# Dr. Christian Czymara EINFÜHRUNG IN DIE PANELREGRESSION

Day 1

DeZIM Summer School 2023

#### AGENDA

- Introduction & course structure
- Software, introduction to R
- Panel data management
- OLS assumptions and panel data

## INTRODUCTION & COURSE STRUCTURE

#### LECTURER

- •Fellow at University of Tel Aviv & lecturer at Goethe University Frankfurt
- Research interests: Immigration & integration, inter-group conflict, attitudes, mass media, political communication
- Methods: "Classical" quantitative methods for social research combined with computational methods and natural language processing
- More info: <a href="https://czymara.com/">https://czymara.com/</a>
- Contact me at <a href="mailto:czymara@tauex.tau.ac.il">czymara@tauex.tau.ac.il</a>

### GENERAL INFORMATION

- -2 days, 09:00-17:00
  - First session: 09:00-12:30
  - Lunch break: 12:30-13:30
  - Second session: 13:30-17:00
- Each session consists of a lecture-style talk and a practical computer exercise (and a 15-minute break in between)
- Material available at: https://github.com/czymara/panelreg\_DeZIM
- Slides in English, Kurs auf Deutsch ©
- ■100% für dozen
- Response rate: 50% (9/18)

### YOU SHOULD HAVE...

- Interest in quantitative social research
- Good working knowledge of descriptive and inductive statistics (i.e., linear regression)
- Some knowledge of R or another statistics software / language

### YOUR INTEREST

Super motivated class: mean is 9.5/10



#### YOUR KNOWLEDGE

- Subjective knowledge also rather high (7.4 of 10)
- Four experts (>=8)
- Four medium to advanced (6 and 7)
- No one (who answered the question) is unfamiliar (below 5)



#### YOUR KNOWLEDGE

- 38% have already worked with panel data
- ... No one has never heard of it
- Everybody (who answered the question) has already run linear regression, 87.5% logistic regression
- •55% usually work with R
- •... But there are also people in the class who do not regularly use statistical software

## YOUR EXPECTATIONS

- "'random and fixed effects"
- "random coefficient models, random slopes, dynamic models"
- "understand how time-series cross-sectional data such as the ESS or the ALLBUS can be analyzed using approaches such as the Mundlak model"
- "model specification and convergence issues in R"
- "application of weights to account for attrition" / "missing data"

### WHAT THIS COURSE WILL OFFER

- An introduction to the analysis of different types of longitudinal data
- ... and why it may help to tackle the notoriously difficult issue of causality
- •The means to conduct your own research
- Hands-on application of methods in exercises

## WHAT THIS COURSE WILL NOT OFFER

- Discussion of substantive theories
- In-depth understanding of mathematical foundation of methods
- Course is less suited as a general introduction into empirical research

## QUESTIONS OR COMMENTS?

#### LITERATURE

- See GitHub for literature on individual sessions
- Literature on methods
- •General textbook: Andreß, Golsch & Schmidt. <u>Applied panel data analysis for economic and social surveys</u>. Springer Science & Business Media, 2014



### SOFTWARE

#### R

- You will need R for all tutorials
- To work with R, install on your computers
- R: <a href="https://cloud.r-project.org/">https://cloud.r-project.org/</a>
- RStudio: <a href="https://www.rstudio.com/products/rstudio/download/">https://www.rstudio.com/products/rstudio/download/</a>

#### GITHUB

- Material will be uploaded on GitHub
- •Link: <a href="https://github.com/czymara/panelreg\_DeZIM">https://github.com/czymara/panelreg\_DeZIM</a>
- You can download files without having an account
- •For advanced users: Feel free to make an account and use GitHub Desktop

### PANEL DATA

### PANEL DATA

 Panel data contain repeated observations of the same units

|                        | Table A.1. Inflows of foreign population into sele |       |       |       |       |       | ected C | cted OECD countries and Russia |       |       |       |       |
|------------------------|----------------------------------------------------|-------|-------|-------|-------|-------|---------|--------------------------------|-------|-------|-------|-------|
|                        | Cross-sectional Thousands                          |       |       |       |       |       |         |                                |       |       |       |       |
| T '. 1' 1 4            | dimension                                          | 2008  | 2009  | 2010  | 2011  | 2012  | 2013    | 2014                           | 2015  | 2016  | 2017  | 2018  |
| Longitudinal dimension | Australia                                          | 203,9 | 219,4 | 202,2 | 206,4 | 236,0 | 244,8   | 233,9                          | 223,7 | 218,5 | 224,2 | 186,6 |
|                        | Austria                                            | 94,4  | 91,7  | 96,9  | 109,9 | 125,6 | 135,2   | 154,3                          | 198,7 | 158,7 | 139,3 | 131,7 |
|                        | Belgium                                            | 106,0 | 102,7 | 113,6 | 117,9 | 128,9 | 117,6   | 106,3                          | 128,8 | 103,2 | 109,5 | 116,8 |
|                        | Canada                                             | 247,2 | 252,2 | 280,7 | 248,7 | 257,8 | 259,0   | 260,3                          | 271,8 | 296,4 | 286,5 | 321,0 |
|                        |                                                    |       |       |       | •••   |       |         |                                |       |       |       |       |

https://www.oecd.org/els/mig/keystat.htm

#### PANEL DATA

- At least two repeated observations
- At least two units of analysis, otherwise we'd rather speak of time-series data
- Any units of analysis, e.g.
- Individuals, Households, Countries, Parties, Organizations etc.
- Different time intervals between repeated measurements
- Hourly, Daily, Weekly, Yearly etc.

