18.745 Introduction to Lie Algebras

g-module.

December 2, 2010

Lecture 23 — Decomposition of Semisimple Lie Algebras

Prof. Victor Kac Scribe: William Steadman and Yifan Wang

Notation 23.1. First, we recall some facts from lecture 22. Let \mathfrak{g} be a Lie algebra and V a

- $Z^1(g,v) = \{f : \mathfrak{g} \mapsto V | f([a,b]) = af(b) bf(a) \}$ is the space of 1-cocycles.
- $Z^1(\mathfrak{g},v)$ contains the subspace $B^1(\mathfrak{g},V)=\{f_v|f_v(a)=av\}$ of trivial 1-cocycles.
- $H^1(\mathfrak{g}, v) = Z^1(\mathfrak{g}, V)/B^1(\mathfrak{g}, V)$ is the first cohomology.
- $\Omega = \sum_{j} a_{j}b_{j}$ and is called the Casamir operator.

From now on, \mathfrak{g} is a finite dimensional semisimple Lie algebra over an algebraically closed field \mathbb{F} of characteristic 0. We will prove that $H^1(\mathfrak{g}, V) = 0$ for any \mathfrak{g} -module V. This will be used to prove the Weyl's Complete Reducibility Theorem and Levi's Theorem.

The following exercise follows from the definitions and will be used to prove $H^1(\mathfrak{g}, V)$ vanishes.

Exercise 23.1. $H^1(\mathfrak{g}, V_1 \oplus V_2) = H^1(\mathfrak{g}, V_1) \oplus H^1(\mathfrak{g}, V_2)$, where the V_i are \mathfrak{g} -modules.

Proof. [Solution] First we show that $Z(\mathfrak{g}, V_1 \oplus V_2) = Z(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)$. It is clear that $Z(\mathfrak{g}, V_1 \oplus V_2) \supset Z(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)$. Furthermore, every 1-cocycle $\varphi \in Z(\mathfrak{g}, V_1 \oplus V_2)$ can be decomposed as $\pi_1 \circ \varphi \oplus \pi_2 \circ \varphi \in Z(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)$.

It is also clear that $B(\mathfrak{g}, V_1 \oplus V_2) = B(\mathfrak{g}, V_1) \oplus B(\mathfrak{g}, V_2)$ since $\varphi_{v_1 \oplus v_2} = \varphi_{v_1} \oplus \varphi_{v_2}$.

Therefore
$$H^1(\mathfrak{g}, V_1 \oplus V_2) = Z(\mathfrak{g}, V_1 \oplus V_2)/B(\mathfrak{g}, V_1 \oplus V_2) = Z(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)/B(\mathfrak{g}, V_1) \oplus B(\mathfrak{g}, V_2) = Z(\mathfrak{g}, V_1)/B(\mathfrak{g}, V_1) \oplus Z(\mathfrak{g}, V_2)/B(\mathfrak{g}, V_2) = H^1(\mathfrak{g}, V_1) \oplus H^1(\mathfrak{g}, V_2).$$

We will also use the following lemma from lecture 22 and a corollary.

Lemma 23.1. If \mathfrak{g} is a Lie algebra with an invariant non-degenerate bilinear form (.,.), a_i,b_i are dual basis of \mathfrak{g} (i.e $(a_i,b_j)=\delta_{ij}$) and $f\in Z^1(\mathfrak{g},V)$:

$$a\sum_{j}a_{j}f(b_{j})=\Omega(f(a)), \forall a\in\mathfrak{g}.$$

Corollary 23.2. The Casamir operator commutes with the action of \mathfrak{g} on any \mathfrak{g} -module V i.e. $a(\Omega(v)) = \Omega(av)$ for any $a \in \mathfrak{g}, v \in V$.

Proof. Take $f = f_v$. The equation in the lemma becomes:

$$a(\Omega(v)) = a \sum_{j} a_j b_j(v) = \Omega(a(v))$$

Theorem 23.3 (Vanishing Theorem). If V is a finite dimensional \mathfrak{g} -module, then $H^1(\mathfrak{g}, V) = 0$.

Proof. By Corollary 23.2, Ω commutes with the action of \mathfrak{g} on V. This means the generalized eigenspace decomposition for Ω acting on $V = \bigoplus_{\lambda \in \mathbb{F}} V_{\lambda}$ is \mathfrak{g} -invariant i.e. all the subspaces V_{λ} are \mathfrak{g} -invariant. Let $V' = \bigoplus_{\lambda \neq 0} V_{\lambda}$, so that $V = V_0 \oplus V'$. As both V_0 and V' are \mathfrak{g} -invariant, they both are \mathfrak{g} -submodules of V.

