Multi collinearity

(1) Transformation:

O Linear Model:

7hm. For $Y = X\beta + \varepsilon = X_1\beta_1 + X_2\beta_2 + 1$. $1 - Nco.6^2 Jn$)

If $C(X_1) \perp C(X_2)$. Then LSE of $\beta_1 \cdot \beta_2 = \hat{\beta}_1 \cdot \hat{\beta}_2$.

Satisfies $X_1 \hat{\beta}_1 = M_1 Y$. $X_2 \hat{\beta}_2 = M_2 Y$. $M_1 = P_{CCX_1} \cdot M_2 = P_{CCX_2}$.

Moreover. if $C(X_1)$ is full rank. then $\beta_1 \cdot \beta_2$ are estimable. $\hat{\beta}_1 = C(X_1^2 \times X_1^2)^{-1} \times \tilde{Y}_1^2 Y$.

1+9= (X = 5 = 1 = 1 = 1+1

Pf: $M = M_1 + M_2^* = M_1^* + M_2$. $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(M_2^*) = C((I-M_1)X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(X_1) = C(X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(X_1) = C(X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(X_2) \Rightarrow C(X_2) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(X_2) \Rightarrow C(X_1) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(X_2) \Rightarrow C(X_1) = C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(X_2) \Rightarrow C(X_1)$ $C(X_1) + C(X_2) \Rightarrow C(X_2) \Rightarrow C(X_2)$ $C(X_1) + C(X_2) \Rightarrow C(X_2) \Rightarrow C(X_1)$ $C(X_1) + C(X_2) \Rightarrow C(X_2) \Rightarrow C(X_1)$

RMK: Apply on general case: C cox) fall rank) $Y = X\beta + \Sigma = X_1\beta_1 + M_1X_2\beta_2 + CI - M_1X_2\beta_2 + \Sigma$ $= X_1 C \beta_1 + (X_1^T X_1)^T X_1^T X_2 \beta_2 + \Sigma$ $= : X_1 S_1 + CI - M_1 X_2 \beta_2 + \Sigma$ Satisfies the condition of Thm. So that: $\int \hat{S}_1 = C X_1^T X_1 \hat{J}^T X_1^T Y$ $\Rightarrow Solve \beta_1$ $\hat{\beta}_2 = C X_2^T CI - M_1 X_2 \hat{J}^T CI - M_1 Y$

We obtain:
$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = \begin{pmatrix} (x_1^T x_1)^T x_1^T (Y - X_2 \hat{\beta}_2) \\ (x_1^T (I - m_1) x_2)^T x_2^T (I - m_1) Y \end{pmatrix}$$

Prop. For
$$Y = (J_n \times) \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta} \end{pmatrix} + \hat{\Sigma} = J_n \hat{\beta}_0 + \hat{\Sigma} \hat{\beta} + \hat{\Sigma} \cdot \hat{\beta}_n = M_{J_n}$$

$$S = N(0.6^2 J_n) \cdot r(J_n \times) = p + 1 \cdot f \cdot f \cdot ll \cdot (n \cdot k)$$

$$\Rightarrow \hat{\beta} = \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_n \end{pmatrix} = \begin{pmatrix} \frac{1}{n} J_n^T Y - \frac{1}{n} J_n^T \times (X^T (J - \beta_n) \times)^T X^T (Z - \beta_n) Y \\ (X^T (J - \beta_n) \times)^T X^T (J - \beta_n) Y \end{pmatrix}$$

If: Set $X_1 = J_n \cdot X_2 = X$ in the remark above.

