

Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M1 (6677/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010
Publications Code UA024469
All the material in this publication is copyright
© Edexcel Ltd 2010

Summer 2010 Mechanics M1 6677 Mark Scheme

Question Number	Scheme	Marks	
Q1	$(-4\mathbf{i} - 7\mathbf{j}) = \mathbf{r} + 4(-3\mathbf{i} + 2\mathbf{j})$ $\mathbf{r} = (8\mathbf{i} - 15\mathbf{j})$ $ \mathbf{r} = \sqrt{8^2 + (-15)^2} = 17 \text{ m}$	M1 A1 A1 M1 A1 ft	[5]
Q2 (a)	$4u \xrightarrow{ku} \qquad ku$ $2u \xrightarrow{p} \qquad \frac{ku}{\frac{ku}{2}}$ $4mu - 3mku = -2mu + 3mk\frac{u}{2}$ $k = \frac{4}{3}$	M1 A1 M1 A1cso	(4)
(b)	For P , $I = m (2u4u)$ = $6mu$ OR For Q , $I = 3m (\frac{ku}{2}ku)$	M1 A1 A1 (M1A1)	(3) [7]
Q3	(→) $100\cos 30 = F$ F = 0.5 R seen (↓) $mg + 100\cos 60 = R$ m = 13 kg or 12.6 kg	M1 A1 A1 (B1) M1 A1 DM1 A1	[7]

Question Number	Scheme		Marks	
Q4	R 500 200 500 S $M(B)$, $500x + 500.2x + 200x3 = Rx5 + Sx1$ (or any valid moments equation)	M1 A1 A1		
	$(\downarrow) R + S = 500 + 500 + 200 = 1200$ (or a moments equation)	M1 A1		
	solving for x ; $x = 1.2 \text{ m}$	M1 A1 cso	[7]	
Q5 (a)	Shape (both) Cross Meet on t-axis Figures 25,20,T,25	B1 B1 B1 B1		
	\overline{O} \overline{T} $\overline{25}$ t		(4)	
(b)	For Q : $20\left(\frac{t+25}{2}\right) = 800$ t = 55	M1 A1		
	For P: $25\left(\frac{T+55}{2}\right) = 800$ solving for T: $T = 9$	M1 A1	(8) [12]	

Question Number		Scheme		Marks	
Q6	(a)	$(\uparrow)v^2 = u^2 + 2as$ $0 = 14.7^2 - 2x \ 9.8 \ x \ s$ s = 11.025 (or 11 or 11.0 or 11.03) m Height is 60 m or 60.0 m ft	M1A1 A1 A1ft	(4)	
	(b)	$(\downarrow)v^{2} = u^{2} + 2as$ $v^{2} = (-14.7)^{2} + 2x \ 9.8 \ x \ 49$ $v = 34.3 \text{ or } 34 \text{ m s}^{-1}$	M1 A1 A1	(3)	
	(c)	OR $(\downarrow) v = u + at$ 34.3 = -14.7 + 9.8t t = 5 OR $(\downarrow) s = ut + \frac{1}{2}at^2$ $49 = -14.7t + 4.9t^2$ t = 5	M1 A1 A1	(3) [10]	
Q7	(a)	$F = \frac{1}{3}R$ $(\uparrow) R\cos\alpha - F\sin\alpha = 0.4g$ $R = \frac{2}{3}g = 6.53 \text{ or } 6.5$	B1 M1 A1 M1 A1	(5)	
	(b)	$(\rightarrow)P - F\cos\alpha - R\sin\alpha = 0$ $P = \frac{26}{45}g = 5.66 \text{ or } 5.7$	M1 A2 M1 A1	(5) [10]	

Question Number	Scheme	Marks	
Q8 (a) Mark together	$(\downarrow)0.4g - T = 0.4a$ $(\uparrow)T - 0.3g = 0.3a$ solving for T T = 3.36 or 3.4 or $12g/35$ (N)	M1 A1 M1 A1 DM1 A1 (6)	
(b)	0.4g - 0.3g = 0.7a $a = 1.4 \text{ m s}^{-2}, g/7$	DM1 A1 (2)	
(c)	$(\uparrow)v = u + at$ $v = 0.5 \times 1.4$ $= 0.7$	M1 A1 ft on <i>a</i>	
	$(\uparrow)s = ut + \frac{1}{2}at^{2}$ $s = 0.5 \times 1.4 \times 0.5^{2}$ $= 0.175$ $(\downarrow)s = ut + \frac{1}{2}at^{2}$	M1 A1 ft on <i>a</i>	
	$1.175 = -0.7t + 4.9t^{2}$ $4.9t^{2} - 0.7t - 1.175 = 0$ $t = \frac{0.7 \pm \sqrt{0.7^{2} + 19.6 \times 1.175}}{0.00}$	DM1 A1 ft DM1 A1 cao	
	$t = \frac{9.8}{9.8}$ = 0.5663or Ans 0.57 or 0.566 s	A1 cao (9)	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u>

Order Code UA024469 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH