Inverse Problems Exercises: 2024s s07 (non-sc)

https://www.umm.uni-heidelberg.de/miism/

Notes

- Please **DO NOT** change the name of the .ipynb file.
- Please **DO NOT** import extra packages to solve the tasks.
- Please put the .ipynb file directly into the .zip archive without any intermediate folder.

Please provide your personal information

• full name (Name):

YOUR ANSWER HERE

D04c: Gradient descent

```
In [ ]: import numpy as np
   import matplotlib.pyplot as plt

from scipy.optimize import fminbound

In [ ]: file_gaussian = 'file_gaussian.npz'
   with np.load(file_gaussian) as data:
      f_true = data['f_true']
      A_psf = data['A_psf']
      list_gn = data['list_gn']
```

Imaging model

The imaging model can be represented by

$$g = h \otimes f_{ ext{true}} = A f_{ ext{true}} = \mathcal{F}^{-1} \{ \mathcal{F} \{ h \} \mathcal{F} \{ f_{ ext{true}} \} \},$$
 $g' = g + \epsilon.$

- ullet $f_{
 m true}$ is the input signal
- h is the point spread function (kernel)
- ullet \otimes is the convolution operator
- ullet A is the Toeplitz matrix of h
- \bullet $\, {\cal F} \,$ and $\, {\cal F}^{-1}$ are the Fourier transform operator and inverse Fourier transform operator
- ullet is the additive Gaussian noise
- *g* is the filtered signal
- g' is the noisy signal

Mean squared error

Implement the mean squared error (MSE)

$$ext{MSE}(f) = rac{1}{n} \sum_{i=1}^n (f_i - f_{ ext{true}i})^2$$

- Given the input signal f
- ullet Given the true signal $f_{
 m true}$
- Implement the function mean_squared_error() (using numpy.array)

In []: # This cell contains hidden tests.

Difference matrix

Implement the difference matrix $D_{
m diff}$

$$D_{ ext{diff}} = egin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & -1 \ -1 & 1 & 0 & 0 & \dots & 0 & 0 \ 0 & -1 & 1 & 0 & \dots & 0 & 0 \ & & & \dots & & & \ 0 & 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix}$$

- Given the size $n_{
 m diff}$
- Implement the function get_diff_matrix() (using numpy.array)

```
In [ ]: def get_diff_matrix(n):
    """ Compute a matrix to calculate the difference along a vector of the size
    between two neighboring elements.

    :param n: Size of the target vector.
    :returns: Matrix with shape (n, n), which calculates the difference.
    """

# YOUR CODE HERE
raise NotImplementedError()
```

```
In [ ]: # This cell contains hidden tests.
```

Tikhonov regularization

Implement the objective function with Tikhonov regularization

$$L(f) = \|Af - g'\|_2^2 + \lambda \|D'f\|_2^2$$

- Given the input signal *f*
- ullet Given the system matrix A
- Given the measurement g'
- ullet Given the regularization matrix D'
- ullet Given the regularization parameter λ
- Implement the function objective_tikhonov() (using numpy.array)

Implement the closed form solution of the regularized objective function

$$ilde{f} = (A^TA + \lambda D'^TD')^{-1}A^Tg' = A^{PI}_{\lambda}g'$$

- ullet Given the system matrix A
- Given the measurement q'
- ullet Given the regularization matrix D'
- ullet Given the regularization parameter λ
- Implement the function solution_tikhonov() (using numpy.array)

```
In [ ]: def objective_tikhonov(f, A, g, D, lb):
            """ Compute the objective function with Tikhonov regularization.
            :param f: Current estimate of the signal.
            :param A: 2D matrix of the linear problem.
            :param g: Observed signal.
            :param D: 2D matrix in the regularization term.
            :param lb: Regularization parameter.
            :returns: Objective function value.
            # YOUR CODE HERE
            raise NotImplementedError()
        def solution_tikhonov(A, g, D, lb):
            """ Compute the estimate of the true signal with Tikhonov regularization.
            Use a regularization term to suppress noise.
            :param A: 2d matrix A of the linear problem.
            :param g: Observed signal.
            :param D: 2D matrix in the regularization term.
            :param lb: Regularization parameter.
            :returns: Estimate of the true signal.
            0.00
        # YOUR CODE HERE
        raise NotImplementedError()
In [ ]: # This cell contains hidden tests.
In [ ]: # This cell contains hidden tests.
```

