

Course Code:	UCSC0301		L	Т	Р	Credit
Course Name:	Con	nputational Mathematics	3	1		4
Course Proroqueites:						

Course Prerequsites:

Statistics, Probability, Vectors and Set Theory

Course Description:

This Course contains Statistics, Probability, Vectors and Fuzzy Set

Course	Outcomes:	
	After the completion of	of the course the student will be able to,
CO1	Demonstrate the basi	c mathematical concepts in Computer Science Engineering related to Fuzzy Sets and Statistics
CO2	Explain Vector Space	concepts in dealing with problems in Computer Science Engineering.
CO3	Apply the knowledge	of Statistics to solve problems arising in Computer Science Engineering.
CO4	Apply the knowledge	e of Fuzzy Equation to solve problems arising in Computer Science Engineering.

CO-PO	Mapping:														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	2	2	-	1	-	-	-	-	-	-	-	1		
	CO2	2	2	-	-	-	-	-	-	-	-	-	1		
	CO3	2	2	-	1	-	-	-	-	-	-	-	1		
	CO4	1	2	-	-	-	-	-	-	-	-	-	1		

Assessr	nent Scheme:		
SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Course Contents:

Advanced Linear algebra	6 Hours
	Advanced Linear algebra

- 1.1 Solutions of simultaneous linear equations using Gauss-Jordan method.
- ${\bf 1.2}\ Solutions\ of\ simultaneous\ linear\ equations\ using\ LU\ decomposition\ method.$
- 1.3 Determination of Eigen Value by Iteration method.
- 1.4 Solution of non-linear simultaneous equations.

Unit 2	Vector Algebra	8 Hours
--------	----------------	---------

- 2.1 Vector Spaces,
- 2.2 Subspaces, basis, span,
- 2.3 Linear Independence, Basis and Dimension,
- 2.4 Four Fundamental Subspaces
- 2.5 Orthogonality Orthogonal Vectors and Subspaces,
- 2.6 Cosines and Projections onto Lines
- 2.7 Orthogonal Bases and Gram Schmidt

Unit 3	Probability and Distributions	7 Hours				
3.1 Ran	dom variables.					
3.2 Disc	3.2 Discrete distributions and Continuous distributions					
3.3 Bin	3.3 Binomial Distribution					
3.4 Pois	3.4 Poisson Distribution					
3.5 Nor	mal Distribution					

Unit 4 Statistical Techniques	8 Hours			
4.1 Lines of regression of bivariate data, Correlation coefficient.				
4.2 Fitting of Curves by method of Least-squares.				
4.3 Fitting of Straight lines.				
1.4 Fitting of Parabola.				
4.5 Fitting of Exponential curves.				

Unit 5 Introduction to Fuzzy sets 7 Hours

5.1 Crisp Sets: An overview.
5.2 Fuzzy sets: Basic concepts
5.3 Operations on fuzzy sets.
5.4 Extension Principle

Unit 6 Fuzzy Arithmetic 6 Hours

Fuzzy numbers.

- 6.2 Fuzzy cardinality
- 6.3 Operations on Fuzzy numbers.
- 6.4 Fuzzy equations of type A + X = B and A.X = B.

Text Books:

- 1. Higher Engineering Mathematics by Dr. B. S. Grewal.
- 2. Fuzzy sets and Fuzzy Logic by George J. Klir, Bo Yuan.

- 1. Probability and Statistics for Computer science by James L. Johnon.
- 2. Fundamentals of Mathematical Statistics by Gupta and Kapoor. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005. 4. Gilbert Strang, Linear Algebra an

Course Code:	UCSC0302		L	Т	Р	Credit
Course Name:	Discrete Mathematical S	ructures	3	1		4

Course Prerequsites:	Mathematics - Probability theory, Set theory, functions

(Course Description:	This Course consists of concepts of Discrete mathematical structures such as mathematical logic, Sets, relations, functions, lattices and Boolean algebra, combinatory and graph theory

Course Outcomes: CO1 Explain the basic concepts of discrete mathematical structures CO2 Demonstrate the applications of discrete structures in different fields of computer science. CO3 Solve problems using the concepts of Discrete structures. CO4 Apply the mathematical proofs and techniques to prove the theorems in computer science.

СО-РО	Mapping	; :													
•		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	3	3		2										
	CO2	3		2	2										2
	CO3	3	3		3										1
	CO4	2	2		2										

Assessr	ment Scheme:			
SN	Assessment		Weightage	Remark
1	In Semester Evaluation 1 (I	ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination	n (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (I	ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination	ı (ESE)	50%	100% course contents

Course Contents:

Unit 1	Mathematical logic (Text book-1)	8 Hours
--------	----------------------------------	---------

- 1.1 Statements and Notations
- 1.2 Connectives, Statement formulas and truth tables, well formed formulas, Tautologies, Equivalence of formulas, Duality law, Tautological implications, functionally complete sets of connectives, other connectives
- 1.3 Normal and principal normal forms, completely parenthesized infix and polish notations
- 1.4 Theory of Inference for statement calculus validity using truth table, rules of inference, consistency of Premises and indirect method of proof, Predicate calculus

Unit 2 | Set theory (Text book-1) 8 Hours 2.1 Basic concepts of set theory, Operations on sets, Ordered pairs, Cartesian Products 2.2 Representation of discrete structures

- 2.3 Relation and ordering properties of binary relations in a set, Relation matrix and the graph of a relation, Partition and Covering of set, Equivalence relations, Recurrence relations, Composition of Binary relations, Partial ordering, POSET and Hasse diagram.
- 2.4 Functions types, composition of functions, Inverse functions.

Unit 3	Algebraic systems (Text book-1)	5 Hours
--------	---------------------------------	---------

- 3.1 Algebraic systems, properties and examples
- 3.2 Semigroups and Monoids, properties and examples, Homomorphism of Semigroups and Monoids
- 3.3 Groups: Definition and examples, Subgroups and homomorphism

Unit 4 Lattices and Boolean algebra (Text book-1)

5 Hours

- 4.1 Lattice as POSETs , definition , examples and properties
- 4.2 Lattice as algebraic systems, Special lattices
- 4.3 Boolean algebra definition and examples
- 4.4 Boolean functions

Unit 5 Permutations, Combinations and Probability theory (Text book-2)

7 Hours

- .1 The Basics of Counting
- 5.2 The Pigeonhole Principle
- 5.3 Permutations and Combinations
- 5.4 Generalized Permutations and Combinations
- 5.5 Discrete Probability
- 5.6 Conditional probability
- 5.7 Bayes' Theorem

Unit 6 Graphs (Text book-2)

7 Hours

- 5.1 Introduction to Graphs
- 5.2 Graph Terminology
- 5.3 Representing Graphs and Graph Isomorphism
- 5.4 Connectivity
- 5.5 Euler and Hamilton Paths
- 5.6 Planar Graphs
- 5.7 Introduction to Trees

Text Books:

- 1. Discrete Mathematical Structures with Application to Computer Science J. P. Tremblay & R. Manohar (MGH International)
- 2. Discrete Mathematics and its Applications Kenneth H. Rosen (AT&T Bell Labs) (mhhe.com/rosen)

- 1. Discrete Mathematics SemyourLipschutz, MarcLipson (MGH), Schaum's outlines.
- 2. C. L. Liu and D. P. Mohapatra, "Elements of Discrete Mathematics", SiE Edition, TataMcGrawHill, 2008, ISBN 10:0-07-066913-9
- 3. Schaums Solved Problem Series Lipschutz.
- 4. Discrete Mathematical Structures Bernard Kolman, Robert Busby, S.C.Ross and NadeemurRehman (Pearson Education)

Course	e Code:		UCSC0	303								L	Т	P	Credit
	e Name:		 	ructures							1	3	-	1	3
Course	e Name:		Data St	ructures]				3
Course	e Prerequ	usitos	1												
	nentals o		mmina I	anguag	2										
r undan	nemais o	i riogia	mining i	_anguag	C.										
Course	e Descrip	otion:	1												
	duces data structure concepts like lists, stack, queues, trees, and graphs. Discussess about the implementations of these data														
								ines algo							
Algorit	thm analy	ysis and	efficient	code de	sign is ir	ntroduce	d.								
Course	e Outcon	nes:	1												
After co	mpletion o	f the cour	se, student	ts shall be	able to -										
CO1	explain	various	concepts	s of data	structure	es.									
CO2	analyze	differer	nt data st	ructures	and algo	rithms t	o find th	eir comp	lexity.						
CO3	+							puting pi							
	1	ii F			.,			. OF-							
CO-PO) Mappi	ng:	1												
	- 11	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	1												1	
	CO2	2	1		1								1		
	CO3	3	2	2	1								1	1	2
								_							
Assessi	ment Scl	heme:		1											
SN	Assessi	nent				Weig	htage	Remar	k						
1	In Seme	ester Eva	aluation	1 (ISE1))%	Assigni	nent, Te	st, Quiz,	Semina	r, Presen	tation, et	tc.	
2	+		Examinat			30)%		course c						
3	+		aluation			10)%	Assigni	nent, Te	st, Ouiz,	Semina	r, Presen	tation, et	tc.	
4	+		xaminat			<u> </u>)%	+	ourse co			,	, , ,		
				(===	-/			1							
Course	e Conten	its:	1												
Unit 1			1											6 H	ours
	ot of data	. data sti	ructures.	and data	tvpes: A	Abstract	Data Tv	pes (AD	Γ) - Ator	nic & Co	omposite	e. Operat	ions: Lir		
	lata struc						J.	1 (1	, 1	,		
Unit 2														8 H	ours
								list, doubl	y linked li	st, and cire	cular linke	ed list; Ope	erations on	lists - ins	sertion,
deletion,	, traversal,	searcn, et	c; Applica	tions using	g tnese dai	a structure	es.								
Unit 3	1													6 Ц	OHES
	ck: Introduction; representation; operations; implementation using array & list; applications of stack. eue: Introduction; representation; operations; implementation using array & list; types of queue - circular queue, double ended														
	and prior							uomg um	, ee 115t	, . , p • 5	- quous	01100110	quoue,	404010	
					_										
Unit 4														7 H	ours
Tree: B	Basic tern	ninology	; binary	tree and	its repre	sentation	n; binary	y tree trav	versal me	ethods; b	inary se	arch tree	(BST),	AVL tre	e,
Heaps;	Operation	ons and a	application	ons of B	ST, AVL	, Heaps	·								
														T	
Unit 5														5 H	ours

Graph: Basic terminology; Graph storage structures - adjacency matrix and adjacency list; Graph operations, graph traversal techniques - BFS, DFS; Applications using graphs

Unit 6 8 Hours

Searching and Sorting: Need of sorting and searching, sorting order, stability in sorting, Sorting Techniques: Concept of internal & external sorting, algorithms for Bubble sort, Selection sort, Insertion sort, Radix sort, Heap sort, Quick sort and Merge sort. Analysis of each sorting technique for best, worst and average case.

Searching Techniques: Algorithms for Sequential search, Binary search, analysis of each searching technique for best, worst and average case.

TO THE TOTAL PROPERTY OF THE STATE OF THE ST

Text Books:

- 1. Data Structures and Pseudocode approach with C, 2nd Edition by Richard F. Gilberg & Behrouz A. Forouzan
- 2. Data Structures using C and C++ by Yedidyah Langsam, Moshe J. Augenstein, Aaron M. Tenenbaum
- 3. Data Structures by Seymour Lipschutz

- 1. Data Structures and Algorithms by G A V Pai (McGrawHill)
- 2. Data Structures and Algorithms in python Michael T. Goodrich (Wiley)

Course Code:	UCSC0304			L	Т	Р	Credit
Course Name:	Digital Logi	Digital Logic Design & Microprocessors					3

Course Prerequsites:

Fundamentals of Electronics and Computers, Basic Number System and Boolean Algebra

Course Description:

The course is designed to provide knowledge of different sequential and combinational logic design. The subject provides fundamentals of 8085 & 80x86 Family Microprocessors. The subject gives idea of how assembly language programming works. This course is prerequisite for hardware based courses like Computer Architecture & Organization.

CO1 Describe working of basic digital components CO2 Illustrate different microprocessors operations & addressing modes CO3 Analyze changes in microprocessor evolution CO4 Develop Assembly Language Programs

CO-PO	Mapping	; :													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	3	-	-	-	-	-	-			-	-	-	-	-
	CO2	-	-	2	-	-	-					-	-	1	-
	CO3	-	2	-	-	-	-	-	-	-	-	-	-	-	-
	CO4	-	2	_	_	_	_	_	_	_	_	_	_	_	_

Assessr	nent Scheme:		
SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Course Contents:

Unit 1 | Combinational & Sequential Logic Design

7 Hours

Number System, Boolean Algebra-Reduction, minterm, Maxterm, Multiplexer, implementation of expression using MUX, Demultiplexer, decoder (74138), Classification, Flip-flops (S-R, J-K,T,D) using gates, Race around condition Master – Slave J-K Flip Flop, Counters (Asynchronous & Synchronous), Design examples, Shift registers, State transition diagram, excitation table.

