

Description

Features

- 30V,150A
 - $R_{DS(ON)}$ <3m Ω @ V_{GS} =10V $R_{DS(ON)}$ <6m Ω @ V_{GS} =4.5V
- Advanced Trench Technology
- Provide Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	TUBE (PCS)	Inner Box (PCS)	Per Carton (PCS)
VSM150N03-TC	VSM150N03	TUBE	TO-220C	50	1,000	8,000

Absolute Maximum Ratings (T_C=25℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Continuous Drain Current	T _C = 25°C	150	Α
		T _C = 100°C	98	Α
I_{DM}	Pulsed Drain Current note1		600	Α
Eas	Single Pulsed Avalanche Energy note2		225	mJ
P _D	Power Dissipation	T _C = 25°C	109	W
R _{θJC}	Thermal Resistance, Junction to Case		1.4	°C/W
T_J, T_{STG}	Operating and Storage Temperature Range		-55 to +175	$^{\circ}\!\mathbb{C}$

Electrical Characteristics (TJ=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units			
Off Characteristic									
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	30	-	-	V			
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 30V, V_{GS} = 0V,$	-	-	1.0	μA			
I _{GSS}	Gate to Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA			
On Characteristics									
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D =250μA	1.0	1.6	2.5	V			
D	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =30A	-	2.3	3	mΩ			
R _{DS(on)}	note3	V _{GS} =4.5V, I _D =20A	-	4.2	6	11122			
Dynamic Characteristics									
C _{iss}	Input Capacitance	\/ -45\/ \/ -0\/	-	3500	-	рF			
Coss	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$ f = 1.0MHz	-	500	-	pF			
C _{rss}	Reverse Transfer Capacitance	1 - 1.0IVIMZ	-	431	-	рF			
Qg	Total Gate Charge	\/ 45\/ L 00A	-	38	-	nC			
Q _{gs}	Gate-Source Charge	$V_{DS} = 15V, I_{D} = 30A,$ $V_{GS} = 10V$	-	9	-	nC			
Q_{gd}	Gate-Drain("Miller") Charge	VGS - 10 V	-	13	-	nC			
Switching	Switching Characteristics								
t _{d(on)}	Turn-on Delay Time	\/ -45\/	-	26	-	ns			
t _r	Turn-on Rise Time	V _{DS} =15V,	-	24	-	ns			
t _{d(off)}	Turn-off Delay Time	I_D =30A, R_{GEN} =3 Ω , V_{GS} =10 V	-	91	-	ns			
t _f	Turn-off Fall Time	V _{GS} - 10 V	-	39	-	ns			
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings							
	. Maximum Continuous Drain to Source Diode Forward				450	۸			
Is	Current			-	150	Α			
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	600	Α			
V _{SD}	Drain to Source Diode Forward	$V_{GS} = 0V, I_{S} = 30A$		-	1.2	V			
	Voltage	VGS - UV, IS-3UA	-						
trr	Body Diode Reverse Recovery Time		-	42	-	ns			
Qrr	Body Diode Reverse Recovery Charge	I _F =20A,dI/dt=100A/µs	-	39	-	nC			

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: TJ=25 $^{\circ}\!\!\mathrm{C}$, VDD=15V, VG=10V, RG=25 Ω , L=0.5mH, IAS=30A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms