Recuperación de Información Multimedia

Evaluación de Efectividad (Anexo: Ciencia, Papers)

CC5213 – Recuperación de Información Multimedia

Departamento de Ciencias de la Computación Universidad de Chile Juan Manuel Barrios – https://juan.cl/mir/ – 2020

Efectividad

- Efectividad ("effectiveness" o eficacia) se refiere a la calidad de la respuesta de un sistema
- Evaluación de la efectividad
 - Cuantificar el grado en que un sistema logra el objetivo deseado
- Dos tipos de sistemas a evaluar:
 - □ Sistemas de Detección:
 - Dada una consulta, el sistema determina una respuesta (Verdadero/Falso, A/B/C, etc.) para cada objeto del dataset junto con un valor de confianza (score)
 - □ Sistemas de Recuperación:
 - Dada una consulta, el sistema ordena los objetos del dataset del más al menos relevante

Colecciones de referencia

- Colección de referencia (Corpus o Dataset):
 - Conjunto de documentos usados para probar y evaluar algoritmos
 - □ Usualmente incluye:
 - Conjunto de datos
 - Conjunto de consultas (query set)
 - Respuestas esperadas para cada consulta (Ground-Truth)
- Medida de efectividad
 - □ Valor que determina el parecido entre la respuesta entregada por un sistema y la respuesta esperada (definida por el ground-truth)

Evaluación de Sistemas de Detección

Matriz de Confusión

Sumando Valores de la Matriz

- Total de respuestas correctas del sistema: TP + TN
- Total de respuestas incorrectas del sistema: FP + FN
- Cantidad de positivos dados por el sistema: TP + FP
- Cantidad de positivos en el ground-truth: TP + FN
- Cantidad de respuestas correctas:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Métricas de Efectividad

Precision y Recall:

$$precision = \frac{TP}{TP + FP} \qquad recall = \frac{TP}{TP + FN}$$

Media armónica entre precision y recall:

$$F_1 = \left(\frac{\text{precision}^{-1} + \text{recall}^{-1}}{2}\right)^{-1} = \frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Correlación entre respuesta y realidad:

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP) \cdot (FN + TN) \cdot (FP + TN) \cdot (TP + FN)}}$$

Medidas Normalizadas

True Positive Rate o Sensitivity o Recall:

$$TPR = \frac{TP}{TP + FN}$$

True Negative Rate o Specificity:

$$TNR = \frac{TN}{FP + TN}$$

False Positive Rate:

$$FPR = \frac{FP}{FP + TN} = 1 - TNR$$

■ False Negative Rate: $FNR = \frac{FN}{TP + FN} = 1 - TPR$

Medidas Normalizadas

- Otros nombres usados para las medidas normalizadas:
 - □ CAR (Correct Acceptance Rate) (TPR)
 - □ CRR (Correct Rejection Rate) (TNR)
 - ☐ FAR (False Acceptance Rate) (FPR)
 - ☐ FRR (False Rejection Rate) (FNR)

Ajuste de la Efectividad

- Junto con cada respuesta se tiene un valor de confianza o score
- El score se compara con un umbral de decisión T
 - □ Si score \ge T \rightarrow responder Verdadero
 - □ Si score < T \rightarrow responder Falso
- Si Tes bajo, el sistema es permisivo
 - □ Buen recall, mal precision
- Si *T* es alto, el sistema es estricto
 - □ Buen precision, mal recall
- La elección de *T* depende del costo asociado a errores FP y FN

- Variando el umbral T se puede graficar el comportamiento del detector
 - Se obtienen curvas de comportamiento del sistema donde cada punto es un posible punto de operación

- Curva ROC (Receiver Operating Characteristic):
 - □ TPR vs FPR o sensitivity vs (1 specificity)

- Detection error tradeoff (DET)
 - □ FNR vs FPR en un gráfico Log-Log

70

Ejemplo Ajuste de Efectividad

Se tiene un detector con estos resultados:

	Dijo V	Dijo F		
Es V	900	100	1.000	Recall = 90% Precision = 31%
Es F	2.000	7.000	9.000	F_1 score = 0.462 Accuracy = 79%
	2.900	7.100	10.000	MCC = 0.448

Con un umbral de decisión más estricto:

	Dijo V	Dijo F		Recall = 30%
Es V	300	700	1.000	Precision = 94%
Es F	20	8.980	9.000	F_1 score = 0.455 Accuracy = 93%
	320	9.580	10.000	MCC = 0.508

