Eti Vorlesungsnotizen

Fabio Oesch

5. Semester (HS 2014)

Inhaltsverzeichnis

1	\mathbf{Rep}	petition 1
	1.1	Entscheidungsproblem (EP)
	1.2	Beschreibung von Sprachen
	1.3	Endliche Automaten
		1.3.1 Notation
	1.4	Satz 1
	1.5	Nicht-deterministische, endliche Automaten (NFA)
	1.6	DFA
	1.7	NFA/ε
		1.7.1 ε -Hüllen der Zustände
	1.8	2.4 Eigenschaften regulärer Sprachen
		1.8.1 *- oder Kleene-Operation
	1.9	2.5 Das Pumping-Lemma und der Satz von Myhill-Nerode
		1.9.1 Pumping Lemma
	1.10	Minimierung endlicher Automaten (gilt nur für DFA)
		1.10.1 Minimaler Automat
		1.10.2 Algorithmus zur Bestimmung der Äquivalezklassen von RL_A

1 Repetition

Alphabet: endliche Menge von Zeichen (Buchstaben)

Bsp: $\Sigma := 0, 1$

Wort über Σ : endliche Folge von Buchstaben aus Σ

 $\Sigma^* = \text{Menge oder W\"{o}rter \"{u}ber } \Sigma$

 $\Sigma^* = \Sigma^* - \varepsilon$, ε : leeres Wort

Bsp: $\Sigma = 0, 1, \Sigma^* = \varepsilon \cup 0, 1 \cup 0.0, 0.1, 0.2$

Länge von $\omega \in \Sigma^*$, $|\omega| :=$ Anzahl Buchstaben im Wort: **Bsp:** $\omega = 01011$, $|\omega| = 5$

Def: Eine Teilmenge L von Σ^* , $L \subset \Sigma$, heisst eine **Sprache** über Σ .

1.1 Entscheidungsproblem (EP)

Gegeben:

 Σ Alphabet

 $L \subset \Sigma^*$ Sprache

 $\omega \in \Sigma^*$ Wort

Bsp:

1. (Primalität)

 $\Sigma := 0, 1$

 $L := \{ \text{bin\"aren Darstellungen der Primzahlen} \} = \{ 10, 111, 101, 111, \dots \}$

 $\omega = 11 \dots 1 \in L$?

2. Progammiersprachen

if, else, do, ...

3. Natürliche Sprache

1.2 Beschreibung von Sprachen

- Aufzählung von Wörtern (endliche Sprache)
- Generieren von Wörtern (Grammatiken)
- Erkennen von Wörtern (Algorithmen, Automaten)
- Konstruiren von Wörtern (mathematische Operationen)

1.3 Endliche Automaten

Def: Ein endlicher Automat (deterministisch) ist ein 5-Tupel $A = (Q, \Sigma, \delta, q_0, F)$

Q Menge der Zustände

 Σ Alphabet

 $\delta \ Q \times \Sigma \to Q$ Übergangsfunktion

 q_0 Startzustand

$F \subset Q$ akzeptierende Zustände

Bsp: Sei $A = (Q, \Sigma, \delta, q_0, F)$

mit $Q = \{q_0, q_1, q_2\}, \; \Sigma = \{0, 1\}, \; F = \{q_1\}$

 δ 0 1 q_1 q_0 q_0

 q_1 q_2 q_2 q_2 q_1 q_2

Antwortfunktion von A

 $r_A:\Sigma^*\to Q$

Bsp: $r_A(0,0,1,0) = q_2 \notin F \Rightarrow 0010 \notin L(A)$

 $L(A) = \{ \omega \in \Sigma^* \mid r_A(\omega) \in F \}$

1.3.1Notation

Startzustand

akzept Zustand "aswohnlicher" Zustand akzept. Startzustand

1.4 Satz 1

Vor: $A \in DFA$

Beh: L(A) ist regulär

Beweisidee:

 $\Sigma = \{0, 1\}$

G = (N, T, Q, S) regulär mit L(G) = L(A)

 $T = \Sigma = \{a, b\}$

 $N = \{S = Sq_0, Sq_1, Sq_2, Sq_3\}$

 $R = \{Sq_0 \rightarrow aSq_1 \mid bSq_2, Sq1 \rightarrow aSq1 \mid bSq3, Sq2 \rightarrow aSq2 \mid bSq3, Sq3 \rightarrow aSq3 \mid bSq3 \mid a \mid b\}$

1. Zuordnung: Zustand \mapsto Nichtterminalsymbol

2. Jedem Pfeil im Diagramm ordnen wir eine oder zwei Regeln zu

(a)
$$q_i \stackrel{a}{\rightarrow} q_j \text{ mit } a_j \notin F$$

 $\Rightarrow Sq_i \rightarrow aSq_j$

(b)
$$q_i \stackrel{a}{\to} a_j \text{ mit } q_j \in F$$

 $Sq_i \to aSq_j$
 $Sq_i \to a$

Bsp:

- a) Das Wort aab akzeptieren. $q_0 \to q_1 \to q_1 \to q_3$ b) Das Wort aab generieren. $Sq_0 \Rightarrow aSq_1 \Rightarrow aaSq_1 \Rightarrow aab$

1.5 Nicht-deterministische, endliche Automaten (NFA)

 $baa \notin L(A), aab \in L(A)$

$baa \not\subseteq E(11), aab \subseteq E(11)$										
δ	a	b								
q_0	$\{q_1\}$	Ø								
q_1	$ \{q_1\}$	$\{q_2,q_3\}$	Satz: Vor. $A \in NFA$ Beh. $\exists B \in DFA : L(A) = L(B)$							
q_2	$ \{q_2\}$	Ø	Satz. Vol. $M \subset M \cap M$ Bell. $\exists D \subset D \cap M : L(M) = L(D)$							
q_3	Ø	$\{q_4\}$								
q_{A}	Ø	Ø								

 $\overline{F} = \{a_2, a_3\}, \{a_2\}, \{a_4\}$

Satz: Vor. $L \subset \Sigma^*$ regulär, Beh. $\exists A \in NFA : L(A) = L$ **Beweis** regulär $\Rightarrow \exists$ reguläre Grammatik G = (N, T, R, S)

mit
$$N = \{S, A, B, \dots\}, T = \Sigma, R = \{\dots A \to aB, A \to a\dots\}$$

- 1. Jedem Nichtterminalsymbol ordnen wir einen Zustand zu. z.B. $A \mapsto q_A$
- 2. Jeder Regel vom Typ $A \to aB$ ordnen wir einen Pfeil im Diagramm zu: $q_A \stackrel{a}{\to} q_B$
- 3. Wir fügen einen **neuen** akzeptierenden Zustand E zu Q hinzu und für jede Regel $A \to b$ ein Pfeil $q_A \stackrel{b}{\to} E$ $Q = \{q_S, q_A, q_B, \dots, E\}$

1.6 DFA

$$\begin{array}{l} \mathbf{Bsp:} \ \Sigma = \{a,b\}, \ G = (N,T,R,S) \\ \mathrm{mit} \ N = \{S,A\}, \ T = \Sigma, \ R = \{S \to aA, S \to a, A \to bA, A \to b\} \\ \mathbf{A} := (Q,\Sigma,\delta,q_S,F) \\ Q = \{q_S,q_A,E\} \\ F = \{E\} \end{array}$$

Def. Zwei endliche Automaten A und B heisen **äquivalent**: $\Leftrightarrow L(A) = L(B)$

1.7 NFA/ ε

Bsp: (*)
$$A = (Q, \Sigma, \delta, q_0, F)$$

 $\Sigma = \{a, b\}, Q = \{q_0, q_1, q_2, q_3\}, F = \{q_2\}$

1.7.1 ε -Hüllen der Zustände

$$\begin{split} [q]_{\varepsilon}^* &:= \{r \in Q \mid q \overset{\varepsilon^*}{\to} r\} \\ \mathbf{Bsp \ anhand \ Bild \ 9} \\ [q_0]_{\varepsilon}^* &= \{q_0\}, \ [q_1]_{\varepsilon}^* = \{q_1, q_2, q_3\}, \ [q_2]_{\varepsilon}^* = \{q_2, q_3\}, \ [q_3]_{\varepsilon}^* = \{q_3\} \\ \mathbf{NFA} \\ B &= (\overline{Q}, \Sigma, \overline{\delta}, \overline{q_0}, \overline{F}) \end{split}$$

$$\overline{\delta}(q,a) = \bigcup_{r \in [q]_{\varepsilon}^*} \delta(r,a) \tag{1}$$

$\overline{\delta}$	a	b	
q_0	$\{q_1\}$	$\{q_2\}$	
q_1	$\{q_2\}$	$\{q_1,q_3\}$	
q_2	$\{q_2\}$	$\{q_1,q_3\}$	
q_3	$ \{q_2\} $	$\{q_3\}$	
$\overline{F} =$	${q \in Q}$	$ [q]_{\varepsilon}^* \cap F$	$\neq \emptyset$

2.4 Eigenschaften regulärer Sprachen 1.8

Sei Σ ein Alphabet

 $C \subset P(\Sigma^*)$ Menge von Sprachen

Frage: Führen Operationen auf den Elementen von C aus C heraus?

