M2 Probabilités et Modèles Aléatoires

CALCUL STOCHASTIQUE ET PROCESSUS DE DIFFUSION

Table des matières

Chapit	re I. Construction du mouvement brownien	1
1.1.	Rappels sur les variables gaussiennes	1
1.2.	Construction du mouvement brownien	3
1.3.	Régularisation des trajectoires	6
1.4.	Processus canonique et mesure de Wiener	9
1.5.	Indépendance	11
Chapit	re 2. Mouvement brownien et propriété de Markov	13
2.1.	Premières propriétés	13
2.2.	Propriété de Markov simple	13
2.3.	Semi-groupe du mouvement brownien	15
2.4.	Propriété de Markov forte	16
2.5.	Variation quadratique du mouvement brownien	19
2.6.	Autres	21
Chapit	re 3. Martingales à temps continu	23
3.1.	Filtrations et conditions habituelles	23
3.2.	Mesurabilité des processus	24
3.3.	Temps d'arrêt	25
3.4.	Rappels sur les martingales à temps discret	27
3.5.	Martingales à temps continu	27
3.6.	Mouvement brownien en tant que martingale	31
Chapit	re 4. Semimartingales continues	33
4.1.	Fonctions à variation finie	33
4.2.	Processus à variation finie	36
4.3.	Martingales locales (continues)	37
4.4.	Variation quadratique d'une martingale locale	39
4.5.	Semimartingales continues	46

2

Chapitre 5. Intégrale stochastique		
5.1.	Intégration par rapport aux martingales de carré intégrable	47
5.2.	Variation quadratique d'une intégrale stochastique	51
5.3.	Intégration stochastique par rapport aux martingales locales	53
5.4.	Intégration stochastique par rapport aux semimartingales	54
Chapit	re 6. Formule d'Itô et applications	57
6.1.	Formule d'Itô	57
6.2.	Semimartingales exponentielles	61
6.3.	Caractérisation de Lévy du mouvement brownien	62
6.4.	Théorème de Dubins–Schwarz	63
6.5.	Inégalités de Burkholder-Davis-Gundy	65
6.6.	Martingales browniennes	66
6.7.	Théorème de Girsanov	69
6.8.	Applications du théorème de Girsanov	72
Chapit	re 7. Équations différentielles stochastiques	75
7.1.	Solutions faibles et fortes	75
7.2.	Coefficients lipschitziens	78
7.3.	Propriété de Markov	81
7.4.	Le problème de martingales	84
7.5.	Liens avec des EDP linéaires	88
Chapit	re 8. Références bibliographiques	93

Ce polycopié est issu des notes de cours de Jean-François Le Gall, publiées en 2013 dans son livre *Mouvement Brownien, Martingales et Calcul Stochastique*. Il a finalement été assez peu modifié par les enseignants successifs.

Chapitre 1

Construction du mouvement brownien

Ce cours est une introduction au mouvement brownien et au calcul stochastique. Dans ce premier chapitre, on démontre l'existence du mouvement brownien, et étudie quelques propriétés élémentaires.

L'expression "mouvement brownien" provient du mouvement irrégulier des grains de pollen à la surface d'eau, observé par le botaniste écossais Robert Brown en 1828. Bachelier (1900) et Einstein (1905) étudient quantitativement ce mouvement irrégulier en finance et en physique, respectivement. C'est Wiener qui, en 1923, établit la modélisation mathématique du mouvement brownien, que l'on étudie dans ce cours, tandis que la découverte de beaucoup de propriétés profondes du mouvement brownien remonte à Paul Lévy (1939, 1948).

1.1. Rappels sur les variables gaussiennes

Soit ξ une variable gaussienne centrée réduite. On vérifie facilement que la transformée de Laplace complexe de ξ est donnée par

$$\mathbb{E}\left[e^{z\xi}\right] = e^{z^2/2}, \qquad z \in \mathbb{C}.$$

En particulier, la fonction caractéristique de ξ vaut

$$\mathbb{E}\left[e^{it\xi}\right] = e^{-t^2/2}, \qquad t \in \mathbb{R}.$$

Théorème 1.1.1 (Queue de distribution gaussienne). Si ξ suit la loi gaussienne centrée réduite, alors pour tout x > 0,

$$\frac{1}{\sqrt{2\pi}} \left(\frac{1}{x} - \frac{1}{x^3} \right) e^{-x^2/2} \le \mathbb{P}(\xi > x) \le \frac{1}{\sqrt{2\pi}} \frac{1}{x} e^{-x^2/2},$$

$$\mathbb{P}(\xi > x) \le e^{-x^2/2}.$$

REMARQUE 1.1.2. On a $\mathbb{P}(\xi > x) \sim \frac{1}{\sqrt{2\pi}} \frac{1}{x} e^{-x^2/2}$ quand $x \to \infty$.

Preuve du Théorème 1.1.1. Voir TD.

Soient $\mu \in \mathbb{R}$ et $\sigma > 0$. On dit qu'une variable aléatoire réelle Y suit la loi gaussienne $\mathcal{N}(\mu, \sigma^2)$ si elle admet pour densité

$$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right), \quad y \in \mathbb{R}.$$

On dit que Y suit la loi $\mathcal{N}(\mu, 0)$ si $Y = \mu$ p.s.

Il est clair que Y suit la loi gaussienne $\mathcal{N}(\mu, \sigma^2)$ si et seulement si $Y = \sigma \xi + \mu$, où ξ suit la loi gaussienne centrée réduite $\mathcal{N}(0, 1)$.

PROPOSITION 1.1.3 (Convergence de suite de variables gaussiennes). Soit (ξ_n) une suite de variables aléatoires gaussiennes, telle que ξ_n suive la loi $\mathcal{N}(\mu_n, \sigma_n^2)$.

- (i) Si la suite (ξ_n) converge en loi vers une variable aléatoire ξ , alors $\mu = \lim_{n \to \infty} \mu_n$ et $\sigma = \lim_{n \to \infty} \sigma_n$ existent et $\xi \sim \mathcal{N}(\mu, \sigma^2)$.
- (ii) Si la suite (ξ_n) converge en probabilité vers ξ , alors la convergence a lieu dans L^p , pour tout $p \in [1, \infty[$.

Preuve. Voir TD.
$$\Box$$

DÉFINITION 1.1.4 (Vecteur aléatoire gaussien). Un vecteur aléatoire (ξ_1, \dots, ξ_n) est dit gaussien si toute combinaison linéaire de ses coordonnées (c'est-à-dire $\sum_{j=1}^n \lambda_j \xi_j$ pour tout $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$) suit une loi gaussienne.

REMARQUE 1.1.5. Si (ξ_1, \dots, ξ_n) est un vecteur gaussien, alors chaque coordonnée est une variable gaussienne réelle. Attention, la réciproque est **fausse**.

PROPOSITION 1.1.6. Pour $\xi = (\xi_1, \dots, \xi_n)$ vecteur gaussien, on définit $m = \mathbb{E}(\xi)$ et $Q_{ij} = \text{Cov}(\xi_i, \xi_j), i, j = 1, \dots, n$.

(1) La fonction caractéristique de ξ est donnée par

$$\mathbb{E}[\exp(i\langle \xi, u \rangle)] = \exp(i\langle m, u \rangle - \frac{1}{2}\langle Qu, u \rangle), \qquad u \in \mathbb{R}^n,$$

 $où \langle \cdot, \cdot \rangle$ est le produit scalaire usuel (euclidien) de \mathbb{R}^n .

- (2) m et Q déterminent la loi de ξ . On écrit $\xi \sim \mathcal{N}(m,Q)$.
- (3) $Si \xi_1, \ldots, \xi_n \text{ sont i.i.d. } \mathcal{N}(0,1), \text{ alors } \xi \sim \mathcal{N}(0,I_n).$
- (4) Si $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ et $\mu \in \mathbb{R}^m$, alors $A\xi + \mu \sim \mathcal{N}(Am + \mu, AQA^T)$.
- (5) $Si \det Q \neq 0$ alors la loi de ξ admet la densité

(1.1)
$$\mathcal{N}(m,Q)(\mathrm{d}x) = \frac{1}{\sqrt{(2\pi)^n \det Q}} \exp(-\frac{1}{2}\langle Q^{-1}(x-m), x-m\rangle) \,\mathrm{d}x, \qquad x \in \mathbb{R}^n.$$

- (6) Pour que les variables aléatoires ξ_1, \dots, ξ_n soient indépendantes, il faut et il suffit que la matrice Q des covariances de ξ soit diagonale.
- (7) Soit (η_1, \dots, η_N) un vecteur gaussien et $0 = n_1 < n_2 < \dots < n_m = N$. Pour que la famille de vecteurs aléatoires $(\theta_1, \dots, \theta_{m-1})$, où $\theta_k = (\eta_{n_k+1}, \dots, \eta_{n_{k+1}})$, soit indépendante, il faut et il suffit que $Cov(\eta_i, \eta_j) = 0$, $\forall i, j \leq N$ tels que $n_k < i \leq n_{k+1}$ et $n_h < j \leq n_{h+1}$ pour $k \neq h$.

Soit Q une matrice de covariance $n \times n$ (symétrique positive) et $\mu \in \mathbb{R}^n$. Si $X \sim \mathcal{N}(0, I_n)$, alors $Y = \mu + Q^{1/2}X \sim \mathcal{N}(\mu, Q)$. On remarque donc que si det Q = 0, alors $X \sim \mathcal{N}(\mu, Q)$ appartient presque sûrement à $F = \{\mu + x : x \in \text{Im } Q^{1/2}\}$ qui est de mesure (de Lebesgue) nulle dans \mathbb{R}^n . La loi $\mathcal{N}(\mu, Q)$ n'a donc pas de densité.

1.2. Construction du mouvement brownien

On se place dans un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

DÉFINITION 1.2.1. Un processus est une famille $X=(X_t,t\in \mathbf{T})$ de variables aléatoires réelles définies sur $(\Omega,\mathscr{F},\mathbb{P})$. Un processus $X=(X_t,t\in \mathbf{T})$ est un processus gaussien si pour tout $n\geq 1$ et tout $(t_1,\cdots,t_n)\in \mathbf{T}^n$, (X_{t_1},\cdots,X_{t_n}) est un vecteur gaussien. On dit que X est centré si pour tout $t\in \mathbf{T}$, $\mathbb{E}(X_t)=0$.

DÉFINITION 1.2.2. On dit que $B = (B_t, t \ge 0)$ est un mouvement brownien (réel, issu de 0), si B est un processus gaussien centré de covariance

$$\mathbb{E}(B_s B_t) = \min\{s, t\} = s \wedge t, \qquad s \ge 0, \ t \ge 0.$$

REMARQUE 1.2.3. On dit parfois que B est un mouvement brownien standard, car on peut s'intéresser également aux processus gaussiens centrés de covariance $\sigma^2(s \wedge t)$.

PROPOSITION 1.2.4. Soit $(B_t, t \ge 0)$ un processus. $(B_t, t \ge 0)$ est un mouvement brownien si et seulement si il vérifie les conditions suivantes :

- (i) $B_0 = 0$, p.s.
- (ii) Pour tout $n \geq 2$, et tous $0 \leq t_1 \leq t_2 \leq \cdots \leq t_n$, le vecteur aléatoire $(B_{t_1}, B_{t_2} B_{t_1}, \ldots, B_{t_n} B_{t_{n-1}})$ est une famille indépendante.
 - (iii) Pour tous $t \geq s \geq 0$, $B_t B_s$ suit la loi gaussienne $\mathcal{N}(0, t s)$.

REMARQUE 1.2.5. On dira que le mouvement brownien est à accroissements indépendants (propriété (ii)) et stationnaires (propriété (iii)).

Preuve de la Proposition 1.2.4. "Si": On suppose que B vérifie (i)–(iii). Soient $0 \le t_1 \le t_2 \le \cdots \le t_n$. Par hypothèse, $B_{t_n} - B_{t_{n-1}}, \cdots, B_{t_2} - B_{t_1}, B_{t_1}$ sont des variables gaussiennes indépendantes. Donc $(B_{t_1}, B_{t_2} - B_{t_1}, \cdots, B_{t_n} - B_{t_{n-1}})$ est un vecteur gaussien, et $(B_{t_1}, B_{t_2}, \cdots, B_{t_n})$ l'est aussi. On a donc démontré que B est un processus gaussien, qui est évidemment centré d'après (iii) et (i).

Pour vérifier que B est un mouvement brownien, il suffit maintenant de déterminer sa fonction de covariance. Soient $t \geq s \geq 0$. On a $\mathbb{E}(B_sB_t) = \mathbb{E}(B_s(B_t-B_s)) + \mathbb{E}(B_s^2)$. L'in-dépendance entre B_s et B_t-B_s nous dit que $\mathbb{E}(B_s(B_t-B_s))=0$, tandis que d'après (iii), $\mathbb{E}(B_s^2)=s$. Donc $\mathbb{E}(B_sB_t)=s$. Évidemment, si $(s,t)\in\mathbb{R}^2_+$ est quelconque, on a alors par symétrie $\mathbb{E}(B_sB_t)=s\wedge t$. En conclusion, B est un mouvement brownien.

"Seulement si" : Soit B un mouvement brownien. Alors $\mathbb{E}(B_0^2) = 0$, d'où (i). Soient maintenant $t \geq s \geq 0$. La variable $B_t - B_s$ suit une loi gaussienne centrée, de variance $\mathbb{E}(B_t - B_s)^2 = \mathbb{E}(B_t^2) + \mathbb{E}(B_s^2) - 2\mathbb{E}(B_sB_t) = t + s - 2s = t - s$. D'où (iii).

Il reste donc à prouver (ii). Soient $0 \leq t_1 \leq t_2 \leq \cdots \leq t_n$. On sait que $(B_{t_n} - B_{t_{n-1}}, \cdots, B_{t_2} - B_{t_1}, B_{t_1})$ est un vecteur gaussien. De plus, la matrice de covariance de ce vecteur gaussien est diagonale, car pour j > i, $\mathbb{E}[(B_{t_j} - B_{t_{j-1}})(B_{t_i} - B_{t_{i-1}})] = \mathbb{E}(B_{t_j}B_{t_i}) - \mathbb{E}(B_{t_{j-1}}B_{t_i}) - \mathbb{E}(B_{t_j}B_{t_{i-1}}) + \mathbb{E}(B_{t_{j-1}}B_{t_{i-1}}) = t_i - t_i - t_{i-1} + t_{i-1} = 0$. D'après la Proposition 1.1.6, les composantes de ce vecteur gaussien sont indépendantes.

Nous obtenons donc

COROLLAIRE 1.2.6. Si $B = (B_t, t \ge 0)$ est un mouvement brownien alors pour tous $0 = t_0 < t_1 < t_2 < \dots < t_n, (B_{t_1}, \dots, B_{t_n})$ a pour densité dans \mathbb{R}^n

$$\mathbb{P}((B_{t_1}, \dots, B_{t_n}) \in dx) = \frac{1}{\sqrt{(2\pi)^n t_1 (t_2 - t_1) \cdots (t_n - t_{n-1})}} \exp\left(-\frac{1}{2} \sum_{i=1}^n \frac{(x_i - x_{i-1})^2}{t_i - t_{i-1}}\right) dx,$$

$$où x_0 = 0.$$

Preuve. On applique la Proposition 1.1.6 à $\xi = (B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_n} - B_{t_{n-1}})$ qui a pour loi $\mathcal{N}(0, R)$, où $R = \operatorname{diag}(t_1, t_2 - t_1, \dots, t_n - t_{n-1})$. Si on définit $Ax = (x_1, x_1 + x_2, \dots, x_1 + \dots + x_n)$, alors $(B_{t_1}, \dots, B_{t_n}) = A\xi$ a pour loi $\mathcal{N}(0, ARA^T)$ et densité donnée par (1.1) avec $Q^{-1} = (A^T)^{-1}R^{-1}A^{-1}$. Un calcul montre que $A^{-1}x = (x_1, x_2 - x_1, \dots, x_n - x_{n-1})$ et ceci permet de conclure puisque

$$\langle Q^{-1}x, x \rangle = \langle R^{-1}A^{-1}x, A^{-1}x \rangle = \sum_{i=1}^{n} \frac{(x_i - x_{i-1})^2}{t_i - t_{i-1}}.$$

Pour terminer il faut calculer $\det Q = (\det A)^2 \det R$; or A est une matrice triangulaire inférieure avec $A_{ii} = 1$ pour tout $i = 1, \ldots, n$, donc $\det A = 1$ et $\det Q = \det R = t_1(t_2 - t_1) \cdots (t_n - t_{n-1})$.

Théorème 1.2.7. On peut construire au moins un mouvement brownien.

Preuve. Nous considérons l'espace mesuré $(\mathbb{R}_+, \mathcal{B}, dx)$ où \mathcal{B} sont les Boréliens de \mathbb{R}_+ et dx est la mesure de Lebesgue. L'espace $H = L^2(\mathbb{R}_+, \mathcal{B}, dx)$ est hilbertien séparable et admet donc une base hilbertienne $(e_k)_{k \in \mathbb{N}}$. Nous considérons une suite i.i.d. $(\xi_k)_{k \in \mathbb{N}}$ de variables réelles gaussiennes standard et nous définissons

$$B_t^n = \sum_{k=0}^n \xi_k \langle e_k, \mathbf{1}_{[0,t]} \rangle, \qquad t \in \mathbb{R}_+, \ n \in \mathbb{N},$$

où $\langle \cdot, \cdot \rangle$ est le produit scalaire canonique de H.

Alors pour m > n

$$\mathbb{E}((B_t^n - B_t^m)^2) = \sum_{k=n+1}^m \langle e_k, \mathbf{1}_{[0,t]} \rangle^2$$

et donc $(B_t^n)_{n\in\mathbb{N}}$ est une suite de Cauchy dans $L^2(\mathbb{P})$ car, comme $\mathbf{1}_{[0,t]} = \sum_{k>0} \langle e_k, \mathbf{1}_{[0,t]} \rangle e_k$,

$$\sum_{k \in \mathbb{N}} \langle e_k, \mathbf{1}_{[0,t]} \rangle^2 = \|\mathbf{1}_{[0,t]}\|_{L^2(\mathbb{R}_+)}^2 = t < +\infty.$$

Pour tout $t \in \mathbb{R}_+$ il existe donc une limite B_t dans $L^2(\mathbb{P})$ de B_t^n quand $n \to +\infty$.

Il faut maintenant prouver que $(B_t)_{t \in \mathbb{R}_+}$ a les propriétés souhaitées. D'abord, pour tout choix de $(t_1, \ldots, t_i) \in (\mathbb{R}_+)^i$, $(B_{t_1}^n, \ldots, B_{t_i}^n)$ est un vecteur gaussien centré car fonction linéaire du vecteur (ξ_1, \ldots, ξ_n) , et la limite dans L^2 de vecteurs gaussiens centrés est un vecteur gaussien centré. Il reste à calculer la fonction de covariance :

$$\mathbb{E}(B_s^n B_t^n) = \sum_{k=0}^n \langle e_k, \mathbf{1}_{[0,s]} \rangle \langle e_k, \mathbf{1}_{[0,t]} \rangle$$

et par la convergence dans $L^2(\mathbb{P})$ de B^n_t vers B_t nous obtenons

$$\mathbb{E}(B_s B_t) = \sum_{k=0}^{\infty} \langle e_k, \mathbf{1}_{[0,s]} \rangle \langle e_k, \mathbf{1}_{[0,t]} \rangle = \langle \mathbf{1}_{[0,s]}, \mathbf{1}_{[0,t]} \rangle = s \wedge t.$$

Ceci conclut la preuve.

1.3. Régularisation des trajectoires

Soit $B = (B_t, t \ge 0)$ un mouvement brownien. Les applications $t \mapsto B_t(\omega)$ pour $\omega \in \Omega$, sont appelées les trajectoires de B. Pour l'instant, on ne peut rien affirmer au sujet de ces trajectoires : il n'est même pas clair que ces applications soient mesurables. Le but de ce paragraphe est de montrer que, quitte à "modifier un peu" B, on peut faire en sorte que les trajectoires soient continues.

DÉFINITION 1.3.1. Soient $(X_t, t \in \mathbf{T})$ et $(\widetilde{X}_t, t \in \mathbf{T})$ deux processus aléatoires (c'est-à-dire deux familles de variables aléatoires) indexés par le même ensemble \mathbf{T} . On dit que \widetilde{X} est une modification de X si

$$\forall t \in \mathbf{T}, \qquad \mathbb{P}[X_t = \widetilde{X}_t] = 1.$$

REMARQUE 1.3.2. Si \widetilde{X} est une modification de X, alors pour tout t_1, t_2, \dots, t_n , le vecteur aléatoire $(\widetilde{X}_{t_1}, \dots, \widetilde{X}_{t_n})$ a même loi que $(X_{t_1}, \dots, X_{t_n})$. En particulier, si X est un mouvement brownien, alors \widetilde{X} est aussi un mouvement brownien.

En revanche, les trajectoires de \widetilde{X} peuvent avoir un comportement différent de celles de X. Il peut arriver que les trajectoires de \widetilde{X} soient toutes continues alors que celles de X sont toutes discontinues (choisir $X_t = 0$ et $\widetilde{X}_t = \mathbf{1}_{t=U}$ avec U uniforme sur [0,1]).

DÉFINITION 1.3.3. Deux processus X et \widetilde{X} sont indistinguables si $\{\exists t \in \mathbf{T}, X_t \neq \widetilde{X}_t\}$ est \mathbb{P} -négligeable i.e., un peu abusivement,

$$\mathbb{P}[\,\forall\,t\in\mathbf{T},\ X_t=\widetilde{X}_t]=1.$$

Si X et \widetilde{X} sont indistinguables, alors \widetilde{X} est une modification de X. La notion d'indistinguabilité est cependant beaucoup plus forte : deux processus indistinguables ont presque sûrement les mêmes trajectoires.

REMARQUE 1.3.4. Si $\mathbf{T} = I$ est un intervalle de \mathbb{R} , et si X et \widetilde{X} sont deux processus dont les trajectoires sont p.s. continues, alors \widetilde{X} est une modification de X si et seulement si X et \widetilde{X} sont indistinguables.

En effet, si \widetilde{X} est une modification de X, alors p.s. pour tout $t \in I \cap \mathbb{Q}$, $X_t = \widetilde{X}_t$. Par continuité, p.s. pour tout $t \in I$, $X_t = \widetilde{X}_t$, c'est-à-dire que X et \widetilde{X} sont indistinguables.

THÉORÈME 1.3.5 (Critère de Kolmogorov). Soit $X = (X_t, t \in I)$ un processus aléatoire indexé par un intervalle $I \subset \mathbb{R}$, à valeurs dans un espace métrique complet (E, d). Supposons qu'il existe trois réels strictement positifs p, ε et C tels que

$$\mathbb{E}\left[d(X_s, X_t)^p\right] \le C |t - s|^{1+\varepsilon}, \quad \forall s, t \in I.$$

Alors il existe une modification \widetilde{X} de X dont les trajectoires sont localement höldériennes d'exposant α , pour tout $\alpha \in]0, \frac{\varepsilon}{p}[$: c'est-à-dire que pour tout T > 0, tout $\alpha \in]0, \frac{\varepsilon}{p}[$, tout $\omega \in \Omega$, il existe $C_{\alpha}(T, \omega)$ tel que

$$d(\widetilde{X}_s(\omega), \widetilde{X}_t(\omega)) \le C_{\alpha}(T, \omega) |t - s|^{\alpha}, \quad \forall s, t \in I \cap [-T, T].$$

De plus, on peut choisir $C_{\alpha}(T,\omega)$ tel que $\mathbb{E}[(C_{\alpha}(T))^p] < \infty$.

Il existe donc une modification continue de X, qui est unique à indistinguabilité près.

Preuve. L'unicité provient de la remarque avant l'énoncé du théorème. On démontre l'existence. Pour simplifier l'écriture, on suppose que I = [0, 1] et que T = 1. On fixe $\alpha \in]0, \epsilon/p|$.

Etape 1. Posons $K_{\alpha} = \sup_{n \geq 0} \max_{i=1,\dots,2^n} 2^{n\alpha} d(X_{(i-1)2^{-n}}, X_{i2^{-n}})$. Alors

$$\mathbb{E}[K_{\alpha}^{p}] \leq \sum_{n \geq 0} \sum_{i=1}^{2^{n}} 2^{n\alpha p} \mathbb{E}[d(X_{(i-1)2^{-n}}, X_{i2^{-n}})^{p}] \leq C \sum_{n \geq 0} \sum_{i=1}^{2^{n}} 2^{n\alpha p} (2^{-n})^{1+\epsilon} = C \sum_{n \geq 0} 2^{n(\alpha p - \epsilon)} < \infty.$$

Etape 2. Soit D l'ensemble des nombres dyadiques de [0,1], i.e. des réels $t \in [0,1]$ qui s'écrivent sous la forme $t = k2^{-n}$, i.e. qui ont un nombre fini de chiffres après la virgule en base 2. Pour n'importe quelle fonction $x : [0,1] \mapsto E$, on a

$$\sigma_{\alpha}(x) = \sup_{s,t \in D, s \neq t} \frac{d(x_s, x_t)}{|t - s|^{\alpha}} \le \frac{2^{1 + \alpha}}{1 - 2^{-\alpha}} \kappa_{\alpha}(x),$$

où $\kappa_{\alpha}(x) = \sup_{n>0} \max_{i=1,\dots,2^n} 2^{n\alpha} d(x_{(i-1)2^{-n}}, x_{i2^{-n}}).$

En effet, soient $s, t \in D$, avec s < t. Soit $n \ge 0$ l'entier tel que $2^{-(n+1)} < t - s \le 2^{-n}$. Soit $k = \lfloor 2^n s \rfloor$. Alors s et t s'écrivent donc sous la forme

$$s = \frac{k}{2^n} + \frac{\varepsilon_{n+1}}{2^{n+1}} + \dots + \frac{\varepsilon_{n+\ell}}{2^{n+\ell}},$$

$$t = \frac{k}{2^n} + \frac{\widetilde{\varepsilon}_n}{2^n} + \frac{\widetilde{\varepsilon}_{n+1}}{2^{n+1}} + \dots + \frac{\widetilde{\varepsilon}_{n+m}}{2^{n+m}},$$

avec des ε_j , $\widetilde{\varepsilon}_j=0$ ou 1. On introduit

$$s_{i} = \frac{k}{2^{n}} + \frac{\varepsilon_{n+1}}{2^{n+1}} + \dots + \frac{\varepsilon_{n+i}}{2^{n+i}}, \quad 0 \le i \le \ell,$$

$$t_{j} = \frac{k}{2^{n}} + \frac{\widetilde{\varepsilon}_{n}}{2^{n}} + \frac{\widetilde{\varepsilon}_{n+1}}{2^{n+1}} + \dots + \frac{\widetilde{\varepsilon}_{n+j}}{2^{n+j}}, \quad 0 \le j \le m,$$

de sorte que $s = s_{\ell}$ et $t = t_m$. Du coup,

$$d(x_{s}, x_{t}) = d(x_{s_{\ell}}, x_{t_{m}}) \leq d(x_{s_{0}}, x_{t_{0}}) + \sum_{i=1}^{\ell} d(x_{s_{i-1}}, x_{s_{i}}) + \sum_{j=1}^{m} d(x_{t_{j-1}}, x_{t_{j}})$$

$$\leq \kappa_{\alpha}(x) \left[2^{-n\alpha} + \sum_{i=1}^{\ell} 2^{-(n+i)\alpha} + \sum_{j=1}^{m} 2^{-(n+j)\alpha} \right]$$

$$\leq \kappa_{\alpha}(x) 2^{-n\alpha} \left[2 \sum_{i=0}^{\infty} 2^{-i\alpha} \right] = \kappa_{\alpha}(x) 2^{-n\alpha} \frac{2}{1 - 2^{-\alpha}}.$$

Comme $2^{-n} \le 2|t-s|$, on a $2^{-n\alpha} \le 2^{\alpha}|t-s|^{\alpha}$, et donc finalement

$$\frac{d(x_s, x_t)}{|t - s|^{\alpha}} \le \kappa_{\alpha}(x) \frac{2^{1 + \alpha}}{1 - 2^{-\alpha}}$$

comme convenu.

Etape 3. Grâce aux étapes 1 et 2, on trouve que $\mathbb{E}[(\sigma_{\alpha}(X))^p] < \infty$, et donc $A = \{\sigma_{\alpha}(X) < \infty\}$ est de probabilité 1. En particulier, pour $\omega \in A$, la fonction $t \mapsto X_t(\omega)$ est höldérienne sur D et donc uniformément continue sur D. Puisque (E,d) est complet, cette fonction a p.s. un unique prolongement continu à I = [0,1], et ce prolongement est lui aussi höldérien d'exposant α . Plus précisément, soit pour tout $t \in [0,1]$

$$\widetilde{X}_t(\omega) = \lim_{s \to t, \ s \in D} X_s(\omega)$$

si $\omega \in A$, et $\widetilde{X}_t(\omega) = x_0$ (un point quelconque de E) si $\omega \notin A$. Alors bien sûr,

$$C_{\alpha} = \sup_{s,t \in [0,1], s \neq t} \frac{d(\widetilde{X}_t, \widetilde{X}_s)}{|t-s|^{\alpha}} = \sup_{s,t \in D, s \neq t} \frac{d(\widetilde{X}_t, \widetilde{X}_s)}{|t-s|^{\alpha}} = \sup_{s,t \in D, s \neq t} \frac{d(X_t, X_s)}{|t-s|^{\alpha}} = \sigma_{\alpha}(X)$$

sur A (et 0 sur A^c). Ainsi, \widetilde{X} est höldérien d'exposant α et $\mathbb{E}[(C_\alpha)^p] < \infty$.

Il reste à voir que \widetilde{X} est une modification de X. Pour tout $t \in [0,1]$ nous avons par convergence dominée

$$\mathbb{E}\left[d(\widetilde{X}_t, X_t)^p \wedge 1\right] = \lim_{s \to t, s \in D} \mathbb{E}\left[d(X_s, X_t)^p \wedge 1\right].$$

Par hypothèse, on conclut que $\mathbb{E}\left[d(\widetilde{X}_t, X_t)^p \wedge 1\right] \leq \lim_{s \to t, s \in D} C |t - s|^{1+\varepsilon} = 0.$

COROLLAIRE 1.3.6. Soit $B = (B_t, t \ge 0)$ un mouvement brownien. Le processus B admet une modification dont les trajectoires sont localement höldériennes d'exposant α , pour tout $\alpha \in]0, 1/2[$. En particulier, B admet une modification continue. Et cette modification est encore un mouvement brownien.

Preuve. Ceci découle du critère de Kolmogorov : pour tout p > 2, pour tous $t, s \ge 0$, on a $\mathbb{E}[|B_t - B_s|^p] = C_p (t-s)^{p/2}$, où $C_p = \mathbb{E}[|\mathcal{N}(0,1)|^p] < \infty$. Donc B admet une modification dont les trajectoires sont localement höldériennes d'exposant α , pour tout $\alpha \in]0, (p/2-1)/p[$. Comme p peut être choisi arbitrairement grand, les trajectoires sont en fait localement höldériennes d'exposant α , pour tout $\alpha \in]0, 1/2[$.

On adopte donc la définition suivante, qui annule la précédente (Définition 1.2.2).

DÉFINITION 1.3.7. On dit que $B=(B_t,t\geq 0)$ est un mouvement brownien (réel, issu de 0), si B est un processus gaussien centré de covariance $\mathbb{E}(B_sB_t)=\min\{s,t\}=s\wedge t,$ $s,t\geq 0$ et si pour tout ω , $t\mapsto B_t(\omega)$ est continue sur $[0,\infty[$.

On voit donc que B est automatiquement höldérien d'exposant α , pour tout $\alpha \in]0, 1/2[$. Nous verrons que p.s., B n'est pas höldérien d'exposant 1/2.

1.4. Processus canonique et mesure de Wiener

On considère $C(\mathbb{R}_+, \mathbb{R})$ l'espace des fonctions réelles continues sur \mathbb{R}_+ , muni de la topologie de convergence uniforme sur les compacts, qui peut être métrisée ainsi :

$$d(\mathbf{w}, \mathbf{w}') = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\delta_n(\mathbf{w}, \mathbf{w}')}{1 + \delta_n(\mathbf{w}, \mathbf{w}')},$$

où $\delta_n(\mathbf{w}, \mathbf{w}') = \sup_{t \in [0, n]} |\mathbf{w}(t) - \mathbf{w}'(t)|.$

RAPPEL 1.4.1. (i) $C(\mathbb{R}_+, \mathbb{R})$, muni de la topologie ci-dessus, est séparable.

- (ii) $C(\mathbb{R}_+, \mathbb{R})$, muni de la convergence uniforme (sur \mathbb{R}_+), n'est pas séparable.
- (iii) Si E (muni d'une certaine topologie) est séparable, alors tout sous-ensemble F de E, muni de la topologie induite, est séparable.

On note $\mathscr{C}(\mathbb{R}_+,\mathbb{R})$ la tribu borélienne de $C(\mathbb{R}_+,\mathbb{R})$ (muni de la topologie ci-dessus).

Pour tout $t \geq 0$, soit $X_t : C(\mathbb{R}_+, \mathbb{R}) \mapsto \mathbb{R}$ défini par $X_t(w) = w(t)$.

On dit que $(X_t, t \geq 0)$ est le processus canonique sur $C(\mathbb{R}_+, \mathbb{R})$.

LEMME 1.4.2. On a $\sigma(X_t, t \geq 0) = \mathscr{C}(\mathbb{R}_+, \mathbb{R})$.

Preuve. Pour $t \geq 0$, $X_t : C(\mathbb{R}_+, \mathbb{R}) \mapsto \mathbb{R}$ est continu (si $d(w_n, w) \to 0$, alors $X_t(w_n) \to X_t(w)$) et donc mesurable pour la tribu $\mathscr{C}(\mathbb{R}_+, \mathbb{R})$ (et $\mathcal{B}(\mathbb{R})$). Ainsi, $\sigma(X_t, t \geq 0) \subset \mathscr{C}(\mathbb{R}_+, \mathbb{R})$.

Pour l'autre inclusion, il suffit de montrer que pour F un fermé de $C(\mathbb{R}_+, \mathbb{R})$, on a $F \in \sigma(X_t, t \geq 0)$. Comme F est fermé, $F = \{w \in C(\mathbb{R}_+, \mathbb{R}) : d(w, F) = 0\}$. Il suffit donc de vérifier que $w \mapsto d(w, F)$ est $\sigma(X_t, t \geq 0)$ -mesurable. On considère $(w_k)_{k\geq 1}$ une suite dense de F (on rappelle que $C(\mathbb{R}_+, \mathbb{R})$ est séparable), on écrit $d(w, F) = \inf_{k\geq 1} d(w, w_k)$,

et il suffit de montrer que pour tout $\mathbf{w}_0 \in C(\mathbb{R}_+, \mathbb{R})$ fixé, l'application $\mathbf{w} \mapsto d(\mathbf{w}, \mathbf{w}_0)$ est $\sigma(X_t, t \geq 0)$ -mesurable. Par définition de d, il suffit de montrer que pour tout $n \geq 1$, $\mathbf{w} \mapsto \delta_n(\mathbf{w}, \mathbf{w}_0)$ est $\sigma(X_t, t \geq 0)$ -mesurable. Mais $\mathbf{w} \mapsto \delta_n(\mathbf{w}, \mathbf{w}_0) = \sup_{t \in [0, n] \cap \mathbb{Q}} |\mathbf{w}(t) - \mathbf{w}_0(t)| = \sup_{t \in [0, n] \cap \mathbb{Q}} |X_t(\mathbf{w}) - X_t(\mathbf{w}_0)|$ est bien sûr $\sigma(X_s, s \geq 0)$ -mesurable.

Nous voyons ainsi que tout processus à trajectoires continues est en fait une v.a. à valeurs dans $(C(\mathbb{R}_+,\mathbb{R}),\mathscr{C}(\mathbb{R}_+,\mathbb{R}))$.

DÉFINITION 1.4.3. ET THÉOREME. Soit $(Z_t)_{t\geq 0}$ un processus (pour chaque $t\geq 0$, Z_t est une variable aléatoire réelle), défini sur $(\Omega, \mathscr{F}, \mathbb{P})$, à valeurs dans \mathbb{R} et à trajectoires continues (pour tout $\omega \in \Omega$, $t \mapsto Z_t(\omega)$ est continu sur \mathbb{R}_+). Alors l'application Z suivante :

$$\Omega \longrightarrow C(\mathbb{R}_+, \mathbb{R})$$
 $\omega \longmapsto Z(\omega) = (t \mapsto Z_t(\omega), t \ge 0)$

est une variable aléatoire à valeurs dans $(C(\mathbb{R}_+,\mathbb{R}))$, $\mathscr{C}(\mathbb{R}_+,\mathbb{R}))$. On appelle **loi** de Z la mesure probabilité μ_Z sur $(C(\mathbb{R}_+,\mathbb{R}),\mathscr{C}(\mathbb{R}_+,\mathbb{R}))$, image de \mathbb{P} par l'application Z. Autrement dit, pour $A \in \mathscr{C}(\mathbb{R}_+,\mathbb{R})$, $\mu_Z(A) = \mathbb{P}((t \mapsto Z_t, t \ge 0) \in A)$.

Preuve. Il s'agit de montrer que Z est $(\mathscr{F}, \mathscr{C}(\mathbb{R}_+, \mathbb{R}))$ -mesurable. On considère donc $\mathscr{U} = \{A \in \mathscr{C}(\mathbb{R}_+, \mathbb{R}) : \{Z \in A\} \in \mathscr{F}\}$, qui est une tribu, et on veut que $\mathscr{U} = \mathscr{C}(\mathbb{R}_+, \mathbb{R})$. Pour tout $t \geq 0$ et tout $\Gamma \in \mathscr{B}(\mathbb{R})$, $X_t^{-1}(\Gamma) \in \mathscr{U}$, car $\{Z \in X_t^{-1}(\Gamma)\} = \{X_t(Z) \in \Gamma\} = \{Z_t \in \Gamma\} \in \mathscr{F}$ puisque Z_t est une v.a. Donc $\sigma(X_t, t \geq 0) \subset \mathscr{U}$, puis $\mathscr{U} = \mathscr{C}(\mathbb{R}_+, \mathbb{R})$ par le lemme. \square

THÉORÈME 1.4.4. Soit Z et \tilde{Z} deux processus à valeurs dans \mathbb{R} à trajectoires continues. Alors $\mu_Z = \mu_{\tilde{Z}}$ si et seulement si pour tout $t_1, \ldots, t_n \in \mathbb{R}_+$, les vecteurs $(Z_{t_1}, \ldots, Z_{t_n})$ et $(\tilde{Z}_{t_1}, \ldots, \tilde{Z}_{t_n})$ ont même loi.

On dit que la loi d'un processus continu est caractérisée par ses lois fini-dimensionnelles. En particulier, tous les mouvements browniens (continus) ont la même loi. Ceci découle immédiatement du rappel et de la remarque suivants.

RAPPEL 1.4.5. Si deux probabilités μ et ν sur un espace mesurable (E, \mathcal{E}) coïncident sur un pi-système \mathcal{P} (\mathcal{P} stable par intersection et $E \in \mathcal{P}$) qui engendre \mathcal{E} , alors $\mu = \nu$.

Remarque 1.4.6. La classe \mathcal{P} des parties de $C(\mathbb{R}_+,\mathbb{R})$ de la forme

$$\{w \in C(\mathbb{R}_+, \mathbb{R}) : (X_{t_1}(w), \dots, X_{t_n}(w)) \in A\},\$$

avec $n \ge 1$, $0 \le t_1 < \cdots < t_n$ et $A \in \mathcal{B}(\mathbb{R}^n)$ est un pi-système (facile) qui engendre $\mathcal{C}(\mathbb{R}_+, \mathbb{R})$ (facile par le lemme 1.4.2).

DÉFINITION 1.4.7. On appelle mesure de Wiener la loi du mouvement brownien. C'est l'unique probabilité \mathbf{W} sur $(C(\mathbb{R}_+,\mathbb{R}),\mathscr{C}(\mathbb{R}_+,\mathbb{R}))$ telle que $\mathbf{W}(\{\mathbf{w}:\mathbf{w}(0)=0\})=1$, et que pour tout $n \geq 1$, tout $0 = t_0 < t_1 < t_2 < \cdots < t_n$ et tout $A \in \mathscr{B}(\mathbb{R}^n)$,

$$\mathbf{W}(\{\mathbf{w}: (X_{t_1}(\mathbf{w}), \cdots, X_{t_n}(\mathbf{w})) \in A\})$$

$$= \int_A \frac{1}{(2\pi)^{n/2} \sqrt{t_1(t_2 - t_1) \cdots (t_n - t_{n-1})}} \exp\left(-\frac{1}{2} \sum_{k=1}^n \frac{(x_k - x_{k-1})^2}{t_k - t_{k-1}}\right) dx_1 \cdots dx_n,$$
avec la notation $x_0 = 0$ et $t_0 = 0$.

REMARQUE 1.4.8. Le processus canonique $(X_t, t \geq 0)$, défini sur l'espace de probabilités $(\Omega, \mathscr{F}, \mathbb{P}) = (C(\mathbb{R}_+, \mathbb{R}), \mathscr{C}(\mathbb{R}_+, \mathbb{R}), \mathbf{W})$ par $X_t(w) = w(t)$, est un mouvement brownien.

Le processus canonique du mouvement brownien permet de voir clairement la mesurabilité de la plupart des ensembles dans la pratique. Par exemple, pour tout t > 0, $S_t = \sup_{0 \le s \le t} X_s$ (ou $\int_0^t X_s^2 ds$, $\sup_{[0,t]} |X_s|$, etc.) est une variable aléatoire. En effet, $S_t(\mathbf{w}) = \psi(\mathbf{w})$, où $\psi(\mathbf{w}) = \sup_{[0,t]} \mathbf{w}_s$ est mesurable (car continue) de $(C(\mathbb{R}_+, \mathbb{R}), \mathscr{C}(\mathbb{R}_+, \mathbb{R}))$ dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

1.5. Indépendance

Nous énonçons une fois pour toutes le résultat suivant.

PROPOSITION 1.5.1. Soient $(X_t)_{t\geq 0}$ et $(Y_t)_{t\geq 0}$ deux processus continus à valeurs dans \mathbb{R} , définis sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et soit \mathscr{G} une sous-tribu de \mathcal{F} .

- (i) Si pour tout $A \in \mathcal{G}$, tout $n \geq 1$, tout $0 \leq t_1 < \cdots < t_n$, le vecteur $(X_{t_1}, \dots, X_{t_n})$ est indépendant de A, alors le processus $(X_t)_{t\geq 0}$ est indépendant de \mathcal{G} .
- (ii) Si pour tout $n \ge 1$, tout $0 \le t_1 < \cdots < t_n$, les vecteurs $(X_{t_1}, \dots, X_{t_n})$ et $(Y_{t_1}, \dots, Y_{t_n})$ sont indépendants, alors les processus $(X_t)_{t>0}$ et $(Y_t)_{t>0}$ sont indépendants.

Preuve. On rappelle le résultat suivant, qui résulte du théorème des classes monotones. Soit X une variable aléatoire à valeurs dans (E,\mathscr{E}) définie sur $(\Omega,\mathscr{F},\mathbb{P})$, soit \mathscr{G} une sous-tribu de \mathscr{F} et soit $\mathscr{P}\subset\mathscr{E}$ un pi-système engendrant \mathscr{E} . Si on a $\mathbb{P}(X\in\Gamma,A)=\mathbb{P}(X\in\Gamma)\mathbb{P}(A)$ pour tout $\Gamma\in\mathscr{P}$ et tout $A\in\mathscr{G}$, alors X est indépendante de \mathscr{G} .

Pour montrer (i), il suffit d'appliquer ce résultat avec $X = (X_t)_{t\geq 0}$, qui est à valeurs dans $(C(\mathbb{R}_+, \mathbb{R}), \mathscr{C}(\mathbb{R}_+, \mathbb{R}))$, avec le pi-système \mathcal{P} composé des parties de $C(\mathbb{R}_+, \mathbb{R})$ de la forme

$$\{\mathbf{w}\in C(\mathbb{R}_+,\mathbb{R}): (\mathbf{w}_{t_1},\ldots,\mathbf{w}_{t_n})\in \Gamma\},\$$

avec $n \ge 1$, $0 \le t_1 < \cdots < t_n$ et $\Gamma \in \mathcal{B}(\mathbb{R}^n)$, voir la Remarque 1.4.6.

La preuve de (ii) est similaire.

Chapitre 2

Mouvement brownien et propriété de Markov

Le mouvement brownien est au carrefour de plusieurs classes importantes de processus aléatoires. Nous l'avons introduit dans le chapitre précédent comme un processus gaussien et processus à accroissements indépendants et stationnaires. Le présent chapitre est consacré à l'étude du mouvement brownien en tant que processus de Markov. Au Chapitre 3, on étudiera le mouvement brownien en tant que martingale.

2.1. Premières propriétés

Proposition 2.1.1. Si B est un mouvement brownien, alors les processus suivants sont aussi des mouvements browniens (continus).

