ECRICOME 2019

Exercice 1

On considère dans cet exercice l'espace vectoriel $E = \mathbb{R}^3$, dont on note $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique. Soit f l'endomorphisme de E dont la matrice dans la base \mathscr{B} est la matrice :

$$A = \frac{1}{3} \begin{pmatrix} -1 & 2 & 1 \\ -1 & -1 & -2 \\ 1 & 1 & 2 \end{pmatrix}$$

Partie A

- 1. a) Calculer A^2 puis vérifier que A^3 est la matrice nulle de $\mathcal{M}_3(\mathbb{R})$.
 - b) Justifier que 0 est l'unique valeur propre possible de f.
 - c) Déterminer une base et la dimension du noyau de f.
 - d) L'endomorphisme f est-il diagonalisable?
- **2.** Soient $e'_1 = (-1, -1, 1), e'_2 = (2, -1, 1)$ et $e'_3 = (-1, 2, 1)$.
 - a) Démontrer que la famille $\mathscr{B}' = (e'_1, e'_2, e'_3)$ est une base de E.
 - **b)** Démontrer que la matrice représentative de f dans la base \mathscr{B}' est la matrice $T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- 3. On pose : $M = \frac{1}{3} \begin{pmatrix} 4 & -2 & -1 \\ 1 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$.

On note h l'endomorphisme de E dont la matrice représentative dans la base \mathscr{B} est la matrice M.

- a) Déterminer deux réels α et β tels que $M = \alpha A + \beta I$, où I est la matrice identité d'ordre 3.
- b) Déterminer la matrice M' de h dans la base \mathscr{B}' .
- c) En déduire que M est inversible.
- d) À l'aide de la question 1.a), calculer $(M-I)^3$. En déduire l'expression de M^{-1} en fonction des matrices I, M et M^2 .
- e) À l'aide de la formule du binôme de Newton, exprimer M^n pour tout entier naturel n, en fonction des matrices I, A et A^2 . Cette formule est-elle vérifiée pour n = -1?

Partie B

Dans cette partie, on veut montrer qu'il n'existe aucun endomorphisme g de E vérifiant $g \circ g = f$. On suppose donc par l'absurde qu'il existe une matrice V carrée d'ordre 3 telle que :

$$V^2 = T$$

On note g l'endomorphisme dont la matrice représentative dans la base \mathscr{B}' est V.

- 4. Montrer : VT = TV. En déduire : $g \circ f = f \circ g$.
- 5. a) Montrer que $g(e_1')$ appartient au noyau de f. En déduire qu'il existe un réel a tel que : $g(e_1') = a \cdot e_1'$.

- b) Montrer que $g(e_2') a \cdot e_2'$ appartient aussi au noyau de f. En déduire qu'il existe un réel b tel que : $g(e_2') = b \cdot e_1' + a \cdot e_2'$.
- c) Montrer : $f \circ g(e_3') = g \circ f(e_3') = a \cdot e_2' + b \cdot e_1'$. En déduire que $g(e_3') - a \cdot e_3' - b \cdot e_2'$ appartient au noyau de f.
- d) En déduire qu'il existe un réel c tel que : $V = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$.
- 6. Calculer V^2 en fonction de a, b et c, puis en utilisant l'hypothèse $V^2 = T$, obtenir une contradiction.

Exercice 2

On considère la fonction f définie sur l'ouvert de $\mathbb{R}_+^* \times \mathbb{R}_+^*$ par :

$$\forall (x,y) \in \mathbb{R}_+^* \times \mathbb{R}_+^*, \ f(x,y) = \frac{x}{y^2} + y^2 + \frac{1}{x}$$

La première partie consiste en l'étude des extrema éventuels de la fonction f, et la deuxième partie a pour objectif l'étude d'une suite implicite définie à l'aide de la fonction f. Ces deux parties sont indépendantes.

Partie A

1. On utilise Scilab pour tracer les lignes de niveau de la fonction f. On obtient le graphe suivant :

Établir une conjecture à partir du graphique quant à l'existence d'un extremum local pour f, dont on donnera la nature, la valeur approximative et les coordonnées du point en lequel il semble \tilde{A}^{a} tre atteint.

- 2. a) Démontrer que f est de classe \mathcal{C}^2 sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$.
 - b) Calculer les dérivées partielles premières de f, puis démontrer que f admet un unique point critique, noté A, que l'on déterminera.
 - c) Calculer les dérivées partielles secondes de f, puis démontrer que la matrice hessienne de f au point A est la matrice H définie par : $H = \begin{pmatrix} 2 & -2 \\ -2 & 8 \end{pmatrix}$.
 - d) En déduire que la fonction f admet au point A un extremum local, préciser si cet extremum est un minimum, et donner sa valeur.

Partie B

Pour tout entier n non nul, on note h_n la fonction définie sur \mathbb{R}_+^* par :

$$\forall x > 0, \ h_n(x) = f(x^n, 1) = x^n + 1 + \frac{1}{x^n}$$

- 3. Démontrer que pour tout entier naturel n non nul, la fonction h_n est strictement décroissante sur [0,1[et strictement croissante sur $[1,+\infty[$.
- 4. En déduire que pour tout entier n non nul, l'équation $h_n(x) = 4$ admet exactement deux solutions, notées u_n et v_n et vérifiant : $0 < u_n < 1 < v_n$.
- 5. a) Démontrer :

$$\forall x > 0, \ \forall n \in \mathbb{N}^*, \ h_{n+1}(x) - h_n(x) = \frac{(x-1)(x^{2n+1}-1)}{x^{n+1}}$$

