

Вспоминаем линейную алгебру

Векторы и матрицы

Мы будем считать, что все векторы являются столбцами по умолчанию. Пространство векторов длины nобозначается \mathbb{R}^n , а пространство матриц размера m imes n с вещественными элементами обозначается $\mathbb{R}^{m imes n}$. То есть ¹:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \quad x \in \mathbb{R}^n, x_i \in \mathbb{R}$$
 (1)

Вспоминаем линейную алгебру

 $^{^{1}}$ Подробный вводный курс по прикладной линейной алгебре можно найти в книге Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares - книга от Stephen Boyd & Lieven Vandenberghe, которая указана в источнике. Также полезен материал по линейной алгебре приведенный в приложении А книги Numerical Optimization by Jorge Nocedal Stephen J. Wright.

Векторы и матрицы

Мы будем считать, что все векторы являются столбцами по умолчанию. Пространство векторов длины nобозначается \mathbb{R}^n , а пространство матриц размера m imes n с вещественными элементами обозначается $\mathbb{R}^{m imes n}$. То есть ¹:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \quad x \in \mathbb{R}^n, x_i \in \mathbb{R}$$
 (1)

Аналогично, если $A \in \mathbb{R}^{m \times n}$ мы обозначаем транспонирование как $A^T \in \mathbb{R}^{n \times m}$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n} & a_{n} & \vdots & a_{n} \end{bmatrix} \quad A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n} & a_{n} & \vdots & \vdots \\ a_{n} & a_{n} & \vdots \\ a_{n} & a_{n} & \vdots \\ a_{n} & \vdots & \vdots \\ a_{n$$

Мы будем писать $x \geq 0$ и $x \neq 0$ для обозначения покомпонентных неравенств

 $^{^{1}}$ Подробный вводный курс по прикладной линейной алгебре можно найти в книге Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares - книга от Stephen Boyd & Lieven Vandenberghe, которая указана в источнике. Также полезен материал по линейной алгебре приведенный в приложении А книги Numerical Optimization by Jorge Nocedal Stephen J. Wright.

Рисунок 1: Эквивалентные представления вектора

Вспоминаем линейную алгебру

Матрица A называется симметричной, если $A=A^T.$ Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

 $f \to \min_{x,y,z}$ Вспоминаем линейную алгебру

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех $x \neq 0: x^T A x > (<) 0$. Обозначается как $A \succ (\prec) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$

 $f \to \min_{x,y,z}$ Вспоминаем линейную алгебру

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех $x \neq 0: x^T A x > (<)0$. Обозначается как $A \succ (\prec)0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$

Матрица $A\in\mathbb{S}^n$ называется положительно (отрицательно) полуопределенной, если для всех $x:x^TAx\geq (\leq)0.$ Обозначается как $A\succeq (\leq)0.$ Множество таких матриц обозначается как $\mathbb{S}^n_+(\mathbb{S}^n_-)$

i Question

Верно ли, что положительно определенная матрица имеет все положительные элементы?

∌ n ø

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех $x \neq 0: x^T A x > (<)0$. Обозначается как $A \succ (\prec)0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) полуопределенной, если для всех $x: x^T A x \geq (\leq) 0$. Обозначается как $A \succeq (\leq) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_+(\mathbb{S}^n_-)$

i Question

Верно ли, что положительно определенная матрица имеет все положительные элементы?

i Question

Верно ли, что если матрица симметрична, то она должна быть положительно определенной?

 $f \to \min_{x,y,z}$

∌ n ø

симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению. Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех

 $x \neq 0: x^T A x > (<) 0$. Обозначается как $A \succ (\prec) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) полуопределенной, если для всех $x: x^T A x > (<) 0$. Обозначается как $A \succ (\prec) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_+(\mathbb{S}^n_-)$

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных

i Question

Верно ли, что положительно определенная матрица имеет все положительные элементы?

i Question

Верно ли, что если матрица симметрична, то она должна быть положительно определенной?

i Question

Верно ли, что если матрица положительно определена, то она должна быть симметричной?

Матричное умножение (matmul)

Пусть A - матрица размера m imes n, а B - матрица размера n imes p, тогда их произведение AB равно:

$$C = AB$$

Тогда C - матрица размера $m \times p$, элемент (i, j) которой равен:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Эта операция в наивной форме требует $\mathcal{O}(n^3)$ арифметических операций, где n обычно считается наибольшей размерностью матриц.

Матричное умножение (matmul)

Пусть A - матрица размера $m \times n$, а B - матрица размера $n \times p$, тогда их произведение AB равно:

$$C = AB$$

Тогда C - матрица размера $m \times p$, элемент (i,j) которой равен:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Эта операция в наивной форме требует $\mathcal{O}(n^3)$ арифметических операций, где n обычно считается наибольшей размерностью матриц.

Возможно ли умножить две матрицы быстрее, чем за $\mathcal{O}(n^3)$? Как насчет $\mathcal{O}(n^2)$, $\mathcal{O}(n)$?

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим, что:

•
$$C = AB$$
 $C^T = B^T A^T$

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим, что:

- C = AB $C^T = B^T A^T$
- $AB \neq BA$

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим. что:

- C = AB $C^T = B^T A^T$
- $AB \neq BA$
- $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^{n} a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим. что:

- C = AB $C^T = B^T A^T$
 - $AB \neq BA$
- $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$ $e^{A+B} \neq e^A e^B$ (but if A and B are commuting matrices, which means that AB = BA, $e^{A+B} = e^A e^B$)

Пусть A - матрица размера $m \times n$, а x - вектор длины n, тогда i-й элемент произведения Ax равен:

$$z = Ax$$

равен:

$$z_i = \sum_{k=1}^{n} a_{ik} x_k$$

Эта операция в наивной форме требует $\mathcal{O}(n^2)$ арифметических операций, где n обычно считается наибольшей размерностью входов.

