3º Exercício Programa de PMR 3401 Data de entrega: 03/07/20 Método de Elementos Finitos (MEF)

1) Torres de turbinas eólicas são sujeitas a carregamentos dinâmicos que podem induzir comportametos vibracionais indesejáves.

(ver: https://www.youtube.com/watch?v=H4GXjpMgHFE)

Figura 1 – (a) Ilustração de uma torre de turbina eólica sob ação do vendo. (b)Estrutura da torre: carregamentos e condições de contorno do problema. (c) Domínio do problema: dimensões da torre.

A figura 1.a ilustra a torre de uma turbina eólica sob ação do vento. A torre é modelada por pórticos sob ação de dois carregamentos dinâmicos: $\overrightarrow{F_1(t)}$ que é a força de desbalanceamento do rotor e $\overrightarrow{F_2(t)}$ que é a força de arrasto do vento na torre, dados por :

$$\overrightarrow{F_1(t)} = 2.F.\sin(2\pi t)\vec{j}$$

$$\overrightarrow{F_2(t)} = \begin{cases} 5.D\vec{i} & \text{se } t_1 \le t \le t_2 \\ 0 & \text{se } t < t_1 \text{ ou } t > t_2 \end{cases}$$

A geometria da estrutura é apresentada na figura 1.c sendo que as pórticos tem seção vazada circular. Todas as pórticos internas (em linhas finas) tem seção com diâmetro interno e externo, d_{1i} e d_{1e} menores do que as demais pórticos (em linhas espessas) de diâmetros interno e externo d_{2i} e d_{2e} , ver figura 2. A tabela 1 lista todos os parâmetros do problema com **unidades no S.I**:

F	D	t_1	t_2	L_1	L_2	υ
8000	2000	2,0	8,0	2,0	3,0	0,29
d_{1i}	d_{1e}	d_{2i}	d_{2e}	L_3	E	ρ
0,072	0,080	0,090	0,100	4,0	210.10^9	7650

Tabela 1 – Parâmetros do problemas (todas as unidades em S.I).

Figura 2: Seções transversais das pórticos.

- a) Utilizando o software ANSYS ou similar e evitando gráficos de <u>fundo preto</u>:
 - **a.1**) Obtenha e plote os 6 primeiros modos de vibrar e frequências de ressonância da estrutura (sem amortecimento);
 - a.2) Obtenha a resposta transiente da estrutura utilizando o método direto Newmark β . Considere os coeficientes de amortecimento do modelo de Rayleigh $\alpha = 3x10^{-1}$ e $\beta = 3x10^{-2}$ ([C]= α [M]+ β [K]). Plote em um mesmo gráfico as tensões mecânicas σ nos pontos A e B (da viga que ascende da esquerda para direita) e em outro gráfico os deslocamentos u nos pontos D e E (ambos no centro do pórtico) indicados na figura em função do tempo. Condição inicial: velocidade e deslocamentos nulos:
 - **a.3**) Obtenha o diagrama de resposta em frequência da norma dos deslocamentos nas direções x e y ($\|\mathbf{u}\|$ vs f) para B e C (da viga que ascende da esquerda para direita) de forma que sejam observados os picos de ressonância correspondentes às três primeiras frequências obtidas em (a.1) (sem amortecimento). Sendo $\|\mathbf{u}\| = \left| \left| \sqrt{u_x^2 + u_y^2} \right| \right|$ a amplitude de deslocamento.
 - **a.4)** Discuta a influência da discretização da malha nos valores de frequência de ressonância e da discretização do tempo Δt no deslocamento do ponto A.
- **b)** Utilizando o software SCILAB (ou MATLAB):
 - **b.1**) Desenvolva um **programa específico** de MEF para resolver o problema acima, itens **a.1** até **a.3**, baseando-se nos programas listados na apostila *a13-3401.doc*;
 - **b.2**) Compare os resultados do ANSYS (ou similar) com os resultados do seu programa (por exemplo, plote ambos os resultados no mesmo gráfico).

2) Considere a peça simétrica da figura abaixo.

Resolva o problema usando o programa ANSYS (ou similar) considerando estado plano de tensões ("plane stress"), ou seja:

- a) Plote a estrutura deformada e identifique o máximo valor de deslocamento e onde ocorre;
- b) Plote as tensões mecânicas de von Mises na estrutura e obtenha os valores de tensão nos pontos A, B e C. Verifique a influência da discretização da malha nos resultados;
- c) Identifique o máximo valor de tensão de von Mises e onde ocorre, bem como os demais pontos onde ocorrem concentração de tensões na estrutura. Sugira modificações na estrutura para reduzir a concentração de tensões;

OPTATIVO

Esse exercício (EX) é optativo e entrará no cálculo da média final da seguinte forma: MF=0,8M+0,2EX, onde M é a média calculada como descrito no programa do curso e EX a nota desse exercício. A nota desse exercício somente será levada em conta caso aumente a média M (independentemente de seu valor).

Método de Elementos Finitos (MEF)

A energia elétrica por nós utilizada é transmitida por linhas de transmissão. Abaixo é apresentada uma figura esquemática de um carro nas proximidades de uma torre de transmissão. Essas torres geram campos elétricos e campos magnéticos que podem ser modelados de acordo com as equações de Maxwell.

Combinando as equações de Maxwell obtém-se que o campo elétrico \vec{E} é definido por meio do gradiente de potencial elétrico espacial V:

$$\vec{E} = -\nabla V$$

onde o potencial elétrico espacial V é

$$\nabla^2 V = 0$$

Como pode ser observado na figura, na fronteira externa do domínio V=0. Admitindo a hipótese de um sistema elétrico simétrico e equilibrado, podemos obter o potencial elétrico nas fases dos condutores por meio de

$$V = V_{max} e^{j(\omega t + \phi_c)}$$
3)

onde $V_{max} e^{j(\omega t)}$ é a <u>representação complexa</u> $(j \coloneqq \sqrt{-1})$ da tensão nominal fase-terra e ϕ_c é a defasagem angular e $\omega = 2 \pi f$ é frequência angular. Embora a corrente esteja variando no tempo, o problema pode ser resolvido como estático.

Na fronteira entre dois meios diferentes, representada na figura anterior por Γ , as condições de contorno para o campo elétrico são definidas por

$$\vec{\mathbf{n}} \times (\vec{E}_1 - \vec{E}_2) = 0 \tag{4}$$

$$\vec{n} \cdot (\sigma_1 \vec{E}_1 - \sigma_2 \vec{E}_2) = 0 \tag{5}$$

Já o campo magnético \overrightarrow{H} é definido por

$$\vec{H} = \vec{B}/\mu \tag{6}$$

onde μ representa a permeabilidade do meio e \vec{B} é a densidade de fluxo magnético que é calculado através da utilização de um potencial vetor magnético A_z

$$\vec{B} = \nabla \times \vec{A} \tag{7}$$

onde $\vec{A} = (0, 0, A_z)$.

O potencial vetor magnético A_z , que como observado na figura vale $A_z=0$ na fronteira externa do domínio, é obtido por meio da manipulação das equações de Maxwell

$$\nabla^2 A_z = -\mu \cdot J_z \tag{8}$$

onde J_z é o vetor de densidade de corrente nas linhas de transmissão que para sistemas elétricos simétrico e equilibrados vale

$$J_z = \frac{I_{max}}{2 \pi r_c} e^{j(\omega t + \phi_c)} \tag{9}$$

em que $I_{max} e^{j\omega t}$ representa a corrente nominal complexa circulando nos condutores e r_c é o raio dos cabos condutores. Fora das linhas de transmissão $J_z = 0$.

As condições de contorno para grandezas magnéticas em Γ são

$$\vec{\mathbf{n}} \times (\vec{\mathbf{H}}_1 - \vec{\mathbf{H}}_2) = 0 \tag{10}$$

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{B}}_1 - \vec{\mathbf{B}}_2) = 0 \tag{11}$$

onde \vec{n} é um vetor normal a superfície da fronteira Γ e σ_1 e σ_2 representam as condutividades dos meios 1 e 2.

1) Assuma que a superfície externa do carro é um equipotencial e que os valores das constantes no domínio da figura são

$V_{max}[kV]$	$I_{max}[A]$	$\phi_c[rad]$	f[Hz]	$r_{c}[m]$
500	200	0	60	0,02
				_
$\mu_{ar}[H/m]$	$\mu_{solo}[H/m]$	$\sigma_{ar}[S/$	[m]	$\sigma_{solo}[S/m]$
$1,2566 \cdot 10^{-6}$	$2 \cdot 1,2567 \cdot 10^{-6}$	1,0 · 10	-10	$1.0 \cdot 10^{-2}$

Considere as constantes dadas e as condições de contorno apresentadas anteriormente e resolva o problema no domínio da figura utilizando o método dos elementos finitos (MEF) com malha triangular (ver figura abaixo), utilizando interpolação linear e levando em conta a simetria do domínio:

- a) Plote a distribuição dos escalares V(x,y) e $A_z(x,y)$ utilizando curvas de nível no domínio da figura.
- b) Plote o vetor de densidade de fluxo magnético $\vec{B}(x,y)$, o vetor de intensidade de campo magnético $\vec{H}(x,y)$ e o vetor de intensidade de campo elétrico $\vec{E}(x,y)$ (use o comando apropriado no SCILAB ou MATLAB). ;

Para os itens a) e b) utilize dois tipos de discretizações, sendo que, na segunda discretização, o tamanho dos elementos seja a metade do tamanho dos elementos da primeira discretização (ver exemplo abaixo).

APRESENTAÇÃO DE RESULTADOS

Os trabalhos podem ser feitos em grupos de no máximo dois alunos ou individualmente. Os resultados devem ser apresentados da seguinte forma:

- a) Inicialmente, apresente todo o equacionamento do problema a ser implementado no SCILAB (ou MATLAB).
- b) NÃO será aceita a utilização de comandos prontos do SCILAB (ou MATLAB) para a solução da equação de derivadas parciais acima.
- c) Todos os resultados do tipo f(x,y) devem ser plotados usando-se funções do SCILAB (ou MATLAB) como mesh, contour, surf, etc...(escolha uma) (coloque título e legenda nos gráficos). NÃO será aceita a simples apresentação de tabelas ou a listagem dos valores da função nos nós da malha.
- d) A geração da malha de elementos finitos pode ser feita de forma simples e específica para esse problema.
- e) O sistema matricial final pode ser resolvido simplesmente usando-se um comando do SCILAB (ou MATLAB) do tipo x=A-1*b. No entanto, caso o tamanho da matriz seja maior do que o máximo permitido pelo SCILAB (ou MATLAB) use um método iterativo como Gauss-Seidel ou Sobrerelaxação.
- f) NAO use os comandos de manipulação simbólica do SCILAB (ou MATLAB) na solução desse problema.
- g) NÃO usar o módulo Workbench do Ansys.
- h) Entregue os arquivos *.sci (ou *.m), os quais devem estar decentemente comentados.
- i) Qualquer discussão ou comparação deve ser acompanhada de gráficos e/ou outras indicações que o levou às conclusões.
- j) Entregue o relatório impresso quando as atividades presenciais da USP retornarem à normalidade. NÃO será aceita a entrega do relatório em disquete ou por e-mail. O relatório deve ser organizado em seções, os resultados devem ser discutidos e apresentados na sequência descrita neste EP, e no final do relatório deve incluir uma conclusão.
- k) O prazo final para entrega do relatório será informado depois, assim que a CG nos passar uma posição de como e quando serão feitas as avaliações com nota.