Bayessche Statistik

Leonard Pleschberger

30. Oktober 2019

Ziele des Vortrags

Mit dem Vortrag sollen einige Grundprinzipien der Bayesschen Inferenz dargestellt werden, insbesondere:

- 1. Die Schritte des Verfahrens.
- 2. Die Auswahl von geeigneten A-priori-Verteilungen unter verschiedenen Gesichtspunkten.

Bayessche Statistik

Bayessche Statistik

- 1. ist eine alternative Methodik zur Datenanalyse.
- 2. verwendet explizit das Vorwissen des Statistikers.
- 3. basiert auf einem alternativen Wahrscheinlichkeitsbegriff.
- 4. ermöglicht Aussagen über nicht-wiederholbare Ereignisse.

Bayessche vs. frequentistische Statistik

Hauptunterschied zwischen den Modellen:

Frequentistische Statistik: Parameter θ ist fest, aber unbekannt.

Bayessche Statistik: Auch θ besitzt eine Verteilung.

Schritte der Bayesschen Methode

Die Bayessche Methode ist ein Lernprozess:

- 1. Stelle ein vernünftiges Modell auf. (⇒ **Likelihood**)
- 2. Wähle eine Startverteilung. (⇒ **A-priori-Verteilung**)
- 3. Erhalte ein neues Modell. (⇒ **A-posteriori-Verteilung**)
- 4. Ist das neue Modell sinnvoll oder nicht wirklich?

Schritte wiederholen mit A-posteriori- als neuer A-priori-Verteilung.

Notation

 θ : Parameter des Modells

y: Daten

 $p(\cdot)$: Verteilung / Randverteilung / Dichte

 \propto : Verteilungen sind proportional zueinander, d.h.

 $x \propto y$: \Leftrightarrow $x = C \cdot y$, für C > 0.

Satz von Bayes

Für die **A-posteriori-Verteilung** $p(\theta|y)$ gilt

$$p(\theta|y) = \frac{p(\theta) \cdot p(y|\theta)}{p(y)}.$$

p(y) ist eine (Normierungs-)Konstante. Wir schreiben:

$$p(\theta|y)$$
 $\propto p(\theta)$ $\cdot p(y|\theta).$

A-posteriori-Verteilung \propto A-priori-Verteilung \cdot Likelihood.

Beispiel: Rezessive Erbkrankheit

Geschlechtschromosome:

XY : ♂, XX : ♀

Vater und Mutter geben je ein Chromosom weiter (p = 1/2).

Hämophilie (Bluterkrankheit):

Wird über X-Chromosom vererbt.

X : Normales X-Chromosom, X : X-Chromosom mit gen. Variation.

Hämophilie ist rezessiv:

XX : Gesunde ♀, XX : Erkrankte ♀, XY : Erkrankter ♂

Ausgangssituation

Wir betrachten eine Frau mit gesunden Eltern und einem an Hämophilie erkrankten Bruder:

Ist die Frau Kondukorin, d.h. Trägerin der genetischen Variation?

Parameter: $\theta = 0$: XX , $\theta = 1$: XX

A-priori-Verteilung: $p(\theta = 1) = p(\theta = 0) = 0.5$.

Likelihood

Wir betrachten als **Daten** die Söhne y_1 und y_2 der Frau, mit

$$y_i = \begin{cases} 1 : \mathsf{Sohn} \; \mathsf{erkrankt} \; (\mathsf{XY}), \\ 0 : \mathsf{Sohn} \; \mathsf{gesund} \quad (\mathsf{XY}), \end{cases} \quad i \in 1, 2.$$

Es ergeben sich die **Likelihoods**:

$$p(y_1 = 0, y_2 = 0 | \theta = 1) = p(y_1 = 0 | \theta = 1) \cdot p(y_2 = 0 | \theta = 1)$$
$$= 0.5 \cdot 0.5 = 0.25.$$
$$p(y_1 = 0, y_2 = 0 | \theta = 0) = 1 \cdot 1 = 1.$$

A-posteriori-Verteilung

Mit welcher Wahrscheinlichkeit ist die Frau Konduktorin, wenn ihre beiden Söhne gesund sind?

$$p(\theta = 1|y) = \frac{0.5 \cdot 0.25}{0.25 \cdot 0.5 + 1 \cdot 0.5} = 0.20.$$

A-posteriori- als neue A-priori-Verteilung

Falls es einen weiteren gesunden Sohn gibt:

 ≈ 0.111 .

