Mariana Kolberg

Projeto de Algoritmos Algoritmos Gulosos

Aula 1

Algoritmos Gulosos

São úteis em problemas de otimização combinatória, onde a solução pode ser alcançada por uma seqüência de decisões.

Podemos aplicá-los, por exemplo, em:

- intercalação sucessiva ótima de listas;
- caminhos de custo mínimo em grafos orientados;
- árvore geradora (ou de espalhamento) mínima em grafos não orientados;
- escalonamento de tarefas
- balanceamento de carga entre processadores;
- etc.

Intercalação sucessiva de listas.

- Consiste em intercalar n listas.
- Há várias maneiras possíveis de se realizar uma sequência de intercalações.
- Cada seqüência está associada a um número de comparações.
- A escolha na ordem das intercalações afeta o desempenho do algoritmo.

Considere duas listas L_1 e L_2 com comprimentos m_1 e m_2 , respectivamente.

O número de elementos da lista resultante da intercalação destas listas é igual a soma dos seus comprimentos, ou seja, $m_1 + m_2$

A quantidade de comparações necessárias para intercalar duas listas, no pior caso, é o comprimento da lista resultante menos 1, ou seja, $m_1 + m_2 - 1$.

Sejam três listas L_1 , L_2 e L_3 com comprimentos 15, 10 e 5, respectivamente.

Qual é a seqüência ótima de intercalações?

```
Intercalação L_1 + L_2
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
| _1L_2 | = 15+10 = 25 ; comparações(_1L_2) = 24
```

```
Intercalação L_2 + L_3
|_2 L_3| = 10+5 = 15 ; comparações(_2 L_3) = 14
2^a Maneira
|_1 + (L_2 + L_3)
Intercalação _2L_3 + L_1
|_{23} L_1| = 15+15=30 ; comparações(_{23} L_1)=29
Número total de comparações: 43
```

```
Intercalação L_1 + L_3
| _1L_3 | = 15+5 = 20 ; comparações(_1L_3) = 19
| _1L_3 | = 15+5 = 20 ; comparações(_1L_3) = 19
| _1L_3 | = 15+5 = 20 ; comparações(_1L_3) = 19
| _1L_1 | _1L_2 | = 15+5 = 20 ; comparações(_1L_3) = 19
| _1L_2 | _1L_3 | _1L_4 | _1L_5 | _
```

Podemos tirar alguma conclusão?

A ordem em que as intercalações são realizadas afeta substancialmente o número de comparações, ou seja, afeta o desempenho do algoritmo.

Considere 3 listas L_i com comprimentos m_i , para i = 1, 2, 3. Qual é influência da seqüência de intercalações deste conjunto no número de comparações realizadas?

Assuma que $_{i}$ m $_{k}$ = m_{i} + m_{k} . Vamos considerar duas situações

a)
$$(L_1 + L_2) + L_3$$
,
número total de comparações é igual a
 $t' = {}_1m_2 - 1 + ({}_1m_2 + m_3 - 1) = 2 \cdot (m_1 + m_2) + m_3 - 2$.

b)
$$(L_2 + L_3) + L_1$$

o número total de comparações é igual a
 $t'' = {}_2m_3 - I + (m_1 + {}_2m_3 - I) = 2 \cdot (m_2 + m_3) + m_1 - 2$

Podemos afirmar que se $_1m_2 \le _2m_3$, i. e., (m_1+m_2) $\le (m_2+m_3)$, teremos t' \le t''? (sendo t' = 2 . (m_1+m_2) + m_3 - 2 e t" = 2 . (m_2+m_3) + m_1 - 2)

