NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING

EE4491 Probability Theory and Applications

Assignment (Sem 1, AY2021-2022)

The 3 questions below have been selected as the Assignment of the CONTINUOUS ASSESSMENT, with a total of 100 marks. You are required to solve the problems yourself. Note that plagiarism will result in serious consequences. Write your solutions neatly on A4-size paper sheets with dark ball pens. Follow the instructions to submit your solutions.

1. A communication channel consists of two inputs and three outputs. Each input-output path is described by a transition probability p_{ij} , standing for $\Pr(Y_j = y_j | X_i = x_i)$, j = 1, 2, 3 and i = 1, 2. Thus, p_{ij} is the probability of receiving output y_j given that the input is x_i . Accordingly, the channel transition is summarized by

If the input probabilities are $Pr(X_1) = 0.6$ and $Pr(X_2) = 0.4$,

- a) find the output probabilities $Pr(Y_j)$, j = 1, 2, 3.
- b) determine $Pr(X_i = x_i | Y_j = y_j)$, i = 1, 2, j = 1, 2, 3
- c) compute the probability of error $P_e = \Pr(x_1, \text{not } y_1) + \Pr(x_2, \text{not } y_3)$.

Comment on the complexity of calculation in parts (a), (b) and (c) when i and j are large. Suggest a systematic approach to handle the computation.

(30 marks)

2. In a probabilistic experiement, the sample space

$$S = \{Jan, Feb, Mar, \dots, Nov, Dec\}$$

contains 12 elements. Let the sets

 $A = \{x | x \text{ is a month with 31 days}\}$

and

$$B = \{Apr, May, Jun, Aug, Oct\}$$

Verify the deMorgan's laws

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

(30 marks)

3. Table 1 represents the inspection results of bearings from three different suppliers:

Table 1

	Supplier A	Supplier B	Supplier C
Satisfactory	3000	2500	1500
Oversized	880	100	120
Undersized	200	150	250

- a) Find the probability that a defective item is undersized.
- b) Find the probability that the defective item in part (a) is from supplier A.
- c) Find the probability that a selected item is both defective and from supplier C.

(40 marks)