PUBLIC WORKS DEPARTMENT

DESIGN
OF
SUBMERSIBLE BRIDGE
ON
LARATHI – LARATHI "B" ROAD
ACROSS
SOM RIVER

ON LARATHI TO LARATHI "B" ROAD ACROSS RIVER SOM

INDEX

 Preamble Hydraulic Design Stability Check for Pier in Different Load Cases Computation of Reinforcement in Pier Design of Pier Footing Design of Pier Footing Cap Stability Check for Abutment in Different Load Cases Design of Abutment Footing Cross Sections & L Section of the River Geotechnical Investigation Report General Arrangement Drawing Details of Pier Complete Drawing Pier Reinforcement Details Details of Bottom Anchorage of Pier Details of Reinforcement in Pier cap Deck Slab Anchorage Detail Details of Abutment Complete Drawing Details of Approach Slab 	S. No	Particulars	Page
3. Stability Check for Pier in Different Load Cases 4. Computation of Reinforcement in Pier 5. Design of Pier Footing 6. Design of Pier Footing Cap 7. Stability Check for Abutment in Different Load Cases 8. Design of Abutment Footing 9. Cross Sections & L Section of the River 10. Geotechnical Investigation Report 11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	1.	Preamble	
4. Computation of Reinforcement in Pier 5. Design of Pier Footing 6. Design of Pier Footing Cap 7. Stability Check for Abutment in Different Load Cases 8. Design of Abutment Footing 9. Cross Sections & L Section of the River 10. Geotechnical Investigation Report 11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	2.	Hydraulic Design	
5. Design of Pier Footing 6. Design of Pier Footing Cap 7. Stability Check for Abutment in Different Load Cases 8. Design of Abutment Footing 9. Cross Sections & L Section of the River 10. Geotechnical Investigation Report 11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	3.	Stability Check for Pier in Different Load Cases	
6. Design of Pier Footing Cap 7. Stability Check for Abutment in Different Load Cases 8. Design of Abutment Footing 9. Cross Sections & L Section of the River 10. Geotechnical Investigation Report 11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	4.	Computation of Reinforcement in Pier	
7. Stability Check for Abutment in Different Load Cases 8. Design of Abutment Footing 9. Cross Sections & L Section of the River 10. Geotechnical Investigation Report 11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	5.	Design of Pier Footing	
Cases 8. Design of Abutment Footing 9. Cross Sections & L Section of the River 10. Geotechnical Investigation Report 11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	6.	Design of Pier Footing Cap	
8. Design of Abutment Footing 9. Cross Sections & L Section of the River 10. Geotechnical Investigation Report 11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	7.	Stability Check for Abutment in Different Load	
9. Cross Sections & L Section of the River 10. Geotechnical Investigation Report 11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing		Cases	
10. Geotechnical Investigation Report 11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	8.	Design of Abutment Footing	
11. General Arrangement Drawing 12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	9.	Cross Sections & L Section of the River	
12. Details of Pier Complete Drawing 13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	10.	Geotechnical Investigation Report	
13. Pier Reinforcement Details 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	11.	General Arrangement Drawing	
 14. Details of Bottom Anchorage of Pier 15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing 	12.	Details of Pier Complete Drawing	
15. Details of Reinforcement in Pier cap 16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	13.	Pier Reinforcement Details	
16. Deck Slab Anchorage Detail 17. Details of Abutment Complete Drawing	14.	Details of Bottom Anchorage of Pier	
17. Details of Abutment Complete Drawing	15.	Details of Reinforcement in Pier cap	
	16.	Deck Slab Anchorage Detail	
18. Details of Approach Slab	17.	Details of Abutment Complete Drawing	
	18.	Details of Approach Slab	

DESIGN OF SUBMERSIBLE BRIDGE ON LARATHI TO LARATHI "B" ROAD ACROSS RIVER SOM

PREAMBLE Type of Bridge

The bridge shall be a Submersible bridge. The HFL is 99.500 m and the proposed deck level is 99.950 m.

Decking Arrangement

The Deck Slab shall standard RCC deck slabs each 8400 mm wide i.e. 7500 mm carriage way and guard stones on both sides. There shall be 25 mm wide expansion joint between the adjacent deck slabs along the length of the bridge. The location of proposed road is right angle to the direction of flow.

There shall be 11 Nos. of spans. The centre to centre distance for THE spans shall be 8.8 m.

Standard RCC Solid Slab Superstructure with right effective span 8 M without footpath shall be provided in accordance to the Ministry of Surface Transport (Roads Wing), New Delhi drawings.

It is proposed to construct 7500 mm wide slabs of these standard drawings. As per requirement of use in the proposed bridge the deviation with respect to these drawings shall be as follows:-

- 1. Pier Cap Width 1200 mm [In the reference drawing the pier cap width is 800 mm]. The width of piers shall be 1200 mm. Due to this change the Centre to Centre distance shall be 8800 mm (centre to centre over piers). For all spans the clear span shall be 7600 mm and the centre to centre distance shall be 8800 mm. The length of shall modified reinforcement be as per these geometrical requirements however spacing of the reinforcement shall not be altered.
- 2. Footpath & Railing: There shall be guard poles on both sides only.
- 3. Reinforcement Detailing: The reinforcement detailing is suitably modified as required for the modifications referred above in points 1 to 2.

The proposed decking arrangement is shown in Drawing – D-01 titled as Decking arrangement.

Design Loads

The following loads have been considered in the design of deck slab and for the stability of the sub structure:-

[A] Maximum of the following cases

- I. One lane of IRC class 70R on carriage way
- II. One lanes of IRC Class A on carriage way
- III. Two lanes of IRC Class A on carriage way
- IV. Three lanes of IRC Class A on carriage way

- V. One lane of IRC class 70R and one lane of IRC Class A on carriage way
- VI. One lane of IRC class AA TRACKED VEHICLE on carriage way

In order to account for two adjacent slabs the resultant reactions and moments have been multiplied by 2 for stability check of the sub structure.

[B] Other Loads

- a) Footpath load of 5KN/Sqm.
- b) Wearing coat land of 2 KN/Sqm.

Safe Bearing Capacity

The detailed sub soil investigation report for a bridge constructed in the vicinity of the bridge is enclosed.

The foundation rock is safe against the eroding effects of the water flow and other climatic conditions.

As per detailed test of foundation rock the lowest safe bearing capacity for rectangular footing at depth 4.5 m and downwards is 200 kN/ Sq M; Hence the Safe Bearing Capacity adopted for design is 200 kN/ Sq M.

Depth of Foundation/Founding Level

For all the footings no hard rock available hence the foundation shall be laid at 4.5 m depth on gravel base as found uniformally across the river section.

Scour Depth

The maximum scour depth computed is 6.44 M. As per Clause No. 703-2-3-1 of IRC 78-1983 considering Scour at the pier two times of calculated scour depth below the highest flood level. But we shall provide foundation at 1.5 m ANCHORED IN BED ROCK AVAILABLE.

Reinforcement Detail & other Detail of Deck slab

Ministry of surface transport details drawings are enclosed which contains miscellaneous details of deck slab including reinforcement drawing.

The right effective span of the proposed bridge is 7.60 m. The length along the centre line of road between pier centers is 8.80 m.

The deck slab pertaining to 8 m. right effective span shall be provided as given in MOST drawings No. SD/101, SD/102, SD/103, SD/104 AND SD/112.

In the drawing the clear right span is 7600 mm. The proposed bridge shall have clear right span as 7600 mm conforming to the standard drawing adopted.

Bearing detail

Tar paper bearing shall be providing on top of pier cap & abutment cap.

Approach slab

The detail of approach slab is enclosed as drawing D-03.

Pier Cap Detail

Pier cap drawing is enclosed as annexure D-05.

DESIGN OF SUBMERSIBLE BRIDGE

Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road , across Som River.

Hydraulic Calculation Computation of Discharge 1 Flood calculation by Area Velocity Method (As per Article- 5 of IRC SP-13) $A \times V$ Where A = 440.83 m2 Cross sectional area in m² P = 117.02 m P= Perimeter calculated in m S = 1 IN Slope as per drain LS taken at 926 Proposal site n = 0.033 Rugosity coefficient n = (As per IRC SP-13) I/nx (A/P) 2/3 x(S) 1/2 V = Velocity in m/sec. 2.42 m/sec. Q = 1066.80 Cumecs **Linear Water Way Calculation** Regime Surface width of the stream is given by :-L = 4.8 (Q)1/2 156.78 m Looking to the built up Urban area constraints adopt 8 M each. 12 Spans of This will cause contraction and afflux. Calculation is done for the same to fix deck level. Effective linear water way proposed = 11 x 88 M 88 M Total **Scour Depth Calculation** (As per clause no. 703.2.2.1 of IRC: 78.1983) $dsm = 1.34x (Db^2 / Ksf)^{-1/3}$ Where Db The discharge in Cumecs per meter width Ksf the silt factor Effective linear waterway = Width of waterway - Obstructed width of piper 94.80 - (10 x 1.2) = 82.80 m Db =1066.80 / 82.80 12.89 Cumecs per metre width

As per Clause No. 703-2-3-1 of IRC 78-1983 considering Scour at the pier two times of calculated scour depth below the highest flood level. But hard rock is available in foundation so the foundation will be anchored in the rock as per IRC guidelines.

6.44 m

dsm =

1/{67} 4264-f40e-e461-b6e6.xls afflux calculation

Afflux Calculation

```
As per IS: 7784 (Part -I) 1975
Molesworth Formula for Afflux
```

```
Afflux h = ((V^2/17.85) + 0.0152)x(A^2/a^2-1)
                                   Where.
                                        h =
                                                            afflux in m.
                                                            Velocity in the unobstructed stream in m/s,
                                                            the unobstructed sectional area of the river in m<sup>2</sup>
                                        A =
                                        a =
                                                            the obstructed sectional area of the river at the cross drainage work in m<sup>2</sup>.
                      As per Annexure- 1
                                                                                                        358.48 m<sup>2</sup>
Unobstructed Area of Flow after Bridge Construction =
                                                                 94.800 x
                                                                                        3.78 =
                                                                 440.83 m<sup>2</sup>
                                        A =
                                        V =
                                                                   2.42 m/sec.
Computation of Area obstructed by Deck Slab
                                                   99.500 m
                 Top Level of Deck slab:
                                                   99.950 m
    Thickness of Slab and Wearing Coat
                                                    0.830 m
                          Length Of Slab
                                                   94.800 m
                    Height of Obstruction
                                                     0.830 m
            Area obstructed by deck slab
                                                   94.800 x
                                                                               0.83
                                                                   78.68 m<sup>2</sup>
Computation of Area obstructed by Piers
                                    HFL:
                                                    99.500 m
                     Soffit of Deck slab:
                                                    99.120 m
               Average river bed level =
                                                     96.169 m
                             Nos. of pier =
                                                                     10
                    Height of Obstruction
                                                     99.500
                                                                            96.169 =
                                                                                                 3.331 m
        Area obstructed by one pier : =
                                                                               3.33
                                                        1.2 X
                                                                   3.998 m<sup>2</sup>
                       For 10 Nos. of piers =
                                                        10 x
                                                                              3.998
                                                                   39.98 m^2
                                       A1 =
Computation of Area obstructed by Abutments
Average ground level =
                                                     96.169 m
Height of Obstruction
                                                                            96.169 =
                                                     99.500 =
                                                                                                 3.331 m
Area obstructed by one Abutment : A2 = (0.40+0.75)/2
                                                                               3.33
                                                                    1.92 \, m^2
                                                         2 x
For two Abutments =
                                                                               1.92
                                                                    3.83 m^2
                                           =
Total area of obstruction due to slab.
piers and abutments A
                                                           A0 + A1 + A2
                                                                  78.68 +
                                                                                       39.98 +
                                                                                                           3.83
                                                                 122.50 m<sup>2</sup>
```

2/{67} 4264-f40e-e461-b6e6.xls afflux calculation

```
Actual Area of flow a =
                                                  440.825 -
                                                                          122.50
                                          =
                                                               318.33 m<sup>2</sup>
Afflux h =
                                                     0.32 m
Afflux flood level =
                                                  99.500 +
                                                                            0.32 =
                                                                                             99.820 m
                                          V
Obstructed Velocity
                                                                       Q/a
Obstructed Velocity
                                                               1066.8 /
                                          =
                                                                                    318.33
                                                                  3.36 m/sec
However we consider design velocity
                                                     3.36 m/sec.
                                                             99.820 M
Afflux flood level
                                                             99.950 M
Top of deck slab
This is well above the Afflux flood level.
```

Though it is not a high level bridge; there shall be no hindrance to traffic during high floods. Hence OK.

3/{67} 4264-f40e-e461-b6e6.xls afflux calculation

<u>DETERMINATION OF VELOCITY AT PROPOSED</u> <u>SUBMERSIBLE BRIDGE</u>

Name Of Work:- Construction of Submersible Bridge on Larathi to Larathi "B" Road, across Som River.

AS PER UP-STREAM SECTION

HIGHEST FLOOD LEVEL 99.500 M

	HIGHES	I FLOOD	LEVEL		99.500	IVI
CHAINAGE	G.L.	DEPTH OF	LENGTH	AVERAGE	CROSS	WETTED
		FLOW IN	OF FLOW	DEPTH OF	SECTIONAL	PERIMETER
		M		FLOW	AREA OF FLOW	
0	99.350	0.15	0.00	0.00	0.00	0.00
5	98.080	1.42	5.00	0.79	3.93	5.16
10	94.390	5.11	5.00	3.27	16.33	6.21
20	93.840	5.66	10.00	5.39	53.85	10.02
30	92.690	6.81	10.00	6.24	62.35	10.07
40	93.590	5.91	10.00	6.36	63.60	10.04
50	94.020	5.48	10.00	5.70	56.95	10.01
60	94.620	4.88	10.00	5.18	51.80	10.02
70	94.340	5.16	10.00	5.02	50.20	10.00
80	95.580	3.92	10.00	4.54	45.40	10.08
90	97.610	1.89	10.00	2.91	29.05	10.20
95	98.980	0.52	5.00	1.21	6.02	5.18
100	99.490	0.01	5.00	0.27	1.33	5.03
105	99.780	0.00	5.00	0.01	0.03	5.00
110	100.120	0.00	5.00	0.00	0.00	5.00
115	100.573	0.00	5.00	0.00	0.00	5.00
						_
	96.17	TOTAL	115.00		440.83	117.02

A 440.83 SQM P 117.02 M R 3.77 M N 0.033 S 1 IN 926

				· · · · · · · · · · · · · · · · · · ·		•
		M		FLOW	AREA OF FLOW	
		FLOW IN	OF FLOW	DEPTH OF	SECTIONAL	PERIMETER
CHAINAGE	G.L.	DEPTH OF	LENGTH	AVERAGE	CROSS	WETTED

V 2.41 M/SEC Q 1062.82 CUMECS

The design engineer visually observed the river to ascertain the Roughness Coefficient n for the Manning's formula. Upon visual inspection of the river in the vicinity of the proposed bridge site it was found that the River bed surface is good with clean straight banks, no rifts or deep pools however containing some weeds and stones. Roughness Coefficient pertaining to these characteristics is 0.033

Design Discharge = 1062.82 CUMECS

Critical	Levels		
Road top level (RTL)	99.950	М	
Average Ground Level(AGL)	96.169	M	
Average Height Of Bridge	3.780	M	
Lowest Nala Bed level (NBL)	92.690	М	
Ordinary flood level (OFL)	97.369	М	
Foundation level (FL)	89.690	М	
Ht. of bridge h= (RTL-NBL)	7.260	М	
Ht. of bridge H=(RTL-FL)	10.260	М	

^{**} Needs Rational Evaluation w.r.t. afflux.

^{**} Average of GL for points lying below HFL.

ANCHORAGE OF DECK SLAB TO SUBSTRUCTURE

Name Of Work: - Construction of Submersible Bridge on Larathi to Larathi "B" Road, across Som River.

In the case of a submersible bridge, the deck slab is near the plane of maximum velocity. To counteract the sliding action due to velocity of flow, loss of weight of slab due to buvgancy, the tilting forces due to eddies and currents and the disturbing forces due to debris or trees floating down the stream, it is necessary to anchor the deck slab to the substructure.

One possible solution to this anchorage is as shown in detailed drawing. The aim in this anchorage is to secure the deck slab to piers or abutments against uplift or lateral thrust and at the same time allow lateral movement due to expansion and contraction due to temperature effects the arrangement will be evident from the sketch given in the detailed drawing.

Check Against Uplift

The uplift force shall be maximum when t	he flow I	evel is Just at near deck level.	THIS	WILL BE IN CASE O	F AFFLUX FLOOD LEVEL	99.82 M
Total Height		0.32 M				
Maximum Uplift Pressure	-	0.32 x	10 =	3.2	kN/Sqm	
Area of Slab under effect of buoyancy	-	8.80 x	12 =	105.6	Sqm	
Uplift Force on Slab	-	105.6 x	3.2 =	337.92	kŇ	
Self Weight of Slab	-	8.80 x	12 x	0.75	x 24.00 =	1900.80 kN
Self Weight of Wearing Coat	-	8.80 x	12 x	0.075	x 24.00 =	190.08 kN
Footpath		2X10.8 x	1.50 x	0.50	c 0.00 =	0.00 kN
TOTAL						2090.88 kN
Net Uplift Pressure	-	337.92 -	2090.88 =	-1752.96	kN	
				< 0 Hence Ok.		

