Appendix C

Chebyshev Polynomials

Chebyshev polynomials have important uses in developing convergence results for algorithms; for instance, the analysis for the convergence of the conjugate gradient method in Chapter 21 can be done using these polynomials (see Ref. [1, pp. 312-316]). They also play a large role in convergence results for methods that compute eigenvalues of large sparse matrices (see Ref. [3, pp. 151-159]). There are additional applications to least-squares and interpolation. The book does not actually use Chebyshev polynomials in proofs, but the statement of certain theorems involve Chebyshev polynomials, and so we will give a brief overview of their definition and properties.

C.1 DEFINITION

The definition begins with the form of these polynomials on the interval $-1 \le t \le 1$, and then their definition is extended to all real numbers.

Definition C.1. On the interval $-1 \le x \le 1$, the Chebyshev polynomial of degree $n \ge 1$ is defined as $T_n(x) = \cos(n\theta)$, where $\theta \in [0, \pi]$ and $\cos(\theta) = x$. More compactly, $T_n(x) = \cos(n\cos^{-1}(x))$.

Looking at the definition, it is not clear that $T_n(x)$ is a polynomial. From the definition, $T_0(x) = 1$ and $T_1(x) = x$, and we can use some trigonometry to find $T_n(x)$, $n \ge 2$.

Recall that

$$\cos (\alpha \pm \beta) = \cos (\alpha) \cos (\beta) \mp \sin (\alpha) \sin (\beta)$$

Now,

$$T_{n+1}(x) = \cos[(n+1)\theta] = \cos(n\theta)\cos(\theta) - \sin(n\theta)\sin(\theta)$$

$$T_{n-1}(x) = \cos[(n-1)\theta] = \cos(n\theta)\cos(\theta) + \sin(n\theta)\sin(\theta)$$

Add the two equations and obtain

$$T_{n+1}(x) + T_{n-1}(x) = 2xT_n(x)$$
,

and after rearrangement

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), n \ge 1,$$

 $T_0(x) = 1, T_1(x) = x$ (C.1)

Using Equation C.1, we can extend $T_n(x)$ for all $x \in \mathbb{R}$, and by application of the recurrence relation we can determine a Chebyshev polynomial of any degree. For instance,

$$T_{2}(x) = 2xT_{1}(x) - T_{0}(x) = 2x^{2} - 1$$

$$T_{3}(x) = 2x(2x^{2} - 1) - x = 4x^{3} - 3x$$

$$T_{4}(x) = 2x(4x^{3} - 3x) - (2x^{2} - 1) = 8x^{4} - 8x^{2} + 1$$
(C.2)

FIGURE C.1 The first five Chebyshev polynomials.

C.2 PROPERTIES

There are many interesting and useful properties of the Chebyshev polynomials, and we mention just a few.

• Since $T_n(x) = \cos(n\theta)$, it follows that

$$|T_n(x)| \le 1, -1 \le x \le 1, n \ge 0.$$

• We can discern a pattern by looking at Equations C.2. For n = 2, 3, 4, the Chebyshev polynomials have the form

$$T_n(x) = 2^{n-1}x^n + O(x^{n-1})$$
 (C.3)

This is actually true for all $n \ge 1$ (Problem C.2). As a result of Equation C.3, the Chebyshev polynomials grow very quickly with increasing n.

• The roots of $T_n(t)$ are

$$x_i = \cos((2i-1)\pi/(2n))$$
, for $i = 1, 2, ..., n$.

A polynomial whose highest degree term has a coefficient of 1 is called a *monic polynomial*. If we define $\hat{T}_n(x) = \left(\frac{1}{2^{n-1}}\right)T_n(x)$, then $\hat{T}_n(x)$ is a monic polynomial. By application of these and other properties, we have following theorem (see [88], Chapter 3, Theorem 3.3)

Theorem C.1. Consider all possible monic polynomials of degree n. Of all these, the monic polynomial $\hat{T}_n(x)$ has the smallest maximum over $-1 \le x \le 1$, and its maximum is $\frac{1}{2^{n-1}}$.

C.3 PROBLEMS

- **C.1** Using the recurrence relation C.1, find the Chebyshev polynomials $T_5(x)$ and $T_6(x)$.
- **C.2** Using the recurrence relation C.1 and mathematical induction, prove relationship C.3.

C.3.1 **MATLAB Problems**

C.3

- a. Write a function, chebyshev, that takes the degree n as an argument and returns the MATLAB form of the polynomial.
- **b.** Use your function to graph $T_5(x)$ and $T_6(x)$.
- **c.** We have said the Chebyshev polynomials grow quickly as n increases. Let $x = 1 + \epsilon$, $\epsilon = \{10^{-6}, 10^{-5}, 10^{-4}, \}$. For each ϵ , evaluate $T_n(x)$, $n = \{5 \ 10 \ 50 \ 75 \}$.

C.4

- **a.** Let $p(x) = x^3 + 0.00001x^2 0.00001x$. Graph p(x) and $T_3(x)/4$ over [-1, 1]. **b.** Compute the maximum of p(x) and $T_3(x)/4$.