Natural Language Processing

Assist. Prof. Dr. Tuğba YILDIZ

ISTANBUL BİLGİ UNIVERSITY Department of Computer Engineering

April 21, 2017

1 The Task of Text Classification

■ Is it spam?

■ Who wrote Federalistpapers?

- 1787-8: anonymous essays try to convince New York to ratify U.S Constitution: Jay, Madison, Hamilton.
- · Authorship of 12 of the letters in dispute
- 1963: solved by Mosteller and Wallace using Bayesian methods

James Madison

Alexander Hamilton

Male or Female?

- By 1925 present-day Vietnam was divided into three parts under French colonial rule. The southern region embracing Saigon and the Mekong delta was the colony of Cochin-China; the central area with its imperial capital at Hue was the protectorate of Annam...
- Clara never failed to be astonished by the extraordinary felicity of her own name. She found it hard to trust herself to the mercy of fate, which had managed over the years to convert her greatest shame into one of her greatest assets...

■ Positive or Negative Movie Review

- 🦆 🔹 unbelievably disappointing
 - Full of zany characters and richly applied satire, and some great plot twists
- this is the greatest screwball comedy ever filmed
 - It was pathetic. The worst part about it was the boxing scenes.

■ What is the subject of paper?

MeSH Subject Category Hierarchy

- Antogonists and Inhibitors
- Blood Supply
- Chemistry
- Drug Therapy
- Embryology
- Epidemiology

Text Classification

- Assigning subject categories, topics or genres:
- Spam detection
- Authorship identification
- Age/gender identification
- Language identification
- Sentiment analysis

Text Classification: definition

- Input:
 - a document : d
 - a fixed set of classes: C={c1,c2,c3,...cj}
- Output: a predicated class $c \in C$

Classification Methods: Supervised Machine Learning

- Input:
 - a document : d
 - a fixed set of classes: $C = \{c1, c2, c3, ...cj\}$
 - a training set of m hand-labeled documents (d1,c1)...(dm,cm)
- Output: a learned classifier y:d→ c

Classification Methods: Supervised Machine Learning

- Naive Bayes
- Linear Regression
- SVM
- k-nn

- Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature
- It is a classification technique based on Bayes' Theorem with an assumption of independence among predictors.
- Naive Bayes model is easy to build and particularly useful for very large data sets.
- Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods.

- Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x) and P(x|c).
- Look at the equation below:

- P(c|x) is the posterior probability of class (c, target) given predictor (x, attributes).
- P(c) is the prior probability of class.
- P(x|c) is the likelihood which is the probability of predictor given class.
- \blacksquare P(x) is the prior probability of predictor.

Naive Bayes Classifier

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

Naive Bayes Classifier

$$c_{MAP} = \operatorname*{argmax}_{c \in C} P(c \mid d) \qquad \operatorname*{MAP \ is \ ``maximum \ a \ posteriori'' = most \ likely \ class}$$

$$= \operatorname*{argmax}_{c \in C} \frac{P(d \mid c)P(c)}{P(d)} \qquad \operatorname*{Bayes \ Rule}$$

$$= \operatorname*{argmax}_{c \in C} P(d \mid c)P(c) \qquad \operatorname*{Dropping \ the \ denominator}$$

Naive Bayes Classifier

$$\begin{aligned} c_{\mathit{MAP}} &= \operatorname*{argmax}_{c \in C} P(d \mid c) P(c) \\ &= \operatorname*{argmax}_{c \in C} P(x_1, x_2, ..., x_n \mid c) P(c) \end{aligned}$$

Document d represented as features x1..xn

■ Naive Bayes Classifier

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, ..., x_n \mid c) P(c)$$

 $O(|X|^n \bullet |C|)$ parameters

Could only be estimated if a very, very large number of training examples was available.

How often does this class occur?

