Sub Ci

 $X_{1,}$ $X_{2,}$ $X_{3,}$ $X_{4,}$ which may be the same or different from one another, is selected from the group consisting of -CONR-, -NRCO-, -OCO-, -COO-, -CH₂NR- and -NR-CH₂-, where R is H or a C_{1-3} alkyl or benzyl;

f,g, h, m, which may be the same or different form one another, represent a number selected from the group consisting of 0, 1 and 2;

 R_1 and R_2 , which may be the same or different from one another, represent a $-(CH_2)_r$ -Ar group, where $r=0,\,1,\,2$ and where Ar is an aromatic group selected from the group consisting of: benzene, naphthalene, thiophene, benzothiophene, pyridine, quinoline, indole, furan, benzofuran, thiazole, benzothiazole, imidazole, and benzo-imidazole, said Ar group being possibly substituted with a maximum of two residues selected from the group consisting of C_{1-3} alkyl or halo-alkyl, C_{1-3} alkoxyl, C_{2-4} amino-alkoxyl, halogen, OH, NH₂, and NR₁₃R₁₄ where R₁₃ and R₁₄, which may be the same or different from one another, represent hydrogen or C_{1-3} alkyl;

wherein R₃ is selected from the group consisting of:

-hydrogen,

-linear or branched alkyl having the formula C_nH_{2n+1} , with n=1-5, cyclo-alkyl or alkylcyclo-alkyl groups having the formula C_nH_{2n+1} , with n=5-9,

Lond.

 $-(CH_2)_r$ - Ar_1 group, where r=0, 1, 2 and where Ar_1 is an aromatic group selected from the group consisting of: benzene, naphthalene, thiophene, benzothiophene, pyridine, quinoline, indole, furan, benzofuran, thiazole, benzothiazole, imidazole, and benzoimidazole, said Ar_1 group being possibly substituted with a maximum of two residues selected from the group consisting of C_{1-3} alkyl or halo-alkyl, C_{1-3} alkoxyl or aminoalkoxyl, halogen, OH, NH_2 and $NR_{13}R_{14}$ where R_{13} and R_{14} , which may be the same or different from one another, represent hydrogen or C_{1-3} alkyl; wherein R_4 is selected from the group consisting of:

-hydrogen or C₁₋₆ alkyl,

- L-Q, where L is a chemical bond or a linear or branched C_{1-6} alkyl residue and Q is selected from the group consisting of:

i) H, OH, OR₉, NH₂, NR₉R₁₀, guardidine, sulfate, phosphonate and phosphate where R₉ and R₁₀, which may be the same or different from one another, represent a hydrogen C₁₋₃ alkyl group, C₁₋₃ hydroxyalkyl, C₁₋₃ dihydroxyalkyl, C₁₋₃ alkyl-CONHR₁₂, C₁₋₃alkyltetrazole, C₁₋₃alkyl-COOH or wherein R₉R₁₀ joined together form with the N-atom a saturated 4-6 membered heterocycle possibly containing a further heteroatom selected from the group consisting of N, O and S and wherein R₁₂ is a mono-, di-, tri-glycosidic group possibly protected with one or more C₁₋₃-acyl groups or substituted with amino-groups or C₁₋₃ acylamino-groups;

ii) COOH, tetrazole, SO₂NH₂, SO₂NHCOOR₈, CONHR₈, NHCOR₈, where R₈ represents a linear or cyclic C₁₋₆ alkyl chain containing one or more polar groups selected from the group consisting of: OH, NR₃R₁₆, COOH, CONHR₁₂, PO₃H and SO₃H, OR₁₁ and where R₁₅ and R₁₆, which may be the same or different from one another, represent a hydrogen or C₁₋₃ alkyl group, and where R₁₁ is a C₁₋₃ alkyl or C₂₋₄ amino-alkyl chain, R₁₂ is a mono-, di-, tri-glycosidic group possibly protected with one or more C₁₋₃acyl groups or substituted with amino-groups or C₁₋₃acylamino-groups or R₁₅R₁₆ joined together form with the N-atom a saturated 4-6 membered heterocycle possibly substituted with C₁₋₃alkyl-groups or with saturated 4-6 membered heterocycle-groups containing at least an N-atom:

iii) COOR₁₇, CONHR₁₂, OR₁₂ where R₁₂ is a mono-, di-, tri-glycoside group

Sub Ci

possibly protected with one or more C_{1-3} acyl groups or substituted with amine or C_{1-3} acylamine groups and R_{17} is a group R_{12} as above defined or a group C_{1-3} alkylphenyl, wherein the phenyl-group can be substituted with a group OH, NO₂, VH₂, GN, CH₃, Cl, Br;

group OH, NO₂, NH₂, GN, CH₃, Cl, Br;
R₅, R₆, R₇, which may be the same or different from one another, represent a hydrogen or C₁₋₃ alkyl group; with the proviso that when R₁ or R₂ are benzyl or 4-hydroxybenzyl then R₃ and R₄ are isopropyl_and an acceptable salt or enantiomer thereof.

