Úvod do informatiky

přednáška druhá

Miroslav Kolařík

Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.

Obsah

Zákony VL, sémantické vyplývání

Booleovské funkce, normální formy

Úplné systémy spojek VL

Obsah

Zákony VL, sémantické vyplývání

Booleovské funkce, normální formy

Úplné systémy spojek VL

Formule φ, ψ jsou **sémanticky ekvivalentní**, pokud $\| \varphi \|_e = \| \psi \|_e$ pro každé ohodnocení *e*.

Poznámka: Formule φ, ψ jsou sémanticky ekvivalentní, právě když $\varphi \Leftrightarrow \psi$ je tautologie. Tedy sémanticky ekvivalentní formule od sebe nelze rozlišit pravdivostí.

Poznámka: Pravdivost formule φ při daném pravdivostním ohodnocení závisí pouze na ohodnocení výrokových symbolů vyskytujících se ve formuli φ .

Poznámka: Některé tautologie povyšujeme na tzv. zákony VL.

Formule φ, ψ jsou **sémanticky ekvivalentní**, pokud $\| \varphi \|_e = \| \psi \|_e$ pro každé ohodnocení *e*.

Poznámka: Formule φ, ψ jsou sémanticky ekvivalentní, právě když $\varphi \Leftrightarrow \psi$ je tautologie. Tedy sémanticky ekvivalentní formule od sebe nelze rozlišit pravdivostí.

Poznámka: Pravdivost formule φ při daném pravdivostním ohodnocení závisí pouze na ohodnocení výrokových symbolů vyskytujících se ve formuli φ .

Poznámka: Některé tautologie povyšujeme na tzv. zákony VL.

Formule φ, ψ jsou **sémanticky ekvivalentní**, pokud $\| \varphi \|_e = \| \psi \|_e$ pro každé ohodnocení e.

Poznámka: Formule φ, ψ jsou sémanticky ekvivalentní, právě když $\varphi \Leftrightarrow \psi$ je tautologie. Tedy sémanticky ekvivalentní formule od sebe nelze rozlišit pravdivostí.

Poznámka: Pravdivost formule φ při daném pravdivostním ohodnocení závisí pouze na ohodnocení výrokových symbolů vyskytujících se ve formuli φ .

Poznámka: Některé tautologie povyšujeme na tzv. zákony VL.

- 1. $a \lor \neg a$ (zákon vyloučeného třetího)
- 2. $\neg(a \land \neg a)$ (zákon sporu)
- 3. $\neg \neg a \Leftrightarrow a$ (zákon dvojí negace)
- 4. $(a \land b) \Leftrightarrow (b \land a)$ (komutativní zákon pro \land)
- 5. $(a \lor b) \Leftrightarrow (b \lor a)$ (komutativní zákon pro \lor)
- 6. $(a \land (b \land c)) \Leftrightarrow ((a \land b) \land c)$ (asociativní zákon pro \land)
- 7. $(a \lor (b \lor c)) \Leftrightarrow ((a \lor b) \lor c)$ (asociativní zákon pro \lor)
- 8. $(a \land (b \lor c)) \Leftrightarrow ((a \land b) \lor (a \land c))$ (distributivní zákon)
- 9. $(a \lor (b \land c)) \Leftrightarrow ((a \lor b) \land (a \lor c))$ (distributivní zákon)
- 10. $\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)$ (de Morganův zákon)
- 11. $\neg(a \lor b) \Leftrightarrow (\neg a \land \neg b)$ (de Morganův zákon)
- 12. $(a \Rightarrow b) \Leftrightarrow (\neg a \lor b)$ (náhrada implikace)
- 13. $\neg(a \Rightarrow b) \Leftrightarrow (a \land \neg b)$ (náhrada negace implikace)
- 14. $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$ (zákon kontrapozice)
- 15. $(a \Leftrightarrow b) \Leftrightarrow ((a \Rightarrow b) \land (b \Rightarrow a))$ (náhrada ekvivalence)
- 16. $((a \Rightarrow b) \land (b \Rightarrow c)) \Rightarrow (a \Rightarrow c)$ (tranzitivita implikace)

- 1. $a \lor \neg a$ (zákon vyloučeného třetího)
- 2. $\neg(a \land \neg a)$ (zákon sporu)
- 3. $\neg \neg a \Leftrightarrow a$ (zákon dvojí negace)
- 4. $(a \land b) \Leftrightarrow (b \land a)$ (komutativní zákon pro \land)
- 5. $(a \lor b) \Leftrightarrow (b \lor a)$ (komutativní zákon pro \lor)
- 6. $(a \land (b \land c)) \Leftrightarrow ((a \land b) \land c)$ (asociativní zákon pro \land)
- 7. $(a \lor (b \lor c)) \Leftrightarrow ((a \lor b) \lor c)$ (asociativní zákon pro \lor)
- 8. $(a \land (b \lor c)) \Leftrightarrow ((a \land b) \lor (a \land c))$ (distributivní zákon)
- 9. $(a \lor (b \land c)) \Leftrightarrow ((a \lor b) \land (a \lor c))$ (distributivní zákon)
- 10. $\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)$ (de Morganův zákon)
- 11. $\neg(a \lor b) \Leftrightarrow (\neg a \land \neg b)$ (de Morganův zákon)
- 12. $(a \Rightarrow b) \Leftrightarrow (\neg a \lor b)$ (náhrada implikace)
- 13. $\neg(a \Rightarrow b) \Leftrightarrow (a \land \neg b)$ (náhrada negace implikace)
- 14. $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$ (zákon kontrapozice)
- 15. $(a \Leftrightarrow b) \Leftrightarrow ((a \Rightarrow b) \land (b \Rightarrow a))$ (náhrada ekvivalence)
- 16. $((a \Rightarrow b) \land (b \Rightarrow c)) \Rightarrow (a \Rightarrow c)$ (tranzitivita implikace)

- 1. $a \lor \neg a$ (zákon vyloučeného třetího)
- 2. $\neg(a \land \neg a)$ (zákon sporu)
- 3. $\neg \neg a \Leftrightarrow a$ (zákon dvojí negace)
- 4. $(a \land b) \Leftrightarrow (b \land a)$ (komutativní zákon pro \land)
- 5. $(a \lor b) \Leftrightarrow (b \lor a)$ (komutativní zákon pro \lor)
- 6. $(a \land (b \land c)) \Leftrightarrow ((a \land b) \land c)$ (asociativní zákon pro \land)
- 7. $(a \lor (b \lor c)) \Leftrightarrow ((a \lor b) \lor c)$ (asociativní zákon pro \lor)
- 8. $(a \land (b \lor c)) \Leftrightarrow ((a \land b) \lor (a \land c))$ (distributivní zákon)
- 9. $(a \lor (b \land c)) \Leftrightarrow ((a \lor b) \land (a \lor c))$ (distributivní zákon)
- 10. $\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)$ (de Morganův zákor
- 11. $\neg(a \lor b) \Leftrightarrow (\neg a \land \neg b)$ (de Morganův zákon)
- 12. $(a \Rightarrow b) \Leftrightarrow (\neg a \lor b)$ (náhrada implikace)
- 13. $\neg(a \Rightarrow b) \Leftrightarrow (a \land \neg b)$ (náhrada negace implikace)
- 14. $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$ (zákon kontrapozice)
- 15. $(a \Leftrightarrow b) \Leftrightarrow ((a \Rightarrow b) \land (b \Rightarrow a))$ (náhrada ekvivalence)
- 16. $((a \Rightarrow b) \land (b \Rightarrow c)) \Rightarrow (a \Rightarrow c)$ (tranzitivita implikace)

- 1. $a \lor \neg a$ (zákon vyloučeného třetího)
- 2. $\neg(a \land \neg a)$ (zákon sporu)
- 3. $\neg \neg a \Leftrightarrow a$ (zákon dvojí negace)
- 4. $(a \land b) \Leftrightarrow (b \land a)$ (komutativní zákon pro \land)
- 5. $(a \lor b) \Leftrightarrow (b \lor a)$ (komutativní zákon pro \lor)
- 6. $(a \land (b \land c)) \Leftrightarrow ((a \land b) \land c)$ (asociativní zákon pro \land)
- 7. $(a \lor (b \lor c)) \Leftrightarrow ((a \lor b) \lor c)$ (asociativní zákon pro \lor)
- 8. $(a \land (b \lor c)) \Leftrightarrow ((a \land b) \lor (a \land c))$ (distributivní zákon)
- 9. $(a \lor (b \land c)) \Leftrightarrow ((a \lor b) \land (a \lor c))$ (distributivní zákon)
- 10. $\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)$ (de Morganův zákon)
- 11. $\neg(a \lor b) \Leftrightarrow (\neg a \land \neg b)$ (de Morganův zákon)
- 12. $(a \Rightarrow b) \Leftrightarrow (\neg a \lor b)$ (náhrada implikace)
- 13. $\neg(a \Rightarrow b) \Leftrightarrow (a \land \neg b)$ (náhrada negace implikace)
- 14. $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$ (zákon kontrapozice)
- 15. $(a \Leftrightarrow b) \Leftrightarrow ((a \Rightarrow b) \land (b \Rightarrow a))$ (náhrada ekvivalence)
- 16. $((a \Rightarrow b) \land (b \Rightarrow c)) \Rightarrow (a \Rightarrow c)$ (tranzitivita implikace)

- 1. $a \lor \neg a$ (zákon vyloučeného třetího)
- 2. $\neg(a \land \neg a)$ (zákon sporu)
- 3. $\neg \neg a \Leftrightarrow a$ (zákon dvojí negace)
- 4. $(a \land b) \Leftrightarrow (b \land a)$ (komutativní zákon pro \land)
- 5. $(a \lor b) \Leftrightarrow (b \lor a)$ (komutativní zákon pro \lor)
- 6. $(a \land (b \land c)) \Leftrightarrow ((a \land b) \land c)$ (asociativní zákon pro \land)
- 7. $(a \lor (b \lor c)) \Leftrightarrow ((a \lor b) \lor c)$ (asociativní zákon pro \lor)
- 8. $(a \land (b \lor c)) \Leftrightarrow ((a \land b) \lor (a \land c))$ (distributivní zákon)
- 9. $(a \lor (b \land c)) \Leftrightarrow ((a \lor b) \land (a \lor c))$ (distributivní zákon)
- 10. $\neg (a \land b) \Leftrightarrow (\neg a \lor \neg b)$ (de Morganův zákon)
- 11. $\neg(a \lor b) \Leftrightarrow (\neg a \land \neg b)$ (de Morganův zákon)
- 12. $(a \Rightarrow b) \Leftrightarrow (\neg a \lor b)$ (náhrada implikace)
- 13. $\neg(a \Rightarrow b) \Leftrightarrow (a \land \neg b)$ (náhrada negace implikace)
- 14. $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$ (zákon kontrapozice)
- 15. $(a \Leftrightarrow b) \Leftrightarrow ((a \Rightarrow b) \land (b \Rightarrow a))$ (náhrada ekvivalence)
- 16. $((a \Rightarrow b) \land (b \Rightarrow c)) \Rightarrow (a \Rightarrow c)$ (tranzitivita implikace)

