Lecture 29 Machine Learning: Introduction to Artificial Neural Networks

MP574: Applications

Sean B. Fain, PhD (sfain@wisc.edu)

Diego Hernando, PhD (dhernando@wisc.edu)

ITK/VTK Applications: Andrew Hahn, PhD (adhahn@wisc.edu)

Learning Objectives

- Introduce deep learning vs. machine learning concept
- Introduce artificial neural networks
 - Layers and activation functions
 - Architecture and Training
 - Gradient based back-propagation strategy
- CNN architecture and libraries

Classic Machine Learning Pipeline

Deep Learning Pipeline

Deep Learning vs Classical Machine Learning

Classical Approach:

- Developer designs preprocessing steps based on visual appearance or trial and error
- Developer designs features based on experts' strategies
- Feature selection step to determine relevant set of features
- Large number of classifiers with different degrees of complexity
- Most important step: Feature design

Deep Learning:

- Developer selects classification network based on experience (Multilayer Perceptrons)
- Classifier is trained to automatically learn
 - Preprocessing
 - Feature extraction and selection
 - Classification parameters
- Most important step: Training with large number of training data
- Training is computationally expensive

History

- 1943: McCulloch and Pitts created a computational model for neural networks (threshold logic)
- 1958: Rosenblatt develops the Perceptron, one of the first artificial neural networks
- 1965: First functional multilayer Perceptrons published by Ivakhnenko and Lapa
- Research on artificial neural networks stagnated afterwards due to simpler and computationally less expensive techniques as well as some inherent problems.
- Revived in the 1980s and popularized in the 2000s (Deep Learning)

Artificial Neural Network (ANN)

- Inspired by biological neural networks in animal and human brains
- Collection of nodes (artificial neurons)
- Nodes are usually organized in layers (1 input, 1 output, and N hidden layers) => multilayer Perceptron
- Connections represent synapses and connect two nodes from adjacent layers

Types of ANN

- Feedforward neural network
 - Connections are only allowed between adjacent layers
 - Information moves only in one direction
 - Example: Multilayer Perceptron
- Recurrent neural network
 - Often used for cases where input is a time sequence
 - Output of previous inputs can be used as input for subsequent time points
 - Can use "internal state" (memory) to process data
- Other types: Modular, Dynamic, ...

Components of ANN

Artificial Neuron

- Each node has
 - A set of inputs a_i
 - A set of weights for each input w_i
 - One output value b
 - An activation function, with threshold, θ .
- Inputs are determined by the outputs of the previous layer
- Training process modifies input weight w_i

Activation Function: Step Function

Threshold Learning

$$b = \begin{cases} 1 & \text{if } \sum_{\forall i} w_i a_i > \theta \\ 0 & \text{otherwise} \end{cases}$$

- Drawbacks:
 - Not suited for more than two classes (ambiguities if more than one output neuron is active)
 - Not continuous (not differentiable at x = 0)
 - Derivative for all other points is 0
 - ➤ Not well suited for gradient based training

Activation Function: Linear (Identity)

 Output is proportional to the weighted some of the input (e.g. identity function)

$$b = \sum_{\forall i} w_i a_i$$

- Drawbacks
 - Derivative is constant
 - Not suitable for gradient based learning since back-propagated error is not dependent on changes in input

Activation Function: Sigmoid Function

• Smooth step-like function

$$b = \frac{1}{1 + e^{-\sum_{\forall i} w_i a_i}}$$

- Advantages
 - Continuous
 - Smooth gradient
- Drawbacks
 - Gradient very small when x is very different from 0
- One of the most widely used activation functions

Activation Function: Hyperbolic Tangent Function

Equivalent to scaled sigmoid function

$$b = \tanh\left(\sum_{\forall i} w_i a_i\right) = \frac{2}{1 + e^{-2\sum_{\forall i} w_i a_i}} - 1$$

 Advantages and drawbacks similar to sigmoid function

Activation Function: Rectifier (ReLu)

$$b = \max\left(0, \sum_{\forall i} w_i a_i\right)$$

- Advantages:
 - Sparsifies set of active neurons (more efficient, less overfitting)
- Drawbacks:
 - Gradient is 0 for x < 0
 - Weights will not be adjusted during training if x < 0
 - Neurons may become passive and not respond anymore (dying ReLu problem)
- Variants: Softplus, Noisy ReLu, Leaky ReLu, ELU

Layers

- Set of neurons (of the same type)
- Neurons are not connected to other neurons within the same layer
- Can be classified by
 - Connectedness e.g.
 - Fully connected: each neuron is connected to every neuron of the previous layer
 - Convolutional layer: each neuron is connected to a local block (usually 2D for image processing) of neurons from the previous layer
 - Type of neurons (function) e.g.
 - ReLu
 - Normalization
 - Pooling

Fully Connected Layer

- Each neuron is connected to every neuron of the previous layer
- Each connection has a separate weight
 - Can represent very complex functions
 - Large number of weights (N*M)
 - Tends to overfitting
- Usage
 - Small number of nodes (e.g. simple problems or close to output layer)

Convolutional Layer

- Connectivity pattern resembles the neuron organization in the visual cortex
- Well suited to detect local features in images
- Input neurons commonly organized in 2D or 3D
- Each neuron is connected to the neurons in the local neighborhood in the previous layer

Convolutional Layer

- Weights are shared for all output neurons
- Only one set of weights has to be stored for the local neighborhood
 - Considerable reduction of variables compared to fully connected e.g. 5x5 neighborhood requires 25 variables (fully connected layers for common images would require millions of variables)

$$b_1(x,y) = \sum_{\forall i} \sum_{\forall j} w_{ij} b_0(x+i,y+j)$$

 Corresponds to a convolution operation over the set of neurons from the previous layer

