Rubik's Cubes

with a sprinkle of Combinatorics and Group Theory

Giorgio Grigolo

12 January, 2022

Suppose we had to dismantle a 3x3 cube. We would obtain:

 \bullet 8 \times \bigcirc - Corner pieces

- \bullet 8 × \frown Corner pieces
- $12 \times$ Edge pieces

- \bullet 8 × \bigcirc Corner pieces
- \bullet 6 \times \bullet Center pieces

- \bullet 8 \times \bigcirc Corner pieces
- $12 \times$ Edge pieces
- \bullet 6 \times \bullet Center pieces

Suppose we now had to reconstruct it. In how many ways can we do so?

Consider just the **corner pieces** (),

Consider just the **corner pieces** (),

Let C_n denote the n^{th} corner piece.

Consider just the **corner pieces** (

Let C_n denote the n^{th} corner piece.

Let's insert them one by one:

 C_1 has 8 slots C_2 has 7 slots \vdots C_8 has 1 slot

Consider just the **corner pieces** (),

Let C_n denote the n^{th} corner piece.

Let's insert them one by one:

$$C_1$$
 has 8 slots C_2 has 7 slots \vdots C_8 has 1 slot $8! = {}^8P_8$

Consider now the **edge pieces** ():

Consider now the **edge pieces** ():

Let E_n denote the n^{th} corner piece.

Consider now the edge pieces (

Let E_n denote the n^{th} corner piece.

Let's insert them one by one:

 E_1 has 12 slots E_2 has 11 slots ... E_{12} has 1 slot

Consider now the **edge pieces** (

Let E_n denote the n^{th} corner piece.

Let's insert them one by one:

$$E_1$$
 has 12 slots E_2 has 11 slots \dots E_{12} has 1 slot $12! = {}^{12}P_{12}$

But wait! We're still not done. Each piece can be inserted in the same slot in more than one way:

But wait! We're still not done. Each piece can be inserted in the same slot in more than one way:

For edge pieces:

$$\left\{ \bigcap, \bigcap \right\}$$

$$\left\{ (G, Y), (Y, G) \right\}$$

But wait! We're still not done. Each piece can be inserted in the same slot in more than one way:

For edge pieces:

$$\left\{ \bigcap, \bigcap \right\}$$

$$\left\{ (G, Y), (Y, G) \right\}$$

For **corner** pieces:

$$\left\{ \bigcap, \bigcap, \bigcap \right\}$$

$$\left\{ (Y, G, R), (R, Y, G), (G, R, Y) \right\}$$

But wait! We're still not done. Each piece can be inserted in the same slot in more than one way:

For edge pieces:

$$\left\{ \bigcap, \bigcap \right\}$$

$$\left\{ (G, Y), (Y, G) \right\}$$

For **corner** pieces:

$$\left\{ \bigcap, \bigcap, \bigcap \right\}$$

$$\left\{ (Y, G, R), (R, Y, G), (G, R, Y) \right\}$$

Therefore the total number of ways we can assemble the cube is:

Therefore the total number of ways we can assemble the cube is:

$$\underbrace{12! \times 8!}_{\text{Permutations}} \times \underbrace{2^{12} \times 3^8}_{\text{Orientations}}$$

$$=519,024,039,293,878,272,000$$

Previously we considered all possible reconstructions, but some of them are not solvable.

- Last edge piece must be oriented correctly.
- Last corner piece must be oriented correctly.
- Last two corner pieces must be placed correctly.

Invalid states

- wrong \mathbf{edge} orientation.

Invalid states

- wrong **edge** orientation.

- wrong **corner** orientation.

Invalid states

Wrong placement for last 2 corners (upper left/right on the front facing side).

$$3^{8} = 3 \times 3 \times 3 \times \cdots \times 3 \times 3$$

$$2^{12} = 2 \times 2 \times 2 \times \cdots \times 2 \times 2$$

$$8! = 8 \times 7 \times 6 \times \cdots \times 2 \times 1$$

$$12! = 12 \times 11 \times 10 \times \cdots \times 2 \times 1$$

$$3^{8} = 3 \times 3 \times 3 \times \cdots \times 3 \times 3$$

$$2^{12} = 2 \times 2 \times 2 \times \cdots \times 2 \times 2$$

$$8! = 8 \times 7 \times 6 \times \cdots \times 2 \times 1$$

$$12! = 12 \times 11 \times 10 \times \cdots \times 2 \times 1$$

$$3^{8} = 3 \times 3 \times 3 \times \cdots \times 3 \times 3$$

$$2^{12} = 2 \times 2 \times 2 \times \cdots \times 2 \times 2$$

$$8! = 8 \times 7 \times 6 \times \cdots \times 2 \times 1$$

$$12! = 12 \times 11 \times 10 \times \cdots \times 2 \times 1$$

$$3^{8} = 3 \times 3 \times 3 \times \cdots \times 3 \times 3$$

$$2^{12} = 2 \times 2 \times 2 \times \cdots \times 2 \times 2$$

$$8! = 8 \times 7 \times 6 \times \cdots \times 2 \times 1$$

$$12! = 12 \times 11 \times 10 \times \cdots \times 2 \times 1$$

Thus, the total number of ways a rubik's cube can be shuffled is

Thus, the total number of ways a rubik's cube can be shuffled is

$$\underbrace{\frac{12! \times 8!}{2! \times 8! \times 2^{12} \times 3^8}}_{2 \times 3 \times 2}$$

$$=43,252,003,274,489,856,000$$

Some notation

Definition:

