Learning Near-Optimal Intrusion Responses Against Dynamic Attackers Supplementary Material

IEEE Transactions on Network and Service Management

Attacker Action Commands

-Action	Command
TCP SYN scan	nmap -sS -pmin-rate 100000 -max-retries 1 -T5 -n
UDP port scan	nmap -sU -pmin-rate 100000 -max-retries 1 -T5 -n
TCP null scan	nmap -sN -pmin-rate 100000 -max-retries 1 -T5 -n
TCP xmas scan	nmap -sX -pmin-rate 100000 -max-retries 1 -T5 -n
TCP FIN scan	nmap -sF -pmin-rate 100000 -max-retries 1 -T5 -n
Ping scan	nmap -sP -min-rate 100000 -max-retries 1 -T5 -n
TCP connection scan	nmap -sT -pmin-rate 100000 -max-retries 1 -T5 -n
Vulscan	nmap -sV -script=vulscan/vulscan.nse -max-retries 1 -T5 -n
Telnet-brute force	nmap -p 23 -script telnet-brute
SSH brute-force	nmap -p 22 -script ssh-brute
FTP brute-force	nmap -p 21 -script ftp-brute
Cassandra brute-force	nmap -p 9160 -script cassandra-brute
IRC brute-force	nmap -p 6667 -script irc-brute
MongoDB brute-force	nmap -p 27017 -script mongo-brute
MySQL brute-force	nmap -p 27017 -script mysql-brute
SMTP brute-force	nmap -p 25 -script smtp-brute
Postgres brute-force	nmap -p 5432 -script pgsql-brute
CVE-2017-7494 exploit	python samba_exploit.py
CVE-2015-3306 exploit	python /cve_2015_3306_exploit.py
CVE-2010-0426 exploit	/cve_2010_0426_exploit.sh
CVE-2015-5602 exploit	/cve_2015_5602_exploit.sh
CVE-2014-6271 exploit	/cve_2014_6271_exploit.sh
CVE-2016-10033 exploit	/cve_2016_10033_exploit.sh
CVE-2015-1427 exploit	/cve_2015_1427_exploit.sh
Exploit of the CWE-89 weakness on DVWA [5]	/sql_injection_exploit.sh

Table 1: Attacker commands executed on the emulation system; actions that exploit vulnerabilities in specific software products are identified according to the corresponding vulnerability identifier in the Common Vulnerabilities and Exposures (CVE) database [1]; actions that exploit vulnerabilities that are not available in the CVE database are identified according to the type of the vulnerability they exploit based on the Common Weakness Enumeration (CWE) list [2]; the Bash and Python scripts that implement the exploits are available at [4].

Defender Action Commands

Stop index	Action	Command
1	Revoke user certificates	openssl ca -revoke <certificate></certificate>
2	Blacklist IPs	iptables -A INPUT -s <ip> -j DROP</ip>
3	Drop traffic that generates IDPS alerts of priority 1	<pre>pulledpork.pl -c /pulledpork/etc/1.conf -l -P -E -H SIGHUP</pre>
4	Drop traffic that generates IDPS alerts of priority 2	<pre>pulledpork.pl -c /pulledpork/etc/2.conf -l -P -E -H SIGHUP</pre>
5	Drop traffic that generates IDPS alerts of priority 3	<pre>pulledpork.pl -c /pulledpork/etc/3.conf -l -P -E -H SIGHUP</pre>
6	Drop traffic that generates IDPS alerts of priority 4	<pre>pulledpork.pl -c /pulledpork/etc/4.conf -l -P -E -H SIGHUP</pre>
7	Block gateway	iptables -A INPUT -i ethO -j DROP

Table 2: Defender commands executed on the emulation system; "Pulledpork" is a software framework for rule management in Snort, for more information see [3].

Client Population Commands

Functions	Application servers	Commands
HTTP	N_2, N_3, N_{10}, N_{12}	curl <url></url>
SSH	N_2, N_3, N_{10}, N_{12}	sshpass -p <pw> ssh -oStrictHostKeyChecking=no <hostname></hostname></pw>
SNMP	$N_2, N_3, N_{10}, N_{12}, N_{31}, N_{13}, N_{14}, N_{15}, N_{16}$	snmpwalk -v2c <hostname></hostname>
ICMP	N_2, N_3, N_{10}, N_{12}	ping <hostname></hostname>
IRC	$N_{31}, N_{13}, N_{14}, N_{15}, N_{16}$./irc_login_test.sh
Postgres	$N_{31}, N_{13}, N_{14}, N_{15}, N_{16}$	psql -h <hostname></hostname>
FTP	N_{10}, N_{22}, N_4	ftp <hostname></hostname>
DNS	N_{10}, N_{22}, N_4	nslookup <hostname></hostname>
Telnet	N_{10}, N_{22}, N_4	telnet <hostname></hostname>

Table 3: Emulated client population; each client invokes functions on application servers; the auxiliary Bash scripts are available at [4].

References

- [1] The MITRE Corporation. Cve database, 2022. https://cve.mitre.org/.
- [2] The MITRE Corporation. Cwe list, 2023. https://cwe.mitre.org/index.html.
- [3] JJ Cummings and Michael Shirk. Pulledpork, 2023. https://github.com/shirkdog/pulledpork.
- [4] Kim Hammar and Rolf Stadler. Supplementary material learning near-optimal intrusion responses against dynamic attackers, 2023. https://github.com/Limmen/TNSM_Learning_IRS_Supplementary.
- [5] The DVWA team. Damn vulnerable web application (dvwa), 2023. https://github.com/digininja/DVWA.