- 1. $a \lor \neg a$ (zákon vyloučeného třetího)
- 2. $\neg(a \land \neg a)$ (zákon sporu)
- 3. $\neg \neg a \Leftrightarrow a$ (zákon dvojí negace)
- 4. $(a \land b) \Leftrightarrow (b \land a)$ (komutativní zákon pro \land)
- 5. $(a \lor b) \Leftrightarrow (b \lor a)$ (komutativní zákon pro \lor)
- 6. $(a \land (b \land c)) \Leftrightarrow ((a \land b) \land c)$ (asociativní zákon pro \land)
- 7. $(a \lor (b \lor c)) \Leftrightarrow ((a \lor b) \lor c)$ (asociativní zákon pro \lor)
- 8. $(a \land (b \lor c)) \Leftrightarrow ((a \land b) \lor (a \land c))$ (distributivní zákon)
- 9. $(a \lor (b \land c)) \Leftrightarrow ((a \lor b) \land (a \lor c))$ (distributivní zákon)
- 10. $\neg (a \land b) \Leftrightarrow (\neg a \lor \neg b)$ (de Morganův zákon)
- 11. $\neg(a \lor b) \Leftrightarrow (\neg a \land \neg b)$ (de Morganův zákon)
- 12. $(a \Rightarrow b) \Leftrightarrow (\neg a \lor b)$ (náhrada implikace)
- 13. $\neg(a \Rightarrow b) \Leftrightarrow (a \land \neg b)$ (náhrada negace implikace)
- 14. $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$ (zákon kontrapozice)
- 15. $(a \Leftrightarrow b) \Leftrightarrow ((a \Rightarrow b) \land (b \Rightarrow a))$ (náhrada ekvivalence)
- 16. $((a \Rightarrow b) \land (b \Rightarrow c)) \Rightarrow (a \Rightarrow c)$ (tranzitivita implikace)

- a∨ ¬a (zákon vyloučeného třetího)
- 2. $\neg(a \land \neg a)$ (zákon sporu)
- 3. $\neg \neg a \Leftrightarrow a$ (zákon dvojí negace)
- 4. $(a \land b) \Leftrightarrow (b \land a)$ (komutativní zákon pro \land)
- 5. $(a \lor b) \Leftrightarrow (b \lor a)$ (komutativní zákon pro \lor)
- 6. $(a \land (b \land c)) \Leftrightarrow ((a \land b) \land c)$ (asociativní zákon pro \land)
- 7. $(a \lor (b \lor c)) \Leftrightarrow ((a \lor b) \lor c)$ (asociativní zákon pro \lor)
- 8. $(a \land (b \lor c)) \Leftrightarrow ((a \land b) \lor (a \land c))$ (distributivní zákon)
- 9. $(a \lor (b \land c)) \Leftrightarrow ((a \lor b) \land (a \lor c))$ (distributivní zákon)
- 10. $\neg(a \land b) \Leftrightarrow (\neg a \lor \neg b)$ (de Morganův zákon)
- 11. $\neg(a \lor b) \Leftrightarrow (\neg a \land \neg b)$ (de Morganův zákon)
- 12. $(a \Rightarrow b) \Leftrightarrow (\neg a \lor b)$ (náhrada implikace)
- 13. $\neg(a \Rightarrow b) \Leftrightarrow (a \land \neg b)$ (náhrada negace implikace)
- 14. $(a \Rightarrow b) \Leftrightarrow (\neg b \Rightarrow \neg a)$ (zákon kontrapozice)
- 15. $(a \Leftrightarrow b) \Leftrightarrow ((a \Rightarrow b) \land (b \Rightarrow a))$ (náhrada ekvivalence)
- 16. $((a \Rightarrow b) \land (b \Rightarrow c)) \Rightarrow (a \Rightarrow c)$ (tranzitivita implikace)

Je užitečné si uvědomit ještě další tautologie

a)
$$(a \land a) \Leftrightarrow a, (a \lor a) \Leftrightarrow a$$
 (idempotentnost \lor, \land)

b)
$$(a \land 1) \Leftrightarrow a, a \land 0 \Leftrightarrow 0, (a \lor 1) \Leftrightarrow 1, (a \lor 0) \Leftrightarrow a$$

c)
$$a \Rightarrow (b \Rightarrow a)$$

d)
$$a \Rightarrow (b \lor a)$$

e)
$$(a \land b) \Rightarrow a$$

f)
$$(1 \Rightarrow a) \Leftrightarrow a, (a \Rightarrow 1) \Leftrightarrow 1, (a \Rightarrow 0) \Leftrightarrow \neg a.$$

Ve výrokovém kalkulu je obvyklé uvažovat pouze dva základní symboly logických spojek \neg, \Rightarrow a nikoli pět $\neg, \lor, \land, \Rightarrow, \Leftrightarrow$, jak jsme učinili my. Proč?

- Zaprvé zjednodušíme důkazy.
- Za druhé konjunkci, disjunkci a ekvivalenci je možné vyjádřit pouze pomocí negace a implikace – v tomto smyslu jsou i symboly spojek nadbytečné.

Vskutku, formule $p \lor q$, $p \land q$ a $p \Leftrightarrow q$ (v tomto pořadí) jsou sémanticky ekvivalentní formulím $\neg p \Rightarrow q$, $\neg(p \Rightarrow \neg q)$, $\neg((p \Rightarrow q) \Rightarrow \neg(q \Rightarrow p)) = \varphi$, o čemž se můžeme snadno přesvědčit tabelací:

p	9	$\neg p$	$\neg q$	$\neg p \Rightarrow q$	$p \Rightarrow \neg q$	$\neg(p \Rightarrow \neg q)$	φ
0	0	1	1	0	1	0	1
0	1	1	0	1	1	0	0
1	0	0	1	1	1	0	0
1	1	0	0	1	0	1	1

Ve výrokovém kalkulu je obvyklé uvažovat pouze dva základní symboly logických spojek \neg, \Rightarrow a nikoli pět $\neg, \lor, \land, \Rightarrow, \Leftrightarrow$, jak jsme učinili my. Proč?

- Zaprvé zjednodušíme důkazy.
- Za druhé konjunkci, disjunkci a ekvivalenci je možné vyjádřit pouze pomocí negace a implikace – v tomto smyslu jsou i symboly spojek nadbytečné.

Vskutku, formule $p \lor q$, $p \land q$ a $p \Leftrightarrow q$ (v tomto pořadí) jsou sémanticky ekvivalentní formulím $\neg p \Rightarrow q$, $\neg (p \Rightarrow \neg q)$, $\neg ((p \Rightarrow q) \Rightarrow \neg (q \Rightarrow p)) = \varphi$, o čemž se můžeme snadno přesvědčit tabelací:

p	q	$ \neg p $	$ \neg q $	$ \neg p \Rightarrow q$	$p \Rightarrow \neg q$	$\neg(p \Rightarrow \neg q)$	$\boldsymbol{\varphi}$
0	0	1	1	0	1	0	1
0	1	1	0	1	1	0	0
1	0	0	1	1	1	0	0
1	1	0	0	1	0	1	1

Tedy

$$\begin{split} \parallel \neg p \Rightarrow q \parallel_e = \parallel p \lor q \parallel_e, \\ \parallel \neg (p \Rightarrow \neg q) \parallel_e = \parallel p \land q \parallel_e, \\ \parallel \neg ((p \Rightarrow q) \Rightarrow \neg (q \Rightarrow p)) \parallel_e = \parallel p \Leftrightarrow q \parallel_e \end{split}$$

při každém ohodnocení e.

Poznamenejme ještě, že pokud bychom v jazyku VL měli pouze symboly spojek \neg, \Rightarrow , pak $\varphi \lor \psi$ již není formule takového jazyka, ale můžeme ji chápat jako zkratku za formuli $\neg \varphi \Rightarrow \psi$.

Sémantické vyplývání

VL má svou **syntaxi** a **sémantiku**. Syntaxe VL definuje pojmy jako je jazyk a formule, ale formulemi (i ostatními syntaktickými pojmy) se zabývá čistě z pohledu jejich tvaru. Sémantika VL zavádí pojem pravd. ohodnocení a pravdivost formule při daném ohodnocení. Sémantika přiřazuje význam syntaktickým pojmům.

Pojem vyplývání má v logice ústřední význam (zopakujme jej):

Definice

Mějme formule ψ_1, \ldots, ψ_n $(n \ge 0)$. Formule φ **sémanticky plyne** z formulí ψ_1, \ldots, ψ_n (značíme $\psi_1, \ldots, \psi_n \models \varphi$), jestliže $\parallel \varphi \parallel_e = 1$ pro každé ohodnocení e takové, že $\parallel \psi_1 \parallel_e = 1, \ldots, \parallel \psi_n \parallel_e = 1$.

Poznámka: Formule ψ_1, \dots, ψ_n z předchozí definice někdy nazýváme **předpoklady**, formuli φ **sémantický důsledek** formulí ψ_1, \dots, ψ_n .

Sémantické vyplývání

VL má svou **syntaxi** a **sémantiku**. Syntaxe VL definuje pojmy jako je jazyk a formule, ale formulemi (i ostatními syntaktickými pojmy) se zabývá čistě z pohledu jejich tvaru. Sémantika VL zavádí pojem pravd. ohodnocení a pravdivost formule při daném ohodnocení. Sémantika přiřazuje význam syntaktickým pojmům.

Pojem vyplývání má v logice ústřední význam (zopakujme jej):

Definice

Mějme formule $\psi_1,\ldots,\psi_n\ (n\geq 0)$. Formule φ **sémanticky plyne** z formulí ψ_1,\ldots,ψ_n (značíme $\psi_1,\ldots,\psi_n\models\varphi$), jestliže $\parallel\varphi\parallel_e=1$ pro každé ohodnocení e takové, že $\parallel\psi_1\parallel_e=1,\ldots,\parallel\psi_n\parallel_e=1$.

