Cプログラミング中級演習

[第12回]

2019年12月13日(金)

3限担当:田口東 南畑淳史

4限担当:田口東 土中哲秀

- 1. テストのアナウンス
- 2. 今回の課題の補足
- 3. 演習

テストのお知らせ

• 日時: **12月24日(火曜日)** 13:20 -

• 範囲: **24**日までに習った内容

・再履修の学生は1月10日(金)にテストを実施します。

- 1. 各点の座標が入った配列を作成する(x, y)
- 2. 各点の番号が入った循環リストを作成する(data, next, ├_{の形成} head, tail, inew + seq)
- 3. 点の削除を循環リスト(と座標配列)を用いて行う → 凸包計算 12(2), 12(3)

seq={3,0,2,7,5,1,4,6}の順に点をたどると, 多角形が形成される.

- 1. 各点の座標が入った配列を作成する
- 2. 各点の番号が入った循環リストを作成する

- 1. 各点の座標が入った配列を作成する
- 2. 各点の番号が入った循環リストを作成する

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
data	3	0	2	.,					
next	1	2	-1	/					
seq[i]をリスト末尾に追加									

- 1. 各点の座標が入った配列を作成する
- 2. 各点の番号が入った循環リストを作成する

data[]: 各点の番号

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
data	3	0	2	7	5	•••		6
next	1	2	3	4	5	•••		-1

各頂点は, x, y座標を持っている. 例えば, 3番目に訪れる頂点(頂点番号7)のx, y座標にアクセスするときは, x[data[3]], y[data[3]]と書くことでアクセスできる.

- 1. 各点の座標が入った配列を作成する
- 2. 各点の番号が入った循環リストを作成する

data[]: 各点の番号

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
data	3	9	<i> </i>	1	þ	/		6
next	<u>/</u>	<u>k</u>	/3	4	/ 5	:-}	1	-1

循環リスト: next[tail]=head

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
data	3	0	2	7	5			6
next	1	2	3	4	5			0

3. 点の削除を循環リスト(と座標配列)を用いて行う

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
data	3	0	2	7	5	•••		6
next	1	2	3	4	5			0

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
data	3	0	2		5	•••		6
next	1	2	34/	4	5	•••		0

3. 点の削除を**循環リスト**(と座標配列)を用いて行う 点を削除するかしないかは連続する3点 v_a , v_b , v_c を見る.

3. 点の削除を循環リスト(と座標配列)を用いて行う 点を削除するかしないかは連続する3点 v_a , v_b , v_c を見る.

点を削除せず, v_a を一つ進める

3. 点の削除を循環リスト(と座標配列)を用いて行う 点を削除するかしないかは連続する $3 ext{d} v_a, v_b, v_c$ を見る.

点を削除せず、 v_a を一つ進める

 $v_a \rightarrow v_b \rightarrow v_c$ が右折

3. 点の削除を**循環リスト**(と座標配列)を用いて行う 点を削除するかしないかは連続する3点 v_a , v_b , v_c を見る.

 $v_a
ightarrow v_b
ightarrow v_c$ が左折 v_c v_b

点を削除せず、 v_a を一つ進める

 v_a $\rightarrow v_b$ $\rightarrow v_c$ が右折 v_c v_b

 v_b は削除し、 v_a はそのまま

• 課題12(2) 前スライドの動作を繰り返し、周状を1周する.

1周した時点で、まだ削除されていない点が残っている可能性がある。

• **課題12(3)** 1周する間に1つも頂点が削除されなくなるまで, 周回を繰り返す.

【凸包の描画】課題12(4)

- 1. manabaから gnuploto.c, gnuplot.h をダウンロードする
- 2. #include "gnuplot.h" を冒頭に追加
- 3. main関数でgnuplot_init()と書く
- **4. output_by_gnuplot_12_4(x, y, data, next, start)** それぞれに正しく値が格納されていれば描画出来る
- 5. gnuplot_cleanup()を最後に呼び出す

cc -Wall kadai12_4.c gnuplot.c -o kadai12_4

【描画ソフト】

コンピュータを用いて描画するとき、描画ソフトを使うと便利です。演習問題の最後に描画ソフトの例が書いてあるので、参考にしてください。

※今回の演習ではgnuplotのみ使用します.

演習

✓ 課題12(1), 12(2), 12(3), 12(4)

演習問題を解き, manaba上で提出する

✓ 3限の提出時間:13:20~15:05

✓ 4限の提出時間:15:10~16:55

✓ アルゴリズムの説明は講義資料に詳しく書いてあるので、 適宜参照しながら課題を進めること。