

Figure 6.9 A recurrent network: a network with a loop

- Output at each time step (t)
 - Becomes input of next time step (t+1)
- Model Input @ time (t)
 - Integration of two parts
 - Real input
 - Recurrent input = output of previous time (recurrent) (t-1)

Figure 6.9 A recurrent network: a network with a loop

- Recurrent connection
 - Allow to pass past information to current process
 - As model memory
 - Help to capture long term dependency in a sequence of data

- Variation in RNN Architecture
 - Standard RNN
 - LSTM
 - Long Short Term Memory
 - GRU
 - Gated Recurrent Unit

$$h_{\theta}(K(x_t, h_{t-1}))$$

$$h_t = \sigma_h(i_t) = \sigma_h(U_h x_t + V_h h_{t-1} + b_h)$$

$$y_t = \sigma_y(a_t) = \sigma_y(W_y h_t + b_h)$$
$$h_\theta(K(h_t))$$

- Standard RNN cell
 - Consists of 2 Neurons
 - With recurrent connection
 - 1st Neuron
 - Process input (x(t)) and past hidden state (h(t-1)
 - With tanh activation

$$h_{\theta}(K(x_t, h_{t-1}))$$

- 2nd Neuron
 - Process current hidden state to form output (o(t))

$$h_{\theta}(K(h_t))$$

$$h_{\theta}(K(x_t, h_{t-1}))$$

$$h_t = \sigma_h(i_t) = \sigma_h(U_h x_t + V_h h_{t-1} + b_h)$$

$$y_t = \sigma_y(a_t) = \sigma_y(W_y h_t + b_h)$$
$$h_\theta(K(h_t))$$

Standard RNN cell

- Limitation
 - Vanishing Gradient
 - Like most neural networks, recurrent nets are old.
 By the early 1990s,
 - the vanishing gradient problem emerged as a major obstacle to recurrent net performance.
 - the gradient expresses the change in all weights
 - with regard to the change in error.
 - If we can't know the gradient,
 - we can't adjust the weights in a direction that will decrease error, and
 - network ceases to learn.

- LSTM (mid-90s)
 - a variation of recurrent net
 - proposed by the German researchers Sepp Hochreiter and Juergen Schmidhuber
 - as a solution to the vanishing gradient problem.
 - allow recurrent nets to continue to learn over many time steps (over 1000)
 - The central plus sign is essentially the secret of LSTMs.
 - Simple, this basic change helps to preserve a constant error when it must be backpropagated at depth.

- LSTM (mid-90s)
 - a variation of recurrent net
 - proposed by the German researchers Sepp Hochreiter and Juergen Schmidhuber
 - as a solution to the vanishing gradient problem.
 - allow recurrent nets to continue to learn over many time steps (over 1000)
 - The central plus sign is essentially the secret of LSTMs.
 - Simple, this basic change helps to preserve a constant error when it must be backpropagated at depth.

Consists of 3 states

Forget State (with Forget Gate)

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

- Identify how much past memory (C(t-1))
 - should be forget and passed to cell
 - can be viewed as
 - Filtering weights of past memory

- Memory Update State
- $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$
- Filtered past memory using forget weights

$$f_t * C_{t-1}$$

 Integrate the new significant input information to the memory

$$\stackrel{C_t}{\longrightarrow} = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$i_t * \tilde{C}_t$$

 i_t : Input Gate Weight

 \widetilde{C}_t : significant input information

- Estimate significant input information though
 - Input Gate

$$i_t \times \widetilde{C}_t$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

 i_t : Input Gate Weight

 \widetilde{C}_t : significant input information

- Output State
 - Filtering weights from past state and current input

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

 Integrate the new cell state output estimated from current updated memory

$$\widetilde{h_t} = \tanh(C_t)$$

Update Output cell state (filtered estimated cell state)

$$h_t = O_t * \widetilde{h_t} = O_t * \tanh(C_t)$$

LSTM variation

LSTM h_t f_t i_t C_t t_{-1} f_t i_t C_t x_t t_{-1} x_t

introduced by Gers & Schmidhuber (2000)

$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

Cho, et al. (2014)

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

LSTM variation

LSTM h_{t} f_{t} i_{t} \tilde{C}_{t} t_{t-1} t_{t-1} t_{t-1} t_{t} t_{t}

Yao, et al. (2015)

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

LSTM Numerical Example

Forget State (with Forget Gate)

$$f_t = \sigma\left(W_f \cdot \left[x_t, h_{t-1}\right] + b_f\right)$$

$$x_t = [1, 2, 3], h_{t-1} = [4, 5, 6],$$

concatenate $[x_t, h_{t-1}]$

$$[x_t, h_{t-1}] = [1, 2, 3, 4, 5, 6]$$

$$W_f.\left[h_{t-1},x_t
ight]=egin{bmatrix}1&2&3&4&5&6\5&6&7&8&9&10\3&4&5&6&7&8\end{bmatrix}.egin{bmatrix}1\2\3\4\5\6\end{bmatrix}=egin{bmatrix}91&175&133\end{bmatrix}$$

$$z = K(x_t, h_{t-1}) = W_f.[h_{t-1}, x_t] + b_f = \begin{bmatrix} 91 & 175 & 133 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 92 & 177 & 136 \end{bmatrix}$$

$$f_t = \sigma(z) = \frac{1}{1 + \exp(-z)} = \left[\frac{1}{1 + \exp(-92)}, \frac{1}{1 + \exp(-177)}, \frac{1}{1 + \exp(-136)}\right] = [1, 1, 1]$$

$$i_t = \sigma\left(W_i \cdot [x_t, h_{t-1}] + b_i\right)$$

$$z = K(x_t, h_{t-1}) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 \end{bmatrix}.$$

