# **Exercise 4**

Table 4.1

| Trained Descent to Value |                       |                         |           |                |
|--------------------------|-----------------------|-------------------------|-----------|----------------|
|                          |                       | Typical Parameter Value |           |                |
| Parameter Symbol         | Parameter Description | n-Channel               | p-Channel | Units          |
| $V_{T0}$                 | Threshold             | 0.7                     | -0.8      | V              |
|                          | voltage( $V_{BS}$ =0) |                         |           |                |
| K                        | Transconductance      | 134                     | 50        | μ <b>Α</b> /V² |
|                          | parameter(in          |                         |           |                |
|                          | saturation)           |                         |           |                |
| γ                        | Bulk threshold        | 0.45                    | 0.4       | $V^{1/2}$      |
|                          | parameter             |                         |           |                |
| λ                        | Channel length        | 0.1                     | 0.2       | V-1            |
|                          | modulation parameter  |                         |           |                |
| $2 \varphi_{\rm F} $     | Surface potential at  | 0.9                     | 0.8       | V              |
|                          | strong inversion      |                         |           |                |

 $<sup>*</sup>K = \mu C_{OX}$ 

4-1 For the circuit in Fig.4.1(a) assume that there are no capacitance parasitics associated with M1. The voltage source v<sub>in</sub> is a small-signal value, whereas voltage source V<sub>DC</sub> has a dc value of 3 V. Design M1 to achieve the asymptotic frequency response shown in Fig.4.1(b).



### **Answer:**

f(-3dB) = 20MHz,thus  $\omega = 40\pi$ M rad/s.Note that since no dc current flows through the transistor, the dc value of the drain-source voltage is zero.

$$r_{ON} = \frac{L}{KW(V_{GS} - V_T)}, \text{ then } \frac{1}{RC} = \frac{KW(V_{GS} - V_T)}{LC} \text{ find } \frac{W}{L} = \frac{C \times 40\pi \times 10^6}{K(V_{GS} - V_T)}$$

$$V_T = V_{T0} + \gamma \left( \sqrt{|2\varphi_F| + |v_{bS}|} - \sqrt{|2\varphi_F|} \right) = 0.7 + 0.45 \times \left( \sqrt{0.9 + 3} - \sqrt{0.9} \right) = 1.16$$

$$\frac{W}{L} = \frac{2 \times 10^{-12} \times 40\pi \times 10^6}{134 \times 10^{-6} \times (2 - 1.16)} = 2.23$$

$$Vt=0.7$$
,  $w/l=2.88$ 

- 4-2 Fig.4.2 illustrates a source-degenerated current source. M1 with W/L=2u/1u.
  - (a) Using Table 4.1 model parameters, calculate the output resistance at the given current bias. Ignore the body effect.
  - (b) Calculate the minimum output voltage required to keep the device in saturation.



Fig.4.2

#### **Answer:**

The small-signal model if this circuit is shown below

$$\begin{array}{c|c}
 & i_{D} \\
 & \downarrow \\
 &$$

(a) 
$$V_S = I_D \times r = 1 \text{V}, r_{out} = r + r_{ds} + [(g_m + g_{mb})r_{ds}]r$$
.

$$g_m = \sqrt{2 \times \frac{KW}{L} I_D} = 73.2 \times 10^{-6}$$

$$g_{mb} = g_m \frac{\gamma}{2(2|\Phi_F| + V_{SB})^{\frac{1}{2}}} = 11.9 \times 10^{-6}$$

$$g_{ds} = \lambda I_D = 1 \times 10^{-6}$$

$$r_{ds} = \frac{1}{g_{ds}} = 1 \times 10^6$$

thus 
$$r_{out} = 9.61 \times 10^6$$

(b) 
$$V_T = V_{T0} + \gamma \left( \sqrt{|2\varphi_F| + |v_{bs}|} - \sqrt{|2\varphi_F|} \right) = 0.89 \ V. V_{GS} = \left( \sqrt{2 \times \frac{L}{KW}} I_D + V_T \right) = 1.16 V. V_{GG} = V_{GS} + V_S = 2.16 \ V. V_{out} > V_{GG} - V_T = 1.27 V$$

4-3 Calculate the output resistance and the minimum output voltage, while maintaining all devices in saturation, for the circuits shown in Fig.4.3. Assume that  $i_{OUT}$  is actually  $10\mu A$ . Use Table 4.1 for device model information.  $V_{bs}=0$  V.