## (SOME) IMPORTANT TERMS

- Balanced panel: Each unit is observed at each timepoint (i.e., number of observations is the same for each unit)
- Unbalanced panel: A panel with missing values (i.e., number of observations per unit differs)
  - Panel attrition: Units of analysis drop out of the panel permanently
  - Non-response:
    - Temporary unit non-response
    - Panel attrition
    - Late entries (e.g. refreshment samples)
    - Rotating panels

#### OPPORTUNITIES

- Monitor social change (e. g. development of immigration rates)
- Examine change at the individual level instead of aggregate trends → May circumvent ecologic fallacy (inference on the individual level based on aggregate relationships)

## PROBLEMS OF CROSS-SECTIONAL DATA

- Researchers normally want to make causal statements about the association of two variables
- •Causal means that the correlation of x and y is not driven by another variable z (spurious correlation)
- The best way to establish this are experiments
- → Randomly assigning individuals in treatment and control group
- -> All z are equally distributed between both groups

## PROBLEMS OF CROSS-SECTIONAL DATA

- However, experiments often not feasible in social sciences
- Observational studies thus adjust for z by statistical controlling after data collection
- •However, z is often not observed in the data at hand
- As a result, estimates based on cross-sectional data are often plagued by omitted variable bias
- This is the case if unobserved characteristics are correlated with the variables in the model (endogeneity)

## SOLUTIONS OF LONGITUDINAL DATA

- •With longitudinal data you can deal control even for (some) unobserved characteristics!
- This is because individuals act as "their own controls"
- This does not ensure causality
- But it at least comes closer
- •Still, it is important to think about the *theoretical* model (e.g., using a DAG)

#### THE POWER OF PANEL DATA

"It is hard to overstate the gain in identifying power provided by the beautifully simple method of [Fixed Effects] estimation over standard cross-sectional estimators"

- Gangl 2010: 34

### EXAMPLE

Describing and analyzing aggregate change

Table: Artificial Panel Data with Binary Indicator of Return Intentions

| ID    | Return<br>2020 | Return<br>2021 | Return<br>2022 |
|-------|----------------|----------------|----------------|
| 1     | 0              | 0              | 1              |
| 2     | 1              | 0              | 0              |
| • • • | •••            | • • •          | •••            |
| 999   | 1              | 1              | 1              |
| 1000  | 0              | 0              | 0              |
| Sum   | 0.10           | 0.12           | 0.14           |

Describing and analyzing individual change

Table: Artificial Panel Data with Binary Indicator of Return Intentions

| ID          | Return<br>2020 | Return<br>2021 | Return<br>2022 |
|-------------|----------------|----------------|----------------|
| 1           | 0              | 0              | 1              |
| 2           | 1              | 0              | 0              |
| • • •       | • • •          | • • •          | •••            |
|             |                |                |                |
| 999         | 1              | 1              | 1              |
| 999<br>1000 | 1 0            | 1 0            | 1 0            |

Describing and analyzing change

Table: Artificial Panel Data with Binary Indicator of Return Intentions Version 1

|                           | Return intentions 2022 | No return intentions 2022 | Total |
|---------------------------|------------------------|---------------------------|-------|
| Return intentions 2020    | 4%                     | 6%                        | 10%   |
| No return intentions 2020 | 10%                    | 80%                       | 90%   |
| Total                     | 14%                    | 86%                       | 100%  |

Describing and analyzing change

Table: Artificial Panel Data with Binary Indicator of Return Intentions Version 2

|                           | Return intentions 2022 | No return intentions 2022 | Total |
|---------------------------|------------------------|---------------------------|-------|
| Return intentions 2020    | 9%                     | 1%                        | 10%   |
| No return intentions 2020 | 5%                     | 85%                       | 90%   |
| Total                     | 14%                    | 86%                       | 100%  |

- Separating age and cohort effects
- Age effect = maturation effect (age)
- Cohort effect = generational effect (time born)
- •In Cross-sectional data, age and cohort are perfectly collinear (birth = t age)
- With panel data, units of the same cohorts are observed at different ages

- Controlling for omitted variable bias
- Example: What are the returns to education ("How much does additional education financially pay off?")
- y = income
- x = years of education
- Both measured at two time points (t)

### RETURNS TO EDUCATION



#### RETURNS TO EDUCATION

- $\bullet income_i = 6017 + 91 * educ_i + \varepsilon_i$
- •Typical interpretation: "If education increases by one unit (year) the income increases by 91 units (Euro."
- •But is 91 the true effect of education?
- Only if we have not omitted relevant covariates
- A potential omitted variable in this example is skill