Variando el umbral de decisión es posible ajustar FP vs FN

Matriz de Confusión N clases

En la diagonal se muestran los datos correctamente clasificados

Evaluación de Sistemas de Recuperación

Sistema de Recuperación

- Para una consulta de obtiene una lista de documentos ordenados del más al menos relevante ("ranking")
 - □ Ejemplos: Buscar documentos en Internet, Buscar fotos parecidas, Buscar apariciones de un objeto

Consulta

Respuestas correctas (ground-truth)

lm126	lm938	lm837	lm012
-------	-------	-------	-------

Respuestas obtenidas	lm292	lm126	lm343	lm510	lm012	lm282	lm133	lm938
Rank	1	2	3	4	5	6	7	8

Evaluación de la Efectividad

- Precision: La proporción de documentos relevantes con respecto al total de documentos retornados por el sistema
- Recall: La proporción de documentos relevantes con respecto al total de documentos que debió haber encontrado el sistema
- Gráficamente:
 - □ U es el total de documentos existentes
 - ☐ *A* es el conjunto de documentos encontrados (respuestas)
 - ☐ *R* es el conjunto de documentos relevantes (correctos)
 - \square R_a es el conjunto de relevantes encontrados

$$precision = \frac{|R_a|}{|A|}$$

$$recall = \frac{|R_a|}{|R|}$$

Evaluación de la Efectividad

- Se desea conocer como cambia precision en función de recall
 - □ Calcular **precision** desde la posición 1 hasta la posición de cada respuesta correcta encontrada

			•	estas corre ound-truth		lm126	lm938	lm837	lm012
Rank	1	2	3	4	5	6	7	8	∞
Respuesta del Sistema	lm292	lm126	lm343	lm510	lm012	lm282	2 Im133	3 Im938	3 Im837
	×	✓	×	×	✓	×	×	✓	not-found
Recall		1/4=0.25			2/4=0.5			3/4=0.7	75 4/4=1
Precision		1/2=0.5			2/5=0.4			3/8=0.3	88 4/∞=0

Precisión Interpolada

- Calcular cada valor de recall y su precision asociado
 - □ En el ejemplo: P(0.25)=0.5, P(0.5)=0.4, P(0.75)=0.38, P(1)=0
- Precisión Interpolada:
 - □ Máxima precisión desde cierto punto de recall en adelante:

$$PI(r) = Max_{j \ge r} \{P(j)\}$$

- □ PI es una función decreciente
- □ Se calcula para 11 puntos de recall: {0, 0.1, 0.2, ..., 0.9, 1}
- □ En el ejemplo: PI(0)=PI(0.1)=PI(0.2)=0.5, PI(0.3)=PI(0.4)=PI(0.5)=0.4, etc.
- Se promedian las precisiones interpoladas para todas las consultas en los 11 puntos de recall y se construye un gráfico recall vs precision

Gráfico recall vs precision

Sistema A es más efectivo que el Sistema B

Average Precision (AP)

- Para una consulta: promedio de precision en las posiciones donde se encontró un documento relevante
 - Si un documento relevante no está en la lista de respuestas, entonces tiene precision 0
 - En el ej.: AP=(0.5 + 0.4 + 0.38 + 0) / 4 = 0.32
- Notar que NO ES el promedio de precision en todas las posiciones, si no que solo considera las posiciones donde cambia el recall
- □ Para un sistema: promedio el AP de todas las consultas es el Mean Average Precision (MAP)

Precision at Rank (P@r)

- □ Para una consulta: c(r)/r
 - r es una posición (ej. 1, 5, 20,100)
 - c(r) es el número de documentos relevantes encontrados entre las posiciones 1 y r
- □ Para un sistema: promediar P@r de todas las consultas

Recall at Rank (R@r)

- □ Para una consulta: c(r)/t
 - t es el número total de documentos relevantes para la consulta
- □ Para un sistema: promediar R@r de todas las consultas

R-precision

- □ Precisión en la posición igual a la cantidad de respuestas correctas, es decir, cuando |A|=|R|.
- Para un sistema: promediar R-precision de todas las consultas

