Introduction to Statistical learning

Omid Safarzadeh

January 18, 2022

Table of contents

- Supervised learning
- Unsupervised learning
- Semi-Supervised learning
 - Some examples
- Online Learning
- **6** Reinforcement Learning
- **6** Graph Representation Learning
- Reference

Omid Safarzadeh Involucion to Statistical January 18, 2022

Supervised learning

Model: $Y_{output} = f(X_{input}) + \epsilon_{noise}$ **Training data:** $(x_{iinstance}, y_{ilabel}), i = 1, ..., n.$ **Learning process:** $\{(x_i, y_i)\}_{i=1}^n \to \text{Learning algorithm} \to \hat{f}(.)$ **Goal:** Ensure that $\hat{f}(X)$ is close to Y for all possible X and Y pairs.

4□ > 4□ > 4≡ > 4≡ > 4

Supervised learning

Example 1.1

Advertising: X: Advertising budget (thousands of dollars). Y: Sales (thousands of units). Each dot corresponds to a previous advertising campaign.

Blue line: least squares estimate of sales given data.

Supervised learning

Example 1.2

CIFAR 10:

Figure: Krizhevsky, Hinton, et al., 2009

Omid Safarzadeh Brasiliania Santsana January 18, 2022 5 /

Unsupervised learning

Training data: x_i , i = 1, ..., n. (no labels) Can we recognise data into different groups?

K-means with K=3 clusters.

Omid Safarzadeh

Unsupervised learning

Example 2.1

Image Compression Image compression refers to the task of representing images using as little storage (i.e., bits) as possible.

Figure: Conditional Probability approach vs. BPG, JPEG and JPEG 2000 on the third and fourth image of the Kodak data set. Mentzer et al., 2018

Omid Safarzadeh January 18, 2022

Unsupervised learning

Example 2.2

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Figure: Devlin et al., 2018

Semi-Supervised learning

Figure 1: Illustration of our approach: with a strong teacher model, we extract from a very large unlabelled image collection (100M–1 billion images) a new (large) training set. The student model is first trained with this noisy supervision, and fine-tuned with the original dataset.

Figure: Yalniz et al., 2019

Some examples

• Deep learning - Deep belief network:

Handwritten digit classification and generation

Example: Link

Reinforcement learning

• Hide and seek Example: Link

Alphago and Alphazero

Example: Alphago Alphazero

Omid Safarzadeh Introducation to Stockston Resource January 18, 2022 10/14

Online Learning

supervised/unsupervised learning:

- feeding data in batch to model
- data set is static
- not useful for streaming data
- the models become outdated after a while
- Concept drift?

Solution: incremental or online learning algorithms.

REF:Putatunda, 2021

Omid Safarzadeh

January 18, 2022

Reinforcement Learning

Omid Safarzadeh unsweitender von Sternensvert Sternens Universitätig January 18, 2022

Graph Representation Learning

Omid Safarzadeh Instructivation Sensetive Hearing January 18, 2022

References

- Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv* preprint *arXiv*:1810.04805.
- Krizhevsky, A., Hinton, G. et al. (2009). Learning multiple layers of features from tiny images.
- Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., & Van Gool, L. (2018). Conditional probability models for deep image compression. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 4394–4402.
- Putatunda, S. (2021). Practical machine learning for streaming data with python.
- Yalniz, I. Z., Jégou, H., Chen, K., Paluri, M., & Mahajan, D. (2019). Billion-scale semi-supervised learning for image classification. *arXiv preprint* arXiv:1905.00546.

Omid Safarzadeh Intorhication to Statistic Heatings January 18, 2022 14/14