Отметим. что:

- C = AB $C^T = B^T A^T$
- $AB \neq BA$
- $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$ $e^{A+B} \neq e^A e^B$ (but if A and B are commuting matrices, which means that AB = BA, $e^{A+B} = e^A e^B$)
- $\langle x, Ay \rangle = \langle A^T x, y \rangle$

 $f \to \min_{x,y,z}$ Вспоминаем линейную алгебру

Норма - это **количественная мера малости вектора** и обычно обозначается как $\|x\|$.

1.
$$\|\alpha x\| = |\alpha| \|x\|$$
, $\alpha \in \mathbb{R}$

Норма - это **количественная мера малости вектора** и обычно обозначается как $\|x\|$.

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)

Норма - это **количественная мера малости вектора** и обычно обозначается как $\|x\|$.

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 3. Если ||x|| = 0, то x = 0

Норма - это **количественная мера малости вектора** и обычно обозначается как $\|x\|$.

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 3. Если ||x|| = 0, то x = 0

Норма - это количественная мера малости вектора и обычно обозначается как $\|x\|$.

Норма должна удовлетворять определенным свойствам:

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 3. Если ||x|| = 0, то x = 0

Расстояние между двумя векторами определяется как

$$d(x,y) = \|x - y\|.$$

Наиболее широко используемой нормой является Евклидова норма:

$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2},$$

которая соответствует расстоянию в нашей реальной жизни. Если векторы имеют комплексные элементы, мы используем их модуль. Евклидова норма, или 2-норма, является подклассом важного класса p-норм:

$$\|x\|_p = \Big(\sum_{i=1}^n |x_i|^p\Big)^{1/p}.$$

p-норма вектора

Существуют два очень важных частных случая. Бесконечность-норма, или норма Чебышева, определяется как максимальное абсолютное значение элемента вектора:

$$\|x\|_{\infty} = \max_i |x_i|$$

p-норма вектора

Существуют два очень важных частных случая. Бесконечность-норма, или норма Чебышева, определяется как максимальное абсолютное значение элемента вектора:

$$||x||_{\infty} = \max_{i} |x_i|$$

 l_1 норма (или **манхэттенское расстояние**) определяется как сумма модулей элементов вектора x:

$$||x||_1 = \sum_i |x_i|$$

р-норма вектора

Существуют два очень важных частных случая. Бесконечность-норма, или норма Чебышева, определяется как максимальное абсолютное значение элемента вектора:

$$||x||_{\infty} = \max_{i} |x_i|$$

 l_1 норма (или **манхэттенское расстояние**) определяется как сумма модулей элементов вектора x:

$$||x||_1 = \sum_i |x_i|$$

 l_1 норма играет очень важную роль: она все связана с методами **compressed sensing**, которые появились в середине 00-х как одна из популярных тем исследований. Код для изображения ниже доступен здесь:. Также посмотрите это видео.

Матричные нормы

В некотором смысле между матрицами и векторами нет большой разницы (вы можете векторизовать матрицу), и здесь появляется самая простая матричная норма Фробениуса:

$$\|A\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$$

Матричные нормы

В некотором смысле между матрицами и векторами нет большой разницы (вы можете векторизовать матрицу), и здесь появляется самая простая матричная норма **Фробениуса**:

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$$

Спектральная норма, $\|A\|_2$ является одной из наиболее широко используемых матричных норм (наряду с нормой Фробениуса).

$$||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2},$$

Она не может быть вычислена непосредственно из элементов с помощью простой формулы, как в случае нормы Фробениуса, однако, существуют эффективные алгоритмы для ее вычисления. Она напрямую связана с сингулярным разложением (SVD) матрицы. Для неё справедливо:

$$\|A\|_2 = \sigma_1(A) = \sqrt{\lambda_{\max}(A^TA)}$$

где $\sigma_1(A)$ - наибольшее сингулярное значение матрицы A.

Скалярное произведение

Стандартное **скалярное произведение** между векторами x и y из \mathbb{R}^n равно:

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i = y^T x = \langle y, x \rangle$$

Здесь x_i и y_i - i-ые компоненты соответствующих векторов.

i Example

Докажите, что вы можете переставить матрицу внутри скалярного произведения с транспонированием:

$$\langle x,Ay\rangle = \langle A^Tx,y\rangle \text{ in } \langle x,yB\rangle = \langle xB^T,y\rangle$$

Скалярное произведение матриц

Стандартное скалярное произведение между матрицами X и Y из $\mathbb{R}^{m \times n}$ равно:

$$\langle X,Y\rangle = \operatorname{tr}(X^TY) = \sum_{i=1}^m \sum_{i=1}^n X_{ij} Y_{ij} = \operatorname{tr}(Y^TX) = \langle Y,X\rangle$$

i Question

Существует ли связь между нормой Фробениуса $\|\cdot\|_{F}$ и скалярным произведением между матрицами $\langle \cdot, \cdot \rangle$?

Собственные вектора и собственные значения

Число λ является собственным значением квадратной матрицы A размера $n \times n$, если существует ненулевой вектор q такой, что

$$Aq = \lambda q$$
.

Вектор a называется собственным вектором матрицы A. Матрица A невырожденная, если ни одно из её собственных значений не равно нулю. Собственные значения симметричных матриц являются вещественными числами, в то время как несимметричные матрицы могут иметь комплексные собственные значения. Если матрица положительно определена и симметрична, то все её собственные значения являются положительными вещественными числами.

