SPRAWOZDANIE 4

Podstawy Sztucznej Inteligencji Klasyfikator Bayesa Program WEKA 4

Natalia Gadocha 304165 Geoinformatyka III rok

Zadanie 1

P(A1) = 0,1

P(A2) = 0.9

P(T+/A1) = 0.5

P(T+/A2) = 0.02

P(A1/T+) = P(T+/A1)*P(A1)/P(T+) = 0.735

P(T+) = P(T+/A1) *P(A1) + P(T+/A2)*P(A2) = 0,068

Zadanie 2

P(A1) = 99,95% = 0,9995

P(A2) = 0.05% = 0.0005

P(T+/A1) = 3% = 0.03

P(T+/A2) = 98% = 0.98

P(A2/T+) = P(T+/A2)*P(A2)/P(T+) = 0.016078

P(T+) = P(T+/A1) *P(A1) + P(T+/A2)*P(A2) = 0,030475

Zadanie 3

Atrybut 1 K+	A2 K+	A3 K+	A4 K+	A1 K-	A2 K-	A3 K-	A4 K-
4/5	3/5	3/5	2/5	1/3	1/3	1/3	3/3

$$X(9,K+) = 4/5 * 3/5 * 3/5 * 2/5 = 72/625$$

$$X(9,K-) = 1/3 * 1/3 * 1/3 = 1/27$$

Zadanie 4

Naive Bayes

- Oparty jest na założeniu o wzajemnej niezależności zmiennych niezależnych.
- Przy jego pomocy klasyfikacja jest tak długo poprawna, jak długo poprawna klasa jest bardziej prawdopodobna od innych. Pozwala przewidzieć prawdopodobieństwo przynależności obiektu do klasy.
- Używany przy problemach o bardzo wielu wymiarach na wejściu.
- Prosty w użyciu i skuteczny
- Gdzie sobie poradzi? Z klasami binarnymi, brakującymi wartościami klasy, Atrybutami binarnymi; pustymi nominalnymi, nominalnymi, numerycznymi i jednoargumentowymi

Naive Bayes Updateable

- Używa domyślnej precyzji 0,1 dla atrybutów liczbowych przy wywołaniu z zerową liczbą instancji szkoleniowych
- Naive Bayes obsługuje uczenie się parametrów, natomiast NB Updatable wskazuje tylko, czy implementacja obsługuje ową funkcję.

Analizę danych zaczniemy od wizualizalnego ich porównania. Jak możemy dostrzec, dwie zmienne przedstawione są w inny sposób. Są to bowiem temperature oraz humidity. Dla danych numeric zmienne te nie są rozdzielone, widać ich ciągłość.

Przejdźmy więc teraz już do wyników klasyfikacji Bayesa.

Weather Numeric

	NB	NBU	
Total Number of Instances	14	14	
Correctly Classified Instances	9 64.2857 %	9 64.2857 %	
Incorrectly Classified Instances	5 35.7143 %	5 35.7143 %	
Kappa statistic	0.1026	0.1026	
Mean absolute error	0.4649	0.4649	
Root mean squared error	0.543	0.543	
Relative absolute error	97.6254 %	97.6254 %	
Root relative squared error	110.051 %	110.051 %	
Precision	0,607	0,607	

Weather Nominal

	NB	NBU	
Total Number of Instances	14	14	
Correctly Classified Instances	8 57.1429 %	8 57.1429 %	
Incorrectly Classified Instances	6 42.8571 %	6 42.8571 %	
Kappa statistic	Kappa statistic -0.0244		
Mean absolute error	0.4374	0.4374	
Root mean squared error	0.4916	0.4916	
Relative absolute error	91.8631 %	91.8631 %	
Root relative squared error	99.6492 %	99.6492 %	
Precision	0,528	0,528	

Naive Bayes	Classifier		NaiveBayesUpdateable	Naive Bayes Cl	assifier		
-			Naive Dayes Opuate able	Harve Dayes or	45511151		Naive
	Class				Class		
Attribute	yes	no		Attribute	yes	no	
	(0.63)	(0.38)			(0.63)	(0.38)	
	:========		=	=========	======	======	
outlook	2 0		0	outlook			
-	3.0				3.0		
overcast			_	overcast			
rainy	4.0			rainy			
[total]	12.0	8.	0	[total]	12.0	8.0	
temperature				temperature			
mean	72.9697	74.836	4	mean	72.9697	74.8364	
std. dev.	5.2304	7.38	4	std. dev.	5.2304	7.384	
weight sum	n 9		5	weight sum	9	5	
precision	1.9091	1.909	1	precision			
humidity				humidity			
	78.8395	86.111	1	numidity mean	70 0205	06 1111	
	9.8023			mean std. dev.			
	n 9			weight sum			
-	3.4444			precision			
windy							
-	4.0	4	_	windy	4.0	4.0	
	7.0		-	TRUE			
[total]	11.0			FALSE		3.0	
[cocar]	11.0	7.	•	[total]	11.0	7.0	
Time taken t	o build mode	el: 0 s	econds	Time taken to	build mode	el: 0 sec	onds
1				4			

