

Стандартное решение -- градиентный спуск:

$$\theta_{t+1} = \theta_t - \alpha_t \nabla f(\theta_t)$$

Проблема 1. Игнорирование вторых производных.

Подход. Масштабирование градиентного шага: Гессиан, матр Фишера и тд.

Минус подхода. Сложно считать.

$$\theta_{t+1} = \theta_t - \alpha_t \nabla f(\theta_t)$$

Проблема 2.

Методы оптимизации подбираются для конкретных классов. А что насчет более общих методов?

Предлагается заменить hand-designed update rules на learned update rules.

Заменим

hand-designed update rules

на learned update rules:

$$\theta_{t+1} = \theta_t - \underline{\alpha_t \nabla f(\theta_t)}$$

$$\theta_{t+1} = \theta_t + g_t(\nabla f(\theta_t), \phi)$$

RNN

Метод

- $\theta^*(f,\phi)$ -- финальное значение параметра
- $L(\phi) = E_f[f(\theta^*(f,\phi))]$
- ullet Функция f зависит только от финального значения параметра $\, heta^*(f,\phi)\,$
- => не можем использовать ВРТТ, чтобы обучить optimizer.

Добавим информацию о траектории

- $L(\phi) = E_f[f(\theta^*(f,\phi))]$
- Добавим информацию о траектории.
- Новый лосс выглядит так

$$L(\phi) = E_f \left[\sum_{t=1}^T w_t f(\theta_t) \right] \qquad \begin{cases} \theta_{t+1} = \theta_t + g_t, \\ g_t \\ h_{t+1} \right] = m(\nabla_t, h_t, \phi). \end{cases}$$

- При $w_t = 1[t = T]$ старая и новая функции потерь эквивалентны
- Берем w_t > 0, чтобы ВРТТ считался

RNN-модель с параметрами ф и состоянием h t

RNN

- ullet $L(\phi) o min_\phi$ с помощью градиентного спуска по ф
- ullet Оценка градиента $\partial L(\phi)/\partial \phi$ считается с помощью BPTT

<u>HO</u>

• Градиенты по пунктирным линиям *игнорируются*

$$\partial \nabla_t / \partial \phi = 0$$

 Можно не считать вторые производные

Покоординатный LSTM optimizer.

- Хотим оптимизировать хотя бы десятки из тысяч параметров.
- Но с RNN это не совсем осуществимо: огромный hidden state, много параметров. => используем покоординатный LSTM.

Один шаг LSTM оптимайзера

Покоординатный LSTM optimizer.

Experiments

Experiments. Разные архитектуры.

Experiments. Neural Art.

1. Learning to learn by gradient descent by gradient descent

2. MAML

3. Reptile

2 MAML: Model-Agnostic Meta-Learning

- MAML мета-лернинг алгоритм, который
 - 1. не зависит от модели* и задачи
 - 2. быстро обучается на новых задачах (хорошие результаты уже за 1-2 градиентных спусков).

^{* (}но модель должна уметь обучаться градиентным спуском)

2 MAML: Model-Agnostic Meta-Learning

ИДЕЯ: обучить начальные параметры модели так, чтобы модель быстро адаптировалась к новой задаче: достигала максимальной производительности после обновления параметров градиентным спуском.

MAML. Идея.

Обычно		MAML	
1.	Есть задача Т (классификация, регрессия и тд)		
2.	Хотим найти вектор параметров θ.	Идея: Для решения задачи Т на шаге 3. возьмем не рандомный	
3.	Берем рандомно какой-то начальный вектор θ^0	вектор $ heta^0$, а обученный с помощью MAML. Назовем его $ heta^0_{maml}$	
4.	И оптимизируем:	mamt	
	$\theta^{k+1} = \theta^k + \alpha \nabla L(\theta^k)$		

MAML. Как найти начальный вектор параметров?

- Есть ряд задач:
- Для каждой есть оптимальный вектор:

T1, T2, ..., Tm

 $\theta_1^{'},\theta_2^{'},...,\theta_m^{'}$

MAML. Как найти начальный вектор параметров?