By Exercise 23.1 $H^1(\mathfrak{g}, V) = H^1(\mathfrak{g}, V_0) \oplus H^1(\mathfrak{g}, V')$. We will prove both of these terms equal 0. First, consider $H^1(\mathfrak{g}, V_0)$.

Let $f: \mathfrak{g} \mapsto V_0$ be a 1-cocycle.

Let $\mathfrak{g}_0 = \{a \in \mathfrak{g} | aV = 0\}$. This is the kernel of the representation $\mathfrak{g} \mapsto EndV$ and therefore an ideal of \mathfrak{g} . Since \mathfrak{g} is semisimple, the ideal \mathfrak{g}_0 is also semisimple. Since \mathfrak{g}_0 is semisimple, $\mathfrak{g}_0 = [\mathfrak{g}_0, \mathfrak{g}_0]$. For $a, b \in \mathfrak{g}_0$, f[a, b] = af(b) - bf(a) = 0 - 0 = 0. $f[\mathfrak{g}_0, \mathfrak{g}_0] = 0$ and thus $f[\mathfrak{g}_0] = 0$. This means that $\bar{f} : \bar{\mathfrak{g}} = \mathfrak{g}/\mathfrak{g}_0 \mapsto V$ is a well-defined map.

Without loss of generality we may assume that $\mathfrak{g} = \bar{\mathfrak{g}}$, for any 1-cocycle of \mathfrak{g} induces one on $\bar{\mathfrak{g}}$ and vice versa.

We now specify an invariant bilinear form on \mathfrak{g} . Take for (.,.) on \mathfrak{g} the trace form of \mathfrak{g} on V_0 : $(a,b)_V = tr_{V_0}ab$. By Cartan's criterion, this trace form is non-degenerate as $\bar{\mathfrak{g}}$ is a semisimple Lie algebra by assumption and the representation $\bar{\mathfrak{g}} \mapsto V_0$ is faithful by the construction of $\bar{\mathfrak{g}}$.

$$tr_V(\Omega) = \sum_i tr_V a_i b_i = \sum_i (a_i, b_i)_V = dim\mathfrak{g},$$

where a_i, b_i are dual basis.

 $\Omega|_{V_0}$ is nilpotent and therefore $tr_V(\Omega)=0$. This implies $\mathfrak{g}=0$ which implies $H^1(\mathfrak{g},V_0)=0$.

Now to prove that $H^1(\mathfrak{g}, V') = 0$,

For any 1-cocycle $f: \mathfrak{g} \mapsto V'$, by Lemma 23.1, $a(m) = \Omega(f(a))$ where $m = \sum_i a_i(f(b_i)) \in V'$. But $\Omega|_{V'}$ is an invertible operator and $\Omega a = a\Omega$, so that $f(a) = \Omega^{-1}am = a\Omega^{-1}m$. $f = f_{\Omega^{-1}m}$ is a trivial 1-cocycle and $H^1(\mathfrak{g}, V') = 0$.

Remark 23.1. A couple notes on the proof. When V is finite dimensional, $V = V_0 \oplus V'$ over any field \mathbb{F} and operator Ω . Where $\Omega|_{V_0}$ is nilpotent and $\Omega|_{V'}$ is invertible. We do not need to assume that \mathbb{F} is algebraically closed.

The assumption of semisimplicity was used to prove a non-degenerate invariant bilinear form exists. Does the converse hold, that if $H^1(V, \mathfrak{g}) = 0$ then \mathfrak{g} is semisimple?

With the Vanishing Theorem one can prove these theorems about semisimple Lie algebras.

Theorem 23.4 (Weyl Complete Reducibility Theorem). If $char \mathbb{F} = 0$ and V is a finite dimensional module over a semisimple Lie algebra \mathfrak{g} , then for any submodule U of V there exists a complementary submodule U' so that $V = U \oplus U'$.

Note that since V is finite dimensional it follow from this theorem that V is isomorphic to the direct sum of irreducible \mathfrak{g} -modules.

Theorem 23.5 (Levi's Theorem). If \mathfrak{g} is a finite dimensional Lie algebra over a field \mathbb{F} of characteristic 0, and $R(\mathfrak{g})$ is the radical then \mathfrak{g} contains a subalgebra s complementary to $R(\mathfrak{g})$ Furthermore, $\mathfrak{g} = s \ltimes R(\mathfrak{g})$.

Definition 23.1. s is called a Levi factor.

Theorem 23.6 (Mal'cev Theorem). All Levi factors s in \mathfrak{g} are conjugate to each other by an automorphsim of \mathfrak{g} .

Remark 23.2. The proofs use projection operators in a vector space V. A projector P of a subspace U of V is an endomorphism of V such that: $P(V) \subset U$ and P(u) = u for $u \in U$.

Note that if P_0 is a projection operator from V to U, then any other projector of V to U has the form $P = P_0 + A$ where $A(V) \subset U, A(u) = 0$.

Proof: Weyl Complete Reducibility Theorem. Consider the space End V with the following \mathfrak{g} -module structure: $a(A) = \pi(a)A - A\pi(a)$. where $a \in \mathfrak{g}, A \in \text{End } V$ $\pi : \mathfrak{g} \mapsto \text{End } V$ is the representation of \mathfrak{g} on V. This satisfies the properties of a \mathfrak{g} -module by the Jacobi identity.

Fix a projector $P_0: V \mapsto U$ and consider the corresponding trivial 1-cocycle. $f_{P_0} = a(P_0) = \pi(a)P_0 - P_0\pi(a)$. Let $M \subset EndV$ be the following subspace: $M = \{A|A(V) \subset U, A(U) = 0\}$. Let $A \in M$ then

$$(\pi(a)A - A\pi(a))v = \pi(a)u - Av' \in U.$$

$$(\pi(a)A - A\pi(a))u = 0 - Au' = 0.$$

We know $f_{P_0}: \mathfrak{g} \mapsto EndV$, but in fact $f_{P_0}: \mathfrak{g} \mapsto M$ since

$$(\pi(a)P_0 - P_0\pi(a))v = \pi(a)u - P_0v' \in U$$

$$(\pi(a)P_0 - P_0\pi(a))u = \pi(a)u - \pi(a)u = 0$$

Therefore, $f_{P_0} \in Z^1(\mathfrak{g}, M)$.

By the Vanishing Theorem, $H^1(\mathfrak{g}, M) = 0$, so f_{P_0} is a trivial 1-cocycle and $f_{P_0}(a) = A\pi(a) - \pi(a)A$ for some $A \in M$. Rearranging this gives: $(\pi(a))(P_0 - A) = (P_0 - A)(\pi(a))$ In other words, $P_0 - A$ is a new projector P of V with $a(P_0 - A) = 0$

Letting $U' = \ker P$ we get $V = U \oplus U'$ where U' is \mathfrak{g} -invariant, since the projector P commutes with \mathfrak{g} .

U and U' are our complementary g-submodules.

The proof of Levi's Theorem follows the same method.

Proof: Levi's Theorem. We prove it by induction on $dim\mathfrak{g}$. The case $dim\mathfrak{g}=1$ is obvious.

Case 1 $R(\mathfrak{g})$ is not abelian. Consider the Lie algebra $\bar{\mathfrak{g}} = \mathfrak{g}/[R(\mathfrak{g}), R(\mathfrak{g})]$, where $\dim \bar{\mathfrak{g}} < \dim \mathfrak{g}$ and we apply the inductive assumption. $\bar{\mathfrak{g}} = \bar{s} \ltimes R(\bar{\mathfrak{g}})$. Let \mathfrak{g}_1 be the premiage of \bar{s} in \mathfrak{g} . Then $\mathfrak{g} = \mathfrak{g}_1 + R(\mathfrak{g})$ with $\dim \mathfrak{g}_1 < \dim \mathfrak{g}$. By the inductive assumption, $\mathfrak{g}_1 = s \ltimes R(\mathfrak{g}_1)$. and $\mathfrak{g} = s \ltimes (R(\mathfrak{g}_1) + R(\mathfrak{g}))$.

Exercise 23.2. $R(\mathfrak{g}_1) + R(\mathfrak{g})$ is a solvable ideal of \mathfrak{g} , since $R(\mathfrak{g})$ is a maximal solvable ideal of \mathfrak{g} so $R(\mathfrak{g}_1) \subset R(\mathfrak{g})$, show that $g = R(g) \ltimes s$.

Proof. [Solution] $R(\mathfrak{g}_1) + R(\mathfrak{g})$ is an ideal of \mathfrak{g} : Write an arbitrary element of $R(\mathfrak{g}_1) + R(\mathfrak{g})$ as a + b, where $a \in R(\mathfrak{g}_1)$ and $b \in R(\mathfrak{g})$. Write an arbitrary element of \mathfrak{g} as c + d, where $c \in \mathfrak{g}_1$ and $d \in R(\mathfrak{g})$. Then [a + b, c + d] = [a, c] + [a, d] + [b, c + d].

We have $[a,c] \in R(\mathfrak{g}_1)$ because $R(\mathfrak{g}_1)$ is an ideal of \mathfrak{g}_1 , $[a,d],[b,c+d] \in R(\mathfrak{g})$ because $R(\mathfrak{g})$ is an ideal. Furthermore, $R(\mathfrak{g}_1) + R(\mathfrak{g})$ is solvable. Assume $R(\mathfrak{g}_1)^{(m)} = 0$, and $R(\mathfrak{g})^{(n)} = 0$, then $(R(\mathfrak{g}_1) + R(\mathfrak{g}))^{(m)} \subseteq R(\mathfrak{g}_1)^{(m)} + R(\mathfrak{g}) = R(\mathfrak{g})$. Hence, $(R(\mathfrak{g}_1) + R(\mathfrak{g}))^{(mn)} = 0$. Thus, we have a solvable ideal of \mathfrak{g} which contains $R(\mathfrak{g})$, so we conclude that our ideal is in fact $R(\mathfrak{g})$, and $R(\mathfrak{g}_1) \subset R(\mathfrak{g})$. Hence we conclude

$$\mathfrak{g} = s \ltimes R(\mathfrak{g}).$$

Case 2 $R(\mathfrak{g})$ is abelian. Construct the following \mathfrak{g} -module structure on the space End \mathfrak{g} : $a(m) = (ad \ a)m - m(ad \ a), m \in End\mathfrak{g}$.

Let $\tilde{M} = \{ m \in \text{End } \mathfrak{g} | m(\mathfrak{g}) \subset R(\mathfrak{g}), m(R(\mathfrak{g})) = 0 \}$. Since $R(\mathfrak{g})$ is an ideal of \mathfrak{g} , \tilde{M} is a \mathfrak{g} -submodule of End \mathfrak{g} . Next let $\tilde{R} = \{ \text{ad } a | a \in R(\mathfrak{g}), \text{ which is also a } \mathfrak{g}$ -module.

Finally, put $M = \tilde{M}/\tilde{R}$. This is a g-module as it is the quotient of two g-modules.

Exercise 23.3. Show that M is an s-module and that $R(\mathfrak{g})$ acts on M trivally.

Proof. [Solution] $R(\mathfrak{g})$ acts trivially on M because $R(\mathfrak{g})$ is abelian. $[R(\mathfrak{g}), \tilde{M}] = 0$. Therefore, M is an s-module because we let \tilde{s} be the preimage of s in \tilde{M} and define $s(m) = \tilde{s}(m)$. As $R(\mathfrak{g})$ acts trivially, this is well-defined.

Now fix a projector P_0 of \mathfrak{g} on $R(\mathfrak{g})$.

Exercise 23.4. Prove that $f(a) = (\operatorname{ad} \tilde{a})P_0 - P_0(\operatorname{ad} \tilde{a})$, where \tilde{a} is the preimage of $a \in \mathfrak{g}$ under the canonical map $\mathfrak{g} \mapsto \mathfrak{g}/Rad(\mathfrak{g}) = s$, is a well-defined 1-cocycle of s in $M = \tilde{M}/\tilde{R}$.

Proof. [Solution] First we need to show that f is well defined on M. For any $r \in \tilde{R}$, $(\mathbf{ad} \ (\tilde{a}+r))P_0 - P_0(\mathbf{ad} \ (\tilde{a}+r)) = (\mathbf{ad} \ \tilde{a})P_0 + (\mathbf{ad} \ r)P_0 - P_0(\mathbf{ad} \ \tilde{a} + \mathbf{ad} \ r) = (\mathbf{ad} \ \tilde{a})P_0 - P_0(\mathbf{ad} \ \tilde{a}) + 0 - (\mathbf{ad} \ r)$ This is because P_0 is the identity on $R(\mathfrak{g})$ and $R(\mathfrak{g})$ is abelian, so $\mathbf{ad} \ r(R(\mathfrak{g}) = 0)$. f is well-defined on M.

