Compound Helicopter – Individual Assignment 1

NAME: JEET GURBANI

ROLL NUMBER: 23B0023

Section 1: Additional Assumptions & Data

1.1.1 Physics Assumptions/Data

- Steady, incompressible flow assumed. Compressibility corrections applied using Prandtl-Glauert relations
- 2D airfoil characteristics applied locally, No spanwise flow
- Tip losses approximated using Prandtl's corrections

1.1.2 Environmental Assumptions/Data

- International Standard Atmosphere (ISA) considered.
- Flight operations within Troposphere.

1.1.3 Vehicle Assumptions/Data

- Rotor geometry: 4 blades, Linear taper (taper ratio: 0.8), Linear twist (twist @ root = 5deg @tip = 0)
- Airfoil Aerodynamics data drawn from NACA 0015 Experimental results [1]
- Radius and rotor speeds are beeing claculated from statistical design
- Collective pitch is assumes at root for simplification
- other paramters of helicopter isfound using statistical design code

1.2: Rough schematic sketch of own compound helicopter

all the values are in meters

these are the requirments for the copter

```
W_pl_target = 100
crew = 20
Rg_target = 600
rho_f = 0.8
V_max = 200
Nb = 4
Nb_tr = 2
taper_ratio = 0.8
twist_root = 3
twist_tip = 0
```

Helicopter Parameters Overview

Parameter	Value	
Disc Loading (kg/m²)	35.46	
Diameter (m)	15.38	
Chord (m)	0.40	
Tip Speed (m/s)	223.40	
Angular Velocity (rad/s)	29.06	

Main Rotor

Parameter	Value	
Gross Weight (kg)	5175.17	
Useful Weight (kg)	2319.34	
Fuel Weight (kg)	819.34	
Empty Weight (kg)	2855.84	

Parameter	Value
Never Exceed Speed (m/s)	221.05
Long Range Speed (m/s)	176.31

Parameter	Value
Diameter (m)	2.13
Arm (m)	9.28
Tip Speed (m/s)	213.83
Angular Velocity (rad/s)	167.53
Chord (m)	0.27

Tail Rotor

Parameter	Value (kW)
Take-off Power (P_to)	1372.13
Take-off Transmission (T_to)	1147.97
Main Continuous Power (P_mc)	1032.87
Main Continuous Transmission (T_mc)	724.21

Parameter	Value
Fuselage Length (m)	14.77
Rotor-to-Tail-End Length (m)	18.19
Helicopter Height (m)	4.08
Helicopter Width (m)	2.93
Horizontal Tail Arm (m)	6.96
Horizontal Tail Surface Area (m²)	1.37
Vertical Tail Arm (m)	8.97
Avg. Vertical Tail Chord (m)	0.82

Section 2: Preliminary Drone Design

2.1: Design Parameters of your Design

Parameter	Rotor 1	Rotor 2	
Rotor Description (role)	Main rotor	tail rotor	
Airfoil	NACA 0015	NACA 0015	
Rotor Radius (m)	7.69	1.065	
Rotor tip Speed (m/s)	223.40	213.83	
Number of Blades	4	2	
Chord Length Variation	linear taper ratio = 0.8	taper ratio =1	
Twist Variation	twist @ root = 3deg @tip = 0)	no twist	
Root Cutout	0.05*Radius	0.05*Radius	

		Main	Tail
2.2	Maximum main and tail rotor thrusts before stall	162868.44	7845.62

```
--- 2.2: Maximum Thrusts Before Stall ---
Stalling at 18.30 deg, alpha = 12.01 deg.
Stall pitch for main rotor found at 18.30 deg max_alpha = 12.01 deg
Maximum Main Rotor Thrust before stall: 162868.44 N at pitch 18.30 deg
Stalling at 22.60 deg, alpha = 12.05 deg.
Stall pitch for tail rotor found at 22.60 deg max_alpha = 12.05 deg
Maximum Tail Rotor Thrust before stall: 7845.62 N at pitch 22.60 deg
```

2.3.1: Thrust vs θ plots

2.3.2: Torque vs θ plots

2.3.3: Thrust vs Power plots

Section 3: Hover Mission Test

Mission plots

mission: hover on sea level for 5000 sec

Mission plots

	Plots	Value
3.1	Maximum Take Off Weight based on blade stall at 2000 m AMSL	13665.98
3.2	Maximum Take Off Weight based on power requirement at 2000 m AMSL	8158

```
--- 3.1: Max Take-off Weight based on blade stall at 2000m AMSL --- Stalling at 18.30 deg, alpha = 12.01 deg.
Stall pitch for main rotor found at 18.30 deg max_alpha = 12.01 deg
Maximum Take-Off Weight (Stall) at 2000.0m AMSL: 13665.98 kg
```

--- 3.2: Max Take-off Weight based on power requirement at 2000m AMSL --- Maximum Take-Off Weight (Power) at 2000.0m AMSL: 8158.35 kg

3.3: Fuel Burn Rate (kg/minute) vs Gross Weight (kgf) Plot

3.4: OGE Hover Endurance (minutes) vs Take-Off-Weight (kgf) plot

Section 4:

Bonus Task: Flight Simulator Development

4.1: Placement of Components & C.G w.r.t nose

Component	X	Υ	Z
Assumed C.G			
Rotor 1			
Rotor 2			
Rotor			
Wing/Stabilizer - 1			
Wing/Stabilizer - 2			
Actuator – 1			
Actuator – 2			

4.2: Algorithm of the Simulator

4.3: Video Clip of Flight Simulator

4.4: Observations from Simulations

Comments / Observations

Acknowledgement

< Mandatory to acknowledge people you discussed with or took help for any part of the assignment>

References

< List all references (books, paper, websites, etc.) used while doing the assignment>