Reciprocal Rank

- □ Precision al obtener la primera respuesta correcta: 1/r
 - r es el menor rank de las respuestas correctas
- Se puede restringir considerando sólo las primeras S respuestas, i.e.: 1/r si r ≤ S o 0 si no
- □ Para un sistema: promediar Reciprocal Rank de todas las consultas es el Mean Reciprocal Rank (MRR)

F-measure (F₁ score) y E-measure

 Combinar precision y recall en un único valor usando la media armónica

$$F(j) = \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}}$$

$$E(j) = 1 - \frac{1+b^2}{\frac{b^2}{r(j)} + \frac{1}{P(j)}}$$

r(j): recall j^{th} objeto en el ranking

P(j): precision j^{th} objeto en el ranking

b: parámetro del usuario

Ejercicio

- Calcular para cada sistema:
 - MAP
 - MRR
 - □ Recall@5
 - □ R-Precision

Sistema 1:

	Q_1	Q_2	Q_3
1	lm38	lm12	lm36
2	lm94	lm56	lm30
3	lm09	lm49	lm35
4	lm73	lm55	lm93
5	lm74	lm34	lm53
6	lm48	lm03	lm63

Ground-Truth:

Q_1	lm38	lm09	lm49
Q_2	lm56	lm34	
Q_3	lm36	lm53	

Sistema 2:

	Q_1	Q_2	Q_3
1	lm49	lm56	lm09
2	lm91	lm50	lm36
3	lm35	lm96	lm63
4	lm09	lm33	lm18
5	lm62	lm34	lm60
6	lm38	lm40	lm28

Ejercicio MAP

Sistema 1:

	Q_1	Q_2	Q_3
1	✓	×	✓
2	×	→	×
3	✓	×	×
4	×	×	×
5	×	✓	✓
6	×	×	×

$$AP_1 = (1+2/3+0)/3 = 0.56$$

$$AP_2 = (1/2 + 2/5)/2 = 0.45$$

$$AP_3 = (1+2/5)/2 = 0.70$$

MAP=0.57

Sistema 2:

	Q_1	Q_2	Q_3
1	✓	✓	×
2	×	×	✓
3	×	×	×
4	>	×	×
5	×	✓	×
6	✓	×	×

$$AP_1 = (1+2/4+3/6)/3 = 0.67$$

$$AP_2 = (1+2/5)/2 = 0.70$$

$$AP_3=(1/2+0)/2=0.25$$

MAP=0.54

AP=Promediar precisión al encontrar cada relevante MAP=Promediar AP de cada query

Ejercicio MRR

Sistema 1:

	Q_1	Q_2	Q_3
1	✓	×	✓
2		✓	
2			
4 5			
6			

MRR = (1+1/2+1)/3

MRR = 0.83

Sistema 2:

	Q_1	Q_2	Q_3
1	>	>	×
2			✓
2			
4			
5			
6			

$$MRR = (1+1+1/2)/3$$

$$MRR = 0.83$$

MRR = Promediar precisión de la posición del primer relevante encontrado

Ejercicio Recall@5

Sistema 1:

	Q_1	Q_2	Q_3
1	✓	×	✓
2	×	✓	×
3	✓	×	×
4	×	×	×
5	×	✓	✓
6			

Recall@5 = (2/3+2/2+2/2)/3

Recall@5 = 0.89

Sistema 2:

	Q_1	Q_2	Q_3
1	✓	✓	×
2	×	×	✓
3	×	×	×
4	✓	×	×
5	×	✓	×
6			

Recall@5 = (2/3+2/2+1/2)/3

Recall@5 = 0.72

Recall@k = Promediar recall de la posición k

Ejercicio R-Precision

Sistema 1:

	Q_1	Q_2	Q_3
1	✓	×	✓
2	×	>	×
2	✓		
4 5			
6			

R-Precision = (2/3+1/2+1/2)/3

R-Precision = 0.56

Sistema 2:

	Q_1	Q_2	Q_3
1	→	✓	×
2	×	×	✓
3	×		
4			
5			
6			

R-Precision = (1/3+1/2+1/2)/3

R-Precision = 0.44

R-Precision = Promediar precisión de la posición igual a la cantidad de relevantes de la query

