Inductive Conformal Martingales for Change-Point Detection

Denis Volkhonskiy, Evgeny Burnaev, Ilia Nouretdinov, Alexander Gammerman, Vladimir Vovk

Yandex School of Data Analysis Skolkovo Institute of Science and Technology Royal Holloway, University of London

dvolkhonskiy@gmail.com

July 22, 2017

Quickest Change-Point Detection

2 / 26

Change-Point Problem

The change-point detection problem is formulated as following:

- $ightharpoonup z_1, z_2, \ldots, z_n, \ldots$ are independent random variables;
- $ightharpoonup z_1, z_2, \dots, z_{\theta-1}$ are each distributed according to a distribution $f_0(z)$;
- $ightharpoonup z_{\theta}, z_{\theta+1}, \ldots$ are each distributed according to a distribution $f_1(z)$;
- ▶ Change-Point (CP) $2 \le \theta \le \infty$ is unknown;

The task is to find the **stopping** time τ , such that

- ▶ Probability of False Alarm: $\mathbb{P}(\tau \leq \theta) \leq \alpha$ for all θ
- Mean Delay: $\mathbb{E}(\tau \theta \mid \tau > \theta) \rightarrow \min_{\tau}$

Change-Point Problem

The change-point detection problem is formulated as following:

- $ightharpoonup z_1, z_2, \ldots, z_n, \ldots$ are independent random variables;
- $ightharpoonup z_1, z_2, \dots, z_{\theta-1}$ are each distributed according to a distribution $f_0(z)$;
- $ightharpoonup z_{\theta}, z_{\theta+1}, \ldots$ are each distributed according to a distribution $f_1(z)$;
- ▶ Change-Point (CP) $2 \le \theta \le \infty$ is unknown;

The task is to find the **stopping** time τ , such that

- ► Probability of False Alarm: $\mathbb{P}(\tau \leq \theta) \leq \alpha$ for all θ
- ► Mean Delay: $\mathbb{E}(\tau \theta \mid \tau > \theta) \rightarrow \min_{\tau}$

Quickest Change-Point Detection

- ▶ **Important applications:** healthcare, security, production, equipment maintenance, Internet of things, traffic routing, etc.
- ► Challenges:
 - Large volumes of time-series data;
 - Complex, intractable or unknown dynamic models;
 - Apparent non-stationary and quasi-periodicity.

Automatic Change-Point detection is critical in today's world where the sheer volume of data makes it impossible to tag change-point manually

EEG for a human

Figure: EEG for a human in a room, where the light is turned of at time 387

Eathquake Prediction

Figure: Seismological signals. Earthquake starts at time 600

Standard Approaches

Standard algorithms for quickest Change-Point detection: Cumulative Sum (CUSUM), Shiryaev-Roberts, Posterior Probability statistics.

▶ Based on **likelihood ratio** $\frac{L_n^{\theta}}{L_n}$, where

$$L_n^{\theta} = \prod_{i=1}^{\theta-1} f_0(z_i) \prod_{i=\theta}^n f_1(z_i)$$
 (1)

the likelihood of observations z_1, \ldots, z_n when $\theta \in [1, n]$, and by

$$L_n = \prod_{i=1}^n f_0(z_i) \tag{2}$$

the likelihood of observations z_1, \ldots, z_n without Change-Point.

▶ Our goal is to provide distribution-free algorithm for Change-Point detection, that is based on Conformal Martingales.

Conformal Martingales

Conformal Predictors

Conformal martingales:

- Non-Conformity measure (the measure of strangeness) $\alpha_i = A(z_i, \{z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_n\})$
 - ▶ Example: distance to the nearest neighbor.
- P-values

$$p_n = p(z_n, z_{n-1}, \dots, z_1) = \frac{\#\{i : \alpha_i > \alpha_n\} + U\#\{i : \alpha_i = \alpha_n\}}{n}$$

where $U \sim Uniform[0,1]$ independent of z_1, z_2, \ldots

► Small p-values ⇒ strange objects (other distribution)

Conformal Predictors

Conformal martingales:

- Non-Conformity measure (the measure of strangeness) $\alpha_i = A(z_i, \{z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_n\})$
 - Example: distance to the nearest neighbor.
- P-values

$$p_n = p(z_n, z_{n-1}, \dots, z_1) = \frac{\#\{i : \alpha_i > \alpha_n\} + U\#\{i : \alpha_i = \alpha_n\}}{n}$$

where $U \sim Uniform[0,1]$ independent of $z_1, z_2, ...$

► Small p-values ⇒ strange objects (other distribution)

Conformal Martingales

Theorem

If p-values are not independent and uniformly distributed in [0,1], then z_1, \ldots, z_n, \ldots don't satisfy the i.i.d. assumption. [Vovk et al., 2003]

- ▶ Conformal Martingale: $S_n = \prod_{i=1}^n g_i(p_i)$, n = 1, 2, ..., where $g_i(p_i) = g_i(p_i \mid p_1, ..., p_{i-1})$ is what we call a **betting function**.
 - 1. Strange objects (not i.i.d., Change-Point);
 - 2. p-values are not Uniform;
 - 3. penalize with betting function;
 - 4. Martingale grows.

Betting Functions

Constant Betting function;

$$g(p) = \begin{cases} 1.5, & \text{if } p \in [0, 0.5), \\ 0.5, & \text{if } p \in [0.5, 1]. \end{cases}$$

Mixture Betting Function;

$$g(p) = \int_0^1 \varepsilon p^{\varepsilon-1} d\varepsilon.$$

Kernel Density Betting Functions;

$$g_n(p_n) = K_{p_{n-L},\ldots,p_{n-1}}(p_n).$$

Contribution: Inductive Conformal Martingales for Change-Point detection

Conformal Martingale:

- + Theoretically valid;
- Computationally very inefficient;
- Wasn't designed for quickest change-point detection.

Inductive Conformal Martingales

► Computation of **non-conformity scores** with fixed training set:

$$\alpha_i = A(z_i, \{z_{-(m-1)}^*, \dots, z_0^*\});$$

- ▶ Increase efficiency a lot: no need in *Leave-One-Out-*like method;
- Save validity.

Contribution: Inductive Conformal Martingales for Change-Point detection

Conformal Martingale:

- + Theoretically valid;
- Computationally very inefficient;
- Wasn't designed for quickest change-point detection.

Inductive Conformal Martingales:

► Computation of **non-conformity scores** with fixed training set:

$$\alpha_i = A(z_i, \{z^*_{-(m-1)}, \ldots, z^*_0\});$$

- ▶ Increase efficiency a lot: no need in Leave-One-Out-like method;
- Save validity.

Validity of Inductive Conformal Martingales

Figure: Validity Test of ICM: case of small train sets

Contribution: adaptation of ICMs for Change-Point detection

The **stopping rule** is $\tau_{\text{CM}}^{S_n} = \inf\{n : S_n \ge h\}$ for some constant h. **Problems:**

- It takes a lot of time to reach the change-point;
- Martingale can decrease to $-\infty$.

We propose:

► "Cut" the martingale:

$$C_n = \max\{0, C_{n-1} + \log(g_n(p_n))\},$$
 (3)

where p_n is a p-value, and g_n is a betting function

- ▶ Stopping rule: $\tau_{\text{CM}}^{C_n} = \inf\{n : C_n \ge h\}$
- + This modification performs better in terms of the *mean delay* until Change-Point detection;

Contribution: adaptation of ICMs for Change-Point detection

The **stopping rule** is $\tau_{\text{CM}}^{S_n} = \inf\{n : S_n \ge h\}$ for some constant h. **Problems:**

- It takes a lot of time to reach the change-point;
- Martingale can decrease to $-\infty$.

We propose:

"Cut" the martingale:

$$C_n = \max\{0, C_{n-1} + \log(g_n(p_n))\},$$
 (3)

where p_n is a p-value, and g_n is a betting function

- ▶ Stopping rule: $\tau_{\text{CM}}^{C_n} = \inf\{n : C_n \ge h\}$
- + This modification performs better in terms of the *mean delay* until Change-Point detection;

ICM example

Figure: Example of the ICM in case of data with Change-Point (at $\theta=500$) and without Change-Point

Contribution: Kernel Betting Function

Kernel Density Betting Function ([Fedorova et al., 2012], estimated from p-values seen before):

- Computationally inefficient;
- Need some time to update from uniform distribution after change-point;
- + Theoretically has the best possible growing rate [Fedorova et al., 2012].

We propose to **precompute** it on p-values for data with an example of a change-point:

- + Computationally efficient (no need to recompute);
- + Faster Change-Point detection.

Contribution: Kernel Betting Function

Kernel Density Betting Function ([Fedorova et al., 2012], estimated from p-values seen before):

- Computationally inefficient;
- Need some time to update from uniform distribution after change-point;
- + Theoretically has the best possible growing rate [Fedorova et al., 2012].

We propose to **precompute** it on p-values for data with an example of a change-point:

- + Computationally efficient (no need to recompute);
- + Faster Change-Point detection.

Experiments

Oracles for Change-Point detection

Classical approach (CUSUM, Shiryaev-Roberst):

- Optimal in terms of Mean Delay;
- Need to know the data model.

Conformal Martingales:

- Only i.i.d assumption;
- ▶ We expect them to be worse.

Oracles, based on standard Change-Point detection algorithms:

- ▶ We assume the distribution class to be known;
- ▶ We don't know the parameters;
- Likelihood:

$$\overline{L}_n = \int \prod_{i=1}^n f(z_i \mid \mathbf{c}_0) q(\mathbf{c}_0) d\mathbf{c}_0. \tag{4}$$

Oracles for Change-Point detection

Classical approach (CUSUM, Shiryaev-Roberst):

- Optimal in terms of Mean Delay;
- Need to know the data model.

Conformal Martingales:

- Only i.i.d assumption;
- ▶ We expect them to be worse.

Oracles, based on standard Change-Point detection algorithms:

- ▶ We assume the distribution class to be known:
- We don't know the parameters;
- Likelihood:

$$\overline{L}_n = \int \prod_{i=1}^n f(z_i \mid \mathbf{c}_0) q(\mathbf{c}_0) d\mathbf{c}_0. \tag{4}$$

Experimental Setup

Non-Conformity Measures:

- k Nearest Neighbors (kNN NCM) — average distance to k nearest neighbors.
- Likelihood Ratio (LR NCM)
 — the value of likelihood ratio ^{f₁(x)}/_{f₂(x)}.

Parameters:

- ▶ $f_0 \sim \mathcal{N}(0,1)$;
- $f_1 \sim \mathcal{N}(m_1, 1),$ $m_1 \in \{1, 1.5, 2\};$
- $\blacktriangleright \ \theta \in [100,200]$

As a performance characteristics we use:

- Mean delay until Change-Point detection $\mathbb{E}_1(\tau \theta \mid \tau > \theta)$,
- ▶ Probability of False Alarm (FA) $\mathbb{P}_0(\tau \leq \theta)$.

Mixture Betting Function. Comparison with Oracles

Kernel Density Betting Function. Comparison with Oracles

Precomputed Kernel Density Betting Function. Comparison with Oracles

Kernel and Precomputed Kernel Betting Functions

Table: Mean Delay. Kernel Density Betting Function

Param.\Probab. of FA	5%					10%					
Talani. (Trobab. of TA	ICM LR	ICM kNN	CUSUM Oracle	S-R Oracle	Posterior Oracle	ICM LR	ICM kNN	CUSUM	S-R	Posterior	
	10 2	10.00						Oracle	Oracle	Oracle	
$\theta = 200, \mu_1 = 1$	30.06	54.14	37.78	37.80	38.73	22.90	36.57	27.24	27.24	28.25	
$\theta = 200, \mu_1 = 1.5$	15.44	22.02	14.62	14.52	15.16	12.08	17.13	10.85	10.81	11.36	
$\theta = 200, \mu_1 = 2$	10.00	12.81	8.02	7.98	8.30	7.83	10.15	6.00	5.97	6.28	

Table: Mean Delay. Precomputed Kernel Density Betting Function

Param.\Probab. of FA	5%					10%					
I alam. Trobab. of TA	ICM LR	LR ICM kNN	CUSUM Oracle	S-R Oracle	Posterior Oracle	ICM LR	ICM kNN	CUSUM	S-R	Posterior	
	10 2							Oracle	Oracle	Oracle	
$\theta = 200, \mu_1 = 1$	14.14	28.70	37.78	37.80	38.73	9.65	18.91	27.24	27.24	28.25	
$\theta = 200, \mu_1 = 1.5$	7.24	10.80	14.62	14.52	15.16	4.92	7.39	10.85	10.81	11.36	
$\theta = 200, \mu_1 = 2$	4.90	6.15	8.02	7.98	8.30	3.29	4.18	6.00	5.97	6.28	

Comparison with Optimal detectors

Conclusion

- An adaptation of Conformal Martingales for change-point detection problem was proposed;
- ► We demonstrated the **efficiency** of this approach by comparing it with natural oracles, which are likelihood-based change-point detectors;
- We proposed and compared several approaches to calculating a betting function;
- We also compared Inductive Conformal Martingales with methods that are optimal for known pre- and post-CP distributions, such as CUSUM, Shiryaev-Roberts and Posterior Probability statistics.
- ▶ Paper: [Volkhonskiy et al., 2017]

References I

- Fedorova, V., Gammerman, A., Nouretdinov, I., and Vovk, V. (2012). Plug-in martingales for testing exchangeability on-line. In *Proceedings of the Twenty-Ninth International Conference on Machine Learning (ICML)*.
- Volkhonskiy, D., Burnaev, E., Gammerman, A., Nouretdinov, I., and Vovk, V. (2017).
 Inductive conformal martingales for change-point detection.
 - In Proceedings of the Sixth Symposium on Conformal and Probabilistic Prediction with Application (COPA 2017).
- Vovk, V., Nouretdinov, I., and Gammerman, A. (2003). Testing exchangeability on-line.
 - In Proceedings of the Twentieth International Conference on Machine Learning (ICML), volume 12, pages 768–775.