- (i) $\widetilde{B}_t = -B_t$ (symétrie).
- (ii) $\widetilde{B}_t = tB_{1/t}$, $\widetilde{B}_0 = 0$ (inversion du temps).
- (iii) a > 0 fixé, $\widetilde{B}_t = \frac{1}{\sqrt{a}} B_{at}$ (changement d'échelle).
- (iv) T > 0 fixé, $\widetilde{B}_t = B_T B_{T-t}$, $t \in [0, T]$ (retournement du temps).

Preuve. Il suffit de vérifier à chaque fois que \widetilde{B} est un processus gaussien centré de covariance $s \wedge t$, à trajectoires p.s. continues. C'est très facile. La seule difficulté consiste à montrer, dans le cas (ii), la continuité p.s. en 0 de \widetilde{B} . Mais nous savons que \widetilde{B} admet une modification \overline{B} continue. Comme de plus, \widetilde{B} est continu sur $]0, \infty[$, on en déduit que p.s., pour tout t > 0, $\overline{B}_t = \widetilde{B}_t$. Comme enfin $\widetilde{B}_0 = \overline{B}_0 = 0$, on conclut que p.s., pour tout $t \geq 0$, $\overline{B}_t = \widetilde{B}_t$. Donc \widetilde{B} est p.s. continu sur $[0, \infty[$.

EXERCICE 2.1.2 (Pont brownien). Soit B un mouvement brownien, et soit $b_t = B_t - tB_1$, $t \in [0,1]$. Montrer que b est un processus gaussien centré de covariance $(s \wedge t) - st$. On dit que b est un pont brownien (standard). Montrer aussi que $(b_t)_{t \in [0,1]}$ est indépendant de B_1 , que $(b_{1-t}, t \in [0,1])$ est aussi un pont brownien (qu'il a même loi que $(b_t)_{t \in [0,1]}$), et que $(\widetilde{B}_t = (1+t)b_{t/(1+t)}, t \geq 0)$ est un mouvement brownien.

2.2. Propriété de Markov simple

Dans cette section, \mathscr{F}_t désigne la tribu engendrée par $(B_s, 0 \le s \le t)$.

THÉORÈME 2.2.1 (Propriété de Markov simple). Soit $s \geq 0$. Le processus ($\widetilde{B}_t = B_{t+s} - B_s$, $t \geq 0$) est un mouvement brownien, indépendant de \mathscr{F}_s .

Preuve. On peut facilement vérifier que \widetilde{B} est un processus gaussien centré à trajectoires p.s. continues, avec $\widetilde{B}_0 = 0$, p.s., dont la covariance vaut $\mathbb{E}(\widetilde{B}_t \widetilde{B}_{t'}) = t \wedge t'$; c'est donc un mouvement brownien.

Pour démontrer l'indépendance, il suffit de montrer que pour $0 \leq t_1 < \cdots < t_n$ et $0 \leq s_1 < \cdots < s_m \leq s$, les vecteurs $(\widetilde{B}_{t_1}, \cdots, \widetilde{B}_{t_n})$ et $(B_{s_1}, \cdots, B_{s_m})$ sont indépendants. Or, $Cov(\widetilde{B}_{t_i}, B_{s_j}) = \mathbb{E}[(B_{s+t_i} - B_s)B_{s_j}] = 0$ (car $s \geq s_j$); comme $(\widetilde{B}_{t_1}, \cdots, \widetilde{B}_{t_n}, B_{s_1}, \cdots, B_{s_m})$ est un vecteur gaussien, on a l'indépendance entre $(\widetilde{B}_{t_1}, \cdots, \widetilde{B}_{t_n})$ et $(B_{s_1}, \cdots, B_{s_m})$.

La propriété de Markov du mouvement brownien peut être renforcée de la façon suivante.

Théorème 2.2.2. Soit $s \ge 0$, et soit

$$\mathscr{F}_{s+} = \bigcap_{u>s} \mathscr{F}_u.$$

Le processus $(\widetilde{B}_t = B_{t+s} - B_s, t \ge 0)$ est indépendant de \mathscr{F}_{s+s}

Preuve. Pour démontrer le théorème, il suffit de vérifier que, pour $A \in \mathscr{F}_{s+}$, $0 \le t_1 < t_2 < \cdots < t_n$ et $F : \mathbb{R}^n \to \mathbb{R}$ continue et bornée,

(2.1)
$$\mathbb{E}\left[\mathbf{1}_{A} F(\widetilde{B}_{t_{1}}, \cdots, \widetilde{B}_{t_{n}})\right] = \mathbb{P}(A) \mathbb{E}\left[F(B_{t_{1}}, \cdots, B_{t_{n}})\right].$$

Soit $\varepsilon > 0$. D'après le Théorème 2.2.1, le processus $t \mapsto B_{t+s+\varepsilon} - B_{s+\varepsilon}$ est indépendant de $\mathscr{F}_{s+\varepsilon}$, et a fortiori de \mathscr{F}_{s+} . Donc

$$\mathbb{E}\left[\mathbf{1}_{A} F(B_{t_{1}+s+\varepsilon}-B_{s+\varepsilon},\cdots,B_{t_{n}+s+\varepsilon}-B_{s+\varepsilon})\right] = \mathbb{P}(A) \mathbb{E}\left[F(B_{t_{1}},\cdots,B_{t_{n}})\right].$$

En faisant $\varepsilon \to 0$, et à l'aide de la continuité des trajectoires et du théorème de convergence dominée, on obtient (2.1).

Théorème 2.2.3 (loi 0–1 de Blumenthal). La tribu \mathscr{F}_{0+} est triviale, au sens où $\forall A \in \mathscr{F}_{0+}$, $\mathbb{P}(A)=0$ ou 1.

Preuve. Par le Théorème 2.2.2, \mathscr{F}_{0+} est indépendante de la tribu $\sigma(B_t, t \geq 0)$. Comme \mathscr{F}_{0+} est contenue dans $\sigma(B_t, t \geq 0)$, on en déduit que \mathscr{F}_{0+} est indépendante d'elle-même, donc triviale.

Exemple 2.2.4. On a p.s.

$$\limsup_{t\to 0}\frac{B_t}{\sqrt{t}}=+\infty, \qquad \liminf_{t\to 0}\frac{B_t}{\sqrt{t}}=-\infty, \qquad \limsup_{t\to \infty}\frac{B_t}{\sqrt{t}}=+\infty, \qquad \liminf_{t\to \infty}\frac{B_t}{\sqrt{t}}=-\infty.$$

Par symétrie et inversion du temps, il suffit de traiter la première limite. Fixons K > 0. Soit $A_n = \{\sqrt{n} B_{1/n} > K\}$.

Alors $\limsup A_n$ est \mathscr{F}_{0+} -mesurable car pour tout $k \geq 1$, $\limsup A_n = \limsup A_{n+k} \in \mathscr{F}_{1/k}$.

De plus, $\mathbb{P}(\limsup A_n) \ge \limsup_{N\to\infty} \mathbb{P}(A_N) = \mathbb{P}(B_1 > K) > 0$, on a, par la loi 0–1, $\mathbb{P}(\limsup A_n) = 1$.

A fortiori, on a p.s. $\limsup_{t\to 0} \frac{B_t}{\sqrt{t}} \ge K$, p.s. puis, comme K est arbitraire, $\limsup_{t\to 0} \frac{B_t}{\sqrt{t}} = +\infty$ p.s.

On en déduit des propriétés intéressantes du brownien :

- (a) p.s., les trajectoires de B ne sont pas höldériennes d'exposant $\frac{1}{2}$.
- (b) p.s., il existe une suite $t_n(\omega)$ strictement décroissante vers 0 telle que $B_{t_n} > 0$ pour une infinité de n et $B_{t_n} < 0$ pour une infinité de n.
 - (c) p.s., pour tout $a \in \mathbb{R}$, $\tau_a = \inf\{t \ge 0 : B_t = a\} < \infty$.

(d) p.s.,
$$\{t \ge 0 : B_t = 0\}$$
 est non borné.

EXERCICE 2.2.5. Soit $(t_n)_{n\geq 1}$ une suite déterministe strictement décroissante vers 0. Alors p.s. $B_{t_n} > 0$ pour une infinité de n, et $B_{t_n} < 0$ pour une infinité de n.

2.3. Semi-groupe du mouvement brownien

On note $C_b(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \text{ continue born\'ee}\}, C_0 = \{f \in C_b(\mathbb{R}) : \lim_{|x| \to \infty} f(x) = 0\},$ et $C_c^2 = \{f \in C^2(\mathbb{R}) : f \text{ à support compact}\}.$ On note $||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|.$

Pour $(B_t, t \ge 0)$ un mouvement Brownien standard issu de $0, t \ge 0, f \in C_b(\mathbb{R})$ et $x \in \mathbb{R}$, on pose

$$P_t f(x) = \mathbb{E}[f(x+B_t)] = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(x-y)^2}{2t}\right) f(y) \, \mathrm{d}y.$$

PROPOSITION 2.3.1. 1. Pour $f \in C_b(\mathbb{R})$, $P_t f \in C_b(\mathbb{R})$ et $||P_t f||_{\infty} \leq ||f||_{\infty}$, et pour tous $s, t \geq 0$, $P_t(P_s f) = P_{t+s} f$.

- 2. Propriété de Feller : $Si\ f \in C_0$, alors $P_t f \in C_0$ et $\lim_{t\downarrow 0} \|P_t f f\|_{\infty} = 0$.
- 3. Générateur infinitésimal : $Si\ f \in C_c^2$, $alors\ \lim_{t\downarrow 0} \frac{P_t f(x) f(x)}{t} = \frac{1}{2} f''(x)$.
- 4. Lien avec l'équation de la chaleur : $Si \ f \in C_b(\mathbb{R})$, alors $u(t,x) = P_t f(x)$ est continue $sur \ [0, \infty[\times \mathbb{R} \ et \ C^{\infty} \ sur \]0, \infty[\times \mathbb{R} \ .De \ plus, \ u(0,x) = f(x) \ et$

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}, \qquad t > 0.$$

Preuve. 1. Il est évident que $||P_t f||_{\infty} \leq ||f||_{\infty}$ et très facile que $P_t f \in C_b(\mathbb{R})$. Ensuite, comme $B_{t+s} - B_t$ est indépendant de B_t et de même loi que B_s ,

$$P_{t+s}f(x) = \mathbb{E}[f(x+B_{t+s})] = \mathbb{E}[\mathbb{E}[f(x+B_t+(B_{t+s}-B_t))|B_t]] = \mathbb{E}[P_sf(x+B_t)] = P_t(P_sf)(x).$$

- 2. Si $f \in C_0(\mathbb{R})$, alors $P_t f \in C_0(\mathbb{R})$, puisque $\lim_{|x| \to \infty} \mathbb{E}[f(x+B_t)] = 0$ par convergence dominée. Montrons que $||P_t f f||_{\infty} \to 0$ quand $t \to 0$. Comme $f \in C_0(\mathbb{R})$, f est uniformément continue sur \mathbb{R} . Donc $||P_t f f||_{\infty} \leq \mathbb{E}[\sup_{x \in \mathbb{R}} |f(x+B_t) f(x)|]$ tend vers 0, par convergence dominée et car B_t tend vers 0 p.s. quand $t \to 0$.
- 3. Pour $f \in C_c^2(\mathbb{R})$, il existe une constante K > 0 telle que pour tous $x, z \in \mathbb{R}$, on a $\left|\frac{f(x+z)-f(x)-zf'(x)}{z^2}\right| \leq K$. De plus, $\lim_{z\to 0} \frac{f(x+z)-f(x)-zf'(x)}{z^2} = \frac{1}{2}f''(x)$. Du coup,

$$\frac{P_t f(x) - f(x)}{t} = t^{-1} \mathbb{E}[f(x + B_t) - f(x)] = t^{-1} \mathbb{E}[f(x + B_t) - f(x) - f'(x)B_t],$$

qu'on peut aussi écrire

$$\frac{P_t f(x) - f(x)}{t} = \mathbb{E}\left[\frac{f(x + \sqrt{t}B_1) - f(x) - f'(x)\sqrt{t}B_1}{t}\right],$$

tend vers $\frac{1}{2}f''(x)$ par convergence dominée quand $t \to 0$ (la variable dans l'espérance est bornée par $KB_1^2 \in L^1$).

4. La fonction $u(t,x) = E[f(x+B_t)]$ est continue sur $[0,\infty[\times\mathbb{R}, \text{ car }(x,t)\mapsto f(x+B_t)]$ est p.s. continue et bornée sur $[0,\infty[\times\mathbb{R}, \text{ Il est fastidieux mais sans surprise de montrer que$

$$u(t, x) = \frac{1}{(2\pi)^{1/2}} \int_{\mathbb{R}} f(r) \frac{1}{t^{1/2}} \exp\left(-\frac{(r-x)^2}{2t}\right) dr$$

est C^{∞} sur $]0,\infty[\times\mathbb{R}$ et qu'on peut dériver sous le signe intégrale. Ainsi, on trouve

$$\frac{\partial u(t, x)}{\partial t} = \frac{1}{(2\pi)^{1/2}} \int_{\mathbb{R}} f(r) \left(-\frac{1}{2t^{3/2}} + \frac{(r-x)^2}{2t^{5/2}} \right) \exp\left(-\frac{(r-x)^2}{2t} \right) dr$$

et

$$\frac{\partial^2 u(t, x)}{\partial x^2} = \frac{1}{(2\pi)^{1/2}} \int_{\mathbb{R}} f(r) \frac{1}{t^{1/2}} \left(-\frac{1}{t} + \frac{(r-x)^2}{t^2} \right) \exp\left(-\frac{(r-x)^2}{2t} \right) dr.$$

On constate alors que $\frac{\partial u(t,x)}{\partial t} = \frac{1}{2} \frac{\partial^2 u(t,x)}{\partial x^2}$.

2.4. Propriété de Markov forte

Soit B un mouvement brownien défini dans un espace de probabilité complet, et soit \mathscr{F}_t la tribu engendrée par $(B_s, 0 \le s \le t)$. On note \mathscr{F}_{∞} la tribu engendrée par $(B_s, s \ge 0)$. La propriété de Markov nous dit que pour tout s, $(B_{t+s} - B_s, t \ge 0)$ est un mouvement brownien, indépendant de \mathscr{F}_s . Dans cette section, on étend cette propriété à des instants aléatoires s.

DÉFINITION 2.4.1. Une application $\tau: \Omega \to \mathbb{R}_+ \cup \{\infty\}$ est un temps d'arrêt si pour tout $t \geq 0$, $\{\tau \leq t\} \in \mathscr{F}_t$.

EXEMPLE 2.4.2. Le temps constant $\tau \equiv t_0$ est un temps d'arrêt. Un autre exemple est $\tau = \tau_a$, où $\tau_a = \inf\{t > 0 : B_t = a\}$ (avec la convention habituelle $\inf \emptyset = +\infty$). En effet, pour $a \geq 0$, $\{\tau_a \leq t\} = \{\sup_{0 \leq s \leq t} B_s \geq a\} \in \mathscr{F}_t$. En revanche, $\tau = \sup\{s \leq 1 : B_s = 0\}$ n'est pas un temps d'arrêt (cela découlera par l'absurde de la propriété de Markov forte ci-dessous et de l'Exemple 2.2.4-(b)).

Définition 2.4.3. Soit τ un temps d'arrêt. La tribu des événements antérieurs à τ est

$$\mathscr{F}_{\tau} = \{ A \in \mathscr{F}_{\infty} : \ \forall t \ge 0, \ A \cap \{ \tau \le t \} \in \mathscr{F}_{t} \}.$$

EXEMPLE 2.4.4. Les variables τ et $B_{\tau} \mathbf{1}_{\{\tau < \infty\}}$ sont \mathscr{F}_{τ} -mesurables. Pour τ , il suffit de remarquer que $\{\tau \leq u\} \cap \{\tau \leq t\} = \{\tau \leq u \wedge t\} \in \mathscr{F}_t$ pour tous $u, t \geq 0$. Pour $B_{\tau} \mathbf{1}_{\{\tau < \infty\}}$, on voit que

$$B_{\tau} \mathbf{1}_{\{\tau < \infty\}} = \lim_{n \to +\infty} \sum_{i=0}^{\infty} \mathbf{1}_{\{i/2^n < \tau \le (i+1)/2^n\}} B_{i/2^n} = \lim_{n \to +\infty} \sum_{i=0}^{\infty} \left(\mathbf{1}_{\{i/2^n < \tau\}} - \mathbf{1}_{\{(i+1)/2^n < \tau\}} \right) B_{i/2^n}.$$

Or $\mathbf{1}_{\{s<\tau\}}B_u$ est \mathscr{F}_{τ} -mesurable si $u\leq s$, puisque

$$\{\mathbf{1}_{\{s<\tau\}}B_u \le a\} \cap \{\tau \le t\} = \{B_u \le a, s < \tau \le t\} \cup \{0 \le a, \tau \le s \land t\} \in \mathscr{F}_t.$$

THÉORÈME 2.4.5 (Propriété de Markov forte). Soit τ un temps d'arrêt. Conditionnellement à $\{\tau < \infty\}$, le processus $\widetilde{B} = (B_{\tau+t} - B_{\tau}, t \geq 0)$ est un mouvement brownien indépendant de \mathscr{F}_{τ} .

Preuve. On va montrer que, pour $A \in \mathscr{F}_{\tau}$, $0 \le t_1 < \dots < t_n$ et $F : \mathbb{R}^n \to \mathbb{R}_+$ continue et bornée,

(2.2)
$$\mathbb{E}\left[\mathbf{1}_{A\cap\{\tau<\infty\}}F(\widetilde{B}_{t_{1}},\cdots,\widetilde{B}_{t_{n}})\right] = \mathbb{P}(A\cap\{\tau<\infty\})\,\mathbb{E}\left[F(B_{t_{1}},\cdots,B_{t_{n}})\right].$$
Si $\tau_{m} = \lceil \tau 2^{m} \rceil / 2^{m} \, \text{sur} \, \{\tau<\infty\}, \, \text{où} \, \lceil x \rceil = \min\{n\in\mathbb{Z}: n\geq x\}, \, \text{alors}$

$$\mathbf{1}_{A\cap\{\tau<\infty\}}F(B_{\tau_{m}+t_{1}}-B_{\tau_{m}},\cdots,B_{\tau_{m}+t_{n}}-B_{\tau_{m}})$$

$$=\sum_{k=0}^{\infty}\mathbf{1}_{A\cap\{(k-1)/2^{m}<\tau\leq k/2^{m}\}}F(B_{(k/2^{m})+t_{1}}-B_{k/2^{m}},\cdots,B_{(k/2^{m})+t_{n}}-B_{k/2^{m}}).$$

Par continuité des trajectoires, le terme de gauche de cette égalité converge p.s. quand $m \to \infty$ vers $\mathbf{1}_{A \cap \{\tau < +\infty\}} F(\widetilde{B}_{t_1}, \cdots, \widetilde{B}_{t_n})$, et par convergence dominée

$$\mathbb{E}\left[\mathbf{1}_{A\cap\{\tau<\infty\}}F(\widetilde{B}_{t_1},\cdots,\widetilde{B}_{t_n})\right]$$

$$=\lim_{m\to\infty}\sum_{k=0}^{\infty}\mathbb{E}\left[\mathbf{1}_{A\cap\{(k-1)/2^m<\tau\leq k/2^m\}}F(B_{(k/2^m)+t_1}-B_{k/2^m},\cdots,B_{(k/2^m)+t_n}-B_{k/2^m})\right].$$

Pour chaque $k, A \cap \{(k-1)/2^m < \tau \le k/2^m\} \in \mathscr{F}_{k/2^m}$. Par la propriété de Markov simple,

$$\mathbb{E}\left[\mathbf{1}_{A\cap\{(k-1)/2^m < \tau \le k/2^m\}} F(B_{(k/2^m)+t_1} - B_{k/2^m}, \cdots, B_{(k/2^m)+t_n} - B_{k/2^m})\right] =$$

$$= \mathbb{E}\left[\mathbf{1}_{A\cap\{(k-1)/2^m < \tau \le k/2^m\}}\right] \mathbb{E}\left[F(B_{t_1}, \cdots, B_{t_n})\right]$$

et donc

$$\mathbb{E}\left[\mathbf{1}_{A\cap\{\tau<\infty\}}F(\widetilde{B}_{t_1},\cdots,\widetilde{B}_{t_n})\right] = \lim_{m\to\infty}\sum_{k=0}^{\infty}\mathbb{E}\left[\mathbf{1}_{A\cap\{(k-1)/2^m<\tau\leq k/2^m\}}\right]\mathbb{E}\left[F(B_{t_1},\cdots,B_{t_n})\right]$$
$$= \mathbb{P}(A\cap\{\tau<\infty\})\mathbb{E}\left[F(B_{t_1},\cdots,B_{t_n})\right],$$

d'où
$$(2.2)$$
.

REMARQUE 2.4.6. Il est important que τ soit un temps d'arrêt. Avec $\tau = \sup\{s \in [0,1]: B_s = 0\}$, il est clair que $(B_{\tau+t} - B_{\tau})_{t\geq 0}$ n'est pas un mouvement brownien, car ne s'annule pas sur $[0, 1 - \tau]$ (et car $\tau < 1$ p.s., car $B_1 \neq 0$ p.s. et car B est continu).

EXEMPLE 2.4.7. Soit $\tau_a = \inf\{t > 0 : B_t = a\}$. Par la propriété de Markov forte, le processus $(\tau_a, a \ge 0)$ est à accroissements indépendants et stationnaires. En effet, pour tout $0 < a < b, \tau_b - \tau_a$ a même loi que τ_{b-a} (car $\tau_b - \tau_a = \tilde{\tau}_{b-a}$ où $\tilde{\tau}_x = \inf\{s > 0 : \tilde{B}_s = x\}$ avec $\tilde{B}_s = B_{\tau_a+s} - B_{\tau_a}$) et est indépendant de \mathscr{F}_{τ_a} , et que pour tout $\alpha \in [0, a]$, τ_α est \mathscr{F}_{τ_a} -mesurable.

Il est de plus à trajectoires croissantes et pour tout c > 0, les processus $(c^{-2}\tau_{ca}, a \ge 0)$ et $(\tau_a, a \ge 0)$ ont la même loi car

$$(c^{-2}\tau_{ca})_{a\geq 0} = (\inf\{c^{-2}t > 0 : B_t = ca\})_{a\geq 0} = (\inf\{s > 0 : c^{-1}B_{c^2s} = a\})_{a\geq 0}$$

$$\stackrel{(d)}{=} (\inf\{s > 0 : B_s = a\})_{a>0} = (\tau_a)_{a>0}.$$

On dit que $(\tau_a, a \ge 0)$ est un subordinateur (PAIS croissant) stable d'indice 1/2.

THÉORÈME 2.4.8 (Principe de réflexion). Soit $S_t = \sup_{0 \le s \le t} B_s$, t > 0. Alors

$$(2.3) \mathbb{P}\left(S_t \ge a, \ B_t \le b\right) = \mathbb{P}\left(B_t \ge 2a - b\right), a \ge 0, \ b \le a.$$

Pour tout t > 0 fixé, S_t a la même loi que $|B_t|$.

REMARQUE 2.4.9. L'identité en loi entre S_t et $|B_t|$ n'est vraie que pour t > 0 fixé. Les processus $(S_t, t \ge 0)$ et $(|B_t|, t \ge 0)$ ont des comportements différents. Par exemple, le premier est monotone, ce qui n'est pas le cas du second : $\mathbb{P}(|B_1| < |B_2|) < 1 = \mathbb{P}(S_1 < S_2)$.

Preuve du Théorème 4.7. Rappelons que $\tau_a < \infty$ p.s. On a

$$\mathbb{P}\left(S_{t} \geq a, \ B_{t} \leq b\right) = \mathbb{P}\left(\tau_{a} \leq t, \ B_{t} \leq b\right) = \mathbb{P}\left(\tau_{a} \leq t, \ \widetilde{B}_{t-\tau_{a}} \leq b-a\right),$$

où $\widetilde{B}_s = B_{s+\tau_a} - B_{\tau_a} = B_{s+\tau_a} - a$. Par la propriété de Markov forte, \widetilde{B} est un mouvement brownien indépendant de \mathscr{F}_{τ_a} . En particulier le couple (τ_a, \widetilde{B}) est indépendant. Puisque $-\widetilde{B}$ a même loi que \widetilde{B} , nous obtenons que $(\tau_a, -\widetilde{B})$ a même loi que (τ_a, \widetilde{B}) et donc

$$\mathbb{P}\left(\tau_{a} \leq t, \ \widetilde{B}_{t-\tau_{a}} \leq b-a\right) = \mathbb{P}\left(\tau_{a} \leq t, \ -\widetilde{B}_{t-\tau_{a}} \leq b-a\right) \\
= \mathbb{P}\left(\tau_{a} \leq t, \ -B_{t}+a \leq b-a\right) \\
= \mathbb{P}\left(\tau_{a} \leq t, \ B_{t} \geq 2a-b\right) \\
= \mathbb{P}\left(B_{t} \geq 2a-b\right),$$

puisque $B_t \ge 2a - b \ge a$ implique que $\tau_a \le t$.

Pour compléter la preuve du théorème, il suffit de noter que

$$\mathbb{P}(S_t \ge a) = \mathbb{P}(S_t \ge a, B_t \ge a) + \mathbb{P}(S_t \ge a, B_t \le a) = 2\mathbb{P}(B_t \ge a) = \mathbb{P}(|B_t| \ge a). \quad \Box$$

COROLLAIRE 2.4.10. La loi du couple (S_t, B_t) a pour densité

$$f_{(S_t,B_t)}(a,b) = \frac{2(2a-b)}{\sqrt{2\pi t^3}} \exp\left(-\frac{(2a-b)^2}{2t}\right) \mathbf{1}_{\{a>0,\ b< a\}}.$$

EXEMPLE 2.4.11. On s'intéresse à la loi de τ_a , pour a > 0. D'après le Théorème 2.4.8, pour tout t > 0,

$$\mathbb{P}(\tau_a \le t) = \mathbb{P}(S_t \ge a) = \mathbb{P}(|B_t| \ge a) = \mathbb{P}(\sqrt{t} |B_1| \ge a) = \mathbb{P}\left(\frac{a^2}{B_1^2} \le t\right).$$

Donc τ_a a même loi que a^2/B_1^2 , et

$$f_{\tau_a}(t) = \frac{a}{\sqrt{2\pi t^3}} \exp\left(-\frac{a^2}{2t}\right) \mathbf{1}_{\{t>0\}}.$$

En particulier, $\mathbb{E}(\tau_a) = \infty$. Bien sûr, si a < 0, τ_a a la même loi que $\tau_{|a|}$ par symétrie. \square

2.5. Variation quadratique du mouvement brownien

PROPOSITION 2.5.1 (Lévy). Fixons t > 0. Soit $\Delta_n = \{0 = t_0^n < t_1^n < \dots < t_{p_n}^n = t\}$ une subdivision de [0,t], pour chaque $n \ge 1$. On suppose que le pas tend vers 0, c'est-à-dire que $\sup_{i=1,\dots,p_n} (t_i^n - t_{i-1}^n) \to 0$ quand $n \to \infty$. Alors

$$\lim_{n \to \infty} \sum_{i=1}^{p_n} (B_{t_i^n} - B_{t_{i-1}^n})^2 = t, \quad dans \ L^2(\mathbb{P}).$$

Si de plus les subdivisions sont emboîtées, c'est-à-dire $\Delta_1 \subset \Delta_2 \subset \cdots$, alors la convergence a aussi lieu presque sûrement.

Preuve. Montrons d'abord la convergence dans $L^2(\mathbb{P})$. Soit

$$Y_i^n = (B_{t_i^n} - B_{t_{i-1}^n})^2 - (t_i^n - t_{i-1}^n), \qquad 1 \le i \le p_n.$$

Les variables aléatoires $(Y_i^n, 1 \le i \le p_n)$ sont indépendantes et centrées. De plus, on a l'identité $\operatorname{Var} Y_i^n = \operatorname{Var} (B_{t_i^n} - B_{t_{i-1}^n})^2 = 2(t_i^n - t_{i-1}^n)^2$ (car $\operatorname{Var} (\mathcal{N}(0,1))^2 = 2$, avec gros abus de notation). Donc

$$\mathbb{E}\Big[\Big(\sum_{i=1}^{p_n} (B_{t_i^n} - B_{t_{i-1}^n})^2 - t\Big)^2\Big] = \mathbb{E}\Big[\Big(\sum_{i=1}^{p_n} Y_i^n\Big)^2\Big] = \sum_{i=1}^{p_n} \operatorname{Var}(Y_i^n)$$

$$= 2\sum_{i=1}^{p_n} (t_i^n - t_{i-1}^n)^2$$

$$\leq 2t \sup_{1 \le i \le p_n} (t_i^n - t_{i-1}^n) \to 0.$$

D'où la convergence dans $L^2(\mathbb{P})$.

On démontre la convergence p.s. seulement 1 dans le cas particulier où $t_i^n=i/2^n, 0 \le i \le \lfloor t2^n \rfloor = p_n$. On a vu que

$$\mathbb{E}\left[\left(\sum_{i=1}^{p_n} Y_i^n\right)^2\right] = 2\sum_{i=1}^{p_n} (t_i^n - t_{i-1}^n)^2 \le \frac{t}{2^{n-1}}.$$

Par l'inégalité de Tchebychev,

$$\mathbb{P}\Big(\left|\sum_{i=1}^{p_n} Y_i^n\right| > \frac{1}{n}\Big) \le \frac{tn^2}{2^{n-1}},$$

qui est sommable en $n \geq 1$. Par le lemme de Borel-Cantelli, il existe un événement A tel que $\mathbb{P}(A) = 0$, et que pour tout $\omega \in A^c$, on puisse trouver $n_0 = n_0(\omega) < \infty$ satisfaisant

$$\left|\sum_{i=1}^{p_n} Y_i^n\right| \le \frac{1}{n}, \qquad \forall \, n \ge n_0.$$

D'où la convergence p.s.

COROLLAIRE 2.5.2. Le mouvement brownien a p.s. une variation infinie sur tout intervalle, i.e.

$$p.s., \quad \forall 0 \le a < b, \quad |B|([a,b]) = \sup \left\{ \sum_{i=1}^{p} |B_{t_i} - B_{t_{i-1}}| \right\} = +\infty,$$

où le supremum porte sur toutes les subdivisions $a = t_0 < t_1 < \cdots < t_p = b$ de [a, b].

^{1.} La preuve de la convergence p.s. dans le cas général est plus technique; on peut consulter par exemple la Proposition 2.12 du Chapitre II du livre de Revuz et Yor 1999.

2.6. AUTRES 21

Preuve. On suppose pour commencer que a=0 et b=1. On sait que p.s.,

$$\lim_{n \to \infty} \sum_{i=1}^{2^n} (B_{i2^{-n}} - B_{(i-1)2^{-n}})^2 = 1.$$

Nous avons

$$\sum_{i=1}^{2^n} (B_{i2^{-n}} - B_{(i-1)2^{-n}})^2 \le |B|([0,1]) \times \sup_{i=1,\dots,2^n} |B_{i2^{-n}} - B_{(i-1)2^{-n}}|.$$

Comme B est continu sur [0,1], $\sup_{i=1,\dots,2^n} |B_{i2^{-n}} - B_{(i-1)2^{-n}}| \to 0$ p.s. quand $n \to \infty$. Donc $\{|B|([0,1]) < \infty\} \subset \{\lim_{n\to\infty} \sum_{i=1}^{2^n} (B_{i2^{-n}} - B_{(i-1)2^{-n}})^2 = 0\}$, qui est de probabilité nulle.

On montre de même que pour tout $0 \le a < b$, p.s., $|B|([a,b]) = \infty$. Donc p.s., pour tout $0 \le a < b$ avec $a,b \in \mathbb{Q}$, $|B|([a,b]) = \infty$, et on conclut aisément que p.s., pour tout $0 \le a < b$, $|B|([a,b]) = \infty$ puisqu'on peut trouver $a',b' \in \mathbb{Q}$ tels que a < a' < b' < b et donc $|B|([a,b]) \ge |B|([a',b']) = \infty$.

2.6. Autres

DÉFINITION 2.6.1. Un processus $(B_t)_{t\geq 0} = ((B_t^1, \cdots, B_t^d))_{t\geq 0}$ est un mouvement brownien à valeurs dans \mathbb{R}^d si B^1, \cdots, B^d sont d mouvements browniens indépendants.

La plupart des propriétés du mouvement brownien que l'on a étudiées jusqu'à maintenant peuvent être étendues en dimension quelconque. En particulier, la propriété de Markov forte reste vraie, avec exactement la même démonstration.

DÉFINITION 2.6.2. Un processus $(B_t)_{t\geq 0}$ est un mouvement brownien à valeurs dans \mathbb{R}^d issu de $x \in \mathbb{R}^d$ si $(B_t - x)_{t\geq 0}$ est un mouvement brownien dans \mathbb{R}^d .

Chapitre 3

Martingales à temps continu

On présente les rudiments de la théorie des processus, au moins la partie qui nous sera utile par la suite. On commence par introduire les notions de filtration, tribu, temps d'arrêt et processus, pour étudier ensuite les martingales à temps continu.

3.1. Filtrations et conditions habituelles

Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilité. Une **filtration** $(\mathscr{F}_t)_{t\geq 0}$ sur cet espace est une famille croissante de sous-tribus de \mathscr{F} . On dit que $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ est un espace de probabilité filtré. On pose $\mathscr{F}_{\infty} = \sigma(\cup_{t\geq 0}\mathscr{F}_t) = \vee_{t\geq 0}\mathscr{F}_t$.

DÉFINITION 3.1.1. Une application $\tau: \Omega \to \mathbb{R}_+ \cup \{+\infty\}$ est un **temps d'arrêt** si $\forall 0 \leq t < \infty, \{\tau \leq t\} \in \mathscr{F}_t$. On définit alors

$$\mathscr{F}_{\tau} = \{ A \in \mathscr{F}_{\infty} : \ \forall \, t \ge 0, \, A \cap \{ \tau \le t \} \in \mathscr{F}_{t} \}.$$

Pour tout $t \geq 0$, on pose

$$\mathscr{F}_{t+} = \bigcap_{s>t} \mathscr{F}_s.$$

La famille $(\mathscr{F}_{t+}, t \geq 0)$ est aussi une filtration.

EXEMPLE 3.1.2. Si Z est une v.a. réelle, si $X_t = Z\mathbf{1}_{t>1}$ et si $\mathscr{F}_t = \sigma(X_s, s \leq t)$, on a $\mathscr{F}_1 = \{\emptyset, \Omega\}$ mais $\mathscr{F}_{1+} = \sigma(Z)$: il peut y avoir une vraie différence.

EXERCICE 3.1.3. $\sigma: \Omega \mapsto \mathbb{R}_+ \cup \{+\infty\}$ est un (\mathscr{F}_{t+}) -temps d'arrêt ssi pour tout $t \geq 0$ l'on a $\{\sigma < t\} \in \mathscr{F}_t$.

(i) Si $\{\sigma < t\} \in \mathscr{F}_t \text{ pour } t \geq 0$, alors pour tout $n \in \mathbb{N}$

$$\{\sigma \le t\} = \bigcap_{k \ge n} \{\sigma < t + 1/k\} \in \mathscr{F}_{t+1/n}$$

et donc $\{\sigma \leq t\} \in \mathscr{F}_{t+}$.

(ii) Si $\{\sigma \leq t\} \in \mathscr{F}_{t+} \text{ pour tout } t \geq 0, \text{ alors}$

$$\{\sigma < t\} = \bigcup_{n} \{\sigma \le t - 1/n\} \in \mathscr{F}_t.$$

EXEMPLE 3.1.4. Soit $(B_t, t \ge 0)$ un mouvement brownien et (\mathscr{F}_t) sa filtration canonique. Alors pour $a \in \mathbb{R}$

$$\tau_a = \inf\{t \ge 0 : B_t = a\}, \quad \inf \emptyset = +\infty,$$

est un (\mathscr{F}_t) -temps d'arrêt. Or si $a \geq 0$ et

$$\sigma_a = \inf\{t \ge 0 : B_t > a\}, \quad \inf \emptyset = +\infty,$$

alors p.s., $\tau_a = \sigma_a$. En effet, $\tau_a \leq \sigma_a$ est évident, et, en posant $\tilde{B}_t = B_{\tau_a+t} - B_{\tau_a}$, on voit que $\{\tau_a < \sigma_a\} \subset \{\exists \epsilon > 0 : \sup_{s \in [0,\epsilon]} \tilde{B}_s = 0\}$, qui est de probabilité nulle par l'exemple 2.2.4 et la propriété de Markov forte.

D'autre part, σ_a est un (\mathscr{F}_{t+}) -temps d'arrêt, mais pas un (\mathscr{F}_t) -temps d'arrêt, car

$$\forall t \ge 0, \{\sigma_a \le t\} = \{S_t > a\} \cup \{S_t = B_t = a, \inf\{s > 0 : B_{t+s} > a\} = 0\} \in \mathscr{F}_{t+} \setminus \mathscr{F}_t.$$

La propriété d'être un temps d'arrêt par rapport à la filtration canonique n'est donc pas stable si on change la variable sur un ensemble de probabilité nulle. Ce phénomène semble peu naturel et motive les définitions suivantes.

DÉFINITION 3.1.5. On dit que la filtration $(\mathscr{F}_t, t \geq 0)$ est continue à droite $si \mathscr{F}_{t+} = \mathscr{F}_t, \ \forall t \geq 0. \ Si \ (\mathscr{F}_t)$ est une filtration et \mathscr{F}_0 (donc tout \mathscr{F}_t) contient tous les ensembles \mathbb{P} -négligeables, alors on dit que la filtration est complète.

Il est clair que pour toute filtration $(\mathscr{F}_t, t \geq 0)$, la filtration $(\mathscr{F}_{t+}, t \geq 0)$ est continue à droite (car $\mathscr{F}_{t++} = \mathscr{F}_{t+}$).

DÉFINITION 3.1.6. (i) On dit que $(\mathscr{F}_t, t \geq 0)$ satisfait les conditions habituelles si elle est à la fois continue à droite et complète.

(ii) Étant donnée une filtration $(\mathscr{F}_t, t \geq 0)$ quelconque, on peut construire une filtration qui satisfait les conditions habituelles en posant $\bar{\mathscr{F}}_t = \mathscr{F}_{t+} \vee \mathscr{N}$, où \mathscr{N} est l'ensemble des \mathbb{P} -négligeables. On dit que $(\bar{\mathscr{F}}_t, t \geq 0)$ est l'augmentation habituelle de $(\mathscr{F}_t, t \geq 0)$.

On suppose dorénavant, sauf mention contraire, que nos filtrations satisfont les conditions habituelles sans le répéter chaque fois.

3.2. Mesurabilité des processus

Un processus $(X_t, t \ge 0)$ est dit continu à droite (ou à gauche) si ses trajectoires sont continues à droite (ou à gauche).

DÉFINITION 3.2.1. Un processus $(X_t)_{t\geq 0}$ est dit

(i) mesurable si l'application $(t,\omega) \longmapsto X_t(\omega)$ est $\mathscr{B}(\mathbb{R}_+) \otimes \mathscr{F}$ -mesurable,

- (ii) adapté (à la filtration (\mathscr{F}_t)) si $\forall t \geq 0$, X_t est \mathscr{F}_t -mesurable,
- (iii) **progressif** ou progressivement mesurable (pour la filtration (\mathscr{F}_t)) si $\forall t \geq 0$,

$$[0,t] \times \Omega \ni (s,\omega) \longmapsto X_s(\omega)$$

est $\mathscr{B}([0,t]) \otimes \mathscr{F}_t$ -mesurable.

Remarque 3.2.2. Un processus continu à droite (ou à gauche) est mesurable.

Preuve. Il suffit d'observer que $X_t(\omega)$ est limite (pour tout $(t,\omega) \in \mathbb{R}_+ \times \Omega$) de $X_t^n(\omega) = X_{(\lfloor nt \rfloor + 1)/n}(\omega) = \sum_{k \geq 0} X_{(k+1)/n}(\omega) \mathbf{1}_{t \in [k/n,(k+1)/n[}$, qui est bien sûr $\mathscr{B}(\mathbb{R}_+) \otimes \mathscr{F}$ -mesurable (en particulier car pour tout $t \geq 0$, X_t est \mathscr{F} -mesurable).

Exercice 3.2.3. Tout processus progressif est adapté et mesurable.

Proposition 3.2.4. Tout processus adapté et continu à droite (ou continu à gauche) à valeurs dans un espace métrique est progressif.

Preuve. On suppose par exemple que (X_t) est adapté et continu à droite. On fixe t > 0. On veut montrer que $(s, \omega) \mapsto X_s(\omega)$ est $\mathcal{B}([0, t]) \otimes \mathcal{F}_t$ -mesurable. Pour tout $n \geq 1$, on introduit

$$X_s^n = X_{\frac{\lfloor ns \rfloor + 1}{n} \wedge t} = \sum_{k > 0} \mathbf{1}_{\{s \in [(k/n) \wedge t, ((k+1)/n) \wedge t[\}} X_{\frac{k+1}{n} \wedge t}, \qquad s \in [0, t].$$

Alors $(\omega, s) \mapsto X_s^n(\omega)$ est bien sûr $\mathscr{B}([0, t]) \otimes \mathscr{F}_t$ -mesurable. De plus, pour chaque $s \in [0, t]$ et chaque $\omega \in \Omega$, $X_s^n(\omega)$ tend vers $X_s(\omega)$ par continuité à droite.

DÉFINITION 3.2.5. Une partie $A \in \mathcal{B}(\mathbb{R}_+) \otimes \mathcal{F}$ est dite progressive si le processus $X_t(\omega) = \mathbf{1}_A(t,\omega)$ est progressif. L'ensemble \mathcal{P} des parties progressives est une tribu sur $\mathbb{R}_+ \times \Omega$, que l'on appelle la **tribu progressive**.

EXERCICE 3.2.6. Un processus $(X_t)_{t\geq 0}$ est progressif si et seulement si $(t,\omega) \mapsto X_t(\omega)$ est mesurable sur $\mathbb{R}_+ \times \Omega$ muni de \mathscr{P} .

Noter qu'un processus n'a pas besoin d'être continu à droite ou à gauche pour être progressif. Par exemple, si $X_t(\omega) = \varphi(t)$, avec $\varphi : \mathbb{R}_+ \mapsto \mathbb{R}$ mesurable, alors X est progressif.

3.3. Temps d'arrêt

Exercice 3.3.1. (i) Pour τ un temps d'arrêt, τ est \mathscr{F}_{τ} -mesurable.

(ii) Si $\sigma \leq \tau$ sont deux temps d'arrêt, alors $\mathscr{F}_{\sigma} \subset \mathscr{F}_{\tau}$.

Proposition 3.3.2. Soit τ un temps d'arrêt, alors

$$\tau_n = \frac{\lceil \tau 2^n \rceil}{2^n} = \sum_{k=0}^{\infty} \frac{k}{2^n} \, \mathbf{1}_{\{(k-1)/2^n < \tau \le k/2^n\}} + (+\infty) \, \mathbf{1}_{\{\tau = \infty\}}$$

est une suite de temps d'arrêt qui décroît vers τ .

Preuve. Il est clair que (τ_n) décroît vers τ . Il suffit de montrer que chaque τ_n est un temps d'arrêt. Or, τ_n est \mathscr{F}_{τ} -mesurable, et comme $\tau_n \geq \tau$, on a $\{\tau_n \leq t\} = \{\tau_n \leq t\} \cap \{\tau \leq t\} \in \mathscr{F}_t$, car $\{\tau_n \leq t\} \in \mathscr{F}_{\tau}$.

Voici la principale raison pour laquelle on a introduit la notion de processus progressif.

Théorème 3.3.3. Si $(X_t)_{t\geq 0}$ est un processus progressif (à valeurs dans \mathbb{R}^d), et si τ est un temps d'arrêt, alors $X_{\tau} \mathbf{1}_{\{\tau < \infty\}}$ est \mathscr{F}_{τ} -mesurable.

Preuve. Il suffit de montrer que pour $t \geq 0$ fixé, $X_{\tau \wedge t}$ est \mathscr{F}_t -mesurable car alors, pour tout $\Gamma \in \mathscr{B}(\mathbb{R}^d)$, $\{X_{\tau} \mathbf{1}_{\{\tau < \infty\}} \in \Gamma\} \in \mathscr{F}_{\tau}$, car pour tout $t \geq 0$, $\{X_{\tau} \mathbf{1}_{\{\tau < \infty\}} \in \Gamma\} \cap \{\tau \leq t\} = \{X_{\tau \wedge t} \in \Gamma\} \cap \{\tau \leq t\}$, qui appartient à \mathscr{F}_t .

Mais $X_{\tau \wedge t}$ est \mathscr{F}_t -mesurable car $X_{\tau(\omega) \wedge t}(\omega) = \Phi(\Psi(\omega))$, où

- $\Psi(\omega) = (\tau(\omega) \wedge t, \omega)$ est $(\mathscr{F}_t, \mathscr{B}([0,t]) \otimes \mathscr{F}_t)$ -mesurable car (i) $\omega \to \omega$ est $(\mathscr{F}_t, \mathscr{F}_t)$ -mesurable, (ii) $\omega \to \tau(\omega) \wedge t$ est $(\mathscr{F}_t, \mathscr{B}([0,t]))$ -mesurable car τ est un temps d'arrêt (donc pour tout $s \in [0,t]$, $\{\tau \wedge t \leq s\} = \{\tau \leq s\} \in \mathscr{F}_s \subset \mathscr{F}_t$).
 - $\Phi(s,\omega) = X_s(\omega)$ est mesurable de $([0,t] \times \Omega, \, \mathscr{B}([0,t]) \otimes \mathscr{F}_t)$ dans $(\mathbb{R}^d, \mathscr{B}(\mathbb{R}^d))$.

