1 Variety

- **Problem 1.1.** (a) Let y be the plane curve $y = x^2$ (i.e., y is the zero set of the polynomial $f = y x^2$). Show that A(Y) is isomorphic to a polynomial ring in one variable over k.
 - (b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial ring in one variable over k.
- (c)* Let f be any irreducible quadratic polynomial in k[x,y], and let W be the conic defined by f. Show that A(W) is isomorphic to A(Y) or A(Z). Which one is it when?

Solution. This is a new solution

Problem 1.2. The Twisted Cubic Curve. Let $Y \subset \mathbb{A}^3$ be the set $Y = \{(t, t^2, t^3) | t \in \}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that A(Y) is isomorphic to a polynomial ring in one variable over k. We say that Y is given by the **parametric** representation $x = t, y = t^2, z = t^3$.

Solution.

2 Projective Varieties

Problem 2.1. This is a problem

Solution. This is a new solution