CHAPTER 11

Learning Outcomes

11.1 INTRODUCTION OF AMINES

At the end of the lesson, you should be able to:

- a) Give the name of aliphatic and aromatic amines according to the IUPAC nomenclature (parent chain $\leq C_{10}$) (C2)
- b) State the common names of amines with parent chain $\leq C_5$ (C1)
- c) Give the structural formulae of amines in 11.1 (a)(C2)
- d) Classify primary, secondary and tertiary amines.(C2)

AMINES

- In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair.
- Amines are formally derivatives of ammonia (NH₃), wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group
- Amines have a distinctive odor and are commonly used in a variety of applications, including as solvents, bases, and intermediates in the production of pharmaceuticals and agrochemicals.

Nomenclature of amines & Structural formulae of amines

IUPAC NAMES

- Determine the longest continuous chain of carbon atoms.
- The –e ending in the alkane name is changed to amine, and a number shows the position of the amino group.
- Other substituents on the carbon chain are given numbers, and prefix N- is used for each substituent.

3-methyl-1-butanamine (1° amine)

Keep in mind!

For aliphatic amines:

 The non–numeric locant, N, is placed after the numeric locants when a list of them is needed.

$$CH_3$$
 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

2,4,*N*,*N*-tetramethyl-3-hexanamine (3° amine)

2-ethyl-N-propylcyclohexanamine (2° amine)

4-bromo-N,N-dimethyl-2-pentanamine (3° amine)

Aromatic amines are named as derivatives of aniline.

EXAMPLE:

4-methylaniline (1° aromatic amine)

N,4—dimethylaniline (2° aromatic amine)

Keep in mind!

For aromatic amines:

 The non-numeric locant, N, is placed before the numeric locants when a list of them is needed.

EXAMPLE:

N,N,2,6-tetramethylaniline (3° aromatic amine)

 When multiple functional groups are present and the –NH₂ group does not take priority, it is named as an "amino" substituent.

EXAMPLE:

2-aminobutanoic acid

2,4-diaminobenzoic acid

H₂NCH₂CH₂CH₂CCH₃
5 4 3 2 1

2-aminoethanol

5-amino-2-pentanone

3-aminocyclohexanol

Common names

- From name of alkyl groups bonded to N, followed by suffix -amine.
- The prefixes di-, tri-, and tetra are used to describe the number of identical substituents.

EXAMPLE:

CH₃CH₂NH₂

ethylamine

triethylamine

tert-butylamine

diethylmethylamine

Classification of amines

Amines are organic derivatives of ammonia, NH_{3,} with one or more alkyl groups bonded to the nitrogen atom.

- General formula: R-NH₂ (R= alkyl or aryl)
- Functional group: NH₂ (amino group)

The chemistry of amines is dominated by the nonbonded electron pair on the N atom

 The lone pair electrons on N makes amines both basic and nucleophilic.

ammonia

methylamine

Amines are classified as primary (1°), secondary (2°), or tertiary (3°), corresponding to the number of alkyl or aryl groups attached to N.

Classify the following amines:

Learning Outcomes

11.2 PHYSICAL PROPERTIES OF AMINES

At the end of the lesson, you should be able to:

- a) Compare the physical properties of amines based on: (C3 & C4)
 - i. boiling points of:
 - primary, secondary and tertiary amines; and
 - amine with alkane, haloalkane, alcohol, carbonyl compound and carboxylic acid with comparable molar mass.
 - ii. solubility of primary, secondary and tertiary amines

Physical Properties Of Amines

i. Boiling Point

- Both primary and secondary amines can form intermolecular hydrogen bonds.
- Primary amines have two N-H bond, hydrogen bonding is more significant in primary amine than in secondary amine.
- Tertiary amines cannot form hydrogen bonds to each other.

1° amines

2° amines

3° amines

Amines	Class	Relative molecular mass	Boiling points/°C
CH ₃ CH ₂ CH ₂ NH ₂	1°	59	49
CH ₃ CH ₂ -NH-CH ₃	2°	59	37
CH ₃ CH ₃ -N-CH ₃	3°	59	4

Boiling Point: CH₃CH₂CH₂NH₂ > CH₃CH₂NHCH₃ > (CH₃)₃N

Explanation: All the structures of amine have same molecular mass but the boiling point are different due to the class of amine. 1° amine > 2° amine > 3° amine

Boiling point : carboxylic acid > alcohol > amine > haloalkane > alkane

EXAMPLE:

Ethanoic acid > 1-propanol > propylamine > chloroethane > butane

- Only ethanoic acid, 1-propanol and propylamine can form hydrogen bond between molecules.
- Ethanoic acids have the highest boiling point because it forms a stable hydrogenbonded dimer.

- ➤ The hydrogen bonds of propylamine formed between its molecules are weaker than those between 1-propanol molecules since nitrogen is less electronegative than oxygen.
- Chloroethane is polar molecules (van der Waals forces between molecules), and hence do not form hydrogen bonds.
- Butane is non-polar molecules (weak van der Waals forces between molecules), do not form hydrogen bonds.
- The hydrogen bonds are stronger than van der Waals forces

Examples

The table below compares the boiling points of organic compounds of comparable relative molecular mass.

Amines	Type	Relative molecular mass	Boiling points/°C
CH ₃ CH ₂ CH ₂ CH ₃ butane	alkane	58	-0.05
CH₃CH₂CI chloroethane	haloalkane	64.5	12.5
CH ₃ CH ₂ CH ₂ NH ₂ 1-propanamine	amine	59	48.6
CH ₃ CH ₂ CHO Propanal	aldehyde	58	48.8
CH ₃ CH ₂ CH ₂ OH 1-propanol	alcohol	60	97.2
CH₃COOH ethanoic acid	Carboxylic acid	60	118

Boiling point: Carboxylic acid > alcohol > carbonyl > amine > haloalkane > alkane

ii. Solubility of 1°, 2°, 3° amines

In Water

- All amines having ≤ 5C's are water soluble because they can form hydrogen bond with H₂O molecules.
- Amines having > 5C are water insoluble because the alkyl portion (hydrophobic area) is too large to dissolve in the polar H₂O.
- Comparing amines with the same number of carbons, 1° amines are more soluble than 2° amines because 1° amines have two hydrogen atom that can form in hydrogen bonding.

Comparison the solubility between 1°,2° and 3° amine in water

The most hydrogen bonds per 1° amine molecule

More hydrogen bonds per 2° amine molecule

The least hydrogen bond per 3° amine molecule

- - - hydrogen bonds

3° < 2° < 1° amine

Increasing solubility

Learning Outcomes

11.3 PREPARATION OF AMINES

At the end of the lesson, you should be able to:

- a) Explain the preparation of: (C3 & C4)
 - i. aromatic amines by reduction of nitro compounds using Zn/HCl or Sn/HCl or Fe/HCl;
 - ii. primary aliphatic amines by reduction of nitriles using LiAlH₄ followed by H₂O or H₂ with catalyts;
 - iii. primary, secondary and tertiary amines by reductions of amides using LiAlH₄, followed by H₂O;
 - iv. primary alkyl and aryl amines by Hoffmann's degradation of primary amides.

Preparation of amines

i) Reduction of nitro compound

 Aromatic amines can be prepared by reduction of nitro compounds using Zn/HCl or Sn/HCl or Fe/HCl

ii) Reduction of nitriles

- Nitriles are reduced to primary amines by
 - H₂ / catalyst (Ni, Pt or Pd)
 - LiAIH₄ followed by H₂O

General equation:

$$\begin{array}{c|ccccc}
OH & & OH \\
\hline
CN & & i) & LiAlH_4 & & CH_2NH_2
\end{array}$$

iii) Reduction of Amides

 Reduction of an amide using LiAlH₄ followed by H₂O can yield a primary, secondary, or tertiary amine depending on the type of amide used.

General equation:

$$\begin{array}{c} O \\ | \\ R - C - NH_2 \end{array} \xrightarrow{i.LiAlH_4} \begin{array}{c} H \\ | \\ \hline ii.H_2O \end{array} \qquad \begin{array}{c} H \\ R - C - NH_2 + H_2O \\ | \\ H \end{array}$$

iv) Hoffmann's Degradation of Amides

- On warming a primary amide with bromine in solution of NaOH, a primary amine is formed.
- This reaction is used to synthesis primary alkyl and aryl amines.

 Primary amide is converted to primary amine with one carbon atom less.

Learning Outcomes

At the end of the lesson, you should be able to:

- a) Explain the reaction of amines with: (C3 &C4)
- Hinsberg's reagent;
- ii. nitrous acid.
- b) Distinguish classes of amines by using: (C4)
- Hinsberg's test;
- ii. nitrous acid.
- c) Explain the identification test of aniline using bromine water. (C3 &C4)
- d) Explain the formation of dye by the coupling reaction of benzenediazonium chloride and phenol. (C3 &C4)
- e) Outline the synthesis of compounds involving amines. (C4)
 *limit to maximum 4 steps only

11.4 CHEMICAL PROPERTIES

i) Reaction with Hinsberg's reagent

Hinsberg's reagent: benzenesulphonyl chloride

- Involves two steps:
 - 1. Mixture of amine and benzenesulphonyl chloride with excess base (KOH @ NaOH).
 - 2. The mixture then acidified with HCl.
- This reaction is used to distinguish classes of amines.
- In the test, amines act as nucleophiles and attack the electrophile (sulfonyl chloride). This leads to the displacement of the chloride and the generation of the sulfonamides.

1° amine

- The reaction of the benzene sulfonyl chloride with primary amines gives a *N*-substituted benzenesulfonamide product that is soluble in excess base. (clear solution form)
- ➤ Addition of HCI will produce *N*-substituted benzenesulfonamides. (white precipitate)

2º amine

- ➤ The reaction of the benzene sulfonyl chloride with secondary amines gives a N,N-disubstituted benzenesulfonamide product that is NOT soluble in alkali. (white precipitate form)
- ➤ No reaction occurs when HCl is added to *N,N*-disubstituted benzenesulfonamides h. (white precipitate remain)

3° amine

- No such reaction occurs between a tertiary amine and the benzene sulfonyl chloride reagent. (two layers solution form)
- Addition of HCl will produce soluble salt. (clear solution form)

clear solution (water soluble salt)

SUMMARY OF HINSBERG'S TEST

TYPE OF AMINE	Add KOH	Add HCI
1°	Clear solution	White precipitate
2 °	White precipitate	(No change) Precipitation
3°	Two layer (no reaction)	Clear solution

ii) Reaction with nitrous acid

- Nitrous acid (HNO₂) is a weak and unstable acid.
- It is always prepared in situ, by treating cold sodium nitrite (NaNO₂) with an aqueous solution of a cold dilute hydrochloride acid (-5°C).
- Nitrous acid reacts with all classes of amines.

Nitrous acid test can be used to distinguish:

- 1° aliphatic and 1° aromatic amines
- 1° and 2° aliphatic amines

1º AMINES (aliphatic)

EXAMPLE:

CH₃CH₂CH₂NH₂ 1-propanamine

CH₃CH=CH₂ propene

- + CH₃CH(OH)CH₃ 2-propanol
- + CH₃CHCICH₃ 2-chloropropane

+ N₂↑

Even at low temperature aliphatic diazonium salts decompose spontaneously by losing N₂

1º AMINES (aromatic)

- Primary arylamines react with nitrous acid to give benzenediazonium salts.
- Benzenediazonium salts only stable below 5°C.

