

计算机视觉与机器学习

YOLO目标检测原理与指标分析

报告人: 刘天适

Content

二 mAP值的计算

NOLO输出结果分析

模型衡量

机器学习中常见模型衡量指标:

① 精确度 precision ——"找的对"

让模型的现有预测结果尽可能不出错 (宁愿漏检,尽可能不使现有的预测有错) ② 召回率 recall ——"找出来" 让模型预测到所有想被预测到的样本 (宁可错,不能漏) 应用场景:

预测地震——不能接受漏报——提升召回率银行人脸支付——不能接受误检——提升精确度往往矛盾一个高另一个低

IOU - 交并比 - 越接近1越好

③ F1-Score, 定义为精确率和召回率的调和平均数。

值越接近1,说明模型性能越好。

$$F - score = \frac{2}{1/precision + 1/recall}$$

④准确率Accuracy,正确预测的样本数占总预测样本数的比值。

评价指标的基础: 混淆矩阵 - confusion matrix

对于二分类问题,每一条数据要么预测结果正确,表示为1;要么预测错误,表示为0。

而事物本身也是被分为0(负样本)和1(正样本)两类。

用矩阵来表示即——

		实际	
		1	0
表 201	1	TP	FP
预测 —	0	FN	TN III s://olog.cada.nai/AlexBakat

T/F: True, False 判断的正误

P/N: Positive, Negative 判断结果的正例、

负例。正例即目标样本。

模型衡量

T/F: True, False 判断的正误

P/N: Positive, Negative 判断结果的正例、负例。正例即目标样本

已知条件: 班级总人数100人, 其中男生80人, 女生20人。

目标:找出所有的女生。

结果:从班级中选择了50人,其中20人是女生,还错误的把30名男生挑选出来了。

TP: 20 判断正确&判断为女生

TN: 50 判断正确&判断为男生

FP: 30 判断错误前提下,判断结果为女生(实际为男生)

FN: 0 判断错误前提下,判断结果为男生(实际为女生)

判断为男生即不选择, 即漏检的女生

T: 判断正确

F: 判断错误

P: 判断的结果是女生

N: 判断的结果是男生

$$Precision = rac{TP}{TP + FP}$$
 $Recall = rac{TP}{TP + FN}$

TP+FP: 预测结果为目标样本的总数,

(T+F)P,包括预测正确的和错误的。

TP+FN:实际目标样本数。 包括检出和漏检的目标样本。

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Precision = rac{TP}{TP + FP}$$

区分accuracy & precision:

accuracy指的是正确预测的样本数占总预测样本数的比值,

它不考虑预测的样本是正例还是负例。

而precision指的是正确预测的正样本数占所有预测为正样本的数量的比值。

precision只关注预测为正样本的部分,而accuracy考虑全部 样本。

YOLO11指标

TP(True Positive): 真阳性

此处TP=1

FP(False Positive): 假阳性

此处FP=2

(GT: Ground Truth, 真实标注)

【一个GT只参与一次比较】

注意0.85, 0.92FP的原因不同!

FN(False Negative): 假阴性 没有检测到的GT的数量,漏检 此处FN=1

YOLO11指标

Precision=1

Recall=1

这样的预测好吗?

如何统一精度和全度?

引入性能综合评价指标mAP 的概念

所有类别取平均

AP (Average Precision, 平均精度) 每个类别

P-R曲线下面积

精确率-召回率曲线 (P-R曲线)

此轮判断以IOU=0.5为基准

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
\	0.84	N
\	0.76	N

置信度从大到小排列

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Υ
\	0.84	N
\	0.76	N

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Y
3	0.86	Υ
4	0.85	Υ
\	0.84	Ν
\	0.76	Ν
\	0.68	N

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Υ
4	0.85	Υ
\	0.84	Ν
5	0.80	Υ
\	0.79	Ν
\	0.76	Ν
\	0.68	Ν

正例个数=5

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Υ
4	0.85	Υ
\	0.84	N
5	0.80	Υ
\	0.79	N
\	0.76	N
\	0.68	N

P(Precision)=TP/(TP+FP)

FP 错解

R(Recall)=TP/(TP+FN)

