Some Ring Theory Class Notes

Class March 12

Conventions regarding 1 (multiplicative unity):

- 1. Every ring R has a multiplicative unity denoted by 1 or 1_R such that $1*a = a*1 \,\forall a \in R$. Note: 1 = 0 in $R \Leftrightarrow R = \{0\}$ because $\forall a \in R$: a = a*1 = a*0 = 0.
- 2. Any subring S of R must contain 1_R . For subring, check
 - (a) $1_R \in S$
 - (b) $a \in S \implies -a \in S$
 - (c) $a, b \in S \implies a + b \in S$
 - (d) $a, b \in S \implies ab \in S$

Note: An ideal I of R is a subring if and only if I = R $(1 \in I \implies a = a * 1 \in I \forall a \in R)$.

Example 0.1. $R \times \{0\} = \{(a,0) \mid a \in R\}$ is not a subring of $R \times R$ if $R \neq \{0\}$ since $(1,1) \notin R \times \{0\}$. But $\{(a,a) \mid a \in R\}$ is a subring of $R \times R$.

- 3. For any ring homomorphism $\varphi: R \to S$ we require $\varphi(1_R) = 1_S$. Note that this is not a consequence of the other ring homomorphism properties:
 - (a) $\varphi(a+b) = \varphi(a) + \varphi(b) \ \forall a, b \in R$
 - (b) $\varphi(ab) = \varphi(a)\varphi(b) \ \forall \ a, b \in R$

 $\varphi(0) = 0$ is a consequence of (a): $\varphi(0) = \varphi(0+0) = \varphi(0) + \varphi(0) \implies 0 = \varphi(0)$. For multiplication, $\varphi(1) = \varphi(1*1) = \varphi(1)*\varphi(1)$ does not necessarily imply $1 = \varphi(1)$ since $\varphi(1)$ need not have a multiplicative inverse in S.

Example 0.2. $\varphi: R \to R \times R$ which maps $a \to (a,0)$ is NOT a ring homomorphism since $\varphi(1_R) = (1_R,0) \neq 1_{R \times R}$ if $R \neq \{0\}$

Example 0.3. $\psi: R \to R \times R$ which maps $a \to (a, a)$ is a ring homomorphism.

- 4. For an integral domain R (commutative without zero divisors) we also require $1 \neq 0 \Leftrightarrow R \neq \{0\}$ (neither integral domain nor a field)
 - **Example 0.4.** (a) of fields: \mathbb{R}, \mathbb{Z}_p (p prime), \mathbb{Q}, \mathbb{C} . $\mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ subfield of \mathbb{R} . Check: $0 \neq x \in \mathbb{Q}(\sqrt{2}) \implies x^{-1} \in \mathbb{Q}(\sqrt{2})$ (need $\sqrt{2} \notin \mathbb{Q}$).
 - (b) of integral domains which are no fields: \mathbb{Z} , when n is a prime $\implies \mathbb{Z}_n$ is an integral domain, but also a field. When n is not a prime $\implies \mathbb{Z}_n$ has zero divisors and isn't an integral domain. Specifically $\exists l, m \in \mathbb{N}, 1 < l, m < n$ such that $n = lm \rightsquigarrow (\text{modulo } n)$. [0] = [n] = [lm] = [l][m] in \mathbb{Z}_n (such that $[l] \neq [0]$ and $[m] \neq [0]$.
 - (c) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ subring of \mathbb{C} ; $\mathbb{Z}[\sqrt{2}]$ is a subring of \mathbb{R} .
 - (d) commutative rings which are not integral domains. \mathbb{Z}_n , n is not prime. $\mathbb{Z} \times \mathbb{Z}$ has zero divisors e.g. (1,0)*(0,1)=(0,0).
 - (e) of non-commutative rings:

- i. M(n,R), $n \ge 2$ and R any ring $\ne \{0\}$. $\exists A, B \in M(n,R)$ such that $AB \ne BA$
- ii. Hamilton's quaternions $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$ ($\cong \mathbb{R}^4$ as abelian group). Multiplication is induced by that \mathbb{Q} and distributive laws \rightsquigarrow example of skew field or division ring.

Class March 14

Remark 0.5. Units. $(R^* =) U(R) := \{ a \in R \mid \exists b \in R \text{ s.t. } ab = ba = 1 \}$

- 1. There can only be one $b \in R$ with ab = ba = 1. In fact, if ba = 1 = ab = ab' for some $b' \in R$ $\implies (ba)b = (ba)b' \implies 1b = 1b' \implies b = b'$. Notation: $a \in U(R)$ $ab = ba = 1 \rightsquigarrow b = a^{-1}$ multiplicative inverse.
- 2. For non-commutative R, ab = 1 usually does not imply ba = 1. However, if $\exists c \in R$ with ca = 1, then c = b and hence also ba = 1. This is seen by c = c * 1 = c(a * b) = (ca)b = 1 * b = b.
- 3. U(R) is closed under multiplication and $(ab)^{-1} = b^{-1}a^{-1}$ for $ab \in U(R)$. Immediately checks that (U(R), *) is a group.
- 4. $a, b \in R$ are called zero divisors if $a, b \neq 0$ but ab = 0. $U(R) \cap \{\text{zero divisors}\} = \emptyset$.

Example 0.6. 1. F field (or skew field) $\implies U(F) = F \setminus \{0\} =: F*$

- 2. $U(\mathbb{Z}) = \{1, -1\}$. $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \implies U(\mathbb{Z}[i]) = \{1, -1, i, -i\} = \{x \in \mathbb{Z}[i] \mid |x| = 1\}$
- 3. $U(\mathbb{Z}_n) = \{[a] \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}$. Notation $U(\mathbb{Z}_n) = U(n)$.
- 4. $U(R \times S) = U(R) \times U(S)$ (direct product groups). $(a,b) \implies (a,b)^{-1} = (a^{-1},b^{-1})$.
- 5. $U(M(n,F)) = GL(n,F) = \{A \in M(n,F) \mid det(A) \neq 0\}$

Remark 0.7. The Center (of a Ring). $Z(R) := \{z \in R \mid za = az \ \forall \ a \in R.$ This is a subring of R:

- 1. $1 \in Z(R)$ since $a * 1 = 1 * a = a \forall a \in R$
- 2. $z \in Z(R) \implies -z \in Z(R): -z * a = -(za) = -(az) = a * (-z) \forall a \in R.$
- 3. $y, z \in Z(R) \implies y + z \in Z(R)$: $(y + z)a = ya + za = ay + az = a(y + z) \ \forall a \in R$.
- 4. $y, z \in Z(R) \implies yz \in Z(R)$. $(yz)a = y(za) = y(az) = (ya)z = (ay)z = a(yz) \ \forall \ a \in R$.

Remark 0.8. Integral Multiples (of element of R). For $a \in R$, $n \in \mathbb{Z}$, we define n * a := if n > 0, a + ... + a, if n = 0, 0 n-times and if n < 0, (-a) + ... + (-a) n-times. Note: n > 0: $a + ... + a = 1_R a + ... + 1_R a$. $a(1_R + ... + 1_R) = (n * 1_R)a$. If $n < 0, n * a = (-a) + ... + (-a) = ((-1_R) + ... + (-1_R))a = (n * 1_R)a$. Always, $n * a = (n * 1_R)a \ \forall \ a \in R \ \forall \ n \in \mathbb{Z}$.

Remark 0.9. More rules:

- 1. $a \in Z(R)$ (e.g. $a = 1_R$), then $n * a \in Z(R) \ \forall \ n \in \mathbb{Z}$ since Z(R) is a subring of R.
- 2. $(-n) * a = -(n * a) \forall n \in \mathbb{Z}, a \in R$

- 3. $1*a = a \ \forall \ a \in R$ by definition
- 4. $n*(a+b) = n*a + n*b \ \forall \ n \in \mathbb{Z} \ \forall \ a,b \in R$ (follows from (R,+) is an abelian group).
- 5. (n+m)*a = n*a + m*a
- 6. $(nm)*(ab) = (n*a)(m*b) \ \forall \ n, m \in \mathbb{Z} \ \forall \ a, b \in R$.
- 7. $(nm) * a = n * (m * a) \forall n, m \in \mathbb{Z}, \forall a \in R$.

Definition 0.10. For any ring R, there is a unique ring homomorphism $\varphi = \varphi_R : \mathbb{Z} \to R$ which maps $1 \to 1_R$. Must have $\varphi(1) = 1_R$.

If $n \in \mathbb{Z}$, n > 0 then $\varphi(n) = \varphi(1 + \ldots + 1) = \varphi(1) + \ldots + \varphi(1) = 1_R + \ldots + 1_R = n * I_R$. $n \in \mathbb{Z}$, n < 0, then $\varphi(n) = -\varphi(-n) = -\varphi(1 + \ldots + 1) = -(-n * 1_R) = n * I_R$. Therefore, the only possible ring homomorphism is $\varphi_R : \mathbb{Z} \to R$ (which maps $n \to n * 1_R$) $\ni \varphi(n) = n * 1_R \; \forall \; n \in \mathbb{Z}$.

