Teste a partir de Casos de Uso

Profa. Ellen Francine

(slides parcialmente elaborados pelo Prof. Marcos L. Chaim)

Introdução

Engenharia de Software

Conjunto de princípios, métodos e técnicas que tratam o software como produto de engenharia que requer planejamento, projeto, implementação e manutenção.

- Objetivo Principal
 - Produzir software de alta qualidade e de baixo custo.

Introdução

- Defeitos no processo de desenvolvimento
 - Quanto antes a presença do defeito for revelada, menor o custo de correção do defeito e maior a probabilidade de corrigi-lo corretamente.
 - Solução: introduzir atividades de V&V ao longo de todo o ciclo de desenvolvimento.

Introdução

- Atividades de V&V
 - Envolvem atividades de análise estática e de análise dinâmica.
 - Análise Estática
 - Revisões Técnicas Formais
 - Inspeções
 - Walkthrough
 - Peer Review
 - Análise Dinâmica
 - Simulações
 - Testes

Atividades Complementares

- Análise dinâmica do produto de software.
 - Processo de executar o software de modo controlado, observando seu comportamento em relação aos requisitos especificados.
- Processo de executar um programa com a intenção de encontrar erros.
 - O teste bem sucedido é aquele que consegue determinar casos de teste que resultem na falha do programa sendo testado.

Objetivo: revelar a presença de erros!!!

• Conjunto de casos de teste é de baixa qualidade?

- Como testar um software?
 - Técnicas e critérios: fornecem maneiras sistemáticas para se conduzir a atividade de teste.
 - Auxiliam na seleção, no projeto dos casos de teste.
 - Que casos de teste utilizar?
 - Entrada + Saída Esperada
 - Um bom caso de teste tem alta probabilidade de revelar um erro ainda não descoberto.

Técnicas de Teste

- Funcional ou Teste Caixa Preta
 - Os testes são baseados exclusivamente na especificação do programa.
 - Nenhum conhecimento de como o programa está implementado é requerido.
- Estrutural ou Teste Caixa Branca
 - Os testes são baseados na estrutura interna do programa, ou seja, na implementação do mesmo.

Técnicas de Teste

- Funcional
 - Critérios
 - Particionamento em Classes de Equivalência
 - Análise do Valor-Limite
 - ...

- Divide os domínios de entrada e saída do programa em classes de dados.
 - Em princípio, todos os elementos de uma classe devem se comportar de maneira equivalente.
 - Classes de equivalência.
- Os casos de teste são derivados a partir das classes de equivalência.

Passos

- 1. Identifique as classes de equivalência.
- 2. Atribua um número único a cada classe de equivalência identificada.
- 3. Até que todas as classes de equivalência *válidas* tenham sido cobertas, escreva um novo caso de teste incluindo o maior número possível de classes *válidas* que ainda não foram cobertas.
- 4. Até que todas as classes de equivalência *inválidas* tenham sido cobertas, escreva um caso de teste para cada uma, e somente uma, classe *inválida* não coberta.

- Se uma entrada (saída) especifica uma faixa, então uma classe válida e duas inválidas devem ser selecionadas.
 - Condição: 0 < x < 10
 - Classe válida: 0 < x < 10
 - Classe inválida: x <= 0
 - Classe inválida: x >= 10

- Se a entrada (saída) especifica um número de valores, então uma classe válida e duas inválidas devem ser identificadas.
 - Condição: imóvel pode possuir de um a seis proprietários
 - Classe válida:
 - de um a seis proprietários
 - Classe inválida:
 - nenhum proprietário
 - mais de 6 proprietários

- Se a entrada (saída) especifica um conjunto de valores, e suspeita-se que eles são tratados de maneira diferente, então deve ser identificada uma classe válida para cada valor e uma única classe inválida.
 - Condição: veículo deve ser: ônibus, caminhão, táxi, veículo de passeio ou motocicleta.
 - Classes válidas: ônibus, caminhão, táxi, veículo de passeio e motocicleta.
 - Classe inválida: trailer.

- Se a entrada (saída) especifica uma determinada situação, devem ser identificadas uma classe válida e uma classe inválida.
 - Condição: primeiro caractere de um identificador deve ser uma letra.
 - Classe válida: primeiro caractere igual a letra.
 - Classe inválida: primeiro caractere diferente de letra.

- Se uma entrada (saída) especifica uma condição booleana, então uma classe válida e uma inválida devem ser selecionadas.
 - Condição: os valores de entrada são inteiros positivos.
 - Classe válida: valor de entrada >= 0
 - Classe inválida: valor de entrada < 0

Passos

- 1. Identifique as classes de equivalência.
- 2. Atribua um número único a cada classe de equivalência identificada.
- Até que todas as classes de equivalência válidas tenham sido cobertas, escreva um novo caso de teste incluindo o maior número possível de classes válidas que ainda não foram cobertas.
- 4. Até que todas as classes de equivalência *inválidas* tenham sido cobertas, escreva um caso de teste para cada uma, e somente uma, classe *inválida* não coberta.

Especificação do programa Identifier:

O programa deve determinar se um identificador é válido ou não em *Silly Pascal* (uma estranha variante do Pascal). Um identificador válido deve começar com uma letra e conter apenas letras ou dígitos. Além disso, deve ter no mínimo 1 caractere e no máximo 6 caracteres de comprimento.

– Exemplo:

abc12 (válido) cont*1 (inválido) 1soma (inválido) a123456 (inválido)

Classes de equivalência

Condições de Entrada	Classes Válidas	Classes Inválidas		
Tamanho t do identificador	$1 \le t \le 6$	t > 6 $t < 1$ (3)		
Primeiro caractere c é uma letra	Sim (4)	Não (5)		
Só contém caracteres válidos	Sim (6)	N ão (7)		

Exemplo de Conjunto de Casos de Teste

 $T_0 = \{(a1, V\text{álido}), (2B3, Inválido), (Z-12, Inválido), (A1b2C3d, Inválido)\}, (vazio, Inválido)$ (1, 4, 6) (5) (7) (2) (3)

Análise do Valor Limite

- Complementa o Particionamento de Equivalência.
 - Fonte propícia a erros os limites de uma classe ou partição de equivalência.

Determinação dos Limites

- Se uma entrada (saída) especifica uma faixa limitada pelos valores x e y, então casos de teste devem ser projetados com os valores x e y e também com valores imediatamente superiores e inferiores a x e y.
 - Se a faixa de entrada é -1.0 < t < 1.0, devem ser criados casos de teste com valores de t igual a -1.0, 1.0, 1.1, -1.1.

Determinação dos Limites

- Se uma entrada (saída) especifica um número de valores, então...
 - Casos de teste devem ser derivados para se exercitar o número máximo e o número mínimo de valores.
 - Valores imediatamente acima e abaixo do número máximo e mínimo também devem ser exercitados por casos de teste.
 - Se um arquivo de entrada pode conter 1 a 25 registros, escreva casos de teste com 0, 1, 25 e 26 registros.

Análise do Valor Limite

Limites

Condições de Entrada	Classes Válidas	Classes Inválidas		
Tamanho t do identificador	$1 \le t \le 6$	t > 6 $t < 1$ (2) (3)		
Primeiro caractere c é uma letra	Sim (4)	Não (5)		
Só contém caracteres válidos	Sim (6)	Não (7)		

- Tamanho do identificador.
 - Os valores 0, 1, 6 e 7.

Como derivar
Casos de Teste
a partir de
Casos de Usos???

- Para derivar casos de teste a partir de casos de uso, utilizam-se os cenários desenvolvidos para os casos de uso com técnicas de teste funcionais.
 - Técnicas Funcionais:
 - Particionamento em classes de equivalência.
 - Análise do valor limite.

Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

- Caso de Uso: Sacar Dinheiro
- Ator principal: Cliente do BancoXYZ
- Tipo: primário, essencial
- Descrição: Cliente cadastrado no banco fornece senhas no caixa eletrônico e saca dinheiro caso tenha saldo na conta.

- Pré-condições: Cliente possui conta no BancoXYZ; senhas de acesso cadastradas.
- Pós-condições: Saldo devidamente atualizado.
- Regra de negócios: Valores de saque devem ser múltiplos de 5, sem centavos.

Sequência típica de eventos:

- 1. Cliente insere o cartão no caixa eletrônico e introduz primeira senha.
- 2. Sistema aprova conta descrita no cartão e a senha introduzida.
- 3. Cliente seleciona valor a ser sacado.
- 4. Sistema verifica que há saldo na conta e solicita segunda senha.
- 5. Cliente fornece segunda senha.
- 6. Sistema aprova senha e fornece o valor solicitado.

Seqüências alternativas

- A1 Linha 1: Primeira senha incorreta. Emitir mensagem de erro.
- A2 Linha 5: Segunda senha incorreta. Emitir mensagem de erro.
- A3 Linha 4: Falta de saldo. Emitir mensagem de erro.

Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

- Condições de entrada para o caso de uso Sacar Dinheiro do Caixa Eletrônico:
 - Conta: válida e inválida.
 - Senha 1: válida e inválida.
 - Senha 2: válida e inválida.
 - Saque: < saldo; = saldo; e > saldo.
 - **Saldo**: > 0; < 0 e = 0.

Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

- Cenários para o caso de uso Sacar Dinheiro do Caixa Eletrônico:
 - Sequência típica de eventos, happy day scenario:
 - Saque bem sucedido.
 - Sequências alternativas:
 - Primeira senha incorreta.
 - Segunda senha incorreta.
 - Falta de saldo na conta.

- Sequência alternativa A1
 Primeira senha incorreta:
 - 1.1 Cliente insere o cartão no caixa eletrônico e introduz primeira senha.
 - 1.2 Sistema aprova conta descrita no cartão, mas a senha introduzida é incorreta.
 - 1.3 Sistema emite mensagem de erro "senha caixa eletrônico incorreta".
 - 1.4 Volta para o passo 1 da seqüência típica.

Sequêcia alternativa A2 Segunda senha incorreta:

- 2.1 Cliente insere o cartão no caixa eletrônico e introduz primeira senha.
- 2.2 Sistema aprova conta descrita no cartão e a senha introduzida.
- 2.3 Cliente seleciona valor a ser sacado.
- 2.4 Sistema verifica que há saldo na conta e solicita segunda senha.
- 2.5 Cliente fornece segunda senha.
- 2.6 Senha fornecida é incorreta e sistema emite mensagem de erro "senha cartão incorreta".
- 2.7 Volta para o passo 4 da seqüência típica.

- Sequência alternativa A3 Falta de saldo na conta:
 - 3.1 Cliente insere o cartão no caixa eletrônico e introduz primeira senha.
 - 3.2 Sistema aprova conta descrita no cartão e a senha introduzida.
 - 3.3 Cliente seleciona valor a ser sacado.
 - 3.4 Sistema verifica que não há saldo na conta e emite mensagem de erro "falta de saldo para realizar saque".
 - 3.5 Volta para o passo 1 da seqüência típica.

Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

Projeto de Casos de Teste

Cas de Tes	Cenário	Conta	Senha 1	Senha 2	Saldo	Saque	Saída Esperada
1	Seqüência típica – Saque bem sucedido	Válida	Válida	Válida	Saldo > 0	Saque < Saldo	Dinheiro entregue
2		Válida	Válida	Válida	Saldo > 0	Saque = Saldo	Dinheiro entregue
3		Válida	Válida	Válida	Saldo > 0	Saque < Saldo	Dinheiro entregue
4	Seqüência A1 – Senha 1 incorreta	Válida	Inválida				Mensagem – Senha do caixa incorreta
5	Seqüência A2 – Senha 2 incorreta	Válida	Válida	Inválida	Saldo > 0	Saque < Saldo	Mensagem – Senha do cartão incorreta

Projeto de Casos de Teste

Caso de		Conta	Senha 1	Senha 2	Saldo	Saque	Saída Esperada
Teste	Э						
6	Seqüência A3 – Falta de saldo na conta	Válida	Válida	Válida	Saldo > 0	Saque > Saldo	Mensagem – Falta de saldo para saque
7		Válida	Válida	Válida	Saldo > 0	Saque > Saldo	Mensagem – Falta de saldo para saque
8		Válida	Válida	Válida	Saldo = 0		Mensagem – Falta de saldo para saque
9		Válida	Válida	Válida	Saldo < 0		Mensagem – Falta de saldo para saque
10	Seqüência alternativa ausente – conta inválida	Inválida					Mensagem – conta inválida

Passos

- 1. Identificar as condições de entrada do caso de uso.
- 2. Identificar os cenários.
- 3. Para cada cenário desenvolver casos de teste variando as classes de equivalência e os valores limites, quando possível.
- 4. Adicionar valores para os casos de teste.

Casos de Teste

Caso de		Conta	Senha 1	Senha 2	Saldo	Saque	Saída Esperada
Teste	е						
1	Seqüência típica – Saque bem sucedido	Válida (1511- 15)	Válida (151101)	Válida (010877)	Saldo > 0 (100)	Saque < Saldo (50)	Dinheiro entregue
2		Válida (1511- 15)	Válida (151101)	Válida (010877)	Saldo > 0 (100)	Saque = Saldo (100)	Dinheiro entregue
3		Válida (1511- 15)	Válida (151101)	Válida (010877)	Saldo > 0 (100)	Saque < Saldo (99)	Dinheiro entregue
4	Seqüência A1 – Senha 1 incorreta	Válida (1511- 15)	Inválida (151111)				Mensagem – Senha do caixa incorreta
5	Seqüência A2 – Senha 2 incorreta	Válida (1511- 15)	Válida (151101)	Inválida (010878)	Saldo > 0 (100)	Saque < Saldo (50)	Mensagem – Senha do cartão incorreta

Processo de Software

