SBML Model Report

Model name: "Field1974_Oregonator"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Nicolas Le Novre¹ and Bruce Shapiro² at June 28th 2005 at 1:58 p.m. and last time modified at April fourth 2014 at 5:35 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	5
events	0	constraints	0
reactions	5	function definitions	0
global parameters	1	unit definitions	0
rules	0	initial assignments	0

Model Notes

Field-Noyes Model of BZ Reaction

Citation
R.J.Field and R.M.Noyes, J.Chem.Phys.60,1877 (1974)

¹EMBL-EBI, lenov@ebi.ac.uk

 $^{^2}$ Jet Propulsion Laboratory, bshapiro@caltech.edu

Description

Field Noyes Version of Belousov-Zhabotinsky Reaction. BrO3 is held constant; HOBr is typically ignored, and can be replaced by an empty-set. The stoichiometry f is typically taken as 1/2 or 1..

Initially Generated by Cellerator Version 1.0 update 2.1220 using Mathematica 4.2 for Mac OS X (June 4, 2002), December 26, 2002 10:43:53, using (PowerMac,PowerPC,Mac OS X,MacOSX,Darwin). author=B.E.Shapiro

Modified with SBMLeditor by Nicolas Le Novre, to fit the original article.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 4: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
BZ			3	1	litre	Ø	

3.1 Compartment BZ

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains five species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 5: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi- tion
Br	Br-	BZ	$\text{mol} \cdot 1^{-1}$		
BrO3	BrO3-	BZ BZ	$\text{mol} \cdot 1^{-1}$	□ ☑	□ ☑
Се	Ce4+	BZ	$\text{mol} \cdot 1^{-1}$		
HBrO2		BZ	$\text{mol} \cdot 1^{-1}$		
HOBr		BZ	$\text{mol} \cdot 1^{-1}$	\square	\square

5 Parameter

This model contains one global parameter.

Table 6: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
f		1.0	$ \mathbf{Z} $

6 Reactions

This model contains five reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 7: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	Reaction1	M1	$Br + BrO3 \longrightarrow HBrO2 + HOBr$	
2	Reaction2	M2	$Br + HBrO2 \longrightarrow 2 HOBr$	
3	Reaction3	M3	$BrO3 + HBrO2 \longrightarrow Ce + 2 HBrO2$	
4	Reaction4	M4	$2 \text{HBrO2} \longrightarrow \text{BrO3} + \text{HOBr}$	
5	Reaction5	M5	$Ce \longrightarrow fBr$	

6.1 Reaction Reaction1

This is an irreversible reaction of two reactants forming two products.

Name M1

Reaction equation

$$Br + BrO3 \longrightarrow HBrO2 + HOBr$$
 (1)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
Br	Br-	
Br03	BrO3-	

Products

Table 9: Properties of each product.

Id	Name	SBO
HBrO2		
HOBr		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = [Br] \cdot [BrO3] \cdot k1 \cdot vol(BZ) \tag{2}$$

Table 10: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	kM1	1.34	Ø

6.2 Reaction Reaction2

This is an irreversible reaction of two reactants forming one product.

Name M2

Reaction equation

$$Br + HBrO2 \longrightarrow 2HOBr$$
 (3)

Reactants

Table 11: Properties of each reactant.

Id	Name	SBO
Br	Br-	
HBrO2		

Product

Table 12: Properties of each product.

Id	Name	SBO
HOBr		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = [Br] \cdot [HBrO2] \cdot k2 \cdot vol(BZ) \tag{4}$$

Table 13: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k2	kM2	$1.6 \cdot 10^9$	

6.3 Reaction Reaction3

This is an irreversible reaction of two reactants forming two products.

Name M3

Reaction equation

$$BrO3 + HBrO2 \longrightarrow Ce + 2HBrO2$$
 (5)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
Br03	BrO3-	
HBrO2		

Products

Table 15: Properties of each product.

Id	Name	SBO
Се	Ce4+	
HBrO2		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = [BrO3] \cdot [HBrO2] \cdot k3 \cdot vol(BZ)$$
(6)

Table 16: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k3	kM3	8000.0	

6.4 Reaction Reaction4

This is an irreversible reaction of one reactant forming two products.

Name M4

Reaction equation

$$2HBrO2 \longrightarrow BrO3 + HOBr \tag{7}$$

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
HBr02		

Products

Table 18: Properties of each product.

Id	Name	SBO
Br03	BrO3-	
${\tt HOBr}$		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = [HBrO2]^2 \cdot k4 \cdot vol(BZ)$$
(8)

Table 19: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k4	kM4	$4 \cdot 10^7$	Ø

6.5 Reaction Reaction5

This is an irreversible reaction of one reactant forming one product.

Name M5

Reaction equation

$$Ce \longrightarrow fBr$$
 (9)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
Се	Ce4+	

Product

Table 21: Properties of each product.

Id	Name	SBO
Br	Br-	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = [\text{Ce}] \cdot \text{k5} \cdot \text{vol}(\text{BZ}) \tag{10}$$

Table 22: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k5	kM5	1.0	

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

7.1 Species Br

Name Br-

Initial concentration $10^{-7} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in Reaction1, Reaction2 and as a product in Reaction5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Br} = \mathrm{f}\,v_5 - |v_1| - |v_2| \tag{11}$$

7.2 Species Br03

Name BrO3-

Initial concentration $0.06 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in Reaction1, Reaction3 and as a product in Reaction4), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{BrO3} = 0\tag{12}$$

7.3 Species Ce

Name Ce4+

Initial concentration $0.05 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Reaction5 and as a product in Reaction3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ce} = |v_3| - |v_5| \tag{13}$$

7.4 Species HBr02

Initial concentration $5 \cdot 10^{-11} \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in Reaction2, Reaction3, Reaction4 and as a product in Reaction1, Reaction3).

$$\frac{d}{dt}HBrO2 = |v_1| + 2|v_3| - |v_2| - |v_3| - 2|v_4|$$
(14)

7.5 Species HOBr

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a product in Reaction1, Reaction2, Reaction4), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HOBr} = 0\tag{15}$$

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany