Berechenbarkeit

Vorlesung 12: NP-Vollständigkeit

10. Juli 2025

Termine — Modul Berechenbarkeit

ÜBUNGEN	Prüfung	Vorlesung
8.7. Abschlussübung beide Wochen	9.7.	10.7. NP-Vollständigkeit
15.7.	16.7. Prüfung ab 13:30 Uhr in AudiMax & Hs. 9	17.7.

NP-Vollständigkeit

Definition (§11.7 nondeterministically polynomially decidable)

Problem $L\subseteq \Sigma^*$ nichtdeterministisch polynomiell entscheidbar falls Alphabet Γ , Relation $R\subseteq \Sigma^*\times \Gamma^*$ und $k\in \mathbb{N}$ existieren mit

- $\{w\#z \mid (w,z) \in R\} \in P$ polynomiell entscheidbar und
- $w \in L$ gdw. $(w, z) \in R$ existiert mit $|z| \le |w|^k$ für alle $w \in \Sigma^*$

NP-Vollständigkeit

Definition (§11.7 nondeterministically polynomially decidable)

Problem $L\subseteq \Sigma^*$ nichtdeterministisch polynomiell entscheidbar falls Alphabet Γ , Relation $R\subseteq \Sigma^*\times \Gamma^*$ und $k\in \mathbb{N}$ existieren mit

- $\{w\#z \mid (w,z) \in R\} \in P$ polynomiell entscheidbar und
- $w \in L$ gdw. $(w, z) \in R$ existiert mit $|z| \le |w|^k$ für alle $w \in \Sigma^*$

Komplexitätsklassen

```
P = \{L \mid L \text{ ist polynomial entscheidbar}\}
NP = \{L \mid L \text{ ist nichtdeterministisch polynomial entscheidbar}\}
```

Determinismus vs. Nichtdeterminismus

 $P \subseteq NP$ gilt, aber

```
Beweis NP \subseteq P oder P \subsetneq NP 1 Million USD wert
```

- Wichtigstes Problem der theoretischen Informatik
- 1 der 7 Milleniumprobleme der Mathematik

- Ist geg. w ∈ Σ* in Sprache L(G) kontextsensitiver Grammatik G = (N, Σ, S, P)?
- Problem *L*(*G*)

Wortproblem kontextsensitiver Sprache

- Ist geg. w ∈ Σ* in Sprache L(G) kontextsensitiver Grammatik G = (N, Σ, S, P)?
- Problem *L(G)*

• Entscheidbarkeit von *L(G)*

- Ist geg. w ∈ Σ* in Sprache L(G) kontextsensitiver Grammatik G = (N, Σ, S, P)?
- Problem *L(G)*

- Entscheidbarkeit von L(G) entscheidbar
- Polynomielle Entscheidbarkeit von L(G)

- Ist geg. $w \in \Sigma^*$ in Sprache L(G) kontextsensitiver Grammatik $G = (N, \Sigma, S, P)$?
- Problem *L(G)*

- Entscheidbarkeit von L(G) entscheidbar
- Polynomielle Entscheidbarkeit von L(G) unklar
- Nichtdet. polynomielle Entscheidbarkeit von L(G)

- Ist geg. $w \in \Sigma^*$ in Sprache L(G) kontextsensitiver Grammatik $G = (N, \Sigma, S, P)$?
- Problem *L(G)*

- Entscheidbarkeit von L(G) entscheidbar
- Polynomielle Entscheidbarkeit von L(G) unklar
- Nichtdet. polynomielle Entscheidbarkeit von *L*(*G*) unklar

Sei $G = (N, \Sigma, S, P)$ kontextsensitive Grammatik

1. Setze
$$\mathcal{F} = \{S\}$$

(nur Startsymbol)

Sei $G = (N, \Sigma, S, P)$ kontextsensitive Grammatik

```
1. Setze \mathcal{F} = \{S\} (nur Startsymbol)
```

2. Setze
$$\mathcal{F}' = \mathcal{F} \cup \{v \in (N \cup \Sigma)^{\leq |w|} \mid \exists u \in \mathcal{F} \colon u \Rightarrow_G v\}$$
 (füge Nachfolger der Länge höchstens $|w|$ hinzu)

Sei $G = (N, \Sigma, S, P)$ kontextsensitive Grammatik

- 1. Setze $\mathcal{F} = \{S\}$ (nur Startsymbol)
- 2. Setze $\mathcal{F}' = \mathcal{F} \cup \{v \in (N \cup \Sigma)^{\leq |w|} \mid \exists u \in \mathcal{F} \colon u \Rightarrow_G v\}$ (füge Nachfolger der Länge höchstens |w| hinzu)
- 3. Falls $\mathcal{F} \subseteq \mathcal{F}'$, dann setze $\mathcal{F} = \mathcal{F}'$ und gehe zu 2.

Sei $G = (N, \Sigma, S, P)$ kontextsensitive Grammatik

- 1. Setze $\mathcal{F} = \{S\}$ (nur Startsymbol)
- 2. Setze $\mathcal{F}' = \mathcal{F} \cup \{v \in (N \cup \Sigma)^{\leq |w|} \mid \exists u \in \mathcal{F} \colon u \Rightarrow_G v\}$ (füge Nachfolger der Länge höchstens |w| hinzu)
- 3. Falls $\mathcal{F} \subsetneq \mathcal{F}'$, dann setze $\mathcal{F} = \mathcal{F}'$ und gehe zu 2.
- 4. Liefere Wahrheitswert von $w \in \mathcal{F}'$

Sei $G = (N, \Sigma, S, P)$ kontextsensitive Grammatik

- 1. Setze $\mathcal{F} = \{S\}$ (nur Startsymbol)
- 2. Setze $\mathcal{F}' = \mathcal{F} \cup \{v \in (N \cup \Sigma)^{\leq |w|} \mid \exists u \in \mathcal{F} \colon u \Rightarrow_G v\}$ (füge Nachfolger der Länge höchstens |w| hinzu)
- 3. Falls $\mathcal{F} \subsetneq \mathcal{F}'$, dann setze $\mathcal{F} = \mathcal{F}'$ und gehe zu 2.
- 4. Liefere Wahrheitswert von $w \in \mathcal{F}'$

Komplexität

• Potentiell $\sum_{i=0}^{|w|} (|N| + |\Sigma|)^i$ Elemente; exponentiell

Sei $G = (N, \Sigma, S, P)$ kontextsensitive Grammatik

- 1. Setze $\mathcal{F} = \{S\}$ (nur Startsymbol)
- 2. Setze $\mathcal{F}' = \mathcal{F} \cup \{v \in (N \cup \Sigma)^{\leq |w|} \mid \exists u \in \mathcal{F} \colon u \Rightarrow_G v\}$ (füge Nachfolger der Länge höchstens |w| hinzu)
- 3. Falls $\mathcal{F} \subsetneq \mathcal{F}'$, dann setze $\mathcal{F} = \mathcal{F}'$ und gehe zu 2.
- 4. Liefere Wahrheitswert von $w \in \mathcal{F}'$

Komplexität

- Potentiell $\sum_{i=0}^{|w|} (|N| + |\Sigma|)^i$ Elemente; exponentiell
- Ableitung als Zertifikat potentiell zu lang

Wortproblem kontextfreier Sprache

- Ist geg. w ∈ Σ* in Sprache L(G) kontextfreier Grammatik G = (N, Σ, S, P)?
- Problem *L*(*G*)

Wortproblem kontextfreier Sprache

- Ist geg. $w \in \Sigma^*$ in Sprache L(G) kontextfreier Grammatik $G = (N, \Sigma, S, P)$?
- Problem *L*(*G*)

• Entscheidbarkeit von *L(G)*

Wortproblem kontextfreier Sprache

- Ist geg. w ∈ Σ* in Sprache L(G) kontextfreier Grammatik G = (N, Σ, S, P)?
- Problem *L(G)*

- Entscheidbarkeit von L(G) entscheidbar
- Polynomielle Entscheidbarkeit von L(G)

Wortproblem kontextfreier Sprache

- Ist geg. w ∈ Σ* in Sprache L(G) kontextfreier Grammatik G = (N, Σ, S, P)?
- Problem *L(G)*

- Entscheidbarkeit von *L*(*G*) entscheidbar
- Polynomielle Entscheidbarkeit von L(G) in I
- CYK-Algorithmus $\mathcal{O}(|w|^3)$

- Hat geg. Distanzmatrix $D \in \mathbb{N}^{n \times n}$ Rundreise der Länge höchstens k?
- Problem TSP = $\{\langle D, k \rangle \mid D \text{ hat Rundreise der Länge höchstens } k\}$

- Hat geg. Distanzmatrix $D \in \mathbb{N}^{n \times n}$ Rundreise der Länge höchstens k?
- Problem TSP = $\{\langle D, k \rangle \mid D \text{ hat Rundreise der Länge höchstens } k\}$
- Entscheidbarkeit von TSP

- Hat geg. Distanzmatrix D∈ N^{n×n} Rundreise der Länge höchstens k?
- Problem TSP = $\{\langle D, k \rangle \mid D \text{ hat Rundreise der Länge höchstens } k\}$
- Entscheidbarkeit von TSP entscheidbar
- Polynomielle Entscheidbarkeit von TSP

- Hat geg. Distanzmatrix $D \in \mathbb{N}^{n \times n}$ Rundreise der Länge höchstens k?
- Problem TSP = $\{\langle D, k \rangle \mid D \text{ hat Rundreise der Länge höchstens } k\}$
- Entscheidbarkeit von TSP entscheidbar
- Polynomielle Entscheidbarkeit von TSP unklar
- Nichtdet, polynomielle Entscheidbarkeit von TSP

- Hat geg. Distanzmatrix D∈ N^{n×n} Rundreise der Länge höchstens k?
- Problem TSP = $\{\langle D, k \rangle \mid D \text{ hat Rundreise der Länge höchstens } k\}$
- Entscheidbarkeit von TSP entscheidbar
- Polynomielle Entscheidbarkeit von TSP unklar
- Nichtdet, polynomielle Entscheidbarkeit von TSP ja, in NP

- Hat geg. Distanzmatrix $D \in \mathbb{N}^{n \times n}$ Rundreise der Länge höchstens k?
- Problem TSP = $\{\langle D, k \rangle \mid D \text{ hat Rundreise der Länge höchstens } k\}$
- Entscheidbarkeit von TSP entscheidbar
- Polynomielle Entscheidbarkeit von TSP unklar
- Nichtdet, polynomielle Entscheidbarkeit von TSP ja, in NP
- Zertifikat ist Rundreise der Länge höchstens k

§12.1 Definition (polynomielle Reduktion; polynomial reduction)

Problem $L \subseteq \Sigma^*$ polynomiell reduzierbar auf $L' \subseteq \Gamma^*$, kurz $L \preceq_P L'$, falls polyn. ber. totale Funktion $f: \Sigma^* \to \Gamma^*$ mit $L = f^{-1}(L')$ existiert

§12.1 Definition (polynomielle Reduktion; polynomial reduction)

Problem $L \subseteq \Sigma^*$ polynomiell reduzierbar auf $L' \subseteq \Gamma^*$, kurz $L \preceq_P L'$, falls polyn. ber. totale Funktion $f: \Sigma^* \to \Gamma^*$ mit $L = f^{-1}(L')$ existiert

Konsequenzen

- Seien $L \subseteq \Sigma^*$ und $L' \subseteq \Gamma^*$ mit $L \preceq_{\mathbf{P}} L'$
- L polynomiell entscheidbar falls L' polynomiell entscheidbar (L ∈ P falls L' ∈ P)

§12.1 Definition (polynomielle Reduktion; polynomial reduction)

Problem $L \subseteq \Sigma^*$ polynomiell reduzierbar auf $L' \subseteq \Gamma^*$, kurz $L \preceq_P L'$, falls polyn. ber. totale Funktion $f: \Sigma^* \to \Gamma^*$ mit $L = f^{-1}(L')$ existiert

Konsequenzen

- Seien $L \subseteq \Sigma^*$ und $L' \subseteq \Gamma^*$ mit $L \preceq_{\mathbf{P}} L'$
- L polynomiell entscheidbar falls L' polynomiell entscheidbar (L ∈ P falls L' ∈ P)
- L nichtdet. polyn. entscheidbar falls L' nichtdet. polyn. entscheidbar (L ∈ NP falls L' ∈ NP)

Problem

- Keine untere Schranke per Reduktion
- Wie erhalten wir untere Schranken?

Stephen Arthur Cook (* 1939)

- Amer.-kan. Mathematiker & Informatiker
- Polynomielle Reduktion & NP-Vollständigkeit
- Turing-Preisträger

© Jiří Janíček

§12.2 Definition (NP-schwer, -vollständig; NP-hard, -complete)

Problem L

• NP-schwer falls $L' \leq_{\mathbb{P}} L$ für alle $L' \in \mathbb{NP}$

§12.2 Definition (NP-schwer, -vollständig; NP-hard, -complete)

Problem L

- NP-schwer falls $L' \leq_{\mathbb{P}} L$ für alle $L' \in \mathbb{NP}$
- NP-vollständig falls L NP-schwer und $L \in NP$

§12.2 Definition (NP-schwer, -vollständig; NP-hard, -complete)

Problem /

- NP-schwer falls $L' \leq_{\mathbb{P}} L$ für alle $L' \in \mathbb{NP}$
- NP-vollständig falls L NP-schwer und $L \in NP$

Notizen

 NP-schwer = mind. so schwer wie alle Probleme in NP (untere Schranke)

§12.2 Definition (NP-schwer, -vollständig; NP-hard, -complete)

Problem L

- NP-schwer falls $L' \leq_{\mathbb{P}} L$ für alle $L' \in \mathbb{NP}$
- NP-vollständig falls L NP-schwer und $L \in NP$

Notizen

- NP-schwer = mind. so schwer wie alle Probleme in NP (untere Schranke)
- NP-vollständig = passende untere & obere Schranke NP

§12.3 Theorem

Sei L **NP**-vollständig. Dann $L \in P$ gdw. P = NP

§12.3 Theorem

Sei L **NP**-vollständig. Dann $L \in P$ gdw. P = NP

Beweis

Falls P = NP, dann $L \in P = NP$, da $L \in NP$ (da NP-vollständig).

§12.3 Theorem

Sei L **NP**-vollständig. Dann $L \in P$ gdw. P = NP

Beweis

Falls P = NP, dann $L \in P = NP$, da $L \in NP$ (da NP-vollständig).

Umgekehrt sei $L \in \mathbf{P}$ und $L' \in \mathbf{NP}$ beliebig. Da L \mathbf{NP} -vollständig und damit \mathbf{NP} -schwer, gilt $L' \preceq_{\mathbf{P}} L$. Zusammen mit $L \in \mathbf{P}$ folgt $L' \in \mathbf{P}$ und damit $\mathbf{NP} \subseteq \mathbf{P}$. Per Theorem §11.8 $\mathbf{P} \subseteq \mathbf{NP}$ und damit $\mathbf{P} = \mathbf{NP}$.

Notizen

- Nachweis NP-Schwere schwierig (polynomielle Reduktion von jedem Problem aus NP)
- Mitgliedschaft in NP per nichtdet. polynomielle Entscheidbarkeit (Angabe geeigneter Zertifikatrelation)

§12.4 Theorem

Problem L NP-schwer, falls NP-schweres Problem L' mit $L' \leq_{\mathbb{P}} L$ existiert

§12.4 Theorem

Problem L NP-schwer, falls NP-schweres Problem L' mit $L' \leq_{\mathbb{P}} L$ existiert

Beweis

Sei L' **NP**-schwer und $L' \leq_{\mathbf{P}} L$. Dann $L'' \leq_{\mathbf{P}} L' \leq_{\mathbf{P}} L$ für alle $L'' \in \mathbf{NP}$.

§12.4 Theorem

Problem L NP-schwer, falls NP-schweres Problem L' mit $L' \leq_{\mathbb{P}} L$ existiert

Beweis

Sei L' **NP**-schwer und $L' \leq_{\mathbf{P}} L$. Dann $L'' \leq_{\mathbf{P}} L' \leq_{\mathbf{P}} L$ für alle $L'' \in \mathbf{NP}$.

Transitivität $\leq_{\mathbf{P}}$ liefert $L'' \leq_{\mathbf{P}} L$ für alle $L'' \in \mathbf{NP}$, womit L \mathbf{NP} -schwer

§12.4 Theorem

Problem L NP-schwer, falls NP-schweres Problem L' mit $L' \leq_{\mathbb{P}} L$ existiert

Beweis

Sei L' **NP**-schwer und $L' \leq_{\mathbf{P}} L$. Dann $L'' \leq_{\mathbf{P}} L' \leq_{\mathbf{P}} L$ für alle $L'' \in \mathbf{NP}$.

Transitivität $\leq_{\mathbf{P}}$ liefert $L'' \leq_{\mathbf{P}} L$ für alle $L'' \in \mathbf{NP}$, womit L \mathbf{NP} -schwer \square

Schwierigkeit

• Bisher kein NP-schweres Problem

- Geg. aussagenlogische Formel F
- F erfüllbar? (d.h. existiert Modell der Formel?)
- Problem SAT = $\{F \mid F \text{ erfüllbare Formel Aussagenlogik}\}$

Erfüllbarkeit Aussagenlogik

- Geg. aussagenlogische Formel F
- F erfüllbar? (d.h. existiert Modell der Formel?)
- Problem SAT = $\{F \mid F \text{ erfüllbare Formel Aussagenlogik}\}$

Entscheidbarkeit SAT

- Geg. aussagenlogische Formel F
- F erfüllbar? (d.h. existiert Modell der Formel?)
- Problem SAT = $\{F \mid F \text{ erfüllbare Formel Aussagenlogik}\}$

- Entscheidbarkeit SAT entscheidbar
- Polynomielle Entscheidbarkeit SAT

- Geg. aussagenlogische Formel F
- F erfüllbar? (d.h. existiert Modell der Formel?)
- Problem SAT = $\{F \mid F \text{ erfüllbare Formel Aussagenlogik}\}$

- Entscheidbarkeit SAT entscheidbar
- Polynomielle Entscheidbarkeit SAT unklar
- Nichtdet. polynomielle Entscheidbarkeit SAT

- Geg. aussagenlogische Formel F
- F erfüllbar? (d.h. existiert Modell der Formel?)
- Problem SAT = $\{F \mid F \text{ erfüllbare Formel Aussagenlogik}\}$

- Entscheidbarkeit SAT entscheidbar
- Polynomielle Entscheidbarkeit SAT unklar
- Nichtdet. polynomielle Entscheidbarkeit SAT ja, in NP

Beispiele

Erfüllbare Formel

$$F_1 = (x_2 \lor (x_1 \land \neg x_3) \lor x_4) \land x_1$$

Modell $I = \{x_1, x_2\}$, kurz 1100 $x_1 = 1$; $x_2 = 1$; $x_3 = 0$; $x_4 = 0$

Beispiele

Erfüllbare Formel

$$F_1 = (x_2 \lor (x_1 \land \neg x_3) \lor x_4) \land x_1$$
 $F_1^I = (1 \lor (1 \land \neg 0) \lor 0) \land 1 = 1$
Modell $I = \{x_1, x_2\}$, kurz 1100 $x_1 = 1$; $x_2 = 1$; $x_3 = 0$; $x_4 = 0$

Unerfüllbare Formel

$$F_2 = ((\neg x_1 \wedge \neg x_3) \vee x_2) \wedge x_1 \wedge \neg x_2$$

Beispiele

Erfüllbare Formel

$$F_1 = (x_2 \lor (x_1 \land \neg x_3) \lor x_4) \land x_1$$
 $F_1^I = (1 \lor (1 \land \neg 0) \lor 0) \land 1 = 1$
Modell $I = \{x_1, x_2\}$, kurz 1100 $x_1 = 1$; $x_2 = 1$; $x_3 = 0$; $x_4 = 0$

Unerfüllbare Formel

$$F_2 = ((\neg x_1 \wedge \neg x_3) \vee x_2) \wedge x_1 \wedge \neg x_2$$

Erfüllbare Formel

$$F_3 = (\neg x_1 \lor x_3 \lor x_2) \land x_1 \land \neg x_2$$

Modell
$$I = \{x_1, x_3\}$$
, kurz: 101

$$x_1 = 1$$
; $x_2 = 0$; $x_3 = 1$

Beispiele

Erfüllbare Formel

$$F_1 = (x_2 \lor (x_1 \land \neg x_3) \lor x_4) \land x_1$$
 $F_1^I = (1 \lor (1 \land \neg 0) \lor 0) \land 1 = 1$
Modell $I = \{x_1, x_2\}$, kurz 1100 $x_1 = 1$; $x_2 = 1$; $x_3 = 0$; $x_4 = 0$

Unerfüllbare Formel

$$F_2 = ((\neg x_1 \wedge \neg x_3) \vee x_2) \wedge x_1 \wedge \neg x_2$$

Erfüllbare Formel

$$F_3 = (\neg x_1 \lor x_3 \lor x_2) \land x_1 \land \neg x_2$$
 $F_3^I = (\neg 1 \lor 1 \lor 0) \land 1 \land \neg 0 = 1$
Modell $I = \{x_1, x_3\}$, kurz: 101 $x_1 = 1$; $x_2 = 0$; $x_3 = 1$

§12.5 Theorem

 $SAT \in NP$

Beweis

Sei F aussagenlogische Formel mit k Atomen $\{x_1, \ldots, x_k\}$. Wir setzen $R = \{(F, I) \mid I \models F\}$; Zertifikat ist Modell.

§12.5 Theorem

 $SAT \in NP$

Beweis

Sei F aussagenlogische Formel mit k Atomen $\{x_1,\ldots,x_k\}$. Wir setzen $R=\{(F,I)\mid I\models F\}$; Zertifikat ist Modell. Repräsentation R polynomiell entscheidbar, denn While-Programm kann F dekodieren, Atome gemäß Interpretation I auswerten und Wahrheitswert von $I\models F$ bestimmen.

§12.5 Theorem

 $SAT \in NP$

Beweis

Sei F aussagenlogische Formel mit k Atomen $\{x_1,\ldots,x_k\}$. Wir setzen $R=\{(F,I)\mid I\models F\}$; Zertifikat ist Modell. Repräsentation R polynomiell entscheidbar, denn While-Programm kann F dekodieren, Atome gemäß Interpretation I auswerten und Wahrheitswert von $I\models F$ bestimmen. Zertifikat hat Länge $k\leq |F|$ (Interpretation = Teilmenge repräsentiert als $\{0,1\}^k$) und $F\in SAT$ gdw. $(F,I)\in R$ für $I\subseteq \{x_1,\ldots,x_k\}$, wobei $(F,I)\in R$ gdw. $I\models F$.

§12.6 Theorem

Existiert Formel U polynomieller Größe in k mit Atomen x_1,\ldots,x_k und |I|=1 für jedes Modell $I\models U$ mit $I\subseteq\{x_1,\ldots,x_k\}$

§12.6 Theorem

Existiert Formel U polynomieller Größe in k mit Atomen x_1, \ldots, x_k und |I| = 1 für jedes Modell $I \models U$ mit $I \subseteq \{x_1, \ldots, x_k\}$

Beweis

Sei

$$U = \left(\bigvee_{i=1}^k x_i\right) \wedge \left(\bigwedge_{1 \leq m < \ell \leq k} \neg (x_m \wedge x_\ell)\right)$$

§12.6 Theorem

Existiert Formel U polynomieller Größe in k mit Atomen x_1, \ldots, x_k und |I| = 1 für jedes Modell $I \models U$ mit $I \subseteq \{x_1, \ldots, x_k\}$

Beweis

Sei

$$U = \left(\bigvee_{i=1}^k x_i\right) \wedge \left(\bigwedge_{1 \leq m < \ell \leq k} \neg (x_m \wedge x_\ell)\right)$$

Formel hat Größe in $\mathcal{O}(k^2)$ und Teil $\bigvee_{i=1}^k x_i$ erzwingt mind. 1 Atom in l.

§12.6 Theorem

Existiert Formel U polynomieller Größe in k mit Atomen x_1, \ldots, x_k und |I| = 1 für jedes Modell $I \models U$ mit $I \subseteq \{x_1, \ldots, x_k\}$

Beweis

Sei

$$U = \left(\bigvee_{i=1}^k x_i\right) \wedge \left(\bigwedge_{1 \leq m < \ell \leq k} \neg (x_m \wedge x_\ell)\right)$$

Formel hat Größe in $\mathcal{O}(k^2)$ und Teil $\bigvee_{i=1}^k x_i$ erzwingt mind. 1 Atom in I. Verbleibender Teil genau dann falsch, wenn $|I| \geq 2$. Also |I| = 1 für alle Modelle $I \models F$

§12.7 Theorem (Satz von Cook)

SAT NP-vollständig

§12.7 Theorem (Satz von Cook)

SAT NP-vollständig

Beweis (1/6)

 $\mathsf{SAT} \in \mathsf{NP}$ bekannt; zu zeigen $\mathsf{NP} ext{-}\mathsf{Schwere}$

§12.7 Theorem (Satz von Cook)

SAT **NP**-vollständig

Beweis (1/6)

SAT \in NP bekannt; zu zeigen NP-Schwere Sei $L \subseteq \Sigma^*$ Problem aus NP. Dann existieren Alphabet Γ , $k \ge 1$ und polynomiell entscheidbare Zertifikatrelation $R \subseteq \Sigma^* \times \Gamma^*$ mit

$$w \in L$$
 gdw. $(w, z) \in R$ und $|z| \le |w|^k$ für ein $z \in \Gamma^*$

§12.7 Theorem (Satz von Cook)

SAT NP-vollständig

Beweis (1/6)

SAT \in NP bekannt; zu zeigen NP-Schwere Sei $L \subseteq \Sigma^*$ Problem aus NP. Dann existieren Alphabet Γ , $k \ge 1$ und polynomiell entscheidbare Zertifikatrelation $R \subseteq \Sigma^* \times \Gamma^*$ mit

$$w \in L$$
 gdw. $(w, z) \in R$ und $|z| \le |w|^k$ für ein $z \in \Gamma^*$

Sei $M = (Q, \Sigma', \Gamma', \Delta, \square, q_0, q_+, q_-)$ det. TM, die R polynomiell berechnet und beschränkendes Polynom P.

§12.7 Theorem (Satz von Cook)

SAT NP-vollständig

Beweis (1/6)

SAT \in NP bekannt; zu zeigen NP-Schwere Sei $L \subseteq \Sigma^*$ Problem aus NP. Dann existieren Alphabet Γ , $k \ge 1$ und polynomiell entscheidbare Zertifikatrelation $R \subseteq \Sigma^* \times \Gamma^*$ mit

$$w \in L$$
 gdw. $(w, z) \in R$ und $|z| \le |w|^k$ für ein $z \in \Gamma^*$

Sei $M = (Q, \Sigma', \Gamma', \Delta, \Box, q_0, q_+, q_-)$ det. TM, die R polynomiell berechnet und beschränkendes Polynom P. O.B.d.A.

- $Q = \{1, ..., k'\}$ und $\Gamma' = \{1, ..., k''\}$
- $(w, z) \in R$ impliziert $|z| = |w|^k$ (Zertifikate mit uniformer Länge)
- $t_{\text{max}}(w) = P(1 + |w| + |w|^k)$ (ob. Schranke Laufzeit auf w)

Beweis (2/6)

Sei $w = \sigma_1 \cdots \sigma_\ell$. Konstruiere aussagenlogische Formel F(w) mit folgenden Atomen für alle $0 \le t \le t_{\max}(w), -t_{\max}(w) \le i \le t_{\max}(w), q \in Q$ und $\gamma \in \Gamma'$

InState_{t,q}: Ist M bei Schritt t in Zustand q?

Beweis (2/6)

Sei $w=\sigma_1\cdots\sigma_\ell$. Konstruiere aussagenlogische Formel F(w) mit folgenden Atomen für alle $0\leq t\leq t_{\max}(w), -t_{\max}(w)\leq i\leq t_{\max}(w), q\in Q$ und $\gamma\in\Gamma'$

- InState_{t,q}: Ist M bei Schritt t in Zustand q?
- AtPos_{t,i}: Ist Kopf von M bei Schritt t an Bandposition i?

Beweis (2/6)

Sei $w=\sigma_1\cdots\sigma_\ell$. Konstruiere aussagenlogische Formel F(w) mit folgenden Atomen für alle $0\leq t\leq t_{\max}(w), -t_{\max}(w)\leq i\leq t_{\max}(w), q\in Q$ und $\gamma\in\Gamma'$

- InState_{t,q}: Ist M bei Schritt t in Zustand q?
- AtPos_{t,i}: Ist Kopf von M bei Schritt t an Bandposition i?
- OnTape_{t,i,γ}: Steht Zeichen γ bei Schritt t an Bandposition i?

Beweis (2/6)

Sei $w=\sigma_1\cdots\sigma_\ell$. Konstruiere aussagenlogische Formel F(w) mit folgenden Atomen für alle $0\leq t\leq t_{\max}(w), -t_{\max}(w)\leq i\leq t_{\max}(w), q\in Q$ und $\gamma\in\Gamma'$

- InState_{t,q}: Ist M bei Schritt t in Zustand q?
- AtPos_{t,i}: Ist Kopf von M bei Schritt t an Bandposition i?
- OnTape $_{t,i,\gamma}$: Steht Zeichen γ bei Schritt t an Bandposition i?

$$F(w) = A(w) \wedge I(w) \wedge T(w) \wedge E(w)$$

(wir geben offensichtliche Quantifikation nicht an)

Endbedingung $E(w) = \bigvee_{t} InState_{t,q_{+}}$ (akzeptierender Zustand erreicht)

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

$$Q = \{1, \dots, k'\} \text{ und } \Gamma' = \{1, \dots, k''\}$$

Beweis (3/6)

Randbedingungen

$$A(w) = \bigwedge_{t} U(\operatorname{InState}_{t,1}, \dots, \operatorname{InState}_{t,k'}) \land$$

$$\bigwedge_{t} U(\operatorname{AtPos}_{t,-t_{\max}(w)}, \dots, \operatorname{AtPos}_{t,t_{\max}(w)}) \land$$

$$\bigwedge_{t,i} U(\operatorname{OnTape}_{t,i,1}, \dots, \operatorname{OnTape}_{t,i,k''})$$

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

$$Q = \{1, \dots, k'\} \text{ und } \Gamma' = \{1, \dots, k''\}$$

Beweis (3/6)

Randbedingungen

$$A(w) = \bigwedge_{t} U(\operatorname{InState}_{t,1}, \dots, \operatorname{InState}_{t,k'}) \land$$

$$\bigwedge_{t} U(\operatorname{AtPos}_{t,-t_{\max}(w)}, \dots, \operatorname{AtPos}_{t,t_{\max}(w)}) \land$$

$$\bigwedge_{t,i} U(\operatorname{OnTape}_{t,i,1}, \dots, \operatorname{OnTape}_{t,i,k''})$$

• Zu jedem Schritt in genau 1 Zustand

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

$$Q = \{1, \dots, k'\} \text{ und } \Gamma' = \{1, \dots, k''\}$$

Beweis (3/6)

Randbedingungen

$$A(w) = \bigwedge_{t} U(\operatorname{InState}_{t,1}, \dots, \operatorname{InState}_{t,k'}) \land$$

$$\bigwedge_{t} U(\operatorname{AtPos}_{t,-t_{\max}(w)}, \dots, \operatorname{AtPos}_{t,t_{\max}(w)}) \land$$

$$\bigwedge_{t,i} U(\operatorname{OnTape}_{t,i,1}, \dots, \operatorname{OnTape}_{t,i,k''})$$

- Zu jedem Schritt in genau 1 Zustand
- Zu jedem Schritt an genau 1 Position

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

$$Q = \{1, \dots, k'\} \text{ und } \Gamma' = \{1, \dots, k''\}$$

Beweis (3/6)

Randbedingungen

$$A(w) = \bigwedge_{t} U(\operatorname{InState}_{t,1}, \dots, \operatorname{InState}_{t,k'}) \land$$

$$\bigwedge_{t} U(\operatorname{AtPos}_{t,-t_{\max}(w)}, \dots, \operatorname{AtPos}_{t,t_{\max}(w)}) \land$$

$$\bigwedge_{t,i} U(\operatorname{OnTape}_{t,i,1}, \dots, \operatorname{OnTape}_{t,i,k''})$$

- Zu jedem Schritt in genau 1 Zustand
- Zu jedem Schritt an genau 1 Position
- Zu jedem Schritt steht genau 1 Zeichen an Position

$$F(w) = A(w) \wedge I(w) \wedge T(w) \wedge E(w)$$

Beweis (4/6)

Initialbedingungen

$$\begin{split} \textit{I(w)} &= \mathsf{InState}_{0,q_0} \land \mathsf{AtPos}_{0,0} \land \left(\bigwedge_{\textit{m} \notin \{0,...,\ell^k + \ell\}} \mathsf{OnTape}_{0,\textit{m},\square} \right) \land \\ &\left(\bigwedge_{\textit{m}=1}^{\ell} \mathsf{OnTape}_{0,\textit{m}-1,\sigma_{\textit{m}}} \right) \land \mathsf{OnTape}_{0,\ell,\#} \land \left(\bigwedge_{\textit{m}=\ell+1}^{\ell^k + \ell} \neg \mathsf{OnTape}_{0,\textit{m},\square} \right) \end{split}$$

$$F(w) = A(w) \wedge I(w) \wedge T(w) \wedge E(w)$$

Beweis (4/6)

Initialbedingungen

$$\begin{split} \textit{I(w)} &= \mathsf{InState}_{0,q_0} \land \mathsf{AtPos}_{0,0} \land \left(\bigwedge_{m \notin \{0,...,\ell^k + \ell\}} \mathsf{OnTape}_{0,m,\square} \right) \land \\ &\left(\bigwedge_{m=1}^{\ell} \mathsf{OnTape}_{0,m-1,\sigma_m} \right) \land \mathsf{OnTape}_{0,\ell,\#} \land \left(\bigwedge_{m=\ell+1}^{\ell^k + \ell} \neg \mathsf{OnTape}_{0,m,\square} \right) \end{split}$$

• Initial im Zustand q_0 und an Position 0

$$F(w) = A(w) \wedge I(w) \wedge T(w) \wedge E(w)$$

Beweis (4/6)