We can just count the relative frequencies in a corpus

Multinominal Naive Bayes Independence Assumption

$$P(x_1, x_2, \dots, x_n \mid c)$$

- Bag of Words assumption: Assume position doesn't matter
- Conditional Independence: Assume the feature probabilities P(x_i|c_i) are independent given the class c.

$$P(x_1,...,x_n \mid c) = P(x_1 \mid c) \cdot P(x_2 \mid c) \cdot P(x_3 \mid c) \cdot ... \cdot P(x_n \mid c)$$

Multinominal Naive Bayes Independence Assumption

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c_j) \prod_{x \in X} P(x \mid c)$$

- Multinominal Naive Bayes Independence Assumption
 - First attempt: maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}}$$

$$\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

- Problem on MLE
 - What if we have seen no training documents with the word fantastic and classified in the topic positive (thumbs-up)?

$$\hat{P}("fantastic" | positive) = \frac{count("fantastic", positive)}{\sum_{w \in V} count(w, positive)} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

$$c_{MAP} = \operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

■ Laplace (Add-1) Smooting

$$\begin{split} \hat{P}(w_i \mid c) &= \frac{count(w_i, c) + 1}{\sum_{w \in V} \left(count(w, c) + 1 \right)} \\ &= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c) \right) + \left| V \right|} \end{split}$$

- Laplace (Add-1) Smooting
 - From training corpus, extract Vocabulary
 - Calculate $P(c_j)$ terms
 - For each c_j in C do $docs_j \leftarrow$ all docs with class $=c_j$

$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- Calculate $P(w_k \mid c_i)$ terms
 - Text_j ← single doc containing all docs_j
 - For each word w_k in Vocabulary
 n_k ← # of occurrences of w_k in Text_i

$$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

■ Naive Bayes Algorithm - example

```
Weather Play
Sunny No
Overcast Yes
Sunny Yes
Sunny Yes
Sunny Yes
Overcast Yes
Rainy No
Sunny Ves
Sunny No
Sunny Yes
Sunny No
Sunny No
Sunny No
Sunny No
Sunny No
Sunny No
Sunny No
No
Nercast Yes
Rainy No
Overcast Yes
Rainy No
```

- Naive Bayes Algorithm example
 - Convert the data set into a frequency table
 - Create Likelihood table by finding the probabilities
 - Now, use Naive Bayesian equation to calculate the posterior probability for each class. The class with the highest posterior probability is the outcome of prediction.

- Naive Bayes Algorithm example
 - 1 Convert the data set into a frequency table

Weather	Play	П.
Sunny	No	П.
Overcast	Yes	П.
Rainy	Yes	П.
Sunny	Yes	
Sunny	Yes	
Overcast	Yes	
Rainy	No	
Rainy	No	
Sunny	Yes	
Rainy	Yes	
Sunny	No	
Overcast	Yes	
Overcast	Yes	
Rainy	No	П.

Frequency Table										
Weather	No	Yes								
Overcast		4								
Rainy	3	2								
Sunny	2	3								
Grand Total		9								

- Naive Bayes Algorithm example
 - Create Likelihood table by finding the probabilities like Overcast probability = 0.29 and probability of playing is 0.64.

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Dalass	No.

Weather	No	Yes
Overcast		4
Rainy	3	2
Sunny	2	3
Grand Total	5	9

Like	elihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14	1	
	0.36	0.64	1	

- Naive Bayes Algorithm example
- Problem: Players will play if weather is sunny. Is this statement is correct?

Weather	Play								
Sunny	No	Frequ	ency Tabl	le	Like	lihood tab	le		
Overcast	Yes	Weather	No	Yes	Weather	No	Yes		
Rainy	Yes	Overcast		4	Overcast		4	=4/14	0.29
Sunny	Yes	Rainy	3	2	Rainy	3	2	=5/14	0.36
Sunny	Yes	Sunny	2	3	Sunny	2	3	=5/14	0.36
Overcast	Yes	Grand Total	5	9	All	5	9		
Rainy	No					=5/14	=9/14		
Rainy	No					0.36	0.64		
Sunny	Yes								
Rainy	Yes								
Sunny	No								
Overcast	Yes								
Overcast	Yes								
Rainy	No								

- $\qquad \qquad \mathsf{P}(\mathsf{Yes} \mid \mathsf{Sunny}) = (\mathsf{P}(\ \mathsf{Sunny} \mid \mathsf{Yes}) \ * \ \mathsf{P}(\mathsf{Yes})) \ / \ \mathsf{P} \ (\mathsf{Sunny})$
- P (Sunny | Yes) = 3/9 = 0.33
- P(Sunny) = 5/14 = 0.36
- P(Yes) = 9/14 = 0.64
- P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60, which has higher probability.

