Fig. 4.1 shows a metal cylinder of height 4.5 cm and base area 24 cm².

Fig. 4.1

The density of the metal is $7900\,\mathrm{kg}\,\mathrm{m}^{-3}$.

(a) Show that the mass of the cylinder is 0.85 kg.

(b) The cylinder is placed on a plank, as shown in Fig. 4.2.

Fig. 4.2

The plank is at an angle of 40° to the horizontal.

[2]

	Calculate the pressure on the plank due to the cylinder.
	pressure = Pa [3]
(c)	The cylinder then slides down the plank with a constant acceleration of $3.8\mathrm{ms^{-2}}$. A constant frictional force f acts on the cylinder.
	Calculate the frictional force f.
	f = N [3]
	<i>γ</i> = Ν [5]