Observation:
No gas bubbles are formed below 5 °C

EXAMPLE:

(a)
$$(CH_3)_2CH \xrightarrow{\hspace{1cm}} NH_2 \xrightarrow{\hspace{1cm}} NaNO_2, HCI \\ 0-5°C \\ (CH_3)_2CH \xrightarrow{\hspace{1cm}} N\equiv NCI-$$
 aryl diazonium salt

(b)
$$NH_2$$
 $NaNO_2$, HCI NO_2 NO_2 NO_2

aryl diazonium salt

2° AMINES

 Both alkyl and aryl 2° amines react with HNO₂ to yield N-nitrosoamines.

General equation:

R—N—H NaNO₂, HCI R—N—N=O
$$0-5^{\circ}$$
C R

2° amine

NanO₂, HCI R—N—N=O R

N-nitrosoamine

Yellow oil

Observation: yellow oil of *N*-nitrosamine forms

EXAMPLE:

$$(CH_3)_2NH$$
 $NaNO_2$, HCI
 $(CH_3)_2N-N=O$
 $0-5^{\circ}C$
(yellow oil)

3° AMINES (Aliphatic)

 When tertiary aliphatic amine is mixed with nitrous acid, an equilibrium is established among the tertiary amine, its salt and an N-nitrosoammonium compound.

General equation:

3° aliphatic amine

Water soluble salts (clear solution)

Observation:

A clear solution is obtained

Example:

CH₃

$$\stackrel{\mid}{\text{CH}_3}$$
 $\stackrel{\mid}{\text{NaNO}_2}$, HCI
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{O-5}^{\circ}}$
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{O-5}^{\circ}}$
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{NaNO}_2}$
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{NaNO}_2}$
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{NaNO}_2}$
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{CH}_3}$
 $\stackrel{\mid}{\text{CH}_3}$

3° AMINES (Aromatic)

 Tertiary arylamines react with nitrous acid to give green precipitate.

General equation:

3° arylamine

p-nitrosoaniline (precipitate)

Observation:

Formation of precipitate

Distinguish 1° aliphatic amines from 2° aliphatic amines

COMPOUND	OBSERVATION
Primary aliphatic amines	Form a mixture of alkenes, alcohols, alkyl halides and nitrogen gas.
Secondary aliphatic amines	Form secondary N-nitrosamines as yellow oil, which is stable under the reaction conditions (0-5°C).

Distinguish primary aliphatic amines from primary aromatic amines

COMPOUND	OBSERVATION
Primary aliphatic amines	Form a mixture of alkenes, alcohols, alkyl halides and nitrogen gas.
Primary aromatic amines	No gas bubbles (N ₂) are evolved at temperature below 5 °C.

iii) Reaction with bromine water

 Aniline reacts with aqueous bromine (bromine water) to yield white precipitates.

Identification

Observation: White precipitate is formed

iv) Formation of dye by coupling reaction

- Primary arylamines (aniline) react with nitrous acid to give arenediazonium salts which are stable below 5 °C.
 - Arenediazonium salts also undergo coupling reaction with aromatic compounds with strong electron donating group, such as –OH and –NR₂ at the para position to yield azo compounds.
 - Azo compounds are usually intensely coloured and relatively inexpensive compounds, they are used as dyes.

v) Synthesis of compounds involving amines.

- Amines can be synthesized through various methods, including reduction of nitriles, alkylation of amides, and nucleophilic substitution reactions.
- One of the most commonly used methods of amine synthesis is the reaction between an alkyl halide and excess ammonia (NH₃).
- This reaction produces an alkyl amine, which can then be further reacted to form other amine compounds.

EXERCISE:

Complete the following reaction scheme.

$$CH_3 CH_2 CH_2 OH$$
 $\xrightarrow{SOCl_2}$ $A \xrightarrow{excess NH_3}$ $B \xrightarrow{CH_3COOH}$ $CH_3 CH_2 CH_2 OH$

ANSWER: