

ЛАВРИНЕНКО А.В. МАРКОВИЧ Л.Г. СЛОБОДЯНЮК А.И.

Республиканская олимпиада икольников по физике Брест - 2000 (теоретический тур)

Республиканская олимпиада школьников по физике.

Брест, 2000 год

9 класс.

- **1.** Автобус проехал первую треть пути со скоростью $v_1 = 50 \, \kappa m/чac$, а вторую со скоростью $v_2 = 60 \, \kappa m/чac$. С какой скоростью ему нужно проехать оставшуюся часть пути, чтобы средняя скорость движения автобуса на всем маршруте была: а) $v_{cp}^a = 70 \, \kappa m/чac$; б) $v_{cp}^b = 90 \, \kappa m/чac$?
- **2.** Шар радиусом R плавает в жидкости, практически полностью погрузившись в нее. Найдите силу давления жидкости на нижнюю половину поверхности шара. Плотность жидкости ρ . Объем шара рассчитывается по формуле $V = \frac{4}{3}\pi R^3$.
- 3. Плоское квадратное зеркальце со стороной а симметрично закреплено электродвигателя И вращается вокруг вертикальной оси cпостоянной угловой скоростью ω . Эта "вертушка" установлена в круглой центре комнаты радиусом R (R >> a)полностью освещена параллельным пучком света. На стене комнаты на пути светового зайчика от зеркальца в точке фотоприемник. установлен точечный Направление на точку A образует угол φ с Какова направлением падающего света. длительность светового импульса, регистрируемого фотоприемником?

4. Имеется теплоизолированный толстостенный цилиндрический стакан, толщина стен которого составляет 20% от его внешнего радиуса. Если стакан нагреть до $t_1 = 400^{\circ}C$ и полностью заполнить льдом, взятым при температуре плавления $t_0 = 0^{\circ}C$, то, в конечном счете, весь лед растает. Во сколько раз нужно изменить толщину стенок стакана (при неизменном внешнем радиусе), чтобы, запонив его полностью льдом при тех же начальных температурах льда и стакана мя смогли бы закипятить воду? Испарением и тепловыми потерями пренебречь. Удельная теплоемкость воды $c = 4.19 \ \text{Дж/кг} \cdot \text{K}$, удельная теплота плавления льда $\lambda = 3.36 \cdot 10^5 \ \text{Дж/кг}$, температура кипения воды $t_2 = 100^{\circ}C$.

5. Одним из основоволожников современной физики по праву считается итальянский ученый Галилео Галилей. В начале XVII века он экспериментально исследовал движение различных тел под действием притяжения к Земле. Ему удалось доказать, что такое движение является равноускоренным и не зависящим от массы тела (если пренебречь силами сопротивления). В частности, Г.Галилей подробно исследовал качение шаров (в качестве которых использовал пушечные ядра) по наклонной плоскости.

Воспроизведем результаты опытов Γ . Галилея. В качестве наклонной плоскости используется желоб длиной $L=5.0 \, m$ (конечно, во времена Галилея в Италии употреблялись другие единицы длины), один из концов которого приподнят на высоту h.

Для того, чтобы отмерять равные промежутки времени, Г.Галилей использовал маятник - груз подвешенный на нити.

В Таблице 1 приведены значения пути S, пройденного шаром, за время, равное целому числу n колебаний маятника, при разных значениях высоты h (проскальзывание отсутствует).

Таблица 1.

h =	n	2	3	4	5	6	7	8	9	10
20	S , $_{\mathcal{M}}$	0,19	0,39	0,77	1,18	1,59	2,29	2,92	3,43	4,37
СМ										
h =	n	2	3	4	5	6	7	8	9	10
30	S , ${\scriptstyle \mathcal{M}}$	0,27	0,64	1,17	1,79	2,47	3,51	4,31	-	-
СМ										
h =	n	2	3	4	5	6	7	8	9	10
40	S , ${\scriptstyle \mathcal{M}}$	0,37	0,90	1,54	2,31	3,01	4,60	-	-	-
СМ										

На основании приведенных данных

- 1. Покажите, что движение ядра по желобу действительно является равноускоренным.
- 2. Найдите, как зависит ускорение ядра от высоты h. Объясните эту зависимость.
- 3. Вычислите путь, который пройдет ядро за пять колебаний маятника при высоте h = 50 cm?

Республиканская олимпиада школьников по физике. Брест, 2000 год

10 класс.

1. Упругая комбинированная прокладка представляет собой стальную и

алюминиевую пластины, сложенные вместе. Определите коэффициенты упругости системы вдоль осей OX; OY; OZ. Модуль Юнга стали $E_1 = 250\,\Gamma\Pi a$, алюминия $E_2 = 71\,\Gamma\Pi a$, толщина стального бруска $a_1 = 1,0\,cm$, алюминиевого $a_2 = 2,0\,cm$, $b = 5,0\,cm$, $c = 10\,cm$.

