Lógica Proposicional (LP)

Proposición

- > Enunciado del que puede afirmarse si es verdadero o falso
- > Oración declarativa
- ¿Cuáles de las siguientes son proposiciones?
 - 1) Pedro es alto.
 - 2) Juan es estudiante.
 - 3) Vayan con cuidado.
 - 4) ¿Quién es?
 - 5) ¡Salud!
 - 6) 3 es impar.

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

Lógica Proposicional

Proposición

Simple

- Mi perro es negro.
- Juan es estudiante

Compuesta

- •María es arquitecta o Juan es músico.
- Si Juan es estudiante entonces Juan viaja en colectivo.
- 2 * 3 = 6 y 7 no es par.

Lógica Proposicional

Definición del Lenguaje de la Lógica Proposicional

➤ Sintaxis: cómo definir fórmulas bien formadas (fórmulas como cadenas de símbolos) - Alfabeto

Lenguaje

≻<u>Semántica</u>: cómo interpretar esas fórmulas, es decir cómo asignarles un valor de verdad

- Valuaciones

(fórmulas como enunciados que pueden ser verdaderos o falsos)

Ciencias de la Computación II - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2016

Lógica Proposicional: Sintaxis

Alfabeto (A_{PROP}):

$$\mathbf{A}_{\mathsf{PROP}} = \mathbf{Var} \ \cup \{ \neg, \land, \lor, \rightarrow \} \cup \{ (,) \}$$
 Símbolos auxiliares
$$\mathbf{Variables} \ \text{o símbolos}$$
 proposicionales
$$(\mathsf{a}, \mathsf{b}, \mathsf{c}, ..., \mathsf{p}, \mathsf{q}, ...) \quad \mathbf{Conectivos} \ \mathbf{proposicionales} : \\ \neg \ \mathsf{negación}$$

$$\land \ \mathsf{y}$$

$$\lor \mathsf{o}$$

$$\rightarrow \mathsf{si} \ ... \ \mathsf{entonces}$$

Lógica Proposicional: Sintaxis

Lenguaje de la LP – Conjunto de Fórmulas de la LP (F_m):

 F_m es el conjunto de cadenas de símbolos de A_{PROP} , $F_m \subseteq A^*_{PROP}$, que se obtiene aplicando las siguientes reglas:

 \checkmark Para toda variable p ∈ Var, entonces p ∈ F_m ,
Fórmulas atómicas es decir Var <u></u> F_m

 \checkmark Si A \in F_m, entonces \neg A \in F_m

 \checkmark Si A ∈ F_m, entonces ¬A ∈ F_m \checkmark Si A, B ∈ F_m, entonces (A ∧ B), (A ∨ B), (A → B) ∈ F_m

 $\label{eq:continuous} \uparrow ((p \wedge q) \vee r) \qquad ((p \rightarrow q) \vee \neg q) \qquad \quad \text{SON FORMULAS DE } F_m$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Lógica Proposicional: Sintaxis

Otra definición de F_m:

```
<form_log> ::= <form_log> -> <form_or> | <form_or>
<form_or> ::= <form_or> v <form_and> | <form_and>
<form_and> ::= <form_and> ^ <factor_log> | <factor_log>
<factor_log> ::= ( <form_log> ) | ¬<factor_log> | <var_prop>
<var prop> ::= a | b | c | ... | z
```

Esta definición tiene en cuenta precedencia de conectivos:

 \neg , \wedge , \vee , \rightarrow (de mayor a menor)

- Interpretación de fórmulas como enunciados a los que se puede asignar sólo uno de dos valores: Verdadero (1, V, T) ó Falso (0, F, L)
- La interpretación o valuación de una fórmula se obtiene como sigue:
- se asigna un valor de verdad (1 ó 0) a las variables proposicionales
- se interpretan las fórmulas no atómicas teniendo en cuenta el significado de los conectivos que contienen

Interpretación de conectivos

\neg	
0	1
1	0

V	0	1
0	0	1
1	1	1

\leftrightarrow	0	1
0	1	0
1	0	1

٨	0	1
0	0	0
1	0	1

\rightarrow	0	1
0	1	1
1	0	1

Lógica Proposicional: Semántica

Valuación:

Es una función v: $F_m \to \{0,\,1\}$ que cumple con las siguientes propiedades para todo A, B $\in \, F_m$

•
$$v(\neg A) = \neg v(A)$$

•
$$v(A \wedge B) = v(A) \wedge v(B)$$

•
$$v(A \lor B) = v(A) \lor v(B)$$

•
$$v(A \rightarrow B) = v(A) \rightarrow v(B)$$

Ejemplo:

Dada la fórmula $A = p \land q \rightarrow \neg q$ y la valuación v(p) = 1 y v(q) = 1

$$v(A) = v(p \land q \rightarrow \neg q)$$

= $v(p \land q) \rightarrow v(\neg q)$

$$= v(p) \wedge v(q) \rightarrow \neg v(q)$$

$$= 1 \land 1 \rightarrow \neg 1 = 1 \rightarrow 0 = 0$$

Tablas de Verdad:

Permiten calcular todos los posibles valores de verdad de una fórmula considerando todas las valuaciones posibles.

Fórmula → secuencia finita de variables y conectivos:

- conociendo valor de verdad de las k variables de la fórmula se puede construir la tabla de verdad
- Tamaño de la tabla de verdad = 2k filas

Ejemplo: Para la fórmula $A = p \land q \rightarrow \neg q$

р	q	p∧q	¬q	$p \land q \to \neg q$
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	0	0

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Lógica Proposicional: Semántica

Definiciones:

✓ Una tautología es una fórmula A que es verdadera bajo toda valuación.

Es decir, A es tautología sí y sólo sí para toda valuación v, v(A) = 1 En la tabla de verdad, todos los elementos de la columna correspondiente a la fórmula son 1.

En símbolos = A

- ✓ Una contradicción es una fórmula A que es falsa bajo toda valuación.
 Es decir, A es contradicción sí y sólo sí para toda valuación v, v(A) = 0
- ✓ Una contingencia es una fórmula A que es no es ni tautología ni contradicción.
- ✓ Una fórmula A es una tautología sí y sólo sí su negación ¬A es una contradicción.

Definiciones:

- √ Una valuación v satisface una fórmula A si v(A) = 1
- ✓ Una fórmula A se dice satisfacible si existe alguna valuación v que la satisfaga, es decir para alguna valuación v, v(A) = 1. En caso contrario, A es insatisfacible (contradicción).
- \checkmark Una valuación v satisface un conjunto de fórmulas $\Gamma \subseteq F_m$ si v satisface cada fórmula de Γ , es decir v(A) = 1 para toda fórmula A ∈ Γ
- \checkmark Un conjunto de fórmulas Γ son mutuamente satisfacibles, o consistentes entre sí, si existe al menos una valuación v que satisface cada fórmula de Γ , es decir v(A) = 1 para toda fórmula A ∈ Γ

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Lógica Proposicional: Semántica

Equivalencia Lógica:

Dos fórmulas A y B se dicen equivalentes, $A \equiv B$, sí y sólo sí para toda valuación v, v(A) = v(B)

- \equiv es una relación de equivalencia en el conjunto de las fórmulas $\boldsymbol{F}_{m},$ es decir cumple las propiedades:
- Reflexiva: A ≡ A
- Simétrica: Si A ≡ B entonces B ≡ A
- Transitiva: Si A ≡ B y B ≡ C entonces A ≡ C

Ejemplos:

- $A \rightarrow B \equiv \neg A \lor B$
- $A \lor \neg A \equiv A \rightarrow A$
- A ≡ ¬¬A

Sustitución:

Es una función e: $F_m \to F_m$ que cumple con las siguientes propiedades para todo A, B $\in \ F_m$

•
$$e(\neg A) = \neg e(A)$$

•
$$e(A \wedge B) = e(A) \wedge e(B)$$

•
$$e(A \lor B) = e(A) \lor e(B)$$

•
$$e(A \rightarrow B) = e(A) \rightarrow e(B)$$

Teorema:

Dadas A, B \in F_m tal que A \equiv B, y dada la sustitución e, entonces e(A) \equiv e(B)