Stacked Convolutional Layer

- Often multiple 2D convolutions are combined in a single layer
- Allows detection of different types of features
- Each convolution can have a different set of weights
- 3D output (Z-dimension corresponds to different sets of weights)

By Aphex34 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Pooling Layer

- Commonly used to reduce number of neurons
- Allows detecting features on a larger scale
- Common variants:
 - Max pooling
 - Average pooling
- Parameters
 - Extend: number of neurons in each direction
 - Stride: step-size between pooling operations in each direction

Output Encoding

Binary decision (2 classes)

- Classes are encoded as -1 and 1
- Single output node e.g.
 - ≤ 0: class 1
 - > 0: class 2

Regression

 Real valued output (scalar or vector)

Mutliple Classes

- Array of zeros and ones
- True class is one all others 0
- One output node for each class
- Choose node with maximum value

Output Layer

- Purpose: scale output data to probability
 - Each output node is in the interval [0, 1]
 - Sum of all output node is 1
- Softmax

$$\sigma(y_i) = \frac{e^{y_i}}{\sum_{\forall k} e^{y_k}}$$

- Binary classification: value between 0 and 1
 - Activation functions (e.g. sigmoid) can be used

Convolutional Network Architecture

- Number of input nodes given by image size
- Number of output nodes given by number of classes
- Hidden layers often build from multiple blocks of layers at different scale spaces
- Each block is a combination of convolutional ReLu layers followed by Max-pooling
- Width and height are reduced to 1, depth becomes the number of output nodes

Final layer often fully connected

By Aphex34 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Convolutional Network Architecture

- No clear rule on the number and size of the hidden layers
- Networks are often designed empirically
- Networks can be trained against each other to choose best design
- Architectures are often reused for different purposes

- Popular designs:
 - LeNet-5 (1998): 7 levels
 - AlexNet (2012): stacked convolutional layers
 - GoogleNet (2014): 22 layers but less parameters than AlexNet
 - ResNet (2015): 152 layer architecture with skipconnections and batch normalization

Training Artificial Neural

Networks

Training (Supervised Learning)

- Requirements
 - Artificial neural network (ANN)
 - Set of input images
 - Label for each input image representing ground truth
- Loop through all input images
 - 1. Apply ANN to input image
 - 2. Calculate loss function based on network output
- Adjust network weights based on combined loss
- Repeat training procedure until accuracy is not improving

Training: Loss Functions

• Compares the output of the
ANN to the ground truth

- Combines the error of multiple samples (images)
- Combines the error of output nodes

Output Layer	Ground Truth	Error
0.2	0	0.2
0.1	0	0.1
0.7	1	-0.3

Loss Functions: Mean Squared Error (MSE)

- Commonly used for regression problems
- Can be problematic for multiclass classification problems
 - Small partial derivatives when weights are close to 0

$$E = \frac{1}{2N} \sum_{\forall i} ||y_i - \hat{y}_i||^2$$

Loss Function: Cross-Entropy for Two Classes

- Minimizes the Kullback-Leibler divergence
 - Measures the distance between two probability distributions
- Information theory interpretation
 - Average number of bits required to encode the measured events
- Magnitude of the partial derivatives is only dependent on the error
 - Faster learning rates when weights are close to 0

Loss Function: Cross-Entropy for Multiple Classes

- Sum over entropies for all classes
- Second term is usually omitted
 - For each sample one of the classes must be true

$$E = -\sum_{\forall i} \sum_{\forall i} y_{ij} \log(\hat{y}_{ij})$$

Training Neural Networks

- Common optimization tasks:
 - Gradient based approaches can be used to minimize a cost function e.g.
 - Gradient descent
 - Newton-Raphson
 - Levenberg-Marquardt
- Problem for neural networks:
 - Performance measure usually only affected indirectly
 - Ground truth is only known for the output layer

Training NN: Perturbing Weights

- Simple algorithm:
 - 1. Calculate combined loss function
 - Calculate output of the NN for all input images
 - Compare output to known ground truth
 - 2. Randomly change weights3. Calculate combined loss function

 - 4. Keep changes if loss is reduced otherwise undo the changes
- Not very efficient!

Training NN: Gradient-Based Optimization

Training NN: Gradient-Based Optimization

...

Training NN: Backpropagation

- Not an optimization technique but an efficient way to calculate gradients (partial derivatives)
- Uses chain rule recursively

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

$$\frac{\partial z}{\partial x_i} = \sum_{i} \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

Training NN: Backpropagation

Training NN: Backpropagation

• Vector notation: Jacobi matrix times gradient

$$\nabla_{x_{n-1}} L = \left(\frac{\partial x_n}{\partial x_{n-1}}\right)^{\mathsf{T}} \nabla_{x_n} L$$

Activation function derivative (e.g. sigmoid)

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \qquad \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Update rules e.g. Gradient descent

$$\widetilde{w}_i = w_i - \eta \frac{dL}{dw_i}$$

Deep Learning Libraries

- TensorFlow (Google):
 - Powerful library (high-level and low-level functions)
 - Python
 - Supports GPU
 - Under active development
- Matlab Neural Network Toolbox
 - Easy to use
 - Support to generate GPU code

- Caffee
 - Focus on convolutional neural networks
 - Large number of pre-trained networks
 - Python
 - GPU support
- Many more ...