- **b)** En déduire : $\forall n \in \mathbb{N}^*, h_{n+1}(v_n) \geq 4.$
- c) Montrer alors que la suite (v_n) est décroissante.
- **6.** a) Démontrer que la suite (v_n) converge vers un réel ℓ et montrer : $\ell \geqslant 1$.
 - b) En supposant que $\ell > 1$, démontrer : $\lim_{n \to +\infty} v_n^n = +\infty$. En déduire une contradiction.
 - c) Déterminer la limite de (v_n) .
- 7. a) Montrer: $\forall n \geq 1, v_n \leq 3$.
 - b) Écrire une fonction Scilab d'en-t $\tilde{\mathbf{A}}^{\underline{\mathbf{a}}}$ te function y=h(n,x) qui renvoie la valeur de $h_n(x)$ lors-qu'on lui fournit un entier naturel n non nul et un réel $x \in \mathbb{R}_+^*$ en entrée.

c) Compléter la fonction suivante pour qu'elle renvoie une valeur approchée à 10^{-5} près de v_n par la méthode de dichotomie lorsqu'on lui fournit un entier $n \ge 1$ en entrée :

d) À la suite de la fonction v, on écrit le code suivant :

```
1  X = 1:20
2  Y = zeros(1,20)
3  for k = 1:20
4   Y(k) = v(k) ^ k
5  end
6  plot2d(X, Y, style=-2, rect=[1,1,20,3])
```

À l'exécution du programme, on obtient la sortie graphique suivante :

Expliquer ce qui est affiché sur le graphique ci-dessus. Que peut-on conjecturer?

- e) Montrer: $\forall n \geqslant 1, \ (v_n)^n = \frac{3+\sqrt{5}}{2}.$
- f) Retrouver ainsi le résultat de la question 4.c).

Exercice 3

On suppose que toutes les variables aléatoires présentées dans cet exercice sont définies sur le même espace probabilisé.

Partie A

Soit f la fonction définie sur \mathbb{R} par :

$$\forall t \in \mathbb{R}, \ f(t) = \begin{cases} \frac{1}{t^3} & \text{si } t \geqslant 1\\ 0 & \text{si } -1 < t < 1\\ -\frac{1}{t^3} & \text{si } t \leqslant -1 \end{cases}$$

1. Démontrer que la fonction f est paire.

Démonstration.

Soit $t \in \mathbb{R}$, alors : $-t \in \mathbb{R}$. Trois cas se présentent.

• Si $t \in]-\infty, -1]$, alors $-t \in [1, +\infty[$. Donc :

$$f(-t) = \frac{1}{(-t)^3} = \frac{1}{-t^3} = -\frac{1}{t^3} = f(t)$$

• Si $t \in]-1,1[$, alors $-t \in]-1,1[$. Donc :

$$f(-t) = 0 = f(t)$$

• Si $t \in [1, +\infty[$, alors $-t \in]-\infty, -1]$. Donc :

$$f(-t) = -\frac{1}{(-t)^3} = -\frac{1}{-t^3} = \frac{1}{t^3} = f(t)$$

Finalement, pour tout $t \in \mathbb{R} : f(-t) = f(t)$.

On en déduit que la fonction
$$f$$
 est paire.

2. Justifier que l'intégrale $\int_1^{+\infty} f(t) dt$ converge et calculer sa valeur.

Démonstration.

- La fonction f est continue par morceaux sur $[1, +\infty[$.
- Soit $A \in [1, +\infty[$.

$$\int_{1}^{A} f(t) dt = \int_{1}^{A} \frac{1}{t^{3}} dt = \int_{1}^{A} t^{-3} dt = \left[\frac{1}{-2} t^{-2} \right]_{1}^{A} = -\frac{1}{2} \left(\frac{1}{A^{2}} - 1 \right) = -\frac{1}{2A^{2}} + \frac{1}{2}$$

$$\mathrm{Or}: \lim_{A \to +\infty} \, \frac{1}{2 \, A^2} \ = \ 0.$$

Ainsi l'intégrale
$$\int_1^{+\infty} f(t) dt$$
 converge et vaut $\frac{1}{2}$.

3. a) À l'aide d'un changement de variable, montrer que pour tout réel A strictement supérieur à 1, on a :

$$\int_{-A}^{-1} f(t) \ dt = \int_{1}^{A} f(u) \ du$$

En déduire que l'intégrale $\int_{-\infty}^{-1} f(t) dt$ converge et donner sa valeur.

Démonstration.

- Soit $A \in]1, +\infty[$.
 - × La fonction f est continue par morceaux sur [-A, -1]. Ainsi, l'intégrale $\int_{-A}^{-1} f(t) dt$ est bien définie.
 - $_{\times}$ On effectue le changement de variable $\boxed{\ u=-t\ }$

$$\begin{vmatrix} u = -t & (\text{et donc } t = -u) \\ \hookrightarrow du = -dt & \text{et } dt = -du \\ \bullet t = -A \Rightarrow u = A \\ \bullet t = -1 \Rightarrow u = 1 \end{vmatrix}$$

× Ce changement de variable est valide car $\varphi : u \mapsto -u$ est de classe \mathcal{C}^1 sur [-A, -1]. On obtient alors :

$$\int_{-A}^{-1} f(t) dt = \int_{A}^{1} f(-u)(-du)$$

$$= \int_{1}^{A} f(-u) du$$

$$= \int_{1}^{A} f(u) du \qquad (car f est paire d'après 1.)$$

Pour tout
$$A \in]1, +\infty[: \int_{-A}^{-1} f(t) dt = \int_{1}^{A} f(u) du.$$

• D'après la question précédente, l'intégrale $\int_1^{+\infty} f(t) \ dt$ converge.

On déduit alors de l'égalité du point précédent que l'intégrale $\int_{-\infty}^{-1} f(t) dt$ converge et, en passant à la limite quand A tend vers $+\infty$, on obtient :

$$\int_{-\infty}^{-1} f(t) dt = \int_{1}^{+\infty} f(t) dt = \frac{1}{2}$$

L'intégrale
$$\int_{-\infty}^{-1} f(t) dt$$
 converge et vaut $\frac{1}{2}$.

b) Montrer que la fonction f est une densité de probabilité.

