

Sistem Pernapasan

A. PENDAHULUAN

- Sistem pernapasan adalah sistem organ pada manusia yang berperan dalam metabolisme tubuh melalui pernapasan dan respirasi.
- Pernapasan adalah proses pertukaran gas/udara antara makhluk hidup dengan lingkungannya.
- Respirasi adalah proses metabolisme tubuh menggunakan glukosa dan O₂ dan untuk menghasilkan energi dan zat sisa CO₂.

B. ORGAN SISTEM PERNAPASAN

🔌 Udara pernapasan masuk melalui jalur berikut:

1) Hidung

Adalah alat pernapasan terluar yang dilengkapi dengan dua lubang yang dibatasi sekat hidung, saraf-saraf penciuman (sel olfaktori), silia dan selaput lendir.

Fungsi hidung:

- a. Menyesuaikan suhu udara
- b. Melembapkan udara
- c. Menyaring kotoran pada udara
- d. Indra penciuman

Faring (rongga tekak)

Adalah daerah dengan percabangan menuju rongga hidung, esofagus, dan trakea. Faring dilengkapi **epiglotis** yang dapat membuka dan menutup.

- a. Dalam keadaan biasa, epiglotis akan selalu terbuka.
- Ketika makanan masuk, epiglotis menutup faring sehingga makanan masuk ke dalam esofagus.

3) Laring

Adalah pangkal tenggorakan yang terdiri dari lempengan-lempengan tulang rawan.

Dinding laring digerakkan otot untuk membuka dan menutup **glotis** yang menghubungkan faring dengan trakea.

Laring dilengkapi dengan **pita suara** yang terletak pada jakun yang menghasilkan suara.

4) Trakea (tenggorokan)

Adalah batang tenggorokan yang tersusun atas cincin tulang rawan, terletak di depan esofagus.

Trakea dilengkapi oleh silia-silia dan selaput lendir untuk mencegah udara kotor yang lolos dari saringan hidung masuk ke paru-paru.

5) Paru-paru (pulmo)

Adalah alat pernapasan yang terletak di dalam rongga dada, di kanan-kiri jantung, dan di atas diafragma. Paru-paru dilindungi oleh suatu lapisan berupa cairan limfa yang disebut **pleura**.

Pleura di sebelah dalam disebut pleura paruparu (*pleura visceralis*) dan di sebelah luar disebut pleura rongga dada (*pleura parietalis*).

Paru-paru terbagi menjadi dua bagian:

- a. **Paru-paru kanan** (3 lobus, 3 bronkiolus, 3 kelompok alveolus)
- b. Paru-paru kiri (2 lobus, 2 bronkiolus, 2 kelompok alveolus)

6) Bronkus dan bronkiolus

Bronkus adalah cabang trakea yang terletak di bagian dada, dan terdiri atas lempengan tulang rawan dan otot halus.

Bronkus bercabang ke arah kiri dan kanan dan menuju paru-paru, yang disebut **bifurkasi.**

Bronkus selanjutnya mengalami percabangan lagi yang disebut **bronkiolus.**

7) Alveolus

Bronkiolus bercabang lagi membentuk saluran yang lebih halus kemudian berakhir pada gelembung paru-paru yang disebut **alveolus.**

Alveolus memiliki dinding yang sangat tipis dan mengandung kapiler darah. Alveolus merupakan tempat pertukaran O₂ dan CO₂ secara difusi.

C. MEKANISME PERNAPASAN

- 🔌 Pernapasan terjadi dalam dua siklus:
 - Fase inspirasi, masuknya udara ke dalam paru-paru, karena tekanan di dalam lebih rendah daripada di luar paru-paru.
 - 2) **Fase ekspirasi**, keluarnya udara dari dalam paru-paru, karena tekanan di dalam lebih tinggi daripada di luar paru-paru.
- 🔦 Pernapasan terjadi melalui dua mekanisme:
 - Pernapasan dada, terjadi karena gerakan tulang-tulang rusuk oleh otot-otot antar rusuk (interkostalis).
 - Pernapasan perut, terjadi karena gerakan otot diafragma.

