MAT1400B - H24 : Calcul 1

Professeur: Xuan Kien Phung

Université de Montréal

- Séries infinies : introduction
- 2 Critère de divergence
- 3 Séries à termes positifs : test de l'intégrale
- Séries à termes positifs : test de comparison
- Séries alternées : test de convergence

- Séries infinies : introduction
- Oritère de divergence
- 3 Séries à termes positifs : test de l'intégrale
- Séries à termes positifs : test de comparison
- Séries alternées : test de convergence

Séries infinies

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 2$$

⇒ une série convergente de somme 2.

Séries infinies: motivation

Question

Tout le monde a vu l'égalité

$$\frac{1}{3} = 0.3333... = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + ...$$

Comment interpréter cette "somme" d'une infinité de termes ?

Question

Comment "montrer" à tort (c'est-à-dire 0 points aux examens) que

•
$$A = 1 - 1 + 1 - 1 + 1 - 1 + \dots$$
 "=" $\frac{1}{2}$?

•
$$B = 1 - 2 + 3 - 4 + 5 - 6 + \dots$$
 "=" $\frac{1}{4}$?

•
$$S = 1 + 2 + 3 + 4 + \dots$$
 "=" $\frac{-1}{12}$?

Qu'est ce qui ne va pas dans l'argument présenté au tableau ?

Séries infinies: motivation

Question

Comment intépréter $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}$?

⇒ on montrera cette belle formule (et plein d'autres) la semaine prochaine en utilisant les séries de Taylor.

Une autre égalité étonnante :

$$\pi = \frac{9801}{2\sqrt{2} \sum_{n=0}^{\infty} \frac{(4n)!}{(n!)^4} \frac{1103 + 26390n}{396^{4n}}}$$

⇒ formulée par Ramanujan en 1910 qui ne fut démontrée qu'en 1985 (on ne va pas la démontrer).

⇒ on montrera que le dénominateur est une série convergente!

Définition (Série infinie)

Soit $\{a_n\}_{n\geq 1}$ une suite. On note $\sum_{n=1}^{\infty} a_n$ ou $\sum a_n$ la **série** associée. Soit s_n sa **n-ième somme partielle** :

$$s_n = \sum_{i=1}^n a_i = a_1 + \cdots + a_n.$$

Si $\lim_{n\to\infty} s_n = s \in \mathbb{R}$, on dit que la série $\sum a_n$ est **convergente de somme s** et on écrit :

$$\sum_{n=1}^{\infty} a_n = s = \lim_{n \to \infty} s_n \quad \text{ou encore} \quad a_1 + \dots + a_n + \dots = s.$$

Si $\{s_n\}$ est divergente, la série est dite **divergente**.

À retenir

- la série $\sum_{n=1}^{\infty} a_n$ converge \iff la suite $\{s_n\}$ converge.
- la série $\sum_{n=1}^{\infty} a_n$ converge vers $s \in \mathbb{R} \iff \lim_{n \to \infty} s_n = s$.

Remarque

- Cette semaine, on va étudier des critères de convergence/devergence des séries.
- Voici les critères à maîtriser pour l'examen intra.

À RETENIR : tests/critères disponibles

Attention : critère = condition suffisante pour conclure une propriété.

- **1** Critère de divergence : $\lim_{n\to\infty} a_n \neq 0 \Longrightarrow \sum a_n$ diverge.
- Série quelconque ⇒ test du rapport, test de Cauchy.
- Série à termes positifs ⇒ tests de comparaison, test de l'intégrale.
- Série alternée
 → test pour les séries alternées.
- **6** Convergence absolue \Longrightarrow convergence : si $\sum |a_n|$ converge, alors $\sum a_n$ converge.
 - Donc on peut penser à (3) en étudiant $\sum |a_n|$.
- 6 Estimation du reste ⇒ test de l'intégrale, test pour les suites alternées.

- Séries infinies : introduction
- 2 Critère de divergence
- 3 Séries à termes positifs : test de l'intégrale
- Séries à termes positifs : test de comparison
- Séries alternées : test de convergence

Critère de divergence

Théorème

Si la série $\sum a_n$ converge, alors $\lim_{n\to\infty} a_n = 0$.

Théorème (Critère de divergence)

Autrement dit, $\lim_{n\to\infty} a_n \neq 0 \implies \sum a_n$ diverge.

Preuve. Soit $s_n = \sum_{i=1}^n a_i$. Si $\sum a_n$ converge vers $s \in \mathbb{R}$ alors $\lim_{n \to \infty} s_n = s$ et aussi $\lim_{n \to \infty} s_{n+1} = s$. Ainsi,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_{n+1} - s_n)$$

$$= \lim_{n \to \infty} s_{n+1} - \lim_{n \to \infty} s_n$$

$$= s - s = 0.$$

Question

Est-ce la réciproque

$$\lim_{n\to\infty} a_n = 0 \implies \sum a_n \text{ converge}$$

est vraie en général?

 \Longrightarrow Non! La condition $\lim_{n\to\infty} a_n = 0$ n'est pas nécessaire pour la divergence de la série $\sum a_n$.

Contre-exemple : on verra que la série harmonique

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

diverge alors que terme général $a_n = \frac{1}{n}$ vérifie $\lim_{n\to\infty} a_n = 0$.

Exemples d'application

Question

Soit $a_n = \frac{n}{2n+1}$. Déterminer si la suite $\{a_n\}$ converge et si la série $\sum_{n=1}^{\infty} a_n$ converge.

Question

Déterminer si $\sum_{n=1}^{\infty} \ln \left(\frac{n^2+1}{2n^2+1} \right)$ est convergente.

Solutions: données au tableau.

Séries géométriques : à retenir

Théorème

Si |r| < 1, la série géométrique $\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ...$ est convergente de somme :

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} = \frac{premier\ terme}{1-raison}.$$

Si $|r| \ge 1$ et $a \ne 0$, la série $\sum_{n=1}^{\infty} ar^{n-1}$ diverge.

Preuve

- Soit $a_n = ar^{n-1}$.
- Cas où $|r| \ge 1$ et $a \ne 0$. Alors $|a_n| = |a||r|^{n-1} \ge |a| > 0$. En particulier, $\lim_{n \to \infty} a_n \ne 0$. Ainsi, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} ar^{n-1}$ diverge d'après le critère de divergence.
- Cas où |r| < 1. Alors $\lim_{n\to\infty} r^n = 0$. Comme $(1-r)(1+r+\cdots+r^{n-1})=1-r^n$, on déduit que :

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=1}^n a r^{n-1} = \lim_{n \to \infty} a \sum_{i=1}^n r^{n-1} = \lim_{n \to \infty} a \frac{1 - r^n}{1 - r}$$
$$= a \frac{1 - 0}{1 - r} = \frac{a}{1 - r}.$$

Exemple

Question

Est-ce que la série $\sum_{n=1}^{\infty} 2^n 3^{1-n}$ converge ? Trouver sa somme.

Question

Est-ce que la série $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ diverge vers ∞ ?

Propriétés

Théorème

Soient $\sum a_n$ et $\sum b_n$ des séries convergentes. Alors on a

- $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$
- $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$
- $\sum_{n=1}^{\infty} (a_n b_n) = \sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$

et les séries $\sum ca_n$, $\sum (a_n + b_n)$ et $\sum (a_n - b_n)$ sont convergentes.

Attention: en général,

$$\sum_{n=1}^{\infty} a_n b_n \neq \left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} b_n\right), \qquad \sum_{n=1}^{\infty} \frac{a_n}{b_n} \neq \frac{\sum_{n=1}^{\infty} a_n}{\sum_{n=1}^{\infty} b_n}.$$

Exemples

Question

Calculer

$$\sum_{n\geq 1} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right).$$

- Séries infinies : introduction
- Oritère de divergence
- 3 Séries à termes positifs : test de l'intégrale
- Séries à termes positifs : test de comparison
- Séries alternées : test de convergence

Test de l'intégrale

Théorème

Soit $f: [1, \infty[\to \mathbb{R} \text{ une fonction } \textbf{continue}, \textbf{positive}, \text{ et } \textbf{décroissante}.$ Pour chaque $n \ge 1$, soit $a_n = f(n)$. Alors on a l'équivalence suivante

la série
$$\sum_{n=1}^{\infty} a_n$$
 converge $\iff \int_{x=1}^{\infty} f(x) dx$ converges.

- On dit que $\int_{x=1}^{\infty} f(x) dx$ converge si la limite $\lim_{a \to \infty} \int_{x=1}^{a} f(x) dx$ existe et finie.
- Ce test est utile si l'intégrale $\int_{x=1}^{\infty} f(x) dx$ est facile à calculer ou estimer.

Application : série de Riemann

Corollaire

La série de Riemann $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge si p > 1 et diverge si $p \le 1$.

Exemples:

- p=1: on obtient la série harmonique $\sum_{n=1}^{\infty} \frac{1}{n}$ qui est divergente.
- p = 2 > 1: la série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge. En fait (hors programme)

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Application

Question

Trouver les valeurs positives de b pour lesquelles la série $\sum_{n=1}^{\infty} b^{\ln n}$ converge.

Solution: donnée au tableau.

Test de l'intégrale : estimation du reste

Théorème

Soit $m \in \mathbb{N}^*$ et soit f une fonction **continue**, **positive**, **décroissante** sur $[m, \infty)$. Soient $a_n = f(n)$ et $s_n = \sum_{k=1}^n a_k$. Supposons que $\sum_{n=1}^\infty a_n = s \in \mathbb{R}$. Soit $R_m = s - s_m$ le reste. Alors

$$\int_{m+1}^{\infty} f(x) dx \le R_m \le \int_{m}^{\infty} f(x) dx.$$

Autrement dit,

$$s_m + \int_{m+1}^{\infty} f(x) dx \le s \le s_m + \int_{m}^{\infty} f(x) dx.$$

Question

Trouver une approximation de $\sum_{n=1}^{\infty} \frac{1}{n^3}$ telle que |erreur| ≤ 0.005 .

