SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> Novel Protein and its DNA

<130> 2568WOOP

<150> JP 10-323759

<151> 1998-11-13

<150> JP 11-060030

<151> 1999-03-08

<150> JP 11-106812

<151> 1999-04-14

<150> JP 11-166672

<151> 1999-06-14

<150> JP 11-221640

<151> 1999-08-04

<150> JP 11-259818

<151> 1999-09-14

<160> 58

<210> 1

<211> 180

<212> PRT <213> Human <400> 1 Met Glu Ile Ile Ser Ser Lys Leu Phe Ile Leu Leu Thr Leu Ala Thr Ser Ser Leu Leu Thr Ser Asn Ile Phe Cys Ala Asp Glu Leu Val Met . 30 Ser Asn Leu His Ser Lys Glu Asn Tyr Asp Lys Tyr Ser Glu Pro Arg Gly Tyr Pro Lys Gly Glu Arg Ser Leu Asn Phe Glu Glu Leu Lys Asp Trp Gly Pro Lys Asn Val Ile Lys Met Ser Thr Pro Ala Val Asn Lys Met Pro His Ser Phe Ala Asn Leu Pro Leu Arg Phe Gly Arg Asn Val Gln Glu Glu Arg Ser Ala Gly Ala Thr Ala Asn Leu Pro Leu Arg Ser Gly Arg Asn Met Glu Val Ser Leu Val Arg Arg Val Pro Asn Leu Pro Gln Arg Phe Gly Arg Thr Thr Ala Lys Ser Val Cys Arg Met Leu Ser Asp Leu Cys Gln Gly Ser Met His Ser Pro Cys Ala Asn Asp Leu Phe Tyr Ser Met Thr Cys Gln His Gln Glu Ile Gln Asn Pro Asp Gln Lys Gln Ser Arg

<210> 2			
<211> 540			
<212> DNA			
<213> Human			
<400> 2			
ATGGAAATTA TTTCATCAAA ACTATTCATT			60
ACATCAAACA TTTTTTGTGC AGATGAATTA (and the second s		120
TATGACAAAT ATTCTGAGCC TAGAGGATAC (180
GAATTAAAAG ATTGGGGACC AAAAAATGTT A			240
ATGCCACACT CCTTCGCCAA CTTGCCATTG			300
AGTGCTGGAG CAACAGCCAA CCTGCCTCTG			360
GTGAGACGTG TTCCTAACCT GCCCCAAAGG			420
TGCAGGATGC TGAGTGATTT GTGTCAAGGA			480
TTTTACTCCA TGACCTGCCA GCACCAAGAA	ATCCAGAATC CCGATCAAAA	ACAGTCAAGG	540
<210> 3			
<211> 27			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223>			
<400> 3			
GGGCTGCACA TAGAGACTTA ATTTTAG			27
<210> 4			•
<211> 27			
<212> DNA			
/212\ Artificial Sequence			

<220>

⟨223⟩	
<400> 4	
CTAGACCACC TCTATATAAC TGCCCAT	27
⟨210⟩ 5	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
⟨223⟩	
<400> 5	20
GCACATAGAG ACTTAATTTT AGATTTAGAC	30
<210> 6	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223>	
<400> 6	27
CATGCACTTT GACTGGTTTC CAGGTAT	
<210> 7	,
<211> 27	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223>	
<400> 7	0.5
CAGCTTTAGG GACAGGCTCC AGGTTTC	27

<210> 8 <211> 196 <212> PRT <213> Human <400> 8 Met Glu Ile Ile Ser Ser Lys Leu Phe Ile Leu Leu Thr Leu Ala Thr Ser Ser Leu Leu Thr Ser Asn Ile Phe Cys Ala Asp Glu Leu Val Met Ser Asn Leu His Ser Lys Glu Asn Tyr Asp Lys Tyr Ser Glu Pro Arg Gly Tyr Pro Lys Gly Glu Arg Ser Leu Asn Phe Glu Glu Leu Lys Asp Trp Gly Pro Lys Asn Val Ile Lys Met Ser Thr Pro Ala Val Asn Lys 80. Met Pro His Ser Phe Ala Asn Leu Pro Leu Arg Phe Gly Arg Asn Val Gln Glu Glu Arg Ser Ala Gly Ala Thr Ala Asn Leu Pro Leu Arg Ser · 110 Gly Arg Asn Met Glu Val Ser Leu Val Arg Arg Val Pro Asn Leu Pro Gln Arg Phe Gly Arg Thr Thr Ala Lys Ser Val Cys Arg Met Leu Ser Asp Leu Cys Gln Gly Ser Met His Ser Pro Cys Ala Asn Asp Leu Phe Tyr Ser Met Thr Cys Gln His Gln Glu lle Gln Asn Pro Asp Gln

Lys Gln Ser Arg Arg Leu Leu Phe Lys Lys Ile Asp Asp Ala Glu Leu 180 185 190

Lys Gln Glu Lys

195

<210> 9

<211> 588

<212> DNA

<213> Human

<400> 9

ATGGAAATTA	TTTCATCAAA	ACTATTCATT	TTATTGACTT	TAGCCACTTC	AAGCTTGTTA	.,60
ACATCAAACA	TTTTTTGTGC	AGATGAATTA	GTGATGTCCA	ATCTTCACAG	CAAAGAAAAT	120
TATGACAAAT	ATTCTGAGCC	TAGAGGATAC	CCAAAAGGGG	AAAGAAGCCT	CAATTTTGAG	180
GAATTAAAAG	ATTGGGGACC	AAAAAATGTT	ATTAAGATGA	GTACACCTGC	AGTCAATAAA	240
ATGCCACACT	CCTTCGCCAA	CTTGCCATTG	AGATTTGGGA	GGAACGTTCA	AGAAGAAAGA	300
AGTGCTGGAG	CAACAGCCAA	CCTGCCTCTG	AGATCTGGAA	GAAATATGGA	GGTGAGCCTC	360
GTGAGACGTG	TTCCTAACCT	GCCCCAAAGG	TTTGGGAGAA	CAACAACAGC	CAAAAGTGTC	420
TGCAGGATGC	TGAGTGATTT	GTGTCAAGGA	TCCATGCATT	CACCATGTGC	CAATGACTTA	480
TTTTACTCCA	TGACCTGCCA	GCACCAAGAA	ATCCAGAATC	CCGATCAAAA	ACAGTCAAGG	540
AGACTGCTAT	TCAAGAAAAT	` AGATGATGCA	GAATTGAAAC	AAGAAAAA		588

<211> 27		
<212> DNA		
<213> Artificial Sequence		
⟨220⟩		
<223>		•
⟨400⟩ 10		27
GCCTAGAGGA GATCTAGGCT GGGAGGA		21
⟨210⟩ 11		
<211> 27 ⋅		
<212> DNA		
<213> Artificial Sequence	•	
⟨220⟩		
⟨223⟩		
<400> 11		27
GGGAGGAACA TGGAAGAAGA AAGGAGC		
⟨210⟩ 12		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>		
<400> 12		27
GATGGTGAAT GCATGGACTG CTGGAGC		
<210> 13		•
<211> 27		
<212> DNA	·	
<213> Artificial Sequence		

<220> <223> <400> 13 27 TTCCTCCCAA ATCTCAGTGG CAGGTTG <210> 14 <211> 196 <212> PRT <213> Bovine <400> 14 Met Glu Ile Ile Ser Leu Lys Arg Phe Ile Leu Leu Met Leu Ala Thr 15 10 1 Ser Ser Leu Leu Thr Ser Asn Ile Phe Cys Thr Asp Glu Ser Arg Met 25 20 Pro Asn Leu Tyr Ser Lys Lys Asn Tyr Asp Lys Tyr Ser Glu Pro Arg 40 35 Gly Asp Leu Gly Trp Glu Lys Glu Arg Ser Leu Thr Phe Glu Glu Val 60 55 50 Lys Asp Trp Ala Pro Lys Ile Lys Met Asn Lys Pro Val Val Asn Lys 75 70 65 Met Pro Pro Ser Ala Ala Asn Leu Pro Leu Arg Phe Gly Arg Asn Met 90 85 Glu Glu Glu Arg Ser Thr Arg Ala Met Ala His Leu Pro Leu Arg Leu - 110 105 100 Gly Lys Asn Arg Glu Asp Ser Leu Ser Arg Trp Val Pro Asn Leu Pro 125 120 115 Gln Arg Phe Gly Arg Thr Thr Ala Lys Ser Ile Thr Lys Thr Leu 140 135

130

Ser As	en Leii	l.eu	Gln	Gln	Ser	Mel	His	Ser	Pro	Ser	Thr	Asn	Gly	Leu	
1.45				150					155					160	
Leu T	vr Sei	· Met	Ala	Cys	Gln	Pro	Gln	Glu	lle	Gln	Asn	Pro	Gly	Gln	
			165					170					175		
Lvs A	sn Lei	ו Arg	, Arg	Arg	Gly	Phe	Gln	L y s	Ile	Asp	Asp	Ala	Glu	Leu	
2,1		180			•		185					190			
Lys G	Gln Gl	u Lys	3·												
	19							ı							
<210	> 15														
<2112	> 588														
<212	> DNA														
<213	> Bov	ne		•				-							
	> 15														
	> 15						•								
	> 588														
	2> DNA										-				
<213	3> Bov	ine													
<400	0> 15														
ATG	GAAAT]	TT AT	TCAT	TAAA	ACG	ATTC	ATT	TATT	TGAT	GT T	AGCC	ACTT	C AA	GCTTGTTA	60
ACA	TCAAA	CA TO	TTCT	GCAC	AGA	CGAA	TCA	AGGA	TGCC	CA A	TCTT	TACA	G CA	AAAAGAAT	120
TAT	GACAA	AT AT	TCCG	GAGCC	TAC	GAGGA	AGAT	: CTAG	GCTG	GG A	GAAA	GAAA	G AA	GTCTTACT	180
TTI	rgaaga	AG T	AAAA(GATT(G GG(CTCC	AAAA	ATTA	AGAT	GA A	AAAT	ссто	T AG	TCAACAAA	240
AT(GCCACC	CTT C	TGCA	GCCA	A CC	TGCC	ACTG	AGA?	TTTG(GGA G	GAA(CATGO	GA . AC	GAAGAAAGG	300

AGCACTAGGG CGATGGCCCA CCTGCCTCTG AGACT	CCGGAA AAAATAGAGA GGACAGCCTC 360)
TCCAGATGGG TCCCAAATCT GCCCCAGAGG TTTGG	GAAGAA CAACAACAGC CAAAAGCATT 420)
ACCAAGACCC TGAGTAATTT GCTCCAGCAG TCCAT	•	0
CTCTACTCCA TGGCCTGCCA GCCCCAAGAA ATCCA		0
AGACGGGGAT TCCAGAAAAT AGATGATGCA GAATT	TGAAAC AAGAAAAA 58	8
<210> 16		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>		
<400> 16	0.7	
CCCTGGGGCT TCTTCTGTCT TCTATGT	27	
<210> 17		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>		
<400> 17		
AGCGATTCAT TTTATTGACT TTAGCA	26	
<210> 18		
<211> 203		
<212> PRT		

(213)	> Ra	t													
(400)	> 18									•	•	The	Lou	Ala	Thr
let (Glu	lle	I'l e	Ser	Ser	Lys	Arg	Phe	He	Leu	Leu	Inr			1 11 1
1				5					10					15	
Ser S	Ser	Phe	Leu	Thr	Ser	Asn	Thr.	Leu	Cys	Ser	Asp	Glu	Leu	Met	Met
			20					25					30		
Pro 1	His	Phe	His	Ser	Lys	Glu	Gly	Tyr	Gly	Lys	Tyr	Tyr	Gln	Leu	Arg
		35					40					45			
Clv	Ile		Lvs	Gly	Val	Lys	Glu	Arg	Ser	Val	Thr	Phe	Gln	Glu	Leu
	50	1.0	2,7-			55					60				
		Trn	Glv	, Ala	. Lys	Lys	Asp	Ile	Lys	Met	Ser	Pro.	Ala	Pro	Ala
	עטע	115	OI,	,,,,	70					75					80
65	I wo	Val	Pro	His	Ser	Ala	Ala	Asn	Leu	Pro	Leu	Arg	Phe	Gly	Arg
ASII	ГАЗ	Yaı	. 110	85	, 55.				90					95	
			. ^		τ Δτο	Ser	Pro	Arg	Ala	Arg	Ala	Asn	Met	Glu	Ala
Asn	116	GIL			s nie	, 501		105					110		
			10		s Phe	Dro	Ser			Gln	Arg	Phe	Gly	Arg	Thr
Gly	Thr			r Hl	S Pile	; Flu			110			125			
		11					120			. Clu	Len			Lvs	Ser
Thr	Ala	a Ar	g Ar	g Il	e Thi			. ren	, Ald	г Сту	140		0 1 11		Ser
	130					135				_			Th =		. Cln
Leu	Hi	s Se	r Le	u Al	a Se	r Se	r Glu	ı Ser	Lei			ımeı	. 1111	Alg	Gln
145					15					155					160
His	Gl	n Gl	u Il	e Gl	n Se	r Pr	o Gl	y Gli	ı Glı	u Gli	n Pro) Arg	g Lys	Arg	y Val
				16					17					175	
Phe	. Th	r Gl	u Th	ır As	sp As	p Al	a Gl	u Ar	g Ly	s Gl	n Gli	ı Lys	s Ile	e Gly	/ Asn
				30	•		•	18				•	190		

