13 | Weak Equivalences

13.1 Definition. Let $0 \le n \le \infty$. A map $f: X \to Y$ is an n-equivalence if the induced homomorphism $f_*: \pi_i(X, x_0) \to \pi_i(Y, f(x_0))$ is an isomorphism for $0 \le i < n$ and it is an epimorphism for i = n for all $x_0 \in X$. A map f is a weak (homotopy) equivalence if it is an ∞ -equivalence.

Recall that for a map $f: X \to Y$ the mapping cylinder of f is the space

$$M_f = (X \times [0,1] \sqcup Y)/\sim$$

where $(x, 0) \sim f(x)$ for all $x \in X$. We will consider X as a subspace of M_f by identifying it with $X \times \{1\}$.

- **13.2 Proposition.** Given a map $f: X \to Y$ the following conditions are equivalent:
 - 1) f is an n-equivalence.
 - 2) For $k \le n$, given any commutative diagram

there exists a map $\overline{\psi} \colon D^k \to Y$ such that $\overline{\psi}|_{S^{k-1}} = \varphi$ and $f\overline{\psi} \simeq \psi$ (rel S^{k-1}).

2) For $k \le n$, given any diagram

and a homotopy $\Phi: f\varphi \simeq \psi|_{S^{k-1}}$ there exists a map $\overline{\psi}: D^k \to Y$ and a homotopy $\overline{\Phi}: f\overline{\psi} \simeq \psi$ such that $\overline{\psi}|_{S^{n-1}} = \varphi$ and $\overline{\Phi}|_{S^{k-1} \times [0,1]} = \Phi$.

3) The pair (M_f, X) is n-connected.

Proof. Exercise. □

13.3 Proposition. 1) If $f, g: X \to Y$ are maps such that $f \simeq g$ and f is an n-equivalence then so is g.

2) If $f: X \to Y$, $g: Y \to Z$, and any two of the maps f, g, gf are weak equivalences, then so is the third map.

3) Every homotopy equivalence is a weak equivalence.

Proof. Exercise.

One of the main goals of this chapter will be the proof of the following fact:

13.4 Theorem. If X, Y are CW complexes then any weak equivalence $f: X \to Y$ is a homotopy equivalence.

13.5 Note. Theorem 13.4 does not hold in general for spaces that are not CW complexes. For example, let W be the Warsaw circle (shown below). Since $\pi_i(W) = 0$ for all i, the constant map $W \to *$ is a weak equivalence. However, it is not a homotopy equivalence.

The proof Theorem 13.4 will use the following fact:

13.6 Proposition. Assume that we have a diagram

where (X,A) is a relative CW complex such that $\dim(X \setminus A) \leq n$ for some $n \leq \infty$, and $f: Y \to Z$ is an n-equivalence. Assume also that $\Phi: A \times [0,1] \to Z$ is a homotopy such that $\Phi: h|_A \simeq gf$. Then there exists a map $\bar{h}: X \to Y$ and a homotopy $\bar{\Phi}: X \times [0,1] \to Z$ such that $\bar{h}|_A = g$, $\bar{\Phi}: h \simeq f\bar{h}$ and $\bar{\Phi}|_{A \times [0,1]} = \Phi$.

Proof. By induction on skeleta of (X, A), using Proposition 13.2.

As a special case of Proposition 13.6 we obtain:

13.7 Corollary. Assume that we have a commutative diagram

where (X,A) be a relative CW complex such that $\dim(X \setminus A) \le n$ for some $n \le \infty$, and $f: Y \to Z$ is an n-equivalence. Then there exists a map $\bar{h}: X \to Y$ such that $\bar{h}|_A = q$ and $f\bar{h} \simeq h$ (rel A).

Recall that by [X, Y] we denote the set of homotopy classes of maps $X \to Y$. A map $f: Y \to Z$ induces a map of sets $f_*: [X, Y] \to [X, Z]$ given by $f_*[\varphi] = [f\varphi]$.

13.8 Corollary. Let $f: Y \to Z$ be an n-equivalence for some $n \le \infty$. For any CW complex X the map

$$f_* \colon [X, Y] \to [X, Z]$$

is a bijection if dim $X \le n-1$ and it is onto if dim $X \le n$.

Proof. The onto part follows from Corollary 13.7 with $A=\varnothing$. It remains to show that f_* is 1-1 if $\dim X \le n-1$. Assume then that for some $\varphi_0, \varphi_1 \colon X \to Y$ there is a homotopy $h \colon X \times [0,1] \to Z$ such that $h_0 = f \varphi_0$ and $h_1 = f \varphi_1$. This gives a commutative diagram

$$X \times \{0, 1\} \xrightarrow{\varphi_0 \sqcup \varphi_1} Y$$

$$\downarrow f$$

$$X \times [0, 1] \xrightarrow{h} Z$$

Consider the relative CW complex $(X \times [0, 1], X \times \{0, 1\})$. Since dim $X \times [0, 1] \le n$, using Corollary 13.7 again we obtain that there exists $\bar{h}: X \times [0, 1] \to Y$ which is homotopy between φ_0 and φ_1 . \square

Proof of Theorem 13.4. Let $f: X \to Y$ be a weak equivalence of CW complexes. By Corollary 13.8, the map

$$f_*: [Y, X] \rightarrow [Y, Y]$$

is a bijection. Therefore, there exists $g: Y \to X$ such that $f_*[g] = [\mathrm{id}_Y]$. Equivalently, $fg \simeq \mathrm{id}_Y$. Next, consider the bijection

$$f_*: [X, X] \rightarrow [X, Y]$$

We have $f_*[gf] = [fgf] = [f] = f_*[id_X]$, which gives $[gf] = [id_X]$, or equivalently $gf \simeq id_X$. Therefore f is a homotopy equivalence with a homotopy inverse g.

