

Multivariable regression examples

Regression Models

Brian Caffo, Jeff Leek and Roger Peng Johns Hopkins Bloomberg School of Public Health

Swiss fertility data

```
library(datasets); data(swiss); require(stats); require(graphics)
pairs(swiss, panel = panel.smooth, main = "Swiss data", col = 3 + (swiss$Catholic > 50))
```

Swiss data

?swiss

Description

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking provinces of Switzerland at about 1888.

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

- · [,1] Fertility Ig, 'common standardized fertility measure'
- · [,2] Agriculture % of males involved in agriculture as occupation
- · [,3] Examination % draftees receiving highest mark on army examination
- · [,4] Education % education beyond primary school for draftees.
- · [,5] Catholic % 'catholic' (as opposed to 'protestant').
- · [,6] Infant.Mortality live births who live less than 1 year.

All variables but 'Fertility' give proportions of the population.

Calling Im

```
summary(lm(Fertility ~ . , data = swiss))
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                66.9152
                         10.70604 6.250 1.906e-07
                -0.1721
Agriculture
                        0.07030 -2.448 1.873e-02
Examination
                -0.2580 0.25388 -1.016 3.155e-01
Education
                -0.8709 0.18303 -4.758 2.431e-05
                0.1041 0.03526 2.953 5.190e-03
Catholic
Infant.Mortality 1.0770
                          0.38172
                                   2.822 7.336e-03
```

Example interpretation

- Agriculture is expressed in percentages (0 100)
- Estimate is -0.1721.
- We estimate an expected 0.17 decrease in standardized fertility for every 1\% increase in percentage of males involved in agriculture in holding the remaining variables constant.
- · The t-test for $H_0: \beta_{Agri} = 0$ versus $H_a: \beta_{Agri} \neq 0$ is significant.
- · Interestingly, the unadjusted estimate is

```
summary(lm(Fertility ~ Agriculture, data = swiss))$coefficients
```

How can adjustment reverse the sign of an effect? Let's try a simulation.

```
n \leftarrow 100; x^2 \leftarrow 1 : n; x^1 \leftarrow .01 * x^2 + runif(n, -.1, .1); y = -x^1 + x^2 + rnorm(n, sd = .01) summary(lm(y \sim x^1))$coef
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.618 1.200 1.349 1.806e-01
x1 95.854 2.058 46.579 1.153e-68
```

```
summary(lm(y \sim x1 + x2))$coef
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0003683 0.0020141 0.1829 8.553e-01
x1 -1.0215256 0.0166372 -61.4001 1.922e-79
x2 1.0001909 0.0001681 5950.1818 1.369e-271
```


Back to this data set

- The sign reverses itself with the inclusion of Examination and Education, but of which are negatively correlated with Agriculture.
- The percent of males in the province working in agriculture is negatively related to educational attainment (correlation of -0.6395) and Education and Examination (correlation of 0.6984) are obviously measuring similar things.
 - Is the positive marginal an artifact for not having accounted for, say, Education level? (Education does have a stronger effect, by the way.)
- · At the minimum, anyone claiming that provinces that are more agricultural have higher fertility rates would immediately be open to criticism.

What if we include an unnecessary variable?

<u>z adds no new linear information, since it's a linear combination of variables already included.</u> R just drops terms that are linear combinations of other terms.

```
z <- swiss$Agriculture + swiss$Education
lm(Fertility ~ . + z, data = swiss)</pre>
```

```
Call:
lm(formula = Fertility \sim . + z, data = swiss)
Coefficients:
                       Agriculture
                                          Examination
                                                              Education
                                                                                  Catholic
     (Intercept)
          66.915
                             -0.172
                                                                  -0.871
                                                                                     0.104
                                               -0.258
Infant.Mortality
                                  Z
           1.077
                                NA
```

Dummy variables are smart

Consider the linear model

$$Y_i = \beta_0 + X_{i1}\beta_1 + \epsilon_i$$

where each X_{i1} is binary so that it is a 1 if measurement i is in a group and 0 otherwise. (Treated versus not in a clinical trial, for example.)

- · Then for people in the group $E[Y_i] = \beta_0 + \beta_1$
- And for people not in the group $E[Y_i] = \beta_0$
- · The LS fits work out to be $\hat{\beta}_0 + \hat{\beta}_1$ is the mean for those in the group and $\hat{\beta}_0$ is the mean for those not in the group.
- \cdot β_1 is interpretted as the increase or decrease in the mean comparing those in the group to those not.
- Note including a binary variable that is 1 for those not in the group would be redundant. It would create three parameters to describe two means.