Podemos afirmar que se $_1m_2 \le _2m_3$, i. e., $(m_1 + m_2) \le (m_2 + m_3)$, teremos t' \le t''? (t' começa com L_1 e L_2 e t'' com L_2 e L_3)

$$(m_1 + m_2 \le m_2 + m_3) = (m_1 + m_1) + m_2 \le m_2 + m_3 + m_1) =$$

$$(m_1 + m_1 + m_2 + m_2) \le m_2 + m_2 + m_3 + m_1) =$$

$$(m_1 + m_1 + m_2 + m_2 + m_3) \le m_2 + m_2 + m_3 + m_3 + m_1) =$$

$$(m_1 + m_1 + m_2 + m_2 + m_3) \ge m_2 + m_2 + m_3 + m_3 + m_1 = 2$$

$$(m_1 + m_1) + m_2 + m_3 = 2 \le 2(m_2 + m_3) + m_1 = 2$$

$$t' \le t''$$

Considere a intercalação de n listas L_i

Instante 1. A intercalação de L_1 com L_2 necessita de ${}_1\mathbf{m}_2$ -1 comparações e produz ${}_1L_2$ com comprimento ${}_1\mathbf{m}_2$, onde ${}_1\mathbf{m}_2$:= $(\mathbf{m}_1 + \mathbf{m}_2)$

Instante i. A intercalação de $_1L_i$ com L_{i+1} usa $_1m_{i+1}$ -1comparações e produz $_1L_{i+1}$ com comprimento $_1m_{i+1}$, onde $_1m_{i+1}$:= $(_1m_i + m_{i+1})$

Instante n-1. A intercalação de $_1L_{n-1}$ com L_n , usa $_1m_n$ -1 comparações e produz $_1L_n$ com comprimento $_1m_n = (_1m_{n-1} + m_n)$

Qual é o número total de comparações realizadas ?

Considere a intercalação de n listas L_i

Instante 1. A intercalação de L_1 com L_2 necessita de ${}_1\mathbf{m}_2$ -1 comparações e produz ${}_1L_2$ com comprimento ${}_1\mathbf{m}_2$, onde ${}_1\mathbf{m}_2$:= $(\mathbf{m}_1 + \mathbf{m}_2)$

Instante i. A intercalação de $_1L_i$ com L_{i+1} usa $_1m_{i+1}$ -1comparações e produz $_1L_{i+1}$ com comprimento $_1m_{i+1}$, onde $_1m_{i+1}$:= $(_1m_i + m_{i+1})$

Instante n-1. A intercalação de $_1L_{n-1}$ com L_n , usa $_1m_n$ -1 comparações e produz $_1L_n$ com comprimento $_1m_n = (_1m_{n-1} + m_n)$

Qual é o número total de comparações realizadas ?

O número total de comparações é dado por $_1m_2+ ... +_1m_{i+1} + ... +_1m_n - (n-1)$, ou seja, $(n-1).m_1 + (n-1) m_2 + (n-2)m_3 + ... + (n-i)m_{i+1} + ... + m_n - (n-1)$

o primeiro par de listas intercalado dá a maior contribuição para este cálculo

Considere 5 listas, com comprimentos 10, 20, 30, 40 e 50, a intercalar:

Quantas comparações foram realizadas ?

Considere 5 listas, com comprimentos 10, 20, 30, 40 e 50, a intercalar:

Quantas comparações foram realizadas ? 326

Quantas comparações seriam realizadas se pegássemos Sempre as duas maiores listas ?

Considere 5 listas, com comprimentos 10, 20, 30, 40 e 50, a intercalar:

Quantas comparações foram realizadas ? 326

Quantas comparações seriam realizadas se pegássemos Sempre as duas maiores listas ?

496

```
Algoritmo: Intercalação ótima de listas
Função Interc_Suc_Lst( L : D ) → R
1. ncp \leftarrow 0;
2. repita
3. escolhe as duas menores listas L' d_" em L;
4. L \leftarrow L - \{L', L''\};
5. L^* \leftarrow Interc(L', L'');
6. L \leftarrow L \cup \{L^*\};
7. \operatorname{ncp} \leftarrow \operatorname{ncp} + \operatorname{tam}(L') + \operatorname{tam}(L'') - 1;
8. até-que |L| = 1;

 L* ← a única lista em L ;

10. retorne-saída (L*, ncp);
11. fim-Função
```

Idéias básicas

- Um algoritmo guloso seleciona, a cada passo, o melhor elemento pertencente a entrada.
- Verifica se ele é viável vindo a fazer parte da solução ou não.
- Após uma seqüência de decisões, a solução do problema é alcançada.

