Asignación 1: Introducción al lenguaje R

Dr. Marco Aurelio González Tagle 05 /08/ 2019

Índice

Objetivo	1
Indicaciones	1
Importar datos de trabajo	1
Selección de datos	3
Visualización de datos	4
Estadísticas básicas	4
Líneas de comando en R	4
Referencias	5

Objetivo

El objetivo de la siguiente asignación es la selección de un conjunto de datos en R mediante restricciones.

Indicaciones

Realice las actividades indicadas en los siguientes apartados de la actividad 1. Recuerde que el script debe estar 100% funcional y compilado en formato html o pdf.

Importar datos de trabajo

Los datos de trabajo provienen del libro Introductory probability & statistics, applications for forestry & natural sciences de Kozak et al. (2008). El Cuadro 1 muestra un ejemplo de datos coletados de 50 árboles con siete variables. (i) Árbol se refiere al número de árbol, (ii) Fecha: mes decolecta en Marzo 2006; (iii) Especies: C: Cedro Rojo (Western red cedar); F: Douglasia verde (Douglas fir); H: Tsuga heterófila (western hemlock); (iv) Posición: clasificación de la copa: D: Dominante, C: codominate, I: Intermedio, S: suprimido; (v) Vecinos: número de vecinos en un radio de 5m; (vi) Diámetro: diámetro a la altura de pecho (1.3m); (vii) Altura total.

Cuadro 1: Conjunto de datos que contiene información colectada de 50 árboles.

Árbol	Fecha	Especie	Posición	Vecinos	Diámetro	Altura
1	12	F	С	4	15.3	14.78
2	12	\mathbf{F}	D	3	17.8	17.07
3	9	\mathbf{C}	D	5	18.2	18.28
4	9	H	S	4	9.7	8.79

$\overline{\text{Árbol}}$	Fecha	Especie	Posición	Vecinos	Diámetro	Altura
5	7	Н	I	6	10.8	10.18
6	10	\mathbf{C}	I	3	14.1	14.90
7	10	\mathbf{C}	\mathbf{C}	2	17.1	15.34
8	12	\mathbf{C}	D	2	20.6	17.22
9	16	\mathbf{F}	\mathbf{C}	4	18.2	15.15
10	14	\mathbf{F}	I	5	16.1	14.66
11	8	H	D	3	14.2	17.43
12	5	H	D	6	14.8	17.45
13	12	\mathbf{F}	I	2	19.1	14.18
14	5	\mathbf{C}	I	2	16.7	13.40
15	12	С	\mathbf{S}	4	18.9	10.40
16	20	Н	\mathbf{S}	3	12.4	11.52
17	15	Н	\mathbf{C}	0	17.3	14.61
18	20	\mathbf{F}	D	1	22.7	21.46
19	15	С	\mathbf{C}	4	15.1	17.82
20	14	С	I	3	17.7	11.38
21	14	\mathbf{C}	\mathbf{S}	5	13.4	8.50
22	13	\mathbf{C}	I	4	16.2	12.8
$\frac{-}{23}$	14	F	D	1	18.5	18.71
$\frac{1}{24}$	20	$\overline{\mathrm{F}}$	I	4	15.0	14.48
25	$\frac{21}{21}$	$\overline{\mathrm{F}}$	$\overline{\mathrm{C}}$	2	18.8	14.81
26	5	H	I	4	15.8	12.01
$\frac{1}{27}$	$\overline{2}$	H	Ī	3	16.1	11.70
28	$\overline{22}$	$\overline{\mathbf{C}}$	$\overline{\mathrm{C}}$	3	15.4	16.03
29	22	\mathbf{C}	I	0	17.8	14.46
30	18	C	S	1	18.5	8.47
31	16	\mathbf{C}	I	3	14.1	11.22
32	16	\mathbf{C}	\mathbf{C}	5	14.8	12.34
33	17	\mathbf{F}	\mathbf{C}	4	15.5	16.79
34	17	\mathbf{F}	I	6	13.8	16.06
35	18	\mathbf{F}	\mathbf{S}	4	13.0	13.20
36	20	H	\mathbf{C}	2	18.2	14.30
37	22	H	\mathbf{C}	0	22.3	16.84
38	20	H	I	3	17.8	13.84
39	17	\mathbf{C}	I	4	13.1	11.31
40	17	\mathbf{C}	I	6	12.8	13.20
41	16	C	\mathbf{C}	3	13.3	13.75
42	23	F	\mathbf{C}	3	15.6	14.60
43	$\frac{23}{23}$	H	$\dot{\mathrm{C}}$	4	16.6	12.56
44	22	C	I	5	13.0	10.88
45	24	$\overset{\circ}{\mathrm{C}}$	I	4	10.2	13.93
46	23	F	Ī	3	14.4	12.68
						10.00
						8.69
						16.73
						16.25
46 47 48 49 50	23 24 25 25 24	C C H H	S S D D	6 5 1 3	7.7 9.9 20.4 20.9	10. 8.6 16.