We have seen before (5.12) that two CW complexes X, Y that have isomorphic homotopy groups need not be homotopy equivalent. The issue is, that even if $\pi_i(X) \cong \pi_i(Y)$ for all $i \geq 0$, there may be no map $X \to Y$ which induces such isomorphisms. However, in two cases homotopy groups alone are enough to determine the homotopy type of a CW complex: for contractible spaces and for Eilenberg-MacLane spaces.

13.9 Proposition. If X is a CW complex such that $\pi_i(X) = 0$ for all $i \ge 0$ then $X \simeq *$.

Proof. The constant map $X \to *$ is weak equivalence, so by Theorem 13.4 it is a homotopy equivalence.

13.10 Proposition. Let X_1 , X_2 be Eilenberg-MacLane spaces of type K(G, n). That is, X_1 , X_2 are path connected CW complexes such that

$$\pi_i(X_k) \stackrel{\sim}{=} \begin{cases} G & \text{if } i = n \\ 0 & \text{otherwise} \end{cases}$$

for k = 1, 2. Then $X_1 \simeq X_2$.

Proof. Recall (11.14) that we can construct an Eilenberg-MacLane space X_0 of the type K(G,n) such that $X_0^{(n-1)} = *$. It will be enough to show that for any other Eileberg-MacLane space Y of the same type there exists a weak equivalence $X_0 \to Y$. Indeed, by Theorem 13.4 this will give $X_0 \simeq Y$, and applying it to the spaces X_1 and X_2 we will obtain $X_1 \simeq X_0 \simeq X_2$.

Let then X_0 , Y be Eilenberg-MacLane spaces of type K(G,n) such that $X_0^{(n-1)}=*$. We can assume that the 0-cell $*\in X_0$ is the basepoint of X_0 , and let $y_0\in Y$ be a basepoint in Y. Let $\varphi\colon \pi_n(X_0,*)\to \pi_n(Y,y_0)$ be an isomorphism of groups. We will construct a map $f\colon (X_0,*)\to (Y,y_0)$ such that $f_*=\varphi$. To do this, notice that $X_0^{(n)}=\bigvee_{i\in I}S^n$. For $k\in I$ let $j_k\colon S^n\hookrightarrow X_0^n$ be the inclusion of the k-th copy of S^n . Let $[ij_k]\in \pi_n(X_0,*)$ be the element represented by $S^n\overset{j_k}{\hookrightarrow} X_0^{(n)}\overset{i}{\hookrightarrow} X_0$, and let $\omega_k\colon S^n\to Y$ be a map such that $[\omega_k]=\varphi([ij_k])$. Define $f_n\colon X_0^{(n)}\to Y$ by $f_n=\bigvee_{k\in I}\omega_k$.

Assume that we can extend f_n to some map $f: X_0 \to Y$. Then f induces a homomorphism $f_*: \pi_n(X_0, *) \to \pi_n(Y, y_0)$ such that

$$f_*([ij_k]) = [\omega_k] = \varphi([ij_k]) \tag{*}$$

for all $k \in I$. By Corollary 11.6 the elements $[j_k]$ generate the group $\pi_n(X_0^{(n)},*)$, and by Proposition 5.2 the homomorphism $i_* \colon \pi_n(X_0^{(n)},*) \to \pi_n(X_0,*)$ is onto. Therefore elements $[ij_k]$ generate $\pi_n(X_0,*)$. As a consequence, the equation (*) implies that $f_*([\tau]) = \varphi([\tau])$ for all $[\tau] \in \pi_n(X_0,*)$. It follows that $f_* \colon \pi_i(X_0,*) \to \pi_i(Y,y_0)$ is an isomorphism for i=n and since all other homotopy groups of X_0 and Y are trivial, f_* is an isomorphism for all $i \neq n$ as well. Therefore f is a weak equivalence.

An extension of $f_0: X_0^{(n)} \to Y$ to $f: X_0 \to Y$ can be constructed by induction with respect to skeleta of X_0 . Assume that for some $m \ge n$ we have a map $f_m: X_0^{(m)} \to Y$ that extends f_n . Then $X_0^{(m+1)} = X_0^{(m)} \cup \bigcup_{j \in J} e_j^{m+1}$ for some (m+1)-cells e_j . Let $\varphi_j: S^m \to X^{(m)}$ be the attaching map of e_j^{m+1} , and let $\overline{\varphi}_j: D^{m+1} \to X^{(m)}$ be the characteristic map. Since $\pi_m(Y) = 0$, the map $f_m \varphi_j$ extends to $\psi_j: D^{m+1} \to Y$ We define $f_{m+1}: X_0^{(m+1)} \to Y$ by

$$f_{m+1}(x) = \begin{cases} f_m(x) & \text{if } x \in X^{(m)} \\ \psi_j(\overline{\varphi}_j^{-1}(x)) & \text{if } x \in e_j \end{cases}$$

Using similar arguments as in the proof of Proposition 13.10 we can obtain:

13.11 Proposition. Let K(G, n), K(H, n) be Eilenberg-MacLane spaces for some groups G, H and $n \ge 1$. For any homomorphism of groups $\varphi \colon \pi_n(K(G, n), x_0) \to \pi_n(K(H, n), y_0)$ there exists a map $f \colon (K(G, n), x_0) \to (K(H, n), y_0)$ such that $f_* = \varphi$.

Proof. Exercise.