#### Permit Numbers 86088, HAP 28, PAL 26, and PSD-TX-1160

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

#### AIR CONTAMINANTS DATA

| Emission      | Source             | Air Contaminant | Emis                                   | ssion Rates ' | **    |
|---------------|--------------------|-----------------|----------------------------------------|---------------|-------|
| Point No. (1) | Name (2)           | Name (3)        |                                        | lb/hr         | TPY*  |
|               |                    |                 |                                        |               |       |
| 1-A           | Unit 1 CFB Boiler  |                 | $NO_x$                                 | 330           | 1,012 |
|               | 3,300 MMBtu/hr     |                 | $SO_2$                                 | 377           | 1,239 |
|               | (Normal operations | s, including    | CO                                     | 726           | 1,590 |
|               | start-ups/shutdowr | ns)             | VOC                                    | 16.5          | 72    |
|               |                    |                 | $PM_{10}$                              |               |       |
|               |                    | ORAFT           | (filterable)                           | 36.3          | 159   |
|               |                    | OK.             | $PM_{10}$ (total)                      | 109           | 390   |
|               |                    | •               | PM <sub>2.5</sub> (4)                  | 86.4          | 294   |
|               |                    |                 | $H_2SO_4$                              | 53            | 231   |
|               |                    |                 | $NH_3$                                 | 16.9          | 37    |
|               |                    |                 | Hg                                     | 0.013         | 0.012 |
|               |                    |                 | HCI                                    | 22.2          | 46.7  |
|               |                    |                 | HF                                     | 1.3           | 3.7   |
|               |                    |                 | Pb                                     | 0.026         | 0.037 |
|               |                    |                 | $NO_x$ (start-up)                      | 371           |       |
|               |                    |                 | SO <sub>2</sub> (start-up)             | 3,141         |       |
|               |                    |                 | H <sub>2</sub> SO <sub>4</sub> (start- |               |       |
|               |                    |                 | up)                                    | 238           |       |
|               |                    |                 | HCl (start-up)                         | 665           |       |
|               |                    |                 | HF (start-up)                          | 13.4          |       |
|               |                    |                 |                                        |               |       |
| 1-B           | Unit 2 CFB Boiler  |                 | $NO_x$                                 | 330           | 1,012 |
|               | 3,300 MMBtu/hr     |                 | $SO_2$                                 | 377           | 1,239 |
|               | (Normal operations | s, including    | CO                                     | 726           | 1,590 |
|               | start-ups/shutdowr | าร)             | VOC                                    | 16.5          | 72    |
|               |                    |                 | $PM_{10}$                              |               |       |
|               |                    |                 | (filterable)                           | 36.3          | 159   |
|               |                    |                 |                                        |               |       |

|       |                               | $PM_{10}$ (total)                      | 109   | 390   |
|-------|-------------------------------|----------------------------------------|-------|-------|
|       |                               | PM <sub>2.5</sub> (4)                  | 86.4  | 294   |
|       |                               | H <sub>2</sub> SO <sub>4</sub>         | 53    | 231   |
|       |                               | $NH_3$                                 | 16.9  | 37    |
|       |                               | Hg                                     | 0.013 | 0.012 |
|       |                               | HCI                                    | 22.2  | 46.7  |
|       |                               | HF                                     | 1.3   | 3.7   |
|       |                               | Pb                                     | 0.026 | 0.037 |
|       |                               | $NO_x$ (start-up)                      | 371   |       |
|       |                               | $SO_2$ (start-up)<br>$H_2SO_4$ (start- | 3,141 |       |
|       |                               | up)                                    | 238   |       |
|       |                               | HCl (start-up)                         | 665   |       |
|       |                               | HF (start-up)                          | 13.4  |       |
| 2-A   | Unit 3 CFB Boiler ∡           | NO <sub>x</sub>                        | 330   | 1,012 |
| _ / . | 3,300 MMBtu/hr                | SO <sub>2</sub>                        | 377   | 1,239 |
|       | (Normal operations, including | CO                                     | 726   | 1,590 |
|       | start-ups/shatdowns)          | VOC                                    | 16.5  | 72    |
|       |                               | $PM_{10}$                              |       |       |
|       |                               | (filterable)                           | 36.3  | 159   |
|       |                               | $PM_{10}$ (total)                      | 109   | 390   |
|       |                               | PM <sub>2.5</sub> (4)                  | 86.4  | 294   |
|       |                               | $H_2SO_4$                              | 53    | 231   |
|       |                               | $NH_3$                                 | 16.9  | 37    |
|       |                               | Hg                                     | 0.013 | 0.012 |
|       |                               | HCI                                    | 22.2  | 46.7  |
|       |                               | HF                                     | 1.3   | 3.7   |
|       |                               | Pb                                     | 0.026 | 0.037 |
|       |                               | $NO_x$ (start-up)                      | 371   |       |
|       |                               | $SO_2$ (start-up)<br>$H_2SO_4$ (start- | 3,141 |       |
|       |                               | up)                                    | 238   |       |
|       |                               | HCl (start-up)                         | 665   |       |
|       |                               | HF (start-up)                          | 13.4  |       |

| 2-B        | Unit 4 CFB Boiler                    | $NO_x$                     | 330                 | 1,012     |
|------------|--------------------------------------|----------------------------|---------------------|-----------|
|            | 3,300 MMBtu/hr                       | $SO_2$                     | 377                 | 1,239     |
|            | (Normal operations, including        | CO                         | 726                 | 1,590     |
|            | start-ups/shutdowns)                 | VOC                        | 16.5                | 72        |
|            |                                      | $PM_{10}$                  |                     |           |
|            |                                      | (filterable)               | 36.3                | 159       |
|            |                                      | $PM_{10}$ (total)          | 109                 | 390       |
|            |                                      | PM <sub>2.5</sub> (4)      | 86.4                | 294       |
|            |                                      | $H_2SO_4$                  | 53                  | 231       |
|            |                                      | $NH_3$                     | 16.9                | 37        |
|            |                                      | Hg                         | 0.013               | 0.012     |
|            |                                      | HCI                        | 22.2                | 46.7      |
|            |                                      | HF                         | 1.3                 | 3.7       |
|            |                                      | Pb                         | 0.026               | 0.037     |
|            | ,                                    | $NO_x$ (start-up)          | 371                 |           |
|            | ORAFT                                | SO <sub>2</sub> (start-up) |                     |           |
|            | 2P                                   | H₂SO₄ (start-              |                     |           |
|            | $Q_{\mathbf{x}_{-1}}$                | up)                        | 238                 |           |
|            | ·                                    | HCl (start-up)             | 665                 |           |
|            |                                      | HF (start-up)              | 13.4                |           |
|            |                                      |                            |                     |           |
| DC-FUEL1   | Unit 1 Fuel/Limestone Dust Collector |                            | PM/PM <sub>10</sub> | 0.51 2.25 |
|            |                                      | $PM_{2.5}$                 | 0.13                | 0.56      |
|            |                                      |                            |                     |           |
| DC-FUEL2   | Unit 2 Fuel/Limestone Dust Collector |                            | PM/PM <sub>10</sub> | 0.51 2.25 |
|            |                                      | PM <sub>2.5</sub>          | 0.13                | 0.56      |
|            |                                      | -                          |                     |           |
| DC-FUEL3   | Unit 3 Fuel/Limestone Dust Collector |                            | PM/PM <sub>10</sub> | 0.51 2.25 |
|            |                                      | PM <sub>2.5</sub>          | 0.13                | 0.56      |
|            |                                      | 2.0                        |                     |           |
| DC-FUEL4   | Unit 4 Fuel/Limestone Dust Collector |                            | PM/PM <sub>10</sub> | 0.51 2.25 |
|            |                                      | PM <sub>2.5</sub>          | 0.13                | 0.56      |
|            |                                      | 2.3                        | 5.25                | 0.00      |
|            |                                      |                            |                     |           |
|            |                                      |                            |                     |           |
|            |                                      |                            |                     |           |
| DC-FLYASH1 | Unit 1 Fly Ash Dust Collector        | PM/PM <sub>10</sub>        | 0.19                | 0.81      |
|            |                                      | $PM_{2.5}$                 | 0.05                | 0.20      |

| DC-FLYASH2 | Unit 2 Fly Ash Dust Collector            | PM/PM <sub>10</sub> | 0.19                          | 0.81         |
|------------|------------------------------------------|---------------------|-------------------------------|--------------|
|            |                                          | $PM_{2.5}$          | 0.05                          | 0.20         |
|            |                                          |                     |                               |              |
| DC-FLYASH3 | Unit 3 Fly Ash Dust Collector            | PM/PM <sub>10</sub> | 0.19                          | 0.81         |
|            |                                          | $PM_{2.5}$          | 0.05                          | 0.20         |
|            |                                          |                     |                               | • • •        |
| DC-FLYASH4 | Unit 4 Fly Ash Dust Collector            | PM/PM <sub>10</sub> | 0.19                          | 0.81         |
|            |                                          | $PM_{2.5}$          | 0.05                          | 0.20         |
| DCBEDASH12 | Unit 1 and 2 Bed Ash Dust Collector      | PM/PM <sub>10</sub> | 0.34                          | 1.48         |
| DCBEDA3H12 | Offit 1 and 2 Bed Ash Dust Collector     | PM <sub>2.5</sub>   | 0.08                          | 0.37         |
|            |                                          | F 1V12.5            | 0.00                          | 0.57         |
| DCBEDASH34 | Unit 3 and 4 Bed Ash Dust Collector      | PM/PM <sub>10</sub> | 0.34                          | 1.48         |
|            |                                          | PM <sub>2.5</sub>   | 0.08                          | 0.37         |
|            | *                                        | 2.0                 |                               |              |
| DC-LIME12  | Unit 1 and 2 Lime Silo Dust Collector    | PM/PM <sub>10</sub> | 0.03                          | 0.14         |
|            | R                                        | PM <sub>2.5</sub>   | 0.01                          | 0.04         |
|            | V                                        |                     |                               |              |
| DC-LIME34  | Unit 3 and 4 Lime Silo Dust Collector    | PM/PM <sub>10</sub> | 0.03                          | 0.14         |
|            |                                          | $PM_{2.5}$          | 0.01                          | 0.04         |
|            |                                          |                     |                               |              |
| DCCARBON12 | Unit 1 and 2 Carbon Silo                 |                     | PM/PM <sub>10</sub> 0.03      | 0.14         |
|            | Dust Collector                           | $PM_{2.5}$          | 0.01                          | 0.04         |
|            | Unit 2 and 4 Carbon Sila                 |                     |                               | 014          |
| DCCARBON34 | Unit 3 and 4 Carbon Silo  Dust Collector | $PM_{2.5}$          | PM/PM <sub>10</sub> 0.03 0.01 | 0.14<br>0.04 |
|            | Dust Collector                           | F1V12.5             | 0.01                          | 0.04         |
| DC-RAIL-UL | Railcar Unloading Building               | PM/PM <sub>10</sub> | 7.29                          | 18.21        |
|            | . tanoan o meaamig zamamig               | PM <sub>2.5</sub>   | 1.82                          | 4.55         |
|            |                                          | 2.0                 |                               |              |
|            |                                          |                     |                               |              |
| DC-CRUSHER | Crusher Building                         | PM/PM <sub>10</sub> | 0.43                          | 1.07         |
|            |                                          | PM <sub>2.5</sub>   | 0.11                          | 0.27         |
| SP-1       | Potenka/Coal Storage Bile (E)            | PM                  | 2.04                          | 8.94         |
| OL-I       | Petcoke/Coal Storage Pile (5)            | PM <sub>10</sub>    | 2.04<br>1.02                  | 6.94<br>4.47 |
|            |                                          | PM <sub>2.5</sub>   | 0.15                          | 0.68         |
|            |                                          | I IVIZ.5            | 0.13                          | 0.00         |

