EE 205003 Session 17

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

Projection onto a line

Q: How do we find a point **p** on the line (determined by vector **a**) that is closest to **b** ?

 ${f p}$: intersection of a line through ${f b}$ that is orthogonal to ${f a}$ (${f P}_1,\,{f P}_2$ have longer distance)

More precisely

```
Think of \mathbf{p} as an approximation of \mathbf{b},
then e = b - p is the error vector
Since p is along the line of a
      \Rightarrow \mathbf{p} = \widehat{x}\mathbf{a} for some \widehat{x}
Also, \mathbf{a} \perp \mathbf{e}
      \Rightarrow \mathbf{a}^{\dagger}(\mathbf{b} - \mathbf{p}) = \mathbf{a}^{\dagger}(\mathbf{b} - \widehat{x}\mathbf{a}) = 0
     \Rightarrow \mathbf{a}^{\mathsf{T}} \mathbf{a} \hat{x} = \mathbf{a}^{\mathsf{T}} \mathbf{b} \Rightarrow \hat{x} = \frac{\mathbf{a}^{\mathsf{T}} \mathbf{b}}{\mathbf{a}^{\mathsf{T}} \mathbf{a}}
Now, we have
     \mathbf{p} = \widehat{x}\mathbf{a} = \mathbf{a}\widehat{x} = \mathbf{a}\frac{\mathbf{a}^{\mathsf{T}}\mathbf{b}}{\mathbf{a}^{\mathsf{T}}\mathbf{a}}
(doubling b doubles p, doubling a dose NOT affect p)
```

Projection Matrix
$$(\mathbf{p} = P\mathbf{b})$$

$$\mathbf{p} = \mathbf{a} \frac{\mathbf{a}^\mathsf{T} \mathbf{b}}{\mathbf{a}^\mathsf{T} \mathbf{a}} = \underbrace{\frac{\mathbf{a} \mathbf{a}^\mathsf{T}}{\mathbf{a}^\mathsf{T} \mathbf{a}}}_{\mathbf{p}} \mathbf{b} \qquad \text{(For 3D)} \\ P = \underbrace{\frac{\mathbf{a} \mathbf{a}^\mathsf{T}}{\mathbf{a}^\mathsf{T} \mathbf{a}}}_{\mathbf{q}} \leftarrow \text{rank-one matrix}$$

(Procedure : Find
$$\widehat{x} \to \mathbf{p} \to P$$
)

Special case I : If
$$\mathbf{b} = \mathbf{a}$$
, $\widehat{x} = 1$

$$\Rightarrow P\mathbf{a} = \mathbf{a}$$
 (projection of a onto a is itself)

Special case II : If
$$\mathbf{b} \perp \mathbf{a}$$
, $\mathbf{a}^{\mathsf{T}} \mathbf{b} = 0$

$$\Rightarrow \mathbf{p} = \mathbf{0}$$

Projection Matrix (p = P**b)** (cont.)

Note 2: rank(P) = 1

Note 3:P is symmetric

$$(P^{\mathsf{T}} = (\frac{\mathbf{a}\mathbf{a}^{\mathsf{T}}}{\mathbf{a}^{\mathsf{T}}\mathbf{a}})^{\mathsf{T}} = \frac{1}{\mathbf{a}^{\mathsf{T}}\mathbf{a}}(\mathbf{a}\mathbf{a}^{\mathsf{T}})^{\mathsf{T}} = \frac{\mathbf{a}\mathbf{a}^{\mathsf{T}}}{\mathbf{a}^{\mathsf{T}}\mathbf{a}} = P)$$

Note 4 : $P^2 = P$

$$(P^2\mathbf{b} = P\mathbf{b} \text{ or } P(P\mathbf{b}) = P\mathbf{b}$$

 \therefore projection of a vector already on ${\bf a}$ is itself)

Note 5 : I - P is also a projection

$$((I - P)\mathbf{b} = \mathbf{b} - \mathbf{p} = \mathbf{e} \text{ in the left nullspace of } \mathbf{a} : \mathbf{a}^{\mathsf{T}} \mathbf{e} = 0)$$