Ejemplo:

Sea
$$p \rightarrow q \equiv \neg p \lor q$$
 y sea $e(p) = a \land b$ y $e(q) = a \lor c$

Aplicando e

$$a \wedge b \rightarrow a \vee c \equiv \neg(a \wedge b) \vee a \vee c$$

(se reemplaza cada ocurrencia de la variable)

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Lógica Proposicional: Semántica

Definición:

Sea $A \equiv B$ y X una fórmula donde A puede aparecer varias veces como subfórmula. Si se reemplaza en X la subfórmula A por B (en todas o alguna de sus ocurrencias) la fórmula Y obtenida es equivalente a X.

Ejemplo:

Sea
$$X = (p \rightarrow q) \rightarrow ((p \rightarrow q) \land p)$$
 y la equivalencia $p \rightarrow q \equiv \neg p \lor q$

Reemplazando en X se obtiene la fórmula $Y = (\neg p \lor q) \to ((p \to q) \land p)$

Se puede verificar que $X \equiv Y$

Sustitución vs. Reemplazo

La sustitución preserva la equivalencia entre las dos fórmulas porque se hace en toda ocurrencia de la fórmula sustituida (no requiere que la fórmula sustituida sea equivalente a la sustituyente)

El reemplazo preserva la equivalencia porque la fórmula sustituyente es equivalente a la sustituida (no requiere realizarse en toda ocurrencia de la fórmula sustituida)

Lógica Proposicional: Formalización

Definición:

- 1.Identificar los enunciados simples
- 2. Asignar a cada enunciado simple una proposición
- 3.Identificar los conectores lógicos: negación, condicional, disyunción, etc.
- 4.Reconstruir los enunciados compuestos a partir de los simples y los conectores lógicos

Ejemplo 1:

Pedro estudia o juega al tenis P v q

Pedro estudia

Pedro juega al tenis

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Lógica Proposicional: Formalización

Ejemplo 2:

Pedro estudia, Ana juega al tenis y Luis baila

Pedro estudia p

Ana juega al tenis q $p \wedge q \wedge r \equiv (p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

Luis baila r

Ejemplo 3:

Pedro estudia, o Ana juega al tenis y Luis baila

Pedro estudia p

Ana juega al tenis q $p \lor q \land r \equiv p \lor (q \land r)$

Luis baila r

Lógica Proposicional: Formalización

Ejemplo 4:

Pedro estudia o Ana juega al tenis y Luis baila

Pedro estudia p

Luis baila r

Ejemplo 5:

Pedro estudia o Ana juega al tenis, y Luis baila

Pedro estudia p $(p \lor q) \land r$

Ana juega al tenis

Luis baila

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Lógica Proposicional: Formalización

Ejemplo 6:

Si Pedro estudia, Ana juega al tenis.

Pedro estudia

Ana juega al tenis q

 $p \rightarrow q$

Ejemplo 7:

Si Pedro estudia y Ana juega al tenis, Luis baila

Si Pedro estudia y Ana juega al tenis, entonces Luis baila

Pedro estudia p $(p \land q) \rightarrow r \equiv p \land q \rightarrow r$

Ana juega al tenis q

Luis baila

Lógica Proposicional: Formalización

Ejemplo 8:

Pedro estudia y, si Ana juega al tenis, Luis baila.

Pedro estudia

 $p \wedge (q \rightarrow r)$

Ana juega al tenis

Luis baila

Ejemplo 9:

Pedro estudia si y sólo si Ana juega al tenis.

Pedro estudia

 $p \leftrightarrow q$

Ana juega al tenis

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Lógica Proposicional: Formalización

Ejemplo 10:

Si Pedro estudia, entonces Luis baila si Ana no juega al tenis.

Pedro estudia

 $p \rightarrow (\neg q \rightarrow r)$

Ana juega al tenis

Luis baila

Ejemplo 11:

Pedro estudia sólo si Ana juega al tenis.

Pedro estudia

 $p \rightarrow q$

Ana juega al tenis

Lógica Proposicional

Ejemplo

hipótesis conclusión

		,		
р	q	$p\toq$	¬р	$\neg p \vee q$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	1	0	1

En cada fila que p \rightarrow q y \neg p son verdaderas la fórmula \neg p \vee q también es verdadera

Diremos que $\neg p \lor q$ es consecuencia semántica de las fórmulas $p \to q$ y $\neg p$

Las fórmulas p o q y \neg p se denominan *hipótesis* o *premisa*s y la fórmula \neg p \lor q se denomina *conclusión* o *consecuencia semántica*

> Un argumento o razonamiento es válido o correcto cuando toda valuación que hace verdaderas a las hipótesis, hace verdadera a la conclusión (no hay valuación que haga verdaderas a las hipótesis y falsa a la conclusión)

Ejemplo:

Dados a, b, $c \in N$

Sia < b y b < c entonces a < c

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Consecuencia Semántica

Definición Formal:

Sea $\Gamma \cup \{A\} \subseteq F_m$

A es consecuencia semántica de Γ , en símbolos $\Gamma \models A$, sí y sólo sí toda valuación que satisface a Γ también satisface la fórmula A.

 $\Gamma \models A \Leftrightarrow \text{para toda valuación } v \text{ tal que } v(\Gamma) = 1, \text{ entonces } v(A) = 1$

Notación:

Sea Γ un conjunto de fórmulas Γ = { $A_1, A_2, ..., A_n$ }, $\Gamma \models$ A se puede escribir:

$$\{A_1, A_2, ..., A_n\} \models A$$

$$A_1, A_2, ..., A_n \models A$$

$$A_1 \wedge A_2 \wedge ... \wedge A_n \models A$$

<u>Ejemplo</u> $p \lor q, p \rightarrow r, q \rightarrow r = r ??$

р	q	r	p∨q	$p\tor$	$q\tor$	r	
0	0	0	0	1	1	0	
0	0	1	0	1	1	1	
0	1	0	1	1	0	0	١.
0	1	1	1	1	1	1	1
1	0	0	1	0	1	0	١.
1	0	1	1	1	1	1	1
1	1	0	1	0	0	0	١.
1	1	1	1	1	1	1	1

 $p \lor q, p \to r, q \to r \models r$

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Consecuencia Semántica

<u>Ejemplo</u> $p, p \lor q = \neg q$??

	¬q	p∨q	р	q	р
	1	0	0	0	0
	0	1	0	1	0
1	1	1	1	0	1
X	0	1	1	1	1

Algunas Propiedades

Sean $\Gamma \cup \Delta \cup \{A, B\} \subseteq F_m$

- 1) A |= A toda fórmula es consecuencia semántica de sí misma (Reflexividad)
- 2) $\Gamma \models A$ y $A \models B$ entonces $\Gamma \models B$ (Transitividad)
- 3) Si $A \in \Gamma$ entonces $\Gamma \models A$
- 4) Si $\Gamma \models A$ y $\Gamma \subseteq \Delta$ entonces $\Delta \models A$ (si de un conjunto de hipótesis se sigue una conclusión, agregando hipótesis al conjunto, la conclusión sigue siendo consecuencia semántica)

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Consecuencia Semántica

Propiedades: Ejemplos

- 2) p, q, r \models p \land q y p \land q \models p \lor q entonces p, q, r \models p \lor q (Transitividad)
- 3) $p \lor q$, $\neg q \models p \lor q$ $p \lor q$, $\neg q \models \neg q$
- 4) p, p \rightarrow q \models q entonces

 $p,\,p \to q,\,q \to r \, \models \, q \qquad \text{hipótesis satisfacibles}$

 $p, p \rightarrow q, \neg p \neq q$ hipótesis insatisfacibles

Teorema de la Deducción

Sean $\Gamma \cup \{A, B\} \subseteq F_m$

 $\Gamma \cup \{A\} \models B$ sí y sólo sí $\Gamma \models A \rightarrow B$

Corolario 1:

Sean A, B \in F_m

 $A \models B$ sí y sólo sí $\models A \rightarrow B$

Corolario 2:

Para todo conjunto $\Gamma \cup \{A\} \subseteq F_m$

 $\Gamma \models A$ sí y sólo sí $\Gamma \cup \{\neg A\}$ es insatisfacible (Si $\Gamma = \emptyset$, A es tautología sí y sólo sí $\neg A$ es insatisfacible)

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Consecuencia Semántica

Teorema de la Deducción

Sean $\Gamma \cup \{A, B\} \subseteq F_m$

 $\Gamma \cup \{A\} \models B$ sí y sólo sí $\Gamma \models A \rightarrow B$

1) $\Gamma \cup \{A\} \models B$ entonces $\Gamma \models A \rightarrow B$

Supongamos que
$$\Gamma \cup \{A\} \models B$$
 pero $\Gamma \not\models A \rightarrow B$ \updownarrow

$$\forall v: v(\Gamma \cup \{A\}) = 1 \text{ entonces } \underline{v(B)} = 1 \qquad \exists v: v(\Gamma) = 1 \text{ y } v(A \to B) = 0$$

$$v(\Gamma) = 1$$
 y $v(A) = 1$ contradicción

$$v(A) = 1 \ y \ v(B) = 0$$

Por lo tanto $\Gamma \cup \{A\} \models B$ entonces $\Gamma \models A \rightarrow B$

2)
$$\Gamma \models A \rightarrow B$$
 entonces $\Gamma \cup \{A\} \not\models B$ (ejercicio)

Teorema de Compacidad

Sean $\Gamma \cup \{A, B\} \subseteq F_m$

 $\Gamma \models A$ sí y sólo sí $\Gamma_0 \models A$ para $\Gamma_0 \subseteq \Gamma$, Γ_0 finito

Una fórmula A es consecuencia semántica de un conjunto de fórmulas Γ sí y sólo sí existe un subconjunto finito Γ_0 de Γ tal que A es consecuencia semántica de Γ_0

Teorema

Sea $\Gamma \subseteq \mathbb{F}_{\mathrm{m}}$ Entonces Γ es satisfacible sí y sólo sí todo subconjunto finito de Γ es satisfacible.

Teorema

Sea $\Gamma \subseteq F_m$ Entonces Γ es insatisfacible sí y sólo sí existe un subconjunto finito de Γ que es insatisfacible.

Ciencias de la Computación II - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2016

Consecuencia Semántica

Ejemplo

Si hay electricidad, accedo al servidor si está encendido. Está encendido pero no accedo al servidor. Por lo tanto, hay electricidad.

"el servidor está encendido"

"accedo al servidor"

s $e \rightarrow (c \rightarrow s), c \land \neg s \models e$??

"hay electricidad"

е

1) $e \rightarrow (c \rightarrow s)$, $c \land \neg s = e \quad si y solo si$

 $\{e \rightarrow (c \rightarrow s), c \land \neg s, \neg e \}$ es insatisfacible

Suponemos que es satisfacible, es decir

$$\exists v: v(e \rightarrow (c \rightarrow s)) = 1$$
 $y \quad v(c \land \neg s) = 1$ $y \quad v(\neg e) = 1$

para
$$v(e) = 0$$
 y $v(s) = 0$ y $v(c) = 1$ esto se cumple

por lo tanto
$$e \rightarrow (c \rightarrow s), c \land \neg s \not\models e$$

Ejemplo

1)
$$e \rightarrow (c \rightarrow s)$$
, $c \land \neg s \models e \quad si \ y \ solo \ si \\ \models (e \rightarrow (c \rightarrow s)) \land (c \land \neg s) \rightarrow e$

$$(e \rightarrow (c \rightarrow s)) \land (c \land \neg s) \rightarrow e \equiv$$

$$\neg ((e \rightarrow (c \rightarrow s)) \land c \land \neg s) \lor e \equiv$$

$$\neg ((\neg e \lor \neg c \lor s) \land c \land \neg s) \lor e \equiv$$

$$\neg (\neg e \lor \neg c \lor s) \lor \neg c \lor s \lor e \equiv$$

$$e \land c \land \neg s \lor \neg c \lor s \lor e \equiv$$

$$e \lor \neg c \lor s \qquad contingencia$$

por lo tanto $e \rightarrow (c \rightarrow s), c \land \neg s \neq e$

