DATA ANALYSIS AND VISUALIZATION

INSTRUCTOR: UMME AMMARAH

CONVOLUTIONAL NEURAL NETWORK (CNN)

COMPUTER VISION PROBLEMS

Image Classification

64x64

→ Cat? (0/1)

Object detection

Neural Style Transfer

DEEP LEARNING ON LARGE IMAGES

 \longrightarrow Cat? (0/1)

64x64

COMPUTER VISION PROBLEM

vertical edges

horizontal edges

VERTICAL EDGE DETECTION

3	0	-0	2-0	7-0	4
T	5	8	9-0	3	Τ.
2	7	2	5	=0	3
0'	0	3	-0	7-0	8
4	2		6	2	8
	, and the second second				

0	-2	-4	-7
-3	-2	-3	-16

VERTICAL EDGE DETECTION

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	7
0	-
0	-

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

*

VERTICAL EDGE DETECTION EXAMPLES

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	ı	0	- [
k	ı	0	- [
		0	- [
,			

U	30	30	U
	30	30	
0	30	30	0
0	30	30	0
0	30	30	0

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

*

-30	-30	0
-30	-30	0
-30	-30	0
-30	-30	0
	-30 -30	-30 -30 -30 -30 -30 -30

VERTICAL AND HORIZONTAL EDGE DETECTION

	0	-
	0	-
I	0	-

0	0	0
-	-	-

Vertical

Horizontal

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

0	0	0
- I	<u> </u>	-

LEARNING TO DETECT EDGES

0	-
0	-
0	-

3	0	_	2	7	4
ı	5	8	9	3	ı
2	7	2	5	ı	3
0	I	3	I	7	8
4	2	I	6	2	8
2	4	5	2	3	9

w_1	W_2	W_3
w_4	W_5	w_6
W_7	W_8	W_9

BUILDING BLOCKS OF CNNS

Multichannel input

BUILDING BLOCKS OF CNN

BUILDING BLOCKS OF CNN

TYPES OF LAYER IN A CONVOLUTIONAL NETWORK:

- Convolution
- Pooling
- Fully connected

CNN

- Convolution by M filters produces M channels.
- They represent an M-channel transformation of the input image I.
- This M-channel image can now be transformed further via additional convolution filters.
- Convolution-subsampling block can be repeated multiple times.

NN VS CNN

- Global receptive fields due to being fully connected.
- Separate weights for each neuron.
- Local receptive fields due to being sparsely connected.
- Shared weights among different neurons.
- Subsampling of each layer's outputs.
- Receptive field of a neuron consists of previous layer neurons that it is connected to (or looking at).

CONVOLUTIONAL LAYER

- Consists of multiple arrays of neurons. Each such array is called a slice or more accurately feature map.
- Each neuron in a feature map
 - is connected to only few neurons in the previous layer, but
 - uses the same weight values as all other neurons in that feature map.
- So within a feature map, we have both
 - local receptive fields, and
 - shared weights.

CONVOLUTIONAL LAYER

- Example: A feature map may have
 - 100 neurons placed in a 10 × 10 array, with
 - \blacksquare each neuron getting input from a 5 \times 5 patch of neurons in the previous layer (receptive field), and
 - the same $26(=5 \times 5 + 1)$ weights shared between these 100 neurons.
- Viewed as detectors, all 100 neurons detect the same 5 × 5 pattern but at different locations of the previous layer.
- Different feature maps will learn to detect different kinds of patterns.
 - For example, one feature map might learn to detect horizontal edges while others might learn to detect vertical or diagonal edges and so on.

CONVOLUTIONAL LAYER

- ► To compute activations of the 100 neurons, a dot-product is computed between the same shared weights and different 5 × 5 patches of previous layer neurons.
- This is equivalent to sliding a window of weights over the previous layer and computing the dot-product at each location of the window.
- ► Therefore, activations of the feature map neurons are computed via convolution of the previous layer with a kernel comprising the shared weights. Hence the name of this layer.

PADDING

VALID AND SAME CONVOLUTIONS

"Valid":

"Same": Pad so that output size is the same as the input size.

STRIDED CONVOLUTION

2 3	3 4	7 3	4 4	6 3	2 4	9 4
6 ¹	6 0	9 1	8 0	7 2	4 0	3 ²
3 -3	4 4	8 3	3 4	8-3	9 4	7 4
7 1	8 0	3 1	6 ⁰	6 2	3 0	4 ²
4 -3	2 4	-3	8 4	3-3	4 4	6 4
3 1	2 0	4 1	1 0	9 1	8 0	3 ²
0 -1	1 0	3 -3	90	2-3	1 0	4 3

3	4	4
	0	2
- I	0	3

*

SUMMARY OF CONVOLUTIONS

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

CONVOLUTIONS ON RGB IMAGES

CONVOLUTIONS ON RGB IMAGE

*

*

$$3 \times 3 \times 3$$

4 x 4

SUBSAMPLING LAYER

- Reduces the spatial dimensions of the previous layer by downsampling. Also called pooling layer.
- No adjustable weights. Just a fixed down sampling procedure.
- Reduces computations in subsequent layers.
- Reduces number of weights in subsequent layers. This reduces overfitting
- Note that pooling with larger receptive fields discards too much data.
- Subsampling layer can be skipped if convolution layers uses stride>I since that also produces a subsampled output.

POOLING

- ► Options: From non-overlapping 2 × 2 patches
 - pick top-left (standard downsampling by factor 2)
 - pick average (mean-pooling)
 - pick maximum (max-pooling)
 - pick randomly (stochastic-pooling)

max pool with 2x2 filters and stride 2

6	8
3	4

POOLING LAYER

A pooling layer

- ightharpoonup with $F \times F$ receptive field and stride S,
- ▶ "looking at" a $W_1 \times H_1 \times D_1$ input volume,
- ightharpoonup produces a $W_2 \times H_2 \times D_2$ output volume, where
 - $W_2 = \frac{W_1 F}{S} + 1$
 - $H_2 = \frac{H_1 F}{S} + 1$
 - $D_2 = D_1$.

POOLING LAYER: MAX POOLING

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

POOLING LAYER: MAX POOLING

1	3	2	1	3
2				5
8				0
5	6		2	9

POOLING LAYER: AVERAGE POOLING

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

SUMMARY OF POOLING

Hyperparameters:

f: filter size

s:stride

Max or average pooling

FULLY CONNECTED LAYERS

- After flattening, a fully connected MLP can be used.
- ► The last layer has
 - neurons equal to the desired output size, and
 - activation functions based on the problem to be solved.
- The flattened layer can therefore be viewed as a transformation $\phi(x)$ that is fed into an MLP.
- Similarly, outputs of earlier layers are intermediate representations of the input.

INTERMEDIATE REPRESENTATION

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

INTERMEDIATE REPRESENTATION

PUTTING IT TOGETHER

Training set $(x^{(1)}, y^{(1)}) \dots (x^{(m)}, y^{(m)})$.

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J