Evaluation of Automated Vehicles in the Frontal Cut-in Scenario - an Enhanced Approach using Piecewise Mixture Model

Ding Zhao, Assistant Research Scientist

Zhiyuan Huang, Henry Lam, David J. LeBlanc, Huei Peng

University of Michigan, Ann Arbor

AV Evaluation is Critical

Tesla Autopilot Fatal Crash, May, 2016

Uber Self-driving Rollover, March, 2017

Google Car Accident, Sep, 2016

Current Evaluation Methods

Test matrix

Pro: easy to execute, fast Con: Pre-announced

محضال معنما لاعام

50km/ii

Naturalistic Field Operational Tests

Pro:

The real-world!

100 million mi / fatal crash (NHTSA 2013)

Con:

Slow, expensive Low exposure to safety critical cases

Earth from Sun: 93 million mi

Concept of Accelerated Evaluation

Concept of Accelerated Evaluation

Accelerated Testing Model

Concept of Accelerated Evaluation

Interpret the accelerated results

Find the Optimal IS Distributions

Exponential twisting

$$\tilde{f}_{\vartheta}(x) = exp(\vartheta x - \Psi(\vartheta))f(x)$$

$$\Psi(\vartheta) = \log E(\exp(\vartheta^{T}x))$$

Theoretically optimal $f^*(\cdot)$

$$f_{zv}^*(\mathbf{x}) = \begin{cases} \frac{f(\mathbf{x})}{\gamma}, & I_{\mathcal{E}}(\mathbf{x}) = 1\\ 0, & I_{\mathcal{E}}(\mathbf{x}) = 0 \end{cases}$$

$$\vartheta^{(i)} \xrightarrow{\tilde{f}_{\vartheta^{(i)}}(x)}$$
Simulation
$$Cross Entropy$$

 $\boldsymbol{\vartheta}^{(i+1)} = \underset{\boldsymbol{\vartheta}}{\operatorname{argmin}} \operatorname{difference}\left(f_{zv}^*(\boldsymbol{x}), \tilde{f}_{\boldsymbol{\vartheta}}(\boldsymbol{x})\right)$ based on the simulation results using $\tilde{f}_{\boldsymbol{\vartheta}^{(i)}}(\boldsymbol{x})$

Update

Converge to $\boldsymbol{\vartheta}^*$

$$\longrightarrow f^*(x) = \tilde{f}_{\vartheta^*}(x)$$

Kullback-Leibler divergence

$$f_{KL}\left(f_1(x), f_2(x)\right) = \int log\left[\frac{f_{zv}^*(x)}{\tilde{f}_{\vartheta}(x)}\right] f_{zv}^*(x) dx$$

Piecewise Mixture Model

Accelerated Evaluation based on

- a) a single distribution
- b) a piecewise mixture distribution

- Fitting
 - Maximum Likelihood
 - Distributions in exponential family is preferred

- Calculate the IS distribution
 - Modified Cross Entropy
 - Floating truncation points and weight of components

Frontal Cut-in (Lane Change) Scenarios

Simulation Results

Thanks for your attention

PPT

Papers / Contact

