Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Домашняя работа № 3 По Дискретной Математике Алгоритм Франка-Фриша

Вариант № 20

Выполнил:

Карташев Владимир Р3131

Преподаватель:

Поляков Владимир Иванович

Исходная таблица соединений R:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0		3	3		5	1		1			
e2		0				2	1					
e3	3		0				5	2	4			3
e4	3			0	1		3					
e5				1	0	4				3		
e6	5	2			4	0	2	3	2			
e7	1	1	5	3		2	0		2		1	
e8			2			3		0	4	5		
e9	1		4			2	2	4	0	5	4	
e10					3			5	5	0		1
e11							1		4		0	
e12			3							1		0

- Возьмем e_1 за исходную точку **s**
- Возьмем e_{12} за конечную точку \mathbf{t}

1. Проводим разрез $K_1 = (\{s\}, X \setminus \{s\})$:

- 2. Находим $Q_1 = max[q_{ij}] = 5$, $(x_{i'}, x_{j}) \in K_1$;
- 3. Закорачиваем все ребра графа (x_i, x_j) с $q_{ij} \ge Q_1$;
- 4. Это ребра [s, e_6]; $[e_3, e_7]$; $[e_8, e_{10}, e_9]$. Получаем граф G_1 :

- 5. Проводим разрез K_2 , находим $Q_2 = max[q_{ij}] = 4$, $(x_i, x_j) \in K_2$
- 6. Закорачиваем все ребра графа (x_i, x_j) с $q_{ij} \ge Q_2$. Это ребра $[s, e_5, e_6]$; $[e_3, e_7, e_8, e_9, e_{10}, e_{11}]$. Получаем граф G_2 :

- 7. Проводим разрез K_3 , находим $Q_3 = max[q_{ij}] = 3$, $(x_i, x_j) \in K_3$
- 8. Закорачиваем все ребра графа (x_i, x_j) с $q_{ij} \ge Q_3$. Это ребра $[s, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_1, t];$ Получаем граф G_3 :

- 9. Вершины **s**—**t** объединены. Пропускная способность искомого пути Q(P) = 3.
- 10. Строим граф, вершины которого вершины исходного графа G, а ребра ребра с пропускной способностью $q_{ij} \geq Q(P) = 3$:

11. Пропускная способность пути от вершины $e_{1}^{}$ до вершины $e_{12}^{}$ равна 3.