Démonstration.

- La fonction f est continue :
 - \times sur] $-\infty$, -1[, en tant qu'inverse d'une fonction continue et qui ne s'annule pas sur cet intervalle,
 - \times sur]-1,1[, en tant que fonction constante,
 - \times sur]1, + ∞ [, en tant qu'inverse d'une fonction continue et qui ne s'annule pas sur cet intervalle

On en déduit que la fonction f est continue sur \mathbb{R} sauf éventuellement en -1 et en 1.

- Soit $t \in \mathbb{R}$. Trois cas se présentent :
 - × $\operatorname{si} t \in]-\infty, -1]$, alors en particulier : t < 0. Donc : $t^3 < 0$. Ainsi : $\frac{1}{t^3} < 0$. D'où : $f(t) = -\frac{1}{t^3} > 0$.
 - \times si $t \in]-1,1[$, alors : f(t) = 0. Ainsi : $f(t) \ge 0$.
 - \times $\underline{\text{si}}_{t} \in [1, +\infty[$, alors en particulier : t > 0. Ainsi : $f(t) = \frac{1}{t^3} > 0$.

Finalement :
$$\forall t \in \mathbb{R}, f(t) \geq 0.$$

- Montrons que l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge et vaut 1.
 - × D'après la question 3.a), l'intégrale $\int_{-\infty}^{-1} f(t) dt$ converge et vaut $\frac{1}{2}$.
 - × La fonction f est nulle en dehors de $]-\infty,-1]\cup[1,+\infty[$, donc l'intégrale $\int_{-1}^{1}f(t)\ dt$ converge et vaut 0.
 - × D'après la question 2., l'intégrale $\int_1^{+\infty} f(t) dt$ converge et vaut $\frac{1}{2}$.
 - \times On en déduit que l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge et :

$$\int_{-\infty}^{+\infty} f(t) \ dt \ = \ \int_{-\infty}^{-1} f(t) \ dt + \int_{-1}^{1} f(t) \ dt + \int_{1}^{+\infty} f(t) \ dt \ = \ \frac{1}{2} + 0 + \frac{1}{2} \ = \ 1$$

$$\text{L'intégrale} \ \int_{-\infty}^{+\infty} f(t) \ dt \ \text{converge et vaut 1.}$$

On en déduit que la fonction f est une densité de probabilité.

- 4. On considère une variable aléatoire X admettant f pour densité. On note F_X la fonction de répartition de X.
 - a) Montrer que, pour tout réel x, on a :

$$F_X(x) = \begin{cases} \frac{1}{2x^2} & \text{si } x \leqslant -1\\ \frac{1}{2} & \text{si } -1 < x < 1\\ 1 - \frac{1}{2x^2} & \text{si } x \geqslant 1 \end{cases}$$

Démonstration.

Soit $x \in \mathbb{R}$. Trois cas se présentent.

• Si $x \in]-\infty,-1]$, alors :

$$F_X(x) = \mathbb{P}([X \leqslant x]) = \int_{-\infty}^x f(t) dt$$

Or, soit $A \in]-\infty, x]$:

$$\int_A^x f(t) \ dt = \int_A^x -\frac{1}{t^3} \ dt = -\left[\frac{1}{-2} \frac{1}{t^2} \right]_A^x = \frac{1}{2} \left(\frac{1}{x^2} - \frac{1}{A^2} \right) = \frac{1}{2 x^2} - \frac{1}{2 A^2}$$

De plus : $\lim_{A \to -\infty} \frac{1}{2A^2} = 0$.

On en déduit : $F_X(x) = \frac{1}{2x^2}$.

• Si $x \in]-1,1[$, alors :

$$F_X(x) = \int_{-\infty}^x f(t) dt$$

$$= \int_{-\infty}^{-1} f(t) dt \quad (car f est nulle en dehors de \] - \infty, -1] \cup [1, +\infty[)$$

$$= \frac{1}{2}$$

• Si $x \in [1, +\infty[$, alors :

$$F_X(x) = \int_{-\infty}^x f(t) dt$$

$$= \int_{-\infty}^{-1} f(t) dt + \int_{-1}^1 f(t) dt + \int_{1}^x f(t) dt$$

$$= \frac{1}{2} + 0 + \int_{1}^x \frac{1}{t^3} dt \qquad (car f est nulle en dehors de \] - \infty, -1] \cup [1, +\infty[)$$

$$= \frac{1}{2} + \left[\frac{1}{-2} \frac{1}{t^2} \right]_{1}^x$$

$$= \frac{1}{2} - \frac{1}{2} \left(\frac{1}{x^2} - 1 \right)$$

$$= \frac{1}{2} - \frac{1}{2x^2} + \frac{1}{2}$$

Finalement:
$$F_X: x \mapsto \begin{cases} \frac{1}{2x^2} & \text{si } x \leqslant -1 \\ \frac{1}{2} & \text{si } -1 < x < 1 \\ 1 - \frac{1}{2x^2} & \text{si } x \geqslant 1 \end{cases}$$

8

b) Démontrer que X admet une espérance, puis que cette espérance est nulle.

Démonstration.

- La v.a.r. X admet une espérance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ est absolument convergent, ce qui équivaut à démontrer la convergence pour un calcul de moment du type $\int_{-\infty}^{+\infty} t^m f(t) dt$.
- Commençons par étudier la convergence de l'intégrale $\int_0^{+\infty} t f(t) dt$.
 - × Tout d'abord, comme la fonction f est nulle en dehors de] $-\infty, -1$] \cup [1, $+\infty$ [:

$$\int_0^{+\infty} t f(t) dt = \int_1^{+\infty} t f(t) dt$$

- × De plus, la fonction $t \mapsto t f(t)$ est continue par morceaux sur $[1, +\infty[$.
- × Enfin, soit $t \in [1, +\infty[$:

$$t f(t) = t \frac{1}{t^3} = \frac{1}{t^2}$$

Or, l'intégrale $\int_1^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann, impropre en $+\infty$, d'exposant 2 > 1. Elle est donc convergente.

