Transfer reactions with Be-Li isotopes near the drip-line

LISE Workshop 2024

M. Lozano-González, A. Matta, B. Fernández-Domínguez, J. Lois-Fuentes, F. Delaunay on behalf on the E748 collaboration

IGFAE-USC and LPC-Caen

Overview of the exotic Be-Li region

Be and Li isotopes close to the neutron drip line have been extensively studied due to their exotic properties.

Two prime examples can be showcased:

"Li is a neutron-rich nuclei displaying a 2n **halo** structure.

Overview of the exotic Be-Li region

Be and Li isotopes close to the neutron drip line have been extensively studied due to their exotic properties.

Two prime examples can be showcased:

¹¹Be presents parity inversion: g.s has **positive** parity when negative expected.

I. Talmi and I. Unna, PRL 4 (1960).

Recently gathered information

During the MUST2 @ RIKEN campaign, an unexpected **reduction** of the cross-section was observed in $^{9,11}\text{Li}(d, ^3\text{He})^{8,10}\text{He}$ reactions.

A. Matta et al., PRC 92 (2015).

Possible explanations:

• Role of the many-body interactions.

Recently gathered information

During the MUST2 @ RIKEN campaign, an unexpected **reduction** of the cross-section was observed in ^{9,11}Li(d, ³He)^{8,10}He reactions.

Possible explanations:

- Role of the many-body interactions.
- Overestimation of the nuclear overlap $\langle ^{9,11}\text{Li}|^{8,10}\text{He}\rangle$.

Collect more $d\sigma/d\Omega$ data!

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

• 10 Be(d, t) 9 Be: Benchmark reaction. n-occupancy in $p_{3/2}$.

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

- 10 Be(d, t) 9 Be: Benchmark reaction. n-**occupancy** in $p_{3/2}$.
- 10 Be(d, 3 He) 9 Li: $p_{3/2}$ proved but on the proton side.

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

- 10 Be(d, t) 9 Be: Benchmark reaction. n-**occupancy** in $p_{3/2}$.
- 10 Be(d, 3 He) 9 Li: $p_{3/2}$ proved but on the proton side.
- 12 Be(d, t) 11 Be: higher orbital $p_{1/2}$.

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

- 10 Be(d, t) 9 Be: Benchmark reaction. n-**occupancy** in $p_{3/2}$.
- 10 Be(d, 3 He) 9 Li: $p_{3/2}$ proved but on the proton side.
- 12 Be(d, t) 11 Be: higher orbital $p_{1/2}$.
- ¹²Be(d, ³He)¹¹Li: same p-orbital as before.

Experimental setup for E748

Traditional **solid target** experiment @ D6. Below a sketch of the setup:

A **common** procedure is employed in all the reactions. Different gates are applied in a sequential manner, as follows:

1. **Heavy ID**: Only distinction in *Z*: separation of Be from Li residuals, but not along isotopic chain.

A **common** procedure is employed in all the reactions. Different gates are

Light ID: Using only stopped particles in Si layer, but low TOF

resolution. Separation of t-3He

applied in a sequential manner, as follows:

attained with kinematics!

Missing mass technique: $E_{\text{beam}} + (E, \theta)_{\text{Lab}} \rightarrow \mathbf{E_x}$

Serves as a test of the analysis, allowing us to ascertain the **normalization** factors N_t and N_h .

00000

- Modern models (Haixia and DA1p) adjust better to the data.
- Failure at low and high angles.
- Overall agreement in magnitude.

Likely to be a miscalculation in efficiency

Elastic: ${}^{10}\text{Be}(d,d){}^{10}\text{Be}$

Cross-section for the 1st excited state is also achievable.

- Potential deformed in both Coulomb and nuclear parts
- Using B(E2) for other experiments.

To be further investigated. $\Rightarrow C^2S = 0.270(22)$ with Daehnick

Neutron removal: ${}^{10}\text{Be}(d,t){}^{9}\text{Be}$

Only the **ground state** is accessible. Angular distributions are determined in the interval $\theta_{CM} \in [5, 20]^{\circ}$.

Theoretical calculations with DWBA:

- DAEHNICK + PANG OMPs.
- Only single-particle overlaps.
- Finite range calculation.

Best fit is
$$\ell = 1$$

with $j = 3/2$.
 $\Rightarrow C^2S = 1.522(44)$

Neutron removal: ¹⁰Be(d, t) ⁹Be

Another measurement is available in D.L Auton Nucl. Phys. A (1970). A reanalysis with our model is executed:

- No errors could be extracted
- Poor quality at large θ_{CM}
- $C^2S = 1.951(54)$

E748 can be compared with a recent experiment carried out at the Acculinna facility. For the E_x :

Our experiment @ 30 AMeV

E. Y. Nikolskii et al. @ 42 AMeV

Recently published: NIMPR B 541 (2023)

Angular distributions for the **ground state** are extracted:

Our experiment, $\theta_{CM} \in [6, 14]^{\circ}$

Again
$$\ell = 1 \implies 3/2^-$$
.
 $C^2S = 1.80(11)$

Acculinna one, $\theta_{CM} \in [3, 13]^{\circ}$

Original publication: $C^2S = 1.74$

Angular distributions for the ground state are extracted:

Our experiment, $\theta_{CM} \in [6, 14]^{\circ}$

Again
$$\ell = 1 \implies 3/2^-$$
.
 $C^2S = 1.80(11)$

Reanalyis of Acculinna's data

$$\ell = 1 \implies C^2S = 3.13(6)$$
Different **input parameters** in the models!

A first excited state is also accesible.

- **Best fit** is $\ell = 1$
- Assuming j = 1/2
- Spectroscopic factor: 0.185(36)

Elastic: 12 Be(d, d) 12 Be

Yet another validation method of the normalization.

- Modern models (Haixia and DA1p) adjust better to the data.
- Failure at low and high angles.
- Overall agreement in magnitude.

Likely to be a miscalculation in **efficiency**

Elastic: 12 Be(d, d) 12 Be

Cross-section for the 1st excited state is also achievable.

- Potential deformed in both Coulomb and nuclear parts
- Using B(E2) for other experiments.

To be further investigated. $\Rightarrow C^2S = 0.519(30) \text{ with }$ Daehnick

Challenging channels: 12 Be $(d, t|^3$ He $)^{11}$ Be|Li

Left: (d,t); Right: (d, 3He)

• Strong inhibition of g.s

- Low cross-section ⇒ low counting
- Subject to **contamination**: hard to disentangle A = 3

Challenging channels: 12 Be $(d, t|^3$ He $)^{11}$ Be|Li

(d, ³He)

$$\Rightarrow C^2S = 0.510(85)$$
 with Daehnick

- Low cross-section ⇒ low counting
- Subject to **contamination**: hard to disentangle A = 3

Conclusions and outlook

We investigated several proton and neutron pick-up reactions on ^{10,12}Be:

	Channel	Status	Pending
10Be	(d,d) (d,t) (d, 3He)		
12Be	(d,d) (d,t) (d,3He)		

Future prospects

Thanks for your attention!	
And special thanks to the E748 collaboration.	

Csl on or off?

So far, studied excited states are compressed in the DSSD layer:

Beam ID

Using Caviar to CATS1 TOF and energy loss in IC

Kinematic lines

