

Università degli Studi di Roma "La Sapienza" Ingegneria Informatica e Automatica FISICA 6.6.2023

A.A. 2022-2023 (12 CFU) – Proff. M.Petrarca – A.Sciubba

- 1) Su di un piano orizzontale privo di attrito un corpo di massa m = 2 kg viaggia ad una velocità di v = 5 m/s. Ad un certo istante il corpo urta con una molla di costante elastica $k = 2 \cdot 10^3 \text{ N/m}$ che inizialmente si trova in posizione di riposo. L'asse della molla e la direzione della velocità del corpo coincidono ed è trascurabile qualsiasi attrito legato alla struttura della molla.
 - a. Calcolare la massima variazione ΔL di lunghezza subita dalla molla compressa dal corpo di massa m. b. Calcolare la massima variazione ΔL di lunghezza subita dalla molla compressa dal corpo di massa m sapendo che ora esiste un attrito dinamico tra il corpo di massa m e il piano orizzontale con b) coefficiente μ = 0,3.

2) Una scala schematizzata da un'asta omogenea lunga L e di massa M è appoggiata ad una parete laterale liscia e su un pavimento scabro. L'angolo tra l'asta ed il piano orizzontale è β . A distanza d = $\frac{3}{4}$ L dal punto di appoggio A si trova un corpo di massa m (una persona salita sulla scala). Supponendo che il sistema stia in equilibrio, calcolare l'espressione analitica della forza di attrito in A.

3) Un gas alla pressione atmosferica $P_0 = 1,013 \times 10^5 \, \text{Pa}$, si trova contenuto in un cilindro adiabatico con un pistone termicamente isolato e di massa trascurabile. Il volume del cilindro è V = 5 litri. Dentro il recipiente si trova del ghiaccio alla temperatura t = 0°C che lentamente si scioglie. Si osserva che il pistone si abbassa e il sistema raggiunge l'equilibrio dopo che si è

sciolta una parte di ghiaccio pari ad 1 g e quindi il volume finale del cilindro è di

V = 3,7 litri. Calcolare:

- a. Chi compie lavoro? Chi subisce il lavoro? Calcolare il lavoro.
- b. Calcolare lo scambio di calore. Chi assorbe il calore?

c. Calcolare la variazione di energia interna del gas ed esprimerla in joule. (Trascurare il volume dell'acqua derivante dal ghiaccio sciolto; calore latente di fusione $3.3 \times 10^5 \text{ J/kg}$).

4) Fra le armature di un condensatore piano in aria è posta una lastra isolante di costante dielettrica nota che riempie metà del volume (vedi figura). Nota la carica Q posta sulle armature determinare il valore del campo elettrico all'interno della zona senza dielettrico. Trascurare gli effetti di bordo.

 P_0

GAS

GHIACCIO

5) Un filo conduttore rettilineo di lunghezza infinita e raggio R₁ è ricoperto da un sottilissimo strato isolante. È posto all'interno di un foro coassiale di raggio R₁ ricavato in altro conduttore di raggio esterno R2. Nel conduttore cavo è presente una densità di corrente J(r) = K/r con r distanza dall'asse mentre nel conduttore interno scorre uniformemente la stessa intensità di corrente I ma nel verso

Calcolare il valore dell'intensità di corrente I e il valore del campo magnetico in tutti i punti dello spazio.

1a)
$$\Delta L = \sqrt{\frac{m v^2}{k}}$$

1b) $\Delta L = \frac{-\mu mg + \sqrt{(\mu mg)^2 + 4mv^2}}{k}$

2)
$$F_{As} = \frac{md + M\frac{L}{2}cos\beta}{L sin\beta} \le \mu_s(m + M)g$$

3) La pressione atmosferica compie lavoro sul gas che lo subisce (L = $p_0 \Delta V < 0$). Il gas cede calore (Q = λ m <0) al ghiaccio che fonde. $\Delta U = Q - L < 0$.

4)
$$C_P = \frac{Q_1}{\Delta V} + \frac{Q_2}{\Delta V} = \epsilon_0 (1 + \epsilon_r) \frac{L^2}{h}; \quad E = \frac{\Delta V}{h} = \frac{1}{h} \frac{Q}{C_P}$$

5)
$$I = \int_{R_1}^{R_2} \frac{K}{r} 2\pi r \, dr$$
 $J_{INT} = \frac{I}{\pi R_1^2}$
$$B(r < R_1) = \frac{\mu_0 I \, r}{2\pi R_1^2} \quad B(R_1 < r < R_2) = \frac{\mu_0}{2\pi \, r} \left[I - \int_{R_1}^r \frac{K}{r} 2\pi r \, dr \right] \quad B(r > R_2) = 0$$