| SP-2       | Limestone Storage Pile (5)                   | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 0.42<br>0.21<br>0.03 |      | 1.83<br>0.91<br>0.14 |
|------------|----------------------------------------------|---------------------------------------------|----------------------|------|----------------------|
| LF-1       | Ash Disposal Landfill (5)                    | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 0.37<br>0.18<br>0.03 |      | 1.62<br>0.81<br>0.12 |
| FASHLOAD1  | Fly Ash No. 1 Truck Loading<br>Fugitives (5) | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 1.53<br>0.38<br>0.06 |      | 2.29<br>0.56<br>0.09 |
| FASHLOAD2  | Fly Ash No. 2 Truck Loading Fugitives (5)    | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 1.53<br>0.38<br>0.06 |      | 2.29<br>0.56<br>0.09 |
| FASHLOAD3  | Fly Ash No. 3 Truck Loading Fugitives (5)    | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 1.53<br>0.38<br>0.06 |      | 2.29<br>0.56<br>0.09 |
| FASHLOAD4  | Fly Ash No. 4 Truck Loading<br>Fugitives (5) | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 1.53<br>0.38<br>0.06 |      | 2.29<br>0.56<br>0.09 |
| BASHLOAD12 | Bed Ash No. 1 Truck Loading<br>Fugitives (5) | PM <sub>10</sub><br>PM <sub>2.5</sub>       | PM : 0.38 0.06       | 1.53 | 1.22<br>0.30<br>0.05 |
| BASHLOAD34 | Bed Ash No. 2 Truck Loading Fugitives (5)    | PM <sub>10</sub><br>PM <sub>2.5</sub>       | PM 0.38 0.06         | 1.53 | 1.22<br>0.30<br>0.05 |
| BARGE1     | Barge Unloading to Hopper (5)                | PM<br>PM <sub>10</sub>                      | 0.64<br>0.30         |      | 1.07<br>0.50         |

# Permit Numbers 86088, HAP28, PAL 26, and PSD-TX-1160 Page 6 $\,$

|         |                               | PM <sub>2.5</sub> | 0.05 | 0.08 |
|---------|-------------------------------|-------------------|------|------|
| BARGE2  | Barge Hopper to CO-1 (5)      | PM                | 0.64 | 1.07 |
|         | 0 11 (,                       | $PM_{10}$         | 0.30 | 0.50 |
|         |                               | $PM_{2.5}$        | 0.05 | 0.08 |
| CONV1   | Conveyor No. 1 (5)            | PM                | 0.19 | 0.32 |
|         | , ,                           | $PM_{10}$         | 0.09 | 0.15 |
|         |                               | PM <sub>2.5</sub> | 0.01 | 0.02 |
| TRSFR1  | CO-1 to CO-2 (5)              | PM                | 0.10 | 0.16 |
|         |                               | $PM_{10}$         | 0.05 | 0.08 |
|         |                               | PM <sub>2.5</sub> | 0.01 | 0.01 |
| CONV2   | Conveyor No. 2 (5)            | PM                | 0.38 | 0.64 |
|         |                               | $PM_{10}$         | 0.18 | 0.30 |
|         |                               | PM <sub>2.5</sub> | 0.03 | 0.05 |
| RAILFUG | Rail Unloading Fugitives (5)  | PM                | 0.10 | 0.16 |
|         | <b>V</b>                      | $PM_{10}$         | 0.05 | 0.08 |
|         |                               | PM <sub>2.5</sub> | 0.01 | 0.01 |
|         |                               |                   |      |      |
| TRUCK1  | Truck Unloading to Hopper (5) | PM                | 0.64 | 1.07 |
|         |                               | $PM_{10}$         | 0.30 | 0.50 |
|         |                               | PM <sub>2.5</sub> | 0.05 | 0.08 |
| TRUCK2  | Truck Hopper to CO-3 (5)      | PM                | 0.64 | 1.07 |
|         |                               | $PM_{10}$         | 0.30 | 0.50 |
|         |                               | PM <sub>2.5</sub> | 0.05 | 0.08 |
| CONV3   | Conveyor No. 3 (5)            | PM                | 0.10 | 0.16 |
|         |                               | $PM_{10}$         | 0.05 | 0.08 |
|         |                               | PM <sub>2.5</sub> | 0.01 | 0.01 |
| TRSFR2  | CO-3 to CO-4 or CO-5 (5)      | PM                | 0.10 | 0.16 |
|         |                               | $PM_{10}$         | 0.05 | 0.08 |

# Permit Numbers 86088, HAP28, PAL 26, and PSD-TX-1160 Page 7

|        |                                    | PM <sub>2.5</sub>                           | 0.01                 | 0.01                 |
|--------|------------------------------------|---------------------------------------------|----------------------|----------------------|
| TRSFR3 | CO-2 to CO-4 or CO-5 (5)           | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 0.10<br>0.05<br>0.01 | 0.16<br>0.08<br>0.01 |
| CONV4  | Conveyor No. 4 (5)                 | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 3.20<br>1.51<br>0.23 | 5.33<br>2.52<br>0.38 |
| CONV5  | Conveyor No. 5 (5)                 | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 3.20<br>1.51<br>0.23 | 5.33<br>2.52<br>0.38 |
| TRSFR4 | CO-4 to Mobile Stacker (5)         | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 0.10<br>0.05<br>0.01 | 0.16<br>0.08<br>0.01 |
| TRSFR5 | CO-5 to Mobile Stacker (5)         | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 0.10<br>0.05<br>0.01 | 0.16<br>0.08<br>0.01 |
| TRSFR6 | Mobile Reclaim to CO-6 or CO-7 (5) | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 0.08<br>0.04<br>0.01 | 0.16<br>0.08<br>0.01 |
| CONV6  | Conveyors No. 6 and No. 7 (5)      | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 3.07<br>1.45<br>0.22 | 6.40<br>3.03<br>0.46 |
| TRSFR7 | CO-6 or CO-7 to CO-8 or CO-9 (5)   | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 0.08<br>0.04<br>0.01 | 0.16<br>0.08<br>0.01 |
| CONV7  | Conveyors No. 8 and No. 9 (5)      | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub> | 0.08<br>0.04<br>0.01 | 0.16<br>0.08<br>0.03 |

| CONV8       | Conveyors No. 10 and No. 11 (5) | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub>      | 0.15<br>0.07<br>0.03                                                   | 0.32<br>0.15<br>0.06                                  |
|-------------|---------------------------------|--------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|
| COOLTWR1    | Cooling Tower No. 1             | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub>      | 1.21<br>0.60<br>0.00                                                   | 5.29<br>2.65<br>0.02                                  |
| COOLTWR2    | Cooling Tower No. 2             | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub>      | 1.21<br>0.60<br>0.00                                                   | 5.29<br>2.65<br>0.02                                  |
| COOLTWR3    | Cooling Tower No. 3             | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub>      | 1.21<br>0.60<br>0.00                                                   | 5.29<br>2.65<br>0.02                                  |
| COOLTWR4    | Cooling Tower No. 4             | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub>      | 1.21<br>0.60<br>0.00                                                   | 5.29<br>2.65<br>0.02                                  |
| EMGEN1 Dies | sel-Fired Emergency Generator 1 | $CO$ $PM_{10}$ $PM_{2.5}$ $VOC$ $SO_2$ $H_2SO_4$ | NO <sub>x</sub> 42.50<br>23.30<br>1.07<br>1.07<br>2.55<br>1.62<br>0.13 | 10.60<br>5.80<br>0.27<br>0.27<br>0.64<br>0.41<br>0.03 |
| EMGEN2 Dies | sel-Fired Emergency Generator 2 | $CO$ $PM_{10}$ $PM_{2.5}$ $VOC$ $SO_2$ $H_2SO_4$ | NO <sub>x</sub> 42.50<br>23.30<br>1.07<br>1.07<br>2.55<br>1.62<br>0.13 | 10.60<br>5.80<br>0.27<br>0.27<br>0.64<br>0.41<br>0.03 |

