Facility Location Problem with Python Implementation

Aayush Aggarwal

Senior Data Scientist, Walmart Global Tech India Email id :aggarwal1294@gmail.com

Venue: Dept. of Operational Research, Delhi University

Date: 24th June,2023

Career Overview

Prepared by: Aayush Aggarwal (aggarwal1294@gmail.com)

Table of Content

- Introduction to Facility Location Problem (FLP)
- 2 How FLP is an optimization Problem?
- Mathematical Formulation
- 4 Python Implementation
- 4 Challenges in Real world Problem

Introduction – Facility Location Problem (FLP)

Given

- Set of Retail Shops (with estimated Demands)
- Candidate Warehouse Locations with their capacity
- > Transportation cost and Warehouse setup Cost

Objective

Choose the best among candidate Warehouses such that all

- > Demand at each Retail shop is fulfilled
- > Total cost is minimized

Prepared by : Aayush Aggarwal (aggarwal1294@gmail.com)

How FLP is Optimization Problem?

Is this the best Solution? Prepared by : Aayush Aggarwal (aggarwal1294@gmail.com)

Mathematical Formulation

Data

- let I be the set of facilities and J be set of stores.
- $C_{i,j}$ is the transportation cost per unit from Facility i ϵ I to Store j ϵ J.
- F_i is the fixed cost for setting up facility i ϵ I.
- D_j be the demand at store j ϵ J.
- A_i be the capacity of facility i ϵ I.

Decision variable

- x_i is binary variable which is 1 if facility i is open, otherwise 0.
- $y_{i,j}$ is binary variable which is 1 if jth store demand is fulfilled by facilty i, otherwise 0.

Mathematical Formulation

Warehouse Setup Cost Transportation Cost
$$Minimize(\sum_{i \in I} F_i.x_i + \sum_{i \in I, j \in J} C_{i,j}.D_j.y_{i,j})$$

$$\sum_i y_{i,j} = 1 \quad orall j \epsilon J$$
 — Demand constraints

$$\sum_{j} D_{j}.y_{i,j} \leq A_{i} \quad orall i \epsilon I$$
 — Capacity Constraints

$$y_{i,j} \leq x_i \quad orall i \epsilon I$$
 Decision variable activation constraints

$$\sum_i y_{i,j} \leq M.x_i \quad orall i \epsilon I$$
 Decision variable activation constraints

Python Implementation

Problem 1

Stores j	1	2	3		
Demand D _j	270	250	160		
Facility i		C _{i,j}		Fi	A _i
1	4	5	6	1200	1000
2	6	4	3	800	1000

Mathematical Modeling in Python

What do we need Model implementation?

- 1. A package to write LP Model (PuLP, Pyomo, docplex ..)
- 2. A Solver for LP Model (CPLEX, CBC, SCIP. ..)

Flow of Implementation

- 1. Define Data
- 2. Define Decision Variable
- 3. Write Constraints
- 4. Write objective function
- 5. Solve Model using solver
- 6. Display results

Python Implementation

Problem 2: E-commerce Inventory Placement

WH10_Region100_data

of WH = 10 # of Regions = 100

	Unnamed: 0	WH ID	Region ID	Cost	Demand	WH Cap	WH Setup Cost
0	0	502	5098	7.0760000000000000	1	935	1000
1	1	502	5126	7.07600000000000000	9	935	1000
2	2	502	5133	7.0760000000000000	1	935	1000
3	3	502	5135	7.07600000000000000	3	935	1000
4	4	502	5138	4.385	2	935	1000
5	5	502	5166	3.603741935483870	31	935	1000
6	6	502	5244	6.30333	2	935	1000
7	7	502	5246	6.30333	1	935	1000
8	8	502	5255	6.30333	4	935	1000
9	9	502	5269	4.347856666666670	66	935	1000
10	10	502	5272	4.790521785714290	28	935	1000
11	11	502	5280	6.89933	7	935	1000
12	12	502	5299	3 998665	4	935	1000

Challenges in Real World Problem

1. Problem Size

- > Divide the problem into subproblems
- > Use Heuristics to solve some part of the problem
- 2. Cost function (unknown/non-linear)
 - > Simplify non-linear cost function to linear function.
- 3. Additional Business constraints (shipping Capacities/service Levels)
 - Understand additional constraints and either solve them in preprocessing / postprocessing or modify formulation

Thank you