More than 2 levels

- · Consider a multilevel factor level. For didactic reasons, let's say a three level factor (example, US political party affiliation: Republican, Democrat, Independent)
- $Y_i = \beta_0 + X_{i1}\beta_1 + X_{i2}\beta_2 + \epsilon_i$.
- $\cdot X_{i1}$ is 1 for Republicans and 0 otherwise.
- \cdot X_{i2} is 1 for Democrats and 0 otherwise.
- · If i is Republican $E[Y_i] = \beta_0 + \beta_1$
- · If i is Democrat $E[Y_i] = \beta_0 + \beta_2$.
- · If i is Independent $E[Y_i] = \beta_0$.
- · β_1 compares Republicans to Independents.
- · β_2 compares Democrats to Independents.
- · $\beta_1 \beta_2$ compares Republicans to Democrats.
- · (Choice of reference category changes the interpretation.)

Insect Sprays

InsectSprays data

Linear model fit, group A is the reference

```
summary(lm(count ~ spray, data = InsectSprays))$coef
```

Hard coding the dummy variables

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 14.5000 1.132 12.8074 1.471e-19 I(1 * (spray = "B")) 0.8333 1.601 0.5205 6.045e-01 <math>I(1 * (spray = "C")) -12.4167 1.601 -7.7550 7.267e-11 <math>I(1 * (spray = "D")) -9.5833 1.601 -5.9854 9.817e-08 I(1 * (spray = "E")) -11.0000 1.601 -6.8702 2.754e-09 <math>I(1 * (spray = "F")) 2.1667 1.601 1.3532 1.806e-01
```

What if we include all 6?

```
lm(count ~
    I(1 * (spray == 'B')) + I(1 * (spray == 'C')) +
    I(1 * (spray == 'D')) + I(1 * (spray == 'E')) +
    I(1 * (spray == 'F')) + I(1 * (spray == 'A')), data = InsectSprays)
```

What if we omit the intercept?

```
summary(lm(count ~ spray - 1, data = InsectSprays))$coef
```

```
Estimate Std. Error t value Pr(>|t|)
sprayA 14.500 1.132 12.807 1.471e-19
sprayB 15.333 1.132 13.543 1.002e-20
sprayC 2.083 1.132 1.840 7.024e-02
sprayD 4.917 1.132 4.343 4.953e-05
sprayE 3.500 1.132 3.091 2.917e-03
sprayF 16.667 1.132 14.721 1.573e-22
```

```
unique(ave(InsectSprays$count, InsectSprays$spray))
```

```
[1] 14.500 15.333 2.083 4.917 3.500 16.667
```

Summary

- If we treat Spray as a factor, R includes an intercept and omits the alphabetically first level of the factor.
 - All t-tests are for comparisons of Sprays versus Spray A.
 - Emprirical mean for A is the intercept.
 - Other group means are the itc plus their coefficient.
- If we omit an intercept, then it includes terms for all levels of the factor.
 - Group means are the coefficients.
 - Tests are tests of whether the groups are different than zero. (Are the expected counts zero for that spray.)
- If we want comparisons between, Spray B and C, say we could refit the model with C (or B) as the reference level.

Reordering the levels

```
spray2 <- relevel(InsectSprays$spray, "C")
summary(lm(count ~ spray2, data = InsectSprays))$coef</pre>
```

```
Estimate Std. Error t value Pr(>|t|)
            2.083
                      1.132 1.8401 7.024e-02
(Intercept)
spray2A
           12.417
                      1.601 7.7550 7.267e-11
spray2B
           13.250 1.601 8.2755 8.510e-12
          2.833 1.601 1.7696 8.141e-02
spray2D
spray2E
         1.417 1.601 0.8848 3.795e-01
spray2F
                      1.601 9.1083 2.794e-13
           14.583
```

Doing it manually

Equivalently

$$Var(\hat{\beta}_B - \hat{\beta}_C) = Var(\hat{\beta}_B) + Var(\hat{\beta}_C) - 2Cov(\hat{\beta}_B, \hat{\beta}_C)$$

```
fit <- lm(count ~ spray, data = InsectSprays) #A is ref
bbmbc <- coef(fit)[2] - coef(fit)[3] #B - C
temp <- summary(fit)
se <- temp$sigma * sqrt(temp$cov.unscaled[2, 2] + temp$cov.unscaled[3,3] - 2 *temp$cov.unscaled[2,3])
t <- (bbmbc) / se
p <- pt(-abs(t), df = fit$df)
out <- c(bbmbc, se, t, p)
names(out) <- c("B - C", "SE", "T", "P")
round(out, 3)</pre>
```

