HipSpec

Automating Inductive Proofs of Program Properties

Dan Rosén

Koen Claessen, Moa Johansson, Nicholas Smallbone

Chalmers University of Technology | University of Gothenburg

July 1, 2012

Haskell source

rev [] = []

Haskell source

```
rev (x:xs)
= rev xs ++ [x]
prop_rev xs
= rev (rev xs) =:= xs
```

Hip

Haskell Inductive Prover

- ► FOL translation
- Apply induction
- Success

rev [] = []

Haskell source

```
rev (x:xs)
= rev xs ++ [x]
prop_rev xs
= rev (rev xs) =:= xs
```

Hip

Haskell Inductive Prover

- ► FOL translation
- Apply induction
- Success, or stuck!

Haskell source

```
rev [] = []
rev (x:xs)
= rev xs ++ [x]
```

Hip

Haskell Inductive Prover

- ▶ FOL translation
- Apply induction
- Success, or stuck!

QuickSpec

Eq-theory from testing:

Haskell source

Hip

Haskell Inductive Prover

- ► FOL translation
- Apply induction
- ► Success, or stuck!

QuickSpec

Eq-theory from testing:

(xs ++ ys) ++ zs

HipSpec

Use these as lemmas!!

Example functional program and property

```
rev (x:xs) = rev xs ++ [x]

rev [] = []

qrev (x:xs) ys = qrev xs (x:ys)

qrev [] ys = ys
```

Goal: $\forall xs.rev xs = qrev xs []$

$$\frac{P(\texttt{[]}) \qquad \forall \, x, xs. \, P(xs) \implies P(x \colon\! xs)}{\forall \, xs. \, P(xs)}$$

$$\frac{P(\texttt{[]}) \qquad \forall \, x, xs. \, P(xs) \implies P(x \colon\! xs)}{\forall \, xs. \, P(xs)}$$

```
lhs: rev (x:xs) = rev xs ++ [x]
rhs: qrev (x:xs) [] = qrev xs [x]
```

$$\frac{\mathsf{P}(\texttt{[]}) \qquad \forall \, \mathsf{x}, \mathsf{xs}.\, \mathsf{P}(\mathsf{xs}) \implies \mathsf{P}(\mathsf{x}\!:\!\mathsf{xs})}{\forall \, \mathsf{xs}.\, \mathsf{P}(\mathsf{xs})}$$

hypothesis: rev xs = qrev xs []

$$\frac{\mathsf{P}(\texttt{[]}) \qquad \forall \, \mathsf{x}, \mathsf{xs}.\, \mathsf{P}(\mathsf{xs}) \implies \mathsf{P}(\mathsf{x}\!:\!\mathsf{xs})}{\forall \, \mathsf{xs}.\, \mathsf{P}(\mathsf{xs})}$$

lhs: rev
$$(x:xs) = rev xs ++ [x] = qrev xs [] ++ [x]$$

rhs: qrev $(x:xs) [] = qrev xs [x]$

hypothesis: rev xs = qrev xs []

$$\frac{P([]) \qquad \forall \, x, xs. \, P(xs) \implies P(x:xs)}{\forall \, xs. \, P(xs)}$$

This:
$$rev (x:xs) = rev xs ++ [x] = qrev xs [] ++ [x]$$

This: $qrev (x:xs) [] = qrev xs [x]$

hypothesis: $rev xs = qrev xs []$

Stuck!!!

```
rev(x:xs) = rev xs ++ [x]
       rev [] = []
       qrev(x:xs) ys = qrev xs(x:ys)
       qrev[] ys = ys
  lhs: rev (x:xs) = rev xs ++ [x] = qrev xs [] ++ [x]
  rhs: qrev(x:xs)[] = qrev xs[x]
What about...
```

New Goal: $\forall xs, ys.rev xs ++ ys = qrev xs ys$

```
rev(x:xs) = rev xs ++ [x]
        rev [] = []
        qrev(x:xs) ys = qrev xs(x:ys)
        qrev[] ys = ys
   lhs: rev (x:xs) = rev xs ++ [x] = qrev xs [] ++ [x]
  rhs: qrev(x:xs)[] = qrev xs[x]
What about...
     New Goal: \forall xs, ys rev xs ++ ys = qrev xs ys
Then with ys = [], we get
                    rev xs ++ [] = grev xs []
```

```
rev(x:xs) = rev xs ++ [x]
        rev [] = []
        qrev(x:xs) ys = qrev xs(x:ys)
        qrev[] ys = ys
   lhs: rev (x:xs) = rev xs ++ [x] = qrev xs [] ++ [x]
  rhs: qrev(x:xs)[] = qrev xs[x]
What about...
     New Goal: \forall xs, ys.rev xs ++ ys = qrev xs ys
Then with ys = [], we get
           rev xs = rev xs ++ [] = qrev xs []
```

