

钟控SRFF(电平触发)

SR	Q*
0 0	Q
01	0
10	1
11	1 1

JK	Q*
0 0	Q
0 1	0
10	1
11	Q'

D	Q*
0	0
1	1

$$\begin{cases} Q^* = S + R'Q \\ SR = 0 \end{cases}$$

$$Q*=JQ'+K'Q$$

$$Q^* = D$$

Т	Q*
0	Q
1	Q'

$$Q*=TQ'+T'Q$$

7: 水效

D: SR 独

第六章 时序逻辑电路

- 6.1 概述
- 6.2 时序逻辑电路的分析
- 6.3 时序逻辑电路的设计
- 6.4 几个常用的时序逻辑电路

6.1 概述

一、组合电路与时序电路的区别

无记忆

某一给定时刻的输出,取决于该时刻的输入22

有记忆

某一给定时刻的输出, 取决于该时刻的输入 以及前一时刻电路的状态 (触发器的状态)

6.1 概述

二、时序逻辑电路的分类

同步时序电路

电路中所有触发器使用统一的*CLK*, 所有触发器状态在同一时刻更新

异步时序电路

电路中所有触发器没有统一的*CLK*,各个触发器状态不在同一时刻更新, 更新有先有后

6.2 时序逻辑电路的分析

已知电路 ______发现逻辑功能

- 1. 触发器驱动方程、状态方程, 电路输出方程
- 2. 状态转换表
- 3. 状态转换图
- 4. 分析逻辑功能
- 5. 检查自启动

6.2 时序逻辑电路的分析

BCD一七段显示译码器

A3A2A1A0	abcdefg	LED
0000	1111110	0
0001	0110000	
0010	1101101	2
0011	1111001	3
0100	0110011	7
0101	1011011	5
0110	1011111	8
0111	1110000	١-
1000	1111111	8
1001	1111011	9
1010	1110111	8
1011	0011111	σ
1100	1001110	
1101	0111101	d
1110	1001111	8
1111	1000111	۶

6.2 时序逻辑电路的分析

常用时序电路简介

• 计数器

时钟

计数器是通过电路的状态来反映输入脉冲数目的电路。 电路中的触发器通常采用JK触发器。

- 1. 计数器的功能:记忆时钟脉冲的个数.
- 3. 计数器的分类:
 - 按计数模值: 二进制/十进制/任意进制计数器
 - 按计数值的变化方式: 加法/减法/可逆计数器
 - 按时钟控制方式: 同步/异步计数器

中断→计时

例1: 试分析下图时序电路的逻辑功能。

Ţ

T

T

101

110

000

Uз	\mathbf{Q}_2	U 1	CIK	U ₃	\mathbf{Q}_2	W ₁	Y
0	0	0		0?	0?	1?	
0	0	1	7	0?	1?	0?	
0	1	0	7	0?	1?	1?	
0	1	1	7	1?	0?	0?	
1	0	0	7	1?	0?	1?	
1	0	1	7	1?	1?	0?	
1	1	0	7	1?	1?	1?	
1	1	1	7	0?	0?	0?	

任何一个时刻触发器状态必是其中的一组值

6.2 时序逻辑电路的分析

- 1. 触发器驱动方程、状态方程, 电路输出方程
- 2. 状态转换表
- 3. 状态转换图
- 4. 分析逻辑功能
- 5. 检查自启动
- 6. 时序波形图

例: 试分析下图时序电路的逻辑功能。

1. 写方程 1) 驱动方程:

$$\begin{cases} J_1 = & K_1 = \ J_2 = & K_2 = \ J_3 = & K_3 = - \end{cases}$$

$$Y = Q_{\lambda}Q_{\lambda}$$

2) 代入JK触发器的特性方程($Q^* = JQ' + K'Q$), 得状态方程:

$$\begin{cases} Q_1^* = Q_1 Q_2 Q_3 \\ Q_2^* = Q_1 Q_2' + Q_1' Q_3 \\ Q_3^* = Q_3' Q_1 Q_1 + Q_1' Q_3 \end{cases}$$

$$Q_{3}^{*} = Q_{1}Q_{2}Q_{3}^{'} + Q_{2}Q_{3}^{'}$$

$$Q_{2}^{*} = Q_{1}Q_{2}^{'} + Q_{1}Q_{2}^{'} + Q_{1}Q_{2}Q_{3}^{'}$$

$$Q_{2}^{*} = Q_{1}Q_{2}^{'} + Q_{1}Q_{2}Q_{3}^{'}$$

2.列状态转换表

							<u> </u>
Q_3	Q_2	Q_1	clk	Q_3^*	Q_2^*	Q ₁ *	Υ
0	0	0	1	0	0	1	0
0	0	1		0	1	0	0
0	1	0	~	0	1	1	0
0	1	1	7	1	0	0	0
1	0	0	├	1	0	1	0
1	0	1	Ţ	1	1	0	0
1	1	0	<u></u>	0	0	0	1
1	1	1	Ţ	0	0	0	1

