

Características que permiten Memoria Virtual

- Traducción de direcciones
- Proceso dividido en partes (páginas o segmentos)

Motivaciones

- Durante la ejecución del proceso no se usan todas sus partes (páginas o segmentos).
- Espacio reservado sin usar.

¿Es necesario ocupar la memoria con partes que no se usan?

Memoria Virtual

Memoria Real

Memoria Virtual

Tabla de páginas

0	5	
1	14	
2	3	
2 3 4	1	
4	13	
5	9	

Ventajas

Procesos más grandes que la

memoria real.

Tabla de páginas

0	5
1	14
1 2 3 4 5	3
3	1
4	13
5	9

Memoria Real

Ventajas

• Más procesos en memoria: Permite aumentar el grado de multiprogramación.

9

 P2-pag0
 0

 P2-pag1
 1

 P6-pag2
 2

 P1-pag2
 3

 P6-pag1
 4

 P1-pag0
 5

 P4-pag1
 6

 P3-pag0
 7

 P5-pag1
 8

 P1-pag5
 9

 Libre
 10

Memoria Virtual

Otras Ventajas

Menos restricciones para el programador

Tabla de páginas

0	5
1	14
2	3
3	1
1 2 3 4 5	13
5	9

Memoria Real

Definición

Espacio de memoria secundaria (el disco) que puede ser direccionado como si fuese memoria

<u>Mecanismo de</u> <u>búsqueda de páginas</u>

- 1- Se realiza una referencia a memoria:
 - Verificar la Presencia de la página en memoria.
 - Fallo de Página (Page Fault).

<u>Mecanismo de</u> <u>búsqueda de páginas</u>

2- Interrupción por fallo de página:

- Se bloquea el proceso.
- Mientras tanto otro proceso puede utilizar el CPU.

<u>Mecanismo de</u> <u>búsqueda de páginas</u>

3- Solicitud de página

- Se determina en qué marco ubicar la página faltante.
- Se solicita la página faltante (E/S).
- 4- Se carga la página en memoria y se produce una interrupción para que el SO tome el control.

<u>Mecanismo de</u> <u>búsqueda de páginas</u>

5- SO atiende la interrupción:

- Actualiza la tabla de páginas.
- Desbloquea el proceso (cambia su estado a Listo).
- 6- Se ejecuta nuevamente la instrucción que provocó el fallo de página.

Estructura de Tabla de Páginas

3 214 --- 1 214

Dos accesos a Memoria

Número de Marco	
5	1
14	0
3	0
1	1
13	0
9	0
	5 14 3 1 13

Estructura de Tabla de Páginas

Memoria Virtual

Memoria Virtual

Estructura de Tabla de Páginas

Dir. Lógica

2 57 Sin espacio en memoria

		Bit de Presencia	Bit de Modificado
0	5	1	1
1	14	0	0
2	3	0	0
3	1	1	1
4	13	0	0
5	9	0	0

Estructura de Tabla de Páginas

Dir. Lógica

2 57 Sin espacio en memoria

		Bit de Presencia	Bit de Modificado
0	5	1 0	1
1	14	0	0
2	3 -5	0 1	0
3	1	1	1
4	13	0	0
5	9	0	0

Requiere un acceso a disco para escritura y otro para lectura

Eficiencia

- Requiere más accesos a memorias.
- Requiere más accesos a disco.
- No mejora el rendimiento para la ejecución del proceso.

Principio de Localidad o proximidad

- Permite que la memoria virtual funcione y que no genere bajo rendimiento.
- Durante un intervalo de tiempo sólo se usan unas páginas de forma activa. A este conjunto se lo denomina localidad.

Principio de Localidad o proximidad

Principio de Localidad o proximidad

Otras Estructuras para Tabla de Páginas

- Las páginas suelen tener tamaño 2ⁿ.
- Ej: Dirección con páginas de 4KiB de tamaño.

52 bits	12 bits
Número de Página	Desplazamiento

Otras Estructuras para Tabla de Páginas

Paginación Jerárquica o por niveles.

Otras Estructuras para Tabla de Páginas

• Paginación Jerárquica o por niveles.

Otras Estructuras para Tabla de Páginas

- Tabla de páginas invertida:
 - Hay una tabla de páginas para todos los procesos.
 - La cantidad de entradas de la tabla es igual a la cantidad de marcos en la memoria.

