MA2101S Homework 4

Qi Ji - A0167793L

5th March 2018

Question 1.

(a) Solution. For any $i, j, k, l \in \{1, ..., n\}$, do note that in general,

$$E_{ij}E_{kl} = \begin{cases} E_{il} & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$
$$= \delta_{kj}E_{il}$$

Then an expression for the commutator of E_{ij} and E_{kl} will be given by

$$\begin{split} \left[\, E_{ij}, E_{kl} \, \right] &= E_{ij} E_{kl} - E_{kl} E_{ij} \\ &= \delta_{kj} E_{il} - \delta_{il} E_{kj} \end{split} \quad \Box$$

(b) *Proof.* Take any matrix $A=(a_{ij})\in \mathbb{M}_n(K)^0$, for off-diagonal entries, that is for $i,j\in\{1,\ldots,n\}$ where $i\neq j$,

$$a_{ij} \left[\, E_{i1}, E_{1j} \, \right] = a_{ij} (\delta_{11} E_{ij} - \delta_{ij} E_{11}) = a_{ij} E_{ij}$$

For diagonal entries in A, when $i \in \{1, ..., n-1\}$,

$$\begin{aligned} a_{ii}\left[E_{in}, E_{ni}\right] &= a_{ii}(\delta_{nn}E_{ii} - \delta_{ii}E_{nn}) \\ &= a_{ii}E_{ii} - a_{ii}E_{nn} \end{aligned}$$

Since Tr(A) = 0,

$$\sum_{i=1}^{n} a_{ii} = 0 \implies a_{nn} = -\sum_{i=1}^{n-1} a_{ii}$$

Therefore

$$A = \sum_{i=1}^{n-1} a_{ii} [E_{in}, E_{ni}] + \sum_{i=1}^{n} \sum_{\substack{i \neq i \\ i \neq i}} a_{ij} [E_{i1}, E_{1j}]$$

which means A belongs to subspace spanned by commutators.

Conversely given a finite indexing set I, take any matrix $C=\sum_{i\in I}c_i\left[A_i,B_i\right]$ where $(A_i,B_i)_{i\in I}\in\mathbb{M}_n(K), (c_i)_{i\in I}\in K$, then

$$\begin{split} \operatorname{Tr}(C) &= \operatorname{Tr}\left(\sum_{i \in I} c_i \left[\left. A_i, B_i \right. \right] \right) \\ &= \sum_{i \in I} c_i \operatorname{Tr}(\left[\left. A_i, B_i \right. \right]) \\ &= \sum_{i \in I} c_i \operatorname{Tr}(A_i B_i - B_i A_i) \\ &= \sum_{i \in I} c_i \left(\operatorname{Tr}(A_i B_i) - \operatorname{Tr}(B_i A_i) \right) = 0 \end{split}$$

So $C \in \mathbb{M}_n(K)^0$.

Question 2.

Proof. Take any arbitrary $X \in \mathbb{M}_n(K)^0 = \ker(\operatorname{Tr})$, from 1(b), we know X is a linear combination of commutators, so there exists a finite indexing set I, $(A_i, B_i)_{i \in I} \in \mathbb{M}_n(K)$, $(c_i)_{i \in I} \in K$ such that

$$X = \sum_{i \in I} c_i \left[\left. A_i, B_i \right. \right].$$

Then $X \in \ker(f)$, because

$$\begin{split} f(X) &= f\left(\sum_{i \in I} c_i \left[\left.A_i, B_i\right.\right]\right) \\ &= \sum_{i \in I} c_i f(\left[\left.A_i, B_i\right.\right]) \\ &= \sum_{i \in I} c_i f(A_i B_i - B_i A_i) \\ &= \sum_{i \in I} c_i (f(A_i B_i) - f(B_i A_i)) = 0 \end{split}$$

So $\ker(\operatorname{Tr}) \subseteq \ker(f) \subseteq \mathbb{M}_n(K)$. Since n > 0 by assumption, application of rank-nullity theorem on Tr gives us $\operatorname{nullity}(\operatorname{Tr}) + 1 = n^2$, then counting dimensions, $n^2 - 1 \le \operatorname{nullity}(f) \le n^2$.