Now, we check $\varphi: \mathbb{Z} \to R$ which maps $n \to n * I_R$ is in fact a ring homomorphism:

- 1. $\varphi(1) = 1_R$ by definition
- 2. $\varphi(n+m) = (n+m)1_R = n * 1_R + m * 1_R = \varphi(n) + \varphi(m) \; \forall \; n, m \in \mathbb{Z}.$
- 3. $\varphi(n*m) = (nm)1_R = (nm)(1_R*1_R) = n1_R*m1_R = \varphi(n)\varphi(m) \ \forall \ n, m \in \mathbb{Z}.$

Note: φ ring hom $\implies \varphi(\mathbb{Z}) = \{n * 1_R \mid n \in \mathbb{Z}\}$ is a subring of R. Moreover, $\varphi(\mathbb{Z}) \subseteq Z(R)$ since $n * 1_R \in Z(R) \ \forall \ n \in \mathbb{Z}$. The kernel of φ_R is an ideal of \mathbb{Z} . Hence, $Kern(\varphi_R) = n\mathbb{Z}$ for a unique $n \in \mathbb{N}_0$.

Definition 0.11. The characteristic of R is defined as $char(R) = n \in \mathbb{N}_0$ with $Kern(\varphi_R) = n\mathbb{Z}$. Alternatively, $char(R) = 0 \Leftrightarrow m * 1_R \neq 0 \; \forall \; m > 0$. $char(R) = n > 0 \Leftrightarrow n * 1_R = 0$ and $m * 1_R \neq 0 \; \forall \; 1 \leq m < n$.

Class March 16

Remark 0.12. Some review! For any given ring R with 1, \exists unique ring homomorphism $\varphi_R : \mathbb{Z} \to R$ which maps $m \to m * 1_R$. It is important to note that $\varphi_R(\mathbb{Z})$ is a subring of R, $\varphi_R(\mathbb{Z}) \subseteq Z(R)$, and $Kern(\varphi_R)$ is an ideal of $\mathbb{Z} \implies \exists$ unique $n \in N_0$ with $Kern(\varphi_R) = n\mathbb{Z}$. (For notation purposes, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$)

Definition 0.13. If $Kern(\varphi_R) = n\mathbb{Z}$, $n \in \mathbb{N}_0$, then n is called the characteristic of R, char(R) = n. An alternative characterization:

- 1. $m * 1_R \neq 0 \ \forall \ m \in \mathbb{N} \Leftrightarrow char(R) = 0$
- 2. n is the smallest natural number with $n * 1_R = 0 \Leftrightarrow char(R) = n$.

Example 0.14. 1. $char(\mathbb{Z}) = 0$ ($\varphi_{\mathbb{Z}} = id_{\mathbb{Z}}$) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all fiels of characteristic 0 and $char(\mathbb{Z}[i]) = 0$

- 2. $char(\mathbb{Z}_n) = n \ \forall \ n \in \mathbb{N} \ \text{and} \ \varphi_{\mathbb{Z}_n} : \mathbb{Z} \to \mathbb{Z}_n \ \text{which maps} \ m \to [m]$
- 3. if p is prime, then \mathbb{Z}_p is a field of characteristic p.

Remark 0.15. If S is a subring of R, then char(S) = char(R)

Proof.
$$1_S = 1_R \implies \varphi_S(m) = \varphi_R(m) = m * 1_R \ \forall \ m \in \mathbb{Z} \implies char(S) = char(R)$$

Definition 0.16. Any ring R has a unique smallest subring called the prime subring R_0 of R, namely $R_0 = \varphi_R(\mathbb{Z}) = \{m*1_R \mid m \in \mathbb{Z}\}$ and any subring of R must contain 1_R and hence $\{m*1_R \mid m \in \mathbb{Z}\} = R_0$

Theorem 0.17. 1st Isomorphism Theorem for Rings: If $\varphi : R \to S$ is a ring homomorphism, then $Kern(\varphi)$ is an ideal of R and $R/Kern(\varphi) \cong \varphi(R)(\subseteq S)$.

Proof. On the level of abelian groups, the map $\hat{\varphi}: R/Kern(\varphi) \to \varphi(R)$ which maps $a+Kern(\varphi) \to \varphi(a)$. This map is a well-defined isomorphism (see 1.2.2). We want a ring homomorphism. Therefore, we have to check that $\hat{\varphi}$ is also multiplicative. $\hat{\varphi}((a+K)(b+K)) = \hat{\varphi}(ab+K) = \varphi(ab) = \varphi(a)\varphi(b) = \hat{\varphi}(a+K)\hat{\varphi}(b+K)$

Proposition 0.18. R ring with prime subring R_0 . If char(R) = 0, then $R_0 \cong \mathbb{Z}$. If char(R) = n > 0, then $R_0 \cong \mathbb{Z}_n$

Proof.
$$\varphi_R : \mathbb{Z} \to R$$
 with $Kern(\varphi_R) = n\mathbb{Z}$ for $n \in \mathbb{N}_0$, $n = char(R)$. $R_0 := \varphi_R(\mathbb{Z}) = \mathbb{Z}/Kern(\varphi_R) = \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}$ if $n < 0$ and \mathbb{Z}_n if $n \ge 0$

Remark 0.19. R is an integral domain \rightarrow By definition, R is commutative (w/ 1 \neq 0).

Corollary 0.20. If R is an integral domain, then either char(R) = 0 or char(R) is a prime number.

Proof. R_0 , as a subring of an integral domain must be an integral domain itself. But by the previous proposition, $R_0 \cong \mathbb{Z} \implies char(R) = 0$ (integral domain) or $R_0 \cong \mathbb{Z}_n$ with char(R) = n, but \mathbb{Z}_n is an integral domain $\Leftrightarrow n$ is prime (implies zero divisors). $a, b \in R$ are zero divisors $\Leftrightarrow a \neq 0$ and $b \neq 0$ and ab = 0 n = ml, 1 < m, $l < n \implies [m], [l]$ are zero divisors in $\mathbb{Z}_n \implies [m][l] = [n] = [0]$.

Ideals. R ring with 1.

Definition 0.21. Repetition. A subset $I \subseteq R$ is called an ideal of R of (1) $0 \in I$ (2) $a, b \in I \implies a + b \in I$ (3) $r \in R$, $a \in I \implies ra, ar \in I$.

Remark 0.22. $a \in I \Longrightarrow \text{by } (3) \ (-1)a = -a \in I.$ Hence, (I,+) is a subgroup of the abelian group (R,+). Notation: $I \lhd R$ means that I is an ideal of $R \leadsto \text{quotient ring } R/I$ such that $+: (a+I)+(b+I):=(a+b)+I \ (a,b\in R)$ and *: (a+I)*(b+I):=ab+I. These operations are well-defined and yield a (quotient) ring (R/I,+,*). $0_{R/I}=I=(0+I)$ and $1_{R/I}=1+I.$ Why is * well-defined? Assume a+I=a'+I, $b+I=b'+I\implies a'=a+x$ for some $x\in I$ and b'=b+y for some $y\in I$. $a'b'=(a+x)(b+y)=ab+(ay+xb+xy)\implies$, by $(ay+xb+xy)\in I$, a'b'+I=ab+I.

Lemma 0.23. $\varphi: R \to S$ is a ring homomorphism.

- 1. if $J \lhd S$, then $\varphi^{-1}(J) \lhd R$
- 2. if $I \triangleleft R$ and φ is surjective, then $\varphi(I) \triangleleft S$

Remark 0.24. (2) is not true without surjectivity e.g. $\varphi : \mathbb{Z} \to \mathbb{Q}$ which maps $m \to m$ and $n\mathbb{Z} \triangleleft \mathbb{Z}$ but $n\mathbb{Z} \not \triangleleft \mathbb{Q}$ (unless n = 0.

Proof. Proof of (1).

- 1. $0_S \in J \triangleleft S$ and $\varphi(0_R) = 0_S \implies 0_R \in \varphi^{-1}(J)$
- $2. \ a,b \in \varphi^{-1}(J) \implies \varphi(A), \varphi(B) \in J \implies \varphi(a+b) = varphi(a) + \varphi(b) \in J \implies a+b \in \varphi^{-1}(J)$

3. $a \in \varphi^{-1}(J), r \in R \implies \varphi(a) \in J \implies varphi(ar) = \varphi(a)\varphi(r) \in J, \ \varphi(ra) = \varphi(r)\varphi(a) \in J \implies ar \in \varphi^{-1}(J) \text{ and } ra \in \varphi^{-1}(J)$

Remark 0.25. In particular, $Kern(\varphi) = \varphi^{-1}(\{0\})$ is an ideal of R.

Class March 19

Before anything else, we'll review a few concepts from last class.

Definition 0.26. $\varphi: R \to S$ ring homomorphism.

- 1. $J \triangleleft S \implies \varphi^{-1}(J) \triangleleft R$
- 2. $I \triangleleft R$ and φ surjective $\implies \varphi(I) \triangleleft S$

Definition 0.27. Ideals of R/I ($I \triangleleft R$).

 \exists surjective ring homomorphism $\pi: R \to R/I$ which maps $a \to a+I$ with $Kern(\pi) = I$ because $a+I=0 \Leftrightarrow a \in I$.

For any $I' \triangleleft R$ with $I \subseteq I'$, we define $I'/I := \{a + I \mid a \in I'\} = \pi(I') \triangleleft R/I$.

Claim: $f: \{I' \triangleleft R \mid I \subseteq I'\} \rightarrow \{J \triangleleft R/I\}$ (which maps I'I'/I) is bijective.

