Searching for SUSY in events with Jets and Missing Transverse Energy using α_T with the CMS Detector at the LHC

Zoe Hatherell

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to Imperial College London December 2011

Contents

A	cknov	\mathbf{vledge}	ments	2				
C	onten	its		2				
1	All-	Hadro	nic Analysis	3				
	1.1	Sampl	es	3				
		1.1.1	Monte Carlo Simulation	4				
		1.1.2	Data Sample	5				
	1.2	Analys	sis Framework	6				
	1.3	Trigge	r	6				
	1.4	Object	t Definitions	9				
		1.4.1	Good Event Definition	9				
		1.4.2	Jets	9				
		1.4.3	H_T and H_T	10				
		1.4.4	Muons	10				
		1.4.5	Electrons	11				
		1.4.6	Photons	11				
	1.5	Pre-Se	election	13				
	1.6	Final S	Signal Selection	13				
	1.7		Shape Analysis	14				
	1.8		nic Signal Region Results	15				
		1.8.1	Data to Monte-Carlo Comparisons	15				
		1.8.2	R_{α_T} on H_T	18				
		1.8.3	Composition of Selected $t\bar{t}$ + jets and W + jets Background					
			Events	20				
	1.9	Estima	ation of $t\bar{t}$ and W + Jets Backgrounds with a high p_T control					
			e using $W \to \mu\nu$ events	22				
		1.9.1	μ Control Sample Selection	22				
		1.9.2	Prediction Calculation	23				
		1.9.3	μ Control Sample Systematic Uncertainty	26				
		1.9.4	Signal Contamination in μ Control Sample	30				
	1.10	1.10 Estimation of $Z \to \nu \bar{\nu} + \text{jets background using photon} + \text{jet}$						
			Z Background Prediction Calculation	30 32				
		· · -	0					

		1.10.2	γ Control Sample Systematic Uncertainty	33
		1.10.3	Cross-Prediction between Control Samples	34
	1.11	Signal	Region Systematic Uncertainties	35
			ical Interpretation	36
		1.12.1	Hadronic Signal Selection Likelihood	37
		1.12.2	Expression of b^i using R_{α_T} evolution in H_T	37
			Electroweak Control Sample Likelihoods	38
		1.12.4	Presence of Signal	39
			Total Likelihood	40
	1.13		g the SM-only hypothesis	40
			ling Signal Models	43
			Constructing a Test Statistic	43
			The CL_S Method	44
			Setting an Exclusion Limit in the CMSSM Plane	44
2	Exte	ending	the μ Control Sample to a Signal Sample	46
		2.0.4	Relaxing the Cuts	46
		2.0.5	Event Yields	47
		2.0.6	Fit Results	47
\mathbf{A}				48
Bi	bliog	raphy		50

Chapter 1

Extending the μ Control Sample to a Signal Sample

In Chapter 1, the μ control sample was used effectively to predict the background contribution from W and $t\bar{t}$ events. The μ likelihood's incorporation into the overall likelihood in order to interpret the hadronic results allowed for some small signal contamination. However it was in general viewed as a constraint on the "signal" region of the hadronic selection.

The cuts outlined in Section ?? are designed to select events from Standard Model W decays, hence minimising the contamination from signal. However, as the simultaneous fit includes the signal efficiency in the μ control sample it is possible to relax the cuts and allow more potential signal into the μ yield. The following work represents the author's personal investigation into the effect of increasing the chance for signal contamination on the eventual limit.

1.0.1 Relaxing the Cuts

The primary cut in the μ control sample responsible for restricting the signal is the M_T requirement, as it puts a restriction on boosted W decays. The first step is to remove this cut. Having done so there are three possible scenarios with respect to the α_T cut

- Use the $\alpha_{\rm T}$ cut from the hadronic analysis, where the muon is ignored
- Take out the α_T cut to increase statistics in the μ sample (the MHT/HT cut ensures the elimination of QCD background)

• Adapt the definition of the α_T to include the lepton, the validity of which is shown in Section ??

The one muon requirement cuts remain

1.0.2 Event Yields

1.0.3 Fit Results

	$H_{\rm T}$ Bin (GeV)	275–325	325–375	375-475	475–575
	B (SM)	407.5	179.1	131.6	48.7
2011 Selection	S (LM6)	0.15	0.15	0.53	0.82
	S / B	0.000	0.001	0.004	0.017
	B (SM)	549.93	243.33	179.51	63.80
No M_T Cut & $\alpha_T > 0.55$	S(LM6)	0.19	0.20	0.59	0.92
	S/B	0.000	0.001	0.003	0.0014
	B (SM)	163.95	70.64	39.87	16.38
No M $_T$ Cut & $\alpha_{\rm T}$ $_{lep} > 0.55$	S (LM6)	0.13	0.17	0.51	0.79
	S/B	0.001	0.002	0.013	0.048
	B (SM)	(6) 0.15 0.15 0.53 (3) 0.000 0.001 0.004 (4) 549.93 243.33 179.51 (6) 0.19 0.20 0.59 (6) 0.000 0.001 0.003 (7) 163.95 70.64 39.87 (8) 0.13 0.17 0.51 (9) 0.001 0.002 0.013 (1) 1335.81 603.61 485.62 (6) 0.26 0.32 0.89 0.000 0.001 0.002	192.61		
No M_T Cut & No α_T	S (LM6)	0.26	0.32	0.89	1.43
	S/B	0.000	0.001	0.002	0.007
	$H_{\rm T}$ Bin (GeV)	575-675	675-775	775–875	875–∞
	D (G3.5)	10.00	- ^-	2.20	0.0=

	$H_{\rm T}$ Bin (GeV)	575-675	675-775	775–875	875–∞
	B (SM)	13.32	7.95	3.20	0.97
2011 Selection	S (LM6)	1.09	1.17	0.95	1.21
	S / B	0.082	0.147	0.297	1.343
	B (SM)	18.53	8.59	3.34	0.97
No M_T Cut & $\alpha_T > 0.55$	S (LM6)	1.23	1.35	1.08	1.42
	S/B	0.066	0.157	0.324	1.5747
	B (SM)	7.85	1.76	0.05	0.05
No M $_T$ Cut & $\alpha_{\rm T}$ $_{lep} > 0.55$	S (LM6)	1.05	1.13	0.89	1.06
	S/B	0.134	0.641	19.282	22.982
	B (SM)	67.64	30.04	12.77	3.26
No M_T Cut & No α_T	S (LM6)	1.87	2.04	1.77	3.07
	S/B	0.028	0.068	0.139	0.940

Appendix A

$HT 1.1fb^{-1} Data$

/HT/Run2011A-May10ReReco-v1/AOD /HT/Run2011A-PromptReco-v4/AOD

Photon 1.1fb⁻¹ Data

/Photon/Run2011A-May10ReReco-v1/AOD /Photon/Run2011A-PromptReco-v4/AOD

Standard Model Background Monte Carlo

/QCD_Pt_*_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM
/QCD_TuneD6T_HT-*_7TeV-madgraph/Spring11-PU_S1_START311_V1G1-v1/AODSIM
/TTJets_TuneZ2_7TeV-madgraph-tauola/Summer11-PU_S4_START42_V11-v1/AODSIM
/TTOBLNu_TuneZ2_*-channel_7TeV-madgraph/Spring11-PU_S1_START311_V1G1-v1/AODSIM

/WJetsToLNu_TuneZ2_7TeV-madgraph-tauola/Summer11-PU_S4_START42_V11-v1/AODSIM

 $/{\tt ZinvisibleJets_7TeV-madgraph/Spring11-PU_S1_START311_V1G1-v1/GEN-SIM-RECO}$

/GJets_TuneD6T_HT-40To100_7TeV-madgraph/Spring11-PU_S1_START311_V1G1-v1/A0DSIM

SUSY Signal Reference Monte Carlo

Bibliography

- [1] Vardan Khachatryan et al. "Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy". *Phys.Lett.*, **B698** (2011) 196–218, 1101.1628.
- [2] The CMS Collaboration. "Absolute Calibration of Luminosity Measurement at CMS: Summer 2011 Update". **CMS PAS EWK-11-001**.
- [3] The CMS Collaboration. "Calorimeter Jet Quality Criteria for the First CMS Collision Data". CMS-PAS-JME-09-008.
- [4] The CMS Collaboration. "Performance of muon identification in pp collisions at $\sqrt{s} = 7$ TeV". CMS-PAS-MUO-10-002.
- [5] N. Adam et al. "Measurements of Inclusive W and Z Cross Sections in pp Collisions at $\sqrt{s} = 7 \text{ TeV}$ ". CMS AN 2010/116.
- [6] The CMS Collaboration. "Isolated Photon Reconstruction and Identification at at sqrt(s) = 7 TeV". CMS-PAS-EGM-10-006.
- [7] The CMS Collaboration. "Measurement of the W and Z inclusive production cross sections at sqrts=7 TeV with the CMS experiment at the LHC". CMS PAS EWK-10-002.
- [8] Z. Bern, G. Diana, L.J. Dixon, F. Febres Cordero, S. Hoche et al. "Driving Missing Data at Next-to-Leading Order". Phys. Rev., D84 (2011) 114002, 1106.1423.
- [9] The CMS Collaboration. "Performance of Methods for Data-Driven Background Estimation in SUSY Searches". CMS PAS SUS-10-001.
- [10] Johan Alwall, Pavel Demin, Simon de Visscher, Rikkert Frederix, Michel Herquet et al. "MadGraph/MadEvent v4: The New Web Generation". JHEP, 0709 (2007) 028, 0706.2334.
- [11] F. James & M. Roos. "Minuit a system for function minimization and analysis of the parameter errors and correlations". Computer Physics Communications, **10** (1975) 343–367.