

南开大学

网络空间安全学院 现代密码学实验报告

实验一 古典密码算法及攻击方法

于文明

年级: 2020 级

专业:信息安全

指导教师: 古力

摘要

关键字: Classical Cryptography Shift Cipher Substitution Cipher Letter Frequency Attack

景目

一、实	验内容	1
二、移	位密码	1
(-)	实验原理	1
(二)	算法流程图	
(三)	代码实现	1
(四)	测试结果	3
三、移	位密码攻击过程	3
四、置	换密码	4
(-)	实验原理	4
(二)	算法流程图	5
(三)	代码实现	
(四)	测试结果	7
五、字	母频率攻击	7
(-)	介绍	7
$(\underline{})$	解题过程	7

一、 实验内容

- (1) 根据实验原理部分对移位密码算法的介绍,自己创建明文信息,并选择一个密钥,编写 移位密码算法实现程序,实现加密和解密操作。
 - (2) 两个同学为一组,互相攻击对方用移位密码加密获得的密文,恢复出其明文和密钥。
- (3) 己创建明文信息,并选择一个密钥,构建置换表。编写置换密码的加解密实现程序,实现加密和解密操作。
 - (4) 用频率统计方法, 破译用单表置换加密的一段密文

二、移位密码

(一) 实验原理

移位密码 [1] 将英文字母向前或向后移动一个固定位置,来实现字母表的置换。如果将 26 个英文字母进行编码: $A\rightarrow 0$, $B\rightarrow 1$, …, $Z\rightarrow 25$, 则加密过程可简单地写成: 明文: m=m1m2 …mi…, 则有密文: c=c1c2…ci…, 其中 $ci=(mi+key\ mod26)$, $i=1,\ 2,\ …$ 。

(二) 算法流程图

具体的移位密码加密解密算法流程图如下

图 1: 移位算法流程图

图 2: 移位解密流程图

(三) 代码实现

加密算法按照实验原理描述的过程即可实现 加密算法

移位密码加密算法

```
string encode() {
    string message,dm="";
    getline(cin, message);

for (int i = 0; i < message.length(); i++)
    {</pre>
```

二、 移位密码 现代密码学实验报告

```
int m, c;
                     if (message[i] >= 'a' && message[i] <= 'z')</pre>
                             m = message[i] - 'a';
                             c = (m + key) \% 26;
                             dm += char('a' + c);
                     }
                     else if (message[i] >= 'A' \&\& message[i] <= 'Z')
                             m = message[i] - 'A';
                             c = (m + key) \% 26;
                             dm += char('A' + c);
                    }
                     else
                             dm += message[i];
21
            }
       return dm;
```

解密过程只需要对加密过程逆向即可,需要注意的是防止结果出现负数解密算法

移位密码解密算法

```
void decode() {
                 int guesskey=1;
                 string dm;
                 getline (cin, dm);
                 for (; guesskey <= 25; guesskey++)
                              cout << "key:" << guesskey<<" ";
                              {
                                           int c;
                                           \begin{array}{lll} \textbf{if} & (dm[\;i\;] \;>= \; \texttt{'a'} \; \&\& \; dm[\;i\;] \;<= \; \texttt{'z'}) \end{array}
                                           {
                                                       c = dm[i] - 'a';
                                                       \mathrm{cout} \, <\!< \, \mathbf{char} \big(\, {}^{\phantom{\dagger}} \mathbf{a}^{\phantom{\dagger}} \, + \, \big(\, \mathbf{c} \, - \, \, \mathbf{guesskey} \! + \! 26 \big) \,\,\% \,\, 26 \big) \,;
                                           else if (dm[i] >= 'A' \&\& dm[i] <= 'Z')
                                                       c=dm[i]-'A';
                                                       cout \ll char('A' + (c - guesskey + 26) \% 26);
                                           }
                                           else
21
                                                       cout << dm[i];
                              cout << endl;</pre>
                 return;
```

27

(四) 测试结果

```
Microsoft Visual Studio 调试控制台
请输入加密的信息:
I LOVE NANKAI UNIVERSITY
加密结果为:
V YBIR ANAXNV HAVIREFVGL
解密结果为:
I LOVE NANKAI UNIVERSITY
```

图 3: 移位算法结果

三、 移位密码攻击过程

本节找到同学算法得到的密文 N qtaj SfsPfn Zsnajwxnyd, 采用穷举攻击, 编写如下算法, 对 key(1:25) 遍历解密密文,取其中有意义的明文即可得到加密密钥 k 和明文 m, 具体实现和结果如下:

穷举攻击算法

移位密码解密算法

```
int main() {
        int guesskey=1;
        string dm;
        getline (cin, dm);
        for (; guesskey <= 25; guesskey++)
                 cout << "key:" << guesskey << " ";
                 for (int i = 0; i < dm. length(); i++)
                          int c;
                          if (dm[i] >= 'a' \&\& dm[i] <= 'z')
                                  c = dm[i] - 'a';
                                  cout \ll char('a' + (c - guesskey+26) \% 26);
                          else if (dm[i] >= 'A' \&\& dm[i] <= 'Z')
                                  c=dm[i]-'A';
                                  cout \ll char('A' + (c - guesskey + 26) \% 26);
                          _{
m else}
                                  cout \ll dm[i];
                 }
                 cout << endl;
        }
```

四、 置换密码 现代密码学实验报告

结果如下图

```
🐼 Microsoft Visual Studio 调试控制台
N qtaj SfsPfn Zsnajwxnyd
key:1 M pszi RerOem Yrmzivwmxc
key:2 L oryh QdqNdl Xqlyhuvlwb
key:3 K naxg PcpMck Wpkxgtukva
key:5 I love NanKai University
кеу:б н knud MzmJzh Imhudqrnsx
key:7 G jmtc LylIyg Slgtcpqgrw
key:8 F ilsb KxkHxf Rkfsbopfqv
key:9 E hkra JwjGwe Qjeranoepu
key:10 D gjqz IviFvd Pidqzmndot
key:11 C fipy HuhEuc Ohcpylmcns
key:12 B ehox GtgDtb Ngboxk1bmr
key:13 A dgnw FsfCsa Mfanwjkalq
key:14 Z cfmv EreBrz Lezmvijzkp
key:15 Y belu DqdAqy Kdyluhiyjo
key:16 X adkt CpcZpx Jcxktghxin
key:17 W zcjs BobYow Ibwjsfgwhm
key:18 V ybir AnaXnv Havirefvgl
key:19 U xahq ZmzWmu Gzuhqdeufk
key:20 T wzgp YlyVlt Fytgpcdtej
key:21 S vyfo XkxUks Exsfobcsdi
key:22 R uxen WjwTjr Dwrenabrch
key:23 Q twdm VivSiq Cvqdmzaqbg
key:24 P svcl UhuRhp Bupclyzpaf
key:25 0 rubk TgtQgo Atobkxyoze
```

图 4: 穷举攻击结果

从图中可以分析得出加密的密钥 key 为 5, 明文 m 为 I love Nankai University

四、 置换密码

(一) 实验原理

单表置换密码就是根据字母表的置换对明文进行变换的方法, 单表置换实现的一个关键问题 是关于置换表的构造。置换表的构造可以有各种不同的途径, 主要考虑的是记忆的方便。如使用 一个短语或句子, 删去其中的重复部分, 作为置换表的前面的部分, 然后把没有用到的字母按字 母表的顺序依次放入置换表中。 四、 置换密码 现代密码学实验报告

(二) 算法流程图

图 5: 单表置换加密解密流程图

(三) 代码实现

构造置换表

构造置换表

```
string process() {
              string trans;
              for (int i = 0; i < strlen(table); i++)
              {//转换为大写
                         if (table[i] >= 'a' && table[i] <= 'z')</pre>
                                    table[i] = char(table[i] - 'a' + 'A');
               \begin{array}{lll} \textbf{for} & (\textbf{int} & \textbf{i} = \texttt{strlen}(\texttt{table}) - 1; & \textbf{i} > = 0 ; & \textbf{i} - -) \end{array} 
              {//逆向处理
                         bool flag = false;
                         if \ (table\,[\,i\,]\,<\,\text{'A'}\ ||\ table\,[\,i\,]{>}\,\text{'Z'})
                                    continue;
                         for (int j = i - 1; j >= 0; j--)
                                    if (table[i] = table[j])
                                               flag = true;
                         }
                         if (!flag)
19
                                    trans += table[i];
              reverse(trans.begin(), trans.end());
              for (int i = 0; i < Table.length(); i++)
              {
```

四、 置换密码 现代密码学实验报告

加密算法

单表置换解密算法

解密算法

单表置换解密算法

```
string decode(string em, string transTable)

string dm;

for (int i = 0; i < em.length(); i++)

if (em[i] < 'A' || em[i] > 'Z')

dm += em[i];

continue;

dm += Table[transTable.find_first_of(em[i])];

return dm;

return dm;

}
```

(四) 测试结果

密钥 k= "I like crypto very much", 加密的明文为"I LIKE NANKAI UNIVERSTy", 结果如下图示:

```
Microsoft Visual Studio 调试控制台
请输入明文m:
i like nankai university
加密后的密文为:
T MTVC HIHVIT NHTQCFGTJX
解密后的明文为:
I LIKE NANKAI UNIVERSITY
```

图 6: 单表置换加密解密结果

五、 字母频率攻击

(一) 介绍

字母频率 (character frequency): 在 1M 字节旧的电子文本中, 对字母"A"到"Z"(忽略大小写)分别进行统计。发现近似频率(以百分比表示):

e 11.67 t 9.53 o 8.22 i 7.81 a 7.73 n 6.71 s 6.55

r 5.97 h 4.52 l 4.3 d 3.24 u 3.21 c 3.06 m 2.8

p 2.34 y 2.22 f 2.14 g 2.00 w 1.69 b 1.58 v 1.03

k 0.79×0.30 j 0.23 q 0.12×0.09

从该表中可以看出,最常用的单字母英文是 e 和 t,其他字母使用频率相对来说就小得多。这样,攻击一个单表置换密码,首先统计密文中最常出现的字母,并据此猜出两个最常用的字母,并根据英文统计的其他特征(如字母组合等)进行试译。

需要破译的密文为 SIC GCBSPNA XPMHACQ JB GPYXSMEPNXIY JR SINS MF SPN-BRQJSSJBE JBFMPQNSJMB FPMQ N XMJBS N SM N XMJBS H HY QCNBR MF N XMRRJHAY JBRCGZPC GINBBCA JB RZGI N VNY SINS SIC MPJEJBNA QCRRNEC GNB MBAY HC PCGMTCPCD HY SIC PJEISFZA PCGJXJCBSR SIC XNPSJGJXNBSR JB SIC SPNBRNGSJMB NPC NAJGC SIC MPJEJBNSMP MF SIC QCRRNEC HMH SIC PCGCJTCP NBD MRGNP N XMRRJHAC MXXMBCBS VIM VJRICR SM ENJB ZBNZSIM-PJOCD GMBSPMA MF SIC QCRRNEC

(二) 解题过程

首先, 求出字母频率表并排序

单表置换解密算法

em="SIC GCBSPNA XPMHACQ JB GPYXSMEPNXIY JR SINS MF SPNBRQJSSJBE JBFMPQNSJMB

FPMQ N XMJBS N SM N XMJBS H HY QCNBR MF N XMRRJHAY JBRCGZPC GINBBCA JB

RZGI N VNY SINS SIC MPJEJBNA QCRRNEC GNB MBAY HC PCGMTCPCD HY SIC

PJEISFZA PCGJXJCBSR SIC XNPSJGJXNBSR JB SIC SPNBRNGSJMB NPC NAJGC SIC

MPJEJBNSMP MF SIC QCRRNEC HMH SIC PCGCJTCP NBD MRGNP N XMRRJHAC MXXMBCBS

VIM VJRICR SM ENJB ZBNZSIMPJOCD GMBSPMA MF SIC QCRRNEC"

ch="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

五、 字母频率攻击 现代密码学实验报告

```
p={}
for i in ch:
    p[i]=round(em.count(i)/len(em),4)
p=sorted(p.items(),key=lambda x:(x[1],x[0]),reverse=True)
```