Die A-posteriori-Verteilung kann als neue A-priori-Verteilung verwendet werden.

$$p(\theta = 1|y_1, y_2, y_3)$$

$$= \frac{p(\theta = 1|y_1, y_2) \cdot p(\theta = 1)}{p(y_1, y_2, y_3|\theta = 1) \cdot p(\theta = 1) + p(y_1, y_2, y_3|\theta = 0) \cdot p(\theta = 0)}$$

$$= \frac{0.20 \cdot 0.50}{0.50 \cdot 0.20 + 1 \cdot 0.8}$$

Auswertung der Daten

Die A-posteriori-Verteilung muss noch auf Plausibilität überprüft werden:

- 1. Passen die Ergebnisse zu den Daten?
- 2. Gibt es weitere A-priori-Informationen, die noch nicht verwendet wurden?

Komplexität des Modells

Man soll für das Modellfitting kein riesiges Modell bauen, das über Nacht läuft.

Lieber kleinschrittig vorgehen:

- Mit einfachen Modellen und wenigen verschiedenen Datentypen beginnen.
- 2. Allmählich die Komplexität des Modells steigern.

Beispiel: Rechtschreibekorrektur von Google

Wir betrachten einen Satz wie: The data are totally radom.

"radom" kann ein Rechtschreibefehler sein. Mögliche Wörter sind:

- 1. "random".
- 2. "radon" (radioaktives Edelgas).
- 3. "radom" (bewusster Fehler wie oben).

Aufstellen eines Wahrscheinlichkeitsmodells

Erfassen der Daten und Wahl des Parametergrundraums:

y: Getipptes Wort "radom".

 θ : Gewünschte Wort, zur Vereinfachung nur "random", "radon"oder "radom"möglich.

Mit dem Satz von Bayes gilt für die A-posteriori-Verteilung

$$p(\theta|y = \text{,radom"}) \propto p(\theta) \cdot p(y = \text{,radom"}|\theta)$$

A-priori-Verteilung und Likelihood

A-priori-Verteilung $p(\theta)$: Relative Häufigkeiten der möglichen Wörter in der Google-Datenbank.

Likelihood $p(y|\theta)$: Aus Rechtschreibekorrektur-Modell von Google.

θ	$p(\theta)$	p(y = ", radom" heta)
"random"	$7,60\cdot 10^{-5}$	0.00193
"radon"	$6,05\cdot 10^{-6}$	0.000143
"radom"	$3,12\cdot 10^{-7}$	0.975

Die bedingte Wahrscheinlichkeit für "radom"erscheint sehr hoch. Radom ist eine Großstadt in Polen.

A-posteriori-Verteilung

Mit dem Satz von Bayes ergibt sich die **A-posteriori-Verteilung**:

θ	$p(\theta) \cdot p(, radom" \theta)$	$p(\theta $,, radom")
"random"	$1.47 \cdot 10^{-7}$	0.325
"radon"	$8.65 \cdot 10^{-10}$	0.002
"radom"	$3.04 \cdot 10^{-7}$	0.673

Auswertung der Ergebnisse

Die A-posteriori-Wahrscheinlichkeit für ein bewusstes "radom" erscheint sehr hoch.

Möglichkeit 1: "radom" wird als korrekt akzeptiert.

Möglichkeit 2: Weitere A-priori-Informationen werden einbezogen.

Weitere A-priori-Informationen

Wir fügen die Textquelle x als weitere A-priori-Information hinzu. Der Satz von Bayes liefert:

$$p(\theta|y,x) \propto p(\theta|x) \cdot p(y|\theta,x).$$

Radom ist eine polnische Großstadt. Zu erwarten wäre:

X	$p(\theta = \text{,,radom"} x)$	
Statistik-Buch	Sehr unwahrscheinlich	
Polnischer Reiseführer	Möglich	

A-priori-Verteilungen für Standard-Modelle

Mögliche einparametrige Wahrscheinlichkeitsmodelle mit Parameter θ sind:

Binomialverteilung
$$|$$
 Bin (n, θ) Normalverteilung $|$ $\mathcal{N}(\theta, \sigma^2)$ bzw. $\mathcal{N}(\mu, \theta)$ Poissonverteilung $|$ Poi (θ)

Die Anzahl n in der Binomialverteilung wird durch die Daten vorgegeben.

Bei der Normalverteilung seien entweder die Varianz σ^2 oder der Erwartungswert μ bekannt.

A-priori-Verteilungen für Standard-Modelle

Die Wahl des Wahrscheinlichkeitsmodells ergibt die Likelihood.

Ziel: Eine für das Modell geeignete A-priori-Verteilung wählen.