(P : project onto one subspace

I-P: project onto the perpendicular subspace)

Q: Why project?

```
A\mathbf{x} = \mathbf{b} may have no solution always in col. unlikely that \mathbf{b} \in \mathbf{C}(A) space of A

If not, project \mathbf{b} onto \mathbf{p} \in \mathbf{C}(A) then solve A\widehat{\mathbf{x}} = \mathbf{p}
```

Projection onto a Subspace

Projection onto a plane (in \mathbb{R}^3)

```
If \mathbf{a}_1, \mathbf{a}_2 are basis of a plane \Rightarrow the plane is \mathbf{C}(A) of A = [\mathbf{a}_1, \mathbf{a}_2]
```

In general, for a subspace $\mathbf{S} \subseteq \mathbb{R}^m$ with

n independent basis $\mathbf{a}_1, \cdots, \mathbf{a}_n$

 \Rightarrow subspace is $\mathbf{C}(A)$ of $A_{m \times n} = ig[\mathbf{a}_1, \cdots, \mathbf{a}_n ig]$

Problem : Find \mathbf{p} in \mathbf{S} closest to \mathbf{b}

Since
$$\mathbf{p} \in \mathbf{C}(A)$$
, $\mathbf{p} = A\widehat{\mathbf{x}} = \widehat{x}_1\mathbf{a}_1 + \dots + \widehat{x}_n\mathbf{a}_n$ (want to find \widehat{x}_i)

$$\begin{array}{cccc} & \mathbf{p} = A\widehat{\mathbf{x}} & \mathbf{p} \text{ closest to b} \\ & = A(A^TA)^{-1}A^Tb} & \Rightarrow \mathbf{e} = \mathbf{b} - \mathbf{p} \perp \mathbf{S} \\ & \Rightarrow \mathbf{e} = \mathbf{b} - A\widehat{\mathbf{x}} \text{ perpendicular with } \mathbf{a}_1, \dots, \mathbf{a}_n \\ & \mathbf{a}_1^\mathsf{T}(\mathbf{b} - A\widehat{\mathbf{x}}) = 0 \\ & \Rightarrow & \mathbf{a}_2^\mathsf{T}(\mathbf{b} - A\widehat{\mathbf{x}}) = 0 \\ & \vdots & \\ & \mathbf{a}_n^\mathsf{T}(\mathbf{b} - A\widehat{\mathbf{x}}) = 0 \end{array}$$

$$\Rightarrow A^\mathsf{T}(\mathbf{b} - A\widehat{\mathbf{x}}) = 0 \Rightarrow A^\mathsf{T}A\widehat{\mathbf{x}} = A^\mathsf{T}\mathbf{b}$$

$$= (\text{in the null space of } A)$$

Find $\hat{\mathbf{x}}$

$$\widehat{\mathbf{x}} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\mathbf{b}$$
 (Q: Is $A^{\mathsf{T}}A$ invertible ?
Yes, if n columns of A are linear independent) (will prove this later)

Find p

$$\mathbf{p} = A\widehat{\mathbf{x}} = \underbrace{A(A^\intercal A)^{-1}A^\intercal \mathbf{b}}_{\text{projection matrix }P = A(A^\intercal A)^{-1}A^\intercal}_{\text{Find }\widehat{\mathbf{x}} \to \mathbf{p} \to P)}$$

Alternative derivation

- 1. our subspace is $\mathbf{C}(A)$
- 2. error vector $\mathbf{e} = \mathbf{b} A\widehat{\mathbf{x}} \perp \mathbf{C}(A)$
- 3. so ${\bf e}$ in left null space of A

$$(\mathbf{C}(A) \text{ and } \mathbf{N}(A^{\mathsf{T}}))$$
 are orthogonal components)
 $\Rightarrow A^{\mathsf{T}}\mathbf{e} = A^{\mathsf{T}}(\mathbf{b} - A\widehat{\mathbf{x}}) = \mathbf{0}$

$$(\in \mathbf{C}(A)) (\in \mathbf{N}(A^{\mathsf{T}}))$$

Special cases

- 1. $\mathbf{b} \perp \mathbf{C}(A) : \mathbf{b} \in \mathbf{N}(A^{\mathsf{T}}) \& P\mathbf{b} = \mathbf{0}$
- 2. $\mathbf{b} \in \mathbf{C}(A)$: $A\mathbf{x} = \mathbf{b}$ for some \mathbf{x} & and $P\mathbf{b} = \mathbf{b}$