Check Against Sliding

	Stability Check of Pier	
WAT:	P CLIPPENT IN TRANSVERSE DIRECTION / ACROSS THE RRIDGE)	

Refer Stability Check of Pier										
WATER CURRENT IN TRANSVERSE DI	IRECTION I	ACROSS THE	BRIDGE)						
As per IRC- II (6-1966) clause 213.5		For V=	3.36	m/sec	Maximum velo	city being	1.414 x n	mean velocity		(1.414= Root of 2
Obstructed Velocity = V Cos 20 0	-	3.36	x	Cos 20 0						
•	-	3.16								
2v2	-	19.94								
The soffit of the deck is at HFL		99.50	M	The afflux	Flood Level is		99.	.82 M		
DRAG FORCE ON DECK SLAB DUE TO	O AFFLUX									
Area Obstructed		8.80	x	0.320	-	2.82	Sqm			
Drag Force on Slab	-	52.00		k	x		x	Area Obstructed		
		52.00	x	1.50	×	19.94	×	2.82 / 100	-	43.80 kN
Dia of Anchor Bars		32 mm								
Permissible Shear Stress		90 N/mm ²								
		90 N/mm-								
Shear Force Resisted by one Anchor Bar	-	(0.785	x	32 ²		/4)x	190 / 1000	-	38.19 kN
Number Of Bars Provided Per slab		18 Nos.								
Total Shear Resisted	-	18	x	38.19	-	687.42	kN			
FACTOR OF SAFETY		687.42	/	43,79892	-	15.7				
					> 2	.00 Hence	OK			

6/{67} 4264-f40e-e461-b6e6.xls Deck Anchorage

CROSS SECTION OF RIVER DOWN-STREAM

Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road, across Som River.

CROSS SECTION OF RIVER AT PROPOSED BRIDGE SITE

	HIGHE	ST FLOOD	LEVEL		99.500	M
Chainage	RL in M	DEPTH OF	LENGTH OF	AVERAGE	CROSS	WETTED
in M (u/s		FLOW IN M	FLOW	DEPTH OF	SECTIONAL	PERIMETER
or d/s)				FLOW	AREA OF	
01 470)					FLOW	
0	99.350	0.15	0.00	0.00	0.00	0.00
5	98.080	1.42	5.00	0.79	3.93	5.16
10	94.390	5.11	5.00	3.27	16.33	6.21
20	93.840	5.66	10.00	5.39	53.85	10.02
30	92.690	6.81	10.00	6.24	62.35	10.07
40	93.590	5.91	10.00	6.36	63.60	10.04
50	94.020	5.48	10.00	5.70	56.95	10.01
60	94.620	4.88	10.00	5.18	51.80	10.02
70	94.340	5.16	10.00	5.02	50.20	10.00
80	95.580	3.92	10.00	4.54	45.40	10.08
90	97.610	1.89	10.00	2.91	29.05	10.20
95	98.980	0.52	5.00	1.21	6.02	5.18
100	99.490	0.01	5.00	0.27	1.33	5.03
105	99.780	0.00	5.00	0.01	0.03	5.00
110	100.120	0.00	5.00	0.00	0.00	5.00
115	100.573	0.00	5.00	0.00	0.00	5.00
		TOTAL	115.00		440.83	117.02

0.00 99.50 115.00 99.50

8/{67} 4264-f40e-e461-b6e6.xls CROSS SECTION

DETERMINATION OF BED SLOPE OF THE RIVER

Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road , across Som River.

Chainage in	RL in M
M (u/s or	
d/s)	
0.00	92.810
25.00	92.765
50.00	92.760
75.00	92.715
100.00	92.690
125.00	92.665
150.00	92.640
175.00	92.630
200.00	92.590
225.00	92.565
250.00	92.540

Reference Poits					
Ch	RL				
0.00	92.810				
250.00	92.540				

DESIGN OF PIER AND CHECK FOR STABILITY- SUBMERSIBLE BRIDGE

Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road , across Som River. DESIGN DATA

1 RIGHT EFFECTIVE SPAN	=	7.60	М					
2 SPAN C/C OF PIERS	=	8.80						
3 OVERALL WIDTH OF PIER CAP	=	8.40	M					
4 H.F.L.	=	99.50						
5 BUOYANCY								
6 AT FOOTING LE	VEL =	100.00	1 %					
7 AT PIER LE	VEL =	100.00						
8 AQUEDUCT FALLS UNDER ZONE-II								
SO SEISMIC CASE IS NOT								
GOVERNING HERE.								
9 FLOOD DISCHARGE	=	1062.82	CUMECS					
10 RIVER BED SLOPE	=	1	IN	926				
11 DESIGN VELOCITY	=		m/sec					
12 BED LEVEL OF THE HEIGHEST PIER	=	92.69						
13 SAFE BEARING CAPACITY	=	20.00	t/m2	200.00 kN/m ²				
				KIWIII				
14 TOP LEVEL OF FOUNDING ROCK	=	89.69						
15 EMBEDMENT OF PIER IN HARD	=	1.50	M					
ROCK								
16 FOUNDATION LEVEL OF THE	=	88.190	M					
HIGHEST PIER								
17 DECK LEVEL OF THE BRIDGE	=	99.950						
18 TOP LEVEL OF THE PIER CAP	=	99.125						
19 LEVEL DIFFERENCE OF PIER CAP	=	10.94	M					
TOP AND FOUNDING LEVEL								
CHECKING STABILITY OF PIER AT R.L.88	S. TS M FOOTII	NG LEVEL						
A DEAD LOAD CALCULATION SUPER STRUCTURE								
SUPER STRUCTURE Self Weight of Slab		30 x	8 40 x	0.75 x	24 00 =	1330.56 kN		
Self Weight of Man	- 8.				24.00 = 24.00 =			
Self Weight of Wearing Coal TOTAL	. = 8.4	30 x	8.40 x	0.075 x	24.00 =	133.06 kN		
SUB STRUCTURE						1463.62 kN	_	
Pier Cap Pier Cap		50 x	8.40 x	0.60 x	24.00		_	181.440 kN
Flared Portion Sides		50 x	0.40 X	0.60 x	8.40 x	2.00 x	24.00 =	18.144 kN
Trained Fortion Sides		50 x	0.15 x	0.60 x	3.14 x	1.20 x	24.00 =	4.069 kN
Flared Portion u/s & d/s Sides		50 x	0.10 x	1.50 x	24 00	7.20 X	=	12.960 kN
714/04 7 0/10/7 4/5 4 4/5 0/400		14 /	4.00 x	1.20 x	1.20 x	0.60 x	24 00 =	16 278 kN
TOTAL								232.891 kN
Pier								
Flared Portion Top) =	50 x	0.15 x	0.60 x	8.40 x	2 x	24.00 =	18.144 kN
	= 0.	50 x	0.15 x	0.60 x	3.14 x	1.20 x	24.00 =	4.069 kN
Pier Rectangular portion	1.2	20 x	7.50 x	8.09 x	24.00		=	1746.360 kN
Pier Curved portion		14 /	4 x	1.20 x	1.20 x	8.09 x	24.00 =	219.343 kN
Flared Portion bottom		50 x	0.60 x	0.30 x	24.00		=	2.160 kN
		14 /	4 x	1.20 x	1.20 x	0.60 x	24.00 =	16.278 kN
								2011.780 kN
TOTAL								
Weight of Pier Above H.F.L.	=	78 -	0.00				=	0.000 kN
	=	78 -	0.00				=	
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L.	. = . = 2011.:		0.00 2011.78 x	22.50 /	24.00)		=	0.000 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing	= 2011.: = 2011.: = 0.0	00 + (2011.78 x	3.80 M x	1.00 M		=	0.000 kN 2011.780 kN 1886.044 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structre only Footing Weight without Buoyancy	= 2011.: = 2011.: = 0.0 SIZE = 12.0	00 + (12.00	2011.78 x M x 3.80 x	3.80 M x 1.00 x	1.00 M 24.00		=	0.000 kN 2011.780 kN 1886.044 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Weight with 100% Buoyancy	= 2011.: = 2011.: = 0.0 SIZE = 12.0 = 12.0	00 + (2011.78 x	3.80 M x	1.00 M		= = = = =	0.000 kN 2011.780 kN 1886.044 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structre only Footing Weight without Buoyancy	= 2011.: = 2011.: = 0.0 SIZE = 12.0 t Buoyancy	00 + (12.00 00 x	2011.78 x M x 3.80 x 3.80 x	3.80 M x 1.00 x 1.00 x	1.00 M 24.00		=	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Weight with 100% Buoyancy Total Weight of Substructure Without	= 2011 = 0.0 SIZE v = 12.0 v = 12.0 t Buoyancy = 232.0	00 + (12.00 00 x	2011.78 x M x 3.80 x	3.80 M x 1.00 x	1.00 M 24.00		=	0.000 kN 2011.780 kN 1886.044 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Weight with 100% Buoyancy	= 2011.:	00 + (12.00 00 x 00 x	2011.78 x M x 3.80 x 3.80 x 2011.78 +	3.80 M x 1.00 x 1.00 x 1094.40	1.00 M 24.00		= =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Weight with 100% Buoyancy Total Weight of Substructure Without	= 2011 = 0.0 SIZE v = 12.0 v = 12.0 t Buoyancy = 232.0	00 + (12.00 00 x 00 x	2011.78 x M x 3.80 x 3.80 x	3.80 M x 1.00 x 1.00 x	1.00 M 24.00	_	=	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight with 100% Buoyancy Weight with 100% Buoyancy Total Weight of Substructure Without Total Weight of Substructure With Bu	= 2011.:	00 + (12.00 00 x 00 x	2011.78 x M x 3.80 x 3.80 x 2011.78 +	3.80 M x 1.00 x 1.00 x 1094.40	1.00 M 24.00		= =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION	= 2011.:	00 + (12.00 00 x 00 x	2011.78 x M x 3.80 x 3.80 x 2011.78 +	3.80 M x 1.00 x 1.00 x 1094.40	1.00 M 24.00		= =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15th Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without BLIVE LOAD CALCULATION Maximum Reaction due Live Load	= 2011.:	00 + (12.00 00 x 00 x	2011.78 x M x 3.80 x 3.80 x 2011.78 +	3.80 M x 1.00 x 1.00 x 1094.40	1.00 M 24.00		= =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Euroyancy Footing Weight with 00% Euroyancy Total Weight of Substructure Without Total Weight of Substructure With Bu	= 2011.:	00 + (12.00 00 x 00 x 39 +	2011.78 x M x 3.80 x 3.80 x 2011.78 +	3.80 M x 1.00 x 1.00 x 1094.40	1.00 M 24.00		= =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15th Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Withou Total Weight of Substructure Withou BLUE LOAD CALCULATION Maximum Reaction due Live Load	= 2011.: = 0.1 SIZE y = 12.1 t Buoyancy = 232.1 1000 2000 2000 2000 2000 2000 2000 2000	00 + (12.00 00 x 00 x 39 +	2011.78 x Mx 3.80 x 3.80 x 2011.78 + 1886.04 +	3.80 M x 1.00 x 1.00 x 1094.40 638.40	1.00 M 24.00 14.00		= =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without B LIVE LOAD CALCULATION Maximum Reaction due Live Load including impact	= 2011.:	00 + (00 x 00 x 00 x 39 + 39 +	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 +	3.80 M x 1.00 x	1.00 M 24.00 14.00		= = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Bouyancy Footing Weight without Buoyancy Total Weight with 50% Bouyancy Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including Impact Refer Live load Computation sheet	= 2011.:	00 + (12.00 00 x 00 x 39 +	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 +	3.80 M x 1.00 x	1.00 M 24.00 14.00	Haunch 0.6	= = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including impact Refer Live load Computation sheet showing maximum reaction	= 2011. 	00 + (12.00 x 00 x 00 x 89 + 99 +	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 =	3.80 M x 1.00 x	1.00 M 24.00 14.00	PCC Offset 0.2	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Weight with 15% Buoyancy Total Weight of Substructure Without Total Weight of Substructure With Bu B. LIVE LOAD CALCULATION Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU	= 2011. 	00 + (12.00 x 00 x 00 x 89 + 99 +	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 =	3.80 M x 1.00 x	1.00 M 24.00 14.00	Haunch 0.6 PCC Offset 0.2 Leight Variant 1.0	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to	= 2011. 	00 + (12.00 x 00 x 00 x 89 + 99 +	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 =	3.80 M x 1.00 x	1.00 M 24.00 14.00	PCC Offset 0.2	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Advanced Pier Below H. Substructure Without Below H. Substructure With Bu B. LIVE LOAD CALCULATION Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and	= 2011. 	00 + (12.00 x 00 x 00 x 89 + 99 +	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 =	3.80 M x 1.00 x	1.00 M 24.00 14.00	PCC Offset 0.2	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to	= 2011: = 0.1 = 12.4 = 12.4 = 12.4 = 232.1 = 788.1 = 78.1	30 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 =	3.80 M x 1.00 x	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15th Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Below Consumer Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and	= 2011. 	30 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl	3.80 M x 1.00 x	1.00 M 24.00 14.00	PCC Offset 0.2	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Assimum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including Impact and Breaking Force	= 2011:: = 0.0 SIZE	30 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl	3.80 M x 1.00 x	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Variar 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet	= 2011:: = 0.0 SIZE	00 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction	= 2011.: = 0.1 SIZE = 12.1 E Buoyancy = 232.1 232.1 = 788.1 = 78. E TO LIVE LO = 122. = 122.	00 + (12.06 10	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 =	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Footing Weight without Buoyancy Weight with 1005 Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet showing maximum reaction	= 2011.: = 0.1 SIZE = 12.1 E Buoyancy = 232.1 232.1 = 788.1 = 78. E TO LIVE LO = 122. = 122.	00 + (12.06 10	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 =	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to	= 2011.: = 0.1 SIZE = 12.1 E Buoyancy = 232.1 232.1 = 788.1 = 78. E TO LIVE LO = 122. = 122.	00 + (12.06 10	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 =	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15th Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to Live Load including impact and	= 2011.: = 0.1 SIZE = 12.1 E Buoyancy = 232.1 232.1 = 788.1 = 78. E TO LIVE LO = 122. = 122.	00 + (12.06 10	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 =	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to	= 2011.: SIZE 12.1 12.1 13.1	20 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 ki NG FORCE 2.00 = 122.13 ki	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Footing Weight without Buoyancy Good Below H.F.L. Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Alexamum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to Live Load including impact and Breaking Force	= 2011.: = 0.1 SIZE = 12.1 E Buoyancy = 232.1 232.1 = 788.1 = 78. E TO LIVE LO = 122. = 122.	20 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 =	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Footing Footing Weight without Buoyancy Total Weight of Substructure Without Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to	= 2011.: SIZE 12.1 12.1 13.1	00 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 = 122.13 kl G FORCE	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet	= 2011.: SIZE 12.1 12.1 13.1	20 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 ki NG FORCE 2.00 = 122.13 ki	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure With Bu B LIVE LOAD CALCULATION Maximum Reaction due Live Load including impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction	= 2011.: SIZE 12.1 12.1 13.1	00 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 = 122.13 kl G FORCE	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Footing Footing Weight without Buoyancy Total Weight of Substructure Without Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet showing maximum reaction	= 2011.1 SIZE	20 + (12.00) 20 × (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 = 122.13 kl G FORCE 2.00 =	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure With Bu BLIVE LOAD CALCULATION Maximum Reaction due Live Load including impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGTUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction	= 2011. SIZE 2.12. SIZE 2.12. E 12.12. E 12.12. Buoyancy 232. = 788. = 78. E TO LIVE LOA = 122. = 12. TO LIVE LOA = 1123. = 112. L DIRECTION L DIRECTION 1	20 + (2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 = 122.13 kl G FORCE 2.00 = 1123.94 kl BRIDGE)	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PCC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 638.400 kN 3339.071 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Footing Footing Weight without Buoyancy Total Weight of Substructure Without Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet showing maximum reaction C LOADS DUE TO WATER CURRENT WATER CURRENT IN LONGITUDINAL As per IRCP (II 6-1966) Louge 213.5	= 2011.1 SIZE	20 + (12.00	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 = 122.13 kl G FORCE 2.00 =	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PcC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 333.400 kN 2757.335 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Sub Structure with 15% Buoyancy Footing Weight without Buoyancy Total Weight of Substructure Without Assimum Reaction due Live Load including impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to Live Load including impact and Breaking Force Refer Live load Computation sheet showing maximum reaction C LOADS DUE TO WATER CURRENT WATER CURRENT IN LONGITUDINAI As per IRC-11 (6-1966) clause 213.5 Since the bridge is at Zero Degrees s	= 2011.: SIZE 2. 2. 2. 2. 2. 2. 2. 2	20 + (12.00	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 = 122.13 kl G FORCE 2.00 =	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PcC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 333.400 kN 2757.335 kN
Weight of Pier Above H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Pier Below H.F.L. Weight of Substructure with 15% Buoyancy Footing Weight without Buoyancy Weight with 100% Buoyancy Total Weight of Substructure Without Total Weight of Substructure Without Total Weight of Substructure Without Maximum Reaction due Live Load including Impact Refer Live load Computation sheet showing maximum reaction TOTAL LONGITUDINAL MOMENT DU Maximum Longitudinal moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet showing maximum reaction TOTAL TRANSVERSE MOMENT DUE Maximum Transverse moment due to Live Load including Impact and Breaking Force Refer Live load Computation sheet showing maximum reaction C LOADS DUE TO WATER CURRENT WATER CURRENT IN LONGITUDINAL As per IRCP II (6-1966) Lougus 213.5	= 2011.: SIZE 2. 2. 2. 2. 2. 2. 2. 2	20 + (12.00	2011.78 x 3.80 x 3.80 x 2011.78 + 1886.04 + 1.00 = 788.27 kl NG FORCE 2.00 = 122.13 kl G FORCE 2.00 =	3.80 Mx 1.00 x 1	1.00 M 24.00 14.00	PcC Offset 0.2 Length Variant 1.0 Width Varian 0.5	= = = = = = = = = = = = = = = = = = =	0.000 kN 2011.780 kN 1886.044 kN 1094.400 kN 333.400 kN 2757.335 kN

Obstructed Velocity = V Sin 20 ° = 2.41 x

11/{67} 4264-f40e-e461-b6e6.xls STABILITY CHECK FOR PIER

	_	0.82					
Total	2v ² = SUBMERGED Height =	1.36 9.81 M	1.36 1.22	1.21 0.00			
#NAME?	-						
	2v ² = (Area Obstructed =	1.36 + 12.00 x	1.22) /2 = 0.00 =	1.29 0.00 Sqm			
	Force on Pier =	52.00 x	k x	v ² x Area Obstructed			
	=	52.00 x	1.50 x	1.29 x 0.00 / 100	=	0.00 kN	at R.L. 99.535 M
	Moment @ R. L. Moment @ R. L.	89.79 M = 89.19 M =	0.00 × 0.00 x	9.75 = 0.00 kN-m 10.35 = 0.00 kN-m			
	Moment @ R. L.	88.19 M =	0.00 x	11.35 = 0.00 kN-m			
#NAME?	2v2 = (1.22 +	1.21)/2 =	1.21			
	Area Obstructed =	12.00 x	0.60 =	7.20 Sqm			
	Force on Pier =	52.00 x	k x	v2 x Area Obstructed			
	=	52.00 x	1.50 x	1.21 x 7.20 / 100	=	6.82 kN	at R.L. 93.658 M
	Moment @ R. L. Moment @ R. L.	89.79 M = 89.19 M =	6.82 x 6.82 x	3.87 = 26.39 kN-m 4.47 = 30.48 kN-m			
	Moment @ R. L.	88.19 M =	6.82 x	5.47 = 37.31 kN-m			
#NAME?	2v2 = (1.21 +	0.00)/2 =	0.60			
	Area Obstructed =	7.33 x	8.70 =	63.81 Sqm			
	Force on Pier =	52.00 x	k x	v ² x Area Obstructed			
	=	52.00 x	1.50 x	0.60 x 63.81 / 100	=	30.02 kN	at R.L. 93.358 M
	Moment @ R. L. Moment @ R. L.	89.79 M = 89.19 M =	30.02 x 30.02 x	3.57 = 107.10 kN-m 4.17 = 125.11 kN-m			
	Moment @ R. L.	88.19 M =	30.02 ×	5.17 = 155.14 kN-m			
TOTAL LONGITU	JDINAL MOMENT DUE TO	O WATER CURRENT					
	Moment @ R. L.	89.79 M =	0.00 +	26.39			
	Moment @ R. L.	89.19 M=	0.00 +	107.10 = 133.49 kN-m 30.48			
			+	125.11 = 155.60 kN-m 37.31			
	Moment @ R. L.	88.19 M =	0.00 +	37.31 155.14 = 192.44 kN-m			
WATER CURRE	NT IN TRANSVERSE DIR -1966) clause 213.5		HE BRIDGE) 2.41 m/sec Maximum	velocity being 1.414 x mean velocity		(1.414= Root of 2)	
Obstructed Veloc	ity = V Cos 20 0 =	2.41 x	Cos 20 0	velocity being 1.414 x mean velocity		(1.414- R001 01 2)	
	= 2v2 =	2.27 10.27					
	Total Height =	9.81 M	10.27 9.25	9.12 0.00			
#NAME?	2v ² = (10.27 +	9.25)/2 =	9.76			
	Area Obstructed =	8.80 x	0.000 =	0.00 Sqm			
	Force =	52.00 x	k v	v2 x Area Obstructed			
	=	52.00 x	1.50 x	9.76 x 0.00 / 100	=	0.00 kN	at R.L. 99.535 M
	Moment @ R. L. Moment @ R. L.	89.79 M = 89.19 M =	0.00 x 0.00 x	9.75 = 0.00 kN-m 10.35 = 0.00 kN-m			
	Moment @ R. L.	88.19 M =	0.00 x	11.35 = 0.00 kN-m			
#NAME?				77.00			
	2v2 = 1	9.25 +					
	2v² = (Area Obstructed =	9.25 + 1.50 x	9.12)/2 = 0.60 =	9.18 0.90 Sqm			
	Area Obstructed =	1.50 x	9.12)/2 =	9.18 0.90 Sqm			
	Area Obstructed = Force on Pier = =	1.50 x 52.00 x 52.00 x	9.12)/2 = 0.60 = k x 1.50 x	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100	=	6.45 kN	atR.L. 93.658 M
	Area Obstructed = Force on Pier = = Moment @ R. L.	1.50 x 52.00 x 52.00 x 89.79 M =	9.12)/2 = 0.60 = k x 1.50 x 6.82 x	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.39 kN-m	=	6.45 kN	af.R.L. 93.658 M
	Area Obstructed = Force on Pier = =	1.50 x 52.00 x 52.00 x	9.12)/2 = 0.60 = k x 1.50 x	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.39 kN-m	=	6.45 kN	at.R.L. 93.658 M
#NAME?	Area Obstructed = Force on Pier = = Moment @ R. L. Moment @ R. L. Moment @ R. L.	1.50 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M =	9.12)/2 = 0.60 = k x 1.50 x 6.82 x 6.82 x	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 /100 3.87 = 26.39 kN-m 4.47 = 30.48 kN-m	=	6.45 kN	at.R.L. 93.658 M
#NAME?	Force on Pier = Moment @ R. L. Moment @ R. L.	1.50 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M =	9.12)/2 = 0.60 = k	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 /100 3.87 = 26.39 kN-m 4.47 = 30.48 kN-m 5.47 = 37.31 kN-m	=	6.45 kN	atRL 93.658 M
#NAME?	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L.	1.50 x 52.00 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 9.12 + 7.33 x	9.12)/2 = 0.60 = k	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.39 kN-m 4.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 8.80 Sqm	=	6.45 kN	atRL 93.658 M
#NAME?	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. 2v ² = Area Obstructed = Force on Pier = = =	1.50 x 52.00 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 7.12 + 7.33 x 52.00 x	9.12)/2 = 0.60 = K	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 4.47 = 30.46 kN-m 5.47 = 37.31 kN-m 4.56 8.80 Sqm v ² x Area Obstructed 4.56 x 8.80 / 100	=		atRL 93.658 M
#NAME?	Area Obstructed = Force on Pier = = Moment @ R. L. Moment @ R. L. Moment @ R. L. 2v ² = Area Obstructed =	1.50 x 52.00 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 89.79 M = 89.19 M =	9.12)/2 = 0.60 = k	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.39 kN-m 4.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.55 8.80 Sqm v ² x Area Obstructed 4.55 x 8.80 / 100 3.57 = 107.16 kN-m 4.17 = 125.11 kN-m	=		
#NAME?	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. 2v ² = Area Obstructed = Force on Pier = Moment @ R. L.	1.50 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 7.33 x 52.00 x 52.00 x 89.79 M =	9.12)/2 = 0.60 = k	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.39 kN-m 4.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 8.80 Sqm v ² x Area Obstructed 4.56 x 8.80 / 100 3.57 = 107.10 kN-m	=		
	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. 2v ² = Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. ERSE MOMENT DUE TO ET	1.50 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 7.33 x 52.00 x 52.00 x 89.79 M = 89.19 M = 89.19 M = WATER CURRENT	9.12)/2 = 0.60 = k x 1.50 x 6.82 x 6.82 x 6.82 x 1.20 = k x 0.00)/2 = 1.20 = k x 3.002 x 3.002 x 3.002 x	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.39 kN-m 4.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 8.80 Sqm v ² x Area Obstructed 4.56 x 880 / 100 3.57 = 107.10 kN-m 4.77 = 125.11 kN-m 5.17 = 155.14 kN-m	=		
	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. 2v² = { Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L.	1.50 x 52.00 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 89.79 M = 88.19 M =	9.12)/2 = 0.60 = K	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 4.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.50 8.80 Sqm v ² x Area Obstructed 4.55 x 2.50 x 2.50 x 3.50 x 100 3.57 = 107.00 kN-m 4.17 = 125.14 kN-m 5.17 = 155.14 kN-m	=		
	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. 2v ² = Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. ERSE MOMENT DUE TO ET	1.50 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 7.33 x 52.00 x 52.00 x 89.79 M = 89.19 M = 89.19 M = WATER CURRENT	9.12)/2 = 0.60 = k x 1.50 x 6.82 x 6.82 x 6.82 x 1.20 = k x 0.00)/2 = 1.20 = k x 3.002 x 3.002 x 3.002 x	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 5.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 x 8.80 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 26.39 = 107.10 xN-m 30.48 =	=		
	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. 2v² = Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. ERSE MOMENT DUE TO Moment @ R. L. Moment @ R. L.	1.50 x 52.00 x 89.79 M = 89.19 M = 68.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 52.00 x 52.00 x 69.19 M = 89.19 M = 88.19 M =	9.12)/2 = 0.60 = k x 1.50 x 6.82 x 6.82 x 6.82 x 0.00)/2 = 1.20 = k x 30.02 x 30.02 x 30.02 x 4 0.00 + + 0.00 + +	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.33 kN-m 4.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 8.80 Sqm v ² x Area Obstructed 4.56 x 8.80 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 5.17 = 155.14 kN-m 5.17 = 133.49 kN-m 3.048 = 125.11 s N-m 3.048 = 125.11 s N-m	=		
TOTAL TRANSV	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. Area Obstructed = Force on Pier = Moment @ R. L.	1.50 x 52.00 x 89.79 M = 89.19 M = 68.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 52.00 x 69.19 M = 89.19 M = 88.19 M =	9.12)/2 = 0.60 = k	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 5.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 x 8.80 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 26.39 = 107.10 xN-m 30.48 =	=		
TOTAL TRANSV SEISMIC CONDI According to clau	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. Area Obstructed = Force on Pier = Moment @ R. L. TION so 222.1 of IRC : 6. 1966 i.	1.50 x 52.00 x 89.79 M = 89.19 M = 68.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 52.00 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 88.19 M = 89.19 M =	9.12)/2 = 0.60 = k x 1.50 x 6.82 x 6.82 x 6.82 x 0.00)/2 = 1.20 = k x 30.02 x 30.02 x 30.02 x 4 0.00 + + 0.00 + +	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 5.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 x 8.60 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 26.39 = 107.10 133.49 kN-m 30.46 = 125.11 155.60 kN-m 37.31 = 155.14 kN-m	=		
TOTAL TRANSV SEISMIC CONDI According to clau	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. 22 2 4 Area Obstructed = Force on Pier = Moment @ R. L.	1.50 x 52.00 x 89.79 M = 89.19 M = 68.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 52.00 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 88.19 M = 89.19 M =	9.12)/2 = 0.60 = K	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 5.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 x 8.60 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 26.39 = 107.10 133.49 kN-m 30.46 = 125.11 155.60 kN-m 37.31 = 155.14 kN-m	=		
TOTAL TRANSV SEISMIC CONDI According to claus aqueduct need re. WIND FORCE	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Area Obstructed = Force on Pier = Moment @ R. L. TION Moment @ R. L.	1.50 x 52.00 x 89.79 M = 89.19 M = 68.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 52.00 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 88.19 M = 89.19 M =	9.12)/2 = 0.60 = K	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 5.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 x 8.60 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 26.39 = 107.10 133.49 kN-m 30.46 = 125.11 155.60 kN-m 37.31 = 155.14 kN-m	=		
TOTAL TRANSV SEISMIC CONDI According to claus aqueduct need re. WIND FORCE	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. Area Obstructed = Force on Pier = Moment @ R. L. TION se 222.1 of IRC : 6-1966 it to be designed for Seisn	1.50 x 52.00 x 89.79 M = 89.19 M = 68.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 52.00 x 52.00 x 52.00 x 69.79 M = 89.19 M = 89.19 M = 89.19 M = 88.19 M = 89.19 M = 68.19 M =	9.12)/2 = 0.60 = k	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 5.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 x 8.60 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 26.39 = 107.10 133.49 kN-m 30.46 = 125.11 155.60 kN-m 37.31 = 155.14 kN-m	=	31.29 kN	
TOTAL TRANSV SEISMIC CONDI According to clau aqueduct need no WIND FORCE	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Area Obstructed = Force on Pier = Moment @ R. L. STION Moment @ R. L. TION See 2221 of IRC: 6-1966 to be designed for Seisn Slab Area = C.G. above Bed level =	1.50 x 52.00 x 52.00 x 89.79 M = 89.19 M = 68.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 52.00 x 59.79 M = 89.19 M = 189.19 M = 89.19 M =	9.12)/2 = 0.60 = K	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.39 kN-m 4.47 = 30.46 kN-m 5.47 = 37.31 kN-m 4.56 8.80 Sqm v ² x Area Obstructed 4.56 x 8.80 / 100 3.57 = 107.10 kN-m 5.17 = 125.11 kN-m 5.17 = 125.11 kN-m 155.14 kN-m 155.14 kN-m 26.39 = 107.10 1 kN-m 155.14 kN-m 155.14 kN-m 155.14 kN-m 155.14 l 155.60 kN-m 37.31 = 123.49 kN-m 37.31 = 125.51 kN-m 175.514 l 192.44 kN-m	=		
TOTAL TRANSV SEISMIC CONDI According to clau aqueduct need no WIND FORCE	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Area Obstructed = Force on Pier = Moment @ R. L. Area Obstructed = Moment @ R. L. Moment @ R. L. Moment @ R. L. Moment @ R. L. Moment @ R. L. Moment @ R. L. TION se 222.1 of IRC : 6-1966 to be designed for Seisn Slab Area = EC.G. above Bed level = EV.2.1 Nove = 212.3 IRC - 6-1966	1.50 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 52.00 x 52.00 x 89.79 M = 89.19 M =	9.12)/2 = 0.60 = x 1.50 x 6.82 x 6.82 x 6.82 x 7.20 = 1.20 = 1.20 = x 1.50 x 3.002 x 3.002 x 3.002 x 3.002 x 4.000 + 0.	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 5.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 x 8.60 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 26.39 = 107.10 kN-m 30.48 = 125.11 sN-m 155.14 = 192.44 kN-m 155.14 = 192.44 kN-m	=	31.29 kN 10.82 Sqm	
TOTAL TRANSV SEISMIC CONDI According to clau aqueduct need no WIND FORCE	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Area Obstructed = Force on Pier = Moment @ R. L. TION se 222.1 of IRC : 6-1966 of to be designed for Seisn Slab Area = EC.G. above Bed level = C.G. above Bed level = Moment @ R. L. Wind Force = Moment @ R. L.	1.50 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 9.12 + 7.33 x 52.00 x 52.00 x 52.00 x 52.00 x 69.79 M = 89.19 M = 89.19 M = 89.19 M = 89.19 M = 69.19 M = 69.19 M = 11.10 x 99.54 - Wind pressure = 10.82 x 89.79 M =	9.12)/2 = 0.60 = k 1.50 x 6.82 x 6.82 x 6.82 x 7.20 = 1.20 = k 1.50 x 3.002 x 3.002 x 3.002 x 3.002 x 4.000 + 0.00 + 0	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 5.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 x 8.60 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 2.6 39 = 107.10 2.6 39 = 107.10 3.7 = 155.14 kN-m 155.14 = 155.60 kN-m 3.7 31 = 155.61 kN-m 2.6 39 = 107.10 2.6 39 = 107.10 2.6 39 = 107.10 2.6 39 = 107.10 2.6 39 = 107.10 2.7 = 107.10 kN-m 2.8 39 = 107.10 2.9 4.9 kN-m 4.7 = 125.11 kN-m 4.7 = 125.14 kN-m 4.7 =	=	31.29 kN	
TOTAL TRANSV SEISMIC CONDI According to clau aqueduct need no WIND FORCE	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. Area = C. G. above Bed level = se 212.3 IRC - 6-1966 Wind Force = Moment @ R. L. Moment @ R. L. Area = C. G. above Bed level = se 212.3 IRC - 6-1966 Wind Force = Moment @ R. L. Moment @ R. L. Moment @ R. L.	1.50 x 52.00 x 52.00 x 89.79 M = 88.19 M = 88.19 M = 7.33 x 52.00 x 89.79 M = 88.19 M = 11.10 x 99.54 - Wind pressure = 10.02 x 89.79 M = 88.19 M =	9.12)/2 = 0.60 = K	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.39 kN-m 4.47 = 30.46 kN-m 5.47 = 37.31 kN-m 4.56 8.80 Sqm v ² x Area Obstructed 4.56 x 880 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 5.17 = 125.14 kN-m 5.17 = 155.14 kN-m 155.14 = 155.14 kN-m 155.14 = 155.14 kN-m 155.14 = 192.44 kN-m 175.14 = 192.44 kN-m 175.14 = 192.44 kN-m 175.14 = 192.44 kN-m 175.15 = 0.90 kN/Sqn 9.75 = 9.90 kN/Sqn	=	31.29 kN 10.82 Sqm	
SEISMIC CONDI According to clau- aqueduct need no WIND FORCE height o According to Clau-	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Moment @ R. L. 2v² = { Area Obstructed = Force on Pier = Moment @ R. L. Silab Area = C. G. above Bed level = se 212.3 IRC - 6-1966 Wind Force = Moment @ R. L.	1.50 x 52.00 x 52.00 x 89.79 M = 89.19 M = 88.19 M = 9.12 + 7.33 x 52.00 x 59.79 M = 88.19 M = 11.10 x 99.64 - Wind pressure = 10.82 x 89.79 M = 89.19 M = 88.19 M =	9.12)/2 = 0.60 = K	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.67 = 26.39 kN-m 5.47 = 30.48 kN-m 5.47 = 37.31 kN-m 4.56 x 8.60 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 2.6 39 = 107.10 2.6 39 = 107.10 3.7 = 155.14 kN-m 155.14 = 155.60 kN-m 3.7 31 = 155.61 kN-m 2.6 39 = 107.10 2.6 39 = 107.10 2.6 39 = 107.10 2.6 39 = 107.10 2.6 39 = 107.10 2.7 = 107.10 kN-m 2.8 39 = 107.10 2.9 4.9 kN-m 4.7 = 125.11 kN-m 4.7 = 125.14 kN-m 4.7 =	=	31.29 kN 10.82 Sqm 9.75 kN	
SEISMIC CONDI According to clau- aqueduct need no WIND FORCE height o According to Clau-	Area Obstructed = Force on Pier = Moment @ R. L. Moment @ R. L. Area Obstructed = Force on Pier = Moment @ R. L.	1.50 x 52.00 x 52.00 x 89.79 M = 88.19 M = 88.19 M = 7.33 x 52.00 x 89.79 M = 88.19 M = 11.10 x 99.54 - Wind pressure = 10.02 x 89.79 M = 88.19 M =	9.12)/2 = 0.60 = K	9.18 0.90 Sqm v ² x Area Obstructed 9.18 x 0.90 / 100 3.87 = 26.39 kN-m 4.47 = 30.46 kN-m 5.47 = 37.31 kN-m 4.56 8.80 Sqm v ² x Area Obstructed 4.56 x 880 / 100 3.57 = 107.10 kN-m 4.17 = 125.11 kN-m 5.17 = 125.14 kN-m 5.17 = 155.14 kN-m 155.14 = 155.14 kN-m 155.14 = 155.14 kN-m 155.14 = 192.44 kN-m 175.14 = 192.44 kN-m 175.14 = 192.44 kN-m 175.14 = 192.44 kN-m 175.15 = 0.90 kN/Sqn 9.75 = 9.90 kN/Sqn	=	31.29 kN 10.82 Sqm	