Cor. Set $\hat{Y} = (Y - J_n c_0) / \lambda$, $\hat{X} = (X - J_n c^T) \hat{\Lambda}^T$.

$$C = (C_1 \cdot ... \cdot C_{p_1})^T \cdot \hat{\Lambda} = \lambda i \cdot n \cdot f \cdot \hat{\lambda}_n \cdot ... \cdot \lambda_{p_2} \cdot f \cdot f \cdot \hat{\lambda}_n \cdot \hat{\lambda}_n = p + 1$$

For $\hat{Y} = J_n \hat{\beta}_1 + \hat{X} \hat{\beta}_1 + \hat{L} \cdot \hat{\Sigma} = N(0.6^{\circ} \hat{L})$.

$$\hat{\beta}_0 \cdot \hat{\beta} = \frac{\hat{\beta}_0 - C_0 + c^T \hat{\beta}_1}{\lambda_0} \cdot \hat{\lambda}_n \cdot \hat{\lambda}_n \cdot \hat{\lambda}_n \cdot \hat{\lambda}_n = \hat{\lambda}_n \cdot \hat{$$

 $\begin{array}{ll} Rmk: \ \widetilde{Y}^{7}\ I-Pn)\ \widetilde{Y}=Y^{7}(I-Pn)Y/L^{2}o\\ \\ \widetilde{Y}^{7}\ I-\widetilde{M})\widetilde{Y}=Y^{7}(I-M)Y/L^{2}o\\ \\ \widetilde{F}or\ test\ M_{0}:\ \beta=0\ or\ \widetilde{H}_{0}:\ \widetilde{\beta}=0\\ \\ on\ initial\ or\ transformed\ model.\ 1hen:\\ \\ \widetilde{F}=\widetilde{F}\cdot Ctest\ statistics.) \end{array}$

O Centralization:

For $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \times \dots + \dots + \hat{\beta}_p \times_p \cdot \hat{\beta}_s = \hat{Y} - \hat{Z}_1 \hat{\beta}_k \times_k$

Cross
$$(\bar{X}_1 - \bar{X}_p, \bar{Y})$$
. Set $\bar{X} = (X - \bar{J}_1 C^{\dagger}) \Lambda^{-1}$. And

 $\bar{Y} = (Y - C_0 \bar{J}_n) / \Lambda$. $C^{\dagger} = \frac{1}{r} \bar{J}_n X$. $\Lambda = \bar{I}$. $C_0 = \frac{1}{r} \bar{J}_n Y$. $\Lambda = I$

$$\Rightarrow \hat{\bar{Y}} = \frac{p}{\bar{Y}} \hat{\bar{p}}_{\bar{k}} \bar{X}_{\bar{k}} . (\hat{\bar{p}}_0) = (\hat{\bar{p}}_0 + c^{\dagger} \hat{\bar{p}} - G / \Lambda_0) = (\hat{\bar{p}}_0)$$

$$\hat{\bar{p}} = (\hat{\bar{p}}_0 + c^{\dagger} \hat{\bar{p}} - G / \Lambda_0) = (\hat{\bar{p}}_0)$$

(3) Standard lization:

For $Y = X\beta + L$ set $X^* = (X - J_n \frac{J_n^T x}{n}) L_X^T$ and. $Y^* = (Y - \frac{1}{n} J_n^T Y) / L_Y$. $L_X = \lambda i n j \ L_{ii} - \dots L_{pp} \}$. $L_Y = Y^T c J - p_n j Y$. $L_{ii} = X_j^T c J - p_n j \times j$. $X = (X_i - \dots \times_p)$. $L_{ii} = X_j^T c J - p_n j \times j$. $X = (X_i - \dots \times_p)$. $X_i^* = X_i^* - X_i^* / J_{L_Y}^*$ \Rightarrow $\begin{pmatrix} \hat{p}^* \\ \hat{p}^* \end{pmatrix} = \begin{pmatrix} \hat{p}^* \\ \hat{p}^* \end{pmatrix}$ $\hat{p}^* = \frac{J_{L_{ii}}}{J_{L_Y}} \hat{p}_i$. by the Formula.

(2) Background of Collinerity:

Puf. $\{\vec{x}_{k}\}_{i}^{p}$ is multicollinear if $\vec{x}_{k} = \vec{x}_{k}$ is multicollinear if $\vec{x}_{k} = \vec{x}_{k}$. St. $\vec{y}_{k} = \vec{y}_{k}$ is multicollinear if $\vec{x}_{k} = \vec{y}_{k}$. St. $\vec{y}_{k} = \vec{y}_{k}$ is multicollinear if $\vec{x}_{k} = \vec{y}_{k}$.

