SEMAINE DU 14/10

Groupes

- **Révisions de première année** Groupes, sous-groupes, morphismes de groupes. Groupes classiques : $(\mathbb{K}, +)$ et (\mathbb{K}^*, \times) où \mathbb{K} est un corps, $(S(E), \circ)$ (groupe des permutations d'un ensemble E), (S_n, \circ) (groupe des permutations de $[\![1, n]\!]$), groupes linéaires $GL_n(\mathbb{K})$ et $GL(E), \mathbb{U}$ est un sous-groupe de $(\mathbb{C}^*, \times), \mathbb{U}_n$ est un sous-groupe de (\mathbb{U}, \times) . Morphismes classiques : déterminant, signature.
- **Compléments** Une intersection de sous-groupes est un sous-groupe. Sous-groupe engendré par une partie, un élément. Partie génératrice, générateur d'un groupe.

Le groupe $\mathbb{Z}/n\mathbb{Z}$ Définition. Structure de groupe additif. Générateurs de $\mathbb{Z}/n\mathbb{Z}$.

- **Ordre d'un élément** Définition. L'ordre d'un élément est l'ordre du sous-groupe qu'il engandre. Si x est un élément d'ordre p, alors $x^n = e \iff p \mid n$. L'ordre d'un élément divise l'ordre du groupe.
- **Groupes monogènes** Définition d'un groupe monogène, d'un groupe cyclique. Un groupe est monogène infini si et seulement si il est isomorphe à $(\mathbb{Z}, +)$. Un groupe d'ordre n est cyclique si et seulement si il est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$.

1 Méthodes à maîtriser

- Pour montrer qu'un ensemble muni d'une loi est un groupe, on peut montrer que c'est un sous-groupe d'un groupe connu :
 - en vérifiant les axiomes définissant un sous-groupe;
 - en l'identifiant comme image directe ou réciproque d'un sous-groupe par un morphisme de groupes (notamment comme un noyau ou une image d'un morphisme de groupes).
- Caractériser l'injectivité ou la surjectivité d'un morphisme de groupes par le noyau ou l'image.
- Déterminer l'ordre d'un élément à l'aide de relations de divisibilité. On retiendra notamment que deux entiers naturels sont égaux si et seulement si ils se divisent l'un l'autre.

2 Questions de cours

Sous-groupes de $(\mathbb{Z}, +)$. Soit H un sous-groupe de $(\mathbb{Z}, +)$. Montrer qu'il existe $a \in \mathbb{Z}$ tel que $H = a\mathbb{Z}$.

Générateurs de $\mathbb{Z}/n\mathbb{Z}$. Soit $k \in \mathbb{Z}$. Montrer que la classe de k dans $\mathbb{Z}/n\mathbb{Z}$ engendre le groupe $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $k \wedge n = 1$.

Ordre d'un élément de $\mathbb{Z}/n\mathbb{Z}$. Soit $k \in \mathbb{Z}$. Montrer que la classe de k dans $\mathbb{Z}/n\mathbb{Z}$ est d'ordre $\frac{n}{n \wedge k}$.

Ordre d'un élément. Soit G un groupe d'élément neutre e. Soit $x \in G$ d'ordre d. On suppose qu'il existe $n \in \mathbb{Z}$ tel que $x^n = e$. Montrer que d divise n.

Application. Soient x et y deux éléments d'un groupe G d'ordres respectifs p et q. On suppose que x et y commutent et que p et q sont premiers entre eux. Montrer que xy est d'ordre pq.

Equation fonctionnelle de Cauchy. Montrer que les endomorphismes continus du groupe $(\mathbb{R}, +)$ sont les homothéties, à savoir les applications $x \mapsto \lambda x$ avec $\lambda \in \mathbb{R}$.