Initialbedingungen

$$\begin{split} \textit{I(w)} &= \mathsf{InState}_{0,q_0} \land \mathsf{AtPos}_{0,0} \land \left(\bigwedge_{\textit{m} \notin \{0,...,\ell^k + \ell\}} \mathsf{OnTape}_{0,\textit{m},\square} \right) \land \\ &\left(\bigwedge_{m=1}^{\ell} \mathsf{OnTape}_{0,m-1,\sigma_m} \right) \land \mathsf{OnTape}_{0,\ell,\#} \land \left(\bigwedge_{m=\ell+1}^{\ell^k + \ell} \neg \mathsf{OnTape}_{0,m,\square} \right) \end{split}$$

- Initial im Zustand q_0 und an Position 0
- Außerhalb Eingabe steht □ auf Band

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

Beweis (4/6)

Initialbedingungen

$$\begin{split} \textit{I(w)} &= \mathsf{InState}_{0,q_0} \land \mathsf{AtPos}_{0,0} \land \left(\bigwedge_{\textit{m} \notin \{0,...,\ell^k + \ell\}} \mathsf{OnTape}_{0,\textit{m},\square} \right) \land \\ &\left(\bigwedge_{\textit{m}=1}^{\ell} \mathsf{OnTape}_{0,\textit{m}-1,\sigma_{\textit{m}}} \right) \land \mathsf{OnTape}_{0,\ell,\#} \land \left(\bigwedge_{\textit{m}=\ell+1}^{\ell^k + \ell} \neg \mathsf{OnTape}_{0,\textit{m},\square} \right) \end{split}$$

- Initial im Zustand q_0 und an Position 0
- Außerhalb Eingabe steht □ auf Band
- Auf Band steht w#z für beliebiges $z \in \Gamma^{\ell^k}$

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

Beweis (5/6)

Übergangsbedingungen mit $\diamond = 0$, $\triangleleft = -1$ und $\triangleright = 1$

$$\begin{split} T(w) &= \bigwedge_{\substack{t,i,\gamma\\t \neq t_{\max}(w)}} \left(\left(\neg \mathsf{AtPos}_{t,i} \land \mathsf{OnTape}_{t,i,\gamma} \right) \rightarrow \mathsf{OnTape}_{t+1,i,\gamma} \right) \land \\ & \bigwedge_{\substack{t,q,i,\gamma\\t \neq t_{\max}(w),q \notin \{q_+,q_-\}\\ ((q,\gamma) \rightarrow (q',\gamma',d)) \in \Delta'}} \left(\left(\mathsf{InState}_{t,q} \land \mathsf{AtPos}_{t,i} \land \mathsf{OnTape}_{t,i,\gamma} \right) \rightarrow \\ & \bigvee_{\substack{t \in \mathsf{Imax}(w),q \notin \{q_+,q_-\}\\ ((q,\gamma) \rightarrow (q',\gamma',d)) \in \Delta'}} \left(\mathsf{InState}_{t+1,q'} \land \mathsf{AtPos}_{t+1,i+d} \land \mathsf{OnTape}_{t+1,i,\gamma'} \right) \right) \end{split}$$

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

Beweis (5/6)

Übergangsbedingungen mit $\diamond = 0$, $\triangleleft = -1$ und $\triangleright = 1$

$$\begin{split} T(w) &= \bigwedge_{\substack{t,i,\gamma\\t \neq t_{\max}(w)}} \left(\left(\neg \mathsf{AtPos}_{t,i} \land \mathsf{OnTape}_{t,i,\gamma} \right) \rightarrow \mathsf{OnTape}_{t+1,i,\gamma} \right) \land \\ & \bigwedge_{\substack{t,q,i,\gamma\\t \neq t_{\max}(w),q \notin \{q_+,q_-\}\\ \\ ((q,\gamma) \rightarrow (q',\gamma',d)) \in \Delta'}} \left(\left(\mathsf{InState}_{t,q} \land \mathsf{AtPos}_{t,i} \land \mathsf{OnTape}_{t,i,\gamma} \right) \rightarrow \right. \end{split}$$

Band außerhalb aktueller Position erhalten

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

Beweis (5/6)

Übergangsbedingungen mit $\diamond = 0$, $\triangleleft = -1$ und $\triangleright = 1$

$$\begin{split} T(w) &= \bigwedge_{\substack{t,i,\gamma\\t \neq t_{\max}(w)}} \left(\left(\neg \mathsf{AtPos}_{t,i} \land \mathsf{OnTape}_{t,i,\gamma} \right) \rightarrow \mathsf{OnTape}_{t+1,i,\gamma} \right) \land \\ & \bigwedge_{\substack{t,q,i,\gamma\\t \neq t_{\max}(w),q \notin \{q_+,q_-\}\\}} \left(\left(\mathsf{InState}_{t,q} \land \mathsf{AtPos}_{t,i} \land \mathsf{OnTape}_{t,i,\gamma} \right) \rightarrow \\ & \bigvee_{\substack{t \neq t_{\max}(w),q \notin \{q_+,q_-\}\\\\((q,\gamma) \rightarrow (q',\gamma',d)) \in \Delta'}} \left(\mathsf{InState}_{t+1,q'} \land \mathsf{AtPos}_{t+1,i+d} \land \mathsf{OnTape}_{t+1,i,\gamma'} \right) \right) \end{split}$$

- Band außerhalb aktueller Position erhalten
- Prüfe Vorbedingungen Übergang

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

Beweis (5/6)

Übergangsbedingungen mit $\diamond = 0$, $\triangleleft = -1$ und $\triangleright = 1$

$$\begin{split} T(w) &= \bigwedge_{\substack{t,i,\gamma\\t \neq t_{\max}(w)}} \left(\left(\neg \mathsf{AtPos}_{t,i} \land \mathsf{OnTape}_{t,i,\gamma} \right) \rightarrow \mathsf{OnTape}_{t+1,i,\gamma} \right) \land \\ & \bigwedge_{\substack{t,q,i,\gamma\\t \neq t_{\max}(w),q \notin \{q_+,q_-\}\\ ((q,\gamma) \rightarrow (q',\gamma',d)) \in \Delta'}} \left(\left(\mathsf{InState}_{t,q} \land \mathsf{AtPos}_{t,i} \land \mathsf{OnTape}_{t,i,\gamma} \right) \rightarrow \\ & \bigvee_{\substack{t,q,i,\gamma\\t \neq t_{\max}(w),q \notin \{q_+,q_-\}\\((q,\gamma) \rightarrow (q',\gamma',d)) \in \Delta'}} \left(\mathsf{InState}_{t+1,q'} \land \mathsf{AtPos}_{t+1,i+d} \land \mathsf{OnTape}_{t+1,i,\gamma'} \right) \right) \end{split}$$

- Band außerhalb aktueller Position erhalten
- Prüfe Vorbedingungen Übergang
- Für jeden Schritt führe passenden Übergang aus

$$F(w) = A(w) \wedge I(w) \wedge T(w) \wedge E(w)$$

Beweis (6/6)

Teilformeln polynomieller Länge in |w| und F(w) polynomiell berechenbar.

$$F(w) = A(w) \wedge I(w) \wedge T(w) \wedge E(w)$$

Beweis (6/6)

Teilformeln polynomieller Länge in |w| und F(w) polynomiell berechenbar. Sei $w \in L$ mit Zertifikat $z \in \Gamma^{\ell^k}$. Dann F(w) für Band w#z erfüllbar, da Berechnung von M simuliert und M akzeptiert.

$$F(w) = A(w) \wedge I(w) \wedge T(w) \wedge E(w)$$

Beweis (6/6)

Teilformeln polynomieller Länge in |w| und F(w) polynomiell berechenbar. Sei $w \in L$ mit Zertifikat $z \in \Gamma^{\ell^k}$. Dann F(w) für Band w#z erfüllbar, da Berechnung von M simuliert und M akzeptiert. Umgekehrt sei F(w) erfüllbar. Dann liefert Modell Zertifikat z und akzeptierende Berechnung det. TM M. Folglich $w \in L$.

$$F(w) = A(w) \land I(w) \land T(w) \land E(w)$$

Beweis (6/6)

Teilformeln polynomieller Länge in |w| und F(w) polynomiell berechenbar. Sei $w \in L$ mit Zertifikat $z \in \Gamma^{\ell^k}$. Dann F(w) für Band w#z erfüllbar, da Berechnung von M simuliert und M akzeptiert. Umgekehrt sei F(w) erfüllbar. Dann liefert Modell Zertifikat z und akzeptierende Berechnung det. TM M. Folglich $w \in L$. Also $w \in L$ gdw. F(w) erfüllbar gdw. $F(w) \in SAT$. Damit $L \preceq_P SAT$, womit SAT **NP**-schwer und **NP**-vollständig.

§12.8 Definition (konjunktive Normalform mit 3 Literalen)

Aussagenlogische Formel F in **konjunktiver Normalform mit 3 Literalen** (3KNF) falls $F = F_1 \wedge \cdots \wedge F_k$ für Formeln F_1, \ldots, F_k mit $F_i = L_{i1} \vee L_{i2} \vee L_{i3}$ für alle $1 \leq i \leq k$ und Literale L_{i1}, L_{i2}, L_{i3} (Literal = Atom oder negiertes Atom)

§12.8 Definition (konjunktive Normalform mit 3 Literalen)

Aussagenlogische Formel F in konjunktiver Normalform mit **3 Literalen** (3KNF) falls $F = F_1 \wedge \cdots \wedge F_k$ für Formeln F_1, \ldots, F_k mit $F_i = L_{i1} \vee L_{i2} \vee L_{i3}$ für alle $1 \leq i \leq k$ und Literale L_{i1}, L_{i2}, L_{i3} (Literal = Atom oder negiertes Atom)

Beispiele

• $x_1 \lor x_2 \lor x_3$ in 3KNF

§12.8 Definition (konjunktive Normalform mit 3 Literalen)

Aussagenlogische Formel F in konjunktiver Normalform mit **3 Literalen** (3KNF) falls $F = F_1 \wedge \cdots \wedge F_k$ für Formeln F_1, \ldots, F_k mit $F_i = L_{i1} \vee L_{i2} \vee L_{i3}$ für alle $1 \leq i \leq k$ und Literale L_{i1}, L_{i2}, L_{i3} (Literal = Atom oder negiertes Atom)

Beispiele

- $x_1 \lor x_2 \lor x_3$ in 3KNF
- $(x_1 \wedge x_2) \vee x_4$ <u>nicht</u> in 3KNF

§12.8 Definition (konjunktive Normalform mit 3 Literalen)

Aussagenlogische Formel F in **konjunktiver Normalform mit 3 Literalen** (3KNF) falls $F = F_1 \wedge \cdots \wedge F_k$ für Formeln F_1, \ldots, F_k mit $F_i = L_{i1} \vee L_{i2} \vee L_{i3}$ für alle $1 \leq i \leq k$ und Literale L_{i1}, L_{i2}, L_{i3} (Literal = Atom oder negiertes Atom)

Beispiele

- $x_1 \lor x_2 \lor x_3$ in 3KNF
- $(x_1 \wedge x_2) \vee x_4$ nicht in 3KNF
- $x_1 \wedge (x_2 \vee x_1 \vee \neg x_3)$ nicht in 3KNF

§12.8 Definition (konjunktive Normalform mit 3 Literalen)

Aussagenlogische Formel F in konjunktiver Normalform mit **3 Literalen** (3KNF) falls $F = F_1 \wedge \cdots \wedge F_k$ für Formeln F_1, \ldots, F_k mit $F_i = L_{i1} \vee L_{i2} \vee L_{i3}$ für alle $1 \leq i \leq k$ und Literale L_{i1}, L_{i2}, L_{i3} (Literal = Atom oder negiertes Atom)

Beispiele

- $x_1 \lor x_2 \lor x_3$ in 3KNF
- $(x_1 \wedge x_2) \vee x_4$ nicht in 3KNF
- $x_1 \wedge (x_2 \vee x_1 \vee \neg x_3)$ nicht in 3KNF
- $(x_1 \lor x_1 \lor x_1) \land (x_2 \lor \neg x_1 \lor \neg x_3)$ in 3KNF (erlauben auch \leq 3 Literale; dann 3. Beispiel in 3KNF)

- Geg. aussagenlogische Formel F in 3KNF
- Ist F erfüllbar? (Existiert Modell?)
- Problem 3-SAT = $\{F \mid F \text{ erfüllbare Formel in 3KNF}\}$

- Geg. aussagenlogische Formel F in 3KNF
- Ist F erfüllbar? (Existiert Modell?)
- Problem 3-SAT = $\{F \mid F \text{ erfüllbare Formel in 3KNF}\}$
- Entscheidbarkeit 3-SAT

- Geg. aussagenlogische Formel F in 3KNF
- Ist F erfüllbar? (Existiert Modell?)
- Problem 3-SAT = $\{F \mid F \text{ erfüllbare Formel in 3KNF}\}$
- Entscheidbarkeit 3-SAT entscheidbar
- Polynomielle Entscheidbarkeit 3-SAT

- Geg. aussagenlogische Formel F in 3KNF
- Ist F erfüllbar? (Existiert Modell?)
- Problem 3-SAT = $\{F \mid F \text{ erfüllbare Formel in 3KNF}\}$
- Entscheidbarkeit 3-SAT entscheidbar
- Polynomielle Entscheidbarkeit 3-SAT unklar
- Nichtdet. polynomielle Entscheidbarkeit 3-SAT

- Geg. aussagenlogische Formel F in 3KNF
- Ist F erfüllbar? (Existiert Modell?)
- Problem 3-SAT = $\{F \mid F \text{ erfüllbare Formel in 3KNF}\}$
- Entscheidbarkeit 3-SAT entscheidbar
- Polynomielle Entscheidbarkeit 3-SAT unklar
- Nichtdet. polynomielle Entscheidbarkeit 3-SAT ja, in NP (denn 3-SAT ≤_P SAT vermittels Identität; also 3-SAT ∈ NP)

§12.9 Theorem

3-SAT NP-vollständig

Beweis (1/2)

Da 3-SAT \in NP nur NP-Schwere per SAT \leq_{P} 3-SAT zu zeigen.