Poznámka: Formule ψ_1, \dots, ψ_n z předchozí definice někdy nazýváme **předpoklady**, formuli φ **sémantický důsledek** formulí ψ_1, \dots, ψ_n .

Sémantické vyplývání

VL má svou **syntaxi** a **sémantiku**. Syntaxe VL definuje pojmy jako je jazyk a formule, ale formulemi (i ostatními syntaktickými pojmy) se zabývá čistě z pohledu jejich tvaru. Sémantika VL zavádí pojem pravd. ohodnocení a pravdivost formule při daném ohodnocení. Sémantika přiřazuje význam syntaktickým pojmům.

Pojem vyplývání má v logice ústřední význam (zopakujme jej):

Definice

Mějme formule $\psi_1,\ldots,\psi_n\ (n\geq 0)$. Formule φ **sémanticky plyne** z formulí $\psi_1,\ldots,\psi_n\ (\text{značíme}\ \psi_1,\ldots,\psi_n\models\varphi)$, jestliže $\parallel\varphi\parallel_e=1$ pro každé ohodnocení e takové, že $\parallel\psi_1\parallel_e=1,\ldots,\parallel\psi_n\parallel_e=1$.

Poznámka: Formule ψ_1, \ldots, ψ_n z předchozí definice někdy nazýváme **předpoklady**, formuli φ **sémantický důsledek** formulí ψ_1, \ldots, ψ_n .

Věta

$$\chi_1,\ldots,\chi_n\models\varphi\Rightarrow\psi$$
, právě když $\chi_1,\ldots,\chi_n,\varphi\models\psi$.

Důkaz:

" ⇒: "

Nejprve předpokládejme $\chi_1,\ldots,\chi_n\models\varphi\Rightarrow\psi$ a dokažme $\chi_1,\ldots,\chi_n,\varphi\models\psi$. Stačí ověřit, že pro každé ohodnocení e, při kterém jsou všechny formule z $\chi_1,\ldots,\chi_n,\varphi$ pravdivé, máme $\parallel\psi\parallel_e=1$. Jsou-li ale $\chi_1,\ldots,\chi_n,\varphi$ při ohodnocení e pravdivé, pak dostáváme $\parallel\varphi\Rightarrow\psi\parallel_e=1$ dle předpokladu. Rovněž platí $\parallel\varphi\parallel_e=1$. To jest $\parallel\varphi\Rightarrow\psi\parallel_e=\parallel\varphi\parallel_e\rightarrow\parallel\psi\parallel_e=1$. Z vlastností \rightarrow pak plyne, že $\parallel\psi\parallel_e=1$. To jest $\chi_1,\ldots,\chi_n,\varphi\models\psi$

" ⇐: " . .

Sémantická podoba věty o dedukci I

Věta

$$\chi_1,\ldots,\chi_n\models\varphi\Rightarrow\psi$$
, právě když $\chi_1,\ldots,\chi_n,\varphi\models\psi$.

Důkaz:

" ⇒:"

Nejprve předpokládejme $\chi_1,\ldots,\chi_n\models\varphi\Rightarrow\psi$ a dokažme $\chi_1,\ldots,\chi_n,\varphi\models\psi$. Stačí ověřit, že pro každé ohodnocení e, při kterém jsou všechny formule z $\chi_1,\ldots,\chi_n,\varphi$ pravdivé, máme $\parallel\psi\parallel_e=1$. Jsou-li ale $\chi_1,\ldots,\chi_n,\varphi$ při ohodnocení e pravdivé, pak dostáváme $\parallel\varphi\Rightarrow\psi\parallel_e=1$ dle předpokladu. Rovněž platí $\parallel\varphi\parallel_e=1$. To jest $\parallel\varphi\Rightarrow\psi\parallel_e=\parallel\varphi\parallel_e\rightarrow\parallel\psi\parallel_e=1$. Z vlastností \rightarrow pak plyne, že $\parallel\psi\parallel_e=1$. To jest $\chi_1,\ldots,\chi_n,\varphi\models\psi$.

" ⇐:" ...

Věta

$$\chi_1,\ldots,\chi_n\models \phi\Rightarrow \psi$$
, právě když $\chi_1,\ldots,\chi_n,\phi\models \psi$.

Důkaz:

$$"\Rightarrow:"\ldots$$

Naopak předpokládejme $\chi_1, \ldots, \chi_n, \varphi \models \psi$. Stačí ověřit, že pro každé ohodnocení e, při kterém jsou všechny formule χ_1, \ldots, χ_n pravdivé, je $\parallel \varphi \Rightarrow \psi \parallel_e = 1$. Mohou nastat dva případy:

- 1) $\| \varphi \|_e = 0$ a tím pádem $\| \varphi \Rightarrow \psi \|_e = 0 \rightarrow \| \psi \|_e = 1$.
- 2) $\| \varphi \|_{e} = 1$, to jest při ohodnocení e jsou pravdivé všechny formule z $\chi_{1}, \ldots, \chi_{n}, \varphi$ a tedy $\| \psi \|_{e} = 1$ dle předpokladu. Odtud $\| \varphi \Rightarrow \psi \|_{e} = 1 \rightarrow 1 = 1$, v důsledku čehož $\chi_{1}, \ldots, \chi_{n} \models \varphi \Rightarrow \psi$.