Rmk: i) It's not common that multicollinearity Exists. But it's common: $Co + \Sigma_{Ci} \times ii$ So. Which's called complex MCL.

ii) Note that $Y = Bo + \Sigma_{Ci} \times ii$ $X = Bo + \Sigma_{Ci} \times ii$ X =

$$2.1. \quad (p=2) \quad \hat{y} = \hat{\beta}, \hat{\chi}_{1} + \hat{\beta}. \hat{\chi}_{2}. \quad \hat{\chi}_{1} = \chi_{1} - \chi_{1}.$$

$$\Rightarrow (\chi^{T}\chi)^{T} = \frac{1}{L_{11}L_{22}C_{1}-\gamma_{12}^{2}} \left(\frac{L_{22}-L_{12}}{-L_{12}-L_{11}}\right)$$

$$\gamma_{12} = L_{12} / \overline{AL_{11}L_{22}}, \quad \text{if} \quad \chi_{1}, \chi_{2} \quad \text{are Yelated}$$

$$n \quad lot, \quad \text{then} \quad \gamma_{12} \neq 1, \quad D_{1}\hat{\beta}, 1 + D_{2}\hat{\beta}, 1 \neq 0.$$

(3) Dingnosis:

O Variance Inflation Factor:

. $X^* = X - \frac{1}{n} J_n^T X$. $(X^*X^*) = (Y_ij) = R > 0$ is the correlated matrix of X. Prote: $C = (G_ij) = R^{-1}$ Def: $VJF_i = G_i$ is the Variance inflation factor of Variable X_i .

 $\frac{prop.}{ii)} V_{ri}(\hat{\beta};) = C_{ii}\sigma^{2}/L_{ii} \cdot L_{ii} = X_{i}(I-P_{r})X_{i}.$ $\frac{prop.}{ii)} C_{ii} = \frac{1}{(I-R_{i}I_{c-i})} \cdot R_{i}I_{c-i} = \frac{X_{ij}}{X_{ij}} \cdot (\hat{I}_{n}-P_{coI_{n}}X_{c-j})^{2}X_{ij}^{2}$

できて人とこれらしたようしなったとしたが、これのこと

Pf: i) Directly $\hat{\beta} = (X^{T}(I - P_{n})X)^{T}X^{T}(I - P_{n})Y$ $\Rightarrow V_{n}(\hat{\beta}) = \sigma^{2}(X^{T}(I - P_{n})X)^{T}$ $= \sigma^{2}(\Lambda(X^{*T}X^{*})\Lambda)^{T}$

ii) Cii = Xin (I - Pacx*1) Xin

Criteria: If $\exists i$. VIF: >10. Then it means:

Xi is heavily collinear with other 7/4:.

Or if $\overline{VIF} = \frac{P}{+}VIF$: $/P > 1 \Rightarrow |Iroblever exists$.

Note that if $1X^TX1=0$. Then it cX^TX has

At least one eigenvalue $\lambda_0 \approx 0$ corresp. c.) $\Rightarrow X^TXc = \lambda_0 c - c^TX^TXc \approx 0 \Rightarrow Xc \approx 0$ which implies: multicollinearity exists! R^mk : Denote eigenvalues of $X^TX = \lambda_1 \approx \cdots \approx \lambda_{p+1}$. $k_i = \frac{\lambda_i}{\lambda_i}$ is called condition index of λ_i .

Set $k = \max k_i$ if k > 100. \Rightarrow Problem exists.

(4) Correction:

O Ridge Estimate:

The iden: Since $|X^TX| = 0$. Add $k = I_F$ on X^TX $\Rightarrow X^TX + k = I_F$ may be far away from Singular.

