Tarea 01

Matemáticas para las Ciencias Aplicadas II Facultad de Ciencias, UNAM

> Flores Morán Julieta Melina Zarco Romero José Antonio

> > 14 de febrero de 2024

1.

¿Cuáles son las proyecciones del **punto** A(2,3,5) en los planos **xy yz** y **xz**. Para calcular, trace una caja rectangular con vértices en el origen y el punto A como vértices opuestos y con sus caras paralelas a los planos coordenados. Etiquete todos los vertices de la caja. Asimismo calcule la longitud de la diagonal de la caja.

2.

Determine una ecuación de la esfera que pasa por el origen y cuyo centro es el punto A(1,2,3). Describa su intersección con cada uno de los planos coordenados.

3.

La siguiente ecuación corresponde a una esfera. Determine las coordenadas del centro y el radio.

$$x^2 + y^2 + z^2 + 8x - 6y + 2z + 17 = 0$$

Se puede reescribir la ecuación dada en la forma de la ecuación de una esfera si se completan los cuadrados:

$$x^{2} + y^{2} + z^{2} + 8x - 6y + 2z + 17 = 0$$

$$x^{2} + 8x + y^{2} - 6y + z^{2} + 2z + 17 = 0$$

$$(x^{2} + 8x) + (y^{2} - 6y) + (z^{2} + 2z) = -17$$

$$(x^{2} + 8x + 16) + (y^{2} - 6y + 9) + (z^{2} + 2z + 1) = -17 + 16 + 9 + 1$$

$$(x + 4)^{2} + (y - 3)^{2} + (z + 1)^{2} = 9$$

... Se ve que es la ecuación de una esfera con centro (-4,3,-1) y radio $\sqrt{9}=3$.

4.

Escriba desigualdades para describir las siguientes regiones.

- La región entre el plano xz y el plano vertical y=4.
- La región que consta de todos los puntos entre (pero no sobre) las esferas de radio r y R centradas en el origen, donde r < R.

5.

Sean $\vec{a}, \vec{b}, \vec{c}$ vectores en \mathbb{R}^n y sean c, d escalares. Escriba las 8 propiedades de los vectores y proporcione una breve explicación de cada una de ellas.

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

2.
$$\vec{a} + \vec{0} = \vec{a}$$

3.
$$c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$$

4.
$$(cd)\vec{a} = c(d\vec{a})$$

$$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$

$$\vec{a} + (\vec{-a}) = \vec{0}$$

$$(c+d)\vec{a} = c\vec{a} + d\vec{a}$$

$$1\vec{a} = \vec{a}$$

6.

Obtenga un vector $\vec{a},$ como el segmento de recta dirigida de \vec{AB} , donde A y B son los puntos:

- A(-5,-1), B(-3,3).
- \bullet A(0,6,1), B(3,4,4)

Haga un esbozo (en cada caso) del vector \vec{AB} y la representación **equivalente** comenzando en el origen.

7.

Determine:

- 1. $\vec{a} + \vec{b}$
- $2. \ 4\vec{a} + 2\vec{b}$
- 3. $|\vec{a} \vec{b}|$
- 4. $|\vec{a}|$

dónde
$$\vec{a} = 8\hat{i} + \hat{j} - 4\hat{k}; \vec{b} = 5\hat{i} - 2\hat{j} + \hat{k}$$

8.

Sea \vec{a} un vector tal que se ubica en el primer cuadrante, hace un ángulo de $\frac{\pi}{6}$ con el eje x positivo y $|\vec{a}| = 2$. Determine \vec{a} en términos de sus componentes.

9.

Un vendedor ambulante vende a hamburguesas, b hot dogs y c refrescos en un día dado. Cobra 4 pesos por hamburguesas, 2.5 pesos por hot dog y 1 peso pro refresco. Sea $\vec{a}=(a,b,c)$ y $\vec{P}=(4,2.5,1)$. ¿Qué representa el producto punto $\vec{a}\cdot\vec{P}$.

10.

Encuentre las proyecciones escalar y vectorial de \vec{b} sobre \vec{a}

- $\vec{a} = (5, 12), \vec{b} = (4, 6)$
- $\vec{a} = (1,4), \vec{b} = (2,3)$

11.

Dado los vectores $\vec{a}=\hat{i}+2\hat{j}-2\hat{k}, \vec{b}=4\hat{i}-3\hat{k}$ Calcule el ángulo entre los vectores:

- \bullet En grados
- En radianes

12.

Dados los vectores

$$\vec{a} = \hat{j} + 7\hat{k}$$

$$\vec{b} = 2\hat{i} - \hat{j} + 4\hat{k}$$

obtenga:

- $\vec{c} = \vec{a} \times \vec{b}$
- \blacksquare Compruebe que \vec{c} es ortogonal a \vec{a} y \vec{b} simultáneamente.

13.

Proporcione:

- 1. La ecuación vectorial
- 2. Las ecuaciones paramétricas
- 3. Las ecuaciones simétricas para las siguientes rectas:
 - La recta que pasa por P(6,5,2) y que esperalela al vector $\vec{u} = (1,3,\frac{-2}{3})$
 - \blacksquare La recta que pasa por A(0,0,0) y B(4,3,-1)

14.

Utilice el **triple punto escalar** (producto mixto) para determinar si los puntos A(1,3,2), B(3,-1,6), C(5,2,0), D(3,6,-4) son coplanares.

15.

Proporcione la ecuación del plano que pasa por A(5,3,5)y cuyo vector normal es $\vec{n}=2\hat{i}+\hat{j}-\hat{k}$. Adjunte una imágen de geogebra en la situación.

16.

Proporcione la ecuación del plano que contiene a los puntos A(0,0,0), B(2,-4,6), C(5,1,3). Adjunte una imágen de geogebra en la situación.

17.

Proporcione las coordenadas del punto $A(a_x,a_y,a_x)$ del punto donde se intersecan:

el plano

$$x + 2y - z + 1 = 0$$

y la recta dada por las ecuaciones paramétricas

$$x = 1 + 2t,$$

$$y = 4t,$$

$$z = 2 - 3t$$

Adjunte una imágen de geogebrea de la situación.