Leu Gln Pro Val Leu Gln Gly Ala Met Lys Leu

)

<400> 20

200 195 <210> 19 <211> 609 <212> DNA <213> Rat <400> 19 ATGGAAATTA TTTCATCAAA GCGATTCATT TTATTGACTT TAGCAACTTC AAGCTTCTTA 60 ACTTCAAACA CCCTTTGTTC AGATGAATTA ATGATGCCCC ATTTTCACAG CAAAGAAGGT 120 TATGGAAAAT ATTACCAGCT GAGAGGAATC CCAAAAGGGG TAAAGGAAAG AAGTGTCACT 180 TTTCAAGAAC TCAAAGATTG GGGGGCAAAG AAAGATATTA AGATGAGTCC AGCCCCTGCC 240 AACAAAGTGC CCCACTCAGC AGCCAACCTT CCCCTGAGGT TTGGGAGGAA CATAGAAGAC 300 AGAAGAAGCC CCAGGGCACG GGCCAACATG GAGGCAGGGA CCATGAGCCA TTTTCCCAGC 360 CTGCCCCAAA GGTTTGGGAG AACAACAGCC AGACGCATCA CCAAGACACT GGCTGGTTTG 420 CCCCAGAAAT CCCTGCACTC CCTGGCCTCC AGTGAATCGC TCTATGCCAT GACCCGCCAG 480 CATCAAGAAA TTCAGAGTCC TGGTCAAGAG CAACCTAGGA AACGGGTGTT CACGGAAACA 540 GATGATGCAG AAAGGAAACA AGAAAAAATA GGAAACCTCC AGCCAGTCCT TCAAGGGGCT 600 609 **ATGAAGCTG** <210> 20 <211> 12 <212> DNA <213> Artificial Sequence <220> <223>

MGNTTYGGNA AR					12
<210> 21				•	
<211> 12					
<212> DNA	. •				
<213> Artificial	Sequence				
<220>					
<223>			•		
<400> 21					12
MGNTTYGGNM GN					1 2
<210> 22	,	· ·			
<211> 12					
<212> DNA					
<213> Artificial	Sequence				
<220>		•			
<223>					
<400> 22					12
MGNWSNGGNA AR					
<210> 23					
<211> 12					
<212> DNA					
<213> Artificial	Sequence				
<220>					
<223>					
<400> 23					12
MGNWSNGGNM GN					1 2
<210> 24			•	:	
<211> 12					

<212> DNA		·	
<213> Artificial	Sequence		
<220>			
<223>		N.	
<400> 24			1 2
MGNYTNGGNA AR			1 2
<210> 25			
<211> 12		••	
<212> DNA			
<213> Artificial	Sequence		
<220>			
<223>			4
<400> 25			12
MGNYTNGGNM GN		•	
<210> 26	•		
<211> 30			
<212> DNA	Saguence		
<213> Artificial	Seduence		
<220>		·	
<223>		•	
<400> 26	TTACA CAAATGGAA		30
GACTTAATTT TAGAT	IIAGA CAAAATOOM		
<210> 27			·
<211> 25			
<212> DNA			
<213> Artificial	Sequence	-	
<220>		•	
•		•	

25

28

28

<223> <400> 27 TTCTCCCAAA CCTTTGGGGC AGGTT <210> 28 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> <400> 28 ACAGCAAAGA AGGTGACGGA AAATACTC <210> 29 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> <400> 29 ATAGATGAGA AAAGAAGCCC CGCAGCAC <210> 30 <211> 28 <212> DNA <213> Artificial Sequence

<220>

28

21

21

. <223> <400> 30 GTGCTGCGGG GCTTCTTTTC TCATCTAT <210> 31 <211> 21 <212> DNA <213> Artificial Sequence ~<220> <223> <400> 31 TTTAGACTTA GACGAAATGG A <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> <400> 32 GCTCCGTAGC CTCTTGAAGT C <210> 33 <211> 188 <212> PRT

<213> Mouse

<400> 33

Met	Glu	Ile	Ile	Ser	Leu	Lys	Arg	Phe	lle	Leu	Leu	Thr	Val	Ala	Thr
1				5				•	10					15	
	Ser	Phe	Leu	Thr	Ser	Asn	Thr	Phe	Cys	Thr	Asp	Glu	Phe	Met	Met
361		1110	20					25					30		
, D = 0	II i c	Dha		Ser	Lvs	Glu	Gly	Asp.	Gly	Lys	Tyr	Ser	Gln	Leu	Arg
PIO	піз	35	1113	501	2,0		40					45			
0.1	T 1 a		Lvc	Gly	Glu	Lvs		Arg	Ser	Val	Ser	Phe	Gln	Glu	Leu
Gly		Pro	Lys	Gly	O i u	55	0	VII 0			60				
_	50	. σ	Clar	Λla	Luc		Val	lle	Lvs	Met	Ser	Pro	Ala	Pro	Ala
	ASP	111	Giy	Ala	70	Non	, .		-•	75					80
65	.	Val	Dro	Ülie		Ala	Ala	Asn	Leu	Pro	Leu	Arg	Phe	Gly	Arg
Asn	Lys	Yaı	rio	85	501	7110	,		90					95	
Th	I l a	Acr	. Glu		Аге	. Ser	Pro	Ala	Ala	Arg	; Val	Asn	Met	Glu	Ala
1111	116	: nsp	100			,		105			•		110		
Cla	, Thr	. Arc			. Phe	e Pro	Se	r Leu	Pro	Glr	n Arg	g Phe	Gly	Arg	Thr
GIJ	1111	115					120					125			
Th	- Al:			r Pro	Ly:	s Thi	r Pr	o Ala	Ası	Lei	ı Pro	Gln	Lys	Pro	Leu
1117	130		, ~ .			13					140				
·ні			n Gl	v Se	r Se	r Gl	u Le	u Lei	ј Ту	r Va	l Me	t Ile	e Cys	Gln	His
14		. 20		•	15					15					160
		11 · I }	e Gl	n Se	r Pr	o Gl	y Gl	y Ly	s Ar	g Th	r Ar	g Arg	g Gly	, Ala	Phe
Gī	11 01	u 11		16					17					175	
Vo	1 C1	u Th	r A c			a Gl	u Ar	g Ly	s Pr	o Gl	u Ly	S			
٧a	1 61	u III	18		μ	•		18							
			1 0	U											
<2	10>	34													

<211> 564

·	
<212> DNA	
<213> Mouse	
<400> 34 TRATTCACTC TCCCAACTTC AAGCTTCTTA	60
ATGGAAATTA TTTCATTAAA ACGATTCATT TTATTGACTG TGGCAACTTC AAGCTTCTTA	120
ACATCAAACA CCTTCTGTAC AGATGAGTTC ATGATGCCTC ATTTTCACAG CAAAGAAGGT	_
CACGGAAAAT ACTCCCAGCT GAGAGGAATC CCAAAAGGGG AAAAGGAAAG AAGTGTCAGT	180
TTTCAAGAAC TAAAAGATTG GGGGGCAAAG AATGTTATTA AGATGAGTCC AGCCCCTGCC	240
AACAAAGTGC CCCACTCAGC AGCCAACCTG CCCCTGAGAT TTGGAAGGAC CATAGATGAG	300
AAAAGAAGCC CCGCAGCACG GGTCAACATG GAGGCAGGGA CCAGGAGCCA TTTCCCCAGC	360
CTGCCCCAAA GGTTTGGGAG AACAACAGCC AGAAGCCCCA AGACACCCGC TGATTTGCCA	420
CAGAAACCCC TGCACTCACT GGGCTCCAGC GAGTTGCTCT ACGTCATGAT CTGCCAGCAC	480
CAGAAACCCC TGCACTCACT GGGCTCCAGC GAGCGAGAG GAGCGTTTGT GGAAACAGAT	540
CAAGAAATTC AGAGTCCTGG TGGAAAGCGA ACGAGGAGAG GAGCGTTTGT GGAAACAGAT	56
GATGCAGAAA GGAAACCAGA AAAA	
⟨210⟩ 35	
<211> 27	
<212> DŅA	
<213> Artificial Sequence	
⟨220⟩	,
<223>	
<400> 35	
	27
AGTCGACAGT ATGGAGGCGG AGCCCTC	<i>.</i> .
<210> 36	
⟨211⟩ 29	
<212> DNA	

<213> Artificial Sequence

<220> <223> <400> 36 29 GACTAGTTCA AATGTTCCAG GCCGGGATG <210> 37 <211> 432 <212> PRT <213> Rat <400> 37 Met Glu Ala Glu Pro Ser Gln Pro Pro Asn Gly Ser Trp Pro Leu Gly 10 Gln Asn Gly Ser Asp Val Glu Thr Ser Met Ala Thr Ser Leu Thr Phe 30 25 Ser Ser Tyr Tyr Gln His Ser Ser Pro Val Ala Ala Met Phe Ile Ala 40 Ala Tyr Val Leu Ile Phe Leu Leu Cys Met Val Gly Asn Thr Leu Val 60 55 50 Cys Phe Ile Val Leu Lys Asn Arg His Met Arg Thr Val Thr Asn Met 75 Phe Ile Leu Asn Leu Ala Val Ser Asp Leu Leu Val Gly Ile Phe Cys 90 Met Pro Thr Thr Leu Val Asp Asn Leu Ile Thr Gly Trp Pro Phe Asp 105 100 Asn Ala Thr Cys Lys Met Ser Gly Leu Val Gln Gly Met Ser Val Ser 120 115 Ala Ser Val Phe Thr Leu Val Ala Ile Ala Val Glu Arg Phe Arg Cys 140 135 lle Val His Pro Phe Arg Glu Lys Leu Thr Leu Arg Lys Ala Leu Phe 155 150 Thr Ile Ala Val Ile Trp Ala Leu Ala Leu Leu Ile Met Cys Pro Ser 175 170 165 Ala Val Thr Leu Thr Val Thr Arg Glu Glu His His Phe Met Leu Asp 185 Ala Arg Asn Arg Ser Tyr Pro Leu Tyr Ser Cys Trp Glu Ala Trp Pro

		105					200					205			•	
Glu		195 Gly	Met	Arg	Lys	Val 215	Tyr	Thr	Ala	Val	Leu 220	Phe	Ala	His	Ile	
Tyr	210 Leu	Val	Pro	Leu	Ala	Leu	Ile	Val	Val	Met 235		Val	Arg	Ile	Ala 240	
225 Arg	Ly.s	Leu	Cys	Gln	230 Ala	Pro	Gly	Pro	Ala	Arg	Asp	Thr	Glu	Glu 255		
				215				Arg	Z D U				Val	Val		
			260					265				Trp	270 Leu			
		075					280					400	Glu			
	000					295					300		Trp			
					210					315					000	
				つりに					აას				Phe	000		
			0.40				-	345					Leu 350			
		0.5	•				- 3hu					000			Arg	
	0.77	Are	g Arg			- 375					300	,			Gly	
	Pro	Ser			200	1				397)				Arg 400	
	Pro			105	ı Gly	/ Arg			411)				-110		
Gly	y Pro	Gly	y Cys 420	s Asr	h His	s Met	Pro	Leu 425	ı Thi	: Ile	e Pro	o Ala	430	Asn	lle	
<2	10>	38														
<2	11>	1299	9													
<2	12>	DNA	4													
	13>								•							
	00>		00	<u> </u>	CCA	<u> </u>	$CCC\Delta$	ልሮ G	GCAG	ርፐርር	c cc	CTGG	GTCA	GAA	CGGGAGT	60
															СТССТСТ	120
															GGTGGGC	180
CC	.GGTG	GCAG	, UUA	11011	CHI		0001	,,,,		J U		-				