EXEMPLE 3.3.4. Si $(X_t)_{t\geq 0}$ est un processus adapté continu à valeurs dans un espace métrique (E,d), alors pour tout ouvert $G\subset E$, $\tau_G=\inf\{t\geq 0: X_t\in G\}$ est un (\mathscr{F}_{t+}) -temps d'arrêt. En effet,

$$\{\tau_G < t\} = \{\exists s \in [0, t[: X_s \in G\} = \{\exists s \in [0, t[\cap \mathbb{Q} : X_s \in G\} = \bigcup_{s \in [0, t[\cap \mathbb{Q}} \{X_s \in G\} \in \mathscr{F}_t.\}\}\}$$

La seconde égalité utilise que G est ouvert et que X est continu.

EXEMPLE 3.3.5. Si $(X_t)_{t\geq 0}$ est adapté et continu à valeurs dans un espace métrique (E,d), alors pour tout fermé $F\subset E$,

$$\tau_F = \inf\{t \ge 0 : X_t \in F\}$$

est un (\mathscr{F}_t) -temps d'arrêt. En effet,

$$\{\tau_F \le t\} = \{\inf_{s \in [0,t]} d(X_s,F) = 0\} = \{\inf_{s \in [0,t] \cap \mathbb{Q}} d(X_s,F) = 0\} \in \mathscr{F}_t.$$

La première égalité utilise que F est fermé, la seconde que X est continu.

3.4. Rappels sur les martingales à temps discret

Soit $(M_n)_{n\geq 0}$ un processus réel adapté défini sur l'espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_n), \mathbb{P})$ tel que $\mathbb{E}(|M_n|) < +\infty$ pour tout $n \geq 0$. On dit que $(M_n)_{n>0}$ est

- (i) une sous-martingale si $\mathbb{E}(M_m \mid \mathscr{F}_n) \geq M_n$ p.s. pour tout $m \geq n \geq 0$
- (ii) une sur-martingale si $\mathbb{E}(M_m \mid \mathscr{F}_n) \leq M_n$ p.s. pour tout $m \geq n \geq 0$
- (iii) une martingale si $\mathbb{E}(M_m | \mathscr{F}_n) = M_n$ p.s. pour tout $m \geq n \geq 0$.
- Si $(M_n)_{n\geq 0}$ est une martingale et s'il existe $M_\infty \in L^1$ tel que p.s. $M_n = \mathbb{E}(M_\infty \mid \mathscr{F}_n)$ pour tout n, alors on dit que $(M_n)_{n\geq 0}$ est ferm'ee (par M_∞).

Nous rappelons les résultats suivants :

- (1) $(M_n)_{n\geq 0}$ (sous-)martingale, τ temps d'arrêt $\Rightarrow (M_{\tau \wedge n})_{n\geq 0}$ (sous-)martingale (dans la filtration $(\mathscr{F}_n)_{n\geq 0}$).
- (2) (Doob) $(M_n)_{n\geq 0}$ martingale, $S_n = \max_{k=0,\dots,n} |M_k|, a>0$,

$$\mathbb{P}(S_n > a) \le \frac{1}{a} \mathbb{E}[|M_n| \mathbf{1}_{S_n > a}],$$

(3) (Doob) $(M_n)_{n\geq 0}$ martingale, $\frac{1}{p}+\frac{1}{q}=1\ (p>1,\ q>1),\ k\geq 0, \Rightarrow$

$$\mathbb{E}\Big[\max_{0 \le n \le k} |M_n|^p\Big] \le q^p \mathbb{E}[|M_k|^p].$$

- (4) (Théorème d'arrêt) $(M_n)_{n\geq 0}$ martingale fermée, σ et τ deux temps d'arrêt tels que $\sigma \leq \tau$ p.s. Alors p.s. $\mathbb{E}(M_\tau \mid \mathscr{F}_\sigma) = M_\sigma$.
- (5) Si $(M_n)_{n\geq 0}$ est une martingale bornée dans L^1 , alors elle converge p.s. vers une v.a. M_{∞} , et on a l'équivalence :
 - (i) M_n converge dans L^1 (vers M_∞),
 - (ii) la famille $(M_n, n \ge 0)$ est U.I. (uniformément intégrable),
 - (iii) M_n est fermée (par M_{∞}).

3.5. Martingales à temps continu

Soit $(M_t)_{t\geq 0}$ un processus aléatoire réel défini sur l'espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$.

DÉFINITION 3.5.1. On dit que $(M_t)_{t\geq 0}$ est une martingale (resp. sur-martingale, resp. sous-martingale) si

- (i) $(M_t)_{t\geq 0}$ est adapté;
- (ii) $\forall t \geq 0, \ \mathbb{E}(|M_t|) < \infty;$
- (iii) $\forall s < t$, $\mathbb{E}(M_t | \mathscr{F}_s) = M_s$, p.s. (resp. $\leq M_s$, resp. $\geq M_s$).

EXEMPLE 3.5.2. Soit $(B_t, t \geq 0)$ un mouvement brownien, et soit (\mathscr{F}_t) sa filtration canonique. Alors

- B_t est une martingale.
- $B_t^2 t$ est aussi une martingale, car pour t > s > 0, on a

$$\mathbb{E}(B_t^2 - t \mid \mathscr{F}_s) = \mathbb{E}[(B_t - B_s + B_s)^2 \mid \mathscr{F}_s] - t = B_s^2 - s.$$

Il suffit d'utiliser que $B_t - B_s$ est centré, de variance t - s et indépendant de \mathscr{F}_s .

• Soit $\theta \in \mathbb{R}$ fixé. Alors $\exp(\theta B_t - \frac{\theta^2}{2}t)$ est une martingale. En effet, pour t > s > 0, on a $\mathbb{E}[e^{\theta B_t - \frac{\theta^2}{2}t} \mid \mathscr{F}_s] = e^{\theta^2(t-s)/2}e^{\theta B_s - \frac{\theta^2}{2}t} = e^{\theta B_s - \frac{\theta^2}{2}s}$

$$\operatorname{car} B_t - B_s \text{ est indépendant de } \mathscr{F}_s \text{ et } \operatorname{car} \mathbb{E}[\mathrm{e}^{\theta(B_t - B_s)}] = \mathrm{e}^{\theta^2(t - s)/2}.$$

EXERCICE 3.5.3. (i) Si $(M_t)_{t\geq 0}$ est une martingale et si f est une fonction convexe telle que $\mathbb{E}(|f(M_t)|) < \infty$, $\forall t$, alors $(f(M_t))_{t\geq 0}$ est une sous-martingale.

(ii) Si $(M_t)_{t\geq 0}$ est une sous-martingale et si f est une fonction convexe et croissante telle que $\mathbb{E}(|f(M_t)|) < \infty$, alors $(f(M_t))_{t\geq 0}$ est une sous-martingale.

THÉORÈME 3.5.4 (Inégalité de Doob). Soit $(M_s)_{s\geq 0}$ une martingale continue à droite et p>1. Pour $t\geq 0$, si $M_t\in L^p$, alors

$$\mathbb{E}\Big[\sup_{s\in[0,t]}|M_s|^p\Big] \le q^p \mathbb{E}[|M_t|^p],$$

 $où \frac{1}{p} + \frac{1}{q} = 1.$

Preuve. Pour $n \geq 1$ fixé, on introduit $D_n = \{kt2^{-n}, k \geq 0\}$. On observe que $M_k^n = M_{kt2^{-n}}$ est une martingale (à temps discret) pour la filtration $\mathscr{F}_k^n = \mathscr{F}_{kt2^{-n}}$. Donc par Doob pour les martingales à temps discret,

$$\mathbb{E}\Big[\sup_{D_n \cap [0,t]} |M_s|^p\Big] = \mathbb{E}\Big[\sup_{k=0,\dots,2^n} |M_k^n|^p\Big] \le q^p \mathbb{E}[|M_{2^n}^n|^p] = q^p \mathbb{E}[|M_t|^p].$$

Comme $\sup_{D_n \cap [0,t]} |M_s|^p$ croît p.s. vers $\sup_{s \in [0,t]} |M_s|^p$ par continuité à droite de M, on conclut par convergence monotone.

THÉORÈME 3.5.5 (Théorème d'arrêt). Soit $(M_t)_{t\geq 0}$ une martingale continue à droite et fermée (il existe $M_{\infty} \in L^1$ t.q. pour tout $t\geq 0$, $M_t=\mathbb{E}[M_{\infty}|\mathscr{F}_t]$). Soient σ,τ deux temps d'arrêt tels que $\sigma\leq \tau$ p.s. Alors p.s.

$$\mathbb{E}(M_{\tau} \mid \mathscr{F}_{\sigma}) = M_{\sigma}.$$

Preuve. Il suffit de montrer que $M_{\tau} = \mathbb{E}[M_{\infty}|\mathscr{F}_{\tau}]$, où on a supposé que M était fermée par M_{∞} . On aura alors, comme $\mathscr{F}_{\sigma} \subset \mathscr{F}_{\tau}$, $\mathbb{E}(M_{\tau}|\mathscr{F}_{\sigma}) = \mathbb{E}(\mathbb{E}[M_{\infty}|\mathscr{F}_{\tau}]|\mathscr{F}_{\sigma}) = \mathbb{E}(M_{\infty}|\mathscr{F}_{\sigma}) = M_{\sigma}$.

Pour $n \in \mathbb{N}$ fixé, on considère la filtration $\mathscr{F}_k^n = \mathscr{F}_{k2^{-n}}$, la $(\mathscr{F}_k^n)_{k\geq 0}$ -martingale $M_k^n = M_{k2^{-n}}$, qui est fermée par M_{∞} , et le $(\mathscr{F}_k^n)_{k\geq 0}$ -temps d'arrêt $\sigma_n = \lceil 2^n \tau \rceil$ (pour $k \geq 0$, on a $\{\sigma_n \leq k\} = \{\lceil 2^n \tau \rceil \leq k\} = \{2^n \tau \leq k\} = \{\tau \leq k2^{-n}\} \in \mathscr{F}_{k2^{-n}} = \mathscr{F}_k^n$). Le théorème d'arrêt discret nous dit que $\mathbb{E}(M_{\infty}|\mathscr{F}_{\sigma_n}^n) = M_{\sigma_n}^n = M_{\tau_n}$, où $\tau_n = \sigma_n 2^{-n}$. Donc pour tout $A \in \mathscr{F}_{\sigma_n}^n$, on a $\mathbb{E}(M_{\infty}\mathbf{1}_A) = \mathbb{E}(M_{\tau_n}\mathbf{1}_A)$.

Mais $\mathscr{F}_{\tau} \subset \mathscr{F}_{\sigma_n}^n$, car si $A \in \mathscr{F}_{\tau}$, alors pour tout $t \geq 0$, on a $A \cap \{\tau \leq t\} \in \mathscr{F}_t$, donc en particulier, avec $t = k2^{-n}$, $A \cap \{\sigma_n \leq k\} = A \cap \{\tau \leq k2^{-n}\} \in \mathscr{F}_{k2^{-n}} = \mathscr{F}_k^n$.

Ainsi, pour tout $A \in \mathscr{F}_{\tau}$, pour tout $n \geq 0$, $\mathbb{E}(M_{\infty}\mathbf{1}_{A}) = \mathbb{E}(M_{\tau_{n}}\mathbf{1}_{A})$. Mais la famille $(M_{\tau_{n}})_{n}$ est U.I. (car $M_{\tau_{n}} = \mathbb{E}(M_{\infty}|\mathscr{F}_{\tau_{n}})$ avec $M_{\infty} \in L^{1}$) et converge p.s. vers M_{τ} car M est continue à droite. Donc $\mathbb{E}(M_{\infty}\mathbf{1}_{A}) = \mathbb{E}(M_{\tau}\mathbf{1}_{A})$ pour tout $A \in \mathscr{F}_{\tau}$. Comme finalement M_{τ} est \mathscr{F}_{τ} -mesurable, on conclut que $M_{\tau} = \mathbb{E}(M_{\infty}|\mathscr{F}_{\tau})$.

REMARQUE 3.5.6. Soit $(M_t)_{t\geq 0}$ une martingale c-à-d et σ et τ deux temps d'arrêt bornés par une constante (déterministe) K tels que $\sigma \leq \tau$. On a alors $\mathbb{E}(M_{\tau} | \mathscr{F}_{\sigma}) = M_{\sigma}$. En effet, il suffit de noter que $M_{\tau} = M_{\tau \wedge K}$, que $M_{\sigma} = M_{\sigma \wedge K}$, et d'appliquer le théorème d'arrêt à la martingale $(M_{t \wedge K})_{t\geq 0}$, qui est fermée (par M_K).

PROPOSITION 3.5.7. Soit $(M_t)_{t\geq 0}$ une martingale continue à droite, et soit τ un temps d'arrêt. Alors $(M_{\tau \wedge t})_{t\geq 0}$ est une (\mathscr{F}_t) -martingale (et a fortiori, une $(\mathscr{F}_{\tau \wedge t})$ -martingale, ce qui découle immédiatement du théorème d'arrêt).

Preuve. $(M_{\tau \wedge t})_{t \geq 0}$ est bien sûr (\mathscr{F}_t) -adapté. Soit $0 \leq s \leq t$. On veut montrer que $M_{\tau \wedge t} \in L^1$ et que $\mathbb{E}[M_{\tau \wedge t}|\mathscr{F}_s] = M_{\tau \wedge s}$.

Comme dans la proposition précédente, on introduit $\mathscr{F}_k^n = \mathscr{F}_{k2^{-n}}$, la $(\mathscr{F}_k^n)_{k\geq 0}$ -martingale $M_k^n = M_{k2^{-n}}$, le $(\mathscr{F}_k^n)_{k\geq 0}$ -temps d'arrêt $\sigma_n = \lceil 2^n \tau \rceil$, $\tau_n = \sigma_n 2^{-n}$, et $t_n = 2^{-n} \lceil 2^n t \rceil \geq t$ et $s_n = 2^{-n} \lceil 2^n s \rceil \geq s$. En passant par le cas discret, on arrive à $\mathbb{E}(M_{\tau_n \wedge t_n} \mid \mathscr{F}_{s_n}) = M_{\tau_n \wedge s_n}$. Donc pour tout $A \in \mathscr{F}_s \subseteq \mathscr{F}_{s_n} : \mathbb{E}[\mathbf{1}_A M_{\tau_n \wedge t_n}] = \mathbb{E}[\mathbf{1}_A M_{\tau_n \wedge s_n}]$.

Mais les familles $(M_{\tau_n \wedge t_n})_n$ et $(M_{\tau_n \wedge s_n})_n$ sont U.I. (par exemple, on a $\sup_{n \geq 1} t_n \leq t+1$, donc $M_{\tau_n \wedge t_n} = \mathbb{E}[M_{t+1}|\mathscr{F}_{\tau_n \wedge t_n}]$ par la remarque 3.5.6). Comme de plus $\lim_n M_{\tau_n \wedge t_n} = M_{\tau \wedge t}$ p.s. par continuité à droite, on en déduit que $M_{\tau \wedge t} \in L^1$ et on passe facilement à la limite dans $\mathbb{E}[\mathbf{1}_A M_{\tau_n \wedge t_n}] = \mathbb{E}[\mathbf{1}_A M_{\tau_n \wedge s_n}]$. Ainsi, $\mathbb{E}[\mathbf{1}_A M_{\tau \wedge t}] = \mathbb{E}[\mathbf{1}_A M_{\tau \wedge s}]$ pour tout $A \in \mathscr{F}_s$. Comme finalement $M_{\tau \wedge s}$ est \mathscr{F}_s -mesurable, on conclut qu'en effet, $\mathbb{E}[M_{\tau \wedge t}|\mathscr{F}_s] = M_{\tau \wedge s}$.

Théorème 3.5.8. Soit $(M_s)_{s\geq 0}$ une martingale continue à droite bornée dans L^1 , i.e. telle que $\sup_{t\geq 0}\mathbb{E}[|M_t|]<\infty$. Alors $M_\infty=\lim_{t\to\infty}M_t$ existe p.s.

Preuve. Etape θ . Si $(M_n)_{n\geq 0}$ est une martingale discrète bornée dans L^2 , alors elle converge dans L^2 . On remarque que pour $n>k\geq 0$, en conditionnant par \mathscr{F}_n ,

$$\mathbb{E}[(M_{k+1} - M_k)(M_{n+1} - M_n)] = 0$$

On en déduit que

$$\forall n+m > n \ge 0, \quad \mathbb{E}[(M_{n+m}-M_n)^2] = \mathbb{E}\left[\left(\sum_{n=0}^{n+m-1}(M_{k+1}-M_k)\right)^2\right] = \sum_{n=0}^{n+m-1}\mathbb{E}[(M_{k+1}-M_k)^2].$$

Comme $\sup_n \mathbb{E}[(M_n - M_0)^2] < \infty$ par hypothèse, on conclut que $\sum_{k \geq 0} \mathbb{E}[(M_{k+1} - M_k)^2] < \infty$, d'où $\sup_{i,j \geq n} \mathbb{E}[|M_i - M_j|^2] = \sup_{i,j \geq n} \sum_{i+1}^j \mathbb{E}[(M_{k+1} - M_k)^2] \to 0$ quand $n \to \infty$: la suite $(M_n)_{n \geq 0}$ est de Cauchy dans L^2 .

Etape 1. Si $(M_t)_{t\geq 0}$ est une martingale bornée dans L^2 , alors elle converge dans L^2 . En effet, pour toute suite déterministe croissante $t_n \to \infty$, la martingale discrète M_{t_n} converge dans L^2 . La limite ne dépend pas de la suite, car si on a deux suites $t_n \to \infty$ et $t'_n \to \infty$, on considère la suite concaténée $s_n \to \infty$ et on a que M_{s_n} converge dans L^2 .

Etape 2. Si $(M_t)_{t\geq 0}$ est une martingale càd bornée dans L^2 , alors elle converge p.s. En effet, considérons $\Delta_k = \sup_{s,t\geq k} |M_t - M_s|$, qui est décroissante, donc converge p.s. En utilisant Doob, on voit que $\mathbb{E}[\Delta_k^2] \leq 4\mathbb{E}[\sup_{s\geq k} |M_s - M_k|^2] \leq 16\sup_{s\geq k} \mathbb{E}[|M_s - M_k|^2]$ qui tend vers 0 par l'étape 1, donc $\Delta_k \to 0$ p.s. Donc M_t converge p.s. (pour toute suite $t_n \to \infty$, éventuellement aléatoire, M_{t_n} est une suite de Cauchy, etc.).

Etape 3. Si $(M_t)_{t\geq 0}$ est une martingale càd bornée dans L^1 , alors $L = \sup_{[0,\infty[} |M_t| < \infty$ p.s. En effet, par l'inégalité maximale de Doob pour la martingale discrète $M_{k2^{-n}}$, on trouve que $L_n = \sup_{k\geq 0} |M_{k2^{-n}}|$ vérifie $\mathbb{P}(L_n > a) \leq a^{-1} \sup_{k\geq 0} \mathbb{E}[|M_{k2^{-n}}|] \leq Ca^{-1}$. Comme notre martingale est càd, on en déduit que $\mathbb{P}(L > a) \leq Ca^{-1}$.

Etape 4. Si $(M_t)_{t\geq 0}$ est une martingale càd bornée dans L^1 , alors elle converge p.s. Pour $A \in \mathbb{N}$, soit $\tau_A = \inf\{t > 0 : |M_t| > A\}$. Par l'étape 2, p.s., pour tout $A \in \mathbb{N}$, $M_{t \wedge \tau_A}$ converge vers une limite Z_A . Mais par l'étape 3, On a $\tau_A = \infty$ p.s. pour tout A > L. Ainsi, $M_t = M_{\tau_{L+1} \wedge t}$ converge p.s. (vers Z_{L+1}).

Théorème 3.5.9. Soit $(M_s)_{s\geq 0}$ une martingale continue à droite bornée dans L^1 et soit M_{∞} sa limite p.s. On a l'équivalence

- (i) M_t converge dans L^1 (vers M_{∞}),
- (ii) la famille $(M_t, t \ge 0)$ est U.I. (uniformément intégrable),
- (iii) M_t est fermée (par M_{∞}), i.e. $M_t = \mathbb{E}[M_{\infty}|\mathscr{F}_t]$ pour tout $t \geq 0$.

Preuve. La preuve est la même que dans le cas discret : pour (i) implique (iii), il suffit de passer à la limite $s \to \infty$ (dans L^1) dans $\mathbb{E}[M_{t+s}|\mathscr{F}_t] = M_t$, (iii) implique (ii) est évident

(car pour $Z \in L^1$, la famille $\{\mathbb{E}[Z|\mathscr{G}] : \mathscr{G} \text{ sous-tribu de } \mathscr{F} \}$ est U.I.), et (ii) implique (i) par convergence dominée optimale (si M_t tend vers M_{∞} en probabilité et si $(M_t, t \geq 0)$ est U.I., alors M_t converge dans L^1 vers M_{∞}).

3.6. Mouvement brownien en tant que martingale

DÉFINITION 3.6.1. Soit $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ un espace filtré. On dit que $(B_t)_{t\geq 0}$ un $(\mathscr{F}_t)_{t\geq 0}$ mouvement brownien si

- (i) $(B_t)_{t\geq 0}$ est (\mathscr{F}_t) -adapté;
- (ii) pour tout s > 0, $(B_{t+s} B_s)_{t \ge 0}$ est un mouvement brownien indépendant de \mathscr{F}_s .

Par exemple, un mouvement brownien standard est un mouvement brownien dans sa filtration canonique. C'est aussi un mouvement brownien dans sa filtration canonique augmentée habituellement \mathscr{F}_t , ainsi que dans $\mathscr{F}_t \vee \mathscr{G}_t$, pour toute filtration $(\mathscr{G}_t)_{t\geq 0}$ indépendante de $(\mathscr{F}_t)_{t\geq 0}$.

Durant toute la section, $(B_t)_{t\geq 0}$ est un (\mathscr{F}_t) -mouvement brownien. On donne quelques exemples d'applications des théorèmes d'arrêt.

EXEMPLE 3.6.2. Soit $\tau_1 = \inf\{t > 0 : B_t = 1\}$. Par l'exemple 2.2.4, ce temps d'arrêt est p.s. fini mais, par l'exemple 2.4.11, $\mathbb{E}(\tau_1) = +\infty$. Puisque p.s. $B_{\tau_1} = 1$,

$$1 = \mathbb{E}[B_{\tau_1} \mid \mathscr{F}_0] \neq B_0 = 0.$$

Donc $(B_t)_{t\geq 0}$ n'est pas une martingale fermée, sinon le théorème d'arrêt s'appliquerait. \Box

EXEMPLE 3.6.3 (Identités de Wald). Soit τ un temps d'arrêt tel que $\mathbb{E}(\tau) < \infty$. Alors $B_{\tau} \in L^2$, $\mathbb{E}(B_{\tau}) = 0$ et $\mathbb{E}(B_{\tau}^2) = \mathbb{E}(\tau)$.

Observons d'abord que $(B_t)_{t\geq 0}$ n'est pas une martingale fermée et τ n'est pas supposé borné; le théorème d'arrêt ne s'applique donc pas directement. Par la Proposition 3.5.7, $B_{t\wedge\tau}$ et $B_{t\wedge\tau}^2 - t \wedge \tau$ sont des martingales et donc on a $\mathbb{E}(B_{t\wedge\tau}) = 0$ et $\mathbb{E}(B_{t\wedge\tau}^2 - t \wedge \tau) = 0$.

Ainsi, pour tout $t \geq 0$, $\mathbb{E}(B_{t \wedge \tau}^2) = \mathbb{E}(t \wedge \tau) \leq \mathbb{E}(\tau)$, ce qui implique que $\sup_{t \geq 0} \mathbb{E}(B_{t \wedge \tau}^2) \leq \mathbb{E}(\tau) < \infty$. Par conséquent, $(B_{t \wedge \tau})_{t \geq 0}$ est une martingale (continue) bornée dans L^2 donc U.I. et donc fermée (par $\lim_{t \to \infty} B_{t \wedge \tau} = B_{\tau}$). Par le théorème d'arrêt appliqué à la martingale fermée $B_{t \wedge \tau}$ et au temps d'arrêt τ , on trouve $\mathbb{E}(B_{\tau}) = \mathbb{E}(B_{\tau \wedge \tau}) = \mathbb{E}(B_{0 \wedge \tau}) = 0$.

Par l'inégalité de Doob, avec p=2, pour la martingale $B_{t\wedge\tau}$,

$$\mathbb{E}\left[\sup_{t\geq 0} B_{t\wedge\tau}^2\right] \leq 4\sup_{t\geq 0} \mathbb{E}\left[B_{t\wedge\tau}^2\right] \leq 4\mathbb{E}(\tau) < \infty,$$

et donc $(B_{t\wedge\tau}^2, t\geq 0)$ est U.I. Comme de plus $(t\wedge\tau, t\geq 0)$ est U.I. (car borné par $\tau\in L^1$), la martingale $(B_{t\wedge\tau}^2-t\wedge\tau, t\geq 0)$ est U.I., donc fermée (par sa limite p.s., i.e. par

 $B_{\tau}^2 - \tau$. En appliquant le théorème d'arrêt à cette martingale et au temps d'arrêt τ , on trouve $\mathbb{E}(B_{\tau}^2 - \tau) = 0$. Autrement dit, $\mathbb{E}(B_{\tau}^2) = \mathbb{E}(\tau)$.

EXEMPLE 3.6.4. Soit a>0 et $\tau_a=\inf\{t\geq 0: B_t=a\}$. Soit $\theta>0$. On sait que $(\mathrm{e}^{\theta B_t-\theta^2t/2})_{t\geq 0}$ est une martingale. Donc $(\mathrm{e}^{\theta B_t\wedge\tau_a-\theta^2(\tau_a\wedge t)/2})_{t\geq 0}$ est aussi une martingale, qui est de plus bornée par $\mathrm{e}^{\theta a}$, elle est donc U.I. et donc fermée par sa limite p.s., qui n'est autre que $\mathrm{e}^{\theta a-\theta^2\tau_a/2}$ (rappelons que $\tau_a<\infty$ p.s.). Ainsi, par le théorème d'arrêt appliqué à cette martingale et au temps d'arrêt τ_a , on trouve

$$\mathbb{E}\left[e^{\theta a - \theta^2 \tau_a/2}\right] = 1.$$

Autrement dit, pour tout $\lambda > 0$, $\mathbb{E}\left[e^{-\lambda \tau_a}\right] = e^{-a\sqrt{2\lambda}}$. On peut vérifier que ceci est en accord avec la densité de τ_a donnée dans l'Exemple 2.4.11.

Chapitre 4

Semimartingales continues

De même que les mesures sont les objets mathématiques pour lesquels on peut construire des intégrales déterministes, les semimartingales sont des processus aléatoires pour lesquels on peut construire un calcul intégral puissant qui étend le calcul intégral déterministe. Nous travaillerons toujours avec des semimartingales continues, mais il est possible, au prix de difficultés techniques supplémentaires, de faire de même avec des processus admettant des sauts. Une semimartingale se décompose en somme d'une martingale locale et d'un processus à variation finie. Nous allons étudier séparément les deux notions.

4.1. Fonctions à variation finie

Commençons par un rappel sur les fonctions (déterministes) croissantes.

THÉORÈME 4.1.1. Soit $F:[0,T]\to\mathbb{R}_+$ une fonction croissante continue telle que F(0)=0. Il existe une unique mesure dF sur $([0,T],\mathscr{B}([0,T]))$, appelée mesure de Stieltjes, vérifiant :

$$\forall \, 0 \le s < t \le T, \qquad \mathrm{d} F(]s,t]) = F(t) - F(s).$$

Noter que comme F est continue, dF n'a pas d'atome, car pour tout $s \in [0, T]$, $dF(\{s\}) = \lim_n dF(]s - n^{-1}, s]) = \lim_n [F(s) - F(s - n^{-1})] = 0$.

Preuve. L'unicité découle du théorème d'unicité de prolongement des mesures. Pour l'existence, on introduit l'inverse généralisé $G(r) = \inf\{t \geq 0 : F(t) > r\}$ continu à droite, bien défini pour $r \in [0, F(T)[$ et on note que si U suit la loi uniforme sur [0, F(T)[, alors la loi μ de G(U) est une probabilité sur [0, T[qui satisfait, pour tout $0 \leq s < t \leq T$, $\mu(]s,t]) = \mathbb{P}(s < G(U) \leq t) = \mathbb{P}(F(s) < U \leq F(t)) = (F(T))^{-1}(F(t) - F(s))$, et il suffit de poser $dF = F(T)\mu$.

DÉFINITION 4.1.2. (i) Une mesure signée sur un espace mesurable (E, \mathcal{E}) est la différence de deux mesures finies positives.

(ii) Une fonction $a:[0,T] \to \mathbb{R}$ continue avec a(0)=0 est dite à variation finie s'il existe une mesure signée, notée da, sur [0,T] telle que $a(t)=\operatorname{da}([0,t])$ pour tout $t\in[0,T]$.

REMARQUE 4.1.3. Ceci étend la notion de dérivée : si a est C^1 (et a(0) = 0), alors a est à variation finie et da(dt) = a'(t)dt.

La mesure da est unique (par unicité du prolongement des mesures). Par contre, la décomposition de $da = \mu_1 - \mu_2$ comme différence de deux mesures finies positives n'est pas unique, mais elle le devient si l'on impose de plus que les mesures μ_1 et μ_2 soient étrangères (c'est-à-dire qu'il existe un borélien E de [0,T] tel que $\mu_1(E) = 0 = \mu_2(E^c)$):

LEMME 4.1.4. Si a est une fonction à variation finie alors il existe un unique couple (da_+, da_-) de mesures positives finies sur [0, T] étrangères tel que $da = da_+ - da_-$. On notera alors D_+ et D_- deux boréliens de [0, T] tels que $da_+(D_-) = 0$, $da_-(D_+) = 0$, et $D_- = D_+^c$.

Preuve. Pour l'existence, on part d'une décomposition quelconque $da = \mu_1 - \mu_2$. La mesure $\nu = \mu_1 + \mu_2$ est positive finie, et on a $\mu_1 \ll \nu$ et $\mu_2 \ll \nu$. Par le théorème de Radon-Nikodym il existe deux fonctions boréliennes $h_1 \geq 0$ et $h_2 \geq 0$ sur [0, T] telles que

$$d\mu_i = h_i d\nu, \qquad i = 1, 2.$$

Si on pose $h = h_1 - h_2$ alors $da = h d\nu = h_+ d\nu - h_- d\nu =: da_+ - da_-$, où comme d'habitude $h_+ = \max\{h, 0\}$ et $h_- = \max\{-h, 0\}$. Les deux mesures da_+ et da_- sont étrangères, car en posant $E = \{t \in [0, T] : h(t) \ge 0\}$, on a $da_+(E^c) = 0 = da_-(E)$.

L'unicité de la décomposition découle du fait que si $da = \mu_1 - \mu_2$ avec μ_1 et μ_2 positives et étrangères (avec $\mu_1(E) = 0 = \mu_2(E^c)$ pour un certain borélien E de [0, T]), alors forcément, pour tout $A \in \mathcal{B}([0, T])$,

$$\mu_1(A) = \sup\{da(C) : C \in \mathcal{B}([0,T]), C \subseteq A\},\$$

car d'une part, pour tout borélien C inclus dans A,

$$da(C) = \mu_1(C) - \mu_2(C) \le \mu_1(A)$$

et car, avec $C = A \cap E^c$, on a $da(C) = da(A \cap E^c) = \mu_1(A \cap E^c) - \mu_2(A \cap E^c) = \mu_1(A)$.

REMARQUE 4.1.5. On note alors $|da| = da_+ + da_-$, qui est une mesure finie positive appelée variation totale de da. On a $|da|(A) \ge |da(A)|$ pour tout $A \in \mathcal{B}([0,T])$. La densité de Radon-Nikodym de da par rapport à |da| est donnée par

(4.1)
$$da = (\mathbf{1}_{D_+} - \mathbf{1}_{D_-}) |da|,$$

où $D_+ = E$ et $D_- = E^c$, pour E un ensemble tel que $da_+(E^c) = 0 = da_-(E)$.

EXERCICE 4.1.6. Si μ est une mesure finie (positive) sans atome sur [0,T] et $f:[0,T] \mapsto \mathbb{R}$ est une fonction borélienne telle que $\int_{[0,T]} |f| d\mu < +\infty$, alors la fonction

$$a(t) = \int_0^t f \,\mathrm{d}\mu, \qquad t \in [0, T],$$

est à variation finie et

$$\mathrm{d}a=f\,\mathrm{d}\mu,\qquad \mathrm{d}a_+=f_+\,\mathrm{d}\mu,\qquad \mathrm{d}a_-=f_-\,\mathrm{d}\mu,\qquad |\mathrm{d}a|=|f|\,\mathrm{d}\mu,$$
 où $f_+=\max\{f,0\}$ et $f_-=\max\{-f,0\}.$

On peut maintenant définir l'intégrale par rapport à une fonction à variation finie.

REMARQUE 4.1.7. (i) Si $a:[0,T] \to \mathbb{R}$ est (continue) à variation finie, et si $f:[0,T] \to \mathbb{R}$ est une fonction mesurable telle que $\int_{[0,T]} |f| |\mathrm{d}a| < \infty$, on peut poser

$$\int_{0}^{T} f \, da = \int_{0}^{T} f(s) \, da_{+}(s) - \int_{0}^{T} f(s) \, da_{-}(s),$$

$$\int_{0}^{T} f \, |da| = \int_{0}^{T} f(s) \, da_{+}(s) + \int_{0}^{T} f(s) \, da_{-}(s).$$

Remarquons l'inégalité triangulaire

$$\left| \int_0^T f \, \mathrm{d}a \, \right| \le \int_0^T |f| \, |\mathrm{d}a|$$

et que $g(t) = \int_0^t f \, da = \int_0^T f \, \mathbf{1}_{[0,t]} \, da$ est aussi (continue) à variation finie et que dg = f da.

Une autre façon de présenter les fonctions à variation finie consiste à regarder la variation de a le long des subdivisions de [0,T]:

Proposition 4.1.8. Si a est à variation finie, alors pour tout $t \in [0, T]$

$$|da|([0,t]) = \sup \left\{ \sum_{i=1}^{p} |a(t_i) - a(t_{i-1})| \right\},$$

où le supremum porte sur toutes les subdivisions $0 = t_0 < t_1 < \cdots < t_p = t$ de [0, t].

Preuve. La minoration est facile, car pour toute subdivision,

$$\sum_{i=1}^{p} |a(t_i) - a(t_{i-1})| = \sum_{i=1}^{p} |da(]t_{i-1}, t_i])| \le \sum_{i=1}^{p} |da|(]t_{i-1}, t_i]) = |da|([0, t]).$$

Pour la majoration, on suppose que t=1 et on montre par un argument de martingales que $S_n = \sum_{1}^{2^n} |a(i/2^n) - a((i-1)/2^n)| \to |da|([0,1]).$

On munit $\Omega = [0, 1]$ de la tribu $\mathscr{F} = \mathscr{B}([0, 1])$ et de la probabilité $\mathbb{P} = \frac{|\mathrm{d}a|}{|\mathrm{d}a|([0, 1])}$. On pose

$$Y(s) = \frac{\mathrm{d}a}{|\mathrm{d}a|}(s) = \mathbf{1}_{D_{+}}(s) - \mathbf{1}_{D_{-}}(s), \qquad s \in [0, 1].$$

Alors Y est une variable aléatoire et |Y| = 1 p.s.

Pour chaque n, soit $\mathscr{B}_n = \sigma(I_i^n, i = 1, \dots, 2^n) \subset \mathscr{B}([0, 1])$, où $I_i^n =]\frac{i-1}{2^n}, \frac{i}{2^n}]$. C'est une filtration. On considère la martingale $M_n = \mathbb{E}(Y \mid \mathscr{B}_n)$. On a $M_n = \sum_1^{2^n} \mathbf{1}_{I_i^n} \frac{\mathbb{E}[Y \mathbf{1}_{I_i^n}]}{\mathbb{P}(I_i^n)}$, donc

$$\mathbb{E}[|M_n|] = \sum_{1}^{2^n} |\mathbb{E}[Y\mathbf{1}_{I_i^n}]| = \frac{1}{|\mathrm{d}a|([0,1])} \sum_{1}^{2^n} \left| \int_{I_i^n} Y|\mathrm{d}a \right| = \frac{1}{|\mathrm{d}a|([0,1])} \sum_{1}^{2^n} \left| \int_{I_i^n} \mathrm{d}a \right| = \frac{S_n}{|\mathrm{d}a|([0,1])}.$$

La martingale M_n est fermée par Y, qui est \mathscr{B}_{∞} -mesurable, car $\mathscr{B}_{\infty} = \mathscr{B}([0,1])$. Donc M_n converge vers $M_{\infty} = Y$ dans L^1 . Ainsi, $\mathbb{E}[|M_n|] \to \mathbb{E}[|Y|] = 1$, d'où $S_n \to |\mathrm{d}a|([0,1])$.

LEMME 4.1.9. Si $a:[0,T] \to \mathbb{R}$ est (continue) à variation finie, si $f:[0,T] \to \mathbb{R}$ est continue et si $0=t_0^n < t_1^n < \cdots < t_{p_n}^n = T$ est une suite de subdivisions de [0,T] dont le pas tend vers 0, alors

$$\int_0^T f(s) \, \mathrm{d}a(s) = \lim_{n \to \infty} \sum_{i=1}^{p_n} f(t_{i-1}^n) (a(t_i^n) - a(t_{i-1}^n)).$$

Preuve. Soit $f_n(s) = \sum_{i=1}^{p_n} f(t_{i-1}^n) \mathbf{1}_{\{s \in [t_{i-1}^n, t_i^n]\}}$. Alors

$$\sum_{i=1}^{p_n} f(t_{i-1}^n)(a(t_i^n) - a(t_{i-1}^n)) = \int_0^T f_n(s) \, \mathrm{d}a(s),$$

et le résultat voulu en découle par convergence dominée, puisque f_n est uniformément bornée, |da| est une mesure finie, et f_n tend vers f simplement.

4.2. Processus à variation finie

Passons maintenant au cas aléatoire.

DÉFINITION 4.2.1. Un processus à variation finie $A = (A_t)_{t\geq 0}$ est un processus adapté dont les trajectoires sont p.s. (continues) à variation finie (sur [0,T], pour tout T>0), avec $A_0 = 0$. Le processus A est dit **croissant** si de plus ses trajectoires sont p.s. croissantes.

Proposition 4.2.2. Soit A un processus à variation finie, et soit H un processus progressif tel que pour tout t > 0,

$$\int_0^t |H_s| |\mathrm{d}A_s| < \infty \qquad \text{p.s.}$$

Alors le processus $H \cdot A$ défini, pour chaque $\omega \in \Omega$ (voir la Remarque 4.1.7), par

$$(H \cdot A)_t = \int_0^t H_s \, \mathrm{d}A_s$$

est aussi un processus à variation finie.

Preuve. Les trajectoires de $H \cdot A$ sont p.s. (continues) à variation finie par la Remarque 4.1.7. Vérifions que $H \cdot A$ est adapté. En écrivant $H = H_+ - H_-$ (avec $H_+ = \max\{H, 0\}$) et $H_- = \max\{-H, 0\}$) et $A = A^+ - A^-$ (avec $A^+ = \mathrm{d}A_+([0, t])$ et $A^- = \mathrm{d}A_-([0, t])$), puis

$$\int_0^t H_s \, \mathrm{d}A_s = \int_0^t H_{+,s} \, \mathrm{d}A_s^+ - \int_0^t H_{+,s} \, \mathrm{d}A_s^- - \int_0^t H_{-,s} \, \mathrm{d}A_s^+ + \int_0^t H_{-,s} \, \mathrm{d}A_s^-,$$

on se ramène au cas où H est positif et où dA est une mesure positive, ce qu'on suppose désormais. On fixe $t \geq 0$. On sait que $(\omega, s) \mapsto H_s(\omega)$ est $\mathcal{B}([0, t]) \otimes \mathcal{F}_t$ -mesurable.

- Pour tout $]u,v] \subset [0,t]$ et $\Gamma \in \mathscr{F}_t$, $(\mathbf{1}_{[u,v]}\mathbf{1}_{\Gamma} \cdot A)_t = \mathbf{1}_{\Gamma}(A_v A_u)$ est \mathscr{F}_t -mesurable.
- Donc par classes monotones, $(\mathbf{1}_G \cdot A)_t$ est \mathscr{F}_t -mesurable pour tout $G \in \mathscr{B}([0,t]) \otimes \mathscr{F}_t$.
- On écrit $H\mathbf{1}_{[0,t]}$ comme limite croissante de fonctions étagées de la forme $H^n = \sum_{1}^{n} a_i^n \mathbf{1}_{G_i^n}$, avec $G_i^n \in \mathscr{B}([0,t]) \otimes \mathscr{F}_t$ et $a_i^n > 0$. Par le point précédent, $(H^n \cdot A)_t$ est \mathscr{F}_t -mesurable pour tout $n \geq 1$. On a de plus $(H \cdot A)_t = \lim_n (H^n \cdot A)_t$ par convergence monotone (car dA est une mesure positive), et enfin, $(H \cdot A)_t$ est \mathscr{F}_t -mesurable.

4.3. Martingales locales (continues)

On se place dans un espace de probabilité filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ qui vérifie les conditions habituelles. Si τ est un temps d'arrêt, et si $X = (X_t, t \ge 0)$ est un processus continu, on note X^{τ} le processus arrêté $(X_t^{\tau} = X_{t \land \tau})_{t \ge 0}$.

DÉFINITION 4.3.1. Un processus continu adapté $M=(M_t)_{t\geq 0}$ est appelé une martingale locale (continue) s'il existe une suite croissante $(\tau_n, n \geq 1)$ de temps d'arrêt telle que $\tau_n \uparrow \infty$ p.s. et que pour tout $n, M^{\tau_n} - M_0$ soit une martingale uniformément intégrable. On dit que la suite de temps d'arrêt (τ_n) réduit M.

REMARQUE 4.3.2. Si M est une martingale locale, la variable aléatoire M_t n'est pas nécessairement intégrable. En particulier, on n'a aucune information a priori sur M_0 , à part qu'elle est \mathscr{F}_0 -mesurable. Si par exemple X est une v.a. \mathscr{F}_0 -mesurable et $(M_t)_{t\geq 0}$ est une martingale, alors $(X+M_t)_{t\geq 0}$ et $(XM_t)_{t\geq 0}$ sont des martingales locales (introduire $\tau_n = n\mathbf{1}_{|X|\leq n}$).

Voici une collection de propriétés élémentaires pour les martingales locales.

EXERCICE 4.3.3.

- (1) Une martingale (continue) est une martingale locale (la suite $\tau_n = n$ réduisant M).
- (2) Dans la définition d'une martingale locale, on peut remplacer "martingale uniformément intégrable" par "martingale" (il suffit de remplacer τ_n par $\tau_n \wedge n$).
- (3) Si M est une martingale locale, alors pour tout temps d'arrêt τ , M^{τ} est une martingale locale.
- (4) Si (τ_n) réduit M et si (σ_n) est une suite croissante de temps d'arrêt telle que $\sigma_n \uparrow \infty$, alors la suite $(\sigma_n \wedge \tau_n)$ réduit M.
- (5) L'ensemble des martingales locales est un R-espace vectoriel.

On se gardera d'appliquer sans précaution aux martingales locales les résultats qu'on a démontrés pour les martingales. Il est important de savoir si une martingale locale est une vraie martingale. Nous allons prouver quelques premiers résultats dans ce sens.

Proposition 4.3.4. Soit M une martingale locale.

- (1) Si $M_0 \in L^1$ et si M est positive, alors c'est une surmartingale.
- (2) Si pour tout $t \geq 0$, $\mathbb{E}(\sup_{s \in [0,t]} |M_s|) < \infty$, alors M est une martingale.
- (3) La suite de temps d'arrêt $\tau_n = \inf\{t \ge 0 : |M_t M_0| = n\}$ réduit M.

Preuve. On considère une suite (τ_n) réduisant M. Comme $M_0 \in L^1$, M^{τ_n} est une martingale. Donc pour s < t,

(4.2)
$$\mathbb{E}\left[M_{t \wedge \tau_n} \mid \mathscr{F}_s\right] = M_{s \wedge \tau_n}, \quad \text{p.s.}$$

Par Fatou (conditionnel), comme $\lim_n M_{t \wedge \tau_n} = M_t$, on conclut que

$$\mathbb{E}\left[M_t \,|\, \mathscr{F}_s\right] \leq M_s, \qquad \text{p.s.}$$

En particulier (avec s = 0), $M_t \in L^1$. Par conséquent, M est une surmartingale, d'où (1).

Pour (2), on a aussi $M_0 \in L^1$ et donc (4.2). Comme $M_{t \wedge \tau_n} \to M_t$, p.s., et

$$|M_{t \wedge \tau_n}| \le Y_t = \sup_{u \in [0,t]} |M_u| \in L^1,$$

le théorème de convergence dominée nous donne $\mathbb{E}[M_t\,|\,\mathscr{F}_s]=M_s$ p.s.