```
B - C SE T P
13.250 1.601 8.276 0.000
```

Other thoughts on this data

- · Counts are bounded from below by 0, violates the assumption of normality of the errors.
 - Also there are counts near zero, so both the actual assumption and the intent of the assumption are violated.
- Variance does not appear to be constant.
- · Perhaps taking logs of the counts would help.
 - There are 0 counts, so maybe log(Count + 1)
- · Also, we'll cover Poisson GLMs for fitting count data.

Example - Millenium Development Goal 1

http://www.un.org/millenniumgoals/pdf/MDG_FS_1_EN.pdf

http://apps.who.int/gho/athena/data/GHO/WHOSIS_000008.csv?profile=text&filter=COUNTRY:;SEX:

WHO childhood hunger data

```
#download.file("http://apps.who.int/gho/athena/data/GHO/WHOSIS_000008.csv?profile=text&filter=COUNTRY:*
hunger <- read.csv("hunger.csv")
hunger <- hunger[hunger$Sex!="Both sexes",]
head(hunger)</pre>
```

		Indica	ator Data	a.Sour	ce I	PUBLISH.STATES	Year	WHO.region
1 Children ag	ed < <mark>5</mark> year	s underweight	(%) NLIS	5_31004	14	Published	1986	Africa
2 Children ag	ed < <mark>5</mark> year	s underweight	(%) NLIS	5_31023	33	Published	1990	Americas
3 Children ag	ed <5 year	s underweight	(%) NLIS	5_31290	92	Published	2005	Americas
5 Children ag	ed <5 year	s underweight	(%) NLIS	5_31252	22	Published	2002	Eastern Mediterranean
6 Children ag	ed <5 year	s underweight	(%) NLIS	5_31295	55	Published	2008	Africa
8 Children ag	ed <5 year	s underweight	(%) NLIS	5_31296	63	Published	2008	Africa
Count	ry Sex I	Display.Value	Numeric	Low H	igh	Comments		
1 Seneg	al Male	19.3	19.3	NA	NA	NA		
2 Paragu	ay Male	2.2	2.2	NA	NA	NA		
3 Nicarag	ua Male	5.3	5.3	NA	NA	NA		
5 Jord	an Female	3.2	3.2	NA	NA	NA		
6 Guinea-Biss	au Female	17.0	17.0	NA	NA	NA		
8 Gha	na Male	15.7	15.7	NA	NA	NA		

Plot percent hungry versus time

lm1 <- lm(hunger\$Numeric ~ hunger\$Year)
plot(hunger\$Year,hunger\$Numeric,pch=19,col="blue")</pre>

Remember the linear model

$$Hu_i = b_0 + b_1 Y_i + e_i$$

 b_0 = percent hungry at Year 0

 b_1 = decrease in percent hungry per year

 e_i = everything we didn't measure

Add the linear model

```
lm1 <- lm(hunger$Numeric ~ hunger$Year)
plot(hunger$Year,hunger$Numeric,pch=19,col="blue")
lines(hunger$Year,lm1$fitted,lwd=3,col="darkgrey")</pre>
```


Color by male/female

plot(hunger\$Year,hunger\$Numeric,pch=19)
points(hunger\$Year,hunger\$Numeric,pch=19,col=((hunger\$Sex="Male")*1+1))

Now two lines

$$HuF_i = bf_0 + bf_1YF_i + ef_i$$

 bf_0 = percent of girls hungry at Year 0

 bf_1 = decrease in percent of girls hungry per year

 ef_i = everything we didn't measure

$$HuM_i = bm_0 + bm_1YM_i + em_i$$

 bm_0 = percent of boys hungry at Year 0

 bm_1 = decrease in percent of boys hungry per year

 em_i = everything we didn't measure

Color by male/female

```
lmM <- lm(hunger$Numeric[hunger$Sex="Male"] ~ hunger$Year[hunger$Sex="Male"])
lmF <- lm(hunger$Numeric[hunger$Sex="Female"] ~ hunger$Year[hunger$Sex="Female"])
plot(hunger$Year,hunger$Numeric,pch=19)
points(hunger$Year,hunger$Numeric,pch=19,col=((hunger$Sex="Male")*1+1))
lines(hunger$Year[hunger$Sex="Male"],lmM$fitted,col="black",lwd=3)
lines(hunger$Year[hunger$Sex="Female"],lmF$fitted,col="red",lwd=3)</pre>
```


Two lines, same slope

$$Hu_i = b_0 + b_1 \mathbb{1}(Sex_i = "Male") + b_2 Y_i + e_i^*$$

 b_0 - percent hungry at year zero for females

 $b_0 + b_1$ - percent hungry at year zero for males

b₂ - change in percent hungry (for either males or females) in one year

 $e_{i}^{\hspace{0.2em} *}$ - everything we didn't measure

Two lines, same slope in R

```
lmBoth <- lm(hunger$Numeric ~ hunger$Year + hunger$Sex)
plot(hunger$Year,hunger$Numeric,pch=19)
points(hunger$Year,hunger$Numeric,pch=19,col=((hunger$Sex=="Male")*1+1))
abline(c(lmBoth$coeff[1],lmBoth$coeff[2]),col="red",lwd=3)
abline(c(lmBoth$coeff[1] + lmBoth$coeff[3],lmBoth$coeff[2]),col="black",lwd=3)</pre>
```


Two lines, different slopes (interactions)

$$Hu_i = b_0 + b_1 \mathbb{1}(Sex_i = "Male") + b_2 Y_i + b_3 \mathbb{1}(Sex_i = "Male") \times Y_i + e_i^+$$

 b_0 - percent hungry at year zero for females

 $b_0 + b_1$ - percent hungry at year zero for males

b₂ - change in percent hungry (females) in one year

 $b_2 + b_3$ - change in percent hungry (males) in one year

 e_{i}^{+} - everything we didn't measure

Two lines, different slopes in R

```
lmBoth <- lm(hunger$Numeric ~ hunger$Year + hunger$Sex + hunger$Sex*hunger$Year)
plot(hunger$Year, hunger$Numeric, pch=19)
points(hunger$Year, hunger$Numeric, pch=19, col=((hunger$Sex=="Male")*1+1))
abline(c(lmBoth$coeff[1], lmBoth$coeff[2]), col="red", lwd=3)
abline(c(lmBoth$coeff[1] + lmBoth$coeff[3], lmBoth$coeff[2] + lmBoth$coeff[4]), col="black", lwd=3)</pre>
```


Two lines, different slopes in R

summary(lmBoth)

```
Call:
lm(formula = hunger$Numeric ~ hunger$Year + hunger$Sex + hunger$Sex *
   hunger$Year)
Residuals:
  Min 10 Median 30 Max
-25.91 -11.25 -1.85 7.09 46.15
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                       603.5058 171.0552 3.53 0.00044 ***
(Intercept)
hunger$Year
                      hunger$SexMale
                  61.9477 241.9086 0.26 0.79795
hunger$Year:hunger$SexMale -0.0300 0.1209 -0.25 0.80402
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.2 on 944 degrees of freedom
Multiple R-squared: 0.0318, Adjusted R-squared: 0.0287
                                                                               33/35
```

Interpretting a continuous interaction

$$E[Y_i|X_{1i} = x_1, X_{2i} = x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

Holding X_2 constant we have

$$E[Y_i|X_{1i} = x_1 + 1, X_{2i} = x_2] - E[Y_i|X_{1i} = x_1, X_{2i} = x_2] = \beta_1 + \beta_3 x_2$$

And thus the expected change in Y per unit change in X_1 holding all else constant is not constant. β_1 is the slope when $x_2 = 0$. Note further that:

$$\begin{split} E[Y_i|X_{1i} = x_1 + 1, X_{2i} = x_2 + 1] - E[Y_i|X_{1i} = x_1, X_{2i} = x_2 + 1] \\ - E[Y_i|X_{1i} = x_1 + 1, X_{2i} = x_2] - E[Y_i|X_{1i} = x_1, X_{2i} = x_2] \\ = \beta_3 \end{split}$$

Thus, β_3 is the change in the expected change in Y per unit change in X_1 , per unit change in X_2 .

Or, the change in the slope relating X_1 and Y per unit change in X_2 .

Example

$$Hu_i = b_0 + b_1 In_i + b_2 Y_i + b_3 In_i \times Y_i + e_i^+$$

b₀ - percent hungry at year zero for children with whose parents have no income

 b_1 - change in percent hungry for each dollar of income in year zero

b₂ - change in percent hungry in one year for children whose parents have no income

 b_3 - increased change in percent hungry by year for each dollar of income - e.g. if income is \$10,000, then change in percent hungry in one year will be

$$b_2 + 1e4 \times b_3$$

 $\boldsymbol{e}_{i}^{\scriptscriptstyle +}$ - everything we didn't measure

Lot's of care/caution needed!