Cuisine Prediction

- Project Introduction
- Dataset
- Modules
- Future Improvements

- Project Introduction
 - Use recipe ingredients to categorize the cuisine
 - For example: if the ingredients contain things like pasta, olive oil, canned tomatoes and tomato paste, garlic, parmesan cheese, fresh basil, pesto, etc., it's probably Italian food.
 - NLP project

Dataset

- I divided its training dataset into my training (0.8) and testing dataset(0.2).

Dataset

	cuisine	id	ingredients
0	greek	10259	[romaine lettuce, black olives, grape tomatoes
1	southern_us	25693	[plain flour, ground pepper, salt, tomatoes, g
2	filipino	20130	[eggs, pepper, salt, mayonaise, cooking oil, g
3	indian	22213	[water, vegetable oil, wheat, salt]
4	indian	13162	[black pepper, shallots, cornflour, cayenne pe

- 39774 observations, 3 columns, no null values.
- Features(X): ingredients (need to be fit and transformed)
- Response(y): cuisine
- Dumb Model Accuracy Rate: 0.19

Dataset

- Intuition: I feel using 'black olives' as the token is better than 'black' and 'olives'.
- Attention: Fit and transform the training data, transform the test data.
- Using Bag of Words because it's short text dataset.

Models: Naive Bayes

Models: Naive Bayes

The accuracy score and best parameters:

```
fit_nb.score(X_test, y_test)

0.75373978629792582

fit_nb.best_params_
{'nb_alpha': 0.1, 'vect_min_df': 1, 'vect_token_pattern': "'([a-z ] +)'"}
```

Models: Random Forest

Models: Random Forest

The accuracy score and best parameters:

```
fit_rfc.score(X_test, y_test)

0.72859836580766812

fit_rfc.best_params_

{'rfc__max_features': 10,
   'rfc__n_estimators': 1000,
   'vect__token_pattern': "'([a-z ]+)'"}
```

Models:

Model Comparison: Naive Bayes is better. So I use Naive
 Bayes model to predict the test data.

Confusion Matrix

brazilian	62	0	3	0	0	0	0	4	0	0	1	0	0	7	1	3	6	6	2	1
british	1	82	2	0	0	18	0	0	14	7	2	0	0	0	0	5	28	1	0	1
cajun_creole	1	6	2.2e+02	2 2	0	2	1	1	2	19	0	0	0	6	0	1	35	4	0	0
chinese	0	7	2	4.6e+02	7	2	0	0	0	0	1	11	8	3	0	3	11	1	13	9
filipino	3	2	0	8	1e+02	2	0	1	0	1	0	1	2	2	0	1	10	2	6	1
french	2	25	8	1	0	3.1e+02	5	3	9	78	1	1	0	2	2	5	62	22	0	0
greek	1	5	2	0	1	8	1.6e+02	2 1	0	34	0	0	0	2	4	0	11	3	0	0
indian	2	6	0	2	0	3	5	5.2e+02	2	7	4	1	0	2	21	1	10	2	7	0
irish	0	14	0	0	1	22	2	2	68	4	1	0	0	0	3	3	22	2	0	0
italian	3	29	16	3	3	1.2e+02	25	0	15	1.3e+03	0	0	0	18	7	12	33	13	0	2
jamaican	0	4	3	2	2	1	0	3	1	1	65	0	0	3	2	0	6	0	1	0
japanese	0	5	3	29	3	4	0	22	1	1	2	2e+02	12	0	0	1	8	1	9	4
korean	0	2	1	29	0	2	0	0	0	1	0	4	1.2e+02	3	0	0	1	1	0	3
mexican	4	6	9	0	3	15	2	8	3	12	4	2	1	1.2e+0	6	1	52	17	6	2
moroccan	0	5	0	0	0	3	7	7	0	6	1	0	0	2	1.2e+02	0	4	1	0	0
russian	0	6	1	1	3	14	3	2	5	6	0	0	1	2	0	46	6	1	0	0
southern_us	4	11	66	5	10	18	5	3	7	32	4	1	1	24	3	10	6.2e+02	9	1	5
spanish	0	5	4	0	0	24	3	0	2	28	0	0	0	15	5	3	11	1.1e+02	2 2	1
fhai	1	0	0	25	3	1	1	10	0	1	1	2	4	2	0	0	4	1	2.4e+02	27
vietnamese	3	0	0	17	7	1	0	2	1	2	0	3	4	0	0	0	1	0	36	82
	-	_	Ф	Ф	0	_	~	_	_	-	_	Φ	_	-	-	_	u)	_	-=	Ф
	brazilian	british	creole	dhinese	flipino	french	greek	indian	:52	talian	jamaican	japanes	korean	mexican	JE SOCIAL	ussian	E,	spanish	fhai	mes
	bra	11		-6	4	4				-	me	def	Ā	me.	moro	2	uthern	8		etnai
			unieo												_		8			Ś

- Future Improvements
 - Try to group the cuisine into similar groups based on their taste, then predict cuisine in each group. (Model Stacking)
 - Try other NLP packages to analyze the data.