Вычислительные методы

1. Постановка задачи интерполяции, интерполяция полиномами

Задача интерполяции состоит в построении функции из заданного класса, которая принимает известные значения в заданных точках.

Формальная постановка задачи:

Пусть заданы n+1 различных точек x_0 , x_1 , ..., x_n (узлы интерполяции) и соответствующие значения функции y_0 , y_1 , ..., y_n , где $y_i = f(x_i)$. Требуется найти функцию P(x) из заданного класса функций такую, что:

$$P(x_i) = y_i, i = 0, 1, ..., n$$

Полиномиальная интерполяция:

Задача полиномиальной интерполяции заключается в построении интерполяционного многочлена $P_n(x)$ степени не выше n, удовлетворяющего условиям:

$$P_n(x_i) = y_i, i = 0, 1, ..., n$$

Теорема об интерполяционном многочлене: Для любых n+1 различных точек x_0 , x_1 , ..., x_n и любых значений y_0 , y_1 , ..., y_n существует и единственен многочлен $P_n(x)$ степени не выше n, удовлетворяющий условиям $P_n(x_i) = y_i$ для всех i = 0, 1, ..., n.

Формы представления интерполяционного полинома:

1. Стандартная форма:

```
P_n(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n
```

где коэффициенты a₀, a₁, ..., a_n находятся из системы линейных уравнений.

- 2. Форма Лагранжа (рассматривается в следующем вопросе)
- Форма Ньютона:

```
P_{n}(x) = f[x_{0}] + f[x_{0},x_{1}](x-x_{0}) + f[x_{0},x_{1},x_{2}](x-x_{0})(x-x_{1}) + \dots + f[x_{0},x_{1},\dots,x_{n}](x-x_{0})(x-x_{1}) \dots (x-x_{n-1})
```

где $f[x_0, x_1, ..., x_k]$ - разделенные разности.

Погрешность интерполяции:

Если функция f(x) имеет непрерывную производную (n+1)-го порядка на отрезке [a,b], содержащем все узлы интерполяции и точку x, то погрешность интерполяции равна:

```
R(x) = f(x) - P_n(x) = f^{(n+1)}(\xi)/(n+1)! \times \prod (x-x_i)
```

где ξ - некоторая точка на отрезке [a,b], зависящая от x.

2. Постановка задачи интерполяции, интерполяционный полином в форме Лагранжа

Интерполяционный полином в форме Лагранжа:

Интерполяционный полином Лагранжа представляет собой линейную комбинацию базисных полиномов:

$$P_{n}(x) = \sum y_{i}L_{i}(x)$$

где L_i(x) - базисные полиномы Лагранжа, которые определяются формулой:

$$L_{i}(x) = \prod (x-x_{j}) / (x_{i}-x_{j})$$

где произведение берется по всем ј от 0 до n, кроме ј=і.

Свойства базисных полиномов Лагранжа:

- 1. $L_i(x_j) = 1$, если i = j
- 2. $L_i(x_j) = 0$, если i ≠ j
- 3. $\sum L_i(x) = 1$ для любого x
- 4. Степень L_i(x) равна n

Алгоритм построения интерполяционного полинома Лагранжа:

- 1. Для каждого узла x_i строится базисный полином $L_i(x)$
- 2. Каждый базисный полином умножается на соответствующее значение функции уі
- 3. Результаты суммируются

Пример:

Для узлов $x_0 = 1$, $x_1 = 2$, $x_2 = 3$ и значений $y_0 = 2$, $y_1 = 3$, $y_2 = 6$ построим интерполяционный полином Лагранжа.

Базисные полиномы:

```
L_0(x) = (x-2)(x-3)/((1-2)(1-3)) = (x-2)(x-3)/2
L_1(x) = (x-1)(x-3)/((2-1)(2-3)) = (x-1)(x-3)/(-1)
L_2(x) = (x-1)(x-2)/((3-1)(3-2)) = (x-1)(x-2)/2
```

Интерполяционный полином:

```
P_2(x) = 2 \cdot L_0(x) + 3 \cdot L_1(x) + 6 \cdot L_2(x) = 2 \cdot (x-2)(x-3)/2 - 3 \cdot (x-1)(x-3) + 6 \cdot (x-1)(x-2)/2 = x^2 - 1
```

Преимущества и недостатки формы Лагранжа:

Преимущества:

- Простая структура, легко вычислять
- Теоретическая ясность и наглядность

Недостатки:

- Неэффективна при добавлении новых узлов (требуется полный пересчет)
- Вычислительная сложность O(n²)
- Плохая обусловленность при большом числе узлов

3. Численное интегрирование. Квадратурные формулы численного интегрирования: формула прямоугольников, формула трапеций, формула Симпсона

Численное интегрирование применяется для приближенного вычисления определенных интегралов вида:

```
∫a<sup>b</sup> f(x)dx
```

когда первообразная функции f(x) не может быть найдена аналитически или ее вычисление слишком сложно.

