Build Machine Learning Models with Amazon SageMaker

Julien Simon Global Evangelist, AI & Machine Learning @julsimon

The Amazon ML Stack: Broadest & Deepest Set of Capabilities

Vision Speech Language Forecasting Recommendations Chatbots AI SERVICES REKOGNITION REKOGNITION TEXTRAC POLLY TRANSCRIB TRANSLATE COMPREHEND L E XFORECAS IMAGE VIDEO COMPREHEND. MEDICAL

ML SERVICES

BUILD Pre-built algorithms & notebooks

Data labeling (GROUND TRUTH) Algorithms & models (AWS MARKETPLACE)

TRAIN One-click model training & tuning

Optimization (NEO)

& P 3 d n

Models without training data (REINFORCEMENT LEARNING)

DEPLOY

One-click deployment & hosting

ML FRAMEWORKS & INFRASTRUCTURE

mxnet

PYTORCH

Frameworks

Interfaces

Infrastructure

Amazon SageMaker: Build, Train, and Deploy ML Models at Scale

Collect and prepare training data

Choose and optimize your ML algorithm

Set up and manage environments for training

Train and Tune ML Models

Deploy models in production

Scale and manage the production environment

Machine learning cycle

Successful models require high-quality data

Successful models require high-quality data

Amazon SageMaker Ground Truth

https://aws.amazon.com/blogs/aws/amazon-sagemaker-ground-truth-build-highly-accurate-datasets-and-reduce-labeling-costs-by-up-to-70

Quickly label training data

Easily integrate human labelers

Get accurate results

KEY FEATURES

Automatic labeling via machine learning

Ready-made and custom workflows for image bounding box, segmentation, and text

Private and public human workforce

Label management

Manage data on AWS

Build and train models using SageMaker

Deploy models using SageMaker

Amazon SageMaker

Collect and prepare training data

Choose and optimize your ML algorithm

Set up and manage environments for training

Train and Tune ML Models

Deploy models in production

Scale and manage the production environment

inference

New built-in algorithms scikit-learn environment Model marketplace Search P3DN, C5N
TensorFlow on 256
GPUs
Resume HPO tuning job

Model compilation Elastic inference Inference pipelines

AWS Machine Learning Marketplace

Working with Amazon SageMaker

The Amazon SageMaker API

- Python SDK orchestrating all Amazon SageMaker activity
 - High-level objects for algorithm selection, training, deploying, automatic model tuning, etc.
 - Spark SDK (Python & Scala)
- AWS CLI: 'aws sagemaker'
- AWS SDK: boto3, etc.

Model options

Training code

Factorization Machines

Linear Learner

Principal Component

Analysis

K-Means Clustering

XGBoost

And more

Built-in Algorithms

Bring Your Own Container

IMAGE RECOGNITION | for the good of | PRODUCT SEARCH

Sébastien BUTREAU sebastien.butreau@tarkett.com Group IT Projects & CCOE Manager Tarkett

A worldwide leader in <u>flooring & sports surfaces</u>

- → €2.8B Net sales
 (2018 figures)
- → **13,000** employees
- → Present in more than 100 countries
- → 1.3M square meters of flooring sold each day

Could we recommend products to each user?

CARPET

WOOD &

ACCESSORIES & RUBBER

SPORTS SURFACES

Why image search?

Why does it make sense in the context of flooring?

Project Aladdin

- Initial experimentation with computer vision algorithms, then switch to Deep Learning
- Data set construction
 - Thumbnails from the web site
 - Pictures of our products in the showroom
 - Data augmentation
- Train a VGG16 architecture with GPU instances (Amazon EC2 P3)
- Deploy the model and integrate it in the web application

Why we used Amazon SageMaker

- Go quicker from idea to production
- Distributed training out of the box
- One line of code to deploy models
- Almost the same cost as Amazon EC2 (\$300/month)

Demo: https://professionnels.tarkett.fr

Next steps

Explore new possibilities opened by image search

- Find the best substitution when a product is out of stock
- Understand « in-situ » the real user demand
 - Incorporate external factors (seasons, fashion, styles)
 - Position our products against the competition
 - Generate new designs

Built-in algorithms

Built-in algorithms orange: supervised, yellow: unsupervised

Linear Learner: regression, classification	Image Classification: Deep Learning (ResNet)
Factorization Machines: regression, classification, recommendation	Object Detection (SSD): Deep Learning (VGG or ResNet)
K-Nearest Neighbors: non-parametric regression and classification	Neural Topic Model: topic modeling
XGBoost: regression, classification, ranking https://github.com/dmlc/xgboost	Latent Dirichlet Allocation: topic modeling (mostly)
K-Means: clustering	Blazing Text: GPU-based Word2Vec, and text classification
Principal Component Analysis: dimensionality reduction	Sequence to Sequence: machine translation, speech to text and more
Random Cut Forest: anomaly detection	DeepAR: time-series forecasting (RNN)
Object2Vec: general-purpose embedding	IP Insights: usage patterns for IP addresses
Semantic Segmentation: Deep Learning	, Inc. or its affiliates. All rights reserved.

Demo: Text Classification with BlazingText

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction to amazon algorithm s/blazingtext text classification dbpedia

BlazingText: Scaling and Accelerating Word2Vec using Multiple GPUs

Saurabh Gupta Amazon Web Services gsaur@amazon.com Vineet Khare Amazon Web Services vkhare@amazon.com

https://dl.acm.org/citation.cfm?id=3146354

Demo: Image classification with Caltech-256

https://gitlab.com/juliensimon/dlnotebooks/sagemaker/

Amazon SageMaker

Collect and prepare training data

Choose and optimize your ML algorithm

Set up and manage environments for training

Train and Tune ML Models

Deploy models in production

Scale and manage the production environment

Build

Train

Deploy

Getting started

http://aws.amazon.com/free

https://ml.aws

https://aws.amazon.com/sagemaker

https://github.com/aws/sagemaker-python-sdk

https://github.com/aws/sagemaker-spark

https://github.com/awslabs/amazon-sagemaker-examples

https://gitlab.com/juliensimon/ent321

https://medium.com/@julsimon

https://gitlab.com/juliensimon/dlnotebooks

Thank you!

Julien Simon Global Evangelist, AI and Machine Learning

@julsimon https://medium.com/julsimon

Please complete the session survey.