Собственные вектора и собственные значения

i Theorem

$$A\succeq (\succ)0\Leftrightarrow$$
 все собственные значения $A\ge (>)0$

Proof

1. \to Предположим, что некоторое собственное значение λ отрицательно, и пусть x обозначает соответствующий собственный вектор. Тогда

$$Ax = \lambda x \to x^T A x = \lambda x^T x < 0$$

что противоречит условию $A\succeq 0.$

Вспоминаем линейную алгебру

Собственные вектора и собственные значения

i Theorem

$$A\succeq (\succ)0\Leftrightarrow$$
 все собственные значения $A\ge (>)0$

Proof

1. \to Предположим, что некоторое собственное значение λ отрицательно, и пусть x обозначает соответствующий собственный вектор. Тогда

$$Ax = \lambda x \to x^T A x = \lambda x^T x < 0$$

что противоречит условию $A \succeq 0$.

2. \leftarrow Для любой симметричной матрицы мы можем выбрать набор собственных векторов v_1,\dots,v_n , которые образуют ортонормированный базис в \mathbb{R}^n . Возьмем любой вектор $x\in\mathbb{R}^n$.

$$\begin{split} x^TAx &= (\alpha_1v_1 + \ldots + \alpha_nv_n)^TA(\alpha_1v_1 + \ldots + \alpha_nv_n) \\ &= \sum \alpha_i^2v_i^TAv_i = \sum \alpha_i^2\lambda_iv_i^Tv_i \geq 0 \end{split}$$

Здесь мы использовали тот факт, что $v_i^T v_j = 0$, для $i \neq j$.

Спектральное разложение (eigendecomposition)

Пусть $A \in S_n$, т.е. A - вещественная симметричная матрица размера $n \times n$. Тогда A может быть разложена как

$$A = Q\Lambda Q^T$$
,

²Хорошая шпаргалка с разложением матриц доступна на сайте курса по линейной алгебре website.

Спектральное разложение (eigendecomposition)

Пусть $A \in S_n$, т.е. A - вещественная симметричная матрица размера $n \times n$. Тогда A может быть разложена как

$$A = Q\Lambda Q^T,$$

где $Q\in\mathbb{R}^{n\times n}$ ортогональная, т.е. удовлетворяет $Q^TQ=I$, и $\Lambda=\operatorname{diag}(\lambda_1,\dots,\lambda_n)$. Вещественные числа λ_i являются собственными значениями A и являются корнями характеристического полинома $\det(A-\lambda I)$. Столбцы Q образуют ортонормированный набор собственных векторов A. Такое разложение называется спектральным. 2

²Хорошая шпаргалка с разложением матриц доступна на сайте курса по линейной алгебре website.

Спектральное разложение (eigendecomposition)

Пусть $A \in S_n$, т.е. A - вещественная симметричная матрица размера $n \times n$. Тогда A может быть разложена как

$$A = Q\Lambda Q^T$$
,

где $Q\in\mathbb{R}^{n\times n}$ ортогональная, т.е. удовлетворяет $Q^TQ=I$, и $\Lambda=\operatorname{diag}(\lambda_1,\dots,\lambda_n)$. Вещественные числа λ_i являются собственными значениями A и являются корнями характеристического полинома $\det(A-\lambda I)$. Столбцы Q образуют ортонормированный набор собственных векторов A. Такое разложение называется спектральным. 2

Мы обычно упорядочиваем вещественные собственные значения как $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$. Мы используем обозначение $\lambda_i(A)$ для обозначения i-го наибольшего собственного значения $A \in S$. Мы обычно пишем наибольшее или максимальное собственное значение как $\lambda_1(A) = \lambda_{\max}(A)$, и наименьшее или минимальное собственное значение как $\lambda_n(A) = \lambda_{\min}(A)$.

 $^{^2}$ Хорошая шпаргалка с разложением матриц доступна на сайте курса по линейной алгебре website.

Собственные значения

Наибольшее и наименьшее вещественныесобственные значения удовлетворяют

$$\lambda_{\min}(A) = \inf_{x \neq 0} \frac{x^T A x}{x^T x}, \qquad \lambda_{\max}(A) = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

Собственные значения

Наибольшее и наименьшее вещественныесобственные значения удовлетворяют

$$\lambda_{\min}(A) = \inf_{x \neq 0} \frac{x^T A x}{x^T x}, \qquad \lambda_{\max}(A) = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

и, следовательно, $\forall x \in \mathbb{R}^n$ (соотношение Рэлея):

$$\lambda_{\min}(A)x^Tx \leq x^TAx \leq \lambda_{\max}(A)x^Tx$$

Собственные значения

Наибольшее и наименьшее вещественныесобственные значения удовлетворяют

$$\lambda_{\min}(A) = \inf_{x \neq 0} \frac{x^T A x}{x^T x}, \qquad \lambda_{\max}(A) = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

и, следовательно, $\forall x \in \mathbb{R}^n$ (соотношение Рэлея):

$$\lambda_{\min}(A)x^Tx \leq x^TAx \leq \lambda_{\max}(A)x^Tx$$

Число обусловленности невырожденной матрицы определяется как

$$\kappa(A)=\|A\|\|A^{-1}\|$$

Собственные значения

Наибольшее и наименьшее вещественныесобственные значения удовлетворяют

$$\lambda_{\min}(A) = \inf_{x \neq 0} \frac{x^T A x}{x^T x}, \qquad \lambda_{\max}(A) = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

и, следовательно, $\forall x \in \mathbb{R}^n$ (соотношение Рэлея):

$$\lambda_{\min}(A)x^Tx \leq x^TAx \leq \lambda_{\max}(A)x^Tx$$

Число обусловленности невырожденной матрицы определяется как

$$\kappa(A) = ||A|| ||A^{-1}||$$

Если мы используем спектральную матричную норму, мы можем получить:

$$\kappa(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$$

Если, кроме того, $A\in\mathbb{S}^n_{++}\colon \kappa(A)=rac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$

Число обусловленности

Вспоминаем линейную алгебру

Пусть $A \in \mathbb{R}^{m \times n}$ с рангом A = r. Тогда A может быть разложена как

$$A = U \Sigma V^T$$

Пусть $A \in \mathbb{R}^{m \times n}$ с рангом A = r. Тогда A может быть разложена как

$$A = U \Sigma V^T$$

где $U\in\mathbb{R}^{m\times r}$ удовлетворяет $U^TU=I$, $V\in\mathbb{R}^{n\times r}$ удовлетворяет $V^TV=I$, и Σ является диагональной матрицей с $\Sigma=\operatorname{diag}(\sigma_1,...,\sigma_r)$, такой что

Пусть $A \in \mathbb{R}^{m \times n}$ с рангом A = r. Тогда A может быть разложена как

$$A = U \Sigma V^T$$

где $U\in\mathbb{R}^{m\times r}$ удовлетворяет $U^TU=I$, $V\in\mathbb{R}^{n\times r}$ удовлетворяет $V^TV=I$, и Σ является диагональной матрицей с $\Sigma=\operatorname{diag}(\sigma_1,...,\sigma_r)$, такой что

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0.$$

Пусть $A \in \mathbb{R}^{m \times n}$ с рангом A = r. Тогда A может быть разложена как

$$A = U\Sigma V^T$$

где $U \in \mathbb{R}^{m imes r}$ удовлетворяет $U^T U = I$. $V \in \mathbb{R}^{n imes r}$ удовлетворяет $V^T V = I$. и Σ является диагональной матрицей с $\Sigma = \mathsf{diag}(\sigma_1, ..., \sigma_m)$, такой что

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > 0.$$

Это разложение называется сингулярным разложением (SVD) матрицы A. Столбцы U называются левыми сингулярными векторами A, столбцы V называются правыми сингулярными векторами, и числа σ_i являются сингулярными значениями. Сингулярное разложение может быть записано как

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T,$$

где $u_i \in \mathbb{R}^m$ являются левыми сингулярными векторами, и $v_i \in \mathbb{R}^n$ являются правыми сингулярными векторами.

Сингулярное разложение

i Question

Пусть $A \in \mathbb{S}^n_{++}$. Что мы можем сказать о связи между его собственными значениями и сингулярными значениями?

Сингулярное разложение

i Question

Пусть $A \in \mathbb{S}^n_{++}$. Что мы можем сказать о связи между его собственными значениями и сингулярными значениями?

i Question

Как сингулярные значения матрицы связаны с её собственными значениями, особенно для симметричной матрицы?

♥ ೧ ⊘

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Последнее выражение относится к забавному факту: вы можете случайным образом выбрать r линейно независимых столбцов матрицы и любые rлинейно независимых строк матрицы и хранить только их с возможностью точно (!) восстановить всю матрицу.

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Последнее выражение относится к забавному факту: вы можете случайным образом выбрать r линейно независимых столбцов матрицы и любые r линейно независимых строк матрицы и хранить только их с возможностью точно (!) восстановить всю матрицу.

Применения для рангового разложения:

• Сжатие модели, сжатие данных и ускорение вычислений в численном анализе: для матрицы ранга r с $r \ll n, m$ необходимо хранить $\mathcal{O}((n+m)r) \ll nm$ элементов.

Рисунок 3: Иллюстрация рангового разложения

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Последнее выражение относится к забавному факту: вы можете случайным образом выбрать r линейно независимых столбцов матрицы и любые rлинейно независимых строк матрицы и хранить только их с возможностью точно (!) восстановить всю матрицу.

Применения для рангового разложения:

- Сжатие модели, сжатие данных и ускорение вычислений в численном анализе: для матрицы ранга r с $r \ll n, m$ необходимо хранить $\mathcal{O}((n+m)r) \ll nm$ элементов.
- Извлечение признаков в машинном обучении

Рисунок 3: Иллюстрация рангового разложения

Простое, но очень интересное разложение - это ранговое разложение, которое может быть записано в двух формах:

$$A = UV^T \quad A = \hat{C}\hat{A}^{-1}\hat{R}$$

Последнее выражение относится к забавному факту: вы можете случайным образом выбрать r линейно независимых столбцов матрицы и любые r линейно независимых строк матрицы и хранить только их с возможностью точно (!) восстановить всю матрицу.

Применения для рангового разложения:

- Сжатие модели, сжатие данных и ускорение вычислений в численном анализе: для матрицы ранга r с $r \ll n, m$ необходимо хранить $\mathcal{O}((n+m)r) \ll nm$ элементов.
- Извлечение признаков в машинном обучении
- Все приложения, где применяется SVD, так как ранговое разложение может быть преобразовано в форму усеченного SVD.

Рисунок 3: Иллюстрация рангового разложения

Каноническое тензорное разложение

Можно рассмотреть обобщение рангового разложения на структуры данных более высокого порядка, такие как тензоры, что означает представление тензора в виде суммы r простых тензоров.

Рисунок 4: Иллюстрация канонического тензорного разложения

i Example

Заметьте, что существует множество тензорных разложений: каноническое, Таккера, тензорный поезд (ТТ), тензорное кольцо (ТR) и другие. В случае тензоров мы не имеем прямого определения ранга для всех типов разложений. Например, для разложения Тензорного поезда ранг является не скаляром, а вектором.

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересныхсвойств. Например,

• $\det A = 0$ тогда и только тогда, когда A является вырожденной;

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересныхсвойств. Например,

- $\det A = 0$ тогда и только тогда, когда A является вырожденной;
- det AB = (det A)(det B):

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересныхсвойств. Например,

- $\det A = 0$ тогда и только тогда, когда A является вырожденной;
- $\det AB = (\det A)(\det B)$:
- $\det A^{-1} = \frac{1}{\det^A}$.

