

ARITMETICA BINARIA

1. Exprese los siguientes números en complemento a 2 de 8 bits. Los números están expresados en exadecimal.

+7f	-22	+1f
-14	56	-56
0	-2a	58
-7e	24	-5a
7e	21	-21

2. Los siguientes números están expresados en hexadecimal, usted debe realizar la operación indicada utilizando complemento a 2. Los números están representados por una palabra binaria de 8bit. (7 bit mas signo). Debe indicar aquellas operaciones cuyo resultado no es correcto por overflow.

30 + 41 = ?	1b-3d=?
79 +24=?	23+3a=?
7f-75=?	77+1f=?
-3a+4f=?	-10+60=7
-79 + af - ?	

- 3. Realice la implementación con lógica discreta de un sumador restador de 4 bits cuya salida sea siempre el modulo del resultado y tenga una salida extra para el signo del mismo.
- 4. Describa en VHDL un circuito capaz de realizar la suma y la resta de dos números binarios de 8 bits (7 más signo). La función de suma o resta se selecciona con una señal que en uno indica resta y en cero sumas.
 - 4.1. Realicé la descripción del sistema.
 - 4.2. Sintetice para un CPLD de XILINX.
 - 4.3. Realice el test bench correspondiente.
 - 4.4. Simule el sistema, y pegue las pantallas resultantes en el informe correspondiente.
 - 4.5. El sistema debe tener 8 bits de salida más un bit de overflow y uno de signo.
- 5. Realice la descripción en VHDL de un multiplicador de dos números binarios de 4 bits.
 - 5.1. Realicé la descripción del sistema.
 - 5.2. Sintetice para un CPLD de XILINX.
 - 5.3. Realice el test bench correspondiente.
 - 5.4. Simule el sistema, y pegue las pantallas resultantes en el informe correspondiente.
- 6. Describa una ALU de 4 bits en VHDL, esta ALU debe realizar las operaciones indicadas en la tabla 1.
 - 6.1. Realicé la descripción del sistema.
 - 6.2. Sintetice para un CPLD de XILINX.
 - 6.3. Realice el test bench correspondiente.
 - 6.4. Simule el sistema, y pegue las pantallas resultantes en el informe correspondiente.

OPERACIÓN	ENTRADAS	SALIDAS
	S ₂ S ₁ S ₀	F
Clear	0 0 0	0000
B - A	0 0 1	B - A
A - B	0 1 0	A - B
ADD	0 1 1	A + B
XOR	1 0 0	A XOR B
OR	1 0 1	A OR B
AND	1 1 0	A AND B
Preset	1 1 1	1111

Tabla 1

7. Aplicación simulación post - route.

Analizar el sumador desarrollado e implementado en el practico 3, simular la peor condición y medir el tiempo necesario para obtener el resultado correcto.

Modifique el sumador para mejorar el tiempo de respuesta.

- 7.1. Realicé la descripción del sistema.
- 7.2. Sintetice para un CPLD de XILINX.
- 7.3. Aplique el mismo testbench anterior.
- 7.4. Simule el sistema, mida el tiempo resultante, y pegue las pantallas resultantes de simulación en el informe correspondiente.