BU CS 332 – Theory of Computation

```
Lecture 6:Assignment Project Exam Help
Ch 1.3
```

- Regexes = N

 https://eduassistproilgithNeriod/e" note
- Non-regular languages h 1.4 (optional) Add WeChat edu_assist_pro

Mark Bun February 10, 2021

Regular Expressions – Syntax

A regular expression R is defined recursively using the following rules:

- 1. ε , \emptyset , and α are regular expressions for every $a \in \Sigma$ https://eduassistpro.github.io/
- 2. If R_1 and R_2 are regular expedu_assistents are $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, and (R_1)

```
Examples: (over \Sigma = \{a, b, c\}) (with simplified notation) ab ab^*c \cup (a^*b)^* \emptyset
```

Regular Expressions – Semantics

L(R) = the language a regular expression describes

- 1. $L(\emptyset) = \emptyset$
- 2. $L(\varepsilon) = \{ \text{Assignment Project Exam Help} \}$
- $L(a) = \{a\}$ https://eduassistpro.github.io/
- 4. $L((R_1 \cup R_2)) = L(R_1) \cup L($ 5. $L((R_1 \circ R_2)) = L(R_1) \circ L($ 5. $L((R_1 \circ R_2)) = L(R_1) \circ L($
- 6. $L((R_1^*)) = (L(R_1))^*$

Example: $L(a^*b^*) = \{a^m b^n \mid m, n \ge 0\}$

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA https://eduassistpro.github.io/

Theorem 2: Every NFA has an e edu_assiste pro expression

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Assignment Project Exam Help

Base cases:

$$R = \emptyset$$
 https://eduassistpro.github.io/

$$R = \varepsilon$$

$$R = a$$

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Assignment Project Exam Help Inductive step:

 $R = (R_1 \cup \text{https://eduassistpro.github.io/})$

$$R = (R_1 R_2)$$

$$R = (R_1^*)$$

Example

Convert $(1(0 \cup 1))^*$ to an NFA

Assignment Project Exam Help

https://eduassistpro.github.io/

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: Every regular expression has an equivalent NFA https://eduassistpro.github.io/

Theorem 2: Every NFA has an e edu_assiste pro expression

Theorem 2: Every NFA has an equivalent regex

Proof idea: Simplify NFA by "ripping out" states one at a time and replacing with regreect Exam Help

https://eduassistpro.github.io/

Generalized NFAs

- Every transition is labeled by a regex
- One start state with only outgoing transitions
- Only one accept state with only incoming transitions
 Assignment Project Exam Help

 Start state and

https://eduassistpro.github.io/

Generalized NFA Example

Which of these strings is accepted?

Which of the following strings is accepted by this GNFA?

- a) aaa
- b) aabb
- c) bbb
- d) bba

NFA -> GNFA

- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state $a \cup b$

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state $a \cup b$

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state R_2

Assignment Project Exam Help

https://eduassistpro.github.io/

Non-Assignment Project Exam Help Uages https://eduassistpro.github.io/ Add WeChat edu_assist_pro

Motivating Questions

 We've seen techniques for showing that languages are regular

Assignment Project Exam Help

https://eduassistpro.github.io/

- How can we tell if we've found the smallest DFA recognizing a language?
- Are all languages regular? How can we prove that a language is not regular?

An Example

$$A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}$$

Claim: Every DFA recognizing A needs at least 3 states

Proof: Let M be any DFA recognizing A. Consider running M on each of $\frac{1}{2}$ seignment $\frac{1}{2}$ running $\frac{1}{2}$ running $\frac{1}{2}$ on each of $\frac{1}{2}$ seignment $\frac{1}{2}$ running $\frac{1}{2}$ running $\frac{1}{2}$ on each of $\frac{1}{2}$ seignment $\frac{1}{2}$ running $\frac{1}{2}$ runn

https://eduassistpro.github.io/

A General Technique

 $A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}$

Definition: Strings x and y are distinguishable by L if there exists z such that exactly one of xz or yz is in L.

Ex. $x = \varepsilon$, y Assignment Project Exam Help

https://eduassistpro.github.io/

Definition: A set of strings $\mathcal{E}_{\text{hat edu_assist}}$ is edu_assist $\mathcal{E}_{\text{hat edu_assist}}$ by \mathcal{L} if every pair of distinct strings so distinguishable by \mathcal{L} .

Ex.
$$S = \{\varepsilon, 0, 01\}$$

A General Technique

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

Proof: Let M be a DFA with < |S| states. By the pigeonhole pransiplent that P arise A, A and A and A are state up in same state

https://eduassistpro.github.io/

Back to Our Example

```
A = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}
```

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

Assignment Project Exam Help

```
S = \{\varepsilon, 0, 01\} https://eduassistpro.github.io/
Add WeChat edu_assist_pro
```

Another Example

```
B = \{ w \in \{0, 1\}^* \mid |w| = 2 \}
```

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

Assignment Project Exam Help

 $S = \{$

https://eduassistpro.github.io/

Distinguishing Extension

Which of the following is a distinguishing extension for x = 0 and y = 0 for language $B = \{ w \in \{0, 1\}^* \mid |w| = 2 \}$?

a)
$$z = \varepsilon$$

Assignment Project Exam Help

b)
$$z = 0$$

https://eduassistpro.github.io/

c)
$$z = 1$$

d)
$$z = 00$$

Non-Regularity

Theorem: If S is pairwise distinguishable by L, then every DFA recognizing L needs at least |S| states

Corollary: If Sais infinite seight at sapalfwise distinguishable b https://eduassistpro.github.io/

The Classic Example

Theorem: $A = \{0^n 1^n | n \ge 0\}$ is not regular

Proof: Construct an infinite pairwise distinguishable set

Assignment Project Exam Help

https://eduassistpro.github.io/