MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 4 - JANUARY 2017 SOLUTION KEY**

Round 5

A) Since $\angle SOK \cong \angle KOA$ and the lengths of the sides that include these angles are proportional, namely, $\left(\frac{6}{4} = \frac{9}{6}\right)$, $\triangle SOK \sim \triangle KOA$ by SAS and $\frac{KS}{AK} = \frac{3}{2}$ Therefore, let KA = 2x and KS = 3x.

The perimeter of
$$SOAK$$
 is $4+9+5x=21 \Rightarrow 5x=8 \Rightarrow x=\frac{8}{5} \Rightarrow KS=\frac{24}{5}$ or 4.8

Why does SAS~ work?

Pivot (rotate) ΔKOA about point O through an angle θ and $\overline{A'K'} \parallel \overline{SK}$, resulting the more common scenario where similar triangles are formed when a line passes through two sides of a triangle parallel to the third side.

$$\frac{BD}{DC} = \frac{AB}{AC} = \frac{8}{20} = \frac{2}{5} .$$

Without determining the lengths of BD and DC, we know the required ratio is 4:25 which gives us K+J=29.

C) Since the 3-4-5 triangle has an area of 6, the sides of T are scaled by a factor of $\frac{1}{\sqrt{6}}$. Inscribing T in a circle means that the hypotenuse of T will be the diameter of the circle.

Thus, the area of the circle is
$$\pi r^2 = \pi \left(\frac{1}{2} \cdot \frac{5}{\sqrt{6}}\right)^2 = \frac{25\pi}{24}$$
.