Enfin, (3) découle de (2), car $(M-M_0)^{\tau_n}$ est une martingale locale bornée et donc une vraie martingale.

REMARQUE 4.3.5. Il est faux que toute martingale locale telle que $(M_s, s \in [0, t])$ soit uniformément intégrable pour tout $t \geq 0$ est une martingale. On verra un exemple d'une martingale locale bornée dans L^2 qui n'est pas une martingale.

Théorème 4.3.6. Soit M une martingale locale à variation finie. Alors p.s., pour tout $t \geq 0$, $M_t = M_0$.

Preuve. Quitte à remplacer M par $M-M_0$, on peut supposer que p.s. $M_0=0$.

Cas 1 : M est une vraie martingale bornée (issue de 0) dont la variation totale dM est bornée, i.e. $|dM([0,\infty[)]| \le K$. Soit t > 0, et soit $0 = t_0 < t_1 < \cdots < t_p = t$ une subdivision de [0,t]. On a

$$\mathbb{E}[(M_t)^2] = \mathbb{E}\left[\left(\sum_{i=1}^p (M_{t_i} - M_{t_{i-1}})\right)^2\right] = \sum_{i=1}^p \mathbb{E}\left[(M_{t_i} - M_{t_{i-1}})^2\right]$$

$$\leq \mathbb{E}\left[\sup_{1 \leq i \leq p} |M_{t_i} - M_{t_{i-1}}| \sum_{i=1}^p |M_{t_i} - M_{t_{i-1}}|\right] \leq K\mathbb{E}\left[\sup_{1 \leq i \leq p} |M_{t_i} - M_{t_{i-1}}|\right],$$

car $\sum_{i=1}^{p} |M_{t_i} - M_{t_{i-1}}| \leq |dM|([0,t]) \leq K$, voir la Proposition 4.1.8. On faisant tendre le pas de la subdivision vers 0, on conclut par convergence dominée et par continuité de M que $\mathbb{E}[M_t^2] = 0$. Enfin, encore par continuité de M, p.s., pour tout $t \geq 0$, $M_t = 0$.

Cas 2:M est une martingale locale issue de 0 à variation finie. On pose

$$\tau_n = \inf \left\{ t : |M_t| + \int_0^t |\mathrm{d}M_s| \ge n \right\},\,$$

qui croît p.s. vers l'infini quand $n \to \infty$ (car $\int_0^T |\mathrm{d}M_s| < \infty$ p.s. pour tout T > 0). Alors M^{τ_n} est une vraie martingale bornée de variation totale bornée, et donc p.s., pour tout $t \ge 0$, $M_t^{\tau_n} = 0$ p.s., i.e. pour tout $t \in [0, \tau_n]$, $M_t = 0$.

4.4. Variation quadratique d'une martingale locale

On se place toujours dans un espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ vérifiant les conditions habituelles. Le théorème suivant joue un rôle très important dans la suite du cours.

THÉORÈME 4.4.1. Soit M une martingale locale (continue). Il existe un processus croissant (continu adapté), noté $(\langle M \rangle_t)_{t\geq 0}$, unique à indistinguabilité près, tel que $M_t^2 - \langle M \rangle_t$ soit une martingale locale et $\langle M \rangle_0 = 0$.

De plus, pour tout t > 0, si $0 = t_0^n < t_1^n < \cdots < t_{p_n}^n = t$ est une suite de subdivisions emboîtées de [0, t], de pas tendant vers 0, alors

$$\lim_{n\to\infty}\sum_{i=1}^{p_n}(M_{t_i^n}-M_{t_{i-1}^n})^2=\langle M\rangle_t \qquad en\ probabilit\'e.$$

REMARQUE 4.4.2. (i) Le processus $\langle M \rangle$ est appelé la variation quadratique de M. Il ne dépend que des accroissements de M, pas de sa donnée initiale M_0 .

(ii) Quand M = B est un mouvement brownien, on a $\langle B \rangle_t = t$, car $B_t^2 - t$ est une martingale.

EXERCICE 4.4.3. (i) Si M est une martingale et si 0 < a < b, alors $Y_t = M_{t \wedge b} - M_{t \wedge a}$ est une martingale.

- (ii) Si M est une martingale L² et si 0 < a < b, alors $Z_t = M_a[M_{t \wedge b} M_{t \wedge a}]$ est une martingale.
- (iii) Si M est une martingale locale, si 0 < a < b et si H est \mathscr{F}_a -mesurable, alors $U_t = H(M_{t \wedge b} M_{t \wedge a})$ est une martingale locale. Indications : (a) traîter d'abord le cas où H est borné et M une vraie martingale, en distinguant les cas $s \leq t \leq a$, $s \leq a \leq t$, et $a \leq s \leq t$. (b) Dans le cas général, introduire $\tau_n = \inf\{t \geq 0 : |M_t| > n$ ou $|H|\mathbf{1}_{t \geq a} > n\}$, montrer que c'est une suite de temps d'arrêts, que $U_t^{\tau_n} = H\mathbf{1}_{|H| \leq n}(M_{t \wedge b}^{\tau_n} M_{t \wedge a}^{\tau_n})$, et conclure.

PROPOSITION 4.4.4. Si $(X_t^n)_{t\in[0,T]}$ est une suite de processus continus adaptés telle que $\lim_{n,m\to\infty} \mathbb{E}[\sup_{[0,T]} |X_t^n - X_t^m|^p] = 0$, avec $p \geq 1$, alors il existe un processus continu adapté $(X_t)_{t\in[0,T]}$ tel que $\lim_{n\to\infty} \mathbb{E}[\sup_{[0,T]} |X_t^n - X_t|^p] = 0$.

Preuve. Soit $n_k \to \infty$ une suite d'indices telle que $\mathbb{E}[\sup_{[0,T]} |X_t^{n_{k+1}} - X_t^{n_k}|^p] \le 2^{-k}$. Alors

$$\mathbb{E}\Big[\Big|\sum_{k>0}\sup_{[0,T]}\big|X_t^{n_{k+1}}-X_t^{n_k}\big|\Big|^p\Big]^{1/p}\leq \sum_{k>0}\mathbb{E}\Big[\Big|\sup_{[0,T]}\big|X_t^{n_{k+1}}-X_t^{n_k}\big|\Big|^p\Big]^{1/p}\leq \sum_{k>0}2^{-k/p}<\infty,$$

par Minkowski, donc la série $\sum_{k\geq 0}\sup_{[0,T]}|X^{n_{k+1}}_t-X^{n_k}_t|$ converge (normalement) p.s., et la suite $(X^{n_k}_t)_{t\in[0,T]}$ converge p.s. (uniformément) vers $(X_t=X^{n_0}_t+\sum_{k\geq 0}(X^{n_{k+1}}_t-X^{n_k}_t))_{t\in[0,T]}$, qui est continu et adapté. De plus,

$$\mathbb{E}\Big[\sup_{[0,T]}|X_t - X_t^{n_k}|^p\Big]^{1/p} \le \sum_{\ell > k} \mathbb{E}\Big[\Big|\sup_{[0,T]}|X_t^{n_{\ell+1}} - X_t^{n_{\ell}}|\Big|^p\Big]^{1/p} \le \sum_{\ell > k} 2^{-\ell/p} \to 0.$$

Enfin,

$$\limsup_{n \to \infty} \mathbb{E} \Big[\sup_{[0,T]} |X_t^n - X_t|^p \Big] \le \limsup_n \limsup_k \mathbb{E} \Big[\sup_{[0,T]} |X_t^n - X_t^{n_k}|^p \Big] = 0$$

ce qui achève la preuve.

Preuve du Théorème 4.4.1. Unicité. Si on a deux processus croissants A et A' tels que $M_t^2 - A_t$ et $M_t^2 - A_t'$ soient deux martingales locales, alors $A_t - A_t' = (M_t^2 - A_t') - (M_t^2 - A_t)$ est une martingale locale et un processus à variation finie issu de 0, il est donc p.s. nul, et A et A' sont indistinguables.

Existence: partie 0. On se ramène au cas où $M_0 = 0$, en posant $\langle M \rangle_t = \langle M - M_0 \rangle_t$. En effet, on a bien que $M^2 - \langle M - M_0 \rangle$ est une martingale locale, car

$$M^2 - \langle M - M_0 \rangle = (M - M_0)^2 - \langle M - M_0 \rangle + \{2M_0M_t - M_0^2\},$$

et car le terme entre accolades est une martingale locale, voir l'exercice 4.4.3-(iii). De plus, on a bien, si on suppose le théorème vrai quand $M_0 = 0$,

$$\lim_{n \to \infty} \sum_{i=1}^{p_n} (M_{t_i^n} - M_{t_{i-1}^n})^2 = \lim_{n \to \infty} \sum_{i=1}^{p_n} ((M_{t_i^n} - M_0) - (M_{t_{i-1}^n} - M_0))^2 = \langle M - M_0 \rangle_t = \langle M \rangle_t$$

Existence: partie 1. On suppose ici que M est bornée (et donc est une vraie martingale) et on travaille sur [0,T]. On considère une suite $0=t_0^n<\cdots< t_{p_n}^n=T$ de subdivisions emboîtées de [0,T], et on introduit $X_t^n=\sum_{i=1}^{p_n}M_{t_{i-1}^n}[M_{t_i^n\wedge t}-M_{t_{i-1}^n\wedge t}]$.

- (a) Le processus X^n est une martingale (bornée), voir exercice 4.4.3.
- (b) Pour tout $k = 1, \ldots, p_n$, on a

$$M_{t_k^n}^2 - 2X_{t_k^n}^n = \sum_{i=1}^k \left[M_{t_i^n}^2 - M_{t_{i-1}^n}^2 \right] - 2\sum_{i=1}^k M_{t_{i-1}^n} \left[M_{t_i^n} - M_{t_{i-1}^n} \right] = \sum_{i=1}^k \left[M_{t_i^n} - M_{t_{i-1}^n} \right]^2.$$

- (c) On a $\lim_{n,m\to\infty} \mathbb{E}[(X_T^n X_T^m)^2] = 0$: nous verrons cela à la fin de la preuve.
- (d) Par Doob, comme X^n-X^m est une martingale continue, on déduit de (c) que $\lim_{n,m\to\infty}\mathbb{E}[\sup_{[0,T]}(X^n_t-X^m_t)^2]=0$. Par la proposition 4.4.4, il existe un processus continu adapté $(X_t)_{t\in[0,T]}$ tel que $\lim_{n\to\infty}\mathbb{E}[\sup_{[0,T]}(X^n_t-X_t)^2]=0$.
- (e) $A_t := M_t^2 2X_t$ est croissant : il est continu adapté, et limite uniforme de $A_t^n = M_t^2 2X_t^n$, qui est croissant le long de la subdivision $0 = t_0^n < t_1^n < \cdots < t_{p_n}^n = T$ par (b).
- (f) $M_t^2 A_t = 2X_t$ est une martingale : pour $0 \le s \le t$, on a $\mathbb{E}[X_t^n | \mathscr{F}_s] = X_s^n$ par (a), et il suffit de passer à la limite (dans L^2).
- (g) Enfin, $A_T = M_T^2 2X_T = \lim_n (M_T^2 2X_T^n) = \lim_n \sum_{i=1}^{p_n} [M_{t_i^n} M_{t_{i-1}^n}]^2$ dans L^2 , et donc en probabilité. On a utilisé (d) puis (b).

Existence : partie 2. Si M est une martingale locale (issue de 0), elle peut être réduite par $\tau_n = \inf\{t \geq 0 : |M_t| \geq n\}$. Comme M^{τ_n} est une martingale bornée, on peut appliquer la partie 1, soit donc $A_t^n = \langle M^{\tau_n} \rangle_t$.

Par unicité, on a $A^n_{t \wedge \tau_n} = A^m_{t \wedge \tau_n}$ (à indistinguabilité près) pour tout $m \geq n$. En effet, $M^2_{t \wedge \tau_m} - A^m_t$ est une martingale, donc $M^2_{t \wedge \tau_n} - A^m_{t \wedge \tau_n} = M^2_{t \wedge \tau_n \wedge \tau_n} - A^m_{t \wedge \tau_n}$ est une martingale, et donc $A^m_{t \wedge \tau_n}$ est bien le crochet de $M_{t \wedge \tau_n}$, i.e. $A^n_t = A^m_{t \wedge \tau_n}$, puis $A^n_{t \wedge \tau_n} = A^m_{t \wedge \tau_n}$.

On peut donc constuire un processus continu adapté croissant A tel que pour tout $n \ge 1$, $A_{t \wedge \tau_n} = A_{t \wedge \tau_n}^n$: il suffit de poser $A_t = \sum_{n \ge 1} A_t^n \mathbf{1}_{\{t \in (\tau_{n-1}, \tau_n]\}} = \lim_{n \to \infty} A_t^n$ p.s. (avec $\tau_0 = 0$).

Alors $M_t^2 - A_t$ est un martingale locale, puisque pour tout $n \geq 1$, $M_{t \wedge \tau_n}^2 - A_{t \wedge \tau_n} = M_{t \wedge \tau_n}^2 - A_{t \wedge \tau_n}^n$ est une martingale, donc τ_n réduit $M_t^2 - A_t$.

Enfin, on sait par la partie 1 que pour tout $k \geq 1$, on a $A_T^k = \lim_{n \to \infty} \sum_{i=1}^{p_n} [M_{t_i^n}^{\tau_k} - M_{t_{i-1}^n}^{\tau_k}]^2$ dans L^2 . Puisque $\Omega_k = \{\tau_k \geq T\}$ vérifie $\lim_k \mathbb{P}(\Omega_k) = 1$ et que

$$\Omega_k \subset \{A_T^k = A_T\} \cap \{M_t^{\tau_k} = M_t \ \forall \ t \in [0, T]\},\$$

on conclut que, pour tout $\epsilon > 0$, pour tout $k \ge 1$,

$$\mathbb{P}\Big(\Big|A_T - \sum_{i=1}^{p_n} [M_{t_i^n} - M_{t_{i-1}^n}]^2\Big| > \epsilon\Big) \le \mathbb{P}(\Omega_k^c) + \mathbb{P}\Big(\Big|A_T^k - \sum_{i=1}^{p_n} [M_{t_i^n}^{\tau_k} - M_{t_{i-1}^n}^{\tau_k}]^2\Big| > \epsilon\Big),$$

d'où $\limsup_n \mathbb{P}(|A_T-\sum_{i=1}^{p_n}[M_{t_i^n}-M_{t_{i-1}^n}]^2|>\epsilon)\leq \mathbb{P}(\Omega_k^c)$ puis

$$\lim_{n} \sup_{n} \mathbb{P}\left(\left| A_{T} - \sum_{i=1}^{p_{n}} [M_{t_{i}^{n}} - M_{t_{i-1}^{n}}]^{2} \right| > \epsilon \right) = 0.$$

Preuve du point (c). On fixe n < m, on écrit

$$X_T^m = \sum_{j=1}^{p_m} M_{t_{j-1}^m} [M_{t_j^m} - M_{t_{j-1}^m}],$$

$$X_T^n = \sum_{i=1}^{p_n} M_{t_{i-1}^n} [M_{t_i^m} - M_{t_{i-1}^m}] = \sum_{j=1}^{p_m} M_{t_{i_{n,m}(j)-1}} [M_{t_j^m} - M_{t_{j-1}^m}],$$

où, pour chaque $j=0,\ldots,p_m-1$, l'indice $i_{n,m}(j)$ est l'unique $i\in\{0,\ldots,p_n\}$ tel que $[t_{j-1}^m,t_j^m]\subset]t_{i-1}^n,t_i^n]$. Ainsi,

$$X_T^n - X_T^m = \sum_{i=1}^{p_m} H_{j-1}^{m,n} [M_{t_j^m} - M_{t_{j-1}^m}], \quad \text{où} \quad H_{j-1}^{m,n} = M_{t_{i_{n,m}(j)-1}}^n - M_{t_{j-1}^m}.$$

En utilisant que $\mathbb{E}[M_{t_i^m} - M_{t_{i-1}^m}|\mathscr{F}_{t_{i-1}^m}] = 0$ et que $H_{j-1}^{m,n}$ est $\mathscr{F}_{t_{j-1}^m}$ -mesurable, on voit que

$$\mathbb{E}[(X_T^n - X_T^m)^2] = \mathbb{E}\Big[\sum_{i=1}^{p_m} (H_{j-1}^{m,n})^2 [M_{t_j^m} - M_{t_{j-1}^m}]^2\Big] \le \mathbb{E}\Big[\sum_{i=1}^{p_m} (\bar{H}_{j-1}^{m,n})^2 [M_{t_j^m} - M_{t_{j-1}^m}]^2\Big],$$

où $\bar{H}_{j}^{m,n} = \max_{k=0,\dots,j} |H_{k}^{m,n}|$. Mais $\mathbb{E}[(M_{t_{j}^{m}} - M_{t_{j-1}^{m}})^{2} | \mathscr{F}_{t_{j-1}^{m}}] = \mathbb{E}[(M_{t_{j}^{m}})^{2} - (M_{t_{j-1}^{m}})^{2} | \mathscr{F}_{t_{j-1}^{m}}]$, d'où

$$\mathbb{E}[(X_T^n - X_T^m)^2] \leq \mathbb{E}\Big[\sum_{i=1}^{p_m} (\bar{H}_{j-1}^{m,n})^2 [(M_{t_j^m})^2 - (M_{t_{j-1}^m})^2]\Big] \leq \mathbb{E}\Big[\sum_{i=1}^{p_m} [(\bar{H}_{j}^{m,n} M_{t_j^m})^2 - (\bar{H}_{j-1}^{m,n} M_{t_{j-1}^m})^2]\Big]$$

qui vaut précisément $\mathbb{E}[(\bar{H}_{p_m}^{m,n}M_{t_{p_m}^m})^2]$. Notre martingale M étant bornée (par K), on conclut que $\mathbb{E}[(X_T^n - X_T^m)^2] \leq K^2 \mathbb{E}[(\bar{H}_{p_m}^{m,n})^2]$, qui tend vers 0 quand $n, m \to \infty$ par convergence dominée, puisque $(\bar{H}_{p_m}^{m,n})^2 \leq 4K^2$ et tend vers 0 p.s. par continuité des trajectoires $t \mapsto M_t$.

PROPOSITION 4.4.5. Pour M une martingale locale et τ un temps d'arrêt, $\langle M^{\tau} \rangle = \langle M \rangle^{\tau}$. Preuve. Puisque $M_{t \wedge \tau}^2 - \langle M \rangle_{t \wedge \tau}$ est une martingale locale, on a $\langle M \rangle_{t \wedge \tau} = \langle M^{\tau} \rangle_t$.

DÉFINITION 4.4.6. Une martingale (continue) M est dite de carré intégrable (ou dans L^2) si $\mathbb{E}(M_t^2) < \infty$ pour tout $t \geq 0$.

THÉORÈME 4.4.7. Soit M une martingale locale telle que p.s. $M_0 = 0$. Alors $\mathbb{E}[\langle M \rangle_t] < \infty$ pour tout $t \geq 0$ si et seulement si M est une (vraie) martingale de carré intégrable. Dans ce cas, $M_t^2 - \langle M \rangle_t$ est une (vraie) martingale.

Preuve. Soit donc M une martingale locale issue de 0 et $\tau_n = \inf\{t \geq 0 : |M_t| + \langle M \rangle_t \geq n\}$. Alors τ_n croît p.s. vers l'infini, et $M_{t \wedge \tau_n}^2 - \langle M \rangle_{t \wedge \tau_n}$ est une martingale locale bornée, donc une vraie martingale, et on a

$$\mathbb{E}[M_{t \wedge \tau_n}^2] = \mathbb{E}[\langle M \rangle_{t \wedge \tau_n}].$$

- Si M est une (vraie) martingale L^2 , alors par Fatou, $\mathbb{E}[\langle M \rangle_t] \leq \liminf_n \mathbb{E}[\langle M \rangle_{t \wedge \tau_n}] = \liminf_n \mathbb{E}[M_{t \wedge \tau_n}^2] = \mathbb{E}[M_t^2] < \infty$, par convergence dominée, puisque $M_{t \wedge \tau_n} \to M_t$ p.s. et puisque $\sup_{n \geq 1} M_{t \wedge \tau_n}^2 \leq \sup_{[0,t]} M_s^2$ qui est intégrable par Doob.
- Si maintenant $\mathbb{E}(\langle M \rangle_t) < \infty$ pour tout t, alors $\sup_n \mathbb{E}[M_{t \wedge \tau_n}^2] \leq \mathbb{E}(\langle M \rangle_t)$ puis, par Doob, comme $(M_{t \wedge \tau_n})_{t \geq 0}$ est une martingale locale bornée donc une vraie martingale, on a $\sup_n \mathbb{E}[\sup_{[0,t]} M_{s \wedge \tau_n}^2] \leq 4\mathbb{E}(\langle M \rangle_t)$. On conclut que $\mathbb{E}[\sup_{[0,t]} M_s^2] \leq 4\mathbb{E}(\langle M \rangle_t) < \infty$ pour tout $t \geq 0$ par convergence monotone. Par la Proposition 4.3.4, M est une martingale L^2 .
- Enfin, sous ces conditions, on a $\mathbb{E}[\sup_{[0,t]} |M_s^2 \langle M \rangle_s|] < \infty$, et $M_t^2 \langle M \rangle_t$ est une martingale par la Proposition 4.3.4.

COROLLAIRE 4.4.8. (a) Soit M une martingale dans L^2 telle que p.s. $M_0 = 0$. Alors

(4.3)
$$\mathbb{E}(M_t^2) = \mathbb{E}(\langle M \rangle_t), \qquad \forall t \ge 0.$$

(b) Si M est une martingale locale (continue) telle que $\langle M \rangle_t = 0$ p.s. pour tout $t \geq 0$ et $M_0 = 0$, alors $(M_t)_{t \geq 0}$ est indistinguable de 0.

Preuve. (a) découle du fait qu'alors $M^2 - \langle M \rangle$ est une martingale issue de 0.

(b) Si $\langle M \rangle_t = 0$ p.s. pour tout $t \geq 0$, alors $M^2 = M^2 - \langle M \rangle$ est une (vraie) martingale par le Théorème 4.4.7. Donc $\mathbb{E}(M_t^2) = 0$ et M est indistinguable de 0 par continuité.

On étend maintenant la notion de crochet aux couples de martingales locales.

Définition 4.4.9. Soient M et N deux martingales locales. On pose

$$\langle M, N \rangle_t = \frac{1}{2} \left[\langle M + N \rangle_t - \langle M \rangle_t - \langle N \rangle_t \right].$$

En particulier, $\langle M, M \rangle = \langle M \rangle$ (car, exercice, $\langle 2M \rangle = 4 \langle M \rangle$).

Proposition 4.4.10. Soient M et N deux martingales locales.

(1) $\langle M, N \rangle$ est l'unique (à indistinguabilité près) processus à variation finie tel que M_tN_t – $\langle M, N \rangle_t$ soit une martingale locale.

- (2) L'application $(M, N) \mapsto \langle M, N \rangle$ est bilinéaire et symétrique.
- (3) Soit t > 0. Si $0 = t_0^n < t_1^n < \dots < t_{p_n}^n = t$ est une suite de subdivisions emboîtées de [0,t] de pas tendant vers 0, alors

(4.4)
$$\lim_{n \to \infty} \sum_{i=1}^{p_n} (M_{t_i^n} - M_{t_{i-1}^n})(N_{t_i^n} - N_{t_{i-1}^n}) = \langle M, N \rangle_t \quad \text{en probabilité.}$$

(4) Si τ est un temps d'arrêt, alors $\langle M^{\tau}, N^{\tau} \rangle = \langle M^{\tau}, N \rangle = \langle M, N \rangle^{\tau}$.

Preuve. (1) Pour l'unicité, si MN - A et MN - A' sont deux martingales locales, alors A - A' = (MN - A') - (MN - A) est une martingale locale à variation finie, donc A = A'. D'autre part,

$$MN - \langle M, N \rangle = \frac{1}{2} \Big((M+N)^2 - \langle M+N \rangle - (M^2 - \langle M \rangle) - (N^2 - \langle N \rangle) \Big)$$

est une martingale locale.

De même, (3) découle du cas à une martingale locale par polarisation.

(2) découle de (3).

Pour (4), voir TD (utiliser (3) et observer qu'arrêter M ou N ou $\langle M, N \rangle$ à τ revient à sommer sur les i tels que $t_{i-1}^n \leq \tau$).

DÉFINITION 4.4.11. On dit que deux martingales locales M et N sont orthogonales si on $a \langle M, N \rangle = 0$, ce qui équivant à dire que le produit MN est une martingale locale.

Proposition 4.4.12. Deux martingales locales indépendantes sont orthogonales.

Preuve. Voir TD.
$$\Box$$

Théorème 4.4.13 (Inégalité de Kunita-Watanabe). Soient M et N deux martingales locales continues, et H et K deux processus mesurables. Alors pour tout $T \geq 0$, p.s.,

$$(4.5) \qquad \int_0^T |H_s| |K_s| |\mathrm{d}\langle M, N \rangle_s| \leq \sqrt{\int_0^T H_s^2 \, \mathrm{d}\langle M \rangle_s} \sqrt{\int_0^T K_s^2 \, \mathrm{d}\langle N \rangle_s} .$$

Preuve. On peut bien sûr supposer que H et K sont à valeurs positives. Notons μ , ν et σ les trois mesures (aléatoires) positives $|d\langle M, N\rangle|$, $|d\langle M\rangle|$ et $|d\langle M\rangle|$ sur [0, T].

Etape 1. On a p.s. $|\langle M, N \rangle_t - \langle M, N \rangle_s| \leq \sqrt{\nu(]s,t]} \sqrt{\sigma(]s,t]}$ pour tout $0 \leq s < t \leq T$. On notera Ω' (de probabilité 1) l'évènement correspondant.

En effet, soit $s = t_0^n < \cdots < t_{p_n}^n = t$ une suite de subdivisions emboîtées de]s,t] de pas tendant vers 0. Alors, on sait par la Proposition 4.4.10 que (la limite étant en probabilité)

$$\langle M, N \rangle_t - \langle M, N \rangle_s = \lim_n \sum_{i=1}^{p_n} (M_{t_i^n} - M_{t_{i-1}^n})(N_{t_i^n} - N_{t_{i-1}^n}).$$

En utilisant Cauchy-Schwarz puis le théorème 4.4.1, on conclut que

$$|\langle M, N \rangle_t - \langle M, N \rangle_s| \leq \lim_n \left(\sum_{i=1}^{p_n} |M_{t_i^n} - M_{t_{i-1}^n}|^2 \right)^{1/2} \left(\sum_{i=1}^{p_n} |N_{t_i^n} - N_{t_{i-1}^n}|^2 \right)^{1/2} = \sqrt{\nu(]s, t]} \sqrt{\sigma(]s, t]}.$$

On a cette inégalité p.s. pour tous les couples de rationnels $0 \le s < t \le T$ puis, par continuité (les mesures ν et σ étant sans atomes), p.s. pour tous les couples $0 \le s < t \le T$.

Etape 2. Pour tout $\omega \in \Omega'$, tout $0 \le s < t \le T$, $\mu(\omega, s, t]) \le \sqrt{\nu(\omega, s, t)} \sqrt{\sigma(\omega, s, t)}$. En effet, par la proposition 4.1.8, les suprema portant sur les subdivisions de s, t.

$$\mu(]s,t]) = \sup \left\{ \sum_{1}^{p} |\langle M, N \rangle_{t_{i}} - \langle M, N \rangle_{t_{i-1}}| \right\} \le \sup \left\{ \sum_{1}^{p} \sqrt{\nu(]t_{i-1}, t_{i}]} \sqrt{\sigma(]t_{i-1}, t_{i}]} \right\}$$

par l'étape 1, puis, par Cauchy-Schwarz,

$$\mu(]s,t]) \le \sup\left\{\left(\sum_{i=1}^{p} \nu(]t_{i-1},t_{i}]\right)\right)^{1/2} \left(\sum_{i=1}^{p} \sigma(]t_{i-1},t_{i}]\right)^{1/2}\right\} \le \sqrt{\nu(]s,t]} \sqrt{\sigma(]s,t]}.$$

Etape 3. Pour tout $\omega \in \Omega'$, tout $A \in \mathcal{B}([0,T]), \mu(\omega,A) \leq \sqrt{\nu(\omega,A)}\sqrt{\sigma(\omega,A)}$.

Il semble impossible d'utiliser les classes monotones. On fixe $\omega \in \Omega'$ et on introduit $\kappa = \mu(\omega) + \nu(\omega) + \sigma(\omega)$ et les densités de Radon-Nikodym $f = d\mu(\omega)/d\kappa$, $g = d\nu(\omega)/d\kappa$ et $h = d\sigma(\omega)/d\kappa$. Pour $\alpha \in \mathbb{R}$, la fonction $t \mapsto \ell(t) = \int_0^t [\alpha^2 g(s) + 2\alpha f(s) + h(s)] \kappa(\mathrm{d}s) = \alpha^2 \nu([0,t]) + 2\alpha \mu([0,t]) + \sigma([0,t])$ est croissante par l'étape 2 : pour tout $0 \le s < t \le T$, $\ell(t) - \ell(s) = \alpha^2 \nu([s,t]) + 2\alpha \mu([s,t]) + \sigma([s,t]) \ge 0$. Donc il existe un borélien $B \subset [0,T]$ tel que $\kappa(B^c) = 0$ et, pour tout $t \in B$, pour tout $\alpha \in \mathbb{Q}$, $\alpha^2 g(t) + 2\alpha f(t) + h(t) \ge 0$, ce qui implique que $f^2(t) \le g(t)h(t)$. Donc pour $A \in \mathcal{B}([0,T])$,

$$\mu(A) = \int_A f \, \mathrm{d}\kappa = \int_{A \cap B} f \, \mathrm{d}\kappa \le \int_A \sqrt{gh} \, \mathrm{d}\kappa \le \Big(\int_A g \, \mathrm{d}\kappa\Big)^{1/2} \Big(\int_A h \, \mathrm{d}\kappa\Big)^{1/2} = \sqrt{\nu(A)} \sqrt{\sigma(A)}.$$

Etape 4. Supposons que H et K sont étagés positifs, on peut donc les écrire sous la forme $H_s(\omega) = \sum_{i=1}^n a_i \mathbf{1}_{\{(s,\omega) \in A_i\}}$ et $K_s(\omega) = \sum_{i=1}^n b_i \mathbf{1}_{\{(s,\omega) \in A_i\}}$, avec $a_i, b_i \in [0, \infty[$ et $A_i \in \mathcal{B}([0,T]) \otimes \mathcal{F}$. Alors (si $\omega \in \Omega'$),

$$\int_{0}^{T} H_{s}(\omega)K_{s}(\omega)\mu(\omega, ds) = \sum_{i=1}^{n} a_{i}b_{i}\mu(\omega, \{s \in [0, T] : (s, \omega) \in A_{i}\})$$

$$\leq \sum_{i=1}^{n} a_{i}b_{i}\sqrt{\nu(\omega, \{s \in [0, T] : (s, \omega) \in A_{i}\})}\sqrt{\sigma(\omega, \{s \in [0, T] : (s, \omega) \in A_{i}\})}$$

$$\leq \left(\sum_{i=1}^{n} a_{i}^{2}\nu(\omega, \{s \in [0, T] : (s, \omega) \in A_{i}\})\right)^{1/2} \left(\sum_{i=1}^{n} b_{i}^{2}\sigma(\omega, \{s \in [0, T] : (s, \omega) \in A_{i}\})\right)^{1/2}$$

$$= \left(\int_{0}^{T} H_{s}^{2}(\omega)\nu(\omega, ds)\right)^{1/2} \left(\int_{0}^{T} K_{s}^{2}(\omega)\sigma(\omega, ds)\right)^{1/2}$$

Etape 5. Il n'y a plus qu'à écrire les processus mesurables (positifs) H et K comme limites croissantes de fonctions étagées positives.

4.5. Semimartingales continues

DÉFINITION 4.5.1. Un processus $X = (X_t, t \ge 0)$ est appelé une semimartingale (continue) s'il s'écrit sous la forme

$$X_t = X_0 + M_t + V_t,$$

où M est une martingale locale (continue), V est un processus à variation finie (continue adapté), $M_0 = V_0 = 0$, et X_0 est \mathscr{F}_0 -mesurable.

REMARQUE 4.5.2. D'après le Théorème 4.3.6, la décomposition $X_t = X_0 + M_t + V_t$ pour une semimartingale continue est unique à indistinguabilité près. Elle est appelée la "décomposition canonique" de la semimartingale X.

DÉFINITION 4.5.3. Soient $X_t = X_0 + M_t + V_t$ et $\widetilde{X}_t = \widetilde{X}_0 + \widetilde{M}_t + \widetilde{V}_t$ deux semimartingales continues. On pose $\langle X \rangle_t = \langle M \rangle_t$ et $\langle X, \widetilde{X} \rangle_t = \langle M, \widetilde{M} \rangle_t$.

Noter qu'on a ici encore $\langle X, \widetilde{X} \rangle = \frac{1}{2} [\langle X + \widetilde{X} \rangle_t - \langle X \rangle_t - \langle \widetilde{X} \rangle_t].$

PROPOSITION 4.5.4. Soit $0 = t_0^n < t_1^n < \cdots < t_{p_n}^n = t$ une suite de subdivisions emboîtées de [0,t] de pas tendant vers 0 quand $n \to +\infty$. Alors

$$\lim_{n\to\infty}\sum_{i=1}^{p_n}(X_{t_i^n}-X_{t_{i-1}^n})(\widetilde{X}_{t_i^n}-\widetilde{X}_{t_{i-1}^n})=\langle X,\widetilde{X}\rangle_t \qquad en \ probabilit\acute{e}.$$

Preuve. Par polarisation, il suffit de traiter le cas où $X = \widetilde{X}$. Alors

$$\sum_{i=1}^{p_n} (X_{t_i^n} - X_{t_{i-1}^n})^2 = \sum_{i=1}^{p_n} (M_{t_i^n} - M_{t_{i-1}^n})^2 + \sum_{i=1}^{p_n} (V_{t_i^n} - V_{t_{i-1}^n})^2 + 2\sum_{i=1}^{p_n} (M_{t_i^n} - M_{t_{i-1}^n})(V_{t_i^n} - V_{t_{i-1}^n})$$

$$=: I_1(n) + I_2(n) + I_3(n),$$

Part le Théorème 4.4.1, $I_1(n) \to \langle M \rangle_t = \langle X \rangle_t$ en probabilité. Par la Proposition 4.1.8,

$$\begin{split} I_2(n) + |I_3(n)| & \leq \left(\max_{1 \leq i \leq p_n} |V_{t_i^n} - V_{t_{i-1}^n}| + 2 \max_{1 \leq i \leq p_n} |M_{t_i^n} - M_{t_{i-1}^n}| \right) \sum_{i=1}^{p_n} |V_{t_i^n} - V_{t_{i-1}^n}| \\ & \leq \left(\max_{1 \leq i \leq p_n} |V_{t_i^n} - V_{t_{i-1}^n}| + 2 \max_{1 \leq i \leq p_n} |M_{t_i^n} - M_{t_{i-1}^n}| \right) \int_0^t |dV_s|, \end{split}$$

qui converge p.s. vers 0 par la continuité de $s\mapsto V_s$ et $s\mapsto M_s$ et car $\int_0^t |\mathrm{d}V_s| < \infty$ p.s. \square

Chapitre 5

Intégrale stochastique

Nous construisons dans ce chapitre de l'objet principal du cours : l'intégrale stochastique par rapport à une semimartingale (continue). Durant tout le chapitre, on se place dans un espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ qui vérifie les conditions habituelles.

5.1. Intégration par rapport aux martingales de carré intégrable

On construit ici l'intégrale stochastique par rapport à une martingale continue et dans L^2 sur [0,T].

DÉFINITION 5.1.1. On note \mathcal{M}_T^2 l'ensemble des martingales continues $(M_t, t \in [0, T])$, dans L^2 et telles que $M_0 = 0$. On définit le produit scalaire sur \mathcal{M}_T^2

$$(M,N)_{\mathcal{M}_{\mathcal{T}}^2} = \mathbb{E}[M_T N_T].$$

Noter que par Doob, $\|M\|_{\mathscr{M}^2_T}^2 = (M,M)_{\mathscr{M}^2_T} = 0$ implique bien que le processus M est indistinguable de 0 (sur [0,T]), puisque $\mathbb{E}[\sup_{[0,T]} M_t^2] \leq 4\mathbb{E}[M_T^2] = 4\|M\|_{\mathscr{M}^2_T}^2$.

Proposition 5.1.2. \mathcal{M}_T^2 , muni du produit scalaire $(M,N)_{\mathcal{M}_T^2}$, est un espace de Hilbert.

Preuve. Il faut montrer que \mathcal{M}_T^2 est complet pour la norme $||M||_{\mathcal{M}_T^2}$. Soit donc $(M^n)_n$ une suite de Cauchy pour cette norme. Par Doob,

$$\mathbb{E}\left[\sup_{t\in[0,T]} (M_t^n - M_t^m)^2\right] \le 4\mathbb{E}\left[(M_T^n - M_T^m)^2\right] = 4\|M^n - M^m\|_{\mathcal{M}_T^2} \to 0$$

quand $n, m \to \infty$. Par la Proposition 4.4.4, il existe un processus $(M_t)_{t \in [0,T]}$ continu, adapté, L^2 , tel que

$$\lim_{n \to +\infty} \mathbb{E} \left[\sup_{t \in [0,T]} (M_t^n - M_t)^2 \right] = 0.$$

Reste à montrer que M est une martingale. Mais pour tout $0 \le s < t \le T$, on a $\mathbb{E}[M_t^n | \mathscr{F}_s] = M_s^n$, et il suffit de faire tendre $n \to \infty$ (dans L^2). En effet, l'inégalité de Jensen assure que $\mathbb{E}[(\mathbb{E}[M_t^n | \mathscr{F}_s] - \mathbb{E}[M_t | \mathscr{F}_s])^2] \le \mathbb{E}[(M_t^n - M_t)^2] \to 0$.

On remarque que pour tous $M, N \in \mathcal{M}_T^2$, par le Corollaire 4.4.8

$$(M,N)_{\mathcal{M}_T^2} = \mathbb{E}[\langle M, N \rangle_T], \qquad ||M||_{\mathcal{M}_T^2}^2 = \mathbb{E}[\langle M \rangle_T].$$

DÉFINITION 5.1.3. Pour $M \in \mathscr{M}_T^2$, on note $L_T^2(M)$ l'ensemble des processus progressifs $(H_s)_{s \in [0,T]}$ tels que

$$\mathbb{E}\left[\int_0^T H_s^2 \,\mathrm{d}\langle M\rangle_s\right] < \infty.$$

REMARQUE 5.1.4. En notant \mathscr{P} la tribu progressive sur $\mathbb{R}_+ \times \Omega$ définie à la fin de la section 3.1, on a $L^2_T(M) = L^2([0,T] \times \Omega, \mathscr{P}, \nu_M)$, où $\nu_M(A) = \int_{\Omega} \int_0^T \mathbf{1}_{\{(s,\omega) \in A\}} \, \mathrm{d}\langle M \rangle_s \mathbb{P}(\,\mathrm{d}\omega)$. Comme tout espace L^2 , $L^2_T(M)$, muni du produit scalaire $(H,K)_{L^2_T(M)} = \mathbb{E}(\int_0^T H_s K_s \, \mathrm{d}\langle M \rangle_s)$, est un espace de Hilbert

REMARQUE 5.1.5. Dans le cas du mouvement brownien B, puisque p.s. $\langle B \rangle_t = t$,

$$(H,K)_{L_T^2(B)} = \int_0^T \mathbb{E}(H_s K_s) \, \mathrm{d}s, \qquad \|H\|_{L_T^2(B)}^2 = \int_0^T \mathbb{E}(H_s^2) \, \mathrm{d}s. \qquad \Box$$

Définition 5.1.6. On dit que $H:[0,+\infty[\times\Omega\mapsto\mathbb{R}\ est\ élémentaire\ s'il\ s'écrit$

$$H_s(\omega) = \sum_{i=0}^p H^{(i)}(\omega) \mathbf{1}_{]t_i, t_{i+1}]}(s), \qquad s \ge 0,$$

où $p \geq 0$ est un entier, $0 \leq t_0 \leq t_1 \leq \cdots \leq t_{p+1}$ sont des réels, et $H^{(i)}$ est une variable aléatoire réelle bornée et \mathscr{F}_{t_i} -mesurable pour chaque $0 \leq i \leq p$. Notons $\mathscr E$ l'espace (vectoriel) des processus élémentaires et $\mathscr E_T$ l'espace (vectoriel) des restrictions à [0,T] des processus élémentaires.

LEMME 5.1.7. $\mathscr{E}_T \subset L^2_T(M)$ est dense dans $L^2_T(M)$.

Preuve. Il est clair que $\mathscr{E}_T \subset L^2_T(M)$. Rappelons qu'un sous-espace vectoriel F d'un espace de Hilbert H est dense si et seulement si $F^{\perp} = \{0\}$. Soit donc $K \in L^2_T(M)$ orthogonal à \mathscr{E}_T . Il s'agit de prouver que K = 0 dans $L^2_T(M)$, i.e. que $\mathbb{E}[\int_0^T K_s^2 d\langle M \rangle_s] = 0$.

Soit $X_t = \int_0^t K_s \, d\langle M \rangle_s$, qui est à variation finie (et intégrable), puisque

$$\mathbb{E}[|X_t|] \leq \mathbb{E}\Big[\int_0^t |K_s| \,\mathrm{d}\langle M \rangle_s\Big] \leq \mathbb{E}\Big[\int_0^t (1+K_s^2) \,\mathrm{d}\langle M \rangle_s\Big] \leq \mathbb{E}\Big[\int_0^t K_s^2 \,\mathrm{d}\langle M \rangle_s + \langle M \rangle_t\Big].$$

Pour $0 \le u < v \le T$ et $A \in \mathscr{F}_u$, le processus $H_s = \mathbf{1}_A \mathbf{1}_{s \in]u,v]} \in \mathscr{E}_T$ et donc $(H, K)_{L^2_T(M)} = 0$, soit encore $0 = \mathbb{E}[\int_0^T H_s K_s \, \mathrm{d}\langle M \rangle_s] = \mathbb{E}[\mathbf{1}_A (X_v - X_u)]$. Ainsi, on a $\mathbb{E}[X_v - X_u | \mathscr{F}_u] = 0$, et X est une martingale.

Donc on a X=0 par le Théorème 4.3.6 et p.s., pour tout $t\geq 0$, $\int_0^t K_s \,\mathrm{d}\langle M\rangle_s=0$. Ainsi, p.s., $K_s=0$, $\mathrm{d}\langle M\rangle_s$ -p.p., puis $\int_0^T K_s^2 \,\mathrm{d}\langle M\rangle_s=0$ p.s. et K est l'élément 0 de $L_T^2(M)$.

THÉORÈME 5.1.8. Soit $M \in \mathcal{M}_T^2$ et $H_s(\omega) = \sum_{i=0}^p H^{(i)}(\omega) \mathbf{1}_{]t_i, t_{i+1}]}(s) \in \mathscr{E}_T$. On pose

$$(H \cdot M)_t = \sum_{i=0}^p H^{(i)} (M_{t_{i+1} \wedge t} - M_{t_i \wedge t}), \qquad t \in [0, T].$$

On note aussi $\int_0^t H_s dM_s = (H \cdot M)_t$.

- (i) Alors $((H \cdot M)_t)_{t \in [0,T]}$ est élément de \mathscr{M}_T^2 , et on a $\langle H \cdot M \rangle_t = \int_0^t H_s^2 \, \mathrm{d} \langle M \rangle_s$
- (ii) On a $\mathbb{E}[(H \cdot M)_T^2] = \mathbb{E}[\int_0^T H_s^2 d\langle M \rangle_s].$
- $(iii) \ H \mapsto H \cdot M \ est \ une \ isométrie \ de \ \mathscr{E}_T \ (muni \ de \ \|\cdot\|_{L^2_T(M)}) \ dans \ \mathscr{M}^2_T \ (muni \ de \ \|\cdot\|^2_{\mathscr{M}^2_T}).$

Il faut vérifier que si $\sum_{i=0}^p H^{(i)}(\omega) \mathbf{1}_{]t_i,t_{i+1}]}(s) = \sum_{i=0}^q K^{(i)}(\omega) \mathbf{1}_{]s_i,s_{i+1}]}(s)$, alors on a bien $\sum_{i=0}^p H^{(i)}(M_{t_{i+1}\wedge t} - M_{t_i\wedge t}) = \sum_{i=0}^q K^{(i)}(M_{s_{i+1}\wedge t} - M_{s_i\wedge t})$: on se ramène au cas où $\{t_0,...,t_p\} \subset \{s_0,...,s_q\}$ par concaténation, on écrit donc $t_i = s_{k_i}$, on montre que $K^{(j)} = H^{(i)}$ pour $j = k_i,...,k_{i+1}-1$, et on conclut par téléscopage.

