23. A block of mass m is pulled at constant velocity along a rough horizonatl floor by and applied force \vec{T} as shown. The magnitude of frictional force is:

24. For a block of mass m to slide without friction up the rise of height h shown, it must have a minimum initial speed of:

25. A planet travels in an elliptical orbit about a star X as shown. The magnitude of the acceleration of the planet is:

A) greatest at point Q

 $T\cos\theta$

 $T \sin \theta$ zero mg

 $mg\cos\theta$

- B) greatest at point S
- C) greatest at point U
- D) greatest at point W
- (E) the same at all points

30. For a planet in orbit around a star the perihelion distance is r_p and its speed at perihelion is v_p . The aphelion distance is r_a and its speed at aphelion is v_a . Which of following is true?

29. A 2.0-kg block starts from rest on the positive x axis 3.0 m from the origin and

- A) $v_a = v_p$
- B) $v_a/r_a = v_p/r_p$
- $\begin{array}{cc} \text{(C)} & v_a r_a = v_p r_p \\ \text{(D)} & v_{a/} r^2_a = v_{p/} r^2_p \end{array}$

- 31. A heavy wooden block is dragged by a force \vec{F} along a rough steel plate, as shown below for two cases. The magnitude of the applied force \vec{F} is the same for both cases. The normal force in (ii), as compared with the normal force in (i) is:

- A) the same
- B) greater
- (C) less
- D) less for some angles of the incline and greater for others
- less or greater, depending on the magnitude of the applied force \vec{F} .
- 32. A 2.0-kg block starts from rest on the positive x axis 3.0 m from the origin and thereafter has an acceleration given by $\vec{a} = 4.0\hat{i} - 3.0\hat{j}$ in m/s². At the end of 2.0 s its angular momentum about the origin is: at 6-2
 - $(-36 \text{ kg} \cdot \text{m}^2/\text{s})\hat{k}$
 - \tilde{C}) $(+48 \text{ kg} \cdot \text{m}^2/\text{s})\hat{k}$
 - D) $(-96 \text{ kg} \cdot \text{m}^2/\text{s})\hat{k}$
 - E) $(+96 \text{ kg} \cdot \text{m}^2/\text{s})\hat{k}$
- a= 24,-3>
- V = <4+,-36> -> <8,-6>
- $d = \langle 3 + 2t^2, -3t^2 \rangle \longrightarrow \langle 11, -6 \rangle$ Version 2 Page 9 $L = I \cdot \omega = MRV$ $= 2 \cdot \langle 8, -6 \rangle \times \langle 11, -6 \rangle$ $MR^{\frac{1}{2}} \cdot \frac{V}{2} = 2 \cdot \langle 8, -6 \rangle \times \langle 11, -6 \rangle$

- 37. Suitable units for the gravitational constant G are:
 - A) $kg \cdot m/s^2$
 - B) m/s^2
 - C) N·s/m
 - kg·m/s
 - $m^3/(kg \cdot s^2)$

- G ~> N m2 >> kg. 52 kg.
- 38. When the brakes of an automobile are applied, the road exerts the greatest retarding force:
 - A) while the wheels are sliding
 - B) just before the wheels start to slide
 - C) when the automobile is going fastest
 - D) when the acceleration is least
 - E) at the instant when the speed begins to change
- 39. A sledge (including load) weighs 5000 N. It is pulled on level snow by a dog team exerting a horizontal force on it. The coefficient of kinetic friction between sledge and snow is 0.05. How much work is done by the dog team pulling the sledge 1000 m at constant speed?
 - A) $2.5 \times 10^4 \,\text{J}$
 - B) $2.5 \times 10^5 \text{ J}$ C) $5.0 \times 10^5 \text{ J}$

 - D) $2.5 \times 10^6 \,\text{J}$
 - E) $5.0 \times 10^6 \,\text{J}$

- = F3 · Mk · d
- 40. Two carts (A and B), having spring bumpers, collide as shown. Cart A has a mass of 2 kg and is initially moving to the right. Cart B has a mass of 3 kg and is initially stationary. When the separation between the carts is a minimum:

- cart B is still at rest
- cart A has come to rest
- the carts have the same momentum
- D) the carts have the same kinetic energy
- the kinetic energy of the system is at a minimum

Name:	Qiu, 2e ain	Date:	

4 1. Test masses are used to measure the gravitational field at various positions in and near a hollow spherical shell. The gravitational field will have its greatest value at point(s)

- D) 1, 2, and 5
- 1 and 2

 \downarrow 2. The mass density of a planet varies with distance from the center as $\rho = \rho_o (1 - C \frac{r}{R_o})$

where C is a dimensionless constant, and R_P is the radius of the planet. The gravitational field of the planet for $r < R_P$ is

A)
$$\vec{g} = -\rho_o G \left(\frac{r}{2} - \frac{Cr^2}{3R_p}\right) \hat{r}$$

A)
$$\bar{g} = -\rho_o G(\frac{r}{2} - \frac{Cr^2}{3R_p})\hat{r}$$
 4477

B) $\bar{g} = -\rho_o G(\frac{r}{3} - \frac{Cr^2}{4R_p})\hat{r}$ 477

B)
$$\bar{g} = -\rho_o G(\frac{r}{3} - \frac{Cr^2}{4R_p})\hat{r}$$

$$(C) \quad \bar{g} = -\rho_o G(r - \frac{Cr^2}{R_p}) \hat{r} \qquad \neq 477 \qquad = \int_0^r \rho_0 \left(1 - C\frac{r}{kp}\right) dr$$

D)
$$\vec{g} = -\rho_o GC \frac{r^2}{R} \hat{r}$$

D)
$$\bar{g} = -\rho_o G C \frac{r^2}{R_p} \hat{r}$$
 $\neq 477$
E) $\bar{g} = -\rho_o G \frac{r}{3} \hat{r}$ $\neq 477$ $= P_o \int_0^r 1 - C \frac{r}{R_p} dr$

E)
$$\vec{g} = -\rho_o G \frac{r}{3} \hat{r}$$

$$= p_0 \left(r - \left(\frac{r^2}{2Rp} \right)^r \right)^r$$

Version 2 Page 1