Entropy

- A decision tree is built top-down from a root node and involves partitioning the data into subsets that contain instances with similar values (homogenous).
- ID3 algorithm uses entropy to calculate the homogeneity of a sample. If the sample is completely homogeneous the entropy is zero and if the sample is an equally divided it has entropy of one.

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

Entropy- example

INTERNSHIPSTUDIO

To build a decision tree, we need to calculate two types of entropy using frequency tables-

Entropy using the frequency table of one attribute

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Play	Golf
Yes	No
9	5

Entropy(PlayGolf) = Entropy (5,9)

= Entropy (0.36, 0.64)

= - (0.36 log₂ 0.36) - (0.64 log₂ 0.64)

= 0.94

Entropy using the frequency table of two attributes

$$E(T,X) = \sum_{c \in X} P(c)E(c)$$

		Play	Golf	8.
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

$$\mathbf{E}(PlayGolf, Outlook) = \mathbf{P}(Sunny)^*\mathbf{E}(3,2) + \mathbf{P}(Overcast)^*\mathbf{E}(4,0) + \mathbf{P}(Rainy)^*\mathbf{E}(2,3)$$

$$= (5/14)^*0.971 + (4/14)^*0.0 + (5/14)^*0.971$$

$$= 0.693$$

Information Gain

- The information gain is based on the decrease in entropy after a dataset is split on an attribute. Constructing a decision tree is all about finding attribute that returns the highest information gain (i.e., the most homogeneous branches).
- Step 1: Calculate entropy of the target.

```
Entropy(PlayGolf) = Entropy (5,9)

= Entropy (0.36, 0.64)

= - (0.36 log<sub>2</sub> 0.36) - (0.64 log<sub>2</sub> 0.64)

= 0.94
```

INTERNSHIPSTUDIO

Step 2: The dataset is then split on the different attributes. The entropy for each branch is calculated. Then it is added proportionally, to get total entropy for the split. The resulting entropy is subtracted from the entropy before the split. The result is the Information Gain, or decrease in entropy.

623	
Yes	No
3	2
ast 4	0
2	3
	3 ast 4

Yes	No
2	2
4	2
3	1
	Yes 2 4 3

		Play	Golf
		Yes	No
	High	3	4
Humidity	Normal	6	1

		Golf
	Yes	No
alse	6	2
rue	3	3
		alse 6

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

Step 3: Choose attribute with the largest information gain as the decision node, divide the dataset by its branches and repeat the same process on every branch.

Yes	No
-20	
3	2
4	0
2	3
2	2

		Outlook	Temp	Humidity	Windy	Play Golf
		Sunny	Mild	High	FALSE	Yes
	>	Sunny	Cool	Normal	FALSE	Yes
	Sunny	Sunny	Cool	Normal	TRUE	No
	S	Sunny	Mild	Normal	FALSE	Yes
		Sunny	Mild	High	TRUE	No
	-	-	10000	4 800000		200000
Outlook	Overcast	Overcast	Hot	High	FALSE	Yes
<u>ŏ</u> _	2	Overcast	Cool	Normal	TRUE	Yes
5	8	Overcast	Mild	High	TRUE	Yes
ی	0	Overcast	Hot	Normal	FALSE	Yes
		Rainy	Hot	High	FALSE	No
	à	Rainy	Hot	High	TRUE	No
	Rainy	Rainy	Mild	High	FALSE	No
		Rainy	Cool	Normal	FALSE	Yes
		Rainy	Mild	Normal	TRUE	Yes

ITERNSHIPSTUDIO

Step 4a: A branch with entropy of 0 is a leaf node.

Temp	Humidity	Windy	Play Golf			
Hot	High	FALSE	Yes			
Cool	Normal	TRUE	Yes		Outlook	
Mild	High	TRUE	Yes		Outlook	
Hot	Normal	FALSE	Yes			
				Sunny	Overcast	Rainy

Step 4b: A branch with entropy more than 0 needs further splitting.

Cool Normal FALSE Yes Mild Normal FALSE Yes	Temp	Humidity	Windy	Play Golf		2270,000,000	
Mild Normal FALSE Yes Cool Normal TRUE No Mild High TRUE No Windy Play=Yes	Mild	High	FALSE	Yes		Outlook	
Cool Normal TRUE No Sunny Overcast Rainy Mild High TRUE No Play=Yes	Cool	Normal	FALSE	Yes	1.59		6
Mild High TRUE No Windy Play=Yes	Mild	Normal	FALSE	Yes			
Mild High TRUE No Windy Play=Yes	Cool	Normal	TRUE	No	Sunny	Overcast	Rainy
Windy Play=Yes	Mild	High	TRUE	No	Junity		- Training
					Windy	Play=Yes	
				F			

- Q.1 Define Entropy?
- Q.2 State examples of Entropy in DT?
- Q.3 Define Information Gain?
- Q.4 State some examples of Information Gain?
- Q.5 How Entropy & Information Gain are co-related?