Version 4.34.14 ** 11:55 ** 21-08-2024

PACE4

modified JULIAN

projection angular-momentum coupled evaporation Monte Carlo code angular distributions obtained using M-states of angular momentum

****** Fusion xsection taken from Bass model

Bass fusion xsection for E = 333 MeV is 813.592 mb

Fusion radius = 9.8 fm. Barrier height is 60.3074 MeV

Transmission probability for a one-dimens. barrier: Classical

Starting conditions

	Z	N	A	Spin
Projectile	36	48	84	1 0
Target	13	14	27	7 0
Compound nucleus	49	62	11	1
Bombarding energy (I	MeV)			333.00
Center of mass energ	y (MeV)		81.00
Compound nucleus e.	xcitatior	n energy (N	1eV)	69.756
Q-value of reaction (N	/leV)			-11.244
Compound nucleus re	ecoil en	ergy (MeV)		252.000
Compound nucleus re	ecoil vel	ocity (cm/n	s)	2.095e+00
Compound nucleus ve	elocity/c	;		6.982e-02
Beam velocity (cm/ns)			2.768e+00
Beam velocity/c				9.226e-02

Experimental fusion cross section (mb) 8.14e+02
Fusion L-grazing 44.64
Fusion L-diffuseness 2.00
Yrast spin at maximum excitation energy 72

Compound nucleus formation cross section (mb) 8.13e+02

			Partia	cros	s section	s (m	b)		
J	SIG(J)	J	SIG(J)	J	SIG(J)	J	SIG(J)	J	SIG(J)
0	0.4	12	9.9	24	19	36	29	48	6
1	1.2	13	11	25	20	37	29	49	4
2	2	14	12	26	21	38	29	50	2.6
3	2.8	15	12	27	22	39	30	51	1.6
4	3.6	16	13	28	23	40	29	52	1
5	4.4	17	14	29	23	41	28	53	0.64
6	5.2	18	15	30	24	42	27	54	0.4
7	6	19	15	31	25	43	24	55	0.25
8	6.7	20	16	32	26	44	20	56	0.15
9	7.5	21	17	33	27	45	16	57	0.094
10	8.3	22	18	34	27	46	12	58	0.058
11	9.1	23	19	35	28	47	8.9		

^{***}Spherical nucleus level density

^{***} Little-A = MASS / 10

Energy range for	neutron	proton	alpha	gamma
minimal	0.01	1.10	2.19	0.00
minimal	40.00	30.74	55.84	20.00

^{***} Input transmission coefficients determined by input value of TL diffuseness.

^{***} diffuseness = 2.00

^{***} Optical model input calculation bypasses. *******

^{***} Input fission barrier = 48.72 MeV at L=0 taken from Sierk

^{***} G.S. little A multiplied by factor 1 to obtain saddle level density

^{***} No fission calculation for barrier above 30 MeV

Number of cascades is 1000

Optical model parameters for light emitted particles

V	*E	*E**2	R0R	ARD	R0C	W0	*E	*E**2	R01	AID	RMCHD	NPD	IMAG	IRAD
47.010	-0.267	-0.002	1.276	0.660	0.000	9.520	-0.053	0.000	1. 26874	0.48	0.000	250.000	SURF	1.000
55.299	-0.550	0.000	1.250	0.650	1.250	13.500	0.000	0.000	1.25	0.47	0.000	250.000	SURF	1.000
50.000	0.000	0.000	7.392	0.576	5.622	14.655	0.000	0.000	7. 39202	0.576	0.000	250.000	VOL	0.000

E.M. Transition strengths in Weisskopf units

E1 = 0.000014 M1 = 0.010000 E2 = 5.900000 M2 = 0.000880

Output results for compound nucleus decay

1. Yields of residual nuclei

Z	N	Α	events	percent	x-section(mb)
49	59	108 In	2	0.2%	1.63
49	58	107 In	162	16.2%	132
48	59	107 Cd	93	9.3%	75.7
47	60	107 Ag	13	1.3%	10.6
49	57	106 In	197	19.7%	160
48	58	106 Cd	258	25.8%	210
47	59	106 Ag	13	1.3%	10.6
46	60	106 Pd	1	0.1%	0.813
49	56	105 In	3	0.3%	2.44
47	57	104 Ag	106	10.6%	86.2
46	58	104 Pd	30	3%	24.4

^{***} Internal probability discriminator of program set to 0.002

^{***} Gilbert - Cameron spin cutoff parameter used

47	56	103	Ag	85	8.5%	69.1
46	57	103	Pd	16	1.6%	13
45	56	101	Rh	13	1.3%	10.6
44	57	101	Ru	1	0.1%	0.813
45	55	100	Rh	6	0.6%	4.88
43	55	98	Тс	1	0.1%	0.813
TOTAL				1000	100	813.499

2. Angular distribution results

2.1 Energy and angular distribution of residual nucleus Z = 49 and N = 58 (107ln)

Residual velocity/c Vz = 7.24e-02(sig = 1.16e-03) rms Vxy = 1.56e-03

Energ								Ang	ular ra	ange (d	deg)							
y Rang e																		
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 186																		
222 - 226	1																	
226 - 230	1	1																
230 - 234	5	5																
234 - 238	11	13	1															
238 - 242	13	11	2															
242 - 246	12	13	5															
246 - 250	16	14	1															
250 - 254	6	10	1															
254 - 258	5	5																

^{***} Spin alignment perpendicular to recoil axis - standard compound nucleus angular distribution

258 - 262	3	5																
262 - 266	2																	
Abov e 302																		
Total	75	77	10															
dSig/ dOm eg	6. 4e+0 4	2. 2e+0 4	1. 7e+0 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 186																		
186 - 248	50	52	9															
248 - 310	25	25	1															
Abov e 310																		

2.2 Energy and angular distribution of residual nucleus Z = 48 and N = 59 (107Cd)

Residual velocity/c Vz = 7.25e-02(sig = 1.40e-03) rms Vxy = 1.66e-03

Energ y Rang e								Ang	ular ra	inge (d	leg)							
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 186																		
226 - 230	4	2	2															
230 - 234	8	3																
234 - 238	5	6	2															
238 - 242	5	6	2															
242 - 246	6	6	3															
246 - 250	3	6	1															
250 -	3	3	1															

254																		
254 - 258	3	4																
258 - 262	4	2	1															
262 - 266	2																	
Abov e 302																		
Total	43	38	12															
dSig/ dOm eg	3. 7e+0 4	1. 1e+0 4	2e+0 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 186																		
186 - 248	30	25	10															
248 - 310	13	13	2															
Abov e 310																		

2.3 Energy and angular distribution of residual nucleus Z = 49 and N = 57 (106In)

Residual velocity/c Vz = 7.09e-02(sig = 1.09e-03) rms Vxy = 1.41e-03

Energ								Ang	ular ra	nge (d	deg)							
y Rang e																		
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 186																		
222 - 226	1																	
226 - 230	6	3																
230 - 234	12	7																
234 - 238	14	10	1															
238 - 242	18	22	3															

242 - 246	21	12	2															
246 - 250	19	14																
250 - 254	10	12																
254 - 258	5	2																
258 - 262		3																
Abov e 302																		
Total	106	85	6															
dSig/ dOm eg	9e+0 4	2. 4e+0 4	1e+0 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 186																		
186 - 248	84	61	6															
248 - 310	22	24																
Abov e 310																		

2.4 Energy and angular distribution of residual nucleus Z = 48 and N = 58 (106Cd)

Residual velocity/c Vz = 7.26e-02(sig = 1.24e-03) rms Vxy = 1.50e-03

Energ								Ang	ular ra	nge (d	deg)							
y Rang e																		
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 186																		
222 - 226	1	2																
226 - 230	8	7																
230 - 234	12	8	3															
234 -	20	20	1															

																		_
238																		
238 - 242	23	26	2															
242 - 246	19	18	2															
246 - 250	15	21	2															
250 - 254	13	11	1															
254 - 258	5	5	2															
258 - 262	6	2																
262 - 266	1																	
266 - 270	2																	
Abov e 302																		
Total	125	120	13															
dSig/ dOm eg	1. 1e+0 5	3. 4e+0 4	2. 2e+0 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 186																		
186 - 248	88	91	10															
248 - 310	37	29	3															
Abov e 310																		

2.5 Energy and angular distribution of residual nucleus Z = 47 and N = 57 (104Ag)

Residual velocity/c Vz = 7.02e-02(sig = 2.23e-03) rms Vxy = 2.98e-03

Energ y Range								Ang	jular ra	ange (deg)							
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 186																		
206 -		1																

dOm 5e+0 2e+0 7e+0 6e+0 eg 3 3 3 3 3 0 - 186			_												_	_			
214	210																		
218 218 2 2 3 0		2		1															
222		1	4		1														
226			2	3															
230		1	3	3	2														
234			2	2	3														
238		1		6	3														
242	234 - 238		3	5	2														
246 1 2 6 2 8 8 8 7 2 6 2 95 0.00			3	2	3	1													
250 - 254				4	3														
254 - 2 3 3 3		1	2	6	2														
258 - 262 - 2 5			1	4	2														
262 - 266		2	3	3															
266	258 - 262		2	5															
270 1	262 - 266		1																
Abov e 302 Total 10 29 45 21 1		1	2	1															
e 302 Image: square squar	270 - 274	1																	
dSig/ 8. dOm 5e+0 3 3 3 3 3 95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0																			
dOm 5e+0 2e+0 7e+0 6e+0 eg 3 3 3 3 3	Total	10	29	45	21	1													
186	dOm	5e+0	2e+0	7e+0	6e+0	95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
186 - 5 20 29 18 1 248 1		5	20	29	18	1													
248 - 5 9 16 3 310		5	9	16	3														
Abov e 310	Abov e 310																		

2.6 Energy and angular distribution of residual nucleus Z = 46 and N = 58 (104Pd)

Residual velocity/c Vz = 7.14e-02(sig = 2.10e-03) rms Vxy = 2.92e-03

Energ y								Ang	ular ra	nge (d	leg)							
Rang e																		
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 186																		
206 - 210	1																	
214 - 218	1																	
218 - 222			1	1														
222 - 226		2	1															
226 - 230			1															
230 - 234		1	2															
234 - 238		1		3														
238 - 242	1		1															
242 - 246		1		1														
246 - 250	1			1														
250 - 254			3															
254 - 258	1	1	2															
258 - 262			1															
262 - 266			1															
Abov e 302																		
Total	5	6	13	6														
dSig/	4.	1.	2.	7.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

dOm eg	3e+0 3	7e+0 3	2e+0 3	3e+0 2							
0 - 186											
186 - 248	4	5	6	6							
248 - 310	1	1	7								
Abov e 310											

2.7 Energy and angular distribution of residual nucleus Z = 47 and N = 56 (103Ag)

Residual velocity/c Vz = 7.19e-02(sig = 2.12e-03) rms Vxy = 2.48e-03

Energ								Ang	ular ra	inge (d	deg)							
y Rang e																		
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 186																		
202 - 206		1																
210 - 214	2	1																
214 - 218		2																
218 - 222		3	1															
222 - 226		1	2	1														
226 - 230	2	3	6	1														
230 - 234		5	2	1														
234 - 238		1	2	1														
238 - 242		1	1	1														
242 - 246		3	4															
246 -	1	1	5	1														

250																		
250 - 254	2	5	3															
254 - 258	3	6	2	2														
258 - 262	2	2																
262 - 266	2																	
Abov e 302																		
Total	14	35	28	8														
dSig/ dOm eg	1. 2e+0 4	9. 9e+0 3	4. 8e+0 3	9. 7e+0 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 186																		
186 - 248	4	22	22	6														
248 - 310	10	13	6	2														
Abov e 310																		

