Homework 4 for Math 1540

Zhen Yao

Problem 50. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Prove that if partial derivatives

$$\frac{\partial f}{\partial x_i}(x_0), \quad i = 1, 2, \dots, n,$$

exist, then f is differentiable at x_0 .

Proof. Let $A = \left[\frac{\partial f}{\partial x_1}(x_0), \cdots, \frac{\partial f}{\partial x_n}(x_0)\right]$, and we need to prove that

$$\phi(h) = f(x_0 + h) - f(x_0) - Ah$$

satisfies $\frac{\phi(h)}{\|h\|} \to 0$ as $h \to 0$. $\phi(h)$ is convex and we denote by $h = (h_1, \dots, h_n) = e_1 h_1 + \dots + e_n h_n$, then we have

$$\phi(h) = \phi\left(\frac{1}{n}\sum_{i=1}^{n}h_{i}ne_{i}\right)$$

$$\leq \frac{1}{n}\sum_{i=1}^{n}h_{i}ne_{i} = \sum_{i=1}^{n}h_{i}\frac{\phi(h_{i}ne_{i})}{h_{i}n}$$

$$\leq \|h\|\sum_{i=1}^{n}\left|\frac{\phi(h_{i}ne_{i})}{h_{i}n}\right|,$$

similarly,

$$\phi(-h) \le ||h|| \sum_{i=1}^{n} \left| \frac{\phi(-h_i n e_i)}{-h_i n} \right|.$$

Also, we have $0 = \phi\left(\frac{h + (-h)}{2}\right) \le \frac{\phi(h) + \phi(-h)}{2}$, which implies $\phi(h) \le -\phi(-h)$, then

$$0 \stackrel{h \to 0}{\longleftarrow} - \sum_{i=1}^{n} \left| \frac{\phi(-h_i n e_i)}{-h_i n} \right| \le \frac{\phi(h)}{\|h\|} \le \sum_{i=1}^{n} \left| \frac{\phi(h_i n e_i)}{h_i n} \right| \stackrel{h \to 0}{\longrightarrow} 0,$$

where in the last step we used the fact that partial derivatives $\frac{\partial f}{\partial x_i}(x_0)$, i = 1, 2, ..., n exist, then we have $\phi(te_i) = f(x_0 + te_i) - f(x_0) - \frac{\partial f}{\partial x_i}(x_0)t$ and

$$\lim_{t \to 0} \frac{\phi(te_i)}{t} = \lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t} - \frac{\partial f}{\partial x_i}(x_0) = 0.$$

Problem 51. Let $Q: C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ be a linear mapping such that $Qf \geq 0$ whenever $f \in C^{\infty}(\mathbb{R}^n)$ satisfies f(0) = 0 and $f(x) \geq 0$ in a neighborhood of 0. Prove that there are real numbers a_{ij} , b_i and c such that

$$Qf = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(0) + \sum_{i=1}^{n} b_{i} \frac{\partial f}{\partial x_{i}}(0) + cf(0) \quad \text{for all } f \in C^{\infty}(\mathbb{R}^{n}).$$

Proof. We have

$$f(x) = f(0) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(0)x_i + \frac{1}{2} \sum_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j}(0)x_i x_j + \varphi(x),$$

and let $c = Q(0), b_i = Q(x_i), a_{ij} = \frac{1}{2}Q(x_ix_j)$, then we have

$$Qf = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j}(0) + \sum_{i=1}^{n} b_i \frac{\partial f}{\partial x_i}(0) + cf(0) + Q\varphi.$$

We need to prove that $Q\varphi = 0$. Since $\varphi(x) = o(|x|^2)$, then there exists $\varepsilon > 0$, such that $\varepsilon |x|^2 - \varphi(x) \ge 0$ near 0. Then, $Q(\varepsilon |x|^2 - \varphi(x)) \ge 0$, which implies $Q\varphi \le \varepsilon Q(|x|^2)$, and then $Q\varphi \le 0$ as $\varepsilon \to 0$. Similarly, $Q(\varepsilon |x|^2 + \varphi(x)) \ge 0$ and we have $-Q\varphi \le \varepsilon Q(|x|^2)$. Then, $Q\varphi \ge 0$ and hence $Q\varphi = 0$.

Problem 52. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x) = \begin{cases} \frac{x^2(y^4 + 2x)}{x^2 + y^4} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Prove that f is differentiable at (0,0).

Proof. We have

$$f_x(0,0) = \lim_{s \to 0} \frac{f(s,0) - f(0,0)}{s} = \lim_{s \to 0} \frac{2s^3/s^2}{s} = 2$$
$$f_y(0,0) = \lim_{s \to 0} \frac{f(0,s) - f(0,0)}{s} = 0$$

and we need to show that the limit equals zero, which is

$$\lim_{(s,t)\to(0,0)} \frac{f(s,t) - f(0,0) - f_x(0,0)s - f_y(0,0)t}{\sqrt{s^2 + t^2}}$$

$$= \lim_{(s,t)\to(0,0)} \frac{s^2t^4 - 2st^4}{(s^2 + t^4)\sqrt{s^2 + t^2}},$$

also,

$$\left| \frac{s^2 t^4 - 2st^4}{(s^2 + t^4)\sqrt{s^2 + t^2}} \right| \le \left| \frac{s^2 t^4 - 2st^4}{2|s|t^2|t|} \right| = \left| \frac{|st|}{2} - t \right| \xrightarrow{(s,t) \to (0,0)} 0,$$

where we used the fact that $s^2 + t^4 \ge 2|s|t^2$ and $\sqrt{s^2 + t^2} \ge |t|$.

Problem 53. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Prove that the mixed partial derivatives $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ exist everywhere in \mathbb{R}^2 , but

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

Proof. When $(x, y) \neq (0, 0)$, with f(x, y) = -f(y, x)

$$\frac{\partial f}{\partial x}(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$

$$\frac{\partial f}{\partial y}(x,y) = -\frac{\partial f}{\partial x}(y,x) = -\frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2},$$

then $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ exist at $(x, y) \neq (0, 0)$. Also,

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right)(0,0) = \frac{\mathrm{d}}{\mathrm{d}y}\Big|_{y=0} \left(\frac{\partial f}{\partial x}(0,y)\right) = \frac{\mathrm{d}}{\mathrm{d}y}\Big|_{y=0} \left(-\frac{y^5}{y^4}\right) = -1,$$

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)(0,0) = \frac{\mathrm{d}}{\mathrm{d}x}\Big|_{x=0} \left(\frac{\partial f}{\partial y}(x,0)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\Big|_{x=0} \left(\frac{x^5}{x^4}\right) = 1.$$

Problem 54. Prove that the function

$$f(x) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

has all directional derivatives $D_v f(0,0)$ at the origin, but f is not differentiable at (0,0).

Proof. For $v = (a, b) \neq (0, 0)$,

$$D_v f(0,0) = \lim_{t \to 0} \frac{f(ta, tb) - f(0,0)}{t}$$
$$= \lim_{t \to 0} \frac{1}{t} \frac{ta|tb|}{|t|\sqrt{a^2 + b^2}}$$
$$= \lim_{t \to 0} \frac{a|b|}{\sqrt{a^2 + b^2}},$$

and $D_v f(0,0)$ is not linear with respect to v, thus, not differentiable.

Problem 55. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a mapping of class C^1 . Prove that if rank $Df(x_0) = n$, then f is injective in a neighborhood of x_0 . Prove it directly, without using the inverse function theorem.

Proof. Since rank $Df(x_0) = n$, then $M = f^{-1}(0) = \{x \in \mathbb{R}^n | f(x) = 0\}$ is 0-dimensional submanifold. Thus, $M = \{0\}$, which implies f is injective.

Problem 56. Assume that $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable and rank Df(x) = n for all $x \in \mathbb{R}^n$. Prove that if $S \subset \mathbb{R}^n$ is bounded, then for every $y \in \mathbb{R}^m$, the set

$$S \cap f^{-1}(y) = \{ x \in S : f(x) = y \}$$

is finite.

Remark. Since we do not assume continuity of Df, we cannot use the inverse function theorem.

Proof. Since f is differentiable and rank Df(x) = n, then for any $x \in \mathbb{R}^m$, f is injective in a neighborhood U of x. Then for any $y \in \mathbb{R}^m$, there exists a unique $x \in \mathbb{R}^m$ in its neighborhood, and thus $S \cap f^{-1}(y)$ is finite.

Problem 57. Let $\Omega = \{(x,y) \in \mathbb{R}^2 : x > 0, 0 < y < 2\pi\}$. Prove that the mapping $f: \Omega \to \mathbb{R}^2$, $f(x,y) = (x\cos y, x\sin y)$ is a diffeomorphism of Ω onto an open subset of \mathbb{R}^2 . Find $f(\Omega)$. **Hint:** A picture will help. Have you seen a similar mapping in Calculus 3?

Proof. Since

$$Jf(x) = \det \begin{pmatrix} \cos y & -x \sin y \\ \sin y & -x \cos y \end{pmatrix} = x \neq 0,$$

the mapping f is diffeomorphism and hence invertible in a neighborhood of any point $(x,y) \in \mathbb{R}^2$. Suppose $f(x_1,y_1) = f(x_2,y_2)$, then we have

$$x_1 \cos y_1 = x_2 \sin y_2$$
$$x_1 \sin y_1 = x_2 \sin y_2$$

which implies $x_1 = x_2$ and $y_1 = y_2$. Thus, f is invertible and hence f is diffeomorphism of Ω onto an open subset of \mathbb{R}^2 . Also, $f(\Omega) = \mathbb{R}^2$.

Problem 58. Find a diffeomorphism of \mathbb{R}^2 onto the open unit disc $x^2 + y^2 < 1$.

Proof.
$$f(x,y) = \left(\frac{x}{\sqrt{x^2 + y^2 + 1}}, \frac{y}{\sqrt{x^2 + y^2 + 1}}\right)$$
.

Problem 59. Find a diffeomorphism of the upper half plane y > 0 onto the first quadrant x > 0, y > 0.

Proof.
$$f(x,y) = (e^x, y)$$
.

Problem 60. Suppose that $f \in C^1(\mathbb{R})$ is such that |f'(x)| < 1 for all $x \in \mathbb{R}$. Prove that the mapping $F : \mathbb{R}^2 \to \mathbb{R}^2$, F(x,y) = (x + f(y), y - f(x)) is a diffeomorphism in a neighborhood of any point $(x,y) \in \mathbb{R}^2$.

Proof. Since

$$JF(x) = \det \begin{pmatrix} 1 & f'(y) \\ -f'(x) & 1 \end{pmatrix} = 1 + f'(x)f'(y) \neq 0,$$

the mapping F is diffeomorphism and hence invertible in a neighborhood of any point $(x,y) \in \mathbb{R}^2$

Problem 61. Prove that a complex polynomial $P(z) = a_0 z^n + a_1 z^{n-1} + \ldots + a_n$ regarded as a function $P: \mathbb{R}^2 \to \mathbb{R}^2$ is a diffeomorphism in a neighborhood of $z_0 \in \mathbb{C}$ if and only if $P'(z_0) \neq 0$, where $P'(z) = na_0 z^{n-1} + (n-1)a_1 z^{n-2} + \ldots + a_1$. *Proof.*

