Math 3500 Exercise Sheet

17 September, 2014

We will work on some of the following exercises in class. Those not done in class are recommended as homework problems.

- 1. For each of the subsets of \mathbb{R} below, determine the following:
 - (a) Is the set open? closed? compact?
 - (b) What are the interior points? boundary points? accumulation points? isolated points?
 - (c) What is the boundary? What is the closure?

$$(i)(0,1)$$
 $(ii)(0,1) \cup (1,2)$ $(iii) \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\}$ $(iv)\mathbb{R} \setminus \mathbb{Q}$ $(v)\{1,2,7\} \cup (7,10]$

- 2. Prove that if $\{K_{\alpha}\}$ is a collection of compact sets, then $\bigcap K_{\alpha}$ is compact.
- 3. Prove that a closed subset of a compact set is compact.

Hint: Let K be compact and let $F \subseteq K$ be closed in \mathbb{R} . If $\{U_{\alpha}\}$ is any open cover of F, explain why $\{U_{\alpha}\} \cup \{\mathbb{R} \setminus F\}$ must be an open cover of K. Now use the fact that K is compact.

4. Prove that any closed interval [a, b] is compact.

Hint: Use proof by contradiction, and the following steps:

- (a) Let $I_0 = [a, b]$ and suppose there exists an open cover $\{U_\alpha\}$ of I_0 for which there is no finite subcover. Then divide the interval in half: at least one of the two intervals [a, (a+b)/2] and [(a+b)/2, b] cannot be covered by finitely many of the U_α (why?). Call this interval I_1 .
- (b) Explain how to repeat the procedure in part (a) to obtain a sequence of intervals I_1, I_2, I_3, \ldots such that each I_n cannot be covered by finitely many of the U_{α} .
- (c) Note that there must be some point $x_0 \in \mathbb{R}$ such that $x \in I_n$ for all $n \in \mathbb{N}$. (Sub-hint: Nested Intervals Theorem)
- (d) Since the collection $\{U_{\alpha}\}$ covers [a, b] and $x_0 \in [a, b]$, we must have $x_0 \in U_{\beta}$ for some open set U_{β} . Explain why there must exist some r > 0 such that $(x_0 r, x_0 + r)$ is contained in U_{β} .

- (e) Notice that each interval I_n has length $(b-a)/2^n$. Explain why this means that we must have $I_n \subseteq U_\beta$ for some $n \in \mathbb{N}$.
- (f) Explain why the result from part (e) results in a contradiction.
- 5. Prove that any closed and bounded subset of \mathbb{R} is compact.

Hint: Use the results from problems 3 and 4.

- 6. Prove that any compact subset of \mathbb{R} is bounded.
- 7. Pove that any compact subset K of \mathbb{R} is closed.

Hint: Prove that the complement $K^c = \mathbb{R} \setminus K$ is open: if $p \in K$ and $q \notin K$, let N_p and N_q be neighbourhoods of p and q, respectively, each with radius less than |p-q|/2 (so that they don't overlap). Since $\{N_p\}_{p\in K}$ is an open cover of K, there exist finitely many points $p_1, \ldots, p_k \in K$ such that

$$K \subseteq N_{p_1} \cup N_{p_2} \cup \cdots \cup N_{p_n}$$

and such that each N_{p_k} has radius $\epsilon_k < |p_k - q|/2$, for k = 1, ..., n. Now, what can you say about the set

$$U = N_{\epsilon_1}(q) \cap N_{\epsilon_2}(q) \cap \cdots \cap N_{\epsilon_n}(q)?$$

Note: see the text for an alternative proof, using the fact that if K is not closed, then there must exist a limit point of K that does not belong to K.

- 8. Combining problems 5, 6, and 7, conclude that the *Heine-Borel Theorem* is true: a subset of \mathbb{R} is compact if and only if it is closed and bounded.
- 9. We have one big theorem left, the Bolzano-Weierstrass theorem. This theorem says that if $B \subseteq \mathbb{R}$ is a bounded, infinite subset, then B has a limit point. We definitely won't have time to get to this one, so here's a proof. (Another one is in the textbook.)

Proof: Suppose that $B \subseteq \mathbb{R}$ is bounded and infinite. Since B is bounded, there exists an interval [a, b] with $B \subseteq [a, b]$. By problem 4, [a, b] is compact, so it suffices to prove: Lemma: an infinite subset B of a compact set K has a limit point in K.

Proof of lemma: if no $k \in K$ is a limit point of B, then each $k \in K$ has a neighbourhood N_k that contains at most one point of B (the point k itself, if $k \in K$). Since B is infinite, no finite subcollection of $\{N_k\}$ can cover B, and since $B \subseteq K$, that means that $\{N_k\}_{k \in K}$ is an open cover of K with no finite subcover, which contradicts the assumption that K is compact.

10. There's a bit of room left, so here's a practice problem: define the distance from a point $x \in \mathbb{R}$ to a set $A \subseteq \mathbb{R}$ by $d(x, A) = \inf\{|x - a| : a \in A\}$. Prove that $x \in \partial A$ if and only if d(x, A) = 0 and $d(x, \mathbb{R} \setminus A) = 0$.