

Gyorsrendezés lépései

- , oszd meg és uralkodj" elv
- Lépései:
 - Válaszdki a rendezendő (rész)tömb egy tetszőleges elemét! Ez lesz a tengely (angolul pivot).
 - Részekre bontás (partitioning): Rendezd át úgy a tömböt, hogy minden, a tengelynél kisebb elem a tengely előtt, a nagyobbak pedig utána jöjjenek! (A tengellyel egyenlők bármelyik részbe kerülhetnek.) Ezzel az ún. particionálással (partition) a tengely már a végleges helyére került.
 - Alkalmazd rekurzívan a fenti lépéseket, külön a tengelynél kisebb elemek résztömbjére, és külön a tengelynél nagyobb elemek résztömbjére!
 - Az üres és az egyelemű résztömbök a rekurzió alapesetei. Ezek ui. már eleve készen vannak, így nem is kell őket rendezni.

Gyorsrendezés algoritmusa

- A tengely kiválasztása és a részekre bontás lépései
 - Többféleképpen
 - A módszerek konkrét megválasztása erősen befolyásolja a rendezés hatékonyságát.
 - együtt lineáris időben befejeződjenek!

Partition függvény:

- > Jelölések:
 - \blacktriangleright $A[k..m] \le x \Leftrightarrow ha \forall I(k \le l \le m) : A[l] \le x$
 - $ightharpoonup A[k..m] \ge x \Leftrightarrow \text{ha } \forall \ l \ (k \le l \le m) : A[l] \ge x$
- \triangleright Bemenet: A[p..r] résztömb, pivot: x=5

	р										r	
A:	5	3		8	5		6	4		7	1	
			p							r		
		A:	5	3	8	1	6	4	7		x =	5

1. ciklus: megkeresi az 1. tengelynél > elemet (ha van)

	i=p	i	i					r	
A:	5	3	8	1	6	4	7		x = 5

- A j a következő elemre áll:

 - Az A[p..r] résztömb szakaszai:
 - $A[p..(i-1)] \le x$
 - $A[i..(j-1)] \ge x$
 - \rightarrow A[j..(r-1)] ismeretlen
 - \triangleright A[r] definiálatlan (ez a tengely üres helye)

Partition függvény

- A partition fv helyességének ellenőrzéséhez vezessük még be a következő jelöléseket:
 - \triangleright A_0 :A tömb kezdeti állapota a partition függvény meghívásakor.
 - A[u..v] + x tömb objektum az x elemnek az A[u..v] résztömb végéhez kapcsolásával adódik.
- A partition fv előfeltétele:
 - $ightharpoonup 1 \le p < r \le A.length (p, r a fv-en belül konstansok.)$
- A partition fv második ciklusának invariánsa:
 - \triangleright A[p..(r-1)]+x egy permutációja az $A_0[p..r]$ résztömbnek \land
 - \triangleright $p \le i < j \le r \land A[p..(i-1)] \le x \land$
 - \triangleright A[i..(j-1)] $\geq x$
- A partition fv utófeltétele:
 - \triangleright A[p..r] az $A_0[p..r]$ permutációja \land
 - \triangleright $p \le i \le r \land A[p..(i-1)] \le A[i] \land$
 - $A[(i+1)..r] \ge A[i]$, ahol i a visszatérési érték.

A 2. ciklus cseréi:

	р		i	j				r	
A:	5	3	8	1	6	4	7		x = 5

	р			i	j	j		r	
A:	5	3	1	8	6	4	7		x = 5

	р				i		j	j=r	
A:	5	3	1	4	6	8	7		x = 5

	р				i			j=r
A:	5	3	1	4	5	8	7	6

A gyorsrendezés (quicksort) műveletigénye

- A fenti szétvágás (partition) műveletigénye lineáris
 - \rightarrow a két ciklus együtt r p 1 vagy r p iterációt végez
- Műveletigény
 - \nearrow mT(n), AT(n) $\in \Theta(n \log n)$
 - \triangleright MT(n) \in $\Theta(n^2)$
 - A várható vagy átlagos műveletigény aszimptotikusan a legjobb esethez esik közel
 - a legrosszabb eset valószínűsége nagyon kicsi.

Vegyes gyorsrendezés

- Legfeljebb néhányszor tíz rendezendő elem esetén a beszúró rendezés hatékonyabb, mint a gyors rendezések (merge sort, heap sort, quicksort)
- Quicksort(A, p, r) eljárás jelentős gyorsítása:
 - kis méretű résztömböknél áttérünk beszúró rendezésre
 - $k \in \mathbb{N}$ (20 és 40 között)
- Legrosszabb esetének javítása $(n^2 \rightarrow \Theta(n \log n))$
 - rekurzív eljárásában figyeljük a rekurziós mélységet is
 - pl. 2 log *n* mélység meghaladása esetén áttérünk valamelyik gyors rendezésre (pl. heap, merge).

```
\begin{array}{|c|c|}\hline & \text{Quicksort}(A/1:\mathcal{T}[]\;;\;p,r:\mathbb{N})\\ \hline & r-p\geq k\\ \hline & q:=\operatorname{partition}(A,p,r)\\ \hline & \operatorname{Quicksort}(A,p,q-1) & \operatorname{insertion\_sort}(A,p,r)\\ \hline & \operatorname{Quicksort}(A,q+1,r) & \end{array}
```


Köszönöm a figyelmet!

Pusztai Kinga