东南大学学生会 Students' Union of Southeast University

02-03-3高A期中试卷

一. 1、 $\overrightarrow{A}(x, y, z) = \{xy^2, ye^z, x \ln(1+z^2)\}$ 在点 P(1,1,0)处的散度 divA=_____

2、 $\int_{c} \frac{dx + dy}{|x| + |y|} =$ _________,其中 C: |x| + |y| = 11 取逆时针方向。

3、交换积分次序 $\int_{0}^{2} dx \int_{0}^{\frac{x^{2}}{2}} f(x,y)dy + \int_{0}^{2\sqrt{2}} dx \int_{0}^{\sqrt{8-x^{2}}} f(x,y)dy =$

4、设 $e^z + 3 - 4i = 0$,则Re(z)=(_____)

5、设 c:|z-1|=1 取逆时针方向,则 $\oint_c \frac{dz}{(z-1)(z+1)^3}$ =()

6、设 c: $\frac{x^2}{4} + y^2 = 1$ 的周长为 a, 则 $\oint_c (xy + x^2 + 4y^2) ds =$

二、1、D 由 $y = \sqrt{1-x^2}$ 与 y=0 为成, D_1 是第一象限部分, 则 $\iint_D (x^2y + xy^2) = \iint_{D_1} (x^2y + xy^2)$

 $2 \int_0^1 dy \int_y^1 \frac{y}{\sqrt{1+x^3}} dx$ 的值是(

三、1、计算

 $\int_{c} (x^{2} - yz)dx + (y^{2} - xz)dy + (z^{2} - xy)dz, c 是从点 A (a,0,0)$ 出发沿着螺线 $x = a\cos t, y = a\sin t, z = \frac{h}{2\pi}t$ 到 B(a,0,h)的一段曲线。

东南大学学生会 Students' Union of Southeast University

2、 计算

$$\oint_{c} ydx - (e^{y^{2}} - x)dy$$
 其中 c 是从 D (0, 1) 经 A (0, 0)

再经B(1,0)到C(1,1)的折线。

2 计算

$$\iiint\limits_{\Omega} (2x-z)dv$$
其中积分区域由曲线 $y^2 = 2z(x=0)$

绕 z 轴旋转一周形成的曲面与平面 z=1 和 z=2 围成。

四、设 Σ 是曲面 $y = \sqrt{a^2 - x^2 - y^2}$ 被柱面 $x^2 + y^2 = ax$ 截下的部分, Σ 上任一点处的密度与该点到原点的距离平方成正比,比例系数 k 大于零。求 Σ 的质量。

五、求 $I = \iint_{\Sigma} x^3 dy \wedge dz + y^3 dz \wedge dx + z^3 dx \wedge dy$, Σ 是 锥 面 $z = \sqrt{x^2 + y^2} \div (-1) \leq z \leq 0$ 的部分取上侧。