Recursividade

Aula 06 Recursividade

Introdução ao Conceito

Programação II, 2020-2021

2021-04-14

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Recursividade

		. ~
67	Introd	lucão

Sumário

- 2 Definição
- 3 Complexidade
- 4 Relação de Recorrência
- 5 Exemplo 1: A Função Factorial
- 6 Relação de Recorrência: Síntese
- **7** Exemplo 2: Cálculo das Combinações
- 8 Relação de Recorrência: Classificação
- 9 Exemplo 3: Torres de Hanói
- Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Terminação Casos Atípicos

Recursividade

		. ~
67	Introd	lucão

Sumário

- 2 Definição
- 3 Complexidade
- 4 Relação de Recorrência
- 5 Exemplo 1: A Função Factorial
- 6 Relação de Recorrência: Síntese
- **7** Exemplo 2: Cálculo das Combinações
- 8 Relação de Recorrência: Classificação
- 9 Exemplo 3: Torres de Hanói
- Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Terminação Casos Atípicos

- Se tivesse de descrever o que é uma boneca matryoshka, como o faria?
- Poderia dizer que é uma boneca oca que contém outra boneca oca, que contém outra e assim sucessivamente
- Mas também pode dar uma definição alternativa porventura mais simples:
 - cutra banaca *manyashka*.
- Este é um exemplo de uma definição recursiva.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Hanói

Definição Recursiva:

Condições de

Terminação Casos Atípicos

- Se tivesse de descrever o que é uma boneca matryoshka, como o faria?

- Este é um exemplo de uma definição recursiva.

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Se tivesse de descrever o que é uma boneca matryoshka, como o faria?
- Poderia dizer que é uma boneca oca que contém outra boneca oca, que contém outra e assim sucessivamente.
- Este é um exemplo de uma definição recursiva.

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Se tivesse de descrever o que é uma boneca matryoshka, como o faria?
- Poderia dizer que é uma boneca oca que contém outra boneca oca, que contém outra e assim sucessivamente.
- Mas também pode dar uma definição alternativa, porventura mais simples:
 - Uma boneca matryoshka é uma boneca oca que contém outra boneca matryoshka.
- Este é um exemplo de uma definição recursiva.

introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Se tivesse de descrever o que é uma boneca matryoshka, como o faria?
- Poderia dizer que é uma boneca oca que contém outra boneca oca, que contém outra e assim sucessivamente.
- Mas também pode dar uma definição alternativa, porventura mais simples:
 - Uma boneca matryoshka é uma boneca oca que contém outra boneca matryoshka.
- Este é um exemplo de uma definição recursiva.

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Terminação Casos Atípicos Casos com Interesse

- Se tivesse de descrever o que é uma boneca matryoshka, como o faria?
- Poderia dizer que é uma boneca oca que contém outra boneca oca, que contém outra e assim sucessivamente.
- Mas também pode dar uma definição alternativa, porventura mais simples:
 - Uma boneca matryoshka é uma boneca oca que contém outra boneca matryoshka.
- Este é um exemplo de uma definição recursiva.

Introduc

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Definição Recursiva

Uma definição de um conceito diz-se recursiva se envolve uma ou mais instâncias do próprio conceito.

Recursividade

Se ainda nao entendeu, ver *recursividade*. Podemos encontrar recursividade um pouco por todo o lado:

- Na descrição de certas formas geométricas.
- Nas imagens refletidas em espelhos paralelos.
- Na definição de certas funções matemáticas.
- Na sintaxe das linguagens de programação.

(circa 1904

Recursividade

Introdução

. . .

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Uma definição de um conceito diz-se recursiva se envolver uma ou mais instâncias do próprio conceito.

Recursividad

Se ainda não entendeu, ver *recursividade*. Podemos encontrar recursividade um pouco por todo o lado:

- Na descrição de certas formas geométricas.
- Nas imagens refletidas em espelhos paralelos.
- Na definição de certas funções matemáticas.
- Na sintaxe das linguagens de programação.

(circa 1904

Introdução

Complexidade

Relação de

Recorrência Exemplo 1: A Função

Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Hanói Definicão Recursiva:

Condições de Terminação

Definição Recursiva

Uma definição de um conceito diz-se recursiva se envolver uma ou mais instâncias do próprio conceito.

Recursividade

Se ainda não entendeu, ver recursividade.

Podemos encontrar recursividade um pouco por todo o lado:

- Na descrição de certas formas geométricas.
- Nas imagens refletidas em espelhos paralelos.
- Na definição de certas funções matemáticas.
- Na sintaxe das linguagens de programação.

(circa 1904

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Terminação Casos Atípicos

Casos com Interesse

Definição Recursiva

Uma definição de um conceito diz-se recursiva se envolver uma ou mais instâncias do próprio conceito.

Recursividade

Se ainda não entendeu, ver recursividade.

Podemos encontrar recursividade um pouco por todo o lado:

Definição Recursiva

Uma definição de um conceito diz-se recursiva se envolver uma ou mais instâncias do próprio conceito.

Recursividade

Se ainda não entendeu, ver *recursividade*. Podemos encontrar recursividade um pouco por todo o lado:

- Na descrição de certas formas geométricas.
- Nas imagens refletidas em espelhos paralelos.
- Na definição de certas funções matemáticas.
- Na sintaxe das linguagens de programação.

(circa 1904)

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação

Definição Recursiva

Uma definição de um conceito diz-se recursiva se envolver uma ou mais instâncias do próprio conceito.

Recursividade

Se ainda não entendeu, ver *recursividade*. Podemos encontrar recursividade um pouco por todo o lado:

- Na descrição de certas formas geométricas.
- Nas imagens refletidas em espelhos paralelos.
- Na definição de certas funções matemáticas.
- Na sintaxe das linguagens de programação.

(circa 1904)

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação

Definição Recursiva

Uma definição de um conceito diz-se recursiva se envolver uma ou mais instâncias do próprio conceito.

Recursividade

Se ainda não entendeu, ver *recursividade*. Podemos encontrar recursividade um pouco por todo o lado:

- Na descrição de certas formas geométricas.
- Nas imagens refletidas em espelhos paralelos.
- Na definição de certas funções matemáticas.
- Na sintaxe das linguagens de programação.

(circa 1904)

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação

Definição Recursiva

Uma definição de um conceito diz-se recursiva se envolver uma ou mais instâncias do próprio conceito.

Recursividade

Se ainda não entendeu, ver *recursividade*. Podemos encontrar recursividade um pouco por todo o lado:

- Na descrição de certas formas geométricas.
- Nas imagens refletidas em espelhos paralelos.
- Na definição de certas funções matemáticas.
- Na sintaxe das linguagens de programação.

(circa 1904)

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

 Como veremos, as definições recursivas podem também aparecer nos dois aspectos essenciais da programação:

- nos algoritmos;
- nas estruturas de dados.
- Usam-se definições recursivas porque frequentemente permitem descrever problemas complexos de forma simples.
- Desde Programação 1 temos vindo a apresentar e aplicar tecnologias e métodos para lidar com a complexidade inerente à resolução de problemas.
- Uma característica comum à maioria delas é o facto de reduzirem a redundância do código necessário para a solução.
- A estratégia consiste em tirar proveito das semelhanças formais entre as várias partes do código.

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Como veremos, as definições recursivas podem também aparecer nos dois aspectos essenciais da programação:
 - nos algoritmos;
 - nas estruturas de dados.
- Usam-se definições recursivas porque frequentemente permitem descrever problemas complexos de forma simples.
- Desde Programação 1 temos vindo a apresentar e aplicar tecnologias e métodos para lidar com a complexidade inerente à resolução de problemas.
- Uma característica comum à maioria delas é o facto de reduzirem a redundância do código necessário para a solução.
- A estratégia consiste em tirar proveito das semelhanças formais entre as várias partes do código.

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

 Como veremos, as definições recursivas podem também aparecer nos dois aspectos essenciais da programação:

- nos algoritmos;
- nas estruturas de dados.
- Usam-se definições recursivas porque frequentemente permitem descrever problemas complexos de forma simples.
- Desde Programação 1 temos vindo a apresentar e aplicar tecnologias e métodos para lidar com a complexidade inerente à resolução de problemas.
- Uma característica comum à maioria delas é o facto de reduzirem a redundância do código necessário para a solução.
- A estratégia consiste em tirar proveito das semelhanças formais entre as várias partes do código.

