

Laboratório de Dispositivos e Circuitos Eletrônicos – 2017/02

Experiência Nº 04: Regulador de tensão

I - Objetivos

O objetivo deste experimento é o estudo de circuitos reguladores de tensão.

Maiores informações acerca dos diodos a serem utilizados neste experimento podem ser encontradas em:

- Datasheet dos diodos 1N4001 a 1N4007: https://www.fairchildsemi.com/datasheets/1N/1N4007.pdf
- Datasheet do diodo Zener 1N4739: http://www.alldatasheet.com/datasheet-pdf/pdf/61857/GE/1N4739.html. Observe que este diodo Zener é diferente daquele que utilizamos no Experimento 3.
- TVS/Zener Theory and Design Considerations. Apostila com informações detalhadas de diodos Zener. 127 páginas. 2005. Disponível em: http://www.onsemi.com/pub link/Collateral/HBD854-D.PDF>
- Carrilho, Eduardo. Diodos. Apostila sobre diodos para o curso Fundamentos de Engenharia Elétrica,
 Seção de Ensino de Engenharia Elétrica, do Instituto Militar de Engenharia. Disponível em: <
 http://aquarius.ime.eb.br/~aecc/FundEngEle/Diodos.pdf>
- Aula de Laboratório de Eletrônica Fonte de alimentação, do professor Adson Rocha. O circuito que ele
 analisa é bastante parecido com o que vai ser montado neste experimento. Disponível em:
 Sugiro fortemente que assistam essa aula antes de vir ao laboratório
 para o experimento.

II - Preparação para o laboratório

Sugestão de leitura prévia: Para responder às perguntas propostas, consulte o capítulo do livro texto referente a diodos, além dos datasheets dos diodos e das apostilas e aula sugeridas acima.

Pré-relatório - INDIVIDUAL

O pré-relatório consistirá na resposta a perguntas propostas ao longo do texto. Suas respostas serão baseadas na leitura do livro texto, das apostilas sugeridas e de outras fontes que encontrarem, <u>mas não devem ser diretamente copiadas de nenhuma fonte</u>. Isso é considerado plágio e é muito sério. Leia este post na página do curso de Laboratório de Circuitos 1:

https://sites.google.com/site/labcircuitos1unb/classroom-news/introducaoteoricacuidadocomplagio

As perguntas serão feitas ao longo do texto, para facilitar a leitura e compreensão. Este roteiro foi preparado com base no texto e figuras do capítulo 3 do livro do Sedra e Smith de Microeletrônica, listado no plano de ensino do curso.

O objetivo de um **regulador de tensão** é a obtenção de uma tensão constante (DC ou CC) a partir de uma fonte tensão variável. Assim, no presente experimento será utilizado como sinal de entrada a saída de um transformador de 220 V / 12 V RMS (para diminuir consideravelmente a amplitude da tensão que será aplicada no circuito da bancada, principalmente por razões de segurança).

No experimento 3 foi montado um circuito retificador de meia-onda (o circuito da Figura 1(a) do experimento 3), em que o diodo permitia a passagem para a saída (tensão no resistor) apenas do semi-ciclo positivo da onda senoidal de entrada. No presente experimento, será acoplado um capacitor em paralelo à resistência do retificador de meia-onda.

No livro de Sedra e Smith, no item "O retificador com capacitor de filtro – o retificador de pico", assim como na aula do prof. Carrilho listada no início deste roteiro, são apresentados dois circuitos para ilustrar o efeito de um capacitor de filtro, mostrando as formas de onda da tensão de entrada v_I e da tensão de saída v_0 supondo um diodo ideal. Estas figuras estão repetidas nas figuras 1 e 2.

Figura 1: Figura 3.40 do livro do Sedra e Smith (Microeletrônica, 4ª edição). (a) Um circuito simples para ilustrar o efeito de um capacitor de filtro. (b)Formas de onda de entrada e saída supondo um diodo ideal. Observe que o circuito gera uma tensão CC igual ao valor de pico da tensão de entrada senoidal. O circuito é, portanto, conhecido como um retificador de pico ou detector de pico.

Figura 2: Figura 3.41 do livro do Sedra e Smith (Microeletrônica, 4^a edição). Formas de onda da tensão e da corrente em um circuito retificador de pico com constante de tempo $\tau = RC >> T$, onde T é o período, em segundos, da onda senoidal de entrada (T = 1/f)

- (0,5 pt) Para o circuito da figura 1, o que mudaria na tensão de saída v₀ ao se considerar o modelo de fonte constante para o diodo, ao invés do modelo de diodo ideal considerado na figura? Em sua resposta, desenhe os circuitos equivalentes tanto para o diodo em condução quanto para o diodo em corte para substanciar sua resposta.
- 2. (0,5 pt) Explique de modo <u>resumido</u>, <u>com suas próprias palavras</u>, a forma de onda da corrente i_L na resistência de carga R_L mostrada na figura 2(c). Em sua resposta, desenhe os circuitos equivalentes para o diodo em condução e para o diodo em corte, considerando um **diodo ideal**, para substanciar sua resposta.

3. (0,5 pt) Consulte o *datasheet* do diodo Zener a ser utilizado em laboratório. (a) Qual o valor nominal da tensão Zener do diodo? (b) Qual o valor nominal da impedância máxima do diodo Zener para este valor de tensão? (c) Qual o valor da corrente *I*_{ZK} (em mA) para este diodo?

Consulte a apostila Lecture 6: Zener Diodes, disponível no site da disciplina *Electronics 1* ministrada pelo prof. Keith Whites (http://whites.sdsmt.edu/classes/ee320/notes/320Lecture6.pdf). Esta apostial contém notas de aula com exemplos resolvidos do livro do Sedra e Smith de Microeletrônica. O exemplo N6.1, similar ao exemplo 3.8 do livro texto (Sedra e Smith, 4^a edição), mostra a análise de um circuito simples com diodo Zener por meio de um modelo de circuito equivalente do diodo, consistindo de uma fonte de tensão em série com uma resistência. Observe que o valor da fonte de tensão equivalente é o valor nominal da tensão Zener V_Z de **polarização reversa** do diodo (especificado no datasheet do componente) e a resistência r_Z é a **resistência incremental** do diodo Zener em um determinado ponto de operação, como explicado no livro texto.

Observe neste exemplo que a resistência de carga R_L deve ter um <u>valor mínimo</u> para que o diodo Zener permaneça na <u>região de avalanche</u> (*breakdown region*). Valores menores de resistência levam o diodo Zener a sair da região de avalanche e entrar na região de polarização reversa.

4. (1,5 pt) Para a mesma fonte de tensão do exemplo citado (exemplo N6.1) e para a mesma resistência R = 0,5 kΩ conectada em série com a fonte, mas considerando-se os parâmetros do diodo Zener 1N4739 a ser utilizado neste experimento, determine o valor mínimo para a resistência de carga R_L para a qual o diodo ainda esteja operando na região de ruptura ou avalanche. Siga os passos mostrados no exemplo da apostila e no exemplo citado do livro texto. Lembre-se de primeiro determinar a menor (pior caso) corrente fornecida a R utilizando os valores nominais de V_{ZK} e I_{ZK} e, a seguir, a corrente i_L na carga. Com estes dados e a partir do circuito equivalente para o diodo Zener (fonte V_Z + resistência r_Z) é possível determinar o valor da resistência de carga solicitado. Lembre-se de utilizar os parâmetros encontrados na questão 3 para o diodo 1N4739.

Consulte agora a apostila **Lecture 7: Diode Rectifier Circuits**, disponível no site da mesma disciplina (http://whites.sdsmt.edu/classes/ee320/notes/320Lecture7.pdf). Esta aula trata de circuitos retificadores com diodos, como o circuito da Figura 1(a) do experimento 3. Observe que o item "1. Half-Cycle Rectification" (retificadores de meia-onda) é similar ao circuito da Figura 1 da Parte Experimental deste experimento, sem o capacitor.

5. (1,0 pt) O circuito retificador de meia-onda montado no experimento 1 (Figura 1(a) do experimento 1) poderia ser utilizado como uma fonte DC? Explique que comportamento observado no sinal de saída (a tensão na resistência de carga) viabiliza/inviabiliza o seu uso como uma fonte DC.

A apostila **Lecture 8: Peak Rectifiers**, também disponível no site da mesma disciplina (http://whites.sdsmt.edu/classes/ee320/notes/320Lecture8.pdf), trata de retificadores de pico. Observe que a figura 4.27(a) mostrada nestas notas de aula é igual ao circuito da Figura 1 da Parte Experimental deste experimento, onde v_l é a saída de 12 V (RMS) do transformador. Acompanhe com cuidado a análise passo-a-passo do circuito retificador de pico mostrada. Observe que, como comentado no item "*Discussion*", após a análise do circuito, o objetivo de um circuito retificador de pico é carregar a capacitância C em paralelo com a resistência de carga quando o diodo D encontra-se ligado (diretamente polarizado, ou seja, conduzindo corrente). Durante os instantes em que o diodo D encontra-se desligado (reversamente polarizado), a carga acumulada em C é descarregada.

