Категорная логика

Аннотация

В этом небольшом документе содержится общая информация о том, что такое топос, а также о том, как ввести в топосе пропозициональную логику. Изложение соответствует книге Гольдблатта (с третьей по шестую главу) и может быть использовано как сопроводительный материал — здесь разобраны некоторые упражнения.

Содержание

1	Введение	2
2	Декартово замкнутые категории	3
3	Уравнители и моники	5
4	Подобъекты и характеры	6
5	Точечные и бивалентные топосы	11
6	Пропозициональная логика в топосе	13
\mathbf{C}	писок литературы	16

1 Введение

Некоторые категории похожи на категорию множеств больше, чем другие. Один из способов получить категорные аналоги привычных теоретико-множественных понятий — потребовать от категории, чтобы она была топосом:

Определение 1. Топос — это декартово замкнутая категория с классификатором nodoбъектов.

Топосы обладают многими свойствами, присущими категории множеств, и категория множеств действительно является топосом. В любом топосе оказываются определены многие понятия теории множеств и верны многие теоремы, которые верны в категории множеств.

В топосе определены характеры подобъектов — аналог характеристических функций подмножеств. Определены также поверобъекты, являющиеся обобщением множества всех подмножеств данного множества. В топосе определены пересечение, объединение и дополнение подобъектов — аналоги операций с подмножествами. Морфизмы, являющиеся одновременно мониками и эпиками, в топосе оказываются изоморфизмами. Многие понятия и идеи, которые вообще-то можно определить в гораздо более общей ситуации, — например, элемент объекта, подобъект, экстенсиональность, — в топосах обретают смысл и подвижность.

В категории с терминальным объектом можно определить элемент объекта следующим образом.

Определение 2. Элемент x объекта $A, x \in A$ — это стрелка из терминального объекта $a, x : 1 \to A$.

(Например, в категории множеств элемент множества A — стрелка из фиксированного одноэлементного множества в A.)

В топосах естественным образом определяется логика: морфизмы $1 \to \Omega$ (где Ω — классификатор подобъектов, определение которого дано ниже), то есть элементы Ω , понимаются как значения истинности: на Ω в чисто категорных терминах вводятся конъюнкция, дизъюнкция, импликация и отрицание. Таким образом, если оценить в элементах Ω пропозициональные переменные, эта оценка естественно продолжается на все формулы с участием перечисленных операций.

Элементы Ω в любом топосе образуют ограниченную решётку. Оказывается, если некая формула верна при любой оценке в каком-нибудь топосе, то ее можно вывести в классической логике. Обратное, однако, неверно: не все теоремы классической логики истинны при любой оценке в любом топосе. В частности, аксиома $\alpha \lor \sim \alpha$ оказывается истинной при любой оценке ровно в тех ситуациях, когда элементы Ω образуют булеву алгебру. Аксиомы и теоремы интуиционистской логики истинны во всех топосах.

2 Декартово замкнутые категории

Определение 3. Декартово замкнутая категория — конечно полная категория c экспоненциальными объектами.

Далее будут доказаны некоторые утверждения о декартово замкнутых категориях с начальным объектом.

Утверждение 1. Для любого объекта A верно $0 \cong 0 \times A$, то есть $0 \times A$ является начальным объектом.

Доказательство. По определению экспоненциирования, для любого объекта X есть биекция

$$Hom(0 \times A, X) \cong Hom(0, X^A).$$

Поскольку в правом классе всегда ровно один элемент, то и в левом тоже, поэтому $0 \times A$ — начальный объект.

Утверждение 2. Если существует $f: A \to 0$, то $A \cong 0$.

Доказательство. $pr_A \circ < f, 1_A >= 1_A$, как показывает правый треугольник в следующей диаграмме:

С другой стороны, $< f, 1_A > \circ pr_A = 1_{0 \times A} \colon 0 \times A \to 0 \times A$, потому что есть только один морфизм из начального объекта в начальный. Поэтому $A \cong 0 \times A$, и поскольку $0 \times A$ — начальный объект, то и A — начальный объект.

Определение 4. Категория называется вырожденной, если все её объекты изоморфны.

Утверждение 3. *Если* $0 \cong 1$, то категория вырожденная.

Доказательство. Поскольку начальные объекты изоморфны друг другу, достаточно доказать, что все объекты начальные. Из произвольного объекта A получаем стрелку в 0:

$$\begin{array}{c}
A \xrightarrow{!_A} & 1 \\
\downarrow \\
\downarrow \\
0
\end{array}$$

Из предыдущего утверждения следует, что A — начальный объект.

Утверждение 4. Все морфизмы $f: 0 \to A \ c \ dom = 0$ являются мониками.

