

Fernán Agüero Instituto de Investigaciones Biotecnológicas, UNSAM

INTRODUCTION TO CHEMINFORMATICS

Cheminformatics is a relatively new field of information technology that focuses on the collection, storage, analysis, and manipulation of chemical data. The chemical data of interest typically includes information on small molecule formulas, structures, properties, spectra, and activities (biological or industrial). Cheminformatics originally emerged as a vehicle to help the drug discovery and development process, however cheminformatics now plays an increasingly important role in many areas of biology, chemistry, and biochemistry. The intent of this unit is to give readers some introduction into the field of cheminformatics and to show how cheminformatics not only shares many similarities with the field of bioinformatics, but that it can also enhance much of what is currently done in bioinformatics.

-- David Wishart

CHEMINFORMATICS – QUÉ ES?

"The application of computational techniques to the discovery, management, interpretation and manipulation of chemical information and data extracted therefrom".

Chemistry plans a structural overhaul.

Nature 419:4-7 (2002)

Menciones en PubMed Bioinformatics vs Cheminformatics

Se la conoce como:

- Computational chemistry
- Theoretical chemistry
- Molecular modeling

Nace con el desarrollo de la mecánica cuántica a principios del siglo XX

Parece haber pasado desapercibida en la revolución "omica"

En activo desarrollo y expansión a partir de la introducción de las computadoras

CHEMINFORMATICS EN LA LITERATURA

Term	Google	Google	Web of	Scopus
		Scholar	Knowledge	
Chemical documentation	695,000	66	1	34
Chemical informatics	50,400	129	20	39
Chemical information management	978	42	4	28
Chemical information science	779	17	2	5
Chemiinformatics	2,230	2	2	2
Cheminformatics	320,000	447	83	250
Chemoinformatics	191,000	5636	99	473

Table 1. Occurrences of search terms in *Google*, *Google Scholar*, the *Web of Knowledge* and *Scopus*

Google:

- "Bioinformatics" (2023): ~ 240 millones de páginas
- "Cheminformatics" (2023): ~ 1.6 millones de páginas

Willett P (2007). *A bibliometric analysis of the literature of chemoinformatics*. **Aslib Proceedings, 60:** 4-17

CUESTIONES QUÍMICAS

La química se ocupa de esto

estructura propiedades

Compuestos

- Propiedades Físicas (→Energía)
- Propiedades Químicas (Estructura, Reactividad)
- Propiedades Biológicas (→ Actividad)
- Separaciones de mezclas de compuestos
- Aspectos estáticos

Transformaciones

- Reacciones químicas
- Aspectos dinámicos

Y tiene estos desafíos

propiedades estructura

Inferencia

- Qué compuestos (estructuras) van a mostrar una determinada propiedad?
 - Inhibición de una actividad enzimática X (ej. drogas)
 - Propiedades mecánicas y elásticas definidas (ej. polímeros)
- Definir caminos óptimos para la síntesis de compuestos
 - Reacciones
 - Materiales iniciales
- Predecir estructuras
 - A partir de datos experimentales (ej NMR)
 - Compuestos desconocidos

2023 Bioinformática UNSAM

QUIMIOINFORMÁTICA

2023

Transformar datos en conocimiento

• La actividad biológica de un compuesto X contra una proteína target Y

Bioinformática UNSAM

TEORÍA VS MODELOS

En esencia son lo mismo, pero

Una teoría suele ser general

Mientras que los **modelos** introducen particularidades para facilitar la interpretación y el entendimiento

En algunos casos los **modelos** son aproximaciones, con error medible.

Mecánica cuántica

Teoría fundamental de la química

Permite describir un sistema (por ej una molécula) en forma completa, usando funciones de onda, formación y ruptura de enlaces, reacciones químicas, etc.

Modelo de valencia, capas de electrones y repulsión

Todos estudiamos este modelo en cursos básicos de química

Es un modelo o aproximación

Permite entender los mismos sistemas fácilmente

Pero tiene problemas para describir comportamientos de algunos sistemas químicos

2D Structure vs 3D Structure

2D: Lenguaje natural "universal" entre químicos

- Explica la topología de una molécula
- Qué átomos están conectados mediante qué enlaces
- No explica el arreglo tridimensional de los átomos

3D: Requiere datos adicionales

- Posición de los átomos en el espacio
- Ángulos y distancias de los enlaces

Hierarchical scheme for representations of a molecule with different content of structural information.