12(67) 4284-140e-e461-b666.xis STABILITY CHECK FOR PIER

	¥ = (0.90 x	0.90)+ (0.81	x	0.30)/	Total 1.71	1.71 Sqm 0.62 M
height of C.G. above Bed lev		93.66 -	92.69	_	0.97				
According to Clause 212.3 IRC -6 -196	761 – 56	Wind pressure =		- Kg/Sqm	= 0.97	""	0.77 kN/Sq.	n	
Wind For	ce =	1.71 x	0.77					=	1.32 kN
Moment @ R.	L.	89.79 M =	1.32		3.87		5.10 kN-m		
Moment @ R. Moment @ R.	L.	89.19 M = 88.19 M =	1.32 1.32	x	4.47 5.47	=	5.89 kN-m 7.21 kN-m		
Pier from R	L.	99.125 to	92.69	M	3.47	_	7.21 814-111		
Are	na =	1.20 x	6.44					=	7.72 Sqm
height of C.G. above Bed lev	/el =	95.91 -	92.69		3.22	m	0.82 kN/Sa		
According to Clause 212.3 IRC -6 -196 Wind For	56	Wind pressure = 7.72 x	0.82	Kg/Sqm	=		0.82 kN/Sq.	m _	6.34 kN
Moment @ R.	L.	89.79 M =	6.34	x	6.12		38.77 kN-m		0.04 KIT
Moment @ R.	L.	89.19 M =	1.32	x	6.72	=	8.86 kN-m		
Moment @ R. TOTAL TRANSVERSE MOMENT DU	L.	88.19 M =	1.32	x	7.72	=	10.18 kN-m		
Moment @ R.		89.79 M =	94.98		5.10		38.77 +		
		00.70 M	54.50		0.10		=	138.86 kN-m	
Moment @ R.	L.	89.19 M=	100.83	+	5.89	+	8.86 +		
Moment @ R.		88.19 M=	110.58	_	7.21	_	10.18 +	115.58 kN-m	
Monent @ K.		00.13 W =	110.30		7.21		10.10	127.97 kN-m	
E	BASE	PRESSURE CALCULA	TION						
CASE-1 FOR SERVICE CONDITION	N AT F	R. L.88.19 M							
VERTICAL LOADS DEAD LOAD CALCULATION									
SUPER STRUCTURE	=	1463.62 kN							
SUB STRUCTURE	=	3339.07 kN	Without Buo	yancy					
SUB STRUCTURE	=	2757.33 kN	With Buoyan	су					
LIVE LOAD Total Load without Buoyancy	=	788.27 kN 5590.95 kN							
Total Load without Buoyancy Total Load with Buoyancy	=	5590.95 KN 5009.22 KN							
Total LONGITUDINAL MOMENT	=	192.44 +	244.25	=	436.69	kN-m			
Total TRANSVERSE MOMENT	=	192.44 +	2247.88	=	2440.32				
	A. =	12.00 x	3.80		2	=	45.60 m ²		
	1 _{xx} =	1/6x 12.00	2 X	3.00		=	28.88 m ³		
	l _{yy} =	1/6x 12.00		×	3.80	=	91.20 m ³		
STRESS with Buoyan	cy = (5009.22 /	45.60)+/-(436.69	/	28.88)+/-	(2440.32 /	91.20
P.		109.85 +/- 109.85 +	15.12 15.12	+/-	26.76 26.76				
Γ,	nax =	151.73 kN/m²	15.12	*	20.70				
	-	< 250 kN/m2 Hence O	K.						
P,	min =	109.85 -	15.12	-	26.76				
	=	67.97 kN/m ²							
		> 0 Hence O.K.							
STRESS without Buoyan	ou - (5590.95 /	45.60)+/-(436.69	/	28.88)+/-	(2440.32 /	91.20
3 I RE33 WILLOUT BUOYAN	-y - (=	122.61 +/-	45.60 15.12)+/-(+/-	26.76	,	20.00)+/-	2440.32 /	91.20
Pa	nax =	122.61 +	15.12	+	26.76				
	=	152.49 kN/m ²							
		< 250 kN/m2 Hence O							
P,	_{min} =	122.61 -	15.12	-	26.76				
	=	80.73 kN/m ²							
		> 0 Hence O.K.							
CASE-2 FOR IDLE CONDITION AT	R. L.8	38.19 M	(WHEN THE	RE IS NO L	IVE LOAD)				
SUPER STRUCTURE	=	1463.62 kN	A CHECK OF	STABILIT	Y DUE TO BU	JOYANG	Y EFFECT		
SUB STRUCTURE SUB STRUCTURE	=	3339.07 kN 2757.33 kN	Without Buo	yancy					
LIVE LOAD	=	0.00 kN	with Buoyan	cy					
Total Load without Buoyancy	=	4802.69 kN							
Total Load with Buoyancy	=	4220.95 kN							
STRESS with Buoyan	cy = (45.60)+/-(/	28.88)+/-	(192.44 /	91.20
	= =	92.56 +/- 92.56 +	6.66	+/-	2.11 2.11				
P	nax =	92.56 + 101.34 kN/m ²	0.00	-	2.11				
	=	< 250 kN/m2 Hence O	.K.						
P	min =	92.56 -	6.66	-	2.11				
	=	83.79 kN/m ²							
		> 0 Hence O.K.							
STRESS without Buoyan	cy = (4802.69 / 105.32 +/-	45.60 6.66)+/-(192.44 2.11	/	28.88)+/-	(192.44 /	91.20
P	nax =	105.32 +/-	6.66	+/-	2.11				
F. a	- X6x	105.32 + 114.10 kN/m ²	0.00		2.11				
	-	< 250 kN/m2 Hence O	.K.						
P	min =	105.32 -	6.66	-	2.11				
	-	96.55 kN/m ²							
		> 0 Hence O.K.							
CASE- 3 FOR WIND FORCE AT SEF	VIC=	CONDITION AT P 1 9	R 19 M						
SUPER STRUCTURE	=	1463.62 kN	IVI						
SUB STRUCTURE	=	3339.07 kN	Without Buo						
SUB STRUCTURE	=	2757.33 kN	With Buoyan						
LIVE LOAD	=	788.27 kN							
Total Load without Buoyancy Total Load with Buoyancy	=	5590.95 kN 5009.22 kN							
Total LONGITUDINAL MOMENT	=	5009.22 KN 192.44 +	244.25			=	436.69 kN-m		
Total TRANSVERSE MOMENT	=	192.44 +	127.97		2247.88		2568.29 kN-m		
STRESS with Buoyan		5009.22 /	45.60)+/-(436.69	/	28.88)+/-	(2568.29 /	91.20
	=	109.85 +/-	15.12	+/-	28.16				
P _n	nax =	109.85 +	15.12	+	28.16				

13/(67) 4284-400e-9461-b666 x/s STABILITY CHECK FOR PIER

14/(67) 4264-140e-e461-b666.xls STABILITY CHECK FOR PIER

Total Load without Buoyancy	=	4496.55 kt								
Total Load with Buoyancy Total LONGITUDINAL MOMENT	=	4370.82 kt 133.49 +		244.25			4 kN-m			
Total TRANSVERSE MOMENT	=	133.49 +		2247.88			4 KN-m 7 kN-m			
C.S.A.		12.00	x	1.20			=	14.40 m ²		
I _{xx}	=		12.00		1.20	2	=	2.88 m ³		
I,yy	=	1/6x	12.00		x	1.20	=	28.80 m ³		
STRESS with Buoyancy	= (4370.82 / 303.53		14.40 131.16)+/-(+/-	377.74 82.69	/	2.88)+/-(2381.37 /	28.80)
Pmax		303.53	+	131.16	+/-	82.69				
20000	=	517.38 kř								
		< 8000 kN/m ²	that is	8 N/mm²) Henc	e O.K.					
P _{min}	=		-	131.16	-	82.69				
	=	89.68 kt								
		> (- 3600 KN/II	(that is	s 3.6 N/mm ²) H	ence O.K.					
STRESS without Buoyancy	= (4496.55 /		14.40)+/-(377.74	/	2.88)+/-(2381.37 /	28.80)
	=		+/-	131.16	+/-	82.69				
P _{max}	=	312.26 526.11 kt	+	131.16	+	82.69				
	=	< 8000 kN/m ²	thatis∶	8 N/mm²) Henc	e O.K.					
P _{min}	=	312.26	-	131.16	-	82.69				
	=	98.41 ki	l/m²							
0405 7 500 IDI 5 001/DITION 47 D		> (- 3600 kN/m	2 (that is	s 3.6 N/mm ²) H	lence O.K.					
CASE- 7 FOR IDLE CONDITION AT R. SUPER STRUCTURE	=	9.19 M 1463.62 kř								
SUB STRUCTURE	=	2244.67 kt	ı	Without Buo	yancy					
SUB STRUCTURE	=	2118.93 kř		With Buoyan	су					
LIVE LOAD Total Load without Buoyancy	=	0.00 kt 3708.29 kt								
Total Load with Buoyancy	=	3582.55 kf	ı							
STRESS with Buoyancy	= (3582.55 / 248.79	+/-	14.40 46.35)+/-(+/-	133.49 4.64	/	2.88)+/-(133.49 /	28.80)
P	_	248.79	+	46.35	+/-	4.64				
	=	299.77 kt	l/m²							
		< 8000 kN/m ²	that is	8 N/mm ²) Henc	e O.K.					
P _{min}	=	248.79	-	46.35	-	4.64				
	=	197.80 kt		s 3.6 N/mm ²) H	lonco O K					
		> (- 3000 KIWII	(that is	5 5.0 William) II	ence O.K.					
STRESS without Buoyancy	= (3708.29 /		14.40)+/-(/	2.88)+/-(133.49 /	28.80)
P _{max}	=	257.52 257.52	+/-	46.35 46.35	+/-	4.64 4.64				
- max	=	308.51 kt	l/m²	40.00		4.04				
		< 8000 kN/m ²	that is	8 N/mm²) Henc	e O.K.					
P _{min}	=	257.52	-	46.35	-	4.64				
	=	206.53 kt	l/m² ² (that is	s 3.6 N/mm ²) H	lonco O K					
CASE- 8 FOR WIND FORCE AT SERV				0.19 M						
SUPER STRUCTURE SUB STRUCTURE	=	1463.62 kt 2244.67 kt		Without Buo	vancy					
SUB STRUCTURE	=	2118.93 kř	1	With Buoyan						
LIVE LOAD Total Load without Buoyancy	=	788.27 kt 4496.55 kt								
Total Load with Buoyancy	=	4370.82 ki	i							
Total LONGITUDINAL MOMENT Total TRANSVERSE MOMENT	=	133.49 + 133.49 +		244.25 138.86		2247.8	=	377.74 kN-m 2520.23 kN-m		
STRESS with Buoyancy				4440	1. / /	2247.8 377.74	8 =	2.88)+/-(2520.23 /	28.80)
	=	303.53	+/-	131.16	+/-	87.51				
P _{max}	=	303.53	+	131.16	+	87.51				
	=	522.20 kt		8 N/mm²) Henc	o O K					
P _{min}		303.53	at 15	8 N/MM) Hend 131.16	. O.N.	87.51				
	=	84.86 kt								
		> (- 3600 kN/m	² (that is	s 3.6 N/mm ²) H	lence O.K.					
STRESS without Buoyancy	= /	4496.55 /		14,40)+/-(377.74	/	2.88)+/-(2520.23 /	28.80)
OTTLEGO WILLIOUS EGOYGLIGY	= '	312.26	+/-	131.16	+/-	87.51		2.00 /.7 (2020.20	20.00)
P _{max}		312.26	+	131.16	+	87.51				
	=	530.93 kt		2						
P _{min}		< 8000 kN/m ²	that is	8 N/mm ²) Henc 131.16	e O.K.	87.51				
	=	93.59 kř	l/m²							
				s 3.6 N/mm ²) H	lence O.K.					
CASE- 9 FOR WIND FORCE AT IDLE	CON	IDITION AT P	89 10 1	м						
SUPER STRUCTURE	=	1463.62 kř		<u>.</u> .						
SUB STRUCTURE SUB STRUCTURE	=	2244.67 kt 2118.93 kt		Without Buo						
LIVE LOAD	=	2118.93 kř 788.27 kř		With Buoyan	су					
Total Load without Buoyancy	=	4496.55 kt	ı							
Total Load with Buoyancy Total LONGITUDINAL MOMENT	=	4370.82 kt								
Total LONGITUDINAL MOMENT Total TRANSVERSE MOMENT	=	133.49 kr 133.49 +	•-111	138.86		272.3	4 kN-m			
STRESS with Buoyancy	= (4370.82 /		14.40)+/-(133.49		2.88)+/-(272.34 /	28.80)
P _{max}	=	303.53 303.53	+/-	46.35 46.35	+/-	9.46 9.46				
r max	=	359.34 kt	l/m²			5.40				
		< 8000 kN/m ²	that is	8 N/mm²) Henc	e O.K.					
P _{min}		303.53	-	46.35	-	9.46				

15/(87) 4264-1400-0461-15666.xls STABILITY CHECK FOR PIER

= 247.72 kN/m² > (- 3600 kN/m² (that is 3.6 N/mm²) Hence O.K.

STRESS without Buoyancy = (4496.55 / 14.40)+/-(133.49 / 2.88)+/-(272.34 / 312.26 +/- 46.35 +/- 9.46 | 312.26 +/- 46.35 +/- 9.46 | 388.07 kNm² | 46.35 + 9.46 | 46.35 + 28.80)

ABSTRACT OF BASE PRESSURE AND STRESSES

Name Of Work :- Construction of Submersible Bridge on	Larathi to Larath	hi "B" Road	I , across S	om River.		
CASE- 1 FOR SERVICE CONDITION AT R. L.88.19 M	151.73	67.97	152.49	80.73		
CASE- 2 FOR IDLE CONDITION AT R. L.88.19 M	101.34	83.79	114.10	96.55		
CASE- 3 FOR WIND FORCE AT SERVICE CONDITION AT R. L.88.19 M	153.13	66.57	153.89	79.33		
CASE- 4 FOR WIND FORCE AT IDLE CONDITION AT R. L.88.19 M	102.74	82.39	95.71	89.41	115.50	95.15
CASE- 5 FOR ONE SPAN DISLODGED CONDITION AT R. L.88.19 M	86.69	66.34	79.67	73.37	89.27	82.61
Maximum 153.89 66.34 Minimum						
CASE- 6 FOR SERVICE CONDITION AT R. L.89.19 M	517.38	89.68	526.11	98.41		
CASE- 7 FOR IDLE CONDITION AT R. L.89.19 M	299.77	197.80	308.51	206.53		
CASE- 8 FOR WIND FORCE AT SERVICE CONDITION AT R. L.89.19 M	522.20	84.86	530.93	93.59		
CASE- 9 FOR WIND FORCE AT IDLE CONDITION AT R. L.89.19 M	359.34	247.72	368.07	256.45		
Maximum 530.93 84.86 Minimum						

REINFORCEMENT CALCULATION IN PIER IN LOWER FLARED PORTION

Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road , across Som River.