On en déduit que l'intégrale
$$\int_0^{+\infty} t f(t) dt$$
 converge.

• D'après la question 1., la fonction f est paire. On en déduit que la fonction $t \mapsto t f(t)$ est impaire.

Ainsi, l'intégrale
$$\int_{-\infty}^{0} t f(t) dt$$
 converge et : $\int_{-\infty}^{0} t f(t) dt = -\int_{0}^{+\infty} f(t) dt$.

• On en déduit que l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ converge.

Ainsi, la v.a.r.
$$X$$
 admet une espérance.

• Enfin:

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} t f(t) dt = \int_{-\infty}^{0} t f(t) dt + \int_{0}^{+\infty} t f(t) dt = -\int_{0}^{+\infty} t f(t) dt + \int_{0}^{+\infty} t f(t) dt = 0$$

$$\mathbb{E}(X) = 0$$

Commentaire

On rappelle que l'égalité :

$$\int_{-\infty}^{0} t f(t) dt = -\int_{0}^{+\infty} t f(t) dt$$

se démontre à l'aide du changement de variable u = -t

$$| u = -t \quad (\text{et donc } t = -u)$$

$$| \rightarrow du = -dt \quad \text{et} \quad dt = -du$$

$$| \bullet t = -\infty \Rightarrow u = +\infty$$

$$| \bullet t = 0 \Rightarrow u = 0$$

Ce changement de variable est valide car $\varphi: u \mapsto -u$ est de classe \mathcal{C}^1 sur $]-\infty,0]$.

c) La variable aléatoire X admet-elle une variance?

Démonstration.

- La v.a.r. X admet une variance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} t^2 f(t) dt$ est absolument convergent, ce qui équivaut à démontrer la convergence pour un calcul de moment du type $\int_{-\infty}^{+\infty} t^m f(t) dt$.
- Commençons par étudier la nature de l'intégrale $\int_0^{+\infty} t^2 f(t) dt$.
 - × Tout d'abord, comme la fonction f est nulle en dehors de] $-\infty, -1$] \cup [1, $+\infty$ [:

$$\int_0^{+\infty} t^2 f(t) \ dt = \int_1^{+\infty} t^2 f(t) \ dt$$

- × De plus, la fonction $t \mapsto t^2 f(t)$ est continue par morceaux sur $[1, +\infty[$.
- × Enfin, soit $t \in [1, +\infty[$:

$$t^2 f(t) = t^2 \frac{1}{t^3} = \frac{1}{t}$$

Or, l'intégrale $\int_1^{+\infty} \frac{1}{t} dt$ est une intégrale de Riemann, impropre en $+\infty$, d'exposant 1. Elle est donc divergente.

On en déduit que l'intégrale $\int_0^{+\infty} t^2 f(t) dt$ diverge.

• Ainsi, l'intégrale $\int_{-\infty}^{+\infty} t^2 f(t) \ dt$ diverge.

On en déduit que la v.a.r. X n'admet pas de variance.

Commentaire

Lorsqu'un résultat à démontrer est formulé sous forme d'interrogation (et pas d'affirmation comme c'est le cas en général), on pensera, dans une majorité de cas à répondre par la négative. À titre d'illustration, lorqu'on rencontre les questions :

- \times « Les v.a.r. X et Y sont-elles indépendantes ? »
- \times « La v.a.r. X admet-elle une variance? »
- \times « La matrice A est-elle diagonalisable ? »
- \times « La suite (u_n) est-elle majorée? »

la réponse est, généralement, « non » (à justifier évidemment).

- 5. Soit Y la variable aléatoire définie par Y = |X|.
 - a) Donner la fonction de répartition de Y, et montrer que Y est une variable aléatoire à densité.

 $D\'{e}monstration.$

- Tout d'abord, par définition de $Y: Y(\Omega) \subset [0, +\infty[$.
- Soit $x \in \mathbb{R}$. Deux cas se présentent :

× si
$$x \in]-\infty, 0[$$
, alors $[Y \leqslant x]=\emptyset,$ car $Y(\Omega) \subset [0,+\infty[$. Donc :

$$F_Y(x) = \mathbb{P}([Y \leqslant x]) = \mathbb{P}(\emptyset) = 0$$

 \times si $x \in [0, +\infty[$, alors :

$$F_Y(x) = \mathbb{P}([Y \leqslant x]) = \mathbb{P}([|X| \leqslant x]) = \mathbb{P}([-x \leqslant X \leqslant x]) = F_X(x) - F_X(-x)$$

où la dernière égalité est obtenue car X est une v.a.r. à densité.

Deux cas se présentent alors :

- si $x \in [0,1[$, alors $-x \in]-1,0[$. On obtient alors avec la question 4.a):

$$F_Y(x) = F_X(x) - F_x(-x) = \frac{1}{2} - \frac{1}{2} = 0$$

- $\underline{\text{si } x \in [1, +\infty[, \text{ alors } -x \in]-\infty, -1]}$. On obtient alors avec la question 4.a):

$$F_Y(x) = F_X(x) - F_X(-x) = \left(1 - \frac{1}{2x^2}\right) - \frac{1}{2(-x)^2} = 1 - \frac{1}{2x^2} - \frac{1}{2x^2} = 1 - \frac{1}{x^2}$$

Finalement :
$$F_Y : x \mapsto \begin{cases} 0 & \text{si } x \in]-\infty, 1[\\ 1 - \frac{1}{x^2} & \text{si } x \in [1, +\infty[$$

- \bullet Montrons que Y est une v.a.r. à densité.
 - \times La fonction F_Y est continue :
 - sur $]-\infty,1[$, en tant que fonction constante,
 - sur $]1, +\infty[$, en tant que somme de fonctions continues sur $]1, +\infty[$,
 - en 1. En effet, d'une part : $\lim_{x\to 1^+} F_Y(x) = F_Y(1) = 1 \frac{1}{1^2} = 0$. D'autre part : $\lim_{x\to 1^-} F_Y(x) = 0$. Ainsi :

$$\lim_{x \to 1^{-}} F_{Y}(x) = F_{Y}(1) = \lim_{x \to 1^{+}} F_{Y}(x)$$

La fonction F_Y est continue sur \mathbb{R} .