New Goal: $\forall xs, ys. rev xs ++ ys = qrev xs ys$

Induction on xs

New Goal:
$$\forall xs, ys. rev xs ++ ys = qrev xs ys$$

Induction on xs

Base, to show:
$$\forall$$
 ys. rev [] ++ ys = qrev xs []

New Goal:
$$\forall xs, ys. rev xs ++ ys = qrev xs ys$$

Induction on xs

Base, to show:
$$\forall$$
 ys. rev [] ++ ys = qrev xs []

Step, to show: \forall ys.rev (x:xs) ++ ys = qrev (x:xs) ys

Hypothesis: \forall ys. rev xs ++ ys = qrev xs ys

```
Step, to show: \forall ys.rev (x:xs) ++ ys = grev (x:xs) ys
Hypothesis: \forall ys. rev xs ++ ys = qrev xs ys
                                = {definition of rev}
lhs = rev (x:xs) ++ ys
      (rev xs ++ [x]) ++ ys = {associativity of ++}
      rev xs ++ ([x] ++ ys) = {definition of ++}
                                = \{\text{induction hypothesis on }(x:ys)\}
      rev xs ++ (x:vs)
      grev xs (x:ys)
                               = {definition of grev}
      qrev (x:xs) ys
                            = rhs
```

```
Step, to show: \forall ys.rev (x:xs) ++ ys = grev (x:xs) ys
Hypothesis: \forall ys. rev xs ++ ys = qrev xs ys
                              = {definition of rev}
lhs = rev (x:xs) ++ ys
      (rev xs ++ [x]) ++ ys = {associativity of ++}
      rev xs ++ ([x] ++ ys) = {definition of ++}
      rev xs ++ (x:ys) = {induction hypothesis on (x:ys)}
      qrev xs (x:ys) = {definition of qrev}
      grev (x:xs) vs
                             = rhs
```

HOORAY!

Success

We managed to prove

$$\forall$$
 xs.rev xs = qrev xs []

Using:

- $ightharpoonup \forall xs, ys. rev xs ++ ys = qrev xs ys$
- ► Induction

Success

We managed to prove

$$\forall$$
 xs.rev xs = qrev xs []

Using:

- $ightharpoonup \forall xs, ys. rev xs ++ ys = qrev xs ys$
- Induction
- ▶ But we also needed associativity of ++ and ∀xs.xs ++ [] = xs, which need induction to be proved

Setting

Prove properties of functional programs using rewriting and induction.

Problem: Some of these properties require lemmas, that

- Needs to be conjectured,
- Requires induction to be proved, and
- ► Might require lemmas themselves

Enter HipSpec

Solves this problems by:

- Generates an equational theory by counter-example testing,
- ► Try to prove this theory by applying induction
- ▶ Then, try to prove the user-stated properties
- ▶ Proof search with first-order theorem provers

Overview of HipSpec

Overview of HipSpec

Equivalence classes partitioning

Generates a bunch of terms:

```
\lceil \rceil + + \lceil \rceil
                                   grev [] [] grev (rev xs) []
grev [] (rev xs)
                 grev (rev xs) ys grev [] xs grev xs []
[]++qrev xs ys
                 qrev [] (xs++ys) (x:xs)++[] qrev xs ys++[]
grev (x:[]) xs
                 grev [] (x:xs)
                                   rev []
                                               rev (grev ys xs)
rev (rev xs)
                 []++rev xs
                                   rev xs
                                               rev xs++vs
XS
                 []++xs
                                   xs++[] (xs++ys)++[]
[]++(xs++ys)
                                   (x:[])++xs xs++(x:[])
                 xs++vs
```

Equivalence classes partitioning

```
xs
xs++[]
[]++xs
qrev [] xs
rev (rev xs)
qrev (rev xs) []
```

```
[]
rev []
qrev [] []
[]++[]
```

```
qrev xs ys
rev (qrev ys xs)
rev xs++ys
[]++qrev xs ys
qrev [] (qrev xs ys)
qrev xs ys++[]
qrev (qrev ys xs) []
```

```
xs++ys
qrev (rev xs) ys
[]++(xs++ys)
qrev [] (xs++ys)
(xs++ys)++[]
```

```
x:xs

[]++(x:xs)

qrev [] (x:xs)

(x:xs)++[]

(x:[])++xs

qrev (x:[]) xs
```

```
rev xs
qrev xs []
[]++rev xs
qrev [] (rev xs)
```

Example of pruned equations from QuickSpec

```
Universe has 2893 terms, 1824 classes
== equations ==
1: xs++[] == xs
2: grev xs [] == rev xs
3: \Gamma + xs = xs
4: grev [] xs == xs
 5: (x:xs)++ys == x:(xs++ys)
 6: (xs++ys)++zs == xs++(ys++zs)
 7: qrev xs ys++zs == qrev xs (ys++zs)
 8: grev (x:xs) ys == grev xs (x:ys)
 9: grev (xs++ys) zs == grev ys (grev xs zs)
10: grev (grev xs ys) zs == grev ys (xs++zs)
```

Overview of HipSpec

Hip: The Haskell Inductive Prover

► Translates the Haskell source definitions to first order logic

Function definition axioms:

- $I \qquad \forall \, \mathsf{x}, \mathsf{xs}. \, \mathrm{rev}(\mathrm{cons}(\mathsf{x}, \mathsf{xs})) = \mathrm{append}(\mathrm{rev}(\mathsf{xs}), \mathrm{cons}(\mathsf{x}, \mathrm{nil}))$
- 2 rev(nil) = nil

Data type axioms:

- 3 $\forall x, xs, y, ys. cons(x, xs) = cons(y, ys) \implies x = y \land xs = ys$
- 4 $\forall x, xs. nil \neq cons(x, xs)$
- Also supports higher-order functions and partial application
- Applies structural induction on properties

Picking a conjecture, and the main loop

- 1. Try to prove "smallest" unproved equation this round
- 2. Failure: save this for next round
- 3. Success: extend the theory
- 4. When a round did not lead to any successes, or everything proved, terminate.

Picking a conjecture, and the main loop

- 1. Try to prove "smallest" unproved equation this round
- 2. Failure: save this for next round
- 3. Success: extend the theory
- 4. When a round did not lead to any successes, or everything proved, terminate.

We use light-weight reasoning by means of a congruence closure to prune away conjecture that can be proved without induction.

Demo!

First suite from Case-Analysis for Rippling and Inductive Proof by Johansson, Dixon and Bundy (2010)

85 conjectures, 71 equational.

First suite from Case-Analysis for Rippling and Inductive Proof by Johansson, Dixon and Bundy (2010)

85 conjectures, 71 equational.

Tool	Proved conjectures (of 85)
Zeno	82
ACL2s	74
IsaPlanner	47
Dafny	45
HipSpec	67 (of 71)

First suite from Case-Analysis for Rippling and Inductive Proof by Johansson, Dixon and Bundy (2010)

85 conjectures, 71 equational.

Tool	Proved conjectures (of 85)
Zeno	82
ACL2s	74
IsaPlanner	47
Dafny	45
HipSpec	67 (of 71)

Unproved:

```
count n xs = count n (sort xs), len (filter p xs) \leq len xs sorted (sort xs) = True, len (delete n xs) \leq len xs
```

But they require conditional lemmas!

First suite from Case-Analysis for Rippling and Inductive Proof by Johansson, Dixon and Bundy (2010)

85 conjectures, 71 equational.

Tool	Proved conjectures (of 85)
Zeno	82
ACL2s	74
IsaPlanner	47
Dafny	45
HipSpec	67 (of 71)

Two properties only proved by HipSpec!

```
rev (drop i xs) = take (len xs - i) (rev xs)
rev (take i xs) = drop (len xs - i) (rev xs)
```

Requires a bunch of quite far-fetched lemmas, and the second sec

Second test suite from *Productive Use of Failure in Inductive Proof* by Bundy and Ireland (1995)

Their tool CLAM supposedly proves all, but some properties contrived towards their tool, cf rev (rev xs ++ []) = xs

49 theorems, 38 equational.

Second test suite from *Productive Use of Failure in Inductive Proof* by Bundy and Ireland (1995)

Their tool CLAM supposedly proves all, but some properties contrived towards their tool, cf rev (rev xs ++ []) = xs

49 theorems, 38 equational. HipSpec proves 36!

Second test suite from *Productive Use of Failure in Inductive Proof* by Bundy and Ireland (1995)

Their tool CLAM supposedly proves all, but some properties contrived towards their tool, cf rev (rev xs ++ []) = xs

49 theorems, 38 equational. HipSpec proves 36!

