Greedy Algorithms

Problem: Activity Selection

Set of activities $S = \{a_1, ..., a_n\}$

V - + - -

each activity ai has period [Si, fi) x-+

Goal: select the largest subset of S containing now are lappry aethirthis

number of advities manimized mutually compatible

Let's sort our activities: f, < f_ -- . < f_n

i	1	2	3	4	5	6	7	8	9					
s_i	1	2	4	1	5	8	9	11	13					
f_i	3	5	7	8	9	10	11	14	16					
		,						,			,	,		,
							×		1					
	i						a_5							
	\vdash	+	-	-	a_4		-	\dashv						
		Ĺ		×	4				Ŀ	X		_	X	_
		/		<i>a</i> ₂						a ₇		/	a ₉	- !
	H	<i>a</i> ₁	\dashv	ŀ		<i>a</i> ₃	_	-	a ₆	-	as		1	
0	1	2	3	4	:	5 6	7	8	9	10 1	1 12	13	14 15	16

{a,,a3,a6,a8} optimul { az, as, a7, a9} optimal

 $S_{ij} = \left\{ q_k \in S : f_i \leqslant s_k, f_k \leqslant s_j \right\}$

activities that start after a: finishes and befor a; starts

Is Sij G-patible with ai?

all activities that finish by fi

Lo Sij is co-patible with all activities that start is earlier the Sj

Let's assume Aij be a man-size set of honourlapping activities within Sij

H ---

$$\begin{cases} A_{ik} = A_{ij} \cap S_{ik} \\ A_{kj} = A_{ij} \cap S_{kj} \end{cases} \implies A_{ij} = A_{ik} \cup \{a_{k}\} \cup A_{kj} \cup A_{kj$$

Claim: Optimal solution Aig most include optimal solutions for Sik and Skj.

becarsive solutions

$$C(i,j) = \begin{cases} 0 & \text{if } Sij = \emptyset \\ \max \left\{ C(i,k) + C(k,j) + 1 \right\} & \text{if } Sij \neq \emptyset \\ a_k \in Sij & \text{if } Sij \neq \emptyset \end{cases}$$

Greedy Strategy:

- Can we choose activity part of optimal set before solving the subproblems?

- grady choice in this problems pick first activity (activities are ordered by finish that)

- it Contains Conscious Conscious Since Since

simplify Sij notation: $S_k = \{ \alpha_i \in S : S_i \neq f_k \}$ (activities that start no earlier than the char α_k finishes) if we chook a, greedily - need to optimize S, theorem: if Sk is non-empty and am how the earliest finish time in Sk, then an is included in some optimal solution. proof: Let Ax be optimal solution, and aig have the earliest think time $\begin{cases} a_{j} = a_{m} & \longrightarrow Done \\ a_{j} \neq a_{m} & \longrightarrow Let \quad A'_{k} = A_{k} \setminus \{a_{j}\} \cup \{a_{m}\} \end{cases}$ Note, $|A_{k}| = |A_{k}|$ Show AK is non-overlapping. S_K | --- | A_K

initially cull (5, £, 0, n)

positioned consent subproblem SK

REC-ACTIVITY-SELECTOR (s, f, k, n)

m = k + 1

while $m \le n$ and s[m] < f[k]

// find the first activity in S_k to finish

m = m + 1

If $m \leq n$

return $\{a_m\} \cup \text{REC-ACTIVITY-SELECTOR}(s, f, m, n)$

else return Ø

- suplenity of(n)

iterative solution

GREEDY-ACTIVITY-SELECTOR (s, f)

iterative solution Greedy-Activity-Selector (s, f)n = s.length $A = \{a_1\}$ k = 1for m = 2 to nif $s[m] \geq f[k]$ $A = A \cup \{a_m\}$ k = mreturn A

Dynamic Programming

first choose

Us. Greedy

first salve Enproposition, then choose

the solve subsproblems

Solve Botton-Up

Solve Top-Down