Jeżeli chodzi o wartości Naive Bayes oraz Naive Bayes Updateable, dla obu danych nie zauważamy dużych różnic między poszczególnymi odpowiednimi wynikami. Dotyczy to obu plików. Można jednak dostrzec już różnice pomiędzy zbiorami weather_numeric i weather_nominals. Przede wszystkim poprawne dopasowanie dla danych _numeric jest większe. Różnica ta wynosi około 7%, czyli o wartość 1. Dla tego zbioru danych otrzymujemy również większą precyzję. Dla _nominals mamy jednak mniejszy błąd bezwzględny oraz średni i względny kwadratowy. Mocno wyróżniającym wynikiem dla niego jest ujemna wartość Kappa. Na powstające różnice ma wpływ szkielet i wygląd samych danych. Klasyfikator NB jest wysoce skalowalny oraz wymaga szeregu parametrów liniowych w stosunku do liczby zmiennych w problemie uczenia się.

Multinominal Naive Bayes

Naszymi badanymi danymi jest ReuterGrain-train.arff. Widzimy że mamy dwa atrybuty: text (typ string) oraz class (typ nominal). Wizualnie przedstawiają się następująco:

Przejdźmy więc teraz do właściwej analizy. Otrzymane wyniki to:

	NB		NaiveBayesMultinomial		J48	
Total Number of Instances	604		604		604	
Correctly Classified Instances	485	80.298 %	548	90.7285 %	582	96.3576 %
Incorrectly Classified Instances	119	19.702 %	56	9.2715 %	22	3.6424 %
Kappa statistic	0.3459		0.6016		0.7563	

Mean absolute error	0.1984	0.0946	0.043		
Root mean squared error	0.4409	0.2944	0.1859		
Relative absolute error	133.5501 %	63.6592 %	28.9093 %		
Root relative squared error	150.1588 %	100.2715 %	63.3132 %		
Precision	0,912	0,944	0,963		
Confusion Matrix	a b < classi 439 108 a = 0 11 46 b = 1	a b < classified 496 51 a = 0 5 52 b = 1	a b < class 544 3 a = 0 19 38 b = 1		

Na podstawie powyższych danych możemy zaobserwować, iż najlepsze wyniki otrzymał algorytm J48. Ma największą, wysoką precyzję oraz wysoką poprawną klasyfikację, a zarazem małe błędy. Wyniki dla Naive Bayes Multinomial są również wysokie oraz zbliżone do algorytmu J48. Najgorzej z tych trzech przypadków poradził sobie natomiast klasyfikator Naive Bayes. Ma najniższą precyzję oraz trafność. Multinominal jest również zdecydowanie szybszy od klasyfikatora Naive Bayes.

String To Word Vector

Filtr ten konwertuje atrybuty łańcuchów na zestaw atrybutów liczbowych reprezentujących informacje o występowaniu słów z tekstu zawartego w łańcuchach. Dane te pozyskiwane i zapamiętywane są głównie z pierwszej przefiltrowanej partii danych, zazwyczaj uczących.

- outputWordCounts wyjściowe słowa są wyświetlane jako wartości logiczne: 0 (brak wystąpienia) albo 1 (słowo wystąpiło).
- lowerCaseTokens wszystkie tokeny słów są konwertowane na małe litery przed dodaniem do słownika.
- useStoplist ignoruje wszystkie słowa, które znajdują się na stopliście.

Bez dodatkowych ustawień:

Correctly Classified Instances 548 90.7285 %

Root mean squared error 0.2944
Relative absolute error 63.6592 %
Precision 0,944

Time 0.16 seconds

Z ustawnionym OutputWordCounts

Poprawa poprawnie sklasyfikowanych obiektów na 550 91.0596% Względny błąd również się zmniejsza na 60.6365% Podobnie jest z błędem średniokwadratowym - 0.2908 Precyzja również wzrasta 0,949 Krótszy czas potrzebny do wykonania o 0,03 s

Dodatkowe ustawienie loweCaseTokens

Ponowna poprawa poprawnie sklasyfikowanych obiektów na 554 91,7218% Zmniejszenie błędów o około 4%, oraz jednoczesne zwiększenie precyzji Skrócenie czasu wykonywania o 0,2 s

Kolejne ustawienie useStoplist

Correctly Classified Instances 560 92.7152 %

Root mean squared error 0.2638
Relative absolute error 50.1639 %
Precision 0,957

Time 0.10 seconds

Kolejne ustawienia więc powodowały poprawę wyników i czasu generacji. Skuteczność algorytmu wzrosła. Opcje te są zatem bardzo efektywne, potrafią zoptymalizować wyniki oraz szybkość ich otrzymywania.