Problem Set #1

Measure Theory, Jan Ertl Alex Weinberg

Solution 1. (1.3)

- 1. Suppose $A \in \mathbb{R}$ open. So $A \in \mathbb{G}_1$ by definition. Take $A^c \in \mathbb{R}$ which is closed by properties of open/closed sets.
 - $\Rightarrow A^c \not\in \mathcal{G}_1$ by definition of \mathcal{G}_1
 - \Rightarrow G1 not closed under complements. So G1 is not an algebra.
- 2. WTS: G2 algebra
 - $\bullet \ \emptyset \in \mathcal{G}_2 \\
 \Rightarrow \emptyset \in \mathcal{G}_2$
 - Suppose $A_j = \bigcup_{i=1}^{N_j} (a_i, b_i]$ So then $\bigcup_j^M A_j = \bigcup_j^M (\bigcup_{i=1}^{N_j} ((a_i, b_i]) \in \mathcal{G}_2$
 - Suppose $A_j = \bigcup_{i=1}^{N_j} (a_i, b_i]$ So then complement $(-\infty, a_1] \cup [(b_n, \infty) \in \mathcal{G}_2$

So G2 is an algebra.

- 3. WTS: G3 sig-alg
 - $\emptyset \in \mathcal{G}_3$
 - Suppose $A_j = \bigcup_{i=1}^{N_j} ((a_i, b_i] \cup (-\infty, b] \cup (a, \infty))$ So then $\bigcup_j^{\infty} A_j = \bigcup_j^{\infty} (\bigcup_{i=1}^{\infty} ((a_i, b_i] \cup (-\infty, b] \cup (a, \infty))) \in \mathbb{G}_3$

So, G3 is a sigma algebra

Solution 2. (1.7) Suppose \mathcal{A} is an sigma algebra.

WTS: $\{\emptyset, X\} \subset \mathcal{A} \subset \mathcal{P}(X)$

Pf: $\emptyset \in S$ for every S sigma algebra. Also, S must be closed under complements therefore $\emptyset^c = X \in S$. So the smallest possible sigma algebra is $\{\emptyset, X\}$. Also, suppose $A \in \mathcal{A}$ so $A \in \mathcal{P}(X)$ because $\mathcal{A} \subset X$ $\therefore \mathcal{A} \subset \mathcal{P}(X)$

Solution 3. (1.10)

- i) $\emptyset \in S_{\alpha}$ $\forall \alpha$ by definition of sig-alg. $\Rightarrow \emptyset \in \cap^{\alpha} S_{\alpha}$
- ii) suppose $A_1, \ldots \in \cap^{\alpha} S_{\alpha}$ this implies $A_1, \ldots \in S_{\alpha} \forall \alpha$

So the union of $A_i \in S_\alpha$ for every alpha.

So
$$\cup A_1, \dots \in \cap^{\infty} S_{\alpha}$$

Also, suppose $A \in \bigcap S_{\alpha}$ now we know that $A \in S_{\alpha} \quad \forall \alpha$ by definition of sigma-algebra. $A^c \in S_{\alpha} \quad \forall \alpha$ so, $A^c \in \bigcap S_{\alpha}$ Therefore intersection is a sigma algebra.

Solution 4. (1.17)

i) We know

$$\mu(A \cup B)) = \mu(A) + \mu(B)$$

if

$$A \cap B = \emptyset$$

. Now suppose $A \subset B$ and $B = A \cup U$. So,

$$\mu(A \cup U) = \mu(A) + \mu(U) \ge \mu(A)$$

because measure is valued on positive reals.

ii) We know,

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) - \mu(\cap_i A_i)$$

So,

$$\mu(\bigcup_{i=1}^{n} A_i) + \underbrace{\mu(\bigcap_{i=1}^{\infty} A_i)}_{>0} = \sum_{i=1}^{\infty} \mu(A_i)$$

Solution 5. (1.18)

WTS:

$$\lambda(A) = \mu(A \cap B)$$

Pf:

$$A, B \subset S \Rightarrow (A \cap B) \subset S. \Rightarrow \emptyset \cap B = \emptyset$$

So, i)

$$\lambda(\emptyset) = \mu(\emptyset) = 0$$

And because intersection is in S and,

$$\lambda(A) = \mu(A \cap B) \Rightarrow \lambda(\cup^{\infty} A_i) = \mu(\cup^{\infty} (A_i \cap B)) = \sum_{\lambda(A_i)}^{\infty} \underbrace{\mu(A_i \cap B)}_{\lambda(A_i)} = \sum_{\lambda(A_i)}^{\infty} \lambda(A_i)$$

Solution 6. (1.20)

$$\mu(A_1) - \mu(\lim_{n \to \infty} (A_n))$$

$$= \mu(A_1 \bigcap_{n \to \infty} \lim_{n \to \infty} A_n)$$

$$= \mu(\lim_{n \to \infty} (A_1 \bigcap_{n \to \infty} A_n))$$

$$= \lim_{n \to \infty} \mu(A_1 \bigcap_{n \to \infty} A_n)$$

$$= \lim_{n \to \infty} \mu(A_1) - \mu(A_n)$$

$$= \mu(A_1) - \lim_{n \to \infty} \mu(A_n)$$

$$\therefore \mu(\lim_{n \to \infty} (A_n)) = \lim_{n \to \infty} \mu(A_n)$$