МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ И ПРОГРАММНОЙ ИНЖЕНЕРИИ (КАФЕДРА 43)

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ:		_		
ПРЕПОДАВАТЕЛЬ:				
Старший преподаватель /		/	/	Е. В. Павлов
(должность, учёная степень, звание)	(подпись)	(дата защиты)	·	(инициалы, фамилия)
ОТЧЕТ О Л	АБОРАТОР	НОЙ РАБОТЕ	<i>№1</i>	
«СТРУКТ)	УРНЫЙ <i>АН</i> А	АЛИЗ СИСТЕМ	1Ы.	
РАЗРАБОТКА Д				НЫХ.
СОСТАВЛЕНИЕ		•	•	
ПО КУРСУ: «ПРОЕКТ	ИРОВАНИЕ	<i>ПРОГРАММ</i> І	НЫХ	СИСТЕМ»
РАБОТУ ВЫПОЛНИЛ (-А) СТУДЕНТ	Г (-КА):	4033 (номер группы)	/_	X.B. Сидиропуло (инициалы, фамилия)
		(nodpug c		/ 03.04.2022

ВВЕДЕНИЕ

Актуальность. Как и все лучшие методологии моделирования, которые используются для проектирования новых или анализа уже существующих систем, диаграммы потоков данных (далее DFD) способны лучше передать те аспекты систем и процессов, которые трудно выразить словами. Кроме того, графическая нотация DFD обладает низким порогом вхождения как для технической, так и нетехнической аудиторий, начиная от разработчика и заканчивая генеральным директором. Поэтому DFD, получившие широкое распространение в конце 1970-х годов, на текущий момент остаются популярным и релевантным инструментом для проектирования и анализа программных систем.

Цель лабораторной работы:

Изучить методологию структурного анализа на примере диаграммы потоков данных и получить навыки представления системы в виде иерархической структуры.

Для достижения поставленной в лабораторной работе цели подлежат решению следующие задачи:

В соответствии с индивидуальным вариантом задания необходимо выполнить анализ предметной области и начертить структурную модель системы в виде диаграммы потоков данных (DFD), которая должна удовлетворять следующим требованиям:

- 1) На контекстной диаграмме (DFD 0-го уровня) показано минимум 4 внешние сущности;
- 2) Декомпозиция контекстной диаграммы (DFD 1-го уровня) содержит суммарно не менее 20 процессов для любых 4 внешних сущностей, которые показаны на контекстной диаграмме;
- 3) Декомпозиция любых 2 процессов DFD 1-го уровня (DFD 2-го уровня) содержит суммарно не менее 8 подпроцессов;
- 4) Любые 2 подпроцесса DFD 2-го уровня сопровождены спецификацией на структурированном естественном языке;
- 5) Каждая спецификация процесса содержит не менее 4 конструкций выбора и/или итерации.

Предметная область, в рамках которой выполнена реализация задач:

54 Образовательный веб-портал (курсы и вебинары)

1 Структурная модель системы

1.1 Контекстная диаграмма (границы системы)

Рисунок 1 — Контекстная диаграмма (DFD 0-го уровня)

1.2 DFD 1-го уровня (декомпозиция контекстной диаграммы)

Рисунок 2 — Фрагмент DFD 1-го уровня: взаимодействие посетителя сайта с элементами начальной страницы

Рисунок 3 — Фрагмент DFD 1-го уровня: взаимодействие посетителя сайта с элементами раздела курса/вебинара

Рисунок 4 — Фрагмент DFD 1-го уровня: взаимодействие посетителя сайта с элементами курса/вебинара

Рисунок 5 — Фрагмент DFD 1-го уровня: взаимодействие посетителя сайта с элементами поиска и навигации

Рисунок 6 — Фрагмент DFD 1-го уровня: задачи авторизованного пользователя

Рисунок 7 — Фрагмент DFD 1-го уровня: задачи SMM

Рисунок 8— Фрагмент DFD 1-го уровня: задачи администратора

1.3 DFD 2-го уровня

Рисунок 9 — Фрагмент DFD 2-го уровня: декомпозиция процесса 31«Добавить или изменить курса/вебинара»

Рисунок 10 — Фрагмент DFD 2-го уровня: декомпозиция Процесса 33 «Редактировать раздел ведущих»

2 Спецификация процессов

2.1 Спецификация процесса 33.2

Номер и имя процесса:	33.2 «Добавить ведущего»	
Входные потоки данных:	ФИО, опыт, фото	
Выходные потоки данных:	статус операции; запрос к таблице ведущих	

Описание логики процесса:

Открыть модальное окно добавления ведущего

Cmamyc onepayuu = false

WHILE (Статус операции не равен true)

