Ответы на вопросы экзамена по матанализу

Евгений Мангасарян

6 декабря 2021

22 Вопрос

Непрерывность функции в точке. Свойства непрерывных функций.

Определение 22.1 (непрерывной функции в точке). Пусть D(f) = X, $x_0 \in X$ — предельная точка множества X. Функция f непрерывная в точке x, если выполняется одно из эквивалентных условий:

- 1. $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ |x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \epsilon \ (\text{по Коши}).$
- 2. $\forall O(f(x_0)) \; \exists O(x_0) : \; f(O(x_0)) \subset O(f(x_0)) \; (\text{по Коши}).$
- 3. $\forall (x_n): x_n \to x_0 \ f(x_n) \to f(x_0)$ (по Гейне).
- 4. $\lim_{x \to x_0} f(x) = f(x_0)$.
- 5. $f(x) = f(x_0) + \alpha(x)$, где $\alpha(x)$ бесконечно малая в точке x_0 функция.

Теорема 22.1. Пусть f и g непрерывны в точке x_0 . Тогда

- 1. af + bg непрерывна в точке $x_0, a, b \in \mathbb{R}$.
- 2. fg непрерывна в точке x_0 .
- 3. $\frac{f}{g}$ непрерывна в точке x_0 , если $g(x_0) \neq 0$.
- 4. если $f(x_0) \neq 0$, то $\exists O(x_0) \ \forall x \in O(x_0) \ f(x) f(x_0) > 0$ (функция сохраняет знак).
- 5. f ограничена в некоторой окрестности точки x_0 (f локально ограничена).

23 Вопрос

Непрерывность функции на множестве. *Теорема Коши об обращении функции в нуль и теорема Коши о промежуточных значениях функции.

Определение 23.1 (непрерывной на множестве функции). Функция называется непрерывной на множестве, если она непрерывна в каждой точке этого множества.

Функцию называют непрерывной, если она непрерывна на всей области определения.

Теорема 23.1 (Коши об обращении функции в нуль). Пусть функция f непрерывна на отрезке [a,b] и f(a)f(b) < 0. Тогда

$$\exists c \in [a, b]: \ f(c) = 0.$$

Доказательство. Разделим отрезок [a,b] пополам точкой $x_1 = \frac{a+b}{2}$. Если $f(x_1) = 0$, то все доказано. Если нет, то из двух отрезков $[a,x_1]$, $[x_1,b]$ рассмотрим тот, на концах которого функция принимает значения разных знаков. Переобозначим его $[a_1,b_1]$.

С отрезком $[a_1,b_1]$ поступаем аналогично. Если в процессе деления отрезков мы так и не получим нужную точку, в которой функция обращается в нуль, то образуется стягивающаяся последовательность отрезков $([a_n,b_n])$. Пусть x_0 их общая точка. Тогда по лемме о стягивающейся последовательности отрезков $a_n \to x_0$ и $b_n \to x_0$. По определению Гейне непрерывности функции в точке $f(a_n) \to f(x_0), \ f(b_n) \to f(x_0). \ f(a_n)f(b_n) < 0 \Rightarrow \lim_{n \to \infty} f(a_n)f(b_n) = f^2(x_0) \le 0 \Rightarrow f(x_0) = 0$.

Теорема 23.2 (Коши о промежуточном значении функции). Пусть функция f непрерывна на отрезке $[a,b],\ f(a)=A,\ f(b)=B,\ A\neq B$ и C – любое число, промежуточное между A и B. Тогда

$$\exists c \in [a, b]: \ f(c) = C$$

Доказательство. Рассмотрим функцию g(x) = f(x) - C. g(x) непрерывна на отрезке [a,b], (A-C)(B-C) < 0. Тогда по теореме Коши об обращении функции в нуль $\exists c \in [a,b]: g(c) = 0$ или $f(c) - C = 0 \Leftrightarrow f(c) = C$.

24 Вопрос

Компакт. *Критерий компактности.

Определение 24.1 (компакта). Множество $X \subset \mathbb{R}$ называют компактом, если $\forall (x_n)$ точек множества X содержит подпоследовательность, сходящуюся к некоторой точке $x_0 \in X$.

Пример 24.1 (компакта). Отрезок [a, b] множества \mathbb{R} .

Определение 24.2 (замкнутого множества). Множество называется замкнутым, если оно содержит все свои предельные точки.

Определение 24.3 (внутренней точки). Точка $x \in X$ называется внутренней точкой множества, если $\exists O(x) \subset X$.

Определение 24.4 (открытого множества). Множество называется открытым, если все его точки являются внутренними.

Пример 24.2. Отрезок [a,b] – замкнутое множество. Интервал (a,b) – открытое множество.

Доказательство. От противного. Пусть компакт X не ограничен. Тогда $\forall n \in \mathbb{N} \ \exists x_n \in X \ |x_n| > n$. Очевидно, что любая подпоследовательность последовательности (x_n) неограничена, а следовательно не сходится. Это противоречит компактности множества.

Теорема 24.1 (критерий компактности). Множество является компактом ⇔ множество ограничено и замкнуто.

Доказательство.

 \Rightarrow . Пусть X – компакт. По теореме об ограниченности компакта X ограничено. Осталось доказать замкнутость.

Пусть x_0 – предельная точка множества X. Тогда $\exists (x_n): x_n \to x_0 \in X, x_n \neq x_0$. Согласно компактности множества $\exists (x_{n_k}): x_{n_k} \to x_0' \in X$. С другой стороны, т.к. $x_n \to x_0$, то $x_{n_k} \to x_0$. $x_0 = x_0' \in X$.

 \Leftarrow . Пусть X ограничено и замкнуто, а (x_n) – последовательность точек этого множества.

 $x_n = O(1)$. По теореме Больцано-Вейерштрасса $\exists (x_{n_k}): x_{n_k} \to x_0$. Если x_0 совпадает с каким-либо членом x_{n_k} , то $x_0 \in X$ автоматически. Если нет, то x_0 – предельная точка множества X. В силу замкнутости множества $x_0 \in X$. $x_{n_k} \to x_0 \in X \Rightarrow X$ – компакт.

25 Вопрос

*Теорема о непрерывном образе компакта. Первая и вторая теоремы Вейерштрасса.

Теорема 25.1 (о непрерывном образе компакта). Пусть функция f непрерывна на X и X – компакт. Тогда Y = f(X) тоже компакт.

Доказательство. Пусть (y_n) – последовательность точек множества Y = f(X), (x_n) – последовательность точек множества X такая, что $\forall n \in \mathbb{N}$ $f(x_n) = y_n$.

X – компакт $\Rightarrow \exists (x_{n_k}) \to x_0 \in X$ при $n \to \infty$. В силу непрерывности функции в точке $x_0 \ y_{n_k} = f(x_{n_k}) \to f(x_0) = y_0 \in Y$. Это означает, что Y – компакт.

Следствие 25.1 (первая теорема Вейерштрасса). Если функция непрерывна на компакте, то она ограничена на нем.

Следствие 25.2 (вторая теорема Вейерштрасса). Если функция непрерывна на компакте, то она принимает на нем свои наименьшие и наибольшие значения.

26 Вопрос

Равномерная непрерывность функции на множестве и *теорема Кантора.

Определение 26.1 (равномерно непрерывной функции). Функция f называется равномерно непрерывной на множестве X, если

$$\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0 \ \forall x \in X \ \forall x' \in X \ (|x - x'| < \delta \Rightarrow |f(x) - f(x')| < \epsilon).$$

Теорема 26.1 (Кантора). Пусть f непрерывна на X и X – компакт. Тогда f равномерно непрерывна на X.

Доказательство. От противного. Пусть f непрерывна на X, но не равномерно непрерывна. Тогда

$$\exists \epsilon_0 > 0 \ \forall \delta > 0 \exists x', x'' \in X \ (|x' - x''| < \delta \land |f(x') - f(x'')| \ge \epsilon_0).$$

Возьмем последовательность $\delta_n = \frac{1}{n}$ и $\forall n \in \mathbb{N}$ найдем x', x'' такие, что

$$|x_n' - x_n''| < \delta_n \wedge |f(x_n') - f(x_n'')| \ge \epsilon_0.$$

Так как X – компакт, то $\exists x'_{n_k} \to x_0 \in X$ и $\exists x''_{n_k} \to x_0 \in X$.

В силу непрерывности f имеем:

$$f(x'_{n_k}) \to f(x_0), \ f(x''_{n_k}) \to f(x_0).$$

Следовательно, $f(x'_{n_k}) - f(x''_{n_k}) \to 0$, что противоречит условию $|f(x') - f(x'')| \ge \epsilon_0 > 0$.

27 Вопрос

Односторонние пределы. Точки разрыва функции и их классификация. Теорема об односторонних пределах монотонной функции.

Определение 27.1 (левостороннего предела).

$$\lim_{x \to x_0 - 0} f(x) = A \Leftrightarrow$$

По Коши:

$$\forall \epsilon > 0 \; \exists \; \delta > 0 \; \forall x \in X \; (x_0 - \delta < x < x_0 \Rightarrow |f(x) - A| < \epsilon)$$

По Гейне:

$$\forall (x_n): x_n \to x_0$$
 при $n \to \infty, \ \forall n \in \mathbb{N} \ x_n < x_0$ выполняется $f(x_n) \to A$

Определение 27.2 (правостороннего предела).

$$\lim_{x \to x_0 + 0} f(x) = A \Leftrightarrow$$

По Коши:

$$\forall \epsilon > 0 \; \exists \; \delta > 0 \; \forall x \in X \; (x_0 < x < x_0 + \delta \Rightarrow |f(x) - A| < \epsilon)$$

По Гейне:

$$\forall (x_n): \ x_n \to x_0$$
 при $n \to \infty, \ \forall n \in \mathbb{N} \ x_n > x_0$ выполняется $f(x_n) \to A$

Определение 27.3 (точки устранимого разрыва). Пусть f определена в окрестностях точки x_0 , кроме, быть может, самой точки x_0 . Точка x_0 называется точкой устранимого разрыва, если $\exists \lim_{x \to x_0} f(x)$, но

- либо f не определена в точке x_0 ,
- либо $\lim_{x \to x_0} f(x) \neq f(x_0)$.

Определение 27.4 (точки разрыва первого рода). Точка разрыва называется точкой разрыва первого рода, если $\exists \lim_{x \to x_0 = 0}, \lim_{x \to x_0 + 0} \in \mathbb{R}$, но $\lim_{x \to x_0 = 0} \neq \lim_{x \to x_0 + 0}$.

Определение 27.5 (точки разрыва второго рода). Точка разрыва называется точкой разрыва второго рода, если хотя бы один из односторонних пределов не существует или равен бесконечности.

Теорема 27.1 (об односторонних пределах монотонной функции). Пусть f монотонна на (a,b). Тогда в каждой точке интервала у нее существуют односторонние пределы. Более того, $\forall x_0 \in (a,b)$ справедливо,

• если $f \uparrow$:

$$f(x_0 - 0) = \sup_{x < x_0} f(x), \ f(x_0 + 0) = \inf_{x > x_0} f(x)$$
$$f(x_0 - 0) \le f(x_0) \le f(x_0 + 0).$$

• если $f \downarrow$:

$$f(x_0 - 0) = \inf_{x < x_0} f(x), \ f(x_0 + 0) = \sup_{x > x_0} f(x)$$
$$f(x_0 + 0) \le f(x_0) \le f(x_0 - 0).$$

Доказательство. Рассмотрим случай, когда $f \uparrow$. Докажем, что $f(x_0 - 0) = \sup_{x \le x_0} f(x)$.

Множество $\{f(x): x < x_0\}$ ограничено сверху, $f(x_0)$ – одна из его мажорант. Поэтому $\exists \sup_{x < x_0} f(x) = l$, причем $l \le f(x_0)$. По определению верхней грани:

- 1. $\forall x < x_0 \ f(x) \le l$,
- 2. $\forall \epsilon > 0 \ \exists x_{\epsilon} < x_0 \ f(x_{\epsilon}) > l \epsilon$.

B силу того, что $f \uparrow$:

$$l - \epsilon < f(x_{\epsilon}) \le f(x) \le l < l + \epsilon.$$

Следовательно,

$$l = \lim_{x \to x_0 - 0} f(x).$$

28 Вопрос

Критерий непрерывности монотонной функции. Теорема о непрерывности обратной функции.

Теорема 28.1 (критерий непрерывности монотонной функции). Пусть функция f монотонна на отрезке [a,b]. Тогда функция f непрерывна $\Leftrightarrow f([a,b])$ есть отрезок с концами f(a) и f(b).

Теорема 28.2 (о непрерывности обратной функции). Пусть f строго монотонна и непрерывна на отрезке [a,b]. Тогда существует обратная функция строго монотонная того же типа, определенная и непрерывная на отрезке с концами f(a) и f(b).

29 Вопрос

Дифференцируемость функции в точке, производная функции в точке. *Непрерывность дифференцируемой функции. *Теорема о дифференцируемости композиции.

Определение 29.1 (дифференцируемости функции в точке). Пусть f определена на X и $x_0 \in X$ – предельная точка множества X. Функцию f называют дифференцируемой в точке x_0 , если найдется непрерывная в точке x_0 функция A такая, что $\forall x \in X$ выполняется равенство

$$f(x) - f(x_0) = A(x)(x - x_0).$$

Производной функции f в точке x_0 назовем значение $A(x_0)$ и обозначим символом $f'(x_0) = A(x_0)$.

A непрерывна, а поэтому $\lim_{x\to x_0}A(x)=A(x_0)$. Или $A(x)=A(x_0)+o(1)$ при $x\to x_0$. Поэтому справедливо следующее равенство:

$$f(x) = f(x_0) + A(x_0)(x - x_0) + o(x - x_0)$$
 при $x \to x_0$.

Теорема 29.1 (о непрерывности дифференцируемой функции). Если функция f дифференцируема в точке x_0 , то f непрерывна в точке x_0 .

Доказательство. Записав определение

$$f(x) - f(x_0) = A(x)(x - x_0),$$

где A(x) — непрерывная в точке x_0 функция, и воспользовавшись теоремой об арифметических действиях над непрерывными функциями, убеждаемся, что функция f(x) непрерывна.