2. В горизонтальном однородном электростатическом поле находится гладкий сферический купол, с вершины которого (точка A) отпускают

небольшую заряженную шайбу. Шайба оторвалась от поверхности купола в точке B, причем $\angle AOB = 30^{\circ}$ (O - центр купола).Определите отношение силы тяжести, действующей на шайбу, к силе ее взаимодействия с полем.

3. Два небольших пластилиновых шарика привязаны нитями длиной $a=20\,cm$ к точке A, расположенной на горизонтальной поверхности диска на расстоянии a от его центра O. Шарики расположили так, что одна нить образует угол $\alpha_1=45^\circ$ с отрезком OA, а вторая - угол $\alpha_2=90^\circ$.

Диск начинают медленно раскручивать вокруг вертикальной оси, проходящей через его центр. Постройте примерный график зависимости угла между нитями от угловой скорости вращения диска, укажите его характерные точки. Коэффициент трения шариков о поверхность диска $\mu = 0.40$.

- **4.** В качестве модели упругой пленки можно рассмотреть квадратную сетку, образованную очень маленькими пружинками с жесткостью k. Покажите, что в рамках данной модели потенциальная энергия однородно растянутой пленки определяется формулой $U = k(\sqrt{S} \sqrt{S_0})^2$, где S- площадь растянутой пленки, S_0 ее площадь в недефермированном состоянии. Из пленки изготовили воздушный шарик, радиус которого при недеформированной пленкие равен r_0 . Найдите зависимость давления воздуха внутри шарика от его радиуса. Атмосферным давлением пренебречь.
- **5.** Для измерения заряда электрона американский физик Роберт Милликен в 1909-1912 годах провел серию экспериментов по исследованию движения маленьких заряженных масляных капель в электрическом поле. В установке Милликена капли масла

вбрызгивались в пространство между двумя горизонтальными металлическими пластинами, к которым прикладывалось постоянное электрическое напряжение. С помощью микроскопа проводилось наблюдение за движущимися в воздухе каплями и измерялась скорость их движения. Капли преобретали отрицательный электрический заряд в процессе разбрызгивания. Кроме того, можно было изменять заряд капель, облучая их ультрафиолетовым излучением.

Не претендуя на абсолютно точное воспроизведение результатов опытов Милликена, опишем одну из возможных схем проведения эксперимента и приведем их результаты в Таблице 1.

В отсутствии электрического поля измеряется значение скорости падения капли v_{θ} . Если на пластины подать постоянное напряжение U_{θ} , капля начинает двигаться вверх, измеренная при этом скорость капли обозначена v_{2} , измеренное значение радиусов капель r. Плотность масла

$$ho = 910 \frac{\kappa 2}{M^3}$$
, расстояние между металлическим пластинами $h = 1.0 \, \mathrm{cm}$,

ускорение свободного падения принять равным $g = 9.8 \frac{M}{c^2}$.

Для капель микронного радиуса сила вязкого трения пропорциональна скорости их движения. Считать, что в процессе измерения по описанной схеме заряд капли остается постоянным.

Таблица 1.

1 4001111114 11										
No	r, мкм	$v_0^{}, \frac{MM}{C}$	$U_{_{\scriptscriptstyle{0}}}$, κB	$v_1, \frac{MM}{c}$						
1	1,3	0,19	5,0	0,18						
2	1,7	0,32	5,0	0,51						
3	1,7	0.32	5,0	0,24						
4	1,2	0,16	5,0	0,23						
5	1,4	0,22	5,0	0,29						
6	2,0	0,44	5,0	0,39						
7	1,6	0,28	5,0	0,46						
8	1,5	0,25	5,0	0,38						
9	2,2	0,53	5,0	0,22						
10	1,4	0,22	5,0	0,63						

Определите по этим данным заряд электрона, оцените погрешность полученной величины.

Республиканская олимпиада школьников по физике. Брест, 2000 год

11 класс.

1. Крутильный маятник представляет собой легкий жесткий проводящий стержень, к концам которого прикреплены два одинаковых полых металлических шарика, подвешенный на длинной упругой проводящей нити. Маятник подвесили над верхним торцом вертикально расположенного соленоида с ферромагнитным сердечником. Обмотка соленоида сделана из медного провода, намотанного в один слой «виток к витку». Маятник подключили к источнику высоковольтного напряжения

 $U_{I}=15\kappa B$, а обмотку соленоида через ключ к источнику постоянного напряжения $U_{0}=2.0~\kappa B$. Оцените на какой максимальный угол повернется стержень маятника, если замкнуть ключ в цепи обмотки?

