- 1. The applied electric field in p-type silicon is E = 15 V/cm. The semiconductor conductivity is $\sigma = 2.2 \ (\Omega cm)^{-1}$ and the cross sectional area is $A = 10^{-4} cm^2$. Determine the drift current in the semiconductor.
- 2. The required conductivity of a semiconductor material must be $\sigma=0.5~(\Omega-cm)^{-1}~$. What must be the concentration of donor impurities in the semiconductor?
- 3. The hole concentration in the semiconductor is given by

$$p(x) = 10^4 + 10^{15} \exp\left(-\frac{x}{L_p}\right)$$
 $x \ge 0$

The value of L_p is $10~\mu m$. The hole diffusion coefficient is $D_p=15~cm^2/s$. Determine the hole diffusion current density at (a) x=0, (b) $x=10~\mu m$ and (c) $x=30~\mu m$.

4. The cut-in voltage of the diode shown in the circuit in the Figure 1 is $V_{\gamma}=0.7~V$. The diode is to remain biased "on" for a power supply voltage in the range $5 \leq V_{PS} \leq 10V$. The minimum diode current is to be $I_{D(min)}=2~mA$. The maximum power dissipated in the diode is to be no mere than 10~mW. Determine appropriate values of $R_1~and~R_2$.

Fig.1

5. Assume each diode in the circuit shown in the Figure 2 has a cut-in voltage of $V_{\gamma}=0.65~V$. (a) The input voltage is $V_I=5~V$. Determine the value of R_1 required such that I_{D1} is one-half the value of I_{D2} . What are the values of I_{D1} and I_{D2} ? (b) If $V_1=8~V$ and $R_1=2~k\Omega$, determine I_{D1} and I_{D2} .

Fig.2

6. The diode in the circuit shown in the Figure 3 is biased with a constant current source I. A sinusoidal signal v_s is coupled through R_s and C. Assume that C is large so that it acts as a short circuit to the signal. (a) Show that the sinusoidal component of the diode voltage is given by $v_0 = v_s \left(\frac{V_T}{V_S} \right)$.

7. Consider the Zener diode circuit shown in Figure 4. The Zener breakdown voltage is $V_Z=5.6~V$ at $I_Z=0.1~mA$, and the incremental Zener resistance is $r_Z=10~\Omega$. (a) Determine V_O with no load $(R_L=\infty)$ (b) Find the change in the output voltage if V_{PS} changes by $\pm 1V$. (c) Find V_O if $V_{PS}=10~V$ and $R_L=2~k\Omega$.

Fig.4

8. Design a circuit to produce the characteristics shown in figure, where v_0 is an output voltage and v_I is the input voltage.

