ទ្រន្យួចនសមល្ខេងខ្លួំ៦ ស្ងង់ខ្លួំ៦០

ទិញ្ញាសា: រូបទិន្យា

រយៈពេល: ៦០ខានី

ពិឆ្ង: ៥០

I. (១០ តិទូ) ប្រអប់មួយមានទម្ងន់ 100N ស្ថិតនៅស្ង្រៀមនៅលើកម្រាលឥដ្ឋ។ ប្រសិនបើគេដឹងថា មេគុណកកិតស្ដាទិច រវាងប្រអប់នេះ នឹងកម្រាលឥដ្ឋស្មើនឹង 0.4។ គេឲ្យ: cos 30° = 0.86, sin 30° = 0.50 ចូររកកម្លាំងអប្បរមា F ដែលត្រូវប្រើលើប្រអប់នេះដើម្បីឲ្យប្រអប់នេះចាប់ផ្ដើមធ្វើចលនា(ដូចរូប)។

II. (១០ ជិន្ត្) នៅចុងខ្សែមួយបានចងភ្ជាប់នឹងកូនជញ្ជីង 50kg។ គេទាញកូនជញ្ជីងចេញពីទីតាំងលំនឹងបានមុំ 30°។ រកកម្លាំងដែលទាញកូនជញ្ជីងពីទីតាំងលំនឹង និងតំណឹងនៃខ្សែ។ គេឲ្យៈ cos 30° = 0.86, sin 30° = 0.50

- III. (១៥ ចិន្ទ្) ចលនាត្រង់មួយមានសមីការ $x=10+20t-5t^2$ ដោយ x គិតជាម៉ែត្រ (m) និង t គិតជាវិនាទី (s) ។
 - 🥰 កំណត់ប្រភេទនៃចលនា និងគណនាសំទុះ។
 - **ខ**. កណនាល្បឿនខណៈនៅខណៈពេល t = 0 និង t = 2s។
 - ≋. តើចល័តស្ថិតនៅទីតាំងណា នៅខណៈដែលល្បឿនរបស់វាមានតម្លៃស្មើសូន្យ។
- IV. (១៥ តិទ្ចុ) ពិនិត្យមើលរូបខាងក្រោម។ អង្គធាតុ A មានម៉ាស 5.0kg អង្គធាតុ B មានម៉ាស 2.0kg ត្រូវបានចងភ្ជាប់ក្នា ដោយខ្សែមិនយឺត មិននិងមិនគិតម៉ាសហើយឆ្លងកាត់រ៉កមួយ។ គេឃើញអង្គធាតុ A ផ្លាស់ទីទៅស្ដាំឯអង្គធាតុ B ផ្លាស់ទី ទៅខាងឆ្វេង។ ចូរកំណត់សំទុះ និងតំណឹងខ្សែនៃប្រព័ន្ធ។ មេគុណកកិតរវាងអង្គធាតុ A និងផ្ទៃតុគឺ 0.2។

ទ្រន្យួចនសសល្ខេងខ្លួំ១ ខ្ញុំរង់ខ្លួំ៦០

ခ်က္ကာနာ: န့ဗခ်ီအျာ

នេះពេល: ៦០ខានី

ពិឆ្លៈ ៥០

I. (១០ កិន្ត្) ចូររកកម្លាំងអប្បរមា F ដែលត្រូវប្រើលើប្រអប់នេះដើម្បីឲ្យប្រអប់នេះចាប់ផ្តើមធ្វើចលនា

លក្ខខណ្ឌលំនឹង : $\Sigma \vec{F} = \vec{0}$ ឬ $\vec{F} + \vec{f}_s + \vec{F}_N + \vec{w} = \vec{0}$

តាម (ox) : $\vec{f}_x + \vec{f}_s = \vec{0}$ នោះ $F_x - f_s = 0$

: $F_x = f_s \ \c \ F \cos 30^\circ = f_s$

តែ : $f_s = \mu_s F_N$

ពេហ្ន : $F\cos 30^\circ = \mu_{\rm s} F_{
m N}$ (1)

តាម $({
m oy})$: $\vec{\rm f}_{
m N}+\vec{\rm w}+\vec{\rm f}_{
m y}=\vec{0}$ នោះ ${
m F}_{
m N}-{
m w}+{
m F}_{
m y}=0$

ម្យ៉ាងទៀត : $F_N = w - F \sin 30^\circ$ (2)

យកសមីការ (2) ជំនួសក្នុងសមីការ (1)

ពេហ្នេន : $F\cos 30^\circ = \mu_s (w - F\sin 30^\circ)$

: $F\cos 30^\circ = \mu_s w - \mu_s F\sin 30^\circ$

ទាំឲ្យ : $F = \frac{\mu_s w}{\cos 30^\circ + \mu_s \sin 30^\circ}$

ដោយ : $\mu_{\rm s}=0.4$, w = 100N, $\cos 30^{\circ}=0.86$, $\sin 30=0.50$

ពេហ្នេ : $F = \frac{0.4 \times 100}{0.86 + 0.4 \times 0.5} = 37.7N$

ដូចនេះ : F = 37.7N

II. (១០ តិន្ទុ) រកកម្លាំងដែលទាញកូនជញ្ជីងពីទីតាំងលំនឹង និងតំណឹងនៃខ្សែ

លក្ខខណ្ឌលំនឹង :
$$\Sigma \vec{F} = \vec{0}$$
 នោះ $\vec{T} + \vec{R} + \vec{F} + \vec{w} = \vec{0}$

