Cache Replacement Policies and Signature-based Hit Prediction (SHiP) Cache

Memory Systems HW1

Outline

- Cache replacement policies
- Simulator introduction
- NTHU Online Judge introduction

Replacement Policy

- Each set of an N-way cache has N blocks
- Upon a miss, the cache can consider giving up one cached block to store the requested block
- A selection policy is needed
 - The selection affects performance (not correctness)
- Some cache replacement policies
 - 1. LRU (least recently used)
 - 2. NRU (not recently used)
 - SRRIP (static re-reference interval prediction)
 - 4. SHIP+SRRIP

1. LRU

Cache Hit:

(i) move the block to MRU

Cache Miss:

(i) replace the LRU block

(ii) move the block to MRU

2. NRU

Cache Hit:

(i) set the nru-bit of the block to '0'

Cache Miss:

- (i) search for the first '1' from the left
- (ii) if '1' is found go to step (v)
- (iii) set all nru-bits to '1'
- (iv) goto step (i)
- (v) replace the block and set the nru-bit to '1'

3. SRRIP

Cache Hit:

(i) set the RRPV of the block to '0'

Cache Miss:

- (i) search for the first '3' from the left
- (ii) if '3' is found go to step (v)
- (iii) increment all RRPVs
- (iv) goto step (i)
- (v) replace the block and set the RRPV to '2'

4. SHiP (Signature-based Hit Prediction)

SHiP can improve over SRRIP

SRRIP	SRRIP + SHiP	
Cache Hit:	Cache Hit:	
(i) set RRPV of block to '0'	(i) set RRPV of block to '0'	
Cache Miss:	Cache Miss:	
(i) search for first '3' from left	(i) search for first '3' from left	
(ii) if '3' found go to step (v)	(ii) if '3' found go to step (v)	
(iii) increment all RRPVs	(iii) increment all RRPVs	
(iv) goto step (i)	(iv) goto step (i)	
(v) replace block and set RRPV	(v) replace block and set RRPV	
to '2'	according to SHiP	

SHiP (Signature-based Hit Predict)

The state of the s

- Some blocks have a very long reuse distance
 - Not very worth being cached
- RRPV of this kind of blocks would be better set to '3' instead of '2'
- This kind of blocks can be identified using signature
 - Memory address
 - Program counter of the load/store instruction
 - etc.

SRRIP + SHiP

Cache Hit:

(i) set RRPV of block to '0'

Cache Miss:

- (i) search for first '3' from left
- (ii) if '3' found go to step (v)
- (iii) increment all RRPVs
- (iv) goto step (i)
- (v) replace block and set RRPV according to SHiP

Program Counter Signature

SHiP Architecture

SHiP-PC + SRRIP


```
Cache Hit:
    cache line.outcome = true;
    Increment SHCT[signature_line];
    RRPV = 0; // same as RRIP
Cache Miss:
    find an old line to evict
    if (evicted cache line.outcome == false)
        Decrement SHCT[signature_line];
    insert the new line
    cache line.outcome = false;
    cache_line.signature_line = hash(PC);
    if (SHCT[hash(PC)] == 0)
        RRPV = 3; // not worth being cached
    else
        RRPV = 2; // same as RRIP
```

Simulator

- SHiP+SRRIP looks good
- We need to quantify the improvement of SHiP+SRRIP over baseline design such as LRU
- Thus, we need simulator to answer the question

Simulator

- Use a Linux workstation (e.g., ws31 of NTHUEE) or use a Linux virtual machine
- Download the simulator kit from the course website
- Unpack the tarball

```
tar -xzvf HW2.tgz
cd CRC
```

 Set the variable 'PIN_DIR' in pinkit/CONFIG/makefile.gnu.config to the absolute path for pinkit/pin-2.7-31933-gcc.3.4.6-ia32_intel64-linux/ in the kit. When you edit the makefile.gnu.config file, modify the fourth line to:

```
PIN_DIR ?= $FULL_PATH_TO_CRC_KIT/CRC/pinkit/pin-2.7-31933-gcc.3.4.6-ia32_intel64-linux
```

Simulator

 To compile the simulator, make sure you are in the CRC/ directory and that your gcc compiler path is set up correctly, then type (depending on whether your machine is 32 or 64 bits):

make CMPsim32 or make CMPsim64

- type "uname -a" in Linux to determine whether your machine is 32-bit (IA-32, i686) or 64-bit (x86_64)
- Traces are available in the CRC/traces director

Run Simulation

- Edit the full path information of trace1 to trace4 in the CRC/traces/ directory
 - FULL_PATH/CRC/traces/art.out.trace.gz
- Edit the 8th line of runall.sh in the CRC/runs/directory
 - Change "CMPsim.usetrace.64" to "CMPsim.usetrace.32" if your machine is 32-bit

Modify Simulator

- TSING COLUMN TO THE TOTAL TO TH
- You are allowed to modified only two files
 - CRC/src/LLCsim/replacement_state.h
 - CRC/src/LLCsim/replacement_state.cpp

replacement_state.h

```
TSI TO THE PART OF THE PART OF
```

```
typedef struct
class CACHE REPLACEMENT STATE
                                                            UINT32 LRUstackposition;
                                                            // Add extra "per-line" state here
  private:
   UINT32 numsets;
   UINT32 assoc;
                                                        } LINE REPLACEMENT STATE;
   UINT32 replPolicy;
   LINE REPLACEMENT STATE
                             **repl:
   COUNTER mytimer; // tracks # of references to the cache
   // Add extra state for cache here
  public:
   CACHE REPLACEMENT STATE( UINT32 sets, UINT32 assoc, UINT32 pol );
    INT32 GetVictimInSet( ... );
    void UpdateReplacementState( UINT32 setIndex, INT32 updateWayID );
    void SetReplacementPolicy( UINT32 pol ) { replPolicy = pol; }
    void IncrementTimer() { mytimer++; }
    void
         UpdateReplacementState( ... );
   ostream&
               PrintStats( ostream &out);
  private:
   void
          InitReplacementState();
    INT32 Get Random Victim( UINT32 setIndex );
   INT32 Get LRU Victim( UINT32 setIndex );
    void
          UpdateLRU( UINT32 setIndex, INT32 updateWayID );
};
```

LRU Example


```
CACHE_REPLACEMENT_STATE::CACHE_REPLACEMENT_STATE( UINT32 _sets,
    UINT32 _assoc, UINT32 _pol )
{
    numsets = _sets;
    assoc = _assoc;
    replPolicy = _pol;

    mytimer = 0;

    InitReplacementState();
}
```



```
void CACHE REPLACEMENT STATE::InitReplacementState()
{
    // Create the state for sets, then create the state for the ways
    repl = new LINE REPLACEMENT STATE* [ numsets ];
    // ensure that we were able to create replacement state
    assert(repl);
    // Create the state for the sets
    for(UINT32 setIndex=0; setIndex<numsets; setIndex++)</pre>
        repl[ setIndex ] = new LINE REPLACEMENT STATE[ assoc ];
        for(UINT32 way=0; way<assoc; way++)</pre>
            // initialize stack position (for true LRU)
            repl[ setIndex ][ way ].LRUstackposition = way;
    // Contestants: ADD INITIALIZATION FOR YOUR HARDWARE HERE
```



```
INT32 CACHE REPLACEMENT STATE::GetVictimInSet( UINT32 tid, UINT32 setIndex, const
LINE STATE *vicSet, UINT32 assoc, Addr t PC, Addr t paddr, UINT32 accessType )
    // If no invalid lines, then replace based on replacement policy
    if( replPolicy == CRC REPL LRU )
        return Get LRU Victim( setIndex );
    else if( replPolicy == CRC REPL RANDOM )
        return Get Random Victim( setIndex );
    else if( replPolicy == CRC REPL CONTESTANT )
        // ADD YOUR VICTIM SELECTION FUNCTION HERE
    // We should never get here
    assert(0);
    return -1; // Returning -1 bypasses the LLC
```



```
INT32 CACHE REPLACEMENT STATE::Get LRU Victim( UINT32 setIndex )
{
    // Get pointer to replacement state of current set
    LINE REPLACEMENT STATE *replSet = repl[ setIndex ];
    INT32
            lruWay = 0;
    // Search for victim whose stack position is assoc-1
    for(UINT32 way=0; way<assoc; way++)</pre>
        if( replSet[way].LRUstackposition == (assoc-1) )
            lruWay = way;
            break;
    // return lru way
    return lruWay;
```



```
void CACHE REPLACEMENT STATE::UpdateReplacementState(
    UINT32 setIndex, INT32 updateWayID, const LINE STATE *currLine,
    UINT32 tid, Addr t PC, UINT32 accessType, bool cacheHit )
{
    if( replPolicy == CRC_REPL_LRU )
        UpdateLRU( setIndex, updateWayID );
    else if( replPolicy == CRC REPL RANDOM )
        // Random replacement requires no replacement state update
    else if( replPolicy == CRC_REPL_CONTESTANT )
        // ADD YOUR UPDATE REPLACEMENT STATE FUNCTION HERE
        // Feel free to use any of the input parameters to make
        // updates to your replacement policy
```



```
void CACHE REPLACEMENT STATE:: UpdateLRU( UINT32 setIndex, INT32 updateWayID )
{
    // Determine current LRU stack position
    UINT32 currLRUstackposition = repl[ setIndex ][ updateWayID ].LRUstackposition;
    // Update the stack position of all lines before the current line
    // Update implies incremeting their stack positions by one
    for(UINT32 way=0; way<assoc; way++)</pre>
        if( repl[setIndex][way].LRUstackposition < currLRUstackposition )</pre>
            repl[setIndex][way].LRUstackposition++;
    // Set the LRU stack position of new line to be zero
    repl[ setIndex ][ updateWayID ].LRUstackposition = 0;
```