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

 Como veremos, as definições recursivas podem também aparecer nos dois aspectos essenciais da programação:

- nos algoritmos;
- nas estruturas de dados.
- Usam-se definições recursivas porque frequentemente permitem descrever problemas complexos de forma simples.
- Desde Programação 1 temos vindo a apresentar e aplicar tecnologias e métodos para lidar com a complexidade inerente à resolução de problemas.
- Uma característica comum à maioria delas é o facto de reduzirem a redundância do código necessário para a solução.
- A estratégia consiste em tirar proveito das semelhanças formais entre as várias partes do código.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

 Como veremos, as definições recursivas podem também aparecer nos dois aspectos essenciais da programação:

- nos algoritmos;
- nas estruturas de dados.
- Usam-se definições recursivas porque frequentemente permitem descrever problemas complexos de forma simples.
- Desde Programação 1 temos vindo a apresentar e aplicar tecnologias e métodos para lidar com a complexidade inerente à resolução de problemas.
- Uma característica comum à maioria delas é o facto de reduzirem a redundância do código necessário para a solução.
- A estratégia consiste em tirar proveito das semelhanças formais entre as várias partes do código.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

 Como veremos, as definições recursivas podem também aparecer nos dois aspectos essenciais da programação:

- nos algoritmos;
- nas estruturas de dados.
- Usam-se definições recursivas porque frequentemente permitem descrever problemas complexos de forma simples.
- Desde Programação 1 temos vindo a apresentar e aplicar tecnologias e métodos para lidar com a complexidade inerente à resolução de problemas.
- Uma característica comum à maioria delas é o facto de reduzirem a redundância do código necessário para a solução.
- A estratégia consiste em tirar proveito das semelhanças formais entre as várias partes do código.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

 Como veremos, as definições recursivas podem também aparecer nos dois aspectos essenciais da programação:

- nos algoritmos;
- nas estruturas de dados.
- Usam-se definições recursivas porque frequentemente permitem descrever problemas complexos de forma simples.
- Desde Programação 1 temos vindo a apresentar e aplicar tecnologias e métodos para lidar com a complexidade inerente à resolução de problemas.
- Uma característica comum à maioria delas é o facto de reduzirem a redundância do código necessário para a solução.
- A estratégia consiste em tirar proveito das semelhanças formais entre as várias partes do código.

Introdução

Definição

Complexidad

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Vejamos alguns casos

- Variáveis: permitem que o mesmo código produza resultados diferentes para dados diferentes.
- Instrução iterativa: permite substituir uma sequência de comandos estruturalmente semelhantes pela repetição de um único comando (geralmente parametrizado com variáveis auxiliares).
- Funções: permitem modularizar certas sequências de operações, transformando-as numa nova operação abstrata, que pode ser reutilizada múltiplas vezes.
 Promovem uma separação clara entre a utilização da função e a respectiva implementação. Quem a utiliza, delega a responsabilidade da resolução na função. Quem a implementa, pode livremente escolher o melhor algoritmo.

Introdução Definição

Complexidade

Relação de

Factorial

Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Vejamos alguns casos:

- Variáveis: permitem que o mesmo código produza resultados diferentes para dados diferentes.
- Instrução iterativa: permite substituir uma sequência de comandos estruturalmente semelhantes pela repetição de um único comando (geralmente parametrizado com variáveis auxiliares).
- Funções: permitem modularizar certas sequências de operações, transformando-as numa nova operação abstrata, que pode ser reutilizada múltiplas vezes.
 Promovem uma separação clara entre a utilização da função e a respectiva implementação. Quem a utiliza, delega a responsabilidade da resolução na função. Quem a implementa, pode livremente escolher o melhor algoritmo.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Vejamos alguns casos:

- Variáveis: permitem que o mesmo código produza resultados diferentes para dados diferentes.
- Instrução iterativa: permite substituir uma sequência de comandos estruturalmente semelhantes pela repetição de um único comando (geralmente parametrizado com variáveis auxiliares).
- Funções: permitem modularizar certas sequências de operações, transformando-as numa nova operação abstrata, que pode ser reutilizada múltiplas vezes.
 Promovem uma separação clara entre a utilização da função e a respectiva implementação. Quem a utiliza, delega a responsabilidade da resolução na função. Quem a implementa, pode livremente escolher o melhor algoritmo.

Introdução

Definição Complexidade

Joinplexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de

Recorrência: Síntese Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atínicos

Vejamos alguns casos:

- Variáveis: permitem que o mesmo código produza resultados diferentes para dados diferentes.
- Instrução iterativa: permite substituir uma sequência de comandos estruturalmente semelhantes pela repetição de um único comando (geralmente parametrizado com variáveis auxiliares).
- Funções: permitem modularizar certas sequências de operações, transformando-as numa nova operação abstrata, que pode ser reutilizada múltiplas vezes.
 Promovem uma separação clara entre a utilização da função e a respectiva implementação. Quem a utiliza, delega a responsabilidade da resolução na função. Quem a implementa, pode livremente escolher o melhor algoritmo.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atínicos

Vejamos alguns casos:

- Variáveis: permitem que o mesmo código produza resultados diferentes para dados diferentes.
- Instrução iterativa: permite substituir uma sequência de comandos estruturalmente semelhantes pela repetição de um único comando (geralmente parametrizado com variáveis auxiliares).
- Funções: permitem modularizar certas sequências de operações, transformando-as numa nova operação abstrata, que pode ser reutilizada múltiplas vezes.
 Promovem uma separação clara entre a utilização da função e a respectiva implementação. Quem a utiliza, delega a responsabilidade da resolução na função. Quem a implementa, pode livremente escolher o melhor algoritmo.

Introdução

Definição

Complexidad

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Relação de Recorrência

- O caso das funções é particularmente interessante. Se quem as implementa é livre para escolher o melhor algoritmo, porque não escolher um que utiliza a própria função?
- Se o problema se presta a ser descrito recursivamente então porque não implementá-lo da mesma forma?
- Para se poder fazer isso mesmo torna-se necessário ter uma descrição recursiva formal do problema: esse é o papel das Relações de Recorrência.
- Uma relação de recorrência é uma formulação recursiva formal de um problema.
- As relações de recorrência podem ser sempre implementadas de uma forma iterativa ou de uma forma recursiva.
- A implementação recursiva é estruturalmente muito próxima da própria relação de recorrência (donde resulta a sua simplicidade).

Recursividade

Introdução

Definição

Complexidade

Relação de

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

Relação de Recorrência

- O caso das funções é particularmente interessante. Se quem as implementa é livre para escolher o melhor algoritmo, porque não escolher um que utiliza a própria função?
- Se o problema se presta a ser descrito recursivamente, então porque não implementá-lo da mesma forma?
- Para se poder fazer isso mesmo torna-se necessário ter uma descrição recursiva formal do problema: esse é o papel das Relações de Recorrência.
- Uma relação de recorrência é uma formulação recursiva formal de um problema.
- As relações de recorrência podem ser sempre implementadas de uma forma iterativa ou de uma forma recursiva.
- A implementação recursiva é estruturalmente muito próxima da própria relação de recorrência (donde resulta a sua simplicidade).

Introdução

Definição

Complexidade

Relação Recorrê

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

Relação de Recorrência

 O caso das funções é particularmente interessante. Se quem as implementa é livre para escolher o melhor algoritmo, porque não escolher um que utiliza a própria função?

- Se o problema se presta a ser descrito recursivamente, então porque não implementá-lo da mesma forma?
- Para se poder fazer isso mesmo torna-se necessário ter uma descrição recursiva formal do problema: esse é o papel das Relações de Recorrência.
- Uma relação de recorrência é uma formulação recursiva formal de um problema.
- As relações de recorrência podem ser sempre implementadas de uma forma iterativa ou de uma forma recursiva.
- A implementação recursiva é estruturalmente muito próxima da própria relação de recorrência (donde resulta a sua simplicidade).

Introdução

Definição

Complexidade

Relação Recorrêr

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atínicos

- O caso das funções é particularmente interessante. Se quem as implementa é livre para escolher o melhor algoritmo, porque não escolher um que utiliza a própria função?
- Se o problema se presta a ser descrito recursivamente, então porque não implementá-lo da mesma forma?
- Para se poder fazer isso mesmo torna-se necessário ter uma descrição recursiva formal do problema: esse é o papel das Relações de Recorrência.
- Uma relação de recorrência é uma formulação recursiva formal de um problema.
- As relações de recorrência podem ser sempre implementadas de uma forma iterativa ou de uma forma recursiva.
- A implementação recursiva é estruturalmente muito próxima da própria relação de recorrência (donde resulta a sua simplicidade).

Definição

Complexidade

Relação d Recorrên

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- O caso das funções é particularmente interessante. Se quem as implementa é livre para escolher o melhor algoritmo, porque não escolher um que utiliza a própria função?
- Se o problema se presta a ser descrito recursivamente, então porque não implementá-lo da mesma forma?
- Para se poder fazer isso mesmo torna-se necessário ter uma descrição recursiva formal do problema: esse é o papel das Relações de Recorrência.
- Uma relação de recorrência é uma formulação recursiva formal de um problema.
- As relações de recorrência podem ser sempre implementadas de uma forma iterativa ou de uma forma recursiva.
- A implementação recursiva é estruturalmente muito próxima da própria relação de recorrência (donde resulta a sua simplicidade).

Definição

Complexidade

Relação o

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

função?

 O caso das funções é particularmente interessante. Se quem as implementa é livre para escolher o melhor algoritmo, porque não escolher um que utiliza a própria

- Se o problema se presta a ser descrito recursivamente, então porque não implementá-lo da mesma forma?
- Para se poder fazer isso mesmo torna-se necessário ter uma descrição recursiva formal do problema: esse é o papel das Relações de Recorrência.
- Uma relação de recorrência é uma formulação recursiva formal de um problema.
- As relações de recorrência podem ser sempre implementadas de uma forma iterativa ou de uma forma recursiva.
- A implementação recursiva é estruturalmente muito próxima da própria relação de recorrência (donde resulta a sua simplicidade).