Unit 2 8085 Microprocessor Architecture

7 Hours

The 8085 MPU, Microprocessor communication and bus timing, Demultiplexing address and Data bus, Generating control signals, The 8085 Architecture, opcode fetch machine cycle, memory read and write machine cycle. 8085 instruction groups, addressing modes.

Unit 3 8085 Programming Techniques

7 Hours

Writing and execution assembly language program, counters & delays, Stack, Instruction related to stack execution of CALL and RET, The 8085 interrupt, RST instructions, vectored interrupts, RIM and SIM instructions.

Basic interfacing concepts, peripherals I/O instructions IN, OUT, I/O execution, Memory - structure, interfacing & address decoding. Memory mapped I/O, I/O mapped I/O.

8086 Microprocessor and Assembly Language 9 Hours							
Architecture of 8086, Registers of 8086, Memory Model, Addressing Modes, Instruction Set, Programming Model							
Unit 5 80x86 Family	5 Hours						

Introduction to 80186,80286,80386,80486 processors, Special Registers

The 80386 Microprocessor: The memory System, Special 80386 Registers

Virtual 8086 Mode, The Memory Paging Mechanism

Unit 6 Introduction to Pentium Microprocessors

5 Hours

The Pentium Microprocessor: The Memory System, Special Pentium Registers, Pentium Memory Management,

The Pentium Pro Microprocessor: Internal structure of the Pentium Pro

The Pentium 4: Memory Interface, Register Set, Hyper Threading Technology.

Text Books:

- 1. Fundamental of Digital Circuits –A. Anand Kumar, 2 nd Edition, PHI Private Limited.
- 2. Microprocessor architecture, programming & applications Ramesh S. Gaonkar, New Age International publication.
- 3. Microprocessors & Interfacing: Programming & Hardware, Douglas V. Hall, Tata McGraw Hill

- 1. Digital fundamentals Floyd & Jain, , Pearson education, eighth edition, 2007
- 2. Digital Design Morris Mano, Pearson Education
- 3. Modern Digital Electronics, R.P.Jain, 3rd Edition, Tata McGraw Hill, 2003
- Digital systems, principles and applications Ronald Tocci, Neal S. Widmer, Gregory Moss (Pearson Education) 9th Edition.

Course Code:	UCSC0305			L	Т	Р	Credit
Course Name:	С	Computer Network					3

Course Prerequsites:

Must have basic knowledge of computers and network

Course Description:

This course provides a solid understanding of OSI reference model and TCP/IP protocol suite. Also make us familiar with functionalities of different layers and gives exposure to different application layer protocol. This course will help students ready with all fundamental networking concepts

CO1 Define different concepts of OSI/TCP/IP network models and physical layer CO2 Make use of framing, error control, flow control and medium access control techniques CO3 Elaborate IP addresses, IP protocols, types of routing algorithm and congestion control techniques CO4 Describe process to process communication, multiplexing and transport layer protocols CO5 Outline different types of application layer protocols from TCP/IP protocol suite

CO-PO I	Mapping	; :													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
	CO2	-	2	-	-	-	-	-	-	-	-	-	-	-	1
	CO3	2	-	-	-	-	-	-	-	-	-	-		-	-
	CO4	2	-	-	-	-	-	-	-	-	-	-	-	-	-
	CO5	3	-	-	-	-	-	-	-	-	-	-	-	1	-

Assessr	nent Scheme:		
SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Course Contents:

Unit 1 Introduction to Network 5 Hours

- 1.1 Data Communication
- 1.2 Networks
- 1.3 Internet
- 1.4 Protocols and Standards
- 1.5 Layered Task
- 1.6 OSI Model and Layers
- 1.7 TCP/IP Protocol Suite
- 1.8 Addressing
- 1.9 Physical Layer and Media

Unit 2	Data Link Control Layer	9 Hours

- 2.1 Error Detection and Correction
- 2.2 Block Coding, Linear Block Codes
- 2.3 Cyclic Codes
- 2.4 Checksum
- 2.5 Data Link Control: Framing
- 2.6 Flow and Error Control
- 2.7 Protocols: Noiseless channels, Noisy Channels

Unit 3 Medium Access Control Sub layer

7 Hours

- 3.1 Channel allocation Problem
- 3.2 Multiple Access Protocols: ALHOA, CSMA
- 3.3 Collision free protocols
- 3.4 Limited contention protocols
- 3.5 IEEE Standard 802 for LANS and MANS
- 3.6 Bridges
- 3.7 Introduction to VLANS

Unit 4 Network Layer 8 Hours

- 4.1 Network Layer Design Issues Routing Algorithms: Shortest Path, Flooding, Distance Vector, Link State, Broadcast
- 4.2 IP, ARP, RARP, ICMP, IGMP
- 4.3 Congestion control algorithms: Principles, Congestion prevention policies, Traffic Shaping, congestion control in datagram subnet, Choke Packet, Load Shedding, Jitter Control
- 4.4 IPv4 Addresses: Introduction, Classfull and Classless addressing, Special Addresses and NAT

Unit 5 Transport Layer 4 Hours

- 5.1 Transport Layer functions
- 5.2 UDP- datagram, services, applications
- 5.3 TCP services, segment, connection, state transition diagram, Flow control, congestion control, error control, timers.

