

Wireless Networks Laboratory

Copyright © by Zygmunt J. Haas, 2018

General Remarks

- The objective is to learn more in depth one particular topic
- The students have to show understanding of the topic of the project
- May involve some degree of research (mainly literature search)
- The projects are somewhat "open-ended"
- The students are free to determine the full scope of the projects
- The students are required to demonstrate originality of their design
- Projects are to be completed individually (single-student projects) or by the two teammates (two-student projects) ONLY
- Final Report: is due by the end of the semester (last day of the semester)
- Demos (?): Last 1-2 weeks of the course
- Grading based on:
 - Understanding of the topic
 - Originality of the design
 - Implementation details
 - Demo + final report

Wireless Networks Laboratory

Copyright @ by Zygmunt J. Haas, 2018

S1: Node Mobility (Routing in a mobile network)

- <u>Objective:</u> Design and implement a simulation of mobile nodes in an ad hoc network
- <u>Synopsis:</u> Define an area for mobile nodes to roam; define mobility pattern; update the location of a node in time; display the location of a node; determine connectivity of nodes; find routes
- <u>Challenge:</u> Implementation of scalable data-structures, determination of connectivity
- Description:

ID	x	y	ν, φ	neigh
2	4.2	2.3	2.1, 127.3	5,11,54
5	7.1	7.9	3.2, 11.5	2,11,17
11	9.3	3.1	8.9, 180.0	2,5,54
17	5.0	1.5	7.2, 217.8	5,54
54	8.1	3.9	9.2, 157.6	2,11,17

Wireless Networks Laboratory

Copyright © by Zygmunt J. Haas, 2018

S2: Steiner Tree

- <u>Objective:</u> Design and implement an algorithm to create a Steiner Tree for a network graph
- **Synopsis:** Define a network by a graph; identify the Steiner nodes; design a heuristic algorithm to compute the Steiner Tree
- Challenge: Scalable implementation of a heuristic algorithm
- Description:

Wireless Networks Laboratory

Copyright © by Zygmunt J. Haas, 2018

S3: Chat Program

- <u>Objective:</u> Design and program (socket programming) a simple chat session application
- <u>Synopsis:</u> Design a session between two individuals on separate computers to exchange messages. (An extended version of this project, which include graphical interface, may be a 2-person project)

• Challenge: Connection Management and Reliable Communication

Possible extensions:

- Multi-party chat
- Multi-media
- Graphical interface

Wireless Networks Laboratory

Copyright © by Zygmunt J. Haas, 2018

5

T1: Bordercasting

- <u>Objective:</u> Design and implement an algorithm to perform the bordercasting operation on a given network graph
- **Synopsis:** Define a network by a graph; Design an algorithm to route messages using the bordercast routing operation
- <u>Challenge:</u> Query propagation and termination algorithm
- Description:

Wireless Networks Laboratory

Copyright © by Zygmunt J. Haas, 2018

T2: Reliable Multicasting

- <u>Objective:</u> Design and program (socket programming) algorithm for reliable multicast communications
- **Synopsis:** Design an algorithm for reliable multicasting; (e.g., using TCP or multicast socket programming); implement the algorithm
- Challenge: Determination of the semantics of reliable multicasting
- Description:

Wireless Networks Laboratory

Copyright © by Zygmunt J. Haas, 2018

7

T3: IP Mobility Support

- Objective: Design and program (socket programming) a simple Mobile IP protocol
- **Synopsis:** Implement the basic functions of the Mobile IP protocol to support routing for a mobile that is connected to any network
- Challenge: Implementation of the IP tunneling functionality
- **Description:**

T4: Path Statistics

- <u>Objective:</u> Design and implement an algorithm to collect delay measurements of Internet-based hosts and process for correlation
- Synopsis: Implement a collection process of end-to-end delay measurements of multiple connections and evaluate the correlation of the measurements
- <u>Challenge:</u> Processing of the measured values for correlation
- Description:

- Collect the X_i and Y_i measurements
- Average the measurement
- Calculate joint statistics

$$\begin{split} E(X) &= \frac{1}{N} \sum_{i=1}^{N} X_i \\ E(Y) &= \frac{1}{N} \sum_{i=1}^{N} Y_i \\ Cov(X,Y) &= E((X - E(X))(Y - E(Y))) \end{split}$$

Wireless Networks Laboratory

Copyright © by Zygmunt J. Haas, 2018