2.8 Energy and angular distribution of ALL residual nuclei

Energ								Ang	ular ra	ange (deg)							
y Range																		
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 186																		
194 - 198			1															
202 - 206	1	2																
206 - 210	1	1	1															
210 - 214	4	2	1	1														
214 - 218	2	6	2	1														
218 - 222		5	6	2														

222 - 226	4	8	6	4	1													
226 - 230	22	19	12	4														
230 - 234	39	31	16	5														
234 - 238	51	57	17	7														
238 - 242	63	76	15	4	1	1												
242 - 246	61	56	21	4														
246 - 250	56	63	17	4														
250 - 254	35	45	14	2														
254 - 258	25	26	10	3														
258 - 262	15	16	7															
262 - 266	7	2	2															
266 - 270	3	2	1															
270 - 274	1																	
Abov e 302																		
Total	390	417	149	41	2	1												
dSig/ dOm eg	3. 3e+0 5	1. 2e+0 5	2. 5e+0 4	5e+0 3	1. 9e+0 2	77	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 186																		
186 - 248	275	296	109	35	2	1												
248 - 310	115	121	40	6														
Abov e 310																		

Neutron spectra in laboratory coordinates 3847 events

Ener								Ang	ular ra	ange (d	deg)							
gy range																		
(MeV)	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170

	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
0-1	2		6	15	23	39	49	45	29	30	22	21	21	10	8	4	4	
1 - 2	2	3	8	8	23	80	58	52	53	34	14	20	15	13	5	7	6	
2 - 3	10	2	8	19	41	87	64	41	41	20	10	7	9	2	3		2	1
3 - 4	1	6	6	28	84	75	50	33	32	17	11	5	1	2	1		2	
4 - 5		7	16	59	72	65	40	24	15	6	6	4	1					
5 - 6	2	17	49	77	50	55	27	14	15	5	4	3	1					
6 - 7	11	28	69	71	56	36	26	10	6	4	2	2						
7 - 8	22	58	84	49	35	25	18	10	5	3								
8 - 9	22	56	51	54	43	22	9	11	4	1	1							
9 - 10	8	33	52	54	26	14	10	3		1		1						
10 - 11	14	38	34	45	22	9	8	2	2									
11 - 12	11	25	38	23	18	6	5	3	2	2								
12 - 13	5	15	25	18	17	2	1	1	2	1								
13 - 14	5	32	22	5	8	5	2											
14 - 15	5	12	10	14	7	4	1											
15 - 16	5	10	5	6	4	3		2										
16 - 17	3	7	5	6	2	1	2	2										
17 - 18	1	3	6	5	1	1												
18 - 19	2	1	7	2		1												
19 - 20		4	2	1														
20 - 21	1	2	5	2														
21 - 22			3		1													
22 - 23	2		1	2														
23 - 24	1					2												
24 - 25	1			1			1											
25 - 26			1	1														
26 - 27	1		1															
27 -				1														

28																		
Abov e 30		1																
Total	137	360	514	566	533	532	371	253	206	124	70	63	48	27	17	11	14	1
dSig/ dOm ega	1166 .51	1032 .21	902. 552	732. 281	559. 355	481. 929	303. 754	194. 351	153. 431	92.3 52	53.7 644	51.5 667	43.4 643	28.3 183	21.9 757	19.2 908	40.0 528	8. 4573 5
0 - 5	15	18	44	129	243	346	261	195	170	107	63	57	47	27	17	11	14	1
5 - 10	65	192	305	305	210	152	90	48	30	14	7	6	1					
10 - 20	51	147	154	125	79	32	19	10	6	3								
Abov e 20	6	3	11	7	1	2	1											

