3.7	.	- · ·
Name:	Date:	Period:
Diame.	$Dau \nabla$.	I GHOU.

Designing a Measurement Lab

Pre-Lab

1. What can we measure on the different balls? Make a list of as many things as possible.

2. Identify each of the following (there may be more than one):

Independent Variables	Dependent Variables	Control Variables

Purpose

Write down one sentence explaining the purpose of the lab that includes all the independent and dependent variable.

Procedure

Materials:

- $\bullet\,$ two different balls
- one meter stick

When you're ready to start the experiment:

- 1. Drop the ball
- 2. Stand back and watch how high the ball bounces
- 3. Record the Data.

Data

Experiment #1

Constant(s): _____

Drop Height (cm)	Bounce Height (cm)			
(cm)	Trial #1	Trial #2	Trial #3	Average

Experiment #2

Constant(s): _____

Drop Height (cm)	Bounce Height (cm)			
(cm)	Trial #1	Trial #2	Trial #3	Average

Graphs

Go to www.desmos.com/calculator to graph your data.

- a) Start by making a table by clicking the "+" icon at the top left. You will need to create two separate tables.
- b) Make sure to label the axes using the wrench icon at the right.
- c) Zoom out so that you can see the whole graph and so that it fills the page. You can do this using the "Zoom Fit" option , but be careful that your fit does not cut off one of the graphs
- d) Create best fit lines for each graph using the "Linear Regression" tool
- e) Copy a link to your graph using the export button and clicking "Share a Snapshot". Paste this link on the appropriate place in Schoology.

a) Cre	eate a table	e	
(+) \	K 3	b) Axis Lab	els A
*/° \	ν,	Braille Mode	
(d) L	inear Regr	ession id	xis Numbers linor Gridlines
2	3.9	Arrows	om Square
(c) Z	Zoom Fit	X-Axis	Label e.g. "x"
4	7.9	$-1.14939 \le x \le 4.0$	
(0)		Y-Axis	Label e.g. "y"
		$-1.70314 \le y \le 8.6$	3291 Step:
		▶ More Options	
		Complex Mode	0
		Radians	Degrees

Name:	Date:	Period:
Write down the equations for ea	ach of the best fit lines below:	
Experiment #1:		
Experiment #2:		
Conclusion Questions	:	
1. How do the two best fit lines re	epresent what happened when you we	re taking data?
2. What is the physical meaning of	of these best fit lines?	
3. The expected values for the "h	ounciness" of the balls are as follows:	
Golf ball: 0.8; Ping por	ng ball: 0.5; Plastic ball: 0.3. the bounciness of each ball that you t	tested.
•	·	
4. Comment on the accuracy and	precision of your data.	