

SEQUENCE LISTING

<110> SANTI, Daniel
PECK, Lawrence
KEALEY, James
DAYEM, Linda

<120> Heterologous Production of Polyketides

<130> 010025.01

<140> 09/699,136
<141> 2000-10-27

<150> 60/161,703
<151> 1999-10-27

<160> 6

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1917
<212> DNA
<213> Propionibacterium freudenreichii ssp. shermanii

<400> 1
atgagcagca cggatcaggc gaccaacccc gccgacactg acgacacctac tccccaccaca 60
ctcagcctgg ccggggattt ccccaaggcc actgaggagc agtgggagcg cgaagttag 120
aaggtaactca accgtggtcg tccaccggag aagcagttga ctttcggcga gtgtctgaag 180
cgcctgacgg ttcacccgt cgatggcatc gacatcgtgc cgatgtaccg tccgaaggac 240
gccccagaaga agctgggtta ccccgccgtc gcaccttca cccgcggcac cacggtgcc 300
aacggcgaca tggatgcctg ggacgtgcgc gcccgtcaca aggatcccga cgagaagttc 360
acccgcaagg cgatcctcga aggctggag cgtggcgtca cctccctgtt gctgcgcgtt 420
gatcccgacg cgatcgaccc cgagcacctc gacgagggtc tctccgacgt cctgctggaa 480
atgaccaagg tggagggtctt cagccgctac gaccagggtg ccgcccggca ggcctgtgt 540
agcgtctacg agcgtccga caagccggcg aaggacctgg ccctcaacct gggcctggat 600
cccatcgcgt tcgcagccct gcagggcacc gagccggatc tgaccgtgt cggtgactgg 660
gtgcggccgc tggcgaagtt ctgcggcggac tcgcgcgcg tcacgatcga cgcgaacatc 720
taccacaacg ccgggtccgg cgacgtggca gagctcgctt gggcaactggc caccggcgcc 780
gagtacggtc gcgcctgtgt cgagcagggc ttacccggca ccgaggcctt cgacacgatc 840
aacttccgtc tcaccggccat ccacgaccag ttccatcaga tcggcgtct tcgcgcctg 900
cgcgaggcat gggccgcgt cggcgagggtc ttccgggtgg acggaggacaa gcgcggcgcc 960
cgccagaatg cgatcaccag ctggcgtgac gtacgcgcg aagaccctta tgtcaacatc 1020
cttcgcgggtt cgttgcac ccctccggcc tccgttgggt gggccggatc gatcacgacg 1080
ctgcccattca cccaggccctt cggccgtccgg gaggacgact tcccgcgtgc catgcgcgc 1140
aacacggca tcgtgctcgc cgaagagggtg aacatcgccc gcgtcaacga cccggccgg 1200
ggctctact acgtcgagtc gtcacccgc acgcgtggcc acgcgcctg gaaggaattc 1260
caggagggtcg agaagctcgg tggcatgtcg aaggccgtca tgaccgagca cgtcaccaaag 1320
gtgctcgacg ctcgtcaatgc cgagcgcgc aagcgcctgg ccaaccgcaa gcagccgatc 1380
accgcggtaa gcgagttccc gatgatcggg gcccgcagca tcgagaccac gccgttcccc 1440
gccgcgtccgg cgcgcaaggc ctcggcgtgg catgcgcact ccgagggttt cgagcagctg 1500
atggatcgct ccaccagctgt ctccgagcgc cccaagggtgt tcctggcctg cttgggcacc 1560
cgtcgcgact tcggtggccg cgagggcttc tcgagccgg tgtggcacat cgccggcatc 1620
gacacccgcg aggtcgaaagg cggcaccacc gcccgcgcg tcgaggcatt caagaagtgc 1680
ggcgccagg tggccgaccc ctgcgtgtcc gccaagggtct acgcgcgcgca gggacttgag 1740
gtcgccaaagg cactcaaggc cgccggcgca aaggccctgtt acctgtcggg cgccttcaag 1800
gagttcggtg atgacgcccgc cgaggccgag aagctgatcg acggacgcctt gtttatggc 1860
atggatgtcg tcgacaccctt gtcctccacc ttgtatattt tggagtcgc gaagtga 1917

