ТВиМС, дз – 3

Бурмашев Григорий, БПМИ-208 $4 \ \mbox{февраля} \ 2022 \ \mbox{г.}$

Номер 11 [лист 1]

Задача 11 (ДЗ). Пусть X_n — последовательность независимых и равномерно распределенных на [0,1] случайных величин. Докажите, что последовательность $Y_n = \sqrt[n]{X_1 \cdot \ldots \cdot X_n}$ почти наверное сходится и найдите ее предел.

От Зеленова была подсказка про закон больших чисел, попробуем подвести под него. Посмотрим на $\ln X_n$:

$$\forall n \in \mathbb{N} : \mathbb{E}\left(\ln(X_n)\right) = \int_{-\infty}^{+\infty} \ln x \rho(x) dx = \int_0^1 \ln x dx = x \cdot (\ln x - 1) \Big|_0^2 = -1$$

Теперь смотрим на Y_n :

$$\ln \sqrt[n]{X_1 \cdot \ldots \cdot X_n} = \frac{1}{n} \cdot \ln(X_1 \cdot \ldots \cdot X_n) = \frac{1}{n} \cdot \ln(X_1) \cdot \ldots \cdot \ln(X_n) = \frac{\ln(X_1) \cdot \ldots \cdot \ln(X_n)}{n}$$

По уЗБЧ Колмогорова это стремится к $\mathbb{E} \ln(X_1)$, что равно -1. Тобишь:

$$\ln(Y_n) \xrightarrow{\text{п.н}} -1$$

Отсюда:

$$Y_n \xrightarrow{\Pi.H} e^{-1}$$

Номер 2 [не из листа]

Задача II (не из листа)

Пусть X_n – последовательность <u>независимых</u> случайных величин, удовлетворяющих условию:

$$\forall n \in \mathbb{N} \quad P(X_n = 1) = P(X_n = 2) = \frac{1}{2}$$

- а) Докажите по определению, что $X_n \xrightarrow{d} X_1$.
- б) Докажите, что $X_n \not\xrightarrow{P} X_1$, и что $X_n \not\xrightarrow{L_2} X_1$.

a)

По определению хотим:

3) по распределению, если $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ в каждой точке x, в которой непрерывна функция F_X (пишут $X_n \stackrel{d}{\longrightarrow} X$).

Смотрим на функцию распределения

$$F_{X_n}(t) = P(X_n \le t) = egin{cases} 1, t \ge 2 \ rac{1}{2}, t \in [1, 2) \ 0,$$
иначе

А для X_1 (т.к условия нашей последовательности выполняется для любого n):

$$F_{X_1}(t) = P(X_1 \le t) = egin{cases} 1, t \ge 2 \ rac{1}{2}, t \in [1, 2) \ 0,$$
иначе

Как не сложно заметить, они равны в каждой точке t, в которой непрерывна функция F_{X_1} . Ну в таком случае F_{X_n} стремится при $n \to \infty$ к F_{X_1} , а значит:

$$X_n \stackrel{d}{\longrightarrow} X_1$$

b)

По определению смотрим на отрицание сходимости по вероятности

$$\exists \varepsilon > 0 : \lim_{n \to \infty} P(|X_n - X_1| \ge \varepsilon) \ne 0 ?$$

Посмотрим на нашу последовательность. X_i принимает значения либо 1, либо 2. Если случится, что X_n и X_1 примут разные значения, то при $\varepsilon=1$ выполнится отрицание. Заметим, что:

$$P(X_n = X_1) = \frac{1}{2}$$

Потому что всего у нас 4 возможных исхода (1 1, 2 2, 1 2, 2 1), и подходят из них нам только два. В таком случае:

$$P(X_1 \neq X_1) = 1 - P(X_n = X_1) = \frac{1}{2}$$

Теперь можем зафиксировать $\varepsilon=1$ и получить:

$$\lim_{n \to \infty} P(|X_n - X_1| \ge \varepsilon) = \lim_{n \to \infty} P(|X_n - X_1| \ge 1) = P(X_n \ne X_1) = \frac{1}{2} \ne 0$$

Выполнилось отрицание, а значит:

$$X_n \stackrel{P}{\nrightarrow} X_1$$

Ч.Т.Д

Теперь проверяем сходимость в среднем квадратичном. По определению:

4) сходимость в среднем квадратичном, т.е.
$$X_n \stackrel{L^2}{\longrightarrow} X \Leftrightarrow \mathbb{E}|X_n - X|^2 \to 0.$$

Смотрим на это мат.
ожидание. Посмотрим, какие значения может принимать $|X_n - X_1|$:

X_n/X_1	1	2
1	0	1
2	1	0

Тогда распределение:

$$\begin{array}{c|ccc} |X_n - X| & 0 & 1 \\ \hline P & \frac{1}{2} & \frac{1}{2} \end{array}$$

Отсюда получаем:

$$\mathbb{E}|X_n - X|^2 = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2} \neq 0$$

А значит нет стремления к нулю, следовательно и нет сходимости в среднем квадратичном, т.е:

$$X_n \stackrel{L_2}{\nrightarrow} X_1$$