(1) If P is a diffeomorphism in a neighborhood of $z_0 = x_0 + iy_0 \in \mathbb{C}$, we can write P as $P(z_0) = u(x_0, y_0) + iv(x_0, y_0)$, where u, v are real functions. Then, with the Cauchy-Riemann equations $u_x = v_y, u_y = -v_x$, we have

$$JP(z_0) = \det \begin{pmatrix} u_x(z_0) & u_y(z_0) \\ v_x(z_0) & v_y(z_0) \end{pmatrix}$$

= $u_x(z_0)v_y(z_0) - u_y(z_0)v_x(z_0)$
= $u_x^2(z_0) + u_y^2(z_0) = v_x^2(z_0) + v_y^2(z_0) \neq 0$,

which implies $u_x, u_y, v_x, v_y \neq 0$. Also, with Wirtinger derivatives, we have

$$\frac{\partial P}{\partial z} = \frac{1}{2} \left(\frac{\partial P}{\partial x} - i \frac{\partial P}{\partial y} \right)$$

$$= \frac{1}{2} \left(u_x + i v_x - i (u_y + i v_y) \right)$$

$$= \frac{1}{2} \left((u_x + v_y) + i (v_x - u_y) \right)$$

$$= u_x + i v_x,$$

and then $P'(z_0) \neq 0$.

(2) If $P'(z_0) \neq 0$, then $u_x(z_0), v_x(z_0)$. Thus, $JP(z_0) \neq 0$, which implies P is a diffeomorphism in a neighborhood of $z_0 \in \mathbb{C}$.

Problem 62. Let $f: \mathbb{R} \to \mathbb{R}$ be C^1 and let

$$u = f(x)$$
$$v = -y + xf(x).$$

If $f'(x_0) \neq 0$, show that this transformation is locally invertible near (x_0, y_0) and the inverse has the form

$$x = g(u)$$
$$y = -v + ug(u).$$

Proof. Since

$$\det\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = -f'(x_0) \neq 0,$$

then $F:(x,y)\to (u,v)$ is invertible in an open neighborhood U of (x_0,y_0) and for an open neighborhood W of $(u(x_0),v(y_0)), F^{-1}:W\to U$ is of class C^1 . Then there exists g such that $f^{-1}(u)=x=g(u)$ and then y=-v+ug(u).

Problem 63. Prove that the system of equations

$$\begin{cases} xyz + x^2 + y = 0\\ z + x^2y^2z^2 = 0 \end{cases}$$

has a solution of the form y = y(x), z = z(x) in a neighborhood of (0, 0, 0).

Proof. Denote

$$F_1(x, y, z) = xyz + x^2 + y$$

 $F_2(x, y, z) = z + x^2y^2z^2$

and we have

$$\Delta = \begin{vmatrix} \frac{\partial F_1}{\partial y} & \frac{\partial F_1}{\partial z} \\ \frac{\partial F_2}{\partial z} & \frac{\partial F_2}{\partial z} \end{vmatrix} = \begin{vmatrix} xz+1 & xy \\ 2x^2z^2y & 1+2x^2y^2z \end{vmatrix} = 1+xz+2x^2y^2z$$

and at point (0,0,0), we have $\Delta(0,0,0)=1\neq 0$. Then with implicit function theorem, the system has a solution of the form y=y(x), z=z(x) in a neighborhood of (0,0,0). \square

Problem 64. Let $F(x,y) = x^3y^2 + 3x^2y^3 - xy + 2x - y^2 + 1$, $(x,y) \in \mathbb{R}^2$. Prove that there exist functions $g, h \in C^{\infty}$ defined on an open neighborhood $U \subset \mathbb{R}$ of 0, such that F(x, g(x)) = 0 = F(x, h(x)) and g(x) < h(x) for every $x \in U$. Find g'(0), h'(0).

Proof. Suppose $F(0, y_0) = 0$, then we have $y_0 = -1$ or $y_0 = 1$. Also, we have $F_y(0, y) = -2y$, then $F_y(0, 1) \neq 0$ and $F_y(0, -1) \neq 0$. With implicit function theorem, there exists a neighborhood U of 0 and a neighborhood V of y_0 such that for every $x \in U$, there is exactly one $y \in V$ satisfying F(x, f(x)) = 0.