<210> 2

<211> 2187
<212> DNA
<213> Propionibacterium freudenreichii ssp. shermanii

<400> 2

gtgagcac	tgc	ccccgtt	tgattcagtt	gac	ctcg	ggca	atg	ccccgg	tc	ctg	ctgat	60
ccgc	cac	gac	gtt	c	gag	gag	act	ggccg	cc	ggag	aggc	120
gcc	gag	caga	ttc	ccg	gtt	gg	aac	gaag	tct	aca	agga	180
ctgg	aca	cac	ctt	ccg	gtt	cc	gtt	caac	cat	ggact	gg	240
ttc	cg	cc	tt	cc	tt	cc	tt	cc	gg	cca	agga	300
ttc	tac	cc	cc	cc	cc	cc	gg	gg	gg	tt	cc	360
acc	cac	cgt	gt	ac	act	cc	g	ac	gt	ac	gt	420
gtg	ggc	cat	tg	ac	at	ct	g	ct	gt	cc	at	480
atg	agg	gt	ta	ca	at	cc	g	at	gt	gg	tt	540
acc	ccg	agg	gg	ca	ac	cc	cc	gg	ac	at	cc	600
ctc	aagg	agt	tt	at	cc	cc	cc	cc	cc	at	cc	660
atc	tct	gaga	tct	cc	cc	cc	cc	cc	cc	cc	cc	720
tcc	gg	atc	cc	cc	cc	cc	cc	cc	cc	cc	cc	780
gcc	gac	gg	tt	ta	cc	cc	cc	cc	cc	cc	cc	840
gc	cc	cg	tc	t	tt	cc	cc	cc	cc	cc	cc	900
ctg	ctg	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	960
aag	tgc	atg	cc	cc	cc	cc	cc	cc	cc	cc	cc	1020
gtc	taca	aca	cc	cc	cc	cc	cc	cc	cc	cc	cc	1080
cag	tgc	tgc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1140
cgc	atc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1200
gac	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1260
tgg	gtc	caca	cc	cc	cc	cc	cc	cc	cc	cc	cc	1320
atccc	ca	aga	cc	cc	cc	cc	cc	cc	cc	cc	cc	1380
cgc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1440
ctc	aa	act	cc	cc	cc	cc	cc	cc	cc	cc	cc	1500
gcc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1560
aa	ccc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1620
gc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1680
gc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1740
gag	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1800
ctg	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1860
tat	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1920
gc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	1980
cat	tc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2040
ctc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2100
gc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2160
aa	act	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2187
aa	act	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	

<210> 3
<211> 1851
<212> DNA
<213> Streptomyces cinnamonensis

<400> 3

atg	ac	gg	tcc	tgc	tgc	cc	cc	cc	cc	cc	cc	60
gag	ca	gt	cc	cc	cc	cc	cc	cc	cc	cc	cc	120
ac	gg	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	180
ta	cac	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	240
gg	tcc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	300
gc	ca	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	360
ct	ct	gg	cc	cc	cc	cc	cc	cc	cc	cc	cc	420
gg	ct	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	480
gc	cc	gg	cc	cc	cc	cc	cc	cc	cc	cc	cc	540
ac	gt	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	600
gc	gg	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	660
ac	ct	gg	cc	cc	cc	cc	cc	cc	cc	cc	cc	720
tc	g	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	780
aa	gg	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	840

