Question number	Scheme	Marks	
8 a	Height of the waste paper basket = $\sqrt{(5x)^2 - (3x)^2} = 4x$ (cm)	M1	
	$V = \frac{1}{2}(2x+8x) \times 4x \times h = 20x^2h = 2250 \Rightarrow h = \frac{2250}{20x^2}$ oe	M1	
	$S = 2 \times 20x^2 + 2xh + 2(5xh)$	M1	
	$S = 40x^2 + 12x \left(\frac{2250}{20x^2}\right) \text{ oe}$	M1	
	$S = 40x^{2} + \frac{1350}{x} *$ $\frac{dS}{dx} = 80x - \frac{1350}{x^{2}} \text{ oe}$	A1 cso (5)	
b	$\frac{\mathrm{d}S}{\mathrm{d}x} = 80x - \frac{1350}{x^2} \text{ oe}$	M1	
	$\frac{dS}{dx} = 80x - \frac{1350}{x^2} = 0$ so $x^3 = \frac{135}{8} \Rightarrow x =$	M1	
	x = 2.56 awrt	A1	
	$\frac{d^2S}{dx^2} = 80 + \frac{2700}{x^3} > 0 \text{ for all positive values of } x.: \text{ minimum}$	M1 A1ft (5)	
c	When $x = 2.56$ $S = 40(2.56)^2 + \frac{1350}{2.56} = 789$ awrt	M1 A1 (2)	
	Total 12 marks		

Part	Mark	Notes
(a)		For finding the height of the waste-paper basket using Pythagoras theorem.
	M1	$\sqrt{(5x)^2 - (3x)^2} = 4x \text{ (cm)}$
	M1	For finding the volume which must come from;
		W
		$V = $ correct area of trapezium (using their height) $\times h$
		$V = \frac{1}{2}(2x + 8x) \times '4x' \times h = 2250 \Longrightarrow ('20' x^2 h = 2250)$
	1.22	and for obtaining an expression for the height h: $h = \frac{2250}{20'x^2}$ or $xh = \frac{2250}{20'x}$
		Please check their algebra carefully, as some may even substitute $hx^2 =$ NB: This is an A mark in Epen.
	M1	For writing the surface area in terms of 2 unknowns $[x \text{ and } h]$ which need not be simplified. This must be correct using their expression in terms of x for the height of
		the prism. $(8x + 2x) \times (4x)$
		e.g. $S = 2 \times \frac{(8x+2x) \times '4x'}{2} + 2xh + 2(5xh) = [40x^2 + 12xh]$
	M1	For eliminating h from their expression for S
		S must be in the form $Ax^2 + Bxh$ and h must be of the form $\frac{C}{r^2}$ where A, B and C are
		constants.
	A1 cso	For the given result exactly as written. $S = 40x^2 + \frac{1350}{x}$
(b)	M1	For an acceptable attempt to differentiate the given expression for <i>S</i> . See General Guidance.
	M1	For setting their $\frac{dS}{dx} = 0$ and attempting to find a value for x
		The minimum acceptable expression is $\frac{dS}{dx} = Px \pm \frac{Q}{x^2}$ where P and Q are constants.
	A1	For awrt $x = 2.56$
	M1	For differentiating their $\frac{dS}{dx}$, which must be as a minimum $\frac{dS}{dx} = Px \pm \frac{Q}{x^2}$ to find the
		second derivative to achieve as a minimum $\frac{d^2S}{dx^2} = \pm M \pm \frac{N}{x^3}$
		Concludes that as $\frac{d^2S}{dx^2}$ will always be positive, [either by substitution, or by inference]
		so the value of x obtained will be a minimum.
	A1ft	$\left[\frac{d^2S}{dx^2} = 80 + \frac{2700}{2.56^3} = 240.9 \right]$ with a conclusion.
		NOTE: The ft only applies to their value of x. Do not ft an incorrect $\frac{d^2S}{dx^2}$
(c)	M1	Substitutes their value of x, obtained using a correct method) into the given expression for S [provided it is a positive value of NOT allow positive values of x]
	A1	for S [provided it is a positive value, do NOT allow negative values of x] For awrt 789
L	1 4 4	2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0