

Vorlesung 13 - Kommutative Gruppen

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

Diskrete Strukturen	
1. Wiederholung	
2. Untergruppen	
3. Mehr über \mathbb{Z}/n	
4. Ringe und Körper	

Kommutative Gruppen - zwei äquivalente Definitionen.

Kommutative Gruppen - zwei äquivalente Definitionen. Die die wir am meisten nutzen:

▶ für alle $x, y, z \in M$

▶ für alle $x, y, z \in M$ gilt

• für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)

- $\qquad \qquad \textbf{für alle } x,y,z \in M \ \ \textbf{gilt } (x+y) + z = x + (y+z)$
- ightharpoonup für alle $x,y\in M$

- $\qquad \qquad \textbf{für alle } x,y,z \in M \ \ \textbf{gilt } (x+y) + z = x + (y+z)$
- ▶ für alle $x, y \in M$ gilt

$$\qquad \qquad \textbf{ für alle } x,y,z \in M \ \ \textbf{gilt } (x+y)+z=x+(y+z)$$

▶ für alle
$$x, y \in M$$
 gilt $x + y = y + x$

- für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
- ▶ für alle $x, y \in M$ gilt x + y = y + x
- \blacktriangleright es gibt $0 \in M$,

- für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
- ▶ für alle $x, y \in M$ gilt x + y = y + x
- ightharpoonup es gibt $0 \in M$, so dass

- für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
- ▶ für alle $x, y \in M$ gilt x + y = y + x
- ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$

- für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
- ightharpoonup für alle $x, y \in M$ gilt x + y = y + x
- ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt

- für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
- ightharpoonup für alle $x, y \in M$ gilt x + y = y + x
- ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x

- ightharpoonup für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
- ightharpoonup für alle $x, y \in M$ gilt x + y = y + x
- ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
- ightharpoonup für alle $x \in M$

- ightharpoonup für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
- ightharpoonup für alle $x, y \in M$ gilt x + y = y + x
- ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
- ightharpoonup für alle $x \in M$ gibt es y

- ightharpoonup für alle $x, y, z \in M$ gilt (x + y) + z = x + (y + z)
- ightharpoonup für alle $x, y \in M$ gilt x + y = y + x
- ightharpoonup es gibt $0 \in M$, so dass für alle $x \in M$ gilt x + 0 = x
- ▶ für alle $x \in M$ gibt es y so dass x + y = 0.

• Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n

• Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$.

• Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n".

• Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4+3\equiv 7\equiv 2\mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
- ► Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
- ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M, +)

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
- ► Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+)

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
- ► Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi \colon M \to N$,

Diskrete Strukturen | Wiederholung

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ▶ Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$ und

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4+3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$ und für alle $x\in M$ gilt

- Die Gruppe der Residuen Modulo n ist die Gruppe \mathbb{Z}/n mit Elementen $\{0,1,2,\ldots,n-1\}$. Die operation ist "Addition modulon n". Z.B. Wenn n=5 dann 4+3=2.
- Wir schreiben häufig z.B. $4 + 3 \equiv 7 \equiv 2 \mod 5$.
- Jede endliche kommutative Gruppe ist isomorph zu einem kartesischen Produkt von Gruppen der Form $\mathbb{Z}/n\mathbb{Z}$.
 - ightharpoonup Z.B. $\mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/25 \times \mathbb{Z}/7$.
- Ein Homomorphismus von (M,+) zu (N,+) ist eine Funktion $\varphi\colon M\to N$, so dass für alle $a,b\in M$ gilt $\varphi(a+b)=\varphi(a)+\varphi(b)$ und außerdem $\varphi(0_M)=0_N$ und für alle $x\in M$ gilt $\varphi(-x)=-\varphi(x)$

$$ightharpoonup f: \mathbb{Z} o \mathbb{Z}/n$$
,

$$ightharpoonup f: \mathbb{Z} o \mathbb{Z}/n$$
, $f(x) := x \mod n$.

$$ightharpoonup f \colon \mathbb{Z} o \mathbb{Z}/n$$
, $f(x) := x \mod n$.

$$ightharpoonup f: \mathbb{Z}/m o \mathbb{Z}/n$$
,

$$ightharpoonup f\colon \mathbb{Z} o \mathbb{Z}/n$$
, $f(x) := x \mod n$.

$$ightharpoonup f\colon \mathbb{Z}/m o \mathbb{Z}/n$$
, wenn $n\mid m$.

$$ightharpoonup f: \mathbb{Z} o \mathbb{Z}/n$$
, $f(x) := x \mod n$.

$$lackbox{} f\colon \mathbb{Z}/m o \mathbb{Z}/n$$
, wenn $n\mid m$. $f(x):=x \mod n$.

Diskrete Strukturen | Wiederholung

$$ightharpoonup f: \mathbb{Z} o \mathbb{Z}/n, \ f(x) := x \mod n.$$

$$ightharpoonup f\colon \mathbb{Z}/m o \mathbb{Z}/n$$
, wenn $n\mid m$. $f(x):=x \mod n$.

$$ightharpoonup n \mid m \text{ ist n\"otig}$$

$$ightharpoonup f: \mathbb{Z} o \mathbb{Z}/n$$
, $f(x) := x \mod n$.

$$ightharpoonup f: \mathbb{Z}/m o \mathbb{Z}/n$$
, wenn $n \mid m$. $f(x) := x \mod n$.

$$ightharpoonup n\mid m$$
 ist nötig um einen Homomorpphismu zu haben.

$$ightharpoonup f: \mathbb{Z} o \mathbb{Z}/n$$
, $f(x) := x \mod n$.

- ▶ $f: \mathbb{Z}/m \to \mathbb{Z}/n$, wenn $n \mid m$. $f(x) := x \mod n$.
- ▶ $n \mid m$ ist nötig um einen Homomorpphismu zu haben. Z.B. $f: \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/3$ mit $f(x) := x \mod 3$ ist kein Homomorphismus:

- $ightharpoonup f: \mathbb{Z} \to \mathbb{Z}/n, \ f(x) := x \mod n.$
- $ightharpoonup f: \mathbb{Z}/m o \mathbb{Z}/n$, wenn $n \mid m$. $f(x) := x \mod n$.
- ▶ $n \mid m$ ist nötig um einen Homomorpphismu zu haben. Z.B. $f: \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/3$ mit $f(x) := x \mod 3$ ist kein Homomorphismus: f(3+3) = f(6) = f(1) = 1, aber f(3) + f(3) = 0 + 0 = 0.

Diskrete Strukturen | Wiederholung

$$ightharpoonup f: \mathbb{Z} o \mathbb{Z}/n$$
, $f(x) := x \mod n$.

- $f: \mathbb{Z}/m \to \mathbb{Z}/n$, wenn $n \mid m$, $f(x) := x \mod n$.
- $ightharpoonup n \mid m$ ist nötig um einen Homomorpphismu zu haben. Z.B. $f \colon \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/3$ mit $f(x) := x \mod 3$ ist kein Homomorphismus: f(3+3) = f(6) = f(1) = 1, aber f(3) + f(3) = 0 + 0 = 0.

Sei (M,+) eine kommutative Gruppe.

Sei (M,+) eine kommutative Gruppe. $N\subset M$ ist eine Untergruppe,

Beispiele

• $\{0_M\}$ ist die "triviale Untergruppe" von M.

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{Q}$ ist eine Untergruppe

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{Q}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{Q}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- $n\mathbb{Z} \subset \mathbb{Z}$ ist eine Untergruppe,

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{Q}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- $n\mathbb{Z} \subset \mathbb{Z}$ ist eine Untergruppe, wobei $n\mathbb{Z} := \{nx \colon x \in \mathbb{Z}\}.$

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{Q}$ ist eine Untergruppe
- + $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- $n\mathbb{Z} \subset \mathbb{Z}$ ist eine Untergruppe, wobei $n\mathbb{Z} := \{nx \colon x \in \mathbb{Z}\}.$
- \mathbb{Z} ist isomorph zu vielen verschiedenen Untergruppen von \mathbb{Z}^2 ,

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{Q}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- $n\mathbb{Z} \subset \mathbb{Z}$ ist eine Untergruppe, wobei $n\mathbb{Z} := \{nx \colon x \in \mathbb{Z}\}.$
- \mathbb{Z} ist isomorph zu vielen verschiedenen Untergruppen von \mathbb{Z}^2 , zum Beispiel $\{(x,0)\colon x\in\mathbb{Z}\}$, $\{(x,x)\colon x\in\mathbb{Z}\}$, $\{(5x,7x)\colon x\in\mathbb{Z}\}$.

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{Q}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- $n\mathbb{Z} \subset \mathbb{Z}$ ist eine Untergruppe, wobei $n\mathbb{Z} := \{nx \colon x \in \mathbb{Z}\}.$
- \mathbb{Z} ist isomorph zu vielen verschiedenen Untergruppen von \mathbb{Z}^2 , zum Beispiel $\{(x,0)\colon x\in\mathbb{Z}\}$, $\{(x,x)\colon x\in\mathbb{Z}\}$, $\{(5x,7x)\colon x\in\mathbb{Z}\}$.
- Sei $k, n \in \mathbb{N}$

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{O}$ ist eine Untergruppe
- + $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- $n\mathbb{Z}\subset\mathbb{Z}$ ist eine Untergruppe, wobei $n\mathbb{Z}:=\{nx\colon x\in\mathbb{Z}\}.$
- \mathbb{Z} ist isomorph zu vielen verschiedenen Untergruppen von \mathbb{Z}^2 , zum Beispiel $\{(x,0)\colon x\in\mathbb{Z}\}$, $\{(x,x)\colon x\in\mathbb{Z}\}$, $\{(5x,7x)\colon x\in\mathbb{Z}\}$.
- Sei $k, n \in \mathbb{N}$ mit $k \mid n$. Dann $\{0, k, 2k, \dots, n-k\}$

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{O}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- $n\mathbb{Z}\subset\mathbb{Z}$ ist eine Untergruppe, wobei $n\mathbb{Z}:=\{nx\colon x\in\mathbb{Z}\}.$
- \mathbb{Z} ist isomorph zu vielen verschiedenen Untergruppen von \mathbb{Z}^2 , zum Beispiel $\{(x,0)\colon x\in\mathbb{Z}\}$, $\{(x,x)\colon x\in\mathbb{Z}\}$, $\{(5x,7x)\colon x\in\mathbb{Z}\}$.
- Sei $k,n\in\mathbb{N}$ mit $k\mid n$. Dann $\{0,k,2k,\dots,n-k\}$ ist eine Untergruppe von \mathbb{Z}/n

Beispiele

• $\{0_M\}$ ist die "triviale Untergruppe" von M.

• $n\mathbb{Z} \subset \mathbb{Z}$ ist eine Untergruppe, wobei $n\mathbb{Z} := \{nx \colon x \in \mathbb{Z}\}.$

- $\mathbb{Z} \subset \mathbb{O}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- $\mathbb Z$ ist isomorph zu vielen verschiedenen Untergruppen von $\mathbb Z^2$, zum Beispiel
 - $\{(x,0)\colon x\in\mathbb{Z}\},\,\{(x,x)\colon x\in\mathbb{Z}\},\,\{(5x,7x)\colon x\in\mathbb{Z}\}.$
- Sei $k,n\in\mathbb{N}$ mit $k\mid n$. Dann $\{0,k,2k,\dots,n-k\}$ ist eine Untergruppe von $\mathbb{Z}/n:=$

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{O}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- nZ ⊂ Z ist eine Untergruppe, wobei nZ := {nx: x ∈ Z}.
 Z ist isomorph zu vielen verschiedenen Untergruppen von Z², zum Beispiel
 - $\{(x,0)\colon x\in\mathbb{Z}\}, \{(x,x)\colon x\in\mathbb{Z}\}, \{(5x,7x)\colon x\in\mathbb{Z}\}.$
- Sei $k, n \in \mathbb{N}$ mit $k \mid n$. Dann $\{0, k, 2k, \dots, n-k\}$ ist eine Untergruppe von $\mathbb{Z}/n := \{0, 1, 2, \dots, n\}$.

