## SEGUNDO PARCIAL 4/7/19

| 1 | 2 | 3 | 4 | 5 | Calificación |
|---|---|---|---|---|--------------|
|   |   |   |   |   |              |
|   |   |   |   |   |              |

Nombre y Apellido:

Número de libreta:

**Ejercicio 1.** Andrey colecciona figuritas de un álbum compuesto por N figuritas distintas. Consigue sus figuritas comprando una por día. Cada vez que adquiere una, ésta tiene igual probabilidad de ser cualquiera de las N que componen el álbum. Sea X el número de figuritas distintas que tiene después de comprar k figuritas. Hallar  $\mathbb{E}(X)$  y  $\mathrm{Var}(X)$ .

**Ejercicio 2.** Sea  $U \sim \mathcal{U}(0,6)$ . Para cada  $n \in \mathbb{N}$  consideramos las variables aleatorias  $X_n$  tales que  $X_n|_{U=u} \sim N\left(\frac{u^2}{n}, \frac{1}{n^2}\right)$ .

- (a) Para cada  $n \in \mathbb{N}$ , calcular  $\mathbb{E}(X_n)$  y  $\operatorname{Var}(X_n)$ . Sugerencia: use que  $\operatorname{Var}(X) = \operatorname{Var}[\mathbb{E}(X|Y)] + \mathbb{E}[\operatorname{Var}(X|Y)]$  y no haga demasiadas cuentas.
- (b) Probar que  $X_n \xrightarrow{p} 0$ .
- (c) Hallar  $n \in \mathbb{N}$  de manera que

$$\mathbb{P}\left(\frac{12-\sqrt{n}}{n} < X_n < \frac{12+\sqrt{n}}{n}\right) \ge 0.99$$

**Ejercicio 3.** Sea  $(U_n)_{n\in\mathbb{N}}$  una sucesión de variables aleatorias independientes con  $U_n \sim \mathcal{U}[0,1]$ . Definimos  $X_n = n^{-U_n}$ .

- (a) Probar que  $X_n \xrightarrow{p} 0$ .
- (b) Probar que  $\mathbb{P}(\liminf_n X_n = 0) = 1$ .
- (c) Probar que  $\mathbb{P}(\limsup_n X_n = 1) = 1$ .
- (d) Concluir que  $X_n$  no converge casi seguro.

## Ejercicio 4.

(a) Para la siguiente cadena explicitar la matriz asociada Q y hallar la distribución estacionaria  $\pi$ .



(b) Definimos  $N_B = \min\{n \in \mathbb{N} : X_n = B\}$ . Hallar  $\mathbb{E}[N_B|X_0 = B]$ . Sugerencia: considere  $\mathbb{E}[N_B|X_0 = A]$  y  $\mathbb{E}[N_B|X_0 = C]$ , o calcule  $\mathbb{P}(N_B = k|X_0 = B)$ . Observación: notar que  $\mathbb{E}[N_B|X_0 = B] = \frac{1}{\pi_B}$ . Esto vale en general, la idea no es que usen este resultado si no que lo verifiquen en este caso particular.

Ejercicio 5. Sea  $X_1,...,X_n$  una muestra aleatoria de una distribución con densidad

$$f_{\theta}(x) = e^{-(x-\theta)} \mathbf{1}_{[\theta,+\infty)}(x)$$

- (a) Encontrar el estimador de máxima verosimilitud  $\bar{\theta}$  de  $\theta$  basado en tal muestra.
- (b) Probar que el EMV hallado es fuertemente consistente, es decir  $\overline{\theta} \xrightarrow{cs} \theta$