Reinforcement Learning Lecture 4

Georg Martius

Distributed Intelligence / Autonomous Learning Group, Uni Tübingen, Germany

November 5, 2024

Overview

- Last time: unknown MDP
 - how to estimate the value function
 - no model (model-free)
- ► Today: Solve an unknown MDP
 - optimize the value function
 - obtain optimal policy
 - also without model
- Next time: Bandits a special case of RL problems with a single state and exploration
 (given by Clairs Vernade)

(given by Claire Vernade)

Model-free Control

Plan for today

- 1. Q-function
- 2. Monte-Carlo Control
- 3. Temporal Difference Learning
- 4. On-Policy vs. Off-Policy
- 5. Off-Policy Learning (Q-learning)

Where to apply model-free control?

- ► MDP model is unknown, but experience can be sampled Examples:
 - Robot control
 - Tokamak plasma control
 - Protein Folding
- ► MDP model is known, but is too big to use, except by samples Examples:
 - ► Game of Go
 - Elevator optimization
 - Optimizing decision making problems in simulation

What stops us from optimizing the value function?

We know how to estimate the value function: Monte-Carlo or TD How to derive the (greedy) policy? (deterministic notation)

$$\pi'(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathcal{R}_{s}^{a} + \mathcal{P}_{ss'}^{a} V\left(s'\right)$$

lacktriangledown greedy policy improvement over V(s) requires the MDP or a model of it

What to do? Learn an action-value function!

Action-value function (reminder)

 $q_\pi(s, a)$: value of performing action a in state s and then following the policy Q(s, a) is an estimate of $q_\pi(s, a)$

$$\pi'(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q(s, \underline{a})$$

ightharpoonup greedy policy improvement over Q(s, a) is model-free

Policy Iteration (reminder)

Policy Iteration

Given a policy π

- 1. Policy Evaluation: Evaluate the policy π \blacksquare estimate v_{π}
- 2. Policy Improvement: $\pi' > \pi$ e.g. Improve the policy by acting greedily with respect to v_{π} requires model
- iterate until value function does not change
- ▶ Policy iteration always converges to π^*

Policy Iteration with Action-Value Function

Policy Iteration with Action-Value Function

Given a policy π

- 1. Policy Evaluation: Evaluate the policy π estimate action-value function q_{π}
- 2. Policy Improvement: $\pi' > \pi$ e.g. Improve the policy by acting greedily with respect to q_{π} \checkmark
- iterate until action-value function does not change

Greedy action selection

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

Copyright © 2003 David Farley, d-farley@ibiblio.org

Example: There are two doors in front of you:

- You open the left door and get reward 0 V(left) = 0
- ightharpoonup You open the right door and get reward +1 $V(\operatorname{right}) = +1$
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- You open the right door and get reward +2V(right) = +2

Are you sure you've chosen the best door?

Exploration is needed!

ϵ-Greedy exploration

Simplest idea for ensuring continual exploration

- ▶ All m actions are tried with non-zero probability
- With probability 1ϵ choose the greedy action
- With probability ϵ choose an action at random

$$\pi(a \mid s) = \begin{cases} \frac{\epsilon}{m} + 1 - \epsilon & \text{if } a^* = \argmax_{a \in \mathcal{A}} Q(s, \frac{a}{a}) \\ \frac{\epsilon}{m} & \text{otherwise} \end{cases}$$

Does ϵ -Greedy policy harm improvement? NO

i.e.: does Policy Iteration still converge?

Theorem: *ϵ*-Greedy Policy Improvement

For any ϵ -greedy policy π , the ϵ -greedy policy π' with respect to q_{π} is an improvement, i.e. $v_{\pi'}(s) \geq v_{\pi}(s)$

$$\begin{split} q_{\pi}\left(s,\pi'(s)\right) &= \sum_{a \in \mathcal{A}} \pi'(a \mid s) q_{\pi}(s, \underline{a}) \\ &= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, \underline{a}) + (1 - \epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s, \underline{a}) \\ &\geq \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, \underline{a}) + (1 - \epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a \mid s) - \epsilon/m}{1 - \epsilon} q_{\pi}(s, \underline{a}) \\ &= \sum_{a \in \mathcal{A}} \pi(a \mid s) q_{\pi}(s, \underline{a}) = v_{\pi}(s) \end{split}$$

Therefore: $v_{\pi'}(s) \geq v_{\pi}(s)$

Some hints on the calcuation on the previous slide:

