Written Exam for the M.Sc. in Economics 2010

International Trade and Investment Final Exam/ Elective Course/ Master's Course Winter 2010/2011 14. December, 2010

Three hour closed book exam

- There are 3 pages in this exam paper, including this instruction page
- You need to answer all FOUR questions, so manage your time accordingly.
- If a question asks you to list three things, please underline the list with preceding numbers as exampled below.
 - 1. Thing number 1
 - 2. Thing number 2
 - 3. Thing number 3
- Make your math legible and easily followed, with the final answer boxed.
- Partial credit may be given.

Good Luck!

- 1. Identify whether these statements are true or false. If false, rewrite the sentence to make it true, changing maximum 1 or 2 words.
 - (a) The Leontief paradox questioned the validity of the Ricardian model.
 - (b) The Stolper-Samuelson theorem suggests that free international trade should lead to wage increases in labor-abundant countries.
 - (c) The presented model in Dornbusch-Fischer-Samuelson (1977) is a model of outsourced intermediate goods.
 - (d) Autarky is a state of the economy where trade in goods do not exist.
 - (e) The existence of Factor Intensity Reversals are necessary for Factor Price Insensitivity to exist.
 - (f) An increase in the level of outsourcing increases wages for low, medium, and high-skilled workers in Danish firms.
- 2. Tefler (1995) suggests this amended HOV equation:

$$F_{j}^{c} = \pi_{j}^{c} V_{j}^{c} - s_{c} \sum_{n=1}^{N} \pi_{j}^{n} V_{j}^{n}$$

where F is the factor j content of trade for country c, V is country c's endowment of factor j, and s is country c's share in world GDP.

- (a) What does π_i^c stand for in Trefler (1995)?
- (b) Suppose $F_{Labor}^c = 0 \forall c$. Solve for the implied relative value $\frac{\pi_{Labor}^{DK}}{\pi_{Labor}^{US}}$ between countries DK and US. How would you measure $\frac{\pi_{Labor}^{DK}}{\pi_{Labor}^{US}}$ in the data? .
- (c) What are the two mysteries in Trefler (1995)? Briefly explain each.
- 3. Consider Krugman (1980)'s monopolistic competition setup with 1 differentiated good industry. There are 2 countries, A and B, and they trade with each other. The utility function is $u = \sum_{n=1}^{N} c_n^{\frac{\sigma-1}{\sigma}}$, where c_n denotes the quantity consumed of good n. There is a ice-berg transport cost τ to ship between countries A and B. Firms require $l = \alpha + \beta x$ to produce x units of output. The wages of both countries is 1. The two countries have labor endowments of L_A and L_B .

- (a) Country B's total imports of country A's goods can be written as $X_{AB} = \frac{N_A p_{AB}^{1-\sigma} I_B}{P_B}$. Write down the zero-profit equilibrium expressions for N_A , p_{AB} , I_B , and P_B in terms of the parameters of the model in the description above.
- (b) Write down expressions for X_{BA} , X_{AA} , X_{BB} , where X_{ij} denotes the total sales of goods produced in i and sold in j. Use only model parameters.
- (c) How can you measure the term $\mu = \tau^{\sigma-1}$ using only the data on the volumes of bilateral trade (i.e. values of exports and imports) between A and B plus data on domestic sales of the good in countries A and B?
- 4. A country produces two goods: Legos and cells using two factors K and L under the standard assumptions of Heckscher-Ohlin. Suppose Legos are more L/K intensive than cells.
 - (a) Draw a production possibilities frontier for the two goods, labelling axes correctly. Add a world price vector. Label it P1
 - (b) Find the optimal production point. Label that point A.
 - (c) On top of your previous drawing, draw another production possibilities frontier resulting from an increase in the endowment of L.
 - (d) How does the world price vector change with the increase in L?
 - (e) Draw the new world price vector on top of your graph and label it Q
 - (f) Find the new optimal production point. Label that point B.
 - (g) Production changed from A to B. Did the production of Cells increase or decrease?
 - (h) What is the name of the theorem that provides the answer to part g?