Доказательство. Пусть $f \circ g = f \circ h$ для каких-то g и h:

$$B \xrightarrow{g} 0 \xrightarrow{f} A$$

B — начальный объект, потому что из него есть стрелка в начальный. Но тогда g=h, поскольку в любой объект из начального объекта есть только одна стрелка. \square

Утверждение 5. $A^0 \cong 1$, то есть $A^0 - терминальный объект.$

Доказательство. По определению экспоненциирования, для любого объекта X

$$Hom(X \times 0, A) \cong Hom(X, A^0).$$

Поскольку $X \times 0$ — начальный объект, то в левом классе ровно один элемент. Следовательно, для любого X есть ровно одно отображение $!_X \colon X \to A^0$.

Утверждение 6. $1^A \cong 1$, то есть $1^A - терминальный объект.$

$$Hom(X \times A, 1) \cong Hom(X, 1^A).$$

В левом классе ровно один элемент, поскольку из любого объекта есть ровно одно отображение в 1. Следовательно, для любого X есть ровно одно отображение $!_X \colon X \to 1^A$.

3 Уравнители и моники

Напомним некоторые факты из теории категорий.

Утверждение 7. Любой уравнитель — моника.

Доказательство. Пусть f уравнивает g и h, $g \circ f = h \circ f$, и возьмем произвольную пару стрелок p, q, для которых $f \circ p = f \circ q$.

Поскольку $g\circ f\circ p=h\circ f\circ p$, то по определению уравнителя, существует ровно один морфизм $X\to E$, при котором треугольник в этой диаграмме коммутирует. Поэтому из $f\circ p=f\circ q$ сразу следует p=q, то есть f — моника.

Утверждение 8. Эпические уравнители — изоморфизмы.

Доказательство. Пусть $f \colon E \to A$ — эпика, уравнивающая g и h. В этом случае сразу верно, что g = h, и поэтому из того, что E — уравнитель, следует, что любая стрелка с концом в A пропускается через f. В частности, должна сущестовать стрелка $p \colon A \to E$, при которой треугольник в этой диаграмме коммутативный:

Из диаграммы получаем $f \circ p = 1_A$, откуда $f \circ p \circ f = f = f \circ 1_A$. Но по предыдущему утверждению f — моника, и на нее можно сократить слева: $p \circ f = 1_A$. Получается, $f^{-1} = p$.

4 Подобъекты и характеры

Определение 5. Подобъект объекта A — класс по отношению эквивалентности, заданному на всех мониках с концом A: моники f и g эквивалентны (обозначение: $f \cong g$), если пропускаются друг через друга, $f = g \circ p$, $g = f \circ q$ для некоторых p и q.

Замечание 1. $p \ u \ q \ взаимнообратны, \ a \ X \cong Y$.

Доказательство. Поскольку f — моника, её можно сократить:

$$f \circ 1_X = f = g \circ p = f \circ q \circ p.$$

Аналогично, $1_Y = p \circ q$.

Определение 6. $[f] \subseteq [g]$, если f пропускается через g.

Доказательство. Докажем, что не зависит от выбора представителей классов. Пусть $f_1 \cong f_2$ и $g_1 \cong g_2$, и $f_1 = g_1 \circ h$. Крайние треугольники в этой диаграмме существуют благодаря тому, что соответствующие стрелки, ведущие в A, эквивалентны:

Получается, $f_2 = g_2 \circ h_2 \circ h \circ h_1$, так что f_2 пропускается через g_2 .

Собрание всех подобъектов A обозначается Sub(A). Отношение \subseteq превращает Sub(A) в частично упорядоченное множество, а в топосе Sub(A) оказывается ограниченной решёткой, meet и join которой — пересечение и объединение подобъектов.

Определение 7. Классификатор подобъектов — объект Ω и морфизм true, такие что для любой моники $f: A \mapsto B$ существует единственный морфизм $\chi_f: B \to \Omega$, для которого следующая диаграмма — пулбэк:

 χ_f называют характером f. Стрелку true ещё обозначают \top . Композиция $true \circ !_A$ обозначается $true_A$. Докажем некоторые факты о классификаторе.

Утверждение 9. Характером true: $1 \mapsto \Omega$ является тождественный морфизм 1_{Ω} , то есть $\chi_{true} = 1_{\Omega}$.