Tomado de J Gasteiger & T Engel (2003).

Moléculas con nombres populares raros:

Traumatic acid
Erotic acid
Commic acid
Diabolic acid
Megaphone

NOMENCLATURA QUÍMICA

Histórica

aqua fortis (nitric acid)
oil of vitriol (sulfuric acid)
sweet oil of vitriol (diethyl ether)

Trivial

Fenilalanina Ibuprofeno

Popular, pero díficil de sistematizar

IUPAC

2-amino-3-phenylpropanoic acid 2-[4-(2-methylpropyl)phenyl]propanoic acid Sistemático, pero los nombres pueden ser largos!

Fórmula empírica

C9H11NO2 C13H18O2

Ambiguo: varios compuestos pueden tener la misma fórmula

REPRESENTACIÓN DE COMPUESTOS QUÍMICOS: SMILES

SMILES (<u>Simplified Molecular Input Line Entry System</u>)

Introducido en 1986 por David Weininger -

Representa moléculas en forma lexicográfica

Usa conceptos de grafos | *Nodos* conectados a través de *aristas* o *arcos*

Los átomos se representan con sus respectivos símbolos:

C, N, Br, Na, Cl, O, F

MAYUSCULAS → alifáticos; minúsculas → aromáticos

Los hidrógenos son implícitos

Los átomos vecinos aparecen juntos

Se usan paréntesis cuando hay más de un vecino: ramificaciones

Enlaces dobles se representan usando '='

Enlaces triples se representan usando '#'

Quiralidad: '@' (contrario a las agujas del reloj)

'@@' (en el sentido de las agujas del reloj)

Anillos: números a continuación de los átomos que abren/cierran el ciclo

Más información y reglas en:

https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system

Otros ejemplos:

Ciclohexano: C1CCCCC1

Benceno: C1=CC=CC=C1 (Kekulé)

Benceno: c1ccccc1

Etanol: CCO

Piridina: C1=CC=NC=C1 (Kekulé)

Piridina: c1ccncc1

Acido acético: CC(=O)O Acido cianhídrico: C#N

L-alanina: N[C@@H](C)C(=O)O

L-alanina (sin especificar quiralidad): N[CH](C)C(=O)O

Cloruro de Sodio: [Na+].[Cl-]

ANILLOS EN SMILES

Linealizar y Etiquetar

Linealizar el anillo en cualquier parte

Benceno: ccccc (C=CC=CC=C)

Dioxano: occocc, ccocco, coccoc

Agregar etiquetas numéricas para indicar el inicio y cierre del anillo

Benceno: c1ccccc1

Dioxano: O1CCOCC1, C1COCCO1, C1OCCOC1

Las etiquetas numericas pueden empezar en

cero (0) pero rara vez se usa

Decalin: C1CCC2C1CCC2, C1CCC2CCCC12

dioxano

decalin

REPRESENTACIÓN DE PATRONES EN MOLECULAS

Al principio hubo Markush structures:

Representan varias estructuras posibles

Grupos R variables

Descripción general de una molécula con ambigüedad en algunas posiciones

Son comunes en patentes, y en libros de texto.

$$R^{2}$$
 $X-Z$
 R^{3}

https://es.wikipedia.org/wiki/Estructura_de_Markush

Eugene A. Markush

REPRESENTACIÓN DE PATRONES: SMARTS

SMARTS - A Language for Describing Molecular Patterns

Representación lexicográfica de partes de una molécula

Es una extensión de **SMILES**

Concepto similar al de expresiones regulares (regex) en texto.

https://en.wikipedia.org/wiki/Regular_expression

Reglas (las mismas que SMILES), y además:

Representción de patrones para átomos:

* cualquier átomo

a aromático

A alifático ... hay más reglas para átomos

Representación de patrones para enlaces:

~ cualquier enlace

@ cualquier enlace en un anillo

/ enlace dirigido "arriba"

\ enlace dirigido "abajo"

Más información y reglas en:

