Muchas cantidades dependen de más de una variable. Por ejemplo, el volumen de un cilindro circular recto depende del radio r de la base y de su altura h. $V(r,h)=\pi r^2h$. El dominio, en este caso, es el conjunto de pares $\{(r,h):r>0,\ h>0\}$, Similarmente la relación $w\left(x,y,z\right)=x+3y-5z$ define a w como función de $x,\ y,\ z$ con dominio todo \mathbb{R}^3 . También podemos tener funciones que llevan vectores en algún \mathbb{R}^n a vectores en otro \mathbb{R}^m ,

$$f(x_1,...,x_n) = (f_1(x_1,...,x_n),...,f_m(x_1,...,x_n)).$$

Cada una de las f_i $1 \le i \le m$ se llama función componente o función coordenada de la f. Si no se especifica nada, se sobreentiende que el **dominio de** f, denotado Dom f, es el mayor subconjunto de \mathbb{R}^n donde **todas** las funciones componentes están bien definidas. Por ejemplo

$$f(x,y) = \begin{pmatrix} x - 2y \\ \sqrt{x^2 + y^2 - 1} \\ \frac{1}{x^2 - y^2} \end{pmatrix}$$

va de \mathbb{R}^2 en \mathbb{R}^3 . La primer función componente es $f_1(x,y)=x-2y$ está definida en todo \mathbb{R}^2 , la segunda $f_2(x,y)=\sqrt{x^2+y^2-1}$ está bien definida cuando $x^2+y^2-1\geq 0$, o sea $x^2+y^2\geq 1$ que son los puntos de afuera del disco unitario abierto $x^2+y^2<1$ y por último, $f_3(x,y)=\frac{1}{x^2-y^2}$ está bien definida si el denominador es distinto de cero, o sea $x^2\neq y^2$, o sea $x\neq y$ y $x\neq -y$. En definitiva,

$$Dom f = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 \geq 1, \ x \neq y, \ x \neq -y \right\}.$$

También definimos el **gráfico** de f como

$$Grf = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{n+m} : \mathbf{x} \in Domf \ \mathbf{v} \ \mathbf{y} = f(\mathbf{x})\}.$$

Por ejemplo si $f(x,y) = x^2 + y^2$ el

$$Grf = \left\{ (x,y,z) \in \mathbb{R}^3 : (x,y) \in \mathbb{R}^2 \text{ y } z {=} x^2 + y^2 \right\}$$

que es el paraboloide $z=x^2+y^2$

Para poder dibujar el gráfico de una función debe ser $n+m \leq 3$, el caso más común es el del ejemplo de arriba donde n=2 y m=1.

Funciones de una variable

Si un punto se mueve en un espacio vectorial \mathbb{R}^m , su posición en el instante t puede ser descripta como una función de t cuyo valor es $f(t) \in \mathbb{R}^m$. Por ejemplo $f(t) = \mathbf{x}_0 + t\mathbf{x}_1$ nos dá, en cada instante t, un punto sobre la recta que pasa por \mathbf{x}_0 y es paralela a \mathbf{x}_1 . Más generalmente escribimos $f(t) = (f_1(t), ..., f_m(t))$.

Ejemplo 1. La función $g(t) = (t, t^2)$ describe la parábola en \mathbb{R}^2 .

Para este tipo de funciones de una variable las nociones de límite y derivada se definen coordenada a coordenada. Concretamente, si

$$f(t) = (f_1(t), ..., f_m(t))$$

está definida en a < t < b y $t_0 \in (a, b)$ definimos

$$\lim_{t \to t_0} f(t) = \left(\lim_{t \to t_0} f_1(t), ..., \lim_{t \to t_0} f_m(t) \right)$$

si todos los límites $\lim_{t \to t_0} f_i(t)$ existen para $1 \le i \le m$.

También, una función de este tipo $f: \mathbb{R} \to \mathbb{R}^m$ se dice **continua** en un punto t_0 si sus funciones coordenadas lo son.

Recordemos que $f:(a,b)\to\mathbb{R}$ es continua en $t_0\in(a,b)$ si

$$\lim_{t \to t_0} f(t) = f(t_0).$$

Consideramos ahora $g:(a,b)\to\mathbb{R}^m$, decimos que g tiene derivada en un punto $t\in(a,b)$ si existe el límite (vectorial) de los cocientes incrementales

$$g'(t) = \lim_{h \to 0} \frac{g(t+h) - g(t)}{h}.$$

Si $g(t) = (g_1(t), ..., g_m(t))$ y si $g_i'(t)$ existe para todo $1 \le i \le m$ entonces

$$g'(t) = (g'_1(t), ..., g'_m(t)).$$

Ejemplo 2. Si $g(t) = (t^2, t^3)$ entonces $g'(t) = (2t, 3t^2)$.

La interpretación geométrica de g'(t) es la siguiente: Los puntos g(t+h) y g(t) son dos puntos sobre la curva dada por g. El vector g(t+h) - g(t) tiene la dirección secante paralela a la recta que pasa por ambos puntos. A medida que h se acerca a cero, los dos puntos están muy próximos y la dirección secante se aproxima a la dirección tangente. Por este motivo, si $g'(t_0)$ existe y es no nulo, decimos que $g'(t_0)$ es el **vector tangente** a la curva dada por g(t), en el punto $g(t_0)$ y la recta tangente a dicha curva es

$$\mathbf{x} = g(t_0) + sg'(t_0), \ s \in \mathbb{R}.$$

Ejemplo 3. La circunferencia unitaria en \mathbb{R}^2 está dada por $g(t) = (\cos t, \sin t)$, $g'(t) = (-\sin t, \cos t)$ entonces la recta tangente a la circunferencia en el punto $g(\frac{\pi}{4})$ es

$$\mathbf{x} = g(\frac{\pi}{4}) + sg'(\frac{\pi}{4}), \ s \in \mathbb{R},$$

o sea

$$(x,y) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) + s\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \ s \in \mathbb{R}.$$

Ejemplo 4. Describa la curva dada por $\mathbf{r}(t) = (1 + t, 2 + 3t, -2 + t)$. Observamos que

$$\mathbf{r}(t) = (x(t), y(t), z(t)) = (1, 2, -2) + t(1, 3, 1),$$

entonces la curva dada es la recta que pasa por (1,2,-2), en la dirección de (1,3,1).

Ejemplo 5. Describa la curva dada por $\mathbf{r}(t)=(4\cos t,\sin t,t),\ 0\leq t\leq 4\pi.$ Si un punto (x,y,z) está en la curva, $(x,y,z)=(4\cos t,\sin t,t)$ para algún $0\leq t\leq 4\pi,$ entonces $\frac{x^2}{16}+y^2=\frac{16\cos^2 t}{16}+\sin^2 t=1,$ o sea la proyección al piso es

una elipse y además zcrece con t,desde z=0hasta $z=4\pi,$ es una helicoidal contenida en el cilindro elíptico $\frac{x^2}{16} + y^2 = 1$, que gira desde el punto (4,0,0)hasta el $(4,0,4\pi)$.

Curvas y superficies de de nivel

Dada $f: \mathbb{R}^2 \to \mathbb{R}$ recordamos que

$$Grf = \{(x, y, z) : (x, y) \in Domf \ y \ z = f(x, y)\}$$

Ejemplo 1.

- a) El gráfico de f(x,y)=x-3y es el plano de ecuación z=x-3y. b) El gráfico de $f(x,y)=x^2+4y^2$ es el paraboloide elíptico $z=x^2+4y^2$

c) $f(x,y) = \sqrt{9 - x^2 - y^2}$

el gráfico de f es la parte superior de la esfera $x^2 + y^2 + z^2 = 9$.

Otra manera de representar la función f(x,y) es producir un mapa topográfico bidimensional de la superficie z = f(x, y). Para distintos valores de c, dibujamos en el plano x, y las curvas dadas por

$$f(x,y) = c$$

llamada curva de nivel c de f, o sea proyectamos al piso la intersección del gráfico de f con el plano z=c. Si tomamos $c=-2,\,-1,\,0,\,1,\,2,\,$ etc. el gráfico de f será más empinado si las curvas están más juntas y será más aplanado cuanto más espaciadas están las curvas.

Ejemplo 2. a) Las curvas de nivel de z=3x-2y son las rectas 3x-2y=c o sea $y=\frac{3}{2}x-\frac{c}{2}$ rectas paralelas de pendiente $\frac{3}{2}$, que pasa por $(0,-\frac{c}{2})$. Para c=0, obtenemos $y=\frac{3}{2}x$

para c=1, obtenemos $y=\frac{3}{2}x-\frac{1}{2}$

Para c = -4 obtenemos $y = \frac{3}{2}x + 2$

b) Las curvas de nivel de $z = \frac{x^2}{4} + \frac{y^2}{9}$ son las elipses centradas en el origen $\frac{x^2}{4} + \frac{y^2}{9} = c$ si c > 0. Si c < 0, obtenemos el conjunto vacío y si c = 0, obtenemos el origen como único punto.

Si f es de tres variables, la ecuación f(x, y, z) = c representan superficies en

 \mathbb{R}^3 . Se llama superficie de nivel c de f. **Ejemplo 3.** a) Si $f(x, y, z) = x^2 + 4y^2 + 9z^2$ las superficies de nivel de f son los elipsoides $x^2 + 4y^2 + 9z^2 = c$, si c > 0. Si c = 0 obtenemos el origen como único punto y si c < 0 obtenemos el conjunto vacío. b) Si $f(x,y,z) = x^2 - 4y^2 + 9z^2$ las superficies de nivel de f,

$$x^2 - 4y^2 + 9z^2 = c$$

son hiperboloides de una hoja si c > 0, es un cono si c = 0 y son hiperboloides de dos hojas, si c < 0.