### RETURNS TO EDUCATION



# WHAT DID WE LEARN FROM PANEL DATA?

- On average, those with more years of education have higher income
- ■But...
- Additional education does not pay off equally for everyone
- More for those with lower levels of education
- Not really for those with medium-high levels
- •More broadly, observing change within units What happens to y if x changes by one unit?
- Any unobserved time-constant characteristics can be controlled by comparing within and not between units

# QUESTIONS OR COMMENTS?

15 minutes break



#### R

- •Why "R"?  $\rightarrow$  "R is an implementation of the <u>S</u> programming language" (Wikipedia)
- R is a programming language for data analysis
- Rstudio is a so-called Integrated Development Environment (IDE), making your work a lot easier
  - Writing and running R Code
  - Overview of stored objects
  - Projects containing multiple files
  - Git connection
  - Etc.

# R VS. RSTUDIO





#### RBENEFITS

- Free and open source
- Large and very helpful community
- Plethora of user-written packages on basically everything
- Very powerful tools for data manipulation and data visualization
- In addition to analyzing data, you can write programs, websites, books, and much more with R (and R Markdown)
- ... and integrate with other languages

# GOOGLE COLAB

 To understand the basics of R, we will work with this Google Colab

# EXERCISE 1: R

Click link for exercise or see GitHub

#### THE NATURE OF PANEL DATA

- Panel data have a three-dimensional structure
- Units (i = 1, ..., n): E. g. persons
- Variables (v = 1, ..., V): E. g. poverty status
- Time-points or waves (t = 1, ..., T): E. g. 2020

- •How can you organize three-dimensional data space in a two-dimensional dataset?
- •Cross-sectional dataset with n units and v variables:

| ID  | Var1  | •••     | VarV |       |
|-----|-------|---------|------|-------|
| 1   | а     | • • •   | d    |       |
| 2   | b     | • • •   | е    |       |
| ••• | • • • | • • •   | f    | Units |
| n   | С     | • • •   | g    |       |
|     |       |         |      |       |
|     | Va    | riables |      |       |

•Two panel waves; each with n units and  $\nu$  variables:

| ID  | Var1 | •••   | VarV |
|-----|------|-------|------|
| 1   | а    | • • • | d    |
| 2   | b    | •••   | е    |
| ••• | •••  | •••   | f    |
| n   | С    | •••   | g    |

| ID  | Var1 | ••• | VarV |
|-----|------|-----|------|
| 1   | a    | ••• | d    |
| 2   | b    | ••• | е    |
| ••• | •••  | ••• | f    |
| n   | С    | ••• | g    |

#### Time is a relevant information

| ID  | t    | Var1 | •••   | VarV |
|-----|------|------|-------|------|
| 1   | 2011 | a    | •••   | d    |
| 2   | 2011 | b    | • • • | е    |
| ••• | 2011 | •••  | • • • | f    |
| n   | 2011 | С    | • • • | g    |

| ID  | t    | Var1 | ••• | VarV |
|-----|------|------|-----|------|
| 1   | 2012 | а    | ••• | d    |
| 2   | 2012 | b    | ••• | е    |
| ••• | 2012 | •••  | ••• | f    |
| n   | 2012 | С    | ••• | g    |

# THE PANEL DATA CUBE

Time adds a third dimension

→ Panel data are cubic

|             |      |       |       | L    | Varı | •••  | varv |
|-------------|------|-------|-------|------|------|------|------|
| on          |      | ID 1  | t     | Var1 | •••  | VarV | d    |
| <i>J</i> 11 | ID t |       | Var1  | •••  | VarV | d    | е    |
| ID          | t    | Var1  | •••   | VarV | d    | е    | f    |
| 1           | 2011 | a     | •••   | d    | е    | f    | g    |
| 2           | 2011 | b     | • • • | e    | f    | g    |      |
| •••         | 2011 | • • • | •••   | f    | g    |      |      |
| n           | 2011 | C     | •••   | g    |      |      |      |

| JA  | Aime |      | ID   | t    | Var1 | •••  |
|-----|------|------|------|------|------|------|
|     |      | ID   | t    | Var1 | •••  | VarV |
|     | ID 1 | ţ    | Var1 | •••  | VarV | d    |
| ID  | t    | Var1 | •••  | VarV | d    | е    |
| 1   | 2011 | a    | •••  | d    | е    | f    |
| 2   | 2011 | b    | •••  | е    | f    | g    |
| ••• | 2011 | •••  | •••  | f    | g    |      |
| n   | 2011 | С    | •••  | g    |      |      |

Variables

VarV

# WIDE OR LONG?

### WIDE AND LONG FORMAT

- Three-dimensional panel data can be organized in a two-dimensional matrix in two ways
- Wide format
- Repeated measurements as separate variables
- n rows and t \* v columns
- Long format