	Name of Wo		detion of our		niuge		iii to Lara	5	toau , acro	33 0011	i itivoi.	
		R.L.	89.19	M TO	1	89.79	M					
FOR S	ERVICE CONDITION											
	VERTICAL LOADS											
	SUPER STRUCTURE	=		1463.62								
	SUB STRUCTURE	=		2244.67	kN		Without E					
	SUB STRUCTURE	=		2118.93	kΝ		With Buo	yancy				
	LIVE LOAD	=		788.27	kN							
	Total Load without Buoyancy	=		4496.55	kΝ							
	Total Load with Buoyancy	=		4370.82	kΝ							
	Total LONGITUDINAL MOMENT											
	Moment @	R. L.	89.19	M =		377.74	kN-m					
	Total TRANSVERSE MOMENT											
	Moment @	R. L.	89.19	M =		2520.23	kN-m					
	CONCRETE MIX			M-25								
	CHARACTERISTIC STRENGTH O	F REINFOR	RCEMENT				415	N/mm2				
	PERMISSIBLE STRESSES											
	IN STEEL			190								
	IN CONCRETE											
	CHARACTERISTIC STRENGTH O	F										
	Concrete			fck	=		30	N/mm2				
	Permissible Compressive Stress in											
	Bending			σcbc	=		8	N/mm2				
	Permissible Compressive Stress in	Direct										
	Compression			σcc	=		8	N/mm2				
	γ			σct	=		3.6	N/mm2				
	Ultimate Axial Load P _U	=		1.5	X		4496.55	=	6744.83	kN		
	Ultimate Longitudinal Moment M _U	=		1.5	Y		377.74	_	566.6145	kN-m		
	Ultimate Transverse Moment M _{II}	_										
	· ·			1.5	X		2520.23		3780.339	KIV-M		
	INCREASE WHEN WIND CONDITI						33.33	%				
	Neglecting area of Cut and Ease wa	ater parts R	-		ered is							
				mm x		1201	mm					
	.1		ume cover as	75								
	d^{1}/d	=		87.5			1201.2	=	0.0728			
	$P_U/(f_{ck} b d)$	=		6744.83	X		1000	/(30	X	12001 x	1201.2)
		=		0.0156								
	FOR LONGITUDINAL MOMENT											
	$Mu/(f_{ck} b d^2)$	=		566.61	Х		1000000	/(30	X	12001 x	1201.2 2)
		=		0.0011								
	Refer Chart 31 & 32 of Design Aid	ds for Rein	forced concr	ete SP-16 ti	he poi	nt lies be	low the ra	nge of a	pplicability	. Henc	e provide n	ninimum
	percentage of steel.								,-,,		. ,	
	The point lies below the range of ap											
	CRITERIA 1 FOR MINIMUM STEEL	L Pt = 0.8 %	OF CROSS	SECTION A	REA (OF COLUI	UN REQU	IRED FO	R COMPRE	SSION	1	
	A B			4070.00			4000	,	•			
	Area Required due to Compression			4370.82			1000	/	8			
		=		546352	mm '							
	Area of steel @ 0.8% =		0.8			546352	/	100				
		=		4371	mm ²							
	0017504 0 500 14444											
	CRITERIA 2 FOR MINIMUM STEEL	$_{\perp} Pt = 0.3 \%$			KEA (,			
	Area of steel @ 0.3% =		0.3		_	12001.2	X	1201.2	/	100		
		=		43248	mm ²							
	PROVIDE STEEL AREA	=		43248	mm²							

18/{67} 4264-f40e-e461-b6e6.xls STEEL IN FLARED PIER BASE

```
NO. OF
                                                             25 MM BARS =
                                                                                               88 Nos.
       SPACING
                                                                       290 MM
       FOR TRANSVERSE MOMENT
       Mu/(f_{ck} b d^2)
                                                                  3780.34 x
                                                                                          1000000 / (
                                                                                                                  30 x
                                                                                                   1201.2 2)
                                                                                 12001.2 x
                                                                   0.0073
       Refer Chart 31 & 32 of Design Aids for Reinforced concrete SP-16 the point lies below the range of applicability. Hence provide minimum
       percentage of steel.
       TRANSVERSE REINFORCEMENT
       Shear Force to be resisted by the pier In Accordance to IS 1893
                                              2520.23
                                                                           11.87
                                                                                                  212.27 kN
Check for Shear
                       Nominal Shear Stress = 212.27
                                                                           1000
                                                                                         11
                                                                                                   12001 x
                                                                                                                     1201)
                                                                      0.01 N/mm<sup>2</sup>
                                           Pt
                                                           0.30
       Permissible Shear Stress =
                                                           0.40 N/mm<sup>2</sup>
                                                                           Refer table 61
       Nominal Shear Reinforcement will suffice
       According to IRC 21-1987 Clause 306.3
                                                                        25 /
       Dia of Transverse Reinforcement
                                                                                                4 =
                                                                                                                6.25 mm
                                      Provide
                                                             12 mm dia rings
       Pitch of the Transverse should be least of
       a) Least lateral Dimension =
                                                         1201.2 mm
       b) 12 d =
                                                                                      12 =
                                                             12 x
                                                                                                      144 mm
       c) 300 mm =
                                                           300 mm
       d) As per IS IS 13920:1993 Cl. 7.4.6
                                              < or =
                                                                       100 mm
                                                             12 mm dia rings @
                                      Provide
                                                                                              100 mm c/c.
       This spacing is in accordance to IS 13920:1993 Cl. 7.4.6
       CODE OF PRACTICE FOR DUCTILE DETAILING OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO SEISMIC FORCES
       Check for Size of Hoop Reinforcement
                                                                Refer IS 13920:1993 Cl. 7.4.8
                                              Ash= 0.18 Sh (Fck/Fy)x(Ag/Ak-1)
                                           S
                                                                100.00
                                           h
                                                                300.00
                                                                           N/mm<sup>2</sup>
                                                                                         (Spacing of long. bars+ effective cover) or 300 mm whichever is less
                                          Fck
                                                                30.00
                                                                           N/mm<sup>2</sup>
                                                                                                          Cover 75 mm to main reinforcement
                                                                           N/mm^2
                                          Fy
                                                                415.00
                                          Ag
                                                                1201.20
                                                                           mm<sup>2</sup>
                                                                                         Considering 1 mm Wide Pier
                                          Ak
                                                                                         Considering 1 mm Wide Pier Effective
                                                                1100.20
                                                                           mm<sup>2</sup>
                                   Hence Ash
                                                                35.84
                                                                           mm<sup>2</sup>
                                                                          mm²
                                Ash ProvideD
                                                                113.04
                                                                                         Which is OK
       d) As per IS IS 13920:1993 Cl. 7.4.6
                                                            12 mm dia rings @
                                      Provide
                                                                                              100 mm c/c.
       This spacing is in accordance to IS 13920:1993 Cl. 7.4.6
       CODE OF PRACTICE FORDUCTILE DETAILING OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO SEISMIC FORCES
       ABSTRACT
       LONGITUDINAL REINFORCEMENT
                                                                                                  However Adopt spacing as 250 mm
                                                                 MM BARS
                                                                                290
       TRANSVERSE REINFORCEMENT
                                                12mm dia rings @100mm c/c.
```

19/(67) 4264-f40e-e461-b6e6.xls STEEL IN FLARED PIER BASE

REINFORCEMENT CALCULATION IN PIER

				ORCEMENT C					_			
Name Of				mersible Brid			arathi "B'	" Road , ac	ross S	om River.		
	R.L. 89	.79	N	1 TO 10	08.00	M						
ERVICE CONDITION												
VERTICAL LOADS												
SUPER STRUCTURE	=			1463.62 kN								
SUB STRUCTURE	=			3339.07 kN		Without B	uovancv					
SUB STRUCTURE	=			2757.33 kN		With Buoy						
LIVE LOAD	=			788.27 kN		Willi Buoy	unoy					
Total Load without Buoyancy	=			5590.95 kN								
Total Load with Buoyancy	_			5009.22 kN								
	-			3009.22 K/V								
Total LONGITUDINAL MOMENT	D /	00.70			400.00	1.81						
Moment @	R. L.	89.79	м =		436.69	KN-m						
Total TRANSVERSE MOMENT												
Moment @	R. L.	89.79			2440.32	kN-m						
CONCRETE MIX			M-25									
CHARACTERISTIC STRENGTH OF	REINFORCEM	1ENT				415	N/mm2					
PERMISSIBLE STRESSES												
IN STEEL				190								
IN CONCRETE												
CHARACTERISTIC STRENGTH OF												
Concrete			fck	=		20	N/mm2					
			ich	_		30	14/1111112					
Permissible Compressive Stress in						_	N//C					
Bending	V4		σcbc	=		8	N/mm2					
Permissible Compressive Stress in D	virect											
Compression			σcc	=			N/mm2					
			σct	=		3.6	N/mm2					
Ultimate Axial Load P U	=			1.5 X		5590.95	=	8386.43	kΝ			
Ultimate Longitudinal Moment M _U	=			1.5 X		436.69	=	655.0414	kN-m			
•												
Ultimate Transverse Moment M _U	=			1.5 X		2440.32		3660.483	kN-m			
INCREASE WHEN WIND CONDITION	ON IS CONSIDE	ERED				33.33	%					
Neglecting area of Cut and Ease water	er parts Rectan	ngular Sed	tion c	onsidered is								
		12000	mm .	x	1200	mm						
	Assume	cover as		75								
d^{1}/d	=			87.5 /		1200	=	0.0729				
$P_{U}/(f_{ck} \ b \ d)$	=			8386.43 x		1000		30	~	12000 x	1200)	
F U/(I ck D d)						1000	/ (30 .	^	12000 X	1200)	
	=			0.0194								
FOR LONGITUDINAL MOMENT											2	
$Mu/(f_{ck} b d^2)$	=			655.04 x		1000000	/(30 .	X	12000 x	1200 2)	
	=			0.0013								
Refer Chart 31 & 32 of Design Aids	s for Reinforce	ed concre	te SP		ies belou	the range	e of annli	cability He	nce n	rovide min	imum	
percentage of steel.			01	uio point ii	No.011	runge	. J. uppii	Judiney. 116	cc pi			
,												
The point lies below the range of app.												
CRITERIA 1 FOR MINIMUM STEEL	Pt = 0.8 % OF	CROSS S	SECTI	ON AREA OF C	COLUMN	REQUIRE	D FOR C	OMPRESSI	ON			
Area Required due to Compression =	=			5009.22 x		1000	/	8				
	=			626152 mm ²				Ū				
Area of stool @ 0.00/ -	-	0.0		020102 mm	606450	,	100					
Area of steel @ 0.8% =		0.8	х	5000 ^	626152	/	100					
	=			5009 mm ²								
CRITERIA 2 FOR MINIMUM STEEL	Pt = 0.3 % OF	GROSS S	SECTI	ON AREA OF C	COLUMN							
Area of steel @ 0.3% =		0.3	X		12000	X	1200 /	/	100			
-	=			43200 mm ²								
PROVIDE STEEL AREA	=			43200 mm ²								
	-	05				00	Noo					
NO. OF	=	25	MM E			88	Nos.					
SPACING	=			290 MM								
FOR TRANSVERSE MOMENT												
2												
A4												
$Mu/(f_{ck} b d^2)$	=			3660.48 x		1000000	/(30 .	X			
MU/(T _{ck} D d -)	=			3660.48 x	12000		/(1200 ²		X			

0.0071 Refer Chart 31 & 32 of Design Aids for Reinforced concrete SP-16 the point lies below the range of applicability. Hence provide minimum percentage of steel. TRANSVERSE REINFORCEMENT Shear Force to be resisted by the pier In Accordance to IS 1893 2440.32 11.87 205.54 kN **Check for Shear** Nominal Shear Stress = 205.54 1200) 1000 /(12000 x 0.01 N/mm² Pt 0.30 Permissible Shear Stress = 0.40 N/mm² Refer table 61 Nominal Shear Reinforcement will suffice According to IRC 21-1987 Clause 306.3 Dia of Transverse Reinforcement 25 / 6.25 mm Provide 12 mm dia rings Pitch of the Transverse should be least of a) Least lateral Dimension = 1200 mm b) 12 d = 12 x 12 = 144 mm c) 300 mm = 300 mm d) As per IS IS 13920:1993 Cl. 7.4.6 100 mm 12 mm dia rings @ 100 mm c/c. Provide This spacing is in accordance to IS 13920:1993 Cl. 7.4.6 CODE OF PRACTICE FOR DUCTILE DETAILING OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO SEISMIC FORCES Refer IS 13920:1993 Cl. 7.4.8 Check for Size of Hoop Reinforcement $Ash=0.18 \; Sh \; (Fck/Fy)x(Ag/Ak-1)$ S 100.00 300.00 N/mm² (Spacing of long. bars+ effective cover) or 300 mm whichever is less Fck 30.00 N/mm² Cover 75 mm to main reinforcement Fy 415.00 N/mm² Ag 1200.00 mm² Considering 1 mm Wide Pier Ak 1099.00 mm² Considering 1 mm Wide Pier Effective Hence Ash mm² 35.87 Ash ProvideD 113.04 mm² Which is OK d) As per IS IS 13920:1993 Cl. 7.4.6 100 mm Provide 12 mm dia rings @ 100 mm c/c.

This spacing is in accordance to IS 13920:1993 Cl. 7.4.6

LONGITUDINAL REINFORCEMENT

TRANSVERSE REINFORCEMENT

ABSTRACT

CODE OF PRACTICE FORDUCTILE DETAILING OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO SEISMIC FORCES

12mm dia rings @100mm c/c.

MM BARS

290

MM

However Adopt spacing as 250 mm

DESIGN OF PIER FOOTING SUBMERSIBLE BRIDGE

Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road , across Som River.

FOR WIND AT SERVICE CONDITION

IND AT SERVICE CONDITION					
Length of footing	I_f	12.00	m		
Width of Footing	I _b	3.80	m		
Width of Pier		1.20	т		
Vertical Load	Р	5590.95	kN		
Longitudinal Moment	M _e	436.69	kN-m		
Transverse Moment	M_b	2568.29	kN-m		
Area in Tension = $y \times I_b$			0.00	m²	0.00 %
Maximum Pressure before Redistri	ibution		153.89	kN/m²	
Maximum Pressure After Redistrib	ution = pxK		153.89	kN/m²	
Maximum Stress at Edge of Pier			153.89	kN/m ²	
Distance From Face of Pier to the	Edge		1.30	m	
Stress at the Edge of Pier			101.24	kN/m²	
Average Stress on Cantilevered Ar	rea		127.57		
Area of the Cantilever Portion			1.30		
Distance of Centroid of the Stress	in		0.69		
Cantilever Portion					
Moment about the Face of Pier			115.21	kN-m	
CONCRETE GRADE			M-25		
FOR THIS GRADE σcbc			10	N/mm2	
m			9.33		
σst			200		
factor k			0.318		
<u>j</u>			0.894		
R			1.422		
Effective Depth Required			285		
Adopt Total Depth Cover			1000 i 50 i		
Assume Bar Dia			25		
Keeping A Cover Of 50 mm Effect	ctive Denth		938		
Adopt Effective Depth	outo bepui		937.5		
Steel Required Ast			687		
Area Of One Bar			491		
Spacing S		Γ	714		
		_			

Provide Bars Of Dia And Spacing Area Of Distribution Steel Dia Of Bar For Distribution Steel	2	25 mm	2000	cing as 250 mm mm ² mm
Area Of One Bar In Distribution Rein	forcement		314	mm²
Using The Bars Spacing Required			157	mm
Provide Bars Of Dia And Spacing	2	20 mm	150	mm
Provide Bars Of Dia And Spacing fo Top Main Steel Provide Bars Of Dia And Spacing fo	1	12 mm	150	mm
Top Distribution Steel		12 mm	150	mm
CHECK FOR SHEAR	(As per IRC 21-	1987 CI.	304.7)	
Critical Section is at a distance equal to	effective depth from	n pier fac	e 937.5	mm
Section of Shear from end of pier			0.36	m
Maximum Stress at Edge of Pier			153.89	kN/m ²
Stress at the Section for Shear Check			138.39	kN/m ²
Average Stress on Cantilevered Area			146.14	kN/m ²
Shear Force			52.98	kN
V=V' + M/d tanB	(B=0) Hence V =	=V'		
Actual Shear Stress			0.06	N/mm ²
Percentage Steel	100As/bd		0.07	
Тс			0.23	N/mm ²
k=1 Permissble Shear Stress = k Tc			0.00	N/mm²
remissue shear stress - k rc			0.23 Actual Shear Stı < Reinforcement sh	ress hence Shear
Dia Of two Legged Stirrups			16	mm
Area Of One Bar In Distribution Rein Using The Bars Spacing Required se Provide Bars Of Dia And Spacing	= Asw ts d/V	16 mm	1423	mm ² mm cing as 250 mm

26/{67} 4264-f40e-e461-b6e6.xls FOOTING DESIGN

LIVE LOAD CALCULATION :-

[1] CLASS AA TRACKED VEHICLE :-

(a) Dispersion width along the span

According to clause 305.13 IRC- 21-2000

$$= 3.6 + 2 (0.075 + 0.775)$$

(b) Dispersion width across the span

According to clause 305.13 IRC- 21-2000

$$be = K x$$
 (1 - x/Le) + bw

K = A Constant having the value depending upon the ratio

(L1/Le where.

be = the effective width of the slab on which the load acts.

Le = Effective Span

x = the distance of c.g. of concentrate load from the near support

bw = The breadth of concentration area of the load i.e. Dimension of the tyre or track contact area over the road surface

Heve .

$$Le = 10.00 M & L1 = 7.00 M$$

$$= \frac{L1}{Le} = \frac{7.00}{10.0} = 0.7$$
Value of $K = 2.4$

$$bw = 0.85 + 2 \times 0.075 = 1.0 M$$

$$X = \frac{L}{2} = \frac{10}{2} = 5.0 M$$

be = 2.4 x 4 (1 - 5/10) +

$$=$$
 5.8 M

Impact factor is 13.75% as pere IRC Section-II, Clause - 211-3 (a) (i)

DISPERSION ACROSS SPAN (CLASS AA TRACKED VEHICAL

The tracked vehicle is placed at a distance of minimum clearence of 1-2 m from Kerb Dispersion across span

- = C/C distance between wheels
- + width from centre of wheel on clearence side
- + Least on other side or halp the dispersion of one wheel.
- = 2.05 + 1.93 + Least of 2.715 OR 5.8/2
- = 2.05 + 1.93 + 2.715
- = 6.695

Impact factor = 1.1375

Total load with impact

- $= 70 \times 1.1375$
- = 79.63 T
- = Intensity of Load

$$= \frac{79.63}{5.30 \times 6.695} = 2.24 \text{ T/M}$$

Maximum Reaction

For Maximum reaction at support the Centre of gravity of the loads should be adjacent to one support should be adjacent to one support

Reaction
$$R_A = 2.24x \ 3.00 \ x \ 1.50 \ /10.00$$

= 1.01 T
Reaction $R_B = 2.24x \ 3.00 \ -1.01$
= 5.71 T

DISPERSION ALONG SPAN (CLASS AA TRACKED VEHICLE

(a) Dispersion width along the span :-

- tp = tc = 2 (tw + ts)
- tp = width of dispersion parallel to span
- tc = width of tyre contact area parallel to span
- ts = Overall depth of slab
- tw = Thickness of Wearing coat

Dispersion along the span

Dispersion between two wheel is overlapping hence restricted to 1-2 M

= Dispersion combined for two wheels

Impact factor = 1.1375

Total load with impact

$$= 70 \times 1.1375$$

$$= 79.63 T$$

$$= \frac{79.63}{1.90 \times 5.30} = 7.91 \quad T/M$$

Maximum Reaction

For Maximum reaction at support the Centre of gravity of the loads should be adjacent to one support should be adjacent to one support

Reaction
$$R_A$$
 = 7.91x 3.00 x 1.50 /10.00
= 3.56 T
Reaction R_B = 7.91x 3.00 -3.56
= 20.17 T

31/{67} 4264-f40e-e461-b6e6.xls Pier Cap LL tracked vehicle

DESIGN OF PIER CAP :-				
D.L./ M Width along bridge				
DL. Of Slab =	0.75 x	8.40 x.	2.4 =	15.12 T
D.L. of Wearing coat =	0.08 x	8.40 x.	2.4 =	1.51 T
D. L. of Clob 9 14/2 aving each on half of the nice	=		TOTAL	16.63 T
D.L. of Slab & Wearing coat on half of the pier	-	16.63 /	2 =	8.32 T
L.L. on Pier cap including impact along bridge		70.03 7	2 -	0.52 7
	=	82.50 x	1.1375 =	93.84 T
(Refer Live Load Computation)				
Dispersion width across the span for				
70 T TRACKED VEHTCLE	=	6.695 M		
(Refer Solid slab design page SS-16) Live Load u.d.l. on Pier	=	93.84 /	6.695 =	14.02 T
Per M width	-	93.04 /	0.095 =	14.02 1
Total Load on Half =	8.32 +	14.0)2 =	22.33 T
of pier along bridge				Per M width
Effective depth of slab =90-2.5-2.5/2 =	71.25 ci	n		
Placement of the live load at effective depth from the support (taking support width 750 mm)				
Eccentricity = 71.25 -75/2	=	33.75 cm	= 0.3	34 M
Bending Moment along the bridge =				
	22.33 x	0.34	7.8	54 T - M/M width
=	7.54	10.00 -	75 4 1-51 54/54	
This moment is too small hence it will not/be the governing B.M.	7.54 x	10.00 =	75.4 kN-M/M	wiatn
Moment in pier cap		75.40 kN-m		
CONCRETE GRADE		M30		
FOR THIS GRADE gcbc		10 N/mm2		
m		9.33		
ost		200		
factor k		0.318		
j		0.894		
R		1.422		
Effective Depth Required Adopt Total Depth		230 mm 1200 mm		
Cover		50 mm		
Assume Bar Dia		25 mm		
Keeping A Cover Of 50 mm Effective Depth		1138 mm		
Adopt Effective Depth		1137.5 mm		
Steel Required Ast		371 mm²		
Area Of One Bar		491 mm ²		
Spacing S		1323 mm		
Provide Bars Of Dia And Spacing	25 mm	100 mm	Adopt spacing as	100 mm
Provide Bars Of Dia And Spacing for Top Main Stee	25 mm	100 mm		
Provide Bars Of Dia And Spacing for Bottom Steel	16 mm	100 mm		
PIER SECTION ACROSS BRIDGE				
DEAD LOAD MOMENT PER METRE Width across bridge :- Slab D.L.		15 x.	2.4 =	35.10 T
D.L. of Wearing coat =			2.4 -	
B.L. of Wearing Cour	0.975 x		24 =	
	0.975 x 0.075 x	12 x.	2.4 = TOTAL	2.16 T 37.26 T
D.L. of Slab & Wearing coat on half of the pier			2.4 = TOTAL	37.26 T
D.L. of Slab & Wearing coat on half of the pier	0.075 x			
D.L. of Slab & Wearing coat on half of the pier L.L on pier	0.075 x	12 x.	TOTAL	37.26 T
L.L on pier	0.075 x	12 x. 37.26 /	TOTAL	37.26 <i>T</i> 18.63 <i>T/ M width</i>
L.L on pier Dispersion width along the span for	0.075 x =	12 x. 37.26 / =	TOTAL	37.26 <i>T</i> 18.63 <i>T/ M width</i>
L.L on pier	0.075 x	12 x. 37.26 / =	TOTAL	37.26 <i>T</i> 18.63 <i>T/ M width</i>
L.L on pier Dispersion width along the span for 70 T Tracked vehical =	0.075 x =	12 x. 37.26 / =	TOTAL 2 =	37.26 T 18.63 T/M width 64.69 T
L.L on pier Dispersion width along the span for	0.075 x =	12 x. 37.26 / = 64.69 /	TOTAL 2 = 5.3 =	37.26 <i>T</i> 18.63 <i>T/ M width</i>

The Live Load is with clearance from the Footpath and kerb. The cantilever portion of pier cap and width of footpath is 1500 mm Hence There is no eccentricity. Bending Moment across the bridge = 30.84 x 0 0.00 T - M/M width Provide Minimum steel Minimum Reinforcement calculation for Pier cap :-As per clause 710.8.2, IRC- 78 - 2000, the thickness of pier cap shall be at least 200 mm However the thickness of Pier cap here is 1200 MM. Grade of Concrete M 30 Minimum Shrinkage and Temperature reinforcement required as per Clause 305.10 IRC 21-2000 in any RC structure is 250 Sq mm per m in each direction. Allowable maximum spacing is 300 mm. Shrinkage and Temperature reinforcement required = 250 x 1.2 = 300 mm² Provide 25 mm tor reiforcement @ 100 mm c/c (14 Nos.) in top along the pier cap Provide 16 mm tor reiforcement @ 100 mm c/c (14 Nos.) in bottom along the pier cap Area of Steel Provided at top = (14x 491)6874 mm² > 300 mm² OK Area of Steel Provided at bottom = (14x 201)2814 mm² > 300 mm² OK CHECK FOR SHEAR ALONG BRIDGE DIRECTION 30.84 T 308.40 kN Shear Force V=V' + M/d tanB(B=0) Hence V =V' Actual Shear Stress 0.27 N/mm² Percentage Steel 100As/bd 0.25 0.23 N/mm² k=1 Permissble Shear Stress = k Tc 0.23 N/mm² < Actual Shear Stress hence Shear Reinforcement should be provided Dia Of two Legged Stirrups 16 mm 201 mm² Area Of One Bar In Distribution Reinforcement 296 mm Using The Bars Spacing Required s= Asw ts d/V Provide Bars Of Dia And Spacing 16 mm 100 mm Adopt spacing as 100 mm HOWEVER Provide 16 mm tor 2 legged vertical stirrups @ 100 mm centre to centre along the pier cap Provide 16 mm tor 2 legged horizontal stirrups @ 100 mm centre to centre along the pier cap SHEAR CHECK ACROSS BRIDGE DIRECTION 20.3 T V = Shear Force 203 00 kN V=V' + M/d tanB(B=0) Hence V =V' Actual Shear Stress 0.18 N/mm² Percentage Steel 100As/bd 0.25 0.23 N/mm² k=1 Permissble Shear Stress = k Tc 0.23 N/mm² > Actual Shear Stress hence No Shear Reinforcement is required.

Per M width

bridge per M width

HOWEVER

Provide 16 mm tor 2 legged vertical stirrups @ 100 mm centre to centre along the pier cap Provide 16 mm tor 2 legged horizontal stirrups @ 100 mm centre to centre along the pier cap

33/(66) 4264-f40e-e461-b6e6.xls Pier Cap

CALCULATION OF LIVE LOAD REACTION FOR PIER SUBSTRUCTURE FOR SIMPLY SUPPORTED SPANS OF A TWO LANE BRIDGE STRUCTURE

Centre line of pier w.r.t. the bearings :-

Rb	=	0.3	m
Rc	=	0.3	m

Reaction has been calculated for the following cases

- One lane of class 70-R(W)

 One lane of class A
- Two lane of class A
- Three lane of class A
- One lane of class 70-R(W) + One lane of class A

MAXIMUM LONGITUDINAL MOMENT CASE Condition A:

Case 1: One lane of class 70-R(W) Cg of 80 t 3.65 60.4 0.0 19.6 60.4 16.0 Rb = 80*(8.35-3.65+0.3)/8.35 Vert.Reaction= 60.4 + 0 Braking Force, B = 0.2*80 Dead load reaction on the pier, Rg 485.0 Value of " μ " = = 0.00 Horizontal force due to temperature, T = μ "(Rg+Ra) = 0.0 Design horizontal force is higher of either (B/2+T) or (B-T) = 16.0 (neglecting shear rating of elastomeric bearing in the adjacent span, which is on the conservative side)

	Transverse moment = Long. moment = 7*0.3-0*0.3 Long. Eccentricity (for input)	2.9*55.4
Case 3 :	Two lane of class-A	

2.9*55.4

Rc = 2*0	=	0.0	t
Rb = 2*7	=	13.9	t
Ra=	=	96.9	t
Vert.Reaction = 0 + 13.9	=	13.9	t
Braking Force(For single lane only)	=	11.1	t
Dead load reaction on the pier , Rg	=	485.0	t
Value of " μ " =	=	0.00	
Horizontal force due to temperature, $T = \mu^*(Rg+Ra)$	=	0.0	t

160.7 2.1

0.038

t.m t.m

load span cg 1.93 2.895 4.42 5.79 51 68 7.92 3.65 9 44 92 13.4 100 5.12

8.78

LOAD 6 SPAN CG 5.5 8.5 11.5 14.5 24 8.78 1.73 2.99 4.33 5.71 5.71 36.4 43.2 50 50

34/{67} 4264-f40e-e461-b6e6.xls LLOAD

Condition B: MAXIMUM TRANSVERSE MOMENT / REACTION CASE

CASE 1: ONE LANE OF CLASS 70-R(W)

LOAD	CG	
3.28	49	3.33
5.04	58	2.18
3.95		
	3.28	3.28 49 5.04 58

34	3.715
51	3.19

second s	oan	
SPAN	LOAD	CG
3	80	3.65
4.52	92	4.4
8.48	100	5.12
24	100	5.12
8.95		
first span		

first span		
3	17	0.87
4.52	29	1.75
8.48	41	2.56
24	49	3.53
8 95		

35(67) 4264140e-e461-b6e6.xls LLOAD

36/{67}

two span length	load	cg6.8 end	cg2.7 end
9	27.2	4.5	4.5
13.3	38.6	7.1	6.2
14.5	50	8.79	5.71
18.7	52.7	9.24	9.46
18.8	55.4	9.71	9.09
17.6	55.4	9.71	9.09

load	Span2load	cg 6.8	load	Span2 load	cg 6.8
27.2	13.6	1.5	55.4	27.2	4.5
38.6	20.4	4.14	52.7	27.2	4.5
50	20.4	4.14	50	20.4	4.14
52.7	27.2	4.5	38.6	20.4	4.14
55.4	27.2	4.5	27.2	13.6	1.5
			span2	8.78	

load 1	Cg 2.7 end	load 1	Cg 2.7 end
13.6	1.5	28.2	4.07
18.2	1.81	25.5	3.4
25.5	3.4	29.6	1.73
28.2	4.07	18.2	1.81

4264-140e-e461-b6e6.xls

Braking Force = 16 + 5% of 55.4 (5% extra taken for class A)	=	18.8	t
Dead load reaction on the pier , Rg	=	485.0	t
Value of " µ " =	=	0.00	
Horizontal force due to temperature, $T = \mu^*(Rg+Ra)$	=	0.0	t
Design horizontal force is higher of either (B/2+T) or (B-T)	=	18.8	t
(neglecting shear rating of elastomeric bearing in the adjacent span	, which is	on the cons	ervative side)
CL class 70-R- 2.595 2.905 CL of c/w 0.84		– CL class A	(1L) •
Transverse ecc.(class 70 R)	=	2.905	m
Transverse ecc.(class A)	=	-0.84	m
Trans. moment = 0.9*(60.4*2.9-0*-0.8)	=	112.4	
Net transverse ecc. (for input)	=	1.426	t.m
Long. moment = 50.5*0.3-28.4*0.3	=	6.6	t.m
Long. Eccentricity (for input)	=	0.084	m

Summary of Loads

	Max. Longitudin	al Moment			
Max. vertical reaction (t)	Transverse moment (t.m)	Longitudinal moment (t.m)	Design horizontal force (t)	Transverse ecc. (m)	Longitudinal ecc. (m)
60.4	175.3	18.1	16.0	2.905	0.300
55.4	160.7	2.1	11.1	2.900	0.038
13.9	16.0	4.2	11.1	0.700	0.300
18.8	13.2	5.6	13.9	0.700	0.300
60.6	115.9	18.2	18.8	1.913	0.300

	Max.	Transverse I	Moment				
Load case	Max. vertical reaction (t)	Transverse moment (t.m)	Longitudinal moment (t.m)	Design horizontal force (t)	Transverse ecc. (m)	Longitudinal ecc. (m)	
1L class 70 - R	53.0	154.0	2.8	20.0	2.905	0.054	
1L class - A	34.6	145.4	4.5	10.0	4.200	0.131	
2L class - A	69.2	79.6	9.0	11.1	9.046	0.131	
3L class - A	93.5	65. <i>4</i>	12.2	13.9	0.700	0.131	
1L class 70 - R + 1L class - A	78.8	112.4	6.6	18.8	1.426	0.084	

Vertical reaction due to braking has been neglected.

38/{67} 4264-f40e-e461-b6e6.xls loadsumm

Maximum Reaction due Live Load including Impact	78.83	MT	=	788.27	KN
Maximum Longitudinal moment due to Live Load including Impact and Breaking Force	12.21	Т-М	=	122.13	KNM
Maximum Transverse moment due to Live Load including Impact and Breaking Force	112.4	Т-М	=	1123.94	KNM

40/{67} 4264-f40e-e461-b6e6.xls LL-ABSTRACT

Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road , across Som River.

Deck Level 99.950 M

Foundation Level 92.690 M

Thickness of Deck Slab 750 mm

Thickness of Approach Slab 300 mm

Height below Approach Slab 6960 mm

Length of Heel projection 4500 mm Offset 1000 mm

Length of Toe projection 2500 mm Offset 1000 mm

Width of Stem 1050 mm

Thickness of Abutment Cap 1200 mm

Thickness of Dirt Wall 300 mm

Depth of Footing 1000 mm

TYPICAL SECTION OF THE ABUTMENT TYPABUT-01

Design of ABUTMENT

Name Of Work :-	Construction	of Submersible Bridge	n Larathi to Larathi '	"B" Poad	across Som Pivor
Name Of Work	CONSTRUCTION	of Subiliersible bridge	ni Laialiii lo Laialiii	D KUAU	, acioss soili Rivei.

(a) Data Preliminary dimensions : Assumed as in Fig. TYPABUT-01

Superstructure : RCC Slab Bridge Total Width of Slab = 8.40 M

overall length = 8.80 m

Type of abutment : Reinforced concrete
Loading : As for National Highway

Back fill : Gravel with angle of repose $\Phi = 35^{\circ}$

Unit weight of back fill, w = 18 kN/m3

Angle of internal friction of soil on wall, $z = 17.5^{\circ}$

Approach slab : R.C. slab 300 mm thick, adequately reinforced

Load from superstructure per running foot of abutment wall:

Dead load = 239.50 kN/mLive load = 93.84 kN/m

(Refer Stability Analysis for sub structure. The above two values are obtained from the calculations for superstructure, and are taken to act over a width of 15 m).

Bearing: Tar Paper Bearings

(C) Self weight of abutment

Treating the section as composed of 6 elements as shown in Fig. 1the weight of each element and moment about the point O on the front toe are computed as in Table 1

(d) Longitudinal forces

(i) Force due to braking

Force due to 70 R wheeled vehicle =	0.2 x	1000 =	200 kN
This force acts at 1.2 m above the road level(Clause 214.3).			

Force on one abutment wall = 200 / 2 = 100 kNHorizontal force per m of wall = 100 / 8.40 = 11.91 kN/m

(ii) Force due to temperature variation and shrinkage

Assuming moderate climate, variation in temperature is taken as + 17 oC as per Clause 218.5 of Bridge Code.

