Retraite MAGMA Grenoble, 27 juin 2012

Agrégation de données pour l'analyse de systèmes complexes

Robin Lamarche-Perrin Yves Demazeau (MAGMA) Jean-Marc Vincent (MESCAL)

Changer le niveau de l'analyse

Changer le niveau de l'analyse

QU'EST-CE QU'UNE AGRÉGATION?

Description unidimensionnelle

Agrégation de descriptions

Agrégation de descriptions

Description source

Descriptions agrégées

COMMENT ÉVALUER ET COMPARER LES AGRÉGATIONS ?

Mesures de complexité

- Mesures simples
 - Taille du système E = 100
 - Variété V=8
- Théorie de l'information
 - Complexité de Kolmogorov
 - Profondeur logique de Bennett
 - → Entropie de Shannon

Entropie (description)

- Mesure la quantité d'information nécessaire pour coder une description donnée
- Mesure l'ordre de répartition des éléments

Formule de Shannon

$$H = -\sum_{i \in V} \frac{E_k}{E} \log_2 \left(\frac{E_k}{E}\right)$$

Entropie minimale

Entropie maximale

Gain d'entropie (agrégation)

- Mesure la quantité d'information économisée par une agrégation
- Dépend de la distribution initiale et de la fonction d'agrégation

$$G = H_{source} - H_{agrégée}$$

Agrégation → diminution de l'entropie

Perte d'information (agrégation)

- Mesure la quantité d'information nécessaire pour désagréger une description
- Dépend uniquement de la fonction d'agrégation

$$L = -\sum_{k \in V'} \frac{E'_k}{E} \log_2 \left(\frac{1}{V_k}\right)$$

Agrégation → perte d'information

Agrégation de descriptions

Divergence (agrégation)

- Mesure l'écart entre une description agrégée et sa description source
- Dépend de la distribution initiale et de la fonction d'agrégation

Formule de Kullback-Leibler

$$D = -\sum_{k \in V} \frac{E_k}{E} \log_2 \left(\frac{E'_k}{E \times V_k} \right)$$

$$D = L - G$$

Relative Information Criterion

- Aikaike Information Criterion : AIC = V - D
- RIC = G D• Our Information Criterion:

• On représente un compromis :

Gain d'entropie vs. Divergence
$$pRIC = p \times G - (1 - p) \times D$$

- p = 0Pas d'agrégation, information conservée
- Agrégation totale

Quelle agrégation

maximise le pRIC?

ANR CORPUS GEOMEDIA ANALYSE D'INFORMATIONS MÉDIATIQUES (M. Severo, T. Giraud, C. Grasland)

Projet GEOMEDIA

Agrégations spatiales de données médiatiques

	USA	France	Libye	Israël	Syrie	Palestine	Afghanistan	 Total
USA	×	25	19	18	24	24	24	 423
France	25	×	36	10	15	15	30	 248
Libye	19	36	×	0	7	0	2	 308
Israël	18	10	0	×	4	62	0	 153
Syrie	24	15	7	4	×	1	0	 260
Palestine	24	15	0	62	1	×	0	 126
Afghanistan	24	30	2	0	0	0	×	 131
Total	423	248	308	153	260	126	131	 3520

Quelles agrégations sont les plus pertinentes ?

27 juin 2012

Comparaison des agrégats

Comparaison des agrégats

Comparaison des agrégats

Retraite MAGMA 2012

TRIVA
ANALYSE DE SYSTÈMES DISTRIBUÉS
(ANR SONGS, L. Schnorr, A. Legrand)

Agrégation et visualisation de systèmes distribués

Quel niveau d'agrégation doit-on considérer ?

Quelle partie de la hiérarchie doit-on afficher?

Agrégation et visualisation de systèmes distribués

Quel niveau d'agrégation doit-on considérer ?

Agrégation et visualisation de systèmes distribués

Quel niveau d'agrégation doit-on considérer ?

Quelle partie de la hiérarchie doit-on afficher ?

Agrégation et visualisation de systèmes distribués

Quel niveau d'agrégation doit-on considérer ?

Quelle partie de la hiérarchie doit-on afficher?

Démonstration TRIVA

Perspectives

Agrégations multidimensionnelles

Perspectives

Agrégations multidimensionnelles

Perspectives

Topologies de partitionnements

Hiérarchie

D'autres topologies

intéressantes?

Agrégations possibles

 $\{f_1, f_2, f_3, f_4, f_5, f_6, f_7\}$

 $\{f_1, f_2, f_3, f_4, f_5, f_6, f_7\}$

 $\{f_6, f_7\}$

 $\{f_1, f_2, f_3, f_4, f_5\}$

Retraite MAGMA Grenoble, 27 juin 2012

Merci pour votre attention

