Übung 3

Abgabe bis Mittwoch, 21. November 15:30 via EPIIC: http://ep.iic.jku.at.

1. Binärzahlen (5 + 1 + 2 + 2)

(a) Die folgende Tabelle enthält Dezimalzahlen und 5-Bit Binärzahlen in Betrag-/Vorzeichen-Darstellung, 1er-Komplement-Darstellung, 2er-Komplement-Darstellung und Offset-Darstellung. Fülle die Tabelle entsprechend aus, sodass jede Zeile die gegebene Zahl in jeder Darstellung enthält.

Dezimal	Betrag/Vorzeichen	1er-Komplement	2er-Komplement	Offset = 16
				10111_2
			10111_2	
		01011_2		
	10101_2			
-11_{10}				

- (b) Konvertiere die Dezimalzahl $-77,625_{10}$ in eine Binärzahl in 2er-Komplement-Darstellung (mit 8 Vorkomma- und 3 Nachkommastellen).
- (c) Berechne 11781₁₀ 16223₁₀ und führe dabei die Subtraktion auf eine Addition von zwei 10er-Komplement-Zahlen zurück. Anschließend wandele das Ergebnis der Addition wieder in eine Dezimalzahl zurück.
- (d) Gib zwei negative 4-Bit Binärzahlen in 2er-Komplement-Darstellung an, deren Addition zu einer Bereichsüberschreitung führt. Zusätzlich beschreibe wie eine Bereichsüberschreitung erkannt wird.

2. Addierer Schaltung (4+2+2)

Aufbauend auf der Volladdierer-Schaltung soll nun eine Addierer-Schaltung entworfen werden, welche zwei vorzeichenunbehaftete 4-Bit Zahlen addieren kann. Die Schaltung besitzt neben den beiden 4-Bit Zahlen (A, B) auch ein Carry-in Flag. Den Ausgang der Schaltung bilden die 4-Bit Zahl SUM zusammen mit dem Carry-out Flag.

- (a) Entwirf die oben beschriebene Addierer-Schaltung. Verwende dabei ausschließlich Volladdierer als Bausteine und zeichne die Volladdierer samt deren interner Verdrahtung in den Schaltplan ein.
- (b) Gib die Kosten der resultierenden Schaltung (Anzahl der Gatter und Tiefe) an.
- (c) Verwende nun die Schaltung und bilde die Summe der beiden Zahlen 1101₂ und 1001₂. Notiere dabei in der Schaltung die Werte, die an den jeweiligen Gatter anliegen und gib das Ergebnis an.

3. Multiplexer (2 + 1 + 2 + 1)

Eine der wichtigsten Grundschaltungen der Digitaltechnik ist der Multiplexer. Ein Multiplexer stellt die Hardware-Realisierung einer einfachen If-Else Bedingung dar. Wird am Eingang sel des Multiplexers eine logische 1 angelegt, so wird der Eingang I_0 an den Ausgang angelegt. Im anderen Fall, wenn am Eingang sel eine logische 0 anliegt wird der Eingang I_1 an den Ausgang angelegt. Im Folgenden soll ein MUX-1, also ein Multiplexer der zwischen zwei Eingängen selektieren kann hergeleitet werden.

$$out(sel) = \begin{cases} I_0 & \text{wenn sel} \\ I_1 & \text{wenn } \overline{sel} \end{cases}$$

- (a) Leite die Schaltfunktion des Multiplexers her.
- (b) Verwende die Regeln der Boolschen Algebra und minimiere die Schaltfunktion wenn möglich.
- (c) Realisiere den Multiplexer als Gatterschaltung. Verwende dazu nur NAND-Gatter mit 2 Eingängen.
- (d) Gib die Kosten der Schaltung an (Anzahl der NAND-Gatter und die Tiefe).