- Estimate significant input information though
 - Input Gate

concatenate $[x_t, h_{t-1}]$

$$[x_t, h_{t-1}] = [1, 2, 3, 4, 5, 6]$$
)

$$W_i = egin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \ 2 & 2 & 2 & 2 & 2 & 2 \ 3 & 3 & 3 & 3 & 3 \end{bmatrix} \hspace{0.5cm} b_i = egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}$$

$$z = K(x_{t}, h_{t-1}) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 22 \\ 42 \\ 62 \end{bmatrix} \quad i_{t} = \sigma(z) = \frac{1}{1 + \exp(-z)} = \left[\frac{1}{1 + \exp(-2z)}, \frac{1}{1 + \exp(-4z)}, \frac{1}{1 + \exp(-6z)} \right] = [1, 1, 1]$$

$$W_c = \begin{bmatrix} 4 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5 \\ 6 & 6 & 6 & 6 & 6 \end{bmatrix} b_c = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

- Estimate significant input information though
 - Input Gate

concatenate
$$[x_t, h_{t-1}]$$

$$[x_t, h_{t-1}] = [1, 2, 3, 4, 5, 6]$$

$$\tilde{C}_t = \tanh(W_C \cdot [x_t, h_{t-1}] + b_C)$$

$$z = K(x_{t}, h_{t-1}) = W_{c}[x_{t}, h_{t-1}] + b_{c}$$

$$= \begin{bmatrix} 4 & 4 & 4 & -4 & -4 & -4 \\ 5 & 5 & 5 & 5 & 5 \\ 6 & 6 & 6 & -6 & -6 & -6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} -35 \\ 107 \\ -51 \end{bmatrix}$$

$$\tilde{C}_{t} = tanh(z) = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

Memory Update State

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$f_t = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad C_{t-1} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} \qquad i_t = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \tilde{C}_t = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

f(t)	C(t-1)	i(t)	C~(t)	C(t)
1	3	1	-1	2
1	-2	1	1	-1
1	1	1	-1	0

$$C_t = \begin{bmatrix} 2 \\ -1 \\ -0 \end{bmatrix}$$

Output State

$$o_t = \sigma\left(W_o\left[x_t, h_{t-1}\right] + b_o\right)$$

$$z = K(x_t, h_{t-1}) = W_o[x_t, h_{t-1}] + b_o$$

$$= \begin{bmatrix} 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix} + \begin{bmatrix} -20 \\ -40 \\ -100 \end{bmatrix} = \begin{bmatrix} 22 \\ 23 \\ -16 \end{bmatrix}$$

$$o_t = \sigma(z) = \frac{1}{1 + \exp(-z)} = \left[\frac{1}{1 + \exp(-22)}, \frac{1}{1 + \exp(-23)}, \frac{1}{1 + \exp(-23)}, \frac{1}{1 + \exp(16)} \right]$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1.12535E-07 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Output State

$$\widetilde{h_t} = \tanh(C_t)$$

$$= \begin{bmatrix} 0.96402758 \\ -0.76159416 \\ 0 \end{bmatrix} \qquad C(t) = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$h_t = O_t * \widetilde{h_t} = O_t * \tanh(C_t)$$

$$= \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} * \begin{bmatrix} 0.96402758 \\ -0.76159416 \end{bmatrix} = \begin{bmatrix} 0.96402758 \\ -0.76159416 \end{bmatrix}$$

Stacked LSTM

- Each LSTM Layer
 - #LSTM node = timesteps = 8
 - Input dimension = vector_size or n_features = 16
 - Output dimension = กำหนดในโครงสร้าง
 - Ex. LSTM(50, activation='tanh', input_shape=(8,16))
 - Output dimension = (8, 50) -> 8 nodes / dim = 50/node

LSTM: text classification example

```
from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np
data dim = 16
timesteps = 8
num classes = 10
# expected input data shape: (batch size, timesteps, data dim)
model = Sequential()
model.add(LSTM(32, return sequences=True,
               input shape=(timesteps, data dim))) # returns a sequence of vectors of dimension 32
model.add(LSTM(32, return sequences=True)) # returns a sequence of vectors of dimension 32
model.add(LSTM(32)) # return a single vector of dimension 32
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])
# Generate dummy training data
x train = np.random.random((1000, timesteps, data dim))
y train = np.random.random((1000, num classes))
# Generate dummy validation data
x val = np.random.random((100, timesteps, data dim))
y val = np.random.random((100, num classes))
model.fit(x train, y train,
          batch size=64, epochs=5,
          validation data=(x val, y val))
```