Beispiele

• $\{0_M\}$ ist die "triviale Untergruppe" von M.

• $n\mathbb{Z} \subset \mathbb{Z}$ ist eine Untergruppe, wobei $n\mathbb{Z} := \{nx \colon x \in \mathbb{Z}\}.$

 $\{(x,0): x \in \mathbb{Z}\}, \{(x,x): x \in \mathbb{Z}\}, \{(5x,7x): x \in \mathbb{Z}\}.$

- $\mathbb{Z} \subset \mathbb{Q}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- $\mathbb Z$ ist isomorph zu vielen verschiedenen Untergruppen von $\mathbb Z^2$, zum Beispiel
- Sei $k, n \in \mathbb{N}$ mit $k \mid n$. Dann $\{0, k, 2k, \dots, n-k\}$ ist eine Untergruppe von $\mathbb{Z}/n := \{0, 1, 2, \dots, n\}$. Diese Untergruppe
- Diskrete Strukturen | Untergruppen

- $\{0_M\}$ ist die "triviale Untergruppe" von M.
- $\mathbb{Z} \subset \mathbb{O}$ ist eine Untergruppe
- $\mathbb{N} \subset \mathbb{Q}$ ist keine Untergruppe
- nZ ⊂ Z ist eine Untergruppe, wobei nZ := {nx: x ∈ Z}.
 Z ist isomorph zu vielen verschiedenen Untergruppen von Z², zum Beispiel
 - $\{(x,0)\colon x\in\mathbb{Z}\}$, $\{(x,x)\colon x\in\mathbb{Z}\}$, $\{(5x,7x)\colon x\in\mathbb{Z}\}$.
- Sei $k, n \in \mathbb{N}$ mit $k \mid n$. Dann $\{0, k, 2k, \dots, n-k\}$ ist eine Untergruppe von $\mathbb{Z}/n := \{0, 1, 2, \dots, n\}$. Diese Untergruppe ist isomorph zu $\mathbb{Z}/\frac{n}{k}$.

• Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert,

• Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - ightharpoonup wir haben eine Äquivalenzrelation auf \mathbb{Z} ,

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - ightharpoonup wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - ightharpoonup wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - ightharpoonup wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw.

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äguivalenzrelation

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots, -n, 0, n, 2n, \ldots\}$,

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots, -n, 0, n, 2n, \ldots\}$, $\{\ldots, 1, n+1, \ldots\}$,

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots ,

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots, -n, 0, n, 2n, \ldots\}$, $\{\ldots, 1, n+1, \ldots\}$, \ldots , $\{\ldots, -1, n-1, \ldots\}$
- Wir können alternativ

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots, -n, 0, n, 2n, \ldots\}$, $\{\ldots, 1, n+1, \ldots\}$, \ldots , $\{\ldots, -1, n-1, \ldots\}$
- Wir können alternativ \mathbb{Z}/n

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- $lackrel{}$ wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x\equiv y$ gdw. $n\mid x-y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots, -n, 0, n, 2n, \ldots\}$, $\{\ldots, 1, n+1, \ldots\}$, \ldots , $\{\ldots, -1, n-1, \ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- $lackrel{}$ wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x\equiv y$ gdw. $n\mid x-y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge allen Äquivalenzklassen definieren.

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
- $lackrel{}$ wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x\equiv y$ gdw. $n\mid x-y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge allen Äquivalenzklassen definieren. Also $\mathbb{Z}/n:=\mathbb{Z}/\equiv$.

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge allen Äquivalenzklassen definieren. Also $\mathbb{Z}/n:=\mathbb{Z}/\equiv$.
 - ▶ Die Addition

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge allen Äquivalenzklassen definieren. Also $\mathbb{Z}/n:=\mathbb{Z}/\equiv$.
 - ▶ Die Addition ist dann definiert als [x] + [y] := [x + y].

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - ightharpoonup wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots, -n, 0, n, 2n, \ldots\}$, $\{\ldots, 1, n+1, \ldots\}$, \ldots , $\{\ldots, -1, n-1, \ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge allen Äquivalenzklassen definieren. Also $\mathbb{Z}/n:=\mathbb{Z}/\equiv$.
 - lacksquare Die Addition ist dann definiert als [x] + [y] := [x + y].
 - ► Der Homomorphismus

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge allen Äquivalenzklassen definieren. Also $\mathbb{Z}/n:=\mathbb{Z}/\equiv$.
 - ▶ Die Addition ist dann definiert als [x] + [y] := [x + y].
 - ▶ Der Homomorphismus $\mathbb{Z} \to \mathbb{Z}/n$

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge allen Äquivalenzklassen definieren. Also $\mathbb{Z}/n:=\mathbb{Z}/\equiv$.
 - ▶ Die Addition ist dann definiert als [x] + [y] := [x + y].
 - lacktriangle Der Homomorphismus $\mathbb{Z} o \mathbb{Z}/n$ ist dann definiert als

- Wir haben \mathbb{Z}/n als $\{0,1,2,\ldots,n-1\}$ definiert, mit addition modulo n.
- Etwas abstraktere Perspektive:
 - \blacktriangleright wir haben eine Äquivalenzrelation auf \mathbb{Z} , gegeben als $x \equiv y$ gdw. $n \mid x y$.
- Die Klassen dieser Äquivalenzrelation sind $\{\ldots,-n,0,n,2n,\ldots\}$, $\{\ldots,1,n+1,\ldots\}$, \ldots , $\{\ldots-1,n-1,\ldots\}$
- Wir können alternativ \mathbb{Z}/n als die Menge allen Äquivalenzklassen definieren. Also $\mathbb{Z}/n:=\mathbb{Z}/\equiv$.
 - ▶ Die Addition ist dann definiert als [x] + [y] := [x + y].
 - ▶ Der Homomorphismus $\mathbb{Z} \to \mathbb{Z}/n$ ist dann definiert als f(x) := [x].