AACACCCTGG	TCTGCTTCAT	TGTGCTCAAG	AACCGGCACA	TGCGCACTGT	CACCAACATG	240
TTTATCCTCA	ACCTGGCCGT	CAGCGACCTG	CTGGTGGGCA	TCTTCTGCAT	GCCCACAACC	300
CTTGTGGACA	ACCTTATCAC	TGGTTGGCCT	TTTGACAACG	CCACATGCAA	GATGAGCGGC	360
TTGGTGCAGG	GCATGTCCGT	GTCTGCATCG	GTTTTCACAC	TGGTGGCCAT	CGCTGTGGAA	420
AGGTTCCGCT	GCATCGTGCA	CCCTTTCCGC	GAGAAGCTGA	CCCTTCGGAA	GGCGCTGTTC	480
ACCATCGCGG	TGATCTGGGC	TCTGGCGCTG	CTCATCATGT	GTCCCTCGGC	GGTCACTCTG	540
ACAGTCACCC	GAGAGGAGCA	TCACTTCATG	CTGGATGCTC	GTAACCGCTC	CTACCCGCTC	600
TACTCGTGCT	GGGAGGCCTG	GCCCGAGAAG	GGCATGCGCA	AGGTCTACAC	CGCGGTGCTC	660
TTCGCGCACA	TCTACCTGGT	GCCGCTGGCG	CTCATCGTAG	TGATGTACGT	GCGCATCGCG	720
CGCAAGCTAT	GCCAGGCCCC	CGGTCCTGCG	CGCGACACGG	AGGAGGCGGT	GGCCGAGGGT	780
GGCCGCACTT	CGCGCCGTAG	GGCCCGCGTG	GTGCACATGC	TGGTCATGGT	GGCGCTCTTC	840
	CCTGGCTGCC					900
	AACTGCACCT					960
					CTTCCGCCGC	
					CCACAAGCAA	
					CGTGCAACCC	
					GCCTGGCCGG	
CTGCCACTGC	GCAATGGGCG	TGTGGCCCAT	CAGGATGGCC	CGGGGGAAGG	GCCAGGCTGC	1260
AACCACATGC	CCCTCACCAT	CCCGGCCTGG	AACATTTGA			1299

<210> 39

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ the C-terminus of the polypeptide is amide (-CONH $_2$) form

```
<400> 39
 Met Pro His Ser Phe Ala Asn Leu Pro Leu Arg Phe
                     5
  1
 <210> 40
(211) 8
 <212> PRT
 <213> Artificial Sequence
 <220>
 \langle 223 \rangle the C-terminus of the polypeptide is amide (-CONH<sub>2</sub>) form
 <400> 40
 Val Pro Asn Leu Pro Gln Arg Phe
                     5`
  1
  <210> 41
  <211> 11
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> the C-terminus of the polypeptide is amide (-CONH<sub>2</sub>) form
  <400> 41
  Ser Ala Gly Ala Thr Ala Asn Leu Pro Arg Ser
                                            10
                     5
   1
 <210> 42
  <211> 36
  <212> DNA
  <213> Human
  <400> 42
```

ATGCCACACT CCTTCGCCAA CTTGCCATTG	AGATTT			36
<210> 43				
<211> 36				
<212> DNA				
<213> Human				
<400> 43				
AGTGCTGGAG CAACAGCCAA CCTGCCTCTG	AGATCT		•	36
<210> 44				
<211> 24				
<212> DNA				
<213> Human				
<400> 44				24
GTTCCTAACC TGCCCCAAAG GTTT				2 4
<210> 45				
<211> 276				
<212> DNA	•			
<213> Human				
<400> 45		TACCCACTTC	ΛΛ ΟΟΤΤΩΤΤΔ	60
ATGGAAATTA TTTCATCAAA ACTATTCATT	TTATTGACTI	IAGCCACIIC	CAAACAAAT	
ACATCAAACA TTTTTTGTGC AGATGAATTA	GTGATGTCCA	AICIICACAG	CAATTTCAC	180
TATGACAAAT ATTCTGAGCC TAGAGGATAC	CCAAAAGGGG	AAAGAAGUUI	ACTCAATAAA	
GAATTAAAAG ATTGGGGACC AAAAAATGTT		GTACACCIGC	AGICAAIAAA	276
ATGCCACACT CCTTCGCCAA CTTGCCATTC	G AGATTT			210
<210> 46				
<211> 336				
<212> DNA	·			
/213> Human				

<400> 46	
ATGGAAATTA TTTCATCAAA ACTATTCATT TTATTGACTT TAGCCACTTC AAGCTTGTTA	60
ACATCAAACA TTTTTTTGTGC AGATGAATTA GTGATGTCCA ATCTTCACAG CAAAGAAAAT	120
TATGACAAAT ATTCTGAGCC TAGAGGATAC CCAAAAGGGG AAAGAAGCCT CAATTTTGAG	180
TATGACAAAT ATTCTGAGCC TAGAGGATAC CCAAAAACATCA GTACACCTGC AGTCAATAAA	240
GAATTAAAAG ATTGGGGACC AAAAAATGTT ATTAAGATGA GTACACCTGC AGTCAATAAA	300
ATGCCACACT CCTTCGCCAA CTTGCCATTG AGATTTGGGA GGAACGTTCA AGAAGAAAGA	336
AGTGCTGGAG CAACAGCCAA CCTGCCTCTG AGATCT	
<210> 47	٠,
<211> 393	
<212> DNA	•
<213> Human	
<400> 47	60
ATGGAAATTA TTTCATCAAA ACTATTCATT TTATTGACTT TAGCCACTTC AAGCTTGTTA	120
ACATCAAACA TTTTTTGTGC AGATGAATTA GTGATGTCCA ATCTTCACAG CAAAGAAAAT	180
TATGACAAAT ATTCTGAGCC TAGAGGATAC CCAAAAGGGG AAAGAAGCCT CAATTTTGAG	240
GAATTAAAAG ATTGGGGACC AAAAAATGTT ATTAAGATGA GTACACCTGC AGTCAATAAA	300
ATGCCACACT CCTTCGCCAA CTTGCCATTG AGATTTGGGA GGAACGTTCA AGAAGAAAGA	300
AGTGCTGGAG CAACAGCCAA CCTGCCTCTG AGATCTGGA AGAAATATGGA GGTGAGCCTC	360
GTGAGACGTG TTCCTAACCT GCCCCAAAGG TTT	393
<210> 48	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223>	
<400> 48	
(AUU) 4A	

27 CCCTGGGGCT TCTTCTGTCT TCTATGT <210> 49 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> <400> 49 26 AGCGATTCAT TTTATTGACT TTAGCA <210> 50 <211> 203 <212> PRT <213> Rat <400> 50 Met Glu Ile Ile Ser Ser Lys Arg Phe Ile Leu Leu Thr Leu Ala Thr 15 10 5 1 Ser Ser Phe Leu Thr Ser Asn Thr Leu Cys Ser Asp Glu Leu Met Met 30 25 20 Pro His Phe His Ser Lys Glu Gly Tyr Gly Lys Tyr Tyr Gln Leu Arg 45 40 35 Gly Ile Pro Lys Gly Val Lys Glu Arg Ser Val Thr Phe Gln Glu Leu 60 -55 50 Lys Asp Trp Gly Ala Lys Lys Asp Ile Lys Met Ser Pro Ala Pro Ala 80 75 70 65 Asn Lys Val Pro His Ser Ala Ala Asn Leu Pro Leu Arg Phe Gly Arg

				85					90					95			
Asn	Ile	Glu	Asp	Arg	Arg	Ser	Pro	Arg	Ala	Arg	Ala	Asn	Met	Glu	Ala		
71011			100					105					110				
Glv	Thr	Met	Ser	His	Phe	Pro	Ser	Leu	Pro	Gln	Arg	Phe	Gly	Arg	Thr		
0.,		115					120					125					
Thr	Ala		Arg	Ile	Thr	Lys	Thr	Leu	Ala	Gly	Leu	Pro	Gln	Lys	Ser		
	130					135					140						
Leu	His	Ser	Leu	Ala	Ser	Ser	Glu	Leu	Leu	Tyr	Ala	Met	Thr	Arg	Gln		
145					150					155					160		
His	Gln	Glu	ı Ile	Gln	Ser	Pro	Gly	Glr	Glu	Gln	Pro) Arg	g Lys	Arg	yal		•
				165					170					175			
Phe	Thr	Glu	ו Thi	r Asr	Ası	Ala	a Glu	ı Arg	g Lys	Glr	ı Glu	ı Ly:	s lle	, G13	Asn		
			180					18					190)			
Leu	ı Glı	n Pr	o Va	l Lei	u Gl:	n Gl	y Ala	a Me	t Lys	s Lei						-	
		19	5	•			20	0									
<2	10>	51					•							•			
<2	11>	609															
	12>																
<2	13>	Rat															
<4	<00>	51															
۸ ٦	rcc A A	 \	A TT	гсат(CAAA	GCG	ATTC/	TT.	TATI	GACT	T T	AGCÀ/	ACTTO	CAAC	GCTTCT	TA	6
V (ነውው <i>ለ</i> የተተር	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A CCI	CTTT(GTTC	AGA'	TGAA'	TA.	ATGA	rgcc(CC A	TTTT	CACAC	G CAA	AAGAAG	GT	12
л. Т)	ΔΔΔΔ	т ат	TACC	AGCT	GAG	AGGA.	ATC	CCAA	AAGG(GG T	AAAG	GAAA(G AA(GTGTCA	.CT	18
1 /	ገ ፤	AGAA	 C TC	AAAG	ATTG	GGG	GGCA	AAG	AAAG	ATAT'	TA A	GATG	AGTC(C AG	CCCCTG	CC	24
1	<u>ν</u> αν	AGTG	:C CC	CACT	CAGC	AGC	CAAC	CTT	CCCC	TGAG	GT T	TGGG	AGGA	A CA	TAGAAG	GAC	30

G GAGGCAGGGA	CCATGAGCCA	TTTTCCCAGC	360
			420
			480
			540
			600
			609
			·
		,	27
	·		
	•		
•			
			27
	CC AGACGCATCA CC AGTGAATTGC AG CAACCTAGGA TA GGAAACCTCC	CC AGACGCATCA CCAAGACACT CC AGTGAATTGC TCTATGCCAT AG CAACCTAGGA AACGGGTGTT TA GGAAACCTCC AGCCAGTCCT	G GAGGCAGGGA CCATGAGCCA TTTTCCCAGC CC AGACGCATCA CCAAGACACT GGCTGGTTTG CC AGTGAATTGC TCTATGCCAT GACCCGCCAG AG CAACCTAGGA AACGGGTGTT CACGGAAACA TA GGAAACCTCC AGCCAGTCCT TCAAGGGGCT

<211> 430

<212> PRT

<213> Human <400> 54 Met Glu Gly Glu Pro Ser Gln Pro Pro Asn Ser Ser Trp Pro Leu Ser Gln Asn Gly Thr Asn Thr Glu Ala Thr Pro Ala Thr Asn Leu Thr Phe Ser Ser Tyr Tyr Gln His Thr Ser Pro Val Ala Ala Met Phe Ile Val Ala Tyr Ala Leu Ile Phe Leu Leu Cys Met Val Gly Asn Thr Leu Val Cys Phe Ile Val Leu Lys Asn Arg His Met His Thr Val Thr Asn Met Phe Ile Leu Asn Leu Ala Val Ser Asp Leu Leu Val Gly Ile Phe Cys Met Pro Thr Thr Leu Val Asp Asn Leu Ile Thr Gly Trp Pro Phe Asp 105. Asn Ala Thr Cys Lys Met Ser Gly Leu Val Gln Gly Met Ser Val Ser Ala Ser Val Phe Thr Leu Val Ala Ile Ala Val Glu Arg Phe Arg Cys 140-Ile Val His Pro Phe Arg Glu Lys Leu Thr Leu Arg Lys Ala Leu Val Thr Ile Ala Val Ile Trp Ala Leu Ala Leu Leu Ile Met Cys Pro Ser Ala Val Thr Leu Thr Val Thr Arg Glu Glu His His Phe Met Val Asp Ala Arg Asn Arg Ser Tyr Pro Leu Tyr Ser Cys Trp Glu Ala Trp Pro

											•				
		195					200					205			
Glu	Lys	Gly	Met	Arg	Arg	Val	Tyr	Thr	Thr	Val	Leu	Phe	Ser	His	lle
	210					215					220		٠.		
Tyr	Leu	Ala	Pro	Leu	Ala	Leu	Ile	Val	Val	Met	Tyr	Ala	Arg	Ile	Ala
225					230					235					240
Arg	Lys	Leu	Cys	Gln	Ala	Pro	Gly	Pro	Ala	Pro	Gly	Gly	Glu	Glu	Ala
			-	245	· .				250					255	
Ala	Asp	Pro	Arg	Ala	Ser	Arg	Arg	Arg	Ála	Arg	Val	Val	His	Met	Leu
			260					265				•	270		
Val	Me t	Val	Ala	Leu	Phe	Phe	Thr	Leu	Ser	Trp	Leu	Pro	Leu	Trp	Ala
		275					280					285			
Leu	Leu	Leu	Leu	Ile	Asp	Tyr	Gly	Gln	Leu	Ser	Ala	Pro	Gln	Leu	His
	290					295					300	•			
Leu	Va ['] l.	Thr	Val	Tyr	Ala	Phe	Pro	Phe	Ala	His	Trp	Leu	Ala	Phe	
305					310					315					320
Asn	Ser	Ser	Ala	Asn	Pro	Ile	Ile	Tyr	Gly	Tyr	Phe	As'n	Glu	Asn	Phe
				325					330				_	335	_
Arg	Arg	Gly	Phe	Gln	Ala	Ala	Phe	Arg	Ala	Arg	Leu	Cys		Arg	Pro
			340					345			_		350		•
Ser	Gly	Ser	His	Lys	Glu	Ala	Tyr	Ser	Glu	Arg	Pro		Gly	Leu	Ļeu
		355			٠		360					365			n
His	Arg	Arg	Val	Phe	Val			Arg	Pro	Ser			Gly	Leu	Pro
	370					375					380				_
Ser	Glu	Ser	Gly	Pro	Ser	Ser	Gly	Ala	Pro			Gly	Arg	Leu	
385					390					395		•			400
Leu	Arg	Asn	Gly	Arg	Val	Ala	Ηis	His	Gly	Leu	Pro	Arg	Glu	Gly	Pro
				405					410					415	

Gly Cys Ser His Leu Pr	o Leu Thr I	le Pro Ala	Trp Asp Ile		•
420	4	25	430	1	
<210> 55	•				
<211> 1290					
<212> DNA					
<213> Human					٠
<400> 55					
ATGGAGGGG AGCCCTCCCA					60
AACACTGAGG CCACCCCGGC					120
CCTGTGGCGG CCATGTTCAT	TGTGGCCTAT	GCGCTCATCT	TCCTGCTCTG	CATGGTGGGC	180
AACACCCTGG TCTGTTTCAT	CGTGCTCAAG	AACCGGCACA	TGCATACTGT	CACCAACATG	240
TTCATCCTCA ACCTGGCTGT	CAGTGACCTG	CTGGTGGGCA	TCTTCTGCAT-	GCCCACCACC	300
CTTGTGGACA ACCTCATCAC	TGGGTGGCCC	TTCGACAATG	CCACATGCAA	GATGAGCGGC	360
TTGGTGCAGG GCATGTCTGT	GTCGGCTTCC	GTTTTCACAC	TGGTGGCCAT	TGCTGTGGAA	420
AGGTTCCGCT GCATCGTGCA					480
ACCATCGCCG TCATCTGGGC					540
ACCGTCACCC GTGAGGAGCA					600
TACTCCTGCT GGGAGGCCTG					660
TTCTCGCACA TCTACCTGGC	GCCGCTGGCG	CTCATCGTGG	TCATGTACGC	CCGCATCGCG	720
CGCAAGCTCT GCCAGGCCCC	GGGCCCGGCC	CCCGGGGGCG	AGGAGGCTGC	GGACCCGCGA	780
GCATCGCGGC GCAGAGCGCG	CGTGGTGCAC	ATGCTGGTCA	TGGTGGCGCT	GTTCTTCACG	840
CTGTCCTGGC TGCCGCTCTG	GGCGCTGCTG	CTGCTCATCG	ACTACGGGCA	GCTCAGCGCG	900
CCGCAGCTGC ACCTGGTCAC	CGTCTACGCC	TTCCCCTTCG	CGCACTGGCT	GGCCTTCTTC	960
AACAGCAGCG CCAACCCCAT	CATCTACGGC	TACTTCAACG	AGAACTTCCG	CCGCGGCTTC	1020
CAGGCCGCCT TCCGCGCCCG	CCTCTGCCCG	CGCCCGTCGG	GGAGCCACAA	GGAGGCCTAC	1080
TCCGAGCGGC CCGGCGGGCT					
TCCGGGCTGC CCTCTGAGTC					

CTGCGGAATG	GGCGGGTGGC	TCACCACGGC	TTGCCCAGGG	AAGGGCCTGG	CTGCTCCCAC	1260
CTGCCCCTCA	CCATTCCAGC	CTGGGATATC				1290
<210> 56			•			
<211> 1290						
<212> DNA			ı			
<213> Human	n					
<400> 56			·		•	
ATGGAGGGG	AGCCCTCCCA	GCCTCCCAAC	AGCAGTTGGC	CCCTAAGTCA	GAATGGGACT	60
AACACTGAGG	CCACCCGGC	TACAAACCTC	ACCTTCTCCT	CCTACTATCA	GCACACCTCC	120
CCTGTGGCGG	CCATGTTCAT	TGTGGCCTAT	GCGCTCATCT	TCCTGCTCTG	CATGGTGGGC	180
AACACCCTGG	TCTGTTTCAT	CGTGCTCAAG	AACCGGCACA	TGCATACTGT	CACCAACATG	240
TTCATCCTCA	ACCTGGCTGT	CAGTGACCTG	CTGGTGGGCA	TCTTCTGCAT	GCCCACCACC	300
CTTGTGGACA	ACCTCATCAC	TGGGTGGCCC	TTCGACAATG	CCACATGCAA	GATGAGCGGC	360
TTGGTGCAGG	GCATGTCTGT	GTCGGCTTCC	GTTTTCACAC	TGGTGGCCAT	TGCTGTGGAA	420
AGGTTCCGCT	GCATCGTGCA	CCCTTTCCGC	GAGAAGCTGA	CCCTGCGGAA	GGCGCTCGTC	480
ACCATCGCCG	TCATCTGGGC	CCTGGCGCTG	CTCATCATGT	GTCCCTCGGC	CGTCACGCTG	540
ACCGTCACCC	GTGAGGAGCA	CCACTTCATG	GTGGACGCCC	GCAACCGCTC	CTACCCGCTC	600
TACTCCTGCT	GGGAGGCCTG	GCCCGAGAAG	GGCATGCGCA	GGGTCTACAC	CACTGTGCTC	660
TTCTCGCACA	TCTACCTGGC	GCCGCTGGCG	CTCATCGTGG	TCATGTACGC	CCGCATCGCG	720
CGCAAGCTCT	GCCAGGCCCC	GGGCCCGGCC	CCCGGGGGCG	AGGAGGCTGC	GGACCCGCGA	780
GCATCGCGGC	GCAGAGCGCG	CGTGGTGCAC	ATGCTGGTCA	TGGTGGCGCT	GTTCTTCACG	840
CTGTCCTGGC	TGCCGCTCTG	GGCGCTGCTG	CTGCTCATCG	ACTACGGGCA	GCTCAGCGCG	900
CCGCAGCTGC	ACCTGGTCAC	CGTCTACGCC	TTCCCCTTCG	CGCACTGGCT	GGCCTTCTTC	960
AACAGCAGCG	CCAACCCCAT	CATCTACGGC	TACTTCAACG	AGAACTTCCG	CCGCGGCTTC	1020
CAGGCCGCCT	TCCGCGCCCG	CCTCTGCCCG	CGCCCGTCGG	GGAGCCACAA	GGAGGCCTAC	1080
TCCGAGCGGC	CCGGCGGGCT	TCTGCACAGG	CGGGTCTTCG	TGGTGGTGCG	GCCCAGCGAC	1140
TOCCOCCTOC	CCTCTGAGTC	GGGCCCTAGC	AGTGGGGCCC	CCAGGCCCGG	CCGCCTCCCG	1200

29

CTGCGGAATG GGCGGGTGGC TCACCACGGC TTGCCCAGGG AAGGGCCTGG CTGCTCCCAC 1260 1290 CTGCCCCTCA CCATTCCAGC CTGGGATATC ⟨210⟩ 57 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> <400> 57 31 GTCGACATGG AGGGGGAGCC CTCCCAGCCT C <210> 58 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> **<400>** 58

ACTAGTTCAG ATATCCCAGG CTGGAATGG

1

SEQUENCE LISTING

- <110> WATANABE, TAKUYA KIKUCHI, KUNIKO TERAO, YASUKO SHINTANI, YASUSHI HINUMA, SHUJI FUKUSUMI, SHOJI FUJII, RYO HOSOYA, MASAKI KITADA, CHIEKO
- <120> NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN, ITS DNA AND LIGAND THEREOF
- <130> 46342-55862
- <140> 09/831,758
- <141> 2001-05-11
- <150> JP 10-323759
- <151> 1998-11-13
- <150> JP 11-0600030
- <151> 1999-03-08
- <150> JP 11-106812
- <151> 1999-04-14
- <150> JP 11-166672
- <151> 1999-06-14
- <150> JP 11-221640
- <151> 1999-08-04
- <150> JP 11-259818
- <151> 1999-09-14
- <160> 63
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 180
- <212> PRT
- <213> Homo sapiens
- Met Glu Ile Ile Ser Ser Lys Leu Phe Ile Leu Leu Thr Leu Ala Thr
- Ser Ser Leu Leu Thr Ser Asn Ile Phe Cys Ala Asp Glu Leu Val Met 30
- Ser Asn Leu His Ser Lys Glu Asn Tyr Asp Lys Tyr Ser Glu Pro Arg 45 40 35

Gly Tyr Pro Lys Gly Glu Arg Ser Leu Asn Phe Glu Glu Leu Lys Asp Trp Gly Pro Lys Asn Val Ile Lys Met Ser Thr Pro Ala Val Asn Lys 70 Met Pro His Ser Phe Ala Asn Leu Pro Leu Arg Phe Gly Arg Asn Val Gln Glu Glu Arg Ser Ala Gly Ala Thr Ala Asn Leu Pro Leu Arg Ser 105 Gly Arg Asn Met Glu Val Ser Leu Val Arg Arg Val Pro Asn Leu Pro 120 Gln Arg Phe Gly Arg Thr Thr Ala Lys Ser Val Cys Arg Met Leu 135 130 Ser Asp Leu Cys Gln Gly Ser Met His Ser Pro Cys Ala Asn Asp Leu 155 Phe Tyr Ser Met Thr Cys Gln His Gln Glu Ile Gln Asn Pro Asp Gln . 170 165 Lys Gln Ser Arg 180 <210> 2 <211> 543 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(540) atg gaa att att tca tca aaa cta ttc att tta ttg act tta gcc act Met Glu Ile Ile Ser Ser Lys Leu Phe Ile Leu Leu Thr Leu Ala Thr tca ago ttg tta aca tca aac att ttt tgt gca gat gaa tta gtg atg 96 Ser Ser Leu Leu Thr Ser Asn Ile Phe Cys Ala Asp Glu Leu Val Met 20 tcc aat ctt cac agc aaa gaa aat tat gac aaa tat tct gag cct aga 144 Ser Asn Leu His Ser Lys Glu Asn Tyr Asp Lys Tyr Ser Glu Pro Arg 40 gga tac cca aaa ggg gaa aga agc ctc aat ttt gag gaa tta aaa gat 192 Gly Tyr Pro Lys Gly Glu Arg Ser Leu Asn Phe Glu Glu Leu Lys Asp 55 tgg gga cca aaa aat gtt att aag atg agt aca cct gca gtc aat aaa 240 Trp Gly Pro Lys Asn Val Ile Lys Met Ser Thr Pro Ala Val Asn Lys 70

