

IR2118

SINGLE CHANNEL DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V

 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout
- CMOS Schmitt-triggered inputs with pull-down
- Output out of phase with input

Product Summary

VOFFSET	600V max.
I _O +/-	200 mA / 420 mA
V _{OUT}	10 - 20V
t _{on/off} (typ.)	125 & 105 ns

Description

The IR2118 is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable rugge-dized monolithic construction. The logic input is compatible with standard CMOS outputs. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high or low side configuration which operates up to 600 volts.

Packages

Typical Connection

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 5 through 8.

Parameter			Va		
Symbol	Definition	Min.	Max.	Units	
V _B	High Side Floating Supply Voltage		-0.3	625	
Vs	High Side Floating Supply Offset Voltage		V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B + 0.3	V
V _{CC}	Logic Supply Voltage -0.3		25		
V_{IN}	Logic Input Voltage	-0.3	V _{CC} + 0.3		
dV _S /dt	Allowable Offset Supply Voltage Transient (F	_	50	V/ns	
PD	Package Power Dissipation @ T _A ≤ +25°C	(8 Lead DIP)	_	1.0	w
		(8 Lead SOIC)	_	0.625	VV
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(8 Lead DIP)	_	125	°C/W
		(8 Lead SOIC)	_	200	C/VV
TJ	Junction Temperature		_	150	
TS	Storage Temperature		-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

	Parameter	Va		
Symbol	Definition	Min.	Max.	Units
V _B	High Side Floating Supply Absolute Voltage	V _S + 10	V _S + 20	
Vs	High Side Floating Supply Offset Voltage	Note 1	600	
V _{HO}	High Side Floating Output Voltage	Vs	V _B	V
V _{CC}	Logic Supply Voltage	10	20	
V _{IN}	Logic Input Voltage	0	V _{CC}	
T _A	Ambient Temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}.

Dynamic Electrical Characteristics

V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Parameter		Value				
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	_	125	200		V _S = 0V
t _{off}	Turn-Off Propagation Delay	_	105	180	ns	V _S = 600V
t _r	Turn-On Rise Time	_	80	130	113	
tf	Turn-Off Fall Time	_	40	65		

Static Electrical Characteristics

V_{BIAS} (V_{CC}, V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN}, V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Parameter		Value				
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "0" Input Voltage	6.4	_	_		V _{CC} = 10V
		9.5	_	_		V _{CC} = 15V
		12.6	_	_	V	V _{CC} = 20V
V _{IL}	Logic "1" Input Voltage	-	_	3.8	V	V _{CC} = 10V
		_	_	6.0		V _{CC} = 15V
		_	_	8.3		V _{CC} = 20V
V _{OH}	High Level Output Voltage, V _{BIAS} - V _O	_	_	100	mV	I _O = 0A
V _{OL}	Low Level Output Voltage, VO	_	_	100	1110	I _O = 0A
I _{LK}	Offset Supply Leakage Current	_	_	50		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current	_	50	240		$V_{IN} = 0V \text{ or } V_{CC}$
IQCC	Quiescent V _{CC} Supply Current	_	70	340	μΑ	$V_{IN} = 0V \text{ or } V_{CC}$
I _{IN+}	Logic "1" Input Bias Current	_	_	1.0		$V_{IN} = 0V$
I _{IN-}	Logic "0" Input Bias Current	_	20	40		V _{IN} = 15V
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	7.6	8.6	9.6		
V _{BSUV} -	V _{BS} Supply Undervoltage Negative Going Threshold	7.2	8.2	9.2	V	
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going Threshold	7.6	8.6	9.6	v	
V _{CCUV} -	V _{CC} Supply Undervoltage Negative Going Threshold	7.2	8.2	9.2		
I _{O+}	Output High Short Circuit Pulsed Current	200	250	_		$V_O = 0V$, $V_{IN} = 0V$
					mA	PW ≤10 μs
I _O -	Output Low Short Circuit Pulsed Current	420	500	_	IIIA	$V_O = 15V$, $V_{IN} = V_{CC}$ PW $\leq 10 \mu s$

Functional Block Diagram

Lead Definitions

Le	Lead			
Symbol	Description			
Vcc	Logic and gate drive supply			
ĪN	Logic input for gate driver output (HO), out of phase with HO			
COM	Low side return			
VB	High side floating supply			
НО	High side gate drive output			
٧s	High side floating supply return			

Lead Assignments

Device Information

Process & Design Rule			HVDCMOS 4.0 µm		
Transistor Count			114		
Die Size			70 X 77 X 26 (mil)		
Die Outline					
Thickness	of Gate Oxide		800Å		
Connection		Material	Poly Silicon		
	First	Width	4 µm		
	Layer	Spacing	6 μm		
	,	Thickness	5000Å		
		Material	AI - Si (Si: 1.0% ±0.1%)		
	Second	Width	6 μm		
	Layer	Spacing	9 µm		
		Thickness	20,000Å		
Contact Ho	le Dimension		8 μm X 8 μm		
Insulation L	_ayer	Material	PSG (SiO ₂)		
		Thickness	1.5 μm		
Passivation	1	Material	PSG (SiO ₂)		
		Thickness	1.5 µm		
Method of	Saw		Full Cut		
Method of I	Die Bond		Ablebond 84 - 1		
Wire Bond		Method	Thermo Sonic		
		Material	Au (1.0 mil / 1.3 mil)		
Leadframe		Material	Cu		
		Die Area	Ag		
		Lead Plating	Pb : Sn (37 : 63)		
Package			8 Lead PDIP / SO-8		
]	Materials		EME6300 / MP150 / MP190		
Remarks:					

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 5. IR2118 TJ vs. Frequency (IRFBC20) $R_{GATE} = 33\Omega, V_{CC} = 15V$

Figure 6. IR2118 TJ vs. Frequency (IRFBC30) $R_{GATE} = 22\Omega, V_{CC} = 15V$

Figure 7. IR2118 TJ vs. Frequency (IRFBC40) $R_{GATE} = 15\Omega, V_{CC} = 15V$

Figure 8. IR2118 T_J vs. Frequency (IRFPE50) RGATE = 10Ω , Vcc = 15V