Case $\operatorname{nullity}(f) = n^2$, then f is the zero functional which uniquely determines that $f = 0 \operatorname{Tr}$.

Case $\operatorname{nullity}(f) = n^2 - 1 = \operatorname{nullity}(\operatorname{Tr})$, then by dimension of subspace, $\ker(\operatorname{Tr}) = \ker(f)$. Let $\{u_1, \dots, u_{n^2-1}\}$ be a basis for $\ker(f)$, fix $v \in \mathbb{M}_n(K) \setminus \ker(f)$, then $\mathcal{B} := (u_1, \dots, u_{n^2-1}, v)$ is an ordered basis for $\mathbb{M}_n(K)$. Let $\mathcal{B}^\vee = (u_1^\vee, \dots, u_{n^2-1}^\vee, v^\vee)$ denote its dual basis. Now for any $x \in \mathbb{M}_n(K)$,

$$\begin{split} x &= \sum_{i=1}^{n^2-1} u_i^{\vee}(x) u_i + v^{\vee}(x) v \\ \operatorname{Tr}(x) &= v^{\vee}(x) \operatorname{Tr}(v) \\ f(x) &= v^{\vee}(x) f(v) \\ &= \frac{f(v)}{\operatorname{Tr}(v)} \operatorname{Tr}(x) \\ f &= \frac{f(v)}{\operatorname{Tr}(v)} \operatorname{Tr} \end{split}$$

as $v \notin \ker(\operatorname{Tr}) = \ker(f)$, $\operatorname{Tr}(v) \neq 0$ and $f(v) \neq 0$ so $c := \frac{f(v)}{\operatorname{Tr}(v)} \in K \setminus \{0\}$ indeed exists.

Suppose there exists $c' \in K$ such that $f = c' \operatorname{Tr}$, evaluate at v, because $\operatorname{Tr}(v) \neq 0$,

$$f(v) = c \operatorname{Tr}(v) = c' \operatorname{Tr}(v)$$

 $c = c'$

completing the uniqueness proof.

Question 3.

Proof. $f^{\vee}:W^{\vee}\to V^{\vee}$ is defined as $f^{\vee}:x\mapsto x\circ f.$ Take any $x\in\ker(f^{\vee})\subseteq W^{\vee}$

$$\begin{split} x &\in \ker(f^\vee) \\ \Longleftrightarrow x \circ f = 0_{V^\vee} \\ \Longleftrightarrow \forall v \in V. \ (x \circ f)(v) = x(f(v)) = 0_K \\ \Longleftrightarrow \operatorname{Im}(f) \subseteq \ker(x) \end{split}$$

this means $\ker(f^{\vee})=\{\,x\in W^{\vee}: x(\mathrm{Im}(f))=\{0\}\,\}=\mathrm{Im}(f)^0$ the annihilator of $\mathrm{Im}(f)$. $\mathrm{Im}(f)$ is a subspace of W, so

$$\dim_K \operatorname{Im}(f) + \dim_K \operatorname{Im}(f)^0 = \dim_K W.^1$$

Rearranging terms gives us

$$\begin{split} \operatorname{nullity}(f^\vee) &= \dim_K \operatorname{Im}(f)^0 \\ &= \dim_K W - \dim_K \operatorname{Im}(f) \end{split}$$

by rank-nullity theorem on f^{\vee} ,

$$\dim_K W^\vee - \dim_K \operatorname{Im}(f^\vee) = \dim_K W - \dim_K \operatorname{Im}(f)$$

because W is finite-dimensional, $\dim_K W^\vee = \dim_K W$ and cancelling terms gives us that

$$\dim_K \operatorname{Im}(f^\vee) = \dim_K \operatorname{Im}(f) \qquad \qquad \square$$

¹An elementary proof of this statement can be found in Chapter 3, Hoffman & Kunze. (Theorem 16)

Question 4.

(a) Proof. Let \mathcal{B} be a basis for $U \subsetneq V$. For any arbitrary $v \in V \setminus U$, since $v \notin U = \operatorname{span}(\mathcal{B})$, $\mathcal{B} \cup \{v\}$ is linearly independent, from maximal principle, there exists a maximal linearly independent subset of V that contains $\mathcal{B} \cup \{v\}$, denoted \mathcal{C} , which is a basis for V.