Gradient magnitude solution

The gradient magnitude solution is the solution with $D' = D_{\mathrm{diff}}$

- Calculate the closed form solution for the noisy signals in list_gn
- Return the outputs with λ of 0.1, 0.01, 0.001, respectively
- Save the solutions in the variable list_f_closed (as list of numpy.array)
- Save the corresponding objective values in the variable list_L_closed (as list of scalars)

- Plot the outputs in list_f_closed in the same order of the parameter options in the subplots of axs
- Show the cases of the same noisy signal in the same subplot column (outer loop)
- Show the cases with the same λ in the same subplot row (inner loop)
- Plot the corresponding noisy signal in each subplot (after the filter output)
- Plot the input signal f_true in each subplot (after the noisy signal)
- Show the legend in each subplot
- Show the case information in the titles to the subplots
- Show the mean squared error of each output comparing to f_true in the titles to the subplots
- Show the objective function value of each output in the titles to the subplots

```
In [ ]: fig, axs = plt.subplots(3, 3, figsize=(15, 15))
    fig.suptitle('Gradient magnitude solution (closed form)')

# YOUR CODE HERE
    raise NotImplementedError()

In [ ]: # This cell contains hidden tests.
```

Gradient descent technique

Gradient descent is an optimization method to find an f, which minimize the objective function L(f). One iterative update is given by

$$f^{(i+1)} = f^{(i)} - s_i
abla L(f^{(i)}),$$

where s_i is the optimal step size of the one-dimensional optimization problem

$$s_i = rg \min_{s \in \mathbb{R}^+} L(f^{(i)} - s
abla L(f^{(i)})).$$

Implement the iterative gradient descent updates

- Given the objective function L(f)
- Given the gradient of the objective function $\nabla L(f)$
- Given the initial value $f^{(0)}$
- ullet Given the number of iterations n
- Estimating the optimal step size s_i in [0, 10] (using scipy.optimize.fminbound())
- Return the final value $f^{(n)}$ as the first output
- ullet Return the history array of objective values $[L(f^{(0)}),\ldots,L(f^{(n)})]$ as the second output
- Implement the function solve_gradient_descent_ls() (using numpy.array)

Tikhonov regularization with gradient descent

Implement the gradient of the objective function with Tikhonov regularization

$$abla L(f) = 2A^T(Af - g') + 2\lambda D'^T D' f$$

- ullet Given the input signal f
- ullet Given the system matrix A
- Given the measurement g'
- ullet Given the regularization matrix D'
- ullet Given the regularization parameter λ
- Implement the function gradient_tikhonov() (using numpy.array)

The gradient magnitude solution is the solution with $D'=D_{
m diff}$

- Calculate the solution by gradient descent for the noisy signals in list_gn
- Return the outputs with λ of 0.1, 0.01, 0.001, respectively, with $f^{(0)}=0$, n=20
- Save the solutions in the variable list f gd (as list of numpy.array)
- Save the corresponding objective value history in the variable list_L_gd (as list of numpy.array)

- Plot the outputs in list_f_gd in the same order of the parameter options in the subplots of axs
- Show the cases of the same noisy signal in the same subplot column (outer loop)
- Show the cases with the same λ in the same subplot row (inner loop)
- Plot the corresponding noisy signal in each subplot (after the filter output)
- Plot the input signal f_true in each subplot (after the noisy signal)
- Show the legend in each subplot
- Show the case information in the titles to the subplots
- Show the mean squared error of each output comparing to f_true in the titles to the subplots
- Show the objective function value of each output in the titles to the subplots

```
In [ ]: def gradient_tikhonov(f, A, g, D, lb):
    """ Compute the gradient of the objective function with Tikhonov regularizat

    :param f: Current estimate of the signal.
    :param A: 2D matrix of the linear problem.
    :param g: Observed signal.
    :param D: 2D matrix in the regularization term.
    :param lb: Regularization parameter.
    :returns: Gradient value of the objective function.
    """
    # YOUR CODE HERE
    raise NotImplementedError()

fig, axs = plt.subplots(3, 3, figsize=(15, 15))
    fig.suptitle('Gradient magnitude solution (gradient descent)')

# YOUR CODE HERE
    raise NotImplementedError()
In []: # This cell contains hidden tests.
```

