Travel Dream

Matteo Camagni , Fabio Dellea

Matricole: 820203 817045

Anno: 2013 / 2014

Consegna: 29 / 11 / 2013

INDICE

1. Report di Lavoro	2
2. Modello CoCoMo	3
3. Function Point	

Final Reporting

1 – Report di lavoro

Di seguito viene riportato il riassunto delle ore di lavoro spese per la realizzazione del progetto.

Attività	Matteo Camagni	Fabio Dellea	Ore Gruppo
RASD			
Prima scrittura	40 ore	30 ore	70 ore
Revisione	10 ore	5 ore	15 ore
DOCUMENT DESIGN			
Prima scrittura	43 ore	34 ore	77 ore
Revisione	14 ore	5 ore	29 ore
IMPLEMENTAZIONE			
Implementazione Progetto	80 ore	130 ore	210 ore
TEST			
Test progetto	20 ore	15 ore	35 ore
Test progetto assegnatoci	8 ore	12 ore	20 ore
REPORTING			
Modelli di Analisi	4 ore	4 ore	8 ore
Totale	175 ore	206 ore	381 ore

2 - Modello COCOMO

Di seguito viene riportata l'analisi del progetto sviluppata secondo il modello COCOMO, versione intermediate. Tale analisi viene fatta come ultimo step, mira alla valutazione delle ore di lavoro effettivamente svolte rispetto ad una stima teorica basata sulle dimensioni del progetto.

Si assume che data la struttura e l'esperienza del team di sviluppo del prodotto TravelDream si può considerare l'applicazione di tipo Organic.

Coefficienti	Significato Descrizione		Valori	
LOC	Linee di codice sorgente		2346	
аь	Parametro		2.40	
bь	Parametro		1.05	
	Stima nominale abLOC ^{bb}	M _{Nom}	65,92	
Product Attributes				
RELY	Required reliability NOMINAL		1.00	
DATA	Database size LOW		0.94	
CPLEX	Product complexity LOW		0.85	
Hardware Attributes				
TIME	Execution time constraints	NOMINAL	1.00	
STORE	Main storage constraints	NOMINAL	1.00	
VIRT	Virtual machine volatility	LOW	0.87	
TURN	Computer turnaround time	LOW	0.87	
Personnel attributes				
ACAP	Analyst capability	NOMINAL	1.19	
AEXP	Application experience	HIGH	1.00	

	Stima M	Mesi-uomo	61,49
Totale	Coefficiente TOTALE	∏ i=1,,15 C j	0,93
SCED	Required development schedule	EXTRA HIGH	1.10
TOOL	Use of software tools	VERY HIGH	0.91
MODP	Use of modern	HIGH	1.00
Project attribute			
LEXP	Programming language experience	NOMINAL	1.07
VEXP	Virtual machine experience	LOW	1.21
RCAP	Programmer capability	HIGH	1.00

Considerazioni:

Possiamo quindi ricavare una stima del tempo richiesto e si ottiene, utilizzando i paramentri relativi ad un'applicazione Organic:

T = cb
$$\cdot$$
 KLOC^{db} = 2.5 * (23.46) $^{0.38}$ = 8,29 mesi -> (circa) 8 mesi

Data la stima delle ore uomo (mesi) richieste e del tempo nel quale il progetto dovrebbe essere svolto si ottiene una stima del personale richiesto per la sua realizzazione:

$$N = M / T = 61,49[mesi \cdot uomo] / 8.29[mesi] = 7,41[persone]$$

Come si può notare da tali stime, i valori ottenuti sono maggiori rispetto a quelli effettivamente impiegati per la realizzazione del progetto.

Tale discrepanza può essere spiegata dal fatto che nella realizzazione di questo progetto sono mancate le fasi di analisi dei requisiti con il cliente, l'interazione con esso e le fasi succesive di revisione del progetto dopo la fase di test.

In secondo luogo potrebbe esserci stato un riuso del codice durante lo sviluppo dell'applicazione (sulle pagine html), le quali appiano un po' elevate (come indicato alparagrafo sotto).

3 - FUNCTION POINT

Abbiamo usato il metodo di Albrecht per la stima dei function point del nostro prodotto.

Leggendo accuratamente il RASD abbiamo individuato tre internal logical file (ILF), ovvero le 3 tabelle della base di dati, utente, wishlist e prodotto, 8 user input, corrispondenti a registrazione, login, inserimento / modifica / eliminazione prodotti, creazione pacchetti, personalizzazione pacchetti e acquisto prodotti, 2 user inquiries, corrispondenti alla ricerca e alla ricerca senza registrazione e infine 2 user outputs, la visualizzazione prodotto e la visualizzazione wishlist. Abbiamo deciso di pesarli come semplici, in quanto il progetto è stato sviluppato nelle sue funzionalità in maniera basilare, senza dovizia di particolari. Di conseguenza il peso di calcolo sarà 3 per gli user inputs, 4 per gli user outputs, 3 per le user inquiries e 7 per gli ILF. Così facendo il nostro risultato è 59 UFP ovvero un risultato Unadjusted Function Points, da pesare ulteriormente secondo vari parametri. Dopo aver pesato il risultato secondo 14 parametri (vedi immagine), il risultato è di 51 FP totali per il nostro sistema.

Il risultato è stato prevedibilmente corretto al ribasso rispetto al risultato UFP: questo è principalmente dovuto all'assenza di vincoli non funzionali particolarmente stringenti per il progetto sviluppato.

Il risultato in FP è poi stato utilizzato per fare una stima delle linee di codice previste per un progetto come il nostro. Usando come fonte la tabella presente sul sito www.qsm.com/resources/function-point-languages-table abbiamo usato come fattore di conversione FP/LOC il valore medio previsto per il linguaggio utilizzato (Java EE), ovvero 46 linee di codice per ogni FP.

Il risultato finale è di 2346 linee di codice previste. Usando lo script Piton cloc (vedi immagine , script reperibile all'indirizzo cloc.sourceforge.net) , abbiamo trovato che il numero di righe di codice del nostro progetto è 2161.

http://cloc.sourceforge.net v 1.60 T=0.37 s (150.2 files/s, 6681.4 lines/s)

Language	files	blank	comment	code
JavaServer Faces Java XML CSS HTML	40 8 5 2 1	143 135 18 13	0 0 0 20 0	1631 368 89 65
SUM:	56	310	20	2161

MacBook-Air-di-Fabio:Downloads fabio\$

Il risultato della stima effettuata attraverso il metodo dei Function Point e poi convertito tramite tabella risulta quindi essere piuttosto accurato, in quanto si

scosta solo circa dell'8,5% rispetto al valore effettivo ottenuto a fine progetto.