Теорема 29.2 (о дифференцируемости композиции). Если функция g дифференцируема в точке x_0 , а функция f дифференцируема в точке $y_0 = g(x_0)$, то функция $f \circ g$ дифференцируема в точке x_0 и

$$(f \circ g)'(x_0) = f'(y_0)g'(x_0).$$

Или
$$(f(g(x_0)))' = f'(g(x_0)) \cdot g'(x_0)$$
.

Доказательство. Согласно определению дифференцируемости имеем:

$$f(y) - f(y_0) = A(y)(y - y_0), \ g(x) - g(x_0) = B(x)(x - x_0),$$

где A(y) непрерывна в точке y_0 , B(x) непрерывна в точке x_0 . Причем

$$f'(y_0) = A(y_0), \ g'(x_0) = B(x_0).$$

Рассмотрим приращение функции $f \circ g$:

$$(f \circ g)(x) - (f \circ g)(x_0) = f(g(x)) - f(g(x_0)).$$

Обозначив y = g(x) имеем:

$$f(y) - f(y_0) = A(y)(y - y_0) = A(g(x))(g(x) - g(x_0)) = (A \circ g)(x) \cdot B(x)(x - x_0).$$

Пусть $C(x) = (A \circ g)(x)B(x)$. g дифференцируема в точке $x_0 \Rightarrow$ непрерывна в точке x_0 , A непрерывна в точке $y_0 = g(x_0)$. В силу теоремы о непрерывности композиции функция $A \circ g$ непрерывна в точке x_0 . B(x) непрерывна в точке x_0 , поэтому произведение $(A \circ g)(x)B(x)$ также непрерывно в точке x_0 .

Итак, имеем равенство

$$(f \circ g)(x) - (f \circ g)(x_0) = C(x)(x - x_0),$$

где $f \circ g$ дифференцируеам в точке x_0 и ее производная равна

$$(f \circ g)'(x_0) = C(x_0) = A(g(x_0))B(x_0) = f'(y_0)g'(x_0).$$

30 Вопрос

Теорема об арифметических действиях над дифференцируемыми функциями.

Теорема 30.1 (об арифметических действиях над дифференцируемыми функциями). Пусть f и g дифференцируемы в точке x_0 . Тогда функции f+g, fg и $\frac{f}{g}$ при дополнительном условии, что g в нуль не обращается, дифференцируемы в точке x_0 .

Причем справедливы равенства:

- 1. $(f(x_0) + g(x_0))' = f'(x_0) + g'(x_0),$
- 2. $(f(x_0)g(x_0))' = f'(x_0)g(x_0) + g'(x_0)f(x_0),$
- 3. $\left(\frac{f(x_0)}{g(x_0)}\right)' = \frac{f'(x_0)g(x_0) g'(x_0)f(x_0)}{g^2(x_0)}$.

Доказательство. По определению дифференцируемости

$$f(x) - f(x_0) = A(x)(x - x_0), \ g(x) - g(x_0) = B(x)(x - x_0),$$

A(x), B(x) непрерывны в точке x_0 , $f'(x_0) = A(x_0)$, $g'(x_0) = B(x_0)$.

- 1. $(f+g)(x)-(f+g)(x_0)=(f(x)-f(x_0))+(g(x)-g(x_0))=A(x)(x-x_0)+B(x)(x-x_0)=(A(x)+B(x))(x-x_0).$ A(x)+B(x) непрерывна в точке $x_0\Rightarrow (f(x_0)+g(x_0))'=A(x_0)+B(x_0)=f'(x_0)+g'(x_0).$
- 2. Рассмотрим произведение fg.

$$f(x)g(x) = (f(x_0) + A(x)(x - x_0))(g(x_0) + B(x)(x - x_0)) =$$

$$f(x_0)g(x_0) + f(x_0)B(x)(x - x_0) + g(x_0)A(x)(x - x_0) + A(x)B(x)(x - x_0)^2 =$$

$$f(x_0)g(x_0) + (f(x_0)B(x) + g(x_0)A(x) + A(x)B(x)(x - x_0))(x - x_0)$$

Пусть $C(x)=f(x_0)B(x)+g(x_0)A(x)+A(x)B(x)(x-x_0)$. Она непрерывна в точке $x_0\Rightarrow fg$ дифференцируема в точке x_0 и

$$(fg)'(x_0) = C(x_0) = f(x_0)g'(x_0) + g(x_0)f'(x_0).$$

3. Перепишем $\frac{f}{g} = f\left(\frac{1}{g}\right)$. Из теоремы о производной композиции следует, что $\frac{1}{g}$ дифференцируема в точке x_0 , поэтому

$$\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{g^2(x_0)}.$$

Осталось воспользоваться доказанным утверждением относительно производной произведения и получить равенство

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - g'(x_0)f(x_0)}{g^2(x_0)}.$$

31 Вопрос

*Теорема о дифференцируемости обратной функции.

Теорема 31.1 (о дифференцируемости обратной функции). Пусть функция f обратима (взаимно однозначна), существует производная $f'(x_0) \neq 0$, и обратная функция f^{-1} непрерывна в точке $y_0 = f(x_0)$. Тогда f^{-1} дифференцируема в точке y_0 и

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Доказательство. Для f по определению

$$f(x) - f(x_0) = A(x)(x - x_0),$$

A(x) непрерывна в точке x_0 , $A(x_0) = f'(x_0) \neq 0$. В силу обратимости функции f $\forall x \neq x_0 \ A(x) \neq 0$.

Используя соотношения

$$y = f(x) \Leftrightarrow x = f^{-1}(y) \text{ M } y_0 = f(x_0)$$

имеем

$$y - y_0 = A(f^{-1}(y))(f^{-1}(y) - f^{-1}(y_0)),$$

или

$$f^{-1}(y) - f^{-1}(y_0) = \frac{1}{A(f^{-1}(y))}(y - y_0).$$

 $A \circ f^{-1}$ непрерывна в точке y_0 , поэтому

$$(f^{-1})'(y_0) = \frac{1}{(A \circ f^{-1})(y_0)} = \frac{1}{A(x_0)} = \frac{1}{f'(x_0)}.$$

32 Вопрос

Точки роста и убывания функции. *Достаточное условие точек роста и точек убывания.

Определение 32.1. Точка x_0 называется точкой роста функции f, если

$$\exists O(x_0) \ \forall x \in O(x_0) \ sign(f(x) - f(x_0)) = sign(x - x_0).$$

Точка x_0 называется точкой убывания функции f, если

$$\exists O(x_0) \ \forall x \in O(x_0) \ sign(f(x) - f(x_0)) = -sign(x - x_0).$$

Теорема 32.1 (достаточное условие точек роста и точек убывания). Пусть f дифференцируема в точке x_0 . Если $f'(x_0) > 0$, то точка x_0 является точкой роста функции f. Если $f'(x_0) < 0$, то точка x_0 является точкой убывания функции f.

 $\ensuremath{\mathcal{A}}$ оказательство. Согласно определению дифференцируемости функции f в точке x_0 :

$$f(x) - f(x_0) = A(x)(x - x_0),$$

где A(x) – непрерывная в точке x_0 функция, $A(x_0) = f'(x_0)$.

Если $A(x_0) > 0$, то

$$\exists O(x_0) \ \forall x \in O(x_0) \ A(x) > 0.$$

Тогда $\forall x \in O(x_0)$

$$sign(f(x) - f(x_0)) = sign(A(x)(x - x_0)) = sign(x - x_0),$$

то есть точка x_0 является точкой роста.