- 6. (0,5 pt) Sabendo que o transformador do circuito da Figura 1 da Parte Experimental encontra-se ligado à rede de alimentação, qual é a frequência do sinal de 12 V RMS de saída do transformador? Explique sucintamente sua resposta.
- 7. (0,5 pt) Qual a tensão pico-a-pico do sinal de 12 VRMS de saída do transformador? Explique.
- 8. (1,0 pt) O que é a chamada "tensão da ondulação" (ripple) do sinal de saída do circuito da figura 1?
- 9. (1,0 pt) No circuito da figura 1, determine a fórmula analítica da tensão de ripple Vr, que corresponde à queda de tensão do capacitor durante o ciclo de descarga.
- 10. (1,0 pt) Observe no roteiro do experimento que a resistência de carga RL a ser utilizado no circuito da figura 1 varia de 2.2 KΩ a 330 Ω. Para qual resistência você espera que haja <u>uma menor tensão pico-apico da ondulação em v₀(t)</u>? Explique o seu raciocínio, utilizando em sua explicação os conceitos de constante de tempo do circuito e período do sinal de entrada senoidal.
- 11. (1,0 pt) Por que foi colocado um diodo Zener no circuito da figura 2? Qual a sua função em um circuito regulador de tensão?
- 12. (0,5 pt) Qual a diferença entre um circuito retificador e um circuito regulador? (Dica: o circuito retificador é uma porção do circuito regulador.)
- 13. (0,5 pt) Inclua as referências bibliográficas utilizadas.

Lembrem-se: o pré-relatório é <u>indivudual</u>. Questões respondidas "em grupo" terão sua pontuação devidamente descontadas.

As respostas a estas perguntas devem ser <u>enviadas ao professor de laboratório</u> <u>por email</u>, em arquivo **pdf**, com nome, matrícula, data, e título do experimento, com o enunciado das perguntas, além de suas respostas, <u>até as 23:59 do dia imediatamente</u> <u>anterior ao primeiro dia deste experimento</u>.

Pré-relatórios não recebidos até este prazo não serão considerados.

Laboratório de Dispositivos e Circuitos Eletrônicos	
Experiência Nº 04: Regulador de tensão - 2017/02	

	Turma: Da	nta:
Alunos:		Matrícula:
		Matrícula:
		Matrícula:

III - Procedimento Experimental

Material necessário

1 diodo 1N4007 ou 1N4004

1 diodo Zener 1N4739 ($V_Z = 9.1V$, $r_z = 5\Omega$) ou equivalente

2 resistores $1k\Omega/0.25W$

1 resistor $2.2k \Omega/0.25W$

1 resistor $560 \Omega/0.25W$

1 resistor $330 \Omega/0.25W$

1 capacitor eletrolítico $100 - 220\mu F/18 - 40V$

1 transformador220 V/12 V

Equipamentos: osciloscópio de dois canais, multímetro

Experiências

Experiência 1 (3,0 pts). Monte o circuito da Figura 1. Capture a forma de onda nos terminais do capacitor C quando a resistência R_L não está presente. A seguir, capture a forma de onda nos terminais do capacitor utilizando-se a resistência de carga R_L . Utilize $R_L = 2,2k\Omega$. Compare o valor de v_{out} obtido com o esperado, de acordo com a teoria. Inclua as figuras e as dicussões no relatório.

Figura 1. Circuito retificador com filtro capacitivo e carga (Transformador 220V(RMS) / 12V(RMS)).

Experiência 2 (4,0 pts). Monte o circuito da Figura 2 usando $R = 1k\Omega$. Use um voltímetro para medir a componente DC de v_{out} , denominada v_{DC} , que consideramos aqui como uma função apenas

da resistência de carga R_L . Ligue o canal 1 do osciloscópio à tensão de entrada do circuito e o canal 2 do osciloscópio à tensão v_{out} mostrada. Considere $v_{pp}^{R_L}$ a flutuação instantânea de tensão peak-to-peak sobre a carga e v_{pp}^{C} sobre o terminal positivo do capacitor, ou seja, o ripple do circuito de filtragem. Para diferentes valores de R_L , complete a Tabela 1. Capture as curvas obtidas pelo osciloscópio com $R_L = 2,2k\Omega$, $1k\Omega$, 560Ω , 330Ω . Mostre o funcionamento do circuito com $R_L = 560\Omega$ ao professor/monitor.

Figura 2. Teste de carga de fonte de alimentação com regulação de tensão por diodo Zener (D=1N4007, C=1000uF/40V, TRAFO=Transformador 220V / 12V, D_Z=1N4739, R=1kOhm)

Tabela 1. Medidas obtidas na experiência 2.

R_L	v_{DC}	$v_{DC}(\infty) - v_{DC}(R_L)$	$v_{pp}^{\it C}$	$v_{pp}^{\scriptscriptstyle R_L}$
∞				
$2,2k\Omega$				
$1k\Omega$				
560Ω				
330Ω				

Observação 1: Tomar cuidado com o risco de choque elétrico!

Questões experimentais e discussão

Questão 1 (2,0 pts). Descreva detalhadamente o que acontece com as variáveis envolvidas com a redução de R_L . Isto é., em termos do seus conhecimentos acerca do funcionamento dos circuitos de retificação, filtragem e regulação, explique o que provoca as mudanças observadas ao se reduzir R_L .

Questão 2 (1,0 pt). Quais seriam as diferenças no comportamento do circuito caso fosse utilizado um retificador de onda completa?

<u>Utilize folhas avulsas para as curvas e explicações solicitadas, com as respostas a cada questão devidamente numeradas e na ordem em que foram feitas</u>. Lembre-se de colocar o nome e a matrícula de cada componente do grupo, além da turma.