  - n \* t rows and v columns

# WIDE FORMAT

| ID    | Gender | Poor_2012 | Poor_2014 | Poor_2016 |
|-------|--------|-----------|-----------|-----------|
| 1     | 0      | 0         | 0         | 1         |
| 2     | 1      | 1         | 0         | 0         |
| • • • | • • •  | • • •     | • • •     | • • •     |
| 999   | 1      | 1         | 1         | 1         |
| 1000  | 0      | 0         | 0         | 0         |

- Time dimension integrated in columns
- Variable names need to indicate time-point of measurement

#### LONG FORMAT

| ID    | Year  | Poor  |
|-------|-------|-------|
| 1     | 2012  | 0     |
| 1     | 2014  | 0     |
| 1     | 2016  | 1     |
| • • • | • • • | • • • |
| 1000  | 2012  | 0     |
| 1000  | 2014  | 0     |
| 1000  | 2016  | 0     |

- Time dimension integrated in rows
- Dataset needs a variables indicating time point at which information has been recorded

# WIDE VS LONG FORMAT

| ID    | Poor_2012 | Poor_2014 | Poor_2016 |
|-------|-----------|-----------|-----------|
| 1     | 0         | 0         | 1         |
| 2     | 1         | 0         | 0         |
| • • • | • • •     | • • •     | • • •     |
| 999   | 1         | 1         | 1         |
| 1000  | 0         | 0         | 0         |

| ID    | Year             | Poor |
|-------|------------------|------|
| 1     | 2012             | 0    |
| 1     | 2014             | 0    |
| 1     | 2016             | 1    |
|       |                  |      |
| • • • | • • •            |      |
|       | 2012             | 0    |
|       | <br>2012<br>2014 | _    |

#### WIDE VS LONG FORMAT

- Most methods require long format
- Wide format better for analyzing associations of repeated measurements
- Wide format also demonstrates that measurements are not independent
- Hierarchical data structure; repeated measurements nested in units (e. g. person-years)

## WIDE VS LONG IN R

- One way to wide and long transform data is provided by the tidyr package
- From wide to long: gather ()
- From long to wide: spread()
- In the context of panel data, however, working with the panelr package is easier
- First, declare the panel structure of the data using the panel\_data() function, e.g.: panel\_data(pcspoverty, id = ID, wave = year)
- From wide to long: long\_panel()
- From long to wide: widen panel()

# LONG PANEL ()

long\_panel(wide\_data, prefix = "\_", periods =
c(2012, 2014, 2016), label\_location = "end")

| ID    | Poor_2012 | Poor_2014 | Poor_2016 |
|-------|-----------|-----------|-----------|
| 1     | 0         | 0         | 1         |
| 2     | 1         | 0         | 0         |
| • • • | • • •     | • • •     | • • •     |
| 999   | 1         | 1         | 1         |
| 1000  | 0         | 0         | 0         |

| ID    | year             | Poor |
|-------|------------------|------|
| 1     | 2012             | 0    |
| 1     | 2014             | 0    |
| 1     | 2016             | 1    |
|       |                  |      |
| • • • | • • •            |      |
| 1000  | 2012             | 0    |
|       | <br>2012<br>2014 |      |

# WIDEN PANEL ()

- widen\_panel(long\_data, separator = "\_")
- Both commands only work when information on the person and time identifiers was already provided with panel data()

| ID   | year | Poor |
|------|------|------|
| 1    | 2012 | 0    |
| 1    | 2014 | 0    |
| 1    | 2016 | 1    |
| •••  | •••  |      |
| 1000 | 2012 | 0    |
| 1000 | 2014 | 0    |
| 1000 | 2016 | 0    |

| ID   | Poor_2012 | Poor_2014 | Poor_2016 |
|------|-----------|-----------|-----------|
| 1    | 0         | 0         | 1         |
| 2    | 1         | 0         | 0         |
| •••  | •••       | •••       | • • •     |
| 999  | 1         | 1         | 1         |
| 1000 | 0         | 0         | 0         |

#### PREPARING PANEL DATA IN R

# IMPORTING DIFFERENT FILE TYPES

- There are numerous ways to store data, each needs a different import function in R
- Stata's dta files: read\_dta() (haven package)
- Excel xlsx files: read\_excel() (readxl package)
- •CSV files: read.csv() (base R)
- •(Rdate files: load() (base R)
- And a lot more...

#### PANEL DATA MANAGEMENT

- Raw data typically provides units nested in time points
- Each new wave adds a new dataset

|     |    |    |   |       |   | ID   | t |      |   | Var1 | •••  | VarV |  |
|-----|----|----|---|-------|---|------|---|------|---|------|------|------|--|
|     |    |    |   | ID    | t |      |   | Var1 |   | •••  | VarV | d    |  |
|     |    | ID | t |       |   | Var1 |   | •••  | , | VarV | d    | е    |  |
| ID  | t  |    |   | Var1  |   | •••  | • | VarV |   | d    | е    | f    |  |
| 1   | 20 | 11 |   | а     |   | •••  |   | d    |   | е    | f    | g    |  |
| 2   | 20 | 11 |   | b     |   | •••  |   | е    |   | f    | g    |      |  |
| ••• | 20 | 11 |   | • • • |   | •••  |   | f    |   | g    |      |      |  |
| n   | 20 | 11 |   | С     |   | •••  |   | g    |   |      |      |      |  |

