ESTRUCTURES ALGEBRAIQUES

EXAMEN PARCIAL

5 de novembre 2020

- **1.** Sigui $A = \mathbb{Z}[\sqrt{2}]$, i siguin $p \in \mathbb{Z}$ un nombre primer senar i $a \in \mathbb{Z}$ tal que $a^2 \equiv 2 \pmod{p}$.
 - a) (0.25 pts) Doneu un exemple concret de p i a que satisfacin aquesta condició.
 - b) (1 pt) Definiu dos morfismes d'anells d'A en $\mathbb{Z}/p\mathbb{Z}$.
 - c) (0.75 pts) Demostreu que els nuclis dels morfismes anteriors són ideals maximals d'A.
 - d) $(0.5 \ pts)$ Tenim dos ideals $\mathfrak{m}_1, \mathfrak{m}_2$ d'A tals que A/\mathfrak{m}_1 i A/\mathfrak{m}_2 són isomorfs. És cert que $\mathfrak{m}_1 = \mathfrak{m}_2$?
 - e) $(0.5 \ pts)$ Suposem ara que el polinomi $X^2 2$ és irreductible a $\mathbb{Z}/p\mathbb{Z}[X]$. És possible definir un morfisme d'A en $\mathbb{Z}/p\mathbb{Z}$?

Solució:

- a) 2 no és quadrat ni mòdul 3 ni mòdul 5. En canvi, mòdul 7 tenim $3^2 = 9 \equiv 2 \mod 7$. Per tant, a = 3 i p = 7 compleixen les condicions.
- b) Si φ és morfismes d'anells $A \to \mathbb{Z}/p\mathbb{Z}$, aleshores $\varphi(\sqrt{2})^2 = \varphi(2)$. Definim $\varphi_1(x+y\sqrt{2}) = \overline{x} + \overline{y}\,\overline{a} = \overline{x+ya}$ i $\varphi_2(x+y\sqrt{2}) = \overline{x} - \overline{y}\,\overline{a} = \overline{x-ya}$, on \overline{x} indica la classe mòdul p. Aleshores,

$$\varphi_i((x+y\sqrt{2})+(z+t\sqrt{2}))=\varphi_i(x+z+(y+t)\sqrt{2})=\overline{x+z}\pm(\overline{y+t})\overline{a}=\overline{x}\pm\overline{y}\,\overline{a}+\overline{z}\pm\overline{t}\overline{a}$$
 i, per tant,
$$\varphi_i((x+y\sqrt{2})+(z+t\sqrt{2}))=\varphi_i(x+y\sqrt{2})+\varphi_i(z+t\sqrt{2}).$$
 Pel que fa al producte,
$$\varphi_i((x+y\sqrt{2})(z+t\sqrt{2}))=\varphi_i(xz+2yt+(yz+xt)\sqrt{2})=\overline{xz+2yt}\pm(\overline{yz+xt})\overline{a}=(\overline{x}\pm\overline{ya})(\overline{z}\pm\overline{t}\overline{a})$$
 i, per tant,
$$\varphi_i((x+y\sqrt{2})(z+t\sqrt{2}))=\varphi_i(xz+2yt+(yz+xt)\sqrt{2})=\varphi_i(x+y\sqrt{2})\varphi_i(z+t\sqrt{2}).$$
 Finalment, és clar que
$$\varphi_i(1)=\overline{1}.$$

c) Clarament, els dos morfismes anteriors són epimorfismes: $\varphi_i(x) = \overline{x}$ per a tot $\overline{x} \in \mathbb{Z}/p\mathbb{Z}$. Sabem que els nuclis de morfismes són ideals i que $A/\ker \varphi_i \simeq \operatorname{Im} \varphi_i = \mathbb{Z}/p\mathbb{Z}$. Atès que el quocient és un cos, es tracta d'ideals maximals.

$$\mathfrak{m}_i = \ker \varphi_i = \{x + y\sqrt{2} \mid \overline{x \pm ya} = 0\} = \{x + y\sqrt{2} \mid x = \mp ya + \lambda p, \ \lambda \in \mathbb{Z}\}$$

$$\mathfrak{m}_i = \ker \varphi_i = \{ \mp ya + y\sqrt{2} + \lambda p, \quad \lambda \in \mathbb{Z} \} = \{ y(\mp a + \sqrt{2}) + \lambda p, \quad \lambda \in \mathbb{Z} \}$$

d) No és cert. A l'apartat anterior hem vist que $A/\mathfrak{m}_1 \simeq \mathbb{Z}/p\mathbb{Z} \simeq A/\mathfrak{m}_2$. Però \mathfrak{m}_1 i \mathfrak{m}_2 no són iguals:

$$-a + \sqrt{2} \in \mathfrak{m}_1 = \ker \varphi_1, \quad \varphi_2(-a + \sqrt{2}) = \overline{-a - a} = \overline{-2a} \not\equiv 0 \mod p,$$

ja que p és primer senar i per tant no divideix 2 ni a. (per hipòtesi $a^2 \equiv 2$). Així doncs, $-a + \sqrt{2}$ pertany a \mathfrak{m}_1 però no pertany a $\mathfrak{m}_2 = \ker \varphi_2$.

- e) Si $\varphi A \to \mathbb{Z}/p\mathbb{Z}$, tindrem $\varphi(0) = \overline{0}$ i $\varphi(1) = \overline{1}$. D'això es dedueix que $\varphi(-1) = -\overline{1} = \overline{-1}$ i que $\varphi(x) = \overline{x}$ per a tot $x \in \mathbb{Z}$. Així, si posem $\alpha = \varphi(\sqrt{2})$ tindrem $\alpha^2 = \varphi(2) = \overline{2}$. És a dir, $\alpha \in \mathbb{Z}/p\mathbb{Z}$ ha de ser una arrel de $X^2 2 \in \mathbb{Z}/p\mathbb{Z}[X]$. Si el polinomi és irreductible no tindrà arrels i no és possible definir cap morfisme.
- **2.** Sigui K un cos i sigui $A = \{ f(X) \in K[X] \mid f'(0) = 0 \}.$
 - a) $(0.5 \ pts)$ Demostreu que A és un subanell de K[X] i determineu el conjunt A^* de les seves unitats.
 - b) (0.5 pts) Demostreu que X^3 és un element irreductible de A.
 - c) (1 pt) Demostreu que A no és factorial.
 - d) (0.5 pts) Trobeu un ideal d'A que no sigui principal.
 - e) (0.5 pts) És euclidià?

Solució:

- a) Comprovem que A és un subanell de K[X]:
 - És clar que $1 \in A$.
 - Si $f, g \in A$, llavors (f+g)'(0) = f'(0) + g'(0) = 0, i per tant $f g \in A$.
 - Si $f, g \in A$, llavors (fg)'(0) = f(0)g'(0) + f'(0)g(0) = 0, i per tant $fg \in A$.

Observem que $K\subseteq A$, ja que les constants tenen derivada zero. Així, si $u\in K^*\subseteq A$ llavors $u^{-1}\in K^*\subseteq A$, i per tant $K^*\subseteq A^*$. L'altra inclusió també és certa: si f és invertible en A, llavors també seria invertible en K[X], però $K[X]^*=K^*$, i per tant $f\in K^*$.

En conclusió, $A^* = K^*$.

- b) Abans de tot, observem que si $f(X) = a_0 + a_1 X + \cdots + a_n X^n$ és un element de K[X], la condició f'(0) = 0 equival a $a_1 = 0$. En particular, A no conté cap polinomi de grau 1. Suposem que $X^3 = fg$, amb $f, g \in A \setminus A^*$. D'una banda, sabem que deg $f + \deg g = 3$, i de l'altra no pot ser que ni f ni g tinguin grau 0, ja que llavors serien invertibles (per l'apartat anterior). Llavors, un dels dos polinomis ha de tenir grau 2 i l'altre grau 1, però això és impossible ja que A no conté polinomis de grau 1. Per tant, X^3 és irreductible en A.
- c) Demostrarem que A no és factorial trobant dues descomposicions diferents de X^6 com a producte d'irreductibles. A l'apartat anterior hem vist que X^3 és irreductible, i per un argument anàleg es pot demostrar que X^2 també ho és. Però $X^6 = (X^3)^2 = (X^2)^3$, que són dues descomposicions diferents ja que tenen un nombre diferent de factors irreductibles. Per tant, A no és factorial.
- d) L'ideal $I=(X^2,X^3)$ de A no és principal. Suposem que existeix $f\in A$ tal que I=(f). Com que $X^2=fg$ per a cert $g\in A$, el polinomi f ha de tenir grau 0 o grau 2. Observem que f no pot ser constant, ja que els elements de I són de la forma uX^2+vX^3 , i per tant tenen terme constant nul. En conseqüència, f ha de tenir grau 2. Llavors, si $X^3=fh$ per a cert $h\in A$, necessàriament h tindria grau 1, una contradicció.
- e) Tot anell euclidià és principal i factorial. Per tant, A no pot ser euclidià.

- **3.** Considereu els cossos $K = \mathbb{Q}(\sqrt[3]{5}), L = \mathbb{Q}(\sqrt[5]{3}), M = KL$.
 - a) (0.5 pts) Calculeu els graus de les extensions M/K, M/L i M/\mathbb{Q} .
 - b) (0.5 pts) Construiu una \mathbb{Q} -base de M a partir d'una \mathbb{Q} -base de K i una \mathbb{Q} -base de L.
 - c) (1 pt) Sigui $\alpha \in L$, i sigui R_{α} la seva representació matricial en la \mathbb{Q} -base de M de l'apartat anterior. Demostreu que el polinomi característic de R_{α} és el cub d'un polinomi.
 - d) (1 pt) Demostreu que per $\gamma \in M$ és un element primitiu $M = \mathbb{Q}(\gamma)$ si, i només si, la seva representació matricial en qualsevol \mathbb{Q} -base de M té polinomi característic irreductible.

Solució:

a) Els polinomis X^3-5 i X^5-3 són irreductibles sobre $\mathbb Q$ (per exemple, pel criteri d'Eisenstein), la qual cosa ens diu que $[K:\mathbb Q]=3$ i $[L:\mathbb Q]=5$. Atès que

$$[M : \mathbb{Q}] = [M : K][K : \mathbb{Q}] = [M : L][L : \mathbb{Q}]$$

i que 3 i 5 són coprimers, tenim que 15 | $[M:\mathbb{Q}]$. Per altra banda, $M=L(\sqrt[3]{5})$ i per això $[M:L] \leq 3$ i, per tant, $[M:\mathbb{Q}]=15$. D'aquí deduim que [M:L]=3 i [M:K]=5.

- b) Siguin $\gamma = \sqrt[3]{5}, \delta = \sqrt[5]{3}$. Una \mathbb{Q} -base de K és $B_K = \{1, \gamma, \gamma^2\}$ i una \mathbb{Q} -base de L és $B_L = \{1, \delta, \delta^2, \delta^3, \delta^4\}$. A partir d'aquí es dedueix fàcilment que $B_M = \{\gamma^i \delta^j\}_{i,j}$ és una \mathbb{Q} -base de M.
- c) Denotem per T_{α} la representació matricial d' α en la base B_L . La matriu R_{α} és diagonal per blocs, amb 3 còpies de T_{α} a la diagonal. Això ens diu que el polinomi característic de R_{α} és el cub del polinomi característic de T_{α} .
- d) Recordem que el polinomi mínim de R_{α} coincideix amb $f(X) = \operatorname{Irr}(\alpha, \mathbb{Q}, x)$. Si el polinomi característic de R_{α} és irreductible, coincidirà amb el polinomi mínim, i en particular deg f = 15 i $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 15$, $M = \mathbb{Q}(\alpha)$.

Recíprocament, si $M = \mathbb{Q}(\alpha)$, llavors el grau del polinomi mínim de R_{α} és 15, i per tant coincideix amb el polinomí característic, que en particular és irreductible.

4. (1 pt) Demostreu que tot anell euclidià és principal.