Calcul théorique de la propulsion éléctromagnetique de l'aimant

Lawrence

February 24, 2015

Constantes "modifiables"

Rayon des spires	\overline{D}
Nombre de spire	N
Tension du générateur	μ
Capacité du condensateur	C
Arètes du tore	L
Masse du tore	m

Variables

Vitesse de tore	v(t)
Tension du condensateur	u(t)
Intensité	i(t)
Champ magnétique	$ec{B}$
Potentiel vecteur	$ec{A}$
Densité de courant dans le tore	$ec{j}$

Equations

$$m\frac{dv}{dt} = -mg + \iiint_{\text{tore-en-mouvement}} (\vec{j} \times \vec{B}) \cdot \vec{e_z} d\tau$$
(1)

$$i = -C\frac{du}{dt} \tag{2}$$

$$u = Ri + \iint_{N-spires} \vec{B} \cdot d\vec{S}$$
 (3)

$$\vec{j} = \gamma \left(\vec{v} \times \vec{B} - \frac{\partial \vec{A}}{\partial t} \right) \tag{4}$$

$$\vec{A} = \frac{\mu_0}{4\pi} \iiint_{tore-en-mouvement} \frac{\vec{j}}{PM} \cdot d\tau + \frac{\mu_0 Ni}{4\pi} \int \frac{d\vec{r}}{PM}$$
 (5)

$$\vec{B} = rot\vec{A} \tag{6}$$