$$X = Ne\left(\frac{1}{r^2} - \frac{r}{R^3}\right) \quad [\text{and}]^1$$

$$V = Ne\left(\frac{1}{r} - \frac{3}{2R} + \frac{r^2}{2R^3}\right).$$

$$X = Ne\left(\frac{1}{r^2} - \frac{r}{R^3}\right)$$

$$V = Ne\left(\frac{1}{r} - \frac{3}{2R} + \frac{r^2}{2R^3}\right).$$

CLASSICAL THEORY Space-Time Description [and] Causality

$\begin{array}{c} \text{QUANTUM THEORY} \\ Either & Or \\ \text{Space-Time Description} \\ But \\ \text{Indeterminacy Relations} \end{array} \begin{array}{c} \text{Statistical} \\ \text{Correlations} \\ \end{array} \begin{array}{c} \text{Mathematical Model} \\ \text{Not in Space and Time} \\ But \\ \text{Causality} \end{array}$

¹[To determine the electric potential we *integrate* the field strength X over distance (see Appendix II B, 269-71 below for a discussion of this), from s=r to s=R (it is not necessary to consider radii greater than R because, the atom as a whole being electrically neutral, there is no field beyond R). Thus Rutherford's expression for V is the result of having evaluated the integral $\int_r^R Ne(1/s^2 - s/R^3) \, ds$.]

²[To determine the electric potential we *integrate* the field strength X over distance (see Appendix II B, 269-71 below for a discussion of this), from s=r to s=R (it is not necessary to consider radii greater than R because, the atom as a whole being electrically neutral, there is no field beyond R). Thus Rutherford's expression for V is the result of having evaluated the integral $\int_r^R Ne(1/s^2 - s/R^3) \, ds$.]

$\begin{array}{c} {\rm CLASSICAL\ THEORY} \\ {\rm Space-Time\ Description\ [and]\ Causality} \end{array}$

QUANTUM THEORY

 $\begin{array}{c|c} Either & & Or \\ \text{Space-Time Description} \\ But & Correlations \end{array} \right\} \begin{array}{c} \text{Statistical} \\ \text{Correlations} \end{array} \left\{ \begin{array}{c} \text{Mathematical Model} \\ \text{Not in Space and Time} \\ But \\ \text{Causality} \end{array} \right.$

TABLE VI^a

t_g Sec.	t_F Sec.	$\frac{1}{t_F}$	$\frac{1}{t_F'} - \frac{1}{t_F}$	n'	$\frac{1}{n'} \left(\frac{1}{t_F'} - \frac{1}{t_F} \right)$	$\frac{1}{t_g} + \frac{1}{t_F}$	n	$\frac{1}{n}(\frac{1}{t_g} + \frac{1}{t_F})$
11.848	80.708	.01236				.09655	18	.005366
11.890	22.366	}	.03234	6	.005390			
11.908	22.390	.04470 {				.12887	24	.005371
11.904	22.368	}	.03751	7	.005358			
11.882	140.565	.007192				.09138	17	.005375
		}	.005348	1	.005348			
11.906	79.600	.01254				.09673	18	.005374
11.838	34.748	}	.01616	3	.005387			
11.816	34.762	.02870				.11289	21	.005376
11.776	34.846							
11.840	29.286							
	}	.03414				.11833	22	.005379
11.904	29.236	}	.026872	5	.005375			
11.870	137.308	.007268 {				.09146	17	.005380
		}	.021572	4	.005393			
11.952	34.638	.02884 {				.11303	21	.005382
11.860		}	.01623	3	.005410			
11.846	22.104							
	}	.04507 {		_		.12926	24	.005386
11.912	22.268	}	.04307	8	.005384			
11.910	500.1	.002000		_		.08619	16	.005387
11.918	19.704	05050	.04879	9	.005421	10100		007000
11.050	10.000	.05079				.13498	25	.005399
11.870	19.668		00[=0]4	_	0054[00]			
11 000	77.690		.03[79]4	7	.0054[20]			
11.888	77.630	01005				00704	10	005200
11.894	77.806	.01285 {	.01079	2	.005395	.09704	18	.005390
11.878	42.302	$\begin{bmatrix} .02364 \end{bmatrix}$.01079		666600.	.10783	20	.005392
-	42.302	.02304 /				.10103	20	.000332
11.880			Means		.005386			.005384

Duration of exp.	=45 min.	Pressure	= 75.62 cm.					
Plate distance	= 16 mm.	Oil density	= .9199					
Fall distance	= 10.21 mm.	Air viscosity	$= 1,824 \times 10^{-7}$ [poise]					
Initial volts	= 5,088.8	Radius (a)	= .[0]000276 cm.					
Final volts	= 5,081.2	$\frac{l}{a}$ [mean free path $\div a$]	= .034					
Temperature	= 22.82°C.	Speed of fall	= .08584 cm./sec.					
$e_i = 4.991 \times 10^{-10} \text{ [statcoulomb]}^b$								

 $[^]a[$ The bracketed numbers are our corrections of errors in the original paper.] $^b[$ The value presently accepted is 4.802×10^{-10} stateoulombs.]