Manche A-priori-Verteilungen sind geeigneter als andere. Wünschenswert sind:

- Einfache Rechnungen.
- A-posteriori-Verteilung in schöner Form (bekannte Verteilung).
- ▶ Viel Information allein durch die Daten.

A-posterior-Verteilung

Die A-postiori-Verteilung hat im Schnitt eine **geringere Varianz** als die A-priori-Verteilung:

$$\mathsf{Var}(\theta) = \mathbb{E}[\mathsf{Var}(\theta|y)] + \mathsf{Var}(\mathbb{E}[\theta|y])$$

Im Schnitt konzentriert sich die A-posteriori-Verteilung also stärker um den Erwartungswert.

Binomialmodell: Mädchenanteil

Wie groß ist der Anteil weiblicher Babys bei n Geburten?

Modell: Zwei mögliche Ausgänge \Rightarrow Bin(n, p)

y: Anzahl der Mädchen bei n Geburten.

 θ : Wahrscheinlichkeit p für ein Mädchen.

Binomialmodell: Bestimmung der Likelihood

Mit obiger Notation ergibt sich als **Likelihood**:

$$p(y|\theta) = \binom{n}{y} \cdot \theta^y \cdot (1-\theta)^{n-y} \propto \ \theta^y \cdot (1-\theta)^{n-y}.$$

Da $\binom{n}{y}$ bereits aus den Daten vollständig bestimmt ist, hängt es nicht von θ ab.

Es kann als Konstante behandelt werden, was \propto rechtfertigt.

Binomialmodell: Wahl einer A-priori-Verteilung

Mögliche **A-priori-Verteilung** ist $Unif_{[0,1]}$ mit zwei Begründungen:

Bayes hat gezeigt, dass mit $p(\theta) = \text{Unif}_{[0,1]}$ gilt:

$$p(y) = \int_0^1 \binom{n}{y} \theta^y (1-\theta)^{n-y} d\theta = \frac{1}{n+1} = \mathsf{Unif}_{\{0,1,\dots,n\}}, \text{ a priori.}$$

Laplace folgt dem "Prinzip des unzureichenden Grundes":

Man soll die Gleichverteilung wählen, wenn sonst kein Vorwissen vorliegt.

Binomialmodell: Wahl einer A-priori-Verteilung

Es ergibt sich mit p(y) = 1/(n+1) die **A-posteriori-Verteilung**

$$p(\theta|y) = \frac{\Gamma(n+2)}{\Gamma(y+1) \cdot \Gamma(n-y+1)} \theta^y \cdot (1-\theta)^{n-y} = \mathsf{Beta}(y+1, n-y+1).$$

Vorteil dieser A-posteriori-Verteilung:

Erwartungswert, Median, Standardabweichung und Quantile sind bekannt.

Binomialmodell: Verallgemeinerung der A-priori-Verteilung

Wir wählen nun als A-priori-Verteilung:

$$p(\theta) = \text{Beta}(\alpha, \beta) \text{ mit Hyperparameter } (\alpha, \beta).$$

"Hyper"bezieht sich auf die Parametrisierung des Parameters θ .

Da Beta $(1,1) = \text{Unif}_{[0,1]}$, stellt dies eine Verallgemeinerung zu obiger Situation dar.

Binomialmodell: Berechnung der A-posteriori-Verteilung

Mit der **Likelihood** : $\mathsf{Bin}(n,\theta)$ und der **A-priori-Verteilung** : $\mathsf{Beta}(\alpha,\beta)$ gilt für die **A-posteriori-Verteilung**:

$$\begin{split} p(\theta|y) &\propto p(\theta) \cdot p(y|\theta) \\ &= \theta^{\alpha-1} (1-\theta)^{\beta-1} \cdot \theta^y (1-\theta)^{n-y} \\ &= \theta^{y+\alpha-1} (1-\theta)^{n-y+\beta-1} \\ &= \mathsf{Beta}(\theta|\alpha+y,\beta+n-y). \end{split}$$

Konjugierte Verteilung

A-priori-Verteilung und A-posteriori-Verteilung sind beide Beta-verteilt.

Man sagt: A-priori-Verteilung und A-posteriori-Verteilung sind konjungiert.

Beta-Verteilung : Konjugationsfamilie des Binomialmodells.

Konjugierte Verteilung: Vorteile

Die Konjugation ist nützlich:

Bei wiederholtem Bayesschen Schließen dient die A-posteriori-Verteilung als A-priori-Verteilung.

⇒ Wir bleiben stets in derselben Verteilungsfamilie.

Ist die A-posteriori-Verteilung eine bekannte Verteilung, erhält man sofort: Erwartungswert, Median, Standardabweichung und Quantile, sofern diese existieren.

Konjugation: Verallgemeinerung

Nur Verteilungen der Exponentialfamilie haben nat. Konjugation:

$$p(y_1, \dots, y_n | \theta) \propto g(\theta)^n \exp(\phi(\theta)t(y)).$$

Dies hängt von y nur ab die durch suffiziente Statistik

$$t(\mathbf{y}) = \sum_{i=1}^n u(y_i).$$

 $\phi(\theta)$ bezecihnet den **natürlichen Parameter** der Familie.

Konjugation: A-priori- und A-posteriori-Verteilung

Wir wählen als A-priori-Verteilung aus der Exponentialfamilie

$$p(\theta) \propto g(\theta)^{\eta} \exp(\phi(\theta) \cdot \nu).$$

Wir erhalten als A-posteriori-Verteilung

$$p(\theta|y) \propto g(\theta)^{n+\eta} \exp(\phi(\theta) \cdot (\nu + t(y))).$$

Diese stammt wieder aus der Exponentialfamilie.

Beispiel: Normalverteilung bei bekannter Varianz

Nun betrachten wir verschiedene Standardmodelle und bestimmten die konjugierten A-priori-Verteilungen.

Wir nehmen eine normalverteilte **Likelihood** $\sim \mathcal{N}(\theta, \sigma^2)$ mit bekannter Varianz σ^2 an und wollen für eine Beobachtung y den Erwartungswert θ schätzen.

Dies ist ist oft durch den **ZGS** gerechtfertigt.

Die zugehörige Lebesgue-Dichte lautet

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(y-\theta)^2\right).$$

Beispiel: Normalverteilung bei bekannter Varianz

Die konjugierte A-priori-Verteilung $\sim \mathcal{N}(\mu_0, \tau_0^2)$ ist:

$$p(heta) \propto \exp\left(-rac{1}{2 au_0^2}(heta-\mu_0)^2
ight).$$

Algebraische Umformungen ergeben die A-posteriori-Verteilung

$$\begin{split} \rho(\theta|y) &\propto \exp\left(-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2\right) \cdot \exp\left(-\frac{1}{2\sigma^2}(y - \theta)^2\right) \\ &= \exp\left(-\frac{1}{2\left(\frac{\tau_0^2 \cdot \sigma^2}{\sigma^2 + \sigma^2}\right)} \left(\theta - \frac{\frac{1}{\tau_0^2}\mu_0 + \frac{1}{\sigma^2}y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}\right)^2\right). \end{split}$$

Beispiel: Normalverteilung bei bekannter Varianz

Somit gilt für die A-posteriori-Verteilung

$$heta|y \sim \mathcal{N}(\mu_1, au_1^2) ext{ mit } \mu_1 = rac{rac{1}{ au_0^2} \mu_0 + rac{1}{\sigma^2} y}{rac{1}{ au_0^2} + rac{1}{\sigma^2}} ext{ und } rac{1}{ au_1^2} = rac{1}{ au_0^2} + rac{1}{\sigma^2}.$$

Wir definieren die **Präzision** einer Verteilung als

$$\mathsf{Pr\ddot{a}zision}_y = \frac{1}{\sigma^2} \; \mathsf{und} \; \mathsf{Pr\ddot{a}zision}_\theta = \frac{1}{\tau_0^2}.$$

Der **A-posteriori-Erwartungswert** ist das mit Präzisionen gewichtete Mittel aus **A-priori-Erwartungswert** μ_0 und **Beobachtung** y.

Schätzen des A-posteriori-Erwartungswerts

Für die Verteilung einer weiteren $\mathcal{N}(\theta, \sigma^2)$ -verteilten ZV \tilde{y} gilt:

$$\begin{split} \rho(\tilde{y}|y) &= \int p(\tilde{y},\theta|y)d\theta \\ &= \int p(\tilde{y}|\theta,y)p(\theta|y)d\theta \\ &= \int p(\tilde{y}|\theta)p(\theta|y)d\theta \\ &\propto \int \exp\left(-\frac{1}{2\sigma^2}(\tilde{y}-\theta)^2\right)\exp\left(-\frac{1}{2\tau^2}(\theta-\mu_1)^2\right)d\theta. \end{split}$$

Schätzen des A-posteriori-Erwartungswerts

 \tilde{y} und θ sind gemeinsam a-posteriori-normalverteilt.

Somit ist die Randdichte von \tilde{y} ebenfalls normalverteilt.

Nun lässt sich der A-posteriori-Erwartungswert berechnen:

$$\mathbb{E}[\tilde{y}|y] = \mathbb{E}[\underbrace{\mathbb{E}[\tilde{y}|\theta,y]}_{=\theta}|y] = \mathbb{E}[\theta|y] = \mu_1.$$

Für die A-posteriori-Varianz gilt:

$$\mathsf{Var}(\tilde{y}|y) = \sigma^2 + \tau_1^2 = \mathsf{Var}_y + \mathsf{Var}_{\mathsf{Posterior}}.$$

Beispiel: Poisson-Modell

Nun gehen wir von u.i.v. Posson-verteilten ZV y_1, \ldots, y_n mit Parameter θ aus.

Wir betrachten den multivariaten Zufallsvektor $\mathbf{y} = (y_1, \dots, y_n)$.

Die zugehörige Likelihood lautet

$$p(\mathbf{y}|\theta) = \prod_{i=1}^{n} \frac{1}{y_i!} \theta^{y_i} e^{-\theta}$$

$$\propto \theta^{t(\mathbf{y})} e^{-n\theta}$$
, mit suffizienter Statistik $t(\mathbf{y}) = \sum_{i=1}^n y_i$

$$\propto e^{-n\theta}e^{t(\mathbf{y})\log(\theta)}$$
, mit nat. Parameter $\phi(\theta) = \log(\theta)$.

Beispiel: Poisson-Modell

Als konjugierte A-priori-Verteilung wählen wir

$$p(\theta) \propto (e^{-\theta})^{\eta} e^{\nu \log \theta}$$
, mit Hyperparameter (η, ν) .

Durch Reparametrisierung erhalten wir

$$p(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{-\beta \theta} \theta^{\alpha - 1} = \text{Gamma}(\alpha, \beta).$$

Es ergibt sich die A-posteriori-Verteilung

$$\theta | y \sim \mathsf{Gamma}(\alpha + n\bar{y}, \beta + n).$$

Informative vs. nichtinformative A-priori-Verteilungen

Bisher haben wir A-priori-Verteilungen betrachtet, die Informationen beinhalten.

⇒ Informative A-priori-Verteilungen.

Nun möchten wir A-priori-Verteilungen wählen, die die A-posteriori-Verteilung möglichst wenig beeinflussen.

⇒ Nichtinformative A-priori-Verteilungen.

Jeffreys Invarianzprinzip

Wir betrachten Transformationen $\phi = h(\theta)$ des Parameters θ .

Für eine bijektive Abbildung h erhalten wir die Identität

$$p(\phi) = p(h(\theta)) = p(\theta) \cdot |J_h(\theta)|^{-1} = p(\theta) \cdot |h'(\theta)|^{-1}.$$

Jeffreys Prinzip lautet nun:

Der Informationsgehalt der A-priori-Verteilung $p(\theta)$ soll gleich dem der transformierten A-priori-Verteilung $p(\phi) = p(h(\theta))$ sein.

Jeffreys Invarianzprinzip

Ziel: Wahl einer A-priori-Verteilung, die invariant gegenüber Reparametrisierung ist.

Dies wird mit $p(\theta) \propto \sqrt{J(\theta)}$ erreicht, wobei $J(\theta)$ die **Fisher-Information** von θ bezeichnet, definiert durch

$$J(\theta) = \mathbb{E}\left[\left(\frac{d}{d\theta}\log p(y|\theta)\right)^{2} \middle| \theta\right]$$
$$= -\mathbb{E}\left[\frac{d^{2}}{d\theta^{2}}\log p(y|\theta)\middle| \theta\right].$$

Jeffreys Invarianzprinzip

Dass Jeffreys A-priori-Modell invariant unter Reparametrisierung ist, sehen wir durch Auswertung von $J(\phi)$ in $\theta = h^{-1}(\phi)$:

$$J(\phi) = -\mathbb{E}\left[\frac{d^2}{d\phi^2}\log p(y|\phi)\right]$$
$$= -\mathbb{E}\left[\frac{d^2}{d\theta^2}\log p\left(y|\theta = h^{-1}(\phi)\right) \cdot |h'(\theta)|^{-2}\right]$$
$$= J(\theta) \cdot |h'(\theta)|^{-2}.$$

Damit ist
$$\sqrt{J(\phi)} = \sqrt{J(\theta)} \cdot |h'(\theta)|^{-1}$$
 gezeigt.

Literatur

Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2013): Bayesian Data Analysis (3. ed.), CRC Press.