Если $A(x_0) < 0$, то

$$\exists O(x_0) \ \forall x \in O(x_0) \ A(x) < 0.$$

$$\forall x \in O(x_0) \ sign(f(x) - f(x_0)) = sign(A(x)(x - x_0)) = -sign(x - x_0)$$

что означает, что точка x_0 является точкой убывания функции f.

33 Вопрос

Точки локального экстремума. *Теорема Ферма.

Определение 33.1 (точки локального экстремума). Пусть точка x_0 является внутренней точкой области определения функции f.

Точка x_0 является точкой локального максимума функции f, если

$$\exists O(x_0) \ \forall x \in O(x_0) \ f(x) \le f(x_0).$$

Точка x_0 является точкой локального минимума функции f, если

$$\exists O(x_0) \ \forall x \in O(x_0) \ f(x) \ge f(x_0).$$

Точки локального минимума и максимума называются точками локального экстремума. Если неравенство получается строгим, то говорят о строгом локальном экстремуме.

Теорема 33.1 (Ферма, **необходимое** условие локального экстремума). Пусть точка x_0 является точкой локального экстремума функции f и $\exists f'(x_0)$. Тогда

$$f'(x_0) = 0.$$

Доказательство. Точка x_0 не может быть точкой роста функции f, так как является локальным экстремумом. Тогда по теореме о достаточном условии точек роста и точек убывания $f'(x_0) \leq 0$. Но точка x_0 также не может быть точкой убывания функции f. поэтому $f'(x_0) \geq 0$. Одновременное выполнение этих условий дает равенство

$$f'(x_0) = 0.$$

34 Вопрос

*Теорема Ролля.

Теорема 34.1 (Ролля). Пусть f непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и f(a)=f(b). Тогда

$$\exists c \in (a,b) \ f'(c) = 0.$$

Доказательство. В случае, когда $f \equiv const, \forall x \in (a,b) \ f'(x_0) = 0.$

Пусть теперь $f \not\equiv const.$

В силу второй теоремы Вейерштрасса функция f, непрерывная на отрезке [a,b], принимет на нем свои наименьшее и наибольшее значения.

Пусть наименьшее функция принимает в точке x_1 , а наибольшее в точке x_2 . По крайней мере одна из этих точек не совпадает с концами отрезка \Rightarrow является внутренней точкой, а значит локальным экстремумом. Обозначим эту точку c. Согласно теореме Ферма

$$f'(c) = 0.$$

35 Вопрос

*Теоремы Коши и Лагранжа. Следствия теоремы Лагранжа.

Теорема 35.1 (Коши, обобщенная формула конечных приращений). Пусть функции f и g непрерывны на отрезке [a,b], дифференцируемы на интервале (a,b) и $\forall x \in (a,b) \ g'(x) \neq 0$. Тогда

$$\exists c \in (a,b) \ \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Доказательство. В силу теоремы Ролля $g(b) \neq g(a)$. Рассмотрим функцию

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$$

F непрерывна на [a,b] (1), дифференцируема на (a,b) (2).

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(a) - g(a)) = 0,$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(b) - g(a)) = 0,$$

значит F(a) = F(b) (3).

Исходя из трех полученных условий, можем применить теорему Ролля:

$$\exists c \in (a,b) \ F'(c) = 0.$$

Поэтому

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0 \Leftrightarrow$$
$$\Leftrightarrow \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Теорема 35.2 (Лагранжа, формула конечных приращений). Пусть f непрерывна на отрезке [a,b], дифференцируема на интервале (a,b). Тогда

$$\exists c \in (a,b) \ f(b) - f(a) = f'(c)(b-a).$$

Доказательство. Эта теорема является частным случаем теоремы Коши при g(x)=x. Очевидно, что g(x) непрерывна на [a,b], дифференцируема на (a,b) и $\forall x\in (a,b)\ g'(x)=1$.

Применяя теорему Коши, получаем

$$\exists c \in (a,b) \ f(b) - f(a) = f'(c)(b-a).$$

Следствие 35.1 (теорема о постоянстве дифференцируемой функции). Пусть $\forall x \in (a,b) \ f'(x) = 0$. Тогда

$$f \equiv const$$
 на (a, b) .

Следствие 35.2 (критерий монотонности дифференцируемой функции). Пусть f дифференцируема на интервале (a,b). Тогда

$$f \uparrow \Leftrightarrow \forall x \in (a, b) \ f'(x) \ge 0,$$

 $f \downarrow \Leftrightarrow \forall x \in (a, b) \ f'(x) \le 0.$

Следствие 35.3 (достаточное условие строгой монотонности функции).

Если $\forall x \in (a,b) \ f'(x) > 0$, то $f \uparrow \uparrow$.

Если $\forall x \in (a,b)$ f'(x) < 0, то $f \downarrow \downarrow$.

36 Вопрос

Производные высших порядков. Формула Тейлора с остаточным членом в форме Лагранжа. Формула Тейлора-Пеано.

Определение 36.1 (производной высшего порядка). Пусть f дифференцируема в $O(x_0)$. Тогда в точках $O(x_0)$ определена функция f'.

Если функция f' дифференцируема в точке x_0 , то говорят, что функция f дважды дифференцируема в точке x_0 и вторую производную функции f определяют равенством

$$f''(x_0) = (f')'(x_0) = f^{(2)}(x_0).$$

По индукции, если определена производная $f^{(n-1)}$ в окрестности точки x_0 , то производная порядка n в точке x_0 определяется равенством

$$f^{n}(x_{0}) = (f^{(n-1)})'(x_{0}).$$

Функция f в этом случае называется n-дифференцируемой в точке x_0 .

Теорема 36.1 (формула Тейлора). Пусть f n-дифференцируема на отрезке с концами x_1 , x и имеет производную порядка n+1 внутри него. Тогда при любой функции ϕ , непрерывной на этом отрезке и имеющей внутри него производную $\phi'(x) \neq 0$, найдется точка ξ , лежащая между x_0 и x, такая, что

$$f(x) = f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0) + r_n(x_0; x),$$

где

$$r_n(x_0; x) = \frac{\phi(x) - \phi(x_0)}{\phi'(\xi)n!} f^{(n+1)}(\xi) (x - \xi)^n.$$

Теорема 36.2 (формула Тейлора с остаточным членом в форме Лагранжа). Взяв $\phi(t) = (x-t)^{n+1}$,

$$r_n(x_0; x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x - x_0)^{n+1}.$$

Теорема 36.3 (формула Тейлора-Пеано, локальная формула Тейлора). Пусть f n-дифференцируема в точке x_0 . Тогда справедливо равенство

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0) + o((x - x_0)^n)$$

при $x \to x_0$.

37 Вопрос

Правила Лопиталя.

Теорема 37.1 (первое правило Лопиталя). Пусть f и g определены и дифференцируемы на интервале $(a,b), \forall x \in (a,b) \ g'(x) \neq 0$ и $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0$.

Тогда если существует предел $\lim_{x\to a+0} \frac{f'(x)}{g'(x)} = \alpha \in \overline{\mathbb{R}}$, то существует и предел $\lim_{x\to a+0} \frac{f(x)}{g(x)} = \alpha \in \overline{\mathbb{R}}$.

Теорема 37.2 (второе правило Лопиталя). Пусть f и g определены и дифференцируемы на интервале $(a,b), \forall x \in (a,b) \ g'(x) \neq 0$ и $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = \infty$.

Тогда если существует предел $\lim_{x\to a+0} \frac{f'(x)}{g'(x)} = \alpha \in \overline{\mathbb{R}}$, то существует и предел $\lim_{x\to a+0} \frac{f(x)}{g(x)} = \alpha \in \overline{\mathbb{R}}$.

Стоит отметить, что данные правила справедливы при $x \to a - 0, x \to a, x \to \pm \infty.$

38 Вопрос

*Достаточные условия экстремума.

Теорема 38.1 (первое достаточное условие экстремума). Пусть функция f дифференцируема в $\mathring{O}(x_0)$ и непрерывна в точке x_0 . Тогда если производная f'(x)

- ullet положительна слева и отрицательна справа от x_0 или
- ullet отрицательна справа и положительна слева от x_0 , то

точка x_0 является точкой локального экстремума функции f.

Иначе экстремума в точке x_0 нет.

Доказательство. Докажем случай, когда f' положительна слева от x_0 и отрицательна справа от x_0 . То есть требуется доказать, что x_0 – точка локального максимума \Leftrightarrow

$$\exists O(x_0) \ \forall x \in O(x_0) \ f(x) < f(x_0).$$

Слева от точки x_0 f'(x) > 0. Тогда по теореме о достаточном условии строгой монотонности $f \uparrow \uparrow \Rightarrow$

$$\forall x \in \mathring{O}(x_0) : x < x_0 \ f(x) < f(x_0).$$

Аналогично справа от точки $x_0: f \downarrow \downarrow \Rightarrow$

$$\forall x \in \mathring{O}(x_0) : \ x > x_0 \ f(x) < f(x_0).$$

Значит, учитывая, что $f(x_0) = f(x_0)$,

$$\forall x \in O(x_0) \ f(x) \le f(x_0) \Leftrightarrow$$

точка x_0 – локальный максимум.

Сходно доказательство второго случая.

Теорема 38.2 (второе достаточное условие экстремума). Пусть f дважды дифференцируема в точке x_0 и $f'(x_0) = 0$. Тогда

- \bullet если $f''(x_0) < 0$, то функция имеет в точке x_0 локальный максимум, и
- если $f''(x_0) > 0$, то функция имеет в точке x_0 локальный минимум.

Доказательство. Докажем случай локального максимума. Из условия $f''(x_0) < 0 \Rightarrow x_0$ является точкой убывания функции f.

Поскольку $f'(x_0) = 0$, то $\exists O(x_0)$, в пределах которой функция f' положительна слева и отрицательна справа от точки x_0 .

Воспользовавшись предыдущей теоремой, приходим к заключению, что точка x_0 – локальный максимум.

Случай локального минимума доказывается аналогично.

Теорема 38.3 (третье достаточное условие экстремума). Пусть f n-дифференцируема в точке x_0 и $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$.

Тогда при n четном

- 1. если $f^{(n)}(x_0) < 0$, то точка x_0 является точкой локального максимума,
- 2. если $f^{(n)}(x_0) > 0$, то точка x_0 является точкой локального минимума.

И при n нечетном

- 1. если $f^{(n)}(x_0) < 0$, то точка x_0 является точкой убывания,
- 2. если $f^{(n)}(x_0) > 0$, то точка x_0 является точкой роста

функции f.

Доказательство. Применяя локальную формулу Тейлора

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n) =$$

$$= f(x_0) + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \alpha(x)(x - x_0)^n,$$

где $\alpha(x) \to 0$ при $x \to x_0$.

Пусть $A(x) = \frac{f^{(n)}(x_0)}{n!} + \alpha(x)$. Пусть $f^{(n)}(x_0) < 0$ и n четное. Тогда

$$\lim_{x \to x_0} A(x) = \frac{f^{(n)}(x_0)}{n!} < 0$$

 $\exists \mathring{O}(x_0) \ \forall x \in \mathring{O}(x_0) \ A(x) < 0 \Rightarrow f(x) - f(x_0) = A(x)(x - x_0)^n < 0 \Rightarrow f(x) < f(x_0).$ Это и означает, что точка x_0 является точкой локального максимума функции f.

Если $f^{(n)}(x_0) < 0$ и n нечетное, то

$$sign(f(x) - f(x_0)) = sign(A(x)(x - x_0)^n) = -sign(x - x_0),$$

то есть точка x_0 – точка убывания функции f.

Остальные случаи доказываются аналогично.

39 Вопрос

Выпуклые функции. Критерии выпуклости функции.

Определение 39.1 (выпуклой функции). Функция f, определенная на интервале (a,b), называется выпуклой, если $\forall x_1,\ x_2\in(a,b)$ и $\forall \alpha_1\geq 0,\ \alpha_2\geq 0$ таких, что $\alpha_1+\alpha_2=1$, имеет место неравенство

$$f(\alpha_1 x_1 + \alpha_2 x_2) \le \alpha_1 f(x_1) + \alpha_2 f(x_2).$$

Если при $x_1 \neq x_2$ и $\alpha_1 \alpha_2 \neq 0$ это неравенство является строгим, то функцию называют строго выпуклой.

Определение 39.2 (вогнутой функции). Функцию f, определенную на интервале (a,b), называют вогнутой, если $\forall x_1,\ x_2\in(a,b)$ и $\forall \alpha_1\geq 0,\ \alpha_2\geq 0$ таких, что $\alpha_1+\alpha_2=1$, имеет место неравенство

$$f(\alpha_1 x_1 + \alpha_2 x_2) \ge \alpha_1 f(x_1) + \alpha_2 f(x_2).$$

Из соотношений $x = \alpha_1 x_1 + \alpha_2 x_2$, $\alpha_1 + \alpha_2 = 1$ имеем

$$\alpha_1 = \frac{x_2 - x}{x_2 - x_1}, \ \alpha_2 = \frac{x - x_1}{x_2 - x_1},$$

поэтому перепишем неравенство из определения выпуклой функции следующим образом:

$$f(x) \le \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2).$$

Учитывая, что $x_1 \le x \le x_2$ и $x_1 < x_2$, после домножения неравенства на $x_2 - x_1$ получаем

$$(x_2 - x_1)f(x_1) - (x_2 - x_1)f(x) + (x - x_1)f(x_2) \ge 0.$$

Поскольку $x_2 - x_1 = (x_2 - x) + (x - x_1)$, из последнего равенства находим, что

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$$

при $a < x_1 < x < x_2 < b$

Последнее неравенство является иной формой записи **определения выпук- лости функции** на интервале (a,b).

Теорема 39.1 (критерий выпуклости дифференцируемой функции). Пусть функции f дифференцируема на интервале (a,b). Тогда

$$f$$
 – выпуклая $\Leftrightarrow f' \uparrow$.

при этом условию $f' \uparrow \uparrow$ соответствует строгая выпуклость f.

Теорема 39.2 (критерий выпуклости 2-дифференцируемой функции). Пусть функция 2-дифференцируема на интервале (a,b). Тогда

$$f$$
 – выпуклая $\Leftrightarrow \forall x \in (a,b) \ f''(x) \ge 0.$

40 Вопрос

Первообразная. *Теорема о первообразной. Неопределенный интеграл и его простейшие свойства.