- Séries infinies : introduction
- Oritère de divergence
- Séries à termes positifs : test de l'intégrale
- 4 Séries à termes positifs : test de comparison
- Séries alternées : test de convergence

Test de comparison et sa forme limite

Théorème

Soient $\sum a_n$, $\sum b_n$ deux séries à **termes positifs** et soit $n_0 \in \mathbb{N}$

- Si $\sum b_n$ converge et $a_n \le b_n \ \forall n \ge n_0$, alors $\sum a_n$ converge.
- Si $\sum b_n$ diverge et $a_n \ge b_n \ \forall n \ge n_0$, alors $\sum a_n$ diverge.
- Si $L = \lim_{n \to \infty} \frac{a_n}{b_n} \in \mathbb{R}$ existe et L > 0, alors

 $\sum a_n$ converge $\iff \sum b_n$ converge.

 Utile si la série est semblable à celle d'une série de Riemann/série géométrique, e.g., an est une fraction rationnelle/fonction algébrique (avec racines), etc.

Exemple

Question

Déterminer si la série $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converge en utilisant

- a le test de l'intégrale
- b le test de comparaison.

Est-ce que le critère de divergence fonctionne ?

Exemple

Question

Déterminer si la série $\sum_{n=1}^{\infty} \frac{n^2+1}{n^3+2}$ converge.

Application

Question

Montrer que $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$ converge. Soit $s = \sum_{n=1}^{\infty} \frac{1}{n^3+1}$ et $s_m = \sum_{n=1}^m \frac{1}{n^3+1}$. Trouver s_{100} et estimer $|s_{100} - s|$.

Solution: donnée au tableau.

- Séries infinies : introduction
- Oritère de divergence
- 3 Séries à termes positifs : test de l'intégrale
- Séries à termes positifs : test de comparison
- Séries alternées : test de convergence

Test pour les séries alternées

Une série $\sum a_n$ est dite **alternée** si la signe de ses termes s'alterne entre + et -. Par exemple, $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ...$

Théorème

Soit $n_0 \in \mathbb{N}$ et soit $\sum_{n=1}^{\infty} (-1)^n b_n$ une série alternée telle que

- 1 $0 \le b_{n+1} \le b_n$ pour tout $n \ge n_0$;
- $2 \lim_{n\to\infty} b_n = 0.$

Alors $\sum (-1)^n b_n$ converge vers $s \in \mathbb{R}$ et pour tout $m \ge n_0$, on a

$$|s-s_m| \leq b_{m+1}$$

$$où s_m = \sum_{n=1}^m (-1)^n b_n.$$

Exemple

Lemme

La série harmonique alternée

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \dots$$

converge. On verra la semaine prochaine que sa somme est ln 2.

Preuve. En effet, $b_n = \frac{1}{n}$ vérifie

- $0 < b_{n+1} \le b_n$ pour tout $n \ge 1$ et
- $\lim_{n\to\infty} b_n = 0$.

Par le critère de convergence pour les séries alternées, la série harmonique alternée converge.

Application

Question

Déterminer si la série $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}$ est convergente. Est-ce qu'on peut conclure avec le test de divergence ? le test de l'intégrale ? le test de comparaison ?

Question

Soit $s = \sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1} \in \mathbb{R}$. Trouver m telle que la somme partielle $s_m = \sum_{n=2}^{m} \frac{(-1)^{n-1}}{\sqrt{n}-1}$ vérifie

$$|s_m - s| < 0.01$$
.

Récapitulatif

- Critère de divergence : $\lim_{n\to\infty} a_n \neq 0 \Longrightarrow \sum a_n$ diverge.
- Série à termes positifs
 ⇒ tests de comparaison, test de l'intégrale.
- Série alternée ⇒ test pour les séries alternées.
- Estimation du reste ⇒ test de l'intégrale, test pour les suites alternées.

Ce jeudi:

- Série quelconque ⇒ test du rapport, test de Cauchy.
- Convergence absolue \Longrightarrow convergence : si $\sum |a_n|$ converge, alors $\sum a_n$ converge.
 - Donc on peut penser à (3) en étudiant $\sum |a_n|$.
- Exercices d'entrainement.

Question (Questions de révision)

Étudier la convergence des séries suivantes en appliquant un critère/test approprié :

1
$$\sum ne^{-n^2}$$

$$\frac{5^n}{3^n+4^n}$$

$$\sum \frac{1}{n^{1+\frac{1}{n}}}$$

$$\sum (\sqrt[n]{5} - 1)^n$$

8
$$\sum \left(2n^2 + \frac{1}{n^2}\right)$$

9
$$\sum \frac{3n+1}{n+2}$$

$$\int \frac{3n+1}{\sqrt{2n^2+3}}$$

$$\sum \frac{n}{\sqrt[3]{n^5+2}}$$