Introdução

Definição

Complexidade

Recorrên

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Relação de Recorrência

 O caso das funções é particularmente interessante. Se quem as implementa é livre para escolher o melhor algoritmo, porque não escolher um que utiliza a própria função?

- Se o problema se presta a ser descrito recursivamente, então porque não implementá-lo da mesma forma?
- Para se poder fazer isso mesmo torna-se necessário ter uma descrição recursiva formal do problema: esse é o papel das Relações de Recorrência.
- Uma relação de recorrência é uma formulação recursiva formal de um problema.
- As relações de recorrência podem ser sempre implementadas de uma forma iterativa ou de uma forma recursiva.
- A implementação recursiva é estruturalmente muito próxima da própria relação de recorrência (donde resulta a sua simplicidade).

Introdução

Definição

Complexidade

Relação (Recorrên

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Exemplo: a função factorial

Fórmula iterativa

$$n! = \begin{cases} \prod_{k=1}^{n} k, & n \in \mathbb{N} \\ 1, & n = 0 \end{cases}$$

Fórmula recursiva (relação de recorrência)

$$n! = \begin{cases} n \times (n-1)! & , n \in \mathbb{I} \\ 1 & , n = 0 \end{cases}$$

Recursividade

Introdução

Definição

Complexidade

Relação de

Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Fórmula iterativa:

$$n! = \begin{cases} \prod_{k=1}^{n} k, & n \in \mathbb{N} \\ 1, & n = 0 \end{cases}$$

• Fórmula recursiva (relação de recorrência):

$$n! = \begin{cases} n \times (n-1)! & , n \in \mathbb{N} \\ 1 & , n = 0 \end{cases}$$

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Fórmula iterativa:

$$n! = \begin{cases} \prod_{k=1}^{n} k, & n \in \mathbb{N} \\ 1, & n = 0 \end{cases}$$

Fórmula recursiva (relação de recorrência):

$$n! = \left\{ egin{array}{ll} n imes (n-1)! & , n \in \mathbb{N} \\ 1 & , n = 0 \end{array} \right.$$

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

```
static int factorial(int n)
{
   assert n >= 0;
   int result = 1;
   for (int i=2; i <= n; i++)
      result = result * i;
   return result;
}</pre>
```

$$n! = 1 \times 2 \times \cdots \times (n-1) \times r$$

O índice pode variar do caso limite C até ao valor *n*, ou *vice-versa*.

Implementação Recursiva

static int factorial(int n)
{
 assert n >= 0;
 int result = 1;
 if (n > 1)
 result = n * factorial(n - 1);
 return result;

$$n! = n \times ((n-1) \times \cdots \times (2 \times (1)) \cdots$$

O argumento varia na direcção do caso limite (de n até 0)

ão de rrência

olo 1: A Função

ao de rrência: Síntese plo 2: Cálculo combinações

ião de rrência: ificação

plo 3: Torres de

ição Recursiva: ições de nação 3 Atípicos

s Atipicos s com Interesse

```
static int factorial (int n)
   assert n >= 0;
   int result = 1:
   for (int i=2; i <= n; i++)</pre>
      result = result * i:
   return result:
```

$$n! = 1 \times 2 \times \cdots \times (n-1) \times n$$

O índice pode variar do caso limite 0 até ao valor n. ou vice-versa.

rrência: Síntese ão de

$$n! = n \times ((n-1) \times \cdots \times (2 \times (1)) \cdots$$

1: A Função ão de

plo 2: Cálculo ombinações

rrência: ificação

plo 3: Torres de ição Recursiva:

icões de nação Atípicos

com Interesse

Exemplo: a função factorial

Introdução Definição Complexidade

Implementação Iterativa

```
static int factorial(int n)
{
   assert n >= 0;
   int result = 1;
   for (int i=2; i <= n; i++)
      result = result * i;
   return result;
}</pre>
```

$$n! = 1 \times 2 \times \cdots \times (n-1) \times n$$

O índice pode variar do caso limite 0 até ao valor *n*, ou *vice-versa*.

Implementação Recursiva

```
static int factorial(int n)
{
   assert n >= 0;
   int result = 1;
   if (n > 1)
      result = n * factorial(n - 1);
   return result;
}
```

 $n! = n \times ((n-1) \times \cdots \times (2 \times (1)) \cdots$

O argumento varia na direcção do caso limite (de *n* até 0).

ão de rrência

olo 1: A Função ial

ão de rrência: Síntese

combinações cão de rrência: ificação

plo 3: Torres de i

ição Recursiva: ições de nação s Atípicos

s Atipicos s com Interesse

```
static int factorial(int n)
{
   assert n >= 0;
   int result = 1;
   for (int i=2; i <= n; i++)
      result = result * i;
   return result;
}</pre>
```

$$n! = 1 \times 2 \times \cdots \times (n-1) \times n$$

O índice pode variar do caso limite 0 até ao valor *n*, ou *vice-versa*.

Implementação Recursiva

```
static int factorial(int n)
{
   assert n >= 0;
   int result = 1;
   if (n > 1)
      result = n * (factorial(n - 1);)
   return result;
}
```

 $n! = n \times ((n-1) \times \cdots \times (2 \times (1)) \cdots)$ O argumento varia na direcção do caso limite (de n até 0).

plo 1: A Funçã

ão de rrência: Síntese plo 2: Cálculo combinações

ao de rrência: ificação

ição Recursiva: ições de nação

Atípicos com Interesse

Relação de Recorrência: Síntese

Método Iterativo (Repetitivo)

Método Recursivo

Recursividade

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

 O algoritmo assenta num ciclo em que o índice pode variar desde o valor correspondente às situações limite até ao valor pretendido.

Método Recursivo

- Uma solução recursiva para um problema é expressa em função de si própria.
- Para que se atinja uma solução, cada invocação recursiva deve estar mais próxima de uma situação limite.
- Método poderoso e compacto de resolução de problemas mas potencialmente menos eficiente em termos de recursos pois tem de guardar o estado das várias invocações da função.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Relação de Recorrência: Síntese

Método Iterativo (Repetitivo)

 O algoritmo assenta num ciclo em que o índice pode variar desde o valor correspondente às situações limite até ao valor pretendido.

Método Recursivo

- Uma solução recursiva para um problema é expressa em função de si própria.
- Para que se atinja uma solução, cada invocação recursiva deve estar mais próxima de uma situação limite.
- Método poderoso e compacto de resolução de problemas mas potencialmente menos eficiente em termos de recursos pois tem de guardar o estado das várias invocações da função.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

 O algoritmo assenta num ciclo em que o índice pode variar desde o valor correspondente às situações limite até ao valor pretendido.

Método Recursivo

- Uma solução recursiva para um problema é expressa em função de si própria.
- Para que se atinja uma solução, cada invocação recursiva deve estar mais próxima de uma situação limite.
- Método poderoso e compacto de resolução de problemas mas potencialmente menos eficiente em termos de recursos pois tem de guardar o estado das várias invocações da função.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

 O algoritmo assenta num ciclo em que o índice pode variar desde o valor correspondente às situações limite até ao valor pretendido.

Método Recursivo

- Uma solução recursiva para um problema é expressa em função de si própria.
- Para que se atinja uma solução, cada invocação recursiva deve estar mais próxima de uma situação limite.
- Método poderoso e compacto de resolução de problemas mas potencialmente menos eficiente em termos de recursos pois tem de guardar o estado das várias invocações da função.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

 O algoritmo assenta num ciclo em que o índice pode variar desde o valor correspondente às situações limite até ao valor pretendido.

Método Recursivo

- Uma solução recursiva para um problema é expressa em função de si própria.
- Para que se atinja uma solução, cada invocação recursiva deve estar mais próxima de uma situação limite.
- Método poderoso e compacto de resolução de problemas mas potencialmente menos eficiente em termos de recursos pois tem de guardar o estado das várias invocações da função.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Método Iterativo (Repetitivo)
 - O algoritmo assenta num ciclo em que o índice pode variar desde o valor correspondente às situações limite até ao valor pretendido.

- Uma solução recursiva para um problema é expressa em função de si própria.
- Para que se atinja uma solução, cada invocação recursiva deve estar mais próxima de uma situação limite.
- Método poderoso e compacto de resolução de problemas mas potencialmente menos eficiente em termos de recursos pois tem de guardar o estado das várias invocações da função.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Fórmula:

$$C_k^n = \frac{A_k^n}{A_k^k} = \frac{n \times (n-1) \times \dots \times (n-k+1)}{k!}$$
$$= \frac{n!}{(n-k)! \times k!}, \text{ com } n, k \in \mathbb{N}_0 \land n \ge k$$

- A aplicação destas fórmulas pode levantar problemas de cálculo numérico devido ao facto de os registos internos de armazenamento de um valor terem uma capacidade limitada
- Exemplo

$$C_{23}^{25} = rac{15511210043330985984000000}{51704033477769953280000} = 300$$

- Para representar estes números necessitaríamos de pelo menos 84 bits (mesmo o tipo long tem apenas 64).
- Solução?

Introdução

Definição

Complexidade Relação de

Recorrência
Exemplo 1: A Função

Factorial
Relação de

Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Fórmula:

$$C_k^n = \frac{A_k^n}{A_k^k} = \frac{n \times (n-1) \times \dots \times (n-k+1)}{k!}$$
$$= \frac{n!}{(n-k)! \times k!}, \text{ com } n, k \in \mathbb{N}_0 \land n \ge k$$

- A aplicação destas fórmulas pode levantar problemas de cálculo numérico devido ao facto de os registos internos de armazenamento de um valor terem uma capacidade limitada
- Exemplo:

$$C_{23}^{25} = \frac{15511210043330985984000000}{51704033477769953280000} = 300$$

- Para representar estes números necessitariamos de pelo menos 84 bits (mesmo o tipo long tem apenas 64).
- Solução?

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva:

Condições de Terminação Casos Atípicos

Fórmula:

$$C_k^n = \frac{A_k^n}{A_k^k} = \frac{n \times (n-1) \times \dots \times (n-k+1)}{k!}$$
$$= \frac{n!}{(n-k)! \times k!}, \text{ com } n, k \in \mathbb{N}_0 \land n \ge k$$

- A aplicação destas fórmulas pode levantar problemas de cálculo numérico devido ao facto de os registos internos de armazenamento de um valor terem uma capacidade limitada
- Exemplo:

$$C_{23}^{25} = \frac{15511210043330985984000000}{51704033477769953280000} = 300$$

- Para representar estes números necessitaríamos de pelo menos 84 bits (mesmo o tipo long tem apenas 64).
- Solução?

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva:

Condições de Terminação Casos Atípicos

Fórmula:

$$C_k^n = \frac{A_k^n}{A_k^k} = \frac{n \times (n-1) \times \dots \times (n-k+1)}{k!}$$
$$= \frac{n!}{(n-k)! \times k!}, \text{ com } n, k \in \mathbb{N}_0 \land n \ge k$$

- A aplicação destas fórmulas pode levantar problemas de cálculo numérico devido ao facto de os registos internos de armazenamento de um valor terem uma capacidade limitada.
- Exemplo:

$$C_{23}^{25} = \frac{15511210043330985984000000}{51704033477769953280000} = 300$$

- Para representar estes números necessitaríamos de pelo menos 84 bits (mesmo o tipo long tem apenas 64).
- Solução?

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de

Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Fórmula:

$$C_k^n = \frac{A_k^n}{A_k^k} = \frac{n \times (n-1) \times \dots \times (n-k+1)}{k!}$$
$$= \frac{n!}{(n-k)! \times k!}, \text{ com } n, k \in \mathbb{N}_0 \land n \ge k$$

- A aplicação destas fórmulas pode levantar problemas de cálculo numérico devido ao facto de os registos internos de armazenamento de um valor terem uma capacidade limitada.
- Exemplo:

$$C_{23}^{25} = \frac{15511210043330985984000000}{51704033477769953280000} = 300$$

- Para representar estes números necessitaríamos de pelo menos 84 bits (mesmo o tipo long tem apenas 64).
- Solução?

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Recorrência: Classificação

Relação de

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Fórmula:

$$C_k^n = \frac{A_k^n}{A_k^k} = \frac{n \times (n-1) \times \dots \times (n-k+1)}{k!}$$
$$= \frac{n!}{(n-k)! \times k!}, \text{ com } n, k \in \mathbb{N}_0 \land n \ge k$$

- A aplicação destas fórmulas pode levantar problemas de cálculo numérico devido ao facto de os registos internos de armazenamento de um valor terem uma capacidade limitada.
- Exemplo:

$$C_{23}^{25} = \frac{15511210043330985984000000}{51704033477769953280000} = 300$$

- Para representar estes números necessitaríamos de pelo menos 84 bits (mesmo o tipo long tem apenas 64).
- Solução?

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Recorrência: Classificação

Relação de

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Fórmula:

$$C_k^n = \frac{A_k^n}{A_k^k} = \frac{n \times (n-1) \times \dots \times (n-k+1)}{k!}$$
$$= \frac{n!}{(n-k)! \times k!}, \text{ com } n, k \in \mathbb{N}_0 \land n \ge k$$

- A aplicação destas fórmulas pode levantar problemas de cálculo numérico devido ao facto de os registos internos de armazenamento de um valor terem uma capacidade limitada.
- Exemplo:

$$C_{23}^{25} = \frac{15511210043330985984000000}{51704033477769953280000} = 300$$

- Para representar estes números necessitaríamos de pelo menos 84 bits (mesmo o tipo long tem apenas 64).
- Solução?

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Exemplo 2: Combinações – Relação de Recorrência

Demonstração:

$$C_k^n = \frac{n!}{(n-k)! \times k!} = \frac{(n-1)! \times (k+n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)! \times k}{(n-k)! \times k!} + \frac{(n-1)! \times (n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)!}{(n-k)! \times (k-1)!} + \frac{(n-1)!}{(n-k-1)! \times k!}$$

$$= C_{k-1}^{n-1} + C_k^{n-1}$$

Relação de recorrência:

$$C_k^n=C_{k-1}^{n-1}+C_k^{n-1}$$
 , com $n,k\in\mathbb{N}\wedge n>k$ (caso limite $C_0^n=1$, com $n\in\mathbb{N}_0$ (caso limite

Recursividade

Introdução

Definição Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

$$C_k^n = \frac{n!}{(n-k)! \times k!} = \frac{(n-1)! \times (k+n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)! \times k}{(n-k)! \times k!} + \frac{(n-1)! \times (n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)!}{(n-k)! \times (k-1)!} + \frac{(n-1)!}{(n-k-1)! \times k!}$$

$$= C_{k-1}^{n-1} + C_k^{n-1}$$

Relação de recorrência

 $C_k^n=C_{k-1}^{n-1}+C_k^{n-1}$, com $n,k\in\mathbb{N}\wedge n>k$ $C_0^n=1$, com $n\in\mathbb{N}_0$ (caso limite $C_0^n=1$, com $n\in\mathbb{N}_0$ (caso limite

Recursividade

Introdução

Definição

Factorial

Complexidade Relação de

Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Demonstração:

$$C_k^n = \frac{n!}{(n-k)! \times k!} = \frac{(n-1)! \times (k+n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)! \times k}{(n-k)! \times k!} + \frac{(n-1)! \times (n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)!}{(n-k)! \times (k-1)!} + \frac{(n-1)!}{(n-k-1)! \times k!}$$

$$= C_{k-1}^{n-1} + C_k^{n-1}$$

Relação de recorrência

 $C_k^n=C_{k-1}^{n-1}+C_k^{n-1}$, com $n,k\in\mathbb{N}\wedge n>k$ $C_0^n=1$, com $n\in\mathbb{N}_0$ (caso limite $C_n^n=1$, com $n\in\mathbb{N}_0$ (caso limite

Recursividade

Introdução

Definição

Factorial

Complexidade

Relação de

Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

$$C_k^n = \frac{n!}{(n-k)! \times k!} = \frac{(n-1)! \times (k+n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)! \times k}{(n-k)! \times k!} + \frac{(n-1)! \times (n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)!}{(n-k)! \times (k-1)!} + \frac{(n-1)!}{(n-k-1)! \times k!}$$

$$= C_{k-1}^{n-1} + C_k^{n-1}$$

Relação de recorrência:

$$C_k^n=C_{k-1}^{n-1}+C_k^{n-1}$$
 , com $n,k\in\mathbb{N}\wedge n>k$ $C_0^n=1$, com $n\in\mathbb{N}_0$ (caso limite) $C_n^n=1$, com $n\in\mathbb{N}_0$ (caso limite)

Introdução

Definição

Complexidade Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Terminação Casos Atípicos Casos com Interesse

```
- Simples;
- Compacto;
```

- Leyivei,

Fácil detectar erros

 E se tentarmos implementar uma solução com o método iterativo?

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

```
static int combNKK(int n, int k)
{
    assert 0 <= k && k <= n;
    int result = 1;
    if (k > 0 && k < n)
        result = combNKK(n-1, k-1) + combNKK(n-1, k);
    return result;
}</pre>
```

```
Simples;Compacto;Leafvel;
```

Fácil detectar erros.

 E se tentarmos implementar uma solução com o método iterativo?

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

```
static int combNKK(int n, int k)
{
  assert 0 <= k && k <= n;
  int result = 1;
  if (k > 0 && k < n)
      result = (combNKK(n-1, k-1)) + (combNKK(n-1, k);)
  return result;
}</pre>
```

```
Simples;Compacto;Larged
```

Fácil detectar erross

 E se tentarmos implementar uma solução com o método iterativo?

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

```
static int combNKK(int n, int k)
{
  assert 0 <= k && k <= n;
  int result = 1;
  if (k > 0 && k < n)
      result = (combNKK(n-1, k-1)) + (combNKK(n-1, k);)
  return result;
}</pre>
```

- Simples:
- Compacto;
- Legível;
- Fácil detectar erros.
- E se tentarmos implementar uma solução com o método iterativo?