Определение 40.1 (первообразной функции). Пусть функции F и f определены на интервале (a,b). Функция F называется первообразной функции f, если

$$\forall x \in (a, b)F'(x) = f(x).$$

Теорема 40.1 (о первообразной). Если F является первообразной функции f на интервале (a,b), то при любом $C \in \mathbb{R}$ функция F+C является первообразной функции f на этом интервале.

Доказательство. Заключение теоремы верно, Поскольку

$$\forall x \in (a, b) \ (F(x) + C)' = F'(x) + 0 = f(x).$$

Определение 40.2 (неопределенного интеграла). Совокупность всех первообразных функции f на интеграле (a,b) называется неопределенным интегралом от функции f и обозначается символом

$$\int f(x)dx.$$

Свойство 40.1 (свойства неопределенного интеграла). 2 свойства, вытекающие из определения интеграла (и дифференциала):

- 1. $d \int f(x) dx = f(x) dx$.
- $2. \int dF(x)dx = F(x) + C.$

2 свойства, называемые свойствами линейности интеграла:

- 3. $\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx.$
- 4. $\int cf(x)dx = c \int f(x)dx$.

41 Вопрос

*Основные методы интегрирования: формула замены переменной и формула интегрирования по частям.

Теорема 41.1 (формула замены переменной). Пусть f определена на интервале (a,b) и

$$\int f(t)dt = F(t) + C,$$

а функция $\phi: (\alpha, \beta) \to (a, b)$ дифференцируема. Тогда функция

$$(f \circ \phi)\phi'$$

имеет на интервале (α, β) первообразную, причем

$$\int f(\phi(x))\phi'(x)dx = F(\phi(x)) + C.$$

Доказательство. Для доказательства достаточно воспользоваться правилом дифференцирования сложной функции

$$(F(\phi(x)))' = F'(\phi(x))\phi'(x) = f(\phi(x))\phi'(x).$$

Теорема 41.2 (формула интегрирования по частям). Пусть функции f и g дифференцируемы на интервале (a,b) и функция gf' имеет первообразную. Тогда функция fg' имеет первообразную, причем

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx.$$

Доказательство. По правилу дифференцирования произведения

$$\forall x \in (a, b) \ (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$

Это означает, что функция f(x)g(x) является первообразной функции h(x)=f'(x)g(x)+f(x)g'(x).

Тогда в силу свойства линейности интеграла функция

$$f(x)g'(x) = h(x) - f'(x)g(x)$$

тоже имеет первообразную, причем

$$\int f(x)g'(x)dx = \int h(x)dx - \int f'(x)g(x)dx = f(x)g(x) - \int g(x)f'(x)dx.$$

42 Вопрос

Определение интеграла Римана. Необходимое условие интегрируемости.

Определение 42.1. Пусть [a,b] — отрезок на числовой прямой. Набор точек $\{x_k\}_{k=0}^n$ такой, что

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b,$$

будем называть **разбиением отрезка** [a,b] и обозначать

$$P = P_{[a,b]} = \{x_k\}_{k=0}^n.$$

Обозначим $\triangle_k = [x_{k-1}, x_k], \ \triangle x_k = x_k - x_{k-1} \ (k = 1, \dots, n).$ Диаметром разбиения P назовем число $d = d(P) = \max_{1 \le k \le n} \triangle x_k.$

Систему точек $\xi_P = \{\xi_k\}_{k=0}^n$ такую, что $\xi_k \in \triangle_k \ (k=1,\ldots,n)$ будем называть системой промежуточных точек, соответствующей разбиению P.

Определение 42.2 (интегральной суммы Римана). Пусть функция f определена на отрезке [a,b]. Сумма

$$\sigma(P) = \sigma(P, \xi_P) = \sigma(f, P, \xi_P) = \sum_{k=1}^{n} f(\xi_k) \triangle x_k$$

называется интегральной суммой Римана функции f.

Ее геометрический смысл заключается в том, что она равна площади многоугольника со сторонами, параллельными координатным осям, аппроксимирующего криволинейную трапецию, одна из боковых сторон которой является графиком функции f на отрезке [a,b] (только при неотрицательных значениях функции).

Определение 42.3 (предела интегральных сумм). Число I называют пределом интегральных сумм Римана функции f при стремлении диаметра разбиения к нулю и обозначают

$$I = \lim_{d \to 0} \sigma(P),$$

если

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall (P, \xi_P) \ (d(P) < \delta \Rightarrow |\sigma(P, \xi_P) - I| < \epsilon).$$

Функцию f в этом случае называют **интегрируемой по Риману** на отрезке [a,b], а число I – **интегралом Римана** и обозначают символом

$$\int_{a}^{b} f(x)dx = I.$$

43 Вопрос

Верхние и нижние суммы Дарбу, их свойства. Верхний и нижний интегралы.

Определение 43.1 (верхней и нижней сумм Дарбу). Пусть функция f определена и ограничена на отрезке $[a,b],\ P=\{x_k\}_{k=0}^n$ – разбиение отрезка. Положим

$$M_k = \sup_{x \in \Delta_k} f(x), \ m_k = \inf_{x \in \Delta_k} f(x), \ k = 1, \dots, \ n.$$

Суммы

$$S(P) = \sum_{k=1}^{n} M_k \triangle x_k$$

И

$$s(P) = \sum_{k=1}^{n} m_k \triangle x_k$$

будем называть, соответственно, верхней и нижней суммами Дарбу функции f для данного разбиения P.

Свойство 43.1 (свойства сумм Дарбу).

- 1. $\forall P \ \forall \xi_P \ s(P) \leq \sigma(P, \xi_P) \leq S(P)$.
- 2. Если $P \subset P_1$, то есть все точки разбиения P входят в число точек разбиения P_1 , то $s(P) \leq s(P_1), \ S(P) \geq S(P_1)$.
- 3. $\forall P_1 \ \forall P_2 \ s(P_1) \leq S(P_2)$.

Следствие 43.1. Множество нижних сумм $\{s(P)\}$ ограничено сверху, а множество верхних сумм $\{S(P)\}$ ограничено снизу.

4. $\forall P \ \forall \epsilon > 0 \ \exists \xi_P \ 0 \le S(P) - \sigma(P, \xi_P) < \epsilon \ (0 \le \sigma(P, \xi_P) - s(P) < \epsilon).$

Следствие 43.2. Для любого разбиения P

$$S(P) = \sup_{\xi_P} \sigma(P, \xi_P), \ s(P) = \inf_{\xi_P} \sigma(P, \xi_P).$$

Определение 43.2. Верхний интеграл Дарбу от функции f определяется равенством

$$\overline{I} := \inf_{P} S(P).$$

нижний интеграл Дарбу -

$$\underline{I} := \sup_{P} s(P).$$

Теорема 43.1 (основная лемма Дарбу). Верны равенства

$$\overline{I} = \lim_{d \to 0} S(P), \ \underline{I} = \lim_{d \to 0} s(P).$$

44 Вопрос

Критерий интегрируемости.