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересныхсвойств. Например,

- $\det A = 0$ тогда и только тогда, когда A является вырожденной;
- $\det AB = (\det A)(\det B)$:
- $\det A^{-1} = \frac{1}{\det^A}$.

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересныхсвойств. Например.

- $\det A = 0$ тогда и только тогда, когда A является вырожденной;
- $\det AB = (\det A)(\det B)$:
- $\det A^{-1} = \frac{1}{\det A}$.

Не забывайте о циклическом свойстве следа для произвольных матриц A, B, C, D (предполагая, что все размерности согласованы):

$$tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)$$

Определитель и след матрицы могут быть выражены через собственные значения

$$\mathrm{det} A = \prod_{i=1}^n \lambda_i, \qquad \mathrm{tr} A = \sum_{i=1}^n \lambda_i$$

Определитель имеет несколько интересныхсвойств. Например,

- ullet $\det A=0$ тогда и только тогда, когда A является вырожденной;
- $\det AB = (\det A)(\det B)$;
- $\det A^{-1} = \frac{1}{\det A}.$

Не забывайте о циклическом свойстве следа для произвольных матриц A,B,C,D (предполагая, что все размерности согласованы):

$$\mathsf{tr}(ABCD) = \mathsf{tr}(DABC) = \mathsf{tr}(CDAB) = \mathsf{tr}(BCDA)$$

i Question

Как определитель матрицы связан с её обратимостью?

Скорости сходимости

Скорость сходимости

Линейная сходимость

Чтобы сравнить производительность алгоритмов, мы должны определить термины для различных типов сходимости. Пусть r_k - последовательность неотрицательных вещественных чисел, которая сходится к нулю. Обычно мы имеем итерационный метод, который производит последовательность итераций $x_{t,i}$

Линейная сходимость последовательности r_{i} , определяется следующим образом:

приближающихся к оптимальному решению x^* , и $r_{\iota} = \|x_{\iota} - x^*\|_2$.

Последовательность $\{r_k\}_{k=m}^\infty$ сходится линейно с параметром 0 < q < 1, если существует константа C > 0такая, что:

$$r_k \le Cq^k$$
, for all $k \ge m$.

Если такое q существует, то последовательность называется линейно сходящейся. **Точная нижняя граница** всех q, удовлетворяющих неравенству, называется **скоростью линейной сходимости** последовательности.

Question

Предположим, у вас есть две последовательности с линейными скоростями сходимости $q_1 = 0.1$ и $q_2 = 0.7$, какая из них быстрее?

Линейная сходимость

i Example

Предположим, у нас есть следующая последовательность:

$$r_k = \frac{1}{2^k}$$

Можно сразу заключить, что мы имеем линейную сходимость с параметрами $q=rac{1}{2}$ и C=0.

i Question

Определите сходимость следующей последовательности

$$r_k = \frac{3}{2^k}$$

Сублинейная сходимость

Если последовательность r_{l} , сходится к нулю, но не имеет линейной сходимости, то сходимость называется сублинейной. Иногда мы можем рассмотреть следующий частный случай сублинейной сходимости:

$$||x_{k+1} - x^*||_2 \le Ck^q$$
,

где q < 0 и $0 < C < \infty$. Интуитивно, сублинейная сходимость означает, что последовательность сходится медленнее любой геометрической прогрессии.

Сверхлинейная сходимость

Сходимость последовательности $\{r_k\}_{k=m}^{\infty}$ называется **сверхлинейной**, если она сходится к нулю быстрее любой линейно сходящейся последовательности. Проверьте, что последовательность $\{r_k\}_{k=m}^{\infty}$ является сверхлинейной, если она сходится линейно с параметром q=0.

Для p>1, последовательность имеет **сверхлинейную сходимость порядка** p, если существует C>0 и 0 < q < 1 такая, что:

$$r_k \le Cq^{p^k}, \quad \text{for all } k \ge m.$$

Когда p=2, это называется **квадратичной сходимостью**.

Сверхлинейная сходимость

Сходимость последовательности $\{r_k\}_{k=m}^\infty$ называется **сверхлинейной**, если она сходится к нулю быстрее любой линейно сходящейся последовательности. Проверьте, что последовательность $\{r_k\}_{k=m}^\infty$ является сверхлинейной, если она сходится линейно с параметром q=0.

Для p>1, последовательность имеет **сверхлинейную сходимость порядка** p, если существует C>0 и 0< q<1 такая. что:

$$r_k \le Cq^{p^k}, \quad \text{for all } k \ge m.$$

Когда p=2, это называется **квадратичной сходимостью**.

Важный пример

Предположим, что $x^* = 1.23456789$ (истинное решение), и итерационная последовательность начинается с ошибки $r_{\rm L} = 10^{-3}$, соответствующей 3 правильным значащим цифрам (1.234).

1. После первой итерации:

$$r_{k+1} \approx r_k^2 = (10^{-3})^2 = 10^{-6}$$
.

Теперь ошибка равна 10^{-6} , и мы имеем 6 правильных значащих цифр (1.23456).

♥ ೧ 0

Сверхлинейная сходимость

Сходимость последовательности $\{r_k\}_{k=m}^\infty$ называется **сверхлинейной**, если она сходится к нулю быстрее любой линейно сходящейся последовательности. Проверьте, что последовательность $\{r_k\}_{k=m}^\infty$ является сверхлинейной, если она сходится линейно с параметром q=0.

Для p>1, последовательность имеет **сверхлинейную сходимость порядка** p, если существует C>0 и 0< q<1 такая, что:

$$r_k \le Cq^{p^k}$$
, for all $k \ge m$.

Когда p=2, это называется **квадратичной сходимостью**.

і Важный пример

Предположим, что $x^*=1.23456789$ (истинное решение), и итерационная последовательность начинается с ошибки $r_k=10^{-3}$, соответствующей 3 правильным значащим цифрам (1.234).

1. После первой итерации:

$$r_{k+1} \approx r_k^2 = (10^{-3})^2 = 10^{-6}$$
.

Теперь ошибка равна 10^{-6} , и мы имеем 6 правильных значащих цифр (1.23456).

2. После второй итерации:

$$r_{k+2} \approx r_{k+1}^2 = (10^{-6})^2 = 10^{-12}$$
.

Теперь ошибка равна 10^{-12} , и мы имеем 12 правильных значащих цифр (1.234567890123).

Практические наблюдения о скоростях сходимости

• $\|x_{k+1}-x^*\|_2 \leq \frac{1}{k^{\frac{1}{p}}}\|x_0-x^*\|_2$ означает сублинейную скорость сходимости

Практические наблюдения о скоростях сходимости

- $\|x_{k+1}-x^*\|_2 \leq \frac{1}{L^{\frac{1}{2}}}\|x_0-x^*\|_2$ означает сублинейную скорость сходимости
- ullet $\|x_{k+1}-x^*\|_2 \leq \ddot{q}\|x_k-x^*\|_2$ означает линейную скорость сходимости, где q<1

Практические наблюдения о скоростях сходимости

- $\|x_{k+1}-x^*\|_2 \leq rac{1}{k^{\frac{1}{2}}} \|x_0-x^*\|_2$ означает сублинейную скорость сходимости
- $\|x_{k+1} x^*\|_2 \le q \|x_k x^*\|_2$ означает линейную скорость сходимости, где q < 1
- $\|x_{k+1} x^*\|_2^2 \le q \|x_k x^*\|_2^2$ означает квадратичную скорость сходимости, где $q \|x_0 x^*\| < 1$

Тест корней

i Theorem

Пусть $(r_k)_{k=m}^\infty$ - последовательность неотрицательных чисел, сходящаяся к нулю, и пусть lpha := $\limsup_{k\to\infty} r_k^{1/k}$. (Заметим, что $\alpha\geq 0$.)

(a) Если $\widetilde{0} \leq \alpha < 1$, то $(r_k)_{k=m}^{\infty}$ сходится линейно с константой α .

Доказательство.

Тест корней

i Theorem

Пусть $(r_k)_{k=m}^\infty$ - последовательность неотрицательных чисел, сходящаяся к нулю, и пусть $\alpha:=\limsup_{k\to\infty}r_k^{1/k}$. (Заметим, что $\alpha\ge 0$.)

- (a) Если $0 \le \alpha < 1$, то $(r_k)_{k=m}^\infty$ сходится линейно с константой α .
- (b) В частности, если $\alpha=0$, то $(r_k)_{k=m}^\infty$ сходится сверхлинейно.

Доказательство.

Тест корней

i Theorem

Пусть $(r_k)_{k=m}^\infty$ - последовательность неотрицательных чисел, сходящаяся к нулю, и пусть $\alpha:=\limsup_{k\to\infty}r_k^{1/k}$. (Заметим, что $\alpha\geq 0$.)

- (a) Если $0 \le \alpha < 1$, то $(r_k)_{k=m}^{\infty}$ сходится линейно с константой α .
- (b) В частности, если $\alpha=0$, то $(r_k)_{k=m}^\infty$ сходится сверхлинейно.
- (c) Если $\alpha=1$, то $(r_k)_{k=m}^{\infty}$ сходится сублинейно.

Доказательство.

1 Theorem

Пусть $(r_k)_{k=m}^\infty$ - последовательность неотрицательных чисел, сходящаяся к нулю, и пусть lpha:= $\limsup_{k\to\infty} r_k^{1/k}$. (Заметим, что $\alpha \geq 0$.)

- (a) Если $0 \le \alpha < 1$, то $(r_k)_{k=m}^{\infty}$ сходится линейно с константой α .
- (b) В частности, если $\alpha = 0$, то $(r_k)_{k=m}^{\infty}$ сходится сверхлинейно.
- (c) Если $\alpha=1$, то $(r_k)_{k=m}^{\infty}$ сходится сублинейно.
- (d) Случай $\alpha > 1$ невозможен.

Доказательство.

i Theorem

Пусть $(r_k)_{k=m}^\infty$ - последовательность неотрицательных чисел, сходящаяся к нулю, и пусть $\alpha:=\limsup_{k\to\infty}r_k^{1/k}$. (Заметим, что $\alpha\ge 0$.)

- (a) Если $0 \le \alpha < 1$, то $(r_k)_{k=m}^{\infty}$ сходится линейно с константой α .
- (b) В частности, если $\alpha=0$, то $(r_k)_{k=m}^\infty$ сходится сверхлинейно.
- (c) Если $\alpha = 1$, то $(r_k)_{k=m}^{\infty}$ сходится сублинейно.
- (d) Случай $\alpha > 1$ невозможен.

Доказательство.

- 1. Покажем, что если $(r_k)_{k=m}^{\infty}$ сходится линейно с константой $0 \le \beta < 1$, то $\alpha \le \beta$. Действительно, по определению константы линейной сходимости, для любого $\varepsilon > 0$ такого, что $\beta + \varepsilon < 1$, существует C > 0 такое, что $r_k \le C(\beta + \varepsilon)^k$ для всех $k \ge m$. Отсюда, $r_k^{1/k} \le C^{1/k}(\beta + \varepsilon)$ для всех $k \ge m$.
 - Переходя к пределу при $k \to \infty$ и используя $C^{1/k} \to 1$, мы получаем $\alpha \le \beta + \varepsilon$. Учитывая

произвольность ε , получаем $\alpha \leq \beta$.

େ ♥ ମ ଡ

i Theorem

Пусть $(r_k)_{k=m}^\infty$ - последовательность неотрицательных чисел, сходящаяся к нулю, и пусть $\alpha:=\limsup_{k\to\infty}r_k^{1/k}$. (Заметим, что $\alpha\ge 0$.)

- (a) Если $0 \le \alpha < 1$, то $(r_k)_{k=m}^\infty$ сходится линейно с константой α .
- (b) В частности, если $\alpha=0$, то $(r_k)_{k=m}^\infty$ сходится сверхлинейно.
- (c) Если $\alpha=1$, то $(r_k)_{k=m}^{\infty}$ сходится сублинейно.
- (d) Случай $\alpha > 1$ невозможен.

Доказательство.

- 1. Покажем, что если $(r_k)_{k=m}^\infty$ сходится линейно с константой $0 \le \beta < 1$, то $\alpha \le \beta$. Действительно, по определению константы линейной сходимости, для любого $\varepsilon > 0$ такого, что $\beta + \varepsilon < 1$, существует C > 0 такое, что $r_k \le C(\beta + \varepsilon)^k$ для всех $k \ge m$. Отсюда, $r_k^{1/k} \le C^{1/k}(\beta + \varepsilon)$ для всех $k \ge m$.
 - Переходя к пределу при $k\to\infty$ и используя $C^{1/k}\to 1$, мы получаем $\alpha\le\beta+\varepsilon$. Учитывая произвольность ε . получаем $\alpha\le\beta$.
- 2. Таким образом, в случае $\alpha=1$ последовательность $(r_k)_{k=m}^{\infty}$ не может иметь линейной сходимости в соответствии с приведенным выше результатом (доказано от противного). Тем не менее, $(r_k)_{k=m}^{\infty}$ сходится к нулю, поэтому она должна сходиться сублинейно.

େ ପ ବ

i Theorem

1. Теперь рассмотрим случай $0 \leq \alpha < 1$. Пусть $\varepsilon > 0$ - произвольное число такое, что $\alpha + \varepsilon < 1$. Согласно свойствам limsup, существует $N \geq m$ такое, что $r_k^{1/k} \leq \alpha + \varepsilon$ для всех $k \geq N$. Отсюда, $r_k \leq (\alpha + \varepsilon)^k$ для всех $k \geq N$. Следовательно, $(r_k)_{k=m}^\infty$ сходится линейно с параметром $\alpha + \varepsilon$ (не имеет значения, что неравенство выполняется только для числа N). Учитывая произвольность ε , это означает, что константа линейной сходимости $(r_k)_{k=m}^\infty$ не превышает α . Поскольку, как показано выше, константа линейной сходимости не может быть меньше α , это означает, что константа линейной сходимости $(r_k)_{k=m}^\infty$ точно равна α .

i Theorem

- 1. Теперь рассмотрим случай $0 \le \alpha < 1$. Пусть $\varepsilon > 0$ произвольное число такое, что $\alpha + \varepsilon < 1$. Согласно свойствам limsup, существует N > m такое, что $r_{\nu}^{1/k} < \alpha + \varepsilon$ для всех k > N. Отсюда, $r_k \leq (\alpha+\varepsilon)^k$ для всех $k \geq N$. Следовательно, $(r_k)_{k=m}^\infty$ сходится линейно с параметром $\alpha+\varepsilon$ (не имеет значения, что неравенство выполняется только для числа N). Учитывая произвольность ε . это означает, что константа линейной сходимости $(r_k)_{k=0}^{\infty}$ не превышает α . Поскольку, как показано выше, константа линейной сходимости не может быть меньше lpha, это означает, что константа линейной сходимости $(r_k)_{k=m}^{\infty}$ точно равна α .
- 2. Наконец, покажем, что случай $\alpha>1$ невозможен. Действительно, предположим, что $\alpha>1$. Тогда из определения limsup следует, что для любого $N \geq m$ существует k > N такое. что $r_{r}^{1/k} > 1$. и. в частности, $r_k \ge 1$. Но это означает, что r_k имеет подпоследовательность, которая не ограничена от нуля. Следовательно, $(r_k)_{k=m}^{\infty}$ не может сходиться к нулю, что противоречит условию.

Пусть $\{r_k\}_{k=m}^{\infty}$ - последовательность строго положительных чисел, сходящаяся к нулю. Пусть

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

• Если существует q и $0 \le q < 1$, то $\{r_k\}_{k=m}^{\infty}$ имеет линейную сходимость с константой q.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- Если существует q и $0 \le q < 1$, то $\{r_k\}_{k=m}^{\infty}$ имеет линейную сходимость с константой q.
- В частности, если q=0, то $\{r_k\}_{k=m}^{\infty}$ имеет сверхлинейную сходимость.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- Если существует q и $0 \le q < 1$, то $\{r_k\}_{k=m}^{\infty}$ имеет линейную сходимость с константой q.
- ullet В частности, если q=0, то $\{r_k\}_{k=m}^\infty$ имеет сверхлинейную сходимость.
- ullet Если q не существует, но $q=\lim_{k o\infty}\sup_krac{r_{k+1}}{r_k}<1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой, не превышающей q.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- ullet Если существует q и $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.
- В частности, если q=0, то $\{r_k\}_{k=m}^{\infty}$ имеет сверхлинейную сходимость.
- Если q не существует, но $q=\lim_{k\to\infty}\sup_k\frac{r_{k+1}}{r_k}<1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой, не превышающей q.
- ullet Если $\lim_{k o\infty}\inf_krac{r_{k+1}}{r_k}=1$, то $\{r_k\}_{k=m}^\infty$ имеет сублинейную сходимость.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- ullet Если существует q и $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.
- В частности, если q=0, то $\{r_k\}_{k=m}^\infty$ имеет сверхлинейную сходимость.
- ullet Если q не существует, но $q=\lim_{k o\infty}\sup_krac{r_{k+1}}{r_{L}}<1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой, не превышающей q.
- Если $\lim_{k \to \infty} \inf_k \frac{r_{k+1}}{r_k} = 1$, то $\{r_k\}_{k=m}^\infty$ имеет сублинейную сходимость. Случай $\lim_{k \to \infty} \inf_k \frac{r_{k+1}}{r_k} > 1$ невозможен.

