```
In [28]: # Importing necessary libraries
         import pandas as pd
         import plotly.express as px
         import plotly.graph_objects as go
         from statsmodels.tsa.statespace.sarimax import SARIMAX
         from statsmodels.tsa.seasonal import seasonal_decompose
         import matplotlib.pyplot as plt
         from statsmodels.tsa.arima.model import ARIMA
         from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
         from statsmodels.tsa.statespace.sarimax import SARIMAX
In [29]: # Read CSV input file
         df = pd.read_csv(".//Dataset//ctr.csv")
In [30]: df
Out[30]:
                   Date Clicks Impressions
                                    58598
            0 2022-10-19
                          2851
            1 2022-10-20
                          2707
                                    57628
            2 2022-10-21
                          2246
                                    50135
            3 2022-10-22
                          1686
                                    40608
            4 2022-10-23
                          1808
                                    41999
                                       ...
          360 2023-10-14
                          885
                                    28487
          361 2023-10-15
                          1180
                                    33440
          362 2023-10-16
                          1624
                                    41688
          363 2023-10-17
                          1751
                                    40957
          364 2023-10-18 1573
                                    40351
         365 rows × 3 columns
In [31]: # DateTime conversion
         df['Date']= pd.to_datetime(df['Date'],format= "%Y-%m-%d")
         df.set_index('Date', inplace=True)
```

```
In [32]: # Visualize the clicks and impressions over time

fig = go.Figure()
  fig.add_trace(go.Scatter(x=df.index, y=df["Clicks"], mode="lines", name="Clicks"))
  fig.add_trace(go.Scatter(x=df.index, y=df["Impressions"], mode="lines", name="Impressions"))
  fig.update_layout(title='Clicks and Impressions Over Time')
```

Clicks and Impressions Over Time

Relationship Between Clicks and Impressions


```
In [34]: # Calculate and visualize CTR

df['CTR'] = (df['Clicks'] / df['Impressions']) * 100

fig = px.line(df, x=df.index, y='CTR', title='Click-Through Rate (CTR) Over Time')

fig.show()
```

Click-Through Rate (CTR) Over Time


```
In [35]: # Average CTR by day of the week:

df['DayOfWeek'] = df.index.dayofweek
df['WeekOfMonth'] = df.index.week // 4

# EDA based on DayOfWeek
day_of_week_ctr = df.groupby('DayOfWeek')['CTR'].mean().reset_index()
day_of_week_ctr['DayOfWeek'] = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

fig = px.bar(day_of_week_ctr, x='DayOfWeek', y='CTR', title='Average CTR by Day of the Week')
fig.show()
```

<ipython-input-35-69a23a82feb3>:4: FutureWarning:

weekofyear and week have been deprecated, please use DatetimeIndex.isocalendar().week instead, which returns a Series. To exactly reproduce the behavior of week and weekofyear and return an Index, you may call pd.Int64Index(idx.isocalendar().week)

Average CTR by Day of the Week

Comparison of CTR on Weekdays vs. Weekends

Impressions and Clicks on Weekdays vs. Weekends


```
In [38]: df.reset_index(inplace=True)

# resetting index
time_series = df.set_index('Date')['CTR']

# Differencing
differenced_series = time_series.diff().dropna()

# Plot ACF and PACF of differenced time series
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
plot_acf(differenced_series, ax=axes[0])
plot_pacf(differenced_series, ax=axes[1])
plt.show()
```


In [39]: # train the forecasting model using SARIMA

```
p, d, q, s = 1, 1, 1, 12

model = SARIMAX(time_series, order=(p, d, q), seasonal_order=(p, d, q, s))
results = model.fit()
print(results.summary())
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning:

No frequency information was provided, so inferred frequency D will be used.

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning:

No frequency information was provided, so inferred frequency D will be used.

SARIMAX Results

______ Dep. Variable: CTR No. Observations: 365 Model: SARIMAX(1, 1, 1)x(1, 1, 1, 12) Log Likelihood -71.364 Date: Wed, 10 Apr 2024 AIC 152.729 Time: 15:45:34 BIC 172.047 Sample: 10-19-2022 HQIC 160.416 - 10-18-2023

Covariance Type:

opg

	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	0.5266	0.070	7.508	0.000	0.389	0.664
ma.L1	-0.9048	0.036	-25.327	0.000	-0.975	-0.835
ar.S.L12	-0.1573	0.071	-2.224	0.026	-0.296	-0.019
ma.S.L12	-0.9984	1.779	-0.561	0.575	-4.486	2.489
sigma2	0.0772	0.137	0.565	0.572	-0.191	0.345
Ljung-Box (L1) (Q):			 5.63	Jarque-Bera	(JB):	1.2
<pre>Prob(Q): Heteroskedasticity (H):</pre>			0.02	Prob(JB): Skew:	0.5	
			1.14		-0.0	
<pre>Prob(H) (two-sided):</pre>			0.48	Kurtosis:		3.2
=========	========		=======	========		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [40]: # Predicting the future CTR values
         future_steps = 100
         predictions = results.predict(len(time_series), len(time_series) + future_steps - 1)
         print(predictions)
         2023-10-19
                      3.852386
         2023-10-20
                      3.889481
         2023-10-21
                      3.820334
         2023-10-22
                     3.727538
         2023-10-23
                     3.710386
                        . . .
         2024-01-22
                      3.545527
         2024-01-23
                      3.466600
         2024-01-24
                      3.561147
         2024-01-25
                      3.546659
         2024-01-26
                      3.580067
         Freq: D, Name: predicted_mean, Length: 100, dtype: float64
```

CTR Forecasting

In []: