Snapshot Compressed Sensing

CS 754 - Advanced Image Processing

Kumar Ashutosh 16D070043 Sarthak Consul 16D100012

Aim

• To investigate the performance of the Snapshot Compression Algorithms - both theoretically and experimentally.

 To observe the performance using different sensing matrices, and to come up with theoretical explanations and proofs.

Algorithms - CbPGD and CbGAP

Algorithm 1 CbPGD for Snapshot CS Recovery	Algorithm 2 CbGAP for Snapshot CS Recovery
Require: H, y.	Require: H, y.
1: Initial $\mu > 0$, $x^0 = 0$.	1: Initial $\mu > 0$, $x^0 = 0$.
2: for $t = 0$ to Max-Iter do	2: for $t = 0$ to Max-Iter do
3: Calculate: $e^t = y - \mathbf{H}x^t$.	3: Calculate: $e^t = y - \mathbf{H}x^t$.
4: Projected gradient descent: $s^{t+1} = x^t + \mu \mathbf{H}^{\top} e^t$.	4: Euclidean projection: $s^{t+1} = x^t + \mu \mathbf{H}^{\top} \mathbf{R}^{-1} e^t$.
5: Projection via compression: $x^{t+1} = g(f(s^{t+1}))$.	5: Projection via compression: $x^{t+1} = g(f(s^{t+1}))$.
6: end for	6: end for
7: Output: Reconstructed signal \hat{x} .	7: Output: Reconstructed signal \hat{x} .

- $R = HH^T$ in CbGAP.
- g(f(.)) is quantization function

Data Compression

• The algorithm uses data compression for further compression. We define two functions:

f:
$$R^{nB} \longrightarrow \{1,2,..,2^{nBr}\}$$

And inverse g: $\{1,2,...,2^{nBr}\} \longrightarrow \mathbb{R}^{nB}$

where r is the compression rate.

- g(f(x)) denotes quantization of the signal and this incurs quantization loss.
- The compression error is additive to the reconstruction loss due to compressive sensing and hence can be tuned separately.

Theoretical Performance Bounds

Both algorithms will converge with high probability

$$\frac{1}{nB} \left\| \tilde{\boldsymbol{x}} - \boldsymbol{x}^t \right\|_2^2 \le \delta, \quad \text{or } \frac{1}{\sqrt{nB}} \| \boldsymbol{x}^{t+1} - \tilde{\boldsymbol{x}} \|_2 \le \frac{2\lambda}{\sqrt{nB}} \| \boldsymbol{x}^t - \tilde{\boldsymbol{x}} \|_2 + 4\sqrt{\delta},$$
 With probability

- Cb-PGD: $1 2^{4nBr} e^{-(\frac{\delta}{2K\rho^2})^2 \lambda^2 n} (2^{2nBr} + 1) e^{-n(\frac{\delta}{2K\rho^2})^2}.$
- Cb-GAP: $1 2^{4nBr} e^{-\frac{\lambda^2 \delta^2 n}{2B\rho^4}} 2^{2nBr} e^{-\frac{n\delta}{2\rho^2 B^2}}$
- When white-noise is added to the signal, there is an additional error term and the error probability will also depend on noise

Metric

To evaluate the performance we use Peak Signal-to-Noise Ratio (PSNR)

$$PSNR(P, Q) = 10 \log_{10} \left(\frac{I_{max}}{MSE(P, Q)} \right)$$

where MSE is the mean square error between images P and Q.

 I_{max} is the maximum intensity in the input images.

Simulation Results

- We simulate and verify the two algorithms CbPGD and CbGAP.
- We need to downsample the images in order to fit the capacity of CPU.
- The algorithm is fast since it is based on projections.
- Some of the parameters including the sensing matrix H and mean parameter µ is unspecified in the paper. Hence we choose suitable parameters.

Dataset

- We use sample videos from traffic dataset.
- For the purpose of this demonstration we consider a subset of 51 frames of one of the video samples.
- Contains RGB images.
- Here are two sample images 5 frames apart.

Quantitative Results

- We obtain good reconstruction results with a variety of sensing matrices H.
- We tried following choices of the sensing matrix H: random diagonal matrix, identity matrix and multiple of identity matrix.
- In all the cases, we obtained good reconstruction results. Although, the parameter µ needs to be adjusted for each case.

(Top) Ground truth image and (Bottom) Reconstructed image

Increasing number of frames

We use this method for reconstruction of video frames simultaneously.

12.5

Algorithm 2 - CbGAP

Inference

- We see that the reconstruction has a PSNR ~ 10dB which implies good reconstruction.
- This algorithm can take multiple frames as input and perform faithful reconstruction.
- The PSNR tends to decrease when we increase the number of simultaneous input frames.
- The two algorithms show good results for different values of parameter µ
 (0.08 and 1.5 for the above simulation, respectively)

Drawbacks of the Algorithms

- The performance of the algorithm is highly sensitive to the choice of parameter
 µ.
 - Increasing μ leads to divergent solutions.
 - Having very small µ leads to local optima
 - How to choose the parameter is not explicitly described in the paper.
- The structure of sensing matrix is not mentioned except for it being a diagonal matrix. The same is not presented in the simulation results as well.
- The size of the sensing matrix H is huge and the algorithm involves several multiplications including HH^T.

Thank You