gccaagctgc gcgccgcgcg ccgcctctgg gcgcgtgtcg ccgaggtgtc cgggggtgccg 900
 gccgcgggg cgcaaggcgca gcacgcggcg acctcgccgg tgatgtatgc cggccgcgac 960
 cctgtgggtga acatgtcg gaccaccgtg gcgtgcctcg gcccgggtgt gggcggtgcc 1020
 gacgcccgtca cggtcctgca gttcgaccac gagctcgggc tgccggacgc gttcgcgcgc 1080
 cgcacatcccc gcaaacaacgtc gacgatccctc ctcgaggagt cgcacacctgc gctgtcatc 1140
 gacccggcg gccgctcctg gtacgtggag cggctcacccg atgaactcgc ccacgcggcc 1200
 tgggacttct tcaaggagat cgagcgcgcg gacggtcagg tcgcggcgct cgcgtccggc 1260
 ctggtcggcg accggatcg cgcgacctgg gccgagcgc ggaagaagct ggcccgccgc 1320
 cgcgaaccga tcacgggtgt cagcgagttc cgcgtctca cgcagcgcgc ggtcggagcgc 1380
 gagcccgcgcc cccggccggc gcccggcggt ctgccccggg tgcgcgcga cgaggcgta 1440
 gaggagactgc gcccggcgct ggacgcgcac ctggaaagcga cggcgccccg cccgaagggt 1500
 ttcatcgccg cgctggggcc ggccggcccg cacacggcgc ggcgcacgtt cgcgcacaac 1560
 ctcttcatgg cggggccggcgt cgagccgggtg cacgaccggg tgtcggtgga cgcggagacg 1620
 gccgcccagg cggtcgccgc gaggccgc accgtcgctg gcctctgc cagcgacgtg 1680
 ctctacccgcg agcaggccga agcggtcgcc cggggccctga agtccggccgg cgcgtcgccg 1740
 gtgttccctcg cggggccggg ggagttcgcc gacatcgacg agtacgtctt cgcgggctgc 1800
 gacgcggctcg cggtgctac ctccaccctc gaccgcataa gagtggcgta a 1851

<210> 4
 <211> 2202
 <212> DNA
 <213> Streptomyces cinnamonensis

<400> 4

atgcggatcc	ccgaattcga	cgacatcgaa	ctgggcgcgg	gcggcgcccc	gtccggctcg	60
gcggagcagt	ggcgccgcgc	cgtgaaggag	tccgtcgcc	agtccgagtc	cgacccctcg	120
tgggagacgc	ccgagggcat	cgcgtcaag	ccgctgtaca	cggcgccga	cgtcgaggc	180
ctggacttcc	tggagacgt	cccgggtgtc	gcgcgtatc	tgcgcggccc	ctaccgcac	240
atgtacgtga	accagccgt	gacgatccgg	cagtacgcgg	gatttccac	cgcgcaggag	300
tccaaacgcct	tctaccgcgg	caaccctcg	gcaggccaga	aggggctctc	gtgcgccttc	360
gacctggccca	cgcaccgcgg	gtacgacagc	gaccacccgc	gcgtcaccgg	tgacgtcgcc	420
atggcggggc	tggccatcg	ctccatctac	gacatcgctc	agctcttcga	cggcattccg	480
ctggacaaga	tgcacgtgtc	gatgacatgt	aacgggtccg	tgcgtcccg	tctcgcgct	540
tacatcggt	cggccggagg	gcaggccgt	ccgcccggaga	agctggccgg	gaccatttcg	600
aacgacatcc	tcaaggaggt	catggtccgc	aacacctaca	tctatccg	gaagccctcg	660
atgcggatca	tctccgacat	ttcgcgtac	acgtcgcaga	agatgcgcg	ctacaactcc	720
atctcgatct	ccggctatca	catccaggag	gcggggcgca	cggccgacct	ggagctggcg	780
tacacgctcg	ccgacgggt	ggagttacct	cgagccgggc	aggaggccgg	cctggacgt	840
gacgcgttcg	cgcgcgggt	ctcctcttc	tgggcgatcg	gcatgaactt	tttcatggag	900
gtcgccaagc	tccgcgcggc	gcgcctgtc	tgggcgaa	tcgtgaagca	gttcgaccgc	960
aagaacgcca	agtccctctc	cctgcgcacc	cattcgcaga	catcggtctg	gtcgctgacc	1020
gcgcaggacg	tgttcaacaa	cgtcafcgc	acgtgtgtcg	aggcgatggc	ggcgacgcag	1080
ggccacacgc	agtccctgtc	cacgaacg	ctggacgagg	cgctcgccct	gccgaccgac	1140
ttctccgcgc	ggatcgcccc	caacacccag	ctgtcatcc	agcaggagtc	ggggacgacg	1200
cggacgatcg	accctgtggg	cggcgcgc	tacgtcgaga	agctgacgt	cgacccctgc	1260
cgccgcgcct	ggcagcacat	cgaggagg	gaggccggcg	gcggcatgg	gcaggccatc	1320
gacgcggc	tcccgaag	gcccgtcg	gaggccgcgg	cgcgcaccca	ggcgccatc	1380
gactcggggc	gccagccgg	catggcgtc	aacaagtacc	gggtggacac	cgacgagcag	1440
atcgacgtcc	tgaagggtcg	caactcctcg	gtgcgcgc	agcagatcg	gaagctgcgg	1500
cgcctcgcg	aggagcg	cgacgcgc	tgccaggac	cgctcgcc	cctgacgcgc	1560
gcggccgagc	gtggtcccg	ccagggact	gagggcaacc	tgcgtcg	cgcgtcgac	1620
gcggcccccgg	cgaaggccac	ggtcggt	atctccgac	cactggagag	cgtgtacgg	1680
cggcacgcgg	gccagatcc	tacgatctc	ggtgtgtacc	gcaccga	aggccagtc	1740
ccgagcgtgg	agcgcacgc	tgcctgg	gacgcgtt	acgaggccg	ggggcgccagg	1800
ccgcgcaccc	tgcgtcg	gatgggtc	gacggccac	accgcgg	gaaggtgatc	1860
gcgcgcgcct	tgcgcac	gggcttc	gtcgacgt	gcccgtgtt	ccagacgcgc	1920
gcggaggtcg	cgcgc	cgtcgagg	gacgtgcaca	tcgtcgccgt	ctccctcg	1980
gcgcgcaggc	acctcacc	cgtacc	ctgcgcg	agctggccgc	ggagggccgc	2040
gacgcacatc	tgatcg	gggcggc	atcccgcc	aggacgt	ggccctgcac	2100
gaggccggc	ccacggc	gttcc	ggcaccgt	tcccgac	ggcgacac	2160
ctggtaagg	gtctggc	cgaccc	cacgaact	gt		2202