× La fonction F_Y est de classe \mathcal{C}^1 sur $]-\infty,1[$ et $]1,+\infty[$ avec des arguments similaires à ceux de la continuité sur ces intervalles.

La fonction F_Y est de classe \mathcal{C}^1 sur \mathbb{R} sauf éventuellement en 1.

On en déduit que la v.a.r. Y est une v.a.r. à densité.

b) Montrer que Y admet pour densité la fonction f_Y définie par :

$$f_Y: x \mapsto \begin{cases} \frac{2}{x^3} & \text{si } x \geqslant 1\\ 0 & \text{sinon} \end{cases}$$

 $D\'{e}monstration.$

Pour déterminer une densité f_Y de Y, on dérive la fonction F_Y sur les intervalles **ouverts** $]-\infty,1[$ et $]1,+\infty[$.

• Soit $x \in]-\infty,1[$.

$$f_Y(x) = F_Y'(x) = 0$$

• Soit $x \in]1, +\infty[$.

$$f_Y(x) = F'_Y(x) = -(-2) \frac{1}{x^3} = \frac{2}{x^3}$$

• On choisit enfin : $f_Y(1) = \frac{2}{1^3} = 2$.

Ainsi, une densité
$$f_Y$$
 de Y est : $f_Y: x \mapsto \begin{cases} 0 & \text{si } x \in]-\infty, 1[\\ \frac{2}{x^3} & \text{si } x \in [1, +\infty[$

c) Montrer que Y admet une espérance et la calculer.

Démonstration.

• La v.a.r. Y admet une espérance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} t f_Y(t) dt$ est absolument convergent, ce qui équivaut à démontrer la convergence pour un calcul de moment du type $\int_{-\infty}^{+\infty} t^m f_Y(t) dt$.

• Tout d'abord, comme la fonction f_Y est nulle en dehors de $[1, +\infty[$:

$$\int_{-\infty}^{+\infty} t f_Y(t) dt = \int_{1}^{+\infty} t f_Y(t) dt$$

- De plus, la fonction $t \mapsto t f_Y(t)$ est continue par morceaux sur $[1, +\infty[$.
- Enfin, soit $t \in [1, +\infty[$:

$$t f_Y(t) = t \frac{3}{t^3} = \frac{2}{t^2}$$

Ainsi, soit $B \in [1, +\infty[$.

$$\int_{1}^{B} t f_{Y}(t) dt = \int_{1}^{B} \frac{1}{t^{2}} dt = 2 \int_{1}^{B} t^{-2} dt = \mathbf{Z} \left[\frac{1}{-\mathbf{Z}} t^{-1} \right]_{1}^{B} = -\left(\frac{1}{B} - 1 \right) = 1 - \frac{1}{B}$$

Or : $\lim_{B\to +\infty} \frac{1}{B} = 0$. On en déduit que l'intégrale $\int_1^{+\infty} \ t \, f_Y(t) \ dt$ converge.

Ainsi, la v.a.r. Y admet une espérance.

• De plus :

$$\mathbb{E}(Y) = \int_{-\infty}^{+\infty} t f_Y(t) dt = \int_{1}^{+\infty} t f_Y(t) dt = 1$$

$$\mathbb{E}(Y) = 1$$

Partie B

6. Soit D une variable aléatoire prenant les valeurs -1 et 1 avec équiprobabilité, indépendante de la variable aléatoire Y.

Soit T la variable aléatoire définie par T = DY.

a) Déterminer la loi de la variable $Z = \frac{D+1}{2}$. En déduire l'espérance et la variance de D.

Démonstration.

- D'après l'énoncé : $D \hookrightarrow \mathcal{U}\left(\{-1,1\}\right)$. Ainsi :
 - $\times D(\Omega) = \{-1, 1\},\$

$$\times \mathbb{P}([D=-1]) = \mathbb{P}([D=1]) = \frac{1}{2}.$$

- Tout d'abord, comme $D(\Omega) = \{-1, 1\}$, on obtient : $Z(\Omega) = \left\{\frac{-1+1}{2}, \frac{1+1}{2}\right\} = \{0, 1\}$.
- De plus:

$$[Z=1] = \left[\frac{D+1}{2} = 1\right] = [D+1=2] = [D=1]$$

On en déduit : $\mathbb{P}([Z=1]) = \mathbb{P}([D=1]) = \frac{1}{2}$.

Finalement :
$$Z \hookrightarrow \mathcal{B}\left(\frac{1}{2}\right)$$
.

b) Justifier que T admet une espérance et préciser sa valeur.

Démonstration.

• La v.a.r. T admet une espérance en tant que produit de v.a.r. indépendantes admettant une espérance.

La v.a.r.
$$T$$
 admet une espérance.

• De plus :

$$\begin{array}{lcl} \mathbb{E}(T) & = & \mathbb{E}(DY) \\ \\ & = & \mathbb{E}(D) \ \mathbb{E}(Y) & \begin{array}{ll} (car \ D \ et \ Y \ sont \\ ind\'ependantes) \end{array}$$

• Enfin, par définition de l'espérance :

$$\mathbb{E}(D) \ = \ (-1) \times \mathbb{P}([D=-1]) + 1 \times \mathbb{P}([D=1]) \ = \ -\frac{1}{2} + \frac{1}{2} \ = \ 0$$
 On en déduit :
$$\mathbb{E}(T) = \mathbb{E}(D) \ \mathbb{E}(Y) = 0 \times \mathbb{E}(Y) = 0.$$

c) Montrer que pour tout réel x, on a :

$$\mathbb{P}([T\leqslant x]) \ = \ \frac{1}{2} \ \mathbb{P}([Y\leqslant x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x])$$

Démonstration.