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

SMARTS: [OH]c1cccc1

hydroxyl-group attached to 6 aromatic carbons in a ring

SMARTS: NCCc1cccc1

Aliphatic nitrogen attached to 2 aliphatic carbons attached to 6 aromatic carbons in a ring

FROM MARKUSH TO SMARTS

Original molecules

SMARTS PATTERNS

SMARTS.PLUS SmartView: https://smarts.plus/

SMARTS – A LANGUAGE FOR DESCRIBING MOLECULAR PATTERNS

Una representación SMILES es un patrón SMARTS válido

[OH]c1cccc1 (phenol)

Patrones SMARTS simples [C,N]1CCCCC1

[CI,Br,F,I]C([CI,Br,F,I])([CI,Br,F,I])CCC1=CC=C1

C-C=C-C=C~*~[++]

[Cl,Br,F,I]C([Cl,Br,F,I])([Cl,Br,F,I])CCC1=CC=CC=C1

Picture created by the SMARTSviewer [https://smarts.plus/]. Copyright: ZBH - Center for Bioinformatics Hamburg.

Referencias

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html https://smarts.plus/

PATRONES SMARTS PARA BÚSQUEDAS

Referencias
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://smarts.plus/

16

Picture created by the SMARTSviewer [https://smarts.plus/]. Copyright: ZBH - Center for Bioinformatics Hamburg.

[n+]12nc3c4c5c(c3cc1c(nc(c2C)C)C)cccc5ccc4

C = carbono alifático

c = carbono aromático

2023 Bioinformática UNSAM

MATCHING SMARTS PATTERNS

Schmidt, R., Ehmki, E. S. R., Ohm, F., Ehrlich, H.-C., Mashychev, A., & Rarey, M. (2019). Comparing Molecular Patterns Using the Example of SMARTS: Theory and Algorithms. Journal of Chemical Information and Modeling. doi:10.1021/acs.jcim.9b00250

patrón SMARTS

a1aaa2a(a1)aaa(a2):a

[n+]12nc3c4c5c(c3cc1c(nc(c2C)C)C)cccc5ccc4

ZINC000000386967

TESTING AT SMARTS.PLUS

https://smarts.plus/

Bioinformática UNSAM

Picture created by the SMARTSviewer [https://smarts.plus/]. Copyright: ZBH - Center for Bioinformatics Hamburg.

SMARTS EXAMPLES

Amino Acids

Generic amino acid: low specificity:

[NX3,NX4+][CX4H]([*])[CX3](=[OX1])[O,N]

Other interesting examples

https://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html

REPRESENTACIÓN DE COMPUESTOS QUÍMICOS: SMILES

SMILES, relación con Teoría de Grafos SMILES es una cadena de texto (ASCII)

Es el producto de escribir los símbolos (átomos) a medida que se recorre el grafo químico (la molécula) de modo *depth-first*

2023

Order in which the nodes are expanded

Class Search algorithm

Data Graph

structure

Worst case O(|V|+|E|) for explicit graphs performance

traversed without repetition, $O(b^d)$ for implicit graphs with branching factor b

searched to depth d

Worst case space complexity $O(\mid V \mid)$ if entire graph is traversed without repetition, O(longest path length searched) for implicit graphs without elimination of duplicate nodes

Depth-first Tree/Graph Traversal: http://en.wikipedia.org/wiki/Depth-first_search

Bioinformática UNSAM 20

CANONIZACIÓN DE MOLÉCULAS: ALGORITMO DE MORGAN

Canonización: Representar la conectividad de una molécula de manera uniforme

Una estructura con n átomos puede ser descripta de n! maneras diferentes

Figure 2-41. Six different possibilities for numbering the atoms in a hypochlorous acid molecule.

El algoritmo de Morgan es viejo pero lo vamos a usar para aprender el concepto de **canonización**!

Hay variantes nuevas!

Schneider N, Sayle RA, Landrum GA. Get Your Atoms in Order--An Open-Source Implementation of a Novel and Robust Molecular Canonicalization Algorithm. J Chem Inf Model. 2015 Oct 26;55(10):2111-20. doi: 10.1021/acs.jcim.5b00543. Epub 2015 Oct 15. PMID: 26441310.

