Kurzdokumentation - PA 3

Größe	Formel	Zweck
Energie	$E = \sum x[n]^2$	Gesamtleistung pro Spur
RMS	$x_{eff} = \sqrt{\frac{1}{N} \sum x[n]^2}$	Lautheits-/Pegelbasis
Crest-Faktor	$C = \frac{\hat{x}}{x_{eff}}$	Impulshaltigkeit
Korrelationskoeffizient	$\rho = \frac{\sum (x - \hat{x})(y - \hat{y})}{\sum (x - \hat{x})^2 \cdot \sum (y - \hat{y})^2}$	Phasen-Ähnlichkeit zweier Spuren
Gain-Faktor (global)	$g = \frac{10 \cdot dBFS_{Ziel}^{20}}{\sqrt{\sum_{0}^{n} RMS^{2}}}$	Hoch-/Runterskalieren → Ziel-RMS treffen
dB-Umrechnung	$L_{dB} = 20 \cdot \log_{10}(x)$	Pegelberechnung

Schritte:

- 1. Stems einlesen \rightarrow Mono \rightarrow falls nötig auf 48 kHz resampeln
- 2. Pro Track E, RMS & Crest ausrechnen
- 3. Korrelationscheck der 2 Tracks
- 4. Spuren ohne mixen addieren
- 5. g berechnen, auf alle Spuren multiplizieren, Summe bilden, check
- 6. Export Einzelspuren, Gesamtmix und Report

Kurzdokumentation - PA 3

Formeln aus Vorlesung:

Einzahl-Werte

Von Bedeutung sind der arithmetische Mittelwert \bar{x} mit

$$\overline{x} = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) dt , \qquad \overline{x} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

 der ${\it Gleichrichtwert}~\overline{x}~$ als arithmetisches Mittel über den Betrag der Wechselgröße mit

$$|\overline{x}| = \frac{1}{T} \int_{t_0}^{t_0+T} |x(t)| dt$$
 $|\overline{x}| = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|$

und der Effektivwert $x_{\rm eff}$ als quadratisches Mittel mit

$$x_{\text{eff}} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} x^2(t) dt$$
 $x_{\text{eff}} = \sqrt{\frac{1}{N}} \sum_{n=0}^{N-1} x[n]^2$

Audio-Signale

Einzahl-Werte

Das Verhältnis von Scheitelwert zu Effektivwert, der sog. Scheitelfaktor C (crest factor), mit

$$C = \frac{\hat{x}}{x_{\text{eff}}} \tag{1.11}$$

sowie der Formfaktor F (form factor) als Verhältnis von Effektivwert zu Gleichrichtwert mit

$$F = \frac{x_{\text{eff}}}{|\hat{x}|} \tag{1.12}$$

