# Sample Space and Probability

2023.7.10-

#### Nemo

### **Contents**

| 1 | Sets (Quick Review)                                   | 1   |
|---|-------------------------------------------------------|-----|
|   | 1.1 Set opeartions:                                   | 1   |
|   | 1.2 The Algrebra of Sets:                             | . 2 |
|   | De Morgan's laws:                                     | . 2 |
| 2 | Probabilistic Models                                  | 3   |
|   | Elements of a Probabilistic Model                     | 3   |
|   | 2.1 Choosing an Appropriate Sample Space              | 3   |
|   | 2.2 Probability Axioms                                | 3   |
|   | 2.3 Discrete Models                                   | 3   |
|   | Discrete Probability Law                              | 3   |
|   | Discrete Uniform Probability Law                      | 3   |
|   | 2.4 Continuous Models                                 | 3   |
|   | 2.5 Properties of Probability Laws                    | 3   |
| 3 | Conditional Prabability                               | . 4 |
|   | 3.1 Verification of the Prabability Laws              | . 4 |
|   | 3.2 Properties of Conditional Probability             | . 4 |
|   | 3.3 Using Conditional Probability for Modeling        | . 4 |
|   | Multiplication Rule                                   | . 4 |
|   | 3.4 Total Probability Theorem and Bayes' Rule         | . 4 |
|   | Total Probability Theorem                             | . 5 |
|   | Bayes' Rule                                           | . 5 |
|   | 3.5 Independence                                      | . 6 |
|   | 3.6 Conditional Independence                          | . 6 |
|   | Summary                                               | 6   |
|   | Independence of a collection of events                | . 6 |
|   | 3.7 Reliability                                       | . 6 |
|   | 3.8 Independent Trials and the Binomial Probabilities | . 7 |

## 1 Sets (Quick Review)

Set, element, empety set  $\emptyset$ , finit set, countably finit set, uncountable set, sub set, equal, universal set  $\Omega$ 

## 1.1 Set opeartions:

- 1. Complement of a set S, with respect it the universe  $\Omega$ , denoted by  $S^c$
- 2. Union of two sets  $S, T, S \cup T$
- 3. Intersection of two sets  $S, T, S \cap T$
- 4. Union of several,  $\bigcup_{n=1}^{\infty}S_n=S_1\cup S_2\cup\dots$ 5. Intersection of several,  $\bigcap_{n=1}^{\infty}S_n=S_1\cap S_2\cap\dots$

- 6. Sets are Disjoint if they share no element
- 7. A collection of sets is a partition of set S, if they are disjoint and the union of them are S

## 1.2 The Algrebra of Sets:

De Morgan's laws:

$$\left(\bigcup_{n} S_{n}\right)^{c} = \bigcap_{n} S_{n}^{c}$$

$$\left(\bigcap_{n} S_{n}\right)^{c} = \bigcup_{n} S_{n}^{c}$$

$$\left(\bigcap_{n} S_{n}\right)^{c} = \bigcup_{n} S_{n}^{c}$$

### 2 Probabilistic Models

#### **Elements of a Probabilistic Model**

• The sample space  $\Omega$ , the set of all possiable outcomes

• The probability law, which assigns any event A a non-negative number P(A)

### \*

## 2.1 Choosing an Appropriate Sample Space

The element of the sample space should be distinct and *mutually exclurive*, and the sample space should be collectively exhaustive.

## 2.2 Probability Axioms

1. (Nonnegativity)  $P(A) \ge 0$ , for every event A

2. **(Additivity)** A, B are disjoint, then  $P(A \cup B) = P(A) + P(B)$ 

3. (Normalization)  $P(\Omega) = 1$ 

#### 2.3 Discrete Models

**e.g.** The toss of a coin several times Like {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}(3 times) and the probability stuff

#### **Discrete Probability Law**

The sample space  $S = \{s_1, s_2, s_3, ..., s_n\}$  consists of finite number of elements, we have:

$$P(S) = P(\{s_1, s_2, s_3, ..., s_n\}) = P(s_1) + P(s_2) + P(s_3) + ... + P(s_n)$$

### **Discrete Uniform Probability Law**

Ii the outcomes are equally likely, then the Probability of any single outcome A becomes:

$$P(A) = \frac{\text{number of elements of } A}{n}$$

#### 2.4 Continuous Models

Like throughing a dart on a certian area or sth else ...

## 2.5 Properties of Probability Laws

1. If  $A \in B$ , then  $P(A) \le P(B)$ 

2.  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

3.  $P(A \cup B) \le P(A) + P(B)$ 

4.  $P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C)$ 

<sup>&#</sup>x27;Insight of Probability: The term "probability" should come with an event, like the probability of event A P(A), which is further a outcome of the probability law and a part of the probabilistic model. And a valid probabilistic model should contain a sample space and a probability law which agree with the probability axioms.

## 3 Conditional Prabability

Conditional probability provides us with a way to reason about the outcome of an experiment, based on **parcial information**. (The experiment is done and the only have some parcial information about it.)

**e.g.** The experiment involving two successive rolls of a die, you are toled that the sum of the two rolls are 9. What's the probability of the first roll is a 6?

In precise terms, the conditional probability is when we know the is with in a given event B, we wish to know the probability of the event A. We call this *conditional probability of* A *given* B, denoted by  $P(A \mid B)$ 

**Definition**<sub>conditional probability</sub>: 
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

### 3.1 Verification of the Prabability Laws

- 1. Nonnegativity is clear since the original probability is nonnegative.
- 2. Additivity:

$$\begin{split} P(A_1 \cup A_2 \mid B) &= \frac{P((A_1 \cup A_2) \cap B)}{P(B)} \\ &= \frac{P(A_1 \cap B) + P(A_2 \cap B)}{P(B)} \\ &= P(A_1 \mid B) + P(A_2 \mid B) \end{split}$$

1. Normalization:

$$P(\Omega \mid B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

## 3.2 Properties of Conditional Probability

- Conditional probability can be viewed as a normal probability on a new universe B.
- Furthermore, if all outcomes are equally likely, then  $P(A \mid B) = \frac{\text{num of elements of } A \cup B}{\text{num of elements of } B}$

## 3.3 Using Conditional Probability for Modeling

A restatement of the definition of the conditional probability is  $P(A \cup B) = P(B)P(A \mid B)$ , which can be used to calculate a non-conditional probability.

### **Multiplication Rule**

By definition, it's easy to get

$$P\left(\bigcup_{i=1}^{n}A_{i}\right) = P(A_{1})P(A_{2}\mid A_{3})P(A_{3}\mid A_{1}\cap A_{2})...P\left(A_{n}\mid \bigcup_{i=1}^{n-1}A_{i}\right)$$

## 3.4 Total Probability Theorem and Bayes' Rule

### **Total Probability Theorem**

Let  $A_1, A_3, ..., A_n$  be disjoint events that *form a partition* of the sample space, and assume that  $P(A_i) > 0$  for all i. Then far any event B, we have

$$P(B) = P(A_n \cup B) + \dots + P(A_n \cup B)$$
$$= \sum_{i=1}^{n} P(A_i)P(B \mid A_i)$$

#### Bayes' Rule

Let  $A_1, A_2, ..., A_n$  be disjoint events that form a partition of the sample space, and assume that  $P(A_i) > 0$  for all i. Then, for any event B such that B that P(B) > 0, we have

$$\begin{split} P(A_i \mid B) &= \frac{P(A_i)P(B \mid A_i)}{P(B)} \\ &= \frac{P(A_i)P(B \mid A_i)}{P(A_1)P(B \mid A_1) + \ldots + P(A_n)P(B \mid A_n)} \end{split}$$

The Bayes' Rule reveals the relation between conditional probability of form  $P(A \mid B)$  and  $P(B \mid A)$ , in which the order of conditioning is reversed.

#### e.g. An example in medicine

If there is a shade in someone's x-ray, and there are 3 possibilities:

- 1. It's a malignant tumor
- 2. It's a nonmalignant tumor
- 3. Not a tumor

Calculate the probability of each situation.

**Ans** Let  $A_1, A_2, A_3$  be the three events, and B be the probability of there being a shade. Assume that we know the probabilities  $P(A_i)$  and  $P(B \mid A_i)$  (these data can be actually found in practise). So we due to Bayes' Rule, we have

$$P(A_i \mid B) = \frac{P(A_i)P(B \mid A_i)}{P(B)} = \frac{P(A_1)P(A_1 \mid B) + P(A_2)P(A_2 \mid B) + P(A_3)P(A_3 \mid B)}{P(A_1)P(A_1 \mid B) + P(A_2)P(A_2 \mid B) + P(A_3)P(A_3 \mid B)}$$

As above, the Bayes Rule is often used for inference where we need to infer the "causes" from "effects". The events  $A_1$ ,  $A_2$ ,  $A_3$  are the causes and the shade event B is the effect by the causes. In a lot of situations, we have already collected the data of the effects, and we want to evaulate the probability of the cause  $A_i$  is present, that's when Bayes' Rule come into use.

And just like the example above, the  $A_i$  stands for the cause, the B stands for the effect, we give the definition of *posterior probability* and *prior probability*:

**Posterior probability**  $P(A_i \mid B)$ 

Prior probability  $P(A_i)$ 

#### e.g. The False-Positive Puzzle

A test for a certian rare disease is assumed to be 95% correct, and a random person drawn from a cortain population has the probability 0.001 of having the disease. Then, if a person tested positive, what is the probability of the person having the disease?

**Ans** Now we know the effect, we want to evaulate the probability of the cause is present – Apply the Bayes' Rule! Let A be the event the person have the disease, B be the event of tested positive. So we want  $P(A \mid B)$ , and we have P(A) = 0.001,  $P(B \mid A) = 0.95$ . So

$$P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)} = \frac{P(A)P(B \mid A)}{P(A)P(B \mid A) + P(A^c)P(B \mid A^c)} = 0.0187$$

Less than 2%!!!

### 3.5 Independence

**Definition**<sub>independence</sub>: If  $P(A \cap B) = P(A)P(B)$ , then we say that A is independent of B.

The equation above is also equivalent to  $P(A \mid B) = P(A)$ .

### 3.6 Conditional Independence

**Definition**<sub>conditional independence</sub>: If  $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$ , we say that events A and B are conditionally independent (given C).

#### **Summary**

- Two events A, B are independent if  $P(A \cap B) = P(A)P(B)$ . In addition, if P(B) > 0, independence is equivalent to  $P(A \mid B) = P(A)$
- If A, B are independent, so are A and  $B^c$
- Two events A,B are conditionally independent if  $P(A\cap B\mid C)=P(A\mid C)P(B\mid C).$  In addition, if P(B)>0, independence is equivalent to  $P(A\mid B\cap C)=P(A\mid C).$
- Independence does not imply conditional independence and vice versa.

#### Independence of a collection of events

Events  $A_1, A_2, ..., A_n$  are independent if

$$P\biggl(\bigcap_{i\in S}A_i\biggr)=\prod_{i\in S}P(A_i), \text{for every subset }S\text{ of }\{1,2,...,n\}$$

## 3.7 Reliability

#### e.g. Network connectivity

The following graph is a network with the prabability of link of the connected nodes is up. Evaulate the probability of the successful connection from A to B.(Classic problem, omitting ans)



3.8 Independent Trials and the Binomial Probabilities