WORKSHEET #1

Definition 1. A triple (a, b, c) of natural numbers is a **Pythagoran triple** if they form the side lengths of a right triangle, where c is the length of the hypotenuse.

Theorem 2 (Fundamental Theorem of Arithmetic). Every natural number $n \ge 1$ can be written as a product of prime numbers:

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}.$$

This expression is unique up to reordering.

Definition 3. We call the number e_i the multiplicity of the prime p_i in the prime factorization of

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}.$$

Definition 4. Let m, n be integers and $K \ge 1$ be a natural number. We say that m is congruent to n modulo K, written as $m \equiv n \pmod{K}$, if m - n is a multiple of K.

Theorem 5. Let n be an integer and $K \ge 1$ a natural number. Then n is congruent to exactly one nonnnegative integer between 0 and K-1: this number is the "remainder" when you divide n by K.

Proposition 6. Let m, m', n, n' and K be natural numbers. Suppose that

$$m \equiv m' \pmod{K}$$
 and $n \equiv n' \pmod{K}$.

Then

$$m + n \equiv m' + n' \pmod{K}$$
 and $mn \equiv m'n' \pmod{K}$.

Definition 7. A triple (a, b, c) of natural numbers is a **primitive Pythagoran triple (PPT)** if $a^2 + b^2 = c^2$, and there is no common factor of a, b, c greater than 1; equivalently, a, b, c have no common prime factor.

Theorem 8. The set of primitive Pythagorean triples (a, b, c) with a odd is given by the formula

$$a = st$$
, $b = \frac{s^2 - t^2}{2}$, $c = \frac{s^2 + t^2}{2}$,

where $s > t \ge 1$ are odd integers with no common factors.

Theorem 9. The set of points on the unit circle $x^2 + y^2 = 1$ with positive rational coordinates is given by the formula

$$(x,y) = \left(\frac{2v}{v^2+1}, \frac{v^2-1}{v^2+1}\right)$$

where v ranges through rational numbers greater than one.

WORKSHEET #2

Definition 10. The greatest common divisor of two integers a and b, denoted gcd(a, b), is the largest integer that divides a and b.

Definition 11. Two integers a and b are coprime if gcd(a, b) = 1.

Theorem 12. The Euclidean algorithm terminates and outputs the correct value of gcd(a, b).

Definition 13. An expression of the form ra + sb with $r, s \in \mathbb{Z}$ is a linear combination of a and b.

Corollary 14. If a, b are integers, then gcd(a, b) can be realized as a linear combination of a and b. Concretely, we can use the Euclidean algorithm to do this.

Theorem 15. Let a, b, c be integers. The equation

$$ax + by = c$$

has an integer solution if and only if c is divisible by $d := \gcd(a, b)$. If this is the case, there are infinitely many solutions. If (x_0, y_0) is a one particular solution, then the general solution is of the form

$$x = x_0 - (b/d)n$$
, $y = y_0 + (a/d)n$

as n ranges through all integers.