1

Assignment 4

AVVARU BHARAT

Download latex-tikz codes from

https://github.com/Bharat437/Matrix_Theory/tree/master/Assignment4

1 Question

(Geometry,1.10) Q. Using cosine formula in an equilateral triangle, show that $\cos 60^{\circ} = \frac{1}{2}$.

2 Explanation

Consider an equilateral $\triangle ABC$ as shown in below figure:

Fig. 1: Equilateral $\triangle ABC$

Length of three sides are given as below:

$$\mathbf{AB} = \|\mathbf{A} - \mathbf{B}\| \tag{2.0.1}$$

$$\mathbf{BC} = ||\mathbf{B} - \mathbf{C}|| \tag{2.0.2}$$

$$\mathbf{AC} = \|\mathbf{A} - \mathbf{C}\| \tag{2.0.3}$$

In equilateral triangle all sides have equal length

$$\implies$$
 AB = **BC** = **AC** = k (2.0.4)

Let **B** be origin. Then
$$\mathbf{A} = \begin{pmatrix} \frac{k}{2} \\ \frac{\sqrt{3}k}{2} \end{pmatrix}$$
 and $\mathbf{C} = \begin{pmatrix} k \\ 0 \end{pmatrix}$. let $\theta = \angle ABC$.

Taking the inner product of sides AB and BC.

$$(\mathbf{A} - \mathbf{B})^{T}(\mathbf{B} - \mathbf{C}) = \|\mathbf{A} - \mathbf{B}\| \|\mathbf{B} - \mathbf{C}\| \cos \theta \quad (2.0.5)$$

$$\implies \cos \theta = \frac{(\mathbf{A} - \mathbf{B})^T (\mathbf{B} - \mathbf{C})}{\|\mathbf{A} - \mathbf{B}\| \|\mathbf{B} - \mathbf{C}\|} \quad (2.0.6)$$

$$\implies \cos \theta = \frac{\left(\frac{\frac{k}{2}}{\sqrt{3}k}\right)^T \binom{k}{0}}{k^2} \quad (2.0.7)$$

$$\implies \cos \theta = \frac{k^2}{2k} \quad (2.0.8)$$

$$\implies \cos \theta = \frac{1}{2} \quad (2.0.9)$$

In equilateral triangle, $\angle ABC = 60^{\circ}$

$$\implies \cos 60^\circ = \frac{1}{2} \tag{2.0.10}$$

Hence proved.