Na sequência de decisões, nenhum elemento é examinado mais de uma vez: ou ele fará parte da saída, ou será descartado.

Substrutura ótima: quando o problema contém em seu interior soluções ótimas para os subproblemas. A solução ótima local garante a solução ótima global.

No caso da intercalação, verifica sempre o par de listas de menor custo!

A estratégia gulosa possui a seguinte estrutura geral

Inicialização; Iteração; Finalização.

A Inicialização prepara a entrada (muitas vezes a entrada é classificada) e inicializa a saída.

▶ A Iteração

- seleciona um elemento conforme uma função "gulosa",
- marca-o para não considerá-lo novamente no futuro,
- atualiza a entrada,
- examina o elemento selecionado quanto sua viabilidade e decide a sua participação ou não na solução.
- A finalização recupera a saída.

```
Algoritmo: Algoritmo Guloso
Função Alg_Gul(d:D)→R
                                                   {Algoritmo Guloso (abstrato)}
{Entrada-saída: saída r:R é resposta ótima para entrada d:D}
    Incz G; Iter G; Fnl G
                                                                {estrutura geral}
                                                                {componentes}
    onde
        Incz G:
                                                                 {inicialização}
             inicializa parte da entrada a examinar e resposta parcial
        Iter G: itera corpo Crp G
                                                                      {iteração}
             seleciona elemento da parte da entrada a examinar;
                                da parte da entrada a examinar;
             remove elemento
             inclui elemento na resposta parcial se viável
        Fnl G:
                                                                   {finalização}
            recupera a saída a partir da resposta parcial
```

Intercalação ótima de listas x Algoritmo Guloso

Interc_Suc_Lst	Alg_Gul
sorte D := multiconjunto de listas	sorte D {entrada}
1.ncp ← 0;	Incz_G {inicialização}
2. <u>repita</u>	Iter_G {iteração}
3. $(L',L")\leftarrow 2$ menores em L;	seleciona da parte da entrada;
4. L←L−{L',L"};	
5. $L^* \leftarrow Interc(L', L'');$	remove da parte da entrada;
 L←L∪{L*}; 	
7. $ncp \leftarrow ncp + tam(L') + tam(L'') - 1;$	inclui na resposta parcial se viável;
8. <u>até-que</u> L =1;	{fim da iteração}
9.L*←a única lista em L;	Fnl_G {finalização}

Árvore espalhada mínima

- Uma árvore geradora (ou de espalhamento) de um grafo G é um subgrafo acíclico que contém todos os vértices do grafo.
- Motivação: pontes para polinésia francesa

- Aplicações:
- Redes elétricas
- Sistemas de estradas
 - Pipelines
 - Caixeiro viajante

A árvore geradora (ou de espalhamento) mínima

- ▶ É um problema de otimização:
 - O número de árvores espalhadas pode ser exponencial
 - Como achar a árvore de menor custo?

Usando as idéias básicas do método guloso

- I. Inicialização: as arestas são ordenadas em ordem crescente de seus custos; e cada vértice é considerado uma árvore distinta. Isto gera uma floresta de árvores.
- 2. Iteração: a cada passo, seleciona-se uma aresta de custo mínimo (ainda não examinada). Se a inclusão desta aresta na configuração de árvores corrente criar um ciclo, ela é descartada; caso contrário, ela é incluída nesta configuração de tal forma que ligue duas árvores da floresta.
- 3. Finalização: retorna a árvore

Qual é este algoritmo?

Considere um grafo não orientado $G = \langle V, E \rangle$ com

$$-V = \{ a, b, c, d, e, f \};$$

Custo	a	b	c	d	e	f
a	0	16	0	0	9	21
b	16	0	5	6	0	11
c	0	5	0	10	0	0
d	0	6	10	0	18	14
e	9	0	0	18	0	33
f	21	11	0	14	33	0

Projeto e Análise de Algoritmos

A construção da árvore espalhada mínima para G é como segue

Resultado da aplicação do algoritmo para o problema das pontes na polinésia francesa.

Caminhos de custo mínimo em grafo orientado

Este problema consiste em determinar um caminho de custo mínimo a partir de um vértice fonte a cada vértice do grafo.

Considere um grafo orientado $G = \langle V, E \rangle$ com 5 vértices: $V = \{a, b, c, d, e\}$ e 6 arestas com a seguinte matriz de custos:

Custo	a	b	c	d	e
a	0	3	8	8	11
b	8	0	3	2	7
c	8	8	0	8	2
d	8	8	∞	0	∞
e	8	8	8	8	0

- Substrutura ótima do caminho mais curto:
 - Considere o caminho mais curto de vIv2...vn
 - Tem substrutura ótima pois um subcaminho vi...vj de v l v 2...vn também é o mais curto
 - Senão seria possível obter um caminho ainda mais curto!
- Substrutura ótima do caminho mais longo?

O algoritmo constrói incrementalmente um conjunto I de vértices intermediários e o usa para calcular os caminhos de custo mínimo a partir do vértice fonte.

A cada passo, seleciona-se um novo vértice intermediário cuja distância em relação ao vértice fonte seja mínima (estratégia gulosa).

Este vértice intermediário é utilizado para atualizar o custo associado aos demais vértices em relação ao vértice fonte.

Quando $| \mathbf{I} | = \mathbf{n}$, temos todos os caminhos com custo mínimo a partir da fonte.

Importante: cada vértice é considerado apenas uma vez.

Considere que o vértice fonte é o vértice a

Inicialmente, o conjunto I de vértices intermediários é vazio e o vetor de distâncias é inicializado com a primeira linha da matriz de custos.

A cada passo, seleciona-se um vértice v que tenha a menor distância em relação a fonte. Em seguida, atualiza-se a distância deste vértice em relação aos demais.

Algoritmo: Custo mínimo de caminhos a partir de fonte em grafo orientado

8			6	
Inicialização		$0. V_0 \leftarrow V - \{v_0\};$	$\{v \text{ \'ertices n\~ao fonte: } v_1,, v_n\}$	
	\prec	1. $p \leftarrow V_0$;	{inicializa porção da entrada com $\{v_1,,v_n\}$ }	
		2. <u>para i de</u> 1 <u>até</u> n <u>faca</u> dist[i]←	custo[0,i]; {inicializa resposta parcial}	
	1	3. <u>para i de</u> 1 <u>até</u> n <u>faca</u>	{itera: 10}	
		 para i de 1 até n faca e ← vértice v_j ∈ p comdist[[j] mínimo; {seleciona novo vértice}	
lteração <		 p←p-{e}; 	{remove vértice selecionado}	
		6. <u>paracada</u> v _i ∈ V ₀ <u>faça</u>	{vértices v ₁ ,, v _n : 9}	
		 5. p←p-{e}, 6. paracada v_i∈ V₀ faça 7. c←dist[j]+custo[v_j,v_i]; 8. sec≤dist[i]entãodist[i]←o 	{distância usando v _i }	
		8. <u>se</u> c≤dist[i] <u>então</u> dist[i]←o	; {atualiza distância}	
		9. <u>fim-para</u>	{6: cada v₁∈ V₀}	
Finalização		10. <u>fim-para</u>	{3: repita}	
	\exists	11. <u>retorne-saída</u> (dist);	{dá como saída resposta pronta}	
		12. fim-Função {fir	m do algoritmo Dist_fnt: distância a partir da fonte}	

Cálculo da complexidade de algoritmos gulosos

Complexidade de intercalação ótima de listas

O algoritmo efetua operações sobre o multiconjunto L, portanto a complexidade do algoritmo pode variar conforme a estrutura de dados escolhida para representar L.