<210> 5

<211> 447
<212> DNA
<213> Propionibacterium freudenreichii ssp. shermanii

<400> 5
atgagtaatg aggatcttt catctgtatc gatcacgtgg catatgcgtg ccccgacgcc 60
gacgaggcctt ccaagtacta ccaggagacc ttccggcttgc atgagctcca ccgcgaggag 120
aacccggagc agggagtcgt cgagatcatg atggcccccgg ctgcgaagct gaccgagcac 180
atgaccagg ttcaggtcat ggccccgttc aacgacgagt cgaccgttgc caagtggctt 240
gccaagcaca atggtcgcgc cggactgcac cacatggcat ggcgtgtcga tgacatcgac 300
gcccgtcagcg ccaccctgcg cgagcgcggc gtgcagctgc tgtatgacga gcccaagctc 360
ggcaccggcg gcaaccgcac caacttcatg catccaaagt cgggcaaggg cgtgctcatc 420
gagctcaccc agtaccgcgaa gaactga 447

<210> 6
<211> 148
<212> PRT
<213> Propionibacterium freudenreichii ssp. shermanii

<400> 6
Met Ser Asn Glu Asp Leu Phe Ile Cys Ile Asp His Val Ala Tyr Ala
1 5 10 15
Cys Pro Asp Ala Asp Glu Ala Ser Lys Tyr Tyr Gln Glu Thr Phe Gly
20 25 30
Trp His Glu Leu His Arg Glu Glu Asn Pro Glu Gln Gly Val Val Glu
35 40 45
Ile Met Met Ala Pro Ala Ala Lys Leu Thr Glu His Met Thr Gln Val
50 55 60
Gln Val Met Ala Pro Leu Asn Asp Glu Ser Thr Val Ala Lys Trp Leu
65 70 75 80
Ala Lys His Asn Gly Arg Ala Gly Leu His His Met Ala Trp Arg Val
85 90 95
Asp Asp Ile Asp Ala Val Ser Ala Thr Leu Arg Glu Arg Gly Val Gln
100 105 110
Leu Leu Tyr Asp Glu Pro Lys Leu Gly Thr Gly Gly Asn Arg Ile Asn
115 120 125
Phe Met His Pro Lys Ser Gly Lys Gly Val Leu Ile Glu Leu Thr Gln
130 135 140
Tyr Pro Lys Asn
145