Proof. f is surjective: Let $J \triangleleft R/I$ be given \leadsto set $I' := \pi^{-1}(J) \triangleleft R$ by part (a) of the definition of ring homomorphism. Also, $I' \supseteq \pi^{-1}(0) = Kern(\pi) = I$ such that $f(I') = I'/I = \pi(I') = \pi(\pi^{-1}(J)) = J$ since π is surjective $\Longrightarrow f$ is surjective.

 $\begin{array}{l} f \text{ is injective: } I_1', I_2' \vartriangleleft R; \ I_1', I_2' \supseteq I \text{ and } f(I_1') = f(I_2') \text{ to show } I_1' = I_2'. \text{ Specifically, } a \in I_1' \implies \\ a + I \in I_1'/I = f(I_1') = f(I_2') = I_2'/I \implies \exists \ b \in I_2' \text{ s.t. } a \in b + I. \ a \in b + I \subseteq I_2' + I = I_2' \text{ (since } I \subseteq I_2') \\ \implies a \in I_2' \text{ for any } a \in I_1' \implies I_1' \subseteq I_2'. \text{ Similarly, } I_1' \subseteq I_2' \implies I_1' = I_2' \end{array}$

Lemma 0.28. Let R be a commutative ring with $1 \neq 0$. Then, R is a field \Leftrightarrow R has precisely two ideals, namely $\{0\}$ and R

Proof. "\$\Rightarrow\$" Assume $\{0\} \neq I \lhd R$. Want to show I = R. $I \neq \{0\} \implies \exists \ 0 \neq x \in I, \ R$ is a field $\implies \exists \ x^{-1} \in R \implies$ for any $a \in R$, we obtain $a = a * 1 = a(x^{-1}x) = (ax^{-1})x \in I \implies I = R$. "\$\infty\$" To show $0 \neq x \in R \implies x \in U(R)$. Consider the principal ideal $I := \langle x \rangle := \{rx \mid r \in R\} \lhd R$. $0 \neq x = 1 * x \in I \implies I \neq \{0\} \implies I = R$ by assumption $\implies 1 \in I = \langle x \rangle \implies \exists \ r \in R$ with $1 = rx = xr \implies x \in U(R)$. Hence, $U(R) = R \setminus \{0\} \implies R$ is a field.

From now on, we assume that the ring R with 1 is commutative.

Definition 0.29. 1. A proper ideal $I \triangleleft R$ (i.e. $I \neq R$) is called a prime ideal of R if the $x, y \in R$, $xy \in I \implies x \in I$ or $y \in I$.

- 2. A proper ideal $I \triangleleft R$ is called a maximal ideal of R if: $J \triangleleft R$ with $I \subseteq J \implies J = I$ or J = R.
- 3. {0} is allowed in (1) and (2)

Remark 0.30. One can show using Zorn's Lemma that every proper ideal of R is contained in some maximal ideal.

Proposition 0.31. Assume $I \triangleleft R$, $I \neq R \implies R \neq \{0\} \implies 1 \neq 0$. Then, I is a maximal ideal of $R \Leftrightarrow R/I$ is a field.

Proof. (\Rightarrow) By definition of a maximal ideal, $\{I' \lhd R \mid I \subseteq I'\} = \{I, R\} \implies \{J \lhd R/I\} = \{I/I = \{0\}, R/I\} \implies R/I$ is a field.

(\Leftarrow) Assume R/I is a field \Longrightarrow {0} and R/I are only ideals of R/I \Longrightarrow { $I' \lhd R \mid I' \supseteq I$ } = {I, R} \Longrightarrow I is a maximal ideal of R. □

Proposition 0.32. $I \triangleleft R$, $I \neq R$ ($\Longrightarrow 1 \neq 0$). Then, I is a prime ideal of $R \Leftrightarrow R/I$ is an integral domain.

Proof. (\Rightarrow) R/I is a commutative ring with $1+I\neq 0+I$ since $1\notin I$ ($1\in I\implies I=R$). To show, R/I has no zero divisors. So assume for $x,y\in R$, we have (x+I)(y+I)=0+I in $R/I\Leftrightarrow xy+I=I\implies xy\in I\implies (Iisprime)\ x\in I$ or $y\in I\implies x+I=I$ or y+I=I (=0 in R/I) \implies no zero divisors in R/I is an integral domain. Assume $xy\in I$ for $x,y\in R\implies I=xy+I=(x+I)(y+I)\implies (R/I)$ has no zero divisors) x+I=I or $y+I=I\implies x\in I$ or $y\in I$

Proposition 0.33. Assume $I \triangleleft R$, $I \neq R$. I is a maximal ideal of $R \Leftrightarrow R/I$ is a field.

Corollary 0.34. $I \triangleleft R$, $I \neq R$. If I is maximal, then it's also a prime ideal of R.

Proof. I maximal $\implies R/I$ is a field $\implies R/I$ is an integral domain $\implies I$ is a prime ideal \square

Example 0.35. 1. if F is a field, $\{0\}$ is a prime and a maximal ideal of F

2. $\{0\}$ is a prime ideal of $R \Leftrightarrow R/\{0\} \cong R$ is an integral domain.

Class March 23

R commutative ring with $1 \neq 0$, $R \neq I \triangleleft R$. I is a **prime ideal** of $R \Leftrightarrow x, y \in R$, $xy \in I \rightarrow x \in I$ or $y \in I$. I is a **maximal ideal** of $R \Leftrightarrow \{J \mid J \triangleleft R \text{ and } I \subseteq J\} = \{I, R\}$.

Proposition 0.36. I maximal $\Leftrightarrow R/I$ is an integral domain.

Example 0.37. 1. F is a field \implies $\{0\}$, F are its only ideals \implies $\{0\}$ is the only prime and maximal ideal of F.

2. $\{0\}$ is a prime ideal of $R \Leftrightarrow R$ is an integral domain.

Remark 0.38. $\{0\}$ is a maximal ideal of $R \Leftrightarrow R$ is a field $\cong R/\{0\}$.

- 3. $R = \mathbb{Z}$ {ideals of \mathbb{Z} } = {subgroups of $(\mathbb{Z}, +)$ } = { $< n >= n\mathbb{Z} \mid n \in \mathbb{N}_0$ } n = 0: $n\mathbb{Z} = \{0\}$ is a prime ideal of \mathbb{Z} (not maximal). n > 0: < n > is prime $\Leftrightarrow \mathbb{Z}/< n >= \mathbb{Z}_n$ is an integral domain $\Leftrightarrow \mathbb{Z}_n$ is a field $\Leftrightarrow n$ is prime $\Leftrightarrow < n >$ is maximal.
- 4. $\mathbb{Z} \times \{0\} = \{(a,0) \mid a \in \mathbb{Z}\}$ is a prime ideal of $\mathbb{Z} \times \mathbb{Z}$ since $\mathbb{Z} \times \mathbb{Z}/\mathbb{Z} \times \{0\} \cong \mathbb{Z}$ integral domain but not a field $\implies \mathbb{Z} \times \{0\}$ is not maximal in $\mathbb{Z} \times \mathbb{Z}$ e.g. $\mathbb{Z} \times \{0\} \subsetneq \mathbb{Z} \times (n)$ with $n \geq 2$.

Polynomial Rings. We start with the standard assumption that R is a commutative ring with $1 \neq 0$.

Definition 0.39. A **polynomial** (in one variable x) with coefficients in R is a finite formal sum $f(x) = \sum_{i=1}^{n} a_i x^i$ with $n \in \mathbb{N}_0$ and $a_i \in R \ \forall i$. Identify $x^0 = 1$, $1 * x^i = x^i$, $a_0 * x^0 = a_0$. If $f(x) \neq 0$, $f(x) = \sum_{i=0}^{n} a_i x^i$ with $a_n \neq 0$, we define the **degree** of f(x) as deg(f) := n and the **leading coefficient** $l(f) := a_n \neq 0$. f(x) is called **monic** if l(f(x)) = 1.

Conventions regarding $deg(0): deg(0) = -1, deg(0) = -\infty$ or deg(0) is not defined. Never deg(0) = 0 \implies Always $deg(0) \neq 0$. Rather $deg(f(x)) = 0 \Leftrightarrow f(x) \in R \setminus \{0\}$.

Lemma 0.40. Defining addition and multiplication of polynomials: $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{i=0}^{m} b_i x^i$. $f(x) + g(x) = \sum_{i=0}^{max(m,n)} (a_i + b_i) x^i$ with the convention that $a_i = 0 \,\,\forall \,\, i > n$ if m > n and $b_i = 0 \,\,\forall \,\, i > m$ if n > m. $a_i = 0 \,\,\forall \,\, i > n$ if m > n and $b_i = 0 \,\,\forall \,\, i > m$ if n > m. $f(x)g(x) := \sum_{j=0}^{m+n} c_j x^j$ with $c_j := \sum_{i=0}^{i} a_i b_{j-i} = \sum_{i,k \in \mathbb{N}_0, i+k=j} a_i b_k$ and $a_i = 0$ if i > n and $b_{j-i} = 0$ if j - i > m. In particular, $c_0 = a_0 b_0$, $c_{n+m} = a_n b_m$. Also, $x^n x^m = (1 * x^n)(1 * x^m) = 1 * x^{n+m} = x^{n+m}$.

Lemma 0.41. With addition and multiplication as defined above $R[x] := \{f(x) == \sum_{i=0}^{n} a_i x^i \mid n \in \mathbb{N}_0, all \ a_i \in R\}$ becomes a commutative ring with 1_R called the **polynomial ring** (in one variable) over R. Note: R is a <u>subring</u> of $R[x] \implies 1_{R[x]} = 1_R$, more generally, $a(\sum_{i=0}^n a_i x^i) = \sum_{i=0}^n (aa_i) x^i$. Verification of the <u>ring</u> axioms is left as an exercise.

For commutative law $\implies \sum_{i,k\in\mathbb{N}_0,i+k=j}a_ib_k \rightsquigarrow \text{commutativity}$. For the associative law for multiplication, $(f(x)g(x))h(x)=f(x)(g(x)h(x))\rightsquigarrow \text{coefficients}$ in the product $\sum_{l=0}d_lx^l$. $\sum_{i,j,k\in\mathbb{N}_0,i+j+k=l}a_i(b_jc_k)=\sum_{i,j,k\in\mathbb{N}_0,i+j+k=l}a_i(b_jc_k)$.

Proposition 0.42 ("Universal Property"). R, S commutative rings with $1, \varphi : R \to S$ is a ring hom and $s \in S$, then there exists a unique ring hom $\tilde{\varphi} = \tilde{\varphi}_S : R[x] \to S$ with $\varphi_{1R} = \varphi$ and $\tilde{\varphi}(x) = s$.

Proof. Assume $\tilde{\varphi}$ exists and $f(x) = \sum_{i=0}^n a_i x^i$. $\tilde{\varphi}(f(x)) = \tilde{\varphi}(\sum_{i=0}^n a_i x^i) = \sum_{i=0}^n \tilde{\varphi}(a_i x^i) = \sum_{i=1}^n \tilde{\varphi}(a_i) \tilde{\varphi}(x^i) = \sum_{i=0}^n \varphi(a_i) s^i$. Verify that this yields a ring such that $\varphi_{1R} = \varphi$. It follows from the fact that $\varphi(a_i + b_i) = \varphi(a_i) + \varphi(b_i)$ that $\tilde{\varphi}(f + g) = \tilde{\varphi}(f) + \tilde{\varphi}(g) \ \forall \ f, g \in R[x]$. Multiplication of $\tilde{\varphi}$: $f(x) = \sum_{i=0}^n a_i x^i$, $g(x) = \sum_{i=0}^m b_i x^i \implies f(x)g(x) = \sum_{j=0}^{n+m} c_j x^j$ such that $c_j = \sum_{i=0}^j a_i b_{j-i}$. $\tilde{\varphi}(f(x)g(x)) = \tilde{\varphi}(f(x)g(x)) = \tilde{\varphi}(\sum_{j=0}^{n+m} c_j x^j) = \sum_{j=0}^{n+m} \varphi(\sum_{j=0}^j a_j b_{j-i}) s^j = (\varphi \text{ is a ring hom}) = \sum_{j=0}^{n+m} (\sum_{i=0}^j \varphi(a_i) s^i \sum_{i=0}^m \varphi(b_i) s^i = \tilde{\varphi}(f(x)) \tilde{\varphi}(g(x))$. Also, $\tilde{\varphi}(a_0) = \varphi(a_0)$ by definition of $\tilde{\varphi}$ and $\tilde{\varphi}(x) = \tilde{\varphi}(x) = \tilde{\varphi}(1 * x) = \varphi(1_R) s = 1_s * s = s$.

Class March 26

["Universal Property"] R, S commutative rings with $1, s \in S, varphi : R \to S$ ring homomorphism. Then, there exists a unique ring homomorphism $\tilde{\varphi} : R[x] \to S$ such that $\tilde{\varphi}_{1R} = \varphi$ and $\tilde{\varphi}(x) = s$ $(\varphi(a) = a \ \forall \ a \in R)$.

- **Corollary 0.43** (Special cases of last proposition). 1. $\varphi: R \to S$ ring homomorphism $\Longrightarrow \exists$ unique ring homomorphism $\tilde{\varphi}: R[x] \to S[x]$ with $\sum_{i=1}^n a_i x^i \to \sum_{i=1}^n \varphi(a_i) x^i$. This follows from 2.3.3 with S = S[x], $\varphi: RS[x]$ (S is a subring of S[x]).
 - 2. With S = R, $\varphi = id_R$. For any $r \in R$, there exists a unique evaluation homomorphism (at r): $xr \implies \tilde{\varphi}: R[x] \to R$ such that $\sum_{i=0}^n a_i x^i \to \sum_{i=0}^n a_i r^i =: f(r) \implies f(x) \to \tilde{\varphi}(f(x))$. From this, we know that $\tilde{\varphi}$ is a ring homomorphism $\implies \forall f, g \in R[x]: (fg)(r) = f(r)g(r)$, (f+g)(r) = f(r) + g(r). $r \in R$ is called the root of $f(x) \in R[x]$ if f(r) = 0.

3. R is a subring of S and $\varphi: R \to S$ is the embedding homomorphism $r \to r$. For any given $s \in S$, we obtain a ring homomorphism, $\tilde{\varphi}: R[x] \to S$ which maps $\sum_{i=0}^{n} a_i x^i \to \sum_{i=0}^{n} a_i s^i =: f(s)$. Therefore, $\tilde{\varphi}$ is a ring homomorphism $\Longrightarrow \tilde{\varphi}(R[x])$ is a subring of S. More explicitly, $\tilde{\varphi}(R[x]) = \{\sum_{i=0}^{n} a_i s^i \mid n \in \mathbb{N}_0, \text{ all } a_i \in R\}$ wich is the smallest subring of S containing R and S. Notation $\tilde{\varphi}(R[x]) = R[s] \subseteq S$. We say that R[s] is obtained from R by adjoining S.

Example 0.44. $R = \mathbb{Z}, S = \mathbb{C}, s = i, \mathbb{Z}[i] = \{\sum_{j=0}^{n} a_j i^j \mid n \in \mathbb{N}_0, \forall a_i \in \mathbb{Z}\} = \{a_0 + a_1 i \mid a_0, a_1 \in \mathbb{Z}\}$ which is the smallest subring of \mathbb{C} containing \mathbb{Z} and i. Similarly, $\mathbb{Z}[\sqrt{2}] \in \mathbb{R}$ and $\mathbb{Z}[\sqrt{2}] = \{a + b^2 \mid a, b \in \mathbb{Z}\}.$

Remark 0.45. Using the evaluation homomorphism in 2.3.4(b) every polynomial $f(x) \in R[x]$ defines a function $R \to R$ such that $r \to f(r)$. One has to distinguish between the polynomial and the corresponding function since different polynomials induce the same function $R \to R$.

Example 0.46. $R \mathbb{Z}_3$, $f(x) = x^3 - x$, g(x) = 0, $f(x) = 0 = g(r) \ \forall \ r \in \mathbb{Z}_3$

Lemma 0.47. $f(x), g(x) \in R[x] \setminus \{0\}.$

- 1. If l(f(x)) or l(g(x)) is <u>not</u> a zero divisor (automatically satisfied if R is an integral domain), then deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) and l(f(x)g(x)) = l(f(x))l(g(x)).
- 2. R is an integral domain $\implies R[x]$ is an integral domain and U(R[x]) = U(R).

Proof. $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{i=0}^{m} b_i x^i$ and $a_n \neq 0 \neq b_m \implies deg(f(x)) = n$, $l(f(x)) = a_n$ and deg(g(x)) = m, $l(g(x)) = b_m$.

- 1. Assumption $\implies a_n b_m \neq 0$. $f(x)g(x) = \sum_{j=0}^{m+n} c_j x^j$, $c_{n+m} = a_n b_n \neq 0 \implies deg(f(x)g(x)) = n + m = deg(f(x)) + deg(g(x))$, $l(f(x)g(x)) = c_{n+m} = a_n b_m = l(f(x))l(g(x))$.
- 2. R[x] is a commutative ring with $1 \neq 0$. R[x] has no zero divisors: $f(x), g(x) \in R[x] \setminus \{0\} \implies (1) \implies deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) \geq 0 \implies f(x)g(x) \neq 0$. $U(R) \subseteq U(R[x])$: $a \in U(R) \implies \exists \ a^{-1} \in R \in R[x] \implies a \in U(R[x])$ and $a*a^{-1} = 1$. More generally, if R is a subring of S, then $U(R) \subseteq U(S)$). $U(R[x]) \subseteq U(R)$. $f \in R[x] \implies \exists g \in R[x] : fg = 1(=gf) \implies 0 = deg(1) = deg(fg) = deg(f) + deg(g) \implies deg(f) = deg(g) \implies f, gin R \setminus \{0\}, fg = 1 \implies f \in U(R)$.

Theorem 0.48 (Division Algorithm). Assume $f(x), g(x) \in R[x], g(x) \neq 0$ and $l(g(x)) \in U(R)$. Then there exist uniquely determined $g(x), r(x) \in R[x]$ such that f(x) = q(x)g(x) + r(x) and r(x) or deg(r(x)) < deg(g(x)). Special cases:

- 1. R = F, a field, $g(x) \in F[x]$ any polynomial $\neq 0$ $(F \setminus \{0\}) = U(F)$.
- 2. g(x) is monic (i.e. l(g(x)) = 1).

