数学物理方法作业集

潘逸文; 余钊焕[†] 中国广州中山大学物理学院

September 10, 2019

简介

2019 年秋季数学物理方法 (面向 18 级光电信息科学与工程) 作业。每周作业除了在课上宣布,本文件也会每周更新,可在 QQ 群文件,或 https://panyw5.github.io/courses/mmp.html 以及 http://yzhxxzxy.github.io/cn/teaching.html 找到。

*Email address: panyw
5@mail.sysu.edu.cn †Email address: yuzhaoh
5@mail.sysu.edu.cn

1 第一周 (9月3日课上交)

1. 用指数表示法表示下面的复数

$$(a)$$
 $\frac{i}{e}$, (b) $2 + \sqrt{2}i$, (c) $1 + e^{\frac{9\pi i}{14}}e^{\frac{-\pi i}{7}}$, (d) $\sqrt{3} + i$ 的所有 7 次方根 (1.1)

- 2. 定义点集 $S_N \equiv \{z^N | z \in N(0,R)\}$, 其中 R > 0, $N = 1, 2, ... \in \mathbb{N}_{>0}$ 。讨论 S_N 与 S_{N+1} 之间谁是谁的子集,是否真子集,写明推理。
- 3. 设点集 $S \equiv \{z \in \mathbb{C} \mid |z| \leq R\}$,其中 R > 0。求解最大的 $N \in \mathbb{N}$,使得对于任意 S 的内点 z, z^N 都还是内点。写明推理。
 - 4. 考虑点集 $S \equiv \{z \in \mathbb{C} \mid |z-1| + |z+1| < R\}$, 其中 R > 0。 S 是否区域? 是否单连通? 写明推理。

2 第二周 (9月 10日课上交)

- 0. (若上周没做这道题) 考虑点集 $S \equiv \{z \in \mathbb{C} \mid |z-1|+|z+1| < R\}$,其中 R>0。S 是否区域? 是否单连通? 写明推理。
 - 1. 用代数式 (即 x + iy 的形式) 表达以下复数,其中 $a, b \in \mathbb{R}$, i 是虚数单位,

(a)
$$a^i, \not \exists \psi \ a > 0,$$
 (b) $i^{a+bi},$ (c) $\sin(a+ib)$. (2.1)

- 2. 设 $u(x,y)=e^x\sin y,\ v(x,y)=-e^x\cos y$,并考虑复变函数 w=u(x,y)+iv(x,y)。验证 w 是 $\mathbb C$ 上解析函数。
 - 3. 设 f 为区域 D 内解析函数,同时,其值域是 \mathbb{R} 的子集。求证 f 是常数函数。
- 4. 设解析函数 f(z) 的实部 $u(x,y) = e^x x \cos y e^x y \sin y$,求其虚部,并把 f 的表达式改写为只含 z 的表达式。

3 第三周 (9 月 17 日课上交)

- 1. 计算 $I(C_1) = \int_{C_1} \bar{z} dz$ 和 $I(C_2) = \int_{C_2} \bar{z} dz$,其中 C_1 和 C_2 分别是上半圆周 (半径 R > 0,逆时针方向) 和下半圆周 (半径 R > 0,逆时针方向)。
 - 2. 计算

$$\int_{|z|=1} \frac{\sin(\cos z)}{z} dz \ . \tag{3.1}$$

3. 设复变函数 f 在单连通区域 D 内有定义且实部虚部的的一阶偏导数连续, $G \subset D$ 是其单连通子区域并有 $G \cup \partial G \subset D$ 。证明复变函数的格林公式

$$\int_{\partial G} f(z,\bar{z})dz = \int_{G} \partial_{\bar{z}} f(z,\bar{z})d\bar{z}dz , \qquad (3.2)$$

其中面积元 $d\bar{z}dz = 2idxdy$ 。