

DPP – 10 (Geometrical Optics)

Video	So	lution	on	Wel	bsite:-
1100	\sim	ICICILI	OII	,, ,	O DI CO.

https://physicsaholics.com/home/courseDetails/67

Video Solution on YouTube:-

https://youtu.be/Vtp6ElQR0HM

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/68

- Q 1. A beam of monochromatic light is incident at $i = 50^{\circ}$ on one face of an equilateral prism, the angle of emergence is 40° , then the angle of minimum deviation is: (a) 30° (b) $< 30^{\circ}$ (c) $< 30^{\circ}$ (d) $> 30^{\circ}$
- Q 2. A ray is incident on prism at an angle i with normal, when it comes out of prism its angular deviation is δ . Graph between δ and i is given. Prism angle is

(a) 68°

- (b) 60° (c) 48°
- (d)29°
- Q 3. What is the minimum value of refractive index for an equilateral prism so that rays do not emerge from opposite side?
 - (a) $\mu = 1.15$
- (b) $\mu = 2$
- (c) $\mu = 1.33$
- (d) $\mu = 1.6$
- Q 4. The angle of incidence for an equilateral prism is 45°, what should be the refractive index of prism material so that the ray is parallel to the base inside prism
 - (a) 1.3
- (b)1.4
- (c)1.5
- (d)1.6
- Q 5. The limiting angle of incidence of a ray that can be transmitted by an equilateral prism of $u = \sqrt{\frac{7}{2}}$ is
 - (a) $\pi/6$
- (b) $\pi/3$
- (c) $\pi/4$
- (d) $\pi/5$
- Q 6. A glass prism has $\mu = 1.5$ and the refracting angle is 90°. If a ray falls on it at angle of incidence of 30° then what will be the angle of emergence:
 - (a) 60°
 - (b) 30°
 - (c) 45°
 - (d) The ray will not come out from opposite surface of prism
- Q 7. If the refracting angle of a prism or prism angle is 60° and minimum deviation 30°, the angle of incidence will be:
 - (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°

Physicsaholics

- Q 8. The maximum value of index of refraction of a material of a prism which allows the passage of light through it when the refracting angle of the prism is A is
 - (a) $\sqrt{1 + \sin\left(\frac{A}{2}\right)}$

(b) $\sqrt{1 + \cos\left(\frac{A}{2}\right)}$

(c) $\sqrt{1 + tan^2 \left(\frac{A}{2}\right)}$

- (d) $\sqrt{1 + \cot^2\left(\frac{A}{2}\right)}$
- Q 9. The refractive index of a prism is 2. For no total internal reflection of any ray by prism, it can have a maximum refracting angle of:
 - (a) 90°
- (b) 60°
- (c) 45°
- (d) 30°
- Q 10. A given ray of light suffers minimum deviation in an equilateral prism P. Additional prism Q and R of identical shape and of the same material as P are now added as shown in the figure. The ray will suffer:

- (a) greater deviation
- (b) no deviation
- (c) same deviation as before
- (d) total internal reflection
- Q 11. A horizontal ray of light passes through a prism of μ =1.5 whose apex angel is 4° and then strikes a vertical mirror M as shown. The ray after reflections to become horizontal the mirror must be rotated through an angle of

- (a) 2°
- (b) 3°
- (c) 4°
- (d) 1°
- Q 12. For an equilateral prism, it is observed that when a ray strikes grazingly at one face it emerges grazingly at the other. Its refractive index will be:
 - (a) $\frac{\sqrt{3}}{2}$

(b) $\frac{2}{\sqrt{3}}$

(c) 2

- (d) data not sufficient
- Q 13. For a ray passing through a prism, values of i and e are 36° and 42° respectively. Then angle of incidence for minimum deviation cannot be
 - (a) 37^0
- (b) 38^0
- (c) 39^0
- (d) 40^0

Answer Key

Q.1 b	Q.2 c	Q.3 b	Q.4 b	Q.5 a
Q.6 d	Q.7 b	Q.8 d	Q.9 d	Q.10 c
Q.11 d	Q.12 c	Q.13 c, d	UM	