Preuve. Le point (iii) ne dit rien de plus que (ii), qui découle de (i) par le Corollaire 4.4.8. Pour (i), on écrit $(H \cdot M)_t = \sum_{0}^{p} L_t^i$, où $L_t^i = H^{(i)}(M_{t_{i+1} \wedge t} - M_{t_i \wedge t})$. Comme dans l'exercice 4.4.3, L^i est une martingale (continue et L^2), donc $H \cdot M \in \mathcal{M}_T^2$. Reste à calculer son crochet.

• On a $\langle L^i \rangle_t = [H^{(i)}]^2 [\langle M \rangle_{t_{i+1} \wedge t} - \langle M \rangle_{t_i \wedge t}]$, car $Z_t^i = (L_t^i)^2 - [H^{(i)}]^2 [\langle M \rangle_{t_{i+1} \wedge t} - \langle M \rangle_{t_i \wedge t}]$ est une martingale. En effet,

$$\begin{split} Z_t^i = & [H^{(i)}]^2 (M_{t_{i+1} \wedge t}^2 + M_{t_i \wedge t}^2 - 2M_{t_{i+1} \wedge t} M_{t_i \wedge t} - \langle M \rangle_{t_{i+1} \wedge t} + \langle M \rangle_{t_i \wedge t}) \\ = & [H^{(i)}]^2 (\{M_{t_{i+1} \wedge t}^2 - \langle M \rangle_{t_{i+1} \wedge t}\} - \{M_{t_i \wedge t}^2 - \langle M \rangle_{t_i \wedge t}\}) - 2[H^{(i)}]^2 M_{t_i \wedge t} (M_{t_{i+1} \wedge t} - M_{t_i \wedge t}). \end{split}$$

Le premier terme est une martingale (c.f. Exercice 4.4.3), et le second aussi (noter que $[H^{(i)}]^2 M_{t_i \wedge t} (M_{t_{i+1} \wedge t} - M_{t_i \wedge t}) = [H^{(i)}]^2 M_{t_i} (M_{t_{i+1} \wedge t} - M_{t_i \wedge t})$ et utiliser l'exercice 4.4.3).

• On a $\langle L^i, L^j \rangle_t = 0$ si $i \neq j$. En effet, supposons i < j et considérons une suite de subdivisions emboîtées $0 = s_0^n < s_1^n < \cdots < s_{p_n}^n = t$ de pas tendant vers 0: on a (en probabilité)

$$\begin{split} \langle L^i, L^j \rangle_t &= \lim_n \sum_{k=1}^{p_n} (L^i_{s^n_k} - L^i_{s^n_{k-1}}) (L^j_{s^n_k} - L^j_{s^n_{k-1}}) \\ &= H^{(i)} H^{(j)} \lim_n \sum_{k=1}^{p_n} ([M_{t_{i+1} \wedge s^n_k} - M_{t_{i+1} \wedge s^n_{k-1}}] - [M_{t_i \wedge s^n_k} - M_{t_i \wedge s^n_{k-1}}]) \\ &\qquad \times ([M_{t_{j+1} \wedge s^n_k} - M_{t_{j+1} \wedge s^n_{k-1}}] - [M_{t_j \wedge s^n_k} - M_{t_j \wedge s^n_{k-1}}]). \end{split}$$

Mais tous les termes de la somme tels que $s_k^n \leq t_j$ ou $s_{k-1}^n \geq t_{i+1}$ sont nuls, autrement dit, au maximum un terme de la somme (celui des k, s'il existe, pour lequel $s_{k-1}^n < t_{i+1} \leq t_j < s_k^n$) est non nul. On conclut aisément, par continuité (uniforme) des trajectoires et car le pas de la subdivision tend vers 0.

• Ainsi, en se rappelant que $d\langle M\rangle([a,b]) = \langle M\rangle_b - \langle M\rangle_a$ par définition,

$$\langle H \cdot M \rangle_t = \sum_{i=0}^p [H^{(i)}]^2 \left(\langle M \rangle_{t_{i+1} \wedge t} - \langle M \rangle_{t_i \wedge t} \right) = \sum_0^p [H^{(i)}]^2 \, \mathrm{d} \langle M \rangle (]t_i, t_{i+1}] \cap [0, t]) = \int_0^t H_s^2 \, \mathrm{d} \langle M \rangle_s,$$

ce qui achève la preuve

Pour $M \in \mathscr{M}_T^2$ fixée, on a donc défini l'isométrie $H \mapsto (H \cdot M)$ de \mathscr{E}_T (muni de $\|\cdot\|_{L^2_T(M)}$) dans \mathscr{M}_T^2 (muni de $\|\cdot\|_{\mathscr{M}_T^2}^2$). On a aussi montré que \mathscr{E}_T était dense dans $L^2_T(M)$.

DÉFINITION 5.1.9. Soit $M \in \mathscr{M}_T^2$. Pour $H \in L^2_T(M)$, on définit $((H \cdot M)_t)_{t \in [0,T]}$ comme la limite $(dans \mathscr{M}_T^2)$ de $((H^n \cdot M)_t)_{t \in [0,T]}$, pour une suite $H^n \in \mathscr{E}_T$ telle que $\|H^n - H\|_{L^2_T(M)} \to 0$. La martingale continue (et L^2) $H \cdot M$ est appelée intégrale stochastique de H par rapport à M. On note aussi $\int_0^t H_s dM_s = (H \cdot M)_t$.

REMARQUE 5.1.10. (i) L'objet obtenu ne dépend pas de la suite approchante choisie, car si $||H^n - H||_{L^2_T(M)} \to 0$ et $||K^n - H||_{L^2_T(M)} \to 0$, alors $||(H^n \cdot M) - (K^n \cdot M)||_{\mathcal{M}^2_T} = ||H^n - K^n||_{L^2_T(M)} \to 0$.

(ii) $H \mapsto H \cdot M$ est une isométrie de $(L_T^2(M), \|\cdot\|_{L_T^2(M)})$ dans $(\mathcal{M}_T^2, \|\cdot\|_{\mathcal{M}_T^2}^2)$, on a $\mathbb{E}[(H \cdot M)_t] = 0$ et $\mathbb{E}[(H \cdot M)_t^2] = \mathbb{E}[\int_0^t H_s^2 \,\mathrm{d}\langle M \rangle_s]$ pour tout $t \in [0, T]$.

DÉFINITION 5.1.11. On note \mathcal{M}^2 l'ensemble des martingales continues $(M_t, t \geq 0)$ qui appartiennent à \mathcal{M}_T^2 pour tout $T \geq 0$. Pour $M \in \mathcal{M}^2$ on note $L^2(M)$ l'ensemble des processus progressifs $(H_t, t \geq 0)$ qui appartiennent à $L_T^2(M)$ pour tout $T \geq 0$, et on peut bien sûr construire l'intégrale stochastique $((H \cdot M)_t)_{t \geq 0} = (\int_0^t H_s \, \mathrm{d}M_s)_{t \geq 0} \in \mathcal{M}^2$.

REMARQUE 5.1.12. (a) Noter que $\int_0^t H_s dM_s$ n'est pas une intégrale usuelle (de Stieljes) : M n'est pas à variation finie, donc dM n'est pas une mesure signée.

- (b) Si H est adapté, continu et borné, on construit $\int_0^t H_s \, dM_s$ comme limite (dans L^2) $de \sum_{i=0}^{2^n-1} H_{it2^{-n}}(M_{(i+1)t2^{-n}} M_{it2^{-n}})$ (considérer $H_s^n = \sum_0^{2^n-1} H_{it2^{-n}} \mathbf{1}_{]it2^{-n},(i+1)t2^{-n}]}$, vérifier qu'il est élémentaire, et qu'il converge vers H dans $L_t^2(M)$ quand $n \to \infty$). C'est assez naturel, mais c'est vraiment une limite probabiliste, qui utilise les compensations. En général, $\sum_{i=0}^{2^n-1} |H_{it2^{-n}}(M_{(i+1)t2^{-n}} M_{it2^{-n}})|$ tend vers l'infini (si par exemple H=1 et M=B).
- (c) De plus, même si H est continu adapté (et borné, même s'il ne l'est pas dans l'exemple ci-dessous), $\int_0^t H_s \, \mathrm{d}M_s$ n'est en général pas limite de $\sum_{i=0}^{2^n-1} H_{(i+1)t2^{-n}}(M_{(i+1)t2^{-n}}-M_{it2^{-n}})$. En effet, avec H=M=B, on a, puisque $\lim_n \sum_{i=0}^{2^n-1} (B_{(i+1)t2^{-n}}-B_{it2^{-n}})^2 = \langle B \rangle_t = t$,

$$\lim_{n} \sum_{i=0}^{2^{n}-1} B_{(i+1)t2^{-n}} (B_{(i+1)t2^{-n}} - B_{it2^{-n}}) = \lim_{n} \sum_{i=0}^{2^{n}-1} B_{it2^{-n}} (B_{(i+1)t2^{-n}} - B_{it2^{-n}}) + t$$

5.2. Variation quadratique d'une intégrale stochastique

Nous étudions maintenant la variation quadratique $\langle H \cdot M \rangle$ de $H \cdot M$.

THÉORÈME 5.2.1. Si $M \in \mathcal{M}^2$ et $H \in L^2(M)$, $H \cdot M$ est l'unique élément de \mathcal{M}^2 tel que

(5.1)
$$\langle H \cdot M, N \rangle_t = \int_0^t H_s \, \mathrm{d} \langle M, N \rangle_s \qquad \forall N \in \mathscr{M}^2.$$

Preuve. Commençons par l'unicité. Si L et \tilde{L} sont deux éléments de \mathcal{M}^2 tels que $\langle L-\tilde{L},N\rangle=0$ pour tout $N\in\mathcal{M}^2$, alors en particulier avec $N=L-\tilde{L}$ on trouve $\langle L-\tilde{L}\rangle=0$ puis, par le Corollaire 4.4.8, $L=\tilde{L}$ (à indistinguabilité près).

• Montrons ensuite (5.1) lorsque $H = \sum_{i=0}^p H^{(i)} \mathbf{1}_{]t_i, t_{i+1}]} \in \mathscr{E}$. On rappelle que $(H \cdot M)_t = \sum_{i=0}^p L_t^i$, où $L_t^i = H^{(i)}[M_{t_{i+1} \wedge t} - M_{t_i \wedge t}]$ est une martingale. Soit une suite de subdivisions emboîtées $0 = s_0^n < s_1^n < \dots < s_{p_n}^n = t$ de pas tendant vers 0: on a (en probabilité)

$$\begin{split} \langle L^{i}, N \rangle_{t} &= \lim_{n} \sum_{k=1}^{p_{n}} (L_{s_{k}^{n}}^{i} - L_{s_{k-1}^{n}}^{i})(N_{s_{k}^{n}} - N_{s_{k-1}^{n}}) \\ &= H^{(i)} \lim_{n} \sum_{k=1}^{p_{n}} ([M_{t_{i+1} \wedge s_{k}^{n}} - M_{t_{i+1} \wedge s_{k-1}^{n}}] - [M_{t_{i} \wedge s_{k}^{n}} - M_{t_{i} \wedge s_{k-1}^{n}}])(N_{s_{k}^{n}} - N_{s_{k-1}^{n}}) \\ &= H^{(i)} [\langle M^{t_{i+1}}, N \rangle_{t} - \langle M^{t_{i}}, N \rangle_{t}] \\ &= H^{(i)} [\langle M, N \rangle_{t_{i+1} \wedge t} - \langle M, N \rangle_{t_{i} \wedge t}] \\ &= H^{(i)} \, \mathrm{d} \langle M, N \rangle([0, t] \cap]t_{i}, t_{i+1}]), \end{split}$$

d'où $\langle H \cdot M, N \rangle_t = \sum_0^p \langle L^i, N \rangle_t = \sum_0^p H^{(i)} d\langle M, N \rangle ([0, t] \cap]t_i, t_{i+1}]) = \int_0^t H_s d\langle M, N \rangle_s.$

• Montrons maintenant (5.1) dans le cas général. On considère une suite $(H^n)_n$ d'éléments de $\mathscr E$ telle que $H^n \to H$ dans $L^2_T(M)$ et on sait, par définition de $H \cdot M$, que $H^n \cdot M \to H \cdot M$ dans $\mathscr M^2_T$. On sait aussi que $\langle H^n \cdot M, N \rangle_t = \int_0^t H^n_s \, \mathrm{d}\langle M, N \rangle_s$ pour chaque n. Il n'y a plus qu'à faire tendre $n \to \infty$ en remarquant que d'une part, d'après Kunita-Watanabe,

$$\mathbb{E}\left[\left|\int_0^t (H_s^n - H_s) \,\mathrm{d}\langle M, N \rangle_s\right|\right] \leq \mathbb{E}\left[\sqrt{\int_0^t (H_s^n - H_s)^2 \,\mathrm{d}\langle M \rangle_s} \sqrt{\int_0^t \,\mathrm{d}\langle N \rangle_s}\right]$$
$$\leq \|H^n - H\|_{L_t^2(M)} \,\|N\|_{\mathscr{M}_t^2} \to 0,$$

et d'autre part (pour toute paire de martingales, on a $|\langle M, N \rangle_t| \leq \langle M \rangle_t^{1/2} \langle N \rangle_t^{1/2}$)

$$\mathbb{E}[|\langle H^n \cdot M - H \cdot M, N \rangle_t|] \le \mathbb{E}[\langle H^n \cdot M - H \cdot M \rangle_t]^{1/2} \mathbb{E}[\langle N \rangle_t^{1/2}] \to 0,$$

puisque $\mathbb{E}[\langle H^n \cdot M - H \cdot M \rangle_t] = \mathbb{E}[|(H^n \cdot M)_t - (H \cdot M)_t|^2]$ par le Corollaire 4.4.8.

COROLLAIRE 5.2.2. (a) Soit $M \in \mathcal{M}^2$ et $H \in L^2(M)$. Alors $\langle H \cdot M \rangle_t = \int_0^t H_s^2 \, \mathrm{d} \langle M \rangle_s$. (b) Si $M, N \in \mathcal{M}^2$, $H \in L^2(M)$ et $K \in L^2(N)$ Alors $\langle H \cdot M, K \cdot N \rangle_t = \int_0^t H_s K_s \, \mathrm{d} \langle M, N \rangle_s$.

Preuve. Il suffit de montrer (b). Par le Théorème 5.2.1 $\langle H \cdot M, K \cdot N \rangle_t = \int_0^t H_s \, \mathrm{d}\langle M, K \cdot N \rangle_s$. Mais, par le Théorème 5.2.1 encore, $\langle M, K \cdot N \rangle_t = \int_0^t K_s \, \mathrm{d}\langle M, N \rangle_s$ donc, par la Remarque 4.1.7, $\mathrm{d}\langle M, K \cdot N \rangle_s = K_s \, \mathrm{d}\langle M, N \rangle_s$ (égalité entre mesures signées). On conclut qu'en effet, $\langle H \cdot M, K \cdot N \rangle_t = \int_0^t H_s K_s \, \mathrm{d}\langle M, N \rangle_s$.

REMARQUE 5.2.3. Si $(B_t)_{t\geq 0}$ est un (\mathscr{F}_t) -mouvement brownien et si $H \in L^2(B)$ (i.e. si $\int_0^T \mathbb{E}[H_s^2] ds < \infty$ pour tout T), alors $(H \cdot B)_t = \int_0^t H_s dB_s$ est une martingale de crochet $\int_0^t H_s^2 ds$. En particulier, $\mathbb{E}[\int_0^t H_s dB_s] = 0$ et $\mathbb{E}[(\int_0^t H_s dB_s)^2] = \int_0^t \mathbb{E}[H_s^2] ds$.

PROPOSITION 5.2.4 (Associativité). Si $K \in L^2(M)$ et $H \in L^2(K \cdot M)$, alors $HK \in L^2(M)$ et $(HK) \cdot M = H \cdot (K \cdot M)$.

Cette égalité s'écrit $\int_0^t (H_s K_s) dM_s = \int_0^t H_s dL_s$, où $L_t = \int_0^t K_s dM_s$.

Preuve. • Si $H \in L^2(K \cdot M)$, alors $HK \in L^2(M)$: d'après le Corollaire 5.2.2, $\langle K \cdot M \rangle_t = \int_0^t K_s^2 \, \mathrm{d}\langle M \rangle_s$, d'où $\mathrm{d}\langle K \cdot M \rangle_s = K_s^2 \, \mathrm{d}\langle M \rangle_s$, puis $\int_0^T H_s^2 K_s^2 \, \mathrm{d}\langle M \rangle_s = \int_0^T H_s^2 \, \mathrm{d}\langle K \cdot M \rangle_s$.

• Montrons que pour tout $N \in \mathcal{M}^2$, $\langle (HK) \cdot M, N \rangle_t = \int_0^t H_s \, \mathrm{d}\langle K \cdot M, N \rangle_s$, ce qui impliquera que $(HK) \cdot M = H \cdot (K \cdot M)$ par le Théorème 5.2.1. Mais

$$\langle (HK)\cdot M, N\rangle_t = \int_0^t H_s K_s \,\mathrm{d}\langle M, N\rangle_s = \int_0^t H_s \,\mathrm{d}\Big(\int_0^s K_u \,\mathrm{d}\langle M, N\rangle_u\Big) = \int_0^t H_s \,\mathrm{d}\langle K\cdot M, N\rangle_s$$

On a utilisé deux fois le Théorème 5.2.1.

La prochaine proposition est cruciale dans la construction de l'intégrale stochastique par rapport à une martingale locale.

Proposition 5.2.5. Soit $M \in \mathcal{M}^2$ et $H \in L^2(M)$. Si τ est un temps d'arrêt, alors

$$H \cdot M^{\tau} = (H \mathbf{1}_{[0,\tau]}) \cdot M = (H \cdot M)^{\tau}.$$

Autrement dit, $\int_0^t H_s dM_s^{\tau} = \int_0^t H_s \mathbf{1}_{\{s \in [0,\tau]\}} dM_s = \int_0^{t \wedge \tau} H_s dM_s$.

Preuve. (a) On a $M^{\tau} = \mathbf{1}_{[0,\tau]} \cdot M$, i.e. $M_t^{\tau} = \int_0^t \mathbf{1}_{\{s \in [0,\tau]\}} dM_s$. En effet, par le Théorème 5.2.1, il suffit de montrer que pour tout $N \in \mathcal{M}^2$, $\langle M^{\tau}, N \rangle_t = \int_0^t \mathbf{1}_{[0,\tau]} d\langle M, N \rangle_s$, ce qui est vrai car $\langle M^{\tau}, N \rangle_t = \langle M, N \rangle_{\tau \wedge t}$.

- (b) On déduit de (a), par associativité, que $(H\cdot M^{\tau})=H\cdot (\mathbf{1}_{[0,\tau]}\cdot M)=(H\,\mathbf{1}_{[0,\tau]})\cdot M.$
- (c) En appliquant (a) à $H \cdot M$ (au lieu de M), $(H \cdot M)^{\tau} = \mathbf{1}_{[0,\tau]} \cdot (H \cdot M) = (H \mathbf{1}_{[0,\tau]}) \cdot M$ par associativité.

EXERCICE 5.2.6. Si $M, N \in \mathcal{M}^2$, $H \in L^2(M)$, $K \in L^2(N)$, et τ est un temps d'arrêt borné, $\mathbb{E}\left[\int_0^\tau H_s \,\mathrm{d}M_s\right] = 0 \quad \text{et} \quad \mathbb{E}\left[\left(\int_0^\tau H_s \,\mathrm{d}M_s\right)\left(\int_0^\tau K_s \,\mathrm{d}N_s\right)\right] = \mathbb{E}\left[\int_0^\tau H_s K_s \,\mathrm{d}\langle M, N\rangle_s\right].$

5.3. Intégration stochastique par rapport aux martingales locales

DÉFINITION 5.3.1. Soit M une martingale locale nulle en θ . On note $L^2_{loc}(M)$ l'ensemble des processus progressifs H tels que pour tout $t \geq 0$,

$$\int_0^t H_s^2 \, \mathrm{d}\langle M \rangle_s < \infty, \qquad \text{p.s.}$$

THÉORÈME 5.3.2. (1) Soit M une martingale locale issue de 0. Pour tout $H \in L^2_{loc}(M)$, il existe une unique martingale locale issue de 0, notée $H \cdot M$ ou $\int_0^{\cdot} H_s dM_s$, telle que pour toute martingale locale N,

$$\langle H \cdot M, N \rangle_t = \int_0^t H_s \, \mathrm{d} \langle M, N \rangle_s.$$

- (2) Si M, N sont deux martingales locales, si $H \in L^2_{loc}(M)$ et $K \in L^2_{loc}(N)$, alors on a $\langle H \cdot M, K \cdot N \rangle_t = \int_0^t H_s K_s \, d\langle M, N \rangle_s$.
- (3) Si $M \in \mathcal{M}^2$ et $H \in L^2(M)$, cette définition étend celle du Théorème 5.1.8, i.e. $H \cdot M$ est une (vraie) martingale L^2
- (4) Si M est une martingale locale, si $K \in L^2_{loc}(M)$ et $H \in L^2_{loc}(K \cdot M)$, alors $HK \in L^2_{loc}(M)$ et $H \cdot (K \cdot M) = (HK) \cdot M$.
- (5) Si τ est un temps d'arrêt, M une martingale locale et $H \in L^2_{loc}(M)$, on a $H \cdot M^{\tau} = (H \mathbf{1}_{[0,\tau]}) \cdot M = (H \cdot M)^{\tau}$.
- Preuve. (1) : unicité. Si on a deux martingales locales L, O telles que $\langle L, N \rangle = \langle O, N \rangle$ pour toute martingale locale N, alors en particulier (avec N = L O) $\langle L O, L O \rangle = 0$ et donc L O est indistinguable de 0.
- (1) : existence. Soit $\tau_n = \inf\{t \geq 0 : \langle M \rangle_t + \int_0^t H_s^2 \, \mathrm{d}\langle M \rangle_s \geq n\}$. Noter que p.s., $\lim_n \tau_n = \infty$ puisque $H \in L^2_{\mathrm{loc}}(M)$.
- (a) Nous avons $\langle M^{\tau_n} \rangle_t = \langle M \rangle_{t \wedge \tau_n} \leq n$, et donc $\mathbb{E}(\langle M^{\tau_n} \rangle_{\infty}) < \infty$. D'après le Théorème 4.4.7, $M^{\tau_n} \in \mathscr{M}^2$. D'autre part, $\int_0^\infty H_s^2 \, \mathrm{d} \langle M^{\tau_n} \rangle_s = \int_0^{\tau_n} H_s^2 \, \mathrm{d} \langle M \rangle_s \leq n$. Donc $H \in L^2(M^{\tau_n})$, et on peut définir l'intégrale stochastique $H \cdot M^{\tau_n}$.
- (b) Pour m > n, on a $(H \cdot M^{\tau_m})^{\tau_n} = (H \cdot (M^{\tau_m})^{\tau_n}) = H \cdot M^{\tau_n}$ par la Proposition 5.2.5 (et car $\tau_n \leq \tau_m$). Donc p.s., pour tout m > n, $(H \cdot M^{\tau_m})_s = (H \cdot M^{\tau_n})_s$ sur $s \in [0, \tau_n]$.
- (c) On déduit de (b) que $Z_t = \lim_n (H \cdot M^{\tau_n})_t$ existe p.s. et vérifie $Z^{\tau_n} = H \cdot M^{\tau_n}$ pour tout $n \geq 1$. Ainsi, Z est un continu (car continu sur $[0, \tau_n]$ pour tout n) et adapté. Comme $H \cdot M^{\tau_n}$ est une martingale L^2 , Z est une martingale locale issue de 0, réduite par $(\tau_n)_{n>1}$.
- (d) Montrons que pour toute martingale locale N (qu'on peut supposer issue de 0), on a $\langle Z, N \rangle_t = \int_0^t H_s \, \mathrm{d}\langle M, N \rangle_s$. Soit $\sigma_n = \inf\{t \geq 0 : |N_t| \geq n\}$ et $S_n = \tau_n \wedge \sigma_n$. Alors M^{S_n} et N^{S_n} sont des martingales L^2 et on a donc $\langle H \cdot M^{S_n}, N^{S_n} \rangle_t = \int_0^t H_s \, \mathrm{d}\langle M^{S_n}, N^{S_n} \rangle_s = \int_0^t H_s \, \mathrm{d}\langle M^{S_n}, N^{S_n} \rangle_s$

 $\int_0^{t \wedge S_n} H_s \, \mathrm{d}\langle M, N \rangle_s$. Comme $Z^{\tau_n} = (H \cdot M^{\tau_n})$ et $\tau_n \geq S_n$, on conclut que $\langle Z, N \rangle^{S_n} = \langle H \cdot M^{\tau_n}, N^{S_n} \rangle = \langle H \cdot M^{S_n}, N^{S_n} \rangle = \int_0^{\cdot \wedge S_n} H_s \, \mathrm{d}\langle M, N \rangle_s$, et il n'y a plus qu'à faire tendre $n \to \infty$.

- (2) La preuve est strictement identique à celle du Corollaire 5.2.2.
- (3) Si $M \in \mathcal{M}^2$ et $H \in L^2(M)$, alors $H \cdot M$ est une vraie martingale L^2 car par (2), $\langle H \cdot M \rangle_t = \int_0^t H_s^2 \, \mathrm{d}\langle M \rangle_s$, donc $\mathbb{E}(\langle H \cdot M \rangle_t) < \infty$ pour tout $t \geq 0$, et donc que $H \cdot M$ est une (vraie) martingale L^2 par le Théorème 4.4.7.
 - (4) et (5) Les preuves sont strictement identiques à celles des Propositions 5.2.4 et 5.2.5.

EXERCICE 5.3.3. Soit M une martingale locale issue de 0, $H \in L^2_{loc}(M)$ et τ un temps d'arrêt. Si $\mathbb{E}[\langle H \cdot M \rangle_{\tau}] < \infty$ (i.e. si $\mathbb{E}[\int_0^{\tau} H_s^2 d\langle M \rangle_s] < \infty$), alors

$$\mathbb{E}\left[\int_0^\tau H_s \, \mathrm{d}M_s\right] = 0, \qquad \mathbb{E}\left[\left(\int_0^\tau H_s \, \mathrm{d}M_s\right)^2\right] = \mathbb{E}\left[\int_0^\tau H_s^2 \, \mathrm{d}\langle M\rangle_s\right].$$

5.4. Intégration stochastique par rapport aux semimartingales

On étend maintenant l'intégrale stochastique à toutes les semimartingales continues.

Définition 5.4.1. On dit qu'un processus progressif H est localement borné si

$$\text{p.s.,} \quad \forall \, t \ge 0, \qquad \sup_{s \in [0,t]} |H_s| < \infty.$$

Remarque 5.4.2. (a) Tout processus continu adapté est localement borné.

(b) Si H est localement borné, on peut définir $\int_0^t H_s dV_s$ et $\int_0^t H_s dM_s$ pour tout processus V à variation finie et toute martingale locale M car

p.s.
$$\forall t \geq 0, \qquad \int_0^t |H_s| |dV_s| < \infty \quad et \quad \int_0^t H_s^2 d\langle M \rangle_s < \infty.$$

Définition 5.4.3. Soit $X = X_0 + M + V$ une semimartingale (continue), et soit H un processus (progressif) localement borné. On définit l'intégrale stochastique

$$\int_0^t H_s \, \mathrm{d}X_s = \int_0^t H_s \, \mathrm{d}M_s + \int_0^t H_s \, \mathrm{d}V_s.$$

Le processus obtenu est une semi-martingale (continue).

EXERCICE 5.4.4. (1) L'application $(H, X) \mapsto \int_0^{\cdot} H_s \, dX_s$ est bilinéaire.

- (2) Si H, K sont localement bornés et si $Y_t = \int_0^t K_s \, dX_s$, alors $\int_0^t H_s \, dY_s = \int_0^t H_s K_s \, dX_s$.
- (3) Si τ est un temps d'arrêt, alors $\int_0^{t\wedge\tau} H_s \, \mathrm{d}X_s = \int_0^t H_s \mathbf{1}_{\{s\in[0,\tau]\}} \, \mathrm{d}X_s = \int_0^t H_s \, \mathrm{d}X_s^{\tau}$.

- (4) Si X est une martingale locale (resp. un processus à variation finie), alors il en va de même pour $\int_0^t H_s \, \mathrm{d}X_s$.
- (5) Si $H_s(\omega) = \sum_{i=0}^{p-1} H^i(\omega) \mathbf{1}_{]t_i,t_{i+1}]}(s)$, où, pour chaque i, H^i est \mathscr{F}_{t_i} -mesurable (non nécessairement bornée), alors H est (progressif) localement borné et

$$\int_0^t H_s \, dX_s = \sum_{i=0}^{p-1} H^i (X_{t_{i+1} \wedge t} - X_{t_i \wedge t}).$$

Il suffit, chaque fois, de décomposer les semimartingales, et d'utiliser ce qui est connu pour les processus à variation finie et pour les martingales locales. Seul le point (5), dans le cas où X est une martingale locale, est nouveau (sauf si les H^i sont bornées). On pourra montrer que pour toute martingale locale N, on a

$$\left\langle \sum_{i=0}^{p-1} H^{i} \left(X_{t_{i+1} \wedge \cdot} - X_{t_{i} \wedge \cdot} \right), N \right\rangle_{t} = \sum_{i=0}^{p-1} H^{i} \left\langle X_{t_{i+1} \wedge \cdot} - X_{t_{i} \wedge \cdot}, N \right\rangle_{t}$$

$$= \sum_{i=0}^{p-1} H^{i} \left(\langle X, N \rangle_{t_{i+1} \wedge t} - \langle X, N \rangle_{t_{i} \wedge t} \right) = \int_{0}^{t} H_{s} \, \mathrm{d} \langle X, N \rangle_{s}.$$

PROPOSITION 5.4.5. Soient X une semimartingale (continue) et H un processus continu adapté. Alors pour tout t > 0 et toute suite $0 = t_0^n < t_1^n < \cdots < t_{p_n}^n = t$ de subdivisions emboîtées de [0,t] de pas tendant vers 0,

$$\lim_{n \to \infty} \sum_{i=0}^{p_n - 1} H_{t_i^n} (X_{t_{i+1}^n} - X_{t_i^n}) = \int_0^t H_s \, \mathrm{d}X_s \quad \text{en probabilité.}$$

Preuve. On étudie séparément les parties martingale et à variation finie de X, cette dernière étant déjà traitée par le Lemme 4.1.9. On suppose donc que X=M est une martingale locale issue de 0. Pour chaque n, on a $\sum_{i=0}^{p_n-1} H_{t_i^n} \left(X_{t_{i+1}^n} - X_{t_i^n} \right) = \int_0^t H_s^n \, \mathrm{d} M_s$, où

$$H_s^n = H_{t_i^n} \mathbf{1}_{\{s \in]t_i^n, t_{i+1}^n]\}}.$$

Pour $m \geq 1$, soit $\tau_m = \inf\{s \geq 0 : |H_s| + \langle M \rangle_s \geq m\}$. Alors $\tau_m \to \infty$ p.s. quand $m \to \infty$ et, à m fixé, comme $\int_0^{t \wedge \tau_m} (H_s^n - H_s)^2 d\langle M \rangle_s \leq 4tm^3 \in L^2(\Omega)$,

$$\mathbb{E}\left[\left(\int_0^{t\wedge\tau_m} (H_s^n - H_s) \,\mathrm{d}M_s\right)^2\right] = \mathbb{E}\left[\int_0^{t\wedge\tau_m} (H_s^n - H_s)^2 \,\mathrm{d}\langle M\rangle_s\right]$$

qui tend vers 0 quand $n \to \infty$ par convergence dominée et continuité de H. Donc pour tout $m \ge 1$, $\lim_n \int_0^{t \wedge \tau_m} H_s^n \, \mathrm{d}M_s = \int_0^{t \wedge \tau_m} H_s \, \mathrm{d}M_s$ en probabilité. Mais, pour $\epsilon > 0$,

$$\mathbb{P}\Big(\Big|\int_0^t H_s^n \,\mathrm{d}M_s - \int_0^t H_s \,\mathrm{d}M_s\Big| > \epsilon\Big) \leq \mathbb{P}(\tau_m < t) + \mathbb{P}\Big(\Big|\int_0^{t \wedge \tau_m} H_s^n \,\mathrm{d}M_s - \int_0^{t \wedge \tau_m} H_s \,\mathrm{d}M_s\Big| > \epsilon\Big),$$

d'où $\limsup_n \mathbb{P}(|\int_0^t H_s^n dM_s - \int_0^t H_s dM_s| > \epsilon) \leq \mathbb{P}(\tau_m < t)$ pour tout $m \geq 1$. On conclut en faisant tendre $m \to \infty$.

La formule d'intégration par parties suivante est un cas particulier de la formule d'Itô.

PROPOSITION 5.4.6 (Intégration par parties). Soient X et Y deux semimartingales continues. On a p.s. pour tout t > 0

$$X_t Y_t = X_0 Y_0 + \int_0^t X_s \, \mathrm{d}Y_s + \int_0^t Y_s \, \mathrm{d}X_s + \langle X, Y \rangle_t.$$

En particulier, $X_t^2 = X_0^2 + 2 \int_0^t X_s \, dX_s + \langle X \rangle_t$.

Lorsque X=M est une martingale locale (continue), on sait que $Z_t=M_t^2-\langle M\rangle_t$ est une martingale locale. La formule d'intégration par parties nous dit que $Z_t=M_0^2+2\int_0^t M_s\,\mathrm{d}M_s$. On pourra relire ici la preuve de l'existence de la variation quadratique d'une martingale locale, qui repose de manière anticipée sur la formule $\langle M\rangle_t=M_t^2-M_0^2-2\int_0^t M_s\,\mathrm{d}M_s$.

Preuve. Fixons t > 0. Soit $0 = t_0^n < t_1^n < \dots < t_n^{p_n} = t$ une suite de subdivisions emboîtées de [0, t] dont le pas tend vers 0. Par la proposition précédente, quand $n \to \infty$, en probabilité,

$$\sum_{i=0}^{p_n-1} X_{t_i^n} \left(Y_{t_{i+1}^n} - Y_{t_i^n} \right) \to \int_0^t X_s \, \mathrm{d}Y_s \,,$$

$$\sum_{i=0}^{p_n-1} Y_{t_i^n} \left(X_{t_{i+1}^n} - X_{t_i^n} \right) \to \int_0^t Y_s \, \mathrm{d}X_s ,$$

tandis que la Proposition 4.5.4 nous dit que

$$\sum_{i=0}^{p_n-1} (X_{t_{i+1}^n} - X_{t_i^n}) (Y_{t_{i+1}^n} - Y_{t_i^n}) \to \langle X, Y \rangle_t.$$

On somme les trois formules. Comme

 $X_{t_i^n}(Y_{t_{i+1}^n} - Y_{t_i^n}) + Y_{t_i^n}(X_{t_{i+1}^n} - X_{t_i^n}) + (X_{t_{i+1}^n} - X_{t_i^n})(Y_{t_{i+1}^n} - Y_{t_i^n}) = X_{t_{i+1}^n}Y_{t_{i+1}^n} - X_{t_i^n}Y_{t_i^n},$ et comme $\sum_{i=0}^{p_n-1} (X_{t_{i+1}^n}Y_{t_{i+1}^n} - X_{t_i^n}Y_{t_i^n}) = X_tY_t - X_0Y_0, \text{ on obtient p.s.}$

$$\int_0^t X_s \, \mathrm{d}Y_s + \int_0^t Y_s \, \mathrm{d}X_s + \langle X, Y \rangle_t = X_t Y_t - X_0 Y_0.$$

Il suffit d'utiliser la continuité de tous les processus pour voir que l'identité est vraie p.s. pour tout t.

Chapitre 6

Formule d'Itô et applications

La formule d'Itô est l'outil de base du calcul stochastique. On démontre d'abord cette formule, et on présente ensuite plusieurs applications.

6.1. Formule d'Itô

Durant tout le chapitre, on se place dans un espace de probabilité filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ qui vérifie les conditions habituelles. La formule d'Itô nous dit qu'une fonction de classe C^2 de d semimartingales continues est encore une semimartingale continue, et exprime explicitement la décomposition de cette semimartingale.

THÉORÈME 6.1.1 (Formule d'Itô).

(i) (Cas unidimensionnel). Soit X une semimartingale continue et soit $F : \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 . Presque sûrement, pour tout $t \geq 0$,

$$F(X_t) = F(X_0) + \int_0^t F'(X_s) \, dX_s + \frac{1}{2} \int_0^t F''(X_s) \, d\langle X \rangle_s.$$

(ii) (Cas multidimensionnel). Soient X^1, \dots, X^d des semimartingales continues et soit $F: \mathbb{R}^d \to \mathbb{R}$ une fonction de classe C^2 . Presque sûrement, pour tout $t \geq 0$,

$$F(X_t) = F(X_0) + \sum_{i=1}^d \int_0^t \frac{\partial F}{\partial x^i}(X_s) \, dX_s^i + \frac{1}{2} \sum_{i,j=1}^d \int_0^t \frac{\partial^2 F}{\partial x^i \partial x^j}(X_s) \, d\langle X^i, X^j \rangle_s,$$

$$o\dot{u} X_t = (X_t^1, \cdots, X_t^d), \ \forall t \ge 0.$$

Preuve. (i) Fixons t > 0. Soit $0 = t_0^n < t_1^n < \cdots < t_{p_n}^n = t$ une suite de subdivisions emboîtées de [0, t] dont le pas tend vers 0. On a

$$F(X_t) = F(X_0) + \sum_{i=0}^{p_n-1} [F(X_{t_{i+1}^n}) - F(X_{t_i^n})].$$

D'après la formule de Taylor,

$$F(X_{t_{i+1}^n}) - F(X_{t_i^n}) = F'(X_{t_i^n}) \left(X_{t_{i+1}^n} - X_{t_i^n} \right) + \frac{1}{2} f_{n,i} \left(X_{t_{i+1}^n} - X_{t_i^n} \right)^2,$$

où $f_{n,i}$, aléatoire, est tel que

(6.1)
$$\inf_{x \in I_{n,i}} F''(x) \le f_{n,i} \le \sup_{x \in I_{n,i}} F''(x),$$

avec $I_{n,i} = [X_{t_i^n} \wedge X_{t_{i+1}^n}, X_{t_i^n} \vee X_{t_{i+1}^n}]$. La Proposition 5.4.5 nous dit que

$$\lim_{n \to \infty} \sum_{i=0}^{p_n - 1} F'(X_{t_i^n}) (X_{t_{i+1}^n} - X_{t_i^n}) = \int_0^t F'(X_s) dX_s \quad \text{en probabilité.}$$

Supposons qu'on ait montré que

(6.2)
$$\lim_{n \to \infty} \sum_{i=0}^{p_n - 1} f_{n,i} (X_{t_{i+1}^n} - X_{t_i^n})^2 = \int_0^t F''(X_s) \, \mathrm{d}\langle X \rangle_s \quad \text{en probabilit\'e}.$$

Alors on aura, pour tout t, p.s., $F(X_t) = F(X_0) + \int_0^t F'(X_s) dX_s + \frac{1}{2} \int_0^t F''(X_s) d\langle X \rangle_s$, et la continuité des processus permettra de terminer la preuve de (i).

Il reste donc à prouver que $\Delta_n = |\sum_{i=0}^{p_n-1} f_{n,i} (X_{t_{i+1}^n} - X_{t_i^n})^2 - \int_0^t F''(X_s) \, \mathrm{d}\langle X \rangle_s| \to 0$ en probabilité. Pour $m \in \{1, \dots, n-1\}$, on écrit $\Delta_n \leq \Delta_{n,m}^1 + \Delta_{n,m}^2 + \Delta_m^3$, où

$$\begin{split} & \Delta_{n,m}^{1} = \Big| \sum_{i=0}^{p_{n}-1} f_{n,i} (X_{t_{i+1}^{n}} - X_{t_{i}^{n}})^{2} - \sum_{j=0}^{p_{m}-1} F''(X_{t_{j}^{m}}) \sum_{i: \ t_{j}^{m} < t_{i}^{n} \le t_{j+1}^{m}} (X_{t_{i+1}^{n}} - X_{t_{i}^{n}})^{2} \Big|, \\ & \Delta_{n,m}^{2} = \Big| \sum_{j=0}^{p_{m}-1} F''(X_{t_{j}^{m}}) \sum_{i: \ t_{j}^{m} < t_{i}^{n} \le t_{j+1}^{m}} (X_{t_{i+1}^{n}} - X_{t_{i}^{n}})^{2} - \sum_{j=0}^{p_{m}-1} F''(X_{t_{j}^{m}}) \Big[\langle X \rangle_{t_{j+1}^{m}} - \langle X \rangle_{t_{j}^{m}} \Big] \Big|, \\ & \Delta_{m}^{3} = \Big| \sum_{i=0}^{p_{m}-1} F''(X_{t_{j}^{m}}) \Big[\langle X \rangle_{t_{j+1}^{m}} - \langle X \rangle_{t_{j}^{m}} \Big] - \int_{0}^{t} F''(X_{s}) \, \mathrm{d}\langle X \rangle_{s} \Big|. \end{split}$$

A m fixé, $\Delta_{n,m}^2 \to 0$ en probabilité quand $n \to \infty$: pour chaque $j = 0, \dots, p_m - 1$, en probabilité, $\sum_{i: t_j^m < t_i^n \le t_{j+1}^m} (X_{t_{i+1}^n} - X_{t_i^n})^2 \to \langle X \rangle_{t_{j+1}^m} - \langle X \rangle_{t_j^m}$ par la Proposition 4.5.4.

De plus,
$$\Delta_{n,m}^1 \leq Z_{m,n}C_n$$
, où $C_n = \sum_{i=0}^{p_n-1} (X_{t_{i+1}^n} - X_{t_i^n})^2$ et

$$Z_{m,n} = \sup_{j=0,\dots,p_m-1} \sup_{i: t_j^m < t_i^n \le t_{j+1}^m} |f_{n,i} - F''(X_{t_j^m})|.$$

Mais $C_n \to \langle X \rangle_t$ en probabilité et $\lim_{m \to \infty} \limsup_{n \to \infty} Z_{m,n} = 0$ p.s. (car F'' est continue, ainsi que les trajectoires de X, et par (6.1)), on conclut que $\lim_{m \to \infty} \limsup_{n \to \infty} \Delta^1_{n,m} = 0$ en probabilité.

Enfin, on déduit du Lemme 4.1.9 que $\lim_{m\to\infty} \Delta_m^3 = 0$ p.s.

De tout ça il ressort que, en probabilité,

$$\lim_{n} \Delta_n \le \lim_{m \to \infty} \limsup_{n \to \infty} [\Delta_{n,m}^1 + \Delta_{n,m}^2 + \Delta_m^3] = 0.$$

(ii) La formule de Taylor donne

$$F(X_{t_{i+1}^n}) - F(X_{t_i^n}) = \sum_{k=1}^d \frac{\partial F}{\partial x^k} (X_{t_i^n}) (X_{t_{i+1}^n}^k - X_{t_i^n}^k) + \frac{1}{2} \sum_{k,\ell=1}^d f_{n,i}^{k,\ell} (X_{t_{i+1}^n}^k - X_{t_i^n}^k) (X_{t_{i+1}^n}^\ell - X_{t_i^n}^\ell),$$

avec

$$\inf_{x \in I_{i,n}} \frac{\partial^2 F}{\partial x^k \partial x^\ell}(x) \le f_{n,i}^{k,\ell} \le \sup_{x \in I_{i,n}} \frac{\partial^2 F}{\partial x^k \partial x^\ell}(x),$$

où $I_{i,n} = [X^1_{t^n_i} \wedge X^1_{t^n_{i+1}}, X^1_{t^n_i} \vee X^1_{t^n_{i+1}}] \times \cdots \times [X^d_{t^n_i} \wedge X^d_{t^n_{i+1}}, X^d_{t^n_i} \vee X^d_{t^n_{i+1}}]$. La proposition 5.4.5 nous donne le résultat cherché pour les termes faisant intervenir les dérivées premières. De plus, par les mêmes arguments que dans la preuve de (6.2), on a, pour chaque $1 \leq k, \ell \leq d$,

$$f_{n,i}^{k,\ell}(X_{t_{i+1}}^k - X_{t_i}^k)(X_{t_{i+1}}^\ell - X_{t_i}^\ell) \to \int_0^t \frac{\partial^2 F}{\partial x^k \partial x^\ell}(X_s) \,\mathrm{d}\langle X^k, X^\ell \rangle_s$$

en probabilité.

