CIS 678 Machine Learning

Course Review Week

Our Plan

1					Winte	r, 202	5										
2	TASK	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15	W16
3	Introduction																
4	Course																
5	Math																
6	ML																
7	Gneral ML																
8	General ML models																
9	Deep Learning																
10	NNs																
11	CNNs																
12	Auto Encoders																
13	RNNs + Transformers																
14	Special Topics																
15	Generative AI																
16	Reinforcement Learning																
17																	
18	Assignments																
19	Assignment 1																
20	Assignment 2																
21	Final Project																
22	Problem & data identification + Baseline																
23	DL alignment																
24	Your extention																
25	Wrapup & Presentation																
26	Exams																
27	Shadow																
28	Midterm																
29	Final																

Background diagnostics + ML Introduction

Vector space

Proximity or distance metric

- L1/Manhattan distance
- L2/Euclidean distance.
- Cosine distances

kNN model:

- Distance based
- Can be applied to both Regression and Classification tasks

Probability (measuring uncertainty)
Probability distributions

ML introduction:

Linear to Polynomial Regression

Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Fitting Error

$$\epsilon = |\hat{y} - y|$$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

Table 1.1 Table of the coefficients w* for polynomials of various order.

Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

Model generalization

M = 9

232.37

-5321.83

48568.31

-231639.30 640042.26 -1061800.52 1042400.18;

-557682.99

125201.43

0.35

0.19

0.82

-1.27

0.31

7.99

-25.43

17.37

Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1, \dots, N}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Essentially, the same formulation

Generally ML vs Math conventions

$$W^* = \operatorname{argmin}_W E\{(x_i, t_i)\}_{i=1, \cdots, N}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

creases der of the

Regularizer

nitude of the coefficients increases dramatically as the order of the polynomial increases.

Table of the coefficients w* for polynomials of various order. Observe how the typical mag-

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^\star			1	231639.30
w_5^*			`;	640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18;
w_8^{\star}				-557682.99
w_9^\star				125201.43
3	· · ·	value,	cing	/
	; Mps	values Sincrea)S'' -	
	1 4	values e increa		/
	· / Kr			٧.
	N.			

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{1}{2} ||\mathbf{w}||^2$$

Model generalization: Regularization

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^\star			1,	231639.30
$w_4^\star \ w_5^\star$			`,	640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18,
w_8^{\star}				-557682.99
w_9^\star	_,_,_,_	65		125201.43
Ü	· · · ·	values	cing	
	' Vpz	values Sincrea	٠.٠	
	\ \ \r(values e increa		`, /
	\ \'			
	````	'		

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$



$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{1}{2} ||\mathbf{w}||^2$$

decreasing

le 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
$w_0^{\star}$	0.19	0.82	0.31	0.35
$w_1^{\star}$		-1.27	7.99	232.37
$w_2^{\star}$			-25.43	-5321.83
$w_3^{\star}$			17.37	48568.31
$w_4^{\star}$				-231639.30
$w_5^{\dot{\star}}$				640042.26
$w_6^{\star}$				-1061800.52
$w_7^{\star}$				1042400.18
$w_8^{\star}$				-557682.99
$w_{0}^{\star}$				125201.43

#### How to control this?

Model generalization: Regularization

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$
 Hyperparameter 
$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
$w_0^{\star}$	0.19	0.82	0.31	0.35
$w_1^\star$		-1.27	7.99	232.37
$w_2^{\star}$			-25.43	-5321.83
$w_3^{\star}$			17.37	48568.31
$w_4^{\star}$				-231639.30
$w_5^{\star}$				640042.26
$w_6^{\star}$				-1061800.52
$w_7^{\star}$				1042400.18
$w_8^{\star}$				-557682.99
$w_{0}^{\star}$				125201.43

Who to control this?

Model generalization: Regularization

# Probabilistic equivalent

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

# Probabilistic equivalent

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$



# Probabilistic equivalent

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$p(\mathbf{t}|\mathbf{x},\mathbf{w},eta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n|y(x_n,\mathbf{w}),eta^{-1}
ight).$$



# General ML models, Assignment 1 & Midterm



# kNN Supervised

- Linear Regression
- Decision Tree
- Meta learners
  - o Random Forest Regressor
  - Boosting Regressor
- Support Vector Regressor (SVRs)

Regression

- kNN
- Logistic Regression
- Decision Tree
- Meta Learners
  - Random Forest Classifier
  - Boosting Classifiers
- Support Vector Classifiers (SVCs)
- Naive Bayes

Classification



#### Unsupervised

- Clustering algorithms
  - k-means: Centroid Based
  - k-modes: Mode Based (categorical)
  - Hierarchical clustering: Distance connectivity based
  - o GMM: Distribution based
  - DBSCAN: Density Based
- How to choose the optimal number of clusters.

Clustering

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)

**Linear Dimensionality Reduction** 

#### Model generalization

- Universal concepts (applies to all models)
  - Cross validation
  - HP optimization

Universal concepts

- Overfitting
- Underfitting

Overfitting vs Under fitting





## K-fold-cross validation



# **Assignment 1**

#### Vector space



Figure 1: A read and a blue box containing a set of orange and green balls.

Probability & distribution

- [2x2 points] For each dimension d ∈ [2¹, 2³, 2⁵,..., 2¹¹], sample 100 random points from corresponding vector spaces (sample code to generate random samples is provided below), and
  - Record the l2 and the cosine distances between all pairs (of points); then
  - Fit two normal/Gaussian distributions, one for each distance metric. Share the mean (μ) and the standard distribution (σ) parameters of each distribution that you have learned.
  - Plot these normal/Gaussian distributions using your preferred visualization package(s).

normal/Gaussian distribution:  $p(x) \sim \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ 

Sample code (to generate n = 100 random samples from a d = 4 dimensional vector space):

import numpy as np d, n = 4, 100 sample_data = np.random.randn(n, d)

#### [2x2 points]

There are some orange and green balls in a red and a blue box as illustrated in Figure 1. Someone (blinded by tying a piece of cloth around his/her eyes) is asked to pick up a ball twice (with replacement, i.e. the ball is placed back in the same box from where it was picked up).

- (a) What is the log-probability of the first ball to be orange and second ball to be green?
- (b) What is is **probability** that both the time the ball came from the **red** box?

Note: We assume, the selection of the red and the blue boxes follow an **uniform** distribution (given that the person is not able to see the color of those boxes).

# **Assignment 1**

#### Loss function

Building your own model from scratch

- 3. [2 points] Given a Linear Regression model, Θ = {β₀ = 0.1, β₁ = 0.9, β₂ = -3.5} (where β₀ is the bias and β₁ and β₂ are the parameters associated with two input features/variables), the regularizer parameter λ = 1.5 and the following data set (with y being the target variable), estimate the
  - Quadratic error or loss with 12 regularizer as defined below

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N-1} (y_i - \hat{y_i})^2 + \frac{\lambda}{2} ||\boldsymbol{\beta}||^2$$

4. [4 points] You are asked to fit a second order/degree polynomial regression model,  $y = \beta_0 + \beta_1 x + \beta_2 x^2$  with parameter  $\Theta = \{\beta_0, \beta_1, \beta_2\}$  (where  $\beta_0$  is the bias of your model) on the following dataset.

#### data file

https://raw.githubusercontent.com/mdkamrulhasan/data-public/refs/heads/main/miscellaneous/second_degree_polynomial_regression_data.csv

For the setup below, we ask you to find out the updated version of  $\Theta$  after two(2) iterations of any gradient descent algorithm (you can use the algorithm that we shared as a part of our linear regression model illustration in the class):

#### Setup details:

- Use the quadratic error/loss function
- Initialize,  $\Theta_0 = \{\beta_0 = 0.0, \beta_1 = 0.0, \beta_2 = 1.0\}$
- Use learning rate (parameter), L = 0.001

Note: You have to define your error/loss function and also will need to estimate partial derivatives of your loss function.

# **Assignment 1**

Regularization: model generalization

- 5. [3x2 points] For the given dataset below, we ask you develop, test and compare following models (follow the instructions under the Detailed specification section below).
  - (a) Linear Regression
  - (b) Linear Regression with l1 regularizer
  - (c) Linear Regession with l2 regularizer

#### lata file:

 $\label{lem:https://raw.githubusercontent.com/mdkamrulhasan/data_mining_kdd/main/data/medical-cost/insurance.csv$ 

#### Detailed specification:

- Use a 50%-50% test/train setup.
- Use Mean Squared Error (MSE) as your evaluation metric.
- Visualize (using Bar charts) the model parameter absolute values (covert any negative values to positives before plotting).
- You can use python packages such as sklearn for your solution.

Shadow test followed by Mid-term!



Invalid configuration:

Training on the last two and validation on the first fold.









# **Deep Learning**

Assignment 2



# **Logistic Regression**

Probabilistic classifier

$$p(x) = rac{1}{1 + e^{-(w_0 + w_1 x)}}$$

• Sigmoid function



### **Neural Networks (Node)**



### **Neural Networks (Node)**



### **Neural Networks (Node)**





A NN with ???
Activation function

## Feed-forward (FF) neural networks



Input layer

Hidden layer(s)

Output layer

# **Error Back propagation**

#### The Backwards Pass

Let's focus on

 $\frac{\partial E_{total}}{\partial w_5}$ 

What would be the gradient update for w5?



#### The Backwards Pass



$$\begin{split} E_{total} &= \frac{1}{2}(target_{o1} - out_{o1})^2 + \frac{1}{2}(target_{o2} - out_{o2})^2 \\ \frac{\partial E_{total}}{\partial out_{o1}} &= 2 * \frac{1}{2}(target_{o1} - out_{o1})^{2-1} * -1 + 0 \\ \frac{\partial E_{total}}{\partial out_{o1}} &= -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507 \end{split}$$

Adapted from

#### The Backwards Pass



$$out_{o1} = \frac{1}{1 + e^{-net_{o1}}}$$

$$\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1})$$

$$= 0.75136507(1 - 0.75136507)$$

$$= 0.186815602$$

Adapted from

#### The Backwards Pass



$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$

$$\frac{\partial net_{o1}}{\partial w_5} = 1 * out_{h1} * w_5^{(1-1)} + 0 + 0 = out_{h1} = 0.593269992$$

Adapted from

### **Hidden Layer**





While changing w5 affects only O1, a change in w1 will change both O1 and O2

### **Hidden Layer**





Can you think of an arbitrary node in a giant and complex NN? What challenges we may encounter?

## **Convolutional NNs**

- State of the Art for CV and some other problems
- Filters/Convolutional Kernels

#### Examples:

- Alexnet
- VGG
- ResNet
- GoogLeNet
- .

## **Convolutional NNs**



## **Convolutional NNs**



# **Assignment 1 (classification challenge)**

- Deep learning models doubled the performance to general ML models



# **DL continuation + Project**



## **Recurrent Neural Networks**

### Examples:

- LSTMs
- GRU



# **RNNs**



# **Unsupervised learning (nonlinear)**

- Auto Encoders
- Restricted Boltzmann Machines (RBMs)



## **Transformers**

### Examples:

- Encoder decoder pair
- GPT
- BERT

**BERT** 

Encoder



**GPT** 

Decoder

<u>ref</u>

## **Generative Al**

### Examples:

Generative Adversarial Networks (GANs)



## **Generative Al**

### Examples:

- Generative Adversarial Networks (G
- Variational Autoencoders (VAEs)





 We don't train independent models explicitly (say machine translation)



Machine translation

- We don't train independent models explicitly (say machine translation)
- Or document summarization



Document summarization

- We don't train independent models explicitly (say machine translation)
- Or document summarization
- We train a Base model for multiple tasks jointly, and then fine tune for specific tasks



- We don't train independent models explicitly (say machine translation)
- Or document summarization
- We train a Base model for multiple tasks jointly, and then fine tune for specific tasks



# **Training Neural Network Challenges**

- Intractable gradients
  - Vanishing, and
  - Exploding gradients

## **Training Neural Network Challenges**

- Intractable gradients
  - Vanishing, and
  - Exploding gradients
- Various normalizations
  - Input normalization (standard scalar)
  - Batch normalization
  - Layer normalization

## **Training Neural Network Challenges**

- Intractable gradients
  - Vanishing, and
  - Exploding gradients
- Various normalizations
  - Input normalization (standard scalar)
  - Batch normalization
  - Layer normalization
- Controlling overfitting
  - Regularization
  - Early stopping
  - Drop out

QA