■ Naive Bayes Algorithm - example

Out	llook		Temp	eratu	re	Hur	nid	ity			Windy		Pla	ıy
	Yes	No		Yes	No		Y	es	No		Yes	Мо	Yes	No
Sunny	2	3	Hot	2	2	High		3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal		6	1	True	3	3		
Rainy	3	2	Cool	3	1									
Sunny	2/9	3/5	Hot	2/9	2/5	High	3	/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6	/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5			Out	look	Temp	Humidity	Wir	ndy Play	
								Sur	-	Hot	High	Fall		\vdash
								Sur		Hot	High	Tru		
									rcast	Hot	High	Fal		
								Rai		Mild	High	Fal		
								Rai		Cool	Normal	Fal		
								Rai	ny	Cool	Normal	Tru	e No	
								Ove	rcast	Cool	Normal	Tru	e Yes	
								Sur	iny	Mild	High	Fal	se No	
								Sur	iny	Cool	Normal	Fall	se Yes	
								Rai	ny	Mild	Normal	Fal	se Yes	
								Sur	iny	Mild	Normal	Tru	e Yes	
								Ove	rcast	Mild	High	Tru	e Yes	
								Ow	rcast	Hot	Normal	Fall	se Yes	5
								Dal			11100			

■ Naive Bayes Algorithm - example

Out	look		Temp	eratu	re	Hui	nidity		١	Vindy		PI	ay
	Yes	No		Yes	Λю		Yes	Мо		Yes	Νο	Yes	Νο
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								
						Outlook	Temp	. 1	lumidity	Windy			
 Ye 	ni v	eri			Į	Sunny	Cool		High	True	?		
(X) = P(X	C,)× I	P(C ₁) =	$\prod_{k=1}^{n} P(x_{i}$	$ C_i \times i$	P(C;)	P("no Normalize e P("ye	es" X) = (" X) = 3 dilmiş ola s") = 0.	8/5 × 1 esiliklar 0053 /	: 3/9 × 3/ 1/5 × 4/5 :: / (0.0053 (0.0053	× 3/5 × + 0.020	5/14 =	= 0.020 0.205	

- Bayes rule applied to document and class
- For a document and a class

	Out	look		Temp	eratu	re	Hui	midity		١	Vindy		PI	ay
	_	Yes	No		Yes	Λю		Yes	No		Yes	Νο	Yes	Νο
	Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
	Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
	Rainy	3	2	Cool	3	1								
	Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
	Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
	Rainy	3/9	2/5	Cool	3/9	1/5								
							Outlook	Temp	. 1	lumidity	Windy	Pla	У	
	 Ye 	ni v	eri				Sunny	Cool		High	True	?		
P(C	P(X) = P(X)	(C _i)× F	P(C;) =	$\prod_{k=1}^{n} P(x)$	$ C_i \times i$	P(C _i)	P("no Normalize e P("ye	es" X) = o" X) = 3 dilmiş ola es") = 0.	3/5 × : esilikla 0053 ;	: 3/9 × 3/ 1/5 × 4/5 :: / (0.0053 (0.0053	× 3/5 × + 0.020	5/14 =	= 0.020 0.205	

Example:

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

Conditional Probabilities:

P(Chinese|c) =
$$(5+1)/(8+6) = 6/14 = 3/7$$

P(Tokyo|c) = $(0+1)/(8+6) = 1/14$
P(Japan|c) = $(0+1)/(8+6) = 1/14$
P(Chinese|j) = $(1+1)/(3+6) = 2/9$

P(Tokyo|j) = (1+1)/(3+6) = 2/9

45
$$P(Japan|j) = (1+1)/(3+6) = 2/9$$

Choosing a class:

$$P(c \mid d5) \propto 3/4 * (3/7)^3 * 1/14 * 1/14$$

 ≈ 0.0003

$$P(j|d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9$$

 ≈ 0.0001

References

Speech and Language Processing (3rd ed. draft) by D.
 Jurafsky & J. H. Martin (web.stanford.edu)