GATE

CS&IT

Computer Organization and Architecture

DPP: 1

Floating Point Representation

- Q1 Which of the following is the representation of $(-1)_{10}$ in IEEE-754 single precision floating point number?
- Q2 Which of the following is the representation of + (0.0000101)₂ in IEEE-754 single precision floating point number?
 - (A) S = 0, E = 01111010, M 10100000000000000000000

 - (C) S = 0, E = 01111010, M 01000000000000000000000
- Q3 The value of a float type variable is represented using the single- precision 32-bit floating point format IEEE-754 standard that uses 1bit for sign, 8 bits for biased exponent and 23 bits for mantissa. A float type variable X is assigned the decimal value of -22.25. The representation of X in hexadecimal notation is

- (A) C1B40000H
- (B) 41B20000H
- (C) C1B20000H
- (D) 41B40000H
- **Q4** Consider the following representation of a number in IEEE 754 single-precision floating point format?
- **Q5** Minimum possible positive normalized value represented in IEEE-754 single precision format is?
- **Q6** Maximum possible positive denormalized value represented in IEEE-754 single precision format is?
 - (A) $(2^{23}-1)*2^{-150}$
 - (B) $(2^{24}-1)*2^{-149}$
 - (C) $(2^{23}-1)*2^{-149}$
 - (D) $(2^{24}-1)*2^{-150}$

5/23/24, 5:37 PM GATE_DPP 1

GATE

Answer Key

Q1 (B) Q4 28 Q2 (C) Q5 (B)

Q3 (C) Q6 (C)

5/23/24, 5:37 PM GATE DPP 1

GATE

Hints & Solutions

Q1 Text Solution:

For $(-1)_{10}$, sign = 1 for negative value

 $(1)_{10} = 1.0 \times 2^{0}$

Mantissa = 000 0

Original exponent = 0

Bais exponent = $0 + 127 = (127)_{10} = (01111111)_2$

Q2 Text Solution:

For positive value sign S = 0

 $(0.0000101)_2 = 1.01 \times 2^{-5}$

Mantissa = 0100 0

Original exponent = -5

Baissed exponent = $-5 + 127 = (122)_{10} = 0111010$

Q3 Text Solution:

For negative value sign S = 1

 $(22.25)_{10} = (10110.01)_2$

After implicit normalization = 1.011001 × 24

Mantissa = 011001000 . . . 0

Original exponent = 4

Biased exponent = $4 + 127 = (131)_2 = (10000011)_2$

The number will look like as:

1	10000011	0110010000000000000
	10000011	0000

In hexadecimal the number will be: C1B20000

Q4 Text Solution:

Sign is 0, hence it's a positive value.

Given biased exponent = $(10000011)_2$ = 131

Value = $+1.11 \times 2^{131 - 127}$

 $= 1.11 \times 2^4$

 $= (11100)_2$

= +28

Q5 Text Solution:

If normalized value then it will be having biased exponent (1)₁₀. And mantissa can have all zeros because number will be implicitly normalized.

Q6 Text Solution:

For positive number sign S = 0

For denormalized number E = 00000000

Mantissa should be all (23 times) 1s.

Value = $+ 0.1111....1 * 2^{-126}$

= 1111111111111111111111.0 *2⁻¹⁴⁹

 $=(2^{23}-1)*2^{-149}$

