

Sample statistics

- Sample statistics, denoted by lower case letters *a* and *b*, are computed as estimates of the population parameters *A* and *B* respectively.
- Substituting the values a and b for the parameters A and B respectively, in the regression equation, we obtain the estimated (simple linear) regression equation.

Estimated regression equation

The estimated regression equation is given by:

$$\hat{y} = a + bx$$

- The graph of the estimated regression equation is called the estimated regression line.
- a is the y intercept and b is the slope or gradient.
- In general, \hat{y} is the point estimate of E(Y), which is the mean value of Y for a given value of X.

Correlation coefficient is not enough

- Scatter diagram for regression analysis is constructed with the dependent variable Y on the vertical axis and the independent variable X on the horizontal axis.
- The scatter diagram allows us to observe the data graphically and to draw preliminary conclusions about the possible relationship between the variables.

Simple and multiple linear regression

- Simple linear regression involves one dependent variable and one independent variable.
- Multiple linear regression is one involving one dependent variable and two or more independent variables.
- Regression can be used for prediction, estimation, modelling causal relationships and hypothesis testing.

The method of least squares

- The method of least squares is a procedure which involves using sample data to find the estimated regression equation.
- It uses the sample data to provide the values of a and b that minimize the sum of squares of the deviations between the observed values of the dependent variable and the estimated values of the dependent variable.

The method of least squares

This is expressed mathematically as:

$$Min \sum (y - \hat{y})^2$$

- Where y represents the observed value of the dependent variable and ŷ represents the estimated value of the dependent variable.
- This expression is known as the least squares criterion.

The method of least squares

The values of a and b that minimise the least squares criterion are given by the equations:

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$
 and $a = \bar{y} - b\bar{x}$

Where x represents the observed values of the independent variable.
y represents the observed values of the dependent

variable.

 \bar{x} is the mean for variable x and \bar{y} is the mean for variable y.

The simple linear regression model

The null hypothesis in linear regression

- The H_0 in linear regression is: the slope is zero.
- In other words, there is no significant linear relationship between the independent variable(s) and the dependent variable.
- It is possible to compute the standard error (s.e.) of the slope, and therefore compute a C.I. to test the null hypothesis (we spoke about the standard error in Topic 3).
- It is also possible to compute a p-value for the coefficient(s) of the regression equation.

Example

- Suppose we are studying the relationship between the minimum body temperature (in °C) and the uninterrupted sleep duration in hours for a number of very young children.
- We collect the minimum body temperature and the sleep duration.
- Let us assume that a = 218.73 and b = -6.05

```
unint. sleep duration = 218.73 - 6.05 * min body temp
```

- This means that uninterrupted sleep decreases by 6.05 hours for every degree increase in the minimum body temperature.
- The s.e. of the slope = 1.41.
- A 95% C.I. for the slope is given by: -6.05 +/-(1.96*1.41) = (-8.81, -3.29).

Example

If we test against the null hypothesis (i.e. zero slope or b = 0):

```
(-6.05 - 0) / 1.41 = -4.29, p-value < 0.001
```

- The slope of the line is significantly different from zero.
- This means we have enough evidence to believe that sleep duration decreases on average as the child's minimum body temperature increases.
- The average drop in sleep duration for a 1 °C increase in minimum temperature is between 3.29 to and 8.81 hours (feel free to convert it to minutes).
- Similar full study: https://adc.bmj.com/content/66/4/521