Proton spectra in laboratory coordinates 453 events

Ener		u III iai	Jorator	y COOIC	dinates	700 6	venta	Λnc	gular ra	ango /	dou)							
gy								Ang	Julai 1	ange (ueg)							
range																		
(MeV)	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
0 - 1													1					
1 - 2												3			3	2	1	
2 - 3									1	5	3	4	4	2	1	1		1
3 - 4							2	1	5	9	3	6	3	4		2		
4 - 5						1	1	3	7	7	5	3	4	2	1			
5 - 6						1	6	6	8	6	2	2			1	1		
6 - 7						1	2	3	3	4	1		1					
7 - 8					1	2	7	8	4		3	1						
8 - 9					1	3	6	6				1						
9 - 10			1	2	2	3	7	5	3	1		1						
10 - 11				1	3	8	1	6	2	2								
11 - 12			3	1	9	4	5	2	4									
12 - 13		1	2	3	4	9	3											
13 - 14		4	3	5	5	3		4										
14 - 15		2	4	3	6	5	4	2	1									
15 - 16		7	3	2	1	1												
16 - 17	1	3	5	8	2	1												
17 -	3	2	6	5	5		İ			İ		İ			İ			

18																		
18 - 19	1	3	4	1														
19 - 20		3	4	4	1													
20 - 21		2	1	3														
21 - 22	1	6	1	1														
22 - 23		1	2															
23 - 24	1	1	2	1														
24 - 25	1	1	3	2														
25 - 26		1		1														
27 - 28		1																
28 - 29		1																
29 - 30				1														
Abov e 30			1															
Total	8	39	45	44	40	42	44	46	38	34	17	21	13	8	6	6	1	1
dSig/ dOm ega	68.1 172	111. 823	79.0 172	56.9 264	41.9 779	38.0 47	36.0 248	35.3 365	28.3 029	25.3 223	13.0 571	17.1 889	11.7 716	8. 3906	7. 7561 3	10.5 223	2. 8609 2	8. 4573 5
0 - 5						1	3	4	13	21	11	16	12	8	5	5	1	1
5 - 10			1	2	4	10	28	28	18	11	6	5	1		1	1		
10 - 20	5	25	34	33	36	31	13	14	7	2								
Abov e 20	3	14	10	9														

Alpha spectra in laboratory coordinates 280 events

Energ								ngulai	r range	(dea)								
y		Angular range (deg)																
(MeV)	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
0 - 1												1	2	2				
1 - 2									1		4	3	1					
2 - 3										1	3	3						
3 - 4										1	3	2	1					

														_		
4 - 5								2	2	1	1	1				
5 - 6									3	1	2	1	1			
6 - 7								1	1			1				
7 - 8								4	2	1						
8 - 9								4	4	2						
9 - 10							1	4	1							
10 - 11							1	2	3							
11 - 12							4	4	1	1						
12 - 13								4	2							
13 - 14						1	3	2								
14 - 15						3		2								
15 - 16						2	3	2	1							
16 - 17						2	4									
17 - 18						6	1	3								
18 - 19						2	2									
19 - 20						2		1								
20 - 21					1	2	2									
21 - 22					1	4										
23 - 24					3		2	1								
24 - 25					3	3										
25 - 26					8											
26 - 27				2	2	1										
27 - 28				1	2	1										
28 - 29				4	4	1										
29 - 30			1	2	5											
Abov e 30	7	26	20	27	10	1										

Total	7	26	21	36	39	31	23	36	21	8	13	12	5	2				
dSig/ dOme ga	59.6 025	74.5 483	36.8 747	46.5 761	40.9 284	28.0 823	18.8 311	27.6 547	15.6 411	5. 9582	9. 9848 2	9. 8222 2	4. 5275 3	2. 0976 5	0	0	0	0
0 - 5								2	3	3	11	10	4	2				
5 - 10							1	13	11	4	2	2	1					
10 - 20						18	18	20	7	1								
Abov e 20	7	26	21	36	39	13	4	1										

Gamma ray spectrum 8403 events

Emission from unbound and bound states(*), and total gamma ray spectrum

(*) note that emission of a particle from an unbound state is not allowed in the code if Ecm is less than Emin

Energy range (MeV)	Unbound	Bound	TOTAL
0 - 1	0	693	693
1 - 2	5140	2570	7710
Total	5140	3263	8403

7.8 percent of cascades trapped before reaching ground state due to spin inhibition