Optimization history

- Plot the arrays in list_L_gd as solid lines in the same order of the parameter options in the subplots of axs
- Plot the values in list_L_closed as horizontal dash lines in the same order of the parameter options in the subplots of axs
- Show the cases of the same noisy signal in the same subplots
- Make the subplots with log scaling on the y axis
- Show the legend in each subplot
- Show the case information in the titles to the subplots

```
In [ ]: fig, axs = plt.subplots(1, 3, figsize=(15, 5))
    fig.suptitle('Gradient magnitude solution (gradient descent)')
# YOUR CODE HERE
raise NotImplementedError()
```

Total variation

The objective function with total variation is

$$L(f) = ||Af - g||_2^2 + \lambda ||\nabla f||_1$$

The gradient of the objective function with total variation is

$$abla L(f) pprox 2A^T(Af-g) + \lambda
abla \sum_{j=1}^n \sqrt{(f_j-f_{j-1})^2 + eta^2} = 2A^T(Af-g) + \lambda egin{bmatrix} r_1 \ \dots \ r_i \ \dots \ r_n \end{bmatrix},$$

where $1\gg \beta^2>0$ and

$$r_i = rac{f_i - f_{i-1}}{\sqrt{(f_i - f_{i-1})^2 + eta^2}} - rac{f_{i+1} - f_i}{\sqrt{(f_{i+1} - f_i)^2 + eta^2}}$$

with $f_{-1}=0$ and $f_n=0$.

- ullet Given the input signal f
- ullet Given the system matrix A
- Given the measurement g'
- ullet Given the regularization parameter λ
- Implement the objective function objective_tv() (using numpy.array)
 - Note, ∇f can be calculated by $D_{\mathrm{diff}} f$
- Implement the gradient of the objective function with $\beta^2=0.001$ gradient_tv() (using numpy.array)

```
In [ ]: def objective_tv(f, A, g, lb):
            :param f: Current estimate of the signal.
            :param A: 2d Matrix A of the linear problem.
            :param g: Observed signal.
            :param lb: Regularization strength of TV.
            :returns: Objective function value.
            # YOUR CODE HERE
            raise NotImplementedError()
        def gradient_tv(f, A, g, lb):
            :param f: Current estimate of the signal.
            :param A: 2d Matrix A of the linear problem.
            :param g: Observed signal.
            :param lb: Regularization strength of TV.
            :returns: Gradient value of the objective function.
            # YOUR CODE HERE
            raise NotImplementedError()
```

Total variation with gradient descent

Solve the objective function with total variation by gradient descent

- Calculate the solution by gradient descent for the noisy signals in list_gn
- Return the outputs with λ of 0.1, 0.01, 0.001, respectively, with $f^{(0)}=0$, n=50
- Save the solutions in the variable list_f_tv (as list of numpy.array)
- Save the corresponding objective value history in the variable list_L_tv (as list of numpy.array)

Display the result

- Plot the outputs in list_f_tv in the same order of the parameter options in the subplots of axs
- Show the cases of the same noisy signal in the same subplot column (outer loop)
- Show the cases with the same λ in the same subplot row (inner loop)
- Plot the corresponding noisy signal in each subplot (after the filter output)
- Plot the input signal f_true in each subplot (after the noisy signal)
- Show the legend in each subplot
- Show the case information in the titles to the subplots
- Show the mean squared error of each output comparing to f_true in the titles to the subplots
- Show the objective function value of each output in the titles to the subplots

```
In [ ]: fig, axs = plt.subplots(3, 3, figsize=(15, 15))
    fig.suptitle('Total variation solution (gradient descent)')
# YOUR CODE HERE
raise NotImplementedError()
In [ ]: # This cell contains hidden tests.
```

Optimization history

- Plot the arrays in list_L_tv as solid lines in the same order of the parameter options in the subplots of axs
- Show the cases of the same noisy signal in the same subplots
- Make the subplots with log scaling on the y axis
- Show the legend in each subplot
- Show the case information in the titles to the subplots

```
In [ ]: fig, axs = plt.subplots(1, 3, figsize=(15, 5))
    fig.suptitle('Total variation solution (gradient descent)')

# YOUR CODE HERE
raise NotImplementedError()
```

Question: Convergence

- Is the gradient descent method convergent to the global solution?
- Where does the objective function with Tikhonov regularization convergent to?

YOUR ANSWER HERE

Total Variation

Total Variation (Gradient Magnitude - based regularization) produces a series of effects. Could you replicate the following properties by varying the regularization parameter and letting the method converge until there is nearly no further change of the objective function:

- sharper boundaries/edges: how would you measure that
- staircasing: how would you measure that
- sparsity in the signal: how would you measure that

YOUR ANSWER HERE