Теорема 44.1 (критерий интегрируемости). Пусть функция f определена и ограничена на отрезке [a,b]. Тогда следующие условия эквивалентны:

- f интегрируема.
- $\forall \epsilon > 0 \; \exists P \; S(P) s(P) < \epsilon$.
- $\underline{I} = \overline{I}$. При этом $\underline{I} = \overline{I} = \int_a^b f(x) dx$.

Вопрос 45

*Теорема об интегрируемости непрерывной функции.

Теорема 45.1 (об интегрируемости непрерывной функции). Неперывная на отрезке функция интегрируема на нем.

Доказательство. Пусть функция f непрерывна на отрезке [a,b] и $\epsilon > 0$ – произвольное число. Согласно теореме Кантора функция f равномерно непрерывна на отрезке $[a,b] \Leftrightarrow$

$$\exists \delta > 0 \ \forall \xi', \xi'' \in [a, b] \ (|\xi' - \xi''| < \delta \Rightarrow |f(\xi') - f(\xi'')| < \frac{\epsilon}{b - a}).$$

Если взять разбиение P отрезка [a,b] с диаметром $d<\delta,$ то $M_k-m_k<\frac{\epsilon}{b-a}.$ Тогда

$$S(P) - s(P) = \sum_{k=1}^{n} (M_k - m_k) \triangle x_k < \frac{\epsilon}{b-a} \sum_{k=1}^{n} \triangle x_k = \epsilon \Leftrightarrow$$
$$\Leftrightarrow S(P) - s(P) < \epsilon.$$

Согласно теореме о критерии интегрируемости функция f интегрируема. \square

46 Вопрос

*Теорема об интегрируемости монотонной функции.

Теорема 46.1 (об интегрируемости монотонной функции). Монотонная на отрезке функция интегрируема на нем.

Доказательство. Если фнукция f(x) = c = const, то очевидно, она интегрируемаи

$$\int_{a}^{b} f(x)dx = c(b-a).$$

Пусть $f \not\equiv const.$ Рассмотрим случай, когда $f \uparrow$. Возьмем произвольное число $\epsilon>0$ и $\delta=\frac{\epsilon}{f(b)-f(a)}>0.$ Для разбиения P диаметром $d<\delta$ получим:

$$S(P) - s(P) = \sum_{k=1}^{n} (M_k - m_k) \triangle x_k < \frac{\epsilon}{f(b) - f(a)} \sum_{k=1}^{n} (M_k - m_k) =$$

$$= \frac{\epsilon}{f(b) - f(a)} \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = \frac{\epsilon}{f(b) - f(a)} (f(b) - f(a)) = \epsilon.$$

А значит функция f интегрируема.

47 Вопрос

Свойства интеграла Римана (*доказательство одного из свойств).

Для сокращения записей далее класс функций, интегрируемых по Риману на отрезке [a,b] будем обозначать $\mathfrak{R}[a,b]$.

Теорема 47.1 (линейность интеграла). Если $f, g \in \mathfrak{R}[a, b], \ \lambda \in \mathbb{R}$, то $f + g, \ \lambda f \in \mathfrak{R}[a, b]$ и

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx,$$
$$\int_{a}^{b} \lambda f(x)dx = \lambda \int_{a}^{b} f(x)dx$$

Доказательство.

$$\sigma(f+g,P,\xi_P) = \sigma(f,P,\xi_P) + \sigma(g,P,\xi_P), \ \sigma(\lambda f,P,\xi_P) = \lambda \sigma(f,P,\xi_P).$$

Остается перейти к пределу при $d(P) \to 0$.

Теорема 47.2. Пусть a < c < b. Тогда $f \in \Re[a,b] \Leftrightarrow f \in \Re[a,c]$ и $f \in \Re[c,b]$. При этом

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Доказательство.

 \Rightarrow . Пусть $f\in\mathfrak{R}[a,b]$ и $\epsilon>0$ — произвольное число. Тогда найдется разбиение $P=P_{[a,b]}$ такое, что $S(P)-s(P)<\epsilon$.

Перейдем к разбиению $P*=P\cup c$. В силу свойств сумм Дарбу имеем

$$S(P*) - s(P*) \le S(P) - s(P) < \epsilon.$$

Рассмотрим разбиение P* как объединение разбиений отрезков [a,c] и [c,b], то есть

$$P* = P'_{[a,c]} \cup P''_{[c,b]} = P' \cup P''.$$

Очевидно, что

$$S(P') - s(P') \le S(P^*) - s(P^*) < \epsilon, \ S(P'') - s(P'') \le S(P^*) - s(P^*) < \epsilon.$$

В силу критерия интегрируемости, это означает, что

$$f \in \mathfrak{R}[a,c], f \in \mathfrak{R}[c,b].$$

$$S(P') - s(P') < \frac{\epsilon}{2}, \ S(P'') - s(P'') < \frac{\epsilon}{2}$$

Тогда для разбиения $P = P_{[a,b]} = P' \cup P''$ имеем

$$S(P) - s(P) = (S(P') - s(P')) + (S(P'') - s(P'')) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Это означает, что $f \in \mathfrak{R}[a,b]$.

Осталось доказать равенство для интегралов. Возьмем разбиение, содержащее точку c,

$$P = P_{[a,b]} = P'_{[a,c]} \cup P''_{[c,b]},$$

и систему промежуточных точек

$$\xi_P = \xi_{P'} \cup \xi_{P''}.$$

Очевидно равенство

$$\sigma(P, \xi_P) = \sigma(P', \xi_{P'}) + \sigma(P'', \xi_{P''}).$$

Осталось перейти в этом неравенстве к пределу при $d(P) \to 0$.

Теорема 47.3 (другие операции над интегрируемыми функциями). Если $f, g \in \mathfrak{R}[a,b]$, то $|f|, f \cdot g$ и $\frac{1}{f}$ при дополнительном условии $\forall x \in [a,b] |f(x)| \geq C > 0$ интегрируемы на [a,b].

Теорема 47.4 (о монотонности интеграла). Пусть $f, g \in \mathfrak{R}[a, b]$ и $\forall x \in [a, b]$ $f(x) \leq g(x)$. Тогда

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Доказательство. Очевидно, что согласно условию теоремы $\forall P \ \forall \xi_P$ выполняется

$$\sigma(f, P, \xi_P) \le \sigma(g, P, \xi_P).$$

Переходя в неравенстве к пределу при $d(P) \to 0$, получим

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx.$$

Следствие 47.1. Если $f \in \Re[a,b]$ и $\forall x \in [a,b]$ $f(x) \ge 0$, то

$$\int_{a}^{b} f(x)dx \ge 0.$$

Следствие 47.2. Если $f \in \Re[a,b]$, то

$$\left| \int_{a}^{b} f(x)dx \right| \le \int_{a}^{b} |f(x)|dx \le \sup_{x \in [a,b]} |f(x)|(b-a).$$

Теорема 47.5 (первая теорема о среднем). Пусть $f, g \in \mathfrak{R}[a, b]$ и $\forall x \in [a, b]$ $g(x) \ge 0$ ($g(x) \le 0$), $M = \sup_{x \in [a, b]} f(x)$, $m = \inf_{x \in [a, b]} f(x)$. Тогда

$$\exists \mu \in [m, M] \int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx$$

При дополнительном условии непрерывности функции $f \exists \xi \in [a,b]$ такая, что

$$\exists \mu \in [m, M] \int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx.$$

Доказательство. Рассмотрим случай, когда $\forall x \in [a,b] \ g(x) \geq 0$. Тогда

$$mg(x) \le f(x)g(x) \le Mg(x),$$

и в силу монотонности интеграла

$$m\int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)g(x)dx \le M\int_{a}^{b} g(x)dx.$$

Если $\int\limits_a^b g(x)dx=0$, то равенство для интегралов из заключения теоремы принимает вид 0=0.