Unit 6 Application Layer 9 Hours

- 6.1 DHCP: Introduction, Previous Protocols, DHCP operation, Packet Format, DHCP Configuration.
- 6.2 DNS: Need, Name Space, Domain Name Space, Distribution of name space, and DNS in internet, Resolution, DNS massages, Types of records, Compression examples, encapsulation.
- 6.3 Telnet and SSH
- 6.4 FTP and TFTP.
- 6.5 HTTP and SMTP
- 6.6 SNMP: Concept and Management Component, SMI, MIB, SNMP, UDP Port and Security

Text Books:

- 1. Data Communications and Networking Behrouz A Forouzan (The McGraw Hill) (Unit 1,2,3)
- 2. Computer Networks Andrew S. Tanenbaum- (Prentice Hall) 5th Edition (Unit 3, 4)
- 3. TCP/IP Protocol Suite- Behrouz Forouzan-(The McGraw Hill) (4,5,6)

Reference Books:

1. Computer Networking with Internet Protocols and Technology, William Stallings (Prentice Hall)

Cou	rse Co	de:	UCSC	030**								L	T	P	Credi
Cou	rse Na	me:	Data S	Structur	es Lab									1	1
		erequsit tals of l		mming	Langu	age.									
Con	rse De	scriptio	n·												
		have as		ents bas	sed on f	he Data	Struct	ure and	algorit	hms T	he assig	nments	s will h	eln stud	lents
		nd the w	_						_		-	•			
Data	Struct	ures and	l algorit	thms in	compu	ter prog	grammi	ng.							
Cou	rse Ou	tcomes													
Afte	r comp	letion o	f the co	urse, st	udents	shall be	able to) -							
CO1	Imple	ment Li	near an	d Non-l	Linear I	Data St	ructure	S							
CO2	Imple	ment S	earchi	ng and	Sortin	g algo	rithms								
CO3	Devel	op prog	rams an	ıd appli	cations	using c	lata strı	actures	and alg	orithms	S				
<u></u>	DO 3.5	•	1												
CO-	PO Ma	apping:	+	DO2	DO 4	DO5	DO(DO7	DOG	DOO	DO10	DO11	DO 12	DCO1	DCO
	CO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIU	PO11	PO12	PSO1	PSO.
	CO1														
	CO ₂														
	<u>CO3</u>			ļ							ļ		ļ	ļ	
Asse	essmen	t Schen	1e:]											
SN	Asses	sment				Weig	htage	Rema	rk						
1	In Ser	nester E	evaluatio	on 1 (IS	SE1)	50)%	Assign	ment,	Γest, Qι	uiz, Sen	ninar, P	resenta	tion,eto	.
2	End S	emester	Exami	nation (ESE)	50)%	Practic	al Perf	ormanc	e & Viv	va			
			7												
		ntents:												1	
	essmen													2 Hou	
		gram us ne time (D calci	ialtion 2	2.Facto	rıal Cal	culatio	n 3. Str	ıng Ope	erations	5.
		t No. 2	zompre:	iity or t	iic prog	,ruiii.								2 Hou	rs
		gram us	ing Stru	acture, l	Pointer	& Fund	ction								
		t No. 3	<u> </u>	,										2 Hou	rs
Crea	ite a Li	near Lis	t by usi	ng Stru	cture, n	nemory	manag	gement	function	ns and p	ointers	in C			
Asse	essmen	t No. 4	<u> </u>								•			2 Hou	rs
Impl	lement	a Doubl	y Linke	ed List a	and its a	all oper	ations (Insert,I	Delete,S	Search)				!	
Asse	essmen	t No. 5												2 Hou	rs
App	lication	of List	- Write	a prog	ram to 1	naintai	n the n	avigatio	onal his	story (fo	orward/	backwa	ırd) trac	cking	
Asse	essmen	t No. 6												2 Hou	rs
Imnl	lement	the stac	k and it	s opera	tion (ar	ray/list)								

Assessment No. 7	2 Hours
Implement a Circular Queue and its operation(array/list)	·
Assessment No. 8	2 Hours
Write a program to convert infix expression into postfix expression	•
Assessment No. 9	2 Hours
Write a program to implement Linear Search algorithm. Analyse the time complex	ity
Assessment No. 10	2 Hours
Write a program to sort the array in ascending order. (use – Selection Sort/Bubble S	Sort/Insertion Sort)
Assessment No. 11	2 Hours
Write a program to sort the array in ascending order.(Quick Sort) with recursion	·
Assessment No. 12	2 Hours
Implement a binary search algorithm using array/list	·
Assessment No. 13	2 Hours
Impement hashing algorithm using list and colision resolution.	·

Course Code:			UCSC03087 L T P Credit								Credit				
Course Name:				Digita	al Logic [Design ar	nd Micro	processo	or Lab					2	1
			7												
Course Prerequsit	es:														
Digital Logic Desig	gn & Mic	roproces	ssors												
Course Descriptio	n:														
This subject cover	s practic	al detail	s of subj	ect Digit	al Logic	Design a	nd Micro	oprocess	ors.						
Course Outcomes															
CO1	Model l	oasic dig	ital circu	its											
CO2	Develop	simple	assembl	y langua	ge progr	ams usin	g 8085 i	nstructio	n set						
			,												
CO-PO Mapping:															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	2													
	CO2		2												
				1											
Assessment Scher	1							I							
SN	Assessn						htage								
1			luation				0%	Experiment, Practical Performance and Oral Exam							
2	Practica	il Oral ar	nd Exam	(POE)		10	0%	Oral Exa	am						
			1												
Course Contents:															
	Study o	f MILLY													
			ives: Un	derstand	workin	of MII)	(
Experiment 1				ll be able											2 Hours
				: MUX -v											
				ruct MU											
				: Truth Ta	ables for	MUX									
	Conclus	ion: Imp	olemente	ed MUX											
	Chudu	4 DEMILI	v												
	1 -	f DEMU		derstand	workin	of DEM	1112								
Experiment 2	1	-		ll be able		-									2 Hours
				: DEMUX											
	1		•	ruct DEN		0,									
				: Truth Ta		DEMUX									
	Conclus	ion: Imp	olemente	ed DEMU	IX										

Experiment 3	Study of R-S flip-flops Aim and Objectives: Construct R-S flip-flops Outcomes: Students will be able to implement R-S flip-flops Theoretical Background: Characteristics of different Flip-Flops Experimentation: Construct R-S flip-flops Results and Discussions: Truth Tables for R-S flip-flops Conclusion: Implemented circuit for R-S flip-flop	2 Hours
Experiment 4	Study of J-K flip-flops Aim and Objectives: Construct J-K flip-flops Outcomes: Students will be able to implement J-K flip-flops Theoretical Background: Characteristics of different Flip-Flops Experimentation: Construct J-K flip-flops Results and Discussions: Truth Tables for J-K flip-flops Conclusion: Implemented circuit for J-K flip-flop	2 Hours
		2 Hours
Experiment 5	Study of Registers Aim and Objectives: Construct Different type of Registers Outcomes: Students will be able to implement Registers Theoretical Background: Characteristics of different Registers Experimentation: Construct Registers Results and Discussions: Truth Tables for Registers Conclusion: Implemented circuit for Registers	2 Hours
	Study of counters	
Experiment 6	Study of counters Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: Construct UP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter Conclusion: Implemented circuit for UP and DOWN counter	2 Hours
Experiment 6	Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: Construct UP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter	2 Hours
Experiment 6 Experiment 7	Aim and Objectives: Implementing UP and DOWN counter Outcomes: Students will be able to implement UP and DOWN counter Theoretical Background: Characteristics and types of counter Experimentation: Construct UP and DOWN counter Results and Discussions: Truth Tables for UP and DOWN counter	2 Hours

Experiment 8	Study of 8085 microprocessor Aim and Objectives: Understand working of 8085 microprocessor Outcomes: Students will be able to explain instructions of 8085 microprocessor Theoretical Background: Architecture & Instruction Set of 8085 microprocessor Experimentation: Use various instructions of 8085 microprocessor in simulator Results and Discussions: Table of Instructions with purpose, mnemonic & size Conclusion: Demonstrated instructions using simulator	
		2 Hours
Experiment 9	Assembly language programming for 8085 Aim and Objectives: Writing simple assembly language programs (4 to 6) Outcomes: Students will be able to develop simple assembly language programs Theoretical Background: Instruction Set of 8085 microprocessor Experimentation: Develop algorithm and program for given problem statements Results and Discussions: Execute developed programs and note the results Conclusion:	2 Hours
Experiment 10	Study of 8086 microprocessor Aim and Objectives: Understand working of 8086 microprocessor Outcomes: Students will be able to explain instructions of 8086 microprocessor Theoretical Background: Architecture & Instruction Set of 8086 microprocessor Experimentation: Use various instructions of 8086 microprocessor in simulator Results and Discussions: Table of Instructions with purpose, mnemonic & size Conclusion: Demonstrated instructions using simulator	2 Hours

	Experiment 11	Assembly language programming for 8086 Aim and Objectives: Writing simple assembly language programs (4 to 6) Outcomes: Students will be able to develop simple assembly language programs Theoretical Background: Instruction Set of 8086 microprocessor Experimentation: Develop algorithm and program for given problem statements Results and Discussions: Execute developed programs and note the results Conclusion:	2 Hours
--	---------------	--	---------

Text Books:

- 1. Fundamental of Digital Circuits –A. Anand Kumar, 2 nd Edition, PHI Private Limited.
- 2. Microprocessor architecture, programming & applications¬Ramesh S. Gaonkar, New Age International publication.
- 3. Microprocessors & Interfacing: Programming & Hardware, Douglas V. Hall, Tata

- 1. Digital fundamentals ¬Floyd & Jain, , Pearson education, eighth edition, 2007
- 2. Digital Design –Morris Mano, Pearson Education
- 3. Modern Digital Electronics, R.P.Jain, 3rd Edition, Tata McGraw¬Hill, 2003
- 4. Digital systems, principles and applications Ronald Tocci, Neal S. Widmer, Gregory Moss (Pearson Education) 9 th Edition.

						1									
Course Code:			ι	JCSC030							1	L	Т	P	Credit
Course Name:	se Name: Computer Network Lab]			2	1	
Course Prerequs	ites:														
Must have basic		e of com	nuters a	and Com	nuter No	etwork									
.viast nave basic	owicug	,c o. co	.putcis t		puter it										
Course Descripti	ion:														
This course prov															
to design netwo								er applic	ation us	ing sock	et API an	id make	them un	derstand	different
application layer	protocoi	with hei	p or simi	uiation a	na aem	onstratio	л.								
Course Outcome			1												
CO1		mnle ne	twork ar	d VI AN	as ner th	e organi	zation r	equirem	ents						
CO2	+							w contro		ıting alg	orithms				
CO3		se of soc						vv contro	T dila io	ating dig	511(111113				
CO4					•			tocols fi	om TCP	IP proto	col suite	·			
CO5								ork servi				•			
	1 2 2 3 3 4					.,,,,,,,,									
CO-PO Mapping	:														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1			2			1								1
	CO2			2											
	CO3			2											
	CO4					2								2	
	CO5					2								2	
				1											
Assessment Sch							_								
SN	Assessr						htage	Remark			•				
1	+	ester Eva				-	0%	<u> </u>					ral Exam		
2	Practica	l Oral an	d Exam	(POE)		10	0%	Practica	I Perforr	nance ar	nd Oral E	xam			
Course Contents															
Experiment 1	Design	and simu	ılation o	f sample	networ	k									2 Hours
Experiment 2	Demon	stration	of netwo	ork testir	ng tools										2 Hours
•														I	
	Implem	entation	of fram	ing tech	niques										
	1 '	acter co	unt												
Experiment 3	B) Bit st	tuffing													2 Hours
	1 -	entation	of Erro	r contro	l mechai	nisms									
Experiment 4	A) CRC B) Hamming Code										2 Hours				
p	,	., 55	-											<u>I</u>	
	I manal a	oontot!	o of FI		meska	nices.									
		nentation and wai		v CUIICIÓI	теспаг	1151115									
	B) Go B	ack N													
F	C) Selec	tive rep	eat												2.11
Experiment 5															2 Hours