A *group* is a non-empty set G equipped with a binary operation $*: G \times G \to G$ that satisfies the following axioms:

Definition:

A group is a non-empty set G equipped with a binary operation $*:G\times G\to G$ that satisfies the following axioms:

Closure: $\forall a, b \in G, a * b \in G$

Definition:

A *group* is a non-empty set G equipped with a binary operation $*: G \times G \to G$ that satisfies the following axioms:

- **Closure:** $\forall a, b \in G, a * b \in G$
- \blacksquare Associativity: $\forall\, a,b,c\in G$ such that (a*b)*c=a*(b*c)

Definition:

A *group* is a non-empty set G equipped with a binary operation $*:G\times G\to G$ that satisfies the following axioms:

- **Closure:** $\forall a, b \in G, a * b \in G$
- \blacksquare Associativity: $\forall\, a,b,c\in G$ such that (a*b)*c=a*(b*c)
- **Identity:** $\exists e \in G$ such that a * e = e * a = a

Definition:

A *group* is a non-empty set G equipped with a binary operation $*: G \times G \to G$ that satisfies the following axioms:

- **Closure:** $\forall a, b \in G, a * b \in G$
- \blacksquare Associativity: $\forall\, a,b,c\in G$ such that (a*b)*c=a*(b*c)
- **Identity:** $\exists e \in G$ such that a * e = e * a = a
- Inverse: $\forall a \in G, \exists a^{-1} \text{ such that } a * a^{-1} = e$

Let us now define our group of interest:

Let us now define our group of interest:

■ Let G denote the set of all possible moves that can be done on the cube i.e. U L R, U, L R, · · ·

Let us now define our group of interest:

- Let G denote the set of all possible moves that can be done on the cube i.e. U L R, U, L R, · · ·
- Two moves will be considered the same if they result in the same configuration of the cube.

And now the operation under which G is defined:

And now the operation under which G is defined:

If M_1 and M_2 are two moves, then $M_1 \ast M_2$ is the move where you do M_1 followed by $M_2.$

And now the operation under which G is defined:

If M_1 and M_2 are two moves, then $M_1 \ast M_2$ is the move where you do M_1 followed by M_2 .

So, if
$$M_1 = \mathbf{L} \ \mathbf{R} \ \mathbf{B} \ \mathbf{U}$$
 and $M_2 = \mathbf{D} \ \mathbf{F} \ \mathbf{L}$, then $M_1 * M_2 = \mathbf{L} \ \mathbf{R} \ \mathbf{B} \ \mathbf{U} \ \mathbf{D} \ \mathbf{F} \ \mathbf{L}$

Proving it! - Closure

This one is trivial - for any two moves M_1 and M_2 that we choose, we will surely obtain another cube state which is reachable by a move M_3 .

Proving it! - Associativity

Associativity follows neatly from the physical nature of rotating the sides. Performing $M_1 \ast M_2$ first, then M_3 is equivalent to first doing M_1 , followed by $M_2 \ast M_3$.

This one is trickier - so let's consider a simple case: $M={\bf L}$. Performing ${\bf L} \ {\bf L}$ returns the cube to its original state.

This one is trickier - so let's consider a simple case: $M={\bf L}$. Performing ${\bf L} \ {\bf L}$ returns the cube to its original state.

This one is trickier - so let's consider a simple case: $M={\bf L}$. Performing ${\bf L} \ {\bf L}$ returns the cube to its original state.

For simplicity, we will denote the inverse of M as M^{-1} and refer to it as a counter-clockwise quarter turn.

For simplicity, we will denote the inverse of M as M^{-1} and refer to it as a counter-clockwise quarter turn.

 $\mathbf{L'} = \mathbf{L} \; \mathbf{L} \; \mathbf{L}$

R' = R R R

 $U' = U \ U \ U$

D' = D D D

F' = F F F

B' = B B B

With this notation we can now conveniently define an inverse of any arbitrary move. For any move performed, we will reverse it and invert each single turn like so:

With this notation we can now conveniently define an inverse of any arbitrary move. For any move performed, we will reverse it and invert each single turn like so:

$$M = \ \mbox{U D' R L' F B' U D'} \label{eq:mass}$$

$$M^{-1} = \ \mbox{D U' B F' L R' D U'} \label{eq:mass}$$

Proving it! - Identity

Finally, we need to show there exists a move, that when performed, leaves the cube untouched. This move, denoted by e is, well, do nothing.

For any move M we have:

$$M * e = M$$

Proposition:

There exists an infinite number of distinct moves that leave the cube untouched.

QED

After showing the 4 group axioms we can conclude that our Rubik's Cube set, or rather, our set of many Rubik's Cubes, is indeed a group.

It doesn't stop here!

Metric Spaces Equivalence Classes Group Generators

(not) Burnsides's Lemma God's Algorithm God's Number

Conjugation Commutators Group Actions

https://people.math.harvard.edu/~jjchen/docs/Group%20Theory%20and%20the%20Rubik's%20Cube.pdf https://www.jaapsch.net/puzzles/theory.htm