Если $\int_{a}^{b} g(x)dx > 0$, то получим неравенство

$$m \le \frac{\int\limits_{a}^{b} f(x)g(x)dx}{\int\limits_{a}^{b} g(x)dx} \le M,$$

среднюю часть которого обозначим через μ . Доказано.

Если при этом функция непрерывна, то в силу теоремы Коши о промежуточных значениях найдется точка $\xi \in [a,b]$ такая, что $f(\xi) = \mu$.

Следствие 47.3. Если $f\in\mathfrak{R}[a,b],\ M=\sup_{x\in[a,b]}f(x),\ m=\inf_{x\in[a,b]}f(x),$ то $\exists\mu\in[m,M]$ такое, что

$$\int_{a}^{b} f(x)dx = \mu(b-a).$$

При дополнительном условии непрерывности функции f на [a,b]

$$\exists \xi \in [a,b] \int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

Доказательство. Нужно взять функцию $g(x) \equiv 1$ и воспользоваться доказанной ранее теоремой.

48 Вопрос

*Непрерывность интеграла по верхнему пределу интегрирования

Пусть функция $f \in \mathfrak{R}[a,b]$. Определим новую функцию

$$F(x) = \int_{a}^{x} f(t)dt, \ x \in [a, b].$$

Теорема 48.1 (о непрерывности интеграла по верхнему пределу интегрирования). Пусть $f \in \mathfrak{R}[a,b]$. Тогда $F(x) = \int\limits_a^x f(t)dt$ является функцией непрерывной на этом отрезке.

Доказательство. Пусть точки $x, x+h \in [a,b], M = \sup_{x \in [a,b]} |f(x)|$. Тогда

$$|F(x+h)-F(x)|=\left|\int\limits_a^{x+h}f(t)dt-\int\limits_a^xf(t)dt
ight|=$$
 $=\left|\int\limits_a^{x+h}f(t)dt
ight|\leq M|h| o 0$ при $h o 0.$

То есть $F(x+h) \to F(x)$ при $h \to 0$, что означает непрерывность функции F в каждой точке $x \in [a,b]$.

49 Вопрос

*Дифференцируемость интеграла по верхнему пределу интегрирования. *Формула Ньютона-Лейбница.

Теорема 49.1 (о дифференцируемости интеграла по верхнему пределу интегрирования). Пусть функция $f \in \mathfrak{R}[a,b]$ и непрерывна в точке $x_0 \in [a,b]$. Тогда функция $F(x) = \int\limits_a^x f(t)dt$ дифференцируема в точке x_0 и

$$F'(x_0) = f(x_0).$$

Доказательство. Используя свойства интеграла, получаем

$$\frac{F(x_0+h) - F(x_0)}{h} = \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt =$$

$$= \frac{1}{h} \int_{x_0}^{x_0+h} (f(x_0) + (f(t) - f(x_0))dt =$$

$$= \frac{1}{h} \int_{x_0}^{x_0+h} f(x_0)dt + \frac{1}{h} \int_{x_0}^{x_0+h} (f(t) - f(x_0))dt =$$

$$= f(x_0) + \frac{1}{h} \int_{x_0}^{x_0+h} (f(t) - f(x_0))dt.$$

Рассмотрим последнее слагаемое. Пусть $\epsilon>0$ – произвольное число. В силу непрерывности функции f в точке x_0

$$\exists \delta > 0 \ \forall t \in [a, b] \ (t - x_0 < \delta \Rightarrow |f(t) - f(x_0)| < \epsilon).$$

Тогда если $|h| < \delta$, то

$$\left| \frac{1}{h} \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt \right| \le \frac{1}{|h|} |h| \cdot \epsilon = \epsilon.$$

Это означает, что

$$\lim_{h \to 0} \frac{1}{h} \int_{x_0}^{x_0+h} (f(t) - f(x_0))dt = 0.$$

Поэтому существует предел

$$\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0),$$

то есть $F'(x_0) = f(x_0)$.

Следствие 49.1. Если функция f непрерывна на отрезке [a,b], то она имеет на этом отрезке первообразную. Одной из таких первообразных является функция $F(x) = \int_{a}^{x} f(t)dt$.

Теорема 49.2 (формула Ньютона-Лейбница). Пусть функция f непрерывна на отрезке [a,b]. Тогда

$$\int_{a}^{b} f(x)dx = \Phi(b) - \Phi(a),$$

где Φ – произвольная первообразная функции f.

Доказательство. Согласно следствию из теоремы о дифференцируемости интеграла по верхнему пределу интегрирования произвольная первообразная функции f имеет вид

$$\Phi(x) = \int_{a}^{x} f(t)dt + C$$
, где $C = const.$

Положим в этом равенстве сначала x = a, а потом x = b. Тогда

$$\Phi(a) = \int_{a}^{a} f(t)dt + C = 0 + C = C,$$

$$\Phi(b) = \int_{a}^{b} f(t)dt + C.$$

Отсюда

$$\int_{a}^{b} f(x)dx = \Phi(b) - \Phi(a).$$

50 Вопрос

*Интегрирование по частям и *замена переменной в интеграле Римана.

Примечание 50.1.

$$f(x)|_a^b = f(b) - f(a)$$

Теорема 50.1 (формула интегрирования по частям). Если функции u(x) и v(x) непрерывно дифференцируемы на отрезке [a,b], то справедливо равенство

$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)|_{a}^{b} - \int_{a}^{b} v(x)u'(x)dx.$$

Доказательство. По правилу дифференцирования произведения имеем:

$$(u(x)v(x))' = u'(x)v(x) + v'(x)u(x).$$

По условию теоремы все функции в этом равенстве непрерывны, а значит, и интегрируемы на отрезке. Используя линейность интеграла и формулу Ньютона-Лейбница, получаем

$$u(x)v(x)|_a^b = \int_a^b (u(x)v(x))'dx = \int_a^b v(x)u'(x)dx + \int_a^b u(x)v'(x)dx.$$

Теорема 50.2 (формула замены переменной). Пусть функция f непрерывна на отрезке [a,b], функция g имеет непрерывную производную на отрезке $[\alpha,\beta]$ и $\min_{t\in[a,b]}g(t)=g(\alpha)=a, \max_{t\in[a,b]}g(t)=g(\beta)=b.$ Тогда

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt.$$

Доказательство. Пусть Φ – первообразная функции f. Согласно правилу вычисления производной сложной функции

$$\forall t \in [a, b] \ (\Phi(g(t)))' = \Phi'(g(t))g'(t) = f(g(t))g'(t),$$

то есть функция $\Phi \circ g$ является первообразной функции $(f \circ g)g'$. Согласно формуле Ньютона-Лейбница

$$\int\limits_{\alpha}^{\beta} f(g(t))g'(t)dt = \Phi(g(\beta)) - \Phi(g(\alpha)) = \Phi(b) - \Phi(a) = \int\limits_{a}^{b} f(x)dx.$$