$$q = \lim_{k \to \infty} \frac{r_{k+1}}{r_k}$$

- ullet Если существует q и $0 \leq q < 1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой q.
- В частности, если q=0, то $\{r_k\}_{k=m}^\infty$ имеет сверхлинейную сходимость.
- ullet Если q не существует, но $q=\lim_{k o\infty}\sup_krac{r_{k+1}}{r_{L}}<1$, то $\{r_k\}_{k=m}^\infty$ имеет линейную сходимость с константой, не превышающей q.
- Если $\lim_{k\to\infty}\inf_k\frac{\bar{r}_{k+1}}{r_k}=1$, то $\{r_k\}_{k=m}^\infty$ имеет сублинейную сходимость. Случай $\lim_{k\to\infty}\inf_k\frac{\bar{r}_{k+1}}{r_k}>1$ невозможен.
- ullet В остальных случаях (т.е., когда $\lim_{k o\infty}\inf_krac{r_{k+1}}{r_k}<1\leq\lim_{k o\infty}\sup_krac{r_{k+1}}{r_k}$) мы не можем сделать никаких конкретных утверждений о скорости сходимости $\{r_k\}_{k=m}^{\infty}$.

Лемма о тесте отношений

i Theorem

Пусть $(r_k)_{k=m}^\infty$ - последовательность строго положительных чисел. (Строгая положительность необходима для того, чтобы отношения $\frac{r_{k+1}}{r_k}$, которые появляются ниже, были определены.) Тогда

$$\liminf_{k\to\infty}\frac{r_{k+1}}{r_k}\leq \liminf_{k\to\infty}r_k^{1/k}\leq \limsup_{k\to\infty}r_k^{1/k}\leq \limsup_{k\to\infty}\frac{r_{k+1}}{r_k}.$$

Доказательство.

1. Среднее неравенство следует из того, что liminf любой последовательности всегда меньше или равен её limsup. Докажем последнее неравенство; первое доказывается аналогично.

Лемма о тесте отношений

i Theorem

Пусть $(r_k)_{k=m}^\infty$ - последовательность строго положительных чисел. (Строгая положительность необходима для того, чтобы отношения $\frac{r_{k+1}}{r_*}$, которые появляются ниже, были определены.) Тогда

$$\liminf_{k\to\infty}\frac{r_{k+1}}{r_k}\leq \liminf_{k\to\infty}r_k^{1/k}\leq \limsup_{k\to\infty}r_k^{1/k}\leq \limsup_{k\to\infty}\frac{r_{k+1}}{r_k}.$$

Доказательство.

- 1. Среднее неравенство следует из того, что liminf любой последовательности всегда меньше или равен её limsup. Докажем последнее неравенство; первое доказывается аналогично.
- 2. Обозначим $L:=\limsup_{k\to\infty}\frac{r_{k+1}}{r_k}$. Если $L=+\infty$, то неравенство очевидно, поэтому предположим, что L конечно. Заметим, что $L\geq 0$, поскольку отношение $\frac{r_{k+1}}{r_k}$ положительно для всех $k\geq m$. Пусть $\varepsilon>0$ произвольное число. Согласно свойствам limsup, существует $N\geq m$ такое, что $\frac{r_{k+1}}{r_k}\leq L+\varepsilon$ для всех $k\geq N$. Отсюда, $r_{k+1}\leq (L+\varepsilon)r_k$ для всех $k\geq N$. Применяя индукцию, получаем $r_k\leq (L+\varepsilon)^{k-N}r_N$ для всех $k\geq N$. Пусть $C:=(L+\varepsilon)^{-N}r_N$. Тогда $r_k\leq C(L+\varepsilon)^k$ для всех $k\geq N$, откуда $r_k^{1/k}\leq C^{1/k}(L+\varepsilon)$. Переходя к limsup при $k\to\infty$ и используя $C^{1/k}\to 1$, получаем $\limsup_{k\to\infty}r_k^{1/k}\leq L+\varepsilon$. Учитывая произвольность ε , получаем $\limsup_{k\to\infty}r_k^{1/k}\leq L$.

Summary

Summary

Summary

Определения

- 1. Положительно определённая матрица.
- 2. Евклидова норма вектора.
- 3. Неравенство треугольника для нормы.
- р-норма вектора.
- 5. Как выглядит единичный шар в p норме на плоскости для $p = 1, 2, \infty$?
- 6. Норма Фробениуса для матрицы. 7. Спектральная норма матрицы.
- 8. Скалярное произведение двух векторов. 9. Скалярное произведение двух матриц,
- согласованное с нормой Фробениуса.
- 10. Собственные значения матрицы. Спектр матрицы. 11. Связь спектра матрицы и её определенности.
- 12. Спектральное разложение матрицы.
- 13. Сингулярное разложение матрицы.
- 14. Связь определителя и собственных чисел для квадратной матрицы. 15. Связь следа и собственных чисел для квадратной

- 16. Линейная сходимость последовательности.
- 17. Сублинейная сходимость последовательности. 18. Сверхлинейная сходимость последовательности.
- 19. Квадратичная сходимость последовательности.
- 20. Тест корней для определения скорости сходимости последовательности.
- 21. Тест отношений для определения скорости сходимости последовательности.

Теоремы

- 1. Критерий положительной определенности матрицы через знаки собственных значений матрицы.
- 2. Тест корней
- 3. Тест отношений

Summary

