Документация для решения задачи: "Выявление аномалий в финансовых транзакциях"

Описание задачи

Цель — автоматическое выявление аномалий (нетипичных операций) в транзакционных данных с использованием методов машинного обучения (ML). Анализ включает исследовательский этап (EDA), построение модели KNN, а также ансамблевого классификатора (VotingClassifier) для детектирования аномалий.

Часть 1: Исследовательский анализ данных (EDA)

1. Загрузка и обработка данных

 Данные загружаются из CSV-файла и обрабатываются для подготовки к обучению.

2. Категориальные данные

 Преобразование категориальных признаков (device_type, tran_code, card_type, oper_type, card_status) в числовые с помощью LabelEncoder.

3. Создание временных признаков

- о Из временной метки (datetime) извлекаются признаки:
 - hour час операции,
 - day_of_week день недели.

4. Нормализация числовых данных

 Признаки sum, balance, pin_inc_count масштабируются в диапазон [0, 1] с использованием MinMaxScaler.

5. Формирование выборок

- Используемые признаки: sum, balance, pin_inc_count, device_type, hour, day_of_week, tran_code, oper_type, card_status.
- Данные разделяются на обучающую (X_train) и тестовую (X_test) выборки в пропорции 80/20.

Часть 2: Построение моделей и методы обучения

1. Модель KNN (ближайшие соседи)

• Описание: Используется для нахождения "ближайших соседей" и определения аномальных транзакций, основываясь на расстоянии до соседей.

• Оптимизация параметров:

- Параллельно обучаются модели с различными значениями параметров:
 - n neighbors (от 5 до 50),
 - Метрики расстояний (euclidean, manhattan, chebyshev, cosine).
- Используется библиотека joblib для ускорения расчётов.
- Порог для аномалий:

 Устанавливается на уровне 80% от максимального расстояния (threshold).

• Выбор лучшей модели:

о Модель с наибольшей F1-метрикой выбирается как оптимальная.

2. Ансамблевый классификатор (VotingClassifier)

Состав:

- о RandomForestClassifier обеспечивает устойчивость к шуму.
- LogisticRegression добавляет интерпретируемость.

• Механизм:

 Используется мягкое голосование (voting='soft'), объединяющее предсказания обеих моделей.

Часть 3: Результаты и оценка модели

Оценка качества

1. F1-Score:

- Тренировочная выборка: 0.99 (высокая точность детектирования аномалий).
- Тестовая выборка: Результаты аналогичны, что свидетельствует о хорошем обобщении модели.

2. Классификационный отчёт:

о Отчёт включает оценку точности, полноты и F1-метрики для классов (аномалии/нормальные транзакции).

Идентификация аномалий

• Аномальные транзакции:

- Обнаружены транзакции с высокой суммой (sum) и низким балансом (balance).
- Чаще всего аномалии происходят в определённые часы и дни недели.

Часть 4: Визуализация

1. Scatterplot: Сумма и баланс

 Красные точки (аномалии) выделяются на фоне нормальных транзакций (синие точки).

2. Корреляционная матрица

 Демонстрирует взаимосвязь между признаками и флагом аномалий (anomaly_flag).

Часть 5: Оценка решения

Качество модели

- Оптимальная модель KNN + VotingClassifier демонстрирует высокую F1-метрику, подходящую для задачи аномалий.
- Параллельная оптимизация гиперпараметров позволила ускорить процесс обучения.

Заключение

Методология эффективно выявляет аномальные транзакции с использованием KNN и VotingClassifier. Результаты визуализации подтверждают корректность модели и предлагают возможные направления для дальнейшего улучшения.