Квадратурные формулы:

Квадратурная формула имеет вид:

```
\int_{a^b} f(x) dx \approx \sum A_i f(x_i)
```

где хі - узлы квадратурной формулы, Аі - веса.

Формула прямоугольников:

Метод левых прямоугольников:

$$\int_{a^b} f(x) dx \approx h \cdot \sum f(a+ih)$$

где h = (b-a)/n, i = 0, 1, ..., n-1.

Метод правых прямоугольников:

$$\int_{a^b} f(x) dx \approx h \cdot \sum f(a+ih)$$

где h = (b-a)/n, i = 1, 2, ..., n.

Метод средних прямоугольников:

$$\int_{a^b} f(x) dx \approx h \cdot \sum f(a+(i+1/2)h)$$

где h = (b-a)/n, i = 0, 1, ..., n-1.

Погрешность: O(h) для левых и правых прямоугольников, O(h²) для средних прямоугольников.

Формула трапеций:

```
\int_{a^b} f(x) dx \approx h/2 \cdot [f(a) + f(b) + 2 \cdot \sum f(a+ih)]
```

где h = (b-a)/n, сумма берется по і от 1 до n-1.

Погрешность: $O(h^2)$.

Формула Симпсона (парабол):

```
\int_{a^b} f(x) dx \approx h/3 \cdot [f(a) + f(b) + 4 \cdot \sum f(a+(2i-1)h) + 2 \cdot \sum f(a+2ih)]
```

где h = (b-a)/(2n), первая сумма берется по і от 1 до n, вторая - по і от 1 до n-1.

Погрешность: $O(h^4)$.

Сравнение методов:

- 1. Метод прямоугольников: простейший метод, но наименее точный
- 2. Метод трапеций: компромисс между простотой и точностью
- 3. Метод Симпсона: более сложный, но значительно более точный

Для всех методов точность повышается при увеличении числа разбиений п.

4. Численное решение ОДУ. Метод Эйлера

Методы численного решения обыкновенных дифференциальных уравнений (ОДУ) применяются для нахождения приближенного решения задачи Коши:

$$y' = f(x,y), y(x\theta) = y\theta$$

Метод Эйлера:

Метод Эйлера - простейший численный метод решения задачи Коши. Он основан на аппроксимации производной разностным отношением.

Алгоритм метода Эйлера:

- 1. Разбиваем отрезок $[x_0, x_n]$ на n равных частей с шагом $h = (x_n x_0)/n$
- 2. Обозначаем точки разбиения: $x_1 = x_0 + h$, $x_2 = x_0 + 2h$, ..., $x_n = x_0 + nh$
- 3. Вычисляем приближенные значения решения в точках разбиения по формуле:

```
y_{i+1} = y_i + h \cdot f(x_i, y_i)
```

Геометрическая интерпретация:

Метод Эйлера заменяет кривую решения ломаной линией, каждый сегмент которой имеет направление, определяемое производной в начальной точке сегмента.

Погрешность метода Эйлера:

Локальная погрешность (на одном шаге): $O(h^2)$ Глобальная погрешность (на всем отрезке): O(h)

Модификации метода Эйлера:

1. Усовершенствованный метод Эйлера (метод Эйлера-Коши):

```
\hat{y}_{i+1} = y_i + h \cdot f(x_i, y_i)
y_{i+1} = y_i + h/2 \cdot [f(x_i, y_i) + f(x_{i+1}, \hat{y}_{i+1})]
```

Глобальная погрешность: O(h²)

2. Модифицированный метод Эйлера:

```
y_{i+1} = y_i + h \cdot f(x_i+h/2, y_i+h/2 \cdot f(x_i, y_i))
```

Глобальная погрешность: O(h2)

Достоинства и недостатки метода Эйлера:

Достоинства:

- Простота реализации
- Низкие вычислительные затраты на каждом шаге

Недостатки:

- Низкая точность
- Условная устойчивость
- Требует малого шага для достижения приемлемой точности

5. Численное решение ОДУ. Метод Рунге-Кутта второго порядка

Методы Рунге-Кутта - семейство явных и неявных методов для численного решения задачи Коши:

```
y' = f(x,y), y(x0) = y0
```

Они обеспечивают более высокую точность по сравнению с методом Эйлера.

Общая форма методов Рунге-Кутта:

Методы Рунге-Кутта используют несколько промежуточных вычислений производной для получения более точной аппроксимации решения.