- Sei nun \boldsymbol{p} eine Primzahl.

ullet Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten:

• Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: \mathbb{Z}/p^*

Diskrete Strukturen | Mehr über \mathbb{Z}/n 9/19

• Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* :=$

Diskrete Strukturen | Mehr über \mathbb{Z}/n

• Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^*:=\{1,2,\ldots,p-1\}$

• Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation.

• Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^*:=\{1,2,\ldots,p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x\oplus y:=x$

Diskrete Strukturen | Mehr über \mathbb{Z}/n

 $\mod p$.

• Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^*:=\{1,2,\ldots,p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x\oplus y:=x$

▶ In $\mathbb{Z}/7^*$

 $\mod p$.

• Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^*:=\{1,2,\ldots,p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x\oplus y:=x$

 $\mod p$.

▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel

▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.

Diskrete Strukturen | Mehr über \mathbb{Z}/n

 $\mod p$.

▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.

- ,
- Warum ist es eine Gruppe?

- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
- - Assoziativität,

- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
- - ► Assoziativität, Kommutativität

▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.

- Warum ist es eine Gruppe?
 - - ► Assoziativität, Kommutativität klar

▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.

- Warum ist es eine Gruppe?
- - Assoziativität, Kommutativität klar
 - Neutrales Element:

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^*:=\{1,2,\ldots,p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x\oplus y:=x\cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität. Kommutativität klar
 - 7.33021ativitat, Rommatativitat Rai
 - ► Neutrales Element: 1.

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität. Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.

- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ► Inversen:

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - Inversen: hier verwenden wir.

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - lacktriangle Inversen: hier verwenden wir, dass p eine Primzahl ist:

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - lacktriangle Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende:

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden,

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - tur ein gegebenes $a \in \mathbb{Z}/p^*$ mussen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.

 Betrachten wir die Funktion

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xu \equiv 1 \mod p$.
 - für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$,

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
 - ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - fur ein gegebenes $a \in \mathbb{Z}/p^*$ mussen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.
 - ► Diese Funktion ist injektiv:

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
 - ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - Retraction wir die Eunktion $f : \mathbb{Z}/n^* \to \mathbb{Z}/n^*$ die als f(x) := ax definiert ist
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.
 - ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay$

- Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten: $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot \mod p$.
- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - Potrachton wir die Funktion $f: \mathbb{Z}/x^* \to \mathbb{Z}/x^*$ die als f(x) and definiert ist
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.
 - ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay \operatorname{dann} a(x-y) \equiv 0 \mod p$,

▶ In
$$\mathbb{Z}/7^*$$
 haben wir zum Beispiel $3 \cdot 4 \equiv 5$.

• Warum ist es eine Gruppe?

 $p \mid a(x-y)$.

- ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
- ▶ Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
- ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.
- ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay \operatorname{dann} a(x-y) \equiv 0 \mod p$, d.h.

- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.
 - ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay \ \text{dann} \ a(x-y) \equiv 0 \mod p$, d.h. $p \mid a(x-y)$. Also entweder $p \mid a$

- ▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.
- Warum ist es eine Gruppe?
 - ► Assoziativität. Kommutativität klar ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - \blacktriangleright Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende:
 - für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.
 - ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay \operatorname{dann} a(x-y) \equiv 0 \mod p$, d.h. $p \mid a(x-y)$. Also entweder $p \mid a$ oder $p \mid (x-y)$,

▶ In
$$\mathbb{Z}/7^*$$
 haben wir zum Beispiel $3 \cdot 4 \equiv 5$.

- Warum ist es eine Gruppe?
 - ► Assoziativität, Kommutativität klar
 - Neutrales Element: 1. 1 ⋅ x ≡ x mod p.
 Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende:
 - für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.
 - ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay \text{ dann } a(x-y) \equiv 0 \mod p$, d.h. $p \mid a(x-y)$. Also entweder $p \mid a \text{ oder } p \mid (x-y)$, aber das ist nicht möglich.

 $\mathbb{Z}/p^* := \{1, 2, \dots, p-1\}$ aber mit Multiplikation, d.h. die Operation ist $x \oplus y := x \cdot$ $\mod p$.

• Sei nun p eine Primzahl. Wir können die folgende Gruppe betrachten:

▶ In $\mathbb{Z}/7^*$ haben wir zum Beispiel $3 \cdot 4 \equiv 5$.

- Warum ist es eine Gruppe? ► Assoziativität. Kommutativität - klar
 - ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
 - \blacktriangleright Inversen: hier verwenden wir, dass p eine Primzahl ist: die Aufgabe ist folgende: für ein gegebenes $a \in \mathbb{Z}/p^*$ müssen wir $b \in \mathbb{Z}/p^*$ finden, so dass $xy \equiv 1 \mod p$.
 - ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.
 - ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay \operatorname{dann} a(x-y) \equiv 0 \mod p$, d.h.
 - $p \mid a(x-y)$. Also entweder $p \mid a$ oder $p \mid (x-y)$, aber das ist nicht möglich.
 - ▶ Somit ist f auch surjektiv.

▶ In
$$\mathbb{Z}/7^*$$
 haben wir zum Beispiel $3 \cdot 4 \equiv 5$.

Warum ist es eine Gruppe?

- ► Assoziativität. Kommutativität klar
- ▶ Neutrales Element: 1. $1 \cdot x \equiv x \mod p$.
- Inversen: hier verwenden wir. dass p eine Primzahl ist: die Aufgabe ist folgende:
- für ein gegebenes $a\in \mathbb{Z}/p^*$ müssen wir $b\in \mathbb{Z}/p^*$ finden, so dass $xy\equiv 1\mod p$.
- ▶ Betrachten wir die Funktion $f: \mathbb{Z}/p^* \to \mathbb{Z}/p^*$, die als f(x) := ax definiert ist.
- ▶ Diese Funktion ist injektiv: Wenn $ax \equiv ay \operatorname{dann} a(x-y) \equiv 0 \mod p$, d.h.
- Diese Funktion ist injektiv: Wenn $ax \equiv ay \pmod{p}$ dann $a(x-y) \equiv 0 \mod p$, d.h. $p \mid a(x-y)$. Also entweder $p \mid a \pmod{p} \mid (x-y)$, aber das ist nicht möglich.
- Somit ist f auch surjektiv, und somit $ab \equiv 1$ für irgendein b.

• In Anwendungen

• In Anwendungen ist es äußerst wichtig,

• In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p"

• In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis.

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben,

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.

Diskrete Strukturen | Mehr über \mathbb{Z}/n

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - \blacktriangleright Wenn p

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - \blacktriangleright Wenn p 1000 Ziffern hat und wir ein Element

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element $a in \mathbb{Z}/p^*$

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen.

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p \approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen,

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen, um die Inverse zu finden.

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen, um die Inverse zu finden.
- · Aus diesem Grund

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen, um die Inverse zu finden.
- · Aus diesem Grund geben wir einen anderen.

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen, um die Inverse zu finden.
- Aus diesem Grund geben wir einen anderen, etwas komplizierteren Beweis,

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen, um die Inverse zu finden.
- Aus diesem Grund geben wir einen anderen, etwas komplizierteren Beweis, dass multiplikative Inverse

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen, um die Inverse zu finden.
- Aus diesem Grund geben wir einen anderen, etwas komplizierteren Beweis, dass multiplikative Inverse $\,$ modulo $\,$ p $\,$

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen, um die Inverse zu finden.
- Aus diesem Grund geben wir einen anderen, etwas komplizierteren Beweis, dass multiplikative Inverse modulo p existieren,

- In Anwendungen ist es äußerst wichtig, diese "multiplikative Inversen modulo p" zu berechnen.
- Der Beweis, den wir gegeben haben, liefert keinen effektiven Algorithmus.
 - ▶ Wenn p 1000 Ziffern hat und wir ein Element a $in\mathbb{Z}/p^*$ invertieren wollen, dann müssten wir ungefähr $p\approx 10^1000$ verschiedene Elemente von \mathbb{Z}/p^* überprüfen, um die Inverse zu finden.
- Aus diesem Grund geben wir einen anderen, etwas komplizierteren Beweis, dass multiplikative Inverse modulo p existieren, der einen effektiven Algorithmus liefert.

• Wir führen den euklidischen Algorithmus durch,

ullet Wir führen den euklidischen Algorithmus durch, mit p und a,

 $p = q_1 a + r_1$

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$ightharpoonup r_1 = q_3 r_2 + r_3$$

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$r_1 = q_3 r_2 + r_3$$

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$ightharpoonup r_1 = q_3 r_2 + r_3$$

$$r_{k-2} = q_k r_{k-1} + r_k$$

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$ightharpoonup r_1 = q_3 r_2 + r_3$$

$$ightharpoonup r_{k-2} = q_k r_{k-1} + r_k$$

$$ightharpoonup r_{k-1} = q_{k+1}r_k.$$

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$ightharpoonup r_1 = q_3 r_2 + r_3$$

$$r_{k-1} = q_{k+1}r_k$$
.

• Dann ist r_k

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$ightharpoonup r_1 = q_3 r_2 + r_3$$

$$r_{k-2} = q_k r_{k-1} + r_k$$

$$ightharpoonup r_{k-1} = q_{k+1}r_k.$$

• Dann ist r_k gleich zu ggt(p,a),

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$ightharpoonup r_1 = q_3 r_2 + r_3$$

$$r_{k-2} = q_k r_{k-1} + r_k$$

$$ightharpoonup r_{k-1} = q_{k+1} r_k.$$

• Dann ist r_k gleich zu ggt(p,a), also 1.

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$ightharpoonup r_1 = q_3 r_2 + r_3$$

. . . .

$$ightharpoonup r_{k-2} = q_k r_{k-1} + r_k$$

$$r_{k-2} = q_k r_{k-1} +$$

$$r_{k-1} = q_{k+1} r_k.$$

- Dann ist r_k gleich zu ggt(p,a), also 1.
- Wenn wir nach oben gehen,

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

. . . .

$$ightharpoonup r_{k-2} = q_k r_{k-1} + r_k$$

 $ightharpoonup r_{k-1} = q_{k+1} r_k$.

$$r_{k-1} + 1$$

- Dann ist r_k gleich zu ggt(p,a), also 1.
- Wenn wir nach oben gehen, erhalten wir die Bezout-Identität:

$$a = q_2 r_1 + r_2$$

$$r_1 = q_3 r_2 + r_3$$

$$\ldots$$

 $ightharpoonup r_{k-1} = q_{k+1} r_k$.

$$r_{k-2} = q_k r_{k-1} + r_k$$

• Dann ist
$$r_k$$
 gleich zu $qqt(p,a)$, also 1.

- built 150 T_k given zu ggt(p, u), u(30 1.
- Wenn wir nach oben gehen, erhalten wir die Bezout-Identität: $xp+ya=r_k=1$ für einige x,y.

$$p = q_1 a + r_1$$

$$a = q_2 r_1 + r_2$$

$$r_1 = q_3 r_2 + r_3$$

$$\ldots$$

 $ightharpoonup r_{k-1} = q_{k+1} r_k$.

• Dann ist
$$r_k$$
 gleich zu $ggt(p,a)$, also 1.

- $g(p, \omega)$, and $g(p, \omega)$
- Wenn wir nach oben gehen, erhalten wir die Bezout-Identität: $xp+ya=r_k=1$ für einige x,y. Jetzt ist y die multiplikative Inverse von a.

wollen. $p = q_1 a + r_1$

• Wir führen den euklidischen Algorithmus durch, mit p und a, das wir invertieren

 $r_1 = q_3r_2 + r_3$

 $a = q_2r_1 + r_2$

- **.** . . . $ightharpoonup r_{k-2} = q_k r_{k-1} + r_k$
 - $ightharpoonup r_{k-1} = q_{k+1} r_k$.
- Dann ist r_k gleich zu aat(p,a). also 1.
- Wenn wir nach oben gehen, erhalten wir die Bezout-Identität: $xp + ya = r_k = 1$ für
- einige x, y. Jetzt ist y die multiplikative Inverse von a.
- Die Anzahl der Zeilen

Diskrete Strukturen | Mehr über \mathbb{Z}/n 11 / 19 • Wir führen den euklidischen Algorithmus durch, mit p und a, das wir invertieren

- $ightharpoonup r_{k-1} = q_{k+1} r_k.$
- Dann ist r_k gleich zu ggt(p,a), also 1.

 $a = q_2r_1 + r_2$

 $r_1 = q_3r_2 + r_3$

- Wenn wir nach oben gehen, erhalten wir die Bezout-Identität: $xp+ya=r_k=1$ für
- einige x,y. Jetzt ist y die multiplikative Inverse von a.
- Die Ausell deu Zeilen im entridierten Algerithung

wollen. $p = q_1 a + r_1$

• Wir führen den euklidischen Algorithmus durch, mit p und a, das wir invertieren

- **.** . . . $ightharpoonup r_{k-2} = q_k r_{k-1} + r_k$
- $ightharpoonup r_{k-1} = q_{k+1} r_k$.
- Dann ist r_k gleich zu qqt(p,a), also 1.

 $a = q_2r_1 + r_2$

 $r_1 = q_3r_2 + r_3$

- Wenn wir nach oben gehen, erhalten wir die Bezout-Identität: $xp + ya = r_k = 1$ für
- einige x, y. Jetzt ist y die multiplikative Inverse von a.

• Die Anzahl der Zeilen im euklidischen Algorithmus ist vergleichbar mit $\log(p)$.

11 / 19 **Diskrete Strukturen** | Mehr über \mathbb{Z}/n

• Wenn $n \mid m$,

• Wenn $n \mid m$, dann haben wir

• Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus

• Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$,

• Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, gegeben durch $\varphi(a) := a \mod n$.

- Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, gegeben durch $\varphi(a) := a \mod n$.
- Der folgende Satz ist als "Chinesischer Restsatz" bekannt.

Satz. Seien a, b positive teilerfremde ganze Zahlen und n := ab.

- Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, gegeben durch $\varphi(a) := a \mod n$.
- Der folgende Satz ist als "Chinesischer Restsatz" bekannt.

- Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, gegeben durch $\varphi(a) := a \mod n$.
- Der folgende Satz ist als "Chinesischer Restsatz" bekannt.

· Dieser Satz ist extrem häufig benutzt.

- Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, gegeben durch $\varphi(a) := a \mod n$.
- Der folgende Satz ist als "Chinesischer Restsatz" bekannt.

· Dieser Satz ist extrem häufig benutzt. Anders gesagt:

- Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, gegeben durch $\varphi(a) := a \mod n$.
- Der folgende Satz ist als "Chinesischer Restsatz" bekannt.

• Dieser Satz ist extrem häufig benutzt. Anders gesagt: Gegeben sind $k, l \in \mathbb{Z}$.

- Wenn $n \mid m$, dann haben wir einen surjektiven Homomomorphismus $\varphi \colon \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, gegeben durch $\varphi(a) := a \mod n$.
- Der folgende Satz ist als "Chinesischer Restsatz" bekannt.

• Dieser Satz ist extrem häufig benutzt. Anders gesagt: Gegeben sind $k, l \in \mathbb{Z}$. Wir wollen die Gleichungs-system $x \equiv k \mod a$, $x \equiv l \mod b$ lösen.

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$,

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$, der als $\varphi(x) :=$

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$, der als $\varphi(x) := (x \mod a, x \mod b)$

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$, der als $\varphi(x) := (x \mod a, x \mod b)$ definiert ist. Wir müssen zeigen, dass φ bijektiv ist.

• Da die Mengen

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$, der als $\varphi(x) := (x \mod a, x \mod b)$ definiert ist. Wir müssen zeigen, dass φ bijektiv ist.

• Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$, der als $\varphi(x) := (x \mod a, x \mod b)$ definiert ist. Wir müssen zeigen, dass φ bijektiv ist.

• Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben,

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$, der als $\varphi(x) := (x \mod a, x \mod b)$ definiert ist. Wir müssen zeigen, dass φ bijektiv ist.

• Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen,

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$, der als $\varphi(x) := (x \mod a, x \mod b)$ definiert ist. Wir müssen zeigen, dass φ bijektiv ist.

• Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- · Dazu nehmen wir an.

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- Dazu nehmen wir an, dass $x, y \in \{0, \dots, n-1\}$ so sind,

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- Dazu nehmen wir an, dass $x, y \in \{0, \dots, n-1\}$ so sind, dass $\varphi(x) = \varphi(y)$

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- Dazu nehmen wir an, dass $x,y\in\{0,\ldots,n-1\}$ so sind, dass $\varphi(x)=\varphi(y)$ und nehmen wir widerspruchshalber x< y an.

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- Dazu nehmen wir an, dass $x,y\in\{0,\ldots,n-1\}$ so sind, dass $\varphi(x)=\varphi(y)$ und nehmen wir widerspruchshalber x< y an.

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- Dazu nehmen wir an, dass $x,y \in \{0,\ldots,n-1\}$ so sind, dass $\varphi(x) = \varphi(y)$ und nehmen wir widerspruchshalber x < y an.
- Dann $a \mid y x$ und $b \mid y x$.

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- Dazu nehmen wir an, dass $x,y \in \{0,\ldots,n-1\}$ so sind, dass $\varphi(x) = \varphi(y)$ und nehmen wir widerspruchshalber x < y an.
- Dann $a \mid y x$ und $b \mid y x$. Da aber a und b teilfremd sind,

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- Dazu nehmen wir an, dass $x,y \in \{0,\ldots,n-1\}$ so sind, dass $\varphi(x) = \varphi(y)$ und nehmen wir widerspruchshalber x < y an.
- Dann $a \mid y-x$ und $b \mid y-x$. Da aber a und b teilfremd sind, bedeutet dies, dass $n \mid y-x$.

