Machine Learning HW6

Kernel K-means and Spectral Clustering

GMBA 310712009 楊家碩

a. code with detailed explanations

I. Kernel K-means

Implementation

I implement kernel k-means in python. The essential steps in this section are

- 1. Generate a Gram Matrix using the kernel function as shown below, and
- 2. Complete the K-means method.
- 3. Display gif in the visualize function.

I set gamma_C = 1e-5 and gamma_S = 1e-5. At the same time, I also set k list "K_lis = [2,3,4,5,6,8,10,12,15]", to find out the result with different k and how the image will look like.

```
imagename = 'image1'
K_lis = [2,3,4,5,6,8,10,12,15]
mode_lis = [0,1]
for i in K_lis:
    for j in mode_lis:
        gamma_C = 1e-5
        gamma_S = 1e-5

        filename = img1
        k = i
        mode = j

        dataC, dataS, image_size = read_input(filename)
        Gram_K = compute_kernel(gamma_S, gamma_C, dataS, dataC)

        datapoint_his = k_means(Gram_K, k, mode)
        visualplot(datapoint_his, image_size, storename1, k, mode, imagename)
```

The read_input function:

```
def read_input(filename):
    image = Image.open(filename)
    data = np.array(image)
    # color data: RGB for each pixel (10000, 3)
    dataC = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))
    # spatial data: coordinate for each pixel
    dataS = np.array([(i,j) for i in range(data.shape[0]) for j in range(data.shape[1])])
    return dataC, dataS, image.size
```

First, we need to load the image files.

The compute_kernel function:

```
def compute_kernel(gammaS, gammaC, S, C):
    result_k = np.exp(-gammaS*cdist(S, S, 'sqeuclidean'))
    result_k *= np.exp(-gammaC*cdist(C, C, 'sqeuclidean'))
    return result_k
```

Formula: $k(x, x') = e^{-\gamma_S ||S(x) - S(x')||^2} * e^{-\gamma_C ||C(x) - C(x')||^2}$

I set gamma_C = 1e-5 and gamma_S = 1e-5. Then, to calculate the norm by using Euclidean distance.

The initial_data function:

```
def initial data(Gram K, k, mode):
    mean k = np.zeros((k, Gram K.shape[1]), dtype=Gram K.dtype)
    # normal k-means -> random center
    if mode == 0:
        center = np.array(random.sample(range(0, 10000), k))
        mean k = Gram K[center,:]
    # k-means++
    elif mode == 1:
        mean k[\emptyset] = Gram K[np.random.randint(Gram K.shape[\emptyset], size=1), :]
        for cluste id in range(1, k):
            temp dist = np.zeros((len(Gram K), cluste id))
            for i in range(len(Gram_K)):
                for j in range(cluste id):
                   temp_dist[i][j] = np.linalg.norm(Gram K[i]-mean[j])
            dist = np.min(temp dist, axis=1)
            sum = np.sum(dist) * np.random.rand()
            for i in range(len(Gram K)):
                sum -= dist[i]
                if sum <= 0:
                    mean k[cluste id] = Gram K[i]
                    break
    return mean k
```

Depending on the input mode, this procedure generates k-means as the beginning points.

- I set "0" as normal k-means, which gives random k-means
- then, "1" is for k-means++, which tries to let each mean be "far" enough.

The k means function:

```
def k means(Gram K, k, mode):
    datapoint his = []
    mean = initial data(Gram K, k, mode)
    old mean = np.zeros(mean.shape, dtype=Gram K.dtype)
    while np.linalg.norm(mean - old mean) > 1e-10:
        # E-step: classify all samples
        clusters = np.zeros(Gram_K.shape[0], dtype=int)
        for i in range(Gram K.shape[0]):
            J = []
            for j in range(k):
                J.append(np.linalg.norm(Gram K[i] - mean[j]))
            clusters[i] = np.argmin(J)
        datapoint his.append(clusters)
        # M-step: Update center mean
        old mean = mean
        mean = np.zeros(mean.shape, dtype=Gram K.dtype)
        counters = np.zeros(k)
        for i in range(Gram_K.shape[0]):
            mean[clusters[i]] += Gram K[i]
            counters[clusters[i]] += 1
        for i in range(k):
            if counters[i] == 0:
              counters[i] = 1
            mean[i] /= counters[i]
    print("Total No. of iteration(s):", len(datapoint his))
    return datapoint his
```

The primary purpose of performing k-means is this. Each iteration's clusters are stored in the list history. Each k-means iteration can be divided into an E-step and an M-step.

