

CS324 - Large Language Models

Modular Architectures

HUMANE Lab

김태균

2025.01.31

Introduction

- Scaling dense transformer models up is non-trivial, requiring data, model, and pipeline parallelism
- To address these issues, we explore two different types of selective architectures
 - Mixture-of-Experts (MoE)
 - Retreival

What is a Mixture of Experts (MoE)?

 A method of using multiple expert networks to select the most suitable expert for processing a specific input

- 1. Experts
- 2. Gate network (or Router)

What is a Mixture of Experts (MoE)?

- Training
- Saving compute

- $f(x) = \sum_{e=1}^{E} \underbrace{g_e(x) h_{ heta_e}(x)}_{ ext{gating expert}}.$
- If gating function which places zero on most experts, then we only have to evaluate the experts with nonzero gating function
- e.g. [0.04, 0.8, 0.01, 0.15] -> [0, 0.84, 0, 0.16]
- Balancing experts
 - MoE is only effective if all experts pitch in
- Parallelism
 - MoE is very conducive to parallelization

Sparsely-gated mixture of experts

- Apply MoE idea to each token and each transformer block
- Turn each feed-forward network into a MoE feed-forward network

Sparsely-gated mixture of experts

- Apply MoE idea to each token and each transformer block
- Turn each feed-forward network into a MoE feed-forward network
- Top-2 experts
- Balancing experts
 - Add load-balancing loss

Switch Transformer

- Top-1 expert (to get even more sparsity)
- Tricks
 - Selective casting from FP32 to FP16
 - Smaller parameters for initialization
 - Expert dropout
 - Expert parallelism
- Trained a 1.6T parameter model
- Improved pre-training speed compared to T5-XXL by 4x

Balanced Assignment of Sparse Experts layers

- Joint optimization over all the tokens in the batch
- Assign each token 1 expert, but load balancing is a constraint
 - B: the number of tokens in the batch
 - E: the number of experts
 - a: assignment vector

$$a = [a_1, \ldots, a_B] \in \{1, \ldots, E\}^B$$
 maximize $\sum_{i=1}^B w_{a_i} \cdot x_i$ subject to $orall e: \sum_{i=1}^B \mathbf{1}[a_i = e] = rac{B}{E}.$

Decentralized mixture-of-experts

- So far, the MoE was motivated from a perspective of a central organization (e.g. Google or Facebook) scaling up a massive LLM
- However, MoE suggests a much more radical decentralization
 - e.g. Harness the hundreds of millions of consumer PCs
- Main consideration
 - Many nodes
 - Frequent node failures
 - Home-Internet communication bandwidth
- Distributed hash tables (DHT)

Mixtral 8x7B

- An open-source language model based on the MoE architecture, developed by Mistral AI
- Includes an expert network of eight 7B parameter models
- Activates two experts per token for computation
- The actual computation is at the level of a 14B model, but the performance is close to a 56B model

Mixtral 8x7B

	LLaMA 2 70B	GPT - 3.5	Mixtral 8x7B
MMLU (MCQ in 57 subjects)	69.9%	70.0%	70.6%
HellaSwag (10-shot)	87.1%	85.5%	86.7%
ARC Challenge (25-shot)	85.1%	85.2%	85.8%
WinoGrande (5-shot)	83.2%	81.6%	81.2%
MBPP (pass@1)	49.8%	52.2%	60.7%
GSM-8K (5-shot)	53.6%	57.1%	58.4%
MT Bench (for Instruct Models)	6.86	8.32	8.30

Summary

- MoE: classic idea of applying different experts to different inputs
- Allows for training much larger language models
- Much more efficient per input than dense transformer models

Retrieval-based models

- Model that retrieves relevant information from an external database and utilizes it
- Operation Principle
 - Retrieve a relevant sequence z based on input x
 - Generate the output y given the retrieved sequence z and input x

Retrieval-augmented generation (RAG)

- By utilizing external knowledge, the model can remain relatively small in size while still leveraging a wide range of information
- For knowledge updates, the external knowledge base can be updated to reflect the latest information without requiring model retraining

Retrieval-augmented generation (RAG)

- The retrieval-based models are highly geared towards knowledgeintensive, question answering tasks
- Beyond scalability, retrieval-based models provide interpretability

Conclusion

 In order to scale, MoE and retrieval-based methods are more efficient than dense transformer