Bsp: von Operationen

 $\overline{L} := \Sigma * \backslash L$

 $L_1 \cup L_2$

 $L_1 \cap L_2$

 $\begin{array}{l} L_{1}\cdot L_{2} = \{\omega_{1}\omega_{2} | \omega_{1} \in L_{1}, \omega_{2} \in L_{2}\} \\ \textbf{Bsp:} \ L_{1} = \{0,1\} \ , L_{2} = \{\varepsilon,1\} \Rightarrow L_{1}\cdot L_{2} = \{0\varepsilon,1\varepsilon,01,11\} \ \textbf{Notation:} \ L^{0} := \{\varepsilon\} \end{array}$

 $L^2 := L \cdot L$ (Konkatenation) $L^3 := L \cdot L^2 = L^2 \cdot L$

*- oder Kleene-Operation

 $L^*:=L^0\cup L^1\cup L^2\cup L^3\cup\dots$

Bsp: $\Sigma = \{0,1\}, \ \Sigma^* = \{\varepsilon\} \cup \{0,1\} \cup \{00,01,10,11\} \cup \dots$ **Notation:** $Reg_{\Sigma} := Menge der regulären Sprachen$

über Σ .

Satz: Vor. $L_1, L_2 \in Reg_{\Sigma}$

Beh. $\overline{L_1}, L_1 \cup L_2, L_1 \cap L_2, L_1 \cdot L_2, L_1^* \in Reg_{\Sigma}$

Bew.

1. $I_1 \in Reg_{\Sigma} \Rightarrow \exists A = (Q, \Sigma, \delta, q_0, F) \in DFA \text{ mit } L(A) = L$

$$\frac{L(A)}{L(A)} = \{1w, 01^*0\omega | \omega \in \Sigma^*\}$$

$$\frac{L(A)}{L(A)} = \{01^*, \varepsilon\}$$

$$\overrightarrow{L(A)} = \{01^*, \varepsilon\}$$

$$\overline{A} := (Q, \Sigma, \delta, q_0, \overline{F} := Q \backslash F)$$

$$L(\overline{A}) = I$$

Achtung: Gilt nur für DFA's! Bsp:

2. $L_1 \cup L_2 \in Reg_{\Sigma}$

 $L(C) = L_1 \cup L_2$

3. $L_1 \cap L_2 \in Reg_{\Sigma}$

1. Beweis De Morgan: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$

Bsp:

4. $L_1 \cdot L_2 \in Reg_{\Sigma}$ $L_1 = \{01^+\}$ $L_2 = \{\varepsilon, 01, 11, 101\}$

$$L_2 = \{\varepsilon, 01, 11, 101\}$$

5.
$$L_1^* \in Reg_{\Sigma}$$

 $L = \{01^*001^*\}$

1.9 2.5 Das Pumping-Lemma und der Satz von Myhill-Nerode

Frage: Wie zeigen wir, dass eine Sprache $L \notin Reg_{\Sigma}$? **Gegeben:** $L \in Reg_{\Sigma} \Rightarrow \exists A = (Q, \Sigma, \delta, q_0, F) \in DFA$ n := |Q| (Anzahl der Zustände)

1.9.1 Pumping Lemma

Vor. $L \in Reg_{\Sigma}$

Beh. $\exists n \in \mathbb{N}^* : \forall \omega \in L, |\omega| \geq n \exists x, y, z \in \Sigma^*$

x ist Weg vom Anfangszustand zum wiederholenden Zustand, y ist der Loop (vom wiederholenden zum wiederholenden Zustand), z der Weg vom wiederholenden Zustand zum akzeptierenden Zustand

- 1. $\omega = xyz$
- 2. $|y| \ge 1$
- $3. \mid xy \mid \leq n$
- 4. $\forall i \in \mathbb{N} : xy^i z \in L$

Bsp:

1.
$$\Sigma = \{0,1\}, L = \{0^k1^k \mid k \in \mathbb{N}^*\}$$

 $G = (N,T,R,S), N = \{S\}, T = \{0,1\}, R = \{S \to 01,S \to 0S1\}$ (kontextfrei) $\} = L(G) = L$
Annahme L ist regulär

 $\forall n \in \mathbb{N}^*$: Wählen wir ein Wort $\omega_n \in L$ mit $|\omega_n| \geq n$.

$$\omega_n = 0^n 1^n = \frac{ \left| \begin{array}{c|c} 0 \dots & 0 & 1 \dots & 1 \\ \hline x & y & z \Rightarrow 3. \end{array} \right| \text{Bedingung: } y = 0 \dots & 0 \ge 1 \end{array} } (\mid \omega_n \mid = 2n)$$

Bedingung 4: $xyyz \in L$ geht nicht, da mindestens eine weitere 0 hinzugefügt wird.