REMARQUE 6.1.2. (i) En prenant d=2 et F(x,y)=xy dans formule d'Itô, on retrouve la formule d'intégration par parties :

$$X_t Y_t = X_0 Y_0 + \int_0^t X_s \, \mathrm{d}Y_s + \int_0^t Y_s \, \mathrm{d}X_s + \langle X, Y \rangle_t.$$

- (ii) Si $(X_t = (X_t^1, \dots, X_t^d))_{t \geq 0}$ prend ses valeurs dans un domaine ouvert $D \subset \mathbb{R}^d$, la formule d'Itô est valable pour toute fonction F de classe C^2 sur D.
- EXEMPLE 6.1.3. (i) Soit $(B_t)_{t\geq 0}$ un mouvemement brownien de dimension 1 issu de B_0 (une v.a. réelle \mathscr{F}_0 -mesurable). Alors pour toute $F: \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 , en appliquant la formule d'Itô avec $d=2, X_t^1=t$ et $X_t^2=B_t$, on trouve

$$F(t, B_t) = F(0, B_0) + \int_0^t \frac{\partial F}{\partial x}(s, B_s) dB_s + \int_0^t \left(\frac{\partial F}{\partial t} + \frac{1}{2}\frac{\partial^2 F}{\partial x^2}\right)(s, B_s) ds.$$

- Si $\frac{\partial F}{\partial t} + \frac{1}{2} \frac{\partial^2 F}{\partial x^2} = 0$, alors $F(t, B_t)$ est une martingale locale. C'est le cas pour F(t, x) = x, $F(t, x) = x^2 t$ ou $F(t, x) = x^3 3tx$. Voir aussi les polynômes d'Hermite.
- (ii) Soit maintenant $(B_t = (B_t^1, \dots, B_t^d))_{t\geq 0}$ un mouvemement brownien de dimension d issu de B_0 (une v.a. \mathscr{F}_0 -mesurable). Alors pour toute $F: \mathbb{R}^d \mapsto \mathbb{R}$ de classe C^2 , comme $\langle B^i, B^j \rangle = 0$ si $i \neq j$ (deux martingales locales M, N indépendantes sont orthogonales),

$$F(B_t) = F(B_0) + \sum_{i=1}^d \int_0^t \frac{\partial F}{\partial x^i}(B_s) dB_s^i + \frac{1}{2} \int_0^t \Delta F(B_s) ds.$$

EXEMPLE 6.1.4. Soit $B = (B^1, \dots, B^d)$ un mouvement brownien à valeurs dans \mathbb{R}^d $(d \ge 2)$, issu de $x \ne 0$. On cherche à calculer $\mathbb{P}(T_r < T_R)$, où 0 < r < ||x|| < R et

$$T_a = \inf\{t \ge 0 : ||B_t|| = a\}.$$

Par Itô, $||B_t||^2 = ||x||^2 + 2\sum_{i=1}^d \int_0^t B_s^i \, \mathrm{d} B_s^i + dt$ puis,

$$||B_{t \wedge T_r \wedge T_R}||^2 = ||x||^2 + 2\sum_{i=1}^d \int_0^{t \wedge T_r \wedge T_R} B_s^i dB_s^i + d(t \wedge T_r \wedge T_R).$$

Si $F: \mathbb{R}_+^* \to \mathbb{R} \text{ est } C^2$,

$$F(\|B_{t \wedge T_r \wedge T_R}\|^2) = F(\|x\|^2) + 2\sum_{i=1}^d \int_0^{t \wedge T_r \wedge T_R} F'(\|B_s\|^2) B_s^i dB_s^i$$
$$+ \int_0^{t \wedge T_r \wedge T_R} \left(dF'(\|B_s\|^2) + 2F''(\|B_s\|^2) \|B_s\|^2 \right) ds.$$

Mais, en posant $F(y) = \log(y)$ si d = 2 et $F(y) = y^{1-d/2}$ si $d \ge 3$, on a dF'(y) + 2yF''(y) = 0, et donc $F(\|B_{t \wedge T_r \wedge T_R}\|^2)$ est une martingale locale bornée. C'est donc une martingale U.I., et par le théorème d'arrêt, $\mathbb{E}[F(\|B_{T_r \wedge T_R}\|^2)] = F(\|x\|^2)$ (noter que $T_R < \infty$ car $\limsup_{t \to \infty} \|B_t\| \ge \limsup_{t \to \infty} |B_t^1| = \infty$ p.s.). Autrement dit,

$$F(||x||^2) = F(r^2)\mathbb{P}(T_r < T_R) + F(R^2)\mathbb{P}(T_R < T_r)$$

et finalement,

$$\mathbb{P}[T_R < T_r] = \frac{F(||x||^2) - F(r^2)}{F(R^2) - F(r^2)}.$$

Noter que si d=2, on en déduit, en faisant tendre $R\to\infty$, que $\mathbb{P}(T_r=\infty)=0$ pour tout $r\in]0,\|x\|[$, tandis que si $d\ge 3$, on trouve $\mathbb{P}(T_r=\infty)=(r^{2-d}-\|x\|^{2-d})/r^{2-d}$.

Exercice 6.1.5. En utilisant l'exemple précédent, montrer que p.s., le mouvement Brownien de dimension 2 issu de $x \neq 0$ ne touche jamais 0.

En déduire que pour tout $d \geq 2$, tout $x \neq y$, p.s., le mouvement Brownien de dimension d issu de x ne touche jamais y.

EXEMPLE 6.1.6. Soit B un mouvement brownien à valeurs dans \mathbb{R}^d , avec $d \geq 3$. On montre ici que $\lim_{t\to\infty} ||B_t|| = \infty$ p.s., i.e. que B est transient.

Il suffit d'étudier le cas d = 3, et on suppose sans perte de généralité que $B_0 = (1, 0, 0)$. Considérons la semimartingale continue $X_t = ||B_t||^2$. Par la formule d'Itô,

$$X_t = X_0 + 2\sum_{i=1}^3 \int_0^t B_s^i dB_s^i + 3t, \qquad \langle X \rangle_t = 4\int_0^t \sum_{i=1}^3 (B_s^i)^2 ds = 4\int_0^t X_s ds.$$

Comme X est p.s. à valeurs dans \mathbb{R}_+^* , on peut appliquer la formule d'Itô à la fonction $F: \mathbb{R}_+^* \to \mathbb{R}$ définie par $F(x) = x^{-1/2}$:

$$\frac{1}{\sqrt{X_t}} = \frac{1}{\sqrt{X_0}} - \frac{1}{2} \int_0^t \frac{1}{X_s^{3/2}} dX_s + \frac{3}{8} \int_0^t \frac{1}{X_s^{5/2}} d\langle X \rangle_s$$
= martingale locale $-\frac{3}{2} \int_0^t \frac{1}{X_s^{3/2}} ds + \frac{3}{2} \int_0^t \frac{1}{X_s^{3/2}} ds$
= martingale locale.

Autrement dit, $||B||^{-1}$ est une martingale locale, positive, issue de 1. Par la Proposition 4.3.4, c'est une surmartingale positive, elle converge donc p.s. vers une v.a. ξ quand $t \to \infty$. Et d'après Fatou, $\mathbb{E}(\xi) \leq \liminf_{t \to \infty} \mathbb{E}(||B_t||^{-1})$. Or, si $G = (G^1, G^2, G^3)$ désigne une v.a. gaussienne standard, pour $t \geq 1$,

$$\mathbb{E}(\|B_t\|^{-1}) = \mathbb{E}\left[\left((1+\sqrt{t}G^1)^2 + (\sqrt{t}G^2)^2 + (\sqrt{t}G^3)^2\right)^{-1/2}\right] \le t^{-1/2}\mathbb{E}\left[\left((G^2)^2 + (G^3)^2\right)^{-1/2}\right],$$
qui tend vers 0 quand $t \to \infty$ (en général, $\mathbb{E}(\|G\|^{-q}) < \infty \Leftrightarrow q < d$.) Donc $\xi = 0$ p.s., c'est-à-dire $\|B_t\| \to \infty$ p.s.

On notera que $||B||^{-1}$ est une martingale locale U.I. (car on a $\sup_{t\geq 0} \mathbb{E}(||B_t||^{-1-\varepsilon}) < \infty$ pour $\varepsilon \in]0, 1[$), qui n'est pas une martingale (sinon, ce serait une martingale U.I, et on aurait $||B_t||^{-1} = \mathbb{E}[||B_{\infty}||^{-1}|\mathscr{F}_t] = 0$, avec un petit abus de notation).

6.2. Semimartingales exponentielles

Une première application de la formule d'Itô est l'étude des semimartingales exponentielles.

Théorème 6.2.1. Soit X une semimartingale continue. Il existe une unique semimartingale Z telle que

(6.3)
$$Z_t = e^{X_0} + \int_0^t Z_s \, dX_s,$$

 $qu'on \ appelle \ martingale \ exponentielle \ de \ X, \ qu'on \ note \ Z = \mathscr{E}(X) \ et \ qui \ est \ donn\'ee \ par$

(6.4)
$$\mathscr{E}(X)_t = \exp\left(X_t - \frac{1}{2}\langle X \rangle_t\right).$$

Preuve. Soit $Z = \mathcal{E}(X)$ défini dans (6.4). En appliquant la formule d'Itô avec $F(x) = e^x$ à la semimartingale $X - \frac{1}{2}\langle X \rangle$, dont le crochet vaut $\langle X \rangle$, on trouve que Z satisfait (6.3).

Pour l'unicité, on commence par remarquer, en utilisant Itô avec $F(x) = e^{-x}$, que $Y_t = \exp(-X_t + \frac{1}{2}\langle X \rangle_t)$ vérifie

$$Y_t = e^{-X_0} - \int_0^t Y_s \, \mathrm{d}X_s + \int_0^t Y_s \, \mathrm{d}\langle X \rangle_s.$$

Donc, pour toute solution \tilde{Z} de (6.3), par la formule d'intégration par parties,

$$\begin{split} Y_t \tilde{Z}_t = & Y_0 \tilde{Z}_0 + \int_0^t Y_s \, \mathrm{d}\tilde{Z}_s + \int_0^t \tilde{Z}_s \, \mathrm{d}Y_s + \langle Y, \tilde{Z} \rangle_t \\ = & 1 + \int_0^t Y_s \tilde{Z}_s \, \mathrm{d}X_s + \int_0^t \tilde{Z}_s [-Y_s \, \mathrm{d}X_s + Y_s \, \mathrm{d}\langle X \rangle_s] - \int_0^t Y_s \tilde{Z}_s \, \mathrm{d}\langle X \rangle_s, \\ \text{soit encore } Y_t \tilde{Z}_t = 1. \text{ Ainsi, } \tilde{Z}_t = 1/Y_t = \mathscr{E}(X)_t. \end{split}$$

On dit qu'un processus à valeurs dans \mathbb{C} est une martingale locale (continue) si sa partie réelle et sa partie imaginaire sont des martingales locales.

Proposition 6.2.2. Si M est une martingale locale (réelle), et si $\lambda \in \mathbb{C}$, alors

$$\mathscr{E}(\lambda M)_t = \exp\left(\lambda M_t - \frac{\lambda^2}{2} \langle M \rangle_t\right),$$

est une martingale locale.

Preuve. Exactement comme dans le théorème précédent, on trouve que $\mathscr{E}(\lambda M)_t$ vérifie $\mathscr{E}(\lambda M)_t = e^{\lambda M_0} + \int_0^t \lambda \mathscr{E}(\lambda M)_s \, \mathrm{d}M_s$, c'est donc une martingale locale complexe.

6.3. Caractérisation de Lévy du mouvement brownien

On sait que si (X^1, \dots, X^d) est un (\mathscr{F}_t) -mouvement brownien à valeurs dans \mathbb{R}^d , alors $\langle X^i, X^j \rangle_t = \delta_{ij} t$, où $\delta_{ij} = \mathbf{1}_{\{i=j\}}$ est le symbole de Kronecker. Le théorème suivant nous dit que la réciproque est également vraie, ce qui fournit une caractérisation importante et simple du mouvement brownien.

THÉORÈME 6.3.1 (Lévy). Soient M^1, \dots, M^d des martingales locales (continues) issues de 0 telles que $\langle M^i, M^j \rangle_t = \delta_{ij} t$. Alors (M^1, \dots, M^d) est un (\mathscr{F}_t) -mouvement brownien à valeurs dans \mathbb{R}^d .

En particulier, si M est une martingale locale telle que $\langle M \rangle_t = t$ pour tout $t \geq 0$, alors M est un (\mathscr{F}_t) -mouvement brownien.

Preuve. Fixons $\xi = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$, et soit $N_t = \xi \cdot M_t = \sum_{j=1}^d \xi_j M_t^j$. Il s'agit d'une martingale locale de crochet

$$\langle N \rangle_t = \sum_{j=1}^d \sum_{k=1}^d \xi_j \xi_k \langle M^j, M^k \rangle_t = \sum_{j=1}^d \xi_j^2 t = \|\xi\|^2 t.$$

D'après le Corollaire 6.2.2, $\mathscr{E}(iN)_t = \exp[i(\xi \cdot M_t) + \frac{\|\xi\|^2}{2}t]$ est une martingale locale (complexe). Pour tout t > 0, $\sup_{s \in [0,t]} |\mathscr{E}(iN)_s| \le \exp[\frac{\|\xi\|^2}{2}t]$ qui est intégrable. Par la Proposition

4.3.4, $\mathscr{E}(iN)$ est une (vraie) martingale, et pour s < t, $\mathbb{E}[\mathscr{E}(iN)_t \,|\, \mathscr{F}_s] = \mathscr{E}(iN)_s$, d'où

$$\mathbb{E}\left[\exp[i(\xi\cdot(M_t-M_s)]\,\Big|\,\mathscr{F}_s\right] = \exp\left(-\frac{\|\xi\|^2}{2}(t-s)\right).$$

Ainsi, la loi conditionnelle de $(M_t - M_s)$ sachant \mathscr{F}_s est la loi $\mathscr{N}(0, (t-s)I)$, et on conclut que M est un (\mathscr{F}_t) -mouvement brownien : il est continu, (\mathscr{F}_t) -adapté, et pour 0 < s < t, $(M_t - M_s)$ est indépendant de \mathscr{F}_s et de loi $\mathscr{N}(0, (t-s)I)$.

EXEMPLE 6.3.2. Soit (X,Y) un mouvement brownien à valeurs dans \mathbb{R}^2 et, pour $\theta \in \mathbb{R}$,

$$X_t^{\theta} = X_t \cos \theta - Y_t \sin \theta, \qquad Y_t^{\theta} = X_t \sin \theta + Y_t \cos \theta, \qquad t \ge 0.$$

Alors (X^{θ}, Y^{θ}) est de nouveau un mouvement brownien à valeurs dans \mathbb{R}^2 . En effet, X^{θ} et Y^{θ} sont des martingales continues, et $\langle X^{\theta} \rangle_t = \langle Y^{\theta} \rangle_t = t$, et $\langle X^{\theta}, Y^{\theta} \rangle_t = 0$.

EXEMPLE 6.3.3. Soit B un (\mathscr{F}_t) -mouvement brownien, et soit $\beta_t = \int_0^t \operatorname{sgn}(B_s) dB_s$, où $\operatorname{sgn}(x) = \mathbf{1}_{\{x>0\}} - \mathbf{1}_{\{x\leq 0\}}$ (donc $\operatorname{sgn}(0) = -1$). Comme $\operatorname{sgn}(B_s)$ est un processus localement borné (il est clair que ce processus est progressif, car composé du processus progressif $(s,\omega) \mapsto B_s(\omega)$ et de l'application borélienne $x \mapsto \operatorname{sgn}(x)$), β_t est bien défini, et est une martingale locale continue. Comme $\langle \beta \rangle_t = \int_0^t (\operatorname{sgn}(B_s))^2 ds = t$, β est un (\mathscr{F}_t) -mouvement brownien. \square

6.4. Théorème de Dubins-Schwarz

Le Théorème de Dubins-Schwarz affirme que toute martingale locale continue peut s'écrire comme un mouvement brownien changé de temps.

Théorème 6.4.1 (Dubins-Schwarz). Soit M une martingale locale continue telle que $M_0 = 0$ et $\langle M \rangle_{\infty} = \infty$ p.s. Il existe alors un mouvement brownien B tel que

$$M_t = B_{\langle M \rangle_t}$$
.

Remarque 6.4.2.

- (i) Dans le Théorème 6.4.1, le mouvement brownien B n'est pas adapté à la filtration (\mathscr{F}_t) , mais à une filtration changée de temps.
- (ii) On peut enlever l'hypothèse $\langle M \rangle_{\infty} = \infty$, mais il faut alors éventuellement grossir l'espace de probabilités.
- (iii) La preuve est sensiblement plus simple si on suppose que $t \mapsto \langle M \rangle_t$ est p.s. strictement croissante.

LEMME 6.4.3. Soit M une martingale locale telle que $M_0 = 0$. Alors p.s. $t \mapsto M_t$ et $t \mapsto \langle M \rangle_t$ ont les mêmes intervalles de constance : p.s., pour tout $0 \le a < b$, $M_t = M_a$ pour tout $t \in [a,b]$ si et seulement si $\langle M \rangle_b = \langle M \rangle_a$.

Preuve. Par continuité, il suffit de montrer le résultat p.s. avec $0 \le a < b$ fixés. Déjà, l'inclusion $\{M_t = M_a \ \forall t \in [a,b]\} \subset \{\langle M \rangle_b = \langle M \rangle_a\}$ est évidente, par le résultat d'approximation du Théorème 4.4.1.

Considérons ensuite le temps d'arrêt

$$\tau = \inf\{t > a : \langle M \rangle_t \neq \langle M \rangle_a\}.$$

La martingale locale $N_t = \int_a^t \mathbf{1}_{\{s \leq \tau\}} dM_s$ (pour $t \geq a$) a pour variation quadratique $\langle N \rangle_t = \int_a^t \mathbf{1}_{\{s \leq \tau\}} d\langle M \rangle_s = \langle M \rangle_{t \wedge \tau} - \langle M \rangle_{a \wedge \tau} = 0$, donc $N_t = 0$ p.s. pour tout $t \geq 0$, i.e. $M_{t \wedge \tau} = M_{a \wedge \tau}$ pour tout $t \geq a$. Sur l'évenement $\{\langle M \rangle_b = \langle M \rangle_a\}$, on a $\tau \geq b$ et donc $M_t = M_a$ pour tout $t \in [a, b]$.

Preuve du Théorème 6.4.1.

(a) Pour tout $r \geq 0$, on définit le temps d'arrêt

$$\tau_r = \inf \left\{ t \ge 0 : \langle M \rangle_t > r \right\}.$$

L'hypothèse $\langle M \rangle_{\infty} = \infty$ assure que $\tau_r < \infty$ pour tout r. De plus, la fonction $r \mapsto \tau_r$ est croissante et càd, avec, si r > 0, $\tau_{r-} = \lim_{s \uparrow r} \tau_s = \inf\{t \ge 0 : \langle M \rangle_t \ge r\}$. On note que pour tout r > 0, on a $\langle M \rangle_{\tau_r-} = r = \langle M \rangle_{\tau_r}$ par continuité de $t \to \langle M \rangle_t$.

- (b) Pour chaque $r \geq 0$, on pose $\mathscr{G}_r = \mathscr{F}_{\tau_r}$. Bien sûr, $(\mathscr{G}_r)_{r\geq 0}$ est une filtration. On pose $B_r = M_{\tau_r}$, qui est un processus $(\mathscr{G}_r)_{r\geq 0}$ -adapté. On a $M_t = B_{\langle M \rangle_t}$, i.e. $M_t = M_{\tau_{\langle M \rangle_t}}$: il suffit de vérifier que M est constante sur $[t, \tau_{\langle M \rangle_t}]$, ce qui découle du lemme car $\langle M \rangle_t = \langle M \rangle_{\tau_{\langle M \rangle_t}}$ (car $\langle M \rangle_{\tau_r} = r$, cf (a), avec le choix $r = \langle M \rangle_t$).
- (c) $B_0 = M_{\tau_0} = 0$, car, comme dans (b), $M_0 = M_{\tau_{\langle M \rangle_0}}$, ce qui se réécrit $0 = M_{\tau_0}$. Puis $B_r = M_{\tau_r}$ est continu, car il est càdlàg (car M est continue et $r \mapsto \tau_r$ est càdlàg) et car pour tout r > 0, $B_{r-} = B_r$, i.e. $M_{\tau_{r-}} = M_{\tau_r}$, par le lemme et car $\langle M \rangle_{\tau_{r-}} = \langle M \rangle_{\tau_r}$, cf (a).
- (d) On vérifie ensuite que B_r et $B_r^2 r$ sont des (vraies) martingales par rapport à la filtration $(\mathscr{G}_r)_{r\geq 0}$. Soit r>0 fixé. Alors M^{τ_r} est une $(\mathscr{F}_t)_{t\geq 0}$ martingale de crochet $\langle M^{\tau_r}\rangle_{\infty} = \langle M\rangle_{\tau_r} = r$ borné, donc par le Théorème 4.4.7 (et un tout petit argument supplémentaire), $(M_s^{\tau_r})_{s\geq 0}$ et $((M_s^{\tau_r})^2 \langle M^{\tau_r}\rangle_s)_{s\geq 0}$ sont de vraies $(\mathscr{F}_s)_{s\geq 0}$ -martingales U.I. Par le théorème d'arrêt, si $0\leq s\leq r$,

$$\mathbb{E}\left[B_r \,|\, \mathscr{G}_s\right] = \mathbb{E}\left[M_{\tau_n}^{\tau_r} \,|\, \mathscr{F}_{\tau_s}\right] = M_{\tau_s}^{\tau_r} = B_s,$$

et

$$\mathbb{E}\left[\left.B_r^2 - r\left|\mathscr{G}_s\right.\right] = \mathbb{E}\left[\left.(M_{\tau_r}^{\tau_r})^2 - \langle M^{\tau_r}\rangle_{\tau_r}\left|\mathscr{F}_{\tau_s}\right.\right] = (M_{\tau_s}^{\tau_r})^2 - \langle M^{\tau_r}\rangle_{\tau_s} = B_s^2 - s.$$

(e) Ainsi, B est une (\mathscr{G}_r) -martingale continue telle que $\langle B \rangle_t = t$. D'après le Théorème de Lévy, B est un (\mathscr{G}_r) -mouvement brownien.

6.5. Inégalités de Burkholder-Davis-Gundy

Les inégalités suivantes relient une martingale locale avec sa variation quadratique. Pour toute martingale locale continue M, on note $M_t^* = \sup_{s \in [0,t]} |M_s|$.

THÉORÈME 6.5.1 (Burkholder-Davis-Gundy). Pour tout p > 0, il existe des constantes $0 < c_p < C_p$ telles que, pour toute martingale locale $(M_t)_{t \ge 0}$ issue de 0,

$$c_p \mathbb{E}\left[\langle M \rangle_{\infty}^{p/2}\right] \leq \mathbb{E}\left[(M_{\infty}^*)^p\right] \leq C_p \mathbb{E}\left[\langle M \rangle_{\infty}^{p/2}\right].$$

Si τ est un temps d'arrêt, en remplaçant M par la martingale locale M^{τ} , on obtient

$$c_p \mathbb{E}\left[\langle M \rangle_{\tau}^{p/2}\right] \leq \mathbb{E}\left[(M_{\tau}^*)^p\right] \leq C_p \mathbb{E}\left[\langle M \rangle_{\tau}^{p/2}\right].$$

Le cas p = 2 est évident, c'est le Corollaire 4.4.8 (et Doob). Nous n'allons traiter que le cas p > 2. Pour le cas $p \in]0, 2[$, bien plus technique, voir Revuz-Yor (chapitre IV).

Preuve. Quitte à remplacer M par M^{τ_n} , où $\tau_n = \inf\{t \geq 0 : |M_t| + \langle M \rangle_t \geq n\}$, on peut supposer que M et $\langle M \rangle$ sont bornés : une fois montré le résultat pour M^{τ_n} , il suffit de faire tendre $n \to \infty$ par convergence monotone.

Première inégalité : si q > 1, $\mathbb{E}[\langle M \rangle_{\infty}^q] \leq q^q \mathbb{E}[(M_{\infty})^{2q}]$.

(a) Pour tout $\lambda > 0$, $\mathbb{E}[\mathbf{1}_{\{\langle M \rangle_{\infty} > \lambda\}}(\langle M \rangle_{\infty} - \lambda)] \leq \mathbb{E}[\mathbf{1}_{\{\langle M \rangle_{\infty} > \lambda\}}M_{\infty}^{2}]$: on introduit le temps d'arrêt $\tau = \inf\{t \geq 0 : \langle M \rangle_{t} > \lambda\}$, et on a

$$\mathbb{E}[\mathbf{1}_{\{\langle M\rangle_{\infty}>\lambda\}}(\langle M\rangle_{\infty}-\lambda)] = \mathbb{E}[\mathbf{1}_{\{\langle M\rangle_{\infty}>\lambda\}}(\langle M\rangle_{\infty}-\langle M\rangle_{\tau})] \leq \mathbb{E}[\langle M\rangle_{\infty}-\langle M\rangle_{\tau}],$$

puis

$$\mathbb{E}[\langle M \rangle_{\infty} - \langle M \rangle_{\tau}] = \mathbb{E}[M_{\infty}^2 - M_{\tau}^2] = \mathbb{E}[\mathbf{1}_{\{\tau < \infty\}}(M_{\infty}^2 - M_{\tau}^2)] \leq \mathbb{E}[\mathbf{1}_{\{\tau < \infty\}}M_{\infty}^2] = \mathbb{E}[\mathbf{1}_{\{\langle M \rangle_{\infty} > \lambda\}}M_{\infty}^2].$$

(b) Comme $q(q-1)\int_0^x (x-\lambda)\lambda^{q-2} d\lambda = qx^q - (q-1)x^q$, on voit que

$$x^{q} = q(q-1) \int_{0}^{\infty} \mathbf{1}_{\{x > \lambda\}}(x-\lambda) \lambda^{q-2} \, \mathrm{d}\lambda.$$

Appliqué à $x=\langle M\rangle_{\infty}$, ça donne, après prise d'espérance,

$$\mathbb{E}\left[\langle M \rangle_{\infty}^{q}\right] = q(q-1) \int_{0}^{\infty} \mathbb{E}\left[\mathbf{1}_{\{\langle M \rangle_{\infty} > \lambda\}}(\langle M \rangle_{\infty} - \lambda)\right] \lambda^{q-2} \, \mathrm{d}\lambda$$

$$\leq q(q-1) \int_{0}^{\infty} \mathbb{E}\left[\mathbf{1}_{\{\langle M \rangle_{\infty} > \lambda\}} M_{\infty}^{2}\right] \lambda^{q-2} \, \mathrm{d}\lambda$$

$$= q \, \mathbb{E}[\langle M \rangle_{\infty}^{q-1} M_{\infty}^{2}] \leq q \, \left(\mathbb{E}[\langle M \rangle_{\infty}^{q}]\right)^{\frac{q-1}{q}} \left(\mathbb{E}[(M_{\infty}^{2})^{q}]\right)^{\frac{1}{q}}.$$

Nous obtenons l'inégalité souhaitée en divisant par $(\mathbb{E}[\langle M \rangle_{\infty}^q])^{\frac{q-1}{q}}$.

Seconde inégalité : si $p \geq 2$, $\mathbb{E}[(M_{\infty}^*)^p] \leq C_p \mathbb{E}[\langle M \rangle_{\infty}^{p/2}]$.

La fonction $\varphi(x) = |x|^p$ est de classe C^2 et par la formule d'Itô

$$|M_t|^p = \int_0^t p|M_s|^{p-1}\operatorname{sgn}(M_s) dM_s + \frac{1}{2} \int_0^t p(p-1)|M_s|^{p-2} d\langle M \rangle_s.$$

En prenant l'espérance

$$\mathbb{E}\left[|M_t|^p\right] = \frac{p(p-1)}{2} \mathbb{E}\left[\int_0^t |M_s|^{p-2} \,\mathrm{d}\langle M \rangle_s\right]$$

$$\leq \frac{p(p-1)}{2} \mathbb{E}\left[(M_t^*)^{p-2}\langle M \rangle_t\right]$$

$$\leq \frac{p(p-1)}{2} \mathbb{E}\left[(M_t^*)^p\right]^{(p-2)/p} \mathbb{E}\left[\langle M \rangle_t^{p/2}\right]^{2/p},$$

par l'inégalité de Hölder. Par Doob

$$\mathbb{E}\left[(M_t^*)^p \right] \le \left(\frac{p}{p-1} \right)^p \mathbb{E}\left[|M_t|^p \right] \le \left(\frac{p}{p-1} \right)^p \frac{p(p-1)}{2} \mathbb{E}\left[(M_t^*)^p \right]^{(p-2)/p} \mathbb{E}\left[\langle M \rangle_t^{p/2} \right]^{2/p}.$$

On conclut en divisant les deux côtés par $\mathbb{E}[(M_t^*)^p]^{(p-2)/p}$ et en faisant tendre $t\to +\infty$ par convergence monotone.

6.6. Martingales browniennes

Durant toute cette section, B est un mouvement brownien issu de 0 et

(*)
$$(\mathscr{F}_t)_{t>0}$$
 = augmentation habituelle de la filtration canonique de B .

On note $L^2_{\infty}(B)$ l'ensemble des processus progressifs H tels que $\mathbb{E}[\int_0^{\infty} H_s^2 \, \mathrm{d}s] < \infty$, et $L^2_{\mathrm{loc}}(B)$ l'ensemble des processus progressifs H tels que pour tout $t \geq 0$, $\int_0^t H_s^2 \, \mathrm{d}s < \infty$ p.s.

Théorème 6.6.1. Sous l'hypothèse (*), pour toute martingale locale M, il existe un unique processus $H \in L^2_{loc}(B)$ et une constante $c \in \mathbb{R}$ tels que $M_t = c + \int_0^t H_s dB_s$. Si de plus M est une martingale (continue) bornée dans L^2 , alors $H \in L^2_{\infty}(B)$.

LEMME 6.6.2. Sous l'hypothèse (*), l'espace vectoriel engendré par les v.a. (complexes)

$$\exp\Big(i\sum_{j=1}^n \lambda_j (B_{t_j} - B_{t_{j-1}})\Big),\,$$

avec $n \geq 0$, $0 = t_0 < t_1 < \dots < t_n$ et $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$, est dense dans $L^2_{\mathbb{C}}(\Omega, \mathscr{F}_{\infty})$.

Preuve. Il s'agit de montrer que si $Z \in L^2_{\mathbb{C}}(\Omega, \mathscr{F}_{\infty})$ est tel que

$$\mathbb{E}\left[Z\exp\left(i\sum_{j=1}^{n}\lambda_{j}(B_{t_{j}}-B_{t_{j-1}})\right)\right]=0,$$

pour tous $n \ge 0$, $0 = t_0 < t_1 < \dots < t_n$ et $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$, alors Z = 0.

En effet, un sous-espace vectoriel F d'un espace de Hilbert H est dense si et seulement si $F^{\perp} = \{0\}$. On va juste montrer que Y = Re Z est p.s. nul, la partie imaginaire se traite de la même manière.

- (1) Pour tout $0 = t_0 < ... < t_n$ fixés, tout $A \in \sigma(B_{t_1}, ..., B_{t_n})$, on a $\mathbb{E}[Y\mathbf{1}_A] = 0$:
- (a) Il suffit que, avec $X=(B_{t_1},...,B_{t_n}-B_{t_{n-1}})$, pour tout $\Gamma\in\mathscr{B}(\mathbb{R}^n),\,\mathbb{E}[Y\mathbf{1}_{\{X\in\Gamma\}}]=0$
- (b) Par hypothèse, pour tout $\lambda \in \mathbb{R}^n$, $\mathbb{E}[Ze^{i\lambda \cdot X}] = 0$. Donc pour tout $\lambda \in \mathbb{R}^n$

$$2\mathbb{E}[Ye^{i\lambda\cdot X}] = \mathbb{E}[Ze^{i\lambda\cdot X}] + \mathbb{E}[\bar{Z}e^{i\lambda\cdot X}] = \mathbb{E}[Ze^{i\lambda\cdot X}] + \overline{\mathbb{E}[Ze^{-i\lambda\cdot X}]} = 0 + 0 = 0.$$

- (c) Puis pour tout $\lambda \in \mathbb{R}^n$, $\mathbb{E}[Y_+e^{i\lambda \cdot X}] = \mathbb{E}[Y_-e^{i\lambda \cdot X}]$, c'est à dire que les mesure finies μ_+ et μ_- sur \mathbb{R}^n définies par $\mu_+(\Gamma) = \mathbb{E}[Y_+\mathbf{1}_{\{X\in\Gamma\}}]$ et $\mu_-(\Gamma) = \mathbb{E}[Y_+\mathbf{1}_{\{X\in\Gamma\}}]$ ont la même transformée de Fourier, donc $\mu_+ = \mu_-$ et on a bien $\mathbb{E}[Y\mathbf{1}_{\{X\in\Gamma\}}] = 0$ pour tout $\Gamma \in \mathcal{B}(\mathbb{R}^n)$.
- (2) Par classes monotones, on conclut que pour tout $A \in \sigma(B_t, t \geq 0)$, $\mathbb{E}[Y\mathbf{1}_A] = 0$: utiliser la classe monotone $\mathscr{C} = \{A \in \sigma(B_t, t \geq 0) : \mathbb{E}[Y\mathbf{1}_A] = 0\}$ et le pi-système $\mathscr{P} = \{\{(B_{t_1}, \ldots, B_{t_n}) \in \Gamma\} : 0 \leq t_1 < \ldots < t_n, \Gamma \in \mathscr{B}(\mathbb{R}^n)\}.$
- (3) Pour tout $A \in \mathscr{F}_{\infty}$, $\mathbb{E}[Y\mathbf{1}_A] = 0$: il suffit de se rappeler que pour $A \in \mathscr{F}_{\infty}$, il existe $B \in \sigma(B_t, t \geq 0)$ tel que $B \subset A$ et $\mathbb{P}(A \setminus B) = 0$, d'où $\mathbb{E}[Y\mathbf{1}_A] = \mathbb{E}[Y\mathbf{1}_B] = 0$ par (2).
- (4) Comme Y est \mathscr{F}_{∞} -mesurable, en appliquant (3) avec $A = \{Y \geq 0\}$ puis $A = \{Y \leq 0\}$, on conclut que $\mathbb{E}[Y_+] = 0$ et $\mathbb{E}[Y_-] = 0$, puis Y = 0 p.s.

LEMME 6.6.3. Sous l'hypothèse (*), pour toute variable aléatoire $\xi \in L^2(\Omega, \mathscr{F}_{\infty})$, il existe un unique processus $H \in L^2_{\infty}(B)$ tel que $\xi = \mathbb{E}(\xi) + \int_0^{\infty} H_s dB_s$.

Preuve. Pour l'unicité, supposons que $\xi = \mathbb{E}(\xi) + \int_0^\infty H_s \, \mathrm{d}B_s = \mathbb{E}(\xi) + \int_0^\infty \tilde{H}_s \, \mathrm{d}B_s$. Alors

$$\mathbb{E}\left[\int_0^\infty (H_s - \widetilde{H}_s)^2 \, \mathrm{d}s\right] = \mathbb{E}\left[\left(\int_0^\infty H_s \, \mathrm{d}B_s - \int_0^\infty \widetilde{H}_s \, \mathrm{d}B_s\right)^2\right] = 0,$$

c'est-à-dire $H=\widetilde{H}$ (dans $L^2_{\infty}(B)$).

Soit ensuite \mathscr{H} l'espace vectoriel des variables aléatoires $\xi \in L^2(\Omega, \mathscr{F}_{\infty})$ pour lesquelles il existe $H \in L^2_{\infty}(B)$ tel qu'on ait $\xi = \mathbb{E}[\xi] + \int_0^{\infty} H_s \, \mathrm{d}B_s$.

 \mathscr{H} est fermé : on considère une suite (ξ_n) d'éléments de \mathscr{H} qui converge dans $L^2(\Omega, \mathscr{F}_{\infty})$ vers ξ . On note $H^n \in L^2_{\infty}(B)$ le processus associé à ξ_n . Pour m > n,

$$\mathbb{E}\left[\int_{0}^{\infty} (H_{s}^{n} - H_{s}^{m})^{2} ds\right] = \mathbb{E}\left[\left(\int_{0}^{\infty} (H_{s}^{n} - H_{s}^{m}) dB_{s}\right)^{2}\right] = \mathbb{E}\left[\left((\xi_{n} - \mathbb{E}[\xi_{n}]) - (\xi_{m} - \mathbb{E}[\xi_{m}])\right)^{2}\right] \\ \leq \mathbb{E}\left[(\xi_{n} - \xi_{m})^{2}\right].$$

Donc (H^n) est de Cauchy dans $L^2_{\infty}(B)$, converge vers un certain $H \in L^2_{\infty}(B)$. On passe à la limite dans $\xi_n = \mathbb{E}(\xi_n) + \int_0^\infty H_s^n dB_s$, on trouve $\xi = \mathbb{E}(\xi) + \int_0^\infty H_s dB_s$, et $\xi \in \mathcal{H}$.

 \mathscr{H} est dense : par le Lemme 6.6.2, il suffit de montrer que pour $0 = t_0 < t_1 < \dots < t_n$ et $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$, la partie réelle de $X = \exp(i \sum_{j=1}^n \lambda_j (B_{t_j} - B_{t_{j-1}}))$ appartient à \mathscr{H} . On va montrer que pour $f \in L^2(\mathbb{R}_+)$, en posant $M_t = \int_0^t f(s) dB_s$, on a $\Re[\exp(iM_t)] \in \mathscr{H}$ pour tout $t \geq 0$. On conclura en utilisant $f(s) = \sum_{j=1}^n \lambda_j \mathbf{1}_{\{s \in [t_{j-1}, t_j]\}}$ et $t = t_n$.

Par Itô, voir la Proposition 6.2.2,

$$\exp\left(iM_t + \frac{1}{2}\langle M \rangle_t\right) = \mathscr{E}(iM)_t = 1 + \int_0^t i\mathscr{E}(iM)_s \, \mathrm{d}M_s = 1 + \int_0^t K_s \, \mathrm{d}B_s,$$

où $K_s = if(s) \exp(iM_s + \frac{1}{2}\langle M \rangle_s)$. Comme $\langle M \rangle_t = \int_0^t f^2(s) \, ds$ est déterministe et comme $\mathbb{E}[\mathscr{E}(iM)_t] = 1$, on a $\mathbb{E}[\exp(iM_t)] = \exp(-\frac{1}{2}\langle M \rangle_t)$. Donc, avec $t \geq 0$ fixé,

$$\exp(iM_t) = \exp\left(-\frac{1}{2}\langle M \rangle_t\right) \left[1 + \int_0^t K_s \, \mathrm{d}B_s\right] = \mathbb{E}[\exp(iM_t)] + \int_0^\infty L_s \, \mathrm{d}B_s,$$

où $L_s = \exp(-\frac{1}{2}\langle M \rangle_t) K_s \mathbf{1}_{\{s \in [0,t]\}} = i f(s) \exp(i M_s + \frac{1}{2}\langle M \rangle_s - \frac{1}{2}\langle M \rangle_t) \mathbf{1}_{\{s \in [0,t]\}}$. Ainsi,

$$\Re[\exp(iM_t)] = \mathbb{E}[\Re[\exp(iM_t)]] + \int_0^\infty \Re[L_s] \, \mathrm{d}B_s.$$

Reste à voir que $\Re[L] \in L^2_\infty(B)$, ce qui découle du fait que $|\Re[L_s]| \le |L_s| \le |f(s)|$.

Preuve du Théorème 6.6.1. Supposons d'abord que M est une martingale continue, bornée dans L^2 . Comme $M_{\infty} \in L^2(\Omega, \mathscr{F}_{\infty})$, le Lemme 6.6.3 nous dit qu'il existe $H \in L^2_{\infty}(B)$ tel que

$$M_{\infty} = \mathbb{E}(M_{\infty}) + \int_0^{\infty} H_s \, \mathrm{d}B_s = \mathbb{E}(M_0) + \int_0^{\infty} H_s \, \mathrm{d}B_s.$$

Il en découle que $M_t = \mathbb{E}[M_{\infty} \mid \mathscr{F}_t] = \mathbb{E}(M_0) + \int_0^t H_s \, \mathrm{d}B_s$.

Soit maintenant M une martingale locale continue. On a $M_0 = c \in \mathbb{R}$, car la tribu \mathscr{F}_0 (même augmentée) est triviale, voir le Théorème 2.2.3. Soit $T_n = \inf\{t \geq 0 : |M_t| \geq n\}$. Comme M^{T_n} est une martingale continue bornée (par $n \vee |c|$), il existe $H^n \in L^2_{\infty}(B)$ tel que

$$M_t^{T_n} = c + \int_0^t H_s^n dB_s = c + \int_0^{t \wedge T_n} H_s^n dB_s.$$

Pour la dernière égalité, distinguer les cas $t < T_n$ et $t \ge T_n$. Un argument d'unicité (comme dans le lemme précédent) montre que si n < m, alors $H^n_{s \wedge T_n} = H^m_{s \wedge T_n}$ (dans $L^2_{\infty}(B)$, i.e. p.s. pour presque tout s). Donc $H_s = \lim_n H^n_s \in L^2_{\text{loc}}(B)$ vérifie, pour tout n, $H_{s \wedge T_n} = H^n_{s \wedge T_n}$ (dans $L^2_{\infty}(B)$). Du coup, pour tout $t \ge 0$, tout $n \ge 1$, $M^{T_n}_t = c + \int_0^{t \wedge T_n} H_s \, \mathrm{d}B_s$, et donc $M_t = c + \int_0^t H_s \, \mathrm{d}B_s$.

Pour l'unicité, on voit que si $M_t = c + \int_0^t H_s \, \mathrm{d}B_s = c + \int_0^t \tilde{H}_s \, \mathrm{d}B_s$ pour tout $t \geq 0$, alors le crochet de $\int_0^t (H_s - \tilde{H}_s) \, \mathrm{d}B_s$ est nul, i.e. $H = \tilde{H} \, \mathrm{dans} \, L^2_{loc}(B)$.

6.7. Théorème de Girsanov

On considère un espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t))$ muni de deux probabilités \mathbb{P} et \mathbb{Q} . On note \mathbb{E} l'espérance sous \mathbb{P} et $\mathbb{E}_{\mathbb{Q}}$ l'espérance sous \mathbb{Q} .

Théorème 6.7.1 (Girsanov). Soit \mathbb{Q} une probabilité équivalente à \mathbb{P} sur \mathscr{F}_{∞} .

- (i) $D_t = \frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{\mathscr{F}_t}$ est une martingale U.I.
- (ii) Si $(D_t)_{t\geq 0}$ est continue, alors p.s., $D_t > 0$ pour tout $t \geq 0$ et il existe une unique martingale locale $(L_t)_{t\geq 0}$ telle que $\mathscr{E}(L) = D$. On a $L_t = \ln D_0 + \int_0^t D_s^{-1} dD_s$.
- (iii) Si $(D_t)_{t\geq 0}$ est continue, alors pour toute \mathbb{P} -martingale locale $(M_t)_{t\geq 0}$, le processus $(M_t \langle M, L \rangle_t)_{t\geq 0}$ est une \mathbb{Q} -martingale locale.

On montre de même la version à horizon fini.

Théorème 6.7.2. Soit T > 0 et \mathbb{Q} une probabilité équivalente à \mathbb{P} sur \mathscr{F}_T .

- (i) $D_t = \frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{\mathfrak{F}}$, pour $t \in [0,T]$, est une martingale U.I.
- (ii) Si $(D_t)_{t\in[0,T]}$ est continue, alors p.s., $D_t > 0$ pour tout $t \in [0,T]$ et il existe une unique martingale locale $(L_t)_{t\in[0,T]}$ telle que $\mathscr{E}(L) = D$. On a $L_t = \ln D_0 + \int_0^t D_s^{-1} dD_s$.
- (iii) Si $(D_t)_{t\in[0,T]}$ est continue, alors pour toute \mathbb{P} -martingale locale $(M_t)_{t\in[0,T]}$, le processus $(M_t \langle M, L \rangle_t)_{t\in[0,T]}$ est une \mathbb{Q} -martingale locale.

Le plus souvent, on se sert de la version restreinte suivante.

COROLLAIRE 6.7.3. Soit $T \in [0, \infty]$ et $(B_t)_{t \in [0,T]}$ un $(\mathscr{F}_t)_{t \in [0,T]}$ -mouvement brownien. On considère une martingale locale $(L_t)_{t \in [0,T]}$ issue de 0 et on suppose que $\langle L \rangle_T < \infty$ p.s. et que $\mathbb{E}[\mathscr{E}(L)_T] = 1$ (voir le critère de Novikov en fin de section). Alors $\mathbb{Q} = \mathscr{E}(L)_T \cdot \mathbb{P}$ est une probabilité sur (Ω, \mathscr{F}_T) et $\tilde{B}_t = B_t - \langle B, L \rangle_t$ est un $(\mathscr{F}_t)_{t \in [0,T]}$ -mouvement brownien sous \mathbb{Q} .

DÉMONSTRATION. \mathbb{Q} est une probabilité sur (Ω, \mathscr{F}_T) , car $\mathbb{E}[\mathscr{E}(L)_T] = 1$.

 $\mathbb{Q} \sim \mathbb{P}$, car $\mathbb{Q} << \mathbb{P}$ par définition de \mathbb{Q} et car $\mathbb{P} << \mathbb{Q}$ puisque $\mathbb{P}(\mathscr{E}(L)_T > 0) = 1$. En effet, on invoque Dubins-Scharz pour écrire L_T sous la forme $B_{\langle L \rangle_T}$ et on voit que $\mathscr{E}(L)_T = \exp(B_{\langle L \rangle_T} - \frac{1}{2}\langle L \rangle_T < \infty) > 0$ p.s.

Vérifions que $(\mathscr{E}(L)_t)_{t\in[0,T]}$ est une vraie martingale U.I. C'est une martingale locale positive, donc pour $t\geq s\geq 0$, $\mathbb{E}[\mathscr{E}(L)_t|\mathscr{F}_s]\leq \mathscr{E}(L)_s$ (utiliser que $\mathbb{E}[\mathscr{E}(L)_{t\wedge\tau_n}|\mathscr{F}_s]=\mathscr{E}(L)_{s\wedge\tau_n}$ puis Fatou). Donc $s\to\mathbb{E}[\mathscr{E}(L)_s]$ est décroissante, et $\mathbb{E}[\mathscr{E}(L)_s]\leq \mathbb{E}[\mathscr{E}(L)_0]=1$. Par Fatou encore, on a $\mathbb{E}[\mathscr{E}(L)_\infty|\mathscr{F}_s]\leq \mathscr{E}(L)_s$. Donc la v.a. $\mathscr{E}(L)_s-\mathbb{E}[\mathscr{E}(L)_\infty|\mathscr{F}_s]$ est p.s. positive et d'espérance $\mathbb{E}[\mathscr{E}(L)_s]-\mathbb{E}[\mathscr{E}(L)_\infty]\leq 1-1=0$, et $\mathscr{E}(L)_s=\mathbb{E}[\mathscr{E}(L)_\infty|\mathscr{F}_s]$.

Vérifions que pour tout $t \in [0,T]$, $\mathscr{E}(L)_t = \frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{\mathscr{F}_t}$, i.e. que pour tout $A \in \mathscr{F}_t$, on a $\mathbb{Q}(A) = \mathbb{E}[\mathbf{1}_A\mathscr{E}(L)_t]$. Mais, par définition de \mathbb{Q} et comme $\mathscr{F}_t \subset \mathscr{F}_T$, $\mathbb{Q}(A) = \mathbb{E}[\mathbf{1}_A\mathscr{E}(L)_T]$. Ainsi, $\mathbb{Q}(A) = \mathbb{E}[\mathbf{1}_A\mathbb{E}[\mathscr{E}(L)_T|\mathscr{F}_t]] = \mathbb{E}[\mathbf{1}_A\mathscr{E}(L)_t]$.

On peut donc appliquer Girsanov : sous \mathbb{Q} , $\tilde{B}_t = B_t - \langle B, L \rangle_t$ est une martingale locale. Mais $\langle \tilde{B} \rangle_t = t$ (sous \mathbb{P} , et donc aussi sous $\mathbb{Q} \sim \mathbb{P}$, utiliser les subdivisions), donc par Lévy, $(\tilde{B}_t)_{t \in [0,T]}$ est un $(\mathscr{F}_t)_{t \in [0,T]}$ -mouvement brownien sous \mathbb{Q} .

LEMME 6.7.4. Supposons que \mathbb{Q} soit équivalente à \mathbb{P} sur \mathscr{F}_{∞} .

- (a) $D_t = \frac{d\mathbb{Q}}{d\mathbb{P}} \Big|_{\mathscr{F}_t}$ est une martingale U.I.
- (b) Pour tout temps d'arrêt τ , $D_{\tau} = \frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{\mathscr{F}}$.
- (c) Si $(D_t)_{t\geq 0}$ est continue, p.s., $D_t>0$ pour tout $t\geq 0$.
- (d) Si $(D_t)_{t\geq 0}$ est continue, il existe une unique martingale locale $(L_t)_{t\geq 0}$ telle que $\mathscr{E}(L) = D$. On a $L_t = \ln D_0 + \int_0^t D_s^{-1} dD_s$.

Preuve. (a) Pour tout $A \in \mathscr{F}_t \subset \mathscr{F}_{\infty}$, on a

$$\mathbb{Q}(A) = \mathbb{E}[\mathbf{1}_A D_{\infty}] = \mathbb{E}[\mathbf{1}_A \,\mathbb{E}(D_{\infty} \,|\, \mathscr{F}_t)].$$

Par unicité de la dérivée de Radon-Nikodym sur \mathscr{F}_t (comme $\mathbb{Q} << \mathbb{P}$ sur \mathscr{F}_t , il existe un unique Z \mathscr{F}_t -mesurable tel que $\mathbb{Q}|_{\mathscr{F}_t} = Z \cdot \mathbb{P}|_{\mathscr{F}_t}$) sur \mathscr{F}_t , on obtient $D_t = \mathbb{E}(D_{\infty} \mid \mathscr{F}_t)$. Donc D est une martingale U.I. fermée par D_{∞} (noter que $D_{\infty} \geq 0$ et que $\mathbb{E}[D_{\infty}] = \mathbb{Q}(\Omega) = 1$).

(b) Pour tout $A \in \mathscr{F}_{\tau}$, on a,

$$\mathbb{Q}(A) = \mathbb{E}[\mathbf{1}_A D_{\infty}] = \mathbb{E}[\mathbf{1}_A \, \mathbb{E}(D_{\infty} \, | \, \mathscr{F}_{\tau})] = \mathbb{E}[\mathbf{1}_A \, D_{\tau}].$$

Puisque D_{τ} est \mathscr{F}_{τ} -mesurable, on conclut par unicité de la dérivée de Radon–Nikodym.

- (c) Soit $\tau = \inf\{t \geq 0 : D_t = 0\}$. Par continuité, $D_\tau = 0$ p.s. sur $\{\tau < \infty\}$. Donc, avec $A = \{\tau < \infty\} \in \mathscr{F}_\tau$, $\mathbb{Q}(A) = \mathbb{E}[\mathbf{1}_A D_\tau] = 0$, et donc $\mathbb{P}(A) = 0$ (par équivalence de \mathbb{P} et \mathbb{Q}).
 - (d) Comme D est à valeurs dans \mathbb{R}_+^* , on peut appliquer Itô avec $F(x) = \ln x$:

$$\ln D_t = \ln D_0 + \int_0^t \frac{\mathrm{d}D_s}{D_s} - \frac{1}{2} \int_0^t \frac{\mathrm{d}\langle D \rangle_s}{D_s^2} = L_t - \frac{1}{2} \langle L \rangle_t.$$

Autrement dit, $D = \mathscr{E}(L)$. L'unicité est claire, puisque $\mathscr{E}(L) = \mathscr{E}(\tilde{L})$ implique que $L - \frac{1}{2}\langle L \rangle = \tilde{L} - \frac{1}{2}\langle \tilde{L} \rangle$. Donc la martingale locale $L - \tilde{L}$, à variation finie, est identiquement nulle. \square

Preuve du Théorème de Girsanov. Il ne nous reste qu'à montrer le point (iii).

Etape 1. On montre que si τ est un temps d'arrêt, et si X un processus continu adapté tel que $(XD)^{\tau}$ soit une \mathbb{P} -martingale, alors X^{τ} est une \mathbb{Q} -martingale (continue).

D'après le Lemme 6.7.4-(b) avec le temps d'arrêt $\tau \wedge t$, $\mathbb{E}_{\mathbb{Q}}[|X_{\tau \wedge t}|] = \mathbb{E}[|X_{\tau \wedge t}|D_{\tau \wedge t}] < \infty$ pour tout t. Soient ensuite s < t et $A \in \mathscr{F}_s$. Il s'agit de montrer que $\mathbb{E}_{\mathbb{Q}}[X_{\tau \wedge t}\mathbf{1}_A] = \mathbb{E}_{\mathbb{Q}}[X_{\tau \wedge s}\mathbf{1}_A]$. Mais

$$\begin{split} \mathbb{E}_{\mathbb{Q}}[X_{\tau \wedge t} \mathbf{1}_{A}] = & \mathbb{E}_{\mathbb{Q}}[X_{\tau \wedge t} \mathbf{1}_{A \cap \{\tau > s\}}] + \mathbb{E}_{\mathbb{Q}}[X_{\tau} \mathbf{1}_{A \cap \{\tau \le s\}}] \\ = & \mathbb{E}[X_{\tau \wedge t} D_{\tau \wedge t} \mathbf{1}_{A \cap \{\tau > s\}}] + \mathbb{E}_{\mathbb{Q}}[X_{\tau} \mathbf{1}_{A \cap \{\tau \le s\}}] \end{split}$$

car $A \cap \{\tau > s\} \in \mathscr{F}_{s \wedge \tau} \subset \mathscr{F}_{t \wedge \tau}$ et car $D_{\tau \wedge t}$ est la dérivée (de R.N.) de \mathbb{Q} par rapport à \mathbb{P} sur $\mathscr{F}_{t \wedge \tau}$. Ainsi,comme $(XD)^{\tau}$ est une \mathbb{P} -martingale et comme $A \cap \{\tau > s\} \in \mathscr{F}_s$,

$$\mathbb{E}_{\mathbb{Q}}[X_{\tau \wedge t} \mathbf{1}_{A}] = \mathbb{E}[X_{\tau \wedge s} D_{\tau \wedge s} \mathbf{1}_{A \cap \{\tau > s\}}] + \mathbb{E}_{\mathbb{Q}}[X_{\tau} \mathbf{1}_{A \cap \{\tau \le s\}}]$$
$$= \mathbb{E}_{\mathbb{Q}}[X_{\tau \wedge s} \mathbf{1}_{A \cap \{\tau > s\}}] + \mathbb{E}_{\mathbb{Q}}[X_{\tau} \mathbf{1}_{A \cap \{\tau \le s\}}],$$

qui vaut précisément $\mathbb{E}_{\mathbb{Q}}[X_{\tau \wedge s} \mathbf{1}_A]$.

Etape 2 : conséquence de l'étape 1, si X est un processus continu adapté tel que XD soit une \mathbb{P} -martingale locale, alors X est une \mathbb{Q} -martingale locale.

Etape 3 : soit maintenant M une \mathbb{P} -martingale locale continue, et soit $\tilde{M} = M - \langle M, L \rangle$. Par l'étape 2, il s'agit de montrer que $\tilde{M}D$ est une \mathbb{P} -martingale locale. Par la formule d'Itô,

$$\tilde{M}_t D_t = \int_0^t \tilde{M}_s \, dD_s + \int_0^t D_s \, d\tilde{M}_s + \langle \tilde{M}, D \rangle_t
= \int_0^t \tilde{M}_s \, dD_s + \int_0^t D_s \, dM_s - \int_0^t D_s \, d\langle M, L \rangle_s + \langle M, D \rangle_t
= \int_0^t \tilde{M}_s \, dD_s + \int_0^t D_s \, dM_s,$$

car $d\langle M, L\rangle_s = D_s^{-1} d\langle M, D\rangle_s$, puisque $L_t = \ln D_0 + \int_0^t D_s^{-1} dD_s$ par le Lemme 6.7.4-(d).

Voici un critère qui assure que, pour L une martingale locale issue de 0, $\mathbb{E}[\mathscr{E}(L)_{\infty}] = 1$, ce qui permet d'appliquer Girsanov.

Théorème 6.7.5. (Novikov) Soit L une martingale locale issue de 0. Alors on a les implications (i) \Rightarrow (ii) \Rightarrow (iii), où

- (i) $\mathbb{E}[\exp(\frac{1}{2}\langle L\rangle_{\infty})] < \infty$;
- (ii) L est une martingale U.I. (donc L_{∞} , $\langle L \rangle_{\infty}$ puis $\mathscr{E}(L)_{\infty}$ existent) et $\mathbb{E}[\exp(\frac{1}{2}L_{\infty})] < \infty$; (iii) $\mathbb{E}[\mathscr{E}(L)_{\infty}] = 1$.

Preuve. Notons déjà que $\mathbb{E}[\mathscr{E}(L)_{\tau}] \leq 1$ pour tout temps d'arrêt τ : comme $\mathscr{E}(L)$ est une surmartingale, on a $\mathbb{E}[\mathscr{E}(L)_{\tau \wedge t}] \leq \mathbb{E}[\mathscr{E}(L)_0] = 1$, et on conclut avec Fatou.

(i) \Rightarrow (ii) Si $\mathbb{E}[\exp(\frac{1}{2}\langle L\rangle_{\infty})] < \infty$, alors $\mathbb{E}[\langle L\rangle_{\infty}] < \infty$ et L est une (vraie) martingale bornée dans L^2 . On écrit $\exp(\frac{1}{2}L_{\infty}) = \sqrt{\mathscr{E}(L)_{\infty} \exp(\frac{1}{2}\langle L\rangle_{\infty})}$, puis

$$\mathbb{E}\Big[\exp\Big(\frac{1}{2}L_{\infty}\Big)\Big] \leq \sqrt{\mathbb{E}\Big[\mathscr{E}(L)_{\infty}\Big]}\sqrt{\mathbb{E}\Big[\exp\Big(\frac{1}{2}\langle L\rangle_{\infty}\Big)\Big]} \leq \sqrt{\mathbb{E}\Big[\exp\Big(\frac{1}{2}\langle L\rangle_{\infty}\Big)\Big]}.$$

- (ii) \Rightarrow (iii) On suppose donc que L est une martingale U.I. telle que $\mathbb{E}[\exp(\frac{1}{2}L_{\infty})] < \infty$.
- (a) La famille $\{e^{\frac{1}{2}L_{\tau}}, \ \tau \text{ temps d'arrêt}\}$ est U.I. En effet, on a $L_{\tau} = \mathbb{E}[L_{\infty} | \mathscr{F}_{\tau}]$ puis, par Jensen, $\exp(\frac{1}{2}L_{\tau}) \leq \mathbb{E}[\exp(\frac{1}{2}L_{\infty})|\mathscr{F}_{\tau}]$.
 - (b) Pour $a \in]0,1[$,

$$\mathscr{E}(aL)_t = e^{aL_t - \frac{a^2}{2}\langle L \rangle_t} = e^{a^2L_t - \frac{a^2}{2}\langle L \rangle_t} e^{a(1-a)L_t} = \left[\mathscr{E}(L)_t \right]^{a^2} e^{a(1-a)L_t}$$

et donc, si τ est un temps d'arrêt et si $A \in \mathscr{F}_{\infty}$, par Hölder (avec $p = 1/a^2$ et $q = 1/(1-a^2)$)

$$(6.5) \quad \mathbb{E}\left[\mathbf{1}_{A}\mathscr{E}(aL)_{\tau}\right] \leq \left(\mathbb{E}\left[\mathscr{E}(L)_{\tau}\right]\right)^{a^{2}} \left(\mathbb{E}\left[\mathbf{1}_{A}e^{\frac{a}{1+a}L_{t}}\right]\right)^{1-a^{2}} \leq \left(\mathbb{E}\left[\mathscr{E}(L)_{\tau}\right]\right)^{a^{2}} \left(\mathbb{E}\left[\mathbf{1}_{A}e^{\frac{1}{2}L_{t}}\right]\right)^{2a(1-a)}$$
par Hölder encore, car $a/(1+a) < 1/2$. Donc $\mathbb{E}\left[\mathbf{1}_{A}\mathscr{E}(aL)_{\tau}\right] \leq \left(\mathbb{E}\left[\mathbf{1}_{A}\exp\left(\frac{1}{2}L_{\tau}\right)\right]\right)^{2a(1-a)}$.

- (c) En combinant (a) et (b) et en se rappelant qu'une famille $(X_i, i \in I)$ est U.I. si et seulement si pour tout $\epsilon > 0$, il existe $\eta > 0$ tel que pour tout $A \in \mathscr{F}$ avec $\mathbb{P}(A) \leq \eta$, on a $\mathbb{E}[|X_i|\mathbf{1}_A] \leq \epsilon$ pour tout $i \in I$, on conclut que la famille $\{\mathscr{E}(aL)_{\tau} : \tau \text{ temps d'arrêt}\}$ est U.I.
- (d) Mais si M est une martingale locale continue telle que $\{M_{\tau} : \tau \text{ temps d'arrêt}\}$ soit uniformément intégrable, alors M est une vraie martingale (réduire M avec T_n et passer à la limite dans $\mathbb{E}[M_{T_n \wedge t}|\mathscr{F}_s] = M_{T_n \wedge s}$). Donc par (c), $\mathscr{E}(aL)$ est une martingale U.I. En particulier, $\mathbb{E}[\mathscr{E}(aL)_{\infty}] = \mathbb{E}[\mathscr{E}(aL)_0] = 1$. Donc par (6.5) avec $\tau = \infty$ et $A = \Omega$, on a $1 = \mathbb{E}[\mathscr{E}(aL)_{\infty}] \leq (\mathbb{E}[\mathscr{E}(L)_{\infty}])^{a^2} (\mathbb{E}[e^{\frac{1}{2}L_{\infty}}])^{2a(1-a)}$ pour tout $a \in]0, 1[$. Par hypothèse, $\mathbb{E}[e^{\frac{1}{2}L_{\infty}}]$ est finie. En faisant tendre $a \to 1$, on trouve $\mathbb{E}[\mathscr{E}(L)_{\infty}] \geq 1$, comme désiré.

6.8. Applications du théorème de Girsanov

Anticipons légèrement sur le chapitre suivant. C'est une application typique de Girsanov.

PROPOSITION 6.8.1. Soit $b: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ mesurable et bornée. Alors on peut construire, sur un espace de probabilité $(\Omega, \mathscr{F}, \mathscr{F}_t, \mathbb{Q})$, un $(\mathscr{F}_t)_{t\geq 0}$ -mouvement Brownien B et un processus continu et adapté X tels que p.s. pour tout $t\geq 0$,

$$X_t = B_t + \int_0^t b(s, X_s) \, \mathrm{d}s.$$

Preuve. On fixe T > 0 (déterministe) et on travaille sur [0, T]. On part d'un mouvement brownien X sur un espace de probabilité $(\Omega, \mathscr{F}, \mathscr{F}_t, \mathbb{P})$. On introduit la martingale locale $L_t = \int_0^t b(s, X_s) dX_s$. Comme $\langle L \rangle_T \leq T ||b||_{\infty}$ le critère de Novikov nous assure qu'on peut

appliquer Girsanov avec $\mathbb{Q} = \mathscr{E}(L)_T \cdot \mathbb{P} : B_t = X_t - \langle X, L \rangle_t$ est un \mathbb{Q} -mouvement brownien. Or $\langle X, L \rangle_t = \int_0^t b(s, X_s) \, \mathrm{d}s$, donc on a $X_t = B_t + \int_0^t b(s, X_s) \, \mathrm{d}s$.

PROPOSITION 6.8.2 (Cameron-Martin). Soit B un mouvement brownien et soit $h \in L^2([0,T], dt)$. Pour toute fonction mesurable (positive ou bornée) $\Phi : C([0,T], \mathbb{R}) \mapsto \mathbb{R}$,

$$\mathbb{E}\Big[\Phi\Big(\Big(B_t + \int_0^t h(s) \,\mathrm{d}s\Big)_{t \in [0,T]}\Big)\Big] = \mathbb{E}\Big[\Phi\Big((B_t)_{t \in [0,T]}\Big) \cdot \exp\Big(\int_0^T h(s) \,\mathrm{d}B_s - \frac{1}{2}\int_0^T h^2(s) \,\mathrm{d}s\Big)\Big].$$

Preuve. On part d'un mouvement brownien B sur un espace de probabilité $(\Omega, \mathscr{F}, \mathscr{F}_t, \mathbb{P})$. On introduit $L_t = \int_0^t h(s) \, \mathrm{d}B_s$ ainsi que $\mathscr{E}(L)_t = \exp(\int_0^t h(s) \, \mathrm{d}B_s - \frac{1}{2} \int_0^t h^2(s) \, \mathrm{d}s)$. Comme $\langle L \rangle_T = \int_0^T h^2(s) \, \mathrm{d}s < \infty$, le critère de Novikov nous assure qu'on peut utiliser Girsanov (à horizon fini) avec $\mathbb{Q} = \mathscr{E}(L)_T \cdot \mathbb{P}$. Ainsi, $\tilde{B}_t = B_t - \langle B, L \rangle_t = B_t - \int_0^t h(s) \, \mathrm{d}s$ est un \mathbb{Q} -mouvement brownien. Donc pour $\Psi : C([0,T],\mathbb{R}) \mapsto \mathbb{R}$ mesurable (positive ou bornée),

$$\mathbb{E}\left[\Psi\left((B_t)_{t\in[0,T]}\right)\right] = \mathbb{E}_{\mathbb{Q}}\left[\Psi\left(\left(B_t - \int_0^t h(s) \,\mathrm{d}s\right)_{t\in[0,T]}\right)\right]$$
$$= \mathbb{E}\left[\Psi\left(\left(B_t - \int_0^t h(s) \,\mathrm{d}s\right)_{t\in[0,T]}\right) \cdot \exp\left(\int_0^T h(s) \,\mathrm{d}B_s - \frac{1}{2}\int_0^T h^2(s) \,\mathrm{d}s\right)\right].$$

Pour trouver la formule désirée, choisir $\Psi((x_t)_{t\in[0,T]}) = \Phi((x_t + \int_0^t h(s) \, \mathrm{d}s)_{t\in[0,T]}).$

EXEMPLE 6.8.3. Cherchons la loi de $X = \sup_{[0,1]} (B_t + \gamma t)$, où B est un mouvement brownien et où $\gamma \in \mathbb{R}_*$. Par Cameron-Martin (avec $h \equiv \gamma$), pour tout x > 0,

$$\mathbb{P}(X < x) = \mathbb{E}\Big[\mathbf{1}_{\{\sup_{t \in [0,1]} B_t < x\}} \exp\Big(\int_0^1 \gamma \, \mathrm{d}B_s - \frac{1}{2} \int_0^1 \gamma^2 \, \mathrm{d}s\Big)\Big] = \mathbb{E}\Big[\mathbf{1}_{\{S_1 < x\}} \exp(\gamma B_1 - \gamma^2 / 2)\Big],$$

où $S_1 = \sup_{t \in [0,1]} B_t$. Comme on connaît la densité jointe de (S_1, B_1) (voir le Corollaire 2.4.10), on peut pousser le calcul...

Chapitre 7

Équations différentielles stochastiques

Ce dernier chapitre consiste en une introduction à la théorie des équations différentielles stochastiques. Ce sont des équations différentielles dans lesquelles interviennent des intégrales stochastiques par rapport à un mouvement brownien. Elles ont été d'abord étudiées par Itô, dans le but de construire des diffusions (c'est-à-dire des processus continus et fortement markoviens dont les générateurs sont des opérateurs différentiels du second ordre). C'est dans ce but qu'il a introduit le calcul stochastique.

On considère une équation différentielle de la forme $y'_t = b(t, y_t)$, qu'on écrit sous forme différentielle $dy_t = b(t, y_t) dt$ ou intégrale $y_t = y_0 + \int_0^t b(s, y_s) ds$. On la perturbe en ajoutant un bruit de la forme σB , où B est un mouvement brownien, et $\sigma > 0$ est une constante (qui représente l'intensité du bruit). On obtient l'EDS $dy_t = b(t, y_t) dt + \sigma dB_t$. Plus généralement, on peut autoriser σ à dépendre du temps et de l'état, et l'EDS devient

$$dy_t = b(t, y_t) dt + \sigma(t, y_t) dB_t$$
 soit encore $y_t = y_0 + \int_0^t b(s, y_s) du + \int_0^t \sigma(s, y_s) dB_s$.

7.1. Solutions faibles et fortes

On ne considérera que des conditions initiales déterministes, mais la théorie s'étend facilement à des conditions initiales aléatoires, pourvu qu'elles soient \mathcal{F}_0 -mesurables et qu'elles soient de carré intégrable (parfois un peu plus).

DÉFINITION 7.1.1. Soient $d \ge 1$ et $m \ge 1$ des entiers, $\sigma = (\sigma_{ij})_{1 \le i \le d, \ 1 \le j \le m} : \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}^{d \times m}$ et $b = (b_i)_{1 \le i \le d} : \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}^d$ mesurables et localement bornées. On considère l'EDS suivante qu'on appelle $E_x(\sigma, b)$:

$$\begin{cases} dX_t = \sigma(t, X_t) dB_t + b(t, X_t) dt, & t \ge 0 \\ X_0 = x \end{cases}$$

On dit que $E_x(\sigma, b)$ admet une solution X (ou plus précisément $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P}, B, X))$ s'il existe :

- un espace probabilisé filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ vérifiant les conditions habituelles;
- $un(\mathscr{F}_t)$ -mouvement brownien $B = (B^1, \cdots, B^m)$;

• un processus $X=(X^1,\cdots,X^d)$ qui est (\mathscr{F}_t) -adapté et continu, tel que

$$X_t = x + \int_0^t \sigma(s, X_s) dB_s + \int_0^t b(s, X_s) ds;$$

c'est-à-dire pour tout $1 \le i \le d$,

$$X_t^i = x^i + \sum_{j=1}^m \int_0^t \sigma_{ij}(s, X_s) dB_s^j + \int_0^t b_i(s, X_s) ds.$$

DÉFINITION 7.1.2. (i) On dit qu'il y a existence faible pour $E_x(\sigma, b)$ s'il existe une solution de $E_x(\sigma, b)$ (sur un certain espace de probabilités, avec un certain mouvement brownien).

- (ii) On dit qu'il y a unicité faible (ou unicité en loi) pour $E_x(\sigma, b)$ si pour toute paire de solutions $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P}, B, X)$ et $(\tilde{\Omega}, \tilde{\mathcal{F}}, (\tilde{\mathcal{F}}_t), \tilde{\mathbb{P}}, \tilde{B}, \tilde{X})$ de $E_x(\sigma, b)$, les processus X et \tilde{X} ont la même loi.
- (iii) On dit qu'il y a unicité trajectorielle pour $E_x(\sigma, b)$ si, l'espace $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ et le brownien B étant fixés, deux solutions sont indistinguables.
- (iv) Enfin, une solution $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P}, B, X)$ à $E_x(\sigma, b)$ est dite forte si X est adapté à la filtration canonique (augmentée usuellement) de B.

EXEMPLE 7.1.3. On s'intéresse à l'EDS $dX_t = \operatorname{sgn}(X_t) dB_t$ partant de 0, avec la convention $\operatorname{sgn}(u) = 1$ si $u \ge 0$ et $\operatorname{sgn}(u) = -1$ (si on choisissait $\operatorname{sgn}(0) = 0$, $X \equiv 0$ serait solution).

- (a) Il y a unicité en loi : d'après le théorème de Lévy, toute solution est un mouvement brownien.
- (b) Il n'y a pas unicité trajectorielle, puisque si $X_t = \int_0^t \operatorname{sgn}(X_s) dB_s$, alors $-X_t = \int_0^t \operatorname{sgn}(-X_s) dB_s$ (car $\int_0^t \mathbf{1}_{\{X_s=0\}} dB_s = 0$, car c'est une martingale de crochet $\int_0^t \mathbf{1}_{\{X_s=0\}} ds$, qui vaut 0 puisque X est un brownien).
- (c) Il y a existence (faible) : soit X un mouvement brownien, sur un espace $(\Omega, \mathscr{F}, \mathbb{P})$, et soit $B_t = \int_0^t \operatorname{sgn}(X_s) dX_s$, qui est un $(\mathscr{F}_t^X = \sigma(X_s, s \in [0, t]))_{t \geq 0}$ -mouvement brownien d'après le théorème de Lévy. Par associativité, on a $\int_0^t \operatorname{sgn}(X_s) dB_s = \int_0^t dX_s = X_t$, et X est solution, sur $(\Omega, \mathscr{F}, (\mathscr{F}_t^X)_{t \geq 0}, \mathbb{P})$, avec le mouvement brownien B.
- (d) La solution construite au (c) n'est pas forte, car on a $\mathscr{F}_t^B \subset \mathscr{F}_t^{|X|}$, qui est bien sûr strictement incluse dans \mathscr{F}_t^X (par exemple, $\{X_1 > 0\} \in \mathscr{F}_1^X \setminus \mathscr{F}_1^{|X|}$). En effet, soit $\varphi_{\epsilon}(x) = (\epsilon + x^2)^{1/2}$. Par la formule d'Itô,

$$\varphi_{\epsilon}(X_t) = \epsilon + B_t^{\epsilon} + \frac{1}{2} \int_0^t \varphi_{\epsilon}''(X_s) \, \mathrm{d}s, \quad \text{où} \quad B_t^{\epsilon} = \int_0^t \varphi_{\epsilon}'(X_s) \, \mathrm{d}X_s.$$

Comme φ_{ϵ} et φ''_{ϵ} sont paires, B^{ϵ}_{t} est $\mathscr{F}^{|X|}_{t}$ -mesurable. Et on montre aisément, comme φ'_{ϵ} est uniformémement bornée et converge vers sgn (sauf en 0), que B^{ϵ}_{t} converge dans L^{2} vers $B_{t} = \int_{0}^{t} \operatorname{sgn}(X_{s}) dX_{s}$, qui est donc lui aussi $\mathscr{F}^{|X|}_{t}$ -mesurable.

EXEMPLE 7.1.4 (Méthode de Girsanov). (a) Nous avons vu à la Proposition 6.8.1 que pour tout $b: \mathbb{R}_+ \times \mathbb{R} \mapsto \mathbb{R}$ mesurable borné, avec $\sigma \equiv 1$ (et m = d = 1), il y a existence faible pour $E_0(\sigma, b)$.

(b) Fixons ensuite $x \in \mathbb{R}$, et introduisons la fonction $\bar{b}(t,y) = b(t,x+y)$. Par (a), il existe une solution Y à $E_0(\sigma,\bar{b})$, et $X_t = x + Y_t$ vérifie $X_t = x + B_t + \int_0^t \bar{b}(s,Y_s) \, \mathrm{d}s = x + B_t + \int_0^t b(s,X_s) \, \mathrm{d}s$. Il y a donc existence faible pour $E_x(\sigma,b)$.

EXEMPLE 7.1.5 (Carré de Bessel). Soit $B = (B^1, \dots, B^d)$ un mouvement brownien à valeurs dans \mathbb{R}^d $(d \ge 2)$, issu de $x \in \mathbb{R}^d$ avec $||x||^2 = a$. Par Itô,

$$||B_t||^2 = a + 2\sum_{i=1}^d \int_0^t B_s^i dB_s^i + dt = a + 2\int_0^t ||B_s|| d\beta_s + dt,$$

οù

$$\beta_t = \sum_{i=1}^d \int_0^t \frac{B_u^i}{\|B_u\|} \, \mathrm{d}B_u^i.$$

Mais β est une martingale locale continue avec $\langle \beta \rangle_t = t$, donc β est un mouvement brownien réel. Nous avons donc construit une solution (faible) de $X_t = a + 2 \int_0^t \sqrt{X_s} \, \mathrm{d}B_s + dt$.

EXEMPLE 7.1.6 (Méthode du changement de temps). Considérons l'EDS de dimension 1

$$dX_t = \sigma(X_t) dB_t,$$

où $\sigma: \mathbb{R} \to \mathbb{R}_+^*$ est mesurable et telle que $0 < \sigma_0 \le \sigma(x) \le \sigma_1 < \infty$ pour tout $x \in \mathbb{R}$.

On se donne un espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ (vérifiant les conditions habituelles) et un (\mathscr{F}_t) -mouvement brownien B. On pose $A_t = \int_0^t \sigma^{-2}(B_s) \, \mathrm{d}s$, qui est p.s. continu, strictement croissant, $A_0 = 0$, et $A_\infty = \infty$.

On note τ_t son inverse $(\tau_{A_t} = t, A_{\tau_t} = t)$, qui vérifie $\tau_t = \inf\{s > 0 : A_s > t\}$. C'est donc un temps d'arrêt pour chaque $t \geq 0$, et on introduit la filtration $\mathscr{G}_t = \mathscr{F}_{\tau_t}$.

On pose $X_t = B_{\tau_t}$. Alors X_t est une \mathscr{G}_t -martingale de crochet τ_t : on montre que X_t et $X_t^2 - \tau_t$ sont des \mathscr{G}_t -martingales en utilisant le théorème d'arrêt. Noter que τ_t est borné par $\sigma_0^2 t$ car pour tout $s \geq 0$, $A_s \geq s/\sigma_0^2$.

On introduit ensuite $W_t = \int_0^t \sigma^{-1}(X_s) dX_s$. C'est une \mathscr{G}_t -martingale locale de crochet $\langle W \rangle_t = \int_0^t \sigma^{-2}(X_s) d\langle X \rangle_s = \int_0^t \sigma^{-2}(B_{\tau_s}) d\tau_s = t$, car $d\tau_s = \sigma^2(B_{\tau_s}) ds$. En effet, il s'agit de

montrer que $\tau_t = \int_0^t \sigma^2(B_{\tau_s}) \, ds$, i.e. que $\int_0^{A_t} \sigma^2(B_{\tau_s}) \, ds = t$, ce qui découle du changement de variables $s = A_u$, donc $ds = \sigma^{-2}(B_u) \, du$, d'où

$$\int_0^{A_t} \sigma^2(B_{\tau_s}) \, \mathrm{d}s = \int_0^t \sigma^2(B_u) \sigma^{-2}(B_u) \, \mathrm{d}u = t.$$

Donc W est un \mathcal{G}_t -mouvement brownien.

On a
$$\int_0^t \sigma(X_s) dW_s = \int_0^t \sigma(X_s) \sigma^{-1}(X_s) dX_s = \int_0^t dX_s = X_t$$
.

On a donc construit une solution à $E_0(\sigma, 0)$ (dans la filtration $(\mathcal{G}_t)_{t\geq 0}$ avec le brownien W). On peut en déduire, comme dans la méthode de Girsanov, l'existence faible pour $E_x(\sigma, 0)$.

EXERCICE 7.1.7. En appliquant la méthode du changement de temps puis la méthode de Girsanov, montrer que si d=1, il y a existence faible pour $E_x(\sigma,b)$, avec σ,b mesurables, ne dépendant pas du temps, avec b borné, et σ à valeurs dans $[\sigma_0,\sigma_1]$ avec $\sigma_1 > \sigma_0 > 0$.

Mentionnons le résultat suivant.

THÉORÈME 7.1.8 (Yamada-Watanabe).

- (i) L'unicité trajectorielle implique l'unicité faible.
- (ii) S'il y a existence faible et unicité trajectorielle, alors il y a existence, pour tout espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$, tout (\mathcal{F}_t) -mouvement brownien B, d'une solution forte de $E_x(\sigma, b)$.

7.2. Coefficients lipschitziens

On utilisera le fameux Lemme de Gronwall.

LEMME 7.2.1. Soit $h:[0,T] \to \mathbb{R}_+$ mesurable bornée. On suppose qu'il existe $a,b \in \mathbb{R}_+$ tels que pour tout $t \in [0,T]$, $h(t) \leq a + b \int_0^t h(s) \, ds$. Alors pour tout $t \in [0,T]$, $h(t) \leq ae^{bt}$.

Preuve. On introduit $g(t) = a + b \int_0^t h(s) ds$, qui est continue, et on a $h(t) \leq g(t)$, et donc $g(t) \leq a + b \int_0^t g(s) ds$.

On introduit ensuite $f(t) = a + b \int_0^t g(s) ds$, qui est C^1 , et on a $g(t) \leq f(t)$, et $f'(t) = bg(t) \leq bf(t)$, d'où, comme f(0) = a, $f(t) \leq ae^{bt}$.

Ainsi,
$$h(t) \le g(t) \le f(t) \le ae^{bt}$$
.

On suppose dans toute la section les hypothèses suivantes.

HYPOTHÈSE 7.2.2. Les fonctions $\sigma: \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}^{d \times n}$ et $b: \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}^d$ sont continues et il existe une constante L telle que pour tout $t \geq 0$, $x, y \in \mathbb{R}^d$,

$$|\sigma(t,x) - \sigma(t,y)| + |b(t,x) - b(t,y)| \le L|x - y|.$$

THÉORÈME 7.2.3. Soit $x_0 \in \mathbb{R}^d$. Sous l'hypothèse 7.2.2, il y a unicités faible et trajectorielle pour $E_{x_0}(\sigma, b)$. De plus, pour tout espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ et tout (\mathscr{F}_t) -mouvement brownien B, il existe pour chaque $x \in \mathbb{R}^d$ une (unique) solution forte de $E_{x_0}(\sigma, b)$.

Pour simplifier l'écriture, on ne traite que le cas où d=m=1. La preuve du cas général est exactement la même. Par contre, on démontrera à la main l'unicité faible, sans utiliser Yamada-Watanabe.

Preuve. Unicité trajectorielle. Considérons deux solutions X et \tilde{X} , définies sur le même espace de probabilité, conduites par le même mouvement brownien B. Pour k>0, on introduit $\tau_k=\inf\{t\geq 0: |X_t|\geq k \text{ ou } |\tilde{X}_t|\geq k\}$. Comme X et \tilde{X} sont p.s. continus, τ_k croît p.s. vers l'infini avec k. On a alors $X_{t\wedge\tau_k}=x_0+\int_0^{t\wedge\tau_k}\sigma(s,X_s)\,\mathrm{d}B_s+\int_0^{t\wedge\tau_k}b(s,X_s)\,\mathrm{d}s$ et $\tilde{X}_{t\wedge\tau_k}=x_0+\int_0^{t\wedge\tau_k}\sigma(s,\tilde{X}_s)\,\mathrm{d}B_s+\int_0^{t\wedge\tau_k}b(s,\tilde{X}_s)\,\mathrm{d}s$, d'où, comme $(x+y)^2\leq 2x^2+2y^2$,

$$\mathbb{E}[(X_{t \wedge \tau_{k}} - \tilde{X}_{t \wedge \tau_{k}})^{2}]$$

$$\leq 2\mathbb{E}\left[\left(\int_{0}^{t \wedge \tau_{k}} (\sigma(s, X_{s}) - \sigma(s, \tilde{X}_{s})) dB_{s}\right)^{2}\right] + 2\mathbb{E}\left[\left(\int_{0}^{t \wedge \tau_{k}} (b(s, X_{s}) - b(s, \tilde{X}_{s})) ds\right)^{2}\right]$$

$$\leq 2\mathbb{E}\left[\int_{0}^{t \wedge \tau_{k}} (\sigma(s, X_{s}) - \sigma(s, \tilde{X}_{s}))^{2} ds\right] + 2\mathbb{E}\left[(t \wedge \tau_{k}) \int_{0}^{t \wedge \tau_{k}} (b(s, X_{s}) - b(s, \tilde{X}_{s}))^{2} ds\right]$$

$$\leq 2L^{2}(1 + t)\mathbb{E}\left[\int_{0}^{t \wedge \tau_{k}} |X_{s} - \tilde{X}_{s}|^{2} ds\right]$$

$$\leq 2L^{2}(1 + t) \int_{0}^{t} \mathbb{E}[|X_{s \wedge \tau_{k}} - \tilde{X}_{s \wedge \tau_{k}}|^{2}] ds$$

Donc pour tout T>0, la fonction $h_k(t)=\mathbb{E}[(X_{t\wedge\tau_k}-\tilde{X}_{t\wedge\tau_k})^2]$ est bornée sur [0,T], positive, et vérifie $h_k(t)\leq 2L^2(1+T)\int_0^t h_k(s)\,\mathrm{d}s$ pour tout $t\in[0,T]$. Le Lemme de Gronwall nous assure que $h_k=0$ sur [0,T], et donc sur $[0,\infty[$ puisque T est arbitraire. Ainsi, $X_{t\wedge\tau_k}=\tilde{X}_{t\wedge\tau_k}$ p.s. pour tout t et donc, en faisant tendre $k\to\infty$, $X_t=\tilde{X}_t$ p.s. La continuité des trajectoires permet de conclure que X et \tilde{X} sont indistinguables.

Existence. On fixe T>0, un espace de probabilité filtré, un mouvement brownien B, et $x\in\mathbb{R}$. On utilise la méthode d'approximation de Picard afin de construire un solution à $E_x(\sigma,b)$ sur [0,T], ce qui suffira puisque T est arbitraire. On introduit le processus constant $X_t^0=x$ puis, par récurrence, pour $n\geq 0$,

$$X_t^{n+1} = x_0 + \int_0^t \sigma(s, X_s^n) dB_s + \int_0^t b(s, X_s^n) ds.$$

Les intégrales sont bien définies puisque, par récurrence, X^n est continu et adapté à la filtration (augmentée) de B, ainsi que $s \mapsto \sigma(s, X^n_s)$ et $s \mapsto b(s, X^n_s)$.

(a) On introduit $g_n(t) = \mathbb{E}[\sup_{[0,t]} |X_s^n - X_s^{n-1}|^2]$ et on montre qu'il existe une constante C telle que $g_{n+1}(t) \leq C \int_0^t g_n(s) \, ds$, pour tout $n \geq 1$ et tout $t \in [0,T]$. On a

$$X_t^{n+1} - X_t^n = \int_0^t [\sigma(s, X_s^n) - \sigma(s, X_s^{n-1})] dB_s + \int_0^t [b(s, X_s^n) - b(s, X_s^{n-1})] ds.$$

A l'aide de Burkholder-Davies-Gundy et de l'Hypothèse 7.2.2,

$$g_{n+1}(t) \leq 8\mathbb{E}\left[\left(\int_{0}^{t} \left[\sigma(s, X_{s}^{n}) - \sigma(s, X_{s}^{n-1})\right] dB_{s}\right)^{2}\right] + 2\mathbb{E}\left[\left(\int_{0}^{t} \left|b(s, X_{s}^{n}) - b(s, X_{s}^{n-1})\right| ds\right)^{2}\right]$$

$$\leq 8\int_{0}^{t} \mathbb{E}\left[\left(\sigma(s, X_{s}^{n}) - \sigma(s, X_{s}^{n-1})\right)^{2}\right] ds + 2T\int_{0}^{t} \mathbb{E}\left[\left(b(s, X_{s}^{n}) - b(s, X_{s}^{n-1})\right)^{2}\right] ds$$

$$\leq (8 + 2T)L^{2}\int_{0}^{t} \mathbb{E}\left[\left(X_{s}^{n} - X_{s}^{n-1}\right)^{2}\right] ds.$$

- (b) Comme $X_t^1 X_t^0 = \int_0^t \sigma(s, x) dB_s + \int_0^t b(s, x) ds$, on a clairement $g_1(t) \leq C'$, où $C' = 8 \int_0^T \sigma^2(s, x) ds + (\int_0^T |b(s, x)| ds)^2$.
- (c) On déduit de (a) et (b) que pour tout $n \ge 1$, tout $t \in [0,T]$, $g_n(t) \le C'(Ct)^{n-1}/(n-1)!$. Donc, par Minkowski,

$$\mathbb{E}\left[\left(\sum_{n\geq 0}\sup_{[0,T]}|X_t^{n+1}-X_t^n|\right)^2\right]^{1/2}\leq \sum_{n\geq 0}\mathbb{E}\left[\left(\sup_{[0,T]}|X_t^{n+1}-X_t^n|\right)^2\right]^{1/2}=\sum_{n\geq 0}(g_{n+1}(T))^{1/2}<\infty.$$

Donc $\sum_{n\geq 0} \sup_{[0,T]} |X_t^{n+1} - X_t^n| < \infty$ p.s. et la suite de fonctions X^n admet une limite (uniforme) p.s. X, continue, adaptée (à la filtration canonique augmentée de B), et

$$\mathbb{E}\left[\left(\sup_{[0,T]}|X_t - X_t^n|\right)^2\right]^{1/2} \le \mathbb{E}\left[\left(\sum_{k > n}\sup_{[0,T]}|X_t^{k+1} - X_t^k|\right)^2\right]^{1/2} \le \sum_{k > n}(g_{k+1}(T))^{1/2} \to 0,$$

d'où on déduit aisément que

$$\int_0^t \sigma(s, X_s) \, \mathrm{d}B_s = \lim_n \int_0^t \sigma(s, X_s^n) \, \mathrm{d}B_s \quad \text{et} \quad \int_0^t b(s, X_s) \, \mathrm{d}s = \lim_n \int_0^t b(s, X_s^n) \, \mathrm{d}s$$

dans L^2 , en utilisant une fois de plus l'Hypothèse 7.2.2. En passant à la limite dans l'égalité $X_t^{n+1} = x + \int_0^t \sigma(s, X_s^n) dB_s + \int_0^t b(s, X_s^n) ds$, on conclut que $X_t = x + \int_0^t \sigma(s, X_s) dB_s + \int_0^t b(s, X_s) ds$. Et cette solution est forte.

Unicité faible. (a) La loi de la solution construite ci-dessus dépend, par construction, de x_0 , σ , et b, mais pas de l'espace de probabilité ni du mouvement brownien considéré.

(b) Considérons ensuite une solution faible X à $E_{x_0}(\sigma, b)$, associée à un mouvement brownien B, sur un certain espace de probabilité. Sur cet espace, et avec ce mouvement brownien, construisons la solution \tilde{X} comme dans la preuve d'existence. Par unicité trajectorielle, X et \tilde{X} sont indistinguables, et ont donc la même loi.

EXEMPLE 7.2.4. Soit B un mouvement brownien standard, et soit $X_t = \operatorname{sh}(B_t + t)$, où $\operatorname{sh}(x) = (e^x - e^{-x})/2$. D'après la formule d'Itô,

$$dX_{t} = \operatorname{ch}(B_{t} + t) d(B_{t} + t) + \frac{1}{2}\operatorname{sh}(B_{t} + t) dt$$
$$= \sqrt{1 + X_{t}^{2}} dB_{t} + \left(\sqrt{1 + X_{t}^{2}} + \frac{1}{2}X_{t}\right) dt.$$

Il y a unicité trajectorielle pour cette EDS, puisque les coefficients

$$\sigma(t,x) = \sqrt{1+x^2}$$
 et $b(t,x) = \sqrt{1+x^2} + \frac{x}{2}$

satisfont l'Hypothèse 7.2.2.