O multiconjunto L é uma lista encadeada, em que cada elemento guarda tanto uma lista quanto seu tamanho. Assumiremos que

```
para determinar as duas menores listas, a L é percorrida, com complexidade O(n); para remoção a complexidade é O(n); para a inclusão a complexidade é constante.
```

Complexidade: Intercalação Ótima de Listas

```
<u>Algoritmo</u>: Intercalação ótima de listas
11. fim-Função
```

O Algoritmo

recebe como entrada n listas (com seus comprimentos)

fornece como saída o par (intercalação das n listas em L, número mínimo de comparações).

A operação fundamental é a comparação entre elementos das listas e o tamanho da entrada é o par formado pelo tamanho n do multiconjunto L e pelo comprimento m da maior lista em L.

Encontre a complexidade pessimista do algoritmo abaixo

```
Algoritmo: Intercalação ótima de listas
11. fim-Função
```

O desempenho do algoritmo tem contribuições dadas por suas componentes:

Inicialização, Iteração e Finalização.

```
Algoritmo: Intercalação ótima de listas
                  Função Interc Suc Lst( L : D ) \rightarrow R
Inicialização \{ 1. \text{ ncp} \leftarrow 0 ; \}
                                                                                           Como a inicialização e a finalização não
                  2. repita
                                                                                           envolvem comparações.
                          escolhe as duas menores listas L' du em L;
                  4. L \leftarrow L - \{L', L''\};
                                                                                           Logo,
                  5. L^* \leftarrow Interc(L', L'');
                  6. L \leftarrow L \cup \{L^*\}:
                                                                                                         desemp[Inicialização] = 0
                  7. ncp \leftarrow ncp + tam(L') + tam(L'') - 1;
                                                                                                          desemb[Finalização] = 0.
                  8. até-que |L| = 1;
                \begin{cases} 9. \ L^* \leftarrow \text{a única lista em L ;} \\ 10. \ \underline{\text{retorne-saída}} \ (\ L^* \ , \ \text{ncp} \ ) \ ; \end{cases}
                  11. fim-Função
```

A cada iteração

- As duas menores listas em L são substituídas por sua intercalação
- •O tamanho de L diminui de I.

A iteração é executada para | L | variando de n a I

```
i 0 1 ... k ... n-1 
|L<sub>i</sub>| n n-1 ... n-k ... 1
```

No ínicio da i-ésima iteração, $|L_i| = n - i + I$. Portanto temos

comando		cota superior	
3.	(L',L")←2 menores em L;	n-i+1	
4.	$L \leftarrow L - \{L', L''\};$	n-i+1	
5.	L*← Interc(L', L");	compr(L')+compr(L")-1	
6.	$L \leftarrow L \cup \{L^*\};$	0	
7.	$ncp \leftarrow ncp + compr(L') + compr(L'') - 1;$	0	

Sendo m'_i e m''_i os tamanhos das duas listas selecionadas na i-ésima iteração, temos

desemp[Corpo-Iteração] =
$$n - i + 1 + n - i + 1 + m'_i + m''_i - 1$$

desemp[Corpo-Iteração] =
$$2(n-i) + m'_i + m''_i + 1$$

Projeto e Análise de Algoritmos

O desempenho da iteração é

$$\begin{split} \operatorname{desemp}[\operatorname{Iteração}] &= \sum_{i=1}^{n-1} (2(n-i) + m_i' + m_i'' + 1) \\ &= \sum_{i=1}^{n-1} 2(n-i) + \sum_{i=1}^{n-1} (m_i' + m_i'') + \sum_{i=1}^{n-1} 1 \\ &= 2 \sum_{i=1}^{n-1} (i) + \sum_{i=1}^{n-1} (m_i' + m_i'') + (n-1) \\ &= \frac{2(n-1).n}{2} + (n-1) + \sum_{i=1}^{n-1} (m_i' + m_i'') \end{split}$$

Tomando m como o máximo dos comprimentos das n listas em L, temos

O desempenho de Interc_Suc_Lst é

$$desemp[Algoritmo] \le 0 + n^2(m+1) + 0$$

$$c_p^{\leq}[\text{Algoritmo}] = O(n^2(m+1)) = O(n^2.m)$$

Caminhos de custo mínimo em grafo orientado

Este problema consiste em determinar um caminho de custo mínimo a partir de um vértice fonte a cada vértice do grafo.

