

February 1988

MM54C221/MM74C221 Dual Monostable Multivibrator

General Description

The MM54C221/MM74C221 dual monostable multivibrator is a monolithic complementary MOS integrated circuit. Each multivibrator features a negative-transition-triggered input and a positive-transition-triggered input, either of which can be used as an inhibit input, and a clear input.

Once fired, the output pulses are independent of further transitions of the A and B inputs and are a function of the external timing components C_{EXT} and $R_{\text{EXT}}.$ The pulse width is stable over a wide range of temperature and $V_{\text{CC}}.$

Pulse stability will be limited by the accuracy of external timing components. The pulse width is approximately defined by the relationship $t_{W(OUT)} \approx \, C_{EXT} \, R_{EXT}.$ For further information and applications, see AN-138.

Features

■ Wide supply voltage range 4.5V to 15V ■ Guaranteed noise margin 1.0V

■ High noise immunity $0.45\ V_{CC}\ (typ.)$ ■ Low power TTL compatibility fan out of 2 driving 74L

Connection Diagrams

TL/F/5904-1

Order Number MM54C221 or MM74C221

Truth Table

Inputs			Outputs		
Clear	Α	В	Q	Q	
L	Х	Χ	L	Н	
Х	Н	Χ	L	Н	
Х	Х	L	L	Н	
Н	L	1	Л	Т	
Н	1	Н	7.	ъ	

= High level

= Low level

= Transition from low to high = Transition from high to low

= One high level pulse

= One low level pulse

= Irrelevant

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Pin $-0.3 \mbox{V to V}_{\mbox{CC}} + 0.3 \mbox{V}$

Operating Temperature Range MM54C221

-55°C to +125°C -40°C to +85°C MM74C221

-65°C to +150°C Storage Temperature Range

Power Dissipation Dual-In-Line

700 mW Small Outline 500 mW Operating V_{CC} Range 4.5V to 15V 18V

Absolute Maximum V_{CC} $R_{EXT} \geq 80 \ V_{CC} (\Omega)$

Lead Temperature (Soldering, 10 seconds) 260°C

DC Electrical Characteristics Max/min limits apply across temperature range, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS to	CMOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$	3.5 8.0			V V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$			1.5 2.0	V V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$ $V_{CC} = 10V, I_{O} = -10 \mu A$	4.5 9.0			V V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = +10 \mu A$ $V_{CC} = 10V, I_{O} = +10 \mu A$			0.5 1	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
Icc	Supply Current (Standby)	$V_{CC} = 15V, R_{EXT} = \infty,$ Q1, Q2 = Logic "0" (Note 3)		0.05	300	μΑ
Icc	Supply Current (During Output Pulse)	V _{CC} = 15V, Q1 = Logic "1", Q2 = Logic "0" <i>(Figure 4)</i>		15		mA
		V _{CC} = 5V, Q1 = Logic "1", Q2 = Logic "0" (Figure 4)		2		mA
	Leakage Current at R/C _{EXT} Pin	V _{CC} = 15V, V _{CEXT} = 5V		0.01	3.0	μΑ
CMOS/LP	TTL Interface				•	
V _{IN(1)}	Logical "1" Input Voltage	54C V _{CC} = 4.5V 74C V _{CC} = 4.75V	V _{CC} - 1.5 V _{CC} - 1.5			V V
V _{IN(0)}	Logical "0" Input Voltage	54C V _{CC} = 4.5V 74C V _{CC} = 4.75V			0.8 0.8	V V
V _{OUT(1)}	Logical "1" Output Voltage	54C $V_{CC} = 4.5V$, $I_{O} = -360 \mu A$ 74C $V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4 2.4			V V
V _{OUT(0)}	Logical "0" Output Voltage	54C $V_{CC} = 4.5V$, $I_{O} = 360 \mu A$ 74C $V_{CC} = 4.75V$, $I_{O} = 360 \mu A$			0.4 0.4	V V
Output Dr	ive (See 54C/74C Family Characte	eristics Data Sheet) (Short Circuit Curr	ent)		I.	
ISOURCE	Output Source Current (P-Channel)	V _{CC} = 5V T _A = 25°C, V _{OUT} = 0V	-1.75			mA
ISOURCE	Output Source Current (P-Channel)	V _{CC} = 10V T _A = 25°C, V _{OUT} = 0V	-8			mA
I _{SINK}	Output Sink Current (N-Channel)	$V_{CC} = 5V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	1.75			mA
I _{SINK}	Output Sink Current (N-Channel)	V _{CC} = 10V T _A = 25°C, V _{OUT} = V _{CC}	8			mA

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd A, B}	Propagation Delay from Trigger Input (A, B) to Output Q, Q	$V_{CC} = 5V$ $V_{CC} = 10V$		250 120	500 250	ns ns
t _{pd CL}	Propagation Delay from Clear Input (CL) to Output Q, Q	$V_{CC} = 5V$ $V_{CC} = 10V$		250 120	500 250	ns ns
t _S	Time Prior to Trigger Input (A, B) that Clear must be Set	$V_{CC} = 5V$ $V_{CC} = 10V$	150 60	50 20		ns ns
t _{W(A, B)}	Trigger Input (A, B) Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$	150 70	50 30		ns ns
t _{W(CL)}	Clear Input (CL) Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$	150 70	50 30		ns ns
t _W (OUT)	Q or $\overline{\mathbb{Q}}$ Output Pulse Width	$V_{CC} = 5V$, $R_{EXT} = 10k$, $C_{EXT} = 0$ pF		900		ns
		$V_{CC} = 10V, R_{EXT} = 10k,$ $C_{EXT} = 0 pF$		350		ns
		$V_{CC} = 15V, R_{EXT} = 10k,$ $C_{EXT} = 0 pF$		320		ns
		V _{CC} = 5V, R _{EXT} = 10k, C _{EXT} = 1000 pF (<i>Figure 1</i>)	9.0	10.6	12.2	μs
		V _{CC} = 10V, R _{EXT} = 10k, C _{EXT} = 1000 pF <i>(Figure 1)</i>	9.0	10	11	μs
		V _{CC} = 15V, R _{EXT} = 10k, C _{EXT} = 1000 pF (<i>Figure 1</i>)	8.9	9.8	10.8	μs
		$V_{CC} = 5V$, $R_{EXT} = 10k$, $C_{EXT} = 0.1 \mu F$ (Figure 2)	900	1020	1200	μs
		$V_{CC} = 10V, R_{EXT} = 10k,$ $C_{EXT} = 0.1 \mu F (Figure 2)$	900	1000	1100	μs
		$V_{CC} = 15V, R_{EXT} = 10k,$ $C_{EXT} = 0.1 \mu F$ (Figure 2)	900	990	1100	μs
R _{ON}	ON Resistance of Transistor between R/C _{EXT} to C _{EXT}	V _{CC} = 5V (Note 4) V _{CC} = 10V (Note 4) V _{CC} = 15V (Note 4)		50 25 16.7	150 65 45	Ω Ω
	Output Duty Cycle	R = 10k, C = 1000 pF $R = 10k, C = 0.1 \mu F$ (Note 5)			90 90	% %
C _{IN}	Input Capacitance	R/C _{EXT} Input (Note 2) Any Other Input (Note 2)		15 5	25	pF pF

^{*}AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: In Standby (Q = Logic "0") the power dissipated equals the leakage current plus V_{CC}/R_{EXT} .

Note 4: See AN-138 for detailed explanation $\ensuremath{\text{R}_{\text{ON}}}.$

Note 5: Maximum output duty cycle = R_{EXT}/R_{EXT} + 1000.

Typical Performance Characteristics

0% Point pulse width:

At $V_{CC}=5V$, $T_W=10.6~\mu s$ At $V_{CC}=10V$, $T_W=10~\mu s$ At $V_{CC}=15V$, $T_W=9.8~\mu s$ Percentage of units within +4%: At $V_{CC} = 5V$, 90% of units At $V_{CC} = 10V$, 95% of units At $V_{CC} = 15V$, 98% of units

TL/F/5904-3

FIGURE 1. Typical Distribution of Units for Output Pulse Width

0% Point pulse width:

At $V_{CC}=5V$, $T_W=1020~\mu s$ At $V_{CC}=10V$, $T_W=1000~\mu s$ At $V_{CC}=15V$, $T_W=982~\mu s$ Percentage of units within +4%: At $V_{CC}=5V$, 95% of units At $V_{CC}=10V$, 97% of units At $V_{CC}=15V$, 98% of units

TL/F/5904-4

FIGURE 2. Typical Distribution of Units for Output Pulse Width

TL/F/5904-5

FIGURE 3. Typical Variation in **Output Pulse Width vs Temperature**

TL/F/5904-6

FIGURE 4. Typical Power Dissipation per Package

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N)
Order Number MM54C221N or MM74C221N
NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408