Fig .4.3

## **Answer:**

$$\begin{split} V_{GS3} &= V_{GS4} = \left(\sqrt{2 \times \frac{L}{KW} I_D} + V_T\right) = 0.17 + 0.7 \, V = 0.87 \, \text{V}. \\ g_{m2} &= g_{m4} = \sqrt{2 \times \frac{KW}{L} I_D} = 115.8 \times 10^{-6} \\ r_{out} &= r_{ds1} + r_{ds2} + g_{m2} r_{ds1} r_{ds2}. \\ r_{ds1} &= r_{ds2} = \frac{1}{\lambda I_D} = 1 \times 10^6 \\ r_{out} &= 117.8 \times 10^6 \\ v_{out} &= V_{GS3} + V_{GS4} - V_{T2} = 1.04 \, V \end{split}$$

4-4 A reference circuit is shown in Fig.4.4, assume that  $(W/L)_1=(W/L)_2=(W/L)_3=4$ ,  $(W/L)_4=1$ , please derive a symbolic expression of  $V_{REF}$ . (已知各管处于饱和区且各管阈值电压为 $V_{Ti}$ )



### **Answer:**

$$\begin{split} V_{REF} &= V_{GS1} + V_{GS3} - V_{GS4} \\ V_{REF} &= V_{ON1} + V_{T1} + V_{ON3} + V_{T3} - V_{ON4} - V_{T4} \\ V_{T3} &= V_{T4} \\ V_{ON4} &= 2 \times V_{ON1} = 2 \times V_{ON3} \\ V_{REF} &= V_{T1} \end{split}$$

4-5 As the circuits shown in Fig.4.5,  $I_{REF}$ =0.3mA and  $\gamma$ =0. Using the model parameters in Table 4.1,

- (a) Calculate the voltage  $V_b$  when  $V_X=V_Y$ ;
- (b) If V<sub>b</sub> is 100mV smaller than the value in (a), calculate the deviation of I<sub>out</sub> from 300 μА.



Fig.4.5

#### **Answer:**

(a) 
$$V_{GS1} = \left(\sqrt{2 \times \frac{L}{KW} I_{REF}} + V_T\right) = 0.24 + 0.7 = 0.94 \, V. V_b = 2 \times V_{GS1} = 1.88 \, V.$$

(b) 
$$\lambda(L=0.5u) = 2 \times \lambda(L=1u) = 0.2V^{-1}$$
 
$$I_{out} = I_{REF} \frac{1 + \lambda(V_{GS1} + \Delta V_b)}{1 + \lambda V_{GS1}}, \ \Delta I_{out} = I_{REF} \frac{\lambda \Delta V_b}{1 + \lambda V_{GS1}} = -5.05 \times 10^{-6}$$

4-6 Design M3 and M4 of Fig.4.6(a) so that the output characteristics are identical to the circuit shown in Fig.4.6(b). It is desired that  $i_{OUT}$  is ideally 10uA.





Fig.4.6

(a) 
$$V_{GS1} = V_{GS3}, V_{GS2} = V_{GS4}, I_3 = I_4 = 5uA$$
,  $I_{out} = 10uA$ , we must have  $(\frac{W}{L})_{1} = 2 \times (\frac{W}{L})_{3}$ ,  $(\frac{W}{L})_{3} = 2/1$ .

In (b) 
$$i_3 = i_4 = 10uA = i_1$$
,  $(\frac{W}{L})_4 \times V_{Dsat4}^2 = (\frac{W}{L})_1 \times V_{Dsat1}^2$ ,  $V_{Dsat4} = 2 \times V_{Dsat1}$ ,  $V_{GS4} = V_T + V_{Dsat4}$ ,  $V_{GS2} = V_T + V_{Dsat4}$ ,  $V_{out} > V_{GS2} - V_T = V_{Dsat4} = 2 \times V_{Dsat1}$   
In (a)  $I_3 = I_4 = 5uA = 2 \times I_1$ ,  $(\frac{W}{L})_4 \times V_{Dsat4}^2 = \frac{1}{2} (\frac{W}{L})_1 \times V_{Dsat1}^2$ 

because, 
$$\frac{V_{Dsat4}}{V_{Dsat1}} = \sqrt{\frac{1}{2} \times \left(\frac{W}{L}\right)_{1} / \left(\frac{W}{L}\right)_{4}} = 2$$
,  $\left(\frac{W}{L}\right)_{4} = \frac{1}{8} \times \left(\frac{W}{L}\right)_{1} = 1/2$