# PANEL DATA MANAGEMENT

- Which period should be analyzed? (determine t)
- •Which variables are relevant? (determine v)
- •What is target population? (determine n)
- Identify which datasets provide necessary information

# PANEL DATA MANAGEMENT

- Moreover, data from one wave may be provided in several files
- For example GSOEP: individual and household questionnaires

| ID | HHID | t    | Age | Gender |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 0      |
| 2  | 101  | 2011 | 42  | 1      |
| 3  | 101  | 2011 | 40  | 0      |
| 4  | 102  | 2011 | 19  | 1      |

| HHID | t    | Income | Rent |
|------|------|--------|------|
| 100  | 2011 | 2200   | 900  |
| 101  | 2011 | 4100   | 1300 |
| 102  | 2011 | 1390   | 450  |

#### BINDING DATA

 Binding means combining rows (rbind()) or columns (cbind()) of two tables

| ID | HHID | t    | Age | Gender |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 0      |
| 2  | 101  | 2011 | 42  | 1      |
| 3  | 101  | 2011 | 40  | 0      |



| ID | HHID | t    | Age | Gender |
|----|------|------|-----|--------|
| 4  | 100  | 2011 | 8   | 1      |
| 5  | 101  | 2011 | 6   | 1      |

| ID | HHID | t    | Age | Gender |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 0      |
| 2  | 101  | 2011 | 42  | 1      |
| 3  | 101  | 2011 | 40  | 0      |
| 4  | 100  | 2011 | 8   | 1      |
| 5  | 101  | 2011 | 6   | 1      |

# BINDING ROWS

Binding waves (in long format) means adding rows to an

existing dataset -> rbind()

| ID | HHID | t    | Age | Income |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 2200   |
| 2  | 101  | 2011 | 42  | 3100   |
| 3  | 101  | 2011 | 40  | 1600   |



| ID | HHID | t    | Age | Income |
|----|------|------|-----|--------|
| 1  | 100  | 2012 | 37  | 2400   |
| 2  | 101  | 2012 | 43  | 3100   |
| 3  | 101  | 2012 | 41  | 1900   |

| ID | HHID | t    | Age | Income |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 2200   |
| 2  | 101  | 2011 | 42  | 3100   |
| 3  | 101  | 2011 | 40  | 1600   |
| 1  | 100  | 2012 | 37  | 2400   |
| 2  | 101  | 2012 | 43  | 3100   |
| 3  | 101  | 2012 | 41  | 1900   |

# BINDING ROWS

| ID | HHID | t    | Age | Income |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 2200   |
| 2  | 101  | 2011 | 42  | 3100   |
| 3  | 101  | 2011 | 40  | 1600   |



| ID | HHID | t    | Age | Income |
|----|------|------|-----|--------|
| 1  | 100  | 2012 | 37  | 2400   |
| 2  | 101  | 2012 | 43  | 3100   |
| 3  | 101  | 2012 | 41  | 1900   |

| ID | HHID | t    | Age | Income |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 2200   |
| 1  | 100  | 2012 | 37  | 2400   |
| 2  | 101  | 2011 | 42  | 3100   |
| 2  | 101  | 2012 | 43  | 3100   |
| 3  | 101  | 2011 | 40  | 1600   |
| 3  | 101  | 2012 | 41  | 1900   |

Sorted by ID (and t)

# BINDING COLUMNS

■Binding variables means adding columns → cbind()

| ID | HHID | t    | Age |
|----|------|------|-----|
| 1  | 100  | 2011 | 36  |
| 2  | 101  | 2011 | 42  |
| 3  | 101  | 2011 | 40  |
| 1  | 100  | 2012 | 37  |
| 2  | 101  | 2012 | 43  |
| 3  | 101  | 2012 | 41  |



| ID | HHID | t    | Age | Income |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 2200   |
| 2  | 101  | 2011 | 42  | 3100   |
| 3  | 101  | 2011 | 40  | 1600   |
| 1  | 100  | 2012 | 37  | 2400   |
| 2  | 101  | 2012 | 43  | 3100   |
| 3  | 101  | 2012 | 41  | 1900   |

| ID | HHID | t    | Income |
|----|------|------|--------|
| 1  | 100  | 2011 | 2200   |
| 2  | 101  | 2011 | 3100   |
| 3  | 101  | 2011 | 1600   |
| 1  | 100  | 2012 | 2400   |
| 2  | 101  | 2012 | 3100   |
| 3  | 101  | 2012 | 1900   |

### BINDING DATA

- •A drawback of rbind() is that it will only work when both tables have the same number of columns
- •... and cbind() only when both data sets have the same number of rows
- •Hence, rbind() will only work when both data sets have the exact same variables (as in the example)
- •... and cbind() is useful when you have the exact same observations in two datasets (hardly the case)

#### JOIN()

- •The functions of the join family of the dplyr package combine two (or more) tables / data sets
- Let us call table 1 master data. It is the one to which we add other data (e.g.: individual-level GSOEP data)
- •Table 2 should be added to data set 1, let us call it using data (e.g.: additional household-level GSOEP data)
- •Finally, we need to know based on which column(s) we want to merge both data sets, let us call this the key variable
- •The general syntax is: join\_type (masterData, usingData, by = keyVariable)
- For example: innerJoinDf <- inner\_join(soep\_ind, soep\_hh, by = c("hid","welle"))</pre>

# DPLYER'S JOIN TYPES

- •Inner Join (inner\_join()): Combines observations of data 1 and 2 that are available in both data sets
- Left Join (left join()): Adds data 2 to data 1
- Right Join (right\_join()): Adds data 1 to data 2
- •Full Join (full\_join()): Combines observations of data 1 and 2 that are available in either data set
- Semi Join (semi\_join()): Similar to inner\_join()
- Anti Join (anti\_join ()): Only keeps observations of data 1 that are not available in data 2

#### INNER JOIN()

- Adds master data to using data based on key variable
- Only includes observations that exist in both data
- •E. g.: inner join(master, using, by = "ID")

| inner | i  | oin | (x.  | v) |
|-------|----|-----|------|----|
|       | J' |     | (42) | "  |



| ID | Age | Gender | 4 | ID | Income | Rent |
|----|-----|--------|---|----|--------|------|
| 1  | 36  | 0      |   | 1  | 2200   | 900  |
| 2  | 42  | 1      |   | 2  | 4100   | 1300 |
| 3  | 23  | 0      |   | 4  | 3600   | 1200 |

| ID | Age | Gender | Income | Rent |
|----|-----|--------|--------|------|
| 1  | 36  | 0      | 2200   | 900  |
| 2  | 42  | 1      | 4100   | 1300 |

#### left\_join(x, y)



### LEFT JOIN()

- Adds using data to master data based on key variable
- Only includes observations that are included in the master data
- Generates NA if observation missing in using data
- •E.g.:left join(master, using, by = "ID")

| ID | Age | Gender | 1 | <br>ID | Income | Rent |
|----|-----|--------|---|--------|--------|------|
| 1  | 36  | 0      |   | 1      | 2200   | 900  |
| 2  | 42  | 1      |   | 2      | 4100   | 1300 |
| 3  | 23  | 0      |   | 4      | 3600   | 1200 |

| ID | Age | Gender | Income | Rent |
|----|-----|--------|--------|------|
| 1  | 36  | 0      | 2200   | 900  |
| 2  | 42  | 1      | 4100   | 1300 |
| 3  | 23  | 0      | NA     | NA   |

#### right\_join(x, y)



#### RIGHT JOIN ()

- Adds master data to using data based on key variable
- Only includes observations that are included in the using data
- Generates NA if observation missing in master data
- •E.g.: right join(master, using, by = "ID")

| ID | Age | Gender |
|----|-----|--------|
| 1  | 36  | 0      |
| 2  | 42  | 1      |
| 3  | 23  | 0      |



|   | D | Income | Rent |
|---|---|--------|------|
| 1 | L | 2200   | 900  |
| 2 | 2 | 4100   | 1300 |
| 2 | 1 | 3600   | 1200 |

| ID | Age | Gender | Income | Rent |
|----|-----|--------|--------|------|
| 1  | 36  | 0      | 2200   | 900  |
| 2  | 42  | 1      | 4100   | 1300 |
| 4  | NA  | NA     | 3600   | 1200 |

#### FULL JOIN()

full\_join(x, y)

- Adds master data to using data based on key variable
- Includes all observations that exist in either data
- •E. g.: full join(master, using, by = "ID")

| ID | Age | Gender |
|----|-----|--------|
| 1  | 36  | 0      |
| 2  | 42  | 1      |
| 3  | 23  | 0      |



| ID | Income | Rent |
|----|--------|------|
| 1  | 2200   | 900  |
| 2  | 4100   | 1300 |
| 4  | 3600   | 1200 |

| ID | Age | Gender | Income | Rent |
|----|-----|--------|--------|------|
| 1  | 36  | 0      | 2200   | 900  |
| 2  | 42  | 1      | 4100   | 1300 |
| 3  | 23  | 0      | NA     | NA   |
| 4  | NA  | NA     | 3600   | 1200 |

#### SEMI JOIN ()

- Adds master data to using data based on key variable
- Only includes observations that exist in both data
- •... but only keeps variables that exist in the master data
- •E. g.: semi join(master, using, by = "ID")

Age Gender

36

23



| ID | Income | Rent |
|----|--------|------|
| 1  | 2200   | 900  |
| 2  | 4100   | 1300 |
| 4  | 3600   | 1200 |

| ID | Age | Gender |
|----|-----|--------|
| 1  | 36  | 0      |
| 2  | 42  | 1      |