Предложить пользователю заполнить поля формы добавления

ведущего

IF данные корректны

Выделить поле с данными зеленым цветом

ELSE

Выделить поле с данными красным цветом

ENDIF

IF загрузка изображения

IF файл соответствует требованиям по размеру и формату

Сжать изображение

Обновить иконку аватара

ELSE

Сообщить пользователю, что загружаемый файл не соответствует заданным требованиям

ENDIF

ENDIF

IF добавить ведущего

IF пользователь заполнил все обязательные поля

Запрос к базе данных на добавление нового ведущего

Сохранить сжатое изображение на сервер

Cmamyc onepayuu = true

ELSE

Подсветить незаполненные поля

Сообщить пользователю, что данные поля являются

обязательными для заполнения

ENDIF

ENDIF

ENDWHILE

Закрыть модальное окно

Сообщить пользователю, что новый ведущий добавлен Обновить страницу раздела ведущих

Нерешенные проблемы:

Для полей формы добавления автора необходимо определить допустимые символы и ограничения длины

Также необходимо определить допустимые форматы изображения и ограничение размера файла

Также необходимо проверять подлинность опыта у преподавателя

2.2 Спецификация процесса 31.2

Номер и имя процесса:	31.2 «Добавить курс/вебинар»
Входные потоки данных:	Дата, название, тип(курс или вебинар), ведущий, цена
Выходные потоки данных:	статус операции; запрос к таблице Курсы/Вебинары

Описание логики процесса:

Открыть модальное окно добавления курса/вебинара

Cmamyc onepayuu = false

WHILE (Статус операции не равен true)

Предложить пользователю заполнить поля формы добавления курса/вебинара

IF данные корректны

Выделить поле с данными зеленым цветом

ELSE

Выделить поле с данными красным цветом

ENDIF

IF загрузка трейлера

IF файл соответствует требованиям по размеру и формату

Сжать видео

Обновить иконку трейлепв

ELSE

Сообщить пользователю, что загружаемый файл не соответствует заданным требованиям

ENDIF

ENDIF

IF добавить курс/вебинар

IF пользователь заполнил все обязательные поля

Запрос к базе данных на добавление нового курса/ведущего Сохранить сжатое видео на сервер Статус операции = true

ELSE

Подсветить незаполненные поля Сообщить пользователю, что данные поля являются обязательными для заполнения

ENDIF

ENDIF

ENDWHILE

Закрыть модальное окно Сообщить пользователю, что новый курс/вебинар добавлен Обновить страницу раздела ведущих

Нерешенные проблемы:

Для полей формы добавления курса/вебинара необходимо определить допустимые символы и ограничения длины
Также необходимо определить допустимые форматы трейлера и ограничение размера файла

ЗАКЛЮЧЕНИЕ

В результате выполнения данной лабораторной работы был изучен один из методов структурного анализа, на основе которого построена структурная модель системы «Образовательный веб-портал (курсы и вебинары)» в виде иерархии диаграмм потоков данных.

Начальный уровень (контекстная диаграмма) определяет внешние объекты, которые расположены вне системы, и взаимодействуют с ней:

- Посетитель сайта;
- Авторизованный пользователь;
- SMM;
- Администратор;

Декомпозиция контекстной диаграммы ограничена 1 и 2 уровнями.

Поскольку DFD может не обеспечивать необходимый для проектирования системы уровень детализации требований, часть процессов второго уровня в соответствии с заданием сопровождена спецификацией на структурированном естественном языке.

Таким образом, можно заключить, что выполненная работа соответствует поставленной задаче и отвечает всем сформулированным в задании требованиям.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Павлов Е. В. Проектирование программных систем: методические указания к выполнению лабораторных работ / Е. В. Павлов. Санкт-Петербург, 2022
- 2. What is a Data Flow Diagram? [Электронный ресурс]. Lucid Software Inc, 2022. URL: https://www.lucidchart.com/pages/data-flow-diagram (дата обращения: 16.02.2022)
- 3. Visual Paradigm Tutorials: Data Flow Diagram [Электронный ресурс]. Visual Paradigm, 2022. URL: https://www.visual-paradigm.com/tutorials/ (дата обращения: 16.02.2022)
- 4. Process Specifications and Structured Decisions [Электронный ресурс]. W3computing.com, 2022. URL: https://www.w3computing.com/systemsanalysis/process-specifications-structured-decisions/ (дата обращения: 16.02.2022)
- 5. Data and Process Modeling [Электронный ресурс]. Cengage, 2011. URL: https://www.cengage.com/custom/static_content/OLC/1133274056/data/shelly81617_0538481617_00.08_chapter05.pdf (дата обращения: 16.02.2022)