Метод Рунге-Кутта второго порядка:

Существует несколько вариантов метода Рунге-Кутта второго порядка. Общая форма:

```
y_{i+1} = y_i + h \cdot (\alpha_1 k_1 + \alpha_2 k_2)
```

где:

```
k_1 = f(x_i, y_i)

k_2 = f(x_i + p_1h, y_i + p_2hk_1)
```

Коэффициенты α_1 , α_2 , p_1 , p_2 должны удовлетворять условиям:

```
\alpha_1 + \alpha_2 = 1
\alpha_2 p_1 = 1/2
\alpha_2 p_2 = 1/2
```

Популярные варианты метода Рунге-Кутта второго порядка:

1. Метод Хойна:

```
k_1 = f(x_i, y_i)

k_2 = f(x_i + h, y_i + h \cdot k_1)

y_{i+1} = y_i + h/2 \cdot (k_1 + k_2)
```

2. Модифицированный метод Эйлера:

```
k_1 = f(x_i, y_i)

k_2 = f(x_i + h/2, y_i + h/2 \cdot k_1)

y_{i+1} = y_i + h \cdot k_2
```

3. Метод Ральстона:

```
k_1 = f(x_i, y_i)

k_2 = f(x_i + 2h/3, y_i + 2h/3 \cdot k_1)

y_{i+1} = y_i + h \cdot (k_1/4 + 3k_2/4)
```

Погрешность метода Рунге-Кутта второго порядка:

Локальная погрешность: O(h³) Глобальная погрешность: O(h²)

Сравнение с методом Эйлера:

Метод Рунге-Кутта второго порядка имеет глобальную погрешность O(h²), в то время как метод Эйлера имеет глобальную погрешность O(h). Это означает, что при уменьшении шага в 2 раза погрешность метода Рунге-Кутта уменьшается примерно в 4 раза, а погрешность метода Эйлера - только в 2 раза.

Методы более высоких порядков:

Существуют методы Рунге-Кутта более высоких порядков, наиболее популярным из которых является классический метод Рунге-Кутта четвертого порядка (RK4).

6. Метод Гаусса

Метод Гаусса - это алгоритм решения систем линейных алгебраических уравнений (СЛАУ) вида:

```
a_{11}x_{1} + a_{12}x_{2} + ... + a_{1n}x_{n} = b_{1}
a_{21}x_{1} + a_{22}x_{2} + ... + a_{2n}x_{n} = b_{2}
...
a_{m1}x_{1} + a_{m2}x_{2} + ... + a_{mn}x_{n} = b_{m}
```

или в матричной форме: Ax = b.

Алгоритм метода Гаусса:

Метод Гаусса состоит из двух этапов:

- 1. Прямой ход приведение матрицы системы к треугольному виду
- 2. Обратный ход нахождение неизвестных последовательно, начиная с последнего

Прямой ход:

- 1. На k-м шаге (k = 1, 2, ..., n-1) выбирается k-й ведущий элемент a_{kk}
- 2. Если akk = 0, выполняется перестановка строк для выбора ненулевого элемента
- 3. Для каждой строки і (і = k+1, k+2, ..., m) вычисляется множитель $\mu_{ik} = a_{ik}/a_{kk}$
- 4. Элементы і-й строки заменяются на $a_{ij} = a_{ij} \mu_{ik} \cdot a_{kj}$ для j = k, k+1, ..., n
- 5. Правая часть заменяется на $b_i = b_i \mu_{ik} \cdot b_k$

Обратный ход:

- 1. Вычисление $x_n = b_n/a_{nn}$
- 2. Для i = n-1, n-2, ..., 1 вычисляется:

```
x_i = (b_i - \sum a_{ij}x_{j})/a_{ii}
```

где сумма берется по j от i+1 до n.

Модификации метода Гаусса:

- 1. Метод Гаусса с выбором главного элемента:
 - Частичный выбор (по столбцу)
 - Полный выбор (по всей матрице)
- 2. Метод LU-разложения:
 - Представление матрицы A в виде произведения нижней треугольной матрицы L и верхней треугольной матрицы U
 - Позволяет эффективно решать системы с одной матрицей и разными правыми частями

Вычислительная сложность:

- Прямой ход: O(n³)
- Обратный ход: O(n²)
- Общая сложность: O(n³)

Практические аспекты:

1. **Вырожденные системы**: Если на каком-то шаге все возможные ведущие элементы равны нулю, это означает, что система либо несовместна, либо имеет

бесконечно много решений.

2. Плохо обусловленные системы: Если матрица А плохо обусловлена (имеет большое число обусловленности), небольшие ошибки округления могут привести к значительным ошибкам в решении.

3. **Устойчивость**: Метод Гаусса с выбором главного элемента более устойчив к ошибкам округления, чем стандартный метод Гаусса.