```
In [47]: # Dependencies and Setup
         %matplotlib inline
         import matplotlib.pyplot as plt
         import pandas as pd
         import numpy as np
         from scipy.stats import sem
         # Hide warning messages in notebook
         import warnings
         warnings.filterwarnings('ignore')
In [48]: # File to Load (Remember to Change These)
         mouse_drug_data_to_load = "../data/mouse_drug_data.csv"
         clinical_trial_data_to_load = "../data/clinicaltrial_data.csv"
         # Read the Mouse and Drug Data and the Clinical Trial Data
         drug_data=pd.read_csv(mouse_drug_data_to_load)
         clinical data=pd.read csv(clinical trial data to load)
         # Combine the data into a single dataset
         trial data=pd.merge(drug data,clinical data,on = "Mouse ID")
         # Display the data table for preview
         trial data.head()
```

# Out[48]:

|   | Mouse ID | Drug     | Timepoint | Tumor Volume (mm3) | Metastatic Sites |
|---|----------|----------|-----------|--------------------|------------------|
| 0 | f234     | Stelasyn | 0         | 45.000000          | 0                |
| 1 | f234     | Stelasyn | 5         | 47.313491          | 0                |
| 2 | f234     | Stelasyn | 10        | 47.904324          | 0                |
| 3 | f234     | Stelasyn | 15        | 48.735197          | 1                |
| 4 | f234     | Stelasyn | 20        | 51.112713          | 2                |

# **Tumor Response to Treatment**

# Out[49]:

|   | Drug      | Timepoint | Tumor Volume (mm3) |
|---|-----------|-----------|--------------------|
| 0 | Capomulin | 0         | 45.000000          |
| 1 | Capomulin | 5         | 44.266086          |
| 2 | Capomulin | 10        | 43.084291          |
| 3 | Capomulin | 15        | 42.064317          |
| 4 | Capomulin | 20        | 40.716325          |

```
In [50]: # Store the Standard Error of Tumor Volumes Grouped by Drug and Timepoint
    tumor_vol_sem= trial_data.groupby(["Drug","Timepoint"]).agg({"Tumor Volume (mm
    3)":"sem"})
    #print(tumor_vol_sem)
    # Convert to DataFrame
    tumor_vol_df = pd.DataFrame(tumor_vol_sem).reset_index()
    # Preview DataFrame
    tumor_vol_df.head()
```

# Out[50]:

|   | Drug      | Timepoint | Tumor Volume (mm3) |
|---|-----------|-----------|--------------------|
| 0 | Capomulin | 0         | 0.000000           |
| 1 | Capomulin | 5         | 0.448593           |
| 2 | Capomulin | 10        | 0.702684           |
| 3 | Capomulin | 15        | 0.838617           |
| 4 | Capomulin | 20        | 0.909731           |

```
# Minor Data Munging to Re-Format the Data Frames
tumor reformat= trial data.pivot table(index='Timepoint',
                              columns='Drug',
                              values='Tumor Volume (mm3)'
# Preview that Reformatting worked
tumor reformat
```

#### Out[51]:

| Drug      | Capomulin | Ceftamin  | Infubinol | Ketapril  | Naftisol  | Placebo   | Propriva  | Ramica  |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| Timepoint |           |           |           |           |           |           |           |         |
| 0         | 45.000000 | 45.000000 | 45.000000 | 45.000000 | 45.000000 | 45.000000 | 45.000000 | 45.0000 |
| 5         | 44.266086 | 46.503051 | 47.062001 | 47.389175 | 46.796098 | 47.125589 | 47.248967 | 43.9448 |
| 10        | 43.084291 | 48.285125 | 49.403909 | 49.582269 | 48.694210 | 49.423329 | 49.101541 | 42.5319 |
| 15        | 42.064317 | 50.094055 | 51.296397 | 52.399974 | 50.933018 | 51.359742 | 51.067318 | 41.4950 |
| 20        | 40.716325 | 52.157049 | 53.197691 | 54.920935 | 53.644087 | 54.364417 | 53.346737 | 40.2383 |
| 25        | 39.939528 | 54.287674 | 55.715252 | 57.678982 | 56.731968 | 57.482574 | 55.504138 | 38.9743 |
| 30        | 38.769339 | 56.769517 | 58.299397 | 60.994507 | 59.559509 | 59.809063 | 58.196374 | 38.7031 |
| 35        | 37.816839 | 58.827548 | 60.742461 | 63.371686 | 62.685087 | 62.420615 | 60.350199 | 37.4519 |
| 40        | 36.958001 | 61.467895 | 63.162824 | 66.068580 | 65.600754 | 65.052675 | 63.045537 | 36.5740 |
| 45        | 36.236114 | 64.132421 | 65.755562 | 70.662958 | 69.265506 | 68.084082 | 66.258529 | 34.9555 |
|           |           |           |           |           |           |           |           |         |

