

KA-NUCLEO-UniExp

Wielofunkcyjny ekspander dla NUCLEO i Arduino z Bluetooth, MEMS 3DoF, LED-RGB i czujnikiem temperatury

KA-NUCLEO-UniExp jest uniwersalnym ekspanderem dla komputerów NUCLEO oraz Arduino, wyposażonym w analogowy czujnik temperatury, interfejs Bluetooth v2.0+EDR, akcelerometr MEMS 3DoF, 5-stykowy joystick oraz LED-RGB.

Podstawowe cechy i parametry

- ▶ Zgodność z systemami NUCLEO i Arudino
- ▶ Wbudowany moduł Bluetooth v2.0+EDR o parametrach:
 - Profil SPP (Serial Port Protocol)
 - Prędkość transmisji asynchronicznej do 2,1 Mb/s
 - Prędkość transmisji synchronicznej do 1 Mb/s
- ▶ Wbudowany akcelerometr MEMS 3D z I2C
 - Sprzętowy selektor adresu na magistrali
 - Zakres pomiarowy +/-2g lub +/-8g
 - Maksymalna częstotliwość pomiarów 100/400 Hz
- ▶ Wbudowany czujnik temperatury z wyjściem analogowym (-40...+85°C)
- Wbudowana LED RGB
- ▶ Wbudowany joystick 5-stykowy
- ▶ Przedłużone złącza szpilkowe

Wyposażenie standardowe

Kod	Opis	
KA-NUCLEO-UniExp	Zmontowana i uruchomiona płytka	

BTC Korporacja 05-120 Legionowo ul. Lwowska 5 tel.: (22) 767-36-20

faks: (22) 767-36-33 e-mail: biuro@kamami.pl http://www.kamami.pl

Zastrzegamy prawo do wprowadzania zmian bez uprzedzenia.

Oferowane przez nas płytki drukowane mogą się różnić od prezentowanej w dokumentacji, przy czym zmianom nie ulegają jej właściwości użytkowe.

BTC Korporacja gwarantuje zgodność produktu ze specyfikacją.
BTC Korporacja nie ponosi odpowiedzialności za jakiekolwiek szkody powstałe bezpośrednio lub pośrednio w wyniku użycia lub nieprawidłowego działania produktu.

BTC Korporacja zastrzega sobie prawo do modyfikacji niniejszej dokumentacji bez uprzedzenia.

Schemat

Widok płytki drukowanej

4

Czujnik temperatury

KAMAMI

W ekspanderze zastosowano półprzewodnikowy czujnik temperatury STLM20 z wyjściem analogowym. Napięcie na wyjściu czujnika zmienia się zgodnie ze wzorem:

 $VO = (-11,69 \text{mV})/^{\circ}C \times T + 1,8663 \text{V}$

Wyjście czujnika temperatury dołączono do linii A2, która spełnia rolę kanału wejściowego ADC_IN4 (linia GPIO PA4 w STM32).

Interfejs Bluetooth

W ekspanderze zastosowano moduł Bluetooth HC-05, komunikujący się z mikrokontrolerem za pomocą interfejsu UART (UART1 w STM32). Sposób dołączenia modułu do mikrokontrolera STM32 przedstawiono w tabeli poniżej.

Linie HC-05	Nazwa linii	GPIO w STM32	Interfejs STM32
Тх	D2	PA10	UART1/RxD
Rx	D8	PA9	UART1/TxD
KEY	A0	PA0	-
RESET	nRST	nRES	-

Mikroswitch Sw1 służy do przełączania trybu pracy modułu, w tym wprowadzania w tryb AT. Zalecanym sposobem przełączenia modułu w tryb AT jest wciśnięcie i przytrzymanie Sw1 przed włączeniem zasilania (interfejs UART pracuje wtedy z prędkością 38400 b/s). Moduł sygnalizuje wejście w ten tryb pracy miganiem LED D1 z częstotliwością 1 Hz. Wysoki stan na wejściu KEY modułu można wymusić także z poziomu mikrokontrolera (PA0/A0).

Jeżeli LED D1 miga z częstotliwością 2 Hz oznacza to oczekiwanie na sparowanie lub poprawne sparowanie, które dodatkowo jest sygnalizowane za pomocą świecenia LED D2.

Akcelerometr MEMS 3D

Ekspander jest wyposażony w akcelerometr MEMS 3D (LIS35DE), komunikujący się z mikrokontrolerem za pomocą magistrali I2C (kanał I2C1 w STM32). Sposób dołączenia akcelerometru pokazano w tabeli poniżej.

Linie LIS35DE	Nazwa linii	GPIO w STM32	Interfejs STM32	Uwagi
SCL	D15	PB8	SCL/I2C1	Linie podciągnięte do plusa
SDA	D14	PB9	SDA/I2C1	zasilania rezystorami 4,7 kΩ
INT1	A1	PA1	_	_
INT2	D7	PA8	-	_

Akcelerometr zastosowany w zestawie ma następujący adres bazowy na magistrali I2C: 001110xb. Symbol "x" oznacza "0" lub "1" w zależności od położenia zwory JP1.

Linie komunikacyjne magistrali I2C są podciągnięte do plusa zasilania za pomocą rezystorów 4,7kΩ.

Zwarte styki JP1	Adres bazowy U1	SA0
1-2	0011101b	1
2-3	0011100b	0

LED-RGB

Wbudowane diody LED-RGB są sterowane bezpośrednio z linii GPIO mikrokontrolera zgodnie z tabelą poniżej. Diody świecą jeżeli na linii sterującej jest stan logiczny "0".

Dioda LED	Nazwa linii	GPIO w STM32	Uwagi
Red	D12	PA6	
Green	D11	PA7	LED świecą gdy stan na liniach GPIO jest "0"
Blue	А3	PB0	

Joystick

Wbudowany w ekspander 5-stykowy joystick jest dołączony bezpośrednio do linii GPIO mikrokontrolera zgodnie z tabelą poniżej. Każda linia jest podciągnięta do plusa zasilania za pomocą rezystora $10 \text{ k}\Omega$.

Kierunek joysticka	Nazwa linii	GPIO w STM32	Uwagi
Góra	D4	PB5	
Dół	D10	PB6	
Lewo	D3	PB3	Linie podciągnięte do plusa zasilania rezystorami 10 kΩ
Prawo	D5	PB4	
OK	D6	PB10	

Mapa przypisań linii GPIO i Arduino

8 KA-NUCLEO-UniExp

Mapa przypisań linii GPIO i interfejsów STM32