2023 Bioinformática UNSAM

21

CANONIZACIÓN: ALGORITMO DE MORGAN

Paso 1: clasificar átomos de acuerdo a conectividad (vecindad)

Estructuras conteniendo C, N, O, H y halógenos se clasifican en cuatro categorías dependiendo del número de enlaces (no H)

Paso 2: Iteraciones

En una segunda iteración los valores de conectividad de cada átomo se incrementan de acuerdo al de los vecinos siguiendo una serie de reglas:

- Sumas (atomos internos) o transferencia de valores (atomos terminales)
- Extended connectivity

Las iteraciones siguen hasta que los valores de EC son iguales o menores a los de la iteración anterior

Figure 2-43. The EC value or the atom classification of each atom, respectively, is calculated by summing the EC values of the directly connected neighboring atoms of the former sphere (relaxation process).

CANONIZACIÓN: ALGORITMO DE MORGAN

Figure 2-44. The EC values of the atoms of phenylalanine (without hydrogens) are calculated by considering the class values of the neighboring atoms. After each relaxation process, *c*, the number of equivalent classes (different EC values), is determined.

The process is repeated until the number of different EC values is lower than or equal to the number of different EC values in the previous iteration.

CANONIZACIÓN: ALGORITMO DE MORGAN

Paso 3: Asignación de números de átomos únicos

Figure 2-44. The EC values of the atoms of phenylalanine (without hydrogens) are calculated by considering the class values of the neighboring atoms. After each relaxation process, c, the number of equivalent classes (different EC values), is determined.

Se comienza por el paso en el que se obtiene el mayor EC por primera vez.

El atomo número 1 es el que tiene el mayor valor de EC en este paso.

El atomo 2 es el que sigue en la secuencia de valores EC.

2023 Bioinformática UNSAM 24

El que implementa RDKit (Python)

Schneider N, Sayle RA, Landrum GA. Get Your Atoms in Order--An Open-Source Implementation of a Novel and Robust Molecular Canonicalization Algorithm. J Chem Inf Model. 2015 Oct 26;55(10):2111-20. doi: 10.1021/acs.jcim.5b00543. Epub 2015 Oct 15. PMID: 26441310.

Krotko DG. Atomic ring invariant and Modified CANON extended connectivity algorithm for symmetry perception in molecular graphs and rigorous canonicalization of SMILES. J Cheminform. 2020 Aug 20;12(1):48. doi: 10.1186/s13321-020-00453-4. PMID: 33431026; PMCID: PMC7439248.

CANONIZACIÓN DE MOLECULAS

El algoritmo es de 1965! Es viejo!

Hay moléculas problemáticas que no son fáciles de canonizar.

El problema general que intenta resolver es el de Canonización de Grafos

- Es un problema computacional complejo
- Relacionado con problemas de isomorfismo de grafos
- Hay muchas otras maneras (algoritmos) de resolverlos: http://en.wikipedia.org/wiki/Graph_canonization

En resumen:

Después de aplicar un método de canonización

REPRESENTACIÓN DE COMPUESTOS QUÍMICOS: INCHI

InChI -International Chemical Identifier

Introducido recientemente (2005) por IUPAC (International Union of Pure and Applied Chemistry)

Objetivos

Establecer un identificador (nomenclatura, etiqueta) *único* y *no propietario* para cada molécula

Que pueda ser utilizado tanto en medios impresos como electrónicos y que facilite la búsqueda de compuestos

Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D. InChI, the IUPAC International Chemical Identifier. J Cheminform. 2015 May 30;7:23. doi: 10.1186/s13321-015-0068-4. PMID: 26136848; PMCID: PMC4486400.

REPRESENTACIÓN DE COMPUESTOS QUÍMICOS: INCHI

Formato de un identificador InChI

Es una cadena de texto (ASCII) compuesta por segmentos (layers) separada por delimitadores (/)

Cada capa contiene distintos tipos de información estructural

Los números dentro de una capa representan la numeración canónica de los átomos de la primera capa (fórmula) excepto los hidrógenos.

Ejemplos:

Agua: InChI = 1/H2O/h1H2

Benceno: InChI = 1/C6H6/c1-2-4-6-5-3-1/h1-6H

chemical formula is the only layer that does not start with a letter

INCHI IDENTIFIER: MAIN LAYER

2023 Bioinformática UNSAM

28

REPRESENTACIÓN DE COMPUESTOS QUÍMICOS: INCHI

Si dos InChIs son iguales, los compuestos también lo son.