atg Met	cca Pro	cac His	tcc Ser	ttc Phe 85	gcc Ala	aac Asn	ttg Leu	cca Pro	Leu 90	aga Arg	Phe	ggg Gly	agg Arg	Asn 95	Val	200
caa Gln	gaa Glu	gaa Glu	aga Arg 100	agt Ser	gct Ala	gga Gly	gca Ala	aca Thr 105	gcc Ala	aac Asn	ctg Leu	cct Pro	ctg Leu 110	aga Arg	tct Ser	336
gga Gly	aga Arg	aat Asn 115	atg Met	gag Glu	gtg Val	agc Ser	ctc Leu 120	gtg Val	aga Arg	cgt Arg	gtt Val	cct Pro 125	aac Asn	ctg Leu	ccc Pro	384
caa Gln	agg Arg 130	ttt Phe	gly aaa	aga Arg	aca Tḥr	aca Thr 135	aca Thr	gcc Ala	aaa Lys	agt Ser	gtc Val 140	tgc Cys	agg Arg	atg Met	ctg Leu	432
agt Ser 145	gat Asp	ttg Leu	tgt Cys	caa Gln	gga Gly 150	tcc Ser	atg Met	cat His	tca Ser	cca Pro 155	tgt Cys	gcc Ala	aat Asn	gac Asp	tta Leu 160	480
ttt Phe	tac Tyr	tcc Ser	atg Met	acc Thr 165	tgc Cys	cag Gln	cac His	caa Gln	gaa Glu 170	atc Ile	cag Gln	aat Asn	ccc Pro	gat Asp 175	caa Gln	528
		tca Ser														543
<21 <21	0 > 3 1 > 2 2 > D 3 > A	7 NA	icia	l Se	quen	ce										
<22 <22	0> 3> D	escr	ipti	on c	of Ar	tifi	cial	. Seq	luenc	e: P	rime	er				
	0> 3 Jetgo		taga	ıgact	ta a	ttt	ag			÷						27
<21 <21	.0> 4 .1> 2 .2> I	27 ONA	icia	al Se	equer	ıce										•
<22 <22	20> 23> I	Desci	ripti	lon d	of Ar	tifi	icial	L Sec	quenc	ce: I	Prime	er				
	00> 4 agaco		teta	atata	aac t	gcc	cat									27
<2°	10> ! 11> : 12> !	30 DNA	ficia	al S	equei	nce										

<220> <223>	Descr	ipti	on o	f Ar	tifi	cial	Sea	uenc	e: P	rime	r				
<400>		_													2.0
gcaca	Lagag	act.	aatt	cc as	gatt	Laya	C								30
<210><211><211>	27											,			
	Artif	icia	l Se	quen	ce										
<220> <223>	Descr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: P	rime	r				•
<400>	6 acttt	gact.	aatti	to o	acat:	- t-									27
catge	actet	gacc	ggcc		aggc	ac									21
<210> <211>	27							,							
<212> <213>	DNA Artif	icia	l Sed	quen	ce										
<220> <223>	Descr	ipti	on o	f Art	tific	cial	Seq	uence	e: P:	rime:	r				
<400>	7														
cagctt	tagg	gaca	ggct	cc ag	ggtti	tc									27
<210><211><212>	196														
<213>	Homo	sapi	ens												
<400> Met G] 1	8 lu Ile	Ile	Ser 5	Ser	Lys	Leu	Phe	Ile 10	Leu	Leu	Thr	Leu	Ala 15	Thr	
Ser Se	er Leu	Leu 20	Thr	Ser	Asn	Ile	Phe 25	Cys	Ala	Asp	Glu	Leu 30	Val	Met	
Ser As	sn Leu 35	His	Ser	Lys	Glu	Asn 40	Tyr	Asp	Lys	Tyr	Ser 45	Glu	Pro	Arg	
	r Pro	Lys	Gly	Glu	Arg 55	Ser	Leu	Asn	Phe	Glu 60	Glu	Leu	Lys	Asp	
Trp Gl 65	ly Pro	Lys	Asn	Val 70	Ile	Lys	Met	Ser	Thr 75	Pro	Ala	Val	Asn	Lys 80	
Met Pr	o His	Ser	Phe 85	Ala	Asn	Leu	Pro	Leu 90	Arg	Phe	Gly	Arg	Asn 95	Val	
Gln Gl	u Glu	Arg	Ser	Ala	Gly	Ala	Thr	Ala	Asn	Leu	Pro	Leu	Arg	Ser	

Gly	Arg	Asn 115	Met	Glu	Val	Ser	Leu 120	Val	Arg	Arg	Val	Pro 125	Asn	Leu	Pro	
Gln	Arg 130	Phe	Gly	Arg	Thr	Thr 135	Thr	Ala	Lys	Ser	Val 140	Cys	Arg	Met	Leu	
Ser 145	Asp	Leu	Cys	Gln	Gly 150	Ser	Met	His	Ser	Pro 155	Cys	Ala	Asn	Asp	Leu 160	
Phe	Tyr	Ser	Met	Thr 165	Cys	Gln	His	Gln	Glu 170	Ile	Gln	Asn	Pro	Asp 175	Gln	
Lys	Gln	Ser	Arg 180	Arg	Leu	Leu	Phe	Lys 185	Lys	Ile	Asp	Asp	Ala 190	Glu	Leu	
Lys	Gln	Glu 195	Lys												٠	
<21 <21	0> 9 1> 5! 2> DI 3> Ho	ΝA	sapie	ens												
<213> Homo sapiens <220> <221> CDS <222> (1)(588)																
<40	0 > 9						a+ a	++~	2++	++=	ttg	act	tta	acc	act	48
atg Met 1	Glu	Ile	Ile	Ser 5	Ser	Lys	Leu	Phe	Ile 10	Leu	Leu	Thr	Leu	Ala 15	Thr	
tca Ser	agc Ser	ttg Leu	tta Leu 20	aca Thr	tca Ser	aac Asn	att Ile	ttt Phe 25	tgt Cys	gca Ala	gat Asp	gaa Glu	tta Leu 30	gtg Val	atg Met	96
tcc Ser	aat Asn	ctt Leu 35	His	agc Ser	aaa Lys	gaa Glu	aat Asn 40	Tyr	gac Asp	aaa Lys	tat Tyr	tct Ser 45	gag Glu	cct Pro	aga Arg	144
gga Gly	tac Tyr 50	Pro	aaa Lys	gly aaa	gaa Glu	aga Arg 55	Ser	ctc Leu	aat Asn	ttt Phe	gag Glu 60	gaa Glu	tta Leu	aaa Lys	gat Asp	192
tgg Trp 65	Gly	cca Pro	aaa Lys	aat Asn	gtt Val 70	Ile	aag Lys	atg Met	agt Ser	aca Thr 75	cct Pro	gca Ala	gtc Val	aat Asn	aaa Lys 80	240
atg Met	cca Pro	cac His	tcc Ser	ttc Phe 85	Ala	aac Asn	ttg Leu	cca Pro	ttg Leu 90	Arg	ttt Phe	Gly	agg Arg	aac Asn 95	Val	288
caa Glr	gaa Glu	gaa Glu	aga Arg	Ser	gct Ala	gga Gly	gca Ala	aca Thr	Ala	aac Asn	ctg Leu	cct Pro	ctg Leu 110	ı Arg	tct	336

gga aga aat atg gag gtg agc ctc gtg aga cgt gtt cct aac ctg ccc Gly Arg Asn Met Glu Val Ser Leu Val Arg Arg Val Pro Asn Leu Pro 115 120 125	384												
caa agg ttt ggg aga aca aca aca gcc aaa agt gtc tgc agg atg ctg Gln Arg Phe Gly Arg Thr Thr Thr Ala Lys Ser Val Cys Arg Met Leu 130 135 140	432												
agt gat ttg tgt caa gga tcc atg cat tca cca tgt gcc aat gac tta Ser Asp Leu Cys Gln Gly Ser Met His Ser Pro Cys Ala Asn Asp Leu 145 150 155 160	480												
ttt tac tcc atg acc tgc cag cac caa gaa atc cag aat ccc gat caa Phe Tyr Ser Met Thr Cys Gln His Gln Glu Ile Gln Asn Pro Asp Gln 165 170 175	528												
aaa cag tca agg aga ctg cta ttc aag aaa ata gat gat gca gaa ttg Lys Gln Ser Arg Arg Leu Leu Phe Lys Lys Ile Asp Asp Ala Glu Leu 180 185 190	576												
aaa caa gaa aaa taa Lys Gln Glu Lys 195	591												
<210> 10 <211> 27 <212> DNA <213> Artificial Sequence													
<220> <223> Description of Artificial Sequence: Primer													
<400> 10 gcctagagga gatctaggct gggagga	27												
<210> 11 <211> 27 <212> DNA <213> Artificial Sequence													
<220> <223> Description of Artificial Sequence: Primer													
<400> 11 gggaggaaca tggaagaaga aaggagc	27												
<210> 12 <211> 27 <212> DNA <213> Artificial Sequence													
<220> <223> Description of Artificial Sequence: Primer													

<400 gatg		at g	catg	gact	g ct	ggag	С									27
<211 <212	210> 13 211> 27 212> DNA 213> Artificial Sequence															
	220> 223> Description of Artificial Sequence: Primer															
<400 ttcc			tctc	agtg	g ca	.ggtt	g		•							27
<211 <212	<210> 14 <211> 196 <212> PRT <213> Bos sp. <400> 14 Met Glu Ile Ile Ser Leu Lys Arg Phe Ile Leu Leu Met Leu Ala Thr															
<400 Met 1	> 14 Glu	Ile	Ile	Ser 5	Leu	Lys	Arg	Phe	Ile 10	Leu	Leu	Met	Leu	Ala 15	Thr	
Ser	Ser	Leu	Leu 20	Thr	Ser	Asn	Ile	Phe 25	Cys	Thr	Asp	Glu	Ser 30	Arg	Met	
Pro	Asn	Leu 35	Tyr	Ser	Lys	Lys	Asn 40	Tyr	Asp	Lys	Tyr	Ser 45	Glu	Prò	Arg	
Gly	Asp 50	Leu	Gly	Trp	Glu	Lys 55	Glu	Arg	Ser	Leu	Thr 60	Phe	Glu	Glu	Val	
Lys 65	Asp	Trp	Ala	Pro	Lys 70	Ile	Lys	Met	Asn	Lys 75	Pro	Val	Val	Asn	Lys 80	
Met	Pro	Pro	Ser	Ala 85	Ala	Asn	Leu	Pro	Leu 90	Arg	Phe	Gly	Arg	Asn 95	Met	
Glu	Glu	Glu	Arg 100	Ser	Thr	Arg	Ala	Met 105	Ala	His	Leu	Pro	Leu 110	Arg	Leu	
Gly	Lys	Asn 115	Arg	Glu	Asp	Ser	Leu 120	Ser	Arg	Trp	Val	Pro 125	Asn	Leu	Pro	
Gln	Arg	Phe	Gly	Arg	Thr	Thr 135	Thr	Ala	Lys	Ser	Ile 140	Thr	Lys	Thr	Leu	
Ser 145	Asn	Leu	Leu	Gln	Gln 150	Ser	Met	His	Ser	Pro 155		Thr	Asn	Gly	Leu 160	
Leu	Tyr	Ser	Met	Ala 165	Cys	Gln	Pro	Gln	Glu 170	Ile	Gln	Asn	Pro	Gly 175	Gln	
Lys	Asn	Leu	Arg 180	Arg	Arg	Gly	Phe	Gln 185	Lys	Ile	Asp	Asp	Ala 190	Glu	Leu	

Lys Gln Glu Lys 195

<210> 15 <211> 591 <212> DNA <213> Bos sp. <220> <221> CDS <222> (1) .. (588) <400> 15 atg gaa att att tca tta aaa cga ttc att tta ttg atg tta gcc act 48 Met Glu Ile Ile Ser Leu Lys Arg Phe Ile Leu Leu Met Leu Ala Thr tca ago ttg tta aca tca aac ato tto tgo aca gao gaa tca agg atg 96 Ser Ser Leu Leu Thr Ser Asn Ile Phe Cys Thr Asp Glu Ser Arg Met 20 ccc aat ctt tac agc aaa aag aat tat gac aaa tat tcc gag cct aga 144 Pro Asn Leu Tyr Ser Lys Lys Asn Tyr Asp Lys Tyr Ser Glu Pro Arg 35 gga gat cta ggc tgg gag aaa gaa aga agt ctt act ttt gaa gaa gta 192 Gly Asp Leu Gly Trp Glu Lys Glu Arg Ser Leu Thr Phe Glu Glu Val 50 aaa gat tgg gct cca aaa att aag atg aat aaa cct gta gtc aac aaa 240 Lys Asp Trp Ala Pro Lys Ile Lys Met Asn Lys Pro Val Val Asn Lys 65 atg cca cct tct gca gcc aac ctg cca ctg aga ttt ggg agg aac atg Met Pro Pro Ser Ala Ala Asn Leu Pro Leu Arg Phe Gly Arg Asn Met gaa gaa gaa agg agc act agg gcg atg gcc cac ctg cct ctg aga ctc Glu Glu Glu Arg Ser Thr Arg Ala Met Ala His Leu Pro Leu Arg Leu 110 100 gga aaa aat aga gag gac agc ctc tcc aga tgg gtc cca aat ctg ccc 384 Gly Lys Asn Arg Glu Asp Ser Leu Ser Arg Trp Val Pro Asn Leu Pro cag agg ttt gga aga aca aca aca gcc aaa agc att acc aag acc ctg 432 Gln Arg Phe Gly Arg Thr Thr Ala Lys Ser Ile Thr Lys Thr Leu 135 480 agt aat ttg ctc cag cag tcc atg cat tca cca tct acc aat ggg cta Ser Asn Leu Leu Gln Gln Ser Met His Ser Pro Ser Thr Asn Glỳ Leu ctc tac tcc atg gcc tgc cag ccc caa gaa atc cag aat cct ggt caa 528 Leu Tyr Ser Met Ala Cys Gln Pro Gln Glu Ile Gln Asn Pro Gly Gln 175

aag aac cta agg aga cgg gga ttc cag aaa ata gat gat gca gaa ttg Lys Asn Leu Arg Arg Arg Gly Phe Gln Lys Ile Asp Asp Ala Glu Leu 180 185 190	5/6													
aaa caa gaa aaa taa Lys Gln Glu Lys 195	591													
<210> 16 <211> 27 <212> DNA <213> Artificial Sequence														
<220> <223> Description of Artificial Sequence: Primer <400> 16														
<pre><400> 16 ccctggggct tcttctgtct tctatgt</pre>	27													
<210> 17 <211> 26 <212> DNA <213> Artificial Sequence <220>														
<220> <223> Description of Artificial Sequence: Primer														
<400> 17 agcgattcat tttattgact ttagca														
<210> 18 <211> 203 <212> PRT <213> Rattus sp.														
<pre><400> 18 Met Glu Ile Ile Ser Ser Lys Arg Phe Ile Leu Leu Thr Leu Ala Thr 1 5 10 15</pre>														
Ser Ser Phe Leu Thr Ser Asn Thr Leu Cys Ser Asp Glu Leu Met Met 20 25 30														
Pro His Phe His Ser Lys Glu Gly Tyr Gly Lys Tyr Tyr Gln Leu Arg 35 40 45														
Gly Ile Pro Lys Gly Val Lys Glu Arg Ser Val Thr Phe Gln Glu Leu 50 55 60														
50 55														
Lys Asp Trp Gly Ala Lys Lys Asp Ile Lys Met Ser Pro Ala Pro Ala 65 70 75 80														

Asn	Ile	Glu	Asp 100	Arg	Arg	Ser	Pro	Arg 105	Ala	Arg	Ala	Asn	Met 110	Glu	Ala	
Gly	Thr	Met 115	Ser	His	Phe	Pro	Ser 120	Leu	Pro	Gln	Arg	Phe 125	Gly	Arg	Thr	
Thr	Ala 130	Arg	Arg	Ile	Thr	Lys 135	Thr	Leu	Ala	Gly	Leu 140	Pro	Gln	Lys	Ser	
Leu 145	His	Ser	Leu	Ala	Ser 150	Ser	Glu	Ser	Leu	Туг 155	Ala	Met	Thr	Arg	Gln 160	
				165					170					Arg 175		
Phe	Thr	Glu	Thr 180	Asp	Asp	Ala	Glu	Arg 185	Lys	Gln	Glu	Lys	Ile 190	Gly	Asn	
Leu	Gln	Pro 195		Leu	Gln	Gly	Ala 200	Met	Lys	Leu						
<21 <21	0> 1 1> 6 2> E 3> R	12 NA	ıs sp). ·												
	1> 0		(609)												
ato Met	00> 1 g gaa : Glu l	. att	att	tca Ser	Ser	aag Lys	g cga s Arg	a tto g Phe	att E Ile 10	e ne	a ttg ı Lev	g act ı Thi	t tta	a gca ı Ala 15	act Thr	48
tca Sei	a ago r Sei	c tto c Phe	c tta e Lei 20	ı Thi	tca Sei	a aac Asi	acc n Thi	c ctt r Lei 25	і Суя	tca Se:	a gat r Asj	gaa Gli	a tta ı Len 30	ı Med	atg : Met	96
cc Pr	c ca	t tt s Pho	e Hi	s Se	r Lys	5 GL	ı Gı	t tat y Tyi	c GI	a aa y Ly	a ta s Ty:	t ta r Ty: 4	. 61	g ctg n Lei	g aga ı Arg	144
gg Gl	a at y Il 5	e Pr	a aa o Ly	a ggg s Gl	g gta	a aa l Ly 5	s GI	a aga u Ara	a ag g Se	t gt r Va	c ac l Th 6	L FII	t ca e Gl	a gaa n Glu	a ctc ı Leu	192
aa Ly 6	s As	t tg p Tr	g gg p Gl	g gc y Al	a aa a Ly 7	s Ly	a ga s As	t at p Il	t aa e Ly	s Me	g ag t Se 5	t cc r Pr	a gc o Al	c cct a Pro	t gcc o Ala 80	240
aa As	c aa n Ly	a gt s Va	g cc l Pr	o Hi	c tc s Se 5	a gc r Al	a gc a Al	c aa a As	п Le	t cc u Pr 0	c ct o Le	g ag u Ar	g tt g Ph	t gg e Gl 9	g agg y Arg 5	288

```
aac ata gaa gac aga aga agc ccc agg gca cgg gcc aac atg gag gca
                                                                    336
Asn Ile Glu Asp Arg Arg Ser Pro Arg Ala Arg Ala Asn Met Glu Ala
                                 105
            10.0
ggg acc atg agc cat ttt ccc agc ctg ccc caa agg ttt ggg aga aca
                                                                    384
Gly Thr Met Ser His Phe Pro Ser Leu Pro Gln Arg Phe Gly Arg Thr
                             120
        115
aca gcc aga cgc atc acc aag aca ctg gct ggt ttg ccc cag aaa tcc
                                                                    432
Thr Ala Arg Arg Ile Thr Lys Thr Leu Ala Gly Leu Pro Gln Lys Ser
                         135
    130
ctg cac tcc ctg gcc tcc agt gaa tcg ctc tat gcc atg acc cgc cag
                                                                    480
Leu His Ser Leu Ala Ser Ser Glu Ser Leu Tyr Ala Met Thr Arg Gln
                                         155
                     150
145
cat caa gaa att cag agt cct ggt caa gag caa cct agg aaa cgg gtg
                                                                    528
His Gln Glu Ile Gln Ser Pro Gly Gln Glu Gln Pro Arg Lys Arg Val
                                                          175
                                     170
                 165
ttc acg gaa aca gat gat gca gaa agg aaa caa gaa aaa ata gga aac
                                                                    576
Phe Thr Glu Thr Asp Asp Ala Glu Arg Lys Gln Glu Lys Ile Gly Asn
                                 185
             180
                                                                    612
ctc cag cca gtc ctt caa ggg gct atg aag ctg tga
Leu Gln Pro Val Leu Gln Gly Ala Met Lys Leu
         195
 <210> 20
 <211> 12
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Probe
 <220>
 <221> modified base
 <222> (9)
 <223> a, c, t, g, other or unknown
 <400> 20
                                                                     12
 mgnttyggna ar
 <210> 21
 <211> 12
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Probe
 <220>
 <221> modified_base
 <222> (3)
 <223> a, c, t, g, other or unknown
```

```
<220>
<221> modified_base
<222> (9)
<223> a, c, t, g, other or unknown
<220>
<221> modified_base
<222> (12)
<223> a, c, t, g, other or unknown
<400> 21
                                                                    12
mgnttyggnm gn
<210> 22
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe
<220>
<221> modified_base
<222> (3)
<223> a, c, t, g, other or unknown
<220>
<221> modified_base
<222> (6)
<223> a, c, t, g, other or unknown
<220>
 <221> modified_base
 <222> (9)
 <223> a, c, t, g, other or unknown
 <400> 22
                                                                     12
mgnwsnggna ar
 <210> 23
 <211> 12
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Probe
 <220>
 <221> modified_base
 <222> (3)
 <223> a, c, t, g, other or unknown
 <220>
 <221> modified_base
```

```
<222> (6)
<223> a, c, t, g, other or unknown
<221> modified_base
<222> (9)
<223> a, c, t, g, other or unknown
<220>
<221> modified_base
<222> (12)
<223> a, c, t, g, other or unknown
<400> 23
                                                                    12
mgnwsnggnm gn
<210> 24
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe
<220>
<221> modified_base
<222> (3)
<223> a, c, t, g, other or unknown
<220>
<221> modified_base
<222> (6)
<223> a, c, t, g, other or unknown
<220>
<221> modified_base
<222> (9)
<223> a, c, t, g, other or unknown
<400> 24
                                                                     12
mgnytnggna ar
 <210> 25
 <211> 12
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Probe
 <220>
 <221> modified_base
 <222> (3)
 <223> a, c, t, g, other or unknown
```

```
<220>
<221> modified_base
<222> (6)
<223> a, c, t, g, other or unknown
<220>
<221> modified_base
<222> (9)
<223> a, c, t, g, other or unknown
<220>
<221> modified base
<222> (12)
<223> a, c, t, g, other or unknown
<400> 25
                                                                     12
mgnytnggnm gn
<210> 26
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 26
                                                                     30
gacttaattt tagatttaga caaaatggaa
<210> 27
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 27
                                                                     25
ttctcccaaa cctttggggc aggtt
 <210> 28
 <211> 28
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 28
                                                                     28
 acagcaaaga aggtgacgga aaatactc
 <210> 29
 <211> 28
```

<212> <213>	DNA Artificial Sequence		
<220> <223>	Description of Artificial Sequence: Primer		
<400> atagat	29 cgaga aaagaagccc cgcagcac		28
<210><211><211><212><213>	28		
<220> <223>	Description of Artificial Sequence: Primer	· .	
<400> gtgctq	30 geggg gettettte teatetat		28
<210><211><212><212><213>	21	·	
<220> <223>	Description of Artificial Sequence: Primer		
<400> tttag	31 yactta gacgaaatgg a		21
<210><211><211><212><213>	21		
<220> <223>	Description of Artificial Sequence: Primer	•	
<400> gctcc	> 32 egtage etettgaagt e		21
<400> Met 0	> 33 Glu Ile Ile Ser Leu Lys Arg Phe Ile Leu Leu Thr Val A 5 10	la Thr 15	
Ser S	Ser Phe Leu Thr Ser Asn Thr Phe Cys Thr Asp Glu Phe M 20 25 30	et Met	