Sémantická podoba věty o dedukci II

Věta

$$\chi_1,\ldots,\chi_n\models\varphi\Rightarrow\psi$$
, právě když $\chi_1,\ldots,\chi_n,\varphi\models\psi$.

Důkaz:

Naopak předpokládejme $\chi_1, \ldots, \chi_n, \varphi \models \psi$. Stačí ověřit, že pro každé ohodnocení e, při kterém jsou všechny formule $\chi_1, \ldots \chi_n$ pravdivé, je $\| \varphi \Rightarrow \psi \|_{e} = 1$. Mohou nastat dva případy:

- 1) $\| \phi \|_e = 0$ a tim pádem $\| \phi \Rightarrow \psi \|_e = 0 \rightarrow \| \psi \|_e = 1$.
- 2) $\| \varphi \|_{e} = 1$, to jest při ohodnocení e jsou pravdivé všechny formule z $\chi_{1}, \ldots, \chi_{n}, \varphi$ a tedy $\| \psi \|_{e} = 1$ dle předpokladu. Odtud $\| \varphi \Rightarrow \psi \|_{e} = 1 \rightarrow 1 = 1$, v důsledku čehož $\chi_{1}, \ldots, \chi_{n} \models \varphi \Rightarrow \psi$.

Obsah

1 Zákony VL, sémantické vyplýván

Booleovské funkce, normální formy

Úplné systémy spojek VL

Booleovská funkce s n argumenty (někdy n-ární booleovská funkce) je libovolné zobrazení, které každé uspořádané n-tici hodnot 0 nebo 1 přiřadí hodnotu 0 nebo 1. Každou booleovskou funkci f s n argumenty lze zapsat v tabulce podobně jako u tabulkové metody. Předpokládejme, že argumenty funkce f označíme x_1, \ldots, x_n , pak píšeme také $f(x_1, \ldots, x_n)$.

Všechny booleovské funkce jedné proměnné:

<i>X</i> ₁	f_1	f_2	f_3	f_4
0	0	0	1	1
1	0	1	0	1

Vidíme, že f_3 je pravdivostní funkce spojky negace, tj. $f_3(0) = 1$ a $f_3(1) = 0$.

Všechny booleovské funkce dvou proměnných:

<i>X</i> ₁	<i>X</i> ₂	f_1	f_2	f_3	f_4	<i>f</i> ₅	f_6	f 7	f_8
1	1	1	1	1	1	1	1	1	1
1	0 1	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0
0		1	0	1	0	1	0	1	0

<i>X</i> ₁	<i>X</i> ₂	f ₉	f_{10}	f ₁₁	f_{12}	f_{13}	f_{14}	f ₁₅	f ₁₆
1	1	0	0	0	0	0	0	0	0
1	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0

Vidíme, že f_2 je pravdivostní funkce spojky disjunkce, f_5 je pravdivostní funkce spojky implikace, f_7 je pravdivostní funkce spojky ekvivalence a f_8 je pravdivostní funkce spojky konjunkce

Tedy pravdivostní funkce každé ze spojek, se kterými jsme se setkali, jsou booleovské funkce.

Všechny booleovské funkce dvou proměnných:

<i>X</i> ₁	<i>X</i> ₂	f_1	f_2	f_3	f_4	f_5	f_6	f 7	f_8
1	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0

<i>X</i> ₁	<i>X</i> ₂	f ₉	f_{10}	f ₁₁	f_{12}	f ₁₃	f_{14}	f ₁₅	f ₁₆
1	1	0	0	0	0	0	0	0	0
1	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0
					0				

Vidíme, že f_2 je pravdivostní funkce spojky disjunkce, f_5 je pravdivostní funkce spojky implikace, f_7 je pravdivostní funkce spojky ekvivalence a f_8 je pravdivostní funkce spojky konjunkce.

Tedy pravdivostní funkce každé ze spojek, se kterými jsme se setkali, jsou booleovské funkce.

Pravdivostní funkce spojek \land , \lor , \Rightarrow , \Leftrightarrow jsou booleovské funkce dvou argumentů, pravdivostní funkce spojky \neg je booleovská funkce jednoho argumentu.

Tvrzení: Existuje $2^{(2^n)}$ booleovských funkcí s *n* argumenty.

Je jasné, že každá formule φ obsahující výrokové symboly p_1, \ldots, p_n indukuje booleovskou funkci n argumentů. Je to právě funkce, jejíž tabulku získáme vytvořením tabulky pro formuli φ . Zajímavé ale je, že platí také opačné tvrzení: Ke každé booleovské funkci f s n argumenty existuje formule φ_f taková, že tato formule indukuje právě funkci f. Platí dokonce, že formule φ_f může obsahovat pouze spojky \neg , \land , \lor .

Pravdivostní funkce spojek \land , \lor , \Rightarrow , \Leftrightarrow jsou booleovské funkce dvou argumentů, pravdivostní funkce spojky \neg je booleovská funkce jednoho argumentu.

Tvrzení: Existuje $2^{(2^n)}$ booleovských funkcí s *n* argumenty.

Je jasné, že každá formule φ obsahující výrokové symboly p_1,\ldots,p_n indukuje booleovskou funkci n argumentů. Je to právě funkce, jejíž tabulku získáme vytvořením tabulky pro formuli φ . Zajímavé ale je, že platí také opačné tvrzení: Ke každé booleovské funkci f s n argumenty existuje formule φ_f taková, že tato formule indukuje právě funkci f. Platí dokonce, že formule φ_f může obsahovat pouze spojky \neg , \wedge , \vee .

- literál nad V je libovolný výrokový symbol z V nebo jeho negace
- úplná elementární konjunkce nad V je libovolná konjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná elementární disjunkce nad V je libovolná disjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná konjunktivní normální forma nad V je konjukce úplných elementárních disjunkcí nad V
- úplná disjunktivní normální forma nad V je disjunkce úplných elementárních konjunkcí nad V.

- literál nad V je libovolný výrokový symbol z V nebo jeho negace
- úplná elementární konjunkce nad V je libovolná konjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná elementární disjunkce nad V je libovolná disjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná konjunktivní normální forma nad V je konjukce úplných elementárních disjunkcí nad V
- úplná disjunktivní normální forma nad V je disjunkce úplných elementárních konjunkcí nad V.

- literál nad V je libovolný výrokový symbol z V nebo jeho negace
- úplná elementární konjunkce nad V je libovolná konjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná elementární disjunkce nad V je libovolná disjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná konjunktivní normální forma nad V je konjukce úplných elementárních disjunkcí nad V
- úplná disjunktivní normální forma nad V je disjunkce úplných elementárních konjunkcí nad V.

- literál nad V je libovolný výrokový symbol z V nebo jeho negace
- úplná elementární konjunkce nad V je libovolná konjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná elementární disjunkce nad V je libovolná disjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná konjunktivní normální forma nad V je konjukce úplných elementárních disjunkcí nad V
- úplná disjunktivní normální forma nad V je disjunkce úplných elementárních konjunkcí nad V.

- literál nad V je libovolný výrokový symbol z V nebo jeho negace
- úplná elementární konjunkce nad V je libovolná konjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná elementární disjunkce nad V je libovolná disjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná konjunktivní normální forma nad V je konjukce úplných elementárních disjunkcí nad V
- úplná disjunktivní normální forma nad V je disjunkce úplných elementárních konjunkcí nad V.

Poznámka: Tabulkovou metodou se lze snadno přesvědčit, že např. formule $p \wedge (q \wedge r)$ a $(p \wedge q) \wedge r$ jsou sémanticky ekvivalentní, t.j. u formulí ve tvaru konjunkce nezáleží na uzávorkování. To samé platí pokud bychom nahradili konjunkci disjunkcí. Píšeme tedy stručně $p_1 \wedge \cdots \wedge p_n$ místo $p_1 \wedge (p_2(\ldots(p_{n-1} \wedge p_n)\ldots))$. Analogicky pro disjunkci.

Věta

Ke každé formuli VL, která není tautologií existuje s ní sémanticky ekvivalentní formule, která je ve tvaru úplné konjunktivní normální formy.

Věta

Ke každé formuli VL, která není kontradikcí existuje s ní sémanticky ekvivalentní formule, která je ve tvaru úplné disjunktivní normální formy.

Poznámka: Tabulkovou metodou se lze snadno přesvědčit, že např. formule $p \wedge (q \wedge r)$ a $(p \wedge q) \wedge r$ jsou sémanticky ekvivalentní, t.j. u formulí ve tvaru konjunkce nezáleží na uzávorkování. To samé platí pokud bychom nahradili konjunkci disjunkcí. Píšeme tedy stručně $p_1 \wedge \cdots \wedge p_n$ místo $p_1 \wedge (p_2(\dots(p_{n-1} \wedge p_n)\dots))$. Analogicky pro disjunkci.

Věta

Ke každé formuli VL, která není tautologií existuje s ní sémanticky ekvivalentní formule, která je ve tvaru úplné konjunktivní normální formy.

Věta

Ke každé formuli VL, která není kontradikcí existuje s ní sémanticky ekvivalentní formule, která je ve tvaru úplné disjunktivní normální formy.

Konstrukce ÚDNF pro formuli φ s výr. symboly p_1, \ldots, p_n :

- 1) pro $\varphi(p_1,\ldots,p_n)$ uvažme tabulku pravdivostních hodnot
- 2) pro řádky s hodnotou 1 (ve sloupci φ) sestrojme ÚEK z p_i (pro 1) a $\neg p_i$ (pro 0)
- 3) výsledná ÚDNF je disjunkcí takových ÚEK.

Pro ÚKNF postupujeme duálně:

Konstrukce ÚKNF pro formuli φ s výr. symboly p_1, \ldots, p_n :

- 1) pro $\varphi(p_1,\ldots,p_n)$ uvažme tabulku pravdivostních hodnot
- 2) pro řádky s hodnotou 0 (ve sloupci φ) sestrojme ÚED z p_i (pro 0) a $\neg p_i$ (pro 1)
- 3) výsledná ÚKNF je konjunkcí takových ÚED

Konstrukce ÚDNF pro formuli φ s výr. symboly p_1, \ldots, p_n :

- 1) pro $\varphi(p_1,\ldots,p_n)$ uvažme tabulku pravdivostních hodnot
- 2) pro řádky s hodnotou 1 (ve sloupci φ) sestrojme ÚEK z p_i (pro 1) a $\neg p_i$ (pro 0)
- 3) výsledná ÚDNF je disjunkcí takových ÚEK.

Pro ÚKNF postupujeme duálně:

Konstrukce ÚKNF pro formuli φ s výr. symboly p_1, \ldots, p_n :

- 1) pro $\varphi(p_1,\ldots,p_n)$ uvažme tabulku pravdivostních hodnot
- 2) pro řádky s hodnotou 0 (ve sloupci φ) sestrojme ÚED z p_i (pro 0) a $\neg p_i$ (pro 1)
- 3) výsledná ÚKNF je konjunkcí takových ÚED.

Sestrojte ÚDNF a ÚKNF k formuli φ : $[(p \Leftrightarrow q) \land (q \Rightarrow r)]$

р	q	r	$p \Leftrightarrow q$	$q \Rightarrow r$	φ	ÚEK	ÚED
1	1	1	1	1	1	$p \wedge q \wedge r$	
1	1	0	1	0	0		$\neg p \lor \neg q \lor r$
1	0	1	0	1	0		$\neg p \lor q \lor \neg r$
1	0	0	0	1	0		$\neg p \lor q \lor r$
0	1	1	0	1	0		$p \vee \neg q \vee \neg r$
0	1	0	0	0	0		$p \vee \neg q \vee r$
0	0	1	1	1	1	$\neg p \land \neg q \land r$	
0	0	0	1	1	1	$\neg p \land \neg q \land \neg r$	

Tedy ÚDNF je $(p \land q \land r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$, ÚKNF je $(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor \neg q \lor \neg r) \land (p \lor \neg q \lor r)$.

Sestrojte ÚDNF a ÚKNF k formuli φ : $[(p \Leftrightarrow q) \land (q \Rightarrow r)]$

р	q	r	$p \Leftrightarrow q$	$q \Rightarrow r$	φ	ÚEK	ÚED
1	1	1	1	1	1	$p \wedge q \wedge r$	
1	1	0	1	0	0		$\neg p \lor \neg q \lor r$
1	0	1	0	1	0		$\neg p \lor q \lor \neg r$
1	0	0	0	1	0		$\neg p \lor q \lor r$
0	1	1	0	1	0		$p \vee \neg q \vee \neg r$
0	1	0	0	0	0		$p \vee \neg q \vee r$
0	0	1	1	1	1	$\neg p \land \neg q \land r$	
0	0	0	1	1	1	$\neg p \land \neg q \land \neg r$	

Tedy ÚDNF je $(p \land q \land r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$, ÚKNF je $(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor \neg q \lor \neg r) \land (p \lor \neg q \lor r)$.

Obsah

1 Zákony VL, sémantické vyplýván

Booleovské funkce, normální formy

Úplné systémy spojek VL

Množina booleovských funkcí $\{f_1,\ldots,f_k\}$ je **funkčně úplná**, pokud každou booleovskou funkci $f:\{0,1\}^n \to \{0,1\}$ lze vyjádřit jako složení některých funkcí z $\{f_1,\ldots,f_k\}$. Řekneme, že množina výrokových spojek je **úplná** (tvoří **úplný systém spojek**), jestliže je funkčně úplná množina jim odpovídajících booleovských funkcí. Každý úplný minimální systém spojek VL nazveme **bází**.

Tvrzení

{→, Y, 从} tvoří úplný systém spojek VL.

Důkaz: Platnost plyne z tvrzení o ÚDNF (ÚKNF).

Z de Morganových zákonů je zřejmé, že systém $\{\neg, \curlyvee, \bot\}$ není bází. Jednoduše se dá ukázat, že existují dvouprvkové báze $\{\neg, \curlyvee\}, \{\neg, \bot\}, \{\neg, \to\}.$

Otázka: Existují jednoprvkové báze VL?

Speciální význam mají **Piercova** (**Nicodova**) **spojka** (význam: "ani ..., ani ..."; označujeme ji symbolem \Downarrow) a **Shefferova spojka** (význam: "pokud ..., pak neplatí ..."; označujeme ji symbolem \Uparrow), které samy o sobě tvoří úplný systém spojek. Obě spojky jsou interpretovány následujícími pravdivostními funkcemi:

Tvrzení: Existují pouze dvě jednoprvkové báze. Tvoří je spojky Sheffer $\{\uparrow\}$ a Nicod $\{\downarrow\}$ (též tzv. Piercova spojka). (Tedy pomocí Sheffera (resp. Nicoda) lze nahradit všechny ostatní spojky VL.)

K důkazu: Pomocí \uparrow (resp. \downarrow) lze vyjádřit \neg, \land, \lor : Zřejmě $(a \uparrow b) \Leftrightarrow \neg (a \land b)$.

Odtud:

1)
$$\neg a \Leftrightarrow \neg (a \land a) \Leftrightarrow (a \uparrow a)$$

2)
$$(a \land b) \Leftrightarrow \neg \neg (a \land b) \Leftrightarrow \neg (a \uparrow b) \Leftrightarrow ((a \uparrow b) \uparrow (a \uparrow b))$$

3)
$$(a \lor b) \Leftrightarrow \neg \neg (a \lor b) \Leftrightarrow \neg (\neg a \land \neg b) \Leftrightarrow (\neg a \Uparrow \neg b) \Leftrightarrow ((a \Uparrow a) \Uparrow (b \Uparrow b))$$
.

Podobně pro ↓.