ដោយ :
$$\vec{T} + \vec{R} = \vec{0}$$
 នោះ $T - R = 0$, ឬ $T = R$

ម្យ៉ាងទៀត :
$$w = R\cos 30^\circ$$
 និង $F = R\sin 30^\circ$

ដល់ធ្វើប :
$$\frac{F}{W} = \frac{R \sin 30^{\circ}}{R \cos 30^{\circ}}$$

ផលធ្យើប :
$$\frac{F}{w} = \frac{R \sin 30^{\circ}}{R \cos 30^{\circ}}$$

 នាំឲ្យ :
$$F = \frac{w \sin 30^{\circ}}{\cos 30^{\circ}} = \frac{mg \sin 30^{\circ}}{\cos 30^{\circ}}$$

ដោយ :
$$m = 50$$
kg, $g = 9.80$ m/s²

ពេហ្ន :
$$F = \frac{50 \times 9.80 \times 0.5}{0.86} = 284.88N$$

និង :
$$T = R = \frac{W}{\cos 30^{\circ}} = \frac{mg}{\cos 30^{\circ}}$$

 ពេហន : $T = \frac{50 \times 9.80}{0.86} = 569.76N$

ពេហ្នេន :
$$T = \frac{50 \times 9.80}{0.86} = 569.76N$$

ដូចនេះ :
$$F = 284.88N$$
 និង $T = 569.76N$

III. (១៥ តិឆ្ល)

🥰 កំណត់ប្រភេទនៃចលនា និងគណនាសំទុះ។

ឃើងមាន :
$$x = 10 + 20t - 5t^2$$

មានរាង :
$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

ឃើងហ៊ុន :
$$\frac{1}{2}a = -5 \Rightarrow a = -10 \text{m/s}^2$$
, $v_0 = 20 \text{m/s}$, $x_0 = 10 \text{m}$

ដូចនេះ :
$$a=-10 \mathrm{m/s^2} < 0$$
 ប្រភេទចលនារបស់ចល័តជាចលនាយឺតស្មើ។

$oldsymbol{2}$. គណនាល្បឿនខណៈនៅខណៈពេល $oldsymbol{t}=0$ និង $oldsymbol{t}=2s$ ។

តាមរូបមន្ត :
$$\mathbf{v} = \mathbf{v}_0 + \mathbf{at}$$

$${\mathfrak l}$$
៊ី : $t=0s$, $a=-10m/s^2$, $v_0=20m/s$

ព្រេហ្ន :
$$v = 20 - 10(0) = 20 \text{m/s}$$

$$\vec{v}$$
 : $t = 2s$, $a = -10 \text{m/s}^2$, $v_0 = 20 \text{m/s}$

ពេហ្នេ :
$$v = 20 - 10(2) = 0 \text{m/s}$$

≋. តើចល័តស្ថិតនៅទីតាំងណា នៅខណៈដែលល្បឿនរបស់វាមានតម្លៃស្មើសូន្យ។

យើងមាន : $x = (10 + 20t - 5t^2) \, m$ ហើយល្បឿនស្មើសូន្យកាលណា t = 2s

ព្រេហ្មន : $x = 10 + 20(2) - 5(2)^2 = 30m$

ដូចនេះ : នៅខណៈ $t=2s,\;x=30m$

IV. (១៥ កិន្ទុ) ចូរកំណត់សំទុះ និងតំណឹងខ្សែនៃប្រព័ន្ធ

• ចំពោះអង្គធាតុ A

ពោលការណ៍គ្រឹះនៃឌីណាមិច : $\Sigma \vec{F} = m_A \vec{a}$

ពេសរសេរ : $\vec{f}_k + \vec{T} + \vec{w}_A + \vec{F}_N = m_A \vec{a}$ ពែ $\vec{w}_A + \vec{F}_N = \vec{0}$ ជាតម្លៃ : $T - f_k = m_A a$ ឬ $T = m_A a + f_k$ ដែល $f_k = \mu_k m_A g$

ពេហ្នេន : $T = m_A a + \mu_k m_A g$ (1)

• ចំពោះអង្គធាតុ B

ពោលការណ៍គ្រឹះនៃឌីណាមិច : $\Sigma \vec{F} = m_B \vec{a}$

ពេសរសេរ : $\vec{w}_B + \vec{T} = m_B \vec{a}$

ជាតម្លៃ : $W_B - T = m_B a$ ឬ $m_B g - T = m_B a$

ពេ៌បាន : $T = m_B g - m_B a$ (2)

តាមសមីការ (1) និង (2)

 $: m_A a + \mu_k m_A g = m_B g - m_B a$

ទាំច្យ : $a=\frac{(m_B-\mu_k m_A)\,g}{m_A+m_B}$, $m_A=5kg$, $m_B=2kg$, $\mu_k=0.2$, $g=9.80m/s^2$ ពេហន : $a=\frac{(2-0.2\cdot 5)\,9.80}{5+2}=1.4m/s^2$

តាមសមីការ (2) : $T = m_B g - m_B a = (g-a) \, m_B = (9.80-1.4) \, 2 = 16.8 N \approx 17 N_B = 1.0 \, M_B = 1.$

ដូចនេះ : $a=1.4 m/s^2$ និង T=17N