Доказательство. Диаграмма коммутирует:

$$\begin{array}{ccc}
1 & \xrightarrow{true} & \Omega \\
\downarrow^{!_1} & & \downarrow^{1_{\Omega}} \\
1 & \xrightarrow{true} & \Omega
\end{array}$$

Кроме того, пусть даны $f\colon X\to\Omega$ и $g\colon X\to 1$, такие что периметр коммутирует:

В таком случае $f=true\circ g$, так что треугольники в этой диаграмме коммутируют. Кроме того, g — единственная стрелка, при которой это происходит: для произвольной стрелки h в правом треугольнике $h=!_1\circ h=g$.

Утверждение 10. Характером 1_{Ω} является $true_{\Omega}$, то есть $\chi_{1_{\Omega}} = true \circ !_{\Omega}$.

Доказательство. Диаграмма коммутирует:

С другой стороны, пусть при $f\colon X\to\Omega$ и $g\colon X\to 1$ периметр коммутирует:

Тогда $true \circ !_{\Omega} \circ f = true \circ g$. Поскольку true, будучи морфизмом из терминального объекта, является моникой, его можно сократить слева: $!_{\Omega} \circ f = g$. Поэтому треугольники в этой диаграмме коммутируют. Из-за тождественного морфизма в верхнем треугольнике ничего кроме f выбрать не получится.

Утверждение 11. Для любой стрелки $f: A \to B$ верно $true_B \circ f = true_A$.

Доказательство. Дело в том, что $true_A = true \circ !_A$, а $true_B \circ f = true \circ !_B \circ f$, но $!_A = !_B \circ f$, поскольку обе стрелки идут из A в терминальный объект.

Утверждение 12. Характеры моник $f: A \rightarrow D \ u \ g: B \rightarrow D \ равны, \chi_f = \chi_g$, тогда и только тогда, когда $f \cong g$.

Доказательство. Пусть $\chi_f = \chi_g$. Тогда в этой диаграмме внутренний квадрат — пулбэк, а внешний коммутирует (потому что тоже пулбэк), поэтому существует h, пропускающая g через f:

Аналогично f пропускается через g, и поэтому $f\cong g$. С другой стороны, если $f\cong g$, то стрелка h на приведенной диаграмме существует — с её помощью покажем коммутативность периметра:

$$\chi_f \circ g = \chi_f \circ f \circ h = true \circ !_A \circ h = true \circ !_B.$$

Пусть $p, !_C$ — пара стрелок, с которыми периметр у этой диаграммы коммутирует:

Морфизм t существует, потому что квадрат с вершиной в A — пулбэк, и поэтому $p=f\circ t$. Морфизм h^{-1} существует и треугольники с ним коммутируют потому, что по условию f пропускается через g. Все левые треугольники коммутируют автоматически из-за терминального объекта в одной из вершин. Таким образом, $h^{-1}\circ t$ — искомая стрелка, делающая оба внешних треугольника коммутативными. Если z — ещё одна такая стрелка, то есть $g\circ z=p$, то $f\circ h\circ z=p$ — значит, $h\circ z=t$ в силу единственности t с условием $f\circ t=p$. Но тогда $z=h^{-1}\circ h\circ z=h^{-1}\circ t$, что и требовалось.

Напомним, что изоморфизмы в любой категории являются мониками и эпиками. Если, например, для изоморфизма f верно $f \circ g = f \circ h$, то

$$q = f^{-1} \circ f \circ q = f^{-1} \circ f \circ h = h,$$

то есть f — моника. Эпичность f доказывается аналогично.

Утверждение 13. Эпические моники в топосе — изоморфизмы.

Доказательство. Ранее было доказано, что эпические уравнители — изоморфизмы; поэтому достаточно показать, что любая моника $f \colon A \rightarrowtail B$ что-нибудь уравнивает. Покажем, что она уравнивает свой характер с $true_B$. Заметим, что $\chi_f \circ f = true_A = true_B \circ f$.

Пусть есть $g\colon X\to B$, такой что $\chi_f\circ g=true_B\circ g$. Но $true_B\circ g=true_X$, так что $\chi_f\circ g=true_X$ — периметр диаграммы коммутирует. Значит, согласно определению

пулбэка, существует морфизм h, для которого верно $g = f \circ h$. Такой морфизм оказывается единственным, потому что правый треугольник в диаграмме коммутирует при любом морфизме на месте h. Таким образом, f — уравнитель.

Утверждение 14. $true\ ypaвнuвaem\ 1_{\Omega}\ u\ true_{\Omega}.$

Доказательство.

 $1_{\Omega} \circ true = true \circ 1_1 = true \circ !_{\Omega} \circ true = true_{\Omega} \circ true$

$$1 \xrightarrow{true} \Omega \xrightarrow{1_{\Omega}} 1 \xrightarrow{true} \Omega$$

Кроме того, пусть для некоторого $h\colon X\to \Omega$ выполняется $1_\Omega\circ h=true_\Omega\circ h$, то есть $h=true\circ!_\Omega\circ h=true\circ!_A$. Последнее означает, что h пропускается через true с помощью $!_A$. Другую стрелку взять не получится, потому что конец необходимой стрелки — терминальный объект.

5 Точечные и бивалентные топосы

Определение 8. *Ненулевой объект* — *объект*, *неизоморфный начальному*.

Определение 9. Непустой объект — объект, у которого есть хотя бы один элемент.

Определение 10. Принцип экстенсиональности. Если $f: A \to B, g: A \to B - napa$ разных стрелок с общими началом и концом, то существует элемент $x: 1 \to A$, такой что $f \circ x \neq g \circ x$.

Определение 11. Точечный топос — невырожденный топос, в котором выполнен принцип экстенсиональности.

Утверждение 15. В точечном топосе любой ненулевой объект непуст.

Доказательство. Пусть A — ненулевой объект. Возьмем характеры стрелок $0_A \colon 0 \to A$ и $1_A \colon A \to A$. Если бы χ_{0_A} оказалось равным χ_{1_A} , это бы означало, что $0_A \cong 1_A$ и, следовательно, $0 \cong A$, что противоречит выбору A. Значит, есть две различные стрелки с общим началом в A и с общим концом. Из экстенсиональности следует существование элемента $x \colon 1 \to A$, то есть A непуст.

Определение 12. Ложь, стремка false ими \bot – это характер $0_1 \colon 0 \rightarrowtail 1$.

Замечание 2. $0_1 - моника$.

Доказательство. Как было доказано, в декартово замкнутых категориях все стрелки с начальном объекте — моники. \Box

Утверждение 16. Морфизм $\bot \circ !_A - xapaктер 0_A$.

Доказать, что оба внутренних квадрата — пулбэки. Для этого достаточно доказать, что оба внутренних квадрата — пулбэки.

Нижний квадрат — пулбэк, по определению лжи. Верхний квадрат коммутирует, потому что есть только одна стрелка $0 \to 1$. Для вершины X любого конуса над верхним квадратом существует стрелка $X \to 0$, что в декартово замкнутых категориях означает, что X — начальный объект, поэтому искомой стрелкой для любого конуса будет единственный морфизм $X \to 0$.

Утверждение 17. В невырожденном топосе ложь и истина различны, $\bot \neq \top$.

Доказательство. true — характер $1_1\colon 1 \mapsto 1$, а false — характер $0_1\colon 0 \mapsto 1$, так что если true = false, то $1_1 \cong 0_1$, и следовательно, $1 \cong 0$, из чего следует вырожденность.

Определение 13. Невырожденный топос называют бивалентным, если true u false — единственные элементы Ω .

Утверждение 18. Точечный топос бивалентен.

Доказательство. Возьмем произвольный подобъект 1:

$$A \xrightarrow{h} 1$$

$$\downarrow! \qquad \qquad \downarrow \chi_f$$

$$1 \xrightarrow{true} \Omega$$

Если $A\cong 0$, то $h=0_1$ и $\chi_h=\bot$. В противном случае A непуст, и существует $f\colon 1\to A$. Следующие две диаграммы показывают, что $h\cong 1_1$.

Поэтому $\chi_h = true$.

6 Пропозициональная логика в топосе

Определение 14. *Отрицание* $\neg - x$ *арактер лжи.*

$$\begin{array}{ccc}
1 & \xrightarrow{\perp} & \Omega \\
\downarrow^{1_1} & & \downarrow^{\neg} \\
1 & \xrightarrow{\top} & \Omega
\end{array}$$

Определение 15. Конъюнкция \cap : $\Omega \times \Omega \to \Omega$ — характер произведения пары true $< \top, \top >$: $1 \mapsto \Omega \times \Omega$.

Определение 16. Дизтинкция $\cup : \Omega \times \Omega \to \Omega$ — характер образа стрелки

$$[\langle true_{\Omega}, 1_{\Omega} \rangle, \langle 1_{\Omega}, true_{\Omega} \rangle] : \Omega + \Omega \to \Omega \times \Omega.$$

Определение 17. Импликация \Rightarrow : $\Omega \times \Omega \to \Omega$ — характер стрелки e: $\leq \mapsto \Omega \times \Omega$, которая уравнивает конъюнкцию и проекцию на первый множитель pr_1 : $\Omega \times \Omega \to \Omega$.

Теперь есть всё необходимое для работы с пропозициональной логикой в топосе.

