2005 Arkansas Mathematics Competition Solutions

1. Cylindrical volume.

The volume decreases by 10.4%. For, if the original volume is $V_0 = \pi r^2 h$, then the revised volume is

$$V_1 = \pi (.8r)^2 (1.4h) = (.64)(1.4)V_0 = .896V_0,$$

which is $V_0 - (.104)V_0$.

2. Roots of a quadratic.

The answer is $p = \sqrt{4q+1}$. Let the roots be r and s, with $r \ge s > 0$. That

$$r - s = 1 \tag{1}$$

is given, and that

$$r + s = -p \tag{2}$$

is known from the fact that $x^2 + px + q = (x - r)(x - s)$. Solving (1) and (2) for r and s we obtain

$$r = \frac{1-p}{2}$$
 and $s = \frac{-1-p}{2}$.

Then

$$q = rs = \frac{p^2 - 1}{4},$$

so $p^2 = 4q + 1$, and p is the positive square root: $p = \sqrt{4q + 1}$.

3. Area spanned by roots.

The area is $\sqrt{15}/2$. Factor the equation into

$$(x^2 - x + 1)(x^2 - 3x + 1) = 0$$

to find the four roots $\frac{1\pm i\sqrt{3}}{2}$ and $\frac{3\pm\sqrt{5}}{2}$. The x-axis divides the quadrilateral into two congruent triangles, each having base length $\left(\frac{3+\sqrt{5}}{2}\right)-\left(\frac{3-\sqrt{5}}{2}\right)=\sqrt{5}$ and altitude $\frac{\sqrt{3}}{2}$, so each has area $\frac{\sqrt{15}}{4}$. Thus the total area is $\frac{\sqrt{15}}{2}$.

2005 Arkansas Mathematics Competition Solutions, p.2 of 4

4. Progressive triples.

The solutions are (10, 10, 10) and (40, 10, -20). Write a = b - d and c = b + d, where d is the common difference in the A.P. Then 30 = a + b + c = 3b, so b = 10. From (ii) we have $c^2 = ab = 10a$, so $(10 + d)^2 = 10(10 - d)$; i.e., $d^2 + 30d = 0$. Thus d = 0 or d = -30. These lead to the solutions (10, 10, 10) and (40, 10, -20), respectively.

5. Not a square.

Let $m = n^4 + 2n^3 + 2n^2 + 2n + 1$. We show that m lies between the consecutive squares $(n^2 + n)^2$ and $(n^2 + n + 1)^2$, so cannot be itself a square integer. We have

$$(n^2 + n)^2 = n^4 + 2n^3 + n^2 < m$$

and

$$(n^2 + n + 1)^2 = n^4 + 2n^3 + 3n^2 + 2n + 1 > m,$$

and the proof is complete.

6. Probability.

It is $\frac{3}{5}$. Because of the independence, the "experiment" is equivalent to choosing a point (x,y) at random in the rectangle $(0,8)\times(0,4)$, and the probability that $x^2>y^3$ is the frac-

tion of the total area of this rectangle lying to the right of the curve $y=x^{2/3}$. The area of this portion is

$$\int_0^8 x^{\frac{2}{3}} dx = \frac{3}{5} \left[x^{\frac{5}{3}} \right]_0^8 = \frac{3}{5} \cdot 32,$$

which is $\frac{3}{5}$ of the area of the rectangle.

7. Find this year's term.

We'll show that $x_{2005}^2 - y_{2005} = 2$. We have $x_0^2 - y_0 = 2$. For a clue about how $x_n^2 - y_n$ behaves, let's look at $x_1^2 - y_1$.

$$x_1^2 - y_1 = (x_0^3 - 3x_0)^2 - (y_0^3 - 3y_0)$$

$$= x_0^6 - 6x_0^4 + 9x_0^2 - (x_0^2 - 2)^3 + 3(x_0^2 - 2)$$

$$= x_0^6 - 6x_0^4 + 9x_0^2 - x_0^6 + 6x_0^4 - 12x_0^2 + 8 + 3x_0^2 - 6$$

$$= 2$$

Hmm... Suppose that $x_k^2 - y_k = 2$. Then

$$x_{k+1}^{2} - y_{k+1} = (x_{k}^{3} - 3x_{k})^{2} - (y_{k}^{3} - 3y_{k})$$

$$= x_{k}^{6} - 6x_{k}^{4} + 9x_{k}^{2} - (x_{k}^{2} - 2)^{3} + 3(x_{k}^{2} - 2)$$

$$= x_{k}^{6} - 6x_{k}^{4} + 9x_{k}^{2} - x_{k}^{6} + 6x_{k}^{4} - 12x_{k}^{2} + 8 + 3x_{k}^{2} - 6$$

$$= 2.$$

By the induction principle, $x_n^2 - y_n = 2$ for all n, so $x_{2005}^2 - y_{2005} = 2$.

8. Last four digits.

We show that the last four digits are 6807. We find $7^2=49,\ 7^3=343,$ and $7^4=2401.$ Then

$$7^{2005} = 7 \cdot 7^{2004}$$

$$= 7(7^4)^{501}$$

$$= 7(1 + 2400)^{501}.$$

By the binomial theorem,

$$(1 + 2400)^{501} = 1 + 501 \cdot 2400 + k \cdot 2400^2$$

for some integer k, and $k \cdot 2400^2 \equiv 0 \pmod{10000}$. Thus

$$7^{2005} \equiv 7(1 + (500 + 1)2400) \pmod{10000}$$

 $\equiv 7(1 + 2400) \pmod{10000}$
 $\equiv (7)(2401) \pmod{10000}$
 $\equiv 6807 \pmod{10000}$.

Thus the last four digits are 6807.

2005 Arkansas Mathematics Competition Solutions, p. 4 of 4

9. Limit of a sequence.

The limit is $\frac{2}{9}$. Write a_n in the form

$$a_n = \frac{1}{n} \left[\left(\frac{1}{n} \right)^{\frac{7}{2}} + \left(\frac{2}{n} \right)^{\frac{7}{2}} + \dots + \left(\frac{n}{n} \right)^{\frac{7}{2}} \right],$$

and recognize this as a Riemann sum for the integral

$$\int_0^1 x^{\frac{7}{2}} dx = \frac{2}{9} x^{\frac{9}{2}} \Big|_0^1 = \frac{2}{9}.$$

10. Maximum value.

The maximum value is $\sqrt{10} = f(2)$. Write

$$f(x) = \sqrt{x(7-x)} - \sqrt{(x-2)(7-x)}$$

= $(\sqrt{x} - \sqrt{x-2})\sqrt{7-x}$,

and note that f(x) is real if and only if $2 \le x \le 7$. Multiplying and dividing by $(\sqrt{x} + \sqrt{x-2})$ we obtain

$$f(x) = \frac{2\sqrt{7-x}}{\sqrt{x} + \sqrt{x-2}},$$

where both numerator and denominator are positive. As x increases from 2 to 7, the denominator increases and the numerator decreases, so f(x) decreases. Thus the maximum value is at x = 2, and $f(2) = \sqrt{10}$.