- Ingresar los datos del inventario del cuadro 1 a Excel (omitir acentos en Excel).
- \blacksquare Importar la base de datos a excel a R en un objeto llamada conjunto.

Figura 1: Guardar los datos de Excel en formato .csv para importar los datos a la consola de R.

• El objeto conjunto debe contener 7 variables y 50 observaciones para realizar sus actividades.

Selección de datos

- Aplicar la función subset para la variable Altura de acuerdo a las siguintes indicaciones:
 - Incluir los datos iguales o menores a la media (objeto en R se llame: H.media)
 - Incluir los datos menores a 16.5 m (objeto en R se llame: H.16)
- Aplicar la función subset para la variable Vecinos
 - Incluir los árboles que tengan un número de vecinos iguales o menores a 3 (Objeto en R: Vecinos-3)
 - Incluir los árboles que tengan un número de vecinos mayores a 4 (Objeto en R: 'Vecinos-4)
- Aplicar la función subset para la variable Diametro
 - Incluir los diámetros menores a la media (objeto en R: DBH-media)
 - Incluir los diámetros mayores a 16 (Objeto en R DBH-16)
- Aplicar la función subset para la variable Especie
 - Incluir la especie Cedro Rojo
 - Incluir la especie Tsuga heterófila y Douglasia verde
- Determinar cuantas observaciones son menores o iguales a 16.9 cm de Diamtero
- Determinar cuantoas observacions son mayores a18.5 metros de Altura

Visualización de datos

Con la función hist generar los histogramas para los objetos creados en el apartado anterior

- Altura, H.media y H.16
- Vecinos, Vecinos-3, Vecinos-4
- Diametro, DBH-media, DBH-16

Estadísticas básicas

Determinar la media (mean) de los objetos (variable y respectivos subsets), así como su desviación estándar (sd).

- Altura, H.media y H.16
- Vecinos, Vecinos-3, Vecinos-4
- Diametro, DBH-media, DBH-16

Líneas de comando en R

Los datos pueden descargarse del servidor de dropbox utilizando la paquetería repmis utilizando el siguiente código

```
library(repmis)

## Registered S3 method overwritten by 'R.oo':

## method from

## throw.default R.methodsS3

conjunto <- source_data("https://www.dropbox.com/s/hmsf07bbayxv6m3/cuadro1.csv?dl=1")

## Downloading data from: https://www.dropbox.com/s/hmsf07bbayxv6m3/cuadro1.csv?dl=1

## SHA-1 hash of the downloaded data file is:

## 2bdde4663f51aa4198b04a248715d0d93498e7ba

head(conjunto)

### Arbel Fasha Egnesia Class Vasines Diametro Alture</pre>
```

```
##
     Arbol Fecha Especie Clase Vecinos Diametro Altura
## 1
         1
               12
                        F
                               С
                                              15.3
                                                    14.78
                        F
## 2
         2
               12
                                        3
                                              17.8 17.07
                               D
                        С
## 3
         3
                9
                               D
                                        5
                                              18.2
                                                    18.28
## 4
         4
                9
                        Η
                               S
                                        4
                                               9.7
                                                      8.79
                7
                        Η
## 5
         5
                               Ι
                                        6
                                              10.8
                                                    10.18
                        С
## 6
         6
               10
                               Ι
                                        3
                                              14.1
                                                    14.90
```

O se pueden importar guardando los datos en Excel y despues importarlos

```
conjunto <- read.csv("cuadro1.csv", header=TRUE)</pre>
```


Referencias

Kozak, A, RA Kozak, CL Staudhammer, and SB Watte. 2008. Introductory Probability &; Statistics. Applications for Forestry & the Natural Sciences. Cambridge: Cambridge University Press.