"Across the spectrum"

Y13 UNIT 4 TEST 7

4.10 ORGANIC SYNTHESIS AND ANALYSIS 4.11 STRUCTURE DETERMINATION

Answer all questions

GOOD LUCK!

Answer all questions Total 54 marks

Name:	
	Mark for Section A/39
	Mark for section B/15
	Total:/54
	Grade

SECTION A

- 1. This question concerns four isomers, W, X, Y and Z, with the molecular formula $C_5H_{10}O_2$
 - (a) The proton n.m.r. spectrum of **W** shows 4 peaks.

 The table below gives the chemical shifts, values, for each of these peaks, together with their splitting patterns and integration values.

/ppm	2.18	2.59	3.33	3.64
Splitting pattern	singlet	triplet	singlet	triplet
Integration value	3	2	3	2

State what can be deduced about the structure of ${\bf W}$ from the presence of the following in its n.m.r. spectrum.

(i)	The singlet peak at $= 2.18$
(ii)	The singlet peak at $= 3.33$
(iii)	Two triplet peaks.

(iv) Hence, deduce the structure of W.

(b) The infra-red spectrum of X is shown below.

(i) What can be deduced from the broad absorption centred on 3000 cm⁻¹ in the infra-red spectrum of **X**?

.....

(ii) Given that the proton n.m.r. spectrum of **X** contains only two peaks with the integration ratio 9:1, deduce the structure of **X**.

(2)

(c) Isomers **Y** and **Z** have the structures shown below.

Identify the two reagents you could use in a simple chemical test to distinguish between \mathbf{Y} and \mathbf{Z} . State what you would observe when each of \mathbf{Y} and \mathbf{Z} is tested with a mixture of these two reagents.

D .	
Rogante	
Reagents	

Observation with Y.....

Observation with **Z**

(Total 9 marks)

(3)

2. Compounds **C** and **D**, shown below, are isomers of $C_5H_{10}O$

Use '	Table 2 on the Data Sheet to help you to answer this question.
(i)	Suggest the wavenumber of an absorption which is present in the infra-red spectrum of C but not in that of D .
(ii)	Suggest the wavenumber of an absorption which is present in the infra-red spectrum of D but not in that of C .
Dedu	ace the number of peaks in the proton n.m.r. spectrum of C .
Dedu 	ace the number of peaks in the proton n.m.r. spectrum of C .
dent	
dent state	tify a reagent that you could use to distinguish between C and D . For each of C and D , what you would observe when the compound is treated with this reagent.
dentstate Reag	tify a reagent that you could use to distinguish between C and D . For each of C and D , what you would observe when the compound is treated with this reagent.
dentstate Reag	tify a reagent that you could use to distinguish between C and D . For each of C and D , what you would observe when the compound is treated with this reagent.
dent state Reag Obse	tify a reagent that you could use to distinguish between C and D . For each of C and D what you would observe when the compound is treated with this reagent.
dent tate Reag Obse Complete dent	tify a reagent that you could use to distinguish between C and D . For each of C and D what you would observe when the compound is treated with this reagent. Servation with C

(a)	Compounds A and B have the molec A decolourises bromine water but B	
	A	В
(b)	Compounds C and D have the molec	
	Each has an absorption in its infra-re broad absorption at 3350 cm ⁻¹	ed spectrum at about 1700 cm ⁻¹ but only D has a
	С	D
(c)	Compounds E and F are esters with	the molecular formula $C_5 H_{10}O_2$
	The proton n.m.r. spectrum of E con of two quartets and two triplets.	sists of two singlets only whereas that of F consists
	E	F
(d)	Compounds G and H have the molect G shows optical activity but H does	2
	G	н

Each of the parts (a) to (e) below concerns a different pair of isomers.

3.

(e) Compounds I and J have the molecular formula C	$a C_6 H_{12}$
--	----------------

Each has an absorption in its infra-red spectrum at about $1650 \, \mathrm{cm}^{-1}$ and neither shows geometrical isomerism. The proton n.m.r. spectrum of \mathbf{I} consists of a singlet only whereas that of \mathbf{J} consists of a singlet, a triplet and a quartet.

I J

(2) (Total 10 marks) **4.** The proton n.m.r. spectrum of an organic compound \mathbf{F} , $\mathbf{C}_4\mathbf{H}_8\mathbf{O}$, is shown below.

The measured integration trace gives the ratio 0.5 to 0.75 to 0.75 for the peaks at δ 2.47, 2.15 and 1.05, respectively. The infra-red spectrum of compound **F** has an intense band at 1715 cm⁻¹. In the mass spectrum of **F**, dominant fragmentation peaks appear at m/z = 43 and m/z = 57.

(a) Give the structural formula of the compound responsible for the signal at δ 0.00 in the n.m.r. spectrum.

(b)	How many different types of proton are present in compound F ?	(1)
(c)	What is the ratio of the numbers of each type of proton?	(1)

(1)

(d)	Which alkyl group is responsible for the signal at δ 2.15 in the n.m.r. spectrum?	(4)
(e)	The peaks at ä 2.47 and ä 1.05 arise from one group in compound F. Identify this group and explain the appearance of the splitting pattern shown in the n.m.r. spectrum.	(1)
	Group	
	Explanation	
		(3)
(f)	Which group is responsible for the band at 1715 cm^{-1} in the infra-red spectrum of compound F ?	
		(1)
(g)	Give the structures of the species responsible for the peaks at m/z values of 43 and 57 in the mass spectrum.	(1)
	Peak at m/z = 43	
	Peak at $m/z = 57$	(2)
(h)	Give the structure of compound F .	(=)
		(1)
	(Total 11 m	` '

SECTION B

- **5.** (a) Describe how propanal, CH₃CH₂CHO, and propanone, CH₃COCH₃, can be distinguished using
 - (i) a chemical test and
 - (ii) the number of peaks in their proton n.m.r. spectra.

(5)

(b) Compound ${\bf Z}$ can be produced by the reaction of compound ${\bf X}$ with compound ${\bf Y}$ as shown in the synthesis outlined below.

Identify compounds X and Y.

For each of the three steps in the synthesis, name the type of reaction involved and give reagents and conditions. Equations are **not** required.

	(10)
(Tota	al 15 marks)
	•••••
	•••••
	•••••
	•••••
	•••••
	• • • • • • • • • •
	, • • • • • • • • •
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •

