linuxday25@poul:~\$ python
build_your_transformer.py

linuxday25@poul:~\$ man Questo Talk

@ Perché?

- Questa technologia sta entrando nelle nostre vite e dispositivi
- ~ Per costruire ed usare applicazioni open con questi modelli è importante conoscerli (almeno un pochino)

@ Come?

- [']∼ Teoria:
 - \$ Machine Learning
 - \$ Transformer Block
- ~ Pratica:
 - \$ Implementazione in PyTorch (no training)

linuxday25@poul:~\$ man Machine Learning

@ Codice

- ~ Ingredienti:
 - \$ Conoscenza del programmatore
- ~ Risultato:
 - \$ Il programmatore impartisce alla macchina le operazioni da compiere per risolvere il problema

@ Machine Learning

- ~ Ingredienti:
 - \$ Esempi di input output
 - \$ Un modello e come addestrarlo
- ~ Risultato:
 - \$ II modello impara a produrre l'output atteso dato un input

Come parla un Transformer?

linuxday25@poul:~\$ man Rappresentazione

@ Immagini

- ~ Pixel
- ~ **RGB**, Tre numeri identificano univocamente un colore!

@ Testo

- ~ Parole? E se faccio <u>erori</u>?
- ~ Vettori multidimensionali? Ma che valore posso dare ad concetto?

linuxday25@poul:~\$ man Rappresentazione

@ Immagini

- ~ Pixel
- ~ **RGB**, Tre numeri identificano univocamente un colore!

@ Testo

- ~ Parole? E se faccio <u>erori</u>?
- valore posso dare ad concetto?

linuxday25@poul:~\$ man Tokenizzazione

@ Token

- ~ Un Token può essere visto come un "Pixel per il Testo"
- ~ É una **sotto-parola**:
 - \$ Evita il problema degli errori grammaticali, sarebbe impossibile avere una rappresentazione univoca per ogni possibile errore grammaticale
 - \$ Permette di assegnare rappresentazioni parzialmente condivise tra parole e le loro radici. Ad esempio Tokenizer è diviso in Token-izer

linuxday25@poul:~\$ python Tokenizzazione.py

linuxday25@poul:~\$ man Rappresentazione

@ Immagini

- ~ Pixel
- ~ **RGB**, Tre numeri identificano univocamente un colore!

@ Testo

- ~ Parole? E se faccio <u>erori</u>?
- Vettori multidimensionali? Ma che valore posso dare ad concetto?

linuxday25@poul:~\$ man Embedding

@ Embedding

- Un Token viene associato ad una rappresentazione in uno spazio multidimensionale
- Angolo Tra Vettori = Somiglianza di Significato

linuxday25@poul:~\$ man Embedding

@ Embedding

- Un Token viene associato ad una rappresentazione in uno spazio multidimensionale
- ~ Angolo Tra Vettori = Somiglianza di Significato
- ~ Bag of Word e Contesto

linuxday25@poul:~\$ man Decoding

@Language Modeling Head

- La LMH è il componente responsabile di effetturare l'operazione di unembedding
- E' una mappa dallo spazio vettoriale usato dal modello al vocabolario del tokenizer

@ Scelta del Token

- Il risultato ritornato dalla LMH è un "punteggio" per ogni prossimo token
- Con una SoftMax possiamo ottenere una distribuzione probabilistica

$$SoftMax(\vec{x}_i) = \frac{e^{x_i}}{\sum_{j} e^{x_j}}$$

linuxday25@poul:~\$ python Embed&Decode.py

Dentro un Transformer

linuxday25@poul:~\$ man Transformer

@ Residuo

- ~ Tutti i componenti leggono il loro input e scrivono il loro output su un residuo comune
- All'inizio il residuo rappresenta l'input, alla fine il token successivo

@ Componenti

- In una struttura modulare in blocchi (layer)
- Ogni modello presenta
 Normalizzazione, Attenzione e
 Multi-Layer Percepron

linuxday25@poul:~\$ python Model.py

linuxday25@poul:~\$ man Layer Normalizzazione

@ Stabilizzazione

- Uniforma l'intensità dell'informazione in input ad ogni componente
- Velocizza la convergenza evitando problemi di ottimizzazione
- ~ Assegna un'importanza alle feature

@ Formula

 La Layer Normalizzazione è una normalizzazione lungo le feature:

$$y = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} \cdot \gamma + \beta$$

linuxday25@poul:~\$ man Neurone

linuxday25@poul:~\$ man MLPs

@ Come?

~ Trasformazioni lineari

$$\vec{y} = W \vec{x} + b$$

~ Intervallate da funzioni di attivazione non-lineari

$$y = GELU(x)$$

linuxday25@poul:~\$ man MLPs

@ Teoria

- Un MLP a singolo layer
 sufficientemente largo può
 approssimare qualsiasi funzione
- Creare più layer riduce la quantità di neuroni richiesti

@ Negli LLM

- ~ Svolgono il ruolo di essere la "memoria" dell'LLM (probabilmente)
- Compongono gran parte dei parametri del modello
- ~ Intervengono solo sul token corrente

linuxday25@poul:~\$ python LN&MLPs.py

@ Pratica

- ~ É l'elemento che permette al modello di "ragionare"
- ~ Raccoglie informazioni dai residui associati a **TUTTI I TOKEN!**

@ Come?

- ~ Proietta i residui in tre spazi vettoriali:
 - \$ Query
 - \$ Key
 - \$ Value
- Copia i valori sulla base di corrispondenza tra key e query

@ Intuizione

~ Prompt: "Le mele sono verdi, una mela di colore ____"

~ Query = "cosa cerco"

→ pos.` colore`: "Il colore della mela"

~ Key = "cosa sono"

→ pos.` verdi`: "io sono colore delle mele"

∼ Value = "che informazione porto"

→ pos.` verdi`: "verde"

Query e Key sono molto simili e quindi voglio copiare l'informazione associata a `verdi` nel residuo corrente in modo da "raccogliere" l'informazione sul colore

@ Come?

 \sim Proietta i residui in ogni posizione i in tre spazi vettoriali usando 3 layer lineari:

$$query_i = W_q \cdot r_i + b,$$

$$key_i = W_k \cdot r_i + b_k$$

$$query_i = W_q \cdot r_i + b,$$
 $key_i = W_k \cdot r_i + b_k,$ $value_i = W_v \cdot r_i + b_v$

- ~ Copia i valori sulla base di corrispondenza tra key e query:
 - 1. Calcola la matrice delle delle **cosine similarities** ($cosim_{ij}(q_i, v_j) = \frac{(q_i \cdot v_j)}{(||q_i|| \cdot ||v_j||)}$
 - 2. Per ogni query applica una softmax ottenendo la matrice degli scores
 - 3. Copia nel residuo di q_i , i valori v_i per ogni $j \le i$ pesandoli in base a scores[i,j]

Keys @ Come? **Self-attentions** 'How'-**Oueries** Sum to 1 'are' 00000 'you' 'doing' **Values** 00000 Hidden states

linuxday25@poul:~\$ python Attention.py

linuxday25@poul:~\$ man Training

@ Machine Learning

- ~ Ingredienti:
 - \$ Esempi di input output
 - \$ Un modello e come addestrarlo
- ~ Risultato:
 - \$ II modello impara a produrre l'output atteso dato un input

linuxday25@poul:~\$ man Back Propagation

@ Idea

- ~ Il modello al suo interno ha tante manopole
- Non sapendo cosa fa una manopola la giro un pochino a destra e sinista vedendo se il modello fa meglio o peggio (calcolo la derivata discreta!)

linuxday25@poul:~\$ man Back Propagation

@ Idea

- Il modello al suo interno ha tante manopole
- Non sapendo cosa fa una manopola la giro un pochino a destra e sinista vedendo se il modello fa meglio o peggio (calcolo la derivata discreta!)

linuxday25@poul:~\$ python Training.py

[Code Session]

[Grazie per l' Attenzione]