Параметры установки: удельное электрическое сопротивление меди $\rho=0.017\,\mathrm{mkOm\cdot m}$; радиус обмотки $r=15\,\mathrm{cm}$, ее высота $h=40\,\mathrm{cm}$, диаметр провода $d=5.0\,\mathrm{mm}$, магнитная проницаемость сердечника $\mu=1.8\cdot 10^3$, диаметры шариков маятника $a=5.0\,\mathrm{cm}$, масса шарика $m=1.4\,\mathrm{c}$, период свободных крутильных колебаний маятника $T=14\,\mathrm{c}$.

Индукция магнитного поля внутри сердечника длинного соленоида расчитывается по формуле $B=\mu\mu_0 nI$, где n-плотность намотки (число витков на единицу длины, I-сила тока в обмотке. Рекомендуем также воспользоваться формулой $\mu_0 \varepsilon_0 = \frac{1}{c^2}$, где

$$c = 3.0 \cdot 10^8 \frac{M}{c}$$
 - скорость света.

2. Для изготовления тонкой линзы пространство между двумя сферическими тонкими поверхностями залили материалом с показателем преломления $n_0=1,69$. В процессе изготовления линзы был допущен технологический брак, из-за чего внутри линзы оказалось множество небольших воздушных пузырьков, касающихся обеих граней линзы, и равномерно распределенных по поверхности линзы.

Полученную таким образом двояковогнутую линзу поместили в воду (показатель преломления $n_I=1,33$), и на расстоянии $a=40\,\mathrm{cm}$ за линзой расположили экран параллельно плоскости линзы. Линзу полностью осветили параллельным пучком света, направленным вдоль главной оптической оси. На экране образовался светлый круг, диаметр которого в два раза больше диаметра линзы. Кроме того, в центре этого светлого круга образовалось небольшое круглое пятно, освещенность которого в $\eta=3,0$ раза больше освещенности остального круга. Определите суммарную площадь (в процентах к общей площади линзы) пузырьков в линзе. Дифракцией света пренебречь.

3. Стрелу гарпуна массы $m=1.5\kappa z$, к которой привязана гладкая гибкая нить, бросают вертикально вверх с начальной скоростью $v_0=15~\text{m/c}$. Масса единицы длины нити $\lambda=20~\text{c/m}$. На какую высоту поднимется стрела, если длина нити равна а) l=5.0~m; б)

 $l=15~{\it M}$? Сопротивлением воздуха пренебречь. Ускорение свободного падения принять равным $g=9.8~{\it M}/c^2$.

4.1 Колесо радиуса R катится без проскальзывания по горизонтальной поверхности,

вращаясь вокруг своей оси с постоянной угловой скоростью ω . Введем декартовую систему координат, как показано на рисунке. Точка A, находящаяся на ободе колеса, в момент времени t=0 находилась в начале координат.

Запишите уравнения, описывающие зависимости от времени проекций ускорения

 $a_{\scriptscriptstyle x}$, $a_{\scriptscriptstyle y}$; проекций скорости $v_{\scriptscriptstyle x}$, $v_{\scriptscriptstyle y}$; координат x,y точки A .

Найдите среднюю скорость $\langle \vec{v} \rangle$ движения точки A за достаточно большой промежуток времени.

4.2 Две одинаковых частицы, массы которых равны m, движутся вдоль оси X под действием изменящихся во времени сил. На первую частицу дейсвует сила, $F_1 = F_0 \sin \omega t$ на вторую $F_2 = F_0 \cos \omega t$ (F_0 , ω - известные постоянные величины). Запишите уравнения зависимостей от времени ускорений частиц a_1 , a_2 , скоростей частиц v_1 , v_2 , их координат x_1 , x_2 . Найдите средние скорости частиц за достаточно большой промежуток времени.

4.3 Электрон движется в поле плоской электромагнитной волны, вектор напряженности электрического поля которой направлен вдоль оси

X и изменяется со временем по закону $E=E_0\cos\omega t$, а вектор индукции магнитного поля направлен вдоль оси Y и изменяется со временем по закону $B=B_0\cos\omega t$. Длина волны велика настолько, что можно пренебречь зависимостью характеристик волны от координаты Z. В поле

электромагнитной волны при не слишком больших скоростях движения электрона v выполняется соотношение $E_0>>vB_0$. Используя это соотношение, найдите зависимость проекции скорости электрона на ось X от времени. Найдите среднюю скорость движение электрона вдоль оси Z (скорость дрейфа электрона). Считайте, что первоначально скорость электрона равнялась нулю.