1

Tablica 2. Przedziały ufności dla wartości oczekiwanej, wariancji i wskaźnika struktury w jednej populacji

L.p.	Założenia	Parametr	Końce przedziału	Oznaczenia
1	$X \sim \mathcal{N}(m, \sigma)$, σ znane, n dowolne	m	$\bar{X}_n \mp z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$	X – zm. l. będąca modelem badanej cechy w populacji,
2	$X \sim \mathcal{N}(m, \sigma)$, σ nieznane, n dowolne	m		$X_1, X_2,, X_n - n$ -elementowa prosta próba losowa (SRS),
3	$X \sim \text{dowolny},$ $\sigma < \infty \text{ nieznane}, n > 30$	m	$\bar{X}_n \mp z_{1-\frac{\alpha}{2}} \cdot \frac{S_n}{\sqrt{n}}$	$1 - \alpha$ – poziom ufności przedziału, n – liczebność próby, $m = \mathbb{E}X$ – wartość oczekiwana,
4	$X \sim \mathcal{N}(m, \sigma)$, m, σ nieznane, n dowolne	σ^2	$\left(\frac{(n-1)S_n^2}{\chi_{1-\frac{\alpha}{2};n-1}^2}; \frac{(n-1)S_n^2}{\chi_{\frac{\alpha}{2};n-1}^2}\right)$	\overline{X}_n – średnia arytmetyczna z próby, σ – odchylenie standardowe populacji, S_n – odchylenie standardowe z próby
5	$X \sim \mathcal{N}(m, \sigma)$, m, σ nieznane, $n > 30$	σ	$ \left(\frac{\sqrt{\frac{n-1}{n}} S_n}{1 + \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{2n}}}; \frac{\sqrt{\frac{n-1}{n}} S_n}{1 - \frac{Z_{1-\frac{\alpha}{2}}}{\sqrt{2n}}}\right) $	(statystyka nieobciążona), p – wskaźnik struktury populacji, $K_n = \sum_{i=1}^n X_i$ – liczba elementów wyróżnionych w próbie, $\bar{P}_n = \frac{1}{n} K_n$ frakcja elementów
6	$X \sim B(p)$, p nieznane, $0 < \bar{p}_n \mp 3 \cdot \sqrt{\frac{\bar{p}_n(1 - \bar{p}_n)}{n}} < 1$	p	$\bar{P}_n \mp z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\bar{P}_n(1-\bar{P}_n)}{n}}$	wyróżnionych w próbie, Z_{α} – kwantyl rzędu α rozkładu $\mathcal{N}(0;1)$ $t_{\alpha;\nu}$ – kwantyl rzędu α rozkładu t -Studenta z ν stopniami swobody, $\chi^2_{\alpha;\nu}$ – kwantyl rzędu α rozkładu chi-
				kwadrat z ν stopniami swobody.