- capomulin1 data= trial data.loc[trial data["Drug"]=="Capomulin",["Timepoint", In [52]: "Tumor Volume (mm3)"]] capomulin1 grouped=capomulin1 data.groupby("Timepoint").mean().reset index()
- In [53]: infubinol1 data= trial data.loc[trial data["Drug"]=="Infubinol",["Timepoint", "Tumor Volume (mm3)"]] infubinol1 grouped=infubinol1 data.groupby("Timepoint").mean().reset index()
- ketapril1 data= trial data.loc[trial data["Drug"]=="Ketapril",["Timepoint","Tu In [54]: mor Volume (mm3)"]] ketapril1 grouped=ketapril1 data.groupby("Timepoint").mean().reset index()
- placebo1\_data= trial\_data.loc[trial\_data["Drug"]=="Placebo",["Timepoint","Tumo In [55]: r Volume (mm3)"]] placebo1\_grouped=placebo1\_data.groupby("Timepoint").mean().reset\_index()

```
In [56]: #assign values to x,y to use out plot
    c1_x= capomulin1_grouped["Timepoint"]
    c1_y=capomulin1_grouped["Tumor Volume (mm3)"]
    i1_x= infubinol1_grouped["Timepoint"]
    i1_y=infubinol1_grouped["Tumor Volume (mm3)"]
    k1_x= ketapril1_grouped["Timepoint"]
    k1_y=ketapril1_grouped["Tumor Volume (mm3)"]
    p1_x= placebo1_grouped["Timepoint"]
    p1_y=placebo1_grouped["Tumor Volume (mm3)"]
```

```
In [57]:
         # Generate the Plot (with Error Bars)
         capo1 handle=plt.errorbar(c1 x, c1 y,yerr= tumor vol sem.loc['Capomulin']['Tum
         or Volume (mm3)'], marker='o', color='red',label= "Capomulin")
         infu1_handle=plt.errorbar(i1_x,i1_y, yerr= tumor_vol_sem.loc['Infubinol']['Tum
         or Volume (mm3)'], marker='^', color='blue',label= "Infubinol")
         keta1 handle=plt.errorbar(k1 x,k1 y,yerr= tumor vol sem.loc['Ketapril']['Tumor
         Volume (mm3)'],marker='s', color='green',label= "Ketapril")
         plac1 handle=plt.errorbar(p1 x,p1 y,yerr= tumor vol sem.loc['Placebo']['Tumor
          Volume (mm3)'], marker='d', color='black',label= "Placebo")
         # Create a Legend for our chart
         plt.title("Tumor Volume Change")
         plt.xlabel("Treatment Duration (Days)")
         plt.ylabel("Tumor Volume")
         plt.legend(loc="best")
         # Show the chart
         plt.grid()
         # Save the Figure
         plt.savefig("TumorVolumeChange.png")
         plt.show()
```



I tried the above method first and figured out how to the same another way. So including both.

```
In [59]:
         #plot graph using the values from the pivot fuction
         plt.errorbar(tumor_response_pivot.index,tumor_response_pivot["Capomulin"],yerr
         =tumor_vol_sem_pivot["Capomulin"], marker='o', color='red',label= "Capomulin")
         plt.errorbar(tumor_response_pivot.index,tumor_response_pivot["Infubinol"],yerr
         =tumor_vol_sem_pivot["Infubinol"], marker='^', color='blue',label= "Capomulin"
         )
         plt.errorbar(tumor response pivot.index,tumor response pivot["Ketapril"],yerr=
         tumor_vol_sem_pivot["Ketapril"], marker='s', color='green',label= "Capomulin")
         plt.errorbar(tumor_response_pivot.index,tumor_response_pivot["Placebo"],yerr=t
         umor vol sem pivot["Placebo"], marker='d', color='black',label= "Capomulin")
         plt.title("Metastatic Spread During Treatment")
         plt.xlabel("Treatment Duration (Days)")
         plt.ylabel("Met. Sites")
         plt.legend(loc="best")
         # Show the chart
         plt.grid()
         plt.show()
         # Save the Figure
         plt.savefig("MetastaticSpreaAlt.png")
```