BS Cont

2. (Amended) Compound according to Claim 1, in which:

f, g, h, m, which may be the same or different from one another, may be 0 or 1; R_1 and R_2 which may be the same or different from one another, represent the side chain of a natural amino acid selected from the group consisting of tryptophan, phenylalanine, tyrosine and histidine, or the side chain of a non-natural amino acid selected from the group consisting of:

tryptophan and phenyl alanine, either mono- or di-substituted with residues selected from the group consisting of C_{1-3} alkyl or halo-alkyl, C_{1-3} alkoxyl or amino-alkoxyl, halogen, OH, NH₂ and NR₁₃R₁₄, where R₁₃ and R₁₄, which may be the same or different from one another, represent a hydrogen or C_{1-3} alkyl group;

R₃ is selected from the group consisting of:

– linear or branched alkyl having the formula C_nH_{2n+1} with n=1-5 (selected from the group consisting of methyl, ethyl, propyl, isopropyl, n-butyl and t-butyl) cycloalkyl or alkylcycloalkyl of formula C_nH_{2n-1} with n=5-9 (selected from the group consisting of: cyclopentyl, cyclohexyl and methylcyclohexyl)

 $-(CH_2)_r$ -Ar₁, where r=1 or 2 and where Ar₁ is an aromatic group selected from the group consisting of: α -naphthyl, β -naphthyl, phenyl, indole, said Ar₁ group being possibly substituted with a maximum of two residues selected from the group consisting of: C_{1-3} alkyl, CF_3 , C_{1-3} alkoxyl, Cl, F, OH and NH_2 ;

R₄ represents an L-Q group where:

L is a chemical bond of CH2, and

Q is selected from the group consisting of:

- OH, NH2, NR9R10, OR11, and where R9 and R10, which may be the same or different from one another, represent a hydrogen or C₁₋₃ alkyl group, C₁₋₃hydroxy alkyl, $C_{1\text{--}3}$ dihydroxyaklyl, $C_{1\text{--}3}$ alkyl-CONHR $_{12}$ (wherein R_{12} is a monoglycosidic group derived from D or L pentoses or hexoses (selected from the group consisting of ribose, arabinose. glucose, galactose, fructose, glucosamine and galactosamine and their N-acetylated derivatives)), Chalkyltetrazole, C1-3alkyl-COOH or wherein R9R10 are joined together to form with the Watom a morpholine or a piperidine ring and where R₁₁ is a C₁₋₃ alkyl chain, or a C₂₋₄ amino-alkyl chain; NHCOR₈ wherein R₈ is a cyclohexane containing from 2 to 4 OH groups, C₁₋₆ alkyl chain containing a polar group (chosen in the group consisting of NH₂, COOH, CONHR₁₂, (wherein R₁₂ is as hereabove defined) or [1,4']bipiperidine)

- COOH, COOR17 or CONHR12, wherein R_{12} is as hereabove defined and R_{17} is as R₁₂ or a group 4-nitrobenzyl.

- R₅, R₆, R₇ are H,

in which the carbon atom that carries the substituents R_3 and R_7 has configuration R.

- (amended twice) A compound according to Claim 2 selected from: 3.
- $Cyclo \{-Suc-Trp-Phe-I(R)-NH-CH(CH_2C_6H_5)-CH_2-NH]\}$ (a)
- (b)
- $Cyclo \{-Suc-Trp-Phe-[(R)-WH-CH(CH/C_6H_{11})-CH_2-NH]\}$ (c)
- $Cyclo \{-Suc-Trp-Phe-[(R)-NH-SH(CH₂C₆H₄(4-OCH₃))-CH₂-NH]\}$ (d)
- $Cyclo \{-Suc-Trp(5F)-Phe-[(R)-NH-CH(CH_2C_6H_5)-CH_2-NH]\}$ (e)
- $Cyclo \{-Suc-Trp(Me)-Phe-[(R)-NH-CH(CH_2C_6H_5)-CH_2-NH]\}$ (f)
- $Cyclo \{-Suc-Phe(3,4-Cl)-Phe-[(R)-\c H-CH(CH_2C_6H_5)-CH_2-NH]\}$ (g)
- $Cyclo \{-Suc-Trp-Phe(3,4-Cl)-[(R)-NH-CH(CH_2C_6H_5)-CH_2-NH]\}$ (h)
- $Cyclo\{-Suc-Trp-Tyr-[(R)-NH-CH(CH_2 C_6 H_5)-CH_2-NH]\}$ (i)
- $Cyclo \{-Suc-Trp-Phe-[(R)-NH-CH(CH_2C_0^{\downarrow}\!\!H_3-3,4-diCl)-CH_2-NH]\}$ (j)
- $Cyclo \{-Suc-Trp-Phe-[(R)-NH-CH(CH_2C_6H)_74-OH)-CH_2-NH]\}$ (k)
- $Cyclo \{-Suc-Trp-Phe-[(R)-NH-CH(CH_2-CH_2- \overleftarrow{C}_6H_5)-CH_2-NH]\}$ (1)