Pernapasan dada

inspirasi	otot antar rusuk luar kontraksi, rongga dada membesar, udara masuk
ekspirasi	otot antar rusuk dalam kontraksi, rongga dada mengecil, udara keluar

Pernapasan perut

inspirasi	diafragma kontraksi dan mendatar, rongga dada membesar, udara masuk
ekspirasi	diafragma relaksasi dan mencembung, rongga dada mengecil, udara keluar

Kapasitas paru-paru adalah jumlah volume udara yang dapat ditampung oleh paru-paru.

- 🔪 Kapasitas paru-paru terdiri dari:
 - Udara tidal (pernapasan), yaitu volume ketika inspirasi atau ekspirasi, ±500 mL.

- Udara cadangan inspirasi (komplementer), yaitu volume ketika inspirasi kembali setelah inspirasi, ±1500 mL.
- Udara cadangan ekspirasi (subplementer), yaitu volume ketika ekspirasi kembali setelah ekspirasi, ±1500 mL.
- Udara residu, yaitu volume sisa yang selalu berada dalam paru-paru dan tidak dapat diekspirasikan, ±1000 mL.
- 5) **Kapasitas inspirasi**, yaitu jumlah udara tidal dan cadangan inspirasi, **±2000 mL**.
- Kapasitas residu fungsional, yaitu jumlah udara residu dan cadangan ekspirasi, ±2500 mL.
- Kapasitas vital, yaitu jumlah udara maksimum yang dapat diekspirasikan setelah inspirasi sekuat-kuatnya, kira-kira ±3500 mL.
- 8) **Kapasitas total**, yaitu jumlah kapasitas vital ditambah udara residu, kira-kira **±4000 mL**.
- Frekuensi pernapasan seseorang dipengaruhi beberapa faktor.

Faktor	makin cepat				
Jenis kelamin	perempuan	laki-laki			
Usia	tua	muda			
Tinggi badan	pendek	tinggi			
Posisi badan	berbaring	berdiri			
Aktivitas	santai	berat			
Suhu tubuh	tinggi	rendah			
Kadar oksigen	kadar tinggi	kadar rendah			

D. MEKANISME PERTUKARAN OKSIGEN DAN KARBONDIOKSIDA

- ◆ Dari sisi tekanan, oksigen dan karbondioksida dapat bertukar karena perbedaan tekanan.
- **Pertukaran oksigen** terjadi melalui mekanisme:
 - Oksigen masuk ke dalam tubuh melalui inspirasi.
 - Oksigen berdifusi melalui alveolus menuju kapiler arteri paru-paru karena tekanan parsial oksigen di sekitar alveolus lebih tinggi dibanding kapiler darah.
 - 3) Oksigen dalam kapiler darah **diikat oleh hemoglobin** (Hb) menjadi **oksihemoglobin** (HbO₂).

Reaksi kesetimbangan yang terjadi pada proses pengikatan oksigen adalah:

$$Hb_4 + 4O_2 \rightleftharpoons 4HbO_2$$

 Oksihemoglobin kemudian berdifusi masuk ke dalam sel-sel tubuh untuk digunakan dalam proses respirasi.

- Pertukaran karbondioksida terjadi melalui mekanisme berikut:
 - 1) Respirasi pada mitokondria sel menghasilkan zat sisa yaitu CO₂.
 - Karbondioksida berdifusi dari sel menuju kapiler vena karena tekanan parsial karbondioksida dalam sel lebih tinggi dibanding kapiler vena.
 - 3) Karbondioksida pada kapiler vena kemudian **dibawa** menuju alveolus dengan tiga cara:

a. Oleh plasma darah

Setidaknya 5% CO₂ larut dalam plasma darah membentuk asam karbonat dengan bantuan enzim karbonat anhidrase.

$$CO_2 + H_2O \rightarrow H_2CO_3$$

Akibatnya pH darah turun, namun dinetralkan oleh ion Na⁺ dan K⁺.

b. Oleh hemoglobin

Setidaknya 30% CO₂ membentuk karbominohemoglobin.

$$Hb + CO_2 \rightleftharpoons HbCO_2$$

c. Dengan pertukaran klorida

Setidaknya 65% CO₂ diangkut dalam bentuk ion bikarbonat menurut reaksi:

$$CO_2 + H_2O \rightleftharpoons H_2CO_3$$

 $H_2CO_3 \rightarrow H^+ + HCO_3^-$

Dalam sel, H⁺ bersifat racun, sehingga diikat oleh hemoglobin.

Ion bikarbonat yang berada dalam sel darah merah kemudian keluar menuju plasma darah, bertukar dengan ion Cl⁻.

- 4) **Karbondioksida dilepaskan** oleh darah dan berdifusi melalui alveolus menuju paru-paru.
- 5) **Karbondioksida keluar** dari tubuh melalui ekspirasi.

E. ENERGI PERNAPASAN

Respirasi aerob adalah respirasi yang menggunakan oksigen untuk menghasilkan energi dengan mengoksidasi zat-zat makanan menurut reaksi:

$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O + ATP$$

- Pada respirasi aerob, jumlah ATP yang dihasilkan adalah 38 ATP.
- Respirasi anaerob adalah respirasi yang tidak menggunakan oksigen untuk menghasilkan energi.
- Pada respirasi anaerob, makanan tidak teroksidasi sempurna, membentuk asam laktat, dan jumlah ATP yang dihasilkan hanya 2 ATP.
- Asam laktat kemudian akan menumpuk pada otot sehingga menyebabkan kelelahan. Agar

asam laktat dapat dioksidasi tubuh, maka tubuh melakukan reaksi dengan membuat nafas tersengal-sengal untuk mendapat lebih banyak oksigen.

(akan dipelajari di Biologi 3)

F. GANGGUAN PADA SISTEM PERNAPASAN

- Beberapa gangguan dan kelainan yang dapat dialami sistem pernapasan antara lain:
 - Peradangan, dapat disebabkan oleh virus, bakteri, dan gaya hidup yang buruk (seperti merokok).
 - Contoh peradangan antara lain adalah sinusitis (rongga hidung), faringitis (faring), laringitis (laring), bronkitis/batuk (bronkus), dan pleuritis (pleura).
 - 2) **Asfiksi**, yaitu gangguan pengangkutan oksigen ke jaringan, akibat tenggelam atau keracunan gas beracun.
 - Hipoksia/adenoid, yaitu kegagalan metabolisme tubuh akibat kekurangan oksigen pada jaringan.
 - 4) **Asidosis**, yaitu peningkatan kadar asam karbonat darah akibat keracunan CO₂ dan CO yang menyebabkan turunnya pH darah.
 - 5) Asma, yaitu penyempitan saluran pernapasan atau hipersensitivitas bronkiolus terhadap benda asing atau stimulan lain. Penyakit ini menyebabkan rasa sesak di dada, batuk-batuk dan susah bernapas.
 - 6) **Emfisema**, yaitu hilangnya elastisitas paruparu dan dinding alveolus.
 - 7) **Tuberkulosis (TBC)**, disebabkan oleh bakteri *Mycobacterium tuberculosae* yang menyebabkan munculnya tuberkel (bintikbintik di sekitar alveoulus) yang menyebabkan gangguan difusi oksigen karena.
 - 8) **Dipteri**, disebabkan oleh bakteri *Coryne-bacterium diptherial* yang menyebabkan faringitis dan laringitis.
 - 9) **Pneumonia**, disebabkan oleh bakteri *Diplococcus pneumoniae* yang menyebabkan alveolus terisi cairan limfa.