Considere um grafo orientado $G = \langle V, E \rangle$ com 5 vértices: $V = \{a, b, c, d, e\}$ e 6 arestas com a seguinte matriz de custos:

Custo	a	b	c	d	e
a	0	3	8	8	11
b	8	0	3	2	7
c	8	8	0	8	2
d	8	8	∞	0	∞
e	8	8	8	8	0

Algoritmo: Custo mínimo de caminhos a partir de fonte em grafo orientado

```
 \begin{cases} 0. \ V_0 \leftarrow V - \{v_0\}; & \{\text{v\'ertices n\~ao fonte: } v_1, ..., v_n\} \\ 1. \ p \leftarrow V_0; & \{\text{inicializa por\~ç\~ao da entrada com } \{v_1, ..., v_n\}\} \\ 2. \ \underline{\text{para ide 1 at\'e nfaca dist[i]}} \leftarrow \text{custo} \ \left[ v_0, v_i \right] & \{\text{inicializa resposta parcial}\} \end{cases} 
                                                                                                                                               {itera: 10}
                            3. <u>para</u> i <u>de</u> 1 <u>até</u> n <u>faca</u>
{seleciona novo vértice}
                                                                                                               {remove vértice selecionado}
                                                                                                                           {vértices v_1 \dots v_n : 9}
                                                                                                                            {distância usando v<sub>i</sub>}
                                                                                                                                {atualiza distância}
                                                                                                                                     \{6: cada \ v_i \in V_0\}
                                                                                                                                               {3: repita}
                                                                                                          {dá como saída resposta pronta}
                                                                         {fim do algoritmo Dist_fnt: distância a partir da fonte}
                            12. fim-Função
```

O algoritmo

recebe como entrada

Um grafo orientado valorado G com fonte v₀ e uma matriz de custos

fornece como saída

Um vetor dist (com os custos dos melhores caminhos a partir de v_0).

Consideremos um grafo orientado G com conjunto $V = \{v_0, v_1, ..., v_n\}$ de vértices.

As operações fundamentais do algoritmo são as manipulações com conjuntos (de vértices) e matrizes; e para o tamanho da entrada o número **n** de vértices não fonte.

Encontre a copmplexidade pessimista do algoritmo abaixo, que tem contribuições dadas por suas componentes: **inicialização**, **iteração** e **finalização**.

		 0. V₀ ← V-{v₀}; 1. p ← V₀; 2. para i de 1 até n faca dist[i] ← cust 	$\{v \text{ \'ertices n\~ao fonte: } v_1,, v_n\}$
Inicialização	\prec	1. $p \leftarrow V_0$;	$\{inicializa \ porção \ da \ entrada \ com \ \{v_1,,v_n\}\}$
		2. <u>para i de</u> 1 <u>até</u> n <u>faca</u> dist[i]← cust	to[0,i]; {inicializa resposta parcial}
	1	3. <u>para i de</u> 1 <u>até</u> n <u>faca</u>	{itera: 10}
		 para i de 1 até n faca e ← vértice v_j ∈ p comdist[j] m 	nínimo; {seleciona novo vértice}
		 p←p-{e}; 	{remove vértice selecionado}
ltoração		6. <u>paracada</u> v _i ∈ V ₀ <u>faça</u>	{vértices v ₁ ,, v _n : 9}
lteração		 5. p←p-{e}; 6. paracada v_i∈ V₀ faça 7. c←dist[j]+custo[v_j,v_i]; 8. sec≤dist[i]entãodist[i]←c; 	{distância usando v _j }
		8. <u>se</u> c≤dist[i] <u>então</u> dist[i]←c;	{atualiza distância}
		9. <u>fim-para</u>	$\{6: cada \ v_i \in V_0\}$
		10. <u>fim-para</u>	{3: repita}
Finalização	\exists	11. <u>retorne-saída</u> (dist);	{dá como saída resposta pronta}
		_	algoritmo Dist_fnt: distância a partir da fonte}