Test 2

 6^{th} October, 2020 11:00 am - 11:45 am

- 1. Prove that given a CFG G, the following problems are undecidable.
 - (a) Determine whether L(G) contains a string of the form ww. (Hint: Consider $L(G_1)$ and $L(G_2)$, When will the language $L(G_1)L(G_2)$ have a string of the form ww?)
 - (b) Determine whether $L(G) = L(G)^{rev}$ [5]
- 2. (a) Given a polynomial p(), a TM M is said to run in p()-time if for any $n \geq 0$, and any n-length input string, M halts in at most p(n) steps. Prove that L(M) is a recursive set.
 - (b) Show that for any constant c > 0, there exists an n_c such that for all $n \ge n_c$, $cn \le n^2$.
 - (c) A language L is said to be computable in linear time if L = L(M) for a deterministic Turing Machine M where there is a constant c > 0 such that for any n, and an input string of length n, M halts in at most cn steps. Prove that there is a recursive set R that is not computable in linear time. [3]