Thao Vy Tran

EE 104

ID: 0154653370

Please watch this link for CNN: https://youtu.be/zEFB9GVN1YU

Link video: https://youtu.be/Axn6WqiNRaA

Lab 6 includes five tasks as below: First, we need to set up and import important packages

<u>1.CNN</u>

- Download CIFAR-10 dataset

- Import important packages

pip install tensorflow

pip install keras

pip install h5py

pip install Matplotlib

pip install numpy

How to use

Run CNNbaseline.py file, the maximum accuracy we can get is shown as below:

Model summary

Console 3/A X		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	 (None, 32, 32, 32)	896
batch_normalization (BatchN ormalization)	(None, 32, 32, 32)	128
conv2d_1 (Conv2D)	(None, 32, 32, 32)	9248
patch_normalization_1 (Batc nNormalization)	(None, 32, 32, 32)	128
max_pooling2d (MaxPooling2D	(None, 16, 16, 32)	0
dropout (Dropout)	(None, 16, 16, 32)	0
conv2d_2 (Conv2D)	(None, 16, 16, 64)	18496
atch_normalization_2 (Batc Normalization)	(None, 16, 16, 64)	256
conv2d_3 (Conv2D)	(None, 16, 16, 64)	36928
oatch_normalization_3 (Batc Normalization)	(None, 16, 16, 64)	256
max_pooling2d_1 (MaxPooling D)	(None, 8, 8, 64)	0
dropout_1 (Dropout)	(None, 8, 8, 64)	0
conv2d_4 (Conv2D)	(None, 8, 8, 128)	73856
patch_normalization_4 (Batc nNormalization)	(None, 8, 8, 128)	512
conv2d_5 (Conv2D)	(None, 8, 8, 128)	147584
patch_normalization_5 (Batc nNormalization)	(None, 8, 8, 128)	512
max_pooling2d_2 (MaxPooling 2D)	(None, 4, 4, 128)	0

dropout_2 (Dropout)	(None, 4, 4, 128)	0
flatten (Flatten)	(None, 2048)	Ø
dense (Dense)	(None, 240)	491760
<pre>batch_normalization_6 (Batc hNormalization)</pre>	(None, 240)	960
dropout_3 (Dropout)	(None, 240)	Ø
dense_1 (Dense)	(None, 10)	2410
Total params: 783,930 Trainable params: 782,554 Non-trainable params: 1,376		

2.CNN-Challenge test

After running the CNNbaseline.py, we can use the model generated to run the test_image.py

3.Game Development

import pgzrun

from random import *

import time

Save the CNNbaseline model is generated then test these four images

3.Game Development- Happy Garden

Move the pig and wilt the flower by click the SPACE button to wilt the flower.

When the owl or the fangglower attack the pig, it will die and the game is over.

4. Hello World to OpenAI

Set up to run the OPENAI using Window Powershell

Download and Install Python 3.8.0

How to use

Enter the animal and it will generate four different names

5. Hello World to ChatGPT

Set up the API key to run the Chat GPT

Run the python code

Then ask the question or enter quitme to quit