Proof. $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{i=0}^{m} b_i x^i$, deg(g(x)) = m, $b_m = l(g(x)) \in U(R)$. Proof by induction on deg(f(x)): we may assume $f(x) \neq 0$, n = deg(f(x)). If n < m, then f(x) = 0 * g(x) + f(x) satisfies the requirements with q(x) = 0, r(x) = f(x). If $n \ge m$: we consider $f_1(x) = f(x) - a_n b_m^{-1} x^{n-m} g(x) = (a_n - a_n b_m^{-1} b_m) x^n + \text{lower terms} \implies deg(f_1(x) < n = deg(f(x)) \implies \text{I.H.} \exists g_1(x), r_1(x) \text{ with } f_1(x) = q_1(x)g(x) + r_1(x) \text{ and } r_1(x) = 0 \text{ or } deg(r_1(x)) < deg(g(x)) \implies f(x) = f_1(x) + a_n b_m^{-1} x^{n-m} g(x) = (q_1(x) + a_n b_m^{-1} x^{n-m})g(x) + r_1(x) = q(x) + r(x)$

Class March 28

More arguments in the existence proof from last class: $f(x) = \sum_{i=1}^{n} a_i x^i$, $g(x) = \sum_{i=0}^{m} b_i x^i$, $l(g(x)) = b_m \in U(R)$. $n = deg(f) \ge m = deg(g)$; $b_m \in U(R) \leadsto Consider f_1(x) = f(x) - a_n b_m^{-1} x^{n-m} g(x) \Longrightarrow deg(f_1) < n$.

Uniqueness: Assume f(x) = q(x)g(x) + r(x) = q'(x)g(x) + r'(x) and r(x)r'(x) are 0 or of degree $\langle deg(g(x)) \rangle \implies (q(x) - q'(x))g(x) = r'(x) - r(x)$ and apply 2.3.6(a).

Example 0.49. $R = \mathbb{Z}_3$, $f(x) = [3]x^3 + [4]x^2 + [2]$, $g(x) = [5]x^2 + [1] \in \mathbb{Z}_{12}[x]$. $[5]^{-1} = [5]$ (since [5] * [5] = [1] in \mathbb{Z}_{12}). $([3]x^3 + [4]x^2 + [2]) \div ([5]x^2 + [1]) = [3] * [5]x + [4] * [5] = [3]x + [8] = q(x)$. $([3]x^3 + [4]x^2 + [2]) - ([3]x^3 + [3]x) = (f_1 =)[4]x^2 - [3]x + [2] - ([4]x^2 + [8]) = (-[3]x - [6]) = [9]x + [6] = r(x)$. Check: q(x)g(x) + r(x) = f(x)

Corollary 0.50. If $a \in R$ is a root of $0 \neq f(x) \in R[x]$, then $x - a \mid f(x)$ in R[x].

Proof. $l(x-a) = 1 \in U(R)$ so 2.3.7 applies $\implies \exists q(x), r(x) \in R[x]$ with f(x) = q(x)(x-a) + r(x) and r(x) = 0 or deg(r(x)) < 1, i.e. $r(x) \in R$ a root of $f(x) \implies 0 = f(a) = q(a)(a-a) + r = r \implies r = 0 \implies f(x) = q(x)g(x) \implies x - a \mid f(x) \text{ in } R[x].$

Proposition 0.51. If R is an <u>integral domain</u> and $0 \neq f(x) \in R[x]$, then f(x) has at most deg(f(x)) many roots.

Proof. By induction on deg(f(x)) = n. $n = 0 \implies f(x) \in R \setminus \{0\}, 0 \text{ roots}$

 $n \ge 1$: Assume the claim is true for polynomials degree < n. If f(x) has no root \leadsto done! Assume $a \in R$ is a root of f(x), i.e. $f(a) = 0 \implies (2.3.9) (x - a) \mid f(x) \implies f(x) = (x - a)q(x)$ with $q(x) \in R[x]$. 2.3.6 $\implies n = deg(f(x)) = deg(x - a) + deg(q(x)) = 1 + deg(q(x)) \implies deg(q(x)) = n - 1 < n \implies$ I.H. q(x) has at most n - 1 roots. For any root $b \in R$ of f(x), we obtain $0 = f(b) = (b - a)q(b) \Leftrightarrow b - a = 0$ or q(b) = 0. Conclusion: {roots of f} = {roots of q} $\cup \{a\} \implies f$ has at most n roots. \square

Theorem 0.52. If R is an integral domain, then any finite subgroup $G \subseteq U(R)$ is cyclic.

Proof. R commutative $\Longrightarrow U(R)$ is abelian $\Longrightarrow G$ is abelian, finite. Set $n = |G| = \prod_{i=1}^k p_i^{e_i}, p_1, ..., p_k$ are distinct primes $e_i \in \mathbb{N}$. (Wlog $G \neq \{0\}$). $P_i \in Syl_{p_i}(G), 1 \leq i \leq k$ i.e. $|P_i| = p_i^{e_i} = n_i$. G abelian $\Longrightarrow P_i \triangleleft G, n_{p_i} = 1 \Longrightarrow G = P_1 \times ... \times P_k$ (1.5.12). Now assume, by way of contradiction, that P_i is not cyclic $\Longrightarrow |a| < |P_i| = p_i^{e_i}$ for some i and $\forall a \in P_i$. But also, $|a| ||P_i| \Longrightarrow |a| ||p_i^{e_{i-1}} = m_i < n_i$ $\forall a \in P_i \Longrightarrow a^{m_i} = 1 \ \forall a \in P_i \Longrightarrow$ the polynomial $x^{m_i} - 1 \in R[x]$ of degree $m_i \geq 1$ has $\geq |P_i| = n_i > m_i$ many roots, which contradicts 2.3.10. Hence, $\Longrightarrow P_i$ is cyclic, $P_i \cong \mathbb{Z}_{n_i}(n_i = p_i^{e_i})$ $\Longrightarrow G = P_1 \times ... \times P_k \cong \mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k} \cong \mathbb{Z}_{n_1 * ... * n_k} = \mathbb{Z}_n$. This follows from the fact that $gcd(n_i, n_j) = 1$ $\forall i \neq j$.

Corollary 0.53. For any prime number p, $U(p) = U(\mathbb{Z}_p)$ is cyclic.

Proof. \mathbb{Z}_p is a field \Longrightarrow integral domain \Longrightarrow $U(\mathbb{Z}_p)$ is cyclic, i.e. $U(p) \cong \mathbb{Z}_{p-1}$

Example 0.54. (Counterexample)

- 1. $R = \mathbb{Z}_{12}$, $U(R) = U(12) = \{[1], [5], [7], [11]\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 2. R = H, division ring (no zero divisors but not commutative). $U(R) = H^*$ contains the finite subgroup Q_8 , which is not cyclic.

Class March 30

Definition 0.55. $n \in \mathbb{N}$, R commutative ring with $1 \leadsto R[x_1, ..., x_n] := R[x_1, ..., x_{n-1}][x_n]$. Direct definition: $R[x_1, ..., x_n] := \{\sum_{i_1, ..., i_n = 0}^m x_1^{i_{i_1}} * ... * x_b^{i_n} \mid m \in \mathbb{N}_0, \text{ all } i_1, ... i_n \in R\}$ such that we define + :component wise, $*: x_1^{i_1} * ... * x_n^{i_n} * x_1^{j_1} * ... * x_n^{j_n} = x_1^{i_1+j_1} * ... * x_n^{i_n+j_n}$ and Distributive Law.

Euclidean Domains. In this section, R is an integral domain.

Definition 0.56. R is a Euclidean domain if there exists a function $\Upsilon: R \setminus \{0\} \to \mathbb{N}_0$ s.t. (*) $\forall a, b \in R$ with $b \neq 0 \exists q, r \in R$ s.t. a = bq + r and r = 0 or $\Upsilon(r) < \Upsilon(b)$

Remark 0.57. 1. if $\Upsilon(0)$ is defined and $\Upsilon(0) < \Upsilon(b) \ \forall \ b \in R \setminus \{0\}$, then we can drop "r = 0" in (*) and simply write $\Upsilon(r) < \Upsilon(b)$.

- 2. We will <u>not</u> require (though it's satisfied in many examples) that $\Upsilon(x) \leq \Upsilon(xy) \ \forall \ R \setminus \{0\}$.
- 3. We do not require that q and r are uniquely determined.

Example 0.58. 1. $R = \mathbb{Z}$, $\Upsilon : \mathbb{Z} \to \mathbb{N}_0$, $\Upsilon(a) = |a|$ (here $\Upsilon(0) = 0 < \Upsilon(b) \ \forall \ b \in \mathbb{Z} \setminus \{0\}$). (*) $\forall \ a, b \in \mathbb{Z}$ with $b \neq 0 \ \exists \ q, r \in \mathbb{Z}$ with a = qb + r and |r| < |b| (see 0.3.11 in the Pure Applied Algebra textbook).

2. F field, R = F[x], $Y = deg : F[x] \setminus \{0\} \to \mathbb{N}_0$ then (*) is satisfied by Division Algorithm $f, g \in F[x], g \neq 0 \implies \exists g, r \in F[x] : f = gg + r \text{ and } r = 0 \text{ or } deg(r) < deg(g).$

Definition 0.59. R (integral domain) is called a principal ideal domain (<u>PID</u>) if every ideal I of R is principal (generated by one element) i.e. $I = \langle a \rangle = \{ra \mid r \in R\}$ for some $a \in I$.