现在状态下的Y

3. 画状态转换图

任意个状态

 $Q_3Q_2Q_1/V$

CLK	Q_3	Q_2	Q_1	Y
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	0	0	0	0
0	1	1	1	1
1	0	0	0	0

乔能驰进主 循环、

 $Q_3Q_2Q_1/\gamma$

4.分析电路功能

计数长度为7的计数器 七进制计数器

Y是指示信号, 每计7个数,就输出一个1

5.检查自启动

7个有效状态,1个无效状态"111";经过一个时钟后能自动进入有效循环,所以能自启动

6.画时序图

练习1 试分析下图时序电路的逻辑功能。

1. 写方程

1)驱动方程:
$$\begin{cases} D_1 = Q_1' \\ D_2 = Q_1 \oplus A \oplus Q_2 \end{cases}$$

$$2$$
)状态方程: $\begin{cases} Q_1^* = Q_2' \\ Q_2^* = Q_1 \oplus AQQ_2 \end{cases}$

3)输出方程:
$$Y = [(A' \otimes_i \otimes_i)'(\otimes_i' \otimes_i' A)']' : A' \otimes_i \otimes_i + \otimes_i' \otimes_i' A$$

2. 列状态转换表

3. 画状态图

	现态			次态	
Α	Q_2	Q_1	Q_2^*	Q_1^*	Υ
0	0	0	0		0
0	0	1		0	0
0	1	0	1		0
0	1	1	0	0	
1	0	0	1		ı
1	0	1	0	6	0
1	1	0	0	1	D
1	1	1		0	D

<mark>练习1</mark> 试分析下图时序电路的逻辑功能。

外加锅发

1. 写方程

1)驱动方程:
$$\begin{cases} D_1 = Q_1' \\ D_2 = A \oplus Q_1 \oplus Q_2 \end{cases}$$

2)状态方程:
$$\begin{cases} Q_1^* = Q_1' \\ Q_2^* = A \oplus Q_1 \oplus Q_2 \end{cases}$$

3)输出方程:
$$Y = [(A'Q_1Q_2)' \cdot (AQ_1'Q_2')']' = A'Q_1Q_2 + AQ_1'Q_2'$$

2)状态方程:
$$\begin{cases} Q_1^* = Q_1' \\ Q_2^* = A \oplus Q_1 \oplus Q_2 \end{cases}$$

3)输出方程:
$$Y = [(A'Q_1Q_2)' \cdot (AQ_1'Q_2')']' = A'Q_1Q_2 + AQ_1'Q_2'$$

2. 列状态转换表

3. 画状态图

	现态			次态		
Α	Q_2	Q_1	Q_2^*	Q_1^*	Υ	
0	0	0	0	1	0	
0	0	1	1	0	0	
0	1	0	1	1	0	
0	1	1	0	0	1	
1	0	0	1	1	1	
1	0	1	0	0	0	
1	1	0	0	1	0	
1	1	1	1	0	0	

2)状态方程:
$$\begin{cases} Q_1^* = Q_1' \\ Q_2^* = A \oplus Q_1 \oplus Q_2 \end{cases}$$

3)输出方程:
$$Y = [(A'Q_1Q_2)' \cdot (AQ_1'Q_2')']' = A'Q_1Q_2 + AQ_1'Q_2'$$

2. 列状态转换表

Q_2^*	Q_1^*/Y Q_2Q_1	00	01	10	11
	0	01/0	10/0	11/0	00/1
•	1	11/1	00/0	01/0	10/0

3. 画状态图

4.分析电路的功能

A=0时,加法计数器 A=1时,减法计数器 即可控模4计数器

clk	$Q_3Q_2Q_1$	R	Y	G
0	000	1	0	0
1	001	0	1	0
2	010	0	0	1
3	011	0	0	0
4	100	0	0	1
5	101	0	1	0
6	110	1	0	0
7	(111)	X	X	X

方法 I:计数器+门电路

Q,Q, Q,

clk	$Q_3Q_2Q_1$	R	Y	G
0	000	1	0	0
1	001	0	1	0
2	010	0	0	1
3	011	0	0	0
4	100	0	0	1
5	101	0	1	0
6	110	1	0	0
7	111	X	X	X

方法 II:计数器+译码器

$$R(Q_3Q_2Q_1) = m0 + m6$$

$$Y(Q_3Q_2Q_1) = m1 + m5$$

$$G(Q_3Q_2Q_1) = m2 + m4$$

clk	$Q_3Q_2Q_1$	R	Y	G
0	000	1	0	0
1	001	0	1	0
2	010	0	0	1
3	011	0	0	0
4	100	0	0	1
5	101	0	1	0
6	110	1	0	0
7	111	X	Χ	Χ

方法 III:计数器+MUX

clk	$Q_3Q_2Q_1$	R	Y	G
0	000	1	0	0
1	001	0	1	0
2	010	0	0	1
3	011	0	0	0
4	100	0	0	1
5	101	0	1	0
6	110	1	0	0
7	111	X	Χ	Χ

方法 IV:计数器+MUX

作业

6.3, 6.5, 6.6