# Permit Numbers 86088, HAP28, PAL 26, and PSD-TX-1160 Page 9 $\,$

| FIREWTRPMP | Main Diesel-Fired Fire Water Pump                    | $NO_x$                         | 1.65 | 0.41  |
|------------|------------------------------------------------------|--------------------------------|------|-------|
|            |                                                      | CO                             | 1.43 | 0.36  |
|            |                                                      | $PM_{10}$                      | 80.0 | 0.02  |
|            |                                                      | PM <sub>2.5</sub>              | 80.0 | 0.02  |
|            |                                                      | VOC                            | 0.62 | 0.16  |
|            |                                                      | SO <sub>2</sub>                | 0.10 | 0.03  |
|            |                                                      | H <sub>2</sub> SO <sub>4</sub> | 0.10 | 0.00  |
|            |                                                      | 112304                         | 0.01 | 0.00  |
| T-WTRPMP   | Diesel Tank for Main Diesel-Fired<br>Fire Water Pump | VOC                            | 0.17 | 0.001 |
| T-EMGEN    | Diesel Tank for Emergency<br>Generators              | VOC                            | 0.17 | 0.002 |
| TNK-FO1    | No. 2 Fuel Oil Storage Tank No. 1 for CFB Startup    | VOC                            | 0.32 | 0.04  |
| TNK-FO2    | No. 2 Fuel Oil Storage Tank No. 2                    | VOC                            | 0.32 | 0.04  |
| TIVIN-1 OZ | for CFB Startup                                      | VOC                            | 0.52 | 0.04  |
| T-DSLVEH   | Diesel Storage Tank for Plant                        | VOC                            | 0.17 | 0.004 |
|            | Vehicles                                             |                                |      |       |
| T-GASVEH   | Gasoline Storage Tank for Plant<br>Vehicles          | VOC                            | 7.38 | 1.51  |
| TNK-ACID   | Acid Storage Tank                                    | H <sub>2</sub> SO <sub>4</sub> | 0.21 | 0.004 |
|            |                                                      |                                |      |       |
| FUG-NH3A   | Fugitives: Ammonia (5)                               | NH <sub>3</sub>                | 0.10 | 0.46  |
| FUG-NH3B   | Fugitives: Ammonia (5)                               | NH <sub>3</sub>                | 0.10 | 0.46  |
| FUG-FO     | Fugitives: Fuel Oil (5)                              | VOC                            | 0.15 | 0.67  |

(1) Emission point identification - either specific equipment designation or emission point number from a plot plan.

(2) Specific point source names. For fugitive sources, use an area name or fugitive source name.

(3) NO<sub>x</sub> - total oxides of nitrogen

SO<sub>2</sub> - sulfur dioxide CO - carbon monoxide

VOC - volatile organic compounds as defined in Title 30 TAC § 101.1

PM - particulate matter, suspended in the atmosphere, including PM<sub>10</sub> and

 $PM_{2.5}$ .

PM<sub>10</sub> - particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no PM greater than 10 microns

is emitted.

PM<sub>2.5</sub> - particulate matter equal to or less than 2.5 microns in diameter.

H<sub>2</sub>SO<sub>4</sub> - sulfuric acid

NH<sub>3</sub> - ammonia

Hg – mercury

HCI - hydrogen chlorideHF - hydrogen fluoride

Pb - lead

(4) Compliance with PM<sub>2.5</sub> emission limits to be determined upon promulgation of EPA test methods.

(5) Fugitives emission rate is an estimate and compliance is demonstrated by meeting the applicable Special Condition requirements and permit application representations.

\* Annual emission limits for CFB boilers include emissions from startup and shutdown. For combustion sources and storage tanks, compliance is based on a rolling 12-month period. For material handling sources, compliance with annual limits is based on applicable special conditions and permit application representations.

\*\* Emission rates are based on and the facilities are limited by the following maximum operating schedule:

|  | Hrs/day 24 | Days/week | 7 | Weeks/year | 52 | or Hrs/ | year 8,70 | 60 |
|--|------------|-----------|---|------------|----|---------|-----------|----|
|--|------------|-----------|---|------------|----|---------|-----------|----|

Permit Numbers 86088, HAP28, PAL 26, and PSD-TX-1160 Page 11