Q: Can we further simplify $P = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$?

$$\begin{split} P &= A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}} = A(A^{-1}(A^{\mathsf{T}})^{-1})A^{\mathsf{T}} \\ &= (AA^{-1})((A^{\mathsf{T}})^{-1}A^{\mathsf{T}}) \\ &= I ? \end{split}$$

Wrong ! A is rectangular $\Rightarrow A$ has no inverse matrix !

Fact
$$P = P^{\mathsf{T}}$$
, $P^2 = P$ (still true for general \mathbf{v})

distance from ${f b}$ to subspace $= \left\| {f e} \right\|$

Fact $\mid A$ is invertible iff A has linear independent columns

pf : First, we want to show that
$$A^{\mathsf{T}}A$$
 and A have same nullspace if \mathbf{x} is in $\mathbf{N}(A)$, then $A\mathbf{x} = \mathbf{0}$
$$\Rightarrow A^{\mathsf{T}}A\mathbf{x} = A^{\mathsf{T}}(\mathbf{0}) = \mathbf{0}$$

$$\Rightarrow \mathbf{x} \text{ in } \mathbf{N}(A^{\mathsf{T}}A)$$
 if \mathbf{x} in $\mathbf{N}(A^{\mathsf{T}}A)$, then $A^{\mathsf{T}}A\mathbf{x} = \mathbf{0}$
$$\Rightarrow \mathbf{x}^{\mathsf{T}}A^{\mathsf{T}}A\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{0} = 0$$

$$\Rightarrow \|A\mathbf{x}\|^2 = 0 \Rightarrow A\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} \in \mathbf{N}(A)$$
 So A & and $A^{\mathsf{T}}A$ have same nullspace Now, if A has independent columns then $\mathrm{rank}(A) = n \Rightarrow \mathbf{N}(A) = \{\mathbf{0}\}$
$$\Rightarrow \mathbf{N}(A^{\mathsf{T}}A) = \{\mathbf{0}\} \Rightarrow A^{\mathsf{T}}A \text{ is invertible}$$

If $A^{\mathsf{T}}A$ is invertible, then $A^{\mathsf{T}}A$ has independent columns

$$\Rightarrow \mathbf{N}(A^{\mathsf{T}}A) = \{\mathbf{0}\} \Rightarrow \mathbf{N}(A) = \{\mathbf{0}\}\$$

 $\Rightarrow A$ has independent columns

Ex3: (on p.211, textbook)

If
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$, find $\widehat{\mathbf{x}}$, $\mathbf{p} \ \& \ P$

Normal equation :

$$A^{\dagger}A\widehat{\mathbf{x}} = A^{\dagger}\mathbf{b}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \widehat{\mathbf{x}} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} \widehat{x}_1 \\ \widehat{x}_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \Rightarrow \widehat{\mathbf{x}} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$

Ex3: (on p.211, textbook) (cont.)

$$\mathbf{p} = A\widehat{\mathbf{x}} = 5 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$$

$$\mathbf{e} = \mathbf{b} - \mathbf{p} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 (indeed \perp both columns of A)

To find \mathbf{p} for every \mathbf{b} , we need P

$$P = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$$

$$(A^{\mathsf{T}}A)^{-1} = \frac{1}{6} \begin{bmatrix} 5 & -3 \\ -3 & 3 \end{bmatrix} \Rightarrow P = \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$

(check :
$$P$$
b = **p** & $P^2 = P$, $P^T = P$)