

Lecture 6 & 7: KNN

Recap

- Classifiers are better understood geometrically
- Decision boundary for most $w^T x + b = 0$
- Non linear classifiers use kernels or transform space
- First primitive classifier Nearest Centroid
- View clustering geometrically

Number of Malignant Nodes

Number of Malignant Nodes

Number of Malignant Nodes

Number of Surgeries

Mitigating overfitting in kNN

Decision Boundary in kNN

Voronoi cell: contains points closer to blue example than any other

Voronoi Tessellation: Partitioned non overlapping space dominated by one type of training class

- Pretty impressive non-linear boundary
- Flexible implies risk for overfitting

Impact of k

- Value of k has strong effect on kNN performance
- Small k -> unstable decision boundary
- Small change in training set leads to large change in classification

- Extreme case of large k: k=N
 - Every test point classified as the most probable class =
 P(y maxclass) = Prior

- In other ML algorithms, higher value (such as degree of polynomial in regression) leads to overfitting
- Reverse in kNN
- Overfitting for low k. Underfitting for high k

kNN Overfitting v/s Underfitting

Typical train-test steps

- Nearest Centroid training: extract centroids & classes
 - Throw away training data after that

kNN train-test steps

- •Train:
 - •kNN training phase does nothing
 - Just holds onto the provided hyper params & data
- •Test:
 - Multiple test points are provided
 - •Runs pairwise distance between all train & test points (m x n distance computations)
 - Reports score
 - Computationally expensive at prediction time

Nearest Centroid v/s kNN comparison

Nearest Centroid	kNN	
Eager	Lazy	
Batch	Instance	
Parametric	Non parametric	
Discriminative	Discriminative	

Weighted kNN

$$weight = \frac{1}{distance}$$

Neighbour	True Label	Distance	Weight	Sum of Weights
X_1	Positive	0.1	10	13.3
X_2	Positive	0.3	3.3	
X_3	Negative	1	1	1.8
X_4	Negative	2	0.5	
X_5	Negative	3	0.3	

Hyperparameter tuning with Cross validation

How to select a kNN model?

- Basic kNN Two hyperparameters to choose
 - •k The number of nearest neighbors
 - Distance measure (Euclidean, Manhattan)
- Many more hyperparameters exist
 - •How about weighted kNN?
- •Parameters & hyperparams What's the difference
- Hyperparameter tuning

Option 1: Use train-test split

- •Issue:
 - We will never know if a model is good without running on test split

Option 2: train-validation-test split

- •Classical, old fashioned approach: 60:20:20 split
- Acceptable when there is lot of data
- •Issue:
 - Model does not generalize when less data
 - Results in overfitting

K-Fold CV (contd.)

- •For each of k=1,3,5,7,10 in kNN:
 - Run 5-Fold CV
 - Get mean train and val error. Plot
- •In general, k with lowest val error is best k

kNN K-Fold CV

Classifier metric may measure accuracy & higher the better.
We look for best score in CV

Option 3: K-Fold Cross Validation (CV)

- Mean errors for different k = [10.5, 12, 12, 8.5, 18]
- K-Fold CV is used to select best k for kNN
- Note: K in K-Fold CV got nothing to do with k in kNN
- Choose K = 5 (or 10) in K-Fold CV. This is constant

Example: k-Fold Cross-Validation

•Can we use K-Fold CV for Nearest Centroid?

Hyperparameter tuning with Grid Search and Bayesian Optimization

Multiple hyperparameter tuning

- •kNN k and weight
 - • $k=\{1,3,5,7,9\}$
 - •weight={"uniform", "distance"}
- K-Fold CV to be executed $5 \times 2 = 10$ times
- GridSearchCV

GridSearchCV & RandomSearchCV

Which option when? Dos and don'ts

- Regular machine learning
 - •1 hyperparam K-Fold CV
 - Multiple hyperparams GridSearchCV, RandomCV
- •What about deep learning?
 - Lot's of data, lengthy training process
 - Training neural network K-times CV is not feasible
- Keras Tuner, Hyperopt, Optuna for both regular & deep learning

Why not Grid search

- Too many eval Objective function eval is expensive
- Grid search is completely uninformed about past eval
- •3 spaces to be aware of:
- Feature space
- Parameter space
- Hyperparameter space

Understanding parameter space

Objective function is evaluated in parameter space

$$\hat{y}_i = x_i^T w + b \quad w \in \mathbb{R}^d$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

 $Objective = \arg\min_{w1,b} MSE$

Why not Grid search

- Too many eval Objective function eval is expensive
- •Grid search is completely uninformed about past eval

•GridSearch happens in hyperparameter space

•There's also a hypothesis space. Don't worry about it

Hyperparameter tuning with Bayesian Optimization

Surrogate function

Posterior

Likelihood

Prior

P(score|hyperparam) =

P(hyperparam|score)P(score)

P(hyperparam)

- Prior, Likelihood & Posterior
- Posterior evaluated with surrogate function
- Cheap to evaluate
- Surrogate function modeled as a Gaussian Process (GP)
- GP gives a distribution of functions
- Very good at interpolating, not good at extrapolating

Types of Cross Validation

- Hold out (Train-test split)
- K-Fold Cross Validation
- Stratified K-Fold
- Repeated K-Fold
- Nested k-Fold
- Leave One Out (LOOCV)
- Let's look at others in lab

Multiclass kNN & kNN Regression

Multi class kNN

- Majority v/s plurality
- For 3 class
 - •Majority = 50%+
 - •Plurality = 33.33%+

Multi class kNN decision boundary

$$K = 5$$

kNN Regression

Real function

Actual data

kNN Regression(contd.)

1-NN Regression

2-NN, 3-NN Regression

•kNN Regression good at interpolation bad for extrapolation

Curse of Dimensionality

- •P(point < 0.01 units from border) =
 - •1 P(point inside 0.99)
- •P(point inside 0.99) = 0.99 * 0.99
- 1-0.9801 = 0.0199
- •P(point < 0.01 units from border) = $= 1 (0.99)^3 = 1 0.9703 = 0.029$
- •For 1000 dimensions, P(point in 0.01 border) =

$$= 1 - (0.99)^{1000} = 1 - 0.000004317 = 0.99995683$$