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

```
static int combNKK(int n, int k)
{
  assert 0 <= k && k <= n;
  int result = 1;
  if (k > 0 && k < n)
      result = (combNKK(n-1, k-1)) + (combNKK(n-1, k);)
  return result;
}</pre>
```

- Simples;
- Compacto;
- Legível;
- Fácil detectar erros.
- E se tentarmos implementar uma solução com o método iterativo?

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Método Recursivo:
 - Simples;
 - Compacto;
 - Legível;
 - Fácil detectar erros.
- E se tentarmos implementar uma solução com o método iterativo?

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

```
static int combNKK(int n, int k)
{
  assert 0 <= k && k <= n;
  int result = 1;
  if (k > 0 && k < n)
      result = combNKK(n-1, k-1) + (combNKK(n-1, k);)
  return result;
}</pre>
```

- Método Recursivo:
 - Simples;
 - Compacto;
 - Legível;
 - Fácil detectar erros.
- E se tentarmos implementar uma solução com o método iterativo?

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

```
static int combNKK(int n, int k)
{
  assert 0 <= k && k <= n;
  int result = 1;
  if (k > 0 && k < n)
      result = (combNKK(n-1, k-1)) + (combNKK(n-1, k);)
  return result;
}</pre>
```

- Método Recursivo:
 - Simples;
 - Compacto;
 - Legível;
 - Fácil detectar erros.
- E se tentarmos implementar uma solução com o método iterativo?

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

```
static int combNKK(int n, int k)
{
  assert 0 <= k && k <= n;
  int result = 1;
  if (k > 0 && k < n)
    result = (combNKK(n-1, k-1)) + (combNKK(n-1, k);
  return result;
}</pre>
```

- Método Recursivo:
 - Simples;
 - Compacto;
 - Legível;
 - Fácil detectar erros.
- E se tentarmos implementar uma solução com o método iterativo?

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Exemplo Combinações: Implementação Iterativa 1

Triângulo de Pascal:

$$C_2^5 = C_1^4 + C_2^4 \left\{ egin{array}{ll} C_1^4 = C_0^3 + C_1^3 \left\{ \cdot \cdot \right. \ C_2^4 = C_1^3 + C_2^3 \left\{ \cdot \cdot \right. \end{array}
ight.$$

Recursividade

Introdução

Definição

Complexidade Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

• Triângulo de Pascal:

$$C_2^5 \ = \ C_1^4 + C_2^4 \left\{ egin{array}{ll} C_1^4 \ = \ C_0^3 + C_1^3 \left\{ \cdots
ight. \ C_2^4 \ = \ C_1^3 + C_2^3 \left\{ \cdots
ight. \end{array}
ight.$$

Recursividade

Introdução

Definição

Factorial

Complexidade Relação de

Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros)
- O processo iterativo pode seguir as regras seguintes

- O resultado é o elemento de índice k da linha n
- Este algoritmo pode ser optimizado considerando as seguintes factos:

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial Relação de

Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Casos com Interesse

 O programa mostrado a seguir faz todas essa ontimizações

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes
 - \blacksquare existem n + 1 iterações (uma por linha):
 - a primeira linha (n=0) tem apenas o valor 1 (no posicão
 - k=0 do *array*), esse valor manter-se-á fixo para todas as linhas:
 - o para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i — 1 e i).
- O resultado é o elemento de índice k da linha n.
- Este algoritmo pode ser optimizado considerando a seguintes factos:
 - Não é necessário calcular um triângulo completo (para C⁵₂ bastam os valores assinalados a vermelho na figura).
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de

Recorrência: Classificação Exemplo 3: Torres de

Hanói

Definição Recursiva: Condições de Terminação

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1 existem n + 1 iterações (uma por linha);
 - ② a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manter-se-á fixo para todas as linhas;
 - (3) para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i – 1 e i).
- O resultado é o elemento de índice k da linha n.
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C₂⁵ bastam os valores assinalados a vermelho na figura)
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função

Factorial Relação de

Recorrência: Síntese

das Combinações

Relação de

Recorrência: Classificação Exemplo 3: Torres de

Hanói

Definição Recursiva: Condições de Terminação

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1 existem n + 1 iterações (uma por linha);
 - 2 a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manter-se-á fixo para todas as linhas:
 - (3) para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i – 1 e i).
- O resultado é o elemento de índice k da linha n
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C⁵₂ bastam os valores assinalados a vermelho na figura)
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de

Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1 existem n + 1 iterações (uma por linha);
 - 2 a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manter-se-á fixo para todas as linhas;
 - (3) para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i - 1 e i).
- O resultado é o elemento de índice k da linha n
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C⁵₂ bastam os valores assinalados a vermelho na figura).
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1 existem n + 1 iterações (uma por linha);
 - 2 a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manter-se-á fixo para todas as linhas:
 - 3 para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i - 1 e i).
- O resultado é o elemento de índice k da linha n.
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C² bastam os valores assinalados a vermelho na figura).
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Introdução

Definição

Complexidade Relação de

Factorial

Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1 existem n + 1 iterações (uma por linha);
 - 2 a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manter-se-á fixo para todas as linhas:
 - 3 para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i - 1 e i).
- O resultado é o elemento de índice k da linha n.
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C⁵₂ bastam os valores assinalados a vermelho na figura).
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Introdução

Definição

Complexidade

Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1 existem n + 1 iterações (uma por linha);
 - 2 a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manter-se-á fixo para todas as linhas:
 - 3 para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i - 1 e i).
- O resultado é o elemento de índice k da linha n.
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C₂⁵ bastam os valores assinalados a vermelho na figura)
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Introdução

Definição

Complexidade Relação de

Recorrência
Exemplo 1: A Função

Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1 existem n + 1 iterações (uma por linha);
 - 2 a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manter-se-á fixo para todas as linhas:
 - 3 para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i - 1 e i).
- O resultado é o elemento de índice k da linha n.
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C₂⁵ bastam os valores assinalados a vermelho na figura).
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Introdução

Definição

Complexidade Relação de

Factorial

Recorrência

Exemplo 1: A Função

Relação de Recorrência: Síntese

Exemplo 2: Cálculo

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1 existem n + 1 iterações (uma por linha);
 - 2 a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manter-se-á fixo para todas as linhas:
 - 3 para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i - 1 e i).
- O resultado é o elemento de índice k da linha n.
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C₂⁵ bastam os valores assinalados a vermelho na figura).
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Necessitamos de um array de k + 1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1 existem n + 1 iterações (uma por linha);
 - 2 a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manter-se-á fixo para todas as linhas:
 - 3 para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i - 1 e i).
- O resultado é o elemento de índice k da linha n.
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C₂⁵ bastam os valores assinalados a vermelho na figura).
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Recorrência: Classificação

Relação de

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

```
static int combIter1(int n,int k)
  assert 0 <= k && k <= n;
  int result = 1:
  if (k > 0 \&\& k < n) {
      int kMin = k < n-k? k : n-k; // minimo(k, n-k)
      int[] linha = new int[k + 1];
      int c = 0;
      int cIni = 1:
      linha[0] = 1;
      for(int 1 = 1;1 <= n;1++) {
         if (1 > n-kMin+1)
            cIni++;
         for(c = kMin;c >= cIni;c--)
            linha[c] = linha[c]+linha[c-1];
      result = linha[kMin];
  return result:
```

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Há uma solução iterativa mais simples e mais eficiente
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha
- O algoritmo segue os passos:

oreterristo erdade, é mais simples iniciar o array com apenas um primeira posição e gerar a diagonal zero da mesma a que as sequintes.

Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Hanói

Definicão Recursiva:

Condições de Terminação Casos Atípicos

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - ① Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - Cada iteração do cíclo externo vai construir a diagonal sequinte:
 - Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - O ciclo externo é repetido até chegar à diagonal número n – k
 - No fim, o valor da posição k do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução

Definição Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de

Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - Oomeçamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero
 - ② Cada iteração do ciclo externo vai construir a diagonal sequinte:
 - ② Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - O ciclo externo é repetido até chegar à diagonal número n – k
 - No fim, o valor da posição k do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução

Definição

Complexidade

Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - 1 Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - Cada iteração do ciclo externo vai construir a diagonal seguinte;
 - 3 Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - 4 O ciclo externo é repetido até chegar à diagonal número
 - No fim, o valor da posição k do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução

Definição Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Recorrência: Classificação

Relação de

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - 1 Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - Cada iteração do ciclo externo vai construir a diagonal seguinte;
 - 3 Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - O ciclo externo é repetido até chegar à diagonal número n – k
 - Solution No fim, o valor da posição k do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Recorrência: Classificação

Relação de

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - 1 Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - Cada iteração do ciclo externo vai construir a diagonal seguinte;
 - 3 Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - 4 O ciclo externo é repetido até chegar à diagonal número n = k
 - Solution No fim, o valor da posição k do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Recorrência: Classificação

Relação de

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - 1 Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - Cada iteração do ciclo externo vai construir a diagonal seguinte;
 - 3 Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - O ciclo externo é repetido até chegar à diagonal número
 - So No fim, o valor da posição k do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução

Definição

Complexidade

Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - 1 Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - Cada iteração do ciclo externo vai construir a diagonal seguinte;
 - 3 Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - 4 O ciclo externo é repetido até chegar à diagonal número n – k.
 - So fim, o valor da posição k do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução

Definição

Complexidade

Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - 1 Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - Cada iteração do ciclo externo vai construir a diagonal seguinte;
 - 3 Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - O ciclo externo é repetido até chegar à diagonal número n – k
 - **6** No fim, o valor da posição *k* do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - 1 Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - Cada iteração do ciclo externo vai construir a diagonal seguinte;
 - ② Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - O ciclo externo é repetido até chegar à diagonal número n – k.
 - S No fim, o valor da posição k do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução

Definição Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - 1 Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - 2 Cada iteração do ciclo externo vai construir a diagonal sequinte:
 - 3 Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - 4 O ciclo externo é repetido até chegar à diagonal número n k.
 - **6** No fim, o valor da posição *k* do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

- Há uma solução iterativa mais simples e mais eficiente.
- Baseia-se em construir os elementos necessários do triângulo diagonal-a-diagonal em vez de linha-a-linha.
- O algoritmo segue os passos:
 - 1 Começamos com um array de k + 1 elementos iniciados com uns, correspondendo aos elementos a vermelho na diagonal descendente mais à direita do triângulo. Esta é a diagonal zero.
 - 2 Cada iteração do ciclo externo vai construir a diagonal sequinte:
 - 3 Para isso, o ciclo interno vai "descendo" ao longo da diagonal, adicionando a cada elemento do array (que ainda traz o valor da diagonal anterior) o elemento anterior do array (que tem o novo valor acabado de calcular).
 - 4 O ciclo externo é repetido até chegar à diagonal número n k.
 - **6** No fim, o valor da posição *k* do array tem o resultado pretendido.
- Na verdade, é mais simples iniciar o array com apenas um 1 na primeira posição e gerar a diagonal zero da mesma forma que as seguintes.
- Este algoritmo é preferível ao anterior porque percorre e

Recursividade

Introdução Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

```
static int combIter2(int n, int k)
{
    assert 0 <= k && k <= n;
    int[] diag = new int[k+1];
    diag[0] = 1;
    for (int i = 0; i <= n-k; i++)
        for (int j = 1; j <= k; j++)
            diag[j] += diag[j-1];
    return diag[k];
}</pre>
```

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

```
Recursividade
```

```
static int combIter2(int n, int k)
{
    assert 0 <= k && k <= n;
    int[] diag = new int[k+1];
    diag[0] = 1;
    for (int i = 0; i <= n-k; i++)
        for (int j = 1; j <= k; j++)
            diag[j] += diag[j-1];
    return diag[k];
}</pre>
```

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Em termos de complexidade do mecanismo de descrição

- Simples: quando há apenas uma chamada recursiva
- Composta: quando há múltiplas chamadas recursivas

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Em termos de complexidade do mecanismo de descrição:

Simples: guando há apenas uma chamada recursiva

Composta: guando há múltiplas chamadas recursivas.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Em termos de complexidade do mecanismo de descrição:

- Simples: quando há apenas uma chamada recursiva.
 - Exemplo: factorial.
- Composta: guando há múltiplas chamadas recursivas.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Em termos de complexidade do mecanismo de descrição:

- Simples: quando há apenas uma chamada recursiva.
 - Exemplo: factorial.
- Composta: quando há múltiplas chamadas recursivas.
 - Exemplo: combinações, torres de Hanói

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência:

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Em termos de complexidade do mecanismo de descrição:

- Simples: quando há apenas uma chamada recursiva.
 - Exemplo: factorial.
- Composta: quando há múltiplas chamadas recursivas.
 - Exemplo: combinações, torres de Hanói.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Em termos de complexidade do mecanismo de descrição:

- Simples: quando há apenas uma chamada recursiva.
 - Exemplo: factorial.
- Composta: quando há múltiplas chamadas recursivas.
 - Exemplo: combinações, torres de Hanói.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação Casos Atípicos

Exemplo 3: Torres de Hanói

- Este jogo, criado pelo matemático francês Édouard Lucas no Século XIX, é um dos exemplos clássicos que mostram as potencialidades dos algoritmos recursivos.
- Existem três postes onde se podem enfiar discos de diâmetros decrescente.
- O objectivo do jogo é mover todos os discos de um poste para outro, de acordo com as seguintes regras:

Sci pode filliver un disco de cada vez;
Mão pode colocar um disco em cinia de outro de menor dimensão.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

Exemplo 3: Torres de Hanói

- Este jogo, criado pelo matemático francês Édouard Lucas no Século XIX, é um dos exemplos clássicos que mostram as potencialidades dos algoritmos recursivos.
- Existem três postes onde se podem enfiar discos de diâmetros decrescente.
- O objectivo do jogo é mover todos os discos de um poste para outro, de acordo com as seguintes regras:
 - Só pode mover um disco de cada vez
 - Não pode colocar um disco em cima de outro de menor dimensão.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

- Este jogo, criado pelo matemático francês Édouard Lucas no Século XIX, é um dos exemplos clássicos que mostram as potencialidades dos algoritmos recursivos.
- Existem três postes onde se podem enfiar discos de diâmetros decrescente.
- O objectivo do jogo é mover todos os discos de um poste para outro, de acordo com as seguintes regras:
 - Só pode mover um disco de cada vez;
 - Não pode colocar um disco em cima de outro de menor dimensão.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação

- Este jogo, criado pelo matemático francês Édouard Lucas no Século XIX, é um dos exemplos clássicos que mostram as potencialidades dos algoritmos recursivos.
- Existem três postes onde se podem enfiar discos de diâmetros decrescente.
- O objectivo do jogo é mover todos os discos de um poste para outro, de acordo com as seguintes regras:
 - Só pode mover um disco de cada vez;
 - Não pode colocar um disco em cima de outro de menor dimensão.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

- Este jogo, criado pelo matemático francês Édouard Lucas no Século XIX, é um dos exemplos clássicos que mostram as potencialidades dos algoritmos recursivos.
- Existem três postes onde se podem enfiar discos de diâmetros decrescente.
- O objectivo do jogo é mover todos os discos de um poste para outro, de acordo com as seguintes regras:
 - 1 Só pode mover um disco de cada vez;
 - Não pode colocar um disco em cima de outro de menor dimensão.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

- Este jogo, criado pelo matemático francês Édouard Lucas no Século XIX, é um dos exemplos clássicos que mostram as potencialidades dos algoritmos recursivos.
- Existem três postes onde se podem enfiar discos de diâmetros decrescente.
- O objectivo do jogo é mover todos os discos de um poste para outro, de acordo com as seguintes regras:
 - 1 Só pode mover um disco de cada vez;
 - 2 Não pode colocar um disco em cima de outro de menor dimensão.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

Torres de Hanói

Relação de recorrência:

moverDiscos(n, tOrigem, tDestino, tAuxiliar

moverUmblisco (LOrigem , LDestino)

moverDiscostn-1, tAuxiliar, tDestino, tOrigeme

Caso limite

moverDiscos(1, tOrigem, tDestino, tAuxiliar)
moverDiscos(tOrigem, tDestino)

ou, alternativamente

moverDiscos(0, tOrigem, tDestino, tAuxiliar
 moverDiscos(neces) fuedos

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

Torres de Hanói

Relação de recorrência:

moverDiscos(n, tOrigem, tDestino, tAuxiliar

moverUmDisco(tOr

Caso limite

moverDiscos(1, tOrigem, tDestino, tAuxiliar

ou, alternativamente

moverDiscos(0, tOrigem, tDestino, tAuxiliar

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - 1 moverDiscos(n-1, tOrigem, tAuxiliar, tDestino
 - 2 moverUmDisco(tOrigem , tDestino
 - \bigcirc moverDiscos(n-1, tAuxiliar, tDestino, tOrigem)

Caso limite

moverDiscos(1, tOrigem, tDestino, tAuxiliar)
moverDusciscos(tOrigem, tDestino)

ou, alternativamente

• moverDiscos(0, tOrigem, tDestino, tAuxiliar (0.00 & process base reads)

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - 1 moverDiscos(n-1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - \bigcirc moverDiscos(n-1, tAuxiliar, tDestino, tOrigem)

Caso limite

moverDiscos(1, tOrigem, tDestino, tAuxiliar)

ou, alternativamente

moverDiscos(0, tOrigem, tDestino, tAuxiliar)
 (não é proceso fezer nacia)

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - moverDiscos(n−1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - 3 moverDiscos(n−1, tAuxiliar, tDestino, tOrigem

Caso limite

• moverDiscos(1, tOrigem, tDestino, tAuxiliar)

ou, alternativamente

moverDiscos(0, tOrigem, tDestino, tAuxiliar)
 (não é preciso fiscar nacia)

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - 1 moverDiscos(n-1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - 3 moverDiscos(n−1, tAuxiliar, tDestino, tOrigem)

