Homework 5

Problem 1. 1. Determine the coefficient of x^{50} in $(x^7 + x^8 + x^9 + x^{10} + \cdots)^6$

- 2. Determine the coefficient of x^3 in $(2+x)^{\frac{3}{2}}/(1-x)$
- 3. Determine the coefficient of x^4 in $(2 + 3x)^5 \sqrt{1 x}$

Solution.

1. $= x^{42}(1+x+x^2+x^3+\cdots)^6$ $= x^{42} \cdot \frac{1}{(1-x)^6}$

The coefficient of x^{50} is $\binom{8+6-1}{6-1} = \binom{13}{5}$.

2. $= (x+2)^{3/2}(1+x+x^2+\cdots)$ $= \sum_{k=0}^{\infty} {3/2 \choose k} x^k (2)^{3/2-k} (1+x+x^2+\cdots)$

The coefficient of x^3 is $\sum_{k=0}^{3} {3/2 \choose k} (2)^{3/2-k}$. Then use the Newton formula

3. $= \sum_{k=0}^{5} {5 \choose k} 2^k (3x)^{5-k} \sum_{j=0}^{\infty} {1/2 \choose j} (-x)^j$

The coefficient of x^4 is $\sum_{k=1}^{5} {5 \choose k} 2^k (3)^{5-k} {1/2 \choose k-1} (-1)^{k-1}$

Problem 2. Find generating functions for the following sequences (express them in a closed form, without infinite series!):

- 1. $0, 0, 0, 0, -6, 6, -6, 6, -6, \cdots$
- 2. 1, 0, 1, 0, 1, 0, ...
- *3.* 1, 2, 1, 4, 1, 8 · · ·

Solution.

Sequence	Generating Function
$(1, 1, 1, 1, \ldots)$	<u>1</u> 1-x
$(1, -1, 1, -1, \ldots)$	$\frac{1}{1+x}$
$(-6, 6, -6, 6, \ldots)$	$\frac{-6}{1+x}$
$(0,0,0,0,-6,6,-6,6,\ldots)$	$\frac{-6x^4}{1+x}$
$(1,0,1,0,\ldots)$	$\frac{\frac{1}{1-x} + \frac{1}{1+x}}{2} = \frac{1}{1-x^2}$
$(0, 1, 0, 1, \ldots)$	$\frac{\frac{1}{1-x} - \frac{1}{1+x}}{2} = \frac{x}{1-x^2}$
$(1, 2, 4, 8, \ldots)$	$\frac{1}{1-2x}$
$(2,4,8,\ldots)$	$\frac{\frac{1}{1-2x}-1}{x} = \frac{2}{1-2x}$
$(1,0,2,0,4,0,8,\ldots)$	$\frac{1}{1-2x^2}$
$(1, 1, 2, 1, 4, 1, 8, \ldots)$	$\frac{1}{1-2x^2} + \frac{x}{1-x^2}$
(1, 2, 1, 4, 1, 8,)	$\frac{\frac{1}{1-2x^2} + \frac{x}{1-x^2} - 1}{x} = -\frac{2x^3 + 2x^2 - 2x - 1}{(1-2x^2)(1-x^2)}$

Problem 3. Let a_n be the number of ordered triples (i, j, k) of integer numbers such that $i \ge 0$, $j \ge 1$, $k \ge 1$, and i + 3j + 3k = n. Find the generating function of the sequence $(a_0, a_1, a_2, ...)$ and calculate a formula for a_n .

Solution.

$$(1+x+x^2+x^3+\cdots)(x^3+x^6+x^9+\cdots)(x^3+x^6+x^9+\cdots)$$

$$=\frac{1}{1-x}\frac{x^3}{1-x^3}\frac{x^3}{1-x^3}$$

$$=\frac{x^6(1+x+x^2)}{(1-x^3)^3}=x^6(1+x+x^2)(1-x^3)^{-3}.$$

Then use the generalized binomial theorem.

Problem 4. If a(x) is the generating function of a sequence $(a_0, a_1, a_2, ...)$, please find the generating function of the sequence of partial sums $(a_0, a_0 + a_1, a_0 + a_1 + a_2, ...)$

 a_2,\ldots).

Solution.

ution.

$$a_0 + (a_0 + a_1)x + (a_0 + a_1 + a_2)x^2 + (a_0 + a_1 + a_2 + a_3)x^3 \cdots$$

$$= a_0(1 + x + x^2 + \cdots) + a_1x(1 + x + x^2 + \cdots) + a_2x^2(1 + x + x^2 + \cdots)$$

$$= \frac{a_0}{1-x} + \frac{a_1x}{1-x} + \frac{a_2x^2}{1-x} + \cdots$$

$$= \frac{1}{1-x}a(x)$$

3