Question	Answer	Marks	AO Element	Notes	Guidance
1	molecules collide with the walls (of the container) (1)	3			
	momentum of molecules changes (reverses) (1)				
	this causes a force AND force spread out (over area of walls) (1)				
2(a)	$(a =) (v - u) \div t$ OR $(62 - 6.0) \div 35$ OR $56 \div 35 (1)$ $1.6 \text{ m/s}^2 (1)$	2			
2(b)	(F =) ma OR $\Delta p \div \Delta t OR$ $2.5 \times 10^5 \times 1.6 OR$ $(62 \times 2.5 \times 10^5 - 6.0 \times 2.5 \times 10^5) \div 35 (1)$ $4.0 \times 10^5 N (1)$	2			
2(c)	$(p =) mv \mathbf{OR}$ 2.5 × 10 ⁵ × 6.0 (1) 1.5 × 10 ⁶ kg m/s (1)	2			

Question	Answer	Marks	AO Element	Notes	Guidance
3(a)	impulse OR $\Delta p = m(v - u)$ in any form (1)	3			
	(impulse =) 750 000 (84 – 42) (1)				
	(impulse =) 3.2×10^7 Ns OR m kg/s (1)				
3(b)	Ft = impulse OR Δp in any form OR	2			
	(F =) (impulse OR Δp) / t (1)				
	(F = $3.2 \times 10^7 / 80 =$) 3.9×10^5 N; (1)				
4(a)	(impulse =) change of momentum (1)	3			
	(impulse =) 71(10 – 4) (1)				
	(impulse =) 430 N s (1)				
4(b)	(impulse =) force × time	1			
4(c)	(average F =) impulse / time (= 430 / 1.2) (1)	2			
	(average F =) 360 N (1)				
5(a)	(v =) I/m in any form, words or symbols OR 0.019 / 0.00011 (1)	2			
	170 m/s (1)				

Question	Answer	Marks	AO Element	Notes	Guidance
5(b)	(KE =) ½mv² in any form, words or symbols (1)	3			
	$0.50 \times 0.00011 \times 170^2$ (1)				
	1.6 J OR 1.7 J (1)				
6	smaller force (on dock/ship) because increases time of collision OR increased distance of collision (on the dock/ship)	1			
7	no external forces OR isolated system (1)	2			
	sum of momenta / (total) momentum remains constant (1)				
8	rocket gains (upward) momentum (1)	2			
	(ejected) gas <u>gains</u> equal (quantity of) momentum in opposite direction OR momentum of gas <u>decreases</u> by equal amount (1)				
9(a)	(Δ) p=mv in any form OR ((Δ)p=) mv OR 0.8 × 0.72 (1)	2			
	(∆p=) 0.58 kg m/s (1)				

Question	Answer	Marks	AO Element	Notes	Guidance
9(b)	Ft= Δp in any form OR (F=) Δp/t OR 0.58/6 (1)	2			
	(F=) 0.096 N (1)			accept rounding if 0.096 seen	
10	EITHER	4			
	(change in momentum) = mv OR (change in momentum) = $1.2 \times 10^6 \times 0.04$ (1)				
	$(=) 4.8 \times 10^4 (\text{kg m/s}) (1)$				
	change in momentum = Ft in any form (1)				
	(force = $4.8 \times 10^4 / 0.3 =$) $1.6 \times 10^5 \text{ N (1)}$				
	OR				
	a = (v-u)/t = 0.04/0.3 (1)				
	$= 0.13 \text{ (m/s}^2) (1)$				
	F = ma (1)				
	(force = $1.2 \times 10^6 \times 0.13$ =) 1.6×10^5 N (1)				
11(a)	(p =) mv OR 0.046 × 65 (1)	2			
	3.0 kg m/s OR 3.0 Ns (1)				

Question	Answer	Marks	AO Element	Notes	Guidance
11(b)	(F =) m(v-u) /t or 3.0 / 0.00050	2			
12(a)	(momentum =) <i>mv</i> OR 4.0 × 12 (1) 48 kg m/s or Ns (1)	2			
12(b)	(average force =) momentum change / time OR $m(v - u) / t$ OR $(mv - mu) / t$ OR $F = ma$ AND $a = (v - u) / t$ OR $48 / 0.60 (1)$ 80 N (1)	2			
13	mv – mu OR mu – mv in any form	1			
14(a)	(impulse =) Ft in any form (1) (impulse =) 2.4 Ns (1)	2			

Question	Answer	Marks	AO Element	Notes	Guidance
14(b)	Ft = mv - mu in any form OR (v - u =) Ft / m (1) 43 m/s (1)	2			
15	1 st box: force (1) 2 nd box: impulse (1)	2			
16	F = (mv - mu) / t in any form OR impulse = mv - mu (1) = 20 × 4.2 / 60 (1) 1.4 N (1)	3			
17	С	1			
18(a)(i)	(p =) 3.2 x 4.0 13 kg m/s	2			
18(a)(ii)	momentum conserved 12.8 - (3.2 x 1.5) OR 12.8 - 4.8 OR 8.0 OR 8.0 ÷ 1.6 5.0 m/s	3			

Question	Answer	Marks	AO Element	Notes	Guidance
18(b)	$(F =) \frac{\Delta p}{\Delta t}$ OR 8.0 ÷ 0.050 160 N	2			
18(c)	internal energy (of blocks) increase OR thermal energy/sound energy (lost/produced at collision)	1			
19(a)(i)	(momentum =) mv (momentum = 2.4 × 3 =) 7.2 kg m/s OR Ns	2			
19(a)(ii)	$(m_A + m_b)v = m_A \times 3 \text{ OR}$ momentum conserved (v = 7.2 / 3.6 =) 2.0 m/s	2			
19(a)(iii)	(impulse / Ft =) m(v-u) (impulse / Ft = 1.2 × (2-0) =) 2.4 kg m/s OR Ns	2			
19(b)	thermal/sound energy (produced at collision/lost)	1			

Question	Answer	Marks	AO Element	Notes	Guidance
20(a)(i)	Ft OR 180 × 0.050	2			
	9.0 Ns OR 9.0 kg m/s				
20(a)(ii)	Ft = m(v - u) OR Ft = mv - mu OR Ft = mv OR (m =) Ft / v OR 9.0 / 20	2			
	0.45 kg				
20(a)(iii)	$mgh = \frac{1}{2} mv^{2} OR$ $(h =) v^{2} / 2 g$	3			
	$(h =) 20^2 / (2 \times 10)$				
	20 m				
	OR t = v / g = 2				
	$h = \text{average speed} \times \text{time}$				
	20 m				
20(b)	elastic (energy) / strain (energy)	1			
21	force × time (for which it acts)	1			
22	force and time	1			

Question	Answer	Marks	AO Element	Notes	Guidance		
23	(momentum =) mass x velocity	1					
	FT 1 1 001						

[Total: 83]