Soit $x \in \mathbb{R}$.

La famille ([D = -1], [D = 1]) forme un système complet d'événements. Ainsi, par formule des probabilités totales :

$$\begin{split} \mathbb{P}([T\leqslant x]) &= \mathbb{P}([D=-1]\cap[T\leqslant x]) + \mathbb{P}([D=1]\cap[T\leqslant x]) \\ &= \mathbb{P}([D=-1]\cap[DY\leqslant x]) + \mathbb{P}([D=1]\cap[DY\leqslant x]) \\ &= \mathbb{P}([D=-1]\cap[-Y\leqslant x]) + \mathbb{P}([D=1]\cap[Y\leqslant x]) \\ &= \mathbb{P}([D=-1]) \ \mathbb{P}([-Y\leqslant x]) + \mathbb{P}([D=1]) \ \mathbb{P}([Y\leqslant x]) \quad \begin{tabular}{c} (car\ les\ v.a.r.\ D\ et\ Y\ sont\ ind\'ependantes) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\leqslant x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\leqslant x]) + \frac{1}{2} \ \mathbb{P}([Y\leqslant x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\leqslant x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) \\ &= \frac{1}{2} \ \mathbb{P}([Y\geqslant -x]) + \frac{1}{2} \ \mathbb{P}([$$

d) En déduire la fonction de répartition de T.

Démonstration. Soit $x \in \mathbb{R}$.

• D'après la question précédente :

$$F_T(x) = \mathbb{P}([T \leqslant x]) = \frac{1}{2} \mathbb{P}([Y \leqslant x]) + \frac{1}{2} \mathbb{P}([Y \geqslant -x]) = \frac{1}{2} F_Y(x) + \frac{1}{2} (1 - F_Y(-x))$$

où la dernière égalité est obtenue car Y est une v.a.r. à densité d'après la question 5.a).

• Trois cas se présentent alors :

 \times si $x \in]-\infty,-1]$, alors $-x \in [1,+\infty[$. On obtient donc, avec la question 5.a):

$$F_T(x) = \frac{1}{2} \times 0 + \frac{1}{2} \left(\mathbf{1} - \left(\mathbf{1} - \frac{1}{(-x)^2} \right) \right) = \frac{1}{2 x^2}$$

 \times si $x \in]-1,1[$, alors $-x \in]-1,1[$. On obtient donc, avec la question 5.a):

$$F_T(x) = \frac{1}{2} \times 0 + \frac{1}{2} (1 - 0) = \frac{1}{2}$$

 \times si $x \in [1, +\infty[$, alors $-x \in]-\infty, -1]$. On obtient donc, avec la question 5.a):

$$F_T(x) = \frac{1}{2} \left(1 - \frac{1}{x^2} \right) + \frac{1}{2} (1 - 0) = \frac{1}{2} - \frac{1}{2x^2} + \frac{1}{2} = 1 - \frac{1}{2x^2}$$

Finalement :
$$F_T : x \mapsto \begin{cases} \frac{1}{2x^2} & \text{si } x \in]-\infty, -1] \\ \frac{1}{2} & \text{si } x \in]-1, 1[\\ 1 - \frac{1}{2x^2} & \text{si } x \in [1, +\infty[$$

Commentaire

On remarque que les v.a.r. T et X ont même fonction de répartition. Or, la fonction de répartition caractérise la loi. On en déduit que les v.a.r. X et T ont même loi.

- 7. Soit U une variable aléatoire suivant la loi uniforme sur]0,1[et V la variable aléatoire définie par : $V=\frac{1}{\sqrt{1-U}}.$
 - a) Rappeler la fonction de répartition de U.

 $D\'{e}monstration.$

Comme
$$U \hookrightarrow \mathcal{U}([0,1])$$
, alors $F_U : x \mapsto \begin{cases} 0 & \text{si } x \in] - \infty, 0] \\ x & \text{si } x \in]0, 1[\\ 1 & \text{si } x \in [1, +\infty[\end{cases}$

b) Déterminer la fonction de répartition de V et vérifier que les variable V et Y suivent la même loi.

Démonstration.

• On note $h: x \mapsto \frac{1}{\sqrt{1-x}}$ de telle sorte que V=h(U). On sait tout d'abord : $U(\Omega)=]0,1[$. On obtient alors :

Détaillons (*).

- \times La fonction h est continue sur]0,1[en tant que quotient de fonctions continues sur]0,1[dont le dénominateur ne s'annule pas sur cet intervalle.
- × La fonction h est dérivable sur]0,1[avec des arguments similaires. Soit $x \in [0,1[$.

$$h'(x) = -\frac{1}{2} \frac{-1}{(1-x)^{\frac{3}{2}}} = \frac{1}{2(1-x)^{\frac{3}{2}}} > 0$$

Donc la fonction h est bien strictement croissante sur]0,1[.

$$V(\Omega) =]1, +\infty|$$

- Soit $x \in \mathbb{R}$. Deux cas se présentent :
 - × si $x \in]-\infty,1]$, alors : $[V\leqslant x]=\varnothing$, car $V(\Omega)=]1,+\infty[$. Donc :

$$F_V(x) = \mathbb{P}([V \leqslant x]) = \mathbb{P}(\emptyset) = 0$$

 \times si $x \in [1, +\infty[$, alors :

$$F_{V}(x) = \mathbb{P}([V \leqslant x]) = \mathbb{P}\left(\left[\frac{1}{\sqrt{1-U}} \leqslant x\right]\right)$$

$$= \mathbb{P}\left(\left[\sqrt{1-U} \geqslant \frac{1}{x}\right]\right) \qquad (car \ la \ fonction \ inverse \ est \ strictement \ décroissante \ sur \]0, +\infty[)$$

$$= \mathbb{P}\left(\left[1-U \geqslant \frac{1}{x^{2}}\right]\right) \qquad (car \ la \ fonction \ x \mapsto x^{2} \ est \ strictement \ croissante \ sur \ [0, +\infty[)]$$

$$= \mathbb{P}\left(\left[1-\frac{1}{x^{2}} \geqslant U\right]\right)$$

$$= F_{U}\left(1-\frac{1}{x^{2}}\right)$$

De plus:

$$\begin{array}{lll} x>1\\ & \text{donc} & x^2>1 & \textit{(par stricte croissance de la fonction } x\mapsto x^2 \textit{ sur } [0,+\infty[)\\ & \text{d'où} & \frac{1}{x^2}<1 & \textit{(par stricte décroissance de la fonction inverse sur }]0,+\infty[)\\ & \text{ainsi} & 0<\frac{1}{x^2}<1 & \text{(par stricte décroissance de la fonction inverse sur }]0,+\infty[)\\ \end{array}$$

On en déduit, d'après la question précédente :

$$F_V(x) = F_U\left(1 - \frac{1}{x^2}\right) = 1 - \frac{1}{x^2}$$

$$\text{Finalement} : F_V : x \mapsto \begin{cases} 0 & \text{si } x \in]-\infty, 1] \\ 1 - \frac{1}{x^2} & \text{si } x \in [1, +\infty[] \end{cases}$$

• On remarque que les v.a.r. V et Y ont même fonction de répartition, d'après la question 5.a). Or la fonction de répartition caractérise la loi.

On en déduit que les v.a.r.
$$V$$
 et Y ont même loi.

8. a) Écrire une fonction en langage Scilab, d'en-tête function a=D(n), qui prend un entier $n \ge 1$ en entrée, et renvoie une matrice ligne contenant n réalisations de la variable aléatoire D.

Démonstration.

```
function a=D(n)
a = zeros(1,n)
for i = 1:n
r = rand()
for i = 1/2 then
a(i) = -1
else
a(i) = 1
end
end
end
endfuntion
```

• Début de la fonction

On commence par initialiser la variable a qui doit contenir, d'après l'énoncé, une matrice ligne à n colonnes.

$$\underline{a} = zeros(1, \mathbf{n})$$

• Structure itérative

On met ensuite en place une structure itérative (boucle for) pour affecter à chaque coefficient de la matrice a une réalisation de la v.a.r. D.

$$\underline{3}$$
 for $i = 1:n$

On cherche maintenant à simuler la v.a.r. D.

- × D'après l'énoncé : $D \hookrightarrow \mathcal{U}(\{-1,1\})$. Ainsi, chaque coefficient de la variable **a** doit :
 - prendre la valeur -1 avec probabilité $\mathbb{P}([D=-1]) = \frac{1}{2}$.
 - prendre la valeur 1 avec probabilité $\mathbb{P}([D=1]) = \frac{1}{2}$.
- × Pour cela, on utilise la commande suivante :

$$\underline{5}$$
 r = rand()

L'instruction rand() renvoie un réel choisi aléatoirement dans]0,1[. Plus formellement, il s'agit de simuler une v.a.r. U telle que $U \hookrightarrow \mathcal{U}([0,1])$.

 \times Cette valeur **r** choisie aléatoirement dans]0,1[permet d'obtenir une simulation de D.

Deux cas se présentent :

- Si $\mathbf{r} < \frac{1}{2}$: alors on affecte à $\mathbf{a}(\mathbf{i})$ (la $i^{\text{ème}}$ coordonnée de \mathbf{a}) la valeur -1. Ce cas se produit avec la probabilité attendue :

$$\mathbb{P}\left(\left[0 < U < \frac{1}{2}\right]\right) \ = \ \mathbb{P}\left(\left[U < \frac{1}{2}\right]\right) \ = \ \frac{1}{2} \ = \ \mathbb{P}([D = -1])$$

- Si $r \geqslant \frac{1}{2}$: alors on affecte à a(i) la valeur 1. Ce cas se produit avec la probabilité attendue :

$$\mathbb{P}\left(\left\lceil\frac{1}{2} < U < 1\right\rceil\right) \ = \ \mathbb{P}\left(\left\lceil\frac{1}{2} < U\right\rceil\right) \ = \ \frac{1}{2} \ = \ \mathbb{P}([D=1])$$

On obtient la suite du programme :

Commentaire

Afin de permettre une bonne compréhension des mécanismes en jeu, on a détaillé la réponse à cette question. Cependant, fournir la fonction **Scilab** démontre la bonne compréhension de la simulation demandée et permet certainement d'obtenir la totalité des points alloués à cette question. On procèdera de même dans la question suivante.

b) On considère le script suivant :

De quelle variable aléatoire les coefficients du vecteur c sont- ils une simulation? Pour n assez grand, quelle sera la valeur affichée? Justifier votre réponse.

Démonstration.

• On commence par demander à l'utilisateur d'entrer une valeur pour l'entier n.

$$\underline{1}$$
 n = input('entrer n')

• D'après la question précédente, on affecte ensuite à la variable a une matrice ligne contenant n réalisations de la v.a.r. D.

$$\underline{a}$$
 a = D(n)

• On continue en affectant à la variable b une matrice ligne contenant n réalisations d'une loi uniforme sur]0,1[, c'est-à-dire de la v.a.r. U.

$$\underline{3}$$
 b = rand(1,n)

- La ligne $\underline{4}$ permet de définir une nouvelle variable \mathtt{c} :

$$\underline{a}$$
 c = a ./ sqrt(1-b)

- \times On sait déjà que la variable a contient n réalisation de la v.a.r. D.
- × On rappelle de plus que la variable b contient n réalisations de la v.a.r. U. Ainsi, la variable 1 ./ sqrt(1-b) contient n réalisations de la v.a.r. V. Or, d'après la question 7.b), les v.a.r. V et Y ont même loi.