§12.9 Theorem

3-SAT NP-vollständig

Beweis (1/2)

Da $3\text{-SAT} \in \mathbb{NP}$ nur $\mathbb{NP}\text{-Schwere per SAT} \preceq_{\mathbb{P}} 3\text{-SAT}$ zu zeigen. Sei F aussagenlogische Formel. Transformiere F in Polynomialzeit in Negationsnormalform (Negationen nur vor Atomen).

§12.9 Theorem

3-SAT NP-vollständig

Beweis (1/2)

Da 3-SAT \in NP nur NP-Schwere per SAT \leq_P 3-SAT zu zeigen. Sei F aussagenlogische Formel. Transformiere F in Polynomialzeit in Negationsnormalform (Negationen nur vor Atomen). Sei T Syntaxbaum der erhaltenen Formel F' und für jeden Knoten W dieses Baumes sei

- v(w) = T(w) falls Knotenbeschriftung T(w) Literal
- sonst v(w) = y für neues Atom y.

§12.9 Theorem

3-SAT NP-vollständig

Beweis (1/2)

Da $3\text{-SAT} \in \mathbb{NP}$ nur \mathbb{NP} -Schwere per $\mathbb{SAT} \preceq_{\mathbb{P}} 3\text{-SAT}$ zu zeigen. Sei F aussagenlogische Formel. Transformiere F in Polynomialzeit in Negationsnormalform (Negationen nur vor Atomen). Sei T Syntaxbaum der erhaltenen Formel F' und für jeden Knoten W dieses Baumes sei

- v(w) = T(w) falls Knotenbeschriftung T(w) Literal
- sonst v(w) = y für neues Atom y.

Konstruiere Formel $f(F) = v(\varepsilon) \land \bigwedge_{w \text{ innere Position in } T} F'_w$, in der für jedes w Formel F'_w durch Formel $v(w) \leftrightarrow (v(w_1) T(w) v(w_2))$ in 3KNF gegeben ist, wobei T(w) Symbol (\lor oder \land) an Position w und w_1/w_2 erste/zweite Kindposition von w (Tseitin-Transformation)

Beweis (2/2)

3KNF Teilformel F'_w gegeben durch

$$\begin{array}{lll} \left(\mathit{L}_{1} \leftrightarrow \left(\mathit{L}_{2} \lor \mathit{L}_{3} \right) \right) & \text{ \"{a}q. zu } & \left(\mathit{L}_{1} \lor \neg \mathit{L}_{2} \right) \land \left(\neg \mathit{L}_{1} \lor \mathit{L}_{2} \lor \mathit{L}_{3} \right) \land \left(\mathit{L}_{1} \lor \neg \mathit{L}_{3} \right) \\ \\ \left(\mathit{L}_{1} \leftrightarrow \left(\mathit{L}_{2} \land \mathit{L}_{3} \right) \right) & \text{ \"{a}q. zu } & \left(\neg \mathit{L}_{1} \lor \mathit{L}_{2} \right) \land \left(\mathit{L}_{1} \lor \neg \mathit{L}_{2} \lor \neg \mathit{L}_{3} \right) \land \left(\neg \mathit{L}_{1} \lor \mathit{L}_{3} \right) \\ \end{array}$$

Beweis (2/2)

3KNF Teilformel F'_{w} gegeben durch

$$(L_1 \leftrightarrow (L_2 \lor L_3))$$
 äq. zv $(L_1 \lor \neg L_2) \land (\neg L_1 \lor L_2 \lor L_3) \land (L_1 \lor \neg L_3)$

$$(L_1 \leftrightarrow (L_2 \land L_3)) \quad \text{äq. zu} \quad (\neg L_1 \lor L_2) \land (L_1 \lor \neg L_2 \lor \neg L_3) \land (\neg L_1 \lor L_3)$$

Offenbar f(F) in 3KNF und

F erfüllbar gdw. f(F) erfüllbar

Damit SAT $\leq_{\mathbf{P}}$ 3-SAT, womit 3-SAT **NP**-vollständig.

Beispiel

$$F = \neg((x_1 \wedge x_2) \wedge \neg(x_2 \wedge x_3))$$

Syntaxbaum von F

Syntaxbaum NNF F'

Zuweisung

Konstruierte Formel f(F)

$$y_1 \wedge (y_1 \leftrightarrow (y_2 \vee y_3))$$

$$(y_1 \leftrightarrow (y_2 \lor y_3)) \land (y_2 \leftrightarrow (\neg x_1 \lor \neg x_2)) \land (y_3 \leftrightarrow (x_2 \land x_3))$$

$$(y_3 \leftrightarrow (x_2 \land x_3))$$

- Geg. aussagenlogische Formel F in 2KNF (max. 2 Literale)
- Ist F erfüllbar? (Existiert Modell?)
- Problem 2-SAT = $\{F \mid F \text{ erfüllbare Formel in 2KNF}\}$

Konjunktive Normalform mit 2 Literalen

- Geg. aussagenlogische Formel F in 2KNF (max. 2 Literale)
- Ist F erfüllbar? (Existiert Modell?)
- Problem 2-SAT = $\{F \mid F \text{ erfüllbare Formel in 2KNF}\}$

Entscheidbarkeit 2-SAT

- Geg. aussagenlogische Formel F in 2KNF (max. 2 Literale)
- Ist F erfüllbar? (Existiert Modell?)
- Problem 2-SAT = $\{F \mid F \text{ erfüllbare Formel in 2KNF}\}$

- Entscheidbarkeit 2-SAT entscheidbar
- Polynomielle Entscheidbarkeit 2-SAT

- Geg. aussagenlogische Formel F in 2KNF (max. 2 Literale)
- Ist F erfüllbar? (Existiert Modell?)
- Problem 2-SAT = $\{F \mid F \text{ erfüllbare Formel in 2KNF}\}$

- Entscheidbarkeit 2-SAT entscheidbar
- Polynomielle Entscheidbarkeit 2-SAT ja, in P
- Nichtdet. polynomielle Entscheidbarkeit 2-SAT

- Geg. aussagenlogische Formel F in 2KNF (max. 2 Literale)
- Ist F erfüllbar? (Existiert Modell?)
- Problem 2-SAT = $\{F \mid F \text{ erfüllbare Formel in 2KNF}\}$

- Entscheidbarkeit 2-SAT entscheidbar
- Polynomielle Entscheidbarkeit 2-SAT ja, in P
- Nichtdet. polynomielle Entscheidbarkeit 2-SAT ja, in NP

Algorithmus für polynomielle Entscheidbarkeit

- Resolution für Unerfüllbarkeit (Resolution korrekt & vollständig)
- Resolventen haben h

 öchstens 2 Literale
- Höchstens $(2|F|)^2$ Resolventen bildbar

Zusammenfassung

- Polynomielle Reduktionen & Zertifikate
- NP-Schwere & NP-Vollständigkeit
- NP-vollständiges Problem SAT (aussagenlogische Erfüllbarkeit)
- Weitere NP-vollständige Probleme

Sechste Übungsserie bereits im Moodle