Homework #2

Javier Sagredo

May 2, 2022

1 Exercise 3.2

The variables in the third refinement can be classified as:

Variable	Type	Belongs to	Description
A	BOOL	Environment	Physical state of room occupancy
SR	SENSOR	Environment	Sensor, on when someone is on it, off otherwise
a	BOOL	Controller	Logical state of room occupancy
wire_10	BOOL	Communication	Whether the signal from the sensor just changed to off
tl	COLORS	Communication	Indicates the color of the light

The requirements are met as described here:

- \bullet FUN1: This system deals with the access control of a room ${\rm N/A.}$
- SAF2: No more than one person can be in the room

As the variable that models the room can only be TRUE or FALSE, and:

$$a = \mathsf{TRUE} \Rightarrow \mathsf{tI} = \mathsf{red}$$

and the guard for the event that indicates that a person leaves the sensor (thus entering the room) requires tl = green, there's no way such event can be triggered while the room is already full.

• FUN3 : The system must not deadlock

inv7 ensures that always some guard is true, therefore the system won't deadlock.

• EQP4: There is a status light outside the room with two colors: green and red

This is done by having the tl variable that can have one of those two values.

• FUN5: When the status light is red, the room cannot be accessed. When the status light is green, the room can be accessed

This is modelled by the even in which a person leaves the sensor requiring that tl = green.

- EQP6: There is a presence sensor at the entrance of the room This is modelled by the SR variable.
- FUN7: The presence sensor produces an *on* signal when a person is standing on it and an *off* signal otherwise

This is modelled by the events SR_ARRIVE setting the variable SR to on and SR_DEPARTURE setting it to off.

• FUN8: A person inside the room can leave at any moment (using a door different from the one used to enter the room)

This is modelled by the fact that the only guard for PERSON_OUT is just the mere presence of the person inside the room.

• ENV9: The inside of the room cannot be seen from its outside and vice-versa

N/A.

• ENV10: People obey the status light

This is modelled by having tl = green as a guard to the only event that lets a person into the room.

• FUN11: Anyone wishing to enter the room must step on the sensor, and wait there until the status light is green, if it is not already

This is modelled by the fact that the only way to enter the room is through SR_ARRIVE and then SR_DEPARTURE which precisely describe the required behaviour. • ENV12: Anyone who stands on the sensor will wait there for the status light to turn green and enter the room

This is modelled by the fact that the only event that changes the variable SR from on to off is SR_DEPARTURE which requires tl=green as a guard.