# Multiprocessors

**EECE6029** 

Yizong Cheng

2/26/2016

### Multiple Processor Systems



**Figure 8-1.** (a) A shared-memory multiprocessor. (b) A message-passing multicomputer. (c) A wide area distributed system.

### Uniform Memory Access Multiprocessors



**Figure 8-2.** Three bus-based multiprocessors. (a) Without caching. (b) With caching. (c) With caching and private memories.

# Interconnect Topologies



**Figure 8-16.** Various interconnect topologies. (a) A single switch. (b) A ring. (c) A grid. (d) A double torus. (e) A cube. (f) A 4D hypercube.

# Crossbar Switch



Figure 8-3. (a) An  $8 \times 8$  crossbar switch. (b) An open crosspoint. (c) A closed crosspoint.

#### A 2 x 2 Switch



**Figure 8-4.** (a) A  $2 \times 2$  switch with two input lines, A and B, and two output lines, X and Y. (b) A message format.

# Multistage Switching Network



Figure 8-5. An omega switching network.

# Nonuniform Memory Access (NUMA)

- There is a single address space visible to all CPUs.
- Access to remote memory is via LOAD and STORE instructions.
- Access to remote memory is slower than access to local memory.



**Figure 8-6.** (a) A 256-node directory-based multiprocessor. (b) Division of a 32-bit memory address into fields. (c) The directory at node 36.

#### Each CPU Has Its Own Operating System



**Figure 8-7.** Partitioning multiprocessor memory among four CPUs, but sharing a single copy of the operating system code. The boxes marked Data are the operating system's private data for each CPU.

#### Master-Slave Multiprocessor



**Figure 8-8.** A master-slave multiprocessor model.

# Symmetric Multiprocessor



Figure 8-9. The SMP multiprocessor model.

#### Multiprocessor Synchronization



**Figure 8-10.** The TSL instruction can fail if the bus cannot be locked. These four steps show a sequence of events where the failure is demonstrated.

# Cache Thrashing Avoidance



**Figure 8-11.** Use of multiple locks to avoid cache thrashing.

# Time Sharing



Figure 8-12. Using a single data structure for scheduling a multiprocessor.

# Space Sharing



**Figure 8-13.** A set of 32 CPUs split into four partitions, with two CPUs available.

#### Threads Running Out of Phase



**Figure 8-14.** Communication between two threads belonging to thread A that are running out of phase.

# Gang Scheduling



Figure 8-15. Gang scheduling.