Otras Estructuras para Tabla de Páginas

 Tabla de páginas invertida: Tabla de páginas invertida Memoria Real (N entradas) (N marcos) N Pág Desp N Pág N Pág PID Búsqueda Secuencial Ν

Otras Estructuras para Tabla de Páginas

Otras Estructuras para Tabla de Páginas

 Tabla de páginas invertida: Memoria Real Tabla de páginas invertida (N entradas) (N marcos) N Pág Desp N Pág N Pág PID PTR proceso Hash COLISION h Ν

- Soporte de HW.
- Mejora el rendimiento de la traducción de direcciones.
- Puede reducir la cantidad de accesos a memoria.

- Soporte de HW.
- Cache de la tabla de páginas.

- Características de la TLB:
 - Muy rápida pero con pocos entradas.
 - Entradas de la TLB.
 - ASID (identificador de espacio de direcciones).

Diseño del Sistema Operativo:

- Hardware:
 - Soporta o no memoria virtual.
 - Soporta o no paginación, segmentación o ambas.
- Software: Políticas para la gestión de memoria virtual.
 - Objetivo: Mejorar el rendimiento.

Diseño del Sistema Operativo:

- Políticas:
 - a) de Recuperación.
 - b) de Ubicación.
 - c) de Reemplazo o Sustitución.
 - d) del Conjunto Residente.
 - e) de Limpieza.

Diseño del Sistema Operativo:

- a) Política de Recuperación:
 - Paginación Bajo Demanda.
 - Paginación Adelantada (prepaging)

- b) Política de Ubicación:
 - Con Segmentación Pura.
 - Algoritmos Best fit, First fit, Next fit y Worst fit.

Diseño del Sistema Operativo:

• c) Políticas de Reemplazo o Sustitución.

- Bloqueo de marcos.
- Algoritmos:
 - Óptimo, FIFO, LRU, Clock, Clock Mejorado.

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo Óptimo
 - Selección de la víctima: se elige a la página a la que se realizará una referencia en el futuro más lejano.

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo FIFO
 - Selección de la víctima: se elige a la página que hace más tiempo está en memoria.

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo LRU (Least Recently Used)
 - Selección de la víctima: se elige a la página que hace más tiempo no es referenciada.

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo del Reloj o de Segunda Oportunidad (Clock).
 - Se apunta al próximo marco a reemplazar, pero:
 - Si (Bit de uso == 0) ----> se reemplaza el marco.
 - Si (Bit de uso == 1) ----> Bit de Uso = 0 y se apunta al siguiente marco y se vuelve a preguntar.

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo del Reloj o de Segunda Oportunidad (Clock).

Diseño del Sistema Operativo:

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo Tabla de Páginas:

FIFO: No requiere un formato diferente. Requiere actualizar un puntero a la próxima página que será reemplazada.

Diseño del Sistema Operativo:

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo Tabla de Páginas:

LRU: Por cada página se requiere almacenar el momento de su última referencia.

#Marco Bit de Bit de Instante de Presencia Modificado referencia

Diseño del Sistema Operativo:

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo Tabla de Páginas:

Clock: Requiere que se agregue un "Bit de Uso" a la tabla de página.

#Maraa	Bit de	Bit de	Bit de
#Marco	Presencia	Modificado	Uso

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo Clock Mejorado.
 - Requiere:
 - Un puntero al siguiente marco a analizar.
 - Bit de uso.
 - Bit de modificado.

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo Clock Mejorado.
 - (u=0; m=0): No accedido recientemente, no modificado.
 - (u=1; m=0): Accedido recientemente, no modificado.
 - (u=0; m=1): No accedido recientemente, modificado.
 - (u=1; m=1): Accedido recientemente, modificado.

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo Clock Mejorado.
- 1) Recorre los marcos y selecciona el primero con (u=0;m=0).
- 2) Si no encuentra, recorre los marcos y selecciona el primero con (u=0;m=1). A medida que recorre, modifica el bit de uso de cada marca de 1 a 0.
- 3) Repite el 1er paso y si es necesario el 2do paso.

Diseño del Sistema Operativo:

- c) Políticas de Reemplazo o Sustitución.
 - Algoritmo Clock Mejorado.

Se referencia a la página nº 7 para leer una variable.

Diseño del Sistema Operativo:

• d) Gestión del conjunto residente.

	Reemplazo Local	Reemplazo Global
Asignación Fija	 Número de marcos asignados a un proceso no varía. Páginas a cambiar son del mismo proceso. 	No es posible.
Asignación Variable	 Número de marcos asignados a un proceso puede cambiar. Páginas a cambiar son del mismo proceso. 	 Las páginas a reemplazar se eligen entre todos los marcos. Cada reemplazo puede afectar a otro proceso.