Определение 18. ξ -оценка — это функция $V: \Phi_0 \to Hom_{\xi}(1,\Omega)$, которая каждой пропозициональной переменной π_i сопоставляет значение истинности $V(\pi_i): 1 \to \Omega$. V продолжается на все формулы Φ следующим образом:

$$V(\sim \alpha) = \neg \circ V(\alpha)$$

$$V(\alpha \wedge \beta) = \cap \circ < V(\alpha), V(\beta) >$$

$$V(\alpha \vee \beta) = \cup \circ < V(\alpha), V(\beta) >$$
$$V(\alpha \supset \beta) = \Rightarrow \circ < V(\alpha), V(\beta) >$$

Обозначение 1. Если $< f, g >: 1 \to \Omega \times \Omega$ — пара значений истинности, то вводятся следующие обозначения:

$$f \cap g = \cap \circ < f, g >$$

$$f \cup g = \cup \circ < f, g >$$

$$f \Rightarrow g = \Rightarrow \circ < f, g >$$

Утверждение 19. $\neg \circ \bot = \top$

Доказательство. Сразу следует из определения отрицания ¬.

Утверждение 20. $\neg \circ \top = \bot$

Доказательство. Докажем, что периметр — пулбэк, это будет означать, что характером 0_1 является ¬о \top , из чего будет следовать утверждение, поскольку \bot — характер 0_1 по определению.

Нижний квадрат — пулбэк, это определение отрицания \neg . Верхний квадрат — тоже пулбэк, это отражённое определение лжи \bot . Поэтому периметр — пулбэк. \Box

Утверждение 21. (Без доказательства.) Контонкция, дизтонкция и импликация в применении $\kappa \top u \perp$ имеют обычные таблицы истинности. $\top \cap \bot = \bot$, $\bot \Rightarrow \top = \top$,...

Пусть
$$V:\Phi_0\to 2$$
 — классическая оценка. Определим ξ -оценку $V':\Phi\to Hom_\xi(1,\Omega)$: $V'(\pi_i)=\top,$ если $V(\pi_i)=1$ $V'(\pi_i)=\bot,$ если $V(\pi_i)=0$

Утверждение 22. Для любой формулы $\alpha \in \Phi$ верно либо $V'(\alpha) = \top$, $V'(\alpha) = \bot$, и кроме того, $V'(\alpha) = \top$ тогда и только тогда, когда $V(\alpha) = 1$.

Доказательство. Доказывается с помощью структурной индукции по формуле α , которая сработает, поскольку таблицы истинности у каждой из операций совпадают с классическими.

Утверждение 23. В любом топосе ξ верно, что если $\xi \models \alpha$, то $\vdash_{CL} \alpha$.

Доказательство. Возьмем произвольную классическую оценку V и ассоциированную с ней оценку V'. Поскольку $\xi \models \alpha$, то при оценке V' формула α тоже верна: $V'(\alpha) = \top$, — значит, согласно предыдущему утверждению, $V(\alpha) = 1$. Получается, $V(\alpha) = 1$ при любой классической оценке V, а из этого следует, что $\vdash_{CL} \alpha$.

Утверждение 24. Если топос ξ бивалентен, $\xi \models \alpha$ тогда и только тогда, когда $\vdash_{CL} \alpha$.

Доказательство. В одну сторону доказано в предыдущем утверждении. В обратную сторону, пусть $\vdash_{CL} \alpha$, то есть α верно при любой классической оценке. Пусть V' — произвольная ξ -оценка; построим по V' классическую оценку $V:V(\pi_i)=1$, если $V'(\pi_i)=\top$, $V(\pi_i)=0$, если $V'(\pi_i)=\bot$, — поскольку топос бивалентный, других значений истинности нет, и V построится. Но тогда V и V' оказываются ассоцированными, и поскольку α верно при любой классической оценке, то $V(\alpha)=1$, и значит, $V'(\alpha)=\top$.

Заметим, что существуют топосы, для которых из $\vdash_{CL} \alpha$ не следует $\xi \models \alpha$. Например, $\alpha \lor \sim \alpha$ не равно \top при любой оценке в категории всех стрелок Set^{\to} . В этой категории у Ω три элемента: $0 \mapsto 0$ (\bot), $\frac{1}{2} \mapsto 1$, $1 \mapsto 1$ (\top). Тогда после подстановки $\frac{1}{2} \mapsto 1$ вместо α получаем:

$$(\frac{1}{2} \mapsto 1) \lor \sim (\frac{1}{2} \mapsto 1) =$$
$$(\frac{1}{2} \mapsto 1) \lor (0 \mapsto 0) =$$
$$\frac{1}{2} \mapsto 1$$

Список литературы

[1] R. Goldblatt. Topoi: The Categorial Analysis of Logic.