

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL

COMPUTER SCIENCE

STUDYTHESIS

Readiness for Tailored Attacks and Lateral Movement Detection

Authors:

Claudio MATTES claudio.mattes@hsr.ch

Lukas KELLENBERGER lukas.kellenberger@hsr.ch

Supervisor:

Cyrill Brunschwiler Hochschule für Technik Rapperswil cyrill.brunschwiler@hsr.ch

DEPARTEMENT COMPUTER SCIENCES
HSR UNIVERSITY OF APPLIED SCIENCES RAPPERSWIL
CH-8640 RAPPERSWIL, SWITZERLAND

Abstract

Management Summary

Initial Situation

Procedure

Results

Outlook

Task Definition

Readiness for Tailored Attacks and Lateral Movement Detection Aufgabenstellung SA Herbst 2018

Datum:

September 28., 2018

Author: Classification: Cyrill Brunschwiler, Compass Security Schweiz AG

INTERNAL

Table of Contents

1 EINFÜHRUNG	3
2 AUFGABE	
2.1 Abgrenzung	3 3
3 VORGEHEN	3
4 ANFORDERUNGEN	
4.1.1 Technologien	4
5 INFRASTRUKTUR	
6 ERWARTETE RESULTATE	4
6.1 In elektronischer Form: 6.2 Auf Papier:	
7 TERMINE	4
7.1 Start/Ende	4
7.2 Zeitplan und Meilensteine	
8 BETREUUNG	5
8.1 Kontakt	5
9 REFERENZEN	5
10 UNTERSCHRIFTEN	

1 Einführung

Es werden vermehrt Cyberangriffe publik, wo Schadcode im Einsatz ist, welcher sich nicht nur auf einem infizierten System niederlässt, sondern weitere Systeme im Netz befällt. Das Ziel oder Resultat ist dabei oft die komplette Infiltrierung einer Organisation. In der Analyse solcher Fälle sind Information und Zeit ein Schlüssel zum Erfolg. Folglich ist die Bereitschaft "Readiness" für ein solches Ereignis ein entscheidender Faktor.

2 Aufgabe

Ziel dieser Arbeit ist es, ein Tool zu erstellen, welches die Bewertung der eigene Readiness erlaubt aber auch im Analysefall eine Unterstützung bietet. Readiness betrifft viele Aspekte und einfache Dinge wie korrekte Zeitstempel in Logs, deren Vollständigkeit oder die Bereitstellung von Backups. In der konkreten Aufgabenstellung soll die Readiness-Analyse primär für Windows-Infrastrukturen anhand von Logs und spezifischen Events erfolgen. Unter anderem soll auf den neusten Publikationen des japanischen Computer Emergency Response Teams (JPCERT/CC) und der öffentlichen Datenbank der MITRE Corporation, dem Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK™) Wissenspool, basiert werden. Das JPCERT und MITRE haben dabei die Werkzeuge und das generelle Vorgehen von Angreifern analysiert und geben Hinweise, welche Events auf eine mögliche Verseuchung hinweisen.

2.1 Abgrenzung

Es geht nicht darum neue Angriffsvektoren zu finden.

2.2 Tätigkeiten

- Projektmanagement und Dokumentation
- Einarbeitung in Incident Handling und Forensik
- Einarbeitung in Angriffstechniken und Werkzeuge
- Einarbeitung in Abwehrtechniken und Härtung von Systemen
- Studium öffentlicher Quellen und verfügbaren Tools
- Umsetzung eines Analyzers gemäss Anforderungen basierend auf etablierten Frameworks

3 Vorgehen

Im Rahmen der allgemeinen Richtlinien zur Durchführung von Studien- und Bachelorarbeiten gemäss eigenem Projektmanagementplan. Dieser Projektmanagementplan ist als Erstes zu erstellen und enthält insbesondere:

- Die Beschreibung des dem Projektcharakter angepassten Vorgehensmodells.
- Eine erste Aufteilung der Aufgabe in gemeinsam und einzeln zu bearbeitende Teile unter Berücksichtigung der vorgegebenen Teilaspekte. Die genaue Aufteilung muss spätestens nach der Technologiestudie (Elaboration) erfolgen.
- Den Projektplan (Zeitplan) und die Meilensteine.

