Blatt 13

(1) Implementieren Sie die LU-Zerlegung für Tridiagonal-Matrizen aus Aufgabe (3)(a) in Python und testen Sie Ihre Funktion an der Tridiagonalmatrix mit $b_i = c_{i+1} = -i$ für i = 1, ..., n-1 und $a_i = 4$ für alle i = 1, ..., n, n = 8.

Theorieaufgaben

- (2) Berechnen Sie den Aufwand für folgende Operationen. Geben Sie dabei sowohl die genaue Anzahl der Rechenoperationen als auch für die Teilaufgaben (b) und (c) den Aufwand in der \mathcal{O} -Notation an
 - (a) $A \cdot B$, wobei $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times k}$.
 - (b) $R \cdot S$, wobei $R, S \in \mathbb{R}^{n \times n}$ rechte obere Dreiecksmatrizen sind.
 - (c) $A \cdot x$, wobei $A \in \mathbb{R}^{n \times n}$ eine Tridiagonalmatrix und $x \in \mathbb{R}^n$ ist.
- (3) Sei $T \in \mathbb{R}^{n \times n}$ eine Tridiagonalmatrix, d.h. die Matrix T ist von der Form

$$T = \begin{pmatrix} a_1 & b_1 & 0 & \cdots & 0 \\ c_2 & a_2 & b_2 & \ddots & \vdots \\ 0 & c_3 & a_3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & b_{n-1} \\ 0 & \dots & 0 & c_n & a_n \end{pmatrix}$$

für $a_1, \ldots, a_n, b_1, \ldots, b_{n-1}, c_2, \ldots, c_n \in \mathbb{R}$.

(a) Wir nehmen an, dass die invertierbare Tridiagonalmatrix T eine LU-Zerlegung besitzt. Zeigen Sie, dass die LU-Zerlegung der Tridiagonalmatrix T gegeben ist durch

$$L = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ \gamma_2 & 1 & 0 & \ddots & \vdots \\ 0 & \gamma_3 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \gamma_n & 1 \end{pmatrix}, \quad U = \begin{pmatrix} \alpha_1 & \beta_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \beta_2 & \ddots & \vdots \\ 0 & 0 & \alpha_3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \beta_{n-1} \\ 0 & \dots & 0 & 0 & \alpha_n \end{pmatrix}$$

mit rekursiv definierten Koeffizienten

$$\alpha_1 = a_1$$

$$\gamma_i = \frac{c_i}{\alpha_{i-1}}, \ \alpha_i = a_i - \gamma_i \beta_{i-1}, \ \beta_{i-1} = b_{i-1} \quad \text{für} \quad i = 2, \dots, n.$$

Hinweis: Nachrechnen dass LU = T gilt.

(b) Bestimmen Sie den Rechenaufwand für die LU-Zerlegung einer Tridiagonalmatrix.

(c) Begründen Sie, dass die Tridiagonalmatrix T eine LU-Zerlegung besitzt, wenn gilt dass $c_j \neq 0$ für $j = 1, \ldots, n$ und

$$|a_1| \ge |c_2|$$
, $|a_n| \ge |b_{n-1}|$, $|b_{i-1}| + |c_{i+1}| \le |a_i|$ für $i = 2, ..., n-1$.

Hinweis: Zeigen Sie durch Induktion, dass $|\gamma_i| \leq 1$ gilt für i = 2, ..., n und folgern Sie, dass $|\alpha_i| > 0$.

(4) Berechnen Sie die Zerlegung PA = LU der Matrix

$$A = \begin{pmatrix} 0 & 1 & 3 \\ 6 & -2 & 4 \\ -3 & -3 & -2 \end{pmatrix}.$$

bei Spaltenpivotsuche. Lösen Sie damit die Gleichung Ax = b für $b = [3, -2, 1]^{\top}$. Berechnen Sie auch die Determinante der Matrix A.

(5) Gegeben sei die Matrix

$$A = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & 1 \\ -2 & 1 & 3 \end{pmatrix}.$$

- (a) Zerlegen Sie die Matrix A durch LU- bzw. Cholesky-Zerlegung.
- (b) Heben Sie die Diagonale aus U heraus, d.h. schreiben Sie die Matrix U als U = DR, wobei R in der Diagonale alles Einsen hat und D eine Diagonalmatrix $D = \text{diag}(d_1, d_2, d_3)$ ist. Sei weiters $D_1 = \text{diag}(\sqrt{d_1}, \sqrt{d_2}, \sqrt{d_3})$. Vergleichen Sie $L_1 = LD_1$ mit dem Cholesky-Faktor C aus (a).