

YANGON TECHNOLOGICAL UNIVERSITY Department of Mechatronic Engineering

Customized Deep Learning Models for

Artificial Intelligence Surveillance

Defense Seminar

25-5-2020

Monday

Supervised by

Presented by

Dr. Phyu Phyu Htun

Aw Thura (VI-McE-11)

Outline

- Introduction
- Problem Statement
- Literature Review
- Objective and Goals
- System Overview
- Thesis Roadmap
- Timeline and Milestones

Introduction

- A.I. Surveillance is increasingly being used to monitor public and private spaces throughout the world
- Example applications include
 - Smart road surveillance
 - Facial recognition systems
 - Smart policing
- Facial recognition system is integrated successfully in immigration check points and offices in Myanmar
- The potential to implement smart road and security surveillance systems

Problem Statement

- Surveillance cameras are monitored manually and the officers usually have many cameras to cover.
- Most CCTVs are left idle and it makes CCTV reviewing a time consuming process.
- The recorded data is also vulnerable if stored locally.

Literature Review

- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. (Redmond et al 2015)
- J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. (2016)
- J. Redmon Ali Farhadi YOLOv3: An Incremental Improvement (2018)
- A. Bochkovskiy C.Y. Wang H.Y.M. Liao YOLOv4: Optimal Speed and Accuracy of Object Detection (2020 April)

Literature Review

Model	Features & Capabilities	Limitations
Original YOLO (2015)	 24 convolutional layers, Divides the image into 7x7 grid cells. Can perform classification and localization on all 49 grid cells simultaneously. mAP score is 63.4% at with frame rate of 45 FPS. 	 Each grid cell can only have one object, Thus, YOLO can detect only 49 max objects. Bad for small objects that appear in groups Relatively high localization error.
YOLO v2 (2017)	 19 convolution layers, Detects over 9000 classes using Hierarchical classification Uses anchor boxes, Added batch normalization on all convolutional layers, 2% improvement in mAP 	 Computationally expensive Still struggles with small clusters

Literature Review

Model	Features & Capabilities	Limitations
YOLO v3 (2018)	 53 convolutional layers, enables multilabel prediction. Uses shortcut connecters to achieve better performance on small objects 	 Worse performance on medium and larger size objects compared to YOLO 9000 Sometimes struggles to get the boxes perfectly aligned with the object
YOLO v4 (2020 April)	 53 conv layers, state of the art results Data augmentation, which increases the generalization ability of the model Uses Spatial Pyramid Pooling to maintain aspect ratio of the image while pooling, results in better accuracy 	• None

Objectives & Goals

- To develop and experiment customized YOLO v4 models that can detect various classes such as pedestrians, types of vehicles, and animals to track them.
- To develop a tracking model with deepSORT that can track movement of the detected objects and to identify suspicious behavior.
- To implement the developed models for real time surveillance.
- To store the detected data on cloud and monitor the data via network.

System Overview

Thesis Roadmap

Detection Model

Tracking Models

IoT integration

- Developing

 appropriate model

 (custom trained YOLO v4)
- Gathering datasets for training
- Training the model
- Testing and evaluation

- Developing appropriate model (most likely deepSORT)
- Perform behavior prediction based on Region of Interest
- Generate tracking output data

- Making the data real time compatible with a device
- Data storage in cloud
- Live monitoring via the network

Timeline and Milestones

Duration	Tasks
May 1, 2020 - June 30, 2020	Developing and Testing Detection models
July 1, 2020 - July 31, 2020	Developing and Testing Tracking models
Aug 1, 2020 - Aug 31, 2020	Behavior Prediction
Sep 1, 2020 - Sep 31, 2020	IoT integration

End

Thank You For Your Attention.