Functions

Define Functions, Domain, codomain, Image, preimage, One-to-one functions -injection, Onto function-Surjection, Bijection, Function Inverse, Function composition

Let A and B be sets (not empty). A function (mapping, map, transformation) f from A to B (relationship), denoted:

$$f:A \rightarrow B$$
, is a subset of $A \rightarrow B$ such that $\forall x[x \in A \rightarrow \exists y[y \in B \land < x, y > \in f]]$ and $[< x, y_1 > \in f \land < x, y_2 > \in f] \rightarrow y_1 = y_2$

Assignment of exactly one element of B to each element of A, one ordered pair (a,b) for every a ∈ A

Note: f associates with each x (element a) in A one and only one y in B.

- A is called the **domain** and
- B is called the codomain.

If f(a) = b

- b is called the **image** of a under f
- a is called a preimage of b

Note there may be more than one preimage of y but there is only one image of x.

Functions Equality

Two functions are equal when they have the same domain, the same codomain, and images and preimages (mapping) must be the same for each element.

Definition:

The **range** of f is the set of all images of points in A under f. We denote it by f(A).

• If S is a subset of A then f(S) = {f(s) | s in S}.

Example: Determine: f(a), image of d, domain, codomain, f(A), preimage (of y, z), preimage of z, $f(\{c,d\})$

If f₁ & f₂ functions from A to R,

- $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
- $(f_1 f_2)(x) = f_1(x) f_2(x)$

With the same domain & codomain

Example:

$$(f_1)(x) = x^2$$
. $(f_2)(x) = x - x^2$

• Find $(f_1 + f_2)$, $(f_1 f_2)$

Let f be a function from A to B. We define, one-to-one (injections), onto (surjections), **Injections one-to-one**

Definition: f is one-to-one (denoted 1-1) or injective iff preimages are unique.

• Note: this means that if a≠b then f(a) ≠ f(b).

Surjections onto

Definition: f is onto or surjective if every y in B has a preimage.

• Note: this means that for every y in B there must be an x in A such that f(x) = y.

Bijections

Definition: f is bijective if it is surjective and injective (one-to-one and onto).

- **Note**: Whenever there is a bijection from A to B, the two sets must have the same number of elements or the same *cardinality*.
- That will become our *definition*, *especially for infinite* sets.

Scary thought

Let E be the set of even integers $\{0, 2, 4, 6, \ldots\}$.

Then there is a bijection f from N to E, the even nonnegative integers, defined by f(x) = 2x.

Hence, the set of even integers has the same cardinality as the set of natural numbers.

OH, NO! IT CAN'T BE....E IS ONLY HALF AS BIG!!

Examples:

Determine which are injections (1-1), surjections (onto), bijections:

- f(x) = x (A = B = R) One-to-one and onto - bijection
- f(x) = x² (A = B = Z)
 Not one-to-one f(1) = f(-1) and 1 ≠ -1, onto
 If the domain is Z⁺ then It is one-to-one

Iclicker