

Elektrische Netzwerke und Mehrtore Übung

Wintersemester 2020

Protokoll Übung 3: Schaltvorgang Kondensator

Gruppe: 04

Gruppenteilnehmer:

- 1. Matthias Fottner
- 2. David Keller
- 3. Moritz Woltron

Vortragende: Helena Grabner

Graz, am 9. November 2020

Inhaltsverzeichnis

1	Best	timmen des Anfangszustands von u_C	3	
	1.1	Schaltplan zur Schalterposition a	3	
	1.2	Erstellen der erweiterten KSV-Matrix	4	
	1.3	Bestimmen von u_C	4	
2	Aufstellen der Differentialgleichung			
	2.1	Schaltplan zur Schalterposition b	5	
	2.2	Erstellen der KSV-Matrix	5	
	2.3	Lösen der Differentialgleichung	5	
		2.3.1 Homogene Lösung	5	
		2.3.2 Inhomogene Lösung	5	
		2.3.3 Anfangswertproblem	5	
		2.3.4 Gesamtlösung	5	
3	Verg	gleich mit allgemeiner Lösungsformel	5	
4	Sim	ulation in PSpice	5	
5	Mat	tlab-Skript	5	

1 Bestimmen des Anfangszustands von u_{C}

1.1 Schaltplan zur Schalterposition a

Abbildung 1: Netzwerk mit allen eingezeichneten Strömen, (Knoten-)spannungen und Knoten

1.2 Erstellen der erweiterten KSV-Matrix

Um die Matrix des erweiterten KSVs aufstellen zu können, muss zu den 4 Knotengleichungen der unbekannte Strom der Spannungsquelle U_{S1} in Form einer 5. Gleichung hinzugefügt werden.

$$U_{S1} = U_{n2} - U_{n3}$$

Man erhält mithilfe von Matlab für x:

$$x = \begin{cases} U_{n1} \\ U_{n2} \\ U_{n3} \\ U_{n4} \\ I_{S1}^{?} \end{cases} = \begin{cases} -3,36 \,\mathrm{V} \\ 2,24 \,\mathrm{V} \\ -7,76 \,\mathrm{V} \\ -4,32 \,\mathrm{V} \\ -0,56 \,\mathrm{A} \end{cases}$$

1.3 Bestimmen von u_C

Wie sich im Schaltplan in Abbildung 1 erkennen lässt, entspricht $U_{C,a} = U_{n4}$:

$$U_{C,a} = U_{n4} = -4,32 \,\mathrm{V}$$

2 Aufstellen der Differentialgleichung

- 2.1 Schaltplan zur Schalterposition b
- 2.2 Erstellen der KSV-Matrix
- 2.3 Lösen der Differentialgleichung
- 2.3.1 Homogene Lösung
- 2.3.2 Inhomogene Lösung
- 2.3.3 Anfangswertproblem
- 2.3.4 Gesamtlösung
- 3 Vergleich mit allgemeiner Lösungsformel
- 4 Simulation in PSpice
- 5 Matlab-Skript