Prof. Dr. Th. Schimmel

4. Übungsblatt

Es empfiehlt sich, zuerst allgemein zu rechnen und erst in die Endformeln Zahlenwerte einzusetzen

Kreisbewegung, Corioliskraft

- 1. Ein Teilchen bewege sich mit konstanter Geschwindigkeit v auf einer Kreisbahn mit dem Radius r.
 - a) Wie groß ist seine Winkelgeschwindigkeit um den Kreismittelpunkt?
 - b) Geben Sie die Umlaufzeit und die Umlauffrequenz des Teilchens an.
 - c) Wie viele Umdrehungen führt das Teilchen in 30 s aus?

Zahlenbeispiel: v = 20 m/s; r = 100 m.

Lösung: a) $\omega = 0.2 \text{ s}^{-1}$; b) T = 31,4 s; f = 0,032 s⁻¹; c) 0,955 U.

- Zwei Körper werden beschleunigt bewegt. In beiden Fällen sei der Betrag der Beschleunigung gleich und zeitlich konstant. Bei Körper A steht die Beschleunigung stets senkrecht auf die Geschwindigkeit. Bei Körper B zeigt die Beschleunigung stets in Richtung seiner Geschwindigkeit. Zum Zeitpunkt t = 0 sei Körper B in Ruhe.
 - a) Welche Form hat die jeweilige Bahn der beiden Körper?
 - b) Welche Strecke legt Körper B in der Zeit zurück, in der Körper A einen Viertelkreis durchläuft?
 - c) Zum Zeitpunkt t₂ seien die Beträge der Geschwindigkeiten beider Körper gleich. Welche Strecke haben Körper A und Körper B bis dahin jeweils zurückgelegt?
- 3. Ein Karussell mit dem Radius r werde aus der Ruhe mit einer konstanten Winkelbeschleunigung dω/dt in Rotation versetzt. Wie groß sind nach einer Beschleunigungszeit t₀
 - a) die Winkelgeschwindigkeit ω des Karussells
 - b) die Tangentialbeschleunigung a_t sowie die Zentralbeschleunigung a_z und die Zentralkraft auf eine Masse m am Rand des Karussells.

Zahlenbeispiel: $d\omega/dt = 0.1 \text{ s}^{-2}$; r = 5 m; $t_0 = 5 \text{ s}$; m = 75 kg.

Lösung: a) $\omega = 0.5 \text{ s}^{-1}$; b) $a_t = 0.5 \text{ m/s}^2$; $a_z = 1.25 \text{ m/s}^2$; $F_z = 94 \text{ N}$.

- 4. Eine punktförmig gedachte Masse m befinde sich am Ende eines masselosen Seils, das am Punkt O im Schwerefeld der Erde (z-Richtung) aufgehängt ist. Die Masse m führe in der x-y Ebene eine Kreisbewegung um die z-Achse aus.
 - a) Um welchen Winkel α_1 ist der Faden bei einer Winkelgeschwindigkeit ω ausgelenkt?
 - b) Wie groß ist der Winkel α_2 bei einer gegebenen Umlaufgeschwindigkeit von v?
 - c) Welcher Winkel α_{max} kann maximal erzielt werden, falls das Seil bei einer Belastung mit der Kraft F_{max} reißt?

Zahlenbeispiel: m = 100 g; ℓ = 1 m; ω = 5 s⁻¹; v = 10 km/h; F_{max} = 15 N. Lösung: a) α_1 = 67°; b) α_2 = 47°; c) α_{max} = 86°.

- 5. Auf einem Karussell, das sich mit konstanter Winkelgeschwindigkeit ω dreht, werfen sich Max und Katrin einen Ball zu. Max steht im Zentrum des Karussells, Katrin im Abstand R davon. Beim Abwurf hat der Ball jeweils den Geschwindigkeitsbetrag v. Die Schwerkraft kann vernachlässigt werden.
 - a) Wie lange fliegt der Ball von Max zu Katrin?
 - b) In welcher Richtung muss Max den Ball zu Katrin werfen?
 - c) In welcher Richtung muss Katrin den Ball zurückwerfen?
 - d) Wie lange ist der Ball dabei unterwegs?
 - e) Oberhalb welcher kritischen Winkelgeschwindigkeit kann Katrin Max nicht mehr mit dem Ball erreichen?
- 6. In 60 Grad nördlicher Breite fährt ein Eisenbahnzug mit der Masse 1000 t mit 110 km/h in südlicher Richtung. Welche Gesamtkraft übt er auf Grund der Erdrotation quer zur Fahrtrichtung auf die Schienen aus? In welche Richtung zeigt die Querkomponente der Kraft?

Lösung: F = 3849 N.