Pero los compuestos pueden estar representados con diferente nivel de detalle

INCHI VS SMILES

Tomado de: InChI Technical FAQ

https://www.inchi-trust.org/technical-faq-2

Valid SMILES for Caffeine (not complete)

[c]1([n+]([CH3])[c]([c]2([c]([n+]1[CH3])[n][cH][n+]2[CH3]))[O-])[O-]

CN1C(=O)N(C)C(=O)C(N(C)C=N2)=C12

Cn1cnc2n(C)c(=O)n(C)c(=O)c12

Cn1cnc2c1c(=O)n(C)c(=O)n2C

O=C1C2=C(N=CN2C)N(C(=O)N1C)C

CN1C=NC2=C1C(=O)N(C)C(=O)N2C

InChl: 1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3

InChi Key: RYYVLZVUVIJVGH-UHFFFAOYSA-N

REPRESENTACIÓN DE COMPUESTOS: MOLFILES

MDL, Molfile | Formato creado por MDL (ahora Symyx)

Contiene información sobre: Átomos, enlaces, conectividad y coordenadas espaciales

Permite representar moléculas tanto en 2D como en 3D

Benzene

MOLFILES: BOND BLOCK

OC(=0)C1=CC=CC=C1

Anatomy of a MOL file ChemInformatics 2017 (LibreTexts Chemistry)

Bond

M END

REPRESENTACIÓN DE COMPUESTOS: SDF FILES

NCGC00015959-03 Marvin 07111412562D 25 30 0 0 0 0 -1.3130NGC00015959-03.sdf -1.3130-2.1380 -2.5436 0.0000 C -2.5436 -2.1380 -0.8937-0.8937 0.0000 C MOLFILE M CHG 1 1 1 M END > <Formula> C20H14NO4 > <FW> 332.3289 **Anotaciones**

CHEMICAL DATABASES

PubChem, NCBI | https://pubchem.ncbi.nlm.nih.gov/

repositorio abierto de information sobre moléculas y sus actividades biológicas

ChEMBL, EBI | https://www.ebi.ac.uk/chembl/

Repositorio abierto de bioactividades de moléculas, extraídas de la literatura

ChemSpider, Royal Society of Chemistry | http://www.chemspider.com/

NIST Chemistry Web Book | https://webbook.nist.gov/

DrugBank | http://www.drugbank.ca/

Zinc Databases | https://zinc.docking.org/

commercially-available compounds for virtual screening

ZINC20

2023 Bioinformática UNSAM 35

REPRESENTACIÓN DE COMPUESTOS QUÍMICOS: GRAFOS

Un grafo es una estructura *abstracta* que contiene *nodos* conectados con *aristas* (o *arcos*)

"Los grafos son redes (networks) de puntos y líneas"

En inglés: nodes, edges

Moléculas químicas pueden representarse como grafos:

Los átomos como nodos Los enlaces como aristas

Se pueden asociar propiedades a cada nodo (ej número atómico), y a cada arista (ej número y/o tipo de enlace)

En el grafo final pueden entonces distinguirse distintos tipos de nodos y aristas

UN DESVÍO: HISTORIA DE LOS GRAFOS

El problema de los 7 puentes de Königsberg.

La ciudad de Königsberg se encuentra dividida por el río Pregel

Incluye 2 islas que se conectan con tierra mediante 7 puentes

El problema: Encontrar un camino a través de la ciudad que cruce cada puente una sola vez. Hay que cruzar todos los puentes. Sólo se puede acceder a las islas cruzando un puente.

En 1735 Leonard Euler demostró que el problema no tiene solución.

El razonamiento:

La elección del camino dentro de cada porción de tierra era irrelevante

La única característica de la ruta elegida importante era la secuencia de puentes cruzados

Leonard Euler (1707-1783)

Abstracción del problema: En una lista de porciones de tierra (nodos)

Y una lista de puentes (aristas)

Sólo la información de **conectividad** era relevante!