#### semi\_join(x, y)



## ANTI JOIN()

- Keeps observations of the master data that do not match the using data
- Generates NA if missing in master data
- E. g.: anti join (master, using, by = "ID")

| ID | Age | Gender |
|----|-----|--------|
| 1  | 36  | 0      |
| 2  | 42  | 1      |
| 3  | 23  | 0      |



| ID | Income | Rent |
|----|--------|------|
| 1  | 2200   | 900  |
| 2  | 4100   | 1300 |
| 4  | 3600   | 1200 |

| ID | Age | Gender |
|----|-----|--------|
| 3  | 23  | 0      |





# JOINING CLUSTERED DATA

- •The logic of each join function also applies when we have several observations per key variable value (e. g.: multiple interviews per individual)
- In this case, each person-year in data 1 will get the (time constant) person value of the respective person in data 2

| ID | Year | income |
|----|------|--------|
| 1  | 2021 | 980    |
| 1  | 2022 | 1000   |
| 2  | 2021 | 2600   |
| 2  | 2022 | 2600   |
| 3  | 2021 | 2300   |
| 3  | 2022 | 2400   |



| ID | Birth year |
|----|------------|
| 1  | 1980       |
| 2  | 2002       |
| 3  | 1967       |

# JOINING CLUSTERED DATA

- The same logic also applies for multiple members per household
- In this case, each respondent of the household in data 1 will get the household's value in data 2

| ID | HHID | age |
|----|------|-----|
| 1  | 100  | 34  |
| 2  | 100  | 57  |
| 3  | 101  | 35  |
| 4  | 102  | 64  |
| 5  | 102  | 24  |
| 6  | 102  | 36  |



| HHID | rent |
|------|------|
| 100  | 900  |
| 101  | 1300 |
| 102  | 1700 |

## MULTIPLE DATA SETS OR MULTIPLE KEY VARIABLES

More than two data sets can also easily be combined stepwise:

```
→left_join(data1, data2, by = "id") %>%
left_join(., data3, by = "id") %>%
left_join(., data4, by = "id")
```

•With panel data, we will often have to combine data sets based on multiple key variables because we have variation by person and by wave (so person ID and year):

```
left_join(data1, data2, by=c("id", "year"),
match="all")
```

Of couse, don't forget to assign these operations to an object

## MULTIPLE KEY VARIABLES

•What if you want to add household-level panel data to individual-level panel data (Like the GSOEP)?

| ID | HHID | t    | Age | Gender |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 0      |
| 1  | 100  | 2012 | 37  | 0      |
| 2  | 101  | 2011 | 40  | 1      |
| 2  | 101  | 2012 | 41  | 1      |
| 3  | 101  | 2011 | 37  | 0      |
| 3  | 101  | 2012 | 38  | 0      |

| HHID | t    | Income | Rent |
|------|------|--------|------|
| 100  | 2011 | 4500   | 1400 |
| 100  | 2012 | 4800   | 1400 |
| 101  | 2011 | 2200   | 800  |
| 101  | 2012 | 2000   | 820  |

### MULTIPLE KEY VARIABLES

| ID | HHID | t    | Age | Gender |
|----|------|------|-----|--------|
| 1  | 100  | 2011 | 36  | 0      |
| 1  | 100  | 2012 | 37  | 0      |
| 2  | 101  | 2011 | 40  | 1      |
| 2  | 101  | 2012 | 41  | 1      |
| 3  | 101  | 2011 | 37  | 0      |
| 3  | 101  | 2012 | 38  | 0      |



HHID t

| ID | HHID | t    | Age | Gender | Income | Rent |
|----|------|------|-----|--------|--------|------|
| 1  | 100  | 2011 | 36  | 0      | 4500   | 1400 |
| 1  | 100  | 2012 | 37  | 0      | 4800   | 1400 |
| 2  | 101  | 2011 | 40  | 1      | 2200   | 800  |
| 2  | 101  | 2012 | 41  | 1      | 2000   | 820  |
| 3  | 101  | 2011 | 37  | 0      | 2200   | 800  |
| 3  | 101  | 2012 | 38  | 0      | 2000   | 820  |

→ Combination of HHID and tuniquely identifies observations

Income Rent

1400

1400

800

820

#### SUMMING UP

- Simple combination of data sets can be achieved with rbind() or cbind()
- •However, in many instances this is not sufficient (e.g., missing data in one data set, clustered data, ...)
- •The join () family, which merges data based on key variables, helps in these cases
- •This is especially relevant in the case of panel data, where we have multiple observations per unit
- •I.e.: each observation (person-year) can only be identified by the (time-constant) person ID and the wave simultaneously
- ALWAYS CHECK YOUR DATA AFTER COMBINING

# LAG AND LEAD VARIABLES

- Lag and lead variable relevant in long format
- •A lagged variable takes at t the value of t-1
- In R (using dplyr):

```
    data %<>%
    group_by(id) %>%
    mutate(var_lag = lag(var))
    To lag more periods: lag(deprived, 2) etc.
```

•A lead variable takes at t the value of t+1

```
•data %<>%
• group_by(id) %>%
• mutate(var_lead = lead(var))
```

### LAG AND LEAD VARIABLES

- Lag and lead variables can be used for
  - Calculating transition tables by hand
  - Autoregressive/Lagged models
  - Calculating growth rates/differences over time

#### QUESTIONS OR COMMENTS?

#### EXERCISE 2: PANEL DATA MANAGEMENT

But first, 15 minutes break

#### EXOGENEITY ASSUMPTION FOR OLS

## EXOGENEITY ASSUMPTION

- •Assumption 5 means that the error term is independent from x
- Model includes all relevant variables and has correct functional form (correctly specified)
- $\rightarrow$  Measurement error is random (does not depend on x)
- Ensures unbiased estimates
- Crucial assumption for estimating "true" (i.e. unbiased) parameters

#### MODEL SPECIFICATION

- A correctly specified model includes all relevant x
- Which x are relevant?
- •Those that are conceptually or theoretically (!) cause both y and the x of interest
- •Not including (omitting) relevant  $x_2$  in a regression model will lead to a biased estimate of  $\beta_1$
- •This is because  $\beta_1$  in this case carries part of the effect of  $\beta_2$  on y
- Avoiding bias is the main point of all statistical analyses!

# OMITTED VARIABLE BIAS

- •True model:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e$
- •Unbiased estimation:  $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$
- New situation:  $x_2$  unobserved
- Biased estimation:  $\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$
- •Omitted variable bias:  $Bias(\tilde{\beta}_1) = E(\tilde{\beta}_1) \beta_1 = \beta_2 \frac{cov(x_1, x_2)}{Var(x_1)}$
- Hence no bias if
  - $\beta_2 = 0$
- $\circ r \frac{\widehat{cov}(x_1, x_2)}{\widehat{Var}(x_1)} = 0$

# OMITTED VARIABLE BIAS

$$\beta_2 = 0$$

$$\frac{\widehat{cov}(x_1, x_2)}{\widehat{Var}(x_1)} = 0$$





# LIMITS OF STATISTICAL CONTROLLING

- Within the standard linear regression framework, one can only control variables that are in the data
- Many things, however, are not observed
- Especially when working with secondary data
- Some techniques for longitudinal data analysis can tackle this problem
- Tbc.

# ASSUMPTION OF UNCORRELATED ERRORS FOR OLS

#### PANEL DATA

- Panel data means the same individuals are observed over time (interviewed repeatedly)
- Person A is interviewed in time point 1 and in time point 2
- $\rightarrow$  For each variable x, there are two data points for person A  $(x_{A1} \text{ and } x_{A2})$
- $\rightarrow$ Same for person B ( $x_{B1}$  and  $x_{B2}$ )
- •In contrast to cross-sectional data analysis, the units of analysis are not individuals, but individual interviews!
- •... because each individual is in the data multiple times (as often as she was interviewed)

## OLS WITH PANEL DATA

- •It is reasonable to assume that data points are not independent
- $x_{A1}$  is likely to have more in common with  $x_{A2}$  than with  $x_{B1}$  (or  $x_{B2}$ )
- •For example, income of person A in 2015 is not independent from her income in 2014 (chances are high it's actually the same)
- Put differently, observations (interviews) cluster within individuals
- ... which separates them from interviews of other individuals
- Likely a violation of the assumption of independent errors

# ASSUMPTION OF INDEPENDENT ERRORS

- Violation of the assumption of independent errors means observations are not statistically independent
- Sample size is inflated
- There is less information in the data than it seems (because it is partly correlated)
- More data leads to lower standard errors (erroneously, in this case)
- Underestimated standard errors lead to wrong p-values and confidence intervals
- Results look "too significant"
- Should be modelled

#### SUMMARY

- OLS regression yields biased estimates if there are unobserved confounders
- OLS regression can be used with panel data if all OLS assumptions are met
- However, if there are unobserved confounders there is also very likely serial correlation (because the error contains systematic components, i.e. is not random)

#### PANEL DATA MODEL

- •How can we use panel data if there are unobserved confounders?
- •Adding an index for time:  $y_{it} = \beta_0 + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + \varepsilon_{it}$
- •Differentiating between time-constant and time-variant variables:  $y_{it} = \beta_0 + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_i + e_{it}$

#### with

- i=1,...,n units
- t=1,...T observations
- k time-varying variables x
- 1 time-constant variables z
- •Decomposition of the error term:  $\varepsilon_{it} = u_i + e_{it}$

# THE UNOBSERVED EFFECTS MODEL

$$y_{it} = \beta_0 + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + \gamma_1 z_{1i} + \dots + \gamma_k z_{li} + u_i + e_{it}$$

- •The error term  $u_i$  captures all time-constant unobserved characteristics of the units of analysis
- The model yields biased estimates if the error terms are correlated with the variables in the model

### QUESTIONS OR COMMENTS?

Thanks for your attention!

#### LITERATURE

- •Wickham & Grolemund (2017). R for Data Science. O'Reilly.
- •Andreß, Golsch & Schmidt (2014). <u>Applied panel data</u> analysis for economic and social surveys. Chapter 2 (pages 15 48). Springer Science & Business Media.
- •Elwert (2013). <u>Graphical causal models</u>. In: Handbook of causal analysis for social research (245 273). Springer Science & Business Media.