From the universal property of basis, there exists a (irrelevantly unique) linear functional φ defined on $\mathcal C$ as

$$\varphi: V \to K$$
$$v \mapsto 1$$
$$\mathfrak{Q} \mapsto 0$$

where \odot is refers to any element in $\mathcal{C} \setminus \{v\}$. It then arises from the definition that for any $u \in U = \operatorname{span}(\mathcal{B}), \ \varphi(u) = 0_K$, while $\varphi(v) = 1_K$.

(b) *Proof.* Fix the field \mathbb{Q} . Consider \mathbb{R} as a \mathbb{Q} -vector space. Let $\alpha \in \mathbb{R} \setminus \{-1\}$ be arbitrary.

Suppose $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. We know that \mathbb{Q} is a subspace of \mathbb{R} with a standard \mathbb{Q} -basis $\{1\}$. Since $\alpha \notin \mathbb{Q}$, $\{1, \alpha\}$ is linearly independent, similarly to part (a), there exists a maximally linearly independent subset of \mathbb{R} containing $\{1, \alpha\}$, denoted \mathcal{H} , which is a \mathbb{Q} -basis for \mathbb{R} . Then from the universal property of basis, there exists a linear functional f_0 defined on the basis \mathcal{H} as

$$f_0: \mathbb{R} \to \mathbb{Q}$$
$$1 \mapsto 1$$
$$\alpha \mapsto -1$$
$$\mathfrak{D} \mapsto 0$$

where \odot matches any element in $\mathcal{H} \setminus \{1, \alpha\}$. Now define $f : \mathbb{R} \to \mathbb{R}$ as the inclusion map of f_0 . Then f will still be \mathbb{Q} -linear. It is also clear by construction that f(1) = 1 and $f(\alpha) = -1$.

Conversely suppose $\alpha \notin \mathbb{R} \setminus \mathbb{Q}$, so $\alpha \in \mathbb{Q}$. Suppose for a contradiction there exists a \mathbb{Q} -linear map $f : \mathbb{R} \to \mathbb{R}$ with f(1) = 1 and $f(\alpha) = -1$, then by \mathbb{Q} -linearity, since $\alpha \in \mathbb{Q}$,

$$\alpha \cdot f(1) = \alpha \cdot 1$$
$$f(\alpha) = \alpha = -1$$

This contradicts fact that $\alpha \in \mathbb{R} \setminus \{-1\}$.

Question 5.

Synopsis. I will express, $\sum_{i=1}^{k} v_f(R_i)$ in terms of the corners of each rectangle, and by carefully accounting for terms, show that the terms corresponding to internal corners all cancel out, leaving the terms corresponding to the 4 outermost corners, which gives $v_f(R)$.

Notation. Suppose G = (V, E) is a simple graph with vertices V and edges E, for any vertex $v \in V$, $\deg(v)$ will denote the degree of the vertex.

Proof. Suppose $R = [a, b) \times [c, d)$ is a disjoint union,

$$R = \bigsqcup_{i \in I} R_i$$

where the indexing set $I = \{1, ..., k\}$, and for any $i \in I$,

$$R_i = [a_i, b_i) \times [c_i, d_i).$$

The using additive property of f (\mathbb{Q} -linearity), the f-area of R can be expressed as

$$\begin{split} v_f(R) &= f(b-a) \cdot f(d-c) \\ &= (f(b) - f(a))(f(d) - f(c)) \\ &= f(a)f(c) + f(b)f(d) - f(b)f(c) - f(a)f(d) \end{split}$$

On the other hand, for any $i \in I$, similarly

$$v_f(R_i) = f(a_i)f(c_i) + f(b_i)f(d_i) - f(b_i)f(c_i) - f(a_i)f(d_i)$$

Consider this tabulation of the terms in $\sum_{i \in I} v_f(R_i)$,

$$\begin{split} f(a_1)f(c_1) + f(b_1)f(d_1) - f(b_1)f(c_1) - f(a_1)f(d_1) \\ + \cdots + \\ f(a_k)f(c_k) + f(b_k)f(d_k) - f(b_k)f(c_k) - f(a_k)f(d_k) \end{split}$$

Notice that for each rectangle R_i , there is a correspondence between the terms in the sum and the corners of the rectangle, like this

- + $f(a_i)f(c_i)$ corresponds to the lower-left corner of R_i , (a_i, c_i) ,
- + $f(b_i)f(d_i)$ corresponds to the upper-right corner of R_i , (b_i, d_i) ,
- $f(b_i) f(c_i)$ corresponds to the lower-right corner of R_i , (b_i, c_i) ,
- $-\ f(a_i)f(d_i)$ corresponds to the upper-left corner of $R_i,\,(a_i,d_i).$

Consider the graph G=(V,E) formed by tracing the edges of all the rectangles $(R_i)_{i\in I}$. V, the vertices of the graph, are to be formed by the corners of these rectangles.

For any $v \in V$, due to how the graph is formed, there is only a few cases.

• $\deg(v) = 2$, this means the point in correspondence to v has to be one of $\{(a,c),(a,d),(b,c),(b,d)\}$, and whichever point it is, it belongs to exactly one rectangle in $(R_i)_{i\in I}$. Hence in the expression for $\sum_{i\in I} v_f(R_i)$, terms that correspond to any of the 4 outermost corners will appear exactly **once** (for each corner).

- $\deg(v)=3$, this means that v is a corner shared by 2 rectangles in $(R_i)_{i\in I}$. So there exists distinct rectangles $R_p, R_q \in (R_i)_{i\in I}$ such that one of the below holds,
 - -v is the upper-right corner of R_p and upper-left corner of R_q , or
 - -v is the lower-right corner of R_p and lower-left corner of R_q , or
 - -v is the upper-right corner of \hat{R}_p and lower-right corner of R_q , or
 - v is the upper-left corner of R_p and lower-left corner of R_q .

In any case, in the expression for $\sum_{i \in I} v_f(R_i)$, the two terms that correspond to v will have opposite signs (and obviously the same value), therefore cancelling each other.

- $\deg(v)=4$, this means that v is a corner that is shared by 4 rectangles in $(R_i)_{i\in I}$. So there exists distinct rectangles $R_p, R_q, R_r, R_s \in (R_i)_{i\in I}$ such that
 - 1. v is the lower-left corner of R_p , and
 - 2. v is the lower-right corner of R_a , and
 - 3. v is the upper-left corner of R_r , and
 - 4. v is the upper-right corner of R_s .

Similarly to previous case, in the expression for $\sum_{i \in I} v_f(R_i)$, the four terms that correspond to v will cancel each other out.

Since rectangles have right-angled corners, G will only has vertices with degrees 2,3 or 4, so the enumeration was exhaustive. Because every term in the expression for $\sum_{i\in I}v_f(R_i)$ corresponds to a corner of a rectangle in $(R_i)_{i\in I}$, which in turn is related to a vertex in V, we can conclude that by accounting for every $v\in V$, we have accounted for every individual term in $\sum_{i\in I}v_f(R_i)$.

Therefore, the only terms that remain in $\sum_{i \in I} v_f(R_i)$ are those in correspondence with $\{(a,c),(a,d),(b,c),(b,d)\}$. It is very clear which corner of its respective rectangle each point belongs to, hence we can derive the sign of each remaining term, therefore

$$\sum_{i\in I} v_f(R_i) = f(a)f(c) + f(b)f(d) - f(a)f(d) - f(b)f(c) = v_f(R). \qquad \qquad \square$$

Question 6.

Proof. Suppose a rectangle $R = [a, b) \times [c, d)$ has the ratio $x(R)/y(R) \in \mathbb{Q}$. Let $p, q \in \mathbb{N}, q \neq 0$ such that p/q is the canonical fractional representation of x(R)/y(R).

$$\frac{x(R)}{y(R)} = \frac{p}{q} \implies \frac{b-a}{p} = \frac{d-c}{q}$$

and p>0 because a< b by assumption. Proceed to partition R into pq squares of side length $\lambda:=\frac{b-a}{p}=\frac{d-c}{q}$, by defining, for all $i\in\{0,\ldots,p-1\}$, for all $j\in\{0,\ldots,q-1\}$,

$$S_{i,j} := [a + i\lambda, a + (i+1)\lambda) \times [c + j\lambda, c + (j+1)\lambda).$$

It is very clear that each of S_{ij} is actually a square (of side length λ). Now for any $(i, j), (k, l) \in \mathbb{N}_{\leq p} \times \mathbb{N}_{\leq q}$, where $(i, j) \neq (k, l)$,

$$S_{ij} = [a + i\lambda, a + (i+1)\lambda) \times [c + j\lambda, c + (j+1)\lambda)$$

$$S_{kl} = [a + k\lambda, a + (k+1)\lambda) \times [c + l\lambda, c + (l+1)\lambda)$$

and because $i \neq k$ or $j \neq l$, $S_{ij} \cap S_{kl} = \emptyset$. Hence $(S_{ij})_{(i,j) \in \mathbb{N}_{< p} \times \mathbb{N}_{< q}}$ is a pairwise disjoint family of squares. Additionally, from associativity of set union,

$$\begin{split} \bigsqcup_{(i,j) \in \mathbb{N}_{< p} \times \mathbb{N}_{< q}} S_{ij} &= \bigsqcup_{i \in \mathbb{N}_{< p}} \bigsqcup_{j \in N_{< q}} S_{ij} \\ &= \bigsqcup_{i \in \mathbb{N}_{< p}} \bigsqcup_{j \in N_{< q}} [a + i\lambda, a + (i+1)\lambda) \times [c + j\lambda, c + (j+1)\lambda) \end{split}$$

in the inner | |, i is fixed, then because \times distributes over \cup (\sqcup in this case),

$$\begin{split} \bigsqcup_{(i,j)\in\mathbb{N}_{< p}\times\mathbb{N}_{< q}} S_{ij} &= \bigsqcup_{i\in\mathbb{N}_{< p}} [a+i\lambda, a+(i+1)\lambda)\times [c,c+q\lambda) \\ &= [a,a+p\lambda)\times [c,c+q\lambda) \end{split}$$

recall from our definition that $\lambda = \frac{b-a}{p} = \frac{d-c}{q}$, therefore

$$\bigsqcup_{(i,j)\in\mathbb{N}_{< p}\times\mathbb{N}_{< q}}S_{ij}=[a,b)\times[c,d)=R.$$

This concludes that R can be partitioned into a finite disjoint union of pq smaller squares.

Conversely, suppose a rectangle R is partitioned into a finite disjoint union, where $k \in \mathbb{N}$, $S_1, \ldots, S_k \subseteq R$ are squares such that

$$R = \bigsqcup_{i=1}^{k} S_i.$$

Suppose for a contradiction the side length ratio x(R)/y(R) does not lie in \mathbb{Q} . With possible scaling, we can assume without loss of generality that y(R)=1, so $\alpha:=x(R)\in\mathbb{R}\setminus\mathbb{Q}$. Since the side length is strictly positive, $\alpha>0$, so in particular $\alpha\neq -1$.

Let $f: \mathbb{R} \to \mathbb{R}$ be the \mathbb{Q} -linear map shown to exist in question 4(b), with property that f(1) = 1 and $f(\alpha) = -1$. From question 5, the f-area is additive, so

$$\begin{split} R &= \bigsqcup_{i=1}^k S_i \\ v_f(R) &= v_f \left(\bigsqcup_{i=1}^k S_i \right) \\ v_f(R) &= \sum_{i=1}^k v_f(S_i) \\ f(\alpha) \cdot f(1) &= \sum_{i=1}^k f(x(S_i)) \cdot f(y(S_i)) \end{split}$$

because \boldsymbol{S}_i is a square with $\boldsymbol{x}(\boldsymbol{S}_i) = \boldsymbol{y}(\boldsymbol{S}_i),$

$$-1 = \sum_{i=1}^{k} f(x(S_i))^2 > 0$$
$$-1 > 0$$

which is a contradiction. Hence the side length ratio x(R)/y(R) must be rational.