Cvičení z Algoritmů 3, 13. 10.

Vyřešte následující dva příklady. Jejich řešení věnujte alespoň 90 minut (nebo méně, pokud se Vám je povede vyřešit dříve). Správná řešení zveřejním a okomentuji za týden. Není nutné mi nic posílat. V případě potřeby mě můžete kontaktovat mailem a můžeme si dohodnout konzultaci na Zoomu.

Příklad 1.

Substituční metodou nalezněte horní omezení T(n), které je dáno rekurencí

$$T(1) = 1,$$

$$T(n) = T(\lceil \frac{n}{2} \rceil) + 1.$$

Odhadněte můžete získat například metodou stromu.

Příklad 2.

Jsou dány rekurence

$$T(n) = 7T(\frac{n}{2}) + n^2,$$

$$S(n) = aS(\frac{n}{4}) + n^2.$$

Určete, pro které hodnoty a platí $T(n) = \Omega(S(n))$.

Řešení

Příklad 1.

Metodou stromu odhadneme, že rekurence je seshora omezena (O(n)) (podobný příklad (bez zaokrouhlení nahoru) jsme si ukazovali na přednášce). Vybereme funkci $c \lg n$ a budeme předpokládat

$$T(\lceil \frac{n}{2} \rceil) \le c \cdot \lg(\lceil \frac{n}{2} \rceil).$$
 (1)

Potřebujeme se zbavit zaokrouhlení ve výrazu $\lg(\lceil\frac{n}{2}\rceil)$, nemůžeme jej pouze vynechat, protože funkce lg je monotoní. Můžeme ovšem spočítat

$$\lg(\lceil \frac{n}{2} \rceil) - \lg(\frac{n}{2}) = \lg(\frac{\lceil n/2 \rceil}{n/2}). \tag{2}$$

Využijeme toho, že pokud je n přirozené číslo, pak

$$\frac{\lceil n/2 \rceil}{n/2} \leq \frac{n/2 + 1/2}{n/2} = 1 + \frac{1}{n}.$$

Protože

$$\lg(1+\frac{1}{n}) \le 0.6 \text{ pro } n \ge 1$$

dostaneme z (2)

$$\lg(\lceil \frac{n}{2} \rceil) \le \lg(\frac{n}{2}) + 0.6.$$

Vrátíme se k rekurenci a dosadíme do ní předpoklad (1)

$$T(n) \le c \cdot \lg(\lceil \frac{n}{2} \rceil) + 1$$

$$\le c \left(\lg(\frac{n}{2}) + 0.6 \right) + 1$$

$$\le c \cdot \lg(n) - c + 0.6c + 1$$

$$\le c \lg(n),$$

pokud zvolíme c=2.5 (abychom dostal
i-c+0.6c+1=0). Okrajovou podmínku splníme nastavením

$$T(5) = T(6) = T(7) = T(8) = 4.$$

a $n_0 = 9$.

Příklad 2.

Použijeme master theorem. Podle něj je $T(n) = \Theta(n^{\log_2 7})$ (přitom $\log_2 7 \approx 2.81$). Pokud najdeme a tak, aby $S(n) = \Theta(g(n))$ a $n^{\log_2 7} = \Omega(g(n))$, máme hodnotu a, která nás zajímá. Projdeme tedy všechny tři případy, které mohou v MT pro S(n) nastat.

 $P\check{r}ipad\ 1$ nastane, pokud $n^2=O(n^{\log_4 a-\epsilon})$, tedy pokud $\log_4 a>2$. Odtud a>16. V takovém případě máme $S(n)=\Theta(n^{\log_4 a})$. Chceme také, aby $n^{\log_2 7}=\Omega(n^{\log_4 a})$, tedy $\log_2 7\geq \log_4 a$, odtud dostaneme $a\leq \sqrt{7}$. To je ovšem neslučitelné s požadavkem a>16.

 $\textit{P\'r\'ipad 2} \text{ nastane, pokud } a = 16. \text{ M\'ame pak } (n) = \Theta(n^2 \log n), \text{ a tak\'e plat\'i } n^{\log_2 7} = \Omega(n^2 \log n).$

 $P\check{r}ipad\ 3$ nastane, pokud a<16. V tomto případě máme $S(n)=\Theta(n^2)$ a přitom $n^{\log_2 7}=\Omega(n^2)$.

Celkově tedy $T(n) = \Omega(S(n))$ pro $a \le 16$.