- Sort all data points in E-step by the mean of the nearest data center.
- Update the new data center in M-step in accordance with the E-step outcome.
- Up until the means are covered, use k-means.

The visualplot function:

```
def visualplot(datapoint his, image size, storename, k, mode, imagename):
   color = [ImageColor.getrgb('darkorange'), ImageColor.getrgb('navy'), ImageColor.getrgb('Brown'), ImageColor.getrgb('greenyellow'),
            ImageColor.getrgb('purple'), ImageColor.getrgb('silver'), ImageColor.getrgb('gold'), ImageColor.getrgb('MediumAquamarine'),
             ImageColor.getrgb('black'), ImageColor.getrgb('magenta'), ImageColor.getrgb('peru'), ImageColor.getrgb('green'),
            ImageColor.getrgb('yellow'), ImageColor.getrgb('pink'), ImageColor.getrgb('red') #cyan, dodgerblue, cornflowerblue
   iteration = len(datapoint his)
   for i in range(iteration):
       gif.append(Image.new("RGB", image_size))
       for y in range(image_size[0]):
           for x in range(image size[1]):
           gif[i].putpixel((x, y), color[datapoint_his[i][y*image_size[0]+x]])
   gif[0].save(storename + f"k_means_gif_{imagename}_mode{mode}_k{k}.gif",
               format='GIF',
               save all=True,
               append images=gif[1:],
               duration=400, loop=0)
   gif[-1].save(storename + f"k_means_pic_{imagename}_mode{mode}_K{k}.jpg", format='JPEG')
```

I utilize historical data points as input to build the plot and hand-pick those colors to show the data in a better way for us to compare. I then use PIL to create a picture and save the resulting gif file.

II. Spectral clustering

This section's primary process is to:

- 1. We will generate a gram matrix using the compute_kernel function as the k-means portion and then
- 2. Produce Graph Laplacian L based on the chosen cut.
- 3. To obtain the U matrix, calculate the eigenvalue and eigenvector. And for normalized cut, we must create the matrix T from U by bringing the rows up to norm 1
- 4. Plot the image to show the result

I continue to use the read_input function, initial_data function and k_means function from the Kernel K-means. We need to add two other functions in order to do Spectral clustering.

Unnormalized Laplacian (ratio cut)

The ratio cut function:

```
def ratio_cut(pixel, coord):
    weight = compute_kernel(pixel, coord) #W
    degree = np.diag(np.sum(weight, axis=1)) #D
    L = degree - weight # L = D-W
    eigen_values, eigen_vectors = np.linalg.eig(L)
    idx = np.argsort(eigen_values)[1: K+1]
    U = eigen_vectors[:, idx].real.astype(np.float32)
    return U
```

Formula: L = D - W

Take the degree matrix and the similarity matrix apart. And to express the similarity matrix, we utilize the kernel matrix. The formula and how it is used are shown.

