Apprentissage supervisé

Ricco Rakotomalala

Université Lumière Lyon 2

Tableau de données

Variables, caractères, attributs, Descripteurs, champs, etc.

Success	Wages	Job	Refunding
Υ	0	Unemployed	Slow
N	2000	Skilled Worker	Slow
N	1400	Worker	Slow
N	1573	Retired	Slow
Υ	2776	Skilled Worker	Slow
N	2439	Retired	Fast
N	862	Office employee	Slow
Υ	1400	Salesman	Slow
N	1700	Skilled Worker	Slow
Υ	785	Employee	Fast
Υ	1274	Worker	Slow
N	960	Employee	Fast
N	1656	Worker	Fast
N	0	Unemployed	Slow

Individus, observations, objets, enregistrements, etc.

Statut des variables

Success	Wages	Job	Refunding
Υ	0	Unemployed	Slow
N	2000	Skilled Worker	Slow
N	1400	Worker	Slow
N		Retired	Slow
Υ	2776	Skilled Worker	Slow
N	2439	Retired	Fast
N	862	Office employee	Slow
Υ	1400	Salesman	Slow
N	1700	Skilled Worker	Slow
Υ	785	Employee	Fast
Υ	1274	Worker	Slow
N	960	Employee	Fast
N	1656	Worker	Fast
N	0	Unemployed	Slow
	,		,

Variable à prédire Attribut classe Variable endogène

Nécessairement discrète nominale (qualitative)

Variables prédictives Descripteurs Variables exogènes

De type quelconque (nominale, ordinale, continue)

Principes de l'apprentissage supervisé

Population Ω

Objet de l'étude

 $\begin{cases} Y & \text{variableà prédire (endogène) qualitative} \\ X & \text{variables exogènes (quelconques)} \end{cases}$

Une série de variables X=(x1|...|xp)

On veut construire une fonction de classement telle que

$$Y = f(X, \alpha)$$

Objectif de l'apprentissage

Utiliser un échantillon Ω a (extraite de la population) pour choisir la fonction f et ses paramètres α telle que l'on minimise l'erreur théorique

$$ET = \frac{1}{card(\Omega)} \sum_{\Omega} \Delta[Y, \hat{f}(X, \hat{\alpha})]$$

$$o\grave{u}\Delta[.] = \begin{cases} 1siY \neq \hat{f}(X,\hat{\alpha}) \\ 0siY = \hat{f}(X,\hat{\alpha}) \end{cases}$$

Problèmes:

- il faut choisir une famille de fonction
- on utilise un échantillon pour optimiser sur la population

Apprentissage bayésien

(cas particulier du problème à 2 classes - Positifs vs. Négatifs)

Apprentissage en 2 étapes à partir des données :

- estimer la probabilité d'affectation P(Y / X)
 prédire [Y = +] si P(Y = + / X) > P(Y = / X)

Remarques:

- P(Y = + / X) est selon le cas appelé « score » ou « appétence » : c'est la « propension à être un positif »
- · Cette méthode d'affectation minimise l'erreur de prédiction -- c'est un cas particulier du coût de mauvaise affectation

Apprentissage bayésien

(généralisation à K classes)

Apprentissage en 2 étapes à partir des données :

- estimer la probabilité d'affectation $P(Y = y_k / X)$
- prédire $y_{k*} = \arg \max_{k} P(Y = y_k / X)$

Remarque : Lorsque les X sont discrets, nous pouvons en déduire un modèle logique d'affectation.

Si
$$X1 = ?$$
 et $X2 = ?$ et $X3 = ?$... Alors $Y = ?$

prémisse

Apprentissage bayésien -- Exemple

Y		X		
Maladie	Poids	Taille	Marié	Etud.Sup
Présent	45	Trapu	Non	Oui
Présent	57	Elancé	Non	Oui
Absent	59	Elancé	Non	Non
Absent	61	Trapu	Oui	Oui
Présent	65	Elancé	Non	Oui
Absent	68	Elancé	Non	Non
Absent	70	Trapu	Oui	Non
Présent	72	2 Trapu	Non	Oui
Absent	78	Trapu	Oui	Non
Présent	80	Elancé	Oui	Non

- SI taille = ? ALORS Maladie = ?
- SI taille = ? ET etud.sup = ? ALORS Maladie = ?