Unproved:

No	Conjecture
T14	ordered (isort xs) = True
T50	<pre>count x (isort xs) = count x xs</pre>

Zeno?

Second test suite from *Productive Use of Failure in Inductive Proof* by Bundy and Ireland (1995)

Their tool CLAM supposedly proves all, but some properties contrived towards their tool, cf rev (rev xs ++ []) = xs

49 theorems, 38 equational. HipSpec proves 36!

Unproved:

No	Conjecture
T14	ordered (isort xs) = True
T50	<pre>count x (isort xs) = count x xs</pre>

Zeno? Proves 21/49

Success!

Success!?

There might be some limitations...;)

Future work and current limitations

- Better heuristics (Equation order)
- Big theories and scalability
- Conditional properties
- Non-terminating programs and infinite values

Conclusion

Exploring the laws that hold through testing does not only help your understanding, but also helps to prove properties.

A form of completeness from QuickSpec: If there are laws up to a certain term size then QuickSpec is guaranteed to find them.

If the lemma is there, HipSpec will eventually try to prove it!

Extra slides

Obtaining HipSpec

- Clone the repository: git clone http://github.com/danr/hipspec
- Installation (requires GHC):
 cd hipspec
 git submodule update --init
 cabal install
- Install a theorem prover (say eprover)
- ► Try an example! cd testsuite/ runghc Reverse.hs

Future work: Big theories

Taking all your functions from a big program:

- ► Testing takes a long time
- ► Lemmas become unrelated

Future work: Big theories

Taking all your functions from a big program:

- ► Testing takes a long time
- ► Lemmas become unrelated

How do we know when functions are related?

Future work: Conditional properties

Lemmas with implications:

sorted $xs = True \implies sorted (insert x xs) = True$

Future work: Conditional properties

Lemmas with implications:

```
sorted xs = True ⇒ sorted (insert x xs) = True
A trick: use a new data type, abstract for HipSpec:
data SortedList = SortedList { getSortedList :: [Nat] }
instance Arbitary SortedList where
  arbitrary = SortedList . scanl1 (+) `fmap` arbitrary
```

Future work: Conditional properties

Lemmas with implications:

invariant.

```
sorted xs = True \implies sorted (insert x xs) = True
A trick: use a new data type, abstract for HipSpec:
data SortedList = SortedList { getSortedList :: [Nat] }
instance Arbitary SortedList where
  arbitrary = SortedList . scanl1 (+) 'fmap' arbitrary
Now, we can state the property in terms of a sorted list s1:
       sorted (insert x (getSortedList sl)) = True
```

Need a notation to HipSpec that SortedList has a sorted

Proof: rev (drop i xs) = take (len xs-i) (rev xs)

```
No Conjecture

1 len (drop x xs) = len xs-x
2 len xs = len (rev xs)
3 xs = take x xs++drop x xs
4 rev (ys++xs) = rev xs++rev ys
5 xs = take (len xs) (xs++ys)
```

```
rev (drop i xs) = \{5\} take (len (rev (drop i xs))) (rev (drop i xs)++rev (take i xs)) = \{2\} take (len (drop i xs)) (rev (drop i xs)++rev (take i xs)) = \{1\} take (len xs-i) (rev (drop i xs)++rev (take i xs)) = \{4\} take (len xs-i) (rev (take i xs++drop i xs)) = \{3\} take (len xs-i) (rev xs)
```

Future work: Conditional properties II

What about

$$x\,<\,y=True\,\wedge\,y\,<\,z=True\implies x\,<\,z=True$$

Future work: Conditional properties II

What about

$$x < y = \mathsf{True} \land y < z = \mathsf{True} \implies x < z = \mathsf{True}$$
 Same trick?

```
data Pair = Pair { smaller :: Nat , larger :: Nat }
```

Can we state the property?

smaller
$$p1 < larger p2 = True$$

Future work: Conditional properties II

What about

$$x < y = True \land y < z = True \implies x < z = True$$
 Same trick?
$$data \ Pair = Pair \ \{ \ smaller :: \ Nat \ , \ larger :: \ Nat \ \}$$

Can we state the property?

Problem: how are p1 and p2 related?

Limitation: Expensive calculations

Imagine a program which does exponentiation, **, on unary nats
data Nat = Zero | Succ Nat

Too expensive to caluclate x ** (y ** z).

Limitation: Expensive calculations

Imagine a program which does exponentiation, **, on unary nats
data Nat = Zero | Succ Nat

Too expensive to caluclate x ** (y ** z).