

Solving Multi-Objective Constrained Optimisation Problems using Pymoo

Multi-objective Optimization in Python

Quick Introduction

- I have had real-life adventures with Optimisation
 - <u>Polymerize</u>: Material discovery and Objective based Experimental Design
 - <u>DataPoem</u>: Maximising ROI for marketing teams
 - <u>Sears</u>: Navigating components for Supply chains
 - Consultancy projects in Manufacturing, FinTech and Energy domains
- Me too! #Pythonista
- From research to production, at scale
- I still feel like an imposter!

Amazing Experience Last Year!

What is Optimisation?

- age-old problem
 - solving for efficiency
 - peak performance
 - ingenious solutions
- best of all worlds
- Unites us : a core challenge across
- Where there is a will trade-off, there's a way optimisation
- Complex and challenging
- almost all cases have more than one optimal solution
- Monopolies are rare!

Here's a not so simple start -

- Maximise Satisfaction
- Minimise Expenditure

Core Components

- Decision Space / Variables
- Bounds
- Constraints
- Objective Function(s)

A feasible solution(s): One where boundaries of individual decision variables are met, system constraints are satisfied and objective(s) are achieved

Elements of Importance Realistic Possibilities

System Limitations Goal(s) of Optimisation

SYSTEM

Maximise
$$f(x) = 5\alpha + 13\beta^2 - 0.8\gamma$$

where,
 $-12.5 < \alpha$, $\beta < 18$, and
 $\gamma > 0$
while,
 $\sqrt{\left(1.8\alpha + 3\gamma - 9\right)} > 45.61$

Let's take an example

Supply Chain Optimisation

- Supply must meet demand
- No compromise on a healthy cash flow
- Adjust for delays in logistics
- Cost of transportation
- Product Expiration Deadlines
- A balance of cost and quality
- ..

Finance

- Distribution of funds across items
- Risk to Reward Balance
- Execution time and price change
- Portfolio Management
-

Source : Sight Machine

Let me Translate

Decision Variables

Inventory, In-store, Logistics Cost, Supplier Credit etc.

Bounds

- 70% < Inventory Capacity < 90%
- 10% < Supplier Credit < 40% (of order value)
- 0

Constraints

- 2M < Net Cash Balance < 4.5M
- Logistics Capacity Utilisation > 90%
- o

Objectives

- Maximise Operational Profit
- Maximise Product availability
- Minimise Delivery Time

Defining an Optimisation Problem

Identify Problem Type

- Single Objective
- Multi Objective (2-3)
- Many Objective (>=4)
- Selective Priorities
- Complexity + : Objectives may not converge, functions may have inflection points, undefined regions in the decision space etc. Plan for a fail safe

Evaluate the Decision Space

- Be cautious with decision variables
- Synchronise domain expertise
- As much as possible, reduce size
- Complexity ++ : Variables may have restricted precision, mixed variable types, mutual exclusion etc

Source: campusq.com

Defining an Optimisation Problem

Detect Logical and Systematic Constraints

- Sense checks
- Practicality, relationship inconsistencies
- Explorative limitations
- Complexity ++ : Compliance, Feasibility,
 Non-deterministic regions in joint decision space etc.

Construct the Objective Function

- Deterministic, well, if you're lucky!
- Statistical ? Algorithms, ML, Deep Learning
- Dynamic & continuous process ? RL
- Complexity +: Dependence on underlying pattern, inconsistency in relationships, dataset sizes, checks and balances for objectives, penalties of varying strengths, high trade-off points

Pymoo API

State-of-the-Art Modular Python Framework with Object Oriented Interface for Multi Objective Constrained Optimisation with all-round features

Pymoo API

Some noteworthy features of Pymoo -

- A large bouquet of Algorithms for Single, Multi and Many Objective problems
- **Diverse data type support**
 - Custom, Mixed, Binary, Discrete etc.
- **Performance Analytics**
 - Visualisation
 - Convergence
 - Generational Distance
- **Execution**
 - Hyperparameters
 - Custom classes for Mutation, Sampling, Selection, Crossover, Repair etc.
- **Constraint Handling**
 - Penalty
 - **Epsilon Handling**
- Easy to design solutions with modular and object oriented interface

pymoo: Multi-objective Optimizatio in Python	n
News	
Installation	
Getting Started	~
Interface	~
Problems	~
Algorithms	~
Constraint Handling	~
Gradients	
Customization	~
Operators	~
Visualization	~
Multi-Criteria Decision Making (MCDM)	
Case Studies	~
Performance Indicator	
Miscellaneous	~
FAQ	
API Reference	~
Versions	
Contribute	
Cite Us	
Contact	
License	