Static Sensor Characteristics

Static characteristics

- Static characteristics describe the behaviour of our sensor in steady state - when all transient behaviour has decayed.
- The transient or dynamic behaviour describes how the sensor responds to changing input.
 - Influenced by energy storage elements mass, compliance, inductance, capacitance etc.

The ideal sensor Slope = sensitivity

- An ideal sensor has a linear relationship between input/output.
- Sensitivity is the constant of proportionality relating input and output.

Real sensors: offset, non-linearity

- Offset describes a fixed additional component of the output, irrespective of the input.
- Linearity describes how close the actual output response is compared to the ideal linear response.

Real sensors: limited range

- A sensor has a range limited since at some point the input/output relationship breaks down. Could be caused by;
 - Deviation from linear relationship
 - Physical limit on input/output

Real sensors: Noise

 Noise is used to describe a random variation in the output that is not a function the input.

Real sensors: Hysteresis

- Hysteresis can be thought of as a delay or an offset with sign determined direction of change of input.
- Friction or backlash can create hysteresis.

Real sensors: changing relationship

 Some sensors feature a sensitivity (or offset etc) that is a function of some other variable. Temperature is a common cause of this type of effect.

Quantifying real sensors: Accuracy

- Accuracy is the ability of the sensor to output a measured value close to the real value. It is described in terms of error.
 - Can be absolute;

Absolute error = measured value - real value

Or relative;

Quantifying real sensors: Precision

- Precision describes the agreement between successive readings i.e. If repeatedly given the same input conditions, how close are the outputs.
- Related to the variance of a set of readings
- Similar terms are 'repeatability' and 'reproducibility'

Quantifying real sensors: Precision

- Precision is somewhat harder to define than accuracy
- In statistics it is formally the inverse of the variance
 - Large variance = low precision
 - But units are awkward $-\frac{1}{units_of_measurement^2}$
 - Also may not have enough measurement points for this to be valid
- Maybe better to quote range e.g. Max min
- or the greatest deviation from average.

Quantifying real sensors: Precision

Repeatability

 Normally describes when the same measurement is made by the same person, with the same equipment at short time intervals.

Reproducibility

 Describes the situation where measurements are made sometime apart, perhaps by differing people with differing equipment.

Target Analogy

- High precision
- Poor accuracy

- Higher accuracy
- Lower precision

Drift

- Drift describes a slow change in indicated value or sensor characteristics.
- Some sensors feature drift in the medium term due to thermal effects and require a period of stabilization before a reading can be taken.
- Over longer timescales components 'age' and their characteristics change over time. Old equipment tends to be less accurate for this reason

Resolution

- Resolution is the smallest change in input that is detectable at the output.
- A sensor with poor accuracy can have high resolution – (many consumer devices behave like this)
- Sensor resolution will generally be limited by random errors.

Resolution with Digital Systems

 Systems incorporating analogue to digital conversion have a maximum accuracy determined by the number of bits and maximum range, e.g. 8 bits give 256 discrete levels.

Systematic errors

- Error caused by effects such as nonlinearity, offset or influence of temperature are repeatable and predictable.
- These are described as systematic errors
 - Compare with 'systematic failures' in safety analysis
- It is possible to compensate for these errors if they are known.

Systematic error mitigation

- If the output is non-linear we could:
 - Apply compensation algorithm
 - Useful if relationship follows simple form
 - Use a 'look-up' table
 - Useful if relationship is complex or cannot easily be described mathematically
 - + Can be executed quickly by a computer
 - Limited by size of table number of input/outputs

Systematic error mitigation

 If the output is influenced by temperature we could:

Measure temperature also and apply compensation

 As in the case of a strain gauge, combine outputs that they negate the effect of temperature

Thermistor non-linearity

Thermistors have a very non linear temperature response and manufactures provide tables to allow compensation to be applied.

Random errors

- Errors caused by noise are random
 - Compare with random failure
- Can arise from;
 - Electrical interference e.g. Mains pick-up.
 - Physical variations in sensing devices, etc.
- Random errors can sometimes be reduced by signal processing, e.g. filtering, but always at the expense of information.

Random errors

- Averaging is a form of filtering if we have lots of measurements we can average to gain a more accurate estimate.
- If we assume our measurements are subject to random error it will have a normal distribution and we can estimate the standard error (how close the SD of our data is the true SD)

$$\sigma_{SE} = \frac{\sigma}{\sqrt{n}}$$
 Where n = number of samples

- To make our estimate twice as good we need to average 4X as many samples
- Averaging reduces the apparent sampling rate frequency information is lost

Target Analogy – random / systematic