Average energy at which cascades were trapped is 0.5 MeV, average spin = 5.51282 hbar

----- C.M. spectra of emitted particles -----

Ex(MeV)	Neut	Prot	Alpha	Gamma
0 - 1	112			693
1 - 2	798			7710
2 - 3	871			
3 - 4	670	5		
4 - 5	503	17		
5 - 6	338	48		
6 - 7	212	74		

^{****} successive decays through single yrast cascade assumed

7 - 8	115	77		
8 - 9	71	71		
9 - 10	60	58	1	
10 - 11	34	36	9	
11 - 12	23	26	14	
12 - 13	10	18	36	
13 - 14	12	10	44	
14 - 15	6	8	43	
15 - 16	6	3	39	
16 - 17	1		24	
17 - 18			16	
18 - 19	4	2	14	
19 - 20			7	
20 - 21			16	
21 - 22	1		6	
22 - 23			3	
23 - 24			3	
24 - 25			3	
25 - 26			1	
26 - 27			1	
Total	3847	453	280	8403
Average Energy	3.77242	8.40508	15.4607	1.41753

Track down of decay modes at $\mathbf{69.6558}$, $\mathbf{35.3779}$, $\mathbf{10}$ MeV excitation

Gamma = 0.0353

MeV

Ex = 35.3779

Ex =	69.655	8 G	amma = 0 MeV	.221	Lifetime = 3e-21 sec	Average J = 16.045	Stand.dev. = 5.649
	Part	Num	DelJ	RMS-dJ			
Neut	4104	-0.25	2.56171	14.8168			
Prot	543	-0.305709	2.3332	15.5546			
Alph	352	-3.40341	5.65836	19.4384			
Gamm	1	2	2	10.3099			

Lifetime =

2.28e-20 sec

Average J =

13.471

Stand.dev. =

4.964

	Part	Num	DelJ	RMS-dJ
Neut	4001	-0.866783	2.27304	13.3477
Prot	544	-0.895221	2.05843	14.7868
Alph	450	-3.44444	5.37484	18.4644

Ex = 10	Gamma =	Lifetime =	Average J = 8.826	Stand.dev. =
	0.000173 MeV	1.89e-11 sec		3.512

	Part	Num	DelJ	RMS-dJ
Neut	3134	-1.20772	2.05562	11.833
Prot	250	-1.14	1.93184	11.592
Alph	77	-2.92208	4.21654	15.4416
Gamm	1530	-1.78758	1.9215	1

⁻⁻⁻⁻ end of evaporation calculation ----

***** Complete traceback diagnostic of particle and gamma emission *****

Components of gamma spectrum

Energy	E1-spec	E2-spec
0.05 - 0.15		54
0.15 - 0.25		66
0.25 - 0.35		16
0.35 - 0.45		50
0.45 - 0.55		12
0.55 - 0.65	181	314
1.05 - 1.15	513	7197
Above 3.05	0	0

M states at final J vs Ex

3 - 6	0.25	2.08	2.21								 		 	
6 - 9	0.47	2.01	2.04								 		 	
9 - 12	0.99	2.22	2.49	2.85							 		 	
12 - 15	1.56	2.51	2.56	2.31	••						 		 	
15 - 18	1.19	1.98	2.71	2.95	6.50		••	••		••	 	••	 	
18 - 21	1.38	1.98	2.16	2.51	2.88						 		 	
21 - 24	1.38	1.93	2.60	2.51	2.58						 		 	
24 - 27	1.15	2.28	2.78	2.35	1.00						 		 	
27 - 30	1.13	2.23	2.31	2.88	3.00	3.00					 		 	
30 - 33	1.14	1.77	2.07	2.19	2.75	1.00					 		 	
33 - 36	1.29	1.98	2.19	2.56	1.71	5.00					 		 	
36 - 39	1.00	1.97	2.39	2.48	2.42						 		 	
39 - 42	1.75	2.04	1.99	1.97	3.00	2.00					 		 	
42 - 45	1.11	1.83	1.75	1.71	2.85	1.00					 		 	
45 - 48	0.67	1.58	1.66	1.90	1.88	2.50	2.00				 		 	
48 - 51	1.50	1.88	1.77	1.53	2.47	3.00					 		 	 ••
51 - 54	1.00	1.63	1.72	1.98	1.64	0.50					 		 	
54 - 57	0.86	1.47	1.65	1.59	1.42	0.80					 		 	
57 - 60	2.00	1.02	1.01	1.10	0.92	1.20	1.00				 		 	
60 - 63			0.33								 		 	
63 - 66											 		 	
66 - 69											 ••		 	
69 - 72											 ••		 	
72 - 75			••				••		••		 ••		 	
75 - 78											 		 	

78 - 81								 								
81 - 84								 								••
84 - 87								 								••
87 - 90								 								••
Ex / J	-4.00	-9.00	-14.0 0	-19.0 0	-24.0 0	-29.0 0	-34.0 0	-44.0 0	-49.0 0	-54.0 0	-59.0 0	-64.0 0	-69.0 0	-74.0 0	-79.0 0	

Decay summary. Mode = NEUT Total = 3847 Out of = 1000 events Multiplicity = 3.847

Average Ecm = 3.8 Average spin removed = 1.3

9 - 12	3							 	 	 	 	 3	2	0
12 - 15	10	44	13					 	 	 	 ••	 67	7.22388	2.92095
15 - 18	14	93	102	1				 	 	 	 	 210	9.14286	3.1135
18 - 21	10	74	87	18				 	 	 	 	 189	9.98942	3.66304
21 - 24	5	54	73	43	3			 	 	 	 	 178	11.5787	4.23562
24 - 27	12	43	65	41	3			 	 	 	 ••	 164	11.3902	4.64537
27 - 30	7	52	103	52	8	1		 	 	 	 	 223	12.1121	4.40251
30 - 33	13	71	89	62	12	1		 	 	 	 	 248	11.8387	4.93651
33 - 36	6	39	70	39	13	3		 	 	 	 	 170	12.6765	5.11469
36 - 39	3	31	47	38	8			 	 	 	 	 127	12.6693	4.66863
39 - 42	4	42	81	62	13	3		 	 	 	 	 205	13.1463	4.79105
42 - 45	8	57	84	68	26	5		 	 	 	 	 248	13.25	5.41149
45 - 48	3	36	76	51	18	1	1	 	 	 	 	 186	13.3978	4.93863
48 - 51	1	21	26	23	11	2		 	 	 	 	 84	13.6667	5.4736
51 - 54	2	25	48	43	22	2		 	 	 	 	 142	14.2535	5.19268
54 - 57	5	49	102	109	51	2		 	 	 	 	 318	14.4843	5.02742

57 - 60	3	38	82	82	44	14	2										265	15.3208	5.73889
60 - 63	1	1	3		2												7	12.7143	6.77631
69 - 72	8	101	218	269	163	48	6										813	15.9729	5.7326
Ex/J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg	stdv
Sum	118	871	1369	1001	397	82	9												

Decay summary. Mode = PROT Total = 453 Out of = 1000 events Multiplicity = 0.453

Average Ecm = 8.4 Average spin removed = 1

15 - 18	2	7	6														15	8.33333	3.39935
18 - 21	3	16	24	1													44	9.61364	3.28368
21 - 24	3	6	12	6	2												29	11.6552	5.24093
24 - 27		4	11	4													19	12	3.24443
27 - 30	1	6	8	3													18	10.6111	4.01579
30 - 33	1	3	14	5	2												25	12.8	4.4
33 - 36	1	6	7	4													18	10.8889	4.2673
36 - 39		3	7	5	1												16	13.25	4.14578
39 - 42		3	7	6	3												19	14.3684	4.69278
42 - 45	1	4	13	6	1												25	12.4	4.22374
45 - 48		5	6	4	3	1											19	14.1053	5.91959
48 - 51		2	3	4	2												11	14.7273	4.93763
51 - 54		1	2	3													6	13.6667	3.72678
54 - 57	1	7	15	15	2												40	13.25	4.43706
57 - 60	1	1	14	11	3	1											31	14.7419	4.72446
69 - 72	4	16	31	41	17	8	1										118	15.3475	6.10831
Ex / J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg	stdv
Sum	18	90	180	118	36	10	1												

Decay summary. Mode = ALPH Total = 280 Out of = 1000 events Multiplicity = 0.28

Average Ecm = 15 Average spin removed = 3.6

15 - 18		1			 	 	 	 	 	 	1	7	0
18 - 21		2	1		 	 	 	 	 	 	3	8.66667	2.35702
21 - 24			3		 	 	 	 	 	 	3	12	0
24 - 27	1	3	1	3	 	 	 	 	 	 	8	10.75	5.44862

27 - 30		2	3	5	2												12	14.9167	4.76897
30 - 33		1	6	6	2												15	15	4
33 - 36		2	2	5	1												10	14.5	4.60977
36 - 39		1	2	5	3												11	16.5455	4.49977
39 - 42			6	7	1	1											15	16	4.16333
42 - 45		2	6	6													14	13.4286	3.49927
45 - 48		4	4	5	3												16	14.1875	5.29409
48 - 51	1	1	2	3	2												9	14.2222	6.28539
51 - 54		1	3	4	3												11	16.0909	4.67983
54 - 57	1	4	5	12	9	3											34	16.8529	6.12196
57 - 60	1	5	13	12	5	10	2										48	17.5208	7.37674
60 - 63				1													1	17	0
69 - 72		6	9	24	24	6											69	18.087	5.3072
Ex/J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg	stdv
Sum	4	35	66	98	55	20	2												

Decay summary. Mode = G-E1 Total = 694 Out of = 1000 events Multiplicity = 0.694

Average Ecm = 1.2 Average spin removed = 0.27

Sum	694																		
Ex / J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg	stdv
12 - 15	1																1	2	0
9 - 12	35																35	2	0
6 - 9	127																127	2	0
3 - 6	252																252	2	0
0 - 3	279																279	2	0

Decay summary. Mode = G-E2 Total = 7709 Out of = 1000 events Multiplicity = 7.709

Average Ecm = 1.4 Average spin removed = 1.1

0 - 3	1220	175	1			 	 	 	 	 	 1396	2.63395	1.67442
3 - 6	1882	442	29			 	 	 	 	 	 2353	3.06247	2.19083
6 - 9	1137	592	138			 	 	 	 	 	 1867	4.32458	3.14881
9 - 12	407	552	242	20		 	 	 	 	 	 1221	6.48812	3.8294
12 - 15	25	228	298	39		 	 	 	 	 	 590	9.97458	3.38356
15 -		1	129	78	2	 	 	 	 	 	 210	13.9286	2.57638

Sum	4671	1990	838	193	17														
Ex/J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg	stdv
21 - 24					7												7	22	0
18 - 21			1	56	8												65	17.5385	1.7809
18																			

Fission probability as function of excitation

Ex.Energy Probability

69 - 72 0.00e+00

60 - 63 0.00e+00

57 - 60 0.00e+00

54 - 57 0.00e+00

51 - 54 0.00e+00

48 - 51 0.00e+00

45 - 48 0.00e+00

42 - 45 0.00e+00

39 - 42 0.00e+00

0.00e+00

36 - 39

33 - 36 0.00e+00

30 - 33 0.00e+00

27 - 30 0.00e+00

24 - 27 0.00e+00

21 - 24 0.00e+00

18 - 21 0.00e+00

15 - 18 0.00e+00

12 - 15 0.00e+00

12 10 0.000 00

9 - 12 0.00e+00 6 - 9 0.00e+00

3 - 6 0.00e+00

0 - 3 0.00e+00

Total sum of fission probabilities 0.000e+00

Excitation energy window - average = 0 FWHM = 0

Spin window - average = 0 FWHM = 0

Average fabs projection 0 Average rms proj 0