

REGGAE

Regression Generator & Analyzer How-to-reggae at Coding Camp By Liliana Gallegos

What is REGGAE?

Compiled data (csv format)

Select analysis Run regression

Aims:

Statistical reproducibility open-source user-friendly quick analysis

- ✓ Analysis report
- ✓ Regression plot

Setup

Create r environment and install r-essentials:	conda create –n r_env r-essentials r-base				
☐ Activate environment:	conda activate r_env				
☐ Install packages required:	conda installyesfile R-requirements.txt				
☐ Confirm by running reggae help options:	Rscript reggae.r -h				

 $\textbf{Available:} \ https://github.com/Liliana-Gallegos/REGGAE$

Statistical analysis options

Regression analysis: Multivariate Linear or Random Forest (quick not opt)

-m ,model	o Feature selection: full, stepwise, dredge, mincorr	
-b ,buildmodel	o Build a model: x_1, x_2, x_n	
-y ,yresponse	o Define y-response	
	 Split into Train/ Test datasets: [Default = 1 full dataset] 	
-r ,randsample	o (a) ratio between 0 and 1 or (b) 0 = predefined test/train	
-р ,рса	 Principal Component analysis with kmeans clustering. 	
	o Build scaled/unscaled train and test sets random or universal training set	
-c ,corrplot	o Pairwise Correlation	
–q ,crossvalidation	o Cross Validation q ² values from leave-one-out, K-fold, and external.	
-d ,diagnostics	o Diagnostics QSAR criteria for an acceptable model, F-value comparisons	,
	collinearity, outlier testing.	
	 ANOVA analysis. 	
-v ,verbose	o Plots for selected analysis.	

Other options

-i, --inputfile Requires csv file name.

-o , --outputfile Optional: output file name (default = REGGAE-analysis-output.txt)

-x, --extdata To validate model using external csv data set. Requires the name of csv data file.

-e, --exportdata Export data sets. Select from option: scaled, unscaled, predicted.

Optional: specify the seed for random sample split. (default seed = 42)

-k, --kfoldvalue Optional: To adjust k-value for K-fold cross validation. (default = 5)

-v , --verbose Optional: To print extra output and plots. (defaul = FALSE)

-h , --help

-s , --seed

Rscript reggae.r –i data.csv –m stepwise –y dG –r 0.8 –q –d –v

Example: Quantitative Structure-Selectivity Relationships

Total of 21 catalysts Steric and electronic features:

- Sterimol descriptors:
 B₁, B₅, L and %Vbur
- Natural Population Analysis (NPA) charges

For statistical reproducibility:

- Available dataset (ESI: .xlsx, .csv, table)
- Available code
- Labeled split datasets or methods used

		R ²		R ⁴		NPA Charge			%V _{Bur}	$\Delta G_{ m DFT}$	$\Delta G_{ m predicted}$	
	$L^{\rm R2}$	B_1^{R2}	B_5^{R2}	L^{R4}	B_1^{R4}	B_5^{R4}	$Q_{\rm Y}$	Q_{01}	Q_{02}			
A	4.62	2.98	6.07	4.62	2.98	6.07	1.92	-0.92	-0.92	89.7	0.2	0.0
В	4.41	2.93	3.35	4.62	2.98	6.07	1.91	-0.92	-0.92	89.7	0.6	0.2
C	3.09	1.70	2.19	4.62	2.98	6.07	1.93	-0.91	-0.90	88.7	3.4	3.9
-							2.00	0.00	0.00	00.7		

Rscript reggae.r –i 2vp-labeled.csv –b B1R2,B1R4 –y dGcalc –r 0 –q –d –v