Exemple 7.2.5. Considérons l'EDS sur \mathbb{R} :

$$dX_t = \alpha X_t dB_t + \beta X_t dt,$$

avec $X_0 = x$. Le Théorème 7.2.3 nous garantit l'unicité trajectorielle de l'EDS. On vérifie facilement, par Itô, que l'unique solution est donnée par $X_t = x \exp(\alpha B_t + (\beta - \frac{\alpha^2}{2})t)$, qui n'est autre que $x\mathscr{E}(\alpha B_t + \beta t)_t$.

7.3. Propriété de Markov

On se restreint pour simplifier au cas homogène et au cas où d = m = 1. Les hypothèses de l'énoncé suivant peuvent être affaiblies, mais une condition cruciale est l'unicité en loi.

THÉORÈME 7.3.1. Supposons que $\sigma(t,x) = \sigma(x)$ et b(t,x) = b(x) sont lipschitziens (i.e. satisfont l'hypothèse 7.2.2). Considérons un espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ et un (\mathcal{F}_t) -mouvement brownien B. Pour tout temps d'arrêt τ et toute fonction mesurable (bornée ou positive) $\Phi: C([0,\infty), \mathbb{R}) \mapsto \mathbb{R}$, p.s.,

$$\mathbb{E}_x[\mathbf{1}_{\{\tau<\infty\}}\Phi((X_{\tau+t})_{t\geq 0})|\mathscr{F}_\tau] = \mathbf{1}_{\{\tau<\infty\}}\mathbb{E}_{X_\tau}[\Phi((X_t)_{t\geq 0})],$$

où X est l'unique solution de $E(\sigma,b)$ et où on a précisé en indice la condition initiale.

On s'appuiera sur le lemme suivant. On note $C = C([0, \infty[, \mathbb{R}), 1])$ l'ensemble des fonctions continues de $[0, \infty[$ dans \mathbb{R} , qu'on munit de la topologie de la convergence uniforme sur les compacts, et $\mathscr{C} = \mathscr{C}([0, \infty[, \mathbb{R})])$ sa tribu borélienne. On note enfin $\mathscr{C}^W = \mathscr{C} \vee \mathscr{N}$, où \mathscr{N} est l'ensemble des W-négligeables de $C([0, \infty[, \mathbb{R})])$, où W est la mesure de Wiener.

LEMME 7.3.2. On peut construire, pour chaque $x \in \mathbb{R}$, une application $(\mathscr{C}^W, \mathscr{C})$ -mesurable $\Lambda_x : C \mapsto C$, de sorte que

(1) pour tout $w \in C$, $x \mapsto \Lambda_x(w)$ est continue (de \mathbb{R} dans C),

- (2) pour tout $t \geq 0$ et tout $x \in \mathbb{R}$, $w \mapsto (\Lambda_x(w))_t$ est mesurable pour les tribus $\mathscr{G}_t = \sigma((w \mapsto w(s)) : s \in [0,t]) \vee \mathscr{N}$ et $\mathscr{B}(\mathbb{R})$,
- (3) pour tout espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ vérifiant les conditions habituelles et tout (\mathcal{F}_t) mouvement brownien B, pour tout $x \in \mathbb{R}$, $\Lambda_x(B)$ est solution de $E_x(\sigma, b)$,
- (4) pour tout espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ vérifiant les conditions habituelles et tout (\mathcal{F}_t) mouvement brownien B, pour toute v.a. réelle \mathcal{F}_0 -mesurable Y, $\Lambda_Y(B)$ est solution de $E(\sigma, b)$ et $(\Lambda_Y(B))_0 = Y$ p.s.

REMARQUE 7.3.3. En particulier, sur un espace de probabilité et avec un mouvement brownien fixés, on peut se débrouiller pour que p.s., l'application $x \mapsto X^x$ soit continue de \mathbb{R} dans C, où X^x est la solution de $E_x(\sigma, b)$.

- Preuve. (a) Sur l'espace canonique (complété) $(C, \mathscr{C}^W, \mathbf{W})$, on considère le mouvement brownien $\beta = (\beta_t)_{t\geq 0}$ défini par $\beta_t(w) = w_t$, la filtration canonique $\mathscr{G}_t = \sigma(\beta_s, s \leq t) \vee \mathscr{N}$ (on rappelle que $\mathscr{G}_{\infty} = \mathscr{C}^W$) et on note, pour chaque $x \in \mathbb{R}$, $X^x = (X_t^x)_{t\geq 0}$ l'unique solution (sur cet espace, avec ce mouvement brownien) de $E_x(\sigma, b)$.
- (b) On montre ensuite que pour tout T > 0, il existe une constante K_T telle que pour tous $x, y \in \mathbb{R}$, $\mathbb{E}[\sup_{[0,T]} |X_t^x X_t^y|^2] \le K_T(x-y)^2$. On part de

$$X_t^x - X_t^y = x - y + \int_0^t [b(X_s^x) - b(X_s^y)] ds + \int_0^t [\sigma(X_s^x) - \sigma(X_s^y)] d\beta_s.$$

On utilise ensuite Doob, Cauchy-Schwarz, et l'hypothèse de lipschitzianité pour écrire

$$\mathbb{E}\left[\sup_{[0,t]}|X_{s}^{x}-X_{s}^{y}|^{2}\right] \\
\leq 3(x-y)^{2} + 3\mathbb{E}\left[\left(\int_{0}^{t}|b(X_{s}^{x})-b(X_{s}^{y})|\,\mathrm{d}s\right)^{2}\right] + 3\mathbb{E}\left[\sup_{[0,t]}\left(\int_{0}^{t}[\sigma(X_{s}^{x})-\sigma(X_{s}^{y})]\,\mathrm{d}\beta_{s}\right)^{2}\right] \\
\leq 3(x-y)^{2} + 3T\mathbb{E}\left[\int_{0}^{t}|b(X_{s}^{x})-b(X_{s}^{y})|^{2}\,\mathrm{d}s\right] + 12\mathbb{E}\left[\int_{0}^{t}|\sigma(X_{s}^{x})-\sigma(X_{s}^{y})|^{2}\,\mathrm{d}s\right] \\
\leq 3(x-y)^{2} + (3T+12)L^{2}\int_{0}^{t}\mathbb{E}[|X_{s}^{x}-X_{s}^{y}|^{2}]\,\mathrm{d}s$$

Comme on sait de plus, par la preuve d'existence du Théorème 7.2.3, que pour tout $x \in \mathbb{R}$, $\mathbb{E}[\sup_{[0,T]} |X_t^x|^2] < \infty$, on conclut que la fonction $h(t) = \mathbb{E}\Big[\sup_{[0,t]} |X_s^x - X_s^y|^2\Big]$ est bornée sur [0,T] et satisfait $h(t) \leq 3(x-y)^2 + (3T+12)L^2 \int_0^t h(s) \, ds$ pour tout $s \in [0,T]$. Par le lemme de Gronwall, on a donc $h(T) \leq 3(x-y)^2 \exp((3T+12)L^2T)$.

(c) On construit donc facilement une distance d sur C qui corresponde à la convergence uniforme sur les compacts et telle que pour tous $x, y \in \mathbb{R}$, $\mathbb{E}[d^2(X^x - X^y)] \leq (x - y)^2$. Par le critère de Kolmogorov, il existe une modification continue \tilde{X}^x de X^x : pour tout $w \in C$,

 $x \mapsto \tilde{X}^x(w)$ est continue de \mathbb{R} dans C et pour tout $x \in \mathbb{R}$, \tilde{X}^x est indistinguable de X^x , et est donc encore solution de $E_x(\sigma, b)$.

- (d) On pose alors $\Lambda_x(w) = \tilde{X}^x(w)$ pour tout $x \in \mathbb{R}$, tout $w \in C_T$. Le point (1) (continuité en x) est vérifié. De plus, Λ_x est $(\mathscr{C}^W, \mathscr{C})$ -mesurable, car, comme on l'a vu dans sous-section 1.4, on a le résultat suivant : considérons une famille $(Z_t, t \geq 0)$ de variables aléatoires réelles définies sur un espace de probabilité complet $(\Omega, \mathscr{F}, \mathbb{P})$, telle que pour presque tout ω , $t \mapsto Z_t(\omega)$ soit continu sur \mathbb{R} . Alors Z est une v.a. à valeurs dans C, i.e. $\omega \mapsto Z(\omega)$ est $(\mathscr{F}, \mathscr{C})$ -mesurable.
- (e) Le point (2) est facile, car \tilde{X}^x est (\mathcal{G}_t) -adapté, donc pour $t \in [0,T]$, $w \mapsto (\Lambda_x(w))_t$ est $(\mathcal{G}_t, \mathcal{B}(\mathbb{R}))$ -mesurable, avec $\mathcal{G}_t = \sigma(\beta_s, s \leq t) \vee \mathcal{N}$.
- (f) Pour le point (3), fixons $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ et le (\mathscr{F}_t) -mouvement brownien B, ainsi que $x \in \mathbb{R}$. Il s'agit de montrer que $\Lambda_x(B)$ est solution de $E_x(\sigma, b)$. Déjà, $\Lambda_x(B)$ est bien sûr continu par nature, et il est adapté (à $\sigma(B_s, s \in [0, T]) \subset \mathscr{F}_t$, complétion sous-entendue) par (2). On fixe maintenant $t \geq 0$ et on doit vérifier que p.s.,

$$(\Lambda_x(B))_t = x + \int_0^t \sigma((\Lambda_x(B))_s) dB_s + \int_0^t b((\Lambda_x(B))_s) ds.$$

On sait que, pour **W**-presque tout $w \in C$,

$$(\Lambda_x(w))_t = x + \int_0^t \sigma((\Lambda_x(w))_s) d\beta_s(w) + \int_0^t b((\Lambda_x(w))_s) ds$$

$$= \lim_{k \to \infty} \left(x + \sum_{i=0}^{n_k} \left[\sigma((\Lambda_x(w))_{it/n_k}) (\beta_{(i+1)t/n_k}(w) - \beta_{it/n_k}(w)) + b((\Lambda_x(w))_{it/n_k}) \frac{t}{n_k} \right] \right),$$

pour une certaine suite d'indices $n_k \to \infty$, par la Proposition 5.4.5 (la convergence y est énoncée en probabilité, mais on a pris soin d'extraire une sous-suite).

Comme les lois de $w \mapsto (\Lambda_x(w), \beta(w))$ sur $(C, \mathcal{C}, \mathbf{W})$ et de $\omega \mapsto (\Lambda_x(B(\omega)), B(\omega))$ sur $(\Omega, \mathcal{F}, \mathbb{P})$ coïncident, on conclut que \mathbb{P} -p.s.,

$$(\Lambda_{x}(B))_{t} = \lim_{k \to \infty} \left(x + \sum_{i=0}^{n_{k}} \left[\sigma((\Lambda_{x}(B))_{it/n_{k}})(B_{(i+1)t/n_{k}} - B_{it/n_{k}}) + b((\Lambda_{x}(B))_{it/n_{k}}) \frac{t}{n_{k}} \right] \right)$$

$$(7.1) \qquad = x + \int_{0}^{t} \sigma((\Lambda_{x}(B))_{s}) dB_{s} + \int_{0}^{t} b((\Lambda_{x}(B))_{s}) ds,$$

par la Proposition 5.4.5 à nouveau.

(g) Considérons les mêmes objets que dans (f) avec, en plus, une variable aléatoire réelle \mathscr{F}_0 -mesurable Y, et donc indépendante du mouvement brownien B. Alors, comme $(x, w) \mapsto \Lambda_x(w)$ est $(\mathscr{B}(\mathbb{R}) \otimes \mathscr{C}^W, \mathscr{C})$ -mesurable (utiliser la continuité en x), $\Lambda_Y(B)$ est bien une v.a.

à valeurs dans C, donc continue, et elle est adaptée, pour les mêmes raisons qu'au point (f) et car Y est \mathscr{F}_0 -mesurable.

Reste à voir que, à $t \ge 0$ fixé, p.s.,

$$(\Lambda_Y(B))_t = Y + \int_0^t \sigma((\Lambda_Y(B))_s) dB_s + \int_0^t b((\Lambda_Y(B))_s) ds.$$

On applique (7.1) avec x = Y, mais ce n'est pas si simple, en particulier, il faut vérifier que si $\Delta(x) = \int_0^t \sigma((\Lambda_x(B))_s) dB_s$, alors on a bien $\Delta(Y) = \int_0^t \sigma((\Lambda_Y(B))_s) dB_s$ p.s. Par la Proposition 5.4.5, $\Delta(x) = \Gamma(x,B)$ (et $\Delta(Y) = \Gamma(Y,B)$), où $\Gamma(x,w)$ est la limite en probabilité (sous **W**)

$$\Gamma_n(x,w) = \sum_{i=0}^n \sigma((\Lambda_x(w))_{it/n})(w_{(i+1)t/n} - w_{it/n}).$$

Il n'y a plus qu'à vérifier que $\lim_n \Gamma_n(Y, B) = \Gamma(Y, B)$, ce qui découle de l'exercice suivant : considérons deux espaces mesurables (E_1, \mathcal{E}_1) et (E_2, \mathcal{E}_2) et une famille d'applications mesurables $H_n: E_1 \times E_2 \mapsto \mathbb{R}$. Soit X_1 et X_2 deux v.a. indépendantes, l'une à valeurs dans E_1 et l'autre à valeurs dans E_2 . Si pour tout $x_1 \in E_1$, $H_n(x_1, X_2)$ converge en probabilité vers $H_\infty(x_1, X_2)$, alors $H_n(X_1, X_2)$ converge en probabilité vers $H_\infty(X_1, X_2)$.

Preuve du Théorème 7.3.1. Il suffit de traiter le cas où $\tau < \infty$ p.s. (sinon, appliquer le résultat à $\tau \wedge n$, et faire tendre $n \to \infty$). On écrit

$$X_{\tau+t} = x + \int_0^{\tau+t} \sigma(X_s) \, dB_s + \int_0^{\tau+t} b(X_s) \, ds = X_{\tau} + \int_{\tau}^{\tau+t} \sigma(X_s) \, dB_s + \int_{\tau}^{\tau+t} b(X_s) \, ds.$$

En posant $B_t^{\tau} = B_{\tau+t} - B_{\tau}$, qui est un mouvement brownien indépendant de \mathscr{F}_{τ} , on a

$$X_{\tau+t} = x + \int_0^{\tau} \sigma(X_{\tau+s}) dB_s^{\tau} + \int_0^{\tau} b(X_{\tau+s}) ds,$$

et $(X_{\tau+t})_{t\geq 0}$ est solution de $E(\sigma, B)$ avec condition initiale X_{τ} , avec le $(\mathscr{F}_{t+\tau})_{t\geq 0}$ -mouvement brownien B^{τ} (indépendant de \mathscr{F}_{τ}). Donc, par le lemme précédent, comme X_{τ} est \mathscr{F}_{τ} mesurable, $(X_{\tau+t})_{t\geq 0} = \Lambda_{X_{\tau}}(B^{\tau})$ et la loi conditionnelle de $(X_{\tau+t})_{t\geq 0}$ sachant \mathscr{F}_{τ} est bien, p.s., $\mathbb{P}_{X_{\tau}}$, où on a appelé \mathbb{P}_x la loi de la solution à $E_x(\sigma, b)$.

7.4. Le problème de martingales

Dans cette section on suppose que σ et b sont des fonctions boréliennes et localement bornées indépendantes de t (i.e. $\sigma(t,x) = \sigma(x)$ et b(t,x) = b(x)). On note $C_c^k(\mathbb{R}^d)$ l'espace des fonctions de \mathbb{R}^d dans \mathbb{R} , de classe C^k et à support compact.

THÉORÈME 7.4.1. Soit, pour $f \in \mathbb{C}^2(\mathbb{R}^d)$ et $x \in \mathbb{R}^d$,

(7.2)
$$\mathscr{L}f(x) = \frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} (\sigma \sigma^*)_{ij}(x) \frac{\partial^2 f}{\partial x_i \partial x_j}(x) + \sum_{i=1}^{d} b_i(x) \frac{\partial f}{\partial x_i}(x),$$

où σ^* désigne la transposée de la matrice σ . Si X est une solution de $E(\sigma,b)$, alors pour toute $f \in \mathbb{C}^2_c(\mathbb{R}^d)$,

$$f(X_t) - f(X_0) - \int_0^t \mathcal{L}f(X_s) \,\mathrm{d}s$$

est une martingale.

Preuve. Par la formule d'Itô,

$$f(X_t) = f(X_0) + \sum_{i=1}^d \int_0^t \frac{\partial f}{\partial x_i}(X_s) \, dX_s^i + \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d \int_0^t \frac{\partial^2 f}{\partial x_i \partial x_j}(X_s) \, d\langle X^i, X^j \rangle_s$$

$$= M_t + \int_0^t \sum_{i=1}^d \frac{\partial f}{\partial x_i}(X_s) b_i(X_s) \, ds + \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d \int_0^t \frac{\partial^2 f}{\partial x_i \partial x_j}(X_s) \sum_{k=1}^m \sigma_{ik}(X_s) \sigma_{jk}(X_s) \, ds$$

$$= M_t + \int_0^t \mathcal{L}f(X_s) \, ds,$$

où $M_t = f(X_0) + \sum_{i=1}^d \sum_{k=1}^m \int_0^t \frac{\partial f}{\partial x_i}(X_s) \sigma_{ik}(X_s) dB_s^k$ est une martingale (car c'est une martingale locale et $\langle M \rangle_t \leq \|\sigma \nabla f\|_{\infty}^2 t$).

DÉFINITION 7.4.2 (Problème de martingales). On considère le processus canonique X défini par $X_t(w) = w_t$ sur l'espace canonique $(C(\mathbb{R}_+, \mathbb{R}^d), \mathscr{C}(\mathbb{R}_+, \mathbb{R}^d))$. Une probabilité \mathbf{P}_x sur $C(\mathbb{R}_+, \mathbb{R}^d)$ est une solution du problème de martingales (σ, b) , issu de $x \in \mathbb{R}^d$, si

- (i) $\mathbf{P}_x(X_0 = x) = 1$;
- (ii) pour toute $f \in C_c^2(\mathbb{R}^d)$,

$$M_t^f = f(X_t) - f(X_0) - \int_0^t \mathcal{L}f(X_s) \,\mathrm{d}s$$

est une \mathbf{P}_x -martingale par rapport à la filtration canonique de X, où

$$\mathscr{L}f(x) = \frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} (\sigma \sigma^*)_{ij}(x) \frac{\partial^2 f}{\partial x_i \partial x_j}(x) + \sum_{i=1}^{d} b_i(x) \frac{\partial f}{\partial x_i}(x).$$

Il y a équivalence entre existence faible/unicité faible de $E_x(\sigma, b)$ et existence/unicité pour le problème de martingales (σ, b) .

Théorème 7.4.3. On suppose toujours σ et b mesurables, localement bornés, et ne dépendant pas du temps.

- (i) Si X est solution (faible) de $E_x(\sigma, b)$, alors sa loi \mathbf{P}_x est solution du problème de martingales (σ, b) issu de x.
- (ii) Si \mathbf{P}_x est solution du problème de martingales (σ, b) issu de x, le processus canonique X, sur l'espace canonique filtré (éventuellement grossi) muni de la probabilité \mathbf{P}_x , est solution de $E_x(\sigma, b)$.

On va tricher pour le point (ii) en supposant que m=d et que σ est bien inversible ou que m=d=1.

Preuve. (i) Afin d'éviter les confusions, considérons Y une solution de $E_x(\sigma, b)$, sur un espace filtré quelconque et appelons \mathbf{P}_x sa loi. Alors $\mathbf{P}_x(X_0 = x) = \mathbb{P}(Y_0 = x) = 1$, et pour tout $f \in C_c^2(\mathbb{R}^d)$, $M_t^{f,Y} = f(Y_t) - f(x) - \int_0^t \mathcal{L}f(Y_s) \, \mathrm{d}s$ est une (\mathscr{F}_t) -martingale. Le processus canonique, sous \mathbf{P}_x , a la même loi que Y. Donc pour tout $f \in C_c^2(\mathbb{R}^d)$, tout $0 \le u \le t$, tout $\Gamma = \{X_{t_1} \in A_1, \ldots, X_{t_n} \in A_n\} \in \mathscr{F}_u^X$, avec $0 \le t_1 < \cdots < t_n \le u$,

$$\mathbb{E}_{\mathbf{P}_x}[(M_t^f - M_u^f)\mathbf{1}_{\Gamma}] = \mathbb{E}[(M_t^{f,Y} - M_u^{f,Y})\mathbf{1}_{\{Y_{t_1} \in A_1, \dots, Y_{t_n} \in A_n\}}] = 0.$$

On en déduit, par classes monotones, que $\mathbb{E}_{\mathbf{P}_x}[(M_t^f - M_u^f)\mathbf{1}_{\Gamma}] = 0$ pour tout $\Gamma \in \mathscr{F}_u^X$, et donc que M^f est une \mathscr{F}_t^X -martingale.

- (ii) On se place ici sur l'espace canonique filtré, muni de la probabilité \mathbf{P}_x , et on note X le processus canonique.
- (a) On pose, pour $n \geq 1$, $T_n = \inf\{t \geq 0 : |X_t| \geq n\}$. En appliquant le problème de martingales à une fonction $f \in C_c^2(\mathbb{R}^d)$ telle que $f(x) = x^i$ pour tout $x \in B(0,n)$ (la boule centrée en 0 de rayon n), on voit que $\mathcal{L}f(x) = b_i(x)$ sur B(0,n), et donc le processus $X_{t \wedge T_n}^i x^i \int_0^{t \wedge T_n} b_i(X_s) \, \mathrm{d}s$ est une martingale. Donc

$$M_t^i = X_t^i - x^i - \int_0^t b_i(X_s) \,\mathrm{d}s$$

est une martingale locale. On écrit $X_t^i = x^i + \int_0^t b_i(X_s) ds + M_t^i$ puis, par la formule d'intégration par parties,

$$X_t^i X_t^j = x^i x^j + \int_0^t [X_s^i b_j(X_s) + X_s^j b_i(X_s)] \, \mathrm{d}s + \int_0^t [X_s^i \, \mathrm{d}M_s^j + X_s^j \, \mathrm{d}M_s^i] + \langle M^i, M^j \rangle_t.$$

(b) Par le problème de martingales avec une fonction $f \in C_c^2(\mathbb{R}^d)$ telle que $f(x) = x^i x^j$ pour tout $x \in B(0, n)$, on a $\mathcal{L}f(x) = b_i(x)x_j + b_j(x)x_i + (\sigma\sigma^*)_{ij}(x)$ sur B(0, n), et donc

$$X_{t \wedge T_n}^{i} X_{t \wedge T_n}^{j} - x^{i} x^{j} - \int_{0}^{t \wedge T_n} \left[b_i(X_s) X_s^{j} + b_j(X_s) X_s^{i} + (\sigma \sigma^*)_{ij}(X_s) \right] ds$$

est une martingale. Donc $M_t^{ij} = X_t^i X_t^j - x^i x^j - \int_0^t [(\sigma \sigma^*)_{ij}(X_s) + b_i(X_s) X_s^j + b_j(X_s) X_s^i] ds$ est une martingale locale. En se rappelant (a) (et en écrivant $X_t^i X_t^j$ de deux manières différentes),

$$\int_0^t [X_s^i dM_s^j + X_s^j dM_s^i] + \langle M^i, M^j \rangle_t = \int_0^t (\sigma \sigma^*)_{ij} (X_s) ds + M_t^{ij}.$$

Donc $\langle M^i, M^j \rangle_t - \int_0^t (\sigma \sigma^*)_{ij}(X_s) \, \mathrm{d}s$ est une martingale locale à variation finie, et est donc indistinguable de 0. Ainsi, $\langle M^i, M^j \rangle_t = \int_0^t (\sigma \sigma^*)_{ij}(X_s) \, \mathrm{d}s$.

(c) Ici, on suppose que m=d, que $\sigma(x)$ est inversible pour tout $x\in\mathbb{R}^d$, et que $x\mapsto\Theta(x)=[\sigma(x)]^{-1}$ est localement bornée. Pour le cas général, voir Karatzas-Shreve, Thm 3.4.2 page 170.

On pose $B_t = \int_0^t \Theta(X_s) dM_s$, i.e., pour i = 1, ..., d, $B_t^i = \sum_{\ell=1}^d \int_0^t \Theta_{i\ell}(X_s) dM_s^\ell$. Alors pour chaque i = 1, ..., d, B^i est une martingale locale et, pour i, j = 1, ..., d, on a

$$\langle B^i, B^j \rangle_t = \sum_{k,\ell=1}^d \int_0^t \Theta_{ik}(X_s) \Theta_{j\ell}(X_s) \, \mathrm{d}\langle M^k, M^\ell \rangle_s = \sum_{k,\ell=1}^d \int_0^t \Theta_{ik}(X_s) \Theta_{j\ell}(X_s) (\sigma \sigma^*)_{k\ell}(X_s) \, \mathrm{d}s.$$

Mais pour $x \in \mathbb{R}^d$, $\sum_{k,l=1}^d \Theta_{ik}(x)\Theta_{jl}(x)(\sigma\sigma^*)_{kl}(x) = [\Theta(x)(\sigma\sigma^*)(x)\Theta^*(x)]_{ij} = \delta_{ij}$ par définition de Θ . Ainsi, $\langle B^i, B^j \rangle_t = \delta_{ij}t$, et on conclut que B est un mouvement brownien (dans la filtration canonique).

Enfin, on a $dB_t = \Theta(X_t) dM_t$, soit encore $dM_t = \sigma(X_t) dB_t$, ou

$$\forall i \in \{1, \dots, d\}, \quad M_t^i = \sum_{k=1}^d \int_0^t \sigma_{ik}(X_s) \, dB_s^k.$$

En effet,

$$\sum_{k=1}^{d} \int_{0}^{t} \sigma_{ik}(X_{s}) dB_{s}^{k} = \sum_{k,\ell=1}^{d} \int_{0}^{t} \sigma_{ik}(X_{s}) \Theta_{k\ell}(X_{s}) dM_{s}^{\ell} = \sum_{\ell=1}^{d} \int_{0}^{t} (\sigma \Theta)_{i\ell}(X_{s}) dM_{s}^{\ell} = M_{t}^{i}.$$

En se rappelant (a), on conclut que

$$\forall i \in \{1, \dots, d\}, \quad X_t^i = x^i + \int_0^t b_i(X_s) \, \mathrm{d}s + \sum_{k=1}^d \int_0^t \sigma_{ik}(X_s) \, \mathrm{d}B_s^k.$$

(c') Si m=d=1 mais qu'on ne suppose pas $\sigma(x)$ inversible pour tout $x\in\mathbb{R}$, on procède ainsi. On considère (en grossissant l'espace de probabilité) un mouvement brownien B' indépendant de M. On pose

$$B_t = \int_0^t \mathbf{1}_{\{\sigma(X_s) \neq 0\}} \sigma^{-1}(X_s) \, dM_s + \int_0^t \mathbf{1}_{\{\sigma(X_s) = 0\}} \, dB'_s,$$

bien défini puisque (seul le premier terme pose problème) $\int_0^t [\sigma^{-1}(X_s) \mathbf{1}_{\{\sigma(X_s) \neq 0\}}]^2 d\langle M \rangle_s = \int_0^t \mathbf{1}_{\{\sigma(X_s) \neq 0\}} ds < \infty$. Et B est un mouvement brownien (dans la filtration grossie) car c'est une martingale locale et $\langle B \rangle_t = \int_0^t \mathbf{1}_{\{\sigma(X_s) \neq 0\}} \sigma^{-2}(X_s) d\langle M \rangle_s + \int_0^t \mathbf{1}_{\{\sigma(X_s) = 0\}} ds = t$.

On observe ensuite que $\int_0^t \sigma(X_s) dB_s = \int_0^t \sigma(X_s) \mathbf{1}_{\{\sigma(X_s) \neq 0\}} \sigma^{-1}(X_s) dM_s + 0 = M_t$, puisque $M_t = \int_0^t \mathbf{1}_{\{\sigma(X_s) \neq 0\}} dM_s$. En effet, la martingale locale $N_t = \int_0^t \mathbf{1}_{\{\sigma(X_s) = 0\}} dM_s$, ayant pour crochet $\langle N \rangle_t = \int_0^t \mathbf{1}_{\{\sigma(X_s) = 0\}} d\langle M \rangle_s = \int_0^t \mathbf{1}_{\{\sigma(X_s) = 0\}} \sigma^2(X_s) ds = 0$, est indistinguable de 0.

En se rappelant (a),
$$X_t = x + \int_0^t b(X_s) \, ds + M_t = x + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dB_s$$
.

L'ouvrage de Stroock et Varadhan est consacré aux problèmes de martingales pour les diffusions dans \mathbb{R}^d . Une application relativement simple est la suivante : on peut montrer, par compacité, l'existence faible pour $E(\sigma, b)$ quand σ et b sont continus et bornés.

7.5. Liens avec des EDP linéaires

Nous supposons dans cette section que σ et b sont continus, indépendants du temps et bornés (par exemple). Soit \mathcal{L} l'opérateur différentiel défini par (7.2). On note $C_b^k(\mathbb{R}^d)$ l'ensemble des fonctions de \mathbb{R}^d dans \mathbb{R} , de classe C^k , bornées avec leurs dérivées jusqu'à l'ordre k.

7.5.1. Equation de Fokker-Planck (ou Kolmogorov progressive).

REMARQUE 7.5.1. Si X est solution de $E(\sigma, b)$ (avec condition initiale éventuellement aléatoire) et si on note, pour chaque $t \geq 0$, $f_t \in \mathscr{P}(\mathbb{R}^d)$ la loi de X_t , alors pour tout $\varphi \in C_c^2(\mathbb{R}^d)$, tout $t \geq 0$, on a

$$\int_{\mathbb{R}^d} \varphi(x) f_t(\,\mathrm{d}x) = \int_{\mathbb{R}^d} \varphi(x) f_0(\,\mathrm{d}x) + \int_0^t \int_{\mathbb{R}^d} \mathscr{L}\varphi(x) f_s(\,\mathrm{d}x) \,\mathrm{d}s.$$

On dit que $(f_t)_{t\geq 0}$ est solution faible de l'équation

$$\partial_t f_t = \mathscr{L}^* f_t$$

 $o\dot{u}$, pour $f \in C^2(\mathbb{R}^d)$,

$$\mathscr{L}^*f(x) = \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d \frac{\partial^2}{\partial x_i x_j} [(\sigma \sigma^*)_{ij} f](x) - \sum_{i=1}^d \frac{\partial}{\partial x_i} [b_i f](x).$$

Noter que pour tout $f \in C^2(\mathbb{R}^d)$ et $\varphi \in C^2_c(\mathbb{R}^d)$, on a

$$\int_{\mathbb{R}^d} f(x) \mathscr{L} \varphi(x) \, \mathrm{d}x = \int_{\mathbb{R}^d} \varphi(x) \mathscr{L}^* f(x) \, \mathrm{d}x.$$

7.5.2. Une équation parabolique. Nous nous intéressons ensuite à une EDP d'inconnue u de la forme (on écrit $\mathcal{L}u(t,x)$ pour $\mathcal{L}[u(t)](x)$, où $u(t): \mathbb{R}^d \mapsto \mathbb{R}$ est définie par u(t)(x) = u(t,x))

(7.3)
$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = \mathcal{L}u(t,x), & t > 0, x \in \mathbb{R}^d \\ u(0,x) = f(x), & x \in \mathbb{R}^d \end{cases}$$

où $f: \mathbb{R}^d \mapsto \mathbb{R}$ est donnée.

PROPOSITION 7.5.2. Si $u \in C_b^2([0,\infty[\times \mathbb{R}^d) \text{ satisfait } (7.3), \text{ alors pour } x \in \mathbb{R}^d \text{ et } (X_t)_{t\geq 0}$ une solution de $E_x(\sigma,b)$, on a

(7.4)
$$u(t,x) = \mathbb{E}[f(X_t)], \qquad t \ge 0.$$

Preuve. Si $\varphi \in C^2([0,\infty[\times \mathbb{R}^d), \text{ par Itô},$

$$\varphi(t, X_t) = \varphi(0, x) + \int_0^t \left[\frac{\partial}{\partial t} \varphi(s, X_s) + \mathcal{L}\varphi(s, X_s) \right] ds + \sum_{i=1}^d \sum_{j=1}^m \int_0^t \frac{\partial}{\partial x_i} \varphi(s, X_s) \sigma_{ij}(X_s) dB_s^j.$$

En fixant $t_0 \ge 0$ et en appliquant la formule précédente avec $\varphi(t,x) = u(t_0 - t,x)$ (en supposant $t \in [0,t_0]$), on trouve

$$u(t_0 - t, X_t) = u(t_0, x) + \int_0^t \left[-\frac{\partial}{\partial t} u(t_0 - s, X_s) + \mathcal{L}u(t_0 - s, X_s) \right] ds + M_t = M_t,$$

où M est une martingale (car son crochet est borné, puisque σ et $\nabla_x u$ le sont). Donc en prenant l'espérance, on trouve, pour tout $t \in [0, t_0]$,

$$\mathbb{E}[u(t_0 - t, X_t)] = u(t_0, x).$$

On conclut en choisissant $t = t_0$.

REMARQUE 7.5.3. En travaillant un peu plus, on peut affaiblir l'hypothèse de régularité sur u. En particulier, l'existence (et la bornitude) de la dérivée seconde en temps est inutile.

REMARQUE 7.5.4. Par le théorème 7.5.2, l'existence pour $E_x(\sigma, b)$ (pour tout x) implique l'unicité pour l'EDP (7.3) dans une classe de fonctions régulières. Une autre conséquence de la représentation probabiliste (7.4) est le principe du maximum

$$||u||_{\infty} \le ||f||_{\infty},$$

REMARQUE 7.5.5. On peut essayer d'utiliser une approche probabiliste à l'existence de solutions de (7.3). Si f, b et σ sont suffisamment réguliers, par exemple C^3 , il est possible de montrer que $(t,x) \mapsto \mathbb{E}[f(X_t^x)]$ est de classe C_b^2 et vérifie (7.3).

7.5.3. La formule de Feynman-Kac. Soit ensuite $V: \mathbb{R}^d \to \mathbb{R}$ continue et bornée inférieurement (inf $V > -\infty$) et $f \in C_b(\mathbb{R}^d)$. On s'intéresse à l'EDP (d'inconnue u)

(7.5)
$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = \mathcal{L}u(t,x) - V(x)u(t,x), & t > 0, x \in \mathbb{R}^d \\ u(0,x) = f(x), & x \in \mathbb{R}^d \end{cases}$$

PROPOSITION 7.5.6. Si $u \in C_b^2([0, \infty[\times \mathbb{R}^d) \text{ satisfait } (7.5), \text{ alors pour } x \in \mathbb{R}^d, \text{ si } (X_t)_{t \geq 0}$ est une solution de $E_x(\sigma, b)$,

(7.6)
$$u(t,x) = \mathbb{E}\left[f(X_t) \exp\left(-\int_0^t V(X_s) \,\mathrm{d}s\right)\right], \qquad t \ge 0.$$

Preuve. Si $\varphi \in C^2([0, \infty[\times \mathbb{R}^d), \text{ par Itô (appliqué aux trois semi-martingales } \int_0^t V(X_s) \, ds, t$ et X_t), on voit que

$$e^{-\int_0^t V(X_s) \, \mathrm{d}s} \varphi(t, X_t) = \varphi(0, x) + \int_0^t e^{-\int_0^s V(X_r) \, \mathrm{d}r} \left[\frac{\partial}{\partial t} \varphi(s, X_s) + \mathcal{L}\varphi(s, X_s) - V(X_s) \varphi(s, X_s) \right] \, \mathrm{d}s$$
$$+ \sum_{i=1}^d \sum_{j=1}^m \int_0^t e^{-\int_0^s V(X_r) \, \mathrm{d}r} \frac{\partial}{\partial x_i} \varphi(s, X_s) \sigma_{ij}(X_s) \, \mathrm{d}B_s^j.$$

En fixant $t_0 \ge 0$ et en appliquant la formule précédente avec $\varphi(t,x) = u(t_0 - t,x)$ (en supposant $t \in [0,t_0]$), on trouve

$$e^{-\int_0^t V(X_s) \, ds} u(t_0 - t, X_t) = u(t_0, x)$$

$$+ \int_0^t e^{-\int_0^s V(X_r) \, dr} \left[-\frac{\partial}{\partial t} u(t_0 - s, X_s) + \mathcal{L}u(t_0 - s, X_s) - V(X_s) u(t_0 - s, X_s) \right] ds + M_t$$

où M est une martingale (car son crochet est borné, puisque σ et $\nabla_x u$ le sont et que V est minorée). Donc en prenant l'espérance, on trouve, pour tout $t \in [0, t_0]$,

$$\mathbb{E}\left[e^{-\int_0^t V(X_s) \,\mathrm{d}s} u(t_0 - t, X_t)\right] = u(t_0, x).$$

On conclut en choisissant $t = t_0$.

7.5.4. Equations elliptiques. Nous nous intéressons à l'EDP d'inconnue u

(7.7)
$$\lambda u(x) - \mathcal{L}u(x) = f(x), \qquad x \in \mathbb{R}^d$$

où $f \in C_b(\mathbb{R}^d)$ et $\lambda > 0$.

THÉORÈME 7.5.7. Si $u \in C^2(\mathbb{R}^d)$ est bornée et satisfait (7.7), si $x \in \mathbb{R}^d$ et si $(X_t)_{t\geq 0}$ est une solution de $E_x(\sigma, b)$, alors

(7.8)
$$u(x) = \int_0^\infty e^{-\lambda t} \mathbb{E}\left[f(X_t)\right] dt.$$

Preuve. Par la formule d'Itô (appliqué aux deux semi-martingales t et X_t),

$$e^{-\lambda t}u(X_t) = u(x) + \int_0^t e^{-\lambda s} \left[-\lambda u(X_s) + \mathcal{L}u(X_s)\right] ds + \sum_{i=1}^d \sum_{j=1}^m \int_0^t e^{-\lambda s} \frac{\partial}{\partial x_i} u(X_s) \sigma_{ij}(X_s) dB_s^j.$$

Comme $-\lambda u(X_s) + \mathcal{L}u(X_s) = -f(X_s)$, en prenant l'espérance,

$$e^{-\lambda t}\mathbb{E}[u(X_t)] = u(x) - \int_0^t e^{-\lambda s}\mathbb{E}[f(X_s)] ds.$$

Il n'y a plus qu'à faire tendre $t \to \infty$, en utilisant que u et f sont bornées.

7.5.5. Problème de Dirichlet. Considérons un ouvert régulier borné $\mathscr{O} \subset \mathbb{R}^d$ et l'EDP

(7.9)
$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = \mathcal{L}u(t,x), & t > 0, x \in \mathcal{O} \\ u(t,x) = g(x), & t > 0, x \in \partial \mathcal{O} \\ u(0,x) = f(x), & x \in \mathcal{O} \end{cases}$$

où $f \in C_b(\mathcal{O})$ et $g \in C_b^2(\partial \mathcal{O})$ sont telles que f = g sur $\partial \mathcal{O}$.

PROPOSITION 7.5.8. Si $u \in C_b^2([0,\infty[\times \overline{\mathscr{O}}) \ satisfait \ (7.9), \ si \ x \in \mathscr{O} \ et \ si \ (X_t)_{t\geq 0} \ est \ une solution de E_x(\sigma,b), alors pour tout <math>t\geq 0$,

$$(7.10) u(t,x) = \mathbb{E}_x[\mathbf{1}_{\{t < \tau\}} f(X_t)] + \mathbb{E}_x[\mathbf{1}_{\{t \ge \tau\}} g(X_\tau)], où \tau = \inf\{u > 0 : X_u \notin \mathscr{O}\}.$$

Preuve. On considère une fonction $U \in C_b^2([0, \infty[\times \mathbb{R}^d)$ telle que U(t, y) = u(t, y) pour tout $y \in \overline{\mathscr{O}}$. On fixe $t_0 > 0$ et on applique Itô, pour trouver

$$U(t_0 - t, X_t) = U(t_0, x) + \int_0^t \left[-\frac{\partial}{\partial t} U(t_0 - s, X_s) + \mathcal{L}U(t_0 - s, X_s) \right] ds + M_t,$$

où M est une martingale de crochet borné (car U est C_b^2 et car σ est borné). Donc

$$U(t_0 - t \wedge \tau, X_{t \wedge \tau}) = U(t_0, x) + \int_0^{t \wedge \tau} \left[-\frac{\partial}{\partial t} U(t_0 - s, X_s) + \mathcal{L}U(t_0 - s, X_s) \right] ds + M_{t \wedge \tau},$$

soit encore, comme U(t,y) = u(t,y) pour $y \in \overline{\mathscr{O}}$ et comme u est solution de (7.9),

$$u(t_0 - t \wedge \tau, X_{t \wedge \tau}) = u(t_0, x) + M_{t \wedge \tau}.$$

En prenant l'espérance, on trouve

$$\mathbb{E}[u(t_0 - t \wedge \tau, X_{t \wedge \tau})] = u(t_0, x)$$

puis, avec $t = t_0$,

$$u(t_0, x) = \mathbb{E}[u(t_0 - t_0 \wedge \tau, X_{t_0 \wedge \tau})] = \mathbb{E}[\mathbf{1}_{\{t_0 < \tau\}} u(0, X_{t_0})] + \mathbb{E}[\mathbf{1}_{\{t_0 \ge \tau\}} u(t_0 - \tau, X_{\tau})],$$
soit enfin $u(t_0, x) = \mathbb{E}[\mathbf{1}_{\{t_0 < \tau\}} f(X_{t_0})] + \mathbb{E}[\mathbf{1}_{\{t_0 \ge \tau\}} g(X_{\tau})].$

Considérons enfin l'EDP

(7.11)
$$\begin{cases} -\mathcal{L}u(x) = f(x), & x \in \mathcal{O} \\ u(x) = g(x), & x \in \partial \mathcal{O} \end{cases}$$

où $f \in C_b(\mathscr{O})$ et $g \in C_b^2(\partial \mathscr{O})$.

PROPOSITION 7.5.9. Soit $u \in C_b^2(\overline{\mathscr{O}})$ satisfaisant (7.11), soit $x \in \mathscr{O}$ et soit $(X_t)_{t\geq 0}$ une solution de $E_x(\sigma, b)$. Supposons que $\tau = \inf\{u > 0 : X_u \notin \mathscr{O}\}$ soit fini et intégrable. Alors

(7.12)
$$u(x) = \mathbb{E}\left[g(X_{\tau})\right] + \mathbb{E}\left[\int_{0}^{\tau} f(X_{s}) \,\mathrm{d}s\right].$$

Preuve. On considère $U\in C^2_b(\mathbb{R}^d)$ telle que U(y)=u(y) pour tout $y\in \overline{\mathscr{O}}$. Par Itô,

$$U(X_t) = U(x) + \int_0^t \mathcal{L}U(X_s) \, \mathrm{d}s + M_t,$$

où M est une martingale de crochet borné (car ∇U et σ sont bornés). Donc

$$U(X_{t\wedge\tau}) = U(x) + \int_0^{t\wedge\tau} \mathcal{L}U(X_s) \,\mathrm{d}s + M_{t\wedge\tau},$$

soit encore

$$u(X_{t\wedge\tau}) = u(x) - \int_0^{t\wedge\tau} f(X_s) \,\mathrm{d}s + M_{t\wedge\tau}.$$

En prenant l'espérance, on trouve

$$u(x) = \mathbb{E}\left[u(X_{t \wedge \tau}) + \int_0^{t \wedge \tau} f(X_s) \,\mathrm{d}s\right]$$

et en faisant tendre $t \to +\infty$ (par convergence dominée, en utilisant que u et f sont bornées et que τ est intégrable)

$$u(x) = \mathbb{E}\left[g(X_{\tau})\right] + \mathbb{E}\left[\int_{0}^{\tau} f(X_{s}) ds\right]$$

comme annoncé.

Chapitre 8

Références bibliographiques

- M. Briane et G. Pagès: Théorie de l'intégration, 5e édition, Vuibert 2012.
- Chung, K.L. et Williams, R.J.: Introduction to Stochastic Integration; 2e édition. Birkhäuser, 1990.
- Comets, F. et Meyre, T.: Calcul Stochastique et Modèles de Diffusions, Cours et Exercices. Dunod, 2006.
- Dellacherie, C. et Meyer, P.-A.: Probabilités et Potentiel, Vol. II, Théorie des Martingales. Hermann, 1980.
 - **Durrett, R.**: Brownian Motion and Martingales in Analysis. Wadsworth, 1984.
- Ikeda, N. et Watanabe, S.: Stochastic Differential Equations and Diffusion Processes; 2e édition. North Holland, 1988.
- Le Gall, J.-F.: Mouvement Brownien, Martingales et Calcul Stochastique. Springer, 2013.
- Karatzas, I. et Shreve, S.: Brownian Motion and Stochastic Calculus; 2e édition corrigée. Springer, 1994.
 - Mörters, P. et Peres, Y.: Brownian Motion. Cambridge University Press, 2010.
- Revuz, D. et Yor, M.: Continuous Martingales and Brownian Motion, 3e édition. Springer, 1999.
- Rogers, L.C.G. et Williams, D.: Diffusions, Markov Processes and Martingales, Vol. II, Itô Calculus. Wiley, 1987.
- D.W. Stroock, S.R.S. Varadhan, Multidimensional diffusion processes. Springer Verlag, second ed, 1997.