结果如下:

[('C', 0.0887), ('S', 0.0813), ('N', 0.0764), ('M', 0.0714), ('J', 0.069), ('B', 0.069), ('P', 0.0567), ('R', 0.0517), ('I', 0.0443), ('G', 0.0345), ('X', 0.0296), ('A', 0.0246), ('H', 0.0222), ('E', 0.0222), ('Q', 0.0197), ('Y', 0.0172), ('F', 0.0172), ('Z', 0.0123), ('V', 0.0074), ('D', 0.0074), ('T', 0.0049), ('O', 0.0025), ('W', 0.0), ('U', 0.0), ('L', 0.0), ('K', 0.0)]

- (1) 首先确定定义一个置换表 table, 将前几个频率靠前的字母确定下来,比如"C" \to "e", "S" \to "t" "M" \to "o"
- (2) 同时因为单个字母为单词的只有 a 和 I, 观察到字母表中单个字母的单词有 N 和 H, 根据前后确定"N" \rightarrow "a", "H" \rightarrow "I"

前两步替换完成,结果为: tIe GeBtPaA XPoHAeQ JB GPYXtoEPaXIY ...

- (3) 观察到单词 tIe, 猜测为单词 the, 所以有"I"→ "h"
- (4) 观察到存在... FPoQ a XoJBt a to ... 猜测 FPoQ 为 from, 所以有"P"→ "r", "Q" → "m"
- (5) 根据 JR 和频率结合进行分析, 猜测"J" \rightarrow "i", "R" \rightarrow "s"

此时结果为: the GeBtraA XroHAem iB GrYXtoEraXhY is that oF traBsmittiBE iBFormatioB From a XoiBt a to a XoiBt H HY meaBs oF a XossiHAY iBseGZre GhaBBeA iB sZGh a VaY that the oriEiBaA messaEe GaB oBAY He reGoTereD HY the riEhtFZA reGiXieBts the XartiGiXaBts iB the traBsaGtioB are aAiGe the oriEiBator oF the messaEe HoH the reGeiTer aBD osGar a XossiHAe oXXoBeBt Vho Vishes to EaiB ZBaZthoriOeD GoBtroA oF the messaEe

(6) 根据单词 messa Ee 猜测为单词 message, 所以有"E" \to "g", "VaY", "Vho", "Vishes" "V" \to "w", "iB", "aBD" "B" \to "n"

此时结果为 the GentraA XroHAem in GrYXtograXhY ...

- (7)GentraA 猜测为 central,GrYXtogrXhy 猜测为 cryptography, 所以有"G" → "c" "A" → "l", "X" → "p"
 - (8)proHlem 为 problem, 所以有"H"→"b"

此时结果中有... s oF a possiblY insecZre channel in sZch a waY ...

- (9) 有"Z"→ "u"
- (10) 根据 recoTereD 为 recovered, 有"T" \rightarrow "v"
- (11) 最后一个单词 unauthoriOeD 为 unauthorized, 所以有"O" \rightarrow "z"

置换表和明文 综上,置换表为'A': 'l', 'B': 'n', 'C': 'e', 'E': 'g', 'G': 'c', 'H': 'b', 'I': 'h', 'J': 'i', 'M': 'o', 'N': 'a', 'O': 'z', 'P': 'r', 'Q': 'm', 'R': 's', 'S': 't', 'T': 'v', 'V': 'w', 'X': 'p', 'Z': 'u'

明文为: the central problem in crYptographY is that oF transmitting inFormation From a point a to a point b bY means oF a possiblY insecure channel in such a waY that the original message can onlY be recovereD bY the rightFul recipients the participants in the transaction are alice the originator oF the message bob the receiver anD oscar a possible opponent who wishes to gain unauthorizeD control oF the message

参考文献

[1] 吴世忠、宋晓龙、郭涛等译 Paul Garrett 著. An Introduction to Cryptology. 机械工业出版 社, 2003.