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen, dass φ injektiv ist.
- Dazu nehmen wir an, dass $x,y\in\{0,\dots,n-1\}$ so sind, dass $\varphi(x)=\varphi(y)$ und nehmen wir widerspruchshalber x< y an.
- Dann $a \mid y x$ und $b \mid y x$. Da aber a und b teilfremd sind, bedeutet dies, dass $n \mid y x$. Widerspruch zu der Tatsache, dass 0 < y x < n.

Beweis. Wir betrachten den Homomoprhismus $\varphi \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$, der als $\varphi(x) := (x \mod a, x \mod b)$ definiert ist. Wir müssen zeigen, dass φ bijektiv ist.

- Da die Mengen $\mathbb{Z}/n\mathbb{Z}$ und $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ die gleiche Kardinalität haben, genügt es zu prüfen. dass φ injektiv ist.
- Dazu nehmen wir an, dass $x,y \in \{0,\ldots,n-1\}$ so sind, dass $\varphi(x) = \varphi(y)$ und nehmen wir widerspruchshalber x < y an.

• Dann $a \mid y - x$ und $b \mid y - x$. Da aber a und b teilfremd sind, bedeutet dies, dass

 $n \mid y - x$. Widerspruch zu der Tatsache, dass 0 < y - x < n.

Diskrete Strukturen | Mehr über \mathbb{Z}/n

• Was für eine Gruppe ist \mathbb{Z}/p^* ? Ist sie zu $\mathbb{Z}/(n-1)$ isomorph?

• Natürlich gibt es für Zahlenmengen

• Natürlich gibt es für Zahlenmengen wie $\mathbb Z$ oder $\mathbb Q$

• Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen,

• Natürlich gibt es für Zahlenmengen wie $\mathbb Z$ oder $\mathbb Q$ zwei Operationen, nämlich Addition und Multiplikation.

• Natürlich gibt es für Zahlenmengen wie $\mathbb Z$ oder $\mathbb Q$ zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings*

• Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M, +) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)

- Natürlich gibt es für Zahlenmengen wie Z oder Q zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des Rings (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - ightharpoonup es gibt $1_M \in M$

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - \blacktriangleright es gibt $1_M \in M$ so dass für alle $m \in M$

- Natürlich gibt es für Zahlenmengen wie \mathbb{Z} oder \mathbb{Q} zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - ightharpoonup es gibt $1_M \in M$ so dass für alle $m \in M$ gilt $1_M \cdot m = m$

- Natürlich gibt es für Zahlenmengen wie $\mathbb Z$ oder $\mathbb Q$ zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$

- Natürlich gibt es für Zahlenmengen wie $\mathbb Z$ oder $\mathbb Q$ zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - ▶ für alle

- Natürlich gibt es für Zahlenmengen wie $\mathbb Z$ oder $\mathbb Q$ zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - ▶ für alle $a, b, c \in M$

- Natürlich gibt es für Zahlenmengen wie $\mathbb Z$ oder $\mathbb Q$ zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - ▶ für alle $a, b, c \in M$ gilt

- Natürlich gibt es für Zahlenmengen wie $\mathbb Z$ oder $\mathbb Q$ zwei Operationen, nämlich Addition und Multiplikation. Dies führt uns zum Begriff des *Rings* (oder "kommutativen Rings mit Eins").
- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - ▶ für alle $a, b, c \in M$ gilt $a \cdot (b + c) = a \cdot b + a \cdot c$.

• Wie bei Gruppen

• Wie bei Gruppen könnten wir Ringe

• Wie bei Gruppen könnten wir Ringe als $(M, +, -\cdot, 0_M, \cdot, \cdot^{-1}, 1_M)$

• Wie bei Gruppen könnten wir Ringe als $(M,+,-\cdot,0_M,\cdot,\cdot^{-1},1_M)$ mit geeigneten Axiomen definieren.

- Wie bei Gruppen könnten wir Ringe als $(M,+,-\cdot,0_M,\cdot,\cdot^{-1},1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z}, +, \cdot)$ ist ein Ring,

- Wie bei Gruppen könnten wir Ringe als $(M,+,-\cdot,0_M,\cdot,\cdot^{-1},1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z}, +, \cdot)$ ist ein Ring, $(\mathbb{Q}, +, \cdot)$ is ein Ring

- Wie bei Gruppen könnten wir Ringe als $(M, +, -\cdot, 0_M, \cdot, \cdot^{-1}, 1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z}, +, \cdot)$ ist ein Ring, $(\mathbb{Q}, +, \cdot)$ is ein Ring

• In einem Ring $(M, +, \cdot)$

- Wie bei Gruppen könnten wir Ringe als $(M, +, -\cdot, 0_M, \cdot, \cdot^{-1}, 1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z}, +, \cdot)$ ist ein Ring, $(\mathbb{Q}, +, \cdot)$ is ein Ring
- In einem Ring $(M, +, \cdot)$ haben wir $0 \cdot x = 0$ für alle x.