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$
- 9: end while

MAML. Experiments.

MAML. Experiments.

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	-	-
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	_	-
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

100 E	5-way Accuracy	
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$
MAML, first order approx. (ours)	$48.07 \pm 1.75\%$	${\bf 63.15 \pm 0.91\%}$
MAML (ours)	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$

1. Learning to learn by gradient descent by gradient descent

2. MAML

3. Reptile

3 Reptile

ИДЕЯ: обучить начальные параметры модели так,

(как у MAML)

чтобы модель быстро адаптировалась к новой задаче.

+

использовать только производные 1-го порядка.

Reptile. Начало.

- Очевидный минус MAML:
 - В силу наличия вторых производных вычисления становятся ресурсоемкими
- Инсайт, пришедший авторам:
 - FOMAML (first-order MAML) -- тот же MAML, но с игнорированием вторых производных.

Reptile. Начало.

- Очевидный минус MAML:
 - В силу наличия вторых производных вычисления становятся ресурсоемкими
- Инсайт, пришедший авторам:
 - FOMAML (first-order MAML) -- тот же MAML, но с игнорированием вторых производных.

FOMAML довольно хорошо себя показал.

Это сподвигло к исследованию мета-лернинг алгоритмов, основанных на градиентах 1-го порядка.

так появился Reptile.

(first-order gradient-based meta-learning algorithm)

Reptile. Алгоритм.

Algorithm 2 Reptile, batched version Initialize θ for iteration = $1, 2, \dots$ do Sample tasks $\tau_1, \tau_2, \dots, \tau_n$ for i = 1, 2, ..., n do Compute $W_i = \text{SGD}(L_{\tau_i}, \theta, k)$ k шагов SGD, начиная с θ end for Update $\theta \leftarrow \theta + \beta \frac{1}{n} \sum_{i=1}^{n} (W_i - \theta)$ \leftarrow градиент Reptile = $(\theta - W)/\alpha$ end for

Reptile vs FOMAML.

Пусть

$$\theta_{0} = \theta
\theta_{1} = \theta_{0} - \alpha \nabla_{0}^{(0)}
\theta_{2} = \theta_{1} - \alpha \nabla_{1}^{(1)} = \theta_{0} - \alpha \nabla_{0}^{(0)} - \alpha \nabla_{1}^{(1)}$$

(*)
$$\nabla_{FOMAML} = \nabla_1^{(1)}$$

$$\nabla_{Reptile} = (\theta_0 - \theta_2)/\alpha = \nabla_0^{(0)} + \nabla_1^{(1)}$$

(*) градиент FOMAML -- последнее обновление градиента (док-во на следующем слайде)

Reptile vs FOMAML.

(*)

$$\nabla_{FOMAML} = \nabla_{\theta} L(\theta') = (\nabla_{\theta'} L(\theta')) \cdot (\nabla_{\theta} \theta')
= (\nabla_{\theta'} L(\theta')) \cdot (\nabla_{\theta} (\theta - \alpha \nabla_{\theta} L(\theta)))
\approx (\nabla_{\theta'} L(\theta')) \cdot (\nabla_{\theta} \theta)
= \nabla_{\theta'} L(\theta')$$

Reptile. Experiments.

Reptile. Выводы.

Figure 3: Different inner-loop gradient combinations on 5-shot 5-way Omniglot.

Вопросы

- 1. Что такое optimizer и optimizee? Как они между собой взаимодействуют. Нарисовать схему сети и обозначить их там.
- 2. В чем заключаются особенности(свойства, основная идея) MAML? Описать алгоритм.
- 3. Что такое FOMAML? Сходства и различия Reptile и FOMAML.

Источники

- https://arxiv.org/pdf/1606.04474.pdf
- https://arxiv.org/pdf/1803.02999.pdf
- https://arxiv.org/pdf/1703.03400.pdf
- https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html#maml
- https://en.wikipedia.org/wiki/Meta_learning_(computer_science)
- http://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D0%B0-%D0%BE%D0%B1%D1%83%D1%87%D0%B5
 %D0%BD%D0%B8%D0%B5