<Figure size 432x288 with 0 Axes>

# **Metastatic Response to Treatment**

```
In [60]: # Store the Mean Met. Site Data Grouped by Drug and Timepoint
    ms_data= trial_data.groupby(["Drug","Timepoint"]).agg({"Metastatic Sites":"mea
    n"})

# Preview DataFrame
    ms_data.head()
```

# Out[60]:

#### **Metastatic Sites**

| Drug      | Timepoint |          |
|-----------|-----------|----------|
| Capomulin | 0         | 0.000000 |
|           | 5         | 0.160000 |
|           | 10        | 0.320000 |
|           | 15        | 0.375000 |
|           | 20        | 0.652174 |

```
In [61]: # Store the Standard Error associated with Met. Sites Grouped by Drug and Time
    point
    metas_sem= trial_data.groupby(["Drug","Timepoint"]).agg({"Metastatic Sites":"s
    em"})
    # Convert to DataFrame
    metas_df = pd.DataFrame(metas_sem)
    # Preview DataFrame
    metas_df.head()
```

### Out[61]:

#### **Metastatic Sites**

| Drug      | Timepoint |          |
|-----------|-----------|----------|
| Capomulin | 0         | 0.000000 |
|           | 5         | 0.074833 |
|           | 10        | 0.125433 |
|           | 15        | 0.132048 |
|           | 20        | 0.161621 |

#### Out[62]:

| Drug      | Capomulin | Ceftamin  | Infubinol | Ketapril  | Naftisol  | Placebo   | Propriva  | Ramica  |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| Timepoint |           |           |           |           |           |           |           |         |
| 0         | 45.000000 | 45.000000 | 45.000000 | 45.000000 | 45.000000 | 45.000000 | 45.000000 | 45.0000 |
| 5         | 44.266086 | 46.503051 | 47.062001 | 47.389175 | 46.796098 | 47.125589 | 47.248967 | 43.9448 |
| 10        | 43.084291 | 48.285125 | 49.403909 | 49.582269 | 48.694210 | 49.423329 | 49.101541 | 42.5319 |
| 15        | 42.064317 | 50.094055 | 51.296397 | 52.399974 | 50.933018 | 51.359742 | 51.067318 | 41.4950 |
| 20        | 40.716325 | 52.157049 | 53.197691 | 54.920935 | 53.644087 | 54.364417 | 53.346737 | 40.2383 |
| 25        | 39.939528 | 54.287674 | 55.715252 | 57.678982 | 56.731968 | 57.482574 | 55.504138 | 38.9743 |
| 30        | 38.769339 | 56.769517 | 58.299397 | 60.994507 | 59.559509 | 59.809063 | 58.196374 | 38.7031 |
| 35        | 37.816839 | 58.827548 | 60.742461 | 63.371686 | 62.685087 | 62.420615 | 60.350199 | 37.4519 |
| 40        | 36.958001 | 61.467895 | 63.162824 | 66.068580 | 65.600754 | 65.052675 | 63.045537 | 36.5740 |
| 45        | 36.236114 | 64.132421 | 65.755562 | 70.662958 | 69.265506 | 68.084082 | 66.258529 | 34.9555 |
|           |           |           |           |           |           |           |           |         |

```
In [65]:
         # Generate the Plot (with Error Bars)
         capo2_handle=plt.errorbar(c2_x, c2_y,yerr= metas_sem.loc['Capomulin']['Metasta
         tic Sites'], marker='o', color='red',label= "Capomulin")
         infu2 handle=plt.errorbar(i2 x, i2 y,yerr= metas sem.loc['Infubinol']['Metasta
         tic Sites'], marker='^', color='blue',label= "Infubinol")
         keta2_handle=plt.errorbar(k2_x,k2_y,yerr= metas_sem.loc['Ketapril']['Metastati
         c Sites'],marker='s', color='green',label= "Ketapril")
         plac2_handle=plt.errorbar(p2_x,p2_y,yerr= metas_sem.loc['Placebo']['Metastatic
         Sites'], marker='d', color='black',label= "Placebo")
         # Create a Legend for our chart
         plt.title("Metastatic Spread During Treatment")
         plt.xlabel("Treatment Duration (Days)")
         plt.ylabel("Met. Sites")
         plt.legend(loc="best")
         # Show the chart
         plt.grid()
         plt.show()
         # Save the Figure
         plt.savefig("MetastaticSpread.png")
```



<Figure size 432x288 with 0 Axes>

# **Survival Rates**

```
In [66]: # Store the Count of Mice Grouped by Drug and Timepoint (W can pass any metri
c)
survival_data= trial_data.groupby(["Drug","Timepoint"]).agg({"Mouse ID":"coun
t"})
# Preview DataFrame
survival_data.head()
```