Coefficient of Thermal expansion =	1.17E-05 /° C		
Strain due to temperature variation =	17 x	1.17E-05 =	1.99E-04
E 0/ 0000 / : / /			

From Clause 220.3, strain due to concrete

shrinkage = 2.00E-04

Total strain due to temperature and shrinkage = 1.99E-04 + 2.00E-04 = 3.99E-04

Horizontal deformation of deck due to temperature and shrinkage affecting one

abutment =	3.99E-04 x	8800 /2 =	1.76E+00 mm
Modulus of Elasticity Ec = 5000x fck 1/2 Horizontal Stress due to strain in longitudinal	=	31220.19 N/mm2	
direction at bearing level = Horizontal Force due to strain in longitudinal direction at bearing level (For 1 m width of Slab) =	3.99E-04 x	31220.19 =	12.45 N/mm2
	1.25E+01 x	750 =	9340.30 N/m
		=	9.34 kN/m

(iii) Vertical reaction due to braking

(d)Earth pressure

Active earth pressure $P = 0.5 \text{ wh}^2 \text{ K}_a$

where K_a is obtained from Equation (3.5)

 $K_a = \sec\Theta \sin(\Theta - \Phi) / [(\sin(\Theta + z)^{1/2} + (\sin(\Phi + z) \sin(\Phi - \delta) / \sin(\Theta - \delta))]^{1/2}]$

Where P= Total active pressure, acting at a height of 0.42 h inclined at z to the normal to the wall on the earth side

w = unit weight of earth fill

h = height of wall

 Θ = Angle subtended by the earthside wall with thw horizontal on the earth side

 Φ = Angle of internal friction of the earthfill

z = angle of friction of the earthside wall with the earth

 δ = Inclination of earthfill surface with the horizontal

35 ⁰ Θ= 90° Φ= 17.5 ° δ= 00 z = Substituting values in Equation (3.5), we get $K_a =$ 0.496 Coefficient

Height of backfill below approach slab = 6.96 m

Active earth pressure =

6.96 ² x 0.5 x18 x 0.496 216.25 kN/m 0.42 x

6.96 =

2.93 m

Passive pressure in front of toe slab is neglected.

Height above base of centre of pressure =

(e) Live load surcharge and approach slab

Equivalent height of earth for live load surcharge as per clause 714.4 is 1.20 m

Horizontal force due to L.L. surcharge = $1.2 \times 18 \times 0.496 \times 9.20 =$ 74.57 kN/m Horizontal force due to approach slab = $0.3 \times 24 \times 0.496 \times 9.20 =$ 24.86 kN/m Total 99.43 kN/m

The above two forces act at 3.48 m above the base.

Vertical load due to L.L. surcharge and approach slab

 $= (1.2 \times 18 + 0.3 \times 24) \times 4.5 =$ 129.6 kN/m

(f) Weight of earth on heel slab

Vertical load = 18 x4.5x (6.9600000000 = 53.65 kN/m

(g) Check for stability - overturning

The forces and their position are as shown in Fig. 1

The forces and moments about the point O at toe on the base are tabulated as in

Table 1 Two cases of lading condition are examined (i) Span loaded condition and (ii) Span unloaded condition.

Case (i) Span loaded condition

See Row 15 of Table 12.3

Overturning moment about toe = 1118.18 kN-m Restoring moment about toe = 5691.89 kN-m

Factor of safety against overturning = 5691.89 / 1118.18 = 5.09

Location of Resultant from O > 1.5 Hence Safe

 $X_0 = (M_V - M_H) / V = (1740.9 - 623.1) / 691.4 = 1.62 m$

=(5691.894 - 1118.182) / 1368.582) = 3.34 m

Eccentricity of resultant

 $e_{max} = B/6 =$ 8.05 /6 = 1.34 m $e = (B/2 - X_{0}) = 0.78 m < 0.80 m$ 4.03 - 3.34 = 0.69 m < 1.34 m

Case (ii) Span unloaded condition

See Row 11 of Table 12.3

Overturning moment about toe = 1040.53 kN-m Restoring moment about toe = 5414.58 kN-m

Factor of safety against overturning = 5414.58 / 1040.53 = 5.2

Location of Resultant from O > 1.5 Hence Safe

Location of Resultant from O $X_0 = (M_V - M_H) / V =$

=(5414.576 - 1040.528) / 1272.128) = 3.44 m

(h)Check for stresses at base

For Span loaded condition

1368.58 kN

1368.58 6 x 0.78

Extreme stresses at base =

Maximum Stress = 1368.582/(8.05x1)(1 + (6x0.69/8.05)) = 257.45 kN/m2Minimum Stress = 1368.582/(8.05x1)(1 - (6x0.69/8.05)) = 82.58 kN/m2

Table 1 Forces and Moments About Base for Abutment.

SI.	Details	Force	Moment about O, kn-m			
No.		V	Н	Arm m	Mv	M _H
1.	D.L. from superstructure	239.50	-	2.88	689.760	-
2.	Horizontal force due to temperatre and shrinkage	0	9.34	6.52	-	60.899
3.	Active earth pressure	0	216.25	2.93	-	633.613
4.	Horizontal force due to L.L surcharge and approach slab	0	99.43	3.48	-	346.016
5.	Vertical load due to L.L. surcharge and approach slab	129.60	-	5.8	751.68	-
6.	Self weight - part 1 8.05x1x 24 =	193.20	-	4.025	777.63	-
7.	Self weight - part 2 4.310000000001x1.05x 24 =	108.62	-	3.03	329.119	-
8.	Self weight - part 3 1.2x1.05x 24 =	30.24	-	1.68	50.8032	-
9.	Self weight - part 4 0.3x0.45x 24 =	3.24	-	2.05	6.642	-
9.	Self weight - part 5 Triangular River Side 1/2x2x4.7600000000001x24=	114.24	-	1.83	209.44	-
9.	Self weight - part 5 Triangular Earth Fill Side 1/2x4x4.9600000000001x24=	228.48	-	4.88	1115.74	-
10.	Weight of earth on heel slab part 1 Rectangular Portion 0.5 x 5.9600000000001 x 18=	53.65	-	7.8	418.47	-
10.	Weight of earth on heel slab part 2 Triangular Portion 1/2x4x5.9600000000001x18=	171.36	-	6.22	1065.29	-

11.	Items 1 to 10	1272.13			5414.58	1040.53
	(Span unloaded condition)					
12.	L.L. from Superstructure Class 70 R wheeled vehicle	93.84	-	2.875	269.794	-
13.	Vertical force due to braking	2.61	-	2.88	7.524	-
14.	Horizontal force due to braking	0.00	11.91	6.52		77.6532
15.	Items 11 to 14	1368.58	336.93	-	5691.89	1118.18
	(Span loaded condition)					

NET LONGITUDINAL MOMENT 5691.89 - 1118.18 = 4573.71

Maximum pressure = 257.45 kN/m2 < 200.00 kN/m2 permissible HENCE OK.

Minimum pressure = 82.58 kN/m2 > 0 (No tension) HENCE OK.

(i) Check for sliding

See Row 15 of Table 1

Sliding force = 336.93 kN

Force resisting sliding = $0.6 \times 1368.58 = 821.15 \text{ kN}$

> 1.5 Hence Safe

Factor of Safety against sliding = 821.15 / 336.93 = 2.44

(j) Summary

The assumed section of the abutment is adequate.

47/{66} 4264-f40e-e461-b6e6.xls STABILITY CHECK ABUTMENT

DESIGN OF ABUTMENT FOOTING

Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road , across Som River REDISTRIBUTION OF PRESSURE

FOR WIND AT SERVICE CONDITION

Length of footing I _f 17.00 m	
Width of Footing I_b 8.05 m	
Width of Abutment just above footing 6.05 m	
Vertical Load P 1368.58 kN	
Longitudinal Moment M_e 4573.71 kN-m	
Transverse Moment M_b 0.00 kN-m	
Area in Tension = $y \times I_b$ 0.00 m^2	0.00 %
Maximum Pressure before Redistribution 257.45 kN/m²	
Maximum Pressure After Redistribution = pxK 257.45 kN/m^2	
Maximum Stress at Edge of Pier 257.45 kN/m ²	
Distance From Face of Pier to the Edge 1.00 m	
Stress at the Edge of Pier 225.47 kN/m ²	
Average Stress on Cantilevered Area 241.46 kN/m ²	
Area of the Cantilever Portion 1.00 m^2	
Distance of Centroid of the Stress in 0.51 m	
Cantilever Portion	
Moment about the Face of Pier 123.39 kN-m	
CONCRETE GRADE M-25	
FOR THIS GRADE ocbc 10 N/mm2	?
m 9.33	
ost 200	
factor k 0.318	
0.894	
R 1.422	
Effective Depth Required 295 mm	
Adopt Total Depth 1000 mm Cover 50 mm	
Assume Bar Dia 36 mm	
Keeping A Cover Of 50 mm Effective Depth 942 mm	
Adopt Effective Depth 942 mm	
Steel Required Ast 733 mm ²	
Area Of One Bar 201 mm ²	

48/{66} 4264-f40e-e461-b6e6.xls ABUTMENT FOOTING DESIGN

	Spacing S Provide Bars Of Dia And Spacing Area Of Distribution Steel Dia Of Bar For Distribution Steel		16 mm	150 1884	mm mm mm ² mm	Adopt spacing as 150 mm
	Area Of One Bar In Distribution Reinfo	rcement		314	mm²	
	Using The Bars Spacing Required			167	mm	
	Provide Bars Of Dia And Spacing		16 mm	160	mm	Adopt spacing as 150 mm
	Provide Bars Of Dia And Spacing for					
	Top Main Steel		12 mm	150	mm	
	Provide Bars Of Dia And Spacing for					
	Top Distribution Steel		12 mm	150	mm	
CHECK	FOR SHEAR	(As per IRC 21-	-1987 Cl. 3	304.7)		
	Critical Section is at a distance equal to e	effective depth fro	m pier fac	e 942	mm	
	Section of Shear from end of pier			0.06	m	
	Maximum Stress at Edge of Pier			257.45	kN/m ²	
	Stress at the Section for Shear Check			253.30	kN/m ²	
	Average Stress on Cantilevered Area			255.38	kN/m ²	
	Shear Force			14.81	kN	
	V=V'+M/d tanB	(B=0) Hence V	=V'			
	Actual Shear Stress	, ,		0.02	N/mm ²	
	Percentage Steel	100As/bd		0.14		
	Tc			0.23	N/mm ²	
	k=1					
	Permissble Shear Stress = k Tc			0.23	N/mm ²	
			<	Actual Shear Str		e Shear
				Reinforcement sh		
	Dia Of two Legged Stirrups				mm ,	
	Area Of One Bar In Distribution Reinfo	rcement		201	mm²	
	Using The Bars Spacing Required s= A	Asw ts d/V		5112	mm	
	Provide Bars Of Dia And Spacing		16 mm	150	mm	Adopt spacing as 150 mm

49/{66} 4264-f40e-e461-b6e6.xls ABUTMENT FOOTING DESIGN

DESIGN OF ABUTMENT FOOTING

REINFORCEMENT CALCULATION IN ABUTMENT SUBMERSIBLE BRIDGE

Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road, across Som River.

Minimum Shrinkage and Temperature reinforcement required as per Clause 305.10 IRC 21-2000 in any RC structure is 250 Sq mm per m in each direction. Allowable maximum spacing is 300 mm.

Shrinkage and Temperature reinforcement required per metre =		250	mm ²		
Area Of One Bar	12 mm dia	113	mm²		
Spacing S		452	mm		
Provide Bars Of Dia And Spacing	12 mm	125 mm			
Provide Bars Of Dia And Spacing	e Bars Of Dia And Spacing 12 mm 125 mm		mm		
HORIZONTAL SHRINKAGE &TEMPERATURE REINFORCEMENT	12	MM BARS	125	MM	In Vertical direction on all FOUR faces
VERTICAL SHRINKAGE &TEMPERATURE REINFORCEMENT	12	MM BARS	125	MM	In Lateral direction on all FOUR faces

51/{67} 4264-f40e-e461-b6e6.xls STEEL IN ABUTMENT

DESIGN OF Abutment CAP SUBMERSIBLE BRIDGE

DESIGN OF Abutment CAP SUBMERSIBLE BRIDGE				
Name Of Work :- Construction of Submersible Bridge on Larathi to Larathi "B" Road , across Som River.				
DESIGN OF Abutment CAP :-				
D.L./ M Width along bridge				
DL. Of Slab =	0.975 x	15 x.	2.4 =	35.10 T
D.L. of Wearing coat =	0.075 x	12 x.	2.4 =	2.16 T
		.=	TOTAL	37.26 T
D.L. of Slab & Wearing coat on half of the Abutment		=	TOTAL	07.20 1
D.E. of Glab & Wearing coat on han of the Abduneth		37.26 /	2 =	18.63 T
I. I. and Aberbaran Anna in aberbara in an art along the best along		37.20 /	2 -	16.03 1
L.L. on Abutment cap including impact along bridge				
	=	82.50 x	1.1375 =	93.84 T
(Refer Live Load Computation)				
Dispersion width across the span for				
70 T TRACKED VEHTCLE	=	6.695 M		
(Refer Solid slab design page SS-16)				
Live Load u.d.l. on Abutment	=	93.84 /	6.695 =	14.02 T
Per M width				
Total Load on Half =	18.63	R + 14	4.02 =	32.65 T
of Abutment along bridge	70.00	, . ,	7.02	Per M width
Effective depth of slab =90-2.5-2.5/2 =	86.25	- om		i ci w waaii
	00.20	CIII		
Placement of the live load at effective depth from the support (taking support width 750 mm)				
Eccentricity = 71.25 -75/2	=	33.75 cm	=	0.34 M
Bending Moment along the bridge =				
	32.65 x	0.34	1	1.02 T - M/M width
=				
	44.00	40.00 -	440.0 (-) 1.0 (-)	/8.6! -141-
This was and in his array II have a thought and the day array in a DAA	11.02 x	10.00 =	110.2 kN-M	/W wiath
This moment is too small hence it will not/be the governing B.M.				
Moment in Abutment cap		110.20 kN-m		
CONCRETE GRADE		M30		
FOR THIS GRADE ocbc		10 N/mm.	2	
m		9.33		
σst		200		
factor k		0.318		
1		0.894		
R		1.422		
Effective Depth Required		278 mm		
Adopt Total Depth		1200 mm		
		50 mm		
Cover				
Assume Bar Dia		25 mm		
Keeping A Cover Of 50 mm Effective Depth		1138 mm		
Adopt Effective Depth		1137.5 mm		
Steel Required Ast		542 mm²		
Area Of One Bar		491 mm²		
Spacing S		905 mm		
Provide Bars Of Dia And Spacing	25 mm	100 mm	Adopt spacing a	as 100 mm
Provide Bars Of Dia And Spacing Provide Bars Of Dia And Spacing for Top Main Stee	25 mm	100 mm	Adopt spacing t	13 100 IIIII
Provide Bars Of Dia And Spacing for Bottom Steel	16 mm	100 mm		
Abutment SECTION ACROSS BRIDGE				
DEAD LOAD MOMENT PER METRE Width across bridge :-				
Slab D.L.	0.975 x	15 x.	2.4 =	35.10 T
D.L. of Wearing coat =	0.075 x	12 x.	2.4 =	2.16 T
			TOTAL	37.26 T
D.L. of Slab & Wearing coat on half of the Abutment		=		
		37.26 /	2 =	18.63 T/M width
L.L on Abutment		=		64.69 T
Dispersion width along the span for				
70 T Tracked vehical =	5.3	В М		
To Finance vertical	5.3			

L.L per M width on Abutment = Total D.L. + L.L. on half of Abutment across bridge per M width		18.63	64.69 +	9 / 12.21	5.3 = =	12.21 T/ 30.84 T Per M widtl	
The Live Load is with clearance from the Footpath and kerb. The cantilever portion of Hence There is no eccentricity.	f Abutment cap and width of foot	path is 1500 mm					
Bending Moment across the bridge =							
		30.84 x	()	(0.00 T - M/M width	1
Provide Minimum steel							
Minimum Reinforcement calculation for Abutment cap:							
As per clause 710.8.2, IRC- 78 - 2000, the thickness of Abutment cap shall be at least 200 mm However the thickness							
of Abutment cap here is 1200 MM.							
Grade of Concrete M 30							
Minimum Shrinkage and Temperature reinforcement required as per Clause 305.10	IRC 21-2000						
in any RC structure is 250 Sq mm per m in each direction. Allowable maximum space							
Shrinkage and Temperature reinforcement required =	-			250 x		1.2 =	300 mm ²
Provide 25 mm tor reiforcement @ 100 mm c/c (14 Nos.) in top along the Abut	ment cap						
Provide 16 mm tor reiforcement @ 100 mm c/c (14 Nos.) in bottom along the A	butment cap						
Area of Steel Provided at top							
= (14x 491)	=	6874	mm²	> 300 mm ²	OK		
Area of Steel Provided at bottom							
$=(14x\ 201)$	=	2814	mm²	> 300 mm ²	OK		
CHECK FOR SHEAR ALONG BRIDGE DIRECTION							
V =		30.84 T					
Shear Force			308.40) kN			
V=V'+M/d tanB	(B=0) Hence V =V'						
Actual Shear Stress				⁷ N/mm ²			
Percentage Steel	100As/bd		0.25	5			
Tc			0.23	N/mm²			
k=1							
Permissble Shear Stress = k Tc				N/mm ²			
				Stress hence Sh			
		Reini		t should be provid	led		
Dia Of two Legged Stirrups			16	6 mm			
Area Of One Bar In Distribution Reinforcement			201	1 mm²			
Using The Bars Spacing Required s= Asw ts d/V			296	6 mm			
Provide Bars Of Dia And Spacing		16 mm	100	mm Ado	pt spacing as	s 100 mm	
HOWEVER							
Provide 16 mm tor 2 legged vertical stirrups @ 100 mm centre to centre along Provide 16 mm tor 2 legged horizontal stirrups @ 100 mm centre to centre alor							
CHEAR CHECK ACROSS BRIDGE DIRECTION	•						
SHEAR CHECK ACROSS BRIDGE DIRECTION V =		20.3 T					
v = Shear Force		20.3 1	203.00) kN			
V=V' + M/d tanB	(B=0) Hence V =V'		203.00	, VIA			
Actual Shear Stress	(B-0) Helice V =V		n 19	3 N/mm ²			
Percentage Steel	100As/bd		0.16				
Tc	, 00, 13/100			N/mm²			
k=1			0.20	- 14/111111			
Permissble Shear Stress = k Tc			0.23	3 N/mm ²			
		> Actua		tress hence No S	Shear		
				nent is required.	. -		
HOWEVER							
Provide 16 mm tor 2 legged vertical stirrups @ 100 mm centre to centre along	the Abutment cap						
Provide 16 mm tor 2 legged horizontal stirrups @ 100 mm centre to centre alor							

53/{66} 4264-f40e-e461-b6e6.xls Abutment Cap

DESIGN OF DIRT WALL AS COLUMN WITH BENDING

AXIAL LOAD ON THE DIRT WALL	31.60 KN		
ASSUME WIDTH OF DIRT WALL	1000 MM	EMIN/B 0.00	
ASSUME DEPTH OF DIRT WALL	300 MM	EMIN/D 0.01	
MOMENT TRANSFERRED TO DIRT WALL	12.80 KN-M		
FACTORED AXIAL LOAD	47.40 KN		
FACTORED MOMENT	19.20 KN-M		
DIA OF LONGITUDINAL REINFORCEMENT	10 <i>MM</i>		
CLEAR COVER	40 MM		
d'	45 MM		
d'/D	0.15		
ADOPT d'/D	0.15		
PU/FCKBD	0.01		
MU/FCKBD ²	0.01		
REINFORCEMENT EQUALLY DISTRIDUTED ON	TWO SIDES		
USING CHART NO- OF RCC DESIGN AIDS	33	CONC GRADE M-30	
P/FCK	0.01		
P	0.3	> Minimum Steel 0.2% Hence	e OK
AS	900 SQ MM		
TOTAL NUMBER OF BARS REQUIRED	12		
NUMBER OF BARS ON EACH SIDE	6		
SPACING	200 <i>MM</i>		

Alternate design Considering dirt wall as cantilever

VERTICAL REINFORCEMENT IN SHAPE OF STIRRUPS on both faces

DIA 10 mm SPACING 150 mm

HORIZONTAL REINFORCEMENT BAR DIA on both faces

DIA 10 mm SPACING 250 mm

55/{67} 4264-f40e-e461-b6e6.xls DIRT WALL REINFORCEMENT

Design of Dirt Wall

Dirt wall is subjected to

- (1) Live load
- (2) Live load surcharge
- (3) Braking force
- (3) Earth Pressure
- Consider 70 T tracked vehicle case is governing & 14 T Axle over dirt wall, Dispersion width at top of DIRT WALL

$$=$$
 0.6 \times 0.3 \times 2.4

$$= 0.495 T/M$$

Total direct loads =
$$2.66 + 0.5 = 3.16$$
 T/M = 31.6 kN

Here considering that only 70% of Braking force will be on dirt wall & the rest of braking force will be on soil.

= B.M. due to Braking force

Intensity of Earth Pressure at Deck Level

$$= 0.224 x$$

$$= 0.483 T/M^2$$

Intensity of Earth Pressure at top of Abutment Ca =

$$x$$
 (1.2 + 0.825)

$$= 0.816 T/M^2$$

B.M. due to Earth Pressure & Live Load

Surcharge/M width

$$= \frac{1}{2} = ($$

$$X = 0.825 \qquad X = \frac{0.53}{2}$$

0.048 +

Total BM at top of DIRT WALL

1.07

1.28

T-M

12.8 kN-m

Direct Stress =

=

Kg./Cm²

 $0.09 Kg./Cm^2$

For M 30 Grade,

Permissible Bending Stress =
$$67 \text{ Kg./Cm}^2$$

Permissible Direct Compressive

$$Stress = 50 Kg./Cm2$$

=
$$0.022$$
 \leq HENCE OK.

```
DEAD LOAD CALCULATION:-
DEPTH OF DECK SLAB =
                                                            925 mm
DEPTH OF WEARING COAT =
                                                             75 mm
DIA OF MAIN BAR =
                                                             25 mm
Clear cover =
                                                             25 mm
Effective depth of slab deffective =
                                                            925 -
                                                                                  25 -
                                                                                                      25 /2 =
                                                                                                                        887.5 mm
Effective SpanLeffective =
                                                             10 m
DESIGN DEAD LOAD:-
(1) Weight / Sqm of Slab
                                                          0.925 x
                                                                                 2.4 =
                                                                                                    2.22 T/ Sqm
(2) Weight / Sqm of wearing coat
                                                          0.075 x
                                                                                 2.4 =
                                                                                                    0.18 T/ Sqm
                                              Total DL
                                                                                                      2.4 T/ Sqm
DEAD LOAD BENDING MOMENT
                                                                    2.4x10x10/8 =
                                                                                                    30.00 T-M
LIVE LOAD CALCULATION :-
[1] CLASS AA TRACKED VEHICLE :-
(a) Dispersion width along the span
= Length of Contact + 2 (Wearing coat + depth of Slab)
= 3.6+2(0.075+0.925)=
                                                                      5.60 m
(b) Dispersion width across the span
be = K \times (1 - x/Le) + Bw
K = A Constant having the value depending upon the ratio (be/Le) where ---
                                                      be = the effective width of the slab on which the load acts.
                                                      Le = Effective Span
                                                      x = the distance of c.g. of concentrate load from the near support
                                                      bw = The breadth of concentration area of the load i.e. Dimension of
                                                              the tyre or track contact area over the road surface
                                                Here .
                                                   be =
                                                                      7.50 m
                                                   Le =
                                                                     10.00 m
                                                be/Le =
                                                                      0.75
                                         Value of K =
                                                                       2.4
                                                BW = 0.85 + (2 \times 0.075) =
                                                                                1.00 m
                                                                                                               5.00 m
                                                                Le/2
                                                                                         10.00 /2 =
                                                    x =
                                                                           =
                                                   be =
                                                                      2.20 m
```

Impact factor is 13.75% as pere IRC Section-II, Clause - 211-3 (a) (i) DISPERSION ACROSS SPAN (CLASS AA TRACKED VEHICAL)

The tracked vehicle is placed at a distance of minimum clearence of 1.2 m from Kerb

Dispersion across span = C/C distance between wheels + width from centre of wheel on clearence side

+ Least on other side or half the dispersion of one wheel.

59/{67} 4264-f40e-e461-b6e6.xls DIRT LL_BM

5.75

$$= 2.05 + 1.93 + 2.8 = 6.78 M$$
Impact factor = 1.1375
$$= 70 \times 1.1375$$

$$= 79.63 T$$
Intensity of Load
$$= 79.63 / (2.20 \times 6.78) = 5.34 T$$

DISPERSION ALONG SPAN (CLASS AA TRACKED VEHICLE

Maximum Bending Moment due to Live load, at centre

$$= 5.34 \times \frac{5.6}{2} (10.00 - \frac{5.6}{5})$$

$$= 132.77 T - M$$

Class AA wheeled vehicle :-

For Maximum B.M. at Centre of the span, the Centre of gravity of the loads and the centre of the span should coincide

(a) Dispersion width along the span :-

$$tp = tc = 2 (tw + ts)$$

tp = width of dispersion parallel to span

tc = width of tyre contact area parallel to span

ts = Overall depth of slab

tw = Thickness of Wearing coat

Dispersion along the span

$$= 0.15 + 2 (0.075 + 0.75) = 1.8 m$$

Dispersion between two wheel is overlapping hence restricted to 1.2 M

= Dispersion combined for two wheels

= 3.0 m (along the span)

DISPERSION ALONG SPAN (CLASS AA WHEELED VEHICLE)

(B) Dispersion width across the span :-

$$be = k \times (1 - X/L) + w$$

$$Le = 10.0 M & L1 = 7.5 M$$

$$= Value of K = 2.4$$

$$X = L/2 = 10/2 = 5.00 M$$

$$Bw = 0.30 + 2 (0.075) = 0.45 M$$

$$be = 2.4 \times 5 \times (1 - 5.00/10.00) + 0.45 = 6.45 M$$
(For one Wheel)

4.8

DIRT LL_BM

DISPERSION ACROSS THE SPAN (CLASS AA WHEELED HEVHICLE)

When the wheel is placed at a distnace of minimum clearance of 1-2 M from Kerb,

Combined effective width

- = c/c distance between wheels
 - + 1/2 of the dispersion of one wheel
 - + least of available width from centre of wheel on clearance side or half the dispersion of one wheel

=
$$2.2 + \frac{6.45}{2}$$
 + Lesser of 1.655 & $\frac{6.45}{2}$
= $2.2 + 3.225 + 1.655$

7.08 *m*

According to clause 211.3 (a) (ii) section-III, IRC 6- 1966

Impact factor = 25%

= 1.25

- = Total load of tracks with impact
- = 20 \times 1.25

61/{67}

4264-f40e-e461-b6e6.xls

= 25 T

Intensity =
$$\frac{Load}{dispersion \ along \ x \ across \ the \ span}$$

= $\frac{25 \times 2}{3.00 \times 7.08}$

2.35 T/M

DISPERSION ACROSS THE SPAN (CLASS AA WHEELED HEVHICLE)

Maximum B.M. due to Live load at centre

$$= 2.35 \times \frac{7.08}{2} (10.00 - \frac{7.08}{5})$$

$$= 71.41 T - M$$

$$= 2.35 \times \frac{3}{2} (5 - \frac{3}{2})$$

=

Here from bending moment view point class AA tracked vehical is governing

Hence Maximum Bending Moment due to Live load = 15.527 T - M

132.77 T - M

Total B.M = B.M due to Dead load + BM. Due to Live load = 30.00 + 132.77

= 162.77 T-M

62/{67}

(A) GENERAL

- These notes are applicable for the Standard Drawings for R.C.C. solid slab superstructure with and without footpaths.
- These drawings are applicable only for right bridges with overall width of 12 m. αi
- No relead footpaths shall be provided on the bridges having length less than 30m unless the same are otherwise additing on the approaches.
- All dimensions are in millimetres unless otherwise mentioned. Only written dimensions are to be followed. No drawing shall be
- Deelgn criteria: ĸi
- I. The design is according to the following codes:
- (a) IRC:5-1985
- (b) IRC: 6-1986 (1985 reprint) (c) IRC:21-1987.
- The following loads have been considered in the design:
- (a) One lane of IRC clase 70R or two lanes of IRC class A on carriage way, whichever governs.
 - (b) Footpath load of 5 kN/sq.m for superstructure having
- x (c) Wearing coat load of 2 kN/eq.m.
- III. The designs are applicable for MODERATE AND SEVERE conditions of exposure.
- Public utility services (except water supply and sewerage), if required, shall be carried over the bidge through 150mm diameter ducts provided in the footpaths. Total load of such services shall not be more than 1.0 kM per metre on each tooipath. Water/sewerage pipeline shall not be carried over any part of the suportituoture, inspection chambers in footpaths may be provided as shown in the drawing. The location and apacing of chambers along the footpath will be decided by the Engineer-in-charge in consultation with the users.
- Wearing cost shall consist of the following:
- layer of 6mm thick mastic asphalt with 75% lime stone dust filler and 25% of 30/40 penetration grade bitumen shall be laid at 375°F with broom over prime cost. A coat of mastic asphalt 8mm thick with a prime coat over the top of the deck before the wearing coat is laid. The prime coat of mastic asphalt shall be 30% straight run 30/ 40 penetration grade bitumen and 50% light solvent (Benzol) to be laid over the deck slab. The insulating
- 50mm thick asphaltic concrete wearing coat in two layers of 25mm each as per Clause 512 of MOSTs Specifications for Road and Bridge Works (Second Revision-3

≓

crete weening coat in M30 grade concrete wrun maunium water cement ratio as 0.00. The reinforcement shall consist of 8mm. High Yield Strength Deformed bars @ 200mm centres reducing to 100 centres in both the di-In case of isolated bridge construction or bridges located in remote areas where provision of mastic and asphaltic concrete wearing cost is not practicable, the Engineer-incharge may permit provision of 75mm thick cement con-

- rections over a strip of 300mm near the expansion joint. Painforcement shall be placed at the centre of the wear-ing cost. Wearing cost shall be discontinued at expen-sion joint locations. Joint fillers shall extend upto the top of wearing cost.
- 20mm expansion joint does not cater for any allowance for possible titting of abutment.
- 9. Support for the deck slab shall provide a bearing width of 400mm
- 10. In urban areas, chequered tiles may be provided in the footpath portion by sultably adjusting the thickness of the footpath slab.
- Type/poetion of return walls, railings, guard poets, ramp etc. in approach portion shall be decided by the Engineer-in-charge. Ë

MATERIALS SPECIFICATIONS ê

Concrete

Concrete shall be of design mix and shall have minimum 28 days characteristic strength on 150mm cubes for all elements of superstructure as indicated below:

Conditions of exposure	Conditions of Concrete grade exposure	Characteristic Strength
MODERATE	M 25	25 MPa (for 3m to 9m span)
MODERATE	06 M	30 MPa (for 10m span)
SEVERE	M 30	30 MPa (for 3m to 10m span)

- High strength ordinary portland coment conforming to IS:8112 or ordinary portland cement conforming to IS 289 capable of achieving the required design concrete strength shall only be
- The minimum cement content and maximum water cement ratio in the concrete design max shall be 300 kg/cum and 0.45 respectively for WODERATE conditions of exposure. The minimum cement content and maximum water cement ratio in the concrete design mix shall be 400 kg/cum and 0.40 respectively for 'SEVERE conditions of exposure."

Reinforcement

All reinforcing bars shall be High Yield Strength Deformed bars (Grade designation S 415) conforming to IS 1786.

Water to be used in concreting and curing shall conform to Clause 302.4 of IRC 21-1987.

WORKMANSHIP/DETAILING

<u></u>

- Minimum clear cover to any reinforcement including stirrups shall be 50mm unless shown otherwise in the drawings. ÷
- For ensuring proper cover of concrete to reinforcement bars specially made polymer cover blocks shall only be used.

αi

- Construction Joints
- The location and provision of construction joints shall be approved by Engineer-in-charge. The concreting operation shall be carried out continuously upto the construction joint.

- The concrete surface at the joint shall be brushed with a stiff brush after casting while the concrete is still fresh and it has only slightly hardened.
- Before new concrete is poured the surface of old concrete shall be prepared as under:
- a) For hardened concrete, the surface shall be thoroughly cleaned to remove debris/latitance and made rough so that 1/4 of the size of the aggregate or structurally damaging the
- For partially hardened concrete, the surface shall be treated by wire brush followed by an air jet.
- c) The old surface shall be soaked with water without leaving puddles immediately before starting concreting to prevent the absorption of water from new concrete.
- New concrete shall be thoroughly compacted in the region of

ž

the joint.

Welding of reinforecement bars shall not be permitted

- Laps in reinforcem vi
- 1. Minimum lap length of reinforcement shall be kept as 83 d
- where 'd' is the diameter of bar.
- Not more than 50% of reinforcement shall be lapped at any
- Bending of reinforcement bare shall be as per IS: 2502. ø
- Supporting chairs of 12mm diameter shall be provided at suitable intervals as per IS: 2502. 7
- Concrete shall be produced in a mechanical mixer of capacity not less than 200 litres having integral weigh-batching facility and automatic water measuring and dispensing device.
- Proper compaction of concrete shall be ensured by use of full width acreed vibrators for concrete in deck slab. oj.
 - Properly braced steel plates shall be used as shuttering. ö
- Sharp edges of concrete shall be charriered. Ξ

GENERAL SPECIFICATIONS

6

The work shall be executed in accordance with MOST's Speci-fication for Road and Bridge Works (Second Revision, 1989) except wherever otherwise mentioned.

REFERENCE TO DRAWINGS Œ

Drawing No.	Title.
SD/101	GENERAL NOTES
SD/102	GENERAL ARRANGEMENT
SD/103 & SD/104	MISCELLANEOUS DETAILS
SD//105	DETAILS OF R.C.C. RAILINGS
	(WITHOUT FOOTPATHS)
SD/106	DETAILS OF R.C.C. RAILINGS
	(WITH FOOTPATHS)
SD/107 THROUGH	R.C.C. SOLID SLAB SUPERSTRUCTURE
SD/114	(RIGHT)
	SPANS 3m To 10m
	(WITHOUT FOOTPATHS)
SD/115 THROUGH	R.C.C. SOLID SLAB SUPERSTRUCTURE
SD/122	(RIGHT)
	SPANS 3m To 10m
	(WITH FOOTPATHS)

		ВУ		┢		10.0 m
1		DESCRIPTION	REVISION	GOVERNMENT OF INDIA MINISTRY OF SURFACE TRANSPORT (ROADS WING), NEW DELHI	STANDARD DRAWINGS FOR ROAD BRIDGES	R.C.C. SOLID SLAB SUPERSTUCTURE (RIGHT) SPAN 3.0m To 10.0 m (WITH AND WITHOUT FOOTPATHS) GENERAL NOTES
		DATE		GR)	STANDA	ERSTUC (WITH
		MKD		_		SUPI

SD/101 DRG. NO. <u>6</u>

(M.K MUKHE/JEE) C.E.

S.K. KAISTHA) (R

(U. JAYAKODI) E.E.

.+

APPROVED BY R. C. Raking

RECOMMENDED BY

+

