Digital Electronics and Microprocessor Systems (ELEC211)

Dave McIntosh and Valerio Selis

dmc@liv.ac.uk

v.selis@liv.ac.uk

Week 7 Q&A

Week 7 — Lecture 17 Digital Electronics Introduction to sequential logic

??

Question

The inverter in the figure has a propagation delay of 4 ns and the AND gate of 8 ns. Draw a timing diagram for the circuit showing a, b, c. a and c are initially equal to 0, b is initially one. After 20 ns a becomes 1 for 90 ns and then 0 again.

Answer

The inverter in the figure has a propagation delay of 4 ns and the AND gate of 8 ns. Draw a timing diagram for the circuit showing a, b, c. a and c are initially equal to 0, b is initially one. After 20 ns a becomes 1 for 90 ns and then 0 again.

Week 7 – Lecture 18

Digital Electronics

CPLDs & FPGAs

Shannon's expansion

Question

Shannon's expansion (decomposition)

Decompose the following function into 2 functions, one for a and the other for a.

$$f(a,b,c,d) = a'c'd' + abd + bcd + b'cd' + acd'$$
$$= a'f_0 + af_1$$

(4 to 3 variable example)

Method

$$f(a,b,c,d) = a'c'd' + abd + bcd + b'cd' + acd'$$

$$= a'c'd' + abd + (a + a')bcd + (a + a')b'cd' + acd'$$

(4 to 3 variable example)

$$= a'(...) + a(...)$$

Answer

$$f(a,b,c,d) = a'c'd' + abd + bcd + b'cd' + acd'$$

$$= a'c'd' + abd + (a + a')bcd + (a + a')b'cd' + acd'$$

$\ \ ab$							
cd	00	01	11	10			
00		$\left(\begin{array}{c} \end{array} \right)$	0	0			
01	0	0	$\left(\begin{array}{c} \end{array}\right)$	0			
11	0			0			
10		0		1			
$\frac{1}{f}$							

(4 to 3 variable example)

$$f = a'(c'd' + b'd' + bcd) + a(cd' + bd)$$
 (answer)

Question

Decompose the following function into 2 functions, one for a and the other for a.

$$f(a,b,c,d,e) = b'c'd' + a'be + b'cde' + ab'd' + bcde$$

= $a'f_0 + af_1$

(5 to 4 variable example)

Method

$$f(a,b,c,d,e) = b'c'd' + a'be + b'cde' + ab'd' + bcde)$$

$$= (a + a')b'c'd' + a'be' + (a + a')cde' + ab'd' + (a + a')bcde$$

a=1

(5 to 4 variable example)

$$\frac{\text{UNIVERSITY OF}}{\text{LIVED DOOL}} = a'(...) + a(...)$$

Answer

$$f(a,b,c,d,e) = b'c'd' + a'be + b'cde' + ab'd' + bcde'$$

$$= (a + a')b'c'd' + a'be' + (a + a')cde' + ab'd' + (a + a')bcde'$$

$\ \ bc$						
de	00	01	11	10		
00	1	(1)	0	0		
01	7	1	0	0		
11	0	0	\bigcirc	0		
10	0	1	0	0		
a=1						

(5 to 4 variable example)

f = a'(b'c'd' + be + b'cde') + a(b'd' + b'ce' + bcde) (answer)