# Out[66]:

#### Mouse ID

| Drug      | Timepoint |    |
|-----------|-----------|----|
| Capomulin | 0         | 25 |
|           | 5         | 25 |
|           | 10        | 25 |
|           | 15        | 24 |
|           | 20        | 23 |

# Out[67]:

|     | Drug    | Capomulin | Ceftamin | Infubinol | Ketapril | Naftisol | Placebo | Propriva | Ramicane | Stela |
|-----|---------|-----------|----------|-----------|----------|----------|---------|----------|----------|-------|
| Tim | nepoint |           |          |           |          |          |         |          |          |       |
|     | 0       | 25        | 25       | 25        | 25       | 25       | 25      | 26       | 25       |       |
|     | 5       | 25        | 21       | 25        | 23       | 23       | 24      | 25       | 25       |       |
|     | 10      | 25        | 20       | 21        | 22       | 21       | 24      | 23       | 24       |       |
|     | 15      | 24        | 19       | 21        | 19       | 21       | 20      | 17       | 24       |       |
|     | 20      | 23        | 18       | 20        | 19       | 20       | 19      | 17       | 23       |       |
|     | 25      | 22        | 18       | 18        | 19       | 18       | 17      | 14       | 23       |       |
|     | 30      | 22        | 16       | 17        | 18       | 15       | 15      | 13       | 23       |       |
|     | 35      | 22        | 14       | 12        | 17       | 15       | 14      | 10       | 21       |       |
|     | 40      | 21        | 14       | 10        | 15       | 15       | 12      | 9        | 20       |       |
|     | 45      | 21        | 13       | 9         | 11       | 13       | 11      | 7        | 20       |       |
| 4   |         |           |          |           |          |          |         |          |          | •     |

### Out[68]:

|   |      | Mouse ID | Drug      | Timepoint | Tumor Volume (mm3) | Metastatic Sites |
|---|------|----------|-----------|-----------|--------------------|------------------|
| _ | 393  | q119     | Ketapril  | 0         | 45.000000          | 0                |
|   | 394  | q119     | Ketapril  | 5         | 47.864440          | 0                |
|   | 395  | q119     | Ketapril  | 10        | 51.236606          | 0                |
|   | 396  | n923     | Ketapril  | 0         | 45.000000          | 0                |
|   | 397  | n923     | Ketapril  | 5         | 45.824881          | 0                |
|   | 581  | b128     | Capomulin | 0         | 45.000000          | 0                |
|   | 582  | b128     | Capomulin | 5         | 45.651331          | 0                |
|   | 583  | b128     | Capomulin | 10        | 43.270852          | 0                |
|   | 584  | b128     | Capomulin | 15        | 43.784893          | 0                |
|   | 585  | b128     | Capomulin | 20        | 42.731552          | 0                |
|   | 811  | q132     | Infubinol | 0         | 45.000000          | 0                |
|   | 812  | q132     | Infubinol | 5         | 46.716399          | 1                |
|   | 813  | q132     | Infubinol | 10        | 47.953844          | 2                |
|   | 814  | q132     | Infubinol | 15        | 49.159749          | 3                |
|   | 815  | q132     | Infubinol | 20        | 51.909025          | 4                |
|   | 1725 | a897     | Placebo   | 0         | 45.000000          | 0                |
|   | 1726 | a897     | Placebo   | 5         | 45.691124          | 1                |
|   | 1727 | a897     | Placebo   | 10        | 47.972927          | 1                |
|   | 1728 | a897     | Placebo   | 15        | 52.343085          | 2                |
|   | 1729 | a897     | Placebo   | 20        | 54.595705          | 3                |
|   |      |          |           |           |                    |                  |

```
In [70]: infu3_surv= trial_data.loc[trial_data["Drug"]=="Infubinol",["Timepoint","Mouse
ID"]]
    infu3_surv_grouped=infu3_surv.groupby("Timepoint").count()["Mouse ID"].reset_i
    ndex()
    #Calculated % by multiplying by 4 instead of 100/25 -25 being count of Mouse I
    D
    infu3_surv_grouped['Percent']=infu3_surv_grouped["Mouse ID"]*4
    #assign values to x,y to use out plot
    i3_x=infu3_surv_grouped["Timepoint"]
    i3_y= infu3_surv_grouped["Percent"]
```

```
In [72]: plac3_surv= trial_data.loc[trial_data["Drug"]=="Placebo",["Timepoint","Mouse I
D"]]
    plac3_surv_grouped=plac3_surv.groupby("Timepoint").count()["Mouse ID"].reset_i
    ndex()
    #Calculated % by multiplying by 4 instead of 100/25 -25 being count of Mouse I
D
    plac3_surv_grouped['Percent']=plac3_surv_grouped["Mouse ID"]*4
    #assign values to x,y to use out plot
    p3_x=plac3_surv_grouped["Timepoint"]
    p3_y= plac3_surv_grouped["Percent"]
```

```
In [73]:
         #plots a line graph for the 4 drugs
         capo3_handle=plt.plot(c3_x, c3_y ,marker='o', color='red',label= "Capomulin")
         infu3_handle=plt.plot(i3_x,i3_y,marker='^', color='blue',label= "Infubinol")
         keta3_handle=plt.plot(k3_x,k3_y,marker='s', color='green',label= "Ketapril")
         plac3_handle=plt.plot(p3_x,p3_y,marker='d', color='black',label= "Placebo")
         # Creates a legend for our chart
         plt.title("Survival During Treatment")
         plt.xlabel("Time (Days)")
         plt.ylabel("Survival Rates (%)")
         plt.legend(loc="best")
         # Show the chart
         plt.grid()
         # Save the Figure
         plt.savefig("MetastaticSpread.png")
         plt.show()
```