Def: $\hat{\beta}(k) = (X^TX + k = I_F)^TX^TY$ is ridge estimator. $PMk = F\hat{\beta}(k) \}_{k \in \mathbb{N}}$ is a family with para. k.

Penote: $\phi = (l_1 - l_1)$ is matrix of orthonormal eigenfun's of X^TX , i.e. $\phi^TX^TX \phi = \text{Ling Eli]}^T$ $\stackrel{\circ}{=} \Lambda. \text{ Set } Z = X \phi. \quad \alpha = \phi^T\beta.$

 $\frac{kmk!}{\hat{\beta}_{c}k} = \frac{2\alpha + \epsilon}{2\alpha + \epsilon} \cdot \hat{\lambda}_{c}k) = (2\vec{\epsilon}_{c} + k\vec{\epsilon}_{c})^{2}\vec{\epsilon}_{c}\gamma.$ $\hat{\beta}_{c}k) = \hat{\beta}_{c}k) \Rightarrow ||\hat{\beta}_{c}k|| = ||\hat{\beta}_{c}k||$ $||\cdot|| \quad ||\cdot| = (\vec{\epsilon}_{c} \times \vec{\epsilon}_{c})^{\frac{1}{2}}.$

i) properties:

i) fick) is bissed estimator of B. if k+0

ii) If k is indept with Y. Then Bick)
is linear transform of B and Y

 $Pf: \hat{\beta}(k) = (X^TX + kZ)^T X^T X \hat{\beta}$

Rmk: Commonly. k should depend on lata Y.

iii) For $\|\hat{\beta}\| \neq 0$, $k > 0 \Rightarrow \|\|\hat{\beta}\|\| \leq \|\|\hat{\beta}\|\|$. $Pf: \|\|\hat{\beta}\|\| \neq 0$, $k > 0 \Rightarrow \|\|\hat{\beta}\|\|\| + \|\|\hat{\beta}\|\|\| + \|\|\hat{\beta}\|\|\| + \|\|\hat{\beta}\|\|\| + \|\|\hat{\beta}\|\|\|$

 $k \rightarrow \infty \rightarrow \hat{\beta}(k) \rightarrow \hat{\sigma}$,

iv) $\exists k > 0$. $MSEc\hat{\beta}(k) < MSEc\hat{\beta}$) where $MSE_{\theta}(\hat{\theta}) = E ||\hat{\theta} - \theta||^2 = E((\hat{\theta} - \theta)^T(\hat{\theta} - \theta))$

21: MSE (BOK) = MSE (FOK)) + 11 Evacks > - 11

 $\int V_{N}(\hat{q}(k)) = \delta'(\Lambda + kI)^{T} \Lambda (kI + \Lambda)^{T}$ $= C \Lambda + kI)^{T} \Lambda T$

> MSE(B(k)) = o' I xi + k' I Ti ()i+k)

ii) Choia for Ki

i) By trace of picks in Plot:

choose k to make sign of BCKI; rensonable

not SSE Won't increase so much. Usince

BCK) Levintes B n lot for large 1K1.)

ii) By VIF:

 $V_{NT}(\hat{\beta}(k)) = \delta^{2}(X^{T}X + kI)^{T}X^{T}X (X^{T}X + kI)^{T}.$ $\triangleq \delta^{2}(Cij(k))$

when KT. Ciick) = VIFick) V.

Choose K St. VIFick) = 10. 4 i.

iii) By SSE:

Set a const: c. st. ssEck) < essE. (C>1).

iv) By Moerl-Kennad Formula:

Penote $f(k) = MSE c\hat{\beta}(k)$, $f(k) = 2I \frac{\lambda_i}{c\lambda_i + k_i^2} ck\alpha_i^2 - \delta$)

Chook $\hat{K} = I \delta^2 / \max_i j$. Since $f(k) \delta$ when $k \uparrow$ in $Io, \hat{K} j$. \Rightarrow minimize $MSE_p(\hat{\beta}(k))$

iii) Geometric Interpretion:

· Generally . fix c>1. st. (Y-x \beta(k)) (Y-x \beta(k))

CYTOI-MIY. (GANGANTER SSECK) Wor't be large)

= pritqu =: Nrgmin I (hi - Po - IBj Xij)

Restrict Ip; et

(*): 55 E is

qualinic

func, of \hat{\beta}

consider the enlinker IBi (t intersects fix)

i.e. $\hat{\beta}$ is the ridge estimate under restrict of $\Sigma \hat{\beta} = t$.

