Istanbul Technical University- Spring 2018-2019 BLG454E Learning From Data, Homework 1

Purpose: Linear Regression, Classification

Total worth: 100 points

Handed out: Thursday, March 14, 2019.

Due: Wednesday, March 31, 2019 23:00. (through ninova!)

Instructors: Yusuf Yaslan, Islem Rekik

Assistants: Fulya Çelebi Sarıoğlu (sarioglu16@itu.edu.tr),

İsmail Bilgen(ibilgen@itu.edu.tr)

You should use MATLAB or Python.

PART 1 [60 points]

Train regression model $\mathbf{y} = \mathbf{x} \mathbf{w} + \mathbf{b}$ using $regression_data.txt$. The first column represents samples (each sample has a single feature which is 'head size') and the second column represents the target score to predict (i.e., brain weight). The aim is to train a linear regression model from **Head Size(x)** to **Brain Weight(y)**.

- **a)** Implement Linear Regression using Gradient Descent (<u>Don't use built-in function for linear regression!</u>) [30 points]
- **b)** In order to fit (training stage) and evaluate (testing stage) your model use 5-fold cross validation (<u>Don't use built-in functions!</u>) [20 points]
- c) Report or explain overall MSE (Mean Square Error) of 5-fold cross validation. [10 points]

PART 2 [40 points]

- a) Examine the training dataset (*classification_train.txt*), the number of features, the number of classes and their probabilities (**P(c_i)**). Each sample has two features (first two columns) and one label (third column). Plot the training dataset (feature 1 on x-axis and feature 2 on y-axis). [5 points]
- **b)** Assume that each class is generated from a multivariate Gaussian distribution.

$c_1(class 1)$	$c_2(class 2)$	
Mean Vector ($\mu_1 = [??]$)	Mean Vector ($\mu_2 = [??]$)	
Covariance Matrix $\Sigma_1 = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix}$	Covariance Matrix $\Sigma_2 = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix}$	

Estimate the mean vector and covariance matrix for each class using the **training** data (*classification_train.txt*). [10 points]

- c) Compute the discriminant function $g_i(x)$ for each class (c_i) . [10 points]
- **d)** Predict each testing sample x^{tst} class label by computing its $g_i(x^{tst})$ for all classes. [**Hint:** If $g_1(x^{tst}) \ge g_2(x^{tst})$ the predicted testing label is c_1 else c_2] [10 points]
- e) Compute classification accuracy using the testing set (*classification_test.txt*) by comparing ground truth label and predicted labels. [5 points]

For example; accuracy of below table is 3/5.

Test instance	Feature1	Feature2	Actual Label	Predicted Label
X ₁	1.73802424	3.72105508	1	1
X2	2.9007531	1.15054811	1	1
X 3	-0.07302643	7.54612352	1	0
X 4	-2.13195888	-0.71787816	0	0
X5	1.49967502	6.85820584	1	0