516 C2 \ Sub-C2 \ Sub

- (m) Cyclo {-Sud-Trp-Phe-[(R)-NH-CH(CH₂-2-napthyl)-CH₂-NH]}
- (n) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH_2-indol-3-yl)-CH_2-NH]\}$
- (o) $Cyclo \{-Suc-Thp-Phe-[(R)-NH-CH(CH_2-5-F-indol-3-yl)-CH_2-NH]\}$
- (p) Cyclo $\{-Suc-Trp\}$ Phe- $[(R)-NH-CH(CH_2-C_6H_4-3-F)-CH_2-NH]\}$
- (q) Cyclo {-Suc-Trp-Rhe-[(R)-NH-CH(CH₂-C₆H₃-3,4-diF-CH₂-NH]-}
- (r) Cyclo {-Suc-Trp-PHe-[(R)-NH-CH(CH₂-C₆H₄-4-CF₃-CH₂-NH]-}
- (s) Cyclo {-Suc-Trp-Phe $\{(R)$ -NH-CH₂-CH(CH₂C₆H₅)-NH]}
- (t) Cyclo {-Suc-Trp-Phe-[(S)-NH- CH₂-CH(CH₂C₆H₅)-NH]}
- (u) Cyclo $\{-\text{Trp-Phe-}[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-(CH_2)_3CO-\}$
- (v) Cyclo $\{-\text{Trp-Phe-}[(R)-\text{NH-CH}(CH_2-C_6H_5)-\text{CH}_2-\text{N}(CH_3)]-(CH_2)_3\text{CO-}\}$
- (w) Cyclo $\{-Suc[1(S)-NH_2]-Trp\}$ Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]- $\}$
- $(x) \qquad Cyclo \{-Suc[1(R)-NH_2]-Trp-PHe-[(R)NH-CH(CH_2-C_6H_5)-CH_2NH]-\}$
- (y) Cyclo $\{-Suc[2(S)-NH_2]-Trp-Phe-[(R)NH-CH(CH_2-C_6H_5)-CH_2NH]-\}$
- (z) Cyclo $\{-Suc[2(R)-NH_2]-Trp-Phe\}\{(R)NH-CH(CH_2-C_6H_5)-CH_2NH]-\}$
- $(aa) \qquad Cyclo \{-Suc[1(S)-NH(CH_3)]-Trp-Rhe-[(R)NH-CH(CH_2-C_6H_5)-CH_2NH]-\}$
- (ab) $\text{Cyclo}\{-\text{Suc}[1\text{-COO}(\text{CH}_2\text{-C}_6\text{H}_4\text{-4-NO}_2)]\text{-Trp-Phe-}[(R)\text{NH-CH}(\text{CH}_2\text{-C}_6\text{H}_5)\text{-}C\text{H}_2\text{NH}]\text{-}}\}$
- (ac) Cyclo {-Suc(1-COOH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]} $[\text{Cyclo} \{ -\text{Suc}(1-\text{COOH}) \text{Trp-Phe-}[(R)-\text{NH}-\text{CH}(\text{CH}_2-\text{C}_6\text{H}_5) \text{CH}_2-\text{NH}]} \}]$
- (ad) Cyclo $\{-Suc(1-OH)-Trp-Phe-[(R)-NH-CH)(CH_2-C_6H_5)-CH_2-NH]\}$
- (ae) Cyclo $\{-Suc(2-COOH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]\}$
- (af) Cyclo $\{-Suc(2-OH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]\}$
- (ag) Cyclo {-Suc[1(S)-(2H-tetrazolyl-5-ylmethyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoro-acetic acid
- (ah) Cyclo {-Suc[1(S)-(morpholin-4-yl)]-Trp-Phe-[(R)-NH-CH(CH $_2$ -C $_6$ H $_5$)-CH $_2$ -NH]-} trifluoroacetic acid
- $(ai) \qquad Cyclo \{-Suc[1(S)-N(CH_3)_2]-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-\} \\ trifluoroacetic acid$
- (aj) Cyclo {-Suc[1(S)-(piperidin-4-yl]-Trp-Phe-[(R)-NH-CH(CH₂- C_6H_5)-CH₂-NH]-} trifluoroacetic acid
- (ak) Cyclo {-Suc[1(S)-(N(CH $_2$ CH $_2$ OH) $_2$)]-Trp-Phe-[(R)-NH-CH(CH $_2$ -C $_6$ H $_5$)-CH $_2$ -NH]}trifluoroacetic acid

Solo Continue

- (al) Cyclo {-Sud[1(S)-(N(CH₂CH(OH)CH₂OH)]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (am) Cyclo {-Suc[1(S)-(3-carboxypropanoyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-}.
- (an) Cyclo {-Suc[1(S) [3-N'-B-D-glucopiranos-1-yl)-carboxamidopropanoyl]amino]- Trp-Phe-[(R)NH-CH(CH₂/ C_6H_5)-CH₂NH]-}
- (ao) Cyclo {-Suc[1(S)-[(α arboxymethyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (ap) Cyclo {-Suc[1(S)-[N'-1-D-glucopiranos-1-yl)-carboxyamideomethyl]amino]- Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (aq) Cyclo {-Suc[1(S)-(chinyl) mine]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-}
- (ar) Cyclo {-Suc[1(S)-(4-amino utanoyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)- CH_2 NH]-} trifluoroacetic acid
- (as) Cyclo {-Suc[1(S)-[1,4')bipiper din-1-yl]acetamido]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (at) Cyclo {-Suc[1-N-(β -D-glucopirar os-1-yl)-carboxyamido]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-}
- (au) Cyclo $\{-Suc[1(S)-[N'-(2-N-acetyl-\beta-D-glucopiranos-1-yl)-carboxyamido]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-<math>\}$.

D N Sap Co

- 5. (Amended) A composition comprising a compound of general formula (I) according to Claim 1 in combination with a suitable carrier or excipient..
- 6. (Amended) A composition according to Claim 5, adapted for use as a tachykinin antagonist.
- 7. (Amended) A composition according to Claim 6, adapted for use as an antagonist of the human neurokinin-2 (herein NK-2) receptor.
- 8. (Amended) A composition according to Claim 7, adapted for use in the treatment of the bronchospastic and inflammatory component of asthma, coughing, pulmonary

(105)

Cordiele

irritation, intestinal spasms, spasms of the biliary tract, local spasms of the bladder and of the ureter during cystitis, and kidney infections and colics.

Sup (z)

- 12. (Amended) A method of antagonizing an NK-2 receptor in a mammal afflicted with asthma comprising contacting an NK-2 receptor in said mammal with a compound according to Claim 1 for a time and under conditions effective to antagonize an NK-2.
- 13. (Amended) A method of antagonizing an NK-2 receptor in a mammal afflicted with an anxiety disorder comprising contacting an NK-2 receptor with a compound according to Claim 1 for a time and under conditions effective to antagonize an NK-2 receptor.

De subc

14. (Amended) A method for the treatment of the bronchospastic and inflammatory component of asthma, coughing, pulmonary irritation, intestinal spasms, spasms of the biliary tract, local spasms of the bladder and if the ureter during cystitis, and kidney infections and colics, in which quantities of between 0.02 and 10 mg/kg of body weight of active principle consisting [of products] of formula (1), according to Claim 1, are administered to the patient for a time and under conditions effective to antagonize an NK-2 receptor.

BH

- 16. (New) A method of antagonizing a neurokinin-2 (NK-2) receptor comprising contacting an NK-2 receptor with a compound according to claim 1 for a time and under conditions effective to antagonize said NK-2 receptor.
- 17. (New) A method of antagonizing a neurokinin-2 (NK-2) receptor comprising administering to a mammal in need thereof a compound according to claim 1 for a time and under conditions effective to antagonize the NK-2 receptor.
- 18. (New) The method according to claim 17 wherein said mammal is afflicted with a disorder selected from the group consisting of the bronchospastic and inflammatory component of asthma, coughing, pulmonary irritation, intestinal spasms, spasms of the biliary tract, local spasms of the bladder and of the ureter during cystitis, and kidney infections and colics.