If we see
$$\hat{\beta}(k)$$
 is contraction of $\hat{\beta}$.

$$\Rightarrow \hat{\beta}^{ridge} = \underset{\|\beta\| = c\|\hat{\beta}\|}{\text{arg min }} \|Y - X\beta\|^2 \qquad c\|\cdot\| = \|\cdot\|_{L^2})$$

$$= \underset{\|\beta\| = c\|\hat{\beta}\|}{\text{arg min }} \|X\hat{\beta} - X\beta\|^2 \qquad cB_1 \qquad cB_2 \qquad cB_3 \qquad cB_4 \qquad$$

Ptok: Another form: Bridge = argmin (114-XBII+ XIIBII)

iv) Selevo variables:

Analysis by trace:

when kt. Bicks & rapidly and changes its sign. It's unstable. Besides, Pick, -> 0 means it loses predictable ability.

when k1. Its influential ability J.

It means: There's a strag relation between $\hat{\mathbf{p}}, c\mathbf{k}$) and \$26k). We only need to retain one of them.

It's Stable. So it seems to be rensimable.

v) Generalization:

Consider B(k) = \$\frac{1}{2}ck) = (\frac{1}{2}z+k) \frac{1}{2}y. for general matrix k = ling ck, -- kp3. ki >0. It retains the properties of Biridge Kmk: Fi = 6 / 22 - 8 / xi is common chooius.

O Stein estimate:

 $\hat{\beta}_{SCC}$ = $C\hat{\beta}$, O<C<1, $C\hat{\beta}$ is LSE). A continution ∃ D ∈ c ∈ l. St. MSEp (βsco) 5 MSE, (β)

B) PCA:

· We want to get information from linear combination of X=(x.-.. X1). So that reduces the lim of laters. (but rutain most of information).

Rmk: It only can be applied in the case Ixis are Correlated: () x, X.

> When Exil is uncorrelated When Exis is uncorrelated
>
> PCA LOESN'T WOLK:

X has been Standardized. (50 XTX=R) \$ = (1, -- lp) matrix of orthonormal liquation. 51. $\phi^T X^T X \phi = \Lambda = \lambda i \alpha_1 + \lambda_1 - \cdots \lambda_p 3$. $Z = X \phi$. $\Rightarrow Y = X\beta + E = ZA + E. A = \phi \beta.$

Since
$$IX^TXI \approx 0$$
. $\exists T. St. \lambda thi \sim \lambda p \approx 0$
i.e. Z^T_{CP} is Z_{CP} is Z_{CP} in Z_{CP} i

 $E \cdot \Pi \hat{\beta} - \beta \Pi^2) = tr(\sigma^* \Lambda^{-1}).$

RMK: Choise of $Y := Fix c \in (0.1)$. Set $Y := Fix c \in (0.1)$. Set $Y := Fix c \in (0.1)$. Business, Aiscard Ai = 0.01.

A Lasso Regression:

 $\widehat{\beta} = \underset{\beta}{\operatorname{argmin}} \, \widehat{\Sigma} \, (\eta_i - \beta_0 - \Sigma \beta_i \, x_{ij})^{\frac{1}{2}} + \lambda \, \Sigma |\beta_i| \, . \, fix \, \lambda.$

RMK: Molification: $A-lasso: \hat{\beta} = n(qmin || Y-X \beta ||_{L}^{2} + \lambda \sum wilpil$ $Elastic-net: \hat{\beta} = n(qmin || Y-X \beta ||_{L}^{2} + \lambda \sum ||\beta|| + \lambda \sum |\beta||_{L}^{2}$