Caso limite

moverDiscos(1, tOrigem, tDestino, tAuxiliar)

ou, alternativamente

moverDiscos(0, tOrigem, tDestino, tAuxiliar)

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - 1 moverDiscos(n-1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - 3 moverDiscos(n−1, tAuxiliar, tDestino, tOrigem)

Caso limite

moverDiscos(1, tOrigem, tDestino, tAuxiliar)

ou, alternativamente

moverDiscos(0, tOrigem, tDestino, tAuxiliar)

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

Torres de Hanói

Relação de recorrência:

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - 1 moverDiscos(n-1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - 3 moverDiscos (n−1, tAuxiliar, tDestino, tOrigem)

Caso limite:

moverDiscos(1, tOrigem, tDestino, tAuxiliar)

ou, alternativamente

moverDiscos(0, tOrigem, tDestino, tAuxiliar)

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - moverDiscos(n−1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - 3 moverDiscos (n−1, tAuxiliar, tDestino, tOrigem)

Caso limite:

- moverDiscos(1, tOrigem, tDestino, tAuxiliar)
 - 1 moverUmDisco(tOrigem, tDestino)

ou, alternativamente:

moverDiscos(0, tOrigem, tDestino, tAuxiliar)

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Torres de Hanói

Relação de recorrência:

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - moverDiscos(n−1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - 3 moverDiscos (n−1, tAuxiliar, tDestino, tOrigem)

Caso limite:

- moverDiscos(1, tOrigem, tDestino, tAuxiliar)
 - 1 moverUmDisco(tOrigem, tDestino)

ou, alternativamente:

Recursividade

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Torres de Hanói

Relação de recorrência:

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - moverDiscos(n−1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - 3 moverDiscos (n−1, tAuxiliar, tDestino, tOrigem)

Caso limite:

- moverDiscos(1, tOrigem, tDestino, tAuxiliar)
 - 1 moverUmDisco(tOrigem, tDestino)

ou, alternativamente:

Recursividade

Introdução

Definição

Complexidade Relação de

Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - 1 moverDiscos(n−1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - 3 moverDiscos (n−1, tAuxiliar, tDestino, tOrigem)

Caso limite:

- moverDiscos(1, tOrigem, tDestino, tAuxiliar)
 - 1 moverUmDisco(tOrigem, tDestino)

ou, alternativamente:

- moverDiscos(0, tOrigem, tDestino, tAuxiliar)
 - 1 (não é preciso fazer nada,

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

- moverDiscos(n, tOrigem, tDestino, tAuxiliar)
 - moverDiscos(n−1, tOrigem, tAuxiliar, tDestino)
 - 2 moverUmDisco(tOrigem , tDestino)
 - 3 moverDiscos (n−1, tAuxiliar, tDestino, tOrigem)

Caso limite:

- moverDiscos(1, tOrigem, tDestino, tAuxiliar)
 - 1 moverUmDisco(tOrigem, tDestino)

ou, alternativamente:

- moverDiscos(0, tOrigem, tDestino, tAuxiliar)
 - 1 (não é preciso fazer nada)

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos

Introdução Definição Complexidade

Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

Introdução

Definição

Complexidade

```
static void moverDiscos(int n, String origem, String destino, String auxiliar)
{
   assert n >= 0;
   if (n > 0)
   {
      moverDiscos(n-1, origem, auxiliar, destino);
      out.println("Move disco "+n+" da torre "+origem+" para a torre "+destino);
      moverDiscos(n-1, auxiliar, destino, origem);
   }
}
```

- E se tentarmos implementar uma solução com o método iterativo?
- Existe solução para esse problema (como para qualquer outro algoritmo recursivo) mas a implementação é bastante complexa!

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

Introdução

Definição

Complexidade

```
static void moverDiscos(int n, String origem, String destino, String auxiliar)
{
    assert n >= 0;
    if (n > 0)
    {
        moverDiscos(n-1, origem, auxiliar, destino);
        out.println("Move disco "+n+" da torre "+origem+" para a torre "+destino);
        moverDiscos(n-1, auxiliar, destino, origem);
    }
}
```

- E se tentarmos implementar uma solução com o método iterativo?
- Existe solução para esse problema (como para qualquer outro algoritmo recursivo) mas a implementação é bastante complexa!

Exemplo 3: Torres de

Definição Recursiva: Condições de Terminação Casos Atípicos Casos com Interesse

Introdução

Definição

Complexidade

```
static void moverDiscos(int n, String origem, String destino, String auxiliar)
{
    assert n >= 0;
    if (n > 0)
    {
        moverDiscos(n-1, origem, auxiliar, destino);
        out.println("Move disco "+n+" da torre "+origem+" para a torre "+destino);
        moverDiscos(n-1, auxiliar, destino, origem);
    }
}
```

- E se tentarmos implementar uma solução com o método iterativo?
- Existe solução para esse problema (como para qualquer outro algoritmo recursivo) mas a implementação é bastante complexa!

Exemplo 3: Torres de

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Terminação Casos Atípicos

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Para que uma função recursiva termine é preciso que:
 - Exista pelo menos uma alternativa n\u00e3o recursiva (CASO(S) LIMITE);
 - Todas as alternativas recursivas ocorram num contexto diferente do original (VARIABILIDADE);
 - 3 Em cada alternativa recursiva, o contexto (2) varie de forma a aproximar-se de um caso limite (1) (CONVERGÊNCIA).
- As condições (1) e (2) são necessárias. As três juntas são suficientes para garantir a terminação da recursão.

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Para que uma função recursiva termine é preciso que:
 - 1 Exista pelo menos uma alternativa não recursiva (CASO(S) LIMITE);
 - Todas as alternativas recursivas ocorram num contexto diferente do original (VARIABILIDADE);
 - 3 Em cada alternativa recursiva, o contexto (2) varie de forma a aproximar-se de um caso limite (1) (CONVERGÊNCIA).
- As condições (1) e (2) são necessárias. As três juntas são suficientes para garantir a terminação da recursão.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Casos Atípicos

- Para que uma função recursiva termine é preciso que:
 - 1 Exista pelo menos uma alternativa não recursiva (CASO(S) LIMITE);
 - Todas as alternativas recursivas ocorram num contexto diferente do original (VARIABILIDADE);
- As condições (1) e (2) são necessárias. As três juntas são

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Para que uma função recursiva termine é preciso que:
 - Exista pelo menos uma alternativa n\u00e3o recursiva (CASO(S) LIMITE);
 - Todas as alternativas recursivas ocorram num contexto diferente do original (VARIABILIDADE);
 - 3 Em cada alternativa recursiva, o contexto (2) varie de forma a aproximar-se de um caso limite (1) (CONVERGÊNCIA).
- As condições (1) e (2) são necessárias. As três juntas são suficientes para garantir a terminação da recursão.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese Exemplo 2: Cálculo

das Combinações Relação de

Recorrência: Classificação

Exemplo 3: Torres de Hanói

efinicão Recursiva:

Casos Atípicos

- Para que uma função recursiva termine é preciso que:
 - 1 Exista pelo menos uma alternativa não recursiva (CASO(S) LIMITE);
 - Todas as alternativas recursivas ocorram num contexto diferente do original (VARIABILIDADE);
 - 3 Em cada alternativa recursiva, o contexto (2) varie de forma a aproximar-se de um caso limite (1) (CONVERGÊNCIA).
- As condições (1) e (2) são necessárias. As três juntas são suficientes para garantir a terminação da recursão.

Análise dos Exemplos Apresentados

Todos os exemplos de recursividade apresentados até agora verificam estas três condições:

- Factorial:

 - f(n) expresso em função em função
- Combinações
 - \bigcirc C(n,0) e C(n,n) são casos limite
 - G(n-1,k-1).
 - n converge para k ou k converge para 0.
- Torres de Hanói
 - Mover 1 disco (ou 0 discos) é trivial.
 - movelore(n,...) expresso em lunção de
 - moveiome(n-1,...)
- on converge para I (ou U).

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Análise dos Exemplos Apresentados

Todos os exemplos de recursividade apresentados até agora verificam estas três condições:

• Factorial:

Combinações

Torres de Hanó

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Factorial:

- f(0) é um caso limite
- 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$
- 3 A sucessão $n, n-1, \ldots$ converge para 0.

Combinações:

- $(n,0) \in C(n,n)$ são casos limite.
- \bigcirc C(n, k) expresso em função de C(n-1, k) e
- n converge para k ou k converge para 0.

Torres de Hanói:

- 1 Mover 1 disco (ou 0 discos) é trivial
- moveTorre(n,...) expresso em função de moveTorre(n - 1,...).
- a n converge para 1 (ou 0).

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Todos os exemplos de recursividade apresentados até agora verificam estas três condições:

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n \neq n = 1$
 - 3 A sucessão $n, n-1, \ldots$ converge para 0
- Combinações:
 - $(n,0) \in C(n,n)$ são casos limite.
 - \bigcirc C(n, k) expresso em função de C(n-1, k) e
 - 3 n converge para k ou k converge para 0.
- Torres de Hanói:
 - ① Mover 1 disco (ou 0 discos) é trivial
 - moveTorre(n,...) expresso em função de moveTorre(n - 1,...).
 - (a) n converge para 1 (ou 0)

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Todos os exemplos de recursividade apresentados até agora verificam estas três condições:

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0
- Combinações:
 - \bigcirc C(n,0) e C(n,n) são casos limite
 - \bigcirc C(n, k) expresso em função de C(n-1, k) e C(n-1, k-1).
 - n converge para k ou k converge para 0.
- Torres de Hanói:
 - Mover 1 disco (ou 0 discos) é trivial
 - moveTorre(n,...) expresso em função de moveTorre(n - 1,...).
 - a converge para 1 (ou 0).

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0.
- Combinações:
 - ① C(n,0) e C(n,n) são casos limite
 - ② C(n,k) expresso em função de C(n-1,k) e C(n-1,k-1)
 - n converge para k ou k converge para 0.
- Torres de Hanói:
 - ① Mover 1 disco (ou 0 discos) é trivial
 - @ moveTorre(n,...) expresso em função de moveTorre(n - 1,...).
 - a converge para 1 (ou 0).

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Todos os exemplos de recursividade apresentados até agora verificam estas três condições:

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0.
- Combinações:
 - 1 C(n,0) e C(n,n) são casos limite.
 - 2 C(n, k) expresso em função de C(n-1, k) e C(n-1, k-1).
- Torres de Hanói:
 - 🕕 Mover 1 disco (ou 0 discos) é trivial
 - move lorre(n,...) expresso em função de moveTorre(n - 1,...).
 - (3) n converge para 1 (ou 0).

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0.
- Combinações:
 - 1 C(n,0) e C(n,n) são casos limite.
 - 2 C(n, k) expresso em função de C(n-1, k) e C(n-1, k-1).
 - 3 n converge para k ou k converge para 0.
- Torres de Hanói:
 - 🕕 Mover 1 disco (ou 0 discos) é trivial
 - moveTorre(n,...) expresso em função de moveTorre(n - 1,...).
 - (3) n converge para 1 (ou 0).

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0.
- Combinações:
 - 1 C(n,0) e C(n,n) são casos limite.
 - 2 C(n, k) expresso em função de C(n 1, k) e C(n 1, k 1).
 - 3 n converge para k ou k converge para 0.
- Torres de Hanói:
 - 🕕 Mover 1 disco (ou 0 discos) é trivial
 - move lorre(n,...) expresso em função de moveTorre(n - 1,...).
 - 3 n converge para 1 (ou 0).

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0.
- Combinações:
 - 1 C(n,0) e C(n,n) são casos limite.
 - 2 C(n, k) expresso em função de C(n 1, k) e C(n 1, k 1).
 - 3 n converge para k ou k converge para 0.
- Torres de Hanói:
 - 🕕 Mover 1 disco (ou 0 discos) é trivial
 - *move Torre*(n,...) expresso em função de *moveTorre*(n-1,...).
 - (3) n converge para 1 (ou 0).

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0.
- Combinações:
 - 1 C(n,0) e C(n,n) são casos limite.
 - 2 C(n, k) expresso em função de C(n 1, k) e C(n 1, k 1).
 - 3 n converge para k ou k converge para 0.
- Torres de Hanói:
 - 1 Mover 1 disco (ou 0 discos) é trivial.
 - 2 moveTorre(n, ...) expresso em função de moveTorre(n − 1,...).
 - 3 n converge para 1 (ou 0).

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0.
- Combinações:
 - 1 C(n,0) e C(n,n) são casos limite.
 - 2 C(n, k) expresso em função de C(n 1, k) e C(n 1, k 1).
 - 3 n converge para k ou k converge para 0.
- Torres de Hanói:
 - 1 Mover 1 disco (ou 0 discos) é trivial.
 - 2 moveTorre(n,...) expresso em função de moveTorre(n-1,...).
 - 3 n converge para 1 (ou 0).

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0.
- Combinações:
 - 1 C(n,0) e C(n,n) são casos limite.
 - 2 C(n, k) expresso em função de C(n 1, k) e C(n 1, k 1).
 - 3 *n* converge para *k* ou *k* converge para 0.
- Torres de Hanói:
 - 1 Mover 1 disco (ou 0 discos) é trivial.
 - 2 moveTorre(n,...) expresso em função de moveTorre(n - 1,...).
 - ③ n converge para 1 (ou 0).

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Todos os exemplos de recursividade apresentados até agora verificam estas três condições:

- Factorial:
 - f(0) é um caso limite.
 - 2 f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3 A sucessão $n, n-1, \ldots$ converge para 0.
- Combinações:
 - 1 C(n,0) e C(n,n) são casos limite.
 - 2 C(n, k) expresso em função de C(n 1, k) e C(n 1, k 1).
 - 3 n converge para k ou k converge para 0.
- Torres de Hanói:
 - 1 Mover 1 disco (ou 0 discos) é trivial.
 - 2 moveTorre(n,...) expresso em função de moveTorre(n - 1,...).
 - 3 n converge para 1 (ou 0).

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Função McCarthy 91:

```
static int mc_carthy91(int n) (
    assert n > 0;
    int result;
    if (n > 100)
        result = n - 10;
    else
        result = mc_carthy91(mc_carthy91(n + 11));
    return result;
}
```

Conjectura de Collatz (3n + 1):

```
static long collatz(long n) {
   assert n > 0;
   long result = n;
   if (n == 1)
      result = 1;
   else if (n % 2 == 0)
      result = collatz(n / 2);
   else
      result = collatz(3 * n + 1);
   return result;
}
```

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Terminação Casos Atípicos

• Função McCarthy 91:

```
static int mc_carthy91(int n) {
   assert n > 0;
   int result;
   if (n > 100)
      result = n - 10;
   else
      result = mc_carthy91(mc_carthy91(n + 11));
   return result;
}
```

Sabe-se que termina, mas o tipo complexo de recursão dificulta a demonstração.

Conjectura de Collatz (3n + 1):

```
static long collatz(long n) {
   assert n > 0;
   long result = n;
   if (n == 1)
      result = 1;
   else if (n % 2 == 0)
      result = collatz(n / 2);
   else
      result = collatz(3 * n + 1);
   return result;
}
```

Acredita-se que termina sempre, mas ninguém o demonstrou!

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Casos Atípicos

• Função McCarthy 91:

```
static int mc_carthy91(int n) {
   assert n > 0;
   int result;
   if (n > 100)
      result = n - 10;
   else
      result = mc_carthy91(mc_carthy91(n + 11));
   return result;
}
```

- Sabe-se que termina, mas o tipo complexo de recursão dificulta a demonstração.
- Conjectura de Collatz (3n + 1):

```
static long collatz(long n) {
   assert n > 0;
   long result = n;
   if (n == 1)
      result = 1;
   else if (n % 2 == 0)
      result = collatz(n / 2);
   else
      result = collatz(3 * n + 1);
   return result;
}
```

Acredita-se que termina sempre, mas ninguém o demonstrou!

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Casos Atípicos

• Função McCarthy 91:

```
static int mc_carthy91(int n) {
   assert n > 0;
   int result;
   if (n > 100)
      result = n - 10;
   else
      result = mc_carthy91(mc_carthy91(n + 11));
   return result;
}
```

- Sabe-se que termina, mas o tipo complexo de recursão dificulta a demonstração.
- Conjectura de Collatz (3n + 1):

```
static long collatz(long n) {
   assert n > 0;
   long result = n;
   if (n == 1)
      result = 1;
   else if (n % 2 == 0)
      result = collatz(n / 2);
   else
      result = collatz(3 * n + 1);
   return result;
}
```

Acredita-se que termina sempre, mas ninguém o demonstrou!

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Recorrência: Classificação

Relação de

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Casos Atípicos

• Função McCarthy 91:

```
static int mc_carthy91(int n) {
   assert n > 0;
   int result;
   if (n > 100)
      result = n - 10;
   else
      result = mc_carthy91(mc_carthy91(n + 11));
   return result;
}
```

- Sabe-se que termina, mas o tipo complexo de recursão dificulta a demonstração.
- Conjectura de Collatz (3n + 1):

```
static long collatz(long n) {
   assert n > 0;
   long result = n;
   if (n == 1)
      result = 1;
   else if (n % 2 == 0)
      result = collatz(n / 2);
   else
      result = collatz(3 * n + 1);
   return result;
}
```

Acredita-se que termina sempre, mas ninguém o demonstrou!

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Casos Atípicos

Casos com Interesse

 Na área da programação, os problemas recursivos considerados são sempre problemas em que as três condições de terminação estão bem identificadas e podem ser implementadas.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de

Terminação

Casos Atípicos

Casos com Interesse

Casos com Interesse

 Na área da programação, os problemas recursivos considerados são sempre problemas em que as três condições de terminação estão bem identificadas e podem ser implementadas.

Recursividade

Introdução

Definição

Complexidade

Relação de Recorrência

Exemplo 1: A Função Factorial

Relação de Recorrência: Síntese

Exemplo 2: Cálculo das Combinações

Relação de Recorrência: Classificação

Exemplo 3: Torres de Hanói

Definição Recursiva: Condições de Terminação

Terminação Casos Atípicos