Data Structures Chapter 1

- 1. Recursion
- 2. Performance Analysis
- 3. Asymptotic Analysis
 - Revisit Step Count
 - Asymptotic Analysis
 - Asymptotic Notations

- Why step count?
- It is to compare the time complexities of two programs that compute the same function and also to predict the growth rate in run time.
- Example: Let's compute the step count for three programs and compare their time complexities.
- 1. T_{add}(n) adding two numbers
- 2. T_{sum}(n) adding list of numbers
- 3. $T_{mtx}(n)$ adding two matrix

Program add	step count
<pre>float add(int a, int b) { return a + b; }</pre>	1

Program sum of list	step count	
<pre>float sum(float list[], int n) { float total = 0; int i;</pre>	1	
for (i=0; i <n; +="list[i];</td" i++)="" total=""><td>n + 1 n</td></n;>	n + 1 n	
return total;	1	
}		

Program sum of matrix	step count
<pre>void add(int a[][MAX_SIZE], int b[][MAX_SIZE],</pre>	rows + 1 rows * (cols+1) rows * cols

- $T_{add}(n) = 2$
- $T_{sum(n)} = 1 + 2(n+1) + 2n + 1 = 4n + 4$ = c * n + c'
- $T_{mtx(n)} = 2 rows * cols + 2 rows + 1$ = $a * n^2 + b * n + c$

■
$$T_{sum(n)} = 1 + 2(n+1) + 2n + 1 = 4n + 4$$
 $\rightarrow O(n)$
= $c * n + c'$

$$T_{mtx(n)} = 2 rows * cols + 2 rows + 1$$

$$= a * n^2 + b * n + c$$

$$\rightarrow O(n^2)$$

■
$$T_{sum(n)} = 1 + 2(n+1) + 2n + 1 = 4n + 4$$
 $\rightarrow O(n)$
= $c * n + c'$

$$T_{mtx(n)} = 2 rows * cols + 2 rows + 1$$

$$= a * n^2 + b * n + c$$

$$\rightarrow O(n^2)$$

- The "Big-Oh" Notation:
- Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We say that f(n) is O(g(n)) iff there are positive constants c and n_0 such that
 - $f(n) \leq c g(n)$, for $n \geq n_0$.
 - Then it is pronounced as "f(n) is big 0h of g(n) or f(n) = O(g(n))"

- The "Big-Oh" Notation:
- Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We say that f(n) is O(g(n)) iff there are positive constants c and n_0 such that
 - $f(n) \leq c g(n)$, for $n \geq n_0$.
 - Then it is pronounced as "f(n) is big 0h of g(n) or f(n) = O(g(n))"

Example: Justify that the function 8n - 2 is O(n). Given f(n) = 8n - 2, g(n) = n, we need to find c and n_0 such that $8n - 2 \le c n$ for every integer $n \ge n_0$.

An easy choice among many is c = 8 and $n_0 = 1$. Therefore, f(n) is O(n).

Example: Find c and n_0 to justify that the function 7n + 5 is O(n).

7n + 5 is O(n), we have to find c and n_0 such that $7n + 5 \le c$ n $for <math>n \ge n_0$

Example: Find c and n_0 to justify that the function 7n + 5 is O(n).

```
7\mathbf{n}+5 is O(\mathbf{n}), we must find c and n_0 such that 7\mathbf{n}+5 \le c n for n \ge n_0 7\mathbf{n}+5 \le 7 n + n 7\mathbf{n}+5 \le 8 n, for n \ge n_0=5 Therefore, 7\mathbf{n}+5 \le c n for c=8 and n_0=5
```


Example: Find c and n_0 to justify that the function 7n + 5 is O(n).

```
7\mathbf{n}+5 is O(\mathbf{n}), we must find c and n_0 such that 7\mathbf{n}+5 \le c n for n \ge n_0 7\mathbf{n}+5 \le 7 n + n 7\mathbf{n}+5 \le 8 n, for n \ge n_0=5 Therefore, 7\mathbf{n}+5 \le c n for c=8 and n_0=5
```



```
7n + 5 \le c n for n \ge n_0

7n + 5 \le 12 n for n \ge n_0 = 1

Therefore, 7n + 5 \le c n for c = 12 and n_0 = 1
```

• Example: Find c and n_0 to justify that the function $27n^2 + 16n$ is $O(n^2)$.

```
27n^2 + 16n is O(n^2), we must find c and n_0 such that For 16n \le n^2 27n^2 + 16n \le 27n^2 + n^2 27n^2 + 16n \le 28n^2 for n \ge n_0 = 16 Hence, c = 28 and n_0 = 16, Therefore, f(n) = O(n^2).
```



```
27n^2+16n is \boldsymbol{O}(n^2), we have to find \boldsymbol{c} and \boldsymbol{n_0} such that 27n^2+16n\leq 43n^2 27n^2+16n\leq 43n^2 for n\geq \boldsymbol{n_0}=1 Hence, c=43 and \boldsymbol{n_0}=1, Therefore, f(n)=\boldsymbol{O}(n^2).
```

More Examples:

1)
$$3n + 2 =$$

2)
$$3n + 3 =$$

3)
$$100n + 6 =$$

4)
$$10n^2 + 4n + 2 =$$

5)
$$6 * 2^n + n^2 =$$

6)
$$3n + 3 =$$

7)
$$10n^2 + 4n + 2 =$$

$$(3)$$
 $3n + 2 \neq 0$ (1) as $3n + 2$ is **not** $\leq c$ for any c and all $n, n \geq n_0$.

$$(3)$$
 9) $10n^2 + 4n + 2 \neq O(n)$

- Preferred Big-Oh usage:
- Pick the tightest bound. If f(N) = 5N, then:
 - $f(N) = O(N^5)$
 - $f(N) = O(N^3)$
 - $f(N) = O(N \log N)$
 - $f(N) = O(N) \leftarrow \text{preferred or right!}$