- $\max_{a \in \mathcal{A}} q_{\pi}(s, \underline{a})$ is larger than any convex sum of q values: $\sum_a w_a q_{\pi}(s, \underline{a})$ where $\sum_a w_a = 1$
- ► This explains why we do the ≥
- ▶ What is $\sum_{a \in A} \frac{\pi(a|s) \epsilon/m}{1 \epsilon}$?
- \blacktriangleright π is ϵ -greedy, in order to convert to the original (non- ϵ -greedy) policy we need to substract ϵ/m from the probabilities for each action. Then we need to divide by $(1-\epsilon)$ to make it sum to 1.
- ► Now we see that

$$\epsilon/m \sum_{\substack{a \in \mathcal{A} \\ \text{random action}}} q_{\pi}(s, \underline{a}) + (1 - \epsilon) \sum_{\substack{a \in \mathcal{A} \\ \text{on-policy action according to original } \pi}} \frac{\pi(a \mid s) - \epsilon/m}{1 - \epsilon} q_{\pi}(s, \underline{a})$$

which is
$$\sum_{a \in \mathcal{A}} \pi(a \mid s) q_{\pi}(s, \underline{a})$$

Monte-Carlo Action-value function estimation

- **1.** trajectory using π : $\tau = \{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- **2.** For each state S_t and action A_t in τ :

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

3. iterate

We have the ingredients

- Action-value estimation
- ▶ Policy: ϵ -greedy

Monte-Carlo Control / Policy Iteration

Every episode we iterate:

- 1. Policy evaluation: Monte-Carlo action-value estimation $Q \approx q_{\pi}$
- 2. Policy improvement: ϵ -greedy policy improvement

Convergence?

What do you think is needed for convergence?

- nothing, it converges always X
- 2. it does not converge X
- 3. a lot of iterations ✓
- 4. every state, action pair is visited infinitely often ✓
- 5. a greedy policy X
- 6. policy needs to become greedy in the limit ✓
- 7. policy needs to keep exploring ✓

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

$$\lim_{k\to\infty} N_k(s, \mathbf{a}) = \infty$$

The policy converges on a greedy policy,

$$\lim_{k \to \infty} \pi_k(\underline{a} \mid s) = [\underline{a} = \arg\max_{\underline{a}' \in \mathcal{A}} Q_k(s, \underline{a}')]$$

Convergence?

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

$$\lim_{k\to\infty} N_k(s, \mathbf{a}) = \infty$$

The policy converges on a greedy policy,

$$\lim_{k \to \infty} \pi_k(\mathbf{a} \mid s) = [\mathbf{a} = \arg\max_{\mathbf{a}' \in \mathcal{A}} Q_k(s, \mathbf{a}')]$$

- ▶ Adapt exploration rate as $\epsilon \leftarrow \frac{1}{k}$
 - converges to greedy policy
- \blacktriangleright infinite exploration because $\sum_{k=1}^{\infty}\frac{1}{k}=\infty$

Theorem

GLIE Monte-Carlo Control converges to the optimal action-value function, $Q(s,a) \rightarrow q^*(s,a)$

Example: Blackjack

- Goal: get as close as possible to 21 points but not above
- Counting: Face-cards: 10, Ace: 1 or 11, other: cards their value
- start with two cards, dealer has one card open

Example: Monte-Carlo Control in Blackjack

Dealer: stick if sum of cards ≥ 17 , otherwise twist

Compare: Optimal Value vs Policy Evaluation

- ▶ Policy: stick if sum of cards ≥ 20 , otherwise twist (suboptimal policy)
- ▶ Dealer: stick if sum of cards ≥ 17 , otherwise twist

Using Temporal-difference (TD) learning

What are the advantages of TD over MC?