Pro His Phe His Ser Lys Glu Gly Asp Gly Lys Tyr Ser Gln Leu Arg 40 Gly Ile Pro Lys Gly Glu Lys Glu Arg Ser Val Ser Phe Gln Glu Leu Lys Asp Trp Gly Ala Lys Asn Val Ile Lys Met Ser Pro Ala Pro Ala Asn Lys Val Pro His Ser Ala Ala Asn Leu Pro Leu Arg Phe Gly Arg Thr Ile Asp Glu Lys Arg Ser Pro Ala Ala Arg Val Asn Met Glu Ala 105 Gly Thr Arg Ser His Phe Pro Ser Leu Pro Gln Arg Phe Gly Arg Thr 115 120 Thr Ala Arg Ser Pro Lys Thr Pro Ala Asp Leu Pro Gln Lys Pro Leu 135 His Ser Leu Gly Ser Ser Glu Leu Leu Tyr Val Met Ile Cys Gln His 155 Gln Glu Ile Gln Ser Pro Gly Gly Lys Arg Thr Arg Arg Gly Ala Phe Val Glu Thr Asp Asp Ala Glu Arg Lys Pro Glu Lys <210> 34 <211> 618 <212> DNA <213> Mus sp. <220> <221> CDS <222> (17)..(580) <400> 34 tttagactta gacgaa atg gaa att att tca tta aaa cga ttc att tta ttg 52 Met Glu Ile Ile Ser Leu Lys Arg Phe Ile Leu Leu act gtg gca act tca agc ttc tta aca tca aac acc ttc tgt aca gat 100 Thr Val Ala Thr Ser Ser Phe Leu Thr Ser Asn Thr Phe Cys Thr Asp 15 gag ttc atg atg cct cat ttt cac agc aaa gaa ggt gac gga aaa tac 148 Glu Phe Met Met Pro His Phe His Ser Lys Glu Gly Asp Gly Lys Tyr 30 tcc cag ctg aga gga atc cca aaa ggg gaa aag gaa aga agt gtc agt 196 Ser Gln Leu Arg Gly Ile Pro Lys Gly Glu Lys Glu Arg Ser Val Ser 50 55 45

ttt Phe	caa Gln	gaa Glu	cta Leu	aaa Lys 65	gat Asp	tgg Trp	Gly ggg	gca Ala	aag Lys 70	aat Asn	gtt Val	att Ile	aag Lys	atg Met 75	agt Ser	244
cca Pro	gcc Ala	cct Pro	gcc Ala 80	aac Asn	aaa Lys	gtg Val	ccc Pro	cac His 85	tca Ser	gca Ala	gcc Ala	aac Asn	ctg Leu 90	ccc Pro	ctg Leu	292
aga Arg	ttt Phe	gga Gly 95	agg Arg	acc Thr	ata Ile	gat Asp	gag Glu 100	aaa Lys	aga Arg	agc Ser	ccc Pro	gca Ala 105	gca Ala	cgg Arg	gtc Val	340
aac Asn	atg Met 110	gag Glu	gca Ala	gly ggg	acc Thr	agg Arg 115	agc Ser	cat His	ttc Phe	ccc Pro	agc Ser 120	ctg Leu	ccc Pro	caa Gln	agg Arg	388
ttt Phe 125	ggg Gly	aga Arg	aca Thr	aca Thr	gcc Ala 130	aga Arg	agc Ser	ccc Pro	aag Lys	aca Thr 135	Pro	gct Ala	gat Asp	ttg Leu	cca Pro 140	436
cag Gln	aaa Lys	ccc Pro	ctg Leu	cac His 145	tca Ser	ctg Leu	ggc	Ser	agc Ser 150	gag Glu	ttg Leu	ctc Leu	tac Tyr	gtc Val 155	atg Met	484
atc Ile	tgc Cys	cag Gln	cac His 160	Gln	gaa Glu	att Ile	cag Gln	agt Ser 165	Pro	ggt Gly	gga Gly	aag Lys	cga Arg 170	Thr	agg Arg	532 ⁻
aga Arg	gga Gly	gcg Ala 175	Phe	gtg Val	gaa Glu	aca Thr	gat Asp 180	Asp	gca Ala	gaa Glu	agg Arg	aaa Lys 185	Pro	gaa Glu	aaa Lys	580
tag	gaaa	icct	cgag	lccc	ac t	tcaa	ıgagg	ıc ta	.cgga	gc						618
<21 <21	.0 > 3 .1 > 2 .2 > I	27 DNA		. 1 . 0 -												
<22	:0>				equen		icial	Sec	quenc	e: I	Prim∈	er				
<40	00> 3	35			egg a											27
<2	10> 1 11> 2 12> 1	29														
<2	13> <i>i</i>	Arti			equei										•	
			ript.	ion (of A	rtif	icia	l Sed	quen	ce:	Prime	er				
	00> ctag		aat	gttc	cag 🤉	gccg	ggat	g								29

<210> 37

<211> 432

<212> PRT

<213> Rattus sp.

<400> 37

Met Glu Ala Glu Pro Ser Gln Pro Pro Asn Gly Ser Trp Pro Leu Gly

1 5 10 15

Gln Asn Gly Ser Asp Val Glu Thr Ser Met Ala Thr Ser Leu Thr Phe 20 25 30

Ser Ser Tyr Tyr Gln His Ser Ser Pro Val Ala Ala Met Phe Ile Ala 35 40 45

Ala Tyr Val Leu Ile Phe Leu Leu Cys Met Val Gly Asn Thr Leu Val 50 55 60

Cys Phe Ile Val Leu Lys Asn Arg His Met Arg Thr Val Thr Asn Met 65 70 75 80

Phe Ile Leu Asn Leu Ala Val Ser Asp Leu Leu Val Gly Ile Phe Cys 85 90 95

Met Pro Thr Thr Leu Val Asp Asn Leu Ile Thr Gly Trp Pro Phe Asp 100 105 110

Asn Ala Thr Cys Lys Met Ser Gly Leu Val Gln Gly Met Ser Val Ser 115 120 125

Ala Ser Val Phe Thr Leu Val Ala Ile Ala Val Glu Arg Phe Arg Cys

Ile Val His Pro Phe Arg Glu Lys Leu Thr Leu Arg Lys Ala Leu Phe
145 150 155 160

Thr Ile Ala Val Ile Trp Ala Leu Ala Leu Leu Ile Met Cys Pro Ser

Ala Val Thr Leu Thr Val Thr Arg Glu Glu His His Phe Met Leu Asp 180 185 190

Ala Arg Asn Arg Ser Tyr Pro Leu Tyr Ser Cys Trp Glu Ala Trp Pro

Glu Lys Gly Met Arg Lys Val Tyr Thr Ala Val Leu Phe Ala His Ile

Tyr Leu Val Pro Leu Ala Leu Ile Val Val Met Tyr Val Arg Ile Ala 225 230 235 240

Arg Lys Leu Cys Gln Ala Pro Gly Pro Ala Arg Asp Thr Glu Glu Ala

Val Ala Glu Gly Gly Arg Thr Ser Arg Arg Arg Ala Arg Val Val His 260 265 270 Met Leu Val Met Val Ala Leu Phe Phe Thr Leu Ser Trp Leu Pro Leu 280

Trp Val Leu Leu Leu Ile Asp Tyr Gly Glu Leu Ser Glu Leu Gln 295 290

Leu His Leu Leu Ser Val Tyr Ala Phe Pro Leu Ala His Trp Leu Ala 315 310

Phe Phe His Ser Ser Ala Asn Pro Ile Ile Tyr Gly Tyr Phe Asn Glu 330 325

Asn Phe Arg Arg Gly Phe Gln Ala Ala Phe Arg Ala Gln Leu Cys Trp 345

Pro Pro Trp Ala Ala His Lys Gln Ala Tyr Ser Glu Arg Pro Asn Arg 360 355

Leu Leu Arg Arg Arg Val Val Val Asp Val Gln Pro Ser Asp Ser Gly 375

Leu Pro Ser Glu Ser Gly Pro Ser Ser Gly Val Pro Gly Pro Gly Arg 395 390

Leu Pro Leu Arg Asn Gly Arg Val Ala His Gln Asp Gly Pro Gly Glu 410

Gly Pro Gly Cys Asn His Met Pro Leu Thr Ile Pro Ala Trp Asn Ile 430 425

<210> 38 <211> 1299 <212> DNA <213> Rattus sp.

<400> 38

atggaggegg agccctccca gcctcccaac ggcagctggc ccctgggtca gaacgggagt 60 gatgtggaga ccagcatggc aaccagcctc accttctcct cctactacca acactcctct 120 ccggtggcag ccatgttcat cgcggcctac gtgctcatct tcctcctctg catggtgggc 180 aacaccctgg tctgcttcat tgtgctcaag aaccggcaca tgcgcactgt caccaacatg 240 tttatcctca acctggccgt cagcgacctg ctggtgggca tcttctgcat gcccacaacc 300 cttgtggaca accttatcac tggttggcct tttgacaacg ccacatgcaa gatgagcggc 360 ttggtgcagg gcatgtccgt gtctgcatcg gttttcacac tggtggccat cgctgtggaa 420 aggttccgct gcatcgtgca ccctttccgc gagaagctga cccttcggaa ggcgctgttc 480 accategegg tgatetggge tetggegetg etcateatgt gteeetegge ggteaetetg 540 acagtcaccc gagaggagca tcacttcatg ctggatgctc gtaaccgctc ctacccgctc 600 tactcgtgct gggaggcctg gcccgagaag ggcatgcgca aggtctacac cgcggtgctc 660 ttcgcgcaca tctacctggt gccgctggcg ctcatcgtag tgatgtacgt gcgcatcgcg 720 cgcaagctat gccaggccc cggtcctgcg cgcgacacgg aggaggcggt ggccgagggt 780 ggccgcactt cgcgccgtag ggcccgcgtg gtgcacatgc tggtcatggt ggcgctcttc 840 ttcacgttgt cctggctgcc actctgggtg ctgctgctgc tcatcgacta tggggagctg 900 agegagetge aactgeacet getgteggte taegeettee cettggeaca etggetggee 960 ttettecaca geagegeeaa ecceateate taeggetaet teaacgagaa etteegeege 1020 ggcttccagg ctgccttccg tgcacagctc tgctggcctc cctgggccgc ccacaagcaa 1080 gcctactcgg agcggcccaa ccgcctcctg cgcaggcggg tggtggtgga cgtgcaaccc 1140 agegactecg geetgecate agagtetgge eccageageg gggteecagg geetggeegg 1200 ctgccactgc gcaatgggcg tgtggcccat caggatggcc cgggggaagg gccaggctgc 1260

1299 aaccacatgc ccctcaccat cccggcctgg aacatttga <210> 39 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 39 Met Pro His Ser Phe Ala Asn Leu Pro Leu Arg Phe 10 5 <210> 40 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 40 Val Pro Asn Leu Pro Gln Arg Phe . 5 <210> 41 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 41 Ser Ala Gly Ala Thr Ala Asn Leu Pro Arg Ser 10 5 <210> 42 <211> 36 <212> DNA <213> Homo sapiens <400> 42 36 atgccacact ccttcgccaa cttgccattg agattt <210> 43 <211> 36 <212> DNA <213> Homo sapiens

```
<400> 43
                                                                   36
agtgctggag caacagccaa cctgcctctg agatct
<210> 44
<211> 24
<212> DNA
<213> Homo sapiens
<400> 44
                                                                   24
gttcctaacc tgccccaaag gttt
<210> 45
<211> 276
<212> DNA
<213> Homo sapiens
<400> 45
atggaaatta tttcatcaaa actattcatt ttattgactt tagccacttc aagcttgtta 60
acatcaaaca ttttttgtgc agatgaatta gtgatgtcca atcttcacag caaagaaaat 120
tatgacaaat attotgagoo tagaggatao ocaaaagggg aaagaagoot caattttgag 180
gaattaaaag attggggacc aaaaaatgtt attaagatga gtacacctgc agtcaataaa 240
                                                                   276
atgccacact ccttcgccaa cttgccattg agattt
<210> 46
<211> 336
<212> DNA
<213> Homo sapiens
<400> 46
atggaaatta tttcatcaaa actattcatt ttattgactt tagccacttc aagcttgtta 60
acatcaaaca ttttttgtgc agatgaatta gtgatgtcca atcttcacag caaagaaaat 120
tatgacaaat attctgagcc tagaggatac ccaaaagggg aaagaagcct caattttgag 180
gaattaaaag attggggacc aaaaaatgtt attaagatga gtacacctgc agtcaataaa 240
atgccacact ccttcgccaa cttgccattg agatttggga ggaacgttca agaagaaaga 300
agtgctggag caacagccaa cctgcctctg agatct
<210> 47
<211> 393
 <212> DNA
 <213> Homo sapiens
 <400> 47
 atggaaatta tttcatcaaa actattcatt ttattgactt tagccacttc aagcttgtta 60
 acatcaaaca ttttttgtgc agatgaatta gtgatgtcca atcttcacag caaagaaaat 120
 tatgacaaat attctgagcc tagaggatac ccaaaagggg aaagaagcct caattttgag 180
 gaattaaaag attggggacc aaaaaatgtt attaagatga gtacacctgc agtcaataaa 240
 atgccacact ccttcgccaa cttgccattg agatttggga ggaacgttca agaagaaaga 300
 agtgctggag caacagccaa cctgcctctg agatctggaa gaaatatgga ggtgagcctc 360
                                                                    393
 gtgagacgtg ttcctaacct gccccaaagg ttt
 <210> 48
```