- Preferred Big-Oh usage:
- Pick the tightest bound. If f(N) = 5N, then:
 - $f(N) = O(N^5)$
 - $f(N) = O(N^3)$
 - $f(N) = O(N \log N)$
 - f(N) = O(N) ← preferred or right!
- Ignore constant factors and low order terms:
 - f(N) = O(N), not f(N) = O(5N)
 - $f(N) = O(N^3)$, not $f(N) = O(N^3 + N^2 + 15)$
 - Wrong: $f(N) \leq O(g(N))$
 - Wrong: $f(N) \ge O(g(N))$
 - Right: f(N) = O(g(N))

- Suppose two algorithms, A and B, solving the same problem have the running time of O(n) and $O(n^2)$, respectively.
- Then algorithm A is asymptotically better than algorithm B.

$$T(n) = a n^b$$

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$$

[Omega] $f(n) = \Omega$ (g(n)) iff there exist positive constants c and n_0 such that $f(n) \ge c g(n)$, for $n \ge n_0$.

[Omega] $f(n) = \Omega$ (g(n)) iff there exist positive constants c and n_0 such that $f(n) \ge c g(n)$, for $n \ge n_0$.

Example: Let's suppose we have

$$f(n) = 5n^2 + 2n + 1$$
$$g(n) = n^2$$

For all $n \ge 0$, this (2n + 1) will be \ge to 1, **if** we have c = 5 and $n_0 = 0$.

Then, $5 n^2 \le f(n)$, for all $n \ge 0$

Therefore, we can say that the time complexity of f(n) is $\Omega(n^2)$;

[Omega] $f(n) = \Omega$ (g(n)) iff there exist positive constants c and n_0 such that $f(n) \ge c g(n)$, for $n \ge n_0$.

Example: Let's suppose we have

$$f(n) = 5n^2 + 2n + 1$$
$$g(n) = n^2$$

Omega notation gives us the lower bound of the growth rate of a function.

[Omega] $f(n) = \Omega$ (g(n)) iff there exist positive constants c and n_0 such that $f(n) \ge c g(n)$, for $n \ge n_0$

More Example:

1)
$$3n + 2 = \Omega(n)$$
 since $3n + 2 \ge 3n$ for $n \ge 1$

2)
$$3n + 3 = \Omega(n)$$
 since $3n + 3 \ge 3n$ for $n \ge 1$

3)
$$100n + 6 = \Omega(n)$$
 since $100n + 6 \ge 100n$ for $n \ge 1$

4)
$$100n^2 + 4n + 2 = \Omega(n^2)$$
 since $100n^2 + 4n + 2 \ge n^2$ for $n \ge 1$

5)6 *
$$2^n + n^2 = \Omega(2^n)$$
 since $6 * 2^n + n^2 \ge 2^n$ for $n \ge 1$

Omega notation gives us the lower bound of the growth rate of a function.

[Theta] $f(n) = \Theta(g(n))$ iff there exist positive constants c and n_0 such that

•
$$c_1g(n) \le f(n) \le c_2g(n)$$
, for $n \ge n_0$.

Example: Let's suppose we have

$$f(n) = 5n^2 + 2n + 1$$
$$g(n) = n^2$$

• Then, we can choose $c_1 = 5$, $c_2 = 8$, and $n_0 = 1$; and our inequality will hold. Therefore, we can say that the time complexity of

$$f(n) = 5n^2 + 2n + 1 = \Theta(n^2)$$

[Theta] $f(n) = \Theta(g(n))$ iff there exist positive constants c and n_0 such that

•
$$c_1g(n) \le f(n) \le c_2g(n)$$
, for $n \ge n_0$.

Example: Let's suppose we have

$$f(n) = 5n^2 + 2n + 1$$
$$g(n) = n^2$$

• Θ **notation** best describes or give the best idea about the growth rate of the function because it gives us a **tight bound** unlike O and Ω which give us **upper bound** and **lower bound**, respectively.

[Theta] $f(n) = \Theta(g(n))$ iff there exist positive constants c and n_0 such that

•
$$c_1g(n) \le f(n) \le c_2g(n)$$
, for $n \ge n_0$.

More Examples:

1)
$$3n + 2 = \Theta(n)$$

since $3n \le 3n + 2 \le 4n$ for all $n \ge 2$, $c_1 = 3$, $c_2 = 4$, and $n_0 = 2$

$$2)3n + 3 = \Theta(n)$$

3)
$$10n^2 + 4n + 2 = \Theta(n^2)$$

4)
$$6 * 2^n + n^2 = \Theta(2^n)$$

$$5) 10 * \log n + 4 = \Theta(\log n)$$

Asymptotic Analysis - Quiz

- Example: Running time estimates empirical analysis
 - Personal computer executes 10° compares/second
 - Supercomputer executes 10¹³ compares/second

	Selection sort (N ²)			Selection sort (N^2) Merge sort ($N \log_2 N$)		
N	Million	10 million	Billion	Million	10 million	Billion
PC	16.7 min			instant	0.2 sec	
Super Com	0.1 sec	77		Instant	Instant	Instant

 $log_{10}2 \cong 0.3$ 86,400sec/day instant < 0.1 sec Use a reasonable or understandable time units. Do not say, for example, "3660 days" nor "1220 seconds", but 10.0 years or 20.3 min, respectively.

X Bottom line: Good algorithms are better than supercomputers.

Data Structures Chapter 1

- 1. Recursion
- 2. Performance Analysis
- 3. Asymptotic Analysis
 - Revisit Step Count
 - Asymptotic Analysis
 - Asymptotic Notations