# **Summary Bar Graph**

```
In [75]: # Display the data to confirm
         size change all['Tum Vol Change Pcent']
Out[75]: Drug
         Capomulin
                     -19.475303
         Ceftamin
                      42.516492
         Infubinol
                      46.123472
         Ketapril
                      57.028795
         Naftisol
                      53.923347
         Placebo
                      51.297960
         Propriva
                      47.241175
         Ramicane
                     -22.320900
         Stelasyn
                      52.085134
         Zoniferol
                      46.579751
         dtype: float64
         # Store all Relevant Percent Changes into a Tuple
In [76]:
         c4_y= ((tumor_reformat.loc[45, :] - tumor_reformat.loc[0, :])/tumor_reformat.l
         oc[0, :] * 100)[['Capomulin']]
         i4_y= ((tumor_reformat.loc[45, :] - tumor_reformat.loc[0, :])/tumor_reformat.l
         oc[0, :] * 100)[['Infubinol']]
         k4 y= ((tumor reformat.loc[45, :] - tumor reformat.loc[0, :])/tumor reformat.l
         oc[0, :] * 100)[['Ketapril']]
         p4_y= ((tumor_reformat.loc[45, :] - tumor_reformat.loc[0, :])/tumor_reformat.l
         oc[0, :] * 100)[['Placebo']]
```

```
In [77]: #creates a list of labels and assign them to the bars
         labels= ['Capomulin','Infubinol','Ketapril','Placebo']
         capo4 handle= plt.bar(labels[0],c4 y,color='green')
         infu4 handle= plt.bar(labels[1],i4 y,color='red')
         keta4 handle=plt.bar(labels[2],k4 y,color='red')
         plac4_handle=plt.bar(labels[3],p4_y,color='red')
         #adds a horizontal line at zero
         plt.axhline(y=0, color = 'black')
         # Add title, labels, tick marks, etc.
         plt.title('Tumor Volume Change over 45 Day Treatment')
         plt.ylabel('% Tumor Volume Change')
         plt.xlabel('Drugs')
         # Use functions to label the percentages of changes
         # Code Credit: http://composition.al/blog/2015/11/29/a-better-way-to-add-label
         s-to-bar-charts-with-matplotlib/
         def autolabel(rects):
             for rect in rects:
                 height = rect.get height()
                  if height > 0:
                      label position = 2
                 else:
                      label position = -8
                 plt.text(rect.get_x() + rect.get_width()/2., label_position,
                          '%d' % int(height)+'%',color='black',
                          ha='center', va='bottom')
         # Calls functions to implement the function calls
         autolabel(capo4 handle)
         autolabel(infu4 handle)
         autolabel(keta4 handle)
         autolabel(plac4_handle)
         plt.grid()
         # Saves the Figure
         plt.savefig("SummaryTumorChange.png")
         # Shows the Figure
         plt.show()
```



#### **Observations**

- 1)Ramicane has been the best performing drug followed by Capomulin when measured against Tumor volume reduction and Number of metastatic sites.
- 2)Ketapril has been the worst performing drug in terms of tumor volume change and metastatic sites. It has performed worse than the Placebo which is essentially the "do nothing" option.
- 3)propriva and Infubinol have the worst survival rate where as Capomulin followed by Infubinol have the best survival rate.