Properties of root Loci:

(1)K = 0 Points

The K = 0 points are at the poles of G(s)H(s), including those at $s = \infty$

(2)K = ± ∞

The $K == \infty$ points are at the zeros of G(s)H(s), including those at $s = \infty$

(3) Number of separate root loci

The total number of root loci is equal to the order of the equation 1+G(s)H(s)=0

(4)Symmetry of root loci

The root loci are symmetrical about the real axis.

(5) Asymptotes of root loci as $s \to \infty$

For large values of s, the RL (K > 0) are asymptotic to asymptotes with angles given by

$$\theta_i = \frac{(2i+1)180^0}{|n-m|}, \ i = 0,1,2,...|n-m|-1$$

Where n and m are number of poles and zeros of G(s)H(s).

(6) Intersection of the asymptotes

- (a) The intersection of the asymptotes lies only on the real axis in the s-plane.
- (b) The point of intersection of the asymptotes is given by:

$$\sigma_i = \frac{\sum real \ parts \ of \ poles \ of \ G(s)H(s) - \sum real \ parts \ of \ zeros \ of \ G(s)H(s)}{\mid n-m\mid}$$

(7) Root loci on the real axis

RL for $K \ge 0$ are found in a section of the real axis only if the total number of real poles and zeros of G(s)H(s) to the right of the section is **odd**.

(8) Angles of departure

The angle of departure or arrival of the RL from a pole or a zero of G(s)H(s) can be determined by assuming a point s₁, that is very close to the pole, and applying the equation,

$$\angle G(s_1)H(s_1) = \sum_{i=1}^{m} \angle (s_1 + z_i) - \sum_{i=1}^{n} \angle (s_1 + p_i) = (2i+1)180^0, \ i = 0,1,2,...$$

(9) Intersection of the root loci with the imaginary axis

The crossing points of the root loci on the imaginary axis and the corresponding values of *K* may be found by use of the Routh-Hurwitz criterion.

(10) Breakaway points

The breakaway points on the root loci are determined by finding the roots of dK/ds = 0, or dG(s)H(s)/ds = 0. These are necessary conditions only.

(11) Calculation of the values of K

The absolute value of K at any point s_1 on the root loci is determined from the equation:

$$|K| = \frac{1}{|G(s_1)H(s_1)|} = \frac{product \ of \ dis \ tan \ ces \ to \ poles}{product \ of \ dis \ tan \ ces \ to \ zeros}$$

Time Domain Performance for prototype second order system:

Percent Overshoot PO: $P.O.=100e^{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}}$,

Peak Time T_p: $T_P = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}$

Rise Time: $T_r = \frac{2.16\zeta + 0.6}{\omega_n}$,

2 Percent Settling Time T_s: $T_S = 4\tau = \frac{4}{\zeta \omega_n}$

Compensator Design Via Root Locus:

Desired dominant pole location: $s_d = -\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2} = -\zeta \omega_n \pm j\omega_d$

Compensator Angle Requirement: $\phi = \pm 180^{\circ} - |G(s_d)|$

Error Constants: (If Normalized Inputs then assume A=1)

Table 5.5 Summary of Steady-State Errors

Number of Integrations in $G_c(s)G(s)$, Type Number		Input	
	Step, $r(t) = A$, R(s) = A/s	Ramp, At, A/s ²	Parabola, At ² /2, A/s ³
0	$e_{ss} = \frac{A}{1 + K_n}$	Infinite	Infinite
1	$e_{ss}=0$	$\frac{A}{K_v}$	Infinite
2	$e_{\rm ss}=0$	0	$\frac{A}{K_a}$

2

Position Error Constant:

$$K_p = \lim_{s \to 0} G_c(s)G(s).$$

Velocity Error Constant:

$$K_v = \lim_{s \to 0} sG_c(s)G(s).$$

Acceleration Error Constant:

$$K_a = \lim_{s \to 0} s^2 G_c(s) G(s).$$