- Wie bei Gruppen könnten wir Ringe als $(M,+,-\cdot,0_M,\cdot,\cdot^{-1},1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z},+,\cdot)$ ist ein Ring, $(\mathbb{Q},+,\cdot)$ is ein Ring
- In einem Ring $(M, +, \cdot)$ haben wir $0 \cdot x = 0$ für alle x.
 - ► Tatsächlich:

- Wie bei Gruppen könnten wir Ringe als $(M,+,-\cdot,0_M,\cdot,\cdot^{-1},1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z},+,\cdot)$ ist ein Ring, $(\mathbb{Q},+,\cdot)$ is ein Ring
- In einem Ring $(M, +, \cdot)$ haben wir $0 \cdot x = 0$ für alle x.
 - ► Tatsächlich: $0 \cdot x = (0+0) \cdot x =$

- Wie bei Gruppen könnten wir Ringe als $(M,+,-\cdot,0_M,\cdot,\cdot^{-1},1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z}, +, \cdot)$ ist ein Ring, $(\mathbb{Q}, +, \cdot)$ is ein Ring
- In einem Ring $(M, +, \cdot)$ haben wir $0 \cdot x = 0$ für alle x.
 - ► Tatsächlich: $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$,

- Wie bei Gruppen könnten wir Ringe als $(M,+,-\cdot,0_M,\cdot,\cdot^{-1},1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z},+,\cdot)$ ist ein Ring, $(\mathbb{Q},+,\cdot)$ is ein Ring
- In einem Ring $(M, +, \cdot)$ haben wir $0 \cdot x = 0$ für alle x.
- ▶ Tatsächlich: $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$, und da (M,+) eine kommutative Gruppe ist,

- Wie bei Gruppen könnten wir Ringe als $(M,+,-\cdot,0_M,\cdot,\cdot^{-1},1_M)$ mit geeigneten Axiomen definieren.
- $(\mathbb{Z},+,\cdot)$ ist ein Ring, $(\mathbb{Q},+,\cdot)$ is ein Ring
- In einem Ring $(M, +, \cdot)$ haben wir $0 \cdot x = 0$ für alle x.
- ▶ Tatsächlich: $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$, und da (M,+) eine kommutative Gruppe ist, folgt $0 \cdot x = 0$.

• Körper -

• Körper - ein Ring $(M,+,\cdot)$

• Körper - ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$

• Körper - ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$

• Körper - ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit

 $xy = 1_M$.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent:

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit xy=1.
- $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper,

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit xy=1.
- $xy=1_M$.

• Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.

Diskrete Strukturen | Ringe und Körper

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.

• Beispiele für Körper:

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Addivatent. $(M, +, \cdot)$ is territorper, we find $(M \setminus \{0_M\}, \cdot)$ eithe Gruppe is

• Beispiele für Körper: $(\mathbb{O}, +, \cdot)$.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und $(\mathbb{C},+,\cdot)$.

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- beispiete full Korper. $(\mathscr{Q},+,\cdot)$, $(\mathbb{Z},+,\cdot)$ and $(\mathscr{C},+,\cdot)$. $(\mathbb{Z},+,\cdot)$ ist kelli Korper.
- In einem Körper $(M,+,\cdot)$ gilt,

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert,

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
- ▶ In der Tat,

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
- ▶ In der Tat. wenn $x \neq 0$

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
 - ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
- - ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy =$

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und $(\mathbb{C},+,\cdot)$. $(\mathbb{Z},+,\cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
- - ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
- Wenn A und B Ringe sind,

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
- Wenn A und B Ringe sind, dann ist $A \times B$ ebenfalls ein Ring.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
 - ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
- Find the factor of the factor
- Wenn A und B Ringe sind, dann ist $A\times B$ ebenfalls ein Ring. Wenn A und B jedoch Körper sind, dann ist $A\times B$ kein Körper:

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
- Wonn A und B Dings eind, dann ist A v. B chanfalls ein Ding. Wonn A und B ise
- Wenn A und B Ringe sind, dann ist $A\times B$ ebenfalls ein Ring. Wenn A und B jedoch Körper sind, dann ist $A\times B$ kein Körper: wir haben $(1_A,0_B)\cdot(0_A,1_B)=(0_A,0_B)$

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring.

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist,

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden,

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0.

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist,

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

Beweis.

Wir haben im obigen Beispiel gesehen, dass,

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

Beweis.

ullet Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist,

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

Beweis.

• Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist, $\mathbb{Z}/p\mathbb{Z}$ kein Körper ist.

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

- Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist, $\mathbb{Z}/p\mathbb{Z}$ kein Körper ist.
- Wir haben auch gesehen

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

- Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist, $\mathbb{Z}/p\mathbb{Z}$ kein Körper ist.
- Wir haben auch gesehen dass wenn p ist eine Primzahl,

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

- Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist, $\mathbb{Z}/p\mathbb{Z}$ kein Körper ist.
- Wir haben auch gesehen dass wenn p ist eine Primzahl, dann die multiplikative Inversen existieren,

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

- Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist, $\mathbb{Z}/p\mathbb{Z}$ kein Körper ist.
- Wir haben auch gesehen dass wenn p ist eine Primzahl, dann die multiplikative Inversen existieren, also \mathbb{Z}/p ist ein Körper.

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

- Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist, $\mathbb{Z}/p\mathbb{Z}$ kein Körper ist.
- Wir haben auch gesehen dass wenn p ist eine Primzahl, dann die multiplikative Inversen existieren, also \mathbb{Z}/p ist ein Körper.

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

Inversen existieren, also \mathbb{Z}/p ist ein Körper.

- Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist, $\mathbb{Z}/p\mathbb{Z}$ kein Körper ist.
- Wir haben auch gesehen dass wenn p ist eine Primzahl, dann die multiplikative
 - Der Körper \mathbb{Q} und die Körper $\mathbb{Z}/p\mathbb{Z}$ werden als Primkörper bezeichnet.

 $\mathbb{Z}/m\mathbb{Z}$ ist ein Ring. Wenn m nicht prim ist, kann man [a],[b] $in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. $\mathbb{Z}/p\mathbb{Z}$ ist ein Körper gdw. p eine Primzahl ist.

Beweis.

• Wir haben im obigen Beispiel gesehen, dass, wenn p keine Primzahl ist, $\mathbb{Z}/p\mathbb{Z}$ kein Körper ist.

• Wir haben auch gesehen dass wenn p ist eine Primzahl, dann die multiplikative

Inversen existieren, also \mathbb{Z}/p ist ein Körper. Der Körper \mathbb{Q} und die Körper $\mathbb{Z}/p\mathbb{Z}$ werden als Primkörper bezeichnet. Jeder Körper enthält ein Primkörper.

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de