MI-PAA: 4. Seznámení se se zvolenou pokročilou iterativní metodou na problému batohu

Vojtěch Mráz

28. prosince 2018

1 Úvod

V poslední úloze, v které řešíme problém batohu, jsme se zabývali pokročilými iteraktivními metodami. Z vybraných metod se zvolila metoda simulovaného ochlazování. Tato metoda byla naimplementována a testována na různé konfigurace a jejich vliv na relativní chybu a čas výpočtu. Tyto výsledky jsou dále reprezentovány (ať už tabulkou či grafem) a vyhodnoceny. Jedná se o zkušební úlohu, která předchází poslední úloze, kde budeme pomocí této metody řešit SAT.

2 Zadání úlohy

- Zvolte si heuristiku, kterou budete řešit problém vážené splnitelnosti booleovské formule (simulované ochlazování, simulovaná evoluce, tabu prohledávání).
- Tuto heuristiku použijte pro řešení problému batohu. Můžete použít dostupné instance problému (zde), anebo si vygenerujte své instance pomocí generátoru. Používejte instance s větším počtem věcí (;30).
- Hlavním cílem domácí práce je seznámit se s danou heuristikou, zejména se způsobem, jakým se nastavují její parametry (rozvrh ochlazování, selekční tlak, tabu lhůta...) a modifikace (zjištění počáteční teploty, mechanismus slekce, tabu atributy...). Není-li Vám cokoli jasné, prosíme ptejte se na cvičeních.
- Problém batohu není příliš obtížný, většinou budete mít k dispozici globální maxima (exaktní
 řešení) z předchozích prací, například z dynamického programování. Při správném nastavení
 parametrů byste měli vždy dosáhnout těchto optim, případně pouze velice malých chyb.
 Doba výpočtu může ovšem být relativně větší.

3 Rámcový popis řešení

Jak je již psáno v úvodu, pro řešení byla zvolena metoda simulovaného ochlazování. Simulované ochlazování je iterativní algoritmus, který se snaží v jednotlivých iteracích uniknout z lokálního maxima dočasným přijetím horšího výsledku.

Algoritmus v prvním kroku zvolí náhodné řešení problému (tedy konfiguraci položek v batohu, která je řešením a nepřesahuje kapacitu) a spočítá jeho cenu. Následně se ve smyčce generují další validní konfigurace řešení, které jsou sousedy prvotní konfigurace (soused = mění se pouze jedna věc v batohu). Pokud je nové řešení lepší, je vždy přijato. Pokud je horší, je přijato na základě pravděpodobnosti přijetí, která je porovnána s náhodným číslem z intervalu [0, 1]. Takto algoritmus pokračuje dokud nedosáhne maximálního počtu kroků.

Algoritmus se skládá ze dvou vnořených smyček. Vnější reprezentuje aktuální teplotu. Vnitřní smyčka pro každou teplotu vybírá náhodné sousední řešení. Počet iterací vnější smyčky je dán ochlazováním aktuální teplotv.

Měření jsou prováděna na ukázkových vstupech s více než třiceti položkami.

Pro ukázku běhu algoritmu slouží níže zobrazený graf. Instance problému byla vzata z webového "zkoušeče" těchto metod a také s tímto nástrojem byl náš graf porovnán.

V následujícím měření se bude již pouze porovnávat doba běha a odchylka vůči jednotlivým parametrům konfigurace.

Parametr	Hodnota
Počáteční teplota	400
Výsledná teplota	10
Vnitřní smyčka	50
Koeficient ochlazování	0.95

Obrázek 1: Ukázka algoritmu simulovaného ochlazování

Běh	Výsledná cena
Run 1	620
Run 2	637
Run 3	669
Run 4	627

4 Výsledky měření

Měření znázorňují přůmerné hodnoty vždy pro 50 instancí problému. Časová složitost byla měřena jako procesorový čas (ne tedy počet průchodu stavy jako v předešlé úloze).

4.1 Počáteční teplota

Počáteční teplota byla zvolena v rozmezí 100-2000, kdy krok byl nastaven na 300. Tato hodnota určuje na jaké původní teplotě se začíná.

Konfigurace

Parametr	Hodnota
Počáteční teplota	[100, 400, 700 1900]
Výsledná teplota	10
Vnitřní smyčka	50
Koeficient ochlazování	0.9

Měření

# Pocatecni teplota - cas									
# num of items	100	400	700	1000	1300	1600	1900		
32	5.3464	8.6303	9.8537	10.5393	11.2871	11.7493	12.1319		
35	5.9845	9.1788	10.5076	10.9904	11.5478	12.0287	12.3911		
37	5.7074	9.0181	10.479	11.0065	11.8665	12.2698	12.5471		
40	5.8943	10.1161	10.9467	11.5677	12.4512	13.3541	12.7459		

Obrázek 2: Vývoj času v závilosti na počtu předmětů a počáteční teplotě

# Pocatecni teplota - error								
# num of items	100	400	700	1000	1300	1600	1900	
32	14.4812	14.0655	13.9574	14.1744	13.556	13.964	13.9429	
35	15.1721	14.7927	15.2199	15.4429	15.7565	15.2495	14.2963	
37	17.0207	16.0817	15.3329	16.4102	15.8387	15.359	15.7505	
40	18.4148	18.0416	17.6154	17.5722	17.8233	17.519	17.1407	

Obrázek 3: Odchylka v závislosti na počáteční teplotě

Komentář

Z výsledku lze vyčíst, že časová náročnost lineárně roste na zákládě velikosti počáteční teploty. Naopak časová náročnost se prakticky nemění v závisloti na počtu předmětů.

