

UNIVERSIDAD AUTÓNOMA DE CHIAPAS
FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. CAMPUS I.
LICENCIATURA EN INGENIERÍA EN DESARROLLO Y
TECNOLOGÍAS DE SOFTWARE.

11/

COMPILADORES

ACTIVIDAD I. INVESTIGACIÓN Y EJEMPLOS.

Ana Gabriela Casanova Hernández

Docente:

DR. LUIS GUTIÉRREZ ALFARO.

Tuxtla Gutiérrez, Chiapas. A lunes, 15 de agosto de 2024

Actividad I.- Investigación y Ejemplos.

Definir los siguientes Conceptos y de ejemplo de cada uno de los Incicios de I, II, III.

Definir el concepto de expresión regular.

Una expresión regular (o regex) es una secuencia de caracteres que define un patrón de búsqueda. Se utilizan ampliamente en la informática para buscar y manipular texto, validación de datos, extracción de información y muchas otras tareas. En esencia, una expresión regular es un lenguaje formal que permite describir conjuntos de cadenas de caracteres de manera concisa

I.- Explicar los tipos de operadores de expresiones regulares.

- 1. **Concatenación (AB)**: Indica que una secuencia debe ser seguida por otra. Por ejemplo, la expresión AB coincide con cualquier cadena en la que una subcadena que coincida con A es seguida directamente por una subcadena que coincida con B.
- 2. **Unión (A | B)**: Representa la elección entre dos patrones. La expresión A | B coincide con cualquier cadena que coincida con A o con B.
- 3. **Cierre de Kleene (A*)**: Significa que el patrón A puede repetirse cero o más veces. La expresión A* coincide con cualquier número de repeticiones de A, incluida la cadena vacía.
- 4. **Cierre positivo (A+)**: Similar al cierre de Kleene, pero debe haber al menos una aparición de A. La expresión A+ coincide con una o más repeticiones de A.
- 5. **Interrogación (A?)**: Representa la opción de tener una aparición de A o ninguna. La expresión A? coincide con A o con la cadena vacía.
- 6. **Agrupación ((A))**: Utilizado para agrupar partes de la expresión para aplicar operadores a la subexpresión completa. Por ejemplo, (AB)* coincide con cualquier número de repeticiones de la secuencia AB.
- 7. Rango y conjuntos ([A-Z], [abc]): Definen un conjunto de caracteres o un rango de caracteres permitidos. Por ejemplo, [A-Z] coincide con cualquier letra mayúscula, y [abc] coincide con a, b o c.
- 8. **Negación ([^abc])**: Coincide con cualquier carácter que no esté en el conjunto definido. Por ejemplo, [^abc] coincide con cualquier carácter que no sea a, b o c.

II.- Explicar el proceso de conversión de DFA a expresiones regulares.

Un autómata finito determinista (DFA) es un modelo matemático que reconoce lenguajes regulares. La conversión de un DFA a una expresión regular es un proceso fundamental en la teoría de autómatas y lenguajes formales.

Existen varios algoritmos para realizar esta conversión, como el algoritmo de eliminación de estados o el algoritmo de estado de eliminación. Estos algoritmos implican la eliminación gradual de estados del DFA mientras se modifican las transiciones y las expresiones regulares asociadas a cada estado.

III.- Explicar leyes algebraicas de expresiones regulares.

- Conmutatividad de la alternancia: a|b = b|a
- Asociatividad de la concatenación y la alternancia: (a.b).c = a.(b.c) y (a|b)|c = a|(b|c)
- Distributivita de la concatenación sobre la alternancia: a.(b|c) = a.b | a.c
- Identidad: Existe un elemento identidad para la concatenación (la cadena vacía ε) y para la alternancia (el conjunto vacío ∅).

Aplicaciones de las expresiones regulares:

- Búsqueda de texto: En editores de texto, IDEs y herramientas de búsqueda.
- Validación de datos: En formularios web, validación de direcciones de correo electrónico, números de teléfono, etc.
- Extracción de información: Para extraer datos de archivos de texto o HTML.
- Análisis de logs: Para analizar logs del servidor y encontrar patrones.
- Compilación: En compiladores para reconocer tokens y estructuras del lenguaje.

Referencias:

- Ciencias computacionales Propedeutico: Teoría de Autómatas y Lenguajes
 Formales Expresiones regulares y lenguajes Contents. (n.d.).

 https://posgrados.inaoep.mx/archivos/PosCsComputacionales/Curso_Propedeutico/Automatas/03_Automatas_ExpresionesRegularesLenguajes/CAPTUL1.PDF
- GRAMATICAS REGULARES -EXPRESIONES REGULARES. (n.d.).

https://users.exa.unicen.edu.ar/catedras/ccomp1/ApunteGRyER.pdf