LRU Example

Implement SHiP

NTHU Online Judge

Input

Output

number of sets
number of ways per set
replacement policy
number of SHCT entries
number of following operations

serial number, program counter, hit/miss, hit way

detailed status of the set

detailed status of the SHCT table

parenthesis indicates touched value (not necessary changed)

Replaced way is shown for a miss-

´1 ⁄4

イ つ

.10

*,*4

0 100061 0 Hit 3

RRPV: 3 3 3 (0)

Signature: 0 0 0 0

outcome: 0 0 0 (1)

SHCT: (2) 1 1 1 1 1 1 1 1 1 4 ✓

L

1 100022 0 Hit 3

RRPV: 3 3 3 (0)

Signature: 0 0 0 0

outcome: 0 0 0 (1)

SHCT: (3) 1 1 1 1 1 1 1 1 1

2 100090 0 Replace 0

RRPV: (2) 3 3 0

Signature: (0) 0 0 0

outcome: (0) 0 0 1

SHCT: (2) 1 1 1 1 1 1 1 1 1 +

main.cpp

NTHU Online Judge

Login

 Register your ID: MS+studentID
 e.g., MS10203040506

Homework Page

http://acm.cs.nthu.edu.tw/problem/10967/

NTHU Online Judge

10967 - SHiP Cache

Status | Limits Submit

Description

Simulating the SHiP (Signature-bsed Hit Prediction) policy.

Input

The first five lines are as follows:

- 1. The number of sets of the cache.
- 2. The number of ways of the cache.
- 3. "2", which indicates the SHiP policy.
- 4. The number of saturating counters used by the SHiP policy.
- 5. The number of operations to simulate.

Submit Your Code

We support Sublime key bindings!

Browse

Check Your Results

10967 - SHiP Cache

Description

Simulating the SHiP (Signature-bsed Hit Prediction) policy.

Input

The first five lines are as follows:

- 1. The number of sets of the cache.
- 2. The number of ways of the cache.
- 3. "2", which indicates the SHiP policy.
- 4. The number of saturating counters used by the SHiP policy.
- 5. The number of operations to simulate.

	Time	Username	Problem	Status	Source
1347751 S	March 16, 2016, 4:01 p.m.	judgeDS2	10967 - SHiP Cache	All Accepted (10/10)	C++
1347738 S	March 16, 2016, 2:20 p. 1	judgeDS2	10967 - SHiP Cache	Not	C++
1347736 S	M 2. V	rong An	swer CPU: 1 swer CPU: 1 swer CPU: 15	ms "	
1347732 \$	_{p.} 6. V	rong An	swer CPU: 13 swer CPU: 19 swer CPU: 27	ms oted	C++
1347731 S	M 8. V	Vrong An	swer CPU: 35 CPU: 68 ms CPU: 134 ms		C++
1347721 S			CPU: 246 ms	oted 0)	C++
1347720 S	March 16, 2016, 11:44 a.m.	judgeDS2	10967 - SHiP Cache	Not Accepted (6/10)	C++
1347649 S	March 15, 2016, 6:17 p.m.	judgeDS2	10967 - SHiP Cache	All Accepted (10/10)	C++
1347648 S	March 15, 2016, 6:03 p.m.	judgeDS2	10967 - SHiP Cache	Compile Error	C++

Hints

- Recommend you to develop, test, and debug programs in the Linux environment
- Online Judge can display error types (wrong answer, compiler error, etc.) and compiler errors
- But Online Judge does not show the exact error situation (e.g., the inputs, expected outputs, and your outputs)

Hints

- Use tools to help comparing your answer with the expected answer
- Non-standard libraries and some functions such as file IO are restricted in NTHU OJ. Using them leads to a "restricted function" error
- Extra space, newline characters, etc. lead to "representation error"
 - Online judge performs character to character matching to determine whether the output is correct

Grading Policy

- Grading
 - 100% Online judge results (including submit.cpp)
 - Please make sure that I can perform simulation using the original simulator code and your code
 - -10% per week till 70%

Other Details

- Other details will be announced at eeclass
- Please post your questions in the eeclass 討論區
- Please do not share or post your code or copy other students' code
 - Zero credit for all equivalent code