Course Outline - Chemistry at the Nanometer Scale [H06A6A]

A. Introduction

- > Chapter 0: Introduction
- > Chapter 1: Nanosafety

B. Supramolecular Chemistry and Self-Assembly

- > Chapter 2: Supramolecular Chemistry (molecular recognition)
 - Introduction
 - Molecular recognition
 - Preorganization
 - o Intermolecular interactions involved in self-assembly
 - H-bonding
 - Metal-ligand
 - Pi-pi
 - Hydrophobic
- Chapter 3: Self-Assembly (general)
 - o Supramolecular electronics
 - Via H-bonds and pi-pi interactions
 - o H-bonded polymers
 - o Non-infinite aggregates

> Chapter 4: Self-Assembly (in water)

- o Micelles
- Vesicles
- o Shape-structure concept
- A special application
- Chapter 5: Self-Assembly (stabilization)
 - Stabilization of:
 - Vesicles
 - Micelles
- > Chapter 6: Large Building Blocks
- Chapter 7: Liquid Crystals
 - o The basics
 - o From simple to complex
 - Selected applications
- > Chapter 8: Bio-mineralization
 - Templating mineral formation
 - From biominerals to functional materials
- > Chapter 9: Nanomotors
 - o Myosin-actin motor
 - o Kinesin motor
 - o Bacterial flagellar motor
 - o F₁-ATPase motor
 - o Synthetic motors
 - o Applications
 - Catalysis
 - Electronics
 - Mechanics

C. Organization of Matter on Surfaces at the Nanometer Scale

- Chapter 10: Scanning probe microscopy
 - o Intro
 - Scanning tunneling microscopy (STM)
 - Atomic force microscopy (AFM)

- > Chapter 11: Langmuir-Blodgett Films
- Chapter 12: Layer-by-Layer Deposition
 - o Monitoring layer build-up (ex situ)
 - UV-Vis
 - X-ray reflectometry
 - Quartz crystal microbalance (QCM)
 - Monitoring layer build-up (in situ)
 - Zeta potential
 - Post-preparation treatment
 - Multi-layer structure (zone model)
 - Polyelectrolytes
 - Spatially-graded composition LbL films
 - o Crystal engineering: oriented zeolite films
 - o Chemical reactions in films
 - Colloid coating
 - Formation of hollow particles

Chapter 13: Self-Assembled Monolayers (SAM) vs Covalent Grafting

- SAM end groups and substrates
- Effect of substrate symmetry: Au vs. Ag
- Head group effects on contact angle
- o Techniques for characterizing alkanethiol SAMs on Au
- o Methods/ligands for functionalizing SAM surfaces
- Applications
 - Controlling/changing surface wettability, using:
 - Surface energy gradients
 - Light
 - Electrical stimulus
 - Electrical control
 - Bio-related applications of SAMs
 - Electrically contacting SAMs
 - Scanning probe lithograpy
 - Nanoshaving
 - Nanografting
 - Dip-pen
- Self-assembly versus covalent grafting

Chapter 14: Soft-Lithography

- Microcontact printing
- Micromolding and related techniques
 - Overview
 - Replica molding
 - Microtransfer molding
 - Micromolding in capillaries
 - Solvent-assisted micromolding
- Nanoimprinting lithography

Chapter 15: Molecular Nanopatterns on Surfaces

- o Ordering with non-covalent interactions
- o Templating
- o Reactivity
- Spectroscopy
- Beyond molecular nanopatterns: the case of DNA (DNA origami)

Chapter 16: Block Copolymers (thin films)

- o Amphiphiles (copolymers):
 - In solution
 - In bulk (thin films)
 - Spatial confinement

- Epitaxial self-assembly
- Nanocomposites

D. Microporous and mesoporous materials

> Chapter 17: Microporous and Mesoporous Materials

- Control over pore size and functionality
 - Modular self-assembly of MOFs
 - Mesoscale soft building blocks
 - Block copolymers
- Micro- and mesoporosity in 2D
 - Metal-ligand interactions
 - H-bonding
 - VdW interactions

E. Nanoparticles (preparation and properties)

> Chapter 18: Nanocrystals

- Size-dependent properties (intro)
- Metal nanoparticles
 - Size-dependent properties
 - Surface plasmon resonance
 - Current-voltage characteristics
 - Synthesis
 - Nucleation theory
 - Water-based synthesis
 - Organic solution-based synthesis
 - Ligand chemistry
 - Place exchange
 - Functionalization
 - NP encapsulation
 - Polymer-stabilized nanoclusters
 - Dendron-stabilized nanoparticles
 - Application: Catalysis
 - Homogeneous catalysis:
 - o In water
 - o In organic solvents
 - In fluorous/organic biphasic solvents
 - Surfactants as templates
 - Reactivity towards oxidation
 - Surface-enhanced Raman spectroscopy (SERS)
 - Metal-clusters as emissive centers
 - Fluorescence from small silver clusters
 - Zeolites as host material for silver clusters
 - Thermally created luminescent material
 - Energy conversion for solar panels
- Semiconductor nanoparticles
 - Size-dependent properties
 - Bulk semiconductors
 - Nanocrystalline semiconductors (optical properties)
 - Synthesis
 - Arrested precipitation in solution
 - Synthesis in structure medium
 - Molecular precursor method (monodisperse NCs)
 - Example: CdSe

- Growth kinetics
 - o Core/shell structures
- Optical and electronic properties of NC assemblies
- Soft lithography of capped nanoclusters
- Organizing NCs by evaporation
- o Applications
 - Bioscience
 - · Coupling inorganic NPs and biomolecules
 - DNA-manipulated self-assembly and aggregation
 - Biosensing and biolabeling
 - Materials science
 - Heterogeneous catalysis

> Chapter 19: Nanotubes, Nanorods, Nanowires

- o Metallic nanorods
 - Preparation and characteristics of barcoded Au composite nanorods
 - Self-assembly of nanorods
 - DNA end-functionalization
 - Magnetic materials
 - Hierarchical ordering
 - Nanoelectronics
- Semiconductor nanowires
 - Anisotropic crystal growth (methods)
 - Capping agents
 - Template-directed synthesis, against
 - o Features on solid substrate
 - SA molecular structures
 - Channels in porous materials
 - Vapor-liquid-solid synthesis (VLS) of single-crystal nanowires
 - · Example: Ge wire from Au catalyst
 - Example: Si wire from Fe-Si nanocluster
 - Longitudinal superlattices
 - Axial nanowire heterostructures
 - Branching
 - Single-source precursors
- Properties and applications
 - Reduction in melting point
 - Mechanical properties
 - Electron transport properties (w/ QSE's)
 - Optical properties (w/ QSE's)
- Inorganic nanotubes
 - Growth methods
 - Examples:
 - Mo₂S nanotubes
 - WS₂ nanotubes
 - CdSe nanotubes
 - VO_x nanotubes
 - TiO₂ nanotubes
 - Porous template-confined growth
 - o Polymer fibers as templates
 - SiO₂ nanotubes
 - Template coating
 - Useful properties
- Organic nanotubes
 - Fullerenes
 - Carbon nanotubes

- TubeFETS
- CNTs as sensors
- Aligning CNTs

F. 2D materials

> Chapter 20: 2D Materials