First name	LAST NA	AMESoln_	Soln		
LAB Session (Circle one)	:				
Mon 9-12	Tues 8 – 11	Wed 9-12	Fri 9 - 12		
	Tues 2-5	Thurs 2-5	Fri 2-5		

MIDTERM 2 (Version 1): Monday Oct 31, 2016

- 1. Write your name above. Circle your lab session!
 Know your lab session. Circle the wrong session or Not circle it, 1 point will be deducted from your total score.
- 2. One-side note sheet is allowed
- 3. No Calculator, No electronic device (computer, smart/cell phone, ...) is allowed
- 4. To receive credit, show all your work clearly and readably.

Write only answer gets 0

- 5. There are 5 pages in this exam.
- 6. Do not write multiple answers, otherwise, the wrong one will be graded.
- 7. Ask if you have any questions or confusion.
- 8. For problem 3, you are responsible for solving one problem (*choose* 3a or 3b)

Problem	Score	Your score
1	30	
2	30	
3	40	
Total	100	

1. (30 points)

1a) (10 pts) Using 2's complement format for signed numbers in 6 bits, fill in the blanks

6-bit signed number Decimal 101010 __-22 ___ MSB is 1 -> 101010 =>2's comp => 010101+1 = 010110 __110100 ____ -12

12 in 6 bits => 001100 => 2's comp => 110011 + 1 = 110100

1b) (**10 pts**) Given the 6-bit signed numbers (2's complement format), find the result of 100110 - 000111 and state whether an overflow occurs.

011011 – 110100 = _____ (in binary)

Overflow? (circle one) and explain your reason below: Yes

```
100110 - 000111 = 100110 + 111001
= 011111
0
100110
+
111001
1011111
```

Since the carry out and one before are not the same, overflow occurs

No

1c) Given a 32 x 16 register file,

1c.1 (2 pts) How many bits for W_data and R_data? _____16_____ bits

1c.2 (3 pts) How many bits for W_addr and R_addr? _____5____ bits

1c.3 (4 pts) What is the size of decoder?

5 x 32

1c.4 (1 pt) The tri-state (three-state) buffers are used with (circle one answer below)

Read port Write port

2) (30 points)

2a) (14 pts) Given the following circuit using an n-bit down counter, answer the questions

ALU operation

A << 1 filled with 0

2a) What is the *minimum* value of **n**?

Need to count to
$$24 = 11000$$
 (in binary)
 $N = 5$ bits

2b) What is the *frequency* (in Hz) of **ClkOut**?

icin

0

$$2000/25 = 80 \text{ Hz}$$

ib0

2b) (16 pts) Design a **2-bit ALU** using 2-bit adder and muxes for the following operation table ia0

ia1

a0

ib1

0 1 NOT 1 1 0 A + B 1 1 A - B		0 a1 a1	0 a0 a0	b1' b1 b1'	b0' b0 b0'	0 0 1	
a1	a0	b1		b0			
s1s1s0s0sy	0 0 1 1 13 i2 i1 i0 s1 4x1	i3 i2 i1 s1 4; s0 y	.1	i3 i2 i1 i0 s1 4x1 s0 y	0	1 0 0 0 i3 i2 i1 i0 s1 4x1	L
	a1 a0	b1 2-bit add	b0	ci	n		
2-bit ALU		cout s1	s0 s0)			
			T T	This i	s a 2-t	oit sum out	tput

READ ME: For problem 3, choose 1 problem to complete (pick Problem 3a or 3b)

10 bonus points if you can complete both 3a and 3b with 100% correct answers

3a) (40 points) Given three 8-bit unsigned inputs A, B, C, design a circuit that outputs 1 if the **smallest** *absolute* distance between any pair of values is less than 15 or greater than 50.

Note: your circuit must work for any 8-bit unsigned numbers given in A, B, C. - Assume that you have the following Datapath components available (*unsigned* only) – decoders, encoders, muxes, parallel load registers, adders, subtractors, magnitude comparators, array style multipliers, shifters, and logic gates (NOT, AND, OR, NAND, NOR, ... for any *n* inputs (*n* is your choice)). - Properly connect all components and indicate bit-width of each wire (if more

Ex 1: If A = 108, B = 53 and C = 27, absolute distance between A and B = |A-B| or |B-A| = 55 absolute distance between A and C = 81 absolute distance between B and C = 26

Since the smallest absolute distance is 26 which is NOT less than 15 or greater than 50, the output W = 0.

Ex 2: If A = 18, B = 25 and C = 72, absolute distance between A and B = |A-B| or |B-A| = 7 absolute distance between A and C = 54 absolute distance between B and C = 47

Since the smallest absolute distance is 7 which is less than 15, the 1-bit output W = 1.

than 1 bit).

Idea: 1) Find differences A- B, B- C, A-C

2) make the differences positive (for absolute), |A-B|, |B-C|, |A-C|

3) find minimum from step 2, min(|A-B|, |B-C|, |A-C|)

4) if min from step 3 is less than 15 or greater than 50, w = 1

Reminder: You are responsible for solving only one problem (pick 3a or 3b)

3b) (40 points) **Design** a **3-bit up/down-counter** that has the following control inputs:

- *R_shift* shifts its counter value to the right,
- UD enables counting up or down (UD = 1 for up),
- *ld* loads value I to the counter

The counter has 3-bit "Q" as the counter output and 1-bit terminal count (tc) output as shown in the block diagram on the right-hand side.

The *order of operation* from *highest to lowest priority* is *ld*, *R_shift*, *UD*. The operation table is given below:

ld	R_shift	UD	Q
1	X	X	I
0	1	0	maintain
0	1	1	Shift Q to the right by 1 position filled with 0
0	0	1	Q + 1 (count up)
0	0	0	Q - 1 (count down)

Properly connect all components and indicate bit-width of each wire (if more than 1 bit).

Assume that you have the following datapath components available (**unsigned** only): decoders, encoders, muxes, 3-bit parallel load registers, 3-bit magnitude comparators, 3-bit adders, 3-bit subtractors, 1-bit left shifter (use symbol << 1), 1-bit right shifter (use >> 1), and logic gates (NOT, AND, OR, NAND, NOR, ... for any n inputs (n is your choice)).

First way, use 8 x1 mux

s2	SI	SU	
ld	R_shift	UD	Q
1	X	X	I
0	1	0	maintain
0	1	1	Shift Q to the right by 1 position filled with 0
0	0	1	Q + 1 (count up)
0	0	0	Q - 1 (count down)

Combinational circuit for tc

For ld and $R_{shift} = 0$,

tc = 1 when UD = 1 and Q = q2q1q0 = 111 or

tc = 1 when UD = 0 and Q = 000

Therefore, to $= 1d' \& R_shift' \& (UD \& q2 \& q1\& q0 \mid (UD' \& q2' \& q1' \& q0'))$

Second way, use 4x1 mux for R_shift and UD and 2x1 mux for ld

ld	R_shift	UD	Q
1	X	X	I
0	1	0	maintain
0	1	1	Shift Q to the right by 1 position filled with 0
0	0	1	Q + 1 (count up)
0	0	0	Q - 1 (count down)