Tomado de Wikipedia https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

GRAFOS: PROPIEDADES Y OPERACIONES

Propiedades de los grafos:

Grado de conectividad de los nodos (degree)

Direccionalidad de las aristas

Intensidad (sentido vectorial) de cada arista

Las aristas pueden tener asociado un valor numérico (peso, largo, costo)

Posibilidad de identificar los nodos

Son elementos de un conjunto

Grafos etiquetados (labeled)

vs no-etiquetados (unlabeled)

Operaciones con grafos (algunos ejemplos):

Complementación, Unión, Suma, Intersección, Diferencia, ...

Un grafo etiquetado

Grados de los nodos

Un grafo pesado

Grafo simple o regular

Un grafo y su complemento

Grafo dirigido (red)

2023 Bioinformática UNSAM 38

PROBLEMA: ENCONTRAR MOLÉCULAS IGUALES

Problema frecuente en química

Si representamos moléculas como grafos:

dos moléculas son la misma si es posible redibujar una de ellas de manera que se vea idéntica a la otra: Isomorphic graphs

Problema visualmente interesante, pero la solución es obvia: solo la conectividad es relevante!

```
G1: nodos = {u1, v1, w1, x1}

aristas = { {u1, v1}, {u1, w1}, {u1, x1}, {v1, x1}, {v1, w1}, {x1, w1} }
```

```
G2: nodos = \{u2, v2, w2, x2\}

aristas = \{\{u2, v2\}, \{u2, w2\}, \{u2, x2\}, \{v2, x2\}, \{v2, w2\}, \{x2, w2\}\}
```

Problema computacionalmente sencillo (usualmente)

2023 Bioinformática UNSAM

Foye's Principles of Medicinal Chemistry (2008).

T Lemke, DA Williams. Wolters Kluwer

Identificar compuestos que comparten grupos químicos similares

Farmacóforos – grupos químicos responsables de actividad farmacológica

Grupos reactivos – carbonilos, aldehidos, cetonas,

Aplicaciones

Agrupar compuestos químicos en familias

Desarrollo de nuevas Drogas

Inferencia

PROBLEMA MÁS DÍFICIL: ENCONTRAR MOLÉCULAS CON GRUPOS SIMILARES

Computacionalmente: subgraph isomorphism problem

Encontrar un grafo determinado (fijo) dentro de otro grafo

Encontrar el máximo subgrafo compartido entre dos grafos

Es un problema computacionalmente dificil!

El tiempo se incrementa exponencialmente con el tamaño del problema (en este caso el número de nodos del grafo)

Query:

Hits:

apomorphine

Subgrafos compartidos

2023

BÚSQUEDA DE SUBESTRUCTURAS: MATRICES DE ADYACENCIA

Dado un grafo, es posible construir una matriz de adyacencia

Es una aproximación (heurística) a la búsqueda de subestructuras: localizar coincidencias en una matriz de adyacencias

ADJACENCY MATRICES

 $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$

adjacency matrix

The chemical graph and adjacency matrix of the isopentane.

BÚSQUEDA DE SUBESTRUCTURAS: MATRICES DE ADYACENCIA

Indol: compuesto heterocíclico aromático, precursor de muchas drogas

Búsqueda de compuestos que contengan el grupo indol

- 1. Calcular la matriz de adyacencia para la molécula 'query'
- 2. Calcular las matrices de adyacencia para todas las moléculas a testear (la base de datos)
- 3. Buscar coincidencias en las matrices de adyacencia

$$A(indole) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 1 & & 1 & & & & 1 \\ 1 & 0 & 1 & & & & & 2 \\ & 1 & 0 & 1 & & & & & 3 \\ & & 1 & 0 & 1 & & & & 1 & 4 \\ 1 & & & 1 & 0 & 1 & & & 5 \\ & & & & 1 & 0 & 1 & & 6 \\ & & & & & 1 & 0 & 1 & 8 \\ & & & & & 1 & 0 & 1 & 8 \end{pmatrix}$$

BÚSQUEDA DE SUBESTRUCTURAS: MATRICES DE ADYACENCIA

BÚSQUEDA DE SUBESTRUCTURAS: MATRICES DE ADYACENCIA

Problema de esta estrategia (hasta acá):

Puede dar falsos positivos

Grafos que tienen el mismo número de nodos, con la misma adyacencia, pero cuyos nodos están compuestos por distintos átomos (en el caso de moléculas)

Posible solución:

Screening – realizar la búsqueda sólo sobre un subconjunto de moléculas (grafos) compatibles

Ej: (query = indol) filtrar la base de datos: seleccionar solamente moléculas que tengan al menos 1 átomo de nitrógeno

INTERVALO

15 minutos

BÚSQUEDA DE SUBESTRUCTURAS

Screenings

Simple:

- Usa la fórmula molecular
 - La fórmula de todos los compuestos está almacenada en la base de datos
 - La fórmula de la molécula query se calcula al inicio de la búsqueda
 - Se descartan moléculas a las que les faltan átomos requeridos

BÚSQUEDA DE SUBESTRUCTURAS: FINGERPRINTS

Fingerprint: representación abstracta de características o propiedades de una molécula (features)

- Presencia/ausencia de cada elemento
- Configuraciones electrónicas inusuales (carbono sp3, nitrógeno unido con un triple enlace)
- Anillos y sistemas de anillos (naftaleno, piridina, cyclohexano)
- Grupos funcionales (alcoholes, aminas, carboxilos, etc.)
- Se suelen utilizar tanto para búsquedas de subestructuras como para detectar similitud

BÚSQUEDA DE SUBESTRUCTURAS Y SIMILITUD: FINGERPRINTS

Ventajas: screening extremadamente rápido

Se evalúa equivalencia entre conjuntos de bits usando el operador AND binario

Se pueden calcular distancias de similitud a partir de los bits significativos

DISTANCE METRICS: SIMILARITY, DISIMILARITY

Cociente entre el tamaño de la intersección y el tamaño de la unión de los conjuntos de datos

Jaccard index (J) = Jaccard similarity coefficient = Tanimoto Index = Tanimoto similarity coefficient

(tambien llamado "Intersection Over Union")

Compara similitudes entre conjuntos de datos finitos

Jaccard distance (d₁)

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}$$

51

$$d_J(A,B)=1-J(A,B)=rac{|A\cup B|-|A\cap B|}{|A\cup B|}.$$

The intersect of A & B

The union of A & B

2023 Quimioinformática UNSAM

https://en.wikipedia.org/wiki/Jaccard_index

SCAFFOLD HOPING

computer-aided search for active compounds containing different core structures

Hu Y, Stumpfe D, Bajorath J. Recent Advances in Scaffold Hopping. J Med Chem. 2017 Feb 23;60(4):1238-1246. doi: 10.1021/acs.jmedchem.6b01437. Epub 2016 Dec 21. PMID: 28001064.

2023 Quimioinformática UNSAM 52

OTRAS REPRESENTACIONES DE MOLÉCULAS

2023 Quimioinformática UNSAM 53

SOLVENT ACCESSIBLE SURFACE AREA CALCULATION

- VSA = van der Waals Surface Area
- AS = Accessible Surface Area

Mitternacht S. FreeSASA: An open source C library for solvent accessible surface area calculations. F1000Res. 2016 Feb 18;5:189. doi: 10.12688/f1000research.7931.1. PMID: 26973785; PMCID: PMC4776673.

Figure 1. Assuming spherical atoms, the surface area of atom A is the amount of surface area not contained in other atoms.

ESP-SIM: COMPARISON OF ELECTROSTATIC POTENTIAL AND SHAPE

https://github.com/hesther/espsim

a) Step 5. Step 1. Step 3. Step 2. Step 4. Step 6. Replace the Align the sets of Generate ten Remove the Calculate the labeled atoms Calculate atomic conformations electrostatic ESP anchor group low-energy (the attachment partial charges using the anchor. used in the similarities using conformations points) with an (e.g., RESP Store pair with the pre-aligned for each alignment anchor group in charges). fragment. highest shape procedure. conformations. both fragment similarity. molecules. pair of electrostatic Tanimoto fragments

Bolcato G, Heid E, Boström J. On the Value of Using 3D Shape and Electrostatic Similarities in Deep Generative Methods. J Chem Inf Model. 2022 Mar 28;62(6):1388-1398. doi: 10.1021/acs.jcim.1c01535. Epub 2022 Mar 10. PMID: 35271260; PMCID: PMC8965872.

