MATH2001–Basic Analysis Final Examination June 2013 Solutions

Time: 60 minutes Total marks: 60 marks

SECTION A Multiple choice

Solutions: 1 2 3 4 5 6 B D A E E C

SECTION B

(a) Let
$$f: \mathbb{R} \to \mathbb{R}$$
. Write down the definition of $\lim_{x \to \infty} f(x) = -2$. (3)

Answer: $\forall \varepsilon > 0 \ \exists A(>0) \ \forall x > A \ |f(x) + 2| < \varepsilon.$

(b) Prove from the definition that
$$\lim_{x\to\infty} \frac{1-3x^2}{x^2+3} + 1 = -2.$$
 (8)

Solution: First calculate

$$\left| \frac{1 - 3x^2}{x^2 + 3} + 1 - (-2) \right| = \left| \frac{1 - 3x^2}{x^2 + 3} + 3 \right|$$

$$= \left| \frac{1 - 3x^2 + 3(x^2 + 3)}{x^2 + 3} \right|$$

$$= \left| \frac{1 + 9}{x^2 + 3} \right|$$

$$= \frac{10}{x^2 + 3}.$$

Now let $\varepsilon > 0$. Then

$$\left| \frac{1 - 3x^2}{x^2 + 3} + 1 - (-2) \right| < \varepsilon \Leftrightarrow \frac{10}{x^2 + 3} < \varepsilon$$
$$\Leftrightarrow x^2 + 3 > \frac{10}{\varepsilon}.$$

Since $x^2 + 3 > x$ for all x, it follows for $x > \frac{10}{\varepsilon}$, i. e., $A = \frac{10}{\varepsilon}$ and x > A, that

$$\left| \frac{1 - 3x^2}{x^2 + 3} + 1 - (-2) \right| < \varepsilon.$$

Let $a \in \mathbb{R}$ and suppose that f is continuous at a and g continuous at f(a). Prove that the function $g \circ f$ is continuous at a.

Proof. Let $\varepsilon > 0$. Since g is continuous at f(a), there is $\eta > 0$ such that

$$|y - f(a)| < \eta \Rightarrow |g(y) - g(f(a))| < \varepsilon. \tag{1}$$

Since f is continuous at a, there is $\delta > 0$ such that

$$|x - a| < \delta \Rightarrow |f(x) - f(a)| < \eta. \tag{2}$$

Putting y = f(x) in (1) it follows from (1) and (2) that

$$|x-a| < \delta \Rightarrow |f(x)-f(a)| < \eta \Rightarrow |g(f(x))-g(f(a))| < \varepsilon$$

that is,

$$|x - a| < \delta \Rightarrow |(g \circ f)(x) - (g \circ f)(a)| < \varepsilon.$$

Hence $g \circ f$ is continuous at a.

Show that f is continuous at a if and only if for each sequence (x_n) in dom(f) with $\lim_{n\to\infty} x_n = a$ the sequence $f(x_n)$ satisfies $\lim_{n\to\infty} f(x_n) = f(a)$.

Proof. \Rightarrow : Let (x_n) be a sequence in dom(f) with $\lim_{n\to\infty} x_n = a$. We must show that $\lim_{n\to\infty} f(x_n) = f(a)$. Hence let $\varepsilon > 0$. Since f is continuous at a, there is $\delta > 0$ such that

$$|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$$
 (1)

Since $\lim_{n\to\infty} x_n = a$, there is $K\in\mathbb{R}$ such that for n>K, $|x_n-a|<\delta$. But then, by (1), $|f(x_n)-f(a)|<\varepsilon$ for n>K.

 \Leftarrow : (indirect proof) Assume that f is not continuous at a. Then

$$\exists \, \varepsilon > 0 \,\, \forall \, \delta > 0 \,\, (x \in \text{dom}(f), \, |x - a| < \delta \Rightarrow |f(x) - f(a)| \ge \varepsilon).$$

In particular, for $\delta = \frac{1}{n}$, n = 1, 2, ... we find $x_n \in \text{dom}(f)$ such that $|x_n - a| < \frac{1}{n}$ and $|f(x_n) - f(a)| \ge \varepsilon$. But then $\lim_{n \to \infty} x_n = a$, whereas $(f(x_n))$ does not converge to f(a).

(a) State the Intermediate Value Theorem. (2)

Intermediate Value Theorem. Suppose that f is continuous on the closed interval [a,b] with $f(a) \neq f(b)$. Then for any number k between f(a) and f(b) there exists a number c in the open interval (a,b) such that f(c) = k.

(b) Let a < b and let f be a continuous function on [a,b] such that $f([a,b]) \subset [a,b]$. Show that there is $x \in [a,b]$ such that f(x) = x. Solution. Let g(x) = f(x) - x. Then

$$g(a) = f(a) - a \ge a - a = 0$$
 and $g(b) = f(b) - b \le b - b = 0$.

If f(a) = a the statement holds for x = a, and if f(b) = b, the statement holds with x = b.

Otherwise, g(b) < 0 < g(a), and by the Intermediate Value Theorem there is $x \in (a,b)$ such that g(x) = 0. This means that f(x) = x.

(c) Give an example of a noncontinuous function $f:[a,b] \to [a,b]$ such that $f(x) \neq x$ for all $x \in [a,b]$.

Solution. Let f(x) = b for $x \in [a, b)$ and f(b) = a.

Let (a_n) be a sequence of nonzero real numbers such that $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$.

Prove that $\sum_{n=1}^{\infty} a_n$ converges absolutely.

Proof. Let $L = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$.

Choose $\varepsilon > 0$ such that $L + \varepsilon < 1$.

Then there is $K \in \mathbb{N}$ such that $\left| \frac{a_{n+1}}{a_n} \right| < L + \varepsilon$ for all $n \ge K$. Hence for m > K:

$$|a_m| = |a_K| \left| \frac{a_{K+1}}{a_K} \right| \cdot \dots \cdot \left| \frac{a_m}{a_{m-1}} \right| < |a_K| (L+\varepsilon)^{m-K}. \tag{*}$$

Since $\sum_{m=K}^{\infty} |a_K| ((L+\varepsilon)^{m-K})$ is a convergent geometric series, it follows from (*) and

the Comparison Test that $\sum_{m=K}^{\infty} a_m$ converges absolutely. Hence also $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(a) Find
$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
. (3)

Solution. If n is even, we have

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{3^{-(n+1)}}{9 \cdot 3^{-n}} \right| = \frac{1}{27},$$

and if n is odd, we have

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{9 \cdot 3^{-(n+1)}}{3^{-n}} \right| = 3.$$

Hence

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 3.$$

(b) Does
$$\sum_{n=1}^{\infty} a_n$$
 converge? (2)

Justify your answer.

Answer. The series converges (absolutely).

Indeed, since $|a_n| \leq 9 \cdot 3^{-n}$, the series is dominated by a convergent geometric series.