TD 8 : Chaîne de Markov, ergodicité

Exercice 1:

Soit $(X_n)_{n\geq 0}$ la chaîne de Markov sur $E=\{1,2,3,4,5\}$ de matrice de transition P

$$P = \begin{pmatrix} \frac{1}{3} & 0 & \frac{1}{12} & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{1}{4} & 0 & 0 & \frac{3}{4} \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & \frac{1}{4} & \frac{1}{4} & \frac{1}{6} \\ 0 & \frac{1}{3} & 0 & 0 & \frac{2}{3} \end{pmatrix}.$$

- 1. Classer les états de la chaîne. Montrer qu'il existe une unique classe d'équivalence C formée par les états récurrents.
- 2. Soit $\tau = \inf \{n \ge 0, X_n \in C\}$ le temps d'entrée dans C. Calculer $\mathbf{E}_x[\tau]$.
- 3. Calculer pour $x \in E$ et $y \in C$, $\mathbf{P}_x[X_\tau = y]$.
- 4. Déterminer pour tout $x \in E$, $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n X_k$, \mathbf{P}_{x} -p.s.

Exercice 2:

Soit X_n le nombre de particules présentes à l'instant n dans un volume donné V. Le nombre de particules dans ce volume V évolue sur la période [n, n+1[d'après la dynamique suivante :

- une particule (parmi les X_n) a une probabilité p de quitter V
- un nombre aléatoire Z_{n+1} de particules entre dans V

La suite $(Z_n)_{n\geqslant 1}$ est une suite *i.i.d.* de loi de Poisson de paramètre $\lambda>0$ indépendante de X_0 .

- 1. Calculer $\mathbf{E}_x \left[e^{itX_1} \right]$.
- 2. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov de transition

$$Q(x,y) = e^{-\lambda} \sum_{k=0}^{x \wedge y} C_x^k q^k (1-q)^{x-k} \frac{\lambda^{y-k}}{(y-k)!}.$$

En déduire que la chaîne est irréductible.

- 3. On suppose que X_0 suit une loi de Poisson de paramètre θ . Quelle est la fonction caractéristique de X_1 ? Pour quelle valeur de θ la loi de Poisson de paramètre θ est-elle probabilité invariante? Que peut-on dire de la récurrence de $(X_n)_{n\geq 0}$?
- 4. Déterminer $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n X_k$ et $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n X_k^2$.

Exercice 3:

On considère une chaîne de Markov $(X_n)_{n\geq 0}$ sur **N** de matrice de transition

$$P(x, x - 1) = q_x$$
, $P(x, x) = r_x$, $P(x, x + 1) = p_x$

avec $q_x + r_x + p_x = 1$, $q_0 = 0$, $q_x > 0$ si x > 0 et $p_x > 0$. Une telle chaîne est appelée chaîne de naissance et de mort.

On pose $\tau_k = \inf\{n \ge 0, X_n = k\}$ et étant donné trois états a, x et b tels que $a \le x \le b$ on pose $u(x) = \mathbf{P}_x \left[\tau_a < \tau_b\right]$ et $\gamma(x) = \frac{q_1 \dots q_x}{p_1 \dots p_x}$ (avec la définition $\gamma(0) = 1$).

- 1. Montrer que pour tout x > 0, $u(x+1) u(x) = \frac{q_x}{p_q} (u(x) u(x-1))$.
- 2. En déduire que pour tout $a \leq x \leq b$,

$$u(x) = \frac{\sum_{y=x}^{b-1} \gamma_y}{\sum_{y=a}^{b-1} \gamma_y}$$

Que vaut $\gamma(x)$ et u(x) dans le cas symétrique $p_x = q_x$.

- 3. Déterminer $\mathbf{P}_1 [\tau_0 = \infty]$ et montrer que la chaîne est récurrente si et seulement si $\sum_{y \geqslant 0} \gamma_y = +\infty$.
- 4. Déterminer les mesures invariantes de la chaîne $(X_n)_{n\geq 0}$ et en déduire qu'elle est récurrente positive si et seulement si

$$\sum_{x\geqslant 1} \frac{p_0 \dots p_{x-1}}{q_1 \dots q_x} < +\infty.$$