Roteiro de Estudos – Python + Machine Learning (6 meses)

* Organização

- Carga sugerida: 10–15h por semana.
- Ferramenta de apoio: GitHub (portfólio), Kaggle (datasets e competições).
- Stack: Python (NumPy, Pandas, Matplotlib, scikit-learn).

Mês 1 – Fundamentos de Python + Lógica

•	Sintaxe (variáveis, loops, funções).
•	Estruturas de dados (listas, dicionários).
•	Introdução à POO.
•	NumPy (arrays, operações matemáticas).
•	Pandas (DataFrames, limpeza de dados).

Tobjetivo: dominar a linguagem e bibliotecas básicas.

X Projeto:

• Analisar um **dataset simples (ex.: vendas**) → calcular médias, totais, gráficos.

Mês 2 – Fundamentos de Dados

€ Objetivo: manipular e visualizar dados.

•	SQL (SELECT, filtros, joins).
•	Pandas avançado (merge, groupby).
•	Visualização: Matplotlib e Seaborn.
•	Storytelling com dados.

* Projeto:

Criar dashboard de análise exploratória (ex.: COVID, mercado financeiro, esportes). **Mês 3 – Estatística e Probabilidade** Tobjetivo: entender os fundamentos matemáticos por trás da IA. Distribuições (normal, binomial, Poisson). Medidas: média, mediana, variância. Correlação e regressão linear. Testes de hipóteses (p-value). * Projeto: Usar estatística para responder uma pergunta com dados reais (ex.: existe relação entre preço de imóveis e localização?). **Mês 4 – Machine Learning Básico** "Objetivo: aplicar algoritmos clássicos. Regressão Linear e Logística. Árvores de decisão e Random Forest. KNN e K-Means. Divisão treino/teste, métricas de avaliação. scikit-learn em prática. **☆** Projeto: Criar um modelo preditivo (ex.: prever preços de casas, identificar clientes que

Mês 5 – Machine Learning Avançado

G Objetivo: ganhar profundidade e explorar casos reais.

vão cancelar serviço).

•	Redes Neurais básicas (com TensorFlow ou PyTorch). NLP (análise de sentimentos em textos). Feature Engineering (seleção de variáveis). Técnicas de validação cruzada.
☆ Pro	ojeto: Classificação de sentimentos em reviews de filmes.
	Mês 6 – Consolidação e Portfólio jetivo: integrar tudo em projetos aplicáveis ao mercado.

* Projeto Final:

• Escolher **um problema real** (ex.: churn de clientes, previsão de demanda, recomendador de produtos).

Projeto grande do início ao fim (pipeline completo de ML).

Publicação no GitHub com README + documentação.

 Criar pipeline completo: coleta de dados → análise → modelo ML → apresentação dos resultados.

Resultado após 6 meses

Revisão dos pontos fracos.

- Base sólida em Python, Estatística, SQL e ML.
- Portfólio com 4–5 projetos práticos (simples → avançados).
- Pronto para vagas de Analista de Dados Jr / Cientista de Dados Jr / ML Engineer Jr.
- Capacidade de evoluir para IA avançada (Deep Learning, LLMs, etc.) depois.