On en déduit que la variable 1 ./ sqrt(1-b) contient n réalisations de la v.a.r. Y.

Finalement, la variable c contient donc l'observation d'un n-échantillon de la v.a.r. $D \times Y = T$.

Commentaire

L'énoncé original proposait la ligne 4 suivante :

$$\underline{a}$$
 c = a / sqrt(1-b)

Cette commande ne permettait pas d'aboutir au résultat voulu. En effet, la commande :

- A / B correspond à l'opération A × B⁻¹. Celle-ci est impossible à effectuer ici car la matrice sqrt(1-b) est une matrice ligne. Elle n'est donc pas carrée, et ainsi non inversible.
- A ./ B correspond à la division terme de chaque élément de la matrice A par chaque élément de la matrice B. C'est bien ce qu'on voulait faire ici : diviser la 1^{ère} coordonnée de la matrice a par la 1^{ère} coordonnée de la matrice sqrt(1-b), diviser la 2^{ème} coordonnée de la matrice sqrt(1-b)
- Enfin, la ligne $\underline{5}$:

$$_{5}$$
 disp(sum(c)/n)

permet d'afficher la moyenne des réalisations de T. Plus précisément, la variable c est un n-uplet (t_1,\ldots,t_n) qui correspond à l'observation d'un n-échantillon (T_1,\ldots,T_n) de la v.a.r. T. (cela signifie que les v.a.r. T_1,\ldots,T_n sont indépendantes et sont de même loi que T)

Ce programme renvoie donc la valeur $\frac{1}{n}\sum_{i=1}^{n}t_{i}$ qui correspond à une réalisation de la moyenne

empirique $\frac{1}{n} \sum_{i=1}^{n} T_i$.

- On rappelle maintenant l'énoncé de la loi faible des grands nombres (LfGN). Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a.r. :
 - × indépendantes,
 - \times de même espérance m,
 - × de même variance.

Alors la v.a.r. $\frac{1}{n} \sum_{i=1}^{n} X_i$ converge en probabilité vers m.

- On serait donc tenter de dire, que d'après la LfGN, si n est grand, le programme fourni par l'énoncé renvoie une valeur approchée de $\mathbb{E}(T)$. Vérifions donc que le cadre d'application de la LfGN est bien respecté.
 - Le n-uplet (T_1, \ldots, T_n) est un n-échantillon de la v.a.r. T. Ainsi, les v.a.r. T_1, \ldots, T_n sont indépendantes (et de même loi).
 - D'après la question 6.b), la v.a.r. T admet une espérance. Comme les v.a.r. T_1, \ldots, T_n ont même loi que T, elles admettent bien la même espérance.
 - On cherche maintenant à savoir si la v.a.r. T admet une variance. Montrons par l'absurde que la v.a.r. T n'admet pas de variance.

Supposons alors que la v.a.r. T admet une variance.

× Par formule de Koenig-Huygens :

$$\mathbb{V}(T) \ = \ \mathbb{E}(T^2) - \left(\mathbb{E}(T)\right)^2 \ = \ \mathbb{E}(T^2)$$

En effet, d'après la question $\boldsymbol{6.b}$): $\mathbb{E}(T) = 0$.

 \times Or:

$$\mathbb{E}(T^2) = \mathbb{E}((DY)^2) = \mathbb{E}(D^2 Y^2)$$

$$= \mathbb{E}(D^2) \mathbb{E}(Y^2) \qquad (car les v.a.r. D et Y sont indépendantes)$$

 \times De plus, par théorème de transfert :

$$\mathbb{E}(D^2) = (-1)^2 \times \mathbb{P}([D=-1]) + 1^2 \times \mathbb{P}([D=1]) = \frac{1}{2} + \frac{1}{2} = 1$$

Ainsi : $\mathbb{V}(T) = \mathbb{E}(T^2) = \mathbb{E}(Y^2)$.

× Par ailleurs, la v.a.r. Y admet un moment d'ordre 2 si et seulement si l'intégrale $\int_{-\infty}^{+\infty} t^2 f_Y(t) dt$ est absolument convergente, ce qui équivaut à démontrer la convergence pour un calcul de moment du type $\int_{-\infty}^{+\infty} t^m f_Y(t) dt$.

Comme la fonction f_Y est nulle en dehors de $[1, +\infty[$:

$$\int_{-\infty}^{+\infty} t^2 f_Y(t) dt = \int_{1}^{+\infty} t^2 f_Y(t) dt$$

Enfin, soit $t \in [1, +\infty[$:

$$t^2 f_Y(t) = t^2 \frac{2}{t^3} = \frac{2}{t}$$

Or, l'intégrale $\int_1^{+\infty} \frac{1}{t} dt$ est une intégrale de Riemann, impropre en $+\infty$, d'exposant 1. Elle est donc divergente.

On en déduit que la v.a.r. Y n'admet pas de moment d'ordre 2.

Finalement la v.a.r. T n'admet pas de variance, ce qui est absurde.

La v.a.r. T n'admet pas de variance. On ne peut donc pas appliquer la LfGN et conclure que le programme renvoie une valeur approchée de $\mathbb{E}(T) = 0$.

Commentaire

Il existe en fait un énoncé de la LfGN (hors programme) se passant de l'hypothèse d'existence d'une variance. Ainsi, si l'on répondait que, pour ${\tt n}$ assez grand, le programme renvoie une valeur approchée de $\mathbb{E}(T)$, alors cette réponse était correcte. Elle permet donc sans doute d'obtenir la totalité des points alloués à cette partie de la question.