Fragment pair: *c1[nH]ccn1 vs *C(=O)NC

b)

https://github.com/hesther/espsim/blob/master/scripts/short_demonstration.ipynb

REPRESENTACIÓN DE MOLECULAS: 3D

- Una representación tridimensional de la molécula requiere no sólo especificar coordenadas espaciales de átomos
 - También hay que especificar
 - Volumen
 - Fused spheres
 - Atom-centered Gaussians
 - Superficie
 - Forma
 - Coincidencia de volumenes

Molecular shape and medicinal chemistry: a perspective. 2010. A Nicholls *et al.* J Med Chem 53: 3862

REPRESENTACIÓN DE FORMA (SHAPE)

Varias aplicaciones posibles:

- •Búsqueda de moléculas similares
 - •En este caso la similitud es a nivel de forma
 - •Se pueden agregar adicionalmente limitaciones
 - •Varias implementaciones en la industria farmacéutica
 - Virtual screening
 - Varios casos de éxito conocidos
 - •Merck, primer aplicación publicada del método
 - •Identificación de análogos no-peptídicos de:
 - antagonista endógeno del receptor de fibrinógeno (Arg-Gly-Pro)
 - Somatotrophin release inhibitor factor

REPRESENTACIÓN DE FORMA (SHAPE)

Varias aplicaciones posibles:

Lead optimization

Uno cuenta con una molécula activa que quiere optimizar

Scaffold Hoping

Facilmente explorable utilizando metodos computacionales

Molecular shape and medicinal chemistry: a perspective. 2010. A Nicholls et al. J Med Chem 53: 3862

KIN: Bristol-Myers Squibb

CALCULO DE PROPIEDADES

Enlaces rotables

Dadores / Aceptores de puentes de hidrógeno

cLogP (coeficiente de partición octanol / agua)

PSA (polar surface area) / TPSA (topological surface area)

LOGP PARTITION COEFFICIENT

https://cheminfographic.wordpress.com/2020/05/01/partition-coefficient-p-logp/

2023 Ouimioinformática UNSAM 60

Polar Surface Area (PSA, costoso)

Requiere generar conformeros 3D para calcular SA (Surface Area)

Topological Polar Surface Area (TPSA)

Sumatoria de contribuciones tabuladas de fragmentos polares

Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 2000 Oct 5;43(20):3714-7. doi: 10.1021/jm000942e. PMID: 11020286.

2023

TPSA VS PSA (3D)

Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 2000 Oct 5;43(20):3714-7. doi: 10.1021/jm000942e. PMID: 11020286.

BIBLIOGRAFÍA | MATERIAL DE LECTURA

Essentials of Computational Chemistry (2004), 2nd Ed, CJ Cramer. Wiley. https://www.wiley.com/en-sg/Essentials+of+Computational+Chemistry:+Theories+and+Models,+2nd+Edition-p-9780470091821

Chemogenomics in Drug Discovery: A Medicinal Chemistry Perspective (2006). Edited by Hugo Kubinyi & Gerhard Müller, Wiley-VCH.

https://www.wiley.com/enus/Chemogenomics+in+Drug+Discovery%3A +A+Medicinal+Chemistry+Perspective-p-9783527604029

Artificial Intelligence in Drug Discovery (2020). Edited by Nathan Brown. Royal Society of Chemistry.

https://doi.org/10.1039/9781788016841

The RDKit Book (2023).
https://www.rdkit.org/docs/RDKit_Book.html

BIBLIOGRAFÍA | MATERIAL DE LECTURA

https://www.ebi.ac.uk/chebi/aboutChebi Forward.do

A Medicinal Chemistry Perspective

Chemogenomics in Drug Discovery: A Medicinal Chemistry Perspective (2006). Edited by Hugo Kubinyi & Gerhard Müller, Wiley-VCH.

https://www.wiley.com/enus/Chemogenomics+in+Drug+Discovery%3A +A+Medicinal+Chemistry+Perspective-p-9783527604029

Artificial Intelligence in Drug Discovery (2020). Edited by Nathan Brown. Royal Society of Chemistry.

https://doi.org/10.1039/9781788016841

The RDKit Book (2023).
https://www.rdkit.org/docs/RDKit_Book.html

PREGUNTAS?

Fernán Agüero

fernan@iib.unsam.edu.ar

