K_1 . It is actually a bit easier to see (equivalently) that πg^{-1} conjugates K_1 to K_2 . Suppose that $k \in K_1$, so that

$$I_{p,2q+1,p}kI_{p,2q+1,p}=k.$$

Then since g commutes with $I_{p,2q+1,p}$, we have

$$(gI_{p,2q+1,p}g^{-1})k(gI_{p,2q+1,p}g^{-1}) = k,$$

SO

$$I_{p,2q+1,p}(g^{-1}kg)I_{p,2q+1,p} = g^{-1}kg.$$

Now, since $\pi I_{p,2q+1,p}\pi = I_{2p,2q+1}$, and since $\pi^2 = \text{Id}$, we have

$$(\pi I_{p,2q+1,p}\pi)(\pi g^{-1}kg\pi)(\pi I_{p,2q+1,p}\pi) = \pi g^{-1}kg\pi,$$

SO

$$I_{2p,2q+1}(\pi g^{-1}kg\pi)I_{2p,2q+1} = \pi g^{-1}kg\pi.$$

This says that $\pi g^{-1}kg\pi \in K_2$. Thus $g\pi$ conjugates K_2 to K_1 .

Now, with that established, given a representative F_{\bullet} of the K_2 -orbit on X given by some symmetric (2p, 2q + 1)-clan, to get a representative of the K_1 -orbit corresponding to that same clan, we just act on the flag F_{\bullet} by the matrix $g\pi$ to get the new flag $F'_{\bullet} = g\pi F_{\bullet}$. The flag F_{\bullet} is isotropic with respect to the diagonal form, so the flag F'_{\bullet} is isotropic with respect to the anti-diagonal form.

Let us look at a small example which illustrates the method just described for finding an isotropic representative of the K'-orbit Q_{γ} corresponding to a symmetric (2p, 2q + 1)-clan γ . Take p = q = 1, so that n = 2, and so that we are dealing with $G = SO(5, \mathbb{C})$, $K = S(O(2, \mathbb{C}) \times O(3, \mathbb{C}))$. Take the symmetric (2, 3)-clan $\gamma = (1, -, +, -, 1)$. None of the