OS Project presentation 2023

MATTEO CARNEVALE
ALBERTO CASTRONOVO
GIUSEPPE CUTRERA
LUIGI PALMISANO

License

- © 2024 Matteo Carnevale, Alberto Castronovo, Giuseppe Cutrera, Luigi Palmisano.
- This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0). To view a copy of this license visit: https://creativecommons.org/licenses/by-nc/4.0/legalcode.

What is AES-256?

- ▶ Block cipher technique substituting DES
- ▶ Plain and Cipher text of same size
- Input key
- ▶ Plain text size, Key lenght, Cipher text size
- Rounds: 10 for 128-bit keys,

Plenty of rounds...

- Substitution of bytes
- ▶ Shift rows
- Mix columns
- Add round key

For example, EA → 87

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	CO
2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	Fl	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
5	53	Dl	00	ED	20	FC	Bl	5B	6A	CB	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
Е	El	F8	98	11	69	D9	8E	94	9B	1E	(87)	E9	CE	55	28	DF
F	8C	Al	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

EA	04	65	85
83	45	5D	96
5C	33	98	B0
F0	2D	AD	C5

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A6

SubBytes (ENC)

For example, 87 → EA

			У														
_		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
П	0	52	09	ба	d5	30	36	a5	38	bf	40	a3	9е	81	f3	d7	fb
	1	7с	е3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e9	cb
	2	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	с3	4e
	3	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5с	CC	5d	65	b6	92
	5	6с	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	p8	b3	45	06
x.	7	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
^	8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	се	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3е	4b	с6	d2	79	20	9a	db	с0	fe	78	cd	5a	f4
	С	1f	dd	a8	33	88	07	с7	31	b1	12	10	59	27	80	ec	5f
	d	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9c	ef
	е	a0	e0	3b	4d	ae	2a	f5	b0	с8	eb	bb	3с	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A6

EA	04	65	85
83	45	5D	96
5C	33	98	B0
F0	2D	AD	C5

SubBytes (DEC)

ShiftRows

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,1} & s_{1,2} & s'_{1,3} \\ s'_{2,2} & s'_{2,3} \\ s'_{3,2} & s'_{3,2} & s'_{3,3} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,1} & s_{1,2} & s'_{1,3} \\ s'_{2,1} & s_{2,1} & 0 \\ s'_{2,1} & s_{0,1} & 0 \\ s'_{2,1} & s_{0,1} & 0 \\ s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

Predefine Matrix

State Array

New State Array

Г	2	3	1	1]	87
	1	2	3	1	١.	6E
	1	1	2	3	1	46
	3	1	1	2		A6

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

i i	({02} - {87})	$\bigoplus\nolimits_{(\{03\}\cdot\{6E\})}$	⊕ (46)	⊕ (A6)	= {47}
	(87)	-	⊕((03) - (46))	⊕ (A6)	= {37}
	{87}	⊕ _{6E}		⊕ _{((03) · (A6))}	= {94}
	({03} - {87})	$\bigoplus_{\{6E\}}$	⊕ (46)	$\bigoplus_{(\{02\}\cdot\{A6\}}$	= {ED}
	({03} - {87})	⊕ {6E}	⊕ (46)	⊕ ({02} · {A6}	= {ED}

MixColumns

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

AddRoundKey

...but what is a RoundKey?

Output in the key expansion process

G function applied: shifts, rotations and substitutions

Cryptocore vulnerabilities

General attacks: an overview

- Side-Channel attacks: exploit runtime metrics (timing, power consumption, ...) to gain information about the secret key
- Weak Key Derivation Function: a non-cryptographically-secure key may expose the system to preimage or collision attacks
- Key storage flaws: the key/IV should not be stored in plaintext, as an attacker could access it on the local file system
- Birthday attacks: two plaintexts could be encrypted with the same ciphertext (collision), which exposes digital signature vulnerabilities

General attacks: safe practices

- Side-Channel attacks: implement time-constant encoding/decoding
- ▶ Weak KDF: ensure to use a cryptographically secure generator, change the key at least every 2^(blocks/2) blocks to avoid birthday attacks
- Key storage flaws: only exchange the key with secure exchange protocols. If possible, use HSMs
- Birthday attacks: use larger block sizes and/or change key and IV more frequently

ECB Mode

ECB Mode

- Core vulnerability: 1-on-1 correspondence between plaintex and ciphertext
- ▶ If two ciphertext blocks are the same, so are their plaintexts, regardless of their order
- Frequency analysis attacks are an issue
- Needs padding → Padding Oracle attacks, Adaptive Chosen Plaintext attacks

CBC Mode

CBC Mode

- No 1-on-1 correspondence (order of blocks matters)
- Still needs padding (vulnerable to padding oracle attacks, if oracles are available)
- Problem: if a block is corrupted, so will all following blocks
- Vulnerable to bit-flipping attacks (ciphertext needed)

CTR Mode

CTR Mode

- Solved the problem of subsequent corruption (no propagation)
- More vulnerable to bit-flipping attacks (ciphertext needed), as only an XOR operation is performed on the plaintext