Normalized Laplacian (normalized cut)

The normalized cut function:

```
def normalized_cut(pixel, coord):
   weight = compute_kernel(pixel, coord) #W
   degree = np.diag(np.sum(weight, axis=1)) #D
   degree_square = np.diag(np.power(np.diag(degree), -0.5))
   L_sym = np.eye(weight.shape[0]) - degree_square @ weight @ degree_square #L
   eigen_values, eigen_vectors = np.linalg.eig(L_sym)
   idx = np.argsort(eigen_values)[1: K+1]
   U = eigen_vectors[:, idx].real.astype(np.float32)
   # normalized
   sum_over_row = (np.sum(np.power(U, 2), axis=1) ** 0.5).reshape(-1, 1)
   T = U.copy()
   for i in range(sum_over_row.shape[0]):
       if sum_over_row[i][0] == 0:
           sum_over_row[i][0] = 1
       T[i][0] /= sum_over_row[i][0]
       T[i][1] /= sum_over_row[i][0]
   return T
```

Formula: $L = I - D^{-1}WD^{-1}$

The formula can be used to create a Laplacian matrix, and the illustration that results shows how it is done.

- 1. First, Calculate the first k eigenvectors of L, where k is the number of clusters,
- 2. Second, use those k eigenvectors to build the matrix U. Here, np.linalg.eig is used to assist in computing the outcome.
- 3. Third, for normalized cut, we must create the matrix T from U by bringing the rows up to norm 1. We can use the formula below to implement the matrix T.

$$T \in \mathbb{R}^{n*k}$$
 where $t_{ij} = rac{u_{ij}}{(\sum_k u_{ik}^2)^{(1/2)}}$

Then we can do the visualization with our visualplot function below.

b. experiments settings and results

I. Result of Kernel K-means

Image2.png

	K = 2	K=3	K=4
k-means		الم	
k-means++			

Observation:

Although k-means and k-means++ occasionally provide the same results, k-means++ has a higher level of stability because it begins with random means. K-means suffered from noise at the top of the image for k=4 in image1. K-means and K-means++ produce different results for k=3 in image1. Both of them, k-means for land and sea and k-means++ for dark and light sea, seems reasonable to me.

The fascinating thing is that if k=2, the clusters in image 1 will appear to resemble land and water to human sight. After experimenting with various initial strategies, however, it appears that the distinction between a dark and a light sea is greater than that between land and water. It might be a result of the kernel function we employ, which multiplies two PBF kernels with respect to color and spatial information. It forces k-means to take into account both the color information and the location of the color.

I also try some more clusters (K = 5, 6, 8, 10, 12, 15). As you can see, it can catch some more details but does not guarantee a better result in higher clusters. We still need to depend on the images to decide.

Kernel K-means took less time than Spectral clustering to come out with result.

k-means++ v.s. Random initial

- Both initials may produce the same outcome. However, there is a greater likelihood that a random beginning may produce poor clustering.
- The program's initial random initial may have very close centers. As a result, it takes longer than k-means++ to converge to the final clustering.
- K-mean++ promises to locate distant initial centers. It is crucial to have centers situated apart from one another. Given this assignment's small amount of input data, it might not make a significant difference. Even with a worse beginning, the cost is still acceptable. However, having a solid start would make a significant impact in more complex computational or data applications. As a result, having k-mean++ rather than random is advantageous.

II. Result of Spectral clustering

image1.png

Random from data	K = 2	K=3	K=4
ratio cut			
normalized cut			

<u>random</u>	K = 2	K=3	K=4
ratio cut			
normalized cut			

Observation:

- The difference between a ratio cut and a normalized cut is less noticeable when the image is straightforward and has fewer boundaries.
- The difference between the ratio cut and the normalized cut increases with the number of clusters. Images 1 and 2 both show this to us.
- Similar to what we discovered in the k-means section, k-means is more likely to yield poor results because it begins with random means.
- Spectral clustering takes longer time than Kernel K-means but it can better catch the details by comparing the result on those graphs.

Part4: coordinates in the eigenspace

image1.png

• 2-cluster (1st row is 1st-iteration, 2nd row is final result)

Image2.png

Observation:

- The eigenspace of the data in the same cluster is near. Their coordinates, however, are different.
- The charts for the ratio cut and the normalized cut are very dissimilar.
- I also test k-means graphs. The graphs produced by k-means are all comparable to those produced by k-means++ since their beginning means differ. Only the cluster outcomes are impacted; the coordinates of the data in eigenspace remain unaffected.