- Lower variance
- online
- ▶ incomplete sequences
- exploits Markov property

Natural idea: use TD instead of MC

Simplest TD Q update:

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma Q(S', A') - Q(S, A) \right)$$

SARSA

SARSA

- **1.** Initialize $Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$
- 2. Repeat (for each episode):
 - **2.1** $S \leftarrow$ from environment
 - 2.2 $A \sim \pi_{\epsilon}^{Q}(S)$
 - 2.3 Repeat (for each step of episode):
 - **2.3.1** Take action A, observe R, S'
 - **2.3.2** $A' \sim \pi_{\epsilon}^{Q}(S')$

 $(\epsilon \text{ -greedy w.r.t. } Q)$

(ϵ -greedy w.r.t. Q)

- **2.3.3** $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') Q(S, A)]$

- 2.3.4 $S \leftarrow S' : A \leftarrow A'$
- 2.4 until S is terminal

Convergence of Sarsa

Theorem

Sarsa converges to the optimal action-value function, $Q(s,a) \to q^*(s,a)$, under the following conditions:

- ► GLIE sequence of policies $\pi_t(a \mid s)$ (decay of exploration rate)
- ightharpoonup Robbins-Monro sequence of step-sizes α_t

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Windy Gridworld Example

Reward: R = -1 per timestep until reaching goal

 ${\sf Undiscounted:}\ \gamma=1$

SARSA on the Windy Gridworld Example

Questions?

[Image: globalrobots.com]

Break

Please provide Feedback!

SARSA(λ) Algorithm

Naturally we can combine n-step TD updates with SARSA \triangleright SARSA(λ) Use eligibility traces (backward view):

$SARSA(\lambda)$

```
1. Initialize Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(\text{terminal-state}, \cdot) = 0
```

2. Repeat (for each episode):

```
2.1 E(s, \mathbf{a}) = 0, \forall s \in \mathcal{S}, \mathbf{a} \in \mathcal{A}(s)
2.2 S \leftarrow from environment
2.3 A \sim \pi_{\epsilon}^{Q}(S)
                                                                                                          (\epsilon \text{ -greedy w.r.t. } Q)
2.4 Repeat (for each step of episode):
      2.4.1 Take action A, observe R, S'
      2.4.2 A' \sim \pi_{\epsilon}^{Q}(S')
                                                                                                             (\epsilon \text{ -greedv w.r.t. } Q)
      2.4.3 \delta \leftarrow R + \gamma Q(S', A') - Q(S, A)
      2.4.4 E(S, A) \leftarrow E(S, A) + 1
      2.4.5 For all s \in \mathcal{S}, a \in \mathcal{A}(s):
                        Q(s, \mathbf{a}) \leftarrow Q(s, \mathbf{a}) + \alpha \delta E(s, \mathbf{a})
                        E(s, \mathbf{a}) \leftarrow \gamma \lambda E(s, \mathbf{a})
      2.4.6 S'; A \leftarrow A'
```

2.5 until S is terminal

$SARSA(\lambda)$ update on the Windy Gridworld Example

On-policy vs. Off-Policy

On-policy

- "Learn while doing the job"
- Learn about policy π from experience sampled with π

Examples:

- MC Control/Policy Iteration
- SARSA

Off-policy

- "Look over someone's shoulder"
- Learn about policy π from experience sampled with μ

Examples: (discussed next)

- Importance Sampling MC
- Q-Learning

Why is off-policy learning a good idea?

- can learn from demonstrations
- lacktriangle can re-use all experience (data from policies $\pi_1,\pi_2,\dots\pi_{t-1}$)
- learn about optimal policy while following exploratory policy
- learn about multiple policies while following one policy

Importance Sampling

We get samples from current policy, but would like to compute the expectation with respect to a different policy.

Importance Sampling

$$\mathbb{E}_{X \sim P}[f(X)] = \sum_{X \sim P} P(X)f(X)$$

$$= \sum_{X \sim Q} Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

estimate expectation of a different distribution

Importance Sampling for Off-Policy Monte-Carlo

Have: return G_t from policy μ

Importance Sampling: reweight according to similarity between policies

Multiply importance sampling corrections along whole episode

$$G_t^{\pi/\mu} = \frac{\pi (A_t \mid S_t)}{\mu (A_t \mid S_t)} \frac{\pi (A_{t+1} \mid S_{t+1})}{\mu (A_{t+1} \mid S_{t+1})} \cdots \frac{\pi (A_T \mid S_T)}{\mu (A_T \mid S_T)} G_t$$

Update value towards corrected return

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha \left(G_{t}^{\pi/\mu} - V\left(S_{t}\right)\right)$$

- **Warning**: cannot use if μ is zero when π is non-zero
- Importance sampling can dramatically increase variance

Similarly possible for TD: weight TD-target by $\frac{\pi}{\mu}$

Off-policy without Importance Sampling

Off-policy learning of action-values Q(s, a)

- $ightharpoonup q_{\pi}(s, a)$: value of doing action a in state s and then following π
- we want to approximate $q_{\pi}(s, \mathbf{a})$, but get data from policy μ : $A_t \sim \mu(\cdot \mid S_t)$
- No problem! Current action A_t comes from exploration policy μ , but then we follow π .

$$A' \sim \pi(\cdot \mid S_{t+1})$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \underbrace{Q(S_{t+1}, A')}_{\approx n_t(S_{t+1})} - Q(S_t, A_t) \right)$$

ightharpoonup Q estimates $q_{\pi}(s, \mathbf{a})$

Q-Learning

Let both exploration- and target policy improve!

▶ The target policy π is greedy w.r.t. $Q(s, \mathbf{a})$ (approaching π^*)

$$\pi\left(S_{t+1}\right) = \operatorname*{arg\,max}_{\mathbf{a'}} Q\left(S_{t+1}, \mathbf{a'}\right)$$

- ▶ The behavior policy μ is e.g. ϵ -greedy w.r.t. Q(s, a)
- ► The Q-learning target then simplifies:

$$R_{t+1} + \gamma Q(S_{t+1}, A') \qquad A' \sim \pi(\cdot \mid S_{t+1})$$

$$= R_{t+1} + \gamma Q\left(S_{t+1}, \arg\max_{a'} Q(S_{t+1}, a')\right)$$

$$= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$

Q-Learning Control update

$$Q(S, \mathbf{A}) \leftarrow Q(S, \mathbf{A}) + \alpha \left(R + \gamma \max_{\mathbf{a}'} Q(S', \mathbf{a}') - Q(S, \mathbf{A}) \right)$$

Theorem

Q-Learning (Control) converges to the optimal action-value function, $Q(s, a) \to q^*(s, a)$

Q-Learning Algorithm

Q-Learning

- **1.** Initialize $Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$
- 2. Repeat (for each episode):
 - 2.1 $S \leftarrow$ from environment
 - 2.2 Repeat (for each step of episode):

2.2.1
$$A \sim \pi_{\epsilon}^Q(S)$$
 (ϵ -greedy w.r.t. Q) 2.2.2 Take action A , observe R,S'

- 2.2.3 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a'} Q(S', a') Q(S, A)\right]$
- 224 $S \leftarrow S'$
- 2.3 until S is terminal

Q-Learning Demo

```
python3 gridworld.py -a q -k 20 -n 0
(You can do the same after completing the homeworks)
```

```
Let's look at it after 100 or 1000 iterations: python3 gridworld.py -a q -k 100 -n 0 -q
```

```
What happens if we add noise? python3 gridworld.py -a q -k 1000 -n 0.2 -q
```

Cliff Walking Example

Fixed ϵ -greedy exploration policy. No noise in environment.

- 1. Which path will be learned by Q-Learning?
- 2. Which path will be learned by SARSA? (Poll)

Cliff Walking Example

Q-learning learns the optimal policy, but shows lower online performance (falls occationally off the cliff)

SARSA learns to cope with the ϵ -greedy policy

Relationship between DP and TD

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$ $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_{\pi}(s)$	Iterative policy Evaluation	TD Learning
Bellman Expectation Equation for $q_{\pi}(s, \mathbf{a})$	$q_{\pi}(s,a) \leftrightarrow s,a$ $q_{\pi}(s',a') \leftrightarrow a'$ $q_{\pi}(s',a') \leftrightarrow a'$ Q-policy Iteration	S.A R S' S' SARSA
Bellman Optimality Equation for $q^*i(s,a)$	$q_*(s,a) \leftrightarrow s,a$ r $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	S,A R S' S' Q-Learning

Relationship between DP and TD (cont)

Full Backup (DP)	ig Sample Backup (TD)
Iterative Policy Evaluation	TD Learning $V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$
$V(s) \leftarrow \mathbb{E}\left[R + \gamma V\left(S'\right) \mid s\right]$	$V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$
Q-Policy Iteration	SARSA
$Q(s, \mathbf{a}) \leftarrow \mathbb{E}\left[R + \gamma Q\left(S', \mathbf{A'}\right) \mid s, \mathbf{a}\right]$	$Q(S, A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S', A')$
Q-Value Iteration	Q-Learning
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q\left(S', a'\right) \mid s, a\right]$	$Q(S, A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in A} Q(S', a')$

where
$$x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y-x)$$

Thank you - Please provide Feedback

