Lista 3

MI406/ME861 - 1s2025

1. Considere o modelo definido por

$$Y_i = \mu + \epsilon_i, \qquad i = 1, \dots, n$$

onde $\mu \in \mathbb{R}$ é uma constante e $\epsilon_i \sim N(0, \sigma^2)$, com $\epsilon_i \perp \epsilon_j$ para $i \neq j$.

- a. Escreva o modelo descrito em forma matricial. Isto é, $\mathbf{Y} = \mathbf{X}\beta + \boldsymbol{\epsilon}$, e descreva os vetores e matrizes envolvidos.
- b. Sabendo que o Estimador de Máxima-Verossimilhança (MV) de μ é \bar{Y} , mostre que o estimador de Mínimos-Quadrados $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$ coincide com o estimador de MV.
- c. Descreva qual a forma da matriz de projeção $\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ e interprete.

A partir daqui, considere o modelo definido por

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$

e sua representação matricial.

- 2. Seja J_n uma matriz de dimensões $n \times n$ com o valor 1 em todas as entradas e H a matriz de projeção $H = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$.
 - a. Mostre (ou justifique que) $\frac{1}{n}J_n$ é simétrica e idempotente.
 - b. Mostre (ou justifique que)

$$\mathbf{Y}^{\top} \left(I - \frac{1}{n} J_n \right) \mathbf{Y} = \mathbf{Y}^{\top} \left(H - \frac{1}{n} J_n \right) \mathbf{Y} + \mathbf{Y}^{\top} \left(I - H \right) \mathbf{Y},$$

Interprete esse resultado.

- 3. Seja $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$.
 - a.Mostre que

$$\hat{\mathbf{Y}} \sim N_n(X\beta, \sigma^2 H).$$

- b. Compare as distribuições de \mathbf{Y} e $\hat{\mathbf{Y}}$. Interprete.
- c. Como podemos interpretar a entrada h_{ii} da matriz H?
- 4. Sabendo que a existência dos estimadores de Mínimos Quadrados e da Matriz de Projeção dependem da inversa $(\mathbf{X}^{\top}\mathbf{X})^{-1}$.
 - a. Apresente a forma geral da matriz $\mathbf{X}^{\top}\mathbf{X}$ no contexto de regressão linear simples e descreva as condições necessárias para a existência de sua inversa.
 - b. Dê um exemplo de valores das variáveis x_1, x_2, \ldots, x_n para os quais a inversa não existe.
 - c. Do ponto de vista da interpretação dos parâmetros, explique o motivo pelo qual o cenário do exemplo do item b não nos permite ter estimadores únicos para β_0 e β_1 .

1