Modelekularna dinamika

Miha Čančula

8. april 2013

1 Transport toplote

Transport toplote sem preučeval z enodimenzionalno verigo oscilatorjev. Delca na konceh verige sem sklopil s toplotnima kopelima z brezdimenzijskima temperaturama $T_L = 1$ in $T_R = 2$.

Zanimajo nas vrednosti v stacionarnem stanju, zato sem najprej napravil $N_I = 10^8$ korakov integracije dolžine $h = 10^{-2}$. Nato sem izvedel še $N_A = 10^7$ korakov, med katerimi sem opravil 10^5 meritev temperature in toplotnega toka. Meritve sem na koncu poprečil.

2 Maxwellske kopeli

Najprej sem za modeliranje toplotnih kopeli uporabil Maxwellov algoritem, pri katerem gibalni količini sklopljenih delcev resetiramo vsakih R=100 korakov. Preizkušal sem različne vrednosti za R, najbolje pa se je izkazala takšna, pri kateri se reset zgodi enkrat vsako časovno enoto, torej $Rh \sim 1$. Med reseti sem stanje propagiral s simplektičnim integratorjem s simetrično shemo S_2 .

Slika 1: Temperaturni profil v odvisnosti od parametra λ za sistem s 30 delci

Že pri srednji velikosti sistema (N=30) opazimo odvisnost temperaturne porazdelitve od motnje λ . Veriga povsem harmoničnih oscilatorjev $(\lambda=0)$ ima povsod, razen na obeh konceh, povprečno temperaturo. Pri λ nad 1 temperatura med obema koncema narašča linearno, brez skokov. Pri vmesnih vrednosti pa opazimo kombinacijo obeh pojavov: na konceh ima temperatura diskretne skoke, vmes pa narašča linearno.

Zelo podoben pojav opazimo tudi z večjim sistemom, na primer N=100 na spodnji sliki.

Slika 2: Temperaturni profil v odvisnosti od parametra λ za sistem s 100 delci

Za oceno termodinamske limite je zanimiva tudi odvisnost od velikosti sistema. Pri konstantnem parametru $\lambda=0.6$ pri večjem sistemu opazimo vedno manjše robne skoke.

Slika 3: Temperaturni profil pri fiksnem $\lambda = 0.6$ in različnih velikostih sistema

Na prejšnjih slikah smo videli, da je temperaturni profil odvisen predvsem od motnje λ . Opazujemo lahko prehod med stanjem s konstantno temperaturo transportom ($\lambda=1$) in stanjem z linearnim profilom ($\lambda=1$). Z večanjem velikosti sistema N postanejo začetni skoki pri srednji λ vedno manj izraziti, zato domnevam, da v limiti $N \to \infty$ nastane oster prehod med konstantnim in linearnim profilom.

Položaj prehoda sem poskušal najti tako, da sem opazoval temperaturo v točki na 1/5 verige v odvisnosti od λ in N. Rezultati so na spodnji sliki.

Slika 4: Iskanje faznega prehoda med konstantnim in linearnim profilom

Dokler je λ manjša od neke kritične vrednosti, ki je nekje okrog 0.01, temperatura ni odvisna niti od λ niti od N. Nad to mejo pa temperatura pada z λ , in to hitreje pri večjih N. To se sklada z domnevo, da v termodinamski limiti dobimo oster prehod. Na podlagi mojih izračunov mi ni uspelo določiti natančnega položaja prehoda, niti ne morem z gotovostjo trditi ali se ta zgodi pri $\lambda = 0$ ali pri neki končni vrednosti.

Pri velikostih sistema $N \leq 200$ je odvisnost od λ zvezna. Glede na to, da se z večanjem N strmina povečuje, bi lahko pričakovali, da pri termodinamskem N opazimo oster in nezvezen fazni prehod.

3 Nosé-Hooverjeve kopeli

Pri uporabi Nosé-Hooverjevih kopeli sem imel težave predvsem pri iskanju pravega časa τ . Pri enakem številu in dolžini korakov je bil račun z NH kopelmi bolj občutljiv glede na relaksacijski čas τ kot Maxwellov glede na interval resetiranja. Poskušal sem z različnimi vrednostmi, najboljše rezultate pa sem dobil s $\tau \approx 1$. Časovni razvoj sem simuliral z integratorjem RK4 knjižnice GSL.

Slika 5: Temperaturni profil v odvisnosti od parametra λ za sistem z 10 delci in $\tau=1$

Opazimo podoben vzorec kot z uporabo Maxwellskih kopeli. Razlika je največja pri majhnem λ , kjer sicer najdemo temperaturni plato, ki pa ima temperaturo nižjo od povprečja kopeli. Pri dovolj velike λ se vzpostavi pričakovan linearen profil temperature.

Rezultati za večjih sistem (N=50) so zelo podobni, le da je temperaturni plato pri majhnem λ še hladnejši.

Slika 6: Temperaturni profil v odvisnosti od parametra λ za sistem s 50 delci in $\tau=1$

Pri pri majhnem λ opazimo tudi močno odvisnost od izbire τ . Pri vrednosti $\tau=3$, na primer, je plato dvignjen, medtem ko je pri $\tau=1$ spuščen. Glede na te rezultate bi dosti bolj zaupal algoritmu z naključnimi Maxwellskimi kopelmi.

4 Toplotni tok

V vseh primerih sem poleg lokalne temperature računal tudi toplotni tok. Uporabil sem le Maxwellske kopeli, ker so pri računanju temperature dale boljše rezultate.

Slika 7: Toplotni tok v odvisnosti od parametra λ za sistem s 100 delci

Pri vseh vrednosti λ opazimo konstanten tok po celotni verigi. To je seveda pričakovano, saj se v stacionarnem stanju toplota nikjer ne zadržuje. Je pa tok skozi sistem močno odvisen od λ .

Ker je lokalni tok neodvisen od položaja v verigi, so bolj nazorni grafi odvisnosti povprečnega toka od λ in od N.

Slika 8: Odvisnost povprečnega toplotnega toka od λ pri različnih velikostih sistema

Po pričakovanju opazimo upadanje skupnega toka z večanjem λ . Pri nelinearnem sistemu pride do sipanja

med fononi, zaradi česar je transport manj učinkovit.

Bolj pomembna je verjetno odvisnost toka od velikosti sistema $\overline{J}(N)$, zlasti če je ta potenčna $\overline{J} \propto N^{-p}$.

Slika 9: Odvisnost povprečnega toplotnega toka od velikosti sistema pri različnih λ

Pri $\lambda=0$ je tok neodvisen od velikosti, torej imamo balistični transport z eksponentom p=0. Z večanjem λ pa začne tok padati z N, kar nakazuje difuzijski transport. Vrednost eksponenta pa lažje določimo z logaritemskim grafom.

Slika 10: Odvisnost povprečnega toplotnega toka od velikosti sistema pri različnih λ

Prilagajanje premice da rezultat $p\approx 0.7$ za $\lambda=1$. To je še vedno manj od vrednosti 1 pri normalnem difuzijskem transportu. Pri nadaljnjem povečevanju λ , na primer do 2, pa eksponent p doseže pričakovano vrednost 1.