FN 漏解

P=1/(1+0)=1.0	Precision	Recall
R=1/(1+4)=0.2	1.0	0.2

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Υ
4	0.85	Υ
\	0.84	N
5	0.80	Υ
\	0.79	N
\	0.76	N
\	0.68	N

P(Precision)=TP/(TP+FP)

P=2/(2+0)=1.0
R=2/(2+3)=0.4

)	Precision	Recall
4	1.0	0.2
	1.0	0.4

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Υ
4	0.85	Υ
\	0.84	N
5	0.80	Υ
\	0.79	N
\	0.76	N
\	0.68	N

P(Precision)=TP/(TP+FP)

P=3/(3+0)=1.0
R=3/(3+2)=0.6

Precision	Recall
1.0	0.2
1.0	0.4
1.0	0.6

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Υ
4	0.85	Υ
\	0.84	N
5	0.80	Υ
\	0.79	N
\	0.76	N
\	0.68	N

P(Precision)=TP/(TP+FP)

P=4/(4+0)=1.0
R=4/(4+1)=0.8

Precision	Recall
1.0	0.2
1.0	0.4
1.0	0.6
1.0	0.8

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Υ
4	0.85	Υ
\	0.84	N
5	0.80	Υ
\	0.79	N
\	0.76	N
\	0.68	N

P(Precision)=TP/(TP+FP)

FP 错解

FN 漏解

Precision	Recall
1.0	0.2
1.0	0.4
1.0	0.6
1.0	0.8
0.8	0.8

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Υ
4	0.85	Υ
\	0.84	N
5	0.80	Υ
\	0.79	N
\	0.76	N
\	0.68	N

P(Precision)=TP/(TP+FP)

P=5/(5+1)=0.83
P=5/(5+1)=0.83 R=5/(5+0)=1.0

0.2
0.2
0.4
0.6
8.0
0.8
1.0

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Υ
4	0.85	Υ
\	0.84	Ν
5	0.80	Υ
\	0.79	Ν
\	0.76	N
\	0.68	N

P(Precision)=TP/(TP+FP)

P=5/(5+2)=0.71
R=5/(5+0)=1.0

Precision	Recall
1.0	0.2
1.0	0.4
1.0	0.6
1.0	0.8
0.8	0.8
0.83	1.0
0.71	1.0

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Υ
2	0.88	Υ
3	0.86	Y
4	0.85	Y
\	0.84	N
5	0.80	Y
\	0.79	N
\	0.76	N
\	0.68	Ν

P(Precision)=TP/(TP+FP)

P=5/(5+3)=0.63
R=5/(5+0)=1.0

Precision	Recall
1.0	0.2
1.0	0.4
1.0	0.6
1.0	0.8
0.8	0.8
0.83	1.0
0.71	1.0
0.63	1.0

P(Precision)=TP/(TP+FP)

R(Re	ecall)=	TP/('	TP+	·FI

1 _	-5/(5)	+)-	0.50
R	=5/(5-	+0)=	=1.0

P=5/(5+4)=0.56	Precision	Recall
R=5/(5+0)=1.0	1.0	0.2
	1.0	0.4
	1.0	0.6
	1.0	0.8
	0.8	0.8
	0.83	1.0
	0.71	1.0
	0.63	1.0
	0.56	1.0

GT	num=5
\sim \mathbf{I}	110111 0

GT ID	Confidence	OB(IOU=0.5)
1	0.96	Y
2	0.88	Y
3	0.86	Υ
4	0.85	Υ
\	0.84	N
5	0.80	Υ
\	0.79	N
\	0.76	N
\	0.68	N

P-R曲线

Precision	Recall
1.0	0.0
1.0	0.2
1.0	0.4
1.0	0.6
1.0	0.8
0.8	0.8
0.83	1.0
0.71	1.0
0.63	1.0
0.56	1.0

S=(0.8-0)*1.0+(1.0-0.8)*0.83=0.966

mAP

若业务需较高的查准率, 允许一定的漏判,可适当 增大conf阈值

若业务需较高的召回率,允许一定的误判, 可适当减少conf阈值

AP: 对于某一个类的PR曲线所围住的面积

mAP: 各个类的AP均值(一般情况mAP指的是mAP50, IOU=0.5)

