Devoir surveillé n°10 Version n°2

Durée : 4 heures, calculatrices et documents interdits

Diverses démonstrations du théorème fondamental de l'algèbre

Le théorème de d'Alembert-Gauss appelé aussi théorème fondamental de l'algèbre affirme que « tout polynôme non constant à coefficients complexes admet au moins une racine complexe ».

L'objectif de ce problème est d'établir ce résultat fondamental par des méthodes analytiques et une méthode faisant appel à des techniques d'algèbre linéaire.

Les deux parties du problème sont indépendantes.

PREMIÈRE PARTIE: MÉTHODES ANALYTIQUES

A. Résultats préliminaires

Soit P un polynôme à coefficients complexes s'écrivant $P = \sum_{k=0}^d a_k X^k$ avec $d \ge 1$ et $a_d \ne 0$.

1) Montrer qu'il existe R > 0 tels que, pour tout $z \in \mathbb{C}$,

$$|z| \geqslant R \Longrightarrow \frac{1}{2}|a_d||z|^d \leqslant |P(z)| \leqslant 2|a_d||z|^d.$$

- 2) a) Pour R > 0, on appelle pavé carré fermé centré en 0 de demi-côté R l'ensemble des $z \in \mathbb{C}$ vérifiant $|\operatorname{Re}(z)| \leq R$ et $|\operatorname{Im}(z)| \leq R$. On notera cet ensemble C_R . Justifier soigneusement que pour tout R > 0, l'application $z \longmapsto |P(z)|$ est bornée sur C_R et y atteint sa borne inférieure.
 - **b)** Montrer alors que l'application $z \mapsto |P(z)|$ est minorée sur \mathbb{C} et atteint sa borne inférieure. On pourra appliquer la question précédente sur un carré fermé bien choisi.

B. Première méthode analytique

- 1) Soient b un complexe non nul et Q un polynôme à coefficients complexes tel que Q(0) = 0; on pose $Q_1 = 1 + bX^k + X^kQ$, $k \in \mathbb{N}^*$. Soit enfin α une racine k-ième de $-\frac{1}{b}$.
 - a) Montrer qu'il existe $t_0 \in]0,1[$ tel que $|\alpha^k Q(\alpha t_0)| \leq \frac{1}{2}$.
 - **b)** Un tel t_0 étant choisi; montrer que $|Q_1(\alpha t_0)| < 1$.

- 2) Inégalité d'Argand : Soient P un polynôme non constant à coefficients complexes, et γ un nombre complexe tel que $P(\gamma) \neq 0$. Montrer qu'il existe δ , complexe tel que $|P(\delta)| < |P(\gamma)|$. On pourra considérer le polynôme Q_1 tel que $Q_1(z) = \frac{P(\gamma+z)}{P(\gamma)}, z \in \mathbb{C}$.
- 3) Application : Soit P un polynôme non constant à coefficients complexes ; on note z_0 un complexe où l'application $z \mapsto |P(z)|$ atteint sa valeur minimale. Montrer que z_0 est un zéro du polynôme P.

C. Deuxième méthode analytique

Malheureusement, cette méthode est pour l'instant hors-programme : rendez-vous après avoir vu les fonctions de deux variables.

DEUXIÈME PARTIE: MÉTHODE ALGÉBRIQUE

Dans toute cette partie, \mathbb{K} désigne le corps des réels ou celui des complexes ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et n un entier naturel non nul. On note $\mathscr{M}_n(\mathbb{K})$ l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} ; la matrice identité se notera I_n .

Pour tout \mathbb{K} -espace vectoriel E, on note Id_E l'application identité. On appelle sous-espace vectoriel strict de E tout sous-espace vectoriel distinct de E et non réduit au vecteur nul. Pour tout endomorphisme u de E, on appelle valeur propre de u tout $\lambda \in \mathbb{K}$ tel que $u - \lambda \mathrm{Id}_E$ ne soit pas injectif. On appelle alors vecteur propre associé à la valeur propre λ tout $x \neq 0$ vérifiant $u(x) = \lambda x$.

Pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$, tA désigne la matrice transposée de A, tr (A) sa trace. Le polynôme caractéristique de A, noté χ_A est l'élément de $\mathbb{K}[X]$ vérifiant $\forall x \in \mathbb{K} \quad \chi_A(x) = \det(A - xI_n)$. On appelle valeur propre de A tout $\lambda \in \mathbb{K}$ tel que $A - \lambda I_n$ ne soit pas inversible.

Si $A = (a_{k,\ell}) \in \mathcal{M}_n(\mathbb{C})$, on appelle matrice conjuguée de A et on note \overline{A} , la matrice de $\mathcal{M}_n(\mathbb{C})$ dont le coefficient de la k-ième ligne et la ℓ -ième colonne est égal au conjugué $\overline{a}_{k,\ell}$ du complexe $a_{k,\ell}$, pour tout couple (k,ℓ) d'éléments de $\{1,\ldots,n\}$.

Pour tout couple (k, ℓ) d'éléments de $\{1, \ldots, n\}$, on note $E_{k,\ell}$ la matrice de $\mathscr{M}_n(\mathbb{K})$ dont tous les coefficients sont nuls sauf celui de la k-ième ligne et la ℓ -ième colonne valant 1; on rappelle que la famille $(E_{k,\ell})_{1 \leq k,\ell \leq n}$ est une base de $\mathscr{M}_n(\mathbb{K})$, dite base canonique.

On rappelle ici que l'objectif de cette partie aussi est d'établir le théorème fondamental de l'algèbre et il ne sera donc pas possible de l'utiliser; on a tout de même le résultat élémentaire selon lequel « $tout\ polynôme\ du\ second\ degré\ à\ coefficients\ complexes\ se\ factorise\ sur\ \mathbb{C}\ ».$

A. Premiers résultats

- 1) a) Montrer que tout polynôme à coefficient réels de degré impair possède au moins une racine réelle.
 - b) En déduire que tout endomorphisme d'un espace vectoriel réel de dimension impaire possède au moins une valeur propre.

- c) Application: Existe-t-il une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que $A^2 + A + I_3 = 0$?
- 2) Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$, et soient u et v deux endomorphismes de E qui **commutent** (on dira aussi que u et v sont commutables).
 - a) Montrer que pour tout $\lambda \in \mathbb{K}$, les sous-espaces vectoriels $\operatorname{Ker}(u \lambda \operatorname{Id}_E)$ et $\operatorname{Im}(u \lambda \operatorname{Id}_E)$ sont stables par u et v.
 - b) Montrer que si $\mathbb{K} = \mathbb{R}$ et n impair et distinct de 1 alors E possède au moins un sous-espace vectoriel strict de dimension impaire, et stable par les endomorphismes u et v.
- 3) Montrer par récurrence sur la dimension que deux endomorphismes *commutables* d'un espace vectoriel *réel* de dimension *impaire* possèdent au moins un vecteur propre commun.

B. Endomorphismes d'un C-espace vectoriel de dimension impaire

On note i un complexe tel que $i^2 = -1$ et \mathcal{F} le sous-ensemble de $\mathscr{M}_n(\mathbb{C})$ défini par

$$\mathcal{F} = \{ M \in \mathscr{M}_n(\mathbb{C}) ; {}^t M = \overline{M} \}.$$

On suppose de plus que n est **impair**.

- 1) Montrer que \mathcal{F} est un espace vectoriel réel.
- 2) Vérifier que la famille constituée des éléments $E_{1,1}, \ldots, E_{n,n}, E_{k,\ell} + E_{\ell,k}, i(E_{k,\ell} E_{\ell,k})$ avec $(k,\ell) \in \{1,\ldots,n\}^2$ et $k < \ell$, est une base de \mathcal{F} ; quelle est alors la dimension de \mathcal{F} ? quelle est sa parité?
- 3) Soit A une matrice de $\mathcal{M}_n(\mathbb{C})$; on considère les deux applications u et v définies sur \mathcal{F} par

$$u(M) = \frac{1}{2}(AM + M^{t}\overline{A}), \quad v(M) = \frac{1}{2i}(AM - M^{t}\overline{A}).$$

- a) Montrer que u et v sont des endomorphismes de \mathcal{F} .
- b) Vérifier que u et v commutent puis justifier qu'ils possèdent au moins un vecteur propre commun.
- c) On note $M_0 \in \mathcal{F}$ un vecteur propre commun aux endomorphismes u et v et on suppose que $u(M_0) = \lambda M_0$ et que $v(M_0) = \mu M_0$, $(\lambda, \mu) \in \mathbb{R}^2$. Exprimer la matrice AM_0 en fonction de la matrice M_0 et montrer soigneusement que $\lambda + i\mu$ est une valeur propre de la matrice A.
- 4) a) Justifier que tout endomorphisme d'un espace vectoriel complexe de dimension impaire possède au moins une valeur propre.
 - **b)** Montrer par récurrence sur la dimension que deux endomorphismes *commutables* d'un espace vectoriel complexe de dimension *impaire* possèdent au moins un vecteur propre commun.

C. Étude du cas général

On sait que tout entier naturel non nul n s'écrit de manière unique sous la forme $n = 2^k p$ où $k \in \mathbb{N}$ et p est un entier naturel impair.

On considère la propriété \mathcal{P}_k suivante :

Pour tout entier naturel impair p, et tout espace vectoriel complexe E de dimension 2^kp :

- (i) tout endomorphisme de E possède au moins une valeur propre;
- (ii) deux endomorphismes commutables de E possèdent au moins un vecteur propre commun.

On se propose de montrer cette propriété par récurrence sur l'entier naturel k.

La propriété \mathcal{P}_0 vient d'être établie dans la section précédente. Soit donc $k \in \mathbb{N}^*$ et supposons la propriété \mathcal{P}_ℓ vraie pour tout entier naturel $\ell < k$; soit p un entier naturel impair et E un espace vectoriel complexe de dimension $2^k p$.

C.I. Étude de l'assertion (i) de \mathcal{P}_k

Soit f un endomorphisme de E; on note A la matrice de f dans une base quelconque de E et on considère le sous-espace vectoriel, noté \mathcal{G} , de $\mathscr{M}_n(\mathbb{C})$ défini par

$$\mathcal{G} = \{ M \in \mathscr{M}_n(\mathbb{C}) ; {}^t M = -M \}.$$

- 1) Préciser la dimension du \mathbb{C} -espace vectoriel \mathcal{G} .
- 2) On considère les deux applications u et v définies sur \mathcal{G} par

$$u(M) = (AM + M {}^{t}A), \quad v(M) = AM {}^{t}A.$$

- a) Vérifier que u et v sont des endomorphismes de \mathcal{G} et que u et v commutent.
- b) Justifier soigneusement que les endomorphismes u et v possèdent au moins un vecteur propre commun.
- c) On note $N_0 \in \mathcal{G}$ un vecteur propre commun aux endomorphismes u et v et on suppose que $u(N_0) = \lambda N_0$ et que $v(N_0) = \mu N_0$, $(\lambda, \mu) \in \mathbb{C}^2$.
 - i) Vérifier que $(A^2 \lambda A + \mu I_n)N_0 = 0$.

Dans la suite, on notera W un vecteur colonne non nul de la matrice N_0 et on désignera par α et β les racines complexes du polynôme du second degré $X^2 - \lambda X + \mu$.

- ii) Vérifier que $(A \alpha I_n)(A \beta I_n)W = 0$
- iii) Justifier alors que α ou β est valeur propre de A et conclure.

C.II. Étude de l'assertion (ii) de \mathcal{P}_k

Soient f et g deux endomorphismes commutables de E; on cherche à montrer que f et g ont au moins un vecteur propre commun.

1) Si f est une homothétie de E, justifier que f et g ont au moins un vecteur propre commun.

- 2) Si f n'est pas une homothétie de E, soit λ une valeur propre de f. On sait que les sous-espaces vectoriels $F_1 = \text{Ker}(f \lambda \text{Id}_E)$ et $F_2 = \text{Im}(f \lambda \text{Id}_E)$ sont stables par f et g.
 - a) Si la dimension de l'un des sous-espaces vectoriels F_1 ou F_2 s'écrit $2^{\ell}q$ avec $\ell < k$ et q impair, comment peut-on conclure?
 - b) Sinon, justifier que l'un de ces deux sous-espaces vectoriels est de dimension $2^k q$ où q est impair et l'autre de dimension $2^k r$ avec r pair non nul.
 - c) Justifier alors que q < p et indiquer comment on pourrait montrer que les endomorphismes f et g ont au moins un vecteur propre commun.

D. Retour au théorème fondamental de l'algèbre

Soit $P = X^n - \sum_{k=0}^{n-1} a_k X^k$ un polynôme unitaire de degré n à coefficients complexes; on note f l'endomorphisme du \mathbb{C} -espace vectoriel \mathbb{C}^n canoniquement associée à la matrice

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & \cdots & 0 & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & a_{n-2} \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}.$$

- 1) Calculer le polynôme caractéristique de la matrice A.
- 2) Justifier alors que le polynôme P possède au moins une racine complexe.
- 3) Montrer le théorème fondamental de l'algèbre.

Fin de l'épreuve

- FIN -