### Statistics 2

Model assumptions and violations. Causality & Association

Casper Albers & Jorge Tendeiro Lecture 3, 2019 – 2020



### **Overview**

Assumptions

Causality and association

Statistics 2 (2019-20) Lecture 3 1/22

### Literature for this lecture

### Contents:

Model assumptions and violations
Causality & Association

Read:

Agresti, Section 9.6, Ch. 10

# Model assumptions

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
  $\varepsilon \sim \mathcal{N}(0, \sigma)$ 

### Assumptions of the model:

- 1. Independent observations:
  - ▶ All observations are independent of each other.
  - True random sampling.
- 2. Linear relations:
  - Relation between x and E(y) is a straight line.
- 3. Homoscedasticity:
  - ightharpoonup The conditional standard deviation  $\sigma$  is constant
- 4. Residuals follow a normal distribution:
  - $\triangleright$   $y_i$  follows a normal distribution around E(y).

# What if the assumptions are invalid?

- ► The analyses are no longer guaranteed the best approach or, worse, not even valid anymore.
- Tests and CI's can lead to misleading and incorrect conclusions.
- Inferences are no longer justified.
- Checks and corrections are necessary.

Thus, the validity of the model is at play here.

More on assumptions in Lecture 7.



Be careful with influential points.

Points with Cook's distance> 1 are deemed 'influential'.

(You do not need to be able to compute Cook's distance yourself.)



Avoid making predictions of violent crime rate (y) for poverty rates (x) of, say, 0 or 50.

# Causality and association

There are many ways in which two variables can be associated (i.e., correlated). Some are more interesting than others.



- Correlation does not imply causation, but
- Causation does imply correlation

# Requirements for causality

A relation  $A \rightarrow B$  can be causal if, at least, three requirements are met:

- 1. There is an association  $(cor(A, B) \neq 0)$ .
- 2. There is an appropriate time ordering.
- 3. All other alternative explanations have been eliminated.



tylervigen.com

- 1. Very strong association (r = .67)
- 2. Time-ordering somewhat unclear. But also  $\{\text{movies in year } x, \text{ drownings year } x+1\}$  correlates strongly.
- 3. Obvious alternative explanation: Coincidence (n is only 11)

### Randomized experiments

- Optimal way of establishing causality.
- Assign participants at random to control and experiment group.
  - ightarrow This minimizes the possibility of alternative explanations.
- lt does not guarantee causal relation (e.g., chain relationship.)

Oftentimes, randomization is not possible, e.g. effect of education level on political views.

#### Statistical control

To study whether ' $A \rightarrow B$ ' or 'A - B', the effects from other variables need to be removed.

- ► Lab experiments: Keep variables (e.g., temperature) constant. Experimental control
- Observational studies: Experimental control is impossible. We need statistical control

### Example:

- Dataset, n = 100 school children. Shoe size (x) and reading ability (y) correlate: r(x,y) > 0 (p < .01).
- Controlling for age:  $y = b_0 + b_1 x + b_2$ age: Partial regression effect  $b_1$  is very small.

# Not controlling might lead to incorrect conclusions

Study<sup>1</sup> on grant applications with science council NWO:

|                  | Men  | Women |
|------------------|------|-------|
| Awarded          | 290  | 177   |
| Not awarded      | 1345 | 1011  |
| Success rate (%) | 17.7 | 14.9  |

A  $\chi^2$  test yields a just significant results (p=.045): 'Compelling evidence' of gender bias in allocating research money by NWO.

<sup>&</sup>lt;sup>1</sup>Van der Lee & Ellemers, PNAS, 2015

# Not controlling might lead to incorrect conclusions

Post-publication analysis<sup>2</sup>: No gender bias but lack of statistical control.

Success rates (%):

| Field              | Men  | Women |  |
|--------------------|------|-------|--|
| Chemistry          | 26.5 | 25.6  |  |
| Physical sciences  | 19.3 | 23.1  |  |
| Physics            | 26.9 | 22.2  |  |
| Humanities         | 14.3 | 19.3  |  |
| Technical sciences | 15.9 | 21.0  |  |
| Interdisciplinary  | 11.4 | 21.8  |  |
| Earth sciences     | 24.4 | 14.3  |  |
| Social sciences    | 15.3 | 11.5  |  |
| Medical science    | 18.8 | 11.2  |  |
|                    |      |       |  |

► The correlation between gender and success rate non-significant after controlling for field.

<sup>&</sup>lt;sup>2</sup>Albers, PNAS, 2015

# Types of multivariate relationships

There are different ways in which A and B can be related:

- 1. Direct causal relation
- 2. Spurious association (shoe size, NWO examples)
- 3. Chain relations
- 4. Interacting variables
- 5. Coincidence

From  $r_{A,B} \neq 0$  alone we can never infer which type of association we have.

### **Direct causal relation**





- ▶ A and B do not directly influence each other but have a common cause C.
  - ▶ When not controlling for C,  $r_{A,B} \neq 0$ : Spurious correlation.
  - C is called a lurking variable or hidden moderator.



- $\triangleright$  A is not directly causing B, but A causes C which in turn causes B.
  - Older people are, on average, better drivers than young people.
  - Yet, age is not the direct cause.



- SES is positively correlated with health;
- ► The strength of the relation is moderated by age: Stronger correlation for older people.
- ▶ More on this in Section 11.4 (Lecture 5).

### **Suppressor variables**

Lurking variable:

A present correlation disappears when a third variable is taken into account.

Supressor variable:

An absent correlation appears when a third variable is taken into account.

|                      | All  | people | Young | people | Old  | people |
|----------------------|------|--------|-------|--------|------|--------|
| Education vs. Income | High | Low    | High  | Low    | High | Low    |
| High                 | 250  | 250    | 125   | 225    | 125  | 25     |
| Low                  | 250  | 250    | 25    | 125    | 225  | 125    |

In this example, age is a suppressor variable.

Note that categorizing continuous variables (age) is, in general, not a good idea.

### Coincidence



► Coincidence: Every now and then you make a Type I error

# Cheating and violating the rules of statistics

Another way to get A and B associated: Cheating, fraud, honest mistakes, etc.

Not part of today's lecture but of Lecture 13.

Agresti, Sections 11.1 – 11.3