DTSA 5510 Unsupervised Algorithms

in Machine Learning

Chronic Kidney Disease

— Clustering <</p>

- 1 Introduction
- 02 EDA
- 03 Models
- 1 Results
- 05 Discussion
- 06 Conclusion

01 Introduction

Motivation

Exploring clustering methods in binary classification tasks addresses real-world scenarios where labeled data is scarce.

Problem

Diseases like CKD, often classified as binary (CKD/no CKD). Can unsupervised learning reveal meaningful subgroups within CKD beyond this binary framework?

Approach

Apply unsupervised learning algorithms to uncover patterns in unlabeled CKD data and compare these results with supervised models.

02 EDA

400 samples **24** features

Data Cleaning

Typos

Renaming:

\t? to NaN, \t43 to '43', \tno to no, ···

Mistyped Features

Converting:

'pcv', 'wc', and 'rc' from object to float64

Missing Values

One-Hot Encoding.
KNNImputer:
with n_neighbors=8

Transform

Skewness Analysis.

QuantileTransformer:
normal distribution

02 EDA

Correlation Analysis

Visualizations

03 Models

PCA Components Ranked by Variation

1 PCA Component

2 PCA Components

Unsupervised Learning

Dimensionality Reduction

03 Models

Unsupervised Learning
Kmeans Clustering

Elbow Method: k=2 is optimal, aligning with the binary nature of classification. **Training Data**: Best result is 5-7 clusters. **(Training Accuracy = 278/280 = 99%) Test Data**: Setting with n_clusters=6. **(Test Accuracy = 118/120 = 98%)** Random Forest Gradient Boosting Neural Network

04 Results

Model	Accuracy	F1-Score	Confusion Matrix	ROC-AUC	Misclassified Data Points
KMeans	0.98	0.99	[42 2] [0 76]	0.98	[1 67]
RF	0.98	0.99	[42 2] [0 76]	0.98	[1 67]
GB	0.97	0.98	[42 2] [1 75]	0.97	[1 24 67]
NN	1.00	1.00	[44 0] [0 76]	1.00	[]

05 Discussion

06 Conclusion

This project explored clustering CKD data using Kmeans and used supervised models (RF, GB, and NN) to provide a benchmark for comparison.

KMeans effectively captured the dataset's structure, achieving 98% accuracy and demonstrating the potential of unsupervised learning to uncover patterns without labels.

Future work will focus on analyzing subgroups within CKD to uncover meaningful patterns and investigating outliers to gain deeper insights into anomalies in the dataset.

https://github.com/d93xup60126/Unsupervised_Learning_CKD_Clustering

GitHub Repository Link

