AOC I

Atividades - simplificação de Circuitos

$$(2)$$
 Δ) $X = \bar{A}\bar{C}D + \bar{A}BC + \bar{A}\bar{B}\bar{C} + \bar{A}\bar{C}\bar{D}$ (Δ)
 $X = \bar{A}BD + \bar{B}C\bar{D} + \bar{B}\bar{C}D + \bar{A}\bar{B}\bar{D}$ (Δ)

(3-)
$$A = A' \cdot B' \cdot C' + A' \cdot B \cdot C + A' \cdot B \cdot C' + A \cdot B' \cdot C' + A \cdot B \cdot C'$$

= $A' \cdot B \cdot C + (A' \cdot B' + A' \cdot B + A \cdot B' + A \cdot B) \cdot C'$

= $A' \cdot B \cdot C + (A' \cdot (B' + B) + A \cdot (B' + B))) \cdot C'$

= $A' \cdot B \cdot C + (A' + A) \cdot C'$

= $A' \cdot B \cdot C + C'$

= $A' \cdot B + C'$
 $X + (X' \cdot Y) = X + Y$

B)
$$S = (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + C)$$

 $= O + A \cdot \overline{B} + A \cdot C + B \cdot \overline{A} + O + B \cdot C + C \cdot \overline{A} + C \cdot \overline{B} + C$
 $= A \cdot \overline{B} + B \cdot \overline{A} + C(A + B + \overline{A} + \overline{B} + C)$
 $= A \cdot \overline{B} + B \cdot \overline{A} + C(C)$
 $= A \cdot \overline{B} + B \cdot \overline{A} + C$

$$(4)$$
-a) $S = A \cdot B' \cdot C' + A' \cdot B' \cdot C + A' \cdot B \cdot C + A \cdot B' \cdot C + A \cdot B \cdot C$

A BCS

0 0 0 1 1 \overline{B}

0 1 0 0 \overline{A}

0 1 0 0 \overline{A}

1 0 0 0 \overline{A}

1 1 0 0 \overline{A}