Relativní chyba se při vyšší počáteční teplotě změnšuje, avšak tento rozdíl není natolik markantní a spolu s časovou náročností se nevyplatí používat moc velké počáteční hodnoty.

4.2 Vnitřní smyčka

Vnitřní smyčka určuje, kolikrát se projedou sousední konfigurace řešení, než se opět ochladí teplota. Testováno bylo rozmezí $50-500~\rm s$ krokem 50.

Konfigurace

Parametr	Hodnota
Počáteční teplota	1000
Výsledná teplota	10
Vnitřní smyčka	$[50,100 \dots 500]$
Koeficient ochlazování	0.9

Měření

# Vnitrni cykly	- error									
# num of items	50	100	150	200	250	300	350	400	450	500
32	10.8222	22.0594	32.1492	42.0789	52.6782	63.7234	73.858	84.1463	95.304	106.0332
35	11.369	22.3757	33.2147	44.2493	56.8152	65.2219	76.7531	89.7176	97.5818	107.7485
37	11.1763	22.1736	33.2404	44.0493	58.4603	66.5425	78.9222	90.4447	101.0058	111.6392
40	11.998	22.8715	34.1789	47.0564	58.3599	70.4036	79.2293	93.7871	107.4018	115.172

Obrázek 4: Vývoj času v závilosti na počtu vnitřních cyklů

# Vnitrni cykly	- error									
# num of items	50	100	150	200	250	300	350	400	450	500
32	14.3883	12.9567	12.1287	11.9124	11.6695	11.0062	10.488	10.321	10.2752	10.6684
35	15.6829	14.1932	13.0843	12.9056	12.8065	11.4187	11.9052	11.352	11.8509	11.0419
37	15.9835	14.2671	14.4255	13.6803	13.8306	13.4774	12.7376	12.2183	12.5235	12.4522
40	17.7047	17.1875	16.0273	15.0101	14.7324	14.0002	14.4904	14.4161	14.1297	14.1118

Obrázek 5: Odchylka v závislosti na počtu vnitřních cyklů

Komentář

Obrázek 4 ukazuje podle očekávání, že časová složitost roste s počtem vnitřních cyklů. Je ale zároveň patrné, že celkový běh není pro konrétní velikost vnitřního cyklu nijak výrazně závislý na počtu prvků.

Relativní chyba (Obrázek 5), také podle očekávání, klesá s vyšším počtem vnitřních cyklů, to se dá vysvětlit více možným únikem s lokálního maxima. Odchylka také roste i na základě počtu položek, kdy s více položkami roste i chyba.

Opět je ale potřeba říci, že odchylka neroste tak markatně, aby se obětoval čas, který je potřeba pro více cyklů.

4.3 Koeficient ochlazování

Koeficient ochlazování určuje, jak rychle se teplota mění. Čím větší, tim pomaleji teplota klesá a naopak. Testováno bylo rozmezí 0.5-0.95 s krokem 0.05.

Konfigurace

Parametr	Hodnota
Počáteční teplota	1000
Výsledná teplota	10
Vnitřní smyčka	50
Koeficient ochlazování	$[0.5, 0.55 \dots 0.95]$

Měření

num of items 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
ii flair of Items of o
32 1.777 1.9592 2.4192 2.6571 3.1582 4.1404 5.142 7.0304 10.9938 22.0238
35 1.8567 1.9766 2.489 2.7996 3.236 4.2737 5.2039 7.1722 10.9189 22.1108
37 1.8424 2.0709 2.5177 2.7619 3.2669 4.399 5.2444 7.3377 11.1012 22.6919
40 1.8954 2.0444 2.6037 4.9018 3.4463 4.3027 5.5644 9.215 11.9428 23.805

Obrázek 6: Vývoj času v závilosti na koeficientu ochlazování

# Koeficient oc	hlazování -	cas								
# num of items	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95
32	18.2589	18.9769	17.8409	18.1321	17.4142	16.7452	15.7097	15.2149	13.6642	11.9498
35	19.2896	19.1994	18.2998	18.2736	17.1446	17.7931	16.7823	16.3753	15.6777	14.2432
37	19.9367	20.0104	19.7446	19.5513	19.4833	17.1353	17.6515	16.433	16.3723	14.5636
40	21.4266	21.5951	20.1567	21.0167	20.579	20.1645	19.0897	18.3773	17.6153	15.5503

Obrázek 7: Odchylka v závislosti na koeficientu ochlazování

Komentář

Z tabulky 6 a 7 je vidět, že rychlejším ochlazováním také roste časová náročnost a stejný trend má také odchylka, kdy algoritmus má více času na nalezení optima. Z těchto výsledků je patrné, že se vyplatí nastavit tento parametr na nejvyšší možný.

5 Závěr

Naměřená data pro časovou náročnost odpovídají předpokladům, že se zvyšujícími se nároky je doba výpočtu vyšší. Pro zkoumané instance je navíc časová náročnost i u zvýšených požadavků vcelku přijatelná.

Oproti všem očekáváním vyšla ale měření relativní odchylky. V souladu s měřeními jiných metod řešení (heuristika poměr cena/váha, B&B, ...) jsem očekával s rostoucím počtem položek batohu snižující se odchylku. Ze všech provedených měření ale vyplývá, že chyba roste spolu se zvyšujícím se počtem položek. Zároveň jsem předpokládal, že odchylka se bude výrazněji snižovat s lepším nastavením parametrl, avšak jak je vidět, odchylka se lišila v jednotkách procent.

Podle uvedených měření jsem našel ideální konfigurační hodnoty (porovnání čas/přesnost):

Parametr	Hodnota
Počáteční teplota	350
Výsledná teplota	10
Vnitřní smyčka	150
Koeficient ochlazování	0.95