For $y_0 = -1$, we have F(x, g(x)) = 0, where $g: U \to V_1$ and V_1 is a neighborhood of -1. Also, for $y_0 = 1$, we have F(x, h(x)) = 0, where $h: U \to V_2$ and V_2 is a neighborhood of 1. And $V_1 \cap V_2 = \emptyset$, since if it is not, it contradicts with there is only one y such that F(x, y) = 0. Then we have g(x) < h(x).

Also, consider F(x, g(x)) = 0, we have $F_x(0, g(0)) = -g(0) + 2 - 2g(0)g'(0) = 0$, with g(0) = -1 we have $g'(0) = -\frac{3}{2}$. Similarly, we have $h'(0) = \frac{1}{2}$.

Problem 65. Let F be as in Problem 64. Prove that there is a function $g \in C^{\infty}$ defined on an open neighborhood U of 0 such that F(g(y), y) = 0 for every $y \in U$. Find g'(0).

Proof. Suppose $F(x_0, 0) = 0$, then we have $x_0 = -\frac{1}{2}$. Also, we have $F_x(x_0, 0) = 3 \neq 0$. With implicit function theorem, there exists a neighborhood V of 0 and a neighborhood U of x_0 such that for every $y \in V$, there is exactly one $x \in U$ satisfying F(g(y), y) = 0.

Also, consider F(g(y), y) = 0, we have $F_y(g(0), 0) = -g(0) + 2g'(0) = 0$, with $g(0) = -\frac{1}{2}$, we have $g'(0) = -\frac{1}{4}$.

Problem 66. Suppose that $F: \mathbb{R}^3 \to \mathbb{R}$ is of class C^1 . F(0,0,0) = 0, $F_x(0,0,0) \neq 0$, $F_y(0,0,0) \neq 0$, $F_z(0,0,0) \neq 0$. The implicit function theorem implies that the equation F(x,y,z) = 0 can uniquely be solved in a neighborhood of the point (0,0,0) as x = x(y,z) or y = y(x,z) or z = z(x,y). Prove that at every point in some neighborhood of (0,0,0) we have

$$\frac{\partial z}{\partial x} \frac{\partial x}{\partial y} \frac{\partial y}{\partial z} = -1.$$

Proof. Since F(x, y, z(x, y)) = 0, we have

$$F_x(x, y, z(x, y)) \frac{\partial x}{\partial x} + F_y(x, y, z(x, y)) \frac{\partial y}{\partial x} + F_z(x, y, z(x, y)) \frac{\partial z}{\partial x} = 0,$$

which implies $F_x + F_z \frac{\partial z}{\partial x} = 0$ and hence $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$. Similarly, F(x, y(x, z), z) = 0 yields $\frac{\partial y}{\partial z} = -\frac{F_z}{F_y}$ and F(x(y, z), y, z) = 0 yields $\frac{\partial x}{\partial y} = -\frac{F_y}{F_x}$. Thus,

$$\frac{\partial z}{\partial x}\frac{\partial x}{\partial y}\frac{\partial y}{\partial z} = (-1)^3 \frac{F_x}{F_z} \frac{F_z}{F_y} \frac{F_y}{F_x} = -1.$$

Problem 67. Let $F = F(x,y) : \mathbb{R}^2 \to \mathbb{R}$ be of class C^1 such that $\partial F/\partial y \neq 0$ on \mathbb{R}^2 . Prove that if the set $S = \{(x,y) \mid F(x,y) = 0\}$ is nonempty, then it is of the form $S = \{(x,g(x)) \mid x \in U\}$, where $g: U \to \mathbb{R}$ is a C^1 function defined on an open set $U \subset \mathbb{R}$.