4 Anforderungen

Es geht primär darum einen Analyzer zu erstellen um die "Readiness for Tailored Attacks and Lateral Movement Detection" beurteilen zu können. Idealerweise kann dieses Tool von einem IT Administrator ohne spezielle Kenntnisse und grossartige Installationsprozeder ausgeführt werden.

Schematisch aber nicht bindend werden folgende Schritte auszuführen sein

- Definition der Requirements für einen neuen/verbesserten Analyzer
- Design und Analyse basierend auf den Vorgaben
- Vorschläge für die Umsetzung oder Verbesserung eines
 - o Readiness Analyzers
 - o Readiness Optimizers
 - o Compromise Analyzers
- Implementation der Funktionalität und Erstellung eines Benutzerhandbuch
- Erweiterung der Analyzer um neue Erkenntnisse, Werkzeuge und Indicators
- Dokumentation der Software und Skripte

4.1.1 Technologien

- Windows Workstations, Windows Server, Windows Security generall
- Windows Event Logs, Security und Audit Logs
- Windows On-Board Tools, Sysinternals Toolkit
- Active Directory Service (AD) Services
- Group Policy Objects (GPO)
- PowerShell, .NET, Python, Windows Batch

5 Infrastruktur

Die Arbeiten werden auf den Rechnern der Studenten durchgeführt. Zusätzlich benötigte Software oder Hardware wird bei Bedarf und nach Rücksprache mit Compass Security zur Verfügung gestellt.

6 Erwartete Resultate

6.1 In elektronischer Form:

- lauffähiges Toolkit und kompletter Source Code
- komplette Software Dokumentation (Use Cases, Klassenmodell, Sequenzdiagramme usw. in UML)
- komplette Use Cases und Erfolgs-Szenarien resp. Musterlösungen
- alle Dokumente und Protokolle (vorzugsweise in englischer Sprache)

6.2 Auf Papier:

Gemäss der Anleitung der HSR: \hsr.ch\root\alg\skripte\Informatik\Fachbereich\Studienarbeit Informatik

Es muss aus den abgegebenen Dokumenten klar hervorgehen, wer für welchen Teil der Arbeit und der Dokumentation verantwortlich war (detaillierte Zeiterfassung).

7 Termine

7.1 Start/Ende

Termine gemäss \hsr.ch\root\alg\skripte\Informatik\Fachbereich\Studienarbeit_Informatik\SAI\Termine

Datum	Task
17.09.2018	Beginn der Arbeit, Ausgabe der Aufgabenstellung durch den Betreuer.
18.12.2018	Erfassung des Abstracts im Online-Tool https://abstract.hsr.ch/ Die Studierenden geben den Abstract für die Diplomarbeitsbroschüre zur Kontrolle an ihren Betreuer/Examinator frei.
	Der Betreuer/Examinator gibt das Dokument mit dem korrekten und vollständigen Abstract zur Weiterverarbeitung an das Studiengangsekretariat frei.
	Vorlagen sowie eine ausführliche Anleitung betreffend Dokumentation stehen auf dem Skripteserver zur Verfügung.
21.12.2018	Hochladen aller verlangten Dokumente auf archiv-i.hsr.ch Abgabe des Berichts an den Betreuer bis 12.00 Uhr

7.2 Zeitplan und Meilensteine

Zeitplan und Meilensteine für das Projekt sind von den Studenten selber zu erarbeiten und zusammen mit dem Projektmanagementplan abzuliefern. Die Meilensteine sind bindend. Der erste Meilenstein ist vorgegeben. Mit den Betreuern werden regelmässige Sitzungen zur Fortschrittskontrolle durchgeführt.

8 Betreuung

Die Arbeiten werden durch Cyrill Brunschwiler betreut. Der Gegenleser ist noch nicht bestimmt.

8.1 Kontakt

Cyrill Brunschwiler, Managing Director, Compass Security Schweiz AG Weststrasse 50, 8003 Zürich, Switzerland Werkstrasse 20, 8645 Jona, Switzerland

+41 55 214 41 73

cyrill.brunschwiler@compass-security.com cyrill.brunschwiler@hsr.ch

https://fb.compass-security.com/inbox/hUGXMr2EeZ2V7b

9 Referenzen

- JPCERT/CC Detecting Lateral Movement through Tracking Event Logs https://www.jpcert.or.jp/english/pub/sr/20170612ac-ir_research_en.pdf
- JPCERT/CC Detecting Lateral Movement through Tracking Event Logs v2
 https://www.jpcert.or.jp/english/pub/sr/Detecting%20Lateral%20Movement%20through%20Tracking%20Event%20Logs version2.pdf
- JPCERT/CC Detecting Lateral Movement in APTs, https://www.first.org/resources/papers/conf2016/FIRST-2016-105.pdf
- JPCERT/CC Online Results Sheet, https://jpcertcc.github.io/ToolAnalysisResultSheet/
- JPCERT/CC Logon Tracer, https://github.com/JPCERTCC/LogonTracer
- CERT-EU Security Whitepaper 17-002, http://cert.europa.eu/static/WhitePapers/CERT-EU SWP 17-002 Lateral Movements.pdf
- NSA Spotting the Adversary, https://www.iad.gov/iad/library/ia-guidance/security-configuration/applications/spotting-the-adversary-with-windows-event-log-monitoring.cfm
- MS (Sysinternals) Sysmon https://docs.microsoft.com/de-ch/sysinternals/downloads/sysmon
- MS Logparser http://www.microsoft.com/en-us/download/details.aspx?id=24659
- MS Windows Defender ATP Advanced Hunting https://github.com/Microsoft/WindowsDefenderATP-Hunting-Queries
- MS Poorman Monitoring https://blogs.technet.microsoft.com/jepayne/2015/11/23/monitoring-what-matters-windows-event-forwarding-for-everyone-even-if-you-already-have-a-siem/
- MITRE ATT&CK Adversarial Tactics, Techniques & Common Knowledge https://attack.mitre.org/
- The CALDERA automated adversary emulation system https://github.com/mitre/caldera
- The APT Simulator Windows Batch https://github.com/NextronSystems/APTSimulator
- Infection Monkey An automated pentest tool https://github.com/guardicore/monkey
- Flightsim A utility to generate malicious network traffic and evaluate controls https://github.com/alphasoc/flightsim

10 Unterschriften

Jona, 28. September 2018

Cyrill Brunschwiler

Claudio Mattes

Lukas Kellenberger

Contents

A	bstra	act	Ι
M	Initi Proc Resi	gement Summary tial Situation	II II II II
Ta	ask I	Definition	III
C	ontei	${f nts}$	X
Ι	Tec	echnical Report	XI
	1	Introduction and Overview	1
		1.1 Research	1
		1.2 Test environment	1
		1.2.1 Users	2
	2	Analysis	3
		2.1 BloodHound / SharpHound	3
		2.2 LogonTracer	3
		2.3 WEFFLES	3
		2.4 Microsoft Security Complience Toolkit	3
		2.5 Microsoft Monitoring Active Directory for Signs of Compromise	3
		2.6 MITRE ATT&CK	3
		2.7 JPCert - Detecting Lateral Movement through Tracking Event Logs	3
		2.8 JPCert - Detecting Lateral Movement in APTs	3
	3	System Architecture	4
		3.1 Use Cases	4
		3.1.1 UC01 - Read Event Logs	4
		3.1.2 UC02 - Analyse Event Logs	4
		3.1.3 UC03 - Read Audit Policies	5
		3.1.4 UC04 - Analyse Audit Policies	5
		3.1.5 UC05 - Display missing or wrong system configuration	5
		3.2 Non Functional Requirements	6
		3.3 Technologies	6
	4	Results	7
	5	Conclusion	8
\mathbf{G}	lossa	ary	VI

List of Figures VII

List of Tables VIII

Part I Technical Report

1 Introduction and Overview

This chapter describes the first step of this project, the research of published technical reports and tools which are considered interesting for this project.

1.1 Research

1.2 Test environment

A virtual network was set up on Azure-Cloud as a test environment. The test network was set up in the cloud so that the development team can access the network regardless of its location. The test network consists of a Windows server and two Windows clients. Active Directory service was configured on the server to manage the client computer. The following operating systems were installed in this testnetwork:

Server:

• Windows Server 2016

Clients:

• Windows 10 Pro, Version 1709

The network is structured as followed:

Figure 1.1: test environment

1.2.1 Users

Three different users were configured:

Name	Permissions	
alice	$\operatorname{administration}$	
bob	user	
charlie	user	

Table 1.1: Angaben Lukas Kellenberger

2 Analysis

- 2.1 BloodHound / SharpHound
- 2.2 LogonTracer
- 2.3 WEFFLES
- 2.4 Microsoft Security Complience Toolkit
- 2.5 Microsoft Monitoring Active Directory for Signs of Compromise
- 2.6 MITRE ATT&CK
- 2.7 JPCert Detecting Lateral Movement through Tracking Event Logs
- 2.8 JPCert Detecting Lateral Movement in APTs

3 System Architecture

In this section the following main question is answered:

"How would a system architecture look like to fulfill the described problem domain?"

This includes the coverage of use cases, non-functional requirements, technologies used ...

3.1 Use Cases

A visual representation of the use cases with a use case diagram was deliberately omitted, because there is only one actor involved - the security advisor. The actor is not specifically mentioned in the use cases every time, because it is always the same.

3.1.1 UC01 - Read Event Logs

Description

Event logs are read from the running system and saved in a temporary file.

Precondition

The system is running and must have valid event logs.

Main Success Scenario

- 1. Read the specified event logs from the local system
- 2. Save the needed information from the event logs in a temporary file for analysis purposes.

3.1.2 UC02 - Analyse Event Logs

Description

The implemented logic analyzes, by defined event ids, which event occurred or is missing and creates a list of events that did not occurred or are not logged yet.

Precondition

UC01 is fulfilled: the temporary file is available.

Main Success Scenario

- 1. The temporary file can be read
- 2. The list with the defined event ids is available
- 3. Create a list of events which occurred and which are missing

3.1.3 UC03 - Read Audit Policies

Description

The specified domain audit policies are read and saved in a temporary file.

Precondition

TODO: check for admin rights needed

Main Success Scenario

- 1. Read the specified domain audit policies from the system
- 2. Save the needed information from the audit policies in a temporary file for analysis purposes.

3.1.4 UC04 - Analyse Audit Policies

Description

Based on the list created in UC02, the implemented logic analyzes whether the missing events did not occur or never occurred due to the incorrect configuration. If this is not the case, the system checks whether the events are logged at all using the audit policy.

Precondition

UC02 and UC03 are fulfilled: the temporary files are available.

Main Success Scenario

- 1. The temporary files can be read
- 2. The list with the defined audit policies is available
- 3. Creates a list of events where the logging is not configured

3.1.5 UC05 - Display missing or wrong system configuration

Description

Based on the list created in UC04 the user gets an overview of missing configurations which would improve the readiness of the system for a good attack detection.

Precondition

The list from UC04 is available.

Main Success Scenario

1. Displays a visual output of missing or wrong system configuration

3.2 Non Functional Requirements

NFR-No.	Description
NRF01	The Toolkit must remain the system in the status quo. More specific the system must not change or remove any existing entry in the eventlog, registry as well as in the execution history.
NFR02	The user must not notice any performance degradation from the system when using the Toolkit.
NFR03	The Toolkit must be portable with no installation procedure before use.
NFR04	The target version of the system for the Toolkit to run must be Microsoft Windows 10 Professional or Microsoft Server 2016.

Table 1.2: Non Functional Requirements

3.3 Technologies

4 Results

5 Conclusion

Glossary

List of Figures

1.1	test environment																																								1
-----	------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

List of Tables

1.1	1 Angaben Lukas Kellenberger	 2
1.2	2 Non Functional Requirements	 6