To show that it is a 1-cocycle we compute the necessary identity: $f[a,b] = (\mathbf{ad} \ [\tilde{a},\tilde{b}])P_0 - P_0(\mathbf{ad} \ [\tilde{a},\tilde{b}])$. Here we use that the fact that the pullback map respects the Lie bracket.

$$\begin{array}{lll} a(f(b)) - b(f(a)) &= (\mathbf{ad} \ a) f(b) - f(b) (\mathbf{ad} \ a) - (\mathbf{ad} \ b) f(a) + f(a) (\mathbf{ad} \ b) &= (\mathbf{ad} \ a) ((\mathbf{ad} \ b) P_0 - P_0 (\mathbf{ad} \ \tilde{b})) - ((\mathbf{ad} \ \tilde{b}) P_0 - P_0 (\mathbf{ad} \ \tilde{b})) (\mathbf{ad} \ a) - (\mathbf{ad} \ b) ((\mathbf{ad} \ \tilde{a}) P_0 - P_0 (\mathbf{ad} \ \tilde{a})) + ((\mathbf{ad} \ \tilde{a}) P_0 - P_0 (\mathbf{ad} \ \tilde{a})) (\mathbf{ad} \ b) &= (\mathbf{ad} \ [\tilde{a}, \tilde{b}]) P_0 - P_0 (\mathbf{ad} \ [\tilde{a}, \tilde{b}]) & \square \end{array}$$

Applying the vanishing of $H^1(s, M)$, we conclude that for $a \in s$, $f(a) = f_m(a)$ for some $m \in M$. Let \tilde{m} be a preimage of m in \tilde{M} from the canonical map and put $P = P_0 - \tilde{m}$. P is a projector of \mathfrak{g} on $R(\mathfrak{g})$ for which P(s) = 0.

It is immediate to check that $[P, \mathbf{ad} \ \mathfrak{g}] = [P, \mathbf{ad} \ R(\mathfrak{g})] \subset \mathbf{ad} \ R(\mathfrak{g})$. This gives two cases depending if P and \mathfrak{g} commute or not:

Case 1 $[P, \mathbf{ad} \ \mathfrak{g}] = 0$

Exercise 23.5. Given that $[P, \operatorname{ad} \mathfrak{g}] = 0$, prove that $\ker P$ is an ideal of \mathfrak{g} so $\mathfrak{g} = \ker P \ltimes R(\mathfrak{g})$.

Proof. [Solution] P is an endomorphism, so $\ker P$ is clearly a subalgebra. We need to show that $[\mathfrak{g}a] \in \ker P$. For $a \in \ker P$, $P([\mathfrak{g},a]) = P(\mathbf{ad} \ \mathfrak{g}(a)) = \mathbf{ad} \ \mathfrak{g}P(a)$, since $[P,\mathbf{ad} \ \mathfrak{g}] = 0$, and P(a) = 0 as $a \in \ker P$, so $P([\mathfrak{g},a]) = \mathbf{ad} \ \mathfrak{g}(0) = 0$ and $[\mathfrak{g}a] \in \ker P$.

ad : $R(\mathfrak{g}) \mapsto \text{End ker } P$ since ker P is an ideal of $\mathfrak{g} \supset R(\mathfrak{g})$. Therefore, we make ker $P \ltimes R(\mathfrak{g})$. $\mathfrak{g} = \ker P \oplus R(\mathfrak{g})$ as vector spaces. The following is a Lie algebra homomorphism: $(k,r) \mapsto k+r \in \mathfrak{g}$. They clearly respect the opperations. The bracket is defined in $\ker P \ltimes R(\mathfrak{g})$ to agree with it in \mathfrak{g} . It is an isomorphism of vector spaces. Thus it is also a Lie algebra isomorphism.

Case 2 $[P, \operatorname{ad} \mathfrak{g}] \neq 0$. Consider the subalgebra $g_1 = \{a \in g | [P, \operatorname{ad} a] = 0\}$. It is a subalgebra of \mathfrak{g} such that $dim\mathfrak{g}_1 < dim\mathfrak{g}$. By the inductive assumption, $g_1 = s \ltimes Rad(g_1)$. Now we use that $[P, \operatorname{ad} \mathfrak{g}] \subset \operatorname{ad} R(\mathfrak{g})$. In other words, $[P, \operatorname{ad} b] = \operatorname{ad} r_b$, for any $b \in \mathfrak{g}$ there exists such $r_b \in R(\mathfrak{g})$. Since $(\operatorname{ad} r_b)P = 0$ as P is a projector with these properties) and $P\operatorname{ad} r_b = \operatorname{ad} r_b$, we get $[P, \operatorname{ad} r_b] = \operatorname{ad} r_b$. So $[P, \operatorname{ad} (b - r_b)] = 0$. This means $b - r_b \in \mathfrak{g}_1$. $\mathfrak{g} = \mathfrak{g}_1 + R(\mathfrak{g})$ as vector spaces. Apply the proof of Ex 23.2 we deduce that $\mathfrak{g} = s \ltimes R(g)$.

This proves Levi's Theorem.