MISR UNIVERSITY FOR SCIENCE AND TECHNOLOGY COLLEGE OF ENGINEERING MECHATRONICS DEPARTMENT

MTE 405 SENSORS AND MEASUREMENTS

LAB 2 - SPRING 2020

Goals Of The Lab

Introduction to Sensors and Signal Conditioning with Virtual Prototyping

Introduction to temperature sensors

Spreading signal output range

Lab 2 Sensing Temperature

Analog sensors

Learning outcome

- LM35 characteristics.
- Simulation of LM35 on Proteus.
- Improving LM35 range.
- Practical implementation

Sensing Temperature

LM35

- Sensitivity: 10 mV / °C
- Useful range : 2 − 150 °C
- Less then 50 µA

LM35 Precision Centig

1 Features

- Calibrated Directly in Celsius (Centigrade)
- Linear + 10-mV/°C Scale Factor
- 0.5°C Ensured Accuracy (at 25°C)
- Rated for Full -55°C to 150°C Range
- Suitable for Remote Applications
- Low-Cost Due to Wafer-Level Trimming
- Operates From 4 V to 30 V
- Less Than 60-μA Current Drain
- Low Self-Heating, 0.08°C in Still Air
- Non-Linearity Only ±1/4°C Typical
- Low-Impedance Output, 0.1 Ω for 1-mA Load

- Vcc
- Output
- 3. Gnd

Sensing Temperature

LM35

Acquisition Transfer Function

K Conversion factor

And

K = (10 mV / 1000 mV)

Case Study

PROBLEM DEFINITION

- You wish to build an embedded system for monitoring **temperature** using LM35.
- Your temperature range is expected to vary from 5 45 °C
- You have built-in 10-bit ADC with reference voltage of 5V (resolution?).
- You are **assigned** to **improve the voltage range of LM35** to match ADC input voltage range for the input temperature range

Lab 2

Case Study

FOR LM35

- At 5 ${}^{0}\text{C} \rightarrow V_{\text{Im}35} = 5 * 10 \text{mV} = 50 \text{ mV}$
- At 45 0 C \rightarrow V_{lm35} = 45 * 10mV = 450 mV

What is the loss percentage in ADC range?

Improving Sensor Range

Case Study

FOR LM35

- At 5 ${}^{0}\text{C} \rightarrow V_{\text{Im}35} = 5 * 10 \text{mV} = 50 \text{ mV}$
- At 45 $^{\circ}$ C \rightarrow V_{Im35} = 45 * 10mV = 450 mV

STEP 1 (Range Mapping)

- 50 mV \rightarrow 0V (ADC Vin min)
- 450 mV \rightarrow 5V (ADC Vin max) = V_{ref}

STEP 2 (Shifting)

 50 mV → 0V (Voltage Divider + Buffer "why?")

Improving Sensor Range

Case Study

$$V(offset) = 5 * \frac{100k}{1k} = 50 mV$$

$$V(out) = V_{LM \to 50^{\circ}C} - V(offset) = 0V(Theoretical)$$

$$V(out) = 0.05 - 0.05 = 0V + Amplifier DC offset$$

STEP 2 (Shifting)

 50 mV → 0V (Voltage Divider + Buffer "why?")

Read about amplifier DC offset

Improving Sensor Range

Case Study

After min voltage removal

$$V(450) = 0.45 - 0.05 = 0.$$

Gain

$$G = \frac{5}{0.4} = 12.5$$

STEP 3 (Amplification)

450 mV → 5V (Gain of differential amplifier)

$$V_{bat} = 12V$$
 (why changed?)

Improving Sensor Range

Case Study

Improving Sensor Range

Case Study

PROBLEM DEFINITION

- You wish to build an embedded system for monitoring temperature using LM35.
- Your temperature **range** is expected to vary from **10 100** °C
- You have built-in 10-bit ADC with reference voltage of 5V.
- You are assigned to improve the voltage range of LM35 to match ADC input voltage range for the input temperature range

APPLY THE DESIGN IN SIMULATION AND PRACTICAL CIRCUIT

Improving Sensor Range

Case Study

SOLUTION Steps

1. Get sensor minimum and maximum voltages corresponding to given range

$$T_{min} = 10^o \rightarrow V_{min} = T * sensor sensitivity = 10^o * \frac{10mV}{C} = 0.1 V$$

$$T_{max} = 100^o \rightarrow V_{max} = T * sensor sensitivity = 100^o * \frac{10mV}{C} = 1.0 V$$

$$V_{min} = 0.1 V$$
 $V_{max} = 1.0 V$

Case Study

SOLUTION Steps

2. Remove min voltage offset V_{\min} by subtracting it from the same voltage created by a voltage divider

Desired voltage divider output = $V_{min} = 0.1 V$

$$V_o = V_s \frac{R_2}{R_1 + R_2} \rightarrow R_1 = R_2 \left(\frac{V_s}{V_o} - 1\right)$$
 (Derive it if you like)

Assuming
$$V_s = 10V$$
, $R_2 = 100 \rightarrow R_1 = 100 \left(\frac{10}{0.1} - 1 \right) = 9.9k$

Lab 2

Case Study

SOLUTION Steps

3. Apply buffering stage (as discussed in the lab)

Case Study

SOLUTION Steps

4. Subtract sensor min and max output voltage from buffer and check new V_{min} and V_{max} after subtraction. (use differential amplifier for subtraction with G = 1

$$V_{min-new} = 0.1 - 0.1 = 0V$$

$$V_{max-new} = 1.0 - 0.1 = 0.9V$$

Case Study

SOLUTION Steps

5. To maximize the sensor voltage to ADC V_{ref} , the amplifier gain is set to:

$$G = \frac{V_{\text{ref}(ADC)}}{V_{\text{max-new(sensor)}}}$$
$$= \frac{5.0}{0.9} = 5.56 \approx 5.5$$

If
$$R_f$$
 is $5.5k \rightarrow R_1 = 1k$

: @ $T = 10 \, {}^{\circ}C \rightarrow V = (0.1 \, {}^{\circ}0.1) \, {}^{*} \, 5.5 = 0V$ and @ $T = 100 \, {}^{\circ}C \rightarrow V = (1.0 \, {}^{\circ}0.1) \, {}^{*} \, 5.5 = 4.95V$

SENSITIVITY IMPROVEMENT

Before and After

Sensor sensitivity =
$$\frac{10mV}{^{\circ}C}$$
 (before signal conditioning)

Sensor sensitivity =
$$\frac{10mV}{^{\circ}C}$$
 * 5.5 = $\frac{55.5mv}{^{\circ}C}$ (After)

Sensor sensitivity is improved 5.5 times the original sensitivity

Don't forget to pull the lab update from.

http://github.com/wbadry/mte405

END OF LAB 2