Proof. For $(x_0, y_0) \in S$, then $F(x_0, y_0) = 0$ and $F_y(x_0, y_0) \neq 0$. Then there exists a neighborhood U of x_0 and a neighborhood V of y_0 such that for any $x \in U$, there exists only one $y \in V$, F(x, g(x)) = 0. And S in the neighborhood $U \times V$ of (x_0, y_0) is a graph of a function y = g(x).

Problem 68. Prove that the equation $xe^z = y(z+x)$ defines z as a function of (x,y) in a neighborhood of the point $(x_0, y_0, z_0) = (2, 1, 0)$. Then find the Taylr polynomial of degree 2 of the function z = z(x, y) centered at the point (2, 1).

Proof. Let $F(x, y, z) = y(z + x) - xe^z$, then F(2, 1, 0) = 0 and $F_z(2, 1, 0) = -1 \neq 0$. Then there is a neighborhood of U of (2, 1) and a neighborhood V of 0, such that for any $z \in V$, there exists only one $(x, y) \in U$, F(x, y, z(x, y)) = 0. Thus, the equation defines z as a function of (x, y) in a neighborhood of the point (2, 1, 0).

Also, Taylor series of z(x, y) is

$$z(x,y) = z(2,1) + \frac{\partial z}{\partial x}(2,1)(x-2) + \frac{\partial z}{\partial y}(2,1)(y-1),$$

and we can compute for $\frac{\partial z}{\partial x}(2,1)$ and $\frac{\partial z}{\partial y}(2,1)$ by taking derivative of F(x,y,z(x,y)) with respect to x and y, which yields $\frac{\partial z}{\partial x}(2,1)=0$, $\frac{\partial z}{\partial y}(2,1)=2$. Thus, we have

$$z(x,y) = 2(y-1).$$

Problem 69. Show that there is a polynomial P(x, y, z) of order 4 such that the set P(x, y, z) = 0 is a torus. Show that the gradient of P is nonzero at every point of the torus and conclude that the torus is locally a graph of a smooth function of two variables.

Proof. Considering polynomial $P(x,y,z)=(x^2+y^2+z^2+R^2-r^2)^2-4R^2(x^2+y^2), R>r$, then P(x,y,z)=0 is a torus. And we have

$$\Delta P = \begin{bmatrix} P_x \\ P_y \\ P_z \end{bmatrix} = \begin{bmatrix} 4(x^2 + y^2 + z^2 + R^2 - r^2)x - 8R^2x \\ 4(x^2 + y^2 + z^2 + R^2 - r^2)y - 8R^2y \\ 4(x^2 + y^2 + z^2 + R^2 - r^2)z \end{bmatrix} \neq 0, \forall x, y, z$$

since $\Delta P = 0$ only at (0,0,0) but (0,0,0) is not a point in this torus. Then at least one of P_x, P_y and P_z is not zero, thus the torus is locally a graph of a smooth function of two variables.

Problem 70. Show that there is no polynomial P(x, y, z) of order less than 4 such that the set P(x, y, z) = 0 is a torus.

Proof.
$$\Box$$

Problem 71. The cylinder $(x-1)^2 + y^2 = 1$ intersects with the sphere $x^2 + y^2 + z^2 = 4$ along a curve. This curve has a self-intersection (the curve looks like "8"). Find the angle at which the curve intersects with itself.

Proof. The curve intersects itself at point (2,0,0), and denote $x-1=\cos\theta$, then we have $y=\sin\theta$ and $z=\pm\sqrt{2-2\cos\theta}$. The the curve can be represented as

$$F(t) = \{(1 + \cos\theta, \sin\theta, \pm\sqrt{2 - 2\cos\theta})\}\$$

Then the tangent vectors at point (2,0,0) are

$$v = \left(-\sin\theta, \cos\theta, \pm \frac{\sin\theta}{\sqrt{2 - 2\cos\theta}} \right) \Big|_{\theta=0}$$
$$= (0, 1, 0).$$

Then the angle at which the curve intersects with itself is $\theta = 0$.