

Anomaly Detection Using ML

Area 54

Athithya Jayadevan, Kinaar Desai, Krish Avvari, Sonia Reddy Kolli, Paige Godvin

Problem Statement

- Cyber attacks are becoming more prevalent and more sophisticated
 - Very difficult to detect
 - 6 months = average time to detect breach
- Business value
 - Costs of online crime predicted to reach \$6 trillion by 2021
 - \$2.4 million = average cost of malware attack
 - Global anomaly detection market estimated to double over the next 5 years to \$4.45 billion

Solution Description

- Incorporating ML/AI
- Implementing model to detect network anomalies
- Relieving reliance on manpower
- Increase visibility
- Helps prevent any kind of fraud and threat to a business process
- Potential to detect previously unknown attacks (zero-day)

How it Works?

- Network communication datasets are collected from available source
 - (Kaggle, GitHub)
- Data is processed and stored as DataFrames and 1-D arrays for the algorithms.
- ML algorithms are trained with the DataFrames and various parameters
 - average accuracy of 95%
 - FFN is observed to have an average accuracy of 97%

Naive Bayes

Naive Bayes CONFUSION MATRIX[[2137 186] [300 2416]]							
	precision	recall	f1-score	support			
0 1	0.88 0.93	0.92 0.89	0.90 0.91	2323 2716			
accuracy macro avg weighted avg	0.90 0.90	0.90 0.90	0.90 0.90 0.90	5039 5039 5039			

Support Vector Machines

SVM CONFUSION MATRIX [[2000 349] [1 2689]]							
	precision	recall	f1-score	support			
0	1.00	0.85	0.92	2349			
1	0.89	1.00	0.94	2690			
accuracy			0.93	5039			
macro avg	0.94	0.93	0.93	5039			
weighted avg	0.94	0.93	0.93	5039			

K-Nearest Neighbors

```
-----*KNN CONFUSION MATRIX*-----
[[2311
       12]
 [ 17 2699]]
             precision
                         recall f1-score
                                           support
          0
                 0.99
                           0.99
                                    0.99
                                             2323
                           0.99
                                    0.99
                 1.00
                                             2716
                                    0.99
                                             5039
   accuracy
                 0.99
                           0.99
                                    0.99
                                             5039
  macro avg
weighted avg
                 0.99
                           0.99
                                    0.99
                                             5039
```

RandomForest

* [[2316 7] [6 2710]]	RandomForest	CONFUSIO	N MATRIX∗	<u>-</u>	
	precision	recall	f1-score	support	
0 1	1.00 1.00	1.00 1.00	1.00 1.00	2323 2716	
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	5039 5039 5039	

Decision Trees

*Descision Tree CONFUSION MATRIX**Descision Tree [[2315 8] [9 2707]]						
	precision	recall	f1-score	support		
0	1.00	1.00	1.00	2323		
1	1.00	1.00	1.00	2716		
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	5039 5039 5039		

Feed-Forward Neural Networks

FeedFordward Neural Network CONFUSION MATRIX[[6339							
	precision	recall	f1-score	support			
0	1.00	0.67	0.80	9435			
1	0.78	1.00	0.87	10718			
accuracy			0.85	20153			
macro avg	0.89	0.84	0.84	20153			
weighted avg	0.88	0.85	0.84	20153			

Next Steps

- Can be used for learning tool for Knowledge-Based Systems.
- Can be made largely scalable using REST.

Teamwork

- Athithya Jayadevan
 - Provided in-depth knowledge of Al and primary support
- Krish Awari
 - Generated .csv files to compare each algorithm
- Kinaar Desai
 - Sklearn Classifiers and Confusion Matrix Creation
- Paige Godvin
 - Performed research on data sets and prepared presentation
- Sonia Reddy Kolli
 - Prepared presentation and researched on anomaly detection

Questions

cisco