Resumen

- MAP considera la posición de todas las respuestas correctas de cada consulta
 - □ Si MAP=1 las n correctas están siempre en las primeras n posiciones
- P@r y R@r evalúan solo las primeras r posiciones
 - □ Si AverageP@5=1 significa que las primeras 5 respuestas contienen siempre respuestas correctas
 - □ R@r no funciona bien con r pequeños. R-Precision es como R@r donde r se ajusta a las cantidad de correctas de cada consulta
- MRR considera la posición de una única respuesta correcta
 - □ Si MRR=1 la primera correcta está siempre en la primera posición
- F₁ combina dos valores usando media armónica
 - □ Evita que un valor muy bueno esconda uno malo

Significancia

- ¿Cómo saber si la diferencia de MAP es suficientemente grande para poder decir que un sistema es mejor que el otro?
- MAP busca predecir el resultado que un sistema logrará en general para cualquier consulta genérica, a través de n observaciones (el AP de las n consultas del ground-truth)
- Los intervalos de confianza determinan un rango donde se encuentra un valor real, calculado como el promedio de las observaciones
 - \square Brevemente, el intervalo depende del número de observaciones, su varianza y riesgo α (o P-value) típicamente 5%:

$$P\left(\mu - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu_{\text{real}} \le \mu + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Correlación de Rankings

Correlación de Rankings

- El Ground-Truth es un ordenamiento ideal de documentos
- Se desea medir el parecido (correlación) entre la respuesta del sistema y la respuesta ideal
 - □ Valor entre -1 y 1: 1=idénticos, 0=sin relación, -1=inversos
- Se desea comparar permutaciones, es decir, listas de largo n con valores entre 1 y n, cada valor aparece una única vez
 - ☐ Si faltan documentos, se agregan al final en el mismo orden

Rank	1	2	3	4	5	6	7	8	9
GT (ideal)	В	D	A	G	E	-	F	C	н
Sistema	Α	В	D	E	G	F	C	I	н

Coeficiente de Spearman

 Para cada documento calcular la diferencia de rank entre ambas listas

	Rank GT	Rank Sistema	Diff	Diff ²
Α	3	1	2	4
В	1	2	-1	1
С	8	7	1	1
D	2	3	-1	1
E	5	4	1	1
F	7	6	1	1
G	4	5	-1	1
н	9	9	0	0
I	6	8	-2	4
S=Suma Diff ²				14

M

Coeficiente de Spearman

 Calcular las diferencias de rank entre la respuesta y el ideal y calcular la suma de cuadrados (S):

$$S = \sum \text{Diff}^2$$

- El Coeficiente de Spearman se obtiene al escalar el valor S al rango -1 a 1
 - □ Para listas de largo *n* el valor máximo que puede obtener *S* es:

$$M = n(n^2 - 1)/3$$

- Coeficiente Spearman = $1 \frac{2S}{M} = 1 \frac{6\sum \text{Diff}^2}{n(n^2 1)}$
- En el ejemplo:
 - □ Spearman(GT, Sistema) = 0.883

M

Coeficiente de Kendall Tau

- Comparar dos listas por medio de comparar la posición relativa entre todos los pares de documentos
- Para cada par de documentos (d_i, d_i) :
 - □ Si en ambas listas d_i esta antes que d_j o en ambas listas d_i esta después que d_i entonces ambas listas son concordantes para el par (d_i, d_j)
 - \Box En cambio si en una lista d_i esta antes que d_j pero en la otra lista d_i esta después que d_j las listas son discordantes para ese par
 - \square Es decir, el par (d_i, d_i) es concordante si:

```
\operatorname{rank}_{A}(d_{i}) > \operatorname{rank}_{A}(d_{i}) \text{ y } \operatorname{rank}_{B}(d_{i}) > \operatorname{rank}_{B}(d_{i})
o \operatorname{rank}_{A}(d_{i}) < \operatorname{rank}_{A}(d_{i}) \text{ y } \operatorname{rank}_{B}(d_{i}) < \operatorname{rank}_{B}(d_{i})
```


Coeficiente de Kendall Tau

- Para todos los pares de documentos contar cuantos son concordantes y cuantos son discordantes entre ambas listas
- Para *n* documentos, total pares $M_n = n(n-1)/2$
- Coeficiente de Kendall Tau es:

```
\tau = (\text{\#pares\_concordantes} - \text{\#pares\_discordantes}) / M_n

tau = 0

for (i = 2 to n)
```

```
for (i = 2 to n)
  for (j = 1 to i-1)
    tau += signo(rank<sub>A</sub>[i]-rank<sub>A</sub>[j]) * signo(rank<sub>B</sub>[i]-rank<sub>B</sub>[j])
tau /= n * (n-1) / 2
```


Bibliografía

Modern Information Retrieval. Baeza-Yates, Ribeiro-Neto, 2011.

