Matrices semblables à leur inverse

Dans tout le problème, E est un \mathbb{R} -espace vectoriel de dimension 3.

Pour u endomorphisme de E et n entier naturel non nul, on note $u^n = u \circ u \circ ... \circ u$ (n termes) et on convient de poser $u^0 = \operatorname{Id}$ où Id désigne l'endomorphisme identité de E.

On note $M_3(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices réelles carrées d'ordre 3, $GL_3(\mathbb{R})$ le groupe des matrices inversibles de $M_3(\mathbb{R})$ et I la matrice unité de $M_3(\mathbb{R})$.

On note aussi par 0, l'endomorphisme nul, la matrice nulle et le vecteur nul.

Pour deux matrices A et B de $M_3(\mathbb{R})$, on dit que la matrice A est semblable à la matrice B lorsqu'il existe une matrice P de $GL_3(\mathbb{R})$ telle que : $A=P^{-1}BP$.

On rappelle que si \mathcal{B} et \mathcal{B}' désignent deux bases de E, P la matrice de passage de \mathcal{B} à \mathcal{B}' et u un endomorphisme de E de matrice A dans la base \mathcal{B}' et de matrice B dans la base \mathcal{B} alors $A = P^{-1}BP$. Par suite la matrice A est semblable à la matrice B.

Partie I

Soit A, B, C trois matrices de $M_3(\mathbb{R})$.

- 1. Montrer que si A est semblable à B alors B est semblable à A. Désormais, on pourra alors dire que les matrices A et B sont semblables.
- 2. Montrer que si d'une part A et B sont semblables et que d'autre part B et C le sont aussi alors A et C sont semblables.
- 3. Montrer que si A et B sont semblables alors elles ont même rang et même déterminant.

Partie II

Soit u un endomorphisme de E et $v = u^2 - u$.

- 1. Soit p,q deux entiers naturels et w l'application linéaire de $\ker u^{p+q}$ vers E définie par $w(x) = u^q(x)$.
- 1.a Montrer que $\operatorname{Im} w \subset \ker u^p$.
- 1.b En déduire que $\dim \ker u^{p+q} \leq \dim \ker u^p + \dim \ker u^q$.
- 2. Dans cette question, on suppose que $u^3 = 0$ et rg u = 2.
- 2.a Etablir que dim ker $u^2 = 2$. On pourra exploiter deux fois le résultat de la question II.1.b.
- 2.b Justifier qu'il existe un vecteur a de E tel que $u^2(a) \neq 0$ et observer que la famille $(u^2(a), u(a), a)$ est une base de E.
- 2.c Ecrire la matrice U de u et la matrice V de v dans cette base.
- 3. Dans cette question, on suppose que $u^2 = 0$ et $\operatorname{rg} u = 1$.
- 3.a Montrer que l'on peut trouver un vecteur b de E tel que $u(b) \neq 0$.
- 3.b Justifier l'existence d'un vecteur c de ker u tel que la famille (u(b),c) soit libre, puis montrer que la famille (u(b),c,b) est une base de E.
- 3.c Ecrire alors la matrice U' de u et la matrice V' de v dans cette base.

Partie III

Soit
$$A = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R})$$
. On se propose de montrer que A est semblable à son inverse A^{-1} .

On pose
$$N = A - I_3 = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$$
 et $M = N^2 - N$.

- 1.a Calculer N^3 et justifier que $\operatorname{rg} N \leq 2$.
- 1.b Justifier que A est inversible et que $A^{-1} = I_3 + M$.
- 2. Dans cette question, on suppose que rg N = 2.
- 2.a En exploitant II.2., montrer que la matrice N est semblable à la matrice $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- 2.b En exploitant II.2.c, dire à quelle matrice « simple » la matrice M est semblable. En déduire M^3 et $\operatorname{rg} M$.
- 2.c Montrer que les matrices M et N sont semblables et conclure que A et A^{-1} le sont.
- 3. Dans cette question, on suppose que rg $N \le 1$. Montrer que A et A^{-1} sont encore semblables.