

DETECTION OF DEFORESTATION USING SATELLITE IMAGES

INTRODUCTION

What is Deforestation?

Removal of trees and forest cover

Causes: Logging(to obtain wood and paper products) agriculture(to create space for farming) urbanization(for building cities and infrastructure) mining (to access minerals and resources)

Disruption of Water Cycles

• Human Impact: Loss of Livelihoods, Increased Pollution

Horowpathana National Park

- Located in North Central Province, SriLanka
- Rich in biodiversity and endemic species
- Under threat due to human activities

Literature Review

Satellite Imagery for Deforestation Prediction using Deep Learning

- Satellite ImageryDataset from Kaggle
- Convolutional Neural Network with ResNet transfer learning

Deforestation detection using multitemporal satellite images

- Sentinel-2 Satellite images
- NDVI, and dNBR to detect deforestation

Tropical deforestation monitoring using NDVI from MODIS satellite: a case study in Pahang, Malaysia

- MODIS imagery
- NDVI classification

Detecting Deforestation Using Satellite Imagery

- Satellite Imagery of Amazon rainforest from Kaggle
- Convolutional Neural Network

USING LANDSAT SATELLITE IMAGES TO DETECT FOREST COVER CHANGES IN THE NORTHEAST REGION OF VIETNAM

- used Landsat 5-TM and Landsat9-OLI/TIRS satellite imagery
- NDVI and the SAVI were used to assess forest cover losses and gains

Methodology

Data Collection

- Images and image data were obtained from USGS Earth Explorer.
 - Vegetation features
 - Satellites LANDSAT 8 & 9
 - Monthly Images (2020/06 2023/08) having least cloud cover
- Datasets include Metadata(text, JSON, XML) and Band files(TIF).

Data Preprocessing

- Cloud removal
 - Imprinting Using a satellite image with less clouds to imprint a satellite image with clouds
- Selecting Area of Interest (AOI)
 - Cropping Horawpothana area

Data Preparation - NDVI Calculation

- Measure of the amount and vigor of vegetation on the land surface
- \bigcirc NDVI = (NIR Red) / (NIR + Red)
- RED = the red portion of the electromagnetic spectrum (0.6-0.7 μm) and
- NIR = the near infrared portion of the electromagnetic spectrum (0.75-1.5 μm)

Deforestation Percentage

- Deforestation percentage is calculated relative to the month 2020/06
- Percentages are calculated using Average NDVI values

Forecasting Future NDVI

- ARIMA Modeling
 - An ARIMA model is defined order (5, 1, 0)
 - ARIMA model is fitted using the 'Average_NDVI' column from the training data.
- NDVI Forecast
 - Get the forecasted NDVI value for the closest date.

Forecasting Future Deforestation Percentage

- Random Forest Modeling
 - 'Average_NDVI' as input features and 'Deforestation_Percentage' as the target variable are used in training a Random Forest regressor
- Deforestation Percentage Prediction
 - Using the new DataFrame with the forecasted NDVI value, and the trained Random Forest model, deforestation percentage for future dates is obtained.

ARIMA Model

- Statistical model used for forecasting time series data
- The ARIMA model is made up of three components:
 - The autoregressive (AR) component: This component models the relationship between the current value of the time series and its past values.
 - The moving average (MA) component: This component models the relationship between the current value of the time series and the errors of past predictions.
 - The integrated (I) component: This component is used to make the time series stationary, which means that its mean and variance are constant over time.

Results and Discussion

Area of Interest

Cloud imputation and Cropping images

Cloud Types

- Cloud
- Shadow
- **Dilated Cloud**
- Cirrus

Removing the clouds

• Used a satellite image with less clouds to imprint a satellite image with clouds

Then we got an NDVI image based on its indices and then calculated the average NDVI values for each image

1	Folder	Average_NDVI	
2	LC08_L2SP_141054_20200614_20200824_02_T1_replaced	0.360736832	
3	LC08_L2SP_141054_20200716_20200912_02_T1_replaced	0.285379829	
4	LC08_L2SP_141054_20200817_20200920_02_T1_replaced	0.274821684	
5	LC08 L2SP 141054 20200918 20201005 02 T1 replaced	0.26757831	

After that, we Calculated the deforestation percentage compared to the 2020/06/14

1 date		Average_NDVI	Deforestation_Percentage
2	6/14/2020	0.360736832	0
3	7/16/2020	0.285379829	20.88974447
4	8/17/2020	0.274821684	23.81657207
5	9/18/2020	0.26757831	25.82451061
6	10/4/2020	0.277102845	23.18421055

Model Evaluation

Mean Absolute Error (MAE)

Mean Squared Error (MSE)

0.2976 0.1540

R-squared (R2) Score

0.9982

Limitations & Challenges

Limitation and Challenges

- Cloud Cover: Cloud cover can obstruct satellite imagery, making it challenging to acquire clear and continuous data, particularly in regions with frequent cloud cover.
- Data Availability: Access to high-quality, up-to-date satellite data can be costly and restricted, leading to potential gaps in coverage.
- Interpretation and Validation: Accurate interpretation of satellite data requires expertise, and on-ground validation can be logistically complex.
- Data Processing: Processing large volumes of satellite data can be computationally intensive, requiring suitable hardware and software

Conclusion

Conclusion

- Through the application of ARIMA, we were able to analyse historical deforestation data and identify underlying trends and patterns
- the integration of Random Forest, a powerful machine learning algorithm,
 enabled us to explore the multifaceted factors contributing to deforestation
- By considering NDVI values, we gained an understanding of the facts behind deforestation
- Here is the dashboard we created
 https://deforestationpredictorwebapp-pedv77wsmxjhovppevptq5.streamlit.app/

THANK YOU!