Backdoor Experiments: Results

 LDP and CDP can indeed mitigate backdoor attacks although they do so with different robustness vs utility trade-offs

 Weak DP and norm bounding mitigate the attack without really affecting the utility. However, in Setting 2, with more attackers, such defenses also decrease utility

 In both settings, LDP/CDP are more effective than norm bounding and weak DP in reducing backdoor accuracy, although with varying levels of utility

In LDP, if attackers opt out, the attack is boosted

 Overall, CDP works better as it better mitigates the attack and yields better utility. However, CDP requires trust in the central server

Backdoor Experiments: Results

- LDP and CDP can indeed mitigate backdoor attacks although they do so with different robustness vs utility trade-offs
- Weak DP and norm bounding mitigate the attack without really affecting the utility. However, in Setting 2, with more attackers, such defenses also decrease utility
- In both settings, LDP/CDP are more effective than norm bounding and weak DP in reducing backdoor accuracy, although with varying levels of utility
- In LDP, if attackers opt out, the attack is boosted
- Overall, CDP works better as it better mitigates the attack and yields better utility. However, CDP requires trust in the central server

Membership Inference: Results

Defense	Dataset	Acc.	Global Attacker		Local Attacker	
			Pass.	Act.	Pass.	Act.
No Defense	CIFAR100	82%	84%	91%	73%	75%
	Purchase 100	84%	71%	82%	65%	68%
	Texas 100	56%	65%	71%	62%	66%
Norm Bound.	CIFAR100	81%	-	-	72%	74%
(S = 15)	Purchase 100	82%	-	-	64%	67%
	Texas 100	55%	-	-	62%	65%
Weak DP	CIFAR100	76%	-	-	70%	71%
(S = 15,	Purchase 10	74%	-	-	62%	65%
$\sigma = 0.006$)	Texas 100	50%	-	-	60%	61%
LDP	CIFAR100	68%	58%	53%	52%	55%
$(\epsilon = 8.6)$	Purchase 100	65%	51%	62%	58%	54%
	Texas 100	48%	55%	59%	56%	58%
CDP	CIFAR100	69%	-	-	58%	52%
$(\epsilon = 5.8)$	Purchase 100	70%	-	-	53%	55%
	Texas 100	45%	-	-	54%	52%

We measure attack accuracy as the fraction of correct membership predictions for unknown data points.

(Baseline is 50%)