- e) Políticas de Limpieza.
 - Limpieza bajo demanda
 - Limpieza adelantada

Diseño del Sistema Operativo:

Consideraciones

Sobrepaginación / Trashing (Trasiego)

Diseño del Sistema Operativo:

Consideraciones

• Sobrepaginación / Trashing (Trasiego)

Se invierte más tiempo en el mecanismo de paginación que en la ejecución del proceso.

- Consideraciones
- Tamaño de la página

	Chica	Grande
Tabla de páginas	Muchas Entradas	Pocas Entradas
Fallos de página	Más	Menos
TLB	Más fallos de TLB	Más aciertos de TLB
Fragmentación	Menos	Más
Localidad	Más preciso	Menos preciso
Transferencia E/S	Menos	Más

Diseño del Sistema Operativo:

Consideraciones

Bloqueo de páginas

1- PB provoca un fallo de página.

Diseño del Sistema Operativo:

Consideraciones

Bloqueo de páginas

- 1- PB provoca un fallo de página.
- 2- PB es bloqueado hasta tener la página solicitada.
- 3- PA es asignado al CPU.

Diseño del Sistema Operativo:

Consideraciones

Bloqueo de páginas

- 1- PB provoca un fallo de página.
- 2- PB es bloqueado hasta tener la página solicitada.
- 3- PA es asignado al CPU.
- 4- PA provoca un fallo de página.
- 5- La página solicitada por PB se carga en memoria y PB se desbloquea.

Diseño del Sistema Operativo:

Consideraciones

Bloqueo de páginas

- 1- PB provoca un fallo de página.
- 2- PB es bloqueado hasta tener la página solicitada.
- 3- PA es asignado al CPU.
- 4- PA provoca un fallo de página.
- 5- La página solicitada por PB se carga en memoria y PB se desbloquea.
- 6- PB puede sufrir inanición y la página que solicitó no fue modificada y permanece mucho tiempo en memoria. 7-La página solicitada por PA sustituye a la de PB.

Diseño del Sistema Operativo:

Consideraciones

- Bloqueo de páginas
 - Se utiliza un bit de bloqueo de marcos.
 - Evita que una página que aún no fue utilizada sea sustituida.
 - Se utiliza para marcos de memoria pertenecientes al SO.

Diseño del Sistema Operativo:

Consideraciones

- Compartición de páginas: Copia durante escritura
 - Paginación permite compartir memoria.
 - fork() crea un proceso hijo duplicado.
 - Para mejor el rendimiento padre e hijo comparten memoria.

Diseño del Sistema Operativo:

Consideraciones

• Compartición de páginas: Copia durante escritura

Diseño del Sistema Operativo:

Consideraciones

• Compartición de páginas: Copia durante escritura

Diseño del Sistema Operativo:

Consideraciones

• Compartición de páginas: Copia durante escritura

Diseño del Sistema Operativo:

Consideraciones

Estructura de Programas

for
$$(J = 0; J < 128; J++)$$

for $(I = 0; I < 128; I++)$
matriz[I][J] = 0;

Diseño del Sistema Operativo:

Consideraciones

• Estructura de Programas

Diseño del Sistema Operativo:

Consideraciones

• Estructura de Programas

Páginas de 512 Bytes

Algoritmos de reemplazo:

	2	5	2	3	5	4	2	5	1	2	3	2	
3PF +3PF Total= <u>6PF</u>	2	2	2	4	4	4	2	2	2	2	2	2	OPTIMO
	3	3	3	3	3	3	3	3	3	3	3	-	
	5	5	5	5	5	5	5	5	1	-	-	-	
			PF			PF		PF	PF		PF	PF	
	2	5	2	3	5	4	2	5	1	2	3	2	
6PF +3PF	3	3	3	3	5	5	5	5	2	2	2	2	
Total= 9PF	5	5	2	2	2	2	2	3	3	3	3	-	FIFO
<u> </u>	2	4	4	4	4	4	1	1	1	-	-	-	
	PF	PF		PF		PF	PF	PF	PF		PF	PF	

Algoritmos de reemplazo:

Algoritmos de reemplazo:

OPTIMO **3PF** +3PF **Total= 6PF**

6PF +3PF FIFO Total - QDE

Total= <u>9PF</u>

LRU **4PF** +3PF **Total=7PF**

CLOCK **5PF** +3PF **Total= 8PF**