 \Rightarrow Die Sprache ist kontextfrei denn $xz \notin L$

Bsp.
$$G_{arith}^n = (N, T, R, \langle arithmAusdruecke \rangle) // \langle AA \rangle$$

 $N = \{\langle AA \rangle, \langle Vor \rangle\}, T = \{(,), +, -, x_1, x_2, \dots, x_n\}$
 $R = \{\langle AA \rangle \rightarrow \langle Var \rangle, \langle Var \rangle \rightarrow x_1, \langle Var \rangle \rightarrow x_2, \dots, \langle Var \rangle \rightarrow x_n, \langle AA \rangle \rightarrow (\langle AA \rangle + \langle AA \rangle)\}$

Augfaben:

1. Gegeben für Bsp für Wörter aus $L(G_{arith}^n)$ $x_1, x_2, x_n, (x_1 + x_2)$

- 2. Welcher Klasse gehört G^n_{arith} an. kontextfrei
- 3. In welchek Klasse liegt $L(G_{arith}^n)$

Es wird angenommen, dass die Sprache nicht regulär ist, da man Zählen muss, wieviele Klammern geöffnet worden sind.

Annahme:
$$L(G_{arith}^n) \in Reg$$

 $n \in \mathbb{N}^* \ \omega_n$
 $\omega_n = \underbrace{(((((\dots(x_1 + x_2)\dots)))^n)}_{n}$
Da $|xy| \le n \text{ und } y \ne \varepsilon \Rightarrow y = (^n | n \in \mathbb{N})$
 $\omega_n = xyz, \ \tilde{\omega} = xyyz \notin L(G_{arith}^n)$

Falls man Zählen muss ist die Sprache mit grosser Wahrscheinlichkeit keine reguläre Sprache. Zählen bedeutet zum Beispiel, dass bei 0^n1^n man die Nullen zählen muss da es genau gleich viele Einsen haben muss.

Bsp.
$$\Sigma = \{0, 1\}$$

$$L = \{ \omega \in \Sigma^* \mid \omega \text{ endet auf } 00 \}$$

Erste Frage: Was sind die Äquivalezklassen? $R_L = [\varepsilon], [0], [00], \Sigma^* = [\varepsilon] \cup [0] \cup [00]$ $A = (Q, \Sigma, \delta, q_0, F), Q = \{[\varepsilon], [0], [00]\}, q_0 := [\varepsilon], F := \{[00]\}, \delta([\omega], a) := [\omega a]$

1.10 Minimierung endlicher Automaten (gilt nur für DFA)

Problem: Gegeben: $A = (Q, \Sigma, \delta, q_0, F)$ mit L(A) = L

Gesucht: Minimaler DFA, der L akzeptiert.

Notation: Sei $q \in Q$

$$L(A,q) := \{ \omega \in \Sigma^* \mid r_A(q,\omega) \in F \}$$

Bsp.
$$L(A, q_0) = L(A)$$

Wir führen auf Q eine Relation RL_A ein:

Seien $q_l, q_j \in Q$

$$(q_l, q_j) \in RL_A :\Leftrightarrow L(A, q_i) = L(A, q_j)$$

Bem. RL_A ist eine Äquivalenzrelation

1.10.1 Minimaler Automat

- 1. Elimination von aus q_0 nicht erreichbaren Zuständen
- 2. Bestimmen der Äquivalezklassen von RL_A

3.
$$A_{Min} = (\bar{Q}, \Sigma, \bar{\delta}, \bar{q_0}, \bar{F})$$

mit $\bar{Q} := \{[q] \mid q \in Q\}, \ \bar{q_0} := [q_0], \ \bar{F} := \{[q] \mid q \in F\}, \ \bar{\delta} := [\delta(q, a)]$

1.10.2 Algorithmus zur Bestimmung der Äquivalezklassen von RL_A

1. $\forall q_i, q_j \in Q \text{ mit } q_i \in Q \backslash F \text{ und } a_j \in F \Rightarrow [q_i] \neq [q_j]$ **Beweis.** $\varepsilon \notin L(A, q_i) \text{ und } \varepsilon \in L(A, q_j)$

2. Sei
$$[q_i] \neq [q_j]$$
 und $\tilde{q_k}, \tilde{q_e} \in Q$

$$\exists a \in \Sigma : \left\{ \begin{array}{c} \delta(\tilde{q_k}, a) = q_i \\ \delta(\tilde{q_e}, a) = q_j \end{array} \right\} \Rightarrow [\tilde{q_k}] \neq [\tilde{q_e}]$$

$$L(A, q_i) \neq L(A, q_j) \Rightarrow L(A, \tilde{q_k} \neq L(A, \tilde{q_e})$$

