מציאת שידוך גדול ביותר – שבירת שוויון

מנגנון שידור-גדול-ביותר-עם-עדיפויות:

- קבע סדר-עדיפות כלשהו על הצמתים (למשל לפי זמן המתנה בתור להשתלה, דחיפות רפואית, גיל, וכד').
 - •מצא את **כל** השידוכים הגדולים ביותר בגרף.
- •בחר את השידוך עם וקטור-העדיפויות הגדול ביותר בסדר מילוני.
- Generalized Second Price Auction GSP -
 - המפרסם שההכרזה שלו היא הj בגובהה, זוכה ${f j}$ במקום j, ומשלם את ההכרזה של המפרסם

מיירסון	וק"ג	
אחד	<mark>הרבה</mark> למשל: בחירת מסעדה)	פרמטרים לכל שחקן
כל כלל <mark>מונוטוני</mark> (למשל: קירוב בעיית התרמיל, מיקסום רווח)	מיקסום סכום ערכים	כלל בחירה

:1992 (Mcafee) מנגנון מקאפי

אלגוריתם מעגלי המסחר

Top Trading Cycles Gale, Shapley, Scarf

0. מאתחלים גרף מכוון שבו:

- *הצמתים* הם האנשים והבתים;
- יש *קשת* מכל אדם לבית שהוא הכי רוצה, ומכל בית לאדם שגר בו עכשיו.
 - א. מוצאים מעגל מכוון בגרף.
 - ב. מבצעים את ההחלפה במעגל.
- ג. מוחקים מהגרף את הצמתים שהשתתפו בהחלפה.
 - ד. מעדכנים את הקשתות של האנשים שנשארו.
 - ה. חוזרים על שלבים א-ד עד שהגרף ריק.

Vickrey – Clarke - Groves (VCG) בחר את התוצאה עם סכום-הערכים הגבוה ביותר.

•עבור כל שחקן:

משתתף.

- •חשב את סכום הערכים של שאר השחקנים. •חשב את סכום הערכים של שאר השחקנים
 - אילו השחקן הנוכחי לא היה
- •גבה מהשחקן את ההפרש בין שני הסכומים.

חלוקת שכר-דירה – קביעת המחירים

- מצאנו השמה ממקסמת-ערכים. צריך לקבוע מחירים כך שההשמה תהיה ללא קנאה. איך?
 - יש הרבה דרכים. דרך אחת היא להשתמש בפלט-הביניים של האלגוריתם ההונגרי.
- המטריצה המתקבלת זהה למטריצה המקורית, פרט ל:
 - (המייצגת חדר); j לכל עמודה X_i

חלוקת שכר-דירה – בעיית הטרמפיסט

חדר א חדר ב 150 דייר א 10 140 דייר ב

משפט: במודל הקרדינלי, ייתכן ש**בכל** חלוקה ללא קנאה, אחד הדיירים ישלם מחיר שלילי (*צריך* לשלם לו שיסכים לגור איתנו...)

הוכחה: נניח שיש שני דיירים ושני חדרים, הדירה עולה 100 והערכים הם כמו בטבלה משמאל למעלה.

כל חלוקה ללא-קנאה ממקסמת סכום ערכים, לכן יש לתת חדר א לדייר א וחדר ב לדייר ב.

כדי ש-ב לא יקנא, המחיר של חדר א חייב להיות גבוה משל חדר ב ב-130 (לפחות). כיוון שהסכום הוא 100:

> (price b + 130) + price b = 100price b = -15

אלגוריתם "המנצח המתוקן" (Adjusted Winner) Brams and Taylor, 1996

א. כל חפץ נמסר למי שהכי רוצה אותו.

ב. אם סכום הנקודות שווה - סיימנו.

ג. אחרת – מסדרים את החפצים **בסדר עולה של היחס מנצח\מפסיד**, ומעבירים חפצים עד שהסכום צריך לחתוך לכל היותר חפץ אחד *. משתווה.

30	30*	30	10	דונאלד:
18	20*	28	34	:איוואנה

אלגוריתם אבן-פז:

כל שחקן מחלק לשני חלקים בשווי 1/2 בעיניו. חותכים את העוגה בחציון של הקוים. שולחים כל שחקן לחצי שמכיל את הקו שלו. מחלקים כל חצי ברקורסיה.

:כש-n איזוגי

כל שחקן מחלק לשני חלקים ביחס של (n-1)/2: (n+1)/2 חותכים את העוגה כך שבצד אחד יהיו (n-1)/2) קוים ובצד שני (n+1)/2 קוים. שולחים כל שחקן לחצי שמכיל את הקו שלו.

אלגוריתם המפחית האחרון:

עמי מסמן n/1 בעיניו, אם תמי חושבת שזה יותר מדי - היא מפחיתה ל-n/1, וכן רמי וכו'.

האחרון שהפחית מקבל את החלק שסימן, ממשיכים ברקורסיה.

בעיית ההשמה - האלגוריתם ההונגרי (Kuhn, Munkres 1957)

- על n המתארת את הערך של n של מטריצה j כל דייר i לחדר
- הפלט: השמה של דייר לחדר, כך שסכום הערכים של הדיירים לחדריהם גדול ביותר.
 - **שימושים נוספים**: השמת עובדים למשימות כך שסכום העלויות של המשימות *קטן* ביותר.
 - האלגוריתם (ערך חיובי = עלות שלילית):
 - $O(n^3)$ סיבוכיות: •

חלוקת שכר-דירה – קביעת המחירים

- X_i ל j קובעים את המחיר של חדר j
- משוים את סכום המחירים למחיר הכולל של הדירה.
 - מחלקים את העודף / גירעון שווה בשווה בין כולם.
 - קיבלנו חלוקה ללא קנאה!

דיירים שמקבלים כסף	קנאה	עובד רק עם "דיירים עניים"	
לא	לא	ΙΣ	אלגוריתם סו והמשולשים
Ιο	לא	לא	האלגוריתם ההונגרי ודומיו
לא	ΙΣ	לא	אלגוריתם הונגרי עם מחיר מינ. 0
			_

 $F_1 = (1,0,0)$ A:1

אלגוריתם מעגלי הקנאה

(Lipton, Markakis, Mossel, Saberi, 2004)

עוברים על החפצים בסדר שרירותי. לכל חפץ:

1. נותנים את החפץ לשחקן שלא מקנאים בו.

2. אם אין כזה - סימן שיש מעגל-קנאה. מחליפים סלים במעגל בניגוד לכיוון חצי הקנאה.

מבצעים את 2 עד שאין מעגלים, ואז חוזרים ל-1.

אלגוריתם סימונס (Su 1999)

• מחלקים את סימפלקס-החלוקות לסימפלקסונים.

• נותנים כל צומת לשחקן, כך שבכל _{ב:} סימפלקסון, כולם מיוצגים.

•כל שחקו כותב, בכל צומת שלו, את מספר החתיכה הכי טובה בעיניו.

• מחפשים **סימפלקס-n מלא** 🗎 עם n מספרים שונים =

חלוקה כמעט-ללא-קנאה.