Anexo: Ciencia, Papers, Test de Hipótesis

Publicaciones Científicas

- Tipos de publicaciones:
 - Paper, Short Paper, Poster, Survey, Position paper,
 Capítulo de Libro, Technical Report, ...
- Publishers (Springer, Elsevier, IEEE, ACM, ...)
- Conferencias vs Journals (ISI, Scopus, ...)
- Peer Reviewed vs Non Peer Reviewed
- Lugares para buscar papers:
 - https://scholar.google.com
 - Web of Knowledge
 - □ arXiv.org

Papers

- Cada paper tiene una o más contribuciones
- Estructura típica de un paper:
 - Título, Autores (con su filiación), Abstract, 1.Introducción, 2.Estado del Arte, 3.Propuesta (idea novedosa), 4.Experimentos/Evaluaciones, 5.Conclusiones
- Idealmente los resultados deben ser replicables (aunque no siempre es posible)
 - Detalles de experimentos, Datasets usados, etc.
- Existen métricas de papers, autores y conferencias
 - ☐ Citas, Impact Factor, h-index, ...
 - □ Publish or Perish (PoP)
 - Webometrics
 - http://www.webometrics.info/en/node/92
 - http://www.webometrics.info/en/Latin_America/Chile

Experimentos y Test de Hipótesis

- En ciencia se desea saber si un experimento tiene efecto
- Se definen dos conjuntos, en uno se aplica el experimento y en el otro no (grupo de control):
 - Hipótesis nula: no hay efecto (no hay diferencia entre ambos conjuntos)
 - ☐ Hipótesis alternativa: si hay efecto (hay diferencia notoria)
- Si se encuentra una diferencia significativa entre ambos conjuntos, tenemos evidencia para "rechazar la hipótesis nula"
 - □ Conclusión: no es verdad que no hay efecto
- Si no se encuentra diferencia entre los conjuntos ocurre un "fallo en rechazar la hipótesis nula"
- Este enfoque es muy usado en medicina, biología (no tanto en publicaciones de cs de la computación)

Test de Hipótesis

- Se obtienen n observaciones de un experimento y se calcula su promedio μ y varianza σ
- Se asume una distribución normal (o t-student si n<30) se calcula un intervalo donde con probabilidad (1-α) se encuentra el promedio real (μ_{real})
 - α=5% o P-value se refiere al riesgo o a la probabilidad de rechazar la hipótesis nula cuando en realidad era verdadera

$$P\left(\mu - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu_{\text{real}} \le \mu + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Problemas del Test de Hipótesis

- Usualmente se usa P-value con un valor arbitrario del 5%
 - Ver https://en.wikipedia.org/wiki/Data_dredging
- La ocurrencia de un efecto (significancia estadística) se transforma artificialmente en una decisión booleana
 - □ No se señala la magnitud del efecto
 - Cualquier efecto (marginal o no) puede ser estadísticamente significativo
 - Basta hacer experimentos con un *n* muy grande
 - □ "Con una confianza de un 95% se concluye que comer X aumenta la probabilidad de cáncer"
 - Se concluye que "aumenta", independiente de si aumenta en un 1% o en un 500%

Observación vs Experimento

- Estudio Observacional
 - Esconden causa-efecto, confounding variables, spurious correlations
 - https://www.tylervigen.com/spurious-correlations
 - □ No es buena idea elaborar test de hipótesis con datos históricos
 - □ Si se revisan los datos y se hace un test de hipótesis adhoc es muy posible encontrar patrones particulares existentes únicamente en esos datos
 - Se podrían usar distintos datasets, evaluando la hipótesis en un conjunto de test desconocido
- Experimento Controlado
 - Para evaluar la existencia de algún efecto se debe diseñar y realizar un experimento adecuado (cuidando variables confounding, sesgos, etc.)

P-Value

Fuente:

https://xkcd.com/1478/

Ver discusión en: https://www.explainxkcd.com/wiki/index.php/1478

P-Hacking

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P > 0.05),

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P>0.05)

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P < 0.05)

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P>0.05).

Fuente: https://xkcd.com/882/

Ver discusión en:

https://www.explainxkcd.com/wiki/index.php/882

https://en.wikipedia.org/wiki/Data dredging

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05).

