Занятие 5. Линейные операторы в пространстве геометрических векторов. Переход к другому базису.

Задача 1.

Линейный оператор \hat{A} – проекция на плоскость XOZ в пространстве V_3 .

- а) Найти матрицу линейного оператора \hat{A} в базисе $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$.
- b) Найти образ вектора $\vec{a} = (1,2,3)$
- с) Найти ядро и образ оператора \hat{A} .
- d) Является ли оператор \hat{A} обратимым? Если да, описать его действие.

Решение.

Подействуем линейным оператором на базисные векторы $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$.

$$\hat{A}\vec{i} = \vec{i} = (1,0,0),$$

 $\hat{A}\vec{j} = \vec{j} = (0,0,0),$
 $\hat{A}\vec{k} = \vec{0} = (0,0,1).$

а) Запишем матрицу \hat{A} . Вспомним, что координаты образов базисных векторов надо записать по столбцам:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

b) Найдите образ вектора $\vec{a} = (1,2,3)$:

$$\vec{y} = \hat{A}\vec{x} = > \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}.$$

с) Из геометрических соображений видно, что под действием линейного оператора в $\vec{0}$ переходят все векторы, параллельные оси OY, следовательно,

Ker
$$\hat{A} = \{\alpha \vec{j}\}$$
, Im $\hat{A} = \{\beta \vec{i} + \gamma \vec{k}\} = V_2$, Defect $\hat{A} = 1$, Rang $\hat{A} = 2$.

d) По всем трем критериям линейный оператор необратим:

1) det
$$A = 0$$
; 2) Im $\hat{A} \neq V_3$; 3) Ker $\hat{A} \neq \{\vec{0}\}$.

Достаточно применить только один критерий

Задача 2.

 $\widehat{\mathbf{A}}$ - поворот вокруг оси OZ на угол 90^{0} против часовой стрелки пространстве V_{3}

- а) Найти матрицу линейного оператора \hat{A} в базисе $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$.
- b) Найти образ вектора $\vec{a} = (1,2,3)$
- с) Найти ядро и образ оператора \hat{A} .
- d) Является ли оператор \hat{A} обратимым? Если да, описать его действие.

Подействуем линейным оператором на базисные векторы $\{\vec{i}, \vec{j}, \vec{k}\}$.

$$\hat{A}\vec{i} = \vec{j} = (0, 1, 0)$$

$$\hat{A}\vec{j} = -\vec{i} = (-1, 0, 0)$$

$$\hat{A}\vec{k} = \vec{k} = (0, 0, 1)$$

а) Запишем матрицу \hat{A} . Вспомним, что координаты образов базисных векторов надо записать по столбцам.

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

b) Найдем образ вектора $\vec{a} = (1,2,3)$:

$$\vec{y} = \hat{A}\vec{x} = > \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}$$

с) Из геометрических соображений видно, что под действием линейного оператора в $\vec{0}$ переходит только $\vec{0}$, следовательно, $\ker \hat{A} = \{\vec{0}\}$. Тогда образом \hat{A} является все пространство V_3 .

 $\operatorname{Im} \hat{A} = V_3$. Данные выводы подтверждаются тем факторм, что rang A = 3.

- d) По всем трем критериям линейный оператор обратим:
- 1) det $A \neq 0$; 2) Im $\hat{A} = V_3$; 3) Ker $\hat{A} = \{\vec{0}\}$.

Достаточно применить только один критерий.

 \hat{A}^{-1} – поворот вокруг оси OZ на угол 90^{0} по часовой стрелке.

Задача 3.

 $\hat{A}: V_2 \to V_2$ – оператор поворота на угол $\frac{\pi}{3}$ против часовой стрелки;

- а) Найти матрицу линейного оператора \hat{A} в базисе $\{\vec{i}, \vec{j}\}$.
- b) Найти образ вектора $\vec{a} = (1,2)$
- с) Найти ядро и образ оператора \hat{A} .
- d) Является ли оператор \hat{A} обратимым? Если да, описать его действие.

$$\hat{A}\vec{i} = \cos\frac{\pi}{3}\vec{i} + \sin\frac{\pi}{3}\vec{j} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$$
$$\hat{A}\vec{j} = -\sin\frac{\pi}{2}\vec{i} + \cos\frac{\pi}{2}\vec{j} = (-\frac{\sqrt{3}}{2}, \frac{1}{2})$$

a)
$$A = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

b) Найдите образ вектора $\vec{a} = (1,2)$:

$$\vec{y} = \hat{A}\vec{x} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} - \sqrt{3} \\ \frac{\sqrt{3}}{2} + 1 \end{pmatrix}$$

с) Из геометрических соображений видно, что под действием линейного оператора в $\vec{0}$ переходит только $\vec{0}$, следовательно, $\ker \hat{A} = \{\vec{0}\}$. Тогда образом \hat{A} является все пространство V_2 .

 $\operatorname{Im} \hat{A} = V_2$. Данные выводы подтверждаются тем факторм, что rang A = 2.

- d) По всем трем критериям линейный оператор обратим:
- 1) det $A \neq 0$; 2) Im $\hat{A} = V_2$; 3) Ker $\hat{A} = \{\vec{0}\}$.

Достаточно применить только один критерий

 \hat{A}^{-1} — поворот вокруг на угол $\frac{\pi}{3}$ по часовой стрелке.

 ${f 3}$ адача ${f 4}.$ В пространстве ${\it V}_3$ отражение ${\it \hat{A}}$ задано формулой

$$\hat{A}(\vec{x}) = [\vec{x}, \vec{a}],$$
 (векторное произведение), где $\vec{a} = (1,1,1)$

- а) Доказать, что \hat{A} линейный оператор;
- б) Найти матрицу линейного оператора \hat{A} в базисе $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$.
- с) Найти образ вектора $\vec{a} = (1,2,3)$
- d) Найти ядро и образ оператора \hat{A} .
- е) Является ли оператор \hat{A} обратимым? Если да, описать его действие.

Решение:

a)
$$\hat{A}(\vec{x} + \vec{y}) = [\vec{x} + \vec{y}, \vec{a}] = [\vec{x}, \vec{a}] + [\vec{y}, \vec{a}] = \hat{A}(\vec{x}) + \hat{A}(\vec{y})$$

 $\hat{A}(\alpha \vec{x}) = [\alpha \vec{x}, \vec{a}] = \alpha [\vec{x}, \vec{a}] = \alpha \hat{A}(\vec{x})$

Свойства линейности выполняется, следовательно \hat{A} – линейный оператор.

6)
$$\hat{A}\vec{i} = [\vec{i}, \vec{a}] = \begin{vmatrix} i & j & k \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix} = -j+k=(0, -1, 1)$$

$$\hat{A}\vec{j} = [\vec{j}, \vec{a}] = \begin{vmatrix} i & j & k \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = i-k = (1, 0, -1)$$

$$\hat{A}\vec{k} = [k, \vec{a}] = \begin{vmatrix} i & j & k \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -i+j = (-1, 1, 0)$$

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

с) Найдем образ вектора $\vec{a} = (1,2,3)$:

$$\vec{y} = \hat{A}\vec{x} = > \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$

d) Ker $\hat{A} = \{\beta \vec{a}\}$ — векторы, коллинеарные \vec{a} , (следует из свойств векторного произведения)

Im \hat{A} — векторы, перпендикулярные \vec{a} (плоскость, для которой \vec{a} — нормаль)

Defect $\hat{A} = 1$, Rang $\hat{A} = 2$.

- е) По всем трем критериям линейный оператор необратим:
- 1) det A = 0; 2) Im $\hat{A} \neq V_3$; 3) Ker $\hat{A} \neq \{\vec{0}\}$.

Разбор задач типового расчета

Задача 2.5. Линейный оператор \hat{A} в базисе $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ задан матрицей A. Найти матрицу оператора \hat{A} в базисе $\{\overrightarrow{f_1}, \overrightarrow{f_2}, \overrightarrow{f_3}\}$.

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & -2 \\ -1 & 2 & 0 \end{pmatrix}, \quad \vec{f_1} = \vec{e_1} + \vec{e_2} + 2\vec{e_3}, \quad \vec{f_2} = 2\vec{e_1} - \vec{e_2}, \quad \vec{f_3} = -\vec{e_1} + \vec{e_2} + 2\vec{e_3}.$$

1) Запишем матрицу перехода от старого базиса $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ к новому $\{\overrightarrow{f_1}, \overrightarrow{f_2}, \overrightarrow{f_3}\}$. Для этого выпишем по столбцам координаты нового базиса в старом

$$\vec{f}_1 = (1,1,2), \vec{f}_2 = (2,-1,0), \vec{f}_3 = (-1,1,1): P = \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix}.$$

2) Найдем матрицу, обратную к Р:

$$P^{-1} = -\begin{pmatrix} -1 & -2 & 1 \\ 1 & 3 & -2 \\ 2 & 4 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ -1 & -3 & 2 \\ -2 & -4 & 3 \end{pmatrix}.$$

Сделаем проверку: $P \cdot P^{-1} = E$ (единичная матрица).

3) Применим формулу преобразования матрицы линейного оператора при замене базиса: $A_2 = P^{-1}A_1P$ (теорема 3), где $A_1 = A$.

$$A_{2} = \begin{pmatrix} 1 & 2 & -1 \\ -1 & -3 & 2 \\ -2 & -4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & -2 \\ -1 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -7 & 6 & -8 \\ 11 & -9 & 12 \\ 15 & -16 & 19 \end{pmatrix}.$$

Otbet:
$$A_2 = \begin{pmatrix} -7 & 6 & -8 \\ 11 & -9 & 12 \\ 15 & -16 & 19 \end{pmatrix}$$
.

Домашнее задание:

- 1) Типовой расчет : задача 2.5;
- 2) Линейный оператор \hat{A} проекция на ось OX в пространстве V_3 .
- а) Найти матрицу линейного оператора \hat{A} в базисе $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$.
- b) Найти образ вектора $\vec{a} = (1,2,3)$
- с) Найти ядро и образ оператора \hat{A} .
- d) Является ли оператор \hat{A} обратимым? Если да, описать его действие.
- 3) Линейный оператор \hat{A} зеркальное отражение относительно плоскости XOZ в пространстве V_3 .
- а) Найти матрицу линейного оператора \hat{A} в базисе $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$.

- b) Найти образ вектора $\vec{a} = (1,2,3)$
- c) Найти ядро и образ оператора \hat{A} .
- d) Является ли оператор \hat{A} обратимым? Если да, описать его действие.
- 4) Линейный оператор \hat{A} гомотетия с коэффициентом k=3, $\hat{A}(\vec{x})=3\vec{x}$, в пространстве V_3 .
- а) Найти матрицу линейного оператора \hat{A} в базисе $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$.
- b) Найти образ вектора $\vec{a} = (1,2,3)$
- c) Найти ядро и образ оператора \hat{A} .
- d) Является ли оператор \hat{A} обратимым? Если да, описать его действие.