工业应用广泛

mAP95: IOU取0.95时的mAP

mAP50-95: (mAP50 + mAP55... + mAP90 + mAP95) /10

学术应用广泛

YOLO11 mAP可视化

	epoch	metrics/mAP50(B)	metrics/mAP50-95(B)
	1	0.33436	0.10197
	2	0.75506	0.40397
	3	0.90087	0.57863
	4	0.7614	0.43601
	5	0.82016	0.49673

- S YOLO11
- YOLO11+GR
- S YOLO11+GR+SSFF
- S YOLO11+SSFF

args: 存储训练参数的 配置文件

weights: 训练结果 可直接使用的权 重文件

- leading best.pt 部署
- last.pt 继续训练

results.csv: 对训练过程中loss和准确率 等参数变化的文字记录

_loss: 损失函数 随周期进行不断降低

P值,R值,mAP值。 随周期进行不断趋于最高

"损失函数"

train/测试轮 val/验证轮

- 1.box_loss(边界框回归损失)——用于优化预测边界框与真实边界框之间的差异。
- 2.class_loss(分类损失)——用于优化对目标类别的预测。分类损失确保模型能够正确地识别出图像中的对象属于哪个类别。
- 3. dfl_loss(Distribution Focal Loss)——解决目标检测中的类别不平衡问题,并提高模型在处理小目标和困难样本时的性能。

读懂损失函数的奥秘_yolov11损失函数-CSDN博客

"混淆矩阵"

"混淆矩阵"

混淆矩阵的每一列代表了预测类别,每一行是真实类别。 矩阵中Aij的含义:第j个类别被预测为第i个类别的概率。 方便看出机器是否将两个不同的类混淆。

-0.4

-0.3

-0.2

-0.1

-0.0

"labels"图是用来描述数据分布的,其中:

图①: 描述每个类别对应的样例个数。

图②: 描述边界框的分布。

图③: 描述样本中心点相对于整幅图分布。

因为我们训练的数据集是人体,人基本直立行走,所以可以看到图幅中心(0.5,0.5)密度较大。

图④: 描述目标的宽高相对于整幅图分布。

人基本直立行走,矩形框的宽很小,所以左侧密度大。 高几乎都占图幅的0.4以上。

"labels_correlogram"

中心点坐标x, y, 框的width, height 4个变量相关关系图

每一行的最后一幅图代表的是x,y,宽和高的分布情况:最上面的图(1,1)表明中心点横坐标x的分布。可以看到大部分集中在整幅图的中心位置;

- (2, 2) 图表明中心点纵坐标y的分布。 可以看到大部分集中在整幅图的中心位置;
- (3,3)图表明框的宽的分布情况。 可以看到大部分框的宽小于整幅图的宽。
- (4, 4) 图表明框的高的分布情况。

其他的图即是寻找这4个变量间的相关关系。

数据增强

数据增强相关参数

• mixup: 0.0 : 混合数据增强的概率。

• copy paste: 0.0 : 复制粘贴数据增强的概率。

• copy_paste_mode: flip : 复制粘贴数据增强的模式。

• auto augment: randaugment : 自动数据增强的类型。

• erasing: 0.4: 随机擦除的概率。

• crop_fraction: 1.0 : 裁剪数据增强的裁剪比例。

hsv h: 0.015 : HSV 数据增强的 H 通道变化范围。

hsv s: 0.7 : HSV 数据增强的 S 通道变化范围。

• hsv v: 0.4 : HSV 数据增强的 V 通道变化范围。

• degrees: 0.0 : 旋转数据增强的角度范围。

translate: 0.1 : 平移数据增强的比例。

scale: 0.5 : 缩放数据增强的比例。

• shear: 0.0: 剪切数据增强的角度范围。

• perspective: 0.0 : 透视数据增强的概率。

• flipud: 0.0: 上下翻转数据增强的概率。

• fliplr: 0.5 : 左右翻转数据增强的概率。

• bgr: 0.0 : BGR 数据增强的概率。

args

