$f(x) = 2.x^2 + 10.x + 1$

Polynôme du 2nd degré

Fonction polynomiale:

Une fonction f définie sur \mathbb{R} est qualifiée de polynomiale d'ordre 2 s'il existe $(a,b,c) \in \mathbb{R}^* \times \mathbb{R}^2$ tels que :

$$f(x) = ax^2 + bx + c$$

Représentation graphique :

Équation du 2nd degré :

Soit $(a,b,c) \in \mathbb{R}^* \times \mathbb{R} \times \mathbb{R}$, une équation du 2^{nd} degré est de la forme :

$$ax^2 + bx + c = 0$$

Discriminant:

Le discriminant de f(x) se note Δ et est donnée par :

$$\Delta = b^2 - 4ac$$

- $\Delta < 0$, alors l'équation $ax^2 + bx + c = 0$ n'a pas de solutions dans \mathbb{R} .
- $\Delta=0$, l'équation $\mathrm{ax^2+bx+c}=0$ a 1 solution dans \mathbb{R} : $x_0=\frac{-b}{2a}$
- $\Delta > 0$, l'équation $ax^2+bx+c=0$ admet 2 solutions dans \mathbb{R} .

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Exemples:

$$f_1(x) = x^2 + 4x - 5$$

On calcul le discriminant :

$$\Delta = 4^2 - 4 \times 1 \times (-5) = 36$$

 $\Delta > 0$, $f_1(x)$ admet 2 racines réelles :

$$x_1 = -5$$
 et $x_2 = 1$

$$f_2(x) = 6x^2 + 4x + 1$$

On calcul le discriminant :

$$\Delta = 4^2 - 4 \times 6 \times 1 = -8$$

 Δ < 0, f₂(x) n'admet aucunes racines réelles.

définition

propriété

méthode

exemple

Polynôme du 2nd degré

Variation de f(x):

Les variations et le signe de celle-ci sur son domaine de définition peuvent être synthétisés dans un tableau

X	$-\infty$	x_1	α	x_2	$+\infty$
signe	signe a	þ	signe -a	\Diamond	signe a
f(x) a > 0	$+\infty$	- 0 -	β	0-	+∞
f(x) a < 0	$-\infty$	_ 0 _	β	_ 0-	\longrightarrow $-\infty$

$$\alpha = \frac{-b}{2a}$$
 $\beta = f(\alpha)$

Différents scénarios de variation de f(x) :

En fonction du signe du coefficient "a" et du discriminant, on peut distinguer 6 cas :

propriété

méthode