Avantages et inconvénient du modèle bayésien complet

Optimale, elle minimise l'erreur théorique

- Pas de solution directe pour les descripteurs continus (discrétisation ou hypothèse de distribution)
- Pas de sélection et d'évaluation des descripteurs (individuellement ou des groupes de variables donc pas de sélection)

Nombre d'opérations énorme, ex. 10 descr. Binaires => 2^10 règles

Problème de fragmentation des données
 Plein de cases avec des 0, estimations peu fiables

Cette approche n'est pas utilisable dans la pratique!

Évaluation de l'apprentissage

- Le modèle exprime une « connaissance »

 ① Explication : comprendre la causalité pour mieux l'exploiter

 ② Validation : l'expert peut évaluer la pertinence de l'expertise

 ① Amélioration : l'expert peut intervenir pour ajuster les paramètres calculés (ex. les bornes de discrétisation)

- (i) En apprentissage → pouvoir tester plusieurs pistes (ajout de variables, test de combinaison de variables, modifications de paramètres, etc.)

 (i) En classement, affecter une étiquette à un nouvel individu

 (i) Facilité de mise à jour du modèle (cf. la notion d'incrémentalité)

Précision { i Évaluer la précision (qualité) du modèle lors de son utilisation future

Évaluation de l'apprentissage – Matrice de confusion

Principe : confronter la valeur observée avec la prédiction

		Prédite		
		+	-	Total
rvée	+	а	b	a+b
Observée	-	С	d	c+d
	Total	a+c	b+d	n

Quelques indicateurs:

- Vrais positifs VP = a
- Faux positifs FP = c
- Taux d'erreur = (c+b)/n
- Sensibilité = Rappel = Taux de VP = a/(a+b)
- Précision = a/(a+c)
- Taux de FP = c/(c+d)
- Spécificité = d/(c+d) = 1 Taux de FP

Évaluation – Les coûts de mauvaise affectation

Comparaison de deux méthodes d'apprentissage

		Prédite		
		+	-	Total
bservée	+	40	10	50
Obse	-	20	30	50
	Total	60	40	100

		Prédite		
		+	•	Total
rvée	+	20	30	50
Observée	-	0	50	50
	Total	20	80	100

Une information complémentaire La matrice de coûts de mauvais classement

		Pré	dite
		+	-
vée	+	0	5
Obser	-	1	0

Coût moyen de mauvaise affectation (dont le taux d'erreur est un cas particulier)

Évaluation – Le principe apprentissage & test

Problème : un fichier ne peut pas être juge et partie Dans ce cas, les indicateurs calculés sont dit « de resubstitution » On sait qu'ils sont biaisés -- trop optimistes

Success	Wages	Job	Refunding
Υ	0	Unemployed	Slow
Z	2000	Skilled Worker	Slow
Ν	1400	Worker	Slow
Ν		Retired	Slow
Υ	2776	Skilled Worker	Slow
Ν	2439	Retired	Fast
N	862	Office employee	Slow
Υ	1400	Salesman	Slow
Ν	1700	Skilled Worker	Slow
Υ	785	Employee	Fast
Υ	1274	Worker	Slow
N	960	Employee	Fast
N	1656	Worker	Fast
N	0	Unemployed	Slow

Subdivision aléatoire

Échantillon d'apprentissage Utilisé pour la construction du modèle 70%

Échantillon test Utilisé pour l'évaluation du modèle 30%

Rappel, précision, taux d'erreur...

(exercice: fichier LOAN - Success vs. Housing & Refunding)...

Bibliographique : compréhension des méthodes supervisées

• « Analyse discriminante - Application au risque et au scoring financier », M. Bardos, ed. Dunod, 2001.

Technique pratique, avec de bons repères théoriques, tourné vers les applications

 « The elements of statistical learning - Data Mining, Inference and Prediction », T. Hastie, R. Tibshirani, J. Friedman, Springer 2001.
 Très technique, encyclopédique, indispensable pour la recherche, à lire plusieurs fois