<211> 27

<212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Primer <400> 48 27 ccctggggct tcttctgtct tctatgt <210> 49 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer <400> 49 26 agcgattcat tttattgact ttagca <210> 50 <211> 203 <212> PRT <213> Rattus sp. <400> 50 Met Glu Ile Ile Ser Ser Lys Arg Phe Ile Leu Leu Thr Leu Ala Thr Ser Ser Phe Leu Thr Ser Asn Thr Leu Cys Ser Asp Glu Leu Met Met Pro His Phe His Ser Lys Glu Gly Tyr Gly Lys Tyr Tyr Gln Leu Arg Gly Ile Pro Lys Gly Val Lys Glu Arg Ser Val Thr Phe Gln Glu Leu Lys Asp Trp Gly Ala Lys Lys Asp Ile Lys Met Ser Pro Ala Pro Ala Asn Lys Val Pro His Ser Ala Ala Asn Leu Pro Leu Arg Phe Gly Arg Asn Ile Glu Asp Arg Arg Ser Pro Arg Ala Arg Ala Asn Met Glu Ala Gly Thr Met Ser His Phe Pro Ser Leu Pro Gln Arg Phe Gly Arg Thr Thr Ala Arg Arg Ile Thr Lys Thr Leu Ala Gly Leu Pro Gln Lys Ser 135 Leu His Ser Leu Ala Ser Ser Glu Leu Leu Tyr Ala Met Thr Arg Gln

His Gln Glu Ile Gln Ser Pro Gly Gln Glu Gln Pro Arg Lys Arg Val 170 Phe Thr Glu Thr Asp Asp Ala Glu Arg Lys Gln Glu Lys Ile Gly Asn 185 Leu Gln Pro Val Leu Gln Gly Ala Met Lys Leu 200 <210> 51 <211> 609 <212> DNA <213> Rattus sp. <400> 51 atggaaatta tttcatcaaa gcgattcatt ttattgactt tagcaacttc aagcttctta 60 acttcaaaca ccctttgttc agatgaatta atgatgcccc attttcacag caaagaaggt 120 tatggaaaat attaccagct gagaggaatc ccaaaagggg taaaggaaag aagtgtcact 180 tttcaagaac tcaaagattg gggggcaaag aaagatatta agatgagtcc agcccctgcc 240 aacaaagtgc cccactcagc agccaacctt cccctgaggt ttgggaggaa catagaagac 300 agaagaagcc ccagggcacg ggccaacatg gaggcaggga ccatgagcca ttttcccagc 360 ctgccccaaa ggtttgggag aacaacagcc agacgcatca ccaagacact ggctggtttg 420 cccagaaat ccctgcactc cctggcctcc agtgaattgc tctatgccat gacccgccag 480 catcaagaaa ttcagagtcc tggtcaagag caacctagga aacgggtgtt cacggaaaca 540 gatgatgcag aaaggaaaca agaaaaata ggaaacctcc agccagtcct tcaaggggct 600 atgaagctg <210> 52 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer <400> 52 27 ttctagattt tggacaaaat ggaaatt <210> 53 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer <400> 53 27 cgtctttagg gacaggctcc agatttc

<210> 54 <211> 430 <212> PRT <213> Homo sapiens

<400> 54 Met Glu Gly Glu Pro Ser Gln Pro Pro Asn Ser Ser Trp Pro Leu Ser Gln Asn Gly Thr Asn Thr Glu Ala Thr Pro Ala Thr Asn Leu Thr Phe 25 Ser Ser Tyr Tyr Gln His Thr Ser Pro Val Ala Ala Met Phe Ile Val 40 Ala Tyr Ala Leu Ile Phe Leu Cys Met Val Gly Asn Thr Leu Val 55 Cys Phe Ile Val Leu Lys Asn Arg His Met His Thr Val Thr Asn Met 70 Phe Ile Leu Asn Leu Ala Val Ser Asp Leu Leu Val Gly Ile Phe Cys Met Pro Thr Thr Leu Val Asp Asn Leu Ile Thr Gly Trp Pro Phe Asp 105 Asn Ala Thr Cys Lys Met Ser Gly Leu Val Gln Gly Met Ser Val Ser 120 Ala Ser Val Phe Thr Leu Val Ala Ile Ala Val Glu Arg Phe Arg Cys 135 Ile Val His Pro Phe Arg Glu Lys Leu Thr Leu Arg Lys Ala Leu Val 155 Thr Ile Ala Val Ile Trp Ala Leu Ala Leu Leu Ile Met Cys Pro Ser Ala Val Thr Leu Thr Val Thr Arg Glu Glu His His Phe Met Val Asp 185 Ala Arg Asn Arg Ser Tyr Pro Leu Tyr Ser Cys Trp Glu Ala Trp Pro 200 Glu Lys Gly Met Arg Arg Val Tyr Thr Thr Val Leu Phe Ser His Ile Tyr Leu Ala Pro Leu Ala Leu Ile Val Val Met Tyr Ala Arg Ile Ala Arg Lys Leu Cys Gln Ala Pro Gly Pro Ala Pro Gly Gly Glu Glu Ala 250 Ala Asp Pro Arg Ala Ser Arg Arg Arg Ala Arg Val His Met Leu 265 Val Met Val Ala Leu Phe Phe Thr Leu Ser Trp Leu Pro Leu Trp Ala 280 Leu Leu Leu Ile Asp Tyr Gly Gln Leu Ser Ala Pro Gln Leu His

295

Leu 305	Val	Thr	Val	Tyr	Ala 310	Phe	Pro	Phe	Ala	His 315	Trp	Leu	Ala	Phe	Phe 320
Asn	Ser	Ser	Ala	Asn 325	Pro	Ile	Ile	Tyr	Gly 330	Tyr	Phe	Asn	Glu	Asn 335	Phe
Arg	Arg	Gly	Phe 340	Gln	Ala	Ala	Phe	Arg 345	Ala	Arg	Leu	Cys	Pro 350	Arg	Pro
Ser	Gly	Ser 355	His	Lys	Glu	Ala	Tyr 360	Ser	Glu	Arg	Pro	Gly 365	Gly	Leu	Leu
His	Arg 370	Arg	Val	Phe	Val	Val 375	Val	Arg	Pro	Ser	Asp 380	Ser	Gly	Leu	Pro
Ser 385	Glu	Ser	Gly	Pro	Ser 390	Ser	Gly	Ala	Pro	Arg 395	Pro	Gly	Arg	Leu	Pro 400
Leu	Arg	Asn	Gly	Arg 405	Val	Ala	His	His	Gly 410	Leu	Pro	Arg	Glu	Gly 415	Pro
Gly	Cys	Ser	His 420		Pro	Leu	Thr	Ile 425	Pro	Ala	Trp	Asp	Ile 430		

<210> 55 <211> 1290 <212> DNA <213> Homo sapiens

<400> 55

atggaggggg agccctccca gcctcccaac agcagttggc ccctaagtca gaatgggact 60 aacactgagg ccacccggc tacaaacctc accttctcct cctactatca gcacacctcc 120 cctgtggcgg ccatgttcat tgtggcctat gcgctcatct tcctgctctg catggtgggc 180 aacaccctgg tctgtttcat cgtgctcaag aaccggcaca tgcatactgt caccaacatg 240 ttcatcctca acctggctgt cagtgacctg ctggtgggca tcttctgcat gcccaccacc 300 cttgtggaca acctcatcac tgggtggccc ttcgacaatg ccacatgcaa gatgagcggc 360 ttggtgcagg gcatgtctgt gtcggcttcc gttttcacac tggtggccat tgctgtggaa 420 aggttccgct gcatcgtgca ccctttccgc gagaagctga ccctgcggaa ggcgctcgtc 480 accategeeg teatetggge cetggegetg etcateatgt gteectegge egteaegetg 540 accetcacce gtgaggagca ccacttcatg gtggacgccc gcaaccectc ctaccetctc 600 tactcctgct gggaggcctg gcccgagaag ggcatgcgca gggtctacac cactgtgctc 660 ttetegeaca tetacetgge geegetggeg eteategtgg teatgtaege eegeategeg 720 cgcaagetet gecaggeec gggeeeggee eeeggggeg aggaggetge ggaeeegega 780 gcatcgcggc gcagagcgcg cgtggtgcac atgctggtca tggtggcgct gttcttcacg 840 ctgtcctggc tgccgctctg ggcgctgctg ctgctcatcg actacgggca gctcagcgcg 900 cegcagetge acctggteac egtetacgee tteccetteg egeactgget ggeettette 960 aacagcagcg ccaaccccat catctacggc tacttcaacg agaacttccg ccgcggcttc 1020 caggeegeet teegegeeeg eetetgeeeg egeeegtegg ggageeacaa ggaggeetae 1080 tecgagegge eeggegget tetgeacagg egggtetteg tggtggtgeg geecagegae 1140 teegggetge cetetgagte gggeeetage agtggggeee ceaggeeegg eegeeteeeg 1200 ctgcggaatg ggcgggtggc tcaccacggc ttgcccaggg aagggcctgg ctgctcccac 1260 ctgccctca ccattccagc ctgggatatc

<210> 56 <211> 1290


```
<212> DNA
<213> Homo sapiens
atggagggg agccctccca gcctcccaac agcagttggc ccctaagtca gaatgggact 60
aacactgagg ccaccccggc tacaaacctc accttctcct cctactatca gcacacctcc 120
cctgtggcgg ccatgttcat tgtggcctat gcgctcatct tcctgctctg catggtgggc 180
aacaccetgg tetgttteat egtgeteaag aaceggeaca tgeatactgt caccaacatg 240
ttcatcctca acctggctgt cagtgacctg ctggtgggca tcttctgcat gcccaccacc 300
cttgtggaca acctcatcac tgggtggccc ttcgacaatg ccacatgcaa gatgagcggc 360
ttggtgcagg gcatgtctgt gtcggcttcc gttttcacac tggtggccat tgctgtggaa 420
aggittccgct gcatcgtgca ccctttccgc gagaagctga ccctgcggaa ggcgctcgtc 480
accategeeg teatetggge cetggegetg eteateatgt gteectegge egteacgetg 540
 accetcacec gtgaggagca ccacttcatg gtggacgccc gcaaccegctc ctaccegctc 600
 tactcctgct gggaggcctg gcccgagaag ggcatgcgca gggtctacac cactgtgctc 660
 ttctcgcaca tctacctggc gccgctggcg ctcatcgtgg tcatgtacgc ccgcatcgcg 720
 cgcaagetet gccaggeec gggeeeggee ecegggggeg aggaggetge ggaeecgega 780
 gcatcgcggc gcagagcgcg cgtggtgcac atgctggtca tggtggcgct gttcttcacg 840
 ctgtcctggc tgccgctctg ggcgctgctg ctgctcatcg actacgggca gctcagcgcg 900
 cegeagetge acetggteac egtetacgee tteccetteg egeactgget ggeettette 960
 aacagcagcg ccaaccccat catctacggc tacttcaacg agaacttccg ccgcggcttc 1020
 caggeegeet teegegeeg ectetgeeg egeeegtegg ggageeacaa ggaggeetae 1080
  teegagegge eeggegget tetgeacagg egggtetteg tggtggtgeg geecagegae 1140
  teegggetge cetetgagte gggeectage agtggggeec ceaggeeegg eegeeteeeg 1200
  ctgcggaatg ggcgggtggc tcaccacggc ttgcccaggg aagggcctgg ctgctcccac 1260
  ctgccctca ccattccagc ctgggatatc
   <210> 57
   <211> 31
   <212> DNA
   <213> Artificial Sequence
   <223> Description of Artificial Sequence: Primer
                                                                      31
   gtcgacatgg agggggagcc ctcccagcct c
    <210> 58
    <211> 29
    <212> DNA
    <213> Artificial Sequence
    <223> Description of Artificial Sequence: Primer
                                                                       29
     actagttcag atatcccagg ctggaatgg
     <210> 59
     <211> 4
     <212> PRT
     <213> Artificial Sequence
```



```
<220>
 <223> Description of Artificial Sequence: Synthetic
       peptide
 <400> 59
 Phe Met Arg Phe
 <210> 60
 <211> 5
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
      peptide
 <400> 60
Leu Pro Leu Arg Phe
  1
<210> 61
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 61
Leu Pro Leu Arg Ser
  1
<210> 62
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 62
Leu Pro Gln Arg Phe
 1
<210> 63
<211> 5
<212> PRT
<213> Artificial Sequence
```


<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 63 Leu Pro Leu Arg Leu