Nicole Keeney

email: nicoleikeenev@gmail.com web: nicolekeenev.com GitHub: nicolejkeeney

SUMMARY

Fast learning, detail-oriented climate data scientist with a background in computational earth science research. Highly qualified with python data science modules for visualization, wrangling, and statistical analysis of climate model and remote sensing data.

EDUCATION

University of California, Berkeley

Berkeley, CA

B.A. in Atmospheric Science

Dec 2020

Honors thesis: Evaluation of a simple parameterization of the Evaporative Stress Index using FLUXNET data and a planetary boundary layer model (advised by Prof. Dennis Baldocchi)

PROFESSIONAL EXPERIENCE

Eagle Rock Analytics

Sacramento, CA

Junior Atmospheric Scientist (remote)

June 2022 – Present

- Developing open source python code (a collection python notebooks and a related python package: climakitae) for the Cal-Adapt: Analytics Engine, a cloud-based climate data analytics platform for California's energy sector.
- Soliciting continual feedback from industry stakeholders throughout development to ensure the utility of the product to our user base.

School of Public Health at the University of California, Berkeley

Berkeley, CA

Junior Specialist (half-time)

Jan 2021 – Feb 2022

Undergraduate Student Researcher

Oct 2020 – Dec 2020

- Calibrated a wind erosion model in California using remote sensing-derived vegetation data.
- Performed data extractions and zonal statistics using python and R for various environmental datasets used in public health studies utilizing a high performance computing environment.

University of Maryland / NASA Goddard Space Flight Center

Greenbelt, MD

Faculty Research Assistant (half-time, remote)

Jan 2021 – Jan 2022

NASA Summer Intern (remote)

June 2020 - Aug 2020

- Built an interactive Jupyter Book (a collection of python notebooks) to evaluate drivers of winter Arctic sea ice growth using gridded data from NASA's ICESat-2 satellite.
- Contributed to the development of a cloud-optimized python toolkit to streamline polar climate model validation using satellite data. Project emphasized interactive plotting techniques and data management with Google Cloud.

University of California, Berkeley, College of Natural Resources

Berkeley, CA

Undergraduate Student Researcher

Oct 2019 – Dec 2020

Utilized eddy covariance flux measurements and a planetary boundary layer model to evaluate a drought index using python data science packages. Research contributed to my undergraduate honors thesis and a related publication.

PUBLICATIONS

- Petty A. A., **N. Keeney**, A. Cabaj, P. Kushner, M. Bagnardi (2023), Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection, *The Cryosphere*, doi:10.5194/tc-17-127-2023.
- Baldocchi, D., **Keeney, N.**, Rey-Sanchez, C., and Fisher, J. (2021) Atmospheric Humidity Deficits Tell Us How Soil Moisture Deficits Down-Regulate Ecosystem Evaporation, *Advances in Water Resources*, doi:10.1016/j.advwatres.2021.104100.

CONFERENCE PRESENTATIONS

Keeney, N., Petty, A., Simon, E., Andrews, L., Parker, C., Medley, B., and Boisvert, L. (2021). A Cloud Based Python Toolkit for Streamlining Polar Climate Model Assessments. *American Geophysical Union Fall Meeting*. [oral, virtual]

Bhattachan, A., **Keeney**, **N**., Zhou, B., and Okin, G. (2021). Calibration of a Wind Erosion and Dust Emission Model using Continental-Scale Geospatial Soil and Vegetation Datasets. *American Geophysical Union Fall Meeting*. [poster, virtual]

Keeney, **N.** and Petty, A. (2020). New Estimates of Winter Arctic Sea Ice Growth from NASA's ICESat-2. *American Geophysical Union Fall Meeting*. [poster, virtual]