Experiment 6	Design and simulate working of Virtual LAN	2 Hours
	Implementation of Routing algorithm A) Shortest path routing	
Experiment 7	B) Distance vector routing	
	S, Sistance rector routing	2 Hours
	Implementation of Client-Server model	
	A) Simple client-server model	
	B) Iterative client-server model	
Evmonimont P	C) Concurrent client-server model	2 Hours
Experiment 8		2 Hours
Experiment 9	Simulation of application layer protocol	2 Hours
Experiment 10	Installation and Configuration of FOSS server	2 Hours
Text Books:		
(Unit 1,2,3)	cations and Networking – Behrouz A Forouzan (The McGraw Hill)	
	works – Andrew S. Tanenbaum- (Prentice Hall) 5th Edition (Unit 3, 4)	
TCD/ID Drotoco	l Suite- Behrouz Forouzan-(The McGraw Hill) (4,5,6)	

1. Computer Networking with Internet Protocols and Technology, William Stallings (Prentice Hall)

Course Code:	UCSC0309		L	Т	Р	Credit
Course Name:	Fundamentals of Web		1		1	2

Course Prerequsites

Basics of C Language for JQuery and Javascript

Course Description:

Design, Develop and host website on the webserver

Course Outcomes:

CO1	Design web pages using HTML and CSS
CO2	Develop responsive website using bootstrap
CO3	Developing interactive website using Jquery and Javascript

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2			3								1	2
CO2	3		3		3									2
CO3	2		3		3									2
CO4	2	3	3		3				3	3	3	3	2	2

Assessment Scheme:

SN	Assessment	Weightage	Remark		
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.		
2	Mid Semester Examination (MSE)	30%	50% of course contents		
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.		
4	End Semester Examination (ESE)	50%	100% course contents		

Course Contents:

Unit 1 HTML 5.0 3 Hours

Introduction to HTML5, Features of HTML5, HTML5 DocType, New Structure Tags, Section, Nav, Article, Aside, Header, Footer, Designing a HTML Structure of Page, New Media Tags, Audio Tag, Video Tag, Canvas and Svg Tag, Introduction to HTML5 Forms, New Attributes, Placeholder Attribute, Require Attribute, Pattern Attribute, Autofocus Attribute, email, tel, url types, number type, date type, range type, voice search, Examples of Form

Unit 2 CSS 3.0 3 Hours

Introduction to CSS 3, New CSS 3 Selectors, Attribute Selectors, First-of-type, Last- of-type, Nth-child, Element:empty, New CSS3 Properties, Custom Fonts, Text- Shadow Property, Text-Stroke Property, Rounded Corners, Box Shadows, CSS Gradients, CSS Multiple backgrounds, Opacity Property, Transition effect, Transform effect, Animation effects, Css Media Queries, Using CSS3 in Practical Layout

Unit 3	BootStrap	3 Hours
--------	-----------	---------

Introduction to Responsive Design, Mobile first design concepts, Common device dimensions, View-port tag, Using css media queries, Menu conversion script, Basic Custom Layout, Introduction to Bootstrap, Installation of Bootstrap, Grid System, Forms, Buttons, Icons Integration, Using CSS3 in Practical Layout

Unit 4 JavaScript 3 Hours

Introduction to Client Side Scripting, Introduction to Java Script, Javascript Types, Variables in JS, Operators in JS, Conditions Statements, Java Script Loops, JS Popup Boxes, JS Events, JS Arrays, Working with Arrays, JS Objects, JS Functions, Using Java Script in Realtime, Validation of Forms, Related Examples, Frameworks of js.

Unit 5 | jQuery and jQuery UI

3 Hours

Introduction to jQuery, jQuery Features, Installing jQuery, jQuery Syntax, jQuery Ready Function, jQuery Selectors, jQuery Actions, jQuery plugins, jQuery Validation plugin, jQuery Slideshow, jQuery Dropdown, jQuery UI, Working with jQueryUI, jQuery Accordions, jQuery Tabs, jQuery Tooltips, jQuery Autocomplete

Unit 6 Web Hosting 3 Hours

Web Hosting Basics, Types of Hosting Packages, Registering domains, Defining Name Servers, Using Control Panel, Creating Emails in Cpanel, Using FTP Client, Maintaining a Website, Introduction to Joomla & Wordpress CMS

Text Books:

- 1. HTML & CSS: The Complete Reference, Fifth Edition by ThomasPowell
- 2. JavaScript: The Definitive Guide, 6th Edition ByDavid Flanagan
- 3. Learning jQuery Fourth Edition by Jonathan Chaffer, Karl Swedberg

- 1. HTML & CSS: The Complete Reference, Fifth Edition by ThomasPowell
- 2. JavaScript: The Definitive Guide, 6th Edition ByDavid Flanagan
- 3. Learning jQuery Fourth Edition byJonathan Chaffer,KarlSwedberg