# CS 4110

# Programming Languages & Logics

Lecture 2
Introduction to Semantics

# **Semantics**

Question: What is the meaning of a program?

## **Semantics**

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a compiler, or we could consult a manual...



#### A6.7 Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor implicit conversion to any non-void type may be applied. Because a void expression denotes a nonexistent value, such an expression may be used only where the value is not required, for example as an expression statement (\$A9.2.) or as the left operand of a commo operator (\$A7.18).

An expression may be converted to type void by a cast. For example, a void cast documents the discarding of the value of a function call used as an expression statement.

void did not appear in the first edition of this book, but has become common since.

...but none of these is a satisfactory solution.

## Formal Semantics

## **Three Approaches**

Operational

$$\langle \sigma, \mathbf{e} \rangle \longrightarrow \langle \sigma', \mathbf{e}' \rangle$$

- Model program by execution on abstract machine
- Useful for implementing compilers and interpreters
- Denotational:

 $\llbracket e \rrbracket$ 

- ► Model program as mathematical objects
- Useful for theoretical foundations
- Axiomatic

$$\vdash \{\phi\} \, \mathsf{e} \, \{\psi\}$$

- Model program by the logical formulas it obeys
- Useful for proving program correctness

# Arithmetic Expressions

# **Syntax**

A language of integer arithmetic expressions with assignment.

## **Syntax**

A language of integer arithmetic expressions with assignment.

### Metavariables:

$$egin{array}{lll} x,y,z&\in& {\sf Var} \\ n,m&\in& {\sf Int} \\ e&\in& {\sf Exp} \end{array}$$

## **Syntax**

A language of integer arithmetic expressions with assignment.

#### Metavariables:

$$x,y,z \in Var$$
  
 $n,m \in Int$   
 $e \in Exp$ 

#### **BNF Grammar:**

$$e := x$$
 $| n$ 
 $| e_1 + e_2$ 
 $| e_1 * e_2$ 
 $| x := e_1 ; e_2$ 

E

# **Ambiguity**

What expression does the string "1 + 2 \* 3" describe?

# **Ambiguity**

What expression does the string "1 + 2 \* 3" describe?

There are two possible parse trees:



# **Ambiguity**

What expression does the string "1 + 2 \* 3" describe?

There are two possible parse trees:



In this course, we will distinguish abstract syntax from concrete syntax, and focus primarily on abstract syntax (using conventions or parentheses at the concrete level to disambiguate as needed).

# **Representing Expressions**

## **BNF Grammar:**

```
e := x
| n 
| e_1 + e_2 
| e_1 * e_2 
| x := e_1 ; e_2
```

# Representing Expressions

### **BNF Grammar:**

```
e := x
| n 
| e_1 + e_2 
| e_1 * e_2 
| x := e_1 ; e_2
```

#### OCaml:

```
type exp = Var of string
| Int of int
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp
```

Example: Mul(Int 2, Add(Var "foo", Int 1))

# Representing Expressions

## **BNF Grammar:**

```
e := x
| n 
| e_1 + e_2 
| e_1 * e_2 
| x := e_1 ; e_2
```

#### Java:

```
abstract class Expr { }
class Var extends Expr { String name; ... }
class Int extends Expr { int val; ... }
class Add extends Expr { Expr exp1, exp2; ... }
class Mul extends Expr { Expr exp1, exp2; ... }
class Assgn extends Expr { String var, Expr exp1, exp2; ... }
```

Example: new Mul(new Int(2), new Add(new Var("foo"), new Int(1)))

• 7 + (4 \* 2) evaluates to ...?

• 7 + (4 \* 2) evaluates to 15

- 7 + (4 \* 2) evaluates to 15
- i := 6 + 1; 2 \* 3 \* i evaluates to ...?

- 7 + (4 \* 2) evaluates to 15
- i := 6 + 1; 2 \* 3 \* i evaluates to 42

- 7 + (4 \* 2) evaluates to 15
- i := 6 + 1; 2 \* 3 \* i evaluates to 42
- *x* + 1 evaluates to ...?

- 7 + (4 \* 2) evaluates to 15
- i := 6 + 1; 2 \* 3 \* i evaluates to 42
- *x* + 1 evaluates to error?

- 7 + (4 \* 2) evaluates to 15
- i := 6 + 1; 2 \* 3 \* i evaluates to 42
- x + 1 evaluates to error?

The rest of this lecture will make these intuitions precise...

# Mathematical Preliminaries

The *product* of two sets *A* and *B*, written  $A \times B$ , contains all ordered pairs (a, b) with  $a \in A$  and  $b \in B$ .

The *product* of two sets *A* and *B*, written  $A \times B$ , contains all ordered pairs (a, b) with  $a \in A$  and  $b \in B$ .

A binary relation on A and B is just a subset  $R \subseteq A \times B$ .

The *product* of two sets *A* and *B*, written  $A \times B$ , contains all ordered pairs (a, b) with  $a \in A$  and  $b \in B$ .

A binary relation on A and B is just a subset  $R \subseteq A \times B$ .

Given a binary relation  $R \subseteq A \times B$ , the set A is called the *domain* of R and B is called the *range* (or *codomain*) of R.

The *product* of two sets *A* and *B*, written  $A \times B$ , contains all ordered pairs (a, b) with  $a \in A$  and  $b \in B$ .

A binary relation on A and B is just a subset  $R \subseteq A \times B$ .

Given a binary relation  $R \subseteq A \times B$ , the set A is called the *domain* of R and B is called the *range* (or *codomain*) of R.

## Some Important Relations

- empty ∅
- total A × B
- identity on  $A \{(a, a) \mid a \in A\}$ .
- composition R;  $S \{(a,c) \mid \exists b. (a,b) \in R \land (b,c) \in S\}$

A (total) function f is a binary relation  $f \subseteq A \times B$  with the property that every  $a \in A$  is related to exactly one  $b \in B$ 

A (total) function f is a binary relation  $f \subseteq A \times B$  with the property that every  $a \in A$  is related to exactly one  $b \in B$ 

When f is a function, we usually write  $f: A \rightarrow B$  instead of  $f \subseteq A \times B$ 

A (total) function f is a binary relation  $f \subseteq A \times B$  with the property that every  $a \in A$  is related to exactly one  $b \in B$ 

When f is a function, we usually write  $f: A \rightarrow B$  instead of  $f \subseteq A \times B$ 

The *domain* and *range* of *f* are defined the same way as for relations

A (total) function f is a binary relation  $f \subseteq A \times B$  with the property that every  $a \in A$  is related to exactly one  $b \in B$ 

When f is a function, we usually write  $f:A\to B$  instead of  $f\subseteq A\times B$ 

The *domain* and *range* of *f* are defined the same way as for relations

The *image* of f is the set of elements  $b \in B$  that are mapped to by at least one  $a \in A$ . More formally: image $(f) \triangleq \{f(a) \mid a \in A\}$ 

Given two functions  $f: A \to B$  and  $g: B \to C$ , the composition of f and g is defined by:  $(g \circ f)(x) = g(f(x))$  Note order!

Given two functions  $f: A \to B$  and  $g: B \to C$ , the composition of f and g is defined by:  $(g \circ f)(x) = g(f(x))$  Note order!

A partial function  $f: A \rightarrow B$  is a total function  $f: A' \rightarrow B$  on a set  $A' \subseteq A$ . The notation dom(f) refers to A'.

Given two functions  $f: A \to B$  and  $g: B \to C$ , the composition of f and g is defined by:  $(g \circ f)(x) = g(f(x))$  Note order!

A partial function  $f: A \rightarrow B$  is a total function  $f: A' \rightarrow B$  on a set  $A' \subseteq A$ . The notation dom(f) refers to A'.

A function  $f: A \to B$  is said to be *injective* (or *one-to-one*) if and only if  $a_1 \neq a_2$  implies  $f(a_1) \neq f(a_2)$ .

Given two functions  $f: A \to B$  and  $g: B \to C$ , the composition of f and g is defined by:  $(g \circ f)(x) = g(f(x))$  Note order!

A partial function  $f: A \longrightarrow B$  is a total function  $f: A' \to B$  on a set  $A' \subseteq A$ . The notation dom(f) refers to A'.

A function  $f: A \to B$  is said to be *injective* (or *one-to-one*) if and only if  $a_1 \neq a_2$  implies  $f(a_1) \neq f(a_2)$ .

A function  $f: A \to B$  is said to be *surjective* (or *onto*) if and only if the image of f is B.

# Operational Semantics

## Overview

An operational semantics describes how a program executes on some (typically idealized) abstract machine.

#### Overview

An operational semantics describes how a program executes on some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds in terms of successive reductions:  $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$ 

#### Overview

An operational semantics describes how a program executes on some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds in terms of successive reductions:  $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$ 

For our language, a configuration  $\langle \sigma, e \rangle$  has two components:

- a store  $\sigma$  that records the values of variables
- and the expression e being evaluated

#### Overview

An operational semantics describes how a program executes on some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds in terms of successive reductions:  $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$ 

For our language, a configuration  $\langle \sigma, e \rangle$  has two components:

- a store  $\sigma$  that records the values of variables
- and the expression e being evaluated

More formally,

Store 
$$\triangleq$$
 Var  $\rightharpoonup$  Int Config  $\triangleq$  Store  $\times$  Exp

Note that a store is a *partial* function from variables to integers.

The small-step operational semantics itself is a relation on configurations—i.e., a subset of **Config**  $\times$  **Config**.

The small-step operational semantics itself is a relation on configurations—i.e., a subset of **Config**  $\times$  **Config**.

Notation:  $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$ 

The small-step operational semantics itself is a relation on configurations—i.e., a subset of **Config**  $\times$  **Config**.

Notation:  $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$ 

Question: How should we define this relation?

The small-step operational semantics itself is a relation on configurations—i.e., a subset of **Config**  $\times$  **Config**.

Notation:  $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$ 

Question: How should we define this relation? Note that there are an infinite number of configurations and possible steps!

The small-step operational semantics itself is a relation on configurations—i.e., a subset of  $\textbf{Config} \times \textbf{Config}$ .

Notation:  $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$ 

Question: How should we define this relation? Note that there are an infinite number of configurations and possible steps!

Answer: define it inductively, using inference rules:

$$rac{p=m+n}{\langle \sigma, n+m
angle 
ightarrow \langle \sigma, p
angle}$$
 Add

The small-step operational semantics itself is a relation on configurations—i.e., a subset of  $\textbf{Config} \times \textbf{Config}$ .

Notation:  $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$ 

Question: How should we define this relation? Note that there are an infinite number of configurations and possible steps!

Answer: define it inductively, using inference rules:

$$rac{p=m+n}{\langle \sigma, n+m
angle 
ightarrow \langle \sigma, p
angle}$$
 Add

Intuitively, if facts above the line hold, then facts below the line hold. More formally, " $\rightarrow$ " is the smallest relation "closed" under the inference rules.

# Variables

$$rac{n=\sigma( extbf{x})}{\langle \sigma, extbf{x}
angle 
ightarrow \langle \sigma, n
angle} \; extsf{Var}$$

### Addition

$$\frac{\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 + e_2 \rangle \rightarrow \langle \sigma', e_1' + e_2 \rangle} \text{ LADD}$$

### Addition

$$\begin{split} &\frac{\langle \sigma, e_1 \rangle \to \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 + e_2 \rangle \to \langle \sigma', e_1' + e_2 \rangle} \text{ LADD} \\ &\frac{\langle \sigma, e_2 \rangle \to \langle \sigma', e_2' \rangle}{\langle \sigma, n + e_2 \rangle \to \langle \sigma', n + e_2' \rangle} \text{ RADD} \end{split}$$

### Addition

$$\begin{split} \frac{\langle \sigma, e_1 \rangle \to \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 + e_2 \rangle \to \langle \sigma', e_1' + e_2 \rangle} \text{ LADD} \\ \frac{\langle \sigma, e_2 \rangle \to \langle \sigma', e_1' + e_2 \rangle}{\langle \sigma, n + e_2 \rangle \to \langle \sigma', n + e_2' \rangle} \text{ RADD} \\ \frac{p = m + n}{\langle \sigma, n + m \rangle \to \langle \sigma, p \rangle} \text{ ADD} \end{split}$$

# Multiplication

$$\frac{\langle \sigma, e_1 \rangle \to \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 * e_2 \rangle \to \langle \sigma', e_1' * e_2 \rangle} \text{ LMUL}$$

# Multiplication

$$\begin{split} &\frac{\langle \sigma, e_1 \rangle \to \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 * e_2 \rangle \to \langle \sigma', e_1' * e_2 \rangle} \text{ LMUL} \\ &\frac{\langle \sigma, e_2 \rangle \to \langle \sigma', e_2' \rangle}{\langle \sigma, n * e_2 \rangle \to \langle \sigma', n * e_2' \rangle} \text{ RMUL} \end{split}$$

# Multiplication

$$\begin{split} &\frac{\langle \sigma, e_1 \rangle \to \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 * e_2 \rangle \to \langle \sigma', e_1' * e_2 \rangle} \text{ LMUL} \\ &\frac{\langle \sigma, e_2 \rangle \to \langle \sigma', e_2' \rangle}{\langle \sigma, n * e_2 \rangle \to \langle \sigma', n * e_2' \rangle} \text{ RMUL} \\ &\frac{p = m \times n}{\langle \sigma, m * n \rangle \to \langle \sigma, p \rangle} \text{ MUL} \end{split}$$

# Assignment

$$\frac{\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, \mathbf{X} := e_1 \; ; \; e_2 \rangle \rightarrow \langle \sigma', \mathbf{X} := e_1' \; ; \; e_2 \rangle} \; \mathsf{Assgn1}$$

# **Assignment**

$$\begin{split} \frac{\langle \sigma, e_1 \rangle \to \langle \sigma', e_1' \rangle}{\langle \sigma, x := e_1 \; ; \; e_2 \rangle \to \langle \sigma', x := e_1' \; ; \; e_2 \rangle} \; \text{Assgn1} \\ \frac{\sigma' = \sigma[x \mapsto n]}{\langle \sigma, x := n \; ; \; e_2 \rangle \to \langle \sigma', e_2 \rangle} \; \text{Assgn} \end{split}$$

Notation:  $\sigma[x \mapsto n]$  maps x to n and otherwise behaves like  $\sigma$ 

$$\frac{n=\sigma(x)}{\langle \sigma,x\rangle \to \langle \sigma,n\rangle} \, \text{Var} \qquad \frac{\langle \sigma,e_1\rangle \to \langle \sigma',e_1'\rangle}{\langle \sigma,e_1+e_2\rangle \to \langle \sigma',e_1'+e_2\rangle} \, \text{LAdd}$$
 
$$\frac{\langle \sigma,e_2\rangle \to \langle \sigma',e_2'\rangle}{\langle \sigma,n+e_2\rangle \to \langle \sigma',n+e_2'\rangle} \, \text{RAdd} \qquad \frac{p=m+n}{\langle \sigma,n+m\rangle \to \langle \sigma,p\rangle} \, \text{Add}$$
 
$$\frac{\langle \sigma,e_1\rangle \to \langle \sigma',e_1'\rangle}{\langle \sigma,e_1*e_2\rangle \to \langle \sigma',e_1'\rangle} \, \text{LMul} \qquad \frac{\langle \sigma,e_2\rangle \to \langle \sigma',e_2'\rangle}{\langle \sigma,n*e_2\rangle \to \langle \sigma',n*e_2'\rangle} \, \text{RMul}$$
 
$$\frac{p=m\times n}{\langle \sigma,m*n\rangle \to \langle \sigma,p\rangle} \, \text{Mul}$$

$$\frac{\langle \sigma, e_1 \rangle \rightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, \textbf{\textit{x}} := e_1 \: ; \: e_2 \rangle \rightarrow \langle \sigma', \textbf{\textit{x}} := e_1' \: ; \: e_2 \rangle} \text{ Assgn1}$$