Example 0.60. \mathbb{Z} is a PID. Every ideal of \mathbb{Z} is of the form $\langle n \rangle = n\mathbb{Z}$ for some $n \in \mathbb{N}_0$.

Theorem 0.61. Every Euclidean domain R is a PID. (Note: use this to prove something is a PID, we can prove that it is a Euclidean domain)

Proof. Let $I \triangleleft R$ be given. We may assume $I \neq \{0\} = <0>$. Set $n := min\{ \gamma(a) \mid 0 \neq a \in I \}$. Pick $0 \neq b \in I$ with $\gamma(b) = n$. Claim: I = . Note: $b \in I \implies \le I$. Let $a \neq 0$ be any element of $I \setminus \{0\}$. (*) $\implies \exists \ q, r \in R$: a = qb + r and r = 0 or $\gamma(r) < \gamma(b)$. Here only r = 0 is possible. $a, b \in I \implies a, qb \in I \implies r = a - qb \in I$. If we had $r \neq 0$, $r \in I \implies \gamma(r) \geq n$ by definition of n. But also $\gamma(r) < \gamma(b) = n$, contradiction! Hence, $r = 0 \implies a = qb \in < b>$. This shows $I \subseteq < b > \subseteq I \implies I = < b >$ (principal ideal by defn)

Example 0.62. $\langle 2, x \rangle = \{2f + xg \mid f, g \in \mathbb{Z}[x]\}$ is <u>not</u> a principal ideal. <u>Notation</u>: $a_1, ..., a_n \in R \rightsquigarrow \langle a_1, ..., a_n \rangle = \{\sum_{i=0}^n r_i a_i \mid r_i \in R \ \forall i\} \ d$. This is the smallest ideal of R containing $a_1, ..., a_n$. $d \in \mathbb{Z}$, not a square $\implies \sqrt{d} \in \mathbb{Q}$. Consider $R = \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{C}$. If $a + b\sqrt{d} \in F^* = F \setminus \{0\}$ $\implies (a, b) \neq (0, 0)$ and subfield $a, b \in \mathbb{Q} \implies (a + b\sqrt{d})^{-1} = \frac{a - b\sqrt{d}}{a^2 - db^2} \in F$.

Question: When is R a Euclidean domain? Candidate for $\Upsilon: R \to \mathbb{N}_0$ which maps $a + b\sqrt{d} \to |a^2 - db^2| \ (a, b \in \mathbb{Z})$.

Extension: $\tilde{\Upsilon}: F \to \mathbb{Q}$ which maps $a + b\sqrt{d} \to |a^2 - db^2|$ for $a, b \in \mathbb{Q}$.

Proposition 0.63. Assume that for any $\alpha \in F$ there exists $r \in R$ with $\tilde{\Upsilon}(\alpha - q) < 1'$. Then R is a Euclidean domain satisfying (*) with Υ as above.

Corollary 0.64. $\mathbb{Z}[\sqrt{d}]$ is a Euclidean domain for d=-2,-1,2,3 e.g. d=-1 i.e. $R=\mathbb{Z}[i]$. Let $\alpha=a+bi\in\mathbb{Q}(i)$ be given $(a,b\in\mathbb{Q})$. Choose $m,n\in\mathbb{Z}$ with $|a-m|, |n-b|\leq \frac{1}{2}$. Set $r=m+ni\in\mathbb{Z}[i]$ $\Longrightarrow \tilde{\Upsilon}((\alpha-m)+(b-n)i)=(\alpha-m)^2+(b-n)^2\leq \frac{1}{4}+\frac{1}{4}=\frac{1}{2}<1 \Longrightarrow \mathbb{Z}[i]$ is Euclidean $\Longrightarrow PID$.

Class April 2

```
\begin{array}{l} d\in\mathbb{Z} \text{ not a square} \implies \sqrt{d}\notin\mathbb{Q}.\\ R=\mathbb{Z}[\sqrt{d}]=\{a+b\sqrt{d}\mid a,b\in\mathbb{Z}\},\, F=\mathbb{Q}(\sqrt{d})=\{a+b\sqrt{d}\mid a,b\in\mathbb{Z}\}.\\ \tilde{\curlyvee}: F\to\mathbb{Q}^{\geq 0} \text{ which maps } a+b\sqrt{d}\to |a^2-db^2|\; (=a^2-db^2 \text{ if } d<0).\\ \Upsilon=\tilde{\curlyvee}_{1R}: R\to\mathbb{N}_0\; (\curlyvee(x)=0\longleftarrow x=0)\\ \text{Check }\tilde{\curlyvee} \text{ is multiplicative i.e. }\tilde{\curlyvee}(\alpha\beta)=\tilde{\curlyvee}(\alpha)\tilde{\curlyvee}(\beta)\; \forall\; \alpha,\beta\in F. \end{array}
```

Proposition 0.65. Assume that for any $\alpha \in F \exists q \in R \text{ s.t. } \underline{\tilde{\Upsilon}(\alpha - q) < 1}$. Then R is a Euclidean domain with respect to Υ .

```
Proof. Given x, y \in R, y \neq 0 \implies consider \alpha = \frac{x}{y} \in F \implies \exists \ q \in R: \tilde{\curlyvee}(\alpha - q) < 1 and moreover 1 * \tilde{\curlyvee}(y) = \curlyvee(y) \implies \tilde{\curlyvee}(\alpha - q)\tilde{\curlyvee}(y) < \curlyvee(y) \implies \tilde{\curlyvee}(\alpha y - qy) = \tilde{\curlyvee}(x - qy) =: r \in R \implies x = qy + r and \curlyvee(r) < \curlyvee(y) by definition of r \ (q, r \in R).
```

Corollary 0.66. $\mathbb{Z}[\sqrt{d}]$ is a Euclidean domain for d = -2, 1, 2, 3.

Remark 0.67. One can show that $\mathbb{Z}[\sqrt{-3}]$ is <u>not</u> a PID (hence not Euclidean) but the condition of the proposition can be satisfied with $\tilde{\gamma}(\alpha - q) < 1$.

If R is Euclidean $\implies R$ is a PID. Hence, if $a,b \in R$ are given, $\exists c \in R$ such that $\langle a.b \rangle = \langle c \rangle$ ($\langle a,b \rangle = \{\lambda * a + \mu * b \mid , \mu \in R\} \triangleleft R$). Question: How do we compute c? Answer: Euclidean Algorithm.

```
Proposition 0.68 (Euclidean Algorithm). R (Euclidean domain); a, b \in R \setminus \{0\}. Then \exists q_1, r_1 \in R: a = q_1b + r and if r_1 \neq 0, then \forall (r_1) < \forall (b) q_2r_2 \in R: b = q_2r_1 + r_2 and if r_2 \neq 0, then \forall (r_2) < \forall (r_1) ...

\exists q_{i+1}, r_{i+1} \in R : r_{i-1} = q_{i+1}r_i + r_{i+1} \text{ and if } r_{i+1} \neq 0, then \forall (r_{i+1}) < \forall (r_i) \exists n \text{ s.t. } r_{n+1} = 0 \text{ for the first time } r_n \neq 0. r_{n-2} = q_nr_{n-1} + r_n \text{ and } \forall (r_n) < \forall (r_{n-1}) r_{n-1} = q_{n+1}r_n + 0 = r_{n+1} Then, \langle a, b \rangle = \langle r_i, r_{i+1} \rangle = \langle r_n \rangle \ \forall \ 0 \leq i \leq n \text{ (because } r_{n+1} = 0 \text{ in the last step)}. Furthermore, coefficients with r_n = c_{i+1}r_{j-1} + c_ir_i can be computed recursively: c_{n+1} = 0, c_n = 1, c_{i-1} = c_{i+1} = +q_ic_i \forall n \geq i \geq 0 \Rightarrow r_n = c_1r_{-1} + c_0r_0 = c_1a + c_0b
```

Remark 0.69. $r_n = gcd(a, b)$ (clear for $R = \mathbb{Z}$ (has to be defined for general R).

```
Proof. a = q_1b + r_1 \in \langle b, r_1 \rangle \implies \langle a, b \rangle \subseteq \langle b, r_1 \rangle

r_1 = a - q_1b \in \langle a, b \rangle \implies \langle b, r_1 \rangle \subseteq \langle a, b \rangle \implies \langle a, b \rangle = \langle b, r_1 \rangle \implies \langle r_{-1}, r_1 \rangle = \langle r_0, r_1 \rangle

Therefore, we WTS \langle a, b \rangle = \langle r_{i-1}, r_i \rangle = \langle r_i, r_{i+1} \rangle

r_{i-1} = q_{i+1}r_i + r_{i+1} \in \langle r_i, r_{i+1} \rangle \implies \langle r_{i-1}, r_i \rangle \subseteq \langle r_i, r_{i+1} \rangle

r_{i+1} = r_{i-1} + q_{i+1}r_i \in \langle r_{i-1}, r_i \rangle \implies \langle r_i, r_{i+1} \rangle \subseteq \langle r_{i-1}, r_i \rangle \implies \langle r_{i-1}, r_i \rangle = \langle r_i, r_{i+1} \rangle

Recall r_{n+1} = 0, so for i = n : \langle a, b \rangle = \langle r_n \rangle. We prove r_n = c_{i+1}r_{i-1} + c_ir_i for n \geq i \geq 0 by (reverse) induction on i:

\underline{i = n}: c_{n+1}r_{n-1} + c_nr_n = 0 * r_{n-1} + 1 * r_n = r_n

\underline{i \rightarrow i - 1}: r_n = c_{i+1}r_{i-1} + c_ir_i, r_{i-2} = q_ir_{i-1} + r_i \iff r_i = r_{i-2} - q_ir_{i-1}. Moreover, r_n = c_{i+1}r_{i-1} + c_i(r_{i-2} - q_ir_{i-1}) = (c_{i+1} - q_ic_i)r_{i-1} + c_ir_{i-2} = c_{(i-1)+1}r_{(i-1)-1} + c_{i-1}r_{i-1}
```

Example 0.70. $R = \mathbb{Z}[i], a = 4 + 7i, b = 8 - i, a = q_1b + r_1$ $\alpha_1 = \frac{a}{b} = \frac{4+7i}{8-i} = \frac{(4+7i)(8+i)}{(8-i)(8+i)} = \frac{25+60i}{65}$ approximate by $m + ni \in \mathbb{Z}[i]$ (e.g. m = 0, n = i) $\rightsquigarrow q_1 = m + ni = i, r_i = a - q_1b = 3 - i \implies a = q_1b + r_1 \iff 4 + 7i = i(8 - i) + (3 - i)$ $\alpha_2 = \frac{b}{r_1} = \frac{8-i}{3-i} = \frac{(8-i)(3+i)}{(3-i)(3+i)} = \frac{25+5i}{10} = \frac{5}{2} + \frac{1}{2}i, q_2 = 3 \implies r_2 = b - q_2r_1 = -1 + 2i$ $\therefore 8 - i = 3(3 - i) + (-1 + 2i) \implies 3 - i = (-1 - i)(-1 + 2i) + 0 \implies n = 2$ and our first result is that < 4 + 7i, 8 - i > = < -1 + 2i >. $r_2 = (8-i) - 3(3-i) = (8-i) - 3(4+7i) - i(8-i) = (1+3i)(8-i) - 3(4+7i) = -3a + (1+3i)b = c_1a + c_0b$. Check that $c_0 = 1 + 3i, c_1 = -3$

Miscellaneous Notes from Textbook

Theorem 0.71. If R is an integral domain, then R[x] is an integral domain, and the product of any two nonzero polynomials $f(x), g(x) \in R[x]$ such that deg(f(x)) = m and deg(g(x)) = n, is a nonzero polynomial f(x) * g(x) of degree m + n.

Proof. if $f(x) = a_n x^n + ... + a_0$ and $g(x) = b_m x^m + ... + b_0 \implies f(x) * g(x) = a_n b_m x^{m+n} + ... + a_0 b_0$ \implies because R is an integral domain, $a_n b_m \neq 0 \implies$ the product has degree m+n and it is also clear that R[x] is an integral domain.

Proposition 0.72. Let D be an integral domain. Then the units in D[x] are precisely the units in D.

Corollary 0.73. If F is a field, then F[x] is an integral domain but not a field.

Proof. F is a field $\Longrightarrow F$ is an integral domain $\Longrightarrow F[x]$ is an integral domain, but all nonzero polynomials in F[x] are nonzero elements that are not units (because all units in F[x] are precisely the units of F). Therefore F[x] is not a field.

Definition 0.74 (Characteristic). The characteristic of a polynomial ring R[x] is the least integer n > 0 such that $nf(x) = 0 \ \forall \ f(x) \in R[x]$ (and is zero if no such n exists).

Proposition 0.75. Let R be a ring. Then R[x] has the same characteristic as R.

Proof. Since R is contained in R[x], it is obvious that if $a * f(x) \forall f(x) \in R[x] \implies a * r = 0 \forall r \in R$ (because $r \in R[x]$).

Let $f(x) = a_n x^n + ... + a_0$. Then if $a * r = 0 \ \forall \ r \in R \implies a * f(x) = a * a_n x^n + ... + a * a_0$ and because the coefficients are in R, all the new coefficients equal $0 \implies f(x) = 0$

Definition 0.76. Let F be a subfield of a field E and $\alpha \in E$. The **evaluation homomorphism** is defined as $\phi_{\alpha} : F[x] \to E$ such that $f(x) = a_n x^n + ... + a_1 x + a_0 \in F[x]$ and $\phi_{\alpha}(f(x)) = a_n \alpha^n + ... + a_1 \alpha + a_0 \in E$.

Division Algorithm and Proof are worth reviewing

Proposition 0.77. Let F be a field such that $f(x), g(x) \in F[x]$. Then,

- 1. $g(x) \mid f(x) \implies eg(x) \mid f(x) \text{ for any element } 0 \neq e \in F.$
- 2. $g(x) \mid f(x) \text{ and } f(x) \mid g(x) \implies f(x) = eg(x) \text{ for some element } 0 \neq e \in F.$
- 1. Proof. $g(x) \mid f(x) \implies f(x) = q(x) * g(x) \implies f(x) = (e^{-1} * q(x)) * (e * g(x)) \implies e * g(x) \mid f(x)$.

2. Proof. $g(x) \mid f(x) \implies f(x) = q(x) * g(x); f(x) \mid g(x) \implies g(x) = p(x) * f(x)$. Hence, $f(x) = q(x) * p(x) * f(x) \implies q(x) * p(x) = 1 \implies q(x), p(x)$ have degree 0 and are both constant because their product is constant $\implies q(x) = e$ and $p(x) = e^{-1}$ for some element $0 \neq e \in F$. \square

Remark 0.78. If the leading coefficient is 1, then the polynomial is called **monic**

Definition 0.79. For f(x) and g(x) in F[x] where F is a field, a **common divisor** of f(x), g(x) is any polynomial $c(x) \in F[x]$ such that $c(x) \mid f(x)$ and $c(x) \mid g(x)$. A **greatest common divisor** of f(x) and g(x) is a common divisor d(x) such that for any other common divisor $c(x), c(x) \mid d(x)$. If the only common divisors and therefore the only greatest common divisors of f(x) and g(x) are constants, then f(x) and g(x) are called **relatively prime**.

Remark 0.80. If $d_1(x), d_2(x)$ are both greatest common divisors, then $d_1(x) = e * d_2(x)$ for some $0 \neq e \in F \implies$ there can only be one *monic* greatest common divisor, denoted gcd(f(x), g(x)).

Theorem 0.81. Let F be a field and $f(x), g(x) \in F[x]$ (not both 0). Then there exists a greatest common divisor d(x) of f(x) and g(x) that can be written as a linear combination of f(x) and g(x). Therefore, $\exists u(x).v(x) \in F[x]$ such that d(x) = u(x) * f(x) + v(x) * g(x) is a greatest common divisor of f(x) and g(x).

Proof. Define the set $S = \{m(x)f(x) + n(x)g(x) \mid m(x), n(x) \in F[x]\}$. Note that $f(x), g(x) \in S$. Therefore, S has elements other than 0. Let $d(x) \in S$ of minimum degree. We may take d(x) to be monic because if it isn't then, we can take $a^{-1}d(x)$ which is monic if a was the leading coefficient of d(x). Because, $d(x) \in S \implies d(x) = u(x)f(x) + v(x)g(x)$ for some $u(x), v(x) \in F[x]$. Now we must show that d(x) is a common divisor of f(x) and g(x). According to the division algorithm, f(x) = q(x)d(x) + r(x) such that r(x) = 0 or deg(r(x)) < deg(d(x)). Solving for r(x), we obtain $r(x) = f(x) - q(x)d(x) = f(x) - q(x)(u(x)f(x) + v(x)g(x)) = [1 - u(x)q(x)]f(x) - [q(x)v(x)]g(x) \implies r(x) \in S$ by definition. Since d(x) was chosen to be of minimum degree (in S), $\implies deg(r(x)) < deg(d(x))$ is not true and therefore $r(x) = 0 \implies d(x) \mid f(x)$. Wlog this argument also applies to g(x). To complete the proof, we need to show that d(x) is the greatest common divisor (so any other common divisor $c(x) \mid d(x)$). If \exists common divisor $c(x) \implies f(x) = q(x)c(x)$ and g(x) = p(x)c(x) by definition. Therefore, $d(x) = u(x)f(x) + v(x)g(x) = [u(x)q(x) + v(x)p(x)]c(x) \implies c(x) \mid d(x) \implies d(x)$ is the gcd(f(x),g(x)) by construction.

Practice using the Euclidean Algorithm

Theorem 0.82 (Factor Theorem). Let F be a field, $f(x) \in F[x]$ and $a \in F$. Then, a is a zero of $f(x) \iff (x-a)$ is a divisor of f(x) in F[x].

Proof. (\Rightarrow) Assume a is a zero of f(x). Applying the division algorithm, we can write f(x) = q(x)(x - a) + r(x) such that r(x) = 0 or deg(r(x)) < deg(x - a). Suppose deg(r(x)) < deg(x - a). This implies that deg(r(x)) = 0 and $r(x) = c \in F$ (a constant). By definition, 0 = f(a) = q(a)(a - a) + c = 0 + c $\Rightarrow r(x) = 0 \Rightarrow (x - a) \mid f(x)$ $(\Leftarrow) (x - a) \mid f(x) \Rightarrow f(x) = q(x)(x - a) \Rightarrow f(a) = q(a)(a - a) = 0 \Rightarrow a$ is a zero of f(x). \square

Irreducible Polynomials not covered on the exam but seem pretty important

Definition 0.83. Let F be a field and f(x) a nonconstant polynomial in F[x]. Then f(x) is **irreducible** over F if f(x) cannot be expressed as a product f(x) = g(x)h(x) of polynomials g(x) and h(x) in F[x] both of lower degree than f(x). f(x) is **reducible** over F if it is not irreducible.

Theorem 0.84. Let F be a field, f(x) a polynomial in F[x] of degree 2 or 3. Then, f(x) is reducible over $F \iff f(x)$ has a zero in F.

Ideals in F[x]

Definition 0.85. If $a \in R$, then the **principal ideal** $\langle a \rangle$ generated by a is the ideal $\{ra \mid r \in R\}$ consisting of all multiples by a. Therefore, if F is a field, then the principal ideal $\langle x \rangle$ in F[x] generated by x is the set of all multiples of x, which is to say, the set of all polynomials in F[x] with constant term 0.

Definition 0.86. Let D be an integral domain. Then D is called a **principal ideal domain (PID)** if every ideal in D is a principal ideal.

Example 0.87. \mathbb{Z} is a PID, since as we know every ideal I in \mathbb{Z} is generated by a fixed element $n \in I$, so $I = n\mathbb{Z} = \langle n \rangle$.

Theorem 0.88. Let F be a field. Then F[x] is a PID.

Proof. F[x] is an integral domain because F is an integral domain. Now, we need to show that for any ideal I in $F[x] \exists f(x) \in I$ such that $I = \langle f(x) \rangle$. If I is the zero ideal $\{0\}$, then $I = \langle 0 \rangle$. If I is not the zero ideal, let g(x) be a nonzero element of I of minimal degree. We show that g(x) generates I ($I = \langle g(x) \rangle$) by showing that if $f(x) \in I \setminus \{g(x)\}$, then $g(x) \mid f(x)$. To show this we apply the division algorithm to write f(x) = q(x)g(x) + r(x) such that r(x) = 0 or deg(r(x)) < deg(g(x)). Since $r(x) = f(x) - q(x)g(x) \in I$ and g(x) is chosen to have minimal degree, deg(r(x)) < deg(g(x)) cannot hold $\implies r(x) = 0 \implies f(x) = q(x)g(x)$ which is a multiple of g(x) by definition. \square

Theorem 0.89. Let F be a field. A nontrivial ideal $I = \langle p(x) \rangle$ is a maximal ideal in $F[x] \iff p(x)$ is irreducible over F.

Proof. (\Rightarrow) Suppose $I = \langle p(x) \rangle$ is a maximal ideal in F[x]. I is neither $\{0\} = \langle 0 \rangle$ nor $F[x] = \langle 1 \rangle$, so p(x) is neither the zero polynomial nor a unit of F[x] (a constant polynomial). If p(x) = g(x)h(x), then $p(x) \in \langle g(x) \rangle$ and, therefore, $I = \langle p(x) \rangle \subseteq \langle g(x) \rangle \subseteq F[x]$. We assume I is maximal \Rightarrow either $\langle p(x) \rangle = \langle g(x) \rangle$ or $\langle g(x) \rangle = F[x]$. $\langle p(x) \rangle = \langle g(x) \rangle \Rightarrow deg(g(x)) = deg(p(x))$. Conversely, $\langle g(x) \rangle = F[x] \Rightarrow deg(g(x)) = 0$ and deg(h(x)) = deg(p(x)). This shows that p(x) is irreducible over F.

(\Leftarrow) Suppose p(x) is irreducible over F and let $J = \langle f(x) \rangle$ be an ideal with $\langle p(x) \rangle \subseteq J = \langle f(x) \rangle \subseteq F[x]$. Then, $p(x) \in \langle f(x) \rangle \Longrightarrow p(x) = q(x)f(x)$ for some $q(x) \in F[x]$. By our assumption that p(x) is irreducible, we must either have $deg(f(x)) = deg(p(x)) \Longrightarrow q(x)$ is a nonzero constant, or $deg(q(x)) = deg(p(x)) \Longrightarrow f(x)$ is a nonzero constant. In the former case, $\langle p(x) \rangle = \langle f(x) \rangle$ and in the latter, $\langle f(x) \rangle = F[x]$. Either way, this shows that $I = \langle p(x) \rangle$ is a maximal ideal. \square

Practice proof techniques from the last few proofs and return to Page 267 in [P]

Chapter 9: Euclidean Domains

Definition 0.90 (Euclidean Domain). Informally, a **Euclidean Domain** is an integral domain in which a division algorithm holds.

More formally, an integral domain D is called a Euclidean domain if $\exists \ \Upsilon : D \setminus \{0\} \to \mathbb{Z} \cup \{0\}$ from the set of nonzero elements of D to the set of non negative integers such that

- 1. For $x \neq 0$, $y \neq 0$ in D, $\Upsilon(x) < \Upsilon(xy)$
- 2. Given a and $b \neq 0$ in D, $\exists q, r \in D$ such that a = qb + r such that r = 0 or $\Upsilon(r) < \Upsilon(b)$

Theorem 0.91. Every Euclidean domain is a PID.

Proof. Let I be an ideal in a Euclidean domain D. If $I = \{0\}$, then $I = \{0\}$, let $0 \neq a \in I$ be an element of I such that $Y(a) \leq Y(x)$ for all $0 \neq x \in I$. We will show that $I = \{a\}$. Let $b \in I$. Then $\exists q, r \in D$ such that b = qa + r with r = 0 or Y(r) < Y(a). $r = b - qa \implies r \in I$. By the minimality of Y(a), we have that $r = 0 \implies b = qa \in \{a\}$. Therefore, $b \in \{a\}$ for all $b \in I$ and $I = \{a\} \implies D$ is a principal ideal domain.

Definition 0.92. Let R be a commutative ring and let $a, b \in R$ with $b \neq 0$.

- 1. b is said to be a **divisor** of a in R, written $b \mid a$ if $\exists x \in R$ such that ax = b
- 2. $c \in R$ is a **common divisor** of a and b if $c \mid a$ and $c \mid b$.

Definition 0.93. Let R be a commutative ring and let $a, b \in R$. A **greatest common divisor** of a and b is a nonzero element $d \in R$ such that

- 1. d is a common divisor of a and b
- 2. If c is a common divisor of a and b, then $c \mid d$.

Theorem 0.94. Let D be a Euclidean domain and $a, b \in D$ two nonzero elements of D. Then $\exists d \in D$ such that

- 1. d is a greatest common divisor of a and b
- 2. $\exists u, v \in D \text{ such that } d = ua + vb.$

Proof. Let $I = \{xa + yb \mid x, y \in D\}$. I is an ideal of D (specifically the ideal generated by a and b). Because every Euclidean domain is a principal ideal domain, I = < d > for some $d \in D$. Since $d \in I \implies d = ua + vb$ for some $u, v \in D$. Since I = < d >, every element in I is of the form xd for $x \in D$. Since $a \in I$ by construction $\implies d \mid a$ (and the same thing for $b \implies d \mid b$). If $c \mid a$ and $c \mid b$ such that a = xc and $b = yc \implies d = uxc + vyc = (ux + vy)c$ such that $c \mid d$ (and this concludes the proof!). \square

Proposition 0.95. Let D be an integral domain and let $a, b \in D$. Then if d and d' are greatest common divisors of $a, b \in D$, then d = ud' for some unit $u \in D$.

Proof. Since both d and d' are greatest common divisors of a and b, $d \mid d'$ and $d' \mid d$. Therefore, d = ud' and d' = vd for some $u, v \in D$. This implies that $d = u(vd) = (uv)d \implies (1 - uv)d = 0$ and $d \neq 0 \implies uv = 1 \implies u$ is a unit with its inverse v in D.

Theorem 0.96. Let D be a Euclidean domain. Then,

- 1. $\Upsilon(1) \leq \Upsilon(a) \ \forall \ 0 \neq a \in D$
- 2. $\Upsilon(1) = \Upsilon(a)$ if and only if a is a unit in D

Proof. 1. $\Upsilon(1) \leq \Upsilon(1*a) = \Upsilon(a) \ \forall \ 0 \neq a \in D$

2. If a is a unit in D, then $\Upsilon(a) \leq \Upsilon(a*a^{-1}) = \Upsilon(1) \leq \Upsilon(a)$. hence, $\Upsilon(1) = \Upsilon(a)$. Conversely, if $\Upsilon(1) = \Upsilon(a)$, by the division algorithm $\exists \ q, r \in D$ such that 1 = qa + r with r = 0 or $\Upsilon(r) < \Upsilon(a)$. But since $\Upsilon(a) = \Upsilon(1)$ and by $\Upsilon(1), \Upsilon(1) \leq \Upsilon(r)$, we cannot have $\Upsilon(r) < \Upsilon(a)$ and must have $\Upsilon(r) = 0$. Therefore, $\Upsilon(r) = 0$ and $\Upsilon(r) = 0$.